COMPLEX MULTIPLICATION

Ching-Li Chai

Department of Mathematics University of Pennsylvania

Colloquium, University of Minnesota, April 29, 2010

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of

elliptic curves

Modern Civi meory

Shimura varieties

Outline

- 1 Review of elliptic curves
- 2 CM elliptic curves in the history of arithmetic
- 3 CM theory for elliptic curves
- 4 Modern CM theory
- 5 CM points on Shimura varieties
- 6 CM liftings

COMPLEX MULTIPLICATION

Ching-Li Chai

curves

CM elliptic curves in the history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

Elliptic curves

§1 Review of elliptic curves

- Weistrass theory
- \blacksquare the *j*-invariant
- CM elliptic curves

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

Elliptic curves basics

Equivalent definitions of an elliptic curve E:

- a projective curve with an algebraic group law;
- a projective curve of genus one together with a rational point (= the origin);
- over \mathbb{C} : a complex torus of the form $E_{\tau} = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, where $\tau \in \mathfrak{H}$:= upper-half plane;
- over a field F with $6 \in F^{\times}$: given by an affine equation

$$y^2 = 4x^3 - g_2x - g_3, \quad g_2, g_3 \in F.$$

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

emptic curves

CM points on

Shimura varietie

Weistrass theory

For $E_{\tau} = \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$, let

$$x_{\tau}(z) = \mathcal{D}(\tau, z)$$

$$= \frac{1}{z^{2}} + \sum_{(m,n)\neq(0,0)} \left(\frac{1}{(z - m\tau - n)^{2}} - \frac{1}{(m\tau + n)^{2}} \right)$$

$$y_{\tau}(z) = \frac{d}{dz} \mathscr{D}(\tau, z)$$

Then E_{τ} satisfies the Weistrass equation

$$y_{\tau}^2 = 4x_{\tau}^3 - g_2(\tau)x_{\tau} - g_3(\tau)$$

with

$$g_2(\tau) = 60 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^4}$$

$$g_3(\tau) = 140 \sum_{(0,0) \neq (m,n) \in \mathbb{Z}^2} \frac{1}{(m\tau + n)^6}$$

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of

elliptic curves

Modern CM theory

CM points on Shimura varieties

The *j*-invariant

Elliptic curves are classified by their *j*-invariant

$$j = 1728 \frac{g_2^3}{g_2^3 - 27g_3^2}$$

Over \mathbb{C} , $j(E_{\tau})$ depends only on the lattice $\mathbb{Z}\tau + \mathbb{Z}$ of E_{τ} . So $j(\tau)$

is a modular function for $SL_2(\mathbb{Z})$:

$$j\left(\frac{a\tau+b}{c\tau+d}\right) = j(\tau)$$

for all $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

We have a Fourier expansion

$$j(\tau) = \frac{1}{q} + 744 + 196884 q + 21493760 q^2 + \cdots,$$

where $q = q_{\tau} = e^{2\pi\sqrt{-1}\tau}$.

COMPLEX
MULTIPLICATION
Ching-Li Chai

Review of elliptic

curves

M elliptic curves in the history of

CM theory for elliptic curves

Iodern CM theory

CM points on Shimura varieties

CM elliptic curves

Let E be an elliptic curve over \mathbb{C} . Then for $\operatorname{End}^0(E) := \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ we have

$$\operatorname{End}^{0}(E) := \left\{ \begin{array}{l} \mathbb{Z}, \text{ or} \\ \text{an imaginary quadratic field } K \end{array} \right.$$

In the latter case, *E* is said to admit complex multiplication, i.e.

- lacksquare End(E) is an order in an imaginary quadratic field K
- $E(\mathbb{C}) \cong \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$ for some $\tau \in K$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM curves in history

§2 CM elliptic curves in the history of arithmetic

- Fermat
- Euler
- congruent numbers

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

empue curves

Modern CM theory

CM points on Shimura varieties

Portraits of Fermat & Euler

Figure: Euler

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

amplic curves

CM points on

Fermat

§2 CM elliptic curves in the history of arithmetic

1. The two Diophantine equations considered by Fermat,

$$x^4 + y^4 = z^2$$

and

$$x^3 + y^3 = z^3$$

both correspond to elliptic curves, with affine equations

$$u^4 + 1 = v^2$$

and

$$u^3 + v^3 = 1$$

respectively.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

empue curves

Modern CM theory

Shimura varieties

Fermat's curves, continued

The first curve $u^4 + 1 = v^2$ admits a non-trivial automorphism

$$(u,v) \; \mapsto \; (\sqrt{-1}u,v) \, ,$$

so has endomorphisms by $\mathbb{Z}[\sqrt{-1}]$.

