This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Pat nt Office

Office europ' n d s brev ts

(1) Publication number: 0 467 614 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: 91306374.9

(22) Date of filing: 15.07.91

(51) Int. CI.⁵: **C07D 231/08,** A61K 31/415, C07D 401/04, C07D 401/06, C07D 403/06, C07D 413/04, C07D 417/04, A61K 31/44, A61K 31/47, A61K 31/40, A61K 31/42

(30) Priority: 17.07.90 US 553489

(43) Date of publication of application : 22.01.92 Bulletin 92/04

Designated Contracting States :
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(1) Applicant: ELI LILLY AND COMPANY Lilly Corporate Center Indianapolis Indiana 46285 (US)

(72) Inventor: Brown, Raymond Frank 7808 Gull Court Indianapolis, Indiana 46256 (US) Inventor: Howbert, James Jeffry 5720 North Ewing Street Indianapolis, Indiana 46220 (US) Inventor: Lobb, Karen Lynn 3556 Woodfront Court Indianapolis, Indiana 46222 (US) Inventor: Neel, David Andrew 1893 South County Road Zionsville, Indiana 46077 (US) Inventor: Reel, Jon Kevin 14701 Alsong Court Carmel, Indiana 46032 (US)

74 Representative : Tapping, Kenneth George et al
Erl Wood Manor
Windlesham Surrey, GU20 6PH (GB)

(54) Pyraxolidinone CCK and gastrin antogonists and pharmaceutical formulations thereof.

Novel substituted pyrazolidinones have been found to exhibit significant binding to cholecystokinin (CCK) receptors and gastrin receptors in the brain and/or peripheral sites such as the pancreas, stomach, and ileum. The pyrazolidinones are CCK and gastrin receptor antagonists and find therapeutic application in the treatment of gastrointestinal disorders, central nervous system disorders and for appetite regulation in warm-blood vertebrates. Pharmaceutical formulations for such indications are described.

EP 0 467 614 A1

This invention relates to biologically active pyrazolidinones. More particularly, this invention is directed to certain substituted pyrazolidinones which bind to receptors for cholecystokinin (CCK), e.g., those of the brain and pancreas, and to receptors for gastrin, e.g., those of the stomach. The compounds are CCK and gastrin antagonists and are useful in the treatment and prevention of CCK and gastrin-related disorders of the gastrointestinal, central nervous and appetite regulatory systems of warm-blooded vertebrates, especially humans.

Cholecystokinin (CCK) is a neuropeptide found in both gastrointestinal tissue and the tissues of the central nervous system. CCK is believed to play an important role in appetite regulation. Among the effects of CCK are stimulation of colonic motility, stimulation of gall bladder contraction, stimulation of pancreatic enzyme secretion, and inhibition of gastric emptying. CCK reportedly coexists with dopamine in certain mid-brain neurons and thus may also play a role in the functioning of dopaminergic systems in the brain. Gastrin is a neuropeptide found particularly in the gastrointestinal tract. It is one of the primary natural stimulators of gastric acid secretion. It also has growth stimulatory effects on a variety of gastrointestinal tissues.

CCK and gastrin antagonists are useful in the treatment and prevention of CCK and gastrin-related disorders of the gastrointestinal and central nervous systems, as well as modulation of the appetite regulatory systems of warm-blooded vertebrates. The CCK/gastrin receptor family is thought to contain three receptor subtypes, for which the location of the prototype receptor is given in parentheses: CCK-A (pancreas), CCK-B (brain), and gastrin (stomach fundus).

Several classes of CCK receptor antagonists have been reported in the literature. One class comprises derivatives of cyclic nucleotides, for example, dibutyryl cyclic GMP. Another art recognized class of CCK antagonists comprise the C-terminal fragments and analogs of CCK. Another class of CCK receptor antagonists are amino acid derivatives including proglumide, a derivative of glutaramic acid, and the N-acyltryptophanes such as p-chlorobenzoyl-L-tryptophan. More recently certain substituted amino phenyl compounds were described as CCK antagonists in published European Patent Application 0166355. Because of the wide range of potential clinical applications of CCK binding compounds, intensive research efforts have been ongoing to define other compounds exhibiting CCK receptor binding properties.

This invention is directed to novel pyrazolidinone compounds of Formula I or II below which have been found to exhibit CCK and gastrin antagonist activity. These compounds are useful in the treatment and prevention of CCK-related disorders of the gastrointestinal and central nervous systems, as well as in modulating the appetite regulatory systems of warm-blooded vertebrates, especially humans. As gastrin antagonists, they are particularly useful in the treatment and prevention of gastrointestinal ulcers, and of neoplasms of gastrointestinal origin.

This invention is directed to compounds of the formula

$$R^{1}$$
 $N \longrightarrow R^{2}$ or R^{1} $N \longrightarrow R^{3}$ R^{1} $N \longrightarrow R^{3}$

wherein R and R¹ are independently hydrogen, C_1 - C_6 alkyl, phenyl, benzyl, naphthyl, pyridyl or substituted phenyl having 1, 2, or 3 substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkyl-thio, halo, trifluoromethyl, phenyl, phenoxy, phenyl(C_1 - C_4 alkyl), phenyl(C_1 - C_4 alkoxy), phenylacetyl, C_1 - C_6 alkanoyl, cyano, carbamyl, nitro, C_1 - C_6 alkoxy-carbonyl, methylenedioxy, C_3 - C_6 alkylene, amino, -NH(C_1 - C_4 alkyl or benzyl), and N(C_1 - C_4 alkyl)₂; R₂ is hydrogen, C_1 - C_6 alkyl, carboxymethyl, C_1 - C_4 alkoxycarbonylmethyl or a group of the formula

II

wherein t is 1 or 0; A is $-CH_{2^-}$, $-O_-$, $-NH_-$ or $-N(C_1-C_6$ alkyl)-; and Y is phenyl or substituted phenyl as defined above;

R₄ is C₁-C₆ alkyl, carboxymethyl, or C₁-C₄ alkoxycarbonylmethyl;

5

10

15

20

25

30

35

40

45

50

R₁ is hydrogen or a group of the formula

5

15

20

30

35

40

45

50

55

wherein B is 0 or S; X is selected from the phenyl substituents defined above; m is 0, 1 or 2; n is 0 or 1; Q is -NH-.-N(C₁-C₆ alkyl)-, -S-, or -O-; and R⁵ is a group of the formula -[CH(R⁶)]_q-(CH₂)_r-R⁷ wherein R⁶ is hydrogen or C₁-C₆ alky; q is 0 or 1; r is 0, 1 or 2; and R⁷ is hydrogen, C₁-C₈ alkyl, C₃-C₈ cycloalkyl, pentafluorophenyl, pytidyl, tetrahydronaphthyl, indolyl, quinolinyl, phenyl, naphthyl, or phenyl or naphthyl substituted with 1, 2, or 3 substituents as defined above for phenyl; or the group -(Q)_nR⁵ is 2-tetrahydroisoquinolinyl; and the pharmaceutically acceptable salts thereof;

provided that at least one of the groups R or R^1 is other than hydrogen or C_1 - C_6 alkyl, and R or R^1 is hydrogen only when the other of R and R^1 is substituted phenyl in which the substituent is phenyl; and provided further that at least one of the groups R_2 and R_3 is other than hydrogen, and when R^3 is a group of the formula

R2 is other than a group of the formula

In the compounds of Formula I or II, the groups R and R¹ can be in either the <u>cis</u> or <u>trans</u> configuration relative to the plane of the pyrazolidinone ring. The trans configuration, preferred in accordance with the present invention, is indicated to be the thermodynamically favored form.

As used herein "halo" refers to fluoro, chloro, or bromo. The term " C_1 - C_6 alkyl" includes both straight and branched chain alkyl and cycloalkyl and includes methyl, ethyl, propyl, cyclopropyl, isopropyl, butyl, methyl-cyclopropyl, cyclobutyl, isobutyl, t-butyl, pentyl, cyclopentyl, neopentyl, hexyl, cyclohexyl, 2-methylpentyl and the like. In the " C_1 - C_6 alkoxy" and " C_1 - C_6 alkylthio" substituents, the alkyl portion is C_1 - C_6 alkyl as defined above. The term " C_1 - C_6 alkanoyl" includes formyl, acetyl, propionyl, butyryl, pentanoyl, hexanoyl, and the like.

The term "pharmaceutically acceptable salts" encompasses those salts that form by standard acid-base reactions with basic groups (such as amino groups) and acidic groups, particularly carboxylic acid groups, on the compounds of Formula I or II. Thus, the pharmaceutically acceptable salts of the present invention can be prepared by conventional chemical methods from the compounds of Formula I or II which contain a basic or acidic moiety. Generally, the salts are prepared by reacting the free base or acid with a stoichiometric amount or with an excess of the desired salt-forming acid or base in a suitable solvent or combination of solvents. Suitable salt-forming acids include inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, citric, malic, tartaric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethanedisulfonic, oxalic, benzenesulfonic, picric, cinnamic, and like acids. Bases which find use for preparation of salts of compounds of Formula I or II having an acidic moiety include alkali or alkaline earth metal hydroxides such as sodium, potassium, lithium, calcium, or magnesium hydroxides, ammonia, or organic bases such as benzylamine, dibenzylamine, dibenzylethylenediamine, triethylamin , trim thylamine, piperidine, pyrrolidine, 2-hydroxyethylamine, bis(2-hydroxyethyl)amine, phenylethylbenzylamine, and like organic amines.

The compounds of this invention bind to CCK and gastrin receptors in the brain and/or peripheral sites such as the pancreas, gall bladder, stomach, and ileum. Their ability to antagonize CCK and gastrin makes these compounds useful as pharmaceutical agents for the treatment and prevention of disease states wherein CCK or gastrin may be involved, for example, gastrointestinal disorders such as irritable bowel syndrome, ulcers,

excess pancreatic or gastric secretion, acute pancreatitis, motility disorders, neoplasms of gastrointestinal origin, central nervous system disorders involving CCK's interaction with dopamine, such as neuroleptic disorders, tardive dyskinesia, Parkinson's disease, psychosis or Gilles de la Tourette Syndrome, other CNS disorders where CCK is believed to be a causative factor, such as panic attacks and other forms of anxiety, and in modulating appetite regulatory systems.

Preferred CCK and gastrin receptor binding compounds of this invention are the pyrazolidinones of Formula 1, particularly those wherein R and R¹ are in the trans configuration relative to the plane of the pyrazolidinone ring. Preferably, R and R¹ are phenyl or substituted phenyl. A preferred group of compounds of Formula I are those wherein R² is hydrogen and R³ is a group of the formula

One series of such preferred compounds of this invention are those wherein B is sulfur, n is 1, Q is -NH-, and R^5 is phenyl or substituted phenyl.

Another preferred group of compounds exhibiting a consistent pattern of significant binding to CCK and gastrin receptors are those compounds of Formula I wherein R^2 is hydrogen and R^3 is a moiety defined by the group -CONH-[CH(R^6)]_q-(CH₂)_r- R^7 . Especially preferred of those compounds are those wherein q and r are 0 and R^7 is phenyl, substituted phenyl, 2-naphthyl or 3-quinolinyl and R and R^1 are phenyl, naphthyl, or substituted phenyl in the trans configuration relative to the plane of the pyrazolidinone ring. When R^7 is substituted phenyl, preferred substituents are halo, more particularly, chloro, bromo or iodo; trifluoromethyl; C_1 - C_4 alkyl; C_3 - C_4 alkylene; benzyloxy; and methylthio.

The compounds of this invention are readily prepared from the corresponding compounds of the formula

The intermediate 3-pyrazolidinones are readily prepared by reacting hydrazine with the corresponding α,β -unsaturated esters of the formula R¹-CH=C(R)-COOR' wherein R and R¹ are as defined above and R' is an ester forming group, typically C₁-C6 alkyl. The present compounds are prepared generally by acylating or alkylating the 3-pyrazolidinones of Formula III under neutral or basic conditions with acylating or alkylating agents selected to give the targeted compound of this invention.

In another embodiment of this invention there is provided pharmaceutical formulations comprising as an active ingredient an effective amount of a compound of Formula I or II and a pharmaceutically acceptable carrier, excipient or diluent therefor. Such formulations can be prepared for oral or parenteral administration for the treatment and prevention of disorders of the gastrointestinal, central nervous and appetite regulatory systems of warm-blooded vertebrates, especially a man.

For oral use of an antagonist of CCK or gastrin of this invention, the selected compound can be administered, for example, in the form of tablets or capsules, or as an aqueous solution or suspension. In the case of tablets, common excipients include binding agents, for example, syrup, acacia, gelatin, sorbitol, tragacanth, polyvinylpyrrolidine (Povidone), methylcellulose, ethylcellulose, sodium carboxymethylcellulose, hydroxypropylmethylcellulose, sucrose and starch; fillers and carriers, for example, corn starch, gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid; lubricants such as magnesium stearate; disintegrants such as croscarmellose, microcrystalline cellulose, corn starch, sodium starch glycolate and alginic acid; and suitable wetting agents such as lauryl sulfate. For oral administration in capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are desirable for oral use, the active ingredient can be combined with emulsifying and suspending agents, for example, sorbitol, methylcellulose, glucose/sugar syrup, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate gel or hydrogenated edible oils, for example, almond oil, fractionated coconut oil, oily esters, propylene glycol or ethyl alcohol; flavoring agents such as pepperment, oil of wintergreen, cherry flavor-

5

10

15

20

25

30

35

40

45

50

ing or the like; and preservatives such as m thyl or propyl p-hydroxybenzoates or ascorbic acid.

The pharmaceutical formulations in accordance with this invention can also be prepared for parent ral use. Such formulations typically take the form of sterile isotonic solutions of the active ingredient according to standard pharmaceutical practice.

The appropriate dose of the compound of the present invention for its use as an antagonist of CCK or gastrin in humans will vary according to the age, weight and response of the individual patient, as well as the severity of the patient symptoms and the nature of the condition being treated. Thus, the preferred daily dose will normally be determined by the prescribing physician. However, in most instances, effective daily doses of the compounds of this invention will range from about 0.05 mg to about 50 mg/kg and preferrably about 0.5 mg to about 20 mg/kg in a single or divided doses.

The following Examples are provided to describe further the compounds of this invention and methods for their preparation.

Tetrahydrofuran (THF) was dried by distillation from sodium/benzophenone. Reactions and workup steps were conducted at room temperature unless otherwise noted. Solvents were removed using a rotary evaporator at reduced pressure. Chromatography was performed on normal-phase silica columns except as noted. Titrations were performed in 2:1 DMF:H₂O as solvent.

Example 1

5

1-[(4-Chloro-3-trifluoromethylphenyl)amino-carbonyl]-4,5-diphenyl-3-pyrazolidinone. [Method A]

4,5-Diphenyl-3-pyrazolidinone (3.00 g, 12.6 mmol) was dissolved in 40 mL THF under nitrogen, then a solution of 4-chloro-3-trifluoromethylphenylisocyanate (2.87 g, 13.0 mmol, 1.03 eq.) in 10 mL THF added over 2 min. After 2.3 hr, solvent was removed in vacuo, and the residue triturated with 25 mL toluene. The resulting solid was pulverized, washed twice with toluene, and dried in vacuo at 65°C to give 4.94 g (85%) white solid. ¹H NMR (d_6 -DMSO) δ 3.81 (br s, 1H), 5.56 (br s, 1H), 7.26-7.50 (m, 10H), 7.62 (d, J=9 Hz, 1H), 7.89 (dd, J=3, 9 Hz, 1H), 8.13 (br s, 1H), 9.64 (br s, 1H), 10.90 (br s, 1H); mass spectra (MS) 460 (M+1⁺);

Analysis for C₂₃H₁₇ClF₃N₃O₂:

Calc.: C, 60.07; H, 3.73; N, 9.14;

Found: C, 59.99; H, 3.60; N, 8.89.

