IDEALS AND QUOTIENTS OF DIAGONALLY QUASISYMMETRIC FUNCTIONS

SHU XIAO LI

ABSTRACT. In 2004, J-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$ with two sets of variables. They made conjectures on the structure of the quotient $\mathbb{Q}[\mathbf{x}, \mathbf{y}]/\langle \mathsf{DQSym}^+\rangle$, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely many variables i.e. $\mathbf{x} = x_1, x_2, \ldots$ and $\mathbf{y} = y_1, y_2, \ldots$ Then we apply this construction to the case where there are finitely many variables, and compute the second column of its Hilbert matrix.

1. Introduction

In the polynomial ring $\mathbb{Q}[\mathbf{x}_n] = \mathbb{Q}[x_1, \dots, x_n]$ with n variables, the ring of symmetric polynomials, Sym_n , (cf. [Mac] or [Sagan]) is the subspace of invariants under the symmetric group S_n action

$$\sigma \cdot f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$

The quotient space $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{Sym}_n^+\rangle$ over the ideal generated by symmetric polynomials with no constant term is thus called the coinvariant space of symmetric group. Classic results by [Artin] and [Steinberg] asserts that this quotient forms an S_n -module that is isomorphic to the left regular representation. Moreover, considering the natural scalar product

$$\langle f, g \rangle = (f(\partial x_1, \dots, \partial x_n)(g(x_1, \dots, x_n)))(0, 0, \dots, 0),$$

this quotient is equal to the orthogonal complement of $\operatorname{\mathsf{Sym}}_n$. In particular, the coinvariant space is killed by Laplacian operator $\Delta = \partial x_1^2 + \cdots + \partial x_n^2$. Hence, it is also known as the harmonic space.

Date: January 7, 2018.

2 SHU XIAO LI

One can show that $\{h_k(x_k,\ldots,x_n): 1 \leq k \leq n\}$ forms a Gröbner basis of $\langle \mathsf{Sym}_n^+ \rangle$ with respect to the usual order $x_1 > \cdots > x_n$, where h_k is the complete homogeneous basis of degree k. As a result, the dimension of $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{Sym}_n^+ \rangle$ is n!.

One generalization is the diagonal harmonic space. In the context of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n] = \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$, the diagonally symmetric functions, DSym_n , is the space of invariants under the diagonal action of S_n

$$\sigma \cdot f(x_1, \dots, x_n, y_1, \dots, y_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}, y_{\sigma(1)}, \dots, y_{\sigma(n)}).$$

The diagonal harmonics, $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DSym}_n^+ \rangle$, was studied in [GH] and [Haiman] where it was used to prove the n! conjecture and Macdonald positivity. In particular, its dimension turns out to be $(n+1)^{n-1}$. More interesting results and applications can be found in [BBGHT], [BGHT] and [Haglund].

The ring of quasi-symmetric functions, QSym, was introduced by [Gessel] as generating function for P-partitions [Stanley]. It soon shows great importance in algebraic combinatorics e.g. [ABS], [GKLLRT]. In our context, QSym_n can be defined as the space of invariants in $\mathbb{Q}[\mathbf{x}_n]$ under the S_n -action of Hivert

$$\sigma \cdot \left(x_{i_1}^{a_1} \cdots x_{i_k}^{a_k} \right) = x_{j_1}^{a_1} \cdots x_{j_k}^{a_k}$$
 where $i_1 < \cdots < i_k, \ j_1 < \cdots < j_k \ \text{and} \ \{ j_1, \dots, j_k \} = \{ \sigma(i_1), \dots, \sigma(i_k) \}.$

In [AB] and [ABB], the authors studied the quotient $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{QSym}_n^+\rangle$ over the ideal generated by quasi-symmetric polynomials with no constant term, which they called the super-covariant space of S_n . Their main result is that a basis of this quotient corresponds to Dyck paths, and the dimension of the quotient space is the n-th Catalan number C_n .

After that, in [ABB2], they extended QSym to diagonal setting, called diagonally quasi-symmetric functions, DQSym. They described a Hopf algebra structure on DQSym, and made a conjecture about the linear structure of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DQSym}_n^+ \rangle$.

In this paper, we continue the study of the linear structure. We start with the case where there are infinitely many variables i.e. $R = \mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$ is the ring of formal power series where $\mathbf{x} = x_1, x_2, \ldots$ and $\mathbf{y} = y_1, y_2, \ldots$. The main result is that we give a description of a Hilbert basis for the quotient space R/I where $I = \overline{\mathsf{DQSym}^+}$ is the closure of the ideal generated by DQSym without constant terms. This Hilbert basis gives an upper bound on the degree of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DQSym}_n^+ \rangle$. We then use it to compute the second column of the Hilbert matrix, which coincides with the conjecture in [ABB2].

2. Definitions

2.1. **Bicompositions.** An element $\tilde{\alpha} = \begin{pmatrix} \tilde{\alpha}_{11} & \tilde{\alpha}_{12} & \cdots \\ \tilde{\alpha}_{21} & \tilde{\alpha}_{22} & \cdots \end{pmatrix} \in \mathbb{N}^{2\mathbb{N}}$ is called a generalized bicomposition if all but finitely many $(\tilde{\alpha}_{1k}, \tilde{\alpha}_{2k})$ are (0,0). Let k be the maximum number such that $(\tilde{\alpha}_{1k}, \tilde{\alpha}_{2k}) \neq (0,0)$. The length of $\tilde{\alpha}$, denoted by $\ell(\tilde{\alpha})$, is k. The size of $\tilde{\alpha}$, denoted by $|\tilde{\alpha}|$, is the sum of all its entries. For simplicity, we usually write $\tilde{\alpha}$ as $\begin{pmatrix} \tilde{\alpha}_{11} & \cdots & \tilde{\alpha}_{1k} \\ \tilde{\alpha}_{21} & \cdots & \tilde{\alpha}_{2k} \end{pmatrix}$. There also exists a generalized bicomposition with length 0 and size 0, called the zero bicomposition, denoted by $\binom{0}{0}$.

Every monomial in R can be expressed as $\mathbf{X}^{\tilde{\alpha}} = x_1^{\tilde{\alpha}_{11}} y_1^{\tilde{\alpha}_{21}} \cdots x_k^{\tilde{\alpha}_{1k}} y_k^{\tilde{\alpha}_{2k}}$ for some generalized bicomposition $\tilde{\alpha}$. A generalized bicomposition α is called a bicomposition if $\ell(\alpha) = 0$ or $(\alpha_{1j}, \alpha_{2j}) \neq (0, 0)$ for all $1 \leq j \leq \ell(\alpha)$.