Fermat's method of descent for this curve is a 2-descent, applied to the endomorphism $[2] = [1 - \sqrt{-1}] \circ [1 + \sqrt{-2}]$.

The second curve $u^3 + v^3 = 1$ has a non-trivial automorphism

$$(u,v) \mapsto (e^{2\pi\sqrt{-1}/3}u,v),$$

so has endomorphisms by $\mathbb{Z}[(-1+\sqrt{-3})/2]$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

lliptic curves

Modern CM theory

CM points on Shimura varieties

Euler

2. The birth of the theory of elliptic functions hands of Euler in 1751 (Euler's addition theorem) was stimulated by Fagnano's remarkable discovery:

The differential equation

$$\frac{dx}{\sqrt{1-x^4}} = \frac{dy}{\sqrt{1-y^4}}$$

has a rational integral

$$x^2y^2 + x^2 + y^2 = 1.$$

The curve $u^2 = 1 - x^4$ is an elliptic curve with endomorphism by $\mathbb{Z}[\sqrt{-1}]$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

empue curves

Modern CM theory

Shimura varieties

Congruent numbers

- 3. Three equivalent formulations of a property for a positive square-free integer n:
 - (Diophantus, Arithmetica V.7, III.19, around 250 AD; anonymous Arabic manuscript, before 972) $\exists \delta \in \mathbb{O}$ such that $\delta^2 n$, $\delta^2 + n \in \mathbb{O}^{\times 2}$.
 - \blacksquare \exists a right triangle with rational sides and area n.
 - The cubic equation $y^2 = x^3 n^2x$ has a rational solution (a,b) with $b \neq 0$. Note that this elliptic curve has endomorphism by $\mathbb{Z}[(-1+\sqrt{-3})/2]$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

elliptic curves

Wiodein CWI theory

CM points on Shimura varieties

Congruent numbers, continued

An integer n satisfying these equivalent properties is called a congruent number.

For instance 5 is a congruent number:

$$(41/12)^2 - 5 = (31/12)^2, (41/12)^2 + 5 = (49/12)^2$$

$$(3/2)^2 + (20/3)^2 = (41/6)^2, 5 = (1/2) \times (3/2) \times (20/3).$$

Fermat proved that 1 and 2 are not congruent numbers. Zagier showed that n = 153 is a congruent number, where the denominator of δ has 46 digits.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

lliptic curves

Modern CM theory

CM points on Shimura varieties

CM theory for elliptic curves

§3 CM theory for imaginary quadratic fields:

From Kronecker to Weber/Fueter and Hasse/Deuring.

- Kronecker's Jugentraum
- explicit reciprocity law for imaginary quadratic fields
- $\sqrt[3]{j}$ and $\sqrt{j-1728}$ for imaginary quadratic fields with class number 1.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Protrait of Kronecker

Figure: Kronecker

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Kronecker's Jugentraum

Kronecker (1853), Weber(1886) proved:

Every abelian extension of \mathbb{Q} is contained in a cyclotomic field,

i.e. a field generated by the values of of function $\exp(2\pi\sqrt{-1}x)$ at rational numbers.

Kronecker's Jugendtraum: special values of elliptic functions should be enough to generate all abelian extensions of imaginary quadratic fields.

General idea: generate abelian extensions by special values of useful functions.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

For imaginary quadratic fields, carried out by

- Weber, Lehrbuch der Algebra, Bd. 3, 1906),
- Fueter, I(1924), II(1927);
- Hasse (1927, 1931), and
- Deuring (1947, 1952)

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Portraits of Weber & Fueter

Figure: Weber

Figure: Fueter

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

DM elliptic curves in he history of writhmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Photos of Hasse & Deuring

Figure: Hasse

Figure: Deuring

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic

M elliptic curves in ne history of rithmetic

CM theory for elliptic curves

Modern CM theory

himura varieties

imaginary quadratic field K. Theorem

■ j(E) is an algebraic integer, and K(j(E)) is the ring class field of K attached to the order \mathcal{O} .

