

Conventions

k: perfect field, e.g. char(**k**) = 0 or **k** = $\overline{\mathbf{k}}$

 Λ : finite-dimensional **k**-algebra

 $\mathcal{P}(\Lambda)$: finitely-generated projective (right) Λ -modules

DG enhancements

Why the need for DG enhancements?

Abelian World	Triangulated World
$\mathcal{A},\ \mathcal{B}$: abelian cats.	S, T: triangulated cats.
$\operatorname{Fun}(D,\mathcal{B})$: abelian cat.	$Fun(D,\mathfrak{T})$: not triangulated
$\exists \mathcal{A} \otimes \mathcal{B}$ e.g. in Grothendieck case	∄S⊗T even in well-gen. case
∃ 2-pullback along exact functors	∄ 2-pullback along exact functors
:	:

DG World: Vector spaces → Complexes of vector spaces

The passage to the DG world solves 'all of our problems'... and introduces new ones!

Reminder: Keller's Theorem

 $\mathfrak T$: algebraic triangulated category

Keller (1994): The following statements hold:

• T: ess. small & idempotent-complete

$$\exists G \in \mathcal{T}$$
, thick $(G) = \mathcal{T} \iff \exists A : DG \text{ algebra}, D^{c}(A) \simeq \mathcal{T}$

• T: with small coproducts

$$\exists G \in \mathcal{T}$$
: compact, $Loc(G) = \mathcal{T} \iff \exists A$: DG algebra, $D(A) \simeq \mathcal{T}$

All triangulated cats in representation theory are controlled by DG algebras / DG cats.

Pre-triangulated DG categories

Bondal–Kapranov (1990) $\ensuremath{\mathcal{A}}$: ess. small DG category is (Karoubian) pretriangulated if

$$y: A \hookrightarrow D^{c}(A)_{dg}, \quad a \mapsto A(-,a),$$

induces an equivalence

$$H^0(\mathbf{y}) \colon H^0(\mathcal{A}) \stackrel{\sim}{\hookrightarrow} \mathsf{D}^\mathsf{c}(\mathcal{A})$$

Remark: $H^0(A)$ is then a triangulated category

(Keller's Theorem + Drinfeld–Verdier quotient) ⇒ All triangulated categories in representation theory admit a DG enhancement (see next)

Enhancements of triangulated categories

Bondal–Kapranov (1990): DG enhancement \mathcal{A} of $(\mathfrak{T}, \Sigma, \Delta)$

- A: pre-triangulated DG category
- $\exists \Phi \colon H^0(\mathcal{A}) \xrightarrow{\sim} \mathfrak{T} \colon$ equivalence of triangulated categories

 $(\mathfrak{T}, \Sigma, \Delta)$ admits a unique DG enhancement if DGE₃ $(\mathfrak{T}, \Sigma, \Delta) = \{*\}$

(Non-)uniqueness of DG enhancements

The following (k-linear) triangulated categories admit unique DG enhancements:

Keller (1994), Lunts–Orlov (2010), Canonaco–Stellari (2018), Canonaco–Neeman–Stellari (2022): All derived & homotopy categories of abelian categories, 'algebro-geometric' derived categories...

Muro (2022) d = 1, J–Muro (2022) $d \ge 1$: Hom-finite, Krull–Schmidt, algebraic triangulated categories with a $d\mathbb{Z}$ -cluster tilting object

Rizzardo-Van den Bergh (2019, 2020): k-linear triangulated categories with non-unique DG enhancements and without any DG enhancements at all Schlichting (2002), Dugger–Shipley (2007): Z-linear algebraic triangulated categories with non-unique DG enhancements

Strong enhancements of triangulated categories

Lunts–Orlov (2010) Strong DG enhancement (A, Φ) of $(\Upsilon, \Sigma, \triangle)$

