CHAPTER

4

MECHANICS OF MATERIALS

Ferdinand P. Beer

E. Russell Johnston, Jr.

John T. DeWolf

David F. Mazurek

Pure Bending

Lecture Notes:

Brock E. Barry

U.S. Military Academy

Lecture 8 02/05/2018 Modified from Original

HW Problems Week 5 (due Mon 02/12):

4.33, 4.39, 4.106, 4.107, 4.130, 4.141

Bending of Members Made of Several Materials

Fig. 4.19 Stress and strain distributions in bar Made of two materials. (a) Neutral axis shifted from • centroid. (b) Strain distribution. (c) Corresponding stress distribution.

Fig. 4.20 Transformed section based on stiffness is used to locate neutral axis.

Fig. 4.21 Distribution of stresses in transformed section.

- Consider a bar consisting of two different materials with E_1 and E_2 .
- Normal strain varies linearly with distance y. $\varepsilon_x = -\frac{y}{c}$
- Piecewise linear normal stress variation.

$$\sigma_1 = E_1 \varepsilon_x = -\frac{E_1 y}{\rho}$$
 $\sigma_2 = E_2 \varepsilon_x = -\frac{E_2 y}{\rho}$

Neutral axis does not pass through section centroid of composite section.

- Elemental forces on the section are $dF_1 = \sigma_1 dA = -\frac{E_1 y}{2} dA \quad dF_2 = \sigma_2 dA = -\frac{E_2 y}{2} dA$
- Define a transformed section such that

$$dF_2 = -\frac{(nE_1)y}{\rho}dA = -\frac{E_1y}{\rho}(n\,dA) \qquad n = \frac{E_2}{E_1}$$

Concept Application 4.3

Fig. 4.22a Composite, sandwich structure cross section.

Bar is made from bonded pieces of steel ($E_s = 29 \times 10^6$ psi) and brass ($E_b = 15 \times 10^6$ psi). Determine the maximum stress in the steel and brass when a moment of 40 kip*in is applied.

- Transform the bar to an equivalent cross section made entirely of brass
- Evaluate the cross sectional properties of the transformed section
- Calculate the maximum stress in the transformed section. This is the correct maximum stress for the brass pieces of the bar.
- Determine the maximum stress in the steel portion of the bar by multiplying the maximum stress for the transformed section by the ratio of the moduli of elasticity.

Example 4.03

Fig. 4.22b Bar length and height dimensions.

SOLUTION:

• Transform the bar to an equivalent cross section made entirely of brass.

$$n = \frac{E_s}{E_b} = \frac{29 \times 10^6 \text{ psi}}{15 \times 10^6 \text{ psi}} = 1.933$$
$$b_T = 0.4 \text{ in} + 1.933 \times 0.75 \text{ in} + 0.4 \text{ in} = 2.25 \text{ in}$$

• Evaluate the transformed cross sectional properties

$$I = \frac{1}{12}b_T h^3 = \frac{1}{12}(2.25 \text{ in.})(3 \text{ in.})^3$$
$$= 5.063 \text{ in.}^4$$

• Calculate the maximum stresses

$$\sigma_m = \frac{Mc}{I} = \frac{(40 \text{ kip} \cdot \text{in.})(1.5 \text{ in.})}{5.063 \text{ in.}^4} = 11.85 \text{ ksi}$$

$$(\sigma_b)_{\text{max}} = \sigma_m$$

$$(\sigma_s)_{\text{max}} = n\sigma_m = 1.933 \times 11.85 \text{ ksi}$$

$$(\sigma_s)_{\text{max}} = 22.9 \text{ ksi}$$

Reinforced Concrete Beams

Fig. 4.23 Reinforced concrete beam: (a) Cross section showing location of reinforcing steel. (b) Transformed section of all concrete. (c) Concrete stresses and resulting steel force.

