ЛЕКЦ 6. Олон хувьсагчийн функцийн үндсэн ойлголт. Хязгаар ба тасралтгүй байх чанар. Тухайн уламжлал ба дифференциал

Тодорхойлолт 0.1. D эрэмбэлэгдсэн хос бодит тоонуудын олонлог байг. $(x,y) \in D$ байх хос тоо бүрт f(x,y) гэсэн цорын ганц бодит тоог харгалзуулж байгаа дүрмийг x,y—ээс хамаарсан хоёр хувьсагчийн функц гэнэ.

Тодорхойлолт 0.2. D эрэмбэлэгдсэн гуравтууд байх бодит тоонуудын олонлог байг. $(x,y,z) \in D$ байх гуравт бүрт f(x,y,z) гэсэн цорын ганц бодит тоог харгалзуулж байгаа дүрмийг x,y ба z-ээс хамаарсан гурван хувьсагчийн функц гэнэ.

D олонлогийг f функцийн тодорхойлогдох муж, f(x,y), f(x,y,z) утгуудын олонлогийг функцийн утгын муж гэнэ.

Санамж 0.1. Хувьсагч нь гурваас их байх үед x_1, x_2, \ldots, x_n хувьсагчаас хамаарсан n хувьсагчийн функцийг (0.1) ба (0.2) -p тодорхойлолттой төстэйгээр өгч болно. Энэ талаар дэлгэрэнгүй авч үзэхгүй.

Жишээ 0.1. $f(x,y) = \sqrt{x^2 + y^2}$ бол f(4,3), f(0,2), f(t,t) болон f функцийн тодорхойлогдох мужийг ол.

Бодолт:
$$f(4,3) = \sqrt{4^2 + 3^2} = 5$$
, $f(0,2) = \sqrt{0^2 + 2^2} = 2$, $f(t,t) = \sqrt{t^2 + t^2} = t\sqrt{2}$

 $\forall (x,y)-u$ йн хувьд $x^2+y^2\geq 0$ тул функцийн тодорхойлогдох муж нь Оху хавтгай байна.

Жишээ 0.2. $f(x,y) = \sqrt{1-x^2-y^2-z^2}$ бол $f\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$ болон функцийн тодорхойлогдох мужийг ол.

Бодолт:
$$f\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = \sqrt{1 - \frac{1}{2} - 0 - \frac{1}{2}} = 0$$

 $1-x^2-y^2-z^2\geq 0$ байх (x,y,z)-ийн хувьд функц тодорхойлогдоно. Өөрөөр хэлбэл, $x^2+y^2+z^2\leq 1$ гэсэн координатын эх дээр төвтэй 1 радиустай бөмбөрцөг байна.

Жишээ 0.3. f(x,y) = 1 - x - 2y функцийн графикийг Охуг огторгуйд дүрсэл.

Бодолт: Өгөгдсөн функцийн график нь z=1-x-2y тэгшитгэлийн график байна. Эндээс x+2y+z=1 гэсэн хавтгайн тэгшитгэл гарна. (Зураг 6.1)

Жишээ 0.4. $f(x,y) = -\sqrt{x^2 + y^2}$ функцийн графикийг байгуул.

Бодолт: Өгөгдсөн функцийн график нь $z=-\sqrt{x^2+y^2}$ тэгшитгэлээр тодорхойлогдоно. Эндээс $z^2=x^2+y^2$ гэсэн шулуун дугуй конусын тэгшитгэл гарна. $z\leq 0$ тул график нь дараах зураг 6.2 хэлбэртэй байна.

Жишээ 0.5. $f(x,y) = x^2 + \frac{1}{2}y$ функцийн графикийг байгуул.

