

460/498









FIG. 161



FIG. 162



FIG. 163



FIG. 164



FIG. 165



FIG. 166



FIG. 167



FIG. 168





FIG. 170













478/498



FIG. 176



480/498





482/498









FIG. 181



FIG. 182A













FIG. 187A



FIG. 187B





FIG. 189

## 496/498



FIG. 190

## 497/498



FIG. 191



## SEQUENCE LISTING

| <110>                            | DeFi<br>Zopi<br>Baye<br>Hake<br>Cher | se Technolog<br>rees, Shawn<br>I, David<br>er, Robert<br>es, David<br>n, Xi<br>e, Caryne | gies,      | Inc.   |             |             |            |     |
|----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|------------|--------|-------------|-------------|------------|-----|
| <120>                            |                                      | CHROPOIETIN                                                                              | REMO       | DELING | G AND GLYCO | CONJUGATION | OF         |     |
| <130>                            | 0408                                 | 353-01-50830                                                                             | <b>V</b> O |        |             |             |            |     |
| <150><br><151>                   |                                      | /us02/32263<br>2-10-09                                                                   |            |        |             |             |            |     |
| <150><br><151>                   |                                      | 20/287,994<br>2-11-5                                                                     |            |        |             |             |            |     |
| <150><br><151>                   |                                      | .0/360,770<br>8-01-06                                                                    |            |        |             |             |            |     |
| <150><br><151>                   |                                      | 10/369,779<br>8-03-17                                                                    |            |        |             |             |            |     |
| <150><br><151>                   |                                      | 10/410,945<br>8-04-09                                                                    |            |        |             |             |            |     |
| <160>                            | 75                                   |                                                                                          |            |        |             |             |            |     |
| <170>                            | Pate                                 | entIn versio                                                                             | on 3.2     | 2      |             |             |            |     |
| <210><br><211><br><212><br><213> | 1<br>525<br>DNA<br>Homo              | o sapiens                                                                                |            |        |             |             |            |     |
| <400>                            | 1<br>ctgg                            | gccctgccag                                                                               | ctcc       | etgece | cagagettee  | tgctcaagtg  | cttagagcaa | 60  |
| gtgagga                          | aaga                                 | tccagggcga                                                                               | tggc       | gcagcg | ctccaggaga  | agctgtgtgc  | cacctacaag | 120 |
| ctgtgc                           | cacc                                 | ccgaggagct                                                                               | ggtg       | ctgctc | ggacactctc  | tgggcatccc  | ctgggctccc | 180 |
| ctgagea                          | agct                                 | gccccagcca                                                                               | ggcc       | ctgcag | ctggcaggct  | gcttgagcca  | actccatage | 240 |
| ggccttt                          | tcc                                  | tctaccaggg                                                                               | gctc       | ctgcag | gccctggaag  | ggatctcccc  | cgagttgggt | 300 |
| cccacct                          | tgg                                  | acacactgca                                                                               | gctg       | gacgtc | gccgactttg  | ccaccaccat  | ctggcagcag | 360 |
| atggaag                          | gaac                                 | tgggaatggc                                                                               | ccct       | gacatg | cageceaece  | agggtgccat  | gccggccttc | 420 |
| gcctcto                          | gctt                                 | tccagcgccg                                                                               | ggca       | ggaggg | gtcctggttg  | cctcccatct  | gcagagcttc | 480 |
| ctggagg                          | gtgt                                 | cgtaccgcgt                                                                               | tcta       | cgccac | cttgcccago  | cctga       |            | 525 |
| <210><br><211><br><212>          | 2<br>174<br>PRT                      |                                                                                          |            |        |             |             |            |     |

<213> Homo sapiens

<400> 2

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys 1 5 10 15

Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln . 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 3

<211> 1733

<212> DNA

<213> Homo sapiens

<400> 3

60 gegeetetta tgtacccaca aaaatetatt tteaaaaaag ttgetetaag aatatagtta 120 tqcaataata aaacattaac tttatacttt ttaatttaat gtatagaata gagatataca 180 taggatatgt aaatagatac acagtgtata tgtgattaaa atataatggg agattcaatc 240 agaaaaaagt ttctaaaaag gctctggggt aaaagaggaa ggaaacaata atgaaaaaaa 300 tgtggtgaga aaaacagctg aaaacccatg taaagagtgt ataaagaaag caaaaagaga 360 420 aqtaqaaaqt aacacagggg catttggaaa atgtaaacga gtatgttccc tatttaaggc taggcacaaa gcaaggtctt cagagaacct ggagcctaag gtttaggctc acccatttca 540 accagtctag cagcatctgc aacatctaca atggccttga cctttgcttt actggtggcc ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac 600

| agcctgggta g                                    | gcaggaggac      | cttgatgctc       | ctggcacaga       | . tgaggagaat        | ctctctttc       | 660  |
|-------------------------------------------------|-----------------|------------------|------------------|---------------------|-----------------|------|
| tcctgcttga a                                    | aggacagaca      | tgactttgga       | tttccccagg       | aggagtttgg          | caaccagttc      | 720  |
| caaaaggctg a                                    | aaccatccc       | tgtcctccat       | gagatgatco       | agcagatctt          | caatctcttc      | 780  |
| agcacaaagg a                                    | actcatctgc      | tgcttgggat       | gagaccctcc       | : tagacaaatt        | ctacactgaa      | 840  |
| ctctaccagc a                                    | agctgaatga      | cctggaagcc       | tgtgtgatac       | agggggtggg          | ggtgacagag      | 900  |
| actcccctga t                                    | cgaaggagga      | ctccattctg       | gctgtgagga       | aatacttcca          | aagaatcact      | 960  |
| ctctatctga a                                    | aagagaagaa      | atacagccct       | tgtgcctggg       | g aggttgtcag        | agcagaaatc      | 1020 |
| atgagatett t                                    | tttctttgtc      | aacaaacttg       | caagaaagtt       | : taagaagtaa        | ggaatgaaaa      | 1080 |
| ctggttcaac a                                    | atggaaatga      | ttttcattga       | ttcgtatgc        | agctcacctt          | tttatgatct      | 1140 |
| gccatttcaa a                                    | agactcatgt      | ttctgctatg       | accatgacad       | gatttaaatc          | ttttcaaatg      | 1200 |
| tttttaggag †                                    | tattaatcaa      | cattgtattc       | agctcttaaq       | g gcactagtcc        | cttacagagg      | 1260 |
| accatgctga (                                    | ctgatccatt      | atctatttaa       | atatttttaa       | a aatattattt        | atttaactat      | 1320 |
| ttataaaaca a                                    | acttattttt      | gttcatatta       | tgtcatgtg        | acctttgcac          | agtggttaat      | 1380 |
| gtaataaaat                                      | gtgttctttg      | tatttggtaa       | atttatttt        | g tgttgttcat        | tgaacttttg      | 1440 |
| ctatggaact ·                                    | tttgtacttg      | tttattcttt       | aaaatgaaa        | t tccaagccta        | attgtgcaac      | 1500 |
| ctgattacag                                      | aataactggt      | acacttcatt       | tgtccatca        | a tattatattc        | aagatataag      | 1560 |
| taaaaataaa                                      | ctttctgtaa      | accaagttgt       | atgttgtac        | t caagataaca        | gggtgaacct      | 1620 |
| aacaaataca                                      | attctgctct      | cttgtgtatt       | tgatttttg        | t atgaaaaaaa        | ctaaaaatgg      | 1680 |
| taatcatact                                      | taattatcag      | ttatggtaaa       | tggtatgaa        | g agaagaagga        | acg             | 1733 |
| <210> 4<br><211> 188<br><212> PRT<br><213> Homo | sapiens         |                  |                  |                     |                 |      |
| <400> 4<br>Met Ala Leu<br>1                     | Thr Phe A       | la Leu Leu       | Val Ala Le<br>10 | u Leu Val Lei       | u Ser Cys<br>15 |      |
| Lys Ser Ser                                     | Cys Ser V<br>20 | al Gly Cys       | Asp Leu Pr<br>25 | o Gln Thr Hi:       | s Ser Leu       |      |
| Gly Ser Arg<br>35                               | Arg Thr L       | eu Met Leu<br>40 | Leu Ala Gl       | n Met Arg Aro<br>45 | g Ile Ser       |      |
| Leu Phe Ser<br>50                               | Cys Leu L       | ys Asp Arg<br>55 | His Asp Ph       | e Gly Phe Pro       | o Gln Glu       |      |
| Glu Phe Gly<br>65                               |                 | he Gln Lys<br>O  | Ala Glu Th<br>75 | r Ile Pro Va        | l Leu His<br>80 |      |

3

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser

| V                            | / <b>O 2</b> 0 | 04/03                   | 3651       |            |            |            |            |            |            |            |            |            |            | P          | CT/US2     | 003/0319 |
|------------------------------|----------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
|                              |                |                         |            | 85         |            |            |            |            | 90         |            |            |            |            | 95         |            |          |
| Ala                          | Ala            | Trp                     | Asp<br>100 | Glu        | Thr        | Leu        | Leu        | Asp<br>105 | Lys        | Phe        | Tyr        | Thr        | Glu<br>110 | Leu        | Tyr        |          |
| Gln                          | Gln            | Leu<br>115              | Asn        | Asp        | Leu        | Glu        | Ala<br>120 | Суѕ        | Val        | Ile        | Gln        | Gly<br>125 | Val        | Gly        | Val        |          |
| Thr                          | Glu<br>130     | Thr                     | Pro        | Leu        | Met        | Lys<br>135 | Glu        | Asp        | Ser        | Ile        | Leu<br>140 | Ala        | Val        | Arg        | Lys        |          |
| Tyr<br>145                   | Phe            | Gln                     | Arg        | Ile        | Thr<br>150 | Leu        | Tyr        | Leu        | Lys        | Glu<br>155 | Lys        | Lys        | Tyr        | Ser        | Pro<br>160 |          |
| Cys                          | Ala            | Trp                     | Glu        | Val<br>165 | Val        | Arg        | Ala        | Glu        | Ile<br>170 | Met        | Arg        | Ser        | Phe        | Ser<br>175 | Leu        |          |
| Ser                          | Thr            | Asn                     | Leu<br>180 | Gln        | Glu        | Ser        | Leu        | Arg<br>185 | Ser        | Lys        | Glu        |            |            |            |            |          |
| <210<br><210<br><210<br><210 | 1><br>2>       | 5<br>757<br>DNA<br>Homo | sap.       | iens       |            |            |            |            |            |            |            |            |            |            |            |          |
| <40                          |                | 5<br>aca                | agtg       | tctc       | ct c       | caaa       | ttgc       | t ct       | cctg       | ttgt       | gct.       | tctc       | cac        | taca       | gctctt     | 60       |
| tcc                          | atga           | gct                     | acaa       | cttg       | ct t       | ggat       | tcct       | a ca       | aaga       | agca       | gca        | attt       | tca        | gtgt       | cagaag     | 1,20     |
| ctc                          | ctgt           | ggc                     | aatt       | gaat       | aa a       | aggc       | ttga       | a ta       | ttgc       | ctca       | agg        | acag       | gat        | gaac       | tttgac     | 180      |
| atc                          | cctg           | agg                     | agat       | taag       | ca g       | ctgc       | agca       | g tt       | ccag       | aagg       | agg        | acgc       | cgc        | attg       | accatc     | 240      |
| tat                          | gaga           | tgc                     | tcca       | gaac       | at c       | tttg       | ctat       | t tt       | caga       | caag       | att        | catc       | tag        | cact       | ggctgg     | 300      |
| aat                          | gaga           | cta                     | ttgt       | tgag       | aa c       | ctcc       | tggc       | t aa       | tgtc       | tatc       | atc        | agat       | aaa        | ccat       | ctgaag     | 360      |
| aca                          | gtcc           | tgg                     | aaga       | aaaa       | ct g       | gaga       | aaga       | a ga       | tttt       | acca       | aaa        | gaaa       | act        | catg       | agcagt     | 420      |
| ctg                          | cacc           | tga                     | aaag       | atat       | ta t       | ggga       | ggat       | t ct       | gcat       | tacc       | tga        | aggc       | caa        | ggag       | tacagt     | 480      |
| cac                          | tgtg           | cct                     | ggac       | cata       | gt c       | agag       | tgga       | a at       | ccta       | agga       | act        | ttta       | ctt        | catt       | aacaga     | 540      |
| ctt                          | acag           | gtt                     | acct       | ccga       | aa c       | tgaa       | gatc       | t cc       | tagc       | ctgt       | ccc        | tctg       | gga        | ctgg       | acaatt     | 600      |
| gct                          | tcaa           | gca                     | ttct       | tcaa       | .cc a      | gcag       | atgc       | t gt       | ttaa       | gtga       | ctg        | atgg       | cta        | atgt       | actgca     | 660      |

<210> 6 <211> 187 <212> PRT <213> Homo sapiens

<400> 6

ttaaatttta ttttggaaaa taaattattt ttggtgc

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser 5 10

720

Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg 35 40 Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85 Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val 100 Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu 120 Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys 135 130 Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser 1.50 His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr 170 165 Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn <210> 7 1332 <211> <212> DNA <213> Homo sapiens <400> 7 atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg ctgcctggct 60 gcagtetteg taacceagga ggaagcecae ggegteetge aceggegeeg gegegeeaac 120 gcgttcctgg aggagctgcg gccgggctcc ctggagaggg agtgcaagga ggagcagtgc 180 tccttcgagg aggcccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt 240 tettacagtg atggggacca gtgtgcctca agtccatgcc agaatggggg ctcctgcaag 300 gaccagetee agtectatat etgettetge etceetgeet tegagggeeg gaactgtgag 360 acgcacaagg atgaccagct gatctgtgtg aacgagaacg gcggctgtga gcagtactgc 420 agtgaccaca cgggcaccaa gcgctcctgt cggtgccacg aggggtactc tctgctggca 480 gacggggtgt cctgcacacc cacagttgaa tatccatgtg gaaaaatacc tattctagaa 540 aaaagaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg ccccaaaggg 600

gagtgtccat ggcaggtcct gttgttggtg aatggagctc agttgtgtgg ggggaccctg

5

72Ö

780

840

900

960

1020

1080

1140

1200

1260

1320

1332

atcaacacca totgggtggt otocgoggeo cactgtttog acaaaatcaa gaactggagg aacctgatcg cggtgctggg cgagcacgac ctcagcgagc acgacgggga tgagcagagc cggcgggtgg cgcaggtcat catccccagc acgtacgtcc cgggcaccac caaccacgac ategegetge tecqcetgea ceaqeeegtg gteeteactg accatgtggt gecectetge ctgcccgaac ggacgttctc tgagaggacg ctggccttcg tgcgcttctc attggtcagc ggctggggcc agctgctgga ccgtggcgcc acggccctgg agctcatggt gctcaacgtg ccccqqctqa tqacccagga ctgcctgcag cagtcacgga aggtgggaga ctccccaaat atcacggagt acatgttctg tgccggctac tcggatggca gcaaggactc ctgcaagggg qacaqtqqaq qcccacatgc cacccactac cggggcacgt ggtacctgac gggcatcgtc agetggggee agggetgege aacegtggge caetttgggg tgtacaccag ggtctcccag tacatcgagt ggctgcaaaa gctcatgcgc tcagagccac gcccaggagt cctcctgcga gccccatttc cc <210> 8 <211> 444 <212> PRT <213> Homo sapiens <400> 8 Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln 10 Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val 20 Leu His Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 40 45 Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile 75 70 Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145

6

170

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile

| Pro                          | Iļe          | Leu                      | Glu<br>180 | Lys        | Arg        | Asn        | Ala        | Ser<br>185 | Lys        | Pro        | Gln        | Gly        | Arg<br>190 | Ile        | Val        |     |
|------------------------------|--------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Gly                          | Gly          | Lys<br>195               | Val        | Суѕ        | Pro        | Lys        | Gly<br>200 | Glu        | Cys        | Pro        | Trp        | Gln<br>205 | Val        | Leu        | Leu        |     |
| Leu                          | Val<br>210   | Asn                      | Gly        | Ala        | Gln        | Leu<br>215 | Суѕ        | Gly        | Gly        | Thr        | Leu<br>220 | Ile        | Asn        | Thr        | Ile        |     |
| Trp<br>225                   | Val          | Val                      | Ser        | Ala        | Ala<br>230 | His        | Cys        | Phe        | Asp        | Lys<br>235 | Ile        | Lys        | Asn        | Trp        | Arg<br>240 |     |
| Asn                          | Leu          | Ile                      | Ala        | Val<br>245 | Leu        | Gly        | Glu        | His        | Asp<br>250 | Leu        | Ser        | Glu        | His        | Asp<br>255 | Gly        |     |
| Asp                          | Glu          | Gln                      | Ser<br>260 | Arg        | Arg        | Val        | Ala        | Gln<br>265 | Val        | Ile        | Ile        | Pro        | Ser<br>270 | Thr        | Tyr        |     |
| Val                          | Pro          | Gly<br>275               | Thr        | Thr        | Asn        | His        | Asp<br>280 | Ile        | Ala        | Leu        | Leu        | Arg<br>285 | Leu        | His        | Gln        |     |
| Pro                          | Val<br>290   | Val                      | Leu        | Thr        | Asp        | His<br>295 | Val        | Val        | Pro        | Leu        | Cys<br>300 | Leu        | Pro        | Glu        | Arg        |     |
| Thr<br>305                   | Phe          | Ser                      | Glu        | Arg        | Thr<br>310 | Leu        | Ala        | Phe        | Val        | Arg<br>315 | Phe        | Ser        | Leu        | Val        | Ser<br>320 |     |
| Gly                          | Trp          | Gly                      | Gln        | Leu<br>325 | Leu        | Asp        | Arg        | Gly        | Ala<br>330 | Thr        | Ala        | Leu        | Glu        | Leu<br>335 | Met        |     |
| Val                          | Leu          | Asn                      | Val<br>340 | Pro        | Arg        | Leu        | Met        | Thr<br>345 | Gln        | Asp        | Cys        | Leu        | Gln<br>350 | Gln        | Ser        |     |
| Arg                          | Lys          | Val<br>355               | Gly        | Asp        | Ser        | Pro        | Asn<br>360 | Ile        | Thr        | Glu        | Tyr        | Met<br>365 | Phe        | Cys        | Ala        |     |
| Gly                          | Tyr<br>370   | Ser                      | Asp        | Gly        | Ser        | Lys<br>375 | Asp        | Ser        | Cys        | Lys        | Gly<br>380 | Asp        | Ser        | Gly        | Gly        |     |
| Pro<br>385                   | His          | Ala                      | Thr        | His        | Tyr<br>390 | Arg        | Gly        | Thr        | Trp        | Tyr<br>395 | Leu        | Thr        | Gly        | Ile        | Val<br>400 |     |
| Ser                          | Trp          | Gly                      | Gln        | Gly<br>405 | Cys        | Ala        | Thr        | Val        | Gly<br>410 | His        | Phe        | Gly        | Val        | Tyr<br>415 | Thr        |     |
| Arg                          | Val          | Ser                      | Gln<br>420 | Tyr        | Ile        | Glu        | Trp        | Leu<br>425 | Gln        | Lys        | Leu        | Met        | Arg<br>430 | Ser        | Glu        |     |
| Pro                          | Arg          | Pro<br>435               | Gly        | Val        | Leu        | Leu        | Arg<br>440 | Ala        | Pro        | Phe        | Pro        |            |            |            |            |     |
| <210<br><211<br><212<br><213 | .> 1<br>!> [ | )<br>.437<br>)NA<br>Iomo | sani       | ans        |            |            |            |            |            |            |            |            |            |            |            |     |
|                              |              |                          | Sapı       | . 0113     |            |            |            |            |            |            |            |            |            |            |            |     |
|                              | ageç         | jcg t                    |            |            |            |            |            |            |            |            |            |            |            |            | tttta      | 60  |
| ggat                         | atct         | ac t                     | cagt       | gato       | ra at      | gtac       | agtt       | ttt        | cttg       | atc        | atga       | aaac       | gc c       | aaca       | aaatt      | 120 |

| ctgaatcggc                  | caaagaggta       | taattcaggt   | aaattggaag        | agtttgttca | agggaacctt      | 180  |
|-----------------------------|------------------|--------------|-------------------|------------|-----------------|------|
| gagagagaat                  | gtatggaaga       | aaagtgtagt   | tttgaagaac        | cacgagaagt | ttttgaaaac      | 240  |
| actgaaaaga                  | caactgaatt       | ttggaagcag   | tatgttgatg        | gagatcagtg | tgagtccaat      | 300  |
| ccatgtttaa                  | atggcggcag       | ttgcaaggat   | gacattaatt        | cctatgaatg | ttggtgtccc      | 360  |
| tttggatttg                  | aaggaaagaa       | ctgtgaatta   | gatgtaacat        | gtaacattaa | gaatggcaga      | 420  |
| tgcgagcagt                  | tttgtaaaaa       | tagtgctgat   | aacaaggtgg        | tttgctcctg | tactgaggga      | 480  |
| tatcgacttg                  | cagaaaacca       | gaagtcctgt   | gaaccagcag        | tgccatttcc | atgtggaaga      | 540  |
| gtttctgttt                  | cacaaacttc       | taagctcacc   | cgtgctgagg        | ctgtttttcc | tgatgtggac      | 600  |
| tatgtaaatc                  | ctactgaagc       | tgaaaccatt   | ttggataaca        | tcactcaagg | cacccaatca      | 660  |
| tttaatgact                  | tcactcgggt       | tgttggtgga   | gaagatgcca        | aaccaggtca | attcccttgg      | 720  |
| caggttgttt                  | tgaatggtaa       | agttgatgca   | ttctgtggag        | gctctatcgt | taatgaaaaa      | 780  |
| tggattgťaa                  | ctgctgccca       | ctgtgttgaa   | actggtgtta        | aaattacagt | tgtcgcaggt      | 840  |
| gaacataata                  | ttgaggagac       | agaacataca   | gagcaaaagc        | gaaatgtgat | tcgagcaatt      | 900  |
| attcctcacc                  | acaactacaa       | tgcagctatt   | aataagtaca        | accatgacat | tgcccttctg      | 960  |
| gaactggacg                  | aacccttagt       | gctaaacagc   | tacgttacac        | ctatttgcat | tgctgacaag      | 1020 |
| gaatacacga                  | acatcttcct       | caaatttgga   | tctggctatg        | taagtggctg | ggcaagagtc      | 1080 |
| ttccacaaag                  | ggagatcagc       | tttagttctt   | cagtacctta        | gagttccact | tgttgaccga      | 1140 |
| gccacatgtc                  | ttcgatctac       | aaagttcacc   | atctataaca        | acatgttctg | tgctggcttc      | 1200 |
| catgaaggag                  | gtagagattc       | atgtcaagga   | gatagtgggg        | gaccccatgt | tactgaagtg      | 1260 |
| gaagggacca                  | gtttcttaac       | tggaattatt   | agctggggtg        | aagagtgtgc | aatgaaaggc      | 1320 |
| aaatatggaa                  | tatataccaa       | ggtatcccgg   | tatgtcaact        | ggattaagga | aaaaacaaag      | 1380 |
| ctcacttaat                  | gaaagatgga       | tttccaaggt   | taattcattg        | gaattgaaaa | ttaacag         | 1437 |
|                             |                  |              |                   |            |                 |      |
| <400> 10<br>Met Gln Ar<br>1 | g Val Asn M<br>5 | et Ile Met . | Ala Glu Ser<br>10 | Pro Ser Le | u Ile Thr<br>15 |      |
|                             |                  |              |                   |            |                 |      |

