Circular Motion

Basics

Angular Momentum = $L = mvr = m\omega r^2$ Centripetal Force = $\frac{mv^2}{r} = m\omega^2 r$

Perpendicular Axis Theorem

Parallel Axis Theorem

$$I_f = I_i + mr^2$$

Simple Harmonic Motion

$$d = a\sin(\omega t)$$

$$f = \frac{1}{T}$$

$$f = \frac{\omega}{2\pi}$$

GENERAL SHM

If displacement x causes acceleration a, then the period of oscillations is

$$T = 2\pi \sqrt{\frac{x}{a}}$$
$$(a = -\omega^2 x)$$

Spring

$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$\omega = \sqrt{\frac{k}{m}}$$

Simple Pendulum

$$T = 2\pi \sqrt{\frac{l}{g}}$$
$$\omega = \sqrt{\frac{g}{l}}$$

Physical Pendulum

The Physical Pendulum

 So we go back to our previous equation for the period and replace L with h to get:

$$T = 2\pi \sqrt{\frac{I}{mgh}}$$

Error Propagation

$$\begin{split} &\Delta(Cx) = C\Delta x \\ &\Delta(x+y) = \Delta(x-y) = \sqrt{(\Delta x)^2 + (\Delta y)^2} \\ &\Delta(xy) = xy * \sqrt{(\frac{\Delta x}{x})^2 + (\frac{\Delta y}{y})^2} \end{split}$$

$$\Delta(k = \frac{xy}{z}) = k\sqrt{(\frac{\Delta x}{x})^2 + (\frac{\Delta y}{y})^2}$$

$$\Delta(xyz) = xyz * \sqrt{(\frac{\Delta x}{x})^2 + (\frac{\Delta y}{y})^2 + (\frac{\Delta z}{z})^2...}$$

$$\Delta(x^my^n) = x^my^n * \sqrt{(\frac{m\Delta x}{x})^2 + (\frac{n\Delta y}{y})^2...}$$

$$\Delta(\frac{4x+y}{5}) = \frac{\sqrt{(4\Delta x)^2 + (\Delta y)^2}}{5}$$

Collisions

Perfectly Elastic Collisions

•
$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 - \frac{m_1 - m_2}{m_1 + m_2} v_2$$

•
$$v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1 + \frac{2m_1}{m_1 + m_2} v_2$$

Perfectly Elastic Collisions (still object)

•
$$v_2' = \frac{2m_1}{m_1 + m_2} v_1$$

•
$$v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1$$

Gravity/Orbit

Vis-Viva Equation

2019.8. To solve this problem it is useful to know that if an object is at distance r from the center of the Earth and moves with speed v tangentially to the Earth then:

- For $0 < v < \sqrt{\frac{GM}{r}}$, its orbit is elliptical and r is the maximum distance from the Earth (apogee)
- For $v = \sqrt{\frac{GM}{r}}$, its orbit is circular with radius r
- For $\sqrt{\frac{GM}{r}} < v < \sqrt{\frac{2GM}{r}}$, its orbit is elliptical and r is the minimum distance from the Earth (perigee)
- For $v = \sqrt{\frac{2GM}{r}}$ (the escape speed), its orbit is parabolic
- For $v > \sqrt{\frac{2GM}{r}}$, its orbit is hyperbolic

$$v^2 = GM(\frac{2}{r} - \frac{1}{a})$$

Kepler's Laws

$$m\frac{v^2}{r} = \frac{GmM_{Sum}}{r^2}$$

Applying Newton's 2nd Law for the case of circular motion, the required centripetal force is supplied by gravity.

$$v^2 = \frac{GM_{Sun}}{r}$$

$$v = \sqrt{\frac{GM_{Sun}}{r}} = \frac{2\pi r}{T}$$

 $v = \sqrt{\frac{GM_{\mathit{Sum}}}{r}} = \frac{2\pi r}{T}$ The application of Newton's 2nd law gives you the velocity. For a circular orbit, the period T can be found from the orbit velocity.

$$\frac{T}{2\pi r} = \sqrt{\frac{r}{GM_{Sun}}}$$

$$T^2 = \frac{4\pi^2 r^3}{GM_{Sun}}$$

Solving for the period gives you Kepler's Law of Periods for the special case of a

 $T^2 = \frac{4\pi^2}{GM}a^3$

If expressed in the following units: Earth years

can be expressed

Astronomical units AU (a = 1 AU for Earth)

 $T^2 = a^3$

M Solar masses M_☉

Then $\frac{4\pi^2}{G} = 1$

The expressions for velocity and period are seen to follow from Newton's 2nd law and the law of gravity.

$$v = \sqrt{\frac{GM_{Sun}}{r}}$$

$$v = \sqrt{\frac{GM_{Sun}}{r}} \qquad T = \frac{2\pi r^{3/2}}{\sqrt{GM_{Sun}}}$$

^{*} a is the length of the semi-major axis (a > 0 for ellipses, $a = \infty$ or 1/a = 0 for parabolas, and a < 0 for hyperbolas)

Energy

$$\begin{aligned} & \text{Power} = P = \frac{W}{\Delta t} = Fv \\ & \text{Impulse} = J = F\Delta t = m\Delta v \end{aligned}$$

Kinematics

- 1. $v = v_0 + at$ 2. $\Delta x = \frac{(v+v_0)}{2}t$ 3. $\Delta x = v_0t + \frac{1}{2}at^2$ 4. $v = v_0 + at$ 5. $v^2 = v_0^2 + 2a\Delta x$

Launching Ball from Ground

Range =
$$\frac{2v^2 \sin \theta \cos \theta}{g} = \frac{v^2 \sin (2\theta)}{g}$$

Launching ball from cliff

Optimal angle
$$h = \frac{v^2}{g} \left(\frac{1}{2 \sin^2 \theta} - 1 \right)$$

 $\Rightarrow \sin \theta = \left(2 \left(\frac{gh}{v^2} + 1 \right) \right)^{-1/2}$

Helpful Math

Sums of series

Sum of Geometric = $a_1(\frac{1-r^n}{1-r})$ Sum of Infinite Geometric = $\frac{a_1}{1-r}$

Trig

Double Angle Formulas	Half Angle Formulas
$\sin 2\theta = 2\sin \theta \cos \theta$	$\sin^2\theta = \frac{1-\cos 2\theta}{}$
$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	2
$=2\cos^2\theta-1$	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$
$=1-2\sin^2\theta$,
$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$	$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$
$\frac{\tan 2\theta}{1-\tan^2\theta}$	A 11 1 205 A
	$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$
	$\theta = 1 - \cos \theta$
	$\tan \frac{1}{2} = \pm \sqrt{\frac{1+\cos\theta}{1+\cos\theta}}$