Cálculo 1

Lista de Aplicações – Semana 10 – Soluções

Temas abordados: Concavidade; Esboço de gráficos; regra de L'Hospital

Seções do livro: 4.4, 4.5

1) Durante o processo de tosse, provocado pela presença na traquéia de algum corpo estranho, a traquéia se contrai com o objetivo de aumentar o fluxo de ar através dela, e assim tornar mais eficiente o método de expulsão do corpo estranho. Segundo Poiseuille, indicando por r_0 o raio da traquéia em estado normal e por $r \le r_0$ o seu raio durante a tosse, o fluxo de ar V = V(r) na traquéia pode ser modelado por

$$V(r) = \begin{cases} K \frac{r_0}{2} r^4 & \text{se } 0 \le r \le r_0/2, \\ K(r_0 - r) r^4 & \text{se } r_0/2 \le r \le r_0, \end{cases}$$

onde K é uma constante positiva.

- (a) Determine os pontos críticos de V(r) no intervalo $(0, r_0)$.
- (b) Determine os intervalos de crescimento e de decrescimento de V(r).
- (c) Determine os intervalos em que o gráfico de V(r) é côncavo para cima ou para baixo.
- (d) Use os itens anteriores para esboçar o gráfico de V(r) no caso em que K=1.

Soluções:

(a) Observe que o único ponto onde a função pode não ser derivável é $r = r_0/2$. De fato, calculando os limites laterais do quociente de Newton nesse ponto temos que

$$\lim_{r \to \frac{r_0}{2}^-} \frac{V(r) - V(\frac{r_0}{2})}{r - \frac{r_0}{2}} = \lim_{r \to \frac{r_0}{2}^-} \frac{1}{r - \frac{r_0}{2}} \left(\frac{Kr_0}{2} r^4 - \frac{Kr_0}{2^5} r_0^4 \right) = \frac{Kr_0^4}{4},$$

е

$$\lim_{r \to \frac{r_0}{2}^+} \frac{V(r) - V(r_0)}{r - \frac{r_0}{2}} = \lim_{r \to \frac{r_0}{2}^+} \frac{1}{r - \frac{r_0}{2}} \left(K(r_0 - r)r^4 - K(r_0 - r)\frac{r_0^4}{2^4} \right) = \frac{3Kr_0^4}{16},$$

e portanto V não é derivável em $r = r_0/2$. A derivada nos intervalos $(0, r_0/2)$ e (r_0, r) pode ser feita de maneira usual e tem a seguinte expressão

$$V'(r) = \begin{cases} 2Kr_0r^3 & \text{se } 0 < r < r_0/2, \\ K(4r_0r^3 - 5r^4) & \text{se } r_0/2 < r < r_0. \end{cases}$$
 (1)

Como a função acima se anula somente no ponto $r=4r_0/5$, os pontos críticos de f são $r_0/2$ e $4r_0/5$.

(b) Note que por (1) observa-se que V'(r) > 0 em $(0, r_0/2)$. Além disso, fazendo o estudo do sinal do polinômio $4r_0r^3 - 5r^4$ observamos que V'(r) > 0 em $(r_0/2, 4r_0/5)$ e V'(r) < 0 em $(4r_0/5, r_0)$. Dessa forma, a função é crescente em $(0, r_0/2)$ e $(r_0/2, 4r_0/5)$, e decrescente em $(4r_0/5, r_0)$.

(c) A derivada segunda pode ser calculada como acima e, após as devidas simplificações, obtemos

$$V''(r) = \begin{cases} 6Kr_0r^2 & \text{se } 0 < r < r_0/2, \\ 4Kr^2(3r_0 - 5r) & \text{se } r_0/2 < r < r_0. \end{cases}$$
 (2)

Procedendo de maneira análoga a feita do item (b), via estudo do sinal de cada parte da derivada segunda dada em (2), concluímos que a função é côncava para cima nos intervalos $(0, r_0/2)$ e $(r_0/2, 3 r_0/5)$, e côncava para baixo no intervalo $(3 r_0/5, r_0)$.

(d) O gráfico tem o aspecto mostrado abaixo. Observe que, apesar de não ser derivável

em $r_0/2$, a função V(r) é contínua nesse ponto, sendo portanto crescente em todo o intervalo $(0,4r_0/5)$.

- 2) Conforme ilustra a figura abaixo, as áreas dos retângulos inscritos na circunferência $x^2+y^2=16$ podem ser calculadas por meio da função A(x)=4 $x\sqrt{16-x^2}$, com $x\in[0,4]$.
 - (a) Calcule os pontos críticos da função A(x) no intervalo (0,4).
 - (b) Determine os intervalos de crescimento e os de decrescimento da função A(x).
 - (c) Determine os intervalos em que a concavidade do gráfico de A(x) é voltada para baixo e os intervalos em que concavidade é voltada
 - para cima.

