

Partial Differentiation

Dr. Anitha

Department of Science and Humanities

UNIT 2: Partial Differentiation

Session: 3

Sub Topic: Problems on Partial differentiation

Dr. Anitha

Department of Science and Humanities

Problems on Partial differentiation

1. Give $x = r \cos\theta$, $y = r \sin\theta$, find $(\frac{\partial x}{\partial r})_{\theta}$, $(\frac{\partial x}{\partial r})_{y}$, $(\frac{\partial r}{\partial x})_{x}$.

Solution:

Given
$$x = r cos \theta$$

Therefore,
$$\left(\frac{\partial x}{\partial r}\right)_{\theta} = \cos\theta$$

To find $\left(\frac{\partial x}{\partial r}\right)_y$, we have to express x in terms of r and y.

Since $x = rcos\theta$ and $y = rsin\theta$, we have $x^2 + y^2 = r^2$.

Hence
$$x = \sqrt{r^2 - y^2}$$

$$\left(\frac{\partial x}{\partial r}\right)_{y} = \frac{r}{\sqrt{r^2 - y^2}} = \frac{r}{x} = \sec\theta$$

Problems on Partial differentiation

Contd.....

To determine
$$\left(\frac{\partial r}{\partial x}\right)_y$$
, we have that $r = \sqrt{x^2 + y^2}$

$$\left(\frac{\partial r}{\partial x}\right)_{y} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r} = \cos\theta$$

As
$$\theta = tan^{-1} \left(\frac{y}{x}\right)$$
, $\left(\frac{\partial \theta}{\partial y}\right)_{x} = \frac{x}{x^{2} + y^{2}}$

Problems on Partial differentiation

2. Verify that $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}$ for the function $z = \tan^{-1}(\frac{x}{y})$.

Solution:

LHS=
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right)$$

 $\frac{\partial z}{\partial x} = \frac{y}{x^2 + y^2}$
 $\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ -----(1)

Problems on Partial differentiation

PES UNIVERSITY ONLINE

Contd.....

$$RHS = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right)$$

$$\frac{\partial z}{\partial y} = \frac{-x}{x^2 + y^2}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2} \quad -------(2)$$

(1) and (2) verifies the result.

Problems on Partial differentiation

3. For the point on the surface $x^x y^y z^z = c$, where x = y = z, show that $\frac{\partial^2 z}{\partial x \partial y} = -[x \log(ex)]^{-1}$.

Solution:

$$xlogx + ylogy + zlogz = logc$$

Differentiating partially with respect to 'y'.

$$\frac{\partial z}{\partial y} = \frac{-\log(ex)}{\log(ez)}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{1}{z} \frac{\log(ex)}{\log(ez)^2} \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{-\log(ex)}{\log(ez)}$$

Problems on Partial differentiation

Contd...

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{1}{z} \frac{\log(ex)}{\log(ez)^2} \frac{\partial z}{\partial x}$$
$$\frac{\partial z}{\partial x} = \frac{-\log(ex)}{\log(ez)}$$

Substituting this in the above expression, we get

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{z} \frac{\log(ex)}{\log(ez)^2} \frac{-\log(ex)}{\log(ez)}$$
At $x = y = z$, we get
$$\frac{\partial^2 z}{\partial x \partial y} = -[x \log(ex)]^{-1}.$$

Dr. Anitha

Department of Science and Humanities

nanitha@pes.edu

Extn 730