Variance reduction for stochastic gradient methods

Axel Böhm

September 13, 2021

- Introduction
- 2 SAG
- 3 SAGA
- 4 SVRG

A common Task in (supervised) machine learning:

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n \underbrace{f_i(x)}_{\text{loss for } i\text{-th sample}} + \underbrace{\psi(x)}_{\text{regularized}}$$

where the *i*-th sample is (a_i, y_i) .

Examples:

- linear regression: $f_i(x) = (a_i^T x y_i)^2$, and $\psi = 0$
- logistic regression: $f_i(x) = \log(1 + e^{-y_i a_i^T x})$, and $\psi = 0$ "sigmoid function" and logistic loss.
- Lasso: f_i as for linear regression but $\psi(x) = ||x||_i$
- SVM: $f_i(x) = \max\{0, 1 y_i a_i^T x\}$ and $\psi(x) = ||x||^2$

Gradient descent

Algorithm GD

- 1: **for** k = 1, 2, ... **do**
- 2: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
 - gradient can be computed via

$$\nabla f(x) = \nabla \left(\sum_{i=1}^n f_i(x)\right) = \sum_{i=1}^n \nabla f_i(x_k)$$

- good convergence properties
- can be expensive if *n* is large!

Stochastic gradient descent

Algorithm SGD

- 1: **for** k = 1, 2, ... **do**
- 2: pick i_k uniform at random in [n]
- 3: $x_{k+1} = x_k \alpha_k \nabla f_{i_k}(x_k)$

We already noticed that:

- unbiased: $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^n \mathbb{P}[i = i_k] \nabla f_i(x) = \sum_{i=1}^n \frac{1}{n} \nabla f_i(x)$
- large stepsizes fail to suppress variability in the stoch. gradients leads to oscilations
- decreasing stepsizes mitigate this problem but slows down convergence (too conservative)

Recall SGD (template)

$$x_{k+1} = x_k - \alpha_k g_k$$

- g_k is an unbiased estimator of the true gradient $\nabla F(x_k)$
- convergence depends on variance $\mathbb{E}[\|g_k \nabla F(x_k)\|] \leq \sigma_g$
- vanilla SGD $g_k = \nabla f_{i_k}(x_k)$ issue: σ_g is non-negligible even close to the solution
- Q: can we choose g_k in a different way to reduce variability?

Minibatching

• typically we

A simple idea

Consider

- estimator X for parameter μ ($\mathbb{E}[X] = \mu$ and $\mathbb{V}[X] = \sigma^2$)
- want to keep unbiased but reduce variance
- find Y such that $\mathbb{E}[Y] = 0$ but Cov(X, Y) is large and $\tilde{X} = X Y$
- remains unbiased

$$\mathbb{V}[\tilde{X}] = \mathbb{V}[X] + \mathbb{V}[Y] - 2\operatorname{Cov}[X, Y]$$

 \bullet can be much smaller than [X] if X, Y are highly correlated

Stochastic average gradient (SAG), 2013

- maintain table containing gradients g_i of f_i
- at step k = 1, 2, ... pick random $i_k \in [n]$ and

$$g_i^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \sum_{i=1}^n g_i^k$$

- assuming gradients do not change too much along trajectory
- gradient estimator no longer unbiased
- Isn't it expensive to average these gradients?

$$x^{k+1} = x^k - u\alpha_k \left(\frac{g_{i_k}^k}{n} - \frac{g_{i_k}^{k-1}}{n} + \underbrace{\frac{1}{n} \sum_{i=1}^n g_i^k}_{\text{old table average}} \right)$$

SAG variance reduction

Gradient estimator in SAG:

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \left(\underbrace{g_{i_k}^k}_{X} - \underbrace{g_{i_k}^{k-1}}_{Y} - \underbrace{\sum_{i=1}^n g_i^k}_{Y} \right)$$

- While $\mathbb{E}[X] = \nabla f(x^k)$, but $\mathbb{E}[Y] \neq 0 \rightarrow$ biased estimator
- X and Y are correlated as $X Y \rightarrow 0$ as
- x^k and x_{k-1} both converge to x^* and
- the last term converges to $\nabla f(x^*) = 0$

Convergence

As always, initialization plays a role: $D^2 := ||x^0 - x^*||^2$.

SAG:
$$\frac{n}{k}(f(x^0) - f^*) + \frac{L}{k}D^2$$
GD:
$$\frac{L}{k}D^2$$
SAG:
$$\frac{L}{\sqrt{k}}D^2$$

- Achieves linear convergence in the strongly convex setting.
- proofs are difficult (and computer-aided)

Same gradient oracle cost as SGD, but same converge rate as GD.

SAGA, 2014

Very similar:

- maintain table containing gradients g_i of f_i
- ullet at step $k=1,2,\ldots$ pick random $i_k\in[n]$ and

$$g_i^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - u\alpha_k \left(g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k \right)$$

estimator now unbiased!

For Comparison

SAGA gradient estimate:

$$g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k$$

SAGA gradient estimate:

$$\frac{1}{n}g_{i_k}^k - \frac{1}{n}g_{i_k}^{k-1} + \frac{1}{n}\sum_{i=1}^n g_i^k$$

Stochastic Variance Reduced Gradient (SVRG), 2013

Algorithm SVRG

```
1: for k = 1, 2, ... do
2: Set x^0 = \tilde{x} = x^{m+1}
3: Compute \tilde{\mu} := \nabla f(\tilde{x})
4: for l = 1, 2, ..., m do
5: pick i_l uniform at random in [n]
6: Set x^{l+1} = x^l - \alpha(\nabla f_{i_l}(x^l) - \nabla f_{i_l}(\tilde{x}) + \tilde{\mu})
7: x^0
```

- Does Not need to store full table of gradients.
- requires batch gradient computation every epoch
- per iteration cost of SVRG is comparable to that of SGD if m > n
- convergence rates similar to SAGA, but simpler analysis.

SVRG

key idea: by storing old point we can

$$\underbrace{\nabla f_{i_k}(x^k) - \nabla f_{i_k}(x^{\text{old}})}_{\rightarrow 0 \text{if } x \approx x^{\text{old}}} + \underbrace{\nabla f(x^{\text{old}})}_{\rightarrow 0 \text{if } x^{\text{old}}}$$

- is an unbiased estimate of $\nabla f(x^k)$
- ullet converges to 0 (meaning reduced variability) if $x^k pprox x^{
 m old} pprox x^*$