BIOMATERIALI METALLICI Seconda parte

metalli e leghe dentali

leghe del mercurio

Biomateriali metallici – seconda part

Amalgame

il *mercurio*, liquido a temperatura ambiente, può reagire con altri metalli (*argento e stagno*), formando una massa plastica che indurisce progressivamente nel tempo

→ questo materiale è chiamato **amalgama** ed è una <u>lega</u> <u>nella quale uno dei componenti è il mercurio</u>

le amalgame, in particolare l'**amalgama d'argento**, *erano* i materiali più largamente usati dai dentisti di tutto il mondo per la ricostruzione dei denti posteriori, dato che possono essere facilmente "impaccati" nelle cavità dentali

Biomateriali – Laurea Triennale in Ingegneria Biomedica

materiale di partenza:

lega solida in forma particolata composta da almeno il 65% di **argento** e non più del 29% di **stagno**, 6% di **rame**, 2% di **zinco** e 3% di **mercurio**

- → viene mescolata con del mercurio in un trituratore meccanico
- → il materiale che ne risulta viene pressato nella cavità dentale preparata in precedenza

raggiunge un quarto della consistenza finale dopo un'ora e risulta completamente solidificata dopo un giorno

Biomateriali – Laurea Triennale in Ingegneria Biomedica

5

Biomateriali metallici – seconda parte

pregi delle amalgame:

- ottimo sigillo marginale
- · facilità di utilizzo
- lunga durata
- lunga esperienza clinica
- basso costo della riparazione

difetti delle amalgame:

- il colore non si mimetizza con il dente
- necessità di eseguire preparazioni di cavità ritentive ed in un certo senso "demolitive", dato che l'amalgama non possiede la capacità di legarsi alla struttura dentale
- potenziale tossicità dovuta alla presenza di mercurio

Biomateriali – Laurea Triennale in Ingegneria Biomedica

altri materiali usati in odontoiatria: oro e leghe

Biomateriali metallici – seconda parte

Oro

- □ eccellente resistenza alla corrosione
- ☐ proprietà meccaniche mediocri

Biomateriali – Laurea Triennale in Ingegneria Biomedica

Tecniche di lavorazione

□ colata

- si utilizza una matrice di un materiale capace di tollerare le alte temperature, come il gesso
- la matrice viene ottenuta a partire da un'impronta di cera presa dalla cavità del dente mentre al paziente è applicato nel frattempo un riempitivo temporaneo della cavità dentale
- sono impiegate leghe d'oro di varia composizione, dal momento che queste hanno proprietà meccaniche superiori a quelle dell'oro puro pur mantenendo la resistenza alla corrosione (almeno il 75% in peso d'oro ed altri metalli nobili)

Biomateriali – Laurea Triennale in Ingegneria Biomedica

□ malleting

- le otturazioni sono formate direttamente nella cavità stessa utilizzando come materiale foglie sottili d'oro puro: i foglietti vengono saldati insieme comprimendoli a temperatura ambiente
- l'unione tra gli strati metallici è provocata dalla diffusione termica degli atomi da uno strato all'altro → è necessario un contatto molto intimo tra i fogli ed è importantissimo evitare contaminazioni
- dato che l'oro metallico puro è molto morbido, questo tipo di protesi è necessariamente limitato ad aree non soggette a tensioni troppo forti

Biomateriali - Laurea Triennale in Ingegneria Biomedica

-11

altri biomateriali metallici applicati in casi particolari

Tantalio

- ☐ il tantalio è stato studiato per protesi su modelli animali → ha dimostrato di possedere elevata biocompatibilità
- □ tuttavia, a causa delle <u>scarse proprietà meccaniche</u> e della <u>elevata densità</u> (16.6 g/cm³) ha trovato solo limitato impiego nella fabbricazione di fili di sutura utilizzati in chirurgia plastica ed in neurochirurgia

Biomateriali – Laurea Triennale in Ingegneria Biomedica

-13

Biomateriali metallici – seconda parte

metallo trabecolare

- □ costituito da **tantalio** (98%) e da carbonio vetroso (2%)
- ☐ si ottiene attraverso l'infiltrazione ed il successivo deposito dei vapori di gas tantalio su un reticolato di carbonio

vetroso

□ è utilizzato nella produzione di componenti protesici in virtù della "porosità" ottimizzata, favorisce l'integrazione con il tessuto osseo

Biomateriali – Laurea Triennale in Ingegneria Biomedica

titanio e leghe del titanio

caratteristiche del titanio

□ <u>leggerezza</u>

pesa 40% meno dell'acciaio
ha una densità di 4.5 g/cm³
contro 7.9 g/cm³ per l'acciaio, 8.3 g/cm³ per il Vitalium®
(lega Co/Cr/Mo) e 9.2 g/cm³ per le leghe Co/Ni/Cr/Mo

