

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER		1	CANDIDATE NUMBER		

CHEMISTRY 9701/23

Paper 2 AS Level Structured Questions

October/November 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

[1]

- 1 Cobalt, rhodium and iridium are metals in the same group of the Periodic Table.
 - (a) The shorthand electronic configuration of cobalt is [Ar]3d⁷4s².

(i)	Identify what is meant by [Ar] by giving its full electronic configuration.	

(ii) The lowest-energy electrons in cobalt are in the 1s orbital.

Draw the shape of a 1s orbital.

(iii) Deduce the number of unpaired electrons in a cobalt atom.

(b) Table 1.1 gives some details of the stable naturally occurring isotopes of rhodium and iridium.

Table 1.1

isotope	number of protons	number of neutrons	total number of electron shells
¹⁰³ ₄₅ Rh		58	
¹⁹¹ Ir			6
¹⁹³ Ir			6

Complete Table 1.1.

[3]

(c) Table 1.2 shows the relative abundances of isotopes in a sample of an alloy containing rhodium and iridium only.

3

Table 1.2

isotope	relative isotopic mass	relative abundance in alloy
¹⁰³ ₄₅ Rh	102.91	50.00
¹⁹¹ ₇₇ Ir	190.96	15.18
¹⁹³ Ir	192.96	34.82

(i)	Define relative isotopic mass.
	[2]
(ii)	Use Table 1.2 to calculate the relative atomic mass, $A_{\rm r}$, of iridium in the alloy.
	Give your answer to two decimal places.

relative atomic mass of iridium =[2]

[Total: 16]

(d) Hydrated rhodium(III) chloride, $RhCl_3 \cdot xH_2O$, catalyses the conversion of ethene to but-2-ene.

Both stereoisomers of but-2-ene are formed in the reaction.

(i) Hydrated rhodium(III) chloride contains 20.5% by mass of water of crystallisation.

Deduce the integer value of x in RhC l_3 •xH $_2$ O.

Show your working.

	x =[2]
(ii)	Define stereoisomers.
	[1]
(iii)	Explain how the conversion of ethene to but-2-ene can be described as an addition reaction.
(iv)	Draw the two stereoisomers of but-2-ene.
	[2]

- 2 Chlorine is one of the elements in Group 17 of the Periodic Table.
 - (a) (i) Describe the colours of the Group 17 elements, chlorine to iodine, at room temperature.
 - (ii) Describe the relative reactivity of the elements chlorine to iodine as oxidising agents.
 -[1]

......[1]

.....[1]

- (iii) State what is observed when chlorine reacts with hydrogen.
- (iv) Explain why the thermal stability of the hydrogen halides decreases down the group.
 -[1]
- (b) The halogenoalkane $\mathrm{CH_3CH_2C}l$ forms when chlorine reacts with $\mathrm{C_2H_6}$ via a free-radical substitution mechanism.
 - (i) Define free radical.
 -[1
 - (ii) State the essential condition for chlorine to react with C₂H₆ at room temperature. [1]
 - (iii) Write **two** equations to show the propagation steps in this reaction.
 - 1
 - 2[2]
- (c) CHC l_3 is another halogenoalkane. CHC l_3 forms when propanone reacts with NaClO.
 - $\mbox{NaC}\mbox{\it l}\mbox{O}$ is made from chlorine in a disproportionation reaction.
 - (i) Identify a reagent and conditions that can be used to convert chlorine to NaC1O.
 -[1]
 - -[

Define disproportionation.

(ii)

i) Write numbers in the boxes to balance the equation showing the reaction of propanone with NaC*1*O.

7

1	1	1	1	1		
CH ₃ COCH ₃ +	NaC <i>l</i> O →	CHCl ₂ +	CH ₃ COONa +	NaOH		
3 3] 3] 3		I	[1]

(iv) Aqueous ${\rm AgNO_3}$ dissolved in ethanol reacts with an aqueous solution of ${\rm CHC} l_3$.

State what is observed in this reaction. Explain your answer.
[2

[Total: 13]

- 3 The Group 14 elements show a change from non-metallic to metallic character down the group.
 - (a) Table 3.1 shows some properties of two Group 14 elements, C and Sn, in their standard states. The table is incomplete.

Table 3.1

	C (graphite)	Sn
state and appearance in standard state	grey shiny solid	silvery solid
electrical conductivity		good
type of bonding		metallic
type of structure	giant	

	(i)	Complete Table 3.1.	[3]
	(ii)	Identify the lattice structure shown by graphite.	
			[1]
	(iii)	Explain why Sn has good electrical conductivity.	
			[1]
(b)	Carl	bon is found in inorganic compounds such as carbonates.	
	(i)	Write an equation for the reaction of magnesium carbonate with dilute HC <i>l</i> (aq).	
			[1]
	(ii)	Describe the thermal stability of the carbonates down Group 2.	
			[1]
	(iii)	Ammonium carbonate undergoes an acid-base reaction with NaOH(aq).	
		Explain this statement.	
			[2]

(c) Fig. 3.1 shows a sketch of some of the ionisation energies of silicon, Si.

Fig. 3.1

(i)	Complete the graph in Fig. 3.1 to show the third to sixth ionisation energies of Si.	[2]
(ii)	Construct an equation to represent the second ionisation energy of Si.	
		[1]

(d) Fig. 3.2 shows the boiling points of the simplest hydrides of the Group 14 elements, C to Pb.

