Домашняя работа по ТМВ №1

Корнев Илья А-136-19

Задание 1. Построить конечный автомат, распознающий язык

1.
$$L_1 = \{\omega \in \{a,b,c\}^* \, | |\omega|_c = 1\}$$

$$2.\ L_2 = \{\omega \in \{a,b\}^* \, | |\omega|_a \leq 2, |\omega|_b \geq 2\}$$

3.
$$L_3 = \{\omega \in \{a,b\}^* | |\omega|_a \neq |\omega|_b\}$$

Докажем, что данный язык не является регулярным:

Рассмотрим дополнение к языку $\overline{L_3} = \{\omega \in \{a,b\}^* \, ||\omega|_a = |\omega|_b\}$

Фиксируем произвольное n

Выберем $\omega = a^n b^n \in \overline{L}$

Выберем разбиение слова ω

$$x = a^{n-1}$$

y = a

 $z = b^n$

 $xy^kz \notin \overline{L} \implies \overline{L}$ — не является регулярным $\implies L$ — не является регулярным, следовательно не существует ДКА, распознающий язык L

$$4.\ L_4 = \{\omega \in \{a,b\}^* | \omega\omega = \omega\omega\omega\}$$

Единственное слово, в языке $oldsymbol{L}$ это пустое слово $oldsymbol{\lambda}$

Задание 2. Построить конечный автомат, используя прямоу произведение

1.
$$L_1 = \{\omega \in \{a,b\}^* | |\omega|_a \ge 2 \land |\omega|_b \ge 2\}$$
 Автомат который распознает язык $L_{11} = \{\omega \in \{a,b\}^* | |\omega|_a \ge 2\}$:

Автомат который распознает язык $L_{12} = \{\omega \in \{a,b\}^* | |\omega|_b \geq 2\}$:

Построим прямое произведение этих автоматов:

 $\Sigma = \{a, b\};$

 $Q = \{AD, AE, AF, BD, BE, BF, CD, CE, CF\};$

s = AD;

 $T = \{CF\};$

Функции переходов:

$$\delta(AD, a) = BD; \delta(AD, b) = AE; \delta(AE, a) = BE; \delta(AE, b) = AF;$$

$$\delta(AF, a) = BF; \delta(AF, b) = AF; \delta(BD, a) = CD; \delta(BD, b) = BE;$$

$$\delta(BE, a) = CE; \delta(BE, b) = BF; \delta(BF, a) = CF; \delta(BF, b) = BF;$$

 $\delta(BE, a) = CE; \delta(BE, b) = BF; \delta(BF, a) = CF; \delta(BF, b) = BF;$ $\delta(CD, a) = CD; \delta(CD, b) = CE; \delta(CE, a) = CE; \delta(CE, b) = CF;$

 $\delta(CF, a) = CF; \delta(CF, b) = CF;$

 $2.~L_2=\{\omega\in\{a,b\}^*\,||\omega|\geq 3\wedge |\omega|$ нечётное $\}$

Автомат который распознает язык $L_{21} = \{\omega \in \{a,b\}^* | |\omega| \geq 3\}$:

Автомат который распознает язык $L_{22} = \{\omega \in \{a,b\}^* | |\omega| \text{ нечётное}\}:$

Построим прямое произведение этих автоматов:

 $\Sigma = \{a, b\};$

 $Q = \{AE, AF, AG, BE, BF, BG, CE, CF, CG, DE, DF, DG\}$

s = AE

 $T = \{DF\}$

Функции переходов:

$$\delta(AE, a) = BF; \delta(AE, b) = BF; \delta(AF, a) = BG; \delta(AF, b) = BG;$$

$$\delta(AG, a) = BF; \delta(AG, b) = BF; \delta(BE, a) = CF; \delta(BE, b) = CF;$$

$$\delta(BF,a) = CG; \delta(BF,b) = CG; \delta(BG,a) = CF; \delta(BG,b) = CF;$$

$$\delta(CE, a) = DF; \delta(CE, b) = DF; \delta(CF, a) = DG; \delta(CF, b) = DG;$$

$$\delta(CG, a) = DF; \delta(CG, b) = DF; \delta(DE, a) = DF; \delta(DE, b) = DF;$$

$$\delta(DF, a) = DG; \delta(DF, b) = DG; \delta(DG, a) = DF; \delta(DG, b) = DF;$$