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn 75

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 105

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 135

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala 180

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 265

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 280 275

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 295

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu 310 315

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 330

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu 375 380

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His 405 410 Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val 440 Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 455 <210> 11 <211> 603 <212> DNA <213> Homo sapiens <400> 11 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat 60 gttctccatt ccgctcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca 120 ttottotoco agoogggtgo cocaatactt cagtgoatgg gotgotgott ototagagoa 180 tateceaete eactaaqqte caaqaaqaeq atgttggtee aaaagaaegt caeeteagag 240 tocacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg 300 qaqaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta aatgttttac 360 caaqtqctqt cttqatqact qctqattttc tggaatggaa aattaagttg tttagtgttt 420 atggetttgt gagataaaac teteetttte ettaceatae eaetttgaca egetteaagg 480 atatactqca qctttactqc cttcctcctt atcctacagt acaatcagca gtctagttct 540 600 tttcatttgg aatgaataca gcattaagct tgttccactg caaataaagc cttttaaatc 603 atc <210> 12 <211> 116 <212> PRT Homo sapiens <213> <400> 12 Met Asp Tyr Tyr Arq Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro 20 25 30 Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro 55

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu 70 Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser 115 <210> 13 <211> 390 <212> DNA <213> Homo sapiens <400> 13 60 atqaaqacac tccaqttttt cttccttttc tgttgctgga aagcaatctg ctgcaatagc tgtgagctga ccaacatcac cattgcaata gagaaagaag aatgtcgttt ctgcataagc 120 180 atcaacacca cttggtgtgc tggctactgc tacaccaggg atctggtgta taaggaccca 240 qccaqqccca aaatccaqaa aacatgtacc ttcaaggaac tggtatatga aacagtgaga 300 gtgcccggct gtgctcacca tgcagattcc ttgtatacat acccagtggc cacccagtgt cactgtggca agtgtgacag cgacagcact gattgtactg tgcgaggcct ggggcccagc 360 390 tactgctcct ttggtgaaat gaaagaataa <210> 14 <211> 129 <212> PRT <213> Homo sapiens <400> 14 Met Lys Thr Leu Gln Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile 5 10 Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly 45 Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys 105 110 Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys

120 125 115

Glu

<210> 15 <211> 1342 <212> DNA <213> Homo sapiens

<400> 15

cccggagccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 cegecetete etecaggece gtggggetgg ceetgeaceg cegagettee egggatgagg 120 gcccccggtg tggtcacccg gcgcgcccca ggtcgctgag ggaccccggc caggcgcgga 180 gatggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 240 300 tetgggeete ceagteetgg gegeeceace aegeeteate tgtgaeagee gagteetgga 360 gaggtacctc ttggaggcca aggaggccga qaatatcacg acgggctgtg ctgaacactg 420 cagettgaat gagaatatea etgteecaga caccaaagtt aatttetatg eetggaagag gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 ageccagaag gaagecatet eccetecaga tgeggeetea getgeteeae teegaacaat 660 cactgctgac actttccgca aactcttccg agtctactcc aatttcctcc ggggaaagct 720 gaagetgtac acaggggagg cetgeaggae aggggaeaga tgaceaggtg tgtecacetg 780 840 qqcatatcca ccacctccct caccaacatt gcttgtgcca caccctcccc cgccactcct 900 quaccccqtc quqqqctct caqctcagcg ccagcctgtc ccatggacac tccagtgcca 960 qcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag 1020 ggacagagec atgetgggaa gacgeetgag eteaetegge accetgeaaa atttgatgee 1080 aggacacget ttggaggega tttacctgtt ttcgcaccta ccatcaggga caggatgacc 1140 tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcatgg gcactccctt 1200 1260 agtagcaaga gccccttqa caccagagta qtagaaacca tgaagacaga atgggggctg 1320 qcctctggct ctcatggggt ccaagttttg tgtattcttc aacctcattg acaagaactg 1342 aaaccaccaa aaaaaaaaaa aa

<210> 16 <211> 193 PRT <212>

<213> Homo sapiens

| <400<br>Met<br>1         |            | 6<br>Val                 | His        | Glu<br>5   | Cys        | Pro        | Ala        | Trp        | Leu<br>10  | Trp        | Leu        | Leu        | Leu        | Ser<br>15  | Leu        |     |
|--------------------------|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Leu                      | Ser        | Leu                      | Pro<br>20  | Leu        | Gly        | Leu        | Pro        | Val<br>25  | Leu        | Gly        | Ala        | Pro        | Pro<br>30  | Arg        | Leu        |     |
| Ile                      | Суз        | Asp<br>35                | Ser        | Arg        | Val        | Leu        | Glu<br>40  | Arg        | Tyr        | Leu        | Leu        | Glu<br>45  | Ala        | Lys        | Glu        |     |
| Ala                      | Glu<br>50  | Asn                      | Ile        | Thr        | Thr        | Gly<br>55  | Cys        | Ala        | Glu        | His        | Cys<br>60  | Ser        | Leu        | Asn        | Glu        |     |
| Asn<br>65                | Ile        | Thr                      | Val        | Pro        | Asp<br>70  | Thr        | Lys        | Val        | Asn        | Phe<br>75  | Tyr        | Ala        | Trp        | Lys        | Arg<br>80  |     |
| Met                      | Glu        | Val                      | Gly        | Gln<br>85  | Gln        | Ala        | Val        | Glu        | Val<br>90  | Trp        | Gln        | Gly        | Leu        | Ala<br>95  | Leu        |     |
| Leu                      | Ser        | Glu                      | Ala<br>100 | Val        | Leu        | Arg        | Gly        | Gln<br>105 | Ala        | Leu        | Leu        | Val        | Asn<br>110 | Ser        | Ser        |     |
| Gln                      | Pro        | Trp<br>115               | Glu        | Pro        | Leu        | Gln        | Leu<br>120 | His        | Val        | Asp        | Lys        | Ala<br>125 | Val        | Ser        | Gly        |     |
| Leu                      | Arg<br>130 | Ser                      | Leu        | Thr        | Thr        | Leu<br>135 | Leu        | Arg        | Ala        | Leu        | Arg<br>140 | Ala        | Gln        | Lys        | Glu        |     |
| Ala<br>145               | Ile        | Ser                      | Pro        | Pro        | Asp<br>150 | Ala        | Ala        | Ser        | Ala        | Ala<br>155 | Pro        | Leu        | Arg        | Thr        | Ile<br>160 |     |
| Thr                      | Ala        | Asp                      | Thr        | Phe<br>165 | Arg        | Lys        | Leu        | Phe        | Arg<br>170 | Val        | Tyr        | Ser        | Asn        | Phe<br>175 | Leu        |     |
| Arg                      | Gly        | Lys                      | Leu<br>180 |            | Leu        | Tyr        | Thr        | Gly<br>185 | Glu        | Ala        | Суз        | Arg        | Thr<br>190 | Gly        | Asp        |     |
| Arg                      |            |                          |            |            |            |            |            |            |            |            |            |            |            |            |            |     |
| <21<br><21<br><21<br><21 | 1><br>2>   | 17<br>435<br>DNA<br>Homo | sap        | iens       |            |            |            |            |            |            |            |            |            |            |            |     |
| <40<br>atg               |            | 17<br>tgc                | agag       | cctg       | ct g       | ctct       | tggg       | c ac       | tgtg       | gcct       | gca        | gcat       | ctc        | tgca       | cccgcc     | 60  |
| cgc                      | tege       | cca                      | gccc       | cago       | ac g       | cagc       | cctg       | g ga       | gcat       | gtga       | atg        | ccat       | cca        | ggag       | gcccgg     | 120 |
| cgt                      | ctcc       | tga                      | acct       | gagt       | ag a       | gaca       | .ctgc      | t gc       | tgag       | atga       | atg        | aaac       | agt        | agaa       | gtcatc     | 180 |
| tca                      | gaaa       | ıtgt                     | ttga       | cctc       | ca g       | gago       | cgac       | c tg       | ccta       | caga       | cac        | gcct       | gga        | gctg       | tacaag     | 240 |
| cag                      | ggcc       | tgc                      | aaaa       | cago       | ct c       | acca       | .agct      | c aa       | gggc       | ccct       | tga        | ccat       | gat        | ggcc       | agccac     | 300 |
| tac                      | aago       | agc                      | actg       | ccct       | .cc a      | acco       | cgga       | a ac       | ttcc       | tgtg       | caa        | ссса       | .gat       | tato       | accttt     | 360 |
| ma a                     | actt       | tca                      | aaga       | gaac       | at a       | raaqq      | actt       | t ct       | actt       | at.ca      | tcc        | cctt       | tga        | ctqc       | tqqqaq     | 420 |

ccagtccagg agtga 435

<211> 144

<212> PRT

<213> Homo sapiens

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile 1  $\phantom{0}$  5  $\phantom{0}$  10  $\phantom{0}$  15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met 85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 130 135 140

<210> 19

<211> 501

<212> DNA

<213> Homo sapiens

<400> 19

atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 300 aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 360 aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 420 tattcggtaa ctgacttgaa tgtccaacgc aaagcaatac atgaactcat ccaagtgatg gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga 480 501 ggtcgaagag catcccagta a

<210> 20 <211> 166

<212> PRT

<213> Homo sapiens

<400> 20

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu 1 5 10 15

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu 20 25 30

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35 40 45

Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp 50 55 60

Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe 65 70 75 80

Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85 90 95

Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Arg 100 105 110

Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val 115 120 125

Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser 130 135 140

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg 145 150 155 160

Gly Arg Arg Ala Ser Gln 165

<210> 21

<211> 1352

<212> DNA

<213> Homo sapiens

<400> 21

ctqqqacagt gaatcgacaa tgccgtcttc tgtctcgtgg ggcatcctcc tgctggcagg 60 120 cctqtqctqc ctggtccctg tctccctggc tgaggatccc cagggagatg ctgcccagaa 180 gacagataca toccaccatg atcaggatca cocaaccttc aacaagatca cocccaacct qqctqaqttc gccttcagcc tataccgcca gctggcacac cagtccaaca gcaccaatat 240 cttcttctcc ccagtgagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc 300 360 tgacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttccggaggc tcagatccat gaaggettee aggaacteet eegtaceete aaccageeag acageeaget 420 ccaqctgacc accggcaatg gcctgttcct cagcgagggc ctgaagctag tggataagtt 480 tttggaggat gttaaaaagt tgtaccactc agaagccttc actgtcaact tcggggacac 540

| cgaagaggcc | aagaaacaga | tcaacgatta | cgtggagaag | ggtactcaag | ggaaaattgt | 600  |
|------------|------------|------------|------------|------------|------------|------|
| ggatttggtc | aaggagcttg | acagagacac | agtttttgct | ctggtgaatt | acatcttctt | 660  |
| taaaggcaaa | tgggagagac | cctttgaagt | caaggacacc | gaggaagagg | acttccacgt | 720  |
| ggaccaggtg | accaccgtga | aggtgcctat | gatgaagcgt | ttaggcatgt | ttaacatcca | 780  |
| gcactgtaag | aagctgtcca | gctgggtgct | gctgatgaaa | tacctgggca | atgccaccgc | 840  |
| catcttcttc | ctgcctgatg | aggggaaact | acagcacctg | gaaaatgaac | tcacccacga | 900  |
| tatcatcacc | aagttcctgg | aaaatgaaga | cagaaggtct | gccagcttac | atttacccaa | 960  |
| actgtccatt | actggaacct | atgatctgaa | gagcgtcctg | ggtcaactgg | gcatcactaa | 1020 |
| ggtcttcagc | aatggggctg | acctctccgg | ggtcacagag | gaggcacccc | tgaagctctc | 1080 |
| caaggccgtg | cataaggctg | tgctgaccat | cgacgagaaa | gggactgaag | ctgctggggc | 1140 |
| catgttttta | gaggccatac | ccatgtctat | ccccccgag  | gtcaagttca | acaaaccctt | 1200 |
| tgtcttctta | atgattgaac | aaaataccaa | gtctcccctc | ttcatgggaa | aagtggtgaa | 1260 |
| tcccacccaa | aaataactgc | ctctcgctcc | tcaacccctc | ccctccatcc | ctggccccct | 1320 |
| ccctggatga | cattaaagaa | gggttgagct | gg         |            |            | 1352 |

<210> 22

<211> 418

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys 1 5 10 15

Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala 20 25 30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn 35 40 45

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln 50 55 60

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser 65 70 75 80

Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr  $85 \\ 90 \\ 95$ 

His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro 100 105 110

Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Arg Thr Leu Asn 115 120 125

Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu 130 135 140

Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys 185 Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu 200 Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val 215 Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys 250 Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala 260 Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu 280 Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr 310 Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe 325 Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys 345 Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly 360 355 Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile 375 Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu 390 395 Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr 405 410 Gln Lys <210> 23 <211> 2004 <212> DNA <213> Homo sapiens <400> 23 qctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60

| ctctatcctt | cagagactct | ggaacccctg | tggtcttctc | ttcatctaat | gaccctgagg | 120  |   |
|------------|------------|------------|------------|------------|------------|------|---|
| ggatggagtt | ttcaagtcct | tccagagagg | aatgtcccaa | gcctttgagt | agggtaagca | 180  |   |
| tcatggctgg | cagcctcaca | ggtttgcttc | tacttcaggc | agtgtcgtgg | gcatcaggtg | 240  |   |
| cccgcccctg | catccctaaa | agcttcggct | acagctcggt | ggtgtgtgtc | tgcaatgcca | 300  |   |
| catactgtga | ctcctttgac | ccccgacct  | ttcctgccct | tggtaccttc | agccgctatg | 360  |   |
| agagtacacg | cagtgggcga | cggatggagc | tgagtatggg | gcccatccag | gctaatcaca | 420  |   |
| cgggcacagg | cctgctactg | accctgcagc | cagaacagaa | gttccagaaa | gtgaagggat | 480  |   |
| ttggaggggc | catgacagat | gctgctgctc | tcaacatcct | tgccctgtca | cccctgccc  | 540  |   |
| aaaatttgct | acttaaatcg | tacttctctg | aagaaggaat | cggatataac | atcatccggg | 600  |   |
| tacccatggc | cagctgtgac | ttctccatcc | gcacctacac | ctatgcagac | acccctgatg | 660  |   |
| atttccagtt | gcacaacttc | agcctcccag | aggaagatac | caagctcaag | atacccctga | 720  |   |
| ttcaccgagc | cctgcagttg | gcccagcgtc | ccgtttcact | ccttgccagc | ccctggacat | 780  |   |
| cacccacttg | gctcaagacc | aatggagcgg | tgaatgggaa | ggggtcactc | aagggacagc | 840  |   |
| ccggagacat | ctaccaccag | acctgggcca | gatactttgt | gaagtteetg | gatgcctatg | 900  |   |
| ctgagcacaa | gttacagttc | tgggcagtga | cagctgaaaa | tgagccttct | gctgggctgt | 960  |   |
| tgagtggata | ccccttccag | tgcctgggct | tcacccctga | acatcagcga | gacttcattg | 1020 |   |
| cccgtgacct | aggtcctacc | ctcgccaaca | gtactcacca | caatgtccgc | ctactcatgc | 1080 |   |
| tggatgacca | acgcttgctg | ctgccccact | gggcaaaggt | ggtactgaca | gacccagaag | 1140 |   |
| cagctaaata | tgttcatggc | attgctgtac | attggtacct | ggactttctg | gctccagcca | 1200 |   |
| aagccaccct | aggggagaca | caccgcctgt | tccccaacac | catgctcttt | gcctcagagg | 1260 |   |
| cctgtgtggg | ctccaagttc | tgggagcaga | gtgtgcggct | aggctcctgg | gatcgaggga | 1320 |   |
| tgcagtacag | ccacagcatc | atcacgaacc | tcctgtacca | tgtggtcggc | tggaccgact | 1380 |   |
| ggaaccttgc | cctgaacccc | gaaggaggac | ccaattgggt | gcgtaacttt | gtcgacagtc | 1440 |   |
| ccatcattgt | agacatcacc | aaggacacgt | tttacaaaca | gcccatgttc | taccaccttg | 1500 |   |
| gccacttcag | caagttcatt | cctgagggct | cccagagagt | ggggctggtt | gccagtcaga | 1560 | • |
| agaacgacct | ggacgcagtg | gcactgatgc | atcccgatgg | ctctgctgtt | gtggtcgtgc | 1620 |   |
| taaaccgctc | ctctaaggat | gtgcctctta | ccatcaagga | tcctgctgtg | ggcttcctgg | 1680 |   |
| agacaatctc | acctggctac | tccattcaca | cctacctgtg | gcatcgccag | tgatggagca | 1740 |   |
| gatactcaag | gaggcactgg | gctcagcctg | ggcattaaag | ggacagagtc | agctcacacg | 1800 |   |
| ctgtctgtga | ctaaagaggg | cacagcaggg | ccagtgtgag | cttacagcga | cgtaagccca | 1860 |   |
| ggggcaatgg | tttgggtgac | tcactttccc | ctctaggtgg | tgcccagggc | tggaggcccc | 1920 |   |
|            |            |            |            |            |            |      |   |

1.8

tagaaaaaga teagtaagee eeagtgteee eecageeeee atgettatgt gaacatgege 1980 tgtgtgetge ttgetttgga aact 2004

<210> 24 <211> 536 <212> PRT <213> Homo sapiens

Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser 50 55 60

Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu 65 70 75 80

Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln 85 90 95

Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln
100 105 110

Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala 115 120 125

Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu 130 135 140

Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val 145 150 155 160

Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp 165 170 175

Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 180 185 190

Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 195 200 205

Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu 210 215 220

Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro 225 230 235 240

Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 250 255

Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly 295 Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Pro His Trp Ala Lys Val Val Leu Thr 325 330 Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg 360 Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp 425 Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp 435 Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys 455 Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys 465 470 Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val 490 485 Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys 500 505 Asp Pro Ala Val Gly Phe Leu Glu Thr .Ile Ser Pro Gly Tyr Ser Ile 525 520 His Thr Tyr Leu Trp His Arg Gln 530 535 <210> 25 <211> 1726 <212> DNA <213> Homo sapiens atggatgcaa tgaaqaqagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt tegeccagee aggaaateea tgeecgatte agaagaggag ccagatetta ecaagtgate

| tgcagagatg | aaaaaacgca | gatgatatac | cagcaacatc | agtcatggct | gcgccctgtg | 180  |
|------------|------------|------------|------------|------------|------------|------|
| ctcagaagca | accgggtgga | atattgctgg | tgcaacagtg | gcagggcaca | gtgccactca | 240  |
| gtgcctgtca | aaagttgcag | cgagccaagg | tgtttcaacg | ggggcacctg | ccagcaggcc | 300  |
| ctgtacttct | cagatttcgt | gtgccagtgc | cccgaaggat | ttgctgggaa | gtgctgtgaa | 360  |
| atagatacca | gggccacgtg | ctacgaggac | cagggcatca | gctacagggg | cacgtggagc | 420  |
| acagcggaga | gtggcgccga | gtgcaccaac | tggaacagca | gcgcgttggc | ccagaagccc | 480  |
| tacagcgggc | ggaggccaga | cgccatcagg | ctgggcctgg | ggaaccacaa | ctactgcaga | 540  |
| aacccagatc | gagactcaaa | gccctggtgc | tacgtcttta | aggcggggaa | gtacagctca | 600  |
| gagttctgca | gcacccctgc | ctgctctgag | ggaaacagtg | actgctactt | tgggaatggg | 660  |
| tcagcctacc | gtggcacgca | cagcctcacc | gagtcgggtg | cctcctgcct | cccgtggaat | 720  |
| tccatgatcc | tgataggcaa | ggtttacaca | gcacagaacc | ccagtgccca | ggcactgggc | 780  |
| ctgggcaaac | ataattactg | ccggaatcct | gatggggatg | ccaagccctg | gtgccacgtg | 840  |
| ctgaagaacc | gcaggctgac | gtgggagtac | tgtgatgtgc | cctcctgctc | cacctgcggc | 900  |
| ctgagacagt | acagecagec | tcagtttcgc | atcaaaggag | ggetettege | cgacatcgcc | 960  |
| tcccacccct | ggcaggctgc | catctttgcc | aagcacagga | ggtcgccggg | agageggtte | 1020 |
| ctgtgcgggg | gcatactcat | cagctcctgc | tggattctct | ctgccgccca | ctgcttccag | 1080 |
| gagaggtttc | cgccccacca | cctgacggtg | atcttgggca | gaacataccg | ggtggtccct | 1140 |
| ggcgaggagg | agcagaaatt | tgaagtcgaa | aaatacattg | tccataagga | attcgatgat | 1200 |
| gacacttacg | acaatgacat | tgcgctgctg | cagctgaaat | cggattcgtc | ccgctgtgcc | 1260 |
| caggagagca | gcgtggtccg | cactgtgtgc | cttcccccgg | cggacctgca | gctgccggac | 1320 |
| tggacggagt | gtgagctctc | cggctacggc | aagcatgagg | ccttgtctcc | tttctattcg | 1380 |
| gagcggctga | aggaggctca | tgtcagactg | tacccatcca | gccgctgcac | atcacaacat | 1440 |
| ttacttaaca | gaacagtcac | cgacaacatg | ctgtgtgctg | gagacactcg | gagcggcggg | 1500 |
| ccccaggcaa | acttgcacga | cgcctgccag | ggcgattcgg | gaggccccct | ggtgtgtctg | 1560 |
| aacgatggcc | gcatgacttt | ggtgggcatc | atcagctggg | geetgggetg | tggacagaag | 1620 |
| gatgtcccgg | gtgtgtacac | caaggttacc | aactacctag | actggattcg | tgacaacatg | 1680 |
| cgaccgtgac | caggaacacc | cgactcctca | aaagcaaatg | agatcc     |            | 1726 |