In this paper, we use Greek letters to denote bicompositions, and Greek letters with tilde to denote generalized bicompositions.

Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be non-zero generalized bicompositions. We write $\tilde{\alpha} = \tilde{\beta}\tilde{\gamma}$ if $\tilde{\alpha}_{ij} = \tilde{\beta}_{ij}$ for all $1 \leq j \leq \ell(\tilde{\alpha}) - \ell(\tilde{\gamma})$, $\tilde{\beta}_{ij} = 0$ for all $j > \ell(\tilde{\alpha}) - \ell(\tilde{\gamma})$ and $\tilde{\alpha}_{i(j+\ell(\tilde{\alpha})-\ell(\tilde{\gamma}))} = \tilde{\gamma}_{ij}$ for all $j \geq 1$. We write $\tilde{\alpha} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tilde{\beta}$ if $\tilde{\alpha}_{11} = \tilde{\alpha}_{21} = 0$ and $\tilde{\alpha}_{i(j+1)} = \tilde{\beta}_{ij}$ for all $j \geq 2$.

Note that for each generalized bicomposition $\tilde{\alpha}$ that is not a bicomposition, there is a unique way to decompose it into $\tilde{\alpha} = \tilde{\beta} \binom{0}{0} \gamma$ for some generalized bicomposition $\tilde{\beta}$ and bicomposition γ .

2.2. **Diagonally quasi-symmetric functions.** The algebra of diagonally quasi-symmetric functions, DQSym, is a subalgebra of $\mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$ spanned by monomials indexed by bicompositions

$$M_{\alpha} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_{11}} y_{i_1}^{\alpha_{21}} \cdots x_{i_k}^{\alpha_{1k}} y_{i_k}^{\alpha_{2k}}.$$

As a graded algebra, $\mathsf{DQSym} = \bigoplus_{n \geq 0} \mathsf{DQSym}_n$ where $\mathsf{DQSym}_n = \mathrm{span} - \{M_\alpha : |\alpha| = n\}$ is the degree n component. The algebra structure is defined in [ABB2].

2.3. The F basis. We define a partial ordering \leq on bicompositions: $\alpha \leq \beta$ and β covers α if there exists a $1 \leq k \leq \ell(\alpha) - 1$ such that either $\alpha_{2k} = 0$ or $\alpha_{1(k+1)} = 0$,

and

$$\beta = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1(k-1)} & \alpha_{1k} + \alpha_{1(k+1)} & \alpha_{1(k+2)} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} & \cdots & \alpha_{2(k-1)} & \alpha_{2k} + \alpha_{2(k+1)} & \alpha_{2(k+2)} & \cdots & \alpha_{2\ell(\alpha)} \end{pmatrix}.$$

By triangularity, $\left\{F_{\alpha} = \sum_{\alpha \prec \beta} M_{\beta}\right\}$ forms a basis for DQSym. For example,

$$F_{\binom{2}{2}} = M_{\binom{2}{2}} + M_{\binom{2}{0} 2} + M_{\binom{1}{0} 2} + M_{\binom{1}{0} 2} + M_{\binom{1}{0} 0 2} + M_{\binom{2}{0} 0 2} + M_{\binom{2}{0} 1 1} + M_{\binom{2}{0} 0 1} + M_{\binom{1}{0} 1 1} + M_{\binom{1$$

For convenience, we set $F_{\binom{0}{0}} = 1$.

This basis has the following easy but important properties

If $\alpha_{11} \geq 1$ and $\alpha_{11} + \alpha_{21} \geq 2$, then

(2.1)
$$F_{\alpha} = x_1 F_{\begin{pmatrix} \alpha_{11} - 1 & \alpha_{12} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2\ell(\alpha)} \end{pmatrix}} + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$

If $\alpha_{11} = 1$ and $\alpha_{21} = 0$, then

(2.2)
$$F_{\alpha} = x_1 F_{\left(\frac{\alpha_{12} \dots \alpha_{1\ell(\alpha)}}{\alpha_{22} \dots \alpha_{2\ell(\alpha)}} \right)} (x_2, x_3, \dots, y_2, y_3, \dots) + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$

If $\alpha_{11} = 0$ and $\alpha_{21} \geq 2$, then

(2.3)
$$F_{\alpha} = y_1 F_{\left(\begin{smallmatrix} 0 & \alpha_{12} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} - 1 & \alpha_{22} & \cdots & \alpha_{2\ell(\alpha)} \end{smallmatrix} \right)} + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$

If $\alpha_{11} = 0$ and $\alpha_{21} = 1$, then

(2.4)
$$F_{\alpha} = y_1 F_{\binom{\alpha_{12} \dots \alpha_{1\ell(\alpha)}}{\alpha_{22} \dots \alpha_{2\ell(\alpha)}}}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots).$$

3. The G basis

In this section, we define a basis $\{G_{\tilde{\epsilon}}\}$ indexed by generalized bicompositions for $\mathbb{Q}[[\mathbf{x},\mathbf{y}]]$.

Base cases: $G_{\binom{0}{0}} = 1$ and $G_{\tilde{\epsilon}} = F_{\tilde{\epsilon}}$ if $\tilde{\epsilon}$ is a bicomposition. Otherwise, let $\tilde{\epsilon} = \tilde{\alpha} \binom{0}{0} \beta$ where β is a non-zero bicomposition. Let $k = \ell(\tilde{\epsilon}) - \ell(\beta) - 1$.

If $\beta_{11} > 0$,

(3.1)
$$G_{\tilde{\epsilon}} = G_{\tilde{\alpha}\beta} - x_{k+1} G_{\tilde{\alpha} \begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}.$$

If $\beta_{11} = 0$,

(3.2)
$$G_{\tilde{\epsilon}} = G_{\tilde{\alpha}\beta} - y_{k+1} G_{\tilde{\alpha} \begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}.$$

Inductively, $\{G_{\tilde{\epsilon}}\}$ is defined for all generalized bicomposition $\tilde{\epsilon}$. Clearly $G_{\tilde{\epsilon}}$ is homogeneous in degree $|\tilde{\epsilon}|$. Hence, we have a notion of leading monomial of $G_{\tilde{\epsilon}}$, $LM(G_{\tilde{\epsilon}})$ with respect to the lexicographic denoted by $x_1 > y_1 > x_2 > y_2 > \cdots$. To show that $\{G_{\tilde{\epsilon}}\}$ form a basis, it suffices to prove the leading monomial of $G_{\tilde{\epsilon}}$ is $\mathbf{X}^{\tilde{\epsilon}}$.