Уберем лишние вершины:

3. $L_3 = \{\omega \in \{a,b\}^* | |\omega|_a$ чётно $\wedge |\omega|_b$ кратно трём $\}$ Автомат который распознает язык $L_{31} = \{\omega \in \{a,b\}^* | |\omega|_a$ чётно $\}$:

Автомат который распознает язык $L_{32} = \{\omega \in \{a,b\}^* | |\omega|_b \text{ кратно трём}\}$:

Построим прямое произведение этих автоматов:

$$\Sigma = \{a, b\};$$

$$Q = \{AC, AD, AE, BC, BD, BE\}$$

$$s = AC$$

$$T = \{AC\}$$

Функции переходов:

$$\delta(AC, a) = BC; \delta(AC, b) = AD; \delta(AD, a) = BD; \delta(AD, b) = AE;$$

$$\delta(AE, a) = BE; \delta(AE, b) = AC; \delta(BC, a) = AC; \delta(BC, b) = BD;$$

$$\delta(BD, a) = AD; \delta(BD, b) = BE; \delta(BE, a) = AE; \delta(BE, b) = BC;$$

4.
$$L_4 = \overline{L_3}$$

 $\overline{L_3} = \{\Sigma_{L_3}, Q_{L_3}, s_{L_3}, Q_{L_3} \setminus T_{L_3}, \delta_{L_3}\}$

$${f 5.} \ {m L_5} = {m L_2} ackslash {m L_3} \ {m L_2} ackslash {m L_3} = {m L_2} {m L_3} \ \Pi$$
ервый автомат:

Второй автомат:

Построим прямое произведение этих автоматов:

$$\Sigma = \{a, b\};$$

 $Q = \{AF, AG, AH, AI, AK, AJ, BF, BG, BH, BI, BK, BJ, CF, CG, CH, CI, CK, CJ, DF, DG, DH, DI, DK, DJ, EF, EG, EH, EI, EK, EJ\}$

```
s=AF T=\{EG,EH,EI,EK,EJ\} Функции переходов:
```

```
\delta\left(AF,a\right) = BI; \delta\left(AF,b\right) = BG; \delta\left(AG,a\right) = BK; \delta\left(AG,b\right) = BH; \\ \delta\left(AH,a\right) = BJ; \delta\left(AH,b\right) = BF; \delta\left(AI,a\right) = BF; \delta\left(AI,b\right) = BK; \\ \delta\left(AK,a\right) = BG; \delta\left(AK,b\right) = BJ; \delta\left(AJ,a\right) = BH; \delta\left(AJ,b\right) = BI; \\ \delta\left(BF,a\right) = CI; \delta\left(BF,b\right) = CG; \delta\left(BG,a\right) = CK; \delta\left(BG,b\right) = CH; \\ \delta\left(BH,a\right) = CJ; \delta\left(BH,b\right) = CF; \delta\left(BI,a\right) = CF; \delta\left(BI,b\right) = CK; \\ \delta\left(BK,a\right) = CG; \delta\left(BK,b\right) = CJ; \delta\left(BJ,a\right) = CH; \delta\left(BJ,b\right) = CI; \\ \delta\left(CF,a\right) = DI; \delta\left(CF,b\right) = DG; \delta\left(CG,a\right) = DK; \delta\left(CG,b\right) = DH; \\ \delta\left(CH,a\right) = DJ; \delta\left(CH,b\right) = DF; \delta\left(CI,a\right) = DF; \delta\left(CI,b\right) = DK; \\ \delta\left(CK,a\right) = DG; \delta\left(CK,b\right) = DJ; \delta\left(CJ,a\right) = DH; \delta\left(CJ,b\right) = DI; \\ \delta\left(DF,a\right) = EI; \delta\left(DF,b\right) = EG; \delta\left(DG,a\right) = EK; \delta\left(DG,b\right) = EH; \\ \delta\left(DH,a\right) = EJ; \delta\left(DH,b\right) = EF; \delta\left(DI,a\right) = EF; \delta\left(DI,b\right) = EK; \\ \delta\left(DK,a\right) = EG; \delta\left(DK,b\right) = DG; \delta\left(EG,a\right) = DK; \delta\left(EG,b\right) = DH; \\ \delta\left(EH,a\right) = DI; \delta\left(EH,b\right) = DF; \delta\left(EI,a\right) = DF; \delta\left(EI,b\right) = DK; \\ \delta\left(EK,a\right) = DG; \delta\left(EK,b\right) = DJ; \delta\left(EJ,a\right) = DH; \delta\left(EJ,b\right) = DI; \\ \delta\left(EK,a\right) = DG; \delta\left(EK,b\right) = DJ; \delta\left(EJ,a\right) = DH; \delta\left(EJ,b\right) = DI; \\ \delta\left(EK,a\right) = DG; \delta\left(EK,b\right) = DJ; \delta\left(EJ,a\right) = DH; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI; \\ \delta\left(EJ,b\right) = DI; \delta\left(EJ,b\right) = DI;
```


