Knuth's Exercise in Technical Writing in ForTheL (LATEXVersion)

Peter Koepke

June 24, 2019

Preliminaries on Sets (Types)

Signature 1. A type is a set. Let A, B, C stand for sets. Let T stand for a type. Let a: t stand for a is an element of t. Let $a \in t$ stand for a is an element of t.

Let $x \neq y$ stand for x! = y.

Signature 2. The empty set is a set that has no elements. Let \emptyset stand for the empty set.

Definition 1. A subset of B is a set A such that every element of A is an element of B. Let $A \subseteq B$ stand for A is a subset of B. Let A is contained in B stand for A is a subset of B. Let B contains A stand for A is a subset of B.

Preliminaries on Natural Numbers

[synonym number/numbers]

Signature 3. A natural number is a notion.

Definition 2. \mathbb{N} is the set of natural numbers. Let i,j,k,l,m denote natural numbers.

Signature 4. 0 is a natural number.

Signature 5. 1 is a natural number.

Signature 6. k + l is a natural number.

Signature 7. k * l is a natural number.

Axiom 1. k - < -k + 1.

Axiom 2. If $k \neq 0$ then there is l such that k = l + 1.

Axiom 3. k + 0 = k.

Axiom 4. 0 * l = 0.

Axiom 5. (k+1) * l = (k*l) + l.

Signature 8. $k \leq l$ is an atom.

Axiom 6. $k \leq k$.

Axiom 7. If $i \le j \le k$ then $i \le k$.

Axiom 8. If not $l \leq m$ then $m + 1 \leq l$.

Axiom 9. If $i \leq j$ and $k \leq l$ then $i + k \leq j + l$.

Axiom 10. If $i \leq j$ and $k \leq l$ then $i * k \leq j * l$.

Axiom 11. (Archimedean Property) Assume that for every $k \in \mathbb{N}$ $i+(k*l) \leq j+(k*m)$. Then $l \leq m$.

0.0.1 Preliminaries on Functions and Sequences

Axiom 12 (Functional Extensionality). Let f, g be functions such that Dom(f) = Dom(g). If f[i] = g[i] for all $i \in Dom(f)$ then f = g.

Definition 3. A sequence of length l is a function a such that $Dom(a) = \{i \in \mathbb{N} \mid 1 \leq i \leq l\}.$

Definition 4. $\mathbb{N}^l = \{a \mid a \text{ is a sequence of length } l \text{ such that } a[i] \in \mathbb{N} \text{ for all } i \in Dom(a)\}.$

We fix a dimension or length:

Signature 9. n is a natural number. Let a, b, c, p denote elements of \mathbb{N}^n .

Signature 10. a + +b is a sequence of length n such that

$$(a++b)[i] = a[i] + b[i]$$

for all $i \in Dom(a)$.

Signature 11. 0^n is a sequence of length n such that $0^n[i] = 0$ for all $i \in Dom(0^n)$.

Lemma 1. $c + +0^n$ is a sequence of length n and $c = c + +(0^n)$.

Proof. For all $i \in Dom(c)$ $c[i] = (c++0^n)[i]$. $Dom(c) = Dom(c++0^n)$. \square

Signature 12. k **a is a sequence of length n such that (k **a)[i] = k *a[i] for all $i \in Dom(a)$.

Lemma 2. (l+1)**p = (l**p) + +p.

Proof. $(l * *p) + +p \in \mathbb{N}^n$. Let us show that for all elements iofDom(p) we have

$$((l+1)**p)[i] = ((l**p) + +p)[i].$$

end. \Box

Preliminaries on Special Subsets of \mathbb{N}^n

Signature 13. A submonoid is a subset Q of \mathbb{N}^n such that $0^n \in Q$ and $a+b\in Q$ for all $a,b\in Q$.

Lemma 3. Let Q be a submonoid and $p \in Q$. Then for all natural numbers $k \ k * p \in Q$.

Proof. (Proof by induction) Let k be a natural number.

- (1) Case k = 0. Then $k * *p = 0^n \in Q$. end.
- (2) Case $k \neq 0$. Take l such that k = l + 1. l < -k and $l * *p \in Q$. Then $k * *p = (l + 1) * *p = (l * *p) + +p \in Q$. end.

Definition 5. $A(n) = \{a \in \mathbb{N}^n \mid for \ all \ i, j \ (if \ 1 \leq i \leq j \leq n \ then \ a[i] \leq a[j])\}.$

Signature 14. Let $P \subseteq \mathbb{N}^n$. The submonoid generated by P is a submonoid Q such that P is contained in Q and Q is contained in every submonoid that contains P. Let P^* stand for the submonoid generated by P.

Definition 6. Let $A, B \subseteq \mathbb{N}^n$. $A + + + B = \{a + +b \mid a \in A \text{ and } b \in B\}$.

The Lemma

Lemma 4. Let $P, C \subseteq \mathbb{N}^n$. Let $C \neq \emptyset$ and $C + + + (P^*) \subseteq A(n)$. Then we have $C, P \subseteq A(n)$.

Proof. We have $C \subseteq A(n)$. Indeed for all $c \in C$

$$c = c + 0^n \in (C + 0^n) \subseteq A(n).$$

Let us show that $P \subseteq A(n)$. Let $p \in P$. Let i, j be natural numbers such that $1 \le i \le j \le n$. Take $c \in C$. For all $k \in \mathbb{N}$ we have

$$c + +(k * *p) \in C + + + (P^*) \subseteq A(n)$$

and

$$c[i] + (k * p[i]) \le c[j] + (k * p[j]).$$

 $p[i] \leq p[j]$ [using the Archimedean Property]. end.