Instituto Federal do Sul de Minas Gerais

Projeto e Análise de Algoritmos

(Grafos)

Aula 02 – Representação Computacional Material - Prof. Humberto César Brandão de Oliveira Prof. Douglas Castilho

Última aula

- Grafos:
 - Vértices
 - Arestas
- Alguns tipos de grafos:
 - Grafos simples
 - Grafos simples completos
 - Grafos simples vazios
 - Grafos não orientados
 - Grafos orientados
 - Grafos valorados

- E se quisermos <u>armazenar</u> um grafo em um computador?
- Precisamos <u>armazenar os dados essenciais</u> da definição de grafo;

- A partir desta informação podemos, por exemplo:
 - Construir uma representação visual ou efetuar operações sobre o grafo;
 - Aplicar algoritmos para otimizar determinadas tarefas;
 - Determinar se alguma tarefa é possível de ser realizada.

- Diversas são as formas de representar tal estrutura computacionalmente;
- Estruturas comumente utilizadas:
 - Matriz de Adjacência;
 - Matriz de Incidência;
 - Lista de Adjacência.

Matriz de Adjacência

- Lembrando o conceito de adjacência:
 - a é adjacente a b se a está conectado a b;
- A matriz de adjacência possui a informação que reflete este conceito:
- Suponha a matriz quadrada M

$$m_{i,j} = \begin{cases} 1, se \ i \ \'e \ adjacente \ a \ j \\ 0, em \ caso \ contr\'ario \end{cases}$$

Matriz de adjacência

$$m_{i,j} = \begin{cases} 1, se \ i \ \acute{e} \ adjacente \ a \ j \\ 0, em \ caso \ contr\'{a}rio \end{cases}$$

<u></u>	<u>_</u> (1)
2	
	G

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

• Em um grafo K₄, como seria a matriz de adjacência?

• E em um grafo complemento de K₄?

Matriz de adjacência

$$m_{i,j} = \begin{cases} 1, se \ i \ \'e \ adjacente \ a \ j \\ 0, em \ caso \ contr\'ario \end{cases}$$

Em um grafo K₄, como seria a matriz de adjacência?

	0	1	2	3
0	0	1	1	1
1	1	0	1	1
2	1	1	0	1
3	1	1	1	0

Matriz de adjacência

$$m_{i,j} = \begin{cases} 1, se \ i \ \acute{e} \ adjacente \ a \ j \\ 0, em \ caso \ contr\'{a}rio \end{cases}$$

E em um grafo complemento de K₄?

	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0

Matriz de adjacência

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

- Vantagem????
- Desvantagem???

G

- Vantagem:
 - Acesso:

$$\Theta(1)$$

- Desvantagens???
 - Memória:

$$\Theta(\left|V\right|^2)$$

	0	1	2	3
0	0	1	0	0
1	1	0	1	0
2	0	1	0	1
3	0	0	1	0

• É possível representar grafos direcionados usando matriz de adjacência???

• É possível representar grafos direcionados usando matriz de adjacência???

Uma forma...

	a	b	С	d
a	0	+1	-1	0
b	- 1	0	+1	+1
С	+1	- 1	0	-1
d	0	-1	+1	0

• É possível representar grafos direcionados usando matriz de adjacência???

Outra forma...

	a	b	c	d
a	0	0	1	0
b	1	0	0	0
С	0	1	0	1
d	0	1	0	0

• É possível representar grafos com <u>arestas laço</u> utilizando matriz de adjacência?

Matriz de adjacência

• É possível representar grafos com <u>arestas laço</u> utilizando matriz de adjacência?

	a	b	c	d
a	0	1	1	1
b	1	1	1	1
С	1	1	0	1
d	1	1	1	0

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando matriz de adjacência?

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando matriz de adjacência?

	a	b	c	d
a	0	1	2	1
b	1	0	1	1
С	2	1	0	1
d	1	1	1	0

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando matriz de adjacência?