Бодолт: Функцийн график нь $z = x^2 + \frac{1}{2}y^2$ тэгшитгэлийн график байна. Энэ нь эллипслэг параболоид гарна. (Зураг 6.3)

C нь $x=x(t),\ y=y(t)$ параметрт тэгшитгэлтэй t параметрээрээ тасралтгүй уламжлалтай хавтгайн муруй ба z=f(x,y) нь огторгуйн ямар нэг S гадаргуун тэгшитгэл байг. Тэгвэл $x=x(t),\ y=y(t),\ z=f(x(t),y(t))$ параметрт тэгшитгэлүүдээр Oxy хавтгай дээрх проекц нь C муруй байх S гадаргуу дээрх муруй зурагдана. (Зураг 6.4)

f(x,y) хоёр хувьсагчийн функц, C нь Oxy хавтгайн x=x(t), y=y(t) параметрт тэгшитгэлтэй муруй. $(x_o,y_o)=(x(t_o),y(t_o))$ цэг C муруй дээрх цэг гэж үзье. C муруйн дагуу $(x,y)\to (x_o,y_o)$ ойртож байх f(x,y) функцийн хязгаарыг

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y)$$

гэж тэмдэглэвэл f(x,y) функцийн хязгаарыг

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y) = \lim_{t\to t_o} f(x(t),y(t)) \tag{1}$$

гэж тодорхойлно. Эндээс үзвэл параметрт тэгшитгэлээрээ өгөгдсөн C муруйн дагуух f(x,y) функцийн хязгаарыг бодохдоо f функцэд x(t),y(t)-г орлуулж зөвхөн t-ээс хамаарсан нэг хувьсагчийн функцэд шилжүүлж бодно. Үүний геометр дүрслэл нь дараах зураг 6.5 хэлбэртэй дүрслэгдэнэ.

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y) = L$$

Үүний адил f(x,y,z) гурван хувьсагчийн функцийн C гэсэн параметрт тэгшитгэлээрээ өгөгдсөн муруйн дагуух хязгаарыг

$$\lim_{(x,y,z)\to(x_o,y_o,z_o)} f(x,y,z) = \lim_{t\to t_o} f(x(t),y(t),z(t))$$
 (2)

гэж тодорхойлж болно.

Жишээ 0.6. $f(x,y) = \frac{x^2y^2}{x+y}$ функцийн

- а. х тэнхлэгийн дагуу
- b. у тэнхлэгийн дагуу
- $c. \ y = x^2 \ napa болын дагуу$
- $d. \ y = x \ шугамын дагуу (0,0) цэг рүү тэмүүлэх үеийн хязгаарыг бод.$

Бодолт:

а. x тэнхлэгийн параметрт тэгшитгэл $x=t,\ y=0.\ (0,0)$ цэг нь t=0 үед гарна. Иймд

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} f(t,0) = \lim_{t\to 0} \frac{0}{t} = \lim_{t\to 0} 0 = 0$$

 $b.\ y$ тэнхлэгийн параметрт тэгшитгэл $x=0,\ y=t.\ (0,0)$ цэг нь t=0 үед гарна. Иймд

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} f(0,t) = \lim_{t\to 0} \frac{0}{t} = \lim_{t\to 0} 0 = 0$$

c. $y=x^2$ параболын параметрт тэгшитгэл $x=t,\ y=t^2.\ (0,0)$ цэг t=0 үед гарна. Иймд

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} f(t,t^2) = \lim_{t\to 0} \frac{t^4}{t+t^2} = \lim_{t\to 0} \frac{t^3}{1+t} = 0$$

 $d. \; y=x \; шулууны \; параметрт \; тэгшитгэл нь \; x=t, \; y=t. \; (0,0) \; цэг \; t=0 \; байхад гарна.$ Иймд

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} f(t,t) = \lim_{t\to 0} \frac{t^4}{2t} = \frac{1}{2} \lim_{t\to 0} t^3 = \frac{1}{2} \cdot 0 = 0$$

Жишээ 0.7. $\lim_{\substack{(x,y,z)\to (1,0,2\pi)\\ C \text{ муруйн дагуу}}} \frac{x^2+y^2+x}{z+2\pi}$ хязгаарыг бод. $C: x=\cos t \text{ могут нестипация.}$

 $C: \ x=\cos t, \ y=\sin t, \ z=t$ параметрт тэгшитгэлээр өгөгдсөн шурган шугам. **Бодолт:** $(1,0,2\pi)$ цэг нь $t=2\pi$ утганд харгалзана. (1) томъёог ашиглавал

$$\lim_{(x,y,z)\to(1,0,2\pi)}\frac{x^2+y^2+x}{z+2\pi}=\lim_{t\to 2\pi}\frac{\cos^2t+\sin^2t+\cos t}{t+2\pi}=\lim_{t\to 2\pi}\frac{1+\cos t}{t+2\pi}=\frac{2}{4\pi}=\frac{1}{2\pi}$$

гарна.

