

Ensenão $C_2H_4 + 3O_2$ $2CO_2 + 2H_2O:$ [1] في التفاعل الآتي [1]->

إذا كانت سرعة استهلاك O2 = O3 ، مول/لتر .ث ، احسب :

ا- سرعة إنتاج CO2 كان مركم - سرعة اختفاء C2H4 اختفاء - سرعة إنتاج CO2 كان مركم المركب المركب

 $2ICI + H_2 \rightarrow I_2 + 2HCI$: حسب المعادلة ICl حسب المعادلة [۲] يتفاعل H_2

جد العلاقة بين معدل سرعة تكوّن I2 ومعدل سرعة تكوّن HCl في الفترة الزمنية نفسها . معدل سرعة تكوّن I2 ومعدل سرعة تكوّن الم $2NO + 2H_2 \rightarrow N_2 + 2H_2O$: [۳] في التفاعل الآتي [۳]

احسب معدل سرعة استهلاك NO إذا كان معدل سرعة تكوّن $N_2 = 10$, مول/لتر. ث . ح 100 آدا كان معدل سرعة تكوّن $N_2 = 10$, مول/لتر. ث .

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$: في التفاعل (٤]

إذا علمت أن تركيز الأكسجين في بداية التفاعل يساوي ٢٠,٠ مول/لتر ، وبعد (٥٠) ثانية أصبح تركيزه (٠,١) مول/لتر ، احسب

5.7/2 X.1 x 0/15:3 $H_2 + I_2 \rightarrow 2HI$

وعند دراسة تغير تركيز H2 مع الزمن تم الحصول على البيانات التالية :

[H ₂] (مول/لتر)	الزمن (ثانية)	
٠,٠١٨	صفر ۲	
٠,٠٠١٦٧		
.,1.1	٨	

ا معدل معدل معدل $F_2 \to 2NO_2$ معدل الآتي $F_2 \to 2NO_2$ الذا كان معدل سرعة استهلاك $F_3 \to 2NO_2$ مول/لتر.ث ، فإن معدل معدل سرعة إنتاج NO₂F (مول/لتر.ث) يساوي :

1,1-3 ب- ۲۰۰

 ClO^{-} مول/لتر.ث ، تكون سرعة استهلاك ClO_{3}^{-} سرعة انتاج ClO_{3}^{-} مول/لتر.ث ، تكون سرعة استهلاك ClO_{3}^{-} + $2Cl^{-}$ في التفاعل ClO_{3}^{-} + $2ClO_{3}^{-}$ + $2Cl^{-}$ تساوي (مول/لتر.ث):

ب- ۲۰٫۱ ج- ۱۱٫۰۲ ب

 $2N_2O_5 \rightarrow 4NO_2 + O_2$: في التفاعل الآتي -r

ب- سرعة تكون NO2 = سرعة استهلاك N2O5 ا- سرعة تكون NO2 = نصف سرعة استهلاك N2O5 (ع) سرعة تكون O2 = نصف سرعة استهلاك N2O5 ج- سرعة تكون O2 = ضعف سرعة استهلاك N2O5

[٧] أدرس البيانات الواردة في الجدول والمتعلقة بالتفاعل الآتي ، ثم أجب عن الأسئلة التي تليه :

CO _(g) +	$NO_{2(g)}$	\rightarrow	$CO_{2(g)}$	+	NO(g)
the same of the sa					(6)

(* -1(1 × 1))	7 (6)	002(g) 110(g)	
سرعة التفاعل (مول/لتر.ث)	الزمن (ث)	[NO ₂] مول/لتر	[CO] مول/لتر
F-1.× £,9		•,1••	٠,١٠٠
1.×۲,۲	1.	٠,٠٦٧	٠,٠٦٧
r-1.×1, Y	۲.	٠,٠٥٠	*, * 0 *
r-1 · × · , A	۲.	٠,٠٤٠	٠,٠٤٠
r-1.x.,0	٤٠	٠,٠٣٣	٠,٠٣٢
F-1 · × · , 1	1	.,.14	·, · 1 V

١- متى تكون سرعة التفاعل أعلى عند الزمن ٢٠ أم ٣٠ ثانية ؟ حدد ك ٢٠

- ٢- هل تبقى سرعة التفاعل ثابتة مع مرور الزمن ؟ لا
- ٣- ماذا يحدث لسرعة التفاعل مع تناقص تراكيز المواد المتفاعلة ؟ تعكر
 - ٤- متى تكون سرعة التفاعل أكبر ما يمكن عمد بداية التفاعل
- ٥- ماذا تسمى سرعة التفاعل عند الزمن صفر ؟ الرعظ الاشدائة
 - ٦- ماذا تسمى سرعة التفاعل عند زمن معين ؟ الـ عكالمطاه

مع خالص أمنياتي لكم بالنجاح والتفوق

