ETSITS 136 101 V8.4.0 (2009-01)

Technical Specification

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception

(3GPP TS 36.101 version 8.4.0 Release 8)

Reference RTS/TSGR-0436101v840 Keywords LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **LTE**[™] is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.

 $\textbf{GSM} \\ \textbf{@} \text{ and the GSM logo are Trade Marks registered and owned by the GSM Association}.$

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intell	ectual Property Rights	2
Forev	word	2
Forev	word	8
1	Scope	9
2	References	9
3	Definitions, symbols and abbreviations	9
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
4	General	12
4.1	Relationship between minimum requirements and test requirements	12
4.2	Applicability of minimum requirements	
5	Operating bands and channel arrangement	12
5.1	General	
5.2	Void	
5.3	Void	
5.4	Void	
5.5	Operating bands	
5.6	Channel bandwidth	
5.6.1	Channel bandwidths per operating band	
5.7	Channel arrangement.	
5.7.1	Channel spacing	
5.7.2	Channel raster	
5.7.3	Carrier frequency and EARFCN	
5.7.4	TX-RX frequency separation	
6	Transmitter characteristics	17
6.1	General	
6.2	Transmit power	
6.2.1	Void	
6.2.2	UE Maximum Output Power	
6.2.3	UE Maximum Output power for modulation / channel bandwidth	
6.2.4	UE Maximum Output Power with additional requirements	
6.2.5	Configured transmitted Power	
6.3	Output power dynamics	
6.3.1	(Void)	
6.3.2	Minimum output power	
6.3.2.		
6.3.3	Transmit OFF power	
6.3.3.		
6.3.4	ON/OFF time mask	21
6.3.4.	1 General ON/OFF time mask	21
6.3.4.	PRACH and SRS time mask	21
6.3.5	Power Control	22
6.3.5.	2 Relative Power tolerance	23
6.4	Control and monitoring functions	24
6.4.1	Out-of-synchronization handling of output power	24
6.5	Transmit signal quality	
6.5.1	Frequency error	
6.5.2	Transmit modulation	24
6.5.2.		
6.5.2.	1	
6.5.2.	2 IO-component	24

6.5.2.2.1	Minimum requirements	
6.5.2.3	In-band emissions	
6.5.2.3.1	Minimum requirements	25
6.5.2.4	Spectrum flatness	26
6.5.2.4.1	Minimum requirements	26
6.6	Output RF spectrum emissions	26
6.6.1	Occupied bandwidth	27
6.6.2	Out of band emission	27
6.6.2.1	Spectrum emission mask	27
6.6.2.1.1	Minimum requirement	27
6.6.2.2	Additional Spectrum Emission Mask	
6.6.2.2.1	Minimum requirement (network signalled value "NS_03")	
6.6.2.2.2	Minimum requirement (network signalled value "NS_04")	28
6.6.2.2.3	Minimum requirement (network signalled value "NS_06" or 'NS_07')	
6.6.2.3	Adjacent Channel Leakage Ratio	
6.6.2.3.1	Minimum requirement E-UTRA	
6.6.2.3.2	Minimum requirements UTRA	
6.6.2.4	Additional ACLR requirements	
6.6.2.4.1	Minimum requirements (network signalled value "NS_02")	
6.6.3	Spurious emissions	
6.6.3.1	Minimum requirements	
6.6.3.2	Spurious emission band UE co-existence	
6.6.3.3	Additional spurious emissions	
6.6.3.3.1	Minimum requirement (network signalled value 'NS_02' or "NS_05")	
6.6.3.3.2	Minimum requirement (network signalled value 'NS_07')	
6.7	Transmit intermodulation	
6.7.1	Minimum requirement	
	•	
7 Re	eceiver characteristics	35
7.1	General	35
7.2	Diversity characteristics	
7.3	Reference sensitivity power level	
7.3.1	Minimum requirements (QPSK)	
7.3.2	Requirement for large transmission configurations	
7.4	Maximum input level	38
7.4.1	Minimum requirements	38
7.5	Adjacent Channel Selectivity (ACS)	38
7.5.1	Minimum requirements	
7.6	Blocking characteristics	39
7.6.1	In-band blocking	40
7.6.1.1	Minimum requirements	40
7.6.2	Out of-band blocking	41
7.6.2.1	Minimum requirements	42
7.6.3	Narrow band blocking	42
7.6.3.1	Minimum requirements	42
7.7	Spurious response	43
7.7.1	Minimum requirements	
7.8	Intermodulation characteristics	43
7.8.1	Wide band intermodulation.	43
7.8.1.1	Minimum requirements	44
7.8.2	Void	44
7.9	Spurious emissions	
7.9.1	Minimum requirements	
8.1	General	
8.1.1	Dual-antenna receiver capability	
8.1.1.1	Simultaneous unicast and MBMS operations	
8.1.1.2	Dual-antenna receiver capability in idle mode	
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	
8.2.1	FDD (Fixed Reference Channel)	
8.2.1.1	Single-antenna port performance	
8.2.1.1.1	Minimum Requirement QPSK	
8 2 1 1 2	Minimum Requirement 160AM	46

8.2.1.1.3	Minimum Requirement 64QAM	
8.2.1.1.4	Minimum Requirement 1 PRB allocation	48
8.2.1.2	Transmit diversity performance	
8.2.1.3	Open-loop spatial multiplexing performance	
8.2.1.4	Closed-loop spatial multiplexing performance	
8.2.1.4.1	Minimum Requirement Single-Layer Spatial Multiplexing	
8.2.1.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing	
8.2.1.5	MU-MIMO	
8.2.1.6	[Control channel performance: D-BCH and PCH]	
8.2.2	TDD (Fixed Reference Channel)	
8.2.2.1	Single-antenna port performance	
8.2.2.1.1	Minimum Requirement QPSK	
8.2.2.1.2	Minimum Requirement 16QAM	
8.2.2.1.3	Minimum Requirement 64QAM	
8.2.2.1.4	Minimum Requirement 1 PRB allocation	
8.2.2.2	Transmit diversity performance	
8.2.2.3	Open-loop spatial multiplexing performance	
8.2.2.4	Closed-loop spatial multiplexing performance	
8.2.2.5	MU-MIMO	
8.2.2.6	[Control channel performance: D-BCH and PCH]	
8.3	Demodulation of PDSCH (User-Specific Reference Symbols)	
8.4	Demodulation of PDCCH/PCFICH	
8.4.1	FDD	
8.4.1.1	Single-antenna port performance	
8.4.1.2	Transmit diversity performance	
8.4.2	TDD	
8.4.2.1	Single-antenna port performance	
8.4.2.2	Transmit diversity performance	
8.5	Demodulation of PHICH	
8.6	Demodulation of PBCH	60
9 R	eporting of Channel State Information	61
9.1	General	
9.2	CQI definition under AWGN conditions	
9.2.1	Minimum requirement PUCCH 1-0	
		61
Annex A	A (normative): Measurement channels	62
A.1 G	eneral	62
	L reference measurement channels	
A.2.1	General	
A.2.1.1	Applicability and common parameters	
A.2.1.2	Determination of payload size	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	Full RB allocation	
A.2.2.1.1		
A.2.2.1.2		
A.2.2.1.3		
A.2.2.2	Partial RB allocation	
A.2.2.2.1		
A.2.2.2.2		
A.2.2.2.3		
A.2.3	Reference measurement channels for TDD.	
A.2.3.1	Full RB allocation	
A.2.3.1.1		
A.2.3.1.2		
A.2.3.1.3		
A.2.3.2	Partial RB allocation	
A.2.3.2.1		
A.2.3.2.2		

A.3	DL reference measurement channels	
A.3.1	General	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.3	Reference measurement channels for PDSCH performance requirements (FDD)	
A.3.3.		
A.3.3.		
A.3.3.	r	
A.3.3.	1	
A.3.3.		
A.3.4	1	
A.3.4.	8	
A.3.4.	- · · · · · · · · ·	
A.3.4.		
A.3.4.	1	
A.3.4.	, , ,	
A.3.5	1 1	
A.3.5.		
A.3.5.	2 TDD	78
B.1	Static propagation condition. National for the average of the condition.	79
B.2	Multi-path fading propagation conditions	
B.2.1	Delay profiles	
B.2.2	Combinations of channel model parameters	
B.2.3 B.2.3.		
B.2.3.		
D. 2.3.	-	
B.3	High speed train scenario	84
Anne	ex C (normative): Downlink Physical Channels	86
C.1	General	86
C.2	Set-up	86
C.3	Connection	96
C.3.1	Measurement of Receiver Characteristics	
C.3.2	Measurement of Performance requirements	
	ex D (normative): Characteristics of the interfering signal	
D.1	General	
D.2	Interference signals	88
Anne	ex E (normative): Environmental conditions	89
E.1	General	89
E.2	Environmental	QΩ
E.2.1	Temperature	
E.2.1 E.2.2	Voltage	
E.2.2 E.2.3	Viltage	
F.1	Measurement Point	
F.2	Basic Error Vector Magnitude measurement	
F.3	Basic in-band emissions measurement	
F.4	Modified signal under test	
F.5	Window length	94

F.5.1	Timing offset	94
F.5.2		94
F.5.3	Window length for normal CP	94
F.5.4		95
F.6	Averaged EVM	
F.7	Spectrum Flatness	95
	·······································	
Anne	ex G (informative): Change history	96
Histo	ory	98

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

. The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.211: "Physical Channels and Modulation".
- [5] 3GPP TS 36.212: "Multiplexing and channel coding".
- [6] 3GPP TS 36.213: "Physical layer procedures".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Maximum Output Power: The mean power level per carrier of UE measured at the antenna connector in a specified reference condition.

Mean power: When applied to E-UTRA transmission this is the power measured in the operating system bandwidth of the carrier. The period of measurement shall be at least one subframe (1ms) unless otherwise stated.

Occupied bandwidth: The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Output power: The mean power of one carrier of the UE, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Reference bandwidth: The bandwidth in which an emission level is specified.

Transmission bandwidth: Bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units.

Transmission bandwidth configuration: The highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in Resource Block units.

3.2 Symbols

 $N_{Offs-UL}$

For the purposes of the present document, the following symbols apply:

$BW_{Channel} \\$	Channel bandwidth
$E_{\scriptscriptstyle RS}$	Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.
	excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{E}_{s}	The received energy per RE during the useful part of the symbol, i.e. excluding the cyclic prefix,
	averaged across the allocated RB(s) (average power within the allocated RB(s), divided by the number of RE within this allocation, and normalized to the subcarrier spacing) at the UE antenna connector
F	Frequency

 $\begin{array}{ll} F_{Interferer}(offset) & Frequency \ offset \ of \ the \ interferer \\ F_{Interferer} & Frequency \ of \ the \ interferer \end{array}$

F_C Frequency of the carrier centre frequency

 $\begin{array}{ll} F_{DL_low} & \text{The lowest frequency of the downlink operating band} \\ F_{DL_high} & \text{The highest frequency of the downlink operating band} \\ F_{UL_low} & \text{The lowest frequency of the uplink operating band} \\ F_{UL_high} & \text{The highest frequency of the uplink operating band} \end{array}$

Editor"s note: one of the two following definitions for Io will be used (TBD)

Offset used for calculating uplink EARFCN

Editor"s no	ote: one of the two following definitions for Io will be used (TBD)
I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
I_o	The power spectral density of the total input signal at the UE antenna connector (power averaged
	over the useful part of the symbols within a given bandwidth and normalised to the said bandwidth), including the own-cell downlink signal
I_{or}	The total transmitted power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I_{ot}	The received power spectral density of the total noise and interference for a certain RE (average
	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
N_{cp}	Cyclic prefix length
N_{DL}	Downlink EARFCN The power spectral density of a white paige source (everage power per RE pormuliced to the
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as

measured at the UE antenna connectorN_{Offs-DL} Offset used for calculating downlink EARFCN

 N_{otx} The power spectral density of a white noise source (average power per RE normalised to the

subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B

transmit antenna connector

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{UL} Uplink EARFCN

 $\begin{array}{ll} Rav & Minimum \ average \ throughput \ per \ RB \\ P_{Interferer} & Modulated \ mean \ power \ of \ the \ interferer \\ \Delta F_{OOB} & \Delta \ Frequency \ of \ Out \ Of \ Band \ emission \end{array}$

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

AWGN Additive White Gaussian Noise

BS Base Station
CW Continuous Wave

DL Downlink

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPRE Energy Per Resource Element

E-UTRA Evolved UMTS Terrestrial Radio Access

EUTRAN Evolved UMTS Terrestrial Radio Access Network

EVM Error Vector Magnitude
FDD Frequency Division Duplex
FRC Fixed Reference Channel
HD-FDD Half- Duplex FDD

MCS Modulation and Coding Scheme
MOP Maximum Output Power
MPR Maximum Power Reduction
MSR Maximum Sensitivity Reduction

OOB Out-of-band PA Power Amplifier

PSS Primary Synchronization Signal

PSS_RA PSS-to-RS EPRE ratio for the channel PSS

RE Resource Element

REFSENS Reference Sensitivity power level

r.m.s Root Mean Square SNR Signal-to-Noise Ratio

SSS Secondary Synchronization Signal

SSS_RA SSS-to-RS EPRE ratio for the channel SSS

TDD Time Division Duplex UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunications System

