

Exercice 1 Code de Huffman

On suppose d'avoir une image composée par 12 couleurs, dont les fréquences sont données dans le tableau suivant :

couleur	fréquence	couleur	fréquence
noir	0,05	vert	0,08
blanc	0,02	violet	0, 12
bleu	0,03	orange	0, 10
jaune	0,15	marron	0, 15
rouge	0,17	gris	0,05
fuschia	0,03	beige	0,05

- 1. Déterminer un code de Huffman associé à cette source.
- 2. Calculer la longueur moyenne de ce code.
- 3. Calculer l'entropie de la source H, et déterminer le rendement du code $R = \frac{H}{L}$
- 4. Déterminer le code de Fano.

Exercice 2

Une source possède un alphabet de 4 lettres. On souhaite encoder ces symboles en utilisant des mots de codes de longueurs 1, 2, 2 et 3 bits. Déterminer s'il existe un code préfixe permettant de satisfaire cette contrainte.

Exercice 3

Un code est défini par le mapping suivant:

a_i	$c(a_i)$	p_i	l_i	$h(p_i)$
a	00	0.3		
b	01	0.3		
c	10	0.2		
d	110	0.15		
e	111	0.05		

- 1. Déterminer si le code est un code préfixe.
- 2. Compléter le tableau.
- 3. Pour une source caractérisée par la distribution p_i , déterminer la longueur du code.
- 4. Pour la même source, calculer l'information pour chaque symbole ainsi que l'entropie de la source.

Exercice 4

En utilisant le code de l'exercice précédent, encodé la séquence: abacbbaacdaababbbcabbe

Décoder la séquence:

La séquence issue d'un codeur par symbole est dépourvue de redondance mais est extrêmement sensible aux erreurs de transmission. Décoder la même séquence en ajoutant une erreur sur le 3eme bit.

Exercice 5

Une source possède un alphabet de 8 lettres (a_1, \ldots, a_8) de probabilités respectives (0.26, 0.20, 0.15, 0.12, 0.10, 0.08, 0.05, 0.04).

1. Utiliser l'algorithme de Shannon Fano pour déterminer un code binaire pour cette source.

- 2. Utiliser l'algorithme de Huffman pour déterminer un code binaire pour cette source.
- 3. Déterminer le nombre moyen de bit par symbole dans chaque cas
- 4. Comparer ces valeurs à l'entropie de la source.

Exercice 6 Canal binaire symétrique A l'entrée d'un canal binaire symétrique caractérisé par :

Sont appliqués les symboles x_1 et x_2 avec les probabilités $p(x_1) = 3/4$ et $p(x_2) = 1/4$ respectivement.

- 1. Déterminer l'entropie du champ à l'entrée H(X), l'entropie du champ à la sortie H(Y), l'entropie du champ réuni H(X,Y), l'erreur moyenne H(Y/X) et l'équivoque H(X/Y), l'information mutuelle I(X,Y).
- 2. Calculer le jeu optimal des probabilités des symboles appliqués à l'entrée du canal qui rend l'information mutuelle maximale. En déduire la capacité du canal C et la redondance $\rho = \frac{H_{max} H(X)}{H_{max}}$.

Exercice 7

On considère le canal suivant:

Déterminer la capacité de ce canal ainsi que la distribution d'entrée optimale.

Exercice 8

On considère le canal suivant:

Déterminer la capacité de ce canal ainsi que la distribution d'entrée optimale.

Exercice 9

On considère le canal à quatre entrées $\{a, b, c, d\}$ et cinq sorties $\{a, b, c, d, e\}$ suivant :

- 1. Calculer la capacité de ce canal.
- 2. On souhaite utiliser ce canal pour transmettre le contenu d'une source binaire S.
 - (a) Que faut-il faire pour rendre cette transmission possible?
 - (b) On suppose que la source S est sans mémoire. Calculer la probabilité pour qu'un mot source soit transmis correctement par la canal.

Exercice 10 On considère un canal binaire à effacement (BEC) :

$$\begin{pmatrix} 1 - p_e & 0 \\ p_e & p_e \\ 0 & 1 - p_e \end{pmatrix}$$

L'entrée X de ce canal est une entrée binaire dont les symboles sont dans $\{0,1\}$. La sortie Y est ternaire et ses symboles sont dans $\{0,\varepsilon,1\}$, où ε représente un effacement produit par ce canal avec une probabilité p_e . La distribution de probabilité de l'entrée X est $\{p(0) = \alpha, p(1) = 1 - \alpha\}$.

- 1. Déterminer la distribution de probabilité $\mathcal{P}(y)$ de la sortie Y en fonction de α et p_e . Calculer l'entropie de la sortie H(Y).
- 2. Calculer l'erreur moyenne H(Y/X). Donner l'information mutuelle transmise par ce canal, i.e. I(X,Y) = H(Y) H(Y/X).
- 3. Déduire la valeur de la capacité du canal BEC. Interpréter ce résultat.

Exercice 11 On considère un canal de transmission en Z défini par la matrice :

$$\begin{pmatrix} 1 & 1/2 \\ 0 & 1/2 \end{pmatrix}$$

Montrer par un calcul que la capacité de ce canal est exactement :

$$H_2(\frac{1}{5}) - \frac{2}{5} = -\frac{1}{5}log_2(\frac{1}{5}) - \frac{4}{5}log_2(\frac{4}{5}) - \frac{2}{5}$$

Exercice 12

On considère le canal AWGN à entrée et sortie continues. Sachant que pour une puissance donnée, la densité de probabilité optimale (maximisant l'information mutuelle est gaussienne, calculer la capacité du canal AWGN.

Exercice 13 Somme

1. Soit X une variable aléatoire à valeurs dans un ensemble discret A. Soit f une application de A dans un ensemble B, Y = f(X).

Montrer que $H(Y) \leq H(X)$. Dans quelles conditions a-t-on l'égalité?

2. On suppose maintenant que A est un groupe additif et que A=B. Soient deux variables aléatoires X et Y à valeurs dans A. On pose Z = X + Y. Montrer que H(Z/X) = H(Y/X). Dans le cas où X et Y sont indépendantes, en déduire que $H(Z) \geqslant H(Y)$.