Lemma 3.1. Let $\tilde{\alpha} = \binom{a}{b} \tilde{\beta}$ be a generalized bicomposition,

- (1) if a = b = 0, then $G_{\tilde{\alpha}} = G_{\tilde{\beta}}(x_2, x_3, \dots, y_2, y_3, \dots)$,
- (2) if a > 0, then $G_{\tilde{\alpha}} = x_1 G_{\binom{a-1}{b}\tilde{\beta}} + P(x_2, x_3, \dots, y_2, y_3, \dots)$, (3) if a = 0 and b > 0, then $G_{\tilde{\alpha}} = y_1 G_{\binom{0}{b-1}\tilde{\beta}} + P(x_2, x_3, \dots, y_2, y_3, \dots)$

for some $P \in \mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$.

Proof. We prove by induction on the length of $\tilde{\alpha}$.

- (1) If $\tilde{\alpha} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, then $G_{\tilde{\alpha}} = 1$ and we are done.
- (2) If $\tilde{\beta} = \beta$ is a bicomposition,
 - (a) if a = b = 0 and β non-zero,
 - (i) if $\beta_{11} \geq 1$ and $\beta_{11} + \beta_{21} \geq 2$, using (2.1) and (3.1), we get

$$G_{\tilde{\alpha}} = G_{\beta} - x_1 G_{\begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

$$= F_{\beta} - x_1 F_{\begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

$$= F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows.

(ii) if $\beta_{11} = 1$ and $\beta_{21} = 0$, using (2.2), (3.1) and induction on $\ell(\tilde{\beta})$, we get

$$G_{\tilde{\alpha}} = G_{\beta} - x_{1}G_{\begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ 0 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

$$= G_{\beta} - x_{1}G_{\begin{pmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

$$= F_{\beta} - x_{1}F_{\begin{pmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

$$= F_{\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots) = G_{\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

and the lemma follows.

(iii) if $\beta_{11} = 0$ and $\beta_{21} \ge 2$, using (2.3) and (3.2), we get

$$G_{\tilde{\alpha}} = G_{\beta} - y_1 G_{\begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

$$= F_{\beta} - y_1 F_{\begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

$$= F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows.

(iv) if $\beta_{11} = 0$ and $\beta_{21} = 1$, using (2.4), (3.2) and induction on $\ell(\tilde{\beta})$, we get

$$G_{\tilde{\alpha}} = G_{\beta} - y_{1}G_{\binom{0 \beta_{12} \cdots \beta_{1\ell(\beta)}}{0 \beta_{22} \cdots \beta_{2\ell(\beta)}}}$$

$$= G_{\beta} - y_{1}G_{\binom{\beta_{12} \cdots \beta_{1\ell(\beta)}}{\beta_{22} \cdots \beta_{2\ell(\beta)}}}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

$$= F_{\beta} - y_{1}F_{\binom{\beta_{12} \cdots \beta_{1\ell(\beta)}}{\beta_{22} \cdots \beta_{2\ell(\beta)}}}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

$$= F_{\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots) = G_{\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

and the lemma follows.

(b) if $a \ge 1$ and $a + b \ge 2$, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.1), we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = x_1 F_{\binom{a-1}{b}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows, with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

(c) if a=1 and b=0, by definition $G_{\tilde{\alpha}}=F_{\tilde{\alpha}}$. Using (2.2) and (2a). we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = x_1 F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

= $x_1 G_{\binom{0}{0}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$

and the lemma follows with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

(d) if a = 0 and $b \ge 2$, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.3), we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = y_1 F_{\binom{a}{b-1}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows, with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$. (e) if a = 0 and b = 1, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.4) and (2a). we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = y_1 F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

= $y_1 G_{\binom{0}{0}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$

and the lemma follows with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

- (3) In the general case, let $\tilde{\alpha} = \tilde{\gamma} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \beta$ where β is a non-empty bicomposition and $k = \ell(\tilde{\alpha}) \ell(\beta) 1$. We prove by induction on k. If k = 1, then we are back in case (2a) above. Hence, we assume k > 1 and $\tilde{\gamma} = \binom{a}{b} \tilde{\mu}$.
 - (a) If a = b = 0,
 - (i) if $\beta_{11} \geq 1$, by induction and (3.1), we have

$$G_{\tilde{\alpha}} = G_{\binom{0}{0}\tilde{\mu}\binom{0}{0}\beta} = G_{\binom{0}{0}\tilde{\mu}\beta} - x_k G_{\binom{0}{0}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\frac{\dots \beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}}$$

$$= G_{\tilde{\mu}\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- x_{(k-1)+1} G_{\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\frac{\dots \beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= G_{\tilde{\mu}\binom{0}{0}\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows.

(ii) if $\beta_{11} = 0$, by induction and (3.2), we have

$$G_{\tilde{\alpha}} = G_{\binom{0}{0}\tilde{\mu}\binom{0}{0}\beta} = G_{\binom{0}{0}\tilde{\mu}\beta} - y_k G_{\binom{0}{0}\tilde{\mu}\binom{0}{0}\tilde{\mu}\binom{0}{\beta_{21}-1}} \overset{\beta_{12} \dots \beta_{1\ell(\beta)}}{\beta_{22} \dots \beta_{2\ell(\beta)}})$$

$$= G_{\tilde{\mu}\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- y_{(k-1)+1} G_{\tilde{\mu}\binom{0}{\beta_{21}-1}} \overset{\beta_{12} \dots \beta_{1\ell(\beta)}}{\beta_{22} \dots \beta_{2\ell(\beta)}}) (x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= G_{\tilde{\mu}\binom{0}{0}\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows.

(b) If $a \geq 1$,

(i) if $\beta_{11} \geq 1$, by induction and (3.1), we have

$$G_{\tilde{\alpha}} = G_{\binom{a}{b}}\tilde{\mu}\binom{0}{0}\beta = G_{\binom{a}{b}}\tilde{\mu}\beta} - x_k G_{\binom{a}{b}}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\cdots\frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}})$$

$$= x_1 G_{\binom{a-1}{b}}\tilde{\mu}\beta + P_1(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- x_k \left(x_1 G_{\binom{a-1}{b}}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\cdots\frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}\right)$$

$$+ P_2(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= x_1 \left(G_{\binom{a-1}{b}}\tilde{\mu}\beta - x_k G_{\binom{a-1}{b}}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\cdots\frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}\right)$$

$$+ P(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= x_1 G_{\binom{a-1}{b}}\tilde{\mu}\binom{0}{0}\beta + P(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows with $P = P_1 - x_k P_2$.

