

Investment Portfolio Management with Machine Learning & Predictive Analytics

APDS 2 Group V

Sriniwas M Amit A Aditya P Anand S Shweta B Arvind K Sambita C Mayank J Surjeet R Anuraag T

Agenda

Problem Statement

Significance of the Study | Objectives | Data Enrichment

Methodologies Used

Correlation Analysis | Multiple Linear Regression |
Bayesian Model Average | K-Nearest Neighbors |
Support Vector Machine | Binomial Classification Tree |
Binomial Classification Tree after Pruning | Random Forest

Analysis of Results

Discussion of Findings | Limitations | Conclusion

Problem Statement

Significance of the Study | Objectives | Data Enrichment

Problem Statement

Predict the returns of a portfolio, accurately & reliably, using macroeconomic factors

Significance of the Study

- Assist investors looking to invest or to manage risk of existing investments
- Aid portfolio managers in evaluating investment options
- Help regulators (RBI & SEBI) & policy makers to gauge health of the sector and formulate policies
- Help management of the companies to prepare future road maps (expansion, capital market activities etc.)
- Useful for researchers and scholars working in the focus area

Objectives

- To investigate whether portfolio in study is dependent on macroeconomic factors using machine learning
- To build an efficient and usable decision system, which helps predict the performance of the portfolio in study

Feature Selection

- Based on existing economic theories
- Index of Industrial Production (IIP)
- Inflation (WPI)
- Repo Rate
- M3 Money Supply
- DJIA Index
- FII Flow
- USD / INR FX Rate
- Crude Oil Price
- Foreign Exchange Reserves (FER)
- Gold Price

Portfolio in Study

3

NSE: BANKNIFTY Index

Why have we chosen this portfolio?

Standard

Widely mimicked benchmark of performance for investments

Representative

This study can be easily expanded to other portfolios as well

Prevalent

Major constitute of several Funds and Portfolios (as part / whole)

Represents the 12 most liquid

Significant

and large capitalized banking stocks from NSE

Data Enrichment

Methodologies Used

Correlation Analysis | Multiple Linear Regression | Bayesian Model Average | K-Nearest Neighbors | Support Vector Machine | Binomial Classification Tree | Binomial Classification Tree after Pruning | Random Forest

Correlation Analysis

Observations

- Positive correlation between Nifty Bank Returns &
 - FII ($\rho = 0.6$)
 - Change in Foreign Exchange Reserves (ρ = 0.37)
 - DJIA Returns ($\rho = 0.4$)
- No correlation between Nifty Bank Returns &
 - Change in FX Rate ($\rho = 0.0$)
 - But negative correlation with lagged value of Change in FX rate (ρ = – 0.54)
- No visible correlation between Nifty Bank Returns &
 - IIP
 - Crude Oil Price
 - M3 Money Supply

 ρ = Pearson's Correlation Coefficient

Multiple Linear Regression

```
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   7.052e-03 7.365e-03 0.958 0.34240
## FII
                   2.402e-06 7.053e-07 3.406 0.00123 **
## FXRateChangeLag -9.697e-01 5.089e-01 -1.905 0.06186 .
                   5.100e-01 2.134e-01 2.390 0.02025 *
## DJIAReturn
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04675 on 56 degrees of freedom
## Multiple R-squared: 0.4649, Adjusted R-squared: 0.4363
## F-statistic: 16.22 on 3 and 56 DF, p-value: 1.046e-07
```

Observations

- Increase in Nifty Bank Returns led by
 - An Increase in FII
 - Positive Returns on DJIA
- Decrease in Nifty Bank Returns when
 - INR depreciates w.r.t. USD

Drawback

Other macro factors ignored by the model due to constraints of regression

Bayesian Model Average

```
models were selected
         models (cumulative posterior probability = 0.7987 ):
                                                          model 2
                                              model 1
                                                                      model 3
                                                                                  model 4
                                                                                              model 5
                 p!=0
                                    SD
                 100.0
                        4.441e-03 2.656e-02
                                               6.857e-04
                                                           7.052e-03
                                                                      1.277e-02
                                                                                   5.173e-04 -5.587e-03
Intercept
                 100.0
                        2.759e-06 7.746e-07
                                               3.136e-06
                                                           2.402e-06
                                                                       2.458e-06
                                                                                   2.297e-06
                                                                                               3.065e-06
FII
                  6.8 -6.463e-06 2.124e-04
IIPG_Lag
                                                           5.100e-01
                 83.5
                        4.749e-01 2.905e-01
                                               6.085e-01
                                                                                   5.365e-01
                                                                                               6.366e-01
DJIA_return
M3ChangeLag
                  20.2
                        1.536e-01
                                   4.017e-01
                                                                                   8.041e-01
                                                                                               7.433e-01
FxRateChangeLag
                  52.1
                        -5.484e-01
                                   6.485e-01
                                                          -9.697e-01
                                                                      -1.264e+00
                                                                                  -1.008e+00
FER_Change
                        -7.418e-03 1.515e-01
nvar
r2
                                               0.430
                                                           0.465
                                                                       0.410
                                                                                               0.446
                                                                                   0.484
BIC
                                               -2.556e+01
                                                          -2.524e+01
                                                                      -2.350e+01
                                                                                  -2.328e+01
                                                                                              -2.318e+01
                                               0.282
                                                           0.240
                                                                       0.101
                                                                                   0.090
                                                                                               0.086
post prob
```