Задание 3. Построить минимальный ДКА по регулярному выражению

1. $(ab + aba)^*a$

Построим НКА по регулярному выражению:

Построим эквивалентный ему ДКА:

	a	b
1	${3,6,10}$	Ø
${3,6,10}$	Ø	$\{1,7\}$
$\{1,7\}$	$\{1, 3, 6, 10\}$	Ø
$\{1, 3, 6, 10\}$	${3,6,10}$	$\{1,7\}$

Минимизируем ДКА:

0 эквивалентность: $\{1,\{1,7\}\}$ $\{\{3,6,10\},\{1,3,6,10\}\}$

1 эквивалентность: $\{1,\{1,7\}\}$ $\{\{3,6,10\}\}$ $\{\{1,3,6,10\}\}$ 2 эквивалентность: $\{1\}\{\{1,7\}\}$ $\{\{3,6,10\}\}$ $\{\{1,3,6,10\}\}$

Исходный автомат являлся минимальным.

2. $a(a(ab)^*b)^*(ab)^*$

Построим НКА по регулярному выражению:

Построим эквивалентный ему ДКА:

	a	b
1	2	Ø
2	${3,7}$	Ø
${\{3,7\}}$	4	$\{6, 8\}$
4	Ø	5
6	${3,7}$	Ø
5	4	6
$\{6, 8\}$	${3,7}$	Ø

Минимизируем ДКА:

0 эквивалентность: $\{1, \{3, 7\}, 4, 5\}$ $\{2, 6, \{6, 8\}\}$ 1 эквивалентность: $\{1\}$ $\{\{3, 7\}, 5\}$ $\{4\}$ $\{2, 6, \{6, 8\}\}$

2 эквивалентность: $\{1\}$ $\{\{3,7\},5\}$ $\{4\}$ $\{2,6,\{6,8\}\}$

$$\{1\}=A;\ \{\{3,7\},5\}=B;\ \{4\}=C;\ \{2,6,\{6,8\}\}=D;$$

3. $(a + (a + b)(a + b)b)^*$

Построим НКА по регулярному выражению:

Построим эквивалентный ему ДКА:

	a	b
1	$\{1, 5\}$	5
$\{1, 5\}$	$\{1, 5, 6\}$	$\{5, 6\}$
5	6	6
$\{1, 5, 6\}$	$\{1, 5, 6\}$	$\{1, 5, 6\}$
{5,6}	6	{1,6}
{1,6}	$\{1, 5\}$	$\{1, 5\}$

Минимизируем ДКА:

0 эквивалентность: $\{5,6,\{5,6\}\}\ \{1,\{1,5\},\{1,5,6\},\{1,6\}\}$

1 эквивалентность: $\{6, \{5, 6\}\}$ $\{5\}$ $\{1\}$ $\{\{1, 5\}\}$ $\{\{1, 5, 6\}, \{1, 6\}\}$ 2 эквивалентность: $\{6\}$ $\{\{5, 6\}\}$ $\{5\}$ $\{1\}$ $\{\{1, 5, 6\}\}$ $\{\{1, 6\}\}$

$$\{6\}=A;\;\{\{5,6\}\}=B;\;\{5\}=C;\;\{1\}=D;\;\{\{1,5\}\}=E;\;\{\{1,5,6\}\}=F;\;\{\{1,6\}\}=G;$$
 Исходный автомат являлся минимальным.

