HOUSE PRICE PREDICTION IN KING COUNTY, USA

Project Group 1

Yunfei Bai, Elena Melnichenko, Sateesh Puripanda, Abhishek Sinha

FIRST LOOK

- 19 predictor variables to predict Housing Price, along with 21613 observations
 - 15% of data is kept aside to be used for validation. Rest 85% data has been divided into 70:30 to train and test the model.
- No missing values and duplicate records
- Some parameters clearly do not affect prediction, e.g. id, longitude and latitude
- Some parameters are likely to be cross correlated, e.g.
 - Sqft living/Sqft living 15 (same with Sqft lot, evening, international)
- In the confounding sets sqft_living and grade have high correlation with price than other variables.

EXPLORING DATA

- 1. Missing values check
- 2. Converting categorical values to numerical
- 3. Excluding parameters that will not help for the model
- 4. Correlation between features

Check	unique	values	Check	Nulls
id	21436		id	0
date	372		date	0
price	4028		price	0
bedrooms	13		bedrooms	0
bathrooms	30		bathrooms	0
sqft_living	1038		sqft_living	0
sqft_lot	9782		sqft_lot	0
floors	6		floors	0
waterfront	2		waterfront	0
view	5		view	0
condition	5		condition	0
grade	12		grade	0
sqft_above	946		sqft_above	0
sqft_basement	306		sqft_basement	0
yr_built	116		yr_built	0
yr_renovated	70		yr_renovated	0
zipcode	70		zipcode	0
lat	5034		lat	0
long	752		long	0
sqft_living15	777		sqft_living15	0
sqft_lot15	8689		sqft_lot15	0
index	21613		dtype: int64	
dtype: int64				

TIME, LOCATION, MONEY

(https://www.kaggle.com/harlfoxem/housesalesprediction)

DESCRIPTIVE ANALYSIS

histogram

- 7000000

- 6000000

- 5000000

4000000

3000000

2000000

1000000

DESCRIPTIVE ANALYSIS

Correlation heatmap

FEATURE ENGINEERING

• Numerical Variables:

- Date => days since 1900-01-01
- Bedrooms, bathrooms, sqft_living, sqft_lot, floors, waterfront, view, condition, grade, sqft_above, sqft_basement, yr_built, yr_renovated, sqft_living15, sqft_lot15
- Categorical variables:
 - zipcode: since we have 70 distinct zipcodes in this King county dataset, we categorized it into 70 dummy variables.

PREDICTION MODEL

- First we feed features into multilinear regression model
- Then we feed data into another two algorithm, Random Forest Regression Model and Gradient Boosting Regression Model.
- All three algorithm we used "backward elimination + cross validation" to get the best model.

Gradient
Boosting
Regression
handed the
outliners pretty
well

Both Random
Forest
Regression and
Gradient
Boosting
Regression give
much better
scores

THANK YOU