NASA CONTRACTOR REPORT

MASA CR

TURBILIENT BOUNDARY LAYER ON A FULL-COVERAGE FILM-COOLED SURFACE - AN EXPERIMENTAL HEAT TRANSFER STUDY WITH NORMAL INJECTION

H. Choe, W. M. Kays, and R. J. Moffat

Prepared by
STANFORD UNIVERSITY
Stanford, Calif. 94305
for Lewis Research Center

LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND APE. N. M.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON . JANUARY 1970

LEGICIBRARY KAFB, N

\$8.75

296

1. Report No.	100		3. Recipient's Catalog No.
NASA CR-2642	2. Government Acce	ssion No.	3. Recipient's Catalog No.
4. Title and Subtitle TURBULENT BOUNDARY LA			5. Report Date January 1976
FILM-COOLED SURFACE - A TRANSFER STUDY WITH NO			6. Performing Organization Code
7. Author(s)	AND		8. Performing Organization Report No.
H. Choe, W. M. Kays, and R	. J. Moffat		HMT-22
9. Performing Organization Name and Address			
Stanford University			11. Contract or Grant No.
Stanford, California 94305			NAS 3-14336
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered
National Aeronautics and Space Administration			Contractor Report 14. Sponsoring Agency Code
Washington, D.C. 20546			
15. Supplementary Notes		······································	
Final Report. Project Manag	, •	• /	ning Engines Division,
NASA Lewis Research Center	, Cleveland, Ohi	O	
Heat transfer behavior was st cooling through an array of di Stanton numbers were measur of 5 and 10, an injection mas ber Re _x of 1.7×10 ⁵ to 5×10 ⁶ varied from 9.14 to 33.5 m/s jection temperatures equal to ature. By use of linear super as a continuous function of the fined on the basis of a mainst direct comparison of perform	screte holes and red for a staggere s flux ratio range. Air was used a ec (30 to 110 ft/s the wall temperarposition theory, injectant temperaream-to-wall tem	with injection normed hole pattern with e of 0.1 to 1.0, and is the working fluid ec). The data were ture and also equal the data may be userature. The heat traperature difference	al to the wall surface. pitch-to-diameter ratios a range of Reynolds num- with the mainstream velocity e taken for secondary in- to the mainstream temper- ed to obtain Stanton number cansfer coefficient is de- e. This definition permits
17. Key Words (Suggested by Author(s)) Film cooling; Heat transfer; Boundary layer; Turbulent	Gas turbine;	18. Distribution Statement Unclassified - STAR category	unlimited
19. Security Classif, (of this report)	20. Security Classif (of this page)	21 No. of Pages 22 Price*

Unclassified

Unclassified

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

 $t = \{ t \in \mathcal{F}_{k} \mid t \in \mathcal{F}_{k} \mid s_{k} \in \mathcal{F}_{k} \}$ $\underline{\mathbf{r}} = (\mathbf{r} - \mathbf{r}^{*}) \cdot \mathbf{r}^{*} = \mathbf{r}^{*}$.

TABLE OF CONTENTS

			Page
Chapter	ı.	INTRODUCTION AND BACKGROUND	. 1
	A.	Review of Previous Work	. 2 . 3 . 4
		A.4.1 Methods for the Acquisition of η A.4.2 Methods for the Acquisition of $h^{\bigstar}.\dots$	
	в.	Approach to the Present Experimental Study B.1 Presentation of the Basic Approach B.2 Determination of Operating Domain	. 7
	c.	The Objective of the Present Research	. 12
	II.	THE EXPERIMENTAL APPARATUS	
	В.	General Physical Arrangement	. 18 . 18 . 20 . 21
	C.	Instrumentation	232424
	D.	Rig Qualification	2633
	E.	Uncertainty Interval	. 36
	F.	Data Reduction Program	. 37

			rag
Chapter	III	. SUPERPOSITION APPROACH FOR FILM COOLING	51
	A.	Introduction	51
	В.	Film Cooling and Transpiration Cooling	52
	c.	Linearity of the Governing Energy Equation	53
	D.	Experimental Confirmation	54
	E.	Relationship Between the Effectiveness/Adiabatic Wall Scheme and the Constant Wall Temperature Superposition Scheme	54
	F.	Presentation of Full-Coverage Film Cooling Data	59
	G.	Discussion	60
Chapter	IV.	DERIVATION OF BASIC EQUATIONS FOR LOCALLY AVERAGED PROPERTIES	65
	Α.	How to Average	65
	В.	Derivation of PDE	67
	c.	Derivation of Integral Equations	69
		C.1 Derivation from PDE	69
		Boundary Layer	72
Chapter	v.	EXPERIMENTAL RESULTS	78
	A.	Stanton Number Data	78
		5.4)	78
		A.2 Effect of \underline{U}_{∞} (Figures 5.5 to 5.10)	82 83
		A.4 Effect of P/D Change (Figure 5.14)	83
		A.5 Effect of δ_2 Change (Figure 5.15 to 5.18)	84
		A.6 Effect of Discrete Hole Blowing on Laminar-to-Tur-	
		bulent Transition (Figure 5.19)	85
	В.	Construction of a Simple Theory	
		B.1 Couette Flow Analysis	
	c.	Profile Data	90
.			101
Chapter	_	PREDICTION OF THE EXPERIMENTAL DATA	
	Α.	Presentation of the Modeling Problem	
		A.1 Model for $-\overline{u^{\dagger}v^{\dagger}} - (\overline{u}\overline{v})_{hom}$ and $-\overline{t^{\dagger}v^{\dagger}} - (\overline{t}\overline{v})_{hom}$	
		A.2 Model for $g(y,x)$ and $f(y,x)$	
	В.	Prediction of Experimental Results	126

	Page
Chapter VI	SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY 144
Α.	Summary
в.	Recommendations for Further Study
REFERENCES	
APPENDICES	
A.	Stanton Number Data
В.	Profile Data
С.	Data-Reduction Programs 245
D.	Hot-Wire Flowmeter
E.	The Manifold Valve Adjustment 269
F.	Wattmeter Insertion Loss
G.	Calibration of Heat Flux Meters 275
н.	An Exact Solution of Laminar Sublayer Equation 278
ı.	Linearized Solution for Discrete Hole Blowing under an Idealized Condition

*

NOMENCLATURE

- A Area for local averaging in Figure 4.1, or total plate heat transfer area
- A Van Driest damping function
- AKO Constant that determines maximum of ℓ_a
- B Blowing parameter, F/St
- $B = \theta = 0.0$
- B_h B at $\theta = 1.0$
- C₂ Damping constant used in the calculation of V⁺_{o,e}
- C_f Skin friction defined as $\tau_o = C_f/2 \rho_{\infty} U_{\infty}^2$
- c Specific heat at constant pressure
- CL1 Constant used for the adjustment of $V_{0,e}^{\dagger}$ at positive step
- CL2 Constant used for the adjustment of $V_{o,e}^{+}$ at negative step
- CPR Ratio of thermal penetration distance over the momentum penetration distance
- D Diameter of injection tube
- DPL Jet penetration distance for momentum
- F Blowing fraction, $\rho_0 V_0 / \rho_\infty U_\infty$ averaged over area A
- f Distribution function for effective source, $S_{\mbox{\scriptsize h}}$, within boundary layer
- g (1) Distribution function for effective body force, S_{m} , within the boundary layer
 - (2) General mass transfer coefficient
- g Proportionality constant in Newton's Second Law
- h (1) Heat transfer coefficient
 - (2) Enthalpy in Appendix H
- H Shape factor, δ_1/δ_2

h Unblown heat transfer coefficient

$$h^{+}$$
 $(h-h_{\infty}) \sqrt{c_{f}/2}/\{(h_{o}-h_{\infty})St\}$

h Heat transfer coefficient used in adiabatic wall scheme

$$\Delta h$$
 $h(\theta = 0) - h(\theta = 1)$

k Thermal conductivity

K (1) Acceleration constant,
$$\frac{v}{v_{\infty}^2} \frac{dV_{\infty}}{dx}$$

- (2) Heat flux meter calibration constant without temperature correction
- (3) Wattmeter power correction factor
- (4) Pressure drop coefficient
- k_{o} Constant that determines maximum in ℓ_{a}
- Flow direction pitch in injection hole geometry defined in Figure 1.1
- l Mixing length
- ℓ_{g} Augmented mixing length
- $\ell_{\rm f}$ Mixing length for flat plate
- L Lewis number
- M Blowing parameter, $\rho_2 v_2^{}/\rho_\infty u_\infty^{}$ averaged over the injection hole area, $A_h^{}$
- m'' Mass flux
- m Mass flow rate
- Ntu Net transfer unit, **f**UdA/mc
- P (1) Lateral pitch in injection tube array
 - (2) Locally averaged pressure
 - (3) General property
 - (4) Power supplied to the plate
- Pr Prandtl number, v/α

Turbulent Prandtl number, $\varepsilon_{\rm M}/\varepsilon_{\rm p}$ Pr_{t} ġ Heat flow rate ġ" Heat flux ġ" Heat flux at wall Re Reynolds number $Re_{\mathbf{x}}$ ປ_ຜx/ν_ຜ $Re\overline{\delta}_2$ $U_{\infty}\overline{\delta}_2/v_{\infty}$ $Re\overline{\Delta}_2$ $U_{\infty}\overline{\Delta}_2/v_{\infty}$ U_D/V_ $Re_{\infty,D}$ SCFM Cubic feet per minute at standard condition Effective heat source Sh S_{m} Effective body force Stanton number, $h/\rho_{\infty}U_{\infty}c_{n}$ St St Unblown Stanton number Stanton number defined as $h^*/\rho_{\infty}U_{\infty}c_{p}$ St* $St(\theta = 0) - St(\theta = 1)$ ΔSt Т Local average temperature t Temperature Tcav Effective casting temperature Measured gas temperature Tg Total conductance of heat transfer U,V,W Local average velocities in x-, y-, and z-coordinates Velocities in x-, y-, and z-coordinates u,v,w x-component of injection velocity averaged over A_h Ux

 U_{τ} Friction velocity $\sqrt{\tau_{o}/\rho}$

บ + บ/บ_

V y-component injection velocity averaged over A

ν<mark>+</mark> ν_ο/υ_τ

 $v_{o,e}^{\dagger}$ Effective v_{o}^{\dagger} necessary to calculate the transport properties

x Distance in the main free-stream direction; also coordinate

X Virtual origin of turbulent boundary layer

 x^+ $v_x \times v$

y Distance from the wall, perpendicular to the wall; also coordinate

 y^+ $U_T y / v$

y Source distance in Reference 45

Distance perpendicular to free-stream direction and y-direction; also coordinate

Greek Symbols

α Thermal diffusivity

δ Boundary layer thickness

 δ () Uncertainty of ()

 Δ () Difference of ()

 δ_1 Displacement thickness $\int_0^\infty (1 - \rho u/\rho_\infty U_\infty) dy$

 δ_2 Momentum deficit thickness $\int_0^\infty \frac{\rho u}{\rho_\infty U_\infty} (1 - \frac{U}{U_\infty}) dy$

 $\Delta_{2} \hspace{1cm} \text{Enthalpy thickness} \hspace{0.5cm} \int_{0}^{\infty} \frac{\rho_{u}}{\rho_{\infty} U_{\infty}} \left[\frac{h^{-}h_{\infty}}{h_{o}^{-}h_{\infty}} \right] dy$

- (1) Emissivity of plate
- (2) Heat exchanger effectiveness
- (3) Arbitrary small number
- $\varepsilon_{_{\hbox{\scriptsize H}}}$ Turbulent diffusivity for heat
- $\epsilon_{_{\mbox{\scriptsize M}}}$ Turbulent diffusivity for momentum
- η Adiabatic effectiveness, $(T_{a.w.} T_{\infty})/(T_2 T_{\infty})$
- Non-dimensional secondary injection temperature, $(T_2 T_{\infty}) / (T_0 T_{\infty})$
- κ Von Karman constant, 0.41
- λ General property diffusivity
- λ_{o} λ without discrete hole blowing
- μ Dynamic viscosity
- ν Kinematic viscosity
- ρ Density
- τ (1) Shear stress
 - (2) Time coordinate
- τ Wall shear stress

$$\phi_1 \qquad \frac{\frac{\text{St/St}_0}{\ln(1+B_h)}}{\frac{B_h}} \quad \text{for } \theta = 1.0$$

$$\phi_2$$
 St/St_o for $\theta = 0.0$ Re $\overline{\Delta}_2$

Subscript

- 2 Secondary gas stream
- a.w. Adiabatic wall

o Wall

d.a. Dry air

hom. With the homogeneous boundary conditions

non-hom. With the non-homogeneous boundary conditions

st Standard condition

T (1) T-state

(2) Total

t Turbulent flow

∞ Free-stream (free-stream recovery if temperature)

Superscript

- ()' Turbulent fluctuation
- (Local variation of the property
- () Local average of the property

TURBULENT BOUNDARY LAYER ON A FULL-COVERAGE FILM-COOLED SURFACE AN EXPERIMENTAL HEAT TRANSFER STUDY WITH NORMAL INJECTION*

by H. Choe, W. M. Kays, and R. J. Moffat

CHAPTER I

INTRODUCTION AND BACKGROUND

It is of practical interest to study the heat transfer behavior of a turbulent boundary layer on a full-coverage, film-cooled surface. The term "full-coverage film cooling" refers to a surface containing an array of small holes through which a coolant is injected to protect the surface from a hot fluid flowing parallel to the surface. Other methods to accomplish the same effect include transpiration cooling using a porous surface, film cooling by injection through slots in the surface, and porous-strip film cooling. In many situations film cooling through three-dimensional discrete hole arrays, such as shown in Figure 1.1, is a more practical method. This is especially true for the blade-cooling problems encountered in a high performance gas turbine. Such an engine requires the highest attainable thermodynamic cycle temperature and high pressure. In the critical temperature range, a reduction of about 20°F in the blade temperature can double the life of the blade [1].

In the study of a boundary layer problem of this type there are a great many variables, both thermodynamic and geometric, which might affect the operation of the real system. This program has been restricted to uniform free-stream velocity and temperature, low velocity and low temperature difference to approximate constant property flows, and also restricted to obtaining local average heat transfer coefficients. In a practical situation, other effects may also play a significant role—effects of variable fluid properties, high Mach number, varying free-stream velocity, etc. Investigators of turbulent boundary layers have

^{*}Part of the material presented in this report was submitted by Mr. Choe to Stanford University in 1975 as a thesis in partial fulfillment of the requirements for the degree doctor of philosophy.

generally studied relatively uncomplicated basic cases where only a single unknown effect is present. When applied to actual conditions, the abovementioned effects are then superposed on the known fundamental case.

In discrete hole, full-coverage film cooling there are many possibilities for geometry changes. In this particular program, a circular hole
array with normal hole injection into the turbulent boundary layer is
considered, with two different pitch-to-diameter ratios, which happen to
be of particular interest to the gas turbine blade cooling problem.

There are two regions of interest: the discrete hole, or full coverage,
blowing region, and the recovery region downstream. Both regions are
considered in this program.

A. Review of Previous Work

Full coverage film-cooling through discrete hole arrays can be approximated as transpiration cooling in the limiting case where the discrete holes are very close together and small relative to the sublayer of the boundary layer. Transpiration cooling through a uniform porous plate has been thoroughly investigated [2-9], and there already exist several two-dimensional boundary layer computing schemes which have the capability of handling very general boundary conditions, including wall mass transfer [10].

Since a row of holes can also be approximated as an equivalent slot, full-coverage film cooling has many similarities to conventional slot-film cooling. The following section will concentrate on a review of film cooling in general, including both slot and multiple holes.

A.1 Film Cooling in General

Wieghardt [11] investigated the de-icing problem on an airplane wing using a two-dimensional slot with nearly tangential injection, i.e., injection parallel to the surface. He correlated his experimental results in terms of an adiabatic wall effectiveness, η , and a parameter $x/(S\cdot M)$, where η is defined as

$$\eta \quad \underline{\underline{\Lambda}} \quad \frac{\underline{T}_{a.w.} - \underline{T}_{\infty}}{\underline{T}_{2} - \underline{T}_{\infty}}$$
(1.1)

Here x is the distance downstream from the slot, S is the width of the slot, and M is the ratio of the mass flux through the slot to the mass flux in the free-stream. T_{∞} is the free-stream temperature, T_{2} is the coolant temperature, and $T_{a.w.}$ is the temperature assumed by an adiabatic wall downstream from the slot.

Seban [12], Seban and Back [13], and Hartnett et al. [14] investigated adiabatic wall effectiveness, and a heat transfer coefficient defined by:

$$\dot{q}_{o}^{"} \stackrel{\Delta}{=} h^{*}(T_{o} - T_{a.w.})$$
 (1.2)

In this equation T is the actual surface temperature at some point downstream from the slot, and T is evaluated from the adiabatic wall effectiveness, η , for the same conditions. In other words, two different experiments are carried out to evaluate h*, one with an insulated surface to establish η , and a second with an active heat transmitting surface. These experiments were conducted using a two-dimensional slot with tangential or near-tangential injection. The main conclusion of their investigations was that h had nearly the same value as the heat transfer coefficient for the case of no film cooling, except for the region very close to the slot exit. Most investigators in the field have concentrated on the acquisition of adiabatic wall effectiveness for various geometries: the injection angle was included by E. Papell [15], Haji-Sheikh [16], Artt et al. [17], Repukhov et al. [18], and Metzger et al. [19]. The thickness of the injection slot lip was varied by Kacker and Whitelaw [20]. Variable free-stream velocity was considered by Pai and Whitelaw [21] and Seban and Back [13], the turbulence level in the slot by Kacker and Whitelaw [20], and the free-stream turbulence level by Carson and Talmor [22]. Instead of a slot, a porous strip was used by Goldstein et al. [23], Escudier and Whitelaw [24], and Nishiwaki et al. [25]. Also, continued investigations on the tangential injection geometry were done by Pappel and Trout [26] and Samuel and Joubert [27]. Multiple slots and multiple rows of louvers were studied by Chin et al. [28], and a multiple row of holes by Pappel [15]. The holes studied by Pappel were very closely spaced to approximate slots.

The practice of evaluating only η was justified on the basis that the critical region for the application of film-cooling is generally some distance downstream from the location of injection.

A.2 Discrete Hole Film Cooling

Goldstein et al. [29] studied the variation of n around and downstream from a single circular hole, and Goldstein et al. [30] studied a row of holes with normal hole injection, and 35° inclined injection. and 15° and 35° skewed injection. Metzger and Fletcher [31] investigated heat transfer and adiabatic wall effectiveness for discrete hole injec-Eriksen [32] studied heat transfer with the same geometry used by Goldstein et al. [29,30], and also obtained laterally averaged heat transfer coefficients and η . LeBrocq et al. [33] investigated the behavior of n with a plate which was totally covered with a discrete hole array of P/D = 8, with an inline and a staggered pattern. They also investigated the effect of density, and they provided detailed velocity profiles around the holes. Launder and York [34] studied the effect of slant angle and acceleration on the same geometry as LeBrocq et al. [33]. Heat transfer data were not taken in the above two studies. Burggraf and Huffmeire [35] studied n and h with two rows of holes. Nina and Whitelaw [35] studied n for a discrete hole tangential slot which consists of a row of circular holes.

Ramsey and Goldstein [37] investigated temperature profiles, velocity profiles, and turbulence intensity profiles after a single hole injection. The turbulence data and the velocity profiles were taken by a hot-film probe. Metzger et al. [38] investigated heat transfer behavior on a full-coverage, film-cooled surface using a method outlined in Metzger and Fletcher [31].

A.3 Analytical Methods

For two-dimensional, slot-film cooling, several simple analyses have been proposed. One is from Stollery and El-Ehwany [39] and is basically an integral analysis with mass and energy addition into the turbulent boundary layer as a result of slot injection. This model predicts

 η to be infinity at the location of injection. The model was modified by Libbrizzi and Cresci [40], and Kutateladze and Leont'ev [41], to give η = 1.0 at the location of injection. These analyses use assumed profiles for temperature and velocity.

A more thorough integral equation analysis was performed by Nicoll and Whitelaw [42], and by Haji-Sheikh [16]. Both used empirical correlations for shape factor and shear stress. Pai and Whitelaw [43] used a two-dimensional boundary layer finite difference procedure for prediction of η . For discrete hole tangential slot cooling, Patankar et al. [44] used a three-dimensional parabolic finite difference procedure for prediction of η .

For film cooling using a single hole, Eriksen et al. [45] suggested the following simple three-dimensional model. Neglecting all velocity components except U_{∞} , and assuming that eddy diffusivity, $\varepsilon_{\rm H}$, is constant throughout the field, one can obtain the governing equation,

$$U_{\infty} \frac{\partial T}{\partial x} = \varepsilon_{H} \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right)$$
 (1.3)

Then approximating the injection fluid with a different temperature than the main flow as a point source, or line source, some distance, y_0 , above the wall, they determined ϵ_H from experimental data on η , and y_0 from temperature profiles. For a row of holes, or multiple rows of holes, superposition of this solution was suggested.

Comparison with their experiments showed that the method gave a good prediction far downstream of an injection hole, but is not good near the injection hole. Herring [46] formulated a two-dimensional boundary layer procedure by averaging the three-dimensional governing equations in the lateral direction. He used the turbulence energy equation to provide the eddy viscosity. He predicted several velocity profiles but did not predict heat transfer data. Also his velocity profile predictions did not give a good detailed comparison near the wall, which is important for heat transfer studies and for shear stress evaluation at the wall.

There have apparently been no further developments in the prediction of film cooling with a single hole or an array of holes. The analysis

of Eriksen et al. did not view the problem as a boundary layer phenomenon. The actual situation is, however, more boundary-layer-like, except for a small area behind the jet where flow separation is possible. Herring was the first to use the two-dimensional boundary layer equations for the three-dimensional, angled-injection problem.

The main difficulty with all of the analytical attempts has been that there is not yet a way to handle the three-dimensional problem properly, and the experimental results have not been successfully correlated, either.

A.4 Experimental Methods

There are various methods for the acquisition of data for film cooling. In most cases, investigators have used film "heating" instead of film cooling, since for small temperature differences the non-dimensional parameter. η , must be the same for both cases.

A.4.1 Methods for the Acquisition of n

1. Use of an Adiabatic Wall

This is the most common method of obtaining adiabatic wall effectiveness. Investigators have normally used a relatively thin sheet of insulating material which is instrumented with imbedded thermocouples, with the space underneath stuffed with soft insulating materials such as fiberglass. With this method a two-dimensional map of η can be readily obtained. To obtain laterally-averaged values of η , signals from the several thermocouples at the same x-location are laterally averaged. Using infrared radiometers, Mayle and Camarata [47] and Blair and Lander [48], used urethane blocks to form the test section, and then used black paint to obtain a final finish on the top surface. With this method, they could obtain a detailed $\eta\text{-map}$, as well as η averaged across the channel at particular x-locations.

2. Use of a Mass-Transfer Analogy

This method relies on the fact that the turbulent Lewis number, $Le_t \simeq 1.0$ (Nicoll and Whitelaw [42]). The method eliminates any suspicion as to whether the adiabatic wall used is truly adiabatic or not. LeBrocq et al. [33], Launder and York [34], Kacker and

Whitelaw [20], and Pederson [49] used this scheme. To get the wall mass concentration, they used a Klathomagraph or a similar mass concentration analyzer.

3. Use of a Constant-Temperature Wall

Metzger et al. [19] used this method to obtain data on η . They used a transient technique to get heat transfer coefficients, then plotted the results as h vs. θ , where h denotes the heat transfer coefficient, based on surface to free-stream temperature difference, and θ , a non-dimensional injection gas temperature defined as:

$$\theta = \frac{T_2 - T_{\infty}}{T_0 - T_{\infty}} \tag{1.4}$$

From these results it is possible to deduce η (and also h^*).

A.4.2 Methods for the Acquisition of h

1. Use of a Constant Heat Flux Wall

Most investigators have used this condition for the wall. Nichrome heaters are placed underneath a high-conductivity metal plate (Seban and Back [13]), or thin stainless sheets are used for heaters as well as the wall (Eriksen [32]). In this method, the power supplied to the heater is measured, as well as the wall temperature, and $T_{a.w.}$ can be evaluated from separately obtained data on η . Then h* can be calculated from Equation (1.2).

2. Use of Constant Wall Temperature

a. Transient Tests

This technique uses a rather small and thick metal block for a test plate. Metzger et al. [19,31,38] used an aluminum block and recorded the temperature of the block while it was cooled; from that they could determine how much heat transfer occurred.

b. Steady State Tests

In this method, test plates are heated to some desired temperature, where wall temperature as well as the plate power are measured. Mayle and Camarata [47], and Blair and Lander [48], used this technique.

B. Approach to the Present Experimental Study

B.1 Presentation of the Basic Approach

Figure 1.2 shows η and St^*/St_0 data from Wilson et al. [50]. Here St_0 is the Stanton number based on the heat transfer coefficient, h_0 , which would be obtained under the same free-stream and temperature conditions, but in the absence of film cooling. St^* is based on the heat transfer coefficient, h^* , defined by Equation (1.2). This is an example of the basic information needed to calculate surface heat flux, \dot{q}^u , on a film-cooled surface using the conventional formulation of the problem employing the concept of effectiveness and adiabatic wall temperature.

There are two distinctly different regimes of interest in discrete hole cooling: the full coverage region and the recovery region. For simple film cooling with a slot, or a row of injection holes, the entire region of interest is the recovery region downstream of the injection point. When multiple rows of holes are employed (full-coverage film cooling), the recovery region downstream may still be of interest, but the main attention focuses on the wall surface between the holes. The conventional formulation of the film-cooling problem has been employed within the full coverage region, but was primarily developed to cope with the recovery region.

In this work we start with the observation that full-coverage film cooling has more of the characteristics of transpiration cooling than of the recovery region following a slot. In fact, the principal differences between full-coverage discrete hole injection and transpiration cooling are that the holes through which the coolant is injected are now large relative to the thickness of the boundary layer, and thus the coolant can be at a temperature different from the surrounding wall surface. In transpiration cooling it is generally assumed that the coolant is at the same temperature as the surrounding solid material, and that the holes are very small.

It is suggested that full coverage film cooling be treated as a special case of transpiration cooling (or, equivalently that transpiration

cooling is a limiting case of full coverage discrete hole film cooling). This approach to the problem means simply that the concepts of adiabatic wall effectiveness, η , and h^* will be abandoned, and that heat transfer coefficients will be based on wall surface to free stream temperature difference. Behavior with a strong similarity to the simple transpired boundary layer should be anticipated. The problem of non-equilibrium between the injected fluid temperature and the wall surface can be handled by a separate set of experiments on the same apparatus. Since the applicable thermal energy differential equation of the boundary layer is linear in temperature, superposition can be used to predict performance for any injection temperature, if two fundamental data sets are available. The theory for this will be discussed later.

One advantage of this approach can be seen immediately by reference to Wilson's data in Figure 1.2. To determine whether a given system performs well or not, or how well it performs, there is no other way than calculating $\dot{q}_0^{"}$ itself and comparing this with the value of $\dot{q}_0^{"}$ without film cooling in a comparable condition. In transpiration cooling, however, St/St_0 data directly give quantitative information on how well the system acts to reduce the heat flux. This is possible because in the heat flux evaluation the temperature difference of (T_0-T_∞) is used which is the same as for the non-film cooled surface. It seems obvious that if we follow the formulation of transpiration cooling, the interpretation of film-cooling data could be much simplified.

The flow in the boundary layer of a discrete hole, full-coverage situation is strongly three-dimensional. To resolve this problem (which is not attackable at this time), we shall need some type of averaging. An ensemble average would yield a periodic steady three-dimensional turbulent flow. To have some hope of analytic success it is necessary to make the problem two-dimensional. There are several methods of averaging which would achieve this goal. It was also desired that the averaging method be consistent with the experimental approach. This led to local averaging, which will be defined later.

Making room for an analytical approach is very important, because there should be a systematic way to handle the variety of geometry changes and boundary condition changes, otherwise the acquisition of all the data required will take too much money and too much effort.

B.2 Determination of Operating Domain

Review of the previous investigations lead to the following choice of parameters:

(A) $M \simeq 0.1 \sim 1.0$

Most investigators have agreed that for $M \ge 1.0$ there is almost no cooling effect with normal injection, due to jet penetration outside the boundary layer (e.g., Launder et al. [33,34] and Goldstein et al. [29,30]). With P/D = 5 and 10, M = 1.0 corresponds to F of 0.032 and 0.008.

(B) P/D = 5 and 10

Most investigators have been interested in the range of P/D = $5 \sim 10$. Metzger and Fletcher [31] used P/D = 1.5, Goldstein [30] P/D = 3, and Metzger et al. [38] P/D = 4.8, but the practical gas turbine blade-cooling designers are not interested in such a small P/D value, because it is more prone to structural failure.

Also, a staggered pattern was chosen, because LeBrocq et al. [33] showed that a staggered pattern performs better than an in-line pattern.

(C) Re $_{\delta_2} \simeq 500 - 5000$ at the Beginning of Injection

Most investigators had a very thin boundary layer at the point of injection. Our purpose was to include the effect of $\text{Re}_{\overline{\delta}_2}$ on the heat transfer. LeBrocq et al. [33] had test plates which had discrete holes from the beginning of the plates. Metzger et al. [38] probably had a very small $\text{Re}_{\overline{\delta}_2}$ at the beginning of injection. This gives the range of $\text{Re}_{\mathbf{x}}$ from 1.7 x 10⁵ to 5 x 10⁶, including the recovery region.

(D) Re $\overline{\Delta}_2$ at the Beginning of Injection

Other investigators did not report this parameter explicitly. However, for the flat plate, this is the primary variable which correlates St . The present program investigates the $Re\overline{\Delta}_2$ in equilibrium with $Re\overline{\Delta}_2$, or with an unheated starting length before injection.

(E)
$$Re_{\infty,D} \simeq (0.6 \sim 2.2) \times 10^4 \quad (Re_{\infty,D} \stackrel{\Delta}{=} U_{\infty}D/V_{\infty})$$

This is a rather strange combination for Reynolds number. The ratio ${\rm Re}_{\overline{\delta}_2}/{\rm Re}_{\infty,D}$ is exactly $\overline{\delta}_2/{\rm D}$, and once ${\rm Re}_{\overline{\delta}_2}$ is considered, it is rather the choice of the investigator whether ${\rm Re}_{\infty,D}$ is preferred over $\overline{\delta}_2/{\rm D}$. However, in this case ${\rm Re}_{\infty,D}$ is a non-dimensional number more commonly used in film cooling. The choice of this range of ${\rm Re}_{\infty,D}$ gives $\overline{\delta}_2/{\rm D}$ of 0.064 to 0.24 at the starting point of injection.

(F) $\theta = 0.0, 1.0$

 θ is a non-dimensional secondary injection temperature. Only two values of θ are needed since we can evaluate St at other values of θ by superposition (see Chapter III).

(G) <u>Injection Angle - Normal to Wall</u>

There have been experimental studies which employed non-normal injection angles. In this program, however, only normal injection is considered. This will be the basic case to which slant or compound angle injection can be compared.

(H) The Shape of Hole Geometry: Circle

There has been one experimental study by Goldstein et al. [51] for non-circular geometry. In the present study, however, straight, circular cylindrical holes are considered. For a general study of the effect of variations in shape, the three-dimensional, full N-S equations and energy equation have to be solved. This is not possible at present.

(I) <u>Test Conditions</u>

Pr = 0.715 \sim 0.718, for the working fluid of air

 $U_{\infty} = 30 \sim 110 \text{ ft/sec (10 m/sec} - 36 \text{ m/sec})$

Test plate = 10 ft. (3.05 m) total, 2 feet (60.1 cm) blowing section plus one 4 foot (1.25 m) length of test section before and one after the blown section.

$$T_2 = T_{\infty} \text{ and } T_{\alpha}$$
.

Secondary air flow rate = 1 cfm - 50 cfm for each row

(473 cc/sec - 23,600 cc/sec)

$$T_{\alpha} - T_{\infty} = 20 - 30^{\circ}F (11^{\circ}C - 16.7^{\circ}C)$$

T_ = Ambient

D = 0.406 inch (1.03 cm)

Test section height = 8 inches (20.43 cm)

Test section width = 20 inches (50.8 cm)

Figure 1.1 shows the test plate geometry.

C. The Objectives of the Present Research

In the broadest terms, the objectives of the program are summarized as follows:

- (1) Development of a test apparatus capable of accurate evaluation of the heat transfer behavior of a turbulent boundary layer with the injection of fluid through a discrete hole array.
- (2) Determine the utility of a new formulation for the film cooling problem, unifying the theory of transpiration cooling and film cooling.
- (3) Experimental investigation of a basic heat transfer problem with uniform free stream velocity and temperature, uniform blowing with uniform temperature, and with low speed and small temperature difference between wall and free stream.
- (4) Predictions of the locally-averaged heat transfer data.

For the construction of the test apparatus, the following goals were set up:

- (a) The free-stream velocity must be able to be maintained uniform in the presence of strong blowing at approximately 30, 50, 80, 100 ft/sec (10 m/sec, 16.7 m/sec, 26.7 m/sec, 33 m/sec).
- (b) The apparatus must have a low turbulence level, with uniform two-dimensional free-stream.
- (c) The instrumentation system and operating control must be such that the validity of the results can be verified by energy balance tests over the full range of proposed test conditions.
- (d) The apparatus must produce the generally-accepted Stanton numbers and velocity profiles for the unblown condition.
- (e) Secondary air temperature should be able to be set at any temperature between ambient to about 45°F (25°C) above the ambient.
- (f) Each row of holes must have independent control of the flow rate and in each row, the flow rate in each hole should be uniform within 1 1/2%.
- (g) The apparatus must be able to change the momentum thickness at the beginning of injection.
- (h) The test plate must be segmented with good insulation, to obtain the local average of heat flux.
- (i) The apparatus must have a low level of noise.

Figure 1.1 Test plate geometry for the present program.

Figure 1.2 Example of heat transfer and effectiveness data from Wilson et al. [50].

CHAPTER II

THE EXPERIMENTAL APPARATUS

The apparatus used in these experiments has a basic arrangement similar to the existing transpiration rig described by Moffat [2]. This apparatus will be called the Discrete Hole Rig. Figure 2.1 shows the overall view of the Discrete Hole Rig.

A. Brief Description

The Discrete Hole Rig is a low speed, subsonic, closed-loop wind tunnel about 10 ft (3.05 m) high, 4 ft (1.22 m) wide, and 23 ft (7.02 m) long. The tunnel's structure is shown in the block diagram (Figure 2.2). There are four loops:

- (1) The main air loop, which starts from the primary blower of 7100 cfm (201 m³/min) capacity and then passes through the return ducting, oblique header, heat exchanger, and screen pack and contraction nozzle combination to produce a uniform velocity across the plane and low turbulence level, then into the test section, plenum box and then back to the blower.
- (2) The secondary air loop which takes air out of the plenum box using a secondary blower and passes it through a heat exchanger/ heater box combination and through the control valves to the delivery tubes (where flowrate is measured) and manifolds for distribution to each hole.
- (3) The cooling water loop, which supplies the two heat exchangers, consisting of an 80 gal. (302.81) capacity water tank and supply and discharge lines to and from the tank.
- (4) The hot water loop, which heats the plates upstream and downstream of the blowing section, and has two temperature-controlled water heaters.

The test section is 8 in. high (20.32 cm), 20 in. wide (50.8 cm), and 10.0 ft long (3.05 m). There are 3 main sections in the test plate.

The first 4-foot (1.22 m) test section and the last 4-foot test section were previously used for McCuen's [52] and Morretti's [53] theses work. Each of these consists of 48 individual copper plates one inch (2.54 cm) wide, insulated by 1/32 in. (0.794 mm) thick Kel-F insulation. The first 24 plates do not have the capability of being heated. The last 24 plates can be heated by hot water through copper wave guides underneath the plates. All 48 plates are instrumented to measure temperature and each of the last 24 plates has a heat flux meter. The heat flux meter is a silver-constant thermopile which measures the temperature difference across a 1/64 in. (0.397 mm) thick bakelite plate underneath the copper plate.

1

A 2 ft. (60.1 cm) blowing section is located between the above two sections. This consists of 12 copper plates, each 1/4 in. thick (6.35 mm), 2 in. wide (50.8 mm), and 18 in. long (45.7 cm). The first plate acts only as a guard heater for the second plate, and has no holes. From the second plate to the 12th plate, each has either 8 or 9 holes for secondary gas injection. Each plate has 4 iron-constantan thermocouples to measure the plate temperature and one electrical heater to heat the plate. For each row of holes, the temperature of the secondary gas is measured 4 in. (10.16 cm) underneath the test plate surface, and the total flow rate to each row is measured by a hot wire type flow meter. The secondary gas temperature is controlled to the desired level by adjusting the electric power to the secondary air heater system.

The tunnel side walls and top wall are made with 1/2 in. thick (1.27 cm) plexiglass. One side wall has static pressure taps used to measure free stream velocity. The static pressure taps are 4 in. (10.16 cm) above the test plate to eliminate the effect of discrete hole blowing. The top wall has three flexible strips: two were needed for adjustment of the top wall to maintain uniform free stream velocity through the blowing section, and one allows introduction of an acceleration in the foreplate to provide small momentum thickness at the beginning of blowing.

In the following sections, detailed descriptions of the test apparatus, instrumentation, and qualification of the rig appear.

B. General Physical Arrangement

B.1 Primary Air System

The main air velocity in the test section is varied by changing the pulleys and belts on the blower and motor drive. This gives nominal test section velocities of 30 ft/sec (10 m/sec), 55 ft/sec (16.7 m/sec), 80 ft/sec (26.7 m/sec), and 110 ft/sec (33 m/sec). Air enters the main test section through an oblique inlet header to the heat exchanger; a design based on recommendations by London et al. [54]. Its shape was specified for uniform flow distribution and minimum pressure loss.

A screen pack follows the heat exchanger to reduce the non-uniformity of the main stream velocity and to reduce the turbulence level. It contains four stainless steel, #40 mesh, 0.0065 in. (0.165 mm) dia. wire screens. Based on the work of Schubauer et al. [55], this screen pack should reduce mean velocity maldistribution by a factor of 1200 and turbulent fluctuations by a factor of 10.

The screens are followed by a three-dimensional nozzle to provide a uniform inlet velocity field to the test section. The nozzle accelerates the flow from the screen pack to the test section inlet with 11.1 to 1.0 area contraction. The nozzle wall design started with the shape recommended by Rouse & Hassan [56]. The wall shape has been chosen such that the first three derivatives of flow area, are zero at the nozzle exit. There is a slight acceleration in the inlet section of the nozzle to avoid separation in this region. This was accomplished by designing the nozzle length for 40 in. (101.6 cm) and cutting off the first inch when the nozzle was actually built. A Teledeltos model of each of the nozzle walls was used to check that the nozzle smoothly accelerated the flow with no tendency for separation at inlet or exit. The 8 in. (20.32 cm) height was selected to ensure that the top wall would not interfere with the injected gas at the highest blowing rate. The downstream edge of a boundary layer trip, a sharp edged square strip 1/32 in. x 1/4 in. x 20 in. (0.794 mm x 6.35 mm x 50.8 cm), is located four in. (10.16 cm) downstream of the nozzle to produce a high momentum thickness at the blowing section. low momentum thickness at the blowing section, the downstream edge of a

trip 1/16 in. x 1/4 in. x 20 in. (1.588 mm x 6.35 mm x 50.8 cm) is located 2 in. (5.08 cm) upstream of the blowing section (see Figure 2.3).

The test section cross section consists of four sides: the bottom (the test plates), the top (the top wall), and the two sides (the side walls). Two side walls are fastened to the test plate structure and sealed with RTV cement. The movable top wall can be pivoted about its upstream end to provide for either an increasing or decreasing flow area in the flow direction. One side wall has static pressure taps 12 in. (30.5 cm) apart in the upstream and downstream plate regions and 8 in. (20.3 cm) apart in the blowing region. In the beginning of the blowing section, pressure taps are located 6 in. (15.24 cm) apart to sense the steep change of pressure. These taps are four in. (10.16 cm) above the wall so that they are not much affected by strong discrete hole blowing.

All tests described here were conducted with uniform free stream velocity. To obtain this condition, the top wall was set for each run by adjusting its elevation until there was no measurable change in the static pressure along the test section. In practice, local deviations of 0.002 in. (0.05 mm) of water have been accepted in static pressure. A probe sled, which spanned the test section, was locked onto the side walls in fixed positions over the center of the test plate at each measuring station. The probes, supported from this sled, extended down through access holes on the top wall. These access holes have plexiglass plugs which smoothly close the holes inside the tunnel when not in use. access ports have two shapes: 3/4 in. (1.9 cm) circular holes and 1 7/8 in. \times 2 1/2 in. (4.76 cm \times 6.35 cm) rectangular holes. There are two rectangular holes in the blowing region, one between and above the seventh and eighth plates, and the other between and above the tenth and eleventh These rectangular holes are for detailed investigation of velocity and temperature profiles around the injection holes. The probe sled at these stations can move in the flow direction with 1/4 in. (0.63 cm) intervals up to 1 in. (2.54 cm). This was accomplished by having locking holes on the top edge of the side walls at 1/4 in. (0.63 cm) intervals. The traversing mechanism itself can move on the sled in the lateral (z-) direction with intervals of 0.2 in. (0.51 cm), covering two

in. (5.08 cm). This combination provides 55 measuring stations. The circular access holes are located along the centerline. In addition to these, at the exit of the contraction nozzle, at the starting point of blowing, and right after the blowing section, full sets of circular access holes are provided, extending across the width of the test section. These are primarily to check the uniformity of the boundary layer growth in the lateral direction (two-dimensionality check).

B.2 Secondary Air Supply System

The secondary blower can deliver 2200 cfm (62.2 m^3/min) of air flow rate and develops a head of 28 in. (71.1 cm) of water at 3300 rpm. For the low flow rate of secondary injection, it delivers about 500 cfm (14.15 m^3/min) with a head of 2 in. (5.08 cm) of water.

The secondary air from the blower is delivered to a wooden box, which contains a 5-row, 18 in. x 24 in. (45.72 cm x 60.96 cm) heat exchanger, and to a heater box which consists of twelve 220 volt 1 kw air heater elements. Seven sheets of copper screen are provided to make the temperature uniform, and a distribution header with eleven 2 in. (5.08 cm) pipes and 2 in. (5.08 cm) brass ball valves for the control of secondary air flow rate.

Flexible tubing connects each valve outlet to one of eleven PVC pipes, each 7 ft. long (2.14 m), and used to meter the secondary air flow rate in each row of holes. In each pipe there is a hot wire type flowmeter (see Appendix D) developed for this apparatus to handle the wide range of flow rate (1 cfm (0.472 l/sec) to 50 cfm (23.6 l/sec)) required for the secondary air system. For such a requirement orifice meters or rotameters would have been bulky, and expensive. Flexible tubing delivers the secondary air stream from the flowmeters to the 11 flow manifolds (Figure 2.4) located underneath the blowing test section. Delivery tubes connected with rubber tubes allow a small dislocation of PVC pipes on the manifold from the test section blowing holes. Ball valves were adjusted to achieve uniform flow in each hole in one row within 1.5% (see Manifold Valve Adjustment, Appendix E). Then the valve handles were removed to protect the calibration.

The secondary air system is enclosed to reduce heat transfer with the ambient.

B.3 Blowing Section

This two foot section provides the particular geometry for blowing. In this experiment, a staggered circular hole pattern normal to the wall is employed with P/D = 5 and D = 0.406 in. (1.03 cm) (Figure 2.5). The aluminum casting which supports the copper plate is 22 in. (55.88 cm) wide, 24 in. (61 cm) long, and 3 1/2 in. (8.89 cm) high. The assembly has twelve 2 in. (5.08 cm) wide, 18 in. (45.72 cm) long, and 1/4 in. (6.35 mm) thick copper plates yielding a heat transfer area 18 in. wide and 24 in. long. A photograph of a machined casting is shown in Figure 2.6. A cross section through one of the plates and the compartment in the aluminum casting are shown in Figure 2.7. The casting used in this experiment was modified from the one used in the smooth transpiration rig.

Since copper is such a good conductor, two heater wires for each plate were sufficient to keep the temperature of the copper within $0.03^{\circ}F$ (0.017°C) in the flow direction on a single copper plate. To have symmetric heating, two 18 in. (45.72 cm) of AWG #28 chromel wires were imbedded into parallel heater grooves and epoxy-bonded to the copper plate. One end of the wires was jumpered with copper wire, and the other end was connected to the output terminal of a variable transformer. The heater resistance is about $8~\Omega$.

To have well-stabilized power to the plates, the building power is passed through a servo-driven voltage stabilizer, then through a saturable-core type voltage stabilizer. The power source is used for the flow meter heaters as well as test plate heaters (Figure 2.8). After the voltage stabilizer, it goes to the step-down powerstat. This reduces the voltage to 25 \(\pi \) 40 volts AC. Finally it goes to the individual powerstats to control the test plate power. This arrangement makes it possible to control the power over a wide range with accuracy. All electrical power cables are enclosed inside the conduit to minimize interference with the thermocouple readings. A switching arrangement permits the insertion of a precision wattmeter into each channel, as desired for data-taking purposes. The finished surface of the test plate assembly felt smooth to the touch, but during the operation, very small cracks in the

plastic material in the joints appeared. These did not show any change in the hydrodynamic character of the tunnel.

Each plate has four thermocouples measuring surface temperature, about equally spaced across the span. For eight hole rows, they are 4.05 in. (10.3 cm) apart, twice the pitch distance, symmetric about the center. For nine hole rows, two inside thermocouples were 6.09 in. (15.45 cm) apart and two others 4.06 in. (10.3 cm) from the inside thermocouples, symmetric about the center. The 18 in. (45.72 cm) whole span of copper plate is used as a measuring area.

The thermocouples for measuring the plate temperature are set into the copper plate through 0.050 in. (1.27 mm) dia. holes, with their junction approximately 0.030 in. (0.762 mm) beneath the surface.

Five water passages through the aluminum casting webs are used to control the temperature of the casting. When conducting energy balance tests, either hot or cold water, as needed, was used to maintain the casting temperature within 5-10°F (3-6°C) from the test plate temperature.

B.4 The Surface Condition of the Test Plates

The test plates are made of copper and to minimize the radiation heat transfer from the surface, they were well polished with commercial copper polish. Right after polishing, the surface shone like a mirror, and the details of the surroundings could be well examined through the test surface. This mirror-like shine lessened as the experiments were continued, but it never disappeared. With these conditions, the surface emissivity was estimated from 0.05 to 0.15.

B.5 Thermal Boundary Conditions

To give the proper thermal boundary layer to match the thin momentum layer, 24 cells of the upstream plate were heated using the hot water system. This provided momentum thickness and enthalpy thickness, at the starting point of blowing, comparable to the flat plate, constant wall temperature boundary layer. For the thick boundary

layer condition, the same situation could not be achieved, because the upstream plate cannot be heated on the entire length but only on the downstream half of the plate. So, as a better defined boundary condition, a step wall temperature was used in the blowing section. To achieve this, all the polyflo lines were simply disconnected from the test plate, and in the last cell, a cold water line was connected to adjust the thermal boundary layer growth to the minimum.

C. Instrumentation

C.1 Temperature Instrumentation

All temperature measurements on the Discrete Hole Rig are made with iron-constantan thermocouples, except for the boundary layer traversing thermocouple, which is made with Chromel-constantan. Samples of the iron-constantan thermocouples and the Chromel-constantan thermocouple were calibrated against a Hewlett Packard Quartz Thermometer, which is accurate within 0.02°F (0.01°C). All four samples of iron-constantan showed the same calibration curve within the accuracy of calibration, $\pm 0.07^{\circ} F$, or $\pm 2~\mu V$ of the thermocouple signal. The calibration curves for iron-constantan thermocouples and those for Chromel-constantan were incorporated into the data reduction program.

All the thermocouple wires are brought together into the constant temperature zone box at the back of the console panel, where they are connected to rotary thermocouple switches leading to the display of the signal through a Hewlett-Packard Integrating Digital Voltmeter, Model 2401C. The boundary layer traversing thermocouple probe has its own ice bath and has an isolated circuit of its own. The thermocouple circuit is shown in Figure 2.9, along with the heat flux meter and flowmeter circuits. The thermocouple wires were made long enough to reach the constant temperature zone box. To avoid temperature gradients along the thermocouple wires, 1/8 in. polyflo tubing guided and covered all the thermocouple wires between the thermocouple junction and the constant temperature zone box. The constant temperature zone box is lined inside with 1/32 in. thick copper plate and insulated outside with aluminum foil-

backed, rock wool insulation. One diagnostic thermocouple is provided to measure the temperature difference across the diagonal of the zone box. If this diagnostic probe showed larger than 7 µV, data were not taken. All iron-constantan thermocouples shared a single ice bath reference junction.

For the thermocouples measuring the test plate temperature, enough immersion depth is given following Moffat [57] to reduce the conduction error. Thermocouples for measuring the casting web temperatures were also given enough immersion depth. For the free stream and the secondary air, there were no accountable errors in temperature measurement.

The four thermocouples from each plate were wired in parallel to one switch terminal in the constant temperature zone box. This scheme gives a good average temperature of the plate, since the signals and the wire resistances have almost the same magnitudes. Three thermocouples from each row of holes for measuring the secondary air temperature were also ganged together to give an average secondary air temperature.

For the temperature traverse in the boundary layer, Chromel-constantan thermocouples with 0.003 in. (0.08 mm) diameter—were used. Enough conduction length was given to ensure negligible conduction error, following Blackwell [58]. Two thermocouple probes were made — one to measure the temperature on the centerline of the traversing mechanism and the other to measure the temperature 1 in. upstream.

C.2 Pressure

All the static pressure and free stream dynamic pressure measurements were made with inclined manometers. The dynamic pressure for boundary layer velocity profile was measured with pressure transducers which were used by Healzer [59].

The static pressure taps were made in conformity with the existing HMT rig (see Simpson [3]). For the pitot tubes, a 0.020 in. (0.508 mm) OD hypodermic needle was used without being flattened, following Andersen [9].

C.3 Electric Power

Power delivered to each plate of the blowing section was mea-

sured by a precision AC wattmeter, which has been used in the measurement of electric power for the smooth transpiration rig. As shown in Figure 2.8, the power can be measured for each plate with a single wattmeter. The wattmeter calibration which had been used for the smooth transpiration rig was adopted, since the same instrument was used. Circuit analysis was done to account for the insertion loss (see Appendix F).

C.4 Heat Flux Meter - the Calibration of

The heat flux meter calibration was made with specially made calibration heaters. Power to the heater was measured with a Weston precision voltmeter and ammeter, both with accuracy of 1/2%. This gives a calibration accuracy of about 1%. In the process of heat flux meter calibration, the conductances between adjacent plates including the two end plates in the blowing section were measured (see Appendix G).

The initial calibration of several heat flux meters from the upstream and downstream plates showed constants 5-10% higher than Morretti's [53] recorded values.

A careful review of McCuen's [52] and Morretti's theses revealed that the calibration heater they used had a different design than the present one. They used a single nichrome heater wire, which spanned the whole width of the test plate. However, in the present case, the tunnel width is 20 in., with a more-or-less adiabatic condition for one inch on each side. To simulate this in the calibration process, the calibration heater length was made to 20 in., and instead of using a single wire, fifteen closely and uniformly laid parallel wires were used to give uniform heat flux. The difference between Morretti's and the present calibration represents a heat leak from the center to the side of the channel, if the plate is heated by electrical heaters and cooled by the cooling water. The opposite trend in heat loss will occur when in operation, because the test surface has less area than the heating area in the copper wave guide.

D. Rig Qualification

All experiments include some degree of uncertainty. In this section, to qualify the rig means to specify clearly the uncertainty bounds and

to reduce them if they are unacceptably large. To reduce the uncertainty bounds, one has to propose an approximation to the heat transfer behavior of the complicated geometry of the real system or else to modify this apparatus. Then one has to devise an auxilliary experiment to confirm his approximation and to compare his model with the results of the real system. The system model is the Data Reduction Program - at least, that part which corrects for losses. By its nature, this operation is iterative, requiring simultaneous development of an analytical model and the apparatus.

In this program, the behavior of the boundary layer, the free stream, and the energy balance capability of the rig were demonstrated. In establishing the free-stream and boundary layer behavior, the spanwise uniformity of the free-stream velocity and temperature, the momentum thickness, and free-stream turbulence were checked. These investigations were to prove that the test tunnel provided a two-dimensional boundary layer with low free-stream turbulence. The energy balance results show the uncertainty bounds for the measurements of convective energy.

The final qualification tests were comparisons of the measured heat transfer behavior (under conditions of zero pressure gradient and no blowing) with the expected behavior of the flat, impermeable, smooth plate. These results showed that the agreement is within the expected uncertainty bounds.

D.1 Energy Balance Test

1 1

In the beginning of the experiment, four main heat transfer modes were considered for the heat losses. The four modes are:

- Radiation heat transfer from the top of the copper plate to the plexiglass channel wall;
- 2) Conduction loss between the copper plate and the aluminum casting—the main loss was through the casting web, but the losses through the side rail and through the fiberglass insulation have a comparable magnitude; these were all lumped together to be treated as one loss because the effective potential for these losses is the same: T_o T_{cav}, where T_{cav} is the effective casting average temperature;

- 3) Conduction loss between the adjacent plates these have very little contribution except the two end plates in the blowing section; except for the two at the end, theoretically estimated conductance was used; and
- 4) Energy lost by the secondary air stream before being injected into the main stream accounting for these losses also corrected for the true mean air temperature at the point of injection because the secondary gas temperature was measured four inches upstream of the point of injection. This mode of loss does not introduce any error in the enthalpy thickness measurement, but does yield an error in the Stanton number.

In the following subsections, the methods which identify each loss mechanism will be discussed.

(a) Conduction Test

In this test, conduction is the only loss mechanism. The side walls and top wall were taken off the test plate, and a $3 \frac{1}{2}$ -in. (8.9 cm) thick styrofoam block was placed on top of the test plates. No secondary air stream was present; all the test plates were heated to the essentially same temperature, and the casting was cooled by cold supply water. this mode, the only heat transfer is by the conduction to the aluminum casting, and the electrical power supplied to the plate can be attrib-The plate temperature and the casting uted to the conduction losses. temperature were measured. For the two plates at the ends, the conduction to the adjacent plates must be known because the upstream and the downstream plates normally have quite different temperature, as only the blowing section plates were heated. The conductances in the flow direction for the two end plates were measured in the process of heat flux calibration. From the five measured casting temperatures, twelve effective casting temperatures were calculated by linear interpolation of the five measured temperature. Then,

$$q_{COND,i} = KCOND_{i}(T_{o,i} - T_{CAV,i})$$
 (2.1)

where $\dot{q}_{\rm COND,i}$ represents heat lost by conduction in ith plate, KOND_i the conduction loss constant for ith plate. In reality, the styrofoam block has only 5 \sim 6 times the thermal resistance of the insulation between the plate and the casting. To account for the heat lost through the styrofoam block, KCOND, was reduced by 15%.

This test was done twice, and the average of the two test results was used for the actual data reduction program.

(b) T2, EFF Test

With this test, the average temperature of the secondary air was measured at the injection point. This test also evaluated the total conductance between the secondary gas stream and the test plate. Nine pieces of styrofoam block, each of which had a matching hole with the plate's discrete hole, were placed on the plate with the holes aligned with the holes in the plate. The blocks served as a insulation to the secondary stream and also as mixers for achieving the mixed mean temperature at the exit. The following measurements were made: plate temperature, temperature of the gas leaving the styrofoam block (effective secondary temperature), gas temperature four inches upstream, and the secondary flowrate. Then, considering the system as a heat exchanger, we can get the following effectiveness equation:

$$\varepsilon \triangleq \frac{T_{2,eff} - T_{g}}{T_{o} - T_{g}} = 1 - e^{-Ntu}$$
 (2.2)

where $T_{2,eff}$ is the effective secondary mean stream temperature, T_{g} the gas temperature measured four inches upstream, and

Ntu
$$\triangle \frac{\text{UA}}{\text{mc}_p} = \frac{\text{KCONV}}{\text{SCFM}}$$
 (2.3)

Here U is the total conductance of the system, A the contact area, \dot{m} the mass flowrate, c_p the specific heat, SCFM the volume flowrate at standard conditions, and KCONV a constant proportional to the conductance UA which is a function of the flowrate.

From the measured temperature, the values of & was evaluated and

then from the effectiveness - Ntu expression, we can get KCONV as a function of SCFM. The following correlation from data was obtained:

$$KCONV = 0.24 *SCFM^{0.35}$$
 (2.4)

This expression is valid for the nine hole rows. If the row has n holes, SCFM was corrected by 9/n to get the proper flowrate in the individual holes; then KCONV was calculated. However, this is for the surface area of the pipe of the nine holes, so that n/9 was multiplied to get the effect from n holes. P/D = 5 geometry has n = 8 and 9, and P/D = 10 has n = 4 and 5.

After KCONV was obtained, $T_{2,eff}$ was calculated by measuring T_{0} , T_{g} and SCFM and by using Equation (2.2). Also the total convected energy in each row of holes, E_{CONV} was calculated as

$$\dot{E}_{CONV} = \dot{m}_{c_p} (T_{2,eff} - T_g) \cong UA(T_o - T_{2,eff})$$
 (2.5)

where the last approximation is from the fact that $T_g \approx T_{2,eff}$, and that $T_o - T_{2,eff}$ is less liable to the measurement uncertainty.

One must know what portion of KCONV is directly from the copper plate to get the energy closure. There was no simple way of getting this information at the time of the energy balance test. Thus analytical estimations of the total conductance, and the conductance directly from the copper plate were made and the ratio was obtained as a function of SCFM. For the direct conductance from the copper plate, all the PVC pipe length which has direct contact with the copper plate, and the copper lip which has direct contact with the secondary air was considered, along with about 0.3 in. (0.762 cm) of Fiberglas insulation beneath the copper plate to account for the heat flux lines bending toward the PVC pipe.

The ratio of direct conductance to the total conductance, KFL, was obtained and expressed as

Previously the average value of the KCONV = 0.32 was used. After a discussion with Mr. M. E. Crawford for this thesis work, KCONV was recast as a function of SCFM.

$$KFL = 0.21 + 0.0344 \log_{10} SCFM$$
,

If
$$SCFM \leq 5.0$$
 (2.6a)

 $KFL = 0.0762 + 0.226 \log_{10} SCFM$,

$$If SCFM > 5.0 (2.6b)$$

This result is for the nine hole rows. The rows which have n holes will have KFL calculated by SCFM multiplied by 9/n to get the proper flowrate in individual holes. After KCONV and KFL were obtained, the energy loss from the plate to the secondary gas stream was calculated as

$$\dot{q}_{FLOW} = KFL \cdot \dot{E}_{CONV}$$
 (2.7)

In the above expressions, the casting was not assumed to be heated or cooled by external means. In reality, the casting temperature was controlled independent of T_0 and T_g to minimize the heat loss. The correction to the external heating or cooling of the casting was simply made in the definition of ϵ of Equation (2.2). The denominator $(T_0 - T_g)$ was expressed as

$$(T_o - T_g) = KFL(T_o - T_g) + (1 - KFL)(T_o - T_g)$$

If there is no external heating or cooling to the casting, then ($T_{cav} = T_g$) would be equal to (1 - KFL) · ($T_o = T_g$), because $T_{cav} = T_{cav}$ would have the temperature determined by the conductance ratio, KFL, between $T_o = T_g$ and T_g . Thus $T_{cav} = T_{cav} = T_o$ was expressed as

$$T_{2,eff} = T_g + \varepsilon \cdot \left[KFL(T_o - T_g) + (T_{cav} - T_g) \right] \qquad (2.8)$$

The value of $T_{2,eff}$, then, was used for the calculation of \dot{E}_{conv} and \dot{q}_{flow} .

(c) Flow Direction Conductance

The flow direction conduction loss, q FDCOND, was theoretically

calculated and uniformly the conductance, S_{i} , was set as $S_{i} = 0.8$ in the expression

$$\dot{q}_{FDCOND} = S_{i}(T_{o,i}-T_{o,i+1}) + S_{i-1}(T_{o,i}-T_{o,i-1})$$
 (2.9)

(d) Radiation Loss

The effect of the channel geometry has negligible effect, and the radiating material in the air (vapor and ${\rm CO}_2$) absorbs less than 3% of the radiated energy from the plate. Thus it is effectively calculated as

$$\dot{q}_{rad} = A_i \varepsilon_i \sigma (T_{o,i}^4 - T_{\infty}^4)$$
 (2.10)

The emissivity of the surface, $\varepsilon_{\bf i}$, was estimated from the suggested values which appear in the radiation property of copper surface and σ is the Stefan-Boltzman constant. Nominally, $\varepsilon_{\bf i}$ = 0.12 was used, and the hole area was considered black, which increases $\varepsilon_{\bf i}$ by 0.03.

(e) Energy Balance Run

After all these loss mechanisms were studied and tested separately, they were put together in the Stanton number data reduction program. The total heat loss, \dot{q}_{loss} , was calculated as

$$\dot{q}_{loss} = \dot{q}_{cond} + \dot{q}_{flow} + \dot{q}_{FDCOND} + \dot{q}_{rad}$$
 (2.11)

then the convected heat transfer on the surface of the copper plate was calculated as

$$\dot{q}_{conv}$$
 = total power supplied - \dot{q}_{loss} (2.12)

and the plate Stanton number was calculated

$$St = \frac{\dot{q}_{conv}}{\rho_{\infty} U_{\infty} c_{p} (T_{o} - T_{\infty}) A}$$
 (2.13)

where A is the total heat transfer area including the area of holes. The variable property correction was made to get the constant property

Stanton numbers. In the energy balance runs, the following conditions were maintained. The primary blower was run without cooling the primary heat exchanger. Then the main stream reached an equilibrium temperature, about 15°F (8.3°C) above the ambient temperature. The aluminum casting was cooled by cold water and the copper plate was heated to the same temperature as the main stream temperature. In this case, $T_0 - T_\infty$ was maintained within ± 0.5 °F (± 0.3 °C). This mode of operation eliminated the convective energy transfer and radiative loss from the plate. The main loss mechanisms were conduction loss and the flow loss due to the secondary air stream. The flow loss is not large unless the secondary gas stream temperature is distinctively different from the plate temperature. the present runs, the secondary air temperature was about 1°F (0.55°C) different from the plate temperature. The runs were made at M = 0.0, M = 0.45, and M = 0.7, with $U_m = 55$ ft/sec (16.7 m/sec). These energy balance runs showed how much energy imbalance exists which indicated the accuracy of the energy measurement system. The results are shown in Figure 2.10. The accuracy of the power measurement is about +0.3 watt. This can be converted into the error in the Stanton number following Moffat [2], using the expression

$$\delta St = \frac{\delta E}{\rho_{\infty} U_{\infty} c_{D}^{\Delta TA}}$$
 (2.14)

Here $\Delta T = 23^{\circ}F$ (12.8°C), and U_{∞} of 55 ft/sec (16.7 m/sec) were used. This Stanton number error, δSt , represents the Stanton number uncertainty caused by the uncertainty in the measurement of power. The uncertainty in St of $\delta St = 0.00005$ was found. The main reason for this high accuracy is believed to be the fiberglass insulation used underneath the copper plate.

The above result applies mainly to the θ = 1.0 case, where the secondary gas temperature is the same as the plate temperature. For the θ = 0 case, where the secondary gas temperature is much different from the plate temperature, the flow loss term, \dot{q}_{flow} , will be large. In this case, the convection coefficient in the PVC pipe was measured as KCONV, but KFL was not measured. The confidence level in the estimation

of KFL in the worst case is about $\pm 20\%$. This much of the KFL change adds ± 0.6 watt to the power measurement uncertainty. This leads to the power measurement uncertainty in the $\theta=0.0$ case of ± 1.0 watt. The Stanton numbers at $\theta=0$ are generally high, so the percentagewise error for $\theta=0.0$ is not much greater than that for $\theta=1.0$. For the better accuracy for $\theta=0.0$, an additional test would be necessary to measure KFL.

D.2 Hydrodynamic Qualification of the Tunnel

This part of the qualification was to prove that the flow in the channel was acceptably two-dimensional and that the velocity profiles were the accepted turbulent ones. Free-stream turbulence intensity was measured to show that the level in the free-stream was low enough. The stability of the hydrodynamic boundary layer was also proved by the experience of running the test rig under the various conditions.

Free-stream velocity was measured at five points over the plate upstream of the first row of holes with a Kiel probe. The velocity variation was within the measurement uncertainty.

The two-dimensionality of the boundary layer was demonstrated by taking the momentum thickness and the enthalpy thickness variation across the channel. Momentum thicknesses at the first plate on the blowing section were measured at the free-stream velocity of 55 ft/sec (16.7 m/sec). This showed very uniform boundary layer growths over the center span of the channel. At both ends of the channel width, momentum thickness was higher, which was also observed in Anderson [9] and which is believed to be due to the corner flow (Figure 2.11). For runs with a low momentum thickness, the main stream was accelerated in the region of the foreplate to produce a small boundary layer. Then the free-stream velocity was maintained at 40 ft/sec (12.2 m/sec) and the momentum thickness and the enthalpy thickness were measured across the channel, and it confirmed the above result again.

The data showed that the momentum thickness upstream of the first row of holes increases as M increases. This trend was consistent with every measurement of momentum thickness. Since the measurement station was only two in. upstream of the first row of blowing holes, this was obviously due to the flow blockage effect from the injected secondary air stream. Thus in the evaluation of virtual origin, the velocity profiles taken at M=0 were used, and the increase of momentum thickness was considered as part of the discrete hole blowing effect on the hydrodynamics of the tunnel.

Figure 2.11 also shows the free-stream turbulence variation at M=0.6, and one value at M=0. With M=0, free-stream turbulence level is about 0.4% and with M=0.6 about 0.57%. The free-stream turbulence was remarkably uniform across the channel.

Figure 2.12 shows the velocity profiles for the flat plate conditions. One of the profiles was taken on the plate without holes, and the other on the plate where the holes are plugged up to produce P/D = 10. comparison of these two profiles showed that the cork plug is so smooth that its effect is not felt in the velocity profile measurements. two profiles showed good logarithmic regions and the proper wake strength. The region near the sublayer is slightly higher than expected perhaps because of pitot probe error near the wall. The skin friction coefficient in this case was found by fitting the u - y to the logarithmic law of the wall in the range of $y^+ = 75$ to $y^+ = 125$ (Clauser plot). represents the average shear stress obtained from three to five points. The two-dimensionality of the potential core and the boundary layer was confirmed; the stability of the tunnel was confirmed by several repeated measurements of the velocity profiles. Then it was decided to go ahead and take the flat plate, impermeable heat transfer data to give a final qualification of the rig.

D.3 Heat Transfer Qualification

The final qualification runs consisted of several cases of unblown heat transfer tests. The free-stream velocity was maintained at approximately 54 ft/sec (16.5 m/sec) and with the plate temperature about 25°F (13.9°C) above the free-stream temperature. The effect of changing the wall temperature level was not investigated because it was well investigated previously by Reynolds et al. [60] and Moffat [2]. After the fore-

plate was accelerated to produce the small momentum thickness, similar tests were made with P/D = 10 and P/D = 5, and with free-stream velocity at approximately 40 ft/sec (12.2 m/s).

Figure 2.13 shows the results with free-stream velocity of 54 ft (16.5 m/s) and P/D = 5. The prediction for this case was made by STAN5 [61]. The agreement is generally good. The prediction lies about 3-5% lower than the experiment. This is believed to be due to the roughness effect from open holes. In the recovery region, the heat transfer data have more scatter than in the blowing region. Since the heat flux meters are calibrated within 1% accuracy, this scatter is attributed to the incapability of the hot water system to produce a uniform test plate temperature. In a later experiment, it was found out that the 1/8 in. copper tubing, which accepts polyflo lines, can be easily clogged and that each polyflo tube had slightly different heat losses, which changed the effective water temperature to the plate. As our primary interest did not lie in the recovery region, control of the flowrate or heat loss behavior was not attempted. In this case, however, the unheated starting length effect is also present, which prevents the comparison to the simple correlation.

In the next case (Figure 2.13), with $U_m = 40$ ft/sec (12.2 m/s), the unheated length is eliminated and a comparison with the established flat plate heat transfer correlation is made possible: The first data point shows the effect of acceleration on the foreplate and gives a slightly lower value than expected. With P/D = 5, the Stanton numbers are about 5% higher than the accepted correlation, shown as a straight line in Figure 2.13a. Interestingly enough, with P/D = 10, the Stanton numbers oscillate, and whenever the hole is plugged the Stanton number is right on the line: for the unplugged holes the Stanton numbers are slightly higher than the line. In the recovery region, the data followed the accepted correlation, with more scatter in data. This is also due to the lack of uniform plate temperature, as explained before. two cases gave confidence that our energy measurement is quite accurate and the rig itself could perform as required for the proposed experiment. These flat plate data confirm the flat plate correlation,

St = 0.0295
$$Pr^{-0.4} Re_{x}^{-0.2}$$
 (2.15)

within its experimental uncertainty. The value of Pr of 0.715 was used.

E. Uncertainty Interval

It is difficult to assess the overall uncertainty, including the possible physical changes in particular geometry. In this program, various levels of uncertainty were counted, and appear in the following table.

The propagation of uncertainties was accounted for by the procedure of Kline and McClintock [62].

<u>Variables</u>	Uncertainty
Static pressure	0.005 in. (0.127 mm) of water
Stagnation pressure	0.002 in. (0.0508 mm) of water
Temperature, except probe	0.25°F (0.14°C)
Temperature probe	0.15°F (0.08°C)
Secondary air flow rate	3%
Heat flux meter	1%
Distance normal to wall	0.001 in. (0.025 mm)
Flow direction conductance measured	5%
Power	0.3 watt @ $\theta = 1.0$ and 1.0 watt @ $\theta = 0.0$
Virtual origin	1 in. (2.54 cm)

For the free-stream velocity of 55 ft/sec (16.7 m/s), the Stanton number uncertainty for all the runs with $\theta = 1.0$ or with no blowing is $\pm 0.5 \times 10^{-4}$ with the given power measurement uncertainty of ± 0.3 watt. For $\theta = 0.0$ cases, KFL was not confirmed experimentally and the power measurement uncertainty increases to about 1 watt so that the Stanton number uncertainty becomes $\pm 1.5 \times 10^{-4}$. For higher velocities than 55 ft/sec (16.7 m/s), the uncertainty in the Stanton number decreases, and for the lower velocities, it increases.

The reason that the stagnation pressure could be measured more accurately than the static pressure was that the stagnation pressure was measured by the pressure transducer, which is calibrated to a precision micromanometer, and the static pressure was measured by the inclined manometer which was not calibrated. The thermocouple was calibrated with the quartz thermometer. Secondary flowrate measurement errors included the uncertainties due to ASME orifice meter accuracy, zero drift, and interpolation errors.

F. Data Reduction Program

In the processes of data reduction and instrument calibrations, various programs were written. Small programs made for the instrument calibration will not be discussed here.

Two major data reduction programs were used: one for velocity and temperature profiles and the other for heat transfer.

Program PROF converts the boundary layer velocity and temperature readings to the proper engineering unit. The trapezoidal rule for numerical integration is used to obtain the integral parameters. In the case of the flat plate, it computes the skin friction and calculates \mathbf{u}^{\dagger} and \mathbf{y}^{\dagger} . To get skin friction, it uses the Clauser plot for \mathbf{y}^{\dagger} of 75 to 125. And in the other option, it averages the velocity and temperature profiles to obtain the laterally averaged profiles.

The program STNO is used to reduce the heat transfer data. It contains all the calibration constants for heat flux meters and flow meters, and also contains the heat loss calibration test results and analytical models. It first accepts the raw data and then converts them into standard engineering units. The raw data and converted data are printed out separately. Then it calculates the proper non-dimensional numbers like Re , St and others. If the case is not a blown one, the program goes to the next case. If it has blowing, it compares the two cases, one nearly $\theta = 0$ and the other nearly $\theta = 1.0$, and then calculates the heat transfer parameters at $\theta = 0.0$ and $\theta = 1.0$ precisely. It distinguishes P/D = 5 from P/D = 10. It also performs the uncertainty analysis.

Figure 2.1 Overall view of the wind tunnel.

Figure 2.2 Block diagram of the wind tunnel.

| CONFIGURATION

#2 CONFIGURATION

Figure 2.3 Management of top wall to produce a thin boundary layer at the starting point of blowing.

Figure 2.4 Photograph of manifolds and delivery tubes.

Figure 2.5 Photograph of the test surface.

Figure 2.6 Photograph of a machined aluminum casting.

Figure 2.7 Cross section of the test plate blowing section.

Figure 2.8 Power line diagram.

H1, H2,---; HEATER ELEMENTS FOR FLOW METERS

Figure 2.8 Power line diagram (contd.)

Figure 2.9 Thermocouple circuit with heat flux meter circuit.

Figure 2.10 The results of energy balance tests.

Figure 2.11 Variations of free-stream turbulence level, momentum and enthalpy thicknesses across the channel.

Figure 2.12 Velocity profiles without blowing.

Figure 2.13 Heat transfer results for flat plate conditions.

CHAPTER III

SUPERPOSITION APPROACH FOR FILM COOLING

In this chapter, an investigation for a possible new scheme for organizing heat transfer data in full coverage film cooling is made. In particular, this proposed scheme gives a common basis for transpiration cooling and film cooling. Several advantages of the proposed scheme over the conventional one are discussed.

A. Introduction

The relationship conventionally used in film cooling theory is an adiabatic wall temperature rate equation of the form

$$\dot{q}_{o}^{"} = h^{*}(T_{o} - T_{a.w.})$$
 (3.1)

where $T_{a.w.}$ is obtained from the adiabatic wall effectiveness, η ,

$$\eta = \frac{T_{a.w.} - T_{\infty}}{T_2 - T_{\infty}}$$
 (3.2)

In film cooling [11-27], η has been extensively investigated for the various geometries of injection. The symbol η and the name adiabatic wall effectiveness probably originated in the pioneering work in this field by Wieghardt [11]. In the case of tangential or near-tangential slot-film cooling, the value of h_0 is frequently used in place of h_0^* in Equation (3.1). This is justified in the far downstream region, but not near the slot [12,14]. The same situation holds for the case where a porous strip is used for fluid injection [23]. Early studies examined only the variation of adiabatic wall effectiveness, relying on the use of h_0 . This approach was successful in applications like slot-film cooling of gas turbine combustion chambers, but failed when called upon to predict heat transfer rates near the injection source. In such cases, h_0^* cannot be approximated by h_0 . Two sets of data are then required: η and h_0^* , each as a function of position and blowing strength.

On the other hand, in the study of heat transfer in boundary layers with blowing and suction at the wall, it is conventional to use a rate equation of the form

$$\dot{q}_{O}^{"} = h(T_{O} - T_{\infty}) \qquad (3.3)$$

(Moffat [2]), in which case, unlike Equation (3.1), the heat transfer is based on the wall temperature and free-stream temperature, which are known a priori. Metzger [19] proposed this scheme in film cooling and presented h/h_0 as a function of the secondary injection temperature normalized by the temperature difference between free-stream and wall, θ , but later presented his data in terms of η and h^* obtained from his heat transfer data [38], following Eckert's suggestion (discussion to [19]).

In this chapter, a variation based on Equation (3.3) is proposed, developed, and compared to the conventional adiabatic wall-effectiveness scheme.

B. Film Cooling and Transpiration Cooling

In transpiration cooling with a thick porous plate, the temperature of the porous surface is always the same as that of the blown gas. The path length of the transpiration gas is so long compared to the pore size that the porous plate acts as a heat exchanger with an effectiveness of practically unity. In the case of film cooling, however, the injection geometries are such that the secondary gas temperature can be considerably different from that of the wall. In the cases using a porous strip to inject fluid the blowing is hard enough so that the boundary layer is blown off, and again the secondary injection temperature is essentially independent of the surrounding wall temperature, as in slot-film cooling.

In short, in engineering terminology, transpiration cooling implies $\theta = 1.0$ necessarily, while with film cooling, θ is a variable parameter. The independence of θ may well be a better identifier of "transpiration" vis-a-vis "film cooling" than is the physical geometry.

C. Linearity of the Governing Energy Equation

The governing energy equation for low-speed, constant-property flow is linear in temperature, and the boundary conditions prescribed in the study of film cooling or transpiration cooling are also linear. It is frequently useful to take advantage of linearity to construct solutions to complex problems by superposing solutions to simple problems.

Let us discuss a situation in which the solid plate is uniformly at t_0 and fluid at a temperature t_2 is injected through holes in the plate. Let the solution to the energy equation be denoted as T(0) when $\theta = 0$ and T(1) when $\theta = 1$. As a consequence of the linearity of the energy equation we can write:

$$T(\theta)^* = T(0) + \theta \times \Delta T$$
, (3.4)

with

$$\Delta T = T(1) - T(0)$$
 (3.5)

The heat transfer coefficient h is defined as

$$-k\frac{\partial T}{\partial y}\bigg|_{0} = h(T_{0} - T_{\infty}) .$$

Multiplying Equation (3.4) with the operator

$$- k \frac{\partial ()}{\partial y} |_{0}$$

and then using the definition of h, we have

$$h(\theta) = h(0) + \theta \times (h(1) - h(0))$$
 (3.6)

By forming the non-dimensional Stanton number,

$$St(\theta) = St(0) + \theta \times (St(1) - St(0))$$

 $T(\theta)$ means $T(\theta,x,y,z)$

Experimental results show that St(0) > St(1), so it is more straightforward to write

$$St(\theta) = St(0) - \theta\{St(0) - St(1)\}$$
 (3.7)

This result is plotted in Figure 3.1 along with experimental data in support. Metzger et al. [19] also verified the linear property of heat transfer coefficient h, with respect to θ .

D. Experimental Confirmation

To show that the above result is true, experiments were run with three different values of θ at a fixed value of M (Figure 3.2). The exact values of θ and M varied within about 6% from plate to plate, but the agreement between experiment and prediction is excellent.

The above experiments confirm the theoretical result, as shown in Figure 3.1 in the coordinates of St and θ with all other parameters fixed. Values of St at any two values of θ serve to define the straight line in Figure 3.1. This is the essential property of the proposed scheme.

For all the values of θ other than 1.0 and 0.0, a simple linear interpolation or extrapolation will give the necessary St or heat transfer coefficient. If the St obtained for a particular value of M and θ falls below the M = 0.0 case, there is a cooling effect; otherwise an adverse effect.

E. Relationship between the Effectiveness/Adiabatic Wall Scheme and the Constant Wall Temperature Superposition Scheme

The purpose of the following text is to demonstrate the one-to-one correspondence between the two schemes and to derive several useful formulae.

Suppose one increases the value of θ until $q_0''=0$ in the constant wall temperature scheme. We obtain

$$\theta_{a.w.} = \theta(\dot{q}_{o}'' = 0) = \frac{T_{2} - T_{\infty}}{T_{a.w.} - T_{\infty}} = \frac{1}{\eta}$$
 (3.8)

The last identity is from the definition of η . Metzger et al. [38] evaluates η based on Equation (3.8). Equation (3.8) can be realized in the full coverage film-cooled region in an averaged sense around each row of injection holes. Also in the slot film-cooling case, this relationship must be realized in an averaged sense over the entire plate as in Metzger et al. [31]. In addition, θ and η can be functions of x. Thus Equation (3.8) is an approximation which is valid when Couette flow assumption is true as will be discussed in the next section.

Also, for the general wall heat flux equation,

$$\dot{\mathbf{q}}_{O}^{"} = \mathbf{h}(\theta, \mathbf{M}) (\mathbf{T}_{O} - \mathbf{T}_{\infty})$$
.

 $h(\theta,F)$ is, from Figure 3.1 and from the fact that h and St are proportional,

$$h(\theta,M) = h(0,M) - \theta \times \Delta h$$
.

$$\dot{q}_{o}^{"} = h(0,M) \left\{ 1 - \theta \times \frac{\Delta St}{St(0,M)} \right\} (T_{o} - T_{\infty})$$

Also, from Figure 3.1, we have

$$\frac{\Delta St}{St(0,F)} = \frac{1}{\theta_{a,w}} = \eta \qquad . \tag{3.9}$$

$$\dot{q}_{o}^{"} = h(0,F)\{1 - \theta \times \eta\} (T_{o} - T_{\infty})$$
.

Eckert derived a similar expression for $h^*/h(\theta,F)$ in discussion to [19]. From the definitions of θ and η , we have

$$1 - \theta \times \eta = 1 - \frac{T_2 - T_{\infty}}{T_0 - T_{\infty}} \frac{T_{a.w.} - T_{\infty}}{T_2 - T_{\infty}} = 1 - \frac{T_{a.w.} - T_{\infty}}{T_0 - T_{\infty}}$$

$$1 - \theta \times \eta = \frac{T_0 - T_{a.w.}}{T_0 - T_{\infty}}$$
(3.10)

Thus we have

$$\dot{q}_{o}^{"} = h(0,M)(T_{o} - T_{a,w})$$
 (3.11)

However, Equation (3.11) is precisely the form of the adiabatic wall scheme. We have thus shown that h^* can be equated to h(0,M):

$$h^* = h(0,M)$$
 (3.12)

The second of th

Note that Equation (3.8) was essential in this derivation and the formulae derived are valid with the Couette flow approximation which is sometimes a very good approximation in the turbulent boundary layer. From this analysis we obtained several interesting relationships.

$$h^* = h(0,M)$$
 (3.12)

$$\eta = \frac{1}{\theta_{a,W}} = \frac{St(0,M) - St(1,M)}{St(0,M)}$$
 (3.9)

$$1 - \eta \times \theta = \frac{T_o - T_{a.w.}}{T_o - T_{\infty}}$$
 (3.10)

From plane geometry and Figure 3.1,

$$\frac{St(1,M)}{St(0,M)} = \frac{\frac{1}{\eta} - 1}{\frac{1}{\eta}} = \frac{T_2 - T_{a.w.}}{T_2 - T_{\infty}}$$

$$\frac{\operatorname{St}(\theta,M)}{\operatorname{St}(0,M)} = \frac{\frac{1}{n} - \theta}{\frac{1}{n}} = \frac{T_{o} - T_{a.w.}}{T_{o} - T_{\infty}}$$

Note that the last identity says

$$h(\theta, M)(T_o - T_\infty) = h(0, M)(T_o - T_{a.w.}) = \dot{q}_o''$$

which is obvious from Equations (3.1) and (3.3). Also note that in de-

riving this relationship it was not necessary to use the fact that the wall heat flux calculated either by Equation (3.1) or by Equation (3.3) is the same. This means our derivations are self-consistent with all other definitions and concepts.

In the case of the constant wall temperature superposition scheme, one may encounter singular points as in the pipe flow heat transfer problems. The following examples may be of interest.

(1) Case 1:
$$T_0 = T_{\infty}$$
, $T_2 > T_0$

Constant wall temperature superposition scheme

Assume
$$T_0 = \varepsilon + T_\infty$$
. Then
$$\theta = \frac{T_2 - T_\infty}{T_0 - T_\infty} = \frac{T_2 - T_\infty}{\varepsilon}$$

$$St(\theta, F) = St(0, M) - \theta \times \Delta St$$

$$= St(0, M) - \frac{\Delta St}{\varepsilon} (T_2 - T_\infty)$$

$$\dot{q}_0'' = h(\theta, M) (T_0 - T_\infty)$$

$$\dot{q}_0'' = \left\{ h(0, M) - \frac{\Delta h}{\varepsilon} (T_2 - T_\infty) \right\} \varepsilon$$

$$\lim_{\varepsilon \to 0} \dot{q}_0'' = -\Delta h \times (T_2 - T_\infty)$$

$$\dot{q}_0''' = -\Delta h \times (T_2 - T_\infty)$$

Adiabatic wall scheme

Now

$$\dot{q}_{o}^{"} = h^{*}(T_{o} - T_{a.w.})$$

$$= h(0,M)(T_{o} - T_{a.w.})$$

$$\dot{q}_{0}^{"} = -h(0,M) \frac{T_{a,w} - T_{\infty}}{T_{2} - T_{\infty}} (T_{2} - T_{\infty})$$

$$= -h(0,M) \times \eta \times (T_{2} - T_{\infty})$$

Now, from Equation (3.9),

$$h(0,M) \times \eta = \Delta h = h(0,M) - h(1,M)$$

$$\dot{q}_0'' = -\Delta h(T_2 - T_0)$$

$$\dot{q}_0'' = -\Delta h(T_2 - T_0)$$

This is the same result as before.

This problem is a special case which can be solved by the application of the superposition principle. Also, note that the heat flux at the wall has a negative sign and that temperature potential $(T_2 - T_0)$ appears.

(2) Case 2:
$$T_0 = T_{a.w.}$$

Adiabatic wall scheme

$$\dot{q}_{0}^{"} = h(0,M)(T_{0} - T_{a.w.})$$
 $\dot{q}_{0}^{"} = 0$

Constant wall temperature superposition scheme

$$\dot{q}_{O}^{"} = h(\theta_{a.w.}, M)(T_{O} - T_{\infty})$$

$$h(\theta_{a.w.}, M) = 0 \text{ by definition}$$

$$\dot{q}_{O}^{"} = 0$$

This is the same result as before.

F. Presentation of Full-Coverage Film Cooling Data

Three methods are available for the presentation of locally averaged film-cooling heat transfer data in the full coverage film-cooling geomtries. The three methods are:

- Method 1: Use an adiabatic wall test module (or use the mass transfer analogy [42,49]) to obtain local and/or average η , then use a constant wall temperature (or heat flux) test module to obtain St based on Equation (3.1)
- Method 2: Use a constant wall temperature test module and obtain $St(\theta,F)$ as a function of θ [19] or from these data obtain St and η [38].
- Method 3: Use a constant wall temperature test module to obtain St(0,F) and St(1,F) and use linear superposition to compute values of St for θ other than zero and unity. This is the method used in this thesis.

The value of η obtained by Method 1 may not be the same as that obtained by Methods 2 and 3, because in Method 1 T₂ is fixed and T₀ is a variable, while in Methods 2 and 3 T₀ is kept constant and T₂ is changed. The following example shows that the two procedures would not give the same results for η even though the values of θ in both cases are exactly the same.

Consider two hypothetical cases with the same flow field in the two-dimensional boundary layer situation: Case I has T_2 fixed at 1.0, and the wall is adiabatic yielding $T_0 = \eta(x)$ as the solution. Case II has T_0 constant at 1.0 and T_2 varies as $\theta_{a.w.}(x)$ to give the adiabatic wall. This is depicted in Figure 3.3. The governing equation for both cases is

$$U_{\partial \mathbf{x}}^{\partial \mathbf{T}} + V_{\partial \mathbf{y}}^{\partial \mathbf{T}} = \frac{\partial}{\partial \mathbf{y}} \left(\alpha_{\mathbf{T} \partial \mathbf{y}}^{\mathbf{T} \partial \mathbf{y}} \right)$$
 (3.13)

where α_{T} is the total diffusivity for heat.

