Field Theory and Galois Theory.

Alec Zabel-Mena

January 12, 2023

Contents

1	\mathbf{Fiel}	ds.	5
	1.1	Field Extensions.	-
	1.2	Algebraic Extensions.	C

4 CONTENTS

Chapter 1

Fields.

1.1 Field Extensions.

Definition. We define the **characteristic** of a field F to be the smallest positive integer p, such that $p \cdot 1 = 0$, where 1 is the identity of F. We write char F = p, and if no such p exists, then we write char F = 0.

Lemma 1.1.1. Let F be a field, then char F is either 0, or a prime integer.

Proof. Let $\Gamma F = p$. If p = 0, then we are done. Now suppose that p = mn, with $m, n \in \mathbb{Z}^+$. Then $p \cdot 1 = (mn)1 = (n \cdot 1)(m \cdot 1) = mn = 0$, which makes m and n 0 divisors. Since F is a field, and hence an integral domain, this is impossible, and hence p must be prime.

Corollary. If char
$$F = p$$
, then for all $a \in F$, $pa = \underbrace{a + \cdots + a}_{p \text{ times}}$.

Proof. We have $pa = p(a \cdot 1) = (p \cdot 1)a$.

Example 1.1. (1) Both \mathbb{Q} and \mathbb{R} have char = 0. Similarly, char $\mathbb{Z} = 0$, even though \mathbb{Z} is just an integral domain.

(2) char $\mathbb{Z}_{p\mathbb{Z}} = p$ and char $\mathbb{Z}_{p\mathbb{Z}}[x] = p$ for any prime p.

Definition. We define the **prime subfield** of a field F to be the subfield of F generated by 1.

Example 1.2. (1) The prime subfields of \mathbb{Q} and \mathbb{R} is \mathbb{Q} .

(2) Let $\mathbb{Z}_{p\mathbb{Z}}(x)$ the field of rational functions over $\mathbb{Z}_{p\mathbb{Z}}$. Then the prime subfield of $\mathbb{Z}_{p\mathbb{Z}}(x)$ is $\mathbb{Z}_{p\mathbb{Z}}(x)$. Similarly, the prime subfield for $\mathbb{Z}_{p\mathbb{Z}}[x]$ is also $\mathbb{Z}_{p\mathbb{Z}}(x)$.

Definition. If K is a field containing a field F, then we call K field extension over F, and write $K/_F$ (not the quotient field!) or denote it by the diagram

Lemma 1.1.2. Every field is a field extension of its prime subfield.

Lemma 1.1.3. Let K an extension over a field F. Then K is a vector space over F.

Definition. Let K_{F} a field extension. We define the **degree** of K over F, [K:F] to be the dimension of K_{F} as a vector space.

Definition. Let F be a field, and $f \in F[x]$ a polynomial. We call am element $\alpha \in R$ a **root** (or **zero**) of f if $f(\alpha) = 0$.

Lemma 1.1.4. Let $\phi: F \to L$ a field homomorphism. Then either $\phi = 0$, or ϕ is 1–1.

Lemma 1.1.5. Let F be a field, and $p \in F[x]$ an irreducible polynomial. Then there exists a field K containing an embedding of F, such that p has a root in K.

Proof. Consider $K = F[x]_{(p)}$. Since p is irreducible in a principle ideal domain, (p) is a maximal idea, and hence K is a field. Now consider the canonical map $\pi: F[x] \to K$ taking $f \to f \mod(p)$ and let $\phi = \pi|_F$. Then $\phi \neq 0$, since $\pi: 1 \to 1$. Then ϕ is 1–1. And so $\phi(F) \simeq F$.

Now, consider F as a subfield of K. Then $p(x \mod (p)) \equiv p(x) \mod (p) \equiv 0 \mod (p)$, so that $x \mod (p)$ is a root of p in K.

Corollary. There exists a field extension of F containing a root of p.

