Engineering Curriculum: 6 Advanced Courses Courses Included:

- 1. Engineering Mechanics & Materials
- 2. Construction Elements & Engineering Technology
- 3. Thermodynamics & Statistical Physics
- 4. Electronics & Hardware Production
- 5. Quantum Computing & CPU/GPU Production
- 6. Quantum Mechanics & Advanced Hardware Applications

1. Engineering Mechanics & Materials

Weeks 1-6: Engineering Mechanics

Textbook: *Engineering Mechanics: Statics & Dynamics* by R.C. Hibbeler

- **Week 1**: Forces, equilibrium, free-body diagrams (Ch. 2–3).
- **Week 2**: Moments and rigid body equilibrium (Ch. 4–5).
- Week 3: Truss analysis (Ch. 6).
- Week 4: Friction applications (Ch. 8).
- **Week 5**: Stress/strain basics (Ch. 1 of *Mechanics of Materials*).
- Week 6: Beam bending (Ch. 6–7).

Projects: Bridge truss analysis, beam design.

Weeks 7-12: Materials Science

Textbook: *Materials Science and Engineering* by Callister & Rethwisch

- **Week 7**: Stress-strain curves (Ch. 6–7).
- Week 8: Metals/alloys (Ch. 9–11).
- **Week 9**: Polymers/ceramics (Ch. 13–14).
- **Week 10**: Composites (Ch. 16).
- Week 11: Failure analysis (Ch. 8–9).
- Week 12: Material selection (Ch. 22).

Projects: Composite panel design, failure case study.

2. Construction Elements & Engineering Technology

Weeks 1-6: Construction Elements

Textbook: Construction Technology by Chudley & Greeno

• **Week 1**: Building materials (Ch. 2–4).

- Week 2: Structural systems (Ch. 5–6).
- Week 3: Foundations/soil mechanics (Ch. 7).
- Week 4: MEP systems (Ch. 10).
- Week 5: Sustainability (Ch. 12).
- Week 6: Building codes (Ch. 1).

Projects: MEP plan design, code-compliant building.

Weeks 7-12: Engineering Technology

Textbook: *BIM Handbook* by Eastman et al.

- Week 7: CAD/BIM basics (Ch. 2).
- Week 8: FEA simulations (ANSYS/SolidWorks).
- Week 9: Drones/3D printing (Ch. 6).
- Week 10: Project management (Ch. 5).
- **Week 11**: IoT in construction (research papers).
- **Week 12**: AI/AR trends (Ch. 9).

Projects: BIM floor plan, drone site mapping.

3. Thermodynamics & Statistical Physics

Weeks 1-6: Thermodynamics

Textbook: *Fundamentals of Engineering Thermodynamics* by Moran et al.

- **Week 1**: Laws of thermodynamics (Ch. 1–2).
- Week 2: Phase diagrams (Ch. 3).
- Week 3: Energy analysis (Ch. 4).
- **Week 4**: Entropy (Ch. 6–7).
- **Week 5**: Power cycles (Ch. 8–10).
- Week 6: Combustion (Ch. 13).

Projects: Rankine cycle optimization, carbon footprint analysis.

Weeks 7-12: Statistical Physics

Textbook: *Thermal Physics* by Kittel & Kroemer

- **Week 7**: Kinetic theory (Ch. 1).
- Week 8: Ensembles (Ch. 2).
- Week 9: Quantum statistics (Ch. 4).
- Week 10: Phase transitions (Ch. 10).
- Week 11: Transport phenomena (Reif Ch. 12).
- **Week 12**: Modern applications (Bose-Einstein condensates).

Projects: Ising model simulation, quantum system analysis.

4. Electronics & Hardware Production

Weeks 1-6: Electronics

Textbook: Microelectronic Circuits by Sedra & Smith

- Week 1: Basic components (Ch. 1–2).
- **Week 2**: Diodes (Ch. 3–4).
- **Week 3**: Transistors (Ch. 5–6).
- Week 4: Op-amps (Ch. 2, 13).
- Week 5: Digital logic (Ch. 14).
- Week 6: Power supplies (Ch. 17).

