### Тема бр.5 Контрола на пристап на мрежата и пресметување во облак

- 5.1 Дајте кратка дефиниција за контрола на пристап до мрежата.
- Термин за управување со пристап до мрежа; врши автентикација на корисниците кои се најавуваат во мрежата и одредува до кои податоци можат да пристапат и активности што можат да ги извршат
- Исто така, го испитува и здравјето на компјутерот или мобилниот уред на корисникот NAC системите се занимаваат со три категории на компоненти: Барател за пристап (Access Requester AR)
- Јазол што се обидува да пристапи до мрежата и може да биде кој било уред со кој управува NAC системот, вклучувајќи работни станици, сервери, печатари, фотоапарати и други уреди со можност за IP (исто така се нарекуваат баратели или клиенти) Сервер за полиси ( Policy server )
- Одредува каков пристап треба да се даде
- Често се потпира на позадинските системи, антивирусни програми, управување со верзии или директориуми, за да се утврди состојбата на домаќинот. Сервер за мрежен пристап (Network Access Server NAS)
- Функционира како точка за контрола на пристап за корисниците на оддалечени локации што се поврзуваат со внатрешната мрежа на претпријатието/фирмата
- Може да има свои сервиси за автентикација или да се потпира на посебна услуга за автентикација од серверот за полиси



Figure 5.1 Network Access Control Context

- 1. Различни клиенти (AR) бараат пристап до мрежа на претпријатија со примена на некој вид NAS. Првиот чекор е генерално да се автентицира AR.
- Автентикацијата може да ја изврши NAS, или NAS може да посредува во постапката за автентикација (преку сервер за полиси).
- Го верификува идентитетот на подносителот на барањето кој што потврдува дека е негово
- 2.Серверот за полиси или серверот за поддршка вршат проверки на AR за да утврдат дали треба да му се дозволи интерактивна конекција за далечински пристап.
- Овие проверки понекогаш наречени здравствени, бараат од софтверот на системот на корисникот да потврди усогласеност со одредени барања од основната конфигурација на организацијата
- На пример, antimalware софтверот на корисникот мора да биде ажуриран, оперативниот систем мора да биде целосно заштитен (patched), а оддалечениот компјутер мора да биде во сопственост и контролиран од организацијата.
- Врз основа на резултатите од овие проверки, организацијата може да утврди дали на далечинскиот компјутер треба да му биде дозволено да користи интерактивен далечински пристап.
- Ако корисникот има прифатливи овластувања за овластување, но оддалечениот компјутер не ја помине здравствената проверка, на корисникот и на далечинскиот компјутер треба да му биде одземен мрежен пристап или да има ограничен пристап до т.н. карантинска мрежа за да може овластениот персонал да ги отстрани безбедносните недостатоци.
- 3.Откако AR е автентициран и има одредено ниво на пристап до мрежата на претпријатието, NAS може да му овозможи на AR да комуницира со ресурсите во мрежата на претпријатието.
- NAS може да посредува во секоја размена за спроведување на безбедносна политика за овој AR, или може да користи други методи за ограничување на привилегиите на AR.

## 5.2 IIITO e EAP (Extensible Authentication Protocol)?

- ЕАР обезбедува услуга за транспорт за размена на информации за автентикација помеѓу систем на клиенти и сервер за автентикација
- Основната услуга за транспорт на EAP е проширена со употреба на специфичен протокол за автентикација, инсталиран и во EAP клиентот и во серверот за автентикација

## 5.3 Наведете ги и накратко дефинирајте четири методи за автентикација на ЕАР.

- •EAP Transport Layer Security
- -EAP-TLS (RFC 5216) дефинира како TLS протоколот (опишан во Поглавје 6) може да се вклучи во EAP пораките.
- •EAP Tunneled TLS
- Слично на EAP-TLS, освен тоа што само серверот има сертификат со кој најпрвин се автентицира на клиентот. Серверот потоа може да ја користи воспоставената безбедна врска ("тунел") за да се автентицира клиентот.
- •EAP Generalized Pre-Shared Key
- -EAP-GPSK, дефиниран во RFC 5433, е EAP метод за взаемна автентикација и правење на сесиски клуч со употреба на претходно споделен клуч (PSK).
- •EAP-IKEv2
- -Дефинирана во RFC 5106; заснована на Internet Key Exchange protocol version 2 (IKEv2); Поддржува взаемна автентикација и воспоставување сесии со клучеви со користење на различни методи.

