

بهنام خدا پوشش دیسک واحد ارائه کتبی - الگوریتمهای پیشرفته نام و نام خانوادگی

چکیده

امروزه، زنجیرههای تأمین با چالشهای متعددی از جمله عدم شفافیت، جعل کالا و ردیابی دشوار محصولات روبرو هستند. این مسائل، به ویژه در صنایع حساس، اعتماد مصرف کنندگان را کاهش داده و خسارات اقتصادی قابل توجهی را به تولید کنندگان معتبر وارد می سازد. این پروژه، با هدف غلبه بر این چالشها، به طراحی و پیاده سازی یک سامانه زنجیره تأمین غیرمتمر کز مبتنی بر فناوری زنجیره بلوکی می پردازد. سامانه پیشنهادی با ایجاد یک دفتر کل توزیع شده، شفاف، و تغییرناپذیر، ردیابی کامل چرخه حیات محصول از تولید تا مصرف کننده نهایی را ممکن می سازد.

هسته اصلی این سامانه، یک قرارداد هوشمند است که با زبان برنامهنویسی Solidity بر روی یک شبکه سازگار با ماشین مجازی اتریوم (EVM) پیادهسازی شده است. در این قرارداد از استاندارد توکن ERC1155 استفاده شده که امکان مدیریت بهینه و همزمان محصولات مثلی و غیرمثلی را با هزینه تراکنش کمتر فراهم می کند. یکی از ویژگیهای کلیدی این پروژه، تضمین صحت فرادادهها از طریق تولید هش Keccak برای هر محصول است. این مکانیزم به تمام ذینفعان زنجیره اجازه می دهد تا اصالت و اطلاعات محصول را در هر مرحله اعتبارسنجی کنند. این سیستم شامل نقشهای دسترسی متفاوتی مانند تولیدکننده، توزیع کننده، خردهفروش و گمرک است که هر یک مجوزهای خاص خود را برای ثبت، انتقال یا ابطال محصول دارند. علاوه بر این، یک قابلیت نوآورانه برای محاسبه خود کار مالیات در هر مرحله از انتقال مالکیت در قرارداد هوشمند تعبیه شده است.

برای تضمین امنیت و کارایی قرارداد هوشمند، مجموعهای از آزمونهای جامع واحد و یکپارچهسازی با استفاده از فریمFoundry توسعه داده شده است. رابط کاربری سامانه به صورت یک برنامه وب مدرن با بهره گیری از کتابخانه React و ابزار ساخت Vite طراحی گردیده و اتصال به کیف پولهای دیجیتال کاربران از طریق هوکهای Wagmi مدیریت می شود. این امر به مصرف کنندگان اجازه می دهد تا با اسکن یک کد QR، به سادگی تاریخچه کامل و تأییدیه اصالت محصول را مشاهده نمایند.

در نهایت، این پروژه یک راهکار عملی و جامع ارائه میدهد که با افزایش شفافیت، قابلیت ردیابی و تضمین اصالت کالا، میتواند به طور مؤثری با تقلب مبارزه کرده و اعتماد را به اکوسیستم زنجیره تأمین بازگرداند.

واژههای کلیدی: زنجیره بلوکی، زنجیره تأمین، قرارداد هوشمند، Solidity ،ERC1155، اصالت کالا، React ،Foundry.

فهرست مطالب

2	مقدمه و کلیات طرح	1
	بیان مسئله و اهمیت موضوع	1-1
	بحران اعتماد و شفافیت در زنجیرههای تأمین سنتی	1-1-1
	آسیبپذیریهای معماری در سیستمهای مدیریت متمرکز ۶	
	پیامدهای اقتصادی و اجتماعی	T-1-1
	فناوری زنجیره بلوکی به عنوان راهکار	7-1
	نگاهی تاریخی به فناوری زنجیره بلوکی	1-7-1
	مبانی رمزنگاری در زنجیره بلوکی	
	قراردادهای هوشمند: انقلابی در توافقات دیجیتال ۱۱	٣-٢-١
	زنجیره بلوکی به عنوان راهکار نوین در زنجیره تأمین ۱۲	4-7-1
	اهداف و دستاوردهای پروژه	٣-١
	هدف اول: ایجاد یک سیستم جامع برای ردیابی شفاف محصولات ۱۴	1-4-1
	۱۵ $ERC1155$ هدف دوم: مدیریت بهینه داراییها با استفاده از استاندارد	4-1
	هدف سوم: تضمین صحت و یکپارچگی فرادادهها با ۱۶	1-4-1
	هدف چهارم: خودکارسازی فرآیندهای تجاری و مالی	۵-۱
	چالشهای اصلی پروژه	8-1
	چالشهای فنی: مقیاسپذیری و هزینه	1-8-1
	۱۹ (Gas) و هزینه تراکنش (EVM) مقدمهای بر معماری ماشین مجازی اتریوم	۲-۶-۱
	FRC در مقیاس بزرگ ERC در مقیاس بزرگ استاندارد و تا کا در مقیاس برگ در در مقیاس بزرگ استاندارد و تا کا در مقیاس بزرگ در در مقیاس بزرگ در در در در در در مقیاس برگ در	۳-۶-۱
	چالش ذخیرهسازی دادهها بر روی زنجیره	4-8-1
	. اهکارهای بالقوه برای غلبه بر چالش فنی	

	١١	چالشهای امنیتی در سیستمهای عیرمتمر دز	٧ – ١
		امنیت قرارداد هوشمند: کد، قانون است	1-4-1
	۲۲	امنیت فراداده و مکانیزم تأیید هش	۸-۱
		بردارهای حمله به فراداده	1-1-1
		امنیت کلید خصوصی کاربر	۲-۸-۱
	74		9-1
		فاصله دانش و موانع ذهنی	1-9-1
		طراحی تجربه کاربری برای انتزاع پیچیدگی ۲۵	
		اهمیت آموزش و پشتیبانی	7-9-1
	۲۷	۱ چالشهای قانونی و نظارتی	
		۱ ابهام در ماهیت حقوقی توکنها	
	۲۷	۱ قوانین مربوط به ارزهای دیجیتال و پرداخت	
		۱ حریم خصوصی و حفاظت از دادهها	
		۲ مسئولیت پذیری در یک محیط غیرمتمرکز ۲۸	
۲۸		مرور پژوهشهای پیشین و سامانههای مشابه	۲
	۲۸	تحلیل سامانههای سنتی و راهکارهای دیجیتال غیربلاکچینی	
		معماری سیستمهای اطلاعاتی متمرکز در زنجیره تأمین	
		نسل اول دیجیتالیسازی: فناوریهای ردیابی و شناسایی	
		شناسایی با فرکانس رادیویی (RFID)	
		جمع بندی: چرا راهکارهای سنتی و دیجیتال اولیه کافی نیستند؟	
	۳۵	بررسی پروژههای زنجیره تأمین مبتنی بر زنجیره بلوکی	
		نسل اول راهکارها: تمرکز بر شفافیت و پلتفرمهای خصوصی	
		نسل دوم راهکارها: استفاده از شبکههای عمومی و توکنیزهسازی ۴۰	
		تحلیل شکاف پژوهشی و جایگاه نوآورانه پروژه حاضر ۴۶	
	۴٧	تحلیل شکاف پژوهشی و ارائه نوآوری پروژه	
		شناسایی شکافهای کلیدی در ادبیات تحقیق ۴۸	
		ارائه راهکار نوآورانه پروژه: یک معماری سنتز شده	
		جمع بندی: جایگاه پروژه به عنوان یک راهکار نسل سوم	
58		معماری و روش پیادهسازی سامانه	٣

	مقدمه و انتخاب فناوریها	1-4
	توجیه انتخاب فناوریهای لایه زنجیره بلوکی	1-1-4
	توجیه انتخاب فناوریهای لایه ذخیرهسازی و کاربری	7-1-4
	معماری کلان سامانه	۲-۳
	معماری سه لایه سیستم	1-7-4
	پیاده سازی لایه زنجیره بلوکی (Backend) پیاده سازی لایه زنجیره بلوکی	٣-٣
	ساختار کلی و وراثت قرارداد	1-4-4
	نقشها و کنترل دسترسی (Control Access) نقشها و کنترل دسترسی	7-4-4
	ساختارهای داده اصلی (Structures Data Core) ساختارهای	٣-٣-٣
	ساختار داده محصول (Struct Product) ساختار داده	
	ساختار داده تاریخچه مالکیت (Struct OwnershipRecord) ساختار	۵-۳-۳
	مديريت چرخه حيات محصول	
	مدیریت مالکیت و تاریخچه	
	توابع خواندنی و بازیابی دادهها	
	$99 \dots \dots \dots \dots (Off-chain)$ پیادهسازی لایه ذخیرهسازی خارج از زنجیره	4-4
	انتخاب $IPFS$ و سرویس پینینگ $PIRTata$ انتخاب انتخاب استویس پینینگ	1-4-4
	فرآیند آپلود فایل و فراداده	7-4-4
	ساخت و اعتبارسنجی فراداده	
	پیادهسازی لایه کاربری (Frontend) پیادهسازی لایه کاربری	۵-۳
	پروژهبندی و تنظیمات اولیه	1-0-4
	مدیریت اتصال به کیف پول و شبکه	۲-۵-۳
	کامپوننتها و صفحات اصلی	۳-۵-۳
	محیط توسعه و راهبرد آزمون	۶-۳
	Vپشته توسعه و آزمون $Backend$ (فریمورک $Foundry$	1-8-4
	راهبرد آزمون لایه کاربری (Frontend)	۲-۶-۳
/۸	1et 1 1-71.+ 1	¢
<i>,</i> ,	ارزیابی و تحلیل نتایج	
	معیارها و محیط ارزیابی	
	مقدمه: چارچوب ارزیابی یک سامانه غیرمتمرکز	
	بعد اول: ارزیابی صحت عملکرد و کارایی	7-1-4

		۸۲	بعد دوم: ارزیابی امنیت و استحکام	7-1-4
		۸۴	بعد سوم: ارزیابی کاربرپذیری و تجربه کاربری	4-1-4
		۸۶	بعد چهارم: تحلیل اقتصادی و عملیاتی	۵-1-۴
۸٧			جمعبندی و پیشنهاد برای کارهای آینده	۵
	٨٨		جمعبندی و مرور دستاوردها	1-0
		۸۸	مقدمه: بازگشت به مسئله اصلی	1-1-0
			خلاصه جامع پژوهش	
		۸۹	تحلیل دستاوردهای کلیدی پروژه	٣-1- Δ
		91	پاسخ نهایی به سؤالات تحقیق	4-1-0
	۹۲	ينده	محدودیتهای پروژه و پیشنهاد برای کارهای آ	۲-۵
		97	تحلیل محدودیتهای پژوهش	1-7-0
		۹۳	نقشه راه برای توسعههای آینده	۲-۲-۵

۱ مقدمه و کلیات طرح

۱-۱ بیان مسئله و اهمیت موضوع

زنجیره تأمین، شبکهای پیچیده و حیاتی از سازمانها، افراد، فعالیتها، اطلاعات و منابع است که در حرکت یک محصول یا خدمت از تأمین کننده به مصرف کننده نهایی نقش دارد. این زنجیره نه تنها جریان فیزیکی کالاها، بلکه جریان اطلاعات و مالی را نیز در بر می گیرد. کارایی و سلامت زنجیره تأمین به عنوان یکی از ارکان اساسی اقتصاد مدرن، نقشی مستقیم در رشد اقتصادی، ثبات بازار و رفاه اجتماعی یک کشور ایفا می کند. یک زنجیره تأمین کارآمد، هزینهها را کاهش می دهد، دسترسی مصرف کنندگان به کالاها را تسهیل می کند و مزیت رقابتی برای تولید کنندگان داخلی در بازارهای جهانی ایجاد می نماید.

با وجود این اهمیت استراتژیک، صنعت زنجیره تأمین در ایران و بسیاری از نقاط جهان با چالشها و مشکلات ساختاری عمیقی مواجه است که کارایی و اعتبار آن را به شدت زیر سؤال برده است. این مشکلات صرفاً به ناکارآمدیهای لجستیکی محدود نمی شود، بلکه یک بحران جدی در شفافیت، اعتماد و امنیت را شامل می گردد که تمام بازیگران این اکوسیستم، از تولیدکننده تا مصرف کننده، را تحت تأثیر قرار می دهد.

۱-۱-۱ بحران اعتماد و شفافیت در زنجیرههای تأمین سنتی

یکی از بزرگترین چالشهای موجود، در فرآیندهای زنجیره تأمین است. این عدم شفافیت، بستری مناسب برای بروز مشکلات متعددی فراهم آورده است که در ادامه به تفصیل بررسی میشوند:

1-1-1-1 گسترش پدیده جعل و تقلب در محصولات جعل محصولات یکی از مغربترین پیامدهای یک زنجیره تأمین غیرشفاف است. این معضل دیگر به کالاهای لوکس محدود نیست و دامنه آن به حوزههای حیاتی مانند صنایع تولیدی و غذایی نیز کشیده شده است. کالاهای تقلبی نه تنها با ارائه کیفیت نازل به اعتبار برندهای معتبر آسیب میزنند و موجب خسارات اقتصادی هنگفت میشوند، بلکه در موارد حساس مانند دارو و قطعات صنعتی، میتوانند سلامت و ایمنی مصرف کنندگان را به طور جدی به خطر اندازند. در یک سیستم سنتی، هنگامی که یک محصول از کارخانه خارج میشود، ردیابی دقیق آن در هر مرحله از توزیع، انبارداری و فروش تقریبا غیرممکن است. این گسست اطلاعاتی، به عوامل سودجو اجازه میدهد تا کالاهای تقلبی را به راحتی وارد چرخه توزیع کرده و به دست مصرف کننده برسانند.

1-1-1- نوسانات کیفیت و عدم امکان ریشه یابی فقدان یک سیستم ردیابی یکپارچه، کنترل و تضمین کیفیت محصول در طول زنجیره را به امری دشوار تبدیل کرده است. یک محصول ممکن است در مرحله تولید از کیفیت بالایی برخوردار باشد، اما به دلیل شرایط نگهداری نامناسب در انبار، حملونقل غیراصولی یا تأخیر در توزیع، کیفیت خود را از دست بدهد. در سیستمهای سنتی، زمانی که یک مصرف کننده با محصولی بی کیفیت مواجه می شود، ریشه یابی دقیق اینکه کدام حلقه از زنجیره مسئول این افت کیفیت بوده، بسیار پیچیده و گاهی ناممکن است. این امر، پاسخگو نگه داشتن عاملان را دشوار کرده و از بهبود مستمر فرآیندها جلوگیری می کند.

1-1-1- عدم شفافیت در مسیر واردات و توزیع در زنجیرههای تأمین بینالمللی، کالاها از مراحل متعددی مانند گمرک، شرکتهای حملونقل مختلف و انبارهای متعدد عبور می کنند. هر یک از این مراحل می تواند نقطه بالقوهای برای بروز فساد، تأخیرهای بی دلیل و ورود کالاهای قاچاق باشد. کمبود شفافیت در این مسیر، نظارت دقیق بر اصالت و سلامت کالا را برای نهادهای نظارتی و همچنین واردکنندگان دشوار می از د.

۱-۱-۲ آسیبپذیریهای معماری در سیستمهای مدیریت متمرکز

ریشه بسیاری از مشکلات ذکر شده، در معماری فنی سیستمهای مدیریتی نهفته است که در حال حاضر بر زنجیرههای تأمین حاکم هستند. این سیستمها غالباً بر پایه پایگاههای داده متمرکز طراحی شدهاند که هر

سازمان یا شرکت، دادههای خود را در سیلوهای اطلاعاتی مجزا نگهداری میکند. این معماری دارای نقاط ضعف بنیادینی است:

- آسیب پذیری در برابر دستکاری: در یک سیستم متمرکز، یک نهاد واحد (صاحب سرور) کنترل کاملی بر روی اطلاعات دارد. این موضوع، داده ها را هم در برابر حملات سایبری خارجی و هم در برابر دستکاریهای داخلی توسط افراد دارای مجوز، به شدت آسیب پذیر می کند. یک تغییر کوچک و غیرقابل ردیابی در داده های مربوط به تاریخ تولید یا مبدأ کالا، می تواند کل زنجیره را با اطلاعات نادرست تغذیه کند.
- عدم وجود یک منبع حقیقت واحد (SingleSourceofTruth): هر یک از شرکت کنندگان در زنجیره تأمین (تولیدکننده، شرکت حملونقل، توزیع کننده، خردهفروش) پایگاه داده و سیستم مدیریتی خود را دارد. این جزیرهای بودن اطلاعات باعث میشود که هماهنگسازی دادهها بین این سیستمها به صورت دستی، با تأخیر و با احتمال بالای خطا انجام شود. این نبود یکپارچگی، منجر به ناکارآمدیهای عملیاتی و عدم امکان مشاهده یک تصویر کامل و دقیق از وضعیت لحظهای یک محصول میشود.
- پیچیدگی و هزینه بالا: نگهداری و تأمین امنیت زیرساختهای متمرکز، به خصوص برای شرکتهای کوچک و متوسط، هزینهبر و پیچیده است. این در حالی است که تعامل و یکپارچهسازی این سیستمهای ناهمگون نیز خود به پروژههای نرمافزاری گرانقیمت و زمانبر نیاز دارد.

۱-۱-۳ پیامدهای اقتصادی و اجتماعی

مجموعه این چالشها، پیامدهای گستردهای برای اقتصاد و جامعه به همراه دارد. مهمترین پیامد، است. زمانی که مصرفکنندگان نتوانند به اصالت و کیفیت کالایی که خریداری میکنند اطمینان داشته باشند، تمایل آنها برای خرید محصولات داخلی و حمایت از برندهای معتبر کاهش می یابد. این امر مستقیماً به تولید ملی و اعتبار برندها لطمه می زند.

از منظر اقتصادی، ناکارآمدیهای موجود در زنجیره تأمین منجر به افزایش هزینههای عملیاتی، اتلاف منابع و کاهش قدرت رقابتپذیری کسبوکارها در سطح ملی و بینالمللی میشود. در نهایت، این مسائل نشان میدهند که مشکلات موجود در زنجیره تأمین، سطحی و قابل حل با راهکارهای مقطعی نیستند، بلکه ریشه در یک ضعف ساختاری عمیق در معماری اعتماد و جریان اطلاعات دارند. بنابراین، برای عبور از این بحران، نیاز به یک تغییر پارادایم اساسی و بهره گیری از فناوریهای نوینی است که بتوانند شفافیت، امنیت و تغییرناپذیری را به اکوسیستم باز گردانند. اهمیت این موضوع، ضرورت تحقیق و توسعه راهکارهای جایگزین، مانند آنچه در این پروژه ارائه خواهد شد را دوچندان می کند.

۱–۲ فناوری زنجیره بلوکی به عنوان راهکار

در پاسخ به چالشهای عمیق و ساختاری حاکم بر زنجیرههای تأمین سنتی، که در بخش پیشین به تفصیل بررسی شد، نیاز به یک تغییر پارادایم اساسی احساس میشود. راهکارهای مقطعی و بهبودهای جزئی در سیستمهای متمرکز، قادر به حل ریشهای بحران اعتماد و شفافیت نیستند. در این میان، فناوری زنجیره بلوکی (۵۵۵۵۵۵۵۵۵۱۱) به عنوان یک رویکرد نوین و بنیادین، ظرفیتهای بینظیری برای بازمهندسی فرآیندهای زنجیره تأمین ارائه میدهد. این فناوری صرفاً یک ابزار جدید نیست، بلکه یک معماری کاملاً متفاوت برای ثبت، اشتراک گذاری و مدیریت اطلاعات است که میتواند شفافیت، امنیت و کارایی را به طور همزمان به اکوسیستم تزریق کند. در ادامه، به بررسی ابعاد مختلف این فناوری، از تاریخچه و مبانی فنی آن گرفته تا کاربرد مستقیم آن در قالب قراردادهای هوشمند، میپردازیم تا درک عمیق تری از چرایی انتخاب آن به عنوان راهکار اصلی این پروژه حاصل شود.

۱-۲-۱ نگاهی تاریخی به فناوری زنجیره بلوکی

برای درک اهمیت و جایگاه امروزی زنجیره بلوکی، باید به سیر تکاملی اینترنت و نیازهایی که در هر دوره به وجود آمد، نگاهی بیندازیم. این تاریخچه به ما نشان میدهد که زنجیره بلوکی، پاسخی طبیعی به محدودیتهای نسلهای پیشین وب بوده است.

1-۲-۱ از وب ۱.۰ تا بحران تمرکزگرایی در وب ۰.۲ دوران اولیه اینترنت، معروف به وب ۱.۰ (تقریبا از ۱۹۹۱ تا ۲۰۰۴)، به «وب فقط خواندنی» شهرت داشت. در این دوره، محتوا عمدتاً ایستا بود و توسط تعداد محدودی از سازمانها و افراد تولید و بر روی وبسایتها منتشر می شد. کاربران عمدتاً مصرف کنندگان غیرفعال اطلاعات بودند و تعامل چندانی وجود نداشت.

با ظهور وب ۲.۰، پارادایم به کلی تغییر کرد و «وب تعاملی و اجتماعی» متولد شد[۱]. پلتفرمهایی مانند فیسبوک، اینستاگرام و یوتیوب به کاربران عادی این قدرت را دادند که به سادگی و بدون نیاز به دانش فنی، خود به تولیدکنندگان محتوا تبدیل شوند. این تحول، منجر به انفجار تولید محتوا و ایجاد شبکههای اجتماعی گسترده شد. با این حال، این آزادی و سهولت، هزینهای پنهان به همراه داشت: تمرکزگرایی شدید قدرت و داده. معماری وب ۲.۰ بر پایه سرورهای متمرکز شرکتهای بزرگ بنا شده است. این شرکتها با ارائه خدمات رایگان، کاربران را جذب کرده و در ازای آن، به بزرگترین دارایی آنها، یعنی دادههای شخصی شان، دسترسی پیدا کردند. مدل کسبوکار این غولهای فناوری، عمدتاً بر دو پایه استوار شد: تبلیغات هدفمند یا فروش مستقیم اطلاعات کاربران به اشخاص ثالث[۲]. این ساختار متمرکز، مشکلات بنیادینی را به وجود آورد:

• مالکیت داده: کاربران، مالک واقعی دادههای خود نبودند و کنترلی بر نحوه استفاده از آن نداشتند.

- سانسور و کنترل: شرکتهای متمرکز میتوانستند به صورت سلیقهای محتوا را حذف کرده یا دسترسی کاربران را مسدود کنند.
- نقطه شکست واحد (SinglePointofFailure): تمرکز دادهها بر روی سرورهای یک شرکت، آنها را به هدفی جذاب برای حملات سایبری تبدیل کرد و از کار افتادن این سرورها به معنای قطع شدن سرویس برای میلیونها کاربر بود.

۱-۲-۱-۲ ظهور بیت کوین و مفهوم عدم تمرکز در چنین فضایی، نیاز به سیستمی که بتواند اعتماد و تعامل را بدون نیاز به یک واسطه متمرکز فراهم کند، به شدت احساس می شد. در سال ۲۰۰۸، فرد یا گروهی ناشناس با نام مستعار ساتوشی ناکاموتو، با انتشار وایت پیپر بیت کوین، راهکاری انقلابی ارائه داد. بیت کوین یک سیستم پول نقد الکترونیکی همتا به همتا بود که به کاربران اجازه می داد بدون نیاز به بانک یا هر مؤسسه مالی دیگری، به یکدیگر پول انتقال دهند. هسته اصلی این نوآوری، فناوری زنجیره بلوکی بود؛ یک پایگاه داده خاص که داده ها را در بلوکهایی ذخیره می کند که به صورت رمزنگاری شده به یکدیگر متصل هستند [۳]. این ساختار زنجیره ای، داده ها را به ترتیب زمانی مرتب کرده و مهم تر از آن، تغییرناپذیر می ساخت [۳]. هر تراکنش ثبت شده در زنجیره بلوکی بیت کوین، برای همیشه در آن باقی می ماند و برای همه قابل مشاهده بود، که این شفافیت، امنیت بالایی را در برابر تقلب و کلاهبرداری ایجاد می کرد [۳].

-1-7-1 عصر اتریوم و تولد وب -1. بیت کوین ثابت کرد که می توان اعتماد را به صورت غیرمتمر کز ایجاد کرد، اما کاربرد آن عمدتاً به تراکنشهای مالی محدود بود. جهش بزرگ بعدی با ظهور اتریوم رخ داد. اتریوم با گسترش ایده زنجیره بلوکی، این امکان را فراهم آورد که نه تنها اعداد (مانند مبالغ تراکنش)، بلکه کد اجرایی نیز بر روی زنجیره بلوکی ذخیره و اجرا شود [۴]. این نوآوری، منجر به پیدایش قراردادهای هوشمند و برنامههای غیرمتمرکز (DApps) شد [۴، ۵].

این تحول، زمینه را برای شکلگیری وب ۰.۳ فراهم کرد. وب ۰.۳ که به آن «وب غیرمتمرکز» نیز گفته می شود، چشماندازی از اینترنت است که در آن کاربران کنترل دادهها و هویت دیجیتال خود را پس می گیرند. ویژگیهای اصلی وب ۰.۳ که مستقیماً از فناوری زنجیره بلوکی نشأت می گیرند، عبارتند از:

- غیر متمر کز بودن (Decentralized): کنترل در دست کاربران و جامعه است، نه شرکتهای بزرگ.
- بىنياز به اعتماد (Trustless): تعاملات بر اساس قوانين شفاف و تغييرناپذير كد انجام مىشود، نه اعتماد به یک واسطه.
- بینیاز به مجوز (Permissionless): هر کسی میتواند بدون نیاز به کسب اجازه از یک نهاد مرکزی، در شبکه مشارکت کرده و سرویس ایجاد کند.

• دارای پرداختهای درونساختی (NativePayments): تراکنشهای مالی جزئی جداییناپذیر از پروتکل است و نیازی به سیستمهای پرداخت خارجی نیست.

این سیر تکاملی نشان میدهد که زنجیره بلوکی، صرفاً یک فناوری برای رمزارزها نیست، بلکه زیرساختی برای نسل بعدی اینترنت و برنامههای کاربردی است که میتوانند صنایع مختلف، از جمله زنجیره تأمین را متحول سازند.

۱-۲-۱ مبانی رمزنگاری در زنجیره بلوکی

امنیت، یکپارچگی و تغییرناپذیری زنجیره بلوکی، بر ستونهای مستحکم علم رمزنگاری (Cryptography) استوار است. بدون رمزنگاری، اعتماد به یک سیستم غیرمتمرکز که توسط افراد ناشناس اداره می شود، غیرممکن بود. دو مفهوم کلیدی رمزنگاری که در قلب زنجیره بلوکی قرار دارند، توابع درهمسازی و رمزنگاری کلید عمومی هستند.

1-۲-۲-۱ توابع درهمسازی و یکپارچگی دادهها (HashFunctions) تابع درهمسازی یا هش، یک الگوریتم ریاضی است که هر ورودی با هر اندازهای را دریافت کرده و یک خروجی با اندازه ثابت تولید می کند. این خروجی که به آن «هش» یا «چکیده» گفته می شود، مانند اثر انگشت دیجیتال برای داده ورودی عمل می کند. توابع هش مورد استفاده در زنجیره بلوکی، مانند Keccak256 که در این پروژه نیز به کار گرفته شده است [۱۵۹۹، ۱۵۷۹]، دارای سه ویژگی اساسی هستند:

- ۱. قطعیت (Deterministic): یک ورودی مشخص، همواره هش یکسانی تولید می کند.
- ۲. مقاومت در برابر پیش تصویر (Pre-imageResistance): محاسبه ورودی از روی هش خروجی،
 از نظر محاسباتی غیرممکن است.
- ۳. **اثر بهمنی** (AvalancheEffect): کوچکترین تغییری در داده ورودی، منجر به تولید یک هش خروجی کاملاً متفاوت میشود.

این ویژگیها کاربردهای حیاتی در زنجیره بلوکی دارند. اولاً، برای اطمینان از یکپارچگی دادهها به کار میروند. در پروژه حاضر، با محاسبه هش اطلاعات هر محصول و ثبت آن بر روی زنجیره، تضمین می شود که این اطلاعات پس از ثبت، به هیچ عنوان دستکاری نشدهاند. هرگونه تلاشی برای تغییر جزئیات محصول، منجر به تولید یک هش متفاوت شده و به راحتی قابل تشخیص خواهد بود. ثانیاً، برای ایجاد زنجیره به کار میروند. هر بلوک در زنجیره، علاوه بر دادههای خود، هش بلوک قبلی را نیز در خود ذخیره می کند. این وابستگی زنجیرهای باعث می شود که تغییر اطلاعات یک بلوک، نیازمند محاسبه مجدد هش تمام بلوکهای

بعدی باشد که این امر از نظر محاسباتی، دستکاری تاریخچه را غیرممکن میسازد و به کل سیستم، خاصیت تغییرناپذیری میبخشد.

از ارکان رمزنگاری در زنجیره بلوکی، سیستم رمزنگاری نامتقارن یا کلید عمومی است. در این سیستم، هر کاربر دارای یک جفت کلید است: یک کلید خصوصی و یک کلید عمومی.

- کلید خصوصی (PrivateKey): این کلید باید به صورت کاملاً محرمانه توسط کاربر نگهداری شود. کاربرد اصلی آن، امضای دیجیتال تراکنشهاست. وقتی کاربر یک تراکنش (مانند انتقال مالکیت یک کاربرد اصلی آن، امضای دیجیتال تراکنشهاست. وقع در حال اثبات مالکیت خود بر آن دارایی و تأیید کالا) را با کلید خصوصی خود امضا می کند، در واقع در حال اثبات مالکیت خود بر آن دارایی و تأیید صحت آن تراکنش است.
- کلید عمومی (PublicKey): این کلید از روی کلید خصوصی تولید می شود و می توان آن را به صورت عمومی با دیگران به اشتراک گذاشت. از کلید عمومی، آدرس کاربر در شبکه استخراج می شود که برای دریافت دارایی ها به کار می رود. دیگران می توانند با استفاده از کلید عمومی یک کاربر، امضای دیجیتال او را اعتبار سنجی کرده و مطمئن شوند که تراکنش واقعاً توسط مالک کلید خصوصی مربوطه ارسال شده است.

این سازوکار، یک سیستم هویت و احراز هویت دیجیتال قدرتمند و غیرمتمرکز ایجاد میکند. کاربران برای تعامل با شبکه، نیازی به ثبتنام در یک مرجع مرکزی و ارائه اطلاعات هویتی خود ندارند[۵۰]. کلیدهای آنها، هویت دیجیتالشان است. این ویژگی، ضمن حفظ حریم خصوصی، امکان تعامل امن و قابل اعتماد بین طرفین ناشناس را فراهم میآورد که برای یک زنجیره تأمین جهانی امری ضروری است.

-7-1 قراردادهای هوشمند: انقلابی در توافقات دیجیتال

اگر زنجیره بلوکی را یک سیستم عامل غیرمتمر کز در نظر بگیریم، قراردادهای هوشمند (SmartContracts) برنامههایی هستند که بر روی این سیستم عامل اجرا میشوند. این مفهوم که با ظهور اتریوم به بلوغ رسید، زنجیره بلوکی را از یک سیستم صرفاً تراکنشی به یک پلتفرم محاسباتی جهانی تبدیل کرد.

1-Y-Y-1 تعریف و ماهیت قرارداد هوشمند یک قرارداد هوشمند، یک برنامه کامپیوتری یا پروتکل تراکنش است که به صورت خودکار، اقدامات و توافقات مشخصی را اجرا، کنترل یا مستند می کند. به زبان ساده تر، یک قرارداد هوشمند، «کدی است که عملیات خاصی را اجرا می نماید و می تواند با سایر قراردادهای هوشمند تعامل داشته باشد» [۲۸]. این کد، پس از نوشته شدن، بر روی زنجیره بلوکی مستقر (Deploy) می شود و از آن پس، به صورت مستقل و خودکار بر اساس منطق برنامه ریزی شده خود عمل می کند.

۱-۳-۳-۳ جایگزینی واسطه های شخص ثالث قدرت واقعی قراردادهای هوشمند در توانایی آنها برای حذف واسطه های شخص ثالث نهفته است [۲۷]. در دنیای سنتی، اجرای توافقات نیازمند اعتماد به واسطه هایی مانند بانکها، دفاتر اسناد رسمی، وکلا یا پلتفرمهای آنلاین است. این واسطه ها وظیفه تضمین اجرای صحیح قرارداد و حل اختلافات را بر عهده دارند و در ازای آن، کارمزد دریافت می کنند و فرآیند را کند و پیچیده می سازند. قراردادهای هوشمند این نقش را به کد منتقل می کنند. «همان گونه که بیت کوین نیاز به نگهداری پول شما توسط بانک را از بین می برد، اتریوم نیز با استفاده از قراردادهای هوشمند، نیازی به شخصی برای نظارت بر تراکنش و یا معامله ندارد» [۳۰]. قوانین توافق (مانند شرایط انتقال مالکیت یک کالا در زنجیره تأمین) یک بار در کد قرارداد نوشته می شود و از آن پس، شبکه غیرمتمرکز زنجیره بلوکی، اجرای بی طرفانه و دقیق آن قوانین را تضمین می کند.