4. $(b+c)((ab)^*c+(ba)^*)^*$

Построим НКА по регулярному выражению:

Построим эквивалентный ему ДКА:

	a	b	c
1	Ø	2	2
2	4	8	2
4	Ø	5	Ø
8	2	Ø	Ø
5	4	Ø	2

Минимизируем ДКА:

0 эквивалентность: $\{1,4,5,8\}$ $\{2\}$

1 эквивалентность: {1} {4} {8} {5} {2}

Исходный автомат являлся минимальным.

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$

Построим НКА по регулярному выражению:

Построим эквивалентный ему ДКА:

	a	b
1	2	2
2	$\{2,4\}$	$\{2, 9\}$
{2,4}	$\{2, 4, 7\}$	$\{2, 5, 9\}$
{2,9}	$\{2,4,10\}$	$\{2, 9, 12\}$
$\{2,4,7\}$	$\{2,4,7,14\}$	$\{2, 5, 9, 14\}$
${\{2,5,9\}}$	$\{2, 4, 6, 10\}$	$\{2, 9, 12\}$
${2,4,10}$	$\{2, 4, 7\}$	$\{2, 5, 9, 11\}$
${2,9,12}$	$\{2, 4, 10, 14\}$	$\{2, 9, 12, 14\}$
$\{2,4,7,14\}$	$\{2,4,7,14\}$	$\{2, 5, 9, 14\}$
${2,5,9,14}$	$\{2, 4, 6, 10, 14\}$	$\{2, 9, 12, 14\}$
${2,4,10,14}$	$\{2,4,7,14\}$	$\{2, 5, 9, 11, 14\}$
$\{2, 9, 12, 14\}$	$\{2, 4, 10, 14\}$	$\{2, 9, 12, 14\}$
$\{2, 4, 6, 10\}$	$\{2, 4, 7\}$	$\{2, 5, 7, 9, 11\}$
$\{2, 5, 9, 11\}$	$\{2, 4, 6, 10, 12\}$	$\{2, 9, 12\}$
$\{2, 4, 6, 10, 14\}$	$\{2, 4, 7, 14\}$	${2,5,7,9,11,14}$
${2,5,9,11,14}$	${2,4,6,10,12,14}$	$\{2, 9, 12, 14\}$
$\{2, 5, 7, 9, 11\}$	${2,4,6,10,12,14}$	$\{2, 9, 12, 14\}$
${2,4,6,10,12}$	$\{2,4,7,14\}$	${2,5,7,9,11,14}$
$\{2, 5, 7, 9, 11, 14\}$	${2,4,6,10,12,14}$	$\{2, 9, 12, 14\}$
${2,4,6,10,12,14}$	$\{2,4,7,14\}$	${2,5,7,9,11,14}$

Минимизируем ДКА:

0 эквивалентность:

```
 \{1,2,\{2,4\},\{2,9\},\{2,4,7\},\{2,5,9\},\{2,4,10\},\{2,9,12\},\{2,4,6,10\},\{2,5,9,11\},\{2,5,7,9,11\},\{2,4,6,10,12\}\} \\ \{\{2,4,7,14\},\{2,5,9,14\},\{2,4,10,14\},\{2,9,12,14\},\{2,4,6,10,14\},\{2,5,9,11,14\},\{2,5,7,9,11,14\},\{2,4,6,10,12,14\}\}
```

