

Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Einführung in die Mathematik für Informatiker: Lineare Algebra INF 110 Wintersemester 2018/19

14. Übungsblatt für die Woche 21.01. - 27.01.2019

Orthogonalität, Orthogonalprojektion

- Ü79 (a) Es seien $\{v_1, \ldots, v_n\}$ mit $v_k \neq 0, k = 1, \cdots, n$, Elemente eines euklidischen \mathbb{R} -Vektorraumes, die paarweise orthogonal sind. Zeigen Sie, dass $\{v_1, \ldots, v_n\}$ linear unabhängig ist.
 - (b) Betrachtet wird der Vektorraum \mathbb{R}^n mit dem Standardskalarprodukt. Beweisen Sie, dass die Eigenvektoren unterschiedlicher Eigenwerte einer symmetrischen Matrix stets paarweise orthogonal sind.
 - (c) Bestimmen Sie eine Eigenvektorbasis der Matrix $A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$. Zeigen Sie, dass es sich um eine Orthogonalbasis handelt und berechnen Sie den Koordinatenvektor des Vektors $v = (1, -1)^T$ in dieser Basis.
- Ü80 (a) Es sei $v=(4,-3)^T\in\mathbb{R}^2$ und $U=\mathrm{Span}(\{v\})$. Bestimmen Sie U^\perp als Spannraum, und zeichnen Sie U und U^\perp in der xy-Ebene. Geben Sie eine orthonormale Basis des \mathbb{R}^2 an, die einen Vektor aus U enthält.
 - (b) Gegeben sind die Matrizen

(i)
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$$
, (ii) $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- (1) Bestimmen Sie $Col(A)^{\perp}$ und schreiben Sie ihn als Spannraum.
- (2) Finden Sie eine orthonormale Basis \mathcal{B} für Col(A).
- (3) Für die Matrix aus (i) lässt sich \mathcal{B} leicht zu einer Orthonormalbasis des \mathbb{R}^3 erweitern. Wie geht das?
- Ü
81 Es sei A eine Matrix aus $\mathbb{R}^{2\times 2}$ mit den Eigenwerten $k_1=3$ and $k_2=0.5$ und zugehörigen Eigenvektoren $b_1=(1,-2)^T$ bzw. $b_2=(1,1)^T$. Wir betrachten das diskrete dynamische System

$$v_{k+1} = Av_k, \quad k = 0, 1, 2, \dots$$

mit Startvektor $v_0 = (4,1)^T$.

- (a) Berechnen Sie v_0 als Linearkombination der Eigenvektorbasis $\{b_1, b_2\}$.
- (b) Berechnen Sie v_1 als Linearkombination der Eigenvektorbasis $\{b_1, b_2\}$.
- (c) Bestimmen Sie die k-te Iterierte v_k als Linearkombination der Eigenvektorbasis $\{b_1, b_2\}$.
- (d) Was geschieht für $k \to \infty$? Wie verhält sich die Folge von Vektoren v_0, v_1, v_2, \ldots ? Skizzieren Sie die zu den Vektoren v_0, v_1, v_2, \ldots gehörigen Punkte in der xy-Ebene.

H82 Gegeben ist die Matrix
$$A := \begin{pmatrix} -6 & 3 \\ 3 & 2 \\ 2 & 6 \end{pmatrix}$$
.

Prüfen Sie, ob die Spaltenvektoren von A orthogonal zueinander sind, und bestimmen Sie den Untervektorraum $Col(A)^{\perp}$.

H83 Durch

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \bullet \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} := x_1 y_1 + 2 x_2 y_2 + 3 x_3 y_3$$

ist ein Skalarprodukt im \mathbb{R}^3 definiert (das muss nicht gezeigt werden).

Zeigen Sie, dass

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

keine Orthonormalbasis bzgl. dieses Skalar
produktes ist. Bestimmen Sie eine Orthonormalbasis bzgl.
 $\bullet.$

- H84 (a) Berechnen Sie die orthogonale Projektion des Vektors $(1,7)^T$ auf die Gerade, die durch den Punkt $(-4,2)^T$ und den Koordinatenursprung geht.
 - (b) Gesucht ist der Abstand von $(3,1)^T$ zur Geraden durch $(8,6)^T$ und den Koordinatenursprung.
 - (c) Zeigen Sie, dass die Vektoren $v_1 = (2, -3)^T$ und $v_2 = (6, 4)^T$ eine Orthogonalbasis des \mathbb{R}^2 bilden, und stellen Sie den Vektor $(9, -7)^T$ als Linearkombination von v_1 und v_2 dar.