CLAIMS:

1. Surface-modified, pyrogenically produced oxides doped by aerosol.

Surface-modified, pyrogenically produced oxides doped by aerosol, characterized in that the oxides are oxides from the group SiO₂, Al₂O₃, TiO₂, B₂O₃, ZrO₂, In₂O₃, ZnO, Fe₂O₃, Nb₂O₅, V₂O₅, WO₃, SnO₂, GeO₂.

3. Surface-modified, pyrogenically produced oxides doped by aerosol in accordance with claim 1 or 2, characterized in that they are surface-modified with one or several compounds from the following groups:

a) Organosilanes of the type (RO) $_3 Si(C_nH_{2n+1})$ and (RO) $_3 Si(C_nH_{2n-1})$

$$R = alkyl$$

$$n = 1 - 20$$

b) Organosilanes of the type R'_x (RO)_ySi(C_nH_{2n+1}) and (RO)₃Si(C_nH_{2n+1})

$$R = alkyl$$

$$R' = alkyl$$

$$R' = cycloalkyl$$

$$N = 1 - 20$$

The state of the s

Sulg Al

$$x+y=3$$

$$x = 1, 2$$

$$y = 1, 2$$

c) Halogen organosilanes of the type $X_3 \, Si(C_n H_{2n+1})$ and $X_3 \, Si(C_n H_{2n-1})$

$$X = C1, Bh$$

$$n = 1 - 20$$

d) Halogen organosilanes of the type $X_2\left(R'\right)$ Si(C_nH_{2n+1}) and

$$X_2$$
 (R') Si(C_nH_{2n})

$$X = Cl, Br$$

$$R' = alkyl$$

$$R' = cycloalkyl$$

$$n = 1 - 20$$

e) Halogen organosilanes of the type $X(R')_2 Si(C_nH_{2n+1})$ and

$$X (R')_2 Si(C_nH_{2n-1})$$

$$X = Cl, Br$$

$$R' = alkyl$$

$$R' = cycloalkyl$$

$$n = 1 - 20$$

f) Organosilanes of the type (RO)₃Si(CH₂)_m-R,

$$R = alkyl$$

$$m = 0.1 - 20$$

R' \neq methyl-, aryl (e.g., -C₆H₅, substituted phenyl groups)

C₄F₉, OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂

 $-NH_2$, =N₃, -SCN, -CH=CH₂, -NH- CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-CH_2NH_2)_2$

 $-OOC(CH_3)c = CH_2$

 $-OCH_2$ -CH(O) CH₂

-NH-CO-N-CO- $(CH_2)_5$

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-(CH₂)₃Si(or)₃

 $-S_x$ -(CH₂)₃Si(OR)₃

-SH

-NR'R''R''' (R'\= alkyl, aryl; R'' = H, alkyl, aryl; R''' = H,

alkyl, aryl, benzyl, $C_2H_4NR''''R''''$ with R''''=A, alkyl and

R'''' = H, alkyl

Organosilanes of the type $(R'')_x$ $(RO)_ySi(CH_2)_m-R'$ R'' = alkyl x+y=2 = cyclolalkyl $x \neq 1, 2$ y = 1, 2 m = 0.1 to 20

$$R'' = alky$$

$$x+y=2$$

$$x \neq 1, 2$$

$$y = 1, 2$$

$$m = 0.1 \text{ to } 20$$

R' = methyl-, aryl (e.g., $-C_6H_5$, substituted phenyl groups)

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂

 $-NH_2$, $-N_3$, SCN, $-CH = CH_2$, $-NH-CH_2-CH_2-NH_2$,

 $-N(CH_2-CH_2-NH_2)_2$

 $-OO(C) (CH_3)C = CH_2$

 $-OCH_{X}CH(O)CH_{2}$

-NH-CQ-N-CO-(CH₂)₅

 $-NH-COQ-CH_3, -NH-COO-CH_2-CH_3, -NH-(CH_2)_3Si(OR)_3\\$

 $-S_x-(CH_2)_3$ (OR)₃

-SH

-NR'R''R''' (R'' = alkyl, aryl; R'' = H,

alkyl, aryl; R'", H, alkyl, aryl, benzyl,

 $C_2H_4NR^{"}R^{"}$ with $R^{"}=A$, alkyl and

R'''' = H, alkyl)

h) Halogen organosilanes of the type X₃Si (CH₂)_m-R'

