- Falta discussão de mentezas (- Usar LINEST !-Gorfien Residuos 1-Atividade 8B2 Experiencia de Franck-Hertz e determinação da Prorgia de Drutin ionização do xênon resultarly Objétivos? -> Arálise do funcionamento de uma valvula preenchida com gás xénon a baixa pressão > Determinação experimental das energias de excitação e ionização do atomo de xenon Nas repetir protocolo Introdução! > o principal elemento da montagem consiste numa valvula preenchida com um gás de xenon, dentro da quell existe um filamento e um conjunto de grelhas e eletrodos: Fonte Termoiónica (gilamento) graha de controlo 03 00 sanodo cátodo Vacel - o filamento aquece uma placa (cátodo). -> o cátodo aquecido é uma fonte de eletroes os quais são produzidos a um ritmo de depende de temperatura

- os eletrões libertudos são acelerados pela diferença do pototencial (Vacel).

añodo com sum porencial mais baixo (injerior) V ret, que refarda as eletro es

- > Para que os eletrões consigam utingir o à nodo, necessitarão de ume energia cinética Superior à do campo eletráco entre a grelha e o anodo. O efeito é o de um pittro de eletrões para o ânodo, pelo que a corrente elétrica à saída da valvula dependerá de Vret, Vacel e da capacidado de gerar eletrões
- → Na propagação do geixe de eletrões ao longo da válvula poderão ocorrer colisões com os atomos de Xénon e eventualmente trocas de energia
- → com es potenciais eletricos certos, os eletrões são acelerados com energias suficientes para transitar de nivel energotico:

Processos:

> Excitação (sastar para um nivel superior)

> Ionização (libertar-se do atomo)

Só interene amotor o que precision para a exp.

Energia de excitação do atomo de xenon

· Franck e Hertz propuseram uma expriencia que permite verificar que:

→ É possivel excitar atomos por bombardoamento com eletroes de baixa energia

-> A energia transferida dos eletroes para os eletroes tem valores discretos.

acordo com as riscas obtidas por espectroscopia

· Ao aplicar-se a diferença de potencial Vacel, os ektrões libertados no cátodo são acelerados em direção da grelha de controlo.

Ecim < E1-E0

os eletrões só poderão perder energia atravéz de coli soes elasticas com os eletrões do gás.

A perda de energia não é considerá vel, detelando-se uma corrente através do ânodo

Ecin = E1 - E0

- · As costisões tomam-se atombic inelastica, havendo transperencia do energia dos eletrões do peixe para os eletrões do xénon
- · Estes eletrões deixam de contribuir para a corrente no ânodo que irá diminuir
- os eletrões que perderam
 energia nos choques voltam
 a dosta estar acelerados e
 provocam novas excitações
 no atomo de xénon

Estudo da ionização de atomos de xénon!

- → Ao aumentar o Vacel, a energia cinético dos oletros vai acabar por ser iguale ou superior a energia de ionização do atomo do xénon
- → 0 potencial retardador (Vret) será suficientemente alto para retardar os eletrões do feixe enquanto os atomos ionizados continuam a ser acelerados, que combuiram para a corrente
- → A energia de ionização obtém-se determinando o potencial de aceleração para o valor nulo da corrente do ionização utilizando a expressão:

Ei = le · Vacel· limias

Execussão do Trabalho

Hontagem (

- > Fontes de tensão : 6.3 VAC, 12VDC, 24 VDC e 100 VDC
- > 3 multimetros para medição de correntes e tensões (modelos)

Hontagem	1 corrente de cimento -0,52 m A; como o o, 0030 o o, 0713 o o o, 0713 o o o, 0713 o o o, 0713 o o, 4835 o o, 4674	montager	n a corrente de	monto
(v)	I(ma)	(N)	I	
-1,074	0,0030 10000	MO, 191	3, 28.7	6
0,042	0,0713	W 1, 290	3,26	6
1,126	0, 3159 Will	2,804	3,36	
2,173	0,4835	4,244	2 24	
3,263	0,4674	1 5,617	3 ,21	0
4,591	0,3666	6,979	3,27	
5,444	0,3155	7,979		MA
5,563	6,3103	9,354	3, 30	py
5,852	6,2989	9,870	3, 31	
6,078	0, 2917	11,658	4,82	
6,399	0,2817	12,913	9,3+	
6,433	0,2826	13,516	14, 190	
6,739	6,2769	13,796	31,59	
0,046	0,2730	14,219	5 4, 44	
7,218	6, 2694	14,680	87,34	0
7,388	0,2708	15,396		
7,796	0,2705	16,127	119, 18	
8,148	0,2718	17,156		
8,182	0,2687	18,075	0,1982	
8,514	0, 27 45	19,435	0,2510 r	val dancy
9,027	0,2805	21,31	0,3228	na cle cala
9,300	0,2847			
	0,2921	1 mudanga	100000000000000000000000000000000000000	
9,952	0,3169	nudorano la escala	14 2 3 3 3 3 3	
10, 809		1 90 × 300		20
10,975	0,011		The same	42)

	7
Estudo grafico dos resultados obti determinar a enorgía de ionização a	
→ A partir do momento que os feixe tem aproximadamente a ao 1º nível de ionização:	
Ei = le · Vacel·liminar	es ajuste linear
	nalar a zero
0,05	y = 0,0402x - 0,5306
	Jan LINEST 1 - 0,5306
0,04 0 2 Vacel - 0,5306 -) Vacel = 13,199	= 0
energia de Ionização Dincute	. 13,199 eV//

Descussão