

1.
$$g(x) = x^2 + 2x + 4$$
, $f(x) = 4x^5 + 2x^4 + x^3 + 1$
 $f(x) = (4x^3 + 4x^2 + 2x)g(x) + (2x + 1)$
 $g(x) = (3x + 2)(2x + 1) + (2)$
 $2 = g(x) - (2x + 1)(3x + 2) = g(x) - (3x + 2)(f(x) - (4x^3 + 4x^2 + 2x)g(x)) =$
 $= (-3x - 2)f(x) + (12x^4 + 20x^3 + 14x^2 + 4x + 1)g(x)$
 $g^{-1} \mod f(x) = 2x^4 + 4x^2 + 4x + 1$

2. Фактор кільце є полем, тоді й тільки тоді, коли поліном є незвідним. У випадку з x^2+k , поліном є незвідним коли в нього нема коренів. Тобто перевіримо x^2+k , $k\in\mathbb{Z}_7$.

(0)
$$(0^2 + k) \mod 7 = 0 \Rightarrow k = 0$$

(1)
$$(1^2 + k) \mod 7 = 0 \Rightarrow k = 6$$

(2)
$$(2^2 + k) \mod 7 = 0 \Rightarrow k = 3$$

(3)
$$(3^2 + k) \mod 7 = 0 \Rightarrow k = 4$$

(4)
$$(4^2 + k) \mod 7 = 0 \Rightarrow k = 5$$

(5)
$$(5^2 + k) \mod 7 = 0 \Rightarrow k = 3$$

(6)
$$(6^2 + k) \mod 7 = 0 \Rightarrow k = 6$$

Отже нам підходять усі k, окрім $k \in \{0, 3, 4, 5, 6\}$. Тобто k = 1, 2

3.

векторна ф-ма	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
поліноми	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$

•	0	1	x	x+1	x^2	$x^{2} + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
x+1	0	x+1	$x^2 + x$	$x^{2} + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x+1	$x^2 + x + 1$	$x^2 + x$	x^2	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x+1	$x^2 + 1$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x+1	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x^2	x+1