Point Operations

- ARITHMETIC OPERATIONS
- HISTOGRAM PROCESSING

Image Processing in Spatial Domain

Spatial domain refers to the image plane itself.

Image processing methods in spatial domain may be divided into 2 principle categories

1. Point operations/Intensity transformation

- operate on single pixels of an image
- principally for the purpose of contrast manipulation and image thresholding

2. Spatial filtering

- process the pixel in a small neighborhood of pixels around the given pixel
- deals with performing operations, such as image sharpening

Image Processing Methods in Spatial Domain

The spatial domain processes can be denoted by the expression,

$$g(x,y) = T[f(x,y)]$$

Where f(x,y) is the input image, g(x,y) is the output image and T is the operator on f defined over the point (x,y) or a neighbourhood of the point (x,y).

Arithmetic Operations

Let *r* is the old grey level value of a pixel, *s* is the new grey level value of a pixel, *c* is a positive constant.

Addition:

$$s = r + c$$

Subtraction:

$$s = r - c$$

Arithmetic Operations

Let *r* is the old grey level value of a pixel, *s* is the new grey level value of a pixel, *a* is a positive constant

level value of a pixel, c is a positive constant.

Multiplication: s = cr

Division: s = r/c

Complement: s = 255 - r

Arithmetic Operations (cont)

To ensure that the results are integers in the range [0, 255], the following operations should be performed.

Rounding the result to obtain an integer

and

Clipping the result by

• setting s = 0, if s < 0

• set s = s-255*n, if s > 255

• set s = 0, if s < 0

Example

grey level: 7-76

grey level: 21-228

x5:clipping

Old pixel value > 51 → new pixel value > 255 Those pixel values are clipped to be 255.

It is often safest to change to an image format with a large range, e.g. floating point, before multiplication.

x5:Wrap around

Old pixel value > 51 → new pixel value > 255
Those pixel values are wrapped around from 255 back to 0.

Addition & Subtraction

- Lighten/darken the input image
- Some details may be lost and those are not retrievable.
 (because of the rounding and clipping)

MATLAB code

```
commands:
r = imread('filename.ext');
s1 = uint8(double(r) + c);
s2 = uint8(double(r) - c);
```

Example: Addition & Subtraction

Added by 128

Subtracted by 128

Some details are lost!

Multiplication & Division

- Lighten/darken the image
- Some details may be lost and those are not retrievable. (but less than addition/subtraction)
- MATLAB code

```
r = imread('filename.ext');

s1 = uint8(double(r)*c); or

s2 = uint8(double(r)/c);
```

Example: Multiplication & Division

Multiplied by 2

Divided by 2

Some details are lost!

Comparison: Addition VS Multiplication

Addition

Multiplication

Comparison: Subtraction VS Division

Subtraction

Division

Complement

- Create the negative image.
- •Suited for enhancing white or grey details embedded in dark regions of an image, especially when the black areas are dominant in size.
- •MATLAB Code:

```
x = imread('filename.ext');
y = uint8(255 - double(x));
```

Example: Complement

Example: Complement

Mammogram using negative transformation

Easy to see tissues in negative image

Recap: Histogram

•Histogram:

A graph showing the number of pixels at each intensity level or color.

Normalized histogram:

- A histogram where the number of pixel is divided by the total number of pixels, so the range is [0,1]
- corresponding to the pdf function.

Cumulative histogram:

- A histogram which shows the number of pixels whose intensity is *less*or equal to each intensity divided by the total number of pixels.
- corresponding to the CDF function.

Recap: Histogram


```
>> p = imread('pout.tif')
>> imshow(p)
```

>> figure; histogram(p)

What does Histogram describe?

Brightness

- Dark image has grey levels (histogram) cluttered at the lower end.
- Bright image has grey levels (histogram) cluttered at the higher end.

Contrast

- Well-contrasted image has grey levels (histogram) spread out over much of the range.
- Low-contrasted image has grey levels (histogram) cluttered in the center.

Contrast Enhancement

Contrast enhancement by spreading out Histogram

1. Histogram Stretching/Contrast Stretching

2. Histogram Equalization

Histogram/Contrast Stretching

•A process that expanding the range of the intensity levels in an image so that it expands the full intensity range of the recording medium or display device.

Histogram/Contrast Stretching

Stretch out the grey levels in the center of the range by applying the piecewise linear function:

Where g is the old grey level, g_{new} is the stretched grey level, A_{new} can be 0 and B_{new} can be 255.

COMP411 25

Transfer function

Given an image with histogram shown as below:

grey level-g	# of pixels has g-H ₁ (g)
0	15
1	0
2	0
3	0
4	0
5	70
6	110
7	45
8	70
9	35
10	0
11	0
12	0
13	0
14	0
15	15

$$[A,B] \rightarrow [A_{new},B_{new}]$$

•Stretch grey levels from [5, 9] to [2, 14]

$$g_{new} = \left(\frac{14-2}{9-5}\right)(g-5)+2 \quad 5 \le g \le 9$$

$$g_{new} = g$$
 $g < 5$ or $g > 9$

Old grey level	New grey level
g	g_{new}
5	2
6	5
7	8
8	11
9	14

•grey levels outside this range are left as original values.

