Pozyskiwanie wiedzy

ANDRZEJ MACIOŁ

Metody pozyskiwania wiedzy

bezpośrednie zapisanie wiedzy pozyskiwanie wiedzy na podstawie instrukcji pozyskiwanie wiedzy na podstawie analogii

pozyskiwanie wiedzy na podstawie przykładów pozyskiwanie wiedzy na podstawie obserwacji

Bezpośrednie zapisanie wiedzy

- uczenie na pamięć (ang. rote learning)
- system uczony (uczeń) otrzymuje gotową wiedzę w postaci kompletnych i spójnych zbiorów reguł zapisanych zgodnie z obowiązującymi w systemie zasadami zapisu wiedzy

Pozyskiwanie wiedzy na podstawie instrukcji

- uczenie przez przekazanie informacji (ang. learning by being told)
- istotną rolę w tej metodzie odgrywa nauczyciel, który tworzy wiedzę w postaci akceptowalnej przez system ekspertowy
- uczeń dokonuje integracji nowej wiedzy z pewną wiedzą aprioryczną
- nauczyciel narzuca natomiast strukturę i charakter zapisywanej wiedzy

Pozyskiwanie wiedzy na podstawie analogii

- polega na takiej transformacji istniejącej wiedzy, by mogła być użyteczna do opisów faktów podobnych (choć nie identycznych)
- proces ten może odbywać się bez nauczyciela choć wymaga aktywnego zaangażowania ucznia do wyszukiwania i "tłumaczenia" analogii

Pozyskiwanie wiedzy na podstawie przykładów

- generuje się ogólny opis pojęć (klas) na podstawie zbioru przykładów i/lub kontrprzykładów obiektów reprezentujących te pojęcia (klasy) – metoda indukcyjna
- przykłady są dostarczane przez nauczyciela

Pozyskiwanie wiedzy na podstawie obserwacji

- metoda indukcyjna oparty o przykłady (obserwacje) pochodzące ze świata zewnętrznego lub z eksperymentów – uczenie bez nauczyciela
- do indukcji można wykorzystywać techniki eksploracji danych (ang. data mining), grupowania, metody statystyki, sztuczne sieci neuronowe, algorytmy genetyczne

Przykłady metod pozyskiwania wiedzy

- Algorytm ID3
- Metoda generowania pokryć

Binarne drzewo decyzyjne

Entropia:

$$I = \sum_{i=1}^{n} \left(-p_i \log_2 p_i\right)$$

 p_i – prawdopodobieństwo wystąpienia stanu i

$$\sum_{i=1}^{n} p_i = 1$$

Entropia - przykład

Entropia eksperymentu polegającego na losowaniu w oparciu o "rzut monetą"

$$I = \sum_{i=1}^{n} (-p_i \log_2 p_i)$$

$$I = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2}$$

$$I = -\frac{1}{2} (-1) - \frac{1}{2} (-1) = 1$$

Entropia - przykład

Załóżmy, że moneta jest "oszukana" i prawdopodobieństwo wylosowania orła wynosi 1/4 a reszki 3/4

$$I = -\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4}$$
$$I = 0.81$$

Ponieważ wiemy o oszustwie nasza niepewność jest mniejsza

Entropia w przypadku wielu przykładów i wielu rezultatów:

$$I = \sum_{k=1}^{n} \left(-\frac{n_k}{n} \log_2 \frac{n_k}{n} \right)$$

- n_k liczba przykładów należących do klasy k
- n liczba wszystkich przykładów

Entropia w ujęciu częstościowym - przykład

- Załóżmy, że znamy 10 przykładów wniosków kredytowych ocenionych pozytywnie
- Spośród nich 6 przypadków dotyczy kredytów spłaconych, 2 spłaconych po terminie i 2 niespłaconych w ogóle

$$I = -\frac{6}{10}\log_2\frac{6}{10} - \frac{2}{10}\log_2\frac{2}{10} - \frac{2}{10}\log_2\frac{2}{10}$$

