Week 3

Multilinear Spaces, Operations, and Conventions

3.1 Exterior Powers Basis and the Determinant

```
4/13: • Plan:
```

- Finish multilinear algebra.
- Basis for $\Lambda^k(V^*)$.
- Talk a bit about pullbacks and the determinant.
- **Orientations** of vector spaces.
- The interior product.
- Basis for $\Lambda^k(V^*)$.
 - Recall that $\{Alt(e_I^*) \mid I \text{ is a nonrepeating, increasing partition of } n \text{ into } k \text{ parts} \}$ is a basis for $\mathcal{A}^k(V)$.
- Alt is an isomorphism from $\Lambda^k(V^*)$ to $\mathcal{A}^k(V)$.
- If we have an injective map from $\mathcal{A}^k(V)$ to $\mathcal{L}^k(V)$ and π a projection map from $\mathcal{L}^k(V)$ to the quotient space $\mathcal{A}^k(V^*)$ gives rise to $\pi|_{\mathcal{A}^k(V)}$.
- Claim:
 - 1. $\pi|_{\mathcal{A}^k(V)}$ is an isomorphism.
 - 2. $\pi(\text{Alt}(e_I^*)) = k!\pi(e_I^*).$
 - (2) implies that $\{\pi(e_I^*) = e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*, \ I \text{ non-repeating and increasing} \}$ is a basis for $\Lambda^k(V^*)$.
- Examples:
 - 1. $n=2=\dim V, V=\mathbb{R}e_1\oplus\mathbb{R}e_2$.
 - $-\Lambda^0(V^*) = \mathbb{R} \text{ since } \binom{n}{0} = 1.$
 - $-\Lambda^{1}(V^{*}) = \mathbb{R}e_{1}^{*} \oplus \mathbb{R}e_{2}^{*} \text{ since } \binom{n}{1} = 2.$
 - $-\Lambda^2(V^*) = \mathbb{R}e_1^* \wedge e_2^* \text{ since } \binom{n}{2} = 1.$
 - For the second to last one, note that $e_1^* \wedge e_2^* = -e_2^* \wedge e_1^*$.
 - $-\Lambda^{3}(V^{*}) = 0$ since $\binom{2}{3} = 0$.
 - For the last one, note that all $e_1^* \wedge e_1^* \wedge e_2^* = 0$.
 - 2. $n=3, V=\mathbb{R}e_1\oplus\mathbb{R}e_2\oplus\mathbb{R}e_3$.

$$\begin{split} & - \, \binom{n}{0} = 1 \colon \, \Lambda^0(V^*) = \mathbb{R}. \\ & - \, \binom{n}{1} = 3 \colon \, \Lambda^1(V^*) = \mathbb{R}e_1^* \oplus \mathbb{R}e_2^* \oplus \mathbb{R}e_3^*. \\ & - \, \binom{n}{2} = 3 \colon \, \Lambda^2(V^*) = \mathbb{R}e_1^* \wedge e_2^* \oplus \mathbb{R}e_2^* \wedge e_3^* \oplus \mathbb{R}e_1^* \wedge e_3^*. \\ & - \, \binom{n}{3} = 1 \colon \, \Lambda^3(V^*) = \mathbb{R}e_1^* \wedge e_2^* \wedge e_3^*. \\ & - \, \binom{n}{m} = 0 \, \, (m > n) \colon \, \Lambda^m(V^*) = \Lambda^4(V^*) = 0. \end{split}$$

• If $A: V \to W$, $\omega_1 \in \Lambda^k(W^*)$, $\omega_2 \in \Lambda^\ell(W^*)$, then

$$A^*(\omega_1 \wedge \omega_2) = A^*\omega_1 \wedge A^*\omega_2$$

- **Determinant**: Let dim V = n. Let $A: V \to V$ be a linear transformation. This induces a pullback $A^*: \Lambda^n(V^*) \to \Lambda^n(V^*)$. The top exterior power k = n implies $\binom{k}{n} = 1$. We define $\det(A)$ to be the unique real number such that $A^*(v) = \det(A)v$.
- This determinant is the one we know.
 - $-A^*$ sends $e_1^* \wedge \cdots \wedge e_n^*$ to $A^*e_1^* \wedge \cdots \wedge A^*e_n^*$ which equals $A^*(e_1^* \wedge \cdots \wedge e_n^*)$ or $\det(A)$
- Sanity check.
 - 1. $\det(id) = 1$.

