

1/19

FIGURES

FIG. 1

AC CCACTTCCGACTTTCTCGAATTCCTTCCTTCCGCTTCGAGTCGAAACCCGAAAGAA 50
 AC TCAAACTCGA GAACTAACGAAAGAGGCGACAAATTGATGTTTCAGGGTTCTTGcc 120
 ATTTTCATCCTTGTACAACTGAGTTCCGAAATCGAAGCTGAGAGCTGTACCGAAAGA 180
 M E A N O A E H S S T D K
 X D G R E H I X X K S I X H C T M E S T W
 MAAS-domain
 CAACCTTGCAACGCCGAAACGGATTCGTTAGGAGGCTAGAATTCCTGTTCTTGC 300
 T F C K M S N G L L K A E L S V L E
 TAATCTTAACTTCTCTTAACTGCTTTCTCCACCCCTGGcccccctatGAGTATGCTAA 350
 D A E Y I D I Y E S T R S B L E E A H
 CAACACCTTAACTAACACAACTGAGCTAACAAAGAAAGCTGAACTGGGGG 420
 N S Y R A T I D R T N K A C A P D E T G C-terminal
 X G A T C C A T T C A G G A T T C A G A T T C A G G A T T C A G G A T T C A G G A 480
 P S V S R A N T D T Y Q C R A M K T R R
 ACAGATCCGACAAATTCAAGATTCAGAACGCAATAACTGGGGGATCCCTTAGCACCT 540
 Q I P E T C N S M R H I I D S H S L S T L
 GLAAGTCGAAGGACTGAAACCTGAAAGGAAATGAGGAAAGGAAAGGAAATTAAC 500
 X V H E L H N S E G R D E E G I S P I R
 ATCCAAAGAACTGAAATTCCTTCTGAAATCGAAATTCGAAATGAGGGAGAGCTGA 550
 D K N H E T E T E E E F N Q V R E P E
 CTGCAACACCAACAAATGAGTTGGGGAACTTCCGAAAGGAAAGGGAGAGCTGA 720
 E Q H H N N P D B A K I A E S E R S G Q
 CGAGGAAACAAACACATATGAGTTGGGGAACTTCCGAAAGGAAAGGGAGAGCTGA 780
 Q Q G T H M I P S T S Y D R S M P S R S
 CTATGAGAACTTCTTCTGAACTGAGATCTGAAAGGAAATGAAACATTAACCTGGAA 840
 V D P H T F P V I L H S N H H H X P E Q
 AAGGCAAAAGGAGCTGAAACTTCTGAAAGGCTGGAACTGCCGTCATGTTCTGAA 900
 Q Q T A H C D V
 GAGGAAACAAACACATATGAGTTGGGGAACTTCCGAAAGGAAAGGGAGAGCTGA 960
 DA TOCCGAAACACATTTGGCGAAAGGCTGAGATCTGAGAACTGAAAGGAAAGGG 1020
 ATTCTGTGAGACAACTTCTGAAAGGCTGGAACTGCCGTCATGTTCTGAA 1065

