

Dept. of Marine Science and Applied Biology
Jose Jacobo Zubcoff

Fact. anidados Tests Uso

Ejemplo:

Hipótesis: La abundancia total de peces es menor en una zona rocosa colonizada por *C. taxifolia* que en una que **no** lo está.

Posible diseño:

Ejemplo:

Hipótesis: La abundancia total de peces es menor en una zona rocosa colonizada por *C. taxifolia* que en una que no lo está.

Fuente de var.	# niveles	gl	
Hábitat	h = 2	(h – 1)	1
Residual	n = 9	h(n-1)	16
Total		hn – 1	17

¿Qué ocurre si rechazo H₀? ¿Y si la acepto?

Problema: "pseudo-replicación" (Hurlbert 1984):

poner a prueba estadística los efectos de un tratamiento con un término de error experimental inapropiado para la hipótesis considerada

Ejemplo:

Hipótesis: La abundancia total de peces es menor en una zona rocosa colonizada por *C. taxifolia* que en una que **no** lo está.

Fact. anidados

Ejemplo:

Hipótesis: La abundancia total de peces es menor en una zona rocosa colonizada por *C. taxifolia* que en una que no lo está.

Fact. anidados

Tests

Ejemplo:

Hipótesis: La abundancia total de peces es menor en una zona rocosa colonizada por *C. taxifolia* que en una que no lo está.

Características de factores anidados

- Un grupo de tratamientos experimentales tiene niveles o representaciones diferentes en cada uno de los niveles de los demás tratamientos
- Los factores anidados son siempre aleatorios
- Los diseños anidados han de estar equilibrados (mismo n para cada nivel jerarquizado, mismo nº de niveles jerarquizados **en cada nivel superior**)

Diseños anidados vs Ortogonales

Diferencias:

Los diseños ortogonales tienen dos características notables:

- Cada nivel de cada factor ocurre con TODOS los niveles de los demás factores
- Es posible examinar la interacción entre ellos

Diseños anidados o jerárquicos

- Los niveles de un factor (B) no serán idénticos en todos los niveles de otro factor (A)
- Los niveles del factor (B) están ANIDADOS dentro de los niveles del factor (A)
- Las varianzas incluyen la heterogeneidad de los niveles inferiores junto con la suya específica

Fact. anidados

- Modelo estadístico:
 - Los otros factores pueden ser fijos o aleatorios pero el anidado es aleatorio

$$y_{ijk} = \mu + \alpha_i + b_{j(i)} + c_{k(j)}$$

```
i -ésima {fila} i = 1,2,3,...,a j-ésima {columna} j = 1,2,3,...,b
```

repetición
$$k = 1, 2, 3, ..., r$$

b es el efecto del factor (B) anidado en (A)

c es el efecto del factor (C) anidado en (B)

Se supone que son aleatorios e independientes los efectos a,b,c

Tabla de ANOVA

Si se considera la suma de cuadrados total

$$SCT = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{...})^{2}$$

sumando y restando los términos $\pm \bar{y}_{i\cdot\cdot}$ $\pm \bar{y}_{ij\cdot}$ se obtiene

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{...})^{2} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (\bar{y}_{i..} - \bar{y}_{...})^{2} + \\ + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (\bar{y}_{ij.} - \bar{y}_{i..})^{2} + \\ + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ij.})^{2}$$

Fact. anidados Tests Uso

Los contrastes de hipótesis que se realizan son:

$$\begin{cases} H_0: \alpha_1 = \cdots = \alpha_a = 0 \text{ (el factor } A \text{ no influye)} \\ H_1: \text{algún } \alpha_i \neq 0 \text{ (el factor } A \text{ influye)} \end{cases}$$

en este caso

$$F_0 = \frac{\frac{SCA}{a-1}}{\frac{SCE}{ab(n-1)}} = \frac{MCA}{MCE}$$

de modo que se rechaza H_0 a nivel α si

$$F_0 > F_{(a-1),ab(n-1),\alpha}$$

La otra hipótesis que se contrasta es, $\forall i = 1, \ldots, a$

$$\left\{ \begin{array}{l} H_0: \beta_{1(i)} = \cdots = \beta_{b(i)} = 0 \\ H_1: \operatorname{alg\'un} \ \beta_{j(i)} \neq 0 \end{array} \right.$$

en este caso,

$$F_0 = \frac{\frac{SCB(A)}{a(b-1)}}{\frac{SCE}{ab(n-1)}} = \frac{MCB(A)}{MCE}$$

de modo que se rechaza H_0 a nivel α si

$$F_0 > F_{a(b-1),ab(n-1),\alpha}$$

La tabla ANOVA es

F. V.	S. C.	G. L.	M. C.	F
Factor A	SC_A	a-1	$MC_A = rac{SC_A}{a-1}$	$F_A = rac{MC_A}{MC_E}$
Factor B $(B \subset A)$	$SC_{B(A)}$	a(b-1)	$MC_{B(A)} = \frac{SC_{B(A)}}{a(b-1)}$	$F_{B(A)} = \frac{MC_{B(A)}}{MC_E}$
Residual	SCE	ab(n-1)	$MC_E = rac{SC\dot{E}}{ab(n-1)}$	
Total	SCT	abn-1		

Si $F_{B(A)} = \frac{MC_{B(A)}}{MC_E}$ resulta ser significativo, entonces el contraste se puede descomponer en $i=1,\ldots,a$ contrastes individuales:

$$F_{B(A)_i} = \frac{MC_{B(A)_i}}{MC_E}.$$

Estadística Aplicada a los Recursos Marinos

Diseño anidado

Modelo lineal:

$$X_{ijk} = \mu + A_i + B(A)_{j(i)} + e_{k(j(i))}$$

Fuente de variación	SC	g.l.
Α	$\sum \sum \sum (X_i - X)^2$	(a–1)
B(A)	$\sum \sum \sum (X_{j(i)} - X_i)^2$	a(b-1)
Residual	$\sum \sum \sum (X_{ijk} - X_{j(i)})^2$	ab(n−1) ←
Total	$\sum \sum \sum (X_{ijk} - X)^2$	abn-1

Fact. anidados

H1 s1

s2

s3

Hi s1

sj

sb

"pooling" (p > 0.25)

Fact. anidados

Tests

μ

Uso

μ

Fact. anidados

Tests

Fact. anidados

Tests

Fact. anidados

Tests

Fact. anidados

Tests

<u>Diseños mixtos:</u> parcialmente anidados

- Incluir todos los factores observados
- Simplificar el modelo (y el análisis)
- Evitar la pseudorreplicación (Hurlbert, 1984)
- Aumentar la potencia del test
- Reducir el efecto del error aleatorio
- ...

