UNIVERSIDADE DE SÃO PAULO

Escola de Engenharia de São Carlos

Departamento de Engenharia Elétrica e de Computação

Projeto Final - Propagação e Recepção de Sinais

Carlos Henrique Hannas de Carvalho n° USP: 11965988 Gabriel Aguilar Soares de Melo n° USP: 11915432 Pedro Antonio Bruno Grando n° USP: 12547166

> Prof. Mateus Isaac de Oliveira Souza SEL0616 - Princípios de Comunicação

> > 30 de junho de 2024

Sumário

1	Intr	rodução	1
2	Que	estões	1
	2.1	Questão 01	1
	2.2	Questão 02	2
	2.3	Questão 03	2
	2.4	Questão 04	3
	2.5	Questão 05	4
	2.6	Questão 06	4
	2.7	Questão 07	5
	2.8	Questão 08	6
	2.9	Questão 09	7
	2.10	Questão 10	7
		2.10.1 Item 01 (enunciado da questão $2.1)$	8
		2.10.2 Item 02 (enunciado da questão $2.2)$	8
		2.10.3 Item 03 (enunciado da questão $2.3)$	9
		2.10.4 Item 04 (enunciado da questão 2.4)	10
		2.10.5 Item 05 (enunciado da questão 2.5)	10
		2.10.6 Item 06 (enunciado da questão 2.6)	11
		2.10.7 Item 07 (enunciado da questão 2.7)	12
		2.10.8 Item 08 (enunciado da questão 2.8)	12
		2.10.9 Item 09 (enunciado da questão 2.9)	13
_	• ,		
L	ısta	de Figuras	
	1	Diagrama da modulação DSB-SC.	1
	2	Portadora $c(t)$ com $f_c = 2MHz$	1
	3	Espectro $C(f)$ da portadora $c(t)$ com $f_c = 2MHz$	2
	4	Mensagem $m(t)$ centrada em 100 μs	3
	5	Espectro $M(f)$	3
	6	Sinal $s(t)$ modulado e centrado em 100 μs	4
	7	Espectro $S(f)$ modulado	5
	8	Espectro $E(f)$ demodulado	6
	9	Espectro $E(f)$ e filtro passa-baixa (FPB)	6
	10	Sinal $m'(t)$ recuperado	7
	11	Portadora $c(t)$ com $f_c = 0,5MHz$	8
	12	Espectro $C(f)$ da portadora $c(t)$ com $f_c = 0, 5MHz$	9
	13	Mensagem $m(t)$ centrada em 100 μs	9
	14	Espectro $M(f)$	10
	15	Sinal $s(t)$ modulado e centrado em 100 μs	11
	16	Espectro $S(f)$ modulado	11
	17	Espectro $E(f)$ demodulado	12
	18	Espectro $E(f)$ e filtro passa-baixa (FPB)	12
	19	Sinal $m'(t)$ recuperado	13

1 Introdução

Analisa-se a dinâmica de transmissão e recepção de sinais, segundo a modulação DSB-SC, conforme o seguinte diagrama:

Figura 1: Diagrama da modulação DSB-SC.

Adota-se os seguintes valores para o projeto:

- Intervalo de tempo: $0 \le t \le 200 \mu s$;
- Frequência de amostragem: $f_{samp} = 50MHz$;
- Frequência de portadora: $f_c = 2MHz$;
- Mensagem: m(t) = sinc(t).

2 Questões

2.1 Questão 01

Plote a portadora c(t) para t de $0-5\mu s$, com amplitude de variação de [-1.1, 1.1]. Quantos ciclos de portadoras vocês encontraram?

A figura 2 mostra o gráfico da portadora, no tempo solicitado:

Figura 2: Portadora c(t) com $f_c = 2MHz$.

A quantidade de ciclos é calculada através da equação 1:

$$ciclos = \Delta t \cdot f_c \tag{1}$$

Portanto:

$$ciclos = 5 \cdot 10^{-6} \cdot 2 \cdot 10^{6} = 10$$

Através da figura 2, percebe-se que há 10 ciclos durante o intervalo de tempo solicitado. Isso valida o resultado da equação acima.

2.2 Questão 02

Plote o espectro da portadora em uma mesma janela gráfica, onde a parte negativa encontra-se representada no subplot(1,2,1) e a parte positiva no subplot(1,2,2), considerando uma faixa de -2MHz a -1.8MHz e 1.8MHz a 2MHz, respectivamente.

A figura 3 apresenta os gráficos de espectros negativo e positivo da portadora c(t), conforme solicitado:

Figura 3: Espectro C(f) da portadora c(t) com $f_c = 2MHz$.