Let E be an elliptic curve s.t. $\mathcal{O} = \operatorname{End}(E)$ is an order \mathcal{O} in an

- If $\mathcal{O} = \mathcal{O}_K$ then j(E) is the Hilbert class field H_K of K, i.e. the maximal unramified abelian extension of K; its Galois group is the ideal class group of K.
- If $\sigma \in \operatorname{Gal}(H_K/K)$ corresponds to an \mathscr{O}_K -ideal I, then $\sigma^{-1}j(\mathbb{C}/J) = j(\mathbb{C}/I \cdot J)$ for every \mathscr{O}_K -ideal J.
- In particular if $h_K = 1$, then $j(\mathbb{C}/\mathcal{O}_K) \in \mathbb{Z}$; moreover $j(\mathbb{C}/\mathcal{O}_K)$ is a cube.

Cubic root of singular *j*-values

For the 9 imaginary quadratic fields of class number 1

$$j(\sqrt{-1}) = 1728 = 2^6 \cdot 3^3$$
$$j(\sqrt{-2}) = 8000 = 2^6 \cdot 5^3$$

	$j(\frac{-1+\sqrt{-p}}{2})$
p=3	0
p = 7	$-3^3 \cdot 5^3$
p = 11	-2^{15}
p = 19	$-2^{15} \cdot 3^3$
p = 43	$-2^{18} \cdot 3^3 \cdot 5^3$
p = 67	$-2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$
p = 163	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in he history of

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Square root of (j-1728)/(-p)

	$j\left(\frac{-1+\sqrt{-p}}{2}\right)-1728$
p=3	$-3\cdot 2^6\cdot 3^2$
p = 7	$-7\cdot3^6$
p = 11	$-11 \cdot 2^6 \cdot 7^2$
p = 19	$-19 \cdot 2^6 \cdot 3^6$
p = 43	$-43 \cdot 2^6 \cdot 3^8 \cdot 7^2$
p = 67	$-67 \cdot 2^6 \cdot 3^6 \cdot 7^2 \cdot 31^2$
p = 163	$-163 \cdot 2^6 \cdot 3^6 \cdot 7^2 \cdot 11^2 \cdot 19^2 \cdot 127^2$

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

he history of arithmetic

CM theory for elliptic curves

Modern CM theory

CM points on Shimura varieties

Modern CM theory

From Shimura/Taniyama to Deligne/Langlands

§4 Modern CM theory:

From Shimura/Taniyama to Deligne/Langlands.

Use moduli coordinates of abelian varieties with lots of symmetries (endomorphisms) to generate abelian extensions of CM fields.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

he history of crithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

Photos of Shimura & Taniyama

Figure: Shimura

Figure: Taniyama

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic

CM elliptic curves in he history of rithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

Abelian varieties basics

- An abelian variety over a field is a complete group variety.
- Over \mathbb{C} an abelian variety "is" a compact complex torus which can be embedded into a complex projective space.
- A homomorphism between abelian varieties is an isogeny if it is surjective with a finite kernel.
- Every abelian variety is isogenous to a product of simple abelian varieties.
- An abelian variety A has sufficiently many complex multiplication (smCM) if $\operatorname{End}^0(A) \supset \operatorname{a}$ commutative semisimple algebra E with $\dim_{\mathbb{Q}}(E) = 2\dim(A)$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM fields

- A CM field *L* is a totally imaginary quadratic extension of a totally real field.
 - Then the complex conjugation ι is in the center of $\operatorname{Gal}(L^{\operatorname{nc}}/\mathbb{Q})$.
- If *A* is a simple abelian variety over \mathbb{C} with smCM, then $\operatorname{End}^0(A)$ is a CM field.
- If A is an isotypic abelian variety with smCM, then $\operatorname{End}^0(A)$ contains a CM field.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

he history of

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM types

- Let $(A, L \hookrightarrow \operatorname{End}^0(A))_{/\mathbb{C}}$, be an abelian variety with endomorphisms by a CM field L, $[L : \mathbb{Q}] = 2\dim(A)$.
 - Lie(A) corresponds to a subset $\Phi \subset \operatorname{Hom}(L,\mathbb{C})$ with $\operatorname{Hom}(L,\mathbb{C}) = \Phi \sqcup {}^{\iota}\Phi$.
 - Φ is called the CM type of $(A, L \hookrightarrow \operatorname{End}^0(A))$.
 - (L, Φ) determines $(A, L \hookrightarrow \operatorname{End}^0(A))$ up to L-linear isogeny.
- The reflex field of a CM type Φ for a CM field $L \subset \mathbb{C}$ is, equivalently,
 - (a) $\mathbb{Q}(\sum_{\sigma \in \Phi} \sigma(x))_{x \in L}$
 - (b) the field of definition of $\Phi \subset \operatorname{Hom}(L,\mathbb{C})$, a subset of a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -set.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

