

Métodos quantitativos de apoio à decisão

Vamos refletir?

Diariamente, nos deparamos com uma avalanche de decisões, desde as mais básicas até aquelas que tem o poder de transformar nossas vidas. Você sabia que, em média, um adulto toma aproximadamente trinta e cinco mil decisões por dia?

Ciência estatística

Estatística é um ramo da Matemática, que se destina ao estudo dos processos de obtenção, coleta, organização, apresentação, descrição, análise e interpretação de dados numéricos variáveis, referentes a qualquer fenômeno, seja sobre uma população ou coleção, seja sobre um conjunto de seres para a utilização dos mesmos na tomada de decisões (Costa, 2011).

Dados estatísticos

Fonte: Freedomz/ adobe.stock.com.

Classificações

Estatística descritiva: área que descreve e analisa um conjunto de dados, sem tirar conclusões.

Estatística inferencial: objetiva fazer afirmações sobre uma população a partir de uma amostra. Possui como ferramenta essencial, a probabilidade.

Fases do método estatístico

Definição do problema.

Análise e interpretação.

Planejamento.

Organização e apresentação dos dados.

Coleta de dados.

Concepções básicas: população versus amostra

Ilustração

Fonte: lamnee/ adobe.stock.com..

População:

- Conjunto de todas as medidas e observações relativas ao estudo de determinado fenômeno.
- Censo.

Amostra:

- Subconjunto de elementos da população.
- Técnicas de amostragem.

Concepções básicas: variáveis

Medidas de tendência central ou de posição

Medidas de tendência central ou de posição

Média populacional:

Verifica o valor médio da população:

$$\mu = \frac{X_1 + \dots + X_n}{N}$$

- $\mu = \text{m\'edia populacional}$.
- X_n = valores da variável estudada.
- N = número total de elementos da população.

Média amostral:

Verifica o valor médio da amostra:

$$\overline{x} = \frac{X_1 + \dots + X_n}{n}$$

 $\bar{x} = \text{m\'edia amostral}.$

 X_n = valores da variável estudada.

n = número total de elementos da amostra.

Medidas de tendência central ou de posição

Moda:

*Valor mais frequente em um conjunto de dados.

*Classifica-se em amodal, bimodal e multimodal.

Mediana:

*Valor central de uma lista de dados organizados de forma crescente ou decrescente.

* Se total de dados for um número par:

$$Md = \left(\frac{n}{2} + 1\right)^{\circ}$$

* Se total de dados for um número ímpar:

$$Md = \left(\frac{n}{2}\right)^{\circ}$$

Medidas de variabilidade ou de dispersão

Medidas de variabilidade

Amplitude:

Diferença entre o maior e menor valor do conjunto de dados.

$$A = x_n - x_1$$

Variância:

Mede a dispersão dos dados em relação à média.

$$\sigma^2 = \sum_{i=1}^N \frac{(x_i - \mu)^2}{N}$$

$$s^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \overline{x})^{2}}{n - 1}$$

Desvio padrão:

É a raiz quadrada da variância.

$$\sigma = \sqrt{\sigma^2}$$

$$s = \sqrt{s^2}$$

Medidas de assimetria

É o grau de desvio ou afastamento da simetria de uma distribuição (eixo horizontal) e é mensurado pelo coeficiente:

$$b_1 = \frac{1}{n} \sum \left[\frac{x_i - \bar{x}}{s} \right]^3$$

- $b_1 < 0$: cauda da função densidade de probabilidade é maior do lado esquerdo.
- $b_1 > 0$: cauda da função densidade de probabilidade é maior do lado direito.
- $b_1=0$: valores são distribuídos igualmente em ambos os lados da média, mas isso não implica, necessariamente, em uma distribuição simétrica dos dados.

Função densidade de probabilidade (assimetria)

Quando a curva é assimétrica, a média, a mediana e a moda recaem em pontos diferentes da distribuição, sendo enviesada a direita (assimetria negativa) ou enviesada a esquerda (assimetria positiva).