-7-7-7 **ویژگیهای کلیدی قراردادهای هوشمند** ویژگیهای قراردادهای هوشمند مستقیماً از ماهیت زنجیره بلوکی که بر روی آن اجرا میشوند، به ارث برده شده است:

- تغییرناپذیری و قطعیت (ImmutabilityDeterminism): پس از استقرار یک قرارداد هوشمند بر روی زنجیره بلوکی، کد آن دیگر به هیچ عنوان قابل تغییر نیست [۲۰۳]. این ویژگی تضمین می کند که قوانین بازی در حین اجرا تغییر نخواهد کرد و همه شرکت کنندگان می توانند با اطمینان کامل به آن تکیه کنند.
- شفافیت و قابلیت حسابرسی (Transparency& Auditability): کد قرارداد هوشمند و تمام تراکنشهایی که با آن انجام میشود، به صورت عمومی بر روی زنجیره بلوکی ثبت شده و برای همگان قابل مشاهده است [۲۰۲]. این شفافیت، امکان حسابرسی کامل فرآیندها را فراهم کرده و از اقدامات پنهانی جلوگیری می کند.
- عدم تمرکز و پایداری (Decentralization&Robustness): قرارداد هوشمند بر روی یک سرور مرکزی اجرا نمی شود، بلکه بر روی هزاران گره (□□□□) در سراسر شبکه توزیع شده است. این ساختار غیرمتمرکز باعث می شود که قرارداد در برابر سانسور و حملات مقاوم باشد. «حذف یک گره، اجرای هیچ یک از قراردادهای هوشمند را مختل نمی کند» [۳۲] و سیستم دارای پایداری و در دسترس بودن بسیار بالایی است.

۱-۲-۱ زنجیره بلوکی به عنوان راهکار نوین در زنجیره تأمین

با در نظر گرفتن مباحث مطرح شده، اکنون می توانیم تصویر کامل تری از چرایی انتخاب زنجیره بلوکی به عنوان راهکار اصلی این پروژه ترسیم کنیم. فناوری زنجیره بلوکی، با ترکیب تاریخچهای تکاملی در جهت

عدم تمرکز، مبانی مستحکم رمزنگاری و قابلیتهای برنامه پذیری از طریق قراردادهای هوشمند، مجموعهای از ابزارهای قدرتمند را برای مقابله با چالشهای زنجیره تأمین فراهم میآورد. ترکیب این مفاهیم، یک راهکار یکیارچه ارائه می دهد:

- ۱. **اصالت تضمین شده:** با استفاده از توابع هش رمزنگاری، برای هر محصول یک هویت دیجیتال منحصر به فرد و تغییرناپذیر ایجاد می شود. این هویت، جعل محصول را تقریبا غیرممکن می سازد.
- 7. **مالکیت امن:** با استفاده از رمزنگاری کلید عمومی، مالکیت هر کالا به صورت امن به آدرس دیجیتال مالک آن گره میخورد و انتقال آن تنها با امضای دیجیتال مالک (کلید خصوصی) امکانپذیر است.
- ۳. فرآیندهای خودکار و شفاف: با استفاده از قراردادهای هوشمند، قوانین مربوط به انتقال مالکیت، تأیید مراحل و حتی محاسبه مالیات، به صورت کد تعریف شده و به طور خودکار و بدون نیاز به واسطه اجرا میشوند. تمام این فرآیندها بر روی یک دفتر کل شفاف و قابل حسابرسی ثبت می گردد.

در نتیجه، زنجیره بلوکی بستری را فراهم میکند که در آن، اعتماد دیگر به یک نهاد مرکزی وابسته نیست، بلکه در خود معماری سیستم و قوانین ریاضی و رمزنگاری آن نهفته است. این همان تغییری است که میتواند بر مشکلات ساختاری زنجیرههای تأمین سنتی غلبه کرده و عصری جدید از شفافیت، کارایی و اطمینان را برای همه ذینفعان به ارمغان آورد.

r-1 اهداف و دستاوردهای پروژه

همانطور که در بخشهای پیشین تشریح شد، زنجیرههای تأمین سنتی با بحرانهای عمیقی در حوزههای شفافیت، اعتماد و کارایی مواجه هستند. این چالشها که ریشه در معماری متمرکز و گسستگی اطلاعات دارند، نیازمند راهکاری بنیادین هستند که بتواند ساختار تعاملات در این اکوسیستم را بازتعریف کند. پروژه حاضر با درک این نیاز، هدف اصلی خود را «طراحی و پیادهسازی یک سامانه جامع زنجیره تأمین مبتنی بر فناوری زنجیره بلوکی» تعریف کرده است[۱۵۷۸]. این هدف کلان، در پی آن است تا با بهرهگیری از ویژگیهای منحصربهفرد زنجیره بلوکی، راهکاری عملی برای مقابله با تقلب، افزایش قابلیت ردیابی و بازگرداندن اعتماد به اکوسیستم ارائه دهد.

برای نیل به این هدف جامع، مجموعهای از اهداف جزئی، فنی و کاربردی تعریف شدهاند که هر یک به مثابه یک ستون، شاکله اصلی این سامانه را تشکیل میدهند. این اهداف نه تنها مسیر پیادهسازی پروژه را مشخص میکنند، بلکه در نهایت، دستاوردهای ملموس و قابل سنجش آن را نیز نمایندگی خواهند کرد. در ادامه این بخش، هر یک از این اهداف کلیدی به تفصیل مورد بررسی و تحلیل قرار میگیرند تا اهمیت، ضرورت و نحوه تحقق هر یک از آنها به روشنی مشخص گردد.

۱-۳-۱ هدف اول: ایجاد یک سیستم جامع برای ردیابی شفاف محصولات

I-Y-I-I تشریح هدف و اهمیت آن اولین و پایهای ترین هدف این پروژه، ایجاد یک سیستم یکپارچه برای ردیابی سرتاسری و شفاف محصولات (End-to-EndTraceability) است. در سیستمهای کنونی، چرخه حیات یک محصول از مجموعهای از مراحل گسسته و جزیرهای تشکیل شده است که هر کدام توسط یک نهاد مجزا مدیریت می شود. این گسستگی اطلاعاتی باعث ایجاد «نقاط کور» در زنجیره می شود که ردیابی دقیق مسیر حرکت، تاریخچه مالکیت و شرایط نگهداری محصول را ناممکن می سازد.

هدف این است که یک «شناسنامه دیجیتال» برای هر محصول ایجاد شود که از لحظه تولید تا رسیدن به دست مصرف کننده نهایی، به صورت پویا و تغییرناپذیر تکمیل گردد. این شناسنامه بر روی یک دفتر کل توزیع شده ثبت می شود که تمام ذی نفعان مجاز (تولید کننده، توزیع کننده، نهادهای نظارتی و مصرف کننده) می توانند به آن دسترسی داشته باشند [۱۵۸۰].

اهمیت این هدف در سه جنبه اصلی نهفته است:

- ۱. **مقابله با تقلب و جعل**: با داشتن یک تاریخچه کامل و غیرقابل دستکاری، امکان ورود کالای تقلبی به زنجیره اصلی به شدت کاهش می یابد. هرگونه عدم تطابق در تاریخچه محصول، به سرعت قابل شناسایی خواهد بود.
- 7. **افزایش اعتماد مصرفکننده**: مصرفکنندگان می توانند با اطمینان کامل از اصالت و پیشینه محصولی که خریداری می کنند، مطلع شوند. این شفافیت، وفاداری به برند را تقویت کرده و قدرت انتخاب آگاهانه را به مصرف کننده می دهد.
- ۳. **مدیریت بحران و فراخوان کار آمد**: در صورت بروز مشکل کیفی یا ایمنی برای یک محصول خاص، میتوان با مراجعه به تاریخچه دقیق آن، به سرعت منشأ مشکل را شناسایی و محصولات معیوب را از بازار جمعآوری (□□□□□□) کرد. این امر از توزیع گسترده تر محصولات مشکلدار جلوگیری کرده و خسارات را به حداقل میرساند.

T-1-T-1 نحوه تحقق و پیاده ساختاریافته برای دستیابی به این هدف، از یک مدل داده ساختاریافته در قرارداد هوشمند استفاده می شود. فرآیند ردیابی در سه مرحله اصلی پیاده سازی می شود:

• ثبت محصول (Minting): در ابتدای چرخه حیات، تولیدکننده یا واردکننده محصول جدید را در سیستم ثبت میکند. در این مرحله، یک توکن دیجیتال منحصربهفرد که نمایانگر آن کالای فیزیکی است، بر روی زنجیره بلوکی «ضرب» یا ساخته میشود. تمام اطلاعات اولیه محصول، مانند شماره سریال، تاریخ تولید و مشخصات فنی، به این توکن الصاق میگردد. این عمل از طریق فراخوانی یک

• ثبت تاریخچه مالکیت: هر بار که محصول در زنجیره تأمین دست به دست می شود (مثلاً از تولید کننده به توزیع کننده)، یک تراکنش انتقال مالکیت بر روی زنجیره بلوکی ثبت می گردد. این تراکنش که از طریق توابعی مانند transferWithTax در قرارداد هوشمند مدیریت می شود، به صورت خود کار اطلاعات مالک جدید، زمان انتقال و سایر جزئیات مربوطه را به تاریخچه محصول اضافه می کند. این فرآیند، یک زنجیره مالکیت (Chainof Custody) شفاف و قابل حسابرسی ایجاد می کند که در تابع getOwnershipHistory قابل بازیابی است.

.[19+٨]..□□: •

ERC1155 هدف دوم: مدیریت بهینه داراییها با استفاده از استاندارد +

1-0-۴-۱ تشریح هدف و اهمیت آن زنجیرههای تأمین با طیف گستردهای از محصولات سروکار دارند. برخی از محصولات، مانند یک خودرو با شماره شاسی مشخص، کاملاً منحصربهفرد و غیرمثلی دارند. برخی از محصولات، مانند یک بچ از هزاران پیچ یکسان، کاملاً مثلی و قابل تعویض (Fungible) هستند. مدیریت این دو نوع دارایی در سیستمهای سنتی و حتی در استانداردهای اولیه زنجیره بلوکی، نیازمند زیرساختها و قراردادهای مجزا بود. این امر منجر به افزایش پیچیدگی، هزینههای بالا و کاهش کارایی می شد.

هدف این بخش از پروژه، بهره گیری از یک استاندارد توکن پیشرفته به نام ERC1155 است تا بتوان هر دو نوع دارایی مثلی و غیرمثلی را در قالب یک قرارداد هوشمند واحد، به صورت بهینه مدیریت کرد [۱۵۷۹]. این استاندارد که به عنوان یک استاندارد «چند-توکنی» شناخته میشود، به طور خاص برای کاربردهایی مانند بازیهای کامپیوتری و زنجیره تأمین که با انواع مختلفی از آیتمها سروکار دارند، طراحی شده است.

اهمیت استفاده از ERC1155 در موارد زیر خلاصه میشود:

- افزایش کارایی و کاهش هزینه: به جای استقرار چندین قرارداد هوشمند مجزا (مثلاً یک قرارداد و افزایش کارایی و کاهش هزینه: به جای استقرار چندین قرارداد ERC-721 برای کالاهای مثلی)، تمام منطق مدیریت توکنها در یک قرارداد واحد متمرکز میشود. این امر به شدت هزینههای استقرار و نگهداری (GasFee) را کاهش داده و مدیریت سیستم را ساده تر می کند [۱۵۹۵].
- انعطاف پذیری بالا: این سامانه قادر خواهد بود تا هر نوع محصولی را، از یک قطعه هنری با

- اصالت مشخص گرفته تا یک پالت از کالاهای مصرفی، به راحتی مدیریت کند. این انعطافپذیری، کاربردپذیری سیستم را برای طیف وسیعی از صنایع ممکن میسازد.
- تراکنشهای دستهای (BatchOperations): یکی از قابلیتهای کلیدی ERC1155، امکان انتقال چندین نوع توکن مختلف در یک تراکنش واحد است. برای مثال، یک توزیع کننده می تواند در یک تراکنش، ۱۰۰ عدد کالای □ را از تولید کننده دریافت کند. این قابلیت، تعداد کل تراکنشهای مورد نیاز در شبکه را کاهش داده و به بهینه سازی فرآیندهای لجستیکی پیچیده کمک شایانی می کند.
- (SupplyChainERC1155.sol) نحوه تحقق و پیادهسازی فنی قرارداد هوشمند اصلی این پروژه (\mathbf{Y} - \mathbf

۱-۴-۱ هدف سوم: تضمین صحت و یکپارچگی فرادادهها با Keccak256

1-1-۴-۱ تشریح هدف و اهمیت آن ردیابی مالکیت یک کالا تنها نیمی از راه حل است. بخش دیگر و حیاتی تر، تضمین این است که اطلاعات و مشخصات آن کالا (فراداده یا Metadata) در طول زمان دستکاری نشده و معتبر باقی مانده است. فراداده شامل جزئیاتی مانند تاریخ تولید، شماره سریال، مبدأ جغرافیایی، مواد تشکیل دهنده و گواهی های کیفیت است. در سیستمهای سنتی، این اطلاعات معمولاً در پایگاههای داده ای ذخیره می شوند که به راحتی قابل تغییر هستند.

هدف این بخش، پیادهسازی یک مکانیزم رمزنگاری قدر تمند برای تضمین صحت و یکپارچگی فرادادههاست. در این پروژه، از الگوریتم درهمسازی Keccak256 برای ایجاد یک «اثر انگشت دیجیتال» منحصربهفرد از فراداده هر محصول استفاده میشود [۱۵۹۵، ۱۵۷۹]. این اثر انگشت (هش) بر روی زنجیره بلوکی ذخیره میشود که تغییرناپذیر است.

اهمیت این رویکرد در دو نکته کلیدی است:

۱. **ایجاد پیوند تغییرناپذیر بین کالا و اطلاعات آن**: با ثبت هش فراداده بر روی زنجیره، هرگونه تلاش برای دستکاری اطلاعات اصلی (حتی تغییر یک کاراکتر) منجر به تولید یک هش کاملاً متفاوت خواهد شد. این عدم تطابق به راحتی قابل تشخیص بوده و تلاش برای تقلب را آشکار میسازد.

7. بهینهسازی هزینه ذخیرهسازی: ذخیرهسازی حجم زیادی از اطلاعات (مانند تصاویر یا اسناد فنی) به صورت مستقیم بر روی زنجیره بلوکی بسیار گران است. این روش به ما اجازه می دهد تا فراداده اصلی را در یک سیستم ذخیرهسازی خارج از زنجیره (Off-chain) مانند (Off-chain) یا سرورهای معمولی نگهداری کرده و تنها هش سبک و امن آن را بر روی زنجیره (On-chain) ثبت کنیم. این معماری، ضمن حفظ امنیت کامل، هزینهها را به شدت بهینه می کند.

۱-۴-۱ ن**حوه تحقق و پیادهسازی فنی** فرآیند تضمین صحت فرادادهها در قرارداد هوشمند به شرح زیر پیادهسازی می شود:

- تولید هش در زمان ثبت: هنگامی که یک محصول جدید از طریق تابع registerProduct ثبت میشود، قرارداد هوشمند به صورت داخلی تابع دیگری مانند generateMetadataHash را فراخوانی میکند. این تابع، مقادیر کلیدی فراداده (مانند نام، دسته بندی، شماره سریال و...) را دریافت کرده، آنها را به یک فرمت استاندارد تبدیل میکند و سپس الگوریتم keccak256 را بر روی آن اعمال میکند.
- **ذخیرهسازی هش:** هش تولید شده در ساختار داده مربوط به آن محصول (مثلاً *Productstruct*) در کنار سایر اطلاعات آن بر روی زنجیره بلوکی ذخیره می شود.
- اعتبارسنجی عمومی: یک تابع عمومی مانند verifyProductMetadata در قرارداد هوشمند در دسترس قرار می گیرد. هر کاربری (مثلاً یک مصرف کننده یا بازرس) می تواند با ارائه فرادادهای که در اختیار دارد، این تابع را فراخوانی کند. قرارداد هوشمند در لحظه، هش فراداده ارسالی را محاسبه کرده و آن را با هش ذخیره شده بر روی زنجیره مقایسه می کند. نتیجه این مقایسه (که یک مقدار صحیح /غلط است) به کاربر بازگردانده شده و بدین ترتیب، اصالت اطلاعات تأیید یا رد می شود [۱۶۰۴].

-0 هدف چهارم: خودکارسازی فرآیندهای تجاری و مالی

۱-۰-۵-۱ تشریح هدف و اهمیت آن زنجیرههای تأمین سنتی مملو از فرآیندهای دستی، کاغذبازیهای اداری، تأخیر در پرداختها و رویههای پیچیده مالیاتی هستند. این فرآیندها نه تنها کند و پرهزینه هستند، بلکه به دلیل نیاز به دخالت انسانی، مستعد خطا و فساد نیز میباشند. بخش قابل توجهی از این ناکارآمدیها ناشی از نیاز به واسطههای متعدد برای تأیید مراحل، پردازش پرداختها و تضمین اجرای تعهدات است. هدف این بخش از پروژه، استفاده از قابلیتهای قراردادهای هوشمند برای خودکارسازی منطق تجاری و مالی زنجیره تأمین است [۱۵۷۶]. با کدنویسی قوانین کسبوکار به صورت مستقیم در یک قرارداد

هوشمند، می توان اجرای آنها را به صورت خودکار، قطعی و بدون نیاز به دخالت یا نظارت انسانی تضمین کرد.

اهمیت این هدف عبارت است از:

- افزایش سرعت و کارایی: خودکارسازی فرآیندها، تأخیرهای ناشی از هماهنگیهای انسانی و پردازشهای دستی را از بین برده و سرعت کل زنجیره را به طور چشمگیری افزایش میدهد.
- کاهش هزینههای عملیاتی: حذف یا کاهش نیاز به واسطههایی که برای اموری مانند خدمات امانی (Escrow) یا پردازش اسناد به کار گرفته میشوند، منجر به صرفهجویی قابل توجهی در هزینهها میشود [۱۵۷۶].
- شفافیت و سازگاری در اجرا: وقتی قوانین در قالب کد نوشته میشوند، به صورت یکسان و بدون تبعیض برای همه تراکنشها اجرا میگردند. این امر از اجرای سلیقهای قوانین جلوگیری کرده و شفافیت را در کل فرآیند حاکم میکند.

۱-۵-۱ ن**حوه تحقق و پیاده سازی فنی** دو نمونه برجسته از خود کارسازی در این پروژه پیاده سازی شده است:

- ۱. انتقال مالکیت خودکار: تابع transferWithTax در قرارداد هوشمند، فرآیند انتقال توکن از فرستنده به گیرنده را مدیریت میکند. این تابع به صورت اتمی عمل میکند؛ یعنی انتقال تنها در صورتی انجام میشود که تمام شروط لازم (مانند وجود توکن در کیف پول فرستنده) برقرار باشد. این فرآیند جایگزین رویههای سنتی مبتنی بر بارنامه و اسناد کاغذی میشود.
- ۲. محاسبه خودکار مالیات: یکی از قابلیتهای نوآورانه این پروژه، تعبیه منطق محاسبه مالیات به صورت مستقیم در قرارداد هوشمند است[۱۶۰۹، ۱۵۸۰]. در قرارداد، تابعی مانند مستقیم در قرارداد هوشمند است اساس پارامترهایی مانند نوع کالا یا ارزش تراکنش، مبلغ مالیات متعلقه را محاسبه کند. این تابع می تواند به صورت خودکار در حین فرآیند انتقال مالکیت فراخوانی شود. مبلغ مالیات محاسبه شده می تواند به یک آدرس از پیش تعیین شده (مثلاً کیف پول سازمان امور مالیاتی) ارسال گردد. این مکانیزم، فرآیند محاسبه و جمع آوری مالیات را شفاف، دقیق و آنی می سازد و بار محاسباتی را از دوش کسبوکارها برمی دارد.

در مجموع، این چهار هدف کلیدی، یک نقشه راه جامع برای ساختن یک زنجیره تأمین مدرن، شفاف و قابل اعتماد را ترسیم می کنند. هر یک از این اهداف، ضمن حل یکی از مشکلات اساسی سیستمهای سنتی، در ترکیب با یکدیگر، یک راهکار همافزا و قدرتمند را شکل می دهند که پتانسیل تحول آفرینی در این صنعت حیاتی را داراست.

۱-۶ چالشهای اصلی پروژه

با وجود پتانسیل عظیم فناوری زنجیره بلوکی برای ایجاد تحول در صنایع مختلف و بهویژه در زنجیره تأمین، پیادهسازی و استقرار یک سامانه عملیاتی مبتنی بر این فناوری با چالشهای متعدد و پیچیدهای همراه است. این چالشها صرفاً فنی نیستند و ابعاد امنیتی، اقتصادی، قانونی و اجتماعی را نیز در بر میگیرند. موفقیت این پروژه در گرو شناسایی دقیق این موانع و ارائه راهکارهای مناسب برای غلبه بر آنهاست. در واقع، هر یک از این چالشها، خود یک حوزه پژوهشی و مهندسی مستقل به شمار میآید که نیازمند بررسی عمیق و راهکارهای نوآورانه است. در این فصل، به تفصیل به تحلیل چهار چالش اصلی پیش روی این پروژه می بردازیم: چالشهای فنی مرتبط با مقیاس پذیری و هزینه، چالشهای امنیتی در یک محیط غیرمتمرکز، چالشهای پذیرش و تجربه کاربری، و در نهایت، چالشهای قانونی و نظارتی.

۱-۶-۱ چالشهای فنی: مقیاسپذیری و هزینه

یکی از برجسته ترین و بحث برانگیز ترین چالشها در دنیای زنجیره بلوکی، مسئله مقیاس پذیری (Scalability) و هزینه های مرتبط با آن است. در حالی که سیستمهای متمرکز سنتی می توانند ده ها هزار تراکنش را در ثانیه پردازش کنند، شبکه های زنجیره بلوکی عمومی مانند اتریوم، به دلیل ماهیت غیرمتمرکز و سازوکارهای اجماع خود، دارای توان پردازشی بسیار محدود تری هستند. این محدودیت، به ویژه در کاربردهایی با حجم تراکنش بالا مانند زنجیره تأمین، به یک گلوگاه اساسی تبدیل می شود.

(Gas) مقدمهای بر معماری ماشین مجازی اتریوم (EVM) و هزینه تراکنش معماری ماشین مجازی اتریوم

برای درک عمیق چالش هزینه، ابتدا باید با مفهوم «گس» (Gas) در شبکههای سازگار با ماشین مجازی اتریوم (EVM) آشنا شویم. هر عملیات محاسباتی که بر روی EVM انجام می شود، از یک جمع ساده گرفته تا ذخیره سازی داده در قرارداد هوشمند، نیازمند مصرف منابع محاسباتی از سوی گرههای (Nodes) شبکه است. این منابع رایگان نیستند [Υ]. مفهوم گس برای اندازه گیری میزان این تلاش محاسباتی به کار می رود [Υ 16]. هر عملیات یک هزینه گس ثابت دارد (مثلاً ADD هزینه Υ گس و Υ 10. دخیره سازی داده هزینه Υ 10. گس دارد).

هزینه نهایی یک تراکنش از فرمول زیر به دست میآید:

$TransactionFee = TotalGasUsed \times GasPrice$

در اینجا، TotalGasUsed مجموع گس مصرفی تمام عملیاتهای یک تراکنش است و GasPrice قیمتی در اینجا، TotalGasUsed مجموع گس مصرفی تمام عملیاتهای یک کاربر مایل است برای هر واحد گس بیردازد. این قیمت بر اساس عرضه و تقاضای شبکه تعیین

می شود و در زمانهای شلوغی شبکه، به شدت افزایش می یابد. پرداخت این هزینه با استفاده از ارز دیجیتال اصلی شبکه، یعنی اتر ،(۵۵۵۵۱) انجام می شود [۱۶۰]. این سازوکار، ضمن جلوگیری از اجرای کدهای مخرب و حلقههای بی نهایت، یک مدل اقتصادی برای پاداش دهی به اعتبار سنجهای شبکه فراهم می کند. اما همین مدل، چالش هزینه را برای کاربردهای تجاری به وجود می آورد.

ارگ ERC1155 در مقیاس بزرگ ERC1155 در مقیاس بزرگ

پروپوزال این پروژه به درستی به این چالش اشاره می کند که «استفاده از قرارداد هوشمند مبتنی بر استاندارد ERC1155 به ویژه در مقیاس بزرگ، می تواند مشکلاتی از جمله مقیاس پذیری و هزینه های تراکنش ایجاد کند» [۱۵۸۱]. در یک زنجیره تأمین واقعی، به ویژه برای کالاهای تندمصرف (FMCG)، ممکن است روزانه هزاران یا حتی میلیون ها محصول تولید (mint)، منتقل و مصرف (burn) شوند. هر یک از این اقدامات، یک تراکنش مجزا بر روی زنجیره بلوکی است که هزینه گس به همراه دارد.

فرض کنید هزینه میانگین یک تراکنش انتقال ساده در شبکه اتریوم چند دلار باشد. اگر یک شرکت بخواهد روزانه وضعیت ۱۰۰۰ محصول را بهروزرسانی کند، هزینه عملیاتی آن به سرعت به هزاران دلار در روز میرسد. این هزینه برای بسیاری از کسبوکارها، به ویژه در مقایسه با هزینههای ناچیز نگهداری یک پایگاه داده متمرکز، غیرقابل قبول است. بنابراین، هرچند ERC1155 از نظر فنی برای مدیریت انواع توکنها کار آمد است، اما هزینه اقتصادی استفاده از آن در یک شبکه عمومی پرازدحام، یک مانع جدی برای پذیرش در مقیاس صنعتی محسوب می شود.

۱-۶-۱ چالش ذخیرهسازی دادهها بر روی زنجیره

یکی دیگر از ابعاد چالش هزینه، مربوط به ذخیرهسازی داده است. ذخیرهسازی داده به صورت مستقیم بر روی زنجیره بلوکی (On-chainStorage) یکی از گران ترین عملیاتها در EVM است. هر کیلوبایت داده می تواند صدها یا هزاران دلار هزینه در بر داشته باشد. برای یک زنجیره تأمین که نیازمند ذخیره اطلاعات جامعی از هر محصول (مانند تصاویر، اسناد فنی، گواهی نامه ها و...) است، ذخیرهسازی مستقیم این فراداده ها بر روی زنجیره، از نظر اقتصادی کاملاً غیرممکن است.

این چالش، تیم پروژه را به سمت یک معماری هوشمندانه سوق داده است که در بخش اهداف نیز این چالش، تیم پروژه را به سمت یک معماری On-chain و On-chain در این مدل، تنها اطلاعات حیاتی به آن اشاره شد: معماری ترکیبی و یکپارچگی لازم است، بر روی زنجیره ذخیره می شود. این اطلاعات شامل هش رمزنگاری شده فراداده است. خود فراداده حجیم، در یک سیستم ذخیره سازی خارج از زنجیره شامل هش رمزنگاری شده فراداده است. خود فراداده حجیم، در یک سیستم ذخیره سازی خارج از زنجیره (Off-chain) مانند Off-chain) مانند Off-chain این رویکرد، ضمن حفظ امنیت کامل از طریق هش، هزینه های ذخیره سازی را هزاران برابر کاهش می دهد

و سیستم را از نظر اقتصادی عملیاتی میسازد.

-8-8 راهکارهای بالقوه برای غلبه بر چالش فنی

اگرچه این پروژه بر روی یک شبکه تستی و محلی اجرا میشود، اما برای استقرار نهایی در دنیای واقعی، باید راهکارهایی برای چالش مقیاسپذیری و هزینه اندیشیده شود. برخی از مهم ترین راهکارها که در اکوسیستم زنجیره بلوکی در حال توسعه هستند عبارتند از:

- شبکههای لایه ۲ (Layer2Solutions): فناوریهایی مانند (Layer2Solutions) تراکنشها را در خارج از زنجیره اصلی پردازش کرده و تنها یک خلاصه فشرده از آنها را به زنجیره اصلی ارسال میکنند. این کار هزینه هر تراکنش را به شدت کاهش داده و توان پردازشی را به چندین هزار تراکنش در ثانیه افزایش میدهد.
- زنجیرههای جانبی (Sidechains): زنجیرههای مستقلی که با زنجیره اصلی سازگار هستند و میتوان داراییها را بین آنها منتقل کرد. این زنجیرهها معمولاً دارای هزینه تراکنش بسیار پایینتری هستند.
- انتخاب شبکههای EVM Compatible با هزینه پایین: به جای استقرار بر روی شبکه اصلی EVM Compatible سازگار هستند اما هزینه تراکنش اتریوم، می توان پروژه را بر روی شبکههای دیگری که با EVM سازگار هستند اما هزینه تراکنش کمتری دارند (مانند BNBSmartChain, Avalanche, Polygon) مستقر کرد.

انتخاب راهکار مناسب، خود نیازمند تحلیل دقیق نیازمندیهای پروژه و بررسی مزایا و معایب هر گزینه است که می تواند موضوعی برای تحقیقات آینده باشد.

۱-۷ چالشهای امنیتی در سیستمهای غیرمتمرکز

امنیت در سیستمهای زنجیره بلوکی یک پارادایم کاملاً متفاوت از امنیت در سیستمهای متمرکز است. در اینجا، دیگر خبری از حفاظت از یک سرور مرکزی با استفاده از فایروالها و کنترل دسترسیهای فیزیکی نیست. امنیت به خود پروتکل، کد قرارداد هوشمند و مسئولیتپذیری کاربران منتقل میشود. پروپوزال پروژه به درستی تأکید میکند که «امنیت اطلاعات در سیستم زنجیره بلوکی باید در بالاترین سطح خود قرار گیرد تا از هرگونه دستکاری دادهها جلوگیری شود» [۱۵۸۲].

امنیت قرارداد هوشمند: کد، قانون است -V-1

قراردادهای هوشمند، قلب تپنده برنامههای غیرمتمرکز هستند و در عین حال، بزرگترین سطح حمله (Surface Attack) را تشکیل میدهند. یک آسیبپذیری کوچک در کد یک قرارداد هوشمند می تواند

منجر به سرقت میلیونها دلار دارایی یا از کار افتادن کامل یک سیستم شود. چالش اصلی در اینجا، ویژگی تغییر تغییر ناپذیری (Immutability) کد است. پس از استقرار یک قرارداد هوشمند، کد آن دیگر قابل تغییر یا اصلاح نیست [۲۰۳]. این ویژگی که برای ایجاد اعتماد ضروری است، به این معناست که اگر یک باگ یا حفره امنیتی در کد وجود داشته باشد، نمی توان آن را به سادگی «پچ» کرد. این ماهیت، امنیت قرارداد هوشمند را به امری بسیار حیاتی و پرمخاطره تبدیل می کند.

برخی از آسیبپذیریهای رایج در قراردادهای هوشمند عبارتند از:

- حملات بازگشتی (Reentrancy): حملهای که در آن یک قرارداد مهاجم، قبل از تکمیل یک تراکنش، به صورت مکرر یک تابع را در قرارداد قربانی فراخوانی کرده و موجودی آن را خالی می کند.
- سرریز /زیرریز عدد صحیح (IntegerOverflow/Underflow): به دلیل محدودیت در اندازه متغیرهای عددی، انجام محاسباتی که منجر به عبور از حداکثر یا حداقل مقدار ممکن شود، می تواند نتایج غیرمنتظره و خطرناکی به همراه داشته باشد.
- منطق اشتباه در کنترل دسترسی: عدم پیادهسازی صحیح مجوزها و نقشها، که می تواند به یک کاربر غیرمجاز اجازه دهد تا اقداماتی مدیریتی مانند تغییر مالکیت یا از بین بردن داراییها را انجام دهد.

برای مقابله با این چالشها، پروژه حاضر از رویکردهای استاندارد صنعتی بهره میبرد. اول، استفاده از کتابخانههای معتبر و حسابرسیشده مانند [۱۶۲۲] *OpenZeppelin* برای پیادهسازی استانداردهایی مانند کتابخانهها توسط متخصصان امنیت بررسی شده و ریسک *ERC*1155 و مکانیزمهای کنترل دسترسی. این کتابخانهها توسط متخصصان امنیت بررسی شده و ریسک وجود آسیبپذیریهای رایج را به حداقل میرسانند. دوم، پیادهسازی یک مجموعه آزمون جامع با استفاده از فریمورک قدرتمند *Foundry*. این آزمونها، تمام توابع و سناریوهای ممکن، از جمله حالتهای حدی و تلاش برای حملات، را شبیهسازی کرده و از صحت عملکرد و امنیت کد اطمینان حاصل میکنند.

