Введение

Здесь содержатся знания тахіт 4133 о математике. Принятые обозначения:

- \forall **квантор всеобщности**. Обозначение условия, которое верно для всех указанных элементов. Читается как «для всех», «для каждого», «для любого» или «все», «каждый», «любой».
- \exists **квантор существования**. Обозначение условия, которое верно хотя бы для одного из указанных элементов. Читается как «существует», «найдётся».
- \exists ! **квантор существования и единственности**. Обозначение условия, которое верно ровно для одного из указанных элементов. Читается как «существует единственный».
- : «что», «такой (такие)», «что», «так, что», «обладающий свойством».
- ullet \Rightarrow символ следствия. Читается как «если..., то...».
- ullet \Leftrightarrow символ эквивалентности (равносильности). Читается как «тогда и только тогда, когда», «ровно/в точности тогда, когда».
- \blacksquare Q.E.D. (лат. quod erat demonstrandum, рус. что и требовалось доказать).

Оглавление

Ι	Школьный курс					
1	Teo	рия м	ножеств	5		
	1.1	Множ	ества	5		
		1.1.1	Отношения между множествами	5		
		1.1.2	Операции над множествами	5		
		1.1.3	Функции	6		
2	Эле	емента	рная алгебра	7		
	2.1		ственные числа	7		
		2.1.1	Аксиоматика вещественных чисел	7		
		2.1.2	Существование иррациональных чисел	8		
		2.1.3	Геометрическое представление вещественных чисел	9		
	2.2	Подмі	ножества множества R	9		
	2.3		раические преобразования	9		
II	\mathbf{y}	нивеј	рситетский курс	11		
3	Пта	ek Domii	ая математика	12		
J	3.1	-	ы	12		
	0.1	3.1.1	Связность графов	13		
		3.1.2	Эйлеровы графы	13		
		3.1.3	Гамильтоновы графы	14		
		3.1.4	Планарность графов	15		
		3.1.5	Деревья	17		
		3.1.6	Остовы	18		
		3.1.7	Помеченные деревья	19		
4	Птт	TOWTE O		21		
4	1					
	4.1		ицы	21 21		
	7.2	4.2.1	Операции над матрицами	21		
		4.2.1	Определитель матрицы	$\frac{21}{22}$		
		4.2.2	Ранг матрицы	26		
		4.2.4	Элементарные преобразования матриц	27		
		4.2.4 $4.2.5$	Обратные матрицы	$\frac{27}{27}$		
	4.3		орные пространства	28		
	4.0		Базис и размерность векторного пространства	29		
	4.4		мы линейных алгебраических уравнений	$\frac{29}{29}$		
	4.4	4.4.1	Матричная форма системы линейных уравнений	$\frac{23}{30}$		
		4.4.1	Линейная независимость	30		
		4.4.2	Решение систем линейных уравнений	31		
		4.4.4	Фундаментальная система решений	$\frac{31}{32}$		
	4.5		Фундаментальная система решений	$\frac{32}{33}$		
	4.0	4.5.1	Деление многочленов	33		

	4.6 4.7	4.6.1	члены от нескольких переменных	34 35 36 36				
5	Математический анализ 38							
	5.1	Огран	иченные подмножества множества $\mathbb R$	38				
	5.2	Преде	л последовательности	39				
		5.2.1	Локальный экстремум функции нескольких переменных	40				
		5.2.2	Метод наименьших квадратов	41				
		5.2.3	Условный экстремум	42				
6	Teo	рия мн	ножеств 4	43				
		-	<mark>ества</mark>	43				
		6.1.1		43				
		6.1.2	Мощность числовых множеств	44				
7	Элементарная алгебра 46							
		-	•	46				
		7.1.1		46				
		7.1.2		46				

Часть I Школьный курс

Глава 1

Теория множеств

1.1 Множества

Множество — основное понятие. Некоторые числовые множества:

- $\mathbb{N} = \{1, 2, 3, \dots\}$ множество натуральных чисел.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ множество целых чисел.
- $\mathbb{Q}=\left\{\frac{m}{n}\mid m\in\mathbb{Z}\wedge n\in\mathbb{N}\right\}$ множество рациональных чисел.
- ullet \mathbb{I} множество иррациональных чисел.
- ullet \mathbb{R} множество действительных (вещественных) чисел.
- ullet \mathbb{C} множество комплексных чисел.

1.1.1 Отношения между множествами

Пусть A, B — множества. Между ними определены следующие отношения:

• A включено в B (является **подмножеством** B):

$$A \subseteq B \Leftrightarrow \forall a \in A \ a \in B$$

Нередко вместо знака \subseteq пишется знак \subset .

A равно В:

$$A = B \Leftrightarrow \forall a \ (a \in A \Leftrightarrow a \in B)$$

• A строго включено в B:

$$A \subset B \Leftrightarrow A \subseteq B, A = B$$

1.1.2 Операции над множествами

Пусть A, B — множества. Над ними определены следующие операции:

• Объединение:

$$A \cup B = \{x \mid x \in A \text{ или } x \in B\}$$

• Пересечение:

$$A \cap B = \{x \mid x \in A, \ x \in B\}$$

• Разность:

$$A \setminus B = \{x \mid x \in A, \ x \notin B\}$$

• Симметрическая разность:

$$A\triangle B = \{x \mid x \in A, \ x \notin B$$
или $x \notin A, \ x \in B\}$

• Дополнение до U, где $A \subseteq U$:

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

• Декартово произведение:

$$A \times B = \{(x, y) \mid x \in A, \ y \in B\}$$

• Декартова степень:

$$A^n = \underbrace{A \times A \times \ldots \times A}_{n}$$

1.1.3 Функции

Пусть A и B — множества. **Функцией** f называется правило, ставящее в соответствие каждому элементу $a \in A$ единственный элемент $f(a) \in B$. A называется **областью определения** функции f, B — **областью значений** функции f. a называется **прообразом** f(a), f(a) — **образом** a.

Функция $f: A \to B$ называется **инъективной (инъекцией)**, если $\forall x, y \in A \ (x \neq y \Rightarrow f(x) \neq f(y))$.

Функция $f: A \to B$ называется **сюръективной** (сюръекцией), если $\forall b \in B \ \exists a \in A \colon f(a) = b$.

Функция $f \colon A \to B$ называется **биективной (биекцией)**, если она инъективная и сюръективная.

Последовательностью называется функция, заданная на множестве $X \subseteq \mathbb{N}$, и обозначается (x_n) .

Глава 2

Элементарная алгебра

2.1 Вещественные числа

2.1.1 Аксиоматика вещественных чисел

Аксиомы сложения:

1. Коммутативность сложения:

$$\forall a, b \in \mathbb{R} \ a + b = b + a$$

2. Ассоциативность сложения:

$$\forall a, b, c \in \mathbb{R} \ a + (b+c) = (a+b) + c$$

3. Существование нуля:

$$\exists 0 \in \mathbb{R} \colon \forall a \in \mathbb{R} \ a + 0 = a$$

4. Существование противоположного числа:

$$\forall a \in \mathbb{R} \exists (-a) \in \mathbb{R} : a + (-a) = 0$$

Аксиомы умножения:

1. Коммутативность умножения:

$$\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a$$

2. Ассоциативность умножения:

$$\forall a,b,c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

3. Дистрибутивность умножения относительно сложения:

$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c$$

4. Существование единицы:

$$\exists 1 \in \mathbb{R} : \forall a \in \mathbb{R} \ a \cdot 1 = a$$

5. Существование обратного числа:

$$\forall a \in \mathbb{R} \setminus \{0\} \exists \frac{1}{a} = a^{-1} \in \mathbb{R} \colon a \cdot a^{-1} = 1$$

Аксиомы порядка:

1. Рефлексивность:

$$\forall a \in \mathbb{R} \ a \leqslant a$$

2. Антисимметричность:

$$\forall a, b \in \mathbb{R} \ (a \leqslant b, \ b \leqslant a \Rightarrow a = b)$$

3. Транзитивность:

$$\forall a, b, c \in \mathbb{R} \ (a \leqslant b, b \leqslant c \Rightarrow a \leqslant c)$$

4. Линейная упорядоченность:

$$\forall a, b \in \mathbb{R} \ (a \leqslant b \ или \ b \leqslant a)$$

5. Связь сложения и порядка:

$$\forall a, b, c \in \mathbb{R} \ (a \leqslant b \Rightarrow a + c \leqslant b + c)$$

6. Связь умножения и порядка:

$$\forall a, b \in \mathbb{R} \ (0 \leqslant a, \ 0 \leqslant b \Rightarrow 0 \leqslant a \cdot b)$$

Аксиома нетривиальности:

$$0 \neq 1$$

Аксиома непрерывности:

$$\forall A, B \subset \mathbb{R} \ (\forall a \in A, b \in B \colon a \leqslant b) \ \exists x \in \mathbb{R} \colon a \leqslant x \leqslant b$$

2.1.2Существование иррациональных чисел

Иррациональным называется число, не являющееся рациональным.

Утверждение 2.1.1. Существуют иррациональные числа.

Доказательство (методом от противного). Пусть $\exists p \in \mathbb{Z}, \ q \in \mathbb{N} \colon \left(\frac{p}{a}\right)^2 = 2, \ \mathrm{HOД}(p,q) = 1.$ Тогда

$$p^2 = 2q^2 \Rightarrow p^2 : 2 \Leftrightarrow p : 2 \Leftrightarrow p = 2l, l \in \mathbb{Z} \Rightarrow 2l^2 = q^2$$

Аналогичными рассуждениями получим q : 2. p : 2, $q : 2 \Rightarrow HOД(p,q) \neq 1$. Противоречие.

Утверждение 2.1.2. Среди вещественных чисел есть иррациональные. Доказательство. Пусть $X = \{x \in \mathbb{R}^+ \mid x^2 < 2\}, Y = \{y \in \mathbb{R}^+ \mid y^2 > 2\}.$

$$\forall x \in X, y \in Y \ (y^2 - x^2 = (y - x)(y + x) > 0 \Rightarrow y > x) \Rightarrow \exists z \in \mathbb{R} \colon \forall x \in X, y \in Y \ x \leqslant z \leqslant y$$

1. Пусть $z^2 < 2$. $z \in X$, z > 1,1, тогда

$$0 < 2 - z^2 < 1 \Rightarrow \frac{2 - z^2}{5} < 1 \Rightarrow \left(\frac{2 - z^2}{5}\right)^2 < \frac{2 - z^2}{5}$$

•
$$z + \frac{2-z^2}{5} > z \Rightarrow z + \frac{2-z^2}{5} \notin X$$

$$\bullet \ \left(z + \frac{2 - z^2}{5}\right)^2 = z^2 + 2z \cdot \frac{2 - z^2}{5} + \left(\frac{2 - z^2}{5}\right)^2 < z^2 + \frac{4}{5}(2 - z^2) + \frac{2 - z^2}{5} = 2 \Rightarrow z + \frac{2 - z^2}{5} \in X$$

Противоречие, значит, $z^2 \ge 2$.

2. Пусть $z^2 > 2$. $z \in Y$, z < 1,9, тогда

$$0 < z^2 - 2 < 2 \Rightarrow \frac{z^2 - 2}{4} < 1 \Rightarrow \left(\frac{z^2 - 2}{4}\right)^2 < \frac{z^2 - 2}{4}$$

•
$$z - \frac{z^2 - 2}{4} < z \Rightarrow z + \frac{z^2 - 2}{4} \notin Y$$

$$\bullet \left(z - \frac{z^2 - 2}{4}\right)^2 = z^2 - z \cdot \frac{z^2 - 2}{2} + \left(\frac{2 - z^2}{5}\right)^2 > z^2 - (z^2 - 2) = 2 \Rightarrow z - \frac{z^2 - 2}{4} \in Y$$

Противоречие, значит, $z^2 \leq 2$.

T. o.,
$$z^2 \leqslant 2$$
, $z^2 \geqslant 2 \Leftrightarrow z^2 = 2 \Rightarrow \exists z \in \mathbb{R} \colon (z^2 = 2 \Rightarrow z \notin \mathbb{Q})$.

