DCC192

2025/1

Desenvolvimento de Jogos Digitais

A5: Vetores

Prof. Lucas N. Ferreira

Plano de aula

- Vetores
 - Definição
 - Operações
 - Adição/Subtração
 - Multiplicação
 - Produto Escalar e Vetorial
 - Magnitude (Comprimento)
 - Normalização
 - Aplicações

Vetores

Um **vetor** representa uma magnitude, uma direção e um sentido em um espaço-dimensional.

 \blacktriangleright Por exemplo, um vetor 2D é definido como:

$$\vec{v} = [v_x, v_y] \in R^2$$

- ▶ Vetores são independentes de posição: dois vetores de mesma direção, sentido e comprimento são iguais!
- No entanto, é conveniente desenhar vetores com a **cauda** (ponto de partida) na origem (0,0) de tal forma que a **cabeça** (ponto de destino) aponte para uma posição específica no espaço.

Vetores


```
class Vector2 {
   float x,
   float y
class Vector3
   float x,
   float y,
   float z
```

- ► Em jogos digitais, geralmente usamos vetores 2D e 3D, dependento dos gráficos de jogo.
- ▶ Vetores 4D também são usados em jogos 3D para combinar transformações (e.g., rotação e translação)
- Em código, vetores geralmente são representados por uma classe com um atributo float por dimensão.

Operações Vetoriais

Diversas operações podem ser realizadas com vetores:

- Adição
- Subtração
- Multiplicação por Escalar
- Módulo (norma)
- Normalização
- Produto Escalar
- Produto Vetorial

Adição

A **adição** de dois vetores \vec{a} e \vec{b} é definida pela soma dos componentes de \vec{a} com seus componentes correspondentes em \vec{b} :

$$\vec{a} + \vec{b} = [a_x + b_x, a_y + b_y, a_z + b_z]$$

- A adição pode ser realizada posicionando a cauda de \vec{b} na cabeça de \vec{a} , e desenhando um vetor da cauda de \vec{a} até a cabeça de \vec{b} .
- Note que se fizermos a soma na ordem inversa $\vec{b} + \vec{a}$, o vetor resultante é o mesmo.

Regra do paralelogramo:
$$\vec{b} + \vec{a} = \vec{a} + \vec{b}$$

Subtração

A **subtração** de dois vetores \vec{b} e \vec{a} é definida pela subtração dos componente de \vec{b} pelo seus componentes correspondentes em \vec{a} :

$$\vec{a} - \vec{b} = [a_x - b_x, a_y - b_y, a_z - b_z]$$

- lacktriangle A subtração pode ser realizada da mesma forma como a adição, mas primeiro temos que inverter a direção de \vec{b}
- Note que se fizermos a subtração na ordem inversa $\vec{b}-\vec{a}$, o vetor resultante será diferente. Por isso, a subtração não é comuntativa.

Multiplicação por Escalar

A **multiplicação** de um vetor \vec{a} por um escalar s é definida pela multiplicação de todos os compoenetes de \vec{a} por s:

$$s \cdot \vec{a} = [s \cdot a_x, s \cdot a_y, s \cdot a_z]$$

- A multiplicação por escalar altera apenas o comprimento de \vec{a} .
- \blacktriangleright Se s for negativo, a multiplicação irá inverter a direção de \vec{a} .

Magnitude (norma)

A **magnitude** $||\vec{a}||$ de um vetor vetores \vec{a} é dada pela distância euclidiana entre a origem e o ponto ao qual \vec{a} aponta:

$$||\vec{a}|| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

- ▶ A magnitude representa o comprimento do vetor
- ▶ Em jogos, quando vamos comparar a magnitude de dois vetores (e.g., qual inimigo está mais próximo do jogador), utilizamos o quadrado do comprimento, para evitar o cálculo das raízes quadradas.
- \blacktriangleright Se s for negativo, a multiplicação irá inverter a direção de \vec{a} .

Normalização

A **normalização** é definida pela divisão de todos os componentes do vetor \vec{a} pelo seu comprimento $||\vec{a}||$:

$$\hat{a} = \begin{bmatrix} -a_x & a_y & a_z \\ ||\vec{a}|| & ||\vec{a}|| & ||\vec{a}|| \end{bmatrix}$$

Geometricamente

A normalização converte um vetor não-unitário \vec{a} em um vetor unitário \hat{a} , sendo que um vetor unitário \hat{a} é um vetor de magnitude $||\hat{a}|| = 1$.