If the Couette flow assumption is made, then $U\frac{\partial T}{\partial x}$ will vanish and eliminate the x dependence, and Case II can be converted to Case I by dividing all the boundary conditions by $\theta_{a.w.}(x)$ and by using Equation (3.8). Without the Couette flow assumption, the conversion is not possible. This example indicates that η in Method 2 should not be interpreted the same as in Method 1.

Also, as was discussed by Mayle et al. [47], in Method 1 the average value of $\{h(0,F)\times\eta\}$ must be approximated as the {average of h(0,F)} \times {average of η }, to obtain the average heat flux. This approximation is not true if h(0,F) or η is not constant in the z-direction. Again, in Method 3 there is no such ambiguity, since averaging h has the same effects as averaging \dot{q}_0'' with the locally constant $(T_0 - T_\infty)$.

G. Discussion

Even though the words "adiabatic wall effectiveness" seem to denote the overall performance of cooling, it is only a partial effect of film cooling on the rate Equation (3.1). To be valid all over the protected region, both η and St(0,F) must be measured.

The same information can be obtained by a superposition method, with all the effects of film cooling lumped into the function $St(\theta,F)$. This is a sufficient overall performance parameter.

For the case of constant wall temperature, the superposition scheme will require less algebraic manipulation, because it directly calculates $St(\theta,F)$ or $h(\theta,F)$ appropriate for use with the known temperature difference (T_0-T_∞) .

Even more cogent arguments are related to the use of existing numerical prediction techniques for locally averaged heat transfer rates when the injectant temperature differs from the wall temperature. In the case of a constant wall temperature, the program can be executed with the actual boundary conditions (T_0 , T_2 and \dot{m}_0), as in any other two-dimensional boundary layer problem.

If this problem were attempted using the effectiveness/adiabatic wall temperature scheme, either an internal correlation for η would be required or the program would have to be run twice: once for the

adiabatic wall temperature and the other for h(0,F), for the locally averaged quasi-two-dimensional field.

From the research standpoint, to investigate the effect of one parameter on film cooling, if one follows the adiabatic wall scheme, one must have two test plate modules: one for the adiabatic wall tests and the other for the constant wall temperature tests.

If one uses the constant wall temperature superposition scheme, St(0,F) and St(1,F) can be obtained with equal accuracy with one constant wall temperature test plate module.

A last, but also important, point is that one can make an analogy between x-momentum and heat by making use of the similarity in the equations and the boundary conditions for heat and momentum transfer, yielding good estimates of the skin friction coefficients. In the case of a three-dimensional, full coverage discrete hole, film-cooling problem, the acquisition of skin friction data is, at best, an extremely time-consuming process.

Figure 3.1 Diagram explaining transpiration cooling and film cooling in terms of heat transfer coefficients.

Figure 3.2 Experimental confirmation of linearity.

Figure 3.3 Idealized experimental conditions.

CHAPTER IV

DERIVATION OF BASIC EQUATIONS FOR LOCALLY AVERAGED PROPERTIES

A. How to Average

A complete analytical description of full coverage film-cooling through discrete hole arrays requires a full three-dimensional, Navier-Stokes equation and a full three-dimensional energy equation. The literature describing the cross flow jet field for M > 2.0 [63,67] contains evidence that there exists a horseshoe vortex around each jet with a complicated turbulence field. The pressure also varies around each jet. All these facts suggest that no simple approximation will capture all the physics in this case. Ramsey et al. [37] confirmed the complexity of the flow field around the jet for $M \sim 1.0$ reporting a slightly different flow field than Abramovich [67]. It was not clear whether there was a horseshoe vortex at M = 1.0 but flow separation was indicated. Since our interest is in the range of M = 0.1 to M = 1.0, we would expect flow separation after each jet near M = 1.0, accompanied by a complicated turbulence field.

This leaves us in a difficult situation. Two problems are confronted, each of which is presently beyond the state of the art. One is three-dimensional flow separation, and the other the turbulence modeling in such flow. A full, three-dimensional, Navier-Stokes equation cannot be solved successfully within a reasonable computation time for high Reynolds numbers with the present day computer capability. Also, a proper modeling for turbulence field requires an experimental input which can be only obtained through the tedious three-dimensional probing. This will be a very time-consuming task.

At this moment it is fruitful to look back at the approaches used to handle "two-dimensional" turbulent flows. Various ideas have been brought up, but basically all models and ideas use one common operation: the governing equation was averaged (ensemble-average in this case). Our primary interest is in the mean motions and mean shear stresses. Averaging brings in the well known Reynolds stress terms, due to the non-linearity in the convective terms.

With an analogy to two-dimensional turbulent flow studies, a simpler equation can be obtained through averaging in the present case. This is related to what we really want to know in full-coverage film cooling through discrete hole arrays. Esgar et al. [1] described two problems in the gas turbine cooling situation as was mentioned in the beginning of Chapter I. Our major interest is in obtaining the overall temperature level, not the detailed temperature variation between holes. This vaguely suggests that proper averaging must be done around each hole. This is one requirement for a problem of how to average the governing equation to reduce the three-dimensional problem to a two-dimensional one. This type of analysis is only valid for a periodic array of holes, which is the most important type used for the gas turbine blade cooling application.

Another requirement for simplification is to reduce the governing equation to the boundary layer type equation. The full two-dimensional problem can be solved, but it takes considerably longer computation time than the boundary layer problem. To see whether the boundary layer approximation is valid, the boundary layer thickness was measured approximately for various values of M by using a pitot probe at the end of a stethoscope and listening to the turbulence noise intensity by ear. This rough measurement indicated that the boundary layer thickness was between one inch $(2.54\ cm)$ and four inches $(10.16\ cm)$ over the 24-inch $(61\ cm)$ distance with M \approx 1.0. Thus a "boundary layer" analysis is reasonably valid.

However, the use of the boundary layer equation requires that the wall mass transfer should not be very large, because the boundary layer equation solves the x-momentum equation, not y-momentum equation. Lateral averaging as proposed by Herring [46] is a good way to reduce the three-dimensional problem to the two-dimensional problem, but does not solve the mass transfer problem. The wall mass transfer is not small. For example, for M = 1.0 and P/D = 5, wall mass transfer after lateral averaging is about F = 0.2, which is still very large and is not negligible. This leaves only one possibility, local average.

In our geometry, it is clear what size and shape of area we should take for local averaging: the area associated with one hole, as described in Figure 4.1. With this procedure, the wall mass transfer becomes about F = 0.03 with M = 1.0 and P/D = 5. For this amount of wall mass transfer, the y-momentum equation can be neglected and the boundary-layer equation can be used. The area for local average can move continuously in the x- and y-directions, so that the resulting averaged properties are still continuous functions of x and y.

With all the above approximations, the full-coverage film cooling problem becomes similar to one with the uniform, porous plate transpiration.

The decomposition of p can be made as follows:

$$p(x,y,z,t) = P(x,y) + \tilde{p}(x,y,z) + p'(x,y,z,t)$$
 (4.1)

where P is the locally averaged property and \tilde{p} is the local variation of property p which represents the difference between the ensemble average and local average, and p' represents the turbulent fluctuation term. The ensemble average of p will give $P + \tilde{p}$, but the local average of p will give $P + \tilde{p} = 0$.

B. Derivation of PDE

For the low speed, constant property flow with no body force and no energy dissipation or no energy source, the following governing equation is realized. For the sake of simplicity of notation, tensorial notation is used.

Continuity:
$$\frac{\partial u_{i}}{\partial x_{i}} \delta_{ij} = 0$$
 (4.2a)

Momentum:
$$\frac{\partial \mathbf{u_i}}{\partial \tau} + \mathbf{u_j} \frac{\partial \mathbf{u_i}}{\partial \mathbf{x_j}} = -\frac{1}{\rho} \frac{\partial \mathbf{P}}{\partial \mathbf{x_j}} \delta_{\mathbf{ij}} + v \frac{\partial^2 \mathbf{u_i}}{\partial \mathbf{x_i^2}}$$
(4.2b)

Energy:
$$\frac{\partial t}{\partial \tau} + u_j \frac{\partial t}{\partial x_j} = \alpha \frac{\partial^2 t}{\partial x_j^2}$$
 (4.2c)

where i and j rum from 1 to 3. We now introduce the local averag-

ing, and simple algebraic manipulation gives

Continuity:
$$\frac{\partial U_{i}}{\partial x_{i}} \delta_{ij} = 0$$
 (4.3a)

Momentum:
$$U_{j} \frac{\partial^{U}_{i}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial P}{\partial x_{j}} \delta_{i,j} + v \frac{\partial^{2}U_{i}}{\partial x_{j}^{2}} + \frac{\partial}{\partial x_{j}} (-\overline{u_{i}^{'}u_{j}^{'}}) + \frac{\partial}{\partial x_{j}} (-\overline{u_{i}^{'}u_{j}^{'}})$$

$$(4.3b)$$

Energy:
$$U_{j} \frac{\partial T}{\partial x_{j}} = \alpha \frac{\partial^{2} T}{\partial x_{j}^{2}} + \frac{\partial}{\partial x_{j}} \left(-\overline{t^{\dagger} u_{j}^{\dagger}} \right) + \frac{\partial}{\partial x_{j}} \left(-\overline{\tilde{t} u_{j}^{\dagger}} \right)$$
 (4.3c)

where i and j rum through 2, and steady state is assumed.

Now the following additional assumptions are introduced:

- 1. Boundary layer assumption, and
- No abrupt change in wall mass transfer for locally averaged field.

With the introduction of the boundary layer assumption, Equations (4.3) become, using the x- and y-coordinate,

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 ag{4.4a}$$

$$U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial}{\partial y} (-\overline{u'v'}) + \frac{\partial}{\partial y} (-\overline{u\widetilde{v}})$$
(4.4b)

$$0 = -\frac{1}{0} \frac{\partial P}{\partial v} + \frac{\partial}{\partial v} (-v^{\frac{1}{2}}) + \frac{\partial}{\partial v} (-\tilde{v}^{\frac{2}{2}}) \quad \text{and} \quad (4.4c)$$

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \frac{\partial}{\partial y} \left(-\overline{t^{\dagger} v^{\dagger}} \right) + \frac{\partial}{\partial y} \left(-\overline{\tilde{t} \tilde{v}} \right)$$
(4.4d)

Now the y-momentum equation can be integrated as

$$\frac{P}{\rho} + \frac{\tilde{v}^2}{\tilde{v}^2} + \frac{V^2}{\tilde{v}^2} = \frac{P_{\infty}}{\rho}$$

With the second approximation, that there is no abrupt change in wall mass transfer, we have

$$\frac{\partial}{\partial \mathbf{x}} (\overline{\tilde{\mathbf{v}}^2}) \quad \emptyset \quad 0(\delta)$$

Also, $\overline{v'^2}$ is small compared to the pressure.

$$\frac{\partial P}{\partial x} = \frac{dP_{\infty}}{dx} \tag{4.5}$$

Then, using the Bernoulli equation in the free stream, we obtain the following governing equations:

$$\frac{\partial \mathbf{U}}{\partial \mathbf{x}} + \frac{\partial \mathbf{V}}{\partial \mathbf{y}} = 0 \tag{4.6a}$$

$$U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = U_{\infty} \frac{dU_{\infty}}{dx} + V \frac{\partial^{2} U}{\partial y^{2}} + \frac{\partial}{\partial y} \left(-\overline{u^{\dagger} v^{\dagger}} - \overline{\widetilde{u}} \overline{\widetilde{v}} \right)$$
 (4.6b)

$$U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \frac{\partial}{\partial y} \left(-\overline{t'v'} - \overline{\tilde{t}\tilde{v}} \right)$$
 (4.6c)

This is the required PDE. Note that $(-\widetilde{uv})$ and $(-\widetilde{tv})$ terms appear in addition to the turbulent correlation terms.

C. <u>Derivation of Integral Equations</u>

Two different approaches were taken to derive the integral equations: one from the PDE (4-6), and the other from the global conservation on the boundary layer. The comparison of these two derivations gives the wall value of $-\overline{uv}$ and $-\overline{tv}$, which is an important step in the construction of the model in solving PDE.

C.1 Derivation from PDE

By integrating Equation (4.6b) from 0 to h, where h is outside the boundary layer, we obtain

$$\int_{0}^{h} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) dy = \int_{0}^{h} u_{\infty} \frac{du_{\infty}}{\partial x} dy + \int_{0}^{h} \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} - \overline{u^{\dagger} v^{\dagger}} - \overline{\widetilde{u} \widetilde{v}} \right) dy$$

At
$$y = h$$
, $v \frac{\partial U}{\partial y} = 0$, $-\overline{u^{\dagger}v^{\dagger}} = 0$, and $-\overline{u}\overline{v} = 0$. At $y = 0$, $v \frac{\partial U}{\partial y} = 0$

 $\mathbf{g}_{\mathbf{c}} \mathbf{\tau}_{\mathbf{o}} / \rho$, $-\overline{\mathbf{u}^{\dagger} \mathbf{v}^{\dagger}} = 0$, and $(-\overline{\mathbf{u}} \mathbf{v}) \neq 0$. Thus,

$$\int_{0}^{h} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - u_{\infty} \frac{du_{\infty}}{dx} \right) dy = -\frac{g_{c}^{T}_{o}}{\rho_{o}} + (\widetilde{u}\widetilde{v})_{o}$$
 (4.7)

From Equation (4.6a),

$$V = V_0 - \int_0^y \frac{\partial U}{\partial x} dy$$
 (4.8)

Thus, using Equation (4.8), the left hand side of Equation (4.7) becomes:

$$\int_{0}^{h} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - u_{\infty} \frac{dU_{\infty}}{dx} \right) dy = \int_{0}^{h} \left\{ u \frac{\partial u}{\partial x} + \left(v_{0} - \int_{0}^{y} \frac{\partial u}{\partial x} dy \right) \frac{\partial u}{\partial y} - u_{\infty} \frac{dU_{\infty}}{dx} \right\} dy$$

Now, integrating by parts, we obtain

$$\int_{O}^{h} \left(\int_{O}^{y} \frac{\partial u}{\partial x} dy \right) \frac{\partial u}{\partial y} dy = \left[\int_{O}^{y} \frac{\partial u}{\partial x} dy \right]_{O}^{h} - \int_{O}^{h} \frac{\partial u}{\partial x} u dy$$

$$= \int_{O}^{h} \frac{\partial u}{\partial x} dy - \int_{O}^{h} u \frac{\partial u}{\partial x} dy$$

Using this result, Equation (4.7) becomes

$$\int_{0}^{h} \left(2U \frac{\partial U}{\partial x} - U_{\infty} \frac{\partial U}{\partial x} - U_{\infty} \frac{dU_{\infty}}{dx} + V_{0} \frac{\partial U}{\partial y} \right) dy = -\frac{g_{c} \tau_{0}}{\rho} + (\widetilde{u}\widetilde{v})_{0}$$

By rearranging the terms and using the boundary condition for U=0 at -y=0, we obtain

$$\frac{d}{dx} \int_{0}^{h} U(U_{\infty} - U) dy + \frac{dU_{\infty}}{dx} \int_{0}^{h} (U_{\infty} - U) dy = \frac{g_{c}T_{o}}{\rho} + V_{o}U_{\infty} - (\widetilde{u}\widetilde{v})_{o}$$

Using the definitions of momentum-deficit thickness and displacement thickness, we have

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathbf{U}_{\infty}^{2} \delta_{2} \right) = \frac{\mathbf{g}_{c}^{\mathsf{T}_{o}}}{\rho} + \mathbf{V}_{o} \mathbf{U}_{\infty} - \left(\overline{\mathbf{u}} \widetilde{\mathbf{v}} \right)_{o} - \mathbf{U}_{\infty} \frac{\mathrm{d} \mathbf{U}_{\infty}}{\mathrm{d}x} \delta_{1} \tag{4.9}$$

where momentum deficit thickness, δ_2 , is defined as

$$U_{\infty}^2 \delta_2 = \int_0^{\infty} U(U_{\infty} - U) dy$$

and displacement thickness, δ_1 , is defined as

$$U_{\infty} \delta_1 = \int_{0}^{\infty} (U_{\infty} - U) dy$$

Similarly, for the energy Equation (4.6c), we can derive the energy integral equation.

$$\frac{\mathrm{d}}{\mathrm{dx}} \left\{ \mathbf{U}_{\infty} (\mathbf{T}_{0} - \mathbf{T}_{\infty}) \Delta_{2} \right\} = \frac{\dot{\mathbf{q}}_{0}^{"}}{\rho C_{p}} + \mathbf{V}_{0} (\mathbf{T}_{0} - \mathbf{T}_{\infty}) + (\widetilde{\mathbf{t}}\widetilde{\mathbf{v}})_{0} \qquad (4.10)$$

In Equations (4.9) and (4.10), there appear $(-\overline{uv})_0$ and $(-\overline{tv})_0$, which are due to the non-equilibrium situation in the film cooling; the injection angle of the jet is not necessarily normal to the wall, and the in-

jection gas temperature does not have to be the same as the wall temperature. These two terms are always zero in the uniform transpiration problem. Also, note that the derivation of Equations (4.9) and (4.10) used the boundary conditions U=0 and $T=T_0$ at y=0. These boundary conditions are true at the wall but not at y=0 from local averaging, but, from the practical applications, what is important is the solid wall temperature, not the true average of the solid and the injected gas temperature. The slip boundary appears $(U\neq 0)$ at y=0 if the true average velocity at y=0 is used.

The above treatment provides convenience in application.

For the evaluation of $(-\widetilde{u}\widetilde{v})_{o}$ and $(-\widetilde{t}\widetilde{v})_{o}$, the derivation of integral equations from global conservation is necessary.

C.2 Derivation from the Global Conservation on the Boundary Layer The control volume for mass, momentum, and energy is shown in Figure 4.2. The local average is made in area A with sides $\ell \times s$. Then all the properties are integrated within this area at x and x + Δx ; then the normal bookkeeping for conservation of property is pursued.

$$\dot{m}_{\infty}\Delta x + \{\rho_{\infty}U_{\infty}(h-\overline{\delta}_{1}) + \frac{d}{dx}(\rho_{\infty}U_{\infty}(h-\overline{\delta}_{1}))\Delta x\}A = \dot{m}_{0}\Delta x + \rho_{\infty}U_{\infty}(h-\overline{\delta}_{1})A$$

Conservation of mass within the control volume gives

for steady state.

By integrating over the area A , we have \dot{m}_{0} and \dot{m}_{∞} , not \dot{m}_{0}'' and \dot{m}_{∞}'' . Also, the following identity was used.

$$\int_{0}^{h} \rho u dy = \rho_{\infty} U_{\infty} (h - \overline{\delta}_{1})$$

Thus

$$\dot{m}_{\infty} = \dot{m}_{0} - \frac{d}{dx} \left(\rho_{\infty} U_{\infty} (h - \overline{\delta}_{1})\right) A \qquad (4.11)$$

Then collecting the forces and momentum fluxes in Figure 4.2 in the form

$$\{\text{mom}\}_{\text{out}} - \{\text{mom}\}_{\text{in}} = \Sigma \text{ forces}$$

$$\{ \rho_{\infty} U_{\infty}^{2} (h - \overline{\delta}_{1} - \overline{\delta}_{2}) + \frac{d}{dx} (\rho_{\infty} U_{\infty}^{2} (h - \overline{\delta}_{1} - \overline{\delta}_{2}) \Delta x \} A + \dot{m}_{\infty} U_{\infty} + \frac{\partial U_{\infty}}{\partial x} \frac{\Delta x}{2} \Delta x$$

$$- \dot{m}_{0} U_{x} \Delta x - \rho_{\infty} U_{\infty}^{2} (h - \overline{\delta}_{1} - \overline{\delta}_{2}) A$$

$$= g_{c} PhL - (g_{c} P + g_{c} \frac{dP}{dx} \Delta x) hL - g_{c} \tau_{0} A$$

In this expression the following identity was used:

$$\int_0^h \rho u^2 dy = \rho_{\infty} U_{\infty}^2 (h - \delta_1 - \delta_2)$$

Rearrangement of the momentum conservation equation gives

$$\frac{d}{dx} \left(\rho_{\infty} U_{\infty}^{2} (h - \overline{\delta}_{1} - \overline{\delta}_{2}) \right) + \frac{\dot{m}_{o}}{A} \left(U_{\infty} - U_{x} \right) = -g_{c}^{\tau} - g_{c}^{h} \frac{dP}{dx}$$

Now $g_c \frac{dP}{dx}$ can be substituted by

$$-g_{c}\frac{dP}{dx} = \rho_{\infty}U_{\infty}\frac{dU_{\infty}}{dx}$$

Then finally we obtain the following momentum integral equation:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\rho_{\infty} U_{\infty}^{2} \overline{\delta}_{2} \right) = g_{c}^{\mathsf{T}} + \frac{\dot{m}}{\Lambda} \left(U_{\infty} - U_{x} \right) - \rho_{\infty} U_{\infty} \overline{\delta}_{1} \frac{\mathrm{d}U_{\infty}}{\mathrm{d}x}$$

In this case, fluid is considered incompressible and ρ_{∞} = ρ = const.

$$\frac{d}{dx} \left(U_{\infty}^{2} \overline{\delta}_{2} \right) = \frac{g_{c} \tau_{o}}{\rho} + \frac{\dot{m}_{o}}{A \rho} \left(U_{\infty} - U_{x} \right) - U_{\infty} \frac{dU_{\infty}}{dx} \overline{\delta}_{1}$$

Now

$$\frac{\dot{m}}{Ao} = v_o$$

$$\frac{d}{dx} \left(U_{\infty}^{2} \overline{\delta}_{2} \right) = \frac{g_{c} \tau_{o}}{\rho} + V_{o} \left(U_{\infty} - U_{x} \right) - U_{\infty} \frac{dU_{\infty}}{dx} \overline{\delta}_{1}$$
 (4.12)

Comparing Equations (4.9) and (4.12), we obtain

$$(\widetilde{\widetilde{u}}\widetilde{v})_{o} = V_{o}U_{x}$$
 (4.13)

For the energy integral equation, we can obtain the following result:

$$\frac{\mathrm{d}}{\mathrm{dx}} \left\{ \mathbf{U}_{\infty} \left(\mathbf{T}_{0} - \mathbf{T}_{\infty} \right) \overline{\Delta}_{2} \right\} = \frac{\mathbf{q}_{0}^{"}}{\rho C_{p}} + \mathbf{V}_{0} \left(\mathbf{T}_{2} - \mathbf{T}_{\infty} \right)$$
(4.14)

Comparing Equations (4.10) and (4.14), we obtain

$$\overline{(\tilde{t}\tilde{v})}_{o} = V_{o}(T_{2}-T_{o}) \tag{4.15}$$

By proper non-dimensionalization, (4.12) and (4.14) can be recast in the form

$$\frac{d \operatorname{Re}_{\delta}}{d \operatorname{Re}_{x}} = \frac{C_{f}}{2} - (1 + H)K \operatorname{Re}_{\delta} + F \left\{ 1 - \frac{U_{x}}{U_{\infty}} \right\}$$
 (4.16)

and

$$\frac{d \operatorname{Re}_{\overline{\Delta}}}{d \operatorname{Re}_{x}} = \operatorname{St} + F \cdot \theta \tag{4.17}$$

where

$$Re_{\overline{0}_2} = \frac{U_{\infty}^{\overline{0}_2}}{v}$$
, $Re_{\overline{\Delta}_2} = \frac{U_{\infty}^{\overline{\Delta}_2}}{v}$, and $dRe_{\mathbf{x}} = \frac{U_{\infty}}{v} d\mathbf{x}$

Comparing Equations (4.16) and (4.17) to the corresponding integral equations in the transpiration problem, we can conclude that transpiration cooling is the special case of film cooling where

$$\frac{U}{x} = 0$$
 and $\theta = 1.0$ always

 $\mathrm{C}_{\mathrm{f}}/2$ and St are not necessarily the same as those in the transpiration cooling.

In this program, we are interested in $U_{\infty} = \text{const.}$, $(T_0 - T_{\infty}) = \text{const.}$ with normal injection $(U_{\infty} = 0)$. Thus Equations (4.16) and (4.17) become

$$\frac{d\overline{\delta}_2}{dx} = \frac{C_f}{2} + F \tag{4.18}$$

and

$$\frac{d\overline{\Delta}_2}{dx} = St + F \cdot \theta \tag{4.19}$$

With normal injection, the only difference from the uniform transpiration problem is the appearance of θ . The effect of discrete hole injection in film cooling is contained in θ , $C_f/2$, and St through equations (4.18) and (4.19). On the other hand, with PDE Equation (4.6) explicitly shows the effect of discrete holes in terms of $(-\overline{\widetilde{uv}})$ and $(-\overline{\widetilde{tv}})$.

The following decomposition for $(\widetilde{u}\widetilde{v})$ and $(\widetilde{t}\widetilde{v})$ will be very helpful in the later development of the analytical model. We may set

$$-\overline{\widetilde{u}}v = (-\overline{\widetilde{u}}v)_{hom} + (-\overline{\widetilde{u}}v)_{non-hom}$$
 (4.20a)

and

$$-\overline{\tilde{t}\tilde{v}} = (-\overline{\tilde{t}\tilde{v}})_{\text{hom}} + (-\overline{\tilde{t}\tilde{v}})_{\text{non-hom}}$$
 (4.20b)

The terms $(-\widetilde{uv})_{hom}$ and $(-\widetilde{tv})_{hom}$ are the solutions for $(-\widetilde{uv})_{o} = 0$, and $(-\widetilde{tv})_{o} = 0$. The term, $(-\widetilde{uv})_{non-hom}$, has $v_{o} v_{o} v_{o$

With this decomposition, we can define the total shear stress and heat flux as

$$\frac{g_{c}^{T}}{o} = v \frac{\partial U}{\partial v} - \overline{u'v'} - (\overline{\widetilde{u}\widetilde{v}})_{hom}$$
 (4.21a)

and

$$\frac{\dot{\mathbf{q}}^{"}}{\rho C_{\mathbf{p}}} = -\alpha \frac{\partial \mathbf{T}}{\partial \mathbf{y}} - \overline{\mathbf{t}^{"}}\mathbf{v}^{"} - (\overline{\tilde{\mathbf{r}}}\tilde{\mathbf{v}})_{\mathbf{hom}}$$
(4.21b)

and

$$\frac{\partial}{\partial y} \left(- \left(\overline{\tilde{u}} \tilde{v} \right)_{\text{non-hom}} \right) = S_{m}$$

and

$$\frac{\partial}{\partial y} \left(- \left(\overline{\tilde{t}} \tilde{v} \right)_{\text{non-hom}} \right) = S_h$$

where S_{m} and S_{h} are an effective body force and an effective source. The definitions in Equations (4.21) do not change the wall shear stress and the wall heat flux,

$$\tau_{o} = \mu \frac{\partial U}{\partial y}$$

and

$$\dot{\mathbf{q}}_{\mathbf{0}}^{"} = -k \frac{\partial \mathbf{T}}{\partial \mathbf{y}} \bigg|_{\mathbf{0}}$$

Also, using the values at the wall, we may put

$$(\widetilde{\widetilde{uv}})_{\text{non-hom}} = V_0 U_x g(y,x)$$
 (4.22a)

and

$$(\overline{\tilde{t}\tilde{v}})_{\text{non-hom}} = V_o(T_2-T_o)f(y,x)$$
 (4.22b)

where g(y,x) and f(y,x) represent the distributions of the effective body force and the effective source in the boundary layer. They both have a value of 1.0 at the wall and 0 at the free-stream. The argument y was put before x to show that g and f are mainly functions of y.

Figure 4.1 Area for local averaging.

Figure 4.2 Control volume for the derivation of integral equations.

CHAPTER V

EXPERIMENTAL RESULTS

This chapter provides two types of data taken in these experiments: Stanton number data and the mean velocity and mean temperature profiles, which were used to obtain the mixing length profile.

In these experiments, there were eleven rows of holes for discrete hole blowing, with one solid plate used as a guard heater on the upstream end. In all the data presented, the second to twelfth data points represent the blowing region. The first data point plus the recovery region following the twelfth point were not blown.

All the data were taken at either $0.0 \le \theta \le 0.1$ or $0.9 \le \theta \le 1.1$, and the superposition principle (see Chapter III) was used to get the values of Stanton number for $\theta = 1.0$ and $\theta = 0.0$ precisely. For the recovery region, the average value of θ in the blowing region was used to apply the superposition principle.

The primary investigation was done at U_{∞} = 54 ft/sec (16.5 m/sec) to determine the effect of blowing with this geometry. In these tests, the effect of the unheated starting length was certainly present. To investigate this effect, plus other secondary variables, U_{∞} was varied, the unheated starting length was varied, and the momentum thickness at the first plate, δ_2 , was varied. Also, the case of P/D = 10 was run to investigate the effect of P/D. In addition, some untripped cases were run to show the effect of discrete hole blowing on transition. These runs are summarized in Table 5.1.

The number of data sets was kept as small as possible by changing one parameter at a time with other variables fixed. To cover the possible combination of variables appearing in Table 5.1, more than 200 data sets would be necessary. In this experiment 49 data sets were taken.

A. Stanton Number Data

A.1 Effect of M on Stanton Number (Figures 5.1 to 5.4)

Figure 5.1 shows the hydrodynamic condition at the first plate which was the guard plate, and had no holes. The flow shows a typical

Table 5-1
STANTON NUMBER RUNS

	FORE PLATE											
	UNHEATED						PARTLY HEATED		*(1) _{HEATED}			
									TRIPPED		NOT TRIPPED	
U _{oy} ,ft/sec	32		54		110		54		38		38	
	(9.75)		(16.5)		(33.6)		(16.5)		(11.6)		(11.6)	
*(2) _{Re\(\delta\)2}	1730		2810		5320		2790		540		516	
*(2) _{Re_\(\Delta\)2}	70		100		170		1820		590		555	
P/D	5	10	5	10	5_	10	5	10	5	10	5	10
M=0.0	х	<u> </u>	x	х	x		х		x	x	;	х
M=0.1			х									
M=0.2	х		х	х	х		*(3) X		X	х	X	
M=0.3			X									
M=0.4		<u> </u>	X							ļ		
M=0.5			*(4) X	Х					X	x		
M=0.65			х			ļ						
M=0.8	Х											
M=1.0	Х			Х								
M=variable									x			

NOTE: (1) The top wall was adjusted in the plate upstream of blowing to produce a low Reynolds number turbulent boundary layer in the blowing section.

- (2) The values of Re $_{\overline{0}2}$ and Re $_{\overline{\Delta}2}$ listed here are taken at the starting point of blowing.
- (3) For this run, the adiabatic wall effectiveness data, velocity and temperature profiles across the span between the two rows of holes were taken.
- (4) For this run, three values of θ were tried.
- (5) Except M=0.0, all the experiments were run at θ =0.0 and θ =1.0.

turbulent boundary layer profile with a momentum thickness Reynolds number of about 2800, and an enthalpy thickness Reynolds number about 100. The reason for the long unheated starting length is to give a better defined thermal boundary condition at the wall. The test plates were not built to produce the equilibrium ratios of boundary layer growth, thermal and momentum, for this region.

Figure 5.2 shows the heat transfer results in St vs. Re coordinates. The open symbols represent the $\theta = 0.0$ (i.e., $T_2 = T_m$) case, and the solid symbols represent $\theta = 1.0$ (i.e., $T_2 = T_0$) case. The open circles represent the case of M = 0.0; i.e., no blowing, used as a reference in both parts of Figure 5.2. Blowing was started at the second plate so that the second plate would not have the full effect of discrete hole blowing. At most, half of the plate feels the effect. case $\theta = 1.0$ (Figure 5.2a) shows a decrease of Stanton number for all values of M below the no-blowing case, except in the initial region. For M = 0.1, Stanton number decreases below the no-blowing case even in the initial region, but then as M increases, Stanton number increases, until at M = 0.4, Stanton number is about the same as that of the noblowing case. For values of M = 0.52 and M = 0.63 Stanton number increases progressively in the initial region. This behavior is confined to the initial blowing region: after about the 8th plate, the Stanton number always decreases further and further below the no-blowing case as M increases. The most pronounced reduction of Stanton number is seen in the recovery region. The decrease is, however, far less than we would expect from a transpiration cooling case with the comparable blowing. For example, for M = 0.63 (F = 0.02), a comparable uniform transpiration would completely blow off the boundary layer and give a zero Stanton number. The heat transfer behavior in discrete hole blowing can be explained by the augmentation of turbulent mixing, caused by the discrete injection, dominant over the thermal effect of the injection. In the initial region, the augmentation of turbulence is quite sudden while the mixing of jet flow or thermal energy with the boundary layer flow is a rather gradual process. This explains the high values of Stanton number in the initial region. In the downstream the augmentation of turbulence and the thermal boundary layer growth is more or less

balanced and the Stanton number gets comparatively small. Again, in the recovery region, the absence of the discrete hole injection drops the turbulence level rather suddenly but the thermal energy remains the same. This causes a drastic decrease in Stanton number in the recovery region.

The θ = 0.0 case is shown in Figure 5.2b. In this case, the higher the value of M the larger the Stanton numbers, except in the recovery region where the ordering reverses. The increase of Stanton number is caused by the injected gas, whose temperature is the same as the free-stream temperature, causing an effective sink. The decrease of Stanton number in the recovery region below the no-blowing case is attributed to the thick boundary layer developed by large blowing. The effect of the thick boundary layer may be partly overcome by the fact that the injected fluid, whose temperature is the same as the free-stream temperature, creates an effective sink whose strength is proportional to the blowing rate. The decreasing effect of M at high M may be explained by the fact that the injected jet penetrates farther into the boundary layer due to its higher momentum, thus moving the "sink" further from the wall.

In Figure 5.3, results for θ = 1.0 are plotted in $\text{Re}\overline{\Delta}_2$ coordinate. This coordinate shows Stanton number behavior per unit of enthalpy delivered to the boundary layer. The small arrow shows the end of the blowing region. M = 0.1 is the only case which falls below the no-blowing case. At M = 0.2, Stanton number is about the same as the no-blowing case. As M increases, Stanton number increases in the first portion of the test plate but then tends to decrease faster in the downstream. This is probably due to the fact that thermal mixing becomes more important in the downstream region. Figure 5.4 shows the θ = 0.0 case plotted in $\text{Re}\overline{\Delta}_2$ coordinate. The regularity of the increasing pattern in the blowing region.

For applications in gas turbine blade cooling, it may not be desirable to have a strong blowing in the initial region, particularly not with a normal angle injection hole. Leading edge values of θ have been proposed to be in the range of 1.0 to 1.5; strong blowing might increase, rather than decrease, the heat load on the leading edge.

A.2 Effect of U_{∞} (Figures 5.5 to 5.10)

Figure 5.5 shows the velocity profile on the first plate for U_{∞} reduced to 31.5 fps (9.6 m/s). This still shows the expected flat plate turbulent boundary layer profile, as did the run at U_{∞} = 54.9 fps (16.7 m/s) shown in Figure 5.1

Figure 5.6 shows the heat transfer results for $U_{\infty} \sim 32$ ft/sec (9.76 m/s). The M = 0.2 case was chosen for cross-comparison, and M = 0.74 and M = 0.91 \sim 0.94 were chosen for additional data. Note that for these latter values of M , Stanton numbers at θ = 1.0 fall below 10^{-3} in the recovery region. In Figure 5.6b , at M = 0.2 , and θ = 0.0 , the Stanton number ratio, St/St seems to be higher than that at U_{∞} = 54 ft/sec (16.5 m/s). Otherwise, it shows similar behavior as in the previous case, and the general behavior can be explained by the augmentation of mixing, boundary layer growth and the effective sink.

The same trend is observed in Figure 5.7 as in Figure 5.3. Especially note that at M = 0.17, the very same behavior as at U_{∞} = 54 ft/sec (16.5 m/s) is observed; the value of Stanton number at M \cong 0.2 is about that of the no-blowing Stanton number. In Figure 5.8, St/St is slightly higher than that at U_{∞} = 54 ft/sec (16.5 m/s). St/St for fixed $Re_{\Delta 2}$ is the usual correlation for the case of uniform transpiration. Physically this ratio represents a comparison of the non-dimensional heat transfer performance (Stanton number) of the two situations, evaluated at the same energy level of the boundary layer.

Figure 5.9 shows the velocity profile on the first plate at $U_{\infty}=115$ ft/sec (35 m/s). This also shows the fully developed turbulent boundary layer. Figure 5.10 shows the heat transfer results at M=0.2. Figure 5.10a shows Stanton number vs. Re_{χ} for both $\theta=1.0$ and $\theta=0.0$. The behavior is very much similar to the $U_{\infty}=54$ ft/sec (16.5 m/s) and 32 ft/sec (9.76 m/s) cases. The St/St ratio at fixed $Re_{\Delta 2}$ for $\theta=0.0$ seems to be slightly smaller than that at $U_{\infty}=54$ ft/sec (16.5 m/s). At $\theta=1.0$, the Stanton number is about the same value as that of the no-blowing case in $Re_{\Delta 2}$ coordinate, the same behavior.

The results of this series of experiments show that St/St is not affected by $\rm U_{\infty}$, if properly presented. For the case $\,\theta$ = 1.0

(resembling transpiration):

$$\frac{\frac{\text{St}}{\text{St}_{o}}\Big|_{\text{Re}_{x}}}{\frac{\ln(1+B_{h})}{B_{h}}} \neq f(U_{\infty})$$

where

$$B_h = F/St$$

This will be shown in Section B along with Figure 5.20. For θ = 0.0, St/St_o, evaluated at fixed Re $\overline{\Delta}_2$, drops slightly as U_o is increased.

A.3 Effect of $\overline{\Delta}_2$ Change (Figure 5.11 to 5.13)

For this test, only half of the foreplate was heated to increase the enthalpy thickness at the beginning of blowing. The value of U_{∞} was kept constant at 55 ft/sec (16.7 m/s). Figure 5.11 shows the velocity profile, and Figure 5.12 shows the temperature profile on the first plate. These two profiles show that the momentum and the thermal boundary layer are nearly in equilibrium. Figure 5.13 shows that there is no difference in behavior from Figure 5.2 to 5.4 if the same criteria as in the Subsection A.2 is used. That is, St/St divided by $\ln(1 + B_h)/B_h$ at fixed Re for $\theta = 1.0$ and St/St at fixed Re for $\theta = 0.0$ are used for comparison.

A.4 Effect of P/D Change (Figure 5.14)

To see the effect of P/D change, alternate rows of holes were plugged, as well as alternate holes in the remaining rows, using fitted corks. This made it possible to produce P/D = 10. Figure 2.13 (see Chapter II) shows that the effect of having cork plugs is negligible on the velocity profile.

Figure 5.14 shows the heat transfer results at P/D = 10. The general trends of St for θ = 1.0 and θ = 0.0 are similar to P/D = 5 case, but with much-diminished effect. At M = 1.0 with θ = 1.0,

Stanton numbers are higher than those of the no-blowing case all through the blowing region, a trend not observed for P/D = 5.0. For the same value of M, the cooling effect from P/D = 10 geometry is much inferior to P/D = 5 geometry in Re coordinate. Even at the same value of F, the P/D = 10 case will be inferior to the P/D = 5 case, because higher velocity jets are formed and they will penetrate farther into the boundary layer, which eventually will decrease the effect of the protecting sink near the wall, and because the higher velocity jets tend to create a higher turbulence level.

At M = 0.17 with θ = 1.0, St/St_o at fixed Re $\overline{\Lambda}_2$ seems to be about 1.0. It is surprising that the behavior of St/St_o at M \cong 0.2 with θ = 1.0 does not change very much from the P/D = 5 to the P/D = 10 case if compared in Re $\overline{\Lambda}_2$ coordinate. The small fluctuations in Stanton number are due to the fact that the alternate rows of holes are plugged up to produce P/D = 10.

A.5 Effect of $\frac{\overline{\delta}_2}{2}$ Change (Figure 5.15 to 5.18)

Figure 5.15 shows the velocity profile on the first plate, with the foreplate accelerated to produce the low momentum thickness. A boundary layer trip was used to obtain a quick transition to a turbulent boundary layer. In this profile, a logarithmic region appears at very small values of y^+ , $y^+ = 20 \sim 50$. This is partly due to the small value of momentum thickness and partly due to the acceleration effect which was not relaxed completely. Figure 5.16 shows the temperature profile, which is similar to the velocity profile.

Figure 5.17 shows the Stanton number at P/D = 5 with low $\overline{\delta}_2$. The M = 0.0 case is above the known correlation for the flat plate by 4-7%. This is probably due to the disturbance from open holes which is more important at low $\overline{\delta}_2$. Both in Re and Re $\overline{\Delta}_2$ coordinates, the heat transfer behavior is essentially the same if the same correlation parameters are used. The first point has the effect of acceleration and falls below the flat plate correlation.

Figure 5.18 shows the result with P/D = 10 and small $\overline{\delta}_2$. Both in Re and Re $\overline{\Delta}_2$, Stanton number behavior is very similar to that shown in Figure 5.14.

A.6 Effect of Discrete Hole Blowing on Laminar-to-Turbulent Transition (Figure 5.19)

Figure 5.19 shows the Stanton number behavior with a natural transition from a laminar to turbulent boundary layer. It shows that with M = 0.2, transition occurs within about 5 in. (12.7 cm). These data indicated that at the center of the channel the flow remains laminar about 30 inches downstream of the point where acceleration is stopped. Also, a pitot probe at the end of the stethoscope confirmed that the turbulent boundary layer develops from the side walls towards the center of the channel. Even after 50 inches downstream of acceleration, flow does not seem to have fully-developed turbulent flow. This is probably due to a low turbulence level ($\sim 0.4\%$) and to the acceleration. For M = 0.0, there appears a long transition to turbulent flow. The abrupt change in Stanton number appears between the blowing region and the recovery region because of the different methods of obtaining heat transfer coefficients between the two sections. In the blowing section, the plate energy balance is made over the whole plate area and Stanton number represents the true average value. In the recovery region, heat flux meter senses only the center two inches.

Discrete hole blowing makes a very quick transition, and it probably is not recommended to have discrete hole blowing in the laminar boundary layer region as a means of cooling the surface.

B. Construction of a Simple Theory

B.1 Couette Flow Analysis

From examination of the above Stanton number results, it is clear that heat transfer behavior has a distinctive pattern. Since we have developed the proper integral equations for momentum and energy, what we need in terms of prediction is C_f/C_f and St/St_o as functions of the variables of the integral equations. In this case, this program concerns itself with heat transfer behavior, and we need only the experimental information concerning St/St_o .

Now, invoking the Couette flow approximation on Equations (4.6a) and (4.6c), we obtain

$$\frac{dV}{dy} = 0 ag{5.1}$$

$$V \frac{dT}{dy} = \frac{d}{dy} \left(\alpha \frac{dT}{dy} - \overline{t^{\dagger}v^{\dagger}} - \overline{t^{\dagger}} \overline{v} \right)$$
 (5.2)

From Equation (5.1), $V = V_0$. Thus Equation (5.2) becomes

$$V_o \frac{dT}{dy} = \frac{d}{dy} \left(\alpha \frac{dT}{dy} - \overline{t^*v^*} - \overline{t^*} \overline{v} \right)$$

Using Equation (4.21b), we obtain

$$v_o \frac{dT}{dy} = \frac{d}{dy} \left(-\frac{\dot{q}''}{\rho c_p} \right) + s \qquad (5.3)$$

Now

$$S = -\frac{d}{dy} \left(V_o(T_2 - T_o) f(y) \right)$$

To be more general, following the formulations done in Kays [68], we have

$$\dot{\mathbf{m}}_{o}^{"} \frac{d\mathbf{P}}{d\mathbf{y}} = \frac{d}{d\mathbf{y}} \left(\lambda \frac{d\mathbf{P}}{d\mathbf{y}} \right) - \dot{\mathbf{m}}_{o}^{"} (\mathbf{P}_{2} - \mathbf{P}_{o}) \frac{d\mathbf{f}}{d\mathbf{y}}$$
 (5.4)

where P represents property in general, and $-\lambda \frac{dP}{dy}$ represents property flux. The boundary conditions for Equation (5.4) are

$$P = P_0$$
 at $y = 0$ (5.5)
 $P = P_\infty$ at $y = Y$

where Y is outside the boundary layer. Also, the property conservation in the control volume shown gives the following mass transfer relationship at the wall,

$$\dot{m}_{o}^{"} = \frac{\lambda \frac{dP}{dy}}{P_{2} - P_{T}} = g \frac{P_{\infty} - P_{O}}{P_{2} - P_{T}}$$
 (5.6)

where g represents the general mass transfer coefficient and the driving function for the film cooling situation is

$$B = \frac{P_{\infty} - P_{O}}{P_{O} - P_{T}} = \frac{\dot{m}_{O}^{"}}{g}$$
 (5.7)

(No radiation, no lateral conduction, no chemical reaction, no source within the control volume)

Equation (5.4) can be integrated, and we obtain

$$\dot{m}_{O}^{"} P - \lambda \frac{dP}{dy} + \dot{m}_{O}^{"} (P_{2} - P_{0}) f(y) = C_{1}$$
At $y = 0$, $\lambda \frac{dP}{dy} \Big|_{O} = \dot{m}_{O}^{"} (P_{2} - P_{T})$

$$C_{1} = \dot{m}_{O}^{"} P_{T}$$

$$\dot{m}_{O}^{"} (P - P_{T}) - \lambda \frac{dP}{dy} + \dot{m}_{O}^{"} (P_{2} - P_{0}) f(y) = 0$$

or

(1.3:

$$\dot{m}_{o}^{"}(P - P_{T}) - \lambda \frac{d(P - P_{T})}{dy} + \dot{m}_{o}^{"}(P_{2} - P_{o})f(y) = 0$$
 (5.8)

(1)
$$\theta = 1.0$$
 Case $(P_2 = P_0)$ Case)

In this case, Equation (5.8) can be integrated and we can obtain the following result, as in Kays [68]:

g =
$$\frac{\ln(1 + B_h)}{B_h} \frac{1.0}{\int_0^{Y} \frac{dy}{\lambda}}$$
 (5.9)

where

$$B_{h} = \frac{\dot{m}_{o}^{"}}{g} = \frac{P_{\infty} - P_{o}}{P_{o} - P_{T}}$$

Now, as $\dot{\mathbf{m}}_{0}^{"} \rightarrow 0$, we have

$$g_{o} = \underset{o}{\underset{\text{init}}{\text{limit}}} g = \frac{1.0}{\int_{0}^{Y}}$$

$$\int_{0}^{\frac{dy}{\lambda_{o}}}$$
(5.10)

Then we can form the ratio

$$\frac{g}{g_o} = \frac{\ln(1+B_h)}{B_h} \left\{ \frac{\int_{0}^{\frac{dy}{\lambda_o}}}{\int_{0}^{Y} \frac{dy}{\lambda}} \right\}$$
 (5.11)

In the case of transpiration cooling, the quantity inside { } is unity (overall transport property does not change very much), but in the case of film cooling through discrete holes, we have

$$\phi_{1} = \frac{\int_{0}^{Y} \frac{dy}{\lambda_{0}}}{\int_{0}^{Y} \frac{dy}{\lambda}} = \phi_{1}(F,P/D)$$
 (5.12)

(2)
$$\theta = 0.0$$
 Case $(P_2 = P_\infty)$ Case)

In this case, there is no closed solution found for $\, \, g/g_{_{\hbox{\scriptsize O}}} \,$, but we could guess that

$$\frac{g}{g_0} = \phi_2(B_c, F, P/D, Re_{\infty, D})$$
 (5.13)

where

$$B_c = \frac{P_{\infty} - P_o}{P_{\infty} - P_T}$$
, and $Re_{\infty,D} = \frac{U_{\infty}D}{V}$

The Re $_{\infty,D}$ appears here because the effective source is a function of hole diameter, and the proper non-dimensional number is $\text{Re}_{\infty,D}$. Note that δ_2 or Δ_2 does not appear in this analysis. In this case a viscous length scale, ν/ν_{∞} , is a proper length scale. ϕ_2 was found not to be a strong function of B..

B.2 Recommended Correlations for Integral Prediction

From Equation (4.19), we will obtain two integral equations,

$$\frac{d\Delta_2(0)}{dx} = St(0)$$
 (5.14)

$$\frac{d^{\Delta}_{2}(1)}{dx} = St(1) + F$$
 (5.15)

$$\frac{\text{St}(1)}{\text{St}_{0}} \bigg|_{\text{Re}\overline{\Lambda}_{0}} = \left[\frac{\ell_{n}(1+B_{h})}{B_{h}}\right]^{1.25} (1+B_{h})^{0.25} \phi_{1}^{1.25}$$
 (5.16)

$$\frac{\operatorname{St}(0)}{\operatorname{St}_{0}} = \phi_{2} \tag{5.17}$$

$$\operatorname{Re}_{\Delta_{2}}$$

The factor, ϕ_1 , is presented in Figure 5.20 for fixed Re_{χ} . St(1)/St $_{o}$ Re $_{\chi}$ is transformed into St(1)/St $_{o}$ Re $_{\lambda}$ following Whitten [3]. The factor, ϕ_2 , is presented in Figure 5.21 for fixed Re_{λ_2} . This functional variation was obtained after several trials. ϕ_1 and ϕ_2 are summarized as follows:

$$\phi_1 = 1 + 140F$$
 for P/D = 5
= 1 + 180F for P/D = 10

$$\phi_2 = 1 + 55 \text{ Re}_{\infty,D}^{-0.29} \text{ F}^{0.43} \text{ for } P/D = 5$$

$$= 1 + 48 \text{ Re}_{\infty,D}^{-0.29} \text{ F}^{0.43} \text{ for } P/D = 10$$

The value of ϕ_1 is greater for P/D = 10 than for P/D = 5 and the value of ϕ_2 is smaller for P/D = 10 than for P/D = 5. This means that there is less spread between St(0) and St(1) for P/D = 10, and thus its cooling effect will be less at the comparable condition.

For the detailed procedure of solving Equations (5.14) to (5.17) for $\Delta_2(0)$, $\Delta_2(1)$, St(0) and St(1), see Whitten [3]. Once St(0) and St(1) are obtained, we can readily calculate St(θ) as

$$St(\theta) = St(0) - \theta \{St(0) - St(1)\}$$
 (3.7)

using a linear superposition.

C. Profile Data

To get the local average profiles, we must average all the profiles around a hole. This, however, requires a very large number of profiles to be taken. To avoid this, velocity and temperature profiles were taken in a lateral span between the 10th and 11th row of holes. Velocity profiles were also taken between the 7th and 8th row of holes. At this point, the flow field is believed to be reasonably uniform in the x-direction so that the lateral average may not be very different from the local average.

As the M value gets larger, flow separation may be possible. Thus M = 0.2 was chosen for the profile study. A pitot probe was used for the velocity profile and at M = 0.2, and at the midpoint between two rows of holes the pitot probe error caused by a jet at the wall will be minimum (see Equation (4.4c)).

Figure 5.22 shows velocity profiles between two holes in the lateral direction. At both ends you can clearly see the velocity defect from the jet attached to the wall; and in the middle, only a small defect of the

profile still remains which indicates that a jet will spread fairly well after about seven diameters downstream.

Figure 5.23 shows the temperature profiles across a span in the lateral direction, with the hole from the preceding row located in the middle. The profile shows a high plateau in the middle, due to the hot jet attached near the wall, and some small effect remains at each end, similar to the velocity profile.

These profiles were next averaged spanwise. Figures 5.24 and 5.25 show the laterally averaged velocity and temperature profiles in a semilogarithmic scale. These two profiles indicate that there is a clearly-defined logarithmic region. Following Milikan [69], this means that there exists an inner region similarity and an outer region similarity even with the discrete hole blowing. Also, this was clear in the velocity profiles taken by LeBrocq et al. [33].

The mixing length distribution corresponding to the spanwise averaged profiles is shown in Figure 5.26. The method used for the shear stress calculation is outlined in Simpson [3]. For the momentum thickness Reynolds number, the arithmetic average of each profile is used, and the skin friction coefficient, $C_{\hat{\mathbf{f}}}/2$, was estimated by using the analogy between momentum and heat.

The mixing length distribution in Figure 5.26 shows a pronounced peak near $y/\delta = 0.1$. Probably at this point, the jet main boundary layer interaction is most active. Pai et al. [43] considered an augmented mixing in their film cooling predictions. From Figure 5.26, it becomes clear that the mixing length, ℓ , can be considered to be augmented by discrete hole blowing. Empirically, the following expression was obtained in the outer region where the damping effect is negligible:

$$\ell_{\text{outer}} = \kappa y + \kappa_{o} \left(\frac{y}{\delta}\right)^{2} e^{-\left(\frac{y/\delta}{DPL}\right)^{2}}$$
 (5.18)

where κy is the flat plate mixing length, DPL represents the point of maximum augmentation of mixing length, and κ_0 the magnitude of maximum augmentation.

Figure 5.27 shows the shear stress distribution, which shows a constant shear stress, due to the jet-boundary layer interaction. The shear

stress distribution from Simpson [3] does not show a constant shear stress region in uniform transpiration.

Figure 5.28 shows that for the inner region, a Van Driest damping function with $A^{+} = 24$ will give a good representation of the augmented mixing length. The Van Driest damping function was applied to the flat plate mixing length and the augmented mixing length, as

$$\ell_{inner} = \ell_{outer} \left(1 - e^{-y^{+}/A^{+}} \right) \qquad (5.19)$$

Figure 5.1 Velocity profile at U_{∞} = 54 ft/sec (16.5 m/sec) on the first plate, for Figures 5.2 to 5.4 .

Figure 5.2 St vs. Re for θ = 1.0 and θ = 0.0 with P/D = 5, with unheated starting length.

Figure 5.5 Velocity profile at U_{∞} = 32 ft/sec (9.76 m/sec) on the first plate, for Figures 5.6 to 5.8.

Figure 5.6 St vs. Re for θ = 1.0 and θ = 0.0 with P/D = 5 , with unheated starting length.

Figure 5.7 St vs. Re_{Δ_2} for $\theta = 1.0$ (same data as Figure 5.6).

Figure 5.8 St vs. Re_{Δ_2} for θ = 0.0 (same data as Figure 5.6).

Figure 5.9 Velocity profile at U_{∞} = 115 ft/sec (35.7 m/sec), on the first plate, for Figure 5.10 .

Figure 5.10 St vs. Re and St vs. Re_{Δ_2} for θ = 1.0 and θ = 0.0 at M = 0.2 , P/D = 5 with unheated starting length.

Figure 5.11 Velocity profile at U = 55 ft/sec (16.7 m/sec) on the first plate for Figure 5.13.

104

Figure 5.12 Temperature profile at $U_{\infty} = 55$ ft/sec (16.7 m/sec) on the first plate, with 24 in. (61 cm) heated on the foreplate for Figure 5.13.

Figure 5.13 St vs. Re and St vs. Re 0.0 for 0 = 1.0 and 0 = 0.0 at M = 0.2 , P/D = 5 with 24 in. (61 cm) heated on the foreplate.

Figure 5.14 St vs. Re and St vs. Re_{Δ_2} for θ = 1.0 and θ = 0.0 at M = 0.2 , 0.5 and 1.0 with P/D = 10 and an unheated starting length.

Figure 5.15 Velocity profile on the first plate, with foreplate accelerated to produce a low momentum thickness layer.

Figure 5.16 Temperature profile on the first plate, with foreplate accelerated to produce low momentum thickness.

Figure 5.17 St vs. Re_{x} and St vs. Re_{Δ_2} for P/D = 5 with small δ_2 .

Figure 5.18 St vs. Re and St vs. Re $_{\Delta}$ for P/D = 10 with small δ_2 .

Figure 5.19 St vs. Re and St vs. Re_{Δ_2} for P/D = 5 with the natural transition to turbulent boundary layer.

Figure 5.20 Stanton number correction factor, ϕ_1 , vs. F for θ = 1.0 .

Figure 5.21 St/St_o for fixed $Re\overline{\Delta}_2$ with $\theta = 0.0$.

Figure 5.22 Velocity profiles between two holes in lateral direction.

Figure 5.23 Temperature profiles across the hole in lateral direction.

Figure 5.24 Laterally averaged velocity profile.

Error

An error occurred while processing this page. See the system log for more details.

Figure 5.26 Mixing length distribution from laterally averaged velocity profiles at M = 0.2,

Figure 5.27 Shear stress distribution, laterally averaged at M = 0.2.

Figure 5.28 Van Driest damping function at M = 0.2.

CHAPTER VI

PREDICTION OF THE EXPERIMENTAL DATA

Prediction of the full-coverage, film-cooled heat transfer data was made using a finite difference prediction scheme based on the computer program originated by Patankar and Spalding [10]. Several years of investigation of turbulent boundary layer heat transfer with uniform transpiration and with pressure gradient have been conducted by the Stanford HMT group [2-9] and have provided the turbulence model used in the present program. Kays [70] gives a brief description.

A. Presentation of the Modeling Problem

In Chapter IV, the basic equations for the locally-averaged properties were derived and can be summarized as

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \tag{4.6a}$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{g_c \tau}{\rho} \right) + v_o u_x \frac{\partial g}{\partial y}$$
 (6.1)

$$U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\dot{q}''}{\rho c_n} \right) - V_o (T_2 - T_o) \frac{\partial f}{\partial y}$$
 (6.2)

with

$$\frac{g_{c}^{T}}{\rho} = v \frac{\partial U}{\partial y} - \overline{u'v'} - (\overline{\widetilde{u}\widetilde{v}})_{hom}$$
 (6.3)

$$\frac{\dot{q}''}{\rho c_p} = \alpha \frac{\partial T}{\partial y} - \overline{t'v'} - (\widetilde{t}\widetilde{v})_{hom}$$
 (6.4)

and f = g = 1.0 at y = 0, f = g = 0.0 at $y = \infty$.

In the present program, U_{∞} was kept constant, and the pressure gradient term did not appear in the momentum equation. There appear four unknown terms: $-\overline{u^{\dagger}v^{\dagger}} - (\widetilde{u}\widetilde{v})_{hom}$, $-\overline{t^{\dagger}v^{\dagger}} - (\widetilde{t}\widetilde{v})_{hom}$, f, and g.

These terms appear because of the non-linearity in the convective terms and present a "closure problem" (i.e., Reynolds [71]) which can be solved by proper modeling of the above terms. As was indicated by Reynolds, a higher level model, like the mean turbulence equation model or the mean Reynolds stress model, would be preferred if possible. In the present program, however, the main objective was the gross heat transfer study, and our attention was given only to the mean velocity profiles, using a pitot probe. This limited us to a mean-field type of closure model.

A.1 Model for
$$-\overline{u'v'} - (\overline{\tilde{u}\tilde{v}})_{hom}$$
 and $-\overline{t'v'} - (\overline{\tilde{t}\tilde{v}})_{hom}$

Because of its simplicity and wide applicability the mixing length model was chosen. A simple analysis in Appendix I supports the idea of applying the eddy viscosity concept to the modeling of terms, $-(\overline{\widetilde{uv}})_{hom} \quad \text{and} \quad -(\overline{\widetilde{tv}})_{hom}.$ Then

$$-\overline{u'v'} - (\overline{\widetilde{u}\widetilde{v}})_{hom} = \ell^2 |\frac{\partial U}{\partial y}| \frac{\partial U}{\partial y} = \epsilon_M \frac{\partial U}{\partial y}$$
 (6.5)

$$-\overline{t'v'} - (\overline{\tilde{t}\tilde{v}})_{hom} = \varepsilon_H \frac{\partial T}{\partial y} = \frac{\varepsilon_M}{Pr_+} \frac{\partial T}{\partial y}$$
 (6.6)

As was shown in Figure 5.26, Figure 5.28 and Equation (5.18) and (5.19), the following expression was used:

$$\ell = \ell_{\text{outer}} (1 - e^{-y^{+}/A^{+}}) = (\ell_f + \ell_a) (1 - e^{-y^{+}/A^{+}})$$
 (6.7)

where $A^+=24$ was used and ℓ_f is the mixing length for the flat plate and ℓ_g denotes the augmented mixing length. Since discrete hole blowing has the value of $M\geq 0.1$, the jet always penetrates the main boundary sublayer, and the interaction between the jet and the boundary layer occurs somewhere outside the sublayer. This was the reason for a fixed value of A^+ . The value of ℓ_f was the same as was used in

Kays [70].

$$\ell_f = \kappa y \qquad \text{for } \kappa y < \lambda \delta_{.99}$$

$$= \lambda \delta_{.99} \qquad \text{for } \kappa y \ge \lambda \delta_{.99}$$
(6.8)

where $\lambda = 0.08$ was used.

For ℓ_a , the empirical curve fit of Figure 5.26 was used.

$$\ell_{a} = \kappa_{o} \delta \left(\frac{y}{\delta}\right)^{2} e^{-\left(\frac{y/\delta}{DPL}\right)^{2}}$$
(6.9)

where the dimensionless distance, y/δ , was used because ℓ_a is mainly due to the interaction between the jets and the outer region of the boundary layer, and the constant κ_0 determines the maximum value of ℓ_a and the constant DPL gives the location of the maximum in the boundary layer. κ_0 has a relationship to $(\ell_a/\delta)_{max}$, as

$$\kappa_{\rm o} = \frac{e}{(\rm DPL)^2} \left(\frac{k_{\rm a}}{\delta}\right)_{\rm max}$$
 (6.10)

where e is the base for natural logarithm. Then this formulation reduces the problem of modeling into the evaluation of DPL and $(\ell_s/\delta)_{max}$.

DPL was considered as a function of M and P/D , and $(\ell_a/\delta)_{max}$ was expressed as

$$\left(\frac{\ell_a}{\delta}\right)_{\text{max}} = \text{AKO} \frac{v_{o,e}^+}{c_f/2} = \text{AKO}\left(\frac{F}{c_f/2}\right)$$
 (6.11)

where $v_{0,e}^+$ is the effective v_0^+ , a dimensionless blowing parameter. For the evaluation of $v_{0,e}^+$, see Section A.3 of this chapter. This linear relationship is for the convenience of use, and for the purpose of prediction.

For the turbulent Prandtl number, Pr_t, the flat plate value was used, as in Kays [70].

$$Pr_t = \frac{1}{Pr} - \frac{\frac{1}{Pr} - 0.9}{3.16} y^{+0.25}$$
 (6.12)

If the above expression falls below 0.86, a simple value of 0.86 was used. Further refinements on \Pr_{t} were not attempted because the molecular Prandtl number of air is 0.72 and \Pr_{t} is not expected to vary considerably from flat plate values.

A.2 Model for g(y,x) and f(y,x)

The modeling of g and f requires information on the distribution of the effective body force or effective source across the boundary layer.

The analysis done in Appendix I indicates that periodic perturbation at the wall will decay exponentially toward the free stream if the velocity is uniform.

Also, the following reasoning between the mixing length distribution and the effective source or effective body force can be used to determine the distribution of g and f.

From the physical point of view, the maximum in mixing length appears in the middle of the boundary layer because of the presence of the shear layer between the jet and the boundary layer; and the \tilde{u} , \tilde{v} , and \tilde{t} have maximum variation around the center of the deflected jet. This means that the maximum of the mixing length will appear between the center of the deflected jet and the interface of jet boundary layer. Also, if there is an effective body force or source present due to such variation of \tilde{u} , \tilde{v} , and \tilde{t} , then the effective body force or the effective source should damp out beyond DPL . This discussion suggests the following distribution:

$$g(y,x) = e^{-\frac{y/\delta}{DPL}}$$
(6.13)

and

$$f(y,x) = e^{-\frac{y/\delta}{DPL \cdot CPR}}$$
(6.14)

In this case, CPR is mainly due to the Pr not being unity, and in this case was set to 1.0 because in air $Pr \simeq 0.72$ and the penetration

distance of the jet would be almost the same for momentum and heat.

In the case of normal hole injection, g(y,x) does not play a role because $U_x = 0$.

A.3 Treatment of Abrupt Change in Blowing

This is to get $v_{o,e}^+$ in Equation (6.11) from v_o^+ to handle the abrupt change in blowing, and it is a purely empirical formulation. A similar approach was taken in transpiration cooling by Loyd [8].

At the step change of blowing, $v_{0,e}^+$ was set as

$$v_{o,e}^{+} = \begin{pmatrix} v_{o,e}^{+} \end{pmatrix}_{previous step}$$

$$+ \begin{cases} \binom{CL1}{or} \\ \binom{CL2}{cL2} \end{cases} \begin{cases} v_{o}^{+} - (v_{o}^{+})_{previous step} \end{cases}$$

where CL1 is for the positive step in blowing and 0.5 was used, and CL2 is for the negative step in blowing and 0.85 was used. After the step change, as in Loyd [8], the equation for $v_{0.e}^+$

$$\frac{dV_{o,e}^{\dagger}}{dx^{\dagger}} = \frac{V_{o,e}^{\dagger} - V_{o,e}^{\dagger}}{C_2}$$

was solved in each integrating step with C_2 of 6000.

For example, if we have step blowing through discrete holes and stop blowing after a certain distance, we have the following variation in $\mathbf{v}_{\text{o,e}}^{+}$:

B. Prediction of Experimental Results

After the local averaging, v_0^+ was substantially higher than the transpiration cooling cases. This required an accurate handling of the sublayer equations. Appendix H explains an algorithm for obtaining a numerical solution to the sublayer equations to obtain the shear stress and heat flux at the wall.

Figure 6.1 compares the predicted local average velocity profile to that of the lateral average. It is quite satisfactory. Figure 6.2 shows the variation of DPL and $(\ell_a/\delta)_{\rm max}$. These values were numerically determined to predict the experimental Stanton numbers. Figures 6.3 through 6.17 show the various predictions made for each test run. The overall prediction is satisfactory. The trends shown in Figure 6.2 were previously found in the analysis of Eriksen's [44]. His data analysis showed that y_0 and ε_H increased as the value of M increases. In the present model, the boundary layer concept was introduced, while in Eriksen's it was not.

For the prediction of high values of M and arbitrary boundary conditions, further development must be made.

Figure 6.1 Prediction of the velocity profile.

Figure 6.2 Variation of DPL and (la/δ) max.

Figure 6.3 Prediction of Stanton number data on full-coverage film-cooled surface with heated starting length for M = 0.2 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 5.

Figure 6.4 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.1 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 5.

Figure 6.5 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M=0.2 at $U_m=55$ ft/sec (16.7 m/s) with P/D = 5.

Figure 6.6 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M=0.3 at $U_{\infty}=55$ ft/sec (16.7 m/s) with P/D = 5.

Figure 6.7 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.42 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 5 .

Figure 6.8 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.53 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 5 .

Figure 6.9 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M=0.2 at $U_{\infty}=32$ ft/sec (9.76 m/s).

Figure 6.10 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.2 at U_{∞} = 115 ft/sec (35 m/s) with P/D = 5.

Figure 6.11 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.2 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 10 .

Figure 6.12 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 0.52 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 10 .

Figure 6.13 Prediction of Stanton number data on full-coverage film-cooled surface with unheated starting length for M = 1.0 at U_{∞} = 55 ft/sec (16.7 m/s) with P/D = 10 .

Figure 6.14 Prediction of Stanton number data on full-coverage film-cooled surface for M=0.2 at $U_{\infty}=39$ ft/sec (11.9 m/s) with P/D = 5 and thin boundary layer.

Figure 6.15 Prediction of Stanton number data on full-coverage film-cooled surface for M=0.53 at $U_{\infty}=39$ ft/sec (11.9 m/s) with P/D = 5 and thin boundary layer.

Figure 6.16 Prediction of Stanton number data on full-coverage film-cooled surface for M=0.2 at $U_{\infty}=39$ ft/sec (11.9 m/s) with P/D = 10 and thin boundary layer.

Figure 6.17 Prediction of Stanton number data on full-coverage film-cooled surface for M=0.52 at $U_{\infty}=39$ ft/sec (11.9 m/s) with P/D = 10 and thin boundary layer.

CHAPTER VII

SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY

A. Summary

- 1. The linear superposition method for film cooling was developed and shown to unify transpiration cooling and film cooling by using the same temperature potential, $(T_0 T_\infty)$. This allows direct comparison of Stanton number data, eliminating the calculation of wall heat flux for performance comparison. Also, with this scheme a skin friction estimation is possible for the full-coverage, film-cooled surface.
- 2. The concept of the local spatial average was introduced, and the proper governing equations for full-coverage film cooling were derived. This opens the way for utilization of the analytical methods developed for conventional turbulent boundary layers.
- 3. Heat transfer data for full-coverage film cooling with normal hole injection at P/D = 5 and P/D = 10 were taken for the fundamental cases θ = 0 and θ = 1.
- 4. For the integral equation prediction of heat transfer data, the following formulae are recommended:

$$\frac{St}{St_o}\bigg|_{Re\overline{\Delta}_2} = 1 + C_o Re_{\infty,D}^{-0.29} F^{0.43} \text{ for } \theta = 0.0$$

$$\frac{St}{St_{o}}\bigg|_{Re\overline{\Delta}_{2}} = (1 + c_{1}F)^{1.25} \left[\frac{\ln(1+B)}{B}\right]^{1.25} (1+B)^{0.25}$$

for
$$\theta = 1.0$$

where $C_0 = 55$, $C_1 = 140$ for P/D = 5, and $C_0 = 48$, $C_1 = 180$

- for P/D = 10 (to be used in conjunction with the superposition scheme to obtain Stanton number for arbitrary θ).
- 5. A two-dimensional boundary layer program was used to predict the experimental data. This procedure accounts for the penetration of the discrete hole jets into the boundary layer and the augmentation of the turbulent mixing due to jet-main stream interaction.
- 6. Several observations were made for normal hole injection.
 - a. Laminar-to-turbulent transition occurs quite abruptly with discrete hole blowing.
 - b. The P/D = 10 case with a comparable F is inferior to P/D = 5.
 - c. In the initial blowing region, there is not much cooling effect.

B. Recommendations for Further Study

 Study of full coverage film-cooling with slant angle injection geometry.

For the application in the turbine blade cooling, the majority of discrete holes, except near the leading edge, can be slanted with respect to the surface in the main stream direction for better performance. This is due to jets remaining closer to the wall surface. This work is in progress.

- 2. Study of full coverage film-cooling with complex angle injection.

 By having a complex angle injection, the area covered by a
 jet increases, and thus the cooling performance increases. Especially in the leading edge of the turbine blade, the normal
 hole injection does not help very much and the introduction of
 angled injection in the lateral direction is essential. This
 work is being pursued.
- 3. Detailed investigation of mean velocity, mean temperature and turbulence profiles around the discrete holes.

This study will provide the detail variation of velocity, temperature and turbulence level around the holes and also will provide a better model of local average flux terms, which can be used in the numerical prediction program. This is being pursued.

4. Three-dimensional prediction program for $\tilde{\mathbf{u}}$, $\tilde{\mathbf{v}}$ and $\tilde{\mathbf{t}}$.

Along with the experimental investigation in item 3 , this study will provide an analytical means of predicting \tilde{u} , \tilde{v} and \tilde{t} .

5. Study of the effects of $dP/dX \neq 0$ and the presence of other body forces.

In many practical applications including the gas turbine blade, the effects of non-uniform free-stream velocity and other body forces are very important.

- 6. Refinement of the present computer program such that the higher mass flux at the wall and the abrupt change in the boundary conditions can be handled.
 - 7. An experiment to determine the heat transfer characteristics downstream of a step in temperature of the injected air.

This will provide the kernel function needed to handle the general case of arbitrary secondary gas temperature by superposition. These data are the counterpart of the unheated starting length data used in dealing with the arbitrary wall temperature problem for an impermeable wall.

, · .

REFERENCES

- 1. Esgar, J. B., Colladay, R. S., and Kaufman, A., "An Analysis of the Capabilities and Limitations of Turbine Air Cooling Methods," NASA TND-5992, Sept. 1970.
- Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Porous Plate: Experimental Heat Transfer with Uniform Blowing and Suction," Report No. HMT-1, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1967.
- 3. Simpson, R. L., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with Injection and Suction," Report No. HMT-2, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1967.
- 4. Whitten, D. G., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: Experimental Heat Transfer with Variable Suction, Blowing and Surface Temperature," Report No. HMT-3, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1967.
- 5. Julien, H. L., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: Experimental Study of the Effects of a Favorable Pressure Gradient," Report No. HMT-4, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1969.
- 6. Thielbahr, W. H., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer: Experimental Heat Transfer with Blowing, Suction, and Favorable Pressure Gradient," Report No. HMT-5, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1969.
- 7. Kearney, D. W., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer: Experimental Heat Transfer with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-12, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1970.
- 8. Loyd, R. J., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-13, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1970.
- 9. Andersen, P. S., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Mechanics for Adverse Free-Stream Pressure Gradients," Report No. HMT-15, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1972.
- 10. Spalding, D. B., and Patankar, S. V., Heat and Mass Transfer in Boundary Layers, Morgan-Granpian, London, 1967.

- 11. Wieghardt, K., "Hot-Air Discharge for De-icing," AAF Translation, Report No. F-TS-919-Re, Wright Field, 1946.
- 12. Seban, R. A., "Heat Transfer and Effectiveness for a Turbulent Boundary Layer with Tangential Fluid Injection," ASME Series C, JHT, Vol. 82, 1960, pp. 303-313.
- 13. Seban, R. A., and Back, L. H., "Effectiveness and Heat Transfer for a Turbulent Boundary Layer with Tangential Injection and Variable Free-Stream Velocity," ASME Ser. C, JHT, Vol. 84, 1962, pp. 235-244.
- 14. Hartnett, J. P., Birkebak, R. C., and Eckert, E. R. G., "Velocity Distribution, Temperature Distributions, Effectiveness and Heat Transfer for Air Injected through a Tangential Slot into a Turbulent Boundary Layer," ASME Ser. C, JHT, Vol. 83, 1961, pp. 293-306.
- 15. Papell, S. S., "Effect on Gaseous Film Cooling of Coolant Injection through Angled Slots and Normal Holes," NASA TN D-299, Sept. 1960.
- Haji-Sheikh, A., "Flow Parameters on a Film-Cooled Surface," 4th International Heat Transfer Conference, Versailles, France, Aug. 1970, FC 1.10.
- 17. Artt, D. W., Brown, A., and Miller, P. P., "An Experimental Investigation into Film Cooling with Particular Application to Cooled Turbine Blades," 4th International Heat Transfer Conference, Versailles, France, Aug. 1970, FC 1.7.
- 18. Repukhov, V. M., Popovich, Ye. G., and Danileyko, V. M., "Effective-ness of Film-Cooling of a Flat Wall by Air Injection through a Slot Normal to the Film-Cooled Surface," Heat Transfer-Soviet Research, Vol. 2, No. 1, Jan. 1970, pp. 128-133.
- 19. Metzger, D. E., Carper, H. J., and Swank, L. R., "Heat Transfer with Film Cooling Near Non-tangential Injection Slots," ASME Transactions, J. of Eng. Power, 1968, pp. 157-163.
- Kacker, S. C., and Whitelaw, J. H., "The Effect of Slot Height and Slot Turbulence Intensity on the Effectiveness of the Uniform Density, Two-Dimensional Wall Jet," ASME Ser. C, JHT, Vol. 90, 1968, pp. 469-475.
- 21. Pai, B. R., and Whitelaw, J. H., "The Influence of Strong Pressure Gradient on Film Cooling Effectiveness," 4th International Heat Transfer Conference, Versailles, France, Aug. 1970, FC 1.11.
- 22. Carson, L. W., and Talmor, E., "Gaseous Film Cooling at Various Degrees of Hot Gas Acceleration and Turbulence Levels," Int. J. Heat and Mass Transfer, Vol. 11, 1968, pp. 1695-1713.

- 23. Goldstein, R. J., Shavit, G., and Chen, T. S., "Film-Cooling Effectiveness with Injection through a Porous Section," ASME Ser. C, JHT, Vol. 87, 1965, pp. 353-361.
- 24. Escudier, M. P., and Whitelaw, J. H., "The Influence of Strong Adverse Pressure Gradient on the Effectiveness of Film Cooling," Int. J. Heat and Mass Transfer, Vol. 11, 1968, pp. 1289-1292.
- 25. Nishiwaki, N., Hirata, M., and Tsuchida, A., "Heat Transfer on a Surface Covered by Cold Air Film," Int. Development in Heat Transfer, ASME, N. Y., 1961, pp. 675-681.
- 26. Papell, S. S., and Trout, A. M., "Experimental Investigation of Air Film Cooling Applied to an Adiabatic Wall by Means of an Axially Discharging Slot," NASA TN D-9, Aug. 1959.
- 27. Samuel, A. E., and Joubert, P. N., "Film Cooling of an Adiabatic Flat Plate in Zero Pressure Gradient in the Presence of a Hot Mainstream and Cold Tangential Secondary Injection," J. Heat Transfer, Vol. 87, 1965, pp. 409-419.
- 28. Chin, J. H., Skirvin, S. C., Hayes, L. E., and Burggraf, F., "Film Cooling with Multiple Slots and Louvers," ASME Ser. C, JHT, Vol. 83, 1961, pp. 281-292.
- 29. Goldstein, R. G., Eckert, E. R. G., and Ramsey, J. W., "Film Cooling with Injection through Holes; Adiabatic Temperature Downstream of a Circular Hole," ASME, J. Engrg. Power, 1968, pp. 384-395.
- 30. Goldstein, R. G., Eckert, E. R. G., Eriksen, V. L., and Ramsey, J. W., "Film Cooling Following Injection through Inclined Circular Tubes," NASA CR-72612, Nov. 1969.
- 31. Metzger, D.E., and Fletcher, D.D., "Surface Heat Transfer Immediately Downstream of Flush, Non-tangential Injection Holes and Slots," AIAA, 5th Propulsion Joint Specialist Conference, USAF Academy, Colorado Springs, Colo., June 1969, Paper 69-523.
- 32. Eriksen, V. L., "Film Cooling Effectiveness and Heat Transfer with Injection through Holes," NASA CR-72991, Aug. 1971.
- 33. LeBrocq, R. V., Launder, B. E., and Priddin, C. H., "Discrete Hole Injection as a Means of Transpiration Cooling -- An Experimental Study," HTS/70/37, Department of Mech. Engrg., Imperial College of Science and Technology, June 1971.
- 34. Launder, B. E., and York, J., "Discrete Hole Cooling in the Presence of Free Stream Turbulence and Strong Favorable Pressure Gradient," HTS/73/9, Department of Mech. Engrg., Imperial College of Science and Technology, Jan. 1973.

- 35. Burggraf, F., and Huffmeier, R. W., "Film Effectiveness and Heat Transfer Coefficients for Injection from One and Two Rows of Holes at 35° to the Surface," AEG-Technical Information Series Report No. R70AEG351, General Electric Co., Lynn, Mass., Cincinnati, Ohio, August, 1970.
- 36. Nina, M. N. R., and Whitelaw, J. H., "The Effectiveness of Film Cooling with Three-Dimensional Slot Geometry," Gas Turbine Conference and Products Show, Houston, Texas, March, 1971, ASME Paper No. 71-GT-11.
- 37. Ramsey, J. W., and Goldstein, R. J., "Interaction of a Heated Jet with a Deflecting Stream," NASA CR-72613, April 1970.
- 38. Metzger, D. E., Takeuchi, D. I., and Kuenstler, P. A., "Effectiveness and Heat Transfer with Full-Coverage Film Cooling," Trans. of ASME, J. Eng. Pwr., July 1973, pp. 180-184.
- 39. Stollery, J. L., and El-Ehwany, A. A. M., "A Note on the Use of a Boundary Layer Model for Correlating Film Cooling Data," Int. J. Heat Mass Transfer, Vol. 8, 1965, pp. 55-65.
- 40. Libbrizzi, J., and Cresci, R. J., "Transpiration Cooling of a Turbulent Boundary Layer in an Axisymmetric Nozzle," AIAA Journal, Vol. 2, 1964, pp. 617-624.
- 41. Kutateladze, S. S., and Leont'ev, A. I., "Film Cooling with a Turbulent Gaseous Boundary Layer," Thermal Physics at High Temperature, Vol. 1, 1963, pp. 281-290.
- 42. Nicoll, W. B., and Whitelaw, J. H., "The Effectiveness of the Uniform Density, Two-Dimensional Wall Jet," Int. J. Heat Mass Transfer, Vol. 10, 1967, pp. 623-639.
- 43. Pai, B. R., and Whitelaw, J. H., "The Prediction of Wall Temperature in the Presence of Film Cooling," Int. J. Heat Mass Transfer, Vol. 14, 1971, pp. 409-426.
- 44. Patankar, S. V., Rastogi, A. K., and Whitelaw, J. H., "The Effectiveness of Three-Dimensional Film-Cooling Slots -- II. Predictions," Int. J. Heat Mass Transfer, Vol. 16, pp. 1673-1681.
- 45. Eriksen, V. L., Eckert, E. R. G., and Goldstein, R. G., "A Model for Analysis of the Temperature Field Downstream of a Heated Jet Injected into an Isothermal Crossflow at an Angle of 90°," NASA CR-72990, July, 1971.
- 46. Herring, H. J., "A Method of Predicting the Behavior of a Turbulent Boundary Layer with Discrete Transpiration Jets," ASME Paper No. 74-GT-48, 1974.

- 47. Mayle, R. E., and Camarata, F. J., 'Multihole Cooling Film Effectiveness and Heat Transfer," AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, Boston, Mass., July 15-17, 1974, AIAA Paper No. 74-675/ ASME Paper No. 74-HT-9.
- 48. Blair, M. F., and Lander, R. D., "New Techniques for Measuring Film Cooling Effectiveness and Heat Transfer," ASME Paper No. 74-HT-8, Presented at AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, Boston, Mass., July 15-17, 1974.
- 49. Pedersen, D. R., "Effect of Density Ratio on Film Cooling Effectiveness for Injection through a Row of Holes and for a Porous Slot," Ph.D. Thesis, Department of Mech. Engrg., University of Minnesota, March. 1972.
- 50. Wilson, D. J., Eriksen, V. L., and Goldstein, R. J., "Predicting Heat Transfer Coefficients with Film Cooling from a Row of Holes," Tech. Brief, J. Heat Transfer, ASME Ser. C, Vol. 96, May 1974, pp. 258-260.
- 51. Goldstein, R. J., Eckert, E. R. G., and Burggraf, F., "Effects of Hole Geometry and Density on Three-Dimensional Film Cooling," Int. J. Heat Mass Transfer, Vol. 17, 1974, pp. 595-607.
- 52. McCuen, P., "Heat Transfer with Laminar and Turbulent Flow Between Parallel Plane with Constant and Variable Wall Temperature and Heat Flux," Ph.D. Thesis, Thermosciences Division, Mech. Engrg. Dept., Stanford Univ., 1962.
- 53. Morretti, P. A., "Heat Transfer through an Incompressible Turbulent Boundary Layer with Varying Free-Stream Velocity and Varying Surface Temperature," Ph.D. Thesis, Thermosciences Division, Mechanical Engineering Dept., Stanford Univ., 1965.
- 54. London, A. L., Klopfer, G., and Wolf, S., "Oblique Flow Headers for Heat Exchangers," ASME Trans., J. of Engr. for Power, Vol. 90, July 1968, pp. 271-286.
- 55. Schubauer, G. E., Spangenberg, W. G., and Klebanoff, P. S., "Aerodynamic Characteristics of Damping Screens," NACA TN 2001, Jan. 1950.
- 56. Rause, H., and Hassan, M. M., "Cavitation Free Inlets and Contractions," Mech. Engrg., 71, 3, 213-216, 1949.
- 57. Moffat, R. J., "Temperature Measurement in Solids," ISA Paper 68-514, 1968.
- 58. Blackwell, B. F., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Heat Transfer Behavior with Adverse Pressure Gradient," Report No. HMT-16, Thermosciences Division, Mech. Engrg. Dept., Stanford Univ., 1972.

- 59. Healzer, J. M., "The Turbulent Boundary Layer on a Rough Porous Plate: Experimental Heat Transfer with Uniform Blowing," Report No. HMT-18, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ. 1974.
- 60. Reynolds, W. C., Kays, W. M., and Kline, S. J., "Heat Transfer in the Turbulent Incompressible Boundary Layer, Part I," NASA Memo 12-1-58W, 1958.
- 61. Kays, W. M., Computer Program STAN5, Mech. Engrg. Dept., Stanford Univ., 1974.
- 62. Kline, S. J., and McClintock, F. A., "Describing Uncertainties in Single Sample Experiments," <u>Mechanical Engineering</u>, Jan 1953.
- 63. Keffer, J. F., and Bains, W. D., "The Round Turbulent Jet in a Crosswind," Journal of Fluid Mechanics, Vol. 15, 1963, pp. 481-496.
- 64. Platten, J. L., and Keffer, J. F., "Deflected Turbulent Jet Flows," Journal of Applied Mechanics, ASME Transactions, Dec., 1971, pp. 756-758.
- 65. Kamotani, Y., and Greber, I., "Experiments on a Turbulent Jet in a Cross Flow," NASA CR-72893, June 1971.
- 66. Lee, C. C., "A Review of Research on the Interaction of a Jet with an External Stream," Brown Engrg. Co., Inc., Rep. No. 184-AD-630294, Huntsville, Ala. Res. Labs., 1966.
- 67. Abramovich, G. N., <u>The Theory of Turbulent Jets</u>, MIT Press, 1963, pp. 3-25, 195-201, 541-556.
- 68. Kays, W. M., Convective Heat and Mass Transfer, McGraw-Hill Book Co., 1966.
- 69. Millikan, C. B., "A Critical Discussion of Turbulent Flows in Channels and Circular Tubes," Proc. 5th International Congress of Applied Mechanics, Cambridge, Mass., 1938.
- 70. Kays, W. M., "Heat Transfer to the Transpired Turbulent Boundary Layer," Report No. HMT-14, Thermosciences Div., Dept. of Mech. Engrg., Stanford Univ., June 1971.
- 71. Reynolds, W. C., "Computation of Turbulent Flows -- State-of-the-Art, 1970," Report MD-27, Thermosciences Division, Dept. of Mech. Engrg., Stanford Univ., 1970.

APPENDIX A

STANTON NUMBER DATA

This is the tabulation of all the Stanton numbers along with velocity and temperature profiles which give the initial conditions at the starting point of blowing (in the middle of the 1st plate).