New grey level-g _{new}	# of pixels has g-H _I (g _{new})
0	15
1	0
2	70
3	0
4	0
5	110
6	0
7	0
8	45
9	0
10	0
11	70
12	0
13	0
14	35
15	15

The histogram after stretching

original

output

Matlab/Scilab: Histogram/Contrast Stretching

From image processing toolbox

Command: imadjust

Syntax:

```
J=imadjust(I, [A,B], [C,D], gamma);
```

- convert intensity I ≤ A to B
- convert intensity I ≥ C to D
- values of A,B,C and D must be between 0 and 1
- Gamma (γ): specifies the shape of the curve describing the relationship between the values in I and J. (positive constant; < 1 concave downward, > 1 concave upward)

Gamma value (Power-Law Transformation)

Gamma value (Power-Law Transformation)

Image Courtesy of Susan Cohen

Original

Adjust by using Gamma = 0.5

Matlab/Scilab: Piecewise Linear

A function for applying a piecewise linear-stretching function

Command: find

Syntax: find (condition)

Example:

$$pix = find(I >= A \& I < B);$$

pix holds the index for members in I having intensity between A and B include A.

Similar syntax:

Histogram Equalization

- •The trouble with the methods of histogram/contrast stretching is that they require user input.
- Histogram equalization is an entirely automatic procedure.
- •Idea: Each grey level in the image occurs with the same frequency (the same number of pixel counts).
- •To give the output image with uniform intensity distribution.
- To maximize the contrast evenly across the entire image.

Histogram Equalization

•Intensity level g_{new} of the output image I_{new}

$$g_{new} = T(g) = \sum_{\alpha=0}^{g} p_{\mathrm{I}}(\alpha),$$

where g is the intensity level of input image I. $p_{\rm I}(\alpha)$ is the probability density function (pdf) for intensity level α . $\sum_{\alpha=0}^g p_{\rm I}(\alpha)$ is the cumulative distribution function (CDF) of intensity level g.

•The pdf of output image I_{new} is uniform.

$$p_{I_{new}}(g_{new}) = \begin{cases} 1 & \text{for } 0 < g_{new} < 1 \\ 0 & \text{otherwise} \end{cases}$$

The normalized g_{new} (the range of g_{new} is 0-1)

Suppose that a 3-bit grayscale image of size 64x64 pixels has the intensity distribution as below:

Intensity level g	Number of pixels having g
0	790
1	1023
2	850
3	656
4	329
5	245
6	122
7	81

pdf before histogram equalization

The image has 2^3 =8 levels from g=0-7 and the total number of pixels is 64x64=4096.

1. work out $p_{\mathbf{I}}(g)$

Intensity level g	Number of pixels having g-h(g)	$p_{i}(g) = N(g)/4096$
0	790	0.19
1	1023	0.25
2	850	0.21
3	656	0.16
4	329	0.08
5	245	0.06
6	122	0.03
7	81	0.02

COMP411

2. use $p_{I}(g)$ to work out g_{new} .

Intens ity level g	Number of pixels having g-h(g)	p _I (g)=h(g) /4096	$g_{new} = \sum_{i=0}^{g} p_{i}(g)$
0	790	0.19	0.19
1	1023	0.25	0.19+0.25=0.44
2	850	0.21	0.19+0.25+0.21 =0.65
3	656	0.16	0.81
4	329	0.08	0.89
5	245	0.06	0.95
6	122	0.03	0.98
7	81	0.02	1

- 3. convert the normalized g_{new} to g_{new} with range 0-7.
- 4. round g_{new} to nearest integer.

Intens ity level g	Number of pixels having g-h(g)	p (g)=h(g) /4096	$g_{new} = \sum_{g} p_{\parallel}(g)$	g _{new} with range 0-7	Rounded g _{new}
0	790	0.19	0.19	1.33	1
1	1023	0.25	0.44	3.08	3
2	850	0.21	0.65	4.55	5
3	656	0.16	0.81	5.67	6
4	329	0.08	0.89	6.23	6
5	245	0.06	0.95	6.65	7
6	122	0.03	0.98	6.86	7
7	81	0.02	1	7	7

5. generate the new histogram.

g _{new}	$p_{lnew}(g_{new})$
1	0.19
3	0.25
5	0.21
6	0.16
6	0.08
7	0.06
7	0.03
7	0.02

pdf after histogram equalization

Before After

http://www.mathworks.com/access/helpdesk/help/toolbox/images/histeq.html

Matlab: Histogram Equalization

Command: histeq (from SIVP toolbox)

Syntax: histeq(image, out_graylev)
 histeq(indexed_im, map, out_greylev)

Lookup Tables

- Used to improve the performance of point operations
- •Why?
 - one intensity is always mapped to the same value.
 - reduce the computing time
- Lookup table: array

Input intensity: index in the array

Output intensity: value of the number

Example: Lookup Table

```
Function: output = input/2;
```

```
T = uint8(floor(0:255)/2);
output = T(input);
```

Example: Lookup Table

Function:

$$output = \begin{cases} 0.6667 \times input; & input < 96 \\ 2 \times input - 128; & 96 \le input < 161 \\ 0.6632 \times input + 85.8947; 161 \le input \end{cases}$$

MATLAB

```
>> T1 = 0.6667*[0:95];

>> T2 = 2*[96:160] - 128;

>> T3 = 0.6632*[161:255] + 85.8947;

>> T = uint8(floor([T1 T2 T3]));
```

Q&A