UPMC Paris Universitas Paradigmes de Programmation Concurrente 51553

Cours 2 - Algèbre de processus

Carlos Agon - Romain Demangeon - Philippe Esling

22 septembre 2015

Calculus of Communicating Systems

Plan du cours

- Syntaxe et représentations graphiques
- Équivalence structurelle entre processus
- Sémantique opérationnelle entre processus
 - SOS (Structured Operational Semantic)
 - LTS (Labelled Transiction System)

Calculus of Communicating Systems

Calculus of Communicating Systems - Robin Milner (1980)

Concepts

- Les composants d'un système sont des automates qui communiquent avec d'autres automates
- Utilisé pour la modélisation de systèmes interactifs.

Le langage reconnu par ces automates est

Calculus of Communicating Systems

Calculus of Communicating Systems - Robin Milner (1980)

Concepts

- Les composants d'un système sont des automates qui communiquent avec d'autres automates
- Utilisé pour la modélisation de systèmes interactifs.

Le langage reconnu par ces automates est $(2p!.(tea? + 2p.coffee?))*2p!.(tea? + 2p!.coffee?) \neq 2p!.tea? + 2p!.2p!.coffee?$

Processus séquentiels

Définition

$$\mathcal{P}^{seq} ::= A\langle a_1, ..., a_n \rangle | \sum_{i \in I} \alpha_i . P_i$$

 $\alpha.P$ l'action α entraı̂ne le processus P

Si
$$I = \emptyset$$
 alors $P = 0$

On assume que tout processus peut être défini par une équation :

$$A(\vec{a}) =_{def} P_A$$

avec P_A une addition et $\vec{a} = a_1, ..., a_n$ tous différents

Exemples

$$A(a, b) =_{def} a.A\langle a, b\rangle + b.B\langle a, a\rangle$$

 $B(c,d) =_{def} c.d.0$ avec 0 la somme vide

Congruence structurelle

Si $\vec{b}=b_1,...,b_n$ (pas forcement différents) alors A $\langle \vec{b} \rangle$ est équivalent à $\{\vec{b}/\vec{a}\}P_A$

Congruence structurelle

Définition

Soit P et $Q\in\mathcal{P}^{seq}$ $P\equiv Q$ si on peut transformer l'un dans l'autre en remplaçant les occurrences de $A\langle\vec{b}\rangle$ par $\{\vec{b}/\vec{a}\}P_A$ (et vice-versa) pour un $A(\vec{a})=_{def}P_A$

Exemple:

soit
$$A(a,b) =_{def} a.A\langle a,b\rangle + b.B\langle a,a\rangle$$

$$B(c,d) =_{def} c.d.O$$
 alors
$$B\langle a,a\rangle \equiv a.a.O$$

$$A\langle a,b\rangle \equiv a.(a.A\langle a,b\rangle + b.B\langle a,a\rangle) + b.a.a.O$$

Systèmes de transition étiquettés Labelled Transition Systems (LTS)

Actions

$$\mathcal{N} = \{a,b,...\} \text{ et } \overline{\mathcal{N}} = \{\overline{a}|a \in \mathcal{N}\} \text{ avec } \mathcal{N} \cap \overline{\mathcal{N}} = \emptyset$$

 $\mathcal{L} = \mathcal{N} \cup \overline{\mathcal{N}} = Act$

Définition LTS

Labelled transition systems (LTS) sur Act = (Q, T) avec :

- Q un ensemble d'états
- \mathcal{T} une relation ternaire $\mathcal{T} \subseteq (\mathcal{Q} \times Act \times \mathcal{Q})$

On note
$$q \xrightarrow{\alpha} q'$$
 si $(q, \alpha, q') \in \mathcal{T}$

LTS de processus séquentiels

Définition

Labelled transition systems (LTS) sur Act avec :

- $-\mathcal{Q} = \mathcal{P}^{seq}$
- Si $P \equiv \sum_{i \in I} \alpha_i.P_i$ alors $\forall j \in I, P \xrightarrow{\alpha_i} P_i$

Exemple

Processus concurrents

- Comment un ou plusieurs processus interagissent?
- Distinction entre actions internes et externes

Flowgraphs

Interaction

- Une paire complémentaire de ports (a, \bar{a}) est un moyen d'interaction entre deux processus

Actions internes

A =
$$_{def}$$
 a.A'