OM elliptic curves in he history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM moduli towers

Let L be a CM field and let Φ be a CM type for L.

Moduli tower attached to (L, Φ)

■ For every (sufficiently small) compact open subgroup $\Lambda \subset \prod_{w} \mathscr{O}_{L,w} \subset \mathbb{A}_{L,f}$, let $\mathscr{X}_{L,\Phi,K}$ be the moduli space of quadruples

$$(A, L \hookrightarrow \operatorname{End}^0(A), \lambda, \bar{\psi})$$

where

- λ is a polarization of A up to \mathbb{Q}^{\times} s.t. L is stable under the Rosati involution Ros $_{\lambda}$
- ψ is a K-coset of a L-linear polarization $\psi: L/\mathscr{O}_L \xrightarrow{\sim} A_{\text{tor}}$
- 2 Let $\mathscr{X}_{L,\Phi} = \{\mathscr{X}_{L,\Phi,K}\}_K$ be the projective system of moduli spaces $\mathscr{X}_{L,\Phi,K}$, indexed by compact open subgroups

$$K \subseteq \prod_{w} \mathscr{O}_{L,w} \subset \mathbb{A}_{L,f}$$

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

Modern CM theory

Modern CM theory

CM points on Shimura varieties

Main CM theorem

Shimura/Taniyama

- (significance of the reflex field) The moduli tower $\mathscr{X}_{L,\Phi}$ is defined over the reflex field $L' = \operatorname{ref}(L,\Phi)$.
- **2** The action of $Gal(\overline{\mathbb{Q}}/L')$ on $\mathscr{X}_{L,\Phi}$ factors through $Gal(L'^{ab}/L')$.
- 3 (Shimura/Taniyama formula) Through the Artin reciprocity law $\pi_0(\mathbb{A}_{L,f}^\times/L^\times) \cong \operatorname{Gal}(L'^{\operatorname{ab}}/L')$, $\operatorname{Gal}(L'^{\operatorname{ab}}/L')$ acts on $\mathscr{X}_{L,\Phi}$ via a homomorphism

$$N_{\Phi'} \colon \mathbb{A}_{L',f}^{\times} \longrightarrow \mathbb{A}_{L,f}^{\times}$$

Here $N_{\Phi'}: \operatorname{Res}_{L/\mathbb{Q}}\mathbb{G}_m \to \operatorname{Res}_{L'/\mathbb{Q}}\mathbb{G}_m$ is a homomorphism of algebraic tori over \mathbb{Q} , called reflex type norm attached to (L,Φ) .

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in he history of withmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

Motivic CM theory

Deligne/Langlands

- Replace L' by \mathbb{Q} , i.e. consider the moduli tower $\mathscr{X}_L := \{\mathscr{X}_{L,\Phi,K}\}_{\Phi,K}$ (includes all CM types Φ for L)
- The action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on \mathscr{X}_L is described in terms of the Taniyama group defined by Langland.
- Key ingredient (Deligne): Any Galois conjugate of a Hodge cycle is Hodge.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in he history of rithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM points on \mathcal{A}_g

§5 CM points on Shimura varieties: The case of \mathcal{A}_g

CM points on Siegel modular varieties

- Siegel modular varieties
- André/Oort conjecture
- Application: abelian varieties not isogenous to jacobians

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of arithmetic

emptic curves

CM points on

Shimura varieties

CM points

Definition

A point $[(A,\lambda)]$ on \mathscr{A}_g over \mathbb{C} (or $\overline{\mathbb{Q}}$) is a CM point if A has smCM.

It is a Weyl CM point if $End^0(A)$ is a CM field L with

$$\operatorname{Gal}(L^{\operatorname{normal closure}}/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^g \rtimes S_g$$
.