Função densidade de probabilidade (assimetria)

Fonte: Devore (2006, [n. p.]).

Medidas de assimetria

Verifica o achatamento da função densidade de probabilidade, em relação ao eixo vertical. É mensurado pelo coeficiente:

$$b_2 = \frac{1}{n} \sum \left[\frac{x_i - \bar{x}}{s} \right]^4 - 3$$

- $b_2 < 0 =$ função Platicúrtica, pois tem seu pico mais achatado do que o da distribuição normal.
- $b_2 > 0 =$ função de densidade de probabilidade Leptocúrtica, tem a curva da função de distribuição mais afunilada, com um pico maior do que a distribuição normal.
- $b_2 = 0$:função é chamada de Mesocúrtica, pois tem o mesmo achatamento da distribuição normal.

Função densidade de probabilidade (curtose)

Função densidade de probabilidade (curtose)

Fonte: Devore (2006, [n. p.]).

Box Plot

- Gráfico que destaca a alteração dos dados de uma variável, por meio de quartis.
- A variável de grupo pode ser indicada no eixo y (vertical) ou no eixo x (horizontal).
- Auxilia na identificação de outliers, que são dados muito discrepantes dos outros, e que podem enviesar a análise estatística.
- Para sua construção é necessário ter informações sobre o primeiro quartil, terceiro quartil e mediana.

Elementos de um Box Plot

Fonte: Ziro/ adobe.stock.

Reflita sobre a seguinte situação

Você é um(a) profissional especializado(a) em consultorias empresariais, que buscam averiguar a confiabilidade em seus processos de produção e, consequentemente, na qualidade de seus itens.

Partindo desse perfil, você foi contratado(a) por uma indústria de peças automotivas para verificar a necessidade de fazer um *recall*, ou seja, um chamamento para veículos que usam três tipos específicos de peças.

Assim, a partir de dados amostrais, você construiu a seguinte tabela onde se especificam os lotes e as notas atribuídas (em uma escala de um a dez).

Reflita

Lote	Qualidade (em pontos)
А	68775564
В	1 2 4 10 10 6 9 6
С	77667780

Fonte: elaborado pela autora.

Como parte do relatório a ser entregue por você, algumas dúvidas quanto a qualidade das peças devem ser solucionadas: qual foi o lote mais homogêneo? Qual é o lote mais disperso? Por quê?

Norte para a resolução

Por onde começar?

Homogeneidade de um conjunto de dados

- Verifica o quão afastado estão os dados em torno da média da distribuição.
- Cálculo da média amostral:

$$\bullet \ \overline{x} = \frac{X_1 + \dots + X_n}{n}$$

Dispersão de um conjunto de dados

- Verifica o quão dispersos os dados estão em relação à média da distribuição.
- Cálculo do desvio padrão amostral:

$$\bullet \ s = \sqrt{\frac{(x_i - \overline{x})^2}{n - 1}}$$

Fonte: Elaborado pel autora.

Norte para a resolução

Resolução

Lote	Média	Desvio padrão
A	$\overline{x} = \frac{6+8+7+\cdots+6+4}{\overline{x} = 6}$	$s = \sqrt{\frac{(6-6)^2 + (8-6)^2 + \dots + (4-6)^2}{8-1}}$ $s = 1,31$
В	$\overline{x} = \frac{1+2+4+\dots+9+6}{\overline{x}=6}$	$s = \sqrt{\frac{(1-6)^2 + (2-6)^2 + \dots + (6-6)^2}{8-1}}$ $s = 3,51$
С	$\overline{x} = \frac{7+7+6+\cdots+8+0}{8}$ $\overline{x} = 6$	$s = \sqrt{\frac{(7-6)^2 + (7-6)^2 + \dots + (0-6)^2}{8-1}}$ $s = 2,49$

Fonte: elaborado pela autora.