(ii) if $\beta_{11} = 0$, by induction and (3.2), we have

$$G_{\tilde{\alpha}} = G_{\binom{a}{b}}\tilde{\mu}\binom{0}{0}\beta = G_{\binom{a}{b}}\tilde{\mu}\beta - y_kG_{\binom{a}{b}}\tilde{\mu}\binom{0}{\beta_{21}-1} \frac{\beta_{12} \cdots \beta_{1\ell(\beta)}}{\beta_{22} \cdots \beta_{2\ell(\beta)}})$$

$$= x_1G_{\binom{a-1}{b}}\tilde{\mu}\beta + P_1(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- y_k\left(x_1G_{\binom{a-1}{b}}\tilde{\mu}\binom{0}{\beta_{21}-1} \frac{\beta_{12} \cdots \beta_{1\ell(\beta)}}{\beta_{22} \cdots \beta_{2\ell(\beta)}}\right)$$

$$+ P_2(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= x_1\left(G_{\binom{a-1}{b}}\tilde{\mu}\beta - y_kG_{\binom{a-1}{b}}\tilde{\mu}\binom{0}{\beta_{21}-1} \frac{\beta_{12} \cdots \beta_{1\ell(\beta)}}{\beta_{22} \cdots \beta_{2\ell(\beta)}}\right)$$

$$+ P(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= x_1G_{\binom{a-1}{b}}\tilde{\mu}\binom{0}{0}\beta + P(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows with $P = P_1 - y_k P_2$. (c) If a = 0 and $b \ge 1$, (i) if $\beta_{11} \geq 1$, by induction and (3.1), we have

$$G_{\tilde{\alpha}} = G_{\binom{0}{b}\tilde{\mu}\binom{0}{0}\beta} = G_{\binom{0}{b}\tilde{\mu}\beta} - x_k G_{\binom{0}{b}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\frac{\dots\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}})}$$

$$= y_1 G_{\binom{0}{b-1}\tilde{\mu}\beta} + P_1(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- x_k \left(y_1 G_{\binom{0}{b-1}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\frac{\dots\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}\right)}$$

$$+ P_2(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= y_1 \left(G_{\binom{0}{b-1}\tilde{\mu}\beta} - x_k G_{\binom{0}{b-1}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}\frac{\beta_{12}}{\beta_{22}}\frac{\dots\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}}\right)$$

$$+ P(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= y_1 G_{\binom{0}{b-1}\tilde{\mu}\binom{0}{0}\beta} + P(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows with $P = P_1 - x_k P_2$.

(ii) if $\beta_{11} = 0$, by induction and (3.2), we have

$$G_{\tilde{\alpha}} = G_{\binom{0}{b}\tilde{\mu}\binom{0}{0}\beta} = G_{\binom{0}{b}\tilde{\mu}\beta} - y_k G_{\binom{0}{b}\tilde{\mu}\binom{0}{b}\tilde{\mu}\binom{0}{\beta_{21}-1} \beta_{22} \cdots \beta_{2\ell(\beta)}}$$

$$= y_1 G_{\binom{0}{b-1}\tilde{\mu}\beta} + P_1(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$- y_k \left(y_1 G_{\binom{0}{b-1}}\tilde{\mu}\binom{0}{\beta_{21}-1} \beta_{22} \cdots \beta_{1\ell(\beta)} \right)$$

$$+ P_2(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= y_1 \left(G_{\binom{0}{b-1}\tilde{\mu}\beta} - y_k G_{\binom{0}{b-1}\tilde{\mu}\binom{0}{\beta_{21}-1} \beta_{22} \cdots \beta_{2\ell(\beta)}} \right)$$

$$+ P(x_2, x_3, \dots, y_2, y_3, \dots)$$

$$= y_1 G_{\binom{0}{b-1}\tilde{\mu}\binom{0}{0}\beta} + P(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows with $P = P_1 - y_k P_2$.

Corollary 3.2. Let $\tilde{\epsilon}$ be a generalized bicomposition, then the leading monomial of $G_{\tilde{\epsilon}}$ is $\mathbf{X}^{\tilde{\epsilon}}$. Hence, $\{G_{\tilde{\alpha}}\}$ forms a Hilbert basis for R.

Proof. We prove by induction on $\ell(\tilde{\epsilon})$ and $|\tilde{\epsilon}|$. If $\tilde{\epsilon} = {0 \choose 0}$, by definition $G_{\tilde{\epsilon}} = 1 = X^{\tilde{\epsilon}}$. Otherwise, let $\tilde{\epsilon} = {a \choose b}\tilde{\beta}$.

- (1) If a = b = 0 and $\tilde{\beta}$ non-zero, by induction on $\ell(\tilde{\epsilon})$ and Lemma 3.1, we have $LM(G_{\tilde{\epsilon}}) = LM(G_{\tilde{\beta}}(x_2, x_3, \dots, y_2, y_3, \dots)) = (x_2, x_3, \dots, y_2, y_3, \dots)^{\tilde{\beta}} = \mathbf{X}^{\tilde{\epsilon}}.$
- (2) If $a \ge 1$, by induction on $|\tilde{\epsilon}|$ and Lemma 3.1, we have

$$LM(G_{\tilde{\epsilon}}) = LM\left(x_1 G_{\binom{a-1}{b}\tilde{\beta}}\right) = \mathbf{X}^{\tilde{\epsilon}}.$$

(3) If a = 0 and $b \ge 1$, by induction on $|\tilde{\epsilon}|$ and Lemma 3.1, we have

$$LM(G_{\tilde{\epsilon}}) = LM\left(y_1G_{\binom{0}{b-1}\tilde{\beta}}\right) = \mathbf{X}^{\tilde{\epsilon}}.$$

4. The Hilbert Basis

The set $\{x^{\tilde{\alpha}}F_{\beta}\}$ is a spanning set of the ideal I. For each $\tilde{\alpha}$ and β , we write $x^{\tilde{\alpha}}F_{\beta}$ in terms of the G basis by the following rules.