$$-\operatorname{id}(e_1^* \wedge \cdots \wedge e_n^*) = \operatorname{id} e_1^* \wedge \cdots \wedge \operatorname{id} e_n^* = 1 \cdot e_1^* \wedge \cdots \wedge e_n^*.$$

- 2. If A is not an isomorphism, then det(A) = 0.
 - If A is not an isomorphism, then there exists $v_1 \in \ker A$ with $v_1 \neq 0$. Let v_1^*, \dots, v_n^* be a basis of V^* . So the pullback of this wedge is the wedge of the pullbacks, but $A^*v_1^* = 0$, so

$$A^*(v_1^* \wedge \dots \wedge v_n^*) = (A^*v_1^*) \wedge \dots \wedge (A^*v_n^*) = 0 \wedge \dots \wedge (A^*v_n^*) = 0 = 0 \cdot v_1^* \wedge \dots \wedge v_n^*$$

- 3. det(AB) = det(A) det(B).
 - Let $A: V \to V$ and $B: V \to V$.
 - We have $(AB)^* = B^*A^*$; in particular, n = k, V = W = U = V.
- Recall: If we pick a basis for V, e_1, \ldots, e_n
 - Implies $[a_{ij}] = [A]_{e_1,...,e_n}^{e_1,...,e_n}$.
- Does $\det(A) = \det([a_{ij}]) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$?
 - If $A: V \to V$, we know that $A^*: \Lambda^n(V^*) \to \Lambda^n(V^*)$ takes $e_1^* \wedge \cdots \wedge e_n^* \mapsto A^*(e_1^* \wedge \cdots \wedge e_n^*)$. We WTS

$$A^*(e_1^* \wedge \dots \wedge e_n^*) = \left[\sum_{\sigma \in S_n} (-1)^{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} \right] e_1^* \wedge \dots \wedge e_n^*$$

- We have that

$$A^{*}(e_{1}^{*} \wedge \dots \wedge e_{n}^{*}) = A^{*}e_{1}^{*} \wedge \dots \wedge A^{*}e_{n}^{*}$$

$$= \left(\sum_{i_{1}=1}^{n} a_{i_{1},1}e_{i_{1}}^{*}\right) \wedge \dots \wedge \left(\sum_{i_{n}=1}^{n} a_{i_{n},n}e_{i_{n}}^{*}\right)$$

$$= \sum_{i_{1},\dots,i_{n}} a_{i_{1},1} \cdots a_{i_{n},n}e_{i_{1}}^{*} \wedge \dots \wedge e_{i_{n}}^{*}$$

$$= \left[\sum_{\sigma \in S_{n}} (-1)^{\sigma} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}\right] e_{1}^{*} \wedge \dots \wedge e_{n}^{*}$$

where the sign arises from the need to reorder $e_{i_1}^* \wedge \cdots \wedge e_{i_n}^*$ and the antisymmetry of the wedge product.

3.2 The Interior Product and Orientations

- 4/15: Plan:
 - Orientations.
 - Interior product.
 - Interior product: We know that $\Lambda^k(V^*) \cong \mathcal{A}^k(V)$. Fix $v \in V$. Define $\iota_v : \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$.
 - Wrong way: We take $\iota_v : \mathcal{L}^k(V) \to \mathcal{L}^{k-1}(V)$.