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

xCH_RA xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS xCH_RB xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.xxx section y defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios

For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5-1 E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
4	Ful_low - Ful_high	F _{DL_low} - F _{DL_high}	EDD
1	1920 MHz — 1980 MHz	2110 MHz — 2170 MHz	FDD
2	1850 MHz — 1910 MHz	1930 MHz — 1990 MHz	FDD
3	1710 MHz — 1785 MHz	1805 MHz — 1880 MHz	FDD
4	1710 MHz — 1755 MHz	2110 MHz - 2155 MHz	FDD
5	824 MHz – 849 MHz	869 MHz - 894MHz	FDD
6	830 MHz - 840 MHz	875 MHz - 885 MHz	FDD
7	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz	FDD
8	880 MHz – 915 MHz	925 MHz - 960 MHz	FDD
9	1749.9 MHz - 1784.9 MHz	1844.9 MHz - 1879.9 MHz	FDD
10	1710 MHz – 1770 MHz	2110 MHz - 2170 MHz	FDD
11	1427.9 MHz - 1452.9 MHz	1475.9 MHz - 1500.9 MHz	FDD
12	698 MHz - 716 MHz	728 MHz - 746 MHz	FDD
13	777 MHz – 787 MHz	746 MHz - 756 MHz	FDD
14	788 MHz - 798 MHz	758 MHz - 768 MHz	FDD
17	704 MHz - 716 MHz	734 MHz - 746 MHz	FDD
33	1900 MHz - 1920 MHz	1900 MHz - 1920 MHz	TDD
34	2010 MHz - 2025 MHz	2010 MHz - 2025 MHz	TDD
35	1850 MHz - 1910 MHz	1850 MHz - 1910 MHz	TDD
36	1930 MHz - 1990 MHz	1930 MHz - 1990 MHz	TDD
37	1910 MHz - 1930 MHz	1910 MHz - 1930 MHz	TDD
38	2570 MHz - 2620 MHz	2570 MHz - 2620 MHz	TDD
39	1880 MHz - 1920 MHz	1880 MHz - 1920 MHz	TDD
40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz	TDD

5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1 Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration N_{RB}	6	15	25	50	75	100

Figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

Center subcarrier (corresponds to

DC in baseband) is not transmitted in downlink

Channel Bandwidth [MHz]

Transmission Bandwidth Transmission Bandwidth Resource block

Figure 5.6-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier.

Active Resource Blocks

5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6.1-1: E-UTRA channel bandwidth

E-UTRA band / channel bandwidth

E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
			.,		.,	.,
1			Yes	Yes	Yes	Yes
2 3	Yes	Yes	Yes	Yes	Yes ^[1]	Yes ^[1]
	Yes	Yes	Yes	Yes	Yes ^[1]	Yes ^[1]
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes ^[1]		
6			Yes	Yes ^[1]		[4]
7			Yes	Yes	Yes	Yes ^[1]
8	Yes	Yes	Yes	Yes ^[1]		
9			Yes	Yes	Yes ^[1]	Yes ^[1]
10			Yes	Yes	Yes	Yes
11			Yes	Yes ^[1]	Yes ^[1]	Yes ^[1]
12	Yes	Yes	Yes ^[1]	Yes ^[1]		
13	Yes	Yes	Yes ^[1]	Yes ^[1]		
14	Yes	Yes	Yes ^[1]	Yes ^[1]		
 17	Yes	Yes	Yes ^[1]	Yes ^[1]		
33			Yes	Yes	Yes	Yes
34			Yes	Yes	Yes	
35	Yes	Yes	Yes	Yes	Yes	Yes
36	Yes	Yes	Yes	Yes	Yes	Yes
37			Yes	Yes	Yes	Yes
38			Yes	Yes		
39			Yes	Yes	Yes	Yes
40				Yes	Yes	Yes
NOTE 4	1 1 141 6					

NOTE 1: bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (Clause 7.3) is allowed.

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing =
$$(BW_{Channel(1)} + BW_{Channel(2)})/2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

b) The use of different (asymmetrical)) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in table 5.7.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL_low} + 0.1(N_{DL} - N_{Offs\text{-}DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs\text{-}UL})$$

Table 5.7.3-1 E-UTRA channel numbers

E-UTRA	Downlink			Uplink			
C	F _{DL_low} (MHz)	N _{Offs-DL}	Range of N _{DL}	F _{UL_low} (MHz)	N _{Offs-UL}	Range of N _{UL}	
e e							
r							
a							
i							
n							
g Band							
1	2110	0	0 – 599	1920	18000	18000 – 18599	
2	1930	600	600 – 1199	1850	18600	18600 – 19199	
3	1805	1200	1200 – 1949	1710	19200	19200 – 19949	
4	2110	1950	1950 – 2399	1710	19950	19950 – 20399	
5	869	2400	2400 – 2649	824	20400	20400 - 20649	
6	875	2650	2650 – 2749	830	20650	20650 - 20749	
7	2620	2750	2750 – 3449	2500	20750	20750 – 21449	
8	925	3450	3450 – 3799	880	21450	21450 – 21799	
9	1844.9	3800	3800 – 4149	1749.9	21800	21800 – 22149	
10	2110	4150	4150 – 4749	1710	22150	22150 – 22749	
11	1475.9	4750	4750 – 4999	1427.9	22750	22750 – 22999	
12	728	5000	5000 - 5179	698	23000	23000 - 23179	
13	746	5180	5180 - 5279	777	23180	23180 – 23279	
14	758	5280	5280 – 5379	788	23280	23280 – 23379	
•••							
17	734	5730	5730 - 5849	704	23730	23730 - 23849	
33	1900	26000	36000 - 36199	1900	36000	36000 - 36199	
34	2010	26200	36200 - 36349	2010	36200	36200 - 36349	
35	1850	26350	36350 - 36949	1850	36350	36350 - 36949	
36	1930	26950	36950 - 37549	1930	36950	36950 - 37549	
37	1910	27550	37550 – 37749	1910	37550	37550 – 37749	
38	2570	27750	37750 – 38249	2570	37750	37750 – 38249	
39	1880	28250	38250-38649	1880	38250	38250-38649	
40	2300	28650	38650-39649	2300	38650	38650-39649	

5.7.4 TX-RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

Table 5.7.4-1: Default UE TX-RX frequency separation

Frequency Band	TX - RX carrier centre frequency separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single transmit antenna. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

6.2 Transmit power

6.2.1 Void

6.2.2 UE Maximum Output Power

The following UE Power Classes define the maximum output power. The power is the broadband transmit power of the UE, i.e. the power in the channel bandwidth (clause 5.2) of the radio access mode. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2-1: UE Power Class

TRA Band	ss 1 3m)	rance dB)	ss 2 3m)	rance dB)	ss 3 3m)	rance dB)	ss 4 3m)	erance dB)
1					23	±2		
2					23	±2		
3					23	±2		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	±2		
8					23	±2		
9					23	±2		
10					23	<u>+2</u>		
11					23	±2		
12					23	<u>+2</u>		
13					23	<u>+2</u>		
14					23	±2		
17					23	±2		
33					!3	±2		
34					23	±2		
35					23	<u>+2</u>		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	±2		
40					23	±2		

The above tolerances are applicable for UE(s) that support up to 4 E-UTRA operating bands. For UE(s)
that support 5 or more E-UTRA bands the maximum output power is expected to decrease with each
additional band and is FFS

6.2.3 UE Maximum Output power for modulation / channel bandwidth

For UE Power Class 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channe	Channel bandwidth / Transmission bandwidth configuration (RB)					MPR (dB)
	.4 MHz	3.0 MHz	MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

6.2.4 UE Maximum Output Power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall meet also additional requirements in a specific deployment scenario. To meet these additional requirements the concept of Additional Maximum Power Reduction A-MPR is introduced for the output power in Table 6.2.2-1

For UE Power Class 3 the specific requirements and identified sub-clauses are specified in table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4.-1 are in addition to the allowed MPR requirements specified in clause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks	A-MPR (dB)
NS_01	-	-	-		
	6.6.2.4.1		10	> 42	≤ 1
NS_02	6.6.3.3.1	1, 6, 9, 11	15	> 44	≤1
	0.0.0.0.1		20	> 48	≤ 1
	6.6.2.2.1	2, 4,10, 35, 36	3	>5	≤ 1
	6.6.2.2.1	2, 4,10, 35,36	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 35,36	10	>6	≤1
	6.6.2.2.1	2, 4,10,35,36	15	>8	≤1
	6.6.2.2.1	2, 4,10,35, 36	20	>10	≤1
NS_04	6.6.2.2.2	TBD	TBD	TBD	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50 for QPSK	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	n/a	n/a
NS_07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2
143_07	6.6.3.3.2	13	10	14016 0.2.4-2	14016 0.2.4-2
NS_32	-	-	-	-	-
Note: 0 ≤A-	MPR ≤ 3		<u>'</u>		•

Table 6.2.4-2: A-MPR for 'NS07'

	Region A	Region B	Region C
[RB_start]	TBD	TBD	TBD
[Max. L_CRBs]	TBD	TBD	TBD
A-MPR (dB)	TBD	TBD	TBD

6.2.5 Configured transmitted Power

P_{CMAX} is the configured UE transmitted power defined as follows;

 $P_{CMAX} = MIN \{P_{EMAX}, P_{UMAX}\}$

Where

- P_{EMAX} is the maximum allowed power configured by higher layers and defined in [TS36.331]

P_{UMAX} is the maximum UE power for the UE power class specified in section 6.2.2 modified by section 6.2.3 and section 6.2.4

The UE shall not exceed P_{CMAX} with the tolerances defined in sub-clause 6.2.5-1

Tolerance (dB) P_{CMAX} (dBm) (Normal) (Extreme) 23 [± 2.0] $[\pm 2.0]$ [± TBD] 22 $[\pm 2.5]$ 21 $[\pm 3.0]$ [± TBD] 20 [± TBD] [± TBD] 14 ≤P_{CMAX} < 20 [± TBD] [± TBD] $9 \le P_{CMAX} < 14$ [± TBD] [± TBD] $-40 \le P_{CMAX} < 9$ [± TBD] [± TBD]

Table 6.2.5-1: PCMAX tolerance

6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

el bandwidth / Minimum output power / measurement bandwidth .0 0 15 Hz Hz lHz um output power -40 dBm MHz MHz MHz ИHz rement bandwidth MHz 5 MHz

Table 6.3.2.1-1: Minimum output power

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3.1. Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

МНz

5 MHz

MHz

MHz

MHz

Table 6.3.3.1-1: Transmit OFF power

6.3.4 ON/OFF time mask

rement bandwidth

6.3.4.1 General ON/OFF time mask

MHz

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power measurement period is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.3.1 and clause 6.6.2.3

Figure 6.3.4.1-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask

In the case a single SRS transmission, the ON measurement period is defined as the mean power over the entire symbol duration

For the PRACH Power / Time mask defines the observation period between PRACH transmissions. The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods. The measurement period for different PRACH preamble format is specified in table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.3.1 and clause 6.6.2.3

Table 6.3.4.2-1: PRACH ON power measurement period

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

Figure 6.3.4.2-1: PRACH and SRS ON/OFF time mask

6.3.5 Power Control

6.3.5.1 Absolute Power Tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in clause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in clause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in sub clause 6.3.1 and the Minimum output power as defined in sub clause 6.2

Table 6.3.5.1.1-1: Absolute power tolerance

Conditions	Tolerance
Normal	[± 10.5] dB
Extreme	[± 13.5] dB

6.3.5.2 Relative Power tolerance

Relative power tolerance is the ability of the UE transmitter to set its output power to a specific value for the 2^{nd} and subsequent sub-frame after the start of a contiguous transmission or non-contiguous transmission with a transmission gap ≤ 20 ms.

In the case of a PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power to a specific value for the 2nd and subsequent preambles. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The UE shall meet the requirements specified in Table 6.3.5.2.1-1 and. Table 6.3.5.2.1-2

To account for RF Power amplifier mode changes a number of exception are allowed. The number of exceptions allowed where the power tolerance limit is a maximum of $[\pm 6.0 dB]$ in Table 6.3.5.3.1-1 and Table 6.3.5.3.1-2 is TBD

Table 6.3.5.2.1-1	Relative Power	Tolerance for	Transmission	(normal conditions)

power	step size (Up or ΔP [dB]	down)	PUSCH/ PUCCH (dB]	SRS [dB]	PRACH [dB]
0	≤∆P≤	4	[± MAX {2.0, ΔP/2+2}]		[± MAX {0.5, ΔP/2}]
4	< ∆P ≤	10	[± 4.0]		[± 3.0] ¹
10	< ∆P ≤	15	[± 5.0]		n/a
15	< ∆P ≤	20	[± 6.0]		n/a
20 Note	< ΔP		[± 6.0]		n/a
1.	For PRACH max	imum powe	er step is 6 dB		

Table 6.3.5.2.1-2 Relative Power Tolerance for Transmission (extreme conditions)

power	step size (Up or	down)	PUSCH/ PUCCH	SRS	PRACH
	ΔP [dB]		[dB]	[dB]	[dB]
0	≤∆P≤	4	[± MAX {4.0, ΔP/2+4}]		[± MAX {4.0 ΔP/2+4}]
4	< ∆P ≤	10]± 6.0]]± 5.0]
10	< ∆P ≤	15]± 7.0]		n/a
15	< ∆P ≤	20]± 8.0]		n/a
20	< ΔP]± 8.0]		n/a
Note					!
1.	For PRACH maxi	mum powe	er step is 6 dB		

For a sub-frame excluding a SRS symbol, the power change is defined as the relative power difference between the mean power of the original (reference) sub-frame and the mean power of the target subframe, not including the transient duration. The mean power of successive sub-frames shall be calculated according to Figure 6.3.5.2-1-1

The observation period for a power step tolerance for a sub-frame which includes SRS symbol is FFS and requirements for handling PUCCH and SRS symbols power steps in the same sub-frame to be progressed.