Функцийн хязгаарын төлөв байдлыг дэлгэрэнгүй авч үзэхийн тулд хязгаарын тухай Кошийн тодорхойлолтыг авч үзье.

Тодорхойлолт 0.3. Хэрэв дурын эерэг тоо ε -ийн хувьд $\delta > 0$ тоо олдоод (x_o, y_o) цэгийн δ орчин дурын (x, y) цэгүүдийн хувьд

$$|f(x,y) - L| < \varepsilon$$

нөхцөл биелж байвал L тоог $(x,y) \to (x_o,y_o)$ үеийн f(x,y) функцийн хязгаар гэнэ.

Функцийн ерөнхий хязгаар болон муруйн дагуух хязгаарын холбоог тогтоосон дараах теоремыг авч үзье.

Теорем 0.1. Хэрэв $(x,y) \to (x_o,y_o)$ үед f(x,y) функц L хязгаартай байвал f функцийн тодорхойлогдох мужид байх муруйн дагуу $(x,y) \to (x_o,y_o)$ үеийн f(x,y) функцийн хязгаар нь мөн L байна.

Энэ теоремоос үзвэл хэрэв $(x,y) \to (x_o,y_o)$ үед f(x,y) функц ялгаатай хязгаартай байх (x_o,y_o) цэгийг агуулсан хоёр өөр муруй олдож байх эсвэл (x_o,y_o) цэгийг агуулсан муруйн дагуу $(x,y) \to (x_o,y_o)$ үед f(x,y)-ийн хязгаар оршин байхгүй байвал

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y)$$

хязгаар оршихгүй.

Жишээ 0.8. $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ функцийн хязгаар орших эсэхийг тодорхойл. Бодолт:

1. x тэнхлэгийн дагуу $(x,y) \to (0,0)$ байх үеийн хязгаарыг авч үзье. x=t, y=0 нь x-ийн параметрт тэгшитгэл.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} f(t,0) = \lim_{t\to 0} \frac{0}{t^2} = 0$$

2. y=x шулууны дагуу $(x,y) \to (0,0)$ байх хязгаарыг авч үзье. y=x-ийн параметрт тэгшитгэл нь $x=t,\ y=t.$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{t\to 0} \frac{t^2}{2t^2} = \frac{1}{2}$$

Эндээс үзвэл (0,0) цэгийг агуулсан $y=0,\ y=x$ гэсэн $(x,y)\to (0,0)$ үед ялгаатай хязгаартай байх ялгаатай хоёр муруй олдож байгаа тул $f(x,y)=\frac{xy}{x^2+y^2}$ функцийн $(x,y)\to (0,0)$ үеийн хязгаар оршихгүй.

Жишээ 0.9. $f(x,y)=\frac{x^2+y^2}{\sqrt{x^2+y^2+25}-5}$ функцийн хязгаарыг $(x,y)\to (0,0)$ үед бод. Бодолт:

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+25}-5} = \lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)(\sqrt{x^2+y^2+25}+5)}{(\sqrt{x^2+y^2+25}-5)(\sqrt{x^2+y^2+25}+5)} = \lim_{(x,y)\to(0,0)} \frac{(\sqrt{x^2+y^2+25}+5)(x^2+y^2)}{(x^2+y^2)} = \lim_{(x,y)\to(0,0)} (\sqrt{x^2+y^2+25}+5) = 10$$

Тодорхойлолт 0.4. f(x,y) хоёр хувьсагчийн функцийн хувьд

- 1. $f(x_o, y_o)$ тодорхойлогдсон байх
- 2. $\lim_{(x,y)\to(x_o,y_o)} f(x,y)$ оршин байх
- 3. $\lim_{(x,y)\to(x_o,y_o)} f(x,y) = f(x_o,y_o)$

нөхцлүүд биелэгдэж байвал f функцийг (x_o, y_o) цэгт тасралтгүй гэнэ.