Theorem 1.1.6. Let F be a field, and let $p \in F[x]$ an irreducible polynomial of degree n, and let K = F[x]/(p), and $\theta = x \mod (p)$. Then $\{1, \theta, \dots, \theta^{n-1}\}$ forms a basis for K as a vector space over F and [K : F] = n.

Proof. Let $a \in F[x]$, since F[x] is Euclidean domain, there exist $q, r \in F[x], q \neq 0$ for which

$$a(x) = q(x)p(x) + r(x)$$
 where $\deg r < n$

Now, since $pq \in (p)$, $a(x) \equiv r(x) \mod (p)$, and every element of K is a polynomial of degree less than n. Then the elements $\{1, \theta, \dots, \theta^{n-1}\}$ span K.

Now, suppose that there are $b_0, \ldots, b_{n-1} \in F$ not all 0 for which

$$b_0 + b_1 \theta + \dots + b_{n-1} \theta^{n-1} = 0$$

Then

$$b_0 + b_1 \theta + \dots + b_{n-1} \theta^{n-1} \equiv 0 \mod (p)$$

so that $p|(b_0+b_1\theta+\cdots+b_{n-1}\theta^{n-1})$ in F. But deg p=n and p divides a polynomial of degree n-1, which is a contradiction. Therefore we are left with $b_0=\cdots=b_{n-1}=0$.

Corollary.
$$K = \{ \alpha_0 + a_1 \theta + \dots + a_{n-1} \theta^{n-1} : a_i \in F \text{ for all } 1 \le i \le n-1 \}$$

Corollary. If $a(\theta), b(\theta) \in K$, are elements of degree less than n, and the operations of polynomial addition, and polynomial multiplication mod (p) are defined, then K forms a field.

Example 1.3. (1) Consider the polynomial $x^2 + 1$ over \mathbb{R} . Then one has the field

$$\mathbb{C} = \mathbb{R}[x]/(x^2 + 1)$$

an extension of \mathbb{R} of degree $[\mathbb{C} : \mathbb{R}] = 2$. Let i be a root of $x^2 + 1$ in this field, then $i^2 = -1$, and the elements of \mathbb{C} are of the form a + ib where $a, b \in \mathbb{R}$. Then we have described the field of complex numbers, and the addition and multiplication (mod $x^2 + 1$) of these elements are the addition and multiplication of complex numbers.

One might also construct $\mathbb C$ differently by defining the isomorphism

$$\mathbb{R}[x]/(x^2+1) \to \mathbb{C}$$
 taking $a+xb \to a+ib$

(2) Consider again $x^2 + 1$ over \mathbb{Q} . Then we get the field

$$\mathbb{Q}(i) = \mathbb{Q}[x]/(x^2 + 1)$$

of degree $[\mathbb{Q}(i):\mathbb{Q}]=2$, and where i is a root of x^2+1 , so that $i^2=-1$. Then the elements of $\mathbb{Q}(i)$ are of the form a+ib where $a,b\in\mathbb{Q}$, i.e. it is isomorphic to the set of all complex numbers with rational components.

(2) Consider $x^2 - 2$ over \mathbb{Q} . by Eisenstein's criterion for p = 2, $x^2 - 2$ is irreducible over \mathbb{Q} . Let α a root of $x^2 - 2$, so that $\alpha^2 = 2$. Then we have the field

$$\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[x]/(x^2 - 2)$$

of degree $[Q(\sqrt{2}):\mathbb{Q}]=2$, and whose elements are of the form $a+b\sqrt{2}$. One can define an isomorphism between $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ by taking $\sqrt{2} \to i$.

(3) The polynomial $x^3 - 2$ over \mathbb{Q} gives us the field

$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[x]/(x^3 - 2)$$

of degree $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ over 2. Here the elements are of the form $a+b\xi+c\xi^2$ where $\xi^3=2$.