During the transient period there are no additional requirements on UE transmit power beyond what is required in sub – clause 6.3.1 and clause 6.6.2.3

Figure 6.3.5.2.1-1: Power step template (TBD)

6.4 Control and monitoring functions

6.4.1 Out-of-synchronization handling of output power

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.2 Transmit modulation

Transmit modulation defines the modulation quality for expected in-channel RF transmissions from the UE. This transmit modulation limit is specified in terms of; an Error Vector Magnitude (EVM) for the allocated resources blocks (RB), an I/Q component and an in-band emissions for the non-allocated RB.

All the parameters defined in clause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. The basic EVM measurement interval is one slot in the time domain.

6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 consecutive sub-frames for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2.

Table 6.5.2.1.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Level
QPSK	%	17.5
16QAM	%	12.5
64QAM	%	[tbd]

Table 6.5.2.1.1-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions
Basic measurement period		slot

6.5.2.2 IQ-component

The IQ origin offset is the phase and amplitude of an additive sinusoid waveform that has the same frequency as the reference waveform carrier frequency. The measurement interval is one time.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power (IQ origin offset power) shall not exceed the values specified in Table 6.5.2.2.1-1.

Table 6.5.2.2.1-1: Minimum requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative Limit (dBc)
	Output power >0 dBm	-25
	-30 dBm ≤ Output power ≤0 dBm	-20
	-40 dBm ≤ Output power < -30 dBm	-10

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

Parameter Description	Unit	Limit (Note 1)	Applicable Frequencies
General	dB	$\max \left\{ -30, -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRBs} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\Delta_{RB} - 1 \right) / L_{CRBs} , \\ -57 \ dBm \ / 180 \ kHz - P_{RB} \right\}$	Any non-allocated (Note 2)
IQ Image	dB	-25	Image frequencies (Notes 2, 3)
DC	dBc	-25 Output power > 0 dBm -20 -30 dBm ≤ Output power ≤ 0 dBm -10 -40 dBm ≤ Output power < -30 dBm	LO frequency (Notes 4, 5)

Note 1: The minimum requirement is calculated from any of the listed requirements, whichever is the highest power.

Note 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.

Note 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.

Note 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.

Note 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB.

Note 6: L_{CRBs} is the Transmission Bandwidth (see Figure 5.4.2-1).

Note 7: N_{RB} is the Transmission Bandwidth Configuration (see Figure 5.4.2-1).

Note 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or

 $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth.

Note 9: P_{RB} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 Spectrum flatness

The spectrum flatness is defined as a relative power variation across the subcarriers of all RB of the allocated UL block. The spectrum flatness is measured as a dB value comparing the output power of a subcarrier and the average power per subcarrier. The measurement interval is one time.

6.5.2.4.1 Minimum requirements

The spectrum flatness shall not exceed the values specified in Table 6.5.2.4.1-1 for normal conditions and Table 6.5.2.4.1-2 for extreme conditions.

Table 6.5.2.4.1-1: Minimum requirements for spectrum flatness (normal conditions)

Spectrum Flatness	Relative Limit (dB)
If F _{UL_measurement} - F _{UL_low} ≥ 3MHz and	+2/-2
If F _{UL_high} - F _{UL_measurement} ≥ 3 MHz	
If $F_{UL_measurement}$ - F_{UL_low} < 3 MHz	
or	+3/-5
If F _{UL high} - F _{UL measurement} < 3 MHz	

Note

- 1. F_{UL_low} and F_{UL_high} refers to each E-UTRA frequency band specified in Table 5.2-1
- 2. F_{UL measurement} refers to frequency tone being evaluated

Table 6.5.2.4.1-2: Minimum requirements for spectrum flatness (extreme conditions)

Spectrum Flatness	Relative Limit (dB)
If F _{UL_measurement} - F _{UL_low} ≥ 5MHz and	+2/-2
If F _{UL_high} - F _{UL_measurement} ≥ 5 MHz	
If F _{UL_measurement} - F _{UL_low} < 5 MHz	
and	+4/-8
If F _{UL_high} - F _{UL_measurement} < 5 MHz	

Note

- 3. $F_{\text{UL_low}}$ and $F_{\text{UL_high}}$ refers to each E-UTRA frequency band specified in Table 5.2-1
- 4. $F_{UL_measurement}$ refers to frequency tone being evaluated

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

Table 6.6.1-1: Occupied channel bandwidth

	cupied c	cupied channel bandwidth / channel bandwidth						
	1.4							
	ИHz	z	z	z	z	z		
nel bandwidth (MHz)	1.4							

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in clause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

1.4 3.0 5 10 15 20 Measurement Δf_{OOB} (MHz) MHz MHz MHz MHz MHz MHz bandwidth ± 0-1 [TBD] [TBD] -15 -18 -20 -21 30 kHz -10 -10 -10 -10 -10 -10 1 MHz $\pm 1 - 2.5$ -25 -10 -10 -10 -10 -10 1 MHz ± 2.5-5 -25 -13 -13 -13 -13 1 MHz ± 5-6 -25 -13 1 MHz -13 -13 ± 6-10 -25 -13 -13 1 MHz ± 10-15 -25 -13 1 MHz ± 15-20 -25 1 MHz ± 20-25

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2 Additional Spectrum Emission Mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS 03")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

	Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth		
± 0-1	[TBD]	[TBD]	-15	-18	-20	-21	30 kHz		
± 1-2.5	[TBD]	[TBD]	-13	-13	-13	-13	1 MHz		
± 2.5-5	[TBD]	[TBD]	-13	-13	-13	-13	1 MHz		
± 5-6	[TBD]	[TBD]	-13	-13	-13	-13	1 MHz		
± 6-10	[TBD]	[TBD]	-25	-13	-13	-13	1 MHz		
± 10-15	[TBD]	[TBD]		-25	-13	-13	1 MHz		
± 15-20	[TBD]	[TBD]			-25	-13	1 MHz		
± 10-25	[TBD]	[TBD]				-25	1 MHz		

Table 6.6.2.2.1-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.2 Minimum requirement (network signalled value "NS 04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

Spectrum emission limit (dBm)/ Channel bandwidth 1.4 3.0 10 15 20 Measurement Δf_{OOB} (MHz) MHz MHz MHz MHz MHz MHz bandwidth [TBD] [TBD] -15 -18 -20 -21 30 kHz ± 0-1 [TBD] [TBD] -13 -13 -13 -13 1 MHz $\pm 1 - 2.5$ ± 2.5-5 [TBD] [TBD] -13 -13 -13 -13 1 MHz [TBD] [TBD] -25 ± 5-6 -25 -25 -25 1 MHz -25 -25 ± 6-10 [TBD] [TBD] -25 -25 1 MHz ± 10-15 [TBD] [TBD] -25 -25 -25 1 MHz [TBD] [TBD] -25 -25 1 MHz ± 15-20 [TBD] [TBD] -25 1 MHz ± 10-25

Table 6.6.2.2.2-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS 06" or 'NS 07')

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or 'NS_07' is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

	Spectru	m emissior	n limit (dBm	n)/ Channe	bandwidth
Δf_{OOB}	1.4	3.0	5	10	Measurement
(MHz)	MHz	MHz	MHz	MHz	bandwidth
± 0-0.1	[TBD]	[TBD]	-15	-18	30 kHz
± 0.1-1	-13	-13	-13	-13	100 kHz
± 1-2.5	[TBD]	[TBD]	-13	-13	1 MHz
± 2.5-5	[TBD]	[TBD]	-13	-13	1 MHz
± 5-6		[TBD]	-13	-13	1 MHz
± 6-10			-25	-13	1 MHz
± 10-15				-25	1 MHz

Table 6.6.2.2.3-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the] filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements are specified for two scenarios for an adjacent E-UTRA and /or UTRA channel as shown in Figure 6.6.2.3-1.

Figure 6.6.2.3-1: Adjacent Channel Leakage requirements

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1. If the measured adjacent channel power is greater than -50 dBm then the E-UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.1-1.

Channel bandwidth / E-UTRA_{ACLR1} / measurement bandwidth 10 15 **20** ЛHz Hz 1Hz ИHz 0 dB -UTRA_{ACLR1} dB 0 dB dB (JTRA channel Measurement MHz MHz 5 MHz MHz bandwidth

Table 6.6.2.3.1-1: General requirements for E-UTRA_{ACLR}

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA $_{ACLR1}$) and the 2^{nd} UTRA adjacent channel (UTRA $_{ACLR2}$). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than -50dBm then the UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.2-1.

Table 6.6.2.3.2-1: Additional requirements

		Channel bandwidth / UTRA _{ACLR1/2} / measurement bandwidth								
	.4 Hz	0 Hz	5 MHz	10 MHz	15 MHz	20 MHz				
JTRA _{ACLR1}	dB	dB	33 dB	33 dB	33 dB	33 dB				
nt channel centre frequency offset (in MHz)			+BW _{UTRA} /2	³W _{UTRA} ∕2	+BW _{UTRA} /2	0+BW _{UTRA} /2				
JTRA _{ACLR2}			36 dB	36 dB	36 dB	36 dB				
nt channel centre frequency offset (in MHz)			3*BW _{UTRA} /2	BW _{UTRA} /2	3*BW _{UTRA} /2	+3*BW _{UTRA} /2				
ITRA channel Measurement bandwidth			I.5 MHz	0 MHz	3.5 MHz	18 MHz				
A 5MHz channel Measurement bandwidth*			.84 MHz	34 MHz	.84 MHz	3.84 MHz				
1.6MHz channel measurement bandwidth**			.28 MHz	28MHz	.28MHz	1.28MHz				

^{*} Note: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

6.6.2.4 Additional ACLR requirements

This requirement is specified in terms of an additional UTRA_{ACLR2} requirement.

6.6.2.4.1 Minimum requirements (network signalled value "NS_02")

"NS_02" is signalled by the network to indicate that the UE shall meet this additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The Additional ACLR requirement is specified for the 2^{nd} UTRA 5MHz adjacent channel (UTRA_{ACLR2}) The UTRA channel power is measured with a 3.84 MHz RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the UTRA 2^{nd} adjacent channel power is greater than –50dBm then the UTRA_{ACLR2} shall be higher than the value specified in Table 6.6.2.4.1-1.

Table 6.6.2.4.1-1: Additional requirements (UTRA_{ACLR2})

	nannel	nannel bandwidth / UTRA _{ACLR2} / measurement bandwidth							
	.4	0	5	10	15	20			
	Hz	Hz	lHz	lHz	lHz	lHz			
TRA _{ACLR2bis}	-	e e	dB	dB	-	-			
TRA channel Measurement bandwidth	-		MHz	MHz	-	-			
FRA channel Measurement bandwidth	-		l MHz	- MHz	-	-			

^{**} Note: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

6.6.3.1 Minimum requirements

Table 6.6.3.1-1: Boundary between E-UTRA Δf_{OOB} and spurious emission domain

el bandwidth	4 Iz	0 Iz	łz) łz	5 łz) łz
OB (MHz)	d]	d])	5)	5

The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (RB) and channel bandwidths.

Table 6.6.3.1-2: Spurious emissions limits

requency Range	imum Level	surement Bandwidth
kHz ≤ f < 150 kHz	-36 dBm	1 kHz
) kHz ≤ f < 30 MHz	-36 dBm	10 kHz
MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
Hz ≤ f < 12.75 GHz	-30 dBm	1 MHz

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band

Table 6.6.3.2-1: Requirements

E-UTRA	Spurious emission										
Band	Protected band		ency (MHz	/ range z)	Level (dBm)	Bandwidth (MHz)	Comment				
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 34, 38, 40	FDL_low	-	FDL_high	-50	1					
	Frequency range	860	-	895	-50	1					
	Frequency range	1884.5	-	1919.6	-41	0.3	Note 6				
	E-UTRA band 33	1900	-	1920	-50	1	Note 3				
	E-UTRA band 39	1880	-	1920	-50	1	Note ³				
2	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					
3	E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 34, 38	FDL_low	-	FDL_high	-50	1					
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					

6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	875	-37	1	
	Frequency range	875	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	
7	E-UTRA Band 1, 3, 7, 8, 33, 34	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 38	2570	-	2620	-50	1	Note ³
8	E-UTRA Band 1, 8, 7, 33, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	
	E-UTRA band 3	1805	-	1830	-50	1	Note 4
	E-UTRA band 3	1805	-	1880	-36	0.1	Note ^{2,4}
	E-UTRA band 3	1830	_	1880	-50	1	Note ⁴
	E-UTRA band 7	2640	_	2690	-50	1	Note ⁴
	E-UTRA band 7	2640	_	2690	-36	0.1	Note ^{2,4}
9	E-UTRA Band 1, 9, 11, 34	FDL_low	_	FDL_high	-50	1	1.0.0
Ü	Frequency range	860	_	895	-50	1	
	Frequency range	1884.5	_	1919.6	-41	0.3	
10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	_	FDL_high	-50	1	
11	E-UTRA Band 1, 9, 11, 34	FDL_low	_	FDL_high	-50	1	
• •	Frequency range	860	_	895	-50	1	
	Frequency range	1884.5	_	1919.6	-41	0.3	
12	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	_	FDL_high	-50	1	
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	_	FDL_high	-50	1	
	Frequency range	763	_	775	-35	0.00625	
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	_	FDL_high	-50	1	
	Frequency range	763	_	775	-35	0.00625	
17	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	_	FDL_high	-50	1	
33	E-UTRA Band 1, 3, 8, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	Note ⁵
34	E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 38,39, 40	FDL_low	_	FDL_high	-50	1	Note ⁵
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	_	1919.6	-41	0.3	
35							
36							
37			_				
38	E-UTRA Band 1,3, 33, 34	FDL_low	_	FDL_high	-50	1	
39	E-UTRA Band 34, 40	FDL_low	_	FDL_high	-50	1	
40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	_	FDL_high	-50	1	
Note	, , , , , , , , , , , , , , , , , , , ,			· - - "g··			

- FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.2-1
- As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.4.2-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth.
- To meet these requirements some restriction will be needed for either the operating band or protected band
- ⁴ Requirements are specified in terms of E-UTRA sub-bands
- For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- Applicable when NS_02 or NS_05 in section 6.6.3.3.1 is signalled by the network.

6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.6.3.3.1 Minimum requirement (network signalled value 'NS_02' or "NS_05")

When 'NS_02' or "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.1-1: Additional requirements (PHS)

Channel bandwidth / Spectrum emission limit (dBm)					Measurement bandwidth	
1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
-41	-41	-41	-41	-41	-41	300 KHz
	1.4 MHz	1.4 3.0 MHz MHz	1.4 3.0 5 MHz MHz MHz	limit (dBm)	limit (dBm)	Iimit (dBm)

Note

6.6.3.3.2 Minimum requirement (network signalled value 'NS_07')

When 'NS 07' is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1.

Table 6.6.3.3.2-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10 MHz	Measurement bandwidth
763 ≤ f ≤ 775	[-60]	6.25 kHz

^{1.} The requirements are applicable when the edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1919.6 MHz) + 4 MHz + the Channel BW assigned. Operations below this point are for further study.

6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

Table 6.7.1-1: Transmit Intermodulation

BW Channel (UL)	5MHz		10MHz		15MHz		20MHz	
Interference Signal Frequency Offset Interference CW Signal Level	5MHz	10MHz	10MHz	20MHz -40d	15MHz dBc	30MHz	20MHz	40MHz
Intermodulation Product	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]
Measurement bandwidth	4.5MHz	4.5MHz	9.0MHz	9.0MHz	13.5MHz	13.5MHz	18MHz	18MHz

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

All the parameters in clause 7 are defined using the DL reference measurement channel specified in Annex A.3.2 and using the set-up specified in Annex C.3.1

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. Requirements for 4 ports are FFS. With the exception of clause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.1 Minimum requirements (QPSK)

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A.3.2 with parameters specified in Table 7.3.1-1 and table 7.3.1-2

Table 7.3.1-1: Reference sensitivity QPSK PREFSENS

Channel bandwidth							
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1	-	-	-100	-97	-95.2	-94	FDD
2	-104.2	-100.2	-98	-95	-93.2	-92	FDD
3	-103.2	-99.2	-97	-94	-92.2	-91	FDD
4	-106.2	-102.2	-100	-97	-95.2	-94	FDD
5	-104.2	-100.2	-98	-95			FDD
6	-	-	-100	-97			FDD
7	-	-	-98	-95	-93.2	-92	FDD
8	-103.2	-99.2	-97	-94			FDD
9	-	-	-99	-96	-94	-93	FDD
10	-	-	-100	-97	-95.2	-94	FDD
11	-	-	-98	-95	-93.2	-92	FDD
12	-103.2	-99.2	-97	-94			FDD
13	-103.2	-99.2	-97	-94			FDD
14							FDD
17	[-104.2]	-[100.2]	[-98]	[-95]			FDD
33	-	-	-100	-97	-95.2	-94	TDD
34	-	-	-100	-97	-95.2	-94	TDD
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD
37	-	-	-100	-97	-95.2	-94	TDD
38	-	-	-100	-97			TDD
39	-	-	-100	-97	-95.2	-94	TDD
40	-	-	-100	-97	-95.2	-94	TDD

Note 1: The transmitter shall be set to maximum output power level (Table 7.3.1-2)

Note 2: Reference measurement channel is A.3.2

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level of Band 3 + 0.5 dB is applicable for band 9

Note 1: The relation to the received PSD is $\langle \text{REF } \hat{I}_{or} \rangle = P_{REFSENS} (N_{sc}^{RB} N_{RB} \Delta f)^{-1}$ with N_{RB} is the maximum transmission configuration according to Table 5.6-1.

Table 7.3.1-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement must be met.

Table 7.3.1-2: Maximum uplink configuration for reference sensitivity

E-UTRA Band / Channel bandwidth / NRB / Duplex mode								
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode	
1	-	-	25	50	75	100	FDD	
2	6	15	25	50	50 ¹	50 ¹	FDD	
3	6	15	25	50	50 ¹	50 ¹	FDD	
4	6	15	25	50	75	100	FDD	
5	6	15	25	25 ¹	-	-	FDD	
6	-	-	25	25 ¹	-	-	FDD	
7	-	-	25	50	75 ¹	75 ¹	FDD	
8	6	15	25	25 ¹	-	-	FDD	
9	-	-	25	50	50 ¹	50 ¹	FDD	
10	-	-	25	50	75	100	FDD	
11	-	-	25	25 ¹	25 ¹	25 ¹	FDD	
12	6	15	20 ¹	20 ¹			FDD	
13	6	15	20 ¹	20 ¹			FDD	
14							FDD	
17	6	15	20 ¹	20 ¹			FDD	
33	-	-	25	50	75	100	TDD	
34	-	-	25	50	75	-	TDD	
35	6	15	25	50	75	100	TDD	
36	6	15	25	50	75	100	TDD	
37	-	-	25	50	75	100	TDD	
38	-	-	25	50	-	-	TDD	
39			25	50	75	100	TDD	
40				50	75	100	TDD	
Note 1:	Maximum nu	umber of U	JL resoui	ces blocks	allocated i	s less than	the total	

Note 1: Maximum number of UL resources blocks allocated is less than the total resources blocks supported by the channel bandwidth

7.3.2 Requirement for large transmission configurations

For some combinations of bandwidths and operating bands, a certain relaxation of the UE performance is allowed when the transmission configuration is larger than that in Table 7.3.1-2. Table 7.3.2-1 specifies the allowed maximum sensitivity degradation (MSD) when the UL resource block allocation is the total resource blocks (Table 5.4.2-1) supported by the channel bandwidth.

Channel bandwidth 1.4 MHz E-UTRA 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz **Duplex Band** (dB) (dB) (dB) (dB) (dB) (dB) Mode **FDD** 1 n/a n/a n/a n/a 2 n/a n/a n/a n/a **TBD TBD FDD TBD** 3 n/a n/a n/a n/a **TBD FDD** 4 n/a n/a FDD n/a n/a n/a n/a 5 n/a TBD **FDD** n/a n/a 6 **TBD FDD** n/a 7 **TBD TBD** FDD n/a n/a TBD FDD 8 n/a n/a n/a TBD TBD FDD 9 n/a n/a 10 n/a n/a n/a n/a **FDD** 11 **TBD TBD TBD FDD** n/a 12 **TBD TBD FDD** 13 n/a n/a TBD **TBD FDD FDD** 14 17 **TBD TBD FDD**

Table 7.3.2-1: Maximum Sensitivity Degradation

Note:

7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

7.4.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.4.1.

Rx Parameter its Channel bandwidth

MHz Hz Hz Hz Hz

ignal mean power -25

Table 7.4.1-1: Maximum input level

Note:

- 1. The transmitter shall be set to 4dB below the supported maximum output power.
- 2. Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant.

7.5 Adjacent Channel Selectivity (ACS)

7.5.1 Minimum requirements

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of

^{1.} The transmitter shall be set to maximum output power level with MPR applied and with the maximum transmission configuration (Table 5.2.1-1) allocated

the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2.

Table 7.5.1-1: Adjacent channel selectivity

			Channel bandwidth				
Parameter	iits	MHz	lHz	Hz	lHz	lHz	ИHz
ACS	В	3.0	.0	.0	.0)	7

Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

Parameter	ts	Channel bandwidth					
		4 MHz	MHz	MHz	MHz	MHz	MHz
ignal mean power	n			REFSENS +	14 dB		
	n	S +45.5dB	S +45.5dB	S +45.5dB*	S +45.5dB	S +42.5dB	S +39.5dB
•	Z	1.4	3	5	5	5	5
offset)	Z	+0.0025]).0075]	-0.0025]	-0.0075]	0.0125]	+0.0025]

- 1. The transmitter shall be set to 4dB below the supported maximum output power.
- 2. The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up according to Annex C.3.1

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

Parameter	ts		Channel bandwidth					
		↓ MHz	MHz	MHz	MHz	MHz	MHz	
ignal mean power		56.5	56.5	-56.5	56.5	53.5	50.5	
			-25					
		1.4	3	5	5	5	5	
offset)		-0.0025]	0.0075]	-0.0025]	-0.0075]	0.0125]	+0.0025]	

- 1. The transmitter shall be set to 24dB below the supported maximum output power.
- 2. The interferer consists of the Reference measurement channel specified in Annex 3.2 with set-up according to Annex C.3.1

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a

specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels..

7.6.1.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

Parameter	ts		Channel bandwidth					
		I MHz	MHz	MHz	MHz	MHz	MHz	
ignal mean REFSENS + channel bandwidth specific value below				below				
power		6	6	6	6	7	9	
r		1.4	3	5	5	5	5	
Floffset, case 1	MHz	2.1[+0.012 5	4.5[+0.007 5	7.5[+0.0125]	7.5[+0.002 5	7.5[+0.007 5	7.5[+0.012 5	
Floffset, case 2	MHz	3.5[+0.007	7.5[+0.007 5	12.5[+0.0075	12.5[+0.01	12.5[+0.00	12.5[+0.00	
		1			5	5	5	

Table 7.6.1.1-1: In band blocking parameters

- 1. The transmitter shall be set to 4dB below the supported maximum output power.
- 2. The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up according to Annex C.3.1

E-UTRA band	Parameter P _{Interferer}	Units dBm	Case 1 -56	Case 2 -44	Case 3 [T.B.D]
	F _{Interferer} (Offset)	MHz	=-BW/2 - F _{loffset, case 1} & =+BW/2 + F _{loffset, case 1}	≤ -BW/2- F _{loffset, case 2} & ≥ +BW/2 + F _{loffset, case 2}	
1, 2, 3, 4, 5, 7, 8, 9, 10, 11,12 33,34,35,36,37,38,39,40	F _{Interferer}	MHz	F_{DL_low} -7.5 to F_{DL_high} +7.5 (Note 1)	F _{DL_low} -15 to F _{DL_high} +15	
6, 13	F _{Interferer}	MHz	F_{DL_low} - 7.5 to F_{DL_high} +7.5 (Note 1 & 2)	F_{DL_low} -15 to F_{DL_high} +15 (Note 2)	
17	F _{Interferer}	MHz	F _{DL_low} - 7.5 to	F_{DL_low} -9.0 to	F _{DL_low} -15 to
			F _{DL_high} +7.5 (Note 1 & 2)	F _{DL_high} +15 (Note 2)	F _{DL_low} -9.0 (Note 3)

Note

- 1. For each carrier frequency the requirement is valid for two frequencies:
 - a. the carrier frequency -BW/2 -Floffset, case 1 and
 - b. the carrier frequency + BW/2 + Floffset, case 1.
- 2. For Bands 6 and 13 and 17 the unwanted modulated interfering signal does not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band
- 3. For Band 17 additional unwanted modulated interfering signals fall from 6 to 18 MHz from the lower band edge.

7.6.2 Out of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in sub-clause 7.5.1 and sub-clause 7.6.1 shall be applied.

7.6.2.1 Minimum requirements

. The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to [TBD] exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to [TBD] exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious response are applicable.