$$T \mapsto \sum_{r=1}^{k} (-1)^{r-1} T(v_1, \dots, v_r, \dots, v_{k-1})$$

- Right way: First define $\varphi_v : \mathcal{A}^k(V) \to \mathcal{A}^{k-1}(V)$ by

$$T \mapsto T_v(v_1, \dots, v_{k-1}) = T(v, v_1, \dots, v_{k-1})$$

- Check: $T_{v_1+v_2} = T_{v_1} + T_{v_2}$. $T_{\lambda v} = \lambda T_v$. $\varphi_v^{k-1} \circ \varphi_v^k = 0$ implies $\varphi_v \circ \varphi_w = -\varphi_w \circ \varphi_v$.
- Properties:
 - $0. \ \iota_v T \in \mathcal{L}^{k-1}(V).$
 - 1. ι_v is a linear map. This is all happening in the set $\operatorname{Hom}(\mathcal{L}^k(V), \mathcal{L}^{k-1}(V))$.
 - 2. $\iota_{v_1+v_2} = \iota_{v_1} + \iota_{v_2}; \ \iota_{\lambda v} = \lambda \iota_v.$
 - 3. "Product rule": If $T_1 \in \mathcal{L}^p(V)$ and $T_1 \in \mathcal{L}^q(V)$, then $\iota_v(T_1 \otimes T_2) = \iota_v T_1 \otimes T_2 + (-1)^p T_1 \otimes \iota_v T_2$.
 - 4. We have

$$\iota_v(\ell_1 \otimes \cdots \otimes \ell_k) = \sum_{r=1}^k (-1)^{r-1} \ell_r(v) \ell_1 \otimes \cdots \otimes \hat{\ell}_r \otimes \cdots \otimes \ell_k$$

- 5. $\iota_v \circ \iota_v = 0 \in \operatorname{Hom}(\mathcal{L}^k(V), \mathcal{L}^{k-2}(V)).$
 - Note that this is related to $d^2 = 0$ from the first day of class (alongside $\int_m dw = \int_{\partial m} w$).
 - Proof: We induct on k. It suffices to prove the result for T decomposable.
 - Trivial base case for k = 1.
 - We have that

$$(\iota_v \circ \iota_v)(\ell_1 \otimes \cdots \otimes \ell_{k-1} \otimes \ell) = \iota_v(\iota_v T \otimes \ell + (-1)^{k-1}\ell(v)T)$$

$$= \iota_v(\iota_v T \otimes \ell) + (-1)^{k-1}\ell(v)\iota_v T$$

$$= (-1)^{k-2}\ell(v)\iota_v T + (-1)^{k-1}\ell(v)\iota_v T$$

$$= (-1)^{k-2}\ell(v)\iota_v T - (-1)^{k-2}\ell(v)\iota_v T$$

$$= 0$$

- 6. If $T \in \mathcal{I}^k(V)$, then $\iota_v T \in \mathcal{I}^{k-1}(V)$.
 - Thus, ι_v induces a map $\iota_v : \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$.
 - Proof: It suffices to check this for decomposables.
- 7. $\iota_{v_1} \circ \iota_{v_2} = -\iota_{v_2} \circ \iota_{v_1}$.
- Orientations:
 - A vector space V should have two orientations.
 - Two bases e_1, \ldots, e_n and f_1, \ldots, f_n are **orientation equivalent** if $T: V \to V$ an isomorphism has positive determinant. Otherwise, they are **orientation-inequivalent**.

- An orientation on V is a choice of equivalence classes of bases under the equivalence relation on bases.
- $-T:V\to W$ given orientations, T preserves or reverses orientations.
- Fancy orientations.
 - An orientation on a 1D vector space L is a division into two halves.
 - Def: An orientation of V is an orientation of $\Lambda^n(V^*)$.
- We can prove that they're both the same.
 - If W and V are both oriented, then V/W gets a canonical orientation.

3.3 Chapter 1: Multilinear Algebra

From Guillemin and Haine (2018).

• $\iota_v T$: The (k-1)-tensor defined by

$$(\iota_v T)(v_1, \dots, v_{k-1}) = \sum_{r=1}^k (-1)^{r-1} T(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{k-1})$$

where $T \in \mathcal{L}^k(V)$, $k \in \mathbb{N}_0$, V is a vector space, and $v \in V$.

