MINERAÇÃO DE REPOSITÓRIOS PARA ANÁLISE DE CICLOS DE SOFTWARE

Aluno - Ronaldo Rubens Gesse Junior - 201026937 Orientador - Prof. Dr. Higor Amario de Souza

Ciência da Computação - UNESP/Bauru

Introdução

Introdução

- Mineração de repositórios como Github e Gitlab e API's como o Google Trends.
- Foco em fromeworks e bibliotecas.
- Detectar tendências de alta ou baixa na manutenibilidade e interesse em ferramentas.
- Fornecer insights valiosos para desenvolvedores, gerentes de projeto e pesquisadores que utilizam essas ferramentas, decidindo pela adoção ou substituição de determinados softwares. Além de disponibilizar um repositório para replicação de análises.

Problema

- Novos softwares surgem constantemente, apresentando diferentes abordagens e funcionalidades para solucionar problemas específicos.
- 2. A escolha de frameworks e bibliotecas é crucial para a base de qualquer projeto, sendo uma decisão importante e de grande risco.
- Ferramentas mais antigas, sem o devido acompanhamento, pouco atualizadas e utilizadas podem comprometer a sequência e manutenção de um desenvolvimento.

Justificativa

- Dados para esse tipo de análise são fáceis de encontrar, ainda mais de projetos de código aberto.
- Repositórios contêm diversos projetos relevantes, possibilitando o acesso ao histórico de desenvolvimento de softwares em uma ampla quantidade de linguagens.
- 3. Comparar e decidir ferramentas dentro de um projeto se torna um processo facilitado com uma análise prévia de dados confiáveis.

Metodologia

Mineração de Dados

Seleção dos Softwares

- A seleção dos softwares foi baseada em suas áreas de atuação, linguagens de programação e períodos ativos.
- Foram levados em consideração tanto projetos atuais e ainda ativos, quanto aqueles que já são legado, que não tem manutenção ativa e são pouco utilizados.
- No total foram escolhidos 85 softwares, sendo 60 atuais e 25 legados.

Seleção dos Softwares

Áreas escolhidas:

Machine Learning

Ciência de Dados

Segurança

Web

API Rest

Teste de Software

Seleção dos Softwares

Linguagens escolhidas:

Obtenção dos Dados

- Com a seleção de frameworks e bibliotecas definida, foi utilizada a ferramenta Jupyter para criar dois notebooks de código iniciais com as seguintes finalidades:
 - Minerar repositórios git para obter informações sobre commits.
 - Adquirir informações sobre a quantidade de pesquisas por projeto via Google Trends.

Obtenção dos Dados

Parte de código para minerar repositórios :

Obtenção dos Dados

Parte de código para minerar trends:

```
from pytrends.request import TrendReq
import pandas as pd
# Lista de termos que você quer pesquisar
termos = pd.read csv("CSV/nomes de softwares.csv")
termos = termos["softwares names"].tolist()
# Divida a lista em grupos de 5
grupos de termos = [termos[i:i+1] for i in range(0, len(termos), 1)]
# Crie uma instância da TrendRea
pytrends = TrendReq(hl='pt-BR', tz=360) # Defina a linguagem (hl) e o fuso horário (tz)
resultados = pd.DataFrame()
# Para cada grupo de termos
for grupo in grupos de termos:
   # Configure os parâmetros da busca
   pytrends.build payload([grupo], cat=5, timeframe='all', geo='', gprop='')
   # Obtenha os dados
   dados novos = pytrends.interest over time()
   resultados = pd.concat([resultados, dados novos], axis=0, join='outer')
```


Transformação dos Dados

- A transformação nos dados ocorreu com um foco maior na disposição de linhas e colunas.
- Tabela de commits é obtida com as informações concatenadas em uma única coluna, impossibilitando a visualização.
- Tabela de trends dispõe cada projeto como uma coluna, não distribuindo as informações em linhas.

Transformação dos Dados

			٠,
(0)	m	m	110
(J()	111	,,,	ルしつ

	Commits
0	Wes McKinney,,,, <pydriller.domain.developer.de< th=""></pydriller.domain.developer.de<>
1	$Wes \ McKinney,,,, <\!$
2	$Wes \ McKinney,,,, <\!$
3	$Wes \ McKinney,,,, < pydriller.domain.developer.De$
4	$Wes \ McKinney, , , , < pydriller. domain. developer. De$
33437	$jbrock mendel,,,,, \\ \verb cp spdriller.domain.developer.De$
33438	$jbrock mendel,,,,, \\ \\ cydriller. \\ domain. \\ developer. \\ De$
33439	$jbrock mendel,,,,, \\ \\ cydriller. domain. \\ developer. \\ De$
33440	$jbrock mendel,,,,, \\ \\ cydriller. domain. developer. De$
33441	Natalia Mokeeva,,,, <pydriller.domain.developer< th=""></pydriller.domain.developer<>