-1 امنیت فراداده و مکانیزم تأیید هش

همانطور که قبلاً ذکر شد، معماری این سیستم بر پایه ذخیره هش فراداده بر روی زنجیره و خود فراداده در یک مکان خارج از زنجیره (مانند IPFS) استوار است. این معماری، خود یک چالش امنیتی جدید ایجاد می کند: چگونه از صحت و تطابق داده off-chain با هش off-chain اطمینان حاصل کنیم؟

$1-\lambda-1$ بردارهای حمله به فراداده

یک مهاجم نمی تواند هش ثبت شده بر روی زنجیره بلوکی را تغییر دهد، اما می تواند تلاش کند تا به یکی از روشهای زیر، سیستم را فریب دهد:

- حمله مرد میانی (Man-in-the-Middle): یک مهاجم می تواند در ارتباط بین کاربر و سرور ذخیره سازی off-chain قرار گرفته و فراداده جعلی را به کاربر نمایش دهد، در حالی که کاربر تصور می کند در حال مشاهده اطلاعات اصلی است.
- دستکاری سرور متمرکز سنتی ذخیره شده باشد، دستکاری سرور متمرکز سنتی ذخیره شده باشد، مهاجم می تواند با هک کردن آن سرور، اطلاعات را تغییر دهد.
- عدم دسترسی به داده (DataUnavailability): ممکن است سرور off-chain او دسترسی خارج شود و کاربران دیگر نتوانند به فراداده اصلی دسترسی پیدا کنند، که این امر عملاً اعتبارسنجی را غیرممکن می سازد.

۱-۸-۱ مکانیزم دفاعی پروژه سیستم طراحیشده در این پروژه، یک مکانیزم دفاعی قوی برای مقابله با این حملات دارد که مبتنی بر اعتبارسنجی سمت کاربر (Client – SideValidation) است. فرآیند به شرح زیر است:

- ۱. کاربر (مثلاً مصرف کنندهای که کد QR را اسکن می کند) در خواستی برای مشاهده اطلاعات محصول ارسال می کند.
- ۲. برنامه کاربردی (Front-end) دو درخواست موازی ارسال می کند: یکی به سیستم ذخیرهسازی (Front-end) مثلاً off-chain برای دریافت فایل کامل فراداده، و دیگری به زنجیره بلوکی برای خواندن هش معتبر و ثبتشده آن محصول از قرارداد هوشمند.
- را بر روی آن Keccak 256 را بر روی آن Keccak 256 را بر روی آن بر روی آن اجرا کرده و هش آن را به صورت محلی محاسبه می کند.
 - ۴. در نهایت، برنامه، هش محاسبه شده محلی را با هش دریافت شده از زنجیره بلوکی مقایسه می کند.

اگر این دو هش کاملاً یکسان باشند، یک علامت تأیید سبز به کاربر نمایش داده می شود که نشان دهنده اگر این دو هش کامل اطلاعات است. اگر حتی یک بیت تفاوت بین دو هش وجود داشته باشد، به کاربر یک هشدار جدی نمایش داده می شود که اطلاعات محصول مورد دستکاری قرار گرفته است. این فرآیند، اعتماد را از سرور off - chain سلب کرده و آن را به محاسبات ریاضی و داده های تغییرناپذیر زنجیره بلوکی منتقل می کند.

۱۳۵۱ منیت تکمیلی شما به آن IPFS نقش IPFS در افزایش امنیت استفاده از IPFS استفاده و مبتنی اشاره شد) یک لایه امنیتی دیگر به این معماری می افزاید. IPFS یک سیستم فایل توزیعشده و مبتنی بر محتوا (Content-Addressed) است. این بدان معناست که آدرس یک فایل در IPFS، خود هشِ محتوای آن فایل است. بنابراین، اگر محتوای فایل تغییر کند، هش آن و در نتیجه آدرس آن نیز تغییر خواهد کرد. با ذخیره کردن این آدرس مبتنی بر محتوا (CID) بر روی زنجیره بلوکی، یک پیوند رمزنگاری قوی بین رفرنس آنچین و داده آفچین ایجاد می شود که دستکاری آن را بیش از پیش دشوار می سازد.

۱-۸-۱ امنیت کلید خصوصی کاربر

نهایتاً، ضعیفترین حلقه در زنجیره امنیت هر سیستم مبتنی بر زنجیره بلوکی، خود کاربر است. تمام داراییها و مجوزهای یک کاربر به کلید خصوصی او گره خورده است. اگر کلید خصوصی یک کاربر به سرقت برود یا فاش شود، مهاجم کنترل کاملی بر تمام داراییها و نقشهای آن کاربر در سیستم خواهد داشت. این چالشی است که راه حل آن کمتر فنی و بیشتر آموزشی است. کاربران باید در مورد اهمیت نگهداری امن کلیدهای خصوصی خود و استفاده از کیف پولهای سختافزاری برای داراییهای با ارزش، به خوبی آموزش ببینند.

(UX) چالشهای پذیرش و تجربه کاربری -9

یک سیستم هرچقدر هم که از نظر فنی قدرتمند و امن باشد، اگر استفاده از آن برای کاربران نهایی دشوار و پیچیده باشد، هرگز به پذیرش گسترده نخواهد رسید. پروپوزال پروژه به درستی به این موضوع اشاره می کند که «پذیرش چنین سیستم نوآورانهای در کشور نیازمند آموزش و آگاهیرسانی به کاربران است» [۱۵۸۴]. این چالش، به ویژه در صنعتی مانند زنجیره تأمین که با طیف وسیعی از کاربران با سطوح مختلف دانش فنی سروکار دارد، بسیار پررنگتر است.

۱-۹-۱ فاصله دانش و موانع ذهنی

مفاهیمی مانند «زنجیره بلوکی»، «کیف پول دیجیتال»، «کلید خصوصی»، «امضای تراکنش» و «هزینه گس»، برای اکثر افراد خارج از دنیای فناوری، مفاهیمی بیگانه و ترسناک هستند. انتظار از یک مدیر انبار، یک راننده کامیون یا یک فروشنده خرده پا برای در ک و کار با این مفاهیم، یک مانع بزرگ برای پیاده سازی موفق سیستم است. هدف اصلی در طراحی تجربه کاربری، انتزاع (Abstraction) این پیچیدگیها و ارائه یک رابط کاربری ساده، آشنا و بصری است که به کاربران اجازه دهد بدون نیاز به در ک جزئیات فنی زیرساخت، وظایف خود را به راحتی انجام دهند.

۱-۹-۱ طراحی تجربه کاربری برای انتزاع پیچیدگی

بر اساس توضیحات تکمیلی شما، پروژه حاضر با طراحی یک تجربه کاربری هدفمند، تلاش کرده است تا این چالش را مرتفع سازد. این طراحی بر اساس نقشهای مختلف کاربران، شخصیسازی شده است:

1-۹-۱ تجربه کاربری مدیر سیستم / تولیدکننده برای کاربری که مسئول ثبت محصولات جدید در سیستم است (مثلاً یک مدیر تولید)، یک داشبورد مدیریتی وب طراحی می شود. این داشبورد، تمام پیچیدگیهای فنی را در پس زمینه پنهان می کند:

- فرم ثبت محصول ساده: کاربر با یک فرم وب ساده مواجه می شود که در آن فیلدهای آشنایی مانند «نام محصول»، «شماره سریال»، «دسته بندی»، «تاریخ تولید» و امکان بارگذاری تصویر و اسناد را مشاهده می کند.
- فرآیند خودکار در پسزمینه: پس از اینکه کاربر اطلاعات را وارد کرده و بر روی دکمه «ایجاد محصول» کلیک می کند، برنامه کاربردی (Front end) به صورت خودکار زنجیرهای از عملیات پیچیده را انجام می دهد:
 - ۱. ابتدا فراداده وارد شده را در یک فرمت استاندارد (مانند JSON) بستهبندی می کند.
- ۲. سپس این فایل فراداده را در سیستم ذخیرهسازی off-chain (مانند IPFS) بارگذاری میکند.
 - ۳. پس از بارگذاری، آدرس منحصربه فرد فایل در IPFS (یعنی CID آن) را دریافت می کند.
 - %. هش Keccak 256 فراداده را مطابق منطق قرارداد هوشمند محاسبه می Keccak 256
- ۵. یک تراکنش برای فراخوانی تابع register Product در قرارداد هوشمند آماده می کند. این تراکنش شامل پارامترهایی مانند هش فراداده و آدرس IPFS آن است.
- 9. در نهایت، از طریق یک کیف پول متصل به مرورگر (مانند MetaMask)، از کاربر میخواهد تا تراکنش را با یک کلیک ساده، «امضا» یا تأیید کند.

در تمام این فرآیند، کاربر تنها یک فرم را پر کرده و یک دکمه را فشرده است. او نیازی به دانستن اینکه در تمام این فرآیند، کاربر تنها یک فرم را پر کرده و یک دکمه را فشرده است. او نیازی به دانستن اینکه Keccak چیست، ندارد. این انتزاع، پذیرش سیستم توسط کاربران سازمانی را به شدت تسهیل می کند.

این این این این این اور تعربه کاربری مالک توکن (توزیع کننده | خردهفروش) یکی از نقاط قوت کلیدی این پروژه، پایبندی به استاندارد جهانی ERC1155 است. این پایبندی یک مزیت بزرگ در تجربه کاربری ایجاد

می کند: محصول ثبتشده به عنوان یک توکن استاندارد، به صورت خودکار در تمام کیف پولهای دیجیتالی که از این استاندارد پشتیبانی می کنند (مانند TrustWallet ،MetaMask و...) قابل مشاهده و مدیریت است. این یعنی یک توزیع کننده یا خردهفروش، محصول دیجیتال را دقیقاً مانند هر توکن یا NFT دیگری در کیف پول خود مشاهده می کند. او می تواند موجودی خود را ببیند، آن را به آدرس دیگری منتقل کند و تاریخچه تراکنشهای آن را مشاهده نماید، همگی با استفاده از رابط کاربری آشنا و استاندارد کیف پول خود. این «قابلیت همکاری» (Interoperability) با اکوسیستم موجود، نیاز به ساخت یک کیف پول اختصاصی را از بین برده و به کاربران اجازه می دهد تا از ابزارهایی که از قبل با آن آشنا هستند، استفاده کنند.

۱-۹-۱ تجربه کاربری مصرف کننده نهایی ساده ترین و در عین حال مهم ترین تجربه کاربری، متعلق به مصرف کننده نهایی است. این کاربر نباید با هیچگونه پیچیدگی فنی درگیر شود. فرآیند برای او باید به سادگی یک کلیک باشد:

- ۱. مصرف کننده با دوربین تلفن همراه خود، کد QR روی محصول را اسکن می کند.
 - ۲. تلفن به صورت خود کار یک صفحه وب را باز می کند.
- ۳. این صفحه وب، که با طراحی بصری و جذاب ساخته شده، اطلاعات کلیدی محصول را نمایش می دهد: نام، تصویر، تاریخ تولید و مهمتر از همه، یک تأییدیه اصالت واضح (مثلاً یک تیک سبز بزرگ) به همراه تاریخچه کامل مالکیت محصول در یک خط زمانی ساده و قابل فهم.

در پسزمینه این فرآیند ساده، برنامه وب در حال انجام همان فرآیند پیچیده اعتبارسنجی هش است، اما کاربر نهایی هیچکدام از اینها را نمیبیند. او تنها نتیجه نهایی را دریافت میکند: «این کالا اصیل است». این سادگی، هدف نهایی پروژه یعنی توانمندسازی مصرفکننده و ایجاد اعتماد را محقق میسازد.

۱-۹-۳ اهمیت آموزش و پشتیبانی

با وجود تمام تلاشها برای ساده سازی تجربه کاربری، ماهیت نوآورانه این فناوری ایجاب می کند که فرآیندهای آموزش و پشتیبانی به عنوان بخشی جدایی ناپذیر از استقرار سیستم در نظر گرفته شوند [۱۵۸۴]. برگزاری کارگاههای آموزشی برای کاربران سازمانی، تهیه راهنماهای ویدیویی و متنی، و ایجاد یک کانال پشتیبانی برای پاسخگویی به سؤالات کاربران، نقشی حیاتی در کاهش مقاومت در برابر تغییر و تضمین استفاده صحیح و مؤثر از سامانه خواهد داشت.

۱--۱ چالشهای قانونی و نظارتی

آخرین و شاید پیچیده ترین چالش، مربوط به انطباق سیستم با محیط قانونی و نظارتی کشور است. فناوری زنجیره بلوکی و داراییهای دیجیتال، مفاهیمی نسبتاً جدید هستند و چارچوبهای قانونی برای آنها در بسیاری از کشورها، از جمله ایران، هنوز در حال تکامل و بعضاً مبهم است. پروپوزال به درستی اشاره می کند که «تطابق سیستم با قوانین داخلی کشور... چالشی دیگر است چرا که بسیاری از ابزارها و فناوریها در حوزه زنجیره بلوکی با قوانین فعلی ایران سازگاری ندارد» [۱۵۸۳].

۱-۱۰-۱ ابهام در ماهیت حقوقی توکنها

اولین سؤال قانونی این است که توکن دیجیتالی که نماینده یک کالای فیزیکی است، از نظر حقوقی چه ماهیتی دارد؟ آیا یک «دارایی دیجیتال» صرف است؟ آیا میتواند به عنوان یک «سند بهادار» (Security) تلقی شود؟ پاسخ به این سؤال، تأثیر مستقیمی بر قوانین حاکم بر صدور، انتقال و مالیاتستانی از آن خواهد داشت. فقدان یک تعریف قانونی روشن، میتواند ریسک حقوقی برای کسبوکارهایی که از این سیستم استفاده میکنند، به همراه داشته باشد.

۱-۱۱ قوانین مربوط به ارزهای دیجیتال و پرداخت

اگرچه در این سیستم، پرداخت هزینه کالاها می تواند خارج از زنجیره انجام شود، اما خود تراکنشهای زنجیره بلوکی نیازمند پرداخت هزینه گس با استفاده از ارز دیجیتال (مانند اتر) است. قوانین مربوط به نگهداری و استفاده از ارزهای دیجیتال در کشور، همچنان دارای ابهاماتی است که باید در مدل تجاری نهایی پروژه در نظر گرفته شود.

۱-۱۱-۱ حریم خصوصی و حفاظت از دادهها

یکی از ویژگیهای زنجیره بلوکی عمومی، شفافیت آن است. در حالی که این شفافیت برای ردیابی و اعتبارسنجی فوق العاده است، می تواند چالشهایی را برای حریم خصوصی و محرمانگی اطلاعات تجاری ایجاد کند. اطلاعاتی مانند حجم معاملات بین یک تولید کننده و توزیع کننده، یا مسیرهای دقیق توزیع، می تواند برای رقبا بسیار ارزشمند باشد. طراحی سیستمی که بتواند بین نیاز به شفافیت برای حسابرسی و نیاز به محرمانگی برای حفظ مزیت رقابتی تعادل برقرار کند، یک چالش مهم است. راهکارهایی مانند استفاده از زنجیرههای بلوکی خصوصی (Private Block chains) یا فناوریهای اثبات با دانش صفر (Private Block chains) می توانند در آینده برای حل این مشکل مورد بررسی قرار گیرند.

۱-۱۱-۲ مسئولیت پذیری در یک محیط غیرمتمرکز

در صورت بروز خطا در یک قرارداد هوشمند که منجر به خسارت مالی شود، چه کسی از نظر قانونی مسئول است؟ توسعه دهنده قرارداد؟ کاربرانی که با آن تعامل کردهاند؟ یا کل شبکه؟ قوانین سنتی که بر پایه نهادهای متمرکز بنا شدهاند، پاسخ روشنی برای این سؤالات در یک محیط غیرمتمرکز ندارند. این ابهام، یکی دیگر از ریسکهای حقوقی است که کسب و کارها در هنگام پذیرش این فناوری با آن روبرو هستند.

1-۱-۲-۱۰ رویکرد پروژه در جهت انطباق پذیری پروژه حاضر، با درک این چالشها، یک گام هوشمندانه در جهت افزایش انطباق پذیری برداشته است. تعبیه قابلیت محاسبه خودکار مالیات در قرارداد هوشمند[۱۵۸۰، ۱۶۰۹]، نشان دهنده یک رویکرد پیشگیرانه برای همسوسازی سیستم با الزامات مالیاتی کشور است. این قابلیت، به نهادهای نظارتی نشان می دهد که این فناوری نه تنها برای فرار از قوانین طراحی نشده، بلکه می تواند ابزاری بسیار کارآمد برای افزایش شفافیت مالیاتی و تسهیل فرآیندهای نظارتی باشد. این رویکرد می تواند به عنوان یک نقطه قوت در گفتگو با نهادهای قانون گذار و جلب اعتماد آنها مورد استفاده قرار گیرد.

۲ مرور پژوهشهای پیشین و سامانههای مشابه

هدف اصلی این فصل، قرار دادن پژوهش حاضر در بستر علمی و صنعتی موجود است. برای درک عمیق نوآوریها و وجه تمایز این پروژه، ضروری است که ابتدا راهکارهای پیشین و وضعیت فعلی فناوری در حوزه مدیریت زنجیره تأمین را به دقت مورد بررسی و نقد قرار دهیم. این فصل به دو بخش اصلی تقسیم میشود. در بخش اول، که در ادامه به تفصیل به آن پرداخته میشود، به تحلیل عمیق سامانههای مدیریت زنجیره تأمین سنتی و همچنین نسل اول راهکارهای دیجیتال غیربلاکچینی میپردازیم. این تحلیل نشان خواهد داد که چرا این راهکارها، با وجود تمام پیشرفتها، در حل مشکلات بنیادین مربوط به «اعتماد» و «شفافیت» ناکام ماندهاند. در بخش دوم، به صورت متمرکز به بررسی و تحلیل پروژههایی خواهیم پرداخت که از فناوری نروژه حاضر به روشنی مشخص گردد.

۱-۲ تحلیل سامانههای سنتی و راهکارهای دیجیتال غیربلاکچینی

پارادایم مدیریت زنجیره تأمین (SupplyChainManagement-SCM) در طول دهههای گذشته، تحولات بسیاری را تجربه کرده است. هدف اصلی در نگاه سنتی، همواره بر «بهینهسازی» و «کارایی» متمرکز بوده است. شرکتها تلاش کردهاند تا با استفاده از سیستمهای اطلاعاتی و مدلهای ریاضی،

هزینههای موجودی را کاهش دهند، زمان تحویل را به حداقل برسانند و فرآیندهای لجستیکی خود را بهینه بهینه به بهینه رکنند [۶]. با این حال، این تمرکز بر بهینه سازی داخلی، اغلب به قیمت نادیده گرفتن اهمیت جریان شفاف اطلاعات بین شرکای تجاری تمام شده است. در این بخش، ابتدا معماری سیستمهای اطلاعاتی متمرکزی که ستون فقرات زنجیرههای تأمین امروزی را تشکیل میده □□، بررسی کرده و سپس به تحلیل نسل اول فناوریهای دیجیتال که برای رفع برخی از این کاستیها به کار گرفته شدند، می پردازیم.

۱-۱-۲ معماری سیستمهای اطلاعاتی متمرکز در زنجیره تأمین

زنجیره تأمین مدرن، بدون سیستمهای اطلاعاتی پیچیده قابل تصور نیست. این سیستمها وظیفه مدیریت جریان عظیم اطلاعات، از ثبت سفارش یک مشتری تا برنامهریزی تولید و ارسال نهایی کالا را بر عهده دارند. با این حال، معماری غالب این سیستمها، یک معماری «متمرکز» و «درون-سازمانی» است که خود ریشه بسیاری از مشکلات امروزی است.

(ERP) سیستمهای برنامهریزی منابع سازمانی (ERP) سیستمهای برنامهریزی منابع سازمانی یا سیستمهای برنامهریزی منابع سازمانی یا (EnterpriseResourcePlanning) ERP معموله (EnterpriseResourcePlanning) به عنوان سیستم عصبی مرکزی اکثر شرکتهای بزرگ و متوسط عمل می کنند. پلتفرمهایی مانند SAP و Oracle (SAP) مجموعهای یکپارچه از ماژولهای نرمافزاری را برای مدیریت تمام جنبههای یک کسبوکار، از منابع انسانی و مالی گرفته تا تولید و فروش، فراهم می آورند [Oracle (Oracle (Oracle

- مدیریت موجودی (InventoryManagement): ردیابی سطح موجودی مواد اولیه، کالاهای در حال ساخت و محصولات نهایی در انبارها.
- پردازش سفارش از زمان ثبت توسط: (OrderProcessing): مدیریت چرخه کامل یک سفارش از زمان ثبت توسط مشتری تا تحویل نهایی.
- مدیریت تدارکات (Procurement): خودکارسازی فرآیندهای مربوط به خرید مواد اولیه از تأمین کنندگان.
- برنامهریزی تولید (ProductionPlanning): برنامهریزی و زمانبندی فرآیندهای تولید بر اساس پیشبینی تقاضا و سطح موجودی.

بزرگترین مزیت یک سیستم ERP، ایجاد یک «منبع حقیقت واحد» (ERP میستم ERP) درون مرزهای یک سازمان است. تمام بخشهای یک شرکت به دادههای یکسان و بهروزی دسترسی دارند که این امر هماهنگی داخلی را به شدت افزایش می دهد. با این حال، همین نقطه قوت، بزرگترین نقطه ضعف

آن در مقیاس یک زنجیره تأمین است. یک سیستم ERP اساساً برای دنیای داخل یک شرکت طراحی شده و به صورت پیش فرض، دیدی نسبت به فرآیندهای تأمین کنندگانِ تأمین کنندگان یا مشتریانِ مشتریان خود ندار د.

رای (EDI) و تبادل الکترونیکی داده (EDI) برای برای (SCM) و تبادل الکترونیکی داده (EDI) برای حل مشکل ارتباط بین ERPهای شرکتهای مختلف، سیستمهای تخصصی تری به نام سیستمهای مدیریت (SCMSystems) توسعه یافتند. این سیستمها تلاش می کنند تا پلی بین سیستمهای اطلاعاتی شرکای تجاری مختلف ایجاد کنند. یکی از قدیمی ترین و رایج ترین فناوری ها برای این منظور، تبادل الکترونیکی داده یا (ElectronicDataInterchange) است [الکترونیکی داده یا EDI (EDI استاندارد (مانند سفارشهای خرید، فاکتورها و بارنامهها) را به صورت الکترونیکی و با فرمت مشخصی برای یکدیگر ارسال کنند.

با این حال، EDI نیز دارای محدودیتهای جدی است:

- **هزینه و پیچیدگی بالا:** راهاندازی و نگهداری سیستمهای EDI پرهزینه و پیچیده است و معمولاً تنها برای شرکتهای بسیار بزرگ که با تعداد محدودی از شرکای اصلی و بلندمدت کار میکنند، مقرون به صرفه است.
- عدم کار در زمان واقعی (Real-time): تبادل داده در EDI معمولاً به صورت دسته (Real-time): و در فواصل زمانی مشخص (مثلاً در پایان هر روز کاری) انجام می شود. این تأخیر در جریان اطلاعات، مانع از تصمیم گیری های سریع و واکنش به موقع به تغییرات بازار می شود.
- ساختار غیرقابل انعطاف: فرمتهای EDI بسیار سختگیرانه و استاندارد شده هستند و تغییر یا افزودن اطلاعات جدید به آنها دشوار است.

T-I-I-Y مشکل بنیادین: سیلوهای اطلاعاتی و اثر شلاقی نتیجه نهایی معماری متمرکز و سیستمهای ارتباطی ناکارآمد، پدیدهای است که از آن به عنوان «سیلوهای اطلاعاتی» (InformationSilos) سیستمهای ارتباطی ناکارآمد، پدیدهای است که از آن به عنوان «سیلوهای اطلاعاتی» (عدهفروش، خردهفروش) یاد می شود. در این پدیده، هر شرکت در زنجیره تأمین (تولیدکننده، توزیعکننده، عمدهفروش، خردهفروش) دادههای خود را در یک پایگاه داده مجزا و ایزوله نگهداری می کند. جریان اطلاعات بین این سیلوها، کند، غیرقابل اعتماد و اغلب نیازمند ورود دستی داده است که خود منشأ بسیاری از خطاهاست.

یکی از مشهورترین و مخربترین پیامدهای سیلوهای اطلاعاتی، **اثر شلاقی** (TheBullwhipEf fect) یکی از مشهورترین و مخربترین پیامدهای سیلوهای اطلاعاتی، **اثر شلاقی** (در سطح است [۷]. این پدیده توصیف می کند که چگونه نوسانات کوچک در تقاضای مشتری نهایی (در سطح خردهفروشی)، به صورت فزایندهای در حین حرکت به سمت بالای زنجیره تأمین (به سمت تولیدکننده)

تقویت می شود. برای مثال، یک افزایش ۱۰ درصدی در تقاضای مشتری، ممکن است باعث شود خرده فروش سفارش خود به عمده فروش را ۲۰ درصد افزایش دهد تا یک موجودی اطمینان برای خود ایجاد کند. عمده فروش نیز با مشاهده این افزایش، سفارش خود به تولید کننده را ۴۰ درصد افزایش می دهد و این روند ادامه می یابد.

این تقویت نوسانات، ناشی از عدم قطعیت و فقدان دیدپذیری است. هر عضو زنجیره، تنها سفارش دریافتی از عضو پاییندستی خود را میبیند و دیدی نسبت به تقاضای واقعی مصرف کننده نهایی ندارد. این امر منجر به مشکلات زیر می شود:

- موجودی مازاد و هزینه های نگهداری بالا: تولید کنندگان بر اساس سیگنال های تقاضای اغراق آمیز، بیش از حد تولید می کنند که منجر به انباشت موجودی در انبارها می شود.
- کمبود موجودی: در جهت معکوس، یک کاهش تقاضای موقتی نیز می تواند به صورت اغراق آمیز به بالا منتقل شده و باعث شود تولید کننده تولید خود را بیش از حد کاهش دهد که منجر به کمبود کالا در زمان افزایش مجدد تقاضا می شود.
- استفاده ناکار آمد از ظرفیت تولید و حملونقل: نوسانات شدید در سفارشها، برنامهریزی پایدار برای تولید و لجستیک را غیرممکن میسازد.

اثر شلاقی، نمونه بارزی از این است که چگونه معماری اطلاعاتی یک زنجیره تأمین، تأثیر مستقیمی بر عملکرد مالی و عملیاتی آن دارد. این مشکل، یک مشکل محاسباتی یا لجستیکی صرف نیست، بلکه یک «مشکل اطلاعاتی» است که ریشه در عدم شفافیت و عدم اشتراکگذاری دادهها در زمان واقعی دارد.

T-1-7 نسل اول دیجیتالی سازی: فناوری های ردیابی و شناسایی

در پاسخ به مشکلات دیدپذیری، نسل اول فناوریهای دیجیتال با هدف بهبود فرآیندهای «شناسایی» و «ردیابی» کالاهای فیزیکی پدید آمدند. این فناوریها تلاش کردند تا پلی بین دنیای فیزیکی محصولات و دنیای دیجیتال اطلاعات ایجاد کنند. با این حال، همانطور که خواهیم دید، این راهکارها نیز در نهایت به همان دیوارهای بلند سیلوهای اطلاعاتی برخورد کردند.

QR بارکدها و کدهای QR بارکدها، به عنوان یک فناوری بسیار ارزان و فراگیر، انقلابی در مدیریت فروش و موجودی در سطح خردهفروشی ایجاد کردند. آنها امکان شناسایی سریع و خودکار مدیریت فروش و موجودی در سطح خردهفروشی ایجاد کردند. آنها امکان شناسایی سریع و خودکار یک محصول را در پایانه فروش فراهم آوردند. کدهای QR (QuickResponse) نیز به عنوان نسل بعدی بارکدهای دوبعدی، قابلیت ذخیرهسازی اطلاعات بیشتر (مانند یک آدرس وب) را فراهم کرده و استفاده از آنها با دوربین تلفنهای هوشمند را ممکن ساختند.

با این حال، این فناوریها دارای محدودیتهای ذاتی هستند:

- ماهیت ایستا و محدودیت داده: یک بارکد یا کد QR معمولی، تنها یک شناسه ثابت را در خود جای داده است و اطلاعات آن به صورت پویا بهروز نمی شود.
- آسیب پذیری در برابر جعل: کپی کردن و چاپ مجدد یک بارکد یا کد QR بسیار ساده است. این امر آنها را به ابزاری غیرقابل اعتماد برای کاربردهای ضدجعل تبدیل می کند.
- نیاز به اسکن دستی: هر آیتم باید به صورت جداگانه و با قرار گرفتن در خط دید اسکنر، خوانده شود که این امر در مقیاسهای بزرگ (مانند ورودی یک انبار) ناکارآمد است.

تفاوت کلیدی کد QR در پروژه حاضر با یک کد QR معمولی در این است که کد QR ما به یک «شناسه ثابت» اشاره نمی کند، بلکه به یک «لینک پویا» به یک پایگاه داده امن و تغییرناپذیر (یعنی زنجیره بلوکی) اشاره دارد. این بکاند (Backend) امن است که به آن معنا و اعتبار می بخشد، نه خود کد QR.

(RFID) شناسایی با فرکانس رادیویی -1-7

فناوری RFID گام بزرگی رو به جلو برای غلبه بر محدودیتهای بارکد بود. یک سیستم RFID از دو جزء فناوری RFID گام بزرگی رو به جلو برای غلبه بر محصول متصل می شود و حاوی یک شناسه منحصربه فرد اصلی تشکیل شده است: یک Tag که با ارسال امواج رادیویی، می تواند اطلاعات تگها را از راه دور و بدون نیاز به خط دید مستقیم بخواند [۸].

مزایای RFID قابل توجه بود:

- اسکن دستهای و سریع: یک ریدر RFID میتواند صدها تگ را در چند ثانیه شناسایی کند، که این امر فرآیندهایی مانند شمارش موجودی یا ثبت ورود و خروج کالا از انبار را به شدت تسریع میکند.
- عدم نیاز به خط دید: تگها نیازی به دیده شدن توسط ریدر ندارند و میتوانند در داخل بستهبندی یا کارتن قرار داشته باشند.
- قابلیت ذخیره داده بیشتر: برخی از تگهای RFID قابلیت نوشتن و بازنویسی داده را نیز دارند.

شرکتهای بزرگی مانند والمارت (Walmart) در اوایل دهه ۲۰۰۰، سرمایه گذاری عظیمی بر روی این فناوری انجام دادند و تأمین کنندگان خود را ملزم به استفاده از تگهای RFID بر روی پالتها و کارتنها کردند. هدف، افزایش دیدپذیری در زنجیره تأمین و کاهش هزینههای ناشی از خطای انسانی بود. با وجود

موفقیتهای اولیه، پروژههای RFID نیز با چالشهایی روبرو شدند، از جمله هزینه بالای تگها (در مقایسه با بارکد) و مشکلات مربوط به تداخل امواج رادیویی.

اما مهمترین محدودیت RFID، که اغلب نادیده گرفته میشود، این است که این فناوری نیز تنها «ورودی» داده را بهبود میبخشد. دادههای جمعآوری شده توسط ریدرهای RFID، در نهایت به همان پایگاههای داده متمرکز و ایزوله شرکت مربوطه ارسال میشدند. به عبارت دیگر، RFID مشکل «جمعآوری سریع داده» را حل کرد، اما مشکل «اشتراک گذاری امن و قابل اعتماد داده» بین شرکای مختلف را دست نخورده باقی گذاشت. دادههای RFID نیز مانند هر داده دیگری در یک سرور متمرکز، قابل حذف یا دستکاری بودند.

۱-۳-۱-۲ اینترنت اشیاء (IoT) و سنسورهای هوشمند اینترنت اشیاء یا IoT، تکامل طبیعی فناوری RFID است. در اینجا، به جای یک تگ غیرفعال، با «سنسورهای هوشمند» سروکار داریم که میتوانند به صورت فعال، دادههای محیطی را جمعآوری کرده و از طریق اینترنت ارسال کنند [۹]. این سنسورها میتوانند یارامترهای مختلفی را اندازه گیری کنند:

- سنسورهای دما و رطوبت: برای نظارت بر زنجیره سرد (ColdChain) در حملونقل مواد غذایی، داروها و مواد شیمیایی حساس.
 - سنسورهای موقعیت یاب (GPS): برای ردیابی دقیق و لحظهای مکان محمولهها.
 - شتابسنجها: برای تشخیص ضربه یا سقوط که می تواند به کالاهای حساس آسیب برساند.
 - سنسورهای باز شدن درب کانتینر: برای افزایش امنیت و جلوگیری از سرقت.

ترکیب این سنسورها، یک جریان داده بسیار غنی و در زمان واقعی (Real-time) از وضعیت و شرایط یک محصول در طول زنجیره تأمین فراهم می کند. این سطح از دیدپذیری، در مدیریت کیفیت و امنیت، بی سابقه است. اما بار دیگر، همان مشکل بنیادین پدیدار می شود: این داده ها به کجا می روند؟ داده های ارزشمند جمع آوری شده توسط سنسورهای IoT، معمولاً به یک پلتفرم ابری (CloudPlatform) متمرکز که توسط ارائه دهنده سرویس IoT یا خود شرکت کنترل می شود، ارسال می گردد. این ساختار، تمام مشکلات یک سیستم متمرکز را به ارث می برد:

• مالکیت و کنترل داده: دادهها در انحصار یک شرکت باقی میمانند. شرکت حملونقل ممکن است به دلایل مختلف، از به اشتراک گذاشتن دادههای کامل سنسور دما با صاحب کالا یا شرکت بیمه خودداری کند.