Теорем 0.2. а) Хэрэв g ба h нэг хувьсагчийн тасралтгүй функцүүд бол

$$f(x,y) = g(x) \cdot h(y)$$

нь х, у-ээс хамаарсан тасралтгүй функц байна.

b) g нэг хувьсагчийн тасралтгүй функц, h хоёр хувьсагчийн тасралтгүй функц бол

$$f(x,y) = g(h(x,y))$$

нийлмэл функц x, y-ээс хамаарсан тасралтгүй функц байна.

Хэрэв (0.4) тодорхойлолтын ядаж нэг нөхцөл нь f(x,y) функцийн хувьд (x_o,y_o) цэг дээр биелэхгүй байвал f функцийг энэ цэг дээр тасралттай гээд (x_o, y_o) цэгийг тасралтын цэг

Жишээ 0.10. $f(x,y) = \frac{x^2y^3}{9-xy}$ функцийн тасралтгүй байх цэгүүдийг ол.

 $\mathit{Бутархай}\ \mathit{фуйкц}\ \mathit{тул}\ 9-\mathit{xy} \neq 0$ байх цэгүүд дээр тасралтгүй байна. f(x,y) функц $yx \neq 9$ буюу xy = 9 гиперболын цэгүүдээс бусад цэгүүд дээр тасралтгүй.

Жишээ 0.11. $f(x,y) = \begin{cases} x \neq 1, & y \neq 2 \text{ } \gamma e \partial x^2 + y^2 \\ x = 1, & y = 2 \text{ } \gamma e \partial \text{ } 7 \end{cases}$ функцийн тасралтын цэгийг ол. Бодолт: $f(1,2) = 7, \lim_{(x,y) \to (1,2)} f(x,y) = 1 + 4 = 5$ тул тодорхойлолт (0.4)-ын (3.)нөхцөл биелэгдэхгүй учир (1,2) цэг функцийн тасралтын цэг болно.

Жишээ 0.12. $\lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$ хязгаарыг бод.

Энэ функц (0,0) цэгт тасралттай. Энэ тохиолдолд хязгаарыг бодохын Бодолт: тулд туйлын координатын системд шилжих нь ашигтай байна.

$$\left\{ \begin{array}{ll} x=r\cos\theta \\ y=r\sin\theta \end{array} \right. \ \, my\text{r}\ \, r^2=x^2+y^2 \implies r=\sqrt{x^2+y^2}, \ \, r\geq 0 \ \, y\text{uup $r\to 0$} \, \, \text{байна}.$$

$$\lim_{(x,y)\to(0,0)}(x^2+y^2)\ln(x^2+y^2)=\lim_{r\to 0+}r^2\ln r^2=\lim_{r\to 0+}\frac{2\ln r}{1/r^2}=\lim_{r\to 0+}\frac{2/r}{-2/r^3}=\lim_{r\to 0+}(-r^2)=0$$

(Лопиталын дүрмээр)

Теорем 0.3. Хэрэв z = f(x,y) = f(M) функц D гэсэн зааглагдсан, битүү муж дээр тасралтгүй бол

1. Функц D дээр зааглагдсан байна.

$$|f(M)| \le c < +\infty$$

 $2. \, \Phi$ ункц D муж дээр хамгийн их ба хамгийн бага утгандаа хүрнэ.

