Large Scale GAN Training for High Fidelity Natural Image Synthesis (BigGAN)

Постановка задачи: генерация картинок по классу

State-of-the-art: SA-GAN

- Inception score (IS) = 52.52 (→ max)
- Fréchet Inception Distance (FID) = 18.65 (→ min)
 Хотим улучшить:
- Метрики (получили: IS = 166.5, FID = 7.4)
- Увеличить разрешение изображений
- Генерация деталей

Scaling up GANs

1024 64 81.5 X X X 1000 14.88 $63.03(\pm 1.42)$ 2048 64 81.5 X X X 732 12.39 $76.85(\pm 3.83)$ 2048 96 173.5 X X 295(± 18) $9.54(\pm 0.62)$ $92.98(\pm 4.27)$ 2048 96 160.6 X X 185(± 11) $9.18(\pm 0.13)$ $94.94(\pm 1.32)$ 2048 96 158.3 X X 152(± 7) $8.73(\pm 0.45)$ $98.76(\pm 2.84)$ 2048 96 158.3 X X 165(± 13) $8.51(\pm 0.32)$ $99.31(\pm 2.10)$	Batch	Ch.	Param (M)	Shared	Skip-z	Ortho.	Itr $\times 10^3$	FID	IS
1024 64 81.5 X X X 1000 14.88 $63.03(\pm 1.42)$ 2048 64 81.5 X X X 732 12.39 $76.85(\pm 3.83)$ 2048 96 173.5 X X 295(± 18) $9.54(\pm 0.62)$ $92.98(\pm 4.27)$ 2048 96 160.6 X X 185(± 11) $9.18(\pm 0.13)$ $94.94(\pm 1.32)$ 2048 96 158.3 X X 152(± 7) $8.73(\pm 0.45)$ $98.76(\pm 2.84)$ 2048 96 158.3 X X 165(± 13) $8.51(\pm 0.32)$ $99.31(\pm 2.10)$	256	64	81.5	SA-GAN Baseline			1000	18.65	52.52
2048 64 81.5 X X X 732 12.39 $76.85(\pm 3.83)$ 2048 96 173.5 X X 295(± 18) $9.54(\pm 0.62)$ $92.98(\pm 4.27)$ 2048 96 160.6 X X $185(\pm 11)$ $9.18(\pm 0.13)$ $94.94(\pm 1.32)$ 2048 96 158.3 X X $152(\pm 7)$ $8.73(\pm 0.45)$ $98.76(\pm 2.84)$ 2048 96 158.3 X X $165(\pm 13)$ $8.51(\pm 0.32)$ $99.31(\pm 2.10)$	512	64	81.5	X	X	X	1000	15.30	$58.77(\pm 1.18)$
2048 96 173.5 X X 295(± 18) 9.54(± 0.62) 92.98(± 4.27) 2048 96 160.6 X X 185(± 11) 9.18(± 0.13) 94.94(± 1.32) 2048 96 158.3 X X 152(± 7) 8.73(± 0.45) 98.76(± 2.84) 2048 96 158.3 X X 165(± 13) 8.51(± 0.32) 99.31(± 2.10)	1024	64	81.5	X	X	X	1000	14.88	$63.03(\pm 1.42)$
2048 96 160.6 \checkmark \checkmark \checkmark \checkmark 185(±11) 9.18(±0.13) 94.94(±1.32) 2048 96 158.3 \checkmark \checkmark \checkmark 152(±7) 8.73(±0.45) 98.76(±2.84) 2048 96 158.3 \checkmark \checkmark 165(±13) 8.51(±0.32) 99.31(±2.10)	2048	64	81.5	X	X	X	732	12.39	$76.85(\pm 3.83)$
2048 96 158.3 \checkmark \checkmark $152(\pm7)$ $8.73(\pm0.45)$ $98.76(\pm2.84)$ 2048 96 158.3 \checkmark \checkmark $165(\pm13)$ $8.51(\pm0.32)$ $99.31(\pm2.10)$	2048	96	173.5	X	X	X	$295(\pm 18)$	$9.54(\pm 0.62)$	$92.98(\pm 4.27)$
2048 96 158.3 \checkmark \checkmark $165(\pm 13)$ $8.51(\pm 0.32)$ $99.31(\pm 2.10)$	2048	96	160.6	1	X	X	$185(\pm 11)$	$9.18(\pm 0.13)$	$94.94(\pm 1.32)$
	2048	96	158.3	✓	1	X	$152(\pm 7)$	$8.73(\pm0.45)$	$98.76(\pm 2.84)$
2048 64 71.3 \checkmark \checkmark 371(\pm 7) 10.48(\pm 0.10) 86.90(\pm 0.61	2048	96	158.3	1	1	/	$165(\pm 13)$	$8.51(\pm 0.32)$	$99.31(\pm 2.10)$
	2048	64	71.3	✓	1	✓	$371(\pm 7)$	$10.48(\pm 0.10)$	$86.90(\pm0.61)$