- Among CM fields of degree 2g, those whose with Galois group $(\mathbb{Z}/2\mathbb{Z})^g \rtimes S_g$ are (supposed to be) "general".
- Weyl CM points are (supposed to be) the general CM points.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

empuc curves

CM points on Shimura varieties

André/Oort conjecture

André/Oort conjecture

If X is a subvariety of \mathcal{A}_g over \mathbb{C} with a Zariski dense subset of CM points, then X is a Shimura subvariety.

X is a Shimura subvariety of \mathcal{A}_g means

- $X(\mathbb{C})$ is the quotient of a bounded symmetric domain attached to a semisimple subgroup $G \subset \operatorname{Sp}_{2g}$ by an arithmetic subgroup of $G(\mathbb{Q})$.
- X is "defined" (or, "cut out") by Hodge cycles.

Status

- A few low-dimensional cases known (e.g. when $X \subset (j\text{-line}) \times (j\text{-line})$)
- (Ullmo/Yafaev) True under GRH

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of

elliptic curves

CM points on

Shimura varieties

Application: a conjecture of Katz

Abelian varieties NOT isogenous to a jacobian

Suppose $g \ge 4$. Is there a g-dimensional abelian variety over $\overline{\mathbb{Q}}$ which is not isogenous to a jacobian?

Answer, under GRH

- (group theory) If a positive dimensional Shimura subvariety X of \mathscr{A}_g contains a Weyl CM point $[(A, \lambda)]$, then X is a Hilbert modular subvariety attached to the max. real subfield F of $L := \operatorname{End}^0(A)$.
- (de Jong/Zhang 2007) \mathcal{M}_g does not contain any Hilbert modular subvariety attached to a totally real field F if either $g \ge 4$ or if g = 4 and $Gal(F^{nc}/\mathbb{Q}) \cong S_4$.
- Conclude by (AO). Q.E.D.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

elliptic curves

CM points on Shimura varieties

CM liftings

§6 CM lifting problems

- Review: Weil & Honda/Tate
- Known result: ∃ CM lifting after base field extension and isogeny
- (I): CM lifting up to isogeny (same base field)
- (NI): CM lifting over normal base up to isogeny (same base field)

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

he history of arithmetic

elliptic curves

Wiodein Civi theory

CM points on Shimura varieties

Abelian varieties over finite fields

Theorem (Weil, Honda/Tate)

Let A be an abelian variety over a finite field \mathbb{F}_q be a finite field with q elements.

I $\operatorname{Fr}_A \in \operatorname{End}(A)$ has a monic characteristic polynomial with integer coefficients, whose roots α_i are Weil-q-numbers:

$$|\alpha_i|=q^{1/2}.$$

If A is isotypic, then there exists a CM field $L \subseteq \operatorname{End}^0(A)$ with $\operatorname{Fr}_A \in L$ and $[L:\mathbb{Q}] = 2\dim(A)$.

Theorem (Honda/Tate)

Let α be a q-Weil number. Then there exists an abelian variety A over \mathbb{F}_q with $\operatorname{Fr}_A = \alpha$.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

empue curves

CM points on Shimura varieties

CM lifting: known result

Let $(A, L \hookrightarrow \operatorname{End}^0(A))$ be a CM abelian variety over a finite field κ .

Theorem (Honda/Tate)

There exist

- **a** finite extension field κ'/κ ,
- an abelian variety B over κ' isogenous to $A_{/\kappa'}$,
- a char. (0,p) local domain (or dvr) (R,\mathfrak{m}) ,
- \blacksquare an abelian scheme $\mathbb B$ over R with endomorphism by an order in L

s.t. $(\mathfrak{B}, L \hookrightarrow \operatorname{End}^0(\mathfrak{B}))$ is a lifting of $(B, L \hookrightarrow \operatorname{End}^0(B))$ over R

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

elliptic curves

modern ciri dicory

CM points on Shimura varieties

CM lifting question

Let $(A, L \hookrightarrow \operatorname{End}^0(A))$ be a CM abelian variety over a finite field $\kappa \supset \mathbb{F}_p$.

CM lifting question, optimistic version

(CML) Does there exist a CM abelian scheme over a 0 local domain (R, \mathfrak{m}) which lifts $(A_{\overline{\mathbb{F}}_p}, L \hookrightarrow \operatorname{End}^0(A_{\overline{\mathbb{F}}_p}))$?