Example 2

30

35

45

50

55

1-[(4-N,N-Dimethylaminophenyl)aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone. [Method B]

4-N,N-Dimethylaminoaniline (2.00 g, 14.68 mmol) and triethylamine (3.63 g, 35.87 mmol, 2.44 eq.) were dissolved in 50 mL toluene under nitrogen, then triphosgene (1.45 g, 4.89 mmol, 0.333 eq.) added in one batch as a neat solid. The mixture was heated to reflux for 2.5 hr, cooled, then quickly filtered, the collected solid washed twice with toluene, and the combined filtrates evaporated in vacuo to give crude 4-N,N-dimethylaminophenylisocyanate as 2.57 g brown oil. This was redissolved in 50 mL THF and a solution of 4,5-diphenyl-3-pyrazolidinone (3.50 g, 14.69 mmol, 1.00 eq.) in 50 mL THF added over 3 min. After 20.7 hr, solvent was removed in vacuo and the product isolated by chromatography (preparative HPLC; 0-50% EtOAc:toluene gradient) as 1.73 g yellow oil which slowly crystallized. Recrystallization from toluene gave 744 mg (13%) white crystalline solid:

¹H NMR (d_6 -DMSO) δ 2.84 (s, 6H), 3.71 (s, 1H), 5.55 (s, 1H), 6.67 (d, J=8 Hz, 2H), 7.12-7.52 (m, 12H), 8.86 (br s, 1H), 10.70 (br s, 1H); MS 400 (M⁺); titration pK_a's 4.0, 7.9.

Analysis for C₂₄H₂₄N₄O₂:

Calc.: C, 71.98, H, 6.04, N, 13.99;

Found: C, 72.08, H, 6.06, N, 14.06.

Example 3

1-[(4-Benzyloxyphenyl)aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone [Method C]

4-Benzyloxybenzoic acid (2.0 g, 8.8 mmol) was suspended in 50 mL toluene with oxalyl chloride (5 mL) and heated to reflux for 15 min. Solvent was removed in vacuo, the residue redissolved in 30 mL acetone, and an aqueous solution of NaN₃ (1.16 g, 17.6 mmol, 2.0 eq. in 10 mL H_2O) added dropwise with external cooling by a water bath. The mixture was stirred for 1 hour, diluted with H_2O , extracted twice with toluene, then the

combined extracts washed with water and brine, and dried over Na_2SO_4 . This solution of acyl azide was treated with 4,5-diphenyl-3-pyrazolidinone (1.6 g, 6.8 mmol, 0.76 eq.), warmed until bubbles evolved, and heating maintained for 30 min. After stirring overnight at room temperature, the solvent was removed in vacuo, and the product isolated by chromatography (0-30% EtOAc:hexane gradient) as 1.6 g (52%) white solid: mp 127-30°C; ¹H NMR (CDCl₃) δ 3.95 (d, J=6 Hz, 1H), 5.0 (s, 2H), 5.55 (d, J=6 Hz, 1H), 6.8 (d, J=10 Hz, 2H), 6.86-7.46 (m, 16H), 7.05 (d, J=10 Hz, 2H), 8.95 (s, 1H); MS 463 (M*); titration pK_a 7.7.

Analysis for C₂₉H₂₅N₃O₃:

Calc.: C, 75.14; H, 5.44; N, 9.07; Found: C, 75.15; H, 5.49; N, 9.14.

Example 4

10

15

25

35

40

1-[(2-[1,2,3,4-Tetrahydronaphthyl])amino-carbonyl]-4,5-diphenyl-3-pyrazolidinone [Method D]

1,2,3,4-Tetrahydro-2-naphthoic acid (639 mg, 3.63 mmol) was dissolved in 80 mL benzene under nitrogen, azeotropically dried by distilling a small portion of the solvent, then diphenylphosphorylazide (1.12 g, 4.08 mmol, 1.1 eq.) and Et₃N (0.41 g, 4.02 mmol, 1.1 eq.) added and the mixture heated to reflux for 1 hour. Solvent was removed in vacuo, the residue dissolved in dry THF under nitrogen, and 4,5-diphenyl-3-pyrazolidinone (784 mg, 3.29 mmol, 0.91 eq.) added and the mixture stirred overnight. The solvent was removed in vacuo and the product isolated by chromatography (25-50% EtOAc:hexane gradient) as 0.92 g (68%) white foam. Recrystal-lization of a 120 mg sample from i-Pr₂O:i-PrOH gave 94 mg white solid, containing a 1:1 mixture of two diastereomers by NMR: mp 82-95°C;

¹H NMR (CDCl₃) δ 1.46-1.66 (m, 1H), 1.79-1.97 (m, 1H), 2.30-2.84 (m, 2H), 2.95 (apparent t of d, J=6, 16 Hz, 1H), 3.87 (apparent d, J=6 Hz, 1H), 4.09 (m, 1H), 5.12 (m, 1H), 5.34 (apparent d of d, J=6, 14 Hz, 1H), 6.86-7.40 (m, 14 H), c. 9.0 (v br s, 1H); MS 411 (M $^+$).

Analysis for C₂₆H₂₅N₃O₂:

Calc.: C, 75.89; H, 6.12; N, 10.21; Found: C, 75.75; H, 6.32; N, 9.72

30 Example 5

1-[(3-Trifluoromethylbenzoyl]-4,5-diphenyl-3-pyrazolidinone [Method E]

A solution of 4,5-diphenyl-3-pyrazolidinone (2.0 g, 8.4 mmol) in 50 mL CH_2CI_2 and 5 mL pyridine was treated dropwise with a solution of 3-trifluoromethyl-benzoylchloride (1.4 g, 8.4 mmol) in 25 mL CH_2CI_2 and stirred overnight. The mixture was washed with IN HCl, dried over Na_2SO_4 , evaporated, and the product isolated by chromatography (preparative HPLC) as 840 mg (24%) purple foam:

¹H NMR (CDCl₃) δ 3.83 (s, 1H), 5.16 (s, 1H), 7.2-7.64 (m, 15H); MS 410 (M⁺); titration pK_a 7.15. Analysis for C₂₃H₁₇F₃N₂O₂:

Calc.: C, 67.31; H, 4.18; N, 6.83;

Found: C, 67.52; H, 4.18; N, 6.66.

Example 6

45 1-[(4-Chlorophenyl)oxycarbonyl]-4,5-diphenyl-3-pyrazolidinone [Method F]

A solution of 4,5-diphenyl-3-pyrazolidinone (1.25 g, 5.26 mmol) in 50 mL CHCl₃ was treated with a solution of 4-chlorophenylchloroformate (1.0 g, 5.26 mmol) in 10 mL CHCl₃ and stirred overnight. The solvent was removed in vacuo and the residue recrystallized from EtOAc:hexane to give 1.6 g (58%) white solid: mp 175-7°C.

 1 H NMR (CDCl₃) δ 3.98 (d, J=6 Hz, 1H), 5.62 (d, J=6 Hz, 1H), 6.8-7.5 (m, 15H); MS 392 (M⁺); titration pK_a 7.8. Analysis for C₂₂H₁₇CIN₂O₃:

Calc.: C, 67.26; H, 4.36; N, 7.13;

Found: C, 67.49, H, 4.54, N, 7.17.

55

Example 7

1-[(3,4-Dichlorobenzyl)aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone [Method M]

A solution of 1-[(4-nitrophenyl)oxycarbonyl]-4,5-diphenyl-3-pyrazolidinone (1.00 g, 2.48 mmol) and 3,4-dichlorobenzylamine (5 mL) in 50 mL abs. EtOH was heated to reflux for 8 hours. Solvent was removed in vacuo, the residue taken up in CH₂Cl₂, washed twice with 1N HCl and once with pH 7 buffer, and dried over Na₂SO₄. After removal of solvent in vacuo, the product was purified by chromatography (0-35% EtOAc:hexane gradient) to give 250 mg (23%) solid:

¹H NMR (CDCl₃) δ 3.93 (d, J=6 Hz, 1H), 4.28 (dABq, J=7, 15 (JAB) Hz, Δu=48 Hz, 2H), 5.50 (d, J=6 Hz, 1H), 5.56 (br t, J=7 Hz, 1H), 6.92-7.44 (m, 13H), 8.73 (br s, 1H); MS 439 (M⁺); titration pK_a 8.4

Analysis for C₂₃H₁₉Cl₂N₃O₂:

Calc.: C, 62.74; H, 4.35; N, 9.54; Found: C, 62.49; H, 4.53; N, 9.25.

Example 8

15

25

35

45

50

2-[(4-Chloro-3-trifluoromethylphenyl)amino-carbonyl]-4,5-diphenyl-3-pyrazolidinone [Method N]

20 1-[(4-Chloro-3-trifluoromethylphenyl)amino-carbonyl]-4,5-diphenyl-3-pyrazolidinone (2.00 g, 4.35 mmol) in 100 mL toluene was heated at reflux for 24 hours. After removal of solvent in vacuo, the rearanged product was isolated by chromatography (CHl₂Cl₂), then recrystallized from i-Pr₂O:hexane, to give 300 mg (15%) white solid: mp 72-4°C.

¹H NMR (CDCl₃) δ 4.22 (d, J=12 Hz, 1H), 4.82 (dd, J=9, 12 Hz, 1H), 5.44 (d, J=9 Hz, 1H), 7.20 (m, 2H), 7.32-7.42 (m, 8H), 7.46 (d, J=9 Hz, 1H), 7.72 (dd, J=3, 9 Hz, 1H), 7.87 (d, J=3 Hz, 1H), 10.56 (br s, 1H); MS 459 (M $^+$). Analysis for C₂₃H₁₇ClF₃N₃O₂:

Calc.: C, 60.07; H, 3.73; N, 9.14; Found: C, 59.95; H, 3.92; N, 8.88.

30 Example 9

1-[6-Chloro-2-benzothiazolyl]-4,5-diphenyl-3-pyrazolidinone [Method O]

The reaction was conducted under a dry nitrogen atmosphere. A suspension of 4,5-diphenyl-3-pyrazolidinone (1.19 g, 5.00 mmol) in 35 mL toluene was treated with 0.40 g NaH (60% in mineral oil; hydride content 0.24 g, 10.0 mmol, 2.00 eq.), and the mixture stirred at 45°C for 2 hours. 2,6-Dichlorobenzothiazole (1.02 g, 5.00 mmol, 1.00 eq.) was added and stirring continued at 80°C for 20 hours. After cooling, the reaction mixture was poured onto 30 mL ice-cooled 0.5 N HCl, extracted with EtOAc, and the separated organic phase washed twice with brine, dried over Na₂SO₄, and the solvent evaporated in vacuo. The residue was recrystallized from Et₂O:hexane to provide 1.46 g (72%) light tan crystals: mp 170.5-2.5°C.

¹H NMR (CDCl₃) δ 4.07 (br d, J=6 Hz, 1H), 5.24 (br d, J=6 Hz, 1H), 7.16-7.58 (m, 14H); MS 405 (M⁺); titration pK_a 6.6.

Analysis for C22H16CIN3OS:

Calc.: C, 65.10; H, 3.97; N, 10.35; Found: C, 64.85; H, 4.13; N, 10.12.

Example 10

1-[(4-Aminophenyl)aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone

1-[(4-Nitrophenyl)aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone (500 mg, 1.24 mmol) was dissolved in 50 mL EtOH and hydrogenated with 5% Pd/C (500 mg) under 60 p.s.i. H_2 , overnight at room temperature. The mixture was filtered to remove catalyst, solvent removed in vacuo, and the product isolated by chromatography (0-50% EtOAc:hexane gradient) as 125 mg (27%) solid.

¹H NMR (CDCl₃) δ 3.97 (d, J=6 Hz, 1H), 5.50 (d, J=6 Hz, 1H), 6.58 (d, J=10 Hz, 2H), 6.96 (d, J=10 Hz, 2H), 7.2-7.5 (m, 10H); MS 372 (M⁺); titration pK_a 4.5, 8.1.

Analysis for C₂₂H₂₀N₄O₂:

Calc.: C, 70.95; H, 5.41; N, 15.04;

Found: C, 70.65; H, 5.42; N, 14.75.

Example 11

10

20

25

35

40

45

1-[(4-Bromophenyl)aminocarbonyl]-2-(O-t-butyl-carboxymethyl)-4,5-diphenyl-3-pyrazolidinone and 1-[(4-bromophenyl)aminocarbonyl]-3-(O-t-butylcarboxymethoxy)-4,5-diphenyl-2-pyrazoline

To a suspension of 1-[(4-bromophenyl)amino-carbonyl]-4,5-diphenyl-3-pyrazolidinone (2.0 g, 4.6 mmol) in 30 mL abs. EtOH were added a solution of KOH (1.1 eq.) in abs. EtOH and t-butyl bromoacetate (5 mL).

After stirring for 3 days a precipitate of KBr had appeared. The mixture was diluted with H_2O , extracted with Et_2O , then the Et_2O layer washed with H_2O and brine, dried over Na_2SO_4 , and evaporated in vacuo. An inseparable mixture of two products was isolated by chromatography (O-25% EtOAc:hexane gradient) as 1.3 g (52%) foam, containing a 3:2 ratio of N-alkylated to O-alkylated products [first and second title products, respectively] by NMR:

¹H NMR (CDCl₃) N-alkylated: δ 1.53 (s, 9H), 3.96 (d, J=19 Hz, 1H), 4.06 (s, 1H), 4.65 (d, J=19 Bz, 1H), 5.95 (s, 1H), 7.23-7.46 (m, 14H), 9.70 (s, 1H); O-alkylated: δ 1.53 (s, 9H), 4.18 (d, J=7 Hz, 1H), 4.67 (s, 2H), 5.40 (d, J=7 Hz, 1H), 7.23-7.46 (m, 14H), 7.74 (s, 1H); MS 549, 551 (M $^+$ s for Br isotopes).

Analysis for $C_{28}H_{28}BrN_3O_4$: Calc.: C, 61.10; H, 5.13; N, 7.63;

Found: C, 60.94, H, 4.93; N, 7.85.

Example 12

1-[(4-Bromophenyl)aminocarbonyl]-2-carboxy-methyl-4,5-diphenyl-3-pyrazolidinone and 1-[(4-bromophenyl)aminocarbonyl]-3-carboxymethoxy-4,5-diphenyl-2-pyrazoline

The regioisomeric mixture of t-butyl esters from Example 11 [c. 3:2 mixture of N- to O-alkylated] (500 mg, 0.91 mmol) was dissolved in 30 mL CH_2CI_2 and 5 mL trifluoroacetic acid. After 4 hours TLC (CH_2CI_2) indicated disappearance of starting materials. Solvent was removed in vacuo and a mixture of two products isolated by chromatography (0-100% EtOAc:hexane gradient) as 180 mg (40%) foam, comprised of a 4:3 ratio of N-alkylated to O-alkylated compounds [first and second title products, respectively] by NMR.

1H NMR (CDCI₃) N-alkylated: δ 4.09 (d, J=2 Hz, 1H), 4.10 (d, J=19 Hz, 1H), 4.68 (d, J=19 Hz, 1H), 5.83 (d, J=2 Hz, 1H), 7.20-7.50 (m, 14H), 9.08 (s, 1H); O-alkylated: δ 4.19 (d, J=5 Hz, 1H), 4.83 (ABq, J=16 Hz, Δ u=30 Hz, 2H), 5.46 (d, J=5 Hz, 1H), 7.20-7.50 (m, 14H), 7.75 (s, 1H); MS 493, 495 (M*s for Br isotopes); titration pK_a 4.8.

Analysis for C₂₄H₂₀BrN₃O₄:

Calc.: C, 58.31; H, 4.08; N, 8.50;

Found: C, 58.59; H, 4.03; N, 8.24.

The N- and O-alkylated products were separated by chromatography on a Waters C_{18} reverse-phase column, using 30-40% $CH_3CN:H_2O$ buffered with 0.3-0.5% NH_4OAc . The leading fractions from the first pass were evaporated, lyophilized, then taken up in CH_2Cl_2 , washed twice with 1 N HCl, and the solvent removed in vacuo to provide 28 mg O-alkylated product:

 1 H NMR (CDCl $_3$ δ 4.19 (d, J=7 Hz, 1H), 4.84 (ABq, J=17 Hz, Δu =25 Hz, 2H), 5.45 (d, J=7 Hz, 1H), 6.39 (br s, 1H), 7.20-7.40 (m, 14H), 7.70 (s, 1H).

The later fractions were rechromatographed twice more, then similarly processed to give 8 mg N-alkylated product:

 1 H NMR (CDCl₃) δ CDCl₃ 4.05 (s, 1H), 4.08 (br d, J=18 Hz, 1H), 4.70 (br d, J=18 Hz, 1H), 5.82 (s, 1H), 7.21-7.50 (m, 14H), 9.0 (br s, 1H).

