Introduction to Discrete Analysis

October 9, 2018

C	CONTENTS	2
C	Contents	
0	Introduction	3
1	The discrete Fourier transform	4

3

0 Introduction

 ${\it asdasd}$

1 The discrete Fourier transform

Let N be a fixed positive integer. Write ω for $e^{2\pi i/N}$, and \mathbb{Z}_N for $\mathbb{Z}/n\mathbb{Z}$. Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $f \in \mathbb{Z}_N$, define $\hat{f}(r)$ to be

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \omega^{-rx}$$

From now on we use the notation $\mathbb{E}_{x \in \mathbb{Z}_N}$ for $\frac{1}{N} \sum_{x \in \mathbb{Z}_N}$, so $\hat{f}(r) = \mathbb{E}_x f(x) e^{-\frac{2\pi i r x}{N}}$.

If we write ω_r for the function $x \to \omega^{rx}$, and $\langle f, g \rangle$ for $\mathbb{E}_x f(x) \overline{g(x)}$, then $\hat{f}(r) = \langle f, \omega_r \rangle$. So the discrete fourier transforn is basically expanding the function f in the set of orthonormal basis ω_r .

Let us write $||f||_p$ for $\mathbb{E}_x|f(x)|^p)^{1/p}$ (the L_p -norm), and call the resulting space $L_p(\mathbb{Z}_n)$.

Important convention: we use averages for the 'original functions' in 'physical spaces', and sums for their Fourier transforms in 'frequency space' (referring to \mathbb{E} : \langle , \rangle is average in the original space but just \sum in frequency space, i.e. for \hat{f}, \hat{g} etc.)

Lemma. (1, Parseval's identity) If $f, g : \mathbb{Z}_n \to \mathbb{C}$, then $\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$.

Proof.

$$\begin{split} \langle \hat{f}, \hat{g} \rangle &= \sum_r \hat{f}(r) \overline{\hat{g}(r)} \\ &= \sum_r (\mathbb{E}_x f(x) \omega^{-rx}) (\overline{\mathbb{E}_y g(y) \omega^{-ry}}) \\ &= \mathbb{E}_x \mathbb{E}_y f(x) \overline{g(y)} \sum_r \omega^{-r(x-y)} \\ &= \mathbb{E}_x \mathbb{E}_y f(x) \overline{g(y)} n \delta_{xy} \\ &= \langle f, g \rangle \end{split}$$

Lemma. (2, Convolution identity)

$$\widehat{f*g}(r) = \widehat{f}(r)\widehat{g}(r)$$

where

$$(f * g)(x) = \mathbb{E}_{y+z=x} f(y)g(z) = \mathbb{E}_y f(y)g(x-y)$$

5

Proof.

$$\widehat{f * g}(r) = \mathbb{E}_x f * g(x) \omega^{-rx}$$

$$= \mathbb{E}_x \mathbb{E}_{y+z=x} f(y) g(z) \omega^{-rx}$$

$$= \mathbb{E}_x \mathbb{E}_{y+z=x} f(y) g(z) \omega^{-ry} \omega^{-rz}$$

$$= \mathbb{E}_y \mathbb{E}_z f(y) \omega^{-ry} g(z) \omega^{-rz}$$

$$= \hat{f}(r) \hat{g}(r)$$

Lemma. (3, Inversion formula)

$$f(x) = \sum_{r} \hat{f}(r)\omega^{rx}$$

(note the sign of ω^{rx}).

Proof.

$$\sum_{r} \hat{f}(r)\omega^{rx} = \sum_{r} \mathbb{E}_{y} f(y)\omega^{r(x-y)}$$
$$= \mathbb{E}_{y} f(y) \sum_{r} \omega^{r(x-y)}$$
$$= \mathbb{E}_{y} f(y) n \delta_{xy}$$
$$= f(x)$$

This is really just the statement that we get the original vector back when we sum up its components. $\hfill\Box$

Further observations: If f is real-valued, then $\hat{f}(-r) = \mathbb{E}_x f(x) \omega^{rx} = \overline{\mathbb{E}_x f(x) \omega^{-rx}} = \overline{\hat{f}(r)}$.

If $A \subset \mathbb{Z}_n$, write A (instead of $1_A, \chi_A$) for the characteristic function of A. Then $\hat{A}(0) = \mathbb{E}_x A(x) = \frac{|A|}{N}$, the density of A.

