Impact of η_c Hadroproduction Data on Charmonium Production and Polarization within the Nonrelativistic QCD Framework ¹

Hong-Fei Zhang

Chongqing University of Posts and Telecommunications

March 30, 2017

¹Based on Phys. Rev. Lett. 116, 092006 (2015), HFZ, Zhan Sun, Wen-Long Sang and Rong Li

- Background
- 2 η_c Hadroproduction—New Opportunity
- 3 New Discovery in Phenomenology
- 4 Conclusion

QCD Effective Theory

- QCD involve partons (quarks and gluons)
- Experiment measures hadrons
- The hadronization of partons usually can not be calculated perturbatively
- lacktriangle partons \leftarrow effective theory \rightarrow hadrons

Nonrelativistic QCD (NRQCD)⁵

An effective theory to describe quarkonium productions and decays

$$d\sigma(H) = \sum_n df_n \langle \mathcal{O}^H(n) \rangle$$

- f_n : Short-distance coefficient (SDC): production of a heavy quark pair with specific quantum numbers, to be calculated perturbatively
- $\langle \mathcal{O}^H(n) \rangle$: Long-distance matrix element (LDME): hadronization, to be extracted from experiment

⁵Bodwin, Braaten and Lepage, PRD 51, 1125 (1995)

Successes of NRQCD

- ullet $^3S_1^{[1]}$, $^1S_0^{[8]}$, $^3S_1^{[8]}$ and $^3P_J^{[8]}$ channels involved in ψ production up to $O(v^4)$
- NRQCD prediction for ψ' hadroproduction

J/ψ polarization puzzle

- LO NRQCD failed in the description of ψ polarization⁸
- $\alpha = \frac{\sigma_T 2\sigma_L}{\sigma_T + 2\sigma_L}$

- Analysis
 - Dominant Mechanism: gluon fragmentation $\rightarrow c\bar{c}(^3S_1^{[8]})$
 - Gluon is transversely polarized

⁸Braaten, Kniehl and Lee, PRD 62, 094005 (2000); CDF Collaboration, PRL 99, 132001 (2007)

Color-octet at NLO

NLO for CO¹⁰

- \bullet ${}^3S_1^{[1]}$: $p_t^{-8} \to p_t^{-6}$, still very small
- ${}^{1}S_{0}^{[8]}$: p_{t}^{-6} \rightarrow additional small p_{t}^{-4} part emerges
- ${}^{3}S_{1}^{[8]}$: almost unchanged
- ${}^{3}P_{J}^{[8]}$: positive \rightarrow minus, $p_{t}^{-6} \rightarrow p_{t}^{-4}$
- $df(^3P_J^{[8]}) = r_0 df(^1S_0^{[8]}) + r_1 df(^3S_1^{[8]})$ (medium and high p_t , roughly)

¹⁰Ma, Wang and Chao, PRL 106, 042002 (2011); Butenschon and Kniehl, PRL 106, 022003 (2011)

Polarization at NLO

- Left¹²(missing feeddown): Global fit, transversely polarized, bad agreement
- Middle 13 (missing feeddown): $^1S_0^{[8]}$ dominance, agree with CDF Run II data
- Right¹⁴(complete): agree with CDF Run I data, contradict CDF Run II

- Different fitting strategy→different LDMEs→different phenomenology
- Three LDMEs to be determined, too many!

¹²Butenschoen and Kniehl, PRL 108, 172002 (2012)

¹³Chao, Ma, Shao, Wang and Zhang, PRL 108, 242004 (2012)

¹⁴Gong, Wan, Wang and HFZ, PRL 110, 042002 (2013)

${}^{1}S_{0}^{[8]}$ Dominance

- ullet $^1S_0^{[8]}$ dominance picture suggetsted to solve the J/ψ polarization puzzle
- Reason:
 - ullet p_t spectrum: NLO ${}^1S_0^{[8]}$ similar to prompt J/ψ
 - ullet Polarization: ${}^1S_0^{[8]}$ unpolarized
- Other groups came to similar conclusions

$(\times 10^{-2} \text{ GeV}^3)$	Kniehl ¹⁶	Chao ¹⁷	$Wang^{18}$	Bodwin ¹⁹
$\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) angle$	3.04	8.9	9.7	9.9
$\langle \mathcal{O}^{J/\psi}(^3S_1^{[8]}) \rangle$	0.168	0.3	-0.46	1.1
$\langle \mathcal{O}^{J/\psi}(^3P_0^{[8]})\rangle/m_c^2$	-0.403	0.56	-0.95	0.49