(d) Esboce o gráfico de A(x).

Soluções:

(a) A derivada de A é dada por

$$A'(x) = 4\sqrt{16 - x^2} - \frac{4x^2}{\sqrt{16 - x^2}} = \frac{64 - 8x^2}{\sqrt{16 - x^2}}, 0 < x < 4,$$
 (3)

e se anula somente no ponto $x = \sqrt{8}$.

- (b) Como $\sqrt{16-x^2} > 0$ em (0,4), fazendo o estudo do sinal de $64-8x^2$, concluímos que A(x) é crescente em $(0, \sqrt{8})$ e decrescente em $(\sqrt{8}, 4)$.
- (c) Fazendo a derivada com relação a x em (3), obtemos pela regra do quociente

$$A''(x) = \frac{-16x}{\sqrt{16 - x^2}} + \frac{x(64 - 8x^2)}{(16 - x^2)^{3/2}} = \frac{8x(-24 + x^2)}{(16 - x^2)^{3/2}}, 0 < x < 4.$$
 (4)

Agora observe que como $x/(16-x^2)^{3/2} > 0$ em 0 < x < 4, estudando-se o sinal do polinômio $(64 - 8x^2)$, concluímos que o gráfico tem concavidade voltada para baixo em (0,4).

(d) Com base em (a)-(c), concluímos que o gráfico de A(x) é como ao lado.

- 3) Suponha que o número de milhares de pessoas infectadas por um vírus seja modelado pela função $N(t) = -2t^3 + at^2 + bt + c$, em que a, b e c são constantes e o tempo t é medido em anos. Suponha ainda que, no instante t=0, nove mil pessoas estavam infectadas, um ano depois esse número atingiu um valor mínimo e, em seguida, cresceu até atingir um valor máximo para t=2.
 - (a) Determine as constantes a, b e c a partir das informações dadas.
 - (b) Determine o número de pessoas infectadas 1, 2 e 3 anos depois do instante t=0.
 - (c) Determine a concavidade de N(t) e, em seguida, esboce o seu gráfico para $t \in [0,3]$.

Soluções:

(a) Uma vez que N(0) = c e 9 mil pessoas estavam infectadas no instante t = 0 concluímos que c = 9. Segue das informações do enunciado que N'(1) = N'(2) = 0. Uma vez que $N'(t) = -6t^2 + 2at + b$, substituindo os valores t = 1 e t = 2 concluímos que a e b devem satisfazer o sistema linear

$$\begin{cases} 2a+b = 6 \\ 4a+b = 24, \end{cases}$$

e portanto a = 9 e b = -12. Desse modo $N(t) = -2t^3 + 9t^2 - 12t$.

- (b) Basta usar a expressão de N(t).
- (c) Como N''(t) = -12t + 18, estudando o sinal de N'' concluímos que N é côncava para cima em $(0, \frac{3}{2})$ e côncava para baixo em $(\frac{3}{2}, 3)$. Pelos dados do enunciado já sabemos que t = 1 e t = 2 são pontos críticos de N(t). Como N(t) é derivável, e N'(t) é um polinômio do segundo grau, concluímos que estes são os únicos pontos críticos de N(t). Ainda pelo enunciado, já sabemos que estes são pontos de máximo local e mínimo local, respectivamente. Note que o item (b) confirma está informação. Agora, como N''(t) troca de sinal em t = 1.5, segue que este é um ponto de inflexão. Notando que N(3/2) = 9/2, e usando as informações dos itens (a)-(d) obtemos o gráfico ao lado.

4) O mecanismo de suspensão dos automóveis consiste num sistema composto de uma mola e de um amortecedor. Denotando por s(t) a posição vertical de um veículo de massa m em relação a posição de equilíbrio, temos que a força da mola é dada, pela lei de Hooke, por F = -ks(t) e a força do amortecedor é dada por R = -bv(t), onde v(t) é a velocidade instantânea e a constante b é denominada viscosidade do amortecedor. Como a força resultante é F + R, pela Segunda Lei de Newton, temos que

$$(*) \quad ma(t) = -ks(t) - bv(t)$$

para t > 0. Suponha que, em unidades adequadas, m = 1, b = 4 e k = 4 e considere

$$s(t) = -3te^{-2t}.$$

- (a) Calcule v(t) e a(t) e verifique que a equação (*) é satisfeita.
- (b) Calcule os pontos críticos de s(t) e determine seus extremos locais e seus intervalos de crescimento e decrescimento.
- (c) Determine os pontos de inflexão de s(t) e os intervalos onde a concavidade é voltada para cima e onde é voltada para baixo.
- (d) Determine as assíntotas de s(t) e, em seguida, esboce o seu gráfico.