- قابلیت دستکاری: هیچ تضمین رمزنگاریشدهای وجود ندارد که دادههای ثبتشده در پلتفرم ابری، پس از ثبت تغییر نکرده باشند.
- عدم وجود یک تاریخچه یکپارچه: صاحب کالا ممکن است به دادههای سنسور شرکت حملونقل
 □ دسترسی داشته باشد، اما وقتی کالا به شرکت حملونقل
 □ دست بدهد.

$^{-1-7}$ جمع بندی: چرا راهکارهای سنتی و دیجیتال اولیه کافی نیستند؟

تحلیل ارائه شده در این بخش نشان می دهد که با وجود دهه ها تلاش برای بهینه سازی و دیجیتالی سازی، زنجیره های تأمین همچنان با یک مشکل اساسی و حل نشده دست و پنجه نرم می کنند. این مشکل، یک مشکل فنی یا لجستیکی صرف نیست، بلکه یک مشکل اعتماد است. جدول زیر، خلاصه ای از محدودیت های راهکارهای بررسی شده را در برابر معیارهای کلیدی یک زنجیره تأمین ایده آل نشان می دهد.

جدول ۱: مقایسه محدودیتهای راهکارهای مختلف

راهكار	سرتاسری شفافیت	امنیت/تغییرناپذیری	اعتماد ايجاد	تمركز عدم
سنتی ERP SCM	ضعيف بسيار	ضعیف	ضعیف	خير
کد QR بارکد	ضعیف	ضعيف بسيار	ضعيف بسيار	خير
RFID	(درونسازمانی) متوسط	ضعیف	ضعیف	خير
سنسورها / IoT	پلتفرم) به (بسته متوسط	ضعیف	ضعیف	خير

همانطور که در جدول ۱ مشاهده می شود، هیچیک از این راهکارها قادر به ارائه ترکیبی از شفافیت، امنیت و عدم تمرکز به صورت همزمان نیستند. مشکل اصلی این است که تمام این فناوریها، در نهایت دادههای خود را به یک «مخزن متمرکز و قابل اعتماد» فرضی ارسال می کنند، در حالی که در یک زنجیره تأمین که از دهها شرکت مستقل تشکیل شده، چنین مخزن واحد و مورد اعتمادی وجود خارجی ندارد.

هر شرکت به دادههای سیستم خود اعتماد دارد، اما دلیلی ندارد که به دادههای ارسال شده از سوی شرکای تجاری خود (که ممکن است در فرمتهای مختلف و با تأخیر ارسال شوند) اعتماد کامل داشته باشد. این عدم اعتماد متقابل، منجر به ایجاد فرآیندهای پرهزینه «تطبیق» (Reconciliation) می شود. شرکتها تیمهایی را استخدام می کنند تا فاکتورها، بارنامهها و رسیدهای خود را با اسناد ارسال شده از سوی شرکایشان مقایسه و مغایرتها را برطرف کنند. این فرآیندها، منشأ اصلی ناکارآمدی، اتلاف وقت و اختلافات تجاری هستند.

در نهایت، این تحلیل ما را به یک نتیجه گیری اساسی میرساند: زنجیره تأمین مدرن، بیش از یک سیستم نرمافزاری جدید یا یک سنسور هوشمندتر، به یک «لایه اعتماد» (Layer Trust) مشترک، بیطرف و غیرمتمرکز نیاز دارد. زیرساختی که تمام شرکت کنندگان بتوانند دادههای خود را با اطمینان بر روی آن ثبت کرده و به صحت دادههای ثبتشده توسط دیگران نیز اعتماد کامل داشته باشند، زیرا این زیرساخت توسط هیچ نهاد واحدی کنترل نمی شود و قوانین آن توسط ریاضیات و رمزنگاری تضمین شده است.

این نیاز بنیادین به یک لایه اعتماد غیرمتمرکز، دقیقاً همان مسئلهای است که فناوری زنجیره بلوکی برای حل آن پدید آمده است. زنجیره بلوکی، با ارائه یک دفتر کل توزیعشده، شفاف و تغییرناپذیر، این پتانسیل را دارد که آن لایه اعتماد گمشده را فراهم کرده و پارادایم حاکم بر مدیریت زنجیره تأمین را به کلی دگرگون سازد. مبانی و جزئیات این راهکار نوین، موضوع اصلی بخش بعدی این فصل خواهد بود.

۲-۲ بررسی پروژههای زنجیره تأمین مبتنی بر زنجیره بلوکی

در بخش پیشین، به تفصیل نشان داده شد که چرا سامانههای سنتی و نسل اول راهکارهای دیجیتال، در حل چالشهای بنیادین اعتماد و شفافیت در زنجیره تأمین ناکام بودهاند. مشخص شد که مشکل اصلی، نه کمبود داده، بلکه فقدان یک «لایه اعتماد» مشترک و غیرمتمرکز برای اعتبارسنجی و اشتراکگذاری امن دادهها بین شرکای تجاری ناهمگون است. این تحلیل، زمینه را برای ورود پارادایم نوین زنجیره بلوکی به این حوزه فراهم میکند. فناوری زنجیره بلوکی، با ارائه یک دفتر کل توزیعشده، شفاف و تغییرناپذیر، دقیقاً همان لایه اعتماد گمشده را ارائه میدهد.

در این بخش، به صورت عمیق به بررسی و تحلیل پروژهها، پلتفرمها و استانداردهایی میپردازیم که تلاش کردهاند از این پتانسیل عظیم برای متحول ساختن زنجیره تأمین بهره ببرند. این بررسی یک مسیر تکاملی را دنبال می کند: از نسل اول راهکارها که بر پلتفرمهای خصوصی و افزایش شفافیت متمرکز بودند، تا نسل دوم که با بهره گیری از شبکههای عمومی و مفهوم «توکنیزهسازی»، قابلیتهای جدیدی را به این عرصه افزودند. هدف نهایی این بررسی، شناسایی دقیق نقاط قوت و ضعف رویکردهای مختلف و در نهایت، مشخص کردن جایگاه نوآورانه و منحصربهفرد پروژه حاضر در این چشمانداز گسترده است.

۱-۲-۲ نسل اول راهکارها: تمرکز بر شفافیت و پلتفرمهای خصوصی

در سالهای اولیه معرفی زنجیره بلوکی به دنیای کسبوکار (تقریباً بین سالهای ۲۰۱۴ تا ۲۰۱۸)، هیجان زیادی پیرامون این فناوری وجود داشت. بسیاری آن را به عنوان یک «گلوله نقرهای» (bullet silver) برای حل تمام مشکلات زنجیره تأمین می دیدند. با این حال، استفاده از شبکههای زنجیره بلوکی عمومی و بدون نیاز به مجوز (Permissionless) مانند بیت کوین یا اتریوم برای کاربردهای سازمانی، با موانع جدی روبرو

- مقیاس پذیری و هزینه: این شبکهها دارای توان پردازشی پایین و هزینه تراکنش (گس) بالا و غیرقابل پیشبینی بودند.
- حریم خصوصی: تمام دادههای ثبتشده بر روی یک زنجیره بلوکی عمومی، برای همه افراد در سراسر جهان قابل مشاهده است. این سطح از شفافیت برای اطلاعات حساس تجاری (مانند قیمت گذاری، حجم معاملات و هویت شرکا) غیرقابل قبول بود.
- حاکمیت و کنترل: در یک شبکه عمومی، هیچ نهاد مرکزی برای مدیریت شبکه، حل اختلافات یا کنترل دسترسی شرکت کنندگان وجود ندارد. این عدم کنترل برای محیطهای تجاری که نیازمند قوانین و مقررات مشخص هستند، یک نقطه ضعف بزرگ محسوب می شد.

این چالشها منجر به ظهور دستهای جدید از پلتفرمهای زنجیره بلوکی شد که به طور خاص برای نیازهای سازمانی طراحی شده بودند: زنجیرههای بلوکی خصوصی یا کنسرسیومی (Blockchains Consortium/Private). در این مدل، به جای یک شبکه باز، یک شبکه بسته و نیازمند مجوز (Permissioned) ایجاد می شود که تنها اعضای تأییدشده (مانند چند شرکت در یک زنجیره تأمین) می توانند در آن مشارکت کنند. این رویکرد، ضمن حفظ برخی از مزایای زنجیره بلوکی (مانند تغییرناپذیری و دفتر کل مشترک)، مشکلات مربوط به حریم خصوصی و حاکمیت را برطرف می کرد. برجسته ترین و تأثیر گذار ترین پلتفرم در این نسل از راهکارها، بدون شک Fabric Hyperledger است.

معماری منحصربهفره ، برخلاف معماری یکپارچه اتریوم، Fabric Hyperledger از یک رویکرد ماژولار بهره میبرد که در آن وظایف مختلف شبکه (مانند اجرای تراکنش، اجماع و بهروزرسانی دفتر کل) بین مؤلفههای مختلف تقسیم شده است [۱۰]. این معماری به انعطافپذیری و مقیاسپذیری بیشتر کمک می کند. مؤلفههای کلیدی آن عبارتند از:

• همتاها (Peers): گرههایی در شبکه هستند که میزبان دفتر کل (Ledger) و قراردادهای هوشمند (Peers) و ترادادهای در که در Fabric به آن Chaincode گفته می شود) هستند. همتاها تراکنشها را اجرا و اعتبار سنجی

مي كنند.

- سرویس ترتیبدهی ($Service\ Ordering$): این مؤلفه مسئول ایجاد اجماع بر روی ترتیب تراکنشها و بستهبندی آنها در بلوکهای جدید است. Fabric از الگوریتههای اجماع مختلفی مانند Solo (برای توسعه) و Raft یا Raft یا Raft (برای تولید) پشتیبانی می کند که برخلاف اثبات کار (Proof-of-Work) در اتریوم، نیازی به ماینینگ پرمصرف ندارند.
- کانالها (Channels): این یکی از نوآورانهترین ویژگیهای Fabric است. کانال یک مکانیزم ارتباطی خصوصی بین زیرمجموعهای از اعضای شبکه است. هر کانال، دفتر کل مخصوص به خود را دارد و تراکنشهای انجامشده در یک کانال، تنها برای اعضای همان کانال قابل مشاهده است. این ویژگی، راهکاری قدرتمند برای حل مشکل حریم خصوصی دادهها ارائه میدهد. برای مثال، در یک زنجیره تأمین، تولیدکننده و یک توزیع کننده خاص میتوانند یک کانال خصوصی برای ثبت معاملات و قیمت گذاریهای محرمانه خود داشته باشند، در حالی که سایر اعضای شبکه از آن بی اطلاع هستند.
- قرارداد هوشمند (Chaincode): منطق کسبوکار در Fabric در قالب Chaincode نوشته میشود. برخلاف اتریوم که تنها از زبان Solidity پشتیبانی میکند، Solidity را میتوان با زبانهای برنامهنویسی عمومی مانند Iava و Node.js (Go میکند. برنامهنویسان وب آسان تر میکند.
- سیاستهای تأیید (Policies Endorsement): برای هر Chaincode می توان یک سیاست تأیید تعریف کرد که مشخص می کند یک تراکنش برای معتبر بودن، باید توسط کدام یک از همتاهای شبکه تأیید (امضا) شود. برای مثال، می توان سیاستی تعریف کرد که طبق آن، یک تراکنش انتقال مالکیت باید هم توسط فروشنده و هم توسط خریدار تأیید شود.
- ۲-۱-۲ مرایا و معایب Fabric Hyperledger در زنجیره تأمین: این معماری منحصربهفرد، مزایای قابل توجهی برای کاربردهای زنجیره تأمین به همراه داشت:
- **محرمانگی دادهها:** قابلیت ایجاد کانالهای خصوصی، بزرگترین مزیت Fabric بود که به شرکتها اجازه می داد تا دادههای حساس خود را تنها با شرکای مورد نظر به اشتراک بگذارند.
- توان پردازشی بالا: به دلیل استفاده از الگوریتمهای اجماع سبکتر و عدم نیاز به مشارکت تمام گرهها در تمام تراکنشها، Fabric میتواند به توان پردازشی بسیار بالاتری (هزاران تراکنش در ثانیه) نسبت به شبکههای عمومی دست یابد.

- عدم وجود هزینه گس: در Fabric، هزینه تراکنش به صورت مستقیم (مانند گس در اتریوم) وجود ندارد. هزینه ها بیشتر مربوط به زیرساختهای محاسباتی برای اجرای گرهها و مدیریت شبکه است.
- شبکه نیازمند مجوز: امکان کنترل دقیق اینکه چه کسی میتواند به شبکه بپیوندد و چه مجوزهایی داشته باشد، برای محیطهای تجاری که نیازمند حاکمیت مشخص هستند، یک مزیت کلیدی بود.

با این حال، این رویکرد با چالشها و معایبی نیز همراه بود:

- پیچیدگی در راهاندازی و مدیریت: راهاندازی یک شبکه Fabric با چندین سازمان، کانال و سیاستهای مختلف، بسیار پیچیده تر از استقرار یک قرارداد هوشمند بر روی شبکه اتریوم است.
 - عمومى: اكوسيستم با همكارى قابليت فقدان.. : □□□□□□□□□.(

۳-۱-۲-۲ مطالعات موردی برجسته با Fabric Hyperledger برای درک بهتر تأثیر عملی این پلتفرم، دو مورد از بزرگترین و مشهورترین پروژههای زنجیره تأمین که بر پایه Fabric ساخته شدهاند را بررسی میکنیم.

مطالعه موردی اول: Trust Food IBM صنعت مواد غذایی یکی از اولین و مستعدترین حوزهها برای پذیرش فناوری زنجیره بلوکی بود. شیوع بیماریهای ناشی از مواد غذایی آلوده و نیاز به فراخوان سریع محصولات از بازار، هزینههای هنگفتی را به شرکتها تحمیل کرده و جان مصرفکنندگان را به خطر میانداخت. مشکل اصلی این بود که ردیابی منشأ یک محصول آلوده در یک زنجیره تأمین پیچیده، ممکن بود روزها یا حتی هفتهها طول بکشد.

Hyperledger با همکاری غولهای خرده فروشی مانند Walmart بروژه Walmart با همکاری غولهای خرده فروشی مانند Walmart بروژه آله برای ثبت تمام Fabric راهاندازی کرد [۱۱]. هدف این پلتفرم، ایجاد یک دفتر کل مشترک و تغییرناپذیر برای ثبت تمام رویدادهای مربوط به یک محصول غذایی، از مزرعه تا قفسه فروشگاه، بود.

- نحوه عملکرد: هر شرکت کننده در زنجیره (کشاورز، فرآوری کننده، شرکت حملونقل، خردهفروش) یک گره در شبکه Fabric اجرا می کند. اطلاعات مربوط به هر بچ از محصول (مانند تاریخ برداشت، گواهی های ارگانیک، اطلاعات حملونقل و...) به عنوان یک دارایی (Asset) در دفتر کل ثبت می شود. هر مرحله از انتقال، به عنوان یک تراکنش جدید ثبت شده و یک تاریخچه کامل و قابل ردیابی ایجاد می کند.
- دستاورد اصلی: بزرگترین دستاورد Trust Food، کاهش چشمگیر زمان ردیابی بود. در یکی از پایلوتهای اولیه با Walmart، زمان لازم برای ردیابی منشأ یک بسته انبه از ۶ روز و ۱۸ ساعت به

تنها ۲.۲ ثانیه کاهش یافت. این سرعت، امکان واکنش سریع در مواقع بحرانی و جلوگیری از توزیع گسترده محصولات آلوده را فراهم می کند.

• چالشها و درس آموختهها: با وجود موفقیت فنی، Trust Food با چالش پذیرش نیز روبرو شد. متقاعد کردن هزاران کشاورز و تأمین کننده کوچک برای پیوستن به پلتفرم و ثبت دقیق دادهها، یک چالش بزرگ بود. همچنین، مدل کسبوکار مبتنی بر حق عضویت، برای بازیگران کوچک تر جذابیت کمتری داشت. این پروژه نشان داد که موفقیت یک راهکار زنجیره بلوکی، تنها به فناوری آن بستگی ندارد، بلکه به شدت به مدل کسبوکار، حاکمیت شبکه و ایجاد انگیزه برای تمام شرکت کنندگان وابسته است.

مطالعه موردی دوم: TradeLens صنعت حملونقل کانتینری بینالمللی، یکی از پیچیده ترین زنجیرههای تأمین در جهان است. یک محموله ساده ممکن است در طول سفر خود توسط ۳۰ نهاد مختلف (از جمله گمرک، مقامات بندری، شرکتهای حملونقل زمینی و دریایی) و با استفاده از بیش از ۲۰۰ تعامل و تبادل سند مختلف، جابجا شود. این فرآیند که عمدتاً مبتنی بر کاغذبازی و سیستمهای ارتباطی قدیمی است، مملو از ناکارآمدی، تأخیر و ریسک خطا است.

برای حل این مشکل، دو غول این صنعت، شرکت کشتیرانی Maersk و شرکت فناوری IBM، با یکدیگر همکاری کرده و پلتفرم TradeLens را بر پایه TradeLens ایجاد کردند [TradeLens ایجاد کردن و ایجاد یک منبع حقیقت واحد برای تمام اسناد و رویدادهای مربوط به یک محموله کانتینری بود.

- نحوه عملکرد: پلتفرم به تمام طرفهای درگیر اجازه میدهد تا به صورت آنی و امن، به اسناد حملونقل، اطلاعات گمرکی و وضعیت لحظهای کانتینرها دسترسی داشته باشند. این دیدپذیری سرتاسری، هماهنگی بین نهادهای مختلف را به شدت بهبود بخشیده و نیاز به ارسال فیزیکی یا فکس اسناد را از بین میبرد.
- چالش اصلی: اثر شبکهای (Effect Network): بزرگترین چالش TradeLens، متقاعد کردن رقبای بازرگترین چالش اصلی: اثر شبکهای (قبای پیوستن به یک پلتفرم بود که توسط رقبای برای پیوستن به یک پلتفرم بود که توسط رقبب اصلی آنها رهبری میشد. بسیاری از شرکتها نگران بودند که Maersk به دادههای حساس آنها دسترسی پیدا کند. اگرچه معماری Fabric با استفاده از کانالها میتوانست این نگرانی را از نظر فنی برطرف کند، اما چالش اصلی، یک چالش «اعتماد تجاری» بود، نه یک مشکل فنی.
- درس آموختهها: TradeLens نشان داد که در یک کنسرسیوم، حاکمیت باید کاملاً بی طرف و خیرمتمرکز باشد. در نهایت، این پلتفرم با پیوستن سایر غولهای کشتیرانی مانند CGM CMA و

سالها طول کشید. این مورد تأکید می کند می توانست بر این چالش غلبه کند، اما این فرآیند سالها طول کشید. این مورد تأکید می کند که موفقیت یک شبکه کنسرسیومی، نیازمند یک مدل حاکمیتی قوی و مورد اعتماد همه اعضاست.

در مجموع، نسل اول راهکارها با استفاده از پلتفرمهای خصوصی مانند Fabric، توانستند با موفقیت مشکل حریم خصوصی را حل کرده و کاربردهای عملی و تأثیر گذار زنجیره بلوکی را در مقیاس سازمانی به نمایش بگذارند. با این حال، پیچیدگی و ماهیت ایزوله این شبکهها، زمینه را برای ظهور نسل دومی از راهکارها فراهم کرد که تلاش می کردند از قدرت و قابلیت همکاری اکوسیستمهای عمومی بهره ببرند.

۲-۲-۲ نسل دوم راهکارها: استفاده از شبکههای عمومی و توکنیزهسازی

با بلوغ اکوسیستم زنجیره بلوکی، محدودیتهای اولیه شبکههای عمومی تا حد زیادی برطرف یا کمرنگ شد. ظهور راهکارهای مقیاسپذیری لایه ۲ و زنجیرههای جانبی سازگار با EVM، هزینه و سرعت تراکنشها را به سطحی رساند که برای کاربردهای تجاری قابل قبول بود. این تحول، همراه با درک عمیق تر از مزایای شبکههای عمومی، منجر به یک تغییر پارادایم به سمت استفاده از این شبکهها برای کاربردهای زنجیره تأمین شد.

مزایای کلیدی شبکههای عمومی عبارتند از:

- عدم تمرکز واقعی: امنیت شبکه توسط هزاران اعتبارسنج ناشناس در سراسر جهان تأمین می شود که این امر، ریسک تبانی یا کنترل توسط یک نهاد واحد را تقریباً به صفر می رساند.
- قابلیت همکاری (Interoperability): داراییهای ایجاد شده بر روی یک شبکه عمومی (مانند توکنهای نماینده محصولات)، می توانند به راحتی با هزاران برنامه و پروتکل دیگر در همان اکوسیستم تعامل داشته باشند. برای مثال، می توان یک دارایی زنجیره تأمین را در یک پروتکل مالی غیرمتمرکز (DeFi) به عنوان وثیقه برای دریافت وام استفاده کرد.
- دسترسی بدون نیاز به مجوز: هر کسی میتواند بدون نیاز به کسب اجازه، یک قرارداد هوشمند را بر روی شبکه مستقر کرده و یک برنامه کاربردی ایجاد کند. این امر نوآوری را به شدت تسریع میکند.

مفهوم محوری که این نسل از راهکارها را به پیش میراند، «توکنیزهسازی داراییها» (Tokenization Asset) است.

۱-۲-۲-۲ توکنیزه سازی دارایی ها در زنجیره تأمین توکنیزه سازی، فرآیند ایجاد یک نماینده دیجیتال (یک توکن) برای یک دارایی واقعی یا دیجیتال بر روی یک شبکه زنجیره بلوکی است. این توکن، مالکیت آن

دارایی را نمایندگی می کند و می تواند بر اساس قوانین تعریف شده در یک قرارداد هوشمند، منتقل، معامله یا مدیریت شود.

توکنیزهسازی، داراییهای سنتی و غیرنقدشونده را به داراییهایی «برنامهپذیر» تبدیل میکند. وقتی یک کالای فیزیکی در زنجیره تأمین به یک توکن دیجیتال تبدیل میشود، مزایای زیر حاصل می گردد:

- **مالکیت شفاف و قابل تأیید:** مالکیت توکن به صورت شفاف بر روی زنجیره بلوکی ثبت شده و هر کسی می تواند با اطمینان، مالک فعلی آن را شناسایی کند.
- انتقال آنی و همتا به همتا: انتقال مالکیت، به سادگی انتقال توکن از یک کیف پول دیجیتال به دیگری است. این فرآیند در چند ثانیه و بدون نیاز به هیچ واسطهای انجام می شود.
- قابلیت تقسیم پذیری (Fractionalization): می توان مالکیت یک دارایی گران قیمت (مانند یک محموله بزرگ) را به چندین توکن کوچکتر تقسیم کرد و به چندین نفر فروخت.
- .: برای پیادهسازی توکنیزهسازی، مجموعهای از استانداردهای فنی توسعه یافتهاند که اطمینان میدهند توکنهای ایجاد شده توسط برنامههای مختلف، با یکدیگر سازگار و قابل تعامل هستند. در اکوسیستم اتریوم، این استانداردها به نام ERC شناخته می شوند.

۲-۲-۲-۲ تحلیل عمیق استانداردهای توکن ERC در زنجیره تأمین انتخاب استاندارد توکن مناسب، یکی از مهمترین تصمیمات معماری در طراحی یک سیستم زنجیره تأمین مبتنی بر زنجیره بلوکی است. هر استاندارد، برای نوع خاصی از دارایی طراحی شده و دارای مزایا و محدودیتهای خود است.

ومشهورترین ERC-20: استاندارد توکنهای مثلی (Tokens Fungible) اولین و مشهورترین ERC-20: استاندارد توکن در اتریوم است که در سال ۲۰۱۵ معرفی شد. این استاندارد، یک رابط کاربری مشترک برای توکنهایی تعریف میکند که «مثلی» هستند؛ یعنی هر واحد از آنها با هر واحد دیگری از همان توکن، قابل تعویض و دارای ارزش یکسان است. بهترین مثال برای یک دارایی مثلی، پول است: یک اسکناس ۱۰ دلاری با هر اسکناس ۱۰ دلاری دیگری ارزش یکسانی دارد.

توابع کلیدی استاندارد ERC-20 عبارتند از:

total Supply()

: تعداد کل توکنهای موجود را برمی گرداند.

balanceOf(addressaccount)

: موجودی توکن یک آدرس خاص را نشان میدهد.

transfer(address recipient, uint 256 amount)

: تعداد مشخصی توکن را به یک آدرس دیگر منتقل میکند.

approve(address spender, uint 256 amount)

: به یک آدرس دیگر (معمولاً یک قرارداد هوشمند) اجازه میدهد تا از طرف شما، تا سقف مشخصی توکن خرج کند.

transfer From (address sender, address recipient, uint 256 amount)

. توسط آدرس spender برای انتقال توکن از spender به spender استفاده می شود.

کاربرد در زنجیره تأمین: ERC-20 برای نمایندگی کالاهای انبوه و قابل تعویض بسیار مناسب است. ERC-20 رمثلاً برای مثال، یک شرکت کشاورزی می تواند موجودی گندم خود را در قالب توکنهای ERC-20 (مثلاً هر توکن نماینده یک کیلوگرم گندم) توکنیزه کند. این توکنها می توانند به راحتی بین تولید کنندگان، توزیع کنندگان و کارخانهها منتقل و معامله شوند. **محدودیت اصلی:** این استاندارد به هیچ عنوان قادر به نمایندگی داراییهای منحصر به فرد نیست. تمام توکنهای یک قرارداد ERC-20 یکسان هستند و راهی برای تمایز قائل شدن بین آنها وجود ندارد. این امر استفاده از آن را برای ردیابی آیتمهای خاص و غیرمثلی غیرممکن می سازد.

برای حل ERC-721: استاندارد توکنهای غیرمثلی (NFTs – Tokens Non – Fungible) برای حل ERC-721: استاندارد ERC-721، استاندارد ERC-721 در سال ۲۰۱۸ و با الهام از پروژه محبوب ERC-721، استاندارد برای نمایندگی داراییهایی طراحی شده که هر کدام «منحصربهفرد» و «غیرقابل تعویض» هستند. هر توکن در یک قرارداد ERC-721 دارای یک شناسه یکتا (tokenId) است که آن را از تمام توکنهای دیگر متمایز می کند.

ویژگیهای کلیدی ERC - 721 عبارتند از:

- هر توکن یک شناسه منحصربهفرد و یک مالک مشخص دارد.
 - تابعی مانند

ownerOf(uint256tokenId)

وجود دارد که مالک یک توکن خاص را برمی گرداند.

• انتقال مالکیت به صورت یک به یک انجام می شود؛ یعنی یک توکن خاص از یک مالک به مالک دیگر منتقل می گردد.

کاربرد در زنجیره تأمین: ERC - 721 راهکاری ایده آل برای ردیابی کالاهای با ارزش و منحصربه فرد است. هر NFT می تواند به عنوان شناسنامه دیجیتال یک آیتم خاص عمل کند. برخی از کاربردهای آن عبارتند از:

- كالاهاى لوكس: رديابي يك ساعت سوئيسي يا يك كيف دستى برند با شماره سريال مشخص.
- : $\Box\Box\Box$. محدودیت اصلی: در حالی که ERC-721 برای آیتههای منحصربه فرد عالی است، برای مدیریت کالاهای مثلی یا نیمه مثلی بسیار ناکارآمد است. فرض کنید یک شرکت بخواهد ۱۰۰۰ عدد از یک قطعه یدکی یکسان را منتقل کند. با استفاده از ERC-721، باید ۱۰۰۰ توکن مجزا (با tokenId) متفاوت) ساخته شود و انتقال آنها نیازمند ۱۰۰۰ تراکنش جداگانه خواهد بود. این فرآیند از نظر هزینه گس و سرعت، بسیار ناکارآمد و غیراقتصادی است.

دو استاندارد قبلی، مشخص شد که بسیاری از کاربردها (به ویژه بازیهای کامپیوتری و زنجیره تأمین) نیازمند دو استاندارد قبلی، مشخص شد که بسیاری از کاربردها (به ویژه بازیهای کامپیوتری و زنجیره تأمین) نیازمند یک راهکار ترکیبی هستند که بتواند هر دو نوع دارایی مثلی و غیرمثلی را به صورت همزمان و کارآمد مدیریت کند. این نیاز منجر به توسعه استاندارد Enjin توسط تیم پروژه ERC-1155 در سال ۲۰۱۸ شد. ERC-1155 یک استاندارد «چند-توکنی» است که به یک قرارداد هوشمند واحد اجازه می دهد تا تعداد نامحدودی از انواع توکنهای مختلف (اعم از مثلی و غیرمثلی) را مدیریت کند.

نوآوری کلیدی ERC-1155: ایده اصلی در این استاندارد، تفکیک «نوع توکن» از «تعداد» آن است. در حالی که در ERC-721 هر توکن یک موجودیت مستقل بود، در ERC-721 ما با «کلاسهای توکن» سروکار داریم که هر کدام با یک شناسه (id) مشخص می شوند. سپس برای هر آدرس، موجودی آن از هر کلاس توکن به صورت یک عدد (amount) ذخیره می شود.

• برای نمایندگی یک توکن غیر مثلی (NFT)، یک کلاس توکن جدید با یک id منحصر به فرد ایجاد کرده و تنها یک واحد (amount = 1) از آن را به یک مالک اختصاص می دهیم.

• برای نمایندگی یک توکن مثلی (Fungible)، یک کلاس توکن با یک id مشخص ایجاد کرده و می توانیم هر تعداد از آن را بین مالکان مختلف توزیع کنیم.

این معماری، قدرت و انعطاف پذیری بینظیری را فراهم می کند. توابع اصلی این استاندارد نیز این ماهیت دوگانه را بازتاب می دهند:

balanceOf(addressaccount, uint 256id)

: موجودی یک آدرس خاص از یک کلاس توکن مشخص را برمی گرداند.

safeTransferFrom(address from, address to, uint 256 id, uint 256 amount, by tesdata)

: تعداد مشخصی (amount) از یک کلاس توکن (id) را منتقل میکند.

balance Of Batch (address [] accounts, uint 256 [] ids)

: موجودی چندین آدرس از چندین کلاس توکن را در یک فراخوانی واحد برمی گرداند.

safe Batch Transfer From (address from, address to, uint 256 [] ids, uint 256 [] amounts, by tes data) and the safe Batch Transfer From (address from, address to, uint 256 [] ids, uint 256 [] amounts, by tes data) and the safe Batch Transfer From (address from, address to, uint 256 [] ids, uint 256 [] amounts, by tes data) and the safe Batch Transfer From (address from, address to, uint 256 [] ids, uint 256 [] amounts, by tes data) and the safe Batch Transfer From (address from, address to, uint 256 [] ids, u

: این تابع، قابلیت کلیدی و انقلابی این استاندارد است. این تابع اجازه میدهد تا چندین نوع توکن مختلف با مقادیر متفاوت، همگی در یک تراکنش واحد منتقل شوند.

چرا ERC – 1155 برای زنجیره تأمین ایده آل است؟ این استاندارد، پاسخی مستقیم به نیازهای پیچیده زنجیره تأمین مدرن است. پروژه حاضر با انتخاب هوشمندانه این استاندارد[۱۵۹۹، ۱۵۹۹]، از مزایای زیر بهرهمند می شود:

۱. **کارایی بینظیر:** فرض کنید یک کارخانه خودروسازی، یک خودروی جدید را به یک نمایندگی ارسال می کند. این محموله شامل خود خودرو (یک آیتم غیرمثلی)، ۴ حلقه لاستیک (یک دسته از آیتمهای مثلی) و ۱۰ لیتر روغن موتور (یک دسته دیگر از آیتمهای مثلی) است. با استفاده از

استانداردهای قدیمی، این فرآیند نیازمند چندین تراکنش مجزا بود. اما با ERC-1155، تمام این داراییها را می توان با فراخوانی تابع

safeBatchTransferFrom

در یک تراکنش واحد و بهینه منتقل کرد. این امر به شدت هزینه گس را کاهش داده و توان عملیاتی سیستم را بالا می برد.

- ۲. **انعطاف پذیری کامل**: سیستم طراحی شده در این پروژه، محدود به یک نوع کالا نیست. این سیستم می تواند به صورت همزمان یک قطعه ماشین آلات سنگین و منحصر به فرد را به عنوان یک NFT و هزاران پیچ و مهره استاندارد را به عنوان توکنهای مثلی، همگی در یک قرارداد واحد مدیریت کند.
- بیره و درک عمیق از نیازهای عملیاتی یک زنجیره ERC-1155 : .. .۳ تأمین واقعی است.