Spectral Normalization

- Стабилизирует обучение дискриминатора
- Контролирует константу Липшица, ограничивает спектральную норму каждого слоя $g:h_{in} o h_{out}$

$$\|g\|_{\mathrm{Lip}} = \sup_h \sigma(\nabla g(h))$$

$$\sigma(A) := \max_{m{h}:m{h}
eq m{0}} rac{\|Am{h}\|_2}{\|m{h}\|_2} = \max_{\|m{h}\|_2 \le 1} \|Am{h}\|_2$$
 - макс. сингулярное значение

Пусть сеть имеет вид

$$f(\mathbf{x}, \theta) = W^{L+1} a_L(W^L(a_{L-1}(W^{L-1}(\dots a_1(W^1\mathbf{x})\dots))))$$

Spectral Normalization

 $\|a_l\|_{\mathrm{Lip}}=1$ (ReLU, leaky ReLU)

$$f(m{x}, heta)=W^{L+1}a_L(W^L(a_{L-1}(W^{L-1}(\dots a_1(W^1m{x})\dots))))$$
 Для линейного слоя $~g(h)=Wh~~\|g\|_{\mathrm{Lip}}=\sup_h \sigma(W)=\sigma(W)$

Тогда из
$$\|g_1\circ g_2\|_{\mathrm{Lip}}\leq \|g_1\|_{\mathrm{Lip}}\cdot \|g_2\|_{\mathrm{Lip}}$$
 получаем: $\|f\|_{\mathrm{Lip}}\leq \prod\limits_{l=1}^{L+1}\sigma(W^l)$

$$W_{SN}(W) := W/\sigma(W)$$

Self-Attention GAN (SA-GAN)

SA-GAN

$$L_D = -\mathbb{E}_{(x,y)\sim p_{data}}[\min(0, -1 + D(x,y))]$$
$$-\mathbb{E}_{z\sim p_z, y\sim p_{data}}[\min(0, -1 - D(G(z), y))]$$
$$L_G = -\mathbb{E}_{z\sim p_z, y\sim p_{data}}D(G(z), y),$$

Conditional BatchNorm

$$\hat{x}_i = rac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i = \gamma \hat{x}_i + eta = \mathrm{BN}_{\gamma,eta}(x_i)$$

$$\hat{eta}_c = eta_c + \Deltaeta_c$$

$$\hat{\gamma}_c = \gamma_c + \Delta \gamma_c$$

Figure 2: An overview of the computation graph of batch normalization (left) and conditional batch normalization (right). Best viewed in color.

Truncation Trick

Выбираем случайный вектор: $z \sim \mathcal{N}(0,I)$, перевыбираем, если величина больше какого-то порога.

Truncation Trick

Выбор между разнообразием (FID) и правильностью (IS)

Orthogonal Regularization - Generator

Изначальная версия:

$$R_{\beta}(W) = \beta \|W^{\top}W - I\|_{\mathrm{F}}^{2}$$

W - матрица весов

eta - гиперпараметр

Ослабленные ограничения:

$$R_{\beta}(W) = \beta \|W^{\top}W \odot (\mathbf{1} - I)\|_{\mathrm{F}}^{2}$$

1 - матрица из 1

минимизирует попарные косинусные расстояния

BigGAN - Generator

ResBlock

BigGAN - Discriminator

RGB image $x \in \mathbb{R}^{256 \times 256 \times 3}$
ResBlock down $ch \rightarrow 2ch$
ResBlock down $2ch \rightarrow 4ch$
Non-Local Block (64 × 64)
ResBlock down $4ch \rightarrow 8ch$
ResBlock down $8ch \rightarrow 8ch$
ResBlock down $8ch \rightarrow 16ch$
ResBlock down $16ch \rightarrow 16ch$
ResBlock $16ch \rightarrow 16ch$
ReLU, Global sum pooling
$Embed(y) \cdot h + (linear \rightarrow 1)$