Special Nomenclature

DREEN	$\delta ext{Re}_{\overline{\Delta}_2}$,	uncertainty	in	$Re\overline{\Delta}_2$
-------	---	-------------	----	-------------------------

DST δ St , uncertainty in St

DTH $\delta\theta$, uncertainty in θ

ETA $1-St(\theta = 1.0)/St(\theta = 0.0)$

F-COL F at $\theta = 0.0$

F-HOT F at $\theta = 1.0$

PHI-1 ϕ_1 defined in Chapter V (see Equation 5.12)

RED2 $\operatorname{Re}_{\overline{\delta}_2}$

RE DEL2 Re $\overline{\Delta}_2$

REENTH $Re\overline{\Delta}_2$

REX Re

REXCOL Re for $\theta = 0.0$

REXHOT Re for $\theta = 1.0$

STCR St($\theta = 0$)/St

STHR St($\theta = 1.0$)/St_o

 $\mathbf{X}_{\mathbf{vo}}$, virtual origin of turbulent boundary layer

DISCRETE HOLE RIG *** NAS-3-14336

VELOCITY PROFILE

UINF= 55.1 FT/SEC X= 53.0 INCHES PORT= 19 TINF= 70.9 DEG F PINF= 2100, PSF

Y(INCHES)	U(FT/SEC)	Y+	U+	UBAR	DU
0.010	23.72	11.4	10,49	0,4302	0.19
0.012	25.08	13.7	11.09	0.4549	0,18
0.014	26.46	16.0	11.70	0.4799	0.17
0.016	27.58	18,3	12,20	0,5002	0,16
0.018	28.50	20.6	12.60	0.5169	0.16
0.020	29.18	22.9	12.91	0.5292	0.16
0.022	29.87	25,1	13.21	0.5418	0.15
0.024	30.38	27.4	13.43	0.5509	0.15
0.026	30.85	29.7	13.64	0.5594	0.15
0.028	31.24	32.0	13.81	0.5665	0,15
0.031	31.74	35.4	14.04	0.5756	0.14
0.034	32.24	38.9	14.26	0.5846	0.14
0.038	32.89	43.4	14.54	0.5964	0.14
0.044	33.55	50.3	14.84	0.6084	0.14
0.049	33.95	56.0	15.01	0.6157	0.13
0.056	34.61	64.0	15.31	0.6277	0.13
0.063	35.26	72.0	15.59	0.6395	0.13
0.073	35.77	83.4	15.82	0.6488	0.13
0.083	36.44	94.9	16.12	0.6609	0.12
0.094	37.00	107.4	16.36	0.6710	0.12
0.114	37.91	130.3	16.76	0.6875	0.12
0.139	39.24	158.9	17.35	0.7117	0.12
0.164	40.19	187.4	17.78	0.7289	0.11
0.189	41.05	216.0	18.15	0.7445	0.11
0.239	42.64	273.2	18.86	0.7733	0.11
0.289	44.21	330.3	19.55	0.8017	0.10
0.339	45.52	387.5	20.13	0.8256	0.10
0.389	46.80	444.6	20.70	0.8488	0.10
0.439	48.04	501.7	21.25	0.8713	0.09
0.489	49.24	558.9	21.78	0.8930	0.09
0.589	51.18	673.2	22.64	0.9283	0.09
0.689	52.96	787.5	23.42	0.9604	0.09
0.789	54.07	901.8	23.91	0.9807	0.08
0.889	54.80	1016.1	24.23	0.9938	0.08
1.039	55.17	1187.5	24.40	1.0005	0.08
1.189	55.14	1358.9	24.39	1.0000	0.08

REX= 0.12701E 07 RED2= 2827. DEL1= 0.136 IN. DEL2= 0.101IN. CF2= 0.16817E-02 DXVO= 0.67 XVO= 7.43 IN. H= 1.34

DDEL1-0.002 DDEL2-0.001

STANTON NUMBER DATA RUN 070473 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 83.3 UINF= 53.9 XVO= 4.600 RHO= 0.07231 CP= 0.242 VISC= 0.17101E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=26262.

** M=O., FLAT PLATE RUN, HIGH RE, STEP T-WALL AT THE 1ST PLATE

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	DTH
1	50.30	0.12002E 07	107.2	0.98007E 02	0.37319E-02	0.667E-04	2.					
2	52.30	0.12527E 07	107.5	0.27787E 03	0.31169E-02	0.619F-04	3.	0.00	0.0000	107.5	1.000	0.015
3	54.30	0.130525 07	107.3	0.43599E 03	0.29041E-02	0.610E-04	4.	0.00	0.3000	107.3	1.000	0.315
4	56.30	0.13577E 07	107.3	0.58507E 03	0.27726F-02	0.604E-04	5.	0.00	0.0000	107.3	1.000	0.015
5	58.30	0.14103E 07	107.3	0.72797E 03	0.26684E-02	0.598E-04	5.	0.00	0.0000	107.3	1.000	0.015
6	60.30	0.14628E 07	107.5	0.86638E 03	0.26023E-02	0.5898-04	6.	0.00	0.3300	107.5	1.000	0.015
7	62.30	0.15153E 07	107.3	0.10010E 04	0 • 2 52 18E - 02	0.589F-04	6.	0.00	0.0000	107.3	1.000	0.015
8	64.30	0.15678E 07	107.4	0.11312E 04	0.24381E-02	0.584E-04	6.	0.00	0.0000	107.4	1.000	0.015
9	66.30	0.16204E 07	107.3	0.12587F 04	0.241 79E-02	0.584E-04	7.	0.00	0.0000	107.3	1.000	0.015
10	68.30	0.16729E 07	107.3	0.13847E 04	0.23779E-02	0.583E-04	7.	0.00	0.0000	107.3	1.000	0.015
11	70.30	0.17254E 07	107-2	0-15082E 04	0.23267E-02	0.581E-04	7.	0.00	0.0000	107.2	1.000	0.015
12	72.30	0.17779E 07	107.6	0.15294E 04	0.22865E-02	0.571E-04	8.	0.00	0.0000	107.6	1.300	0.015
13	73.82	0.18178E 07	107.1	0.17208E 04	0.23159E-02	0.4035-04	8.					
14	74.85	0.18449E 07	106.8	0.17818E 04	0.21927E-02	0.4175-04	8•					
15	75.88	0.18719E 07	107.3	0.18416E 04	0.22168E-02	0.4226-04	8.					
16	76.91	0.18991E 07	107.3	0.19012F 04	0.21859E-02	0.4145-04	8.					
17	77.95	0.19263E 07	107.5	0.19600E 04	0.21574E-02	0.412E-04	8.					
18	78.98	0.19534E 07	107.4	0.20187F 04	0.21819E-02	0.416E-04	8.					
19	80.01	0.19804E 07	107.3	0.20775E 04	0.21563E-02	D-404E-04	8.					
20	81.04	0.20075E 07	107.5	0.21347E 04	0-20724E-02	0.391E-04	8.					
21	82-07	0.20345E 07	107 -4	0.21929E 04	0.222125-02	0.415E-04	8.					
22	83.10	0.20616E 07	107.5	0.22513E 04	0.20946E-02	0.408E-04	8.					
23	84-13	0.20886F 07	107.3	0.23074E 04	0.20498E-02	0.402E-04	8.					
24	85.16	0.21158E 07	107.4	0.23637E 04	0.21048F-02	0.4175-04	3.					
25	86.20	0.21430E 07	106.7	0.24192E 04	0.199095-02	0.403E-04	8.					
26	87.23	0.21700E 07	106.5	0.24749E 04	0.21226E-02	0.420E-04	9.					
27	88-26	0.21971E 07	107.4	0.25319E 04	0.20928E-02	0.412E-04	9.					
28	89.29	0.22241E 07	107.6	0.25878E 04	0 • 2 03 00E - 02	0.400E-04	9.					
29	90.32	0.22512E 07	107.1	0.26432E 04	0.20636E-02	0.400E-04	.9.					
30	91.35	0.22782E 07	107.9	0.26983E 04	0.20082F-02	0.402E-04	9.					
31	92.38	0.23053E 07	107.8	0.27535E 04	0.20668E-02	0.4025-04	9.					
32	93.41	0.23324E 07	107.6	0.28076E 04	0.19289E-02	0.3905-04	9•					
33	94.45	0.23596E 07	107.5	0.28605E 04	0.19762E-02	0.393E-04	9.					
34	95.48	0.23867E 07	106.8	0.29143E 04	0 • 1 9 9 5 7 E - 0 2	0.393E-04	9•					
35	96.51	0.24137E 07	107.3	0.29686E 04	0.20138E-02	0.416F-34	9.					
36	97.54	0-24408E 07	106.7	0.30233E 04	0 - 2 02 86 F - 02	0.455E-04	9.					

STANTON NUMBER DATA RUN 073073 *** DISCRETE HOLF RIG *** NAS-3-14336

TINF= 79.8 UINF= 53.3 XV0= 4.600 RHO= 0.07296 CP= 0.242 VISC= 0.16869E-03 PP=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=26336. UNCERTAINTY IN F=0.03027 IN RATIO

** M=0.1, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	М	F	т2	THETA	DΣH
1	50.30	0.12035E 07	103.5	0.10459E 03	0.39714E-02	0.692E-04	2.					
2	52.30	0.125628 07	103.5	0.31052E 03	0.33502E-02	0.648E-04	3.	0.10	0.0033	83.4	0.152	0.011
3	54.30	0.13089E 07	103.5	0.51165E 03	0.32989E-02	0.645E-04	4.	0.09	0.0029	83.8	0.169	0.011
4	56.30	0.13616E 07	103.5	0.70897E 03	0.31598E-02	0.635E-04	5.	0.10	0.0033	83.7	0.163	0.011
5	58.30	0.14142E 07	1 03 .5	0.89973E 03	0.30206E-02	0.6275-04	6.	0.09	0.0030	84.0	0.174	0.011
6	60.30	0.14669E 07	103.6	0-10849E 04	0.29460E-02	0.621E-04	7.	0.10	0.0033	83.7	0.163	0.011
7	62.30	0.15196E 07	103.6	0.12658E 04	0.28552E-02	0.615E-04	7.	0.09	0.0028	84.2	0.186	0.011
8	64.30	0.15722E 07	103.6	0.14420E 04	0.27563E-02	0.610E-04	8.	0.10	0.0031	84.0	0.178	0.011
9	66-30	0.16249E 07	103.6	0.16159E 04	0-27358E-02	0.609E-04	8.	0.09	0.3030	84.3	0.187	0.011
10	68-30	0.16776E 07	103.6	0.17899E 04	0.27316E-02	0.609E-04	8.	0.10	0.0033	84.0	0.177	0.011
11	70.30	0.17303E 07	103.5	0.19616E 04	0.26369E-02	0.606E-04	9.	0.09	0.0030	84.3	0.190	0.011
12	72.30	0.17829E 07	103.5	0.21305E 04	0.25764E-02	0.601E-04	9.	0.10	0.0033	84.3	0.191	0.011
13	73.82	0.18230E 07	103.1	0.22487E 04	0.24726E-02	0-429E-04	10.					
14	74.85	0.18501E 07	102.9	0.23139E 04	0.23230E-02	0.438E-04	10.					
15	75.88	0.18772E 07	103.6	0.23759E 04	0.22435E-02	0.429E-04	10.					
16	76-91	0.19045E 07	103.8	0.24357E U4	0.21642F-02	0.413E-04	10.					
17	77.95	0.19317E 07	104.0	0.24933E 04	0.20767E-02	0.404E-04	10.					
18	78.98	0.19588E 07	103.5	0.25517E 04	0.222325-02	0.4245-04	10.					
19	80.01	0.19860E 07	103.8	0.26103E 04	0.20886E-02	0.398E-04	10.					
20	81.04	0.20131E 07	104.1	0-26661E 04	0.20262E-02	0.386E-04	10.					
21	82.07	0.20402E 07	102.8	0.27228E 04	0.21499E-02	0.406E-04	10.					
22	83.10	0.20673E 07	104.0	0.27797E 04	0.20402E-02	0.402E-04	10.					
23	84.13	0.20945E 07	103.7	0.28346E 04	0.19975E-02	0.398E-04	10.					
24	85.16	0.21217E 07	103.7	0.28895E 04	0.20511E-02	0.417E-04	10.					
25	86.20	0.21490E 07	102.4	0.29432E 04	0.18984E-02	0.400E-04	10.					
26	87.23	0.217615 07	102.9	0.29975E 04	0.21020E-02		10.					
27	88.26	0.22032E 07	103.7	0.30542E 04	0.20733E-02	0.412E-04	10.					
28	89.29	0.22304E 07		0.31095F 04	0.20028E-02	0.399E-04	10.					
29	90.32	0.225755 07	103.5	0.31660E 04	0.21560E-02	0.413E-04	10.					
30	91-35	0.228465 07	104.4	0.32220E 04	0.19668E-02	0.399E-04	10.					
31	92.38	0.231178 07		0.32761E 04	0 • 2 01 83E - 02	0.398E-04	19.					
32	93.41	0.23390E 07		0.33294E 04	0.19060E-02	0.389E-04	10.					
33	94.45	0.23663E 07		0.33815E 04	0.19312E-02	0.390E-04	10.					
34	95.48	0.23934E 07		0.34341E 04	0.1944LE-02	0.390E-04	10.					
35	96.51	0.24205E 07		0.34873E 04	0.19698E-02	0.413E-04	10.					
36	97.54	0.24476E 07	103.1	0.35402E 04	0.19242E-02	0.4485-04	10.					

TINF= 84.1 UINF= 53.2 XVO= 4.600 RHO= 0.07218 CP= 0.242
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25812. UNCERTAINTY IN F=0.03028 IN RATIO

VISC= 0.17163E-03 PR=0.714

** M=0.1, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	ÐΥH
1	50.30	0.11796E 07	108.8	0.95738E 02	0.37091E-02	0.652E-04	2.					
2	52.30	0.12312E 07	109.0	0.32633E 03	0-29765E-02	0.602E-04	4.	0.10	0.0032	101.4	0.695	0.012
3	54.30	0.12829E 07	108.9	0.58545E 03	0.28329E-02	0.596F-04	5.	0.09	0.3328	101.9	0.716	0.012
4	56.30	0.13345E 07	109.0	0.83782E 03	0.26686E-02	0.585E-04	6-	0.10	0.0032	101.9	0.717	0.012
5	58.30	0.13861E 97	108.9	0.10891E 04	0.25133E-02	0.579E-04	7.	0.10	0.0031	102.1	0.727	0.012
6	60.30	0.14377E 07	109-1	0.13352E 04	0.24249E-02	0.570E-04	8.	0.10	0.0034	101.4	0.591	0.012
7	62.30	0.14894E 07	109.0	0.15676E 04	0.23496E-02	0.568E-04	9.	0.08	0.0026	102.5	0.740	0.012
8	64.30	0.15410E 07	109.0	0.17944E 04	0.22117E-02	0.562E-04	9.		0.0031			0.013
9	66.30	0.15926E 07	109.1	0.20210E 04	0.21576E-02	0.558E-04	10.	0.09	0.0028	102.9	0.752	0.013
10	68.30	0.16442E 07	109.0	0.22472E 04	0.21158E-02	0.557E-04	11.	0.10	0.0331	103.4	0.774	0.013
11	70.30	0.16959E 07	109.1	0.24745E 04	0.20422E-02	0.553E-04	11.	0.08	0.0027	104.5	0.816	0.013
12	72.30	0.17475E 07	109-4	0.27034E 04	0.19235E-02	0.542E-04	12.	0.10	0.0031	105.6	0.852	0.013
13	73.82	0.17867E 07	108.4	0.28491E 04	0.20557E-02	0.364E-04	12.					
14	74.85	0.18133E 07	108.1	0-29022E 04	0-19340E-02	0.382E-04	12.					
15	75.88	0.183995 07	108.8	0.29532E 04	0.18950E-02	0.381E-04	12.					
16	76.91	0.18666E 07	108.6	0.30039E 04	0.19174E-02	0.380E-04	12.					
17	77.95	0.18933E 07	108.8	0.30545E 04	0.18830E-02	0.376E-04	12.					
18	78.98	0.19199E 07	108.8	0.31046E 04	0.18801E-02	0.378E-04	12.					
19	80.01	0.19465E 07	109.7	0.31547E 04	0.18878F-02	0.369E-04	12.					
20	81.04	0.19731E 07	108.8	0.32044E 04	0.18482E-02	0.362E-04	12.					
21	82.07	0.19997E 07	108.7	0.32549E 04	0.19455E-02	0.379E-04	12.					
22	83.10	0.202628 07	108.7	0.33058E 04	0-18782E-02	0.380E-04	12.					
23	84.13	0.2052 EE 07	108.7	0.33549E 04	0.18125E-02	0.373E-04	12.					
24	85.16	0.20795E 07	108.8	0.34038E 04	0.18608E-02	0.387E-04	12.					
25	86-20	0.21063E 07	108.0	0.34524E 04	0.17905E-02	0.378E-04	12.					
26	87.23	0.21329E 07	107.6	0.35020E 04	0.19317E-02	0.397E-04	12.					
27	88.26	0.21594E 07	108.7	0.35525E 04	0-18628E-02	0.385E-04	12.					
28	89.29	0.21860E 07	109.0	0.36016E 04	0.18297E-02	0.375E-04	13.					
29	90.32	0.221265 07	108.5	0.36508E 04	0.18670E-02	0.375E-04	13.					
30	91.35	0.22392E 07	109.0	0.37004E 04	0.18601E-02	0.383E-04	13.					
31	92.38	0.22658E 07	109.0	0.37501E 04	0.18746E-02	0.380E-04	13.					
32	93.41	0.22925E 07	108.7	0.37990E 04	0.1800BE-02	0.375E-04	13.					
33	94.45	0.231925 07	108.7	0.38471E 04	0.18124E-02	0.374E-04	13.					
34	95.48	0.23458E 07	108.0	0.38955E 04	0.18245E-02	0.372E-04	13.					
35	96.51	0.23724F 07	108.4	0.39445E 04	0.185725-02	0.397E-04	13.					
36	97.54	0.23990E 07	107.9	0.399395 04	0.18520E-02	0.430E-04	13.					

PLATE	REXCOL	RE	DEL2	ST (TH=0)	REXHOT	RE	DEL2	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	PHI-1
1	1203538.0		104.6	0.003971	1179611.0		95.7	0.003709	บบบบบ	טניניטט	0.0000	טטניטטטני	0.0000	UUUUU
2	1256209.0		300.2		1231235.0		346.4	0.302767	0.199	0.898	0.0033	0.985	0. 0032	1.487
3	1308880.0		481.8		1282859.0		639.6		0.248	1.002	0.0029	0.980	0.0028	1.440
4	1361552.0		659.5		1334483.0		922-9	0.002418	0.268	1.036	0.0033	0.953	0.0032	1.496
5	1414223.0		830.3	0.003181	1386107.0		1206.5	0.002263	0.289	1.053	0.0030	0.920	0.0031	1.462
6	1466894.0		995.9	0.003107	1437732.0		1487.0	0.002121	0.317	1.075	0.0033	0.885	0.0034	1.479
7	1519565.0		1157.4	0.003025	1489356.0		1749.6	0.002112	0.302	1.086	0.0028	0.901	0.0026	1.376
8	1572237.0		1314.1	0.002926	1540980.0		2001.4	0.001974	0.325	1.084	0.0031	0.858	0.0031	1.428
9	1624908.0		1468.2	0.002928	1592604.0		2253.0	0.001904	0.350	1.115	0.0030	0.842	0.0028	1.363
10	1677579.0		1622.1	0.002914	1644228.0		2502.5	0.001882	0.354	1.137	0.0033	0.845	0.0031	1.432
11	1730250.0		1773.0	0.002817	1695852.0		2750.5	0.001868	0.337	1.124	0.0030	0.850	0.0027	1.383
12	1782922.0		1920.0	0.002765	1747476.0		2996.1	0.001778	0.357	1.125	0.0033	0.820	0.0031	1.420
13	1822952.0		2028.2	0.002600	1786711.0		3147.4	0.001872	0.280	1.073		0.872		
14	1850078.0		2096.6	0.002442	1813297.0		3195.8	0.001763	0.278	1.017		0.826		
15	1877203.0		2161.7	0.002350	1839884.0		3242.5	0.001742	0.259	0.987		0.820		
16	1904460.0		2224.0		1866599.0		32 89 . 7		0.192			0.857		
17	1931718.0		2283.5		1893314.0		3337.7		0-158			0.856		
18	1958844.0		2344-1		1919901.0		3384.7		9.257			0.828		
19	1985969.0		2404.9		1946487.0		3431.6		0.163	0.932		0.866		
20	2013095.0		2462.3		1973074.0		34 79 . 2		0.149			0.856		
21	2040221.0		2520.6		1999660.0		3527.4		0.161			0.902		
22	2067347.0		2579.1		2026247.0			0.001807	0.135			0.882		
23	2094472.0		2635.3		2052833.0		3623.2		0.157			0.849		
24	2121729.0		2691.9		2079548.0			0.001777	0.157			0.875		
25	2148987.0		2746.7		2106264.0			0.001743	0.09P			0.862		
26	2176113.0		2802.2		2132850.0			0.001857	0.138			0.922		
27	2203238.0		2860.5		2159437.0		3813.0		0.172			0.883		
28	2230364.0		2917.5		2186023.0		3859.9		0.147			0.878		
29	2257490.0		2975.9		2212610.0		3906.4		0.225			0.875		
30	2284616.0		3033.5		2239196.0		3953.7		0.093			0.915		
31	2311741.0		3088.6		2265783.0		4001.9		0.122			0.918		
32	2338998.0		3143.0		2292498.0		4049.4		0.095			0.892		
33	2366256.0		3196.0		2319213.0		4096.1		0.105	0.927		0.899		
34	2393382.0		3249.6		2345800.0		4143.1		0.105			0.908		
35	2420507.0		3303.7		2372386.0		41 90 - 8		0.098	0.953		0.929		
36	2447633.0		3357.4	0.001946	2398973.0		4239.1	0.001820	0.065	0.930		0.939		

VISC= 0.16767F-03 PR=0.715

** M=0.2, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLATI	E X	REX	TĐ	REENTH	STANTON NO	DST	DREEN	М	F	T2 ·	THETA	DTH
1	50.30	0.12088E 07	100-6	0.10533E 03	0.39819E-02	0.716E-04	2.					
2	52.30	0.12617E 07	100.6	0.32113E 03	0.35832E-02	0.686E-04	4.	0.20	0.0066	79.8	0.090	0.011
3	54.30	0.13146E 07	100.6	0.54358E 03	0.36436E-02	0.691E-04	5.	0.21	0.3067	79.7	0.088	0.011
4	56.30	0.13675E 07	100.6	0.76611E 03	0.35372E-02	0.682E-04	7.	0.20	0.0065	80.0	0.098	0.011
5	58.30	0.14204E 07	100.6	0.98322E 03	0.33879E-02	0.673E-04	8.	0.21	0.0067	79.9	0.396	0.011
6	60.30	0.14733E 07	100.6	0.11934E 04	0.32861E-02	0.664E-04	9.	0.20	0.0065	79.9	0.996	0.011
7	62.30	0.15262E 07	100.6	0.13989E 04	0.31704F-02	0.657E-04	9.	0.21	0.0067	80.1	0.102	0.011
8	64.30	0.15791E 07	100.6	0.16013E 04	0.30941E-02	0.652E-04	10.	0.29	0.0066	80.2	0.107	0.011
9	66.30	0.16320E 07	100.7	0.18002E 04	0.30467E-02	0.648E-04	11.	0.20	0.0066	80.1	0.103	0.011
10	68.30	0.16850E 07	100.6	0.19973E 04	0.30372E-02	0.650E-04	11.	0.20	0.0366	80.1	0.104	0.011
11	70.30	0.17379E 07	100.6	0.21929F 04	0.30051E-02	0.647E-04	12.	0.20	0.0066	80.0	0.101	0.011
12	72.30	0.17908E 07	100.7	0.23864E 04	0.2 9 064E-02	0.638E-04	13.	0.20	0.0066	80.3	0.112	0.011
13	73.82	0.18310E 07	99.9	0.25196E 04	0.26925E-02	0.470E-04	13.					
14	74.85	0.18582E 07	99.7	0.25904F 04	0.24939E-02	0.473E-04	13.					
15	75.88	0.18855E 07	100-6	0.26565E 04	0.23569E-02	0.454E-04	13.					
16	76.91	0.19128E 07	100.8	0.27192E 04	0.22362E-02	0.432E-04	13.					
17	77.95	0.19402E 07	101.1	0.27787E 04	0.21285E-02	0.419E-04	13.					
18	78.98	0.19675E 07	100.7	0.28384E 04	0.22458E-02	0.435E-04	13.					
19	80.01	0.19947E 07	101.0	0.28976E 04	0.20953E-02	0.406E-04	. 13.					
20	81.04	0.20219E 07	101.3	0.29537E 04	0.20216E-02	0.392E-04	13.					
21	82.07	0.20492E 07	101-0	0.30104E 04	0.21312E-02	D.411E-04	13.					
22	83.10	0.20764E 07	101.2	0.30671E 04	0.20287E-02	0.408E-04	13.					
23	84.13	0.21037E 07	101.0	0.31217E 04	0.19765E-02	0.402E-04	13.					
24	85.16	0.21311E 07	101.0	0.31763E 04	0.20241E-02	0.421E-04	13.					
25	86-20	0.21584E 07	99.6	0.32302E 04	0.19288E-02	0.411E-04	13.					
26	87.23	0.21857E 07	100-2	0.32854E 04	0.21156E-02	0.431E-04	13.					•
27	88.26	0.22129E 07	100.9	0.33420E 04	0.20336F-02	0.414E-04	13.					
28	89.29	0.22402E 07	101.2	0.33968E 04	0.19906E-02	0.404F-04	13.					
29	90.32	0.22674E 07	100.7	0.34533E 04	0.21466E-02	0.419E-04	13.					
30	91.35	0.22947E 07	101.5	0.35095E 04°	0.19731E-02	0.406E-04	13.					
31	92.38	0.23219E 07	101-4	0.35637E 04	0.20016E-02	0.4035-04	13.					
32	93.41	0.23493E 07	101.1	0.36170E 04	0-19060E-02	0.397E-04	14.					
33	94.45	0.23767E 07	101.0	0.36695E 04	0.19482E-02	0.399E-04	14.					
34	95.48	0.24039E 07	100.3	0.37226E 04	0.19411E-02	0.3975-04	14.					
35	96.51	0.24311E 07	100.8	0.37758F 04	0.19626E-02	0.420E-04	14.					
36	97.54	0.24584E 07	100.2	0.38291E 04	0.19459E-02	0.460E-04	14.		•			

STANTON NUMBER DATA RUN 070873 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 81.5 UINF= 52.5 XV0= 4.600 RH0= 0.07272 CP= 0.242 VISC= 0.16982E-03 PR=0.714

DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5

UNCERTAINTY IN REX=25777. UNCERTAINTY IN F=0.03029 IN RATIO

** M=0.2, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	М	F	T2	THETA	974
1	50.30	0.11780E 07	106.2	0.97551E 02	0.37844E-02	0.662E-04	2.					
2	52.30	0.12296E 07	106.2	0.46963E 03	0 - 28529E-02	0.601E-04	7.	0.23	0.0074	107.6	1.053	0.015
3	54-30	0.12811E 07	106-2	0.10035E 04	0.26727E-02	0.591E-04	12.	0.21	0.0070	107.8	1.061	0.015
4	56.30	0.13327E 07	106-3	0.15065E 04	0 • 2 45 89E - 02	0.579E-04	15.	0.21	0.3067	107.5	1.950	0.015
5	58.30	0.13842E 07	106.3	0.19748E 04	0.22755E-02	0.570E-04	17.	0.18	0.0060	108.2	1.077	0.015
6	60.30	0.14358E 07	106.2	0.24382E 04	0.21128E-02	D.564E-04	19.	0.21	0.3069	107.2	1.037	0.015
7	62.30	0.14873E 07	106.3	0.28897E 04	0:20358E-02	0.558E-04	21.	0.18	0.0058	108.1	1.370	0.015
8	64.30	0.15389E 07		0.33210E 04	0.18799E-02	0.554E-04	23.		0.0060			0.015
9	66.30	0-15905E 07		0.37511E 04	0.179505-02	0.551F-04	24.		0.0059			0.015
10	68.30	0.16420E 07		0.41878E 04	0.17717E-02	0.5 49 E-04	26.		0.0065			0.015
11	70.30	0.16936E 01		0.46207E 04	0.16633E-02	0.551E-04	27.		0.0059			0.015
12	72.30	0.17451E 07		0.50515E 04	0.15575E-02	0.545E-04	28.	0.19	0.0063	109.2	1.126	0.015
13	73.82	0.17843E 07		0.52980E 04	0.17524E-02	0.329E-04	29.					
14	74.85	0.18108E 0		0.53435E 04	0.16696E-02	0.353E-04	29.					
15	75.88	0.18374E 07	-	0.53872E 04	0.16197E-02	0.351E-04	29.					
16	76.91	0.18641E 0		0.54304E 04	0.16338E-02	0.348E-04	29.					
17	77.95	0.18908E 0		0.54732E 04	0.15860E-02	0.3 44 E-04	29.					
18	78.98	0.19173E 0		0.55152E 04	0.15735E-02	0.3445-04	29.					
19	80.01	0.19439E 0		0.55574E 04	0.16044E-02	0.337E-04	29.					
20	81.04	0.19704E 0		0.55996E 04	0 • 1 56 73E - 02	0.330E-04	29.					
21	82.07	0.19970E 0		0.56421E 04	0.16322E-02	0.344E-04	29.					
22	83.10	0.20235E 0		0.56852E 04	0.16055E-02	0.350E-04	29.					
23	84.13	0.20501E 07		0.57271E 04	0.15520E-02	0.344E-04	29.					
24	85.16	0.20767E 0		0.57687E 04	0.15765F-02	0.354F-04	29.					
25	86.20	0.21034E 0		0.58100E 04	0.15285E-02	0.348E-04	29.					
26	87-23	0.21300E 0		0.58512E 04	0.15760E-02	0.356E-04	29.					
27	88.26	0.21565E 0		0.58932E 04	0.15847E-02	0.353E-04	29.					
28	89.29	0.21831E 0		0.59355E 04	0.15958E-02	0-349E-04	29.					
29	90.32	0.22096E 0		0.59785E 04	0.16361E-02	0.350E-04	29.					
30	91.35	0.22362E 0		0.602225 04	0.16534E-02	0.361E-04	29.					
31	92.38	0.22627E 0		0.60656E 04	0.16144E-02	0.354E-04	29.					
32	93.41	0.22894E 0		0.61084E 04	0.16074E-02	0.357E-04	29.					
33	94.45	0.23161E 0		0.61510E 04	0.15940E-02	0.352E-04	29.					
34	95.48	0.23426E 0		0.61934E 04	0.15929E-02	0.348E-04	29.					
35	96.51	0.23692E 0		0.62363E 04	0.16381E-02	0.375E-04	29.					
36	97.54	0.239575 0	105.2	0.62799E 04	0.164135-02	0 -404E-04	29.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 072973 AND RUN 070873
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DEL2	ST(TH=1)	ĘTĄ	STCR	F-COL	¢TH0	F~HOT	PH[-]
1	1208827.0	105	3 0.003982	1178016.0	97.6	0.003784	บบบบบ	บบบบบ	0.0000	ยบบาบบบ	0.0000	អ្នកស្រួ
2	1261729.0	307	2 0.003651	1229571.0	460.5	0.002893	0.208	0.950	0.0066	1.029	0.0074	2.075
3	1314632.0	502	5 0.003732	1281125.0	975.9	0.002734	0.267	1.087	0.0067	1.033	0.0070	2.079
4	1367535.0	697		1332679.0	1462.4	0.002516	0.310	1.144	0.0065	0.991	0.0067	2.027
5	1420437.0	886	7 0.003497		1913.9		0.324	1.159	0.0067	0.961	0.0060	1.927
6	1473340.0	1069	3 0.003406	1435788.0	2362.3		0.366	1.180	0.0065	0.901	0.0053	2.006
7	1526243.0	1246	5 0.003291	1487342.0	2799.9	0.002118	0.356	1.183	0.0067	0.903	0.0058	1.877
8	1579146.0	1418		1538897.0	3210.9	0.001999	0.380	1.196	0.0066	0.869	0.0060	1.883
9	1632048.0	1588		1590451.0	3619.6		0.403	1.212	0.0066	0.838	0.0059	1.851
10	1684951.0	1756		1642006.0	4037.0		0.411	1.239	0.0056	0.838	0.0065	1.944
11	1737854.0	1923		1693560.0	4450.3		0.434	1.255	0.0066	0.809	0.0059	1.836
12	1790756.0	2087		1745114.0	4855.1	0.001726	0.435	1.244	0.0066	0.796	0.0063	1.891
13	1830963.0	2206		1784296.0	5086.3		0.346	1.152		0.849		
14	1858207.0	2279		1810846.0	5133.6		0.328	1.074		0.811		
15	1885452.0	2347		1837397.0	5178.9		0.311	1.022		0.789		
16	1912829.0		2 0.002298	1864076.0	5223.5		0.269	0.974		0.795		
17	1940206.0	2473		1890755.0	5267.4		0.255	0.933		0.775		
18	1967451.0	2534		1917306.0	5310.6		0.298	0.996		0.777		
19	1994696.0	2595		1943856.0	5354.0		0.235	0.930		0.790		
20	2021941.0	2653		1970406.0	5397.1		0.226	0.903		0.774		
21	2049186.0	2711		1996957.0	54 40 • 6		0.235	0.960		0.811		
22	2076431.0	2769			54 84 . 6		0.210	0.917		0.799		
23	2103676.0	2824			5527.4		0.216	0.900		0.777		
24	2131053.0	2880		2076737.0	5569.8		0.222	0.928		0.793		
25	2158430.0	2935		2103417.0	5612.0		0.209	0.889		0.771		
26	2185675.0	2992		2129967.0	5654.2		0.255	0.985		0.803		
27	2212920.0	3050		2156518.0	5697.2		0.222	0.949		0.807		
28	2240165.0	3106		2183068.0	5740.3		0.200	0.933		0.814		
29	2267410.0	3163			··· < 057.84 · 1		0.238	1.015		0.842		
30	2294655.0	3221		2236169.0	5828.7		0.164	0.931		0.847		
31	2321900.0	3276		2262720.0	5872.8		0.195	0.952		0.833		
32	2349277.0	3330		2289399.0	5916.4		0.158	0.908		0.829		
33	2376654.0	33 84		2316079.0	5959.6		0.183	0.935		0.827		
34	2403899.0	3438			60 02 • 6		0.181	0.936		0.829		
35	2431144.0	3492		2369179.0	6046.2		0.167	0.950		0.855		
36	2458389.0	3546	6 0.001977	2395730.0	6090.5	0.001664	0.158	0.945		0.858		

STANTON NUMBER DATA RUN 072773 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 81.0 UINF= 52.8 XV0= 4.600 RHO= 0.07246 CP= 0.242 VISC= 0.17002E-03 PR=0.716
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25900. UNCERTAINTY IN F=0.03028 IN RATIO

** M=0.3, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO.	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	DTH
1	50.30	0.11836E 07	104.3	0.10103E 03	0:89009E-02	0.705E-04	2.					
2	52.30	0.12355E 07	104.2	0.32125E 03	0.36663E-02	0.690E-04	4.	0.31	0.0102	83.1	0.092	0.011
3	54.30	0.12873E 07	104.2	0.56348E 03	0.38311F-02	0.703E-04	7.	0.31	0.0101	83.1	0.391	0.011
4	56.30	0.13391E 07	104.3	0.308758 03	0.37606E-02	0.696E-04	8.	0.32	0.0102	83.2	0.094	0.011
5	58.30	U.13909E 07	104.3	0.10481E 04	0.35840F-02	0.683E-04	10.	0.31	0.0101	83.2	0.093	0.011
6	60.30	0.14427E 07	104.3	0.12804F 04	0.35202E-02	0.678E-04	11.		0.0101		0.092	0.011
7	62.30	U.14945E 07	104.2	0.15109E 04	0.34100E-02	0.672E-04	12.	0.31	0.0100	83.4	7.104	0.011
8	64.30	0.15463E 07	104.2	0.17384E 04	0.33030F-02	0.665E-04	13.	0.31	0.0100	83.4	0.104	0.011
9	66.30	0.15981E 07	104.2	0.19612E 04	0.32387E-02	0.661E-04	14.	0.31	0.0100	83.4	0.103	0.011
10	68.30	0.16499E 07	104.3	0.21814E 04	0.32203E-02	0.659E-04	14.	0.31	0.0100	83.4	0.102	0.011
11	70.30	0.17017E 07	104.2	0.23988E 04	0.31445E-02	0.6565-04	15.	0.31	0.0100	83.3	0.101	0.011
12	72.30	0.17535E 07	104.2	0.26119E 04	0.30343E-02	0.649E-04	16.	0.31	0.0100	83.4	0.104	0.011
13	73-82	0.17928E 07	103.0	0.27533F 04	0.26905F-02	0.472E-04	16.					
14	74.85	0.18195E 07	102.9	0.28218E 04	0.24355E-02	0.470E-04	16.					
15	75.98	0.18462E 07	103.9	0.28845E 04	0.226 03F-02	0.446E-04	16.					
16	76.91	0.18730E 07	104.1	0.29434E 04	0.21492E-02	0.424E-04	16.					
17	77.95	0.18998E 07	104.3	0.29992E 04	0.20349E-02	0.410E-04	16.					
18	78.98	0.19265E 07	104.1	0.30543E 04	0.20881E-02	0.418E-04	16.					
19	80.01	0.19532E 07	104.3	0.31087E 04	0.19860E-02	0.395E-04	16.					
20	81.04	0.19798E 07	104.5	0.31606E 04	0.18979E-02	0.381E-04	17.					
21	82.07	0.20065E 07	104.3	0.32127E 04	0.20072E-02	0.399F-04	17.					
22	83.10	0.20332E 07	104.6	0.32647E 04	0.18828E-02	0.393E-04	17.					
23	84.13	0.20599E 07	104.4	0.33144E 04	0.18394E-02	0.389E-04	17.					
24	85.16	0.20867E 07	104.3	0.33646E 04	0.19231E-02	0.4098-04	17.					
25	86.20	0.21135E 07	103.4	0.34145E 04	0.181385-02	0.396E-04	17.					
26	87.23	0.2140,2E 07	103.8	0.34653E 04	0.19898E-02	0.416F-04	17.					
27	88.26	0.2166 8E 07	104.4	0.35175E 04	0.19182E-02	0.402F-04	17.					
28	89.29	0.21935E 07	104.6	0.35680E 04	0.18638E-02	0.391E-04	17.					
29	90.32	0.22202E 07	104.2	0.36197E 04	0.200875-02	0.404E-04	17.					
30	91.35	0.22469E 07	104.9	0.36713E 04	0.18500F-02	0.394F-04	17.					
31	92.38	0.22735E 07	104.7	0.37214E 04	0.18995E-02	0.394E-04	17.					
32	93.41	0.23003E 07	104-6	0.37708E 04	0.17998E-02	0.387E-04	17.					
33	94.45	0.23272E 07	104.6	0.38191E 04	0.18230F-02	0.387E-04	17.					
34	95.48	0.23538E 07	103.7	0.38682E 04	0.18530E-02	0.3895-04	17.					
35	96.51	0.23805E 07	104.1	0.39179E 04	0.18634E-02	0.413E-04	17.					
36	97.54	0.24072E 07	103.5	0.39676E 04	0.18584E-02	0.454E-04	17.					

STANTON NUMBER DATA RUN 070973 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 80.0 UINF= 52.7 XV0= 4.600 RHO= 0.07274 CP= 0.242
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25974. UNCERTAINTY IN F=0.03028 IN RATIO

VISC= 0.169215-03 PR=0.715

** M=0.3, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PL AT	TE X	PEX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T 2	THETA	DT H
1	50.30	0.118705 07	107.2	0.97674E 02	0.37604E-02	0.601E-04	2.	-		12	THE M	20.14
2	52.30	0.12390E 07	107.1	0.53160E 03	0.29231E-02	0.553E-04	9.	0.29	0.0095	108.5	1.052	0.013
3	54.30	0.12909E 07	107.3	0.12260E 04	0.27180E-02	0.539E-04	16.		0.0103			0.013
4	56.30	0.13429E 07	107.3	0.19245E 04	0.24890E-02	0.528E-04	21.		0.0100			0.013
5	58.30	0.13948E 07	107-1	0.26151 04	0.22335E-02	0.5215-04	25.		0.0103			0.014
6	60.30	0.14468E 07	107.2	0.32941E 04	0.21085E-02	0.513E-04	28.		0.0103			0.013
7	62.30	0.14987E 07	107.0	0.39455E 04	0.19442E-02	0.509E-04	31.		0.0097			0.014
8	64.30	0.15507E 07	107-1	0.45893E 04	0.18190E-02	0.504E-04	34.		0.0096			0.014
9	66.30	0.16026E 07	107.1	0.52169E 04	0.17582E-02	0.501E-04	36.		0.2094			0.013
10	68.30	0.16545E 07	107.2	0.58640E 04	0.171765-02	0.499F-04	38.		0.0108			0.113
11	70.30	0-17065E 07	107.0	0.65242E 04	0.16126E-02	0.498E-04	41.		0.0103		-	0.013
12	72-30	0.17584E 07	107.1	0.71595E 04	0.15429E-02	0.4935-04	43.		0.0101		_	0.013
13	73.82	0.17979E 07	106.8	0.74956F 04	0.15136E-02	0.281E-04	44.	•		•		
14	74-85	0.18247E 07	106.5	0.75353E 04	0.14529E-02	0.307E-04	44.					
15	75.88	0.18514E 07	107.1	0.75734F 04	0.13917E-02	0.304E-04	44.					
16	76.91	0.18783E 07	107.1	0.76106E 04	0.13876E-02	0.300E-04	44.					
17	77.95	0.19052E 07	107.3	0.76474E 04	0.13550E-02	0.298F-04	44.					
18	78.98	0.19319E 07	107.3	0.76835E 04	0.13471E-02	0.298E-04	44.					
19	80.01	0.195875 07	107.2	0.77197E 04	0.13543E-02	0.289F-04	44.					.*
20	81.04	0.19855E 07	107.3	0.77556E 04	0.13224E-02	0.283F-04	44.					
21	82.07	0.20122E 07	107.2	0.77919E 04	0.13893E-02	0.296E-04	44.					
22	83.10	0.20390E 07	107-1	0.78289E 04	0.13750E-02	0.304E-04	44.					
23	84.13	0.20657E 07	107.1	0.78651E 04	0.13288E-02	0.300E-04	44.					
24	85.16	0.20926E 07	107.2	0.79011E 04	0.13613E-02	0.311E-04	44.					
25	86.20	0.21195E 07	106.5	0.79371E 04	0.13249E-02	0.306E-04	44.					
26	87.23	0.21462E 07	106-0	0.79732E 04	0:13693E-02	0.313E-04	44.					
27	88.26	0.21730E 07	107.0	0.80101E 04	0.13883E-02	0.312E-04	44.					
28	89.29	0.21997E U7	107.1	0.80475E 04	0.14047E-02	0.309E-04	44.					
29	90.32	0.22265E 07	106.7	0.80860E 04	0.14678F-02	0.311F-04	44.					
30	91.35	0.22532E 07	107-1	0.81252F 04	0.14596E-02	0.320E-04	44.					
31	92.38	0.22800E 07	107.1	0.81641E 04	0.14425E-02	0.315E-04	44.					
32	93.41	0.2306 9E 07	106.5	0.82028E 04	0 • 1 44 75 E - 02	0.320E-04	44.					
33	94.45	0.2333 EE 07	106.6	0.82414F 04	0.14390E-02	0.3156-04	44.					
34	95.48	0.23605E 07	106.0	0.82801E 04	0 • 1 44 76E - 02	0.312E-04	44.					
35	96.51	0.23873F 07	106.3	J.83195F 04	0.14963E-02	0.339E-04	44.					
36	97.54	0.24140F 07	105.8	0.33596E 04	0.14946E-02	0.3675-04	44.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEOPY. THIS DATA WAS PRODUCED FROM RUN 072773. AND RUN 070973 FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE	DEL2	ST (TH=0)	REXHOT	RE	DEL2	ST(TH=1)	EŤΔ	STCR	F-COL	STHR	F-40*	PHI-1
1	1183649.0		101.0	0.003901	1187013.0		97.7	0.003760	บบบบบ	บบบบบ	0.0000	יזטטטטטטני	0.0000	บบบบบ
ž	1235450.0		298.9		1238961.0		519.8	0.002963	0.207	0.969	0.0102	1.057	0.0095	2.362
3	1287251.0		497.6		1290909.0		1185.0	0.002801	0.288	1.142	0.0101	1.051	0.0193	2.532
4	1339052.0		700.1		1342857.0		1852.3	0.002569	0.339	1.214	0.0132	1.014	0.0100	2.487
5	1390853.0		896.7		1394806.0		2507.5	0.002360	0.364	1.226	0.0101	0.961	0.0103	2.497
6	1442654.0		1087.6		1446754.0		3159.2	0.002146	0.414	1.264	0.0101	0.897	0.0103	7-449
7	1494454.0		1274.7	0.003565	1498702.0		3786.9	0.002071	0.419	1.277	0.0100	0.885	0.0097	2.380
8	1546255.0		1456.6	0.003457	1550650.0		4391.2	0.001971	0.430	1.278	0.0100	0.858	0.0095	2.358
9	1598056.0		1634.2	0.003397	1602598.0		4984.4	0.001855	0.454	1.290	0.0100	0.822	0.0094	2.316
10	1649857.0		1809.7	0.003381	1654546.0		5604.3	0.001812	0.464	1.316	0.0130	0.815	0.0108	2-498
11	1701658.0		1983.0		1706494.0		6242.3		0.496	1.317	0.0100	0.762	0.0103	2.390
12	1753459.0		2151.6	0.003198	1758442.0		6858.9		0.493	1.298	0.0100	0.749	0.0101	2.361
13	1792828.0		2271.9		1797923.0		71 85.1		0.434	1.156		0.742		
14	1819505.0		2343.3		1824676.0		72 26 . 7		0.401	1.053		0.712		
15	1846182.0		2408.5		1851429.0		7266.5		0.383	0.984		0.684		
16	1872989.0		2469.6		1878312.0		7305.1		0.354	0.940		0.682		
17	1899796.0		2527.5		1905195.0		7343.1		0.335	0 - 896		0.668		
18	1926473.0		2584.5		1931949.0		7380.6		0.355			0.670		
19	1953151.0		2640.7		1958702.0		7417.9		0.319	0.886		0.673		
20	1979828.0		2694.2		1985455.0		7454.9		0.305	0.851		0.659		
21	2006506.0		2748.0		2012209.0		7492.2		0.309	0.907		0.696		
22	2033184.0		2801.5		2038962.0		7530.2		0.272	0.853		0.689		
23	2059861.0		2852.6		2065715.0		7567.3		0.280	0.840		0.669		
24	2086668.0		2904.3		2092598.0		7604.3		0.294	0.885		0.690		
25	2113475.0		2955.6		2119481.0		7641.2		0.272	0.838		0.673		
26	2140152.0		3007.9		2146234.0		7678.3		0.313	0.929		0.702		
27	2166829.0		3061.7		2172988.0		7716.2		0.278	0.897		0.711		
28	2193507.0		3113.5		2199741.0		7754.5		0.249	0.874		0.720		
29	2220185.0		3166.6		2226494.0		7793.8		0.272	0.949		0.757		
30	2246862.0		3219.4		2253248.0		7833.9		0.214	0.874		0.751		
31	2273540.0		3270.6		2280001.0		78 73.5		0.243	0.905		0.748		
32	2300346.0		3321.1		2306884+0		7912.9		0.199	0.858		0.749		
33	2327153.0		3370.5		2333767.0		7952.2		0.214	0 - 875		0.749		
34 35	2353831.0		3420-7		2360520.0		7991.6		0.222	0.894		0.757		
36	2380508.0		3471.3		2387273.0		8031.7		0.200	0.901		0.783		
30	2407185.0		3522.0	0.001895	2414027.0		8072.4	0.001518	0.144	0.903		0.785		

STANTON NUMBER DATA RUN 072673 *** DISCRETE HOLE RIG *** NAS-3-14336

TIMF= 79.3 UINF= 51.9 XYO= 4.600 RHO= 0.07261 CP= 0.242 VISC= 0.16932E-03 PR=0.716
DISTANCE FROM ORIGIN OF BL IG 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25547. UNCERTAINTY IN F=0.03030 IN RATIO

** M=0.4, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

		854	70	055474	674 N7 CH . 1.0		22554		_			0.714
PLAT		REX	TD	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	DTH
1	50-30	0.11675E 07	102-7	0.99173E 02	0-38820E-02	0-709E-04	2.		0.0134	7		
2	52-30	0.12186E 07	102.8	0.33023E 03	0.37816E-02	0.6998-04	5.		0.0136		0.101	0.011
3	54.30 56.30	0.12697E 07 0.13208E 07	102-8 102-8	0.59744E 03 0.86742E 03	0-39629E-02 0-38891E-02	0.712E-04 0.708E-04	8.		0.0137 0.0134		0.097	0.011
5	58.30	0.13719E 07	102.8	0.86742E 03			10.		0.0134		0.101	
6	60.30	0.13719E 07	102.8	0.11922E 04	0-37144E-02 0-36233E-02	0.695E-04 0.689E-04	12.		0.0135		0.105	0.011 0.011
7	62.30	0.14741E 07	102-7	0-13912E 04	0.35063E-02	0-683E-04	13. 15.		0.0138		0.112	0.011
8	64.30	0.15252E 07	102-7	0-19491E 04	0.33910E-02	0.672E-04	16.		0.0135	. —	0.113	0.011
9	66.30	0.15763E 07	102.9	0-19040E 04 0-21532E 04	0.33238E-02	0.666E-04	17.		0.0137		0.110	0.011
10	68.30	0.1573E 07	102.9	0-21992E 04	0.32736E-02	0.664E-04	18.		0.0137		0.112	0.011
11	70-30	0.16784E 07	102-9	0.26413E 04	0.32298E-02	0.661E-04	19.		0.0136		0.108	0.011
12	72.30	0.17295E 07	102.9	0.28784E 04	0.30779E-02	0-649E-04	20.		0.0134		0.113	0.011
13	73.82	0-17684E 07	101.7	0.30312E 04	0.26996E-02	0.471E-04	20.	0.41	0.0134	0240	0.113	0.011
14	74.85	0.17947E 07	101.6	0.30989E 04	0-24432E-02	0.469E-04	20.					
15	75.88	0.18210E 07	102.6	0.31607E 04	0-22467E-02	0.442E-04	20.					
16	76. 91	0.18474E 07	102.9	0.32180E 04	0-21049E-02	0.417E-04	20.					
17	77.95	0.18739E 07	103.2	0.32716E 04	0-19651E-02	0.400E-04	20.					
18	78.98	0.19002E 07	102.9	0.33243E 04	0.20366E-02	0.409E-04	20.					
19	80.01	0.19265E 07	103.3	0.33759E 04	0.18778E-02	0.379E-04	20.					
20	81.04	0.19528E 07	103-4	0.34249E 04	0.18422E-02	0.370E-04	20.					
21	82.07	0-19791E 07	103.3	0.34744E 04	0-19199E-02	0.385E-04	20.					
22	83.10	0-20054E 07	103.5	0.35237E 04	0.18222E-02	0.383E-04	20.					
23	84-13	0-2031 8E 07	103.2	0.35713E 04	0.17923E-02	0.380E-04	20.					
24	85.16	0.20582E 07	103.2	0.36193E 04	0.18452E-02	0-399E-04	20.					
25	86.20	0.20846E 07	102-1	0.36671E 04	0.17870E-02	0.392E-04	20.					
26	87.23	0.21110E 07	102.6	0.37162E 04	0.19366E-02	0.407E-04	20.					
27	88.26	0.21373E 07	103.1	0.37664E 04	0.18790E-02	0.395E-04	21.					
28	89.29	0-21636E 07	103.4	0.38153E 04	0.18356E-02	0.387E-04	21.					
29	90.32	0.21899E 07	102.8	0-38658E 04	0.19941E-02	0.401E-04	21.					
30	91.35	0.22162E 07	103.6	0.39163E 04	0.18366E-02	0.393E-04	21.					
31	92.38	0.22425E 07	103.4	0.39652E 04	0.18797E-02	0.392E-04	21.					
32	93.41	0.22690E 07	103-1	0.40138E 04	0.18068E-02	0.388E-04	21.					
33	94.45	0.22954E 07	103-1	0.40618E 04	0.18387E-02	0.389E-Q4	21.					
34	95.48	0.23217E 07	102.4	0.41103E 04	0.18410E-02	0.387E-04	21.					
35	96.51	0.23480E 07	102.8	0.4159ZE 04	0.18726E-02	0.413E-04	21.					
36	97.54	0.23743E 07	102-1	0.42085E 04	0.18713E-02	0.456E-04	21.					

STANTON NUMBER DATA RUN 071573 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 81.8 UINF= 52.7 XVD= 4.600 RHD= 0.07269 CP= 0.242 VISC= 0.16980E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25871. UNCERTAINTY IN F=0.03028 IN RATIO

** M=0.4, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TB	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	DTH
1	50.30	0.11823E 07	107.1	0.98412E 02	0.38040E-02	0.647E-04	2.					
2	52-30	0-12340E 07	107.0	0.64181E 03	0.30700E-02	0.601E-04	13.	0.42	0.0135	108.2	1.048	0.014
3	54.30	0.12858E 07	107.0	0.15545E 04	0.28776E-02	0.592E-04	22.	0.42	0.0137	109.7	1.108	0.015
4	56.30	0-13375E 07	107.0	0.24654E 04	0.26097E-02	0.575E-04	29.	0.41	0.0132	109.5	1.096	0.015
5	58.30	0.13893E 07	107.1	0.33545E 04	0-23449E-02	0.561E-04	34.	0.41	0.0134	109.9	1.112	0.015
6	60-30	0.14410E 07	107.0	0.42362E 04	0.21595E-02	0.554E-04	39.	0.44	0.0143	107.7	1.025	0.014
7	62.30	0.14927E 07	107.0	0.51142E 04	0.20217E-02	0.548E-04	43.	0.43	0.0139	109.2	1.086	0.015
8	64.30	0.15445E 07	107.0	0.59691E 04	0.18369E-02	0.541E-04	46-	0.39	0.0128	109.7	1.107	0.015
9	66.30	0.15962E 07	107.0	0.67775E 04	0.17217E-02	0.536E-04	49.	0.40	0.0129	108.4	1.054	0.014
10	68-30	0.16480E 07	107.0	0.75908E 04	0.16359E-02	D.533E-04	52.	0-43	0.0138	108-2	1.048	0.014
11	70.30	0.16997E 07	106.9	0.84042E 04	0.15170E-02	0.531E-04	55.	0.43	0.0138	106.8	0.998	0.014
12	72.30	0.17515E 07	107.1	0.91844E 04	0.13596E-02	0.523E-04	58.	0-41	0.0134	107.3	1.009	0.014
13	73-82	0.17908E 07	106-1	0.95889E 04	0-15060E-02	D.295E-04	59.					
14	74.85	0.18174E 07	105.0	0.96273E 04	0.13714E-02	0.320E-04	59.					
15	75.88	0.18441E 07	106-8	0.96622E 04	0-12461E-02	0.310E-04	59.					
16	76.91	0.18708E 07	106.8	0.96954E 04	0.12430E-02	0.304E-04	59.					
17	77.95	0.18976E 07	107-1	0.97278E 04	0.11859E-02	0.299E-04	59.					
18	78-98	0.19243E 07	107.2	0.97592E 04	0.11707E-02	0.299E-04	59.					
19	80.01	0.19509E 07	106.9	0.97910E 04	0.12118E-02	0.291E-04	59.					•
20	81-04	0.19776E 07	107.2	0.98227E 04	0.11616E-02	0.283E-04	59.					70
21	82.07	0.20042E 07	107-1	0.98543E 04	0-12055E-02	0.294E-04	59.					
22	83-10	0.20309E 07	107.0	0.98866E 04	0.12214E-02	0.307E-04	59.					
23	84-13	0.20575E 07	106.9	0.99187E 04	0-11804E-02	0.303E-04	59.					
24	85-16	0.20843E 07	107.1	0.99504E 04	0.11982E-02	0.314E-04	59.					
25	86.20	0.21111E 07	106.2	0.99817E 04	0-11518E-02	0.311E-04	59.					
26	87.23	0.21377E 07	105.5	0.10014E 05	0.12760E-02	0.327E-04	59.					
27	88-26	0.21643E 07	106.7	0.10048E 05	0-12600E-02	0.320E-04	59.					
28	89-29	0.21910E 07	107.0	0.10081E 05	0.12532E-02	0.312E-04	59.					
29	90.32	0.22176E 07	106.5	0-10117E 05	0-13742E-02	0.320E-04	59.					
30	91-35	0.22443E 07	106.9	0.10153E 05	0.13269E-02	0.325E-04	59.					
31	92.38	0.22709E 07	107-0	0-10188E 05	0-13113E-02	0.320E-04	59.					
32	93.41	0-22977E 07	106.4	0.10223E 05	0-13220E-02	0.326E-04	59.					
33	94.45	0.23245E 07	106.5	0.10258E 05	0.13164E-02	0.321E-04	59.					
34	95.48	0.23511E 07	105.8	0.10294E 05	0.13403E-02	0.320E-04	59.				•	
35	96.51	0.23778E 07	106.1	0-10330E 05	0-13706E-02	0.347E-04	59.					
36	97-54	0.24044E 07	105.6	0.10366E 05	0.13872E-02	0.374E-04	59.					

FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 072673 AND RUN 071573
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE	DEL2	ST(TH=0)	REXHOT	RE	DEL2	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	PHI-1
1	1167500-0		99.2	0.003882	1182294.0		98.4	0.003804	บบบบบ	UUUUU	0.0000	บบบบบบน	0.0000	UUUUU
2	1218594.0		296.9		1234036.0		625.9		0.195	0.997	0.0136	1.107	0.0135	2.867
3	1269688.0		499.4	0.004067	1285778.0		1487.4	0.002993	0.264	1.177	0.0137	1.133	0.0137	3.020
4	1320782.0		706.0	0.004022	1337519.0		2333.3	0.002733	0.320	1.253	0.0134	1.078	0.0132	2.959
5	1371876.0		907-2	01 0038 52	1389261.0		3158.0	0.002496	0.352	1.269	0.0136	1.016	0.0134	2.946
6	1422971.0		1102.4	0.003790	1441002.0		3996-4	0.002200	0.420	1.305	0.0135	0.919	0.0143	2.966
7	1474065.0		1293-1		1492744.0		4838.5		0.414	1.313	0.0138	0.919	0.0139	2.951
8	1525159.0		1478.2		1544486.0		5635.1		0-438	1.315	0.0135	0.872	0.0128	2.779
9	1576253.0		1659-1		1596227.0		6397.1		0.484	1.330	0.0137	0-802	0.0129	2.725
10	1627347.0		1837.4		1647969.0		7179-8		0-504	1.346	0.0135	0.773	0.0138	2.823
11	1678441.0		2013.9		1699710.0		7978.8	0.001513	0.560	1.363	0.0136	0.689	0.0138	2.719
12	1729535.0		2185.8		1751452.0		8757-0		0.582	1.333	0-0134	0.636	0.0134	2.604
13	1768367.0		2307.3		1790776.0		9159.8		0.441	1.162		0.738		
14	1794680-0		2378-4		1817422.0		9200.2		0.437	1.061		0.676		
15	1820994.0		2443-2		1844069.0		9236.9		0-444	0.985		0.618		
16	1847435.0		2503.3		1870845.0		9271.8		0.410	0.927		0.616		
17	1873876.0		2559.3		1897622.0		9305.6			0.871		0.590		
18	1900189.0		2614.5		1924269.0		9338.5		0.425	0.912		0.588		
19	1926503.0		2668.3		1950915.0		9371-6			0.841		0.605		
20	1952816-0		2719.3		1977562.0		9404.5		0.371	0.832		0.584		
21	1979130-0		2770-9		2004210.0		9437.3		0.374	0.874		0.609		
22	2005444.0		2822.1				9470.8		0.333	0.831		0.616		
23	2031757.0		2871.5		2057503.0		9503.9		0.344	0.824		0.599		
24	2058198.0		2921 - 3		2084279.0		9536.7	0.001241	0.353	0.854		0.612		
25	2084639-0		2971-0		2111056-0		9569.2		0.358	0.833		0.591		
26	2110953.0		3022.0		2137703.0		9602-7	0.001319	0-344	0.907		0.656		
27	2137266.0		3074-1		2164349.0		9637.7		0.332	0.884		0.649		
28	2163580.0		3124-8		2190996-0		9672.2		0.321	0.867		0.647		
29	2189893.0		3177-0		2217644.0		9708.3		0.314	0.946		0.712		
30	2216207.0		3229.2		2244290.0		9745-4		0.282	0.873		0.687		
31	2242520.0		3279.7		2270937.0		9781.5		0.306	0.901		0.684		
32	2268961.0		3329.8		2297713.0		9817-5		0.273	0.867		0.689		
33	2295402-0		3379.3		2324490.0		9853.6		0.288	0.888		0.690		
34	2321716.0		3429-3		2351137-0		9889.9		0.276	0.893		0.704		
35	2348029-0		3479.7		2377783.0		9927.0		0-272			0.722		
36	2374343.0		3530.5	0.001925	2404430-0		9964.6	0.001419	0.263	0.915		0.733		

STANTON NUMBER DATA RUN 071773 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 77.8 UINF= 52.1 XV0= 4.600 RHO= 0.07319 CP= 0.242 VISC= 0.16782E-03 PP=9.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25870. UNCERTAINTY IN F=0.03029 IN RATIO

** M=0.5, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE

PLATE	x	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	OF H	
1	50.30	0.11822E 07	102.3	0.10157E 03	0.39262E-02	0.677E-04	2.						
2	52.30	0.12340E 07	102.4	0.33569E 03	0.38961E-02	0.673E-04	6.	0.54	0.3174	79.5	0.071	0.010	
3	54.30	0.12857E 07	102.3	0.60507E 03	0.41236E-02	0.692F-04	9.	0.52	0.0168	79.5	0.369	0.710	
4	56.30	0.13375E 07	102.4	0.88007E 03	0.41163E-02	0.688E-04	11.	0.53	0.0172	79.5	0.071	0.010	
5	58.30	0.13892E 07	102.3	0.11515E 04	0.39522E-02	0.679E-04	13.	0.52	0.0170	79.5	0.071	0.010	
6	60.30	0.14409E 07	102.5	0.14167E 04	0.38749E-02	0.670E-04	15.	0.53	0.0171	79.5	0.072	0.010	
7	62.30	0.14927E 07	102.4	0.16797E 04	0.37101E-02	0.6605-04	17.	0.52	0.0170	79.8	0.080	0.010	
8	64.30	0.15444E 07	102.3	0.19388E 04	0.35499E-02	0.651E-04	18.	0.53	0.0173	79.8	0.081	0.010	
9	66.30	0.15962E 07	102.3	0.21894E 04	0.34287E-02	0.643E-04	19.	0.53	0.0173	79.6	0.076	0.010	
10	68.30	0.16479E 07	102.3	0.24327E 04	0.33756E-02	0.639E-04	21.	0.53	0.0170	79.6	0.076	0.010	
11	70.30	0.169965 07	102.4	0.26701E 04	0.32328E-02	0.628E-04	22.	0.53	0.0170	79.6	0.375	0.010	
12	72.30	0.17514E 07	102.3	0.29034E 04	0.31595E-02	0.626E-04	23.	0.53	0.0170	79.7	0.080	0.010	
13	73.82	0.17907E 07	100.6	0.30563F 04	0.27083E-02	0.463E-04	23.						
14	74.85	0.181736 07	100.5	0.31249E 04	0.24295E-02	0.459E-04	23.						
15	75.88	0.18440E 07	101.6	0.31867E 04	0.22042E-02	0.429E-04	23.						
16	76.91	0.187085 07	101.9	0.32433E 04	0+20400F-02	0.4015-04	23.						
17	77.95	0.18975E 07	102-2	0.32960F 04	0.19126E-02	0.384E-04	23.						
18	78.98	0.19242E 07	102.2	0.33470E 04	0.19055E-02	0.384E-04	23.						
19	80.01	0.195085 07	102.3	0.33967E 04	0.18225E-02	0.363E-04	23.						
20	81.04	0.19775E 07	102.5	0.34444E 04	0.17555E-02	0.352E-04	24.						
21	82.07	0.20041E 07	102.4	0.349225 04	0.18300E-02	0.366F-04	24.						
22	83.10	0.20308E 07	102.6	0.35399E 04	0.17456F-02	0.366E-04	24.						
23	84.13	0.20574E 07	102.4	0.3586QE 04	0.17049E-02	0.361E-04	24.						
24	85.16	0.20842E 97	102.4	0.36322F 04	0.17635E-02	0.380E-04	24.						
25	86.20	0.21110E 07	101-1	0.36782E 04	0.16810E-02	0.375E-04	24.						
26	87.23	0.21376E 07	100.6	0.37241E 04	0.17635E-02	0.387E-04	24.						
27	88.26	0.21643E 07	101.9	0.37718E 04	0.18111E-02	0.386E-04	24.						
28	89.29	0.21909E 07	102.4	0.38196E 04	0.17724E-02	0.372E-04	24.						4.00
29	90.32	0.22176E 07	101.9	0.38688F 04	0.19173E-02	0.383E-04	24.						
30	91.35	0.22442E 07	102.7	0.39181E 04	0.17777F-02	0.377E-04	24.						· · · .
31	92.38	0.22708E 07	102.5	0.39659E 04	0.18072E-02	0.375E-04	24.						
32	93.41	0.22976E 07	102.2	0.40131E 04	0.17285E-02	0.371E-04	24.					J	
33	94.45	0.23244E 07	102.1	0.40598E 04	0.177315-02	0.3725-04	24.		•				
34	95.48	0.23510E 07	101.5	0.41070E 04	0.17674E-02	0.369E-04	24.	•				3.4	1
35	96.51	0.23777E 07	101.8	0.41548E 04	0.18151E-02	0.397E-04	24.						
36	97.54	0.24043E 07	101.2	0.42030E 04	0.17969E-02	0.439F-04	24.						

STANTON NUMBER DATA RUN 071873-1 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 80.3 UINF= 52.0 XVD= 4.60C RHD= 0.07296 CP= 0.242 VISC= 0.168935-03
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=25655. UNCERTAINTY IN F=0.03030 IN RATIO

** M=0.5, HOT RUN, HICH RE, STEP T-WALL AT 1ST PLATE

PLATI	E X	PEX	TO	REENTH	STANTON NO	DST	DREEN	M	F	т2	THETA	DTH
1	50.30	0.11724E 07	108.0	0.99059E 02	0.39612E-02	0.603E-04	2.					
2	52.30	0.12237E 07	108.0	0.75690E 03	0.31864E-02	0.5625-04	16.	0.52	0.0168	111.9	1.198	0.013
3	54.30	0.12750E 07	108.0	0.18926E 04	0.30535E-02	0.556E-04	28.	0.53	0.0171	111.8	1.140	0.014
4	56.30	0.13264E 07	108.0	0.30417E 04	0.27443E-02	0.5395-04	36.	0.52	0.0169	112.4	1.161	0.014
5	58.30	0.13777E 07	108.0	0.41795E 04	0.24633E-02	0.526E-04	43.	0.52	0.0168	112.6	1.167	0.014
6	60.30	0.14290E 07	107.9	0.52762F 04	0.22447E-02	0.517E-04	49.	0.53	0.0170	110.2	1.084	0.013
7	62.30	0.14803E 07	108.1	0.63551E 04	0.20459E-02	0.505E-04	54.	0.52	0.0169	112.0	1.141	0.014
8	64.30	0.15316E 07	108.1	0.74430E 04	0.18083F-02	0.497E-04	59.	0.51	0.0165	112.7	1.167	0.014
9	66.30	0.15829E 07	108.0	0.85025E 04	0.16423E-02	0.492E-04	63.	0.51	0.0166	111.3	1.121	0.014
10	68.30	0.16342E 07	108.1	0.95391E 04	0.15273E-02	0.487E-04	67.	0.52	0.0168	111.2	1.112	0.013
11	70.30	0.16855E 07	108.0	0.10540E 05	0.14567E-02	0.487E-04	70.	0.51	0.0165	109.4	1.053	0.013
12	72.30	0.17368E 07	108.0	0.11495E 05	0.12663E-02	0.4825-04	73.	0.51	0.0164	109.1	1.040	0.013
13	73.82	0.17758E 07	107.5	0.11982F 05	0.12116E-02	0.246E-04	75.					
14	74.85	0.18023E 07	107.4	0.12012E 05	0.11068E-02	0.272E-04	75.					
15	75.88	0.18287E 07	108.2	0.12040E 05	0.10103E-02	0.267E-04	75.					
16	76.91	0.18552E 07	108.2	0.12067E 05	0.97954E-03	0.260E-04	75.					
17	77.95	0.18818E 07	108.4	0.12092E 05	0.94613E-03	0.258E-04	75.					
18	78.98	0.19082E 07	108.5	0.12117E 05	0.92483E-03	0.258E-04	75.					
19	80.01	0.19346E 07	108.3	0.12142E 05	0.950648-03	0.249E-04	75.					
20	81-04	0.19611E 07	108.4	0.12167F 05	0.93190F-03	0.244E-04	75.					
21	82.07	0.198755 07	108.4	0.12192E 0 5	0.95834E-03	0.253E-04	75•					
22	83.10	0.20139E 07	108.3	0.12217F 05	0.97901E-03	0.265E-04	75.					
23	84.13	0.20403F 07	108.3	0.12243F 05	0.93775E-03	0.262E-04	75.					
24	85.16	0.20669E 07	108.3	0.12268E 05	0.97765F-03	0.274E-04	75.					
25	86.20	0.20934E 07	107.5	0.12293E 05	0.92275E-03	0.269E-04	75.					
26	87.23	0.21199E 07	106.9	0.12319E 05	0.10159E-02	0.280E-04	75.					
27	88.26	0.21463E 07	107.9	0.12346E 05	0.10409E-02	0.278E-04	75.					
28	89.29	0.21727E 07	108.2	0.12373E 05	0.10354F-02	0.272F-04	75.					
29	90.32	0.219915 07	107.7	0.12402E 05	0.11445E-02	0.2775-04	75.					
30	91.35	0.22256E 07	108.1	0.12432E 05	0.11022E-02	0.284F-04	75.					
31	92.38	0.22520E 07	108.1	0.12461E 05	0.11030E-02	0.280E-04	75.					
32	93.41	0.22785E 07	107.6	0.12490E 05	0.11030E-02	0.285E-04	75.					
33	94.45	0.23051E 07	107.6	0.12520F 05	0.11141F-02	0.281E-04	75.					
34	95.48	0.233155 07	197.1	0.12549F 05	0.11208F-02	0.2785-04	75.					
35	96.51	0.23579E 07	107.3	0.12579F 05	0.11591F-02	0.303E-04	75.					
36	97.54	0.23844E 07	106.8	0.12610F 05	0.11549F-02	0.3285-04	75•					

PR=0.715

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS DETAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 071773 AND RUN 071873-1
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DEL2	ST(TH=1)	ETA	STCR	F-COL	ŞTHR	F-HOT	PHI-1
1	1182247.0	101.6	0.003926	1172427.0	99.1	0.003861	U UUUU	บบบบบ	0.0000	เกษยบานก	0.0000	טטעטנו
2	1233986.0	305.2		1223736.0	712.4	0.003260	0.173	1.021	0.0174	1.159	0.0158	3.786
3	1285726.0	515.7	0.004193	1275046.0	1746.0	0.003193	0.238	1.216	0.0168	1.205	0.0171	3.488
4	1337465.0	733.0	0.004206	1326356.0	2773.4	0.002946	0.299	1.314	0.0172	1.160	0.0169	3.483
5	1389205.0	946.5	0.004048	1377666.0	3781.0	0.002690	0.336	1.336	0.0170	1.093	0.0168	3.444
6	1440944.0	1154.4	0.003990	1428975.0	4778.6	0.002380	0.404	1.377	0.0171	0.992	0.0170	3.383
7	1492684.0	1356.9	0.003836	1480285.0	5768.8	0.002267	0.409	1.373	0.0170	0.966	0.0169	3.375
8	1544423.0	1551.3	0.003679	1531595.0	6737.3	0.002077	0.436	1.359	0.0173	0.902	0.0165	3.269
9	1596163.0	1738.5	0.003558	1582904.0	7686.7		0.480	1.351	0.0173	0.817	0.0166	3.186
10	1647902.0	1921.4		1634214.0	8634.0		0.508	1.366	0.0170	0.775	0.0168	3.171
11	1699641.0	2099.4		1685524.0	9572.1	0.001553	0.539	1.339	0.0170	0.706	0.0165	3.062
12	1751381.0	2272.3		1736834.0	10491.8		0.594	1.345	0.0170	0.620	0.0164	2.933
13	1790703.0	2395.7		1775829.0	10966.1	0.001380	0.510	1.158		0.642		
14	1817349.0	2466.9		1802254.0	11000.9		0.502	1.047		0.588		
15	1843995.0	2531.1		1828678.0	11032.7		0.500	0.958		0.539		
16	1870770.0	2589.9		1855231.0	11062.4		0.481	0.893		0.520		
17	1897545.0	2644.5		1881783.0	11090.9		0.468	0.843		0.502		
18	1924191.0	2697.3		1908208.0	11118.5		0.476	0.947		0.495		
19	1950836.0	2748.8		1934632.0	11146.1		0.444	0.814		0.504		
20	1977482.0	2798.1		1961057.0	11173.5		0.435	0.789		9.495		
21	2004128.0	2847.6		1987482.0	11201.0		0.442	0.829		0.513		
22	2030774.0	2896.8		2013906.0	11229.1		0.408	0.794		0.520		
23	2057420.0	2944.3			11256.7		0.418	0.781		0.502		
24	2084195.0	2992.1			11284.4		0.414	0.813		0.525		
25	2110970.0	3039.5		2093436.0	11311.8		0.419	0.780		0.498	•	
26	2137616.0	3086.9		2119861.0	11339.7		0.394	0.821		0.546		
27	2164262.0	3136.0		2146285.0	11369.2		0.396	0.848		0.562		
28	2190908.0	3185.2		2172710.3	11398.9		0.387	0.834		0.560		
29	2217554.0	3235.9		2199134.0		0.001232	0.376	0.907		0.619		
30	2244200.0	3286.6		2225559.0	11461.9		0.355	0.844		0.594		
31	2270845.3	3335.7		2251983.0	11493.1		0.363	3.863		0.599		
32	2297620.0	3384.1		2278536.0	11524.3		0.338	0.828		0.596		
33	2324396.0	3432.1			11555.5		0.347	0.854		0.606		
34	2351041.0	3480.5			115 87.0		0.342	0.855		0.611		
35	2377687.0	3529.6		2357938.0	11619.1		0.338	0.882		0.633		
36	2404333.0	3579.0	0.001843	2384362.0	11651.7	0.001227	0.334	0.877		0.632		

Error

An error occurred while processing this page. See the system log for more details.

TINF= 83.4 UINF= 53.8 XV0= 4.600 RH0= 0.07210 CP= 0.242
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5
UNCERTAINTY IN REX=26157. UNCERTAINTY IN F=0.03027 IN RATIO

VISC= 0.171535-03 PR=0.715

** M=0.65, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	OTH
1	50.30	0-11954E 07	109.0	0.94287E 02	0.36046E-02	0.6208-04	2.					
2	52.30	0.12477E 07	109-1	0.68672E 03	0.34091E-02	0.605E-04	14.	0.63	0.0205	103.0	0.761	0.012
3	54.30	0.13000E 07	109.2	0.16912E 04	0.35108E-02	0.609E-04	25.	0.63	0.0204	103.4	9.775	0.012
4	56.30	0.13523E 07	109.1	0.27205E 04	0.33292E-02	0.600E-04	32.	0.63	0.0204	104.4	0.815	0.013
5	58.30	0.14046E 07	109.1	0.37823E 04	0.30704E-02	0.585E-04	39.	0.64	0.0208	105.1	0.844	0.013
6	60.30	0.14570E 07	109.1	0.48451E 04	0.28099E-02	0.571E-04	45.	0.63	0.0204	105.1	0.846	0.013
7	62.30	0.15093E 07	109.1	0.58841E 04	0.25736E-02	0.558E-04	50.	0.61	0.0198	105.6	0.863	0.013
8	64.30	0.15616E 07	109.0	0.69326E 04	0.23258F-02	0.547E-04	55.	0.63	0.0203	106.2	0.988	0.013
9	66.30	0.16139E U7	109.0	0.79958E 04	0.20738E-02	0.537E-04	59.	0.62	0.0202	106.4	0.899	0.013
10	68.30	0.16662E 07	109.0	0.90574E 04	0.19220E-02	0.5296-04	64.	0.63	0.0206	106.3	0.896	0.013
11	70-30	0.17185E 07	109.0	0-10108E 05	0.17927E-02	0.524E-04	68.	0.62	0.0202	106.3	0.992	0.013
12	72.30	0.17708E 07	109.0	0.11154E 05	0.15941E-02	0.518F-04	71.	0.64	0.2209	106.1	0.889	0.013
13	73.82	0.18106E 07	108.2	0.11701E 05	0.14586E-02	0.284E-04	73.					
14	74.85	0.18376E 07	108.2	0.11738E 05	0-12731E-02	0.302E-04	73.					
15	75.88	0.18645E 07	109.0	0.11771E 05	0.11556E-02	0.293E-04	73.					
16	76.91	0.18916E 07	109.1	0.11801E 05	0.10826E-02	0.281F-04	73.					
17	77.95	0.19186E 07	109.4	0.11830E 05	0.10458E-02	0.278E-04	73.					
18	78.98	0.19456E 07	109.4	0.11857E 05	0.10030E-02	0.276E-04	73.					
19	80-01	0.19725E 07	109.3	0.11884E 05	0.99680F-03	0.264E-04	73.					
20	81.04	0.19995E 07	109.5	0.11911E 05	0.96929E-03	0.2586-04	73.					
21	82.07	0.20264E 07	109.5	0.11937E 05	0.10017E-02	0.267E-04	73.					
22	83.10	0.20533E 07	109.5	0.11964E 05	0.98992E-03	0.277E-04	73.					
23	84.13	0.20803E 07	109.5	0.11990E 05	0.95891E-03	0.2745-04	73.					
24	85.16	0.21074E 07	109.5	0.12017E 05	0.99265E-03	0.286E-04	73.					
25	86.20	0.21344E 07	108.5	0.12043E 05	0.94862E-03	0.283E-04	73.					
26	87.23	0.21614E 07	108.2	0.12069E 05	0.10137F-02	0.291E-04	73.					
27	88-26	0.21883E 07	109.1	0.12097E 05	0.10593E-02	0.290E-04	73.					
28	89.29	0.22153E 07	109.4	0.12126E 05	0.10540E-02	0.284E-04	73.					
29	90.32	0.22422E 07	109-0	0.12156E 05	0.11596E-02	0.289E-04	73.					
30	91.35	0.226915 07	109.5	0.12186E 05	0.10943E-02	0.294F-04	73.					
31	92.38	0.22961E 07	109.4	0.122165 05	0.11187E-02	0.291E-04	73.					
32	93.41	0.23232E 07	109.0	0.12246E 05	0.10953E-02	0.294E-04	73.					
33	94.45	0.235025 07	108.9	0.12276E 05	0.11259E-02	0.292E-04	73.					
34	95.48	0.23772E 07	108.4	0.12306E 05	0.11343E-02	0.2896-04	73.					
35	96.51	0.24041E 07	108.7	0.123375 05	0.115755-02	0.314E-04	73.					
36	97.54	0.24311E 07	108.2	0.12368E 05	0-11609F-02	0.342E-04	73.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY. THIS DATA WAS PRODUCED FROM RUN 072473 AND RUN 072573
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DE	EL2	ST (TH=0)	R EXHO™	RE DEL2	ST(TH=1)	ĘΤΔ	STCR	F-COL	STHR	F-HŅ™	PHI-1
1	1202637.0		93.5	0.003743	1195388.0	94.3	0.003605	บบบบน	ւուսնն	0.0000	Janjanaan	0.0000	เมาเบบ
2	1255269.0	2	299.3	0.003887	1247703.0	810.9	0.003259	0.161	1.010	0.0215	1.164	0.0205	3.598
3	1307901.0	5	512.7	0.004223	1300017.0	2054.6	0.003304	0.218	1.229	0.0214	1.253	0.0204	3.932
4	1360533.0	7	736.6	0.004282	1352332.0	3292.1	0.003113	0.273	1.342	0.0213	1.230	0.0204	3.993
5	1413165.0	ç	958.9	0.004167	1404647.0	4526.7	0.002868	0.312	1.380	0.0212	1.170	0.0208	4.017
6	1465796.0	11	174.3	0.004317	1456961.0	5745.6	0.002589	0.355	1.391	0.0212	1.084	0.0294	3.906
7	1518428.0	13	382.2	0.003884	1509276.0	6926.5	0.002366	0.391	1.395	0.0210	1.012	0.0198	3.789
8	1571060.0	15	581.5	0.003689	1561591.0	80 95 • 4	0.002155	0.416	1.368	0.0216	0.939	0.0203	3.791
9	1623692.0	17	773.9	0.003622	1613905.0	9262.5	0.001999		1.380	0.0214	0.842	0.0202	3.654
10	1676324.0		962.1		1666220.0	10424.3	0.001735	0.509	1.379	0.0213	0.782	0.0206	3.676
11	1728956.0	21	145.7	0.003445	1718534.0		0.001593		1.375	0.0212	0.728	0.0202	3.528
12	1781588.0		324.1		1770849.0	12730.1		0.587		0.9216	0.637	0.0209	3.473
13	1821588.0	24	449.4	0.002780	1810608.0	13329.2	0.001228		1.147		0.574		
14	1848693.0	25	520.7	0.002471	1837550.0	13360.2	0.001065	0.569	1.029		0.500		
15	1875799.0	25	584.2		1864492.0	13397.6		0.560			0.459		
16	1903035.0		641.6		1891565.0	13413.1		0.545	0.855		0.437		
17	1930272.0		694.2		1918638.0	13437.7		0.514			0.432		
18	1957378.0	27	744.6	0.001855	1945580.0	13461.4	0.000855	0.539			0-410		
19	1984483.0		793.5		1972522.0	13484.7		0.504			0.418		
20	2011589.0		839.9	0.001674	1999464.0	13507.8		0.494	-		0.411		
21	2038694.0		886.3	0.001744	2026406.0	13530.9		0.500			0.475		
22	2065800.0		932.4		2053348.0	13554.5			0.734		0.428		
23	2092905.0		977.0		2080290.0	13577.6			0.723		0.415		
24	2120142.0		021.7		2107362.0	13600.8			0.752		0.432		
25	2147379.0		066.4		2134435.0	13623.8		0.483	0.726		0.414		
26	2174484.0		110.8		2161377.0	13647.2			0.755		0.449		
27	2201590.0		157.2		2188319.0	13672.0		0.466			0.469		
28	2228695.0		203.9		2215261.0		0.000944	0-440			0.474		
29	2255801.0		251.9		2242204.0	13724.1		0.440	0.855		0.524		
30	2282906.0		300.6		2269140.0	13751.4		0.433			0.498		
31	2310011.0		348.1		2296088.0	13778.2		0.429	0.822		0.512		
32	2337248.0		394.8		2323160.0	13805.2		0.408			0.507		
33	2364485.0		441.4		2350233.0	13832.3		0.419	0.825		0.521		
34	2391591.0		488.7		2377175.0	13859.9		0.406	0.821		0.529		
35	2418696-0		536.1		2404117.0	13888.0		0.403	0.838		0.543		
36	2445801.0	35	583.9	0.001759	2431059.0	13916.4	0.001057	0.399	0.841		0.547		

STANTON NUMBER DATA RUN 071873-2 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 79.7 UINF= 52.0 XVD= 4.600 RHD= 0.07304 CP= 0.242 VISC= 0.16860E-03 PR=0.715 DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.700 P/D= 5 UNCERTAINTY IN REX=25688. UNCERTAINTY IN F=0.03030 IN RATIO

** M=0.5, THETA=1.4, HIGH RE, STEP T-WALL AT 1ST PLATE, ** TEST FOR LINFAPITY.

PLAT	E X	REX	TO	REENTH	STANTON NO	OST	DREEN	M	F	72	THETA	DTH
1	50.30	0.11740E 07	108.8	0.97243E 02	0.37855E-02	0.5725-04	2•					
2	52.30	0.12253E 07	108-8	0.84011E 03	0.299176-02	0.526E-04	19.	0.50	0.0163	119.2	1.357	0.014
3	54.30	0.12767E 07	108.7	0.21573E 04	0.27288E-02	0.515E-04	33.	0.50	0.0163	121.4	1.437	0.015
4	56.30	0.13281E 07	108.8	0.34933E U4	0.23816E-02	0.498E-04	43.	0.51	0.0164	121.4	1.433	0.015
5	58.30	0.13795E 07	108.8	0.48143E 04	0-20550F-02	0.483E-04	51.	0.50	0.0163	121.7	1.440	0.015
6	60.30	0.14308E 07	108.8	0.60847E 04	0.18289F-02	0.475E-04	58.	0.51	0.0167	118.3	1.325	0.014
7	62.30	0.14822E 07	108.8	0.73415E 04	0.15911F-02	0.468E-04	64.	0.51	0.0167	120.6	1.406	0.015
8	64.30	0.15336E 07	108.7	0.86121E 04	0.136225-02	0.462E-04	69.	0.49	0.0160	121.5	1.440	0.015
9	66.30	0.15850E 07	108.7	0.98431E 04	0.11955F-02	0.4585-04	74.	0.50	0.0161	119.7	1.380	0.015
10	68.30	0.16363E 07	108.7	0.11050E 05	0.10462E-02	0.455E-04	79.		0.0164			0.015
11	70.30	0.16877E 07	108.8	0.122268 05	0.94881E-03	0.452E-04	83.	0.51	0.0165	117.2	1.291	0.014
12	72.30	0.17391E 07	108.8	0.13339E 05	0.75554E-03	0.448E-04	87.	0.49	0-0158	117.2	1.297	0.014
13	73.82	0.17781E 07	108.3	0.13892E 05	0.91048E-03	0.2085-04	88.					
14	74.85	0.18046E 07	108.2	0.13915F 05	0.828595-03	D.240E-04	88.					
15	75.88	0.18311E 07	108.9	0.13936E 05	0.74512E-03	0.237E-04	88.					
16	76.91	0.185765 07	108.9	0.13956E 05	0.75157E-03	0.234E-04	88.					
17	77.95	0.18842E 07	109.1	0.13976E 05	0.73226E-03	0.233F-04	88.					
18	78.98	0.191078 07	109.2	0.13995E 05	0.71082F-03	D.234E-04	88.					
19	80.01	0.19372E 07	108.9	0.14014E 05	0.76245E-03	0.226E-04	88.					
20	81.04	0.196365 07	109.1	0.14034E 05	0.73844E-03	0.221E-04	88.					
21	82.07	0.19901E 07	109.2	0.14054E 05	0.75510E-03	0.230E-04	88.					
22	83.10	0.20165E 07	108.8	0.14075F 05	0.81686F-03	0.244E-04	88.					
23	84.13	0.20430E 07	108.9	0.14096E 05	0.77502E-03	0.242E-04	88.					
24	85.16	0.20696E 07	109.0	0.14117E 05	0.78943E-03	0.250E-04	88.					
25	86.20	0.20962E 07	108.3	0.14137E 05	0.76989E-03	0-248E-04	88.					
26	87.23	0.21226E 07	107.5	0.14159E 05	0.88101E-03	0.260E-04	88.					
27	88.26	0.21491E 07	108-6	0.14182E 05	0.84924E-03	0.254E-04	89.					
28	89.29	0.21755E 07	108.8	0.14205F 05	0.88368F-03	0.251E-04	98.					
29	90.32	0.22020E 07	108.3	0.14229E 05	0.96924E-03	0.2546-04	88.					
30	91.35	0.22285E 07	108.6	0.142555 05	0.756 96 8-03	0.264E-04	88.					
31	92.38	0.22549F 07	108.6	0.14280E 05	0.940928-03	0.260F-04	88.					
32	93.41	0.22815E 07	108.0	0.14305E 05	0.97404E-03	0.266E-04	89.					
33	94.45	0.23081E 07	108.1	0.14331F 05	0.96284E-03	0.260E-04	88.					
34	95.48	0.23345E 07	107.5	0.14357E 05	0.98514E-03	0.2596-04	88.					
35	96.51	0.23610E U7	107.7	0.14384E 05	0.10299E-02	0.284E-04	99.					
36	97.54	0.238755 07	107.3	0.144118 05	0.10218E-02	0.303E-04	98.					