• If $v = v_1 + v_2$, then

4/14:

$$\iota_v T = \iota_{v_1} T + \iota_{v_2} T$$

• If $T = T_1 + T_2$, then

$$\iota_v T = \iota_v T_1 + \iota_v T_2$$

• Lemma 1.7.4: If $T = \ell_1 \otimes \cdots \otimes \ell_k$, then

$$\iota_v T = \sum_{r=1}^k (-1)^{r-1} \ell_r(v) \ell_1 \otimes \cdots \otimes \hat{\ell}_r \otimes \cdots \otimes \ell_k$$

where the hat over ℓ_r means that ℓ_r is deleted from the tensor product.

• Lemma 1.7.6: $T_1 \in \mathcal{L}^p(V)$ and $T_2 \in \mathcal{L}^q(V)$ imply

$$\iota_v(T_1 \otimes T_2) = \iota_v T_1 \otimes T_2 + (-1)^p T_1 \otimes \iota_v T_2$$

• Lemma 1.7.8: $T \in \mathcal{L}^k(V)$ implies that for all $v \in V$, we have

$$\iota_v(\iota_v T) = 0$$

Proof. It suffices by linearity to prove this for decomposable tensors. We induct on k. For the base case k=1, the claim is trivially true. Now suppose inductively that we have proven the claim for k-1. Consider $\ell_1 \otimes \cdots \otimes \ell_k$. Taking $T = \ell_1 \otimes \cdots \otimes \ell_{k-1}$ and $\ell = \ell_k$, we obtain

$$\iota_v(\iota_v(T\otimes\ell)) = \iota_v(\iota_v T) \otimes \ell + (-1)^{k-2}\ell(v)\iota_v T + (-1)^{k-1}\ell(v)\iota_v T$$

The first term is zero by the inductive hypothesis, and the second two cancel each other out, as desired. \Box

• Claim 1.7.10: For all $v_1, v_2 \in V$, we have that

$$\iota_{v_1} \iota_{v_2} = -\iota_{v_2} \iota_{v_1}$$

Proof. Let $v = v_1 + v_2$. Then $\iota_v = \iota_{v_1} + \iota_{v_2}$. Therefore,

$$0 = \iota_{v}\iota_{v}$$
 Lemma 1.7.8
= $(\iota_{v_{1}} + \iota_{v_{2}})(\iota_{v_{1}} + \iota_{v_{2}})$
= $\iota_{v_{1}}\iota_{v_{1}} + \iota_{v_{1}}\iota_{v_{2}} + \iota_{v_{2}}\iota_{v_{1}} + \iota_{v_{2}}\iota_{v_{2}}$
= $\iota_{v_{1}}\iota_{v_{2}} + \iota_{v_{2}}\iota_{v_{1}}$ Lemma 1.7.8

yielding the desired result.

• Lemma 1.7.11: If $T \in \mathcal{L}^k(V)$ is redundant, then so is $\iota_v T$.

Proof. Let $T = T_1 \otimes \ell \otimes \ell \otimes T_2$ where $\ell \in V^*$, $T_1 \in \mathcal{L}^p(V)$, and $T_2 \in \mathcal{L}^q(V)$. By Lemma 1.7.6, we have that

$$\iota_v T = \iota_v T_1 \otimes \ell \otimes \ell \otimes T_2 + (-1)^p T_1 \otimes \iota_v (\ell \otimes \ell) \otimes T_2 + (-1)^{p+2} T_1 \otimes \ell \otimes \ell \otimes \iota_v T_2$$

Thus, since the first and third terms above are redundant and $\iota_v(\ell \otimes \ell) = \ell(v)\ell - \ell(v)\ell = 0$ by Lemma 1.7.4, we have the desired result.