۲-۲-۲-۳ مطالعات موردی با استفاده از شبکههای عمومی با جذاب تر شدن شبکههای عمومی، پروژههای متعددی تلاش کردهاند تا از این پلتفرمها برای کاربردهای زنجیره تأمین استفاده کنند.

- پلتفرم VeChain : (VET) VeChain یک زنجیره بلوکی عمومی است که از ابتدا به طور خاص با هدف کاربردهای سازمانی و زنجیره تأمین طراحی شده است. این پلتفرم از یک مدل دو-توکنی استفاده می کند <math>VET برای ارزش و VTHO برای پرداخت هزینه تراکنشها) تا هزینه گس را برای شرکتها قابل پیشبینی تر کند. VeChain با شرکتهای بزرگی در صنایع مختلف از جمله کالاهای لوکس VeChain و ایمنی مواد غذایی همکاری کرده و با ترکیب تگهای VeChain با زنجیره بلوکی، راهکارهای ردیابی جامعی ارائه داده است.
- پروژههای اصالت سنجی کالاهای لوکس: شرکتهایی مانند NFT از NFTها بر روی شبکه اتریوم برای ایجاد یک «پاسپورت دیجیتال» برای کالاهای لوکس استفاده می کنند. هر محصول دارای یک NFT منحصر به فرد است که تاریخچه مالکیت آن را ثبت کرده و اصالت آن را تضمین می کند. این NFT می تواند به همراه کالای فیزیکی به مالک بعدی منتقل شود.

این پروژهها نشاندهنده روند رو به رشد استفاده از شبکههای عمومی و توکنیزهسازی برای حل مشکلات زنجیره تأمین هستند.

۲-۲-۳ تحلیل شکاف پژوهشی و جایگاه نوآورانه پروژه حاضر

پس از بررسی دقیق نسلهای مختلف راهکارهای زنجیره بلوکی، از پلتفرمهای خصوصی مانند *Hyperledger* پس از بررسی دقیق نسلهای مختلف راهکارهای مبتنی بر استانداردهای مختلف توکن در شبکههای عمومی، اکنون می توانیم جایگاه پروژه حاضر را در این چشمانداز مشخص کنیم. جدول زیر یک مقایسه کیفی بین رویکردهای اصلی ارائه می دهد:

جدول ۲: مقایسه کیفی رویکردهای مختلف زنجیره بلوکی برای زنجیره تأمین

معيار	Hyperledger Fabric	$ERC-721\ on Public Net$	روژه ERC – 1155 onPublicNet
داده خصوصی حریم	عالى	ضعیف	') لایه با بهبود (قابل ضعیف
پردازشی توان	بالا	پایین) لایه با بهبود (قابل متوسط
همكارى قابليت	ضعیف بسیار	عالى	عالى
دارایی انعطافپذیری	متوسط	ضعیف	عالى
تراكنش هزينه	زيرساخت) (هزينه پايين	بالا	چ) در بهینه (بسیار متوسط
تمرکز عدم	(کنسرسیوم) متوسط	کامل	کامل

تحلیل جدول ۲ و بررسی کارهای پیشین، یک شکاف پژوهشی و عملیاتی را آشکار میسازد: نیاز به یک راهکار که بتواند انعطاف پذیری و قابلیت همکاری شبکههای عمومی را با کارایی عملیاتی و پاسخگویی به نیازهای پیچیده زنجیره تأمین ترکیب کند.

- پلتفرمهای خصوصی مانند Fabric، با قربانی کردن عدم تمرکز و قابلیت همکاری، به حریم خصوصی و توان پردازشی دست یافتند، اما در یک اکوسیستم ایزوله باقی ماندند.
- راهکارهای مبتنی بر ERC 721 بر روی شبکههای عمومی، قابلیت همکاری را فراهم کردند، اما برای مدیریت زنجیرههای تأمین با محصولات متنوع، ناکارآمد و گران بودند.

نوآوری پروژه حاضر در پر کردن این شکاف است. این پروژه با اتخاذ یک رویکرد چندلایه و هوشمندانه، تلاش می کند:

۱. انتخاب استراتژیک ERC - 1155: همانطور که به تفصیل شرح داده شد، این استاندارد به تنهایی مشکل مدیریت داراییهای متنوع را به کارآمدترین شکل ممکن حل میکند و پایه و اساس یک زنجیره تأمین انعطافپذیر را فراهم میآورد.

- 7. معماری هوشمند برای مدیریت فراداده: این پروژه به جای نادیده گرفتن مشکل هزینه ذخیرهسازی، با ارائه یک راهکار مبتنی بر هش Keccak 256 و ذخیرهسازی off-chain و ذخیرهسازی معماری اقتصادی و در عین حال امن را برای مدیریت فرادادهها پیادهسازی می کند. این مکانیزم، یکپارچگی دادهها را بدون تحمیل هزینههای گزاف زنجیره بلوکی تضمین می نماید.
- ۳. نگاه آیندهنگر به انطباق پذیری: با تعبیه قابلیتهایی مانند محاسبه خودکار مالیات، این پروژه از یک راهکار صرفاً فنی فراتر رفته و به چالشهای دنیای واقعی کسبوکار، یعنی انطباق با قوانین نظارتی و مالی، پاسخ می دهد. این ویژگی، پذیرش عملیاتی سیستم توسط شرکتها را تسهیل می کند.

بنابراین، پروژه حاضر نه تنها یک پیادهسازی دیگر از زنجیره بلوکی در زنجیره تأمین نیست، بلکه یک «سنتز نوآورانه» از بهترین فناوریها و معماریهای موجود است. این پروژه با یادگیری از محدودیتهای نسلهای پیشین، یک راهکار جامع، کارآمد و عملیاتی ارائه میدهد که یک گام مهم رو به جلو در تکامل سامانههای زنجیره تأمین غیرمتمرکز محسوب میشود.

۳-۲ تحلیل شکاف پژوهشی و ارائه نو آوری پروژه

در بخشهای پیشین این فصل، یک تحلیل جامع از سیر تکاملی سیستمهای مدیریت زنجیره تأمین ارائه گردید. این تحلیل از سیستمهای برنامه ریزی منابع سازمانی (ERP) متمرکز آغاز شد، به بررسی نسل اول فناوریهای دیجیتالی مانند IoT و RFID پرداخت و در نهایت، به ارزیابی دو نسل اصلی از راهکارهای مبتنی بر زنجیره بلوکی منتهی شد: نسل اول مبتنی بر پلتفرمهای خصوصی و نیازمند مجوز مانند ERC – 721 هر Fabric و نسل دوم مبتنی بر شبکههای عمومی و استانداردهای توکنیزه سازی مانند ERC – 721 هر یک از این پارادایمها، گامی مهم در جهت حل مشکلات پیچیده زنجیره تأمین بودهاند، اما در عین حال، هر کدام با محدودیتها و چالشهای خاص خود روبرو شده و شکافهای مهمی را در ادبیات تحقیق و در پیاده سازی های عملی باقی گذاشته اند.

هدف اصلی این بخش، انجام یک ارزیابی انتقادی و عمیق بر روی این شکافهاست. ما با سنتز یافتههای بخشهای قبل، به صورت نظاممند نشان خواهیم داد که راهکارهای پیشین در پاسخگویی به نیازهای چندوجهی یک زنجیره تأمین مدرن، دچار کاستی بودهاند. این تحلیل شکاف، بستری را فراهم میآورد تا بتوانیم جایگاه نوآورانه و منحصربهفرد پروژه حاضر را به روشنی مشخص کنیم. در نهایت، استدلال خواهد شد که این پروژه، با ارائه یک معماری سنتز شده و هوشمندانه، نه تنها به شکافهای شناسایی شده پاسخ میدهد، بلکه نماینده یک «نسل سوم» از راهکارهای زنجیره تأمین غیرمتمرکز است که یک گام به پیاده سازی عملیاتی و پذیرش گسترده نزدیک تر شده است.

۲-۳-۲ شناسایی شکافهای کلیدی در ادبیات تحقیق

پس از مرور گسترده راهکارهای موجود، می توان سه شکاف اصلی و بنیادین را شناسایی کرد که اکثر پروژههای پیشین به صورت جامع به آنها نپرداختهاند. این شکافها در سه حوزه کلیدی قرار دارند: مدیریت داراییهای ناهمگون، یکپارچگی دادههای خارج از زنجیره، و انطباق پذیری با محیطهای واقعی تجاری و نظارتی.

۱-۳-۲ شکاف اول: چالش مدیریت داراییهای ناهمگون یک زنجیره تأمین واقعی، اکوسیستمی بسیار متنوع از داراییهاست. این داراییها از نظر ماهیت، ارزش و نحوه مدیریت، تفاوتهای بنیادینی با یکدیگر دارند. می توان آنها را در یک طیف، از کاملاً مثلی تا کاملاً غیرمثلی، دسته بندی کرد:

- داراییهای کاملاً مثلی (Fungible): اینها مواد اولیه یا کالاهای انبوهی هستند که هر واحد از آنها با واحد دیگر قابل تعویض است. به عنوان مثال، یک کیلوگرم گندم از یک بچ مشخص، با کیلوگرم دیگری از همان بچ تفاوتی ندارد. مدیریت این داراییها مبتنی بر «تعداد» و «مقدار» است.
- داراییهای کاملاً غیرمثلی (Non Fungible): اینها آیتمهای منحصربه فردی هستند که هر کدام هویت و تاریخچه مختص به خود را دارند. یک خودرو با شماره شاسی مشخص، یک الماس با گواهی اصالت، یا یک قطعه هنری، نمونههایی از این داراییها هستند. مدیریت اینها مبتنی بر «هویت یکتا» است.
- داراییهای نیمه مثلی (Semi Fungible): این دسته که اغلب نادیده گرفته می شود، داراییهایی هستند که در یک دوره زمانی مثلی بوده و در دورهای دیگر به غیرمثلی تبدیل می شوند. برای مثال، یک بلیط کنسرت برای یک جایگاه مشخص، قبل از شروع رویداد با بلیط دیگری از همان جایگاه قابل تعویض است (مثلی)، اما پس از استفاده و تبدیل شدن به یک یادگاری، منحصر به فرد و غیرمثلی می شود.

اکثر راهکارهای زنجیره بلوکی پیشین، در ارائه یک مدل یکپارچه برای مدیریت این طیف گسترده از داراییها دچار مشکل بودهاند.

محدودیتهای راهکارهای تک-استانداردی: راهکارهای نسل دوم که بر روی شبکههای عمومی ساخته شدهاند، معمولاً خود را به یکی از دو استاندارد اصلی محدود کردهاند:

۱. رویکرد مبتنی بر ERC-20: این پروژهها بر روی مدیریت مواد اولیه و کالاهای انبوه تمرکز کردهاند. در حالی که این رویکرد برای زنجیرههای تأمین کالاهای اساسی (مانند محصولات کشاورزی) کارآمد است، اما به کلی از ردیابی آیتمهای منحصربه فرد و محصولات نهایی که نیازمند شناسنامه دیجیتال یکتا هستند، عاجز است.

7. رویکرد مبتنی بر PFC - 721: این پروژهها که محبوبیت بیشتری داشته اند، بر روی تضمین اصالت کالاهای لوکس، داروها و قطعات صنعتی متمرکز شده اند. هر محصول به یک NFT منحصر به فرد تبدیل می شود که تاریخچه آن را ثبت می کند. مشکل این رویکرد، ناکارآمدی شدید آن در مدیریت اجزای تشکیل دهنده یا مواد اولیه آن محصول است. برای مثال، در زنجیره تأمین یک خودرو، ردیابی خود خودرو با یک NFT منطقی است، اما ردیابی هزاران پیچ و مهره یا لیترها روغن موتور که در تولید آن به کار رفته، با استفاده از NFTهای مجزا، از نظر هزینه و سرعت، یک فاجعه عملیاتی خواهد بود. این امر منجر به ایجاد یک دید ناقص از زنجیره تأمین می شود که در آن، تنها محصول نهایی قابل ردیابی است و نه مواد اولیه آن.

محدودیتهای پلتفرمهای خصوصی: پلتفرمهای سازمانی مانند $Fabric\ Hyperledger$ مدل دارایی دارایی انعطافپذیرتری را ارائه میدهند که در آن میتوان هر نوع ساختار دادهای را به عنوان یک دارایی تعریف کرد. با این حال، این پلتفرمها فاقد یک «استاندارد» مورد توافق جهانی برای تمایز بین داراییهای مثلی و غیرمثلی هستند. این امر منجر به ایجاد راهکارهای جزیرهای و سفارشی میشود که قابلیت همکاری با یکدیگر یا با اکوسیستم گسترده تر داراییهای دیجیتال را ندارند. یک دارایی تعریفشده در یک شبکه DeFi نمی تواند به راحتی در یک بازار NFT عمومی لیست شود یا به عنوان وثیقه در یک پروتکل DeFi استفاده گردد.

بیان دقیق شکاف اول: با توجه به این تحلیل، شکاف اول را میتوان اینگونه تعریف کرد: فقدان یک راهکار جامع و استاندارد در ادبیات تحقیق که بتواند به صورت بومی، کار آمد و یکپارچه، کل طیف داراییهای ناهمگون یک زنجیره تأمین (از مواد اولیه مثلی تا محصولات نهایی غیرمثلی) را در قالب یک پروتکل واحد و قابل همکاری با اکوسیستم گسترده تر مدیریت کند.

Y-Y-Y-Y شکاف دوم: مسئله یکپارچگی دادههای خارج از زنجیره همانطور که در بخش چالشها ذکر شد، ذخیرهسازی دادههای حجیم بر روی زنجیره بلوکی از نظر اقتصادی غیرعملی است. این یک واقعیت فنی است که تمام پروژههای جدی زنجیره تأمین باید با آن روبرو شوند. در نتیجه، یک معماری ترکیبی که در آن، دادههای اصلی (فراداده) در خارج از زنجیره (Off - chain) و تنها یک اثبات یا ارجاع به آن در داخل زنجیره (On - chain) ذخیره میشود، امری اجتنابناپذیر است. با این حال، نحوه پیادهسازی این معماری، خود یک چالش بزرگ و یک شکاف مهم در پژوهشهای پیشین است.

بسیاری از پروژههای اولیه، این چالش را به سادگی نادیده گرفته یا راهکارهای ضعیفی برای آن ارائه دادهاند:

• نادیده گرفتن مشکل: برخی پروژههای آکادمیک، صرفاً بر روی منطق On-chain تمرکز کرده

و فرض می کنند که فراداده به نوعی در دسترس و معتبر است، بدون اینکه معماری مشخصی برای آن ارائه دهند.

• استفاده از سرورهای متمرکز: بسیاری از راهکارهای تجاری، برای ذخیرهسازی فراداده از سرورهای وب سنتی (Web2) و پایگاههای داده متمرکز استفاده می کنند. در این مدل، یک URL به سرور مربوطه در قرارداد هوشمند ذخیره می شود. این رویکرد، کل فلسفه زنجیره بلوکی را زیر سؤال می برد. زیرا با این کار، ما مجدداً یک «نقطه شکست واحد» و یک «مرجع قابل اعتماد» مرکزی را به سیستم وارد کرده ایم. اگر آن سرور هک شود و داده ها تغییر کنند، یا اگر شرکت مالک سرور ورشکست شود و سرور از دسترس خارج گردد، ارجاع ثبتشده بر روی زنجیره بلوکی بی معنی و بی ارزش خواهد شد. این راهکار، مشکل اعتماد را حل نمی کند، بلکه صرفاً آن را به مکانی دیگر منتقل می نماید.

مفهوم گسترده تر «مشکل اوراکل»: این چالش، نمونه ای زیک مسئله بزرگ تر در دنیای زنجیره بلوکی است که به آن «مشکل اوراکل» (Problem Oracle The) گفته می شود. قراردادهای هوشمند، محیطهای اجرایی بسته ای هستند که به صورت بومی، به داده های دنیای خارج از خود دسترسی ندارند. اوراکلها، سرویسهایی هستند که به عنوان پل عمل کرده و داده های دنیای واقعی را به صورت قابل اعتماد به داخل زنجیره بلوکی وارد می کنند. در مسئله ما، سیستم ذخیره سازی Off-chain نقش یک نوع اوراکل را برای فراداده ایفا می کند. اگر این اوراکل متمرکز و غیرقابل اعتماد باشد، کل امنیت و اعتبار سیستم به خطر می افتد.

بیان دقیق شکاف دوم: بنابراین، شکاف دوم را میتوان اینگونه تعریف کرد: فقدان یک معماری استاندارد و غیرمتمرکز برای مدیریت چرخه حیات فرادادههای (Integrity) در دسترس بودن ویژگی کلیدی را به صورت همزمان تضمین کند: یکپارچگی (Integrity)، در دسترس بودن (Availability) و تغییرناپذیری (Immutability) دادهها، بدون تکیه بر یک مرجع مرکزی قابل اعتماد.

شکاف سوم: فقدان انطباق پذیری با محیطهای نظارتی و تجاری بزرگترین مانع بر سر راه پذیرش گسترده فناوری زنجیره بلوکی در سطح سازمانی، صرفاً فنی نیست. بسیاری از پروژههای زنجیره بلوکی در یک «خلاً تجاری و قانونی» توسعه می یابند. آنها بر روی جنبههای الگوریتمی و رمزنگاری تمرکز می کنند و واقعیتهای پیچیده دنیای کسبوکار و الزامات قانونی را نادیده می گیرند. یک شرکت نمی تواند سیستمی را به کار گیرد که با قوانین مالیاتی، گمرکی و تجاری که ملزم به رعایت آنهاست، در تضاد باشد. اکثر پروژههای زنجیره تأمین پیشین، در این حوزه سکوت کردهاند. آنها نشان می دهند که چگونه

مى توان يک كالا را رديابي كرد، اما به سؤالات حياتي زير پاسخ نمي دهند:

- چگونه مالیات بر ارزش افزوده (VAT) در هر مرحله از انتقال مالکیت محاسبه و پرداخت می شود؟
 - چگونه اسناد مورد نیاز گمرک به صورت دیجیتال و قابل تأیید تولید و ارائه می گردد؟
- چگونه می توان بین شفافیت مورد نیاز برای حسابرسی و محرمانگی لازم برای حفظ مزیت رقابتی،
 تعادل برقرار کرد؟
- در صورت بروز اختلاف تجاری، وضعیت حقوقی تراکنشهای ثبتشده بر روی زنجیره بلوکی چیست؟ این بی توجهی به الزامات دنیای واقعی، باعث شده است که بسیاری از این پروژهها در حد یک طرح آزمایشی این بی توجهی به الزامات دنیای واقعی، باعث شده است که بسیاری از این پروژهها در حد یک طرح آزمایشی موجود (Pilot) باقی بمانند و به مرحله تولید انبوه نرسند. زیرا ادغام آنها با فرآیندهای مالی و قانونی موجود شرکتها، بسیار دشوار و پرهزینه است.

بیان دقیق شکاف سوم: بر این اساس، شکاف سوم به این صورت تعریف می شود: وجود یک گسست عمیق بین قابلیتهای فنی پلتفرمهای زنجیره بلوکی و الزامات عملیاتی، تجاری و نظارتی که شرکتها در زنجیره تأمین با آن روبرو هستند، و فقدان راهکارهایی که به صورت بومی، قابلیتهای انطباق پذیری (Compliance) را در پروتکل خود تعبیه کرده باشند.

۲-۳-۲ ارائه راهکار نوآورانه پروژه: یک معماری سنتز شده

پروژه حاضر، با شناسایی دقیق این سه شکاف کلیدی، یک راهکار جامع و چندلایه ارائه می دهد که هدف آن، نه تنها پیاده سازی یک قابلیت فنی جدید، بلکه ارائه یک «سنتز نوآورانه» از بهترین رویکردها برای پر کردن این شکاف هاست. معماری این پروژه، پاسخی مستقیم به هر یک از چالش های مطرح شده است.

۱–۲–۳–۲ نوآوری اول: مدیریت یکپارچه داراییها با استاندارد ERC-1155 این پروژه به صورت مستقیم به «شکاف مدیریت داراییهای ناهمگون» پاسخ می دهد. با انتخاب استراتژیک استاندارد ERC-1155 این سیستم از ابتدا با این فرض طراحی شده است که یک زنجیره تأمین واقعی، با ترکیبی از داراییهای مثلی و غیرمثلی سروکار دارد. این انتخاب، یک تصمیم فنی صرف نیست، بلکه یک تصمیم معماری بنیادین با پیامدهای عملی گسترده است.

فراتر از یک استاندارد فنی: یک مدل عملیاتی انعطافپذیر قدرت واقعی ERC-1155 در توانایی آن برای مدلسازی فرآیندهای لجستیکی پیچیده در دنیای واقعی نهفته است. در ادامه با چند مثال، این قابلیت تشریح می شود:

• صنعت داروسازی: یک شرکت داروسازی را در نظر بگیرید. این شرکت می تواند یک بچ کامل از یک داروی خاص را که شامل هزاران ویال یکسان است، به عنوان یک دسته از توکنهای مثلی با شناسه مثلاً

ID = 101

و تعداد

Amount = 10000

توکنیزه کند. سپس، هر یک از این ویالها را در حین بستهبندی نهایی، به یک توکن غیرمثلی منحصربه فرد با شماره سریال مشخص تبدیل نماید. استاندارد ERC-1155 این قابلیت تبدیل بین حالت مثلی و غیرمثلی را نیز تسهیل می کند. این فرآیند، امکان ردیابی هم در سطح بچ (برای کنترل کیفیت کلی) و هم در سطح آیتم (برای جلوگیری از فروش داروی تقلبی) را فراهم می آورد.

• صنعت الکترونیک: یک شرکت تولیدکننده لپتاپ را تصور کنید. این شرکت می تواند هر لپتاپ تولید شده را با شماره سریال منحصربه فرد خود، به عنوان یک NFT (مثلاً

ID = 202

Amount = 1

) در سیستم ثبت کند. همزمان، میتواند قطعات یدکی استاندارد مانند باتری یا شارژر را به عنوان توکنهای مثلی (مثلاً

ID = 203

Amount = 5000

) مدیریت نماید. زمانی که یک مشتری لپتاپ را به همراه یک شارژر اضافی خریداری میکند، تابع

safeBatchTransferFrom

به فروشنده اجازه می دهد تا هر دو آیتم (یک NFT و یک توکن مثلی) را در یک تراکنش واحد و بهینه به مشتری منتقل کند.

این سطح از انعطافپذیری و کارایی، که مستقیماً از قابلیتهای استاندارد ERC-1155 نشأت می گیرد، پاسخی قدرتمند به شکاف اول است و سیستم را برای کاربرد در طیف وسیعی از صنایع آماده می سازد.

On-Chain/Off-Chain نوآوری دوم: تضمین صحت فراداده با معماری ترکیبی T-T-T-T این پروژه برای پاسخ به «شکاف یکپارچگی دادههای خارج از زنجیره»، یک معماری دقیق و امن ارائه می دهد که بر پایه دو فناوری کلیدی استوار است: سیستم فایل بینسیارهای (IPFS) و هش رمزنگاری Keccak 256

چرخه حیات کامل فراداده در معماری پیشنهادی: برای درک کامل این نوآوری، باید چرخه کامل ثبت و اعتبار سنجی فراداده را دنبال کنیم:

- ۱. مرحله اول: ایجاد و بستهبندی فراداده: هنگامی که یک تولیدکننده قصد ثبت محصول جدیدی را دارد، اطلاعات کامل آن را در داشبورد مدیریتی وارد میکند. برنامه کاربردی، این اطلاعات را در یک فایل با ساختار استاندارد (مانند JSON) بستهبندی میکند. این فایل شامل تمام جزئیات محصول است.
- ۲. مرحله دوم: بارگذاری در IPFS و دریافت شناسه محتوا (CID): برنامه کاربردی، این فایل IPFS را در شبکه IPFS بارگذاری می کند. IPFS یک شبکه ذخیرهسازی همتا به همتا و غیرمتمرکز است. برخلاف سرورهای وب سنتی که در آن، محتوا بر اساس «مکان» آدرسدهی می شود (IPFS محتوا بر اساس «هش» می شود (IPFS محتوا بر اساس «هش» خود آدرسدهی می شود (IPFS می IPFS)، در IPFS یک شناسه خود آدرسدهی می شود (IPFS می IPFS) به فایل اختصاص می دهد که در واقع هش منحصر به فرد به نام (IPFS) به فایل اختصاص می دهد که در واقع هش رمزنگاری شده محتوای آن فایل است. این ویژگی دو مزیت بزرگ دارد:
- تغییرناپذیری: اگر حتی یک بیت از محتوای فایل تغییر کند، CID آن نیز کاملاً تغییر خواهد کرد.
- عدم تمرکز و در دسترس بودن: فایل در چندین گره در شبکه IPFS توزیع می شود که این امر، ریسک از دسترس خارج شدن به دلیل خرابی یک سرور واحد را از بین می برد.
- Keccak مرحله سوم: محاسبه هش تأیید و ثبت بر روی زنجیره: برنامه کاربردی، به صورت موازی، ISON محتوای فایل ISON را با استفاده از الگوریتم ISON (که الگوریتم هش استاندارد در اتریوم است) هش می کند. سپس، در حین فراخوانی تابع ISON هر دو مقدار، یعنی ISON

دریافت شده از IPFS و هش Keccak256 محاسبه شده، به عنوان پارامتر به قرارداد هوشمند ارسال و بر روی زنجیره بلوکی ذخیره می شوند.

- ۴. مرحله چهارم: فرآیند اعتبارسنجی غیرمتمرکز: زمانی که یک مصرفکننده کد QR را اسکن میکند، برنامه کاربردی او فرآیند اعتبارسنجی زیر را به صورت خودکار انجام میدهد:
- را از قرارداد هوشمند بر روی زنجیره بلوکی میخواند. Keccak 256 و هش CID ابتدا (۱۹۹۹)
- ند. او استفاده از CID، فایل فراداده اصلی را از شبکه غیرمتمرکز IPFS بازیابی می کند.
 - . محتوای فایل بازیابی شده را مجدداً محاسبه می Keccak 256 محتوای فایل بازیابی شده را مجدداً محاسبه می کند.
- (۱۹۹۹) در نهایت، هش محاسبه شده محلی را با هش معتبر خوانده شده از زنجیره بلوکی مقایسه می کند.

تنها در صورتی که این دو هش کاملاً یکسان باشند، اصالت اطلاعات تأیید می شود. این معماری چندلایه، یک راهکار بسیار قوی، غیرمتمرکز و اقتصادی برای حل شکاف دوم ارائه می دهد.

T-T-T-T نوآوری سوم: پل زدن به دنیای واقعی با محاسبه خودکار مالیات مهمترین و شاید جسورانه ترین نوآوری این پروژه، پاسخگویی مستقیم به «شکاف انطباق پذیری با محیطهای نظارتی» است. این پروژه، به جای نادیده گرفتن الزامات دنیای واقعی، تلاش می کند تا از ویژگیهای منحصربه فرد زنجیره بلوکی برای ایجاد راهکارهای نوین در حوزه فناوریهای نظارتی (RegTech) بهره ببرد. در این راستا، یک راهکار قابل اجرا برای محاسبه و پرداخت خودکار مالیات به عنوان بخشی از پروتکل ارائه می شود.

چرا زنجیره بلوکی بستر ایده آلی برای مالیات هوشمند است؟ زنجیره بلوکی، به دلیل سه ویژگی کلیدی خود، یک زیرساخت بینظیر برای مدرنسازی سیستمهای مالیاتی فراهم می کند:

- ۱. شفافیت و قابلیت حسابرسی آنی: هر تراکنشی که منجر به انتقال ارزش یا مالکیت میشود
 (و بالقوه مشمول مالیات است)، به صورت شفاف و تغییرناپذیر بر روی یک دفتر کل عمومی ثبت میگردد. این امر به نهادهای نظارتی اجازه میدهد تا به جای حسابرسیهای دورهای و مبتنی بر اسناد کاغذی، به یک حسابرسی آنی و مستمر دسترسی داشته باشند.
- 7. **دادههای قابل اعتماد و قطعی**: زمان، مبلغ و طرفین هر تراکنش به صورت رمزنگاریشده تأیید و ثبت میشوند. این قطعیت، اختلافات مربوط به زمان و مبلغ معاملات را که بخش بزرگی از فرآیندهای حسابرسی سنتی را تشکیل میدهد، از بین میبرد و فرصتهای فرار مالیاتی را به شدت کاهش میدهد.

۳. قابلیت برنامه پذیری و خود کارسازی: با استفاده از قراردادهای هوشمند، می توان قوانین مالیاتی را به صورت مستقیم در قالب کد پیاده سازی کرد. این کد می تواند به صورت خود کار و بدون دخالت انسان، در زمان وقوع هر تراکنش اجرا شود.

معماری پیشنهادی برای ماژول مالیات هوشمند راهکار قابل اجرای ارائه شده در این پروژه، مبتنی بر گسترش منطق تابع transferWithTax است. این تابع، علاوه بر انتقال مالکیت توکن، زنجیرهای از اقدامات مرتبط با مالیات را نیز به صورت اتمی انجام خواهد داد:

- calculate Tax . فراخوانی منطق محاسبه مالیات: در حین اجرای تابع انتقال، یک تابع داخلی به نام . فراخوانی می شود.
 - ۲. پیادهسازی قوانین مالیاتی: منطق این تابع می تواند به صورتهای مختلفی پیادهسازی شود:
- مدل ساده (نرخ ثابت): ساده ترین مدل، اعمال یک نرخ مالیات ثابت (مثلاً درصد مشخصی به عنوان مالیات بر ارزش افزوده) بر ارزش اسمی معامله است.
- مدل پویا (مبتنی بر اوراکل): در یک مدل پیشرفتهتر، قرارداد هوشمند میتواند از طریق یک «اوراکل»، اطلاعاتی مانند قیمت روز کالا یا نرخهای مالیاتی متغیر را از منابع خارجی دریافت کرده و محاسبات خود را بر اساس آن انجام دهد.
- مدل چندنرخی (مبتنی بر دستهبندی): قوانین مالیاتی میتوانند بر اساس دستهبندی محصول (که در فراداده آن مشخص شده) متفاوت باشند. قرارداد هوشمند میتواند این دستهبندی را خوانده و نرخ مناسب را اعمال کند.
- ۳. انتقال خود کار مبلغ مالیات: پس از محاسبه مبلغ مالیات، قرارداد هوشمند به صورت خود کار آن مبلغ را از حساب فروشنده کسر کرده و مستقیماً به یک آدرس کیف پول از پیش تعیینشده که متعلق به سازمان امور مالیاتی است، واریز می کند.
- ۴. ثبت رویداد مالیاتی: یک رویداد (Event) مشخص برای ثبت جزئیات تراکنش مالیاتی (مبلغ، مبنای محاسبه، آدرس پرداخت) بر روی زنجیره بلوکی ثبت میشود تا برای حسابرسیهای بعدی به راحتی قابل استناد باشد.

تمام این مراحل در یک تراکنش واحد و به صورت اتمی انجام میشود؛ یعنی یا تمام مراحل با موفقیت اجرا میشوند، یا کل تراکنش ناموفق خواهد بود. این ویژگی، تضمین میکند که هیچ معاملهای بدون پرداخت مالیات متعلقه انجام نخواهد شد. این رویکرد نوآورانه، نه تنها یک قابلیت فنی، بلکه یک «یل استراتژیک»

بین دنیای غیرمتمرکز زنجیره بلوکی و دنیای ساختاریافته نظارتی است و به شکاف سوم به صورت مستقیم پاسخ میدهد.

۲-۳-۳ جمع بندی: جایگاه پروژه به عنوان یک راهکار نسل سوم

با توجه به تحلیل جامع ارائه شده، میتوان ادعا کرد که پروژه حاضر، نماینده یک «نسل سوم» از راهکارهای زنجیره تأمین مبتنی بر زنجیره بلوکی است. این نسل، با یادگیری از تجربیات و محدودیتهای دو نسل پیشین، به یک رویکرد سنتز شده و جامعتر دست یافته است:

- نسل اول (مبتنی بر پلتفرم خصوصی): تمرکز اصلی بر «حریم خصوصی» و «توان پردازشی» بود، اما به قیمت از دست دادن «قابلیت همکاری» و «عدم تمرکز واقعی».
- نسل دوم (مبتنی بر توکنیزهسازی اولیه): تمرکز بر «قابلیت همکاری» و «مالکیت دیجیتال» بود، اما با چالشهای جدی در «کارایی» (به دلیل استفاده از استانداردهای تکمنظوره) و «یکپارچگی داده» روبرو بود.
- نسل سوم (رویکرد سنتز شده پروژه حاضر): این نسل با ترکیب هوشمندانه فناوریها، تلاش می کند تا به صورت همزمان به چندین هدف کلیدی دست یابد:
 - ERC 1155 . انعطاف پذیری دارایی: با استفاده از استاندارد قدر تمند ERC 1155
 - Keccak 256 + IPFS . یکپارچگی داده: با استفاده از معماری امن و اقتصادی Xeccak 256 + IPFS
- ۳. **انطباق پذیری تجاری:** با ارائه راهکارهای قابل اجرا برای نیازمندیهای دنیای واقعی مانند مالیات.
 - ۴. قابلیت همکاری: با پایبندی به استانداردهای شبکه عمومی اتریوم.