B = $_{def}$ b. B'

A' = $_{def}$ \bar{b} . A

B' = $_{def}$ \bar{c} . B

- l'action a se produit et induit les processus A' | B
- l'action partagée se produit et induit A | B'
- a et \bar{c} dans n'importe quel ordre induisent A' | B

L'action partagée (interne, reaction) est notée au et $\mathsf{Act} =_{\mathit{def}} \mathcal{L} \cup au$

Exemple

The jobshop

Calculus of Communicating Systems (CCS)

Définition

$$\mathcal{P} ::= A\langle a_1, ..., a_n \rangle |\sum_{i \in I} \alpha_i.P_i| \quad P_1|P_2 \quad | \text{ new a } P \mid 0$$

Notation

On écrit a.b à la place de a.b.0 et $\nu a.P$ à la place de new a P

Réaction

Soit $P \equiv \bar{b}.A|b.B'$ alors $P \rightarrow A|B'$

Restriction

Si P = $(\nu a)a.b$ alors a est lié dans P. $(\nu a)a.b \equiv (\nu a')a'.b$

Réactions alternatives

Attention :
$$\nu a P | Q \equiv (\nu a P) | Q$$
 et non $\nu a (P | Q)$

Réaction

Soit
$$P = \nu a((a.Q_1 + b.Q_2)|\overline{a}.0)|(\overline{b}.R_1 + \overline{a}.R_2)$$
 alors

$$P
ightarrow
u a(Q_1|(\overline{b}.R_1+\overline{a}.R_2) ext{ et } P
ightarrow
u a(Q_2|\overline{a})|R_1 ext{ mais}$$

$$P \nrightarrow \nu a(Q_1|\overline{a})|R_2$$

Renommage

$$P \equiv \nu a'((a'.Q_1'+b.Q_2')|\overline{a'}.0)|(\overline{b}.R_1+\overline{a}.R_2)$$
 comme Q_1 et Q_2 peuvent avoir des a alors on doit les remplacer par : $Q_1'=\{a'/a\}Q_1$ et $Q_2'=\{a'/a\}Q_2$

CCS Syntaxe

Syntaxe

Soit $\mathcal{N} = \{a,b,c..\}$ on définit Act $= \{a,\overline{a},b,\overline{b},c...\} \cup \{\tau\}$ On définit l'ensemble de processus du CCS par :

- $D(\overrightarrow{x}) ::= P$
- $P := 0 \mid \alpha . P \mid D(\overrightarrow{V}) \mid P + P \mid P|P \mid \nu aF$
- $\alpha ::= a|\overline{b}|\tau$

Quelques formules

- a.b.A + B
- $(\nu b)(a.0 + \overline{a}.0)$
- $(\nu\tau)A + B$

Noms libres

- FN (0) = \emptyset
- FN $(\alpha) = \emptyset$ si $\alpha = \tau$ ou a si $\alpha \in \{\overline{a}, a\}$
- FN $(\alpha.P)$ = FN (α) \cup FN (P)
- $FN(P|Q) = FN(P) \cup FN(Q)$
- $FN(P+Q) = FN(P) \cup FN(Q)$
- FN (νaP) = FN $(P) \setminus \{a\}$
- $FN(P\{a/b\}) = FN(P)\{a/b\}$
- FN ($D\langle v_1,...,v_n\rangle)=\{v_1,...,v_n\}$ sans répétitions

Substitution

Soient $a_1, ..., a_n, b_1, ..., b_n$ des noms pas liés dans P, $P\{a_1/b_1, ..., a_n/b_n\}$ dénote la substitution simultanée des b_i par des a_i dans P.

- $\tau\{a_1/b_1,...,a_n/b_n\} = \tau$
- $b\{..., a/b, ...\} = a$
- $c\{a_1/b_1,...,a_n/b_n\} = c \text{ si } c \notin \{b_1,..,b_n\}$
- $\alpha.P\{a_1/b_1,...,a_n/b_n\} = \alpha\{a_1/b_1,...,a_n/b_n\}.P\{a_1/b_1,...,a_n/b_n\}$
- $(P+Q)\{a_1/b_1,...,a_n/b_n\} = P\{a_1/b_1,...,a_n/b_n\} + Q\{a_1/b_1,...,a_n/b_n\}$
- $(P|Q)\{a_1/b_1,...,a_n/b_n\} = P\{a_1/b_1,...,a_n/b_n\}|Q\{a_1/b_1,...,a_n/b_n\}|$
- $(\nu c)P\{a_1/b_1,...,a_n/b_n\} = (\nu c)P\{a_1/b_1,...,a_n/b_n\}$ et $c \notin \{a_1,...,a_n,b_1,...,b_n\}$
- $\bullet \ \ D\langle v_1,..,v_m\rangle\{a_1/b_1,...,a_n/b_n\} = D\langle v_1\{a_1/b_1,...,a_n/b_n\},...,v_m\{a_1/b_1,...,a_n/b_n\}\rangle$