- Concrete beams subjected to bending moments are reinforced by steel rods.
- The steel rods carry the entire tensile load below the neutral surface. The upper part of the concrete beam carries the compressive load.
- In the transformed section, the cross sectional area of the steel, A_s , is replaced by the equivalent area nA_s where $n = E_s/E_c$.
 - To determine the location of the neutral axis,

$$(bx)\frac{x}{2} - nA_s(d-x) = 0$$

$$\frac{1}{2}bx^2 + nA_sx - nA_sd = 0$$

• The normal stress in the concrete and steel

$$\sigma_{x} = -\frac{My}{I}$$

$$\sigma_{c} = \sigma_{x} \qquad \sigma_{s} = n\sigma_{x}$$

Sample Problem 4.4

A concrete floor slab is reinforced with 5/8-in-diameter steel rods placed 1.5 in. above the lower face of the slab and spaced 6 in. on centers. The modulus of elasticity is 29x10⁶psi for steel and 3.6x10⁶psi for concrete. With an applied bending moment of 40 kip*in for 1-ft width of the slab, determine the maximum stress in the concrete and steel.

- Transform to a section made entirely of concrete.
- Evaluate geometric properties of transformed section.
- Calculate the maximum stresses in the concrete and steel.

Sample Problem 4.4

Fig. 1 Transformed section to calculate neutral axis.

Fig. 3 Force diagram at a cross section to calculate stresses.

SOLUTION:

• Transform to a section made entirely of concrete.

$$n = \frac{E_s}{E_c} = \frac{29 \times 10^6 \text{ psi}}{3.6 \times 10^6 \text{ psi}} = 8.06$$
$$nA_s = 8.06 \times 2 \left[\frac{\pi}{4} \left(\frac{5}{8} \text{ in} \right)^2 \right] = 4.95 \text{in}^2$$

• Evaluate the geometric properties of the transformed section.

$$12x\left(\frac{x}{2}\right) - 4.95(4 - x) = 0 \qquad x = 1.450in$$
$$I = \frac{1}{3}(12in)(1.45in)^3 + \left(4.95in^2\right)(2.55in)^2 = 44.4in^4$$

Calculate the maximum stresses.

$$\sigma_c = \frac{Mc_1}{I} = \frac{40 \text{kip} \cdot \text{in} \times 1.45 \text{in}}{44.4 \text{in}^4}$$

$$\sigma_s = n \frac{Mc_2}{I} = 8.06 \frac{40 \text{kip} \cdot \text{in} \times 2.55 \text{in}}{44.4 \text{in}^4}$$

$$\sigma_c$$
 = 1.306ksi

$$\sigma_s = 18.52 \text{ksi}$$

Eccentric Axial Loading in a Plane of Symmetry

Fig. 4.39 (a) Member with eccentric loading. (b) Free-body diagram of a member with internal loads at section C.

• Eccentric loading

$$F = P$$

$$M = Pd$$

 Stress due to eccentric loading found by superposing the uniform stress due to a centric load and linear stress distribution due to a pure bending moment

$$\sigma_{x} = (\sigma_{x})_{\text{centric}} + (\sigma_{x})_{\text{bending}}$$
$$= \frac{P}{A} - \frac{My}{I}$$

 Result are valid if stresses do not exceed the proportional limit, deformations have negligible effect on geometry, and stresses are not evaluated near points of load application.

Fig. 4.41 Stress distribution for eccentric loading is obtained by superposing the axial and pure bending distributions.

Concept Application 4.7

An open-link chain is obtained by bending low-carbon steel rods into the shape shown. For 160 lb load, determine (a) maximum tensile and compressive stresses, (b) distance between section centroid and neutral axis

- Find the equivalent centric load and bending moment
- Superpose the uniform stress due to the centric load and the linear stress due to the bending moment.
- Evaluate the maximum tensile and compressive stresses at the inner and outer edges, respectively, of the superposed stress distribution.
- Find the neutral axis by determining the location where the normal stress is zero.