UINF= 31.7 FT/SEC X= 53.0 INCHES PORT= 19 TINF= 78.0 DEG F PINF= 2112. PSF

Y(INCHES)	U(FIT/SEC)	Y+	U+	UBAR	DU
0.010	10.91	6.9	7.90	0.3443	0.42
0.011	11.45	7.5	8.30	0.3615	0.40
0.012	11.91	8.2	8.63	0.3759	D.38
0-014	13.01	9.6	9. 43	0.4107	0.35
0.016	13.86	11.0	10.05	0.4376	0.33
0.018	14.72	12.3	10-67	0.4645	0.31
0.020	15.18	13.7	11.00	0.4790	0.30
0.024	15-29	16.5	11-81	0.5142	0.28
0.028	17.03	19.2	12.34	0.5374	0.27
0.032	17.64	21.9	12.78	0.5568	0- 26
0.036	17.98	24.7	13.03	0.5676	0.25
0.040	18.44	27.4	13.37	0.5822	0.25
0.047	19.02	32.2	13.78	0.6002	0.24
0.054	19.49	37.0	14-12	0.6152	0- 23
0.065	19.99	44.6	14,49	0.6310	0.23
0.080	20.71	54.9	15-00	0.6535	0.22
0.095	21.11	65.1	15.29	0-6662	0.22
0.110	21.50	75.4	15.58	0.6786	0.21
0.130	22.06	89.1	15.99	0.6963	0.21
0.155	22.51	106.3	16.31	0.7103	0.20
0.185	23.21	126.9	16.82	0.7324	0.20
0.215	23.69	147.4	17.17	0.7478	0.19
0.265	24-58	181.7	17.81	0.7758	0.19
0.315	25.37	216.0	18.39	0.8008	0.18
0.365	26-11	250.3	18.92	0.8242	0- 17
0-415	26.83	284.6	19.45	0.8470	0.17
0.465	27.34	318-8	19.81	0.8629	0.17
0.515	28.00	353.1	20.29	0.8838	0. 16
0.565	28.60	387.4	20.72	0.9025	0.16
0-615	29.07	421.7	21.07	0.9176	0.16
0.665	29.57	456.0	21.42	0.9332	0.15
0.715	30.08	490.3	21.60	0.9493	0.15
0.765	30.46	524.5	22.07	0.9613	0.15
0.815	30.80	558.8	22.32	0.9723	0. 15
0.865	31.10	593.1	22.54	0.9816	0.15
0.915	31.37	627.4	22.73	0.9901	0.15
0.965	31.61	661.7	22.91	0.9977	0-14
1.015	31.64	696.0	22.92	0.9985	0.14
1.065	31.68	730.2	22.96	1.0000	0.14

REX= 0.69242E 06 RED2= 1740.

DEL1= 0.150 IN. DEL2= 0.111 IN. CF2= 0.18971E-02 DXV0= 0.58

XVO= 9.02 IN. H= 1.35

DDEL1=0.002

DDEL2=0.001 DCF/2=0.128 IN RATIO

STANTON NUMBER DATA RUN 082273 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 76.9 .UINF= 31.0 XV0= 6.390 RH0= 0.07377 CP= 0.242 VISC= 0.16643E-03 PR=0.714
DISTANCE FROM URIGIN OF 8L TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=15523.

** M=O. , FLAT PLATE RUN, HIGH RE, STEP T-WALL AT 1ST PLATE

PL A1	'E X	REX	TO	REENTH	STANTON NO	DST	DREEN	М	F	T 2	THETA	DTH
1	50.30	0.68160E 06	103.8	0.73379E 02	0.47272E-02	0.106E-03	2.					
2	52.30	0.71265E 06	103.9	0-20124E 03	0.35096E-02	0.950E-04	3.	0.00	0.0000	103.9	1.000	0.013
3	54.30	0.74370E 06	103.9	0.30661E 03	0.32785E-02	0.931F-04	4.	0.00	0.0000	103.9	1.000	0.013
4	56.30	0.77474E 06	103.9	0.40638E 03	0.31491E-02	0.920E-04	4.	0.00	0.0000	103.9	1.000	0.013
5	58.30	0.80579E 06	103.9	0.50209E 03	0.30164E-02	0.910E-0A	5.	0.00	0.0000	103.9	1.000	0.013
5	60.30	0.83583E 06	103.9	0.59429E 03	0.29233E-02	0.905E-04	5.	0.00	0.0000	103.9	1.000	0.013
7	62.30	0.86788E 06	103.8	0.683405 03	0.281 76E-02	0.898E-04	5.	0.00	0.0000	103.8	1.000	0.013
8	64.30	0.89892E 06	103.8	0.76988E 03	0.27535E-02	0.896E-04	6.	0.00	0.0000	103.8	1.000	0.013
9	66.30	0.92997E 06	103.8	0.85473E 03	0.27124E-02	0.892E-04	6.	0.00	0.0000	103.8	1.000	0.013
10	68.30	0.96101E 06	103.8	0.93828E 03	0.26700E-02	0.890E-04	6.	0.00	0.0000	103.8	1.000	0.013
11	70.30	0.99206E 06	103.8	0.10209E 04	0.26525E-02	0.888E-04	7.	0.00	0.0000	103.R	1.000	0.013
12	72.30	0.10231E 07	103.9	0.11012E 04	0 • 2 52 05 E - 02	0.877E-04	7.		0.0000			0.013
13	73.82	0-10467E 07	103.5	0.11626E 04	0-27876E-02	0.588E-04	7.					
14	74.85	0.10627E 07	103.4	0.1205BE 04	0.26047E-02	0.605E-04	7.					
15	75.88	0.10787E 07	104.0	0.12469E 04	0.25370E-02	0.600E-04	7.					
16	76.91	0.10947E 07	104.1	0.12872E 04	0.24881E-02	0.587E-04	7.					
17	77.95	0.11108E 07	104.2	0.13267E 04	0 - 245 75F - 02	0.585E-04	7.					
18	78.98	0.11268E 07	104.0	0.13667F 04	0.25321E-02	0.598E-04	7.					
19	80.01	0.11428E 07	104.0	0-14067E 04	0-24707E-02	0.575E-04	7.					
20	81.04	0.11588E 07	104-2	0.14457E 04	0-23930E-02	0.560E-04	7.					
21	82.07	0.11748E 07	104.0	0.14850E 04	0 - 2 52 23 E- 02	0.586E-04	7.					
22	83.10	0.11908E 07	104.2	0.15243E 04	0.23881E-02	0.581E-04	7.					
23	84-13	0.12067E 07	104.0	0.15619E 04	0.23076E-02	0.571F-04	7.					
24	85.16	0.12228E 07	103.8	0.15994E 04	0.23786E-02	0.604E-04	7.					
25	86.20	0.12389E 07	102.0	0.16356E 04	0.21514E-02	0.576F-04	8.					
26	87.23	0.12549E 07	102.4	0.16721E 04	0 - 240 04E-02	0.607E-04	8.					
27	88.26	0.12708E 07	103.7	0.17108E 04	0.24403E-02	0.603E-04	8.					
28	89.29	0.12868E 07	104.2	0.174895 04	0.23201E-02	0.574E-04	8.					
29	90.32	0.13028E 07	103.8	0.17879E 04	0.25553F-02	0.598E-04	9.					
30	91.35	0.13188E 07	104.6	0.182675 04	0.22803E-02	0.5745-04	Я.					
31	92.38	U.13348E U7	104.5	0.18636E 04	0.23368E-02	0.572E-04	3.					
32	93.41	0.13509E 07	104.3	0.18998E 04	0.21902F-02	0.559F-04	8.					•
33	94.45	0.136695 07	104.2	0.19352E 04	0.22272E-02		3.					
34	95.48	0.13829E 07	103.5	0-19709E 04	0 - 2 22 84 E- 02	3.553E-04	8.		· .:			
35	96.51	0.13989E 07	103.9	0.20065E 04	0.22236E-02	0.586E-04	8.					
36	97.54	0.14149E 07	103.2	0.20420E 04	0 • 2 21 40 E - 02	0.646E-04	9.					

STANTON NUMBER DATA RUN 062073 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 78.8 UINF= 30.0 XVD= 6.390 RHD= 0.07317 CP= 0.242
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=14863. UNCERTAINTY IN F=0.03257 IN RATIO

VISC= 0.16824E-03 \ PP=0.714

** M=0.2, COLD RUN, HIGH RE, STEP T-WALL AT IST PLATE.

		-										
PLAT		REX	TO	KEENTH	STANTON NO	DST	DREEN	M	F	† ?	THETA	ÓΣΗ
1	50.30	0.65264E 06	105.0	0.72454E 02	0.48748E-02	0.115E-03	2.					
2	52.30	0.68236E 06	105.1	0.22427F 03	0.41601E-02	0.1075-03	3.		0.0066	83.5	0.178	0.010
3	54.30	0.71209E 06	105.2	0.38383E 03	0.418156-02	0.107F-03	4.		0.0067	83.6	0.190	0.310
4	56.30	J.74181E U6	105.2	0.54295F 03	0.407226-02	0.106E-03	5.	0.20	0.0065	33.8	0.189	0.010
5	58.30	0.77154E 06	105.1	0.698098 03	0.399645-02	0.105F-03	6.	0.20	0.0066		0.186	0.010
6	60.30	0.80127E 06	105.1	0.84683F 03	0.36873E-02	0.103E-03	6.	0.20	0.0365	83.7	0.184	0.010
7	62.30	0.83099E U6	105.1	0.99216E 03	0.35070E-02	0.102E-03	7.	0.21	0.0069	83.8	3.188	0.010
8	64.30	0.86072F 06	105.1	0.11360E 04	0.34868E-02	0.101E-03	7.	0.21	0.0068	83.8	0.189	0.010
9	66.30	0.89044E 06	105.1	0.12769E 04	0.34188E-02	0.100E-03	8.	0.21	0.0067	83.9	0.191	0.010
10	68.30	0.92017E 06	105.2	0.14159E 04	0.336448-02	0.996E-04	8.	0.21	0.0067	83.0	0.192	0,010
11	70.30	0.94990E 06	105.4	0.15532E 04	0.32980E-02	0.987F-04	9.	0.21	0.0069	83.8	0.188	0.010
12	72.30	0.97962F 06	105.2	0.16877E 04	0.31757E-02	0.9825-04	9.	0.20	0.0066	84.0	0.197	0.010
13	73.82	0.10022E 07	104.6	0.17774E 04	0.30220E-02	0.654E-94	Ģ.					
14	74.85	0.10175E 07	104.6	0-18213E 04	0.27140E-02	0.6535-04	9.					
15	75-88	0.10328E 07	105.4	0.18617E 04	0.25479E-02	0.631E-04	9.					
16	76.91	0.10482E 07	105.5	0.18998E 04	0.24356F-02	0.607E-04	9.					
17	77.95	0.10636F 07	105.7	0.19363E 04	0.23152E-02	0.592E-04	9.					
18	78.98	0.10789E 07	105.4	0.197255 04	0.24161E-02	0.609E-04	10.					
19	80.01	0.10942E 07	105.6	0.200855 04	0.22804E-02	0.573E-04	10.					
20	81.04	0.11095E 07	105.8	0.20428E 04	0.21894E-02	0.5555-04	10.					
21	82.07	0.11248E 07	105.6	0.20774F 04	0.23257E-02	0.582E-04	10.					
22	83.10	0.11401E 07	105.9	0.21117E 04	0.21591F-02	0.5755-04	10.					
23	84.13	0.11555E 07	105.6	0.21446F 04	0.21334E-02	0.5715-04	10.					
24	85.16	0.11708E 07	105.6	0.21774E 04	0.21489E-02	0.595E-04	10.					
25	86.20	0.11862E 07	104.0	0.220915 04	0.19764F-02	0.574E-04	10.					
26	87.23	0.12015E 07	104.4	0.22408E 04	0.21651F-02	0.5965-04	19.					
27	88-26	0.12168E 07	105.5	0.22743F 04	0.22084F-02	0.592E-04	10.					
28	89.29	U.12321E 07	105.9	0.23075E 04	0.212215-02	0.570F-04	10.					
29	90.32	0.12475E 07	105.6	0.23416F 04	0.23220E-02	0.589E-04	10.					
30	91.35	0.12628E 07	106.3	0.237545 04	0.209067-02	0.573E-04	10.					
31	92-38	0.12781E 07	106.1	0.24078F 04	0.214115-02	0.570E-04	10.					
32	93.41	0.12935E 07	106.0	0.24398F 04	0.20361E-02	0.563E-04	10.					
33	94.45	0.13088E 07	105.9	0.24713F 04	0.20777E-02	0.560E-04	10.				-	
34	95.48	0.132415 07	105.4	0.25031F 04	0-20645F-02	0.5535-04	10.					
35	96.51	0.13395E 07	105.6	0.233498 04	0.20803F-02	0.5915-04	10.					
36	97.54	0.13548E 07	105.0	0.25665F 04	0.20418F-02	0.652F-04	10.					

STANTON NUMBER DATA RUN 082173 *** DISCRETE HOLE RIG *** MAS-3-14336

TINF= 79.1 UINF= 30.3 XV0= 6.390 PH0= 0.07350 CP= 0.242 VISC= 0.16762E-03 PR=0.714
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=15072. UNCERTAINTY IN F=0.03245 IN RATIO

** M=0.2, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DRFEN	M	F	₹2	THETA	りてH
1	50.30	0.66182E 06	108.2	0.708328 02	0.469955-02	0.104E-03	2.					
2	52.30	0.69196E 06	108 • 2	0.26170E 03	0.35162E-02	0.9226-04	4.	0.18	0.0057	101.6	0.774	0.011
3	54.30	0.72211E 06	108.2	0.49703E 03	0.33932E-02	0.911E-04	5.	0.17	0.0054	102.0	0.785	0.011
4	56.30	0.75225E 06	108.3	0.72354E 03	0.31960E-02	0.8925-04	6.	0.16	0.0053	102.4	0.796	0.011
5	58.30	0.78239E 06	108.2	0.94752E 03	0.29713F-02	0.877E-04	8.	0.17	0.0056	102.6	0.806	0.011
6	60.30	0.81254F 06	108.2	0.11712F 04	0-275766-02	0.861E-04	8.	0.18	0.0059	101.8	0.791	0.011
7	62.30	0.842685 06	108.1	0.13862F 04	0.26396E-02	0.856E-04	9•	0.16	0.0052	102.7	0.913	0.011
8	64.30	0.87283E 06	108.1	0.15977E 04	0.251325-02	0.848E-04	10.	0.17	0.0354	103.8	0.854	0.011
9	66.30	0.90297F 06	108.1	0.181015 04	0.245545-02	0.8445-04	11.	0.16	0.0053	103.6	0.847	0.011
10	68.30	0.93311E 06	108.1	0-20281E 04	0.23887E-02	0.839E-04	12.	0.18	0.0058	104.6	0.879	0.011
11	70.30	0.96326E 06	108.1	0.22525 04	0.22831E-02	0.832E-04	12.	0.17	0.0056	105.4	0.906	0.012
12	72.30	0.99340E 06	108.2	0.24708E 04	0.205495-02	0.816E-04	13.	0.16	0.7352	107.6	0.980	0.012
13	73.82	0.10163E 07	107.8	0.25959E 04	0.23300E-02	0.511E-04	13.					
14	74.85	0.103185 07	107.7	0.26309E 04	0.21739E-02	0.535E-04	13.					
15	75-88	0.10474E 07	108.5	0.26634E 04	0.20084E-02	0.5176-04	13.					
16	76.91	0.10630E 07	108.5	0.26945E 04	0-19940E-02	0.508E-04	13.					
17	77.95	0.10786E 07	108.7	0.27253E U4	0.196045-02	0.5045-04	13.					
18	78.98	0.10941E 07	108.9	0.27553E 04	0.19085E-02	0.501E-04	13.					
19	80.01	0.11096E 07	108.7	0.27853E 04	0.19455E-02	0.489E-04	13.					
20	81.04	0.11251F 07	108.9	0.28150E 04	0.18802E-02	0.4775-04	13.					
21	82.07	0.11407E 07	108.9	0-294448 04	0.18998E-02	0.489E-04	13.					
22	83.10	0.11562E 07	108.7	0.28741E 04	0 • 1 92 78 5 - 02	0.506E-04	13.					
23	84.13	0.11717E 07	108.7	0-29034E 04	0.18395E-02	0.495E-04	13.					
24	85.1 6	0.11873F 07	108-9	0.29319E 04	0.18304E-02	0.5095-04	13.					
25	86.20	0.12029E 07	107.6	U.29597F 04	0.17469E-02	0.496E-04	13.					
26	87.23	0.12184E 07	107.5	0.29885E 04	0.19518E-02	0.523E-04	13.					
27	88.26	0.12340E 07	108.7	0.30181E 04	0.18627E-02	0.5075-04	14.					
28	89.29	0.12495E 07	108.9	0.30471E 04	0.18579E-02	0.497F-04	14.					
29	90.32	0.12650E 07	108.5	0.30772E 04	0.20272E-02	0.513E-04	14.					
30	91.35	0.12805E 07	109.0	0.31078E 04	0.19024E-02	0.511E-04	14.					
31	92-38	0.12961E 07	109.0	0.31371E 04	0.18709F-02	0.501E-04	14.					
32	93.41	0.13117E 07	108.5	0.31662E 04	0.18779E-02	0.507E-04	14.					
33	94.45	0.13273E 07	108.6	0.31953F 04	0.18577E-02	0.4985-04	14.					
34	95.48	0.1342 BE 07	108.1	0.32241E 04	0.185695-02	0.4926-04	14.					
35	96.51	0.135838 07	108.3	0.32532F 04	0.18828F-02	0.528F-04	14.					
36	97.54	0.137385 07	107.7	0.32823E 04	0.18557F-02	0.5745-04	14.					

PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DEL2	ST(TH=1)	ETA	STCP	F-COL	STHR	F~HŪ₹	PHI-1
1	652635.8	72.	5 0.004875	661816.6	70.8	0.004700	บ บบบบ	טניטטוי	0.0000	ยบบบบบบ	0.0000	អាច្រម្យ
2	682361.9	209.	6 0.004352	691960.9	277.6	0.003273	0.248	1.009	0.0056	1.042	0.0057	1.805
3	712088.0	339.	9 0.004416	722105.1	542.1	0.003113	0.295	1-147	0.0067	1.053	0.0054	1.819
4	741814.1	470.	2 0.004346	752249•4	793.7	0.002900	0.333	1.215	0.0055	1.023	0.0053	1.793
5	771540.1	596.	8 0.004173	782393.6	1041.4	0.002683	0.357	1.233	0.0066	0.976	0.0056	1.307
6	801266.3	717.	9 0.003973	812537.8	1291.3		0.392	1.227	0.0065	0.903	0.0059	1.782
7	830992.3	834.		842682.1	1531.0		0.397	1.249	0.0069	0.297	0.0052	1.707
8	860718.4	948.	7 0.003764	872826.3	1761.6	0.002299	0.389	1.245	0.0068	0.895	0.0054	1.740
9	890444.4	1059.	7 0.003699	902970.6	1991.6		0.397	1.257	0.0067	0.883	0.0053	1.728
10	920170.6	1168.	7 0.003637	933114.8	22 26 • 5		0.390	1.266	0.0067	0.892	0.0058	1.816
11	949896.6	1275.		963259.1	2464.8		0.397	1.268	0.0069	0.877	0.0056	1.785
12	979622.7	1380.		993403.3	26 90 • 2		0.414	1.255	0.0066	0.837	0.0052	1.682
13	1002214.0	1456.			2815.2		0.330	1.186		0.900		
14	1017523.0	1502.			2847.8		0.289	1.066		0.855		
15	1032832.0	1545.		1047361.0	2878.2		0.307	1.013		0.791		
16	1048215.0	1585.			2907.5		0.265	0.968		0.799		
17	1063598.0	1624.		1078560.0	2936.6		0.226	0.920		0.799		
18	1078907.0	1662.			2965.0		0.304	0.983		0.764		
19	1094216.0		1 0.002377		2993.4		0.217	0.919		0.803		
20	1109525.0	1735.		1125133.0	3021.9		0.208	0.887		0.781		
21	1124834.0		0 0.002448			0.001794	0.267	0.960		0.781		
22	1140143.0	1807.		1156182.0	3078.3		0.160	0.878		0.818		
23	1155452.0	1841.		1171706.0		0.001767	0.204	0.881		0.776		
24	1170835.0	1876.		1187306.0	3133.9			0.896		0.773		
25	1186218.0	1908.		1202905.0		0.001690	0.173	0.822		0.749		
26	1201527.0	1941.		1218429.0		0.001899	0.147	0.901		0.945		
27	1216836.0	1976.		1233954.0	3217-1		0.230	0.939		0.794		
28	1232145.0	2010.			3244.8		0.185	0.900		0.804		
29	1247454.0	2046.		1265003.0		0.001954		0.990		0.880		
30	1262763.0	2081 -		1280527.0	3303.6		0.135	0.887		0.839		
31	1278072.0	2114.			3332.0			0.923		0.819		
32	1293455.0	2147.			3360.3		0.117	0.870		0.838		
33	1308838.0	2179.			3388.6		0.158	0.899		0.825		
34	1324147.0	2212.		1342774.0	3416.6		0.150	0.897		0.829		
35	1339456.0	2245.		1358299.0	3444.9		0.142	0.907		0.B45		
36	1354765.0	2277.	6 0.002095	1373823.0	3473.2	0.001809	0.136	0.893		0.837		

STANTON NUMBER DATA RUN 082473 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 77.7 UINF= 31.0 XVC= 6.390 RHC= 0.07314 CP= 0.242 VISC= 0.16801E-03 PP=0.714
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN PEX=15370. UNCERTAINTY IN F=0.03228 IN RATIO

** M=0.8, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PL	ATE X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T 2	THETA	OF H
	1 50.30	0.67488E 0	6 103.8	0.72093E 02	0.46906E-02	0.109E-03	2.					
	2 52.30	0.70562E 0	6 103.8	0.24641E 03	0.45875E-02	0.108E-03	5.	0.75	0.0242	79.9	0.085	0.010
	3 54.30	0.736368 0	6 103.8	0.454785 03	0.49812E-02	0.112E-03	7.	0.73	0.0237	79.8	0.081	0.010
	4 56.30	0.767095 00	6 103.9	0.67148E 03	0.509575-02	0.113E-03	٩.	0.75	0.0243	79.9	0.086	0.010
	5 58.30	0.797835 0	6 103.9	0.88933E 03	0.49268E-02	0.111E-03	11.	0.74	0.0239	79.9	0.086	0.010
	6 60.30	0.82857E 0	b 103.9	0.10987E 04	0.47156F-02	0.109E-03	12.	0.74	0.0239	79.8	0.381	0.010
	7 62.30	0.859315 0	6 103.9	0.13032E 04	0.44294E-02	0.106E-03	14.	0.73	0.0237	80.1	0.794	0.010
	8 64.30	0.89005E 0	6 103.8	0.150485 04	0.41676E-02	0.104E-03	15.	0.75	0.0243	80.1	0.094	0.010
	9 66.30	0.92079F 0	6 103.7	0.16993E 04	0.39869E-02	0.103E-03	16.	0.74	0.0241	80.0	0.091	0.010
1	0 68.30	0.95153E 0	6 103.8	0.18887E 04	0.38873F-02	0.102E-03	17.	0.75	0.0244	80.1	0.392	0.010
1	1 70.30	0.98227E 0	6 103.8	0.20722E 04	0.37120E-02	0.999E-04	18.	0.74	0.0240	80.0	0.088	0.010
1	2 72.30	0.10130E 0	7 103.9	0.22519E 04	0.36169E-02	0.988E-04	19.	0.75	0.0243	80.1	0.093	0.010
ı	3 73-82	0.10364E 0	7 102.7	0.23671E 04	0.31386E-02	0.658E-04	19.					
1	4 74.85	0.10522E 0	7 102.7	0.24138E 04	0.27604E-02	0.650E-04	19.					
1	5 75.88	0.10680E 0	7 103.7	0.24547E 04	0.24014E-02	0.600E-04	19.					
1	6 76.91	0.10839E 0	7 104.0	0.24909E 04	0.21600E-02	0.556E-04	19.					
1	7 77.95	0.10998E 0	7 104.3	0.25237E 04	0.19817F-02	0.532E-04	19.					
1	8 78-98	0.11157E 0	7 104.3	0.25550E 04	0.19706E-02	0.532E-04	19.					
1	9 80.01	0.11315E 0	7 104.5	0.25851E 04	0.18278E-02	0.496E-04	19.					
2	0 81.04	0.1147?E 0	7 104.7	0.26135E 04	0.17578E-02	0.481F-04	19.					
2	1 82.07	0.11632E 0	7 104.5	0.26420E 04	0.183775-02	0.500E-04	19.					
2	2 83-10	0.11790E 0	7 104.7	0.26702F 04	0.17189E-02	0.502E-04	19.					
2	3 84.13	0.11948E 0	7 104.5	0.26973E 04	0.16960F-02	0.500E-04	19.					
2	4 85.16	0.12107E 0	7 104.4	0.27244E 04	0.17234E-02	0.528E-04	19.					
2	5 86.20	0.12266E 0	7 102.6	0.27510E 04	0.163755-02	0.5235-04	19.					
2	6 87.23	0.12425E 0	7 103.0	0.27781E 04	0.17830E-02	0.535E-04	19.					
2	7 88.26	0.12583E 0	7 104.2	0.28066F 04	0.18115E-02	0.528E-04	19.					
2	8 89.29	0.12741E 0	7 104.6	0.28349E 04	0.17585F-02	0.510E-04	19.					
2	9 90.32	0.12900E 0	7 104-1	0.28647F 04	0.20067F-02	0.533E-04	19.					
3	0 91.35	0.130585 0	7 104.8	0.28947E 04	0.177476-02	0.521E-04	19.					
3	1 92.38	0.13216E 0	7 104.7	0.29232E 04	0.181865-02	0.516F-04	19.					
3	2 93.41	0.133755 0	7 104.5	0.29515E 04	0.17523E-02	0.515E-04	19.					
3	3 94.45	0.13534E 0	7 104.4	0.29796E 04	0.17979E-02	0.513E-04	19.					
3	4 95.48	0.136935 0	7 103.8	0.30082E 04	0.18153E-02	0.510E-04	10.					
3	5 96.51	0.13851E 0	7 104.1	0.30369E 04	0.18052E-02	0.546E-04	19.					
3	6 97.54	0.14009E 0	7 103.3	0.30656E 04	0.18116E-02	0.6165-04	19.					

STANTON NUMBER DATA RUN 082773 *** DISCRETE HOLE PIG *** NAS-3-14336

TINF= 78.8 UINF= 31.0 XV0= 6.390 RH0= 0.07319 CP= 0.242 VISC= 0.16809E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=15394. UNCERTAINTY IN F=0.03225 IN RATIO

** M=0.8, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT		REX		₹ ()	REENTH		STANTON NO	nst	Dbëln	M	F	Ť2	THETA	ηŦΗ
1	50.30	0.67594F		108-2	0.71660E 0	_	0.46551F-02	0.998E-04	2.					
2	52.30	0.706735		108.3	0.54239E 03		0.41089E-02	0.944E-04	12.		0.0235			0.012
3	54.30	0.73752E		108.2	0.13651E 04		0.415925-02	0.950F-04	21.	0.74	0.0238	107.6	0.980	0.012
4	56.30	0.76831E	06	108.4	0.22034E 04	4	0.40343E-02	0.935E-04	27.	0.73	0.0236	107.5	0.971	0.012
5	58.30	0.7991 OE	06	108.3	0.30289E 04		0 • 3 65 88 E - 0 2	0.9036-04	33.	0.72	0.0235	107.8	0.982	0.012
6	60.30	0.82988E	06	108.3	0.38263E 0	4	0.32656E-02	0.871E-04	37.	0.75	0.0243	105.3	0.899	0.011
7	62.30	0.86067E	06	108.2	0.46155F 04	4	0.286415-02	0.842E-04	41.	0.75	0.0243	107.0	0.958	0.012
8	64.30	0.89146E	06	108.3	0.54109E 0	4	0 • 2 54 30E - 02	0.819E-04	44.	0.72	0.0234	107.7	0.980	0.012
9.	66.30	0.92225E	06	108.3	0.61734E 0	4	0.22953E-02	0.803E-04	48.	0.71	0.0232	106.4	0.938	0.012
10	68.30	0.95303E	06	108.2	0.69318E 04	4	0.21325E-02	0.795E-04	51.	0.76	0.0245	106.5	0.942	0.012
11	70.30	0.98382E	06	108.2	0.76970E 04	4	0.19337F-02	0.7845-04	53.	0.79	0.0252	105.1	0.995	0.011
12	72.30	0.10146E	07	108.3	0.843795 04	4	0.17535F-02	0.773E-04	56.	0.75	0.0244	105.3	0.900	0.011
13	73.82	0.10380E	07	107.6	0.88158E 0	4	0.17046F-C2	0.408E-04	57.					
14	74.85	0.10539E	07	107.7	0.88407E 04	4	0.14383E-02	0.4315-04	57.					•
15	75.88	0.10697E	07	108.5	0.88619E 04	4	0.12260E-02	0-4126-04	57.					
16	76.91	0.10857E	07	108.7	0.88806E 04	4	0.11308F-02	0.396F-04	57.					
17	77.95	0.11016E	07	108.9	0.88980E 04	4	0.10635F-02	0.390E-04	57.					
18	78.98	0.11174F	07	109.0	0.89147E 04	4	0.10376E-02	0.391E-04	57.					
19	80.01	0.113338	07	109.0	0.89309E 0	4	0-10149E-02	0.370E-04	57.					
20	81.04	0.11492F	07	109.1	0.89467E 04	4	0.97625E-03	0.361F-04	57.					
21	82.07	0.11650E	07	109.1	0.89626E 04	4	0.10168E-02	0.376E-04	57.					
22	83.10	0.11809E	07	109.0	0.89786E 04	4	0.10003F-02	0.391E-04	57.					
23	84.13	0.11967E	07	108.9	0.89943E 04		0.97517E-03	0.389E-04	57.					
24	85.16	0.12127E	07	109.0	0.90098E 04	4	0.97663E-03	0.406F-04	57.					
25	86.20	0.12286E	07	107.7	0.90248E 04	4	0.92200E-03	0.401F-04	57.					
26	87.23	0.12444E	07	107.7	0.90406E 04	4	0.10706E-02	0.414E-04	57.					
27	88.26	0.12603E	07	108.7	0.90575E 04	4	0.10602F-02	0.407E-04	57.					
28	89.29	0.127625		109.0	0.90743F 04		0-10469E-02	0.3965-04	57.					
29	90.32	0.12920E		108.6	0.90923E 04		0.122285-02	0.407E-04	57.					
30	91.35	0.13079E		109.0	0.91103E 04		0.11113F-02	0.412F-04	57.					
31	92.38	0.13237E		109.0	0.91284E 04		0.11092E-02	0.405E-04	57.					
32	93.41	0.13397E		108.7	0.91462E 04		0.11253F-02	0.413E-04	57.					
33	94.45	0.135565		108.6	0.91641E 04		0.11322E-02	0.404F-04	57.					
34	95.48	0.13714E		108.2	0.91823E 04		0.116015-02	0.401F-94	57.					
35	96.51	0.138735		108.3	0.92009F 04		0.11790E-02	0.439E-04	57.					
36	97.54	0.14032E		107.7	0.92195E 04		0.116675-02	0.477E-04	57.					
50			٠.			•								

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUM 082473 AND RUM 082773
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUMS

PLATE	REXCOL	RE DELZ	ST(TH=0)	REXHOT	RE DEL2	ST(TH=1)	ETA	STOR	F-COL	STHP	F-HOT	PHI-1
1	674877.1	72.	0.004691	675944.3	71.7	0.004655	טטטטט	บบบบบ	0.0000	วบนดนเอ	0.0000	00300
Ž	705616.3	215.4		706732.1	568.2	0.004067	0.123	1.093	0.0242	1.301	0.0235	3.932
3	736355.3	364.4	0.005055	737519.8	1423.7	0.004141	0.131	1.322	0.0237	1.408	0.0238	4.242
4	767094.4	522.0	0.005199	768307.5	• - 2279.1	0.003999	0.231	1.464	0.0243	1.417	0.7236	4.328
5	797833.6	679.5	0.005048	799095.3	3120.9	0.003633	0.280	1.503	0.0239	1.328	0.0235	4.270
6	828572.7	831.8	0.004859	829882•9	3959.4	0.003087	0.365	1.512	0.0239	1.150	0.0243	4.177
7	8 5 93 1 1.8	977.1	0.004599	860670.7	4798.0	0.002788	0.394	1.485	0.0237	1.070	0.0243	4.100
8	890050.9	1114.5	0.004341	891458.4	5614.6	0.002506	0.423	1.446	0.0243	0.980	0.0234	3.922
9	920790.1	1245.3		922246.1	64 04 . 2		0.479	1.427	0.0241	0.964	0.0232	3.751
10	951529.2	1372.1		953033.9	7202.9		0.506	1.430	0.0244	0.813	0.0245	3.842
11	982268.3	1494.8		983821.6	8025.2		0.564	1.400	0.0240	0.698	0.0252	3.738
12	1013007.0	1613.7		1014609.0	8837.3	0.001522	0.603	1.401	0.0243	0.632	0.0244	3.568
13	1036369.0	1698.		1038008.0	92 48 • 4	0.001609	0.511	1.219		0.674		
14	1052199.0	1747.6		1053863.0	9271.9		0.534	1.084		0.569		
15	1068030.0	1790.		1069719.0	9291.7		0.545	0.952		0.486		
16	1083937-0	1828-		1085651.0	9309.3		0.531	0.862		0.453		
17	1099845.0	1862.		1101584.0	93 25 . 7		0.517	0.796		0.430		
18	1115675.0	1895 - 1		1117440.0	9341.4		0.528	0.799		0.429		
19	1131506.0	1927.		1133295.0	9356.7		0.498	0.744		0.416		
20	1147337.0	1957.0		1149151.0	9371.7		0.497	0.721		0.402		
21	1163168.0	1986 .		1165007.0	9386 • 6	0.000962	0.500	0.759		0.421		
22	1178998.0	2016-3		1180863.0	9401.8	0.000952	0.469	0.713		0.419		
23	1194829.0	2044		1196718.0	9416.8	0.000927	0.476	0.708		0.409		
24	1210736.0	2072		1212651.0	9431.5	0.000927	0.485	0.725		0.411		
25	1226644.0	2100.		1228583.0	9445.8	0.000874	0.489	0.693		0.389		
26	1242474.0	2128.9		1244439.0	9450.8	0.001023	0.449			0.458		
27	1258305.0	2158.0 2188.		1260295.0	9476.9		0.465	0.774		0.454		
28 29	1274136.0	2219.		1276150.0 1292006.0	9492.9 9510.1		0.455	0.755 0.865		0.451 0.530		
30	1305797.0	2250.		1307862.0	9527.9		0.439			0.550		
31	1321628.0	2279		1323718.0	9544.8		0.421	0.768				
32	1337535.0	2309.		1339650.0	9561.8		0.439 0.404	0.793 0.765		0.484 0.495		
33	1353443.0	2338	_	1355583.0	9579.0		0.417	0.790		0.500		
34	1369273.0	2368		1371438.0	9596.5		0.407	0.790		0.515		
35	1385104.0	2398		1387294.0	9614.4		0.407	0.801		0.526		
36	1400934.0	2427		1403150.0	9632.4			0.806		0.528	,	·
	T-400 274 40	47410	. 0.007010	7403730.0	70 32 • 4	0.001124	U + U /	J • 0U0		0.062		

STANTON NUMBER DATA RUN 082973 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 80.4 UINF= 31.1 XV0= 6.390 RH0= 0.07257 CP= 0.242
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=15277. UNCERTAINTY IN F=0.03228 IN RATIO

VISC= 0.16969E-03 P?=0.715

** M=1.0, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

-												
PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	JTH
1	50.30	0.67080E 06	107.5	0.70759E 02	0.46318E-02	0.106E-03	2.					
2	52.30	0.70136E 06	107.5	0.24483E 03	0.46351F-02	0.1065-03	5.	0.95	0.0306	82.3	0.069	0.009
3	54.30	0.73191E 06	107.5	0.45789E 03	0.51144E-02	0.111E-03	9.	0.95	0.0309	32.2	0.067	0.009
4	56.30	0.76246E 06	107.5	0.68332E 03	0.54325E-02	0.114E-03	11.	0.95	0.0309	82.3	0.069	0.009
5	58.30	0.79302E 06	107.5	0.91145E 03	0.52269F-02	0.112E-03	13.	0.94	0.0306	82.3	0.070	0.009
6	60.30	0.82357E 06	107.4	0.11281E 04	0.49019E-02	0.1095-03	15.	0.95	0.0307	82.1	0.362	0.009
7	62.30	0.85413E 06	107.4	0.13392E 04	0.46186E-02	0.106E-03	16.	0.95	0.0309	82.4	0.777	0.009
8	64.30	0.88468E 06	107.4	0.15492E 04	0.43010E-02	0.103E-03	17.	0.95	0.0308	82.5	0.079	0.009
9	66.30	0.915235 06	107.5	0.175085 04	0.41065F-02	0.101E-03	19.	0.96	0.0310	82.4	0.076	0.009
10	68.30	0.94579F 06	107.5	0-19459E 04	0.39612E-02	0.9946-04	20.	0.97	0.0314	82.4	0.075	0.009
11	70.30	0-97634E 06	107.5	0.21361F 04	0.38148F-02	0.980E-04	21.	0.96	0.0310	82.4	0.074	0.009
12	72.30	0.10069E 07	107.5	0.23233E 04	0.37473E-02	0.973E-04	22•	0.95	0.0306	82.5	0.078	0.009
13	73.82	0.10301E 07	105.5	0.24407E 04	0.30146F-02	0.633E-04	23.					
14	74.85	0.10458F 07	105.3	0.24859E 04	0.27151E-02	0.645E-04	23.					
15	75.88	0.10616E 07	106.3	0.25254E 04	0.23009E-02	0.5885-04	23.					
16	76.91	0.10774E 07	106.7	0.25597E 04	0.20581E-02	0.5445-04	23.					
17	77.95	0.10932E 07	107.0	0.25906E 04	0.18563E-02	0.518E-04	23.					
18	78.98	0.11089E 07	106.8	0-26202E 04	0.19087E-02	0.527E-04	23.					
19	80.01	0.11247E 07	107.1	0.26489E 04	0.17320E-02	0.486E-04	23.					
20	81.04	0.11404E 07	107.3	0.267578 04	0-16699E-02	0.471E-04	23.					
21	82.07	0.11561E 07	107-2	0.27027E 04	0.17556E-02	0.492E-04	23.					
22	83.10	0.11719E 97	197.4	0.27294E 04	0.16380E-02	0.494E-04	23.					
23	84.13	0.11876E 07	107.2	0.27548E 04	0.15810E-02	0.489E-04	23.					
24	85.16	0.12034E 07	107.0	0.27800E 04	0.16201E-02	0.521E-04	23.					
25	86.20	0.12192E 07	105.0	0.28051E 04	0.15663E-02	0.52 3E~04	23.					
26	87.23	0.12350E 07	105.6	0.28305E 04	0 • 1 65,74E - 02	0.525E-04	23.					
27	88.26	0.12507E 07	106.8	0.28568E 04	0.16924F-02	0.516E-04	23.					
28	89.29	0.12664E 07	107.2	0.28829E 04	0.16202E-02	0.495E-04	23.					
29	90.32	0.12822E 07	106.9	0.29102E 04	0 • 1 84 51F - 02	0.513E-04	23.					
30	91.35	0.12979E 07	107.6	0.29373E 04	0-15945E-02		23.					
31	92.38	0.13137E 07	107.4	0.29631E 04	0.16722E-02	0.499E-04	23.					
32	93.41	0.13295E 07	107.3	0.29887E 04	0.15867F-02	0.496E-04	23.					
33	94.45	0.13453E 07	107.1	0.30142E 04	0.16428E-02	0.494E-04	23.					
34	95.48	0.13610E 07	106.6	0.30403E 04	0.16687E-02	0.493E-04	23.					
35	96.51	0-137675 07	106.8	0.3066ZE 04	0 • 1 63 03F - 02	0.5275-04	23.					
36	97.54	0.13925E 07	106.0	0.30921F 04	0.16584E-02	0.606E-04	23.					

STANTON NUMBER DATA RUN 083073 *** DISCRETF HOLE RIG *** NAS-3-14336

TINF= 82.6 UINF= 31.7 XV0= 6.390 RHO= 0.07240 CP= 0.242 VISC= 0.17081E-03
OISTANCE FROM ORIGIN OF BL TO 1ST PLATE=42.910 P/D= 5
UNCERTAINTY IN REX=15482. UNCERTAINTY IN F=0.03212 IN RATIO

** M=1.0. HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLATE	E X	REX		ΥO	REENTH		STANTON NO	DST	DREEN	м	F	TŻ	THETA	ртн
1	50.30	0.67981E	06	109.9	0.70449E 0	2	0.45504E-02	0.103E-03	2.					-
2	52.30	0.71077E		109.8	0.66866E 0	_	0.41817E-02	0.995E-04	16.	0.91	0.0295	110.2	1.015	0.013
3	54.30	0.74174E	06	109.7	0.174215 0	4	0.44784E-02	0.102E-03	29.	0.91	0.0296	110.8	1.040	0.013
4	56.30	0.77270E	06	109.7	0.28354E 04	4	0-43950E-02	0.102E-03	37.	0.90	0.0293	111.2	1.058	0.013
5	58.30	0.90366E	06	109.8	0.39253E 04	4	0.39181E-02	0.971E-04	44.	0.91	0.0295	111.3	1.354	0.013
6	60.30	0.83463E	06	109.8	0.49632E 0	4	0.33478E-02	0.924E-04	50.	0.91	0.0295	109.0	0.972	0.013
7	62.30	0.86559E	06	109.7	0.59805E 04	4	0.289255-02	0.891F-04	55.	0.92	0.0297	110.7	1.037	0.013
8	64.30	0.89656E	06	109.7	0.70240E 0	4	0 • 2 55 73 E- 02	0.870E-04	60.	0.90	0.0292	111.5	1.065	0.014
9	66.30	0.92752E	06	109.7	0-80445E 0	4	0.21980E-02	0.848E-04	64.	0.91	0.0294	110.3	1.021	0.013
10	68.30	0.95848E	96	109.7	0.90469E 0	4	0.20452E-02	0.839E-04	68.	0.93	0.0300	110.1	1.015	0.013
11	70.30	0.98945E	06	109.7	0.10013E 0	5	0.17952E-02	0.8276-04	72.	0.91	0.0295	108.4	0.950	9.013
12	72.30	0.10204E	07	109.7	0.10918E 0	5	0.17191E-02	0.8245-04	75.	0.90	0.0292	107.6	0.921	0.013
13	73.82	0.10439E	07	108.8	0.11371E 0		0.11869E-02	0.362E-04	76.					
14	74.85	0.10599E	07	108.7	0.11390E 0	5	0.11071E-02	0.427E-04	76.				,	
15	75.88	0.107585	07	109.3	0.11406E 0	5	0.92543E-03	0.416E-04	76.					
16	76.91	0.10919E	07	109.5	0.11420E 0	5	0.84840F-03	0-404E-04	76.					
17	77.95	0.11079E	07	109.6	0.11433E 0	5	0.78265E-03	0.400E-04	76.					
18	78.98	0.11238E	07	109.6	0.11445E 0	5	0.78392E-03	0.4045-04	76.					
19	80.01	0.11398E	07	109.6	0.11458F 0	5	0.75751E-03	0.380E-04	76.					
20	81.04	0.115578	07	109.7	0.11470E 0	5	0.74852F-03	0.3738-04	76.					
21	82.07	0.117175	07	109.7	0.11482E 0	5	0.76362E-03	0.387E-04	76.					
22	83.10	0.11876E		109.7	0.11494E 0	15	0.74530E-03	0.406F-04	76.					
23	84.13	0.12036E		109.5	0.11506E 0		0.75448E-03	0.4085-04	76.					
24	85.16	0.12196E	07	109.6	0.11518E 0	5	0.72885F-03	0.421E-04	76.					
25	86.20	0.12356E		108.6	0.11529E 0		0.682325-03	0.4205-04	76.					
26	87.23	0-12516E		108.5	0-11541E 0		0.81375E-03	0.430F-04	76.					
27	88.26	0.12675E		109.4	0.11553F 0		0.75625F-03	0.4176-04	76.					
28	89.29	0.12834E		109.6	0.11566F 0		0.769155-03	0.408E-04	76.					
29	90.32	0.12994E		109.3	0.11579E 0		0.92472E-03	0.413E-04	76.					
30	91.35	0.13153E		109.7	0.11593E 0		0.82069E-03	0.423E-04	76.					
31	92.38	0.13313E		109.7	0.11606F 0	-	0.81250E-03	0.4145-04	76.					
32	93.41	0.13473E		109.4	0.11619E 0		0.82940E-03	0.4246-04	76.				•	
33	94.45	0.13633E		109.4	0.11633E 0		0.85013E-03	0.4135-04	76.					
34	95.48	0.13793E		109.0	0.11646F 0		0.85659E-03	0.4085-04	76.					
35	96.51	0.13952E		109.0	0-11660E 0		0.87666F-03	0.450E-04	75.					
36	97.54	0.141126	07	1 08 .6	0.11674F 0	15	0.84975=-03	0.481E-04	76.					

PR=0.714

FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY. THIS DATA WAS PRODUCED FROM RUN 082973 AND RUN 083073 FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE	DEL2	ST(TH=0)	R EXHOT	RE	DEL2	ST(TH=1)	ΕTΔ	STCR	F-COL	STHR	Ŀ−HÛŢ	PH!-1
1	670803.8		70.8	0 • 00 46 32	679809.4		70.4	0.004550	บบบบบ	טטניטט	0.0000	บนบบบบบ	0.0000	нуунц
2	701357.4		212.9	0.004670	710773.2		662.1	0.004189	0.103	1.089	0.0306	1.341	0.0295	4.529
3	731910.9		363.0	0.005158	741737.0		1711.1	0.004504	0.127	1.347	0.0309	1.533	0.0296	4.975
4	762464.5		525.9	0.005505	772700.8		2761.2	0.004456	0.191	1.548	0.0309	1.580	0.0293	5.129
5	793018.1		691.3	0.005320	803664.5		3802.3	0.003990	0.250	1.581	0.0306	1.460	0.0295	5.078
6	823571.7		849.0	0.005009	834628.3		4828.5	0.003301	0.341	1.556	0.0307	1.240	0.0295	4.823
7	854125.3		998.2	0.004757	865592.1		5841.8	0.002958	0.378	1.533	0.0309	1.136	0.0297	4.751
8	884678.9		1138.8	0.004441	896555.9		6841.7	0.002672	0.398	1.477	0.0308	1.046	0.0292	4.614
9	915232.4		1271.7	0.004259	927519.6		78 25 . 5	0.002241	0.474	1 - 456	0.0310	0.892	0.0294	4.422
10	945786.1		1399.6	0.004114	958483.4		8812.2	0.002076	0.495	1.441	0.0314	0.840	0.0300	4.433
11	976339.6		1523.3	0.003986	989447.2		9792.4	0.001680	0.579	1.427	0.0310	0.689	0.0295	4.146
12	1006893.0		1644.3	0.003935	1020410.0	1	10751.9		0.611	1.437	0.0306	0.635	0.0292	4.046
13	1030114.0		1729.3	0.003155	1043943.0	1	11237.7	0.001213	0.616	1.168		0.509		
14	1045849.0		1776.5	0.002839	1059889.0	1	l 12 56 • 4	0.001130	0.602	1.061		0.477		
15	1061584.0		1817.8				11273.0		0.607	0.907		0.401		
16	1077395.0		1853.7				11287.4	0.000866	0.598	0.817		0.369		
17	1093207.0		1886.0		1107883.0		11300.7	0.000798	0.588	0.743		0.342		
18	1108942.0		1917.0				1313.5	0.000800	0.599	0.770		0.345		
19	1124677-0		1946.9		1139776.0		11326.0	0.000771	0.573	0.703		0.334		
20	1140412.0		1974.9		1155722.0		11338.3	0.000762	0.562	0.682		0.332		
21	1156147.0		2003.0		1171669.0		1350.6	0.300778	0.575	0.722		D.341		
22	1171882.0			0.001707			11362.8		0.556	0.678		0.333		
23	1187617.0			0.001645			11375.0		0.534	0.657		0.339		
24	1203429.0			0.001689			11387.0		0.561	0.679		0.329		
25	1219240.0			0.001634			1398.5		0.575	0.661		0.310		
26	1234975.0			0.001722			11410.6		0.521	0.701		0.370		
27	1250710.0		2163.6		1267501.0		11423.4		0.564	0.722		0.346		
28	1266445.0		2190.8				11435.7		0.537	0.694		0.353		
29	1282181.0			0.001916			11449.5		0.510	0.793		0.425		
30	1297916.0			0.001654			11463.6		0.497	0.688		0.378		
31	1313651.0		2274.0				11476.8		0.526	0.727		0.377		
32	1329462.0		2300.7				11490.1		0.489	0.692		0.385		
33	1345274.0		2327.0				11503.7		0.494	0.720		0.396		
34	1361009.0		2354-1				11517.5	0.000868	0.498	0.735		0.401		
35	1376744.0		2381.0		1395227.0		11531.5		0.474	0.720		0.411		
36	1392479.0		2407.9	0.001721	1411173.0	1	11545.5	0.000861	0.499	0.738		0.401		

REX= 0.28179E 07 RED2= 5347.

CF2= 0-15603E-02

DEL1= 0.121 IN. DEL2= 0.094 IN.

DXV0= 0.76

VELOCITY PROFILE

UINF=115.4 FT/SEC X= 53.0 INCHES PORT= 19 TINF= 79.2 DEG F PINF= 2104. PSF

Y(INCHES)	U(FT/SEC)	Y+	U+	UBAR	DU
0.010	62.46	22.5	13.70	0.5412	0.07
0.011	63.38	24.7	13.90	0.5491	0.07
0.012	63.74	27.0	13.98	0.5523	0.07
0.014	64.77	31.5	14. 21	0.5612	0.07
0.016	65.85	36.0	14-44	0.5706	0- 07
0.018	66.56	40.5	14.60	0.5767	0.07
0.021	67.84	47.2	14.88	0.5878	0.07
0-024	68.77	53.9	15.08	0.5959	0.07
0.027	69.62	60.7	15-27	0.6033	0.07
0.031	71 -05	69.7	15.59	0.6157	0.06
0.035	72.03	78.7	15.80	0-6241	0.06
0.040	72.87	89.9	15.98	0.6314	0.06
0.045	73.95	101.1	16.22	0.6407	0- 06
0.052	75 - 12	116.9	16.48	0.6509	0.06
0.060	76.56	134.8	16.79	0.6634	0.06
0.070	78.04	157.3	17.12	0.6762	0.06
0.080	79.27	179.8	17.39	0.6868	0.06
0.090	80-51	202.3	17.66	0.6976	0.06
0-105	82.23	236.0	18.04	0.7125	0.06
0.120	88.56	269.7	18.33	0.7240	0.06
0.135	85.01	303.4	18.65	0.7366	0.05
0.155	85.82	348.3	19.05	0.7523	0.05
0.175	88.08	393.3	19.32	0.7632	0.05
0.200	89.70	449.5	19.68	0.7773	0. 05
0.230	91.68	516.9	20.11	0.7944	0.05
0.260	93.50	584.3	20-51	0.8102	0.05
0.290	95.28	651.7	20.90	0.8256	0.05
0.320	96.63	719-2	21-20	0.8373	0.05
0.360	98.60	809.1	21.63	0.8544	0.05
0.395	100.26	887.7	21.99	0.8688	0.05
0.435	102.23	977.6	22.43	0.8858	0.04
0.485	104.22	1090.0	22.86	0.9030	0.04
0-535	106.00	1202.3	23.25	0.9185	0.04
0.585	108.08	1314.7	23.71	0.9365	0.04
0.635	109.47	1427.1	24.01	0.9485	0.04
0.685	110.94	1539.4	24.33	0.9613	004
0.735	112-32	1651.8	24.64	0.9732	0.04
0.785	113.02	1764-2	24.79	0.9793	0.04
0.835	113.95	1876.5	25.00	0.9874	0.04
0.885	114.77	1988.9	25, 18	0.9944	0.04
0.935	115.10	2101.3	25.25	0.9973	0.04
0.985	115.36	2213.7	25.30	0.9995	0.04
1.035	115.41	2326.0	25.32	1.0000	0.04

XVO= 3.47 [N.

DDEL2=0.001

DCF/2=0.156 IN RATIO

H= 1.29

DDEL1=0.002

TINF= 8C.0 UINF=116.1 XVC= 0.830 RHG= 0.07275 CP= 0.242 DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=48.470 P/D= 5 LACERTAINTY IN REX=57159.

VISC= 0.16920E-03 TADIAB= 81.0

PR=0.715

** M=0.0, FLAT PLATE RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PL AT	E X	PE X	To	REENTH	STANTON NO	DST	DREEN	M	F	T 2	ГНЕГА	D T -1
1	50 . 30	J. 28277E 07	102.7	0118490E 03	0.32348E-02	0.444E-04	3.					
2	52.30	0.29420E 07	102.8	C452003E 03	0.26283E-02	0.391E-04	4.	0.00	0.0000	102.8	1.000	0.015
3	54.30	0.30563E 07	102.9	0181253E 03	0.24889E-02	0.378E-04	6.	0.00	0.0000	102.9	1.000	0.015
4	56.30	0.31706E 07	102.9	0110900E 04	0.23660E-02	0.368E-04	6.	0.00	0.0000	102.9	1.000	0.015
5	58.30	0.32849E 07	102.8	0113561F 04	0.22882E-02	0.364E-04	7.	0.00	0.0000	102.8	1.000	0.016
6	60.30	0.339935 07	102.9	0116145E 04	0-22335E-02	0.359E-04	8.	0.00	0.0000	102.9	1.000	0.015
7	62.30	0.35136E 07	102.8	0418668E 04	0-21805E-02	0.356E-04	8.	0.00	0.0000	102.8	1.000	0.015
8	64.30	0.36279E 07	102.9	0121128E 04	0-21239E-02	0.351E-04	9.	0.00	0.0000	102.9	1.000	0.015
9	66.30	0.37422E 07	102.9	0.23534E 04	0-2(838E-02	0.348E-04	9.	0.00	0.0000	102.9	1.000	0.015
10	68.30	0.38565E 07	102.8	C125901E 04	0.20577E-02	0.347E-04	10.	0.00	0.0000	102.8	1.000	0.016
11	70.30	0.39709E 07	102.8	0128235E 04	0-20328E-02	0.346E-04	10.	0.00	0.0000	102.8	1.000	0.016
12	72.30	0.40852E 07	103.0	0430526E 04	0.19684E-02	0.337E-04	11.	0.00	0.0000	103.0	1.000	0.015
13	73.82	0.417218 07	102.8	0432249E 04	0 - 202 76E-02	0.322E-04	11.					
14	74.85	0.42309E 07	102.4	0.33422E 04	0.19541E-02	0.321E-04	11.					
15	75.88	0.42898E 07	103.3	0134574E 04	0.19542E-02	0.320E-04	11.					
16	76.91	0.43490E 07	103.3	0.35714E 04	0-19149E-02	0.311E-04	11.					
17	77.55	0.44081E 07	103.4	0.36837E 04	0.18929E-02	0.309E-04	11.					
18	78.98	0-44670E 07	10.3.2	0:37968E 04	0-19458E-02	0.317E-04	11.					
19	80.01	0.45259E D7	103.3	0.39099E 04	0.16904E-02	0.306E-04	11.					
20	81.04	0.45847E 07	103.5	0140199E 04	0.18422E-02	0.299E-04	12.					
21	82.07	0.46436E 07	103.2	0141305E 04	0.19103E-02	0.310E-04	12.					
22	83.10	0.470258 07	103.5	C:42413E 04	0.1 E4 S4E-02	0.304E-04	12.					
23	84.13	0.47614E 07	103.1	0.43483E 04	0.17825E-02	0.296F-04	12.					
24	85.16	0.48205E 07	103.1	0144553E 04	0.184798-02	0.314E-04	12.					
25	86.20	0.48797E 07	100.8	0145584E 04	0.16504E-02	0.296E-04	12.					
26	E7. 23	0.49386E 07	101.2	C146607E 04	0.18201E-02	0.318E-04	12.					
27	88.26	0.49974E 07	102.9	0347698E 04	0-18816E-02	0.316F-04	12.					
2 €	89.29	0-50563E 07	103.5	0448791E 04	0.18285F-02	0.303E-04	12.					
29	90.32	0. £1152E 07	102.8	0149858E 04	0.1924E-02	0.314E-04	12.					
30	91.35	0.51741E D7	104.0	0150996E 04	0.18034E-02	0.298E-04	12.					
31	92.38	0.523298 07	103.8	0.52053E 04	0.17837E-02	0.293E-04	13.					
32	93.41	0.52921E 07	103.4	0.53081E 04	0.17020E-02	0.2855-04	13.					
33	94.45	0.53512E 07	103.2	C154094E 04	0.17372E-02	0.291E-04	13.					
34	95.48	0.54101E 07	102.3	0.55113E 04	0.17187E-02	0.290E-04	13.					
35	96.51	0.54690E 07	103.0	C456135E 04	0.17489E-02	0.300E-04	13.					
36	97.54	0.55279E 07	102.7	0.57.158E 04	0.172108-02	0.313E-04	13.					

STANTON NUMBER DATA RUN 091273 *** CISCPETE HOLE RIG *** NAS-3-14336

TINF= 78.8 UINF=110.4 XVC= 0.830 R+O= 0.07270 CP= 0.242. VISC= 0.16907E-O3 PR=0.715

DISTANCE FROM GRIGIN OF BL TC 1ST FLATE=48.470 P/D= 5 TADIAB= 79.7

UNCERTAINTY IN REX=54423. UNCERTAINTY IN F=0.03001 IN RATIO

** *=0.2. COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	RF X	TO	REENTH		STANTON NO	DST	DREEN	М	F	T2	THETA	DTH
1	50.30	0.26923E 07	99.9	0.174788 0	3	0.32114E-02	0.486E-04	3.					
2	52.30	0.28011E 07	99.9	0154803E 0	3	0.28501E-02	0.452E-04	7.	0.21	0.0069	81.2	0.115	0.012
3	54.30	0.29100E 07	100 -0	0.94560E 0	13	0.29780E-02	0.462E-04	10.	0.21	0.0068	81.1	0.111	0.012
4	56.30	0.30188£ 07	99.9	0.13524E 0	4	0.28930F-02	0.455E-04	12.	0.20	0.0065	81.3	0.119	0.012
5	58.30	0.312775 07	99.9	0.17471E 0	4	0.281C6E-02	0.4485-04	14.	0.21	0.0067	84.2	0.115	0.012
6	60.30	0.32365E 07	99.9	0121290E 0	4	0.27033E-02	0.440E-04	16.	0.21	0.0067	81.1	0.108	0.012
7	62.30	0.33454E U7	99.8	C125059E 0	4	0.26402E-02	0.435E-04	18.	0.21	0.0067	81.5	0.128	0.012
8	64.30	0.34542E 07	99.8	0.28833E 0	4	0.255126-02	0.428E-04	19.	0.21	0.0068	81.5	0.132	0.012
9	66.30	J.35631E 07	99.5	0.32539E 0	4	0.25253E-02	0.424E-04	21.	0.21	0.0067	81.4	0.126	0.012
10	68.30	0.36719E 07	99.9	0136204E 0	4	0.25151E-02	0.423E-04	22.	0.21	0.0069	81.4	0.124	0.012
11	70.30	0.37808E 07	100.0	0439822E 0	4	0-248158-02	J.419E-04	23.	9.21	0.0067	8.1.3	0.119	0.012
12	72.30	0.38896E 07	100.0	0143363E 0	4	0.23948E-02	0.411E-04	24.	0.21	0.0067	81.4	0.125	0.012
13	73.82	0.39723E 07	101.1	0145809E 0		0.24553E-02	0.392E-04	25.					
14	74.85	0.402845 07	101-4	0447113E 0		0.21944E-02	0.356E-04	25.					
15	75.88	0.40844E 07	103.0	0.48315E 0		0 • 20883E-02	0.335E-04	25.					
16	76.91	0.41408E 07	103.1	0149454E 0		0.15703E-02	0.314E-04	25.					
17	77.95	0.41971E 07	103.4	0150543F 0		0.19098E-02	0.305E-04	25.					
18	78.98	0.42531E 07	103.4	0.51613E 0		0.19047E-02	0.304E-04	25.					
19	80.01	0.43092E 07	103.4	0152670E 0	4	0.18604E-02	0.295E-04	25.					
20	81.04	0.43653E 07	103.6	0453699E 0		0.18084E-02	0.287E-04	25.					
21	82.07	0.44213E 07	103.4	0154728E 0		0.18589E-02		25.					
22	83.10	0.44774E 07	103.7	0155758E 0		0.18084E-02	0.291E-04	25.					
23	84-13	0.45334E 07	103.4	0.56744E 0		0-17058E-02	0.278E-04	25.					
24	£5.16	0.45898E 07	103.3	0.57726E 0		0-17954E-02	0.301E-04	25.					
25	£6.20	0.46461E 07	100.6	0458683E 0		0.16127E-02		25.					
2 €	£7.23	0.47C21E 07	101.2	0.59636E 0		0.17847E-02		25.					
27	88.26	0.47582E 07	103.1	0160653E 0		0-18400E-02	0.303E-04	25.					
28	89.29	0.48142E 07	103.7	0.6167DE 0		0.17851E-02	0.290E-04	25.					
29	90.32	0.48703E 07	103.0	0162400E 0	-	0-18853E-02	0.300E-04	25.					
30	91.35	0.49264E 07	104.2	0.63725E 0		0.1766£E-02	0.286E-04	25.					
2.1	92.38	0.49824E 07	104-1	C164714E 0		0.17563E-02	0.282E-04	25.					
32	93.41	0.503878 07	103.5	0465679E 0		0.16858E-02	0.276E-04	26.					
33	94.45	0.50951E 07	103.4	:0166632E 0		0.17073E-02	0.280E-04	26.					
34	95.48	0.51511E 07	102.4	0167588E 0		0-17001E-02	0.279E-04	26.					
35	96.51	C.52072E D7	103.1	0468550E 0		0.1727'8E-02	0.290 E- 04	26.					
36	97.54	0.52632E 07	102.7	0169518E 0	14	0.17222E-02	0.310E-04	26.					

** M=0.2. HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	RE X	TO	REENTH	STANTON NO	DST	DREEN	М	F	T2	THETA	DTH
1	50.30	0-265468 07	105.8	0117124E 03	0.31910E-02	0.444E-04	3.					
2	52.30	0.27619E 07	105.8	0181066E 03	0.23607E-02	0.376E-04	12.	0.21	0.0070	103.8	0.914	0.015
3	54.30	0.28693E 07	105.8	0117465E 04	0.22171E-02	0.365E-04	21.	0.21	0.0069	104.4	0.936	0.015
4	56.30	0.29766E 07	105.8	0426502E 04	0.20457E-02	0.354E-04	27.	0.20	0.0065	104.4	0.939	0.015
5	58.30	0.30839E 07	105.7	0135328E 04	0-1 91 0 0E-02	0.346 E-04	32.	0.21	0.0068	104.5	0.946	0.015
6	60.30	0.31912E 07	105.9	0.44058E 04	0.18201E-02	0.338E-04	36.	0.21	0.0069	103.3	0.888	0.014
7	62.30	0.32965E 07	105.8	0.52736E 04	0.1724DE-02	0.333E-04	39.	0.21	0.0068	104.7	0.953	0.015
8	64.30	0.34059E 07	105.8	0161558E 04	0.16132E-02	0.3265-04	43.	0.21	0.0067	105.5	0.987	0.015
9	66.30	0.35132E 07	105.8	C170078E 04	0.15627E-02	0.323E-04	46.	0.20	0.0066	104.1	0.927	0.015
10	68.30	0.36205E 07	105.8	0178357E 04	0-15364E-02	0.321E-04	49.	0.21	0.0069	103.5	0.900	0.015
11	70.30	0.37278E 07	105.7	0186453E 04	0.15044E-02	0.321E-04	51.	0.21	0-0068	102.3	0.850	0.014
12	72.30	0.38352E 07	106.0	0194203E 04	0-14564E-02	0.315E-04	54.	0.21	0.0067	102.3	0.842	0.014
13	73.82	0.39167E 07	105.6	0198466E 04	0.16050E-02	0.263E-04	55 .					
14	74.85	0.39720E 07	105.4	0199327E 04	0-1508CE-02	0.263E-04	55.					
15	75.88	0.40273E 07	106.2	0110015E 05	0.14812E-02	0.259E-64	55 .					
16	76.91	0.40828E 07	106.2	0110697E 05	0.14615E-02	0.253E-04	55.					
17	77.95	0.41383E 07	106.4	0110177E 05	0-1433 0 E-02	0.250E-04	55.					
1 &	78.98	0.41936E 07	106-3	0310257E 05	0.14526E-C2	0.253E-04	55.					
19	80.01	0.42489E 07	.106.42	0110337E 05	0.14456E-02	0.248E-04	55.					
20	81.04	0.43042E 07	106.3	0110416E 05	0.14147E-02	0.243E-04	55.					
21	82.07	0.4359.4E 07	106.2	0110495E 05	0-14521E-02	0.250E-04	55.					
22	83.10	0.44147E 07	106.3	0110575E 05	0.14371E-02	0.252E-04	55.					
23	84.13	0.447.00E 07	.106.2	01106538 05	0.13690E-02	0.244E-04	55.					
24	£5.1 6	0.45255E 07	106.2	0110730E 05	0.14245E-02	0.259E-04	55.					
25	86.20	0.45810E 07	104.2	0110806E 05	0-12964E-02	0.248E-04	55.					
26	87.23	0.46363E 07	104.4	0110880E 05	0.13850E-02	0.258E-04	55.					
27	88.26	0.46916E 07	105.8	(110959E 05	0.14822E-02	0.265E-04	55.					
28	89.29	0.47469E 07	106.3	0.11040E 05	0.14529E-02	0.256E-04	55.					
29	90.32	0.48021E 07	105.7	0:11123E 05	0.15436E-02	0.266E-04	55.					
30	91.35	0.48574E 07	106.5	0411207E 05	0.147426-02	0.260E-04	55.					
31	92.38	0.49127E 07	106.4	0111287E 05	0.14451E-02	0.254E-04	55.					
32	93.41	0.49682E 07	105-9	0111367E 05	0.14202E-02	0.254E-04	55.					
33	94.45	0.50237E 07	105.9	0411445E 05	0.14256E-02	0.254E-04	55.					
34	\$5.48	C.50790E 07	105.1	0:11524E 05	0-14219E-02	0.254E-04	55.					
35	96.51	0.51343E 07	105.6	0111604E 05	0.14492E-02	0.266E-04	55.					
36	97.54	0.518967 07	105.2	0111684E 05	0.14445E-02	0-282E-04	55.					

PR=0.715

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS CBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PROCUCED FROM RUN 092273 AND RUN 091373-1;
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	RE XCOL	RE	DEL2	ST (TH=0)	REXHOT	RE	CEL2	ST(TH=1)	E TA	STCR	F-COL	STHR	=-HOT	PHI-1
1	2692300.0		174 - 8	0.003211	2654612.0		171.2	0.003191	UUUUU	UUUUU	0.0000	บบบบบบบ	0.0000	נונננ
2	2801146.0		508.5	0.002920	2761934.0		840.1		0.210	0.876	0.0069	0.958	0.0070	2.078
3	2909992.0		835.1		2869256.0		1826.1		0.299	1.035	0.0068	0.951	0.0069	2.126
4	3018638.0		1166.8		2976578.0		2768.2		04342	1.091	0.0065	0.910	0.0065	2.049
5	3127684.0		1490.7		3083900.0		3685.1		01369	1.122	0.0067	0.877	0.0068	2.086
6	3236529.0		1804.2	0.002826	3191222.0		4609.3	0.001693	0.401	1.130	0.0067	0.823	0.0069	2.064
7	3345375.0		2109.4	0.002782	3298545.0		5526.3	0.001672	0 + 399	1.154	0.0067	0.830	0.0068	2.085
8	3454221.0		2407.5	0.002695	3405867.0		6426.7	0.001599	0.407	1.153	0.0068	0.809	0.0067	2.057
9	3563067.0		2699.8	0.002676	3513189.0		7303.6	0.001475	0 4449	1.177	0.0067	0.759	0.0066	1.995
10	3671913.0		2990.9	0.002672	3620511.0		8182.9	C.001410	0.472	1.204	0.0069	0.737	0.0069	2.035
11	3783758.0		3283.0	0.002641	3727833.0		8182.9 9067.2 9932.5 0402.2	0.001304	0 4506	1.216	0.0067	0.691	0.0068	1.979
12	3889604• U		3562.9		3835155.0		9932.5	0.001249	0.512	1.202	0.0067	0.670	0.0067	1.947
13	3972327.0		3774.7		3916720.0	1	0402.2	0.001516	0.413	1.231		0.821	• •	
14	4028383.0		3911.6		3971991.0	1	.04 € 3 • 9	0.001436		1.105		0.782		
15	4084438.0		4037.3		4027262.0			0.001418		1.057		0.777		
16	4140765.0			0. CO2047				C.001408				0.776		
17	4197093.0		4268.9		4138340.0			0.001383		0.977		0.766		
18	4253149.0		4379.9	-	4193611.0		C795.4	_				0. 782		
19	4309204.0		4489.2		4248881.0		.0873.1					8. 784		
20	4365260.0		4595.6		4304152.0		0949.9		01562	0.941		0.772		
21	4421316.0		4701.9	0.001920			1026.9		01266	0.975		Ð. 796		
22	4477372.0		4808.1		4414695.0		1104.6		0 • 250	0.953		0.793		
23	4533427.0		4909.7		4465966.0		1180-2		0.241	0.903		0.760		
24	4589754.0		5010.9		4525504.0		1255.4		0.252	0.958		0.793		
25	4646082.0		5109.5		4581043.0		132 6.7		01239	0.865		0.726		
26	4702138.0		5207.B		4636314.0		1400.8					0.776		
27	4758193.0		5312.8		4691585.0			0.001445				0.838		
28	4814249.0			0.001835			1557.1			0.972		0.826		
29	4870305.0		5523.3				1638.1			1.032		0.881		
30	4926360.0		5628 • 4			_	1719.8			0.970		0.847		
31	4982416.0		5729.8		_	_	1798.8		0 4217	0.971		0.832		
; 32	5038743.0		5828 • 9				1876.4		0 + 1 93	0.934	**	0.823		
33	5095071.0		5926.4				1953.5		0 1202	0.952		0.828		
34	5151127.0		6024-4		5079018.0		2030-7		0.201	0.952		0.829		
35 36	5207182.0		6122.9		5134289.0	_	2108.5	0.001420	04198	0.972		6.848		
	5263238.0		022201	0.001764	5189560.0	1	21 87-0	0.001415	04198	0 _T 973		0.848		

VELOCITY PROFILE

UINF= 54.4 FT/SEC X= 50.3 INCHES PORT= 19 TINF= 74.9 DEG F PINF= 2118. PSF

Y([NCHES)	U(FT/SEC)	Y+	U+	UBAR	DU	TEMPERA	TURE PROFILE	
						Y (INCHES	T(DEG F)	TBAR
0.010	23.58	11.3	10.52	0.4336	0.19			
0.011	24.20	12-4	10.80	0.4448	0.19			
0.012	24.89	13.5	11.11	0.4576	0.18	0.0065	93.07	0.7131
0.013	25.46	14.7	11.36	0.4681	0.18	0.0075	92.22	0.6804
0.014	26.16	15.8	11.68	0.4810	0.17	0.0085	91.06	0.6352
0.015	26.68	16.9	11.91	0.4905	0.17	0.0095	90.15	0.6001
0.016	27.16	18.0	12.12	0.4993	0.17	0.0105	89.34	0.5685
0.018	28.06	20.3	12.52	0.5160	0.16	0.0115	88_64	0.5413
0.020	29.01	22.6	12.94	0.5333	0.16	0.0135	87.58	0.5005
0.023	29.80	25.9	13.30	0.5479	0.15	0.0155	86.77	0.4688
0.027	39.87	30.5	13.78	0.5675	0.15	0.0175	86.06	0.4416
0.031	31 .44	35.0	14-03	0.5781	0.14	0.0205	85.27	0.4110
0.037	32.39	41.7	14.45	0.5955	0.14	0.0235	84.69	0.3883
0.044	33.20	49.6	14.82	0.6105	0. 14	0.0275	84.16	0.3679
0.051	33.72	57.5	15.05	0.6200	0.13	0.0325	33. 66	0.3485
0.059	34.39	66.5	15-35	0-6322	0.13	0.0395	83.08	0.3258
0.067	35.02	75.6	15.63	0.6439	0.13	0.0495	82 .43	0.3008
0.076	35.59	85.7	15.88	0.6543	0.13	0.0645	81.79	0.2758
0.086	36.15	97.0	16.13	0.6646	0.13	0.0845	81.11	0.2497
0.096	36.77	108.3	16.41	0.6760	0.12	0.1095	80 .44	0.2235
0.111	37.45	125-2	16.71	0.6885	0.12	0.1445	79.73	0.1962
0.131	38.30	147-8	17.09	0.7041	0.12	0.1945	78.91	0.1643
0.156	39.33	175.9	17.55	0.7230	0.12	0-2545	78.09	0.1324
0.186	40.43	209.8	18.04	0.7434	0.11	0.3295	77.26	0.1004
0.221	41.55	249.3	18.54	0.7639	0.11	0.4045	78.59	0.0742
0.261	42.88	294.4	19.14	0.7884	0.11	0.4795	76.03	0.0525
0.311	44.12	350.8	19.69	0.8112	0.10	0.5545	75.61	0.0365
0.361	45.48	407.2	20.30	0.8362	0.10	0.6295	75-29	0.0240
0.411	-46-68	463.6	20.83	0-8582	0.10	0-6795	75.11	0.0171
0.461	47.96	519.9	21.40	0.8817	0.09	0.7295	74.97	0.0114
0.511	48.92	576.3	21.83	0.8995	0.09	0.7795	74.88	0.0060
0.561	49.83	632.7	22.24	0.9162	0.09	0.8295	74.82	0.0057
0.611	50.83	689-1	22.68	0.9345	0.09	0-8795	74.73	0.0023
0.661	51.67	745.5	23.06	0.9499	0.09	0.9295	74.67	0.0000
0.711	52.37	801.9	23.37	0.9628	0.09			
0.761	52.98	858.3	23-64	0.9740	0.09			TO-100 47 F
0.811	58.50	914.7	23.88	0.9836	0.08	END2= 0.068IN.	REEN= 1820.	TO=100.47 F
0.861	53.87	971.1	24.04	0.9904	0.08	DEND2=0.001 DE	EEN= 25.	
0.911	54.12	1027.5	24. 15	0.9950	0.08			
0.961	54.33	1083.9	24.25	0.9989	0.08			
1.011	54.39	1140-3	24.27	1.0000	0.08			

DCF/2=0-100 IN RATIO

REX= 0.12471E 07 RED2= 2786. XV0= 4.75 lN. DEL1= 0.136 IN. DEL2= 0.102 IN. H= 1.23

CF2= 0.16972E-02 DXVO= 0.68 DDEL1=0.002 DDEL2=0.001

TINF= 74.5 UINF= 53.2 XV0= 4.750 RHO= 0.07355 CP= 0.242 VISC= 0.16598E-03 PP=0.717
DISTANCE FROM ORIGIN OF 8L TO 1ST PLATE=44.550 P/D= 5
UNCERTAINTY IN REX=26701.

** M=0.0, FLAT PLATE RUN, HIGH RE, STEP T-WALL AT 24 IN UPSREAM OF 1ST PLATE

1	PL AT	<u> </u>	REX	TO	REENTH	STANT ON NO	DST	DREEN	M	F	T2	THETA	DTH
	1	50.30	0.12162E 07	100.5	0.18157E 04	0.24234E-02	0.541E-04	80.					
	2	52.30	0.12697E 07	100.4	0.19431E 04	0.23464E-02	0.5395-04	80.	0.00	0.0000	100.4	1.000	0.014
	3	54.30	0.13231E 07	100.4	0.20681E 04	0-23355E-02	0.538E-04	80.	0.00	0.0000	100.4	1.000	0.014
	4	56.30	0.13765F 07	100.3	0.21916E 04	0.22918E-02	0.537E-04	80.	0.00	0.0000	100.3	1.700	0.014
	5	58.30	0.14299E 07	100.2	0.23128E 04	0 • 2 24 79 E - 02	0.5375-04	80.	0.00	0.0000	100.2	1.000	0.014
	6	60.30	0.148335 07	100.3	0.24327E 04	0.22414E-02	0.536F-04	80.	0.00	0.0000	100.3	1.000	0.014
	7	62.30	0.153678 07	100.4	0.25515E 04	0.22057E-02	0.5335-04	80.	0.00	0.0000	100.4	1.000	0.014
	8	64.30	0.15901E 07	100.3	0.26685E 04	0.21784E-02	0.532E-04	80.	0.00	0.0000	100.3	1.070	0.014
	9	66.30	0.16435E 07	100.4	0.27843E 04	0.21586E-02	0.5315-04	80.	0.00	0.0000	100.4	1.000	0.014
	10	68.30	0.16969F 07	100-2	0.28990E 04	0.21372E-02	0.534E-04	80.	0.00	0.0000	100.2	1.000	0.014
	11	70.30	0.17503E 07	100.1	0.30123E 04	0.21062F-02	0.533E-04	80.	0.00	0.0000	100.1	1.200	0.014
	12	72.30	0.18037E 07	100.2	0.31228E 04	0.20321E-02	0.528E-04	80.	0.00	0.0000	100.2	1.000	0.014
	13	73.82	0.18443E 07	100.1	0.32065E 04	0.21348E-02	0.363E-04	80.					
	14	74.85	0-18718E 07	100.0	0.32639E 04	0.20345E-02	0.3755-04	80.					
	15	75.88	0.18993E 07	100.7	0.33199F 04	0.20310F-02	0.377E-04	80.					
	16	76.91	0.19269E 07	100.7	0.33753E 04	0.199525-02	0.3695-04	80.					
	17	77.95	0.19545E 07	100.8	0.34298E 04	0.19673E-02	0.3675-04	80.					
	18	78.98	0.19820E 07	190.6	0.34848F 04	0.20280E-02	0.3765-04	80.					
	19	80.01	0.20095E 07	100.6	0.35402F 04	0.19937E-02	0.363E-04	80.					
	20	81.04	0.20371E 07	100.9	0.35940E 04	0.19151E-02	0.352F-04	80.					
	21	82.07	0.20646E 07	100.6	0.36486E 04	0.20484E-02	0.372E-04	90.					
	22	83.10	0.20921E 07	100.B	0.37037E 04	0.19514E-02	0.3698-04	80.					
	23	84.13	0.21196E U7	100.6	0.37563F 04	0.19739E-02	0.361E-04	80.					
	24	85.16	0.214725 07	100.3	0.38084E 04	0.19097E-02	0.387F-04	80.					
	25	86.20	0.21748E 07	97.8	0.38571E 04	0.16289E-02	0.3635-04	80.					
	26	87.23	0.22023E 07	98-1	0.39055E 04	0.18807E-02	0.387E-04	80.					
	27	88.26	0.22298E 07	100.0	0.39586E 04	0.19820E-02	0.389E-04	80.					
	28	89.29	0.22573F 07	100.7	0.40125E 04	0.19307F-02	0.3705-04	80.					
	29	90.32	0.22848E 07	100.2	0.40662E 04	0.19722E-02	0.368E-04	80.					
	30	91.35	0.23123F 07	101.1	0.41197E 04	0.19089E-02	0.369F-04	80.					
	31	92.38	0.23398E 07	101.0	0.41727E 04	0-19432E-02	0.367E-04	80.					
	32	93.41	0.23675E 07	100.8	0.42246E 04	0.18265E-02	0.3585-04	80.					
	33	94.45	0.23951E 07	100.6	0.42756E 04	0.18800E-02	0.3615-04	80.					
	34	95.48	0.24226E 07	100.1	0.43276E 04	0.18966E-02	0.360E-04	80.					
	35	96.51	0.24501E 07	100.5	0.43796E 04	0.18798E-02	0.3776-04	80.					
	36	97.54	0.24776E 07	99.9	0.44311E 04	0.18593F-02	0.4135-04	91.					

STANTON NUMBER DATA RUN 101173-2 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 75.6 UINF= 52.7 XVO= 4.750 RHU= 0.07333 CP= 0.242 VISC= 0.16699E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.550 P/D= 5
UNCERTAINTY IN REX=26321. UNCFRTAINTY IN F=0.03028 IN RATIO

** M=0.2, COLD RUN, HIGH RE, STEP T-WALL AT 24 IN. UPSTREAM OF 1ST PLATE.

PL AT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	Ð₹H
1	50.30	0.11989E 07	101.9	0.17898E 04	0.23837F-02	0.537E-04	79.					
2	52.30	0.12515E 07	101.9	0.19604E 04	0.26997E-02	0.5546-04	79.	0.22	0.0070	80.8	0.199	0.010
3	54.30	0.13042E 07	101.9	0.21815E 04	0.29464E-02	0.5675-04	79.	0.21	0.0069	80.8	0.197	0.010
4	56.30	0.13568E 07	101.9	0.24087E 04	0.29550E-02	0.567E-04	79.	0.21	0.0068	80.8	0.201	0.010
5	58.30	0.14095E 07	101.9	0.26338E 04	0 • 28569F - 02	0.561E-04	79.		0.0068		105.0	0.010
6	60.30	0.14621E 07	101.9	0.285535 04	0.28161E-02	0.560E-04	79.		0.0068		0.201	0.010
7	62.30	0.15148E 07	101.9	0.30752E 04	0.274335-02	0.5566-04	79.		0.0068		0.209	0.010
8	64.30	0.15674E 07	101-9	0.32946E 04	0.26910F-02	0.554E-04	80.		0.0069		0.212	0.010
9	66.30	0.16200E 07	101.9	0.35114E 04	0 • 2 64 44 E - 02	0.551E- 04	80.		0.0069		0.209	0.010
10	68.30	0.16727E 07		0.37260E 04	0.26468E-02	0.5526-04	80.		0.0069	81.0	0.208	0.010
11	70.30	0.17253E 07	101.9	0.39385E 04	0.25861E-02	0.5485-04	80.		0.0069		0.204	0.010
12	72.30		102.0	0.41491E 04	0.25081E-02	0.543E-04	60.	0.21	0.0068	81.3	0.219	0.010
13	73.82	0.18180E 07	101.1	0.42866E 04	0.23680E-02	0.391E-04	80.					
14	74.85		101.2	0.43479E 04	0.214685-02	0.390E-04	80.					
15	75.88	0.187225 07	102-0	0.44050E 04	0.20664E-02	0.382E- 04	80.					
16	76.91	0.18994E 07	102.2	0.44599E 04	0.19756E-02	0.3665-04	80.					
17	77.95	0.19267E 07	102.4	0.45125E 04	0.18997F-02	0.357E-04	80.					
18	7 8. 98	0.19538E 07	102.3	0.45644E 04	0.19263E-02	0.361E-04	80.					
19	80.01	0.19809E 07	102.4	0.46158F 04	0.18617E-02	0.345E-04	80.				3	
20	81.04	0.20080E 07	102.6	0.46655E 04	0.17996E-02	0.335E-04	80.					
21	82.07	0.20351E 07	102.4	0.47159E 04	0.19116E-02	0.352E-04	80.					
22	83.10	0.20622E 07	102.6	0.47662E 04	0.17946F-02	0.348E-04	80.					
23	84.13	0.20893E 07	102.4	0.48142E 04	0.17447E-02	0.3435-04	80.					
24	85.16	0.21166E 07	192.1	0.48617E 04	0.17549E-02	0.365E-04	80.					
25	86.20	0.21438E 07	99.7	0.49065E 04	0.15458E-02	0.348E-04	80.					
26	87.23	0.21709E 07	100.2	0.49517E 04	0.17845E-02	0.3705-04	80.					
27	88.26	0.21980E 07	102.0	0.50012E 04	0.18625E-02	0.369E-04	80.					
28	89.29	0.22252E 07	102.6	0.50508E 04	0.17936E-02	0.350E-04	80.					
29	90.32	0.22523E 07	102.0	0.51004E 04	0.18585E-02	0.3516-04	80.					
30	91.35	0.22794E 07	102.9	0.51497E 04	0.17725E-02	0.351E-04	80.					
31	92.38	0.23065E 07	102.8	0.51986E 04	0 18305E-02	0.3515-04	80.					
32	93.41	0.23337E 07	102.6	0.52468E 04	0.17217E-02	0.343E-04	80.					
33	94.45	0.23610E 07		0-52941E 04	0.17643E-02	0.344E-04	80.					
34	95.48	0.23881E 07	101.8	0.534255 04	0.19069F-02	0.346E-04	80.					
35	96.51	0.24152E 07		0.539155 04	0.179795-02	J.366E-04	80.					
36	97.54	0.24423E 07	101.5	0.54399F 04	0.17707F-02	0.4035-04	80.					