Теорем 0.4. f(x,y) функц нь $M_0(x_0,y_0)$ цэг дээр A хязгаартай байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь $f(x,y) = A + \alpha$ Үүнд

$$A = \lim_{x \to x_0} f(x, y), \quad \alpha = \alpha(x, y), \quad \lim_{x \to x_0} \alpha(x, y) = 0$$
$$y \to y_0 \qquad \qquad y \to y_0$$

z=f(x,y) гэсэн хоёр хувьсагчийн функц авч үзье. Функцийн $M_o(x_o,y_o)$ цэг дээрх тухайн өөрчлөлтийг $y = y_o$ үед авч үзвэл,

$$\Delta_x z = f(x_o + \Delta x, y_o) - f(x_o, y_o)$$

болох ба үүнийг функцийн x аргументаар зохиосон тухайн өөрчлөлт гэж нэрлэнэ. Мөн yаргументийн хувьд тухайн өөрчлөлтийг бичвэл:

$$\Delta_y z = f(x_o, y_o + \Delta y) - f(x_o, y_o)$$

 $\frac{\Delta_x z}{\Delta x}$ ноогдворын $\Delta x \to 0$ үеийн хязгаар орших бол түүнийг f(x,y) функцийн $M_o(x_o,y_o)$ цэг дээрх x-ээр авсан тухайн уламжлал гэж нэрлэх ба

$$\frac{\partial z}{\partial x}$$
, $\frac{\partial f(x_o, y_o)}{\partial x}$, z'_x , $f'_x(x_o, y_o)$

гэх мэтчилэн тэмдэглэнэ. Тэгвэл тодорхойлолт ёсоор:

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \frac{\partial f(x_o, y_o)}{\partial x}$$

Үүнтэй адилаар f(x,y) функцийн $M_o(x_o,y_o)$ цэг дээр y—ээр авсан тухайн уламжлалыг тодорхойлно. Тодорхойлолт ёсоор

$$\lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_o, y_o + \Delta y) - f(x_o, y_o)}{\Delta y} = \frac{\partial f(x_o, y_o)}{\partial y}$$

болно. Тэмдэглэхдээ

$$\frac{\partial z}{\partial y}$$
, $\frac{\partial f(x_o, y_o)}{\partial y}$, z'_x , $f'_y(x_o, y_o)$

Олон хувьсагчийн функцээс аль нэг хувьсагчаар нь авсан тухайн уламжлалыг олохдоо бусад хувьсагчдыг тогтмол гэж үзээд ердийн уламжлал авдаг дүрэм, томъёог ашиглана.

Жишээ 0.13. $f(x,y) = xy + \frac{y}{x}$ функцийн тухайн уламжлалуудыг ол.

Бодолт: $f'_x(x,y)$ -тухайн уламжлалыг олохдоо у хаувьсагчийг тогтмол (y=const) гэж үзэж, f(x,y) функцээс х-ээр ердийн уламжлал авна. Иймд

$$\frac{\partial f}{\partial x} = \left(xy + \frac{y}{x}\right)_x' = y - \frac{y}{x^2}$$

Yүнтэй төстэйгээр $f_y'(x,y)$ -г олбол

$$\frac{\partial f}{\partial y} = \left(xy + \frac{y}{x}\right)_y' = x + \frac{1}{x}$$

Хоёр хувьсагчийн функцийн тухайн уламжлалуудын геометр утгыг авч үзье. z = f(x,y) хоёр хувьсагчийн функц нь огторгуйд ямар нэг гадаргууг дүрсэлдэг. XoY хавтгай дээр $M_0(x_0,y_0)$ цэгийг авч түүнд харгалзах гадаргуугийн цэг N-г олъё.

z=f(x,y) гадаргууг $y=y_0$ хавтгайгаар огтлоход огтлолд үүссэн муруйг ANB гэж тэмдэглэе. Энэ муруйг z=f(x,y) функцийн график гэж үзэж болно. Тэгвэл нэг хувьсагчийн функцийн уламжлалын геометр утга ёсоор $\operatorname{tg}\alpha=\frac{df(x,y_0)}{dx}\bigg|_N$, үүнд α нь N цэгт ANB муруйд татсан шүргэгчийн OX тэнхлэгийн эерэг чиглэлтэй үүсгэсэн өнцөг. Тэгвэл

$$\frac{df(x,y_0)}{dx} = \bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \left(\frac{\partial z}{\partial x}\right)_{M_0}$$

