

Curso de Bioinformática:

Análisis funcional de expresión genética

Ricardo A. Verdugo, Ph.D.
Programa de Genética Humana, ICBM
Facultad de Medicina, U. de Chile

Data analysis workflow

- 1. Data importation
- 2. Quality Control (QC)
- 3. Probe filtering
- 4. DE testing
- 5. Clustering
- 6. Gene set enrichment

3. Differentially expressed genes

• Gene by gene ANOVA

$$y_{ij} = \mu + T_i + \varepsilon_{ij}$$

where,

 $\begin{aligned} y_{ij} & & \text{general logarithm of the gene expression} \\ & & \text{in } i^{th} \text{ treatment group of the } j^{th} \text{ replicate} \end{aligned}$

и mean

T_i effect of the ith treatment (i=1->5)

 \mathcal{E}_{ij} residual effect

2. List of selected genes

- Significant differences between treatments
- FDR transformation of p-values
- 340 selected genes

Table 2. Number of genes significantly affected by the treatments with a global 5% false discovery rate (FDR) accepted.

8										
Treatment	Number of _ genes	Down regulated		Up regulated						
		Count	Percent	Count	Percent					
Arsenic	274	139	50.7	135	49.3					
Cadmium	260	143	55.0	117	54.0					
Chromate	173	69	39.9	104	60.1					
Vanadate	208	93	44.7	115	55.3					

Measures of distance

Manhattan

$$d(i,j) = | x_{i1} - x_{j1} | + | x_{i2} - x_{j2} | + ... + | x_{ip} - x_{jp} |$$

(from Kaufam and Rousseeuw, 1990. pp 11)

Measures of distance

• Euclidean

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + ... + (x_{ip} - x_{jp})^2}$$

(from Kaufam and Rousseeuw, 1990. pp 11)

Measures of distance

Minkowsky

$$d_{m}(i,j) = \{ | x_{i1} - x_{j1} |^{m} + | x_{i2} - x_{j2} |^{m} + ... + | x_{ip} - x_{jp} |^{m} \}^{1/m}$$
(from Drăghici, 2003. pp 265-276)

Measures of distance

• Chebyshev

$$d(i,j) = \max_{k} |x_{i_k} - x_{j_k}|$$
(from Drăghici, 2003. pp 265-276)

Measures of distance

• Correlation complement

Where

Pearson Correlation

$$r_{xy} = \frac{\sum (X - \overline{X})((Y - \overline{Y})}{n - 1}$$

$$\sqrt{\frac{\sum (X - X)^2}{n - 1}} * \frac{\sum (Y - Y)^2}{n - 1}$$

• Hierarchical clustering

Hierarchical clustering

• Hierarchical clustering

Clustering analysis

Hierarchical clustering

• Hierarchical clustering

Clustering analysis

Hierarchical clustering

• Hierarchical clustering

Cluster quality

Homogeneity

$$H_{ave} = 1$$
 $\sum_{j} D(g_j, C(g_j))$

Chen et al., 2002

 g_j is ith gene $C(g_i)$ is the center of the cluster that g_i belongs to

Cluster quality

• Separation

$$S_{min} = \underbrace{1}_{N_{cluster}} \sum_{j} min_{i \neq k, j} (D(g_{ij}, g_{kl}))$$

Functional Analysis

- We would like to know:
 - 1. Are these clusters meaningful?
 - 2. What do this genes have in common?

Functional Analysis

Are these clusters meaningful?

- 1. Chi-square test for association between clusters and functional annotations
- 2. Gene Ontology: Molecular function, Biological Process, Subcellular Localization

Functional Analysis

- Problems
 - Chi-square test does not perform well with small samples (n=5 or more)
 - Simulate expected values from the data

Functional Analysis

- Problems
 - One gene can have more than one function (domain) and it can be located in more than one compartment
 - Randomly choose one
 - Repeat hundreds of times
 - Keep the p-value
 - Use the mean p-value as an estimate

Functional Analysis

- We want to know:
 - 1. What genes are over-represented?
 - 2. What genes are under-represented?

Onto-Epress: Khatri et al. 2002 (Genomics 79(2): 266-70)

Functional testing

- First (naïve) approach: Fisher Exact test for over represenation:
 - Ho: selected in group = gene in group genes universe
- No consideration for overlap among functional groups
- Many redundant signals
- Easy to use, DAVID (david.abcc.ncifcrf.gov)

Functional Testing 2.0

- · Parent-Child:
 - Accounts for groups hierarchy (GO)
 - Fisher test on conditional on parent group (pa)
 - H0: selected in group ∩pa = gene in group ∩pa
 selected ∩pa genes universe ∩pa
 - R-package: topGO
 - Grossman 2008, Bioinformatics 23:3024

Parent-Child enrichment test

Functional Testing 2.0

- Elim algorithm:
 - Accounts for groups hierarchy (GO)
 - Fisher test on conditional on enriched children groups (chi)
 - H0: selected in group / chi = gene in group / chi
 selected / chi genes universe / chi
 - R-package: topGO
 - Grossman 2008, Bioinformatics 23:3024

There are more methods available

	fisher	ks	t	globaltest	sum
classic	\checkmark	\checkmark	\checkmark	✓	$\overline{\hspace{1cm}}$
elim	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
weight	\checkmark	_	_	_	_
weight01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
lea	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
parentchild	\checkmark	_	_	_	_

Table 1: Algorithms currently supported by topGO.

Functional tests: conclusions

- There are several algorithms that can remove redundancy from list of enrichments in GO
- Tests other than Fishers' exact can better use quantitative scores per gene (p-values instead of DE classification)
- topGO packages provides a consistent framework for comparing methods
- topGO is well documented, give give it a try!

References

- Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289-300.
- Durbin, B. and D. M. Rocke (2003). Estimation of transformation parameters for microarray data. Bioinformatics **19**(11): 1360-7.
- Everitt, B. (1980). Cluster Analysis. NY, USA.
- Kaufman, L. and P. Rosseeuw (1990). Finding Groups in Data: An introduction to cluster analysis. USA, John Wiley & Sons, Inc.: 68-119.
- Khatri, P., S. Draghici, et al. (2002). Profiling gene expression using onto-express. Genomics **79**(2): 266-70.