$$I = 1.37$$

Entropia w ujęciu częstościowym - przykład

- Załóżmy, że znamy 10 przykładów wniosków kredytowych ocenionych pozytywnie
- Obliczmy entropię, w przypadku gdy 3 przykłady dotyczyły kredytów spłaconych, 4 spłaconych z opóźnieniem i 3 niespłaconych

$$I = -\frac{3}{10}\log_2\frac{3}{10} - \frac{4}{10}\log_2\frac{4}{10} - \frac{3}{10}\log_2\frac{3}{10}$$

$$I = 1,57$$

Entropia w ujęciu częstościowym - wnioski

Jeżeli wiemy, że pozytywnie ocenione wnioski kredytowe są "raczej" spłacane to mamy większą wiedzę (a raczej mniejszą niewiedzę) niż w przypadku gdy wszystkie konsekwencje pozytywnej oceny wniosku dają podobny wynik

Znaczenie entropii

- Im wyższa jest miara entropii tym mniej wiemy o ocenianej sytuacji
- W pierwszym przypadku nie mieliśmy żadnych przesłanek by oceniać możliwość niespłacenia kredytu w oparciu o zewnętrzne informacje
- Wiemy jednak, że możliwość spłacenia kredytu jest znacznie wyższa niż niespłacenia czy opóźnienia

Entropia po ocenie warunku *j* na temat całego problemu:

$$E_{j} = \frac{n_{j}^{+}}{n} I_{j}^{+} + \frac{n_{j}^{-}}{n} I_{j}^{-}$$

- n_i^+ liczba przykładów potwierdzonych przez warunek j
- n_i^- liczba przykładów zaprzeczonych przez warunek j
- n liczba wszystkich przykładów

- Załóżmy, że uzyskujemy następującą dodatkową informację:
- spośród 10 przykładów w 6 przykładach kredyty były zabezpieczone hipoteką a w 4 nie
- wówczas

$$n_1^+ = 6$$

$$n_1^- = 4$$

$$n = 10$$

Entropia po ocenie warunku *j*:

$$I_{j}^{+} = \sum_{k=1}^{m} (X_{j,k}^{+})$$

$$I_{j}^{-} = \sum_{k=1}^{m} (X_{j,k}^{-})$$

$$X_{j,k}^{+} = \begin{cases} 0 & dla & n_{j,k}^{+} = 0 \\ -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} & dla & n_{j,k}^{+} \rangle 0 \end{cases}$$

$$X_{j,k}^{-} = \begin{cases} 0 & dla & n_{j,k}^{-} = 0 \\ -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} & dla & n_{j,k}^{-} \rangle 0 \end{cases}$$

 $n_{j,k}^+$ — liczba przykładów potwierdzających, że jeżeli warunek j jest spełniony to przykład należy do klasy k

 $n_{j,k}^{-}$ ____ liczba przykładów potwierdzających, że jeżeli warunek j nie jest spełniony to przykład należy do klasy k

Dodatkowe informacje

Załóżmy, że w przypadku wniosków zabezpieczonych hipoteką (razem 6) 5 zostało spłaconych w terminie i jeden z opóźnieniem; natomiast kredyty nie zabezpieczone (razem 4) w jednym przykładzie został spłacony w terminie, w jednym spłacony z opóźnieniem a w dwóch niespłacony

 Obliczmy entropię po ocenie warunku dotyczącego zabezpieczonych hipoteką kredytów – spłaconych w terminie

$$j = 1, \quad k = 1$$

$$n_{1,1}^{+} = 5, \quad n_{j}^{+} = 6$$

$$X_{1,1}^{+} = -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} = -\frac{5}{6} \log_{2} \frac{5}{6}$$

$$X_{1,1}^{+} = 0,22$$

 Obliczmy entropię po ocenie warunku dotyczącego zabezpieczonych hipoteką kredytów – spłaconych z opóźnieniem