Эндээс $\left(\frac{\partial z}{\partial x}\right)_{M_0} = \frac{\partial f(x_0,y_0)}{\partial x} = \operatorname{tg}\alpha$ гэж гарна. Үүнтэй төсөөтэйгээр, $\left(\frac{\partial z}{\partial y}\right)_{M_0} = \frac{\partial f(x_0,y_0)}{\partial y} = \operatorname{tg}\beta$ болно. Үүнд β нь z=f(x,y) гадаргуу ба $x=x_0$ хавтгай хоёрын огтлолцлоор үүссэн CND муруйн N цэгт татсан шүргэгчийн OY тэнхлэгийн эерэг чиглэлтэй үүсгэж буй өнцөг.

Санамж 0.2. Хоёроос дээш хувьсагчийн функцийн тухайн уламжлалыг ижилхэн зарчмаар том тёолж тэмдэглэнэ.

Функцийн бүтэн дифференциал

z = f(x,y) функц өгөгдсөн гэж үзье. M(x,y) цэгээс $N(x+\Delta x,y+\Delta y)$ цэг рүү шилжихэд гарах функцийн өөрчлөлтийг функцийн бүтэн өөрчлөлт гэж нэрлээд Δz гэж тэмдэглэе.

$$\Delta z = f(N) - f(M) = f(x + \Delta x, y + \Delta y) - f(x, y)$$

Одоо f(x,y) функц M(x,y) цэг дээр тасралтгүй тухайн уламжлалуудтай гэж үзээд функцийн бүтэн өөрчлөлтийг түүний тухайн уламжлалуудаар илэрхийлэх зорилго тавья. Үүний тулд Δz -ийг дараах хэлбэрт бичье.

$$\Delta z = [f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)] + [f(x, y + \Delta y)f(x, y)]$$

x-ийг бэхлэгдсэн гэж үзээд $f(x,y+\Delta y)-f(x,y)$ илэрхийллийг хялбарчилъя. Дундаж утгын тухай Лагранжийн теоремыг ашиглавал

$$f(x, y + \Delta y) - f(x, y) = \frac{\partial f(x, \bar{y})}{\partial y} \cdot \Delta y, \quad \exists \bar{y} \in (y, y + \Delta y)$$

Мөн $f(x+\Delta x,y+y\Delta y)-f(x,y+\Delta y)$ илэрхийллийн хувьд $y+\Delta y$ -г тогтмол гэж үзээд энэ теоремыг ашиглавал

$$f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) = \frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} \cdot \Delta x, \quad \bar{x} \in (x, x + \Delta x)$$

Тэгвэл Δz дараах хэлбэрт шилжинэ.

$$\Delta z = \frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} \Delta x + \frac{\partial f(x, \bar{y})}{\partial y} \Delta y$$

Нөгөөн талаас $\Delta x \to 0$ ба $\Delta y \to 0$ үед $\bar x \to x$, $\bar y \to y$ болох нь илэрхий юм. Тухайн уламжлалуудын тасралтгүй чанарыг ашиглан $\frac{\partial f(\bar x,y+\Delta y)}{\partial x}$ ба $\frac{\partial f(x,\bar y)}{\partial y}$ илэрхийллүүдэд хязгаарт шилжиж болно. Үүнд

$$\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} = \frac{\partial f(x, y)}{\partial x}$$

$$\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta x \to 0 \end{subarray}} \frac{\partial f(x, \bar{y})}{\partial y} = \frac{\partial f(x, y)}{\partial y}$$

$$\Delta y \to 0$$

теорем (0.4)-ийг дээрх илэрхийлэлд ашиглавал

$$\frac{\partial f(\bar{x}, y + \Delta y)}{\partial x} = \frac{\partial f(x, y)}{\partial x} + \alpha, \quad \frac{\partial f(x, \bar{y})}{\partial y} = \frac{\partial f(x, y)}{\partial y} + \beta$$