- (1) We reorder the product $x^{\tilde{\alpha}}F_{\beta}$ as $\cdots \left(x_2^{\tilde{\alpha}_{21}}\left(y_2^{\tilde{\alpha}_{22}}\left(x_1^{\tilde{\alpha}_{11}}\left(y_1^{\tilde{\alpha}_{21}}F_{\beta}\right)\right)\right)\right)$.
- (2) We reduce the above product recursively using (3.1)

$$(4.1) x_i G_{\tilde{\gamma}} = x_i G_{\left(\dots \tilde{\gamma}_{1i} \dots \right)} = G_{\left(\dots \tilde{\gamma}_{1i}+1 \dots \right)} - G_{\left(\dots 0 \tilde{\gamma}_{1i}+1 \dots \right)};$$

or using (3.2) when $\tilde{\gamma}_{1i} = 0$ for some i,

$$(4.2) y_i G_{\tilde{\gamma}} = y_i G_{\left(\dots \tilde{\gamma}_{1i} \dots \right)} = G_{\left(\dots \tilde{\gamma}_{1i} \dots \right)} - G_{\left(\dots 0 \tilde{\gamma}_{1i} \dots \right)}.$$

(3) When $\tilde{\gamma}_{1i} = a > 0$, we reduce $y_i G_{\tilde{\gamma}}$ as

$$(4.3) y_1 G_{\tilde{\gamma}} = y_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} = y_i \left(G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} + x_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} \right)$$

$$= y_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} + x_i \left(y_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} \right) = \cdots$$

$$= \sum_{k=0}^{a-1} x_i^k \left(y_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} \right) + x_i^a \left(y_i G_{\left(\dots a_{\tilde{\gamma}_{2i}} \dots \right)} \right).$$

The "···" above means $\tilde{\gamma}_{11}$ ··· $\tilde{\gamma}_{1(i-1)}$, $\tilde{\gamma}_{1(i+1)}$ ··· $\tilde{\gamma}_{1\ell(\tilde{\gamma})}$, $\tilde{\gamma}_{21}$ ··· $\tilde{\gamma}_{2(i-1)}$ or

 $\tilde{\gamma}_{2(i+1)} \cdots \tilde{\gamma}_{1\ell(\tilde{\gamma})}$ with respect to their positions in the generalized bicomposition.

For example,

$$y_{1}F_{\binom{1}{0}} = y_{1}\left(G_{\binom{0}{0}} + x_{1}G_{\binom{0}{0}}\right) = y_{1}G_{\binom{0}{0}} + x_{1}y_{1}G_{\binom{0}{0}}$$

$$=G_{\binom{0}{1}} - G_{\binom{0}{0}} + x_{1}\left(G_{\binom{0}{1}} - G_{\binom{0}{0}}\right)$$

$$=G_{\binom{0}{1}} - G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}}$$

$$=G_{\binom{0}{1}} - G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}} + G_{\binom{0}{0}}$$

For each of the above rule, we choose one $G_{\tilde{\eta}}$ as leading basis element. We define a function ϕ from $(\{x_i\} \times \{G_{\tilde{\gamma}}\}) \cup (\{y_i\} \times \{G_{\tilde{\gamma}}\})$ to $\{G_{\tilde{\gamma}}\}$ as follows. In the case of rules (4.1), (4.2), we choose $\phi(x_i, G_{\tilde{\gamma}}) = G_{\left(\begin{subarray}{c} \dots \ 0 \ \tilde{\gamma}_{1i} + 1 \ \dots \ 0 \ \tilde{\gamma}_{2i} \ \dots \ 0$

Lemma 4.1. The above process of choosing is invertible, i.e. ϕ is injective.

Proof. Since each time we multiply x_i or y_i , the chosen term contains a $\binom{0}{0}$ at position i. Combining this fact with the rule that we have to multiply y_i before x_i , we have the following inverse function.

Let i be the largest number that $(\tilde{\gamma}_{1i}, \tilde{\gamma}_{2i}) = (0, 0)$ and $0 < i < \ell(\tilde{\gamma})$.

(1) If
$$\tilde{\gamma}_{1(i+1)} > 0$$
, then $\phi^{-1} \left(G_{\left(\dots 0 \ \tilde{\gamma}_{1(i+1)} \ \dots \right)} \right) = x_i G_{\left(\dots \ \tilde{\gamma}_{1(i+1)}^{-1} \ \dots \right)}$.

(2) If $\tilde{\gamma}_{1(i+1)} = 0$ and, $\tilde{\gamma}_{1(i+2)} = 0$ or $\tilde{\gamma}_{2(i+1)} > 1$, then

$$\phi^{-1}\left(G_{\left(\begin{smallmatrix}\cdots&0&\tilde{\gamma}_{1(i+1)}&\cdots\\\cdots&0&\tilde{\gamma}_{2(i+1)}&\cdots\end{smallmatrix}\right)}\right)=y_iG_{\left(\begin{smallmatrix}\cdots&\tilde{\gamma}_{1(i+1)}&\cdots\\\cdots&\tilde{\gamma}_{2(i+1)}-1&\cdots\end{smallmatrix}\right)}.$$

(3) If $\tilde{\gamma}_{1(i+1)} = 0$, $\tilde{\gamma}_{2(i+1)} = 1$ and $\tilde{\gamma}_{1(i+2)} > 0$, then

$$\phi^{-1}\left(G_{\left(\begin{subarray}{ccccc} \cdots & 0 & 0 & \tilde{\gamma}_{1(i+2)} & \cdots \\ \cdots & 0 & 1 & \tilde{\gamma}_{2(i+2)} & \cdots \end{subarray}}\right) = y_i G_{\left(\begin{subarray}{ccccc} \cdots & \tilde{\gamma}_{1(i+2)} & \cdots \\ \cdots & \tilde{\gamma}_{2(i+2)} & \cdots \end{subarray}}\right).$$

Then, we can construct a map $\Phi: \{X^{\tilde{\alpha}}F_{\beta}: |\beta| \geq 1\} \to \{G_{\tilde{\gamma}}\}$ that is defined by "composing" ϕ with itself $(|\tilde{\alpha}|-1)$ times. By the above Lemma, we also have Φ is injective. For simplicity, we define $\phi^{-1}(G_{\tilde{\gamma}})$ (or $\Phi^{-1}(G_{\tilde{\gamma}})$) to be $X^{\tilde{\alpha}}G_{\tilde{\beta}}$ (or $X^{\tilde{\alpha}}F_{\beta}$) if $\phi(X^{\tilde{\alpha}}G_{\tilde{\beta}}) = G_{\tilde{\gamma}}$ (or $\Phi(X^{\tilde{\alpha}}F_{\beta}) = G_{\tilde{\gamma}}$ respectively).

Lemma 4.2. In the expansion of $X^{\tilde{\alpha}}F_{\beta}$ in the G basis using the rules above, the term $\Phi(X^{\tilde{\alpha}}F_{\beta})$ appears only once. In particular, it has coefficients 1 or -1.

Proof. We begin with the claim that if $\tilde{\mu} \neq \tilde{\nu}$, then $\phi(x_i G_{\tilde{\mu}})$ and $\phi(y_i G_{\tilde{\mu}})$ do not appear in the expansion of $x_i G_{\tilde{\nu}}$ and $y_i G_{\tilde{\nu}}$ respectively.

