prior_montecarlo

May 8, 2019

1 Run and process the prior monte carlo and pick a "truth" realization

A great advantage of exploring a synthetic model is that we can enforce a "truth" and then evaluate how our various attempts to estimate it perform. One way to do this is to run a monte carlo ensemble of multiple parameter realizations and then choose one of them to represent the "truth". That will be accomplished in this notebook.

```
In [1]: import os
    import shutil
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    plt.rcParams['font.size']=12
    import flopy
    import pyemu
```

flopy is installed in /Users/jeremyw/Dev/gw1876/activities_2day_mfm/notebooks/flopy

1.0.1 set the t_d or "template directory" variable to point at the template folder and read in the PEST control file

1.0.2 Decide what pars are uncertain in the truth

We need to decide what our truth looks like - should the pilot points or the grid-scale pars be the source of spatial variability? or both?

```
In [3]: par = pst.parameter_data
    # grid pars
    #should_fix = par.loc[par.pargp.apply(lambda x: "gr" in x), "parnme"]
    # pp pars
    #should_fix = par.loc[par.pargp.apply(lambda x: "pp" in x), "parnme"]
    #pst.npar - should_fix.shape[0]
```

1.0.3 run the prior ensemble in parallel locally

This takes advantage of the program pestpp-swp which runs a parameter sweep through a set of parameters. By default, pestpp-swp reads in the ensemble from a file called sweep_in.csv which in this case we made just above.

print('number of realization in the ensemble before dropping: ' + str(obs_df.shape[0])

number of realization in the ensemble before dropping: 200

drop any failed runs

1.0.5 confirm which quantities were identified as forecasts

1.0.6 now we can plot the distributions of each forecast

We see that under scenario conditions, many more realizations for the flow to the aquifer in the headwaters are postive (as expected). Lets difference these two:

```
In [10]: sfnames = [f for f in fnames if "1980" in f or "_001" in f]
    hfnames = [f for f in fnames if "1979" in f or "_000" in f]
    diff = obs_df.loc[:,hfnames].values - obs_df.loc[:,sfnames].values
    diff = pd.DataFrame(diff,columns=sfnames)
    diff.hist(figsize=(10,10))
    plt.show()
```


We now see that the most extreme scenario yields a large decrease in flow from the aquifer to the headwaters (the most negative value)

1.0.7 setting the "truth"

We just need to replace the observed values (obsval) in the control file with the outputs for one of the realizations on obs_df. In this way, we now have the nonzero values for history matching, but also the truth values for comparing how we are doing with other unobserved quantities. I'm going to pick a realization that yields an "average" variability of the observed gw levels:

idx hist_swgw

Out[11]:	run id	
	149	184.1517
	166	206.2137
	77	276.1604
	59	314.8956
	100	331.3931
	174	338.6796
	35	343.6858
	161	351.1038
	120	365.6083
	82	376.8029
	0	384.3066
	73	394.6332
	98	398.3461
	41	401.3468
	21	402.4046
	180	408.5494
	52	420.0638
	168	424.3355
	57	446.0459
	40	458.2126
	3	462.9558
	118	475.5129 477.4851
	132	
	184 117	477.9743 479.2090
	131	487.5205
	37	502.1088
	34	513.7058
	56	521.4803
	95	521.8308
		021.0000
	4	2438.2690
	178	2617.6400
	115	2927.8600
	116	2943.3860
	32	3007.2270
	83	3019.2510
	158	3052.2840
	17	4015.0000
	5	4015.0000
	24	4015.0000
	43	4015.0000
	25	4015.0000
	147	4015.0000

```
12
                4015.0000
         165
                4015.0000
         69
                4015.0000
                4015.0000
         96
         157
                4015.0000
         159
                4015.0000
         51
                4015.0000
         175
                4015.0000
         173
                4015.0000
         55
                4015.0000
         78
                4015.0000
                4015.0000
         76
         137
                4015.0000
         64
                4015.0000
         65
                4015.0000
         108
                4015.0000
         169
                4015.0000
         Name: part_time, Length: 200, dtype: float64
In [12]: obs_df.loc[idx,pst.nnz_obs_names]
Out[12]: fo_39_19791230
                                9714.600000
         hds_00_002_009_000
                                  35.826954
         hds_00_002_015_000
                                  34.983761
         hds_00_003_008_000
                                  35.923908
         hds_00_009_001_000
                                  36.820004
         hds_00_013_010_000
                                  34.999874
         hds_00_015_016_000
                                  34.566364
         hds_00_021_010_000
                                  34.772247
         hds_00_022_015_000
                                  34.603825
         hds_00_024_004_000
                                  34.965450
         hds_00_026_006_000
                                  34.759605
         hds_00_029_015_000
                                  34.272018
         hds_00_033_007_000
                                  34.105034
         hds_00_034_010_000
                                  33.770840
         Name: 3, dtype: float64
   Lets see how our selected truth does with the sw/gw forecasts:
```

```
In [13]: obs_df.loc[idx,fnames]
```

```
Out[13]: fa_hw_19791230
                               -1123.553000
         fa_hw_19801229
                                -197.152255
         fa_tw_19791230
                                  58.586980
         fa_tw_19801229
                                 631.809570
         hds_00_013_002_000
                                  36.341404
         hds_00_013_002_001
                                  35.233444
         part_time
                                 462.955800
         part_status
                                   2.000000
         Name: 3, dtype: float64
```

Assign some initial weights. Now, it is custom to add noise to the observed values...we will use the classic Gaussian noise...zero mean and standard deviation of 1 over the weight

```
In [14]: pst = pyemu.Pst(os.path.join(t_d,"freyberg.pst"))
        obs = pst.observation_data
        obs.loc[:,"obsval"] = obs_df.loc[idx,pst.obs_names]
        obs.loc[obs.obgnme=="calhead","weight"] = 10.0
        obs.loc[obs.obgnme=="calflux","weight"] = 1.0
```

here we just get a sample from a random normal distribution with mean=0 and std=1. The argument indicates how many samples we want - and we choose pst.nnz_obs which is the the number of nonzero-weighted observations in the PST file

```
In [15]: np.random.seed(seed=0)
         snd = np.random.randn(pst.nnz_obs)
         noise = snd * 1./obs.loc[pst.nnz_obs_names,"weight"]
         pst.observation_data.loc[noise.index,"obsval"] += noise
         noise
Out[15]: obsnme
         fo_39_19791230
                               1.764052
         hds_00_002_009_000
                               0.040016
         hds_00_002_015_000
                               0.097874
         hds_00_003_008_000
                               0.224089
         hds_00_009_001_000
                               0.186756
         hds_00_013_010_000
                              -0.097728
         hds_00_015_016_000
                               0.095009
         hds_00_021_010_000
                              -0.015136
         hds_00_022_015_000
                              -0.010322
         hds_00_024_004_000
                               0.041060
         hds 00 026 006 000
                               0.014404
         hds_00_029_015_000
                               0.145427
         hds 00 033 007 000
                               0.076104
         hds_00_034_010_000
                               0.012168
         Name: weight, dtype: float64
```

Then we write this out to a new file and run pestpp-ies to see how the objective function looks

Now we can read in the results and make some figures showing residuals and the balance of the objective function