Rx Parameter its Channel bandwidth

Hz Hz Hz Hz Hz Hz Hz

ignal mean power

FSENS + channel bandwidth specific value below

6 6 6 6 7 9

Table 7.6.2.1-1: Out-of-band blocking parameters

- 1. The transmitter shall be set to 4dB below the supported maximum output power.
- 2. Reference measurement channel is specified in Annex A.3.2.

oand	er	its		Frequency					
			range 1	range 2	range 3	range 4			
		m	-44	-30	-15	-15			
5 10,11,12, 13,	CW)		F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz	-			
17,33,34, 35, 36, 37, 38, 39, 40	,		F _{DL_high} +15 to 60	F _{DL_high} +60 to	F _{DL_high} +85 to +12750 MHz	-			
5, 12, 17		łz	-	-	_	F _{UL_low} - F _{UL_high}			

Table 7.6.2.1-2: Out of band blocking

7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

7.6.3.1 Minimum requirements

. The relative throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.6.3.1-1

Channel Bandwidth Parameter Unit 1.4 MHz 3 MHz 5 MHz | 10 MHz | 15 MHz 20 MHz Prefsens + channel-bandwidth specific value below P_{w} dBm 18 16 13 16 14 Puw (CW) dBm -55 -55 -55 -55 -55 -55 Fuw (offset for MHz 0.9075 1.7025 2.7075 5.2125 7.7025 10.2075 $\Delta f = 15 \text{ kHz}$ Fuw (offset for MHz $\Delta f = 7.5 \text{ kHz}$

Table 7.6.3.1-1: Narrow-band blocking

Note 1: The transmitter shall be set a 4 dB below the supported maximum power.

Note 2: Reference measurement channel is specified in Annex A.3.2.

7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6.2 is not met.

7.7.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

Parameter its

Channel bandwidth

MHz / Hz / MHz / MHz / MHz

ignal mean power REFSENS + channel bandwidth specific value below 6 6 6 7 9

Table 7.7.1-1: Spurious response parameters

- 1. The transmitter shall be set to 4dB below the supported maximum output power.
- 2. Reference measurement channel is specified in Annex A.3.2.

Table 7.7.1-2: Spurious Response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

7.8.1.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

Parameter its **Channel bandwidth** 4 MHz MHz ЛHz MHz ИHz MHz REFSENS + channel bandwidth specific value below ignal mean power 12 8 6 6 9 -46 -46 1.4 -BW/2 -2.1 -BW/2 -4.5 -BW/2 - 7.5V/2+ 2.1 $\frac{1}{2} + 4.5$ +BW/2 + 7.52*F_{Interferer 1}

Table 7.8.1.1-1: Wide band intermodulation

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

^{1.} The transmitter shall be set to 4dB below the supported maximum output power.

^{2.} Reference measurement channel is specified in Annex Annex A.3.2.

^{3.} The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up according to Annex C.3.1The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥5MHz

8 Performance requirement

This clause contains performance requirements for the physical channels specified in [TS 36.211]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

8.1 General

8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value
Inter-TTI Distance		1
Number of HARQ processes	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths
Cyclic Prefix		Normal
Note:		

Table 8.2.1-1: Common Test Parameters (FDD)

For all test cases, the SNR is defined as

,
$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}}$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.2 is achieved. The

purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.1.1.1 Minimum Requirement QPSK

The requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.1.1.1-1: Test Parameters for Testing QPSK

Parameter		Unit	Test [1.1-1.4,2.1]			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0			
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
N_{oc} at antenna	port	dBm/15kHz	TBD			
Note 1: $P_B = 0$						
Parameter		Unit	Test [1.1-1.4,2.1]			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0			
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
N_{oc} at antenna	port	dBm/15kHz	TBD			
Note 1: $P_{B} = 0$						

Table 8.2.1.1.1-2: Minimum performance QPSK (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
n u n b e r		C h a n n e I	Cond ition	Matr ix and Ante nna Conf igur atio n	Fraction of Maxi mum Throughput (%)	SNR (dB)	C at e g or y
[1.1]	10 MHz	[R.2 FDD]	EVA5	1x2 Low	70	-1.0	
[1.2]	10 MHz	[R.2 FDD]	ETU70	1x2 Low	70	-0.4	
[1.3]	10 MHz	[R.2 FDD]	ETU300	1x2 Low	70	0.0	
[1.4]	10 MHz	[R.2 FDD]	HST	1x2 Low	70	TBD	
[2.1]	1.4 MHz	[R.4 FDD]	EVA5	1x2 Low	70	-0.5	

8.2.1.1.2 Minimum Requirement 16QAM

The requirements are specified in Table 8.2.1.1.2-1, with the addition of the parameters in Table 8.2.1.1.2-2 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.1.1.2-1: Test Parameters for Testing 16QAM

Parameter		Unit	Test [1.5-1.7]
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna port		dBm/15kHz	TBD
Note 1: $P_B = 0$			

Table 8.2.1.1.2-2: Minimum performance 16QAM (FRC)

Test n u m b e	Bandwidth	Reference C h a n n e I	Propagation Cond ition	Correlation Matr ix and Ante nna Conf igur atio n	Reference Fraction of M ax i m u m Throughput (%)	SNR (dB)	UE C at e g or y
[1.5]	10 MHz	[R.3 FDD]	EVA5	1x2 Low	70	6.7	
[1.6]	10 MHz	[R.3 FDD]	ETU70	1x2 Low	30	1.4	
[1.7]	10 MHz	[R.3 FDD]	ETU300	1x2 High	70	9.4	

8.2.1.1.3 Minimum Requirement 64QAM

The requirements are specified in Table 8.2.1.1.3-2, with the addition of the parameters in Table 8.2.1.1.3-1 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.1.1.3-1: Test Parameters for Testing 64QAM

Parameter	•	Unit	Test [1.8-1.10,2.2-2.5]
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna port		dBm/15kHz	TBD
Note 1: $P_{B} = 0$			

Table 8.2.1.1.3-2: Minimum performance 64QAM (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u m b e r		C h a n n e I	Conditi	M at ri x a n d A nt e n a C o nf ig ur at io n	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[2.2]	3 MHz	[R.5 FDD]	EVA5	1x2 Low	70	17.6	
[2.3]	5 MHz	[R.6 FDD]	EVA5	1x2 Low	70	17.4	
[1.8]	10 MHz	[R.7 FDD]	EVA5	1x2 Low	70	17.7	
[1.9]	10 MHz	[R.7 FDD]	ETU70	1x2 Low	70	19.0	
[1.10]	10 MHz	[R.7 FDD]	EVA5	1x2 High	70	19.1	
[2.4]	15 MHz	[R.8 FDD]	EVA5	1x2 Low	70	17.7	
[2.5]	20 MHz	[R.9 FDD]	EVA5	1x2 Low	70	17.6	

8.2.1.1.4 Minimum Requirement 1 PRB allocation

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge.

Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter	•	Unit	Test [3.1-3.3]
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	TBD
Cell ID			0
OCNG [Symbols fo PRBs]	r unused		[Zeros shall be inserted]
Note 1: $P_B = 0$			

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u n b e r	a n d M C S	C h a n n e l	Conditi	Matri Xand Anten Configuration	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[3.1]	3 MHz 16QAM 1/2	[R.0 FDD]	ETU70	1x2 Low	30	1.9	
[3.2]	10 MHz 16QAM 1/2	[R.1 FDD]	ETU70	1x2 Low	30	1.9	
[3.3]	20 MHz 16QAM 1/2	[R.1 FDD]	ETU70	1x2 Low	30	1.9	

8.2.1.2 Transmit diversity performance

The requirements are specified in Table 8.2.1.2-2, with the addition of the parameters in Table 8.2.1.2-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose is to verify the performance of transmit diversity (SFBC) with 2 and 4 transmitter antennas.

Table 8.2.1.2-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter	,	Unit	Test [7.1-7-3]			
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3			
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
N_{oc} at antenna port		dBm/15kHz	TBD			
Note 1: $P_B = 1$						

Table 8.2.1.2-2: Minimum performance Transmit Diversity (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u n k e r	a n d M C S	C h a n n e l	Condition	Matr ix and Ante nna Conf igur atio n	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[7.1]	10 MHz 16QAM 1/2	[R.11 FDD]	EVA5	2x2 Medium	70	6.8	
[7.2]	10 MHz QPSK 1/3	[R.10 FDD]	HST	2x2 Low	70	TBD	
[7.3]	1.4 MHz Q P S K 1/ 3	[R.12 FDD]	EPA5	4x2 Medium	70	TBD	

8.2.1.3 Open-loop spatial multiplexing performance

The requirements are specified in Table 8.2.1.3-2, with the addition of the parameters in Table 8.2.1.3-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose is to verify the performance of large delay CDD with 2 and 4 transmitter antennas.

Table 8.2.1.3-1: Test Parameters for Large Delay CDD (FRC)

Parameter	i	Unit	Test [6.1]	Test [6.2]	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-6	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-6 (Note 1)	
N_{oc} at antenna	port	dBm/15kHz	TBD	TBD	
Note 1: $P_{p} = 1$					

Table 8.2.1.3-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u n b e r	a n d M C S	C h a n n e I	Cond ition	Matr ix and Ante nna Conf igur atio n	Fraction of M ax i m u m Throughput (%	SNR (dB)	C at e g or y
[6.1]	10 MHz 16QAM 1/2	[R.11 FDD]	EVA70	2x2 Low	70	13.0	
[6.2]	10 MHz 16QAM 1/2	[R.14 FDD]	EVA70	4x2 Low	70	14.3	

8.2.1.4 Closed-loop spatial multiplexing performance

8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test [4.1]	Test [4.2]	Test [4.3]
Downlink power $ ho_{\scriptscriptstyle A}$		dB	-3	-3	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)
N_{oc} at antenna port		dBm/15kHz	TBD	TBD	TBD
Precoding granularity		PRB	6	50	6
PMI delay (Note 2)		ms	6	6	6

Note 1: $P_{R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+2)

Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
r u r k e r	a n d M C S	C h a n n e I	Condition	Matr ix and Ante nna Conf igur atio n	Fraction of M ax i m u m Throughput (%	SNR (dB)	C at e g or y
[4.1]	10 MHz QPSK 1/3	[R.10]	EVA5	2x2 Low	70	-2.5	
[4.2]	10 MHz QPSK 1/3	[R.10]	EPA5	2x2 High	70	-2.8	
[4.3]	10 MHz Q P S K 1/ 3	[R.13]	EVA5	4x2 Low	70	-3.4	

8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test [5.1]	Test [5.2]	Test [5.3]
Downlink power $ ho_{\scriptscriptstyle A}$		dB	-3	-3	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		TBD	TBD	TBD
Precoding granularity		PRB	50	50	6
PMI delay (Note 2)		ms	6	6	6

Note 1: $\overline{P_R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+2)

Table 8.2.1.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u n b e r	a n d M C S	C h a n n e I	Condition	Matr ix and Ante nna Conf igur atio n	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[5.1]	10 MHz 16QAM 1/2	[R.11 FDD]	EVA5	2x2 Low	70	12.9	
[5.2]	10 MHz 16QAM 1/2	[R.11 FDD]	ETU70	2x2 Low	70	14.3	
[5.3]	10 MHz 16 Q A M 1/ 2	[R.14 FDD]	EVA5	4x2 Low	70	10.5	

8.2.1.5 MU-MIMO

8.2.1.6 [Control channel performance: D-BCH and PCH]

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.2.2-1: Common Test Parameters (TDD)

Parameter		Value				
Uplink downlink configuration (Note 1)		1				
Special subframe configuration (Note 2)		4				
Cyclic prefix		Normal				
Inter-TTI Distance		1				
Number of HARQ processes	Processes	7				
Maximum number of HARQ transmission		4				
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM				
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths				
Cyclic Prefix		Normal				
Note 1: as specified in Table 4.2-2 in [TS 36.211]						

Note 1: as specified in Table 4.2-2 in [TS 36.211] Note 2: as specified in Table 4.2-1 in [TS 36.211]

8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.2 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.2.1.1 Minimum Requirement QPSK

The requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.2.1.1-1: Test Parameters for Testing QPSK

Parameter		Unit	Test [1.1-1.4,2.1]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna	port	dBm/15kHz	TBD
Note 1: $P_B = 0$			

Table 8.2.2.1.1-2: Minimum performance QPSK (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
n u n b e r		C h a n n e l	Condition	M at rixandAntennaConfiguration	Fraction of Maxi mum Throughput (%)	SNR (dB)	C at e g or y
[1.1]	10 MHz	[R.2 TDD]	EVA5	1x2 Low	70	-1.2	
[1.2]	10 MHz	[R.2 TDD]	ETU70	1x2 Low	70	-0.6	
[1.3]	10 MHz	[R.2 TDD]	ETU300	1x2 Low	70	-0.2	
[1.4]	10 MHz	[R.2 TDD]	HST	1x2 Low	70	TBD	
[2.1]	1.4 MHz	[R.4 TDD]	EVA5	1x2 Low	70	TBD	

8.2.2.1.2 Minimum Requirement 16QAM

The requirements are specified in Table 8.2.2.1.2-1, with the addition of the parameters in Table 8.2.2.1.2-2 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.2.1.2-1: Test Parameters for Testing 16QAM

Parameter	i	Unit	Test [1.5-1.7]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$ dB		0 (Note 1)
N_{oc} at antenna	port	dBm/15kHz	TBD
Note 1: $P_B = 0$			

Table 8.2.2.1.2-2: Minimum performance 16QAM (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
Test n u m b e r	Bandwidth	Reference C h a n n	Propagation Conditi on	M at ri x a n d A nt e n a C o nf ig	Reference Fraction of M ax im um Throughput (%)	SNR (dB)	UE C at e g or y
				ur at io n			
[1.5]	10 MHz	[R.3 TDD]	EVA5	1x2 Low	70	6.7	
[1.6]	10 MHz	[R.3 TDD]	ETU70	1x2 Low	30	1.4	
[1.7]	10 MHz	[R.3 TDD]	ETU300	1x2 High	70	9.3	

8.2.2.1.3 Minimum Requirement 64QAM

The requirements are specified in Table 8.2.2.1.3-2, with the addition of the parameters in Table 8.2.2.1.3-1 and the downlink physical channel setup according to table [in Annex C.3.2].

