AKU242PTop port, Digital Silicon MEMS Microphones

Data Sheet

Part number(s) AKU242P

Package type 8-pin LGA top port

Data sheet revision 1.01

Release date 30 August 2015

Document number DS45P-1.01 AKU242P Data Sheet

Notes Specifications are subject to change without notice.

Product photos and pictures are for illustration purposes only and may differ

from the real product's appearance.

Digital Silicon MEMS Microphones

Data Sheet

AKU242P Digital, HD Voice Silicon MEMS Microphones

General Description

AKU242P consists of HD Voice quality, top port, digital output silicon MEMS IC microphones. They are microphones consisting of a MEMS acoustic sensor, and an integrated circuit (IC) with a pre-amplifier, analog-to-digital converter, charge pump and supporting circuitry in a small 4.0 x 3.0 x 1.0 mm³ package.

The robust digital output stream from the AKU242P is virtually immune to all forms of Radio Frequency Interference (RFI) and Electromagnetic Interference (EMI), allowing designers the flexibility to integrate the component anywhere on the platform and obtain consistent SNR regardless of proximity to displays, Wi-Fi antennae, or other sources of interference that would degrade the signal of conventional analog microphones.

The AKU242P provides a pulse density modulated (PDM), single-bit digital stream designed to enable the multiplexing of stereo microphone data onto a single wire. With a user selectable L/R channel option, it is ideal for use in multiple microphone applications.

Key Features

- Digital PDM output
- · Omni-directional audio sensor
- Excellent acoustic performance: 63dB SNR
- Sensitivity: -26dBFS
- Uniform sensitivity tolerances: ± 1dB
- Compatible with Microsoft[®] Windows[®], LYNC[®] & Skype[®] logo certifications, Intel[®] UltrabookTM and Google[®] ChromebookTM requirements for digital microphones
- Robust digital-output & Faraday-cage constructed package for RF immunity
- Matched microphones in frequency and phase response for array applications
- Output supports dual-microphone, singlewire multiplexing
- Industry standard microphone interface compatible with multiple codecs
- Low current power-down mode
- Lead-free surface-mountable and RoHS2 compliant
- Halogen-free compliance, IEC61249-2-21
- Thin profile, SMT packaging
- Industry std. package: 4.00x3.00x1.00mm³

Typical Applications

- Ultrabooks
- Mobile phones
- Media tablets
- eReaders
- Microphone arrays
- · Webcams and camera modules

Data Sheet

Index of Contents

1. A	ABSOLUTE MAXIMUM RATINGS	4
2. S	STANDARD OPERATING CONDITIONS	4
3. E	ELECTRICAL AND ELECTRO-ACOUSTIC SPECIFICATIONS	4
	3.1 Timing Characteristics3.2 Digital Logic Characteristics3.3 Sleep Mode, and Active Mode	
4. D	DEVICE CHARACTERISTICS	7-8
	4.1 Typical Frequency Response 4.2 I_{DD} vs. V_{DD} 4.3 Sensitivity vs. V_{DD} 4.4 I_{DD} vs. Clock Frequency 4.5 Sensitivity vs. Temperature 4.6 PSR vs. Frequency	
6. P	PIN-OUT AND CONNECTION DIAGRAMS	9
	6.1 Pin Out 6.2 Schematic	
7. M	MANUFACTURING NOTES	10-12
	7.1 Solder Reflow7.2 Part Handling7.3 PCB Land Pattern & Stencil Pattern	
8. R	RELIABILITY SPECIFICATIONS	13
9. P	PART MARKING INFORMATION	13
10.	PACKAGING INFORMATION	14
11.	ORDERING INFORMATION	15
12.	DOCUMENT REVISIONS	15

Digital Silicon MEMS Microphones

Data Sheet

1. ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} to GND 5.5V

ESD Tolerance

Human Body Model 2000V Machine Model 200V

Storage Temperature Range -40°C to 105°C

2. STANDARD OPERATING CONDITIONS

Operating Temperature Range -40° C to 85°C Supply Voltage (V_{DD}) 1.62V to 3.6V

Clock Frequency 1.00MHz to 3.25MHz

3. ELECTRICAL AND ELECTRO-ACOUSTIC SPECIFICATIONS

Unless otherwise noted, test conditions are:

 $V_{DD} = 1.8V$ Ta = 25°C RH = 50% CLK = 2.4MHz

Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
Directivity		Omr	Omni-directional			
Signal to Noise Ratio (SNR)	f _{in} = 1kHz, A-weighted, 20Hz- 10kHz		63		dB	
Low Frequency Corner ¹	-3dB from 1kHz sensitivity value		50	100	Hz	
High Frequency Corner	+3dB from 1kHz sensitivity value		11		kHz	
Sensitivity ¹	1kHz, 94dB SPL, full-scale = 100% 1's density at PDM output of microphone	-27	-26	-25	dBFS	
otal Harmonic Distortion ¹	@ 100dB SPL, f _{in} = 1kHz			1	0/	
(THD)	@ 110dB SPL, f _{in} = 1kHz			5	- %	
Acoustic Overload Point (AOP)	< 10% THD, f _{in} = 1 kHz		116		dBSPL	
Power Supply Rejection (PSR)	Signal on V _{DD} = 217Hz, 100mV _{pp}		-73		dBFS	
Part-to-part phase matching from nominal	f _{in} = 1kHz			<u>+</u> 10	0	
Current Consumption ¹ (with no	Clock on (CLK = 2.8MHz)		800	930	μΑ	
load)	Clock off		5	7	μА	
Power-up initialization	Data invalid time from clock on			28	ms	
Polarity	Increasing sound pressure	In	creasin	g 1's der	sity	

Note 1: Parameter 100% tested

Data Sheet

3.1 Timing Characteristics

(Typical performance with load capacitance <20pF and a clock frequency of 2.4MHz)

	Typical Mode	Data Valid	Data Sampled	L/R SELECT Connected to
DATAL	Left	Falling clock	Rising clock	GND
DATAR	Right	Rising clock	Falling clock	V_{DD}

Output	Parameter	Typical Value	Description
DATA _R	t ₁	6ns	Time from falling edge of clock until data becomes high impedance
DATAL	t ₂	61ns	Time from falling edge of clock until data becomes valid
DATAL	t ₃	6ns	Time from rising edge of clock until data becomes high impedance
DATA _R	t ₄	53ns	Time from rising edge of clock until data becomes valid

Digital Silicon MEMS Microphones

Data Sheet

3.2 Digital Logic Characteristics

(Typical performance with load capacitance <20pF and a clock frequency of 2.4MHz)

Symbol	Parameter	Min	Max	Units
VIL MAX Maximum level considered a logic 0 VIH MIN Minimum level considered a logic 1 VOL MAX Maximum level a driven output logic 0 can be VOH MIN Minimum level a driven output logic 1 can be			0.4*V _{DD}	٧
		0.5*V _{DD}		V
			0.05*V _{DD}	٧
		0.95*V _{DD}		٧

3.3 Sleep Mode, and Active Mode

The AKU242P enters Sleep Mode within $5\mu S$ of the clock signal becoming inactive (i.e. clock frequency = 0Hz).

In Sleep Mode the microphone PDM Data output pin is in high impedance state.

The microphone returns from Sleep Mode to Active Mode 65,536 cycles after the clock becomes active (i.e. clock frequency ≥ 1.0MHz). With a 3.072MHz clock, the microphone start-up time is 21.4ms; for a 2.4MHz clock the microphone start-up time is 27.4ms.

Digital Silicon MEMS Microphones

Data Sheet

4. DEVICE CHARACTERISTICS

4.1 Frequency Response

(Measured frequency response normalized to 1kHz)

4.2 I_{DD} vs. V_{DD}

(Measured current consumption relative to supply voltage)

4.3 Sensitivity vs. VDD

(Measured sensitivity changes relative to supply voltage)

4.4 I_{DD} vs. Clock Frequency

(Measured current consumption relative to clock frequency)

4.5 Sensitivity vs. Temperature

(Typical sensitivity changes relative to temperature)

4.6 PSR vs. Frequency

(Typical PSR relative to frequency)

Data Sheet

5. MECHANICAL SPECIFICATIONS

Item	Dimension	Tolerance	Units
Length (L)	4.00	± 0.10	mm
Width (W)	3.00	± 0.10	mm
Height (H)	1.00	± 0.10	mm
Acoustic Port (AP)	0.400	± 0.10	mm
Solder Mask (SRO)	0.700	± 0.05	mm
Planarity	Top/Bottom	± 0.10	mm
All dimensions in mm Tolerance ± 0.05mm unless otherwise specified			

Data Sheet

6. PIN-OUT AND CONNECTION DIAGRAMS

6.1 Pin-Out

(As viewed from bottom of package)

Pin	Name	Function
1	V_{DD}	Power
2	L/R*	Left / Right Select
3	CLK	Clock
4	DATA	PDM Data output
5, 6, 7, 8	GND	Ground

^{*}Must be electrically connected to either ground or $V_{DD.}$

6.2 Typical Application Schematic

Data Sheet

7. MANUFACTURING NOTES

7.1 Solder Reflow

Typical solder reflow profile

Average ramp-up rate	max. 3°C/s
Time t _s between Ts _{min} (150°C) and Ts _{max} (200°C)	60s – 120s
Time t _L above liquidous temperature T _L (217°C)	60s – 90s
Peak temperature T _P	max. 260°C
Time t _P at T _P	max. 20s
Average ramp-down rate	max. 6°C/s

Note: It is recommended to fine-tune the reflow process to optimize for variations in materials, environment, handling, PCB board size and thickness, etc.

Please refer to AN60-Handling, Soldering, and Mounting Instructions for more detailed information and precautions.