Concept Application 4.7

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Normal stress due to a centric load

$$A = \pi c^{2} = \pi (0.25 \text{in})^{2}$$

$$= 0.1963 \text{in}^{2}$$

$$\sigma_{0} = \frac{P}{A} = \frac{160 \text{lb}}{0.1963 \text{in}^{2}}$$

$$= 815 \text{psi}$$

- **Fig. 4.43** Free-body diagram for section at C to find axial force and moment. Stress at section C is superposed axial and bending stresses.
- Equivalent centric load and bending moment P = 160 lbM = Pd = (160 lb)(0.65 in) $= 104 \text{ lb} \cdot \text{in}$

• Normal stress due to bending moment

$$I = \frac{1}{4}\pi c^4 = \frac{1}{4}\pi (0.25)^4$$
$$= 3.068 \times 10^{-3} \text{ in }^4$$
$$= Mc = (104 \text{ lb} \cdot \text{in})(0.25)^4$$

$$\sigma_m = \frac{Mc}{I} = \frac{(104 \text{ lb} \cdot \text{in})(0.25 \text{ in})}{3.068 \times 10^{-3} \text{ in}^4}$$
$$= 8475 \text{ psi}$$

Concept Application 4.7

Fig. 4.43 (c) Axial stress at section C. (d) Bending stress at C. (e) Superposition of stresses.

Maximum tensile and compressive stresses

$$\sigma_t = \sigma_0 + \sigma_m$$

$$= 815 + 8475$$

$$\sigma_c = \sigma_0 - \sigma_m$$

$$= 815 - 8475$$

$$\sigma_c = -7660 \text{psi}$$

Neutral axis location

$$0 = \frac{P}{A} - \frac{My_0}{I}$$
$$y_0 = \frac{P}{A} \frac{I}{M} = (815 \text{psi}) \frac{3.068 \times 10^{-3} \text{in}^4}{105 \text{lb} \cdot \text{in}}$$

$$y_0 = 0.0240$$
in

Sample Problem 4.8

Fig. 1 Section geometry to find centroid location.

From Sample Problem 4.2,

$$A = 3 \times 10^{-3} \,\mathrm{m}^2$$
$$\overline{Y} = 0.038 \mathrm{m}$$

$$I = 868 \times 10^{-9} \,\mathrm{m}^4$$

The largest allowable stresses for the cast iron link are 30 MPa in tension and 120 MPa in compression. Determine the largest force *P* which can be applied to the link.

- Determine equivalent centric load and bending moment.
- Superpose the stress due to a centric load and the stress due to bending.
- Evaluate the critical loads for the allowable tensile and compressive stresses.
- The largest allowable load is the smallest of the two critical loads.

Sample Problem 4.8

Fig. 2 Section dimensions for finding location of point D.

Figs. 4 Stress distribution at section C is superposition of axial and bending distributions acting at centroid.

• Determine equivalent centric and bending loads.

$$d = 0.038 - 0.010 = 0.028$$
m

$$P =$$
centricload

$$M = Pd = 0.028P$$
 = bending moment

Superpose stresses due to centric and bending loads

$$\sigma_A = -\frac{P}{A} + \frac{Mc_A}{I} = -\frac{P}{3 \times 10^{-3}} + \frac{(0.028 P)(0.022)}{868 \times 10^{-9}} = +377 P$$

$$\sigma_B = -\frac{P}{A} - \frac{Mc_A}{I} = -\frac{P}{3 \times 10^{-3}} - \frac{(0.028 P)(0.038)}{868 \times 10^{-9}} = -1559 P$$

• Evaluate critical loads for allowable stresses.

$$\sigma_A = +377 P = 30 \text{MPa}$$
 $P = 79.6 \text{kN}$
 $\sigma_B = -1559 P = -120 \text{MPa}$ $P = 77.0 \text{kN}$

• The largest allowable load

P = 77.0 kN