İÇİNDEKİLER

	Sayfa
1. SORU	3
2. SORU	6
3. SORU	10
4. SORU	11
5.SORU	12

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
skulllength	38,9943	1,29479	70
skullbreadth	30,0629	,83061	70
femurlength	77,5114	3,27284	70
tibialength	115,4429	5,19793	70
humeruslength	75,6757	2,77742	70
ulnalength	69,6743	2,64179	70

Ortalama ve standart sapma değerlerine bakıldığında birbirine benzer değerler vardır. Ancak kafatasına ve diğer uzuv kemiklerine ait uzunluk değerlerine bakıldığında altı değişkenin iki faktörlü (boyutlu) bir yapıya sahip olduğu ön bilgisi söz konusudur. Bu faktörler kısaca "kafatasına ait uzunlukların faktörü/boyutu" ve "diğer uzuvlara ait uzunlukların faktörü/boyutu" olarak adlandırılabilir. Ancak bu altı değişken arasında istatistiksel açıdan bir faktörleşme olabilmesi için (değişkenlerin faktörlenebilir olabilmesi için);

- 1. Hem birinci faktörü oluşturacağı düşünülen ilk iki kafatası değişkenin kendi içlerindeki illişkilerin hem de ikinci faktörü oluşturacağı düşünülen son dört değişken arasındaki ilişkinin kavramsal olarak yüksek olması,
- 2. Birinci faktörü oluşturacağı düşünülen değişkenler ile ikinci faktörü oluşturacağı düşünülen değişkenlerin düşük ilişkili olması beklenir.

Correlation Matrix^a

						humerusl	
		skulllength	skullbreadth	femurlength	tibialength	ength	ulnalength
Correlation	skulllength	1,000	,709	,672	,708	,744	,743
	skullbreadth	,709	1,000	,593	,611	,620	,622
	femurlength	,672	,593	1,000	,895	,912	,890
	tibialength	,708	,611	,895	1,000	,856	,868
	humeruslength	,744	,620	,912	,856	1,000	,960
	ulnalength	,743	,622	,890	,868	,960	1,000
Sig. (1-tailed)	skulllength		,000	,000	,000	,000	,000
	skullbreadth	,000		,000	,000	,000	,000
	femurlength	,000	,000		,000	,000	,000
	tibialength	,000	,000	,000		,000	,000
	humeruslength	,000	,000	,000	,000		,000
	ulnalength	,000	,000	,000	,000	,000	

a. Determinant = ,000

Humerus Length , femurlength, ulnalength ve tibialength arasında yüksek korelasyon vardır.

Skullbreadth, diğer değişkenlerle düşük korelasyona sahiptir. En yüksek Skulllength ile korelasyona sahiptir.

Skulllength, en yüksek Humerus Length, ulnalength ile korelasyonludur. Skulllength, tibialength ile skullbreadth arasında aynı düzeeyde korelasyon vardır.

Veri faktörleşmeye uygun gibi görünmekle birlikte KMO-Bartlett's Testi (Küresellik testi) ile değişkenlerin FA yapmaya uygun olup olmadığına kesin bir şekilde karar verelim.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin I Adequacy.	,860	
Bartlett's Test of Sphericity	Approx. Chi-Square df	511,858 15
	Sig.	,000

- ✓ Yeterli örneklem büyüklüğü Kaiser-Meyer-Olkin (KMO) ile test edilir. Eğer Kaiser-Meyer-Olkin (KMO) testi sonucu elde ettiğimiz değerimiz 0,5 ten büyük çıkarsa örneklem büyüklüğümüz faktör analizi için yeterlidir. Görüldüğü üzere KMO 0.860 > 0.5 olduğundan dolayı örneklem ölçümü yeterlidir. Faktör analizi yapılabilir. (A ŞIKKI CEVABI)
- ✓ Bununla birlikte Bartlett'in küresellik testinde de p-değeri(sig.) 0,000 < 0,05 olduğundan H0 hipotezi red edilir.Örneklemin alındığı kitleye ilişkin değişkenler arasındaki kitle korelasyon matrisi ρ birim matrisden farklıdır. Yani bazı değişkenler arasındaki korelasyonlar anlamlıdır. Korelasyonları yüksek olan değişkenler bir çatı altında toplanmalı ve veri setine Faktör Analizi yapılması gerekliliğini gösterir.(A ŞIKKI CEVABI)

Total Variance Explained

		Initial Eigenvalu	ies	Extraction	n Sums of Squa	red Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4,828	80,463	80,463	4,828	80,463	80,463
2	,599	9,979	90,441			
3	,276	4,601	95,043			
4	,171	2,846	97,889			
5	,092	1,529	99,417			
6	,035	,583	100,000			

Extraction Method: Principal Component Analysis.