- $\iota_{\boldsymbol{v}}\boldsymbol{\omega}$: The $\mathcal{I}^k(V)$ -coset $\pi(\iota_{\boldsymbol{v}}T)$, where $\omega=\pi(T)$.
- Proves that $\iota_v\omega$ does not depend on the choice of T.
- Inner product operation: The linear map $\iota_v: \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$.
- The inner product has the following important identities.

$$\iota_{(v_1+v_2)}\omega = \iota_{v_1}\omega + \iota_{v_2}\omega$$

$$\iota_v(\omega_1 \wedge \omega_2) = \iota_v\omega_1 \wedge \omega_2 + (-1)^p\omega_1 \wedge \omega_2$$

$$\iota_v(\iota_v\omega) = 0$$

$$\iota_{v_1}\iota_{v_2}\omega = -\iota_{v_2}\iota_{v_1}\omega$$

4/18: • As we developed the pullback $A^*T \in \mathcal{L}^k(V)$, we now look to develop a pullback on $\Lambda^k(V^*)$.

• Lemma 1.8.1: If $T \in \mathcal{I}^k(W)$, then $A^*T \in \mathcal{I}^k(V)$.

Proof. It suffices to prove this for redundant k-tensors. Let $T = \ell_1 \otimes \cdots \otimes \ell_k$ be such that $\ell_i = \ell_{i+1}$. Then we have that

$$A^*T = A^*(\ell_1 \otimes \cdots \otimes \ell_k)$$

$$= A^*\ell_1 \otimes \cdots \otimes A^*\ell_k$$
 Exercise 1.3.iii

where $A^*\ell_i = A^*\ell_{i+1}$ so that $A^*T \in \mathcal{I}^k(V)$, as desired.

- $A^*\omega$: The $\mathcal{I}^k(W)$ -coset $\pi(A^*T)$, where $\omega = \pi(T)$.
- Claim 1.8.3: $A^*\omega$ is well-defined.

Proof. Suppose $\omega = \pi(T) = \pi(T')$. Then T = T' + S where $S \in \mathcal{I}^k(W)$. It follows that $A^*T = A^*T' + A^*S$, but since $A^*S \in \mathcal{I}^k(V)$ (Lemma 1.8.1), we have that

$$\pi(A^*T) = \pi(A^*T')$$

as desired. \Box

• Proposition 1.8.4. The map $A^*: \Lambda^k(W^*) \to \Lambda^k(V^*)$ sending $\omega \mapsto A^*\omega$ is linear. Moreover,

1. If $\omega_i \in \Lambda^{k_i}(W^*)$ (i=1,2), then

$$A^*(\omega_1 \wedge \omega_2) = A^*(\omega_1) \wedge A^*(\omega_2)$$

2. If U is a vector space and $B: U \to V$ is a linear map, then for $\omega \in \Lambda^k(W^*)$,

$$B^*A^*\omega = (AB)^*\omega$$

(Hint: This proposition follows immediately from Exercises 1.3.iii-1.3.iv.)

- **Determinant** (of A): The number a such that $A^*\omega = a\omega$, where $A^*: \Lambda^n(V^*) \to \Lambda^n(V^*)$. Denoted by $\det(A)$.
- Proposition 1.8.7: If A and B are linear mappings of V into V, then

$$det(AB) = det(A) det(B)$$

Proof. Proposition 1.8.4(2) implies that

$$det(AB)\omega = (AB)^*\omega$$

$$= B^*(A^*\omega)$$

$$= det(B)A^*\omega$$

$$= det(B) det(A)\omega$$

as desired.

- id_V : The identity map on V.
- Proposition 1.8.8: $\det(\mathrm{id}_V) = 1$.
 - Hint: id_V^* is the identity map on $\Lambda^n(V^*)$.
- Proposition 1.8.9: If $A: V \to V$ is not surjective, then $\det(A) = 0$.

Proof. Let $W = \operatorname{im}(A)$. If A is not onto, dim W < n, implying that $\Lambda^n(W^*) = 0$. Now let $A = i_W B$ where i_W is the inclusion map of W into V and B is the mapping A regarded as a mapping from V to W. It follows by Proposition 1.8.4(1) that if $\omega \in \Lambda^n(V^*)$, then

$$A^*\omega = B^*i_W^*\omega$$

where $i_W^*\omega = 0$ as an element of $\Lambda^n(W^*)$.