Let k be the smallest integer such that $(\tilde{\mu}_{k1}, \tilde{\mu}_{k2}) \neq (\tilde{\nu}_{k1}, \tilde{\nu}_{k2})$. In rules (4.1), (4.2) and (4.3), for all $G_{\tilde{\gamma}}$ in the expansion of $x_i G_{\tilde{\mu}}$ or $y_i G_{\tilde{\mu}}$, the first i-1 columns of $\tilde{\gamma}$ is the same as that of $\tilde{\mu}$. Hence, the claim follows if k < i.

If k = i, and if we are multiplying x_i using rules (4.1) or (4.2), then the claim holds because either the i-th or the i+1-th columns of $x_iG_{\tilde{\mu}}$ will be different from terms in expansions of $x_iG_{\tilde{\nu}}$. If we are multiplying by y_i , then note that if the i-th column of μ is (0,0), then $\mu_{(i+1)1}$ must be 0 because otherwise, that means we multiplied an x_i or x_j or y_j with j > i before y_i , which violates our rule. And the same condition applies to ν . With this restriction, it is easy to check that the claim holds.

If k > i, in both cases, if we choose any term in the expansion that is not $\phi(x_i G_{\tilde{\nu}})$ or $\phi(y_i G_{\tilde{\nu}})$, then the i or i+1 column of its index must be different from that of $\phi(x_i G_{\tilde{\nu}})$

or $\phi(y_iG_{\tilde{\mu}})$. If we choose $\phi(x_iG_{\tilde{\nu}})$ or $\phi(y_iG_{\tilde{\nu}})$, we also have $\phi(x_iG_{\tilde{\mu}}) \neq \phi(x_iG_{\tilde{\nu}})$ and $\phi(y_iG_{\tilde{\mu}})\phi(y_iG_{\tilde{\nu}})$ because $\mu \neq \nu$.

Since each term in the expansion of $X^{\tilde{\alpha}}F_{\beta}$ corresponds to a sequence of choice using rules (4.1), (4.2) or (43), if at some point, we choose a term that is different from the choice in Φ , then a recursive use of the claim asserts that $\Phi(X^{\tilde{\alpha}}F_{\beta})$ will not appear again.

We now define an order $(<_G)$ on the set of generalized bicompositions as follows

- (1) If $\tilde{\alpha}$ and $\tilde{\beta}$ are bicompositions, then $\tilde{\alpha} <_G \tilde{\beta}$ if $\tilde{\alpha} <_{lex} \tilde{\beta}$.
- (2) If $\tilde{\alpha}$ is a bicomposition and $\tilde{\beta}$ is not, then $\tilde{\alpha} <_G \tilde{\beta}$.
- (3) If $\tilde{\alpha} = \tilde{\mu}\binom{0}{0}\alpha'$, $\tilde{\beta} = \tilde{\nu}\binom{0}{0}\beta'$ where α' and β' are bicompositions, let $u = \ell(\tilde{\alpha}) \ell(\alpha') 1$, $v = \ell(\tilde{\alpha}) \ell(\beta') 1$, then $\tilde{\alpha} <_G \tilde{\beta}$ if
 - (a) u < v, or
 - (b) u = v, $\alpha'_{11} > 0$ and $\beta'_{11} = 0$, or
 - (c) u = v, $\alpha'_{11} > 0$, $\beta'_{11} > 0$ (or $\alpha'_{11} = 0$, $\beta'_{11} = 0$) and $\phi(G_{\tilde{\alpha}}) <_G \phi(G_{\tilde{\beta}})$ where we define $\phi(G_{\tilde{\delta}})$ to be $\tilde{\gamma}$ if $\phi(x_i G_{\tilde{\gamma}}) = G_{\tilde{\delta}}$ or $\phi(y_i G_{\tilde{\gamma}}) = G_{\tilde{\delta}}$ for some i.

Lemma 4.3. The order defined above is a total order on the set of generalized bicompositions such that if $G_{\tilde{\gamma}} = \Phi(X^{\tilde{\alpha}}F_{\beta})$, then for all $G_{\tilde{\delta}}$ that appears in the expansion of $X^{\tilde{\alpha}}F_{\beta}$, we have $\tilde{\gamma} \geq_G \tilde{\delta}$.

Proof. Clearly this is a total order. If $\tilde{\alpha} < \tilde{\beta}$ by (1) or (2), then $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha}) = \tilde{\alpha}$.

If $\tilde{\alpha} < \tilde{\beta}$ by (3a), that means $\phi^{-1}(\tilde{\alpha}) = x_{u+1}G_{\tilde{\gamma}}$ or $y_{u+1}G_{\tilde{\gamma}}$ for some $\tilde{\gamma}$. Hence, $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha})$ because $\tilde{\beta}_{(v+1)1} = \tilde{\beta}_{(v+1)2} = 0$ cannot be created.

If $\tilde{\alpha} < \tilde{\beta}$ by (3b), that means $\phi^{-1}(\tilde{\alpha}) = x_{u+1}G_{\tilde{\gamma}}$ for some $\tilde{\gamma}$. Hence, $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha})$ because it is not in that of $x_{u+1}G_{\tilde{\delta}}$ for any $\tilde{\delta}$.

With this ordering, there is a unique leading $G_{\tilde{\delta}}$ for each expansion of $X^{\tilde{\alpha}}F_{\beta}$.

Theorem 4.4. The set $A = \{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi)\}$ forms a Hilbert basis for the quotient space R/I.

14 SHU XIAO LI

Proof. For any polynomial p in R, we write p in terms of the G basis with $<_G$ order. For each term $G_{\tilde{\alpha}} \in Img(\Phi)$, we subtract p by $\Phi^{-1}(G_{\tilde{\alpha}}) \in I$ and $G_{\tilde{\alpha}}$ is cancelled. If we repeat this process (possibly countably many times), we can express p as a series of A.

5. Finitely many variables case

In the case that there are finitely many variables, $R_n = \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$, the above constructions of $\mathsf{DQSym}(x_1, \ldots, x_n, y_1, \ldots, y_n)$, the F, G bases and the ideal $I_n = < \mathsf{DQSym}^+(x_1, \ldots, x_n, y_1, \ldots, y_n) > \text{remain the same by taking } x_i = y_i = 0 \text{ for } i > n$. In this case, $LM(G_{\tilde{\alpha}}) = X^{\tilde{\alpha}}$ whenever $\ell(\tilde{\alpha}) \leq n$ and hence $\{G_{\tilde{\alpha}} : \ell(\tilde{\alpha}) \leq n\}$ spans R_n .