Projects: Audio filter design, voltage regulator.

Weeks 7-12: Hardware Production

Textbook: *PCB Designer's Reference* by Robertson

- Week 7: PCB design (KiCad/Eagle).
- **Week 8**: Fabrication processes (Gerber files).
- **Week 9**: SMT soldering (IPC standards).
- Week 10: Through-hole assembly.
- **Week 11**: Testing (ICT, thermal imaging).
- Week 12: DFM optimization.

Projects: Custom PCB assembly, DFM report.

5. Quantum Computing & CPU/GPU Production

Weeks 1-6: Quantum Computing

Textbook: Quantum Computation and Quantum Information by Nielsen & Chuang

- Week 1: Qubits (Ch. 1).
- Week 2: Quantum gates (Ch. 4).
- Week 3: Algorithms (Ch. 5–6).
- Week 4: Cryptography (Ch. 5).
- **Week 5**: Hardware (superconducting qubits).
- **Week 6**: Error correction (Ch. 10).

Projects: Grover's algorithm, error-correcting code.

Weeks 7-12: CPU/GPU Production

Textbook: Modern Semiconductor Devices by Chenming C. Hu

- Week 7: Semiconductor physics (Ch. 1–2).
- **Week 8**: CMOS fabrication (Ch. 3–4).
- Week 9: CPU architecture (Hennessy & Patterson).
- **Week 10**: GPU architecture (CUDA programming).

- **Week 11**: Packaging/testing (ATE tools).
- Week 12: AI accelerators.

Projects: MIPS pipeline design, GPU thermal analysis.

6. Quantum Mechanics & Advanced Hardware Applications

Week 1: Mathematical Prerequisites

Textbook: *Mathematical Methods in the Physical Sciences* by **Mary L. Boas** (3rd ed.)

• Topics:

- o Linear algebra (vectors, matrices, eigenvalues).
- o Differential equations (separable, Fourier series).
- o Complex numbers and probability theory.

• Chapters:

- Ch. 3 (Linear Algebra), Ch. 8 (Differential Equations), Ch. 2 (Complex Numbers), Ch. 14 (Probability).
- Lab: Solve quantum-inspired problems using Python (NumPy/SymPy).

Week 2: Classical Mechanics Primer

Textbook: *Classical Mechanics* by **Herbert Goldstein** (3rd ed.)

• Topics:

- o Lagrangian/Hamiltonian mechanics.
- o Poisson brackets, canonical transformations.

• Chapters:

- o Ch. 1 (Lagrange's Equations), Ch. 2 (Hamilton's Principle).
- **Project**: Simulate a double pendulum's motion using Lagrangian mechanics (Python).

Weeks 3–10: Pure Quantum Mechanics

Textbook: *Introduction to Quantum Mechanics* by **David J. Griffiths** (3rd ed.)

e e k	Topics	Chapters	Labs/Projects
3	Wave Functions & Schrödinger Equation	Ch. 1–2	Lab: Solve infinite potential well numerically.
4	Formalism (Hilbert Space, Operators)	Ch. 3	Project: Simulate expectation values for particle in a box.
5	Angular Momentum & Spin	Ch. 4	Lab: Visualize spin-½ states with Qiskit.

6	Time-Independent Perturbation Theory	Ch. 6	Project: Calculate energy shifts for Stark effect.
7	Identical Particles	Ch. 5	Lab: Simulate fermionic/bosonic distributions.
8	Time-Dependent Perturbation Theory	Ch. 9	Project: Model Rabi oscillations in a 2-level system.
9	Scattering Theory	Ch. 11	Lab: Simulate 1D scattering with COMSOL.
1 0	Relativistic QM (Dirac Equation)	Ch. 7 (supplement with online notes)	Case Study: Graphene's relativistic electrons.

