Intro for Senior Design

Zhankun Luo

Center for Innovation through Visualization & Simulation (CIVS)

Purdue University Northwest Hammond, IN 46323

September 30, 2020

Agenda

- Python Basics
- ► Time Series Forecasting Methods
- Outlier Detection Techniques

Task

- Python Basics
 - pytorch
 - data processing library
 - measurement

Python Basics

- pytorch
 - ▶ installation: ▶ Link document: ▶ Link
 - tutorial: easy start LSTM examples Link Link
- data processing library
 - pandas: process data frame
 - csv: read/write csv
 - xlsread, xlswrite: read/write xls, xlsx
 - pyodbc: execute SQL query
- measurement

definition

- ► MAE $\equiv \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i y_i| = \frac{1}{N} \sum_{i=1}^{N} |e_i|$
- ► MAPE $\equiv \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\hat{y}_i y_i}{y_i} \right| = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\mathbf{e}_i}{y_i} \right|$
- ► RMSE $\equiv \sqrt{\frac{1}{N}\sum_{i=1}^{N}(\hat{y}_i y_i)^2}$
- $ightharpoonup R^2 \equiv 1 \frac{\sum_{t=1}^T (\hat{y}_t y_t)^2}{\sum_{t=1}^T (\mu y_t)^2}$, where $\mu \equiv \frac{1}{T} \sum_{i=1}^T y_t$

Task

- ► Time Series Forecasting Methods
 - ightharpoonup ARIMA(p, d, q)
 - decomposition of time series
 - Linear+Nonlinear
 - freq. domain
 - Trend+Season+Holiday: Prophet (Facebook)
 - machine learning
 - XGBoost
 - LightGBM (Microsoft)
 - GPR: Gaussian process regression
 - neural networks
 - LSTM, GRU
 - WavNet
 - seq2seq
 - Self-boosted: DeepAR (Amazon)
 - attention mechanism: transformer

- ightharpoonup ARIMA(p, d, q)
 - wikipedia: Link
 - ► zhihu: ► Link
 - ▶ implementation: ▶ Link
 - ightharpoonup statsmodels: arima ightharpoonup acf $\Rightarrow q$, pacf $\Rightarrow p$ ightharpoonup Link
 - example: Link

definition

- $\blacktriangleright \left(1 \sum_{i=1}^{p} \varphi_i L^i\right) (1 L)^d X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t$
- ▶ L: lag operator; φ_i : params of AR part; θ_i : params of MA part
- ε_t : error term, should be **white noise** (independent, identically distributed variables sampled from a normal distribution with zero mean) test ε_t white noise ε_t test ε_t stationary ε_t tink

- decomposition of time series
 - ► Linear+Nonlinear ► Link

definition

- ightharpoonup y(t) = L(t) + N(t), where $L(t) \equiv \frac{1}{T} \sum_{t=T+1}^{t} y(\tau)$, $N(t) \equiv y(t) L(t)$
- ▶ select $T \Rightarrow L(t)$ satisfies Gaussian distribution \Rightarrow ARIMA model $\hat{L}(t)$ to fit L(t)
- $\hat{L}(t), [y(t-1),...,y(t-q)], [N(t-1),...,N(t-p)] \Rightarrow (\mathsf{NN}, \; \mathsf{nonlinear} \; \mathsf{kernel}) \; \hat{y}(t)$
 - freq. domain
 - FD: Fourier decomposition
 - WD: wavelet decomposition

 - VMD: variational mode decomposition paper: Link zhihu + implementation: Link
 - ► Trend+Season+Holiday: Prophet (Facebook) Link Link zhihu Link

definition

 $ightharpoonup y(t) = g(t) + s(t) + h(t) + \varepsilon_t$, where g(t): trend, s(t): season, h(t): holiday

- machine learning
 - XGBoost
 - paper: Link document: Link
 zhihu: Link Link
 - implementation: Link
 - example: Link Link Link
 - LightGBM (Microsoft)
 - paper: Link document: Link
 - ▶ zhihu: ▶ Link
 - example: Link Link
 - GPR: Gaussian process regression
 - ▶ book: ▶ Link sklearn: ▶ Link

 - ▶ implementation ► Link
 - example: Link Link

- neural networks
 - ► GRU
 - wikipedia: Link document: Link
 - ▶ blog ▶ Link implementation: ▶ Link
 - WavNet (DeepMind)
 - paper: Link
 - ► zhihu ► Link example: ► Link ► Link
 - seq2seq
 - ► zhihu ► Link implementation ► Link ► Link
 - example: Link
 - attention mechanism: transformer
 - ▶ paper ▶ Link
 - example Link

Task

- Outlier Detection Techniques
 - visualization: tableau
 - Z-score
 - DBSCAN
 - isolation forest
- reading

How to Identify Outliers in your Data

A Brief Overview of Outlier Detection Techniques

Four Techniques for Outlier Detection

Outlier Detection Techniques

- visualization: tableau
 - ▶ installation: ▶ Link
 - ► tutorial: ► Link ► Link
- Z-score: assume Gaussian distribution

usage

- $ightharpoonup z_i = \frac{x_i \mu}{\sigma}$ where data x_i , $\mu \equiv \sum x_i / N$, $\sigma \equiv \sum (x_i \mu)^2 / (N 1)$
- For abnormal value $|z_i| > z_{th}$, where z_{th} should always be 2.5, 3.0 or 3.5
- DBSCAN
 - ▶ wikipedia: ► Link
 - ► sklearn: ► Link
 - example: Link
- isolation forest
 - ► description: ► Link ► Link
 - ▶ implementation: ▶ Link
 - ▶ sklearn: □ Link
 - example: Link