Utilizou-se as funções fftshift() e abs(), para deslocar a função e considerar o eixo positivo das coordenadas, respectivamente, do MATLAB para plot da figura 3.

2.3 Questão 03

Plote o sinal da mensagem no intervalo de $90-110\mu s$, com a função sinc(x) centrada em $100\mu s$.

O gráfico da mensagem m(t) = sinc(t), centrado em 100 μ s, está na figura 4 abaixo:

Figura 4: Mensagem m(t) centrada em $100 \mu s$.

2.4 Questão 04

Calcule agora o espectro de m(t) em banda base e plote em uma faixa de frequência que vai de -2MHz a 2MHz. Qual função vocês encontraram? Explique o que é a largura de meia potência de um sinal e calcule essa grandeza para o sinal encontrado.

A figura 5 apresenta o espectro M(f), em que $M(f) = F\{m(t)\}$:

Figura 5: Espectro M(f).

O espectro M(f), da imagem 5, é uma função retangular, centrada em zero, no domínio da frequência.

A largura de meia potência (LMP) é uma medida para descrever a largura de banda de um sinal para a qual sua potência é metade do valor máximo (ou sua amplitude é $\frac{1}{\sqrt{2}}$). Calculou-se a LMP de M(f) através da função powerbw() do MATLAB:

$$LMP = 599642, 5228Hz$$

2.5 Questão 05

Faça a modulação da mensagem m(t) usando a portadora c(t) e mostre o sinal no tempo em uma faixa que vai de $90-110\mu s$.

O sinal s(t) é a modulação de m(t), a partir da portadora c(t), em um intervalo $90\mu s \le t \le 110\mu s$. A imagem 6 apresenta o sinal modulado s(t):

Figura 6: Sinal s(t) modulado e centrado em 100 μs .

2.6 Questão 06

Calcule o espectro da mensagem modulada e plote em uma nova janela gráfica, mostrando o resultado em uma banda de base de -5Mhz a 5MHz. Em quais frequências os espectros aparecem? Está de acordo com o esperado?

O espectro da mensagem modulada, S(f), é apresentado na figura 7:

Figura 7: Espectro S(f) modulado.

A partir da figura 5, percebe-se que as frequências negativa e positiva do espectro (figura 7) estão de acordo com o esperado, em -2MHz e 2MHz, respectivamente.

2.7 Questão 07

Agora, considerando a recepção, demodule o sinal modulado, conforme mostrado no diagrama incial, usando a mesma portadora e encontre o novo espectro. Plote o sinal resultante em uma faixa de -6MHz a 6MHz.

A função e(t) é a demodulação de s(t), a partir da portadora c(t). O espectro E(f), em que $E(f) = F\{e(t)\}$, é apresentado na figura 8:

Figura 8: Espectro E(f) demodulado.

2.8 Questão 08

Projete um filtro usando uma função retangular para eliminar frequências inferiores à -2MHz e superiores a 2MHz e mostre-o junto do espectro do item anterior, para a faixa que vai de -6MHz a 6MHz.

O filtro passa-baixa (FPB) aceita valores em um intervalo de frequência $-2MHz \le f \le 2MHz$. A figura 9 mostra o espectro, após o FPB, no subplot(1,2,1); o filtro e espectros (antes do FPB) estão no subplot(1,2,2):

Figura 9: Espectro E(f) e filtro passa-baixa (FPB).

2.9 Questão 09

Use a transformada inversa de Fourier para representação da mensagem recuperada. Após o uso da FFT inversa, aplique a função real() ao sinal resultante e compare com a mensagem m(t) inicial, graficamente. Use também a função corrcoef() para medir o grau de similaridade entre a mensagem recuperada m'(t) e a mensagem inicial m(t) de forma numérica. Apresente esse valor.

A figura 10 apresenta o sinal m'(t) recuperado, após a demodulação:

Figura 10: Sinal m'(t) recuperado.

O subplot(1,2,1) apresenta a mensagem m'(t) recuperada; o subplot(1,2,2) apresenta, graficamente, uma comparação entre a mensagem original e recuperada, através do comando real() do MATLAB.

Além da comparação gráfica, calculou-se o grau de similaridade, *coef*, entre as mensagens enviada e recuperada através da função *corrcoef()*:

$$coef = 0,9548$$

Essa pequena discrepância advém do fato de ter sido utilizada uma simulação com o comando lsim(), e portanto, simula um filtro real, e não ideal, o que acaba gerando pequenos ruídos e alterações no sinal.

2.10 Questão 10

Tendo feito os 9 gráficos, mude a frequência de operação da portadora para $f_c = 0.5 MHz$ e plote novamente os gráficos anteriores. Calcule mais uma vez o grau de similaridade entre a mensagem enviada e a mensagem recuperada por meio da função corrcoef() e explique, com base no que foi visto na modulação DSB-SC a razão desta diferença.

