Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	What does flow_from_directory give you on the ImageDataGenerator? The ability to easily load images for training The ability to pick the size of training images	1/1 point
	The ability to automatically label images based on their directory name All of the above	
	Correct That's right! The flow_from_directory method takes the path to a directory & generates batches of augmented data.	
2.	If my Image is sized 150x150, and I pass a 3x3 Convolution over it, what size is the resulting image? 148x148 150x150 450x450 153x153	1/1 point
	✓ Correct Nailed it! Applying a 3x3 convolution would result in a 148x148 image.	
3.	If my data is sized 150x150, and I use Pooling of size 2x2, what size will the resulting image be? 149x149 75x75 148x148	1 / 1 point
	 ✓ Correct Nailed it! Applying 2x2 pooling would result in a 75x75 image. 	
4.	If I want to view the history of my training, how can I access it? O Download the model and inspect it Use a model.fit_generator	1 / 1 point
	Pass the parameter 'history=true' to the model.fit Create a variable 'history' and assign it to the return of model.fit or model.fit_generator Correct	
	Exactly! The History.history attribute is a record of training loss values and metrics values at successive epochs.	
5.	What's the name of the API that allows you to inspect the impact of convolutions on the images? The model.images API The model.pools API The model.layers API The model.convolutions API	1 / 1 point

6.	When exploring the graphs, the loss levelled out at about .75 after 2 epochs, but the accuracy climbed close to 1.0 after 15 epochs. What's the significance of this?	1/1 point
	O There was no point training after 2 epochs, as we overfit to the validation data	
	There was no point training after 2 epochs, as we overfit to the training data	
	A bigger training set would give us better validation accuracy	
	A bigger validation set would give us better training accuracy	
	 Correct Correct! Those values indicate overfitting to the training data. 	
7.	Why is the validation accuracy a better indicator of model performance than training accuracy?	1/1 point
		, ,
	O It isn't, they're equally valuable	
	There's no relationship between them	
	The validation accuracy is based on images that the model hasn't been trained with, and thus a better indicator of how the model will perform with new images.	
	O The validation dataset is smaller, and thus less accurate at measuring accuracy, so its performance isn't as important	
8.	Why is overfitting more likely to occur on smaller datasets?	1 / 1 point
	O Because in a smaller dataset, your validation data is more likely to look like your training data	
	O Because there isn't enough data to activate all the convolutions or neurons	
	O Because with less data, the training will take place more quickly, and some features may be missed	
	Because there's less likelihood of all possible features being encountered in the training process.	
	Undoubtedly! A smaller size decreases the likelihood that the model will recognize all possible features during training.	