50 Example 13

1-[(4-Trifluoromethylphenyl)aminocarbonyl]-3-methoxy-4,5-diphenyl-2-pyrazoline

A solution of 1-[(4-trifluoromethylphenyl)-aminocarbonyl]-4,5-diphenyl-3-pyrazolidinone (740 mg, 1.74 mmol) and KOH (122 mg of 88% pure, 1.1 eq.) in 30 mL abs. EtOH was treated with iodomethane (5 mL) and stirred overnight. The mixture was diluted with H_2O , extracted twice with CH_2CI_2 , and the combined extracts washed with H_2O , dried over Na_2SO_4 , and evaporated in vacuo. The product was isolated by chromatography (0-15% EtOAc:hexane gradient) as 61 mg (8%) solid.

¹H NMR (CDCl₃) δ 4.0 (s, 3H), 4.11 (d, J=6 Hz, 1H), 5.48 (d, J=6 Hz, 1H), 7.2-7.74 (m, 14H), 8.09 (s, 1H); MS 439 (M⁺).

Also isolated was 1-[(4-trifluoromethylphenyl)-aminocarbonyl]-2-methyl-4,5-diphenyl-3-pyrazolidinone, corresponding to a product prepared, according to the method of Example 1, from 2-methyl-4,5-diphenyl-3-pyrazolidinone and 4-trifluoromethylphenylisocyanate.

Example 14

5

10

20

25

30

35

40

45

50

55

1-(Indole-2-carbonyl)-4,5-diphenyl-3-pyrazolidinone

Indole-2-carboxylic acid (1.35 g, 8.38 mmol), oxalyl chloride (4 mL), and DMF (3 drops) were added in order to 50 mL toluene, and stirred until gas evolution subsided and a homogeneous solution was obtained (c.20 min). Solvent was removed in vacuo, the residue taken up in CH_2Cl_2 , and added to a solution of 4,5-diphenyl-3-pyrazolidinone (2.0 g, 8.40 mmol, 1.00 eq.) in 50 mL CH_2Cl_2 and 5 mL pyridine. After stirring overnight, the solution was washed with 1N HCl, dried over Na_2SO_2 , and solvent removed in vacuo. The residual solid was stirred with CH_2Cl_2 , filtered, and recrystallized from DMF: H_2O to give 1.42 g (44%) white solid: mp 248-50°C. ¹H NMR (d_6 -DMSO) δ 3.82 (s, 1H), 5.86 (s, 1H), 6.95-7.6 (m, 16H), 11.84 (br s, 1H); MS 381 (M^+); titration pK_a 6.75.

Analysis for C₂₄H₁₉N₃O₂:

Calc.: C, 75.57; H, 5.02; N, 11.02;

Found: C, 75.38, H, 5.21; N, 10.99

Examples 15-135 are summarized below in Table 1. The compound of each Example is identified by reference to the structural formula preceeding each group of Examples. The method for preparing each compound is indicated by reference to the Methods A-O, corresponding to the procedures identified in the foregoing Examples 1-9. The phenyl groups on the pyrazolidinone ring of the compounds of Examples 1-67 and 74-109 are in the trans position.

TABLE !

PHYSICAL CHEMISTRY DATA ON CCK / GASTRIN ANTAGONISTS

Structure for examples 15-59 below

% In 76 11.76 11.75	9.88	11.17	10.72 10.67	
Analysis, % Theory/Found H N 93 5.36 11.3 84 5.42 11.3	4.26	4.83	4.63	
73.93 73.84	64.94	70.37	67.43 67.30	
Eormula C22H19N3O2	C23H18F3N3O2	C22H18FN3O2	C22H1BCIN3O2	C234 120CIN3O2
JHIMMB DMSO 3.75 (s. 111), 5.58 (s. 111), 6.96-7.53 (m. 1511), 9.16 (s. 111), 10.8 (s. 111)	DMSO 3.80 (br.s., 111), 5.58 (br.s., 111), 7.30-7.80 (m., 1411), 9.54 (br.s., 111), 10.90 (br.s., 111)	CDCJ3 3.99 (d, J-6 Hz, 111), 5.53 (d, J-6 Hz, 1H), 6.85-7.5 (m, 1411), 8.95 (br s, 111)	DMSO 3.78 (s, 114), 5.56 (s, 114), 7.24-7.6 (m, 14H), 9.32 (s, 114), 10.81 (s, 114)	CDCl3 3.18 (s, 311), 3.53 (d, Ja.3 Hz, 1H), 4.86 (d, Ja.3 Hz, 1H), 6.9- 7.42 (m, 1511)
Ma. C MS 168-70 357 (M+)	426 (M+1)	189.91 375 (M+)	173.5 391 (M+)	405 (M+)
Mp. C 168.70			173.5	
Yield,	2.32 43.3%	1.76 g 65%	2.44 g 48%	60 mg 40%
Method Solvent of Prep. of Cryst. ^a A EtOAc: hexano	PhMe	EIOAc; hexané	EIOAc: hexane	chrom (prep plates)
Method of Prep. A	A (THF)	∢	∢	8
,				(N·Mo)
۳ =	4·CF3	4	2	4 Ω
E. 15	16	17	6	61

		8.69 8.51			13.92	11.31	10.90	10.52
	Analysis, % Theory/Found Theory/Found D	3.75			4.51	5.70 5.50	6.01	6.23
5	An The 63.49 63.15	54.67			65.67 65.43	74.37	74.78	75.16
10	Eormula C22H18BiN3O2• 1/2 (C7H8)	C22H118IN3O2	C25H23N3O4	C24H21N3O3	C22H1BN4O4	C23121N3O2	C24H23N3O2	C25H25N3O2
15	11, 5.57 (brs. 1411), 9.31 (brs. 1)	Hz, 1H) , 5.54 (d, 5 (m, 14H)	11z, 3H), 4.02 34 (q, J=8 Hz, 1z, 1H), 7.18-	, 4.03 (d, J-6 -6 Hz, 1tl), 7.31 '2.7.5 (m, 11 Hz, 2tl), 9.18 (br), 5.58 (s, 111), 7.82 (d, J=14 14 Hz, 2H), 9.77 , 1H)), 3.75 (s. 1H), 18 (d, Je8 Hz, 1H), 9.03 (br s,	11z, 3H), 2.55 74 (brs. 1H). 12 (d, J9 Hz, 12 H), 9.06 (br 1H)	111, 211, 1.58 10, 112, 211, 4.0 54 (d. J.e H., 7.03 (d. J.e 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
20	1111MB DMSO 3.77 (br s. 111), 5.57 (br s. 111), 7.12-7.55 (m. 1411), 9.31 (br s. 111), 10.81 (br s. 111)	CDCi3 4.0 (d, J-6 Hz, 1H) , 5.54 (d, J-6 Hz, 1H) , 6.9-7.5 (m, 14H)	CDCB 1.38 (I, J-8 Hz, 3H), 4.02 (d, J-6 Hz, 1H), 4.34 (q, J-8 Hz, 2H), 5.56 (d, J-6 Hz, 1H), 7.18-7.95 (m, 14H)	CDCI3 2.52 (s, 3H), 4.03 (d, J=6 Hz, 1H), 5.55 (d, J=6 Hz, 1H), 7.31 (d, J=12 Hz, 2H), 7.2.7.5 (m, 11 Hz), 7.83 (d, J=12 Hz, 2H), 9.18 (br s, 1H)	DMSO 3.83 (s, 111), 5.58 (s, 111), 7.25-7.5 (m, 1011), 7.82 (d, J-14 Hz, 211), 8.2 (d, J-14 Hz, 211), 9.77 (s, 111), 11.03 (br s, 111)	DMSO 2.25 (s. 311), 3.75 (s. 114), 5.57 (br s. 114), 7.08 (d. J=8 Hz. 24), 7.3-7.5 (m. 124), 9.03 (br s. 114), 10.74 (br s. 111)	DMSO 1.16 (1, J=8 11z, 3H), 2.55 (1, J=8 Hz, 2H), 3.74 (br.s., 1H), 5.57 (br.s., 1H), 7.12 (d, J=9 Hz, 2H), 7.14-7.54 (m, 12H), 9.06 (br.s., 1H), 10.76 (br.s., 1H)	CDCI3 09 (t, J=10 Hz, 314), 1.58 (m, 2H), 2.5 (t, J=10 Hz, 2H), 4.0 (d, J=6 Hz, 1H), 5.54 (d, J=6 Hz, 1H), 6.82 (s, 1H), 7.03 (d, J=12 Hz, 2H), 7.1 (d, J=12 Hz, 2H), 7.1 (d, J=12 Hz, 2H), 7.1 (d, J=12 Hz, 2H), 7.23 7.5 (m, 10H), 8 62 (br s, 1H)
20	MS 435, 437 (M+'s for Br isolopes)	483 (M+)	430 (M+1)	(+M) 66E	402 (M+)	371 (M+)	385 (M+)	400 (M+1)
30	Ma.C 174.6 ^b	177.9			168-70			169-71
35	Yield, 2.64 g 58%	90 mg 2%	480 mg 11%	31 mg 1.2%	1.8 g 71%	1.72 g 44%	3.74 g 92%	230 mg 6%
	Solveni o <u>l Civsi.</u> PhMe (to give PhMe hemi: solvate)	E1OAc: hexane	chrom	chrom	EIOAc: hexane	PhMe	trilurated with PhMe	E10Ac: hexane
40	Method of Preg. A (THF)	၁	∢	∢	⋖	⋖	≪.	ပ
45								
	æ æ	- 1	4-CO2E1	4.COM8	4·NO2	4·Me	4·EI	4·n·Pr
50	30 EX	21	55	23	24	25	56	27

	N 10.16 9.97	10.52	10.16 10.18	9.56 9.38	9.97 9.96	10.85 10.71	10.21
5	Analysis, % Theory/Found Theory/Found 2 6.58 1 3 6.35 9	6.31	6.58	6.65 8.81	5.50	5.67	5.89
	Th. 75.52	75.16 75.37	75.52 75.74	76.29 76.29	76.94 76.86	71.30	71.80
10	Eormula C26H27N3O2	C25H25N3O2	C261127N3O2	C28H29N3O2	C28H23N3O2	CZ3HZ1N3O3	C24H23N3O3
15	_				<u>.</u>		
20	1111MB CDCD 0.95 (I, J=10 Hz, 3H), 1.3 (m, 2H), 1.5 (m, 2H), 2.56 (I, J=10 Hz, 2H), 3.96 (d, J=6 Hz, 1H), 5.54 (d, J=6 Hz, 1H), 6.93 (s, 1H), 7.03 (d, J=12 Hz, 2H), 7.1 (d, J=12 Hz, 2H), 7.23.7.46 (m, 10H), 9.04 (s,	CDC13 1.21 (d. J-10 Hz, 6H), 2.83 (m. J-10 Hz, 1H), 4.0 (d. J-6 Hz, 1H), 5.53 (d. J-6 Hz, 1H), 6.83 (s, 1H), 7.1-7.5 (m, 14H), 8.65 (s, 1H)	CDCi3 1.26 (s, 941), 4.0 (d, J=6 1lz, 14), 5.50 (d, J=6 1lz, 11), 6.83 (s, 11), 7.12 (d, J=12 Hz, 211), 7.35 (d, J=12 Hz, 214), 7.35 (d, J=12 Hz, 11)), 8.6 (s, 11)	DMSO 1.15-1.85 (m, 1011), 2.22 (m, 114), 3.74 (s, 114), 5.58 (s, 114), 7.13 (d, J=12 Hz, 114), 7.46 (d, J=12 Hz, 114), 7.3-7.43 (m, 1014), 9.08 (s, 114), 10.76 (s, 114)	CDCI3 4.02 (d. J=6 Hz, 1H), 5.60 (d. J=6 Hz, 1H), 7.2-7.56 (m, 20H), 9.4 (br s, 1H)	CDCI3 3.74 (s, 3H), 3.96 (d, J=6 Hz, 1H), 5.53 (d, J=6 Hz, 1H), 6.74 (d, J=12 Hz, 2H), 7.15 (d, J=12 Hz, 2H), 6.9-7.43 (m, 11H), 9.0 (br s,	DMSO 1.31 (f. J~7 Itz, 3H), 3.73 (s. 1H), 3.97 (q. J~7 Hz, 2H), 5.55 (br s. 1H), 6.84 (d. J~8 Itz, 2H), 7.3-7.53 (m. 12H), 8.99 (br s. 1H), 10.72 (br s. 1H)
25	111111/14B CDCD CDCD (m, 2H), H2, 2H), (d, J=6 (d, J=6 (d, J=6 17), 7.2	CDC13 1 (m. J-16 1H), 5:5	CDCI3 1.26 1H), 5.50 (1H), 7.12 (J-12 Hz, 2 8.6 (s, 1H)	DMSO 1 (m, 1H), 7.13 (d, J=12 Hz 9.08 (s,	CDCI3 4.02 (d (d, J=6 Hz, 11) 9.4 (br s, 111)	CDC13 3 Hz, 1H), (d, J-12 2H), 6.9- 1H)	DMSO 1.31 (f, J (s, 1H), 3.97 (q, (b's, 1H), 6.84 7.3-7.53 (m, 12) 10.72 (b's, 1H)
30	MS 413 (M+)	399 (M+)	413 (M+)	439 (M+)	433 (M+)	387 (M+)	401 (M+)
	Ma • C 165.7	191-3	204-7	200.3	180.2	154.7	
35	Yield, 24 1.22 g 47%	1.0 g 40%	790 mg 30%	104 mg	312 mg 17%	1.9g 79%	2.93 g 87%
40	Solveni <u>pf Cival.^a</u> EIOAc: hexane	THF: E10Ac	E10Ac	chrom, then E1OAc, then chrom	chrom, then, E10Ac: hexane	E10Ac: hexane	friturated with PhMe
	Method of Prop. A	<	ပ	6	ပ	∢	∢
45			1				
50	4.n.Bu	4-i-Pr	4:1-Bu	4.C-Hexyl	4-Pi	4.OMe	4.0Et
	28 E.	59	30	<u>.</u>	32	33	34