Na modulação DSB-SC, reduzir a frequência da portadora implica em transmitir o mesmo conteúdo com menos largura de banda. Portanto, ao reduzir a frequência da portadora de 2MHz para 0,5MHz, na modulação DSB-SC, pode ocorrer uma reconstrução imprecisa da mensagem original durante a demodulação, resultando em uma diminuição

no grau de similaridade entre a mensagem enviada e a mensagem recuperada. Isso pode ser visto nos itens a seguir, em relação às seções 2.1 até 2.9.

2.10.1 Item 01 (enunciado da questão 2.1)

A figura 11 mostra o gráfico da portadora, no tempo solicitado:

Figura 11: Portadora c(t) com $f_c = 0,5MHz$.

A quantidade de ciclos é calculada através da equação 1. Portanto:

$$ciclos = 5 \cdot 10^{-6} \cdot 0, 5 \cdot 10^{6} = 2, 5$$

Através da figura 11, percebe-se que há 2,5 ciclos durante o intervalo de tempo solicitado. Isso valida o resultado da equação acima.

2.10.2 Item 02 (enunciado da questão 2.2)

A figura 12 apresenta os gráficos de espectros negativo e positivo da portadora c(t), conforme solicitado:

Figura 12: Espectro C(f) da portadora c(t) com $f_c = 0, 5MHz$.

Utilizou-se as funções fftshift() e abs(), para deslocar a função e considerar o eixo positivo das coordenadas, respectivamente, do MATLAB para plot da figura 12.

2.10.3 Item 03 (enunciado da questão 2.3)

O gráfico da mensagem m(t)=sinc(t), centrado em 100 μs , está na figura 13 abaixo:

Figura 13: Mensagem m(t) centrada em 100 μs .

2.10.4 Item 04 (enunciado da questão 2.4)

A figura 14 apresenta o espectro M(f), em que $M(f) = F\{m(t)\}:$

Figura 14: Espectro M(f).

O espectro M(f), da imagem 14, é uma função retangular, centrada em zero, no domínio da frequência.

Calculou-se a LMP de M(f) através da função powerbw() do MATLAB:

$$LMP = 599642.5228Hz$$

2.10.5 $\,$ Item 05 (enunciado da questão 2.5)

O sinal s(t) é a modulação de m(t), a partir da portadora c(t), em um intervalo $90 \mu s \le t \le 110 \mu s$. A imagem 15 apresenta o sinal modulado s(t):

Figura 15: Sinal s(t) modulado e centrado em 100µs.

2.10.6 Item 06 (enunciado da questão 2.6)

O espectro da mensagem modulada, S(f), é apresentado na figura 16:

Figura 16: Espectro S(f) modulado.

A partir da figura 14, percebe-se que as frequências negativa e positiva do espectro (figura 16) estão de acordo com o esperado.

2.10.7 Item 07 (enunciado da questão 2.7)

A função e(t) é a demodulação de s(t), a partir da portadora c(t). O espectro E(f), em que $E(f) = F\{e(t)\}$, é apresentado na figura 17:

Figura 17: Espectro E(f) demodulado.

2.10.8 Item 08 (enunciado da questão 2.8)

O filtro passa-baixa (FPB) aceita valores em um intervalo de frequência $-2MHz \le f \le 2MHz$. A figura 18 mostra o espectro, após o FPB, no subplot(1,2,1); o filtro e espectros (antes do FPB) estão no subplot(1,2,2):

Figura 18: Espectro E(f) e filtro passa-baixa (FPB).

2.10.9 Item 09 (enunciado da questão 2.9)

A figura 19 apresenta o sinal m'(t) recuperado, após a demodulação:

Figura 19: Sinal m'(t) recuperado.

O subplot(1,2,1) apresenta a mensagem m'(t) recuperada; o subplot(1,2,2) apresenta, graficamente, uma comparação entre a mensagem original e recuperada, através do comando real() do MATLAB.

Além da comparação gráfica, calculou-se o grau de similaridade, coef, entre as mensagens enviada e recuperada através da função correcef():

$$coef = 0.8411$$

Nesse caso, a correlação é mais baixa porque a portadora não atendeu ao requisito de que sua frequência seja ao menos o dobro da largura de banda da mensagem. Nesse caso, a largura da portadora é menor que a da mensagem, o que resulta em uma sobreposição espectral no momento da modulação, impossibilitando a recuperação total da mensagem enviada. Isso fica visível olhando para o sinal E(f): quando essa exigência não é respeitada, o espectro de E(f) filtrado fica diferente do espectro de M(f), e portanto os sinais no tempo também ficam diferentes.