```
In [89]: import pandas as pd
         import numpy as np
         import statsmodels.formula.api as smf
         from sklearn.model selection import train test split, GridSearchCV
         from sklearn.svm import SVC, LinearSVC
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.metrics import confusion matrix, roc_curve, auc, classificatio
         from sklearn import svm
         # Visualisation libraries
         ## Text
         from colorama import Fore, Back, Style
         from IPython.display import Image, display, Markdown, Latex, clear output
         ## plotly
         from plotly.offline import init notebook mode, iplot
         import plotly.graph objs as go
         import plotly.offline as py
         from plotly.subplots import make subplots
         import plotly.express as px
         ## seaborn
         import seaborn as sns
         sns.set style("whitegrid")
         sns.set_context("paper", rc={"font.size":12,"axes.titlesize":14,"axes.label
         ## matplotlib
         import matplotlib.pyplot as plt
         from matplotlib.font manager import FontProperties
         from matplotlib.patches import Ellipse, Polygon
         import matplotlib.gridspec as gridspec
         import matplotlib.colors
         from pylab import rcParams
         from matplotlib.font manager import FontProperties
         from mpl toolkits.axes grid1.inset locator import inset axes
         plt.style.use('seaborn-whitegrid')
         import matplotlib as mpl
         mpl.rcParams['figure.figsize'] = (17, 6)
         mpl.rcParams['axes.labelsize'] = 14
         mpl.rcParams['xtick.labelsize'] = 12
         mpl.rcParams['ytick.labelsize'] = 12
         mpl.rcParams['text.color'] = 'k'
         %matplotlib inline
         import sklearn.linear model as skl lm
         from sklearn.metrics import mean squared error
         from sklearn.model selection import train test split, LeaveOneOut, KFold, c
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.model selection import train test split
         from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, exp
         from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegress
         from sklearn.metrics import confusion matrix, mean squared error
         from sklearn import tree
         import warnings
         warnings.filterwarnings("ignore")
```

```
In [2]: df = pd.read_csv('desktop/Carseats.csv')
```

In [3]: df

Out[3]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes
395	12.57	138	108	17	203	128	Good	33	14	Yes
396	6.14	139	23	3	37	120	Medium	55	11	No
397	7.41	162	26	12	368	159	Medium	40	18	Yes
398	5.94	100	79	7	284	95	Bad	50	12	Yes
399	9.71	134	37	0	27	120	Good	49	16	Yes

400 rows × 11 columns

```
In [4]: df['Urban'] = df['Urban'].map({'Yes':0, 'No':1})
    df['US'] = df['US'].map({'Yes':0, 'No':1})
    df['ShelveLoc'] = df['ShelveLoc'].map({'Good':0, 'Medium':1,'Bad':2})
```

```
In [5]: X = df.drop('Sales', axis=1)
Y = df.Sales
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.7, r

regr1 = DecisionTreeRegressor()
Fit1 = regr1.fit(X_train, Y_train)
```

```
In [6]: pred1 = regr1.predict(X_test)

plt.scatter(pred1, Y_test, label='Sales')
plt.plot([0, 1], [0, 1], '--k', transform=plt.gca().transAxes)
plt.xlabel('pred1')
plt.ylabel('Y_test')

print("Single Tree MSE =",(mean_squared_error(Y_test, pred1)))
```

Single Tree MSE = 5.1789258333333333

The MSE indicated that our predction is off by \$5.18 in sales.

```
In [7]: fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (100,100))
tree.plot_tree(regr1,feature_names = X_train.columns,filled = True, class_n
```


After plotting the tree without pruning as indicated by the question, I cannot even read the tree, I will run CV to determine the optimal max_depth.

```
In [8]: tree_depth = []

for i in range(1,21):
    cv_tree = DecisionTreeRegressor(max_depth=i)
    scores = cross_val_score(estimator=cv_tree, X=X_train, y=Y_train, cv=5
    tree_depth.append(scores.mean())

plt.plot(range(1,21), tree_depth)
```