### 5.4 Што e EAPOL?

Основниот елемент дефиниран во 802.1X е протокол познат како EAPOL (EAP преку LAN).

- EAPOL работи во мрежните слоеви и користи на IEEE 802 LAN, како што е Етернет или Wi-Fi, на link ниво.
- EAPOL му овозможува на клиентот да комуницира со автентикатор и ја поддржува размената на EAP пакетите за автентикација.
- Кога подносителот на барањето најпрво ќе се поврзе со LAN, не ја знае MAC адресата на автентикаторот. Со испраќање на пакетот EAPOL-Start на специјална адреса за групен мултикаст резервирана за IEEE



- Во многу случаи, автентикаторот веќе ќе биде известен дека новиот уред е поврзан од известување за хардвер. На пример, hub ќе знае дека кабелот е вклучен пред уредот да испрати какви било податоци. Во овој случај, автентикаторот може да ја активира пораката за започнување со своја порака.
- И во двата случаи, автентикаторот испраќа порака за EAP Request Identity, енкапсулирана во пакетот EAPOL-EAP.
- EAPOL EAP е тип EAPOL рамка што се користи за транспорт на EAP пакети.
- Автентикаторот го користи пакетот EAP-Key за да испрати криптографски клучеви до барателот откако ќе одлучи да го прифати во мрежата.
- Типот на пакет EAP-Logoff означува дека подносителот на барањето сака да биде исклучен од мрежата.



Figure 5.6 Example Timing Diagram for IEEE 802.1X



## 5.5 Koja e функцијата на IEEE 802.1X?

- Контролата на пристап до мрежа врз основа на порти IEEE 802.1X е дизајнирана да обезбеди функции за контрола на пристапот за LAN.
- Додека AS не го автентицира подносителот на барањето (со користење на протокол за автентикација), автентикаторот испраќа само пораки за контрола и автентикација помеѓу барателот и AS; Контролниот канал 802.1X е деблокиран, но каналот за податоци 802.11 е блокиран.
- Откако барателот ќе биде автентициран и ќе се обезбедат клучеви, автентикаторот може да пренасочува податоци од подносителот на барањето; под овие околности, каналот за податоци е деблокиран.

# 5.6 Дефинирајте што е пресметување во облак.

Модел за овозможување сеприсутен, удобен мрежен пристап до заедничка група на ресурси што можат да се конфигурираат (на пр. Мрежи, сервери, складирање, апликации и услуги) кои можат брзо да се обезбедат и да се ослободат со минимален напор за управување. Ваквиот облак модел промовира достапност и е составен од пет основни карактеристики, три модели на услуги и четири модели на deployment.



Figure 5.7 Cloud Computing Elements

5.7 Наведете ги и накратко дефинирајте три модели на услуга на облак.



- Софтвер како услуга (Saas): Способноста што му е дадена на потрошувачот е да ги користи апликациите на давателот на услуги кои работат на облачна инфраструктура. Апликациите се достапни од различни уреди со клиенти преку тенок клиентски интерфејс, како што е вебпрелистувач. Наместо да добие лиценца за работна површина и сервер за софтверски производи што ги користи, едно претпријатие ги добива истите функции од услугата cloud. SaaS ја зачувува комплексноста на инсталирање, одржување, надградба и закрпи на софтвер.
- Платформа како услуга (PaaS): PaaS често обезбедува услуги во стилот на Middleware, како што се база на податоци и услуги за компоненти за употреба од апликации. Всушност, PaaS е оперативен систем во облакот.
- Инфраструктура како услуга (IaaS): Способноста што му е дадена на потрошувачот е да обезбеди обработка, складирање, мрежи и други основни компјутерски ресурси каде потрошувачот е во состојба да распореди и да управува произволен софтвер, кој може да вклучува оперативни системи и апликации. IaaS им овозможува на клиентите да комбинираат основни компјутерски услуги, како што се складирање на податоци, за да градат високо адаптибилни компјутерски системи.