Toplam Açıklanan Varyans Tablosuna baktığımızda;

- ✓ Öz değerlerden 1 tanesi 1' den büyük olduğu için 1 faktörlü çalışabilir yorumu yapılabilir. Eğer 2 tane faktör seçilir ve bunlar ilk iki büyük değerler seçilir ise:
- ✓ Birinci ve İkinci faktör toplam varyansın %90,442'sini açıklamaktadır. (D ŞIKKI CEVABI)
- ✓ Buna g öre Açıklanan varyans oranı: %80,463 %9,979 %4,601 %2,846 %1,529 %0,583 (B ŞIKKI CEVABI)

Reproduced Correlations

						humerusl	
		skulllength	skullbreadth	femurlength	tibialength	ength	ulnalength
Reproduced Correlation	skulllength	(,822	832	,706	,725	,748	,749
	skullbreadth	,832	,915	562	,600	,619	,623
	femurlength	,706	,562	,927	903	,932	,929
	tibialength	,725	,600	,903	,884	,913	,910
	humeruslength	,748	,619	,932	,913	(,943)	939
	ulnalength	,749	,623	,929	,910	,939	(,936)

Reproduced correlation matrisinin köşegenlerindeki her bir eleman, faktörler tarafından açıklanan varyans oranlarını h_2 leri g östermektedir. (C ŞIKKI CEVABI)

 Aşağıdaki Scree Plot'a göre de uygun faktör sayısına karar verilebilinir. Bu grafikte eğri yatay eksene paralel olmaya başladığı bileşen sayısı, uygun faktör sayısı olarak alınmaktadır. Grafikte en son ki büyük düşüş birinci ve ikinci bileşenler arasında oluştuğu için iki faktörün seçilmesi uygundur. (D ŞIKKI CEVABI)

Scree Plot

- ✓ Faktör sayısının belirlenmesine ilişkin bazı kriterler vardır. Bunlardan biri bir temel bileşen, toplam değişimin en az 2/3'nü açıklaması gerekir. Buradan açıklanan toplam varyans tablosuna göre:
- \checkmark $\lambda_{I}/\lambda_{toplam} = (4,828+0,599)/(4,828+0,599+0,276+0,171+0,92+0,35) = 0.905 > 0.67$
- ✓ Toplam varyansın %90.5'ini ilk iki faktör yardımıyla açıklamaktadır. Bu oran 2/3 den büyük olma ölçütünü sağladığından faktör sayısı iki olarak alınabilir. (D ŞIKKI CEVABI)

	J		, , , ,		, ,	, , , , , ,	
Residual	skulllength		-,001	-,003	-,002	-,004	-,006
	skullbreadth	-,001		,003	,011	,001	,000
	femurlength	-,003	,003		-,007	-,020	-,004
	tibialength	-,002	,011	-,007		-,006	-,004
	humeruslength	-,004	,001	-,020	-,006		,020
	ulnalength	,006	,000	-,004	-,004	,020	

Extraction Method: Principal Component Analysis.

Artık matrisindeki değerlerin sıfıra yakınlık derecesi, faktörleştirmenin ne derecede iyi yapıldığının bir göstergesidir.(3 faktörlü tablosuna göre değerler daha 0'a yakındır) (D ŞIKKI CEVABI)

Component Matrix(a)

	Component				
	1	2			
humeruslengt h	,831	,362			
ulnalength	,857	,325			
femurlength	, 890	,289			
tibialength	936	,345			
skulllength	,467	,506			
skullbreadth	,211	, 792			

Extraction Method: Principal Component Analysis.

a 2 components extracted.

Veri seti için, ilk dört değişkenin 1. Faktöre(diğer uzuv kemik uzunlukları faktörü), son iki değişkenin 2. Faktöre(kafatası kemik uzunlugu faktörü) yüklendiği açıktır. (E ŞIKKI CEVABI)

Birinci değişkenin birinci faktördeki yükü: 0.831 İkinci değişkenin birinci faktördeki yükü: 0.857 Ü çünc ü değişkeninin birinci faktördeki yükü: 0.890 Dördünc ü değişkenin birinci faktördeki yükü: 0.936 Beşinci değişkenin ikinci faktördeki yükü: 0.506 Altıncı değişkenin ikinci faktördeki yükü: 0.792

- 5-) Diskriminant analizi varsayımları şu şekilde listelenebilir:
 - 1. Diskriminant Analizi yapabilmek i çin öncelikle değişkenlerin kitle ortalamaları farklı olmalıdır. Bunun için ortalamalarının karşılaştırılması gerekir.
 - 2. Grupların kovaryans matrisleri eşit veya eşite yakın olmalıdır. (Yani gruplar i çin varyans homojenliği varsayımı sağlanmalıdır.)
 - 3. Herbir grup için veri setleri normallik varsayımını sağlamalıdır.
 - 4. Çoklu doğrusal bağlantı probleminin olmayacak.Bunun kontrolüi çin korelasyon matrisinin incelenmesiyle tespit edilir. Çoklu doğrusal bağlantı probleminin varlığı 0.8'den yüksek korelasyona sahip değişkenlerden biri işlem dışı bırakılmalı.