Also, $||\hat{A}||_2^2 = \langle \hat{A}, \hat{A} \rangle = \langle A, A \rangle = \mathbb{E}_x A(x)^2 = \mathbb{E}_x A(x) = \frac{|A|}{N}$, again the density.

Let $f: \mathbb{Z}_n \to \mathbb{C}$. Given $\mu \in \mathbb{Z}_n$, define $f_{\mu}(x)$ to be $f(\mu^{-1}x)$ (so we need $(\mu, N) = 1$). Then

$$\hat{f}_{\mu}(r) = \mathbb{E}_{x} f_{\mu}(x) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x/\mu) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x) \omega^{-r\mu x}$$

$$= \hat{f}(\mu r)$$

1.1 4, Roth's theorem

Theorem. For every $\delta > 0$, $\exists N$ s.t. if $A \subset \{1, ..., N\}$ is a set of size at least δN , then A must contain an arithmetic progression of length 3.

This is also true for 4,5,..., but the proof is much harder – Szemeredi's theorem. Basic strategy of proof: show that if A has density δ and no AP of length 3 (3AP), then there's a long AP in $P \subset \{1, 2, ..., n\}$ s.t.

$$|A \cap P| \ge (\delta + c(\delta))|p|$$

where $c(\delta)$ is some positive number. But then we can continue this argument to expand $A \cap P$ to infinity (note that $|A \cap P|$ is an integer, so each time increase by 1 at least).

The best known relationship between δ and the N required is around $\delta \sim \frac{c}{\log \log N}$ for some constant c.

—Lecture 2—

Lemma. (5)

Let N be odd, $A, B, C \subset \mathbb{Z}_N$ have densties α, β, γ . If $\max_{r \neq 0} |\hat{A}(r)| \leq \frac{\alpha(\beta\gamma)^{1/2}}{2}$ and $\frac{\alpha\beta\gamma}{2} > \frac{1}{N}$, then there exists $x, d \in \mathbb{Z}_N$ with $d \neq 0$ s.t. $(x, x + d, x + 2d) \in A \times B \times C$.

Proof.

$$\begin{split} \mathbb{E}_{x,d}A(x)B(x+d)C(x+2d) &= \mathbb{E}_{x+z=2y}A(x)B(y)C(z) \\ &= \mathbb{E}_{u}(\mathbb{E}_{x+z=u}A(x)C(z))\mathbb{E}_{2y=u}B(y) \\ &= \mathbb{E}_{u}A*C(u)B_{2}(u) \\ &= \langle A*C,B_{2}\rangle \\ &= \langle \hat{A}*\hat{C},\hat{B}_{2}\rangle \\ &= \langle \hat{A}\hat{C},\hat{B}_{2}\rangle \\ &= \sum_{r}\hat{A}(r)\hat{C}(r)\hat{B}(-2r) \\ &= \alpha\beta\gamma + \sum_{r\neq 0}\hat{A}(r)\hat{C}(r)\hat{B}(-2r) \end{split}$$

Recall here the notation is $B_2(u) = B(u/2)$. now

$$\begin{split} |\sum_{r \neq 0} \hat{A}(r) \hat{B}(-2r) \hat{C}(r)| &\leq \frac{\alpha (\beta \gamma)^{1/2}}{2} \sum_{r \neq 0} |\hat{B}(-2r)| |\hat{C}(r)| \\ &\leq \frac{\alpha (\beta \gamma)^{1/2}}{2} \left(\sum_{r} |\hat{B}(-2r)^2 \right)^{1/2} \left(\sum_{r} |\hat{C}(r)|^2 \right)^{1/2} \text{ By Cauchy-Schwarz} \\ &= \frac{\alpha (\beta \gamma)^{1/2}}{2} ||\hat{B}||_2 ||\hat{C}||_2 \\ &= \frac{\alpha (\beta \gamma)^{1/2}}{2} ||B||_2 ||C||_2 \\ &= \frac{\alpha \beta \gamma}{2} \end{split}$$

The contribution to $\mathbb{E}_{x,d}A(x)B(x+d)C(x+2d)$ from d=0 is at most $\frac{1}{N}$, so if $\frac{\alpha\beta\gamma}{2} > \frac{1}{N}$, we are done.

Now let A be a subset of $\{1,...,N\}$ with density $\geq \delta$ and let $B=C=A\cap [\frac{N}{3},\frac{2N}{3})$. If B has density $<\frac{\delta}{5}$ (??), then either $A\cap [1,\frac{N}{3}]$ or $A\cap [\frac{2N}{3},N]$ has density at least $\frac{2\delta}{5}$. In that case we find an AP P of length about N/3 such that $|A \cap P|/|P| \ge \frac{6\delta}{5}$.

