

Traitement des signaux déterministes

Roland Badeau. roland.badeau@telecom-paris.fr

Master Sciences et Technologies Fondamentaux pour ATIAM

Partie I

Transformée de Fourier Discrète

- ▶ 5 séances de 3 heures, en septembre :
 - ► Cours Fourier, échantillonnage, observation spectrale
 - ► Cours Filtrage, transformée en Z, synthèse de filtres
 - ▶ TP Filtrage, transformée de Fourier et échantillonnage
 - Cours Processus aléatoires (stationnarité, filtrage, estimation)
 - ► TP Processus et synthèse vocale
- ► Lieu: salle Shannon, IRCAM
- ► Ressources pédagogiques disponibles sur le Moodle ATIAM (polycopié, diapositives, TPs, sujets et corrigés d'exercices)
- ► Notation :
 - Les deux comptes-rendus de TP sont notés sur 3 points chacun (à déposer sur le Moodle). Matlab ou Python au choix.
 - Examen écrit (le mardi 27 septembre) noté sur 14 points

Une école de l'IMT

Traitement des signaux déterministes

Convolution circulaire

- L'espace $E_N = \{\text{signaux discrets complexes de période } N\} \text{ est }$ hermitien : $< x, y > = \frac{1}{N} \sum_{n=0}^{N-1} x(n) y^*(n)$
- lacksquare Base orthonormée : $\left\{e_k(n)=e^{2i\pirac{k}{N}n}
 ight\}_{k\in\{0...N-1\}}$
- Opérateur de convolution circulaire :

$$(h\otimes x)(n)=\sum_{k=0}^{N-1}h(k)x(n-k)$$

- ▶ vecteurs propres : $(h \otimes e_k)(n) = H(k)e_k(n)$
- ► valeurs propres : $H(k) = \sum_{n=0}^{N-1} h(n)e^{-i2\pi n \frac{k}{N}}$

Transformée de Fourier discrète

Inversion de la TFD :

$$x(n) = \sum_{k=0}^{N-1} \langle x, e_k \rangle e_k(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{+2i\pi \frac{k}{N}n}$$

- Propriétés de la TFD : linéarité, plus
 - ightharpoonup si $y = h \otimes x$, alors Y(k) = H(k)X(k)
 - ► Symétrie : x(n) réel $\Rightarrow X(-k) = X^*(k)$
 - ► Translation : $y(n) = x(n n_0) \Rightarrow Y(k) = X(k)e^{-i2\pi \frac{k}{N}n_0}$
 - Modulation: $y(n) = x(n)e^{i2\pi \frac{k_0}{N}n} \Rightarrow Y(k) = X(k-k_0)$
- ► Parseval : $\sum_{n=0}^{N-1} x(n)y(n)^* = \frac{1}{N} \sum_{k=0}^{N-1} X(k)Y^*(k)$

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

Partie II

Rappels sur la transformation de Fourier

Une école de l'IMT

Traitement des signaux déterministes

Une école de l'IMT

Traitement des signaux déterministes

Convolution (filtrage)

- Espaces de Lebesgue, norme p
- Convolution à temps discret (non périodique)

$$y(n) = h * x(n) = \sum_{m \in \mathbb{Z}} h(m) x(n-m)$$

Convolution à temps continu (non périodique)

$$y(t) = h * x(t) = \int_{\mathbb{R}} h(\tau) x(t-\tau) d\tau$$

Propriétés :

7/32

- ► Commutativité, associativité, distributivité
- \triangleright Relations entre espaces de Lebesgue (norme L^p/I^p)
 - $L^1 * L^1 \to L^1$. $L^1 * L^2 \to L^2$.
 - $\downarrow 1 * \downarrow^{\infty} \rightarrow \downarrow^{\infty} \cap \mathscr{C}^{0} \downarrow^{2} * \downarrow^{2} \rightarrow \downarrow^{\infty} \cap \mathscr{C}^{0}$

Séries de Fourier (continu périodique)

▶ $L^2(\left[-\frac{1}{2},\frac{1}{2}\right])$ est un espace de Hilbert :

$$\langle x,y \rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} x(t) y(t)^* dt$$

