¹ Application Layer

Internet Electronic Mail

Unit 2: Application layer

- 2.1 Distributed Applications
- 2.2 Web and HTTP
- 2.3 FTP and TFTP
- □ 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 Domain Name Service
- 2.6 Socket Programming

- □ 1982, first standards
 - □ RFC 821 y RFC 2821, protocol for tranfer of mail messages
 - □ RFC 822, messages format
- Basic services
 - Composition of messages and responses
 - Message transfer
 - Notification to the sender of status of sent messages
 - Presentation and disposition
- Advanced services
 - Forwarding, automatic reply, mail lists, secret mail, high priority mail, hidden copies, alternative receivers

Three major components:

- user agents
- mail servers
- mail transfer protocol: SMTP
- mail access protocols: POP3, IMAP, HTTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Mail (Mac OS X), Outlook, Mozilla
 Thunderbird
- Outgoing, incoming messages stored on server

outgoing

Electronic Mail: mail servers

Mail Servers

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent)
 mail messages
- SMTP protocol between mail servers to send email messages (mail transfer)
 - client: sending mail server
 - "server": receiving mail server

Electronic Mail: mail servers

Mail Servers

- Communication software:
 - User Agent Server
 - To interact with UA Client
 - Message Transfer Agent
 - For message transfer between mail servers

Internet electronic mail

Halsall, Computing Networking and the Internet, 5th Edition © Pearson Education Limited 2005

Processes for sending email

- Two processes, one performed by the UA and the other by the MTA
 - By the UA:
 - Creating the message
 - Entering the message headers to content
 - Transfer the message to the MTA
 - By the MTA:
 - Message is encapsulated in an "electronic envelope"
 - Obtained from headers "From" and "To" Post
 - Message transfer through Internet
 - To another MTA

Message Transfer

- UA client
 - Converts message to 7-bit ASCII format, and sends it to the UA server
- UA server
 - Deposits message at queue of outgoing mail server
- MTA Client
 - Periodically checks message queue, and if there is any message, attempts to send it
 - Envelope is created "on" delivery
 - From "From" and "To" headers
 - One, or as may be required (if sending copies)
 - Format of email addresses:
 - user-name @ name-of-server

Domain name of mail server

Message Transfer (cont'd)

- MTA Client (continued):
 - Gets IP address of the recipient mail server
 - Through the intervention of the "Resolver"
 - Tries to establish TCP connection with recipient mail server
 - With the MTA server, the default port 25
 - TCP connection established (accepted) between mail servers
 - Originating server (Client) expects that target server (server) will send identity and indicate willingness to receive emails
 - Is not available, connection is released and subsequent retries
 - Further retries depend on configuration of originating server
 - Then it is willing ...

Message Transfer (cont'd)

- Server MTA (destination server) ready to receive emails
 - Server MTA checks recipient, if so, agrees to receive the message
 - Client MTA sends message, MTA server returns acknowledgment
 - If there are more messages to other recipients
 - The process is repeated
 - The open TCP connection is used to transfer messages towards the source server that created the connection
 - If there were any messages
- When both servers end the exchange of messages
 - TCP connection between Mail Servers is released

Internet Electronic mail

Components of email message transfer system

Port X/Y =ephemeral ports

Port 25 = well-known port number of server MTA

Halsall, Computing Networking and the Internet, 5th Edition © Pearson Education Limited 2005

- SMTP
 - Client server model
 - Basic protocol for email
 - Main Application Layer protocol for Internet mail
 - Protocol of type: "offer"
 - Push protocol
 - HTTP protocol is an "on demand" (pull protocol)
 - It uses persistent TCP connections
- SMTP messages
 - Client sends "commands" in text mode, and
 - Server responds with "status codes"
 - And optionally a text
 - Everything in 7-bit ASCII readable!!!!

S: 220 unsitio.es C: HELO otro.com S: 250 Hello otro.com, pleased to meet you C: MAIL FROM: <elena@otro.com> S: 250 elena@otro.com... Sender ok C: RCPT TO: <juan@unsitio.es> S: 250 juan@unsitio.es ... Recipient ok C: DATA S: 354 Enter mail, end with "." on a line by itself C: Que tal estas? C: nos vemos en el cine C: Elena S: 250 Message accepted for delivery C: QUIT S: 221 unsitio.es closing connection

Example of SMTP interaction

Cliente SMTP: "otro.com" Servidor SMTP: "unsitio.es"

SMTP phases:

- 1. Presentation
- 2. Negociation
- 3. Transfer
- 4. Bye

- It is possible to send messages without a mail UA
 - Using SMTP commands in direct dialog with mail server
 - In its "language"
- Try your own SMTP interaction
 - With TELNET to port 25. e.g:
 - telnet correo.uah.es 25
 - Mail server should respond :
 - "220 reply from server"
 - And some additional text
 - Introduce SMTP command
 - HELO, MAIL FROM, RCPT TO, DATA, QUIT

de Alcalá

SMTP: Simple Mail Transfer Protocol

Commands window of a user with an SMTP session via Telnet to mail server "correo.aut.uah.es"

Unit 2: Application Layer

- Protocols involved in sending Internet email messages
 - UA → Mail server: SMTP
 - Between Mail servers: SMTP
 - Mail server → UA: POP3, IMAP or HTTP

 Mail access

 Mail access

 Mail access

 Mail server

 Mail server

Figure 2.18 ♦ E-mail protocols and their communicating entities

It can happen, but is not frequent, that more than two mail servers mediate between sender and receiver UA's

- Mail access protocols
 - Needed to get the messages from mail server
 - Transfer mails from Server to UA
 - SMTP not valid
 - It is an "offer" type protocol (PUSH)
 - User system should be always on and connected
 - Mail server configuration more complex
 - Solution → "Demand" protocols (PULL)
 - POP3 (RFC 1939)
 - Post Office Protocol v.3
 - IMAP (RFC 3501)
 - Internet Mail Access Protocol
 - HTTP

- Client-Server Model
- Supported on TCP, port 110
- Text-mode protocol
 - Commands and responses using ASCII codes (7 bit)
- Very simple protocol, limited features, two operation modes:
 - Download and delete
 - Download and keep

- Implements <u>"offline mail processing"</u>
 - All mail processing is performed at user systems, where the UA resides
 - Protocol:
 - Downloads messages from server, according to UA configuration:
 - Automatic or manual mode
 - Download and delete or download and keep
 - Stores messages at user system, for later processing
 - Then, it disconnects from Server
- Suitable for user accessing mail from a unique machine
- Requires few resources at Server
 - State information <u>at Server</u>
 - No state between sessions → Much simpler!!!
 - No status information stored from one session to next
 - Some state stored during session

POP3 Meesages:

- Commands
 - user: to declare user
 - pass: password
 - **list**: list messages at mail Server
 - **retr**: retrieve a message
 - **dele**: delete a message
 - quit: quit POP3 session
- Responses
 - +OK

During Authorization and Transaction phases

- Update Phase, only at mail Server
 - After POP3 session ends

Authorization Phase

Transaction Phase

All in readable text format!!!


```
S: +OK POP3 server ready
              C: user juan
S: +OK
C: pass juanpass
Authorization
  Phase
              S: \  + OK user successfully logged on
              C: retr 1
              S: <message 1 contents>
Transaction
  Phase
              C: dele 1
              C: retr 2
              S: <message 2 contents>
                  +OK POP3 server signing off
```

POP3 session.

Generic example of interaction between Client and server in "download and delete" mode

User command screen of a POP3 session via Telnet to "aut.uah.es" mail Server in "download and keep" mode

All in readable text format!!!

- Client-Server Model
- Supported on TCP, port 143
- Provides <u>UA at the mail Server</u>
- Stores state information
 - During and between sessions
- Suitable for nomadic users
 - That access mail from multiple end systems
- Enables three access modes to mail:
 - "Offline"
 - "Online"
 - "Disconnected"

- Offline Access
 - Similar to POP3
 - Minimizes:
 - Resources usage at server
 - Connection time
 - Suitable to access via telphone modem
- Online Access
 - "On line" interaction between Client UA and mail Server
 - "On line" mail processing
 - Requires open connection with Server to read mail
 - Messages are kept at server
 - Temporary copy at local host

- "Disconnected" access
 - "Off line" mail processing
 - Does NOT requires connection open with Server to read mail
 - Messages are stored temporarily at client cache
 - The are synchronized (updated) at next connection to mail Server
 - Messages are stored at Server
 - Suitable for POTS (telephone) connections
- IMAP:
 - Text mode in readable ASCII 7 bit!!!