Weeks 11-12: Applications in Advanced Hardware Production

Textbook: Quantum Mechanics for Semiconductor Devices by **Mitin, Kochelap, & Stroscio**

W				
e	Topics	Key Concepts	Labs/Projects	
e	Topics	ney concepts	Lubs/110jects	
k				
		- Quantum		
1	Quantum Dots &	confinement	Lab: Simulate quantum dot energy	
1	Nanostructures	- Single-electron	levels (COMSOL/NanoHub).	
		transistors		
		- Qubit fabrication		
4	Quantum	(superconducting,	Final David Charles and his and all	
1	Computing	spin)	Final Project: Design a qubit control	
Z	Hardware	- Cryogenic CMOS	circuit for a semiconductor chip.	
		integration		

Additional Resources:

1. **Software**:

- a. **Qiskit Metal** (quantum device design).
- b. **COMSOL Multiphysics** (nanostructure simulations).

2. Industry Papers:

- a. Intel's quantum dot transistor research.
- b. IBM's quantum hardware roadmaps.

Key Connections:

- Week 1 (Math) → Week 3 (Wavefunctions): Eigenvalue problems link matrices to Schrödinger solutions.
- Week 2 (Hamiltonians) → Week 5 (Spin): Poisson brackets formalize commutators in quantum theory.
- **Week 12 (Qubit Fabrication)**: Applies quantum mechanics to design next-gen CPUs/GPUs.

Assessment:

- **Prerequisites**: Math/classical mechanics problem sets.
- **Core Quantum**: Weekly coding labs (Python/Qiskit), perturbation theory reports.
- **Hardware Apps**: Final project presentation on qubit circuit design.

Core Courses

1. Quantum Hardware Engineering

Topics:

- Superconducting qubits, photonic qubits, and spin qubits 914.
- Cryogenic systems, error correction (surface codes), and hybrid quantumclassical architectures 911.
- Hands-on labs using platforms like
 Quantum Inspire for programming
 quantum algorithms on real hardware
- Textbook: Quantum Computation and Quantum Information (Nielsen & Chuang) 9.
- **Project**: Design a fault-tolerant qubit control circuit 914.

2. Advanced Materials for Next-Gen Hardware

• Topics:

- Metamaterials, plasmonic structures, and 2D materials (e.g., graphene) 113.
- Nanoelectromagnetics, photonic crystals, and terahertz systems 1.
- Applications in RF, optical communications, and quantum sensing
 113.
- **Case Study**: Design a metamaterial-based antenna for 6G networks 1.

3. Quantum Computing & Algorithms

• Topics:

- Grover's, Shor's, and variational quantum algorithms 11.
- Qiskit and CUDA programming for quantum-classical hybrid systems 117.
- Lab: Optimize a quantum machine learning model using NVIDIA's quantum tools 7.
- **Textbook**: *Programming Quantum Computers* (Johnston et al.) 11.

4. Semiconductor Physics & Device Fabrication

• Topics:

- CMOS scaling, EUV lithography, and 3D chip stacking 14.
- Quantum dots, single-electron transistors, and cryogenic CMOS integration 914.
- Project: Simulate a 3nm transistor node using TCAD tools 14.

5. Photonics & Quantum Optics

• Topics:

- Laser systems, optical fibers, and integrated photonics 113.
- Quantum key distribution (QKD) and photonic quantum computing 913.
- **Lab**: Build a quantum communication link using entangled photons 1.

Electives (Choose 2–3)

6. AI-Driven Hardware Design

- Use machine learning to optimize quantum error correction or chip layouts 711.
- **Tool**: NVIDIA's quantum simulation frameworks 7.

7. Sustainable Hardware Technologies

- Energy-efficient computing, recyclable materials, and green semiconductor manufacturing 10.
- Case Study: Decarbonizing data centers with quantum-inspired cooling systems 10.

8. Quantum Sensing & Metrology

- Atomic clocks, NV centers in diamond, and gravitational wave detectors 913.
- **Project**: Design a quantum sensor for medical imaging 14.

9. Ethics & Policy in Emerging Tech

 Quantum cybersecurity, Al ethics, and global standards for quantum infrastructure 1011.