Үүнд

Функцийн бүтэн өөрчлөлтийн томъёонд дээрх илэрхийллүүдийг орлуулбал

$$\Delta z = \frac{\partial f(x,y)}{\partial x} \Delta x + \frac{\partial f(x,y)}{\partial y} \Delta y + \alpha \Delta x + \beta \Delta y \tag{3}$$

Одоо $\alpha \Delta x + \beta \Delta y$ хэмжигдэхүүн нь $\Delta x \to 0$ Ба $\Delta y \to 0$ үед

$$\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$$

-ийг бодвол дээд эрэмбийн багасаж барагдашгүй хэмжигдэхүүн гэдгийг харуулъя. Үүний тулд дараах хязгаарыг бодож үнэлье.

$$\lim_{\Delta \rho \to 0} \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{\Delta \rho \to 0} \frac{\alpha \Delta x}{\Delta \rho} + \lim_{\Delta \rho \to 0} \frac{\beta \Delta y}{\Delta \rho}$$

Нөгөө талаас

$$\left| \frac{\Delta x}{\Delta \rho} \right| \le 1, \quad \left| \frac{\Delta y}{\Delta \rho} \right| \le 1$$

тул

$$\lim_{\Delta \rho \to 0} \frac{\alpha \Delta x}{\Delta \rho} = 0, \quad \lim_{\Delta \rho \to 0} \frac{\beta \Delta y}{\Delta \rho} = 0$$

болно. Иймд

$$\lim_{\Delta \rho \to 0} \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

байна. Мөн Δz -г дараах хэлбэрт бичиж болно.

$$\Delta z = \frac{\partial f(x,y)}{\partial x} \Delta x + \frac{\partial f(x,y)}{\partial y} \Delta y + \varepsilon \Delta \rho \tag{4}$$

Хэрэв z = f(x,y) функцийн (x,y) цэг дээрх бүтэн өөрчлөлтийг

$$\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y \tag{5}$$

хэлбэрт тавьж болдог бол энэ функцийг тухайн (x,y) цэг дээр дифференциалчлагддаг функц гэж нэрлэдэг.

Функцийн бүтэн өөрчлөлтийн Δx , Δy -тэй шугаман хэсэг болох $A\Delta x + B\Delta y$ нэмэгдэ-хүүнийг бүтэн дифференциал гэж нэрлэж df буюу dz-ээр тэмдэглэнэ.

$$dz = A\Delta x + B\Delta y \tag{6}$$

Иймд функцийн дифференциал нь түүний бүтэн өөрчлөлтийн гол хэсэг болно.

$$\Delta z = dz + \alpha \Delta x + \beta \Delta y$$

Теорем 0.5. Хэрэв z = f(x,y) функц (x,y) цэг дээр дифференциалчлагддаг бол энэ цэг дээр тасралтгүй байна.

Теорем 0.6. Хэрэв z=f(x,y) функц (x,y) цэг дээр дифференциалчлагддаг бол $A=\frac{\partial f(x,y)}{\partial x},\ B=\frac{\partial f(x,y)}{\partial y}$ байна.

Теорем 0.7. Хэрэв өгөгдсөн цэг дээрх функцийн тухайн уламжлалууд оршдог бөгөөд тасралтгүй функцүүд бол функц энэ цэг дээр дифференциалчлагдана.

(3 тэнцэтгэлийг функцийн тухайн уламжлалууд тасралтгүй гэсэн нөхцөлд гарган авсан билээ. Тухайн тохиолдолд z=x гэвэл

$$dz = dx = x'\Delta x + x'_y \Delta y = \Delta x$$

болох ба z=y гэж үзвэл $dz=\Delta y$ болно. Иймд функцийн бүтэн дифференциалыг

$$dz = \frac{\partial f(x,y)}{\partial x}dx + \frac{\partial f(x,y)}{\partial y}dy$$

гэж тодорхойлно.

Жишээ 0.14. Жишээ (0.13)-д өгөгдсөн $f(x,y) = xy + \frac{y}{x}$ функцийн бүтэн дифференциалыг ол.

Водолт:
$$dz = \left(y - \frac{y}{x^2}\right)dx + \left(x + \frac{1}{x}\right)dy$$