Out[8]: [<matplotlib.lines.Line2D at 0x7f8bd55ce880>]

The tree depth with the lowest error is around 8.

```
In [9]: regr2 = DecisionTreeRegressor(max_depth=8)
Fit2 = regr2.fit(X_train, Y_train)
pred2 = regr2.predict(X_test)
plt.scatter(pred2, Y_test, label='Sales')
plt.plot([0, 1], [0, 1], '--k', transform=plt.gca().transAxes)
plt.xlabel('pred2')
plt.ylabel('Y_test')

print("Tree MSE =",(mean_squared_error(Y_test, pred2)))
```

Tree MSE = 5.035580699380617

Pruning the tree improved the test MSE.

```
In [10]: regr3 = RandomForestRegressor(max_features=10, random_state=100) #There are
regr3.fit(X_train, Y_train)
```

Out[10]: RandomForestRegressor(max_features=10, random_state=100)

```
In [11]: pred3 = regr3.predict(X_test)
    plt.scatter(pred3, Y_test, label='Sales')
    plt.plot([0, 1], [0, 1], '--k', transform=plt.gca().transAxes)
    plt.xlabel('pred3')
    plt.ylabel('Y_test')
    print("Bagging MSE =",(mean_squared_error(Y_test, pred3)))
```

Bagging MSE = 2.0138301290833347

The bagging approach significantly reduced the test MSE to approximately 2.

Price and Shelveloc are the most important features. Age, CompPrice, Income, Population and Advertising also have an effect, but the rest of the variables seem to have little to no effect on Sales.

I will run a Random Forest to analyze the data, but first I will run a loop to determine the optimal number of features to include in the fit.

```
In [84]: accuracy = []
         for i in np.arange(1, 11):
             regr0 = RandomForestRegressor(max features=i)
             regr0.fit(X_train, Y_train)
             pred = regr0.predict(X_test)
             print(i)
             print("MSE =",(mean_squared_error(Y_test, pred)))
         1
         MSE = 3.3247541268333336
         MSE = 2.5606566258333325
         MSE = 2.2698978519166646
         MSE = 2.131636113416667
         5
         MSE = 2.1351458664166656
         MSE = 1.9519739814999997
         MSE = 2.1192106358333342
         MSE = 2.0536701567500004
         MSE = 2.193863737000001
         10
         MSE = 2.178218638833334
```

The results indicate that including 6 features would be optimal.

```
In [85]: regr4 = RandomForestRegressor(max_features=6, random_state=1)
    regr4.fit(X_train, Y_train)
    pred4 = regr4.predict(X_test)
    print("RF MSE =",(mean_squared_error(Y_test, pred4)))
RF MSE = 1.99212727266666663
```

XI MSE = 1.9921272720000005

Random Forest with 6 features achieved the lowest MSE.

Price and Shelveloc are the most important features. Age, CompPrice, Income, Population and Advertising also have an effect, but the rest of the variables seem to have little to no effect on Sales.

```
In [16]: data = pd.read_csv('desktop/Hitters.csv')
```

In [17]: data

Out[17]:

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWa
0	293	66	1	30	29	14	1	293	66	1	30	29	
1	315	81	7	24	38	39	14	3449	835	69	321	414	3
2	479	130	18	66	72	76	3	1624	457	63	224	266	2
3	496	141	20	65	78	37	11	5628	1575	225	828	838	3
4	321	87	10	39	42	30	2	396	101	12	48	46	
317	497	127	7	65	48	37	5	2703	806	32	379	311	1
318	492	136	5	76	50	94	12	5511	1511	39	897	451	3
319	475	126	3	61	43	52	6	1700	433	7	217	93	1
320	573	144	9	85	60	78	8	3198	857	97	470	420	3
321	631	170	9	77	44	31	11	4908	1457	30	775	357	2

322 rows × 20 columns

In [20]: df4

Out[20]:

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWa
1	315	81	7	24	38	39	14	3449	835	69	321	414	3
2	479	130	18	66	72	76	3	1624	457	63	224	266	2
3	496	141	20	65	78	37	11	5628	1575	225	828	838	3
4	321	87	10	39	42	30	2	396	101	12	48	46	
5	594	169	4	74	51	35	11	4408	1133	19	501	336	1
317	497	127	7	65	48	37	5	2703	806	32	379	311	1
318	492	136	5	76	50	94	12	5511	1511	39	897	451	3
319	475	126	3	61	43	52	6	1700	433	7	217	93	1
320	573	144	9	85	60	78	8	3198	857	97	470	420	3
321	631	170	9	77	44	31	11	4908	1457	30	775	357	2

263 rows × 20 columns

```
In [21]: df4['Salary'] = np.log(df4['Salary'])
```

```
In [22]: X1 = df4.drop('Salary', axis=1)
Y1 = df4.Salary
X1_train, X1_test, Y1_train, Y1_test = train_test_split(X1, Y1, train_size=
```

```
In [23]: for i in np.arange(1, 11):
    regr = GradientBoostingRegressor(learning_rate=i/100)
    Fit20 = regr.fit(X1_train, Y1_train)
    plt.scatter(i/100,Fit20.score(X1_train, Y1_train))
    print(i/100)
    print("Score =",(Fit20.score(X1_train, Y1_train)))
```

```
0.01
Score = 0.7197430386539123
0.02
Score = 0.8626862873939152
0.03
Score = 0.9121359565824537
0.04
Score = 0.9363616341527955
0.05
Score = 0.9508475306195591
0.06
Score = 0.9615003645168686
0.07
Score = 0.9696744800968778
0.08
Score = 0.9740061429518009
0.09
Score = 0.9799803377762599
0.1
Score = 0.9822427501520995
```


The training score increases as the learning rate increases.

```
In [83]: for i in np.arange(1, 11):
    regr = GradientBoostingRegressor(learning_rate=i/100)
    regr.fit(X1_train, Y1_train)
    pred = regr.predict(X1_test)
    plt.scatter(i/100,mean_squared_error(Y1_test, pred))
    print(i/100)
    print("MSE =",(mean_squared_error(Y1_test, pred)))
```

0.01 MSE = 0.30482931260934970.02 MSE = 0.202046582860990780.03 MSE = 0.162332173722539660.04 MSE = 0.17801800170530890.05 MSE = 0.138842194335143530.06 MSE = 0.127453064570442060.07 MSE = 0.141219207925814440.08 MSE = 0.131265212368713470.09 MSE = 0.13221731036626740.1 MSE = 0.1360423189188568


```
In [25]: regr6 = GradientBoostingRegressor(n_estimators=1000, learning_rate=0.06, ra
regr6.fit(X1_train, Y1_train)
print("Boosting MSE =",(mean_squared_error(Y1_test, regr6.predict(X1_test))
```

Boosting MSE = 0.14035065773636962

Using a 1000 trees and the optimal learning rate, 0.06, boosting produced a low MSE of 0.14.

```
In [26]: feature_importance = regr6.feature_importances_*100
    rel_imp = pd.Series(feature_importance, index=X1.columns).sort_values(inpla
    rel_imp.T.plot(kind='barh', color='r', )
    plt.xlabel('Variable Importance')
    plt.gca().legend_ = None
```


CatBat is by the far the most important variable. CRBI and CHITS also seem to have an affect on Salaries, however, the rest of the variables have little to no effect on Salaries.

```
In [27]: regr7 = RandomForestRegressor(max_features=19, random_state=1) #There are 1
regr7.fit(X1_train, Y1_train)

Out[27]: RandomForestRegressor(max_features=19, random_state=1)

In [28]: pred7 = regr7.predict(X1_test)
    print("Bagging MSE =",(mean_squared_error(Y1_test, pred7)))
```

The bagging MSE is very close to that of the Boosting MSE, however, the bagging MSE is higher by 0.003, Boosting performed better.