بنابراین، این پروژه صرفاً یک پیادهسازی دیگر از یک ایده موجود نیست، بلکه یک گام رو به جلو در جهت بلوغ و عملیاتیسازی فناوری زنجیره بلوکی برای یکی از مهمترین و پیچیدهترین صنایع جهان است. این پایاننامه، یک نقشه راه دقیق و یک نمونه اولیه قوی برای ساختن نسل آینده زنجیرههای تأمین ارائه میدهد؛ زنجیرههایی که نه تنها کارآمدتر، بلکه به صورت قابل اثباتی، شفافتر، امن تر و عادلانه تر خواهند بود.

۳ معماری و روش پیادهسازی سامانه

000000 00000000

پس از بررسی مبانی نظری و تحلیل شکافهای موجود در پژوهشهای پیشین در فصل دوم، این فصل به صورت کاملاً عملی و فنی به تشریح «معماری و روش پیادهسازی سامانه پیشنهادی» میپردازد. هدف این فصل، ارائه یک نقشه راه دقیق و شفاف از تمامی اجزای تشکیلدهنده سیستم، از قرارداد هوشمند در لایه زنجیره بلوکی گرفته تا واسطهای کاربری در لایه کاربری است. در این بخش، نه تنها «چه چیزی» ساخته شده، بلکه «چرا» و «چگونه»ی آن نیز با استناد به انتخابهای فنی و نمایش قطعه کدهای کلیدی، به تفصیل مورد بحث و بررسی قرار خواهد گرفت.

این فصل به مثابه قلب فنی پایاننامه عمل می کند و به چهار بخش اصلی تقسیم می شود: ابتدا، به معرفی و توجیه پشته فناوری ($Stack\ Technology$) انتخاب شده برای پروژه می پردازیم. سپس، معماری کلان و چندلایه سیستم را تشریح می کنیم. در ادامه، به صورت عمیق وارد جزئیات پیاده سازی هر یک از لایه های اصلی سیستم، یعنی لایه زنجیره بلوکی (Backend)، لایه ذخیره سازی خارج از زنجیره (Frontend) خواهیم شد.

۱-۳ مقدمه و انتخاب فناوریها

انتخاب مجموعه مناسبی از فناوریها، یکی از حیاتی ترین مراحل در موفقیت هر پروژه نرمافزاری، به ویژه در حوزههای نوظهوری مانند زنجیره بلوکی است. پشته فناوری این پروژه با در نظر گرفتن اهداف کلیدی مانند امنیت، عدم تمرکز، کارایی، تجربه کاربری مدرن و قابلیت توسعه در آینده، به دقت انتخاب شده است. هر یک از ابزارهای به کار رفته، نقشی کلیدی در تحقق یکی از اهداف پروژه ایفا می کند.

۱-۱-۳ توجیه انتخاب فناوریهای لایه زنجیره بلوکی

لایه زنجیره بلوکی، به عنوان هسته امنیتی و منطقی سیستم، نیازمند فناوریهایی است که بالاترین سطح از بلوغ، امنیت و پشتیبانی جامعه توسعهدهندگان را داشته باشند.

- زبان برنامهنویسی Solidity و ماشین مجازی اتریوم (EVM): Solidity به عنوان زبان برنامهنویسی بیشرو برای نوشتن قراردادهای هوشمند و EVM به عنوان پلتفرم اجرایی آن، به دلیل بلوغ، مستندات گسترده، جامعه توسعهدهندگان فعال و اکوسیستم وسیعی از ابزارها و کتابخانهها، به عنوان استاندارد صنعتی شناخته میشوند. انتخاب این پلتفرم، قابلیت همکاری با هزاران برنامه غیرمتمرکز دیگر را نیز تضمین میکند.
- کتابخانههای برخوردار امنیت در قراردادهای هوشمند از اهمیت فوقالعادهای برخوردار OpenZeppelin: امنیت در قراردادهای پایه ارائه شده توسط OpenZeppelin است. به جای اختراع مجدد چرخ، این پروژه از قراردادهای پایه ارائه شده توسط (audited) بهره می برد[۷۷۷]. این قراردادها توسط متخصصان امنیت به صورت دقیق حسابرسی

شده و پیادهسازیهای استانداردی برای توکنهایی مانند ERC-1155 و مکانیزمهایی مانند کنترل دسترسی (AccessControl) و توقف اضطراری (Pausable) ارائه می دهند که ریسک بروز آسیب پذیریهای رایج را به حداقل می رساند.

• فریمورک توسعه و آزمون توسعه، کامپایل، استقرار و آزمون قرارداد هوشمند، ارکت توسعه، کامپایل، استقرار و آزمون قرارداد هوشمند، از فریمورک مدرن Foundry استفاده شده است. برخلاف ابزارهای قدیمی تر مانند Foundry که نیازمند نوشتن آزمونها به زبان JavaScript هستند، Foundry به توسعه دهندگان اجازه می دهد تا آزمونهای خود را مستقیماً به زبان Solidity بنویسند (همانطور که در فایل Solidity توسعه دهندگان Solidity مشهود است). این ویژگی، فرآیند آزمون را سریعتر، کارآمدتر و برای توسعه دهندگان Forge (موتور طبیعی تر می سازد. ابزارهای همراه آن مانند Anvil (یک نود محلی برای توسعه) و Forge آزمون)، چرخه توسعه را به شدت تسریع می کنند.

۲-۱-۳ توجیه انتخاب فناوریهای لایه ذخیرهسازی و کاربری

برای لایههایی که مستقیماً با کاربر در تعامل هستند، انتخاب فناوریهایی که تجربه کاربری مدرن، سریع و امنی را فراهم کنند، در اولویت قرار داشته است.

- **ذخیرهسازی** Off chain و Pinata و Pinata و Pinata و تشریح شد، برای <math>Off chain و Off chain و Pinata و Off chain و از معماری ترکیبی استفاده می شود. <math>Off chain و Off chain e Off chain
- کتابخانه محبوب React و ابزار ساخت Vite: برای توسعه لایه کاربری، از کتابخانه محبوب React استفاده شده است که به دلیل معماری مبتنی بر کامپوننت، مدیریت حالت قدرتمند و اکوسیستم وسیع، امکان ساخت رابطهای کاربری پیچیده و در عین حال قابل نگهداری را فراهم می کند. ابزار ساخت نیز به دلیل سرعت بسیار بالا در فرآیندهای توسعه و ساخت نهایی پروژه، جایگزین ابزارهای قدیمی تر مانند به دلیل سرعت بسیار بالا در فرآیندهای توسعه و ساخت نهایی پروژه، جایگزین ابزارهای قدیمی شده است.
- کتابخانه Wagmi برای تعامل با زنجیره بلوکی: Wagmi مجموعهای از هوکهای (Hooks) برای تعامل با زنجیره بلوکی: React برای تعامل با اتریوم است. این کتابخانه، فرآیندهای پیچیدهای مانند اتصال به کیف پول، خواندن داده از قراردادهای هوشمند، ارسال تراکنش و مدیریت وضعیت شبکه را به شدت سادهسازی

می کند. استفاده از Wagmi (که در Wagmi و Wagmi و Wagmi اینکربندی شده) به توسعه دهنده اجازه می دهد تا به جای در گیر شدن با جزئیات سطح پایین پروتکل RPC، بر روی منطق اصلی برنامه تمرکز کند.

• کتابخانه TailwindCSS برای طراحی واسط کاربری: برای استایل دهی، از رویکرد – کتابخانه TailwindCSS برای استفاده شده است (فایل ۲۵۲]نانه این رویکرد، به جای نوشتن فایلهای CSS جداگانه، امکان استایل دهی سریع و مستقیم در خود کامپوننتها را فراهم کرده و منجر به ایجاد یک سیستم طراحی منسجم و قابل نگهداری می شود.

این پشته فناوری مدرن و یکپارچه، زیربنای لازم برای ساخت یک سامانه قوی، امن و کاربرپسند را فراهم می آورد.

۲-۲ معماری کلان سامانه

سامانه پیشنهادی بر اساس یک معماری چندلایه طراحی شده است که در آن، هر لایه مسئولیت مشخصی را بر عهده دارد. این تفکیک مسئولیتها، به توسعه، نگهداری و مقیاسپذیری سیستم در آینده کمک می کند. همانطور که در نمودار بلوکی پروپوزال نیز نشان داده شده [۱۶۱۸]، می توان سه لایه اصلی را برای این سیستم متصور شد. در ادامه، این معماری با جزئیات بیشتری تشریح شده و جریان داده در یک سناریوی کلیدی (ثبت محصول جدید) ردیابی می شود.

7-7-1 معماری سه 1-7-7

- ۱. **لایه زنجیره بلوکی** (Layer Blockchain): این لایه، هسته غیرمتمرکز و قابل اعتماد سیستم است که به آن «لایه اعتماد» (Layer Trust) نیز گفته می شود. این لایه مسئولیتهای زیر را بر عهده دارد:
 - .ERC-1155 و مدیریت هویت دیجیتال محصولات از طریق توکنهای \bullet
 - اجرای منطق کسبوکار به صورت تغییرناپذیر از طریق قرارداد هوشمند.
 - ثبت تاریخچه کامل و قابل حسابرسی تمام تراکنشهای مالکیت.
 - نگهداری ارجاعهای امن (هشها) به دادههای خارج از زنجیره.
 - مدیریت کنترل دسترسی و مجوزهای بازیگران مختلف شبکه.

این لایه، منبع حقیقت واحد و غیرقابل انکار سیستم است.

- ۲. **لایه ذخیرهسازی خارج از زنجیره** (Layer Storage Off chain): این لایه برای نگهداری دادههای حجیم و غنی که ذخیرهسازی آنها بر روی زنجیره بلوکی اقتصادی نیست، به کار میرود. مسئولیت اصلی این لایه، ذخیرهسازی فایلهای فراداده محصولات (در فرمت JSON) و فایلهای مسئولیت اصلی این لایه، ذخیرهسازی فایلهای است. در این پروژه، این لایه با استفاده از شبکه غیرمتمرکز چندرسانهای مرتبط (مانند تصاویر و اسناد) است. در این پروژه، این لایه با استفاده از شبکه غیرمتمرکز IPFS پیادهسازی شده تا همراستا با فلسفه عدم تمرکز کل سیستم باشد.
- ۳. **لایه کاربری** (Layer User): این لایه که به آن Frontend یا لایه ارائه نیز گفته می شود، نقطه تعامل کاربران با سیستم است. این لایه مسئولیتهای زیر را بر عهده دارد:
- ارائه واسطهای کاربری گرافیکی (GUI) ساده و کاربرپسند برای نقشهای مختلف (داشبورد ادمین، داشبورد مشتری).
 - جمعآوری دادهها از کاربران (مانند اطلاعات محصول جدید).
 - تعامل با لایه ذخیرهسازی Off-chain برای آپلود و بازیابی فراداده.
 - تعامل با كيف پول ديجيتال كاربر (مانند MetaMask) براى امضاى تراكنشها.
 - ساخت و ارسال تراکنشها به لایه زنجیره بلوکی.
 - خواندن دادهها از زنجیره بلوکی و نمایش آنها به صورت قابل فهم برای کاربر.
- ۳-۲-۳ جریان داده در سناریوی ثبت محصول جدید برای درک بهتر تعامل بین این سه لایه، فرآیند ثبت یک محصول جدید را به صورت گام به گام دنبال میکنیم:
- ۱. **شروع در لایه کاربری**: یک کاربر با نقش «تولیدکننده» ($MANUFACTURER_ROLE$) وارد داشبورد ادمین شده و فرم «ایجاد محصول جدید» را با اطلاعاتی مانند نام، شماره سریال، و فایلهای داشبورد ادمین شده و فرم «ایجاد محصول CreateProduct.tsx).
- 7. تعامل با لایه ذخیرهسازی Off-chain: پس از فشردن دکمه ثبت، برنامه کاربردی ابتدا با لایه Off-chain: برنامه کاربردی ابتدا با لایه Off-chain ناده میکند. منطق موجود در Off-chain فایلهای تصویری و فراداده محصول را در شبکه IPFS بارگذاری کرده و یک شناسه محتوای منحصربهفرد (CID) برای فایل فراداده دریافت میکند.
- 7. آماده سپس هش Keccak256 فراداده را به می تراکنش در لایه کاربری: برنامه کاربردی سپس هش TegisterProduct فراداده و قرارداد مورت محلی محاسبه می کند. سپس یک تراکنش برای فراخوانی تابع TID دریافت شده هوشمند آماده می کند. این تراکنش شامل پارامترهایی مانند نام، شماره سریال، TID دریافت شده از TID (به عنوان TID و هش TID و هش TID محاسبهشده است.

- ۴. **امضای تراکنش**: لایه کاربری، از طریق کتابخانه *Wagmi*، از کیف پول کاربر میخواهد تا این تراکنش را امضا کند. این امضا با استفاده از کلید خصوصی کاربر انجام شده و اثبات می کند که در خواست واقعاً از طرف او ارسال شده است.
- ۵. **ارسال به لایه زنجیره بلوکی:** پس از امضا، تراکنش به یک گره در شبکه زنجیره بلوکی ارسال می شود.
- Product را اجرا می کند. این تابع، ERC-1155 را اجرا می کند. این تابع، پس از بررسی مجوز کاربر، یک توکن ERC-1155 جدید می سازد، اطلاعات و هشها را در متغیرهای حالت خود ذخیره می کند و یک رویداد ProductRegistered را منتشر می نماید.
- ۷. **بازخورد به لایه کاربری**: لایه کاربری منتظر تأیید تراکنش در شبکه می ماند. پس از تأیید، یک پیام موفقیت به کاربر نمایش داده شده (با استفاده از $[\mathbf{۳ar}]_{react} hot toast$) و او به داشبورد ادمین هدایت می شود، جایی که محصول جدید ثبت شده اکنون قابل مشاهده است.

این جریان کار نشان میدهد که چگونه این سه لایه به صورت هماهنگ با یکدیگر کار میکنند تا یک فرآیند پیچیده را به یک تجربه کاربری ساده و امن تبدیل نمایند.

۳-۳ پیادهسازی لایه زنجیره بلوکی (Backend)

این بخش به تشریح عمیق و خط به خط قرارداد هوشمند SupplyChainERC1155.sol میپردازد که هسته اصلی منطق و امنیت کل سامانه را تشکیل میدهد.

۳-۳-۱ ساختار کلی و وراثت قرارداد

قرارداد هوشمند این پروژه، با ارثبری از چندین قرارداد استاندارد و حسابرسی شده از کتابخانه OpenZeppelin، بر پایهای محکم و امن بنا شده است. این رویکرد، ضمن کاهش حجم کدهای نوشته شده، از بهترین شیوههای بر پایهای محکم و امن بنا شده است. این رویکرد، ضمن کاهش حجم کدهای نوشته شده، از بهترین شیوههای (practices best)

- ERC1155 این قرارداد پایه، تمام منطق اصلی استاندارد چند-توکنی ERG-1155 را پیادهسازی میکند، از جمله توابع burn ،mint ،balanceOf و
- AccessControl: این قرارداد یک مکانیزم قدرتمند و انعطافپذیر برای مدیریت کنترل دسترسی: AccessControl: این ماژول به ما مبتنی بر نقش (RBAC Control Access Role Based) فراهم می کند. این ماژول به ما اجازه می دهد تا نقشهای مختلفی تعریف کرده و دسترسی به توابع حساس را تنها به نقشهای مجاز محدود کنیم[۷۷۷].
- Pausable: این ماژول یک قابلیت ایمنی حیاتی را اضافه میکند: امکان توقف اضطراری تمام فعالیتهای اصلی قرارداد (مانند انتقالات) توسط یک مدیر. این ویژگی میتواند در صورت کشف یک آسیبپذیری، از بروز خسارات بیشتر جلوگیری کند[۷۷۷].
- ERC1155Supply: این یک افزونه برای ERC-1155 است که تعداد کل توکنهای موجود از هر نوع (totalSupply) را ردیابی می کند. این قابلیت برای حسابرسی و نظارت بر کل سیستم مفید است [VVV].

۲-۳-۳ نقشها و کنترل دسترسی (Control Access)

یکی از مهمترین جنبههای یک سیستم زنجیره تأمین، تعریف دقیق نقشها و مسئولیتهای هر یک از بازیگران است. قرارداد هوشمند این پروژه با استفاده از ماژول AccessControl، چهار نقش اصلی را تعریف و مدیریت می کند:

- MANUFACTURERROLE این نقش مجوز ثبت (ساخت) محصولات جدید را دارد. تنها آدرسهایی این نقش به آنها اعطا شده، می توانند تابع registerProduct را فراخوانی کنند.
- DISTRIBUTORROLE و DISTRIBUTORROLE اگرچه در نسخه فعلی قرارداد، توابع خاصی برای این نقشها تعریف نشده، اما وجود آنها زیرساخت لازم برای افزودن منطقهای تجاری آینده (مانند ثبت مراحل توزیع خاص) را فراهم می کند.

- CUSTOMSROLE: این نقش، مجوز ابطال یا از بین بردن یک محصول (مثلاً به دلیل شناسایی به عنوان کالای تقلبی یا تاریخ مصرف گذشته) را دارد. این نقش، کنترل تابع حساس destroyProduct را در اختیار دارد.
- $DEFAULTADMIN_ROLE$ این نقش که در سازنده (constructor) به آدرس مستقر کننده قرارداد اعطا می شود [\mathbf{vqr}]، بالاترین سطح دسترسی را دارد و می تواند نقشهای دیگر را به سایر آدرسها اعطا یا از آنها سلب کند (از طریق توابعی مانند grantRole و grantRole).

استفاده از اصلاح گر onlyRole در توابع حساس، این سیاستهای دسترسی را به صورت قاطع اعمال می کند. برای مثال، تعریف تابع registerProduct تضمین می کند که هیچ بازیگر دیگری جز یک تولیدکننده تأییدشده، قادر به افزودن محصول به سیستم نخواهد بود:

onlyRole

(Structures Data Core) ساختارهای داده اصلی ۳-۳-۳

فرارداد هوشمند از چندین ساختار داده و نگاشت (mapping) برای ذخیرهسازی وضعیت سیستم به صورت کارآمد و ساختاریافته استفاده می کند.

۳-۳-۳ ساختار داده محصول (Struct Product)

ین ساختار، شناسنامه دیجیتال هر محصول را تعریف میکند و تمام اطلاعات کلیدی آن را در خود جای داده است:

ProductStruct

هر یک از فیلدهای این ساختار با دقت انتخاب شده است. id شناسه توکن ERC-1155 است. id سته اصلی مکانیزم اعتبارسنجی را تشکیل می دهند metadataUrl و metadataHash فیلد exists به ما اجازه می دهد تا یک محصول را بدون حذف کامل اطلاعات آن از تاریخچه، به عنوان «باطل شده» علامت گذاری کنیم که برای اهداف حسابرسی بسیار مهم است. این ساختارها در یک نگاشت اصلی ذخیره می شوند:

:

۵-۳-۲ ساختار داده تاریخچه مالکیت (Struct OwnershipRecord)

برای ردیابی کامل زنجیره مالکیت، از این ساختار استفاده میشود:

Struct UwnershipRecord

رای هر محصول، آرایهای از این رکوردها نگهداری میشود که تاریخچه کامل انتقالات آن را از ابتدا تا کنون نُبت میکند[۷۸۵].

۲-۳-۲ مدیریت چرخه حیات محصول

قرارداد هوشمند، توابع اصلی برای مدیریت چرخه کامل حیات یک محصول را فراهم میکند.

۳–۳–۱–۶ ث**بت محصول (تابع** registerProduct) این تابع، نقطه ورود محصولات به اکوسیستم زنجیره بلوکی است.

register Product

تحلیل گام به گام این تابع:

- ۱. بررسی مجوزها: اصلاح گرهای onlyRole و whenNotPaused ابتدا بررسی می کنند که آیا فرستنده تراکنش نقش تولید کننده را دارد و آیا قرارداد در حالت فعال است.
- ۲. تخصیص شناسه یکتا: به جای استفاده از هشهای پیچیده، قرارداد از یک شمارنده ساده و کارآمد
 به نام nextTokenId برای تخصیص یک شناسه عددی منحصربه فرد و قابل پیشبینی به هر محصول
 جدید استفاده می کند [۷۹۶، ۷۸۹].
- ۳. ثبت فراداده: آدرس IPFS فراداده و هش آن در نگاشتهای مربوطه (۱۹۹۷ فراداده و هش آن در نگاشتهای مربوطه (۱۹۹۷ (۱۹۹۷ و ۱۹۹۷).
- ۴. ساخت توکن: تابع int از استاندارد ERC-1155 فراخوانی شده و توکنهای جدید را به آدرس mint گیرنده (to) با تعداد (to) مشخص شده، ایجاد می کند[۸۰۰].
- ۵. **ثبت در تاریخچه**: اولین رکورد در تاریخچه مالکیت محصول، با دلیل «ساخته شده» (manufactured) ه. ثبت می شود.
- 9. انتشار رویداد ProductRegistered منتشر می شود تا برنامه های کاربردی خارج از زنجیره (مانند Frontend) از ثبت محصول جدید مطلع شوند.
- ۳-۳-۳ ابطال محصول (تابع برای حذف منطقی یک محصول از (destroyProduct چرخه فعال زنجیره تأمین به کار میرود.

destroy Product

این تابع ابتدا مالک فعلی توکن را از تاریخچه استخراج میکند (زیرا یک توکن ERC-1155 میتواند burn چندین مالک داشته باشد، اما در منطق این پروژه، هر محصول غیرمثلی یک مالک دارد). سپس تابع urn را برای سوزاندن و از بین بردن توکن فراخوانی میکند. در نهایت، یک رکورد جدید در تاریخچه با مالک urn (یک آدرس استاندارد برای نمایش توکن سوخته شده) ثبت کرده و فیلد urn محصول را urn u

۲-۳-۲ مدیریت مالکیت و تاریخچه

بکی از پیچیدهترین و در عین حال نوآورانهترین بخشهای این قرارداد، نحوه ردیابی و بازیابی کارآمد محصولات تحت مالکیت هر کاربر است.

pdate دارای یک تابع ERC-1155 سازوکار ردیابی مالکیت در تابع pdate قراردادهای ERC-1155 دارای یک تابع داخلی و محوری به نام pdate هستند که تمام منطق انتقال، ساخت و سوزاندن توکنها از آن عبور می کند. ین پروژه، با بازنویسی (override) این تابع، یک قلاب (hook) هوشمندانه برای ردیابی مالکیت ایجاد کرده ست.

update :

قبل از اجرای منطق اصلی انتقال در $super._update$ ، این تابع بررسی می کند که آیا این انتقال، موجودی removeFromOwnedProducts و کمکی removeFromOwnedProducts در این صورت، توابع کمکی <math>removeFromOwnedProducts و removeFromOwnedProducts را برای بهروزرسانی لیست مالکیت کاربران فراخوانی می کند.

Swap-and-Pop نگهداری یک لیست Swap-and-Pop نگهداری یک لیست بویا از محصولات هر کاربر در یک آرایه، چالش حذف یک عنصر از وسط آرایه را به همراه دارد که عملیاتی Solidity برهزینه در Solidity است. این قرارداد برای حل این مشکل از یک الگوریتم بهینهسازی شده به نام «تعویض Swap-and-Pop) استفاده می کند.

در این الگوریتم، برای حذف یک عنصر از وسط آرایه، به جای جابجا کردن تمام عناصر بعدی، آخرین عنصر آرایه به جای عنصر حذفی منتقل شده و سپس آخرین خانه آرایه حذف می شود [۸۳۸–۸۳۸]. این عملیات، هزینه حذف را به یک مقدار ثابت (O(1)) کاهش داده و کارایی سیستم را به شدت افزایش می دهد.

$\lambda-T-1$ توابع خواندنی و بازیابی دادهها

برای اینکه لایه کاربری بتواند دادهها را به صورت بهینه از قرارداد بخواند، چندین تابع view طراحی شده است:

getOwnedProductsCount(addressowner)

getProductsBatch(uint256startId, uint256endId)

:.. این توابع دستهای، از ارسال درخواستهای متعدد به شبکه جلوگیری کرده و عملکرد لایه کاربری را به طور قابل توجهی بهبود میبخشند.

(Off-chain) پیادهسازی لایه ذخیرهسازی خارج از زنجیره au

این بخش به تشریح کامل منطق پیادهسازی شده در فایل gpt/src-front/lib/ipfs.ts میپردازد که مسئولیت مدیریت تمام تعاملات با لایه ذخیرهسازی غیرمتمرکز را بر عهده دارد.

Pinata و سرویس پینینگ انتخاب ۱–۴–۳

همانطور که پیشتر ذکر شد، انتخاب IPFS به دلیل ماهیت غیرمتمرکز و آدرسدهی مبتنی بر محتوا، یک انتخاب استراتژیک برای همسویی با اهداف پروژه بوده است. با این حال، دادهها در شبکه IPFS تنها تا زمانی در دسترس هستند که حداقل یک گره در شبکه، آن داده را «پین» کرده و نگهداری کند. اجرای یک گره IPFS برای هر کاربر، عملی نیست. برای حل این مشکل، از یک سرویس پینینگ به نام IPFS استفاده شده است. IPFS یک پلتفرم ابری است که در ازای دریافت هزینه، تضمین می کند که فایلهای آپلود شده توسط کاربر، برای همیشه در شبکه IPFS پین شده و در دسترس باقی بمانند. IPFS این سرویس عمل می کنند IPFS.

۳-۴-۳ فرآیند آپلود فایل و فراداده

uploadFileToIPFS دو تابع اصلی برای آپلود انواع مختلف داده به Pinata فراهم می کند: ipfs.ts دو تابع اصلی برای فایلهای برای فایلهای و اسناد) و uploadJSONToIPFS برای فایلهای فایلهای فراداده با فرمت uploadJSONToIPFS برای فایلهای فراداده با فرمت uploadJSONToIPFS

این تابع یک فایل را دریافت کرده، آن را در یک شیء FormData قرار میدهد و با استفاده از متد API به نقطه پایانی (API (Endpoint پیناتا ارسال می کند. هدرهای مربوط به کلیدهای API نیز برای احراز هویت در درخواست گنجانده شدهاند[۲۸۰]. در صورت موفقیت، تابع هش IPFS (یا همان CID) فایل آپلود شده را برمی گرداند.

۳-۴-۳ ساخت و اعتبار سنجی فراداده

منطق اصلی این ماژول در تابع uploadProductMetadata قرار دارد که یک فرآیند چند مرحلهای را ارکسترا میکند:

- ۱. ساخت شیء فراداده: ابتدا تایع createProductMetadata فراخوانی می شود. این تایع، دادههای خام دریافت شده از فرم کاربر را به یک ساختار JSON استاندارد و غنی تبدیل می کند. این ساختار OpenSea شامل «ویژگیها» (attributes) است که با استاندارد فراداده NFT در پلتفرمهایی مانند IPFS آپلود سازگار است IPFS. همچنین، تمام فایلهای تصویری و اسناد به صورت موازی در ISON آپلود شده و لینک آنها در ساختار ISON قرار می گیرد ISON.
- در uploadJSONToIPFS در UploadJSONToIPFS نهایی، خود با استفاده از تابع UploadJSONToIPFS در UploadJSONToIPFS بارگذاری شده و UploadJSONToIPFS اصلی آن به دست می آید.
- ۳. محاسبه هش On-chain فراخوانی میشود. این Solidity از کتابخانه تابع، برای اطمینان از تطابق کامل با نحوه محاسبه هش در

ethers

براى اعمال الگوريتم Keccak 256 بر روى نسخه رشتهاى شده فراداده استفاده مى كند [۲۸۹].

Keccak 256 و هش $(metadataUrl)\ IPFS$ خروجی نهایی این تابع، یک شیء است که شامل آدرس کامل $(metadataUrl)\ IPFS$ است. این دو مقدار، دقیقاً همان ورودی هایی هستند که برای تابع (metadataHash) در قرارداد هوشمند ارسال می شوند.

در نهایت، تابع VerifyMetadataIntegrity منطق اعتبارسنجی سمت کاربر را پیادهسازی می کند VerifyMetadataIntegrity این تابع، یک آدرس VerifyMetadataIntegrity و یک هش مورد انتظار را دریافت کرده، محتوا را از VerifyMetadataIntegrity دانلود می کند، هش آن را مجدداً محاسبه کرده و با هش مورد انتظار مقایسه می نماید تا یکپارچگی داده را تأیید کند. این تابع، آین سمت کاربر منطق امنیتی است که در قرارداد هوشمند طراحی شده است.

(Frontend) پیادهسازی لایه کاربری Δ –۳

V این است. این است. این تماس کاربر با سیستم و ویترین تمام قابلیتهای پیچیده V است. این است. این است. این استفاده از پشته فناوری مدرن V V استفاده از پشته فناوری مدرن V V او بسری الله دهد. V او بسری را ارائه دهد.

$^{-0}$ یروژهبندی و تنظیمات اولیه

ساختار پروژه در پوشه src-front به صورت ماژولار و بر اساس مسئولیتها سازماندهی شده است:

- components: شامل کامپوننتهای قابل استفاده مجدد مانند دکمهها، کارتها و هدر و فوتر (Layout.tsx)
- pages: شامل کامپوننتهای اصلی که هر کدام یک صفحه کامل از برنامه را نمایندگی میکنند (ClientDashboard.tsx و AdminDashboard.tsx
- |iib| شامل منطقهای کمکی و پیکربندیهای اصلی، از جمله تنظیمات اتصال به زنجیره بلوکی (contract.ts)، تعامل با (ipfs.ts) و تعریف (ipfs.ts) و تعریف (wagmi.ts)

نقطه ورود اصلی برنامه، فایل main.tsx است که برنامه React را رندر کرده و آن را با فراهم کنندههای React است که برنامه می کند MagmiProvider . [۲۶۹] وضعیت اتصال به کیف پول و شبکه را در MagmiProvider یا MagmiProvider و شبکه را در خواستهای کل برنامه مدیریت می کند و MagmiProvider برای کش کردن و مدیریت بهینه در خواستهای داده به کار می رود.

x-4-7 مدیریت اتصال به کیف پول و شبکه

برنامه قبل از هر چیز، وضعیت اتصال کیف پول کاربر را بررسی می کند. در فایل App.tsx، هوک App.tsx، هوک Vagmi از کتابخانه Wagmi برای این منظور استفاده شده است[۲۷۲]. اگر کاربر متصل نباشد، تنها کامپوننت ConnectWallet نمایش داده می شود که یک رابط کاربری ساده برای انتخاب و اتصال به کیف پولهای مختلف (مانند MetaMask یا از طریق WalletConnect) فراهم می کند[۲۷۴، ۲۷۴].

پس از اتصال، کامپوننت Layout.tsx به عنوان پوسته اصلی برنامه عمل می کند. این کامپوننت با استفاده از هو کهای useChainId و useSwitchChain به صورت فعال شبکه متصل شده کاربر را شناسایی کرده و در صورتی که شبکه پشتیبانی نشود، یک هشدار به کاربر نمایش می دهد و امکان تغییر شبکه را فراهم می آورد [۳۳۷، ۳۱۰]. این مدیریت فعال شبکه، از بروز خطاهای ناشی از تعامل با یک شبکه اشتباه جلوگیری می کند.

۳-۵-۳ کامپوننتها و صفحات اصلی

در ادامه، به تحلیل پیادهسازی چند صفحه کلیدی در برنامه میپردازیم.

این صفحه برای کاربرانی با نقش مدیریتی (AdminDashboard.tsx) این صفحه برای کاربرانی با نقش مدیریتی (مانند تولید کننده) طراحی شده و نمای کلی از تمام محصولات ثبتشده در سیستم را ارائه می دهد.

• **بازیابی دادهها:** این صفحه از تابع getProductsBatch در قرارداد هوشمند برای بازیابی محصولات به صورت صفحه این تابع با به صورت صفحه بندی شده استفاده می کند [۴۰۴]. برای نمایش آخرین محصولات ابتدا، این تابع با

شناسههایی از 1 - nextTokenId به سمت عقب فراخوانی می شود. این رویکرد، ضمن نمایش اطلاعات مرتبط تر به ادمین، از بازیابی یکباره حجم عظیمی از داده که می تواند منجر به کندی برنامه شود، جلوگیری می کند.

- واسط کاربری: دادهها در یک جدول جامع با قابلیت جستجو و فیلتر بر اساس دستهبندی و وضعیت نمایش داده میشوند[۴۴۰]. هر ردیف، شامل اقدامات مدیریتی مانند «مشاهده جزئیات» یا «ابطال محصول» است.
- نقطه ورود برای ایجاد محصول: این صفحه شامل یک دکمه برجسته برای هدایت کاربر به صفحه «ایجاد محصول جدید» است[۴۲۰].

۲-۳-۵-۳ این صفحه، نمایی شخصی سازی شده برای (ClientDashboard.tsx) این صفحه، نمایی شخصی سازی شده برای مصرف کنندگان یا مالکان محصولات است.

