CMOS Characteristics

- Fan-in
- Logic Levels & Noise Margin
- Power Dissipation
- Practical Considerations

Fan-In

For a particular logic family, the number of inputs that a logic gate can have is known as the fan-in.

For NAND and NOR gates, more inputs can be obtained by expanding the number of transistors in the pull-up and pull-down networks.

Fan-in is limited by the 'on' resistance of the series transistors.

Fan-In

For a particular logic family, the number of inputs that a logic gate can have is known as the fan-in.

For NAND and NOR gates, more inputs can be obtained by expanding the number of transistors in the pull-up and pull-down networks.

Fan-in is limited by the 'on' resistance of the series transistors.

Fan-In

For a particular logic family, the number of inputs that a logic gate

can have is known as the fan-in.

For NAND and NOR gates, more inputs can be obtained by expanding the number of transistors in the pull-up and pull-down networks.

Fan-in is limited by the 'on' resistance of the series transistors.

$NAND \equiv NOT AND$

XY	X.Y	
0 0	1	
0 1	1	_
1 0	1	1)~
1 1	0	_

$NOR \equiv NOT OR$

MOS transistor can be viewed as a voltage controlled resistance.

- nmos transistors have a lower 'on' resistance than pmos transistors.
- A series connection of *k* nmos devices will have a lower 'on' resistance than *k* pmos devices for a given silicon area.
- *k*-input NAND gate generally faster and preferred to *k*-input NOR gate.
- Fan-in typically 4 for NOR gates and 6 for NAND gates.

How can we increase the fan-in further?

Consider the 8-input NAND function:

$$F = \overline{A.B.C.D.E.F.G.H}$$

$$F = \overline{A.B.C.D} + \overline{E.F.G.H}$$

$$F = A.B.C.D + E.F.G.H$$

Cascading gates with fewer inputs will generally result in smaller faster circuits.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

The following conditions apply unless otherwise specified:

Commercial: $T_{\rm A} = -40^{\circ}{\rm C}$ to $+85^{\circ}{\rm C}$, $V_{\rm CC} = 5.0{\rm V} \pm 5\%$; Military: $T_{\rm A} = -55^{\circ}{\rm C}$ to $+125^{\circ}{\rm C}$, $V_{\rm CC} = 5.0{\rm V} \pm 10\%$

Sym.	Parameter	Test Conditions ⁽¹⁾		Min.	Typ.(2)	Max.	Unit
V_{IH}	Input HIGH level	Guaranteed logic HIGH level		3.15	_	_	V
V_{IL}	Input LOW level	Guaranteed logic LOW level		_	_	1.35	V
I_{IH}	Input HIGH current	$V_{\text{CC}} = \text{Max.}, \ V_{\text{I}} = V_{\text{CC}}$			-	1	μΑ
$I_{ m IL}$	Input LOW current	$V_{\rm CC} = {\rm Max.}, \ V_{\rm I} = 0 \ {\rm V}$		_	_	-1	μΑ
$V_{\rm IK}$	Clamp diode voltage	$V_{\rm CC} = \text{Min., I}_{\rm N} = -18 \text{ mA}$		_	-0.7	-1.2	V
$I_{\rm IOS}$	Short-circuit current	$V_{CC} = Max.$, (3) $V_O = GND$		_	_	-35	mA
V	V _{OH} Output HIGH voltage	$V_{\rm CC} = Min.,$	$I_{\rm OH} = -20 \ \mu {\rm A}$	4.4	4.499		V
OH		$V_{\rm IN} = V_{\rm IL}$	$I_{\rm OH} = -4 \text{ mA}$	3.84	4.3		V
V _{OL} Output LOW voltage	$V_{\rm CC} = {\rm Min.}$	$I_{\rm OL}$ = 20 μA	_	.001	0.1	V	
	Output LOW Voltage	$V_{\rm IN} = V_{\rm IH}$ $I_{\rm OL} = 4 \text{ mA}$			0.17	0.33	
$I_{\rm CC}$	Quiescent power supply current	$V_{\text{CC}} = \text{Max.}$ $V_{\text{IN}} = \text{GND or } V_{\text{CC}}, I_{\text{O}} = 0$		_	2	10	μА

SWITCHING CHARACTERISTICS OVER OPERATING RANGE, $C_L = 50 \text{ pF}$

Sym.	Parameter ⁽⁴⁾	Test Conditions		Min.	Тур.	Max.	Unit
t_{PD}	Propagation delay	A or B to Y		_	9	19	ns
$C_{\rm I}$	Input capacitance	$V_{\rm IN} = 0 \text{ V}$		-	3	10	pF
C_{pd}	Power dissipation capacitance per gate		No load	_	22	_	pF

CMOS Logic Levels and Noise Margin

This is the typical transfer characteristic for a CMOS inverter. It may vary due to power supply variation, temperature, load, fabrication conditions etc. CMOS logic levels

CMOS voltage levels are typically a function of the power supply rails.

The input levels are dictated by the switching thresholds of the transistors. The output levels are decided by the 'on' resistance of the transistors.