Fig. 3.2

(i)	Explain the trend in the boiling points of the Group 14 hydrides shown in Fig. 3.2.	Fig. 3.2.		
	[ź	2]		
(ii)	Deduce the shape of a molecule of SiH ₄ .			
	[1		

(f)

(e) Silicon readily reacts with elements of high electronegativity.

(i)	Write an equation for the formation of $\mathrm{SiC}\mathit{l}_{4}$ from its constituent elements.
	[1]
(ii)	Describe what is observed when a small sample of $\mathrm{SiC}\mathit{l}_{4}$ is added to water.
	[1]
(iii)	SiO ₂ is a white solid that melts above 1700 °C.
	$\mathrm{SiC}\mathit{l}_{4}$ is a colourless liquid at room temperature.
	Explain the difference in the melting points of these two compounds with reference to their structure and bonding.
	[2]
Tin	forms an amphoteric oxide, SnO ₂ .
	gest the formula of the tin compound that forms when SnO_2 reacts with $\mathrm{H_2SO}_4$ in an I–base reaction.
	[1]
	[Total: 20]

4 Propanone, CH₃COCH₃, is an important organic reagent. Fig. 4.1 shows some reactions of propanone and its derivatives.

Fig. 4.1

- (a) Reaction 1 is a nucleophilic addition reaction.
 - (i) Complete Fig. 4.2 to show the mechanism for the formation of **A** from propanone. Include charges, dipoles, lone pairs of electrons and curly arrows as appropriate.

(ii) Explain why **A** does **not** show optical isomerism.

(b) Suggest the reagents and conditions for reaction 2. [1

- (c) Reaction 3 is a reduction reaction.
 - Use [H] to represent one atom of hydrogen from the reducing agent.

Construct an equation to represent reaction 3.

- [
- (ii) Name C.
 -[1]
- (d) State what is observed in reaction 4. [1]
- (e) Explain why Fehling's reagent does **not** react with propanone.

(f) Compounds A, B and C can be distinguished using infrared spectroscopy.

Fig. 4.3 shows the infrared spectrum of one of the compounds.

Fig. 4.3

Table 4.1

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C-H	alkane	2850–2950
N-H	amine, amide	3300–3500
О-Н	carboxyl hydroxy	2500–3000 3200–3600

(ii)

(i) Explain why the absorptions at 2850–2950 cm⁻¹ are **not** useful to help determine which of the compounds **A**, **B** or **C** produces the infrared spectrum in Fig. 4.3.

15

Use Table 4.1 to answer this question.
[1]
Identify which of compounds A , B or C produces the infrared spectrum in Fig. 4.3. Explain your answer.
compound
explanation
[1]

[Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} C$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

1 2 2 2 2 2 2 2 2 2									Г														
The control of the		18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	86	R	radon	118	Og	oganesson -
1		17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ā	bromine 79.9	53	П	iodine 126.9	85	¥	astatine -	117	Z S	tennessine -
1		16				8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>a</u>	tellurium 127.6	28	Ро	polonium -	116	_	livermorium -
13 H		15				7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ï	bismuth 209.0	115	Mc	moscovium
1		14				9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Ъ	lead 207.2	114	Εl	flerovium -
A		13				5	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	81	<i>1</i> L	thallium 204.4	113	£	nihonium
A									-		12	30	Zu	zinc 65.4	48	р	cadmium 112.4	80	Hg	mercury 200.6	112	S	copernicium
A											7	59	D O	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium -
A	dn										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	Ŧ	platinum 195.1	110	Ds	darmstadtium -
A	Gro										0	27	ပိ	cobalt 58.9	45	格	rhodium 102.9	77	ä	iridium 192.2	109	¥	meitherium -
A			-	I	hydrogen 1.0						80	56	Fe	iron 55.8	4	R	ruthenium 101.1	92	SO	osmium 190.2	108	Hs	hassium
A						_					7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	В	bohrium
A B B B B B B B B B							loc	SS			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium -
A B B B B B B B B B					Key	tomic number	mic symk	name tive atomic ma			2	23	>	vanadium 50.9	41	g N	niobium 92.9	73	<u>a</u>	tantalum 180.9	105	o O	dubnium
2 Be beryllium 9.00						B	ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿆	rutherfordium -
											က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
1 Li lithium 6.9 Sodium 6.9 Potassium 39. 1 A Rb Potassium 39. 1 B Rb Potassium 38. 5 S S C C C C C C C C C C C C C C C C C		2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
		_				3	:=	lithium 6.9	1	Na	sodium 23.0	19	×	potassium 39.1	37	8	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium

_				_			
7.1	Γn	Intetium	175.0	103	۲	lawrencium	ı
	Υp						
69	Ę	thulium	168.9	101	Md	mendelevium	ı
89	ш	erbinm	167.3	100	Fm	fermium	ı
29	웃	holmium	164.9	66	Es	einsteinium	ı
99	ò	dysprosium	162.5	86	ర	californium	ı
65	Д	terbium	158.9	26	ă	berkelium	ı
64	В	gadolinium	157.3	96	Cm	curium	1
63	Ш	europium	152.0	92	Am	americium	1
62	Sm	samarium	150.4	8	Pu	plutonium	1
61	Pm	promethium	1	93	Δ	neptunium	ı
09	ρN	neodymium	144.2	92	\supset	uranium	238.0
69	፵	praseodymium	140.9	91	Pa	protactinium	231.0
58	Ce	cerium	140.1	06	드	thorium	232.0
22	Га	lanthannm	138.9	68	Ac	actinium	1

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