- □ eccellenti proprietà meccaniche
- scarsa tossicità
- □ ottima biocompatibilità
- 🗖 assenza di proprietà magnetiche
- ☐ buona trasmissione del calore
- $\hfill \square$ buona resistenza agli acidi

Biomateriali – Laurea Triennale in Ingegneria Biomedica

2

Biomateriali metallici – seconda parte

Forme allotropiche del titanio

□ α-Ti

stabile fino a 882° C, reticolo $\underline{esagonale\ compatto}$

□ β-Ti

stabile a T > 882° C, reticolo *cubico a corpo centrato*

α Ti esagonale compatto

β Ti cubico a corpo centrato

Biomateriali – Laurea Triennale in Ingegneria Biomedica

Leghe del titanio

gli alliganti del titanio vengono classificati in base all'influenza che esercitano sulla transizione $\alpha{\to}\beta$

□ <u>elementi neutri</u>

non hanno influenza sulla temperatura di transizione

Biomateriali – Laurea Triennale in Ingegneria Biomedica

23

Biomateriali metallici – seconda parte

\square elementi α stabilizzanti

l'aggiunta degli alliganti comporta un aumento della temperatura della transizione $\alpha{\to}\beta$ rispetto a quella del titanio puro

nel caso delle leghe, si ha un intervallo di temperature

gli elementi α stabilizzanti possono essere di due tipi:

- interstiziali (O, C, N)
- sostituzionali (*alluminio*)

Biomateriali – Laurea Triennale in Ingegneria Biomedica

diagramma di fase Ti-Al

il fatto che l'alluminio stabilizzi la fase α è parzialmente spiegato dal fatto che l'alluminio ha un reticolo CFC il cui fattore di impaccamento è lo stesso del reticolo HCP del α -Ti

Biomateriali – Laurea Triennale in Ingegneria Biomedica

25

Biomateriali metallici – seconda parte

\square elementi β stabilizzanti

l'aggiunta degli alliganti abbassa la temperatura della transizione $\alpha \rightarrow \beta$ rispetto a quella del titanio puro

gli elementi β stabilizzanti possono essere di due tipi:

- isomorfi (<u>vanadio</u>, molibdeno, niobio) → la completa trasformazione α→β termina a T minore, il campo di stabilità della fase β è ampliato
- eutettoidi (non formano composti intermetallici)

Biomateriali – Laurea Triennale in Ingegneria Biomedica

diagramma di fase Ti-V

la grande solubilità del vanadio nella fase β si spiega con il fatto che sia il vanadio che il $\beta\textsc{-}Ti$ titanio hanno la stessa struttura CCC

Biomateriali – Laurea Triennale in Ingegneria Biomedica

27

Biomateriali metallici – seconda parte

- □ nella fabbricazione di protesi possono essere utilizzate quattro diverse qualità di titanio metallico, che differiscono tra loro per i contenuti di **ossigeno**, **ferro** e **azoto**, i cui valori devono essere attentamente controllati → soprattutto il contenuto d'ossigeno ha una grande influenza sulla duttilità e sulla resistenza del metallo
- □ esiste praticamente una sola lega a base di titanio diffusamente utilizzata in applicazioni biomediche è denominata **Ti6Al4V** contiene 5.5-6.5% di alluminio e 3.5-4.5% di vanadio

Biomateriali – Laurea Triennale in Ingegneria Biomedica

Composizione chimica del titanio e delle sua lega Ti6Al4V, ASTM F67, F136

		Leghe di Titanio					
Elemento	Qualità 1	Qualità 2	Qualità 3	Qualità 4	Ti6Al4V		
N	0,03	0,03	0,05	0,05	0,05		
C	0,10	0,10	0,10	0,10	0,08		
Н	0,015	0,015	0,015	0,015	0,0125		
Fe	0,20	0,30	0,30	0,50	0,25		
O	0,180	0,25	0,35	0,40	0,13		
Ti	Resto						

Biomateriali – Laurea Triennale in Ingegneria Biomedica

29

Biomateriali metallici – seconda parte

Proprietà meccaniche del titanio e delle sua lega Ti6Al4V, ASTM F136

		Leghe di Titanio			
Proprietà	Qualità 1	Qualità 2	Qualità 3	Qualità 4	Ti6Al4V
Carico a rottura (MPa)	240	345	450	550	860
Carico di snervamento (MPa)	170	275	380	485	795
Allungamento a rottura (%)	24	20	18	15	10
Strizione a rottura (%)	30	30	30	25	25

Biomateriali – Laurea Triennale in Ingegneria Biomedica

- □ tra le proprietà meccaniche del titanio commerciale e della lega Ti6Al4V, vi è un **modulo elastico** (100-110 GPa) che risulta *circa la metà di quello delle leghe del cobalto*
- □ altre caratteristiche dipendono poi dalle **impurezze** contenute nel materiale, il cui aumento <u>innalza la</u> <u>resistenza</u> e <u>riduce la duttilità</u>
- □ la **resistenza meccanica** del titanio e delle leghe varia da valori molto inferiori a quelli dell'acciaio 316, o delle leghe a base di cobalto, a valori quasi uguali a quelli dell'acciaio inox temprato e delle leghe Co/Cr/Mo

