Đồ thị: Đường đi ngắn nhất

Dijkstra's algorithm

- Duyệt đồ thị có trọng số
- Thuật toán tìm đường đi ngắn nhất Dijkstra's algorithm

Sử dụng một phần tài liệu bài giảng CS161 Stanford University

Shortest path from Gates to the Union?

Shortest path from Gates to the Union?

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
 - the cost of a path is the sum of the weights along that path
 - The shortest path is the one with the minimum cost.

- The distance d(u,v) between two vertices u and v is the cost of the the shortest path between u and v.
- For this lecture all graphs are directed, but to save on notation I'm just going to draw undirected edges.

Warm-up

• A sub-path of a shortest path is also a shortest path.

Dijkstra's algorithm

• Finds shortest paths from Gates to everywhere else.

A vertex is done when it's not on the ground anymore.

This creates a tree!

The shortest paths are the lengths along this tree.

How do we actually implement this?

Without string and gravity?

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).

Initialize $d[v] = \infty$ for all non-starting vertices v, and d[Gates] = 0

• Pick the **not-sure** node u with the smallest estimate d[u].

How far is a node from Gates?

x = d[v] is my best over-estimate for dist(Gates,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gates,v).

- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gates,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate for dist(Gates,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as **SUCE**.
- Repeat

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

x = d[v] is my best over-estimate
for dist(Gates,v).

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] = min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat

How far is a node from Gates?

I'm not sure yet

I'm sure

x = d[v] is my best over-estimate
for dist(Gates,v).

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
 - d[v] = min(d[v], d[u] + edgeWeight(u,v))
- Mark u as Sure.
- Repeat
- After all nodes are sure, say that d(Gates, v) = d[v] for all v

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v] = \infty$ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now d(s, v) = d[v]

Why does this work?

• Theorem:

- Suppose we run Dijkstra on G =(V,E), starting from s.
- At the end of the algorithm, the estimate d[v] is the actual distance d(s,v).

Let's rename "Gates" to "s", our starting vertex.

Proof outline:

- Claim 1: For all v, $d[v] \ge d(s,v)$.
- Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

Claims 1 and 2 imply the theorem.

When v is marked sure, d[v] = d(s,v).

Claim 2

Claim 1 + def of algorithm

- $d[v] \ge d(s,v)$ and never increases, so after v is sure, d[v] stops changing.
- This implies that at any time after v is marked sure, d[v] = d(s,v).
- All vertices are sure at the end, so all vertices end up with d[v] = d(s,v).

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- d[v] = ∞ for all v in V
- d[s] = 0
- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
 - Mark u as sure.
- Now dist(s, v) = d[v]
 - n iterations (one per vertex)
 - How long does one iteration take?

We need a data structure that:

- Stores unsure vertices v
- Keeps track of d[v]
- Can find u with minimum d[u]
 - findMin()
- Can remove that u
 - removeMin(u)
- Can update (decrease) d[v]
 - updateKey(v,d)

Just the inner loop:

- Pick the **not-sure** node u with the smallest estimate **d[u]**.
- Update all u's neighbors v:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))
- Mark u as sure.

Total running time is big-oh of:

$$\sum_{u \in V} \left(T(\text{findMin}) + \left(\sum_{v \in u.neighbors} T(\text{updateKey}) \right) + T(\text{removeMin}) \right)$$

= n(T(findMin) + T(removeMin)) + m T(updateKey)

If we use an array

- T(findMin) = O(n)
- T(removeMin) = O(n)
- T(updateKey) = O(1)
- Running time of Dijkstra

```
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))
=O(n<sup>2</sup>) + O(m)
=O(n<sup>2</sup>)
```

If we use a BST

- T(findMin) = O(log(n))
- T(removeMin) = O(log(n))
- T(updateKey) = O(log(n))
- Running time of Dijkstra

```
=O(n(T(findMin) + T(removeMin)) + m T(updateKey))
=O(nlog(n)) + O(mlog(n))
=O((n + m)log(n))
```

Better than an array if the graph is sparse! aka if m is much smaller than n²

Heaps support these operations

- findMin
- removeMin
- updateKey

 A heap is a tree-based data structure that has the property that every node has a smaller key than its children.

Say we use a Heap

- T(findMin) = O(1)
- T(removeMin) = O(log(n))
- T(updateKey) = O(1)
- Running time of Dijkstra

```
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))
= O(nlog(n) + m)
```

Ứng dụng thực tế

• eg, OSPF (Open Shortest Path First), a routing protocol for IP networks, uses Dijkstra.

Hạn chế

- Chỉ áp dụng cho đồ thị có trọng số không âm (non-negative edge weights).
- Nếu một cạnh thay đổi trọng số, phải chạy lại thuật toán từ đầu.