<sup>&</sup>lt;210> 26 <211> 562 <212> PRT <213> Homo sapiens

<sup>&</sup>lt;400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu 105 Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg 215 210 Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn 230 Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala 245 Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp 285 Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr 295 300 Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala 310 315 Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro

|            |            |                          |            | 325        |            |            |            | :          | 330        |            |            |            |            | 335        |            |     |
|------------|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Gly        | Glu        | Arg                      | Phe<br>340 | Leu        | Cys        | Gly        | Gly        | Ile<br>345 | Leu        | Ile        | Ser        | Ser        | Cys<br>350 | Trp        | Ile        |     |
| Leu        | Ser        | Ala<br>355               | Ala        | His        | Cys        | Phe        | Gln<br>360 | Glu        | Arg        | Phe        | Pro        | Pro<br>365 | His        | His        | Leu        |     |
| Thr        | Val<br>370 | Ile                      | Leu        | Gly        | Arg        | Thr<br>375 | Tyr        | Arg        | Val        | Val        | Pro<br>380 | Gly        | Glu        | Glu        | Glu        |     |
| Gln<br>385 | Lys        | Phe                      | Glu        | Val        | Glu<br>390 | Lys        | Tyr        | Ile        | Val        | His<br>395 | Lys        | Glu        | Phe        | Asp        | Asp<br>400 |     |
| Asp        | Thr        | Tyr                      | Asp        | Asn<br>405 | Asp        | Ile        | Ala        | Leu        | Leu<br>410 | Gln        | Leu        | Lys        | Ser        | Asp<br>415 | Ser        |     |
| Ser        | Arg        | Cys                      | Ala<br>420 | Gln        | Glu        | Ser        | Ser        | Val<br>425 | Val        | Arg        | Thr        | Val        | Cys<br>430 | Leu        | Pro        |     |
| Pro        | Ala        | Asp<br>435               | Leu        | Gln        | Leu        | Pro        | Asp<br>440 | Trp        | Thr        | Glu        | Cys        | Glu<br>445 | Leu        | Ser        | Gly        |     |
| Tyr        | Gly<br>450 | Lys                      | His        | Glu        | Ala        | Leu<br>455 | Ser        | Pro        | Phe        | Tyr        | Ser<br>460 | Glu        | Arg        | Leu        | Lys        |     |
| Glu<br>465 | Ala        | His                      | Val        | Arg        | Leu<br>470 | Tyr        | Pro        | Ser        | Ser        | Arg<br>475 | Cys        | Thr        | Ser        | Gln        | His<br>480 |     |
| Leu        | Leu        | Asn                      | Arg        | Thr<br>485 | Val        | Thr        | Asp        | Asn        | Met<br>490 | Leu        | Cys        | Ala        | Gly        | Asp<br>495 | Thr        |     |
| Arg        | Ser        | Gly                      | Gly<br>500 | Pro        | Gln        | Ala        | Asn        | Leu<br>505 | His        | Asp        | Ala        | Cys        | Gln<br>510 | Gly        | Asp        |     |
| Ser        | Gly        | Gly<br>515               | Pro        | Leu        | Val        | Cys        | Leu<br>520 | Asn        | Asp        | Gly        | Arg        | Met<br>525 | Thr        | Leu        | Val        |     |
| Gly        | Ile<br>530 | Ile                      | Ser        | Trp        | Gly        | Leu<br>535 | Gly        | Cys        | Gly        | Gln        | Lys<br>540 | Asp        | Val        | Pro        | Gly        |     |
| Val<br>545 | Tyr        | Thr                      | Lys        | Val        | Thr<br>550 | Asn        | Tyr        | Leu        | Asp        | Trp<br>555 | Ile        | Arg        | Asp        | Asn        | Met<br>560 |     |
| Arg        | Pro        |                          |            |            |            |            |            |            |            |            |            |            |            |            |            |     |
|            | 1><br>2>   | 27<br>825<br>DNA<br>Homo | sap:       | iens       |            |            |            |            |            |            |            |            |            |            |            |     |
| <40        |            | 27                       |            |            |            |            | , ,        |            | <b>1</b>   | ,          |            |            | _ 1        | 1          |            |     |
|            |            |                          |            |            |            |            |            |            |            |            |            |            |            |            | ggatgc     | 60  |
|            |            |                          | -          |            |            |            |            |            |            |            |            |            |            |            | cttcaa     | 120 |
| _          |            |                          | -          |            |            |            |            |            |            |            |            |            |            |            | atttac     | 180 |
| aga        | tgat       | ttt                      | gaat       | ggaa       | tt a       | ataa       | ttac       | a ag       | aatc       | ccaa       | act        | cacc       | agg        | atgc       | tcacat     | 240 |

300

ttaagtttta catgcccaag aaggccacag aactgaaaca gcttcagtgt ctagaagaag

| aactcaaacc tetggaggaa gtgetgaatt tagetcaaag caaaaacttt caettaagac                           | 360 |
|---------------------------------------------------------------------------------------------|-----|
| ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa                           | 420 |
| cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga                           | 480 |
| ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa                           | 540 |
| aacatatcag gccttctatt tatttattta aatatttaaa ttttatattt attgttgaat                           | 600 |
| gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt                           | 660 |
| ttatgattet ttttgtaage eetagggget etaaaatggt ttacettatt tateccaaaa                           | 720 |
| atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta                           | 780 |
| tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa                                           | 825 |
| <210> 28 <211> 156 <212> PRT <213> Homo sapiens                                             |     |
| <pre>&lt;400&gt; 28 Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu 1</pre> |     |
| Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys 20 25 30                                |     |
| Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu 35 40 45                    |     |
| Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr 50 55 60                    |     |
| Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln 65 70 75 80                 |     |
| Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala<br>85 90 95                 |     |
| Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile<br>100 105 110              |     |
| Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys 115 120 125                 |     |
| Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp 130 135 140                 |     |
| Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr 145 150 155                                 |     |
| <210> 29<br><211> 7931<br><212> DNA<br><213> Homo sapiens                                   |     |
| <400> 29                                                                                    |     |

| atgcaaatag | agctctccac | ctgcttcttt | ctgtgccttt | tgcgattctg | ctttagtgcc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| accagaagat | actacctggg | tgcagtggaa | ctgtcatggg | actatatgca | aagtgatctc | 120  |
| ggtgagctgc | ctgtggacgc | aagatttcct | cctagagtgc | caaaatcttt | tccattcaac | 180  |
| acctcagtcg | tgtacaaaaa | gactctgttt | gtagaattca | cggatcacct | tttcaacatc | 240  |
| gctaagccaa | ggccaccctg | gatgggtctg | ctaggtccta | ccatccaggc | tgaggtttat | 300  |
| gatacagtgg | tcattacact | taagaacatg | gcttcccatc | ctgtcagtct | tcatgctgtt | 360  |
| ggtgtatcct | actggaaagc | ttctgaggga | gctgaatatg | atgatcagac | cagtcaaagg | 420  |
| gagaaagaag | atgataaagt | cttccctggt | ggaagccata | catatgtctg | gcaggtcctg | 480  |
| aaagagaatg | gtccaatggc | ctctgaccca | ctgtgcctta | cctactcata | tctttctcat | 540  |
| gtggacctgg | taaaagactt | gaattcaggc | ctcattggag | ccctactagt | atgtagagaa | 600  |
| gggagtctgg | ccaaggaaaa | gacacagacc | ttgcacaaat | ttatactact | ttttgctgta | 660  |
| tttgatgaag | ggaaaagttg | gcactcagaa | acaaagaact | ccttgatgca | ggatagggat | 720  |
| gctgcatctg | ctcgggcctg | gcctaaaatg | cacacagtca | atggttatgt | aaacaggtct | 780  |
| ctgccaggtc | tgattggatg | ccacaggaaa | tcagtctatt | ggcatgtgat | tggaatgggc | 840  |
| accactcctg | aagtgcactc | aatattcctc | gaaggtcaca | catttcttgt | gaggaaccat | 900  |
| cgccaggcgt | ccttggaaat | ctcgccaata | actttcctta | ctgctcaaac | actcttgatg | 960  |
| gaccttggac | agtttctact | gttttgtcat | atctcttccc | accaacatga | tggcatggaa | 1020 |
| gcttatgtca | aagtagacag | ctgtccagag | gaaccccaac | tacgaatgaa | aaataatgaa | 1080 |
| gaagcggaag | actatgatga | tgatcttact | gattctgaaa | tggatgtggt | caggtttgat | 1140 |
| gatgacaact | ctccttcctt | tatccaaatt | cgctcagttg | ccaagaagca | tcctaaaact | 1200 |
| tgggtacatt | acattgctgc | tgaagaggag | gactgggact | atgctccctt | agtcctcgcc | 1260 |
| cccgatgaca | gaagttataa | aagtcaatat | ttgaacaatg | gccctcagcg | gattggtagg | 1320 |
| aagtacaaaa | aagtccgatt | tatggcatac | acagatgaaa | cctttaagac | tegtgaaget | 1380 |
| attcagcatg | aatcaggaat | cttgggacct | ttactttatg | gggaagttgg | agacacactg | 1440 |
| ttgattatat | ttaagaatca | agcaagcaga | ccatataaca | tctaccctca | cggaatcact | 1500 |
| gatgtccgtc | ctttgtattc | aaggagatta | ccaaaaggtg | taaaacattt | gaaggatttt | 1560 |
| ccaattctgc | caggagaaat | attcaaatat | aaatggacag | tgactgtaga | agatgggcca | 1620 |
| actaaatcag | atcctcggtg | cctgacccgc | tattactcta | gtttcgttaa | tatggagaga | 1680 |
| gatctagctt | caggactcat | tggccctctc | ctcatctgct | acaaagaatc | tgtagatcaa | 1740 |
| agaggaaacc | agataatgtc | agacaagagg | aatgtcatcc | tgttttctgt | atttgatgag | 1800 |
| aaccgaagct | ggtacctcac | agagaatata | caacgettte | tccccaatcc | agctggagtg | 1860 |

| cagettgagg atccagagtt | ccaagcctcc | aacatcatgc | acagcatcaa | tggctatgtt | 1920 |
|-----------------------|------------|------------|------------|------------|------|
| tttgatagtt tgcagttgtc | agtttgtttg | catgaggtgg | catactggta | cattctaagc | 1980 |
| attggagcac agactgactt | cctttctgtc | ttcttctctg | gatatacctt | caaacacaaa | 2040 |
| atggtctatg aagacacact | caccctattc | ccattctcag | gagaaactgt | cttcatgtcg | 2100 |
| atggaaaacc caggtctatg | gattctgggg | tgccacaact | cagactttcg | gaacagaggc | 2160 |
| atgaccgcct tactgaaggt | ttctagttgt | gacaagaaca | ctggtgatta | ttacgaggac | 2220 |
| agttatgaag atatttcagc | atacttgctg | agtaaaaaca | atgccattga | accaagaagc | 2280 |
| tteteccaga atteaagaca | ccgtagcact | aggcaaaagc | aatttaatgc | caccacaatt | 2340 |
| ccagaaaatg acatagagaa | gactgaccct | tggtttgcac | acagaacacc | tatgcctaaa | 2400 |
| atacaaaatg tctcctctag | tgatttgttg | atgctcttgc | gacagagtcc | tactccacat | 2460 |
| gggctatcet tatctgatet | ccaagaagcc | aaatatgaga | ctttttctga | tgatccatca | 2520 |
| cctggagcaa tagacagtaa | taacagcctg | tctgaaatga | cacacttcag | gecacagete | 2580 |
| catcacagtg gggacatggt | atttacccct | gagtcaggcc | tccaattaag | attaaatgag | 2640 |
| aaactgggga caactgcagc | aacagagttg | aagaaacttg | atttcaaagt | ttctagtaca | 2700 |
| tcaaataatc tgatttcaac | aattccatca | gacaatttgg | cagcaggtac | tgataataca | 2760 |
| agttccttag gacccccaag | tatgccagtt | cattatgata | gtcaattaga | taccactcta | 2820 |
| tttggcaaaa agtcatctcc | ccttactgag | tctggtggac | ctctgagctt | gagtgaagaa | 2880 |
| aataatgatt caaagttgtt | agaatcaggt | ttaatgaata | gccaagaaag | ttcatgggga | 2940 |
| aaaaatgtat cgtcaacaga | gagtggtagg | ttatttaaag | ggaaaagagc | tcatggacct | 3000 |
| gctttgttga ctaaagataa | tgccttattc | aaagttagca | tctctttgtt | aaagacaaac | 3060 |
| aaaacttcca ataattcagc | aactaataga | aagactcaca | ttgatggccc | atcattatta | 3120 |
| attgagaata gtccatcagt | ctggcaaaat | atattagaaa | gtgacactga | gtttaaaaaa | 3180 |
| gtgacacctt tgattcatga | cagaatgctt | atggacaaaa | atgctacagc | tttgaggcta | 3240 |
| aatcatatgt caaataaaac | tacttcatca | aaaaacatgg | aaatggtcca | acagaaaaaa | 3300 |
| gagggcccca ttccaccaga | tgcacaaaat | ccagatatgt | cgttctttaa | gatgctattc | 3360 |
| ttgccagaat cagcaaggtg | gatacaaagg | actcatggaa | agaactctct | gaactctggg | 3420 |
| caaggcccca gtccaaagca | attagtatcc | ttaggaccag | aaaaatctgt | ggaaggtcag | 3480 |
| aatttcttgt ctgagaaaaa | caaagtggta | gtaggaaagg | gtgaatttac | aaaggacgta | 3540 |
| ggactcaaag agatggtttt | tccaagcagc | agaaacctat | ttcttactaa | cttggataat | 3600 |
| ttacatgaaa ataatacaca | caatcaagaa | aaaaaaattc | aggaagaaat | agaaaagaag | 3660 |

| gaaacattaa | tccaagagaa | tgtagttttg | cctcagatac | atacagtgac | tggcactaag | 3720 |
|------------|------------|------------|------------|------------|------------|------|
| aatttcatga | agaacctttt | cttactgagc | actaggcaaa | atgtagaagg | ttcatatgac | 3780 |
| ggggcatatg | ctccagtact | tcaagatttt | aggtcattaa | atgattcaac | aaatagaaca | 3840 |
| aagaaacaca | cagctcattt | ctcaaaaaaa | ggggaggaag | aaaacttgga | aggcttggga | 3900 |
| aatcaaacca | agcaaattgt | agagaaatat | gcatgcacca | caaggatatc | tcctaataca | 3960 |
| agccagcaga | attttgtcac | gcaacgtagt | aagagagctt | tgaaacaatt | cagactccca | 4020 |
| ctagaagaaa | cagaacttga | aaaaaggata | attgtggatg | acacctcaac | ccagtggtcc | 4080 |
| aaaaacatga | aacatttgac | cccgagcacc | ctcacacaga | tagactacaa | tgagaaggag | 4140 |
| aaaggggcca | ttactcagtc | tcccttatca | gattgcctta | cgaggagtca | tagcatccct | 4200 |
| caagcaaata | gatctccatt | acccattgca | aaggtatcat | catttccatc | tattagacct | 4260 |
| atatatctga | ccagggtcct | attccaagac | aactcttctc | atcttccagc | agcatcttat | 4320 |
| agaaagaaag | attctggggt | ccaagaaagc | agtcatttct | tacaaggagc | caaaaaaaat | 4380 |
| aacctttctt | tagccattct | aaccttggag | atgactggtg | atcaaagaga | ggttggctcc | 4440 |
| ctggggacaa | gtgccacaaa | ttcagtcaca | tacaagaaag | ttgagaacac | tgttctcccg | 4500 |
| aaaccagact | tgcccaaaac | atctggcaaa | gttgaattgc | ttccaaaagt | tcacatttat | 4560 |
| cagaaggacc | tattccctac | ggaaactagc | aatgggtctc | ctggccatct | ggatctcgtg | 4620 |
| gaagggagcc | ttcttcaggg | aacagaggga | gcgattaagt | ggaatgaagc | aaacagacct | 4680 |
| ggaaaagttc | cctttctgag | agtagcaaca | gaaagctctg | caaagactcc | ctccaagcta | 4740 |
| ttggatcctc | ttgcttggga | taaccactat | ggtactcaga | taccaaaaga | agagtggaaa | 4800 |
| tcccaagaga | agtcaccaga | aaaaacagct | tttaagaaaa | aggataccat | tttgtccctg | 4860 |
| aacgcttgtg | aaagcaatca | tgcaatagca | gcaataaatg | agggacaaaa | taagcccgaa | 4920 |
| atagaagtca | cctgggcaaa | gcaaggtagg | actgaaaggc | tgtgctctca | aaacccacca | 4980 |
| gtcttgaaac | gccatcaacg | ggaaataact | cgtactactc | ttcagtcaga | tcaagaggaa | 5040 |
| attgactatg | atgataccat | atcagttgaa | atgaagaagg | aagattttga | catttatgat | 5100 |
| gaggatgaaa | atcagagccc | ccgcagcttt | caaaagaaaa | cacgacacta | ttttattgct | 5160 |
| gcagtggaga | ggctctggga | ttatgggatg | agtagctccc | cacatgttct | aagaaacagg | 5220 |
| gctcagagtg | gcagtgtccc | tcagttcaag | aaagttgttt | tccaggaatt | tactgatggc | 5280 |
| tcctttactc | agcccttata | ccgtggagaa | ctaaatgaac | atttgggact | cctggggcca | 5340 |
| tatataagag | cagaagttga | agataatatc | atggtaactt | tcagaaatca | ggcctctcgt | 5400 |
| ccctattcct | tctattctag | ccttatttct | tatgaggaag | atcagaggca | aggagcagaa | 5460 |
| cctagaaaaa | actttgtcaa | gcctaatgaa | accaaaactt | acttttggaa | agtgcaacat | 5520 |

| catatggcac | ccactaaaga | tgagtttgac | tgcaaagcct | gggcttattt | ctctgatgtt | 5580 |
|------------|------------|------------|------------|------------|------------|------|
| gacctggaaa | aagatgtgca | ctcaggcctg | attggacccc | ttctggtctg | ccacactaac | 5640 |
| acactgaacc | ctgctcatgg | gagacaagtg | acagtacagg | aatttgctct | gtttttcacc | 5700 |
| atctttgatg | agaccaaaag | ctggtacttc | actgaaaata | tggaaagaaa | ctgcagggct | 5760 |
| ccctgcaata | tccagatgga | agatcccact | tttaaagaga | attatcgctt | ccatgcaatc | 5820 |
| aatggctaca | taatggatac | actacctggc | ttagtaatgg | ctcaggatca | aaggattcga | 5880 |
| tggtatctgc | tcagcatggg | cagcaatgaa | aacatccatt | ctattcattt | cagtggacat | 5940 |
| gtgttcactg | tacgaaaaaa | agaggagtat | aaaatggcac | tgtacaatct | ctatccaggt | 6000 |
| gtttttgaga | cagtggaaat | gttaccatcc | aaagctggaa | tttggcgggt | ggaatgcctt | 6060 |
| attggcgagc | atctacatgc | tgggatgagc | acacttttc  | tggtgtacag | caataagtgt | 6120 |
| cagactecce | tgggaatggc | ttctggacac | attagagatt | ttcagattac | agcttcagga | 6180 |
| caatatggac | agtgggcccc | aaagctggcc | agacttcatt | attccggatc | aatcaatgcc | 6240 |
| tggagcacca | aggagccctt | ttcttggatc | aaggtggatc | tgttggcacc | aatgattatt | 6300 |
| cacggcatca | agacccaggg | tgcccgtcag | aagttctcca | gcctctacat | ctctcagttt | 6360 |
| atcatcatgt | atagtcttga | tgggaagaag | tggcagactt | atcgaggaaa | ttccactgga | 6420 |
| accttaatgg | tcttctttgg | caatgtggat | tcatctggga | taaaacacaa | tatttttaac | 6480 |
| cctccaatta | ttgctcgata | catccgtttg | cacccaactc | attatagcat | tcgcagcact | 6540 |
| cttcgcatgg | agttgatggg | ctgtgattta | aatagttgca | gcatgccatt | gggaatggag | 6600 |
| agtaaagcaa | tatcagatgc | acagattact | gcttcatcct | actttaccaa | tatgtttgcc | 6660 |
| acctggtctc | cttcaaaagc | tcgacttcac | ctccaaggga | ggagtaatgc | ctggagacct | 6720 |
| caggtgaata | atccaaaaga | gtggctgcaa | gtggacttcc | agaagacaat | gaaagtcaca | 6780 |
| ggagtaacta | ctcagggagt | aaaatctctg | cttaccagca | tgtatgtgaa | ggagttcctc | 6840 |
| atctccagca | gtcaagatgg | ccatcagtgg | actctcttt  | ttcagaatgg | caaagtaaag | 6900 |
| gtttttcagg | gaaatcaaga | ctccttcaca | cctgtggtga | actctctaga | cccaccgtta | 6960 |
| ctgactcgct | accttcgaat | tcacccccag | agttgggtgc | accagattgc | cctgaggatg | 7020 |
| gaggttctgg | gctgcgaggc | acaggacctc | tactgagggt | ggccactgca | gcacctgcca | 7080 |
| ctgccgtcac | ctctccctcc | tcagctccag | ggcagtgtcc | ctccctggct | tgccttctac | 7140 |
| ctttgtgcta | aatcctagca | gacactgcct | tgaagcctcc | tgaattaact | atcatcagtc | 7200 |
| ctgcatttct | ttggtggggg | gccaggaggg | tgcatccaat | ttaacttaac | tcttacctat | 7260 |
| tttctgcagc | tgctcccaga | ttactccttc | cttccaatat | aactaggcaa | aaagaagtga | 7320 |

qqaqaaacct qcatqaaaqc attetteeet qaaaaqttaq qcctctcaqa qtcaccactt 7380 cctctqttqt aqaaaaacta tgtgatgaaa ctttgaaaaa gatatttatg atgttaacat 7500 ttcaggttaa gcctcatacg tttaaaataa aactctcagt tgtttattat cctgatcaag catggaacaa agcatgtttc aggatcagat caatacaatc ttggagtcaa aaggcaaatc 7560 atttggacaa tctgcaaaat ggagagaata caataactac tacagtaaag tctgtttctg 7620 cttccttaca catagatata attatgttat ttagtcatta tgaggggcac attcttatct 7680 ccaaaactag cattettaaa etgagaatta tagatggggt teaagaatee etaagteece 7740 tqaaattata taaggcattc tgtataaatg caaatgtgca tttttctgac gagtgtccat 7800 agatataaag ccatttggtc ttaattctga ccaataaaaa aataagtcag gaggatgcaa 7860 ttgttgaaag ctttgaaata aaataacaat gtcttcttga aatttgtgat ggccaagaaa 7920 7931 gaaaatgatg a