	10.01 10.06	6.80 .67	9.35 9.34	10.41	9.88	13.92	11.31	10.85 10.59	9.94
5	Analysis, % Theory/Found H N 7 6.06 10 5 6.04 11	5.70	5.16 5.22	5.25 5.28	4.19	4.51	5.70	5.46	6.06
	A The 72.27 72.25	75.45 75.71	74.82 74.58	68.46 68.28	65.07	65.57 65.53	74.37	71.30	72.27
10	Eormula C25H25N3O3	C30H27N3O3	C28H23N3O3	C23H21N3O2S	C23H18F3N3O2	C22H18N4O4	C23H21N3O2	C23H21N3O3	C25H25N3O3
15	1H NMB CDC3 1.27 (d. J=8 Hz, 6H), 3.93 (d. J=5 Hz, 1H), 4.42 (septet, J=6 Hz, 1H), 5.54 (d. J=5 Hz, 1H), 6.72 (d. J=9 Hz, 21I), 6.95 (s, 11I), 7.05 (d. J=9 Hz, 21I), 7.13 7.39 (m. 11H)	r, 211), 3.73 1z, 241), 5.55 9 Hz, 241), .01 (br s, 141),	.59 (s. 1H), .21 (s. 1H),	.0 (d, J=6 Hz, 114), 6.95- × s, 111)	58 (s, 111). 82 (d, 111). 111), 10 88 (s,	z, 1H), 5.62 i.1 (m. 14H)	74 (s. 11!). I (m. 121!). I, 11!)	98 (d, J=6 Hz, 111), 6.56-	iz, 611), 3.96 (seplet, J6 Hz, 1H), 91-7.08 (m,
20	CDCIS 1.27 (d. J-8 Hz, 6H), 3.93 (d. J-5 Hz, 1H), 4.42 (septet, J-6 Hz, 1H), 5.54 (d. J-5 Hz, 1H), 6.95 (s. 1H), 6.95 (s. 1H), 7.0 (d. J-9 Hz, 2H), 7.13.7.39 (m. 11)	DMSO 3.01 (r, J=711z, 211), 3.73 (s, 1H), 4.14 (t, J=71tz, 211), 5.55 (br.s, 1H), 6.86 (d, J=91tz, 2H), 7.18-7.52 (m, 17H), 9.01 (br.s, 1H), 10.72 (br.s, 111)	DMSO 3.75 (s, 1H), 5.59 (s, 1H), 6.95-7.56 (m, 19H), 9.21 (s, 1H), 10.8 (s, 1H)	CDCI3 2.42 (s, 311), 4.0 (d, J=6 Hz, 1H), 5.54 (d, J=6 Hz, 1H), 6.95. 7.44 (m, 15H), 8.98 (br s, 1H)	DMSO 3.8 (s, 111), 5.58 (s, 111), 7.3-7.56 (m, 1211), 7.82 (d, 111), 7.98 (s, 111), 9.54 (s, 111), 10 88 (s,	CDCI3 4.03 (d, J=6 Hz, 111), 5.62 (d, J=6 Hz, 111), 7.2-8.1 (m, 14H)	DMSO 3.3 (s. 311), 3.74 (s. 111), 5.57 (s. 111), 6.8-7.54 (m, 1211), 9.04 (s. 111), 10.86 (s. 111)	CDCl3 3.7 (s, 3H), 3.98 (d, J=6 Hz, 1H), 5.54 (d, J=6 Hz, 1H), 6.56 7.48 (m, 16H)	CDCI3 1.26 (d, J=6 l1z, 611), 3.96 (d, J=5 l1z, 1H), 4.45 (septet, J=6 l1z, 1H), 5.5 Hz, 1H), 6.54-6.62 (m, 2H), 6.91-7.08 (m, 3H), 7.21-7.50 (m, 11.11)
25	1HNMB CDC13 (d, J=5 (d, J=5 (d, J=9)	DMSC (s. 1H (br s. 7.18-7	DMSC 6.95-7 10.8 (CDCK 1H), 5 7.44 (7.3-7. 7.98 (G G	DMS(5.57 (9.04 (CDCI 1H). 9 7.48 (CDCL (d. J. Hz. 1 6 54-
30	MS 415 (M+)	477 (M+)	450 (M+1)	403 (M+)	425 (M+)	(no M+)	371 (M+)	387 (M+)	415 (M+)
	23 &		0				0		
	Mo. C		188-90	160-2	165.7	164.6	188 ·90	163.5	80.85
35	Yield. Mo. 1.34 g 178	324 mg 31%	2.9 g 188-9 68%	1.6 g 160-2 65%	30g 165-7 83%	2.11 g 164·6 84%	1.05 g 188-9 46%	2.1g 163·5 51%	450 mg 80·85 22%
35 40	Solvent Yield, of Cryst. ³ 26 1.34g with E120 74%	chrom 324 mg (EtOAc: 31% hexane), thon triturated with PhMe							
	Yield. 26 1.34 g 7.4%	:: `` ₽₩	2.9 g 68%	1.6g 65%	3 0 g 83%	2.11g 84%	1.05 g 46%	2.1g 51%	450 mg 22%
	Solvent Yield, of Cryst. ³ 26 1.34g with E120 74%	B chrom (EtOAc; hexane), then triturated with PhMe	E10Ac: 2.9g CH3OH 68%	EIOAc: 1.6g hexane 65%	EiOAc: 30g hexane 83%	E10Ac: 2.11 g hexane 84%	CH3CH 1.05 g 46%	EIOAc: 2.1g hexane 51%	В С6116; 450 mg hexane 22%
40	Solvent Yield, of Cryst. ³ 26 1.34g with E120 74%	chrom (EtOAc: hexane), then triturated with PhMe	E10Ac: 2.9g CH3OH 68%	EIOAc: 1.6g hexane 65%	EiOAc: 30g hexane 83%	E10Ac: 2.11 g hexane 84%	CH3CH 1.05 g 46%	EIOAc: 2.1g hexane 51%	C6116: 450 mg hexane 22%

	* 5 2	9.07 8.84	8.33 8.07	9.86	10.25 9.53	12.83 12.79	10.57 10.46	10.21 10.05	10.07 10.12
5	Analysis, % Theory/Found H	5.44 9.49	3.40	4.02	4.18	3.92	5.83 5.95	6.12 6.33	5.55
	` ⊭ ບ	75.14 75.01	54.78 55.05	61.99	64.47	60.49 60.23	75.55 75.67	75.89 76.08	69.05 68.92
10	Formula	C29H25N3O3	G23H17BrF3N3O2	C22H17CRN3O2	C22H17CIFN3O2	C22H17CIN4O4	C251123N3O2	.C26H25N3O2	C24H23N3O4
15 20		CDCI3 3.99 (d, J-5 Hz, 111), 4.97 (s, 2H), 5.54 (d, J-5 Hz, 111), 6.66- 6.68 (m, 2H), 7.06 (s, 1H), 7.09- 7.12 (m, 2H), 7.23-7.44 (m, 16H)	CDCI3 4.03 (4, J=6 Hz, 114), 5.58 (4, J=6 Hz, 1H), 7.2.7.56 (m, 15H)	CDCI3 4.04 (d, J=6 Hz, 1H), 5.57 (d, J=6 Hz, 1H), 6.97-7.5 (m, 15H)	CDC:3 4.0 (d, J=6 Hz, 1H), 5.56 (d, J=6 Hz, 1H), 6.95-7.5 (m, 15H)	CDCI3 4.03 (d, J=6 Hz, 1H), 5.58 (d, J=6 Hz, 1H), 7.2-7.82 (m, 14H), 9.3 (s,1H)	DMSO 1.97 (m, 211), 2.8 (m, 411), 3.7 (s, 111), 5.58 (s, 111), 7.12-7.5 (m, 1311), 9.0 (s, 111), 10.75 (s, 111)	CDCI3 1.74 (t, Ja3 Hz, 4H), 2.66 (d, Ja7 Hz, 4H), 3.97 (d, Ja5 Hz, 1H), 5.55 (d, Ja5 Hz, 1H), 6.83-6.92 (m, 3H), 6.98 (s, 1H), 7.24-7.44 (m, 10H), 9.06 (br s, 1H)	CDCi3 3.74 (s, 311), 3.82 (s, 311), 3.97 (d, J=6 Hz, 111), 5.58 (d, J=6 Hz, 111), 6.53-7.5 (m, 14H), 8.7 (s, 111)
25	HINNE	CDCI3 3.99 (d (s. 2H), 5.54 (6.68 (m. 2H), 7.12 (m, 2H),	CDC13 4.03 (c) (d, J.e 6 Hz, 1H	CDC13 4.04 (d (d, J=6 11z, 1H	CDCI3 4.0 (d. J=6 Hz, 1H), 6	CDCI3 4.03 (d (d, J=6 Hz, 1H 9.3 (s,1H)	DMSO 1.97 (m. 3.7 (s. 1141), 5.5 (m. 1311), 9.0 (CDCI3 1.74 (t. (d. J-7 Hz, 41) 11), 5.55 (d. J-6.22 (m. 3H), 6.92 (m. 101),	CDCI3 3.74 (s. 3.97 (d.)=6 Hz Hz, III), 6.53 ·7
30	WS	463 (M+)	503, 505 (M+'s for Br isotopes)	425 (M+)	409 (M+)	436 (M+)	397 (M+)	411 (M+)	418 (M+1)
	Mp. C	143- 44.5		169-71	174.6	149.51	179-81	177- 8.5	
35	Yield,	1.64 g 85%	120 mg 12%	2.2 g 49%	2.0 g 84%	910 mg 41%	380 mg 12%	354 mg 20%	640 mg 11%
40		triturated with E120	сһюш	EtOAc: hexane	EIOAc: hexane	EIOAc: hexane	EtOAc: hexane, then chroin (EtOAc: hexane), then	chrom (EIOAc; CH2CI2), Ihan EI2O; CH2CI2	chrom
	Method of Prep.	œ	œ	⋖	∢	⋖	6	Q	B
45									
50	В	3 OCH2Ph	3.CF3,4.Br	3,4-diCI	3.Cl,4.F	3-NO2,4-CI	3,4-(CH2)3	3,4·(CH2)4	3,4-diOMe
	<u></u>	4	45	46	47	4	6	000	5

	~6	o		0				
	74 nd Nd Nd Nd 10.47 10.29	9.88	9.86 9.94	9.86 9.98		9.14	8.52 8.69	9.86 9.85
5	Analysis, % Theory/Found H N 2 4.77 1 8 4.78 1	4.26	4.02 3.96	4.28		3.73	3.47	3.94
•	A The 68.82 68.98	64.94 65.15	61.93 62.00	61.98 62.16		60.07 60.37	58.42 58.59	61.99
16	Eormula C23H19N3O4	C23H18F3N3O2	C22H17CRN3O2	C22H17CRN3O2	C22H17F2N3O2	C23H17CF3N3O2	C24H17F6N3O2	C22H17C2N3O2
15	5.55 (s, 1H). (m, 13 H). s, 1H)	i.6 (s, 1H), 7.2- (s, 1H), 10.95	5.54 (s, 111), 88 (s, 111),	Hz, 1H), 5.38 5-7.5 (m, 13H), 1, 8.95 (s. 111)	Itz, 111), 5.43 (m, 2H), 6.91 3H), 7.93 (m,	Hz, 1H), 5.41 7.5 (m, 14H),	Hz, 111), 5.62 7.58 (m. 1314),	5.54 (s, 111), (m, 10H), 7.71 10.95 (s, 1H)
x	1HNMB DMSO 3.73 (s. 1H), 5.55 (s. 1H), 5.97 (s. 2H), 6.8-7.6 (m, 13 H), 9.05 (s. 1H), 10.75 (s. 1H)	DMSO 3.8 (s. 111). 5.6 (s. 111), 7.2-7.75 (m, 14H), 8.68 (s. 111), 10.95 (s. 114)	DMSO 3.78 (s, 1H), 5.54 (s, 1H), 7.3-7.6 (m, 13H), 8.88 (s, 1H), 11.05 (s, 1H)	CDCI3 4.02 (d, J-6 Hz, 1H), 5.38 (d, J-6 Hz, 1H), 7.15-7.5 (m, 13H), 8.1 (d, J-10 Hz, 1H), 8.95 (s, 1H)	CDC;3 4.03 (d, J=611z, 111), 5.43 (d, J=6 Hz, 1H), 6.8 (m, 2H), 6.91 (s, 1H), 7.2.7.5 (m, 9H), 7.93 (m, 1H), 8.8 (br.s, 1H)	CDCI3 4.05 (d, J-6 Hz, 1H), 5.41 (d, J-6 Hz, 1H), 7.2.7.5 (m, 14H), 8.53 (s, 1H)	CDCI3 4.03 (d, J=6 Hz, 111), 5.62 (d, J=6 Hz, 1H), 7.2-7.58 (m. 1314), 7.75 (s, 211)	DMSO 3.82 (s, 111), 5.54 (s, 111), 7.2 (s, 111), 7.15-7.5 (m, 10H), 7.71 (s, 2H), 8.5 (s, 111), 10.95 (s, 1H)
25	1HNMB DMSO (5.97 (s. 9.05 (s.	7.75 (m (s. 114)	7.3-	2 E.E.	5.5. E	CD (d. J.	CD (d. J.	7.2 (s. ?
36	MS 401 (M+)	425 (M+)	425 (M+)	425 (M+)	393 (M+)	459 (M+)	493 (M+)	425 (M+)
36	Mo.C MS 179-81 401 (M+)	143-5 425 (M+)	191.3 425 (M+)	150.3 425 (M+)	393 (M+)	130.2 459 (M+)	493 (M+)	166.8 425 (M+)
3 <i>G</i>	Yield, Mo.°C 390 mg 179·81 7%				800 mg 393 (M+) 32%		3.6 g 493 (M+) 69%	
	Solveni Yieki, o <u>l Cryst.</u> ^a % Mo <u>.°G</u> EtOAc 390 mg 179·81	143-5	191.3	150.3		130.2		166·8
35	Yield, Mo.°C 390 mg 179·81 7%	3.46 g 143.5 77%	3.9g 191.3 70%	1.7 g 150.3 63%	800 mg 32%	1.38 g 130.2 29%	3.6.g 69%	800 mg 166.8 30%
35	Solveni Yieki, o <u>l Cryst.</u> ^a % Mo <u>.°G</u> EtOAc 390 mg 179·81	3.46 g 143.5 77%	3.9g 191.3 70%	1.7 g 150.3 63%	chrom 800 mg 32%	1.38 g 130.2 29%	3.6.g 69%	EIOAc: 800 mg 166-8 hexane 30%
35 40	Solveni Yieki, o <u>l Cryst.</u> ^a % Mo <u>.°G</u> EtOAc 390 mg 179·81	3.46 g 143.5 77%	3.9g 191.3 70%	1.7 g 150.3 63%	chrom 800 mg 32%	1.38 g 130.2 29%	3.6.g 69%	EIOAc: 800 mg 166-8 hexane 30%

5		% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.52	9.52	3.60	9.50	
		Analysis % Theory/Found H N 7 6.53 9 2 6.38 9	4.11	1.1.	8.82	3.87	
10		. 2 69.77 69.72	62.58 62.87	62.51	58.05 58.15	59.73 59.92	
15		Eormula C22H18NaOS• C4H16O	C23H18F3N3OS	C23H1BF3N3OS	C23H17CIF3N3O S	C22H17C2N3OS	C22H14F5N3OS
20 25	± × ×	JHIMME CDC13 4.03 (d. 1H), 5.77 (d. 1H), 7.10-7.54 (m., 18 H), 9.6 (br.s., 1H) [phis for E12O: 1.20 (t. 6H), 3.48 (q. 41)]	CDCi3 4.07 (d, J-6 Hz, 1H), 5.82 (d, J-6 Hz, 1H), 7.12-7.63 (m, 161})	CDCi3 4.09 (d, J=6 Hz, 111), 5.77 (d, J=6 Hz, 111), 7.16 (d, J=9 Hz, 114), 7.2-7.28 (m, 311), 7.3-7.44 (m, 711), 7.44 7.64 (m, 51)	CDCI3 4.09 (d, J.6 Hz, 1H), 5.83 (d, J.6 Hz, 1H), 7.06-7.6 (m, 1511)	DMSO 3.95 (s, 1H), 8.16 (s, 1H), 7.2-7.6 (m, 13H), 9.5 (br s, 1H), 11.5 (br s, 1H)	CDC(3 4.04 (d, J.5 Hz, 111), 5.82 (s, 1H), 6.94 (s, 1H), 7.2-7.55 (m, 11H)
30	O Z Z	Mo.C MS 69-79 373 (M+)	442 (M+1)	442 (M+1)	475 (M+), 478 (M+1)	6 441 (M1), 442, 444 (M11's for Cl isotopus)	463 (M+)
		Yield, Mo <u>.c</u> 24 Mo <u>.c</u> 117 mg 69.79 5%	1.5 g 33%	800 mg 87.90 29%	200 mg 80·2 10%	2.5g 154.6 67%	600 mg 21%
35			- K	ĕ ₹	£		91 71
40		Solvent ol Cryst. ^a PhMe:hexane, then E120: hexane (to give	стот	PhMe	chrom, then triturated with hexane	EIOAc: hexans	chrom
		Method of Prep. A (THF)	∢	∢	≪	≪	∢
45		æ =	3.CF3	4.CF3	3·CF3,4·CI	2,3-diCI	pentaF
		<u>7</u> 8	19	62	63	49	99
50							

		41	90
		200 N N N N N N N N N N N N N N N N N N N	9.56
5		Analysis, % Theory/Found H N35 9 5 4.26 9	4.59
5		62.7 62.57	65.60 65.35
10		Eormula C23H19Ci2N3O2	C24H20F3N3O2
15		1HNMB DMSO 3.35 (s, 3H), 3.88 (s, 1H), 5.50 (s, 1H), 7.16-7.56 (m, 13H), 9.26 (s, 1H)	s, 311), 3.93 (d, J=3 Hz, J=3 Hz, 1H), 6.92 (s, i (m, 1411)
20		MB O 3.35 (s, 3H), 3. 1), 7.16-7.56 (m,	CDCI3 3.36 (s, 311), 3.9 1H), 5.54 (d, J=3 Hz, 1 1H), 7.15-7.6 (m, 14H)
25	, F Z	1HINAR DMSO 3 (s. 1H).	£ ₹ £
	z	MS 439 (M+)	439 (M+)
30		Mg. C	
35		Yield, % 670 mg 76%	210 mg 40%
40		Solveni o <u>f Cryst ^a</u> EIOAc: hexane	сһгош
•		Method of Prep. A	⋖
45		B B P 2.3-dicl Me A	Me
50		2.3-dici	67 4·CF3
50		EX 68	19