2.1.3 Геометрическое представление вещественных чисел

Самой распространённой интерпретацией множества $\mathbb R$ является бесконечная прямая.

Рис. 2.1: Множество \mathbb{R} в виде прямой

Множество $\mathbb R$ также можно представить в виде окружности, одна точка которой соответствует нулю, а другая — бесконечности.

Рис. 2.2: Множество \mathbb{R} в виде окружности

Покажем, что эти интерпретации взаимозаменяемы. Изобразим их так, чтобы точка, соответствующая нулю на прямой a, совпадала с точкой, соответствующей нулю на окружности. Теперь из точки, соответствующей бесконечности на окружности, проведём все возможные прямые. Каждая из них пересекает одну точку на прямой a

и одну точку на окружности и таким образом устанавливает взаимно однозначное соответствие.

2.2 Подмножества множества $\mathbb R$

Промежутком называется множество вещественных чисел, которое вместе с любыми двумя числами содержит любое число между ними. Типы промежутков:

- $[a;b] = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}$ отрезок
- $(a; b) = \{x \in \mathbb{R} \mid a < x < b\}$ интервал
- $[a;b) = \{x \in \mathbb{R} \mid a \leqslant x < b\}$ полуинтервал
- $(a;b] = \{x \in \mathbb{R} \mid a < x \leqslant b\}$ полуинтервал

Полагая $a = \pm \infty$ или $b = \pm \infty$, можно определить бесконечные промежутки. Например:

- $(-\infty; +\infty) = \mathbb{R}$
- $(0; +\infty) = \mathbb{R}^+$

Окрестностью точки $x\in\mathbb{R}$ называется интервал $(a;b)\colon x\in(a;b)$. ε -окрестностью $U_{\varepsilon}(x)$ точки $x\in\mathbb{R}$ называется интервал $(x-\varepsilon;x+\varepsilon)$. Проколотой ε -окрестностью $\check{U}_{\varepsilon}(x)$ точки $x\in\mathbb{R}$ называется $U_{\varepsilon}(x)\setminus\{x\}$.

2.3 Алгебраические преобразования

Формулы сокращённого умножения:

1. Квадрат суммы:

$$(a \pm b)^2 = (a \pm b)(a \pm b) = a^2 \pm 2ab + b^2$$

2. Разность квадратов:

$$a^{2} - b^{2} = a^{2} - ab + (ab - b^{2}) = (a + b)(a - b)$$

9

3. Куб суммы:

$$(a \pm b)^3 = (a^2 \pm 2ab + b^2)(a \pm b) = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

4. Сумма кубов:

$$a^{3} \pm b^{3} = a^{3} \mp a^{2}b + ab^{2} \pm a^{2}b - ab^{2} \pm b^{3} = a(a^{2} \mp ab + b^{2}) \pm b(a^{2} \mp ab + b^{2}) = (a \pm b)(a^{2} \mp ab + b^{2})$$

Теорема 2.3.1 (формула бинома Ньютона).

$$\forall n \in \mathbb{N} \ (a+b)^n = \sum_{m=0}^n C_n^m a^{n-m} b^m$$

Доказательство (методом математической индукции).

- База индукции. n = 1: $(a + b)^1 = a + b = C_1^0 a + C_1^1 b$
- *Шаг индукции*. Пусть формула верна для n. Докажем истинность для n+1.

$$(a+b)^{n+1} = (a+b) \sum_{m=0}^{n} C_n^m a^{n-m} b^m = \sum_{m=0}^{n} C_n^m a^{n-m+1} b^m + \sum_{m=0}^{n} C_n^m a^{n-m} b^{m+1} =$$

$$= a^{n+1} + \sum_{m=0}^{n-1} C_n^{m+1} a^{n-m} b^{m+1} + \sum_{m=0}^{n-1} C_n^m a^{n-m} b^{m+1} = a^{n+1} + \sum_{m=0}^{n-1} C_{n+1}^{m+1} a^{n-m} b^{m+1} + b^{n+1} =$$

$$= a^{n+1} + \sum_{m=1}^{n} C_{n+1}^m a^{n+1-m} b^m + b^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m a^{n+1-m} b^m$$

Часть II Университетский курс

Глава 3

Дискретная математика

3.1 Графы

Неориентированным графом называется пара множеств G = (V, E), где V — множество вершин графа, $E = \{\{u, v\} \mid u, v \in V\}$ — множество рёбер графа.

Если $e = \{u, v\}, e \in E$, то говорят, что:

- \bullet ребро e соединяет вершины u и v;
- u и v концы ребра e;
- ребро e **инцидентно** вершинам u и v;
- вершины u и v инцидентны ребру e.

В дальнейшем будем рассматривать только конечные графы.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Вершины называются **соседними**, или **смежными**, если их соединяет ребро, иначе — **несоседни- ми**, или **несмежными**.

Число рёбер в графе G, инцидентных вершине u, называется **степенью** вершины и обозначается $\deg_G u$.

Если степень вершины равна 0, то она называется **изолированной**, а если 1 — то **висячей**.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Рёбра называются кратными, инцидентные одним и тем же вершинам.

Граф называется простым, если он не содержит петель и кратных рёбер.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ называются **изоморфными**, если существует биекция $\varphi\colon V_1\to V_2$ такая, что $\forall u,v\in V_1\ \{u,v\}\in E_1\Leftrightarrow \{\varphi(u),\varphi(v)\}\in E_2,$ иначе — **неизоморфными**. φ называется **изоморфизмом**.

Лемма 3.1.1 (о рукопожатиях).

$$\sum_{u \in V} \deg_G u = 2|E|$$

Рис. 3.1: Граф K_5

где $G = (V, E) - \operatorname{гра} \phi$.

Доказательство (методом математической индукции).

• База индукции. |E|=0: в таком графе $\sum_{u\in V} \deg u=0$.

• Шаг индукции. Пусть лемма верна для |E| = n. Докажем её для |E| = n+1. Для этого достаточно заметить, что каждое новое ребро увеличивает степени двух вершин на 1.

Маршрутом в графе G = (V, E) называется последовательность вершин и рёбер вида $(v_1; e_1; v_2; \ldots; e_k; v_{k+1})$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется замкнутым.

Замкнутая цепь называется циклом.

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 3.1.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $(u=v_1;e_1;v_2;\dots;e_k;v_{k+1}=v)$ — не простая цепь, тогда $\exists i< j\colon v_i=v_j$. Уберём из маршрута подпоследовательность $(e_i;v_{i+1};\dots;e_{j-1};v_j)$, получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута. \blacksquare

Лемма 3.1.3. Любой цикл содержит простой цикл. Доказательство аналогично предыдущему.

Лемма 3.1.4. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $(u=v_1;e_1;v_2;\ldots;e_n;v_{n+1}=v), (u=v_1';e_1';v_2';\ldots;e_m';v_{m+1}=v)$ — простые цепи. Найдём наименьшее $i\colon e_i\neq e_i'$, тогда $(v_i;e_i;v_{i+1};\ldots;e_n;v_{n+1}=v_{m+1}';e_m';\ldots;e_i';v_i'=v_i)$ — цикл, значит, можно получить простой цикл. \blacksquare

3.1.1 Связность графов

Вершины u и v называются **связанными**, если существует (u, v)-маршрут, иначе — **несвязанными**.

Граф называется связным, если в нём любые две вершины связаны, иначе — несвязным.

Граф G' = (V', E') называется подграфом графа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$.

Компонентой связности графа называется его максимальный (относительно включения) связный подграф.

3.1.2 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 3.1.1. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. Т. о., если посетить её k раз, то $\deg v = 2k \div 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0; e_0; v_1; e_1; \dots; e_{k-1}; v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, где 0 < i < k, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e = \{u, v\}$, не входящее в C. Возьмём первое ребро $e' = \{v_i, v'\}$ из (v_0, u) -маршрута, не входящее в C. Тогда цепь $(v'; e'; v_i; e_i; \ldots; e_{k-1}; v_k = v_0; e_0; v_1; e_1; \ldots; v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

1. Алгоритм Флёри (очень медленный).

- (а) Выберем произвольную вершину.
- (b) Пусть находимся в вершине v. Выберем ребро, инцидентное ей, которое должно быть мостом, только если не осталось других рёбер.
- (с) Проходим по выбранному ребру и вычёркиваем его.
- (d) Повторяем, пока есть рёбра.

2. Алгоритм объединения циклов.

- (а) Выберем произвольную вершину.
- (b) Выбираем любое непосещённое ребро и идём по нему.
- (с) Повторяем, пока не вернёмся в начальную вершину.
- (d) Получим цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} \colon u' \notin C$. Повторяем шаги 2a-2c для начальной вершины u. Получим цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг 2d.

Цепь называется эйлеровым путём, если она не является циклом и содержит все рёбра.

Граф называется полуэйлеровым, если в нём есть эйлеров путь.

Теорема 3.1.2. Связный граф полуэйлеров \Leftrightarrow степени двух вершин нечётны, а остальных — чётны. Доказательство.

- ⇒. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин — чётными.
- $2. \Leftarrow$. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

3.1.3 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 3.1.3 (Дирака). Если в графе G = (V, E) с $n \geqslant 3$ вершинами $\forall u \in V \deg u \geqslant \frac{n}{2}$, то граф гамильтонов.

Доказательство.

- 1. Докажем методом от противного, что граф связный. Пусть он несвязный. Выберем компоненту связности G'=(V',E') с наименьшим числом вершин, тогда $|V'|\leqslant \frac{n}{2}$. Возьмём $v\in V'$, тогда $\deg v\leqslant |V'|-1<\frac{n}{2}$. Противоречие с условием.
- 2. Выберем цепь $C = (v_0; e_0; v_1; \dots; e_{k-1}; v_k)$ максимальной длины. Тогда все вершины, соседние с v_0 , лежат в этой цепи, иначе можно увеличить длину цепи. Среди v_1, v_2, \dots, v_k не менее $\frac{n}{2}$ вершин, соседних с v_0 , т. к. $\deg v_0 \geqslant \frac{n}{2}$. Аналогично для v_k .

Найдутся v_{i-1} и v_i такие, что v_{i-1} соседняя с v_k , а v_i — с v_0 .

Докажем, что $(v_i; e_{i+1}; \dots; v_k; e; v_{i-1}; e_{i-1}; \dots; v_0; e'; v_i)$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие.

Теорема 3.1.4 (Оре). Если в графе $c \ n \geqslant 3$ вершинами для любых двух несмежных вершин $u \ u \ v$ deg $u + \deg v \geqslant n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1, v \in V_2$. u и v несмежные, тогда

$$\deg u \leq |V_1| - 1, \ \deg v \leq |V_2| - 1 \Rightarrow \deg u + \deg v \leq |V_1| + |V_2| - 2 \leq n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0; e_0; v_1; \dots; e_{k-1}; v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин $v_1, \dots, v_k \deg v_0$ соседних с v_0 . Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а $v_{i+1} - c v_0$. $(v_{i+1}; e_{i+1}; \ldots; v_k; e; v_i; e_{i-1}; v_{i-1}; \ldots; e_0; v_0; e'; v_{i+1})$ — гамильтонов цикл (доказательство аналогично доказательству в теореме Дирака (3.1.3)).

3.1.4 Планарность графов

Плоским называется граф G = (V, E) такой, что:

- $V \subset \mathbb{R}^2$;
- рёбра кривые, концами которых являются вершины;
- различные рёбра не имеют общих точек, за исключением концов.

Планарным называется граф, изоморфный плоскому.

Если G — граф и G' — плоский граф, изоморфный G, то G' называется **укладкой** G в \mathbb{R}^2 .

Аналогично можно определить плоский граф в \mathbb{R}^3 , на сфере и т. д.

Теорема 3.1.5. Любой граф можно уложить в \mathbb{R}^3 .

Доказательство. Пусть G=(V,E) — граф, $V=\{(1;0;0),(2;0;0),\ldots,(n;0;0)\}$. Рассмотрим плоскости, проходящие через Ox и образующие с плоскостью Oxy углы $\frac{\pi}{2},\frac{\pi}{2\cdot 2},\ldots,\frac{\pi}{2m}$, где m=|E|. Получим плоский граф, т. к. плоскости пересекаются только по прямой Ox.

