Лекционни записки по Математически Анализ

проф. Надежда Рибарска Набрани от Никола Юруков

21 октомври $2015\, г.$

Съдържание

1	Лек	кция 1 - преговор с разширение	3
	1.1	Евклидовото пространство \mathbb{R}^n	3
	1.2	Топология в \mathbb{R}^n	4
	1.3	Основни теореми	6

1 Лекция 1 - преговор с разширение

1.1 Евклидовото пространство \mathbb{R}^n

Като множество \mathbb{R}^n е множеството $\{x=(x_1,x_2,...,x_n): x_i\in\mathbb{R},\ i=1,2,..,n\}$ от нередените n-торки реални числа. Ако го снабдим със стандартните линейни операции събиране на вектори и умножение на вектор с реално число, получаваме реално линейно пространство (спомнете си аксиомите от курса по линейна алгебра). Да напомним формалните дефиниции: сума на векторите $x=(x_1,x_2,...,x_n)$ и $y=(y_1,y_2,...,y_n)$ е векторът $x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$ (събирането е покоординатно). Произведение на скалара $\lambda\in\mathbb{R}$ с вектора x е векторът $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n)$ (умножението със скалар също е покоординатно). Ще означаваме с $\mathbf{0}$ нулевия вектор $(0,\ldots,0)$.

За да можем да правим анализ (да говорим за граница, непрекъснатост, производна и т.н.), освен линейната структура ни е необходима и някаква "мярка на близост"в нашето пространство. Както помните от курса по ДИС2, стандартната мярка на близост между два вектора е евклидовото разстояние между тях:

$$\rho(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}, \text{ където } x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n).$$

Забележете, че в \mathbb{R}^2 това е просто питагоровата теорема. Това разстояние е добре съгласувано с линейната структура в смисъл, че $\rho(x,y) = \|x-y\|$, където в дясната част стои евклидовата норма (или дължината) на вектора x-y:

$$||x|| := \sqrt{\sum_{i=1}^{n} x_i^2}, \ x = (x_1, x_2, ..., x_n).$$

Да напомним, че една функция $\|\cdot\|:\mathbb{R}^n\longrightarrow [0,+\infty)$ се нарича норма, ако за нея са в сила свойствата

- 1. $||x|| = 0 \iff x = \mathbf{0}$
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. ||x+y|| < ||x|| + ||y|| (неравенство на триъгълника)

В курса по ДИС2 е проверено, че евклидовата норма е норма. За упражнение проверете, че

- $\|(x_1,x_2)\|_1 = |x_1| + |x_2|$
- $||(x_1, x_2)||_{\infty} = \max\{|x_1|, |x_2|\}$
- $||(x_1, x_2)||_p = \sqrt[p]{|x_1|^p + |x_2|^p}, 1$

са норми в \mathbb{R}^2 . По-общо, проверете, че

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$
, $1 \le p < \infty$ е норма в \mathbb{R}^n .

Разбира се, за целта трябва да използвате неравенството на Минковски от курса по ДИС2.

Евклидовата норма има по-хубави геометрични свойства от горните примери, защото е съгласувана със скаларното произведение

$$\langle x,y \rangle = \sum_{i=1}^n x_i y_i$$
 , където $x = (x_1,x_2,...,x_n)$ и $y = (y_1,y_2,...,y_n),$

по стандартния начин $\|x\| = \sqrt{\langle x, x \rangle}$. Да напомним основното неравенство на Коши-Буняковски-Шварц:

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

Да напомним също означенията

$$B_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| < r \}$$

за отворено кълбо с център x и радиус r и

$$\overline{B}_r(x) := \{ y \in \mathbb{R}^n : ||y - x|| \le r \}$$

за затворено кълбо с център x и радиус r. Като упражнение можете да скицирате кълбата с радиус 1 и център началото на координатната система за нормите $\|\cdot\|_1$ и $\|\cdot\|_\infty$ от предишното упражнение.

1.2 Топология в \mathbb{R}^n

Дефиниция 1.1. Подмножеството U на \mathbb{R}^n се нарича отворено, ако за всяка точка x от U съществува $\epsilon > 0$ такова, че $B_{\epsilon}(x) \subset U$.

Основните свойства на отворените множества, проверени в курса по ДИС2, са

- 1. \emptyset и \mathbb{R}^n са отворени
- 2. Сечение на краен брой отворени множества е отворено, т.е. ако $U_1, U_2, ..., U_k$ са отворени, то $\bigcap_{i=1}^k U_i$ е отворено.
- 3. Обединение на произволна фамилия от отворени множества е отворено, т.е. ако U_{α} са отворени за всяко $\alpha \in I$, то $\bigcup_{\alpha \in I} U_{\alpha}$ е отворено.

Пример 1.2. Отворените кълба са отворени множества.

