Docket No.: X2850.0015/P015

3. (Amended) A frame relay circuit for reassembling a frame-relay frame into an Asynchronous Transfer Mode (ATM) cell comprising:

a processor for determining for each connection a size of a shift by which said frame is to be shifted from an end of the next available memory location in a frame buffer;

a frame receiver for receiving said frame through said connection;

a memory for storing said received frame at a location shifted from an end of the next available memory location in the frame buffer by said shift size; and

a segmentation and reassembling device for reassembling said frame into said ATM cell.

- 4. (Amended) A frame relay circuit according to claim 3, wherein, for each connection, said processor writes a data link connection identifier (DLCI) and said shift size into a connection table, and retrieves said shift size from said connection table using said DLCI as a key.
- 5. (Amended) A frame relay circuit according to claim 3, wherein said frame received by said frame receiver is transmitted to said memory through direct memory access.
- 6. (Amended) A method for reassembling a frame-relay frame into an Asynchronous Transfer Mode (ATM) cell comprising the steps of:

determining a shift size for each connection by which said frame is to be shifted from an end of the next available memory location in a frame buffer;

receiving said frame and writing said frame starting from an address shifted by said shift size; and

reassembling said frame into an ATM cell.

Con l

Docket No.: X2850.0015/P015

7. (Amended) A method according to claim 6, further comprising the steps of:

writing a data link connection identifier (DLCI) and said shift size into a connection table for each connection; and

retrieving said shift size from said connection table using said DLCI as a key.

9. (Amended) A computer readable medium containing program instructions for reassembling a frame-relay frame into an Asynchronous Transfer Mode (ATM) cell, the program instructions including instructions for performing the steps comprising:

determining a shift size for each connection by which said frame is to be shifted from an end of the next available memory location in a frame buffer;

receiving said frame and writing said frame starting from an address shifted by said shift size; and

reassembling said frame into an ATM cell.

10. (Amended) A computer readable medium according to claim 9, wherein said program instructions include instructions for:

writing a set of a data link connection identifier (DLCI) and said shift size into a connection table for each connection; and

retrieving said shift size in said connection table using said DLCI as a key.

H2