- $\{e_k(t)\}_{k\in\mathbb{Z}}$, où $e_k(t)=e^{i2\pi kt}$, est une base hilbertienne de $L^2\left(\left\lceil-\frac{1}{2},\frac{1}{2}\right\rceil\right)$
- ► Soit $x \in L^2(\left[-\frac{1}{2}, \frac{1}{2}\right])$, de période 1

Série de Fourier de
$$x$$
:
$$x(t) = \sum_{k=-\infty}^{+\infty} X(k)e_k(t) = \sum_{k=-\infty}^{+\infty} X(k)e^{+i2\pi kt}$$
où $X(k) = \langle x, e_k \rangle = \int_{-\frac{1}{2}}^{+\frac{1}{2}} x(t)e^{-i2\pi kt}dt \text{ car } x \in L^1\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$

Séries de Fourier

- ▶ Propriété : isométrie de $L^2\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) \to l^2(\mathbb{Z})$
 - ► Formule de Parseval :

$$||x||_2^2 = \int_{-\frac{1}{2}}^{+\frac{1}{2}} |x(t)|^2 dt = \sum_{k \in \mathbb{Z}} |X(k)|^2$$

$$< x, y > = \int_{-\frac{1}{2}}^{+\frac{1}{2}} x(t) y(t)^* dt = \sum_{k \in \mathbb{Z}} X(k) Y(k)^*$$

Les séries de Fourier "transforment" un signal continu périodique en un signal discret non périodique

- ► Convergence de la série
 - ► Convergence simple si x est \mathscr{C}^1 PM
 - ► Convergence uniforme si x est \mathscr{C}^0 et \mathscr{C}^2 PM
- Propriétés réciproques :
 - ► Modulation / retard
 - ► Valeurs réelles / symétrie hermitienne
 - ► Convolution / produit
 - ► Décroissance / régularité

2 Une école de l'IMT

Traitement des signaux déterministes

№ IP PARIS 10/32

Une école de l'IMT

Traitement des signaux déterministes

D IP PARIS

Transformée de Fourier à Temps Discret

- Discret non périodique
- ▶ Isométrie inverse, de $I^2(\mathbb{Z}) \to L^2\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right)$
 - ▶ Soit un signal discret $x \in I^2(\mathbb{Z})$
 - ► TFTD directe : $X(e^{i2\pi v}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-i2\pi v n}$
 - ► TFTD inverse : $x(n) = \int_{-\frac{1}{2}}^{+\frac{1}{2}} X(e^{i2\pi v}) e^{+i2\pi v n} dv$
 - Parseval, propriétés réciproques
 - La TFTD transforme un signal discret non périodique en un signal continu périodique

Transformée de Fourier à Temps Continu

- Continu non périodique
- ightharpoonup Transformée de Fourier dans $L^1(\mathbb{R})$
 - ► Définition :

$$X(f) = \int_{\mathbb{R}} x(t)e^{-i2\pi ft}dt$$

- Propriétés :
 - ▶ Si $x \in L^1(\mathbb{R})$, $X \in L^\infty(\mathbb{R}) \cap \mathscr{C}^0(\mathbb{R})$
 - ▶ Si x et $h \in L^1(\mathbb{R})$, et si y = h * x, alors $Y = H \times X$
 - ▶ Si de plus $X \in L^{1}(\mathbb{R})$, alors

$$x(t) = \int_{\mathbb{R}} X(f) e^{+i2\pi f t} df$$

▶ Dans ce cas x et $X \in L^1 \cap L^2(\mathbb{R})$

Transformée de Fourier à Temps Continu

Résumé des propriétés

- ▶ Transformée de Fourier dans $L^2(\mathbb{R})$
 - Extension par densité de $L^1 \cap L^2(\mathbb{R})$ dans $L^2(\mathbb{R})$ à une isométrie de l'espace de Hilbert $L^2(\mathbb{R})$
 - ► Formule de Parseval :

$$\int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df$$

$$\int_{\mathbb{R}} x(t) y(t)^* dt = \int_{\mathbb{R}} X(f) Y(f)^* df$$

- La TFTC transforme un signal continu non périodique en un signal continu non périodique
- Propriétés réciproques