Box's Test of Equality of Covariance Matrices

Log Determinants

Grup	Rank	Log Determinant
Hafiza	4	6,928
Algılama	4	4,094
İletişim	4	6,315
Pooled withingroups	4	6,786

The ranks and natural logarithms of determinants printed are those of the group covariance matrices.

Gruplara ilişkin log-determinant değerleri sırasıyla; 6,928, 4,094 ve 6,315 olarak bulunmuştur. Log determinant değerleri kitle değişkenliklerinin bir ölçüsüdür. Bu değerin büyük çıkması kitle varyans-kovaryans matrislerinin eşit olmadığını gösterir. Ancak burada elde edilen Log-determinant değerleri büyük değildir.

Test Results

Box's	s M	36,056
F	Approx.	1,516
	df1	20

df2	4185,946
Sig.	,065

Tests null hypothesis of equal population covariance matrices.

H0: Grupların kovaryans matrisleri eşittir.

H1: Grupların kovaryans matrisleri eşit değildir.

Box'x M =36,056, p-değeri=0,65 > α =0,05 olduğundan %5 önem düzeyinde H0 reddedilemez yani üç gruba ilişkin **kovaryans matrisleri homojendir**.

Pooled Within-Groups Matrices

		Ö1	Ö2	Ö3	Ö4
Correlation	Ö1	1,000	<mark>,647</mark>	<mark>,485</mark>	<mark>,513</mark>
	Ö2	<mark>,647</mark>	1,000	<mark>,529</mark>	<mark>,474</mark>
	Ö3	<mark>,485</mark>	<mark>,529</mark>	1,000	<mark>,460</mark>
	Ö4	<mark>,513</mark>	<mark>,474</mark>	<mark>,460</mark>	1,000

Havuzlanmış Grup İçi matrisi tablosu, tüm değişkenler arasında iki değişkenli korelasyonları gösterir. Tabloda 0.7'den büyük olan değerler Çoklu doğrusal bağlantı probleminin olduğunun göstergesidir. Tabloda böyle bi değer yoktur

Diskriminant Fonksiyonlarının Öneminin Değerlendirilmesi

Diskriminant fonksiyonunun ne kadar önemli olduğunu belirlemek için kanonik korelasyon, özdeğer (eigenvalue) ve Wilks' Lambda istatistiklerine bakılır.

Summary of Canonical Discriminant Functions

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	3,844ª	93,1	93,1	<mark>,891</mark>
2	,285ª	6,9	100,0	<mark>,471</mark>

a. First 2 canonical discriminant functions were used in the analysis.

Yukarıdaki tabloda bu değer iki diskriminant fonksiyonu i çin 0,891 ve 0,471 olarak elde edilmiştir. Bu değeri yorumlayabilmek için karelesinin alınması gerekmektedir. Kanonik korelasyonun karesi, modelin bağımlı değişkendeki değişimi açıklama yüzdesini açıklar. Buna göre ilk diskriminant fonksiyonu ile kurulan modelde bağımlı değişkendeki varyansın (değişimin) %79,3'ünü açıklanabilmektedir ve ikinci diskriminant fonksiyonu ile bağımlı değişkendeki varyansın %22,1'si her iki fonksiyon ile %101,4'ü (%73,3+%22,1=%101,4) açıklanabilmektedir.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1 through 2	,161	68,559	8	,000
2	<mark>,778</mark>	9,397	3	<mark>,024</mark>

Grup ortalamalarının farklı olup olmadıklarını test eden Wilks' Lambda testinin sonuçları verilmiştir. Bu test yardımıyla her bir diskriminant fonksiyonu için özdeğerin önemi belirlenebilmektedir: Wilks' Lambda istatistiği 0 ile 1 arasında değerler alır. Wilks' Lambda istatistiğinin sonuçları, ayırma skorlarındaki toplam varyansın gruplar arasındaki farklar tarafından açıklanamayan kısmını gösterir. Wilks Lambda değeri ne kadar küçük olursa modelin ayırt edicilik gücü de o oranda artar. Bu uygulamada Wilks Lambda değeri 0.161 olarak bulunmuş olduğundan fonksiyonumuz ayırma skorlarındaki toplam varyansın %16,1'ini açıklayamamıştır. Ancak ikinci diskriminant fonksiyonunda her ne kadar Wilks Lambda değeri 0,778 bulunmuş olsa da, buna karşılık gelen p-değeri=0,024 < α=0,05 olduğundan ikinci özdeğerin de anlamlı olduğunu yani ikinci fonksyonun da ele alınan değişkenlerce ayırıcı özelliği olduğunu belirtmekte fayda var.