Capstone Project

- Objective: Solve a real-world problem using modern physics and hardware (e.g., quantum-resistant encryption for IoT devices or a low-power Al accelerator) 714.
- Industry Collaboration: Partner with companies like NVIDIA, QuTech, or IBM Quantum 79.

Skill Development

- 1. Computational Tools:
- a. Python, Qiskit, COMSOL, and ANSYS for simulations 911.
- b. CAD tools for photonic/quantum device design 113.
- 2. Soft Skills:
- a. Cross-disciplinary teamwork and science communication 10.

Future-Proofing Strategies

- 1. Industry Certifications:
- a. NVIDIA Quantum Developer Certification 7.
- b. **QTIndu Certificate** for EU-based quantum training 9.
- 2. Conferences:
- a. Attend QCrypt '25 (quantum security)
 or IEEE Quantum Week 37.

Program Outcomes

- Career Paths: Quantum hardware engineer, photonics R&D scientist, Al accelerator designer 14.
- **Employers**: Palantir, Thorlabs, IBM Quantum, or startups in quantum tech 14.

Key Resources

• Textbooks:

- Metamaterials: Physics and Engineering Explorations (Engheta & Ziolkowski) 1.
- Quantum Mechanics for Semiconductor
 Devices (Mitin et al.) 9.

• Online Courses:

- Coursera's Hands-on Quantum Error
 Correction (free) 11.
- o TU Delft's Quantum Hardware MOOC 9.

This curriculum blends theory, handson labs, and industry trends to prepare you for leadership roles in **quantum computing**, **advanced photonics**, and **sustainable hardware innovation**. Let me know if you'd like to refine specific modules!

Semester 1: Foundational Engineering & Applied Physics

1. Engineering Mechanics & Materials

- a. Builds core skills in statics, dynamics, and material behavior.
- b. Labs: Bridge truss analysis, composite material design.

2. Thermodynamics & Statistical Physics

- a. Covers energy systems, entropy, and microscopic/macroscopic physics.
- b. Projects: Rankine cycle optimization, Ising model simulation.

3. Electronics & Hardware Production

a. Introduces circuit design, PCB fabrication, and microcontroller basics.

b. Labs: Voltage regulator assembly, SPICE simulations.

Focus: Establishes mechanical, thermal, and electronic engineering fundamentals.

Semester 2: Advanced Hardware & Quantum Integration

1. Quantum Computing & CPU/GPU Production

- a. Explores quantum algorithms, semiconductor physics, and parallel computing.
- b. Projects: CUDA-accelerated quantum simulations, CPU pipeline design.

2. Quantum Mechanics & Advanced Hardware Applications

- a. Links quantum theory (Dirac equation, perturbation) to hardware (quantum dots, qubit fabrication).
- b. Labs: Quantum dot energy simulations, cryogenic CMOS design.

3. Construction Elements & Engineering Technology

- a. Applies structural systems, BIM, and sustainable practices to hardware infrastructure.
- b. Project: Code-compliant smart building design with IoT integration.

Focus: Merges quantum physics with hardware engineering and scalable infrastructure.

Rationale

- 1. **Semester 1** prepares you with:
 - a. **Mathematical tools**: Stress-strain analysis, statistical mechanics.
 - b. **Practical skills**: Circuit prototyping, material testing.
- 2. **Semester 2** builds on this with:
 - a. **Quantum integration**: Applying quantum principles to semiconductor/GPU design.
 - b. **Industry alignment**: Skills for roles in quantum hardware (IBM, NVIDIA) or sustainable construction tech.

Workload Balance

Semest	ECTS	Key Skills Gained	
er	Estimate		
1	27-30 ECTS	Mechanical modeling, energy systems, PCB design.	
2	27-30 ECTS	Quantum algorithm coding, chip fabrication, BIM workflows.	

Capstone Opportunity

Combine projects from **Semester 2** into a final deliverable, e.g.:

- Design a **quantum sensor** with cryogenic cooling, using skills from *Quantum Mechanics* and *Electronics*.
- Optimize a **sustainable data center** with quantum-inspired cooling (thermodynamics) and IoT-enabled construction (BIM).