8.12

Bagging MSE = 0.14302176494167607

```
In [29]: df5 = pd.read_csv('desktop/wagess.csv')
```

In [30]: df5

Out[30]:

	wage	education	experience	age	ethnicity	region	gender	occupation	sector	union
0	5.10	8	21	35	hispanic	other	female	worker	manufacturing	no
1	4.95	9	42	57	cauc	other	female	worker	manufacturing	no
2	6.67	12	1	19	cauc	other	male	worker	manufacturing	no
3	4.00	12	4	22	cauc	other	male	worker	other	no
4	7.50	12	17	35	cauc	other	male	worker	other	no
529	11.36	18	5	29	cauc	other	male	technical	other	no
530	6.10	12	33	51	other	other	female	technical	other	no
531	23.25	17	25	48	other	other	female	technical	other	yes
532	19.88	12	13	31	cauc	south	male	technical	other	yes
533	15.38	16	33	55	cauc	other	male	technical	manufacturing	no

534 rows × 11 columns

```
In [31]: f5['ethnicity'] = df5['ethnicity'].map({'cauc':0, 'other':1,'hispanic':2})
f5['region'] = df5['region'].map({'other':0, 'south':1})
f5['gender'] = df5['gender'].map({'male':0, 'female':1})
f5['sector'] = df5['sector'].map({'construction':0, 'manufacturing':1,'other
f5['union'] = df5['union'].map({'yes':0, 'no':1})
f5['married'] = df5['married'].map({'yes':0, 'no':1})
f5['occupation'] = df5['occupation'].map({'services':0, 'sales':1,'worker':1})
```

```
In [81]: for i in np.arange(1, 11):
             regr = RandomForestRegressor(max features=i)
             regr.fit(X2_train, Y2_train)
             pred9 = regr.predict(X2_test)
             print(i)
             print("MSE =",(mean_squared_error(Y2_test, pred9)))
         MSE = 23.34497081980951
         MSE = 22.922261533544898
         MSE = 22.777856229302675
         MSE = 23.60210053963942
         MSE = 23.253743382329503
         MSE = 23.709806637781412
         MSE = 23.758745613871916
         MSE = 24.414999044408
         MSE = 23.62765147208681
         10
         MSE = 24.315375534574603
```

Based on the results, using 3 features to predict wages seems optimal.

```
In [79]: regr8 = RandomForestRegressor(max_features=3, random_state=1)
    regr8.fit(X2_train, Y2_train)

pred10 = regr8.predict(X2_test)
    print("RF MSE =",(mean_squared_error(Y2_test, pred10)))

RF MSE = 23.166513313804177

In [35]: regr9 = RandomForestRegressor(max_features=10, random_state=1) #BAGGING
    regr9.fit(X2_train, Y2_train)
    pred11 = regr9.predict(X2_test)
    print("Bagging MSE =",(mean_squared_error(Y2_test, pred11)))

Bagging MSE = 24.78110127278401
```

```
In [36]: for i in np.arange(1, 11):
             regr11 = GradientBoostingRegressor(learning rate=i/100)
             regr11.fit(X2_train, Y2_train)
             pred13 = regr11.predict(X2_test)
             print(i/100)
             print("MSE =",(mean_squared_error(Y2_test, pred13)))
         0.01
         MSE = 22.953572478340654
         0.02
         MSE = 22.508237480819623
         0.03
         MSE = 22.563564254424158
         0.04
         MSE = 22.905329008491282
         0.05
         MSE = 23.10961210241409
         0.06
         MSE = 23.627362934293817
         0.07
         MSE = 23.347095667147578
         0.08
         MSE = 23.814838797037808
         0.09
         MSE = 23.634478428397557
         0.1
         MSE = 25.2322341670231
```

Learning rate of 0.02 has the lowest MSE, now I will fit a model using 500 trees and 0.02 learning rate.

```
In [37]: regr12 = GradientBoostingRegressor(n_estimators=500, learning_rate=0.02, ra
regr12.fit(X2_train, Y2_train)
print("Boosting MSE =",(mean_squared_error(Y2_test, regr12.predict(X2_test))
```