Answer to (CML)

NO!

- First counter-example: F. Oort, 1992.
- Ubiquitous counter-examples: If $A[p](\overline{\mathbb{F}}_p) \cong (\mathbb{Z}/p\mathbb{Z})^f$ with $f \leq \dim(A) 2$, then \exists an isogeny $A \to B$ over $\overline{\mathbb{F}}_p$ s.t. $(B, L \hookrightarrow \operatorname{End}^0(B))_{/\overline{\mathbb{F}}_p}$ cannot be lifted to char. 0.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in he history of

empue curves

CM points on

Shimura varietie

CM lifting up to isogeny

CM Lifting up to isogeny, same finite field κ

- (I) Does there exist a κ -isogeny $A \to B$ and a CM abelian scheme $(\mathcal{B}, L \hookrightarrow \operatorname{End}^0(\mathcal{B}))$ over a char. 0 local domain (R, \mathfrak{m}) which lifts $(B, L \hookrightarrow \operatorname{End}^0(B))$?
- (NI) Does there exist a κ -isogeny $A \to B$ and a CM abelian scheme $(\mathcal{B}, L \hookrightarrow \operatorname{End}^0(\mathcal{B}))$ over a char. 0 normal local domain (R, \mathfrak{m}) which lifts $(B, L \hookrightarrow \operatorname{End}^0(B))$?

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of

Madam CM days

CM points on Shimura varieties

Answers to (I) and (NI)

Theorem (w. B. Conrd & F. Oort)

- (I): *Yes*
- (NI): There is an obstruction to (NI), from the size of the residue fields above p of the Shimura reflex fields of all CM-types of L:
 - Needs: \exists a CM-type Φ of L with the same slopes as A whose reflex field has a place above p whose residue field is contained in \mathbb{F}_q .
 - This residual reflex condition is the only obstruction.

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

A toy model

Example

 $A_{/\mathbb{F}_{p^2}}$: abelian surface with $\operatorname{Fr}_A = p \zeta_p, p \equiv 2, 3 \pmod{5}$.

- $\blacksquare \ (A_{/\overline{\mathbb{F}}_p}, \mathbb{Z}[\zeta_5] \hookrightarrow \operatorname{End}(A_{/\overline{\mathbb{F}}_p})) \text{ cannot be lifted to char. 0.}$
- 2 (NI) fails for $(A_{/\mathbb{F}_{n^2}}, \mathbb{Q}(\zeta_5) \hookrightarrow \operatorname{End}^0(A))$.
- $(A, \mathbb{Q}(\zeta_5) \hookrightarrow \operatorname{End}^0(A))$ can be lifted to characteristic 0.

➤ Skip proofs of 1 & 2

Proofs of 1 & 2

- Complex conjugation in $\mathbb{Z}[\zeta_5]$ corresponds to Fr_{p^2} , so the action of $\mathbb{Z}[\zeta_5]$ on the tangent space of a lift corresponds to two embeddings $\sigma_1, \sigma_2 \colon \mathbb{Z}[\zeta_5] \hookrightarrow \mathbb{C}$ with ${}^{\iota}\sigma_1 = \sigma_2$.
- **2** The reflex field of any CM type of $\mathbb{Q}(\zeta_5)$ is $\mathbb{Q}(\zeta_5)$, with residue field \mathbb{F}_{p^4} bigger than \mathbb{F}_{p^2} .

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in he history of crithmetic

elliptic curves

Shimura varieties

The toy model, continued

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic

CM elliptic curves in he history of

elliptic curves

Wodern Civi theor

CM points on Shimura varieties

CM liftings

Proof of 3: CM lift for the toy model

- \exists a $\mathbb{Z}[\zeta_5]$ -linear isogeny over \mathbb{F}_{p^4} $\xi: B \to A_{/\mathbb{F}_{p^4}}$, and $\operatorname{Ker}(\xi) \cong \alpha_p$ is the only subgroup scheme of B of order p.
- *B* admits an unramified lift to $R = W(\mathbb{F}_{p^4})$. (The $\mathbb{Z}[\zeta_5]$ action on Lie(*B*) corresponds to a CM type of $\mathbb{Q}(\zeta_5)$; lift the Hodge filtration.)
- Pick a point of order p in B over a (tame) extension R' of R to get lift of $(A, \mathbb{Q}(\zeta_5) \hookrightarrow \operatorname{End}^0(A))_{\mathbb{F}_{p^4}}$.
- Conclude by deformation theory.

