The current source I_s changes from A to 0 at t = -7 s, as shown on the right. For t < -7 s, you may assume the system has reached steady state.

- (a) Find $i_1(-7^- s)$. (Note: we are asking for i_1 , not i_a)
- (b) Find $i_1(t)$ for t > -7 s. Write the equation.

R1: 2Ω R2: 3Ω

A: 6 A

k: 2 A/A

C: 2 nF

For $t < \frac{\pi}{40}$ s, the switch is open and you may assume the system has reached steady state. The switch closes at $t = \frac{\pi}{40}$ s and remains closed.

- (a) Find $v_{\chi} \left(\frac{\pi}{40} \right)$ (i.e., just before the switch closes)
- (b) Find $i_a \left(\frac{\pi}{40}^+ \text{ s}\right)$ (i.e., right after the switch closes)

The AC circuit below has ω = 10 rad/s and is in steady state. The phasor diagram shows the phasors of v_x and i_a . You are given the angle α and $|\mathbf{V}_x|$. The element represented by the rectangular box is either an inductor or a capacitor but you are not told which.

You are also told this piece of information: $v_S = A \sin(\omega t)$ with some unknown value of A (positive or negative).

- (a) At what time t_0 does the waveform of v_x reach its maximum value? (if there are multiple such times, giving one of them is sufficient).
- (b) What is the mystery element (capacitor or inductor) and why?
- (c) What is the value of i_b at time T/8 (with T the period)?

|Vx|: 3 V

alpha: 60 degrees

R1: 3Ω

L: 2 H