- A: pre-triangulated DG cat
- $\Phi: H^0(\mathcal{A}) \xrightarrow{\sim} \mathfrak{T}$: equivalence of triangulated categories

$$(\mathcal{A},\Phi) \sim (\mathcal{B},\Psi)$$
 generated by
$$\mathcal{A} \xrightarrow{\exists f : \text{ quasi-equiv.}} \mathcal{B}$$
 SDGE₃ $(\mathcal{T},\Sigma,\Delta)$ Equivalence classes of strong DG enhancements

 $(\mathfrak{T}, \Sigma, \Delta)$ admits a unique strong DG enhancement if SDGE₃ $(\mathfrak{T}, \Sigma, \Delta) = \{*\}$

Uniqueness of strong enhancements

Lunts–Orlov (2010), Canonaco–Stellari (2017), Olander (2020, 2022), Li–Pertusi–Zhao (2022): Uniqueness of strong DG enhancements for various algebraic triangulated categories of 'algebro-geometric origin'

Chen–Ye (2018), Lorenzin (2022) Bounded derived cats. of hereditary abelian cats.

Question: Does there exist an algebraic triangulated category with a unique DG enhancement but non-unique strong DG enhancements?

Yes!

... otherwise why this talk ...

DG enhancements in HHA

$d\mathbb{Z}$ -cluster tilting subcategories ($d \ge 1$)

Iyama-Yoshino (2008), Geiß-Keller-Oppermann (2013), Beligiannis (2015)

 \mathfrak{T} : Hom-finite + Krull–Schmidt triangulated category & $\mathfrak{C} = \mathsf{add}(c)$

 $\mathcal{C} \subseteq \mathcal{T}$: d-cluster-tilting if $\forall 0 < i < d$, $\mathcal{T}(\mathcal{C}, \mathcal{C}[i]) = 0$ and $\mathcal{T} = \mathcal{C} * \mathcal{C}[1] * \cdots * \mathcal{C}[d-1]$

Standard (d+2)-angulated categories

T: triangulated category

 $\mathcal{C} \subseteq \mathcal{T}$: $d\mathbb{Z}$ -cluster tilting subcategory = d-cluster tilting + $\mathcal{C} = \Sigma^d(\mathcal{C})$

Geiß-Keller-Oppermann (2013)

The triple $(\mathcal{C}, \Sigma^d, \triangle)$ is a (d+2)-angulated category

Twisted (d+2)-periodic algebras

 $(\mathcal{F}, \Sigma, \Diamond)$: (d+2)-angulated category + Hom-finite + Krull–Schmidt Suppose $\exists c \in \mathcal{F}$ basic object s.t. $\mathsf{add}(c) = \mathcal{F} \iff \Lambda \coloneqq \mathcal{F}(c, c)$

Freyd (1966) + Heller (1968) d = 1, Geiss-Keller-Opermann (2013), Green-Snashal-Solberg (2003), Hanihara (2022)

- ullet Λ : basic Frobenius algebra
- $\exists \sigma : \Lambda \xrightarrow{\sim} \Lambda$ algebra automorphism s.t.

$$\Omega_{\Lambda}^{d+2} \stackrel{!}{\cong} (-)_{\sigma} : \underline{\mathsf{mod}}(\Lambda) \stackrel{\sim}{\longrightarrow} \underline{\mathsf{mod}}(\Lambda)$$

• $\Omega_{\Lambda^e}^{d+2}(\Lambda) \simeq \Lambda_{\sigma} \text{ in } \underline{\mathsf{mod}}(\Lambda^e)$

Amiot–Lin (d+2)-angulations

$$\begin{split} &\Lambda: \text{ basic Frobenius algebra} \quad \& \quad \sigma \colon \Lambda \xrightarrow{\sim} \Lambda \\ &\Sigma := - \otimes_{\Lambda} \Lambda_{\sigma^{-1}} \colon \mathcal{P}(\Lambda) \xrightarrow{\sim} \mathcal{P}(\Lambda) \\ &\delta \in \operatorname{Ext}_{\Lambda^{\operatorname{e}}}^{d+2} \left(\Lambda, \Lambda_{\sigma} \right) \colon 0 \to \Lambda_{\sigma} \to P_{d+1} \to \cdots \to P_1 \to P_0 \to \Lambda \to 0, \quad P_i \in \mathcal{P}(\Lambda^{\operatorname{e}}) \end{split}$$