<210> 30

<211> 2351

<212> PRT

<213> Homo sapiens

<400> 30

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile 65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser 100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser 115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp 130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu 145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser 165 170 175

| Tyr        | Leu        | Ser        | His<br>180 | Val        | Asp        | Leu        | Val        | Lys<br>185 | Asp        | Leu        | Asn        | Ser        | G1y<br>190 | Leu        | Ile        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Ala        | Leu<br>195 | Leu        | Val        | Cys        | Arg        | Glu<br>200 | Gly        | Ser        | Leu        | Ala        | Lys<br>205 | Glu        | Lys        | Thr        |
| Gln        | Thr<br>210 | Leu        | His        | Lys        | Phe        | Ile<br>215 | Leu        | Leu        | Phe        | Ala        | Val<br>220 | Phe        | Asp        | Glu        | Gly        |
| Lys<br>225 | Ser        | Trp        | His        | Ser        | Glu<br>230 | Thr        | Lys        | Asn        | Ser        | Leu<br>235 | Met        | Gln        | Asp        | Arg        | Asp<br>240 |
| Ala        | Ala        | Ser        | Ala        | Arg<br>245 | Ala        | Trp        | Pro        | Lys        | Met<br>250 | His        | Thr        | Val        | Asn        | Gly<br>255 | Tyr        |
| Val        | Asn        | Arg        | Ser<br>260 | Leu        | Pro        | Gly        | Leu        | Ile<br>265 | Gly        | Cys        | His        | Arg        | Lys<br>270 | Ser        | Val        |
| Tyr        | Trp        | His<br>275 | Val        | Ile        | Gly        | Met        | Gly<br>280 | Thr        | Thr        | Pro        | Glu        | Val<br>285 | His        | Ser        | Ile        |
| Phe        | Leu<br>290 | Glu        | Gly        | His        | Thr        | Phe<br>295 | Leu        | Val        | Arg        | Asn        | His<br>300 | Arg        | Gln        | Ala        | Ser        |
| Leu<br>305 | Glu        | Ile        | Ser        | Pro        | Ile<br>310 | Thr        | Phe        | Leu        | Thr        | Ala<br>315 | Gln        | Thr        | Leu        | Leu        | Met<br>320 |
| Asp        | Leu        | Gly        | Gln        | Phe<br>325 | Leu        | Leu        | Phe        | Суз        | His<br>330 | Ile        | Ser        | Ser        | His        | Gln<br>335 | His        |
| Asp        | Gly        | Met        | Glu<br>340 | Ala        | Tyr        | Val        | Lys        | Val<br>345 | Asp        | Ser        | Cys        | Pro        | Glu<br>350 | Glu        | Pro        |
| Gln        | Leu        | Arg<br>355 | Met        | Lys        | Asn        | Asn        | Glu<br>360 | Glu        | Ala        | Glu        | Asp        | Tyr<br>365 | Asp        | Asp        | Asp        |
| Leu        | Thr<br>370 | Asp        | Ser        | Glu        | Met        | Asp<br>375 | Val        | Val        | Arg        | Phe        | Asp<br>380 | Asp        | Asp        | Asn        | Ser        |
| Pro<br>385 | Ser        | Phe        | Ile        | Gln        | Ile<br>390 | Arg        | Ser        | Val        | Ala        | Lys<br>395 | Lys        | His        | Pro        | Lys        | Thr<br>400 |
| Trp        | Val        | His        | Tyr        | Ile<br>405 | Ala        | Ala        | Glu        | Glu        | Glu<br>410 | Asp        | Trp        | Asp        | Tyr        | Ala<br>415 | Pro        |
| Leu        | Val        | Leu        | Ala<br>420 |            | Asp        | Asp        | Arg        | Ser<br>425 | Tyr        | Lys        | Ser        | Gln        | Tyr<br>430 | Leu        | Asn        |
| Asn        | Gly        | Pro<br>435 | Gln        | Arg        | Ile        | Gly        | Arg<br>440 | Lys        | Tyr        | Lys        | Lys        | Val<br>445 | Arg        | Phe        | Met        |
| Ala        | Tyr<br>450 | Thr        | Asp        | Glu        | Thr        | Phe<br>455 | Lys        | Thr        | Arg        | Glu        | Ala<br>460 | Ile        | Gln        | His        | Glu        |
| Ser<br>465 | Gly        | Ile        | Leu        | Gly        | Pro<br>470 | Leu        | Leu        | Tyr        | Gly        | Glu<br>475 | Val        | Gly        | Asp        | Thr        | Leu<br>480 |
| Leu        | Ile        | Ile        | Phe        | Lys<br>485 | Asn        | Gln        | Ala        | Ser        | Arg<br>490 | Pro        | Tyr        | Asn        | Ile        | Tyr<br>495 | Pro        |
| His        | Gly        | Ile        | Thr        | Asp        | Val        | Arg        | Pro        | Leu        | Tyr        | Ser        | Arg        | Arg        | Leu        | Pro        | Lys        |

500 505 510

Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe 520 Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg 550 Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val 585 Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu 600 Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp 615 Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp 650 Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg 760 Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp 775 Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys 790 795

Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser 805 810 815

Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr

Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys 885 890 Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn 905 Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met 920 Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys 935 Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu 965 970 Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser 1015 Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser 1025 1030 Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu 1045 Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg 1055 1060 1065 Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met 1075 Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln 1085 1090 1.095 Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met 1100 1105 1110 Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile 1115 1120 1125 Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro 1130 1135 1140

| Ser | Pro<br>1145 | Lys | Gln | Leu | Val | Ser<br>1150 | Leu | Gly | Pro | Glu | Lys<br>1155 | Ser | Val | Glu |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Gly | Gln<br>1160 | Asn | Phe | Leu | Ser | Glu<br>1165 | Lys | Asn | Lys | Val | Val<br>1170 | Val | Gly | Lys |
| Gly | Glu<br>1175 | Phe | Thr | Lys | Asp | Val<br>1180 | Gly | Leu | Lys | Glu | Met<br>1185 | Val | Phe | Pro |
| Ser | Ser<br>1190 | Arg | Asn | Leu | Phe | Leu<br>1195 |     | Asn | Leu | Asp | Asn<br>1200 | Leu | His | Glu |
| Asn | Asn<br>1205 | Thr | His | Asn | Gln | Glu<br>1210 | Lys | Lys | Ile | Gln | Glu<br>1215 | Glu | Ile | Glu |
| Lys | Lys<br>1220 | Glu | Thr | Leu | Ile | Gln<br>1225 | Glu | Asn | Val | Val | Leu<br>1230 | Pro | Gln | Ile |
| His | Thr<br>1235 | Val | Thr | Gly | Thr | Lys<br>1240 |     | Phe | Met | Lys | Asn<br>1245 | Leu | Phe | Leu |
| Leu | Ser<br>1250 | Thr | Arg | Gln | Asn | Val<br>1255 | Glu | Gly | Ser | Tyr | Asp<br>1260 | Gly | Ala | Tyr |
| Ala | Pro<br>1265 | Val | Leu | Gln | Asp | Phe<br>1270 |     | Ser | Leu | Asn | Asp<br>1275 | Ser | Thr | Asn |
| Arg | Thr<br>1280 |     | Lys | His | Thr | Ala<br>1285 |     | Phe | Ser | Lys | Lys<br>1290 | Gly | Glu | Glu |
| Glu | Asn<br>1295 | Leu | Glu | Gly | Leu | Gly<br>1300 | Asn | Gln | Thr | Lys | Gln<br>1305 | Ile | Val | Glu |
| Lys | Tyr<br>1310 |     | Cys | Thr | Thr | Arg<br>1315 |     | Ser | Pro | Asn | Thr<br>1320 | Ser | Gln | Gln |
| Asn | Phe<br>1325 |     | Thr | Gln | Arg | Ser<br>1330 |     | Arg | Ala | Leu | Lys<br>1335 | Gln | Phe | Arg |
| Leu | Pro<br>1340 | Leu | Glu | Glu | Thr | Glu<br>1345 |     | Glu | Lys | Arg | Ile<br>1350 | Ile | Val | Asp |
| Asp | Thr<br>1355 |     | Thr | Gln | Trp | Ser<br>1360 |     | Asn | Met | Lys | His<br>1365 | Leu | Thr | Pro |
| Ser | Thr<br>1370 |     | Thr | Gln | Ile | Asp<br>1375 |     | Asn | Glu | Lys | Glu<br>1380 |     | Gly | Ala |
| Ile | Thr<br>1385 |     | Ser | Pro | Leu | Ser<br>1390 |     | Суѕ | Leu | Thr | Arg<br>1395 | Ser | His | Ser |
| Ile | Pro<br>1400 |     | Ala | Asn | Arg | Ser<br>1405 |     | Leu | Pro | Ile | Ala<br>1410 | Lys | Val | Ser |
| Ser | Phe<br>1415 |     | Ser | Ile | Arg | Pro<br>1420 |     | Tyr | Leu | Thr | Arg<br>1425 | Val | Leu | Phe |
| Gln | Asp<br>1430 |     | Ser | Ser | His | Leu<br>1435 |     | Ala | Ala | Ser | Tyr<br>1440 |     | Lys | Lys |
| Asp | Ser         | Gly | Val | Gln | Glu | Ser         | Ser | His | Phe | Leu | Gln         | Gly | Ala | Lys |

| ,   | <b>VO</b> 200 | 14/033 | 651 |     |     |             |     |     |     |     |             |     |     | PC17U |
|-----|---------------|--------|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-------|
|     | 1445          |        |     |     |     | 1450        |     |     |     |     | 1455        |     |     |       |
| Lys | Asn<br>1460   | Asn    | Leu | Ser | Leu | Ala<br>1465 | Ile | Leu | Thr | Leu | Glu<br>1470 | Met | Thr | Gly   |
| Asp | Gln<br>1475   | Arg    | Glu | Val | Gly | Ser<br>1480 | Leu | Gly | Thr | Ser | Ala<br>1485 | Thr | Asn | Ser   |
| Val | Thr<br>1490   | Tyr    | Lys | Lys | Val | Glu<br>1495 | Asn | Thr | Val | Leu | Pro<br>1500 | Lys | Pro | Asp   |
| Leu | Pro<br>1505   | Lys    | Thr | Ser | Gly | Lys<br>1510 | Val | Glu | Leu | Leu | Pro<br>1515 | Lys | Val | His   |
| Ile | Tyr<br>1520   |        | Lys | Asp |     | Phe<br>1525 | Pro | Thr | Glu | Thr | Ser<br>1530 | Asn | Gly | Ser   |
| Pro | Gly<br>1535   | His    | Leu | Asp | Leu | Val<br>1540 |     | Gly | Ser | Leu | Leu<br>1545 | Gln | Gly | Thr   |
| Glu | Gly<br>1550   | Ala    | Ile | Lys | Trp | Asn<br>1555 | Glu | Ala | Asn | Arg | Pro<br>1560 | Gly | Lys | Val   |
| Pro | Phe<br>1565   | Leu    | Arg | Val |     | Thr<br>1570 | Glu | Ser | Ser | Ala | Lys<br>1575 | Thr | Pro | Ser   |
| Lys | Leu<br>1580   | Leu    | Asp | Pro | Leu | Ala<br>1585 |     | Asp | Asn | His | Tyr<br>1590 | Gly | Thr | Gln   |
| Ile | Pro<br>1595   | Lys    | Glu | Glu | Trp | Lys<br>1600 | Ser | Gln | Glu | Lys | Ser<br>1605 | Pro | Glu | Lys   |
| Thr | Ala<br>1610   | Phe    | Lys | Lys | Lys | Asp<br>1615 | Thr | Ile | Leu |     | Leu<br>1620 | Asn | Ala | Cys   |
| Glu | Ser<br>1625   |        | His | Ala | Ile | Ala<br>1630 |     | Ile | Asn | Glu | Gly<br>1635 | Gln | Asn | Lys   |
| Pro | Glu<br>1640   | Ile    | Glu | Val | Thr | Trp<br>1645 | Ala | Lys | Gln | Gly | Arg<br>1650 | Thr | Glu | Arg   |
| Leu | Cys<br>1655   |        | Gln | Asn | Pro | Pro<br>1660 | Val | Leu | Lys | Arg | His<br>1665 | Gln | Arg | Glu   |
| Ile | Thr<br>1670   | _      | Thr | Thr | Leu | Gln<br>1675 | Ser | Asp | Gln | Glu | Glu<br>1680 | Ile | Asp | Tyr   |
| Asp | Asp<br>1685   |        | Ile | Ser | Val | Glu<br>1690 |     | Lys | Lys | Glu | Asp<br>1695 | Phe | Asp | Ile   |
| Tyr | Asp<br>1700   |        | Asp | Glu | Asn | Gln<br>1705 | Ser | Pro | Arg | Ser | Phe<br>1710 | Gln | Lys | Lys   |
| Thr | Arg<br>1715   |        | Tyr | Phe | Ile | Ala<br>1720 |     | Val | Glu | Arg | Leu<br>1725 |     | Asp | Tyr   |
| Gly | Met<br>1730   |        | Ser | Ser | Pro | His<br>1735 |     | Leu | Arg | Asn | Arg<br>1740 |     | Gln | Ser   |
| Gly | Ser<br>1745   |        | Pro | Gln | Phe | Lys<br>1750 |     | Val | Val | Phe | Gln<br>1755 |     | Phe | Thr   |

| Asp | Gly<br>1760 | Ser | Phe | Thr | Gln | Pro<br>1765 | Leu | Tyr | Arg  | Gly | Glu<br>1770 | Leu | Asn | Glu |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|------|-----|-------------|-----|-----|-----|
| His | Leu<br>1775 | Gly | Leu | Leu | Gly | Pro<br>1780 | Tyr | Ile | Arg  | Ala | Glu<br>1785 | Val | Glu | Asp |
| Asn | Ile<br>1790 | Met | Val | Thr | Phe | Arg<br>1795 | Asn | Gln | Ala  | Ser | Arg<br>1800 | Pro | Tyr | Ser |
| Phe | Tyr<br>1805 | Ser | Ser | Leu | Ile | Ser<br>1810 | Tyr | Glu | Glu  | Asp | Gln<br>1815 | Arg | Gln | Gly |
| Ala | Glu<br>1820 | Pro | Arg | Lys | Asn | Phe<br>1825 | Val | Lys | Pro  | Asn | Glu<br>1830 | Thr | Lys | Thr |
| Tyr | Phe<br>1835 | Trp | Lys | Val | Gln | His<br>1840 | His | Met | Ala  | Pro | Thr<br>1845 | Lys | Asp | Glu |
| Phe | Asp<br>1850 | Cys | Lys | Ala | Trp | Ala<br>1855 | Tyr | Phe | Ser  | Asp | Val<br>1860 | Asp | Leu | Glu |
| Lys | Asp<br>1865 |     | His | Ser | Gly | Leu<br>1870 |     | Gly | Pro  | Leu | Leu<br>1875 | Val | Cys | His |
| Thr | Asn<br>1880 | Thr | Leu | Asn | Pro | Ala<br>1885 |     | Gly | Arg  | Gln | Val<br>1890 | Thr | Val | Gln |
|     | Phe<br>1895 |     | Leu | Phe | Phe | Thr<br>1900 |     | Phe | Asp  | Glu | Thr<br>1905 | Lys | Ser | Trp |
| Tyr | Phe<br>1910 |     | Glu | Asn | Met | Glu<br>1915 |     | Asn | Cys  | Arg | Ala<br>1920 | Pro | Cys | Asn |
| Ile | Gln<br>1925 |     | Glu | Asp | Pro | Thr<br>1930 |     | Lys | Glu  | Asn | Tyr<br>1935 |     | Phe | His |
| Ala | Ile<br>1940 |     | Gly | Tyr | Ile | Met<br>1945 |     | Thr | Leu  | Pro | Gly<br>1950 |     | Val | Met |
| Ala | Gln<br>1955 |     | Gln | Arg | Ile | Arg<br>1960 |     | Tyr | Leu  | Leu | Ser<br>1965 |     | Gly | Ser |
| Asn | Glu<br>1970 |     | Ile | His | Ser | Ile<br>1975 |     | Phe | °Ser | Gly | His<br>1980 |     | Phe | Thr |
| Val | Arg<br>1985 | _   | Lys | Glu | Glu | Tyr<br>1990 |     | Met | Ala  | Leu | Tyr<br>1995 |     | Leu | Tyr |
| Pro | Gly<br>2000 |     | Phe | Glu | Thr | Val<br>2005 |     | Met | Leu  | Pro | Ser<br>2010 |     | Ala | Gly |
| Ile | Trp<br>2015 |     | Val | Glu | Cys | Leu<br>2020 |     | Gly | Glu  | His | Leu<br>2025 |     | Ala | Gly |
| Met | Ser<br>2030 |     | Leu | Phe | Leu | Val<br>2035 |     | Ser | Asn  | Lys | Cys<br>2040 |     | Thr | Pro |
| Leu | Gly<br>2045 |     | Ala | Ser | Gly | His<br>2050 |     | Arg | Asp  | Phe | Gln<br>2055 |     | Thr | Ala |

| Ser | Gly<br>2060 | Gln | Tyr | Gly | Gln | Trp<br>2065 | Ala | Pro | Lys | Leu | Ala<br>2070 | Arg | Leu | His |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Tyr | Ser<br>2075 | Gly | Ser | Ile | Asn | Ala<br>2080 | Trp | Ser | Thr | Lys | Glu<br>2085 | Pro | Phe | Ser |
| Trp | Ile<br>2090 | Lys | Val | Asp | Leu | Leu<br>2095 | Ala | Pro | Met | Ile | Ile<br>2100 | His | Gly | Ile |
| Lys | Thr<br>2105 | Gln | Gly | Ala | Arg | Gln<br>2110 | _   | Phe | Ser | Ser | Leu<br>2115 | Tyr | Ile | Ser |
| Gln | Phe<br>2120 | Ile | Ile | Met | Tyr | Ser<br>2125 | Leu | Asp | Gly | Lys | Lys<br>2130 | Trp | Gln | Thr |
| Tyr | Arg<br>2135 |     | Asn | Ser | Thr | Gly<br>2140 | Thr | Leu | Met | Val | Phe<br>2145 | Phe | Gly | Asn |
| Val | Asp<br>2150 |     | Ser | Gly | Ile | Lys<br>2155 | His | Asn | Ile | Phe | Asn<br>2160 | Pro | Pro | Ile |
| Ile | Ala<br>2165 | -   | Tyr | Ile | Arg | Leu<br>2170 | His | Pro | Thr | His | Tyr<br>2175 | Ser | Ile | Arg |
| Ser | Thr<br>2180 | Leu | Arg | Met | Glu | Leu<br>2185 | Met | Gly | Cys | Asp | Leu<br>2190 | Asn | Ser | Cys |
| Ser | Met<br>2195 |     | Leu |     |     | Glu<br>2200 |     | Lys | Ala | Ile | Ser<br>2205 | Asp | Ala | Gln |
| Ile | Thr<br>2210 | Ala | Ser | Ser | Tyr | Phe<br>2215 |     | Asn | Met | Phe | Ala<br>2220 | Thr | Trp | Ser |
| Pro | Ser<br>2225 |     | Ala | Arg | Leu | His<br>2230 | Leu | Gln | Gly | Arg | Ser<br>2235 | Asn | Ala | Trp |
| Arg | Pro<br>2240 |     | Val | Asn | Asn | Pro<br>2245 |     | Glu | Trp | Leu | Gln<br>2250 | Val | Asp | Phe |
| Gln | Lys<br>2255 |     | Met | Lys | Val | Thr<br>2260 |     | Val | Thr | Thr | Gln<br>2265 |     | Val | Lys |
| Ser | Leu<br>2270 |     | Thr | Ser | Met | Tyr<br>2275 |     | Lys | Glu | Phe | Leu<br>2280 |     | Ser | Ser |
| Ser | Gln<br>2285 |     | Gly | His | Gln | Trp<br>2290 |     | Leu | Phe | Phe | Gln<br>2295 | Asn | Gly | Lys |
| Val | Lys<br>2300 |     | Phe | Gln | Gly | Asn<br>2305 |     | Asp | Ser | Phe | Thr<br>2310 |     | Val | Val |
| Asn | Ser<br>2315 |     | Asp | Pro | Pro | Leu<br>2320 |     | Thr | Arg | Tyr | Leu<br>2325 |     | Ile | His |
| Pro | Gln<br>2330 |     | Trp | Val | His | Gln<br>2335 |     | Ala | Leu | Arg | Met<br>2340 |     | Val | Leu |
| Gly | Cys<br>2345 |     | Ala | Gln | Asp | Leu<br>2350 | _   |     |     |     |             |     |     |     |
| <21 | 0> 3        | 1   |     |     |     |             |     |     |     |     |             |     |     |     |