$$j = 1, \quad k = 2$$

$$n_{1,2}^{+} = 1, \quad n_{1}^{+} = 6$$

$$X_{1,2}^{+} = -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} = -\frac{1}{6} \log_{2} \frac{1}{6}$$

$$X_{1,2}^{+} = 0,43$$

Ponieważ żaden zabezpieczony kredyt nie pozostał niespłacony obliczamy łączną entropię po ocenie warunku "zabezpieczone kredyty"

$$I_1^+ = 0.22 + 0.43 + 0 = 0.65$$

 Obliczmy entropię po ocenie warunku dotyczącego nie zabezpieczonych hipoteką kredytów – spłaconych w terminie

$$j = 1, \quad k = 1$$

$$n_{1,1}^{-} = 1, \quad n_{1}^{-} = 4$$

$$X_{1,1}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{1}{4} \log_{2} \frac{1}{4}$$

$$X_{1,1}^{-} = 0,5$$

 Obliczmy entropię po ocenie warunku dotyczącego nie zabezpieczonych hipoteką kredytów – spłaconych z opóźnieniem

$$j = 1, \quad k = 2$$

$$n_{1,2}^{-} = 1, \quad n_{1}^{-} = 4$$

$$X_{1,2}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{1}{4} \log_{2} \frac{1}{4}$$

$$X_{1,2}^{-} = 0,5$$

 Obliczmy entropię po ocenie warunku dotyczącego nie zabezpieczonych hipoteką kredytów – niespłaconych

$$j = 1, \quad k = 3$$

$$n_{1,3}^{-} = 2, \quad n_{1}^{-} = 4$$

$$X_{1,3}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{2}{4} \log_{2} \frac{2}{4}$$

$$X_{1,2}^{-} = 0,5$$

 Obliczamy entropię po ocenie warunku dotyczącego nie zabezpieczonych kredytów oraz ogółem przez informację o zabezpieczeniu

$$I_{1}^{-} = 0,5 + 0,5 + 0,5 = 1,5$$

$$E_{j} = \frac{n_{j}^{+}}{n} I_{j}^{+} + \frac{n_{j}^{-}}{n} I_{j}^{-}$$

$$E_{1} = \frac{6}{10} 0,65 + \frac{4}{10} 1,5 = 0,99$$

Dodatkowe informacje

- Załóżmy, że uzyskaliśmy dodatkową informację o przeznaczeniu kredytu; wśród 10 przykładów 5 były to kredyty konsumpcyjne a 5 na zakup samochodu
- Spośród kredytów konsumpcyjnych 3 zostały spłacone, 1 spłacony w terminie i jeden niespłacony
- Obliczmy entropię po uzyskaniu informacji, że kredyt był konsumpcyjny

 Obliczmy entropię po ocenie warunku dotyczącego kredytów konsumpcyjnych – spłaconych w terminie

$$j = 2, \quad k = 1$$

$$n_{1,1}^{+} = 3, \quad n_{j}^{+} = 5$$

$$X_{1,1}^{+} = -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} = -\frac{3}{5} \log_{2} \frac{3}{5}$$

$$X_{1,1}^{+} = 0,44$$

 Obliczmy entropię po ocenie warunku dotyczącego kredytów konsumpcyjnych – spłaconych z opóźnieniem

$$j = 2, \quad k = 2$$

$$n_{2,2}^{+} = 1, \quad n_{2}^{+} = 5$$

$$X_{2,2}^{+} = -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} = -\frac{1}{5} \log_{2} \frac{1}{5}$$

$$X_{2,2}^{+} = 0,46$$

 Obliczmy entropię po ocenie warunku dotyczącego kredytów konsumpcyjnych – niespłaconych

$$j = 2, \quad k = 3$$

$$n_{2,3}^{+} = 1, \quad n_{2}^{+} = 5$$

$$X_{2,3}^{+} = -\frac{n_{j,k}^{+}}{n_{j}^{+}} \log_{2} \frac{n_{j,k}^{+}}{n_{j}^{+}} = -\frac{1}{5} \log_{2} \frac{1}{5}$$

$$X_{2,3}^{+} = 0,46$$

 Obliczamy łączny poziom entropii po ocenie przykładów dotyczących kredytów konsumpcyjnych

$$I_1^+ = 0.44 + 0.46 + 0.46 = 1.37$$

Dodatkowe informacje

Załóżmy, że spośród kredytów innych niż konsumpcyjne 3 zostały spłacone w terminie, 1 z opóźnieniem i 1 w ogóle niespłacony