Boosting MSE = 24.4812121708686

```
In [38]: mod1 = smf.ols(formula = 'wage ~ education + experience + experience + age
    res1 = mod1.fit()
    print(res1.summary())
```

res1 = mod1. print(res1.s	• •						
		OLS Rec	gression				
====							
Dep. Variabl 0.312	e:	Wo	age R-	squa	reu:		
Model:		(DLS Ad	j.R	-squared:		
0.299							
Method:		Least Squar	ces F-	stat	istic:		
23.76							
Date:	We	d, 25 May 20)22 Pro	ob (1	F-statistic	c):	5.8
8e-37							
Time:		19:26	:38 Lo	g-Li	kelihood:		-1
531.3							
No. Observat	ions:	į	534 AI	C:			
3085.		_		_			
Df Residuals	:	į	523 BI	C:			
3132.			1.0				
<pre>Df Model: Covariance T</pre>		h.	10				
		nonrobı 					
=====							
	coef	std err	-	t.	P> t	[0.025	
0.975]					- 1-1	[
Intercept	1.3336	6.652	0.20	0	0.841	-11.735	1
4.402							
education	0.9098	1.086	0.83	8	0.402	-1.223	
3.042				_			
experience	0.3092	1.083	0.28	5	0.775	-1.819	
2.437	0.0104	1 000		_	0.040	2 245	
age	-0.2184	1.082	-0.20	2	0.840	-2.345	
1.908	0 4201	0.262	1 10	1	0 220	1 140	
ethnicity 0.284	-0.4281	0.362	-1.18	т	0.238	-1.140	
region	-0.7034	0.419	-1.68	n	0.094	-1.526	
0.119	-0.7034	0.413	-1.00	U	0.034	-1.520	
gender	-2.0708	0.386	-5.36	0	0.000	-2.830	_
1.312	2.0700	0.300	3.30	•	0.000	2.030	
occupation	0 7336	0 1/1	5 21	7	0 000	0 457	

region 0.119	-0.7034	0.419	-1.680	0.094	-1.526	
gender 1.312	-2.0708	0.386	-5.360	0.000	-2.830	-
occupation 1.010	0.7336	0.141	5.217	0.000	0.457	
sector	-0.4700	0.361	-1.303	0.193	-1.179	
union	-1.5605	0.502	-3.107	0.002	-2.547	-
0.574 married	-0.3220	0.411	-0.784	0.433	-1.129	
0.485 =======	=======	========	-======		=======	====

=====

Omnibus: 257.260 Durbin-Watson:

1.988

Prob(Omnibus): 0.000 Jarque-Bera (JB): 261

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.69e+03. This might indicate that the re are

strong multicollinearity or other numerical problems.

```
In [39]: res1.mse_model
Out[39]: 439.69785003330253
```

The MSE for the OLS model is significantly higher compared to all other models. Random Forest with max_features = 3 performed best.

```
In [40]: p = 2
n=500

np.random.seed(100)

X10 = np.random.uniform(0,1,n)-0.5
X11 = np.random.uniform(0,1,n)-0.5

Y10 = 1*(X10**2 - X11**2 > 0)
df10 = pd.DataFrame({'X10':X10, 'X11':X11, 'Y10':Y10})
```

```
In [41]: sns.lmplot(x='X10', y='X11', data=df10, fit_reg=True, hue='Y10')
```

Out[41]: <seaborn.axisgrid.FacetGrid at 0x7f8be161e040>


```
In [42]: from sklearn.linear_model import LogisticRegression
```