<211> 1471 <212> DNA <213> Homo sapiens

<400> 31 atggcgcccg tegecgtetg ggccgcgctg gccgteggac tggagctetg ggctgcggcg 60 120 cacqccttqc ccqcccaqqt qqcatttaca ccctacqccc cggagcccgg gagcacatgc 180 cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctcgccgggc 240 caacatqcaa aaqtettetg taccaagace teggacaceg tgtgtgacte etgtgaggae 300 agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt agetetgace aggtggaaac teaageetge actegggaac agaacegeat etgeacetge 360 420 aggcccqqct qqtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg 480 cqcaaqtqcc qcccqqqctt cqqcqtqqcc aqaccaqqaa ctgaaacatc agacqtggtg 540 tgcaagcct gtgcccggg gacgttctcc aacacgactt catccacgga tatttgcagg 600 ccccaccaga totgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc acqtccacqt ccccacccq gagtatggcc ccaggggcag tacacttacc ccagccagtg 660 tocacacqat cocaacaca quaqccaact coagaaccca gcactgetec aagcacetee 720 780 ttectgetee caatgggeee cageeececa getgaaggga geactggega ettegetett ccaqttqqac tqattqtqqq tqtqacaqcc ttqgqtctac taataataqq agtqgtqaac 840 900 tgtgtcatca tgacccaggt gaaaaagaag cccttgtgcc tgcagagaga agccaaggtg 960 cctcacttgc ctgccqataa qqcccqqqqt acacaqggcc ccgagcagca gcacctgctg atcacagege egagetecag cageagetec etggagaget eggecagtge gttggacaga 1020 1080 agggcgccca ctcggaacca gccacaggca ccaggcgtgg aggccagtgg ggccggggag gcccgggcca gcaccgggag ctcagattct tcccctggtg gccatgggac ccaggtcaat 1140 gtcacctgca tcgtgaacgt ctgtagcagc tctgaccaca gctcacagtg ctcctcccaa 1200 gecageteca caatgggaga cacagattee ageceetegg agteeeegaa ggaegageag 1260 gtccccttct ccaaggagga atgtgccttt cggtcacagc tggagacgcc agagaccctg 1320 ctggggagca ccgaagagaa gcccctgccc cttggagtgc ctgatgctgg gatgaagccc 1380 agttaaccag geeggtgtgg getgtgtegt ageeaaggtg ggetgageee tggeaggatg 1440 1471 accetgegaa ggggccetgg teetteeagg e

37

<210> 32 <211> 461 <212> PRT <213> Homo sapiens

<400> 32

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 180 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 200 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 215 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 235 230 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 285 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser

325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro  $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445 \hspace{1.5cm}$ 

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 33

tecacetgte eeegeagege eggetegege eeteetgeeg cageeacega geegeegtet 60 agegececga cetegecace atgagagece tgetggegeg cetgettete tgegteetgg 120 tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaac tgtgactgtc 180 240 taaatqqaqq aacatqtqtq tccaacaagt acttctccaa cattcactgg tgcaactgcc 300 caaagaaatt cggagggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgcctgccct 360 ggaactctgc cactgtcctt cagcaaacgt accatgccca cagatctgat gctcttcagc 420 tgggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct 480 atgtgcaggt gggcctaaag ccgcttgtcc aagagtgcat ggtgcatgac tgcgcagatg 540 600 gaaaaaaagcc ctcctctcct ccagaagaat taaaatttca gtgtggccaa aagactctga 660 ggcccqctt taaqattatt gggggagaat tcaccaccat cgagaaccag ccctggtttg cggccatcta caggaggcac cgggggggct ctgtcaccta cgtgtgtgga ggcagcctca 720 780 tragecettg etgggtgate agegecacae actgetteat tgattaceca aagaaggagg actacatcgt ctacctgggt cgctcaaggc ttaactccaa cacgcaaggg gagatgaagt 840 ttgaggtgga aaacctcatc ctacacaagg actacagcgc tgacacgctt gctcaccaca 900

acgacattgc cttgctgaag atccgttcca aggagggcag gtgtgcgcag ccatcccgga 960 1020 ctatacagac catctgcctg ccctcgatgt ataacgatcc ccagtttggc acaagctgtg 1080 agatcactgg ctttggaaaa gagaattcta ccgactatct ctatccggag cagctgaaga tqactqttqt qaaqctqatt tcccaccqqq aqtqtcaqca gccccactac tacggctctq 1140 1200 aaqtcaccac caaaatgctg tgtgctgctg acccacagtg gaaaacagat tcctgccagg gagactcagg gggacccctc gtctgttccc tccaaggccg catgactttg actggaattg 1260 tgagctgggg ccgtggatgt gccctgaagg acaagccagg cgtctacacg agagtctcac 1320 1380 acttettace etggateege agteacacea aggaagagaa tggeetggee etetgagggt ccccaqqqaq qaaacqqqca ccaccqctt tcttqctqqt tqtcattttt qcaqtaqaqt 1440 1475 catctccatc agctgtaaga agagactggg aagat <210> 34 <211> 431

<212> PRT

<213> Homo sapiens

<400> 34

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser 1 5 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp 20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile  $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$ 

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile 50 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly 65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser 85 90 95

Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu 100 105 110

Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg 115 120 125

Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln
130 135 140

Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro 145 150 155 160

Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg 165 170 175

Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp

180 185 190

Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val 195 200 205

Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His 210 215 220

Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly 225 230 235 240

Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val  $\phantom{a}$  .  $\phantom{a}$  245  $\phantom{a}$  250  $\phantom{a}$  255

Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His 260 265 270

His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys 275 280 285

Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr 290 295 300

Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys 305 310 315 320

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly 340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1  $\phantom{000}$  5  $\phantom{000}$  10  $\phantom{000}$  15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr 20 25 30

Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu 35 40

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser 50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala 100 105 Gly Thr Thr Val Thr Val Ser Ser 115 <210> 38 ' <211> 106 <212> PRT <213> Mus musculus <400> 38 Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe Thr 8.5 Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 <210> 39 <211> 1039 <212> DNA <213> Homo sapiens <400> 39 60 tectgeaeag geagtgeett gaagtgette tteagagaee tttetteata gaetaetttt ttttctttaa gcagcaaaag gagaaaattg tcatcaaagg atattccaga ttcttgacag 120 cattetegte atetetgagg acateaceat cateteagga tgaggggcat gaagetgetg 180 240 qqqqcqctgc tggcactggc ggccctactg cagggggccg tgtccctgaa gatcgcagcc 300 ttcaacatcc agacatttgg ggagaccaag atgtccaatg ccaccctcgt cagctacatt gtgcagatcc tgagccgcta tgacatcgcc ctggtccagg aggtcagaga cagccacctg 360 420 actgoogtgg ggaagctgct ggacaacctc aatcaggatg caccagacac ctatcactac

gtggtcagtg agccactggg acggaacagc tataaggagc gctacctgtt cgtgtacagg

43

cctqaccaqq tqtctqcqqt qqacaqctac tactacqatq atgqctqcqa qccctqcqqq 540 aacqacacct tcaaccqaqa qccaqccatt qtcaqqttct tctcccggtt cacagaggtc, 600 agggagttig ccattgtice cetgeatgeg geeeggggg acgeagtage egagategae 660 gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgttg 720 780 atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatccgc ctgtggacaa gccccacctt ccagtggctg atccccgaca gcgctgacac cacagctaca 840 cccacgcact gtgcctatga caggatcgtg gttgcaggga tgctgctccg aggcgccgtt 900 960 qttcccqact cqqctcttcc ctttaacttc caqqctqcct atgqcctgag tgaccaactg geccaageca teagtgacea etatecagtg gaggtgatge tgaagtgage ageceeteee 1020 1039 cacaccagtt gaactgcag

<210> 40

<211> 282

<212> PRT

<213> Homo sapiens

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu 1 10 15

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr 20 25 30

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val 35 40 45

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp 50 55 60

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp 65 70 75 80

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn 85 90 95

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser 100 105 110

Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn 115 120 125

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe 130 135 140

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly 145 150 155 160

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val
165 170 175

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn 180 185

| Ala                          | Gly          | Cys<br>195                | Ser        | Tyr        | Val        | Arg        | Pro<br>200 | Ser        | Gln        | Trp        | Ser        | Ser<br>205 | Ile        | Arg        | Leu        |     |
|------------------------------|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Trp                          | Thr<br>210   | Ser                       | Pro        | Thr        | Phe        | Gln<br>215 | Trp        | Leu        | Ile        | Pro        | Asp<br>220 | Ser        | Ala        | Asp        | Thr        |     |
| Thr<br>225                   | Ala          | Thr                       | Pro        | Thr        | His<br>230 | Cys        | Ala        | Tyr        | Asp        | Arg<br>235 | Ile        | Val        | Val        | Ala        | Gly<br>240 |     |
| Met                          | Leu          | Leu                       | Arg        | Gly<br>245 | Ala        | Val        | Val        | Pro        | Asp<br>250 | Ser        | Ala        | Leu        | Pro        | Phe<br>255 | Asn        |     |
| Phe                          | Gln          | Ala                       | Ala<br>260 | Tyr        | Gly        | Leu        | Ser        | Asp<br>265 | Gln        | Leu        | Ala        | Gln        | Ala<br>270 | Ile        | Ser        |     |
| Asp                          | His          | Tyr<br>275                | Pro        | Val        | Glu        | Val        | Met<br>280 | Leu        | Lys        |            |            |            |            |            |            |     |
| <210<br><211<br><211<br><211 | L> (<br>2> I | 41<br>678<br>DNA<br>Mus r | nusci      | ulus       |            |            |            |            |            |            |            |            |            |            |            |     |
| <400<br>gaca                 |              | 41<br>tgc t               | gact       | tcagt      | to to      | ccago      | ccato      | c cto      | gtate      | gtga       | gtc        | cagga      | aga a      | aagaq      | gtcagt     | 60  |
| ttc                          | cat          | gca q                     | gggc       | cagto      | ca gt      | tcgt       | tgg        | c tca      | aagca      | atcc       | acto       | ggtai      | tca q      | gcaaa      | agaaca     | 120 |
| aat                          | ggtt         | ctc o                     | caag       | gatte      | ct ca      | ataaa      | agtat      | c gat      | tctç       | gagt       | ctat       | tgtc       | tgg (      | gatco      | ccttcc     | 180 |
| aggi                         | tta          | gtg q                     | gcagt      | tggat      | tc aç      | gggad      | cagat      | tt!        | tacto      | ctta       | gcat       | tcaa       | cac t      | tgtg       | gagtct     | 240 |
| gaa                          | gata         | ttg o                     | cagat      | ttati      | ta ci      | tgtca      | aacaa      | a agt      | tcata      | agct       | ggc        | catt       | cac (      | gttc       | ggatag     | 300 |
| ggga                         | acaa         | att 1                     | tggaa      | agta       | aa aq      | gaagt      | tgaaq      | g ct       | tgag       | gagt       | ctg        | gagga      | agg (      | cttg       | gtgcaa     | 360 |
| cct                          | ggag         | gat o                     | ccat       | gaaa       | ct c       | tcate      | gtgt1      | t gc       | ctct       | ggat       | tca        | tttt       | cag t      | taac       | cactgg     | 420 |
| atg                          | aact         | ggg 1                     | tccg       | ccag       | tc to      | ccaga      | agaaq      | g gg       | gctt       | gagt       | ggg.       | ttgc       | tga a      | aatta      | agatca     | 480 |
| aaa <sup>.</sup>             | tcta         | tta a                     | attc       | tgca       | ac a       | catta      | atgc       | g ga       | gtct       | gtga       | aag        | ggag       | gtt (      | cacca      | atctca     | 540 |
| aga                          | gatg         | att «                     | ccaa       | aagt       | gc to      | gtcta      | acct       | g caa      | aatga      | accg       | act        | taag       | aac i      | tgaaq      | gacact     | 600 |
| ggc                          | gttt         | att a                     | actg       | ttcc       | ag ga      | aatta      | acta       | gg.        | tagta      | acct       | acg        | acta       | ctg (      | gggc       | caaggc     | 660 |
| acc                          | actc         | tca (                     | cagt       | ctcc       |            |            |            |            |            |            |            |            |            |            |            | 678 |
| <21<br><21<br><21<br><21     | 1> :<br>2> : | 42<br>226<br>PRT<br>Mus 1 | musc       | ulus       |            |            |            |            |            |            |            |            |            |            |            |     |
| <40<br>Asp<br>1              | -            | 42<br>Leu                 | Leu        | Thr<br>5   | Gln        | Ser        | Pro        | Ala        | Ile<br>10  | Leu        | Ser        | Val        | Ser        | Pro<br>15  | Gly        |     |
| Glu                          | Arg          | Val                       | Ser        | Phe        | Ser        | Cys        | Arg        | Ala        | Ser        | Gln        | Phe        | Val        | Gly<br>30  | Ser        | Ser        |     |

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser 75 70 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu 105 Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val 135 Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser 145 150 Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg 165 Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met 180 Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn 200 Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr 210 215 Val Ser 225 <210> 43 <211> 450 <212> DNA <213> Homo sapiens <400> 43 getgeateag aagaggeeat caageacate actgteette tgeeatggee etgtggatge 60 120 gcctcctgcc cctgctggcg ctgctggccc tctggggacc tgacccagcc gcagcctttg tgaaccaaca cctgtgcggc tcacacctgg tggaagctct ctacctagtg tgcggggaac 180 qaqqcttctt ctacacaccc aagacccgcc gggaggcaga ggacctgcag gtggggcagg 240 tggagctggg cgggggccct ggtgcaggca gcctgcagcc cttggccctg gaggggtccc 300 tgcagaagcg tggcattgtg gaacaatgct gtaccagcat ctgctccctc taccagctgg 360 agaactactg caactagacg cagecegeag geageeeece accegeegee teetgeaceg 420 450 agagagatgg aataaagccc ttgaaccagc

<210> 44 <211> 110 <212> PRT <213> Homo sapiens <400> 44 Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly 20 Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe 40 Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn <210> 45 <211> 1203 <212> DNA <213> Hepatitis B virus <400> 45 atgggaggtt ggtcttccaa acctcgacaa ggcatgggga cgaatctttc tgttcccaat 60 cctctgggat tctttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaaacaat 120 ccaqattqqq acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg 180 240 ggagacttcg ggccagggtt caccccacca cacggcggtc ttttggggtg gagccctcag gctcagggca tattgacaac agtgccagca gcgcctcctc ctgtttccac caatcggcag 300 teaggaagae agectactee cateteteca cetetaagag acagteatee teaggecatg 360 cagtggaact ccacaacatt ccaccaaget ctgctagatc ccagagtgag gggcctatat 420 tttcctgctg gtggctccag ttccggaaca gtaaaccctg ttccgactac tgtctcaccc 480 540 atateqteaa tetteteqaq gactqqqqac cetqeaceqa acatgqaqaq cacaacatea ggattcctag gacccctgct cgtgttacag gcggggtttt tcttgttgac aagaatcctc 600 660 acaataccac agagtctaga ctcgtggtgg acttctctca attttctagg gggagcaccc

47

720

780

840

acgtgtcctg gccaaaattc gcagtcccca acctccaatc actcaccaac ctcttgtcct

ccaatttgtc ctggttatcg ctggatgtgt ctgcggcgtt ttatcatatt cctcttcatc

ctgctgctat gcctcatctt cttgttggtt cttctggact accaaggtat gttgcccgtt

tgtectetac ttecaggaac atcaactace agcaeggac catgeaagac etgeaegatt 900 cetgeteaag gaacetetat gtttecetet tgttgetgta caaaacette ggaeggaaac 960 tgeaettgta tteceatece atcateetgg getttegeaa gatteetatg ggagtgggec 1020 teagteegtt teteetgget eagtttacta gtgeeatttg tteagtggtt egeagggett 1080 teececaetg tttggette agttatatgg atgatgtggt attgggggec aagtetgtac 1140 aacatettga gteeetttt acetetatta eeaattteet tttgtetttg ggtatacatt 1200 tga

<210> 46

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro 20 25 30

Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn 35 40 45

Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly 50 55 60

Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln 65 70 75 80

Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser 85 90 95

Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 100 105 110

Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His 115 120 125 .

Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly 130 135 140

Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro 145 150 155 160

Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu 165 170 175

Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly 180 185 190

Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser 195 200 205

Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly 210 215 220

| Gln As<br>225                    | sn Se       | er ( | Gln        | Ser        | Pro<br>230    | Thr        | Ser        | Asn        | His        | Ser<br>235 | Pro        | Thr        | Ser        | Cys        | Pro<br>240 |     |
|----------------------------------|-------------|------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Pro Il                           | le C        | ys E |            | Gly<br>245 | Tyr           | Arg        | Trp        | Met        | Cys<br>250 | Leu        | Arg        | Arg        | Phe        | Ile<br>255 | Ile        |     |
| Phe Le                           | eu Pl       |      | Ile<br>260 | Leu        | Leu           | Leu        | Суз        | Leu<br>265 | Ile        | Phe        | Leu        | Leu        | Val<br>270 | Leu        | Leu        |     |
| Asp Ty                           | _           | ln ( | Gly        | Met        | Leu           | Pro        | Val<br>280 | Суѕ        | Pro        | Leu        | Leu        | Pro<br>285 | Gly        | Thr        | Ser        |     |
| Thr Th                           | hr Se<br>90 | er I | Thr        | Gly        | Pro           | Cys<br>295 | Lys        | Thr        | Суз        | Thr        | Ile<br>300 | Pro        | Ala        | Gln        | Gly        |     |
| Thr Se                           | er Me       | et I | Phe        | Pro        | Ser<br>310    | Cys        | Cys        | Cys        | Thr        | Lys<br>315 | Pro        | Ser        | Asp        | Gly        | Asn<br>320 |     |
| Cys Th                           | hr C        | ys l | Ile        | Pro<br>325 | Ile           | Pro        | Ser        | Ser        | Trp<br>330 | Ala        | Phe        | Ala        | Arg        | Phe<br>335 | Leu        |     |
| Trp Gl                           | lu T        |      | Ala<br>340 | Ser        | Val           | Arg        | Phe        | Ser<br>345 | Trp        | Leu        | Ser        | Leu        | Leu<br>350 | Val        | Pro        |     |
| Phe Va                           |             | ln 5 | Trp        | Phe        | Ala           | Gly        | Leu<br>360 | Ser        | Pro        | Thr        | Val        | Trp<br>365 | Leu        | Ser        | Val        |     |
| Ile Ti<br>3                      | rp Me<br>70 | et N | Met        | Trp        | Tyr           | Trp<br>375 | G'ly       | Pro        | Ser        | Leu        | Tyr<br>380 | Asn        | Ile        | Leu        | Ser        |     |
| Pro Pl<br>385                    | he Le       | eu I | Pro        | Leu        | Leu<br>390    | Pro        | Ile        | Phe        | Phe        | Cys<br>395 | Leu        | Trp        | Val        | Tyr        | Ile<br>400 |     |
| <210><br><211><br><212><br><213> | DN          | A    | sapi       | ens        |               |            |            |            |            |            |            |            |            |            |            |     |
| <400><br>cgaaco                  | 47<br>cact  | c aç | gggt       | .cctg      | jt g <u>c</u> | Jacag      | rctca      | ı cct      | agct       | :gca       | atgo       | gctac      | cag (      | gatad      | cggac      | 60  |
| gtccci                           | tgct        | c ct | tggc       | tttt       | g go          | ctgo       | etcto      | g cct      | gcc        | tgg        | cttc       | caaga      | rāā (      | gcagt      | gcctt      | 120 |
| cccaa                            | ccat        | t c  | cctt       | atco       | a go          | gcctt      | ttga       | a caa      | ıcgct      | atg        | ctcc       | gcgc       | ccc a      | atcgt      | ctgca      | 180 |
| ccagct                           | tggc        | c tt | ttga       | .cacc      | t ac          | cago       | gagtt      | t tga      | agaa       | ıgcc       | tata       | tccc       | caa a      | aggaa      | acagaa     | 240 |
| gtatto                           | catt        | c ct | tgca       | .gaac      | ec ec         | ccaga      | acto       | c cct      | ctgt       | ttc        | tcaç       | gagto      | cta        | ttaco      | gacacc     | 300 |
| ctccaa                           | acag        | g ga | agga       | .aaca      | ac aa         | caga       | aato       | c caa      | ccta       | ıgag       | ctgo       | etecç      | gca ·      | tata       | ectget     | 360 |
| gctcat                           | tcca        | g to | cgtg       | gctc       | gg ag         | lacad      | ıtgca      | a gtt      | ccto       | agg        | agto       | gtctt      | cg (       | ccaac      | agcct      | 420 |
| ggtgta                           | acgg        | c go | cctc       | tgac       | a go          | caaco      | ıtcta      | ı tga      | ccto       | cta        | aagg       | gacct      | ag a       | aggaa      | aggcat     | 480 |
| ccaaa                            | cgct        | g at | tggg       | gago       | ga tạ         | ggaag      | gatgo      | g caç      | jece       | cgg        | acto       | idacs      | aga ·      | tctto      | caagca     | 540 |
| gaccta                           | acag        | c aa | agtt       | .cgac      | ca ca         | aact       | caca       | a caa      | ıcgat      | gac        | gcad       | ctact      | ca a       | agaad      | ctacgg     | 600 |
| gctgc                            | tcta        | c to | gctt       | cago       | ga ag         | ggaca      | ıtgga      | a caa      | iggto      | gag        | acat       | tcct       | :gc (      | gcato      | gtgca      | 660 |