Теорема 3.1.6. Граф укладывается на плоскость \Leftrightarrow он укладывается на сферу.

Доказательство. Пусть плоскость z=0 касается сферы в точке $O(0;0;0),\ N$ — точка на сфере, диаметрально противоположная точке O. Для каждой точки сферы, не совпадающей с N, проведём прямую через неё и точку N, которая пересечёт сферу и плоскость, причём любые две из таких прямых имеют единственную общую точку N. Получим биекцию между точками сферы и точками плоскости, тогда можно построить биекцию между укладками на сфере и укладками на плоскости.

Множество на плоскости называется **линейно связным**, если любые две точки этого множества можно соединить кривой, целиком лежащей в этом множестве.

Гранью плоского графа G = (V, E) называется часть множества $\mathbb{R}^2 \setminus G$, которая линейно связна и не является подмножеством другого линейно связного множества.

Теорема 3.1.7 (формула Эйлера). В плоском связном графе n-m+f=2, где n,m,f- число вершин, рёбер и граней соответственно.

Доказательство. Рассмотрим остов данного графа. В нём n вершин, n-1 рёбер и 1 грань. Формула Эйлера верна для него: n-(n-1)+1=2.

Добавим 1 ребро данного графа, тогда оно разобьёт одну грань на две, т. е. число граней увеличится на 1. Формула Эйлера верна для полученного графа. Повторяя m-(n-1) раз, получим исходный граф, для которого формула Эйлера верна. \blacksquare

Теорема 3.1.8. Пусть G- планарный граф c $n\geqslant 3$ вершинами и m рёбрами. Тогда $m\leqslant 3n-6$. Доказательство. При m=2 неравенство выполняется.

Пусть в графе f граней, m_i — число рёбер в границе i-й грани. Тогда $m_i\geqslant 3, \sum_{i=1}^f m_i\geqslant 3f$. С другой

стороны, $\sum_{i=1}^f m_i = 2m$. По формуле Эйлера (3.1.7) $n-m+f=2 \Leftrightarrow f=m+2-n$. Получим:

$$2m \geqslant 3f \Leftrightarrow 2m \geqslant 3m + 6 - 3n \Leftrightarrow m \leqslant 3n - 6$$

Следствие 3.1.1. Планарный граф G=(V,E) содержит хотя бы одну вершину со степенью, не большей 5.

Доказательство (методом от противного). Пусть $\forall v \in V \deg v \geqslant 6, \ |V| = n, \ |E| = m,$ тогда $m = \frac{1}{2} \sum_{v \in V} \deg v \geqslant 3n.$ Имеем:

$$3n \leqslant m \leqslant 3n - 6 \Rightarrow 0 \leqslant -6$$

Противоречие. ■

Теорема 3.1.9. Графы K_5 и $K_{3,3}$ не планарные.

Доказательство.

- Рассмотрим K_5 : n=5, m=10. Тогда $m \leq 3n-6 \Leftrightarrow 10 \leq 9$. Неверно, значит, K_5 не планарен.
- Рассмотрим $K_{3,3}$. Пусть он планарный. В нём самый короткий цикл имеет длину 4. Тогда рассуждениями, аналогичными рассуждениям при доказательстве теоремы (3.1.8), получим

$$2m \geqslant 4f \Leftrightarrow 2m \geqslant 4m + 8 - 4n \Leftrightarrow m \leqslant 2n - 4$$

n=6, m=9, тогда $9 \le 8.$ Неверно, значит, $K_{3,3}$ не планарен.

Граф G' = (V', E') получается **подразбиением** ребра $e = \{u, v\}$ графа G = (V, E), если:

- $V' = V \cup \{u'\};$
- $E' = (E \setminus \{e\}) \cup \{\{u, u'\}, \{v, u'\}\}.$

 Γ рафы G и G' **гомеоморфны**, если они изоморфны графам, получающимся подразбиениями рёбер одного и того же графа.

Теорема 3.1.10 (Понтрягина-Куратовского). Граф G планарен \Leftrightarrow он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Доказательство.

- 1. ⇒. Очевидно, что подграф планарного графа планарен. Если G планарный граф, содержащий подграф G', гомеоморфный K_5 или $K_{3,3}$, то G' тоже планарный, значит, K_5 или $K_{3,3}$ планарен, т. к. подразбиение ребёр не влияет на планарность. Противоречие, значит, G не планарен.
- 2. \Leftarrow . Доказательство слишком сложно, поэтому здесь не приводится.

3.1.5 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется мостом, если при его удалении увеличивается число компонент связности.

Утверждение 3.1.1. Ребро — мост \Leftrightarrow оно не содержится в цикле.

Доказательство.

- 1. \Leftarrow . Пусть ребро е содержится в цикле $W = (v_0; e_0; ...; u; e; v; ...; v_k), u'$ и v' связные вершины.
 - (a) Если в (u', v')-маршруте нет ребра e, то при его удалении из графа u' и v' останутся связными.
 - (b) Пусть $(u'=v'_0;e'_0;\ldots;u;e;v;\ldots;e'_m;v'_m=v')$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $(u'=v'_0;e'_0;\ldots;u;\ldots;e_0;v_0=v_k;e_{k-1};\ldots;v;\ldots;e'_m;v'_m=v').$
- 2. \Rightarrow . Пусть $e = \{u, v\}$ не является мостом, тогда u, v лежат в одной компоненте связности. Удалим e из графа. Число компонент связности не изменится, значит, u и v также лежат в одной компоненте связности, т. е. существует цепь, соединяющая u и v: $(u = v_0; e_0; \dots; e_{k-1}; v_k = v)$. Тогда в исходном графе существует цикл $(u = v_0; e_0; \dots; e_{k-1}; v_k = v; e; u)$.

Теорема 3.1.11. Следующие утверждения о графе G = (V, E) с n вершинами эквивалентны:

- 1. G дерево.
- 2. G связный и каждое его ребро мост.
- 3. G связный и имеет n-1 ребро.
- 4. G не содержит циклов и имеет n-1 ребро.
- 5. Любые две вершины графа G соединены ровно одной простой цепью.
- 6. G не содержит циклов и добавление ребра приводит к появлению ровно одного цикла.

Доказательство.

- (1) \Rightarrow (2). Связность следует из определения дерева. В силу утверждения (3.1.1) каждое ребро мост.
- (2) \Rightarrow (3). Связность следует из предположения.

Докажем методом математической индукции, что в графе n-1 ребро.

- База индукции. Для n = 1, 2 очевидно.
- Шаг индукции. Пусть утверждение верно для чисел, меньших n. Возьмём мост e и удалим его. Получим две компоненты связности $G_1=(V_1,E_1),\ G_2=(V_2,E_2).$ По предположению индукции $|E_1|=|V_1|-1,\ |E_2|=|V_2|-1.$ Тогда в исходном графе рёбер $|E_1|+|E_2|+1=|V_1|+|V_2|-1=n-1.$
- (3) \Rightarrow (4). *G* имеет n-1 ребро по предположению.

Докажем методом математической индукции, что G не содержит циклов.

- *База индукции*. Для n = 1, 2 очевидно.
- *Шаг индукции*. Пусть утверждение верно для чисел, меньших n. Докажем методом от противного, что в графе есть вершина степени 1. Пусть

$$\forall u \in V \ \deg u \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} \deg u \geqslant 2n \Rightarrow n-1 = |E| \geqslant n \Rightarrow -1 \geqslant 0$$

Противоречие, значит, в графе найдётся вершина степени 1.

Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению (3). По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.

• $(4) \Rightarrow (5)$.

Пусть в графе k компонент связности: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \ldots, G_k = (V_k, E_k)$. Они не содержат циклов по предположению, тогда они являются деревьями.

$$|E_1| = |V_1| - 1, |E_2| = |V_2| - 1, \dots, |E_k| = |V_k| - 1, n - 1 = |E_1| + \dots + |E_k| = n - k \Rightarrow k = 1$$

Значит, граф связный.

Пусть существуют вершины u и v такие, что их соединяют две простые цепи, тогда по лемме (3.1.4) в графе есть цикл, что противоречит предположению. Значит, эти вершины соединены ровно одной простой цепью.

• $(5) \Rightarrow (6)$.

Докажем методом от противного, что в графе нет циклов. Предположим, что есть цикл $(v_0; e_0; v_1; \ldots; v_k = v_0)$, тогда есть две простые цепи $(v_0; e_0; \ldots; v_{k-1})$ и $(v_{k-1}; e_k; v_k = v_0)$, соединяющие v_0 и v_{k-1} , что противоречит предположению.

Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседние вершины u и v. По предположению есть цепь $(u=v_0;e_0;\ldots;v_k=v)$, соединяющая их. Тогда, добавив $e=\{u,v\}$, получим цикл $(u=v_0;e_0;\ldots;v_k=v;e;u)$.

Пусть есть 2 цикла, соединяющих u и v. Удалим e, тогда один цикл останется. Получим исходный граф, в котором не должно быть циклов. Противоречие.

• $(6) \Rightarrow (1)$.

Докажем связность методом от противного. Рассмотрим несвязные вершины u и v. Соединим их и по предположению получим цикл $(v_0; e_0; \ldots; u; e; v; \ldots; e_{k-1}; v_k = v_0)$. Тогда в исходном графе $(u; \ldots; e_0; v_0 = v_k; e_{k-1}; \ldots; v) - (u, v)$ -маршрут. Противоречие.

В ходе доказательства было получено, что в связном графе с n вершинами и n-1 рёбрами существует висячая вершина. Т. к. доказано, что такой граф является деревом, то верно следующее утверждение.

Утверждение 3.1.2. В дереве существует висячая вершина.

Утверждение 3.1.3. Если в лесу n вершин, m рёбер и k компонент связности, то

$$m = n - k$$

Доказательство. Пусть n_1, \ldots, n_k — число вершин в каждой компоненте связности, тогда

$$m = (n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1) = n - k$$

3.1.6 Остовы

Остовом графа G = (V, E) называется его подграф G' = (V', E') такой, что V = V' и G' — дерево. **Утверждение 3.1.4.** Любой связный граф содержит остов.

Утверждение 3.1.5. Если граф не является деревом, то в нём несколько остовов.

Пусть G=(V,E) — граф. **Весом** называется функция $\alpha\colon E\to\mathbb{R}^+$. **Весом ребра** $e\in E$ называется $\alpha(e)$. **Весом графа** называется $\sum_{e\in E}\alpha(e)$.

Алгоритмы нахождения остова минимального веса

Пусть дан граф $G=(V,E),\, n=|V|$ и весовая функция $\alpha\colon E\to R^+.$ Строим остов наименьшего веса T=(V,P).

- 1. Алгоритм Краскала
 - (a) Выбираем ребро $e \in E$ с наименьшим весом: $P_1 = \{e\}, T_1 = (V, P_1).$

- (b) Выбираем ребро $e \in E$ с наименьшим весом такое, что $e \notin P_i$ и добавление этого ребра не приводит к образованию цикла в T: $T_{i+1} = (V, P_i \cup \{e\})$.
- (c) Повторяем шаг $\frac{1b}{n}$ n-2 раз. T_n искомый остов.

Доказательство. Пусть T=(V,P) — построенный остов, где $P=\{e_1,e_2,\ldots,e_{n-1}\},\ e_1,e_2,\ldots,e_{n-1}$ — рёбра в порядке их добавления в остов, а также D=(V,M) — другой остов, где $M=\{e_1',e_2',\ldots,e_{n-1}'\},\ e_1',e_2',\ldots,e_{n-1}'$ — рёбра в порядке неубывания их весов.

Если $T \neq D$, то пусть i — наименьшее число такое, что $e_i \neq e_i'$. e_i' не входит в T, значит, оно образует цикл с рёбрами в T, выбранными ранее, тогда вес этих рёбер не больше $\alpha(e_i')$. Выберем из них ребро e такое, что при добавлении его в D образуется цикл. Пусть $D_1 = (V, M \cup \{e\} \setminus \{e_i'\})$. Этот граф — остов, причём $\alpha(D_1) \leqslant \alpha(D)$ и у T и D_1 на 1 общее ребро больше, чем у T и D. Повторяя, получим $D_k = T$. Значит, вес построенного остова не превосходит веса любого другого остова. \blacksquare

2. Алгоритм Прима

Строится последовательность деревьев $S_1 \subset S_2 \subset \ldots \subset S_n = T$.