 Obliczmy entropię po ocenie warunku dotyczącego kredytów innych niż konsumpcyjne – spłaconych w terminie

$$j = 2, \quad k = 1$$

$$n_{1,1}^{-} = 3, \quad n_{j}^{-} = 5$$

$$X_{1,1}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{3}{5} \log_{2} \frac{3}{5}$$

$$X_{1,1}^{-} = 0,44$$

 Obliczmy entropię po ocenie warunku dotyczącego kredytów innych niż konsumpcyjne – spłaconych z opóźnieniem

$$j = 2, \quad k = 2$$

$$n_{2,2}^{-} = 1, \quad n_{2}^{-} = 5$$

$$X_{2,2}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{1}{5} \log_{2} \frac{1}{5}$$

$$X_{2,2}^{-} = 0,46$$

 Obliczmy entropię po ocenie warunku dotyczącego kredytów innych niż konsumpcyjne – niespłaconych

$$j = 2, \quad k = 3$$

$$n_{2,3}^{-} = 1, \quad n_{2}^{-} = 5$$

$$X_{2,3}^{-} = -\frac{n_{j,k}^{-}}{n_{j}^{-}} \log_{2} \frac{n_{j,k}^{-}}{n_{j}^{-}} = -\frac{1}{5} \log_{2} \frac{1}{5}$$

$$X_{2,3}^{-} = 0,46$$

 Obliczamy łączną entropię po ocenie przykładów dotyczących kredytów innych niż konsumpcyjne oraz ogółem przez informację o rodzaju kredytu

$$I_{1}^{-} = 0,44 + 0,46 + 0,46 = 1,37$$

$$E_{j} = \frac{n_{j}^{+}}{n} I_{j}^{+} + \frac{n_{j}^{-}}{n} I_{j}^{-}$$

$$E_{1} = \frac{5}{10} 1,37 + \frac{5}{10} 1,37 = 1,37$$

Algorytm ID3 - Quinlana

Warunek wyboru warunku *k*:

$$\max_{j} (I - E_{j})$$

Porównanie dwóch informacji

Informacja o zabezpieczeniu

$$I - E_1 = 1,37 - 0,99 = 0,38$$

Informacja o rodzaju kredytu

$$I - E_2 = 1,37 - 1,37 = 0,0$$

wiek	<20	1	1	0	0	0	1	1	0	0	0	0	0
Little All Miles	20-30	0	0	1	0	1	0	0	1	1	0	0	0
	>30	0	0	0	1	0	0	0	0	0	1	1	1
płeć	K	1	0	0	0	1	0	1	1	0	1	1	0
	M	0	1	1	1	0	1	0	0	1	0	0	1
mieszka	wieś	0	0	0	0	0	1	1	1	1	1	0	1
Missiles Man	miasto	1	1	1	1	1	0	0	0	0	0	1	0
reklama	Internet	1	1			Mary In	To de la constante de la const		Pet			Ŧ.	
N. W. Carlot	Prasa		THE	1	1	1	A-Pal		19:31				
C/01-97-148	Telewizja		The Name	RAID T		441.30	1	1	1	1	1	1	1

$$n = 12$$
 $n_1 = 2$
 $n_2 = 3$
 $n_2 = 7$

$$I = -\frac{n_1}{n} \log_2 \frac{n_2}{n} - \frac{n_2}{n} \log_2 \frac{n_2}{n} - \frac{n_3}{n} \log_2 \frac{n_3}{n}$$