Let $R_n^{i,j}$ be the span of $\{X^{\tilde{\alpha}}: \ell(\tilde{\alpha}) \leq n, \sum_k \tilde{\alpha}_{1k} = i, \sum_k \tilde{\alpha}_{2k} = j\}$. Since I_n is bihomogeneous in \mathbf{x} and \mathbf{y} , $I_n = \bigoplus_{i,j} I_n^{i,j}$ where $I_n^{i,j} = I_n \cap R_n^{i,j}$, and $R_n/I_n = \bigoplus_{i,j} V_n^{i,j}$ where $V_n^{i,j} = R_n/I_n \cap R_n^{i,j}$.

The Hilbert matrix corresponding to R_n/I_n is the matrix $M_n(i,j) = \dim(V_n^{i-1,j-1})$.

The goal of this section is to compute the second column of the Hilbert matrix. The proof is slight generalization of the one in [ABB].

Lemma 5.1. The set $\{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi), \ell(\tilde{\alpha}) \leq n\}$ spans the quotient R_n/I_n .

Proof. Among all $\tilde{\alpha}$ such that $G_{\tilde{\alpha}} \in Img(\Phi)$, $\ell(\tilde{\alpha}) \leq n$ and $G_{\tilde{\alpha}}$ cannot be reduced to 0, let $\tilde{\beta}$ be the smallest one with respect to the $<_G$ order. Then,

$$G_{\tilde{\beta}} = G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}}) + \Phi^{-1}(G_{\tilde{\beta}})$$

$$\equiv G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}}) \mod I_n$$

But since $G_{\tilde{\beta}}$ is the leading term in $\Phi^{-1}(G_{\tilde{\beta}})$, terms in $G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}})$ are strictly smaller than $G_{\tilde{\beta}}$, and thus they reduce to 0. This contradicts to our assumption on $\tilde{\beta}$.

Let B_n be the set of generalized bicompositions $\{\tilde{\alpha}\}$ such that $\sum_{i=1}^k (\tilde{\alpha}_{1i} + \tilde{\alpha}_{2i}) < k$ for all $1 \le k \le n$ and $\ell(\tilde{\alpha}) \le n$. Clearly from the definition of G basis, if $\tilde{\alpha} \notin B_n$, then

 $G_{\tilde{\alpha}} \in I_n$. Therefore, the set $\{X^{\tilde{\alpha}} : \tilde{\alpha} \in B_n\}$ spans R_n/I_n , the proof is essentially the same as Lemma 5.1. In particular, $X^{\tilde{\alpha}} \in I_n$ for all $|\tilde{\alpha}| \geq n$.

Lemma 5.2. The set $\{X^{\tilde{\alpha}}F_{\beta}: \tilde{\alpha} \in B_n, |\beta| \geq 0\}$ spans R_n .

Proof. We already have $X^{\tilde{\epsilon}} \equiv \sum_{\tilde{\alpha} \in B_n} X^{\tilde{\alpha}} \mod I_n$, which means $X^{\tilde{\epsilon}} = \sum_{\tilde{\alpha} \in B_n} X^{\tilde{\alpha}} + \sum_{|\beta| \geq 1} P_{\beta} F_{\beta}$ for some polynomial P_{β} . If we reduce each monomial P_{β} using the above rule, and write the product of F basis in terms of F basis, the claim will be satisfied in a finite number of steps.

For a generalized bicomposition $\tilde{\alpha}$ with $\ell(\tilde{\alpha}) \leq n$, we define its reverse $\overline{\alpha}$ to be the generalized bicomposition such that $\overline{\alpha}_{1i} = \tilde{\alpha}_{1(n-i+1)}$ and $\overline{\alpha}_{2i} = \tilde{\alpha}_{2(n-i+1)}$ for all $1 \leq i \leq n$.

We denote the set $\{X^{\tilde{\alpha}} : \overline{\alpha} \in B_n\}$ by A_n . The endomorphism of R_n that sends x_i to x_{n-i+1} and y_i to y_{n-i+1} is clearly an algebra isomorphism that fixes $\mathsf{DQSym}(\mathbf{x}, \mathbf{y})$, in fact, it sends M_{α} to $M_{\alpha'}$ where α' is the reversed bicomposition of α . Therefore, by Lemma 5.2, the set $\{X^{\tilde{\alpha}}F_{\beta} : \tilde{\alpha} \in A_n, |\beta| \geq 0\}$ spans R_n .

Hence, $I_n = \langle F_\gamma : |\gamma| \geq 1 \rangle$ is spanned by $\{X^{\tilde{\alpha}}F_\beta F_\gamma : \tilde{\alpha} \in A_n, |\beta| \geq 0, |\gamma| \geq 1 \}$, which means it is spanned by $\{X^{\tilde{\alpha}}F_\beta : \tilde{\alpha} \in A_n, |\beta| \geq 1 \}$.

Lemma 5.3. For $X^{\tilde{\alpha}}F_{\beta} \in R_n^{i,1}$ with $\tilde{\alpha} \in A_n$, $|\beta| \geq 1$ and $|\tilde{\alpha}| + |\beta| < n$, let $G_{\tilde{\gamma}} = \Phi(X^{\tilde{\alpha}}F_{\beta})$, then $\ell(\tilde{\gamma}) \leq n$.

Proof. First, rules (4.1) and (4.2) increase the length by 1 while (4.3) increase the length by 2. Now, we need to track $\tilde{\gamma}_{\ell(\tilde{\gamma})}$. If $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ comes from $\beta_{\ell(\beta)}$ and gets shifted, since we can use (4.3) at most once, we can make at most $|\tilde{\alpha}| + 1$ steps to the right. Therefore, $\ell(\tilde{\gamma}) \leq |\tilde{\alpha}| + 1 + \ell(\beta) \leq |\tilde{\alpha}| + 1 + |\beta| \leq n$.

If $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ is 1 which comes from multiplying x_k or y_k to $G_{\tilde{\epsilon}}$ with $k > \ell(\tilde{\epsilon})$, since $\tilde{\alpha} \in A_n$, we have $\sum_{i \geq k} (\tilde{\alpha}_{1i} + \tilde{\alpha}_{2i}) < n - k + 1$. In this process, we use rules (4.1) and (4.2) only and each increases the length by 1. Therefore, $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ can be shifted to at most position k + n - k = n.