¹⁶Butenschoen and Kniehl, PRD 84, 051501 (2011)

¹⁷Chao, Ma, Shao, Wang and Zhang, PRL 108, 242004 (2012)

¹⁸Gong, Wan, Wang and HFZ, PRL 110, 042002 (2013)

¹⁹Bodwin, Chung, Kim and Lee, PRL 113, 022001 (2014) →

η_c hadroproduction and its relation with J/ψ hadroproduction

- Heavy quark spin symmetry (HQSS)

 - $\langle O^{J/\psi}({}^3P_0^{[8]})\rangle \approx \frac{1}{3}\langle O^{\eta_c}({}^1P_1^{[8]})\rangle$
- SDCs for ${}^1S_0^{[8]}$ and ${}^1P_1^{[8]}$ are small relative to ${}^3S_1^{[8]}$

LHCb Data²²

• Prompt η_c cross section larger than prompt J/ψ

²²LHCb Collaboration, EPJC 75, 311

LO Study

• LO colour-siglet contribution almost saturate data²⁴

²⁴Likhoded, Luchinsky and Poslavsky, MPL A30, 1550032

NRQCD Faces Challenge

- Challenges
 - Four sets of the LDMEs violate η_c hadroproduction data²⁶

NRQCD Wrong?

- Colour-siglet LDME?
 - potential model $ightarrow \langle O^{\eta_c}(^1S_0^{[1]}) \rangle \approx 0.39~{
 m GeV}^3$
 - η_c decay $\to \langle O^{\eta_c}(^1S_0^{[1]}) \rangle = 0.437^{+0.111}_{-0.105}~{
 m GeV}^3$
- ${}^1S_0^{[8]}$ dominance picture?

η_c and J/ψ hadroproduction data reconciled

- η_c data help to determine LDMEs
- ullet Consistent with J/ψ hadroproduction data 29

Surprising Results for J/ψ Polarization

- J/ψ polarization at LHCb
- Good agreement

Surprising Results for J/ψ Polarization

- J/ψ polarization at LHCb
- Good agreement

 $^{^{31}} Based$ on Phys. Rev. Lett. 116, 092006 (2015), HFZ, Zhan Sun, Wen-Long Sang and Rong Li $_{\odot}$

New Features for ψ Polarization³³

- New discovery in phenomenology
 - The unique key parameter to govern the polarization:

$$R_{J/\psi} \equiv \langle O^{J/\psi}(^{3}S_{1}^{[8]})\rangle/\langle O^{J/\psi}(^{3}P_{0}^{[8]})\rangle$$

- Equation to govern the yield: $\langle \mathcal{O}^{J/\psi}(^3S_1^{[8]})\rangle = k_{J/\psi}\langle \mathcal{O}^{J/\psi}(^3P_0^{[8]})\rangle + b_{J/\psi}$
- $k_{J/\psi} = 0.367$, $b_{J/\psi} = 0.00348 \pm 0.00011 \text{GeV}^3$, $R_{J/\psi} = 0.546 \pm 0.006$
- ullet The polarization is extremely sensitive to $R_{J/\psi}$
- Conclusion
 - Minimizing χ^2 in the fit to yield data does not apply
 - Yield data does not provide information for polarization!

³³Sun and HFZ. 1505.02675

$\psi(2s)$ Hadroproduction as an Example

■ narrow yield band→huge polarization band

J/ψ yield and polarization reconciled

• Relativistic corrections will improve CDF predictions

$\psi(2s)$ —Theory Consistent with Experiment

- The uncertainty for $\psi(2s)$ polarization measurement is too large
- The theoretical band covers the data

Conclusion and Future Opportunity

- \bullet η_c hadroproduction data help to determine the LDMEs (both CS and CO)
- $\bullet \ ^1S_0^{[8]}$ dominance v.s. $^3S_1^{[8]}$ and $^3P_J^{[8]}$ cancellation (WIN!!)
- $\bullet \ \ {\rm New \ features \ for \ } \psi \ \ {\rm polarization}$
 - ullet Minimizing χ^2 in the fit to yield data does not apply
 - Yield data does not provide information for polarization
- Future opportunity: Relativistic corrections might be important

Thanks!