Congruence structurelle

Définition context

```
Un contexte de processus \mathcal C est une expression avec un trou []. \mathcal C ::= [\ ] \ | \ \alpha.\mathcal C + \mathcal M \ | \ \text{new a} \mathcal C \ | \ \mathcal C | P \ | \ P | \mathcal C Les contextes élémentaires sont : \alpha.[\ ] + \mathcal M, new a [], [] | P et P | [] \mathcal C [Q] dénote le fait de remplir le contexte \mathcal C avec le processus Q.
```

Définition Congruence de processus

Soit \cong une relation d'équivalence sur $\mathcal P$ alors \cong est une congruence de processus si elle est preservée par tous les contextes élémentaires,

c-à-d si $P \cong Q$ alors :

$$\alpha.P + M \cong \alpha.Q + M$$

new a P \cong new a Q
P | R \cong Q | R
R | Q \cong R | Q

 \cong est une congruence structurelle ssi $orall \mathcal{C}$ $P\cong Q\Rightarrow \mathcal{C}[P]\cong \mathcal{C}[Q]$

Congruence structurelle

Définition congruence structurelle

Un congruence structurelle (\equiv) est une congruence de processus sur ${\mathcal P}$ determinée par les équations suivantes :

- \bullet α -conversion
- ② Permutation de termes dans une somme $P + Q \equiv Q + P$; $P + 0 \equiv P$; $P + (Q + R) \equiv (P + Q) + R$

3 Permutation de termes dans un produit
$$P|Q \equiv Q|P$$
; $P|0 \equiv P$; $P|(Q|R) \equiv (P|Q)|R$

- (ν a) α . $P \equiv \alpha$.(ν a)P si $\alpha \neq a$

- $oldsymbol{0}$ $u a(P+Q) \equiv P + \nu aQ \text{ si a } \notin FN(P)$
- $0 \quad \nu a = 0$

Règles de réaction

Règles de reaction

1 TAU :
$$\tau P + M \rightarrow P$$

2 REACT :
$$\overline{(a.P+M)|(\overline{a}.Q+N) \rightarrow P|Q}$$

4 RES :
$$\frac{P \to P'}{\nu a P \to \nu a P'}$$

3 STRUCT :
$$\frac{P \to P'}{Q \to Q'}$$
 if $P \equiv Q$ et $P' \equiv Q'$

Déduction

Soit
$$P = \nu a((a.Q_1 + b.Q_2)|\overline{a})|(\overline{b}.R_1 + \overline{a}.R_2)$$

On veut prouver que à partir de P on peut déduire $\nu aQ_1|(\overline{b}.R_1 + \overline{a}.R_2)$

Déduction

Soit
$$P = \nu a((a.Q_1 + b.Q_2)|\overline{a})|(\overline{b}.R_1 + \overline{a}.R_2)$$

On veut prouver que à partir de P on peut déduire $\nu aQ_1|(\overline{b}.R_1 + \overline{a}.R_2)$

$$\frac{\frac{(a.Q_1+b.Q_2)|\overline{a}\rightarrow Q_1|\mathbf{0}}{(a.Q_1+b.Q_2)|\overline{a}\rightarrow Q_1}}{(\mathsf{REACT})} \frac{(\mathsf{REACT})}{(\mathsf{STRUCT})} \frac{(\mathsf{REACT})}{\nu a((a.Q_1+b.Q_2)|\overline{a})\rightarrow \nu a.Q_1} (\mathsf{RES})}{\nu a((a.Q_1+b.Q_2)|\overline{a})|(\overline{b}.R_1+\overline{a}.R_2)\rightarrow \nu aQ_1|(\overline{b}.R_1+\overline{a}.R_2)} (\mathsf{PAR})$$