- Deriving the typical formula for the determinant.
 - Let V, W be n-dimensional vector spaces with respective bases e_1, \ldots, e_n and f_1, \ldots, f_n .
 - Denote the corresponding dual bases by e_1^*, \ldots, e_n^* and f_1^*, \ldots, f_n^* .
 - Let $A: V \to W$. Recall that if the matrix of A is $[a_{i,j}]$, then the matrix of $A^*: W^* \to V^*$ is $(a_{j,i})$, i.e., if

$$Ae_j = \sum_{i=1}^n a_{i,j} f_i$$

then

$$A^*f_j^* = \sum_{i=1}^n a_{j,i}e_i^*$$

- It follows that

$$A^{*}(f_{1}^{*} \wedge \dots \wedge f_{n}^{*}) = A^{*}f_{1}^{*} \wedge \dots \wedge A^{*}f_{n}^{*}$$

$$= \sum_{1 \leq k_{1}, \dots, k_{n} \leq n} (a_{1,k_{1}}e_{k_{1}}^{*}) \wedge \dots \wedge (a_{n,k_{n}}e_{k_{n}}^{*})$$

$$= \sum_{1 \leq k_{1}, \dots, k_{n} \leq n} a_{1,k_{1}} \dots a_{n,k_{n}}e_{k_{1}}^{*} \wedge \dots \wedge e_{k_{n}}^{*}$$

- At this point, we are summing over all possible lists of length n containing the numbers between 1 and n at each index.
 - However, any list in which a number repeats will lead to a wedge product of a linear functional with itself, making that term equal to zero.
 - Thus, it is only necessary to sum over those terms that are non-repeating.
 - But the terms that are non repeating are exactly the permutations $\sigma \in S_n$.
- Thus,

$$A^*(f_1^* \wedge \dots \wedge f_n^*) = \sum_{\sigma \in S_n} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} (e_1^* \wedge \dots \wedge e_n^*)^{\sigma}$$

$$= \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1,\sigma(1)} \dots a_{n,\sigma(n)} e_1^* \wedge \dots \wedge e_n^*$$

$$= \det([a_{i,j}]) e_1^* \wedge \dots \wedge e_n^*$$

- If V = W and $e_i = f_i$ (i = 1, ..., n), then we may define $\omega = e_1^* \wedge \cdots \wedge e_n^* = f_1^* \wedge \cdots \wedge f_n^* \in \Lambda^k(V^*)$ to obtain

$$A^*\omega = \det([a_{i,j}])\omega$$

which proves that

$$\det(A) = \det([a_{i,j}])$$

as desired.

- Orientation (of ℓ): A choice of one of the disconnected components of $\ell \setminus \{0\}$, where $\ell \subset \mathbb{R}^2$ is a straight line through the origin.
- Orientation (of L): A choice of one of the connected components of $L \setminus \{0\}$, where L is a one-dimensional vector space.
- Positive component (of $L \setminus \{0\}$): The component chosen in the orientation of L. Denoted by L_+ .
- Negative component (of $L \setminus \{0\}$): The component chosen in the orientation of L. Denoted by L_- .
- Positively oriented $(v \in L)$: A vector $v \in L$ such that $v \in L_+$.
- Orientation (of V) An orientation of the one-dimensional vector space $\Lambda^n(V^*)$, where V is an n-dimensional vector space.
- "One important way of assigning an orientation to V is to choose a basis e_1, \ldots, e_n of V. Then if e_1^*, \ldots, e_n^* is the dual basis, we can orient $\Lambda^n(V^*)$ by requiring that $e_1^* \wedge \cdots \wedge e_n^*$ be in the positive component of $\Lambda^n(V^*)$ " (Guillemin & Haine, 2018, p. 29).
- Positively oriented (ordered basis e_1, \ldots, e_n of V): An ordered basis $e_1, \ldots, e_n \in V$ such that $e_1^* \wedge \cdots \wedge e_n^* \in \Lambda^n(V^*)_+$.
- Proposition 1.9.7: If e_1, \ldots, e_n is positively oriented, then f_1, \ldots, f_n is positively oriented iff $\det[a_{i,j}] > 0$ where $e_j = \sum_{i=1}^n a_{i,j} f_i$.