'Exact sequences in $\mathcal{P}(\Lambda)$ satisfying certain exactness conditions rel δ '

Amiot (2008)
$$d = 1$$
, Lin (2019)

 $\Diamond_{\lambda} = \{ O_{d+2} \rightarrow O_{d+1} \rightarrow \cdots \rightarrow O_1 \rightarrow \Sigma O_{d+2} \}$

The triple $(\mathcal{P}(\Lambda), \Sigma, \mathcal{O}_{\delta})$ is a (d+2)-angulated category

J–Muro (2022) Up to equivalence, \Diamond_{δ} independent of the choice of δ

Pre-(d+2)-angulated DG categories

A: DG category is (Karoubian) pre-(d+2)-angulated if

$$y: A \hookrightarrow D^{c}(A)_{dg}, \quad a \longmapsto A(-,a),$$

induces an equivalence

$$H^0(y)\colon H^0(\mathcal{A})\stackrel{\sim}{\longleftrightarrow} \mathfrak{C}\subseteq \mathsf{D}^\mathsf{c}(\mathcal{A})$$

with a $d\mathbb{Z}$ -cluster tilting subcategory of $\mathcal{C} \subseteq D^{c}(\mathcal{A})$

Remark: $H^0(A)$ is then a standard (d+2)-angulated category

Remark: (Karoubian) pre-(1+2)-angulated = (Karoubian) pre-triangulated

Enhancements of (d+2)-angulated categories

DG enhancement \mathcal{A} of $(\mathcal{F}, \Sigma, \triangle)$

- A: pre-(d+2)-angulated DG category
- $\exists \Phi \colon H^0(\mathcal{A}) \xrightarrow{\sim} \mathcal{F} \colon$ equivalence of (d+2)-angulated categories

$$\mathcal{A} \sim \mathcal{B}$$
 generated by
$$\mathcal{A} \xrightarrow{\exists f : \text{quasi-eq}} \mathcal{B}$$
 Equivalence classes of DG enhancements

 $(\mathfrak{F}, \Sigma, \Diamond)$ admits a unique DG enhancement if $\mathsf{DGE}_{d+2}(\mathfrak{F}, \Sigma, \Diamond) = \{*\}$

Uniqueness of pre-(d+2)-angulated DG enhancements

 Λ : basic Frobenius algebra & $\sigma: \Lambda \xrightarrow{\sim} \Lambda$ s.t. $\Omega_{\Lambda^e}^{d+2}(\Lambda) \simeq \Lambda_{\sigma}$

 $\Sigma \coloneqq - \otimes_{\Lambda} \Lambda_{\sigma^{-1}} \colon \mathcal{P}(\Lambda) \stackrel{\sim}{\longrightarrow} \mathcal{P}(\Lambda)$

 \Diamond : Amiot–Lin (d+2)-angulation of $(\mathfrak{P}(\Lambda), \Sigma)$

Muro (2022) d = 1, J–Muro (2022) $d \ge 1$:

- $(\mathcal{P}(\Lambda), \Sigma, \triangle)$ admits a DG enhancement and it is moreover unique.
- Up to equivalence,

 $\exists ! \ \Im$: algebraic triangulated. cat., $(\mathcal{P}(\Lambda), \Sigma, \bigcirc) \xrightarrow{\simeq} \mathcal{C} \subseteq \mathcal{T}$,

where $\mathcal{C} \subseteq \mathcal{T}$ is a $d\mathbb{Z}$ -cluster tilting subcategory. Moreover, \mathcal{T} admits a unique DG enhancement.

, E.