TINF= 72.8 UINF= 53.0 XV0= 4.750 RHO= 0.07393 CP= 0.242 VISC= 0.16503E-03 PP=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.550 P/D= 5
UNCERTAINTY IN REX=26743. UNCERTAINTY IN F=0.03027 IN PATIO

** M=0.2, HOT RUN, HIGH RE, STEP T-WALL AT 24 IN. UPSTREAM OF 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	O™H
1	50.30	0.12181E 07	103.6	0.18185E 04	D.24269E-02	0.461E-04	80.					
2	52.30	0.12716E 07	103.6	0.21192E 04	0-21732E-02	0.450E-04	80.		0.0069			0.011
3	54.30	0.13251E 07	103.6	0.26043E 04	0.21857E-02	0.451F-04	81.	0.23	0.0074	102.6	0.967	0.011
4	56.30	0.13786E 07	108.5	0.30849E 04	0.21008E-02	0.449E-04	91.	0.21	0.0068	102.3	0.960	0.011
5	58.30	0.143215 07	103.5	0.35412F 04	0.19802F-02	0.445E-04	82.	0.20	0.0066	102.9	0.980	0.011
6	60.30	0.14855E 07	103.6	0.39867E 04	0•18958E-02	0.440E-04	82.	0.21	0.3067	102.2	0.954	0.011
7	62.30	0.15390E 07	103.6	0.440645 04	0.18110E-02	0.4375-04	83.	0.18	0.7057	102.9	0.979	0.011
8	64.30	0.15925E 07	103.6	0.4815BE 04	0-17252E-02	0.4346-04	83.	0.19	0.0061	103.6	1.001	0.011
9	66.30	0.16460E 07	103.5	0.52289E 04	0.16729E-02	0.433E-04	83.	0.18	0.0060	103.1	0.987	0.011
10	68.30	0.16995E 07	103:.5	0.56450E 04	0-16462E-02	0.433E-04	84.	0.20	0.3364	103.2	0.991	0:011
11	70.30	0.17530E 07	103.4	0.60595E 04	0.158635-02	0.432E-04	84.		0.0060			0.011
12	72.30	0.18065E 07	103.4	0.64734E 04	0.14937E-02	0.429E-04	84.	0.19	0.9063	104.4	1.030	0.012
13	73.82	0.18471E 07	103.2	0.67087F 04	0 • 1 63 85 E - 92	0.273E-04	85.					
14	74.85	0.18747E 07	103.0	0.67528E 04	0.156395-02	0.288E-04	85.					
15	75.88	0.19022E 07	103.9	0.67952F 04	0.15111E-02	0.2875-04	85.					
16	76.91	0.19299E 07	103.9	0.68367E 04	0 • 1 49 93 E + 02	0.2815-04	85.					
17	77.95	0.19576E 07	104.1	0.68778E 04	0.14772E-02	0.279E-04	85.					
18	78.98	0.19851E 07	104.2	0.69182E 04	0.14534E-02	0.278E-04	85.					
19	80.01	0.20126E 07	104.0	0.69586E 04	0.147955-02	0-2725-04	85.					
20	81.04	0.20402E 07	104.2	0.69988E 04	0.14345F-02	0.266E-04	85.					
21	82.07	0.20677E 07	104.2	0.703925 04	0.14948E-02	0.277E-04	85.					
22	83.10	0.20953E 07	104.0	0.70801E 04	0-147565-02	0.2826-04	95.					
2.3	84-13	0.212288 07	103.9	0.712015 04	0 • 1 42 35 E - 02	0.277E-04	85.					
24	85.16	0.21505E 07	104.0	0.71594E 04	0 • 1 42 52 5 - 02	0.291E-04	85.					
25	86.20	0.21782E 07	102.1	0.71969E 04	0.12929E-02	0.276E-04	85.				•	
26	87.23	0.22057E 07	102.4	0.72358E 04	0.15318F-02	0.298E-04	85.					
27	88-26	0.22333E 07	103.9	0.72775E 04	0.149l5E-02	0.292E-04	85.	•				
28	89.29	0.22608E 07	104.1	0.73186E 04	0.14880E-02	0•285E-04	85.					
29	90.32	0.22884E 07	103.6	0.73600E 04	0.15148E-02	0.283E-04	85.	,				
30	91.35	0.23159E 07	104.1	0.74018E 04	0.151526-02	0.292F-04	85.					
31	92.38	0.23434E 07	104.1	0.74437E 04	0.152715-02	0.290E-04	85.					
32	93.41	0.23711E 07	103.6	0.74854E 04	0-14928E-02	*	85.					
33	94.45	0.23988E 07	103.7	0.75265E 04	0.149115-02	0.287F-04	85.	-				
34	95.48	0.24264E 07	103.0	0.75683E 04	0-15403E-02	0.2375-04	85.					
35	96.51	0.24539E 07	103.3	0.761095 04	0.15445E-02	0.3065-04	95.					
36	97.54	0.24814F 07	102.7	0.765348 04	0 • 1 53 75E - 02	0.3365-04	85.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEOPY. THIS DATA WAS PRODUCED FROM RUN 101173-2 AND RUN 101273
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE	DEL2	S7 (TH=0)	REXHOT	RE	DEL2	ST(TH=1)	FTA -	STCR	F-COL	STHR	F-HつT	PHT-1
1	1198907.0		1789.8	0.002384	1218122.0		1818.5	0.002427	บบบบบ	บบบบบ	0.0000	טטטניניטע	9.0000	บครบก
2	1251549.0		1927.2		1271607.0		2125.1	0.002149	0.242	1.209	0.0070	0.916	0.0069	2.044
3	1304190.0		2084.5	0.003141	1325092.0		2621.6	0.002153	0.314	1.345	0.0069	0.922	0.2074	2.123
4	1356831.0		2250.9	0.003181	1378577.0		3113.9	0.002056	0.354	1.388	0.0068	0.897	0.0068	2.036
5	1409473.0		2415.8	0.003083	1432062.0		3579.2	0.001957	0.365	1.371	0.0068	0.871	0.0066	1.984
6	1462114.0		2577.5	0.003061	1485547.0		4034.3	0.001840	0.399	1.366	0.0068	0.821	0.0067	1.942
7	1514756.0		2737.0		1539032.0		4463.3	0.001785	0.404	1.359	0.0068	0.909	0.0057	1.510
8	1567397.0		2393.5		1592518.0		4875.2	0.001726	0.415	1.354	0.0059	0.792	0.0061	1.859
9	1620038.0		3047.6	0.002905	1646003.0		52 89 • 9		0.430	1.346	0.0069	0.767	0.0060	1.913
10	1672680.0		3200.7	0.002913	1699488.0		5708.9	0.001635	0.439	1.363	0.0069	0.765	0.0064	1.880
11	1725321.0		3352.4		1752973.0		6126.6	0.001567	0.450	1.352	0.0069	0.744	0.0060	1.813
12	1777963.0		3500.5	0.002781	1806458.0		6538-4		0.449	1.369	0.0068	0.754	0.0063	1.895
13	1817970.0		3608.5		1847107.0		6769.4		0.367	1.200		0.759		
14	1845080.0		3674.5		1874651.0		6813.1		0.326	1.131		0.762		
15	1872191.0		3735.7		1902196.0		6855.1		0.323	1.090		0.738		
16	1899432.0		3794.3		1929874.0		6896.3		0.292	1-053		0.746		
17	1926674.0		3850.1		1957553.0		6937.1		0.271	1.022		0.746		
18	1953785.0		3905.3		1985098.0		6977.2		0.297	1.012		0.711		
19	1980895.0		3959.7		2012643.0		7017.3		0.251	0.985		0.739		
20	2008005.0		4012.1		2040187.0		7057.3		0.248	0.990		0.745		
21	2035116.0		4065.3		2067733.0		7097.4		0.266	0.987		0.725		
22	2062226.0		4118.2		2095277.0		7138.1	0.001468	0.219	0.963		0.752		
23	2089336.0		4168.5		2122822.0		71 77.9	0.001416	0.226	0.976		0.756		
24	2116578.0		4218.4		2150500.0		7217.0	0.001417	0.231	0.965		0.742		
25	2143820.0		4265.3		2178179.0		7254.3	0.001287	0.202	0.990		0.790		
26	2170930.0		4312.3		2205724.0		72 93 • 0	0.001526	0.176	0.984		0.811		
27	2198041.0		4364.0		2233268.0		73 34 • 5	0.001483	0.244	0.989		0.748		
28	2225151.0		4416.1		2260813.0		7375.4		0.210	0.971		0.767		
29	2252262.0.	111	4468.0		2288358.0		7416.6		0.227	0.988		0.764		
30	2279372.0		4519.4		2315903.0		7458.2		0.180	0.964		9.791		
31	2306482.0		4570.3		2343448.0		7499.9		0.205	0.983		0.782		•
32	2333724.0		4620.4		2371126.0		7541.4		0.165	0.976		0.814		
33	2360966.0		4669.5		23 988 05 • 0		75 82 . 4		0.192	0.977		0.790		
34	2388076.0		4719.9		2426350.0		7624.0		0.183	0.990		0.809		
35	2415186.0		4770.7		2453894.0		7666.4	0.001538	0.175	0.992		0.818		
36	2442297.0		4820.9	0.001831	2481439.0		7708.7	0.001532	0.164	0.985		0.824		

STANTON NUMBER DATA RUN 101573 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 73.8 UINF= 52.7 XVD= 0.000 RHO= 0.07385 CP= 0.242 VISC= 0.16534E-03 PR=0.716
DISTANCE FROM ORIGIN)F BL TO 1ST PLATE=49.300 P/D= 5
UNCERTAINTY IN REX=26743. UNCERTAINTY IN F=0.03028 IN RATIO

** M=0.2.HIGH RE, ADIABATIC WALL EFFECTIVENESS RUN.

```
PLATE X
              REX
                         TO
                                 X/D
                                        ETA
                                                 М
                                                          F
                                                                ₹2
  2 52.30 0.12716E 07
                          2.5
                                 0.22 0.2224
                                               0.01
  3 54.30 0.13251E 07
                         7.4
                                 0.29
                                      0.2297
                                               0.01
   56.30 0.13786E 07
                         12.3
                                0.34 0.2133
                                               0.01
  5 58.30 0.14321E 07
                                 0.36 0.2024
                         17.2
                                               0.01
   60.30 0.14855E 07
                         22.2
                                 0.39 0.2130
                                               0.01
 7 62+30 0-153905 07
                         27.1
                                 0.40 0.1801
                                               0.01
    64.30 0.15925E 07
                         32.0
                                 0.40 0.1905
                                               0.01
 9 66.30 0.16460E 07
                         36.9
                                 0.42 0.1873
                                               0.01
    68.30 0.16995E 07
                         41.9
                                 0.44 0.2029
                                               0.01
11 70.30 0.17530E 07
                         46.8
                                 0.45 0.1911
                                               0.01
12 72.30 0.18065F 07
                         51.7
                                0.44 0.1966
                                               0.01
13 73.82 0.18471E 07
                         55.5
                                 0.43
14 74.85 0.18747E 07
                         58.0
                                 0.40
15 75.88 0.19022E 07
                         60.5
                                 0.39
16 76.91 0.19299E 07
                         63.1
                                 0.37
    77.95 0.19576E 07
17
                         65.6
                                 0.36
18
    78.98 0.19851E 07
                                 0.37
                         68.2
19
    80.01 0.20126E 07
                         70.7
                                 0.35
    81.04 0.20402E 07
                         73.3
                                 0.34
21 82.07 0.206775 07
                         75.8
                                 0.34
22 83.10 0.20953E 07
                         78.3
                                 0.33
23 84.13 0.21228E 07
                         80.9
                                 0.34
24
    85.16 0.21505E 07
                         83.4
                                 0.34
25 86.20 0.21782E 07
                         86.0
                                 0.33
    87-23 0-22057È 07
26
                         88.5
                                 0.32
27 88.26 0.22333E 07
                         91.0
                                 0.33
28
    89-29 0-22608E 07
                         93.6
                                 0.33
29 90.32 0.22884E 07
                         96.1
                                 0.33
30 91.35 0.23159E 07
                         98.6
                                 0.31
    92.38 0.23434E 07 101.2
31
                                 0.31
32 93.41 0.23711F 07 103.7
                                 0.30
33 94.45 0.23988E 07 106.3
                                 0.30
34 95.48 0.24264E 07 108.8
                                 0.30
35 96.51 0.24539E 07 111.4
                                 0.30
36 97.54 0.24814E 07 113.9
                                 0.29
```

STANTON NUMBER DATA RUN 111873 *** DISCRETE HOLE RIG *** NA\$-3-14336

TINF= 72.9 UINF= 53.4. XVO= 4.610 RHO= 0.07457 CP= 0.241 VISC= 0.16387E-03 PP=0.714
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=27139.

** M=0.0, FLAT PLATE RUN, HIGH RE, STEP T-HALL AT 1ST PLATE

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	DTH
1	50.30	0.12400E 07	101.3	0.11106E 03	0.40922E-02	0.585E-04	2.					
2	52.30	0.12943E 07	101.4	0.30568E 03	0.30791E-02	0.523E-04	3.	0.00	0.0000	101.4	1.000	0.012
3	54.30	0.13486E 07	101.3	0.46610E 03	0.28318E-02	0.512E-04	3.	0.00	0.0000	101.3	1.000	0.012
4	56.30	0.14028E 07	101.2	0.61764E 03	0-27520F-02	0.509E-04	4.	0.00	0.3300	101.2	1.000	0.012
5	58.30	0.14571E 07	101-3	0.76266E 03	0.25916E-02	0.500E-04	5.	0.00	0.0000	101.3	1.300	0.012
6	60.30	0.15114E 07	101.4	0.90393E 03	0.26138E-02	0.4996-04	5.	0.00	0.0000	101.4	1.000	0.012
7	62.30	0.15657E 07	101.3	0.10420E 04	0.24733E-02	0.494F-04	5.	0.00	0.0000	101.3	1.000	0.012
8	64.30	0.16200E 07	101.2	0.11764E 04	0.24796E-02	0.495E-04	6.	0.00	0.0000	101.2	1.000	Ó.012
9	66.30	0.16742E 07	101.3	0.13084E 04	0.23825E-02	0.490E-04	6.	0.00	0.0000	101.3	1.000	0.012
10	68.30	0.172855 07	101.3	0.14386E 04	0.24155E-02	0.491E-04	6.	0.00	0.0000	101.3	1.000	0.012
11	70.30	0.17828E 07	101.3	0.15672E 04	0.23247E-02	D.488E-04	7.	0.00	0.0000	101.3	1.000	0.012
12	72.30	0.18371E 07	101.3	0.16920E 04	0.22706E-02	0.4845-04	7.	0.00	0.0000	101.3	1.000	0.012
13	73.82	0.18783E 07	100.5	0.17867E 04	0.23659E-02	0.374E-04	7.					
14	74.85	0.19063E 07	100.2	0.18513E 04	0.22486E-02	0.383E-04	7.					
15	75.88	0.19342E 07	100.9	0.19145E 04	0.22712E-02	0-389E-04	7.					
16	76.91	0.19623E 07	100.9	0.19777E 04	0.22433E-02	0.381E-04	7.					
17	77.95	0.19904E 07	101.0	0.20401E 04	0.22151E-02	0.379E-04	7.					
18	78.98	0.20184E 07	100.9	0.21023E 04	0.22330E-02	0.383E-04	7.					
19	80.01	0.20463E 07	100.8	0.21647E 04	0.22259E-02	0.374E-04	7.					
20	81.04	0.20743E 07	101.0	0.22257E 04	0.21338E-02	0.362E-04	7.					
21	82.07	U. 21022E 07	100.8	0.22877E 04	0.22930F-02	0.385E-04	7.					
22	83.10	J.21302E 07	100.9	0.23504E 04	0.21875E-02	0.379E-04	7.					
23	84-13	0.21581E 07	100.8	0.24106E 04	0.21203E-02	0.371E-04	8.					
24	85.16	0.21862E 07	100.9	0.24708E 04	0.21799E-02	0.382E-04	8.					
25	86.20	0.22143E 07	100.8	0.25306E 04	0.20942E-02	0.369E-04	8.					
26	87-23	0.22423E 07	100.8	0-25913E 04	0.22425E-02	0.386E-04	8.					
27	88.26	0.22702E 07	101.0	0.26525E 04	0.21275E-02	0.372E-04	8.					
28	89.29	0.229825 07	101.1	0.27114E 04	0.20825E-02	0.367E-04	8.					
29	90.32	0.23261E 07	100.4	0.27703E 04	0.21252E-02	0.368E-04	8.					
30	91.35	0.23541E 07	101.3	0.28289E 04	0.20633E-02	0.369E-04	8.					
31	92.38	0.23820E 07	101-4	0.28877E 04	0.21424E-02	0.372E-04	8.					
32	93.41	0.24101E 07	101.1	0.29455E 04	0.19899F-02	0.358E-04	8.					
33	94.45	0.24382E 07	100.9	0.30021E 04	0.20538E-02	0.363E-04	8.					
34	95:48	0.24662E 07	100.2	0.30606E 04	0.21220E-02	0.368E-04	8.					
35	96.51	0.24941E 07	3.001	0.31195E 04	0.2 09 11E-02	0.383F-04	8.		:			
3.6	97.54	0.25221F 07	100.0	0.31781E 04	0.20975E-02	0.425E-04	8.					

STANTON NUMBER DATA RUN 111973 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 72.4 UINF= 53.1 XV0= 4.610 RH0= 0.07479 CP= 0.241 VISC= 0.16327E-03 PR=0.714
DISTANCE FROM ORIGIN OF 8L TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=27090. UNCERTAINTY IN F=0.03026 IN RATIO

** M=0.2, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	ΕX	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	OF H
1	50.30	0.12377E 07	101.7	0.11060E 03	0.40827E-02	0.569E-04	2.					
2	52.30	0.12919E 07	101.8	0.32158E 03	0.332245-02	0.523E-04	3.	0.20	0.0017	75.8	0.116	0.009
3	54.30	0.13461E 07	1018	0.50464E 03	0.30516E-02	0.508E-04	4.	0.00	0.0017	101.8	0.116	0.012
4	56.30	0.14003E 07	101.8	0.67886E 03	0.29815E-02	0.503E-04	4.	0.22	0.0018	75.7	0.113	0.009
5	58.30	0.14544E 07	101.8	0.84663E 03	0.28135E-02	0.495E-04	5.	0.00	0.0018	101.8	0.113	0.012
6	60.30	0.15086E 07	101.9	0.10101E 04	0.28428E-02	0.4955-04	5.	0.20	0.0017	75.8	0.115	0.009
7	62.30	0.15628E 07	101.8	0.11703E 04	0.26910E-02	0.489E-04	6.	0.00	0.0017	101.8	0.115	0.012
8	64.30	0.16170E 07	101.8	0.13285E 04	0.26848E-02	0.489E-04	6.	0.21	0.0017	76.5	0.139	0.009
9	66.30	0.16712E 07	102.0	0.14831E 04	0 • 2 55 88 E- 02	0.480E-04	6.	0.00	0.0017	102.0	0.139	0.012
10	68.30	0.17253E 07	102.0	0.16366E 04	0.26469E-02	0.484E-04	7.	0.21	0.3017	76.4	0.136	0.009
11	70.30	0.17795E 07	102.0	0.17891E 04	0.25194E-02	0.478E-04	7.	0.00	0.0017	102.0	0.136	0.012
12	72.30	0.18337E 07	101.9	0.19370E 04	0.24625E-02	0.477F-04	7.	0.21	0.0017	76.6	0.141	0.009
13	73.82	0.18749E 07	100.9	0.20491E 04	0 • 2 54 79 E - 02	0.391E-04	7.					
14	74.85	0-190285 07	100.6	0.21178E 04	0.23652E-02	0.390E-04	7.					
15	75.88	0.19307E 07	101.6	0.21800E 04	0.23288E-02	0.389E-04	7.					
16	76.91	0.19587E 07	101.6	0.22443E 04	0.22758E-02	0.377E-04	7.					
17	77.95	0.19867E 07	101.9	0.23071F 04	0.22176E-02	0.371E-04	8.					
18	78.98	0.20147E 07	101.8	0.23691E 04	0.22261E-02	0.3725-04	8•					
19	80.01	0.20426E 07	101.7	0.24310E 04	0.22023E-02	0.362E-04	8.					
20	81.04	0.20705E 07	102.0	0.24911E 04	0.21032E-02	0.350E-04	8.					
21	82.07	0.20984E 07	101.8	0.25519E 04	0.22448E-02	0.369E-04	8.					
22	83.10	0.21263E 07	101.9	0.26132E 04	0.21459E-02	0.365E-04	8.					
23	84.13	0.21542E 07	101.7	0.26722E 04	0.20815E-02	0.356E-04	8.					
24	85.16	0.21822E 07	101.9	0.27310E 04	0.21254E-02	0.365E-04	8.					
25	86.20	0.22102E 07	101.9	0.27895E 04	0.20612E-02	0.355E-04	9.					•
26	87.23	0.22381E 07	101.8	0.28490E 04	0.22023E-02	0.371E-04	8.					
27	88.26	0.22660E 07	102.0	0.29089E 04	0.20835E-02	0.357E-04	8.					
28	89.29	0.22939E 07	102.1	0.29663F 04	0.20250F-02	0.351E-04	8.					
29	90.32	0.23218E 07	101.4	0.30237E 04	0.20861E-02	0.353E-04	9.					
30	91.35	0.23497E 07	102.4	0.30809E 04	0.20081F-02	0.353E-04	3.					
31	92.38	0.23777E 07	102.4	0.31383E 04	0.20987E-02	0.357E-04	8.					
32	93.41	0.24057E 07	102.1	0.31949E 04	0.19529E-02	0.343E-04	8.					
33	94.45	0.24337E 07	102.0	0.32501E 04	0.20024E-02	0.348F-04	8.					
34	95.48	0.246165 07	101.2	0.33070F 04	J • 2 06 97E - 02	0.3515-04	8.					
35	96.51	0.24895E 07	101.9	0.33647E 04	0.205946-02	0.369E-04	8.					
36	97.54	0.251746 07	101.0	0.34218E 04	0.20323E-02	0.411E-04	8.				•	

STANTON NUMBER DATA RUM 112273 *** DISCRETE HOLE RIG *** NAS-3-14336

TINE= 71.0 UINE= 53.1 XVO= 4.610 RHO= 0.07420 CP= 0.241 VISC= 0.16419E-03 P2=0.714
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=26960. UNCERTAINTY IN F=0.03026 IN RATIO

** M=0.2, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLATI	E X	REX	ŤŊ	REENTH	STANTON NO	DST	DREEN	M	F	Т2	THETA	nth
1	50.30	0.12318E 07	100.6	0.10260E 03	0.38056E-02	0.550E-04	2.	• •	•	_		
2	52.30	0.12857E 07	100.6	0.35501E 03	0-28868E-02	0.498E-04	3.	0.17	0.0014	99.4	0.958	0.012
3	54.30	0.13396E 07	100.6	0.57974E 03	0.27786E-02	0.492E-04	4.		0.0014			0.012
4	56.30	0.13935E 07	100.7	0.79850E 03	0.26137E-02	0 - 4 84E-04	5.		0.0014			0.012
5	58.30	0.14475E 07	100.6	0.10104E 04	0.252305-02	0.481E-04	5.	_	0.3014			0.012
6	60.30	0.15014E 07	100.7	0.12129E 04	0.24101E-02	0.474E-04	6.		0.0014			0.011
7	62.30	0.15553E 07	100.5	0.14117E 04	0.23859E-02	0.4775-04	6.	0.00	0.0014	100.5	0.898	0.012
8	64.30	0.16092E 07	100.5	0.16048E 04	0.22719E-02	0.471E-04	7.	0.14	0.0012	102.7	1.072	0.012
9	66.30	0.16631E 07	100.6	0.17942E 04	0.22506E-02	0.468E-04	7.	0.00	0.0012	100.6	1.072	0.012
10	68.30	0.17171E 07	100.7	0.19907E 04	0.21251E-02	0.463E-04	8.	0.17	0.0014	101.7	1.035	0.012
11	70.30	0.17710E 07	100.7	0.21842E 04	0.21393E-02	0.463E-04	8.	0.00	0.0014	100.7	1.035	0.012
12	72.30	0.18249E 07	100.7	0.23676E 04	0.18999E-02	0.453E-04	8.	0.15	0.0012	105.1	1.147	0.013
13	73.82	0.18659E 07	99.9	0.25064E 04	0.22328E-02	0.350E-04	9.					
14	74.85	0.18936E 07	99.4	0.25666E 04	0-20999E-02	0.3575-04	9.					
15	75.88	0.19214E 07	100.4	0.26053E 04	0.20620E-02	0.356E-04	9.					
16	76.91	0.19493E 07	100-4	0.26626E 04	0.20604E-02	0.351E-04	9.					
17	77.95	0.19772E 07	100.6	0.27194E 04	0.20304E-02	0.347E-04	9.					
18	78.98	0.20050E 07	100.8	0.27754E 94	0.19955E-02	0.345E-04	9.					
19	80.01	0.20327E 07	100.5	0.28313E 04	0.20276F-02	0.340E-04	9.					
20	81.04	0.206055 07	100.7	0-28869E 04	0.19689E-02	0.332E-04	9.					
21	82.07	0.20883E 07	100.9	0.29424E 04	0.20264E-02	0.344E-04	9.					
22	83.10	0.21161E 07	100.5	0.29988F 04	0.20331E-02	0.350E-04	9.					
23	84.13	0.21438E 07	100.6	0.30540E 04	0.19316E-02	0.338E-04	9.					
24	85.16	0.21717E 07	101.0	0.31079E 04	0.19487E-02	0.345E-04	9.					
25	86.20	0.21996E 07	100.7	0.31621E 04	0.19477E-02	0-340E-04	9.					
26	87.23	0.22274E 07	100.6	0.32180E 04	0.20782E-02	0.355E-04	9.					
27	88.26	0.22552E 07	101.2	0.32732E 04	0.18905E-02	0.335E-04	9.					
28	89-29	0.22829E 07	101.0	0.33262E 04	0.19209E-02	0.3365-04	9.					
29	90.32	0.231072 07	100.6	0.33792E 04	0.18957E-02	0.330E-04	9.					
30	91.35	0.23385E 07	100.9	0.34328E 04	0.19559E-02	0.3446-04	9.					
31	92.38	0.23662E 07	101.2	0.34871E 04	0.19511E-02	0.343E-04	9.					
32	93.41	0.23941E 07	100.4	0.35408E 04	0.19130E-02	0.339E-04	9.					
33	94.45	0.24220E 07	100.7	0.35936E 04	0.18896E-02	0.336E-04	9.					
34	95.48	0.24498E 07	100.0	0.36472E 04	0-19629E-02	0.339E-04	9.					
35	96.51	0.24776E 07	100.5	0.37017E 04	0.19560E-02	0.356E-04	9•					
36	97.54	0.25053E 07	99.9	0.37559E 04	0.19430E-02	0.387E-04	9.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY. THIS DATA WAS PRODUCED FROM RUN 111973 AND RUN 112273
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST (TH=0)	REXHOT	RE DEL2	ST(TH=1)	ĘΤA	STCR	F-COL	STHR	-H 0₹	PHT-1
1	1237721.0	110.6	0.004083	1231780.0	102.6	0.003806	บบบบบ	บบบบบ	0.0000	UUUUUUU	0.0000	บบบบบ
2	1291900.0	312.8		1285699.0	357.6	0.002865	0.153	0.884	0.0017	1.029	0.2014	1.262
3	1346080.0	488.1	0.003089	1339618.0	5 84 . 5	0.002765	0.105	0.904	0.0017	1.055	0.0014	1.303
4	1400259.0	653.9	0.003029	1393537.0	803.8	0.002608	0.139	0.955	0.0018	1.037	0.0014	1.292
5	1454438.0	813.1	0.002851	1447456.0	1016.4	0.002518	0.117	0.950	0.0018	1.033	0.0014	1.296
6	1508617.0	969.1	0.002906	1501375.0	1225.2	0.002353	0.190	1.012	0.0017	0.991	0.0014	1.269
7	1562796.0	1121.9	0.002736	1555294.0	1429.3	0.002346	0.142	0.988	0.0017	1.009	0. 0014	1.294
8	1616975.0	1270.4	0.002746	1609213.0	1617.7	0.002304	0.161	1.023	0.0017	1.010	0.0012	1.249
9	1671154.0	1415.4	0.002605	1663132.0	1804.1	0.002274	0.127	0.998	0.0017	1.014	0.0012	1.257
10	1725333.0	1559.8		1717051.0	19 9 9.1	0.002145	0.213	1.070	0.0017	0.972	0.0014	1.764
11	1779512.0	1703.5		1770970.0	2190.9		0-164	1.034	0.0017	0.985	0.7714	1.286
12	1833692.0	1842.1		1824889.0	2367.4	0.001982	0.220	1.040	0.0017	0.922	0.0012	1.181
13	1874868.0	1947.2		1865868.0	2501.2	0.002234	0.138	1.076		1.049		
14	1902770.0	2017.0		1893636.0	2561.5	0.002101	0.126	1.006		0.993		
15	1930672.0	2083.6		1921404.0	2602.6	0.002063	0.128	0.999		0.980		
16	1958710.0	2148.9		1949307.0	2659.9		0.106	0.982		0.985		
17	1986747.0	2212.4		1977210.0	2716.8		0.095	0.963		0.976		
18	2014650.0	2275.3		2004979.0	2772.8		0.116	0.977		0.964		
19	2042552.0	2338.0		2032747.0	2828.7		0.089	0.970		0.985		
20	2070454.0	2398 • 8		2060515.0	2884.3		0.072	0.931		0.961		
21	2098357.0	2460.2		2088284.0	2939.9		0.109	1.006		0.994		
22	2126259.0	2522.2		2116052.0	29 96 . 3		0.059	0.962		1.001		
23	2154161.0	2581.7		2143820.0	3051.5		0.081	0.942		0.956		
24	2182198.0	2641.2		2171723.0	3105.4		0.093	0.969		0.969		
25	2210236.0	2700.2		2199626.0	3159.6		0.062	0.942		0.972		
26	2238138.0	2760.2		2227395.0	3215.6	0.002079	0.064	1.013		1.042		
27	2266041.0	2820.7		2255163.0	3270.8		0.104	0.968		0.952		
28	2293943.0	2878 - 7		2282931.0	3323.8		0.058	0.941		0.971		
29	2321845.0	2936.7		2310700.0	3376.8		0.103	0.980		0.962	• •	
30	2349748.0	2994 .4		2339468.0	3430.4		0.030	0.940		0.996		
31	2377650.0	3052.1		2366236.0	34 84 . 7		0.079	0.994		0.998	•	
32	2405687.0	3109.1		2354135.0	3539.4		0.023	0.923		0.982		
33	2433725.0	3164.7		2422042.0	35 91 . 3	_	0.064	0.956		0.973		
34	2461627.0	3222.0		2449811.0	3644.9		0.058	0.992		1.015		
35	2489529.0	3280.1		2477579.0	3699.4		0.057	0.992		1.015		
36	2517432.0	3337.6	0.002045	2505347.0	3753.6	0.001943	0.050	0.932		1.011	:	-

STANTON NUMBER DATA RUN 121773 *** DI SCRETE HOLE RIG *** NAS-3-14336

TINF= 66.8 UINF= 53.3 XV0= 4.610 RHO= 0.07542 CP= 0.242 VISC= 0.16048E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=27663. UNCERTAINTY IN F=0.03025 IN RATIO

** M=0.5, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	:ro	REENTH	STANTON NO	DST	DREEN	М	E	T2	THETA	DTH
1	50.30	0.12639E 07	94.9	0.109258 03	0.39492E-02	0.579E-04	2.					•
2	52.30	0.13192E 07	94.9	0.34363E 03	0.34204E-02	0.547E-04	3.	0.53	0.0043	70.5	0.129	0.009
3	54.30	0.13746E 07	95.0	0.554675 03	0.31052E-02	0.5275-04	4.	0.00	0.0043	95.0	0.129	0.013
4	56.30	0.14299E 07	94.8	0.75571E 03	0.30905E-02	0.528E-04	5.	0.52	0.0042	70.4	0.128	0.309
5	58.30	0.14852E 07	94.9	0.951395 03	0.29117F-02	0.517E-04	6.	0.00	0.0042	94.9	0.128	0.013
6	60.30	0.15405E 07	94.8	0.11444E 94	0.30122F-02	0.524E-04	7.	0.51	0.3041	70.4	0.127	0.009
7	62.30	0.15959E 07	94.9	0.13354E 04	0.28367E-02	0.513F-04	7.	0.00	0.0041	94.9	0.127	0.013
8	64.30	0.16512E 07	94.8	0.15257E 04	0.28621E-02	0.516E-04	8.	0.53	0.0043	70.7	0.137	0.009
9	66.30	0.17065E 07	94.9	0.17119E 04	0.26882F-02	0.506E-04	8.	0.00	0.0043	94.9	0.137	0.013
10	68.30	0.17618E 07	94.8	0-18968E 04	0 • 2 85 70E - 02	0.516E-04	9.	0.52	0.0042	70.6	0.135	0.009
11	70.30	0.18172E J7	94.8	0.20812E 04	0.26713E-02	0.506E-04	9•	0.00	0.0042	94.8	0.135	0.013
12	72.30	0.18725E 07	94 - 9	0.22597E 04	0.26612F-02	0.505E-04	10.	0.50	0.0041	70.7	0.138	0.009
13	73.82	0.19145E 07	94.4	0.23964E 04	0.27720E-02	0.426E-04	10.					
14	74.85	0.19430E 07	94.1	0.24720E 04	0.25313E-02	0.415E-04	10.					
15	75.88	0.19715E 07	95.2	0.25351E 04	0.24539E-02	0.407E-04	10.					
16	76-91	0.20002E 07	95.4	0-26040E 04	0.23726E-02	0.391E-04	10.					
17	77.95	0.20288E 07	95.6	0.26707E 04	0.23040E-02	0.382E-04	10.					
18	78-98	0.20573E 07	95.7	0.27364E 04	0.23007E-02	0.382E-04	10.					
19	80.01	0.20858E 07	95.6	0.28014E 04	0.22553E-02	0.370E-04	10.					
20	81.04	0.21143E 07	95 •8	0.28645F 04	0.21710E-02	0.358E-04	10.					
21	82.07	0.21428E 07	95.7	0.29281E 04	0.22871E-02	0.375E-04	10.					
22	83.10	0.21713E 07	95.9	0.29917E 04	0.217395-02	0.368E-04	10.					
23	84.13	0.21998F 07	95.6	0.30525E 04	0.20894E-02	0.358F-04	10.					
24	85.16	0.222845 07	95 • 8	0.31130E 04	0.21498E-02	0.3695-04	10.					
25	86.20	0.22570E 07	95.7	0.31738E 04	0.21114E-02	0.361E-04	10.					
26	87.23	0.22855E 07	95.6	0.32355E 04	0.22174E-02	0.374E-04	10.					
27	88.26	0.23140E 07	95.9	0.32972E 04	0.21057E-02	0.361E-04	10.					
28	89.29	0.23425E 07	95.9	0.33564E 04	0.20469E-02	0.354E-04	10.					
29	90.32	0.23710E 07	95.3	0.34158E 04	0.21152E-02	0.358E-04	10.					
30	91.35	0.23995E 07	95.9	0.34750F 04	0.20351E-02	0.356E-04	10.					
31	92.38	0.24280E 07	96.3	0.35342E 04	0.21218E-02	0.362E-04	10.					
32	93.41	0.24566E 07	96.0	0.35929E 04	0.19887E-02	0.348E-04	10.					
33	94.45	0.24852E 07	95.9	0.36502E 04	0-20308E-02	0.352E-04	10.					
34	95.48	0.25137E 07	95.2	0.37090E 04	0.20929E-02	0.355E-04	11.					
35	96.51	0.254225 07	95.8	0.37684E 04	0.206835-02	0.3705-04	11.					
36	97.54	0.25707E 07	95.0	0.38269E 04	0.20347E-02	0.408E-04	11.					
	•	- -										

STANTON NUMBER DATA RUN 121873 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 67.4 UINF= 53.4 XV0= 4.610 RH0= 0.07520 CP= 0.242 VISC= 0.16112E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=27593. UNCERTAINTY IN F=0.03025 IN RATIO

** M=0.5, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	DTH
1	50.30	0.12607E 0	7 96.8	0.10582E 03	0.38349E-02	0.5498-04	2.					
2	52.30	0.13159E 0	7 96.9	0.52253E 03	0.30321E-02	0.502E-04	5.	0.51	0.0041	96.9	1.000	0.012
3	54.30	0.13711E 0	7 96.9	0.91208E 03	0.28506E-02	0.492E-04	7.	0.00	0.0041	96.9	1.000	0.012
4	56.30	0.14263E 0	7 97.0	0.12811E 04	0.27137E-02	0.484E-04	9.	0.51	0.0042	95.1	0.937	0.012
5	58.30	0.14815E 0	7 96.8	0.16420F 04	0.255715-02	0.479E-04	11.	0.00	0.0042	96.9	0.937	0.012
6	60.30	0.15367E 0	7 97.0	0.20206E 04	0.24958E-02	3.474E-04	12.	0.56	0.0045	95.8	0.960	0.012
7	62.30	0.15919E 0	7 96.8	0.23950E 04	0.240335-02	0.4728-04	13.	0.00	0.0045	96.8	0.960	0.012
8	64.30	0.16470E 0	7 96.9	0-27380E 04	0.23212E-02	0.4675-04	15.	0.48	0.0039	96.6	0.991	0.012
9	66.30	0.17022E 0	7 96.8	0.30763E 04	0.22295F-02	0.465E-04	15.	0.00	0.0039	96.8	0.991	0.012
10	68.30	0.17574E 0	7 97.0	0.34362E 04	0.22275F-02	0.4628-04	16.	0.54	0.0044	96.2	0.975	0.012
11	70.30	0.18126E 0	7 96.8	0.37938E 04	0.21459E-02	0.460E-04	17.	0.00	0.0044	96.8	0.975	0.012
12	72.30	0.1867 EE 0	7 97.0	0.41424E 04	0.20023E-02	0.453E-04	19.	0.52	0.0142	97.4	1.015	0.012
13	73.82	0.19097E 0	7 96.9	0.44078E 04	0.22974E-02	0.355E-04	19.					
14	74.85	0.19382E 0	7 96.6	0-44705E 04	0.21140E-02	0.3516-04	19.					
15	75.88	0.19666E 0	7 97.6	0.44696E 04	0.20643E-02	0.3485-04	19.					
16	76.91	0.19951E 0	7 97.7	0.45278E 04	0.20251E-02	0.338E-04	19.					
17	77.95	0.20237F 0	7 98.0	0.45848F 04	0.19800E-02	0.333E-04	19.					
18	78.98	0.20521E 0	7 98.1	0.46409E 04	0.19603E-02	0.332E-04	19.					
19	80.01	0.20805E 0	7 97.9	0.46968E 04	0.19710E-02	0.326E-04	19.					
20	81.04	0.21090F 0	7 98.1	0.47517E 04	0.18916E-02	0.316E-04	19.					
21	82.07	0.21374E 0	7 98.1	0.48068E 04	0.19765F-02	0.329E-04	19.					
22	83.10	0.21658E 0	7 98.0	0.48624E 04	0.19354E-02	0.331E-04	19.					*
23	84.13	0.21942E 0	7 97.9	0.49161E 04	0.18387E-02	0.320E-04	19.					
24	85.16	0.22228E 0	7 98.1	0.49691E 04	0.18848E-02	0.329E-04	19.					
25	86.20	0.22513E 0	7 98.0	0.50225E 04	0.18663E-02	0.324E-04	19.					
26	87.23	0.22798E 0	7 97.8	0.50773E 04	0.19865E-02	0.337E-04	19.					
27	88.26	0.23082E 0	7 98.3	0.51319E 04	0.18487E-02	0.3225-04	19.					
28	89.29	0.23366E 0	7 98.2	0.51842E 04	0.18278E-02	0.3195-04	19.					
29	90.32	0.23650E 0	7 97.6	0.52369E 04	0.18774E-02	0.321E-04	19.					
30	91.35	0.23934E 0	7 98.1	0.52900E 04	4 0.18570E-02	0.3265-04	19.					
31	92.38	0.24219E 0	7 98.4	0.53432E 04	0.188235-02	0.3266-04	19.					
32	93.41	0.24504E 0	97.9	0.53957E 04	0.18101E-02	0.319E-04	19.					
33	94.45	0.24790E 0	7 98.0	0.54475E 04	0.182875-02	0.321E-04	19.					
34	95.48	0.25074E 0	7 97.2	0.55004E 04	0-18881E-02	0.323E-04	19.					
35	96.51	0.25358E 0	7 97.8	0.55537E 04	4 0.18615E-02	0.338E-04	19.					
36	97.54	0.256425 0	7 97.0	0.56065E 04	0 • 1 84 51 E - 02	0.370E-04	19.					

FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 121773 AND RUN 121873
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE AROVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST (TH=0)	R EXHOT	RE DEL2	ST(TH=1)	ETA	STCR	F-00L	STHR	F-HOT	PHI-1
1	1263917.0	109.2	0.003949	1260738.0	105.8	0.003835	บบบบท	טטטטט	0.0000	עניטניטטכ	0.0000	บวบฮน
2	1319243.0	314.7	0.003478	1315925.0	522.6	0.003032	0.128	0.913	0.0043	1.094	0.0941	1.732
3	1374568.0	497.9	0.003143	1371112.0	912.2	0.002851	0.093	0.924	0.0043	1.093	0.0041	1.767
4	1429894.0	672.0	0.003150	1426298.0	1294.8	0.002685	0.148	0.997	0.0342	1.073	0.0042	1.777
5	1485220.0	841.2	0.002968	1481485.0	1668.5	0.002530	0.148	0.993	0.0042	1.043	0.0042	1.765
6	1540546.0	1008.8	0.003091	1536672.0	2055.6	0.002471	0.201	1.081	0.0041	1.045	0. 2045	1.938
7	1595872.0	1174.6	0.002903	1591858.0	2438.6		0.179	1.053	0.0041	1.030	0.0045	1.836
8	1651197.0	1336.5	0.002949	1647045.0	2782.8	0.002316	0.215	1.104	0.0043	1.021	0.0039	1.739
9	1706523.0		0.002761	1702231.0	3122.7		0.194	1.063	0.0043	0.997	0.0039	1.725
10	1761849.0	1652.6		1757418.0	3488.0		0.253	1.166	0.0042	1.005	0.9044	1.828
11	1817175.0	1810.7		1812605.0	3850.6		0.227	1.111	0.0042	0.984	0.0044	1.814
12	1872500.0	1963.4		1867791.0	4195.7		0.272	1.137	0.0041	0.942	0.0042	1.740
13	1914548.0	2080.5		1909733.0	4458.5		0.197	1.186		1.078		
14	1943041.0	2158-1		1938154.0	4520.9		0.190	1.092		0.998		
-15	1971534.0	2231.0		1966576.0	45 20 • 6		0.183	1.067		0.981		
16	2000164.0	2301.5		1995134.0	4578.5		0.169	1.038		0.968		
17	2028796.0	2 3 69 .7		2023694.0	4635.2		0.163	1.015		0.952		
18	2057288.0	2436.9		2052115.0	46 91 • 0		0.171	1.023		0.947		
. 19	2085781.0	2503.2		2080536.0	4746.7		0.146	1.007		0.958		
20	2114274.0	2567.6		2108957.0	4801.4		0.149	0.976		0.924		
21	2142767.0	2632.5		2137378.0	4856.2		0.157	1.037		0.970		
22	2171260.0	2697.4		2165799.0	4911.7		0.128	0.988	• •	0.955		
23	2199752.0	2759.3		2194220.0	4965.2		0.139	0.958		0.911		
24	2228383.0	2820.9		2222779.0	5018.0		0.143	0.992	•	0.938	•	
25	2257014.0	2882.8		2251338.0	5071.1		0.135	0.979		0.933		
26	2285507.0	2945 • 6		2279759.0	51 25 . 8		0.121	1.033	•		14	•
27	2314000.0	3008.4		2308181.0	5180.1		0.142	0.989	·	0.932		
28	2342493.0	3068.6		2336602.0	5232.2		0.125	0.965	i G	0.925		
29	2370986.0	3129.0		2365023.0	5284.8		0.131	1.003	Ü.	0.954	•	
30	2399478.0	3189.2		2393444.0	5337.8		0.102	0.967	1	0.948		
31	2427971.0	3249.4		2421865.0	53 90 • 8		0.131	1.017		0.964		
32	2456602.0	3308.9		2450424.0	5443.2		0.105	0.955		0.931	1 · -	•
33	2485233.0	3367-1		2478983.0	54 94 . 8		0.116	0.981	•	0.944		
34	2513726.0	3426.8		2507404.0	5547.5		0.114	1.016		0.978		
35	2542219.0	3487-1		2535825.0	5600.7		0.117	1.009		0.967		
36	2570711.0	3546.5	0.002064	2564247.0	5653.3	0.001840	0.109	0.996		0.962		

STANTON NUMBER DATA RUN 121673-1 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 61.7 UINF= 53.5 XV0= 4.610 RH0= 0.07598 CP= 0.241 VISC= 0.15822E-03 PR=0.716
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=28173. UNCERTAINTY IN F=0.03025 IN RATIO

** M=1.0, COLD RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PL AT	E X	PEX	TO	REENTH	STANTON NO	DST	DREEN	М	E	T2	THETA	DTH
1	50.30	0.12872E 0	7 90.4	0.11088E 03	0.39357E-02	0.563E-04	2.					
2	52.30	0.13436E 0	7 90.3	0.38899E 03	0.34172E-02	0.532E-04	4.	1.02	0.0083	66.1	0.152	0.009
3	54.30	0.13999E 0	7 90.4	0.64400E 03	0.31156E-02	D.514E-04	5.	0.00	0.0083	90.4	0.152	0.012
4	56.30	0.14563E 0	7 90.4	0.89018E 03	0.32276E-02	0.520E-04	7.	1.01	0.3082	65.9	0.147	0.009
5	58.30	0.15126E 0	7 90.4	0.11341E 04	0.30349E-02	0.509E-04	8.	0.00	0.0082	90.4	0.147	0.012
6	60.30	0.15690E 0	7 90-4	0.13829E 04	0.32167E-02	0.519E-04	10.	1.02	0.0083	66.2	0.156	0.009
7	62.30	0.16253E 0	7 90.4	0.16318F 04	0.30397E-02	0.509E-04	10.	0.00	0.0083	90.4	0.156	0.012
8	64.30	0.16817E 0	7 90.5	0.18893E 04	0.30944E-02	0.511E-04	11.	1.02	0.0083	66.9	0.181	0.009
9	66.30	0.17380E 0	7 90.5	0.21435F 04	0.29238E-02	0.502E-04	12.	0.00	0.0083	90.5	0.181	0.012
10	68.30	0.17943E 0	7 90.4	0-24004E 04	0.31100E-02	0.513E-04	13.	1.01	0.0082	67.1	0.189	0.009
11	70.30	0.18507E 0	7 90.4	0.26574E 04	0.29258F-02	0.503E-04	14.	0.00	0.0082	90.4	0.189	0.012
12	72.30	0.19070E 0	7 90-5	0.29141E 04	0.29219E-02	0.502E-04	15.	0.98	0.0379	67.6	0.206	0.009
13	73-82	0.19499E 0	7 b9.4	0.31106F 04	0.30618E-02	0.459E-04	15.					
14	74.85	0.19789E 0	7 890	0.31963F 04	0.28389E-02	0.449E-04	15.					
15	75.88	0.20079E 0	7 90.2	0.32542F 04	0.27750E-02	0.443E-04	15.					
16	76.91	0.20371E 0	7 90.4	0.33334E 04	0.26784F-02	0.424E-04	15.					
17	77.95	0.20662E 0	7 90.8	0.34099E 04	0.25882E-02	0.412E-04	15.					
18	78.98	0.20952E 0	7 90 - 8	0.34849E 04	0.25739E-02	0.410E-04	15.					
19	80.01	0.21243E 0	7 90.8	0.35589E 04	0.25176E-02	0.397E-04	15.					
20	81.04	0.21533E 0	7 91.1	0.36303E 04	0.240095-02	0.381E-04	15.					
21	82.07	0.21823E 0	7 91.0	0.37016E 04	0.25065E-02	0.396E-04	15.					
22	83.10	0.22113E 0	7 91.3	0.37724F 04	0.23703E-02	0.385E-04	15.					
23	84.13	0-22403E 0	7 91.1	0.38396E 04	0.22499F-02	0.370E-04	15.					
24	85.16	0.22695E 0	7 91.2	0.39060F 04	0.23225E-02	0.382E-04	15.					
25	86.20	0.22986E 0	7 91.3	0.39725E 04	0.22599E-02	0.3725-04	15.					
26	87.23	0.23277E 0	7 91.2	0.40393E 04	0.23352E-02	0.380E-04	15.					
27	88-26	0.23567E 0	7 91.5	0.41057E 04	0.223575-02	0.368E-04	15.					
28	89.29	0.23857E 0	7 91.6	0.41695E 04	0.21572E-02	0.359E-04	15.					
29	90.32	0.24147E 0	7 91.0	0.42330E 04	0.22105E-02	0.361E-04	15.					
30	91.35	0.24437E 0	7 91.8	0.42958E 04	0.21160E-02	0.357F-04	15.					
31	92.38	0-24728E 0	7 92.1	0.43585E 04	0.21980E-02	0.362E-04	15.					
32	93.41	0.25019E 0	7 91.8	0.44201F 04	0.20470=-02	0.3455-04	15.					
33	94.45	0.25311E 0	7 91.8	0.44800F 04	0.20736F-02	0.348E-04	15.					
34	95.48	0.25601E 0	7 91.0	0.45413E 04	0.21432E-02	0.352E-04	15.					
35	96.51	0.25891E 0	7 91.6	0.46027E 04	0.20855E-02	0.363E-04	15.					
36	97.54	0.26181E 0	7 90.8	0.46628E 04	0.205465-02	0.400F-04	15.					

STANTON NUMBER DATA RUN 121673-2 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 65.7 UINF= 53.3 XV0= 4.610 RHO= 0.07538 CP= 0.241 VISC= 0.16035E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=44.690 P/D=10
UNCERTAINTY IN REX=27693. UNCERTAINTY IN F=0.03025 IN RATIO

** M=1.0, HOT RUN, HIGH RE, STEP T-WALL AT 1ST PLATE.

PLAT		RFX	λ0	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	ŊΤH
1	50.30	0.12653E 07	91.6	0.107358 03	0.38763E-02	0.620E-04	2.					
2	52.30	0.13207E 07	91.4	0.71937E 03	0.32681E-02	0.583E-04	8.	0.99	0.0080	89.8	0.935	0.013
3	54.30	0.13761E 07	91.5	0.13082E 04	0.30382F-02	0.568E-04	13.	0.00	0.3080	91.5	0.935	0.014
4	56.30	0.14314E 07	91.4	0.19073E 04	0.30405E-02	0.569E-04	16.	1.00	0.0081	90.4	0.960	0.013
5	58.30	0.14868E 07	91.4	0.25016E 04	0.28641F-02	0.559E-04	20.	0.00	0.0081	91.4	0.950	0.014
6	60.30	0.15422E 07	91 -4	0.31048E 04	0.28730E-02	0.561E-04	22.	0.98	0.0080	91.5	1.006	0.014
7	62.30	0.15976E 07	91.4	0.37059E 04	0.27871E-02	0.5558-04	25.	0.00	0.0080	91.4	1.006	0.014
8	64.30	0.16530F 07	91.4	0.43050E 04	0.27515E-02	0.554E-04	27.	0.97	0.0079	92.0	1.024	0.014
9	66.30	0.17084E 07	91.4	0.48995E 04	0.26232E-02	0.548E-04	29.	0.00	0.0079	91.4	1.024	0.014
10	68.30	0.17638E 07	91.4	0.54936E 04	0.26807E-02	0.551E-04	31.	0.96	0.0078	92.4	1.039	0.014
11	70.30	0.18191E 07	91.5	0.60866E 04	0.25841E-02	0.543E-04	33.	0.00	0.0078	91.5	1.039	0.014
12	72.30	0.18745E 07	91.5	0-66733E 04	0.24600E-02	0.536E-04	35.	.0.96	0.0078	92.4	1.035	0.014
13	73.82	0.19166E 07	90.3	0.71187E 04	0.26918E-02	0.438E-04	35.					
14	74.85	0.19451E 07	89.7	0.71930E 04	0.25107E-02	0.443E-04	35.					
15	75.88	0.19737E 07	90.7	0.71484E 04	0.24377E-02	0.434E-04	35.					
16	76.91	0.20023E 07	90.9	0.72171E 04	0.23731E-02	0.419E-04	35.					
17	77.95	0.20310E 07	91.1	0.72840E 04	0.23155E-02	0.411E-04	35.					
18	78.98	0.20595E 07	91.3	0.73494E 04	0.22661E-02	0.405E-04	35.					
19	80.01	0.20880E 07	91.2	0.74139E 04	0.22506E-02	0.395E-04	35.					
20	81.04	0.21166E 07	91.4	0.74767E 04	0.21463E-02	0.379E-04	35.					
21	82.07	0.21451E 07	91.4	0.75390E 04	0.22178E-02	0.392E-04	36.					
22	83.10	0.21736E 07	91.4	0.76015E 04	0.215816-02	0.392E-04	36.					
23	84.13	0.22021E 07	91.3	0.76610E 04	0.201068-02	0.374F-04	36.					
24	85.16	0.22308E 07	91.6	0.77191E 04	0-205398-02	0.383E-04	36.					
25	86.20	0.22595E 07	91.6	0.77772E 04	0.20161E-02	0.3755-04	36.					
26	87.23	0.22880E 07	91-4	0.78365E 04	0.21413E-02	0.389E-04	36.					
27	88.26	0.23165E 07	91.8	0.78954E 04	0.19803E-02	0.370E-04	36.					
28	89.29	0.23450E 07	91.8	0.79513E 04	0.19365E-02	0.364E-04	36.					
29	90.32	0.23736E 07	91.3	0.80072E 04	0.197516-02	0.365F-04	36.					
30	91.35	0.24021E 07	91.8	0.80628E 04	0.19219E-02	0.367E-04	36.					
31	92.38	0.24306E 07	92.2	0.81183E 04	0.19625E-02	0.367E-04	36.					
32	93.41	0.24593E 07	91.8	0.81728E 04	0.18579E-02	0.357E-04	36.					
33	94.45	0.24879E 07	91.8	0.82263E 04	0-18860E-02	0.357E-04	36.					
34	95.48	0.25164E 07	91.2	0.82808E 04	0.19286E-02	0.359E-04	36.					
35	96.51	0.25450E 07	91.7	0.83353E 04	0.18925E-02	0.374E-04	36.					
36	97.54	0.25735E 07	91.1	0.83888E 04	0.18542E-02	0.401E-04	36.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 121673-1 AND RUN 121673-2
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DELZ	ST(TH=1)	ċτΔ	STCR	F-COL	CTH 2	F-H7*	PHI-1
1	1287231.0	110.9	0.003936	1265285.0	107.3	0.003876	บบบบบ	บบบบบ	0.0000	JURREL	0.0000	ບນນນຸບ
2	1343577.0	318.9	0.003446	1320670.0	748.0	0.003256	0.055	0.908	0.0083	1.176	0.0080	2.330
3	1399924.0	504.1	0.003131	1376056.0	1365.3	0.003032	0.032	0.924	0.0083	1.163	0.0080	2.377
4	1456270.0	684.2	0.003261	1431442.0	1981.7	0.003031	0.070	1.037	0.0082	1.212	0.0991	2.490
5	1512616.0	862.5	0.003066	1486827.0	2593.3	0.002856	0.068	1.030	0.0082	1.179	0.0091	2.486
6	1568962.0	1041.2	0.003289	1542213.0	3193.7		0.123	1.152	0.0083	1.217	0.0080	2.543
7	1625309.0	1220.6		1597599 0	3792.3		0.096	1.124	0.0083	1.207	0.0080	2.556
8	1681655.0	1396.8		1652984.0	4381.3		0.128	1.191	0.0083	1.218	0.0079	2.574
9	1738001.0	1570.2		1708370.0	4965.8		0.119	1.154	0.03R3	1.181	0.0079	2.550
10	1794348.0	1744.7	_	1763756.0	5544.1		0.159	1.269	0.0082	1.230	0.0078	2.613
11	1850694.0	1919.6		1819141.0	6121.5		0.134	1.214	0.0082	1.201	0.007R	2.596
12	1907040.0	2089.7		1874527.0	6694.1		0.183	1.253	0.0079	1.161	0.0078	2.567
13	1949864.0	2220.8		1916620.0	71 28.6		0.142	1.313		1.271		
14	1978882.0	2308.6		1945144.0	7202.8		0.136	1.227		1.192		
15	2 007 9 00.0	2392.1		1973667.0	7162.1		0.143	1.211		1.164		
16	2037059.0	2473.3		2002329.0	72 30 - 7		0.135	1.177		1.140		
17	2066218.0	2551.5		2030991.0	7297.6		0.125	1.144		1.118		
18	2095 237.0	2628.2		2059515.0	7363.0		0.141	1.150		1.100		
19	2124255.0	2703.9		2088038.0	7427.5		0.125	1.130		1.098		
20	2153273.0	2776.8		2116562.0	7490.2		0.125	1.086		1.053		
21	2182292.0	2849.7		2145086.0	7552.5		0.136	1.143		1.093		
22	2211310.0	2922.1		2173609.0	7615.0		0.106	1.083		1.069		
23	2240329.0	2990.5		2202133.0	7674.5		0.126	1.038		1.000		
24	2269488.0	3058.4		2230795.0	7732.5		0.136	1.080		1.026		
25	2298647.0	3126.5		2259457.0	7790.6		0.127	1.056		1.012		
26	2327665.0	3194.6		2287981.0	7849.9		0.099	1.092		1.079		
27	2356684.0	3262.3		2316504.0	7908.7		0.135	1.058		1.002		
28	2385702.0	3327.5		2345028.0	7964.6		0.121	1.025		0.984		
29	2414721.0	3392.3		2373552.0	8020.4		0.126	1.057		1.007		
30	2443739.0	3456 - 4		2402075.0	80 76 - 1		0.109	1.014		0.984		
31	2472757.0	3520.4		2430599.0	8131.5		3.127	1.062		1.009		
32	2501916.0	3583.3		2459261.0	81 86 • 0		0.110	0.991		0.959		
33	2531075.0	3644.3		2487923.0	8239.5		0.107	1.009		0.977		
34	2560094.0	3706.7		2516446.0	82 93 • 9		0.119	1.050		1.002		
35	2589112.0	3769.4		2544970.0	8348.4		0.110	1.025		0.987		
36	2618130.0	3830.7	0.002095	2573493.0	8401.9	0.001853	0.116	1.015		0.970		

FOLLOWING PROFILES ARE FOR P/D=10 WITH FORE PLATE HEATED

DISCRETE HOLE RIG *** NAS-3-14336

VELOCITY PROFILE

								·
Y(INCHES)	U(FT/SEC)	Y+	Ü+	UBAR	DU	TEMPERATURE		
						Y(INCHES)	T(DEG F)	TBAR
0.010	18.06	9.4	9 . 9 9	0.4637	0.25			
0.011	18.62	10.3	10.30	0.4783	0.24			
0.012	19.13	11.3	10.58	0.4914	0.23	0.0065	76.73	0.8738
0.013	19.67	12.2	10.88	0.5051	0.23	0.0075	93.88	0.7775
0.014	20.22	13.1	11.19	0.5194	0.22	J.0085	93.04	0.7490
0.015	20.48	14.1	11.33	0.5260	0.22	0.0095	92 •40	0.7274
0.020	21.91	18.8	12.12	0.5628	0.20	0.0105	91.67	0.7028
0.025	22.77	23.5	12.60	0.5849	0.19	0.0115	91.09	0.6831
0.035	24.38	32.8	13.48	0.6251	0.18	0.0165	१8 • 64	0.6003
0.050	26.28	46.9	14.53	0.6749	0.17	0.0265	d5.74	0.5025
0.070	28.65	65.7	15.85	0.7359	0.15	U•Ú415	83.46	0.4254
0.095	31.53	89.2	17.44	0.8099	0.14	0.0615	80.14	0.3134
0.120	34.11	112.6	18.86	0.8760	0.13	0.0365	76.70	0.1972
0.145	36.11	136.1	19.97	0.9275	0.12	0.1115	74.17	0.1116
0.176	37.46	159.5	20.72	0.9621	0.12	0.1365	72.61	0.0588
0.195	38.19	183.0	21.12	0.9808	0.12	0.1615	71.72	0.0289
0.220	38.69	206.5	21.40	0.9936	0.11	0.1665	71.28	0.0140
0.245	38.86	229.9	21.49	0.4980	0.11	0.2365	70.95	0.0030
0.270	38.94	253.4	21.53	1.0000	0.11	865 ئ•0	70.86	0.0000

REX= 0.16357E 06 RED2= 548. XV0= 42.21 IN.

DEL1= 0.039 IN. DEL2= 0.027IN. H= 1.45

CF2= 0.215655-02 DXV0= 0.30 DDEL1=0.001 DDFL2=0.001

DTF/2=0.205 IN PATIO

END2= 0.0311N. REEN= 592. DEND2=0.001 DREEN= 18. TO=100.47 F STANTON NUMBER DATA RUN 013174 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 69.0 UINF= 37.8 XV0=41.550 RH0= 0.07492 CP= 0.242 VISC= 0.16207E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D= 5
UNCERTAINTY IN REX=19434.

** M=O.O, FLAT PLATE RUN, LOW RE, STEP T-WALL AT VIRTUAL CRIGIN OF BL.

PL AT	E X	REX	™ 0	REENTH		STANTON NO	DST	DREEN	μ	F	Ŧ2	THETA	n⊤H
1	50.30	0.17005E 0	6 98.6	0.65688E	03	0.26953E-02	0.660E-04	58.					
2	52.30	0.20892E 0	6 98 • 6	0.76795E	03	0.30199E-02	0.678E-04	58.	0.00	0.0000	98.6	1.000	0.012
3	54.30	0.24779E 0	6 98-6	0.88494E	03	0.30001E-02	3.578E-04	58.	0.00	0.0000	98.6	1.000	0.012
4	56.30	0.28666E 0	6 98.6	0.99958E	03	0.28987F-02	0.671E-04	58.	0.00	0.0000	98.6	1.000	0.012
5	58.30	0.32552E 0	6 98.6	0.11103F	04	0.27969E-02	0.666F-04	58.	0.00	0.0000	99.6	1.000	0.012
6	60.30	0.36439E 0	6 98.6	0.12171E	04	0.27010F-02	0.661E-04	58.	0.00	0.0000	98.5	1.000	0.012
7	62.30	0.40326E 0	6 98.6	0.13213F	04	0.26572E-02	0.659E-04	58.	0.00	0.0000	99.6	1.000	0.012
8	64.30	0.44213E 0	6 98.5	0.142358	04	0.26051E-02	0.657E-04	59.	0.00	0.0000	98.5	1.000	0.012
9	66.30	0.48100E 0	6 98.6	0.15230E	04	0.25157E-02	0.651E-04	59.	0.00	0.0000	98.6	1.300	0.012
10	68.30	0.51987E 0	6 98 . 6	0.16203E	04	0.24870E-02	0.649E-04	59.	0.00	0.0000	98.6	1.700	0.012
11	70.30	0.55874E 0	6 98.	7 0.1716 0 E	04	0.24389E-02	0.646E-04	59.	0.00	0.0000	98.7	1.000	0.012
12	72.30	0.59760E 0	6 98.6	0.18091E	04	0.23502E-02	0.642E-04	59.	0.00	0.0000	98.6	1.000	0.012
13	73.82	0.62714E 0	6 96.0	0.18763E	04	0.21564F-02	0.406E-04	59.					
14	74.85	0.64716E 0	6 95.2	0.19194E	04	0.21418E-02	0.457E-04	59.					
15	75.88	0.66718E 0	6 95.			0.21798E-02	0.467E-04	59.					
16	76.91	U.68729È 0	6 95.8	0.20062E	04	0.216115-02	0.461E-04	59.					
17	77.95	0.707418 0	6 95.4	0.20495E	04	0.21564F-02	0.461E-04	59.					
18	78.98	0.727428 0	6 95.8	0.20934E	04	0.22238E-02	0.472E-04	59.					
19	80.01	0.74744E 0	6 95.	7 0.21377E	04	0.21958E-02	0.456E-04	59.					
20	81.04	0.76746E 0	6 95.	3 0.21808E	04	0.210815-02	0.443E-04	59.					
21	82.07	0.787485 0	6 95.	7 0.22245E	04	0.22523E-02	0.467E-04	59.					
22	83.10	0.80749E 0	6 95.8	3 0.22685E	04	0.21366E-02	0.466E-04	59.					
23	84.13	0.827515 0	6 95 .!	0.23106E	04	0.20656E-02	0.458E-04	59.					
24	85.16	0.84763E 0			04	0.21425E-02	0.474E-04	59.					
25	86.20	0.86774E 0	6 95.6	0.23948E	04	0.20543E-02	0.464F-04	59.					
26	87.23	0.88776E 0	6 94-6	0.24365E	04	0.21038E-02	0.472E-04	59.					
27	88.26	0.90777E 0	6 95.	3 0.24786E	04	0.21034E-02	0.471E-04	59.					
28	89.29	0.92779E 0	6 95.	2 0.25201E	04	0.20372E-02	0.459E-04	59.					
29	90.32	0.94781E 0	6 94 .	9 0.25616E	04	0.21043F-02	0.464E-04	59.					
30	91.35	0.96783E 0	6 94.	0.26026E	04	0.19805E-02	0.4625-04	59.					
31	92.38	0.98794E 0	6 95.1	3 0.26439E	04	0.21457E-02	0.473E-04	59.					
32	93.41	0.10080E 0	7 95.	3 0.26854E	04	0.19979E-02	0.454E-04	59.					
33	94.45	0.102818 0				0.20274E-02	0.4515-04	59.					
34	95.48	0.10481E 0				0.21304E-02	0.459E-04	59.					
35	96.51	0.106816 0	7 95.0	0.28093E	04	0.20461F-02	0.477E-04	59.					
36	97.54	0.10881E 0	7 94.	0.28499E	04	0.20115E-02	0.520E-04	59.					

STANTON NUMBER DATA RUN 020374 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 67.3 UINF= 37.2 XVO=41.550 RHO= 0.07555 CP= 0.241 VISC= 0.16042E-03 DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D= 5 UNCERTAINTY IN F=0.03105 IN RATIO UNCERTAINTY IN REX=19337.

PR=0.715

** M=0.2, COLD RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

PL AT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	м	F	T 2	THETA	DTH
1	50.30	0.16919E 06	96.0	0.65357E 03	0-27183E-02	0.685E-04	58.					
2	52.30	0.20787E 06	95.9	0.80387E 03	0.33612F-02	0.726E-94	58.	0.21	0.0068	74.4	0.248	0.009
3	54.30	0.24654F 06	95.9	0.10039E 04	0.36065E-02	0.742E-04	58.	0.21	0.0068	74.4	0.249	0.009
4	56.30	0.28521F 06	96.0	0.12084E 04	0.35828E-02	0.739E-04	58.	0.21	0.0069	74.4	0.245	0.009
5	58.30	0.32389E 06	95.9	0.14103E 04	0.34802E-02	0.733E-04	58.	0.21	0.3369	74.3	0.244	0.009
6	60.30	0.36256E 06	95.9	0.16072E 04	0.337275-02	0.726E-04	58.	0.21	0.0068	74.2	0.243	0.009
7	62.30	0.40123E 06	95.9	0-18014E 04	0.33214E-02	D.724E-04	58.	0.21	0.0068	74.4	0.249	0.009
8	64.30	0.43991E 06	96 - 0	0.19936E 04	0.32117E-02	0.7155-04	59.	0.21	0.0070	74.3	0.246	0.009
9	66.30	0.47858E 06	96.0	0.21822E 04	0.31672E-02	0.7125-04	59.	0.21	0.0069	74.3	0.243	0.009
10	68.30	0.51725E 06	96.0	0.23683E 04	0.31479E-02	0.710F-04	59.	0.21	0.0069	74.2	0.239	0.009
11	70.30	0.55593E 06	96.0	0.25523E 04	0.31080E-02	0.708E-04	59.	0.21	0.0069	74.0	0.234	0.009
12	72.30	0.594605 06	95.9	0.27341E 04	0.30627E-02	0.7075-04	59.	0.22	0.0071	73.8	0.227	0.009
13	73.82	0.62399E 06	93.0	0.28502E 04	0.25677E-02	0.473E-04	59.					
14	74.85	0.64391E 06	92.2	0.28998E 04	0.24122E-02	0.507F-04	59.					
15	75.88	0.66382E 06	92.9	0.29473E 04	0.23476E-02	0.503E-04	59.					
16	76.91	0.68384E 06	93.1	0.29934E 04	0.22831E-02	0.489F-04	59.					
17	77.95	0.70385E 06	93.3	0.30381E 04	0.21968E-02	0.478E-04	59.					
18	78.98	0.72377E 06	93.3	0.30823E 04	0.22392E-02	0.485E-04	59.					
19	80.01	0.74368E 06	93.2	0.31266E 04	0.21987E-02	0.467E-04	59.					
20	81.04	0.76360E 06	93.5	0.31693E 04	0.20836E-02	0.449E-04	59.					
21	82.07	0.78352F 06	93.3	0.32123E 04	0.22264E-02	0.473E-04	59.					
22	83.10	0.80343E 06	93.5	0.32554E 04	0.21036E-02	0.472F-04	59.					
23	84-13	0.82335E 06	93.2	0.32966E 04	0.20278E-02	0.463E-04	59.					
24	85.16	0.84336E 06	93.1	0.33377E 04	0.20917E-02	0.478E-04	59.					
25	86.20	0.86338E 06	93.2	0.33787E 04	0.20213E-02	0.469E-04	59.					
26	87.23	0.88329E 06	92.3	0.34193E 04	0.205315-02	0.476E-04	59.					
27	88.26	0.90321E 06	92.9	0.34602E 04	0.20477E-02	0.475E-04	59.					
28	89.29	0.92313F 06	92.8	0.35007E 04	0.20110E-02	0.4665-04	59.					
29	90.32	0.94304E 06	92.5	0.35413E 04	0.20690E-02	0.471E-04	59.					
30	91.35	0.96296E 06	92.3	0.35810E 04	0.19111E-02	0.467E-04	59.					
31	92.38	0.98288F 06	93.4	0.36212F 04	0.21169E-02	0.481E-04	59.					
32	93.41	0.10029E 07	93.4	0.36618E 04	0.19522E-02	0.4595-04	59.					
33	94.45	0.10229E 07	93.4	0.37011E 04	0.19927E-02	0.457E-04	59.					
34	95.48	0.1042 BE 07	92.9	0.37417F 04	0.20803E-02	0.463E-04	59.					
35	96.51	0.106275 07	93.2	0.37824E 04	0.19981E-02	0.483E-04	59.					
36	97.54	0.10827E 07	92.4	0.38219E 04	0.19703E-02	0.529E-04	59.					

STANTON NUMBER DATA RUN 020474 *** DISCRETE HOLF RIG *** NAS-3-14336

TINF= 72.7 UINF= 37.5 XV0=41.550 RHO= 0.07454 CP= 0.242 VISC= 0.16373E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D= 5
UNCERTAINTY IN REX=19103. UNCERTAINTY IN F=0.03104 IN RATIO

** H=0.2, HOT RUN, LOW RE, STEP T-WALL AT VIRTUAL DRIGIN OF BL.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	ŊТН
1	50.30	0.16715E 0	101.6	0.64567E 03	0.26927E-02	0.6825-04	57.					
2	52.30	0.20535E 0	6 101.4	0.87987E 03	0.28016E-02	0.691E-04	58.	0.22	0.0073	99.5	0.932	0.012
3	54.30	0.24356E 0	5 101.5	0.12340E 04	0.28278E-02	0.691E-04	58.	0.20	0.2066	99.4	0.927	0.012
4	56.30	0-28176E 0	5 101.5	0.15736E 04	0.26711E-02	0.683E-04	58.	0.20	0.0066	99.4	0.927	0.012
5	58.30	0.31997E 0	5 101.4	0.19015F 04	0.25265E-02	0.676E-04	58.	0.19	0.0062	99.8	0.945	0.012
6	60.30	0.35818E 0	6 101.4	0.22165E 04	0.23867E-02	0.669E-04	59.	0.19	0.0062	99.4	0.931	0.012
7	62.30	0.39638E 0	5 101.4	0.25118E 04	0-22980E-02	0.665F-04	59.	0.16	0.0053	99.9	0.948	0.012
8	64.30	0.43459E 0	6 101.5	0.279758 04	0.21467E-02	0.657E-04	59.	0.17	9.0057	100.6	0.971	0.012
9	66.30	0.47279E 0	5 101.5	0.30888E 04	0.21133E-02	0.656E-04	59.	0.18	0.0057	100.5	0.965	0.012
10	68.30	0.51100E 0	5 101.4	0.33904E 04	0.20228E-02	0.652E-04	60.	0.19	0.0063	100.7	0.975	0.012
11	70.30	0.54920E 0	5 101.4	0.36964E 04	0.19811F-02	0.651E-04	60.	0.18	0.0058	101.5	1.003	0.012
12	72.30	0.587418 0	6 101.6	0.39965E 04	0.18188E-02	0.641E-04	60.	0.18	0.0057	103.4	1.062	0.013
13	73.82	0.61644E 0	6 99.6	0.41656E 04	0.19161E-02	0.3825-04	60.					
14	74.85	0.63612E 0	6 98.9	0.42028E 04	0.18533E-02	0.427E-04	60.					
15	75.88	0.65580E 0	6 99.6	0-42385E 04	0.17785E-02	D.424E-04	60-					
16	76.91	0.67557E 0	6 99.6	0.42740E 04	0.18237E-02	0.423E-04	60.					
17	77.95	0.69534E 0	6 99.8	0.43096F 04	0.17849E-02	0.419E-04	60.					
18	78.98	0.71501E 0	6 100.1	0.43442E 04	0.17346E-02	0.416E-04	60.					
19	80.01	0.73469E 0	6 99.7	0.43792E 04	0.18148E-02	0.410E-04	60-					
20	81.04	0.75436E 0	6 100.0	0.44141E 04	0-17344E-02	0.398E-04	60.					
21	82.07	0.77404E 0	6 100.1	0.44485E 04	0.17581E-02	0.409E-04	60.					
22	83.10	0.79372E 0	6 99.7	0.44835E 04	0.17960F-02	0.426E-04	60.					
23	84.13	0.81339E 0	6 99.7	0.45179E 04	0.16927E-02	0.415E-04	60.					
24	85.16	0.83316E 0	6 99.9	0.45513E 04	0.16981E-02	0.4225-04	60.					
25	86.20	0.85293E 0	6 99.9	0.45847E 04	0.16949E-02	0.420E-04	60.				·	
26	87.23	0.87261E 0	6 99.0	0.46192E 04	0.18048E-02	0.4355-04	60.					
27	88.26	0.89229E 0	6 99.8	0.46534E 04	0.16732E-02	0.419E-04	60.					
28	89.29	0.91196E 0	6 99.7	0.46867E 04	0.16984E-02	0.416E-04	60.					
29	90.32	0.93164E 0	6 99.4	0.47205E 04	0.17346E-02	0.418E-04	60.					
30	91.35	0.95131E 0	6 99.2	0.47543E 04	0 • 1 69 74E - 02	0.428E-04	60.					
31	92.38	0.97099E 0	6 100.0	0.478835 04	0.17538E-02	0.428E-04	60.					
32	93.41	0.99076E 0	6 99.6	0.482288 04	0 - 1 74 87E - 02	0.4285-04	60.					
33	94.45	0.10105E 0	7 99.7	0.48569E 04	0.17169E-02	0.418F-04	50.					
34	95.48	0.10302F 0	7 99.2	0.48917E 04	0.18171E-02	0.4245-34	60.					
35	96.51	0-10499E 0	7 99.5	0.492695 04	0.17573E-02	0.447E-04	60.					
36	97.54	0.10696E 0		0.49614E 04	0.17476E-02	0.4805-04	60.					
							-					

FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 020374 AND RUN 020474
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST(TH=0)	TCHX38	RE DEL2	ST{TH=1}	FŢA	STCR	F-COL	STHR	F-HOT	PH1-1
1	169194.8	653.6	0.002718	167148.5	645.7	0.002693	บบบบบ	บบบบบ	0.0000	ยนขยยยย	0.0000	บบบบบ
2	207867.8	775.0	0.003564	205353.9	988.2	0.302746	0.229	1.223	0.0068	0.940	0.0073	1.921
3	246540.9	919.2		243559.3	12 58.3		0.295	1.382	0.0068	0.972	0.0066	1.911
4	285214.0	1070.1	0.003913	281764.6	1612.8	0.002573	0.342	1.430	0.0069	0.938	0.0066	1.895
5	323887.1	1219.5	0.003812	319970.0	1953.2	0.002451	0.357	1.429	0.0069	0.917	0.0062	1.836
6	362560.1	1365.2	0.003720	358175.4	2279.6	0.002288	0.385	1.426	0.0068	0.875	0.0062	1.805
7	401233.3	1508.4	0.003686	396380.8	2584.9	0.002222	0.397	1.442	0.0068	0.867	0.0053	1.697
8	439906.3	1648.7	0.003572	434586.1	2876.7	0.002105	0.411	1.424	0.0070	0.837	0.0057	1.723
9	478579•4	1785.9		472791.5	3173.1	0.302063	0.414	1.427	0.0069	0.834	2. 2057	1.738
10	517252.5	1921.9	0.003514	510996.9	34 79.7		0.435	1.446	0.0069	0.815	0.0063	1.812
11	5 55925. 6	2056 • 6		549202.3	3787.7		0.425	1.442	0.0069	0.927	0.0058	1.774
12	594598.7		0.003401	58 7407. 6	4082.5			1.440	0.0071	0.807	0.0057	1.741
13	623990.3		0.002787	616443.8	4246.3			1.191		0.803		
14	643906.9	2336.4		636119.5	4282.8			1.118		0.783		
15	663823.5		0.002539	655795.3	4318.0			1.099		0.755		
16	683836.6	2437.3		675566.3	4353.0			1.061		0.782		
17	703850.0		0.002336	695337.7	4388.1		0.245			0.770		
18	723766.6	2532.2		715013.4	4422.3		0.291	1.061		0.750		
19	743683.3	2579.4		734689.2	4456.8		0.229			0.793		
20	763599.9	2624.6		754364.9	4491.4		0.220			0.762		
21	783516.8	2670.3		774040.9	4525.3		0.273	1.066		0.774		
22	803433.4	2716.1		793716.7	4560.0		0.194	0.992		0.798		
23	823350.0	2759.4		813392.4	45 94 • 0		0.217			0.755		
24	843363.1	2802 - 9		833163.5	4627.0			1.010		0.760		
25	863376.5	2846 • 4		852934.9	4660-1			0.972		0.763		
26	883293.1	2888-9		872610.6	4694.2		0.161			0.819		
27	903209.8	2931.9		892286.3	4728.2			1.000		0.759		
28	923126.3	2974 • 7		911962.1	4761.0		0.205			0.776		
29	943043.3	3017.5		931638.1 951313.9	4794.5 4828.0		0.213	1.013		0.795		
30	962959.9	3059.0					0.150 0.225	0.924 1.048	•	0.784 0.810		
31	982876.5	3101.1		970989.6 990760.7	4861.7		0.225	0.950		0.815		
32	1002889.0	3143.6			4895.9					0.801		
33	1022903.0	3184.6 3227.0		1010532.0	4929•8 4964•3		0.184 0.169	0.984 1.027		0.852		
34	1042819.0	3227.0 3269.3		1049883.0	49 99 • 3		0.161	0.989		9.828		
35	1062736.0			1049883.0	5033.6			0.976		0.826		
36	1082652.0	3310.5	0.002045	1007227.0	2022.0	0.001130	V-131	016.0		0.020		

STANTON NUMBER DATA RUN 020574 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 67.8 UINF= 36.8 XV0=41.550 RHO= 0.07539 CP= 0.241 VISC= 0.16124F-03
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D= 5
UNCERTAINTY IN REX=19011. UNCERTAINTY IN F=0.03110 IN RATIO

** M=0.5, COLD RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

	=											
PLAT	E X	REX	TO	REENTH	STANT ON NO	DST	DREEN	M	F	TZ	THETA	DTH
1	50.30	0.16634E 06	96-0	0.64256E 03	0.28214E-02	0.713E-04	57.					
2	52-30	0.20436E 06	96.0	0.81190E 03	0.38987E-02	0.783E-04	57.		0.0172		0.127	0.009
3	54-30	0.24239E 06	96.1	0.10504E 04	0.43089E-02	0.812E-04	57.	0.55	0.0178	71.2	0.121	0.009
4	56.30	0.28041E 06	96-1	0.12955E 04	0.43717E-02	0.816E-04	58.	0.51	0.0167	71.3	0.124	0.009
5	58.30	0.31843E 06	96.1	0.15392E 04	0.429745-02	0.8126-04	58.	0.54	0.0174	71.2	0.120	0.009
6	60.30	0.35645E 06	96.2	0.17802E 04	0.42226E-02	0.804E-04	58.	0.54	0.0174	71.2	0.119	0.009
7	62.30	0.39447E 06	96.1	0.20205E 04	0.41215E-02	0.79BE-04	58.	0.54	0.0176	71.4	0.127	0.009
8	64.30	0.43249E 06	96-1	0.22592E 04	0.39801E-02	0.788E-04	58.	0.53	0.0171	71.5	0.130	0.009
9	66-30	0.47051E 06	96.1	0.24928E 04	0.38698E-02	0.779E-04	59.	0.55	0.0177	71.4	0.125	0.009
10	68- 30	0.50853E 06	96-1	0.27217E 04	0.37821E-02	0.772E-04	59.	0.53	0.0171	71.4	0.127	0.009
11	70.30	0.54656E 06	96.1	0.29456E 04	0.36619E-02	0.764E-04	59.	0.54	0.0176	71.3	0.123	0.009
12	72.30	0.58458E 06	96 • 0	0.31641E 04	0.35561E-02	0.7595-04	59.	0.52	0.0169	71.4	0.125	0.009
13	73.82	0.61347E 06	92.7	0.33001E 04	0.28640E-02	0.524E-04	59.					
14	74-85	0.63305E 06	92.1	0.33538E 04	0.26074E-02	0.546E-04	59.					
15	75.88	0-65264E 06	93.1	0.34028E 04	0.23917E-02	0.520E-04	59.					
16	76.91	0.67231E 06	93.4	0.34482E 04	0.22419E-02	0.492E-04	59.					
17	77-95	0.69199E 06	93.6	0.34907E 04	0.20928E-02	0.473E-04	59.					
18	78-98	0.71157E 06	93.7	0.35315E 04	0.20748E-02	0.472E-04	59.					
19	80.01	0.73115E 06	93.8	0.35714E 04	0.19944E-02	0.447E-04	59.					
20	81.04	0.75073E 06	94.1	0.36095E 04	0.18844E-02	0-430E-04	59.					
21	82.07	0.77031E 06	93.9	0.36476E 04	0.20068E-02	0.4516-04	59.					
22	83.10	0.78989E 06	94.1	0.36858E 04	0.18904E-02	0.451E-04	59.					
23	84.13	0.80947E 06	93.8	0.37222E 04	0.18285E-02	0.446E-04	59.					
24	85.16	0.82915E 06	93.7	0.37587E 04	0.18907E-02	0.460E-04	59.					
25	86.20	0.84883E 06	93.8	0.37949E 04	0.18052E-02	0.451E-04	59.					
26	87.23	0.86841E 06	92.8	0.38313E 04	0.19029E-02	0.466E-04	59.					
27	88.26	0.88799E 06	93.4	0.38684E 04	0-18816E-02	0.462E-04	60.					
28	89.29	0.90757E 06	93.4	0.39047E 04	0.18219E-02	0.450E-04	60.					
29	90.32	0.92715E 06	93.0	0.39416E 04	0.194 82E-02	0.4625-04	60.					
30	91.35	0.94673E 06	92.9	0.39783E 04	0.17955E-02	0.460E-04	60.					
31	92.38	0.966315 06	93.9	0.40152E 04	0.19672E-02	0.469E-04	60.					
32	93.41	0.98599E 06	93.9	0.40525E 04	0.18361E-02	0.452E-04	60.					
33	94.45	0.10057E 07	93.9	0.40890E 04	0.18877E-02	0.451E-04	60.					
34	95.48	0.10252F 07	93.3	0.41270E 04	0.19903E-02	0.4585-04	60.					
35	96.51	0.10448E 07	93.6	0.41652E 04	0.19077E-02	0.481E-04	60.					
36	97.54	0.10644E 07	92.7	0.42024E 04	0.18816E-02	0.533E-04	60.					