780

799

gtgccgctct gtggagggca gctgtggctt ctagctgccc gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct aataaaatta agttgcatc <210> 48 <211> 217 <212> PRT <213> Homo sapiens <400> 48 Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu 25 Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp 100 Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val 120 Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu 135 130 Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg 150 Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser 170 165 His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe 185 Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys 200 205 Arg Ser Val Glu Gly Ser Cys Gly Phe 215 210 <210> 49 <211> 963 <212> DNA

<400> 49

<213> Homo sapiens

PCT/US2003/031974 WO 2004/033651

| atggagacag | acacactcct | gttatgggtg | ctgctgctct | gggttccagg | ttccactggt | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| gacgtcaggc | gagggccccg | gagcctgcgg | ggcagggacg | cgccagcccc | cacgccctgc | 120 |
| gtcccggccg | agtgcttcga | cctgctggtc | cgccactgcg | tggcctgcgg | gctcctgcgc | 180 |
| acgccgcggc | cgaaaccggc | cggggccagc | agccctgcgc | ccaggacggc | gctgcagccg | 240 |
| caggagtcgg | tgggcgcggg | ggccggcgag | gcggcggtcg | acaaaactca | cacatgccca | 300 |
| ccgtgcccag | cacctgaact | cctgggggga | ccgtcagtct | tectettece | cccaaaaccc | 360 |
| aaggacaccc | tcatgatctc | ccggacccct | gaggtcacat | gcgtggtggt | ggacg‡gagc | 420 |
| cacgaagacc | ctgaggtcaa | gttcaactgg | tacgtggacg | gcgtggaggt | gcataatgcc | 480 |
| aagacaaagc | cgcgggagga | gcagtacaac | agcacgtacc | gtgtggtcag | cgtcctcacc | 540 |
| gtcctgcacc | aggactggct | gaatggcaag | gagtacaagt | gcaaggtctc | caacaaagcc | 600 |
| ctcccagccc | ccatcgagaa | aaccatctcc | aaagccaaag | ggcagccccg | agaaccacag | 660 |
| gtgtacaccc | tgcccccatc | ccgggatgag | ctgaccaaga | accaggtcag | cctgacctgc | 720 |
| ctggtcaaag | gcttctatcc | cagcgacatc | gccgtggagt | gggagagcaa | tgggcagccg | 780 |
| gagaacaact | acaagaccac | gcctcccgtg | ttggactccg | acggeteett | cttcctctac | 840 |
| agcaagctca | ccgtggacaa | gagcaggtgg | cagcagggga | acgtcttctc | atgctccgtg | 900 |
| atgcatgagg | ctctgcacaa | ccactacacg | cagaagagcc | tctccctgtc | tcccgggaaa | 960 |
| tga        |            |            |            |            |            | 963 |
| <210> 50   |            |            |            |            |            |     |

<211> 320

<212> PRT <213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg 20 25

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr 90

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 100 105 110

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 120 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 155 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 185 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 195 200 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 215 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 230 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 310 315 <210> 51 <211> 107 <212> PRT <213> Homo sapiens <400> 51 Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly 10 Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 40 · 45 Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 75 Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gly Asn Thr Leu Pro Trp

90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys 100

<210> 52 <211> 107 <212> PRT

<213> Mus musculus

<400> 52

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 70

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 53

<211> 119

<212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 55

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 70

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 105

Thr Leu Val Thr Val Ser Ser 115

<210> 54

<211> 119 <212> PRT

<213> Mus musculus

<400> 54

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly

Thr Leu Val Thr Val Ser Ala 115

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 40 45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 55

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala 105

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro

205 195 200 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 215 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 250 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 310 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 330 325 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 345 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 360 355 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 375 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 395 385 390 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 410 405 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 425 430 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 440 <210> 57 <211> 8540 <212> DNA <213> Homo sapiens <400> 57 gacgtcgcgg ccgctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag

60 aggecgagge ggeeteggee tetgeataaa taaaaaaaat tagteageea tgeatgggge qqaqaatggg cggaactggg cggagttagg ggcgggatgg gcggagttag gggcgggact 180 atggttgctg actaattgag atgcatgctt tgcatacttc tgcctgctgg ggagcctggg 240

| gactttccac acctggttgc | tgactaattg | agatgcatgc | tttgcatact | tetgeetget | 300  |
|-----------------------|------------|------------|------------|------------|------|
| ggggagcctg gggactttcc | acaccctaac | tgacacacat | tccacagaat | taattcccct | 360  |
| agttattaat agtaatcaat | tacggggtca | ttagttcata | gcccatatat | ggagttccgc | 420  |
| gttacataac ttacggtaaa | tggcccgcct | ggctgaccgc | ccaacgaccc | ccgcccattg | 480  |
| acgtcaataa tgacgtatgt | tcccatagta | acgccaatag | ggactttcca | ttgacgtcaa | 540  |
| tgggtggact atttacggta | aactgcccac | ttggcagtac | atcaagtgta | tcatatgcca | 600  |
| agtacgcccc ctattgacgt | caatgacggt | aaatggcccg | cctggcatta | tgcccagtac | 660  |
| atgaccttat gggactttcc | tacttggcag | tacatctacg | tattagtcat | cgctattacc | 720  |
| atggtgatgc ggttttggca | gtacatcaat | gggcgtggat | agcggtttga | ctcacgggga | 780  |
| tttccaagtc tccaccccat | tgacgtcaat | gggagtttgt | tttggcacca | aaatcaacgg | 840  |
| gactttccaa aatgtcgtaa | caactccgcc | ccattgacgc | aaatgggcgg | taggcgtgta | 900  |
| cggtgggagg tctatataag | cagagctggg | tacgtgaacc | gtcagatcgc | ctggagacgc | 960  |
| catcacagat ctctcaccat | gagggtcccc | gctcagctcc | tggggctcct | gctgctctgg | 1020 |
| ctcccaggtg cacgatgtga | tggtaccaag | gtggaaatca | aacgtacggt | ggctgcacca | 1080 |
| tetgtettea tettecegee | atctgatgag | cagttgaaat | ctggaactgc | ctctgttgtg | 1140 |
| tgcctgctga ataacttcta | teccagagag | gccaaagtac | agtggaaggt | ggataacgcc | 1200 |
| ctccaatcgg gtaactccca | ggagagtgtc | acagagcagg | acagcaagga | cagcacctac | 1260 |
| agceteagea geaccetgae | gctgagcaaa | gcagactacg | agaaacacaa | agtctacgcc | 1320 |
| tgcgaagtca cccatcaggg | cctgagctcg | cccgtcacaa | agagcttcaa | caggggagag | 1380 |
| tgttgaattc agatccgtta | acggttacca | actacctaga | ctggattcgt | gacaacatgc | 1440 |
| ggccgtgata tctacgtatg | atcagcctcg | actgtgcctt | ctagttgcca | gccatctgtt | 1500 |
| gtttgcccct ccccgtgcc  | ttccttgacc | ctggaaggtg | ccactcccac | tgtcctttcc | 1560 |
| taataaaatg aggaaattgc | atcgcattgt | ctgagtaggt | gtcattctat | tctggggggt | 1620 |
| ggggtggggc aggacagcaa | gggggaggat | tgggaagaca | atagcaggca | tgctggggat | 1680 |
| gcggtgggct ctatggaacc | agctggggct | cgacagctat | gccaagtacg | cccctattg  | 1740 |
| acgtcaatga cggtaaatgg | cccgcctggc | attatgccca | gtacatgacc | ttatgggact | 1800 |
| ftcctacttg gcagtacatc | tacgtattag | tcatcgctat | taccatggtg | atgcggtttt | 1860 |
| ggcagtacat caatgggcgt | ggatagcggt | ttgactcacg | gggatttcca | agtctccacc | 1920 |
| ccattgacgt caatgggagt | ttgttttggc | accaaaatca | acgggacttt | ccaaaatgtc | 1980 |
| gtaacaactc cgccccattg | acgcaaatgg | gcggtaggcg | tgtacggtgg | gaggtctata | 2040 |
| taagcagagc tgggtacgtc | ctcacattca | gtgatcagca | ctgaacacag | acccgtcgac | 2100 |

| atgggttgga | gcctcatctt   | gctcttcctt   | gtcgctgttg | ctacgcgtgt | cgctagcacc | 2160 |
|------------|--------------|--------------|------------|------------|------------|------|
| aagggcccat | cggtcttccc   | cctggcaccc   | tcctccaaga | gcacctctgg | gggcacagcg | 2220 |
| gccctgggct | gcctggtcaa   | ggactacttc   | cccgaaccgg | tgacggtgtc | gtggaactca | 2280 |
| ggcgccctga | ccagcggcgt   | gcacaccttc   | ccggctgtcc | tacagtcctc | aggactctac | 2340 |
| tccctcagca | gcgtggtgac   | cgtgccctcc   | agcagcttgg | gcacccagac | ctacatctgc | 2400 |
| aacgtgaatc | acaagcccag   | caacaccaag   | gtggacaaga | aagcagagcc | caaatcttgt | 2460 |
| gacaaaactc | acacatgccc   | accgtgccca   | gcacctgaac | tcctgggggg | accgtcagtc | 2520 |
| tteetettee | ccccaaaacc   | caaggacacc   | ctcatgatct | cccggacccc | tgaggtcaca | 2580 |
| tgcgtggtgg | tggacgtgag   | ccacgaagac   | cctgaggtca | agttcaactg | gtacgtggac | 2640 |
| ggcgtggagg | tgcataatgc   | caagacaaag   | ccgcgggagg | agcagtacaa | cagcacgtac | 2700 |
| cgtgtggtca | gcgtcctcac   | cgtcctgcac   | caggactggc | tgaatggcaa | ggactacaag | 2760 |
| tgcaaggtct | ccaacaaagc   | cctcccagcc   | cccatcgaga | aaaccatctc | caaagccaaa | 2820 |
| gggcagcccc | gagaaccaca   | ggtgtacacc   | ctgcccccat | cccgggatga | gctgaccagg | 2880 |
| aaccaggtca | gcctgacctg   | cctggtcaaa   | ggcttctatc | ccagcgacat | cgccgtggag | 2940 |
| tgggagagca | atgggcagcc   | ggagaacaac   | tacaagacca | cgcctcccgt | gctggactcc | 3000 |
| gacggctcct | tcttcctcta   | cagcaagctc   | accgtggaca | agagcaggtg | gcagcagggg | 3060 |
| aacgtcttct | catgctccgt   | gatgcatgag   | gctctgcaca | accactacac | gcagaagagc | 3120 |
| ctctccctgt | ctccgggtaa   | atgaggatcc   | gttaacggtt | accaactacc | tagactggat | 3180 |
| tegtgacaac | atgcggccgt   | gatatctacg   | tatgatcagc | ctcgactgtg | ccttctagtt | 3240 |
| gccagccatc | tgttgtttgc   | ccctcccccg   | tgccttcctt | gaccctggaa | ggtgccactc | 3300 |
| ccactgtcct | ttcctaataa   | aatgaggaaa   | ttgcatcgca | ttgtctgagt | aggtgtcatt | 3360 |
| ctattctggg | gggtggggtg   | gggcaggaca   | gcaaggggga | ggattgggaa | gacaatagca | 3420 |
| ggcatgctgg | ggatgeggtg   | ggctctatgg   | aaccagctgg | ggctcgacag | cgctggatct | 3480 |
| cccgatcccc | agetttgett   | . ctcaatttct | tatttgcata | atgagaaaaa | aaggaaaatt | 3540 |
| aattttaaca | ccaattcagt   | . agttgattga | gcaaatgcgt | tgccaaaaag | gatgctttag | 3600 |
| agacagtgtt | ctctgcacag   | r ataaggacaa | acattattca | gagggagtac | ccagagctga | 3660 |
| gactcctaag | g ccagtgagtg | g gcacagcatt | ctagggagaa | atatgcttgt | catcaccgaa | 3720 |
| gcctgattcc | gtagagccac   | accttggtaa   | gggccaatct | gctcacacag | gatagagagg | 3780 |
| gcaggagcca | a gggcagagca | ı tataaggtga | ggtaggatca | gttgctcctc | acatttgctt | 3840 |
| ctgacatagt | : tgtgttggga | a gcttggatag | cttggacago | tcagggctgc | gatttcgcgc | 3900 |
|            |              |              |            |            |            |      |

| caaacttgac | ggcaatccta | gcgtgaaggc | tggtaggatt | ttatccccgc | tgccatcatg | 3960 |
|------------|------------|------------|------------|------------|------------|------|
| gttcgaccat | tgaactgcat | cgtcgccgtg | tcccaaaata | tggggattgg | caagaacgga | 4020 |
| gacctaccct | ggcctccgct | caggaacgag | ttcaagtact | tccaaagaat | gaccacaacc | 4080 |
| tcttcagtgg | aaggtaaaca | gaatctggtg | attatgggta | ggaaaacctg | gttctccatt | 4140 |
| cctgagaaca | atcgaccttt | aaaggacaga | attaatatag | ttctcagtag | agaactcaaa | 4200 |
| gaaccaccac | gaggagctca | ttttcttgcc | aaaagtttgg | atgatgcctt | aagacttatt | 4260 |
| gaacaaccgg | aattggcaag | taaagtagac | atggtttgga | tagtcggagg | cagttctgtt | 4320 |
| taccaggaag | ccatgaatca | accaggccac | cttagactct | ttgtgacaag | gatcatgcag | 4380 |
| gaatttgaaa | gtgacacgtt | tttcccagaa | attgatttgg | ggaaatataa | acttctccca | 4440 |
| gaatacccag | gegteetete | tgaggtccag | gaggaaaaag | gcatcaagta | taagtttgaa | 4500 |
| gtctacgaga | agaaagacta | acaggaagat | gctttcaagt | tctctgctcc | cctcctaaag | 4560 |
| tcatgcattt | ttataagacc | atgggacttt | tgctggcttt | agatcagcct | cgactgtgcc | 4620 |
| ttctagttgc | cagccatctg | ttgtttgccc | ctcccccgtg | ccttccttga | ccctggaagg | 4680 |
| tgccactccc | actgtccttt | cctaataaaa | tgaggaaatt | gcatcgcatt | gtctgagtag | 4740 |
| gtgtcattct | attctggggg | gtggggtggg | gcaggacagc | aagggggagg | attgggaaga | 4800 |
| caatagcagg | catgctgggg | atgcggtggg | ctctatggaa | ccagctgggg | ctcgagctac | 4860 |
| tagctttgct | tctcaatttc | ttatttgcat | aatgagaaaa | aaaggaaaat | taattttaac | 4920 |
| accaattcag | tagttgattg | agcaaatgcg | ttgccaaaaa | ggatgcttta | gagacagtgt | 4980 |
| tetetgcaca | gataaggaca | aacattattc | agagggagta | cccagagctg | agactcctaa | 5040 |
| gccagtgagt | ggcacagcat | tctagggaga | aatatgcttg | tcatcaccga | agcctgattc | 5100 |
| cgtagagcca | caccttggta | agggccaatc | tgctcacaca | ggatagagag | ggcaggagcc | 5160 |
| agggcagagc | atataaggtg | aggtaggatc | agttgctcct | cacatttgct | tctgacatag | 5220 |
| ttgtgttggg | agcttggatc | gatcctctat | ggttgaacaa | gatggattgc | acgcaggttc | 5280 |
| tccggccgct | tgggtggaga | ggctattcgg | ctatgactgg | gcacaacaga | caatcggctg | 5340 |
| ctctgatgcc | gccgtgttcc | ggctgtcagc | gcaggggggc | ccggttcttt | ttgtcaagac | 5400 |
| cgacctgtcc | ggtgccctga | atgaactgca | ggacgaggca | gcgcggctat | cgtggctggc | 5460 |
| cacgacgggc | gttccttgcg | cagctgtgct | cgacgttgtc | actgaagcgg | gaagggactg | 5520 |
| gctgctattg | ggcgaagtgc | cggggcagga | tctcctgtca | tctcaccttg | ctcctgccga | 5580 |
| gaaagtatcc | atcatggctg | atgcaatgcg | gcggctgcat | acgcttgatc | cggctacctg | 5640 |
| cccattcgac | caccaagcga | aacatcgcat | cgagcgagca | cgtactcgga | tggaagccgg | 5700 |
| tcttgtcgat | caggatgatc | tggacgaaga | gcatcagggg | ctcgcgccag | ccgaactgtt | 5760 |

| cgccaggctc aaggcgcgca | tgcccgacgg | cgaggatctc | gtcgtgaccc | atggcgatgc | 5820 |
|-----------------------|------------|------------|------------|------------|------|
| ctgcttgccg aatatcatgg | tggaaaatgg | ccgcttttct | ggattcatcg | actgtggccg | 5880 |
| gctgggtgtg gcggaccgct | atcaggacat | agcgttggct | acccgtgata | ttgctgaaga | 5940 |
| gcttggcggc gaatgggctg | accgcttcct | cgtgctttac | ggtatcgccg | cttcccgatt | 6000 |
| cgcagcgcat cgccttctat | cgccttcttg | acgagttctt | ctgagcggga | ctctggggtt | 6060 |
| cgaaatgacc gaccaagcga | cgcccaacct | gccatcacga | gatttcgatt | ccaccgccgc | 6120 |
| cttctatgaa aggttgggct | tcggaatcgt | tttccgggac | gccggctgga | tgatcctcca | 6180 |
| gcgcggggat ctcatgctgg | agttcttcgc | ccaccccaac | ttgtttattg | cagcttataa | 6240 |
| tggttacaaa taaagcaata | gcatcacaaa | tttcacaaat | aaagcatttt | tttcactgca | 6300 |
| ttctagttgt ggtttgtcca | aactcatcaa | tctatcttat | catgtctgga | tcgcggccgc | 6360 |
| gatecegteg agagettgge | gtaatcatgg | tcatagctgt | ttcctgtgtg | aaattgttat | 6420 |
| ccgctcacaa ttccacacaa | catacgagcc | ggagcataaa | gtgtaaagcc | tggggtgcct | 6480 |
| aatgagtgag ctaactcaca | ttaattgcgt | tgcgctcact | gcccgctttc | cagtcgggaa | 6540 |
| acctgtcgtg ccagctgcat | taatgaatcg | gccaacgcgc | ggggagaggc | ggtttgcgta | 6600 |
| ttgggcgctc ttccgcttcc | tegeteactg | actegetgeg | ctcggtcgtt | cggctgcggc | 6660 |
| gagcggtatc agctcactca | aaggcggtaa | tacggttatc | cacagaatca | ggggataacg | 6720 |
| caggaaagaa catgtgagca | aaaggccagc | aaaaggccag | gaaccgtaaa | aaggccgcgt | 6780 |
| tgctggcgtt tttccatagg | ctccgccccc | ctgacgagca | tcacaaaaat | cgacgctcaa | 6840 |
| gtcagaggtg gcgaaacccg | acaggactat | aaagatacca | ggcgtttccc | cctggaagct | 6900 |
| ccctcgtgcg ctctcctgtt | ccgaccctgc | cgcttaccgg | atacctgtcc | gcctttctcc | 6960 |
| cttcgggaag cgtggcgctt | tctcaatgct | cacgctgtag | gtatctcagt | tcggtgtagg | 7020 |
| tegttegete caagetggge | tgtgtgcacg | aaccccccgt | tcagcccgac | cgctgcgcct | 7080 |
| tatccggtaa ctatcgtctt | gagtccaacc | cggtaagaca | cgacttatcg | ccactggcag | 7140 |
| cagccactgg taacaggatt | agcagagcga | ggtatgtagg | cggtgctaca | gagttcttga | 7200 |
| agtggtggcc taactacggc | tacactagaa | ggacagtatt | tggtatctgc | gctctgctga | 7260 |
| agccagttac cttcggaaaa | agagttggta | gctcttgatc | cggcaaacaa | accaccgctg | 7320 |
| gtageggtgg tttttttgtt | tgcaagcagc | agattacgcg | cagaaaaaaa | ggatctcaag | 7380 |
| aagatccttt gatcttttct | acggggtctg | acgctcagtg | gaacgaaaac | tcacgttaag | 7440 |
| ggattttggt catgagatta | tcaaaaagga | tettcaceta | gatcctttta | aattaaaaat | 7500 |
| gaagttttaa atcaatctaa | agtatatatg | agtaaacttg | gtctgacagt | taccaatgct | 7560 |

