GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 (NEW) EXAMINATION - WINTER 2017

Subject Code: 2110014 Date: 03/01/2018

Subject Name: Calculus

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Objective Question (MCQ)

Mark

- (a) Choose the most appropriate answer out of the following options given for each part of the question:
- The value of the $\lim_{x\to\pi} \frac{\sin x}{\pi x}$ is ______

 (A) 0 (B) 1 (C) π (D) -
- 2. The sequence $\left\{ \left(\frac{1}{2}\right)^n \right\}_{n=1}^{\infty}$ converges to ______

 (A) 0 (B) 1 (C) $\frac{1}{2}$ (D) 2
- 3. The sum of the series $2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots$ is ______ (A) 3 (B) 0 (C) $\frac{1}{3}$ (D) $\frac{2}{3}$
- 4. For the curve $y^2(a-x)=x^3$, a>0, the origin is _____ (A) a Node (B) an isolated point (C) a Cusp (D) None of these

- 7. $\int_{0}^{\frac{\pi}{4}} \int_{0}^{1} r \ dr d\theta = \underline{\qquad}$ (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{8}$ (C) $\frac{\pi}{2}$ (D) π
- (b)

 1. $1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots, \forall x$ is series expansion of the function____

	3.	The series $\sum_{n=1}^{\infty} \frac{3n}{5n+1}$ is	
	4.	(A) Convergent (B) Divergent (C) Oscillating (D) can't decide	
	4.	If in the equation of a curve, y occurs only as an even power then the curve is symmetrical about (A) $x - axis$ (B) $y - axis$ (C) $origin$ (D) None of these	
	5.	A point (a,b) is said to be an extreme point if at (a,b) (A) $rt - s^2 > 0$ (B) $rt - s^2 < 0$ (C) $rt - s^2 = 0$ (D) $rt - s^2 \le 0$	
	6.	The value of $\lim_{x \to \infty} x^{1/x}$ is	
		(A) ∞ (B) 1 (C) 0 (D) None of these	
	7.	The asymptote to the curve $xy^2 = 4a^2(2a-x), a > 0$ is the line (A) $y = 0$ (B) $x = 2a$ (C) $x = 8a^3$ (D) $x = 0$	
Q.2	(a)	Expand $3x^3 + 8x^2 + x - 2$ in powers of $x - 3$.	03
	(b)	Evaluate:	04
		(1) $\lim_{x \to 0} (\cos ec x - \cot x)$ (2) $\lim_{x \to 1} (2 - x)^{\tan \frac{\pi x}{2}}$	
	(c)	Expand $tan^{-1}(x)$ up to the first four terms by Maclaurin's series and hence	07
		prove that $\tan^{-1} \left(\frac{\sqrt{1+x^2-1}}{x} \right) = \frac{1}{2} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \right)$	
Q.3	(a)	Show that the function $f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$ has no limit as (x, y) approaches	03
	(b)	to $(0,0)$ If $u = f(x^2 + 2yz, y^2 + 2zx)$ then prove that	04
		$\left(y^2 - zx\right)\frac{\partial u}{\partial x} + \left(x^2 - yz\right)\frac{\partial u}{\partial y} + \left(z^2 - xy\right)\frac{\partial u}{\partial z} = 0$	
	(c)	(1) State Euler's theorem on homogenous function of two variables.	04
		If $u = x^3 y^2 \sin^{-1} \left(\frac{y}{x} \right)$, show that	
		(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 5u$	

(A) $\sin x$ (B) $\tan x$ (C) e^x (D) $\cos x$

The minimum value of $f(x, y) = x^4 + y^4 + 1$ is _____ (A) 3 (B) 0 (C) 1 (D) 16

2.

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 20u$$

If resistors of R_1 , R_2 and R_3 ohms are connected in parallel to make (2) an R-ohm resistor, such that $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Find the value of $\frac{\partial R}{\partial R_2}$ when $R_1 = 30$, $R_2 = 45$ and $R_3 = 90$ ohms.

03

04

- 03 **Q.4** Expand $e^x \cos y$ in powers of x and y up to terms of third degree.
 - Find the equation of the tangent plane and the normal line of the surface 04 $x^2 + 2y^2 + 3z^2 - 12 = 0$ at the point (1,2,-1).
 - Find the shortest and longest distance from the point (1,2,-1) to the sphere 07 $x^2 + v^2 + z^2 = 24$
- **Q.5** Evaluate $\int_{0}^{1} \int_{0}^{x} \int_{0}^{\sqrt{x+y}} z \, dz \, dy \, dx$ 03
 - Evaluate $\iint xy dA$, where R is the region bounded by x axis, ordinate 04
 - x = 2a and the curve $x^2 = 4av$ Change into polar coordinates and evaluate **07** $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} y^2 \sqrt{x^2 + y^2} \, dy \, dx$
- 03 **Q.6** Discuss the convergence of the integral $\int_{0}^{\infty} e^{-x^2} dx$. Check for the convergence of the following:
 - (1) $\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$ (2) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$
 - 03 **(c)** (1) Check for convergence of the series $\frac{1}{12} - \frac{1}{34} + \frac{1}{56} - \frac{1}{78} + \dots$
 - (2) Find the radius of convergence and interval of convergence of the 04

$$1 - \frac{1}{2}(x-2) + \frac{1}{2^2}(x-2)^2 + \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots$$

- The region between the curve $y = \sqrt{x}$ $0 \le x \le 4$, and the x axis is 03 **Q.7** revolved about the x - axis to generate a solid. Find its volume.
 - 04 Expand $\sin \left(\frac{\pi}{4} + x \right)$ in powers of x and hence find the approximate value of $\sin 44^0$

07