- Another usage posibilities:
 - Download of mails that satisfy some conditions, e.g.:
 - Messages from a specific sender
 - Messages with specific contents
 - Only some parts of messages (for multipart MIME messages)
 - Read only headers of messages
 - Others
- Mail is centralized
 - Back up of mails is easier
- Drawbacks
 - More resources needed at mail server
 - More storage and processing capacity
 - More complex software, both at Client and Server

Internet electronic mail protocols: transfer and access

- As defined by RFC 822, mail messages are composed of:
 - Header, with different fields
 - Mandatory and optional headers
 - Body
 - Message contents
 - Ends with a line with only one character (a "dot").
 - A blank line to separate header from body
 - Header and body contain only ASCII 7 bit text format!!!
- UA builds the message and sends it to mail server
 - Sending mail server uses some header fields to build the "envelope" and know where to send it
 - "From" and "To" headers

Blank line

Mail Messages Format

Halsall, Computing Networking and the Internet, 5th Edition © Pearson Education Limited 2005

Mail Messages Format

Transport related headers

To: address of main addressee

Cc: address of secondary addressee

Bcc: (**bl**ind **c**arbon **c**opy) address of <u>secondary hidden addressee</u>

From: address of sender¹

Sender: address of message emitter ¹

Received: Header added by every mail server traversed in the route, if any. Includes:

- Names of Sender and Receiver Servers
- Date and time message is received

Return-Path: name of last Server

- Added by last server of the route
- Rarely used, often contains the sender address

^{1: &}quot;From" and "Sender" usually coincide → "Sender" is omitted

Other headers

Date: date and time message was sent

Reply-To: address to send the response

Message-Id: unique identifier asigned by the UA, with the format:

random-string@domain

In-Reply-To: Id of the message that this mail responds

References: Message-Id of other messages

Subject: message subject (one line)

And more...

Basic example of RFC 822 message

From: pepe@uah.es <CR><LF>

To: juani@upd.es <CR><LF>

Subjet: Planes futuros <CR><LF>

<CR><LF>

Hi, I want to tell you that ... bla bla <CR><LF>

so that, bla bla <CR><LF>

etc, bla bla <CR><LF>

Regards <CR><LF>

. <CR><LF>

- RFC 822 only specifies messages coded in ASCII (7-bits/character)
 - English text messages only
- SMTP can only handle 7-bit ASCII text messages
- With the growth of Internet new needs appear:
 - Languages using accents
 - Languages with non latin alphabets (hebraic, russian)
 - No-alphabetic languages (chinese)
 - Non text messages (video, audio, images, etc.)
- Solution:
 - RFC's 2045 y 2046 → MIME extensions
 - MIME: Multipurpose Internet Mail Extensions

- Basic MIME concept:
 - Do NOT modify transport related software
 - Modify only Software at User Agents (UA's)
- Objective:
 - MIME messages being sent by existing programms and protocols
- MIME → Extensions to message format defined by RFC 822
 - Adds new structure to message body
 - Adapts message structure to support non-ASCII contents
 - Defines coding rules for non-ASCII messages

Procedure fo sending mail with non ASCII contents

- UA sender codes and sends original non ASCII in ASCII format, indicating it
 - Required to:
 - Prevent confusion of SMTP, that accepts only 7 bit ASCII code
 - Prevent message contents being interpreted as SMTP messages
- UA receptor receives-decodes ASCII to its original non-ASCII format
 - Based on the values of MIME header

- MIME defines <u>five new headers</u>
 - MIME-Version
 - Only for MIME messages
 - Content-Description
 - Optional
 - Content-Id
 - Optional
 - Content-Transfer-Encoding
 - Content-Type

These are the key headers

"Content-Transfer-Encoding" Header

- Indicates type of MIME coding used
 - Coding-syntax of transfer
- Types of MIME codings
 - ASCII 7 bit with lines of less than 1000 characters (RFC 822)
 - ASCII 8 bit with lines of less than 1000 characters.
 - For networks implementing some RFC 822 extensions
 - ASCII 8 bit with lines of arbitrary length
 - E.g. : executable programs
 - Base 64 coding (base64)
 - For coding binary data in ASCII, or other 8-bit per character alphabets
 - Quoted-printable coding
 - For alphabets very similar to, but with a limited number of special characters, with the 8th bit set to "1"

- "Content-Type" Header
 - Specifies:
 - MIME content of message, its kind
 - Indicates the receiver UA what to do with the content
 - Several types and subtypes defined
 - Notation: type/subtype
 - Every content "type" has an associated list of "subtypes"
 - Some content "types" :

```
text
```

image

application

multipart

message

MIME Extensions: MIME types

text: indicatex that message body contains text

examples:

- text/plain
 - Plain text, does not contain commands or format directives. Displayed as is, no special software needed
- text/html
 - Indicates to interpret HTML tags to display message content as a Web page

image: indicates the body contains image

examples:

- image/gif
 - Image in "gif" format
- image/jpeg
 - Image in "jpeg" format

MIME extensions: MIME types

application: indicates that the contents must be first processed by an application to become visible or usable by the user

Examples:

- application/msword
- application/msaccess
- application/msexcel
- application/postscript

MIME Extensions: MIME types

multipart: indicates the message has multiple parts or annexes (objects) e.g, text, images, audio, etc.