2/19

FIG. 2

GCAATTCTCCTCCGTTGCCAAGTGCAACCCAAATAGAAAAACTCAAAGTCAAGAACT 60
 AGCTAACAGAGAAAACCACAATTCAATTTGGAGGGTTTGCCATTTTCATCCTT 120
 GCAACAATGGAGTTCCCAATCAAGCACCGAGAGCTCCTCCAGAAAAATTGGGAAGG 180
 M E F P N Q A P E S S S Q K K L [G R] MADS-BOX
 GGCAAAATTGAGATTAAGCGGATCGAAAACACTACAAATCGACAAGTTACCTTCTGCAAA 240
 [G K I E I K R I E N T T N R Q V T F C K]
 CGCCGCAACGGATTGCTTAAGAAAGCCTATGAATTGTCTGTCTTGATGCTGAAGTT 300
 [R R N G L L K K A Y E L S V L C D A E V]
 GCTCTTATCGTGTCTCCAACCGTGGCCGCCTCTATGAGTATGCTAACAAACAGTGTAGA 360
 [A L I V F S N R G R L Y E Y A N N S V R]
 GCAACAATCGACAGGTACAAAAAGCATACGCTGATCCTACGAACAGTGGATCTGTTCA 420
 [A T I D R Y K K A Y A D P T N S G S V S] K-domain
 GAAGCCAACACTCAGTTTATCAGCAGGAAGCATTCAAACCTGCGAAGACAGATCCGAGAA 480
 [E A N T Q F Y Q Q E A S K L R R Q I R E]
 ATTCAGAATTCAAACAGGCATAACTGGGTGAAGCTCTTAGCTCCTTGAACGCCAAGGAA 540
 [I Q N S N R H I L G E A L S S L N A K E]
 CTGAAGAACCTAGAAGGAAGATTGGAGAAAGGAATCAGCAGAATAAGATCCAAAAAGAAAT 600
 [L K M L E G R L E K G I S R I R S K K N]
 GAAATGCTGTTCTGAAATCGAATTCAATGCAAAAAAGGGAGACCGAGCTGCAACACAC 660
 [E M L F S E I E F M Q K R E T E L Q H H]
 AACAAATTCTGAGAGCAAAAGATAGCTGAAACCGAGAGGGAGAGCAGCAGCATAACAC 720
 [N N F L R A K I A E N E R E E Q Q H T H]
 ATGATGCCGGAACTTCCTACGATCAGTCATGCCATTGCATTCTATGACAGGAACCTC 780
 [M M P G T S Y D Q S M P S H S Y D R N F]
 CTCCCAGCGGTGATCTGGAGTCCAACAATAACCATTACCCCTCACCAAGTCCAGACAGCT 840
 [L P A V I L E S N N N H Y P H Q V Q T A]
 CTCCAACTTGTTGAAATGCTGGACTGCCGTCTGAT 876
 [L Q L V]

3/19

FIG. 3

1	M E F A N Q A P E S S T Q K K L G R G K I E I K R I E N T T	MdMADS14
1	M E F P N Q A P E S S S Q K K L G R G K I E I K R I E N T T	MdMADS16
31	N R Q V T F C K R R N G L L K K A Y E L S V L C D A E V A L	MdMADS14
31	N R Q V T F C K R R N G L L K K A Y E L S V L C D A E V A L	MdMADS16
61	I V F S T R G R L Y E Y A N N S V R A T I D R Y K K A C A D	MdMADS14
61	I V F S M R G R L Y E Y A N N S V R A T I D R Y K K A Y A D	MdMADS16
91	S T D G G S V S E A N T Q F Y Q Q E A S K L R R Q I R E I Q	MdMADS14
91	P T N S G S V S E A N T Q F Y Q Q E A S K L R R Q I R E I Q	MdMADS16
121	N S N R H I L G E S L S T L K V K E L K N L E G R L E K G I	MdMADS14
121	N S N R H I L G E A L S S L N A K E L K N L E G R L E K G I	MdMADS16
151	S R I R S K K N E I L F S E I E F M Q K R E T E L Q H H N N	MdMADS14
151	S R I R S K K N E M L F S E I E F M Q K R E T E L Q H H N N	MdMADS16
181	F L R A K I A E S E R E Q Q Q Q Q T H M I P G T S Y D P S M	MdMADS14
181	F L R A K I A E W E R E E Q Q H - T H M M P G T S Y D Q S M	MdMADS16
211	P S N S Y D R N F F P - V I L E S N N N H Y P R Q G Q T A L	MdMADS14
210	P S H S Y D R N F L P A V I L E S N N N H Y P H Q V Q T A L	MdMADS16
240	Q L V (100%)	MdMADS14
240	Q L V (88.4%)	MdMADS16

4 / 19

FIG. 4

5/19

FIG. 5

6/19

FIG. 6

7/19

FIG. 7

a b c d

8/19

FIG. 8

Wild type

MdMADS14
Sense I

9 / 19

FIG. 9

10/19

FIG. 10

11/19

FIG. 11

12/19

FIG. 12

13/19

FIG. 13

a b c d

14/19

FIG. 14

15/19

FIG. 15

16/19

FIG. 16

17/19

FIG. 17

18/19

FIG. 18

19/19

FIG. 19