Table 8.2.2.1.3-1: Test Parameters for Testing 64QAM

Parameter		Unit	Test [1.8-1.10,2.2-2.5]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna port		dBm/15kHz	TBD
Note 1: $P_{B} = 0$			

Table 8.2.2.1.3-2: Minimum performance 64QAM (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u m b e r		C h a n n e l	Conditi	M at ri x a n d A nt e n n a C o nf ig ur at io n	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[2.2]	3 MHz	[R.5 TDD]	EVA5	1x2 Low	70	TBD	
[2.3]	5 MHz	[R.6 TDD]	EVA5	1x2 Low	70	TBD	
[1.8]	10 MHz	[R.7 TDD]	EVA5	1x2 Low	70	17.6	
[1.9]	10 MHz	[R.7 TDD]	ETU70	1x2 Low	70	19.1	
[1.10]	10 MHz	[R.7 TDD]	EVA5	1x2 High	70	19.1	
[2.4]	15 MHz	[R.8 TDD]	EVA5	1x2 Low	70	TBD	
[2.5]	20 MHz	[R.9 TDD]	EVA5	1x2 Low	70	TBD	

8.2.2.1.4 Minimum Requirement 1 PRB allocation

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to table [in Annex C.3.2]. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge.

Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter	•	Unit	Test [3.1-3.3]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	TBD
Cell ID			0
OCNG [Symbols fo PRBs]	r unused		[Zeros shall be inserted]
Note 1: $P_{B} = 0$			

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referen	ce value	UE
n u n b e r	a n d M C ග	C h a n n e l	Condition	Matri xand Anten naConfiguration	Fraction of M ax i m u m Throughput (%)	SNR (dB)	C at e g or y
[3.1]	3 MHz 16QAM 1/2	[R.0 TDD]	ETU70	1x2 Low	30	TBD	
[3.2]	10 MHz 16QAM 1/2	[R.1 TDD]	ETU70	1x2 Low	30	TBD	
[3.3]	20 MHz 16QAM 1/2	[R.1 TDD]	ETU70	1x2 Low	30	TBD	

- 8.2.2.2 Transmit diversity performance
- 8.2.2.3 Open-loop spatial multiplexing performance
- 8.2.2.4 Closed-loop spatial multiplexing performance
- 8.2.2.5 MU-MIMO
- 8.2.2.6 [Control channel performance: D-BCH and PCH]

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

8.4.1 FDD

Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

Parame	Parameter		Test [8.1]	
Number of PDC0	Number of PDCCH symbols		2	
Number of PHICH	groups (N _g)		1	
PHICH du	PHICH duration		Normal	
Cell II	0		0	
Downlink power	PDCCH_RA	dB	0	
allocation	PDCCH_RB	dB	0	
	Power difference between PCFICH and PDCCH		0	
$N_{\it oc}$ at anter	N_{oc} at antenna port			
Cyclic pr	efix		Normal	

8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1 [The downlink physical setup is in accordance with Annex C.3.2.]

Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	Propagation	Correlation	Referen	ce value
		level	C	С	Matr	Pm-dsg (%)	SNR (dB)
			n a	o n	ix		
			n	di			
			n	ti			
			e I	o n			
[8.1]	10 MHz	8 CCE	[R.15 FDD]	ETU70	Low	1	-1.7

8.4.1.2 Transmit diversity performance

8.4.2 TDD

Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

1 4 2 1 Normal
2 1
1
1 Normal
Normal
0
0
0
0
0
Normal
_

Note 1: as specified in Table 4.2-2 in [TS 36.211] Note 2: as specified in Table 4.2-1 in [TS 36.211]

8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1 [The downlink physical setup is in accordance with Annex C.3.2.]

Table 8.4.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation level	Reference C	Propagation C	Correlation Matr	Referen	ce value
			h	o n	ix	Pm-dsg (%)	SNR (dB)
			n	di			
			n e	ti o			
			Ĭ	n			
[8.1]	10 MHz	8 CCE	[R.15 TDD]	ETU70	Low	1	[-1.6 + m]

Editor"s note: the margin 'm' is TBD.

8.4.2.2 Transmit diversity performance

8.5 Demodulation of PHICH

8.6 Demodulation of PBCH

Reporting of Channel State Information 9

9.1 General

This section includes requirements for the reporting of channel state information (CSI).

9.2 CQI definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in [TS 36.211].

Minimum requirement PUCCH 1-0 9.2.1

For the parameters specified in Table 9.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value shall be in the range of +/-[1] of the reported median more than [90%] of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI +[1]) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – [1]) shall be less than or equal to 0.1.

Table 9.2.1-1: PUCCH 1-0 static test							
Parameter	Unit	Test 1	Test 2				
Bandwidth	MHz		10				
PDSCH transmission mode		1	[2]				
Reference signal power	-ID		0				
E_{RS}/I_{or}	dB		3				
SNR	dB	[0]	[6]				
$N_{oc}^{(j)}$	dB[mW/15kHz]	[-102]	[-102]				
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	[-102]	[-96]				
Reporting period	ms	[2-2	0 ms]				
NOTE: Refer	ence measurement	channel as per TS 36.213	Section 7.2.3				

Annex A (normative): Measurement channels

A.1 General

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per sub-carrier
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A+24)/N_{ch}|,$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default.

A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	600	1544	2216	5160	6712	10296
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	1	2	2
Code block CRC size	Bits	0	0	0	0	24	24
Total number of bits per sub-frame	Bits	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame		864	2160	3600	7200	10800	14400

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	3/4	3/4	3/4	3/4	3/4
Payload size	Bits	2600	6456	10680	21384	32856	43816
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	2	2	4	6	7
Code block CRC size	Bits	0	24	24	24	24	24
Total number of bits per sub-frame	Bits	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame		864	2160	3600	7200	10800	14400

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1 Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size	Bits	72	424
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	288	1440
Total symbols per sub-frame		144	720

Table A.2.2.2.1-2 Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size	Bits	72	392
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	288	1152
Total symbols per sub-frame		144	576

Table A.2.2.2.1-3 Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	5	5	5
Allocated resource blocks		1	8	20
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size	Bits	72	808	1736
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame	Bits	288	2304	5760
Total symbols per sub-frame		144	1152	2880

Table A.2.2.2.1-4 Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10
Allocated resource blocks		1	12	20	25
DFT-OFDM Symbols per subframe		12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3
Payload size	Bits	72	1224	1736	2216
Transport block CRC	Bits	24	24	24	24
Number of code blocks - C		1	1	1	1
Code block CRC size	Bits	0	0	0	0
Total number of bits per sub-frame	Bits	288	3456	5760	7200
Total symbols per sub-frame		144	1728	2880	3600

Table A.2.2.2.1-5 Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		1	16	50
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size	Bits	72	1384	5160
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame	Bits	288	4608	14400
Total symbols per sub-frame		144	2304	7200

Table A.2.2.2.1-6 Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20
Allocated resource blocks		1	18	25	50	75
DFT-OFDM Symbols per subframe		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	1864	2216	5160	6712
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks - C		1	1	1	1	2
Code block CRC size	Bits	0	0	0	0	24
Total number of bits per sub-frame	Bits	288	5184	7200	14400	21600
Total symbols per sub-frame		144	2592	3600	7200	10800

A.2.2.2.2 16-QAM

Table A.2.2.2-1 Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	2880
Total symbols per sub-frame		144	720

Table A.2.2.2.2 Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	2304
Total symbols per sub-frame		144	576

Table A.2.2.2.3 Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	4608
Total symbols per sub-frame		144	1152

Table A.2.2.2-4 Reference Channels for 10MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	10	10
Allocated resource blocks		1	12
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	5160
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	6912
Total symbols per sub-frame		144	1728

Table A.2.2.2-5 Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	15	15
Allocated resource blocks		1	16
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	6968
Transport block CRC	Bits	24	24
Number of code blocks - C		1	2
Code block CRC size	Bits	0	24
Total number of bits per sub-frame	Bits	576	9216
Total symbols per sub-frame		144	2304

Table A.2.2.2-6 Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	20	20
Allocated resource blocks		1	18
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	7736
Transport block CRC	Bits	24	24
Number of code blocks - C		1	2
Code block CRC size	Bits	0	24
Total number of bits per sub-frame	Bits	576	10368
Total symbols per sub-frame		144	2592

A.2.2.2.3 64-QAM

[FFS]

A.2.3 Reference measurement channels for TDD

[FFS]

A.2.3.1 Full RB allocation

[FFS]

A.2.3.1.1 QPSK

[FFS]

A.2.3.1.2 16-QAM

[FFS]

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

[FFS]

A.2.3.2.1 QPSK

[FFS]

A.2.3.2.2 16-QAM

[FFS]

A.2.3.2.3 64-QAM

[FFS]

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits $N_{\rm ch}$ that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min \left| R - (A + 24) / N_{ch} \right|,$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of sub-clause 7.4 (Maximum input level).

Tables A.3.2-3 and A.3.2-4 are applicable for sub-clause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	<i>7</i> 5	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760
For Sub-Frame 5	Bits	328	1064	1800	4392	6712	8760
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per subframe		1	1	1	1	2	2
Code block CRC size	Bits	0	0	0	0	24	24
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600
For Sub-Frame 5	Bits	1080	3492	6012	13512	20412	27312
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760
Max. Throughput averaged over 1 frame	kbps	374.4	1249.6	2132.8	4392	6712	8760

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz
- Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 3: The RLC should be configured to Unacknowledged Mode

Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit		Value				
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	<i>7</i> 5	100
Uplink-Downlink Configuration		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4	<i>4</i> +2	4+2	4+2	<i>4</i> +2	<i>4</i> +2
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760
For Sub-Frame 1, 6		n/a	1064	1800	3624	5352	7224
For Sub-Frame 0		208	1064	1800	4392	6712	8760
For Sub-Frame 5		408	1064	2216	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks		1	1	1	1	2	2
Code block CRC size		0	0	0	0	24	24
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600
For Sub-Frame 1, 6		n/a	3276	5556	11256	16956	22656
For Sub-Frame 5		1224	3636	6156	13656	20556	27456
Max. Throughput averaged over one frame	kbps	143.2	689.6	1204.8	2481.6	3755.2	49488.
	1	l			l		8

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: The RLC should be configured to Unacknowledged Mode

Table A.3.2-3 Fixed Reference Channel for Maximum input level (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	<i>7</i> 5	100	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		10	10	10	10	10	10	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664	
For Sub-Frame 5	Bits	2344	7992	13536	30576	45352	61664	
For Sub-Frame 0	Bits	1192	6456	12576	28336	45352	61664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per subframe		1	2	3	5	8	11	
Code block CRC size	Bits	0	24	24	24	24	24	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800	
For Sub-Frame 5	Bits	3240	10476	18036	40536	61236	81936	
For Sub-Frame 0	Bits	1584	8820	16380	38880	59580	80280	
Max. Throughput averaged over 1 frame	kbps	2470.8	8248	13901.	30352	46581	61664	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Table A.3.2-4 Fixed Reference Channel for Maximum input level (TDD)

[FFS]

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: The RLC should be configured to Unacknowledged Mode

A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value					
Reference channel		[R.4			[R.2		
		FDD]			FDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio Frame		10			10		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408			4392		
For Sub-Frame 5	Bits	328			4392		
For Sub-Frame 0	Bits	152			4392		
Number of Code Blocks per subframe		1			1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368			13800		
For Sub-Frame 5	Bits	1080		•	13512	•	
For Sub-Frame 0	Bits	528		•	12960	•	
Max. Throughput averaged over 1 frame	Mbps	0.374		•	4.39	•	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value						
Reference channel					[R.3 FDD]			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks					50			
Allocated subframes per Radio Frame					10			
Modulation					16QAM			
Target Coding Rate					1/2			
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				14112			
For Sub-Frame 5	Bits				12960			
For Sub-Frame 0	Bits				12960			
Number of Code Blocks per subframe					3			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				27600			
For Sub-Frame 5	Bits				27024			
For Sub-Frame 0	Bits				25920			
Max. Throughput averaged over 1 frame	Mbps				13.9			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value								
Reference channel			[R.5	[R.6	[R.7	[R.8	[R.9			
			FDD]	FDD]	FDD]	FDD]	FDD]			
Channel bandwidth	MHz	1.4	3	5	10	15	20			

Allocated resource blocks			15	25	50	75	100
Allocated subframes per Radio Frame			10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664
For Sub-Frame 5	Bits		7992	13536	30576	45352	61664
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664
Number of Code Blocks per subframe			2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800
For Sub-Frame 5	Bits		10476	18036	40536	61236	81936
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	Mbps		8.25	13.9	30.4	46.6	61.7