- واسط کاربری: محصولات در قالب کارتهای بصری نمایش داده می شوند که اطلاعات کلیدی هر محصول را به صورت خلاصه نشان می دهد. هر کارت، شامل دکمه هایی برای «مشاهده جزئیات کامل» و «انتقال مالکیت» است [۳۹۳، ۳۹۳].

این تفکیک بین داشبوردها، نشاندهنده طراحی دقیقی است که تجربه کاربری را برای هر نقش، متناسب با نیازهای آن، بهینه کرده است.

۳-۳-۵-۳ صفحه ثبت محصول (CreateProduct.tsx) این صفحه، پیچیدهترین فرم برنامه و نقطه اوج تعامل بین تمام لایههای سیستم است.

- مدیریت حالت و اعتبارسنجی: حالت فرم با استفاده از هوک useState از React از مدیریت میشود [۴۸۵]. قبل از ارسال، تابع validateForm تمام فیلدهای ضروری را بررسی کرده و از صحت ورودیها اطمینان حاصل میکند[۴۸۸].
- ارکستراسیون فرآیند در handleSubmit: تابع handleSubmit که پس از فشردن دکمه نهایی uploadProductMetadata این تابع ابتدا ۴۹۴]. این تابع ابتدا

metadataHash و metadataUrl و منتظر دریافت IPFS فراخوانی کرده و منتظر دریافت Wagmi از Wagmi تراکنش نهایی را برای در برای vewriteContract در قرارداد هوشمند آماده و ارسال می کند.

• بازخورد به کاربر: در طول این فرآیند چند مرحلهای، وضعیت به صورت مداوم با استفاده از نوتیفیکیشنهای toast به کاربر اطلاع داده میشود (مثلاً «در حال آپلود در IPFS...»، «در انتظار تأیید تراکنش...»)[۴۹۵]. این بازخورد آنی، تجربه کاربری را به شدت بهبود بخشیده و از سردرگمی کاربر جلوگیری میکند.

 $\mathfrak{F}-\mathfrak{T}-\mathfrak{d}-\mathfrak{T}$ صفحه جزئیات محصول (ProductDetail.tsx) این صفحه، شناسنامه دیجیتال کامل یک محصول را نمایش می دهد.

- بازیابی دادههای جامع: این صفحه با استفاده از شناسه توکن (tokenId) دریافت شده از products تمام اطلاعات مربوط به محصول را از نگاشت products در قرارداد هوشمند می خواند. همچنین، با استفاده از metadataUrl فراداده کامل را از IPFS بازیابی کرده و نمایش می دهد.
- قابلیت اعتبارسنجی: این صفحه شامل بخش «تأیید فراداده» است که به کاربر اجازه می دهد با فشردن یک دکمه، فرآیند verifyMetadataIntegrity را فعال کرده و به صورت آنی، از یکپارچگی اطلاعات محصول اطمینان حاصل کند[۶۵۳].
- نمایش تاریخچه و QR کد: تاریخچه کامل مالکیت و یک کد QR قابل اسکن که حاوی اطلاعات کلیدی محصول برای اشتراک گذاری آسان است نیز در این صفحه نمایش داده می شود [۶۷۹].

در مجموع، لایه کاربری این پروژه، نمونهای کامل از یک برنامه غیرمتمر کز (dApp) مدرن است که با انتزاع پیچیدگیهای زنجیره بلوکی، یک تجربه کاربری روان، امن و قابل فهم را برای تمام کاربران، صرف نظر از دانش فنی آنها، فراهم می آورد.

۳-۶ محیط توسعه و راهبرد آزمون

با توجه به ماهیت تغییرناپذیر و حساس قراردادهای هوشمند که مستقیماً با داراییهای دیجیتال سروکار دارند، اتخاذ یک راهبرد آزمون جامع و دقیق، امری حیاتی و غیرقابل چشمپوشی است. یک آسیبپذیری کوچک در کد میتواند منجر به خسارات جبرانناپذیر شود. از این رو، این پروژه یک رویکرد چندلایه برای تضمین کیفیت و امنیت کد، هم در لایه Backend و هم در لایه ۴۲۰۰۰ به کار گرفته است.

$(Foundry \, C)$ فریمورک $Backend \, (Foundry \, C)$ پشته توسعه و آزمون

همانطور که پیش تر ذکر شد، برای توسعه قرارداد هوشمند از فریمورک مدرن Foundry استفاده شده است. این انتخاب، تأثیر مستقیمی بر راهبرد آزمون پروژه داشته است.

Foundry و ماژولار برای Foundry هرفی اجزای Foundry و ماژولار برای Foundry است: Foundry نوشته شده و شامل سه ابزار اصلی است:

- Forge: موتور اصلی کامپایل، آزمون و استقرار قراردادهای هوشمند است. بزرگترین مزیت آن، امکان نوشتن آزمونها به زبان Solidity است.
- Anvil: یک گره زنجیره بلوکی محلی برای توسعه و آزمون است که به صورت آنی و با قابلیتهای پیشرفتهای مانند فورک کردن شبکههای عمومی، اجرا میشود.
- Cast و تعامل مستقیم با قراردادهای هوشمند برای انجام فراخوانیهای RPC و تعامل مستقیم با قراردادهای هوشمند مستقر شده است.

۲-۱-۶-۳ تحلیل فایل آزمون ارائه شده [۲۰۵۳] فایل آزمون ارائه شده [۲۰۵۳]، یک نمونه کامل از راهبرد آزمون به کار رفته برای تضمین صحت عملکرد قرارداد هوشمند است.

ساختار آزمون و تابع setUp: هر مجموعه آزمون در Foundry، یک قرارداد است که از قرارداد setUp: هر torge-std ارثبری می کند. تابع torge-std یک تابع ویژه است که قبل از اجرای هر تابع آزمون، یک بار اجرا می شود. در این پروژه، از این تابع برای استقرار یک نسخه تازه از قرارداد torge-std و اعطای نقشهای اولیه به آدرسهای آزمایشی استفاده شده است. این کار تضمین می کند که هر آزمون در یک محیط ایزوله و تمیز اجرا می شود.

استفاده از ابزارهای شبیه سازی (Cheatcodes): Foundry مجموعه ای قدر تمند از توابع ویژه به نام V در اختیار آزمون ها قرار می دهد. این ابزارها کنام کنند در فایل آزمون این پروژه، از این ابزارها به صورت گسترده است شده است:

- vm.prank(address) و vm.prank(address) و vm.prank(address) و vm.prank(address) و vm.prank(address) و vm.prank(address) و vm.prank(address) هویت خود را جعل کرده و تراکنش بعدی (یا تراکنشهای بعدی) را از طرف یک آدرس مشخص ارسال آزمودن منطق کنترل دسترسی حیاتی است. برای مثال، در آزمون vm.prank(distributor) با استفاده از vm.prank(distributor) تلاش برای ثبت محصول از طرف یک آدرس فاقد نقش تولیدکننده شبیهسازی می شود.
- *vm.expectRevert*: این دستور به آزمون اعلام می کند که انتظار دارد تراکنش بعدی با یک خطای درستی مشخص ناموفق شود. این برای آزمودن اینکه آیا اصلاح گرهای حفاظتی مانند onlyRole به درستی کار می کنند، ضروری است[۲۰۷۰].

پوشش جامع آزمونها: فایل آزمون SupplyChainERC1155.t.sol سناریوهای مختلفی را برای پوشش کامل منطق قرارداد، شبیه سازی می کند:

- آزمون مسیر شاد (Path Happy): تابع testRegisterProduct): تابع (Path Happy): تابع اصلی را در شرایط عادی بررسی می کنند. در این آزمونها، پس از اجرای تابع، عملکرد صحیح توابع اصلی را در شرایط عادی بررسی می شود که آیا وضعیت قرارداد (مانند با استفاده از دستورات assertEq و assertEq، بررسی می شود که آیا وضعیت قرارداد (مانند موجودی توکنها و تاریخچه مالکیت) به درستی بهروز شده است.
- آزمون کنترل دسترسی: توابعی مانند توابعی مانند توابعی مانند توابعی مانند که تنها کاربران دارای نقش و ۲۲۱۲ تضمین می کنند که تنها کاربران دارای نقش صحیح می توانند توابع حساس را فراخوانی کنند.
- آزمون سناریوی سرتاسری: تابع ۲۰۸۳] یک سناریوی کامل را از ثبت محصول توسط تولیدکننده، انتقال به توزیع کننده، سپس به خردهفروش و در نهایت به مصرف کننده شبیه سازی می کند. این آزمون یکپارچه سازی، تضمین می کند که تمام اجزای قرارداد به درستی با یکدیگر کار می کنند.

- آزمون اعتبارسنجی فراداده: تابع ۲۰۹۷] (مربوط به نسخه اولیه قرارداد)، هم با دادههای صحیح و هم با دادههای نادرست، تابع اعتبارسنجی را فراخوانی کرده و از صحت پاسخ آن اطمینان حاصل می کند.
- آزمون حالتهای حدی (Cases Edge): توابعی مانند (Cases Edge): توابعی مانند (۲۱۲۹) و التهای حدی (۲۱۲۹) و ۲۱۲۹)، رفتار سیستم را در شرایط غیرمنتظره یا تلاش برای اقدامات غیرمجاز، مورد سنجش قرار میدهند.

(Frontend) راهبرد آزمون لایه کاربری (T-۶-۳

اگرچه فایلهای آزمون مشخصی برای لایه کاربری ارائه نشده است، اما یک راهبرد آزمون استاندارد برای تضمین کیفیت برنامه React شامل سه لایه آزمون است:

۱-۲-۶-۳ آزمون واحد (UnitTesting) در این لایه، هر کامپوننت یا تابع کمکی به صورت ایزوله آزموده می شود. با استفاده از فریمور کهایی مانند

Jest

و کتابخانه Library Testing React، می توان اطمینان حاصل کرد که هر کامپوننت به درستی و مطابق با و کتابخانه ProductCard، می شود. برای مثال، می توان یک آزمون واحد برای کامپوننت کامپوننت و مطابق با در ورودی های (props) مختلف، رندر می شود. برای مثال، می توان یک آزمون واحد برای کامپوننت نایش می دهد و آیا دکمه «انتقال» تنها در صورتی که محصول و باشد، نمایش داده می شود.

۲-۲-۶-۳ آزمون یکپارچهسازی (IntegrationTesting) این آزمونها، تعامل بین چندین کامپوننت را بررسی می کنند. برای مثال، می توان یک آزمون نوشت که تعامل بین فرم جستجو در ClientDashboard و لیست محصولات نمایش داده شده را شبیهسازی کند تا اطمینان حاصل شود که فیلتر کردن به درستی کار می کند. این آزمونها نیز معمولاً با استفاده از Library Testing React نوشته می شوند اما سناریوهای پیچیده تری را پوشش می ده □□□.

این لایه از آزمون، بالاترین سطح اطمینان (E2E-End-to-End) این لایه از آزمون، بالاترین سطح اطمینان (E2E-End-to-End) با تناسری مرورگر واقعی را در فراهم می کند. با استفاده از ابزارهایی مانند Cypress یا E2E می توان یک مرورگر واقعی را به صورت خود کار کنترل کرده و سناریوهای کامل کاربر را شبیه سازی کرد. یک سناریوی E2E برای این پروژه می تواند شامل مراحل زیر باشد:

- ۱. باز کردن برنامه و اتصال به یک کیف پول آزمایشی.
 - ۲. ناوبری به صفحه «ایجاد محصول».
- ۳. پر کردن فرم با اطلاعات آزمایشی و آپلود یک فایل.
 - ۴. تأیید تراکنش در پنجره پاپآپ کیف پول.
- ۵. انتظار برای تأیید تراکنش و بررسی اینکه آیا محصول جدید در داشبورد ادمین نمایش داده میشود.

این راهبرد آزمون چندلایه، از پایین ترین سطح (منطق قرارداد هوشمند) تا بالاترین سطح (تعامل کاربر در مرورگر)، کیفیت، صحت عملکرد و امنیت کل سامانه را تضمین می کند

۴ ارزیابی و تحلیل نتایج

پس از تشریح دقیق معماری و فرآیند پیادهسازی سامانه در فصل سوم، این فصل به ارزیابی جامع و تحلیل نتایج عملکرد آن اختصاص دارد. هدف از این فصل، سنجش میزان موفقیت پروژه در دستیابی به اهداف تعریف شده و بررسی عملکرد سیستم در برابر معیارهای کلیدی است. ارزیابی یک سامانه غیرمتمرکز، فرآیندی چندوجهی است که فراتر از آزمونهای عملکردی صرف رفته و جنبههای امنیتی، اقتصادی و تجربه کاربری را نیز در بر می گیرد. این فصل به دو بخش اصلی تقسیم می شود: در بخش اول، چارچوب ارزیابی، معیارها و محیط آزمون به تفصیل تشریح می شوند. در بخش دوم، نتایج به دست آمده از اجرای این آزمونها ارائه و تحلیل خواهند شد.

۱-۴ معیارها و محیط ارزیابی

این بخش به عنوان سنگ بنای فرآیند ارزیابی، به تعریف دقیق معیارها، روشها و محیطی می پردازد که برای سنجش کیفیت و عملکرد سامانه به کار گرفته خواهد شد. ارائه یک چارچوب ارزیابی شفاف و دقیق، برای اطمینان از تکرارپذیری (Reproducibility) و اعتبار نتایج، امری ضروری است.

۱-۱-۴ مقدمه: چارچوب ارزیابی یک سامانه غیرمتمرکز

ارزیابی یک برنامه غیرمتمرکز (dApp) مانند سامانه زنجیره تأمین حاضر، تفاوتهای بنیادینی با ارزیابی نرمافزارهای متمرکز سنتی دارد. در یک سیستم سنتی، معیارها عمدتاً بر کارایی سرور، زمان پاسخ پایگاه داده و قابلیتهای رابط کاربری متمرکز هستند. اما در یک سیستم غیرمتمرکز، ابعاد جدیدی از ارزیابی

پدیدار می شود که مستقیماً از ماهیت فناوری زنجیره بلوکی نشأت می گیرد. اعتماد در این سیستمها به جای یک نهاد مرکزی، به کد، پروتکل و اصول رمزنگاری تفویض شده است. بنابراین، ارزیابی باید بتواند میزان موفقیت این تفویض اعتماد را بسنجد.

برای این منظور، یک چارچوب ارزیابی چندبعدی تعریف شده است که پروژه را از چهار منظر کلیدی مورد سنجش قرار میدهد:

- ۱. صحت عملکرد و کارایی (Performance and Correctness): آیا سیستم همانطور که طراحی شده، به درستی و با کارایی قابل قبول کار می کند؟ این بعد به بررسی صحت منطق قرارداد هوشمند و عملکرد فنی آن می پردازد.
- ۲. امنیت و استحکام (Robustness and Security): آیا سیستم در برابر حملات شناخته شده و شرایط غیرمنتظره مقاوم است؟ این بعد، امنیت کد و معماری را در برابر تهدیدات داخلی و خارجی می سنجد.
- ۳. کاربرپذیری و تجربه کاربری (Experience User and Usability): آیا تعامل با سیستم برای کاربران نهایی ساده، قابل فهم و کارآمد است؟ این بعد بر طراحی انسان-محور و میزان پذیرش سیستم توسط کاربران تمرکز دارد.
- ۴. تحلیل اقتصادی و عملیاتی (Analysis Operational and Economic): آیا پیادهسازی این سیستم در دنیای واقعی از نظر اقتصادی مقرونبه و از نظر عملیاتی امکانپذیر است؟ این بعد به بررسی هزینه و و مزایای عملیاتی سیستم میپردازد.

در ادامه، معیارها و روششناسی ارزیابی برای هر یک از این چهار بعد به تفصیل تشریح خواهد شد.

۴-۱-۴ بعد اول: ارزیابی صحت عملکرد و کارایی

این بعد، فنی ترین بخش ارزیابی را تشکیل می دهد و هدف آن، اطمینان از صحت منطق پیاده سازی شده در قرارداد هوشمند و سنجش عملکرد آن تحت بارهای کاری شبیه سازی شده است. این ارزیابی مستقیماً بر اساس راهبرد آزمون تعریف شده در پروپوزال پروژه استوار است که بر «نوشتن یک مجموعه آزمون واحد و اجرای آن با کمک ابزار foundry» تأکید دارد[۲۲۷۸، ۲۲۷۷].

۱-۲-۱-۴ معیارهای صحت عملکرد (Metrics Correctness) صحت عملکرد به این سؤال پاسخ می دهد: «آیا سیستم کاری را که باید، به درستی انجام می دهد؟». برای سنجش این موضوع، از معیارهای کمی و کیفی زیر استفاده خواهد شد:

- پوشش آزمونهای واحد و یکپارچهسازی: این یک معیار کمی است که نشان می دهد چه درصدی از خطوط کد و شاخههای منطقی (branches) در قرارداد هوشمند توسط مجموعه آزمونها اجرا و بررسی شدهاند. هدف در این پروژه، دستیابی به پوشش آزمون نزدیک به □۱۰۰ برای تمام منطقهای حیاتی کسبوکار است. ابزار Foundry قابلیت گزارش گیری دقیق از پوشش آزمون را فراهم می کند.
- میزان موفقیت آزمونها: معیار اصلی صحت، نرخ موفقیت □۱۰۰ برای کل مجموعه آزمونهای تعریف شده در فایل SupplyChainERC1155.t.sol است. هرگونه شکست در آزمونها، نشان دهنده وجود یک باگ در منطق قرارداد است.
- صحت اجرای سناریوهای سرتاسری: موفقیت در اجرای سناریوهای پیچیدهای که تعامل چندین نقش و چندین تابع را شبیهسازی می کنند، به عنوان یک معیار کلیدی برای صحت یکپارچگی سیستم در نظر گرفته می شود. آزمون T۰۸۳] به طور خاص برای سنجش این معیار طراحی شده است.
- مدیریت صحیح خطاها: یک سیستم صحیح، نه تنها باید در مسیر شاد (path happy) به درستی و عمل کند، بلکه باید در مواجهه با ورودیهای نامعتبر یا اقدامات غیرمجاز، به صورت قابل پیشبینی و امن، خطا برگردانده و از تغییر وضعیت ناخواسته جلوگیری کند. معیار سنجش این قابلیت، موفقیت آزمونهایی است که از

vm.expectRevert

برای بررسی بازگشت خطاهای مورد انتظار استفاده میکنند[۲۰۷۰].

۲-۲-۱-۴ معیارهای کارایی (PerformanceMetrics) کارایی به این سؤال پاسخ می دهد: «آیا سیستم وظایف خود را با مصرف بهینه منابع انجام می دهد؟». در دنیای زنجیره بلوکی، «منابع» عمدتاً به معنای «هزینه گس» و «زمان» است.

- **هزینه گس** (*GasCost*): این مهمترین معیار کارایی برای یک قرارداد هوشمند است. برای هر یک از توابع کلیدی که وضعیت زنجیره را تغییر میدهند، هزینه گس مصرفی به صورت دقیق اندازه گیری و ثبت خواهد شد. توابع مورد ارزیابی عبارتند از:
 - عرینه ساخت یک یا چند توکن محصول جدید. registerProduct()
 - . هزينه ابطال يک محصول destroyProduct()
 - . توابع انتقال (که در pdate مدیریت می شوند): هزینه انتقال مالکیت \square

تحلیل این معیار به ما نشان می دهد که سیستم از نظر اقتصادی چقدر برای پیاده سازی در یک شبکه عمومی مقرون به صرفه است. کاهش هزینه گس یکی از اهداف اصلی در بهینه سازی قراردادهای هوشمند است و الگوریتم هایی مانند Swap-and-Pop که در این پروژه به کار رفته، مستقیماً در جهت بهبود این معیار طراحی شده اند.

- توان پردازشی تراکنش (TransactionThroughput): این معیار به تعداد تراکنشهایی که سیستم می تواند در یک بازه زمانی مشخص (مثلاً یک ثانیه) پردازش کند، اشاره دارد. لازم به ذکر است که این معیار، بیشتر به مشخصات شبکه زنجیره بلوکی زیربنایی (مانند اندازه بلوک و زمان بلوک) بستگی دارد تا خود قرارداد هوشمند. با این حال، با اندازه گیری هزینه گس هر تراکنش، می توان تخمینی از تعداد تراکنشهایی که در یک بلوک با سقف گس مشخص جای می گیرند، به دست آورد و بدین ترتیب، یک تخمین نظری از توان پردازشی ارائه داد.
- کارایی توابع خواندنی: توابع view که وضعیت را تغییر نمی دهند، هزینه گس ندارند، اما کارایی آنها از منظر زمان پاسخ برای لایه کاربری بسیار مهم است. در این ارزیابی، زمان اجرای توابع خواندنی پیچیده مانند get Products Batch و get Owned Products Batch در یک گره محلی اندازه گیری خواهد شد تا از عدم وجود حلقه های پرهزینه یا منطق های کند در بازیابی داده ها اطمینان حاصل شود.

۳-۲-۱-۴ محیط آزمون فنی (Technical Testing Environment) برای اطمینان از صحت و تکرارپذیری نتایج، تمام آزمونهای فنی در یک محیط کاملاً مشخص و کنترلشده اجرا خواهند شد.

• پیکربندی نرمافزاری:

- ☐ فريمورک آزمون: Foundry (نسخه مشخص خواهد شد).
- \square كامپايلر Solidity: نسخه $^0.8.20$ مطابق با تعريف قرارداد $^0.8.20$.
- 🛘 كتابخانهها: OpenZeppelinContracts (نسخه مشخص خواهد شد).

• پیکربندی شبکه محلی:

- . گره محلی: از Anvil، گره آزمایشی همراه Foundry، استفاده خواهد شد.
- پیکربندی اجرا میشوند که شامل ایکربندی پیشفرض Anvil اجرا میشوند که شامل حسابهای آزمایشی با موجودی اتر کافی، زمان بلوک آنی (برای سرعت بخشیدن به آزمونها) و سقف گس بالا برای هر بلوک است.

• اسکریپتهای استقرار: برای آزمونهای یکپارچهسازی و سرتاسری، از اسکریپتهای استقرار نوشته شده با Foundry ([۵۶۲]DeploySupplyChain.s.sol) برای ایجاد یک وضعیت اولیه مشخص و قابل تکرار در شبکه آزمایشی استفاده خواهد شد.

7-1-۳ بعد دوم: ارزیابی امنیت و استحکام

امنیت، حیاتی ترین جنبه یک قرارداد هوشمند است. این بخش از ارزیابی، با هدف شناسایی و سنجش مقاومت سیستم در برابر آسیب پذیری های شناخته شده و بردارهای حمله بالقوه طراحی شده است.

۴-۱-۳-۱ مقدمه: امنیت به عنوان یک فرآیند امنیت یک ویژگی صفر و یک نیست، بلکه یک فرآیند مستمر است که از مرحله طراحی معماری آغاز شده، در حین پیادهسازی با رعایت بهترین شیوهها ادامه یافته و در نهایت، از طریق آزمونهای دقیق و حسابرسیهای مستقل، تأیید می شود. چارچوب ارزیابی امنیت این پروژه، تمام این مراحل را در بر می گیرد.

7-1-4 معیارهای امنیت قرارداد هوشمند

- مقاومت در برابر آسیب پذیری های رایج: معیار اصلی، عدم وجود هر گونه آسیب پذیری شناخته شده در کد قرارداد هوشمند است. لیستی از این آسیب پذیری ها که مورد بررسی قرار خواهند گرفت، عبار تند از:
 - [حملات بازگشتی (Reentrancy)
 - $(Integer\ Overflow/Underflow)$ سرریز از عدد صحیح \Box
 - ☐ كنترل دسترسى نادرست (Control Improper Access) كنترل
 - [Front-running] آسیب پذیریهای مربوط به ترتیب تراکنشها \Box
- صحت پیادهسازی کنترل دسترسی: این معیار به صورت کمی سنجیده میشود: آیا تمام توابع محافظتشده با onlyRole، به ازای تمام نقشهای غیرمجاز، تراکنش را بازگشت (revert) میدهند؟ ونهایی مانند T۱۱۰]testDestroyProductOnlyCustoms و T۰۶۹]testRegisterProductOnlyManufacturer و برای سنجش این معیار طراحی شدهاند.
- امنیت در شرایط اضطراری: عملکرد صحیح مکانیزم توقف اضطراری (Pausable) به عنوان یک معیار امنیتی کلیدی در نظر گرفته می شود. آزمون ۲۱۱۴] بررسی می کند که آیا پس از فعال سازی حالت توقف، تمام توابع حساس از کار می افتند و پس از غیرفعال سازی، به حالت عادی بازمی گردند.

- سیستم معیارهای امنیت این سیستم (On-Chain/Off-Chain) امنیت این سیستم On-Chain/Off-Chain امنیت این سیستم On-Chain/Off-Chain اتنها به قرارداد هوشمند محدود نمی شود و باید یکپارچگی کل معماری، به ویژه ارتباط بین دادههای On-Chain/Off-Chain و On-Chain و On-Cha
- یکپارچگی فراداده: معیار اصلی، نرخ موفقیت [۱۰۰ تابع VerifyMetadataIntegrity در است. این تابع باید در دو سناریو آزموده شود: (۱) با استفاده از فراداده معتبر بازیابی شده از شده از ۱۲۶۶ که باید نتیجه «صحیح» برگرداند، و (۲) با استفاده از یک نسخه دستکاری شده از فراداده که باید نتیجه «غلط» برگرداند.
- در دسترس بودن فراداده: این معیار، پایداری لینکهای IPFS ذخیره شده در قرارداد را می سنجد. روش ارزیابی، تلاش برای بازیابی تمام metadataUrlهای ثبت شده در طول آزمونها و سنجش نرخ موفقیت در دسترسی به محتوای آنها از طریق یک گیتوی عمومی IPFS است.
- **۴-۳-۳-۴ روش شناسی ارزیابی امنیتی** برای سنجش معیارهای فوق، از یک رویکرد چندلایه استفاده خواهد شد:
- ۱. تحلیل استاتیک کد (Static Code Analysis): قبل از اجرای هر آزمونی، کد منبع Solidity با استفاده از ابزارهای تحلیل استاتیک مانند Slither مورد بررسی قرار خواهد گرفت. این ابزارها کد را برای یافتن الگوهای آسیبپذیری شناخته شده، خطاهای منطقی رایج و عدم رعایت بهترین شیوه های امنیتی اسکن می کنند. خروجی این ابزارها، یک گزارش اولیه از نقاط ضعف بالقوه فراهم می کند.
- ۲. آزمونهای Foundry امنیتی مبتنی بر سناریو: مجموعه آزمونهای Foundry امنیت طراحی شدهاند. داده خواهد شد تا شامل سناریوهایی باشد که به طور خاص برای آزمودن امنیت طراحی شدهاند. برای مثال، یک قرارداد مهاجم شبیهسازی خواهد شد که تلاش میکند یک حمله بازگشتی را به توابع انتقال اجرا کند. انتظار میرود که به دلیل استفاده از استانداردهای امن OpenZeppelin (که دارای مکانیزمهای ضد−بازگشتی هستند)، این آزمونها با موفقیت نشان دهند که قرارداد آسیبپذیر نست.
- ۳. حسابرسی دستی کد (Manual Code Audit): کد قرارداد به صورت دستی و خط به خط مورد بازبینی قرار خواهد گرفت. این بازبینی بر روی منطق کسبوکار، مدیریت وضعیتها، و به ویژه تعاملات بین توابع مختلف تمرکز خواهد کرد تا آسیبپذیریهایی که ممکن است از دید ابزارهای خودکار پنهان بمانند، شناسایی شوند.

۴. تأکید بر اصول طراحی امن: در گزارش نهایی ارزیابی، نشان داده خواهد شد که چگونه اصول طراحی امن از ابتدا در پروژه رعایت شدهاند. مواردی مانند استفاده از کتابخانههای حسابرسی شده، پیروی از الگوی Checks - Effects - Interactions و استفاده صحیح از کنترل دسترسی، همگی به عنوان بخشی از راهبرد امنیتی پروژه مستند خواهند شد.

۴-۱-۴ بعد سوم: ارزیابی کاربرپذیری و تجربه کاربری

یک سامانه زنجیره تأمین، در نهایت توسط انسانها با سطوح مختلف دانش فنی مورد استفاده قرار می گیرد. بنابراین، ارزیابی موفقیت آن بدون در نظر گرفتن جنبههای انسانی و تجربه کاربری (UX) ناقص خواهد بود. هدف این بخش، ارائه یک چارچوب برای ارزیابی میزان سادگی، کارایی و رضایت بخش بودن تعامل کاربران با لایه کاربری سامانه است.

است. مفاهیمی مانند مدیریت کلید خصوصی، امضای است که می از بزرگ ترین موانع بر سر راه پذیرش گسترده آنها، تجربه کاربری ضعیف و پیچیده بوده است. مفاهیمی مانند مدیریت کلید خصوصی، امضای تراکنش و پرداخت هزینه گس، برای کاربران عادی موانع بزرگی ایجاد می کنند. یک dApp موفق، برنامهای است که می تواند این پیچیدگیها را در پس زمینه انتزاع کرده و یک تجربه کاربری آشنا و روان را ارائه دهد. ارزیابی این پروژه باید نشان دهد که تا چه حد در این امر موفق بوده است.

کمی و کیفی UX معیارهای ارزیابی تجربه کاربری، از ترکیبی از معیارهای کمی و کیفی UX استفاده خواهد شد:

- کارایی (Efficiency): این معیار به میزان تلاش (زمان و تعداد کلیکها) که یک کاربر برای انجام یک وظیفه اصلی نیاز دارد، اشاره میکند. برای مثال: «چند ثانیه طول میکشد تا یک کاربر تولیدکننده، یک محصول جدید را با موفقیت ثبت کند؟»
- میزان خطا (Error Rate): تعداد خطاهایی که کاربران در حین انجام یک سناریوی مشخص مرتکب در میزان خطا (Error Rate) تعداد خطاهایی که کاربر را راهنمایی کرده و از بروز خطاهای رایج جلوگیری کند.
- یادگیری پذیری (Learnability): این معیار نشان میدهد که یک کاربر جدید با چه سرعتی میتواند یاد بگیرد که چگونه وظایف اصلی را در سیستم انجام دهد، بدون اینکه نیاز به آموزش رسمی گسترده داشته باشد.

- رضایت کاربر (*User Satisfaction*): این یک معیار کیفی است که احساسات و نظرات کاربران را در مورد تجربه کلی استفاده از سیستم می سنجد.
- UX ورق معیارهای فوق، یک UX (پروتکل آزمون کاربر) برای سنجش معیارهای فوق، یک پروتکل آزمون کاربردپذیری شبیه سازی خواهد شد. این فرآیند شامل مراحل زیر است:
 - ۱. تعریف پرسوناها (Personas): دو پرسونای اصلی برای کاربران سیستم تعریف میشود:
- پرسونای مدیر /تولیدکننده: فردی که با فرآیندهای تولید و مدیریت موجودی آشناست اما دانش فنی محدودی در زمینه زنجیره بلوکی دارد. وظیفه اصلی او، ثبت محصولات جدید و مدیریت آنها در داشبورد ادمین است.
- پرسونای مصرف کننده امالک: فردی که یک محصول را خریداری کرده و میخواهد از اصالت و تاریخچه آن اطمینان حاصل کند. او با مفاهیم فنی زنجیره بلوکی آشنا نیست و تنها به دنبال یک تجربه ساده و قابل اعتماد است.
- ۲. تدوین سناریوهای آزمون (Test Scenarios): بر اساس قابلیتهای پیادهسازی شده در لایه کاربری، سناریوهای مشخصی برای هر پرسونا تدوین میشود. این سناریوها، وظایف واقعی را که کاربر در سیستم انجام خواهد داد، شبیهسازی می کنند.
- سناریوی ۱ (برای پرسونای مدیر): «شما مدیر تولید یک شرکت الکترونیکی هستید. لطفاً با استفاده از اطلاعات زیر و تصویر محصول، یک بچ جدید شامل ۱۰۰ عدد "گوشی هوشمند مدل "□ را در سیستم ثبت کرده و مالکیت آن را به کیف پول توزیع کننده به آدرس [...] منتقل نمایید.»
- سناریوی ۲ (برای پرسونای مصرف کننده): «شما به تازگی یک "گوشی هوشمند مدل " خریداری کردهاید. لطفاً با استفاده از کد QR ارائه شده، ابتدا از اصالت و یکپارچگی اطلاعات آن اطمینان حاصل کرده و سپس تاریخچه کامل مالکیت آن از زمان تولید را مشاهده نمایید.»
- ۳. **اجرای آزمون و جمع آوری داده ها:** آزمون با شرکت کنندگانی که نماینده پرسوناها هستند، اجرا خواهد شد. در طول آزمون، از روشهای زیر برای جمع آوری داده استفاده می شود:
- پروتکل تفکر با صدای بلند (Think aloud Protocol): از شرکت کنندگان خواسته می شود تا در حین انجام سناریوها، افکار، ابهامات و تصمیمات خود را با صدای بلند بیان کنند.
- مشاهده و زمان سنجی: یک مشاهده گر، زمان انجام هر وظیفه و تعداد خطاهای کاربر را ثبت می کند.