$$I = -\frac{2}{12}\log_2\frac{2}{12} - \frac{3}{12}\log_2\frac{3}{12} - \frac{7}{12}\log_2\frac{7}{12}$$

$$I = 1,3844$$

Entropia po potwierdzeniu warunku 1

$$I_{1}^{+} = -\frac{n_{1,1}^{+}}{n_{1}^{+}} \log_{2}(\frac{n_{1,1}^{+}}{n_{1}^{+}}) - 0 - \frac{n_{1,3}^{+}}{n_{1}^{+}} \log_{2}(\frac{n_{1,3}^{+}}{n_{1}^{+}})$$

$$I_1^+ = -\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4})$$

$$I_{1}^{+}=1$$

Entropia po zaprzeczeniu warunku 1

$$I_{1}^{-} = 0 - \frac{n_{1,2}^{-}}{n_{1}^{-}} \log_{2}(\frac{n_{1,2}^{-}}{n_{1}^{-}}) - \frac{n_{1,3}^{-}}{n_{1}^{-}} \log_{2}(\frac{n_{1,3}^{-}}{n_{1}^{-}})$$

$$I_1^- = -\frac{3}{8}\log_2(\frac{3}{8}) - \frac{5}{8}\log_2(\frac{5}{8})$$

$$I_1^- = 0.9544$$

Łączna entropia po ocenie warunku j:

$$E_1 = \frac{n_1^+}{n} I_1^+ + \frac{n_1^-}{n} I_1^-$$

$$E_1 = \frac{4}{12} * 1 + \frac{8}{12} * 0,9544$$

$$E_1 = 0.9696$$
 $I - E_1 = 0.4147$

j	I - E_j
1	0,4147
2	0,1852
3	0,1140
4	0,0290
5	0,0290
6	0,6548
7	0,6548

wiek	<20	1	1	0	0	0	0
	20-30	0	0	1	0	1	0
	>30	0	0	0	1	0	1
płeć	K	1	0	0	0	1	1
	M	0	1	1	1	0	0
mieszka	wieś	0	0	0	0	0	0
	miasto	1	1	1	1	1	1
reklama	Internet	1	1		3.7	THE REL	
	Prasa		1518	1	1	1	
MILE STATE	Telewizja		THE RE				1

					_		
wiek	<20	1	1	0	0	0	0
	20-30	0	0	1	1	0	0
	>30	0	0	0	0	1	1
płeć	K	0	1	1	0	1	0
THE STATE	M	1	0	0	1	0	1
mieszka	wieś	1	1	1	1	1	[] ⁽¹⁾ (1)
	miasto	0	0	0	0	0	0
reklama	Internet						
	Prasa						
	Telewizja	1	1	1	1	1	1

j	I - E_j
1	0,8249
2	0,3658
3	0,3658
4	0,1142
5	0,1142

Drzewo decyzyjne

Algorytm ID3 przy ciągłych wartościach cech

 Załóżmy, że cechy obiektów przyjmują wartości z pewnych ciągłych przedziałów, wówczas

```
O = \{o_1, ..., o_i, ..., o_n\}
A = \{a_1, ..., a_i, ..., a_m\}
K = \{k_1, ..., k_i, ..., a_i\}
gdzie
              zbiór obiektów (przykładów)
              zbiór atrybutów identyczny dla wszystkich przykładów
              zbiór klas, do których kwalifikujemy przykłady
```

Algorytm ID3 przy ciągłych wartościach cech

```
(d_{i,1} = w_{i,1}) \wedge ... \wedge (d_{i,j} = w_{i,j}) \wedge ... \wedge (d_{i,m} = w_{i,m})
\Rightarrow (c_i = k_l) \quad i
w_{i,j} \in (w \min_j; w \max_j)
gdzie
d_{i,j} - \text{wartość atrybutu } j \text{ w przykładzie } i
c_i - \text{numer klasy do której należy } i-ty \text{ przykład}
```