PR=0.713

STANTON NUMBER DATA PUN 020674 *** DISCRETE HOLE RIG *** NAS-3-14336

** M=0.5. HOT RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

PLAT	EΧ	REX	TO	REENTH	STANTON NO	DST	DREEN	M	E	To	THETA	DTH
1	50.30	0.16737E 06	102.7	0.64652E 03	0.27910E-02	0.617E-04	57.			12	3 23 T + MI	D. 11
2	52.30	0.205625 06	102.5	0.10799E 04	0.30348E-02	0.633E-04	58.	0.50	0.0163	102.5	1 022	0.011
3	54.30	0.24388E 06	102.6	0.18682F 04	0.30548E-02	0.634E-04	61.		0.0171			0.011
4	56.30	0.28214E 06	102.6	0.16662E 04	0.28590E-02	0.622E-04	63.		0.0165			0.011
5	58.30	0.32039E 06	102.5	0.34473E 04	0.26369E-02	0.613E-04	65.		0.0168			0.011
6	60.30	0.35865E 06	102.5	0.424528 04	0.25513E-02	0.607E-04	67.		0.0178			0.011
7	62.30	0.39690E 06	102.4	0.50506E 04	0.23923E-02	0.600E-04	69.		0.0176			0.011
8	64.30	0.43516E 06	102.4	0.58236E 04	0.22056E-02	0.591E-04	71.		0.0160			0.311
Š	66.30	0.47341E 06	102.6	0.65596E 04	0.20598E-02	0.581E-04	72.		0.0165			0.011
10	68.30	0.51167E 06	102.4	0.73070E 04	0.19229E-02	0.579E-04	74.		0.0176			0.011
ii	70.30	0.54992E 06	102.4	0.80650E 04	0.17874F-02	0.574E-04	76.		0.0179			0.011
12	72-30	0.58818F 06	102.6	0.88061F 04	0.16458F-02	0.565E-04	77.		0.0175			0.011
13	73.82	0.61725E 06	101.1	0.91859F 04	0.15226E-02	0.307E-04	78•	00,74	0.0113	105.07	00771	00011
14	74.85	0.63696	100.7	0.92145E 04	0.13743E-02	0.336E-04	78.					
15	75.88	0.656665 06	101.5	0.92405E 04	0.12690E-02	0.331E-04	78.					
16	76.91	0.67646E 06	101.7	0.92653E 04	0.12360E-02	0.322E-04	78.					
17	77.95	0.69625E 06	101.9	0.92892E 04	0.11885E-02	0.318E-04	78.					
18	78.98	0.71595E 06	102.1	0.93124E 04	0.11708E-02	0.318E-04	78.					
19	80-01	0.73566E 06	101.9	0.93355E 04	0.11730E-02	0.305E-04	78.					
20	81.04	0.75536E 06	102.1	0.93582E 04	0.11222E-02	0.297E-04	78.					
21	82.07	0.77506E 06	102.1	0.93807E 04	0.11654E-02	0.309E-04	78.					
22	83.10	0.79476E 06	102.0	0.94036E 04	0.11512F-02	0.319E-04	78.					
23	84.13	0.81446E 06	101.9	0.94259E 04	0.11100E-02	0.316E-04	78.					
24	85.16	0.83426E 06	102.0	0.94480E 04	0.11291E-02	0.324E-04	78.					
25	86-20	0.85406E 06	102.0	0.94701F 04	0-11100E-02	0.3205-04	78.					
26	87.23	0.87376E 06	101.1	0.94929E 04	0.12062E-02	0.331E-04	78.					
27	88-26	0.89346E 06	101.8	0.95160E 04	0.11356E-02	0.324E-04	78.					
28	89.29	0.91316E 36	101.7	0.95386E 04	0.11583E-02	0.322F-04	78.					
29	90.32	0.93286E 06	101.3	0.95621E 04	0.12175E-02	0.325E-04	78.					
30	91.35	0.952575 06	101.1	0.95857E 04	0.11753E-02	0.334E-04	78.					
31	92.38	0.972275 06	101.8	0.95095E 04	0.124725-02	0.335E-04	78.					
32	93.41	0.992065 06	101.5	0.96340E 04	0-12360E-02	0.335E-04	78.					
33	94.45	0.10119E 07	101.6	0.96584E 04	0.12370E-02	0.329F-04	.78.					
34	95.48	0.10316E J7	101.1	0.96837E 04	0.13225E-02	0.332F-04	78.					
35	96.51	0-105136 07	101.3	0.97094F 04	0.12899E-02	0.356F-04	78.					
36	97.54	0.19710E 07	100.5	0.97346F 04	0.12578F-02	0.386E-04	78.					

PP=0.713

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 020574 AND RUN 020674
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DELZ	ST(TH=1)	ETA	STCR	F-COL	STHO	F-HつT	PHI -1
1	166343.1	642.6	0.002821	167368.4	646.5	0.002791	טניטטט	נונינוטט	0.0000	יטטמניטטעי	0.0000	UUUUU
2	204364.4	772.6		205624.0	1070.6	0.003065	0.238	1.373	0.0172	1.048	0.0163	3.726
3	242385.7	934.0	0.004468	243879.6	1828.5	0.003151	0.295	1.579	0.0178	1.115	0.0171	3.253
4	280407.0	1105.8	0.004572	282135.3	25 87.1	0.002952	0.354	1.664	0.0167	1.076	0.0165	3.185
5	318428.3	1278.3	0.004500	320390.9	3332.8	0.002810	0.376	1.680	0.0174	1.050	0.0168	3.228
6	356449.6	1448.2		358646.5	4097.8		0.409	1.695	0.0174	1.002	0.0176	3.316
7	394470.8	1615.4		396902.2	4872.8		0.425	1.697	0.0176	0.978	0.0176	3.295
8	432492.1	1778.6		435157.8	5608.3		0.447	1.677	0.0171	0.929	0.0160	3.000
9	470513.4	1937.2		473413.4	6315.3		0.484	1.663	0.0177	0.859	0.0165	3.074
10	508534.7	2092.5		511669.1	7047.4		0.512	1.659	0.9171	0.810	0.0176	3.149
11	546556.0	2244.0		549924.7	7799.1		0.546	1.632	0.0176	0.742	0.0179	3.107
12	584577.3	2391.4		588180.3	8541.9		0.572	1.615	0.0169	0.692	0.0175	3.003
13	613473.6	2494.l		617254.7	8923.0		04480	1.297		0.675		
14	633054.5	2551.2		636956.3	8952.7		0.485	1.188		0.613		
15	652635.4	2603.3		656657.9	8979.8		0.481	1.096		0.569		
16	672311.3	2651.5		676455.0	9005.5		0.461	1.031		0.556		
17	691987.3	2696.6		696252.4	9030.2		0.445	0.966		0.537		
18	711568.3	2739.8		715954.0	9054.3		0.449	0.963		0.532	•	
19	731149.2	2782.0		735655.6	9078.2		0.425	0.928		0.534		
20	750730.1	2822.1		755357.3	91 01 . 5		0.418	0.881		0.513		
21	770311.4	2862.4		775059.2	91 24 . 8		0.433	0.945		0.537		
22	789892.3	2902.7		794760.8	9148.4		0.405	0.891		0.531		
23	809473.3	2941.1		814462.4	9171.3		0.407	0.867		0.515		
24	829149.1	2979.5		834259.5	9194.1		0.417	0.901		0.527		
25	848825.1	30.17.7		8 54056. 9	9216.8		0.399	0.863		0.519		
26	868406.1	3055.9		873758.5	9240.2		0.380	0.911		0.565		
27	887987.0	3094.9		893460.1	9264.0		0.410	0.909		0.537		
28	907567.9	3133.1		913161.8	92 87 • 2		0.379	0.880		0.548		
29	927149.2	3171.9		932863.7	9311.3		0.389	0.946		0.579		
30	946730.1	3210.4		952565.3	9335.5		0.360	0.873		0.559		
31	966311.1	3249.1		972266-9	93 60 . 0		0.380	0.962		0.597		
32	985986.9	3288.1		992064.0	9385.0		0.341	0.897		0.592		
33	1005662.0	3326.3		1011861.0	9410.0		0.359	0.928		0.596		
34	1025243.0	3366.0		1031562.0	9435.8		0.350	0.982		0.639		
35	1044824.0	3405.9		1051264-0	9462.2		0.338	0.943		0.625		
36	1064405.0	3444.7	0.001966	1070966.0	94 87.8	0.001286	0.346	0.934		0.612		

STANTON NUMBER DATA RUN 012474 *** DISCRETE HOLE RIG *** NAS-3-14336

TIME= 71.5 UINE= 37.8 XV0=41.550 RHO= 0.07473 CP= 0.241 VISC= 0.16321E-03 PP=0.714.
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D=10
UNCERTAINTY IN REX=19322.

** M=0.0, FLAT PLATE RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	м	F	12	THETA	DTH
1	50.30	0.16907E 06	100.6	0.65308E 03	0.26634E-02	0.669E-04	58.	• •	•	: 2.	7111. · · ·	3.11
2	52.30	0.20771E 06	100.6	0.76108E 03	0.29259E-02	0.683E-04	58.	0.00	0.0000	100-6	1-000	0.012
3	54.30	0.24636E 06	100.7	0.87293E 03	0.28625E-02	0.678F-04	58.	-	0.0000			0.012
4	56.30	0.28500E 06	100.7	0.98247E 03	0.28071E-02	0.674E-04	58.		0.0000			0.012
5	58.30	0.32364E 06	100.7	0.10882E 04	0.26645F-02	0.668F-04	58.		0.0000			0.012
6	60.30	0.36229E 06	100.7	0.11909E 04	0.26517F-02	0.666E-04	58.		0.0000			2.012
7	62.30	0.40093E 06	100.7	0.12915E 04	0.25561E-02	0.662E-04	58.		0.0000			0.012
B	64-30	0.43958E 06	100.6	0.13899E 04	0.25325E-02	0.6625-04	53.		0.0000			0.012
9	66.30	0.47822E 06	100.7	0.14859E 04	0.24370E-02	0.655F-04	58.		0.0000			0.012
10	68.30	0.51686E 06	100.7	0.15806E 04	0-24629E-02	0.657F-04	58.		0.0000			0.012
11	70.30	0.55551E 06	100.7	0.16737F 04	0.23598E-02	0-652E-04	58.		0.0000			0.012
12	72.30	0.59415E 06	100.7	0.17643E 04	0.23257E-02	0.650F-04	58.		0.0000			0.012
13	73.82	0.62352E 06	98.1	0.18305E 04	0.21329E-02	0.407E-04	58.					
14	74.85	0.64342E 06	97.3	0.18727E 04	0.21054E-02	0.458E-04	58.					
15	75.88	0.66333E 06	97.7	0.19154E 04	0.21770E-02	0.472E-04	58.					
16	76.91	0.68332E 06	97.7	0.19586E 04	0.21654E-02	0.467E-04	58.					
17	77.95	0.70332E 06	97.8	0.20014E 04	0.21321E-02	0.464E-04	58.					
18	78-98	0.72322E 06	97.8	0.20446E 04	0.21992E-02	0.475E-04	58.					
19	80.01	0.74312E 06	97.7	0.20882E 04	0.21817F-02	0.460E-04	58.					
20	81.04	0.76303E 06	97.9	0.21309E 04	0.21008F-02	0.447E-04	58.					
21	82.07	0.78293E 06	97.7	0.21744E 04	0.22662E-02	0.474E-04	58.					
22	83.10	0.80283E 06	97.9	0-22182F 04	0.21274F-02	0.470E-04	58.					
23	84.13	0.82273E 06	97.5	0.22602E 04	0.20880E-02	0.466E-04	58.		•			
24	85.16	0.84273E 06	97.5	0.23019E 04	0.21018E-02	0.474E-04	58.					
25	86.20	0.86273E 06	97.8	0.23434E 04	0.20611E-02	0.465E-04	58.					
26	87.23	0.88263E 06	97.4	0.23856E 04	0.21714E-02	0.479E-04	58.					
27	88.26	0.90253E 06	97.6	0.24279E 04	0.20830E-02	0.470E-04	58.					
28	89.29	0.922435 06	97.4	0.24687E 04	0.200855-02	0.459E-04	58.					
29	90.32	0.94234E 06	97.1	0.25094E 04	0.20726E-02	0.462E-04	58.					
30	91,35	0.96224E 06	97.6	0.25500E 04	0.201048-02	0.466E-04	58.					
31	92.38	0.98214E 06	98.0	0.25913E 04	0.21338E-02	0.472E-04	58.					
3 2	93.41	0.10021E 07	97.9	0.26323E 04	0.19772E-02	0.456E-04	58.					
33	94.45	0.10221E 07	97.8	0.26722E 04	0.20278E-02	0.4565-04	58.					•
34	95.48	0.10420E 07	97 • 4	0.27132F 04	0.20856E-02	0.458E-04	58.				•	•
35	96.51	0.10619E 07	97.7	0.27542E 04	0.20371F-02	0.481E-04	58.		٠.			
36	97.54	0.108185 07	97.0	0.27947E 04	0.20267E-02	0.525E-04	59.					

STANTON NUMBER DATA RUN 012774 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 68.7 UINF= 37.7 XV0=41.550 RHO= 0.07537 CP= 0.241 VISC= 0.16119E-03 PP=0.714

DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D=10

UNCERTAINTY IN REX=19481. UNCERTAINTY IN F=0.03100 IN RATIO

** M=0.2, COLD RUN, LOW RE, STEP T-WALL AT VIRTUAL DRIGIN OF &L.

PLATE	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	£	T?	THETA	ĐΤΗ
1	50.30	0.17046E 0	6 97.6	0.65845E 03	0.277216-02	0.678E-04	58.					
2	52.30	0.209425 0	6 97.4	0.790175 03	0.31967E-02	0.707E-04	58.	0.21	0.0017	75.4	0.234	0.009
3	54.30	0.24938E 0	6 97.5	0.92804E 03	0.30875E-02	0.700E-04	59.	0.00	0.0017	97.5	0,234	0.012
4	56.30	0.28734E 0	6 97.4	0.10623F 04	0.30361E-02	0.698E-04	59.	0.22	0.0018	75.0	0.218	0.009
5	58.30	0.3263 CE 0	6 97.5	0.11929E 04	0.28973E-02	0.6885-04	59.	0.00	0.0018	97.5	0.218	0.012
6	60.30	0.36526E 0	6 97.5	0.13216E 04	0.29154E-02	0.690E-04	59.	0.22	0.0018	75.2	0.225	0.009
7	62.30	0.40423E 0	6 97.5	0.14486E 04	0.28082E-02	0.682E-04	59.	0.00	0.0018	97.5	0.225	0.012
8	64.30	0.44319E 0	6 97.5	0.15726E 04	0.28059E-02	0.683E-04	59.	0.20	0.0016	75.3	0.229	0.009
9	66.30	0.48215E 0	6 97.5	0.169425 04	0.26861E-02	0.675E-04	59.	0.00	0.0016	97.5	0.229	0.012
10	68.30	0.52111E 0	6 97.4	0.18158E 04	0.27614E-02	0.682E-04	59.	0.22	0.0017	75.2	0.227	0.009
11	70.30	0.56007E 0	97.5	0.19369E 04	0.26592E-02	0.675E-04	59.	0.00	0.0017	97.5	0.227	0.012
12	72.30	0.59903E 0	6 97.5	0.205489 04	0.265335-02	0.674E-04	59.	0.22	0.0018	74.6	0.204	0.00
13	73.82	0.62865E 0	6 94.6	0.21417E 04	0.24238E-02	0.449E-04	59.					
14	74.85	0.64871E 0	6 93.8	0.21895E 04	0.23353E-02	0.493E-04	59.					
15	75.88	0.66878E 0	6 94.3	0.22329E 04	0.23548E-02	0.500E-04	59.					
16	76.91	0.68894E 0	6 94.5	0.22797E 04	0.230678-02	0.489E-04	59.					
17	77.95	0.70910E 0	6 94.6	0.23252E 04	0.22282E-02	0.481E-04	59.					
18	78.98	0.72917E 0		0.23711E 04	0.23341E-02	0.496E-04	59.					
19	80.01	0.74923F 0	06 94.5	0.241725 04	0.226075-02	0.474E-04	59.					
20	81.04	0.76930E 0	6 94.7	0.24614F 04	0.21362E-02	0.455E-04	59.					
21	82.07	0.78936E 0	94.5	0.25063E 04	0.23321E-02	0.486E-04	59.					
22	83.10	0.80943E 0	94.6	0.25516E 04	0.21824E-02	0.480E-04	59.					
23	84.13	0.82949E 0	06 94.3	0.25950E 04	0.21359E-02	0.476E-04	59.					
24	85.16	0.84965E 0	06 94.3	0.26384E 04	0.21880E-02	0.489E-04	59.					
25	86.20	0.86982E 0	06 94.5	0.26817E 04	0.21229E-02	0.4775-04	59.					
26	87.23	0.88988E 0	06 94.1	0.27254E 04	0.22264E-02	0.490E-04	59.					
27	88.26	0.90995E 0	06 94.3	0.276925 04	0.21277E-02	0.480E-04	5 9.					
28	89.29	0.93001E 0	06 94-1	0.28113E 04	0.20667E-02	0.471E-04	59.					
29	90.32	0.95008E 0	06 93.8	0.28535F 04	0.21333E-02	0.476E-04	59.					
30	91.35	0.97014E 0	6 94.0	0.28953F 04	0.20301E-02	0.475E-04	59.					
31	92.38	0.99021E 0	94.8	0.29376F 04	0.21806E-02	0.484E-04	59.					
32	93.41	0.10104E			0.20490E-02	0.468F-04	59.					
33	94.45	0.10305E		0.302135 04	0.20558E-02	0.463F-04	59.					
34	95.48	0.10506E		0.30635E 04	0.214185-02	J.468E-04	59.					
35	96.51	0.107075			0.20895E-02	0.491F-04	59.					
36	97.54	0.109075		0.314795 04	0.20829E-02	0.537F-04	59.					
-	•											

STANTON NUMBER DATA RUN 012874 *** DISCRETE HO! F RIG *** NAS-3-14336

TINF= 71.9 UINF= 37.8 XV0=41.550 RHO= 0.07472 CP= 0.242 VISC= 0.16318E-03 PR=0.715
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D=10
UNCERTAINTY IN REX=19327. UNCERTAINTY IN F=0.03100 IN PATIO

** M=0.2, HOT RUN, LOW RE, STEP T-WALL AT VIRTUAL DRIGIN OF BL.

PLAT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	₹2	THETA	DTH
1	50.30	0.16911E 06	102.8	0.65325E 03	0.26936F-02	0.638E-04	58.					
2	52.30	0.20777E 06	102.8	0.80865E 03	0.28213E-02	0.645E-04	58.	0.17	0.0014	100.4	0.924	0.011
3	54.30	0.24642E 06	102.6	0.96722E 03	0 • 28585F-02	0.650E-04	58.	0.00	0.0014	102.6	0.924	0.012
4	56.30	0.28507E 06	102.7	0.11203E 04	0.26711E-02	0.638E-04	58.	0.16	0.0013	100.6	0.932	0.011
5	58.30	0.32373E 06	102.6	0.12695E 04	0.26509E-02	0.639E-04	58.	0.00	0.0013	102.6	0.932	0.012
6	60.30	0.36238E 06	102.8	0.14200F 04	0.24893E-02	0.628E-04	58.	0.18	0.0014	100.7	0.932	0.011
7	62.30	0.40104E 06	102-6	0.15679E 04	0 • 2 51 24 E- 02	0.631E-04	58.	0.00	0.0014	102.6	0.937	0.012
8	64.30	0.43969E 06	102.8	0.17077E 04	0.23798E-02	0.622F-04	58.	0.15	0.0012	102.6	0.994	0.011
9	66.30	0.47835E 06	102.7	0.18443E 04	0.23514E-02	0.623E-04	58.	0.00	0.0012	102.7	0.994	0.012
10	68.30	0.51700E 06	102.7	0.19866E 04	0.22255E-02	0.616E-04	58.	0.16	0.0013	105.1	1.079	0.012
11	70.30	0.555655 06	102.5	0.21267E 04	0.22433E-02	0.620E-04	58.	0.00	0.0013	102.5	1.079	0.012
12	72.30	0.59431E 06	102.8	0.22643E 04	0.19831E-02	0.604E-04	58.	0.16	0.0013	107.4	1.149	0.012
13	73.82	0.62368E 06	100-1	0.23664E 04	0.21589E-02	0.399E-04	58.					
14	74.85	0.64359E 06	99.2	0.24089E 04	0.21066E-02	0.442E-04	58.					
15	75.88	0.66350E 06	100.0	0.24359F 04	0.20483E-02	0.441E-04	58.					
16	76.91	0.68350E 06	99.9	0.24773E 04	0.21071E-02	0.4425-04	5B.					
17	77.95	0.70351E 06	100.1	0.25192E 04	0.20895E-02	0.440E-04	58.					
18	78.98	0.72341E 06	100.6	0.25599E 04	0.19970E-02	0.4328-04	58.					
19	80.01	0.74332E 06	100.2	0.26006E 04	0-208825-02	0-428E-04	58.					
20	81.04	0.76323E 06	100.4	0.26416E 04	0.20238E-02	0.418E-04	58.					
21	82.07	0.78313E U6	100.6	0.26820E 04	0.20328E-02	0.427E-04	58.					
22	83.10	0.80304E 06	100.1	0.27233E 04	0.21067E-02	0.446E-04	58.					
23	84.13	0.82295E U6	100.1	U.27642E 04	0.19992F-02	0.434E-04	58.					
24	85.16	0.84295E 06	100.5	0.28036E 04	0.19524E-02	0.434E-04	58.					
25	86.20	0.86295E 06	100.4	0.28427E 04	0 - 1 97 26E - 02	0.433E-04	58.					
26	87.23	0.88286E 06	99.7	0.28832E 04	0.20948E-02	0.448E-04	58.					
27	88.26	0.90277E 06	100.6	0.29230E 04	0.19019F-02	0.427E-04	58.					
28	89-29	0.92267E 06	100-4	0.29616E 04	0.19715E-02	0.4295-04	58.					
29	90.32	0.94258E 06	100.1	0.30005E 04	0.19326E-02	0.422F-04	58.					
30	91.35	0.96249E 06	100.0	0.30399E 04		0.443E-04	58.					
31	92.38	0.982405 06	100.6	0.30797F 04		0.436E-04	58.					
32	93.41	0.100245 07		0.31192E 04		0.438E-04	58.					
33	94-45	0.102246 07	100.2	0.31582E 04		0.427E-04	58.					
34	95.48	0.10423E 07	. 99.7	0.319765 04		0.430F-04	58.					
35	96.51	0.10622F 07		0.32376E 04		0.454E-04	59.					
36	97.54	0.10821E 07	99.4	0.32773F 04	0.199445-02	0.4858-04	59.					

FOLLOWING IS THE DATA FOR THETA=O AND THETA=1, WHICH WAS DBTAINED BY LINEAR SUPERPOSITION THEORY.
THIS DATA WAS PRODUCED FROM RUN 012774 AND RUN 012874
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ARROY TWO RUNS

PLATE	REXCOL	RE DEL2	ST (TH=0)	REXHOT	RE DEL2	ST(TH=1)	ETA	STCR	F-COL	STHR	F-H1T	PHI-1
1	170456.9	658.5	0.002772	169111.9	653.3	0.002694	UUUUU	UUUUU	0.0000	עטעיטטט ע	0.0000	MUUUU
2	209418.6	777.2	0.003324	207766.0	811.9	0.002780	0.164	1.142	0.0017	0.954	0.0014	1.172
3	248380.1	903.6	0.003165	246420.2	973.2	0.002833	0.105	1.125	0.0017	1.006	0.0014	1.232
4	287341.8	1026.6	0.003148	285074.3	1128.5	0.002636	0.163	1.152	0.0018	0.963	0.0013	1.183
5	326303.3	1145.8	0.002973	323728.4	1279.9	0.002677	0.116	1.116	0.0018	0.985	0.0013	1.210
6	365264.9	1263.2	0.003051	362382.6	1433.0	0.002448	0.198	1.172	0.0018	0.939	0.9014	1.191
7	404226.5	1379.2	0.002902	401036.8	1583.2	0.002484	0.144	1.137	0.0018	0.972	9.0014	1.229
8	443188.1	1492.8	0.002933	439690.9	1722.6		0.190	1.171	0.0016	0.947	0.0012	1.166
9	482149.7	1604.3		478345.1	1859.4		0.157	1.131	0.0016	0.952	0.0012	1-174
10	521111.3	1715.1		516999.2	1998.7		0.217	1.198	0.0017	0.936	0.0013	1.182
11	560 C72.9	1825.7		555653.4	2136.6		0.176	1.159	0.0017	0.953	0.0013	1.202
12	599034.5	1934.1		594307.5	2269.7		0.253	1.186	0.0018	0.884	0.0013	1.129
13	628645.4	2013.8	0.002502	623684.8	2368.4		0.139	1.071		0.921		
14	648710.6	2063.0		643591.6	2410.8		0.125	1.035		0.904		
15	668775.8	2111-7		663498.4	2439.6		0.164	1.060		0.884		
16	688938.2	2160.0		683501.8	2480.9		0.111	1.031		0.915		
17	709100.9	2206.6	0.002269	703505-4	2522.7		0.080	0.995		0.914		
18	729166.1	2253.8		723412.2	2563.3		0.181	1.073		0.877		
19	749231.3	2301.5		743319.1	2604.0		0.098	1.025		0.923		
20	769296.4	2346.5		763225.9	2644.9		0.068	0.067		0.900		
21	789361.9	2392.6		783133.1	2685.3		0.162	1.084		0.907		
22	809427.1	2439.0		803039.9	2726.5		0.045	0.993		0.947		
23	829492.3	2483 - 1		822946.8	2767.4		0.082	0.985		0.902		
24	849654.8	2527.6	0.002257	842950.1	2806.7		0.137	1.026		0.885		
25	869817.4	2572 • 0		862953.7	2845.7		0.091	0.990		0.899		
26	889882.6	2616.5		882860.6	2886.2		0.076	1.039		0.959		
27	909947.8	2661.3		902767.4	2926.0		0.135	1.011		0.874		
28	930013.0	2704 - 4		922674.3	2964.5		0.060	0.970		0.911		
29	950078.5	2747.5		942581.4	30 03 • 4		0.120	1.019		0.896		
30	970143.7	2789.9		962488.3	3042.7		0.007	0.949		0.941		
31	990208.9	2832.9		982395.2	3082.5		0.120	1.051		0.923		
32	1010371.0	2876.1		1002398.0	3121.9		0.040	0.973		0.933		
33	1030534.0	2917.9		1022402.0	3161.0		0.076	0.988		0.912		
34	1050599.0	2960.8		1042308.0	3200.3		0.076	1.034		0.954		
35	1070664.0	3004 - 0		1062215.0	3240.2		0.058	1.008		0.948		
36	1090729.0	3046 • 4	0.002109	1082122.0	32 79.9	0.001993	0.055	1.008		0.951		

STANTON NUMBER DATA RUN 012974-1 *** DISCRETE HOLE PIG *** NAS-3-14336

TINF= 69.7 UINF= 37.2 XV0=41.550 RH0= 0.07497 CP= 0.241
DISTANCE FROM URIGIN OF BL TO 1ST PLATE= 7.750 P/D=10
UNCERTAINTY IN REX=19109. UNCERTAINTY IN F=0.03107 IN RATIO

VISC= 0.16217E-03 PR=0.715

** M=0.5, COLD RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

PLATE	E X	REX		TO	REENTH		STANTON NO	DST	DREEN	М	F	T2	THETA	Ð₹H
1	50.30	0.16720E	06	97.3	0.64588E 0)3	0.27704E-02	0.717E-04	57.					
2	52.30	0.20542E	06	97.2	0.79130E 0	13	0.34398E-02	0.761E-04	57.	0.56	0.0045	73.9	0.155	0.009
3	54.30	0.24364E	06	97.2	0.94662E 0)3	0.32887F-02	0.751E-04	57.	0.00	0.0045	97.2	0.155	0.013
4	56.30	0.28186E	06	97.1	0.10977E 0)4	0.33779E-02	0.760E-04	57.	0.54	0.0044	73.5	0.142	0.009
5	58.30	0.32007E	06	97.2	0.12464E 0)4	0.31683E-02	0.743E-04	58.	0.00	0.0044	97.2	0.142	0.013
6	60.30	0.35829E	06	97.1	0.13962E 0	14	0.33691E-02	0.759E-04	58.	0.54	0.0044	73.7	0.149	0.009
7	62.30	0.39651E	06	97.2	0.15461E 0) 4	0.31770E-02	0.7445-04	58.	0.00	0.0044	97.2	0.149	0.013
8	64.30	0.43473E	06	97.1	0.16946E 0)4	0.32323E-02	0.752E-04	58.	0.54	0.0043	73.9	0.154	0.009
9	66.30	0.47294E	06	97 -2	0.18405E 0)4	0.30411E-02	0.736E-04	58.	0.00	0.0043	97.2	0.154	0.013
10	68.30	0.51116E	06	97-1	0.19874E 0)4	0.32388E-02	0.749E-04	58.	0.55	0.0044	74.0	0.159	0.009
11	70.30	0.54938E	06	97.2	0.21334E 0)4	0.29889E-02	0.733E-04	58.	0.00	0.0044	97.2	0.159	0.013
12	72.30	0.58760F	06	97.1	0.22718E 0	4	0.30523E-02	0.737E-04	58.	0.54	0.0043	73.5	0.139	0.009
13	73.82	0.61664E	06	94.3	0.23753E 0)4	0.28137E-02	0.521E-04	58.					
14	74.85	0.63632E	06	93.6	0.24293E 0)4	0.26657E-02	0.556E-04	58.					
15	75.88	0.65601E	06	94.3	0.24756E 0)4	0.26330E-02	0.555E-04	58.		•			
16	76.91	0.67578E	06	94.4	0.25270E 0)4	0.25844E-02	0.542E-04	58.					
17	77.95	0.69556E	06	94.6	0.25768E 0)4	0.24767E-02	0.528E-04	58.					
18	78.98	0.71524E	06	94.6	0.26262E 0)4	0.25347E-02	0.538E-04	58.					
19	80.U1	0.73493E	05	94.6	0.26755E 0)4	0.24723E-02	0.516E-04	58.					
20	81.04	0.75461E	06	94.8	0.27230E 0)4	0.23464E-02	0.4965-04	58.					
21	82.07	0.774298	06	94.7	0.27708F 0)4	0.25023E-02	0.523E-04	58.					
22	83.10	0.79397F	06	94.8	0.28186E 0)4	0.23517E-02	0.516E-04	58.					
23	84.13	0.81365E	06	94.5	0.28642E 0		0.22711E-02	0.507F-04	58.					
24	85.16	0.83343E	06	94.5	0.29092E 0)4	0.23023E-02	0.518E-04	58.					
25	86.20	0.85321E	06	94.7	0.29538E 0)4	0.22204F-02	0.507E-04	58.					
26	87.23	0.87289E	06	93.8	0.29979E 0)4	0.22511F-02	0.514E-04	58.				·	
27	88.26	0.89257E		94.5	0.30421E 0)4	0.22441E-02	0.512E-04	58.					
28	89.29	0.91226E		94.4	0.30857E 0		0.21768E-02	0.498E-04	58.					
29	90.32	0.93194E	06	94.1	0.31292E 0		0.223 70E-02	0.502E-04	58.		31			
30	91.35	0.95162E	06	94.2	0.31724E 0		0.21506E-02	0.504F-04	58.					
31	92.38	0.97130E	06	95.1	0.32161E 0		0.22806E-02		58.					
32	93.41	0.991085	06	95.0	0.32595E 0		0 • 212 54E - 02	0.491E-04	58.					
33	94.45	0.10109E		95 .1	0.33016E 0		0.21451E-02		58.					
34	95.48	0.10305E		94.5	0.33447E 0		0.22347E-02	0.493E-04	58.					
35	96.51	0.10502E		94.8	0.338818 0		0.21676E-02		53.					
36	97.54	0.10699E	07	94.0	0.34305E 0)4	0.213685-02	0.5625-04	58.					

STANTON NUMBER DATA RUN 012974-2 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 67.6 UINF= 37.7 XV0=41.550 RHO= 0.07528 CP= 0.241 VISC= 0.16109E-03 PR=0.715

DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D=10

UNCERTAINTY IN REX=19505. UNCERTAINTY IN F=0.03100 IN RATIO

** M=0.5, HOT RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL.

PLAT	E X	REX	70	REENTH	STANTON NO	DST	DREEN	М	F	₹2	THETA	о÷н
1	50.30	0.17067E 06	98.4	0.65926E 03	0.27520E-02	0.641E-04	59.					
2	52.30	0.20968E 06	98.4	0.93820E 03	0.30245E-02	0.656E-04	59.	0.55	0.0044	97.2	0.960	0.011
3	54.30	0.24869E 06	98.4	0.12212E 04	0.29624E-02	0.652E-04	59.	0.00	0.0044	98 • 4	0.950	0.311
4	56.30	0.28770E 06	98.6	0.14907E 04	0.28930E-02	0.646E-04	59.	0.54	0.0044	95.6	0.904	0.011
5	58.30	0.32671E 06	98.4	0.17562E 04	0.27580E-02	0.641E-04	59.	0.00	0.0044	98.4	0.904	0.011
6	60.30	0.36572E 06	98-6	0.201765 04	0.271 785-02	0.636F-04	59.	0.54	0.0044	95.5	0.900	0.011
7	62.30	0.40472E 06	98 - 4	0-22764E 04	0.26276E-02	0.6345-04	59.	0.00	0.0044	98.4	0.900	0.011
8	64.30	0.44373E 06	98.4	0.25193E 04	0.25663E-02	0.631E-04	59.	0.48	0.0039	96.6	0.941	0.011
9	66.30	0.48274E 06	98 • 4	0.27595E 04	0.24900E-02	0.626E-04	60.	0.00	0.0039	98.4	0.941	0.011
10	68.30	0.52175E 06	98-4	0.30065E 04	0.24890E-02	0.626E-04	60.	0.50	0.0041	96.7	9.943	0.011
11	70.30	0.56076E 06	98.5	0.32522E 04	0.24286E-02	0.622E-04	60.	0.00	0.0041	98.5	0.943	0.011
12	72.30	0.59977E 06	98.4	0.34947E 04	0.22817E-02	0.617E-04	60.	0.48	0.0039	98.1	0.990	0.011
13	73.82	0.62942E 06	95.4	0.36758E 04	0.22325E-02	0.409E-04	60.					
14	74.85	0.64951E 06	94.5	0.37202E 04	0.21816E-02	0.454E-04	60.					
15	75.88	0.66960E 06	95.3	0.37241E 04	0.20701E-02	0.4465-04	60.					
16	76.91	0.68979E 06	95.2	0.37665E 04	0.21443E-02	0.449E-04	60.					
17	77.95	0.70997E 06	95.4	0.38092E 04	0.20986E-02	0.444E-04	60.					
18	78-98	0.73006E 06	95.7	0.38512E 04	0.20774E-02	0.443E-04	60.					
19	80.01	0.75015E 06	95.5	0.38933E 04	0.21100E-02	0.4345-04	60.					
20	81.04	0.77024E 06	95.7	0.39350E 04	0.20337E-02	0.421E-04	60.					
21	82.07	0.79033E 06	95.8	0.39764E 04	0.20870E-02	0.435E-04	60.					
22	83.10	0.81042E 06	95.5	0.40183E 04	0.20798E-02	0.445E-04	60.					
23	84.13	0.83051E 06	95.4	0.40589E 04	0.19583E-02	0.432E-04	60.					
24	85.16	0.85070E 06	95.5	0.40985E 04	0.19803E-02	0.441E-04	60.					
25	86.20	0.87089E 06	95.6	0.41380E 04	0.19409E-02	0.435E-04	60.					
26	87.23	0.89 0 98E 06	94.7	0.41779E 04	0.20334E-02	0.447F-04	60.					
27	88.26	0.91107E 06	95.6	0.42180E 04	0.19456E-02	0.437E-04	60.					
28	89-29	0.93116E 06	95.5	0.42570E 04	0.19379E-02	0.430E-04	60.					
29	90.32	0.95125E 06	95.1	0.42963E 04	0.19639E-02	0.4316-04	60.					
30	91.35	0.97134E 06	95.1	0.43355E 04	0 • 1 93 39E - 02	0.4395-04	60.					
31	92.38	0.991435 06	95.8	0.43748E 04	0.19816E-02	0.439E-04	60.					
32	93.41	0.10116E 07	95.5	0-44140E 04	0-19156E-02	0.432E-04	60.					
33	94-45	0.10318F 07	95.6	0.44524E 04	0.18984E-02	0.424E-04	60.					
34	95.48	0.105198 07	95.1	0.44914E 04	0.19775E-02	0.4285-04	60.					
35	96.51	0.10720E 07	95.3	0.45307E 04	0.19328E-02	0.451E-04	60.					
36	97.54	0.10921E 07	94 - 6	0.45693E 04	0.190325-02	0.4825-04	60.					

1 167202.4 645.9 0.002770 176667.0 659.3 0.002752 WUUUU UUUUU 0.0000 WUUUUU 2 2205420.1 766.1 0.003520 209676.6 944.8 0.003004 0.147 1.205 0.0045 1.032 0.0044 1.682 3 243637.8 897.4 0.003352 246686.3 1234.1 0.002946 0.121 1.187 0.0045 1.048 0.0044 1.718 4 281855.4 1027.7 0.003468 287695.8 1518.5 0.002832 0.183 1.206 0.0044 1.017 0.00346 1.718 5 320073.1 1155.0 0.003245 326705.4 1798.3 0.00276 0.166 1.213 0.0044 1.016 0.0044 1.718 6 358290.8 1224.8 0.003498 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.016 0.0044 1.712 6 358290.8 1224.8 0.003498 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.010 0.0044 1.712 6 358290.8 124.5 0.003398 443734.3 2596.3 0.002755 0.223 1.233 0.0044 1.001 0.0044 1.712 6 358290.8 1.347 0.003339 483734.3 2596.3 0.002515 0.258 1.347 0.0043 0.094 0.0034 1.002 0.0044 1.712 1.002631 0.248 0.00349 0.00349 1.004	PLATE	REXCOL	RE DEL2	ST(TH=0)	REXHOT	RE DEL2	S7(*H=1)	ETA	STCP	F-COL	ċ∡H≾	F-H9*	PHI-1
2 205420.1 766.1 0.003520 209676.6 944.8 0.003004 0.147 1.205 0.0045 1.032 0.0044 1.582 3 243637.8 897.4 0.003352 246868.3 1234.1 0.002946 0.121 1.187 0.0045 1.048 0.0044 1.718 4 281855.4 1027.7 0.003468 287695.8 1518.5 0.002832 0.183 1.264 0.0044 1.037 0.0044 1.718 5 320073.1 1156.0 0.003245 326705.4 1798.3 0.002706 0.165 1.213 0.0044 1.016 0.0044 1.712 6 38290.8 1284.8 0.003498 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.011 0.0044 1.712 7 39508.5 1414.5 0.003286 404724.7 2347.0 0.002555 0.258 1.347 0.0044 1.001 0.0044 1.722 8 434726.2 1542.0 0.003387 443734.3 2596.3 0.002515 0.258 1.347 0.0043 1.001 0.0044 1.722 1.001 0.0044 1.001 0.0044 1.722 1.001 0.001 0.0044 1.001 0.0044 1.722 1.001 0.001 0.0044 1.001 0.0044 1.722 1.001 0.001 0.0044 1.001 0	1	167202.4	645.	9 0.002770	170667.0	659.3	0.002752	บบบบบ	บบบบบ	0.0000	บบบบบบบ	0.0000	บบบบบ
3 243637.8 897.4 0.003352 248686.3 1234.1 0.00246 0.121 1.187 0.00345 1.048 0.0044 1.718 4 281855.4 1027.7 0.003468 287675.8 1518.5 0.002832 0.183 1.264 0.0044 1.037 0.0044 1.718 5 320073.1 1156.0 0.003245 326705.4 1798.3 0.002706 0.166 1.213 0.0044 1.016 0.0044 1.712 6 358290.8 1284.8 0.003499 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.011 0.0044 1.722 7 396508.5 1414.5 0.003286 404724.7 2347.0 0.002575 0.223 1.233 0.0044 1.001 0.0044 1.722 8 434726.2 1542.0 0.003387 443734.3 2596.3 0.002575 0.223 1.233 0.0043 0.0044 1.001 0.0044 1.722 1.002	2								1.205				
5 320073.1 1156.0 0.003245 326705.4 1798.3 0.002706 0.166 1.213 0.0044 1.011 0.0044 1.712 6 358290.8 1284.8 0.003498 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.011 0.0044 1.722 7 396508.5 1414.5 0.003286 404724.7 2347.0 0.002555 0.223 1.233 0.0044 1.001 0.0044 1.722 8 434726.2 1542.0 0.003387 443734.3 2596.3 0.002515 0.258 1.347 0.0033 1.004 0.0039 1.656 9 472943.9 1666.9 0.003149 482743.9 2843.6 0.002448 0.223 1.273 0.0043 0.994 0.0039 1.556 10 511161.6 1791.8 0.003390 521753.5 3097.7 0.002435 0.282 1.392 0.0044 0.004 0.0041 1.702 11 549379.3 1915.9 0.003102 56(763.1 3350.6 0.002238 0.230 1.293 0.0044 0.999 0.0041 1.712 12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.995 0.0039 1.655 13 616642.4 2125.5 0.00225 629420.1 3775.4 0.002142 0.224 1.184 0.923 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 15 65600.6 2235.7 0.002741 669599.9 3821.5 0.002042 0.262 1.183 0.877 16 675784.1 2289.0 0.00269 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002008 0.182 1.123 0.922 20 754008.0 2491.0 0.00262 730064.7 3946.4 0.002080 0.182 1.123 0.922 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.925 23 813654.6 2635.9 0.00233 830514.6 4151.2 0.001392 0.171 0.0886 25 853209.8 2772.9 0.002293 890979.3 4268.8 0.001918 0.157 0.035 0.886 25 872891.8 2772.9 0.002273 8109159.1 4463.6 0.001918 0.157 0.085 26 872891.8 2772.9 0.002293 931939.3 4268.8 0.001918 0.157 0.055 0.888 27 931938.4 2907.2 0.002293 931939.3 4463.5 0.001918 0.157 0.055 0.888 31 971302.6 2995.9 0.002293 931949.3 4463.5 0.001918 0.157 0.165 0	3	243637.8	897.	4 0.003352	248686.3	1234.1	0.002946	0.121	1.187	0.0045	1.048	0.0044	1.718
6 358290.8 1284.8 0.003498 365715.1 2074.1 0.002631 0.248 1.338 0.0044 1.011 0.0044 1.720 7 396508.5 1414.5 0.003286 404724.7 2347.0 0.002555 0.223 1.233 0.0044 1.001 0.0044 1.722 8 434726.2 1542.0 0.003387 443734.3 2596.3 0.002555 0.228 1.347 0.00343 1.004 0.0039 1.656 9 472943.9 1666.9 0.003149 482743.9 2843.6 0.002448 0.223 1.273 0.0043 0.994 0.0039 1.656 10 511161.6 1791.8 0.003390 521753.5 3097.7 0.002435 0.282 1.392 0.0044 1.004 0.0041 1.708 11 549379.3 1915.9 0.003102 56C763.1 3350.6 0.002488 0.220 1.293 0.0044 0.999 0.0041 1.712 1.2587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.993 0.0039 1.655 13 616642.4 2125.5 0.002925 629420.1 3775.4 0.002184 0.253 1.247 0.935 1.46 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 1.56 56000.6 22357 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002542 750154.6 3987.8 0.002004 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002008 0.162 1.123 0.922 22 793972.5 2589.2 0.002406 70244.5 4028.9 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002274 80089.4 4101.1 0.002057 0.164 1.078 0.926 27 93972.5 2589.2 0.002247 870889.4 410.1 0.002057 0.164 1.078 0.926 27 93972.5 2589.2 0.002249 890979.3 4268.8 0.001912 0.157 1.035 0.876 28 873891.8 2772.9 0.002279 890979.3 4268.8 0.001918 0.157 1.035 0.876 28 873891.8 2772.9 0.002279 890979.3 4268.8 0.001912 0.155 1.057 0.886 28 912256.0 2862.7 0.00223 931159.1 4347.0 0.001918 0.157 1.035 0.876 28 93138.4 2907.2 0.00228 991199.3 4464.5 0.001918 0.157 1.035 0.876 28 93138.4 2907.2 0.00228 991199.3 4464.5 0.001918 0.157 1.051 0.994 31 971302.6 2995.9 0.00231 1031804.0 4540.3 0.001878 0.143 1.092 0.991 31 971302.6 2995.9 0.00231 1031804.0 4540.3 0.001878 0.143 1.092 0.991 31 971302.6 2995.9 0.002213 1031804.0 4540.3 0.001878 0.143 1.092 0.991	4	281855.4	1027.	7 0.003468	287695.8	1518.5	0.002832	0.183	1.264	0-0044	1.037	0.0044	1.718
7 396508.5	5	320073.1	1156.	0 0.003245	326705.4	1798.3	0.002706	0.166	1.213	0.0044	1.016	0.0044	1.712
8 44726.2 1542.0 0.003387 443734.3 2596.3 0.002515 0.258 1.347 0.0043 1.004 0.0039 1.656 9 472943.9 1666.9 0.003149 482743.9 2843.6 0.002448 0.223 1.273 0.0043 0.994 0.0039 1.556 10 511161.6 1791.8 0.003390 521753.5 3097.7 0.002435 0.282 1.392 0.0044 1.004 0.0041 1.708 11 549379.3 1915.9 0.003102 56C763.1 3350.6 0.002388 0.230 1.293 0.0044 0.999 0.0041 1.712 12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002218 0.2085 1.342 0.0043 0.963 0.0039 1.655 13 616642.4 2125.5 0.002275 629420.1 3775.4 0.002184 0.253 1.247 0.0043 0.963 0.0039 1.655 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 1.546 0.923 1.556 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 1.547 0.923 1.556 0.002759 649510.0 3818.9 0.002142 0.224 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.0026549 70974.8 3905.1 0.002064 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002562 750154.6 3987.8 0.002000 0.182 1.133 0.922 20 758608.0 2491.0 0.002666 70240 4028.9 0.002000 0.182 1.133 0.922 22 793972.5 2589.2 0.002604 850701.8 4150.2 0.002003 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002003 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002003 0.161 1.008 0.926 22 793972.5 2589.2 0.00274 87089.4 4101.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.00231 830514.6 4151.2 0.001932 0.171 1.051 0.888 25 853209.8 2772.9 0.002273 87089.4 4229.2 0.001932 0.171 1.051 0.888 25 853209.8 2772.9 0.002273 87089.4 4385.8 0.001918 0.157 1.055 0.876 26 872891.8 2772.9 0.002273 87089.4 4385.8 0.001918 0.157 1.055 0.886 29 93198.4 2907.2 0.002289 951249.4 4385.8 0.001918 0.157 1.055 0.888 279 931898.4 2907.2 0.002289 951249.4 4385.8 0.001918 0.157 1.055 0.888 279 931898.4 2907.2 0.002289 951249.4 4385.8 0.001918 0.157 1.055 0.888 279 93198.4 2907.2 0.002289 951249.4 4385.8 0.001918 0.157 1.055 0.888 279 93198.4 2907.2 0.002289 951249.4 4385.8 0.001918 0.157 1.055 0.888 279 93198.4 2907.2 0.	6	358290.8	1284.	8 0.003498	365715.1	2074.1	0.002631	0.248	1.338	0.0044	1.011	0.0044	1.720
9 472943.9 1666.9 0.003149 482743.9 2843.6 0.002448 0.223 1.273 0.0043 0.994 0.0033 1.556 10 511161.6 1791.8 0.003390 521753.5 3097.7 0.002435 0.282 1.392 0.0044 1.004 0.0041 1.708 11 549379.3 1915.9 0.003102 56C763.1 3350.6 0.002388 0.230 1.293 0.0044 0.999 0.0041 1.712 12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.963 0.0039 1.655 13 616642.4 2125.5 0.002759 649510.0 3818.9 0.002142 0.245 1.342 0.0043 0.963 0.0039 1.655 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.247 1.184 0.923 15 656000.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.267 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 69561.8 2340.4 0.002549 709974.8 3905.1 0.002108 0.210 1.159 0.919 18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002067 0.189 1.113 0.907 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002008 0.182 1.123 0.922 20 754608.0 2491.0 0.002542 770344.8 4068.7 0.002008 0.182 1.123 0.922 21 773490.4 2540.1 0.002582 790334.8 4069.7 0.002008 0.182 1.123 0.922 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.0010932 0.171 1.051 0.875 24 833432.0 2682.2 0.002348 84094.4 429.2 0.001918 0.157 1.035 0.875 24 833432.0 2682.2 0.002348 850701.8 4190.3 0.001918 0.157 1.035 0.886 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.886 26 872891.8 2772.9 0.002274 870889.4 4229.2 0.001918 0.157 1.055 0.886 27 892573.9 2818.1 0.002289 99149.3 4468.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.00238 99149.3 4463.5 0.001957 0.164 1.019 0.895 31 971302.6 2995.9 0.00238 99149.3 4463.5 0.001957 0.163 1.092 0.918 31 010857.0 3083.3 0.00216 1011616.0 4502.3 0.001878 0.143 1.032 0.888 31 1010857.0 3083.3 0.00218 1011804.0 4540.3 0.001878 0.143 1.032 0.888 31 1010857.0 3083.3 0.00218 1071983.0 4578.8 0.001957 0.164 1.0179 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4578.8 0.001957 0.164 1.0179 0.928	7	396508.5	1414.	5 0.003286	404724.7	2347.0	0.002555	0.223	1.283	0.0044	1.001	0.0044	1.722
10 511161-6 1791.8 0.003390 521753.5 3097.7 0.002435 0.282 1.392 0.0044 1.004 0.0041 1.708 11 549379.3 1915.9 0.003102 56.763.1 3350.6 0.002388 0.230 1.293 0.0044 0.999 0.0041 1.712 12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.963 0.0043 0.963 1.655 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002184 0.253 1.247 0.935 1.655 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 1.5 656000.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002649 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002008 0.186 1.123 0.907 18 715243.9 2391.3 0.002542 750154.6 3987.8 0.002008 0.186 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002080 0.182 1.123 0.922 1754608.0 2491.0 0.002582 790334.8 4069.7 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002008 0.166 1.068 0.895 22 793972.5 2589.2 0.002406 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002318 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002318 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002318 830514.6 4151.2 0.001932 0.171 1.051 0.888 25 853209.8 2777.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.886 28 912256.0 2862.7 0.002239 951249.4 4385.8 0.001916 0.152 1.060 0.903 30 951620.4 2995.9 0.002239 951249.4 4385.8 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001918 0.157 1.032 0.888 31 010857.0 3083.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.903 31 971302.6 2995.9 0.00238 991429.3 4463.5 0.001918 0.157 1.032 0.888 31 010857.0 3083.3 0.002192 101616.0 4502.3 0.001918 0.144 1.017 0.928 31 1010857.0 3083.3 0.002193 1011804.0 4540.3 0.001878 0.144 1.017 0.928 31 1010857.0 3083.3 0.002214 1071893.0 4578.8 0.001916 0.144 1.017 0.928 31 1010857.0 3083.3 0.002213 1071983.0 4578.8 0.001913	8	434726.2	1542.	0 0.003387	443734.3	2596.3	0.002515	0.258	1.347	0.0343	1.004	0.0039	1.656
11 549379.3 1915.9 0.003102 56C763.1 3350.6 0.002388 0.230 1.293 0.0044 0.999 0.0041 1.712 12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.993 0.0039 1.655 13 616642.4 2125.5 0.002759 629420.1 3775.4 0.002184 0.253 1.247 0.935 1.247 0.935 15 656006.6 2235.7 0.002741 669599.9 3821.5 0.002142 0.224 1.184 0.923 15 656006.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002004 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002004 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002004 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002008 0.182 1.123 0.922 0.754008.0 2491.0 0.002606 770244.5 4028.9 0.002008 0.166 1.008 0.895 1774290.4 2540.1 0.002502 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.925 23 81364.6 2635.9 0.00231 830514.6 4151.2 0.001932 0.171 1.051 0.885 25 853209.8 2727.9 0.002274 870889.4 4292.2 0.001918 0.157 1.035 0.875 26 872891.8 2772.9 0.002274 870889.4 4292.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.00223 870889.4 429.2 0.001918 0.157 1.055 0.886 29 931938.4 2072.2 0.00223 870889.4 429.2 0.001918 0.157 1.055 0.886 29 931938.4 2072.2 0.00223 870889.4 429.2 0.001918 0.157 1.055 0.886 29 931938.4 2072.2 0.00223 870889.4 429.2 0.001918 0.157 1.055 0.886 29 931938.4 2072.2 0.00223 870899.7 3 4268.6 0.001918 0.157 1.055 0.888 29 931938.4 2072.2 0.00223 87189.9 3442.4 385.8 0.001916 0.126 1.019 0.895 31 971302.6 2991.7 0.00223 8791429.3 4463.5 0.001918 0.157 1.055 0.888 31 010857.0 3083.3 0.002192 971339.3 4424.6 0.001918 0.157 1.055 0.888 31 010857.0 3083.3 0.002192 971339.3 4424.6 0.001918 0.157 1.055 0.888 31 010857.0 3083.3 0.002192 971339.3 4424.6 0.001918 0.157 1.055 0.888 31 010857.0 3083.3 0.002193 1031804.0 4578.8 0.001918 0.144 1.079 0.928 31 11.050221.0 3171.7 0.002213 1071983.0 4578.8 0.001919 0.155 1.049 0.911	9	472943.9	1666.	9 0.003149	482743.9	2843.6	0.002448	0.223	1.273	0.0043	0.994	0.0039	1.556
12 587596.9 2035.9 0.003178 599772.7 3593.7 0.002272 0.285 1.342 0.0043 0.963 0.0039 1.655 13 616642.4 2125.5 0.002925 629420.1 3775.4 0.002184 0.253 1.247 0.935 1.247 0.935 1.247 0.02284 1.184 0.923 15 656006.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002067 0.189 1.113 0.907 18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002000 0.182 1.123 0.922 20 754608.0 2491.0 0.00266 770244.5 4028.9 0.002000 0.182 1.123 0.922 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.00231 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002344 850701.8 4190.3 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002234 870889.4 4229.2 0.001932 0.171 1.051 0.875 26 872891.8 2772.9 0.002273 870889.4 4229.2 0.001932 0.171 1.055 0.886 2772.9 0.00223 870979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2813.1 0.00223 870979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2813.1 0.00223 870979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2813.1 0.00223 870979.3 4268.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 31 971030.6 2995.9 0.00238 991429.3 4463.5 0.001941 0.152 1.060 0.903 31 971030.6 2995.9 0.00238 991429.3 4463.5 0.001941 0.152 1.060 0.903 31 971030.6 2995.9 0.00238 991429.3 4463.5 0.001941 0.152 1.060 0.903 31 100857.0 3083.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.075 0.888 31 1010857.0 3083.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.075 0.888 31 1010857.0 3083.3 0.002188 1051893.0 4578.8 0.001956 0.144 1.079 0.928 31 1010857.0 3083.3 0.002184 1051893.0 4578.8 0.001956 0.144 1.079 0.928 31 1010857.0 3083.3 0.002184 1051893.0 4578.8 0.001956 0.144 1.079 0.928 31 1010857.0 3083.3 0.002184 1051893.0 4578.8 0.001956 0.144 1.079 0.928 31 111 1.0002211 0.002213 1071983.0 4578.8 0.001956 0.144 1.079 0.991		511161.6	1791.	8 0.003390	521753.5	3097.7	0.002435	0.282	1.392	0.0044	1.004	0.0041	1.708
13 616642.4 2125.5 0.002925 629420.1 3775.4 0.002184 0.253 1.247 0.935 14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.262 1.184 0.923 15 656006.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002067 0.189 1.113 0.907 18 715243.9 2391.3 0.002627 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 7554608.0 2491.0 0.002466 770244.5 4028.9 0.002080 0.182 1.123 0.922 22 733972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002340 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 8134554.6 2635.9 0.002346 850701.8 4190.3 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001932 0.171 1.051 0.8876 25 853209.8 2727.9 0.002274 87089.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002274 870899.4 4229.2 0.001918 0.157 1.035 0.876 272.9 0.002274 87089.4 4229.2 0.001918 0.157 1.035 0.876 28 912256.0 2862.7 0.00223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001921 0.165 1.057 0.886 29 931938.4 2907.2 0.00223 931159.1 4347.0 0.001918 0.124 1.015 0.895 31 1010857.0 3083.3 0.002192 971339.3 4426.6 0.001918 0.124 1.015 0.895 31 1010857.0 3083.3 0.002192 971339.3 4426.6 0.001918 0.124 1.015 0.895 31 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.124 1.015 0.898 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001993 0.135 1.049 0.991											0.999		
14 636324.5 2181.5 0.002759 649510.0 3818.9 0.002142 0.224 1.184 0.923 15 656000.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002067 0.189 1.113 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002067 0.189 1.113 0.907 18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 754608.0 2491.0 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002331 830514.										0.0043		0.0039	1.655
15 656006.6 2235.7 0.002741 669599.9 3821.5 0.002024 0.262 1.183 0.877 16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002040 0.222 1.152 0.907 18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 754608.0 2491.0 0.002406 770244.5 4028.9 0.002080 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 27 892573.9 2813.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2882.7 0.002223 931159.1 4347.0 0.001918 0.157 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001957 0.164 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002192 971339.3 4463.5 0.001957 0.163 1.092 0.918 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001913 0.135 1.049 0.911													
16 675784.1 2289.0 0.002669 689787.2 3863.1 0.002108 0.210 1.159 0.919 17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002067 0.189 1.113 0.907 18 715243.9 2391.3 0.002623 730064.7 3940.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 754608.0 2491.0 0.002406 770244.5 4028.9 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 79034.8 4069.7 0.002033 0.205 1.152 0.920 22 79372.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.00234 87088.4 <th></th>													
17 695561.8 2340.4 0.002549 709974.8 3905.1 0.002067 0.189 1.113 0.907 18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 754608.0 2491.0 0.002640 770244.5 4028.9 0.002080 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 411.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.00231 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.00234 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2955.9 0.002388 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.888 34 1030539.0 3127.4 0.002213 1031804.0 4540.3 0.001878 0.124 1.015 0.888 34 1030539.0 3127.4 0.002213 1031804.0 4570.3 0.001913 0.135 1.049 0.911													
18 715243.9 2391.3 0.002623 730064.7 3946.4 0.002040 0.222 1.152 0.900 19 734925.9 2442.2 0.002542 750154.6 3987.8 0.002080 0.182 1.123 0.922 20 754608.0 2491.0 0.002406 770244.5 4028.9 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.00231 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002244 870889.4 429.2 0.001918 0.157 1.035 0.876 25 853209.8 277.9 0.002274 870889.4 4229.2 0.001918 0.157 1.048 0.925 27 892573.9 2813.1 0.00231 911069.3 <th></th>													
19 734925.9													
20 754608.0 2491.0 0.002406 770244.5 4028.9 0.002008 0.166 1.068 0.895 21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002239 931159.1 4347.0 0.00191 0.157 1.058 0.886 28 912256.0 2862.7 0.002233 931159.1 4347.0 0.00191 0.157 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3<													
21 774290.4 2540.1 0.002582 790334.8 4069.7 0.002053 0.205 1.152 0.920 22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2777.9 0.002279 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
22 793972.5 2589.2 0.002404 810424.7 4111.1 0.002057 0.144 1.078 0.926 23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.													
23 813654.6 2635.9 0.002331 830514.6 4151.2 0.001932 0.171 1.051 0.875 24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2662.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001898 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001915 0.135 1.049 0.911													
24 833432.0 2682.2 0.002364 850701.8 4190.3 0.001954 0.174 1.071 0.888 25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.00238 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002164 103160.0													
25 853209.8 2727.9 0.002274 870889.4 4229.2 0.001918 0.157 1.035 0.876 26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911	23												
26 872891.8 2772.9 0.002293 890979.3 4268.8 0.002015 0.121 1.048 0.925 27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.144 1.079 0.928 34 1030539.0 3127.4 0.002284 105													
27 892573.9 2818.1 0.002301 911069.3 4308.4 0.001921 0.165 1.057 0.886 28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.124 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1													
28 912256.0 2862.7 0.002223 931159.1 4347.0 0.001918 0.137 1.025 0.888 29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001898 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
29 931938.4 2907.2 0.002289 951249.4 4385.8 0.001941 0.152 1.060 0.903 30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001898 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
30 951620.4 2951.3 0.002192 971339.3 4424.6 0.001916 0.126 1.019 0.895 31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001878 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
31 971302.6 2995.9 0.002338 991429.3 4463.5 0.001957 0.163 1.092 0.918 32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001898 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
32 991079.9 3040.3 0.002166 1011616.0 4502.3 0.001898 0.124 1.015 0.894 33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
33 1010857.0 3083.3 0.002193 1031804.0 4540.3 0.001878 0.143 1.032 0.888 34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													
34 1030539.0 3127.4 0.002284 1051893.0 4578.8 0.001956 0.144 1.079 0.928 35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911		_											
35 1050221.0 3171.7 0.002213 1071983.0 4617.8 0.001913 0.135 1.049 0.911													

STANTON NUMBER DATA RUN 010474 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 65.2 UINF= 37.6 XV0=20.900 RHO= 0.07448 CP= 0.241 VISC= 0.16233E-03 PR=0.714
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=28.400 P/D=10
UNCERTAINTY IN REX=19307.

** M=0.0, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL, ** NO BL TRIP.

PL A	re x	PEX	TO	REENTH	STANTON NO	DST -	DREEN	М	F	₹2	THETA	DTH
1	50.30	0.56762E 0	6 94.6	0.42089E 03	0.12509E-02	0.611E-04	^ 58.					
2	52-30	0.60624E 0	6 94.2	0.47050E 03	0.13186E-02	0.621E-04	58.	0.00	0.0000	94.2	1.000	0.012
3	54.30	0.64485E 0	6 94.5	0.52003E 03	0.12469E-02	0.615E-04	58.	0.00	0.0000	94.5	1.000	0.012
4	56.30	0.68346E 0	6 94.1	0.57085E 03	0 • 138 54E - 02	0.626E-04	58.	0.00	0.0000	94.1	1.000	0.012
5	58.30	0.72208E 0	6 94.4	0.62311E 03	0.13215E-02	0.619F-04	58.	0.00	0.2200	94.4	1.000	0.012
6	60.30	0.76069E 0	6 94.1	0.67728E 03	0.14838F-02	0.629E-04	58.	0.00	0.0000	94.1	1.000	0.012
7	62.30	0.79931E 0	6 94.2	0.733155 03	0.141015-02	0.624E-04	58.	0.00	0.0000	94.2	1.000	0.012
8	64.30	0.83792E 0	6 9 4. l	0.79155E 03	0.16147E-02	0.6355-04	58.	0.00	0.0000	94.1	1.000	0.012
9	66.30	0.87653E 0	6 94.2	0.85291E 03	0.15638E-02	0.629E-04	58.	0.00	0.0000	94.2	1.300	0.012
10	68.30	0.91515E 0	6 94.2	0.91749E 03	0.17809E-02	0.638E-04	58.	0.00	0.0000	94.2	1.000	0.012
11	70-30	0.95376E 0	6 94.3	0.98517E 03	0.17248E-02	0.634E-04	58.	0.00	0.0000	94.3	1.000	0.012
12	72.30	0.99237E 0	6 94.0	0.10545E 04	0 • 1 86 69 E - 02	0.645E-04	58.	0.00	0.0000	94.0	1.000	0.012
13	73.82	0.10217E 0	7 92.6	0.11023E 04	0.11800E-02	0.297E-04	58.					
14	74.85	0.10416E 0	7 91.8	0.11274E 04	0.13374E-02	0.370E-04	58.					
15	75.88	0.106155 0	7 92.1	0.11546E 04	0.13934E-02	0.382E-04	58.					
16	76.91	0.10815E 0	7 91.9	0.11831E 04	0.14743E-02	0.388E-04	58.					
17	77-95	0.11015E 0	7 91.9	0.12131E 04	0.15351E-02	0.397E-04	58.					
18	78.98	0.11213E 0	7 91.7	0.12444E 04	0.16145E-02	0.409E-04	58.					
19	80-01	0.11412E 0	7 91.5	0.12771E 04	0.16698E-02	0.402E-04	58.					
20	81.04	0.11611E 0	7 91.6	0.13103E 04	0.16669E-02	0-399E-04	58.					
21	82.07	0.11810E 0	7 91.3	0.13457E 04	0.18881E-02	0.433E-04	58•					
22	83.10	0.12009E 0	7 91.3	0.13827E 04	0.18321E-02	0.442E-04	58.					
23	84.13	0.12208E 0	7 90.9	0.14193E 04	0.18382E-02	0.444E-04	58.					
24	85.16	0.12408E 0	7 90.9	0.14567E 04	0.19209F-02	0.462E-04	58.					
25	86.20	0.12607E 0	7 90.9	0.14952E 04	0.19488E-02	0.460E-04	58.					
26	87.23	0.12806E 0	7 90.6	0.15360E 04	0.21432E-02	0.484E-04	58.					
27	88.26	0.13005E 0	7 90.7	0.15778E 04	0.20625E-02	0.476E-04	58.					
28	89.29	0.13204E 0	7 90.5	0.16189E 04	0.20624E-02	0.476E-04	58.					
29	90.32	0.13403E 0	7 90.1	0.16609E 04	0.21521E-02	0.483E-04	58.					
30	91.35	0.13602E 0	7 90.5	0.17035E 04	0.21274E-02	0.492E-04	58.					
31	92-38	0.13801E 0	7 90.8	0.17471E 04	0.22596E-02	0.500E-04	58.					
32	93.41	0.140008 0	7 90.6	0.17908E 04	0.212718-02	0.488E-04	58.					
33	94.45	0.14200E 0	7 90.5	0.18339E 04	0.22077E-02	0.4915-04	58.					
34	95.48	0.14399E 0	7 90.0	0.18786F 04	0.227695-02	0.496E-04	58.					
35	96.51	0.14598E 0	7 90.3	0.19236F 04	0.22484E-02	0.521E-04	58.					•
36	97.54	0.14797F 0	7 89.6	0.19684E 04	0 • 2 24 76 E - 02	0.568E-04	59.					

STANTON NUMBER DATA AUN 021074 *** DISCRETE HOLF RIG *** NAS-3-14336

TINF= 65.3 UINF= 37.5 XVD=20.900 RHO= 0.07561 CP= 0.241 VISC= 0.15990 E-03
DISTANCE FROM ORIGIN OF BL TO 1ST PLATE=28.400 P/D= 5
UNCERTAINTY IN REX=19546. UNCERTAINTY IN F=0.03101 IN RATIO

PR=0.715

** M=0.2, COLD RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL, ** NO BL TRIP.

PL AT	E X	REX	τŋ	REENTH	STANTON NO	DST	Dbé⊨N	М	F	T2	THETA	DTH
1	50.30	0.57466E 06	96.8	0.42611E 03	0.12240E-02	0.566E-04	59.					
2	52-30	0.61375E 06	96.7	0.52835E 03	0.23586E-02	0.610E-04	59.	0.21	0.0069	72.8	0.239	0.008
3	54.30	0.65285E 06	96.8	0.70488E 03	0.33972E-02	0.667E-04	59.	0.21	0.3368	72.8	0.239	0.008
4	56.30	0.691945 06	96.8	0.91131E 03	0.37962E-02	0.694E-04	59.	0.23	0.0076	72.5	0.229	9.008
5	58-30	0.73103E 06	96.7	0.11233F 04	0.37093E-02	0.6895-04	59.	0.21	0.0069	72.6	0.231	0.008
6	60.30	0.77012F 06	96.8	0.13276E 04	0.35460E-02	0.6775-04	5 9.	0.22	0.0070	72.5	0.228	0.008
7	62.30	0.80922E 06	96.7	0.15271E 04	0.34487E-02	0.672E-04	59.	0.21	0.0068	72.8	0.238	0.008
8	64.30	0.84831E 06	96.8	0.17224E 04	0.33124E-02	0.663E-04	59.	0.21	0.3068	72.7	0.236	0.008
9	66-30	0.88740E 06	96.8	0.19137E 04	0.32592E-02	0.659E-04	59.	0.21	0.0069	72.6	0.231	0.008
10	68-30	0.92649E 06	96.8	0.21035E 04	0.32260E-02	0.656E-04	59.	0.22	0.0071	72.5	0.228	0.008
11	70.30	0.96559E 06	96.9	0.22911E 04	0.318315-02	0.6525-04	59.	0.22	0.0070	72.4	0.225	0.008
12	72.30	0.10047E 07	96.8	0.24746E 04	0.31113E-02	0.650E-04	59.	0.21	0.0070	72.2	0.219	0.008
13	73.82	0.10344E 07	92.6	0.25912E 04	0.25752E-02	0.453E-04	59.					
14	74.85	0.10545E 37	91.6	0.26419E 04	0.24561E-02	0.494E-04	59.					
15	75.88	0.10747E 07	92.4	0.26905E 04	0.23734E-02	0.488E-04	59.					
16	76.91	0.10949E 07	92.5	0.27378E 04	0.231545-02	0.475E-04	59.					
17	77.95	0.11151F 07	92.7	0.27837E 04	0.22361E-02	0.4655-04	59.					
18	78.98	0.11352E 07	92.7	0.28289E 04	0.22530E-02	0-469E-04	59.					
19	80.01	0.11554E 07	92.7	0.28739E 04	0.22067E-02	0.4505-04	59.					
20	81.04	0.11755E 07	92 • 9	0.29174E 04	0.21094E-02	0.435E-04	59.					
21	82.07	0.11956E 07	92.8	0.29611E 04	0.22329E-02	0.456E-04	59.					
22	83.10	0.12158E 07	92.9	0.30048E 04	0.21007E-02	0.4535-04	59.					
23	84.13	0.12359E 07	92.6	0.30467E 04	0.20538F-02	0.4485-04	59.					
24	85.16	0.12561E 07	92.6	0.30883E 04	0.20819E-02	0.4585-04	59.					
25	86.20	0.12764E 07	92.7	0.31298E 04	0.20315E-02	0.452E-04	59.					
26	87-23	0.12965E 07	91.8	0.31710E 04	0.20530E-02	0.456E-04	59.					
27	88.26	0.13166E 07	92.4	0.32123E 04	0.20472E-02	0.455E-04	59.					
28	89.29	0.13368E 07	92.4	0.32529E 04	0.19811E-02	0.4446-04	59.					
29	90.32	0.13569E 07	91.9	0.32938E 04	0.207915-02	0.453E-04	59.					
30	91.35	0.13770E 07	91.8	0.33343E 04	0.194105-02	0.450F-04	59.					
31	92.38	0.13972E 07	92.9	0.33746F 04	0.205105-02	0.455E-04	59.					
32	93.41	0.14174E 07	92.8	0.34149E 04	0.19473E-02	0.440E-04	59.					
33	94.45	0.143766 07	92.8	0.34545E 04	0.19839E-02	0.438E-04	59.					
34	95.48	0.145785 07	92.3	0.34951F 04	0.20502E-02	0.441E-04	50.					
35	96.51	0.14779E 07	92.6	0.35358E 04	0.19866F-02	0.462E-04	59.					
36	97.54	0.14980F 07	91.8	0.35756F 04	0.19607E-02	0.508F-04	59.					

STANTON NUMBER DATA RUN 021174 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 64.3 UINF= 37.8 XV0=20.900 RHO= 0.07600 CP= 0.241 VISC=-0.15867E-03 PP=0.715
DISTANCE FROM ORIGIN OF 8L TO 1ST PLATE=28.400 P/D= 5
UNCERTAINTY IN REX=19837. UNCERTAINTY IN F=0.03097 IN RATIO

** M=0.2, HOT RUN, LOW RE, STEP T-WALL AT VIRTUAL ORIGIN OF BL, ** NO BL TRIP.

PL A	TE [.] X	REX		TO	REENTH		STANTON NO	DST	DREEN	M	F	T2	THETA	H7Q
1	50.30	0.58322E	06	95.3	0.43246E 0	3	0.11728E-02	0.565E-04	60.					
2	52.30	0.62290E	06	95.4	0.61967E 0	3	0.15788E-02	0.575E-04	60.	0.23	0.0073	92.6	0.911	0.011
3		0.66257E	06	95.4	0.95697E 0	3	0.24354E-02	0-610E-04	60.	0.21	0.3369	92.7	0.912	0.011
4	56.30	0.70225E	06	95-4	0.13249E 0	4	0 • 290 75E-02	0.637E-04	60.	0.23	0.0075	92.8	0.917	0.011
5	58.30	0.74192E	06	95.4	0.16913E 0	4	0.28334E-02	0-632E-04	61.	0.19	0.0063	93.1	0.926	0.011
6	60-30	0.78160E		95.4	0.20320E 0		0.25961E-02	0.620E-04	61.	0.20	0.0064	92.8	0.919	0.011
7		0.82127E		95.5	0-23487E 0		0-24992E-02	0.613E-04	61.	0.17	0.0054	93.1	0.925	0.011
8	64.30	0.86095E	06	95.4	0.26460E 0		0.23165E-02	0.605E-04	61.	0.17	0.0055	93.6	0.944	0.011
9	66.30	0.90062E	06	95.4	0.29484E 0	4	0 • 2 23 60E + 02	0.602E-04	62.	0.18	0.0058	93.7	0.944	0.011
10	68.30	0.94030E	06	95.4	0.32671E 0	4	0.21635E-02	0.598E-04	62.	0.20	0.0065	94.0	0.956	0.011
11		0.979975		95.4	0.35878E 0		0.20703E-02	0.595E-04	62.	0.18	0.0059		0.977	0.011
12	72-30	0.10196E	07	95.4	0.38946E 0	4	0.19376E-02	0.588E-04	62.	0-17	0.0056	96.1	1.023	0.011
13	73.82	0.10498E	07	92.6	0.40655E 0		0.18616E-02	0.356E-04	63.					
14	74.85	0.10702E	07	91.6	0.41033E 0	14	0.18298E-02	0.405E-04	63.					
15	75.88	0.10907E	07	92.2	0.41405E 0	4	0 - 18058E-02	0-407E-04	63.					
16	76.91	0.11112E	07	92.3	0.41775E 0	14	0.18101E-02	0.404E-04	63.					
17	77.95	0.11317E	07	92.4	0.42143E 0	14	0.17936E-02	0.402E-04	63.					
18	78.98	0.11522E	07	92.6	0.42509E 0	4	0.17834E-02	0.403E-04	63.					
19	80.01	0.11726E	07	92.4	0.42876E 0	4	0.18047E-02	0.392E-04	63.					
20	81.04	0.11930E	07	92.6	0.43239E 0	4	0-17403E-02	0.382F-04	63.					
21	82.07	0.12135E	07	92.6	0.43601E 0	4	0.18063E-02	0.396E-04	63.					
22	83.10	0.12339E	07	92.5	0.43969E 0	4	0.17912E-02	0.406E-04	63.					
23	84-13	0.12543E	07	92.3	0.44327E 0		0.17025F-02	0.397E-04	63.					
24	85.16	0-12749E	07	92.5	0.44676E 0	4	0.17156E-02	0.405E-04	63.					
25		0.12954E		92.4	0.45029E 0		0.17348E-02	0.404E-04	63.					
26	87.23	0.13158E	07	91.8	0.45388E 0	14	0.17731E-02	0.410E-04	63.					
27		0.13363E	07	92.4	0.45743E 0	4	0.17004E-02	0.402E-04	63.					
28	89.29	0.13567E	07	92.3	0.46093E 0	4	0.17145E-02	0.399E-04	63.					
29		0.13771E		92.0	0.46447E 0		0.17510E-02	0.401E-04	63.					
30		0.13975E		91.8	0.46802E 0		0.17226F-02	0.410E-04	63.					
31		0-14180E		92.5	0-47160E 0		0-17710E-02	0.411E-04	63.					
32		0.14385E		92.2	0-47516E 0	-	0.17113E-02	0.405E-04	63.					
33		0.14590E		92.3	0.47868F 0		0.17316E-02	0.401E-04	63.					
34		0.14795E		91.9	0.48228E 0		0.17838E-02	0.401E-04	63.					
35		0.14999E	-	92.1	0.48588E 0		0-17407E-02	0.424E-04	63.					
36		0.15203F		91.4	0.48940E 0		0 - 1 70 30E - 02	0 • 454E-04	63.					

FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHICH WAS DETAINED BY LINEAR SUPERPOSITION THEORY. THIS DATA WAS PRODUCED FROM RUN 021074 AND RUN 021174
FOR THE DETAIL CHANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE TWO RUNS

PLATE	REXCOL	RF	DEL2	ST (TH=0)	REXHOT	RE	DEL 2	ST(TH=1)	ETA	STCR	F-COL	STHP	F-HO*	PHT-1
1	574661.1		426 • 1	0.001224	583221.2		432.5	0.001173	เพนนน	บบบบบ	0.0000	ยบบบบบ	0.0000	טטניטני
2	613753.6		501.6	0.002636	622896.1		630.6	0.001475	0.440	1.123	0.0069	0.630	0.0073	1.754
3	652846.2		626.1	0.003739	662570.9		988.4	0.002309	0.382	1.612	0.0068	0.999	0.0069	2.160
4	691938.8		779.2	0.004092	702245.9		1376.2	0.002800	0.316	1.786	0.0076	1.225	0.0075	2.524
5	731031.4		937.4	0.004001	741920.8		1760.4	0.002740	0.315	1.765	0.0069	1.212	0.0063	2.335
6	770123.9		1091.1	0.003860	781595.6		2116.6	0.002484	0.356	1.721	0.0070	1.111	0.0064	2.251
7	809216.5		1240.4	0.003778	821270.6		2447.4	0.002396	0.366	1.701	0.0068	1.082	0.0054	2.060
8	848309.1		1385.4	0.003645	860945.4		2755.2	0.002237	0.386	1.657	0.0068	1.020	0.0055	2.024
9	887401.7		1526.9	0.003591	900620.4		3067.0	0.002156	0.400	1.647	0.0069	0.992	2.0058	2.043
10	926494.3		1666.7	0.003559	940295.3		3394.9		0.410	1.646	0.0071	0.974	0.0065	2.135
11	965586.8		1804.9		979970-1		3722.0		0.421	1.640	0.0070	0.952	0.0059	2.925
12	1004679.0		1940.7	0.003431	1019645.0		4028.9	0.001971	0.425	1.613	0.0070	0.930	0.0056	1.961
13	1034389.0		2036 • 1	0.002808	1049798.0		4197.3	0.001802	0.358	1.328		0.855		
14	1054522.0		2091.2	0.002660	1070230.0		4233.9	0.001778	0.332	1.263		0.847		
15	1074655.0		2143.8	0.002558	1090663.0		4270.1	0.001759	0.313	1.219		0.841		
16	1094885.0		2194.6	0.002480	1111194.0		4306.2	0.001768	0.287	1.186		0.848		
17	1115115.0		2243.5	0.002380	1131726.0		4342.3	0.001757	0.262	1.143		0.846		
18	1135248.0		2291.8		1152159.0		4378.1			1.159		0.843		
19	1155381.0		2339.6		1172591.0		4414.0			1.130		0.859		
20	1175513.0		2385.6		1193024.0		4449.6		0.233	1.082		0.832		
21	1195646.0		2432.0		1213457.0		4485.2			1.155		0.865		
22	1215779.0		2478.1		1233889.0		4521.4			1.075		0.865		
23	1235912.0		2522.1		1254322.0		4556.6			1.063		0.822		
24	1256142.0			0.002201	_		4590.9			1.082		0.831		
25	1276372.0				1295385.0			0.001710		1.050		0.846		
26	1295505.u			0.002144			4661.l			1.061		0.868		
27	1316638.0				1336250.0			0.001672		1.072		0.832		
28	1336770.0		2738.9		1356683.0			0.001692		1.029	•	0.845		
29	1356903.0		2781.7					0.031724		1.091	•	0.863		
30	1377036.0		2824.0		1397548.0		4800.5			1.008	7	0.856		
31	1397168.0		2865.9				4835.8			1.076		0.980		
32	1417399.0		2907.9				4871.0			1.019		0.855		•
33	1437629.0		2949.1		1459044.0		4905.8			1.044		0.867		
34	1457762.0		2991.5				4941.3			1.082		0.895		
35	1477894.0		3033.9		1499909.0		4976.9			1.050		0.876	,	
36	1498027.0		3075.3	0.002045	1520342.0		5011.7	0.001682	0.178	1.041		0.859		

STANTON NUMBER DATA RUN 020774 *** DISCRETE HOLE RIG *** NAS-3-14336

TINF= 67.1 UINF= 37.1 XV0=41.550 RHO= 0.07569 CP= 0.241 VISC= 0.16029 E-03 PR=0.714

DISTANCE FROM ORIGIN OF BL TO 1ST PLATE= 7.750 P/D= 5

UNCERTAINTY IN REX=19304. UNCERTAINTY IN F=0.03105 IN RATIO

** LOW RE, ARBITRARY BOUNDARY CONDITION RUN.

PL AT	E X	REX	TO	REENTH	STANTON NO	DST	DREEN	M	F	T2	THETA	DTH
1	50.30	0.16891E 0	98.9	0.65246E 03	0.29058E-02	0.639E-04	58.	**				
2	52.30	0.20751E 0	100.2	0.11889E 04	0.32083E-02	0.635E-04	60.		0.0192			0.011
3	54.30	0.24612E 0	101.2	0.21573E 04	0.32709E-02	0.6235-04	63.	0.62	0.0200	104.7	1.102	0.011
4	56.30	0.28473E 0	100.8	0.29827E 04	0.28863E-02	0.607E-04	65.	0.44	0.0144	101.2	1.014	0.011
5	58.30	0.32334E 0	100.5	0.33745E 04	0 • 28244E-02	0.608E-04	66.	0.00	0.3300	100.5	1.000	0.011
6	60.30	0.36194E 0		0.34806E 04	0.26718E-02	0.598E-04	66.		0.0000			0.011
7	62.30	0.40055E 0	97.6	0.35748E 04	0.22088E-02	0.626F-04	66.	0.00	0.0000	97.6	1.0.)0	0.012
8	64.30	0.43916E 0	97.3	0.36871E 04	0.207075-02	0.624E-04	66.	0.05	0.0015		1.050	0.012
9	66.30	0.47776E 0	96.7	0.38900E 04	0 • 1 92 55 E - 02	0.631E-04	66.		0.0051		0.984	0.012
10	68.30	0.51637E 0	94.8	0.42129E 04	0.18319E-02	0.667E-04	66.		0.0074		1.074	0.013
11	70.30	0.55498E 0	94.7	0-45865E 04	0.17798E-02	0.666E-04	67.	0.21	0.0070	97.8	1.111	0.014
12	72.30	0.59359E 0	95.0	0.48055E 04	0.18260F-02	0.661E-04	67.	0.00	0.0000	95.0	1.000	0.013
13	73.82	0.62293E 0		0.48613E 04	0.20658F-02	0.400E-04	67.					
14	74.85	0.64281E 0		0.49005E 04	0.18691E-02	0.415E-04	67.					
15	75.88	0.66269E 0		0.49371E 04	0.18126E-02	0.412F-04	67.					
16	76.91	0.68267E 0	95.6	0.49734E 04	0.18316E-02	0.408E-04	67•					
17	77.95	0.70265E 0		0.50096E 04	0.18053E-02	0.405E-04	67.					
18	78.98	0.72253E 0		0.50451E 04	0.17613E-02	0.403E-04	67.					
19	80.01	0.74242E 0	-	0.50807E 04	0.18184E-02	0.396E-04	67.					
20	81.04	0.76230E 0		0.51163E 04	0.17513E-02	0.385E-04	67.					
21	82.07	0.78218E 0		0.51515E 04	0.17884E-02	0.397E-04	67.					
22	83.10	0.80207E 0		0.51872E 04	0.17977E-02	0.409E-04	67.					
23	84.13	0.82195E 0		0.52219E 04	0.16879F-02	0.398E-04	67.					
24	85.16	0.84193E 0		0.52559E 04	0.17249E-02	0.408E-04	67.					
25	86.20	0.86191E 0		0.52900E 04	0.17025E-02	0.403E-04	67.				•	
26	87.23	0.88179E 0		0.53246E 04	0.17807E-02	0.413E-04	67.					
27	88.26	0.90167E 0		0.53592E 04	0.16949E-02	0.404E-04	67.					
28	89-29	0.92155E 0		0.53929E 04	0.16920E-02	0.398F-04	67.					
29	90.32	0.94144E 0		0.54270E 04	0.17318E-02	0.400E-04	67.					
30	91.35	0.96132E 0		0.54610E 04	0.16802E-02	0.407E-04	67.					
31	92.38	0.98120E 0		0.54950E 04	0.17399E-02	0.409E-04	67.					
32	93.41	0.10012E 0		0.55295E 04	0.17210F-02	0.406E-04	67.					
33	94.45	0.10212E 0		0.55635E 04	0.16977E-02	0.398E-04	67.					
34	95.48	0.10410E 0			9.17732F-02	0.401E-04	67.					
35	96.51	0.10609E 0		0.56329E 04	0.17239E-02	0.423E-04	67.		,	1		
36	97.54	0.10808F 0	7 95.0	0.56669E 04	0.16952F-02	0.4535-04	67.					

APPENDIX B

PROFILE DATA

This section includes the velocity and temperature profiles taken at X = 63.3 in. (161 cm) and X = 69.3 in. (176 cm). At X = 69.3 in. (176 cm), temperature and velocity profiles are taken, and at X = 63.3 in. (161 cm), only velocity profiles were taken. The lateral average velocity profiles are used as an input data to program SHEAR which calculates the shear stress distribution and mixing length distribution.

Special Nomenclature

DDEL1	uncertainty	in	δ ₁

DDEL2 uncertainty in
$$\delta_2$$

DEL1
$$\delta_1$$
, displacement thickness

DEL2
$$\delta_2$$
 , momentum deficit thickness

DEND2 uncertainty in
$$\Delta_2$$

DREEN uncertainty in
$$Re\overline{\Delta}_2$$

END2
$$\Delta_2$$
, enthalpy thickness

REEN
$$Re_{\Delta_2}$$

TBAR
$$(T - T_{\infty})/(T_{\Omega} - T_{\infty})$$

UINF= 53.8 FT/SEC X= 69.3 INCHES PORT= 1 TINF= 69.0 DEG F PINF= 2120. PSF

VELOCITY PROFILE

TEMPERATURE PROFILE

Y(INCHES)	U(FT/SEC)	UBAR	DU	Y(INCHES)	T(DEG F)	TBAR
0.010	16.00	0.2972	0.28	0.0215	93.97	0.7229
0.011	16.52	0.3069	0.27	0.0225	93.65	0.7120
0.012	17.12	0.3180	0. 26	0.0235	93.24	0.6982
0.013	17.79	0.3303	0• 25	0.0245	92 .81	0.6834
0.014	18.39	0.3415	0.24	0.0255	92.49	0.6725
0.015	18.74	0.3481	0- 24	0.0275	91.87	0.6518
0.017	19.71	0.3660	0.23	0.0295	91 •44	0.6370
0.019	20.43	0.3793	0.22	0.0325	90.74	0.6133
0.022	20.95	0.3892	0• 21	0.0365	90.12	0.5925
0.025	21.49	0.3992	0.21	0.0415	89.57	0.5737
0.029	22.22	0.4126	0. 20	0.0485	89.02	0.5549
0.033	22.79	0.4233	0.20	0.0575	88.55	0.5391
0.039	23.40	0.4346	0.19	0.0685	88.08	0.5232
0.046	24.04	0.4465	0- 19	0.0805	87.79	0.5133
0.054	24.52	0.4553	0.18	0.0955	87.38	0.4995
0.062	25.05	0.4653	0.18	0.1155	87.12	0.4905
0.072	25.42	0.4720	0.18	0.1405	86.77	0.4786
0.087	25.87	0.4806	0.17	0.1705	86.41	0.4667
0.102	26.35	0.4894	0.17	0.2105	86.03	0.4539
0.122	26.56	0.4933	0. 17	0.2605	85.42	0.4330
0.147	26.88	0.4993	0.17	0.3105	84.98	0.4181
0.177	27.17	0.5046	0. 16	0.3705	84.28	0.3943
0.217	27.40	0.5089	0.16	0.4305	83.49	0.3675
0.267	27.96	0.5192	0.16	0.4905	82.72	0.3417
0.322	28.71	0.5332	0. 16	0.5505	81.85	0.3119
0.397	29.91	0.5555	0.15	0.6105	80.96	0.2820
0.472	31.68	0.5883	0.14	0.6705	80.08	0.2522
0.547	34.11	0.6334	0.13	0.7305	79.23	0.2233
0.622	36.53	0.6784	0.12	0.7905	78.35	0.1934
0.697	38.77	0.7200	0.12	0.8505	77.56	0.1665
0.772	41.403	0.7621	0.11	0.9105	76.91	0.1445
0.847	43.00	0.7987	0.10	0.9805	76.14	0.1186
0.922	*44 . 36	0.8331	0.10	1.0505	75.44	0.0946
0.997	46 .68	0.8670	0.10	1.1205	74.82	0.0737
1.072	48.30	0.8970	0.09	1.1905	74.26	0.0547
1.147	49.71	0.9233	0.09	1.2805	73.70	0.0357
1.223	50.97	0.9466	0.09	1.3805	73.17	0.0177
1.297	52.03	0.9663	0.09	1.4805	72.87	0.0077
1.372	52.78	0.9803	0.08	1.5805	72.72	0.0027
1.472	53.43	0.9924	0.08	1.6805	72.67	0.0007
1.572	53.69	0.9971	0.08	1.7805	72.65	0.0002
1.672	53.84	1.0000	0.08	1.8805	72.65	0.0000

DEL1= 0.395 IN. RED2=6618.4

DEL 2 - 0.2391 N. DDFL2=0.001

H= 1.651

DDEL1=0.003

END2= 0.212IN. DEND2=0.001 DR EFN= 35.