- ▶ Propriétés générales des transformations de Fourier :
 - Linéarité
 - ightharpoonup Si $x \in L^1$, $X \in L^{\infty} \cap \mathscr{C}^0$
 - ▶ Isométrie de L^2 (formule de Parseval)
- Propriétés réciproques (à lire dans les 2 sens)
 - ► Périodique ↔ discret
 - ► Valeurs réelles ↔ symétrie hermitienne
 - ► Retard ↔ modulation
 - ► Convolution ↔ produit
 - ► Régularité ↔ décroissance

/32 Une école de l'IMT

Traitement des signaux déterministes

Une école de l'IMT

Traitement des signaux déterministes

IP PARIS

Récapitulatif

Temps discret	Temps continu
Fréquence périodique	Fréquence non périodique
TFD	Séries de Fourier
$\begin{cases} X(k) = \sum_{n=0}^{N-1} x(n)e^{-i2\pi n \frac{k}{N}} \\ x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(n)e^{-i2\pi n \frac{k}{N}n} \end{cases}$	$\begin{cases} X(k) = \int_{-\frac{1}{2}}^{+\frac{1}{2}} x(t) e^{-i2\pi kt} dt \\ x(t) = \sum_{k=-\infty}^{+\infty} X(k) e^{+i2\pi kt} \end{cases}$
$\begin{array}{c} $	TFTC
$\begin{cases} X(e^{i2\pi v}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-i2\pi v n} \\ x(n) = \int_{-\frac{1}{2}}^{+\frac{1}{2}} X(e^{i2\pi v})e^{+i2\pi v n} dv \end{cases}$	$\begin{cases} X(f) = \int_{\mathbb{R}} x(t)e^{-i2\pi ft}dt \\ x(t) = \int_{\mathbb{R}} X(f)e^{+i2\pi ft}df \end{cases}$

Partie III

Conversion analogique / numérique

Reconstruction d'un signal échantillonné

- ▶ Soit $x_a(t)$ une fonction continue définie sur \mathbb{R}
- On définit le signal échantillonné $x_e(n) = x_a(nT)$ où T > 0
- ► Il est alors possible de reconstruire un signal analogique à partir des échantillons, par *interpolation* :

$$y(t) = \sum_{n \in \mathbb{Z}} x_e(n) h(t - nT)$$

où la fonction h(t) est appelée noyau d'interpolation

- L'interpolation linéaire correspond à un noyau h(t) de forme triangulaire, tel que h(0) = 1 et h(T) = h(-T) = 0.
- ▶ Question : existe-t-il un noyau tel que, sous certaines hypothèses sur le signal $x_a(t)$, on puisse avoir $y(t) = x_a(t)$ $\forall t \in \mathbb{R}$?

Théorème d'échantillonnage (Nyquist)

Soit $x_a(t)$ un signal $L^1(\mathbb{R})$ tel que $t^2x_a(t)$ est $L^1(\mathbb{R})$ et dont la transformée de Fourier $X_a(f)$ a un support inclus dans]-B,B[avec $B \leq \frac{1}{2T}$ (fréquence de Nyquist). Alors $x_a(t)$ peut être reconstruit en interpolant ses échantillons $x_e(n) = x_a(nT)$:

$$x_a(t) = \sum_{n \in \mathbb{Z}} x_e(n) h(t - nT)$$

où
$$h(t) = \operatorname{sinc}\left(\frac{\pi t}{T}\right) = \frac{\sin\left(\frac{\pi t}{T}\right)}{\frac{\pi t}{T}}$$

/32 Une école de l'IMT

Traitement des signaux déterministes

№ IP PARIS 18/32

Une école de l'IMT

Traitement des signaux déterministes

P IP PARIS

Interprétation

► Preuve :

- ldentifier $x_e(n) = x_a(nT)$ par transformées de Fourier inverses
- ldentifier Y(f) et X(f) par transformées de Fourier
- ► Périodisation du spectre / reconstruction

