6 Obligatorisk øvelse uke 9

6.1 Diskusjon

Når vi regner ut treghetsmomentet til et legeme, kan vi da behandle massen som om den var samlet i massesenteret til legemet? Begrunn svaret ditt.

6.2 Sentrifuge

En reklame påstår at en sentrifuge kun benytter 0,127 m benkeplass, men at den kan oppnå en radiell akselerasjon på 3000 g ved 5000 rev/min. Regn ut hvor stor radius denne sentrifugen krever. Er påstanden realistisk?

(g = tyngdeakselerasjonen)

6.3 Energi i rotasjonsbeveglese

Tre små klosser, hver med masse m, er festet til endene og i sentrum av en stav med lengde L og ubetydelig masse. Regn ut treghetsmomentet til dette systemet rundt en akse som en vinkelrett på staven og går igjennom

- (a) sentrum av staven, og
- (b) et punkt en fjerdedel av lengden L fra den ene enden av staven.

6.4 Parallellakseteoremet

En tynn, rektangulær metallplate has masse M, og sidelengder a og b. Bruk parallellakseteoremetet til å regne ut treghetsmomentet til platen for en akse som står vinkelrett på platen og som går igjennom et av hjørnene på platen.

6.5 Treghetsmoment og kinetisk energi

Et metallskilt for en bilforhandler har uniform massetet
thet og er formet som en tynn, rettvinklet trekant med grunnlinje g og høyd
eh. Skiltet har masse M.

- (a) Hva er treghetsmomentet til skiltet for rotasjon rundt siden med lengde h?
- (b) Gitt at M=5,40 kg, g=1,60 m og h=1,20 m. Hva er da den kinetiske energien til skiltet når det roterer rundt en akse langs siden h med en vinkelfart på 2,00 rev/s?