Да разгледаме $B_r(x_0)$, r > 0. Взимаме си произволно x от кълбото, т.е. растоянието между x и x_0 е по-малко от r. Нека $\epsilon := r - \|x_0 - x\| > 0$. Тогава $B_{\epsilon}(x) \subset \mathcal{B}_r(x_0)$. Наистина, нека $y \in B_{\epsilon}(x)$, т.е. $\|y - x\| < \epsilon$. Получаваме

$$||x_0 - y|| \le ||x - y|| + ||x - x_0|| < \epsilon + ||x - x_0||$$

 $||x_0 - y|| < r - ||x_0 - x|| + ||x - x_0||$
 $||x_0 - y|| < r$

Пример 1.3. Нека функцията $g: \mathbb{R}^n \to \mathbb{R}$ е **непрекъсната**. Тогава множеството $U = \{x \in \mathbb{R}^n : g(x) > 0\}$ е отворено.

Доказателство. Взимаме произволна точка $x_0 \in U$, следователно $\epsilon = g(x_0) > 0$. От непрекъснатостта на функцията получаваме, че съществува положително число δ такова, че $|g(x) - g(x_0)| < \epsilon$ за всяко $x \in B_\delta(x_0)$. Следователно $g(x) > g(x_0) - \epsilon = 0$ и оттук $x \in U$ за всяко $x \in B_\delta(x_0)$.

Дефиниция 1.4. Едно подмножество F на \mathbb{R}^n се нарича затворено, ако $\mathbb{R}^n \setminus F$ е отворено множество.

Основните свойства на затворените множества, проверени в курса по ДИС2, са

- 1. \emptyset , \mathbb{R}^n са затворени.
- 2. Обединие на краен брой затворени множества е затворено, т.е. ако $F_1, F_2, ..., F_k$ са затворени, то $\bigcup_{i=1}^k F_i$ е затворено.
- 3. Сечение на произволна фамилия от затворени множества е затворено, т.е. ако F_{α} са затворени за всички $\alpha \in I$, то $\bigcap_{\alpha \in A} F_{\alpha}$ е затворено.

Пример: Затворените кълба са затворени множества.

Да напомним още едно свойство на затворените множества, доказано в ДИС2: Едно множество F е затворено точно тогава, когато F съдържа границите на всички редици, съставени от негови елементи. Иначе казано,

$$F = \{x \in \mathbb{R}^n : \exists \{x_m\}_{m=1}^{\infty} \subset F, \ x_m \to x\} .$$

Дефиниция 1.5. Контур на множество.

Нека $A \subset \mathbb{R}^n$. Тогава контур на A наричаме множеството

$$\partial A = \{x \in \mathbb{R}^n : x \in U, \ \forall U \ \text{отворено} \land U \cap A \neq \emptyset \land M \setminus A \neq \emptyset\}$$

Също можем да напишем

$$\partial A = \{x \in \mathbb{R}^n, \text{ за които същ. } \{x_m\}_{m=1}^\infty \subset A, x_m \to x, \text{ същ. } \{y_m\}_{m=1}^\infty \subset \mathbb{R}^n \setminus A, y_m \to x\}$$

 $A o \partial A$ е затворено множество

Дефиниция 1.6. Затворена обвивка на множество.

$$\overline{A} = A \cup \partial A = \cap F(F_{3aTB} \supset A)$$

Най-малкото затворено съдържащо A.

$$\overline{A} = \{x \in \mathbb{R}^n : \exists \{x_m\}_{m=1}^{\infty} \subset A, \ x_m \to x\}$$

Контурът е затворена обвивка на множеството пресечена със затворената обвивка на допълнението.

Дефиниция 1.7. Вътрешност на $A \subset \mathbb{R}^n$.

$$\mathring{A} = \bigcup_{\substack{U \text{ otb.} \\ U \subset A}} U = \mathbb{R}^n \setminus \overline{(\mathbb{R}^n \setminus A)} = int(A)$$

Обединението на отворените множества, които се съдържат в A.

Дефиниция 1.8. Компактност.

 $A\subset\mathbb{R}^n$ се нарича компакт $\iff A$ е ограничено и затворено.

От всеки ред от негови елементи може да се избере сходяща подредица, чиято граница е също в множеството.

$$\forall \{x_m\}_{m=1}^{\infty} \subset A \; \exists x_{m_k} \xrightarrow[k \to \infty]{} x_0 \in A$$

Каквото и отворено покритие на A да вземем, можем да изберем негово крайно подпокритие.

$$\forall \{U_{\alpha}\}_{\alpha \in I}: U_{\alpha}$$
 са отворени и $\cup_{\alpha \in I} U_{\alpha} \supset A$, тогава $\exists \alpha_1, \alpha_2, ..., \alpha_k \in I: \cup_{i=1}^k U_{\alpha_i} \supset A$

1.3Основни теореми

Теорема 1.9 (Теорема на Вайерщрас). Непрекоснат образ на компакт е компакт.