Out[43]: <matplotlib.collections.PathCollection at 0x7f8bbe37a9a0>


```
In [44]: df10['X12'] = df10['X10']**2
df10['X13'] = df10['X11']**2
```

```
In [45]: lr1 = LogisticRegression()
lr1_fit = lr1.fit(df10.drop('Y10', axis=1), df10['Y10'])
lr1_pred = lr1_fit.predict(df10.drop('Y10', axis=1))
plt.figure(figsize = (8,6))
plt.scatter(df10['X10'], df10['X11'], c = lr1_pred, cmap= mpl.cm.Paired)
```

Out[45]: <matplotlib.collections.PathCollection at 0x7f8bb8fcf760>


```
In [86]: svc8 = SVC(C=8, kernel='linear')
    svc8.fit(df10.iloc[:,0:2], df10['Y10'])
    svc8_pred = svc8.predict(df10.iloc[:,0:2])
    plt.figure(figsize = (8,6))
    plt.scatter(df10['X10'], df10['X11'], c = svc8_pred, cmap= mpl.cm.Paired)
```

Out[86]: <matplotlib.collections.PathCollection at 0x7f8bbca8a310>


```
In [47]: svm1 = SVC(C=8, kernel='rbf', degree=2)
    svm1.fit(df10.iloc[:,0:2], df10['Y10'])
    svm1_pred = svm1.predict(df10.iloc[:,0:2])
    plt.figure(figsize = (7,5))
    plt.scatter(df10['X10'], df10['X11'], c = svm1_pred, cmap= mpl.cm.Paired)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7f8bbd6832e0>

Observing the plots, the Linear logit performed well separating both classes but linear SVC classified all observations in the same class, while the non-linear Logit and the non-linear SVM produced similar results.

```
In [48]: df13 = pd.read_csv('desktop/Auto.csv')
```

In [49]: df13

Out[49]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
						•••			
387	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
388	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
389	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
390	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
391	31.0	4	119.0	82	2720	19.4	82	1	chevy s-10

392 rows × 9 columns

In [50]: df14 = df13.drop(axis=1, index=None, columns='name', level=None, inplace=Fa

In [51]: df14

Out[51]:

		mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
	0	18.0	8	307.0	130	3504	12.0	70	1
	1	15.0	8	350.0	165	3693	11.5	70	1
	2	18.0	8	318.0	150	3436	11.0	70	1
	3	16.0	8	304.0	150	3433	12.0	70	1
	4	17.0	8	302.0	140	3449	10.5	70	1
3	87	27.0	4	140.0	86	2790	15.6	82	1
3	88	44.0	4	97.0	52	2130	24.6	82	2
3	89	32.0	4	135.0	84	2295	11.6	82	1
3	90	28.0	4	120.0	79	2625	18.6	82	1
3	91	31.0	4	119.0	82	2720	19.4	82	1

392 rows × 8 columns

```
In [52]: df15 = df14.astype('int64')
```

In [53]: df15

Out[53]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
0	18	8	307	130	3504	12	70	1
1	15	8	350	165	3693	11	70	1
2	18	8	318	150	3436	11	70	1
3	16	8	304	150	3433	12	70	1
4	17	8	302	140	3449	10	70	1
387	27	4	140	86	2790	15	82	1
388	44	4	97	52	2130	24	82	2
389	32	4	135	84	2295	11	82	1
390	28	4	120	79	2625	18	82	1
391	31	4	119	82	2720	19	82	1

392 rows × 8 columns

```
In [54]: df15["mpg01"] = (df15["mpg"] >= df15["mpg"].median()).astype(int)
```

```
In [55]: df15
```

Out[55]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	mpg01
0	18	8	307	130	3504	12	70	1	0
1	15	8	350	165	3693	11	70	1	0
2	18	8	318	150	3436	11	70	1	0
3	16	8	304	150	3433	12	70	1	0
4	17	8	302	140	3449	10	70	1	0
387	27	4	140	86	2790	15	82	1	1
388	44	4	97	52	2130	24	82	2	1
389	32	4	135	84	2295	11	82	1	1
390	28	4	120	79	2625	18	82	1	1
391	31	4	119	82	2720	19	82	1	1

392 rows × 9 columns