5	Analysis, %. Theory/Found G H N 61.96 4.02 9.86 62.20 4.04 9.94	Analysis, % Theoryfound H N
	·	a
10	Eormula G22H17CI2N3O2	Eormula C20H22BrN3O2
15		9° N
25	H, 353 (m (m, 11H), 7.9 (m's, 1H)	H H HINME DMSO 0.84 (I. J=12 Hz, 3H), 1.30 (m, 2H), 1.46 (m, 2H), 1.65 (m, 2H), 3.29 (s, 11H), 5.38 (s, 11H), 7.2-7.6 (m, 9H), 9.17 (s, 1H), 10.34 (s, 1H)
		z^o
30	R	Mp.*C MS 415,417 (M*'s for E isotopes)
35	t Yield, 11.2 % 170 mg 63%	ու Yield, <u>st.</u> a _ <u>^</u> 670 mg
40	od Solvent 180. <u>of Grist.</u> ª E10Ac	Method Solvent of Prep. of Cryst. ^a A chrom
4 5	Method B. 21 Pfg. A	1
	2.3.diCi	면 ~ ~
50		4.0 <u>v</u>
	±1 €	69 Ex

C19H20BrN3O2

CDCI3 1.12 [d, J=6 Hz, 6H), 2.05 (m, J=7 Hz, 1H), 3.64 (s, 1H), 4.56 (d, J=8 Hz, 1H), 7.20-7.51 (m, 9H), 8.28 (br s, 1H)

401, 403, (M+'s for Br isotopes)

45 mg 42%

chrom (EIOAc: hexane)

⋖

Ē

4.07

23

	 10.36 10.36 10.28	10.36 10.22	9.33
£	Analysis, % Theory/Found H N 1 5.47 11	ດ. ຄ. 4 ຄ. 6	4.48
5	A The B2.21 62.40	61.97	61.34
10	Eormula C21H22F3N3O2	C21H22F3N3O2	C23H20B ₁ N3O2
15), 1.42 (m, H), 1.83 (m, HI), 7.2-7.6 s, 114)	1.42 (m, 1H), 1.88 I, J-8 Hz, ((ABq, J-8 III), 8.55 (v	.47 (br s. . J-8 Hz. 35 (br s. 1H).
20	JH NMB CDCI3 0.93 (I, J=12 Hz, 3H), 1.42 (m, 2H), 1.5 (m, 2H), 1.73 (m, 1H), 1.83 (r 1H), 3.79 (s, 1H), 4.83 (m, 1H), 7.2-7. (m, 9H), 7.74 (s, 1H), 7.83 (s, 1H)	CDCIO 0.95 (1, J-8112, 311), 1.42 (m, 2H), 1.51 (m, 2H), 1.72 (m, 1H), 1.88 (m, 1H), 3.53 (s, 1H), 4.82 (1, J-8 Hz, 1H), 7.18-7.35 (m, 5H), 7.44 (ABq, J-8 Hz, Δν=18 Hz, 4H), 7.65 (s, 1H), 8.55 (v br s, 1H)	DMSO 2.97-3.15 (m, 211), 3.47 (br s, 111), 4.70 (br s, 114), 7.01 (d, J-8 Hz, 211), 7.15 7.42 (m, 1211), 9.05 (br s, 114), 10.47 (br s, 114)
25	1H NMB CDC13 0. 2H), 1.5 (1H), 3.79 (m, 9H), 3	CDCI3 0. 2H), 1.51 (m, 1H), 1H), 7.18 Hz, Av=1 br s, 1H)	
30	405 (M+)	405 (M+)	449, 451 (M+'s for Br isotopes)
	अ अ	152.5	
35	Yield, 290 mg 21%	136 mg 15%	248 mg 51%
40	Solvent of Cryst. ^a chrom	chroa	EIOAC; hexane
	Method of Prep. A	⋖	∢
45	B. B.	n-Bu	CH2Ph
	3.CF3	4.CF3	4.0r
50	79 E.K.	Ę.	. 22

19

1000 -- FD 048781441 1 5

		•							
		5.64 6.64	6.81	6.60 6.79	6.60 6.45	6.58	7.82	10.42	6.18
5		Analysis % Theory/Found H N 1 4.18 6.7 7 4.45 6.	3.92	4.51	4.51	4.27	5.06 5.29	4.31	3.78
		AT 22 67.31 67.57	64.25	67.92 67.78	67.92 67.78	64.95 64.93	73.73 73.94	65.51 65.49	58.29 58.04
10 15		Gornula C23H17F3N2O2	C22H16CI2N2O2	C24H19F3N2O2	C24H19F3N2O2	C23H1BCI2N2O2	C22H118N2O3	C22H17N3O5	C22H17BrN2O2S
20	~ _l_	, 1H), 5,16 (br s, , 7.26-7.50 (m,	1H), 5.18 (br s,	CDCI3 3.47 (s, 2H), 3.94 (s, 1H), 5.30 (s, 1H), 7.0-7.8 (m, 14H)	CDCI3 3.48 (br s, 211), 3.91 (d, J=4 Hz. (1), 5.28 (br s, 111), 7.04-7.5 (m, 15H)	a, J5 Hz. a, 1H), 7.0		Ď.	S
25		1HNMB CDCt3 3.89 (d, J=4 Hz, 1H), 7.18-7.26 (m, 5H) 811), 7.50-7.57 (m, 211)	CDCB 3.89 (d, J-411z, 1H), 7.14-7.48 (m, 14H)	CDC3 3.47 (s, 2H) (s, 1H), 7.0-7.8 (m)	CDCI3 3.48 (br s. 2 1H), 5.28 (br s, 11)	CDCl3 3.36 (br s, 211), 3.93 (1H), 5.27 (br s, 1H), 6.84 (br (br s, 1H), 7.08-7.5 (m, 12H)	CDC13 3.97 (d. J-6112, 111), 5.54 (d. J-6 Hz, 111), 6.9 7.5 (m. 1611)	CDC13 4.02 (d, J.6 Hz, 111), 5.52 (d, J.6 Hz, 114), 7.1.7.5 (m, 1211), 8.191 Ja15 Hz, 2H), 9.25 (br s, 111)	CDCi3 3.97 (d. J.~4 III, 111), 5.58 (d. J.~4 Hz, 111), 7.25-7.55 (m. 14H), 9.1 (br s, 111)
30		MS 410 (M+)	410, 412 (M+'s for Cl Isotopes)	424 (M+)	424 (M1)	426 (M+)	358 (M+)	403 (M+)	452, 454 (M+'s for Br isotopes)
35		Mo. 19 72-5	68-70		66.68	70-72	164-6	175.7	156-7
00		Yield, 26 100 mg 6%	508 mg 29%	600 mg 17%	101 mg 6%	1.0 g	980 mg 43%	1.3.9 32%	610 mg 13%
40		Solveni of Cryst. ^a	ů	chrom	v	E12O; hexane	E10Ac: hexane	EIOAc	Е1ОАс: ћекапе
45		Method of Prep. E (E(3N)	E (no base)	ш	E (no base)	E (E13N)	ட	ш.	13
		×	•	2115	CH2	CH2	0	0	S
50		4.CF3	3,4-diCl	3-CF3	4.CF3	3,4 diCl CH2	=	4·N02	4·Br
		7.4 E.K.	75	92	11	82	79	80	18

		* 5 z		9.88 9.65
5		Analysis, % Theory/Found H N		4.27
		₹ α		64.94 65.11
10		Eormula	C23H18F3N3O2	C24H18F3N3O2
15 20	E		Hz, 1H), 4.82 H), 5.46 (d, J=9 n, 13H), 7.84 (s,	12 Hz, 1H), 4.82 J), 5.44 (d, J=9 Hz, 2H), 7.3-7.42 (m, H), 10.4 (br s, 1H)
25		HINNE	CDCI3 4.22 (d, J-12 Hz, 1H), 4.82 (dd, J-9 Hz, 12 Hz, 1H), 5.46 (d, J-9 Hz, 1H), 7.18-7.75 (n), 13 1), 7.84 (s, 1H), 10.35 (s, 1H)	
30	O Z Z I	SM	425 (M+)	
		Mo	Ŋ	74.6
35		Yield,	1.72 g 48%	530 mg 30%
40		Solveni	chrom (CH2Cl2)	chrom (CH2Cl2), then triturated with
45		Method of Prec	z	z
40		×	-	Ī
50		α		4.0F3
50		ŭ	1 28	63

		N I I I I I I I I I I I I I I I I I I I	9.33	9.54 9.62	11.82
5		Analysis, % TheoryFound II N 4 4.61 1 8 4.89 1	3.58 3.83	3.43	4.82 4.98
		21.14 4.138	58.67 58.87	60.01 60.30	74.35 74.56
10		Eormula · C22H17N3OS	C22H16Bin3OS	C22H15CI2N3OS	C22H17N3O2
20	E X	05 (d. 1H), 5.23 (d. 1H), 7.15- 15H)	CDCI3 4.06 (d, J-7 Hz, 1H), 5.24 (d, J-7 Hz, 1H), 7.16 7.52 (m, 13H), 7.64 (d, J-1 Hz, 1H)	CDCI3 4.13 (d, J-8 Hz, 111), 5.19 (d, J-8 Hz, 111), 7.18-7.45 (m, 1311)	CDCi3 4.04 (d, J-4.5 Hz, 111), 5.60 (d, J-4.5 Hz, 111), 7.14-7.54 (m, 15 H)
	T X	₹ 8 €	무축교	웃걒	음 조
	° - 'z' -	JHNMB COCID 4. 7.68 (m,	G - CD		9 3
30		MS 1HJ 371 (M+) CD 7.61	449, 451 CDC (M+'s for Br J-7 isotopes) (d, J	440 (M+1 for CDC Cl isotopes) J-8	355 (M+) CD(
<i>30</i>		Mp • C MS 186-8 371 (M+)	ā,		
		Yield, Ma_C MS 233 mg 186-8 371 (M+) 42%	449, 451 (M+'s for Br isotopes)	440 (M+1 for Cf isotopes)	. 355 (M+)
		Mp • C MS 186-8 371 (M+)	180-6 449, 451 (M+'s for Br isotopes)	E120; 1.10 g 200-4 440 (M+1 for hexane 83% Cf isotopes)	174- 355 (Mt) 5.5
35		Yield, Ma_C MS 233 mg 186-8 371 (M+) 42%	1.67 g 180·6 449, 451 57% (M+'s for Br isotopes)	1.10 g 200-4 440 (M+1 for 83% Cf isolopes)	660 mg 174- 355 (M+) 62% 5.5
35		Solvent Yield, <u>of Cryst.^a </u>	E12O: 1.67 g 180·6 449, 451 hexane 57% (M+'s for Br isotopes)	E120; 1.10 g 200-4 440 (M+1 for hexane 83% Cf isotopes)	Ei2O 660 mg 174- 355 (M+) 62% 5.5
35		Method Solvent Yield, al Piep, ol Civel. ^a 24 Mp. C MS O (C6H6) E120 233 mg 186-8 371 (M+) 42%	O (PhMs) E12O: 1.67 g 180·6 449, 451 hexane 57% (M+'s for Br isotopes)	O (PhMs) E12O; 1.10 g 200-4 440 (M+1 for hexans 83% Cl isotopes)	O (PhMe) E120 660 mg 174- 355 (M+) 62% 5.5

Structure for examples 88-108 below

75	15.63 15.35		10 31 10.12	10.31	13.55
Analysis, % Theory/Found H			5.33	5.27	4.74
S 를	70.38 70.34		76.64 76.41	76.64 76.83	73.48
Formula	C21H18N4O2	C21H18N4O2	C26H21N3O2	C26H21N3O2	C25H20N4O2
BWH HI	DMSO 3.8 (s, 1H), 5.54 (s, 1H), 7.27-7.5 (m, 1H), 7.94 (m, 1H), 8.23 (m, 1H), 8.7 (m, 1H), 9.38 (br s, 1H), 10.94 (br s, 1H)	CDC13 3.93 (d, J.6 Hz, 111), 5.46 (d, J.6 Hz, 141), 7.18-7.35 (m, 10H), 7.62 (d, J-10 Hz, 211), 7.95 (d, J-10 Hz, 211)	CDC13 4.03 (d, J=6 Hz, 1H), 5.51 (d, J=6 Hz, 1H), 6.8-7.8 (m, 18H), 9.0 (br s, 1H)	CDC:3 4.02 (d, J-6 Hz, 1H), 5.60 (d, J-6 Hz, 1H), 7.1-7.9 (m, 18H), 9.38 (br s, 1H)	DMSO 3.81 (s, 111), 5.57 (s, 111), 7.29-7.62 (m, 1211), 7.85 (d, J=8 Hz, 111), 7.91 (d, J=8 Hz, 111), 8.44 (d, J=2 Hz, 111), 8.97 (d, J=2 Hz, 111), 9.62 (br s, 111), 11.00 (br s, 111)
	€`	÷	÷	3	<u> </u>
SE	328 (1	358 (M+)	407 (1	407 (1	409 (M•)
SW OW	208-10 358 (M+)	358 (145.7 407 (M+)	172-4 407 (M+)	
Yield, Mo. C MS	208-10	183 mg 358 (l 28%	790 mg 145·7 407 (l 33%		157 mg 244· 409 (l 12% 6.5
Ç.	3.5 g 208-10 73%		ng 145.7	172-4	
Yield,	precipi 3.5g 208-10 taled from 73% reaction mixture	183 mg 28%	790 mg 145·7 33%	1.13 g 172-4 44%	157 mg 244- 12% 6.5 out
Method Solvent Yield, of Prep of Crest 3 % Mo.*C	precipi 3.5g 208-10 taled from 73% reaction mixture	chrom 183 mg 28%	EIOAc: 790 mg 145.7 hexane 33%	EIOAc: 1.13 g 172.4 hexane 44%	157 mg 244- 12% 6.5 out

	27. 13.57 13.57	12.45	11.56	11.31		10.35	10.35 10.46	10.35
5	Analysis, % Theory/Found H N 1 4.94 1: 8 5.09 1:	6.87	7.03	5.70		5.13	5.07	5.09
	2.557 13.88	71.19	72.70 72.59	74.37		68.06 68.30	68.08 67.78	68.22 68.22
10	Eormula C25H20N4O2	C20H23N3O2	CZZH25N3O2	CZ3HZ1N3O2	C24H23N3O2	C231420CIN3O2	C23H20CIN3O2	C23H20CIN3O2
15	1H). 33 (m. 8.20 (d. 1, 4.3 Hz. 31 s. 1H)	. 1.15 (m. 21), 3.62 . 1H).	s (m. 1H), 1, J-12), 7.2.	4.31 3v=36 1, J= 6	J-2 Hz, -72 Hz, 1 (m. 24), 1H)	1.4 (m, 55 (t, J=6 8.48 (br		
20	JHNMB DMSO 3.79 (s, 114), 5.58 (s, 114), 7.25-7.49 (m, 1114), 7.85-7.93 (m, 24), 8.14 (d, J-1.4 112, 114), 8.20 (d, J-8 Hz, 114), 8.74 (dd, J-1.4, 4.3 Hz, 114), 9.45 (br s, 114), 10.85 (br s, 114)	DMSO 0.86 (i, J=10 Hz, 3H), 1.15 (m, 2H), 1.38 (m, 2H), 3.02 (s, 2H), 3.04 (s, 2H), 3.07 (s, 1H), 7.18 (s, 1H), 7.3-7.46 (m, 10H), 10.52 (s, 1H)	CDCI3 0.8-1.84 (m. 1011), 3.6 (m. 111), 3.89 (d. J-6 Hz, 111), 4.98 (d. J-12 Hz, 111), 5.42 (d. J-6 Hz, 111), 7.2. 7.45 (m. 1011), 8.66 (s. 111)	CDCi3 3.86 (d, J-6 Hz, 1H), 4.31 (dABq, J-8 Hz, Jab-20 Hz, Av-36 Hz,2H), 5.50 (m, 1H), 5.51 (d, J- 6 Hz, 1H), 7.07-7.43 (m, 1611)	CDCI3 2.65 (s. 311), 3.66 (d. J-2 Hz, 1H), 4.38 (ABq, J-20 Hz, Av-72 Hz, 211), 4.94 (d. J-2 Hz, 11), 6.9 (m. 211), 7.15-7.46 (m, 1311), 7.9 (br.s, 11)	CDCi3 392 (d. J7 IIz, 111), 4.4 (m. 2H), 5.39 (d. J7 Hz, 111), 5.55 (l. J6 Hz, 111), 7.15-7.43 (m. 1411), 8.48 (br s, 1H)	CDCi3 3.88 (d, J-6 ltz, 111), 4.26 (dABq, J-7 Hz, Jab=17 Hz, Δν=48 Hz, 2H), 5.48 (d, J-6 Hz, 1H), 5.57 (t, J-7 Hz, 1H), 6.94-7.43 (m, 1411), 8.9 (br s, 111)	CDCI3 3 89 (d, J=5 Hz, 111), 4.27 (dA8q, J=6 Hz, Jab=12 Hz, Δv= 42 Hz, 2H), 5.48 (t, J=6 Hz, 111), 5.50 (d, J=5 Hz, 111), 6.98·7.44 (m, 14H), 8.52 (br.s, 111)
25	1HNMB DMSO 3. 7.25-7.49 2H), 8.14 J-8 Hz, 1	DMSO 0. 2H), 1.38 (s. 1H), 5 7.3-7.46 (CDCI3 0.6 3.89 (d, J. Hz, 1H), 5 7.45 (m, 1	CDC13 3.8 (dABq, J- Hz,2H), 5.	CDCI3 2.6 1H), 4.38 (2H), 4.94 (7.15.7.46	CDCI3 3.9(2H), 5.39 (4z, 1H), 7. s. 1H)	CDCI3 3.86 (dABq, J=7 Hz, 2H), 5. J=7 Hz, HH (br s, HH)	CDCI3 3 89 (4A8q, J=6 Iz, 2H), S. J=5 IIz, 1H; (br s, 1H)
	MS 408 (M+)	337 (M+)	363 (M+)	371 (M+)	385 (M+)	405 (M+)	405 (M+)	405 (M+)
30	Ma • C 222-5		152.4				133.6	124.7
35	Yield, 224 mg 32%	2.68 g 76%	1.9 g 83%	2.6g 67%	380 mg 39%	149 mg 15%	750 mg 29%	182 mg 30%
	Solveni <u>of Crst</u> a Criscn: PhMe	chrom	ElOAc; hexane	chrom	chrom (EtOAc; hexane)	chrom	EtÓAc: hexane	EtOAc: hexane
40	Melhod of Piep. D	⋖	⋖	∢	Σ	2	O	<
45	1Å				(M	_	_	
	6-Ouinolinyl	n-Bu	с-Нөхуј	CH2Ph	CHZPh (N:Me)	CH2Ph-2-CI	CH2Ph-3-CI	CH2Ph-4-CI
50	33 E.	3	92	96	76	86	66	100