(4) Denote \mathbb{F}_2 to be a finite field of 2 elements. Consider the polynomial $x^2 + x + 1$ over \mathbb{F}_2 which is irreducible. Then the field

$$\mathbb{F}_2(\alpha) = \mathbb{F}_2[x]/(x^2 + x + 1)$$

is a field of degree 2 over \mathbb{F}_2 , whose elements are of the form $a + b\alpha$, where $\alpha^2 = \alpha + 1$. In fact, one can generate this field using the fact that $\alpha^2 = \alpha + 1$.

(5) Let F = K(t) the field of rational functions in t over a field K. Let $p(x) = x^2 - t \in F[x]$, then by Eisenstien's criterion with the ideal (t), p is irreducible over F[x]. Let θ be a root for p, that is $\theta = \sqrt{t}$, then we get the field $K(t, \sqrt{t})$ of degree $[K(t, \sqrt{t}) : K] = 2$, whose elements are of the form $a(t) + b(t)\sqrt{t}$.

Lemma 1.1.7. Let F be a subfield of a field K, and let $\alpha \in K$. Then there exists a unique minimal subfield of K containing F and α ; more preciesly, it is the intersection of all subfields of K containing F and α .

Definition. Let K be any extension of a field F, and let $\alpha, \beta, \dots \in K$. Then we define the subfield **generated** by α, β, \dots over F to be the unique minimal subfield containing all α, β, \dots and F and we denote it $F(\alpha, \beta, \dots)$. Moreover, we call K a **simple extension** of F if $K = F(\alpha, \beta, \dots)$. If $K = (F\alpha_1, \dots, a_n)$ for $\alpha_1, \dots, \alpha_n \in K$, then it is a **finitely generated** simple extension.

Theorem 1.1.8. Let F be a field, and $p \in F[x]$ irreducible, and let K an extension of F containing a root α of p. Then

$$F(\alpha) \simeq F[x]_{(p)}$$

Proof. Consider the homomorphism $F[x] \to F(\alpha)$ taking $a(x) \to a(\alpha)$. Since $p(\alpha) = 0$, p is in the kernel of this homomorphism, and we get an induced homomorphism from $F[x]/(p) \to F(\alpha)$. Now, since p is irreducible, F[x]/(p) is a field, and since the homomorphism takes $1 \to 1$, it is 1–1. Then by the first isomorphism theorem for ring homomorphisms these two fields are isomorphic.

Corollary. If deg p = n, then $F(\alpha) = \{a_0 + a_1 \alpha + \dots a_{n-1} \alpha^{n-1} : a_i \in F \text{ for all } 1 \leq i \leq n-1\}$ and $[F(\alpha) : F] = n$.

- **Example 1.4.** (1) The polynomial $x^2 2$ over \mathbb{Q} also has the root $-\sqrt{2}$ in \mathbb{R} , so that $\mathbb{Q}(-\sqrt{2})$ is of degree 2 over \mathbb{Q} with elements of the form $a b\sqrt{2}$. Notice however that $\mathbb{Q}(-\sqrt{2}) \simeq \mathbb{Q}(\sqrt{2})$ by taking $a b\sqrt{2} \to a + b\sqrt{2}$.
 - (2) The polynomial $x^3 2$ only has the solution $\xi = \sqrt[3]{2}$ in \mathbb{R} . However, in \mathbb{Q} it has the solutions given by

$$\sqrt[3]{2}(\frac{-1 \pm i\sqrt{3}}{2})$$

So that the subfields generated by either of these three elements (over \mathbb{C}) are isomorphic.