Otherwise, ew find that if $\max_{r\neq 0} |\hat{A}(r)| \leq \frac{\delta}{10}$ and $\frac{\delta^3}{50} > \frac{1}{N}$, then $A \times B \times C$ contains a 3AP, so A contains a 3AP.

So if A does not contain a 3AP, then either we find P of length about N/3 with $|A \cap P|/|P| \ge \frac{6\delta}{5}$, or ther exists $r \ne 0$ s.t. $|\hat{A}(r)| \ge \frac{\delta}{10}$.

Definition. If X is a finite set and $f: X \to \mathbb{C}, Y \subset X$, write $osc(f|_Y)$ to mean $\max_{y_1,y_2\in Y} |f(y_1) - f(y_2)|.$

Lemma. (6)

Let $r \in \mathbb{Z}_n$ and let $\varepsilon > 0$. Then there is a partition of $\{1, 2, ..., N\}$ into arithmetic progressions P_i of length at least $c(\varepsilon)\sqrt{N}$ such that

$$osc(\omega_r|_{P_i}) \le \varepsilon$$

for each i.

Proof. Let $t = \lfloor \sqrt{N} \rfloor$. Of the numbers $1, \omega^r, ..., \omega^t r$, there must be two that

differ by at most $\frac{2\pi}{t}$. If $|\omega^{ar} - \omega^{br}| \leq \frac{2\pi}{t}$ with a < b, then $|1 - \omega^{dr}| \leq \frac{2\pi}{t}$ where d = b - a. Then $|\omega^{urd} - \omega^{vrd}| \leq |\omega^{urd} - \omega^{(u+1)rd}| + \dots + |\omega^{(v-1)rd} - \omega^{vrd}| \leq \frac{2\pi}{t}(v - u)$.

So if P is a progression with common difference d and length l, then $osc(\omega_r|_P) \leq$ $\frac{2\pi l}{t}$. So divide up $\{1,...,N\}$ into residue classes mod d, and partition each residue class into parts of length between $\frac{\varepsilon t}{4\pi}$ and $\frac{\varepsilon t}{2\pi}$ (possible, since $d \leq t \leq \sqrt{N}$). We are done, with $c(\varepsilon) = \frac{\varepsilon}{16}$ (a casual choice).

Now let us use the information that $r \neq 0$ and $|\hat{A}(r)| \geq \frac{\delta^2}{10}$ Define the balanced function f of A by $f(x) = A(x) = \frac{|A|}{N}$ for each x. Note that $\hat{f}(0) = 0$ and $\hat{f}(r) = \hat{A}(r)$ for all $r \neq 0$.

Now let $P_1, ..., P_m$ be given by Lemma 6 with $\varepsilon = \delta^2/20$. Then

$$\frac{\delta^2}{10} \leq |\hat{f}(r)|$$

$$= \frac{1}{N} |\sum_{x} f(x)\omega^{-rx}|$$

$$\leq \frac{1}{N} \sum_{i=1}^{m} |\sum_{x \in P_i} f(x)\omega^{-rx}|$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} \left[\left| \sum_{x \in P_i} f(x)\omega^{-rx_i} \right| + \left| \sum_{xinP_i} f(x)(\omega^{-rx} - \omega^{-rx_i}) \right| \right] x_i \in P_i \text{ arbitrary}$$

$$\leq \frac{1}{N} \sum_{i=1}^{m} |\sum_{x \in P_i} f(x)| + \frac{\delta^2}{20}$$

Therefore $\sum_{i=1}^{m} |\sum_{x \in P_i} f(x)| \ge \frac{\delta^2 N}{20}$.

We also have $\sum_{i=1}^{m} \sum_{x \in P_i} f(x) = 0$, so

$$\sum_{i=1}^m \left(\left| \sum_{x \in P_i} f(x) \right| + \sum_{x \in P_i} f(x) \right) \ge \frac{\delta^2}{20} \sum_{i=1}^m |P_i|$$

Therefore,

$$|\sum_{x \in P_i} f(x)| + \sum_{x \in P_i} f(x) \ge \frac{\delta^2}{20} |P_i|$$

$$\implies \sum_{x \in P_i} f(x) \ge \frac{\delta^2}{40} |P_i|$$

$$\implies |A \cap P_i| \ge (\delta + \frac{\delta^2}{40}) |P_i|$$