<Figure size 432x288 with 0 Axes>

Out[17]:		name	group	measured	modelled	\
	name					
	fo_39_19791230	fo_39_19791230	calflux	9716.364052	11430.000000	
	hds_00_002_009_000	hds_00_002_009_000	calhead	35.866970	37.107498	
	hds_00_002_015_000	hds_00_002_015_000	calhead	35.081635	35.045185	
	hds_00_003_008_000	hds_00_003_008_000	calhead	36.147998	37.397289	
	hds_00_009_001_000	hds_00_009_001_000	calhead	37.006759	39.546417	
	hds_00_013_010_000	hds_00_013_010_000	calhead	34.902146	35.571774	
	hds_00_015_016_000	hds_00_015_016_000	calhead	34.661373	34.835716	
	hds_00_021_010_000	hds_00_021_010_000	calhead	34.757112	35.386250	
	hds_00_022_015_000	hds_00_022_015_000	calhead	34.593503	34.577492	
	hds_00_024_004_000	hds_00_024_004_000	calhead	35.006510	36.760464	
	hds_00_026_006_000	hds_00_026_006_000	calhead	34.774010	35.896149	
	hds_00_029_015_000	hds_00_029_015_000	calhead	34.417446	34.453842	
	hds_00_033_007_000	hds_00_033_007_000	calhead	34.181138	34.678810	
	hds_00_034_010_000	hds_00_034_010_000	calhead	33.783007	34.118073	
		residual weight	•			
	name	1710 005040 1 1				
	fo_39_19791230	-1713.635948 1.0				
	hds_00_002_009_000	-1.240529 10.0				
	hds_00_002_015_000	0.036450 10.0				
	hds_00_003_008_000	-1.249292 10.0				
	hds_00_009_001_000	-2.539658 10.0				
	hds_00_013_010_000	-0.669627 10.0				
	hds_00_015_016_000	-0.174343 10.0				
	hds_00_021_010_000	-0.629138 10.0				
	hds_00_022_015_000	0.016011 10.0				
	hds_00_024_004_000	-1.753954 10.0				
	hds_00_026_006_000	-1.122139 10.0				
	hds_00_029_015_000	-0.036396 10.0)			
	hds_00_033_007_000	-0.497672 10.0)			
	hds_00_034_010_000	-0.335065 10.0)			

Publication ready figs - oh snap!

Depending on the truth you chose, we may have a problem - we set the weights for both the heads and the flux to reasonable values based on what we expect for measurement noise. But the contributions to total phi might be out of balance - if contribution of the flux measurement to total phi is too low, the history matching excersizes (coming soon!) will focus almost entirely on minimizing head residuals. So we need to balance the objective function. This is a subtle but very important step, especially since some of our forecasts deal with sw-gw exchange

```
In [18]: pc = pst.phi_components
    #target = {"calflux":0.3 * pc["calhead"]}
    target = {"calhead":500,"calflux":500}
    pst.adjust_weights(obsgrp_dict=target)
    pst.plot(kind='phi_pie')
Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x18264b24e0>
```


Lets see what the new flux observation weight is:

```
In [19]: pst.observation_data.loc[pst.nnz_obs_names,"weight"]
```

Out[19]: obsnme fo_39_19791230 0.013049 hds_00_002_009_000 5.750067 hds_00_002_015_000 5.750067 hds_00_003_008_000 5.750067 hds_00_009_001_000 5.750067 hds_00_013_010_000 5.750067 hds_00_015_016_000 5.750067 hds_00_021_010_000 5.750067 hds_00_022_015_000 5.750067

```
hds_00_024_004_000 5.750067
hds_00_026_006_000 5.750067
hds_00_029_015_000 5.750067
hds_00_033_007_000 5.750067
hds_00_034_010_000 5.750067
Name: weight, dtype: float64
```

Now, for some super trickery: since we changed the weight, we need to generate the observation noise using these new weights for the error model (so meta!)

```
In [20]: obs = pst.observation_data
         np.random.seed(seed=0)
         snd = np.random.randn(pst.nnz_obs)
         noise = snd * 1./obs.loc[pst.nnz_obs_names,"weight"]
         obs.loc[:,"obsval"] = obs df.loc[idx,pst.obs names]
         pst.observation_data.loc[noise.index,"obsval"] += noise
         noise
Out[20]: obsnme
         fo_39_19791230
                               135.190144
         hds_00_002_009_000
                                 0.069592
         hds_00_002_015_000
                                 0.170213
         hds_00_003_008_000
                                 0.389716
         hds_00_009_001_000
                                 0.324789
         hds_00_013_010_000
                                -0.169959
         hds 00 015 016 000
                                 0.165231
         hds_00_021_010_000
                                -0.026323
         hds 00 022 015 000
                                -0.017951
         hds_00_024_004_000
                                 0.071408
         hds_00_026_006_000
                                 0.025051
         hds_00_029_015_000
                                 0.252914
         hds_00_033_007_000
                                 0.132353
         hds_00_034_010_000
                                 0.021161
         Name: weight, dtype: float64
In [21]: pst.write(os.path.join(t_d, "freyberg.pst"))
         pyemu.os_utils.run("pestpp-ies freyberg.pst",cwd=t_d)
         pst = pyemu.Pst(os.path.join(t_d, "freyberg.pst"))
         print(pst.phi)
         pst.plot(kind='phi_pie')
         plt.show()
noptmax:0, npar_adj:14819, nnz_obs:14
884.8855030468067
```


