H

Roll No.

TMA-101

B. TECH. (FIRST SEMESTER) MID SEMESTER EXAMINATION, 2019 (ALL BRANCHES)

ENGINEERING MATHEMATICS—I

Time: 1:30 Hours

Maximum Marks: 50

Note: (i) This question paper contains two Sections.

(ii) Both Sections are compulsory.

Section-A

1. Indicate True or False for the following

(1×5=5 Marks)

- (a) The non-zero rows of a matrix in echelon form are linearly dependent. (True/False)
- (b) Every matrix A is a root of its characteristic polynomial. (True/False)
- (c) For a real matrix A, the eigen values and corresponding eigen vectors can be complex. (True/False)
- (d) If $y = (2x + 3)^5$, then $\frac{d^5y}{dx^5} = 5!$

(True/False)

(e) If f(x, y) is a homogeneous function of degree n in x and y and has continuous first and second order partial derivatives, then:

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}}$$

$$= n(n-1) f.$$
(True/False)

2. Attempt any five parts: (3×5=15 Marks)

(a) Examine whether A is similar to B, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

(b) Prove that the matrix is $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix} \text{ unitary.}$

(c) Evaluate $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{y^2 - x^2}{y^2 + x^2}.$

(d) If $y = \left[x + \sqrt{1 + x^2}\right]^m$, prove that: $(1 + x^2) y_{n+2} + (2n + 1) x y_{n+1} + (n^2 - m^2) y_n = 0$

(e) If
$$u = f\left(\frac{y}{z}, \frac{x}{y}, \frac{z}{x}\right)$$
, then show that :
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$$

(f) State Taylor's theorem for two variables.

3. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)

(a) Find the rank of the matrix A, by reducing it to Normal form:

$$A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$$

(b) Find for what value of λ and μ the system of linear equations :

$$x + y + z = 6$$
$$x + 2y + 5z = 10$$
$$2x + 3y + \lambda z = \mu$$

has (i) a unique solution (ii) no solution (iii) infinite solutions. Also find the solution for $\lambda = 2$ and $\mu = 8$.

(c) Using Cayley-Hamilton theorem, find the inverse of the matrix :

$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Find the Eigen values and Eigen vectors of the matrix :

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

(b) Show that:

$$A = \begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$$

is Skew-Hemitian matrix.

(c) If $y = (\sin^{-1} x)^2$, prove that: $y_n(0) = 0$, for n odd and

$$y_n(0) = 2.2^2.4^2.6^2...(n-2)^2, n \neq 2$$

for n even

- Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) If $u = \log(x^3 + y^3 + z^3 3xyz)$, show that:

$$\left(\frac{\partial}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$$

- (b) If $u = \tan^{-1}\left(\frac{x^3 + y^2}{x y}\right)$, prove that:
 - (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin u$
 - (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$

 $= 2\cos 3u\sin u$

(c) If $f(x, y) = \tan^{-1}(xy)$, find an approximate value of f(0.1, 0.8) using the Taylor's series quadratic approximation.