Produto Escalar

O **produto escalar** entre dois vetores \vec{a} e \vec{b} é definido pela soma das multiplicações dos componentes de \vec{a} com seus componentes correspondentes em \vec{b} :

$$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

Geometricamente

▶ O produto escalar pode ser utilizado para calcular o ângulo θ entre dois vetores \vec{a} e \vec{b} :

$$\vec{a} \cdot \vec{b} = ||\vec{a}||||\vec{b}||\cos\theta$$

$$\theta = \arccos(\frac{\vec{a} \cdot \vec{b}}{||\vec{a}||||\vec{b}||})$$

 \blacktriangleright Se \hat{a} for um vetor unitário, $\hat{a} \cdot \vec{b}$ é o comprimento da projeção de \vec{b} em \hat{a} .

Produto Escalar

 \hat{a} e \hat{b} Perpendiculares

$$\hat{a} \cdot \hat{b} = \cos(90) = 0$$

 \hat{a} e \hat{b} Paralelos Mesma direção

$$\hat{a} \cdot \hat{b} = \cos(0) = 1$$

$$\hat{a} \cdot \hat{b} = \cos(180) = -1$$

Exercício 1: Pong (Reflexão)

Calcular a reflexão \vec{v}' de um vetor \vec{v} que incide sobre uma superfície de normal \hat{n} :

(b) Definir \vec{v}' em função de \vec{s} e \vec{v} :

$$\vec{v}' = 2\vec{s} - \vec{v}$$

(c) Definir \vec{s} em função de \vec{v} e \hat{n} :

$$\vec{s} = \vec{v} + \hat{n}(-\vec{v} \cdot \hat{n})$$

(d) Substituir (c) em (b):

$$\vec{v}' = 2(\vec{v} + \hat{n}(-\vec{v} \cdot \hat{n})) - \vec{v}$$

$$\vec{v}' = 2\vec{v} + 2\hat{n}(-\vec{v} \cdot \hat{n}) - \vec{v}$$

$$\vec{v}' = \vec{v} + 2\hat{n}(-\vec{v} \cdot \hat{n})$$

Exercício 1: Pong (Reflexão)

Essa fórmula vale para qualquer normal $\hat{m{n}}$, mas no Pong só precisamos considerar dois casos:

▶ Parece inferior: $\hat{n}_b = (0, -1)$

$$\vec{v}' = \vec{v} + 2\hat{n}(-\vec{v} \cdot \hat{n})$$

$$\vec{v}' = (v_x, v_y) + 2(0, -1)(-(v_x, v_y) \cdot (0, -1))$$

$$\vec{v}' = (v_x, v_y) + (0, -2)(-v_x 0 + (-v_y)(-1))$$

$$\vec{v}' = (v_x, v_y) + (0, -2)v_y$$

$$\vec{v}' = (v_x, v_y) + (0, -2)v_y$$

$$\vec{v}' = (v_x, v_y) + (0, -2v_y) = (v_x, -v_y)$$

▶ Parede superior: $\hat{n}_t = (0,1)$

$$\vec{v}' = \vec{v} + 2\hat{n}(-\vec{v} \cdot \hat{n})$$

$$\vec{v}' = (v_x, v_y) + 2(0,1)(-(v_x, v_y) \cdot (0,1))$$

$$\vec{v}' = (v_x, v_y) + (0,2)(-v_x 0 + (-v_y)1)$$

$$\vec{v}' = (v_x, v_y) + (0,2)(-v_y)$$

$$\vec{v}' = (v_x, v_y) + (0, -2v_y) = (v_x, -v_y)$$

Quando a normal é alinhada com o eixo do sistema de coordenadas, como no Pong, basta inverter o sinal da componente diferente de zero.

Produto Vetorial

O produto vetorial entre dois vetores 3D \vec{a} e \vec{b} é definido pelo determinante da matríz:

$$\vec{a} \times \vec{b} = \begin{bmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix}$$

$$\vec{a} \times \vec{b} = [a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x]$$

- $ightharpoonup \vec{a} imes \vec{b}$ é o vetor normal ao plano desses dois vetores.
- ▶ 0 produto vetorial não é definido em 2D!

Exercício 2: Encontrar Normal de Superfície

Calcular o vetor normal \hat{n} a superfície do triângulo ABC definido em um espaço 3D.

$$\vec{u} = B - A$$

$$\vec{v} = C - A$$

$$\vec{n} = \vec{u} \times \vec{v}$$

$$\hat{n} = norm(n)$$

Próxima aula

A6: Forças e Objetos Rígidos

- Forças como vetores
- Propriedades de objetos rígidos
- Métodos numéricos para mecânica linear
- Aceleração da gravidade
- Resistência de ar e fluídos