Corollary 5.4. Let M_n be the Hilbert matrix of R_n/I_n , then $M_n(n-1,2) = \frac{1}{n} \binom{2n-2}{n-1}$, $M_n(i,2) = \sum_{1 \le j \le i, 1 \le k \le 2} M_{n-1}(j,k)$ for $1 \le i \le n-2$, and $M_n(2,1) = 0$ for $i \ge n$.

Proof. Lemma 5.1 shows that $C_i = \{G_{\tilde{\alpha}} \in V_n^{i,1} : G_{\tilde{\alpha}} \notin Img(\Phi)\}$ spans $V_n^{i,1}$. Suppose there is a linear dependence $P = \sum_{G_{\tilde{\alpha}} \in C_i} a_{\tilde{\alpha}} G_{\tilde{\alpha}} \in I_n^{i,1}$. Since $I_n^{i,1}$ is spanned by $D = G_{\tilde{\alpha}} \in C_i$

$$\{X^{\tilde{\alpha}}F_{\beta}\in R_n^{i,1}: \tilde{\alpha}\in A_n, |\beta|\geq 1\}, \text{ we have } P=\sum_{X^{\tilde{\alpha}}F_{\beta}\in D}b_{\tilde{\alpha}\beta}X^{\tilde{\alpha}}F_{\beta}. \text{ This means the}$$

leading term of P when we expand in G basis is some $G_{\tilde{\gamma}}$ such that $\tilde{\gamma} \in Img(\Phi)$ and by Lemma 5.3 $\ell(\tilde{\gamma}) \leq n$, which is absurd. Therefore, C_i is a linear basis for $V_n^{i,1}$.

Now, $M_n(i,1) = \dim V_n^{i-1,1} = |C_{i-1}|$. Let $G_{\tilde{\gamma}} \in V_n^{i,1}$ and k be the unique number that $\tilde{\gamma}_{k2} = 1$. First, from definition of G, $\tilde{\gamma} \notin B_n$ implies $G_{\tilde{\gamma}} \in I_n$ and $G_{\tilde{\gamma}} \in Img(\Phi)$.

If
$$i = n - 1$$
, then $|\tilde{\gamma}| = n - 1$. If $k < \ell(\tilde{\gamma})$, since $\sum_{j=k+1}^{n} \tilde{\gamma}_{1j} \ge n - k$, we will be

using rules (4.3) when applying ϕ^{-1} . This reduces the length by 2 while the size by 1, which means $G_{\tilde{\gamma}} \in Img(\Phi)$. If $k = \ell(\tilde{\gamma})$, we only use rules (4.1) and (4.2) when applying ϕ^{-1} . In this case, $G_{\tilde{\gamma}} \notin Img(\Phi)$ whenever $\tilde{\gamma} \in B_n$. Therefore, $|C_{n-2}|$ is the Catalan number $\frac{1}{n} \binom{2n-2}{n-1}$.

If $1 \leq i \leq n-2$, $|\tilde{\gamma}| \leq n-2$. From the definition of ϕ , $G_{\tilde{\gamma}} \notin Img(\Phi)$ if and only if $G_{\left(\tilde{\gamma}_{11} \ \dots \ \tilde{\gamma}_{1(n-1)} \ \tilde{\gamma}_{21} \ \dots \ \tilde{\gamma}_{2(n-1)} \ \right)} \in V_{n-1}^{j,k} \setminus Img(\Phi)$ for some $1 \leq j \leq i, 1 \leq k \leq 2$. Therefore, $M_n(i,2) = \sum_{1 \leq j \leq i, 1 \leq k \leq 2} M_{n-1}(j,k)$ for $1 \leq i \leq n-2$.

By the symmetry $M_n(a,b) = M_n(b,a)$, we obtain the first to rows of the Hilbert matrix, namely $M_n(2,n-1) = \frac{1}{n} \binom{2n-2}{n-1}$, $M_n(2,i) = \sum_{1 \leq j \leq i, 1 \leq k \leq 2} M_{n-1}(k,j)$ for $1 \leq i \leq n-2$, and $M_n(2,i) = 0$ for $i \geq n$.

This method can be applied directly to some other terms. To be more specific, for $2i+j \leq n$, the set $\{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi), \ell(\tilde{\alpha}) \leq n\}$ is a linear basis in $V_n^{i,j}$. Therefore,

the formula for each column stabilizes when the number of variables is large enough. However, it fail in other terms and this set is not a linear basis in general.

References

- [AB] J.-C Aval, N. Bergeron, Catalan Paths and Quasi-Symmetric Functions, Proc. Amer. Math. Soc. 131 (2003), 1053-1062.
- [ABB] J.-C Aval, F. Bergeron, N. Bergeron, *Ideals of Quasi-Symmetric Functions and Super-Covariant Polynomials for S_n*, Adv. in Math., 181 (2004), no. 2, 353-367.
- [ABB2] J.-C Aval, F. Bergeron, N. Bergeron, Diagonal Temperley-Lieb invariants and harmonics, Sminaire Lotharingien Combin. A, 54 (2006), Article B54Aq.
- [ABS] M. Aguiar, N. Bergeron, F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compositio Math., 142 (2006) 1-30.
- [Artin] E.Artin, Galois Theory, Notre Dame Mathematical Lecture 2 (1944), Notre Dame, IN.
- [BBGHT] F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, G. Tesler, Lattice Diagram Polynomials and Extended Pieri Rules, Adv. Math., 142 (1999) 244-334.
- [BGHT] F. Bergeron, A. Garsia, M. Haiman, G. Tesler, Identities and Positivity Conjectures for Some Remarkable Operators in the Theory of Symmetric Functions, Methods and Applications of Analysis, Vol 6, No. 3 (1999) 363-420.
- [Gessel] I. Gessel, Multipartite P-partitions and products of skew Schur functions, in Combinatorics and Algebra (Boulder, Colo., 1983), C. Greene, ed., vol. 34 of Contemp. Math., AMS, (1984), 289-317.
- [GH] A. Garsia, M. Haiman, A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A, 90 (1993), no. 8, 3607-3610.
- [GKLLRT] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995): 218-348.
- [Haglund] J. Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series Vol. 41, American Mathematics Society, 2008.
- [Haiman] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., 149, no. 2 (2002), 371-407.
- [Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition, Oxford University Press, 1995.
- [Sagan] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edition, Springer-Verlag, New York, 2001.
- [Stanley] R. Stanley, *Enumerative Combinatorics Vol. 2*, no. 62 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
- [Steinberg] R. Steinberg, Differential equations invariant under finite reflection groups, Transactions of the American Mathematical Society, 112 (1964), 392-400.

(Shu Xiao Li) Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, CANADA

E-mail address: lishu3@yorku.ca