Repliement et pré-filtrage

► Deux situations possibles :

 Schémas de conversion analogique/numérique (CAN) et de conversion numérique/analogique (CNA)

Partie IV

Observation spectrale

Observation spectrale

Cas général	Exemple
$x(n)$, $n \in \mathbb{Z}$	$x(n) = e^{2i\pi v_0 n}$
$w(n) \ge 0$ fenêtre de support $[0 \dots P-1]$	$w(n) = 1_{[0P-1]}(n)$
Signal fenêtré : $\tilde{x}(n) = w(n)x(n)$	$\tilde{x}(n) = e^{2i\pi v_0 n} 1_{[0P-1]}(n)$
$TFTD: \widetilde{X}(e^{i2\pi v}) = X * W(e^{i2\pi v})$	$\left \widetilde{X}(e^{2i\pi v})\right = \left \frac{\sin(P\pi(v-v_0))}{\sin(\pi(v-v_0))}\right $

▶ TFD de longueur $N \ge P$:

$$\widetilde{X}(k) = \sum_{n=0}^{N-1} x(n)w(n)e^{-i2\pi n\frac{k}{N}} = \widetilde{X}(e^{i2\pi\frac{k}{N}})$$

- ► *N* joue sur la précision du tracé de *X*
- ► P et w sont liés à la résolution fréquentielle

Une école de l'IMT

Traitement des signaux déterministes

№ IP PARIS 22/32

Une école de l'IMT

Traitement des signaux déterministes

D IP PARIS

TFTD d'un sinus complexe

► TFTD avec $v_0 = 7/32$ et P = 32 (w rectangle)

TFD d'un sinus complexe

▶ TFD avec
$$v_0 = 7/32$$
, $P = 32$ et $N = 82$

$$\left|\widetilde{X}(k)\right| = \left|\frac{\sin(P\pi(\frac{k}{N}-v_0))}{\sin(\pi(\frac{k}{N}-v_0))}\right|$$

TFD d'un sinus complexe

TFD d'un sinus complexe

TFD avec
$$v_0 = 7/32$$
 et $N = P = 32$

$$\left| \widetilde{X}(k) \right| = \left| \frac{\sin(P\pi(\frac{k}{N} - v_0))}{\sin(\pi(\frac{k}{N} - v_0))} \right|$$

► TFD avec $v_0 = 0.2$ et N = P = 32 $\left| \widetilde{X}(k) \right| = \left| \frac{\sin(P\pi(\frac{k}{N} - v_0))}{\sin(\pi(\frac{k}{N} - v_0))} \right|$

25/32

27/32

Une école de l'IMT

Traitement des signaux déterministes

№ IP PARIS 26/32

Une école de l'IMT

Traitement des signaux déterministes

PARIS

Résolution spectrale

Fenêtre rectangulaire

▶ TFD avec P = 32 et N = 128

► Largeur : 2/P, 2ème lobe : -13 dB, décroissance : -6 dB / octave

Fenêtre de Bartlett

$w(n) = 1 - \left| \frac{2n}{P-1} - 1 \right|$

► Largeur : 4/P, 2ème lobe : -26 dB, décroissance : -12 dB / octave

$$w(n) = 0.5 - 0.5\cos(2\pi n/(P-1))$$

► Largeur : 4/P, 2ème lobe : -31 dB, décroissance : -18 dB / octave

0/32 Une école de l'IMT

Traitement des signaux déterministes

№ IP PARIS 30/32

Une école de l'IMT

Traitement des signaux déterministes

P PARIS

Fenêtre de Hamming

$w(n) = 0.54 - 0.46\cos(2\pi n/(P-1))$

► Largeur : 4/*P*, 2ème lobe : -41 dB, décroissance : -6 dB / octave

Fenêtre de Blackman

$$w(n) = 0.4266 - 0.4965\cos(2\pi n/(P-1)) + 0.076\cos(4\pi n/(P-1))$$

► Largeur : 6/P, 2ème lobe : -57 dB, décroissance : -18 dB / octave

D IP PARIS