Theorem 1.1.9. Let $\phi: F \to L$ a field isomorphism and $p \in F[x]$, $q \in L[x]$ irreducible polynomials, where q is obtained by applying ϕ to the coefficients of p. Let α a root of p, and β a root of q. Then there exists an isomorphism $F(\alpha) \to L(\beta)$ taking $\alpha \to \beta$ and extending ϕ . That is, we have the following diagram

$$F(\alpha) \longrightarrow L(\beta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longrightarrow_{\phi} E$$

Proof. Notice that ϕ induces a ring homomorphism between F[x] and L[x], so that (p) is maximal. Since q is obtained from p, (q) is also maximal, so that F[x]/(p) and L[x]/(q) are fields. Then we have an isomorphism

$$F[x]_{(p)} \simeq L[x]_{(q)}$$

Then, if α is a root of p, and β a root of q, we obtain the isomorphism

$$F(\alpha) \simeq L(\beta)$$

moreover, this isomorphism takes $\alpha \to \beta$.

1.2 Algebraic Extensions.

Definition. Let K_F be a field extension. We say that an element $\alpha \in K$ is algebraic over F, provided there exists a polynomial over F having α as a root. Otherwise we call α transcendental. If every $\alpha \in K$ is algebraic, we call K algebraic and K_F an algebraic extension.

Lemma 1.2.1. Let α be algebraic over a field F. Then there exist a unique monic irreducible polynomial $m \in F[x]$ having α as a root. Moreover, if $f \in F[x]$ is a polynomial, then f has α as a root if, and only if m|f.

Proof. Let m a polynomial of minimal degree having α as a root. Suppose, also that , is monic. Now, if m were reducible, then m(x) = a(x)b(x) for some $a, b \in F[x]$ polynomials both of degree less than deg m. Then we also have that $a(\alpha) = b(\alpha) = 0$, which contradicts that m is the polynomial of minimal degree satisfying that condition. Hence, m is irreducible.

Now, let $f \in F[x]$ have α as a root, then by the divison theorem, there exist $q, r \in F[x]$, with $q \neq 0$ for which

$$f(x) = q(x)m(x) + r(x)$$
 where $\deg r < \deg m$

Now, since $f(\alpha) = q(\alpha)m(\alpha) + r(\alpha) = 0$, then r(x) = 0 for all x lest we contradict the minimality of m. Hence m|f. Conversely, if m|f, then f has α as a root.

Now, let g a polynomial of minimal degree for which $g(\alpha) = 0$. Then by above, we have that deg $g = \deg m$, and that moreover, m|g and g|m. therefore g = m and uniqueness is established.

Corollary. Let $L_{/F}$ be an extension, and α algebraic over F. Let $m_{\alpha,F}$ the unique monic irreducible polynomial over F having α as root, and $m_{\alpha,L}$ the unique monic irreducible polynomial over L having α as root. Then $m_{\alpha,L}|m_{\alpha,F}$ in L[x].

Definition. Let F be a field, and α algebraic over F. We define the **minimal polynomial** $m_{\alpha,F}$, to be the polynomial over F of minimal degree having α as a root. If the field is clear, we instead write m_{α} , or even just m when the root itself is also clear. We define the **degree** of α to be deg $\alpha = \deg m_{\alpha}$.

Lemma 1.2.2. Let α algebraic over F. Then

$$F(\alpha) \simeq F[x]/(m_{\alpha,F})$$

Corollary. $[F(\alpha):F]=\deg m_{\alpha}=\deg \alpha$.

Example 1.5.

- (1) The minimal polynomial for $\sqrt{2}$ over \mathbb{Q} is $x^2 2$.
- (3) The minimal polynomial for $\sqrt[3]{2}$ over \mathbb{Q} is $x^3 2$.
- (3) Let n > 1, then by the Eisenstein-Schömann criterion, $x^n 2$ is irreducible over \mathbb{Q} . Moreover, $x^n 2$ has as root in \mathbb{R} $\sqrt[n]{2}$. Then $\mathbb{Q}(\sqrt[n]{2})$ is a field of degree $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = 2$. Moreover $x^n 2$ is the minimal polynomial of $\sqrt[n]{2}$. Notice, that over \mathbb{R} , deg [n]2 = 1, and that $m_{\sqrt[n]{2},\mathbb{R}}(x) = x \sqrt[n]{2}$.
- (4) Consider $p(x) = x^3 3x 1$ over \mathbb{Q} . Notice that p is irreducible over \mathbb{Q} and let α a root of p. Then $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$.