Biomateriali – Laurea Triennale in Ingegneria Biomedica

31

biocompatibilità

- □ la risposta infiammatoria dei tessuti al contatto con il titanio risulta modesta ed il **titanio** è pertanto considerato come *il più biocompatibile fra tutti i metalli*
- ☐ il titanio puro possiede caratteristiche migliori rispetto a quelle esibite dalle leghe che contengono elementi tossici come l'alluminio ed il vanadio
 - il titanio e i prodotti formati a seguito del rilascio di suoi ioni sono considerati non-tossici
 - alcune gravi patologie sono associate all'accumulo di alluminio
 - il rilascio di vanadio risulta responsabile di fenomeni di <u>carcinogenesi</u>

Biomateriali – Laurea Triennale in Ingegneria Biomedica

33

Biomateriali metallici – seconda parte

limitazioni

- ☐ il titanio ha una **scarsa resistenza al taglio** e tende a grippare quando entra in contatto di scorrimento con se stesso o con altri metalli
 - → meno adatto alla costruzione di piastre o simili
- □ <u>le superfici esposte all'attrito vengono rivestite con altri</u> materiali
 - (è classico il caso delle protesi articolari in titanio, o in lega di titanio, rivestite con materiale ceramico)

Biomateriali – Laurea Triennale in Ingegneria Biomedica

lavorazione del titanio

- ☐ il titanio è un elemento molto reattivo alle alte temperature: brucia con facilità in presenza d'ossigeno e l'ossigeno diffonde rapidamente nel titanio rendendolo fragile
- → la lavorazione ad alta T va realizzata in **atmosfera inerte**
- → ogni operazione di lavorazione o forgiatura a caldo deve essere condotta *al di sotto dei 925* °C
- → una procedura alternativa consiste nella lavorazione tramite il sistema di **fusione sotto vuoto**
- → nelle lavorazioni a macchina a temperatura ambiente, sono necessari attrezzi molto affilati e velocità basse d'esercizio (altrimenti il materiale tende a grippare a contatto con gli utensili usati per il taglio)
- → possibilità di lavorazione elettrochimica

Biomateriali – Laurea Triennale in Ingegneria Biomedica

3.5

Biomateriali metallici – seconda parte

passivazione del Titanio

le superfici di titanio esposte all'aria si ricoprono spontaneamente di uno strato di biossido (**TiO**₂) dello spessore di 3-6 nm

→ questo fenomeno è denominato **passivazione**

la passivazione conferisce al titanio e alle leghe una <u>elevata</u> <u>resistenza alla corrosione</u>, assai maggiore di quella di molti altri metalli e leghe

Biomateriali – Laurea Triennale in Ingegneria Biomedica

il titanio e le leghe sono largamente utilizzati per produrre: pompe cardiache artificiali involucri per pace-maker parti di valvole cardiache viti protesi articolari le leghe di titanio, che presentano migliori caratteristiche meccaniche, vengono preferite nella chirurgia ortopedica

leghe nickel/titanio

- □ possiedono una singolare proprietà denominata <u>memoria</u> <u>di forma</u> (**Shape Memory Effect SME**)
- ☐ il materiale che ha subito una deformazione ad una certa temperatura riprende la forma iniziale (impressa durante la lavorazione) se riscaldato a temperatura superiore

Biomateriali – Laurea Triennale in Ingegneria Biomedica

clips aneurismatici per chiudere l'aneurisma si usano clips in titanio, poste a livello del colletto dell'aneurisma, lasciando libere le arterie per consentire la normale della circolazione

✓ consolidata esperienza chirurgica (dal 1991)

cerebrale

✓ possibilità di intervenire su aneurismi molto piccoli/grandi

anestesia generale chirurgia invasiva costi elevati

Biomateriali – Laurea Triennale in Ingegneria Biomedic

Biomateriali metallici – seconda parte

fb.com/ScienceNaturePage

Biomateriali — Laurea Triennale in Ingegneria Biomedica

56

coiling endovascolare

inserimento di un catetere a livello inguinale per raggiungere l'aneurisma → il catetere contiene spirali di platino, che vengono posizionate all'interno dell'aneurisma per occluderlo

✓ costo inferiore

difficile gestione delle complicanze rischio di rottura non utilizzabile per piccoli aneurismi (< 3 mm) 20% recidive

Biomateriali – Laurea Triennale in Ingegneria Biomedic

57

Biomateriali metallici – seconda parte

stent endovascolare

- □ lo stent, inizialmente a T minore di quella corporea, è compresso da una membrana protettiva e inserito in un catetere
- ☐ dopo l'inserimento in vivo, la membrana è rimossa e l'aumento di temperatura fa si che lo stent si espanda recuperando la forma originaria

Biomateriali – Laurea Triennale in Ingegneria Biomedica