Whew! confused yet? Ok, let's leave all this confusion behind...its mostly academic, just to make sure we are using weights that are in harmony with the noise we added to the truth...Just to make sure we have everything working right, we should be able to load the truth parameters, run the model once and have a phi equivalent to the noise vector:

we will run this with noptmax=0 to preform a single run. Pro-tip: you can use any of the pestpp-### binaries/executables to run noptmax=0

17.528847226654747

- 57							
Out [23]:	name		name	group	measured	modelled	\
	fo_39_19791230	fo 39 1	9791230	calflux	9849.790144	9714.600000	
	hds_00_002_009_000	hds_00_002_		calhead	35.896546	35.826954	
	hds_00_002_015_000	hds_00_002	_	calhead	35.153974	34.983761	
	hds_00_003_008_000	hds_00_003_	_	calhead	36.313624	35.923908	
	hds_00_009_001_000	hds_00_009_	_	calhead	37.144792	36.820004	
	hds_00_013_010_000	hds_00_013_	_	calhead	34.829915	34.999874	
	hds_00_015_016_000	hds_00_015_	_	calhead	34.731595	34.566364	
	hds_00_021_010_000	hds_00_021_	010_000	calhead	34.745925	34.772247	
	hds_00_022_015_000	hds_00_022_	015_000	calhead	34.585874	34.603825	
	hds_00_024_004_000	hds_00_024_	004_000	calhead	35.036858	34.965450	
	hds_00_026_006_000	hds_00_026_	006_000	calhead	34.784656	34.759605	
	hds_00_029_015_000	hds_00_029_	015_000	calhead	34.524933	34.272018	
	hds_00_033_007_000	hds_00_033_	007_000	calhead	34.237387	34.105034	
	hds_00_034_010_000	hds_00_034_	010_000	calhead	33.792000	33.770840	
		residual	weigh	t			
	name						
	fo_39_19791230	135.190144	0.01304	9			
	hds_00_002_009_000	0.069592	5.75006				
	hds_00_002_015_000	0.170213	5.75006	7			
	hds_00_003_008_000	0.389716	5.75006				
	hds_00_009_001_000	0.324789	5.75006				
	hds_00_013_010_000	-0.169959	5.75006				
	hds_00_015_016_000	0.165231	5.75006				
	hds_00_021_010_000	-0.026323	5.75006				
	hds_00_022_015_000	-0.017951	5.75006				
	hds_00_024_004_000	0.071408	5.75006				
	hds_00_026_006_000	0.025051	5.75006				
	hds_00_029_015_000	0.252914	5.75006				
	hds_00_033_007_000	0.132353	5.75006				
	hds_00_034_010_000	0.021161	5.75006	7			

The residual should be exactly the noise values from above. Lets load the model (that was just run using the true pars) and check some things

```
In [24]: m = flopy.modflow.Modflow.load("freyberg.nam",model_ws=m_d)
In [25]: a = m.upw.hk[0].array
    #a = m.rch.rech[0].array
```

```
a = np.ma.masked_where(m.bas6.ibound[0].array==0,a)
print(a.min(),a.max())
c = plt.imshow(a)
plt.colorbar()
plt.show()
```

1.017649 39.28789

1.0.8 see how our existing observation ensemble compares to the truth

forecasts:

observations:

