

Recap of main concepts

- Generalized coordinates: n parameters $q = (q_1, q_2, ..., q_n)$ that are sufficient to uniquely describe system configuration relative to some reference (frame, configuration)
- O State of the system: (Generalized coordinates, Generalized velocities), represented in the phase space

Configuration space (C-space): the n-dimensional space identified by the generalized coordinates defining the set of all possible robot configurations (based on robot's structure and environmental constraints). Usually, it is a non-Euclidean manifold.

ο A *geometric / holonomic* constraint is expressed through "positional" variables, e.g., $(\alpha, \beta, \varphi_1, \varphi_2, x, y, \theta, ...)$, it only involves generalized coordinates, not their derivatives. It limits the motion of the system to a manifold of the configuration space, depending on the initial conditions

Degrees of freedom: A system whose configuration is described by n independent generalized coordinates has n degrees of freedom.

If there are m independent functional relations (holonomic constraints) among a chosen set of n generalized coordinates, the number of DOF is n-m: (number of variables - number of independent equations)

Degrees of freedom of a rigid body in 3D

Single Rigid body in 3D → 6 DOF

Degrees of freedom of a rigid body in 2D (Planar)

How many DOF?

Rigid body in $2D \rightarrow 3 DOF$

Degrees of freedom of a rigid body in 3D

- A rigid body is modeled as a system of *at least* three **non-collinear particles** whose positions relative to one another remain fixed. i.e., <u>distance</u> $d_{\$\%}$ between any two particles i and j remains constant throughout the motion (due to internal forces).
- In general, a rigid body is made of $N \gg 3$ particles
- To specify the position (x, y, z) of each particle , we would need n = 3N generalized coordinates
- Distance constraint between all pairs of particles (holonomic, scleronomic):

$$d_{i,j} = constant_{i,j}, \forall i \neq j = 1,2, ... N \Rightarrow C_N = \frac{N(N-1)}{2}$$
 constraints

- Are the # of DOF equal to $3N C_N$? No, not all $C_{\&}$ constraints are independent!
- We know that the rigid body has 6 DOF ...

Degrees of freedom of a rigid body in 3D

- A system of 3 particles in 3D needs 9 generalized coordinates. There are 3 independent distance constraints \rightarrow 9 3 = 6 DOF
- What about a new particle p? → 3 more coordinates + 3 more constraints → 0 freedoms
- Any additional point would contribute with 3 more coordinates but will determine 3 more independent constraint equations (wrt the original three points, all other distances are fixed depending on these) → 0 freedoms

Degrees of freedom of a rigid body: Coin in a plane

- DOF of a coin in a plane: freedoms choosing three arbitrary reference points (i.e., collinear particles) with given constant distances between them
- Once the location (x, y) of A is chosen (2 freedoms), B must lie on a circle of radius d_{AB} centered at A (1 freedom, angle θ)
- Once the location of B is chosen, C must lie at the intersection of circles centered at A and $B \rightarrow 0$ freedom
- The coin in the plane has 3 DOF: (x, y, θ)

Degrees of freedom of a rigid body: Coin in 3D

- Point A can be placed freely in the space \rightarrow 3 freedoms (x, y, z)
- Location of B is subject to the constraint d_{AB} : it must lie on the sphere of radius d_{AB} centered at A \rightarrow 3-1 = **2 freedoms** (φ, ψ) (e.g., latitude and longitude on the sphere)
- Location of point C must lie at the intersection of spheres centered at A and B of radius $d_{\rm AC}$, $d_{\rm BC}$, respectively
- The intersection of two spheres is a *circle*, that can be parametrized by an angle \rightarrow 1 **freedom** (θ)
- DOF = 3 + 2 + 1 = 6

DOF and robot control (we'll see it later)

	dim C	Degrees of freedom	Number of actuators	Actuation	Rolling constraints	Holonomic
Train	1	1	1	full		✓
2-joint robot arm	2	2	2	full		✓
6-joint robot arm	6	6	6	full		✓
10-joint robot arm	10	10	10	over		✓
Hovercraft	3	3	2	under		
Car	3	3	2	under	✓	
Helicopter	6	6	4	under		
Fixed wing aircraft	6	6	4	under		
DEPTHX AUV	6	6	6	full		✓

DOF and robot control

	dim C	Degrees of freedom	Number of actuators	Actuation	Rolling constraints	Holonomic
Train	1	1	1	full		✓
2-joint robot arm	2	2	2	full		✓
6-joint robot arm	6	6	6	full		✓
10-joint robot arm	10	10	10	over		✓
Hovercraft	3	3	2	under		
Car	3	3	2	under	✓	
Helicopter	6	6	4	under		
Fixed wing aircraft	6	6	4	under		
DEPTHX AUV	6	6	6	full		✓