Algorytm ID3 przy ciągłych wartościach cech

- Ponieważ dla takiego zapisu nie można wprost wykorzystać metody ID3 należy wprowadzić dodatkowo dla kolejnych atrybutów wartości w* dzielące dziedzinę na dwa rozłączne podzbiory
- należy tak przekształcać warunki i przykłady by możliwy był następujący zapis:

$$(d_{i,1} < w_1^*) \wedge \dots \wedge (d_{i,j} < w_j^*) \wedge \dots \wedge (d_{i,m} < w_m^*)$$

$$\Rightarrow (c_i = k_l)$$

Przykład

 Należy określić zależność wielkości sprzedaży od wieku klienta, poziomu wykształcenia oraz odległości od sklepu

wiek	wykształcenie	odległość	wartość zakupów	
lata	poziom	m	zł/m-c	klasa
18	2	200	100	1
20	3	500	50	111
35	3	100	400	3
21	4	600	200	2
40	5	400	550	3

Wybór punktu podziału

Badamy jaki jest poziom entropii po uwzględnieniu wieku klienta. W tym celu wybieramy taki punktu podziału w* ze zbioru {20, 21, 35, 40}, który wprowadza najwięcej informacji. Uzyskujemy następujące tabele:

Wybór punktu podziału wg wieku

wiek	<20	1	0	0	0	0
	>=20	0	1	1	1	1
klasa	1	1	1	0	0	0
	2	0	0	1	0	0
	3	0	0	0	1	1
	A SEE					
wiek	<21	1	1	0	0	0
ST THE	>=21	0	0	1	1	1
klasa	1	1	1	0	0	0
J. H. ATTY	2	0	0	1	0	0
	3	0	0	0	1	1
-					EN OFF	
wiek	<35	1	1	1	0	0
	>=35	0	0	0	1	1
klasa	1	1	1	0	0	0
TO STATE	2	0	0	1	0	0
	3	0	0	0	1	1
			NEW Y			v rajetel k
wiek	<40	1	1	1	1	0
	>=40	0	0	0	0	1
klasa	1	1	1	0	0	0
45446	2	0	0	1	0	0
	2	0	0	0	1	1

Wybór punktu podziału wg wieku

\mathbf{w}^*	I - E_j
20	0,5219
21	1,063
35	1,063
40	0,5219

Wybór punktu podziału wg wykształcenia

W*	I - E_j
3	0,5219
4	0,7294
5	0,5219

Wybór punktu podziału wg odległości

W*	I - E_j
200	0,5219
400	0,3961
500	0,7294
600	0,8553

Koniec pierwszego etapu

 Jeżeli za czynnik decydujący w pierwszym etapie o podziale przypadków wiek <35 wówczas uzyskamy następujące podzbiory

wiek	wykształcenie	odległość	wartość zakupów	
lata	poziom	m	zł/m-c	klasa
18	2	200	100	1
20	3	500	50	1
21	4	600	200	2

wiek	wykształcenie	odległość	wartość zakupów		
lata	poziom	m	zł/m-c	klasa	
35	3	100	400	3	
40	5	400	550	3	

Kontynuacja

- Przedstawione procedury powtarzamy dla każdego z podzbiorów aż do pełnego rozjaśnienia problemu
- UWAGA: metoda nie dopuszcza przykładów sprzecznych

- Wybieramy podzbiór P obiektów należących do klasy k i podzbiór M obiektów nie należących do danej klasy
- Z podzbioru P wybieramy dowolny przykład x^r
- Ustalamy różnice w warunkach pomiędzy wybranym przykładem a wszystkimi przykładami z podzbioru M

wiek	<20	1	1	0	0			1	1	0	0	0	0	0
	20-30	0	0		0			0	0	1	1	0	0	0
	>30	0	0	0	1	C		0	0	0	0	1	. 1	1
płeć	K	1	0	0	0			0	1	1	0	1	1	0
	M	0	1		1			1	0	0	1	0	0	1
mieszka	wieś	0						1	1	1	1	1	0	1
	miasto	1	1	1	1	1		0	0	0	0	0	1	0
reklama	Internet	1	1										25 1	
	Prasa			1	1	1								
	Telewizja							1	1	1	1	1	1 1	1
										Y				
				M						F	•			