| taatcagtga          | ggcacctatc | tcagcgatct | gtctatttcg | ttcatccata | gttgcctgac | 7620 |
|---------------------|------------|------------|------------|------------|------------|------|
| teccegtegt          | gtagataact | acgatacggg | agggcttacc | atctggcccc | agtgctgcaa | 7680 |
| tgataccgcg          | agacccacgc | tcaccggctc | cagatttatc | agcaataaac | cagccagccg | 7740 |
| gaagggccga          | gcgcagaagt | ggtcctgcaa | ctttatccgc | ctccatccag | tctattaatt | 7800 |
| gttgccggga          | agctagagta | agtagttcgc | cagttaatag | tttgcgcaac | gttgttgcca | 7860 |
| ttgctacagg          | catcgtggtg | tcacgctcgt | cgtttggtat | ggcttcattc | agctccggtt | 7920 |
| cccaacgatc          | aaggcgagtt | acatgatccc | ccatgttgtg | caaaaaagcg | gttagctcct | 7980 |
| teggteetee          | gatcgttgtc | agaagtaagt | tggccgcagt | gttatcactc | atggttatgg | 8040 |
| cagcactgca          | taattctctt | actgtcatgc | catccgtaag | atgcttttct | gtgactggtg | 8100 |
| agtactcaac          | caagtcattc | tgagaatagt | gtatgcggcg | accgagttgc | tcttgcccgg | 8160 |
| cgtcaatacg          | ggataatacc | gcgccacata | gcagaacttt | aaaagtgctc | atcattggaa | 8220 |
| aacgttcttc          | ggggcgaaaa | ctctcaagga | tcttaccgct | gttgagatcc | agttcgatgt | 8280 |
| aacccactcg          | tgcacccaac | tgatcttcag | catcttttac | tttcaccagc | gtttctgggt | 8340 |
| gagcaaaaac          | aggaaggcaa | aatgccgcaa | aaaagggaat | aagggcgaca | cggaaatgtt | 8400 |
| gaatactcat          | actcttcctt | tttcaatatt | attgaagcat | ttatcagggt | tattgtctca | 8460 |
| tgagcggata          | catatttgaa | tgtatttaga | aaaataaaca | aataggggtt | ccgcgcacat | 8520 |
| ttccccgaaa          | agtgccacct |            |            |            |            | 8540 |
| <210> 58 <211> 9209 | a          |            |            |            |            |      |
| <212> DNA           | musculus   |            |            |            |            |      |
| <400> 58            | Musculus   |            |            |            |            |      |
|                     | ccgctctagg | cctccaaaaa | agcctcctca | ctacttctgg | aatagctcag | 60   |
| aggeegagge          | ggcctcggcc | tctgcataaa | taaaaaaaat | tagtcagcca | tgcatggggc | 120  |
| ggagaatggg          | cggaactggg | cggagttagg | ggcgggatgg | gcggagttag | gggcgggact | 180  |
| atggttgctg          | actaattgag | atgcatgctt | tgcatacttc | tgcctgctgg | ggagcctggg | 240  |
| gactttccac          | acctggttgc | tgactaattg | agatgcatgc | tttgcatact | tctgcctgct | 300  |
| ggggagcctg          | gggactttcc | acaccctaac | tgacacacat | tccacagaat | taattcccct | 360  |
| agttattaat          | agtaatcaat | tacggggtca | ttagttcata | gcccatatat | ggagttccgc | 420  |
| gttacataac          | ttacggtaaa | tggcccgcct | ggctgaccgc | ccaacgaccc | ccgcccattg | 480  |
| acgtcaataa          | tgacgtatgt | tcccatagta | acgccaatag | ggactttcca | ttgacgtcaa | 540  |
| tgggtggact          | atttacggta | aactgcccac | ttggcagtac | atcaagtgta | tcatatgcca | 600  |
| agtacgcccc          | ctattgacgt | caatgacggt | aaatggcccg | cctggcatta | tgcccagtac | 660  |

| atgaccttat | gggactttcc | tacttggcag | tacatctacg | tattagtcat | cgctattacc | 720  |
|------------|------------|------------|------------|------------|------------|------|
| atggtgatgc | ggttttggca | gtacatcaat | gggcgtggat | accggtttga | ctcacgcgga | 780  |
| tttccaagtc | tccaccccat | tgacgtcaat | gggagtttgt | tttggcacca | aaatcaacgg | 840  |
| gactttccaa | aatgtcgtaa | caactccgcc | ccattgacgc | aaatgggcgg | taggcgtgta | 900  |
| cggtgggagg | tctatataag | cagagctggg | tacgtgaacc | gtcagatcgc | ctggagacgc | 960  |
| catcacagat | ctctcactat | ggattttcag | gtgcagatta | tcagcttcct | gctaatcagt | 1020 |
| gcttcagtca | taatgtccag | aggacaaatt | gttctctccc | agtctccagc | aatcctgtct | 1080 |
| gcatctccag | gggagaaggt | cacaatgact | tgcagggcca | gctcaagtgt | aagttacatc | 1140 |
| cactggttcc | agcagaagcc | aggateetee | cccaaaccct | ggatttatgc | cacatccaac | 1200 |
| ctggcttctg | gagtccctgt | tcgcttcagt | ggcagtgggt | ctgggacttc | ttactctctc | 1260 |
| acaatcagca | gagtggaggc | tgaagatgct | gccacttatt | actgccagca | gtggactagt | 1320 |
| aacccaccca | cgttcggagg | ggggaccaag | ctggaaatca | aacgtacggt | ggctgcacca | 1380 |
| tctgtcttca | tcttcccgcc | atctgatgag | cagttgaaat | ctggaactgc | ctctgttgtg | 1440 |
| tgcctgctga | ataacttcta | tcccagagag | gccaaagtac | agtggaaggt | ggataacgcc | 1500 |
| ctccaatcgg | gtaactccca | ggagagtgtc | acagagcagg | acagcaagga | cagcacctac | 1560 |
| agcctcagca | gcaccctgac | gctgagcaaa | gcagactacg | agaaacacaa | agtctacgcc | 1620 |
| tgcgaagtca | cccatcaggg | cctgagctcg | cccgtcacaa | agagetteaa | caggggagag | 1680 |
| tgttgaattc | agatccgtta | acggttacca | actacctaga | ctggattcgt | gacaacatgc | 1740 |
| ggccgtgata | tctacgtatg | atcagcctcg | actgtgcctt | ctagttgcca | gccatctgtt | 1800 |
| gtttgcccct | ccccgtgcc  | ttccttgacc | ctggaaggtg | ccactcccac | tgtcctttcc | 1860 |
| taataaaatg | aggaaattgc | atcgcattgt | ctgagtaggt | gtcattctat | tctggggggt | 1920 |
| ggggtggggc | aggacagcaa | gggggaggat | tgggaagaca | atagcaggca | tgctggggat | 1980 |
| gcggtgggct | ctatggaacc | agctggggct | cgacagctat | gccaagtacg | cccctattg  | 2040 |
| acgtcaatga | cggtaaatgg | cccgcctggc | attatgccca | gtacatgacc | ttatgggact | 2100 |
| ttcctacttg | gcagtacatc | tacgtattag | tcatcgctat | taccatggtg | atgcggtttt | 2160 |
| ggcagtacat | caatgggcgt | ggatagcggt | ttgactcacg | gggatttcca | agtctccacc | 2220 |
| ccattgacgt | caatgggagt | ttgttttggc | accaaaatca | acgggacttt | ccaaaatgtc | 2280 |
| gtaacaactc | cgccccattg | acgcaaatgg | gcggtaggcg | tgtacggtgg | gaggtctata | 2340 |
| taagcagagc | tgggtacgtc | ctcacattca | gtgatcagca | ctgaacacag | acccgtcgac | 2400 |
| atgggttgga | gcctcatctt | gctcttcctt | gtcgctgttg | ctacgcgtgt | cctgtcccag | 2460 |
|            |            |            |            |            |            |      |

| gtacaactgc | agcagcctgg | ggctgagctg | gtgaagcctg   | gggcctcagt   | gaagaťġťcc   | <i>2</i> 520 |
|------------|------------|------------|--------------|--------------|--------------|--------------|
| tgcaaggctt | ctggctacac | atttaccagt | tacaatatgc   | actgggtaaa   | acagacacct   | 2580         |
| ggteggggee | tggaatggat | tggagctatt | tatcccggaa   | atggtgatac   | ttcctacaat   | 2640         |
| cagaagttca | aaggcaaggc | cacattgact | gcagacaaat   | cctccagcac   | agcctacatg   | 2700         |
| cagctcagca | gcctgacatc | tgaggactct | gcggtctatt   | actgtgcaag   | atcgacttac   | 2760         |
| tacggcggtg | actggtactt | caatgtctgg | ggcgcaggga   | ccacggtcac   | cgtctctgca   | 2820         |
| gctagcacca | agggcccatc | ggtcttcccc | ctggcaccct   | cctccaagag   | cacctctggg   | 2880         |
| ggcacagcgg | ccctgggctg | cctggtcaag | gactacttcc   | ccgaaccggt   | gacggtgtcg   | 2940         |
| tggaactcag | gcgccctgac | cagcggcgtg | cacaccttcc   | cggctgtcct   | acagtcctca   | 3000         |
| ggactctact | ccctcagcag | cgtggtgacc | gtgccctcca   | gcagcttggg   | cacccagacc   | 3060         |
| tacatctgca | acgtgaatca | caagcccagc | aacaccaagg   | tggacaagaa   | agcagagccc   | 3120         |
| aaatcttgtg | acaaaactca | cacatgccca | ccgtgcccag   | cacctgaact   | cctgggggga   | 3180         |
| ccgtcagtct | tectettece | cccaaaaccc | aaggacaccc   | tcatgatctc   | ccggacccct   | 3240         |
| gaggtcacat | gcgtggtggt | ggacgtgagc | cacgaagacc   | ctgaggtcaa   | gttcaactgg   | 3300         |
| tacgtggacg | gcgtggaggt | gcataatgcc | aagacaaagc   | cgcgggagga   | gcagtacaac   | 3360         |
| agcacgtacc | gtgtggtcag | cgtcctcacc | gtcctgcacc   | aggactggct   | gaatggcaag   | 3420         |
| gagtacaagt | gcaaggtctc | caacaaagcc | ctcccagccc   | ccatcgagaa   | aaccatctcc   | 3480         |
| aaagccaaag | ggcagccccg | agaaccacag | gtgtacaccc   | tgcccccatc   | ccgggatgag   | 3540         |
| ctgaccaaga | accaggtcag | cctgacctgc | ctggtcaaag   | gcttctatcc   | cagegacate   | 3600         |
| gccgtggagt | gggagagcaa | tgggcagccg | gagaacaact   | acaagaccac   | gcctcccgtg   | 3660         |
| ctggactccg | acggctcctt | cttcctctac | agcaagctca   | ccgtggacaa   | gagcaggtgg   | 3720         |
| cagcagggga | acgtcttctc | atgctccgtg | atgcatgagg   | ctctgcacaa   | ccactacacg   | 3780         |
| cagaagagcc | tctccctgtc | tccgggtaaa | tgaggatccg   | ttaacggtta   | ccaactacct   | 3840         |
| agactggatt | cgtgacaaca | tgcggccgtg | atatctacgt   | atgatcagcc   | tcgactgtgc   | 3900         |
| cttctagttg | ccagccatct | gttgtttgcc | cctcccccgt   | gccttccttg   | accctggaag   | 3960         |
| gtgccactcc | cactgtcctt | tcctaataaa | atgaggaaat   | tgcatcgcat   | tgtctgagta   | 4020         |
| ggtgtcattc | tattctgggg | ggtggggtgg | ggcaggacag   | caagggggag   | gattgggaag   | 4080         |
| acaatagcag | gcatgctggg | gatgcggtgg | gctctatgga   | accagetggg   | gctcgacagc   | 4140         |
| gctggatctc | ccgatcccca | gctttgcttc | tcaatttctt   | : atttgcataa | . tgagaaaaaa | 4200         |
| aggaaaatta | attttaacac | caattcagta | . gttgattgag | g caaatgegtt | gccaaaaagg   | 4260         |
| atgctttaga | gacagtgttc | tctgcacaga | taaggacaaa   | cattattcag   | agggagtacc   | 4320         |

| cagagctgag | actcctaagc | cagtgagtgg | cacagcattc | tagggagaaa | tatgcttgtc | 4380 |
|------------|------------|------------|------------|------------|------------|------|
| atcaccgaag | cctgattccg | tagagccaca | ccttggtaag | ggccaatctg | ctcacacagg | 4440 |
| atagagaggg | caggagccag | ggcagagcat | ataaggtgag | gtaggatcag | ttgctcctca | 4500 |
| catttgcttc | tgacatagtt | gtgttgggag | cttggatagc | ttggacagct | cagggctgcg | 4560 |
| atttcgcgcc | aaacttgacg | gcaatcctag | cgtgaaggct | ggtaggattt | tateceeget | 4620 |
| gccatcatgg | ttcgaccatt | gaactgcatc | gtcgccgtgt | cccaaaatat | ggggattggc | 4680 |
| aagaacggag | acctaccctg | gcctccgctc | aggaacgagt | tcaagtactt | ccaaagaatg | 4740 |
| accacaacct | cttcagtgga | aggtaaacag | aatctggtga | ttatgggtag | gaaaacctgg | 4800 |
| ttctccattc | ctgagaagaa | tcgaccttta | aaggacagaa | ttaatatagt | tctcagtaga | 4860 |
| gaactcaaag | aaccaccacg | aggagctcat | tttcttgcca | aaagtttgga | tgatgcctta | 4920 |
| agacttattg | aacaaccgga | attggcaagt | aaagtagaca | tggtttggat | agtcggaggc | 4980 |
| agttctgttt | accaggaagc | catgaatcaa | ccaggccacc | ttagactctt | tgtgacaagg | 5040 |
| atcatgcagg | aatttgaaag | tgacacgttt | ttcccagaaa | ttgatttggg | gaaatataaa | 5100 |
| cttctcccag | aatacccagg | cgtcctctct | gaggtccagg | aggaaaaagg | catcaagtat | 5160 |
| aagtttgaag | tctacgagaa | gaaagactaa | caggaagatg | ctttcaagtt | ctctgctccc | 5220 |
| ctcctaaagc | tatgcatttt | tataagacca | tgggactttt | gctggcttta | gatcagcctc | 5280 |
| gactgtgcct | tctagttgcc | agccatctgt | tgtttgcccc | tececegtge | cttccttgac | 5340 |
| cctggaaggt | gccactccca | ctgtcctttc | ctaataaaat | gaggaaattg | catcgcattg | 5400 |
| tctgagtagg | tgtcattcta | ttctgggggg | tggggtgggg | caggacagca | agggggagga | 5460 |
| ttgggaagac | aatagcaggc | atgctgggga | tgcggtgggc | tctatggaac | cagctggggc | 5520 |
| tcgagctact | agctttgctt | ctcaatttct | tatttgcata | atgagaaaaa | aaggaaaatt | 5580 |
| aattttaaca | ccaattcagt | agttgattga | gcaaatgcgt | tgccaaaaag | gatgctttag | 5640 |
| agacagtgtt | ctctgcacag | ataaggacaa | acattattca | gagggagtac | ccagagctga | 5700 |
| gactcctaag | ccagtgagtg | gcacagcatt | ctagggagaa | atatgcttgt | catcaccgaa | 5760 |
| gcctgattcc | gtagagccac | accttggtaa | gggccaatct | gctcacacag | gatagagagg | 5820 |
| gcaggagcca | gggcagagca | tataaggtga | ggtaggatca | gttgctcctc | acatttgctt | 5880 |
| ctgacatagt | tgtgttggga | gcttggatcg | atcctctatg | gttgaacaag | atggattgca | 5940 |
| cgcaggttct | ceggeegett | gggtggagag | gctattcggc | tatgactggg | cacaacagac | 6000 |
| aatcggctgc | tctgatgccg | ccgtgttccg | gctgtcagcg | caggggcgcc | cggttctttt | 6060 |
| tgtcaagacc | gacctgtccg | gtgccctgaa | tgaactgcag | gacgaggcag | cgcggctatc | 6120 |
|            |            |            |            |            |            |      |

| gtggctggcc | acgacgggcg | ttccttgcgc | agctgtgctc | gacgttgtca | ctgaagcggg | ð18Ö |
|------------|------------|------------|------------|------------|------------|------|
| aagggactgg | ctgctattgg | gcgaagtgcc | ggggcaggat | ctcctgtcat | ctcaccttgc | 6240 |
| tcctgccgag | aaagtatcca | tcatggctga | tgcaatgcgg | cggctgcata | cgcttgatcc | 6300 |
| ggctacctgc | ccattcgacc | accaagcgaa | acatcgcatc | gagcgagcac | gtactcggat | 6360 |
| ggaagccggt | cttgtcgatc | aggatgatct | ggacgaagag | catcaggggc | tegegeeage | 6420 |
| cgaactgttc | gccaggctca | aggcgcgcat | gcccgacggc | gaggatctcg | tcgtgaccca | 6480 |
| tggcgatgcc | tgcttgccga | atatcatggt | ggaaaatggc | cgcttttctg | gattcatcga | 6540 |
| ctgtggccgg | ctgggtgtgg | cggaccgcta | tcaggacata | gcgttggcta | cccgtgatat | 6600 |
| tgctgaagag | cttggcggcg | aatgggctga | cagattaata | gtgctttacg | gtatcgccgc | 6660 |
| tcccgattcg | cagcgcatcg | ccttctatcg | ccttcttgac | gagttcttct | gagegggaet | 6720 |
| ctggggttcg | aaatgaccga | ccaagcgacg | cccaacctgc | catcacgaga | tttcgattcc | 6780 |
| accgccgcct | tctatgaaag | gttgggcttc | ggaatcgttt | teegggaege | cggctggatg | 6840 |
| atcctccagc | gcggggatct | catgctggag | ttcttcgccc | accccaactt | gtttattgca | 6900 |
| gcttataatg | gttacaaata | aagcaatagc | atcacaaatt | tcacaaataa | agcattttt  | 6960 |
| tcactgcatt | ctagttgtgg | tttgtccaaa | ctcatcaatc | tatcttatca | tgtctggatc | 7020 |
| gcggccgcga | tcccgtcgag | agcttggcgt | aatcatggtc | atagctgttt | cctgtgtgaa | 7080 |
| attgttatcc | gctcacaatt | ccacacaaca | tacgagccgg | aagcataaag | tgtaaagcct | 7140 |
| ggggtgccta | atgagtgagc | taactcacat | taattgcgtt | gcgctcactg | cccgctttcc | 7200 |
| agtcgggaaa | cctgtcgtgc | cagctgcatt | aatgaatcgg | ccaacgcgcg | gggagaggcg | 7260 |
| gtttgcgtat | tgggcgctct | teegetteet | cgctcactga | ctcgctgcgc | teggtegtte | 7320 |
| ggctgcggcg | agcggtatca | gctcactcaa | aggcggtaat | acggttatcc | acagaatcag | 7380 |
| gggataacgc | aggaaagaac | atgtgagcaa | aaggccagca | aaaggccagg | aaccgtaaaa | 7440 |
| aggccgcgtt | gctggcgttt | ttccataggc | teegeeeeee | tgacgagcat | cacaaaaatc | 7500 |
| gacgctcaag | tcagaggtgg | cgaaacccga | caggactata | aagataccag | gcgtttcccc | 7560 |
| ctggaagctc | cctcgtgcgc | tctcctgttc | cgaccctgcc | gcttaccgga | tacctgtccg | 7620 |
| cctttctccc | ttcgggaagc | gtggcgcttt | ctcaatgctc | acgctgtagg | tatctcagtt | 7680 |
| cggtgtaggt | cgttcgctcc | aagctgggct | gtgtgcacga | accccccgtt | cageeegace | 7740 |
| gctgcgcctt | atccggtaac | tatcgtcttg | agtecaacec | ggtaagacac | gacttatcgc | 7800 |
| cactggcagc | agccactggt | aacaggatta | gcagagcgag | gtatgtaggc | ggtgctacag | 7860 |
| agttcttgaa | gtggtggcct | aactacggct | acactagaag | gacagtattt | ggtatctgcg | 7920 |
| ctctgctgaa | gccagttacc | ttcggaaaaa | gagttggtag | ctcttgatcc | ggcaaacaaa | 7980 |

| ccaccgctgg                                      | tagcggtggt | ttttttgttt | gcaagcagca | gattacgcgc | agaaaaaaag | 8040 |
|-------------------------------------------------|------------|------------|------------|------------|------------|------|
| gatctcaaga                                      | agateetttg | atcttttcta | cggggtctga | cgctcagtgg | aacgaaaact | 8100 |
| cacgttaagg                                      | gattttggtc | atgagattat | caaaaaggat | cttcacctag | atccttttaa | 8160 |
| attaaaaatg                                      | aagttttaaa | tcaatctaaa | gtatatatga | gtaaacttgg | tctgacagtt | 8220 |
| accaatgctt                                      | aatcagtgag | gcacctatct | cagcgatctg | tctatttcgt | tcatccatag | 8280 |
| ttgcctgact                                      | ccccgtcgtg | tagataacta | cgatacggga | gggcttacca | tctggcccca | 8340 |
| gtgctgcaat                                      | gataccgcga | gacccacgct | caccggctcc | agatttatca | gcaataaacc | 8400 |
| agccagccgg                                      | aagggccgag | cgcagaagtg | gtcctgcaac | tttatccgcc | tccatccagt | 8460 |
| ctattaattg                                      | ttgccgggaa | gctagagtaa | gtagttcgcc | agttaatagt | ttgcgcaacg | 8520 |
| ttgttgccat                                      | tgctacaggc | atcgtggtgt | cacgctcgtc | gtttggtatg | gcttcattca | 8580 |
| gctccggttc                                      | ccaacgatca | aggcgagtta | catgatcccc | catgttgtgc | aaaaaagcgg | 8640 |
| ttagctcctt                                      | eggteeteeg | atcgttgtca | gaagtaagtt | ggccgcagtg | ttatcactca | 8700 |
| tggttatggc                                      | agcactgcat | aattctctta | ctgtcatgcc | atccgtaaga | tgcttttctg | 8760 |
| tgactggtga                                      | gtactcaacc | aagtcattct | gagaatagtg | tatgcggcga | ccgagttgct | 8820 |
| cttgcccggc                                      | gtcaatacgg | gataataccg | cgccacatag | cagaacttta | aaagtgctca | 8880 |
| tcattggaaa                                      | acgttcttcg | gggcgaaaac | tctcaaggat | cttaccgctg | ttgagatcca | 8940 |
| gttcgatgta                                      | acccactcgt | gcacccaact | gatcttcagc | atcttttact | ttcaccagcg | 9000 |
| tttctgggtg                                      | agcaaaaaca | ggaaggcaaa | atgccgcaaa | aaagggaata | agggcgacac | 9060 |
| ggaaatgttg                                      | aatactcata | ctcttccttt | ttcaatatta | ttgaagcatt | tatcagggtt | 9120 |
| attgtctcat                                      | gagcggatac | atatttgaat | gtatttagaa | aaataaacaa | ataggggttc | 9180 |
| cgcgcacatt                                      | tccccgaaaa | gtgccacct  |            |            |            | 9209 |
| <210> 59<br><211> 384<br><212> DNA<br><213> Mus | musculus   |            |            |            |            |      |
| <400> 59                                        | Madearas   |            |            |            |            |      |
|                                                 | aggtgcagat | tatcagcttc | ctgctaatca | gtgcttcagt | cataatgtcc | 60   |
| agagggcaaa                                      | ttgttctctc | ccagtctcca | gcaatcctgt | ctgcatctcc | aggggagaag | 120  |
| gtcacaatga                                      | cttgcagggc | cagctcaagt | gtaagttaca | tccactggtt | ccagcagaag | 180  |
| ccaggatcct                                      | ccccaaacc  | ctggatttat | gccacatcca | acctggcttc | tggagtccct | 240  |
| gttcgcttca                                      | gtggcagtgg | gtctgggact | tcttactctc | tcacaatcag | cagagtggag | 300  |
| gctgaagatg                                      | ctgccactta | ttactgccag | cagtggacta | gtaacccacc | cacgttcgga | 360  |