Strong DG enhancements

Strong enhancements of (d+2)-angulated categories

Strong DG enhancement (A, Φ) of $(\mathcal{F}, \Sigma, \triangle)$

- A: pre-(d + 2)-angulated DG cat
- $\Phi: H^0(A) \xrightarrow{\sim} \mathcal{F}$: equivalence of (d+2)-angulated categories

$$(\mathcal{A},\Phi) \sim (\mathcal{B},\Psi)$$
 generated by
$$\mathcal{A} \xrightarrow{\exists f : \text{ quasi-eq}} \mathcal{B}$$
 SDGE_{d+2}($\mathcal{F},\Sigma,\Diamond$)
$$H^0(\mathcal{A}) \xrightarrow{H^0(f)} H^0(\mathcal{B})$$
 Equivalence classes of strong DG enhancements

 $(\mathfrak{F}, \Sigma, \Diamond)$ admits a unique strong DG enhancement if $SDGE_{d+2}(\mathfrak{F}, \Sigma, \Diamond) = \{*\}$

Pre-triangulated vs pre-(d+2)-angulated enhancements

T: algebraic triangulated category + Hom-finte + Krull–Schmidt

 $c \in \mathcal{T}$: $d\mathbb{Z}$ -cluster tilting object $\leadsto \mathcal{C} := \mathsf{add}(c) \subseteq \mathcal{T}$

There is a canonical restriction map

$$SDGE_{3}(\mathcal{T}, \Sigma, \triangle) \longrightarrow SDGE_{d+2}(\mathcal{C}, \Sigma^{d}, \triangle)$$

$$[\mathcal{A}] \longmapsto [\mathcal{A}_{\mathcal{C}}]$$

$$H^{0}(\mathcal{A}) \longleftarrow H^{0}(\mathcal{A}_{\mathcal{C}})$$

$$\downarrow^{\wr} \qquad \downarrow^{\wr}$$

$$\mathcal{T} \longleftarrow \mathcal{C}$$

Open question: Is this map is injective or surjective if $d \ge 2$?

Main results

The stable centre and the map ζ^{\times}

Λ : basic Frobenius algebra

Main theorem (J-Muro 2022)

 Λ : basic Frobenius algebra & $\sigma: \Lambda \xrightarrow{\sim} \Lambda$ s.t. $\Omega_{\Lambda^e}^{d+2}(\Lambda) \simeq \Lambda_{\sigma}$

$$\Sigma := - \otimes_{\Lambda} \Lambda_{\sigma^{-1}} : \mathcal{P}(\Lambda) \xrightarrow{\sim} \mathcal{P}(\Lambda)$$

 \Diamond : Amiot–Lin (d+2)-angulation of $(\mathfrak{P}(\Lambda), \Sigma)$

There are bijections:

 $(\mathcal{P}(\Lambda), \Sigma, \triangle)$ admits a unique strong DG enhancement $\iff \ker \zeta^{\times} = 1$

The case d=1 - A complete answer

 Λ : basic Frobenius algebra & $\sigma: \Lambda \xrightarrow{\sim} \Lambda$ s.t. $\Omega^3_{\Lambda^e}(\Lambda) \simeq \Lambda_{\sigma}$

$$\Sigma := - \otimes_{\Lambda} \Lambda_{\sigma^{-1}} : \mathcal{P}(\Lambda) \xrightarrow{\sim} \mathcal{P}(\Lambda)$$

 \bigcirc : Amiot triangulation of $(\mathfrak{P}(\Lambda), \Sigma)$

There are bijections:

 $(\mathcal{P}(\Lambda), \Sigma, \Delta)$ admits a unique strong DG enhancement \iff ker $\zeta^{\times} = 1$

The algebra of dual numbers – An explicit example

 $\Lambda = \mathbf{k}[\varepsilon]$: algebra of dual numbers

$$\Sigma = - \otimes_{\Lambda} {}_1 \Lambda_{\sigma^{-1}} \colon \mathcal{P}(\Lambda) \stackrel{\sim}{\longrightarrow} \mathcal{P}(\Lambda), \qquad \sigma \colon \varepsilon \longmapsto -\varepsilon$$