33442 rows × 1 columns

Trends

	Pandas	isPartial
date		
2004-01-01	0	False
2004-02-01	1	False
2004-03-01	0	False
2004-04-01	0	False
2004-05-01	4	False
2023-06-01	69	False
2023-07-01	64	False
2023-08-01	69	False
2023-09-01	75	False
2023-10-01	62	True
238 rows × 2	columns	

Análises e Resultados

Análises e Resultados

- Para análise dos dados tratados, foram utilizadas três métricas principais:
 - Tendência baseada em média móvel exponencial (MME) de curto e longo prazo.
 - o Correlação entre os dados pelo método de Spearman.
- A tendência de alta ou baixa e a correlação foram utilizadas para 3 dados principais: número de commits, número de autores e interesse relativo por software escolhido.

Tendência Geral

Dos 23 projetos com tendência geral alta, 18 são atuais e 5 legados.

Dos 62 projetos com tendência geral baixa, 27 deles tem tendência alta em interesse, com 23 projetos atuais e 4 legados.

Correlação Geral

	Commit/Interesse	Autor/Interesse	Commit/Autor
> 0,5	16	25	50
< -0,5	15	8	0
Entre -0,5 e 0,5	43	41	35
Sem dados	11	11	0

É possível identificar um padrão entre *commits* e autores, que não apresentam valores negativos e tem o maior percentual de correlações fortes entre as comparações. Isso é natural pois uma maior quantidade de autores normalmente implica em uma maior quantidade de *commits*.

Tendência de Commits

PyTorch

- MME de curto prazo = 1017,15
- MME de longo prazo = 1004,10

TensorFlow

- MME de curto prazo = 1486,54
- MME de longo prazo = 1533,46

Tendência de Autores

PyTorch

- MME de curto prazo = 226,74
- MME de longo prazo = 220,21

TensorFlow

- MME de curto prazo = 207,49
- MME de longo prazo = 209,97

Tendência de Interesse

PyTorch

- MME de curto prazo = 83,99
- MME de longo prazo = 80,37

TensorFlow

- MME de curto prazo = 51,85
- MME de longo prazo = 53,65

Correlações

Projeto	Commit/Interesse	Autor/Interesse	Commit/Autor
pytorch	0,952	0,953	0,972
tensorflow	0,659	0,609	0,982

Tendência de Commits

Junit 5

- MME de curto prazo = 44,74
- MME de longo prazo = 43,90

Junit 4

- MME de curto prazo = 2,95
- MME de longo prazo = 3,84

Tendência de Autores

Junit 5

- MME de curto prazo = 6,79
- MME de longo prazo = 6,69

Junit 4

- MME de curto prazo = 1,32
- MME de longo prazo = 1,59

Tendência de Interesse

Junit 5

- MME de curto prazo = 145,90
- MME de longo prazo = 146,64

Junit 4

- MME de curto prazo = 48,79
- MME de longo prazo = 48,20

Correlações

Projeto	Commit/Interesse	Autor/Interesse	Commit/Autor
Junit4	0,443	-0,259	0,602
Junit5	-0,839	0,216	0,391

Considerações Finais

Considerações Finais

- As análises realizadas apresentam um cenário real que auxilia na escolha de um novo software em um projeto.
- Além dos resultados de tendências e correlações sobre quantidade de commits, autores e interesse relativo, é possível observar pontos importantes nos gráficos como cada quantidade e distribuição dos dados ao longo do tempo.
- Pesquisas auxiliares s\(\tilde{a}\) otilizadas para fundamentar e complementar a an\(\tilde{a}\) lise a fim de obter resultados mais coesos.

Referências

- DAI, H.; PENG, X.; SHI, X.; HE, L.; XIONG, Q.; JIN, H. Reveal training performance mystery between tensorflow and pytorch in the single gpu environment. Science China Information Sciences, Springer, v. 65, p. 1–17, 2022.
- ELDER, A. Aprenda a operar no mercado de ações. Rio de Janeiro: Editora Campus, 2006.
- GARCIA, B. Mastering Software Testing with JUnit 5: Comprehensive guide to develop high quality Java applications. [S.l.]: Packt Publishing Ltd, 2017.
- SOUSA, Á. Coeficiente de correlação de pearson e coeficiente de correlação de spearman: o que medem e em que situações devem ser utilizados? Correio dos Açores, Gráfica Açoreana, Lda, p. 19–19, 2019.

MUITO OBRIGADO