- DOF / dimension of the C-space defines the number of parameters the robot can independently act upon to change its configuration: If there is an actuator for each DOF then each DOF is controllable
- If not all DOF are directly controllable the control problems are (much) harder → Underactuation
- The number of controllable DOF determines how easy/hard the robot control problem will be

- Holonomic robots: # of controllable DOF is the same as the # DOF
- Non holonomic robots: # of controllable DOF is lesser than the # of DOF (we don't have full controls!)
- Redundant robot: # of controllable DOF is larger then # of total DOF (over actuated robot)
- E.g., Human Arm 6 DOF Position and orientation of the Fingertip in 3D space: 7 actuators 3 shoulder, 1 elbow, 3 wrist (it would only require 6DOFs)

DOF of a multi-link robot: a door

Revolute (hinge) joint: motion is only permitted in one plane

Door system has 1 DOF

Without the joint, the door would be free to move in the 3D space → 6 DOF

- A joint *connects* two rigid bodies (door, wall) and can be regarded in a *dual way*:
 - As allowing some freedom of motion between the two bodies, in this case, one freedom
 - As imposing constraints on the motion of one rigid body relative to the other, five constraints in this case

DOF of a joint (multi-link robot)

		Constraints c between two	Constraints c between two
Joint type	$\operatorname{dof} f$	planar rigid bodies	spatial rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

DOF provided by the joint =

DOF(rigid body) - # constraints imposed by the joint

Open chain vs. closed (kinematic) chain mechanisms

We are eventually interested in acting upon the degrees of freedom of the robot to control the pose of the end-effector

Open-chain (serial) mechanisms: any mechanism that doesn't have closed loops

All the joints are actuated

Closed-chain mechanisms:

any mechanism that has closed loops among the links

Only a **subset** of the joints may be actuated (i.e., some joints may be *passive*)

DOF of a multi-link robot: Grubler's formula

- Consider a mechanism consisting of N links, where ground is also regarded as a link
- *J* = number of joints
- m = number of degrees of freedom in the space in which the mechanism functions (m = 3 for planar mechanism, m = 6 for spatial mechanisms),
- f_i = number of freedoms provided by joint i
- c_i = number of constraints imposed by joint i, where $f_i + c_i = m$, $\forall i$

Then, the **number of degrees of freedom of the robot** is:

$$\mathrm{dof} = \underbrace{m(N-1)}_{\mathrm{rigid\ body\ freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\mathrm{joint\ constraints}}$$

$$= m(N-1) - \sum_{i=1}^{J} (m-f_i)$$

$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

➤ If all joint constraints are not independent (i.e., there are redundant joints) the formula only provides a lower bound

Application of Grubler's formula

$$dof = \underbrace{m(N-1)}_{\text{rigid body freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\text{joint constraints}}$$
$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$
$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

Watt six-bar linkage: DOF = 1

Stephenson six-bar linkage: DOF = 1

4+1 links

4 joints

 f_i =1

m=3

DOF=4

k-link planar serial chain (kR robot, k revolute joints)

Planar parallelogram linkage: DOF = 1

Planar 4-bar linkage (with ground): DOF = 1

Planar slider-crank linkage: DOF = 1

N=5, 4 links plus ground, 5 revolute joints:

DOF= 3(5-1-5)+5 = 2

Planar four-bar linkage: DOF = 2

m=3

N=4

 $f_i=1$

4 joints

DOF=1

Application of Grubler's formula

$$dof = \underbrace{m(N-1)}_{\text{rigid body freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\text{joint constraints}}$$
$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$
$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

Watt six-bar linkage: DOF = 1

N=6, 5 links plus ground, 7 revolute joints: DOF= 3(6-1-7)+7 = 1

Application of Grubler's formula

$$dof = \underbrace{m(N-1)}_{\text{rigid body freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\text{joint constraints}}$$
$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$
$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

Stewart–Gough platform

- 14 links (including ground platform)
- 6 Universal joints, 2 freedoms (legs-ground)
- 6 Prismatic joints, 1 freedom
- 6 Spherical joints, 3 freedoms (legs-upper platform)

$$DOF = 6$$

Workspace

Workspace \mathcal{W} : A robot's workspace (or workspace envelope) is the set \mathcal{W} of all points that the robot, based on its structure, can feasibly reach in the physical embedding volume to perform its "work".

- It depends both on robot structure and what the user targets has important for the work to be done (e.g., the orientation of the end-effector might be irrelevant)
- For a planar kinematic chain, the workspace can be either a subset of \mathbb{R}^2 or a subset of $\mathbb{R}^2 \times S^1$ if orientation matters for the robot "work"

• Same for a mobile robot in the open plane, depending whether the orientation of the robot matters or not

Task space

Task space \mathcal{T} : Set of all possible (not necessarily achievable) *poses* in a user-defined space related to the task the robot is used for.

