Find your dream job

- A Shiny app for job matching

Paris February 23, 2019

Highlighting HR data

administrative data HR IS

career interview data soft skills

Highlighting HR data

Application: « Système d'information des cadres supérieurs – SICS »

- Search : Resumes & job descriptions
 - Visualize agents' progress
- Recommendation « basket competencies »
 - Career management

a fun game to find a dream job

6 dream job

descriptions

descriptions

POSTIBLE FOR A fun game to find a dream job

input

450 job descriptions

Model & process a user experience

Design & code app

output

Fun app to find 6 dream job descriptions

TEXT PREPROCESSING

STEP 1: define terms

450 job descriptions

- Tokenize sentences into words
- Stem words : e. g. studied --> study
- Remove stopwords: the, and, if, in...
- Use n-grams
- Remove infrequent words
- Tf-idf

- text2vec
- stringi
- data.table

output

Matrix

n job descriptions x m terms

CLUSTERING

STEP 2: define clusters

Matrix

n job descriptions x m terms

K-means

or

LDA: Latent Dirichlet Allocation

N.B:

- Ida
- LDAvis
- stats

output

Matrix m terms x k clusters

CLUSTERING

STEP 2: define clusters

Matrix n job descriptions x m terms

	C_1	C_2	•••	C_k
f_1	W_{11}	W_{12}		W_{1k}
f_2	W_{21}	W_{22}		W_{2k}
•••				
f_n	W_{n1}	W_{n2}		W_{nk}

Each job description is defined by a combination of clusters

Moving in a space of job descriptions

Job descriptions are part of a k-dimensional space:

Moving in a space of job descriptions

The user U is seen as another point in this space:

$$f_{n-2}$$
 $f_{1}(C_{1}, C_{2}, ..., C_{k})$
 f_{n}
 f_{n}

Moving in a space of job descriptions

Module 1: Tags selection

Module 2:
Job card
selection

Module 3:
Job card
validation

Module 4:
Job card
restitution

Moving in a space of job descriptions

New position of the user after his choices in the first module:

$$f_{n-2}$$
 f_{n-2}
 f_{n-2}
 f_{n-2}
 f_{n-1}
 f_{n-2}
 f_{n-1}
 f_{n-2}
 f_{n-1}
 f_{n-2}
 f_{n-1}
 f_{n-1}

Moving in a space of job descriptions

New position of the user after his choices in the first module:

Moving in a space of job descriptions

Module 1: Tags selection

Module 2:
Job card
selection

Module 3:
Job card
validation

Module 4:
Job card
restitution

Step 1: the user is in the centre of the space Step 2: the user moves in the space the space is reduced

Moving in a space of job descriptions

At each step, the user's profile is recomputed through a weighted mean:

Moving in a space of job descriptions

Module 1: Tags selection

Module 2:
Job card
selection

Module 3:

Job card

validation

Module 4:
Job card
restitution

Step 1: the user is in the centre of the space

Step 2: the user moves in the space the space is reduced

Step 3:
the user
moves in the
space
the space is

reduced

Moving in a space of job descriptions

Module 1: Tags selection

Module 2:
Job card
selection

Module 3:
Job card
validation

Module 4:
Job card
restitution

Step 2 : the user

moves in the

space the space is reduced

Step 3:

the **user** moves in the

space

the space is reduced

Step 4:

the **user** moves in

the space

6 dream job descriptions

Step 1: the user is in the centre of the space

SHINMAPP main features

Shiny modules

Persistent data storage

Integrated in an R package

User tracking

SHINA APP architecture

Global Module Call other modules & perform matching algorithm

Use output of module 1 to calculate input of module 2

Use output of module 3 to calculate input of module 4

Module 1: Tags selection

Module 2:
Job card
selection

Module 3:
Job card
validation

Module 4:
Job card
restitution

Mhy use Shiny modules?

Breaking code in smaller blocks

Avoid big UI & Server with thousands of lines of code

Re-usable

Modules can be reused within the same application or in a new one

Function & documentation

Modules are R functions, so can be documented in an R package

Readability

Modules simplify the architecture of applications by using them as independent components

AAODULES Design

input

What does the module need to work?

