

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia de Computação e Telecomunicações Sistemas de Controle Experiência $2 \text{ com } MatLab^{\textcircled{C}}$ Prof a Adriana Castro

Danilo Souza - 10080000801

June 28, 2013

Contents

1	Questao 1 - Identificação Direta			
	1.1	Sistema de 1^a Ordem - Experimento $1 \dots \dots \dots \dots \dots$		
	1.2	Sistema de 2^a Ordem - Experimento $2 \dots \dots \dots \dots \dots$		
2	Questao 2 - Identificação Indireta			
	2.1	Sistema de 1 ^a Ordem - Experimento 3 \dots		
	2.2	Sistema de 2 ^a Ordem - Experimento 4		

List of Figures

1.1	Sistema de 1^a ordem em malha aberta	3
1.2	Comparação entre os sistemas de 1^a ordem dado (em azul) e simulado	
	(em verde)	4
1.3	Sistema de 2^a ordem em malha aberta	4
1.4	Comparação entre os sistemas de 2^a ordem dado (em azul) e simulado	
	(em verde)	5
2.1	Sistema em malha fechada	6
2.2	Comparação entre o sistema em malha fechada (azul) e $M(s)$ em malha	
	aberta (verde)	7
2.3	Comparação entre o sistema em malha fechada (azul) e $M(s)$ em malha	
	aberta (verde)	7

Chapter 1

Questao 1 - Identificação Direta

1.1 Sistema de 1^a Ordem - Experimento 1

Para este experimento foi utilizado um sistema de primeira ordem em malha aberta, conforme mostrado na Figura 1.1. Foi utilizado o bloco State-Space do MatLab para simulação do sistema como uma caixa preta, para que então pudessem ser obtidos os valores de $T_{r_{5\%}}$ e T_s e a partir destes calcular os valores de τ , e K, utilizando as equações abaixo:

$$K = \frac{V_{regime}}{V_{referencia}}$$

$$\tau = \frac{T_{r_{5\%}}}{3}$$

Os valores obtidos foram K=2 para um degrau com aplitude 2 e $\tau=0,9792,$ $T_s=3,917$

Figure 1.1: Sistema de 1^a ordem em malha aberta

Após a obtenção desses valores, foi realizada uma simulação utilizando a seguinte função de transferência:

$$\frac{Y(s)}{U(s)} = \frac{2}{0,9792s + 1}$$

Para esta função de transferência o valor de de T_s foi 3,83. Podemos perceber que o valor foi muito próximo do anterior mostrando praticamente a mesma resposta do sistema, conforme Figura 1.2.

1.2 Sistema de 2^a Ordem - Experimento 2

Para este experimento foi utilizado um sistema de segunda ordem em malha aberta, conforme mostrado na Figura 1.3. Foi utilizado o bloco State-Space do MatLab[©] para simulação do sistema como uma caixa preta, tendo como entrada um degrau de amplitude 2, para que então pudessem ser obtidos os valores de K=1, $V_{regime}=2$, $V_{pico}=2,4$, $M_p=0,2$ e $T_p=1,768$.

Figure 1.2: Comparação entre os sistemas de 1^a ordem dado (em azul) e simulado (em verde)

Figure 1.3: Sistema de 2^a ordem em malha aberta

A partir destes foram obtidos, utilizando as equações abaixo, os valores de $\xi=0,4559$ e $w_n=1,9945.$

$$M_p = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}}$$

$$T_p = \frac{\pi}{w_n\sqrt{1-\xi^2}}$$

A função de transferência para os valores calculados é:

$$\frac{Y(s)}{U(s)} = \frac{3,9780}{s^2 + 1,8186s + 3,9780}$$

Analisando o gráfico da Figura 1.4, percebemos que a resposta do sistema calculado é exatamente igual a resposta do sistema dado no experimento.

Figure 1.4: Comparação entre os sistemas de 2^a ordem dado (em azul) e simulado (em verde)

Chapter 2

Questao 2 - Identificação Indireta

O objetivo agora é descobrir a função de transferência G(s), quando ocorre um ganho K_c em malhar fechada, por isso a identificação é denominada indireta, conforme diagrama da Figura 2.1. A função de transferência desse sistema é dada pela equação 2.1.

Figure 2.1: Sistema em malha fechada

$$M(s) = \frac{K_c G(s)}{1 + K_c G(s)}$$
 (2.1)

A função M(s) obtida através dos valores da simulação com o bloco *State-Space*, com isso é feita uma comparação com as funçõess de transferência das Figuras 1.1 e 1.3 para determinar os valores de ξ , w_n e τ . A partir desses valores podemos obter a função de transferência do processo, G(s), utilizando a equação 2.1

$$G(s) = \frac{1}{K_c} \frac{M(s)}{1 - M(s)}$$
 (2.2)

2.1 Sistema de 1^a Ordem - Experimento 3

Para este experimento foram encontrados os valores de $T_s = 2,249, \tau = 0,5263$ e K = 0,98, portanto, temos que:

$$M(s) = \frac{0,98}{0,5263s + 1}$$

Partindo da equação 2.2 obtemos:

$$G(s) = \frac{0,98}{26,3150s + 1}$$

O gráfico da Figura 2.2 mostra os sistemas em malha fechada, como uma caixa preta, e a função M(s) em malha aberta, que seria o equivalente ao primeiro. Podemos perceber que M(s) em malha aberta é praticamente igual ao sistema em malha fechada.

2.2 Sistema de 2^a Ordem - Experimento 4

Para este experimento foram encontrados os valores de $T_p = 0, 12, M_p = 0, 2, K = 0, 98, \xi = 0, 2163, w_n = 26, 8155$, portanto temos que:

Figure 2.2: Comparação entre o sistema em malha fechada (azul) e M(s) em malha aberta (verde)

$$M(s) = \frac{704,6878}{s^2 + 11,6004s + 719,0692}$$

Partindo da equação 2.2 obtemos:

$$G(s) = \frac{14,0938}{s^2 + 11,6004s + 14,3814}$$

O gráfico da Figura 2.3 mostra os sistemas em malha fechada, como uma caixa preta, e a função M(s) em malha aberta, que seria o equivalente ao primeiro. Podemos perceber que M(s) em malha aberta é igual ao sistema em malha fechada.

Figure 2.3: Comparação entre o sistema em malha fechada (azul) e M(s) em malha aberta (verde)