Deriving products, quotients, and chains

October 15th, 2024

	nt of $f(x)$ and $g(x)$ is $\frac{d}{dx} \frac{f(x)}{g(x)} = $	
• The derivative of $\tan x$ is $\frac{d}{dx}$	$\tan x = \underline{\hspace{1cm}}.$	
• The chain rule has to do wit	h	of functions.
If g is differentiable at	h and f is differentiable at	, then
• The chain rule helps us with	implicit differentiation, which is used	d when we can't isolate the
	variable. Here's an example:	
		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
li dterm practice (Paulin MT1 ' and the domain of the derivative.		ivative to find $f'(x)$ for $f(x)=x^{3/2}$. T
	16): Use a limit definition of the deri	ivative to find $f'(x)$ for $f(x)=x^{3/2}$. T
i dterm practice (Paulin MT1 ' nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x)=x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
idterm practice (Paulin MT1 'nd the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T
li dterm practice (Paulin MT1 ' and the domain of the derivative.		ivative to find $f'(x)$ for $f(x) = x^{3/2}$. T

Problem 1: Use the rules we talked about today to find the derivatives of			
a) sec <i>x</i> ;	b) csc <i>x</i> ;	c) $\cot x$.	
My Attempt:		Solution:	
Problem 2: (Stewart 3.5) Find tl	he derivative of $F(x) = (x)$	$x^4 + 3x^2 - 2)^5$ (no need to expand).	
My Attempt:	()	Solution:	
Problem 3: (Stewart 3.5) Find the My Attempt:	he derivative of $e^{x\cos x}$.	Solution:	
Problem 4: (Stewart 3.5)			
a) Find the 50th derivative of My Attempt:	$f y = \cos 2x.$	b) Find the 1000th derivative of $f(x) = xe^{-x}$. Solution:	

Problem 5: (Stewart 3.5) Find an equation of the tangent line to $x^2 + y^2 = (2x^2 + 2y^2 - x)^2$ at the point $(0, \frac{1}{2})$. Fun fact: this curve is called cardioid because it's shaped like a heart!

My Attempt:

Solution:

Problem 6: (Stewart 3.5) Find the derivatives of the following functions using the triple chain rule.

a)
$$y = e^{e^x}$$
;

b)
$$y = \sin(\cos(\tan(x)));$$

My Attempt:

Solution:

Problem 7: (Stewart 3.5) Find $\frac{dy}{dx}$.

a)
$$e^y \cos x = 1 + \sin(xy)$$
;

b)
$$4\cos x \sin y = 1$$
;

c)
$$e^{x/y} = x - y$$
.

My Attempt:

Solution:

Challenge problem: Find a parabola that passes through (1,4) and whose tangent lines at x=-1 and x=5 have slopes 6 and -2, respectively.