непр.
$$f: (K \subset \mathbb{R}^n) \to \mathbb{R}^m \Rightarrow f(K) = \{f(x) : x \in K\}$$
 е компакт в \mathbb{R}^m

Доказателство. Взимаме $\{y_l\}_{l=1}^{\infty} \subset f(K)$ и търсим нейна сходяща подредица. $y(l)=f(x_l), \ x_l \in \mathcal{S}$

$$K.\ \{x_l\}_{l=1}^{\infty} \subset K$$
 компакт. $x_{l_k} \xrightarrow[k \to \infty]{} x_0 \in K.$ f е непрекъсната $\Rightarrow f(x_{l_k}) = y_{l_k} \xrightarrow[k \to \infty]{} f(x_0) \in f(K)$

Теорема 1.10 (Теорема на Кантор). Нека f е дефинирана в $D \subset \mathbb{R}^n$. Нека K компакт $\subset D.$ f е непрекосната в K, т.е. непрекосната вов всяка точка от K. Тогава твордим, че f е равномерно непрекъсната в K. Тоест

$$\forall \epsilon > 0 \exists \delta > 0 : \forall x \in K \quad \forall x' \in D \quad ||x' - x|| < \delta$$

да е в сила

$$|f(x) - f(x')| < \epsilon$$

Доказателство. Допускаме противното.

 $\exists \epsilon_0 > 0 \ \forall \delta > 0 \ \exists x_\delta \in K$ зависещо от $\delta, \ \exists x_\delta' \in D, \|x_\delta - x_\delta'\| < \delta: |f(x) - f(x')| \ge \epsilon$ Даваме стойности на $\delta=1,\frac{1}{2},\frac{1}{3},...$, за да клони към 0. Така се образуват две редици: $\{x_m\}_{m=1}^{\infty}\subset K$ и $\{x_m'\}_{m=1}^{\infty}\subset D$. Знаем, че разстоянието $<\delta=\frac{1}{m}$, тоест $\|x_m-x_m'\|<\frac{1}{m}$ и

$$|f(x_m) - f(x_m')| \ge \epsilon_0 > 0 \tag{1.1}$$

K е компакт \Rightarrow \exists сходяща подредица $x_{m_k} \xrightarrow[k \to \infty]{} x_0 \in K$ от непрекъснатостта на f. Следователно $f(x_{m_k} \xrightarrow[k\to\infty]{} f(x_0)$. И така съществува подредица с примове, такава че $\|x'_{m_k} - x_0\| \le \|x'_{m_k} - x_{m_k}\| + \|x_{m_k} - x_0\| < \frac{1}{m} + \|x_{m_k} - x_0\| \xrightarrow[k \to \infty]{} 0$. Следователно $x'_{m_k} \xrightarrow[k \to \infty]{} 1$ $x_0 \in K \Rightarrow f(x'_{m_k}) \xrightarrow[k \to \infty]{} f(x_0).$

$$f(x_{m_k}) - f(x'_{m_k}) \xrightarrow[k \to \infty]{} 0 \tag{1.2}$$

Така от (1.1) и (1.2) се получава противоречие. Следователно теоремата е доказана.

Дефиниция 1.11. Релативно отворено множество. Нека $A \subset \mathbb{R}^m$. $U \subset A$ наричаме релативно отворено в A, ако съществува множество отворено в цялото пространство $(V \subset \mathbb{R}^m)$, такова че $U = A \cap V$.

Твърдение 1.12. Нека $f:(D\subset\mathbb{R}^n)\to\mathbb{R}^m$. Ако f е непрекосната в $D\iff \forall U$ отворено \subset $\mathbb{R}^m: f^{-1}(U) = \{x \in D: f(x) \in U\}$ е релативно отворено в D.

Доказателство. Първо ще докажем обратната посока ←.

Избираме точка от D $(x \in D)$ и $\epsilon_0 > 0$ Взимаме първообраз $f^{-1}(\mathcal{B}_{\epsilon_0}(f(x)) = D \cap V \Rightarrow$ $x \in V$ отворено и $\exists \delta > 0 : \mathcal{B}_{\delta}(x) \subset V$. Сега $x' \in D \cap \mathcal{B}_{\delta}(x) \Rightarrow x' \in D \cap V \Rightarrow f(x') \in \mathcal{B}_{\epsilon_0}(f(x))$.

Сега обратната посока \Rightarrow . Взимаме $U \subset \mathbb{R}^n$ и $x \in f^{-1}(U) \Rightarrow f(x) \in U$ отворено. Следователно $\exists \epsilon > 0; \mathcal{B}_{\epsilon}(f(x)) \subset U, f$ е непрекъсната $\Rightarrow \exists \delta_x > 0, f(\mathcal{B}_{\delta_x}(x) \cap D) \subset \mathcal{B}_{\epsilon}(f(x)) \subset$ U. И така нека имаме отвореното множество $V = \bigcup_{x \in f^{-1}(U)} \mathcal{B}_{\delta_x}(x)$. Имаме, че $V \cap D =$ $f^{-1}(U)$, защото:

- 1. ⊃, защото е център.
- 2. \subset , защото $y \in V \cap D$, $y \in D$ $y \in \mathcal{B}_{\delta_x}(x)$, $\Rightarrow f(y) \in f(\mathcal{B}_{\delta_x}(x) \cap D) \subset \mathcal{B}_{\epsilon}(f(x)) \subset U$ и следователно $y \in f^{-1}(U)$.

За упражнение да се докаже теоремата на Вайершрас, използвайки горното твърдение.