Introducción a los Sistemas Operativos

Introducción - II

Profesores:

Lía Molinari Juan Pablo Pérez Macia Nicolás

I.S.O.

- ✓ Versión: Marzo 2013
- ☑Palabras Claves: Sistema Operativo, Servicios, Evolución, Batch, Multiprogramación, Timesharing

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts)

Sistema Operativo

- Controla la ejecución de los programas de aplicación
- ✓ Interfase entre las aplicaciones y el HW
- Actua como intermediario entre un usuario de una computadora y el HW de la misma

Objetivos de los S.O.

Comodidad

✓ Hacer mas comodo el uso de la computadora

Eficiencia

✓ Uso mas eficiente en los recursos de un sistema

Evolución

✓ Permitir la introducción de nuevas funciones al sistema sin interferir con funciones anteriores

Capas de un Sistema de Computación

Figure 2.1 Layers and Views of a Computer System

Kernel (Núcleo)

- ✓ "Porción de código"
 - ✓ que se encuentra en memoria principal
 - ✓ que se encarga de la administración de los recursos.
- ☑Implementa servicios básicos:
 - ✓ Manejo de memoria en general
 - ✓ Administración de procesos
 - ✓ Comunicación y Concurrencia

Servicios de un SO

- Administración y planificación del procesador
 - ✓ Imparcialidad, "justicia" en la ejecución (Fairness)
 - ✓ Que no haya bloqueos
 - ✓ Manejo de Prioridades
- Administración de Memoria
 - Memoria física vs memoria virtual. Jerarquías de memoria
 - Proteccion de programas que compiten o se ejecutan concurrentemente
- Administración del almacenamiento- Sistema de archivos
 - Acceso a medios de almacenamiento externos
- Administración de dispositivos
 - ✓ Ocultamiento de dependencias de HW
 - ✓ Administración de accesos simultaneos

Servicios de un SO (cont.)

- ☑ Detección de errores y respuestas
 - ✓ Errores de HW internos y Externos
 - Errores de Memoria
 - Errores de Dispositivos
 - ✓ Errores de SW
 - Errores Aritmeticos
 - Acceso no permitido a direcciones de memoria
 - ✓ Incapacidad del SO para conceder una solicitud de una aplicación

Servicios de un SO (cont.)

Contabilidad

- ✓ Recojer estadísticas del uso
- ✓ Monitorizar parámetros de rendimiento
- ✓ Anticipar necesidades de mejoras futuras
- ✓ Dar elementos si es necesario facturar tiempo de procesamiento

Evolución de un S.O.

Los SO evolucionan con el objeto de:

- Soportar nuevos tipos de HW
- -Brindar nuevos Servicios
- Ofrecer mejoras y alternativas a problemas existentes
 - en la planificación
 - en el manejo de la memoria
 - etc

S.O. - Evolución Historica

✓ Procesamiento en Serie

- ✓ No existia un SO
- ✓ Máquinas eran utilizadas desde una consola que contenía luces, interruptores, dispositvos de entrada e impresoras.
- ✓ Problemas:
 - Planificación. Alto nivel de especialización.
 Costos
 - Configuración: Carga del compilador, fuente, salvar el programa compilado, carga y linkeo.

S.O. - Evolución Historica (cont.)

- ✓ Sistemas por Lotes Sencillos (batch)
 - ✓ Monitor Residente
 - Software que controla la secuencia de eventos
 - Los trabajos se colocan juntos
 - Los programas vuelven al monitor cuando finaliza la ejecución
 - No hay interacción con el usuario mientras se ejecutan los trabajos

S.O. - Evolución Historica (cont.)

☑ Batch processing

The elements of the basic IBM 1401 system are the 1401 Processing Unit, 1402 Card Read-Punch, and 1403 Printer.

☑ Punching cards

Sistema Batch

Baja utilización de la CPU

Dispositivos de E/S mucho mas lentos con respecto a la CPU

Ante instrucción de E/S, el procesador permanece ocioso. Cuando se completa la E/S, se continua con la ejecucción del programa que se estaba ejecutando

Multiprogramación

- ✓ La operación de los sistemas batch se vió beneficiada del spooling de las tareas, al solapar la E/S de una tarea de la ejecución de otra
- ☑Al estar las tareas cargadas en disco, ya no era necesario ejecutarlas en el orden en el que fueron cargadas (job scheduling)
- ☑El SO mantiene varias tareas en memoria al mismo tiempo.

Multiprogramación (cont)

- ☑La secuencia de programas es de acuerdo a prioridad u orden de llegada
- ☑Cuando el proceso necesita realizar una operación de E/S, la CPU en lugar de permanecer ociosa, es utilizada para otro proceso.
- Después que se completa la atención de la interrupción, el control puede o no retornar al programa que se estaba ejecutando al momento de la interrupción

Multiprogramación (cont)

Tiempo Compartido

- Utiliza la multiprogramación para manejar múltiples trabajos interactivos
- ☑El tiempo del procesador es compartido entre multiples trabajos.
- Multiples usuarios podrían acceder simultáneamente al sistema utilizando terminales
- Los procesos usan la CPU por un periodo máximo de tiempo, luego del cual se le da la CPU a otro proceso

Tipos de S.O.

Sistemas Paralelos

- ☑ Sistema con más de una CPU
 - ✓ Conocido como Sistemas Multiprocesador
- ✓ Los procesadores comparten memoria y reloj.
- **☑** *Ventajas:*
 - Aumentar Productividad
 - ✓ Incrementa la velocidad de procesamiento

Sistemas Paralelos (cont.)

Sistemas Distribuidos

- ☑ El trabajo es distribuido a lo largo de varios procesadores
- Cada procesador cuenta con su propia memoria local.
- ☑ La comunicación se da sobre líneas de comunicación
- ☑ Ventajas:
 - ✓ Compartir Recursos
 - Aumento de la productividad
 - Confiabilidad

Sistemas Distribuidos (cont)

☑ Requieren de una infraestructura de red.

Sistemas de Tiempo Real

- ☑Utilizado para controlar dispositivos de aplicaciones delicadas como experimentos científicos, médicos, industria, etc.
- ☑ Hay restricciones de tiempo que se DEBEN respetar

Sistemas Portables y móviles

- ☑ Personal Digital Assistants (PDAs)
- ☑ Teléfonos Celulares (smartphones)
- Características
 - ✓ Memoria Limitada
 - ✓ Procesadores mas lentos
 - ✓ Pantallas mas pequeñas

Operating Systems Evolution

Windows And Linux Evolution

☑ Windows and Linux kernels are based on foundations developed in the mid-1970s

(see

for diagrams showing history of Windows & Unix)

Referencias

✓ Historia de los S.O.

√ http://es.wikipedia.org/wiki/Historia_y_e
voluci%C3%B3n_de_los_sistemas_operativos

✓ Línea del tiempo

✓ http://en.wikipedia.org/wiki/Operating_systems timeline