Soluções:

(a) Temos que

$$v(t) = -3(te^{-2t})' = -3((t)'e^{-2t} + (e^{-2t})'t) = -3(e^{-2t} - 2te^{-2t}) = -3(1 - 2t)e^{-2t}$$

e também que

$$a(t) = -3((1-2t)e^{-2t})' = -3((1-2t)'e^{-2t} + (e^{-2t})'(1-2t)) = 12(1-t)e^{-2t}.$$

Segue então que

$$-4s(t) - 4v(t) = -4(-3te^{-2t} + -3(1-2t)e^{-2t}) = 12(1-t)e^{-2t} = a(t),$$

verificando a equação (*).

- (b) Temos que s'(t) = v(t) = 0 se e só se t = 1/2, que é o único ponto crítico. Além disso, como $e^{-2t} > 0$, segue que o sinal s'(t) é igual ao sinal de -3(1-2t). Logo temos que s'(t) > 0, se $t > \frac{1}{2}$ e também s'(t) < 0, se $0 \le t < \frac{1}{2}$. Portanto a função s cresce em $(\frac{1}{2}, \infty)$ e decresce em $[0, \frac{1}{2})$. Temos então que t = 1/2 é ponto de mínimo global de s.
- (c) Como $e^{-2t} > 0$, segue que o sinal s''(t) = a(t) é igual ao sinal de 12(1-t). Logo s''(t) > 0, se $0 \le t < 1$ e também s''(t) < 0, se t > 1. Portanto a função s tem concavidade para cima em [0,1) e tem concavidade para baixo em $(1,\infty)$. Temos então que t = 1 é um ponto de inflexão de s.
- (d) Não existem assíntotas verticais nem assíntota horizontal pela esquerda, uma vez que s(t) é contínua e está definida em $[0, \infty)$. Para determinar se existe assíntota horizontal pela direita, calculamos o limite

$$\lim_{t \to \infty} s(t) = \lim_{t \to \infty} \frac{-3t}{e^{2t}} = \lim_{t \to \infty} \frac{-3}{2e^{2t}} = 0,$$

onde usamos L'Hospital, de modo que s=0 é assíntota horizontal pela direita. Usando essas informações, podemos esboçar o gráfico de s(t) como ilustrado abaixo.

5) Considere duas cargas elétricas com carga unitária e positiva, fixadas num eixo perpendicular a uma parede, como na figura abaixo. O potencial elétrico gerado por essas duas partículas num ponto x ao longo desse eixo é dado, em unidades convenientes, pela seguinte função

$$V(x) = \frac{1}{|x+1|} + \frac{1}{|x-1|}, \quad x > -1.$$

(a) Verifique que o potencial elétrico é dado por

$$V(x) = \begin{cases} -\frac{2}{x^2 - 1}, & -1 < x < 1\\ \frac{2x}{x^2 - 1}, & x > 1 \end{cases}$$

- (b) Calcule a força exercida numa partícula de carga unitária posicionada em x, dada por F(x) = -V'(x).
- (c) Calcule os pontos críticos de V(x) e determine seus extremos locais e seus intervalos de crescimento e decrescimento. A força F(x) se anula em algum ponto?
- (d) Determine os pontos de inflexão de V(x) e seus intervalos de concavidade para cima e para baixo.
- (e) Determine as assíntotas verticais e horizontais de V(x) e esboce seu gráfico.

Soluções:

(a) Para -1 < x < 1 temos que x + 1 > 0 e que x - 1 < 0, portanto

$$V(x) = \frac{1}{x+1} - \frac{1}{x-1} = -\frac{2}{x^2-1} = -2(x^2-1)^{-1}.$$

Para x > 1 temos que x + 1 > 0 e que x - 1 > 0, portanto

$$V(x) = \frac{1}{x+1} + \frac{1}{x-1} = \frac{2x}{x^2 - 1} = 2x(x^2 - 1)^{-1}.$$