	N N 10.90		9.05 8.95		10.90 10.74	10.01	10.01 9.76	10.52
5	Analysis,% Theory/Found H N B 6.01 11		4.78		6.01	5.28 5.36	5.28 5.36	6.31
	A T 74.78 75.04		62.08 62.27		74.78	68.86 68.86	68.65 68.84	74.89
10	Eormula C24H23N3O2	C24H23N3O2	C24H22B1N3O2	C28H25N3O2	C24H23N3O2	C24H22CIN3O2	G24H22CIN3O2	C25H25N3O2
15	æĒ	l), 3.60 (s, (m, 1H), 1), 7.2-	i, 3.62 (s, IH), 7.2-)	9	n, 2H), 1, JuS Hz, 1,95-7.44	n, 2H), 1, J=6 Hz, 3,95-7.4	n, 211). 1, J., 6 Hz. 1, 88·7.42	_
20	JHNMB COCKS 1.32 (q. J-8 Hz, 314), 3.90 (dd, J-5 Hz, 8 Hz, 111), 4.90 (q. J-8 Hz, 114), 5.37 (dd, J-8 Hz, 38 Hz, 114), 5.45 (l. J-5 Hz, 114), 7.0-7.44 (m. 1511), 8.53 (br.s., 114)	DMSO® 1.20 (1, J.6 Hz, 311), 3.60 (s, 1/2 H), 3.66 (s, 1/2 H), 4.63 (m, 1H), 5.43 (s, 1/211), 5.52 (s, 1/214), 7.2. 7.55 (m, 1511), 10.58 (s, 114)	DMSO 1.41 (d, J-8 Hz, 31), 3.62 (s, 1H), 4.76 (m, 1H), 5.42 (s, 1H), 7.2-7.62 (m, 15H), 10.56 (s, 1H)	CDCI3 (peaks for major isomer visible in plot) 1.5 (d, J-9 Hz, 3H), 3.86 (d, J-6 Hz, 1H), 5.48 (d, J-6 Hz, 1H), 5.48 (m, 19H), 7.06-8-19 (m, 19H)	CDCI3 2.68 (m, 2H), 3.42 (m, 2H), 3.86 (d, J=6 Hz, 1H), 4.94 (t, J=5 Hz, 1H), 5.27 (d, J=6 Hz, 1H), 6.95-7.44 (m, 15H)	CDCI3 2.82 (m, 211), 3.45 (m, 211), 3.85 (d, J=7 ltz, 111), 5.02 (t, J=8 Hz, 111), 5.25 (d, J=7 Hz, 111), 6.95.7.4 (m, 14H), 8.58 (br.s, 111)	CDCD 2.83 (m, 211), 3.40 (m, 211), 3.86 (d, J=8 Hz, 111), 4.83 (t, J=6 Hz, 111), 5.22 (d, J=8 Hz, 111), 6.88·7.42 (m, 14H), 8.45 (br s, 111)	CDCI3 1.70 (peniet, J=7 Hz, 2H), 2.48 (i, J=7 Hz, 2H), 3.18 (m, 2H), 3.69 (d, J=6 Hz, 1H), 4.92 (br.t, J=6 Hz, 1H), 5.35 (d, J=6 Hz, 1H), 7.02-7.46 (m, 15H), 8.25 (br.s, 1H)
25	1HNMB CDCD* (dd, J=5 Hz, 1H), 5.45 (t,	DMSO 172 H). 5.43 (s. 7.55 (m.	DMSO 1H), 4.7 7.62 (m	CDCB in plot) J6 Hz 5.74 (m	CDCB 2. 3.86 (d, J 1H), 5.27 (m, 15H)	CDCI3 3.85 (d. 114), 5.7 (m. 14)	CDCD 3.86 (d. 1H), 5.7 (m. 14)	CDC13 (1, J7 J6 Hz, 5.35 (d,
	MS 385 (M+)	385 (M+)	463, 465 (M+'s for Br Isolopes)	435 (M _b)	385 (M+)	419 (M+)	419 (M+)	399 (M+)
	38S	385	463, (N+1) 150 c	435	385	419	419	399
30	385 385	382	145.7 463, (M+*)	435	382	419	419	399
<i>30</i>	Yleid, Ma.s.C. 900 mg 34%.	172 mg 385		137 mg 435 12%	720 mg 385 30%	2.2 g 419 63%	1.5 g 419 66%	239 mg 399 48%
	9. 4		145.7					
	Yleid, Ma.s.C. 900 mg 34%.	172 mg 7%	670 mg 145-7 33%	137 mg 12%	720 mg 30%	2.2 g 63%	1.5 g 66%	239 mg :: 48%)
35	Solvent Yield, 2 Crist. 4 Ma. C. chrom 900 mg	chrom 172 mg	EIOAc: 670 mg 145.7 herane 33%	chrom 137 mg 12%	chrom 720 mg 30%	chrom 2.2 g 63%	chrom 1.5 g 66%	chrom 239 mg (E10Ac: 48% hoxano)

5		Analysis, % TheoryFound H N
		O)
10		Eormula C25H23N3O2
15		, 3.54-3.62 (m. 1.95 (d, J=2, [br s, 11!]
20		. 3.37.3.48 (m. 1H), 3 37 (d. J-3.5, 2H), 4.5 46 (m. 1311), 8.18 (b
25	O Z O	58-2.82 (m. 2H) (d. J=2, 1H), 4. (m. 1H), 7.02-7
30		MS 111 NMB 397 (M+) CDC13 2 111), 3.64 111), 6.78
35		Ma. C. 1
40		Yield, % 75 mg 4%
45		Solvent <u>of Cryst.</u> a chrom
		Method of <u>Preo.</u> B
50		Mathod S Example of Prep. p 109 B c

26

5		
10		
15		
20		
25		E Z
30		
35	Œ	R³
40	·	

Structure for examples 110-133 below

% Z	2	9.14 8.82	12.44	9.23	11.96
Analysis, % Theory/Found	=	3.73	3.80 3.98	4.43 36.43	4.95 5.18
₹ ₹	a	60.07 59.85	64.00	63.29	64.26
	Formula	C23H17CIF3N3O2	C24H17F3N4O2	C24H20F3N3O3	C25H23F3N4O2 · 64.16 64.26
	1H NWB	DMSO 3.57 (br.s., 111), 5.72 (br.s., 111), 7.14-7.82 (m, 1311), 9.72 (br.s., 111), 11.01 (br.s., 111)	DMSO 3.90 (br.s. 111), 5.67 (br. C24H17F3N4O2 s. 1H), 7.12-7.98 (m. 1314), 9.63 (br.s. 114), 10.83 (br.s. 111)	CDCI3 3.82 (s. 311), 4.03 (d. Ja7 Hz, 14), 5.51 (d. Ja7 Hz, 114), 6.92-7.00 (m. 311), 7.14-7.50 (m, 1014), -8.8 (br s, 114)	DMSO 2.90 (s. 611), 3.73 (br s. 11), 5.46 (br s. 11), 6.77 (d. J. 611z, 211), 7.23 7.40 (n. 711), 7.62 (d. J. 811z, 211), 7.76 (d. J. 8 Hz, 2H), 9.42 (br s. 11), 10.81 (br s. 11)
	SE	459 (M+)	450 (M+)	455 (M+)	468 (M+)
₩	S				
Yield	. 4	185 mg 19%	1.80g 88%	160 mg 9%	95 mg 32%
Solveni	of Cryst.a	EIOAc	triturated with PhMe	chrom (2X with E1OAc: hexane), thon triturated with PhMo:	EIOAC: Nexano
Meth	Pred.	∢	∢	∢	∢ .
	BB	Ξ	I	=	=
	BB	4.CF3 2.CI	S CN	3.OM6	4-N(Ma)2
	BL	4·CF3	4-CF3	4.CF3	4.CF3
	Ę	9	Ξ	12	113

50

	% 57 N N 8.94 8.82	9.01 8.90	7.57	8.32 8.35	11.69	11.64
5	Analysis, % Theory/Found H N 3 3.64 8	4.32	3.25	3.27	3.96 3.96	3.56
	S6.13 56.13 56.24	59.24 59.46	49.35 49.60	52.31 52.59	57.63 57.57	54.90 55.15
10	Eormula C22H17BrCIN3O2	C23H20BrN3O3	1/2 CH2C/2	C22H16BrCI2N3O2	C23H19BrN4O3	C22H17BrN4O4
15 20	1HNMB DMSO 3.53 (br.s., 1H), 5.72 (br. s., 1H), 7.12-7.60 (m, 13H), 9.49 (br.s., 1H), 10.93 (br.s., 1H)	1H), 3.78 (s, 1H), 6.87-7.04 .52 (m _? 10H),	DMSO 3.58 (s, 1H), 5.65 (s, 1H), 5.70 (s, 2H for 1/2, CH2Cl2), 7.28-7.46 (m, 12H), 9.43 (br s, 1H), 10.91 (br s, 1H)	J-10 Hz, 1H), 72 (d, J-7 Hz, m, 3H), 7.30- 31 (br s, 1H),	DMSO 3.78 (s, 1H), 5.55 (s, 1H), 7.25-7.59 (m, 12H), 7.80 (d, J=8 Hz, 1H), 7.94 (d, J=24 Hz, 2H), 9.28 (s, 1H), 10.78 (br s, 1H)	18 (br s, 111), 5.69 (br 10-7.53 (m, 9H), 7.76 Hz, 2H), 8.31 (d, J=8 .39 (br s, 1H), 10.93
25	1HNMB DMSO 3 8, 1H), 7 9.49 (br	CDCI3 3.72 (s. 3H), 5.50 (br s. (m, 3H), 7.27.7 8.29 (br s. 111)	DMSO 3 1H), 5.70 CH2C(2) 9.43 (br	DMSO 5.04 (d., 6.30 (m., 1H), 6. 214), 7.00-7.12 (7.60 (m., 7H), 9. 10.70 (br.s., 1H)	DMSO 3. 1H), 7.25 (d. J-8 H Nz, 2H), s, 1H)	5, 14), 7.3 (br d, J=7 (Rz, 24), 9 (hr < 11)
	MS . 469, 471 (M+'s for Br isotopes)	465, 467 (M+'s for Br Isolopes)	503, 505 (M+'s), 506, 508 (M+1's for Cl, Br isotopes)	503, 505, 507 (M+'s for Cl, Br isotopes)	479, 481 (M+1's lor Br Isolopes)	480, 482 (M+'s for Br isotopes)
30	≅ूस			198- 205	330.	
	Yield, 47 mg 10%	52 mg 17%	1.89 g 69%	76 mg 54%	237 mg 45%	343 mg 60%
35	Solvent of Gryst. ^a PhMe. then EIOAc:	EIOAC: hexane	with EI2O, then CH2Cl2; hexane (to give CH2Cl2 hexane (to give CH2Cl2 hemi:	CH2CI2 (2X)	CHOCN	EtOAc: PhMe
40	Meth. Prep. A	⋖	<	∢	«	⋖
	=	=	=	=	=	Ξ
4 5	2.0°	2.OMe	2,3 diO	2,3-diCl	3-CONH2	4-NO2
50	4.B	4-Br	4.Br (Irans)	4.Br (cls)	4·8r	4-Br
	3 =	115	9=	7=	8	119

	, ₂ Z	8.50 8.43	9 68 9.73	8.93 8.92	9.06 9.06	8.50 8.70	11.64	8.93 8.84
5	Analysis, % Theory/Found H	3.26	8. 8. 8. 8. 8. 8.	3.64	4.32	4.89 4.94	3.56	3.64
	<u>ڳ</u> ت	55.89 55.85	69.20 69.00	56.13 58.35	59.24 59.44	60.74 60.53	54.90 54.63	56.13 56.21
10 15	Eormula	C23H16CRF3N3O2	G25H24CIN3O2	C22H17BrCW3O2	C23H20BrN3O3	C251124BrN3O3	C221117BrN404	C22H1 7BrCIN3O2
20	HANAB	DMSO 3.58 (br. s, 1H), 5.72 (br. s, 1H), 7.30-7.50 (m, 7H), 7.58-7.67 (m, 3H), 7.93 (d, J=9 Hz, 1H), 8.15 (br.s, 1H), 9.83 (br.s, 1H), 11.04 (br.s, 1H)	DMSO 1.18 (d. J-7 Hz, 6H). 2.84 (m, J-7 Hz, 1H), 3.51 (br 8, 111), 5.74 (br s, 1H), 7.14- 7.64 (m, 1311), 9.27 (br s, 1H), 10.88 (br s, 1H)	DMSO 4.16 (br s, 1H), 5.66 (br s, 1H), 7.48.7.88 (m, 13H), 9.56 (br s, 1H), 11.26 (br s, 1H)	CDCD 3.72 (s, 311), 4.94 (d, J=6 Hz, 1H), 5.57 (d, J=6 Hz, 1H), 6.74-6.88 (m, 3H), 7.04-7.32 (m, 7H), 7.42 (br s, 4H), 9.2 (br s, 1H)	CDCI3 1:22 (t, J-6 Hz, 611), 3.90 (d, J-4.5 Hz, 111), 4.43 (septet, J-6 Hz, 111), 5.58 (d, J-4.5 Hz, 111), 6.74-6.82 (m, 311), 7.08 (dd, J-2, 911z, 211), 7.19-7.29 (m, 5H), 7.36-7.42 (m, 5H)	DMSO 4.05 (s. 111), 5.61 (s. 114), 7.27-7.52 (m. 9H), 7.66 (t. Jan Hz, 111), 7.82 (d. Jan Hz, 111), 8.16 (d. Jan Hz, 111), 8.22 (s. 111), 9.34 (br. s., 111), 10.95 (br. s., 111)	CDCI3 4.0 (d, J=6 Hz, 111), 5.46 (d, J=6 Hz, 1H), 6.87 (br 9, 111), 7.0-7.12 (m, 3H), 7.22- 7.54 (m, 101), 8.78 (br s, 1H)
_	Ş	493 . 495 (M+'s for Dr isotopes)	434 (M+1)	470 (M+1)	467 (14+)	493, 495 (M+'s for Br isolopes)	480, 482 (M+'s for Br Isolopes)	470 (M+1)
30	₹ S	l		182. 2.5	5	51	150.	3
	Yield.	604 mg 44%	514 mg 43%	750 mg 43%	520 mg 30%	91%	1.32 g 48%	232 mg 27%
35	Solvent		EtOAc: hexane	EIOAc	E10Ac; hexane	Et2O: hexane	CH2CI2:	EIOAC; hexane
40	Meth.	4	<	≺	<	∢	∢ `	<
	8	=	z	2.CI	3.0Me	3.0.i. Pr	3.NO2	5
45	8	2.Cl	Š	Ξ.	Ξ	=	z	Ξ
	ā	10 d d d d d d d d d d d d d d d d d d d	4-i-Pr	4-Br	. ⊕	4. 9	4·B <u>r</u>	4· 0.
50		2	121	122	123	124	125	126