Receiver UA, in order to proceed, needs to know:

- Where every object starts and ends
 - Via "boundary characters") between every pair of objects of message
- How every non-ASCI object was coded
 - Via header "Content-Transfer-Encoding" of every object
- Type of content of every object
 - Via "Content-Type" header of every object
- Example: multipart/mixed;boundary=XYZ

Indicates how the parts (objects) of a multipart message separate.

Separation always starts with two (or more) hyphen (see example)

"message": indicates that message content has a relation with another MIME message

Examples:

message/rfc822 ← indicates that contains another RFC 822 message
message/partial ← indicates that the content is part (fragment) of a bigger message
message/external-body ← indicates that the content is not present, instead a reference to the place
where the real content is available

Content-Type: message/partial; id="file-name@host-name";number=1;total=20

Content-Type: message/external-body; access-type="mail-server";server="server-name"

Some MIME types and subtypes

	TYPE	SUBTYPE	CONTENT DESCRIPTION				
✓	Text	Plain	ASCII text without format				
·		Richtext	Formatted text based onHTML				
\checkmark	Image	GIF	GIF digital image				
•		jPEG	jPEG digital image				
	Audio	Basic	Digital audio				
	Video	MPEG	Video sequence or digital moviel				
✓	Application	Octet-stream	Byte string				
		Postscript	Printable Adobe PostScript document				
	Message	RFC 822	Another MIME message				
✓		Partial	Part of a bigger message				
		External-body	Pointer to where the body of message can be obtained				
	Multipart	Mixed	Each part has different content or type				
✓		Alternative	Every part has same content, but different type or subtype.				
		Parallel	Part must be shown simultaneously				
		Digest	Multiple messages				

Unit 2: Application Layer

MIME extensions

```
From: xyz@abc.com
To: abc@xyz.com
Subject: Happy birthday Irene
MIME-Version: 1.0
Content-Type: Multipart/Alternative; boundary = "TryAgain";
-- TryAgain
Content-Type: Message/External-body;
          name = "Irene.audio";
          directory = "Irene";
          access-type = "anon-ftp";
          site = "myserver.abc.com";
Content-Type: Audio/Basic;
                                          (Message in audio accessed remotely)
Content-Transfer-Encoding: Base64
-- TryAgain
Content-Type: Text/Richtext;
<B> * * * Happy birthday Irene * * </B> (Message in richtext)
-- TryAgain
Content-Type: Text/Plain;
          * * * Happy birthday Irene * * * (Message in plaintext)
-- TryAgain
```

Example of headers and MIME types/subtypes for multimedia mail message.

Same message in three different formats

Unit 2: Application Layer

- Mail UA = Web Browser + HTTP Client
 - For mail servers that "talk" HTTP (Hotmail, Gmail, ...)
- HTTP:
 - As a protocol to access mail
 - For message transfer between UA and mail Server
 - Enables some IMAP options
- Addressing:
 - URL = IP addres or domain name of mail Server

- Advantage
 - Access to mail from any device connected to Internet
- Disadvantage
 - Sending and reception of messages may be slow
 - Due to the transfer procedure between browser and mail server
 - e.g: mail message in HTML format
 - Using forms and CGI scripts
 - Conclusion:
 - Whenever possible, it is preferrable to use a conventional mail UA

			_	0	0	0	0	- 1	- 1	- 1	,
Bit positions		7	0	0	0	0	1	1	1	1	
		6	0	0	1]	0	0	1	1	
		5	0	1	0	1	0	1	0	1	
4	3	2	1								
0	0	0	0	NUL	DLE	SP	0	@	Р	\	р
0	0	0	1	SOH	DC1	ļ]	Α	Q	а	q
0	0	1	0	STX	DC2	//	2	В	R	b	r
0	0	1	1	ETX	DC3	#	3	С	S	С	S
0	1	0	0	EOT	DC4	\$	4	D	Т	d	t
0	1	0	1	ENQ	NAK	%	5	Е	U	е	U
0	1	1	0	ACK	SYN	&	6	F	V	f	V
0	1	1	1	BEL	ETB	1	7	G	W	g	W
1	0	0	0	BS	CAN	(8	Н	Χ	h	Х
1	0	0	1	HT	ΕM)	9		Υ	i	У
1	0	1	0	LF	SUB	*	:	J	Z	j	Z
1	0	1	1	VT	ESC	+	,	Κ	[k	{
1	1	0	0	FF	FS	,	<	L	\		
1	1	0	1	CR	GS	_	=	M]	m	}
1]	1	0	SO	RS		>	Ν	^	n	~
1	1	1	1	SI	US	/	Ś	0	_	0	DEL

Personal Work

See student guide

