Programming Assignment 4

Akashdeep Chakraborty

CAP-5415 Computer Vision

ABSTRACT:

The goal of this assignment is to create an Convolutional Neural Network from scratch with given specification for the CIFAR-10 dataset utilizing fully connected layers, convolutional layers and then increase the number of convolutional layer to see how it affects the training.

IMPLEMENTATION OF THE CNN:

1. Introduction:

Convolutional neural networks (CNN) are a form of deep neural networks in the field of deep learning that were mostly used for analysis and image recognition. Convolutional neural networks employ a highly unique technique called as convolution.

Convolution is a mathematical operation that is applied to two functions to provide an output in the form of a third function that illustrates how the shape of one function is impacted or modified by the other function.

2. DATASET:

For this assignment the CNN is trained using the CIFAR10 collection of pictures. It includes 60K photos with a 32x32 resolution and 10 distinct classes, including trucks, vehicles, horses, frogs, deer, birds, cats, and ships.

3. RESULTS

For 2 convolutional layer and 3 fully connected layer:

Fig 1: Training Accuracy

Fig 2: Training Loss

Fig 3: Validation Accuracy

Fig 4: Validation Loss

CLASS	ACCURACY
Airplane	68%
Automobile	74%
Bird	47%
Cat	57%
Deer	56%
Dog	42%
Frog	71%
Horse	63%
Ship	74%
Truck	68%
Overall	62%

Table 1: Test Accuracy for all 10 Classes

For 3 convolutional layer and 3 fully connected layers:

Fig 5: Training Accuracy

Fig 6: Training Loss

Fig 7: Validation Accuracy

Fig 8: Validation Loss

CLASS	ACCURACY
Airplane	76%
Automobile	87%
Bird	59%
Cat	42%
Deer	68%
Dog	69%
Frog	81%
Horse	79%
Ship	82%
Truck	75%
Overall	72%

Table 1: Test Accuracy for all 10 Classes

4. CONCLUSION:

When we compare the Graphs and the Charts, we can clearly see a 10 percent jump in the overall test accuracy, as well as the training loss also dipped a lot. The difference is just by addition of one extra convolutional layer. According to me this can be further improved by using more convolutional layers and maybe a dropout layer just to avoid any over fitting.