```
In [102]: from sklearn import preprocessing
In [56]: X01 = df15.drop(['mpg','mpg01'], axis=1)
Y01 = df15.mpg01

In [103]: x = preprocessing.scale(X01)
y = np.ravel(Y01)

In [58]: costs = [{'C': [0.01, 0.2, 0.5, 1, 5, 10]}]
svc = GridSearchCV(SVC(kernel='linear'), costs, cv=10, scoring='accuracy', svc.fit(X01, Y01)

Out[58]: GridSearchCV(cv=10, estimator=SVC(kernel='linear'), n_jobs=-1, param_grid=[{'C': [0.01, 0.2, 0.5, 1, 5, 10]}], scoring='accuracy')

In [59]: Optimal_C = svc.best_estimator_
Optimal_C
Out[59]: SVC(C=0.5, kernel='linear')
```

Based on the 10-fold cross-validation, a C of 0.5 achieved the highest accuracy score

```
parameters = [{'C': [0.01, 0.2, 0.5, 1, 5, 10], 'degree': [2, 4, 6, 8]}]
 In [60]:
                    = GridSearchCV(SVC(kernel='poly'), parameters, cv=10, scoring='a
          svm poly
          svm poly.fit(X01, Y01)
 Out[60]: GridSearchCV(cv=10, estimator=SVC(kernel='poly'), n jobs=-1,
                        param_grid=[{'C': [0.01, 0.2, 0.5, 1, 5, 10],
                                      'degree': [2, 4, 6, 8]}],
                        scoring='accuracy')
 In [61]: Optimal Parameters = svm poly.best estimator
          Optimal Parameters
 Out[61]: SVC(C=10, degree=4, kernel='poly')
In [113]: #parameters1 = [{'gamma': [0.01, 0.1]}]
          #svm poly = GridSearchCV(SVC(kernel='poly'), parameters1, cv=5, scoring='ac
          #svm poly.fit(X01, Y01)
          ^ this code has been running for days and its just not executing anything.
In [107]: parameters2 = [{'C': [0.01, 0.2, 0.5, 1, 5, 10], 'degree': [2, 4, 6, 8], 'q
          svm rbf = GridSearchCV(SVC(kernel='rbf'), parameters2, cv=10, scoring='accu
          svm_rbf.fit(X01, Y01)
Out[107]: GridSearchCV(cv=10, estimator=SVC(), n jobs=-1,
                        param grid=[{'C': [0.01, 0.2, 0.5, 1, 5, 10],
                                      'degree': [2, 4, 6, 8],
                                      'gamma': [0.01, 0.1, 1, 2, 4]}],
                        scoring='accuracy')
In [108]: Optimal Parameters1 = svm rbf.best estimator
          Optimal Parameters1
Out[108]: SVC(C=5, degree=2, gamma=0.01)
          For the SVM using rbf as the kernel, the 10-fold CV indicates that C=10, degree=2, and
          gamma=0.01 are optimal
In [109]: svc linear = SVC(C=0.5, kernel='linear')
          clf1 = svc linear.fit(X01, Y01)
          svm poly = SVC(C=10, kernel='poly', degree=4)
          clf2 = svm poly.fit(X01, Y01)
          svm rbf = SVC(C=10, kernel='rbf', degree=2, gamma=0.01)
          clf3 = svm rbf.fit(X01, Y01)
```

SVM with a radial kernel, C=10, and gamma of 0.01 achieved the lowest error.

```
In [111]: fig = plt.figure()

fig.suptitle('decison surface using projected features')
labels = ['SVC', 'SVM poly', 'SVM radial']

gs = gridspec.GridSpec(3, 1)

for clf, lab, grd in zip([clf1, clf2, clf3], labels, ([0,0], [1,0],[2,0])):
    clf.fit(np.stack((x[:,0], x[:,1]), axis=-1), y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=np.stack((x[:,0], x[:,1]), axis=-1), y=y,
    plt.title(lab)
plt.show()
```