- (a) Выбираем произвольную вершину $v. S_1 = (\{v\}, \varnothing).$
- (b) Пусть построено $S_i = (V_i, E_i)$. Находим ребро $e = \{u, v_i\} \in E$, где $u \in V_i, v_i \notin V_i$, наименьшего веса, добавление которого не приводит к образованию цикла: $S_{i+1} = (V_i \cup \{v_i\}, E_i \cup \{e\})$.
- (c) Повторяем шаг $\frac{2b}{n} 1$ раз. S_n искомый остов.

3.1.7 Помеченные деревья

Дерево с n вершинами, которым сопоставлены числа $1, \ldots, n$, называется **помеченным**.

Каждому помеченному дереву можно взаимнооднозначно сопоставить последовательность из n-2 чисел от 1 до n, называемую **кодом Прюфера**. Алгоритм построения кода Прюфера для помеченного дерева G=(V,E):

- 1. Выбираем висячую вершину v с наименьшим номером.
- 2. Добавляем номер вершины, смежной с v, в код.
- 3. Удаляем v и ребро, инцидентное v, из дерева.
- 4. Повторить, начиная с шага 1, n-2 раза.

Утверждение 3.1.6. Различным помеченным деревьям соответствуют различные коды Прюфера. Доказательство (методом математической индукции).

- *База индукции*. При n=3 легко проверить.
- Шаг индукции. Пусть утверждение верно при n, G = (V, E) и G' = (V', E') различные помеченные деревья с n+1 вершинами в каждом. Если в G и G' вершины с наименьшим номером смежны с вершинами с одинаковыми номерами, то выполняем шаг построения кода, тогда оставшиеся деревья различны, значит, по предположению индукции у них различные коды.

Алгоритм построения дерева по коду $A_0 = (a_0; \dots; a_{n-3}).$

- 1. Пусть $B_0 = \{1, \ldots, n\}$.
- 2. Находим наименьшее $b \in B_i$: $b \notin A_i$. Тогда в дереве есть ребро $\{b, a_i\}$: $A_{i+1} = A_i \setminus \{a_i\}$, $B_{i+1} = B_i \setminus \{b\}$.
- 3. Повторяем шаг 2 n 2 раз. Получим $B_{n-2} = \{b', b''\}$, значит, в дереве есть ребро $\{b', b''\}$.

Утверждение 3.1.7. Указанный алгоритм построения дерева по коду из n чисел строит дерево. Доказательство (методом математической индукции).

• *База индукции*. При n = 1 легко проверить.

- Шаг индукции. Рассмотрим графы T_1, \ldots, T_{n-1} , полученные в процессе построения дерева. T_1 не содержит циклов. T_2 получается из T_1 либо добавлением новой вершины, либо добавлением моста, что не приводит к появлению цикла. Т.о., T_{n-1} не содержит циклов и содержит n вершин и n-1 ребёр, значит, T_{n-1} дерево.
- **Теорема 3.1.12 (Кэли).** Пусть G=(V,E) помеченное дерево c n вершинами. Всего можно составить n^{n-2} таких неизоморфных деревьев.

Глава 4

Линейная алгебра

4.1 Линейные комбинации

Выражение, построенное на множестве элементов путём сложения этих элементов, умноженных на некоторые коэффициенты, называется **линейной комбинацией**. Если все коэффициенты линейной комбинации равны нулю, то она называется **тривиальной**, иначе — **нетривиальной**.

4.2 Матрицы

Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов, и обозначается

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Числа m и n называются порядками матрицы.

Если m=n, то матрица называется **квадратной**, а число m=n — её **порядком**. **Главной** называется диагональ квадратной матрицы, состоящая из элементов $a_{11}, a_{22}, \ldots, a_{nn}$, а **побочной** — состоящая из элементов $a_{n1}, a_{n-12}, \ldots, a_{1n}$.

i-я строка матрицы обозначается A_i , j-й столбец — A^j .

Две матрицы называются **равными**, если их порядки и соответствующие элементы совпадают, иначе — **неравными**.

4.2.1 Операции над матрицами

Матрица, все элементы которой равны 0, называется **нулевой** и обозначается O.

Квадратная матрица, в которой элементы главной диагонали равны 1, а остальные — 0, называется единичной и обозначается E.

Над матрицами определены следующие операции:

• Сложение. Определено только над матрицами одинакового размера.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{vmatrix}$$

Пусть A, B, C — матрицы. Свойства сложения:

- коммутативность: A + B = B + A
- ассоциативность: (A + B) + C = A + (B + C)

• Умножение на число.

$$\lambda \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{vmatrix}$$

Пусть α, β — числа, A, B — матрицы. Свойства умножения на число:

- ассоциативность: $(\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A)$
- дистрибутивность относительно сложения чисел: $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$
- дистрибутивность относительно сложения матриц: $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- Умножение. $A \cdot B$ определено, только если количество столбцов в матрице A совпадает с количеством строк в матрице B.

где суммирование производится по i от 1 до k.

Пусть λ — число, A, B, C — матрицы. Свойства умножения:

- ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- дистрибутивность: $(A+B)\cdot C=A\cdot C+B\cdot C,\,A\cdot (B+C)=A\cdot B+A\cdot C$
- ассоциативность и коммутативность относительно умножения на число: $(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B) = A \cdot (\lambda \cdot B)$

4.2.2 Определитель матрицы

Определителем порядка n, соответствующим квадратной матрице A порядка n, называется число, равное

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{\sigma = (i_1; \dots; i_n) \in S_n} (-1)^{|\sigma|} a_{1\,i_1} a_{2\,i_2} \cdots a_{n\,i_n}, \ |\sigma| = \begin{cases} 0, \sigma \text{ чётная} \\ 1, \sigma \text{ нечётная} \end{cases}$$
(4.1)

где S_n — множество всех перестановок n-элементного множества.

Матрица называется **вырожденной**, если её определитель равен 0, иначе — **невырожденной**. Свойства определителя:

• Если элементы какой-либо строки или столбца определителя имеют общий множитель λ , то его можно вынести за знак определителя.

Доказательство.

$$\Delta = \sum (-1)^{|\sigma|} a_{1 \, i_1} a_{2 \, i_2} \cdot \ldots \cdot a_{n \, i_n}$$

Каждое слагаемое имеет множитель из каждой строки, а также из каждого столбца, т. к. σ является перестановкой и содержит все номера столбцов от 1 до n включительно. Тогда все слагаемые имеют общий множитель λ , поэтому его можно вынести за скобки.

• Если какая-либо строка или столбец определителя состоит из нулей, то он равен 0.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{|\sigma|} a_{1\,i_{1}} \cdot \dots \cdot a_{n\,i_{n}} =$$

| Каждое слагаемое содержит ровно 1 элемент из i-й строки и поэтому имеет вид |

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k-1 \, i_{k-1}} (a_{k \, i_{k}} + b_{k \, i_{k}}) a_{k+1 \, i_{k+1}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} + \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot b_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

- Если в определителе поменять две строки или два столбца местами, то он изменит знак.
 - Доказательство. При перестановке строк или столбцов местами все перестановки в формуле (4.1) меняют чётность, значит, каждое слагаемое меняет знак, тогда и определитель меняет знак. ■
- Если в определителе две строки или два столбца совпадают, то он равен 0.

Доказательство. Если поменять местами совпадающие строки или столбцы, то он, с одной стороны, не изменится, а с другой, поменяет знак. Значит, определитель равен 0. ■

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

Пусть дана матрица

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Алгебраическим дополнением элемента a_{ij} называется число, равное

$$A_{ij} = (-1)^{i+j} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i+1} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn} \end{vmatrix}$$

Лемма 4.2.1.

$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Доказательство.

ESISCTBO.
$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \sum a \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} + \sum 0 \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} + \ldots + \sum 0 \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= a \sum a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Теорема 4.2.1. Любой определитель можно **разложить** по элементам произвольной строки или столбца:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

где A_{ij} — алгебраическое дополнение элемента a_{ij} .

Доказательство.

$$+(-1)^{i+n}a_{in} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1\,n-1} \\ \vdots & \ddots & \vdots \\ a_{i-1\,1} & \cdots & a_{i-1\,n-1} \\ a_{i+1\,1} & \cdots & a_{i+1\,n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,n-1} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Аналогично доказывается

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Транспонированием матрицы или определителя называется операция, в результате которой строки меняются местами со столбцами с сохранением порядка следования:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Полученная матрица или определитель называется **транспонированной** по отношению к исходной. **Утверждение 4.2.1.** Определитель транспонированной матрицы равен определителю исходной. **Доказательство.**

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{1j} A_{1j} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

4.2.3 Ранг матрицы

Строка (столбец) матрицы называется **линейно зависимой**, если она является линейной комбинацией остальных строк (столбцов), иначе — **линейно независимой**.

Рангом матрицы называется максимальное количество её линейно независимых строк.

Минором k-го порядка матрицы называется определитель, содержащий только те её элементы, которые стоят на пересечении некоторых k строк и k столбцов. Минор наибольшего порядка, отличный от нуля, называется **базисным**.

Теорема 4.2.2. Ранг матрицы равен порядку базисного минора.

Доказательство. Пусть

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

 M_k — базисный минор k-го порядка. При перестановке строк и столбцов минора равенство с нулём сохраняется, значит, без ограничения общности можно считать, что

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

 $M_k \neq 0$, значит, строки A_1, \dots, A_k линейно независимы. Пусть M_{k+1} — минор (k+1)-го порядка:

$$M_{k+1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2k} & a_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & a_{kj} \\ a_{i1} & a_{i2} & \cdots & a_{ik} & a_{ij} \end{vmatrix} = 0$$

т. к. M_k — базисный минор. Тогда

$$a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{kj}A_{kj} + a_{ij}A_{ij} = 0, \ A_{ij} = M_k \neq 0 \Rightarrow$$

$$\Rightarrow a_{ij} = -\frac{A_{1j}}{A_{ij}}a_{1j} - \frac{A_{2j}}{A_{ij}}a_{2j} - \dots - \frac{A_{kj}}{A_{ij}}a_{kj}$$

где $A_{1j}, \ldots, A_{kj}, A_{ij}$ — алгебраические дополнения $a_{1j}, \ldots, a_{kj}, a_{ij}$. $A_{1j}, \ldots, A_{kj}, A_{ij}$ не зависят от j, тогда A_i — линейная комбинация A_1, \ldots, A_k , значит, k — ранг матрицы A.

Рангом матрицы по строкам (столбцам) называется максимальное количество её линейно независимых строк (столбцов).

Следствие 4.2.1. *Ранг матрицы по строкам равен рангу матрицы по столбцам.* Для доказательства достаточно заметить, что определитель транспонированной матрицы равен определителю исходной.

4.2.4 Элементарные преобразования матриц

Элементарными преобразованиями называются следующие операции над матрицей, не изменяющие её ранга:

- Перестановка строк матриц. Очевидно, что ранг матрицы при перестановке строк не меняется.
- Умножение строки на $\lambda \neq 0$.

Доказательство.

• Прибавление к строке матрицы другой строки, умноженной на $\lambda \neq 0$. Доказательство.

_

Аналогично определяются элементарные преобразования над столбцами. Матрица A имеет **ступенчатый вид**, если:

- все нулевые строки стоят последними;
- для любой ненулевой строки A_p верно, что $\forall i>p,\ j\leqslant q\ a_{ij}=0$, где a_{pq} первый ненулевой элемент строки A_p .

Теорема 4.2.3. Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.

Доказательство.

4.2.5 Обратные матрицы

Матрица B называется **левой обратной** к квадратной матрице A, если BA = E.

Матрица C называется **правой обратной** к квадратной матрице A, если AC = E.

Заметим, что обе матрицы B и C — квадратные того же порядка, что и A.

Утверждение 4.2.2. Если существуют левая и правая обратные к A матрицы B и C, то они совпалают.