Existence of CM lifting up to isogeny

Sketch proof of (I)

- **1.** "Localize" and reduce to a problem on p-divisible groups: Given $(A[p^{\infty}], \mathscr{O}_L \otimes \mathbb{Z}_p \hookrightarrow \operatorname{End}(A[p^{\infty}]))$ over \mathbb{F}_q , need to find
 - an $\mathcal{O}_L \otimes \mathbb{Z}_p$ -linear isogeny $Y \to (A[p^\infty] \text{ over } \mathbb{F}_q$
 - a lifting $(\mathcal{Y}, L \otimes \mathbb{Q}_p \hookrightarrow \operatorname{End}^0(\mathcal{Y}))$ of $(Y, L \otimes \mathbb{Q}_p \hookrightarrow \operatorname{End}^0(Y))$ to a char. 0 local ring R s.t. the L-action on $\operatorname{Lie}(\mathcal{Y})$ "is" a CM type for L.
- **2.** How to find a good $\mathscr{O}_L \otimes \mathbb{Z}_p$ -linear p-divisible group Y:
 - $(Y, \mathscr{O}_L \otimes \mathbb{Z}_p \hookrightarrow Y)_{/\mathbb{F}_q})$ is determined by its Lie type $[\mathrm{Lie}(Y)]$ in a Grothdieck group $R(\mathscr{O}_L \otimes \overline{\mathbb{F}_p})$.
 - Every $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_q)$ -invariant effective element of $\operatorname{R}(\mathscr{O}_L \otimes \overline{\mathbb{F}}_p)$ with the same slope as $\operatorname{Lie}([A])$ is the Lie type of a p-divisible group $Y(\mathscr{O}_L \otimes \mathbb{Z}_p)$ -linearly isogenous to $A[p^\infty]$ over \mathbb{F}_q .

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of

elliptic curves

Modern CM theory

CM points on Shimura varieties

Existence of CM lifting up to isogeny, continued

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

CM elliptic curves in the history of arithmetic

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM liftings

- **3.** Localize at the maximal real subfield L_0 of L.
 - 3a For every place v of L_0 above p, try to find a \mathbb{F}_q -rational element $\delta_v \in \mathbb{R}(\mathscr{O}_{L_v} \otimes \overline{\mathbb{F}}_p)$ with the same slopes as $[\operatorname{Lie}(A[v^\infty])]$, and satisfies

$$\delta_{\nu} + {}^{\iota} \delta_{\nu} = [\mathscr{O}_{L_{\nu}} \otimes \overline{\mathbb{F}}_{p}], \qquad \iota = \text{cpx. conjugation}$$

(Then $\exists Y_{\nu}$ isogenous to $A[\nu^{\infty}]$ over \mathbb{F}_q which admits an L_{ν} -linear lift to char. 0 with self-dual local CM type.)

- 3b The only situation when 3a fails (say v is a "bad place"):
 - \blacksquare L_v is a field; let w be the place of L above v
 - \bullet $e(L_w/\mathbb{Q}_p)$ is odd
 - $f(L_w) \equiv 0 \pmod{4}$
 - \blacksquare $[\kappa_w : (\kappa_w \cap \mathbb{F}_q)]$ is even

Existence of CM lifting up to isogeny, continued

COMPLEX MULTIPLICATION

Ching-Li Chai

Review of elliptic curves

the history of

elliptic curves

Modern CM theory

CM points on Shimura varieties

CM liftings

Reduction to the toy model

- **4.** How to handle a bad place w/v of L/L_0 above p:
 - \exists an \mathscr{O}_w -linear isogeny $Y_w \to A[w^\infty]$ over \mathbb{F}_q such that

$$(Y_w, \mathscr{O}_w \hookrightarrow \operatorname{End}(Y_w))_{/\overline{\mathbb{F}}_p} \cong \mathscr{O}_w \otimes_{W(\mathbb{F}_{p^4})} (\operatorname{toy\ model})[p^{\infty}]$$

■ The construction of the CM lift for the toy models gives a lift of $(Y_w, L_w \hookrightarrow \text{End}^0(Y_w))$ with self-dual local CM type. Q.E.D.