X = Cl, Br

m = 0, 1 - 20

R' = methyl-, aryl (e.g., $-C_6H_5$, substituted phenyl groups)

- C_4F_9 , - OCF_2 -CHF- CF_3 , - C_6F_8 , -O- CF_2 - CHF_2

-NH₂, -N₃, SCN, -CH=CH₂, -NN-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NH_2)_2$

 $-OOC (CH_3)C = CH_2$

-OCH₂-CH(O) CH₂

-NH-CO-N-CO-(CH₂)₅

-SH

i) Halogen organosilanes of the type (R)X₂Si(CH₂)_m-R'

$$X = \partial I$$
, Br

R = alkxl such as methyl, - ethyl-, propyl-

$$m = 0, 1 - 20$$

R' = methy $\sqrt{}$, aryl (e.g., -C₆H₅, substituted phenyl groups)

-C₄F₉, -OCF₂CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂

-NH₂, -N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NN_2)_2$

-OOC (CH₃)C = CN_2

-OCH₂-CH(O) CH₂

-NH-CO-N-CO-(CH₂)₅

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-

34

 $(CH_2)_3Si(OR)_3$

 $-S_x$ - $(CH_2)_3Si(OR)_3$

-SH

(j) Halogen organosilanes of the type (R)₂X Si(CH₂)_m-R'

$$X = Cl, Br$$

R = alkyl

354470v1

$$m = 0, 1 - 20$$

 $R = \text{methyl-}, \text{ aryl (e.g., -C}_6H_5, \text{ substituted phenyl groups)}$

 $-C_4F_9$, $-OCF_2$ -CHF-CF₃, $-C_6F_{13}$, $-O-CF_2$ -CHF₂

-NH₂,-N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NH_2)_2$

 $-OOC(CH_3)C = CH_2$

-OCH₂-CH(O) CH₂

-NH-CO-N-CO-(CH₂)₅

 $-NH-COO-CH_{\S}, -NH-COO-CH_2-CH_3, -NH-(CH_2)_3Si(OR)_3$

 $-S_x$ -(CH₂)₃Si(OR)₃

-SH

(k) Silazanes of the type R'R₂Si-N-SiR₂R'

Н

R = alkyl

R' = alkyl, vinyl

(1) Cyclic polysiloxanes of the type D 3, D 4, D 5, e.g. octamethylcyclotetrasiloxane = D4

NATURAL STATES AND STA

Sub A2

State of the state

ANTHON ANTON ANTON MANY ANTON ANTON

 H_3C CH_3 Si O CH_3 CH_3 CH_3 CH_3 CH_3

m) Polysiloxanes or silicone oils of the type

$$Y-O-\begin{pmatrix} R & R'' \\ Si-O & Si-O \\ R' & R'' \end{pmatrix}$$

$$m \qquad n \qquad n$$

$$m = 0, 1, 2, 3, ... \infty$$

 $n = 0, 1, 2, 3, ... \infty$
 $u = 0, 1, 2, 3, ... \infty$

 $Y=CH_3$, H, C_nH_{2n+1} n=1-20 $Y=Si(CH_3)_3$, $Si(CH_3)_2H$

 $Si(CH_3)_2OH$, $Si(CH_3)_2$ (OCH₃) $Si(CH_3)_2$ (C_nH_{2n+1}) n=1-20

 $R = alkyl, aryl, (CH_2)_n-NH_2, H$ $R' = alkyl, aryl, (CH_2)_n-NH_2, H$ $R''' = alkyl, aryl, (CH_2)_n-NH_2, H$ $R'''' = alkyl, aryl, (CH_2)_n-NH_2, H$

A method of producing the surface-modified oxides in accordance with claim 1 or 2, characterized in that pyrogenically produced oxides doped by aerosol are placed in a suitable mixing container, the oxides are sprayed under intensive mixing, optionally with water and/or acid at first and subsequently with a surface-modification reagent or a mixture of several surface-modification reagents, optionally re-mixed 15 to 30 minutes and tempered at a temperature of 100 to 400 °C for a period of 1 to 6 hours.

5. The use of the surface-modified oxides as reinforcing filler.

Add AA