Digital Silicon MEMS Microphones

Data Sheet

7.2. Microphone Handling

Although the microphone may not appear damaged immediately due to inappropriate handling, there can be long term effects that affect the lifetime of the component.

Rule of thumb: The microphone is an artificial ear so treat it like your own ear.

- Do not blow air into the acoustic port of the microphone for any reason. Do not subject it to pressurized air
 - e.g. when cleaning the board or other components on the same board
- Do not apply vacuum to acoustic port of the microphone
 - See section 5.0 for pick & place location
- Do not insert liquids
 - If populated circuit boards are washed, the microphone must be protected
- Do not insert dust
 - The production facilities must be clean
 - e.g. if PCB routing/sawing is done close to the microphone after SMT assembly and reflow
- Do not insert any objects
 - If assembly or rework is done manually, care must be taken that the tools cannot enter the microphone sound port
 - It is best to choose tool size so that it does not fit through the sound port of the microphone
- Do not cover the acoustic port with tape when heating during assembly or reflow
- Do not apply extreme mechanical stresses on the microphone, including mechanical shocks above 10kG or compression of the microphone package.
- After a bottom port microphone has been assembled on a circuit board, protect the sound port (now on the other side of the board) from dust, liquids, and other foreign materials as well as any tools and pressurized air.

ESD Handling Procedures

Follow CMOS handling procedures with Akustica MEMS microphones. Handle the microphone with proper workplace grounding to include wrist straps and ionized airflow over open trays and reels of microphones. Do not hot-swap/hot-plug during testing. Device pins have ESD ratings of 2kV/200V for HBM/MM respectively.

Data Sheet

7.3 PCB Land Pattern & Stencil Pattern

PCB Land Pattern Layout

Suggested Solder Paste Stencil Pattern Layout

Note: Stencil printer settings will likely require minor optimizations when transferring this stencil pattern to a high volume production printer.

Please refer to AN60-Handling, Soldering, and Mounting Instructions for more detailed information and precautions.

Digital Silicon MEMS Microphones

Data Sheet

8. RELIABILITY SPECIFICATIONS

The microphone sensitivity after stress must deviate by no more than 3dB from the initial value.

	Test	Test Condition	
1	Cold Temp Operation	Temperature = -40°C, 1000 hours (with bias)	
2	Hot Temp Operation	Temperature = 105°C, 1000 hours (with bias)	
3	Humidity Operation	Temperature = 85°C, RH = 85%, 1000 hours (with bias)	
4	Cold Temp Storage	Temperature = -40°C, 1000 hours (without bias)	
5	Hot Temp Storage	Temperature = 105°C, 1000 hours (without bias)	
6	Humidity Storage	Temperature = 85°C, RH = 85%, 1000 hours (without bias)	
7	7 Thermal Cycle 100 Cycles, -40°C to +125°C, 15min soaks, <30sec ramps		
8	Vibration	Sinusoidal Vibration, 20Hz-2000Hz, 4min sweeps, 16min along each of 3 axis, amplitude 3 limits of 20G and 0.06"	
9	Mechanical Shock	ck 10,000G shocks, 5 impacts along each of 6 axes	
10	Drop Test	Using 150gm aluminum fixture, 3 drops along each of 6 axes (total 18 drops) from 1.5m height onto concrete drop surface.	
11	ESD (HBM)	+/- 2000V, 1 discharge for each polarity, 11 pin combinations, 22 total discharges per microphone	
12	12 ESD (MM) +/- 200V, 1 discharge for each polarity, 11 pin combinations, 22 discharges per microphone		
13	ESD	+/- 8kV, contact discharge to lid with DUT grounded	
14	Moisture Sensitivity Level	24 hour bake at 125°C, followed by 168 hours at 85°C, 85%RH, followed by 3 passes solder reflow (MSL Level 1)	

9. PART MARKING INFORMATION

Line 1: AxxxF (A = Akustica | xxx = 242 = Part Num | F = Assembly Facility)
Line 2: WWYLL (WW = Work Week | Y = Year | LL = Lot Number Processed During Work Week)

Pin 1

Digital Silicon MEMS Microphones

Data Sheet

10. PACKAGING INFORMATION

10.1 Tape Specification

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance +/- 0.2
- 2. Camber in compliance with EIA-481
- 3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

10.2 Component Orientation

Digital Silicon MEMS Microphones

Data Sheet

11. ORDERING INFORMATION

Order Number	Sensitivity Tolerance (dB)	Package	Shipping Method	Standard Quantity
02730A0044	+/- 1	8-Pad LGA	13" Reel	5,700

12. DOCUMENT REVISIONS

Rev. No	Description of modification/changes	Date
1.01	Released version 1.01	30-Aug-15

Akustica, Inc. 2835 E Carson St. Suite 301 Pittsburgh, PA / USA 15203

> sales@akustica.com www.akustica.com

Modifications reserved | Printed in USA Specifications subject to change without notice