	7 Page 16 Page	9.01 8.78	8.93 9.02	9.14 9.18	8.50 8.45	9.68 9.68	8.09
5	Analysis, % Theory/Found EL N 9 3.33 8 8 3.60 7	4 4 53 853	3.54	3.73	3.26	5.57	3.19
	A 51.29 51.66 51.66	59.24 59.30	56.13 56.03	60.07	55.89 55.60	69.20	52.30 52.07
16	Epimula C22H17Br2N3O2	C23H20BrN3O3	C22H17CIBrN3O2	C23H17CIF3N3O2	CZ3H16CRF3N3O2	C25H24CIN3O2	C22H16BrCI2N3O2
x 25	JHNMB CDCI3 394 (br d. J=4 Hz, 1H), 5.46 (br d. J=4 Hz, 1H), 7.04- 7.44 (m, 15H)	CDCt3 3.78 (s, 3H), 3.95 (d, J=6 Hz, 1H), 5.49 (d, J=6 Hz, 1H), 6.85 (d, J=12 Hz, 2H), 7.0-7.18 (m, 5H), 7.24-7.5 (m, 7H), 9.1 (br s, 1H)	DMSO 3.78 (s, 111), 5.49 (s, 111), 7.28-7.50 (m, 1311), 9.22 (br s, 111), 10.84 (br s, 111)	CDCt3 4.4 (d, J=6 Hz, 1H), 5.58 (d, J=6 Hz, 1H), 7.2-7.54 (m, 13H), 7.64 (br s, 1H), 9.48 (br s, 1H)	CDCI3 4.38 (d. J=6 Hz, 1H), 5.6 (d. J=6 Hz, 1H), 7.16-7.66 (m. 12H), 7.86 (br s. 1H), 9.58 (br s. 1H)	DMSO 1.16 (d, Ja7 Hz, 6H), 2.82 (m, 1H), 3.92 (br.s. 1H), 5.46 (br.s. 1H), 7.12 (d, Juli2 Hz, 2H), 7.28-7.64 (m, 1H), 9.14 (br.s. 1H), 10.98 (br.s. 1H)	DMSO 4 02 (br s. 111), 5.75 (br s. 114), 7.28.7.58 (m. 1211), 9.41 (br s. 114), 11.06 (br s. 111)
	MS 515, 517 (M+'s), 516 (M+1 for Br isolopes)	467 (M+)	469, 471, 473 (M+'s). 470 (M+1 for Cl, Br Isotopes)	459 (M+)	493 (M+)	433 (M+)	505 (M+)
30	_{ट्र} ेंस		4.5	178. 9	109.	226. 7	
	Yield,% 128 mg 17%	296 mg 34%	1.92 g 82%	260 mg 3 8%	250 mg 34%	200 mg 31%	4.32 g. 88%
35	Solvent of Cost. ^a chrom, then triturated with E120:	chrom (EIOAc), Ihen triturated with	triturated with E12O	iriturated with EtOAc; hexane	triturated with EIOAc: hexane	EIOAc: hexane	EtOAc: hexane
40	Moth. Prep. A	≺	<	∢	⋖	、 ≪ .	∢
	3.87	4.0Me	4 D	2.01	2.CI	2.CI	2.CI
45	æ =	=	=	Ξ	=	Ξ	<u>۵</u>
50	4.Br	4·B ₁	4 <u>9</u>	4.CF3	3-CF3, 4-CI	4-i-Pr	4·B <u>r</u>
	EK. 127	128	129	130	131	132	133

10		
15		
20		æ
25	H H	
30	Ar ¹	`o
35		
4 0		

* §	Z	2 64.21 4.15 8.64 64.02 4.20 8.61	13.07
unalysis.	Ξ	4.15	3.92
`∉	a	64.21 64.02	57.74
	elr	20BrN3Q;	C21H17BrN4O2 57.68 57.74
	HIMB	CDCI3 4.70 (d, J=6 Hz, 1H), 5.59 (d, J=6 Hz, 1H), 6.97 (d, J=9 Hz, 2H), 7.15-7.52 (m, 12H), 7.70-7.88 (m, 3H), 9.10 (lvr s, 1H)	mg 184· 437,439 DMSO 3.84 (s, 111), 5.56 (s, 1H), C21H 6 87.5 (M+1's 7.23-7.46 (m, 1011), 7.83 (d, J=8 for Br Hz, 1H), 8.53 (dd, J=1.1, 4.5 Hz, Isotopes) 1H), 8.65 (d, J=1.7 Hz, 1H), 9.28 (s, 1H), 10.86 (br s, 1H)
	SM	486, 488 (M+1's for Br (sotopes)	437, 439 (M+1's for Br isotopes)
	No. C	187.9	184· 87.5
۶	ነ	6.4	848 mg 184· 24% 87.5
		Er2O: hexane	EIOAc (2X), then chrom. then ErOAc
Math	Prep.		⋖
	AZ	1-Naphihyl	4
	Art	4.Br	135 4-Br 3-Pyridyl
	Н	4. 9.	4.8
	Ĕ	134	135

Includes other methods of purification such as chromatography (chrom), trituration, and pracipitation, as indicated. If only solvents are given, compound was purified by recrystalization from those solvents. For other methods of purification, solvents used follow in parentheses. ø

b Aller recrystallization from ElOAc:hexane.

Purified by extraction into 1N NaOH, followed by acklitication with 1N HCI and extraction into organic solvent (E12O or E1OAc). Evaporation of solvent gave material homogeneous by TLC and of satisfactory purity. v

d Prepared using S-(·)-u-methylbenzylisocyanate.

All splitting patterns reported are those apparent upon visual inspection of plot, and reflect a combination of true proton-proton magnetic couplings, and multiplicity due to presence of a mixture of two diasteromers. Θ

1 Prepared using R-(+)-tr-methylbenzylisocyanate.

g Prepared using (L) 4 bromo-ir-methylborizylisocyanate.

h Prepared using (R) (-)-1-(1-Naphillyllyllylisocyanle.

55

50

Test Procedures for CCK And Gastrin Receptor Binding (IC₅₀)

Brain

5

10

20

25

30

35

40

45

50

Brain CCK receptor binding was performed using mouse brain membranes according to the method of Chang and Lotti (Proc. Natl. Acad. Sci. 83: 4923-4926, 1986). Male CF-1 mice, 23-25 g were sacrificed by cervical dislocation, the forebrain removed and placed in ice cold 50 mM Tris buffer, pH 7.4. The tissue was homogenized in 100 volumes of the Tris buffer with a Brinkman Polytron or Tekmar Tissumizer and then centrifuged at 40,000 g for 10 min. Pellets were resuspended in Tris buffer, centrifuged as above and then resuspended in 100 volumes of assay buffer, pH 6.5 (20 mM N-2-hydroxyethyl-piperazine-N'-2-ethane sulfonic acid (HEPES), 1 mM ethylene glycol bis(2-aminoethyl ether-N,N,N',N'-tetraacetic acid) (EGTA), 5 mM MgCl₂, 130 mM NaCl, and 0.25 mg/ml bacitracin). The binding assay consisted of 50 μ L of compound (or buffer for total binding), 50 μ L of 125 I-CCK-8 sulfate (20 pM) (Amersham IM-159), 200 μ L of assay buffer and 200 μ L of homogenate (80-120 μ g protein). The samples were incubated at room temperature (25°) for 2 hours, and they were then filtered through GF/B glass fiber filters (soaked in wash buffer for 2 hours before use) using a 48 well Brandel cell harvester designed for receptor binding. The filters were washed twice with 3 ml of 50 mM Tris buffer, pH 7.4, containing 0.01% BSA and then counted for radioactivity in plastic tubes with a Micromedic 10/600 automatic gamma counter.

Compounds were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM and then further diluted with assay buffer. The concentration of DMSO in the incubation was 0.1% or less and had no effect on the assay at that level. IC-50 values of displacement curves were determined using 7 concentrations of compound and were calculated using the ALLFIT computer program of DeLean, Munson and Rodbard (Am. J. Physiol. 235: E97-E102, 1978). Non-specific binding was determined as the displacement of the radioligand by 100 nM CCK-8 sulfate.

Pancreas

Binding to peripheral type CCK receptors in rat pancreas was done according to the method of Chang et al. (Mol. Pharmacol. 30: 212-217, 1986) using ³H-L364, 718. Pancreas was obtained from male Sprague-Dawley rats, 150-200 g, after decapitation, and dissected free from adipose and connective tissue. The tissue was homogenized in 30 volumes of 50 mM Tris buffer, pH 7.4 and centrifuged at 40,000 g for 10 min. The tissue pellet was washed by resuspension and centrifugation as described above. The final pellet was suspended in 500 volumes of assay buffer (50 mM Tris buffer, pH 7.4, 5 mM MgCl₂, 0.14 mg/ml bacitracin, and 5 mM dithiothreitol) to give a protein concentration of 30-60 μg/200 μl. Reagent volumes for the assay were the same as those used for CCK binding to brain membranes. Tritium labeled L-364,718 (Dupont NEN, NET-971) was used as the ligand at a concentration of 0.4-0.6 nM. The samples were incubated 1 hour at room temperature and then filtered as described for the CCK-brain receptor. Scintillation cocktail was added to the filters which were counted for radioactivity using a Micromedic Taurus automatic liquid scintillation counter.

Compound samples were prepared and IC-50 values were determined as described for the CCK-brain expriments. Non-specific binding was that amount left bound to the filters after adding 100 nM L-364,718.

Gastric Mucosa

The method used for gastrin binding to guinea pig stomach mucosal membranes was similar to that described by Takeuchi, Speir and Johnson (\underline{Am} , \underline{J} , $\underline{Physiol}$, $\underline{237(3)}$: E284-E294, 1979). Guinea pig stomach fundus was obtained from male Hartley guinea pigs, 300-350 g, and the mucosa was scraped off with a glass slide. The mucosa was homogenized in 50 mM Tris buffer, pH 7.4, containing 1 mM phenylmethanesulfonyl fluoride using a Dounce glass homogenizer, and the suspension was centrifuged at 40,000 g for 10 min. The resulting pellet was resuspended and centrifuged once more, the final pellet was then suspended in 100 ml assay buffer per 1 guinea pig stomach to give a protein concentration of 200-300 μ g/200 μ l. The assay buffer consisted of 50 mM Tris buffer, pH 7.4, 5 mM MgCl₂, 0.14 mg/ml bacitracin, and 1 μ g/ml each of leupeptin, chymostatin, aprotinin and pepstatin. Reagent volumes for the assay were the same as those used for CCK binding to brain membranes. The radioactive ligand was 20 pM ¹²⁵l-gastrin I, from DuPont NEN (NEX-176). The samples were incubated 3 hours at room temperature and filtered and counted as described for CCK binding to brain membranes. Compound samples were prepared and IC-50 values were determined as described for the CCK-brain receptor binding. Non-specific binding was determined using 100 nM gastrin I (human synthetic from Sigma Chemical Co.).

Table II below summarizes representative CCK and gastrin-binding tests results for exemplified com-

pounds in accordance with this invention.

5

TABLE II
CCK and Castrin Receptor Binding Data

	•	IC ₅₀ , μM, or Percent Inhibition (at 1 or 10 μM)		
10	Compound of Example No.	Brain	Pancreas	Gastrin
	1 2	0.022 0.29	0.19 14(10)	0.15
15	1 2 3 4 5 6 7	0.054 0.39	34(10) 78(10)	1.1
	5 6	77(10) 4.4	18(10) 15(10)	
20	/ 8 9	1.1 3 4 (10) 3.7	81(10) 2(10) 33(10)	
	10 11	57(10) 67(10)	4(10)	
25	12	0.34 (O-) 1.9 (N-)	64(10) 55(10)	
	13 14 15	67(10) 2.6 69(10)	60(10) 10(10)	
30	16 17	0.044 0.52	62(10) 6(10)	0.42
30	18 19	0.093 68(10)	22(10) 36(10)	
	20 21	0.031 0.057	11.6 77(10)	0.49
35	22 23	42(1) 0.49	27(10) 23(10)	

33

40

45

50

TABLE II (continued) CCK and Gastrin Receptor Binding Data

5		Democratic	ICso, µM, or	
·	Compound of	Percent	Inhibition (at 1 c	r 10 µM)
	Example No.	Brain	Pancreas	Gastrin
	24	0.15	45(10)	
10	25	0.21	14(10)	
	26	0.075	47(10)	
	27	0.23	60(10)	
	28	0.44	55(10)	
	29	0.025	47(10)	0.26
15	30	0.031	49(10)	0.35
	31	54(1)	71(10)	0.35
	32	42(1)	69(10)	
	33	0.34	20(10)	
	34	1.5	12(10)	
20	35	0.39	48(10)	
	36	0.45	33(10)	
	37	82(1)	75(10)	
	38	0.056	53(10)	0.24
	39	0.33	52(10)	0.24
25	40	0.75	38(10)	
	41	57(10)	21(10)	
	42 43	0.78	37(10)	
	43 44	0.23	24(10)	
	45	0.26	67(10)	
30	46	0.022	0.16	
	47	0.042	1.2	0.21
	48	0.39	51(10)	— -
	49	0.080	98(10)	
	50	0.043	40(10)	0.25
35	51	0.013	87(10)	0.081
	52	18(1)	25(10)	
	53	60(1) 1.2	21(10)	
	54	1.15	17(10)	
	55	0.60	53(10)	
40	56	25(1)	47(10)	
	57	1.0	15(10)	
	58	10(1)	45(10)	
	59	44(1)	85(10)	
	60	34(10)	75(10)	
45	61	56(10)	37(10)	
		50(10)	78(10)	

50

TABLE II (continued) CCK and Gastrin Receptor Binding Data

		IC ₅₀ , μM, or		
5		Percent I	nhibition (at 1 or	r 10 µM)
	Compound of			
	Example No.	Brain	Pancreas	Gastrin
				
	62	2.2	37(10)	
10	63	0.51	0.075	
	6 4	5.3	34(1)	
	65	50(10)	37(10)	
	66	40(10)	23(10)	
	67	46(10)		
15	68	4.3	70(10)	
	69	0.5	12(10)	
	70	13(1)	36(10)	
	71	1.2	39(10)	
	72	88(10)	22(10)	
20 .	73	16(10)	20(10)	
	74	23(10)	15(10)	
	75	60(10)	40(10)	
	76	55(10)	4(10)	
	77	56(10)	20(10)	
25	78	1.8	49(10)	
	79	43(10)	9(10)	
	80	5.2	9(10)	
	81	95(10)	59(10)	
	82	23(10)		
30	83	37(1)	12(10)	
	84	70(10)	26(10)	
	85	78(10)	19(10)	
	86	1.1	58(10)	
	87	47(10)	23(10)	
35	88	40(10)	37(10)	
	89	34(10)	21(10)	
	90	45(1)	63(10)	0.000
	91	0.010	94(10)	0.062
	92	0.064	88(10)	0.16
40	93	0.29	75(10)	0.66
	94	50(10)	10(10)	
	95	55(10)	18(10)	
	96	42(10)	13(10)	
	97	42(10)	22/10)	
45	98	74(10)	33(10)	
40	9 9	3.3	86(10)	