Доказательство. B = BE = BAC = EC = C

Т. о., матрица A^{-1} называется **обратной** к матрице A, если $A^{-1}A = AA^{-1} = E$. **Теорема 4.2.4.** Пусть даны матрицы

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, \quad \tilde{A} = \begin{vmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{vmatrix}$$

где A_{ij} — алгебраическое дополнение a_{ij} .

 $Если |A| \neq 0$, то

$$A^{-1} = \frac{\tilde{A}^T}{|A|}$$

Доказательство.

Теорема 4.2.5. Пусть дана невырожденная матрица

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Присоединим к ней единичную матрицу:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{vmatrix}$$

и с помощью элементарных преобразований только над строками полученной матрицы (или только над столбцами) приведём её левую часть к единичной матрице. Тогда правая часть будет обратной к A матрицей.

Доказательство.

_

4.3 Векторные пространства

n-мерным векторным пространством над полем вещественных чисел называется множество

$$V_n = \mathbb{R}^n = \{(x_1; \dots; x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}$$

элементы которого называются **векторами**. Над ними определены операции сложения и умножения на число, удовлетворяющие аксиомам:

1. Коммутативность сложения:

$$\forall \overline{a}, \overline{b} \in V_n \ \overline{a} + \overline{b} = \overline{b} + \overline{a}$$

2. Ассоциативность сложения:

$$\forall \overline{a}, \overline{b}, \overline{c} \in V_n \ \overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$$

3. Существование **нулевого** вектора, или **нуля**, обозначаемого $\overline{0}$:

$$\exists \overline{0} \in V_n : \forall \overline{a} \in V \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$$

4. Существование противоположного вектора:

$$\forall \overline{a} \in V_n \ \exists (-\overline{a}) \in V_n : \overline{a} + (-\overline{a}) = \overline{0}$$

5. Ассоциативность умножения на число:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ \alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}$$

6. Дистрибутивность умножения на число относительно сложения векторов:

$$\forall \alpha \in \mathbb{R}, \ \forall \overline{a}, \overline{b} \in V_n \ \alpha(\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}$$

7. Дистрибутивность умножения на число относительно сложения чисел:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ (\alpha + \beta) \overline{a} = \alpha \overline{a} + \beta \overline{a}$$

8. Существование единицы:

$$\forall \overline{a} \in V_n \ 1 \cdot \overline{a} = \overline{a}$$

4.3.1 Базис и размерность векторного пространства

Векторы $\overline{a_1}, \dots, \overline{a_n}$ называются **линейно зависимыми**, если

$$\exists \alpha_1, \dots, \alpha_n \colon \sum_{i=1}^n \alpha_i \overline{a_i} = \overline{0}, \ \sum_{i=1}^n \alpha_i^2 \neq 0$$

иначе — линейно независимыми.

Множество линейно независимых векторов $\overline{e_1}, \dots, \overline{e_n}$ векторного пространства V называется базисом этого пространства, если

$$\forall \overline{x} \in V \ \exists \alpha_1, \dots, \alpha_n \colon \overline{x} = \sum_{i=1}^n \alpha_i \overline{e_i}$$

Приведённое равенство называется разложением вектора \overline{x} по базису $\overline{e_1}, \ldots, \overline{e_n}$.

Теорема 4.3.1 (о базисе). Любой вектор \overline{x} может быть разложен по базису $\overline{e_1}, \dots, \overline{e_n}$ единственным образом.

Доказательство.

Размерностью векторного пространства называется максимальное количество линейно независимых векторов.

Теорема 4.3.2. В векторном пространстве размерности n любые n линейно независимых векторов образуют его базис.

Доказательство.

Теорема 4.3.3. Если векторное пространство имеет базис из n векторов, то его размерность равна n.

Доказательство.

4.4 Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

где x_1, \ldots, x_n — переменные.

 $a_{11}, a_{12}, \ldots, a_{mn}$ называются коэффициентами при переменных, b_1, b_2, \ldots, b_m — свободными членами.

Система линейных уравнений называется **однородной**, если все её свободные члены равны 0, иначе — **неоднородной**.

Система линейных уравнений называется **совместной**, если она имеет хотя бы одно решение, иначе- несовместной.

Система линейных уравнений называется **определённой**, если она имеет единственное решение. Если система имеет более одного решения, то она называется **неопределённой**.

Две системы линейных уравнений называются **эквивалентными**, если их решения совпадают или обе не имеют решений.

4.4.1 Матричная форма системы линейных уравнений

Систему линейных уравнений можно представить в матричной форме:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow A \cdot X = B$$

A называется основной матрицей системы, X- столбцом переменных, B- столбцом свободных членов. Если к основной матрице справа приписать столбец свободных членов, то получится расширенная матрица системы:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{vmatrix}$$

4.4.2 Линейная независимость

Уравнение системы линейных уравнений называется **линейно зависимым**, если соответствующая ему строка расширенной матрицы является нетривиальной линейной комбинацией других строк, иначе — **линейно независимым**.

Система линейных уравнений называется **линейно зависимой**, если существует нетривиальная линейная комбинация строк расширенной матрицы, в результате которой получается нулевая строка, иначе — **линейно независимой**.

Утверждение 4.4.1. Система линейных уравнений линейно зависима ⇔ одно из её уравнений линейно зависимо.

Доказательство.

1. \Rightarrow . Пусть система из строк A_1, \dots, A_n линейно зависима:

$$\sum_{i=1}^{n} \alpha_i A_i = O, \ \sum_{i=1}^{n} \alpha_i^2 \neq 0$$

где O — нулевая строка. Без ограничения общности можно считать, что $\alpha_1 \neq 0$, тогда

$$A_1 = -\sum_{i=2}^n \frac{\alpha_i}{\alpha_1} A_i$$

Значит, A_1 — линейно зависимая строка.

2. \Leftarrow . Пусть одна из строк линейно зависима:

$$A_1 = \sum_{i=2}^{n} \alpha_i A_i \Leftrightarrow 1 \cdot A_1 - \alpha_2 A_2 - \dots - \alpha_n A_n = O$$

Значит, система линейно зависима.

4.4.3 Решение систем линейных уравнений

Лемма 4.4.1. Пусть система из строк A_1, \ldots, A_n линейно независима и A_{n+1} не является линейной комбинацией A_1, \ldots, A_n . Тогда система из строк $A_1, \ldots, A_n, A_{n+1}$ линейно независима.

Доказательство (методом от противного). Пусть система из строк $A_1, \ldots, A_n, A_{n+1}$ линейно зависима:

$$\sum_{i=1}^{n+1} \alpha_i A_i = O, \ \sum_{i=1}^{n+1} \alpha_i^2 \neq 0$$

где O — нулевая строка. Система из строк A_1, \ldots, A_n линейно независима по условию, тогда

$$\alpha_{n+1} \neq 0 \Rightarrow A_{n+1} = -\sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} A_i$$

Значит, A_{n+1} — линейная комбинация A_1, \ldots, A_n . Противоречие с условием.

Теорема 4.4.1 (Кронекера — **Капелли).** Система линейных уравнений совместна ⇔ ранг основной матрицы совпадает с рангом расширенной матрицы.

Доказательство.

 $1. \Rightarrow .$

 $2. \Leftarrow.$

Метод Гаусса

Пусть дана система линейных уравнений

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(4.2)

Её расширенную матрицу можно привести к ступенчатому виду, т. е. (4.2) эквивалентна

$$\begin{cases}
a_{1 j_{1}} x_{j_{1}} + \ldots + a_{1 j_{n}} x_{j_{n}} = b_{1} \\
a_{2 j_{2}} x_{j_{2}} + \ldots + a_{2 j_{n}} x_{j_{n}} = b_{2} \\
\vdots \\
a_{r j_{r}} x_{j_{r}} + \ldots + a_{r j_{n}} x_{j_{n}} = b_{r} \\
0 = b_{r+1} \\
\vdots \\
0 = b_{m}
\end{cases} (4.3)$$

где $a_{1\,j_1},\ldots,a_{r\,j_r}\neq 0$. Без ограничения общности можно считать, что в базисный минор основной матрицы системы (4.3) входят только коэффициенты при переменных x_{j_1},\ldots,x_{j_r} , называемых главными (зависимыми). Остальные переменные называются свободными (независимыми).

Если $\exists i>r\colon b_i\neq 0$, то система несовместна. Пусть $\forall i>r\ b_i=0$. Тогда получим систему

$$\begin{cases} x_{j_1} = \frac{b_1}{a_{1\,j_1}} - \frac{a_{1\,j_2}}{a_{1\,j_1}} x_{j_2} - \dots - \frac{a_{1\,j_n}}{a_{1\,j_1}} x_{j_n} \\ x_{j_2} = \frac{b_2}{a_{2\,j_2}} - \frac{a_{2\,j_3}}{a_{2\,j_2}} x_{j_3} - \dots - \frac{a_{2\,j_n}}{a_{2\,j_2}} x_{j_n} \\ \vdots \\ x_{j_r} = \frac{b_r}{a_{r\,j_r}} - \frac{a_{r\,j_{r+1}}}{a_{r\,j_r}} x_{j_{r+1}} - \dots - \frac{a_{r\,j_n}}{a_{r\,j_r}} x_{j_n} \end{cases}$$

Если свободным переменным полученной системы придавать все возможные значения и решать новую систему относительно главных неизвестных от нижнего уравнения к верхнему, то получим все решения данной системы.

Метод Крамера

Позволяет решить только те системы, которые имеют единственное решение. Пусть дана система линейно независимых уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Определитель основной матрицы системы не равен 0, т.к. строки линейно независимы. Запишем систему в матричной форме:

$$AX = B \Leftrightarrow X = A^{-1}B \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} \frac{A_{11}}{|A|} & \frac{A_{21}}{|A|} & \cdots & \frac{A_{n1}}{|A|} \\ \frac{A_{12}}{|A|} & \frac{A_{22}}{|A|} & \cdots & \frac{A_{n2}}{|A|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{A_{1n}}{|A|} & \frac{A_{2n}}{|A|} & \cdots & \frac{A_{nn}}{|A|} \end{vmatrix} \cdot \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$$

где A_{ij} — алгебраическое дополнение a_{ij} .

Т. о., получим решение системы:

$$x_{i} = \frac{\sum_{j=1}^{n} A_{ji} b_{j}}{|A|} = \begin{vmatrix} a_{11} & \cdots & a_{1\,i-1} & b_{1} & a_{1\,i+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2\,i-1} & b_{2} & a_{2\,i+1} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,i-1} & b_{n} & a_{n\,i+1} & \cdots & a_{nn} \end{vmatrix}, i = 1, \dots, n$$

Полученные формулы называется формулами Крамера

4.4.4 Фундаментальная система решений

Утверждение 4.4.2. Однородная линейно независимая система уравнений

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0\\ \sum_{i=1}^{n} a_{2i}x_{i} = 0\\ \vdots\\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases}$$

задаёт векторное пространство размерности n-m.

Доказательство.

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества всех её решений.

Нахождение фундаментальной системы решений

Пусть дана однородная линейно независимая система уравнений:

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0 \\ \sum_{i=1}^{n} a_{2i}x_{i} = 0 \\ \vdots \\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{m} a_{1i}x_{i} = -\sum_{i=m+1}^{n} a_{1i}x_{i} \\ \sum_{i=1}^{m} a_{2i}x_{i} = -\sum_{i=m+1}^{n} a_{2i}x_{i} \\ \vdots \\ \sum_{i=1}^{m} a_{mi}x_{i} = -\sum_{i=m+1}^{n} a_{mi}x_{i} \end{cases}$$

Пусть

$$(x_{11}; x_{21}; \dots; x_{m1}; 1; 0; \dots; 0)$$

$$(x_{12}; x_{22}; \dots; x_{m2}; 0; 1; \dots; 0)$$

$$\vdots$$

$$(x_{1n-m}; x_{2n-m}; \dots; x_{mn-m}; 0; 0; \dots; 1)$$

являются решениями данной системы. Тогда они образуют фундаментальную систему решений.

Доказательство.

Теорема 4.4.2. Общее решение неоднородной системы линейных уравнений равно сумме её частного решения и общего решения соответствующей однородной системы, т. е. с теми же самыми коэффициентами при переменных.

Доказательство.

4.5 Многочлены от одной переменной

Одночленом, или **мономом**, называется произведение числового множителя и нуля и более переменных, взятых каждая в неотрицательной степени.

Степенью одночлена называется сумма степеней входящих в него переменных. Степень тождественного нуля равна $-\infty$.

Многочленом, или полиномом, от одной переменной называется сумма вида

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

где x_1, \ldots, x_n — переменные.

Степенью многочлена называется максимальная из степеней его одночленов.

Лемма 4.5.1. Пусть f и g — многочлены, тогда $\deg fg = \deg f + \deg g$.

4.5.1 Деление многочленов

Теорема 4.5.1. Пусть f(x) и $g(x) \neq 0$ — многочлены, тогда существуют единственные многочлены q(x) и r(x) такие, что f = qg + r, причём либо r = 0, либо $\deg r < \deg g$.

Доказательство.

- 1. Докажем единственность.
- 2. Докажем существование.

Общим делителем многочленов f(x) и g(x) называется многочлен h(x), на который и f, и g делятся нацело:

$$f = ph, g = qh$$

Наибольшим называется общий делитель наибольшей степени и обозначается НОД. **Теорема 4.5.2 (алгоритм Евклида).** Любые два многочлена имеют единственный НОД. Доказательство.

4.5.2 Корень многочлена

Корнем многочлена f(x) называется такое число a, что f(a) = 0.

Теорема 4.5.3 (Безу). Остаток от деления многочлена f(x) на двучлен x-a равен f(a). Доказательство.

$$f(x) = g(x)(x-a) + r \Rightarrow f(a) = g(a)(a-a) + r \Leftrightarrow r = f(a)$$

Следствие 4.5.1. Если a — корень f(x), то f(x) делится на x — a без остатка.

Кратностью корня a многочлена f(x) называется число $m: f(x) \dot{:} (x-a)^m, f(x) \dot{/} (x-a)^{m+1}.$

Теорема 4.5.4 (основная теорема алгебры). Если f(x) — многочлен, отличный от константы, то он имеет хотя бы один комплексный корень. Доказательство теоремы слишком сложно, поэтому здесь не приводится.

Следствие 4.5.2. Многочлен n-й степени имеет ровно n комплексных корней c учётом их кратности.

Доказательство. Пусть f(x) — многочлен n-й степени. По основной теореме алгебры (4.5.4) он имеет корень a, тогда по следствию (4.5.1) f(x) = g(x)(x-a), где g(x) — многочлен (n-1)-й степени, который также имеет корень. Будем повторять деление до тех пор, пока не получим константу. Т. о., получим n корней. \blacksquare

Следствие 4.5.3. Любой многочлен f(x) n-й степени представим в виде

$$f(x) = a(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

где a — число, x_0, \ldots, x_{n-1} — корни f(x).

2. $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

Лемма 4.5.2. Если f(x) — многочлен c действительными коэффициентами, $z \in \mathbb{C}$, то $\overline{f(z)} = f(\overline{z})$.

Доказательство. Пусть $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$, $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Многочлен строится при помощи операций сложения и умножения, поэтому достаточно доказать следующее:

1.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + (b_1 + b_2)i} = (a_1 + a_2) - (b_1 + b_2)i = (a_1 - b_1i) + (a_2 - b_2i) = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i = (a_1 - b_1 i)(a_2 - b_2 i) = \overline{z_1} \cdot \overline{z_2}$$

Тогда $\overline{a_nz^n+\ldots+a_1z+a_0}=a_n\overline{z}^n+\ldots+a_1\overline{z}+a_0$ при $a_0,a_1,\ldots,a_n\in\mathbb{R}.$

Теорема 4.5.5. Любой многочлен с действительными коэффициентами можно разложить на линейные и квадратные множители с действительными коэффициентами.

Доказательство. Пусть f(x) — многочлен с действительными коэффициентами, тогда если f(z) = 0, то $f(\overline{z}) = \overline{f(z)} = \overline{0} = 0$. Значит, если a + bi — корень f(x), то a - bi — тоже корень f(x). Имеем:

$$f(x) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x - (a_j + b_j i))(x - (a_j - b_j i)) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x^2 - 2a_j x + a_j^2 + b_j^2)$$

где
$$a, x_1, \dots, x_m, a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R},$$
 $x_1, \dots, x_m, a_1 + b_1 i, \dots, a_n + b_n i$ — корни $f(x)$.

Теорема 4.5.6 (формулы Виета). Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

$$\tag{4.4}$$

тогда

$$a_{n-1} = -a_n \sum_{i=0}^{n-1} x_i$$

$$a_{n-2} = a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} x_i x_j$$

$$a_{n-3} = -a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n-1} x_i x_j x_k$$

$$\vdots$$

$$a_1 = (-1)^{n-1} a_n \sum_{i=0}^{n-1} x_0 x_1 \cdot \dots \cdot x_{i-1} x_{i+1} \cdot \dots \cdot x_{n-1}$$

$$a_1 = (-1)^n a_n x_0 x_1 \cdot \dots \cdot x_{n-1}$$

Для доказательства достаточно раскрыть скобки в правой части равенства (4.4).

Теорема 4.5.7. Пусть на плоскости даны n+1 точек, никакие две из которых не лежат на прямой, паралелльной оси ординат, тогда через них проходит единственная кривая n-го порядка.

Доказательство. Пусть данные точки заданы координатами $(a_0; b_0), (a_1; b_1), \dots, (a_n; b_n)$, тогда кривая

$$f = \sum_{i=0}^{n} b_i \frac{(x-a_0) \cdot \dots \cdot (x-a_{i-1})(x-a_{i+1}) \cdot \dots \cdot (x-a_n)}{(a_i-a_0) \cdot \dots \cdot (a_i-a_{i-1})(a_i-a_{i+1}) \cdot \dots \cdot (a_i-a_n)}$$

Докажем, что f проходит через все данные точки. Рассмотрим точку $(a_k; b_k)$. Подставим $x = a_k$, тогда k-е (считая с нуля) слагаемое равно b_k , а остальные -0.

4.6 Многочлены от нескольких переменных

- 1. В многочлене $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ подставим $a_i = P_i(y)$ многочлен от y. Получим многочлен от x и y.
- 2. Пусть имеем многочлен от n переменных. Подставим вместо его коэффициентов многочлен от одной переменной, получим многочлен от n+1 переменных.

Одночлены многочлена будем записывать в лексикографическом порядке степеней переменных (члены с бо́льшими степенями идут раньше).

Теорема 4.6.1. Старший член произведения многочленов равен произведению старших членов множителей.

Доказательство. Перемножая члены с наибольшими показателями старшей переменной, получим член с наибольшим показателем при этой переменной. Проведя аналогичные рассуждения для остальных переменной, придём к выводу, что полученный член является старшим. ■

Аналогично доказывается следующая теорема.

Teopeмa 4.6.2. Младший член произведения многочленов равен произведению младших членов множителей.

4.6.1 Симметрические многочлены

Многочлен называется **симметрическим**, если при перестановке переменных он не изменяется. **Утверждение 4.6.1.** *Если* $f(x_1, \ldots, x_n) = ax_1^{i_1} x_2^{i_2} \cdot \ldots \cdot x_n^{i_n} + \ldots - cимметрический многочлен, то <math>i_1 \geqslant i_2 \geqslant \ldots \geqslant i_n$.

Доказательство (методом от противного). Пусть $\exists r < q \colon i_r < i_q$, тогда f содержит $bx_1^{i_1}x_2^{i_2}\dots \cdot x_r^{i_q}\dots x_n^{i_r}\dots x_n^{i_n}$, который старше, чем $ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$. Противоречие. \blacksquare

Элементарными симметрическими многочленами от n переменных называются многочлены

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i+1}^n x_i x_j$$

$$\vdots$$

Теорема 4.6.3 (основная теорема о симметрических многочленах). Любой симметрический многочлен может быть представлен в виде многочлена от элементарных симметрических многочленов. Доказательство. Пусть $f(x_1, \ldots, x_n) = ax_1^{k_1} \cdot \ldots \cdot x_n^{k_n} + \ldots$ — симметрический многочлен. Введём

 $\sigma_n(x_1,\ldots,x_n)=x_1x_2\cdot\ldots\cdot x_n$

$$g_1(\sigma_1, \dots, \sigma_n) = a\sigma_1^{k_1 - k_2} \sigma_2^{k_2 - k_3} \cdot \dots \cdot \sigma_{n-1}^{k_{n-1} - k_n} \sigma_n^{k_n} =$$

$$= a(x_1 + \dots)^{k_1 - k_2} (x_1 x_2 + \dots)^{k_2 - k_3} \cdot \dots \cdot (x_1 x_2 \cdot \dots \cdot x_{n-1} + \dots)^{k_{n-1} - k_n} (x_1 x_2 \cdot \dots \cdot x_n)^{k_n} =$$

$$= ax_1^{k_1} \cdot \dots \cdot x_n^{k_n} + \dots$$

Тогда старший член многочлена $f_1=f-g_1$ младше старшего члена многочлена f. Повторим те же действия с многочленом f_1 . Вудем продолжать таким образом, пока не получим ноль. В итоге получим $f=g_1+g_2+\ldots+g_m$, где g_1,g_2,\ldots,g_m — многочлены от элементарных симметрических многочленов.

4.7 Квадратные формы

Квадратичной формой называется многочлен, все одночлены в котором второй степени:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Для определённости полагают $a_{ij} = a_{ji}$.

Квадратичной форме можно сопоставить **матрицу квадратичной формы**, составленную из коэффициентов:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Каноническим видом квадратичной формы называется её представление в виде суммы квадратов с некоторыми коэффициентами.

Теорема 4.7.1 (метод Лагранжа). Любая квадратичная форма может быть приведена к каноническому виду.

Доказательство.

Нормальным видом квадратичной формы называется её канонический вид, коэффициенты в котором равны -1 или 1.

Рангом квадратичной формы называется количество переменных в её каноническом виде. Количество положительных коэффициентов в каноническом виде квадратичной формы называется её положительным индексом, а отрицательных — отрицательным индексом. Сигнатурой квадратичной формы называется модуль разности положительного и отрицательного индексов.

Ранг, положительный и отрицательный индексы и сигнатура одинаковы для всех канонических видов квадратичной формы.

Глава 5

Математический анализ

5.1 Ограниченные подмножества множества \mathbb{R}

Множество $X \subset \mathbb{R}$ называется **ограниченным сверху**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ x \leqslant a$. Число a называется **мажорантой** множества X.

Множество $X \subset \mathbb{R}$ называется **ограниченным снизу**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ a \leqslant x$. Число a называется **минорантой** множества X.

Множество, ограниченное и сверху, и снизу, называется ограниченным.

Мажоранта ограниченного сверху множества, принадлежащая ему, называется **его максимальным элементом**. Миноранта ограниченного снизу множества, принадлежащая ему, называется **его минимальным элементом**.

Очевидно, что во множестве может быть не более одного минимального элемента и не более одного максимального элемента.

Минимальный элемент множества мажорант ограниченного сверху множества A называется **супремумом** и обозначается $\sup A$.

Утверждение 5.1.1. *Если множество А ограничено сверху, то* $\exists! \sup A$.

Доказательство. Пусть B — множество всех мажорант множества A, тогда $\forall a \in A, \ b \in B \ a \leqslant b$. По аксиоме непрерывности $\exists c \in \mathbb{R} \colon \forall a \in A, \ b \in B \ a \leqslant c \leqslant b$, тогда c — минимальная мажоранта множества A.

Единственность следует из единственности минимального элемента.

Утверждение 5.1.2. *Если* $a = \sup A$, то $\forall \varepsilon > 0 \ \exists x \in A \colon a - \varepsilon < x \leqslant a$.

Доказательство (методом от противного). Пусть $\exists \varepsilon_0 \colon \forall x \in A \ x \leqslant a - \varepsilon_0$. Тогда $a - \varepsilon_0 -$ мажоранта множества A, значит, $a \neq \sup A$. Противоречие.

Максимальный элемент множества минорант ограниченного снизу множества A называется **инфимумом** и обозначается inf A.

Утверждение 5.1.3. *Если множество* A *ограничено снизу, то* \exists ! inf A. Доказательство аналогично доказательству утверждения 5.1.1.

Утверждение 5.1.4. *Если* $a = \inf A$, то $\forall \varepsilon > 0 \ \exists x \in A : a \leqslant x < a + \varepsilon$. Доказательство аналогично доказательству утверждения 5.1.2.

Теорема 5.1.1 (принцип Архимеда). *Если* h > 0, то $\forall x \in \mathbb{R} \ \exists k \in \mathbb{Z} \colon (k-1)h \leqslant x < kh$.

Доказательство. Рассмотрим множество $A = \left\{z \in \mathbb{Z} \mid z > \frac{x}{h}\right\}$, тогда $\exists a = \inf A$. По утверждению $5.1.4 \ \forall \varepsilon \in (0;1] \ \exists z_0 \colon a \leqslant z_0 < a + \varepsilon$. Т. к. в промежутке [a;a+1) лежит только одно целое число, то $a = z_0$, тогда $a-1 \leqslant \frac{x}{h} < a$. Т. о., a- искомое значение k.

Из принципа Архимеда следует, что не существует бесконечно больших чисел.

Следствие 5.1.1.

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon \frac{1}{n} < \varepsilon$$

Доказательство. По принципу Архимеда для $h = \varepsilon$, x = 1 получим:

$$\exists n \in \mathbb{Z} \colon \left((n-1)\varepsilon \leqslant 1 < n\varepsilon \Leftrightarrow (1-\frac{1}{n})\varepsilon \leqslant \frac{1}{n} < \varepsilon, \ n \in \mathbb{N} \Rightarrow \frac{1}{n} < \varepsilon, \ n \in \mathbb{N} \right)$$

Отсюда следует, что не существует бесконечно малых чисел. Следствие 5.1.2.

 $\forall a, b \in \mathbb{R} \ \exists c \in \mathbb{Q} \colon a < c < b$

Доказательство. Из следствия 5.1.1 для $\varepsilon = b-a$ получим $\exists n \in \mathbb{N} \colon \frac{1}{n} < b-a$. По принципу Архимеда для $h = \frac{1}{n}, \, x = a$ получим:

$$\exists k \in \mathbb{Z} \colon \left(\frac{k-1}{n} \leqslant a < \frac{k}{n} \Rightarrow a < \frac{k}{n} = \frac{k-1}{n} + \frac{1}{n} < a + (b-a) = b\right)$$

T. o., $\frac{k}{n}$ — искомое значение c.

Точка $a \in \mathbb{R}$ называется **предельной** точкой множества $A \subset \mathbb{R}$, если $\forall \varepsilon > 0 \ \check{U}_{\varepsilon}(a) \cap A \neq \varnothing$.

Точка $a \in A$ называется дискретной точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon \check{U}_{\varepsilon}(a) \cap A = \varnothing$.

Точка $a \in A$ называется внутренней точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon U_{\varepsilon}(a) \subset A$.

Множество называется открытым, если состоит только из внутренних точек.

Множество называется **замкнутым**, если его дополнение \overline{A} до \mathbb{R} является открытым.

Утверждение 5.1.5. *Множество A* замкнуто \Leftrightarrow оно содержит все свои предельные точки. Доказательство.

1. ⇒. Докажем методом от противного, что A содержит все свои предельные точки. Пусть $∃a_0 \notin A$ — предельная точка A, тогда

$$a_0 \in \overline{A} \Rightarrow \exists \varepsilon > 0 \colon (U_{\varepsilon}(a_0) \subset \overline{A} \Rightarrow U_{\varepsilon}(a_0) \cap A = \emptyset)$$

Значит, a_0 не является предельной точкой A. Противоречие.

- 2. \Leftarrow . Пусть $\forall a \in \overline{A} \ \exists \varepsilon > 0 \colon U_{\varepsilon}(a) \subset \overline{A}$. Докажем методом от противного, что \overline{A} открыто. Пусть $\exists a \in \overline{A} \ \forall \varepsilon > 0 \ U_{\varepsilon}(a) \cap A \neq \varnothing$, тогда $a \notin A$ предельная точка A. Противоречие.
- **Теорема 5.1.2 (Вейерштрасса).** Если A бесконечное ограниченное множество, то $\exists a \in \mathbb{R}$ предельная точка A.

Доказательство. $A \subset [a;b]$, где $a = \inf A$, $b = \sup A$. Пусть a не является предельной точкой A, т. е. $\exists \varepsilon_0 > 0 \colon \check{U}_{\varepsilon_0}(a) \cap A = \varnothing$, тогда $a \in A$, значит, a — дискретная точка A.

Рассмотрим множество B точек y таких, что интервал $(-\infty; y)$ содержит конечное число точек A. Интервал $(-\infty; a + \varepsilon_0)$ содержит только одну точку множества A - a, значит, $\forall k \in (0; 1]$ $a + k\varepsilon_0 \in B$.

 $A\subset (-\infty;b]$, тогда b — мажоранта B, значит, $\exists c=\sup B.$

- 1. $\forall \varepsilon > 0 \ (-\infty; c \varepsilon)$ содержит конечное число точек множества A.
- 2. $\forall \varepsilon > 0 \ (-\infty; c + \varepsilon)$ содержит бесконечное число точек множества A, т. к. $c + \varepsilon \notin B$.

Тогда $\forall \varepsilon > 0$ $\check{U}_{\varepsilon}(c)$ содержит бесконечное число точек множества A, значит, c — предельная точка множества A.

5.2 Предел последовательности

Число a называется **пределом** последовательности (x_n) , если

$$\forall \varepsilon > 0 \ \exists N \colon \forall n > N \ |x_n - a| < \varepsilon$$

и обозначается $\lim_{n\to\infty} x_n$.

5.2.1 Локальный экстремум функции нескольких переменных

Точка $\overline{x_0} = (x_{10}, \dots, x_{n0})$ называется **точкой локального минимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если $\overline{x_0} \in D(f)$ и существует проколотая окрестность $\check{U}(\overline{x_0}) : \forall \overline{x} \in \check{U}(\overline{x_0}) \ f(\overline{x}) > f(\overline{x_0})$.

Точка $\overline{x_0} = (x_{10}, \dots, x_{n0})$ называется **точкой локального максимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если $\overline{x_0} \in D(f)$ и существует проколотая окрестность $\check{U}(\overline{x_0}) \colon \forall \overline{x} \in \check{U}(\overline{x_0}) \ f(\overline{x}) < f(\overline{x_0})$.

Точки локального минимума и максимума называются точками локального экстремума.

Теорема 5.2.1 (необходимое условие локального экстремума). В точке локального экстремума частные производные функции равны нулю или не существуют.

Доказательство. Пусть $\overline{x_0}=(x_{10},\dots,x_{n0})$ — точка экстремума функции $f(\overline{x})$, дифференцируемой в точке $\overline{x_0}$. Рассмотрим $g(x)=f(x_{10},\dots,x_{k-1\,0},x,x_{k+1\,0},\dots,x_{n0})$. $\overline{x_0}$ — точка экстремума $f(\overline{x})$, тогда x_{k0} — точка экстремума g(x), значит, $g'(x_{k0})=0$ или не существует. Тогда $f'_{x_k}(x_{k0})=0$ или не существует.

Теорема 5.2.2 (достаточное условие локального экстремума функции двух переменных). Пусть дана функция f(x,y). Если

- 1. $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- 2. $(f_{xy}''(x_0, y_0))^2 f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$

то (x_0, y_0) — точка локального экстремума f(x, y).

- 1. (x_0, y_0) точка локального минимума, если $f''_{xx}(x_0, y_0) > 0$ или $f''_{yy}(x_0, y_0) > 0$.
- 2. (x_0,y_0) точка локального максимума, если $f''_{xx}(x_0,y_0)<0$ или $f''_{yy}(x_0,y_0)<0$.

Доказательство. По формуле Тейлора

$$f(x,y) - f(x_0, y_0) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0))) - f(x_0, y_0) =$$

$$= \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0)))$$

значит, $f(x,y) - f(x_0,y_0)$ сохраняет знак, если $d^2 f(x_0,y_0)$ сохраняет знак.

$$d^{2}f(x_{0}, y_{0}) = f''_{xx}(x_{0}, y_{0})dx^{2} + 2f''_{xy}(x_{0}, y_{0})dxdy + f''_{yy}(x_{0}, y_{0})dy^{2} =$$

$$= \left(f''_{xx}(x_{0}, y_{0}) + 2f''_{xy}(x_{0}, y_{0})\frac{dy}{dx} + f''_{yy}(x_{0}, y_{0})\left(\frac{dy}{dx}\right)^{2}\right)dx^{2}$$

Т. о., (x_0, y_0) — точка локального экстремума f(x, y), если $d^2 f(x_0, y_0)$ сохраняет знак, т. е. при

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$$

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) < 0 \Leftrightarrow$$

$$\Leftrightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > (f_{xy}''(x_0, y_0))^2 \Rightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > 0$$

значит, $f_{xx}''(x_0,y_0)$ и $f_{yy}''(x_0,y_0)$ одного знака.

- 1. Если $f_{xx}''(x_0,y_0)>0 \lor f_{yy}''(x_0,y_0)>0 \Rightarrow d^2f(x_0,y_0)>0$, тогда (x_0,y_0) точка локального минимума.
- 2. Если $f_{xx}''(x_0, y_0) < 0 \lor f_{yy}''(x_0, y_0) < 0 \Rightarrow d^2f(x_0, y_0) < 0$, тогда (x_0, y_0) точка локального максимума.

Теорема 5.2.3 (достаточное условие локального экстремума). Пусть дана функция $f(\overline{x}) = f(x_1,\ldots,x_n)$. Точка $\overline{x_0} = (x_{10},\ldots,x_{n0})$ — точка локального экстремума $f(\overline{x})$, если

1.
$$f'_{x_1}(\overline{x_0}) = \ldots = f'_{x_n}(\overline{x_0}) = 0$$

2.
$$\sum_{\substack{i=\overline{1,n}\\j=1,n}}f_{x_ix_j}''(\overline{x_0})dx_idx_j$$
 сохраняет знак.

1.
$$\overline{x_0}$$
 — точка локального минимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x_0})dx_idx_j>0.$

2.
$$\overline{x_0}$$
 — точка локального максимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f''_{x_ix_j}(\overline{x_0})dx_idx_j<0.$

Доказательство. По формуле Тейлора

$$f(\overline{x}) - f(\overline{x_0}) = f(\overline{x_0}) + df(\overline{x_0}) + \frac{d^2 f(\overline{x_0})}{2!} + o(\rho^2(\overline{x}, \overline{x_0})) - f(\overline{x_0}) = \frac{d^2 f(\overline{x_0})}{2!} + o(\rho^2(\overline{x}, \overline{x_0}))$$

значит, $f(\overline{x}) - f(\overline{x_0})$ сохраняет знак, если $d^2 f(\overline{x_0})$ сохраняет знак.

$$d^{2}f(\overline{x_{0}}) = \sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}} f_{x_{i}x_{j}}''(\overline{x_{0}})dx_{i}dx_{j}$$

1. Если
$$\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x_0})dx_idx_j>0 \Leftrightarrow d^2f(\overline{x_0})>0$$
, то $\overline{x_0}$ — точка локального минимума.

2. Если
$$\sum_{\substack{i=\overline{1,n}\\i=\overline{1,n}}} f_{x_ix_j}''(\overline{x_0}) dx_i dx_j < 0 \Leftrightarrow d^2f(\overline{x_0}) < 0$$
, то $\overline{x_0}$ — точка локального максимума.

При практическом применении теоремы 5.2.3 полезен критерий Сильвестра.

5.2.2 Метод наименьших квадратов

Пусть даны точки x_1, \ldots, x_n и требуется найти аппроксимирующую прямую для значений некоторой функции f(x) в этих точках. Уравнение прямой — y = Ax + B. Найдём точку, в которой сумма

$$S(A, B) = \sum_{i=1}^{n} (Ax_i + B - f(x_i))^2$$

принимает наименьшее значение.

$$S'_{A} = \sum 2x_{i}(Ax_{i} + B - f(x_{i}))$$

$$S'_{B} = \sum 2(Ax_{i} + B - f(x_{i}))$$

$$\begin{cases} S'_{A} = 0 \\ S'_{B} = 0 \end{cases} \Leftrightarrow \begin{cases} A \sum_{i} x_{i}^{2} + B \sum_{i} x_{i} = \sum_{i} x_{i} f(x_{i}) \\ A \sum_{i} x_{i} + Bn = \sum_{i} f(x_{i}) \end{cases} \Leftrightarrow \begin{cases} A \sum_{i} x_{i}^{2} + B \sum_{i} x_{i} = \sum_{i} x_{i} f(x_{i}) \\ A \sum_{i} x_{i} + Bn = \sum_{i} f(x_{i}) \end{cases}$$

$$\Leftrightarrow \begin{cases} \left(n\sum x_i^2 - \left(\sum x_i\right)^2\right)A = n\sum x_i f(x_i) - \sum x_i\sum f(x_i) \\ Bn = \sum f(x_i) - A\sum x_i \end{cases} \Leftrightarrow \begin{cases} A = \frac{n\sum x_i f(x_i) - \sum x_i\sum f(x_i)}{n\sum x_i^2 - \left(\sum x_i\right)^2} \\ B = \frac{\sum x_i^2\sum f(x_i) - \sum x_i\sum x_i f(x_i)}{n\sum x_i^2 - \left(\sum x_i\right)^2} \end{cases}$$

Найденные значения A и B — искомые коэффициенты в уравнении аппроксимирующей прямой. Для оценки точности аппроксимации можно найти коэффициент корреляции по формуле

$$r = \sqrt{\frac{\sum (f(x_i) - \tilde{y})^2 - \sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}} = \sqrt{1 - \frac{\sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}}$$

где $\tilde{y} = \frac{1}{n} \sum f(x_i)$, $\tilde{y_i} = Ax_i + B$, а значение коэффициента r тем ближе к единице, чем точнее аппроксимация.

5.2.3 Условный экстремум

Пусть дана функция $f(x_1, \dots, x_n)$, переменные которой удовлетворяют условиям

$$\begin{cases} g_1(x_1, \dots, x_n) = 0 \\ \vdots \\ g_m(x_1, \dots, x_n) = 0 \end{cases}$$

Для нахождения её экстремумов (называемых условными) введём функцию Лагранжа

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\lambda_1g_1(x_1,\ldots,x_n)+\ldots+\lambda_mg_m(x_1,\ldots,x_n)$$

и исследуем её. Её экстремумы являются условными экстремумами функции f.

Глава 6

Теория множеств

6.1 Множества

6.1.1 Мощность множеств

Множества A и B называются равномощными (имеют одинаковую мощность), если существует биекция $f \colon A \to B$, иначе — неравномощными.

Для конечных множеств это означает, что у них одинаковое количество элементов.

Мощностью конечного множества A называется количество |A| его элементов.

Множество всех подмножеств множества A обозначается

$$\mathcal{P}(A) = \{ x \mid x \subseteq A \}$$

Множество всех подмножеств множества A мощности k обозначается

$$\mathcal{P}_k(A) = \{ x \subseteq A \mid |x| = k \}$$

Теорема 6.1.1 (Кантора). Множества A и $\mathcal{P}(A)$ не равномощны.

Доказательство (методом от противного). Пусть $f \colon A \to \mathcal{P}(A)$ — биекция. Рассмотрим множество

$$X = \{a \in A \mid a \notin f(a)\} \Rightarrow X \subset A \Rightarrow X \in \mathcal{P}(A)$$

f — биекция, тогда $\exists b \in A : f(b) = X$. Возможны два случая:

- 1. Пусть $b \in X \Rightarrow b \in f(b) \Rightarrow b \notin X$. Противоречие.
- 2. Пусть $b \notin X \Rightarrow b \in f(b) \Rightarrow b \in X$. Противоречие.

В обоих случаях получили противоречие.

Теорема 6.1.2. Пусть дано множество A: |A| = n, тогда $|\mathcal{P}_k(A)| = C_n^k$

Доказательство (методом математической индукции).

• *База индукции.* n = 0:

$$|A| = 0 \Rightarrow A = \varnothing \Rightarrow \mathcal{P}(A) = \{\varnothing\} \Rightarrow |\mathcal{P}_0(A)| = 1 = C_0^0$$

- Шаг индукции. Пусть теорема верна для n. Докажем её для n+1. Пусть $X \subset A$, |X|=k, $a \in A$. Подсчитаем количество таких X. Возможны два случая:
 - 1. Пусть $a \notin X \Rightarrow X \subset A \setminus \{a\}$, тогда таких $X C_n^k$.
 - 2. Пусть $a \in X$, тогда таких X столько же, сколько множеств $X \setminus \{a\} \subset A \setminus \{a\}$, т.е. C_n^{k-1} .

Тогда
$$|\mathcal{P}(A)| = C_n^{k-1} + C_n^k = C_{n+1}^k$$
.

6.1.2 Мощность числовых множеств

Множество называется **счётным**, если оно равномощно множеству натуральных чисел. Бесконечное множество, не являющееся счётным, называется **несчётным**.

Утверждение 6.1.1. \mathbb{Z} счётно.

Доказательство. Построим биекцию $f: \mathbb{Z} \to \mathbb{N}$:

$$f(n) = \begin{cases} -2n - 1, & n < 0 \\ 2n, & n \geqslant 0 \end{cases}$$

Тогда $|\mathbb{Z}| = |\mathbb{N}|$. ■

0

Утверждение 6.1.2. \mathbb{Q} *счётно.*

-1

Доказательство. Составим таблицу, в верхней строке которой стоят $p_i \in \mathbb{Z}$, в левом столбце — $q_i \in \mathbb{N}$, а на пересечении столбца и строки — $\frac{p_i}{q_i}$. Обходя таблицу в указанном порядке, будем нумеровать очередной элемент, только если он не встречался ранее:

-2

1

-2

Ясно, что таким образом можно пронумеровать все элементы ℚ, причём ни один из них не будет пронумерован дважды, значит, ℚ счётно. ■

Утверждение 6.1.3. (0;1) несчётно.

Доказательство (методом от противного). Пусть все числа из интервала (0;1) можно пронумеровать. Тогда представим каждое число в виде десятичной дроби и расположим эти дроби в соответствии с нумерацией:

- 1. $0,a_{11}a_{12}...$
- $2. \ 0, a_{21}a_{22}\dots$

. . .

где $a_{11}, a_{12}, \ldots, a_{21}, a_{22}, \ldots$ — цифры. Рассмотрим дробь $0, b_1 b_2 \ldots$, где b_1, b_2, \ldots — цифры такие, что $b_1 \neq a_{11}, b_2 \neq a_{22}, \ldots$ Такая дробь отличается от каждой из пронумерованных хотя бы в одной позиции, значит, она не пронумерована. Противоречие.

Утверждение 6.1.4. $|\mathbb{R}| = |(0;1)|$.

Доказательство. Рассмотрим функцию

$$f(x) = \begin{cases} \frac{1}{x} - 2, & 0 < x \le \frac{1}{2} \\ \frac{1}{x - 1} + 2, & \frac{1}{2} < x < 1 \end{cases}$$

f переводит $(0;1) \to \mathbb{R}$ и является биекцией, значит, интервал (0;1) равномощен \mathbb{R} . \blacksquare $|\mathbb{R}|$ называется континуумом.

Глава 7

Элементарная алгебра

7.1 Комплексные числа

Мнимой единицей называется число, квадрат которого равен -1, и обозначается i.

Комплексным называется число вида $a+bi, a,b \in \mathbb{R}$. Если a=0, то такое число называется мнимым, или чисто мнимым. Множество комплексных чисел обозначается \mathbb{C} .

Если z = a + bi, то $\overline{z} = a - bi$ называется сопряжённым к z.

Операции над комплексными числами $z_1=a_1+b_1i, z_2=a_2+b_2i, \ a_1,b_1,a_2,b_2\in\mathbb{R}$ осуществляются так же, как над вещественными:

• Сложение

$$z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$$

• Умножение

$$z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

• Деление

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{a_2^2 + b_2^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$

7.1.1 Геометрическое представление комплексного числа

Комплексное число a+bi принято изображать на координатной плоскости точкой (a;b), а также радиус-вектором, соединяющим начало координат с этой точкой. Такая плоскость называется комплексной.

Модулем комплексного числа z=a+bi, или его **абсолютной величиной**, называется длина соответствующего радиус-вектора комплексной плоскости, равная

$$|z| = \sqrt{a^2 + b^2}$$

Аргументом комплексного числа z=a+bi называется угол соответствующего радиус-вектора на комплексной плоскости:

$$a = |z| \cos \operatorname{Arg} z, \ b = |z| \sin \operatorname{Arg} z$$

Главным аргументом называется значение $\operatorname{Arg} z \cap (-\pi; \pi]$ и обозначается $\operatorname{arg} z$.

7.1.2 Тригонометрическая форма комплексного числа

Тригонометрической формой комплексного числа z называется его представление в виде

$$z = |z|(\cos \varphi + i \sin \varphi), \varphi = \operatorname{Arg} z$$

При использовании тригонометрических форм операции умножения и деления комплексных чисел $z_1 = |z_1|(\cos \alpha + i \sin \alpha), z_2 = |z_2|(\cos \beta + i \sin \beta)$ упрощаются:

$$z_1 z_2 = |z_1||z_2|(\cos\alpha\cos\beta - \sin\alpha\sin\beta + i(\sin\alpha\cos\beta + \cos\alpha\sin\beta)) = |z_1||z_2|(\cos(\alpha + \beta) + i\sin(\alpha + \beta))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot \frac{(\cos\alpha\cos\beta + \sin\alpha\sin\beta + i(\sin\alpha\cos\beta - \cos\alpha\sin\beta))}{\cos^2\beta + \sin^2\beta} = \frac{|z_1|}{|z_2|}(\cos(\alpha - \beta) + i\sin(\alpha - \beta))$$

Теорема 7.1.1 (формула Эйлера).

$$\cos x + i \sin x = e^{ix}$$

Доказательство. Воспользуемся разложением $\cos x$, $\sin x$ и e^{ix} в ряд Маклорена:

$$\cos x + i \sin x = 1 + \frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} + \dots = 1 + \frac{ix}{1!} + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \dots = e^{ix}$$

При подстановке $x=\pi$ в формулу Эйлера (7.1.1) получим замечательное **тождество Эйлера**, связывающее пять фундаментальных математических констант:

$$e^{i\pi} + 1 = 0$$

Теорема 7.1.2 (формула Муавра). Если $z = |z|(\cos \varphi + i \sin \varphi), n \in \mathbb{R}$, то

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Доказательство. Для $n \in \mathbb{N}$ формулу можно доказать методом математической индукции, тогда показать истинность формулы для $n \in \mathbb{Z}$ несложно. Мы же докажем формулу сразу для $n \in \mathbb{R}$, пользуясь формулой Эйлера (7.1.1):

$$z^{n} = |z|^{n} (\cos \varphi + i \sin \varphi)^{n} = |z|^{n} e^{i\varphi n} = |z|^{n} (\cos n\varphi + i \sin n\varphi)$$

Пользуясь формулой Муавра (7.1.2), можно извлекать корни из комплексного числа $z = |z|(\cos \varphi + i \sin \varphi)$:

$$\sqrt[n]{z} = \sqrt[n]{|z|}(\cos\frac{\varphi}{n} + i\sin\frac{\varphi}{n})$$

Следует не забывать, что φ определено с точностью до $2\pi k, k \in \mathbb{Z}$, поэтому комплексный корень имеет не одно, а n значений (что можно показать, пользуясь следствием (4.5.2)).

Глоссарий

В	${f M}$	Предел последовательности
Висячая вершина Внутренняя точка	Мажоранта Миноранта Маршрут	Предельная точка Промежуток Простой граф
Д Дискретная точка	Н Неориентированный граф	\mathbf{C}
И Изолированная вершина Изоморфизм графов Интервал Инфимум	О Ограниченное множество Окрестность Отрезок	Соседняя вершина Смежность вершин Степень вершины Супремум
Инцидентность К Кратное ребро	П Петля Полный граф	Ц Цепь Цикл