1 эквивалентность:

```
 \begin{array}{l} \{1,2,\{2,4\},\{2,9\},\{2,5,9\},\{2,4,10\},\{2,4,6,10\},\{2,5,9,11\}\} \\ \{\{2,4,7\},\{2,9,12\},\{2,5,7,9,11\},\{2,4,6,10,12\}\} \\ \{\{2,4,7,14\},\{2,5,9,14\},\{2,4,10,14\},\{2,9,12,14\},\{2,4,6,10,14\},\{2,5,9,11,14\}, \\ \{2,5,7,9,11,14\},\{2,4,6,10,12,14\}\} \end{array}
```

```
2 эквивалентность:  \{1,2\} \ \{\{2,4\},\{2,4,10\}\} \ \{\{2,9\},\{2,5,9\}\} \\ \{\{2,4,6,10\},\{2,5,9,11\}\} \\ \{\{2,4,7\},\{2,9,12\},\{2,5,7,9,11\},\{2,4,6,10,12\}\} \\ \{\{2,4,7,14\},\{2,5,9,14\},\{2,4,10,14\},\{2,9,12,14\},\{2,4,6,10,14\},\{2,5,9,11,14\}, \\ \{2,5,7,9,11,14\},\{2,4,6,10,12,14\}\}
```

3 эквивалентность:

```
 \begin{aligned} \{1\} &= A \\ \{2\} &= B \\ \{\{2,4\}\} &= C \\ \{\{2,4,10\}\} &= D \\ \{\{2,9\}\} &= E \\ \{\{2,5,9\}\} &= F \\ \{\{2,4,6,10\},\{2,5,9,11\}\} &= G \\ \{\{2,4,7\},\{2,9,12\},\{2,5,7,9,11\},\{2,4,6,10,12\}\} &= H \\ \{\{2,4,7,14\},\{2,5,9,14\},\{2,4,10,14\},\{2,9,12,14\},\{2,4,6,10,14\},\{2,5,9,11,14\}, \\ \{2,5,7,9,11,14\},\{2,4,6,10,12,14\}\} &= I \end{aligned}
```


Задание 4. Определить является ли язык регулярным или нет

1. $L = \{(aab)^n b (aba)^m | n \ge 0, \ m \ge 0\}$

Существует ДКА, распазнающий данный язык, следовательно язык является регулярным.

2. $L = \{uaav | u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ |u|_b \ge |v|_a\}$ Фиксируем произвольное n.

$$\omega = b^{n-2}aaa^{n-2} \in L$$

$$x = b^{n-2}$$

$$y = aa$$

$$z = a^n - 2$$

 $xy^kz \notin L, \ k \geq 2 \implies$ язык L не является регулярным.

3.
$$L = \{a^m\omega|\omega\in\{a,b\}^*,\ 1\leq |\omega|_b\leq m\}$$

Рассмотрим дополнение к языку:

$$\overline{L} = \{a^m \omega | \in \{a, b\}^*, |\omega| > m\}$$

Фиксируем произвольное n.

$$\omega = a^{n}b^{n+1}$$

$$x = a^{n-1}$$

$$y = a$$

$$z = b^{n+1}$$

 $xy^kz \notin \overline{L}, \ k \geq 2 \implies \overline{L}$ не является регулярным $\implies L$ не является регулярным.

4.
$$\dot{L} = \{a^k b^m a^n | k = n \lor m > 0\}$$

Существует ДКА, распознающий данный язык, следовательно язык является регулярным.

5. $L = \{ucv | u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ u \neq v^R\}$

Рассмотрим дополнение к языку:

$$\overline{L} = \{ucv | u \in \{a, b\}^*, \ v \in \{a, b\}^*, \ u = v^R\}$$

Фиксируем произвольное n.

$$\omega = a^{\frac{n}{2}}ba^{\frac{n}{2}-1}ca^{\frac{n}{2}-1}ba^{\frac{n}{2}}$$

$$x = a^{\frac{n}{2}}ba^{\frac{n}{2}-2}$$

$$y = a$$

$$z = ca^{\frac{n}{2}-1}ba^{\frac{n}{2}}$$

 $xy^kz \notin \overline{L}, \ k \geq 2 \implies \overline{L}$ не является регулярным $\implies L$ не является регулярным.