|                                     | $(C_1)$                                                                        |                                                                                                                                                                                                                                        |
|-------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| laaS<br>Infrastructure as a Service | PaaS<br>Platform as a Service                                                  | SaaS<br>Software as a Service                                                                                                                                                                                                          |
| Applications                        | Applications                                                                   | Applications                                                                                                                                                                                                                           |
| Data                                | Data                                                                           | Data                                                                                                                                                                                                                                   |
| Runtime                             | Runtime                                                                        | Runtime                                                                                                                                                                                                                                |
| Middleware                          | Middleware                                                                     | Middleware                                                                                                                                                                                                                             |
| O/S                                 | O/S                                                                            | O/S                                                                                                                                                                                                                                    |
| Virtualization                      | Virtualization                                                                 | Virtualization                                                                                                                                                                                                                         |
| Servers                             | Servers                                                                        | Servers                                                                                                                                                                                                                                |
| Storage                             | Storage                                                                        | Storage                                                                                                                                                                                                                                |
| Networking                          | Networking                                                                     | Networking                                                                                                                                                                                                                             |
|                                     | Applications  Data  Runtime  Middleware  O/S  Virtualization  Servers  Storage | Infrastructure as a Service  Applications  Data  Pata  Runtime  Middleware  O/S  Virtualization  Servers  Storage  Platform as a Service  Applications  Applications  Data  Runtime  Middleware  O/S  Virtualization  Servers  Storage |

| Platform<br>Type | Common Examples                                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| SaaS             | Google Apps, Dropbox, Salesforce, Cisco WebEx, Concur, GoToMeeting                                                            |
| PaaS             | AWS Elastic Beanstalk, Windows Azure, Heroku,<br>Force.com, Google App Engine, Apache Stratos,<br>OpenShift                   |
| laaS             | DigitalOcean, Linode, Rackspace, Amazon Web<br>Services (AWS), Cisco Metapod, Microsoft Azure,<br>Google Compute Engine (GCE) |

### 5.8 Која е референтната архитектура за компјутерски облак?



Figure 5.9 NIST Cloud Computing Reference Architecture

- Потрошувач во облак: Едно лице или организација што одржува деловен однос и користи услуги од провајдери на облак.
- Снабдувач на облак (СР): Лице, организација или субјект одговорен за достапноста на услугата за заинтересираните страни
- Cloud auditor: Страна што може да спроведе независна проценка на услугите на облак, работењето на информацискиот систем, перформансите и безбедноста на имплементацијата на облак.
- Cloud broker: Ентитет кој управува со употреба, перформанси и испорака на cloud услуги и преговара за односите помеѓу СР и потрошувачите на облак.
- Носач на облак: посредник кој обезбедува поврзаност и транспорт на услуги од облак од СР до потрошувачи на облак.

### 5.9. Опиши ја енкрипцијата на база на податоци во облак



Figure 5.10 An Encryption Scheme for a Cloud-Based Database

- 1.Оригиналното query, од корисникот до процесорот за пребарување на query на клиентот, кој комуницира со метаподатоци на клиентот и криптирање / декрипција.
- 2.Трансформирано барање од процесор за пребарување на клиентот до извршител на барањето за облак-сервер, кој комуницира со криптираната база на податоци од облак. Шифрираната база на податоци вклучува метаподатоци и комуникација со базата на податоци со сопственикот на податоците.
- 3.Енкриптиран резултат од извршителот на барањето до процесорот за пребарување.
- 4. Plaintext резултат од пребарувањето до корисник.

## Вклучени се четири субјекти:

- Сопственик на податоци: Организација која произведува податоци што ќе бидат достапни за контролиран пристап или во рамките на организацијата или на надворешните корисници.
- Корисник: Човечки субјект што доставува барања (прашања) до системот. Корисникот може да биде вработен во организацијата на која му е овозможен пристап до базата на податоци преку серверот, или корисник надворешен од организацијата на која, по автентикација, му се дозволува пристап.
- Клиент: Frontend што ги трансформира барањата од корисникот во прашања за шифрираните податоци зачувани на серверот.
- Сервер: Организација што ги прима шифрираните податоци од сопственикот на податоците и ги прави достапни за дистрибуција на клиенти. Серверот всушност може да биде во сопственост на сопственикот на податоците, но, обично е објект во сопственост и одржуван од надворешен провајдер. (cloud систем)