 \triangle : Amiot triangulation of $(\mathfrak{P}(\Lambda), \Sigma)$

$$Z(\Lambda) \xleftarrow{\sim} Z(\mathsf{mod}(\Lambda)) \qquad \Lambda \xleftarrow{\sim} \Lambda$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$\underline{Z}(\Lambda) \longrightarrow Z(\underline{\mathsf{mod}}(\Lambda)) \qquad \Lambda/(2\varepsilon) \xrightarrow{\zeta} k$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\underline{Z}(\Lambda)^{\times} \xrightarrow{\zeta^{\times}} Z(\underline{\mathsf{mod}}(\Lambda))^{\times} \qquad \underline{Z}(\Lambda)^{\times} \xrightarrow{\zeta^{\times}} k^{\times}$$

$$\mathsf{char}(k) \neq 2 \qquad \Longrightarrow \quad \mathsf{SDGE}_{3}(\mathcal{P}(\Lambda), \Sigma, \Delta) = \ker \zeta^{\times} = 1$$

$$\mathsf{char}(k) = 2 \qquad \Longrightarrow \quad \mathsf{SDGE}_{3}(\mathcal{P}(\Lambda), \Sigma, \Delta) = \ker \zeta^{\times} = 1 + (\varepsilon)$$

LUND UNIVERSITY

References

[BK90]	A. I. Bondal and M. M. Kapranov. "Framed triangulated categories". Mat. Sb. 181.5 (1990), pp. 669–683.
[CNS22]	Alberto Canonaco, Amnon Neeman, and Paolo Stellari. "Uniqueness of enhancements for derived and geometric categories". Forum Math. Sigma 10 (2022), Paper No. e92, 65. DOI: 10.1017/fms.2022.82.
[CY18]	Xiao-Wu Chen and Yu Ye. "The D -standard and K -standard categories". <i>Adv. Math.</i> 333 (2018), pp. 159–193. DOI: 10.1016/j.aim.2018.05.032.
[DS07]	Daniel Dugger and Brooke Shipley. "Topological equivalences for differential graded algebras". Adv. Math. 212.1 (2007), pp. 37–61. DOI: 10.1016/j.aim.2006.09.013.
[JM22]	Gustavo Jasso and Fernando Muro. The Derived Auslander-Iyama Correspondence. With an appendix by Bernhard Keller. 2022. arXiv: 2208.14413.
[Kel94]	Bernhard Keller. "Deriving DG categories". Ann. Sci. École Norm. Sup. (4) 27.1 (1994), pp. 63–102.
[LO10]	Valery A. Lunts and Dmitri O. Orlov. "Uniqueness of enhancement for triangulated categories". J. Amer. Math. Soc. 23.3 (2010), pp. 853–908. DOI: 10.1090/S0894-0347-10-00664-8.
[Lor22]	Antonio Lorenzin. Formality and strongly unique enhancements. 2022. arXiv: 2204.09527.
[LPZ22]	Chunyi Li, Laura Pertusi, and Xiaolei Zhao. Derived categories of hearts on Kuznetsov components. 2022. arXiv: 2203.13864.
[Ola20]	Noah Olander. Orlov's Theorem in the Smooth Proper Case. 2020. arXiv: 2006.15173.
[Ola22]	Noah Olander. Resolutions, Bounds, and Dimensions for Derived Categories of Varieties. Thesis (Ph.D.)—Columbia University. ProQuest LLC, Ann Arbor, MI, 2022, p. 49. ISBN: 979-8426-81551-3.
[RV19]	Alice Rizzardo and Michel Van den Bergh. "A note on non-unique enhancements". Proc. Amer. Math. Soc. 147.2 (2019), pp. 451–453. DOI: 10.1090/proc/14065.
[RV20]	Alice Rizzardo and Michel Van den Bergh. "A k-linear triangulated category without a model". Ann. of Math. (2) 191.2 (2020), pp. 393–437. DOI: 10.4007/annals.2020.191.2.3.
[Sch02]	Marco Schlichting. "A note on K-theory and triangulated categories". Invent. Math. 150.1 (2002), pp. 111–116. DOI: 10.1007/s00222-002-0231-1.