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando matriz de adjacência?

	a	b	c	d	e
a	∞	0	∞	∞	∞
b	∞	∞	0	∞	∞
С	∞	∞	∞	1	∞
d	∞	∞	1	∞	1
e	∞	∞	∞	∞	∞

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> e <u>com arestas paralelas</u> utilizando matriz de adjacência?

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> e <u>com arestas paralelas</u> utilizando matriz de adjacência?

	a	b
a	0	-2
b	+2	0

Não é possível sem utilizar estruturas auxiliares.

Matriz de Incidência

Matriz de Incidência

A matriz de incidência possui a seguinte dimensão:

Suponha a matriz M_{|V|x|A|}

$$m_{i,j} = \begin{cases} 1, se \ a \ aresta \ j \ incide \ no \ v\'ertice \ i \\ 0, em \ caso \ contr\'ario \end{cases}$$

Matriz de Incidência

$$m_{i,j} = \begin{cases} 1, se \ a \ aresta \ j \ incide \ no \ v\'ertice \ i \\ 0, em \ caso \ contr\'ario \end{cases}$$

	e1	e2	
a	1	0	
b	1	1	
С	0	1	

Representação Matriz de Incidência

• Podemos representar <u>grafos orientados</u> utilizando matriz de incidência???

Matriz de Incidência

$$m_{i,j} = \begin{cases} -1, \ se \ a \ aresta \ j \ tem \ como \ origem \ o \ v\'ertice \ i \\ +1, \ se \ a \ aresta \ j \ tem \ como \ destino \ o \ v\'ertice \ i \\ 0, \ em \ caso \ contr\'ario \end{cases}$$

	e1	e2	e3
a	- 1	0	+1
b	+1	- 1	0
С	0	+1	-1

Matriz de Incidência

• É possível representar grafos com <u>arestas laço</u> utilizando matriz de incidência?

Matriz de Incidência

• É possível representar grafos com <u>arestas laço</u> utilizando matriz de incidência?

	e1	e2	e 3	e4	e5	е6	e7
a	1	1	1	0	0	0	0
b	1	0	0	1	1	0	2
С	0	1	0	1	0	1	0
d	0	0	1	0	1	1	0

Matriz de Incidência

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando matriz de incidência?

Matriz de Incidência

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando matriz de incidência?

Matriz de Incidência

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando matriz de incidência?

Matriz de Incidência

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando matriz de incidência?

$$m_{i,j} = \begin{cases} c_j, \text{ se a aresta } j \text{ incide no v\'ertice } i \\ \infty, \text{ em caso contr\'ario} \end{cases}$$

	e1	E2	e3
a	10	20	∞
С	10	∞	30
d	∞	20	30

Lista de Adjacência

Representação Lista de Adjacência

• Estrutura de dados:

□ Vetor de listas;

Representação Lista de Adjacência

• Podemos representar grafos orientados utilizando lista de adjacência?

Lista de Adjacência

• Podemos representar grafos orientados utilizando lista de adjacência?

Lista de Adjacência

• É possível representar grafos com <u>arestas laço</u> utilizando lista de adjacência?

Lista de Adjacência

• É possível representar grafos com <u>arestas laço</u> utilizando lista de adjacência?

Lista de Adjacência

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando lista de adjacência?

Lista de Adjacência

• É possível representar grafos com <u>arestas</u> <u>paralelas</u> utilizando lista de adjacência?

Representação Lista de Adjacência

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando lista de adjacência?

Lista de Adjacência

• É possível representar grafos com <u>arestas</u> <u>valoradas</u> utilizando lista de adjacência?

Lista de Adjacência

Vantagem?

Desvantagem?

Vetor de Listas

Lista de Adjacência

- Vantagem?
 - Memória:

$$\Theta(|V|+|A|)$$

- Desvantagem
 - Acesso:

 $\Theta(|A|)$

Vetor de Listas

Bibliografia

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.;
 (2002). Algoritmos Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro. Editora Campus.
 - Capítulo 22.1
- ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson;
 - Capítulo 7.2