- Example: A robot train, constrained to move on a rail from a given starting point
- Task is motion along the rail: $\mathcal{T} \subset \mathbb{R}$, $\mathcal{T} \equiv C$
- Task asks about the (x, y) position of the train in a plane: $\mathcal{T} \subset \mathbb{R}^2$
- Task requires 3D robot train position and orientation: $\mathcal{T} \subset \mathbb{R}^3 \times S^3$
- In the last two cases the dimension of the task space exceeds the dimension of the configuration space: robot moves on a manifold in the (higher dimensional) task space, there is a mapping from q to $\xi \in \mathcal{T}$

Properties of Task space and workspace

- A point in the task space or the workspace may be achievable by more than one robot configuration: the point is not a full specification of robot's configuration. → Different motion plans / poses can be used for 'work/task'
- Some points in the task space may not be reachable at all by the robot
- By definition, all points in the workspace are reachable by at least one configuration of the robot
- Two robot mechanisms with different C-spaces may have the same workspace

Two mechanisms with the same C-space may also have different workspaces

Spaces for a SCARA robot

- Selective Compliance Articulated Robot Arm (SCARA, 1981)
 - Compliant in (x, y) but quite "limited" in the z axis \rightarrow "Selective compliance"
 - Two-link structure similar to human arm → "Articulated"
 - Good for extend / retract, pick-up and move/place tasks

https://youtu.be/sWrLojkCgVw

- RRRP open chain
- The end-effector configuration is completely described by four parameters (x, y, z, ϕ)
- $\mathcal{T} = \mathbb{R}^3 \times S^1$
- $\mathcal{W} \subset \mathbb{R}^3$ corresponding to the reachable (x, y, z) points, since all ϕ orientations are achievable at any reached point

SCARA are faster, but more complex to control and expensive than Cartesian robots

https://global.yamaha-motor.com/business/robot/lineup/xyx/

Spaces for a spray-painting robot

https://www.youtube.com/watch?v=nee3vYTJSr4

- For the task, important are:
 - Cartesian position of the spray nozzle
 - Direction in which the spray nozzle is pointing
 - Rotations about the nozzle axis axis (which points in the direction in which paint is being sprayed) usually don't matter

$$\mathcal{T}$$
 is $\mathbb{R}^3 \times S^2$

 \mathcal{W} can be the same $\mathbb{R}^3 \times S^2$ or just \mathbb{R}^3

C-space and Workspace of a mobile robot in presence of obstacles

- For a planar omnidirectional mobile robot (single body) in an open space, both Workspace and C-space are \mathbb{R}^2 , or a regular subset X of it (orientation doesn't matter because of omnidirectionality).
- However, in presence of objects obstructing potential robot navigation (obstacles), the subset X must take these into account, becoming a more complex manifold.
- In figure (a) the point abstraction is used to reduce the robot to a point. In this case, $X \subseteq \mathbb{R}^2$ is the set corresponding to the white background, which is obstacle free. However, using this abstraction we are including in C and \mathcal{W} configuration points that wouldn't be accessible to the robot because of its actual finite size and shape!

C-space and Workspace of a mobile robot in presence of obstacles

- To simplify the definition of C and W as well as to ensure that the corresponding sets allow a feasible planning and execution of navigation paths, a common approach consists in reducing the robot to a finite size shape, possibly according to a convex embedding shaped (e.g., a circle) that virtually surrounds the robot, fully accounting for its real physical spatial occupancy, this is shown in the figures (b) and (c)
- A larger the convex physical embedding (e.g., (b) can help to ensure safety during actual navigation: robot will be considered larger than it really is, such that planned paths will take it distant enough from obstacles
- In the C-space, this corresponds to use a point reduction but *blow* the obstacles by sliding the robots along their edges, creating a C-space which is geometrically a relatively complex manifold, as is its shown

C-space and point reduction

Special case: The robot is a *polygonal* one and can only *translate*

For motion planning and navigation, a mobile robot of any shape can be "reduced" to a reference point, as long as all reasonings are done in a C-space where the obstacles have been *inflated* to reflect real robot's spatial occupancy

Important concepts to take home so far

- Coordinate frames and Coordinate systems
- Robot pose, positions and orientations of robot's (multiple) bodies
- Relative poses, World and Local frames
- Rigid body assumption, Point abstraction
- Generalized coordinates and Configuration space (C-space), Phase space
- Holonomic constraints (geometric constraints in the configuration space)
- Mobile vs. Arm robots
- Single body vs. Multiple body robots
- Open chain vs. Closed chain robots
- Links and Joints
- Types of joints
- DOF Dimension of the C-space
- DOFs of a joints
- Grubler's formula
- Workspace and Task space
- C-space for mobile robots and point reduction