V_{OHmin} minimum output voltage produced for HIGH

 V_{IHmin} minimum input voltage recognised as a HIGH (70% of V_{cc})

 V_{ILmax} maximum input voltage recognised as a LOW (30% of V_{cc})

V_{OLmax} maximum output voltage produced for LOW

The noise margin shows the level of noise that can be tolerated on an output before it is not recognized by an input.

High-state noise margin $NM_H = V_{OH} - V_{IH}$ Low-state noise margin $NM_L = V_{IL} - V_{OL}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

The following conditions apply unless otherwise specified:

Commercial: $T_{\rm A} = -40 ^{\circ}{\rm C}$ to $+85 ^{\circ}{\rm C}$, $V_{\rm CC} = 5.0{\rm V} \pm 5\%$; Military: $T_{\rm A} = -55 ^{\circ}{\rm C}$ to $+125 ^{\circ}{\rm C}$, $V_{\rm CC} = 5.0{\rm V} \pm 10\%$

Sym.	Parameter	Test Co	Min.	Typ.(2)	Max.	Unit	
V_{IH}	Input HIGH level	Guaranteed logic HIGH level		3.15	_		V
V_{IL}	Input LOW level	Guaranteed logic LOW level			_	1.35	V
I_{IH}	Input HIGH current	$V_{\text{CC}} = \text{Max.}, \ V_{\text{I}} = V_{\text{CC}}$		-	-	1	μΑ
I_{IL}	Input LOW current	$V_{\rm CC} = {\rm Max.}, \ V_{\rm I} = 0 \ {\rm V}$		_	_	-1	μΑ
$V_{\rm IK}$	Clamp diode voltage	$V_{\rm CC} = \text{Min., I}_{\rm N} = -18 \text{ mA}$		_	-0.7	-1.2	V
$I_{\rm IOS}$	Short-circuit current	$V_{CC} = Max.$, (3) $V_O = GND$			_	-35	mA
V	V _{OH} Output HIGH voltage	$V_{\rm CC} = Min.,$	$I_{OH} = -20 \mu A$	4.4	4.499	-	V
r _{OH} Ou		$V_{\rm IN} = V_{\rm IL}$	$I_{\rm OH} = -4~{\rm mA}$	3.84	4.3		V
V	V _{OL} Output LOW voltage	$V_{\rm CC} = {\rm Min.}$	$I_{\rm OL}$ = 20 μA	_	.001	0.1	V
OL		$V_{\rm IN} = V_{\rm IH}$ $I_{\rm OL} = 4 \text{ mA}$			0.17	0.33	
$I_{\rm CC}$	Quiescent power supply current	$V_{\text{CC}} = \text{Max.}$ $V_{\text{IN}} = \text{GND or } V_{\text{CC}}, I_{\text{O}} = 0$		_	2	10	μА

SWITCHING CHARACTERISTICS OVER OPERATING RANGE, $C_L = 50 \text{ pF}$

Sym.	Parameter ⁽⁴⁾	Test Conditions		Min.	Тур.	Max.	Unit
t_{PD}	Propagation delay	A or B to Y		_	9	19	ns
$C_{\rm I}$	Input capacitance	$V_{\rm IN} = 0 \text{ V}$		-	3	10	pF
C_{pd}	Power dissipation capacitance per gate		No load	_	22	_	pF

Power Consumption

There are two components to power consumption in CMOS circuits:

- Static power consumption
- Dynamic power consumption

Static Power Consumption : CMOS circuits consume little power when the outputs are not switching as leakage currents are very small.

$$P_{S} = I_{CC} \times V_{CC}$$

Where: V_{CC} = supply voltage, I_{CC} = leakage current

However, leakage power is becoming more important with decreasing device sizes.

Dynamic Power Consumption in CMOS circuits has two parts:

- Transient power consumption P_T
- Capacitive-load power consumption P_L

 P_T is the power due to the partial short-circuiting of the transistors during switching. At this point, both transistors can be partially *on* allowing current flow from V_{DD} to ground.

$$P_{\rm T} = C_{\rm PD} \times V_{\rm CC}^2 \times f$$

 C_{PD} is the power dissipation capacitance (specified by manufacturer) and f is the switching frequency.

 P_L is the power consumed in charging external load capacitances.

$$P_{L} = C_{L} \times V_{CC}^{2} \times f$$

 C_L is the external load capacitance.

Not all gates will be switching every clock cycle so the dynamic power is often multiplied by α which is a switching activity factor. A system clock has an activity factor $\alpha = 1$ as it rises and falls every cycle. A typical activity factor for data would be $\alpha = 0.1$.

$$P_{total} = P_{static} + P_{dynamic}$$

Practical Considerations

Unused CMOS inputs should not be left unconnected (floating).

- tie to another input
- tie HIGH for AND/NAND gates
- tie LOW for OR/NOR gates

CMOS devices are easily damaged by static. Ensure you are 'earthed' before handling, hold boards by the edges.

Decoupling Capacitors

When a CMOS output switches, both n-channel and p-channel transistors are partially on at the same time. This leads to current spikes which appear as noise on the power supply connections.

On a PCB, decoupling capacitors should be used to provide a reservoir of charge. This helps to reduce the noise in the power distribution network.

Place between V_{dd} and ground as close as possible to IC.

Use 0.1 µF up to 15MHz, above use 0.01 µF. Check application notes.