REEN= 5664.

TO=102.15 F

X= 69.3 INCHES PINF= 2120. PSF

PORT= 2

VELUCITY PROFILE

				TEMPERATURE	PROFILE	
Y (I NCHES) U(FT/SEC)	UBAR	DU	Y(INCHES)	T(DEG F)	TBAR
0.010	15.85	0.3135	0.27			
0.011	17.06	0.3172	0.26	0.0215	92.37	0.7042
0.012	17.69	0.3289	0. 25	0.0225	91.99	0.6913
0.013	18.53	0.3444	0. 24	0.0235	91.49	0.6743
0.014	18.85	0.3504	0.24	0.0245	91.09	0.6604
0.015	19.46	0.3618	0. 23	0.0255	90.77	0.6494
0.017	20.08	0.3733	0. 22	0.0275	90.21	0.6304
0.019	20.67	0.3842	0. 22	0-0295	89.69	0.6125
0.022	21.60	0.4016	0. 21	0.0325	89.22	0.5965
0.025	22.37	0.4159	0.20	0.0365	88.64	0.5765
0.029	23.08	0.4290	0.19	0.0415	88.05	0.5565
0.033	23.66	0.4398	0.19	0-0485	87.47	0.5365
0.039	24.45	0.4546	0.18	0.0575	87.06	0.5225
0.046	24.98	0.4645	0.18	0.0685	86.62	0.5075
0.054	25.50	0.4741	0.18	0.0805	86.27	0.4955
0.062	26.01	0.4836	0.17	0.0955	85 -86	0.4815
0.072	26.44	0.4915	0.17	0.1155	85.54	0.4705
0.087	26.92	0.5006	0.17	0.1405	85.24	0.4605
0.102	27.31	0.5078	0.16	0.1705	84.81	0.4455
0.122	27.84	0.5176	0.16	0.2105	84.37	0.4305
0-147	29.28	0.5259	0.16	0.2605	83.84	0.4124
0.177	28.76	0.5348	0.16	0-3105	83.28	0.3934
0.217	29.07	0.5404	0.15	0.3705	82.67	0.3723
0.267	29.70	0.5521	0.15	0-4305	82.02	0.3503
0.322	30.34	0.5641	0.15	0-4905	81.29	0.3252
0.397	31.55	0.5865	0.14	0.5505	80.47	0.2971
0.472	38.06	0.6147	0-14	0.6105	79.61	0.2679
0.547	35.14	0.6533	0.13	0.6705	78.85	0.2418
0.622	37.09	0.6896	0.12	0.7305	78.09	0.2157
0.697	39.17	0.7282	0.11	0.7905	77.32	0-1895
0.772	41.36	0.7689	0.11	0-8505	76.64	0.1664
0.847	43.02	0.7998	0.10	0.9105	76.06	0.1462
0.922	44.90	0.8348	0.10	0-9805	75-29	0.1200
0.997	46.70	0.8681	0.10	1.0505	74.49	0.0928
1.072	48.15	0.8952	0.09	1.1205	73.85	0.0706
1-147	49.81	0.9260	0.09	1.1905	73.31	0.0525
1.222	50.99	0.9480	0.09	1.2805	72.70	0.0313
1.297	51.99	0.9665	0.09	1.3805	72.22	0.0151
1.372	52.81	0.9819	0.0B	1.4805	71 -96	0.0061
1.472	53.40	0.9928	0.08	1.5805	71.84	0.0020
1.572	53.71	0.9985	0.08	1.6805	71.81	0.0010
1.672	53.79	1.0000	0.08	1.7805	71.78	0.0000
0-3771N- 92-5	DEL2= 0.2361N. DDFL2=0.001	H= 1.596	POFL 1=0.003	END2= 0-210IN- REDEND2=0-001 DREEN	EN= 5659.	T0=101-02 F

23

UINF# 53.8 FT/SEC X= 69.8 INCHES PORT# 1 TINF# 72.0 DEG F PINF# 2120. PSF

VFLOCITY PROFILE

TEMPERATURE PROFILE

0.010 18.27 0.3397 0.25 0.0215 92.02 0.6812 0.011 18.77 0.3491 0.26 0.025 91.41 0.6603 0.012 19.14 0.3560 0.23 1.3195 90.88 0.6424 0.013 19.85 0.3692 0.23 0.0255 90.47 0.6285 0.014 20.43 0.3800 0.22 0.0255 90.47 0.6285 0.014 20.43 0.3800 0.22 0.0255 90.47 0.6285 0.015 20.94 0.3895 0.21 0.0255 99.27 0.6215 0.015 20.94 0.3895 0.21 0.0275 89.60 0.5886 0.017 21.87 0.4067 0.21 0.0295 89.13 0.5826 0.019 22.57 0.4197 0.20 0.0325 88.64 0.5657 0.022 23.35 0.4343 0.19 0.0365 87.96 0.5528 0.025 24.19 0.4498 0.19 0.0365 87.96 0.5528 0.025 24.19 0.4498 0.19 0.0415 87.47 0.5258 0.033 25.52 0.4747 0.18 0.0485 86.85 0.5048 0.033 25.52 0.4747 0.18 0.0685 85.89 0.4719 0.0466 0.032 24.95 0.4660 0.17 0.0685 85.89 0.4719 0.046 22.02 0.4989 0.17 0.0685 85.89 0.4719 0.046 22.02 24.33 0.5112 0.16 0.0595 85.13 0.4459 0.072 22.83 0.5112 0.16 0.0955 85.13 0.4459 0.072 22.83 0.5112 0.16 0.0955 85.13 0.4459 0.072 22.45 0.5200 0.16 0.155 0.1055 84.69 0.4199 0.077 22.45 0.5200 0.16 0.1605 84.34 0.4189 0.077 23.46 0.577 0.15 0.150 0.1055 84.69 0.4309 0.077 23.46 0.579 0.15 0.150 0.1005 83.31 0.3809 0.177 30.86 0.5739 0.15 0.150 0.1705 83.31 0.3809 0.177 30.86 0.5739 0.15 0.2005 83.31 0.3809 0.177 30.86 0.5739 0.15 0.2005 83.31 0.3809 0.177 30.86 0.5739 0.15 0.2005 83.31 0.3809 0.177 30.86 0.5739 0.15 0.2005 80.41 0.3809 0.177 30.86 0.5739 0.15 0.2005 80.4709 0.2005 80.4719 0.15 0.2005 80.4719 0.2005 80.4719 0.15 0.2005 80.4719 0.2005 80.4719 0.15 0.2005 80.471 0.3809 0.177 30.86 0.5739 0.15 0.2005 80.471 0.3209 0.177 30.86 0.5739 0.15 0.2005 80.471 0.3209 0.177 30.86 0.5739 0.15 0.2005 80.471 0.3209 0.15 0.3005 82.11 0.3209 0.177 30.86 0.5739 0.15 0.3005 82.11 0.3209 0.177 32.10 0.5986 0.14 0.5995 80.471 0.3209 0.177 30.86 0.5739 0.15 0.3005 80.471 0.300	Y(INCHES)	U(FT/SEC)	UBAR	CU	Y(INCHES)	T(DEG F)	TBAR
0.011 18.77 0.3491 0.24 0.0225 91.41 0.6003 0.012 19.14 0.3550 0.23 1.3195 90.88 0.6624 0.013 19.85 0.3692 0.23 0.0255 90.47 0.6285 0.014 20.43 0.3800 0.22 0.0255 90.47 0.6285 0.015 20.94 0.3895 0.21 0.0225 89.60 0.5986 0.017 21.87 0.4067 0.21 0.0295 89.13 0.5826 0.019 22.57 0.4197 0.20 0.0325 88.64 0.5557 0.022 23.35 0.4343 0.19 0.0325 88.64 0.5557 0.025 24.19 0.4968 0.19 0.0365 87.96 0.5428 0.025 24.19 0.4498 0.19 0.0415 87.47 0.5258 0.029 24.95 0.4640 0.18 0.0815 88.85 0.5048 0.033 25.52 0.4747 0.18 0.0775 86.33 0.8669 0.039 26.17 0.4867 0.17 0.0865 85.89 0.4719 0.046 26.82 0.4989 0.17 0.0805 85.54 0.4599 0.054 27.49 0.5112 0.16 0.0805 85.54 0.4599 0.064 27.49 0.5112 0.16 0.155 84.69 0.072 28.45 0.5290 0.16 0.1195 84.34 0.4189 0.087 29.02 0.5397 0.15 0.1105 84.34 0.4189 0.102 29.46 0.5479 0.15 0.16 0.1405 84.34 0.4189 0.103 29.46 0.5479 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2005 82.64 0.3609 0.147 30.86 0.5739 0.15 0.2005 82.64 0.3609 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.217 32.19 0.5986 0.14 0.4905 80.76 0.2968 0.267 38.20 0.6340 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6505 79.44 0.2517 0.472 43.00 0.6360 0.13 0.5505 79.44 0.2517 0.472 43.00 0.6380 0.13 0.5505 79.44 0.2517 0.472 43.00 0.6380 0.13 0.5505 79.44 0.2517 0.472 43.00 0.6380 0.10 0.7905 76.88 0.1444 0.6977 44.66 0.8306 0.10 0.7907 70.10 0.9905 75.64 0.122 0.992 46.10 0.8574 0.10 0.9910 77.46 0.11 0.7905 76.88 0.1444 0.6977 47.63 0.8858 0.09 1.12005 72.90 0.0062	0.010	18 - 27	0.3397	025	0.0215	92 .02	0.6812
0.012 19.14 0.3560 0.23 1.3195 90.88 0.6424 0.013 19.85 0.3692 0.23 0.295 90.47 0.6285 0.014 20.43 0.3800 0.22 0.0255 99.27 0.6215 0.015 20.94 0.3895 0.21 0.0255 99.27 0.6215 0.015 20.94 0.3895 0.21 0.0295 89.13 0.5826 0.017 21.87 0.4067 0.21 0.0295 89.13 0.5826 0.017 21.87 0.4067 0.21 0.0295 89.13 0.5826 0.019 22.57 0.4197 0.20 0.0365 87.96 0.3428 0.022 23.35 0.4343 0.19 0.0365 87.96 0.3428 0.025 24.19 0.4498 0.19 0.0415 87.47 0.5258 0.029 24.95 0.4640 0.18 0.0485 86.85 0.5048 0.033 25.52 0.4747 0.18 0.0575 86.33 0.4869 0.039 26.17 0.4867 0.17 0.0685 85.89 0.4719 0.046 26.82 0.4989 0.17 0.0805 85.54 0.4599 0.056 27.89 0.5112 0.16 0.0955 85.13 0.4459 0.062 27.89 0.5112 0.16 0.0955 85.13 0.4459 0.062 27.89 0.5176 0.16 0.1155 84.69 0.4309 0.072 28.45 0.5479 0.15 0.1405 84.34 0.4189 0.102 29.46 0.5479 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.1705 83.84 0.4019 0.122 30.16 0.5509 0.15 0.2005 82.11 0.3429 0.177 31.52 0.862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2298 0.217 33.80 0.5739 0.15 0.2005 82.11 0.3429 0.177 31.52 0.862 0.14 0.4305 80.76 0.2298 0.217 33.86 0.5739 0.15 0.2005 79.44 0.2517 0.1845 0.4205 79.420 0.1705 78.99 0.2297 0.472 33.86 0.6514 0.13 0.6505 79.44 0.2517 0.4905 79.44 0.2517 0.1845 0.4905 79.44						91.41	
0.013					1.3195	90.88	0.6424
0.014					0.0245	90.47	
0.015 20.94 0.3895 0.21 0.0275 89.60 0.5986 0.017 21.87 0.4067 0.21 0.0295 89.13 0.5826 0.019 22.57 0.4197 0.20 0.0325 88.64 0.5657 0.022 22.35 0.4343 0.19 0.0935 87.96 0.5428 0.025 24.19 0.4498 0.19 0.0415 87.47 0.5258 0.029 24.95 0.4640 0.18 0.085 86.85 0.5048 0.033 25.52 0.4747 0.18 0.0855 86.85 0.5048 0.033 25.52 0.4747 0.18 0.0865 85.89 0.4719 0.046 26.82 0.4989 0.17 0.0665 85.89 0.4719 0.0546 26.82 0.4989 0.17 0.0665 85.54 0.4599 0.072 28.45 0.5112 0.16 0.09055 85.13 0.4459 0.062 27.89 0.5112 0.16 0.09055 85.13 0.4459 0.0072 28.45 0.5290 0.16 0.165 0.1055 84.34 0.4189 0.087 29.02 0.5397 0.15 0.150 0.1005 83.84 0.4019 0.102 29.46 0.54779 0.15 0.2105 83.81 0.4019 0.122 30.16 0.5609 0.15 0.2105 83.81 0.4019 0.127 30.86 0.5739 0.15 0.2105 83.81 0.4019 0.117 30.86 0.5739 0.15 0.2105 83.81 0.4019 0.117 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.4519 0.3219 0.227 33.556 0.6614 0.13 0.4905 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6360 0.12 0.7305 77.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.7305 77.44 0.2517 0.397 38.37 0.7136 0.12 0.7997 0.10 0.9905 75.64 0.1222 0.997 47.63 0.8858 0.09 1.10 0.9905 75.64 0.1222 0.997 47.63 0.8858 0.09 1.10 0.9905 75.66 0.142 0.997 47.63 0.8858 0.09 1.1205 73.49 0.0062 1.1205 73.49 0.0062 1.1205 73.49 0.00647 1.147 50.24 0.9343 0.09 1.10 0.9905 75.66 0.142 0.997 47.63 0.8858 0.09 1.1205 73.49 0.0065 1.1205 73.49 0.00647 1.147 50.24 0.9343 0.09 1.1205 73.49 0.00647 1.147 50.24 0.9343 0.09 1.10 0.9905 75.66 0.1022 57.29 0.0064 1.1205 73.49 0.0065 72.29 0.0064 1.127 53.42 0.0993 0.09 1.1205 73.43 0.0065 72.29 0.0064 1.127 53.42 0.0993 0.09 1.1205 73.43 0.0065 72.29 0.0064 1.127 53.42 0.9930 0.09 1.1205 72.29 0.0064 1.127 53.42 0.9930 0.00 1.1205 72.29 0.0006 1.1205 72.29 0.0006 1.1205 73.43 0.0005 7					0.0255	90.27	
0.017					0.0275	89.60	0.5986
0.019					0.0295	89.13	0.5826
0.025					0.0325	88.64	0.5657
0.025		23.35	0.4343	0.19	0.0365		
0.029					0.0415	87.47	0.5258
0.033					0.0485	86.85	0.5048
0.039 26.17 0.4867 0.17 0.0685 85.89 0.4719 0.046 26.82 0.4989 0.17 0.0805 85.54 0.4599 0.054 27.49 0.5112 0.16 0.0955 85.13 0.4459 0.062 27.83 0.5176 0.16 0.1155 84.69 0.4309 0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.177 31.52 0.5862 0.14 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3105 82.11 0.3429 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.217 33.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 <t< td=""><td></td><td></td><td></td><td></td><td>0.0575</td><td></td><td>0.4869</td></t<>					0.0575		0.4869
0.046 26.82 0.4989 0.17 0.0805 85.54 0.4559 0.054 27.49 0.5112 0.16 0.0955 85.13 0.4459 0.062 27.83 0.5176 0.16 0.1155 84.69 0.4309 0.072 28.45 0.5290 0.16 0.1405 84.34 0.4189 0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4305 80.76 0.2948 0.322 <t< td=""><td></td><td>26.17</td><td>0.4867</td><td>0.17</td><td>0.0685</td><td>85.89</td><td>0.4719</td></t<>		26.17	0.4867	0.17	0.0685	85.89	0.4719
0.054 27.49 0.5112 0.16 0.0955 85.13 0.4459 0.062 27.83 0.5176 0.16 0.1155 84.69 0.4309 0.072 28.45 0.5290 0.16 0.1405 84.34 0.4189 0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 <t< td=""><td></td><td></td><td>0.4989</td><td>0.17</td><td>0.0805</td><td>85.54</td><td>0.4599</td></t<>			0.4989	0.17	0.0805	85.54	0.4599
0.062 27.83 0.5176 0.16 0.1155 84.69 0.4309 0.072 28.45 0.5290 0.16 0.1405 84.34 0.4189 0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3639 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.3219 0.267 33.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.5105 78.09 0.2297 0.472 <t< td=""><td></td><td></td><td></td><td>0.16</td><td>0.0955</td><td>85.13</td><td>0.4459</td></t<>				0.16	0.0955	85.13	0.4459
0.072 28.45 0.5290 0.16 0.1405 84.34 0.4189 0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.177 31.52 0.5862 0.14 0.3705 81.49 0.32219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5555 79.44 0.2517 0.397 35.56 0.6614 0.13 0.5505 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.697 <				0.16	0.1155	84.69	0.4309
0.087 29.02 0.5397 0.15 0.1705 83.84 0.4019 0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7416 0.11 0.7905 76.88 0.1644 0.697 <t< td=""><td></td><td></td><td>0.5290</td><td>0.16</td><td>0.1405</td><td>84.34</td><td>0.4189</td></t<>			0.5290	0.16	0.1405	84.34	0.4189
0.102 29.46 0.5479 0.15 0.2105 83.31 0.3839 0.122 30.16 0.5609 0.15 0.2605 82.64 0.3609 0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 33.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.605 78.79 0.2297 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.602 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 <td< td=""><td></td><td></td><td>0.5397</td><td>0. 15</td><td>0.1705</td><td>83.84</td><td>0.4019</td></td<>			0.5397	0. 15	0.1705	83.84	0.4019
0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7797 0.10 0.9105 75.64 0.1222 0.847 <t< td=""><td></td><td>29.46</td><td>0.5479</td><td>0.15</td><td></td><td>83.31</td><td>0.3839</td></t<>		29.46	0.5479	0.15		83.31	0.3839
0.147 30.86 0.5739 0.15 0.3105 82.11 0.3429 0.177 31.52 0.5862 0.14 0.3705 81.49 0.3219 0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 33.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 <td< td=""><td>0.122</td><td>30.16</td><td>0.5609</td><td>0.15</td><td>0-2605</td><td>82.64</td><td>0.3609</td></td<>	0.122	30.16	0.5609	0.15	0-2605	82.64	0.3609
0.217 32.19 0.5986 0.14 0.4305 80.76 0.2968 0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 <td< td=""><td></td><td></td><td>0.5739</td><td>0.15</td><td></td><td></td><td>0.3429</td></td<>			0.5739	0.15			0.3429
0.267 38.20 0.6174 0.14 0.4905 80.11 0.2748 0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.3805 72.49 0.0145 <td< td=""><td>0.177</td><td>31.52</td><td>0.5862</td><td>0.14</td><td></td><td></td><td></td></td<>	0.177	31.52	0.5862	0.14			
0.322 34.20 0.6360 0.13 0.5505 79.44 0.2517 0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.43 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.2805 72.93 0.0296 1.227 52.27 0.9721 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08	0.217	32.19	0.5986	0.14		80.76	0.2968
0.397 35.56 0.6614 0.13 0.6105 78.79 0.2297 0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 <td< td=""><td>0.267</td><td>38.20</td><td>0.6174</td><td>0.14</td><td></td><td></td><td>0.2748</td></td<>	0.267	38.20	0.6174	0.14			0.2748
0.472 36.86 0.6854 0.12 0.6705 78.09 0.2056 0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.122 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.5805 72.11 0.0014	0.322	34.20	0.6360	0.13			
0.547 38.37 0.7136 0.12 0.7305 77.47 0.1845 0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 <td< td=""><td>0.397</td><td>35.56</td><td>0.6614</td><td>0.13</td><td></td><td></td><td>0.2297</td></td<>	0.397	35.56	0.6614	0.13			0.2297
0.622 39.87 0.7416 0.11 0.7905 76.88 0.1644 0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.5805 72.08 0.0005 <td< td=""><td>0.472</td><td>36.86</td><td>0.6854</td><td>0.12</td><td></td><td></td><td>0.2056</td></td<>	0.472	36.86	0.6854	0.12			0.2056
0.697 41.49 0.7715 0.11 0.8505 76.23 0.1423 0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6605 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000 <td>0.547</td> <td></td> <td></td> <td>0.12</td> <td></td> <td></td> <td>0.1845</td>	0.547			0.12			0.1845
0.772 43.00 0.7997 0.10 0.9105 75.64 0.1222 0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000	0.622	3 9 .87	0.7416	0.11			
0.847 44.66 0.8306 0.10 0.9805 75.05 0.1021 0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000	0.697	41.49		0-11			
0.922 46.10 0.8574 0.10 1.0505 74.46 0.0820 0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.11 0.0015 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
0.997 47.63 0.8858 0.09 1.1205 73.90 0.0628 1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							0.1021
1.072 49.00 0.9112 0.09 1.1905 73.43 0.0467 1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000	0.922						
1.147 50.24 0.9343 0.09 1.2805 72.93 0.0296 1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
1.222 51.37 0.9553 0.09 1.3805 72.49 0.0145 1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
1.297 52.27 0.9721 0.09 1.4805 72.22 0.0054 1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000					1.2805		
1.372 52.89 0.9836 0.09 1.5805 72.11 0.0014 1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
1.472 53.42 0.9936 0.08 1.6805 72.08 0.0005 1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
1.572 53.61 0.9971 0.08 1.7805 72.06 0.0000							
••••• • • • • • • • • • • • • • • • •							
1.672 53.77 1.0000 0.08					1.7805	72.06	0.0000
	1.672	53.77	1.0000	0.08			

END2= 0-1941N. REEN= 5216. TC=101.36 F

DEL1= 0.325IN. DEL2= 0.219IN. H= 1.487 DDEL1=0.003 DEND2=0.011 DREEN= 307.

RED2=5983.1

D0FL2=0.001

UINF= 53.7 FT/SEC X= 69.3 INCHES PORT= 4 TINF= 72.1 DEG F PINF= 2120. PSF

VELOCITY PROFILE

				TEMPERATU	RE PROFILE	
Y (INCHES)	U(FT/SFC)	UBAR	טס			
				Y(INCHES)	TIDEG F)	TBAR
0.010	17.78	0.3309	0. 25			
0.011	18.40	0.3425	0.24	0.0215	92.86	0.6780
0.012	19.03	0.3543	0.24	0.0225	92.46	0.6645
0.013	19.67	0.3661	0.23	0.0235	91.99	0.6490
0.014	20.24	0.3768	0.22	0.0245	91.61	0.6364
0.015	20.82	0.3875	0. 22	0.0255	91.26	0.6248
0.017	21.75	0.4048	0.21	0.0275	90.65	0.6045
0.019	22.40	0.4169	0.20	0.0295	90.21	0.5899
0.022	23.38	0.4352	0.19	0.0325	89.63	0.5705
0.025	24.12	0.4489	0.19	0.0365	89.02	0.5502
0.029	24.94	0.4641	0.18	0.0415	88.55	0.5346
0.033	25.58	0.4760	0-18	0.0485	87.85	0.5114
0.039	25.38	0.4910	0.17	0.0575	87.35	0.4949
0.046	26.38 26.96	0.5017	0.17	0.0685	86.88	0.4793
0.054	27.42	0.5103	0.16	0.0805	86.50	0.4667
0.062	27.99	0.5210	0.16	0.0955	86.18	0.4560
0.072	28.60	0.5322	0.16	0.1155	85.65	0.4385
0.087	29.25	0.5445	0.15	0.1405	85.16	0.4220
0.102	29.82	0.5550	0.15	0.1705	84.66	0.4054
0.122	30.48	0.5672	0.15	0.2105	84.04	0.3850
0.147	31.37	0.5839	0.14	0.2605	83 -40	0.3636
0.177	32.09	0.5972	0.14	0.3105	82.70	0.3402
0.217	32.99	0.6140	0.14	0.3705	82.02	0.3178
0.267	33.93	0.6314	0.13	0.4305	81.26	0,2925
0.322	35.03	0.6520	0.13	0.4905	80.55	0.2691
0.397	36.35	0.6765	0.12	0.5505	79.91	0.2476
0.472	37.76	0.7027	0.12	0.6105	79.17	0.2232
0.547	39.27	0.7310	0.11	0.6705	78.50	0.2008
0.622	40.73	0.7581	0.11	0.7305	77.88	0.1803
0.697	42.31	0.7875	0-11	0.7905	77.26	0.1597
0.772	43.73	0.8139	0.10	0.8505	76.70	0.1412
0.847	45 .23	0.8419	0.10	0.9105	76.11	0.1216
0.922	46.58	0.8670	0.10	0.9805	75.53	0.1021
0.997	48 • 02	0.8938	0.09	1.0505	74 • 91	0.0815
1.072	49.29	0.9173	0.09	1.1205	74.38	0.0639
1.147	50.43	0.9385	0.09	1.1905	73.88	0.0472
1.222	51.39	0.9564	0.09	1.2805	73 .40	0.0316
1.297	52.28	0.9730	0.09	1.3805	72.96	0.0169
1.372	52 •84	0.9835	0.09	1.4805 1.5805	72.70	0.0080
1.472	53.32	0.9924	0.08		72.56	0.0035
1.572	.53 . 56	0.9969	0.08 0.08	1.6805 1.7855	72.49 72.47	0.0012
1.672	53.65	0.9986		1.8805	12.41	0.0005
1.772	53.73	1.0000	0.08	1.0003	72.45	0.0000

DEL1= 0.3121N. DEL2= 0.2131N. H= 1.467 DDEL1=0.303
RED2=5805.2 DDFL2=0.001

END2= 0.204IN. REEN= 5442. DEND 2=0.001 DREEN= 36.

TO=102.56 F

PORT≈ 5 UINF= 53.7 FT/SEC X= 69.3 INCHES TINF= 72.2 DEG F PINF= 2120. PSF

VELOCITY PROFILE

TEMPERATURE PROFILE

				TEMPERATURE	PRUFILE	
Y(INCHES)	U(FT/SEC)	UBAR	DU	Y(INCHES)	TIDEG F)	TBAR
0.010	17-17	0.3198	0.26	0.0215	94.76	0.7141
0.011	17.42	0.3244	0. 26	0.0225	94 • 38	0.7C14
0.012	17.94	0.3340	0.25	0.0235	93.91	0.6856
0.013	18.59	0.3460	0.24	0.0245	93.68	0.6777
0.014	19.01	0.3540	0.24	0.0255	93.36	0.6669
0.015	19.71	0.3670	0.23	0.0275	92 • 89	0.6511
0.017	20.49	0.3815	0• 22	0.0295	92.54	0.6393
0.019	21.08	0.3926	0.21	0.0325	92.17	0.6265
0.022	21.96	0.4089	0.20	0.0365	91.79	0.6137
0.025	22.69	0.4225	0.20	0.0415	91.47	0.6028
0.029	23.25	0.4329	0.19	0.0485	91.20	0.5940
0.033	23 • 82	0.4434	0.19	0.0575	90.94	0.5851
0.039	24.40	0.4542	0.18	0.0685	90.68	0.5762
0.046	24.91	0.4638	0.18	0.0805	90.39	0.5663
0.054	25.15	0.4683	0.18	0.0955	90.27	0.5624
0.062	25.48	0-4744	0.18	0.1155	90 .04	0.5545
0.072	25.58	0.4764	0.18	0.1405	89.69	0.5427
9.087	25.87	0.4816	0.17	0.1705	89.31	0.5298
0.102	25.06	0.4852	0.17	0.2105	88.72	0.5101
0.122	26.01	0.4844	0.17	0.2605	87.93	0.4834
0.147	25.95	0.4831	0.17	0.3105	86 •77	0.4438
0.177	26.33	0-4903	0.17	0.3705	85.39	0.3973
0.217	27.26	0.5076	0.17	0.4305	84.16	0.3557
0.267	28.67	0.5338	0.16	0.4905	83.05	0.3181
0.322	30.68	0.5712	0.15	0.5505	82.23	0.2903
0.397	33.09	0.6160	0.14	0.6105	81.41	0.2625
0.472	35.01	0.6518	0.13	0.6705	80.64	0.2367
0.547	36.67	0.6827	0.12	0.7305	79.88	0.2109
0.622	3 8.5 5	0.7178	0.12	0.7905	79.17	0.1370
0.697	40.25	0.7495	0.11	0.8505	78.47	0.1632
0.772	42.14	0.7847	0-11	0.9105	77.82	0.1413
0.847	43.82	0.8158	0.10	0.9805	77.09	0.1164
0.922	45.40	0.8453	0.10	1.0505	76.58	0.0925
0.997	47.03	0.8757	0.10	1.1205	75.85	0.0746
1.072	43.56	0.9042	0.09	1.1905	75.32	0.0566
1-147	49.73	0.9258	0.09	1.2805	74.76	0.0377
1.222	50.88	0.9474	0.09	1.3805	74 - 29	0.0217
1.297	51.73	0.9632	0.09	1.4805	73.93	0.0098
1.372	52.52	0.9779	0.09	1.5805	73.76	0.0038
1.472	53.24	0.9913	0.08	1.6805	73.67	0.0007
1.572	53.54	0.9969	0.08	1.7805	73.65	0.0001
1.672	53.71	1.0000	0.08	1.8805	73.65	0.0000

DEL1= 0.369IN. RED2=6305.0

DEL 2= 0.2311 N. DDEL 2=0.001

H= 1.598

END2= 0.222IN. DDEL 1=0.003

REEN= 5912. DEND2=0.001 DPEEN= 38.

TO=103.21 F

UINF= 53.7 FT/SFC X= 69.5 INCHES TINF= 72.2 DEG F PINF= 2120. PSF

PORT= 6

VELOCITY PROFILE

TEMPERATURE PROFIL										

	_	- -		TEMPERATUR	E PROFILE	
Y (INCHES)	U(FT/SEC)	UBAR	טט	Y(INCHES)	T(DEG F)	TBAR
0.010	9.07	0.1687	0. 50	0.0215	96.44	0.7688
0.011	9.42	0.1752	0.48	0.0225	96.12	0.7580
0.012	10.03	0.1866	0. 45	0.0235	95.92	0.7511
0.013	10.39	0.1934	0-43	0.0245	95.66 95.51	0.7423
0.014	10.50	0.1953	0.43	0.0255	95.51	0.7373
0.015	11.00	0.2046	0- 41	0.0275	95.22	0.7275
0.017	11.43	0.2127	0.39	0.0295	95.05	0.7216
0.019	12.13	0.2256	0. 37	0.0325	94.84	0.7147
0.022	12.61	0.2346	0. 36	0.0365	94.64	0.7078
U. U25	13.20	0.2455	0.34	0.0415	94.49	0.7029
0.029	13.87	0.2581	0. 32	0.0485	94.35	0.6980
0.033	14.21	0.2644	0.32	0.0575	94.35	026980
0.039	14.67	0.2730	0.31	0.0685	94.29	0.6960
0.046	14.94	0.2779	0.30	0.0805	94.29	0.6960
0.054	15 • 27	0.2841	0.29	0.0955	94.20	0.6930
0.062	15.10	0.2809	0.30	0.1155	94.15	0.6911
0.072	15.03	0.2797	0. 30	0.1405	93.97	0.6852
0.087	14.32	0.2665	0.31	0.1705	93.48	0.6684
0.102	13.93	0.2592	0.32	0.2105	92.89	0.6487
0.122	13.12	0.2440	0.34	0.2605	91.76	0.6103
0.147	12.44	0.2315	0.36	0.3105	90.50	0.5679
0.177	12.63	0.2350	0.36	0.3705	88.37	0.4958
0.217	14.02	0.2608	0.32	0.4305	86.21	0.4226
0.267	17.65	0.3284	0.25	0.4905	84.48	0.3641
0.322	22 .46	0.4179	0.20	0.5505	83.19	0.3205
0.388	28.51	0.5304	0.16	0.6105	82.23	0.2878
0.472	32.18	0.5986	0.14	0.6705	81.38	0.2590
0.547	32.18 34.33	0.6388	0.13	0.7305	80.50	0.2292
0.622		0.6759	0.12	0.7905	79.76 78.97	0.2044
0.697	36.33 38.18 40.06	0.7103	0.12	0.8505	78.97	0.1775
0.772	40.06	0.7453	0.11	0.9105	78.29	0.1546
0.847	42.18	0.7847	0.11	0.9805	77.53	A-1788
0.922	44.12	0.8209	0.10	1.0505	76.73	0.1019
0.997	45.93	0.8546	0. 10	1.1205	76.23	0.0849
1.072	47.45	0.8828	0.09	1.1905	75.55	0.0620
1.147	48.90	0.9099	0.09	1.2805	75.00	0.0431
1.222	50.10	0.9321	0.09	1.3805	74.41	0.0231
1.297	51.28	0.9540	0.09	1.4805	74.05	0.0112
1.372	52.23	0.9717	0.09	1.5805	73.85	0.0042
1.472	53.02	0.9864	0.08	1.6805	73.76	0.0012
1.572	53.49	0.9952	0.08	1.7805	73.74	0.0005
1.672	53.63	0.9978	0.08	1.8805	73.72	0.0000
1.772	53.70	0.9991	0.08			
1.972		1.0000	0.08			
			DDFI, 1=0+004		EEN= 5247.	TO=103.27

DEL1= 0.4771N. DEL2= 0. RED2=6319.2 ODEL 2=0.001

DEND2=0.001

DREEN= 28.

UINF= 53.9 FT/SEC X= 69.8 INCHES PORT= 7
TINF= 71.4 DEG F PINF= 2130. PSF

VELOCITY PROFILE

TEMPERATURE PROFILE

Y(INCHES)	U(FT/SEC)	UBAR	טס	Y (INCHES)	T(DEG F)	TBAP
0-010	15.20	0.2820	0.29	0.0215 0.0225 0.0235	95.77	0.7467
0.011	15.44 15.98	0.2864 0.2964	0.29	0.0225	95.54	0.7388
0.012	15.98	0.2964	0.28	0.0235	95.16	0.7260
0.013	16.55 17.12	0.3071	0.27	0.0245	94 •81 94 •58	0.7142
0.014	17.12	0.3176	0• 26	0.0255	94.55	0.7063
0.015	17.64	0.3273	0.25	0.0275	94.23	0.6944
0.017	17.64 18.57 19.02 19.76 20.48	0.3446	0.24	0.0295	94.23 93.91 93.85	0.6836
0.019	19.02	0.3529	0. 23	0.0325	93.85	0.6816
0.022	19.76	0.3667	0.23	0.0365	93.48 93.16	0.6688
0.025	20.48	0.3800	0. 22	0.0415	93.16	0.6579
				0.0485	92.86 92.72 92.57 92.40 92.17	0.6480
0.033	21.54 21.98 22.54 22.94 23.12	0.3996	0.21	0.0575	92.72	0.6431
0.039	21.98	0.4078	0. 20	0.0685	92.57	0.6382
0.046	22.54	0.4182	0.20	0.0805	92.40	0.6322
0.054	22.94	0.4255	0.19	0.0955	92.17	0.6243
0.062 0.072	23 • 12 22 • 98	0.4289	0.19	0-1155	91.96 91.99	0.6174
				0.1405	91.99	0.6184
0.087	23.04	0.4275	0.19	0.1705	91.38	0.5976
0.102	22.96	0.4261	0.19	0.2105	90.71	0.5749
0.122	22.//	0.4224	0.20	0.2605	89.74	0.5422
0.147	23.04 22.96 22.77 22.81 22.92	0.4233	0.20	0.3105	91.38 90.71 89.74 88.55 86.85	0.5016
0.177	22.92	0.4252	0.19	0.3705	86.85	0.4441
0.217	23.85 25.70	0.4425 0.4768	0.19	0.4305	85.30 84.04	0.3915
0.201	29 . 10	0.4708	0.17 0.16	0.4905	87.00	0.3488
0.322	28.07 31.08 33.39 34.97 36.80	0.5744	0.16	0.5505	82.99 82.17 81.32 80.52 79.85	0.3130 0.2852
0.371	31.00	0.5100	0.13	0.0105	02 • 1 1	0.2563
0.712	24 07	0.6175	0.13	0.0705	01.52	0.2295
0.571	36.90	0.6828	0.12	0.7905	70 05	0.2065
0-627	38.52	0.7144	0.12	0.8505	70.11	0.1816
0.772	38.52 40.65	0.7542	0.11	0-9105	79.11 78.38	0.1567
0-847	42.40	0.7866	0.11	0.9805	77.50	0.1298
0.922	42.40 44.33 45.94	0.7866 0.8224	0.10	1,0505	77.59 76.94	0.1078
0.997	45.94	0.8524	0. 10	1.1205 1.1905 1.2805	76 - 29	0.0859
1.072	47 .45	0-8802	0.09	1.1905	75.73	0.0669
1.072 1.147	47 .45 48.91	0.8802 0.9074	0.09	1.2805	75-11	0.0459
1.222	50.13	C-9301	0.09	1.3805	74.55	0.0269
1.297	50.13 51.45	C.9301 O.9545	0.09	1.3805 1.4805	74.14	0.0129
1.372	52.24	0.9692	0.09	1.5805	73.89	0.0044
1.472	53.07	0.9692 0.9845	0.08	1.6805	73.80	0.0012
1.572	52.24 53.07 53.56	0.9937	0.08	1.7805	73.76	0.0001
1.672	53.77	0.9976	0.08	1.5805 1.6805 1.7805 1.8805	73.76	0.0000
1.772	53.77 53.90	0.9976 1.0000	0.08			
			•			

DEL1= 0.4171N. DEL2= 0.2461N. RED2=6776.2 DDEL2=0.001

H= 1.698 DDEL 1=0.003

END2= 0.229IN. REEN= 6093. DEND2=0.001 DREEN= 37.

TO=103.24 F

UINF= 53.7 FT/SEC X= 69.3 INCHES PORT= 8 TINF= 70.2 DEG F PINF= 2106. PSF

VELOCITY PROFILE

	AFFOCILL LACLT	L I.		TEMPERATUR	E PROFILE	-
Y(INCHES)	U(FT/SEC)	UBAR	อบ	Y(INCHES)	T(DEG F)	TBAR
0.010	16.87	0.3140	0.27	0.0215	97.40	0.7100
0.011	17.90	0.3332	0.25	0.0225	96.94	0.6942
0.012	18.23		0. 25	0.0235	96.67	0.6853
0.013	10 02	0.3506	0.24	0.0245	96.24	0.6705
0.014	19.65	0.3658	0.23	0.0255	95.98	0.6616
0.015	19.96	0.3715	0.23	0.0275	95.42	0.6429
0.017		0.3901	0.22	0.0275	95.10	0.6320
0.019	21.53	0.4008	0.21	0.0325	94.52	0.6122
0.022	22 - 51	0.4191	0.20	0.0365	94.00	0.5945
0.025	22.51 23.05	0.4291	0.20	0.0415	93.53	0.5786
0.029	24.02	0.4471	0.19	0.0415	93.16	0.5658
0.033		0.4547	0.18	0.0575	92.51	0.5658
0.039	25 21	0.4693	0.18	0.0685	92.02	0.5272
0.039	25.21 25.67	0.4778	0.18	0.0805	92.02 91.64	
0.048	24 20	0.4895	0.17	0.0955	91.04	0.5143 0.4995
0.062	26.27	0.4979	0.17	0.1155	90.82	
0.072	27 10	0.5045	0.17	0.1405	90.82	0•4866 0•4648
0.072	27 010	0.5190	0.16	0.1705	89.60	0.4450
0.102	26.29 26.74 27.10 27.83 28.40	0.5288	0.16	0-1705 0-2105	88.99	0.4242
0.102			0.16			
0.147	29.07 29.75		0.15	0.2605	88 -26	0.3994
0.177	20.60	0.5696	0.15	0.3105	87.64	0.3785
	30.60 31.32	0.5831	0. 14	0.3705	86.74	0.3478
0.217	22 42	0.6038	0. 14	0.4305	85.95	0.3209
0.267 0.322	32.43 33.41	0.6220	0. 14	0.4905	85.24 84.57	0.2971
	34.70	0.6460	0.13	0.5505	83 • 84	0.2742
0.397	25 97	0.6400	0.13	0.6105		0.2493
0.472	35.87 37.28	0.6678 0.6940	0.12	0.6705	83.19	0.2274
	31 -20	0.7235	0.12	0.7305	82 .49	0.2036
0.622	38.86 40.44	0.7528	0.11	0.7905	82.02	0.1876
0.697		0.7849	0.11	0.8505	81.20	0.1597
0.772	42.16	0.8098	0.10	0.9105	80.67	0-1418
0.847	43.50		0.10	0.9805	79.97	0.1178
0.922	44.98	0.8373 0.8658	0.10	1.0505	79.38	0.0979
0.997	46.51	0.8933	0. 10	1.1205	78.79	0.0779
1.072	47.98	0.9140	0.09	1.1905	78.29	0.0609
1.147	49.10		0.09	1.2605	77.70	0.0410
1.222	50.43	0.9388 0.9562	0.09	1.3805	77.23	0.0250
1.297	51.36	0.9723	0.09	1.4805	76.85	0.0120
1.372	52.23		0.09	1.5805	76 - 64	0.0050
1.472	53.03	0.9872		1.6805	76.56	0.0022
1.572	53.53	0.9966	0.08	1.7805	76.53	0.0010
1.672	53.61	0.9980	0.08	1.8805	76.50	0.0000
1.772	53.71	0.9999	0.08	*		
1.872 DEL1= 0.3511N. DE	53.72 1.2= 0.2331N.	1.0000 H= 1.510	0.08 NNEL 1=0.003		EEN= 5883.	T0=105.94 F
RED2=6347.4 ODEL	2=0.001			DEND2=0.001 DREEN	= 37.	

UINF= 53.8 FT/SEC X= 69.3 INCHES PORT= 9
TINF= 71.0 DEG F PINF= 2130. PSF

VELOCITY PROFILE

TEMPERATURE PROFILE

					·	
Y(INCHES)	U(FT/SEC)	UBAP	ทับ	Y(INCHES)	T(DEG F)	TBAR
0.010	17.76	0.3299	0 • 25	0.0215	97.02	0-7007
0.011	18.40	0.3418	0. 24	0.0225	96.53	0.6840
0.012	18.98	0.3525	0. 24	0.0235	96.09	0.6693
0.013	19.61	0.3644	0.23	0.0245	95.72	0.6565
0.014	20.02	0.3718	0.22	0.0255	95.31	0.6427
0.015	20.62	0.3831	0. 22	0.0275	94.81	0.6260
0.017	21.49	0.3993	0. 21	0.0295	94.23	0.6063
3.319	22.32	0.4145	0. 20	0.0325	93.65	0.5866
0.022	23.18	0.4305	0.19	0.0365	93.04	0.5660
0.025	24.09	0.4475	0.19	0.0415	92 -46	0.5463
0.029	24.68	0.4585	0.18	0.0485	91.87	0.5265
0.033	25.29	0.4699	0.18	0.0575	91.32	0.5078
0.039	25.91	0.4812	0.17	0.0685	90 - 85	0.4920
0.046	26.52	0.4927	0.17	0.0805	90-42	0.4772
0.054	26.98	0.5011	0.17	0.0955	90.07	0.4654
0.062	27.58	0.5122	0. 16	0.1155	89.72	0.4536
0.072	27.97	0.5196	0. 16	0.1405	89.10	0.4328
0.087	28.83	0.5355	0. 15	0.1705	88 - 69	0.4190
0.102	29.27	0.5438	0. 15	0.2105	88.02	0.3963
0.122	30.01	0.5575	0. 15	0.2605	87.38	0.3745
0.147	30-72	0.5706	0. 15	0.3105	86 .82	0.3557
0.177	31.39	0.5831	0. 14	0.3705	86.09	0.3310
0-217	32.25	0.5991	0.14	0.4305	85.48	0.3102
0.267	33.41	0.6207	0.13	0.4905	84.78	0.2865
0.322	34.41	0.6391	0.13	0.5505	84.13	0.2647
0.397	35.70	0.6631	0.13	0.6105	83.46	0.2419
0.472	36.93	0.6860	0. 12	0.6705	82`-84	0.2211
0.547	38.43	0.7138	0. 12	0.7305	82.17	0.1983
0.622	39.83	0.7398	0.11	0.7905	81.55	0.1774
0.697	41.26	0.7664	0.11	0.8505	80.95	0.1576
0.772	42.65	0.7923	0.10	0.9105	80.35	0.1367
0.847	44-17	0.8205	0.10	0.9805	79.73	0.1159
0.922	45.57	0.8464	0.10	1.0505	79.11	0.0950
0.997	46.90	0.8711	0. 10	1.1205	78.59	0.0771
1.072	48.12	0.8939	0.09	1.1905	78.14	0.0622
1.147	49.46	0.9187	0.09	1.2805	77.53	0.0413
1.222	50.42	0.9366	0.09	1.3805	77.03	0.0244
1.297	51.57	0.9579	0.09	1.4805	76-67	0.0124
1.372	52.26	0.9707	0.09	1.5805	76.47	0.0055
1.472	53.03	0.9850	0.08	1.6805	76.36	0.0020
1.572	53.49	0.9935	0.08	1.7805	76.31	0.0002
1.672	53.77	0.9988	0. 08	1.8805	76.31	0.0000
1.772	53.84	1.0000	0.08			
	FI 2 0 2201 N	11-1 (70				

DEL1* 0.3371N. RED2=6288.3

DEL2= 0.2281N. DDEL2=0.001 H= 1.478 DDEL1=0.003

END2= 0.2161N. REEN= 5750. DEND2=0.001 DREEN= 37. T0=105.87 F

UINF= 53.9 FT/SEC X= 69.3 INCHSS TINF= 72.0 DEG F PINF= 2130. PSF PORT= 10

VELOCITY PROFILE

TEMPERATURE PROFILE

YIINCHES) U(FT/SEC)	'IBAP	กบ	Y(INCHES)	T(DEG F)	TB AR
0.010	17.40	0.3230	0.24	0.0215	96 • 79	0.6996
0.010 0.011	17.87	0.3230	0.26 0.25	0.0225		0.6828
J.012	19.42	0.3418	0.24	0.0235	95.30 95.92	0.6701
0.013	19.04	0.3534	0.24	0.0245	95.57	0.6583
0.015	19.59	0.3634	0.23	0.0255	95.19	0.6455
0.014	29.01	0.3714	0.23	0.0275	94.67 94.17	0.6277
0.017	20.82	0.3865	0.21	0.0295	94.17	0.6110
0.017	21.49	0.3988	0.21	0.0325	02 42	0.5923
0.019	22.26	0.4132	0.21	0.0365	93.10	0.5745
0.025	23.00	0.4269	0.19	0.0415	92.60	0.5578
0.029	23.83	0.4423	0.19	0.0485	91.99	0.5371
Û.027	24.38	0.4524	0.18	0.0575	91.47	0.5193
0.039	2 4 • 96	0.4633	0.18	0.0685	91.03	0.5045
0.039	25.48	0.4729	0.19	0.0805	90.77	0.4956
0.054	26.19	0.4861	0.15	0.0955	90.45	0.4848
		0.4937	0.17	0.1155	90.07	0.4719
0.062 0.072	26.60 26.87	0.4987	0.17	0.1405	89.60	0.4561
0.072	27.50	0.5104	0.17	0.1705	99.25	0.4443
	27.90 27.91	0.5180	0.16	0.2105	88.96	0.4344
0.102		0.5180	0.16		88.29	0.4117
0.122	28.49		0.15	0.3105	87.76	0.3939
0.147 0.177	29.04	0.5390	0.15	0.3705	87.15	0.3731
	29.45	0.5465 0.5551		0.4305	86.36	0.3464
0.217	2 9. 91		0.15	0.4905	85.71	0.3246
0.267	30.38	0.5638	0.15	0.5505	84.86	0.2958
0.322	31 • 43 32 • 42	0.5832 0.6017	9.14 9.14	0.6105	84.10	0.2701
0.397		0.6314	0.14	0.6705	83.34	0.2443
0.472	34.02	0.6639	0.13	0.7305	82.64	0.2205
0.547	35.77	0.6947		0.7905	81.87	0.1947
0.622	37.43		0.12	0.8505	81.23	0.1728
0.697	39.29	0.7292 0.7599	0.11	0.9105	30.58	0.1510
0.772	40.94 42.51	0.7889	0.11 0.11	0.9805	79.88	0.1271
0.847		0.8213	0.11	1.0505	79.23	0.1052
0.922	44.26		0.10	1.1205	78.59	0.0833
0.997	45.71	0.8482 0.8759	0.10	1.1905	78.12	0.0674
1.072	47.20	0.9034	0.09	1.2805	77.47	0.0455
1.147	48 • 68		0.09	1.3805	76.91	0.0266
1.222	49.99	0.9278		1.4805	76.53	0.0137
1.297		0.9483 0.9640	0.09 0.09	1.5805	76.29	0.0057
1.372	51.95			1.6805	76.18	0.0020
1.472		0.9825 0.9934	0.08	1.7805	76.14	0.0005
1.572	53.53		0.08	1.8805	76-12	0.0000
1.672	53.78	0.9981	0.08			
1.772		1.0000	0.98			
DEL1= 0.3821N. RE02=6771.3		H= 1.554	DDE1 1=0.003	END2= 0.2211N. RE DEND2=0.001 DREEN=		*O=105.67 F

UINF= 53.8 FT/SEC X= 69.5 INCHES PORT= 11 PINF = 2130. PSF TINF= 72.0 DEG F

VELOCITY PROFILE

TEMPERATURE PROFILE

					TEMPERA	TURE PROFICE	
	Y(INCHES)	U(FT/SEC)	1JB AR	טם	YIINCHES) TIDES F)	TBAR
,	0.010	15.60	0.2898	0.29	0.0215	97.43	0.7255
	0.011	15.97	0.2968	0.28	0.0225	97.14	0.7155
	0.012	16.56	0.3077	0-27	0.0235	96.65	0.6986
	0.013	17.27	0.3239	0. 26	0.0245	96.38	0.6896
	0.014	17.46	0.3244	0.26	0.0255	96.06	0.6786
	0.015	17.90	0.3325	0. 25	0.0275	95.57	0.6617
	0.017	18.91	0.3513	0.24	0.0295	95.10	0.6457
	0.019	19.55	0.3632	0.23	0.0325	94.49	0.6247
	0.022	20.23	0.3759	0.22	0.0365	94 - 00	0.6078
	0.025	20.95	0-3893	0.21	0.0415	93.36	0.5658
	0.029	21-64	0.4020	0.21	0.0485	92.84	0.5678
	0.033	22.24	0.4131	0. 20	0.0575	92 • 40	0.5528
	0.039	22.78	0.4231	0. 20	0.0685	91.93	0.5368
	0.046	23.42	0.4351	0.19	0.0805	91.61	0.5258
	0.054	23.81	0.4423	0.19	0.0955	91.32	0.5158
	0.062	24.20	0.4495	0.18	0.1155	91.00	0.5048
	0.072	24.64	0.4577	0.18	0.1405	90.65	0.4928
	0.087	25.27	0.4695	0.18	0.1705	90.33	0.4818
	0.102	25.69	0.4772	0- 17	0.2105	89.98	0.4698
	0.122	25.94	0.4820	0.17	0.2605	89.45	0.4517
	0.147	26.34	0.4894	0.17	0.3105	88.90	0.4327
	0.177	26.58	0.4938	0.17	0.3705	98.29	0.4116
	0.217	26.60	0.4942	0.17	0.4305	87.61	0.3886
	0.267	27.10	0.5035	0.17	0.4905	86 . 85	0.3625
	0.322	27.72	0.5149	0.16	0.5505	85 - 95	0.3314
	0.397	28.98	0.5383	0.15	0.6105	85.04	0.3002
	0.472	30.67	0.5697	0.15	0.6705	84.22	0.2721
	0.547	32.61	0.6059	0.14	0.7305	89.43	0.2450
	0.622	34.74	0.6453	0.13	0.7905	82.61	0.2168
	0.697	37.03	0.5880	0.12	0.8505	91.82	0.1896
	0.772	39.25	0.7291	0.11	0.9105	81.11	0.1654
	0.847	41.15	0.7645	0-11	0.9805	80.41	0.1413
	0.922	42.88	0.7967	0.10	1.0505	79.64	0.1151
	0.997	44.65	0.8294	0.10	1.1205	78.97	0.0919
	1.072	46.38	0.8617	0.10	1.1905	78.38	0.0717
	1-147	47.96	0.8909	0.09	1.2805	77.76	0.0505
	1.222	49.27	0.9153	0.09	1.3805	77.17	0.0303
	1.297	50.53	0.9388	0.09	1.4805	76.76	0.0162
	1.372	51.59	0.9585	0.09	1.5805	76.50	0.0071
	1.472	52.66	0.9782	0.08	1.6805	76.35	0.0020
	1.572	53.30	0.9902	0.08	1.7805	76.30	0.0002
	1.672	53.67	0.9971	0.08	1.8305	76.29	0.0000
	1.772	53.79	0.9993	0.08	230002		
	1.872	53.83	1.0000	0.08			
EL1= (ED2=71	0.434IN. DEI 59.6 DDEL2	L2= 0.2601 N.	H= 1.667	DDEL 1=0.003	END2 = 0.224IM. DENO2 = 0.001 DE	REEN= 5925. Reen= 35.	T0=105.43 F

TINF= 70.6 D	T/SEC X= FG F PI	63.3 INCHES NF= 2127. PSF	PDRT= 1	UINF= 53.9 TINF= 71.0	DEG F P	* 63.3 INCHES INF = 2127. PSF	P (]0,T±	2
Y (INCHES)	U(FT/SEC)	UB 4R	טט	Y(INCHES)	U(FT/SEC) UBAR	נוס	
0.010	10.08	0.1871	0. 44	0.010	17.15	0.3181	0.26	
0.011	10.33	0.1918	0.43	0.011	17.57	0.3259	0.25	
0.012	10.84	0.2012	0.41	0.012	18.45	0.3423	0.24	
0.013	11.25	0.2088	0.40	0.013	18.96	0.3518	0.24	
0.014	11.72	0.2175	0.38	0.014	19.76	0.3666	0.23	
0.015	12.03	0.2234	0.37	0.015	20.01	0.3712 0.3848	0.22	
0.017	12.57	0.2335	0.36	0.017	20.74	0.3848	0.22	
0.019	13.05	9.2425	0.34	0.019	21.38	0.3966	0.21	
0.022	13.74	0.2551	0.33	0.022	22.15	0.4109	0.20	
0.025	14.07	0.2613	0.32	0.025	22.61	0.4194	0.20	
0.029	14-57	0.2706	0.31	0.029	23.23	0.4310	0.19	
0.033	15.13	0.2809	0.30	0.033	23.81	0.4417	0.19	
0.039	15.56	0.2888	0.29	0.039	24.47	0.4539	0.18 .	
0.046	15.94	0.2960	0.28	0.046	24.70	0.4581	0.18	
0.054	16.11	0.2990	0.28	0.054	25.09	0.4655	0.18	
0.062	16.17	0.3003	0.28	0.062	25-40	0.4713	0.18	
0.072	16.14	0.2996	0.28	0.072	25.40 25.46 25.72	0.4723	0.18	
0.087	15.61	0.2898	0.29	0.057			0.17	
0.102	15.01	0.2787	0.30	0.102	25.76	0.4779	0.17	
0.122	14.27	0.2549	0.31	0.122	25.72	0-4771	0.17	
0-147	14.18	0.2633	0.31	0.147	25.79	Λ.4784	0.17	
0.177	14.06	0.2611	0. 32	0.177	26 • 45	0.4906	0.17	
0.217	16.02	0.2975 0.3709	0.28	0.217	27.46	0.5095	0.16	
0.267	19.97	0.3709	0.22	0.267	29.41	0.5455	0. 15	
0.322	25.19	0.4677	0.18	0.322	31.95	0.5927		
0.397	31.68	0.5883 0.6549 0.7002	0.14	0.397	34.58	0.6414	0.13	
0.472	35.27	0.6549	0.13	0.472	36.77	0.6821		
0.547	37 • 71	0.7002	0.12	0.547	38 - 83	0.7202	0.12	
0.622	40.09	0.7444	0.11	0.622	41.03	0.7611 0.7995	0.11	
0.697	42 • 44	0.7880	0.11	0.697	43.10	0.7995		
0.772	44.79	0.8316	0.10	0.772	45.35	0.8412	0.10	
0.847	46.95	0.8716 0.9087	0.10	0.847	47.34	0.8782	0.09	
0.922	48.94	0.9087	0. 09	0.922	49.08	0-9104	0.09	
0.997	50 •42	0.9361	0.09	0.997	50.59	0.9384	0.09	
1.072	51.62	0.9585	0.09	1.072	51.80	0.9609	0.09	
1-147	52.59	0.9765	0.08	1.147	52.71	0.9778	0.08	
1.222	53.24	0.9885	0.03	1.222	53.18	0.9866	0.05	
1.297	53.60	0.9361 0.9585 0.9765 0.9885 0.9952	0.08	1.297	53 - 58	0.9940	0.08	
1.372	53.80	0.9990	0.08	1.372	53.79	0.9978	0.08	
1.472	53.81	0.9991	0.08	1.472	53 -83		0.08	
1.572	53.87	1.0002	0.08	1.572	53.90	0.9999	0.08	
1.672	53.86	1.0000	0.08	1.672	53.91	1.0000	0.08	

DEL1= 0.3941N. DDF1 2=0.001

/DEL2= 0.1891N. RED2≈5217.8

H= 2.084

DDEL1=0.004 DEL1= 0.319IN.

DEL 2= 0.1961 N. ODEL 2=0.001

DDEL 1=0.003

RE02=5420.8

Y(INCHES) U(FT/SEC) UBAP OU Y(INCHES) U(FT/SEC) UBAP OU 0.010 18.10 0.3365 0.25 0.010 19.29 0.3582 0.23 0.011 19.77 0.3490 0.24 0.011 19.44 0.3611 0.23 0.012 19.37 0.3600 0.23 0.012 20.30 0.3771 0.22 0.013 20.20 9.3756 0.22 0.013 21.07 0.3913 0.21 0.014 20.57 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.015 22.22 0.4127 0.20 0.019 22.85 0.4243 0.20 0.017 28.05 0.4282 0.19 0.025 24.46 0.4548 0.19 0.022 24.78 0.4603 0.18 <t< th=""><th>4</th></t<>	4
0.011 18.77 0.3490 0.24 0.011 19.44 0.3611 0.23 0.012 19.37 0.3600 0.23 0.012 20.30 0.3771 0.22 0.013 20.20 0.3756 0.22 0.013 21.07 0.3913 0.21 0.014 27.67 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 23.05 0.4282 0.19 0.019 22.85 0.4249 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.011 18.77 0.3490 0.24 0.011 19.44 0.3611 0.23 0.012 19.37 0.3600 0.23 0.012 20.30 0.3771 0.22 0.013 20.20 9.3756 0.22 0.013 21.07 0.3913 0.21 0.014 20.47 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 23.05 0.4282 0.19 0.019 22.85 0.4249 0.20 0.019 23.77 0.4414 0.19 0.022 22.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.012 19.37 0.3600 0.23 0.012 20.30 0.3771 0.22 0.013 20.20 0.3756 0.22 0.013 21.07 0.3913 0.21 0.014 20.67 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 28.05 0.4282 0.19 0.019 22.85 0.4249 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.013 20.20 9.3756 0.22 0.013 21.07 0.3913 0.21 0.014 20.67 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 28.05 0.4282 0.19 0.019 22.85 0.4243 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.014 20.67 0.3842 0.22 0.014 21.64 0.4018 0.21 0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 28.05 0.4282 0.19 0.019 22.85 0.4243 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.015 21.26 0.3953 0.21 0.015 22.22 0.4127 0.20 0.017 22.05 0.4099 0.20 0.017 28.05 0.4282 0.19 0.019 22.85 0.4249 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.017 22.05 0.4099 0.20 0.017 23.05 0.4282 0.19 0.019 22.85 0.4243 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.13 0.025 25.52 0.4740 0.18	
0.019 22.85 0.4249 0.20 0.019 23.77 0.4414 0.19 0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.18 0.025 25.52 0.4740 0.18	
0.022 23.68 0.4403 0.19 0.022 24.78 0.4603 0.18 0.025 24.46 0.4548 0.18 0.025 25.52 0.4740 0.18	
0.025 24.46 0.4548 0.19 0.025 25.52 0.4740 0.18	
0.033 25.93 0.4920 0.17 0.033 26.91 0.4997 0.17	
0.039 26.60 0.4946 0.17 0.039 27.58 0.5123 0.16	
0.046 27.20 0.5059 0.16 0.046 28.34 0.5263 0.16	
0.054 27.82 0.5173 0.16 0.054 28.87 0.5362 0.16	
0.062 28.50 0.5299 0.16 0.062 29.29 0.5440 0.15	
0.072 28.91 0.5374 0.15 0.072 29.95 0.5563 0.15	
0.087 29.68 0.5517 0.15 0.087 30.67 0.5695 0.15	
0.102 30.31 0.5636 0.15 0.102 31.17 0.5790 0.14	
0.122 31.17 0.5794 0.14 0.122 31.92 0.5928 0.14	
0.147 32.10 0.5968 0.14 0.147 32.72 0.6077 0.14	
0.177 33.00 0.6134 0.14 0.177 33.74 0.6267 0.13	
0.217 34.22 0.6361 0.13 0.217 35.02 0.6504 0.13	
0.267 35.40 0.6581 0.13 0.267 36.44 0.6768 0.12	
0.322 36.70 0.6824 0.12 0.322 37.71 0.703 0.12	
0.397 38.41 0.7141 0.12 0.397 39.57 0.7349 0.11	
0-472 40-18 0-7470 0-11 0-472 41-14 0-7641 0-11	
0.547 41.94 0.7798 0.11 0.547 42.94 0.7974 0.10	
0.622 43.63 0.8112 0.10 0.622 44.49 0.8262 0.10	
0.697 45.46 0.8451 0.10 0.697 45.99 0.8542 0.10	
0.772 47.09 0.8755 0.10 0.772 47.44 0.8910 0.09	
0.847 48.52 0.9020 0.09 0.847 48.79 0.90 63 0.09	
0.922 49.89 0.9275 0.09 0.922 50.00 0.9286 0.09	
0.997 51.10 C.9500 0.09 0.997 51.12 0.9495 0.09	
1.072 52.09 0.9685 0.09 1.072 52.04 0.9665 0.09	
1.147 52.84 0.9824 0.08 1.147 52.68 0.9784 0.09	
1.222 53.34 0.9916 0.08 1.222 53.32 0.9902 0.08	
1.297 53.58 0.9962 0.08 1.297 53.59 0.9952 0.08	
1.372 53.74 0.9991 0.08 1.372 53.75 0.9983 0.08	
1.472 53.78 0.9999 0.08 1.472 53.84 1.0000 0.09	
1.572 53.75 0.9993 0.08 1.572 53.85 1.0002 0.08	
1.672 53.79 1.0000 0.08 1.672 53.84 1.0000 0.08	
DEL1* 0.256IN. DEL2= 0.175IN. H= 1.463 DDC[1=0.003 DEL1* 0.244IN. DEL2= 0.170IN. H= 1.432 DDEL1=0	.003
RED2=4803.5 DDEL2=0.001 RED2=4675.1 DDEL2=0.001	,

	UIMF= 53.9 F TIMF= 71.0 E	FT/SEC) DEG F P	C= 53.3 INCHES PINE= 2122. PSE	PΩRT≖ 5	UINF= 53 TINF= 71	.9 FT/SEC .0 DEG F	X= 63.3 INCHES PINF= 2122. PSF	PORT= C
	Y(INCHES)	U(FT/SEC) UBAR	ου	A(INCHEZ) U(FT/S	C) UBAR	טט
	0.010	19.00	0.3525	0. 24	0.010	17.17	0.3186	0. 26
	0.011	19.51	0.3621		0.011			0. 25
	0.012	20.18	0.3744	0. 23	0.012	18.40		0. 24
	0.013	20.93	0.3884	0•22 0•21	0.013			0.24
	0.014	21.66	0.4018	0.21	0.014			0.23
	0.015	22.13	0.4106		0.015		0.3713	0.22
	0.017	22.88	0.4245	C. 20	0.017	20.82	0.3863	0. 22
•	0.019	23.66	0.4390	0.20 0.19	0.019	21.66		0.21
	0.022	24.51	0.4549		0.022			0. 20
	0.025	25.01	0.4641		0.025			0. 20
	0.029	25.87	0.4801	0.18 0.17	0-029			0.19
	0.033	26.44	0.4907	0.17	0.033			0.19
	0.039	27.10	0.5030		0.039		0.4614	0.18
	0.046	27.79	0.5050	0.17	0.046	25.49		0.18
	0.054	28.24	0.5240	0.16 0.16	0.054	26.02		0.17
	0.062	28.75	0.5335	0.16	0.062			0.17
	0.072	29.15	0.5410	0.15	0.072	26.75		0.17
	0.012	29.69	0.5508	0.15	0.067			0.16
	0.102	30.12	0.5588	0.15	0.102		0.5135	0.16
	0.122	30.74	0.5703	0.15	0.122	28.05		0.16
	0.147	31.36	0.5818	0.15	0.147	28.39		0.16
	0.177	31.80	0.5901	0.14	0.177	20 45		0.16
	0.217	32.66	0.6060	0.14	0.217	29.08		0.15
	0.267	33.45	0.6206	0.13	0.267	29.79		0. 15
	0.322	34.64	0.6428	0.13	0.217 0.267 0.322	30.62		0.15
	0.397	36.16	0.6710	0.13	0.397	32.22		0.14
	0.472	38.07	0.7064	0.12	0.472			0.13
	0.547	49.03	0.7429	0.11	0.547			0.12
	0.622	42.24	0.7838	0.11	0.622	39.63		0.11
	0.697	44 .15	0.8193	0.11	0.697	42.20		0.11
	0.772	45.79	0.8497	0.10	0.772	44.21		0.10
	0.847	47.45	C-8806	0.10	0.847	46.01		0.10
	0.922	49.01	0.9095	0.09	0.922 0.997 1.072	47.82		0.09
	0.997	50.27	0.9328	0.09	0.997	49.34		0.09
	1.072	51.42	0.9542	0.09	1.072	50.74		0.09
	1.147	52.36	0.9715	0.09	1.072 1.147	51.92		0.09
	1.222	53.01	0.9836	0.09	1.222	52.76		0.09
	1.297	53.51	0.9929	0.08	1.297	53.22		0.08
	1.372	53.71	0.9967	0.08	1.222 1.297 1.372	53.60		0.08
	1.472	53.85	0.9993	0.08	1.472	53.80	0.9982	0.08
	1.572	53.89	1.0000	0.08	1.572	53.90	1.0001	0.08
	2000	*****	20000	0.00	1.672	53.90	1.0000	0.08
	.2851N. DEL	2= 0.1911N	. H= 1.489	DDEL 1=0.003	0513- 0 2541"	051.0		BDF: 1 0 000
RED2=526	0.1 DDEL 2=	n.001			DEL1= 0.3361N.	-	N. H= 1.600	DDFL1=0.003
					RED2=5779.5	DDFL 2=0.001		

	UINF= 53 TINF= 70	.8 FT/SEC' .7 DEG F	X= 63.3 INCHES PINE = 2122. PSE	POR** 7	UINF= 53 Tinf= 71	.8 FT/SEC X= .9 DEG F PI	63.3 INCHES NF= 2122. PSF	P10RT= 8
	Y (INCHES) U(FT/S	EC) UBAP	ויח	Y(INCHES) U(FT/SEC)	UBAR	ר סט
	0.010	18.47	0.3435 0.3519 0.3645 0.3736 0.3869 0.3950 0.4105 0.4237 0.4373 0.4501 0.4631 0.4739 0.4879 0.4974 0.5070 0.5152 0.5225 0.5225 0.5344 0.5431 0.5519 0.5619 0.5726 0.5859 0.5922 0.6145 0.5726 0.5859 0.5922 0.6145 0.7720 0.7149 0.77920 0.8278 0.8998	0. 24	0.010	18.72	0.3476	0.24
	0.011	18-93	0.3519	0. 24	0.011	19.46	0.3614	0.23
	0.012	19.60	0.3645	0.23	0.012	20.17	0.3745	0. 2 2
	0.013	20.09	0.3736	0. 22	0.013	21.00	0.3899	0-21
	0.014	20.81	0.3869	0. 22	0.014	19.46 20.17 21.00 21.51 22.05 22.76 23.40	0.3995	9.21
	0.015	21.25	0.3950	0.21	0.015	22.05 22.76 23.40 24.25 24.96	0-4094	0. 20
	0.017	22.08	0.4105	0. 20	0.017	22.76	0.4226	0.20
	0.019	22.79	0.4237	0.20			0.4345	0. 19
	0.022	23.52	0.4373	0.19	0.022	24 • 25	0.4503	0- 19
	0.025	24.21	0.4501	0.19	0.025	24 . 25 24 . 96 25 . 80	0.4636	0.18
	0.029	24.91	0.4631	0.18	0.029	25.80	0.4791	0.17
	0.033	25.49	0.4739	0.18	0.033	26.37	0.4896	0.17
	0.039	26.25	0.4879	0.17	0.039	27.02	0.5018	0.17
	0.046	26.75	0.4974	0.17	0.046	27.59	0.5124	0. 16
	0.054	27.27	0.5070	0.16	0.054	28.14	0.5225	0. 16
	0.062	27.71	0.5152	0.16	0.062	28.65	0.5320	0.16
	0.072	28.10	0.5225	0. 16	0.072	29.16	0.5415	0. 15
	0.087	28.75	0.5344	0.16	0.087	29.88	0.5548	0.15
	0.102	29.21	0.5431	0.15	0.102	30.50	0.5664	0.15
	0.122	29.66 30.22 30.80	0.5519	0.15	0.122	31.13	0.5780	0.14
	0.147	30 .22	0.5619	0.15	0.147	32.10	0.5961	0.14
	0.177	30.80	0.5726	0.15	0.177	32.87	0.6104	0.14
	0.217	31.51	0.5859	0.14	0.217	33.99	0.6312	0.13
	0.267	32.23	0.5992	0.14	0.267	33.36	0.6567	0.13
	0.322	33.05	0.6145	0.14	0.322	36.60	0.6797	0.12
	0.397	34.44	0.8403	0.13	0.397	38.25	0.7104	0.12
	0.472	36.3	0.6757	0.12	0.472	39.91	0.7412	0.11
	0.547	38 -47	0.7149	0.12	0.341	47.44	0.7704	0.11
	0.622	40 -53	0.7539	0.11	0.522	44.57	0.7977	0.10
	0.697	42.00	0.7920	0.11	0.091	47.05	0.8267	0.10 0.10
	0.772	44.27	0.8218	0.10	0.112	47 37	0.8533 0.8778	0.10
	0.847	40 .21	0.0792	0.10	0.922	49 70	0.9044	0. 09
	0.922	40 27	7 0.8900	0.09	0.922	40.10	0.9281	0.09
	0.997 1.072	T7 - 21	7 0.7170	0.09	1.072	51-06	0.9483	0.09
	1.147	50 61	0.7430	0.09	1.147	51.04	0.9646	0.09
	1.222	62 72	0.7071	0.09	1.222	52 - 82	0.9808	0.09
	1.297	52 24	0.7003	0.09	1,297	53.23	0.9808 0.9885	0.08
	1.372	53.61	0.0066	0.00	1.372	53.61	0.9957	0.08
	1.472	52 - 74	0.9995	0.08	1-472	53.75	0.9981	0.08
	1.572	53.7	7 0-9998	0.08	1.572	53.80	0.9992	0.08
	1.672	53.79 53.79	7 0.9998 9 1.0000	0.08	1.672	24.25 24.25 25.80 26.37 27.02 27.59 28.65 29.88 31.13 32.87 33.99 35.36 36.60 38.25 39.91 41.49 44.52 45.95 47.27 48.70 49.97 51.06 51.94 52.82 53.61 53.80 53.85	1.0000	0.03
DEL1= 0	.310IN.	DEL 2= 0.203	3[No H= 1.52	6 DDFL1=0.003	DEL1= 0.271IN.	DEL2= 0.1871N	H= 1.447	DDEL 1=0.003
RED2=559		DDEL 2=0.001	•		RED2=5133.7	DDE1 2+0 001		
,,	-	いいたじ て=0・001				004 F 5-0 • 00 f		

	0.010 0.011 0.012	U(FT/SEC)	UBAR	5 11					
	0.011			ŊU	YIINCHES) U(FT/SE	C) UBAR	שם	
	0.011	17.94	0.3335	0.25	0.010	17.48	0.3243	0.26	
		18.20	0.3384	0.25	0.011	18.17	0.3370	0.25	
		19.49	0.3623	0. 23	0.012	18.90	0.3506	0.24	
	0.013	20.10	0.3738	0.22	0.013	19.37	0.3593	0.23	
	0.014	20.41	0.3794	0.22	0.014	19.92	0.3696	0.22	
	0.015	20.97	0.3898	0.21	0.015	20.21	0.3749	0.22	
	0.017	21.94	0.4079	0.20	0.017	20.92	0.3881	0.21	
	0.019	22.68	0.4217	0.20	0.019	21.50	0.3989	0.21	
	0.022	23.54	0.4377	0.19	0.022	22-17	0.4113	0.20	
	0.025	24.25	0.4509	0.19	U.025	22.80	0.4231	0.20	
	0.029	25.04	0.4656	0.18	0.029	23.36	0.4335	0.19	
	0.033	25.63	0.4801	0.17	0.033	23.82	0.4420	0.19	
	0.039	26.45	0.4917	0.17	0.039	24.37	0.4521	0.18	
	0.046	27.22	0.5061	0.17	0.046	24.75	0.4591	0.18	
	0.054	27.82	0.5172	0.16	0.054	25.14	0.4664	0.18	
	0.062	28.20	0.5243	0.16	0.062	25.44	0.4719	0.18	
	0.072	28.77	0.5350	0.16	0.072	25.47	0.4726	0.18	
	0.087	29.70	0.5521	0.15	0.087	25.54	0.4739	0.17	
	0.102	30.11	C.5598	0.15	0.102	25.57	0.4743	0.17	
	0.122	30.95	0.5754	0.15	0.122	25.76	0.4779	0.17	
	0.147	31.88	0.5927	0.14	0.147	25.73	0.4774	0.17	
	0.177	32.91	0.6119	0.14	0.177	26.12	0.4846	0.17	
	0.217	34.19	0.6356	0.13	0.217	27.37	0.5078	0.16	
	0.267	35.39	0.6580	0.13	0.267	29.28	0.5433	0.15	
	0.322	36.54	0.6794	0.12	J. 322	31.57	0.5857	0.14	
	0.397	38.16	0.7094	0.12	0.397	34.54	0.6407	0.13	
	0.472	39.88	0.7415	0.11	0.472	36.63	0.6795	0.12	
	0.547	41 .58	0.7730	0.11	0.547	36.62	0.7165	0.12	
	0.622	43.24	0.8039	0.10	0.622	40.60	0.7533	0.11	
	0.697	44 . 83	0.8335	0.10	0.697	42.60	0.7903	0.10	
	0.772	46.24	0.8598	0.10	0.772	44.58	0.8272	0.10	
	0.847	47.57	0.8845	0.09	0.847	46.39	0.8607	0.10	
	0.922	48.95	0.9100	0.09	0.922	48.02	0.8909	0.09	
	0.997	50.14	0.9321	0.09	0.997	49.52	0.9187	0.09	
	1.072	51.05	0.9492	0.09	1.072	50.77	0.9419	0.09	
	1.147	51.89	0.9648	0.09	1.147	51.78	0.9606	0.09	
	1.222	52.65	0.9789	0.09	1.222	52.52	0.9744	0.08	
	1.297	54.16	0.9864	0.08	1.297	53.19	0.9868	0.08	
	1.372	53 . 55	0.9956	0.08	1.372	53.59	0.9943	0.08	
	1.472	53.73	C.9989	0.08	1.472	53.83	0.9987	0.08	
	1.572	53.78	0.9999	0.08	1.572	53.90	1.0000	0.08	
	1.672	53.79	1.0000	0.08	1.672	53.90	1.0000	0.08	
DEL1= 0.	ZAGIN. DELS	2= 0.1951N.	H= 1.453	DDFL 1=0.003	DEL1= 0.331IN.	DEL2= 0.2061	N. H= 1.611	DOFE 1	±0.003
RED2=506		2=0.001			RED2=5718-4	DDFL 2=0. 001			

UINF= 53.9 TINF= 68.7	·	X= 63.3 INCHES PINF= 2120. PSF	P OR T=	11
Y (INCHES)	U(FT/S	EC) UBAR	טפ	

Y (INCHES)	U(FT/SEC)	UBAR	อเ
0.010	9.64	0 1707	0 44
0.010	10.12	0.1787	0.46
0.011		0.1877	0.44
0.012	10.39	0.1927	0.43
0.013	10.81	0.2005	0.41
0.014	11.40	0.2113	0.39
0.015	11.89	0.2205	0.38
0.017	12.28	0.2277	0.36
0.019	12.63	0.2341	0.35
0.022	13.14	0.2437	0.34
0.025	13.70	0.2540	0.33
0.029	14.29	0.2649	0.31
0.033	14.69	0.2724	0.30
0.039	15.18	0.2815	0.29
0.046	15.53	0.2879	0.29
0.054	15.69	0.2909	0.28
0.062	15.80	0.2930	0.28
0.072	15.67	0.2906	0.28
0.086	15.34	0.2844	0.29
0.102	14.87	0.2757	0.30
0.122	14.04	0.2604	0.32
0.147	13.70	0.2540	0.33
0.177	13.77	0.2554	0.32
0.217	15.40	0.2855	0.29
0.267	18.91	0.3507	0.24
0.322	23.79	0.4411	0.19
0.397	29.95	0.5553	0.15
0.472	33.69	0.6247	0.13
0.547	36.08	0.6691	0.12
0.622	38.30	0.7102	0.12
0.697	40.67	0.7541	0.11
0.772	42.95	0.7964	0.10
0.847	45 • 13	0.8368	0.10
0.922	47.08	0.8729	0.09
0.997	48.78	0.9045	0.09
1.072	50.29	0.9324	0.09
1.147	51.41	0.9532	0.09
1.222	52.29	0.9695	0.09
1.297	52.97	0.9822	0.08
1.372	53 .48	0.9916	0.08
1.472	53.77	0.9970	0.08
1.572	53.93	1.0000	0.08

DEL1= 0.428IN. DEL2= 0.206IN. H= 2.075 DDEL1=0.004 RED2=5718.2 DDEL2=0.001

APPENDIX C

DATA REDUCTION PROGRAMS

(a) Stanton Number Data Reduction Program, STNO

This is the major heat transfer data reduction program

(b) Profile Data Reduction Program, PROF. (not listed)

This program uses a simple trapezoidal rule to calculate the integral parameters. This program calculates the $c_{\rm f}/2$ using Clauser plot.

(c) Shear stress reduction program, SHEAR

This program calculates the shear stress and mixing length distribution with given velocity profile, $c_f/2$. $Re\overline{\delta}_2$, δ_2 , δ and F. This program essentially uses the method outlined in Simpson [3].