Observations

- Several models generated, from a mix of feature set
- High cumulative posterior probability of ~ 80% for the top 5 models
- Provides range of coefficient estimates to explain the relationship

Drawback

Difficult to establish a closed form equation due to variety of factors and impact of noises

K-Nearest Neighbours

Confusion Matrix & Accuracy for k = 1 table(KNN_model_1,actual_returns) mean(KNN_model_1==actual_returns) ## actual_returns ## KNN_model High Low Medium ## High 5 1 0 ## Low 3 3 0 ## Medium 1 1 1 ## [1] 0.6

```
Confusion Matrix & Accuracy for k = 5
table(KNN_model_5, actual_returns)

mean(KNN_model_5==actual_returns)

## actual_returns

## KNN_model High Low Medium

## High 8 2 1

## Low 1 3 0

## Medium 0 0 0

## [1] 0.7333333
```

Observations

- All the 10 factors were used to train the model (75% of training data)
- High levels of accuracy for k = 1 and k = 5
- Consistent accuracy range (53% to 80%) and a high mean accuracy level of 67% from random training samples (20 iterations)

Support Vector Machine

		Predicted			
		High	Medium	Low	
	High	8	1	0	
Actual	Medium	4	2	0	
	Low	3	0	0	
Accuracy	61.11%				

Observations

- SVM classification algorithm was used to train data set containing 7 normalized predictor variables and the labelled Nifty Bank Returns
- Satisfactory accuracy level of 61.11%

Drawback

Unable to predict the class 'Low Returns'

Binomial Classification Tree

Observations

- 4 prominent features were identified to construct the tree, to reduce complexity
- Simpler rules which are inline with existing macroeconomic theory
- Pruning is required to eliminate overfitting
- Nodes having less than 4 observations can be pruned (nodes: 10, 35, 46)

Binomial Classification Tree after Pruning

#	Rule	Classification Label
1	FII outflow > Rs. 7,808 Cr	Low
2	FII inflow > Rs. 13,522 Cr & DJIA Returns < 0.27%	High
3	FII inflow < Rs. 13,522 Cr & DJIA Returns < -1.7%	Low
4	FII outflow > Rs. 3,445 Cr & DJIA Returns > -1.7%	Low
5	FII outflow < Rs. 7,808 Cr & DJIA Returns > 5.4%	High
6	FII outflow < Rs. 7,808 Cr & DJIA Returns is in [1.7%, 5.4%)	High
7	FII outflow < Rs. 7,808 Cr & DJIA Returns < 1.7% & FER Change < 1.2%	High
8	FII outflow < Rs. 7,808 Cr & DJIA Returns < 1.7% & FER Change > 1.2%	Medium

Observations

- Set of decision rules which classify the category of Nifty Bank Returns
- High accuracy of 80%

Drawback

Only 4 features were used. Several iterations of the algorithm may generate different sets of rules.

Random Forest

Confusion Matrix and Out of Bound (OOB) Estimate of the Model Forest_model ## Call: ## randomForest(formula = Categorical NIFTYBank Return ~ ., data = forest _data, method = "class", ntree = 500) Type of random forest: classification Number of trees: 500 ## No. of variables tried at each split: 2 OOB estimate of error rate: 26.67% ## Confusion matrix: High Low Medium class.error ## High 0 0.03030303 6 12 1 0.36842105 ## Low

0 1.00000000

Medium

Observations

- An ensemble method to aggregate results from 500 trees, and all the available features
- High prediction accuracy of 73.33%
- Out of bound estimate of 26.67%
- Better prediction for High and Low classes

Analysis of Results

Discussion of Findings | Limitations | Conclusion

Discussion of Findings

Methods →	Regression	Model Averaging	KNN (K = 5)	SVM	Binomial Tree	Random Forest
Accuracy / Goodness of Fit	46%#	48%*	73%	61%	80%	73%
Algorithm	$E(Y) = X\beta$	Ensemble	Distance Measure	Maximize Margin	ID3 CART	Ensemble
Model Complexity Reduction	OLS	BIC	Increase K	Reduce C	Pruning	Pruning
Range of Accuracy^	41% - 48%	-	53% - 80%	40% - 70%	67% - 80%	60% - 80%

Prediction Capabilities

KNN, Binomial Tree and Random Forest have good prediction capabilities

Degree of Relationship

Regression (& model averaging) can augment the other methods to find degree of relationship.

Class Predictions

ML models work best for predicting High Return and Low Return classes.

[#] R Square

^{*} Best Model

[^] Range for 20 test samples

Limitations

Prediction accuracy falls when different time periods are considered

Use Case

Recessionary period 2008-2010 needs a separate model

Does not account for isolated firm specific

Use Case

Impact of news of corruption allegations on MD of ICICI BANK Fails to predict impact of unsystematic factors

Use Case

Impact of change of RBI Governor or impact of election results

risk factors

Conclusions

Thank you

Q&A