LTS et CCS

Définition LTS pour un processus P

Le LTS associé à un processus $P = \langle Q, T \rangle$ avec :

- $Q = \{P' \mid P \xrightarrow{*} P' \text{ est possible}\}$
- T = {P' $\xrightarrow{\alpha}$ P" | P' $\xrightarrow{\alpha}$ P" est possible \land P', P" \in Q }

Transitions et chemins

- Une transition P' $\xrightarrow{\alpha}$ P" est possible si on peut l'inférer à partir de règles de transition.
- Un chemin $P_0 \xrightarrow{+} P_n$ est possible s'il existe $P_1, ..., P_{n-1}, \alpha_1, ..., \alpha_n$ t.q. $P_0 \xrightarrow{\alpha_1} P_1$; $P_i \xrightarrow{\alpha_{i+1}} P_{i+1}$; $P_{n-1} \xrightarrow{\alpha_n} P_n$ sont toutes possibles.
- Un chemin $P' \xrightarrow{*} P''$ est possible si $P' \equiv P''$ ou $P' \xrightarrow{+} P''$

Règles de transition

$$\frac{P \xrightarrow{\overline{a}} P' \qquad Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'} \text{ (sync)}$$

$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \text{ (par)} \qquad \frac{P \xrightarrow{\overline{a}} P'}{P+Q \xrightarrow{\alpha} P'} \text{ (sum)}$$

$$\frac{P \xrightarrow{\alpha} P' \qquad \alpha \notin \{\overline{a}, a\}}{\nu a P \xrightarrow{\alpha} \nu a P'} \text{ (res)} \qquad \frac{P \xrightarrow{\alpha} P'}{P[a/b] \xrightarrow{\alpha[a/b]} P' [a/b]} \text{ (ren)}$$

$$\frac{P\{v_1/x_1, ..., v_n/x_n\} \xrightarrow{\alpha} P'}{D\langle v_1, ..., v_n\rangle \xrightarrow{\alpha} P'} \text{ avec } D(x_1, ..., x_n) = P}{D\langle v_1, ..., v_n\rangle \xrightarrow{\alpha} P'} \text{ (call)}$$

$$\frac{P \equiv P' \qquad P \xrightarrow{\alpha} Q \qquad Q \equiv Q'}{P' \xrightarrow{\alpha} Q'} \text{ (struct)}$$

Déduction

```
Soient :  \begin{array}{ll} \mathsf{A} =_{\mathit{def}} a.A' & \mathsf{A'} =_{\mathit{def}} \overline{b}.A \\ \mathsf{B} =_{\mathit{def}} b.B' & \mathsf{B'} =_{\mathit{def}} \overline{c}.B \\ \mathsf{On} \ \mathsf{veut} \ \mathsf{prouver} \ \nu b(A'|B) \xrightarrow{\tau} \nu b(A|B') \end{array}
```

Déduction

Soient :
$$A =_{def} a.A' \qquad A' =_{def} \overline{b}.A$$

$$B =_{def} b.B' \qquad B' =_{def} \overline{c}.B$$
 On veut prouver $\nu b(A'|B) \xrightarrow{\tau} \nu b(A|B')$
$$\qquad \qquad \qquad \frac{\overline{b}.A \xrightarrow{\overline{b}} A}{A' \xrightarrow{\overline{b}} A} \text{ (call)} \qquad \frac{b.B' \xrightarrow{\overline{b}} B'}{B \xrightarrow{\overline{b}} B'} \text{ (sync)}$$

$$\qquad \qquad \qquad \frac{A'|B \xrightarrow{\tau} A|B'}{\nu b(A'|B) \xrightarrow{\tau} \nu b(A|B')} \text{ (res)}$$

Réplication

CCS avec réception répliquée est donné par la syntaxe suivante : $P := O \mid P \mid P \mid \sum_i \alpha_i.P_i \mid (\nu a)P \mid !a.P$

avec la règle :
$$(\overline{a}.Q \mid !a.P) \rightarrow (Q \mid P \mid !a.P)$$

$$!a.(\overline{b} \mid \overline{b} \mid \overline{c}) \mid !b.(\overline{c} \mid \overline{c}) \mid \overline{a} \mid \overline{a} \mid \overline{b} \mid c$$

Traduction de CCS en Petri Nets

Références

Robin Milner

"Communicating and mobile systems : the π -calculus"