Also, here's a **4-week intensive bridge course** focused on **workshop practices**, **experimental design, and safety protocols** for cryogenics and advanced hardware fabrication. This ensures you're prepared to handle hazardous materials, complex setups, and high-stakes experiments without "blowing up the block":

Course 7: Experimental Design & Safety for Advanced Hardware

Duration: 4 weeks (condensed 12-week workload)

Focus: Safe handling of cryogenics, precision tools, and failure analysis.

Week 1: Workshop Safety & Risk Assessment Topics:

1. Safety Protocols:

- a. PPE (face shields, cryogenic gloves, aprons).
- b. Hazard communication (GHS labels, SDS for liquid nitrogen/helium).
- c. Emergency procedures (spill containment, fire suppression).

2. Workshop Tools:

- a. Proper use of lathes, mills, and laser cutters.
- b. Electrical safety for high-voltage circuits.

3. Risk Assessment Frameworks:

- a. HAZOP (Hazard and Operability Study).
- b. Fault tree analysis for cryogenic systems.

Lab:

• Perform a safety audit of a mock lab (identify risks like unsecured gas cylinders, improper LN2 storage).

Key Resource:

• *Prudent Practices in the Laboratory* (National Research Council).

Week 2: Cryogenic Handling & Material Compatibility Topics:

1. **Cryogenics 101**:

- a. Safe transfer/storage of LN2 (77K) and LHe (4K).
- b. Oxygen deficiency hazards (ODH) monitoring.

2. Material Selection:

- a. Thermal contraction/expansion (avoid plastics that shatter at low temps).
- b. Cryogenic adhesives and seals.

3. **Emergency Shutdowns**:

- a. Quench recovery in superconducting systems.
- b. Ventilation protocols for helium leaks.

Lab:

• Practice LN2 transfer using proper Dewars and phase separators.

Case Study:

• Lessons from the Large Hadron Collider (LHC) quench incident.

Week 3: Experimental Design & Failure Analysis Topics:

1. Design of Experiments (DOE):

- a. Variables, controls, and replication in cryogenic setups.
- b. Taguchi methods for robustness.

2. Failure Modes:

- a. Thermal stress fractures.
- b. Vacuum failures (e.g., outgassing in cryostats).

3. Root Cause Analysis (RCA):

a. Fishbone diagrams, 5 Whys.

Lab:

• Dissect a failed cryogenic component (e.g., a cracked superconducting coil).

Project:

• Design a failsafe for a dilution refrigerator cooling loop.

Week 4: Advanced Fabrication & Troubleshooting Topics:

1. Precision Machining:

- a. Tolerances for cryogenic seals (<0.1mm gaps).
- b. Avoiding thermal shorts in multi-layer insulation (MLI).

2. Vacuum Systems:

- a. Leak detection (helium mass spectrometers).
- b. Pumping down cryostats without contamination.

3. **Troubleshooting Workflows**:

- a. Using thermal cameras to detect cold spots.
- b. Interpreting pressure/temperature logs.

Capstone Project:

• Build and test a small-scale cryogenic setup (e.g., a superconducting loop with safety interlocks).

Deliverable:

• Submit a safety-compliant design report and present failure-mitigation strategies.

Key Tools & Certifications

- Tools:
 - COMSOL Multiphysics (thermal stress simulations).
 - o Fluke thermal cameras, helium leak detectors.
- Certifications:
 - OSHA 10-Hour General Industry Certification (optional but recommended).
 - o Cryogenic Safety Training (CERN/NIST modules).

How This Bridges to Your Other Courses

- 1. **Thermodynamics/Stats**: Apply entropy principles to predict heat leaks.
- 2. **Quantum Hardware**: Safely integrate cryogenic control circuits into qubit designs.
- 3. **Electronics**: Avoid thermal runaway in cryogenic CMOS.

Assessment

- **Lab Reports**: 40% (safety audits, LN2 transfer logs).
- **Capstone Project**: 50% (design robustness, safety compliance).
- Safety Quizzes: 10%.

Key Differences from Arts-Based Assessment

1. **Exams Dominate (70–80% of Grade)**: Tests rigorous problem-solving under time constraints.