Special Nomenclature for Program SHEAR

B F/c_e/2

DEL δ , boundary layer thickness

CF2 c_f/2

DEL2 δ_2 , momentum deficit thickness

DUDY numerical approximation of dU/dy

D1 Van Driest damping function based on XL1

D2 Van Driest damping function based on XL2

TAUL laminar shear stress

TAUT turbulent shear stress

TAULAM+ $\tau^+ = \tau/\tau_0$

UB laterally averaged velocity profile

UYP $v/(U_{\infty} c_f/2)$

XL1 outer layer mixing length assuming augmented mixing length $-(y/0.1\delta)$

has distribution as 3.32 $(y/\delta)e$

xL2 outer layer mixing length assuming augmented mixing length has distributions as 33.2
$$(\frac{y}{\delta})^2$$
 $e^{-100(\frac{y}{\delta})^2}$

has distributions as 33.2
$$(\frac{y}{\delta})^2 e^{-100(\frac{y}{\delta})^2}$$

YPL
$$y^+ = yU_{\tau}/v$$

NOTE: Flat plate mixing length is curve fitted as 0.078 $tanh(5.25 y/\delta)$

STNO Program

```
SWATFIV
            STANTON NUMBER DATA REDUCTION PROGRAM
     C
            DISCRETE HOLE RIG NAS-3-14336
     C
            THIS PROGRAM USES THE LINEAR SUPERPOSITION PRINCIPLE TO
     C
            CALCULATE STANTON NUMBERS AND OTHER INTEGRAL PARAMETERS AT THETA
     C
            0. AND 1.
                                                                              REAL
                  K(39),S(40)
 1
 2
            DIMENSION NRN(4), TO(45), TG(12), Q(12), SAFR(12), ST(36), T2(12)
 3
            DIMENSION X(36), REX(36), D2(36), REEN(36), SM(12), F(12), T4(12), C1(12)
            DIMENSION VAR(12), TCAST(5), KOMMNT(40), HM(45), QDOT(36), QFLOW(12)
 4
 5
            DIMENSION TC AV(12),STNOB(36),STO(36),STCOL(36),STHOT(36),STS(36),
           1STSF(36),STCR(36),STHR(36),STSR(36),SMO(12),FO(12),THO(12),FB(12);
           2BHCOL(12),BHOT(12),REXO(36),RENCOL(36),RENHOT(36),D2COL(36),
           3D2HOT(36),0QDOT(36),DTH(12),DST(36),DREEN(36),DD2(36),NTHO(12)
             DIMENSION DSTO(36), ETA(36), XD(36), SF(12), SFO(12), NRNO(4)
 7
            DATA X/50.3,52.3,54.3,56.3,58.3,60.3,62.3,64.3,66.3,68.3,
                  70.3,72.3,73.82,74.85,75.88,76.915,77.95,78.98,80.01,81.04,
                  82.07, 83.1, 84.13, 85.165, 86.2, 87.23, 88.26, 89.29, 90.32, 91.35,
                  92.38,93.415,94.45,95.48,96.51,97.54/
     C
           FOLLOWING IS THE CONDUCTION LOSS CONSTANTS FOR BLOWING SECTION.
                                .3867,
                                         .3601,
                                                   .3558,
                                                             .36R3,
                                                                      .3712,
 8
             DATA K/
                      .4762.
                                                   .3861,
                                                             .3584,
                      .3559.
                                .4184,
                                         .3774,
              FOLLOWING IS THE HEAT FLUX METER CALIBRATION CONSTANTS NO 13-36.
     CCC
          2
                      36.05,
                               34.78,
                                       35.05,
                                               33.81,
                                                        33.32,
                                                                 32.33,
                      25.02,
                                                31.46,
                                                        29.31,
          3
                               33.00,
                                                                 31.79,
                                       28.61,
                                                29.49,
                      33.71,
                               34.63,
                                       31.51,
                                                        24.67,
                                                                 30.98,
                      32.46,
                               37.82,
                                       31.97,
                                                24.10,
                                                        36.16,
                                                                 34.09,
     CCC
            HEAT FLUX METER CALIBRATION CONSTANTS NO 106-108
                      32.53.
                               34.18,
                                       38.07/
          FOLLOWING IS THE AXIAL CONDUCTION LOSS CONSTANTS
     CCC
 9
            DATA S/
                      .9928,
                               11 * . 80 .
                                        .9078,
                                                 4.712,
                                                         4.962,
                                                                  5.014,
                                                                          4.965,
                                                                          5.597,
                                                4.494,
                                                         5.480,
                      5.118,
                               5.183,
                                       4.777,
                                                                 5.020,
                                       5.254,
                                                5.356,
                                                        5.211,
                      5.254,
                                                                 5.370,
                                                                          5.583.
          2
                               5.169,
                      4.990,
                               5.435,
                                       4.872,
                                                5.557,
                                                        5.545,
                                                                 5.585,
          3
     CCC
             NO
                 106-108
                      4.983,
                               5.056,
                                       4.989/
     C
          DQ:
               ENERGY BALANCE ERROR, WATT
10
            DQ=0.3
     C
            DP : UNCERTAINTY IN MANOMETER PRESSURE , IN H20
11
            DP=0.005
           ASSUME ALL PROPERTIES CORRECT, AFTER TEMPERATURE-HUMIDITY CORRECTION.
     C
     C
          DT: UNCERTAINTY IN TEMPERATURE, F
12
            DT = 0.25
     C
                   UNCERTAINTY IN SECONDARY FLOW RATE, RATIO
            DSAFR:
13
            DSAFR=0.03
     C
               UNCEPTAINTY IN HM(I), MV
14
           DHM=0.025
     C
          DK:
               UNCERTAINTY IN HEAT FLUX METER CALIBRATION, RATIO
15
            DK=0.01
     C
               UNCERTAINTY IN CONDUCTION CORRECTION ON HEAT FLUX METER, PATID
16
            DS=0.05
     C
         DXVO: UNCERTAINTY IN XVO.IN
       $$$ READ RUN NUMBER, COL. 1-8
     C.
            TERMINATE PROGRAM WITH 999999999 CARD, COL. 1-10
     C
     C**
                 IT STORES THE HEAT TRANSFER PARAMETERS WHICH CAM BE USED
     C**
                 FUR KT=1. NO-BLOWING RUN OR COLD RUN.
```

```
IT CALCULATES ST AND OTHER INTEGRAL PARAMETERS AT THETA=9.61.
     Cas
          KT=1
     C**
                 USING THE LINEAR SUPERPOSITION PRINCIPLE. HOT RUNS.
     C**
          ***
                ARRANGE DATA SUCH THAT HOT RUN FOLLOWS COLD RUN AT SAME VALUE OF V.
     C**
                IT CALCULATES THE ADIABATIC WALL EFFECTIVENESS.
          KT=2
     C**
          KM=0
                 P/D RATIO OF 5
     C**
          KM=1
                P/D RATIO OF 10
                NO-BLOWING CASE HAS A CONSTANT WALL TEMPERATURE WITHOUT ANY STEP.
     C**
          L=0
                NO-BLOWING CASE HAS A STEP T-WALL AT THE 1ST PLATE. INTERNALLY SET
     C**
          L=1
     C**
                IF INPUT END2 IS ZERO.
     C**
                NO BLOWING HAS A STEP T-WALL AT SOME PLACE IN THE FORE PLATE.
          L=2
     C**
                ACTUAL ST TAKEN ON THE RIG IS USED FOR THE NO-BLOWING ST
     C**
                SPECIFICATION OF L=2 IS ONLY NECESSARY AT KT=1
         5 READ (5,10)
17
                          (NRN(I), I=1,4), IOUT, KT, KM, L
18
        10 FORMAT (4A2, 12, 12, 12, 12)
            IF (IOUT.NE.O) GO TO 2000
19
     C
       $$$ READ STATEMENT PROVIDES 80 SPACES FOR A COMMENT REGARDING
              DATA REDUCTION. STATEMENT WILL APPEAR ON OUTPUT SHEET
20
           READ (5.2) (KOMMNT(I), I=1.40)
21
         2 FORMAT (40A2)
       $$$ READ AMBIENT CONDITIONS: TEMP(DEG F), PRESS(IN HG), RELHUM(PCT)
22
            READ (5,20) TAMB, PAMB, RHUM, THEAT
23
        20 FDRMAT (7F10.0)
       $$$ READ TUNNEL CONDITIONS: TINF(MV) RECOVERY TEMP, PDYN(IN H20),
     C
                PSTAT(IN H20) GAGE STATIC PRESSURE, NOTE NEG IF BELOW
     C
                PAMB, XVO(IN) VIRTUAL ORIGIN OF TBL, INCHES
     C
                 FROM THE PHYSICAL STARTING POINT OF THE PLATE
24
           READ (5,20) TINF, PDYN, PSTAT, XVO, END2, DXVO, DEND2
25
           TRECOV=TINF
26
           IF (END2.EQ..0) L=1
                POWERSTAT SETTING, SEC AIR FLOWRATE(MV) TAKEN AT SEC AIR TEMP
       $$$ READ SEC AIR TEMP(MV), PLATE TEMP(MV), PLATE POWER(WATTS),
           READ (5,25) (TG(1),TO(1),Q(1),VAR(1),SAFR(1),CI(1),I=1,12)
27
28
        25 FORMAT (6F10.0)
29
           READ (5,26) (TO(I),HM(I),I=13,45)
30
        26 FDRMAT(2F10.0)
       $$$ READ CASTING TEMPERATURES
31
           READ (5,25) (TCAST(I), I=1,5)
     C
           WRITE OUT ALL RAW DATA
           WRITE (6,40) (NRN(I), I=1,4)
32
        40 FORMAT (1H1, 9X, STANTON NUMBER DATA RUN 1,4A2, *** DISCRETE HOL
33
          1E RIG *** NAS-3~14336 /)
           WRITE (6,45)
34
35
        45 FORMAT (10X, *UNITS: PAMB(DEG F), PAMB(IN HG), PHUM(PCT)*/17X,
          1 'PSTAT(IN H20), TRECDV(MV), PDYN(IN H20), XVQ(IN), TPLATE(MV)'/17
          2X, TGAS(MV), QDDT(WATTS), SAFR(MV), HM(MV), CI(MV), THEAT(MV) 1/)
           WRITE (6,50) TAMB, PAMB, RHUM, THEAT
36
        50 FORMAT (10X, 'TAMB="F6.1,5X, 'PAMB="F6.2,5X, 'REL HUM="F5.1,6X,
37
            'THEATEP='F6.2/)
38
           WRITE (6,60) PSTAT, TRECOV, PDYN, XVO
39
        60 FORMAT (10X, *PSTAT=*F6.2,5X, *TRECOV=*F6.3,5X, *PDYN=*F6.3,5X,
          1 'XV0='F6-2//)
           WRITE (6,70)
40
41
        70 FORMAT (10X, 'PLATE',6X, 'TPLATE',6X,'TGAS',6X,'QDOT',4X,'VARIAC',
          1 5X, 'SAFLOW', 5X, 'CURRENT'/)
42
           NP1=1
```

```
WRITE (6,75) NP1,TO(1),Q(1),VAR(1)
43
44
        75 FORMAT (10X, 13, 7X, F7.3, 13X, F7.2, 3X, F7.1)
           WRITE (6,80) (1,TO(1),TG(1),Q(1),VAR(1),SAFR(1),CI(1),I=2,12)
45
        80 FORMAT (10X, I3,7X,F7.3,3X,F7.3,3X,F7.2,3X,F7.1,3X,F8.3,3X,F8.3)
46
47
           WRITE(6,71)
        71 FORMAT(/,10x, PLATE',6x, TPLATE',6x, HM')
48
           WRITE(6,72)(I,TO(I),HM(I),I=13,45)
49
50
        72 FORMAT(10X,13,7X,F7.3,3X,F7.3)
51
           WRITE (6,85) (I, TCAST(I), I=1,5)
52
        85 FORMAT (/10x,5('TCAST('II,')='F6.3,5X))
     C
     C
            DATA REDUCTION SEGMENT
     C
     C
           CONVERT ALL TEMPERATURES FROM MY TO DEG F
53
            TRECOV=TC(TRECOV)
54
           DO 90 I=1,12
55
           TO(I)=TC(TO(I))
56
           TG(I)=TC(TG(I))
57
        90 CONTINUE
58
           DO 89 I=13,45
        89 TO([)=TC(TO(]))
59
           DO 95 I=1,5
60
61
        95 TCAST(I)=TC(TCAST(I))
     C
            MIXTURE COMPOSITION, GAS CONSTANT, RM, AND SPECIFIC HEAT, CP
           RHUM=RHUM/100.
62
            PS INF=PAMB+29.92 *PSTAT /407.
63
     CC
                TO HAVE ACCURATE RESULTS:
              AFTER CALLING SUBROUTINES HUMID AND VEL , AGAIN CALL HUMID (PSINF,
     CC
             TINE, RHUM, P, CP, RM, W)
                                     A ND
                                             CALL VEL (RM,P,W,PDYN,TRECOV,TINE,RHOG,
     CC
             UINF, VISC, CP, PR). THIS PROCEDURE MAY BE ITERATED FOR THE DESIRED ACCURACY
     CC
                    IN OUR CASE, KINETIC TEMP IS LESS THAN ABOUT 1.0 F FOR 100.FT/SEC
     CC
     CC
              AND ABSOLUTE HUMIDITY, W, AND OTHER PROPERTIES DO NOT CHANGE NOTICEABLY.
             SO WE DO NOT NEED ANY ITERATIONS.
     CC
                    HUMID (PSINF, TRECOV, RHUM, P, CP, RM, W)
64
            COMPUTE FREE STREAM DENSITY, VELOCITY, STATIC TEMP, KIN. VISC
     C
                       VEL (RM.P.W.PDYN.TRECOV.TINF.RHOG.UINF.VISC.CP.PR)
65
              CALL
     C
           PLATE AREAS
           A=18.*1.968750/144.
66
     C
          HOLE AREA
            AH=(3.141593*0.406250*0.406250*0.25)/144.
67
     C
            SECONDARY AIR FLOWRATE
                       FLOW (KERROR, UINF, AH, W, TG, THEAT, CI, RHOG, SAFR, SM, F, KM)
                CALL
68
     C
         DF: UNCERTAINTY IN F , RATIO
69
           DF=SQRT(DSAFR+DSAFR+DP*DP/(4.*PDYN*PDYN))
70
            IF (KERROR.GT.O) GO TO 1000
            WATTMETER CORRECTION FOR WATTMETER CALIBRATION AND THE CIRCUITRY.
     C
           CALL WATT (Q.VAR)
71
     CC
              CALCULATES THE MIXED MEAN 2ND GAS TEMP, HEAT LOSSES, AND EFFECTIVE CASTING
     CC
              TEMP.
72
                CALL
                       TEFFS (SAFR, TCAST, TO, TG, K, HM, T2, QFL OW, TCAV, KM)
             CORRECS THE PLATE POWER TO GET CONVECTIVE FLUXES ON BLOWING SECTION
     CC
73
                CALL
                       PLOSS (Q,TO,TCAV,TINF,A,K,S,QFLOW,QDOT)
              CALCULATES THE CONVECTIVE HEAT FLUXES ON THE RECOVERY REGION.
     CC
74
                 CALL HFM (TO,TINF,HM,K,S,QDOT)
         DQDOT: UNCERTAINTY IN HEAT FLUX, BTU/HR. SQFT
            DO 711 I=1,12
75
76
       711 DODOT([)=DO*3.4129/A
77
            DO 712 I=13,36
78
       712 DQDOT(I)=SQRT(DK+DK+K(I)+K(I)+HM(I)+HM(I)+K(I)+K(I)+DHM+DHM+DT+DT
```

1*(S(I)*S(I)+S(I+1)*S(I+1))+OS*OS*(S(I)*S(I)*(TO(I)-TO(I-1))*(TO(I)

```
2-TO(I-1))+S(I+1)*S(I+1)*(TO(I)-TO(I+1))*(TO(I)-TO(I+1))))
       C
       C
             WRITE ALL CONVERTED DATA
 79
             WRITE (6,100)
         100 FORMAT (//,10x,*UNITS: TPLATE(DEGF), TGAS(DEG F), QDDT(WATTS),*,
 A O
            1 /17X.'SAFLOW(CFM),QFLUX(BTU/HR/SQFT).TEFF2(DEG F)'/)
 81
             WRITE (6,102)
         102 FORMAT (10X, 'PLATE', 6X, 'TPLATE', 5X, 'TEFF2', 5X, 'TGAS', 6X, 'QDDT'.
 82
               6X, 'QFLUX', 6X, 'SAFLOW'/)
             WRITE (6,105) NP1,TO(1),Q(1),QDOT(1)
 83
 84
         105 FORMAT(10X,13,7X,F7.1,23X,F7.2, 5X,F7.2)
             WRITE (6,110) (1,TO(1),T2(1),TG(1),Q(1),QDOT(1),SAFR(1),1=2,12)
 85
 86
        110 FURMAT(10x,13,7x,F7.1,3x,F7.1,3x,F7.1,3x,F7.2,5x,F7.2,1x,F8.2)
             WRITE (6,106)
 87
 88
         106 FORMAT(/,10X, 'PLATE',6X, 'TPLATE',6X, 'HM',5X, 'QFLUX'/)
 89
             WRITE(6,107) (1,70(1), HM(1),Q00T(1),I=13,36)
 90
         107 FORMAT (10X,13,7X,F7.3,3X,F7.3,3X,F7.2)
 91
             WRITE (6,115) (I,TCAST(I), I=1,5)
         115 FORMAT (/10x,5('TCAST('II,')='F6.1,5x))
 92
 9.3
             XVI=X(I)-XVO-1.0
 94
             IPD=5
 95
             IF (KM.EQ.1) IPD=10
 96
             WRITE (6,40) (NRN(I), I=1,4)
 97
             WRITE (6,300) TINF, UINF, XVO, RHOG, CP, VISC, PR, XVI, IPD
 98
         300 FORMAT (10X, *TINF=*F6.1,4X, *UINF=*F5.1,5X, *XVO=*F6.3,
                                                                       5X, *RHO=*,
            1F8.5,3X, *CP= *F6.3,6X, *VISC= *E12.5,5X, *PR= *F5.3,/10X, *DISTANCE FROM
            1 ORIGIN OF BL TO 1ST PLATE="F6.3,14x"P/D="12)
 99
             IF (KT.EQ.2) GO TO 402
       C
       ¢
             COMPUTE HEAT TRANSFER PARAMETERS
       C
             COMPUTE THETA=(T2-TINE)/(T0-TINE)
100
             TH(1)=0.
101
             DTH(1)=0.
102
             SM(1)=0.
103
             F(1)=0.
104
             DO 200 I=2.12
105
             TH(I) = (T2(I) - TINF)/(TO(I) - TINF)
           DTH(I): UNCERTAINTY IN TH(I)
106
         200 DTH(I)=DT*SQRT(1.+TH(I)*TH(I))/(TO(I)-TINF)
107
             IF (KM.EQ.O) GO TO 201
108
             DO 202 J=3,11,2
             TH(I)=TH(I-1)
109
.110
         202 F(I)=F(I-1)
             X REYNOLDS NUMBER BASED ON VIRTUAL ORIGIN THE
111
         201 FACT=UINF/(VISC*12.)
112
             DREX=FACT*DX VO
113
             DC 210 I=1,36
114
         210 REX(I)=FACT*(X(I)-XVO)
             COMPUTE STANTON NUMBER'S
115
             DENOM=RHOG*UINF*CP*3600.
116
             DO 220 I=1,36
117
             ST(I)=QDOT(I)/(DENOM*(TO(I)-TINF))
       CC
             VARIABLE PROPERTY CORRECTION.
             ST(I)=ST(I)*((TO(I)+459.67)/(TINF+459.67))**(.4)
118
       C
            DST(I): UNCERTAINTY IN ST(I)
119
             DST(I)=ST(I)*SQRT(DQDQT(I)*DQDQT(I)/(QDQT(I)*QDQT(I))+DP*DP/(4.*
            1PDYN*PDYN)+DT*DT/{(TO(1)-TINF)*(TO(1)-TINF)}}
120
         220 CONTINUE
```

```
CALCULATES DEL2 AND RE-DEL2 BASED ON THE ACTUAL ST-DATA.
      CC
             CALL ENTHAL (FACT, TH, F, ST, END 2, DEND 2, D2, RFEN, DD2, DREEN, DTH, DST,
121
            1DF .KM)
122
             CC=0.0
123
             DO 116 I=1,12
             IF (CI(I) .NE. 0.0) CC=CI(I)
124
125
         116 CONTINUE
             IF (CC .EQ. O.) WRITE(6,333) DREX IF (CC .NE. O.) WRITE (6,334) DREX, DF
126
127
128
        333 FORMAT
                    ( 12X, 'UNCERTAINTY IN REX=',F6.0,/)
        334 FORMAT ( 12x, UNCERTAINTY IN REX=", F6.0, 9x UNCERTAINTY IN F=", F7.5
129
            1, IN MATIO:/)
             kRITE (6,600) (KDMMNT(I), I=1,40)
130
131
        600 FORMAT
                      (10X,40A2/)
             WRITE (6,310)
132
        310 FORMAT(10x*HLATE*,3X*X*,5X*REX*,9X*TO*,6X*REENTH*,7X*STANTON NO*.
133
            1 6X'DST',6X'DREEN',4X'M',4X'F',6X'T2',2X'THETA',3X'DTH')
134
             WRITE (6,320) NP1.X(1).REX(1).TO(1).REEN(1).ST(1).DST(1).DREU(1)
135
        320 FORMAT(10XI3,2XF5.2,1XE12.5,1XF6.1,2(2XF12.5),2XE9.3,2XF5.0)
136
             DO 340 I=2,12
137
             WRITE (6,330) I,X(I),REX(I),TO(I),REEN(I),ST(I),DST(I),DRFEN(I),
            1SM([),F(I),T2(I),TH(I),OTH(I)
138
        330 FORMAT(10X13,2XF5.2,1XF12.5,1XF6.1,2(2XE12.5),2XE9.3,2XF5.0,2XF5.2
            1,F7.4,F6.1,F6.3,2XF5.3)
139
         340 CONTINUE
140
             DO 341 I=13,36
141
             WRITE (6,331) 1,X(I),REX(I),TO(I),REEN(I),ST(I),DST(I),DREEN(I)
142
        331 FORMAT(10X13,2X-5.2,1XE12.5,1XF6.1,2(2XE12.5),2XE9.3,2XF5.0)
        341 CONTINUE
143
      CC
             IF 2ND PLATE HAS NO SECUNDARY INJECTION , THIS PROGRAM ASSUMES THAT
             IT IS A NO-BLOWING CASE.
      CC
144
             IF (CC .EQ. 0.0) GO TO 400
                          GO TO 350
145
             IF(KT.EQ.O)
                           GO TO 360
146
             IF (KT.EQ.1)
      CC
             STORE THE OLD VALUES OF STANTON NUMBERS ALONG WITH OTHER INTEGRAL
      CC
             PARAMETERS FOR THE COLD RUN.
147
        350 DO 351 I=1.12
148
             SMO(I) = SM(I)
149
             FO(I) \Rightarrow F(I)
             THO(I)=TH(I)
150
151
             DTHO(I)=DTH(I)
152
             STO(I)=ST(I)
             DSTO(I)=DST(I)
153
154
             REXO(I)=REX(I)
155
        351 CONTINUE
156
             CO 352 I=13,36
157
             STO(I)=ST(I)
158
             DSTO(I)=DST(I)
159
             REXO(I) = REX(I)
160
        352 CONTINUE
161
             FACTO=FACT
             DFO=DF
162
163
             DO 353 I=1.4
             NRNO(I)=NRN(I)
164
165
        353 CONTINUE
166
             GO TO 1000
             CALCULATES THE STANTON NUMBERS AT THETA .EQ. O AND I BASED ON FINEAR
      CC
             SUPERPOSITION THEORY.
      CC
167
        360 FAVO=0.
```

FAV=0.

158

```
THAVO=0.
169
170
             THAV=0.
171
             DO 361 I=2,12
             THAVO=THAVO+THO(1)
172
             THAV=THAV+TH(I)
173
174
             FAVO=FAVQ+FO(I)
175
             FAV=FAV+F(I)
176
        361 CONTINUE
177
             THAVU=THAVO/11.
178
             THAV=THAV/11.
179
             FAVO=FAVO/11.
180
             FAV=FAV/11.
181
             FBAV=.5*(FAVO+FAV)
182
             DO 362 I=2,12
183
             STS(I) = (STO(I) - ST(I)) / (TH(I) - THO(I))
184
             STCOL(1) = STO(1) + THO(1) * STS(1)
185
             STHOT(I) = ST(I) + (TH(I) - 1.0) * STS(I)
             FB(I) = 0.5*(FO(I) + F(I))
186
187
             ETA(I)=STS(I)/STCOL(I)
188
             IF (L.EQ.2) GD TO 374
             STNOB(I) = . 0295*PR**(-.4)*(REX(I))**(-.2)
189
190
             IF (L.EQ.1)STNOB(I)=STNOB(I)*(1.-{XVI/(X(I)-XVO)}**(0.9))**
            1(-1./9.)
191
        374 STHR(I)=STHOT(I)/STNOB(I)
192
             IF (L.EQ.2) GO TO 375
193
             STNOB(I)=STNOB(I)*(REX(I)/REXO(I))**(0.2)
194
             IF (L.EQ.1)STNOB(I)=STNOB(I)*(1.-(XVI*FACTO/REXO(I))**(0.9))**
            1(-1./9.)
195
        375 STCR(I)=STCOL(I)/STNOB(I)
196
             STSR(I)=STHOT(I)/STCOL(I)
197
             BHCOL(I)=FO(I)/STCOL(I)
198
             BHOT(I) = F(I) / STHCT(I)
199
             STSF(1)=ALOG(1.+BHOT(I))/BHOT(I)
200
             8HOT(I)=STHR(I)/STSF(I)
201
             STSR(I) = STSR(I) / STSF(I)
202
             SF(I)=F(I)*STHOT(I)
203
             SFO(I)=FO(I)*STCOL(I)
204
        362 CONTINUE
205
             DO 363 I=13,36
206
             STS(1)=(STO(1)-ST(1))/(THAV-THAVO)
207
             STCOL(I)=STO(I)+THAVO*STS(I)
208
             STHOT([])=ST([])+(THAV-1.0)*STS([)
209
             ETA(I)=STS(I)/STCOL(I)
210
             IF (L.EC.2) GO TO 372
             STNOB([)=.0295*PR**(-.4)*(REX([))**(-.2)
211
212
             IF (L.EQ.1)STNOB(I)=STNOB(I)*(1.-(XVI/(X(I)-XVO))**(0.9))**
            1(-1./9.)
213
        372 STHR(I)=STHOT(I)/STNOR(I)
214
             IF (L.EQ.2) GO TO 373
215
             STNOB(I)=STNOB(I)*(REX(I)/REXO(I))**(0.2)
216
             IF (L.EQ.1)STNOB(I)=STNOB(I)*(1.-(XVI*FACTO/RFXO(I))**(0.9))**
            1(-1./9.)
217
        373 STCR(I)=STCOL(I)/STMOB(I)
218
             STSR(I) = STHOT(I) /STCOL(I)
219
        363 CONTINUE
             CALCULATES THE DEL2 AND RE-DEL2 BASED ON THE NEW VALUES OF STANTON
      CC
             NUMBER AT THETA .EQ. O AND 1 .
      CC
220
             STCOL(1)=STO(1)
             STHOT(1) = ST(1)
221
222
             STS(1)=STO(1)-ST(1)
```

```
DO 370 I=1.12
223
             THO(I)=0.0
224
225
        370 TH(1)=1.0
226
             CALL ENTHAL (FACT, TH, F, STHOT, END2, DEND2, D2HOT, RENHOT, DD2, DREFN, DTH
            1.DST, OF, KM)
227
             CALL ENTHAL (FACTO, THO, FO, STCOL, END2, DEND2, D2COL, PENCOL, DD2, D2 FFN
            1, DTHU, DSTU, DFG, KM)
      CC
             OUTPUTS FOR THE NEW PARAMETERS.
             WRITE (6,371) (NPNO(1), I=1,4), (NRN(I), I=1,4)
228
        371 FORMAT (1H1,9X, FOLLOWING IS THE DATA FOR THETA=0 AND THETA=1, WHI
229
            ≠CH WAS OBTAINED BY LINEAR SUPERPOSITION THEORY.*/,10X*THIS DATA WA
            #S PRODUCED FROM RUN 1,482,  AND RUN 1,482,/;10X1FOR THE DETAIL CH
            *ANGES OF PROPERTIES AND BOUNDARY CONDITIONS, PLEASE SEE THE ABOVE
            *TWO RUNS*1
230
             WRITE (6.354)
         364 FORMAT
231
                       (/,7X,*PLATE*,3X,*REXCOL*,4X,*RE DEL2*,3X,*ST(*H=0)*,4X,*
            1'REXHOT',4X,'RE DEL2',3X,'ST(TH=1)',4X,'ETA',4X,'STCR',4X'F-CO!',
            25X*STHP *, 4X*F-HOT*, 2X*PHI-1*/)
             WRITE(6,365)
232
                           (I,REXO(I),RENCOL(I),STCOL(I),REX(I),RENHOT(I),
            1STHUT(1), FTA(1), STCR(1), FO(1), STHR(1), F(1), BHOT(1), I=1, 12)
233
        365 FORMAT((10X, I2, 2(2XF9.1), 1XF9.6, 2(2XF9.1), 1XF9.6, 2(2XF5.3), 2XF7.4,
            12XF7.3,2XF7.4,2XF5.3))
234
             WRITE(5,366) (I, REXC(I), RENCOL(I), STOOL(I), REX(I), RENHOT(I),
            1STHOT(I), EYA(I), STCR(I), STHR(I), I=13,36)
235
        366 FORMAT((10X,12,2(2XF9.1),1XF9.6,2(2XF9.1),1XF9.6,2(2XF5.3),11XF7.3
            1))
236
             GO TO 1000
             FLAT PLATE VALUES ARE STORED.
        400 DO 401 I=1,36
237
             STNOB(I)=ST(I)
238
239
        401 CONTINUE
240
             GD TO 1000
241
        402 DO 403 I=2,12
             XU(I) = (X(I) + 1.-X(2))/0.406
242
243
        403 ETA(1)=(TO(1)-TINF)/(T2(1)-TINF)
244
             TS=0.
245
             DO 404 I=2,12
246
        404 TS=TS+T2(I)
247
             TS=TS/11.
248
             DO 405 I=13,36
249
             XD(I) = (X(I)+1.-X(2))/0.406
        405 ETA(I)=(TO(I)-TINF)/(TS-TINF)
250
251
             CC=0.0
            DO 11/ T=1.12
252
253
             IF (CI(I) .NE. U.O) CC=CI(I)
254
        117 CONTINUE
255
             IF (CC .EQ. O.) WRITE(6,333) DREX
             IF (CC .NE. O.) WRITE (6,334) DREX, DF
256
257
             WRITE (6,600) (KOMMNT(I), I=1,40)
             WRITE (6,406)
258
        406 FORMAT (10x*PLATE*,3X*X*,6X*REX*,9X*TO*,5X*X/D*,5X*ETA*,6X*M*,
259
            18X*F*,5X*T2*)
260
             DO 407 I=2.12
261
             WRITE (6,408) I,X(I),REX(I),XD(I),ETA(I),SM(I),F(I)
262
        408 FURMAT (10X, I3, 2X, F5, 2, 1XF12, 5, 1XF6, 1, 2XF6, 2, 2XF6, 4, 2XF5, 2, 2XF7, 4,
            12XF5.11
        407 CONTINUE
263
264
             DO 409 [=13,36
265
             WRITE (6,410) I,X(I),REX(I),XD(I),ETA(I)
266
        410 FORMAT (10X, I3, 2X, F5. 2, 1XE 12.5, 1XF6.1, 2XF6.2, 2XF6.4)
```

```
409 CONTINUE
267
       1000 GD TO 5
268
       2000 WRITE (6,900)
269
        900 FORMAT (1H1)
270
             RETURN
271
             END
272
             FUNCTION TC(T)
273
           FUNCTION CONVERTS TEMP FROM IRON-CONSTANTAN MY TO DEG F
             TM=-2220.703+781.25*SQRT(7.950782+0.256*T)
274
             TC=TM+49.97-1.26E-03*TM-.32E-04*TM*TM
275
             RETURN
276
277
             END
             SUBROUTINE HUMID (PBAR, TAMB, RHUM, P, CP, RM, W)
278
      C
             THIS SUBROUTINE CALCULATES THE MASS FRACTION OF AIR AND WATER
      C.
             VAPOR FROM THE RELATIVE HUMIDITY AND AMBIENT TEMPERATURE
      ¢
             THE MIXTURE GAS CONSTANT IS ALSO DETERMINED
      C
      C
             SATURATION DATA FROM K AND K 1969 STEAM TABLES
      C
            DATA BLOCK FROM THE STEAM TABLES
      C
      C
             DIMENSION TEMP(10), PSAT(10), RHOSAT(10)
279
            DATA TEMP/
                             40.,
                                                            70.0.
280
                                      50.0,
                                                 60.0,
                                                                      80.0.
                  90.0.
                             100.0.
                                      110.0,
                                                 120.0,
                                                             130.0/
             DATA PSAT/
                                       25.636,
                                                  35.907,
                                                             52.301,
                                                                        73.051,
281
                             17.519,
                                       183.787,
                                                  244.008,
                  100.627,
                             136.843,
                                                             320.400/
           1
282
            DATA RHOSAT/
                             .0004090, .0005868, .0008296, .0011525, .0015803,
                  .0021381, .0028571, .0037722, .0049261, .0063625/
            REAL NU, MFA, MFV, MWA, MWV
283
      С
            CONVERT IN HG TO PSF
            AT 59. DEG F P=2116.217 PSF = 29.92126 IN HG
      C
             SEE HESSE AND MUMFORD, JET PROPULSION, P554
284
             P=PBAR*2116.217/29.92126
            DO 10 N=1.9
285
             IF(TEMP(N).GT.TAMB) GO TO 20
286
         10 CONTINUE
287
288
         20 T = TEMP(N)
            EPS = T - TAMB
289
290
             VAPH = PSAT(N)
291
             VAPL = PSAT(N-1)
292
             VEPS = VAPH - VAPL
            RHOH = RHOSAT(N)
293
            RHOL = RHOSAT(N-1)
294
295
            REPS = RHOH - RHOL
296
            RHOG = RHOL + (10.0 - EP5)*REPS/10.
297
            RA=1545.32/28.970
298
            PG = VAPL + (10.0 - EPS)*VEPS/10.0
            PVAP = RHUM*PG
299
300
            PA = P - PV \wedge P
            RHUA = PA/(RA*(TAMB + 459.67))
301
302
            RHOV = RHUM*RHOG
            W=RHOV/RHOA
303
304
            RHOM = RHOA + RHCV
305
            MWA = 28.970
306
            MWV = 18.016
307
            MFV = RHOV/RHOM
308
            MFA = 1.0 - MFV
            RM = 1545.32*(MFA/MWA + MFV/MWV)
309
310
            CP = MFA*0.240 + MFV*0.445
311
            RETURN
312
            END
```

```
313
            SUBROUTINE VEL (PM,P,W,PDYN,TRECOV,TINF,RHOG,UINF,VISC,CP,PR)
            TUNNEL PRESSURE, PSF
      C
      C
            CONVERT TO PSF USING VALUES FROM K&K GAS TABLES, P195, FOR H20 AT
      C
            60 DEG F
314
            PUNITS=144./27.7068
315
            GC=32.1739
316
            JF=777.66
317
            RCF=0.7**0.33333
            RHOG=(P/RM+PDYN*PUNITS*RCF/(CP*JF))/(TRECDY+459.67)
318
            UINF=SQRT(2.*GC*PDYN*PUNITS/RHOG)
319
320
            TINE=TRECOV-RCF*UINF*UINF/(2.*GC*JF*CP)
            KINEMATIC VISCOSITY, FT*FT/SEC
      C
            VISC=(11.+0.0175*TINF)/(1.E06*RHOG)*(1.-.7*W)
321
      CC
            PRANDTL NUMBER OF FREESTREAM AIR
322
            PR=.710*(530./(TINF+459.67))**(.1)*(1.+.9*W)
323
324
            END
            SUBROUTINE FLOW (KERROR, UINF, AH, W, TG, THEAT, CI, RHOG, SAFR, SM, F, KM)
325
326
            DIMENSION SAFF(1), SM(1), F(1), TG(1), X(5), Y(5), B(4), CT(1), FMC(12)
327
            DIMENSION TM(12)
                                     .92,
328
            DATA FMC/
                        1.0, 1.22,
                                            .988, .928,
                                                           -906,
                                                                  .907,
                         .918, .901, .920, .929/
           1
            KERROR=0
329
      C
      C
      č
            THIS RUUTINE CONVERTS FLOWMETER READING TO SECONDARY
      C
                AIR FLOWRATE, AND COMPUTES 4 AND F PARAMETERS
      C
            TG, GAS STATIC TEMPERATURE, DEG F
      C
      Ç
            W. HUMIDITY RATIO, LB VAPOR/LB DRY AIR
      Ċ
            SAFR, SECONDARY AIR FLOWRATE, CFM, CORRECTED FOR TEMP AND HUMIDITY
      C
            SM, VELOCITY RATIO, SECONDARY AIR GAS TO MAINSTREAM GAS
      C
            F, MASS FLUX RATIO, SA TO MS, CONSIDERING 2*2 SQIN AREA
                  CONTAINING 2 BLOWING HOLES TOTAL. F= AH*M/(4/144)
      C
            CALIBRATIUN CURVE DATA
330
            X(1)=0.35
331
            Y(1) = 53.0
332
            X(2) = 0.90
333
            Y(2)=4.05
334
            X(3) = 1.12
335
            Y(3) = 2.00
336
            X(4) = 1.35
337
            Y(4)=1.00
338
            X(5)=1.5
339
            Y(5)=0.69
340
            DO 10 I=1,4
         10 B(I)=ALOG(Y(I)/Y(I+1))/ALOG(X(I)/X(I+1))
341
342
            FACT=1.0+0.22*W
343
            THEAT=TC(THEAT)
344
            DO 20 I=2,12
345
            IF (CI(1).EQ.O.) SAFR(1)=0.
346
            IF (CI(I).EQ.O.) GO TO 20
347
            TM(I)=.5*(TG(I)+THEAT)
            SAFR(1)=SAFR(1)*(((TM(1)+459.67)/530.)**0.7)*FACT*(30.00/CI(1))**2
348
                     *FMC(I)
           1
349
         20 CONTINUE
150
            FACT=1.0+0.7*W
351
            DO 40 I=2,12
352
            IF (CI(I).EQ.O.) GO TO 40
```

```
IF (SAFR(I).LT.X(1).OR.SAFR(I).GT.X(5)) GO TO 100
353
354
            DO 30 K=1,5
             IF (X(K).GT.SAFR(I)) GO TO 35
355
         30 CONTINUE
356
357
         35 Z=Y(K-1)*(SAFR(I)/X(K-1))**B(K-1)
358
             SAFR([]=Z/((530./(TM([]+459.67))**0.76)/FACT
359
         40 CONTINUE
360
            RHOS=.074843
361
             IF(KM.EQ.1) GO TO 300
            F8=AH*60.*UINF*8.*RHDG
362
363
            F9=AH*60.*UINF*9.*RHDG
            DO 50 I=2,12,2
364
365
            SM(I)=SAFR(I)=KHOS/F9
366
         50 F(I)=36.*AH*SM(I)
367
            DD 60 I = 3, 11, 2
368
            SM(I)=SAFR(I)*RHOS/F8
         60 F(I)=36.*AH*SM(I)
369
370
            RETURN
371
        300 F5=AH*60.*UINF*5.*RH0G
372
             F4≃F5*4。/5。
            DO 310 I=3,11,2
373
374
             SM(I)=0.
375
        310 F(I)=0.
376
            DO 311 I=2,10,4
             SM(I)=SAFR(I)*RHOS/F5
377
378
        311 F(I)= 9.*AH*SM(I)
379
            DO 312 I=4,12,4
380
             SM(I)=SAFR(I)*RHOS/F4
        312 F(I)= 9.*AH*SM(I)
381
382
             RETURN
383
        100 CONTINUE
384
             WRITE (6,200) SAFR(I)
        200 FORMAT (10x, FLOWMETER READING OUT OF RANGE, EMF= El2.5,//10x,
385
           1 'DATA SET REDUCTION TERMINATED')
            KERROR=2
386
387
            RETURN
388
             END
             SUBROUTINE WATT (Q, VAR)
384
            DIMENSION Q(1), VAR(1)
390
391
            DIMENSION RR(12), XP(12), RBO(12), RO(12), RSL(12), RL(12)
            DATA RL/8.022, 8.024, 8.067, 8.066, 8.064, 8.063,
392
                     8.096, 8.073, 8.093, 8.099, 8.079, 8.060/
            DATA RSL/8.187, 8.186, 8.233, 8.227, 8.217, 8.220,
393
                      8.259, 8.229, 8.256, 8.263, 8.241, 8.226/
            1
            DATA RO/8.419, 8.456, 8.506, 8.488, 8.470, 8.504,
394
                     8.566, 8.522, 8.503, 8.619, 8.498, 8.487/
            1
            DATA RBU/8.320, 8.368, 8.400, 8.394, 8.375, 8.398,
395
                      8.468, 8.451, 8.403, 8.523, 8.402, 8.384/
            ı
            DATA RP/0.04083, 0.05413, 0.04059, 0.04108, 0.04130, 0.04115,
396
                     0.04096, 0.04147, 0.04090, 0.04086, 0.04058, 0.04064/
             THIS PROGRAM NEGLECTS THE EFFECT FROM THE REACTANCE OF POWERSTAT COIL.
      CC
397
            DATA XP/12*0.0/
398
             DATA RA, XA, RV/0.064, 0.063, 7500./
399
             DO 2000 I=1,12
             THE FOLLOWING CORRECTS THE INDICATED POWER TO THE ACTUAL
      C
      C
               POWER
400
             QP=Q(I)/75.
            CORQ=QP*(0.0728*QP-0.0427*QP*QP-0.0292)
401
402
             QCOR=0.99*Q(I)+CORQ*75.
             THIS BLOCK CORRECTS THE WATTMETER FOR INSERTION LOSSES
      C
403
             T=VAR(I) +RR(I)
404
             S=VAR(I)*XP(I)
405
             SA=S+X4
406
             RCT=RO([)+T
```

```
RBOT=RBO(I)+T
407
            RDI=ROT=ROT+SA*SA
40B
            RBOI=RBOT*RBCT+S*S
409
            RLVI=1.+(RSL(I)+RA)/RV
410
411
            RXA=XA/RV
            RSLI=RLVI*RLVI+RXA*RXA
412
            RSLL=(RSL(I)+RA)/RL(I)
413
            Q(I)=QCOR*ROI*RSLI/(RBOI*RSLL)
414
       2000 CONTINUE
415
416
            RETURN
            END
417
             SUBROUTINE TEFFS (SAFR, TCAST, TO, TG, K, HM, T2, QFL OW, TCAV, KM)
418
             REAL KCONV(2), KFL(12), K(1)
419
             DIMENSION SAFR(1), TG(1), TD(1), T2(1), TCAST(1), QFLOW(1), TCAV(1)
420
421
             DIMENSION HM (1)
      CC
             THIS SUBPOUTINE CALCULATES THE EFFECTIVE TEMPERATURE OF SECONDARY
             GAS AND CASTING FOR EACH PLATE. THEN IT CALCULATES THE PORTIN OF HEAT LO
      CC
      CC
             LOSSES DUE TO SECONDARY GAS.
      CC
             EFFECTIVE
                        TEMP FOR THE 4 FT PLATES.
             TW1=TO(45)+K(39) *HM(45)/20.5
422
423
             TW2=TO(13)+K(13)*HM(13)/20.5
      CC
               EFFECTIVE CASTING TEMP.
424
             TCAV(1)=0.375*TCAST(1) + 0.66667*TCAST(2) + 0.25*TW1 -
              0.125*TCAST(3) - 0.16667*TCAST(4)
425
             TCAV(2)=0.5*TCAST(1) + 0.66667*TCAST(2) - 0.16667*TCAST(4)
426
             TCAV(3)=0.5*(TCAST(1) + TCAST(2))
             TCAV(4)=0.25*TCAST(1) + 0.5*TCAST(2) + 0.25*TCAST(3)
427
428
             TCAV(5)=0.25*TCAST(1) + 0.3333*TCAST(2) + 0.25*TCAST(3)
            1 +0.16667*TCAST(4)
429
             TCAV(6)=0.3333*TCAST(2) + 0.5*TCAST(3) + 0.16657*TCAST(4)
430
             TCAV(7)=0.16667*TCAST(2) + 0.5*TCAST(3) + 0.3333*TCAST(4)
             TCAV(8)=0.16667*TCAST(2) + 0.25*TCAST(3) + 0.3333*TCAST(4)
431
            1 + 0.25*TCAST(5)
432
             TCAV(9)=0.25*TCAST(3) + 0.5*TCAST(4) + 0.25*TCAST(5)
433
             TCAV(10)=0.5*(TCAST(4) + TCAST(5))
434
             TCAV(11)=0.5*TCAST(5) + 0.66667*TCAST(4) ~ 0.16667*TCAST(2)
435
             TCAV(12)=0.375*TCAST(5) + 0.66667*TCAST(4) - 0.125*TCAST(3)
            1 -0.16667*TCAST(2) + 0.25*TW2
             PORTION OF ENERGY WHICH IS LOST.
      CC
             FACT=.074843*.24*60.
436
437
             QFLOW(1)=0.0
438
             IF (KM.EQ.1) GO TO 100
439
            DO 10 I=2,12,2
440
             IF (SAFR(I).EQ.U.) GO TO 12
             IF (SAFR(I).GE.5.) GO TO 11
441
442
            KFL(I)=.21+.0344*ALDG10(SAFR(I))
443
             GO TO 10
444
         12 KFL(I)=0.
445
             GO TO 10
446
         11 KFL(I)=.0762+.226*ALDG10(SAFR(I))
         10 CONTINUE
447
             DO 20 I=3,12,2
448
449
             IF (SAFR(I). EQ.O.) GO TO 22
450
             SAFR(I)=1.125*SAFR(I)
451
             IF (SAFR(I).GE.5.) GO TO 21
452
            KFL(I)=.21+.0344*ALOG10(SAFR(I))
453
            GO TO 20
454
         22 KFL(I)=0.
455
            GD TO 20
```

21 KFL(I)=.0762+.226*ALOG10(SAFR(I))

456

```
20 CONTINUE
   457
                             "T2", AND 'QFLOW'.
         CC
                 EFFECTIVE
   458
                00 30 I=2,12,2
                IF (SAFR(I). EQ.O.) GO TO 31
   459
                KCDNV(2)=0.24*SAFR([)**0.35
   460
                E=EXP(-KCONV(2)/SAFR(L))
   461
                T2(1) *TG(1)+(1.-E)*(KFL(1)*(TO(1)-TG(1))+(TCAV(1)-TG(1)))
   462
                QFLOW(I)=FACT+KFL(I)+KCONV(2)+(TO(I)-T2(I))
   463
                GO TO 30
   464
             31 T2(1)=T0(1)
   465
                QFLOW(I)=0.
   466
             30 CONTINUE
   467
                00 40 I=3.12.2
   468
                IF (SAFR(I).EO.O.) GO TO 41
   469
                KCONV(1)=0.2133*SAFR(I)**0.35
   470
                SAFP(I)=SAFR(I)*8./9.
   471
   472
                E=EXP(-KCONV(1)/SAFR([.])
                T2(I)=TG(I)+(1.-E)*(KFL(I)*(TO(I)-TG(I))+(TCAV(I)-TG(I)))
   473
   474
                QFLOW(1)=FACT+KFL(1)+KCONV(1)+(TO(1)-T2(1))
   475
                GO TO 40
             41 T2(I)=T0(I)
   476
 , 47.7
                QFLOW(I)=0.
   478
             40 CONTINUE
   479
                RETURN
            100 DO 101 I=1,11,2
   480
                T2(1)=T0(1)
   481
   482
                QFLOW(1)=0.
   483
            101 KFL(I)=0.
                DO 102 I=2,10,4
   484
                IF (SAFR(1).EQ.O.) GO TO 51
   485
                SAFR(I) = (9./5.) * SAFR(I.)
   486
   487
                IF (SAFR(I).GE.5.) GO TO 103
                KFL(I)=0.21+.0344*ALOG10(SAFR(I))
   488
                GG TO 102
   489
   490
             51 KFL(I)=0.
   491
                GO TO 102
            103 KFL(I)=0.0762+.226*ALDG10(SAFR(I))
   492
   493
            102 CONTINUE
                DO 104 I=4,12,4
   494
   495
                IF (SAFR(I).EQ.O.) GO TO 52
   496
                $AFR(I)=(9./4.)*SAFR(I)
                IF (SAFR(I).GE.5.) GO TO 105
   497
   498
                KFL(I)=0.21+.0344*AL OG 10(SAFR(I))
   499
                GO TO 104
   500
             52 KFL(1)=0.
   501
                GO TO 104
            105 KFL(I)=0.0762+.226*ALDG10(SAFR(I))
   502
   503
            104 CONTINUE
   504
                DO 106 I=2,10,4
                IF (SAFR(I). EQ.O.) GO TO 53
   505
506
                KCONV(2)=0.1333*SAFR(1)**0.35
   507
                SAFR(I)=SAFR(I)*(5./9.)
508
                E=EXP(-KCONV(2)/SAFR(I))
                T2(I)=TG(I)+(I.-E)*(KFL(I)*(TO(I)-TG(I))+(TCAV(I)-TG(I)))
   509
                QFLOW(1) = FACT + KFL(1) + KCONV(2) + (TO(1) - T2(1))
   510
                GO TO 106
   511
            53 T2(I)=T0(I)
   512
   513
                QFLOW(I)=0.
   514
            106 CONTINUE
   515
                DD 107 I=4,12,4
```

```
516
            IF (SAFR(I).EQ.O.) GO TO 54
            KCONV(1)=0.1067*SAFR(1)**0.35
517
             SAFR(I)=SAFR(I)*(4./9.)
518
             F=EXP(-KCONV(1)/SAFR(I))
519
             T2(I)=TG(I)+(I.-E)*(KFL(I)*(TO(I)-TG(I))+(TCAV(I)-TG(I)))
520
             QFLOW(I) =FACT*KFL(I)*KCONV(1)*(TO(I)-T2(I))
521
522
             GO TO 107
         54 T2(1)=T0(1)
523
524
             OFLOW(I)=0.
        107 CONTINUE
525
526
             RETURN
527
528
             SUBROUTINE PLOSS (Q, TO, TCAV, TINF, A, K, S, QFLOW, QDOT)
529
             REAL K(1)
             DIMENSION Q(1),TC(1),S(1),QFLOW(1),QDOT(1),TCAV(1)
530
      CCCCCC***
                  THIS BLOCK CORRECTS FOR THE HEAT LOSS
531
             SF=1.
532
             EMIS=0.15
533
             TAR=(TINF+460.)/100.
534
             DO 109 I=1.12
             TOR=(TO(I)+460.)/100.
535
536
             IF(I.EQ.1) GO TO 98
537
             QCOND=K(I)*(TO(I)-TCAV(I))+S(I)*(TO(I)-TO(I-1))+S(I+1)*(TO(I)-
                TO(1+1))
538
             GO TO 100
539
          98 QC DND=K(1)*(TO(1)-TC AV(1))+S(1)*(TO(1)-TD(45))
               +S(I+1)*(TO(I)-TO(I+1))
540
         100 QRAD=A*SF*EMIS*.1714*(TDR*TOR*TOR*TOR-TAR*TAR*TAR*TAR)
541
             QLOSS=QCOND+QRAD+QFLOW(I)
542
             Q(1)=Q(1)-QLQSS/3.4129
543
             QDOT(1)=Q(1)*3.4129/A
544
         109 CONTINUE
             RETURN
545
546
              END
             SUBROUTINE HFM (TO,TINF,HM,K,S,QDOT)
547
548
             REAL K(1)
             DIMENSION TO(1), HM(1), S(1), QOOT(1)
549
550
             SF = 1.0
551
             EMIS=0.12
552
             TO(37)=TO(36)-.333*(TO(36)-TO(37))
553
             5(13)=7.0*5(13)
554
             TAR=(TINF+460.)/100.
                                                           }
555
             DO 100 1=13,36
             TOR=(TO(1)+460.)/100.
556
        100 QDOT(1)=K(1)*HM(1)*(1.+(80.-TO(1))/700.)
557
            1-S(I)*(TO(I)-TO(I-1))-S(I+1)*(TO(I)-TO(I+1))
              -SF*EMIS*.1714*(TOR*TOR*TOR*TOR-TAR*TAR*TAR*TAR)
558
             $(13) = $(13) / 7.0
559
              RETURN
560
561
             SUBROUTINE ENTHAL (FACT, TH, F, ST, END2, DEND2, D2, REEN, DD2, DRFEN, DTM,
            1DST, DF, KM)
562
             DIMENSION TH(1).F(1).ST(1).D2(1).REEN(1).DD2(1).DREEN(1).DTH(1)
            1,DST(1)
             COMPUTE ENTHALPY THICKNESS AND REYNOLDS NUMBER. ASSUME
                THERMAL BOUNDARY LAYER BEGINS AT LEADING EDGE PLATE 1
             COMPUTE ENTHALPY THICKNESS, ASSUMING THERMAL BL BEGINS AT
                LEADING EDGE OF PLATE 1. COMPUTATION BASED ON CONTROL
      C
                VOLUME FOR ENERGY ADDITION WITH BOUNDRIES PLATE CENTER
                TO PLATE CENTER(EXCEPT PLATE 1)
```

```
563
                            TH(1)=0.0
564
                            D7H(1)=0.
565
                            F(1)=0.0
566
                            DX=1.
567
                            DWX=.515625
              C.
                        DDX: UNCERTAINTY IN DX. IN
                            DDX=0.005
568
569
                            D2(1)=END2
570
                            DD2(1)=DEND2
571
                            IF (END2.EQ.O.) D2(1)=ST(1)+DX
                            IF(.NOT.END2.EQ.O.) GO TO 229
572
                        DD2(I): UNCERTAINTY IN ENTHALPY THICKNESS, D2, IN
573
                            DD2(1)=SQRT(DX+DX+DST(1)+DST(1)+ST(1)+ST(1)+DQX+DQX)
                   229 DO 230 I=2,12
574
575
                             IF (KM.EQ.1) GO TO 399
576
                            D2(I)=D2(I-1)+(ST(I-1)+ST(I)+F(I-1)+TH(I-1)+F(I)+TH(I))+DX
577
                            GO TO 400
578
                   399 D2(I)=D2(I-1)+(ST(I-1)+ST(I)+2.*F(I)*TH(I))*DX
                   400 CONTINUE
579
580
                            AL=ST(I)*ST(I)+ST(I-1)*ST(I-1)+F(I)*F(I)*TH(I)*TH(I)+F(I-1)*
                          1F(I-1)*TH(I-1)*TH(I-1)
581
                            BE=DST(I)*DST(I)+DST(I-1)*DST(I-1)*F(I)*F(I)*OTH(I)*DTH(I)*
                          1F(I-1)*F(I-1)*DTH(I-1)*DTH(I-1)*DF*DF*(F(I)*F(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH(I)*TH
                          2F(I-1)*F(I-1)*TH(I-1)*TH(I-1)}
582
                   230 DD2(I)=SQRT(DD2(I-1)*DD2(I-1)+DDX*DDX*AL+DX*DX*BE )
583
                            D2(13)=D2(12)+(ST(12)+F(12)*TH(12))*DX+ST(13)*DWX
584
                            DD2(13) = SQRT(DD2(12) + DD2(12) + DDX+DDX+(ST(12) + ST(12) + ST(13) + ST(13)
                          1+F(12)*F(12)*TH(12)*TH(12)) +DWX*DWX*DST(13)*DST(13)+ DX*DX*(
                          2DST(12)*DST(12)+F(12)*F(12)*F(12)*DTH(12)*DTH(12)+DF*DF*F(12)*F(12)*
                          3TH(12)*TH(12)))
585
                            DO 231 I=14,36
586
                            D2(I)=D2(I-1)+(ST(I-1)+ST(I))*DWX
587
                   231 DD2(I)= SORT(DD2(I-1)*DD2(I-1)+DDX*DDX*(ST(I)*ST(I)+ST(I-1)*
                          1ST(I-1))+ DWX*DWX*(DST(I)*DST(I)+DST(I-1)*DST(I-1)))
588
                            IF (KM.EO.1) D2(13)=D2(13)+F(12)*TH(12)*DWX
589
                            IF (KM.EQ.1) D2(14)=D2(14)+F(12)*TH(12)*DWX
              C
                            COMPUTE ENTHALPY THICKNESS REYNOLDS NUMBER FOR CENTER
                                   OF PLATE BASED ON D2(I) FOR ENERGY ADDED TO THAT POINT
590
                            DO 240 I=1,36
591
                            REEN(I)=FACT*D2(I)
592
                   240 DREEN(I)=FACT*DD2(I)
593
                            RETURN
594
                            END
```

SHEAR Program

```
SWATFIV
               NOLIST
      DIMENSION UB(42), Y(42)
      DATA Y/.01, .011, .012, .013, .014, .015, .017, .019, .022, .025,
     1 .029, .033, .039, .046, .054, .062, .072, .087, .102, .122, .147,
     2 .177, .217, .267, .322, .397, .472, .547, .622, .697, .772, .847,
     3 .922, .997, 1.072, 1.147, 1.222, 1.297, 1.372, 1.472, 1.572,
     4 1.672/
      FOLLOWING SIX LINES OF DATA IS FOR X=63.3 INCHES
C
      DATA UB/ .2977, .3069, .3169, .3285, .3373, .3467, .3617, .3736,
     1 .3887, .4018, .4158, .4254, .4374, .4469, .4562, .4630, .4686,
     2 .4761, .4816, .4874, .4942, .5033, .5171, .5413, .5713, .6097,
     3 .6435, .6760, .7085, .7415, .7748, .8057, .8366, .8663, .8932,
     4 .9185, .9404, .9598, .9745, .9882, .9957, .9987/
      DATA CF2,F,DEL,DEL2,RED2,N/.001352, .0069, 1.496, .2363, 6400.,42/
FOLLOWING SIX LINES OF DATA IS FOR X=69.3 INCHES
C
      DATA UB/.3255, .3345, .3487, .3604, .3709, .3794, .3936, .4063,
     1 .4206, .4324, .4456, .4565, .4684, .4783, .4872, .4947, .5006,
     2 .5094, .5150, .5221, .5310, .5423, .5621, .5898, .6218, .6636,
     3 .7016, .7387, .7752, .8112, .8448, .8756, .9047, .9302, .9519,
       .9691, .9824, .9906, .9963, .9989, .9999/
      DATA CF2, F, DEL, DEL 2, RED2, N/. 001492, .0069, 1.291, .1955, 5320., 41/
      SUM1=.25*(UB(1)*UB(1)*Y(1)+(UB(2)+UB(1))*(UB(2)+UB(1))*(Y(2)-
     17(1)))
      SUM2=.5*(UB(1)+Y(1)+(UB(2)+UB(1))*(Y(2)-Y(1)))
      WRITE (6,3)
    3 FORMAT(12X'TAU+',5X'TAULAM+',6X'Y/DEL',7X'L/DEL',9X'Y+',13X'L+',
     1 5X'D1',6X'D2',/)
      YPUT=RED2*SQRT(CF2)/DEL2
      B=F/CF2
      UYP=DEL2/(RED2*CF2)
      N=N-1
      DO 10 I=2,N
      DY=Y(I)-Y(I-1)
      DUDY=.5*((UB(I+1)-UB(I))/(Y(I+1)-Y(I))+(UB(I)-UB(I-1))/DY)
      UA=.5*(U8(I)+U8(I-1))
      SUM1=SUM1+UA*UA*DY
      SUM2=SUM2+UA+DY
      TAU=1.+8*U8(1)+(1.+8)*(SUM1-U8(1)*SUM2)/DEL2
      TAUL=DUDY*UYP
      TAUT=TAU-TAUL
      XLP=SQRT(TAUT)/TAUL
      XL=SQRT(TAUT+CF2)/(DUDY+DEL)
      YPL=Y(I) +YPUT
      YL=Y(I)/DEL
      XL1=0.078*TANH(5.25*YL)+3.32*YL *EXP(-YL/0.1)
      XL2=0.078+TANH(5.25+YL)+33.2+YL+YL+EXP(-100.+YL+YL)
      D1=XL/XL1
      D2=XL/XL2
      WRITE (6,5) TAU, TAUL, YL, XL, YPL, XLP, D1, D2
    5 FORMAT (10X,2(F6.3,5X),2(F7.5,5X),F8.3,5X,F8.3,2(3XF5.3))
   10 CONTINUE
      STOP
      END
```

APPENDIX D

HOT WIRE FLOWMETER

For reasons mentioned in Chapter II, a hot wire type flowmeter was developed to be used in the program to measure the secondary air flowrate. Much data concerning a round wire in an infinite stream appears in the literature. If, however, a small rod is inserted into a pipe, then the exact heat transfer behavior will depend on the detailed geometry. Thus, although the behavior can be approximately predicted, the details require experimental study.

Initially, two types of flowmeters were conceived: one using a wire whose temperature was fixed, correlating the flowrate with the heating current supplied to the wire; the other with a fixed heating current, correlating the flowrate with the differential temperature between the hot wire and the oncoming stream. The initial investigation into this problem showed that the constant current mode is preferred because of its smooth variation over the entire flow range. The constant temperature mode showed that the correlation changed very sharply in the low flowrate range.

In final form, each flowmeter unit has two separate circuits: a heater circuit and a thermocouple circuit. All the heater circuits were connected in series to one controlled DC power supply. For each flowmeter element, power can be turned on or off independently, so that any number of flowmeters can be used selectively at one time. This arrangement saved considerable time in the measurement of the secondary air flowrate.

The thermocouple loop for measuring the temperature difference between the heater element and the coming air stream was made with iron-constantan, with one junction at the middle of the heater element inside the brass tubing and the other junction in the air stream 1/2 in. (1.27 cm) upstream with 90° rotation. Care was taken that the wake of this junction did not interfere with the heater and vice versa. Iron wires which come out of the two junctions were connected to the copper lead wires in a small space insulated with the double shrink tubing. These copper lead wires were connected to the selector switch.

To control the current supplied in the circuit, a shunt of 0.1Ω was inserted into the circuit, and the potential across the shunt was read by an H-P digital voltmeter. This potential was monitored to assure the desired current by controlling the current setting dial in the power supply.

A seven foot long, 3 in. (7.62 cm) PVC pipe was used to install the flowmeters. The upstream end had copper screens to make the flow uniform. The flowmeter was located six feet downstream of the copper screen. The current setting was such that the power dissipated by the heater was less than 1 watt, in most cases. Even at a very small flowrate, the temperature rise due to the flowmeter heater was very small (about 1°F at 3 cfm). The detail drawing appears in Figure D.1.

The flowmeters were calibrated in place against Meriam laminar flowmeters. The laminar flowmeters had been checked against standard ASME orifice meters. The initial calibration showed that all the calibration curves collapse by the horizontal shift of some distance in log-log coordinates. Corrections for the mean stream temperature level and humidity were incorporated to deduce the flowrate at standard conditions. After proper corrections were made, the flowmeter constants which are the multiplication factors to make them collapse were left as a functional of each flowmeter element. All flowmeters used the same calibration curves except for one constant, called the flowmeter constant.

In the following section, the correction formula, including the flow-meter constant, $K_{\underline{i}}$, will be given. From the basic energy balance equation on the wire, we have

$$\dot{q} = I^2 R = \overline{h} A_g \Delta T \qquad (D.1)$$

where \overline{h} is the average heat transfer coefficient around the wire across the span, A_8 the total surface area of the wire, and ΔT the temperature difference between the wire and the coming air stream.

For the evaluation of heat transfer coefficient, \overline{h} , the following equation from Kreith [D.1] was used,

$$\overline{N}_{u} \text{ Pr}^{-0.31} = f_{1}(\text{Re}_{d})$$
 (D.2)

For the temperature dependence of properties, T_{st} = 530°R was used as a reference temperature, and the following expressions were used;

$$\frac{k}{k_{st}} = \left(\frac{T}{T_{st}}\right)^{0.735}$$

$$\frac{\mu}{\mu_{st}} = \left(\frac{T}{T_{st}}\right)^{0.76}$$

$$\frac{Pr}{Pr,_{st}} = \left(\frac{T}{T_{st}}\right)^{-0.1}$$
(D.3)

These correlations are the results of curve fitting in the temperature range of 70°F to 180°F by using data appearing in [D.1, D.2, and D.3]

For humidity dependence, the following expressions were used;

$$\frac{Pr}{Pr, d.a.} = (1 + 0.9 \text{ m})$$

$$\frac{\mu}{\mu_{d.a.}} = 1 - 0.055 \text{ m}$$

$$\frac{k}{k_{d.a.}} = 1 - 0.7 \text{ m}$$

where m is the absolute humidity, 1bm/1b of air. The relationship for Pr was taken from Kays [D.4], and the relationships for μ and k were obtained by using the recommendation appearing in Eckert and Drake [D.5], using the air properties and the vapor properties formed in Keenan and Keyes [D.6], and using the binomial expansion to simplify the expression.

Then all these were combined into Equation (D.2), then into Equation (D.1) and the binomial expansion used again to simplify the expression for humidity correction, and the following expressions were obtained.

$$E = f(X) (D.5)$$

where

$$E = K_1 \cdot emf \cdot \left(\frac{I_0}{I}\right)^2 \left(\frac{T}{T_{st}}\right)^{0.70} (1 + 0.22 m)$$

$$x = SCFM \left(\frac{T}{T_{st}}\right)^{-0.76} (1 + 0.70 m)$$

and

emf = the emf of the thermocouple signal .

By the calibration procedure, the flowmeter calibration constant, K_1 , for each flowmeter unit and the function f were determined.

With the hot gas stream, some zero shift was noted. To reduce this, insulation was installed around the heater terminal on both sides of the 3 in. (7.62 cm) PVC pipe. After the insulation was installed, satisfactory performance was acquired by taking the zero point at the no-power signal to account for the zero drift.

The variable property correction and zero drift correction gave the quite satisfactory performance of the flowmeters. The calibration curve which displays the function f shows the scatter in X (or SCFM) about 3%. This is less than 1.5% in E coordinate. The high uncertainty in X coordinate is the penalty for getting a wider range of flowrate, because X varies as E^{-25} approximately.

The heater design and the current rating used are such that the heater would not be damaged even if there were no flow with the heater on. The highest temperature the heater can attain is about 160°F to 180°F, which is the safe temperature limit for the epoxy glue used to bond the heater wire onto the brass tubing. The use of a low temperature in the heater guaranteed against the accidental burning which might happen by inadvertently activating the flowmeter while no flow existed in the

secondary system and against its aging with use. Also, the design is such that each flowmeter unit can be taken out and interchanged easily, because there is no permanent bond between the flowmeter and the 3 in. (7.62 cm) PVC tube.

References

- D-1. Krieth, F., <u>Principles of Heat Transfer</u>, International Textbook Company, 1969, p. 412.
- D-2. Rohsenow, W. M., and Choi, H. Y., <u>Heat, Mass, and Momentum Transfer</u>, Prentice-Hall, Inc., 1963, p. 522.
- D-3. Eckert, E. R. G., and Drake, Jr., R. M., Heat and Mass Transfer, McGraw-Hill Book Co., 1959, p. 504.
- D-4. Kays, W. M., Convective Heat and Mass Transfer, McGraw-Hill Book Co., 1966, p. 369.
- D-5. Eckert, E. R. G., and Drake, Jr., R. M., Heat and Mass Transfer, McGraw-Hill Book Co., 1959, pp. 493-494.
- D-6. Keenan, J. H., and Keyes, F. G., <u>Thermodynamic Properties of Steam</u>, John Wiley & Sons, Inc., 1936.

Figure D.1 Detail of hot wire flowmeter.

Figure D.2 Calibration curve for hot wire flowmeters.

APPENDIX E

THE MANIFOLD VALVE ADJUSTMENT

The difficulty with assuring the uniformity of flow rate through each hole in one manifold is that the laminar flowmeter used introduces too much resistance to the flow: the measuring device introduces too many disturbances. Even the flow resistance of a venturi meter would be comparable to the flow resistance through each hole. Also the integration of velocity profile at the outlet of each hole turned out not to be a very reliable method for flow rate measurement. This lead to the sensitivity study of the overall system to the flowmeter disturbance. To have a good readability, a 2 cfm (0.944 l/sec) capacity laminar flowmeter was used in conjunction with a 2 in. (5.08 cm) inclined manometer whose smallest division is 0.005 in. (0.127 mm) on the scale.

Figure E.1 Sketch of manifold.

First, all the valves were adjusted to give a uniform flowrate within 1% accuracy at the total flowrate of 92 cfm (43.4 l/sec). Then 52 cfm (24.5 l/sec) and 27 cfm (12.74 l/sec) of total flowrate were tried with the same valve setting, and the same accuracy was maintained. This allowed the valve adjustment at one total flowrate. Then a simple flow circuit analysis was performed, assuming there are resistances to flow in the following form.

$$q_{i} = \frac{P_{o} - P_{a}}{r_{i}} = \frac{\Delta P}{r_{i}}$$
 (E.1)

Since the pressure drop ΔP is uniform for all the holes, the flowrate $\mathbf{q_i}$ is a function of the flow resistance, $\mathbf{r_i}$, only. Then the individual resistance of each hole was determined by measuring the flowrate as the electrical resistances in the circuit across constant potential can be determined by measuring the current in each circuit.

In case ΔP is assumed to be proportional to $\,\mathbf{v}^{2}$, we may put $\,\Delta P$ in the form

$$\Delta P = K_i q_i^2$$

Rearranging, we obtain

$$q_{\underline{i}} = \frac{\Delta P}{\sqrt{K_{\underline{i}}}}$$
 (E.2)

Since ΔP is constant, this will lead to the same conclusion as before if $\sqrt{K_1}$ is set to r_1 . For the sake of simplicity, the first linear expression, Equation (E.1), was used to analyze the calibration accuracy. The conclusion of this analysis is that the flow resistance of PVC tubes which are used for the delivery of the gas from the manifold to the test plate was about 3.5 times the resistance of the manifold hole itself, and the laminar flowmeter used has about 10 times more resistance than the manifold hole resistance, and the measurement with single flowmeter on each hole in turn showed the accuracy of 0.3% to insure the 1% accuracy in the uniformity of flowrate in each hole at the test plate elevation. Also tested is the possible flowrate change due to thermocouple installation in some of the PVC tubing. The analysis showed that 1/2% decrease is possible. The secondary air flow rate in each hole in one manifold is uniform within +1 1/2% accuracy.

APPENDIX F

WATTMETER INSERTION LOSS

Figure F.1 Circuits for wattmeter circuit analysis.

The preliminary analysis on the circuits A and B showed that Circuit B is preferable, because Circuit B is less sensitive to the ammeter resistance change. In this part, the analysis will be done, including the ammeter reactance on the power factor applied to get the true power from the measured power in Circuit B. The potential supplied at the variac is assumed to be the same.

A. Actual Load Power with Switch On

In this circuit, there is no reactance component, and the power delivered to the load, $\rm\,R_L$, is simply E x I product across $\rm\,R_L$.

To calculate I, we have

$$I = \frac{E}{R_b + R_d + R_L}$$

The potential across the $R_{T_{i}}$ is

$$E_{v} = I \cdot R_{L}$$

Thus, the ideal power can be expressed as

$$P_a = E_v \cdot I = \frac{E^2}{(R_b + R_d + R_L)^2} R_L$$

where $R_b + R_d = R_L = \overline{\Sigma R}$, total resistance without wattmeter inserted. Then

$$P_{a} = \frac{E^{2}}{R_{L}} \left(\frac{R_{L}}{\Sigma R}\right)^{2}$$
 (F.1)

B. Indicated Power in Wattmeter (Circuit B)

In this case, there is a reactance component in the wattmeter circuit. Considering the potential supplied at the variac with phase angle at 0, we can calculate the $\rm I_a$ and $\rm E_v$, and then power can be calculated as $|\rm E_v|\cdot|\rm I_a|\cos\theta$. θ is the angle between $\rm E_v$ and $\rm I_a$.

The total impedance in the circuit is

$$\Sigma Z = R_b + \frac{R_v(R_a + R_d + R_L + j X_a)}{R_v + R_a + R_d + R_L + j X_a}$$
 (F.2)

where $j \equiv \sqrt{-1}$. Now, E_v can be calculated as

$$E_{v} = E \frac{\Sigma Z - R_{b}}{\Sigma Z}$$
 (F.3)

Since $E_{\mathbf{v}}$ is known $I_{\mathbf{a}}$ can be calculated in the load circuit as

$$I_a = \frac{E_v}{R_a + R_d + R_L + j X_a}$$
 (F.4)

Thus, the measured power will be

$$P_{i} = |E_{v}|^{2} \cdot \cos\theta / |R_{a} + R_{d} + R_{L} + j X_{a}|$$

Since the phase difference between E and I is due to the impedance $(R_a + R_d + R_L + jX_a)$, we can express $\cos\theta$ as

$$\cos\theta = \frac{R_{a} + R_{d} + R_{L}}{\left|R_{a} + R_{d} + R_{L} + j X_{a}\right|}$$
 (F.5)

Combining Equations (F.3), (F.4) and (F.5), P_{ij} is obtained as

$$P_{i} = \frac{E^{2}}{R_{L}} \frac{|\Sigma z - R_{b}|^{2}}{|\Sigma z|^{2}} \cdot \frac{|R_{a} + R_{d} + R_{L} + j |X_{a}|^{2}}{|R_{a} + R_{d} + R_{L} + j |X_{a}|^{2}}$$

Now

$$|\Sigma Z - R_b|^2 = R_v^2 \frac{|R_a + R_d + R_L + j X_a|^2}{|R_v + R_a + R_d + R_L + j X_a|^2}$$

$$P_{i} = \frac{E^{2}}{R_{L}} \frac{R_{v}^{2} R_{L} (R_{a} + R_{d} + R_{L})}{|\Sigma z|^{2} |R_{v} + R_{a} + R_{d} + R_{L} + j X_{a}|^{2}}$$
 (F.6)

C. Power Correction Factor

$$P_a = K P_i = \frac{P_a}{P_i} P_i$$
 (F.7)

$$K = \frac{P_{a}}{P_{i}} = \frac{R_{L}^{2}}{(\Sigma \overline{R})^{2}} \frac{|\Sigma z|^{2} |R_{v} + R_{a} + R_{d} + R_{L} + j |X_{a}|^{2}}{R_{v}^{2} |R_{c} (R_{a} + R_{d} + R_{c})}$$

By working out this algebra, we obtain

$$K = \frac{(\Sigma R)^{2} + X_{a}^{2}}{(\Sigma \overline{R})^{2}} \frac{\left(1 + \frac{R_{a} + R_{d} + R_{L}}{R_{v}}\right)^{2} + \left(\frac{X_{a}}{R_{v}}\right)^{2}}{1 + \frac{R_{a} + R_{d}}{R_{T}}}$$

with

$$\Sigma R = R_b + \frac{R_v(R_a + R_d + R_L)}{R_v + R_a + R_d + R_L}$$

This was incorporated into the data reduction program.

APPENDIX G

CALIBRATION OF HEAT FLUX METERS

The following procedure was used for calibrating the heat flux meters. This is to account for the small temperature difference between the adjacent plates and also to calculate the flow direction conductance between the two adjacent plates.

Figure G.1 Copper plate with heat flux meter in calibration mode.

We can write down the energy balance equation for the ith plate. Power supplied = (heat conducted down through the heat flux meter) + (heat conducted to the two adjacent plates). By dividing this equation by the heat transfer area on the test surface, we can directly form the equation on the heat flux basis.

$$\dot{q}_{i}^{"} = K_{i}^{HF}_{i} + S_{i-1}^{T}_{i-1}^{T}_{i-1}^{T} + S_{i}^{T}_{i-1}^{T}_{i+1}^{T}$$
 (G.1)

where $\dot{q}_{1}^{"}$ is the heat flux on the i^{th} plate. K_{1} is corrected for temperature dependence, as suggested by the manufacturer,

$$K_i = K_{0.i} (1 + (T_i - 80)/700)$$
 (G.2)

 T_i is the ith plate temperature, HF, the heat flux signal in MV, and S_i the conductance between the ith and i+1 the plate. Then our purpose is to calculate $K_{0,i}$ and S_i from this calibration.

The calibration heater has three heaters; the center heater which supplies the heat to i^{th} plate is instrumented to measure the power

supplied within the accuracy of $\pm 1\%$; the other two heaters act as guard heaters and can be turned off independently for calibration purpose. Then we can operate in three different modes: the first mode has all the heaters on with approximately the same power; the second mode has one of the guard heaters off; and in the third mode both of the guard heaters are off. Then we can write the energy balance equation on the i^{th} plate for three different modes considering the temperature compensation on the K_4 .

$$\dot{q}_{1}^{"F} = K_{0,i}(1 + (T_{1}^{F} - 80)/700) HF_{1}^{F}$$

$$+ S_{i-1}(T_{1}^{F} - T_{i-1}^{F}) + S_{1}(T_{1}^{F} - T_{i+1}^{F}) \qquad (G.3a)$$

$$\dot{q}_{i}^{"S} = K_{0,i}(1 + (T_{i}^{S} - 80)/700) HF_{i}^{S}$$

$$+ S_{i-1}(T_{i}^{S} - T_{i-1}^{S}) + S_{i}(T_{i}^{S} - T_{i+1}^{S}) \qquad (G.3b)$$

$$\dot{q}_{i}^{"T} = K_{0,i}(1 + (T_{i}^{T} - 80)/700) HF_{i}^{T}$$

$$+ S_{i-1}(T_{i}^{T} - T_{i-1}^{T}) + S_{i}(T_{i}^{T} - T_{i+1}^{T}) \qquad (G.3c)$$

where superscripts, F , S and T , denote the different modes of measurement. If for each mode, Q_i , T_i , T_{i+1} , T_{i-1} , and HF_i are measured, the above three equations can be solved for three unknowns: $K_{0,i}$, S_{i-1} , and S_i . A small computer program was written to solve these equations for $K_{0,i}$, S_{i-1} , and S_i . The above mentioned three modes make the determinant of the above equations diagonally dominant, which prevents the singular behavior in the solution process. This program directly uses Kramer's rule.

The power to the two guard heaters is from AC variac, and the central heater is powered by the controlled DC power. The Weston precision volt-

meter and ammeter are used to measure the DC power. Both the ammeter and voltmeter are accurate to 1/2% of the full scale. The DC ammeter and voltmeter remained in the circuit and the extra resistance beside the heater is considered to calculate the true power delivered to the plate. All these are incorporated into the above computer program. The flow direction conductances of the two end plates on the blowing section were determined as part of this procedure.

APPENDIX H

AN EXACT SOLUTION OF LAMINAR SUBLAYER EQUATION

In evaluating the wall shear stress and the wall heat flux from the numerical solution of the boundary layer equations, one accurate and convenient way is to use the laminar sublayer equations in non-dimensional form and to compare this solution with the numerically obtained solution (see Reference 10).

The values of y and u, along with the viscosity, are given from the numerical solution at a point nearest to the wall (inside the laminar sublayer). Then, using the fact that

$$Re_{\mathbf{w}} \triangleq \frac{\mathbf{u}\mathbf{y}}{\mathbf{v}} = \mathbf{u}^{\dagger}\mathbf{y}^{\dagger}$$

the wall shear stress (or y) can be calculated.

In the case of the flat plate, $u^+ = y^+$, and

$$y^+ = \sqrt{Re_w}$$

From the definition of y^+ , the wall shear stress can be calculated. However, if we have the pressure gradient or wall mass transfer, the problem is not that simple, because

$$u^{+} = y^{+} + (G^{+} + P^{+}) \frac{e^{G^{+}y^{+}} - 1 - G^{+}y^{+}}{(G^{+})^{2}}$$

and we have to solve the transcendental equation.

The STAN program [61] obtains the approximate solution with the successive substitution:

$$y_1^+ = \sqrt{Re_w}$$

$$y_2^+ = \frac{y_1^+}{\sqrt{1 + G^+y_1^+ + P^+y_1^+}}$$

$$y_3^+ = \frac{y_2^+}{\sqrt{1 + G^+ y_2^+ + P^+ y_2^+}}$$

From the initial guess, it does two iterations. This turned out to be satisfactory for most of the transpiration cooling problem, because G^+ is normally less than $0.1 \sim 0.2$ and P^+ is much less than G^+ . In the case of discrete hole blowing, G^+ is much higher than in the transpiration cooling. And at $G^+ \simeq 1.0$, the above scheme introduces considerable error. Thus the exact solution of the following equation is required.

$$u^{+}y^{+} = Re_{w} = y^{+2} + y^{+}(G^{+} + P^{+}) \frac{e^{G^{+}y^{+}} - 1 - G^{+}y^{+}}{G^{+}}$$

Let $f(y^+) = u^+y^+ - Re_w$, then the problem becomes how to find the zero in $f(y^+)$.

Using the Newton-Raphson method, we can have the following algorithm to get the exact solution numerically.

$$y^{+}_{(n)} = y^{+}_{(n-1)} - \frac{f(y^{+}_{(n-1)})}{f^{+}(y^{+}_{(n-1)})}$$

About $4 \sim 5$ iteration, y^+ comes to the exact solution within 10^{-3} in most cases. The addition of this procedure does not change the total computation time appreciably. If we obtain y^+ , we can also solve for h^+ , because we know the laminar sublayer solution for h^+ in terms of y^+ .

$$\frac{dh^{+}}{dy^{+}} = Pr(1 + G^{+}h^{+} + S^{+}y^{+} + C_{4}X^{+}\int_{0}^{y^{+}} u^{+}dy^{+}) + C_{3}u^{+}\frac{du^{+}}{dy^{+}}$$

where

$$c_4 = \frac{g_c \tau_o^2}{J \dot{q}_o^{"} \rho_o}, \quad c_3 = (Pr - 1) \frac{u_\tau^{T} \rho_o}{J \dot{q}_o^{"}}$$

The C₃ and C₄ terms represent the energy source due to viscous dissipation and body force work. S⁺ represents the other source terms for the energy equation. The exact solution for h⁺ becomes rather involved, with all the source terms present. In case all the source terms are absent, h⁺ becomes

$$h^{+} = \frac{e^{PrG^{+}y^{+}} - 1.0}{G^{+}}$$

Once h^+ is obtained, $\dot{q}_0^{"}$ can be obtained from the definition of h^+ .

APPENDIX I

LINEARIZED SOLUTION FOR DISCRETE HOLE BLOWING UNDER AN IDEALIZED CONDITION

This analysis is done to give some insight into the terms $-\widetilde{u}\widetilde{v}$, which appear in Chapter IV. This was not intended to give a quantitative estimation of the $-\widetilde{u}\widetilde{v}$. It follows the analysis done by Saeger and Reynolds [I-1], specialized for the standing wave. The following assumptions are made:

- 1. Low speed, $M_g \ll 1.0$
- 2. Constant property, constant density
- Small perturbation, which allows the linearization of the governing equation
- 4. The discrete hole pattern is periodic in the z-direction and in the x-direction. This assumption, combined with the linearization, makes Fourier expansion of the discrete hole blowing in the x- and z-direction as a standing wave.
- 5. Also, for the purpose of this analysis, the y- and z-component mean velocities were assumed zero and constant, and the x-component mean velocity was assumed to be a function of only the y-coordinate.
- 6. Quasi-laminar assumption was used to account for the turbulent correlation terms.

For the perturbation properties, the following expansion is used.

$$\tilde{\mathbf{u}} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \mathbf{U}_{mn} \, e^{i \left(\max + n \beta \mathbf{z} \right)} \tag{I.1}$$

where $\alpha = \pi/L$, and $\beta = 2\pi/P$.

Similar expansions for \tilde{v} , \tilde{t} , \tilde{p} can be used, and using the linearized perturbation equations, the following equations were obtained from continuity, momentum, and energy equations.

$$\lim_{m \to n} + Dv_{m \to n} + \ln \beta w_{m \to n} = 0$$
 (I.2)

$$im\alpha Uu_{m,n} + V_o Du_{m,n} + v_{m,n} DU = -im\alpha p_{m,n} + v_T (D^2 - m^2 \alpha^2 - n^2 \beta^2) u_{m,n}$$
 (I.3)

$$im\alpha Uv_{m,n} + V_o Dv_{m,n} = -Dp_{m,n} + v_T (D^2 - m^2 \alpha^2 - n^2 \beta^2) v_{m,n}$$
 (1.4)

$$i_{m}\alpha U_{m,n} + V_{o}D_{m,n} = i_{n}\beta p_{m,n} + v_{T}(D^{2} - m^{2}\alpha^{2} - n^{2}\beta^{2})w_{m,n}$$
 (1.5)

$$i_{m\alpha Ut_{m,n}} + v_{o}Dt_{m,n} = k_{T}(D^{2}-m^{2}\alpha^{2}-n^{2}\beta^{2})t_{m,n}$$
 (I.6)

where D denotes (d/dy).

If the solutions for $u_{m,n}$, $v_{m,n}$, and $t_{m,n}$ are obtained, $-\overline{\tilde{tv}}$ and $-\overline{uv}$ can be expressed as

$$-\frac{1}{\tilde{u}\tilde{v}} = -\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} u_{m,n} \cdot v_{-m,-n}$$

$$-\overline{\widetilde{t}\widetilde{v}} = -\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} t_{m,n} \cdot v_{-m,-n}$$

A. Near the Wall

Now, to simplify the algebra near the wall, the following additional assumptions are made.

7.
$$V_0 \approx 0$$

8. The conduction or diffusion in the y-direction is negligible because the jets are directed in the y-direction.

To simplify the notation, all the subscripts will be deleted for the perturbation equations, and ma and n β will be replaced by simply α and β . This will give the following simpler equations.

$$i\alpha u + Dv + i\beta w = 0 (I.7)$$

$$i\alpha Uu + vDU = -i\alpha p - v_T(\alpha^2 + \beta^2)u$$
 (1.8)

$$i\alpha Uv = -Dp - v_T(\alpha^2 + \beta^2)v$$
 (1.9)

$$i\alpha Uw = -i\beta p - v_{T}(\alpha^{2} + \beta^{2})w \qquad (1.10)$$

$$i\alpha Ut + vDT = -k_{m}(\alpha^{2} + \beta^{2})t \qquad (I.11)$$

First t can be solved in terms of v . From (I.11),

$$t = -\frac{v}{k_T(\alpha^2 + \beta^2) + i\alpha U} DT \qquad (I.12)$$

Equations (I.7) to (I.10) were combined to eliminate $\,p\,$ and $\,w\,$ and then $\,u\,$ can be solved as a function of $\,v\,$

$$u = -\frac{\beta^{2}/(\alpha^{2} + \beta^{2}) v}{v_{T}(\alpha^{2} + \beta^{2}) + i\alpha u} Du + \frac{i\alpha}{\alpha^{2} + \beta^{2}} Dv$$
 (I.13)

and also the equation for v can be derived as

$$D^{2}v - \left\{ (\alpha^{2} + \beta^{2}) + \frac{i\alpha U''}{v_{T}(\alpha^{2} + \beta^{2}) + i\alpha U} \right\} v = 0$$
 (I.14)

where $()' \equiv D$.

From (I.12) and (I.13), the following expressions are obtained:

$$-\frac{1}{\tilde{t}\tilde{v}} = T' \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{v_{m,n} v_{-m,-n}}{k_{T}(m^{2}\alpha^{2} + n^{2}\beta^{2}) + im\alpha U}$$

$$-\frac{1}{uv} = v' \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{v_{m,n} v_{-m,-n}}{v_{m}(m^{2}\alpha^{2} + n^{2}\beta^{2}) + im\alpha u} \frac{n^{2}\beta^{2}}{m^{2}\alpha^{2} + n^{2}\beta^{2}}$$

+
$$\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{im\alpha(Dv_{m,n})v_{-m,-n}}{m^2\alpha^2 + n^2\alpha^2}$$

By solving Equation (I.14), we can evaluate $(-\tilde{t}\tilde{v})$ and $(-\tilde{u}\tilde{v})$ terms ideally. The expression for the $-\tilde{t}\tilde{v}$ term shows that it has a multiplification factor T', and the summation term which is independent of the mean temperature field. $v_{m,n} \cdot v_{-m,-n}$ will be positive because v is an even function in the z- and x-directions. This indiciates that the summation term will be positive. The same argument can be applied to the first term in $(-\tilde{u}\tilde{v})$.

To simplify the expression for $-\overline{\tilde{u}\tilde{v}}$, the following algebraic manipulation was done by using Equation (I.14):

$$\frac{d}{dy} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{im\alpha(Dv_{m,n})v_{-m,-n}}{m^2\alpha^2 + n^2\beta^2}$$

$$= U'' \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{v_{m,n}v_{-m,-n}}{v_{T}(m^{2}\alpha^{2} + n^{2}\beta^{2}) + im\alpha U} \frac{m^{2}\alpha^{2}}{m^{2}\alpha^{2} + n^{2}\beta^{2}}$$

Using these results, we obtain

$$\frac{d}{dy}(-\overline{\tilde{t}\tilde{v}}) = \frac{d}{dy}(e_H \frac{dT}{dy}) \qquad (I.15)$$

$$\frac{\mathrm{d}}{\mathrm{dy}}(-\widetilde{\widetilde{u}}\widetilde{v}) = \frac{\mathrm{d}}{\mathrm{dy}}(\mathrm{e}_{\mathrm{M}}\,\frac{\mathrm{d}\mathrm{U}}{\mathrm{dy}}) - \frac{\mathrm{d}\mathbf{e}_{\mathrm{1}}}{\mathrm{dy}}\,\frac{\mathrm{d}\mathrm{U}}{\mathrm{dy}} \tag{1.16}$$

whe re

$$e_{H} = \sum \frac{v_{m,n} v_{-m,-n}}{k_{T}(m^{2}\alpha^{2} + n^{2}\beta^{2}) + im\alpha U}$$

$$\mathbf{e}_{\mathbf{M}} = \sum \frac{\mathbf{v}_{\mathbf{m},\mathbf{n}} \mathbf{v}_{-\mathbf{m},-\mathbf{n}}}{\mathbf{v}_{\mathbf{m}}(\mathbf{m}^2 \alpha^2 + \mathbf{n}^2 \beta^2) + \mathbf{i} \mathbf{m} \alpha \mathbf{U}}$$

$$e_1 = \sum \sum_{m^2 \alpha^2 + n^2 \beta^2} \frac{v_{m,n} v_{-m,-n}}{v_{m}(m^2 \alpha^2 + n^2 \beta^2) + im\alpha U}$$

The reason that e_H , e_M , and e_1 are taken as real is because $-\overline{\tilde{tv}}$ and $-\overline{\tilde{uv}}$ must be real. Also, as we have discussed earlier, e_H , e_M , and e_1 must be positive numbers. The forms given in Equations (I.15) and (I.16) merely confirm that $-\overline{\tilde{tv}}$ and $-\overline{\tilde{uv}}$ can be treated as shear stress or heat flux and that mixing length type formulations can be used for their modeling near the wall.

B. Near the Free Stream

Near the free stream, U can be approximated as $\rm U_{\infty}$, and the diffusion or conduction terms can be neglected. These assumptions lead Equations (I.7) to (I.11) to

$$i\alpha u + Dv + i\beta w = 0 (I.17)$$

$$i\alpha U_{m}u = -i\alpha p$$
 (I.18)

$$i\alpha U_{v} = -Dp$$
 (I.19)

$$i\alpha U_{m}w = -i\beta p$$
 (I.20)

Eliminating w and p, we obtain for u and v,

$$D^{2}v - (\alpha^{2} + \beta^{2})v = 0 (1.21)$$

and

$$D^{2}u - (\alpha^{2} + \beta^{2})u = 0 (1.22)$$

Thus, u and v must have solutions of the type $e^{-\left\{\alpha^2 + \beta^2\right\}y}$

$$-\overline{\tilde{u}\tilde{v}} = \sum \sum u_{m,n}(o)v_{-m,-n}(o) e^{-2\{m^2\alpha^2+n^2\beta^2\}}y$$

This suggests that $-\widetilde{uv}$ (and $-\widetilde{tv}$) will damp out toward the free stream, and that for this particular solution the value of $-\widetilde{uv}$ should not be zero at the wall.

Reference

S-1 Saeger, J. C., and Reynolds, W. C., "Perturbation Pressure Over Travelling Sinusoidal Waves with Fully Developed Turbulent Shear Flow,"
Technical Report Number FM-9, Thermosciences Division, Dept. of Mech.
Engrg., Stanford Univ., May 1971.

*U.S. GOVERNMENT PRINTING OFFICE: 1976 - 635-275/64