50

TABLE II (continued) CCK and Gastrin Receptor Binding Data

5		Percent	IC ₅₀ , µM, or	
	Compound of	rercent	Inhibition (at 1 o	r 10 µM)
	Example No.	Brain	Pancreas	Gastrin
10	100	2.2	78(10)	
	1 01	1.3	7(10)	
	102	4.7	11(10)	
	103	0.87	78(10)	
	10 4	0.9	47(10)	
15	105	0.49	43(10)	
	106	0.19	78(10)	0.07
	107	86(10)	61(10)	0.87
	108	1.3	87(10)	
	109	6.0	11(10)	
20	110	0.007	47(10)	0.13
20	111	0.020	35(10)	0.13
	112	0.072	42(10)	1.4
	113	25(1)	21(10)	7.7
	114	0.020	38(10)	0.36
25	115	0.15	53(10)	0.32
20	116	0.031	80(10)	0.23
	117	0.40	64(10)	1.0
	118	0.36	41(10)	5.2
	119	1.2	64(10)	J. L
30	120	0.016	87(10)	0.12
	121	0.014	26(10)	0.12
	122	0.015	8.6	0.22
	123	0.068	23(10)	0.69
	124	0.15	36(10)	0.73
35	125	0.10	42(10)	0.59
	126	0.011	59(10)	0.21
	127	0.032	73(10)	0.21
	128	0.49	39(10)	
	129	0.16	69(10)	0.86
40	130	0.012	42(10)	0.10
	131	0.012	61(10)	0.062
	132	0.008	48(10)	0.070
	133	0.006	7.9	0.025
	134 135	0.033	75 (10)	0.093
45	133	0.14	18(10)	1.7

Claims

1. A compound of the formula

55

wherein R and R¹ are independently hydrogen, C_1 - C_6 alkyl, phenyl, benzyl, naphthyl, pyridyl or substituted phenyl having 1, 2, or 3 substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo, trifluoromethyl, phenyl, phenoxy, phenyl(C_1 - C_4 alkyl), phenyl(C_1 - C_4 alkoxy), phenylacetyl, C_1 - C_6 alkanoyl, cyano, carbamyl, nitro, C_1 - C_6 alkoxycarbonyl, methylenedioxy, C_3 - C_6 alkylene, amino, -NH(C_1 - C_4 alkyl or benzyl), and N(C_1 - C_4 alkyl)₂;

R₂ is hydrogen, C₁-C₆ alkyl, carboxymethyl, C₁-C₄ alkoxycarbonylmethyl or a group of the formula

wherein t is 1 or 0; A is $-CH_2$ -, -O-, -NH- or $-N(C_1-C_6$ alkyl)-; and Y is phenyl or substituted phenyl as defined above:

 R_4 is C_1 - C_6 alkyl, carboxymethyl, or C_1 - C_4 alkoxycarbonylmethyl; R_3 is hydrogen or a group of the formula

wherein B is O or S; X is selected from the phenyl substituents defined above; m is 0, 1 or 2; n is 0 or 1; Q is -NH-, -N(C_1 - C_6 alkyl)-, -S-, or -O-; and R⁵ is a group of the formula -[CH(R^6)]_q-(CH₂)_r- R^7 wherein R⁶ is hydrogen or C₁- C_6 alkyl; q is 0 or 1; r is 0, 1 or 2; and R⁷ is hydrogen, C₁- C_8 alkyl, C₃- C_8 cycloalkyl, pentafluorophenyl, pyridyl, tetrahydronaphthyl, indolyl, quinolinyl, phenyl, naphthyl, or phenyl or naphthyl substituted with 1, 2, or 3 substituents as defined above for phenyl; or the group -(Q)_nR⁵ is 2-tetrahydroisoquinolinyl; and the pharmaceutically acceptable salts thereof;

provided that at least one of the groups R or R¹ is other than hydrogen or C_1 - C_6 alkyl, and R or R¹ is hydrogen only when the other of R and R¹ is substituted phenyl in which the substituent is phenyl; and provided further that at least one of the groups R₂ and R₃ is other than hydrogen, and when R³ is a group of the formula

R2 is other than a group of the formula

2. A compound as claimed in Claim 1 wherein R and R1 are in the trans stereoconfiguration.

5

10

15

20

25

30

35

40

45

50

- A compound as claim d in Claim 1 wherein R and R1 are in the cis stereoconfiguration.
- A compound as claimed in any one of Claims 1 to 3 having the formula

10

A compound as claimed in any one of Claims 1 to 3 having the formula

15

20

- A compound as claimed in Claim 5 wherein R² is a group of the formula -CONHY. 25
 - A compound as claimed in any one of Claims 1 to 6 wherein R3 is hydrogen. 7.
 - A compound as claimed in any one of Claims 1 to 6 wherein R² is methyl or carboxymethyl.

30

- A compound as claimed in any one of Claims 1 to 8 wherein R and R1 are phenyl or substituted phenyl.
- 10. A compound as claimed in any one of Claims 1 to 5 wherein \mathbb{R}^2 is hydrogen.
- 11. A compound as claimed in Claim 10 wherein R₃ is a group of the formula 35

40

12. A compound as claimed in Claim 10 or 11 wherein R and R1 are phenyl.

45

13. A compound as claimed in any one of Claims 10 to 12 wherein B is S.

14. A compound as claimed in any one of Claims 10 to 12 wherein B is 0.

50

- 15. A compound as claimed in any one of Claims 10 and 12 to 14 wherein R^3 is a group $-CB(Q)_n-(CH(R^6)]_{q^{-1}}$ (CH₂)_r-R⁷.
- 16. A compound as claimed in Claim 15 wherein R³ is -CSNH-(CH(R⁶)]₀-(CH₂)₁-R⁷.

- 17. A Compound as claimed in claim 15 or 16, wherein q and r are 0 and R7 is phenyl or substituted phenyl.
- 18. A compound as claimed in any one of Claims 15 to 17, wherein R and R1 are phenyl or substituted phenyl.

19. A pharmaceutical formulation comprising as an active ingredient an effective amount of a compound of any one of Claims 1 to 18 and a pharmaceutically acceptable carrier, excipient or diluent therefor.

Claims for the following Contracting States: GR and ES

1. A pharmaceutical formulation comprising, as an active ingredient, a compound of the formula

wherein R and R¹ are independently hydrogen, C_1 - C_6 alkyl, phenyl, benzyl, naphthyl, pyridyl or substituted phenyl having 1, 2, or 3 substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo, trifluoromethyl, phenyl, phenoxy, phenyl (C_1 - C_4 alkyl), phenyl(C_1 - C_4 alkoxy), phenylacetyl, C_1 - C_6 alkanoyl, cyano, carbamyl, nitro, C_1 - C_6 alkoxy-carbonyl, methylenedioxy, C_3 - C_6 alkylene, amino, -NH(C_1 - C_4 alkyl or benzyl), and N(C_1 - C_4 alkyl)₂;

R₂ is hydrogen, C₁-C₆ alkyl, carboxymethyl, C₁-C₄ alkoxycarbonylmethyl or a group of the formula

wherein t is 1 or 0; A is $-CH_2$ -, -O-, -NH- or $-N(C_1-C_6$ alkyl)-; and Y is phenyl or substituted phenyl as defined above:

 R_4 is C_1 - C_6 alkyl, carboxymethyl, or C_1 - C_4 alkoxycarbonylmethyl; R_3 is hydrogen or a group of the formula

wherein B is O or S; X is selected from the phenyl substituents defined above; m is 0, 1 or 2; n is 0 or 1; Q is -NH-, -N(C_1 - C_6 alkyl)-, -S-, or -O-; and R⁵ is a group of the formula -[CH(R⁶)]_q-(CH₂)_r-R⁷ wherein R⁶ is hydrogen or C_1 - C_6 alkyl; q is 0 or 1; r is 0, 1 or 2; and R⁷ is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, pentafluorophenyl, pyridyl, tetrahydronaphthyl, indolyl, quinolinyl, phenyl, naphthyl, or phenyl or naphthyl substituted with 1, 2, or 3 substituents as defined above for phenyl; or the group -(Q)_nR⁵ is 2-tetrahydroisoquinolinyl; and the pharmaceutically acceptable salts thereof;

provided that at least one of the groups R or R¹ is other than hydrogen or C_1 - C_6 alkyl, and R or R¹ is hydrogen only when the other of R and R¹ is substituted phenyl in which the substituent is phenyl; and provided further that at least one of the groups R₂ and R₃ is other than hydrogen, and when R³ is a group of the formula

R2 is other than a group of the formula

5

10

15

20

25

30

35

40

45

50

5

- 2. A formulation as claimed in Claim 1 wherein R and R¹ are in the trans stereoconfiguration.
- A formulation as claimed in Claim 1 wherein R and R¹ are in the cis stereoconfiguration.
- 10 4. A formulation as claimed in any one of Claims 1 to 3 having the formula

15

20

5. A formulation as claimed in any one of Claims 1 to 3 having the formula

25

30

- 6. A formulation as claimed in Claim 5 wherein R2 is a group of the formula -CONHY.
- 7. A formulation as claimed in any one of Claims 1 to 6 wherein R³ is hydrogen.

35

- 8. A formulation as claimed in any one of Claims 1 to 6 wherein R² is methyl or carboxymethyl.
- 9. A formulation as claimed in any one of Claims 1 to 8 wherein R and R1 are phenyl or substituted phenyl.
- 10. A formulation as claimed in any one of Claims 1 to 5 wherein R2 is hydrogen.
 - 11. A formulation as claimed in Claim 10 wherein R₃ is a group of the formula

45

- 12. A formulation as claimed in Claim 10 or 11 wherein R and R¹ are phenyl.
- 13. A formulation as claimed in any one of Claims 10 to 12 wh rein B is S.
- 55 14. A formulation as claimed in any one of Claims 10 to 12 wherein B is 0.
 - 15. A formulation as claimed in any one of Claims 10 and 12 to 14 wherein R^3 is a group -CB(Q)_n-[CH(R^6)]_q-(CH₂)_r- R^7 .

- 16. A formulation as claimed in claim 15 wherein R³ is -CSNH-[CH(R6)]_q-(CH₂)_r-R⁷.
- 17. A formulation as claimed in Claim 15 or 16, wherein q and r are 0 and R7 is phenyl or substituted phenyl.
- 18. A formulation as claimed in any one of Claims 15 to 17, wherein R and R1 are phenyl or substituted phenyl.
 - 19. A process for producing a compound of the formula

wherein R and R¹ are independently hydrogen, C_1 - C_6 alkyl, phenyl, benzyl, naphthyl, pyridyl or substituted phenyl having 1, 2, or 3 substituents selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo, trifluoromethyl, phenyl, phenoxy, phenyl(C_1 - C_4 alkyl), phenyl(C_1 - C_4 alkoxy), phenylacetyl, C_1 - C_6 alkanoyl, cyano, carbamyl, nitro, C_1 - C_6 alkoxy-carbonyl, methylenedioxy, C_3 - C_6 alkylene, amino, -NH(C_1 - C_4 alkyl or benzyl), and N(C_1 - C_4 alkyl)₂;

R₂ is hydrogen, C₁-C₆ alkyl, carboxymethyl, C₁-C₄ alkoxycarbonylmethyl or a group of the formula

wherein t is 1 or 0; A is -CH₂-, -O-, -NH- or -N(C₁-C₆ alkyl)-; and Y is phenyl or substituted phenyl as defined above:

 R_4 is C_1 - C_6 alkyl, carboxymethyl, or C_1 - C_4 alkoxycarbonylmethyl; R_3 is hydrogen or a group of the formula

or
$$B$$
 $C-(Q)_nR^5$

wherein B is O or S; X is selected from the phenyl substituents defined above; m is 0, 1 or 2; n is 0 or 1; Q is -NH-, -N(C_1 - C_6 alkyl)-, -S-, or -O-; and R⁵ is a group of the formula -[CH(R⁶)]_q-(CH₂)_r-R⁷ wherein R⁶ is hydrogen or C_1 - C_6 alkyl; q is 0 or 1; r is 0, 1 or 2; and R⁷ is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, pentafluorophenyl, pyridyl, tetrahydronaphthyl, indolyl, quinolinyl, phenyl, naphthyl, or phenyl or naphthyl substituted with 1, 2, or 3 substituents as defined above for phenyl; or the group -(Q)_nR⁵ is 2-tetrahydroisoquinolinyl; and the pharmaceutically acceptable salts thereof;

provided that at least one of the groups R or R¹ is other than hydrogen or C_1 - C_6 alkyl, and R or R¹ is hydrogen only when the other of R and R¹ is substituted phenyl in which the substituent is phenyl; and provided further that at least one of the groups R₂ and R₃ is other than hydrogen, and when R³ is a group of the formula

R2 is other than a group of the formula

5

16

15

20

25

30

35

40

45

50

which comprises acylating or alkylating a 3pyrazolidinone of the formula

under neutral or basic conditions with an acylating or alkylating agent selected to give the desired compound.

- 20. A process as claimed in Claim 19 wherein R and R¹ are in the trans stereoconfiguration.
- 21. A process as claimed in Claim 19 wherein R and R¹ are in the cis stereoconfiguration.
- 22. A process as claimed in any one of Claims 19 to 21 having the formula

23. A process as claimed in any one of Claims 19 to 21 having the formula

- 24. A process as claimed in Claim 23 wherein R² is a group of the formula -CONHY.
 - 25. A process as claimed in any one of Claims 19 to 24 wherein R³ is hydrogen.
 - 26. A process as claimed in any one of Claims 19 to 24 wherein R2 is methyl or carboxymethyl.
 - 27. A process as claimed in any one of Claims 19 to 26 wherein R and R1 are phenyl or substituted phenyl.
 - 28. A process as claimed in any one of Claims 19 to 23 wherein R² is hydrogen.
- 29. A process as claimed in Claim 28 wherein R₃ is a group of the formula

5

10

15

20

25

30

35

40

B (X),,

- 5
- 30. A process as claimed in Claim 28 or 29 wherein R and R¹ are phenyl.
- 10 31. A process as claimed in any one of Claims 28 to 30 wherein B is S.
 - 32. A process as claimed in any one of Claims 28 to 30 wherein B is 0.
- 33. A process as claimed in any one of Claims 28 and 30 to 32 wherein R^3 is a group $-CB(Q)_n-[CH(R^6)]_q-(CH_2)_r-15$ R^7 .
 - 34. A process as claimed in Claim 33 wherein R^3 is -CSNH-[CH(R^6)]_q-(CH₂)_r- R^7 .
 - 35. A process as claimed in Claim 33 or 34, wherein q and r are 0 and R7 is phenyl or substituted phenyl.
 - 36. A process as claimed in any one of Claims 33 to 35, wherein R and R1 are phenyl or substituted phenyl.
- 25

- 30
- 35
- 40
- 45
- 50
- 55

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 6374

ategory	Citation of document with indi	cation, where appropriate	Relevant	CI ACCUMA
acce.	of relevant passa	ges	to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
١.	FR-A-2 529 786 (ETABLISSE	MENTS NATIVELLE S.A.)		C07D231/08
				A61K31/415
`	EP-A-0 155 523 (A. NATTERM	ANN & CIE, GMBH)		C07D4D1/04
	ED_A_0 272 E12 /MYTCHT TO	ATOM		C07D401/06
1	EP-A-0 373 512 (MITSUI TO	AISU CHEMICALS, INC.)		C07D4D3/06
.	FR-A-1 114 874 (KODAK-PAT	ME /		C07D413/04
1	The second secon	,		C07D417/04
	FR-E-82 186 (KODAK-PATHE)			A61K31/44
- 1				A61K31/47 A61K31/40
.^	EP-A-0 166 355 (MERCK & CO	O.INC.)	i i	A61K31/42
- 1				A61K31/425
		•	!	•
- 1				
J				
			1	
			1	
				TECHNICAL PROPER
			1 /	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				CD7D
				A61K
1				
1			1 1	
- 1	·		1	
	-			
- 1				
- 1			1	
			1	
1				
1			1	
			·	
		~		
1			1	
			 	
	The present search report has been d	frawn up for all claims	1 1	
	Place of search	Date of completion of the search	' 	Examiner
ī	HE HAGUE	30 OCTOBER 1991	DE BL	YSER I.A.F.
CA	ATEGORY OF CITED DOCUMENTS	T · there are		
	ularly relevant if taken alone	T : theory or princip E : earlier patent do	cument, but publis	nvention hed on, or
: partic	ularly relevant if combined with another	after the filing di D: document cited i	ate	
docum	nent of the same category ological background	L: document cited for	or other reasons	
) : non-w	rritten disclosure	& : member of the sa	tone material family.	

EPO PORM 1503 03.82 (PO401)