Vaja 1 - Wireshark (ICMP, HTTP)

ICMP

Koliko paketov se dejansko prenese med izvorom in ciljem?

Prenese se 20 paketkov, od tega 10 paketkov za zahtevo (oz. angl. "request") in 10 paketkov za odgovor (oz. angl. "response"), sporočil v parih. Dolžina posameznega paketka v paru je 100 bajtov, od tega je 48 bajtov podatkov.

No. Time	Source	Destination	Protocol L	ength Info	
83 5.366016277	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=1/256, ttl=64 (reply in 84)
84 5.366699045	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=1/256, ttl=121 (request in 83)
104 6.367937350	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=2/512, ttl=64 (reply in 105)
105 6.368357247	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=2/512, ttl=121 (request in 104)
130 7.369757854	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=3/768, ttl=64 (reply in 131)
131 7.370437371	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=3/768, ttl=121 (request in 130)
151 8.371106914	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=4/1024, ttl=64 (reply in 152)
152 8.371771132	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=4/1024, ttl=121 (request in 151)
182 9.372570770	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=5/1280, ttl=64 (reply in 183)
183 9.373294009	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=5/1280, ttl=121 (request in 182)
213 10.374052004	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=6/1536, ttl=64 (reply in 214)
214 10.374692213	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=6/1536, ttl=121 (request in 213)
233 11.375827615	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=7/1792, ttl=64 (reply in 234)
234 11.376309828	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=7/1792, ttl=121 (request in 233)
250 12.376867568	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=8/2048, ttl=64 (reply in 251)
251 12.377292245	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=8/2048, ttl=121 (request in 250)
273 13.378681117	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=9/2304, ttl=64 (reply in 274)
274 13.379184134	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=9/2304, ttl=121 (request in 273)
290 14.380579535	164.8.208.205	164.8.8.99	ICMP	100 Echo (ping) request	id=0xd3bb, seq=10/2560, ttl=64 (reply in 291)
291 14.381350582	164.8.8.99	164.8.208.205	ICMP	100 Echo (ping) reply	id=0xd3bb, seq=10/2560, ttl=121 (request in 290)

Iz zgornje slike je razvidno število paketkov, vidnost parov med pošiljanjem ter začetni IP in končni IP naslov.

Kakšnega tipa so paketi za zahtevo in kakšnega tipa so paketi za odgovor? Request paketki so tipa 8, response pa tipa 0.

```
Type: 8 (Echo (ping) request) Type: 0 (Echo (ping) reply)

Code: 0 Code: 0
```

Iz zgornjih dve slik je možno prepoznati različne tipe paketkov. Levi je request paketek, desni pa response paketek.

Zapišite MAC naslov mrežne kartice, ki se nahaja v ciljnem računalniku.

Mac naslov ciljnega računalnika se nahaja v source response paketka.

```
Source: Cisco_97:20:41 (00:13:1a:97:20:41)
```

Iz zgornje slike je razvidno, da je Mac naslov 00:13:1a:97:20:41

Koliko zlogov se prenaša v polja "Data" in kakšna je vsebina polja?

V "Data" polju se na windowsih pošilja 32 bajtov podatkov, med tem ko pri Linuxu pa se ponavadi pošilja 48 bajtov podatkov, vendar je lahko količina podatkov dosti večja. Vsebina polja je pri windows sistemih v obliki abecede s ponavljajočo se abecedo na koncu. Linux pa je v obliki heksadecimalnih podaktov.

Prva slika je na windows sistemih, desna pa na linux.

Komentirajte razlike in podobnosti med izvedbo ukaza ping na sistemu Windows in Linux. Razlike utemeljite.

Manjše razlike so v uporabi ukaza, vendar je glavna funkcionalnost enaka. Največja razlika je v načinu zapisa in količini podatkov. Če želimo na Linux sistemih uporabiti - n končnico, ki je v windowsih rezervirano za količine paketov nam stvar ne bo delala. Težava je namreč, da ima linux že rezervirano -n za "no dns name resolution", kar v praksi pomeni, da se bodo paketki vračali brez domene, temveč samo z IP naslovom. -C pa naredi točno to kar želimo in omeji količino poslanih paketkov na -c <število> (na windowsih -n <število>). Oba sistema pa omogočata širok nabor funkcionalnosti.

