Introduction to Mathematical Programming IE406

Lecture 3

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 2.1-2.2

From Last Time

• Recall the Two Crude Petroleum example.

- In the example, the optimal solution was a "corner point."
- We saw that the following are possible outcomes of solving an optimization problem:

_

_

_

_

- In fact, we will see that these are the only possibilities.
- We will also see that when there is an optimal solution and at least one "corner point," there is an optimal solution that is a "corner point."

Some Definitions

Definition 1. A polyhedron is a set of the form $\{x \in \mathbb{R}^n | Ax \geq b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 2. A set $S \subset \mathbb{R}^n$ is bounded if there exists a constant K such that $|x_i| < K \ \forall x \in S, \forall i \in [1, n]$.

Definition 3. Let $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be given.

- The set $\{x \in \mathbb{R}^n | a^\top x = b\}$ is called a hyperplane.
- The set $\{x \in \mathbb{R}^n | a^\top x \ge b\}$ is called a half-space.

Notes:

Convex Sets

Definition 4. A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in S$ and $\lambda \in \mathbb{R}$ with $0 \le \lambda \le 1$, we have $\lambda x + (1 - \lambda)y \in S$.

Definition 5. Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^k$ be given such that $\lambda^{\top} \mathbf{1} = 1$.

- The vector $\sum_{i=1}^k \lambda_i x^i$ is said to be a convex combination of x^1, \ldots, x^k .
- The convex hull of x^1, \ldots, x^k is the set of all convex combinations of these vectors.

Notes:

Properties of Convex Sets

The following properties can be derived from the definitions:

- The intersection of convex sets is convex.
- Every polyhedron is a convex set.
- The convex combination of a finite number of elements of a convex set also belongs to the set.
- The convex hull of a finite number of vectors is a convex set.

How do we prove each of these?

Aside: Mathematical Proofs

- A mathematical proof shows the correctness of a given statement based on known definitions, axioms, and previously proven statements.
- Most proofs are for statements of the form $A \Rightarrow B$ where A and B are both statements.
- Example: "If x>2 is a real number, then there exists a real number y<0 such that $x=\frac{2y}{1+y}$ ".
- Proof:

What are A and B in this example?

Mathematical Proofs: Quantifying Variables

- Quantifying is specifying from which set and for which values of a variable a statement is true.
- Example: "For all real numbers x and y, $(x+y)^2 = x^2 + 2xy + y^2$."
- ullet This specifies that x and y can have any real value.
- Example: "For all real numbers $x \ge 0$, x = |x|."
- \bullet This specifies that the statement is true for nonnegative values of x.

Mathematical Proofs: Types of Quantifiers

- Universal Quantifiers
 - Statements that include "for all" or "for every."

_

- Example: "For all real numbers x, $cos^2x + sin^2x = 1$."
- Existential Quantifiers
 - Statements that include "there exists" or "there is."

_

- Example: "For every real number $0 \le x \le 1$, there exists a real number $0 \le y \le \frac{\pi}{2}$ such that sin(y) = x."
- Notation: ∀ means "for all" and ∃ means "there exists".
- Example: " $\forall x \in \mathbb{R}$ such that $0 \le x \le 1$, $\exists y \in \mathbb{R}$ such that $0 \le y \le \frac{\pi}{2}$ and sin(y) = x."

Mathematical Proofs: Proofs with Universal Quantifiers

- To prove something about a universally quantified statement, first let an arbitrary set element *be given*.
- Example: "If $C \in \mathbb{R}^{n \times n}$ and $det(C) \neq 0$, then $\exists C^{-1} \in \mathbb{R}^{n \times n}$ such that $CC^{-1} = I$."
- Start of Proof: "Let an arbitrary matrix $C \in \mathbb{R}^{n \times n}$ be given such that $det(C) \neq 0...$ "
- Now prove that statement is true for the given element.
- Since the element was arbitrary, this proves the original statement.

Mathematical Proofs: Proofs with Existential Quantifiers

- If you are trying to prove something about an existentially quantified variable, the proof is often *constructive*.
- The proof gives a technique for constructing an element of the set with the given property.
- Example: "If $C \in \mathbb{R}^{n \times n}$ and $det(C) \neq 0$, then $\exists C^{-1} \in \mathbb{R}^{n \times n}$ such that $CC^{-1} = I$."
- Proof Technique: Construct C^{-1} .

Mathematical Proofs: Choosing an Element

- If you know from a previous theorem that an element of a set with a particular property exists, then you may "choose" it.
- Example: "Let r, a positive rational number be given. Then we may choose natural numbers p and q such that $r = \frac{p}{q}$."
- This can be especially useful in constructive proofs.

Mathematical Proofs: Proof Techniques

- Prove the contrapositive.
- Proof by contradiction.
- Proof by induction.
- Proof by cases.
- Other types of proofs
 - Uniqueness proofs.
 - Either/or proofs.
 - If and only if proofs.

Back to Our Story

Let's prove the following:

Proposition 1. The intersection of convex sets is convex.

Proof:

Proposition 2. Every polyhedron is convex.

Proof:

Extreme Points and Vertices

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a given polyhedron.

Definition 6. A vector $x \in \mathcal{P}$ is an extreme point of \mathcal{P} if $\not\exists y, z \in \mathcal{P}, \lambda \in (0,1)$ such that $x = \lambda y + (1-\lambda)z$.

Definition 7. A vector $x \in \mathcal{P}$ is a vertex of \mathcal{P} if $\exists c \in \mathbb{R}^n$ such that $c^{\top}x < c^{\top}y \ \forall y \in \mathcal{P}, x \neq y$.

Notes:

A Little Linear Algebra Review

Definition 8. A finite collection of vectors $x_1, \ldots, x_k \in \mathbb{R}^n$ is linearly independent if the unique solution to $\sum_{i=1}^k \lambda_i x^i = 0$ is $\lambda_i = 0, i = 1, \ldots, k$. Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^{\top} is invertible.
- The determinant of A is nonzero.
- The rows of *A* are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system Ax = b has a unique solution.
- There exists some vector b for which the system Ax = b has a unique solution.

A Little More Linear Algebra Review

Definition 9. A nonempty subset $S \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \gamma y \in S \ \forall x, y \in S \ \text{and} \ \forall \alpha, \gamma \in \mathbb{R}$.

Definition 10. A linear combination of a collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^k \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$.

Definition 11. The span of a collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is the set of all linear combinations of those vectors.

Definition 12. Given a subspace $S \subseteq \mathbb{R}^n$, a collection of linearly independent vectors whose span is S is called a basis of S. The number of vectors in the basis is the dimension of the subspace.

Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subset T \subset \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the *column* space or the range, denoted range(A).
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number rank(A).
- Clearly, $rank(A) \leq \min\{m, n\}$. If $rank(A) = \min\{m, n\}$, then A is said have *full rank*.
- The set $\{x \in \mathbb{R}^n | Ax = 0\}$ is called the *null space* of A (denoted null(A)) and has dimension n rank(A).

Some Conventions

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- \mathcal{P} will denote a polyhedron contained in \mathbb{R}^n .
- A will denote a matrix of dimension m by n.
- b will denote a vector of dimension m.
- x will denote a vector of dimension n.
- c will denote a vector of dimension n.
- \mathcal{P} will either be defined in *standard form* ($\{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$) or *inequality form* ($\{x \in \mathbb{R}^n | Ax \geq b\}$).
- We will usually be minimizing.