Resblock

BigGAN-deep - Generator

ResBlock

BigGAN-deep - Discriminator

RGB image $x \in \mathbb{R}^{256 \times 256 \times 3}$ $3 \times 3 \text{ Conv } 3 \rightarrow ch$ ResBlock down $ch \rightarrow 2ch$ ResBlock $2ch \rightarrow 2ch$ ResBlock down $2ch \rightarrow 4ch$ ResBlock $4ch \rightarrow 4ch$ Non-Local Block (64×64) ResBlock down $4ch \rightarrow 8ch$ ResBlock $8ch \rightarrow 8ch$ ResBlock down $8ch \rightarrow 8ch$ ResBlock $8ch \rightarrow 8ch$ ResBlock down $8ch \rightarrow 16ch$ ResBlock $16ch \rightarrow 16ch$ ResBlock down $16ch \rightarrow 16ch$ ResBlock $16ch \rightarrow 16ch$ ReLU, Global sum pooling $\text{Embed}(y) \cdot h + (\text{linear} \rightarrow 1)$

ResBlock

Instabilities - Generator

Улучшаем стабильность регуляризацией:

$$W = W - \max(0, \sigma_0 - \sigma_{clamp}) v_0 u_0^{\top}$$

Instabilities - Discriminator

Регуляризуем Якобиан

дискриминатора:

$$R_1 := \frac{\gamma}{2} \mathbb{E}_{p_{\mathcal{D}}(x)} \left[\|\nabla D(x)\|_F^2 \right]_{\mathfrak{S}}$$

Дискриминатор запоминает обучающ. выборку

Experiments and results

ImageNet ILSVRC 2012

Model	Res.	FID/IS	(min FID) / IS	FID / (valid IS)	FID / (max IS)
SN-GAN	128	27.62/36.80	N/A	N/A	N/A
SA-GAN	128	18.65/52.52	N/A	N/A	N/A
BigGAN	128	$8.7 \pm .6/98.8 \pm 3$	$7.7 \pm .2/126.5 \pm 0$	$9.6 \pm .4/166.3 \pm 1$	$25 \pm 2/206 \pm 2$
BigGAN	256	$8.7 \pm .1/142.3 \pm 2$	$7.7 \pm .1/178.0 \pm 5$	$9.3 \pm .3/233.1 \pm 1$	$25 \pm 5/291 \pm 4$
BigGAN	512	8.1/144.2	7.6/170.3	11.8/241.4	27.0/275
BigGAN-deep	128	$5.7 \pm .3/124.5 \pm 2$	$6.3 \pm .3/148.1 \pm 4$	$7.4 \pm .6/166.5 \pm 1$	$25 \pm 2/253 \pm 11$
BigGAN-deep	256	$6.9 \pm .2/171.4 \pm 2$	$7.0 \pm .1/202.6 \pm 2$	$8.1 \pm .1/232.5 \pm 2$	$27 \pm 8/317 \pm 6$
BigGAN-deep	512	7.5/152.8	7.7/181.4	11.5/241.5	39.7/298

JFT-300M (BigGAN, Res 256)

_	Ch.	Param (M)	Shared	Skip-z	Ortho.	FID	IS	(min FID) / IS	FID / (max IS)	-
_	64	317.1	X	X	X	48.38	23.27	48.6/23.1	49.1/23.9	_
_	64	99.4	✓	1	/	23.48	24.78	22.4/21.0	60.9/35.8	_
_	96	207.9	✓	✓	1	18.84	27.86	17.1/23.3	51.6/38.1	_
_	128	355.7	1	1	1	13.75	30.61	13.0/28.0	46.2/47.8	

References

BigGAN

SA-GAN

Spectral Normalization for GANs

Modulating early visual processing by language

RunwayML - BigGAN

BigGAN - trained