Podzbiór P – wszystkie przykłady należące do klasy telewizja

```
x<sup>r</sup>=[wiek<20] ^[płeć=M]
^[mieszka=wieś]
```

Ustalamy różnice

```
dr_1=[płeć=M] \wedge[mieszka=wieś] dr_2=[mieszka=wieś] dr_3=[wiek<20] \wedge[mieszka=wieś] dr_4= [wiek<20] \wedge[mieszka=wieś] dr_4= [wiek<20] \wedge[płeć=M]
```

Generujemy pokrycia wybierając po jednym warunku z każdej różnicy łącząc je każdy z każdym:

```
z dr<sub>1</sub> wybieramy [płeć=M]
z dr<sub>2</sub> - [mieszka=wieś]
z dr<sub>3</sub> – [wiek<20]
```

ponieważ w kolejnych różnicach nie ma już różnych warunków uzyskujemy pokrycie:

```
C_1= [płeć=M] \wedge[mieszka=wieś] \wedge[wiek<20]
```

- Koniunkcja warunków w pokryciu wskazuje na przykład, który na pewno nie należy do zbioru M, a należy do zbioru P.
- Dalej:

```
z dr<sub>1</sub> wybieramy [mieszka=wieś]
```

```
z dr<sub>3</sub> - [wiek<20]
```

- z dr₅ nie wybieramy [płeć=M] bo uzyskalibyśmy pokrycie C₁
- ponieważ w kolejnych różnicach nie ma już różnych warunków uzyskujemy pokrycie:

```
C_2= [mieszka=wieś] \wedge[wiek<20]
```

- Pokrycie C₂. informuje nas o tym, że wszystkie osoby mieszkające na wsi młodsze niż 20 lat na pewno nie preferują telewizji jako medium reklamowego.
- Zauważmy, że z każdej różnicy możemy wybrać warunek [mieszka=wieś]
- Uzyskujemy pokrycie: C₃= [mieszka=wieś]
- co oznacza, że spełnienie tego warunku wyklucza przynależność do badanej klasy.

- Wybieramy najkorzystniejsze pokrycie C₃ do lewej strony reguły dopisując warunki C₃
- uzyskujemy regułę
- ▶ [mieszka=wieś] ⇒ [reklama =Telewizja]
- Ze zbioru P usuwamy przykłady zgodne z regułą C₃

wiek	<20	1	1	0	0	0	0
	20-30	0	0	1	0	1	0
	>30	0	0	0	1	0	1
płeć	K	1	0	0	0	1	1
	M	0	1	1	1	0	0
mieszka	wieś	0	0	0	0	0	0
	miasto	1	1	1	1	1	1
reklama	Internet	1	1			St. 33	
	Prasa	P. A		1	1	1	
Alloyd Hilliam	Telewizja						1

 Podzbiór P – wszystkie przykłady należące do klasy telewizja

```
x^r = [wiek > 30] \land [płeć = K] \land [mieszka = miasto]
```

Ustalamy różnice

```
dr_1=[wiek>30]

dr_2=[wiek>30] \wedge[płeć=K]

dr_3=[wiek>30] \wedge[płeć=K]

dr_4= [płeć=K]

dr_5= [wiek>30]
```

- Generujemy pokrycia
- ► C₁=[wiek>30] ∧[płeć=K]
- ▶ Wybieramy pokrycie C₁
- Ze zbioru P usuwamy przykłady zgodne z regułą C₁
- uzyskujemy regułę
- ▶ [mieszka=wieś] ∧ [wiek>30] ∧[płeć=K] ⇒ [reklama =Telewizja]
- Kontynuujemy działania aż do rozróżnienia wszystkich przykładów