Lemma 1.2.3. An element α is algebraic over a field F if, and only if the simple extension $F(\alpha)/_F$ is finite.

Proof. If α is algebraic over F then $[F(\alpha):F]=\deg \alpha \leq n$ if α satisfies a polynomial of degree n. Conversely, if α is an element of the finite extenson K/F, of degree n, then the set $\{1,\alpha,\ldots,\alpha^n\}$ is linearly dependent over F. Hence there exist $b_0,\ldots,b_n\in F$ not all 0 for which

$$b_0 + b_1 \alpha + \dots + a_n \alpha^n = 0$$

making α a root of a nonzero polynomial over F of degree deg $\leq n$.

Corollary. If an extension K_F is finite, then it is algebraic.

Proof. If $\alpha \in K$ is algebraic, then $K_{/F}$ implies that $F(\alpha)_{/F}$ is finite, since $F(\alpha) \subseteq K$.

Example 1.6. Let F a field of char $F \neq 2$, and let K an extension field of F of degree [K:F]=2. Let $\alpha \in K$ not in F, then α satisfies an polynomial of at most degree 2 over F. Now, since $\alpha \notin F$, this polynomial must have degree greater than 1. Hence it satisfies a polynomial of degree 2. Then the minimal polynomial of α is a quadratic

$$m_{\alpha}(x) = x^2 + bx + c$$
 with $b, c \in F$

Since $F \subseteq F(\alpha) \subseteq K$, and $F(\alpha)$ is a vector space over F of dimension 2, then we must have $K = F(\alpha)$; that is K/F is simple.

Now, the roots of m_{α} are

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

Since $\alpha \notin F$, $b^2 - 4c$ is not a square in F, and $\sqrt{b^2 - 4c}$ is a root of the equation $x^2 - (b^2 - 4c) = 0$ in K.

Conversely, $\sqrt{b^2 - 4c} = \pm (b + 2\alpha)$ which puts $\sqrt{b^2 - 4c} \in F(\alpha)$. That is $F(\sqrt{b^2 - 4c}) = \mathbb{F}(\alpha)$. Moreover, $x^2 - (b^2 - 4c)$ does not have solutions in K.

We call field extensions K_{f} of degree 2 quadratic field extension, where $K = F(\sqrt{D})$, and D is a squarefree element of F.

Theorem 1.2.4. Let $F \subseteq K \subseteq L$. Then [L:F] = [L:K][K:F].

Proof. Let [L:K]=m and [K:F]=n. Let $\{\alpha_1,\ldots,\alpha_m\}$ and $\{\beta_1,\ldots,\beta_n\}$ be bases for the extensions L_K and K_F . Now, the elements of L over K are of the form

$$a_1\alpha_1 + \cdots + a_m\alpha_m$$
 where $a_i \in K$ for all $1 \le i \le m$

Since each $a_i \in K$, which is an extension over F, they have the form

$$a_i = b_{i1}\beta_{i1} + \cdots + b_{in}\beta_{in}$$
 where $b_{ij} \in F$ for all $1 \le j \le n$

That is, every element of L, as a vector space over F are of the form

$$\sum b_{ij}\alpha_i\beta_j$$

So the set $\{\alpha_1\beta_1, \dots \alpha_m\beta_n\}$ spans L. It remains to show that this set is linearly in dependent. Suppose that

$$\sum b_{ij}\alpha_i\beta_j=0$$

for some $b_{ij} \in F$. Since $\{\alpha_1, \ldots, \alpha_m\}$ are linearly independent in L over K, we have that the coefficients $a_1 = \cdots = a_n = 0$ which makes

$$a_i = b_{i1}\beta_{i1} + \cdots + b_{in}\beta_{in} = 0$$

Now, since $\{\beta_1, \ldots, \beta_n\}$ is linearly independent in K over F, this implies that $b_{i1} = \cdots = b_{in} = 0$ which makes the collection $\{\alpha_1\beta_1, \ldots, \alpha_m\beta_n\}$ linearly independent, and hence, a basis. Moreover, notice that this basis has size mn.