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit			Val	ue		
Reference channel			[R.0 FDD]		[R.1 FDD]		
Channel bandwidth	MHz	1.4	3	5	10/20	15	20
Allocated resource blocks			1		1		
Allocated subframes per Radio Frame			10		10		
Modulation			16QAM		16QAM		
Target Coding Rate			1/2		1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256		
For Sub-Frame 5	Bits		224		256		
For Sub-Frame 0	Bits		224		256		
Number of Code Blocks per subframe			1		1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552		
For Sub-Frame 5	Bits		504		552		
For Sub-Frame 0	Bits		504		552		
Max. Throughput averaged over 1 frame	Mbps		0.224		0.256		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit		Va	lue
Reference channel		[R.10	[R.11	
		FDD]	FDD]	
Channel bandwidth	MHz	10	10	
Allocated resource blocks		50	50	
Allocated subframes per Radio Frame		10	10	
Modulation		QPSK	16QAM	
Target Coding Rate		1/3	1/2	
Information Bit Payload				
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12960	
For Sub-Frame 5	Bits	4392	12960	
For Sub-Frame 0	Bits	4392	12960	
Number of Code Blocks per subframe		1	3	
Binary Channel Bits Per Sub-Frame				
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	
For Sub-Frame 5	Bits	12912	25824	
For Sub-Frame 0	Bits	12384	24768	
Max. Throughput averaged over 1 frame	Mbps	4.39	13.0	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	ie .
Reference channel		[R.12 FDD]	[R.13 FDD]	[R.14 FDD]	
Channel bandwidth	MHz	1.4	10	10	
Allocated resource blocks		6	50	50	
Allocated subframes per Radio Frame		10	10	10	
Modulation		QPSK	QPSK	16QAM	
Target Coding Rate		1/3	1/3	1/2	
Information Bit Payload					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	4392	12960	
For Sub-Frame 5	Bits	328	4392	12960	
For Sub-Frame 0	Bits	152	3624	11448	
Number of Code Blocks per subframe					
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	3	
For Sub-Frame 5		1	1	3	
For Sub-Frame 0		1	1	2	
Binary Channel Bits Per Sub-Frame					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1248	12800	25600	
For Sub-Frame 5	Bits	960	12512	25024	
	Bits	480	12032	24064	
Max. Throughput averaged over 1 frame	Mbps	0.374	4.32	12.8	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 15 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

A.3.3.3 [RMC for UE-Specific Reference Symbols]

A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit			Vá	alue		
Reference channel		[R.4 TDD]			[R.2 TDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Uplink-Downlink Configuration (Note 3)		1			1		
Allocated subframes per Radio Frame (D+S)		<i>4</i> +2			<i>4</i> +2		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload							
For Sub-Frames 4,9	Bits	408			4392		
For Sub-Frames 1,6	Bits	n/a			3624		
For Sub-Frame 5	Bits	408			4392		
For Sub-Frame 0	Bits	208			4392		
Number of Code Blocks per subframe		1			1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	1368			13800		
For Sub-Frames 1,6	Bits	n/a			11256		
For Sub-Frame 5	Bits	1224			13656		
For Sub-Frame 0	Bits	672			13104		
Max. Throughput averaged over 1 frame	Mbps	0.143			2.48		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 4: as per Table 4.2-2 in TS 36.211 [4]

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value					
Reference channel					[R.3 TDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration (Note 3)					1		
Allocated subframes per Radio Frame (D+S)					<i>4</i> +2		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits				14112		
For Sub-Frames 1,6	Bits				11448		
For Sub-Frame 5	Bits				14112		
For Sub-Frame 0	Bits				12960		
Number of Code Blocks per subframe							
For Sub-Frames 4,9					3		
For Sub-Frames 1,6					2		
For Sub-Frame 5					3		
For Sub-Frame 0					3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits				27600		

For Sub-Frames 1,6	Bits		22512	
For Sub-Frame 5	Bits		27312	
For Sub-Frame 0	Bits		26208	
Max. Throughput averaged over 1 frame	Mbps	•	7.82	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: as per Table 4.2-2 in TS 36.211 [4]

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Val	lue		
Reference channel			[R.5	[R.6	[R.7	[R.8	[R.9
			TDD]	TDD]	TDD]	TDD]	TDD]
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1
Allocated subframes per Radio Frame (D+S)			4+2	<i>4</i> +2	<i>4</i> +2	4 +2	<i>4</i> +2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate			3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664
For Sub-Frames 1,6	Bits		7480	12576	25456	37888	51024
For Sub-Frame 5	Bits		7992	14112	30576	46888	61664
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664
Number of Code Blocks per subframe							
For Sub-Frames 4,9			2	3	41400	62100	82800
For Sub-Frames 1,6			2	3	33768	50868	67968
For Sub-Frame 5			2	3	40968	61668	82368
For Sub-Frame 0			2	3	39312	60012	80712
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		11340	18900	5	8	11
For Sub-Frames 1,6	Bits		9828	16668	5	7	9
For Sub-Frame 5	Bits		10908	18468	5	8	11
For Sub-Frame 0	Bits		9252	16812	5	8	11
Max. Throughput averaged over 1 frame	Mbps		4.69	8.01	17.3	26.2	34.9

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: as per Table 4.2-2 TS 36.211 [4]

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Parameter	Unit			Valu	<i>ie</i>		
Reference channel			[R.0 TDD]		[R.1 TDD]		
Channel bandwidth	MHz	1.4	3	5	10/20	15	20
Allocated resource blocks			1		1		
Uplink-Downlink Configuration (Note 3)			1		1		
Allocated subframes per Radio Frame (D+S)			<i>4</i> +2		<i>4</i> +2		
Modulation			16QAM		16QAM		
Target Coding Rate			1/2		1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits		224		256		
For Sub-Frames 1,6	Bits		208		208		
For Sub-Frame 5	Bits		224		256		
For Sub-Frame 0	Bits		224		256		
Number of Code Blocks per subframe			1		1		
Binary Channel Bits Per Sub-Frame							

For Sub-Frames 4,9	Bits	504	552	
For Sub-Frames 1,6	Bits	456	456	
For Sub-Frame 5	Bits	504	552	
For Sub-Frame 0	Bits	504	552	
Max. Throughput averaged over 1 frame	Mbps	0.131	0.144	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: as per Table 4.2-2 in TS 36.211 [4]

A.3.4.2 Multi-antenna transmission (Common Reference Signals)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit		Va	lue	
Reference channel		[R.10 TDD]	[R.11 TDD]		
Channel bandwidth	MHz	10	10		
Allocated resource blocks		50	50		
Uplink-Downlink Configuration (Note 3)		1	1		
Allocated subframes per Radio Frame (D+S)		4+2	4+2		
Modulation		QPSK	16QAM		
Target Coding Rate		1/3	1/2		
Information Bit Payload					
For Sub-Frames 4,9	Bits	4392	12960		
For Sub-Frames 1,6		3624	9912		
For Sub-Frame 5	Bits	4392	12960		
For Sub-Frame 0	Bits	4392	12960		
Number of Code Blocks per subframe					
For Sub-Frames 4,9		1	3		
For Sub-Frames 1,6		1	2		
For Sub-Frame 5		1	3		
For Sub-Frame 0		1	3		
Binary Channel Bits Per Sub-Frame					
For Sub-Frames 4,9	Bits	13200	26400		
For Sub-Frames 1,6		10656	21312		
For Sub-Frame 5	Bits	13056	26112		
For Sub-Frame 0	Bits	12528	25056		
Max. Throughput averaged over 1 frame	Mbps	2.48	7.17		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: as per Table 4.2-2 in TS 36.211 [4]

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	е	
Reference channel		[R.12	[R.13	[R.14		
		TDD]	TDD]	TDD]		
Channel bandwidth	MHz	1.4	10	10		
Allocated resource blocks		6	50	50		
Uplink-Downlink Configuration (Note 4)		1	1	1		
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2		
Modulation		QPSK	QPSK	16QAM		
Target Coding Rate		1/3	1/3	1/2		
Information Bit Payload						
For Sub-Frames 4,9	Bits	408	4392	12960		
For Sub-Frames 1,6	Bits	n/a	3624	9912		
For Sub-Frame 5	Bits	328	4392	12960		
For Sub-Frame 0	Bits	208	4392	11448		
Number of Code Blocks per subframe						
For Sub-Frames 4,9		1	1	3		
For Sub-Frames 1,6		1	1	2		
For Sub-Frame 5		1	1	3		
For Sub-Frame 0		1	1	2		
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 4,9	Bits	1248	12800	25600		
For Sub-Frames 1,6		n/a	10256	20512		
For Sub-Frame 5	Bits	1104	12656	25312		
For Sub-Frame 0	Bits	624	12176	24352		
Max. Throughput averaged over 1 frame	Mbps	0.135	2.48	7.02		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 4: as per Table 4.2-2 in TS 36.211 [4]

A.3.4.3 [RMC for UE-Specific Reference Symbols]

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Table A.3.5.1-1: Reference Channel FDD

Parameter	Unit	Value		
Reference channel		[R.15 FDD]	[R.16 FDD]	[R.17 FDD]
Number if transmitter antennas		1	2	4
Channel bandwidth	MHz	10	1.4	10
Number of OFDM symbols for PDCCH	symbols	2	2	2
Aggregation level	CCE	8	2	4
DCI Format		Format 1	Format 1	Format 2
Cell ID		0	0	0
Payload (without CRC)	Bits	31	32+1	46

A.3.5.2 TDD

Table A.3.5.1-1: Reference Channel TDD

Parameter	Unit	Value			
Reference channel		[R.15 TDD]	[R.16 TDD]	[R.17 TDD]	
Number if transmitter antennas		1	2	4	
Channel bandwidth	MHz	10	1.4	10	
Number of OFDM symbols for PDCCH	symbols	2	2	2	
Aggregation level	CCE	8	2	4	
DCI Format		Format 1	Format 1	Format 2	
Cell ID		0	0	0	
Payload (without CRC)	Bits	34	35	49	

Annex B (normative): Propagation conditions

B.1 Static propagation condition

B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multiantenna systems.

B.2.1 Delay profiles

Extended Vehicular A model (EVA)

Extended Typical Urban model (ETU)

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Model
Number of cha nnel taps

Extended Pedestrian A (EPA)

Number of cha (r.m.s.)

Delay spread (r.m.s.)

(r.m.s.)

45 ns

410 ns

9

9

357 ns

991 ns

2510 ns

5000 ns

Table B.2.1-1 Delay profiles for E-UTRA channel models

Table B.2.1-2 Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3 Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

Table B.2.2-1 shows propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies

Table B.2.2-1 Channel model parameters

Model	Maximum Doppler frequenc
EPA 5Hz	5 Hz
EVA 5Hz	5 Hz
EVA 70Hz	70 Hz
ETU 70Hz	70 Hz
ETU 300Hz	300 Hz

B.2.3 MIMO Channel Correlation Matrices

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

Table B.2.3.1-1 eNodeB correlation matrix

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2 UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} \\ \beta^* & \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

Table B.2.3.1-3: $R_{\it spat}$ correlation matrices

1x2 case	$R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
2x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$
4x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
4x4 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{bmatrix}$

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

Low cor	rrelation	Medium C	orrelation	High Correlation	
α	β	α	β	α	β
0	0	0.3	0.9	0.9	0.9

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in the table have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value 'a' is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2		$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$								
2x2										
2.8.2			$\begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$	0.9 0.81						
		I	$R_{high} = \begin{bmatrix} 0.9 & 0.81 \\ 0.9 & 0.81 \end{bmatrix}$	1 0.9						
'			$R_{high} = \begin{vmatrix} 0.9 & 1\\ 0.9 & 0.81\\ 0.81 & 0.9 \end{vmatrix}$	0.9 1						
		1.0000 0.8999		0.9542 0.858	7 0.8999 0.809	9]				
40				0.8587 0.954						
4x2		0.9883 0.8894	1.0000 0.8999		4 0.9542 0.858					
	$R_{high} =$	0.9883 0.8894 0.8894 0.9883 0.9542 0.8587	0.8999 1.0000	0.8894 0.9883 1.0000 0.8999						
		0.9342 0.8387 0.8587 0.9542	0.9883 0.8894	0.8999 1.000						
'			0.9542 0.8587	0.9883 0.889						
		0.8099 0.8999								
		0.9541 0.8999 0.9882 0. 0.9882 0.9541 0.9767 0.				ì				
		1.0000 0.9882 0.9430 0.								
		0.9882 1.0000 0.8894 0.								
		0.9430 0.8894 1.0000 0. 0.9767 0.9430 0.9882 1.								
4x4		0.9882 0.9767 0.9541 0.								
	$R_{\cdots} = $	0.9767 0.9882 0.8999 0								
	0.9341 0.9430	0.9105 0.8587 0.9882 0.								
		0.9430 0.9105 0.9767 0. 0.9541 0.9430 0.9430 0.								
		0.9430 0.9541 0.8894 0.								
		0.8587 0.8099 0.9541 0.								
		0.8894 0.8587 0.9430 0								
		0.8999 0.8894 0.9105 0. 0.8894 0.8999 0.8587 0.								
	L 0.0077 0.0307	0.0071 0.0777 0.0307 0.	.5100 0.5 100 0.5541	0.0071 0.7100 0.77	0.0002 0.0000 0.00	e .1 0.5002 1.000g				

Table B.2.3.2-3: MIMO correlation matrices for medium correlation

case	ı a	N/A								
case		$R_{medium} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \\ 0.9 & 1 & 0.27 & 0.3 \\ 0.3 & 0.27 & 1 & 0.9 \\ 0.27 & 0.3 & 0.9 & 1 \end{pmatrix}$								
case	nedium =	1.0000 0.9000 0.8748 0.7873 0.5856 0.5271 0.3000 0.2700	0.2700	0.7873 0.5856	0.8748 0.5271	0.5271 0.8748 0.7873 1.0000	0.7873 0.8748 0.9000 1.0000 0.7873	0.3000 0.2700 0.5856 0.5271 0.8748 0.7873 1.0000 0.9000	0.2700 0.3000 0.5271 0.5856 0.7873 0.8748 0.9000 1.0000)	
case	TBD									

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train from eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Table B.3-1: High speed train scenario

Parameter	Value
D_s	300 m
$D_{ m min}$	2 m
ν	300 km/h
f_d	750 Hz

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived for Band 7.