Norte para a resolução

Quanto maior a dispersão dos dados maior, é o valor do desvio padrão, logo, concluimos que:

• Lote mais homogêneo, pois

tem o menor desvio padrão.

Lote A

Lote B

• Lote mais disperso, pois tem o maior desvio padrão.

• A nota zero, é o valor discrepante, por isso, aumenta a dispersão dos dados.

Lote C

Consolidando o aprendizado

- Estatística descritiva x estatística inferencial.
- Medidas de tendência central: média, moda e mediana.
- Medidas de variabilidade: amplitude, variância e desvio padrão.
- Medidas de assimetria e curtose.
- Box Plot.

Estatística é um ramo da Matemática que se destina ao estudo dos processos de obtenção, coleta, organização, apresentação, descrição, análise e interpretação de dados numéricos variáveis, referentes a qualquer fenômeno, seja sobre uma população ou coleção, seja sobre um conjunto de seres para a utilização dos mesmos na tomada de decisões.

Nesse sentido, como podemos utilizar dessa ciência para tomarmos decisões assertivas?

Quiz – Resolução

Com base em dados estatísticos, é possível que diversas informações se tornem mais robustas. Tal fato possibilita a redução de riscos e incertezas nos processos de análises de dados sejam pessoais ou de outra natureza. Dessa forma, informações idôneas são disponibilizadas, possibilitando uma tomada de decisões assertivas.

Leitura Fundamental

Prezado estudante, as indicações a seguir podem estar disponíveis em algum dos parceiros da nossa Biblioteca Virtual (faça o login por meio do seu AVA), e outras podem estar disponíveis em sites acadêmicos (como o SciELO), repositórios de instituições públicas, órgãos públicos, anais de eventos científicos ou periódicos científicos, todos acessíveis pela internet.

Isso não significa que o protagonismo da sua jornada de autodesenvolvimento deva mudar de foco. Reconhecemos que você é a autoridade máxima da sua própria vida e deve, portanto, assumir uma postura autônoma nos estudos e na construção da sua carreira profissional.

Por isso, nós o convidamos a explorar todas as possibilidades da nossa Biblioteca Virtual e além! Sucesso!

Indicação de leitura 1

Neste livro, o autor destaca a utilização ampla da estatística nas mais diversas áreas de atuação profissional e educativa. Além disso, noções de técnicas de pesquisa, coleta de dados, cálculos e tabulação de resultados são destaques dessa obra.

Referência:

CASTANHEIRA, N. P. **Estatística aplicada a todos os níveis**. Curitiba: Intersaberes, 2023.

Indicação de leitura 2

Neste artigo, os autores apresentam o resultado de uma análise estatística do quantitativo global dos resíduos sólidos urbanos gerados no estado da Bahia. Como consequência, analisam a influência dos parâmetros estatísticos utilizados.

Referência

DE CASTRO LEAL, T. L. M. *et al.* Análise estatística da geração de resíduos sólidos do Estado da Bahia, Brasil. **Revista Brasileira de Gestão e Desenvolvimento Regional**, [s. l.], v. 19, n. 1, 2023.

Referências

CASTANHEIRA, N. P. **Estatística aplicada a todos os níveis**. Curitiba: Intersaberes, 2023.

COSTA, P. R. da. **Estatística**. Santa Catarina: Universidade Federal de Santa Catarina, 2011. Disponível em: https://www.ufsm.br/app/uploads/sites/413/2018/11/04_estatistica .pdf. Acesso em: 22 jul. 2024.

DE CASTRO LEAL, T. L. M. *et al*. Análise estatística da geração de resíduos sólidos do Estado da Bahia, Brasil. **Revista Brasileira de Gestão e Desenvolvimento Regional**, [s. l.], v. 19, n. 1, 2023.

DEVORE, J. L. **Probabilidade e estatística:** para Engenharia e Ciências. São Paulo: Pioneira Thomson Learning, 2006.

Bons estudos!