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Ö1	,807	4,676	2	39	,015

Ö2	<mark>,454</mark>	23,456	2	39	<mark>,000</mark>
Ö3	,885	2,522	2	39	,093
Ö4	,949	1,056	2	39	,358

Anlamlılık değeri 0,01'den büyükse, değişken muhtemelen modele katkıda bulunmaz. Bu tablodaki sonuçlara göre Ö2 değişkeni dışında diskriminant modelimizdeki her değişken anlamlamsızdırGrup ortalamalarının Ö1,Ö3,Ö4 bağımsız değişken yönünden eşit olduğu sonucuna varıyoruz.ve p-değerleri <α olmadığından H0 ortalamaların eşitliği reddedilemez.

Wilks' lambda, bir değişkenin potansiyelinin başka bir ölçüsüdür. Daha küçük değerler, değişkenin gruplar arasında ayrım yapmada daha iyi olduğunu gösterir. Ayrım yapmada en iyi Ö2 değişkenidir.

Diskriminant Analizinde Bağımsız Değişkenlerin Öneminin Değerlendirilmesi

Standartlaştırılmış katsayılar değişkenlerin farklı ölçeklerde karşılaştırılmasını sağlar. Katsayıların mutlak değerce büyük olması, değişkenlerin daha iyi ayrım yapabileceğini gösterir. Aşağıdaki tabloda görüldüğü gibi gruplara ayırmada tüm değişkenler önemli ayırt edici bağımsız değişkendir.

Standardized Canonical Discriminant Function Coefficients

Function

	1	2
Ö1	-,934	-,369
Ö2	1,345	-,225
Ö3	-,191	1,195
Ö4	-,171	-,487

Standardize kanonik fonksiyonlar aşağıdaki gibi yazılır:

 $Y_{1}=-0.934Z_{1}+1.345Z_{2}-0.191Z_{3}-0.171Z_{4}$ $Y_{2}=-0.369Z_{1}-0.225Z_{2}+1.195Z_{3}-0.487Z_{4}$

Bu sonuçlara göre, birinci bağımsız değişken Ö2 ilk ayırma fonksiyonu üzerinde daha belirleyici bir etkiye sahip iken, ikinci Ö3 bağımsız değişken de ikinci ayırma fonksiyonu üzerinde daha etkilidir.

Burada standartlaştırılmış katsayıların kullanılmasının sebebi, bağımsız değişkenlerdeki farklı ortalamalar ve farklı standart sapmaların etkilerini ortadan kaldırmaktır. Aksi takdirde daha küçük standart sapması olan değişkenlerin daha büyük ayırma katsayısı olan durumu ortaya çıkabilir. Bu durumda bağımsız değişkenlerin nisbi öneminin değerlendirilmesi zorlaşır. Ayrıca büyük rakamlar büyük katkıyı, küçük rakamlar ise düşük katkıyı gösterir. Katsayı işaretinin ise özel bir anlamı yoktur.

Structure Matrix

	Function			
	1	2		
Ö2	<mark>,559*</mark>	-,063		
Ö1	-,245*	-,185		
Ö3	-,011	<mark>,673*</mark>		
Ö4	-,100	-,233*		

Kanonik yapı matrisi, modeldeki her bir değişken ile diskriminant fonksiyonları arasındaki korelasyonları ortaya koymaktadır. Her bir diskriminant fonksiyonu üzerindeki değişkenlerin faktör yükleri olduğunu söyleyebiliriz. Korelasyonları karşılaştırmamızı ve bir değişkenin her bir fonksiyonla ne kadar yakından ilişkili olduğunu görmemizi sağlar. Genel olarak, 0,3 veya daha fazla korelasyona sahip herhangi bir değişken önemli olarak kabul edilir.1.fonksiyonda Ö2, 2.fonksiyonda Ö3 önemlidir.

