Math 231 — Hw 12

Sara Jamshidi, Feb 21, 2025

- 1. Consider the vector space \mathbb{F}_2^2 . What are all the possible bases for this space? (You do not need to prove this).
- 2. Consider the linearly independent set in \mathbb{R}^3 and construct a basis by adding one element to it. Then prove that it is a basis.

$$\{(1,0,1),(-1,0,1)\}$$

3. Consider the linearly independent set in \mathbb{R}^3 and construct a basis by adding one element to it. Then prove that it is a basis.

$$\{(1,-1,1),(0,1,1)\}$$

- 4. In the previous two examples, you wrote two distinct bases of \mathbb{R}^3 . Given a vector $(x, y, z) \in \mathbb{R}^3$, write a set of functions $f_i(a_1, a_2, a_3) = b_i$ where each function takes in the coefficients of the first basis and produces the i^{th} coefficient of the second basis. What kind of functions are these?
- 5. Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then v_1, v_2 is a basis of U.