Probabilistic Linear Solvers for Machine Learning

Jonathan Wenger

Philipp Hennig

NeurIPS 2020

$oldsymbol{A}oldsymbol{x}_* = oldsymbol{b}$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric positive definite.

ML-specific Challenges

- large-scale systems
- characteristic structure
- generative information subject to noise

general linear model $oldsymbol{X}^{ op}oldsymbol{X}$

kernel matrix $\boldsymbol{K} = k_{\mathsf{RBF}}(\boldsymbol{X}, \boldsymbol{X})$

Hessian matrix $\mathbf{H} = \nabla^2 f(\boldsymbol{\theta})$

Probabilistic Linear Solvers

Numerical Algorithms Perform (Gaussian) Inference

Algorithm Components

- 1. Prior $p(\mathbf{A})$ or $p(\mathbf{H})$
- 2. Policy $s_i = -\mathbb{E}[\mathbf{H}](Ax_{i-1} b)$
- 3. Observation $y_i = As_i$
- 4. Belief Update for A and H
- 5. (Uncertainty Calibration)

Theoretical Properties

- + Conjugate Directions Method ($\leq n$ iters)
- → Recovers CG given certain priors
- + Time complexity $\mathcal{O}(kn^2)$
- Space complexity $\mathcal{O}(kn)$

2

Covariance Class and Uncertainty Calibration

Prior Information Improves Uncertainty Estimation

Desiderata

No.	Property	
(1)	distribution over matrices	✓
(2)	symmetry	/
(3)	positive definiteness	~
(4)	positive linear combination in same distr. family	/
(5)	corresponding priors on matrix and inverse	\checkmark
:	:	:
	•	

Covariance Class

$$\begin{aligned} p(\mathbf{A}) &= \mathcal{N}(\mathbf{A}; \boldsymbol{A}_0, \boldsymbol{W}_0^{\mathbf{A}} \otimes \boldsymbol{W}_0^{\mathbf{A}}) \\ p(\mathbf{H}) &= \mathcal{N}(\mathbf{H}; \boldsymbol{A}_0^{-1}, \boldsymbol{W}_0^{\mathbf{H}} \otimes \boldsymbol{W}_0^{\mathbf{H}}) \end{aligned}$$

where $\boldsymbol{W}_0^{\mathbf{A}}$ and $\boldsymbol{W}_0^{\mathbf{H}}$ admit degrees of freedom for uncertainty calibration.

Prior Spectral Knowledge

Spectrum $\lambda(\boldsymbol{A})$

Rayleigh Quotient
$$R(\boldsymbol{A}, \boldsymbol{s}) = \frac{\boldsymbol{s}^{\top} \boldsymbol{A} \boldsymbol{s}}{\boldsymbol{s}^{\top} \boldsymbol{s}}$$

Software and Applications

ProbNum: Probabilistic Numerics in Python

ProbNum implements probabilistic numerical methods in Python.

https://github.com/probabilistic-numerics/probnum

or alternatively pip install probnum.

Future Applications

Empirical Risk Minimization $\mathbf{H} oldsymbol{d} = \mathbf{g}$

4

Probabilistic Linear Solvers for Machine Learning

Jonathan Wenger and Philipp Hennig

- + Linear systems in ML exhibit characteristic structure.
- + Probabilistic linear solvers make use of prior generative information.
- + Limited computational resources induce *numerical uncertainty*.

Preprint arXiv

2010.09691

Implementation

https://github.com/probabilistic-numerics/probnum

Experiments

 $[f(\Lambda)]$

https://github.com/JonathanWenger/
probabilistic-linear-solvers-for-ml