It will give a sound when a peer can be reached. It will allow you to ping broadcast IP addresses. Prevents the ping to change the source address of the probe It will limit you to send the number of ping requests. c (count) It will set the SO-DEBUG option on the used socket. This will inform you that how many successful packets have been transmitted into the specified time interval. By I will help you st set your source IP address to a specified interface IP address. It is required while pinging IPv6 T (interface nk-local address. For this, use an IP address or name of the device. address) I will define the number of packets you can send without waiting for a response. You can specify the value higher than 3 and by giving yourself superuser permissions. This will display IP addresses as output rather than hostnames This will show you guiet output that will ping line displayed and summary of the ping command at the end. T (TTL) It will give verbose output. It will show the ping version and exit to a new command prompt line. Before you exist a ping command, it will specify the time limit, regardless of how many packets have been sent or w (deadline) It determines the time in seconds for which you need to wait for a response.

Leva slika windows, desna slika linux.

HTTP

Zapišite IP naslov vašega računalnika, IP naslov strežnika in različico HTTP protokola.

IP mojega: 164.8.161.219 IP strežnika: 45.33.7.16

HTTP protokol: persistentna povezava

477 6.160517713	164.8.161.219	45.33.7.16	HTTP	669 GET /check.png?16345554056171_81 HTTP/1.1
478 6.160662948	164.8.161.219	45.33.7.16	HTTP	669 GET /check.png?16345554056171_10 HTTP/1.1
476 6.160234985		45.33.7.16	HTTP	669 GET /check.png?16345554056171_16 HTTP/1.1

V katerih jezikih želi vaš spletni brskalnik sprejeti vsebino spletne strani? Kako se imenuje polje protokola HTTP v katerem so definirani jeziki?

Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

Koliko zlogov je bilo prenešenih na vaš računalnik (vsebina HTML strani, CSS, JavaScript, Flash, slike, ...)? Koliko časa (v sekundah) je preteklo od prve zahteve vašega spletnega brskalnika do zadnje prenešene vsebine iz spletnega strežnika?

0.62 MB total

6.509 s

0.934 s

Done! Please try HTTPS.

Done! Please try HTTP.

Preteklo je okoli 6.509 sekund, kar je izredno počasi. Če omogočimo HTTPS pa se čas pohitri. Povprečno se vsaj 7 krat pohitri. V praksi 10 krat.

Kakšne statusne kode in koliko le-teh je vrnil spletni strežnik?

Statusne kode so večinoma 200 OK, kar je prav. 4-x-x kode so kode z napakami na naši strani. Kode 5-x-x pa so napake na strani strežnika. 3-x-x so pa rezervirane za določene spremembe na spletni strani (preusemerjanje). Poslanih je bilo okoli 2000 paketov za cca 600 datotek.

Tvorite graf poteka prometa (flow graph) za protokol HTTP in pokomentirajte stanje.

Seveda se poveza desno ne končajo, vendar je zmanjkalo prostora na grafu. Na začetku HTTP spostavi povezavo in nato začne persistentno vlečiti dol datoteke.

Ocenjevanje časa HTTP prenosa

$$d = 4 \\ t_{d,f} = 0.75 \text{ RTT} \\ 1 \text{ RTT} = 120 \text{ ms} \\ p = 3 \\ r = 2$$

Nepersistentna povezava

$$t_d$$
 = 2 + $t_{d,f}$ + $d(2 + t_{d,f})$ = $(1 + d) * (2+t_{d,f})$ = = 5 * 2.75 = 13.75 RTT = 1650 ms

Nepersistentna povezava s paralelnimi povezavami

$$t_d = 2 + t_{d,f} + r(2 + t_{d,f}) = (1 + r) * (2 + t_{d,f}) =$$

= 3 * 2.75 = 8.25 RTT = 990 ms

Persistentna povezava brez cevovodov

$$t_d$$
 = 2 + $t_{d,f}$ + $d(1 + t_{d,f})$ = 2.75 + 4 * 1.75 =
= 9.75 RTT = 1170 ms

Persistentna povezava s cevovodi

$$t_d = 3 + 2t_{d,f} = 3 + 1.5 = 4.5 \text{ RTT} = 540 \text{ ms}$$