Module

UI

Server

output

What is the output of the module?

ReactiveValues

Our four modules

input

A vector of tags to be displayed

output

A reactiveValues with user's choices

Our four modules

Module Sélection des Fiches

Sélection des fiches (étape 1 / 5)

input

A reactive function returning a table with job descriptions

⊙ Continuer

Je préfère la fiche n°2

output

A reactive Values with jobs selected / rejected

Our four modules

input

A reactive function returning a table with job descriptions

output

A reactive Values with score given by user to each job

Our four modules

input

A reactive function returning a table with job descriptions

output

No Shiny ouput

AACODULES Developing using modules

Independent (it can be run without the others)

- we were able to develop them in parallel
- at the end, all that remains is to assemble the components
- Easier to debug, if the app crashes, we can just look at the incriminated module
- Easier to test

Better, Smaller, Easier, Stronger

filename	language	loc	blank_lines	comment_lines
R\module-selectionFiche.R	R	204	23	100
R\module-matchingFichesPostes.R	R	203	21	42
R\module-gestionFichesListe.R	R	190	22	22
R\module-editMacro.R	R	169	19	44
R\module-restitutionFiches.R	R	120	21	70
R\module-validationFiches.R	R	84	21	67
R\module-selectionTags.R	R	46	9	55

- Smaller scripts (max 200 lines of code)
- Better organization in a package (clearly identify modules)
- Easier to modify

AAODULES Developing using modules

Documentation (each module is documented like an R function and exported)

Module Sélection Fiche

Description

Présentation des fiches deux à deux pour que l'utilisateur puisse donner sa fiche de préférence parmi celles proposées.

Usage

```
selectionFicheUI(id)
selectionFicheServer(input, output, session, data_fiches = NULL,
    n_fiches_max = 5)
```

Arguments

	id	ID du module.
	input, output, session	Arguments standards de Shiny.
data_fiches		Une fonction reactive contenant les données des fiches de poste.
	n_fiches_max	Nombre de couples de fiches de postes à présenter à l'utilisateur.

Value

Une reactiveValues avec les slots suivants :

- · selected : ID des fiches de poste sélectionnées par l'utilisateur.
- rejected : ID des fiches de poste rejetées par l'utilisateur.

dreams

Explicitly specify

input value

Explicitly specify output value

AACODULES Developing using modules

Package integration

Properly populate your NAMESPACE

@import shiny may be sufficient

But @importFrom can avoid some problems of deployment

Correctly manage your JavaScript/CSS dependencies in inst/

Don't use include* function, make the effort to make proper dependencies management with htmltools

AAODULES Ressources

Modularizing Shiny app code, Joe Cheng: http://shiny.rstudio.com/articles/modules.html

Effective use of Shiny modules, Eric Nantz: https://rpodcast.github.io/rsconf-2019/#1

Modules Shiny: Pourquoi les utiliser? Quentin Fazilleau:

https://www.ardata.fr/post/2019/02/11/why-using-modules/

DATABASE

Backend for the application

DATABASE SQL with DBI

Prototype: SQLite

- Local database
- Each function deals with connection/disconnection
- Can be used (and tested) outside application

Deployment: PostgreSQL

- Remote server
- Only call to dbConnect to modify

TRACKING

Records outputs / inputs

Validate what has been done

What job descriptions have been proposed to the user?

Are those jobs pertinent?

Does our algorithm converge?

How many users go through the entire process?

Go further

Supervised learning: use results to see what users prefer

Cross results with internal HR data

APPS

Our Shiny gallery http://shinyapps.dreamrs.fr/

La data science avec un grand R

Conseil et expertise en datascience

Accompagnement et formation R

Développement d'outils

Des questions?

victor.perrier@dreamrs.fr

fanny.meyer@dreamrs.fr etienne.sanchez@dreamrs.fr

https://www.dreamrs.fr/ @dreamrs fr

