Apache Spark

Spark Architecture

Apache Spark Execution

- For every application submitted on spark cluster, spark creates a dedicated Driver process and bunch of Executor processes.
- Driver process is responsible for analyzing, distributing, scheduling and monitoring of executor processes.
- Whereas the executor process is only responsible for running the task they were assigned by drivers and reporting the status back to the driver.

Apache Spark Execution

Spark's Language APIs

Structured Streaming Advanced Analytics Libraries & Ecosystem

Structured APIS

Datasets

DataFrames

SQL

Low-level APIs

RDDs

Distributed Variables

The SparkSession

DataFrames

- In Apache Spark, a DataFrame is a distributed collection of rows
- It has below characteristics:
 - Immutable in nature
 - We can create DataFrame RDD once but can't change it.
 - Lazy Evaluations
 - Which means that a task is not executed until an action is performed.
 - Distributed

Why DataFrames are Useful?

- Designed for processing large collection of data.
- Has the ability to handle petabytes of data.
- Has API support for different languages like
 - Python,
 - R,
 - Scala,
 - Java.

Create a DataFrame

- Can be created using different data formats:
 - JSON
 - CSV
 - XML
 - Excel
- By loading data from Existing RDD
- By Programmatically specifying schema

Ways to create DataFrame in Spark

Creating DataFrame from RDD

- from pyspark.sql import Row
- I = [('Ankit',25),('Jalfaizy',22),('saurabh',20),('Bala',26)]
- rdd = sc.parallelize(l)
- people = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))
- schemaPeople = sqlContext.createDataFrame(people)
- type(schemaPeople)
- #Output:
- #pyspark.sql.dataframe.DataFrame

How Sparks work?

Catalyst Optimizer

Thank You