Example 1.7. (1) The element $\sqrt{2} \notin \mathbb{Q}(\alpha)$, where α is the root of $x^3 - 3x - 1$; since $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$.

(2) We have $[\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}] = 6$, and since $(\sqrt[6]{2})^3 = \sqrt{2}$, we observe that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[6]{2})$. Moreover, notice that by theorem 1.2.4 $[\mathbb{Q}(\sqrt[6]{2}):Q(\sqrt{2})] = 3$. Then we have the following tower of fields for

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[6]{2})$$

$$\mathbb{Q}(\sqrt[6]{2})$$

$$\mathbb{Q}(\sqrt{2})$$

$$\mathbb{Q}(\sqrt{2})$$

Lemma 1.2.5. Let α, β be algebraic over a field F. Then $F(\alpha, \beta) = (F(\alpha))(\beta)$.

Proof. By definition, $F(\alpha, \beta)$ contains F, and α , and hence contains $F(\alpha)$. It also contains β so that $(F(\alpha))(\beta) \subseteq F(\alpha, \beta)$. By the same argument, $(F(\alpha))(\beta)$ contains F, α and β so that $F(\alpha, \beta) \subseteq (F(\alpha))(b)$.

Corollary. The elements of $F(\alpha, \beta)$ are of the form $\sum a_{ij}\alpha^i b^j$, where $1 \leq i \leq \deg \alpha$ and $1 \leq j \leq \deg \beta$.

Example 1.8. Consider $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ generated by $\sqrt{2}$ and $\sqrt{3}$. Notice that deg $\sqrt{3}=2$ over \mathbb{Q} so that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})] \leq 2$. Now $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})] = 2$ if, and only if the polynomial $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt{2})$. Then it is irreducible if, and only if $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$. It can be shown that this is not the case by trying to find $a, b \in \mathbb{Q}$ for which $\sqrt{3} = a + b\sqrt{2}$. Moreover we have

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$$

Theorem 1.2.6. An extension field $K_{/F}$ is finite if, and only if it is generated by finitely many algebraic elements over F.

Proof. Let K_{F} finite of degree n, and $\{\alpha_1, \ldots, \alpha_n\}$ a basis. Then by theorem 1.2.4, $[F(\alpha_i): F]|[K:F]$ for all $1 \leq i \leq n$. So each α_i is algebraic over F. Then K is generated by finitely many algebraic elements.

Conversely, let $K = F(\alpha_1, \ldots, \alpha_k) = (F(\alpha_1, \ldots, a_{k-1}))(\alpha_k)$ We obtain K by taking the extensions F_{i+1}/F_i iteratively, where $F_{i+1} = F_i(\alpha_{i+1})$, and obtain the sequence

$$F = F_0 \subseteq \cdots \subseteq F_k = K$$

Now, if the elements $\alpha_1, \ldots, \alpha_k$ are algebraic over F, each of $\deg \alpha_i = n_i$ for $1 \le i \le k$, then the extension F_{i+1}/F_i is a simple extension, and $[F_{i+1}:F_i] = \deg m_{\alpha_{i+1}} \le \deg \alpha_{i+1} = n_{i+1}$. Then we have

$$[K:F] = [F_k:F_{k-1}]\dots[F_1,F] \le n_1\dots n_k$$

which makes $K_{/F}$ a finite extension.

Corollary. If α, β are algebraic over F, then so are $\alpha \pm \beta$, $\alpha\beta$, and $\alpha\beta^{-1}$ (for $\beta \neq 0$).