384 ggggggacca agctggaaat caaa

| <210<br><211<br><212<br><213 | > :>      | 60<br>128<br>PRT<br>Mus | muscu      | ılus      |           |           |            |            |           |           |           |            |            |           |           |     |
|------------------------------|-----------|-------------------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----|
| <400<br>Met<br>1             |           | 60<br>Phe               | Gln        | Val<br>5  | Gln       | Ile       | Ile        | Ser        | Phe<br>10 | Leu       | Leu       | Ile        | Ser        | Ala<br>15 | Ser       |     |
| Val                          | Ile       | Met                     | Ser<br>20  | Arg       | Gly       | Gln       | Ile        | Val<br>25  | Leu       | Ser       | Gln       | Ser        | Pro<br>30  | Ala       | Ile       |     |
| Leu                          | Ser       | Ala<br>35               | Ser        | Pro       | Gly       | Glu       | Lys<br>40  | Val        | Thr       | Met       | Thr       | Cys<br>45  | Arg        | Ala       | Ser       |     |
| Ser                          | Ser<br>50 | Val                     | Ser        | Tyr       | Ile       | His<br>55 | Trp        | Phe        | Gln       | Gln       | Lуз<br>60 | Pro        | Gly        | Ser       | Ser       |     |
| Pro<br>65                    | Lys       | Pro                     | Trp        | Ile       | Tyr<br>70 | Ala       | Thr        | Ser        | Asn       | Leu<br>75 | Ala       | Ser        | Gly        | Val       | Pro<br>80 |     |
| Val                          | Arg       | Phe                     | Ser        | Gly<br>85 | Ser       | Gly       | Ser        | Gly        | Thr<br>90 | Ser       | Tyr       | Ser        | Leu        | Thr<br>95 | Ile       |     |
| Ser                          | Arg       | Val                     | Glu<br>100 | Ala       | Glu       | Asp       | Ala        | Ala<br>105 | Thr       | Tyr       | Tyr       | Cys        | Gln<br>110 | Gln       | Trp       |     |
| Thr                          | Ser       | Asn<br>115              | Pro        | Pro       | Thr       | Phe       | Gly<br>120 | Gly        | Gly       | Thr       | Lys       | Leu<br>125 | Glu        | Ile       | Lys       |     |
| <210<br><211<br><212<br><213 | L><br>2>  | 61<br>420<br>DNA<br>Mus | muscı      | ulus      |           |           |            |            |           |           |           |            |            |           |           |     |
| <400<br>atgg                 |           | 61<br>gga               | gcct       | catc      | tt go     | ctcti     | ccti       | t gto      | eget      | gttg      | ctad      | cgcgt      | tgt (      | cctgi     | cccag     | 60  |
| gtad                         | caac      | tgc                     | agcad      | geet      | aa a      | gctga     | agct       | g gto      | gaag      | cctg      | ggg       | cctca      | agt (      | gaaga     | atgtcc    | 120 |
| tgca                         | aagg      | ctt                     | ctgg       | ctac      | ac at     | tttad     | ccag       | t ta       | caat      | atgc      | acto      | gggta      | aaa .      | acaga     | acacct    | 180 |
|                              |           |                         |            |           |           |           |            |            |           |           |           |            |            |           | acaat     |     |
| caga                         | aagt      | tca                     | aagg       | caag      | ga a      | acati     | tgac       | t gca      | agac      | aaat      | cct       | ccago      | cac .      | agcct     | tacatg    | 300 |
| cago                         | ctca      | .gca                    | gcct       | gaca      | tc to     | gagga     | actc       | t gc       | ggtc      | tatt      | act       | gtgca      | aag        | atcga     | acttac    | 360 |
| tac                          | ggcg      | gtg                     | actg       | gtac      | tt c      | aatgi     | tctg       | g gg(      | cgca      | ggga      | cca       | cggt       | cac        | cgtc      | tctgca    | 420 |
| <210<br><210<br><210<br><210 | 1><br>2>  | 62<br>140<br>PRT<br>Mus | musc       | ulus      |           |           |            |            |           |           |           |            |            |           |           |     |
| <400<br>Met<br>1             |           | 62<br>Trp               | Ser        | Leu<br>5  | Ile       | Leu       | Leu        | Phe        | Leu<br>10 | Val       | Ala       | Val        | Ala        | Thr<br>15 | Arg       |     |

Val Leu Ser Gl<br/>n Val Gl<br/>n Leu Gl<br/>n Gl<br/>n Pro Gly Ala Glu Leu Val Lys  $20 \\ 25 \\ 30$ 

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu 50 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn 65 70 75 80

Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ser 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn 115 120 125

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala 130 135 140

<210> 63

<211> 1395

<212> DNA

<213> Homo sapiens

<400> 63

atgtattcca atgtgatagg aactgtaacc tctggaaaaa ggaaggttta tcttttgtcc 60 120 ttgctgctca ttggcttctg ggactgcgtg acctgtcacg ggagccctgt ggacatctgc acagecaage egegggaeat teccatgaat eccatgtgea tttacegete eeeggagaag 180 240 aaqqcaactq aqqatqaqqq ctcaqaacaq aagatcccgg aggccaccaa ccggcgtgtc tgggaactgt ccaaggccaa ttcccgcttt gctaccactt tctatcagca cctggcagat 300 360 tocaagaatg acaatgataa cattttoctg toaccootga gtatotocac ggottttgot atgaccaage tgggtgcctg taatgacaee etceageaae tgatggaggt atttaagttt 420 480 gacaccatat ctgagaaaac atctgatcag atccacttct tctttgccaa actgaactgc 540 cqactctatc qaaaaqccaa caaatcctcc aagttagtat cagccaatcg cctttttgga 600 qacaaatccc ttaccttcaa tqagacctac caqqacatca qtgagttggt atatggagcc aagctccagc ccctggactt caaggaaaat gcagagcaat ccagagcggc catcaacaaa 660 720 tgggtgtcca ataagaccga aggccgaatc accgatgtca ttccctcgga agccatcaat 780 qagctcactq ttctggtgct ggttaacacc atttacttca agggcctgtg gaagtcaaag ttcaqccctq agaacacaag gaaggaactg ttctacaagg ctgatggaga gtcgtgttca 840 gcatctatga tgtaccagga aggcaagttc cgttatcggc gcgtggctga aggcacccag 900

gagaagagac tggccaaggt ggagaaggaa ctcacccag aggtgctga ggagtggctg 1020 gatgaattgg aggagatgat gctggtggtc cacatgccc gcttccgcat tgaggacggc 1080 ttcagtttga aggagcagct gcaagacatg ggccttgtcg atctgttcag ccctgaaaag 1140 tccaaactcc caggtattgt tgcagaaggc cgagatgacc tctatgtctc agatgcattc 1200 cataaggcat ttcttgaggt aaatgaagaa ggcagtgaag cagctgcaag taccgctgtt 1260 gtgattgctg gccgttcgct aaaccccaac agggtgactt tcaaggccaa caggcctttc 1320 ctggtttta taagagaagt tcctctgaac actattatct tcatgggcag agtagccaac 1380 ccttgtgtta agtaa 1395

<210> 64

<211> 464

<212> PRT

<213> Homo sapiens

<400> 64

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val 1 5 10 15

Tyr Leu Leu Ser Leu Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys 20 25 30

His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro 35 40 45

Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu 50 55 60

Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val 65 70 75 80

Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln 85 90 95

His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro 100 105 110

Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn 115 120 125

Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser 130 135 140

Glu Lys Thr Ser Asp Gln Ile His Phe Phe Phe Ala Lys Leu Asn Cys 145 150 155

Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn 165 170 175

Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp 180 185

Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys

200 205 195 Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn 215 Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu 250 245 Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly 280 Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu 295 Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro 315 Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu 330 Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met 345 Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln 360 Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro 375 Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe 395 390 385 His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala 410 405 Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val 425 Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro 440 Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys 455 <210> 65 <211> 1962 <212> DNA <213> Homo sapiens <400> 65 atgegteece tgegeeceeg egeogegetg etggegetee tggeeteget eetggeegeg

70

18

cccccggtgg ccccggccga ggccccgcac ctggtgcagg tggacgcggc ccgcgcgctg

tggccctgc ggcgcttctg gaggagcaca ggcttctgcc ccccgctgcc acacagccag

| gctgaccagt acgtcctcag | ctgggaccag   | cagctcaacc | tcgcctatgt | gggcgccgtc | 240  |
|-----------------------|--------------|------------|------------|------------|------|
| cctcaccgcg gcatcaagca | ggtccggacc   | cactggctgc | tggagcttgt | caccaccagg | 300  |
| gggtccactg gacggggcct | gagctacaac   | ttcacccacc | tggacgggta | cttggacctt | 360  |
| ctcagggaga accagctcct | cccagggttt   | gagctgatgg | gcagcgcctc | gggccacttc | 420  |
| actgactttg aggacaagca | gcaggtgttt   | gagtggaagg | acttggtctc | cagcctggcc | 480  |
| aggagataca tcggtaggta | cggactggcg   | catgtttcca | agtggaactt | cgagacgtgg | 540  |
| aatgagccag accaccacga | ctttgacaac   | gtctccatga | ccatgcaagg | cttcctgaac | 600  |
| tactacgatg cctgctcgga | gggtctgcgc   | geegeeagee | ccgccctgcg | gctgggaggc | 660  |
| cccggcgact ccttccacac | cccaccgcga   | teceegetga | gctggggcct | cctgcgccac | 720  |
| tgccacgacg gtaccaactt | cttcactggg   | gaggcgggcg | tgcggctgga | ctacatctcc | 780  |
| ctccacagga agggtgcgcg | cagctccatc   | tccatcctgg | agcaggagaa | ggtcgtcgcg | 840  |
| cagcagatcc ggcagctctt | ccccaagttc   | gcggacaccc | ccatttacaa | cgacgaggcg | 900  |
| gacccgctgg tgggctggtc | cctgccacag   | ccgtggaggg | cggacgtgac | ctacgcggcc | 960  |
| atggtggtga aggtcatcgc | gcagcatcag   | aacctgctac | tggccaacac | cacctccgcc | 1020 |
| ttcccctacg cgctcctgag | caacgacaat   | gccttcctga | gctaccaccc | gcaccccttc | 1080 |
| gcgcagcgca cgctcaccgc | gcgcttccag   | gtcaacaaca | cccgcccgcc | gcacgtgcag | 1140 |
| ctgttgcgca agccggtgct | cacggccatg   | gggctgctgg | cgctgctgga | tgaggagcag | 1200 |
| ctctgggccg aagtgtcgca | ggccgggacc   | gtcctggaca | gcaaccacac | ggtgggcgtc | 1260 |
| ctggccagcg cccaccgccc | ccagggcccg   | gccgacgcct | ggcgcgccgc | ggtgctgatc | 1320 |
| tacgcgagcg acgacacccg | cgcccacccc   | aaccgcagcg | tcgcggtgac | cctgcggctg | 1380 |
| cgcggggtgc ccccggccc  | gggcctggtc   | tacgtcacgc | gctacctgga | caacgggctc | 1440 |
| tgcagccccg acggcgagtg | geggegeetg   | ggccggcccg | tcttccccac | ggcagagcag | 1500 |
| tteeggegea tgegegegge | tgaggacccg   | gtggccgcgg | cgccccgccc | cttacccgcc | 1560 |
| ggcggccgcc tgaccctgcg | ccccgcgctg   | cggctgccgt | cgcttttgct | ggtgcacgtg | 1620 |
| tgtgcgcgcc ccgagaagcc | gcccgggcag   | gtcacgcggc | teegegeeet | gcccctgacc | 1680 |
| caagggcagc tggttctggt | . ctggtcggat | gaacacgtgg | gctccaagtg | cctgtggaca | 1740 |
| tacgagatcc agttctctca | . ggacggtaag | gcgtacaccc | cggtcagcag | gaagccatcg | 1800 |
| accttcaacc tctttgtgtt | cageceagae   | acaggtgctg | tetetggete | ctaccgagtt | 1860 |
| cgagccctgg actactgggc | : ccgaccagge | cecttetegg | accctgtgcc | gtacctggag | 1920 |
| gtccctgtgc caagagggcc | cccatccccg   | ggcaatccat | ga         |            | 1962 |

- <210> 66
- <211> 653
- <212> PRT
- <213> Homo sapiens

<400> 66

- Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser 1 5 10 15
- Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val 20 25 30
- Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg 35 40 45
- Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr 50 60
- Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val 65 70 75 80
- Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu 85 90 95
- Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr 100 105 110
- His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro 115 120 125
- Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu 130 135 140
- Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala 145 150 155 160
- Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn 165 170 175
- Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser
- Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly 195 200 205
- Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser 210 215 220
- Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His 225 230 235 240
- Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu 245 250 255
- Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile 260 265 270
- Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro 275 280 285
- Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val

290 295 300

Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala 305  $310 \hspace{1.5cm} 315 \hspace{1.5cm} 320$ 

Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Ala Asn 325 330 335

Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe 340 345 350

Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg 355 360 365

Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys 370 375 380

Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln 385 390 395 400

Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His 405 410 415

Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp
420 425 430

His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro 450 455 460

Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu 465 470 475 480

Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro 485 490 495

Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala 500 505 510

Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro 515 520 525

Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro 530 535 540

Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr 545 550 555 560

Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys
565 570 575

Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr 580 585 590

Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser 595 600 605

Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp 610 620

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu 625 630 635 640

Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro 645 650

<210> 67

<211> 1290

<212> DNA

<213> Homo sapiens

<400> 67

atgcagetga ggaacccaga actacatetg ggetgegege ttgegetteg etteetggee 60 ctcgtttcct gggacatccc tggggctaga gcactggaca atggattggc aaggacgcct 120 180 accatgggct ggctgcactg ggagcgcttc atgtgcaacc ttgactgcca ggaagagcca gatteetgea teagtgagaa getetteatg gagatggeag ageteatggt eteagaagge 240 300 tggaaggatg caggttatga gtacctctgc attgatgact gttggatggc tccccaaaga 360 gattcagaag gcagacttca ggcagaccct cagcgctttc ctcatgggat tcgccagcta qctaattatq ttcacaqcaa aqqactqaaq ctaqqqattt atqcaqatqt tqqaaataaa 420 acctgcgcag gcttccctgg gagttttgga tactacgaca ttgatgccca gacctttgct 480 qactqqqqaq taqatctqct aaaatttqat gqttqttact qtqacaqttt qqaaaatttq 540 qcaqatqqtt ataaqcacat qtccttqqcc ctqaataqqa ctqqcaqaaq cattqtqtac 600 tectgtgagt ggeetettta tatgtggeee ttteaaaage ceaattatae agaaateega 660 cagtactgca atcactggcg aaattttgct gacattgatg attcctggaa aagtataaag 720 agtatettgg actggacate ttttaaccag gagagaattg ttgatgttge tggaccaggg 780 840 qqttqqaatq acccaqatat qttaqtqatt qqcaactttq qcctcaqctq qaatcaqcaa gtaactcaga tggccctctg ggctatcatg gctgctcctt tattcatgtc taatgacctc 900 cqacacatca gccctcaagc caaagctctc cttcaggata aggacgtaat tgccatcaat 960 caggacccct tgggcaagca agggtaccag cttagacagg gagacaactt tgaagtgtgg 1020 quacquett teteaggett ageetggget gtagetatqu taaaccggca ggagattggt 1080 ggacctcgct cttataccat cgcagttgct tccctgggta aaggagtggc ctgtaatcct 1140 qcctgcttca tcacacaqct cctccctgtg aaaaggaagc tagggttcta tgaatggact 1200 tcaaggttaa gaagtcacat aaatcccaca ggcactgttt tgcttcagct agaaaataca 1260 1290 atgcagatgt cattaaaaqa cttactttaa

<sup>&</sup>lt;210> 68

<sup>&</sup>lt;211> 429

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<400> 68

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu 1 5 10 15

Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu 20 25 30

Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu 35 40 45

Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile 50 55 60

Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly 65 70 75 80

Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met 85 90 95

Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg
100 105 110

Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly 115 120 125

Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly 130 135 140

Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala 145 150 155 160

Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser 165 170 175

Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn 180 185 190

Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met 195 200 205

Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn 210 215 220

His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys 225 230 235 240

Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val 245 250 255

Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn 260 265 270

Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala 275 280 285

Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser 290 295 300

Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn 305 310 315 320

Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn 330 Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala 345 Met Ile Asn Arg Gln Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile 375 Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Gln 410 Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu <210> 69 <211> 351 <212> DNA <213> Homo sapiens <400> 69 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat 60 gttctccatt ccgctcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca 120 ttettetece ageegggtge eccaataett eagtgeatgg getgetgett etetagagea 180 tateceacte cactaaggte caagaagaeg atgttggtee aaaagaaegt caceteagag 240 tocacttgct gtgtagctaa atcatataac agggtcacag taatgggggg tttcaaagtg 300 qagaaccaca cggcgtgcca ctgcagtact tgttattatc acaaatctta a 351 <210> 70 <211> 116 <212> PRT <213> Homo sapiens <400> 70 Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 105 Tyr His Lys Ser 115 <210> 71 <211> 498 <212> DNA <213> Homo sapiens <400> 71 60 atqqaqatqt tocaqqqqot qotqotqttg otgotgotga goatgggogg gacatgggoa 120 tecaaqqaqe eqetteqqee aeqqtqeeqe eccateaatq ccaecetqqe tqtqqaqaaq 180 gagggctgcc ccgtgtgcat caccgtcaac accaccatct gtgccggcta ctgccccacc atgaccegeg tgctgcaggg ggtcctgccg gccctgcctc aggtggtgtg caactaccgc 240 300 gatgtgcgct tcgagtccat ccggctccct ggctgcccgc gcggcgtgaa ccccgtggtc tectaegeeg tggeteteag etgteaatgt geactetgee geegeageae caetgaetge 360 420 gggggtccca aggaccacco cttgacctgt gatgaccccc gcttccagga ctcctcttcc tcaaaggccc ctcccccag ccttccaagc ccatcccgac tcccggggcc ctcggacacc 480 ccgatcctcc cacaataa 498 <210> 72 <211> 165 <212> PRT <213> Homo sapiens <400> 72 Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly 5 10 Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr 35 40 45 Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg 70 75 Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu 105 110

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu

115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro 130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr 145 150 155 160

Pro Ile Leu Pro Gln 165

<210> 73

<211> 165

<212> PRT

<213> Homo sapiens

<400> 73

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 1 5 10 15

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45

Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 50 55 60

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 65 70 75 80

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110

Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 130 135 140

Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 155 160

Cys Arg Thr Gly Asp 165

<210> 74

<211> 588

<212> DNA

<213> Homo sapiens

<400> 74

atggccctcc tgttccctct actggcagcc ctagtgatga ccagctatag ccctgttgga 60

tototogggot gtgatotgoo toagaaccat ggootactta gcaggaacac ottggtgott

ctgcaccaaa tgaggagaat ctcccctttc ttgtgtctca aggacagaag agacttcagg 180

PCT/US2003/031974 WO 2004/033651

| ttcccccagg agatggtaaa agggagccag ttgcagaagg cccatgtca                                  | t gtctgtcctc 240   |
|----------------------------------------------------------------------------------------|--------------------|
| catgagatgc tgcagcagat cttcagcctc ttccacacag agcgctcct                                  | c tgctgcctgg 300   |
| aacatgaccc tootagacca actocacact ggacttcatc agcaactgo                                  | a acacetggag 360   |
| acctgcttgc tgcaggtagt gggagaagga gaatctgctg gggcaatta                                  | ig cagecetgea 420  |
| ctgaccttga ggaggtactt ccagggaatc cgtgtctacc tgaaagaga                                  | a gaaatacagc 480   |
| gactgtgcct gggaagttgt cagaatggaa atcatgaaat ccttgttct                                  | t atcaacaaac 540   |
| atgcaagaaa gactgagaag taaagataga gacctgggct catcttga                                   | 588                |
| <210> 75<br><211> 195<br><212> PRT /<br><213> Homo sapiens                             |                    |
| <pre>&lt;400&gt; 75 Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met T 1 5 10</pre> | Thr Ser Tyr<br>15  |
| Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn F                                  | His Gly Leu<br>30  |
| Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg A                                  | Arg Ile Ser        |
| Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe F 50 55 60                         | Pro Gln Glu        |
| Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met 8<br>65 70 75                      | Ser Val Leu<br>80  |
| His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr 0<br>85 90                         | Glu Arg Ser<br>95  |
| Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His 1                                  | Thr Gly Leu<br>110 |
| His Gln Gln Leu Gln His Leu Glu Thr Cys Leu Leu Gln 7 115 120 125                      | Val Val Gly        |
| Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu 130 135 140                        | Thr Leu Arg        |
| Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys 1<br>145 150 155                   | Lys Tyr Ser<br>160 |
| Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys : 165 170                          | Ser Leu Phe<br>175 |
| Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp 180                                | Arg Asp Leu<br>190 |
| Gly Ser Ser<br>195                                                                     |                    |