- 12.) ***
- 21.) awd
- 25.) Let $A \subseteq B \subseteq \mathbb{R}$ and $b \in \mathbb{R}$ such that $b = \inf(B)$.
- 28.) a.) Let $u \in \mathbb{R}$ be an upper bound of S, thus $u \ge x$ for all $x \in S$, thus $-u \le -x$ for all $x \in S$, thus $-u \le y$ for all $y \in -S$, thus -u is a lower bound of -S, thus -S is bounded below. Q.E.D.
 - b.) Let $u = \sup(S)$. Since u is an upper bound of S, -u is a lower bound of -S. For the sake of establishing a contradiction, suppose there exists $v \in \mathbb{R}$ such that -u < v and v is a lower bound of -S, thus u > -v. Since v is a lower bound of -S, $v \le y$ for all $y \in -S$, thus $-v \ge -y$ for all $y \in -S$, thus $-v \ge x$ for all $x \in S$, thus -v is an upper bound of S, but since u > -v, $u \ne \sup(S) \Rightarrow \Leftarrow$, thus $-\sup(S) = -u = \inf(-S)$. Q.E.D.
- 29.) a.) Since $S \neq \emptyset$ and is bounded below, $\mathcal{L} \neq \emptyset$. In addition, since S is bounded below, there exists $v \in \mathbb{R}$ such that $v = \inf(S)$, thus $v \geq x$ for all $x \in \mathcal{L}$, thus v is an upper bound of \mathcal{L} , thus \mathcal{L} is bounded above. Q.E.D.
 - b.) Let $w = \sup(\mathcal{L})$, thus $w \ge x$ for all $x \in \mathcal{L}$.
 - c.) ***
- 30.) a.) For unbounded sets, infinite suprema and infima make sense, as for all $x \in \mathbb{R}$, $-\infty < x < \infty$. In addition, there exists no $y \in \mathbb{R}$ such that $y < -\infty$ or $y > \infty$, thus $\sup(S) = \infty$ and $\inf(S) = -\infty$.
 - b.) ***
- 31.) a.) False; let $S = \{x \in \mathbb{Q} : 0 \le x < \pi\}$. By definition, all $x \in S$ are rational, but $\sup(S) = \pi$ is irrational.
 - b.) False; let $S = \{x \in \mathbb{R} \setminus \mathbb{Q} : 0 < x < 3\}$. By definition, all $x \in S$ are irrational, but $\sup(S) = 3$ is rational.
- 33.) Let $x, y \in \mathbb{R}$. From the triangle inequality, we know that

$$|x+y| \le |x| + |y|$$

- 34.) a.) False; let $S = (-\infty, 0]$, thus $\{|x| : x \in S\} = [0, \infty)$, which has no upper bound.
 - b.) True; let $u = \sup(\{|x| : x \in S\}) ***$

- 35.) a.) Suppose S is bounded, thus there exist u, v such that u is an upper bound of S and v is a lower bound of S, thus $v \le x \le u$ for all $x \in S$. Let $w = \max(u, v)$, thus $-w \le x \le w$, thus $|x| \le w$ for all $x \in S$, thus there exists $M \ge 0$ such that $|x| \le M$ for all $x \in S$. Now, suppose there exists such M, thus |sxs|
 - b.) Suppose S is bounded, and let $x \in S$. Let $u, v \in \mathbb{R}$ such that u is an upper bound of S and v is a lower bound of S, thus $v \le x \le u$.
- 36.) When learning the various integration techniques taught in calculus 2, I noticed that some of them involved manipulating the dx term. I initially found this confusing, as I though that $\frac{d}{dx}$ was a single operator that could not be seperated. I later found out that this was not the case, and that it can often be treated just like a fraction. What helped me to realize this was when I watched a video series that explained calculus in a more intuitive, less purely algebraic way. In this context, dx being a seperate variable simply made sense.
- 37.) awed
- 38.) Let $u = \sup(S)$, thus $u \ge x$ for all $x \in S$. For the sake of establishing a contradiction, suppose $u \notin S$, then for some $\epsilon > 0$, $u = x + \epsilon$ for some $x \in S$. Consider $x + \frac{\epsilon}{2}$. Since $\epsilon > 0$, $\frac{\epsilon}{2} > 0$,
- 39.) a.) A sequence is defined as a function x(n) such that $x: \mathbb{N} \to \mathbb{R}$.
 - b.) The sequence $\{x_n\}_{n=1}^{\infty}$ converges to $L \in \mathbb{R}$ if and only if

$$\forall \epsilon > 0 : \exists k \in \mathbb{N} : n \ge k \implies |x_n - L| < \epsilon$$

- 43.) a.) $\lim_{n \to \infty} \frac{1}{10n} = 10$
 - b.) $\lim_{n\to\infty} \sin n$ diverges
 - c.) awd
- 44.) ***