(b) Basta obter V'(x). Como V(x) não está definida no ponto x=1 onde muda sua expressão algébrica, para derivar V(x) basta derivar cada expressão algébrica

$$(-2(x^{2}-1)^{-1})' = 4x(x^{2}-1)^{-2},$$

$$(2x(x^{2}-1)^{-1})' = 2(x^{2}-1)^{-1} - 4x^{2}(x^{2}-1)^{-2} = -2(x^{2}+1)(x^{2}-1)^{-2}.$$

de modo que

$$V'(x) = \begin{cases} 4x(x^2 - 1)^{-2}, & -1 < x < 1 \\ -2(x^2 + 1)(x^2 - 1)^{-2}, & x > 1 \end{cases}$$

- (c) Nas análises de sinal, vamos usar diversas vezes que $x^2 1$ é negativo para -1 < x < 1 e positivo para x > 1 e que $(x^2 1)^2$ é positivo para $x \neq \pm 1$.
 - Pelo item (b), o sinal de V'(x) em (-1,1) é o sinal de x. Segue que x=0 é ponto crítico, que V(x) é decrescente em (-1,0) e crescente em (0,1). Em particular, x=0 é um mínimo local. O sinal de V'(x) em $(1,\infty)$ é o sinal de $-(x^2+1)$ que é sempre negativo. Segue que V(x) é decrescente em $(1,\infty)$.

Como x = 0 é o único ponto crítico de V(x), segue esse é o único ponto onde a força F(x) se anula.

(d) Uma vez que V'(x) não está definida no ponto x=1 onde muda sua expressão algébrica, para obter V''(x) basta derivar cada expressão algébrica

$$(4x(x^2-1)^{-2})' = 4(x^2-1)^{-2} - 16x^2(x^2-1)^{-3} = -4(3x^2+1)(x^2-1)^{-3}$$
$$(-2(x^2+1)(x^2-1)^{-2})' = -4x(x^2-1)^{-2} + 8(x^2+1)x(x^2-1)^{-3} = 4x(x^2+3)(x^2-1)^{-3}$$
de modo que

$$V''(x) = \begin{cases} -4(3x^2+1)(x^2-1)^{-3}, & -1 < x < 1\\ 4x(x^2+3)(x^2-1)^{-3}, & x > 1 \end{cases}$$

O sinal de V''(x) em (-1,1) é o sinal de $-(x^2-1)^{-3}$, que é o sinal de $-(x^2-1)$, que é positivo para -1 < x < 1. Segue que V possui concavidade para cima em (-1,1). O sinal de V''(x) em $(1,\infty)$ é o sinal de $x(x^2-1)^{-3}$, que é o sinal de x^2-1 , que é positivo para x>1. Segue que V possui concavidade para cima em $(1,\infty)$. Portanto V(x) sempre possui concavidade para cima e não possui pontos de inflexão.

(e) Uma vez que V(x) é contínua em $(-1,1)\cup(1,\infty)$, os candidatos a assíntotas verticais são x=-1 e x=1. Temos que

$$\lim_{x \downarrow -1} V(x) = \lim_{x \downarrow -1} -\frac{2}{x^2 - 1} = +\infty,$$

uma vez que x^2-1 se anula em x=-1 e que o sinal de $-2/(x^2-1)$ quando $x\downarrow -1$ é positivo. Com uma análise análoga, concluímos que

$$\lim_{x\uparrow 1}V(x)=\lim_{x\uparrow 1}-\frac{2}{x^2-1}=+\infty.$$

Segue que ambas x=1 e x=-1 são assíntotas verticais de V(x). Temos por último que

$$\lim_{x \downarrow 1} V(x) = \lim_{x \downarrow 1} \frac{2x}{x^2 - 1} = +\infty,$$

uma vez que $x^2 - 1$ se anula em x = 1, que 2x não se anula em x = -1 e que o sinal de $2x/(x^2 - 1)$ quando $x \downarrow 1$ é positivo.

Pela forma do domínio de V(x) ela só pode ter assíntota horizontal à direita. Temos que

$$\lim_{x \to \infty} V(x) = \lim_{x \to \infty} \frac{2x}{x^2 - 1} = \lim_{x \to \infty} \frac{2}{2x} = 0,$$

onde usamos L'Hospital no limite indeterminado ∞/∞ . Segue que y=0 é uma assíntota horizontal à direita de V(x).

Para esboçar o gráfico de V(x) primeiro notamos que V(x) é sempre positivo, o que segue da sua expressão no enunciado da questão. Do item (c) segue que V''(x) é sempre positivo. Assim, o gráfico de V(x) está sempre acima do eixo x com concavidade para cima. O item (b) nos diz que V(x) é decrescente em (-1,0), crescente em (0,1) e novamente decrescente em $(1,\infty)$. Juntando essa informação com a informação das assíntotas, temos que o esboço do gráfico de V(x) abaixo.