Proof. We have that

$$f_1^* \wedge \dots \wedge f_n^* = \det[a_{i,j}]e_1^* \wedge \dots \wedge e_n^*$$

• Corollary 1.9.8: If e_1, \ldots, e_n is a positively oriented basis of V, then the basis

$$e_1, \ldots, e_{i-1}, -e_i, e_{i+1}, \ldots, e_n$$

is negatively oriented.

• Theorem 1.9.9: Given orientations on V and V/W (where dim V = n > 1, $W \le V$, and dim W = k < n), one gets from these orientations a natural orientation on W.

Proof. The orientations on V and V/W come prepackaged with a basis. We first apply an orientation to W based on these bases, and then show that any choice of basis for V, V/W induces a basis with the same orientation on W. Let's begin.

Let r = n - k, and let $\pi : V \to V/W$. By Exercises 1.2.i and 1.2.ii, we may choose a basis e_1, \ldots, e_n of V such that e_{r+1}, \ldots, e_n is a basis of W. It follows that $\pi(e_1), \ldots, \pi(e_r)$ is a basis of V/W. WLOG^[1], take $\pi(e_1), \ldots, \pi(e_r)$ and e_1, \ldots, e_n to be positively oriented on V/W and V, respectively. Assign to W the orientation associated with e_{r+1}, \ldots, e_n .

Now suppose f_1, \ldots, f_n is another basis of V such that f_{r+1}, \ldots, f_n is a basis of W. Let $A = [a_{i,j}]$ express e_1, \ldots, e_n as linear combinations of f_1, \ldots, f_n , i.e., let

$$e_j = \sum_{i=1}^n a_{i,j} f_i$$

for all j = 1, ..., n. Now as will be explained below, A must have the form

$$A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$

where B is the $r \times r$ matrix expressing $\pi(e_1), \ldots, \pi(e_r)$ as linear combinations of $\pi(f_1), \ldots, \pi(f_r)$, and D is the $k \times k$ matrix expressing the basis vectors e_{r+1}, \ldots, e_n as linear combinations of f_{r+1}, \ldots, f_n . We have just explained B and D. We don't particularly care about C or have a good way of defining its structure. We can, however, take the block labeled zero to be the $k \times r$ zero matrix by Proposition 1.2.9; in particular, since these components of these vectors will be fed into π and fall within W, they can moved around wherever without altering the identities of the W-cosets to which they pertain. Having justified this structure for A, we see that we can take

$$det(A) = det(B) det(D)$$

It follows by Proposition 1.9.7 as well as the positivity of $\det(A)$ and $\det(B)$ that $\det(D)$ is positive, and hence the orientation of e_{r+1}, \ldots, e_n and f_{r+1}, \ldots, f_n are one and the same.

- Orientation-preserving (map A): A bijective linear map $A: V_1 \to V_2$, where V_1, V_2 are oriented n-dimensional vector spaces, such that for all $\omega \in \Lambda^n(V_2^*)_+$, we have that $A^*\omega \in \Lambda^n(V_1^*)_+$.
- If $V_1 = V_2$, A is orientation-preserving iff det(A) > 0.
- Proposition 1.9.14: Let V_1, V_2, V_3 be oriented *n*-dimensional vector spaces, and let $A_1: V_1 \to V_2$ and $A_2: V_2 \to V_3$ be bijective linear maps. Then if A_1, A_2 are orientation preserving, so is $A_2 \circ A_1$.

Labalme 8

¹If the first basis is negatively oriented, we may substitute $-e_1$ for e_1 . If the second basis is negatively oriented, we may substitute $-e_n$ for e_n .