• پرسشنامههای پس از آزمون: پس از اتمام سناریوها، از شرکت کنندگان خواسته می شود تا پرسشنامههای استانداردی مانند مقیاس کاربردپذیری سیستم ($Scale\ System\ Usability$) را پر کنند تا یک نمره کمی برای رضایت کلی آنها به دست آید.

نتایج حاصل از این ارزیابی، بینشهای ارزشمندی در مورد نقاط قوت و ضعف طراحی رابط کاربری فراهم کرده و پیشنهاداتی مشخص برای بهبود تجربه کاربری در نسخههای آینده ارائه خواهد داد.

-1-4 بعد چهارم: تحلیل اقتصادی و عملیاتی

در نهایت، موفقیت یک پروژه فناورانه در دنیای واقعی، نه تنها به برتری فنی، بلکه به توجیه اقتصادی و امکانپذیری عملیاتی آن نیز بستگی دارد. این بخش از ارزیابی، با هدف تحلیل هزینهها و مزایای سامانه و بررسی امکانسنجی استقرار آن در یک محیط تجاری واقعی انجام میشود.

۱-۵-۱-۴ مقدمه: از اثبات مفهوم تا طرح تجاری پروژه حاضر در مرحله فعلی، یک «اثبات مفهوم» (Proof of Concept) قدرتمند است که نشان میدهد ایده اصلی از نظر فنی قابل پیادهسازی است. اما برای تبدیل شدن به یک محصول تجاری، باید به سؤالات اقتصادی پاسخ دهد. این تحلیل، یک چارچوب اولیه برای این ارزیابی اقتصادی فراهم می کند.

رزیایی اقتصادی $\tau = -1$ معیارهای ارزیایی اقتصادی

- تحلیل هزینه کل مالکیت (TCO Total Cost of Ownership): این معیار، تمام هزینههای مرتبط با راهاندازی و نگهداری سیستم را در یک دوره زمانی مشخص در بر می گیرد. اجزای اصلی TCO برای این سامانه عبارتند از:
- □ **هزینههای تراکنش (هزینه گس):** این هزینه که متغیر اصلی است، بر اساس نتایج تحلیل کارایی در بخش اول، و با در نظر گرفتن سناریوهای مختلف برای قیمت گس و حجم تراکنشها، مدلسازی خواهد شد.
- هزینههای مربوط به اشتراک سرویس پینینگ Off-chain هزینههای مربوط به اشتراک سرویس پینینگ Off-chain هزینههای Off-chain
 - 🛘 **هزینههای زیرساخت** Frontend: شامل هزینههای مربوط به میزبانی وبسایت.
- □ هزینههای توسعه و نگهداری: شامل هزینههای نیروی انسانی برای توسعه، بهروزرسانی و پشتیبانی از سیستم.

- تحلیل بازگشت سرمایه (ROI Investment on Return): این معیار، مزایای مالی حاصل از پیادهسازی سیستم را در مقایسه با هزینههای آن میسنجد. شناسایی و کمیسازی این مزایا، بخش چالشبرانگیز این تحلیل است. مزایای اصلی عبارتند از:
- ☐ **کاهش خسارات ناشی از جعل:** با تخمین درصد کالاهای تقلبی در بازار هدف و جلوگیری از فروش آنها.
- □ افزایش کارایی عملیاتی: با کاهش زمان و نیروی انسانی مورد نیاز برای فرآیندهای تطبیق،
 حسابرسی و ردیابی.
 - ☐ **کاهش هزینههای فراخوان محصول**: با امکان ردیابی سریع و دقیق محصولات معیوب.
 - □ افزایش در آمد بالقوه: ناشی از افزایش اعتماد مشتریان و تقویت ارزش برند.
- **۳-۵-۱-۴ روش شناسی تحلیل** برای انجام این تحلیل، یک رویکرد مبتنی بر مدلسازی و شبیه سازی به کار گرفته خواهد شد:
- 1. **ساخت یک مدل هزینه**: یک مدل صفحه گسترده (Spreadsheet) ایجاد خواهد شد که به عنوان ورودی، پارامترهایی مانند «تعداد محصولات ثبتشده در روز»، «تعداد انتقالات در روز» و «قیمت متوسط گس» را دریافت کرده و به عنوان خروجی، «هزینه عملیاتی روزانه» سامانه را محاسبه می کند.
- ۲. **تحلیل مقایسهای:** هزینههای به دست آمده از مدل، با هزینههای عملیاتی یک سیستم سنتی معادل (با در نظر گرفتن هزینههای نیروی انسانی برای حسابرسی دستی و غیره) مقایسه خواهد شد.
- ۳. تحلیل حساسیت: تأثیر تغییرات پارامترهای کلیدی (مانند قیمت گس) بر روی هزینه کل، مورد تحلیل قرار خواهد گرفت تا نقاط سربه سر و ریسکهای اقتصادی پروژه شناسایی شوند.

این تحلیل اقتصادی، یک دید واقعبینانه از چالشها و فرصتهای تجاری پیش روی پروژه فراهم کرده و به تصمیم گیران برای استقرار نهایی آن کمک خواهد کرد.

۵ جمع بندی و پیشنهاد برای کارهای آینده

000000 00000000

این فصل به عنوان نقطه پایانی این پژوهش، دو هدف اصلی را دنبال می کند. در بخش اول، با نگاهی به گذشته، به جمع بندی و مرور جامع تمام مباحث مطرح شده در فصول پیشین می پردازیم. در این بخش، دستاوردهای کلیدی پروژه در پاسخ به مسئله اصلی تحقیق، یعنی بحران اعتماد و شفافیت در زنجیرههای

تأمین، به صورت نظاممند تحلیل و ارائه خواهد شد. این جمعبندی نشان میدهد که چگونه معماری و پیادهسازی ارائه شده، به اهداف اولیه پروژه دست یافته است.

در بخش دوم، با نگاهی به آینده، ابتدا محدودیتهای پژوهش حاضر به صورت شفاف مورد بحث قرار گرفته و سپس، یک نقشه راه دقیق و بلندپروازانه برای توسعههای آتی این سامانه ارائه می گردد. این بخش، مسیرهای پژوهشی و فنی جدیدی را ترسیم می کند که می توانند این پروژه را از یک «اثبات مفهوم» قدر تمند، به یک پلتفرم کامل و آماده برای استقرار در دنیای واقعی تبدیل کنند.

-4 جمع بندی و مرور دستاوردها

این پژوهش با هدف ارائه یک راهکار نوین برای مقابله با چالشهای بنیادین زنجیرههای تأمین سنتی آغاز شد. در این بخش، با مرور خلاصه پژوهش، دستاوردهای اصلی آن را در چارچوب اهداف اولیه تحلیل می کنیم.

-1-1 مقدمه: بازگشت به مسئله اصلی

همانطور که در فصل اول به تفصیل بیان شد، زنجیرههای تأمین سنتی از مشکلات ساختاری عمیقی رنج میبرند. مسائلی همچون جعل محصولات، عدم شفافیت در فرآیندها، ناکارآمدی ناشی از سیلوهای اطلاعاتی و در نهایت، «بحران اعتماد» بین شرکای تجاری و مصرفکنندگان، انگیزههای اصلی این پژوهش را تشکیل دادند [۵۸۹ ،۵۸۹]. سیستمهای متمرکز سنتی، به دلیل ماهیت قابل دستکاری و عدم قابلیت همکاری، در حل این مشکلات ناتوان بودهاند. این پژوهش با این فرضیه آغاز شد که فناوری زنجیره بلوکی، با ارائه یک لایه اعتماد غیرمتمرکز، می تواند راهگشای این چالشها باشد.

۵−۱−۵ خلاصه جامع پژوهش

برای پاسخ به این مسئله، این پایاننامه یک مسیر منطقی را از تئوری تا عمل طی کرد:

- در فصل اول، صورت مسئله به دقت تعریف شد. اهداف پروژه شامل ایجاد یک سیستم ردیابی شفاف، مدیریت بهینه داراییهای ناهمگون، تضمین صحت فرادادهها و خودکارسازی فرآیندهای تجاری، به روشنی مشخص گردید. همچنین، چالشهای فنی، امنیتی، قانونی و کاربرپذیری به عنوان موانع اصلی پیش روی پروژه شناسایی شدند.
- در فصل دوم، یک مرور جامع بر ادبیات تحقیق انجام شد. ابتدا، محدودیتهای سیستمهای سنتی و راهکارهای دیجیتال غیربلاکچینی تحلیل گردید. سپس، دو نسل از راهکارهای زنجیره بلوکی (پلتفرمهای خصوصی و راهکارهای مبتنی بر توکنیزهسازی در شبکههای عمومی) مورد بررسی انتقادی قرار گرفتند. این تحلیل، به شناسایی سه شکاف پژوهشی کلیدی منتهی شد: چالش مدیریت

داراییهای ناهمگون، مسئله یکپارچگی دادههای خارج از زنجیره، و فقدان انطباق پذیری با محیطهای نظارتی.

- در فصل سوم، معماری و روش پیادهسازی سامانه پیشنهادی به تفصیل تشریح شد. این فصل، جزئیات فنی هر سه لایه سیستم (لایه زنجیره بلوکی، لایه ذخیرهسازی Off chain و لایه کاربری) را پوشش داد. انتخابهای کلیدی فناوری مانند Solidity، داد. انتخابهای کلیدی فناوری مانند Solidity توجیه شده و پیادهسازیهای مهم، از منطق قرارداد هوشمند گرفته تا کامپوننتهای رابط کاربری، با استفاده از قطعه کدها به نمایش گذاشته شد.
- در فصل چهارم، یک چارچوب ارزیابی جامع و چندبعدی برای سنجش موفقیت پروژه ارائه گردید. این چارچوب، معیارهای دقیقی را برای ارزیابی سیستم از چهار منظر صحت عملکرد و کارایی، امنیت و استحکام، کاربرپذیری و تجربه کاربری، و تحلیل اقتصادی و عملیاتی تعریف کرد و روششناسی دقیقی برای سنجش هر یک از این معیارها ارائه داد.

۵-۱-۵ تحلیل دستاوردهای کلیدی پروژه

اکنون می توانیم با اطمینان بیشتری ادعا کنیم که سامانه طراحی و پیاده سازی شده در این پژوهش، به صورت موفقی به اهداف اولیه خود دست یافته است. در ادامه، هر یک از این دستاوردها به تفصیل تحلیل می شوند.

1-۳-۱-۵ دستاورد اول: تحقق ردیابی شفاف و سرتاسری یکی از اصلی ترین اهداف پروژه، ایجاد یک تاریخچه کامل، شفاف و تغییرناپذیر برای هر محصول بود. این هدف از طریق ترکیب هوشمندانه چندین سازوکار در قرارداد هوشمند محقق شده است:

- ثبت تاریخچه در ساختار داده اختصاصی: با استفاده از ساختار داده OwnershipRecord و ثبت تاریخچه در ساختار داده ۱۳۵۱ (از تولید تا انتقالات بعدی) به و نگاشت (از تولید تا انتقالات بعدی) به صورت یک رکورد مجزا با ذکر مالک، زمان دقیق و دلیل انتقال، ثبت می شود.
- قلاب کردن در فرآیند انتقال: با بازنویسی تابع محوری ۴۲۲]، قرارداد تضمین می کند که هیچ انتقال توکنی (که نمایانگر انتقال مالکیت است) بدون ثبت رکورد متناظر در تاریخچه، انجام نخواهد شد. این سازوکار، یکپارچگی کامل بین وضعیت مالکیت توکن و تاریخچه ثبتشده را تضمین می کند.
- قابلیت حسابرسی عمومی: از آنجا که این تاریخچه بر روی زنجیره بلوکی عمومی ثبت میشود، هر فردی (از جمله مصرفکنندگان و نهادهای نظارتی) میتواند به صورت مستقل و بدون نیاز به کسب

اجازه، تاریخچه کامل یک محصول را مشاهده و حسابرسی کند. این شفافیت رادیکال، هسته اصلی راهکار ارائه شده برای مقابله با عدم شفافیت سیستمهای سنتی است.

۵-۱-۳-۱ دستاورد دوم: مدیریت بهینه داراییهای ناهمگون این پروژه با موفقیت به «شکاف مدیریت داراییهای ناهمگون» که در فصل دوم شناسایی شد، پاسخ داده است. انتخاب استراتژیک استاندارد

ERC - 1155

[۵۸۴]، یک دستاورد معماری کلیدی است که سیستم را قادر میسازد تا پیچیدگیهای دنیای واقعی زنجیره تأمین را مدل سازی کند.

- انعطاف پذیری ذاتی: همانطور که در تحلیلهای پیشین نشان داده شد، این استاندارد به سیستم اجازه می دهد تا داراییهای کاملاً متفاوت (مثلاً یک خودروی منحصربه فرد به عنوان NFT و هزاران لاستیک یکسان به عنوان توکن مثلی) را در یک قرارداد واحد مدیریت کند.
- کارایی عملیاتی: قابلیت Batch Transfer در این استاندارد، که امکان انتقال چندین نوع دارایی مختلف را در یک تراکنش واحد فراهم می کند، یک مزیت عملیاتی بسیار بزرگ برای فرآیندهای اجستیکی است. این قابلیت به صورت مستقیم در تابع pdate که آرایهای از شناسهها و مقادیر را می پذیرد، پشتیبانی می شود [۶۲۲]. این دستاورد، نشان دهنده یک طراحی بهینه است که نه تنها از نظر تئوری، بلکه از نظر هزینه و کارایی عملیاتی نیز بر راهکارهای مبتنی بر استانداردهای تکمنظوره برتری دارد.

روژه حاضر با پروژه حاضر با داده های ترکیبی تو تضمین یکپارچگی داده ها از طریق معماری ترکیبی پروژه حاضر با ارائه یک معماری ترکیبی امن و اقتصادی، به «شکاف یکپارچگی داده های Off-chain پاسخ داده است. این دستاورد، حاصل ترکیب سه فناوری است:

- ۱. **ذخیرهسازی غیرمتمرکز با** *IPFS:* با انتخاب *IPFS* به جای سرورهای متمرکز، سیستم از ریسکهای مربوط به نقطه شکست واحد و سانسور دادهها اجتناب میکند[۸۵].
- ۲. پیوند رمزنگاری با Keccak 256: با ثبت هش Keccak 256 فراداده بر روی زنجیره بلوکی در ساختار داده On-chain داده قابل تأیید بین توکن On-chain و دادههای On-chain یک پیوند تغییرناپذیر و قابل تأیید بین توکن On-chain و دادههای On-chain ایجاد می شود.

۳. **اعتبارسنجی سمت کاربر**: با پیادهسازی تابع *verifyMetadataIntegrity* در لایه کاربری [۱۰۰]، قدرت اعتبارسنجی مستقیماً به دست کاربر نهایی سپرده میشود. این مکانیزم، نیاز به اعتماد» به هرگونه واسطه (حتی گیتوی (IPFS) را از بین برده و یک سیستم واقعاً «بینیاز به اعتماد» (trustless) را محقق میسازد.

این معماری، یک الگوی قدر تمند برای تمام برنامههای غیرمتمرکزی است که نیاز به مدیریت دادههای حجیم دارند.

۵-۱-۳-۴ **دستاورد چهارم: انتزاع پیچیدگی از طریق تجربه کاربری مدرن** این پروژه نشان داد که میتوان یک برنامه غیرمتمرکز پیچیده را در قالب یک تجربه کاربری ساده و آشنا ارائه داد.

- داشبوردهای نقش محور: با طراحی داشبوردهای مجزا برای ادمین و مشتری (۲۰۰۵] اطراحی داشبوردهای مجزا برای ادمین و مشتری (۱۵۹] است.
- انتزاع فرآیندهای پیچیده: فرآیند چندمرحلهای و پیچیده ثبت محصول (شامل آپلود در IPFS) محاسبه هش و ارسال تراکنش) در پشت یک فرم ساده در صفحه ۲۹۲] در پشت یک فرم ساده در صفحه پنهان شده است. کاربر تنها با پر کردن چند فیلد و یک کلیک، این فرآیند را به انجام می رساند.
- یکپارچگی با اکوسیستم موجود: با استفاده از کتابخانه Wagmi و پشتیبانی از کیف پولهای استاندارد مانند MetaMask، کاربران می توانند از ابزارهایی که از قبل با آن آشنا هستند، برای تعامل با سیستم استفاده کنند. این امر، موانع ورود کاربران جدید را به شدت کاهش می دهد.

۵-۱-۵ پاسخ نهایی به سؤالات تحقیق

این پژوهش در تلاش برای پاسخ به چندین سؤال کلیدی بود که اکنون میتوان به صورت خلاصه به آنها پاسخ داد:

• سؤال ۱: چگونه می توان از فناوری زنجیره بلوکی برای ایجاد یک سیستم ردیابی شفاف و قابل اعتماد در زنجیره تأمین استفاده کرد؟ پاسخ: با توکنیزه کردن هر محصول به عنوان یک دارایی دیجیتال (ERC – 1155) و ثبت تمام رویدادهای مربوط به چرخه حیات آن (از تولید تا انتقالات) به عنوان تراکنشهای تغییرناپذیر در یک قرارداد هوشمند، می توان یک تاریخچه کامل و قابل حسابرسی عمومی ایجاد کرد.

- سؤال ۲: راهکار بهینه برای مدیریت داراییهای ناهمگون (مثلی و غیرمثلی) در یک زنجیره تأمین چیست؟ پاسخ: استاندارد چند-توکنی ERC-1155 به دلیل انعطافپذیری ذاتی در مدیریت همزمان هر دو نوع دارایی و قابلیتهای کارآمدی مانند انتقال دستهای، راهکار برتر و بهینه تر نسبت به استانداردهای تکمنظوره مانند ERC-721 و ERC-721 است.
- سؤال ۳: چگونه می توان مشکل هزینه و محدودیت ذخیرهسازی داده در زنجیره بلوکی را بدون به خطر انداختن یکپارچگی دادهها حل کرد؟ پاسخ: با استفاده از یک معماری ترکیبی که در آن، دادههای حجیم در یک سیستم ذخیرهسازی غیرمتمرکز Off chain (مانند (IPFS) نگهداری شده و تنها هش رمزنگاری شده آن دادهها به صورت On chain ثبت می گردد. اعتبارسنجی نیز به صورت سمت کاربر و با مقایسه مجدد هشها انجام می شود.

$X-\Delta$ محدودیتهای پروژه و پیشنهاد برای کارهای آینده

این پژوهش، با وجود دستاوردهای قابل توجه، به عنوان گامی اولیه در یک مسیر طولانی و پیچیده محسوب می شود. شناخت و بیان شفاف محدودیتهای این پروژه، نه تنها برای حفظ اعتبار علمی آن ضروری است، بلکه زمینه را برای تحقیقات و توسعههای آتی هموار می سازد.

۵-۲-۵ تحلیل محدودیتهای پژوهش

- محدودیتهای محیط ارزیابی: تمام آزمونهای عملکردی و امنیتی این پروژه در یک محیط توسعه محلی و کنترلشده (Anvil) انجام شده است. اگرچه این محیط برای اطمینان از صحت منطقی کد عالی است، اما معیارهایی مانند هزینه واقعی گس، زمان تأیید تراکنش و توان پردازشی، در یک شبکه عمومی واقعی مانند Mainnet Ethereum یا حتی یک Testnet عمومی مانند تأثیر ازدحام شبکه و شرایط متغیر بازار قرار خواهند گرفت. بنابراین، نتایج عملکرد ارائه شده باید به عنوان یک معیار پایه در نظر گرفته شوند و نه یک شاخص قطعی از عملکرد در دنیای واقعی.
- محدودیتهای دامنه پیادهسازی: برای تمرکز بر روی هسته اصلی نوآوری، برخی از جنبههای سیستم به صورت سادهسازی شده پیادهسازی شدهاند. برای مثال، منطق محاسبه مالیات در قرارداد هوشمند به عنوان یک قلاب تعریف شده اما پیادهسازی آن به صورت یک مدل ساده است و از اوراکلها برای دریافت نرخهای پویا استفاده نمی کند. همچنین، مدیریت خطاهای لایه کاربری و ارائه بازخوردهای دقیق تر به کاربر در شرایط خاص (مانند رد شدن تراکنش توسط کاربر) می تواند بسیار جامع تر شود.

- محدودیتهای امنیتی: با وجود پیروی از بهترین شیوههای امنیتی و استفاده از کتابخانههای حسابرسی شده، قرارداد هوشمند این پروژه هنوز تحت یک فرآیند حسابرسی امنیتی رسمی و مستقل توسط یک شرکت شخص ثالث قرار نگرفته است. این فرآیند، یک گام ضروری و حیاتی قبل از استقرار هرگونه سیستمی است که با داراییهای واقعی سروکار خواهد داشت.
- محدودیتهای مدل کسبوکار و حاکمیت: این پژوهش عمدتاً بر جنبههای فنی متمرکز بوده و یک مدل کسبوکار پایدار یا یک چارچوب حاکمیتی دقیق برای مدیریت شبکه در دنیای واقعی (که شامل چندین شرکت رقیب است) ارائه نداده است. مسائلی مانند نحوه تأمین هزینههای عملیاتی شبکه و فرآیند تصمیم گیری برای بهروزرسانی پروتکل، نیازمند تحقیقات بیشتری هستند.

-7-4 نقشه راه برای توسعههای آینده

بر اساس دستاوردها و با در نظر گرفتن محدودیتهای ذکر شده، یک نقشه راه هیجانانگیز برای توسعههای آتی این پروژه قابل ترسیم است. هر یک از موارد زیر میتواند به عنوان یک پروژه تحقیقاتی یا توسعهای مستقل، این سامانه را به بلوغ و پذیرش گسترده نزدیکتر کند.

ارد داده ورود خودکار داده (IoT) برای ورود خودکار داده اول: ادغام با اینترنت اشیاء

مسئله: یکی از بزرگترین چالشها در هر سیستم ردیابی، اطمینان از صحت دادههای ورودی است. در مدل فعلی، دادهها به صورت دستی توسط تولیدکننده وارد می شوند که این امر، احتمال خطای انسانی یا حتی ورود داده جعلی را به همراه دارد (مشکل معروف به «آشغال ورودی، آشغال خروجی» یا Garbage یا $Cout\ Garbage\ In$).

راهکار پیشنهادی: ادغام سامانه با سنسورهای اینترنت اشیاء (IoT). سنسورهای فیزیکی (مانند سنسورهای دما، رطوبت، موقعیتیاب GPS و شتاب سنج) میتوانند به صورت خودکار و مستمر، دادههای مربوط به وضعیت و شرایط نگهداری محصول را جمع آوری کرده و به سیستم ارسال کنند. این دادهها می توانند به عنوان بخشی از تاریخچه تغییرناپذیر محصول بر روی زنجیره بلوکی ثبت شوند.

معماری پیشنهادی: یک معماری امن برای این منظور میتواند به شرح زیر باشد:

۱. هر دستگاه IoT دارای یک جفت کلید رمزنگاری منحصربه فرد است و هویت آن در یک قرارداد هوشمند مجزا به نام «رجیستری دستگاهها» ثبت شده است.

- ۲. دستگاه IoT دادههای جمع آوری شده (مثلاً دمای ۳ درجه سانتی گراد در زمان (\Box را با استفاده از کلید خصوصی خود امضا کرده و به یک سرویس اوراکل ارسال می کند.
- ۳. سرویس اوراکل (مانند شبکههای غیرمتمرکز اوراکل نظیر *Chainlink*)، امضای دستگاه را با کلید عمومی ثبتشده آن در رجیستری اعتبارسنجی میکند.
- ۴. پس از تأیید، اوراکل یک تراکنش به قرارداد هوشمند SupplyChainERC1155 ارسال کرده و یک تابع جدید (مثلاً addIoTData) را فراخوانی میکند. این تابع، دادههای معتبر دریافت شده از سنسور را به تاریخچه محصول مربوطه اضافه میکند.

این معماری، فرآیند ورود داده را خودکار، بینیاز به اعتماد و مقاوم در برابر دستکاری میسازد و یکپارچگی داده ها را از دنیای فیزیکی تا دنیای دیجیتال تضمین میکند.

$(Layer\ 2)$ کیشنهاد دوم: پیادهسازی راهکارهای مقیاس پذیری لایه ۲ au

مسئله: همانطور که در فصل چالشها به تفصیل بحث شد، هزینههای بالا و توان پردازشی محدود شبکههای لایه ۱ (Layer 1) مانند اتریوم، بزرگترین مانع بر سر راه پذیرش صنعتی این سامانه است.

راهکار پیشنهادی: مهاجرت کامل یا بخشی از منطق سامانه به یک شبکه لایه ۲. راهکارهای لایه ۲، پروتکلهایی هستند که بر روی یک زنجیره بلوکی لایه ۱ ساخته میشوند و هدف آنها، افزایش چشمگیر مقیاس پذیری و کاهش هزینههاست. دو دسته اصلی از این راهکارها عبارتند از:

- Optimistic Rollups: پلتفرمهایی مانند Arbitrum و Optimistic Rollups: پلتفرمهایی مانند از کنشها را در خارج از زنجیره اجرا کرده و به صورت دستهای به لایه ۱ ارسال می کنند. آنها فرض را بر صحت تراکنشها می گذارند مگر اینکه خلاف آن توسط یک «چالش» اثبات شود.
- StarkNet و ZK-Rollups (ZK-Rollups): پلتفرمهایی مانند ZK-Rollups و ZEro-Knowledge Rollups (ZK-Rollups) (ZK-Rol

arbitrum مزایا و فر آیند مهاجرت: مهاجرت به یک لایه ۲ سازگار با EVM (مانند Arbitrum یا Arbitrum از نظر فنی بسیار ساده است، زیرا قرارداد هوشمند Solidity فعلی میتواند تقریباً بدون هیچ تغییری در آنجا مستقر شود. این کار میتواند هزینههای تراکنش را ۱۰۰ تا ۱۰۰ برابر کاهش داده و توان پردازشی را به

چندین هزار تراکنش در ثانیه برساند. این بهبود عملکرد، استقرار سامانه را برای زنجیرههای تأمین با حجم بالا کاملاً اقتصادی و عملیاتی میسازد.

$(Zero-Knowledge\ Proofs)$ پیشنهاد سوم: افزایش حریم خصوصی با اثبات با دانش صفر au

مسئله: شفافیت کامل یک زنجیره بلوکی عمومی، اگرچه برای مصرفکننده یک مزیت است، اما برای شرکتها می تواند یک ریسک رقابتی باشد. افشای اطلاعاتی مانند حجم دقیق معاملات، هویت شرکای تجاری و قیمت گذاریها، می تواند به رقبا اطلاعات استراتژیک ارزشمندی بدهد.

 $Zero-Knowledge\ Proofs$) «اثبات با دانش صفر» (گاری پیشرفته و استفاده از فناوری پیشرفته و استفاده از فناوری پیشرفته و است برای ایجاد حریم خصوصی در عین حفظ قابلیت اعتبارسنجی. ZKPs یک پروتکل رمزنگاری است که به یک طرف (اثبات کننده) اجازه می دهد به طرف دیگر (تأیید کننده) ثابت کند که یک گزاره صحیح است، بدون اینکه هیچ اطلاعات اضافی به جز صحت خود گزاره را فاش کند.

کاربرد در سامانه: میتوان یک نسخه جدید از قرارداد هوشمند را طراحی کرد که با ZKPs (به ویژه zk-SNARKs) کار کند. در این مدل:

- یک تولیدکننده می تواند مالکیت یک محصول را به یک توزیع کننده منتقل کند.
- به جای ثبت عمومی این تراکنش، آنها یک اثبات ZK تولید کرده و به قرارداد هوشمند ارسال می کنند.
- این اثبات، به صورت ریاضی به قرارداد ثابت می کند که یک انتقال معتبر (از یک مالک قانونی به یک گیرنده) انجام شده است، اما هویت فرستنده، گیرنده و شناسه محصول را فاش نمی کند.

قرارداد هوشمند تنها این اثبات را تأیید کرده و وضعیت مالکیت را به صورت رمزنگاری شده به روز می کند. این رویکرد، تعادل کاملی بین نیاز به حسابرسی و نیاز به محرمانگی تجاری برقرار می کند و یکی از پیشرفته ترین مسیرهای تحقیقاتی در حوزه زنجیره بلوکی است.

دان غیرمتمرکز (DAO) برای حاکمیت خودگردان غیرمتمرکز (DAO) برای حاکمیت

مسئله: در یک شبکه زنجیره تأمین واقعی که متشکل از چندین شرکت رقیب است، چه کسی پروتکل را کنترل می کند؟ چه کسی مسئول به روزرسانی قرارداد هوشمند، افزودن نقشهای جدید یا تغییر پارامترها (مانند نرخ مالیات) است؟ اگر یک مدیر مرکزی (مانند توسعه دهنده اولیه سیستم) این قدرت را در دست داشته باشد، ما مجدداً به مشکل تمرکز گرایی بازگشته ایم.

راهکار پیشنهادی: ایجاد یک سازمان خودگردان غیرمتمر کز (DAO یک نهاد است که قوانین آن در قالب قراردادهای هوشمند یا DAO برای مدیریت و حاکمیت پروتکل. DAO یک نهاد است که قوانین آن در قالب قراردادهای هوشمند نوشته شده و فرآیند تصمیم گیری آن توسط اعضای آن و از طریق مکانیزمهای رأی گیری On-chain انجام می شود.

ساختار پیشنهادی:

- ۱. یک توکن حاکمیتی جدید (مثلاً SCMGOV) ایجاد می شود که بین تمام شرکت کنندگان معتبر شبکه (تولید کنندگان، توزیع کنندگان و...) توزیع می گردد.
- ۲. دارندگان این توکن میتوانند پیشنهاداتی برای تغییر در پروتکل ارائه دهند (مثلاً «پیشنهاد افزودن نقش جدید بازرس کیفیت»).
- ۳. این پیشنهادات به صورت عمومی به رأی گذاشته میشود و وزن رأی هر عضو، متناسب با تعداد توکنهای حاکمیتی است که در اختیار دارد.
- ۴. اگر یک پیشنهاد رأی کافی را کسب کند، قرارداد حاکمیت به صورت خودکار، تغییرات لازم را در قرارداد اصلی اعمال می کند (مثلاً با فراخوانی تابع grantRole برای یک نقش جدید).

این ساختار، حاکمیت شبکه را به صورت دموکراتیک و شفاف به دست خود ذینفعان میسپارد و یک مدل پایدار برای تکامل و رشد بلندمدت پروتکل فراهم می کند.

(DeFi) پیشنهاد پنجم: ادغام با اکوسیستم مالی غیرمتمرکز $\Delta-\Upsilon-\Upsilon-\Delta$

فرصت: داراییهای توکنیزه شده در این سامانه (محصولات در انبار، محمولههای در حال حمل) دارای ارزش اقتصادی واقعی هستند. این ارزش در سیستمهای سنتی به صورت سرمایه «راکد» باقی میماند.

راهکار پیشنهادی: ایجاد پل ارتباطی بین سامانه زنجیره تأمین و پروتکلهای مالی غیرمتمرکز DeFi .(DeFi) مانند وامدهی، استقراض و بیمه را به صورت غیرمتمرکز ارائه می دهد.

موارد کاربرد:

• تأمین مالی موجودی (Inventory Financing): یک شرکت کوچک یا متوسط می تواند موجودی کالاهای خود در انبار (که به صورت توکنهای ERC-1155 در کیف یول او وجود دارد) را به عنوان

وثیقه در یک پروتکل وامدهی مانند Aave یا Compound قفل کرده و در ازای آن، یک وام به صورت استیبل کوین دریافت کند. این فرآیند که به صورت کاملاً خودکار و آنی توسط قراردادهای هوشمند انجام می شود، می تواند سرمایه در گردش بسیار مورد نیاز را برای کسب و کارها فراهم آورد.

• بیمه غیرمتمرکز محموله ها: می توان با استفاده از پروتکلهای بیمه غیرمتمرکز، یک محصول را در برابر ریسکهای حملونقل (مانند خروج از بازه دمایی مجاز که توسط سنسورهای IoT گزارش می شود) بیمه کرد. پرداخت خسارت نیز می تواند به صورت خودکار و بر اساس داده های غیرقابل انکار اوراکلها انجام شود.

این ادغام، مرز بین دنیای لجستیک و دنیای مالی را از بین برده و مدلهای کسبوکار کاملاً جدید و کارآمدی را امکان پذیر می سازد. در نهایت، این نقشه راه نشان می دهد که پروژه حاضر، نه تنها یک راهکار کامل برای یک مشکل مشخص، بلکه یک پلتفرم پایهای است که می توان بر روی آن، لایه های جدیدی از نوآوری در حوزه های مختلف، از حاکمیت و حریم خصوصی گرفته تا مالی، ایجاد کرد.

مراجع

- .10.1080/09537287.2015.1017735 DD: .1·Δ·D)·٣) DD.