Canonical Discriminant Function Coefficients

Function

	1	2
Ö1	-,095	-,038
Ö2	,765	-,128
Ö3	-,039	,245
Ö4	-,248	-,708
(Constant)	4,924	1,223

Unstandardized coefficients

Standartlaştırılmamış ayırma fonksiyonları aşağıdaki gibi yazılır:

D1=4,924-,095X1+0,765X2-0,039X3-0,248X4 D2=1,223-0,38X1-0,128X2+0,245X3-0,708X4

Ayırma fonksiyonu bağımsız değişkenlerin lineer kombinasyonudur. D değeri diskriminant skorudur. Bu eşitlik çoklu regresyona benzemektedir. Fakat burada katsayılar, bağımsız değişkenlerin ortalamaları arasındaki uzaklığı maksimize ederler. Bu eşitlik yardımıyla yeni gözlemleri sınıflandırmada kullanılabilecek gerçek tahmin modeli oluşturulur. Örneğimizde her bir sporcunun D skoru, ilgili değerler yukarıdaki eşitlikte yerine konularak elde edilmiş ve bu skorlara dayanılarak gruplama yapılabilir.

Functions at Group Centroids

Function

Grup	1	2
Hafiza	<mark>-2,410</mark>	,480
Algılama	<mark>2,582</mark>	,409
İletişim	-,115	-,593

Unstandardized canonical discriminant functions evaluated at group means

Kanonik grup ortalamaları aynı zamanda grup merkezleri olarak da adlandırılır. Kanonik grup ortalamaları arasındaki fark ne kadar büyük olursa, gözlemleri sınıflandırmada kanonik diskriminant fonksiyonunun tahmin gücü o kadar iyi olur.Birinci sütun, birinci kanonik fonksiyon skorlarının herbir grup için ortalaması, ikinci sütun ise ikinci kanonik fonksiyon skorlarının ortalamasını vermektedir..

Classification Statistics

Prior Probabilities for Groups

		Cases Used in Analysis		
Grup	Prior	Unweighte d	Weighted	
Hafıza	,286	12	12,000	
Algılama	,286	12	12,000	
İletişim	<mark>,429</mark>	18	18,000	
Total	1,000	42	42,000	

Önceki olasılıklar,şimdiki grupların boyutlarına dayanmaktadır. Örneğin ;Hafiza değişkeni hakkında başka hiçbir bilgi bulunmadığında belirli bir gruba ait olma olasılığının tahminidir ve bu oran %28.6 olarak varsayılmıştır, Bu nedenle sınıflandırma işlevleri, değişkenlerin varsayılmış değerleri üzerinden sınıflandırma lehine artık daha fazla ağırlıklandırılacaktır.

Classification Function Coefficients

(j	r	U	l	p

	Hafiza	Algılam a	İletişim
Ö1	1,002	,529	,824

Ö2	-4,243	-,416	-2,350
Ö3	,696	,483	,343
Ö4	10,429	9,240	10,618
(Constant)	-86,248	-62,158	-73,021

Fisher's linear discriminant functions

Standartlaştırılmamış Fisher's ayırma katsayıları bu tabloda verilmektedir.

C1=-86,248+1,002X1-4,243X2+0,696X3+10,429X4

C2=-62,158+0,529X1-0,416X2+0, ,483X3+9,240X4

C3=-73,021+1,002X1-2,350X2-0,343X3+10,618X4

Classification Results^a

		Predicted Group Membership				
		Grup	Hafıza	Algılam a	İletişim	Total
Original	Count	Hafiza	11	0	1	12
		Algılama	0	12	0	12
		İletişim	0	0	18	18
	%	Hafiza	91,7	<mark>,0</mark>	8,3	100,0
		Algılama	,0	100,0	<mark>,0</mark>	100,0
		İletişim	,0	,0	100,0	100,0

a. 97,6% of original grouped cases correctly classified.

Bu tablo, tahmin edilen Öğrenme zorluğu çeken 6-8 yaşları arasındaki çocuk grubu ile var olan Öğrenme zorluğu çeken 6-8 yaşları arasındaki çocuk grubu karşılaştırmaktadır . Toplam 42 çocuk vardır.

Hafıza problemli çocuklar için doğru sınıflandırma oranı: 11/12=0.917 Algılama problemli çocuklar 1 için doğru sınıflandırma oranı: 12/12=1 İletişim problemli çocuklar için doğru sınıflandırma oranı: 18/18=1 Tüm sınıflar için yapılan sınıflandırmanın doğruluk oranı: %97.6 olarak elde edilmiştir.

Ayrıca bu tabloda köşegen dışı elemanlar yanlış sınıflandırma sayıları ile oranlarını vermektedir.

Yanlıs sınıflandırma oranı: 0'dır.