Corollary. If $L_{/F}$ is an extension, then the collection of elements of L which are algebraic over F forms a subfield of L.

- **Example 1.9.** (1) Consider the extension $\mathbb{C}_{\mathbb{Q}}$, and let $\operatorname{cl} \mathbb{Q}$ the subfield of all elements of \mathbb{C} which are algebraic over \mathbb{Q} . Then $\sqrt[n]{2} \in \operatorname{cl} Q$ for all $n \geq 1$, so that $[\operatorname{cl} \mathbb{Q} : \mathbb{Q}] \geq n$. This makes $\operatorname{cl} \mathbb{Q}$ an infinite algebraic extension, and we call $\operatorname{cl} \mathbb{Q}$ the **field of algebraic numbers**.
 - (2) Consider $\operatorname{cl} \mathbb{Q} \cap \mathbb{R}$ as a subfield of \mathbb{R} (i.e. the subfield of all algebraic elements of \mathbb{Q}). Since \mathbb{Q} is countable, so is the field $\mathbb{Q}[x]$, and each polynomial in $\mathbb{Q}[x]$ has at most n roots in \mathbb{R} , hence the number of all algebraic elements of \mathbb{R} over \mathbb{Q} is also countable. This means that $\operatorname{cl} \mathbb{Q}$ must also be countable. Now, since \mathbb{R} is uncountable, then there exist uncountably transcendental numbers of \mathbb{R} over \mathbb{Q} . Most notably the irrational numbers π and e are transcendental.

Theorem 1.2.7. If K is algebraic over F, and L algebraic over K, then L is algebraic over F.

Proof. Let $\alpha \in L$, since L is algebraic over K, there exists a $p \in K[x]$ having α as root. Let $p(x) = a_0 + a_1x + \cdots + a_nx^n$. Consider then $F(\alpha, a_0, \ldots, a_n)$. Since K_f is algebraic, a_0, \ldots, a_n are algebraic over F, and so $F(\alpha, a_0, \ldots, a_n)$ is a finite extension over F. Then α generates an extension field of degree less than n, and we get

$$[F(\alpha, a_0, \dots, a_n) : F] = [F(\alpha, a_0, \dots, a_n) : F(a_0, \dots, a_n)][F(a_0, \dots, a_n) : F]$$

is finite, and $F(\alpha, a_0, \dots, a_n)$ is algebraic over F. That is, α is algebraic over F, and so L is algebraic over F.

Definition. Let K_1 and K_2 subfields of a field K. The **composite field** K_1K_2 is the smallest subfield of K containing both K_1 and K_2 .

Example 1.10. The composite field of $\mathbb{Q}(\sqrt[3]{2})$ and $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Q}(\sqrt[6]{2})$.

Lemma 1.2.8. Let K_1 and K_2 be extensions of a field F contained in a field K. Then $[K_1K_2:F] \leq [K_1:F][K_2:F]$ with equality holding if, and only if a basis of F in the other field is linearly independent. Moreover if $\{\alpha_1,\ldots,\alpha_m\}$ and $\{\beta_1,\ldots,\beta_n\}$ are bases for K_1 and K_2 , then $\{\alpha_1,\beta_1,\ldots,\alpha_m\beta_n\}$ span K_1 and K_2 .

Corollary. If $[K_1 : F] = m$, and $[K_2 : F] = n$ with m and n coprime, then $[K_1K_2 : F] = [K_1 : F][K_2 : F]$.

Proof. We have that $m, n|[K_1K_2:F]$ and since $K_1, K_2 \subseteq K_1K_2$ are subfields of K_1K_2 , we get the least common multiple $[m, n]|[K_1K_2:F]$. Now, since (m, n) = 1, we get [m, n] = mn so that $mn \leq [K_1K_2:F]$.

1.3 Ruler and Compass Constructions.

1.4 Splitting Fields and Algebraic Closures.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.