Figure B.3-1: Doppler shift trajectory

Annex C (normative): Downlink Physical Channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel	
PBCH	
SSS	
PSS	
PCFICH	
PDCCH	
PHICH	
PDSCH	

C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	
PBCH	$PBCH_RA = 0 dB$	
	$PBCH_RB = 0 dB$	
PSS	$PSS_RA = 0 dB$	
SSS	$SSS_RA = 0 dB$	
PCFICH	PCFICH_RB = 0 dB	
PDCCH	$PDCCH_RA = 0 dB$	
	$PDCCH_RB = 0 dB$	
PDSCH	$PDSCH_RA = 0 dB$	
	$PDSCH_RB = 0 dB$	

NOTE 1: No boosting is applied.

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral	dBm/15 kHz	Test specific	1. I_{or} shall be kept
density I_{or}			constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{ m RS}$ / $I_{ m or}$			

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	
PBCH	$PBCH_RA = \rho_A$	
	$PBCH_RB = \rho_B$	
PSS	$PSS_RA = \rho_A$	
SSS	$SSS_RA = \rho_A$	
PCFICH	$PCFICH_RB = \rho_B$	
PDCCH	$PDCCH_RA = \rho_A$	
	$PDCCH_RB = \rho_B$	
PDSCH	$PDSCH_RA = \rho_A$	
	$PDSCH_RB = \rho_B$	

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Total transmitted power spectral density I_{or}	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference signal power ratio $E_{\it RS}$ / $I_{\it or}$		Test specific	Applies for antenna port p

Annex D (normative): Characteristics of the interfering signal

D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

Table D.2-1: Description of modulated E-UTRA interferer

		Channel bandwidth					
	MHz	MHz Hz MHz MHz MHz MHz					
RB	6	5	25	0	' 5	00	
Interferer	MHz	Hz	ИHz	1Hz	ИHz	ИНz	

Annex E (normative): Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1

+15°C to +35°C	for normal conditions (with relative humidity of 25 % to 75 %)
-10°C to +55°C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table E.2.2-1

Power source	Lower extreme voltage	9	
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Table E.2.3-1

Frequency	ASD (Acceleration Spectral Density) random vibration		
5 Hz to 20 Hz	$0.96 \text{ m}^2/\text{s}^3$		
20 Hz to 500 Hz	0,96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave		

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

Annex F (normative): Transmit modulation

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}},$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

For the non-allocated RBs below the allocated frequency block the in-band emissions would be measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\max(f_{\min}, c-12 \cdot \Delta_{RB} + 11)}^{\min(f_{\max}, c-12 \cdot \Delta_{RB} + 11)} |Y(t, f)|^2,$$

where

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB),

 f_{\min} (resp. f_{\max}) is the lower (resp. upper) edge of the UL system BW,

c is the lower edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}} \sum_{c}^{c+12 \cdot N_{RB}-1} \left|Y(t, f)\right|^{2}}$$

where

 N_{RB} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalised and decoded according to:

$$Z'(t,f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi \Delta \widetilde{f}v} \right\} e^{j2\pi f\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}} \right\}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t, f)$ is the phase response of the TX chain.

 $\tilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- \triangleright detect the start of each slot and estimate $\Delta \tilde{t}$ and $\Delta \tilde{f}$,
- ightharpoonup determine $\Delta \widetilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.

To determine the other parameters a sample timing offset equal to $\Delta \widetilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- \triangleright correct the RF frequency offset $\Delta \tilde{f}$ for each time slot, and
- > apply an FFT of appropriate size.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. The signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s). The UL EVM analyzer shall then estimate the TX chain equalizer coefficients $\tilde{a}(t, f)$ and $\tilde{\varphi}(t, f)$ used by the ZF equalizer for all subcarriers by

1. time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols, the time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer.

At this stage estimates of $\Delta \widetilde{f}$, $\widetilde{\alpha}(t,f)$, $\widetilde{\varphi}(t,f)$ and $\Delta \widetilde{c}$ are available. $\Delta \widetilde{t}$ is one of the extremities of the window W, i.e. $\Delta \widetilde{t}$ can be $\Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ or $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even. The EVM analyser shall then

- ightharpoonup calculate EVM₁ with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \alpha \left| \frac{W}{2} \right|$,
- ightharpoonup calculate EVM_h with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \left| \frac{W}{2} \right|$.

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can"t be removed.

F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

Channel B a n d w i d t h	Cyclic prefix leng th N_{cp} for sym bol 0	Cyclic prefix leng th N_{cp} for sym bols 1 to 6	Nominal F F T s i z e	Cyclic prefix for sy mb ols 1 to 6 in FFT sa mpl es	EVM	Ratio of W t o C P f o r s y m b o I s 1 t o	
1.4			128	9	[5]	[55.6]	
3			256	18	[12]	[66.7]	
5	160	144	160 144	512	36	[32]	[88.9]
10	100		1024	72	[66]	[91.7]	
15				1536	108	[102]	[94.4]
20			2048	144	[136]	[94.4]	

Table F.5.3-1 EVM window length for normal CP

^{*} Note: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Channel B a n d w i d t h M H z	Cyclic p r e f i x l e n g t h	Nominal F F T s i z e	Cyclic prescription prescriptio	EVM window length	Ratio of W t o C P
1.4		128	32	[28]	[87.5]
3		256	64	[58]	[90.6]
5	512	512	128	[124]	[96.9]
10	JIZ	1024	256	[250]	[97.4]
15		1536	384	[374]	[97.4]
20		2048	512	[504]	[98.4]
* Note: These percentages are informative					

Table F.5.4-1 EVM window length for extended CP

F.6 Averaged EVM

EVM is averaged over all basic EVM measurements for 20 slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The EVM requirements should be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_1$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ in the expressions above and $\overline{\text{EVM}}_h$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$.

Thus we get:

$$EVM = \max(\overline{EVM}_1, \overline{EVM}_h)$$

F.7 Spectrum Flatness

The data for the subcarrier output power shall be taken from the equaliser estimation step.

Annex G (informative): Change history

Table G.1: Change History

Date	TSG#	TSG Doc.	CR	Subject	Old	New
11-2007	R4#45	R4-72206		TS36.101V0.1.0 approved by RAN4	-	
12-2007	RP#38	RP-070979		Approved version at TSG RAN #38	1.0.0	8.0.0
03-2008	RP#39	RP-080123	3	TS36.101 - Combined updates of E-UTRA UE requirements	8.0.0	8.1.0
05-2008	RP#40	RP-080325	4	TS36.101 - Combined updates of E-UTRA UE requirements	8.1.0	8.2.0
09-2008	RP#41	RP-080638	5r1	Addition of Ref Sens figures for 1.4MHz and 3MHz Channel bandwiidths	8.2.0	8.3.0
09-2008	RP#41	RP-080638	7r1	Transmitter intermodulation requirements	8.2.0	8.3.0
09-2008	RP#41	RP-080638	10	CR for clarification of additional spurious emission requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638		Correction of In-band Blocking Requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638	18r1	TS36.101: CR for section 6: NS_06	8.2.0	8.3.0
09-2008	RP#41	RP-080638	19r1	TS36.101: CR for section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080638		TS36.101: CR for UE minimum power	8.2.0	8.3.0
09-2008	RP#41	RP-080638	21r1	TS36.101: CR for UE OFF power	8.2.0	8.3.0
09-2008	RP#41	RP-080638		TS36.101: CR for section 7: Band 13 Rx sensitivity	8.2.0	8.3.0
09-2008	RP#41	RP-080638		UE EVM Windowing	8.2.0	8.3.0
09-2008	RP#41	RP-080638		Absolute ACLR limit	8.2.0	8.3.0
09-2008	RP#41	RP-080731		TS36.101: CR for section 6: UE to UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Removal of [] for UE Ref Sens figures	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Correction of PA, PB definition to align with RAN1 specification	8.2.0	8.3.0
09-2008	RP#41	RP-080731		UE Spurious emission band UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Definition of specified bandwidths	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Addition of Band 17	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Alignment of the UE ACS requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080731	52r1	Frequency range for Band 12	8.2.0	8.3.0
09-2008	RP#41	RP-080731		Absolute power tolerance for LTE UE power control	8.2.0	8.3.0
09-2008	RP#41	RP-080731		TS36.101 section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080731		DL FRC definition for UE Receiver tests	8.2.0	8.3.0
09-2008	RP#41	RP-080732		Additional UE demodulation test cases	8.2.0	8.3.0
09-2008	RP#41				1	8.3.0
09-2008		RP-080732 RP-080732		Updated descriptions of FRC	8.2.0	8.3.0
09-2008	RP#41			Definition of UE transmission gap	8.2.0	8.3.0
	RP#41	RP-080732		Clarification on High Speed train model in 36.101	8.2.0	
09-2008	RP#41	RP-080732		Update of symbol and definitions	8.2.0	8.3.0
09-2008	RP#41	RP-080743		Addition of MIMO (4x2) and (4x4) Correlation Matrices	8.2.0	8.3.0
12-2008	RP#42	RP-080908		CR TX RX channel frequency separation	8.3.0	8.4.0
12-2008	RP#42	RP-080909		UE Maximum output power for Band 13	8.3.0	8.4.0
12-2008	RP#42	RP-080909		UL EVM equalizer definition	8.3.0	8.4.0
12-2008	RP#42	RP-080909		Correction of UE spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909		Clarification for UE additional spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909	/2	Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803	8.3.0	8.4.0
12-2008	RP#42	RP-080909	75	Removal of [] from Section 6 transmitter characteristcs	8.3.0	8.4.0
12-2008	RP#42	RP-080909	81	Clarification for PHS band protection	8.3.0	8.4.0
12-2008	RP#42	RP-080909	101	Alignement for the measurement interval for transmit signal quality	8.3.0	8.4.0
12-2008	RP#42	RP-080909	98r1	Maximum power	8.3.0	8.4.0
12-2008	RP#42	RP-080909	57r1	CR UE spectrum flatness	8.3.0	8.4.0
12-2008	RP#42	RP-080909		UE in-band emission	8.3.0	8.4.0
12-2008	RP#42	RP-080909		CR Number of TX exceptions	8.3.0	8.4.0
12-2008	RP#42	RP-080951		CR UE output power dynamic	8.3.0	8.4.0
12-2008	RP#42	RP-080951		LTE UE transmitter intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080910		Update of Clause 8	8.3.0	8.4.0
12-2008	RP#42	RP-080950		Structure of Clause 9 including CSI requirements for PUCCH mode 1-0	8.3.0	8.4.0
12-2008	RP#42	RP-080911		CR UE ACS test frequency offset	8.3.0	8.4.0
12-2008	RP#42	RP-080911		Correction of spurious response parameters	8.3.0	8.4.0
12-2008	RP#42	RP-080911		Removal of LTE UE narrowband intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080911		Introduction of Maximum Sensitivity Degradation	8.3.0	8.4.0
12-2008	RP#42	RP-080911		Removal of [] from Section 7 Receiver characteristic	8.3.0	8.4.0
12-2008	RP#42	RP-080911		Alignement of TB size n Ref Meas channel for RX characteristics	8.3.0	8.4.0
		RP-080912		TDD Reference Measurement channel for RX characteristics		
12-2008	RP#42	KF-000912	10	Therefore ineasurement channel for ICV characteriscitics	8.3.0	8.4.0

12-2008	RP#42	RP-080912	73r1	Addition of 64QAM DL referenbce measurement channel	8.3.0	8.4.0
12-2008	RP#42	RP-080912	74r1	Addition of UL Reference Measurement Channels		8.4.0
12-2008	RP#42	RP-080912	104	Reference measurement channels for PDSCH performance requirements (TDD)	8.3.0	8.4.0
12-2008	RP#42	RP-080913	68	MIMO Correlation Matrix Corrections	8.3.0	8.4.0
12-2008	RP#42	RP-080915	67	Correction to the figure with the Transmission Bandwidth configuration	8.3.0	8.4.0
12-2008	RP#42	RP-080916	77	Modification to EARFCN	8.3.0	8.4.0
12-2008	RP#42	RP-080917	85r1	New Clause 5 outline	8.3.0	8.4.0
12-2008	RP#42	RP-080919	102	Introduction of Bands 12 and 17 in 36.101	8.3.0	8.4.0
12-2008	RP#42	RP-080927	84r1	Clarification of HST propagation conditions	8.3.0	8.4.0

History

Document history					
V8.2.0	November 2008	Publication			
V8.3.0	November 2008	Publication			
V8.4.0	January 2009	Publication			