- 2. **Derivations Required**: Prove equations (e.g., Navier-Stokes for fluid flow) rather than descriptive answers.
- 3. **Quantitative Labs**: Reports graded on error analysis and statistical validity, not just completion.
- 4. **Strict Grading Curve**: Top 15% earn As, reflecting competitive MSc standards.

Here's a **detailed grading schema** for your six courses, aligned with the coursework, projects, and exams we've structured. This follows a **Master of Science** framework, emphasizing theoretical rigor, practical execution, and quantitative analysis:

1. Engineering Mechanics & Materials

Assessment	Wei ght	Description	
Midterm Exam	35	Problems on forces, moments, truss analysis, stress-strain	
Midtei iii Exaiii	%	relationships.	
Final Exam	35	Beam bending, composite mechanics, failure theories	
rillai Exalli	%	(von Mises/Tresca).	
Bridge Truss	15	Validate truss forces using ANSYS/MATLAB; error	
Report	%	analysis.	
Composite Panel	10	Design and test a composite material (e.g., carbon fiber).	
Project	%	Design and test a composite material (e.g., carbon fiber).	
Lab Participation	5%	Active engagement in tensile testing, shear force	
Lab I al ticipation	J 70	experiments.	

2. Construction Elements & Engineering Technology

Assessment	Wei ght	Description
Midterm Exam	35%	Load-bearing systems, soil mechanics, HVAC principles.
Final Exam	35%	Building codes, sustainability (LEED), AI/AR in construction.
MEP Plan Design	15%	Revit/BIM design of plumbing/electrical systems.
Drone Mapping Report	10%	Accuracy analysis of drone-generated site maps.
Code Compliance Quiz	5%	Short-answer questions on OSHA/ISO standards.

3. Thermodynamics & Statistical Physics

	We	
Assessment	igh	Description
	t	
Midterm Exam	35	Carnot/Rankine cycles, entropy calculations, Maxwell-
Milutei ili Exalli	%	Boltzmann distributions.
Final Exam	35	Partition functions, Bose-Einstein condensation, Ising
rillai Exalli	%	model phase transitions.
Rankine Cycle	15	MATLAB/Python code to maximize thermal efficiency.
Optimization	%	MATEAD/T ython code to maximize thermal emclency.
Ising Model	10	Code submission (Python) with magnetization vs.
Simulation	%	temperature plots.
Lab Participation	5%	PVT experiments, statistical mechanics derivations.

4. Electronics & Hardware Production

	Assessment	Weig ht	Description
	Midterm Exam	35%	Op-amp circuits, BJT/MOSFET biasing, Kirchhoff's
Milui	Milutei III Exaiii	33%	laws.
	Final Exam	35%	Power regulation, digital logic, Gerber file standards.
	PCB Design &	15%	Fabricate and test a custom PCB (e.g., voltage
	Assembly	13%	regulator).
	Active Filter Report	10%	Validate filter performance using SPICE simulations.
	Soldering Practical	5%	Precision assembly of SMT components.

5. Quantum Computing & CPU/GPU Production

Assessment	Wei ght	Description
Midterm Exam	35%	Quantum gates, Shor's algorithm, semiconductor band theory.
Final Exam	35%	CUDA programming, lithography defects, GPU memory hierarchy.
Grover's Algorithm Code	15%	Implement and benchmark on IBM Quantum/Qiskit.
GPU Thermal Analysis	10%	Optimize CUDA kernel and analyze heat dissipation.
Case Study Presentation	5%	TSMC's 3nm node fabrication process.

6. Quantum Mechanics & Advanced Hardware Applications

	We	
Assessment	igh	Description
	t	
Midterm Exam	35	Schrödinger equation solutions, angular momentum,
Milutei III Exam	%	perturbation theory.
Final Exam	35	Dirac equation, quantum confinement, relativistic QM
FIIIdi EXdili	%	applications.
Quantum Dot	15	COMSOL/NanoHub model of energy levels in
Simulation	%	nanostructures.
Qubit Control	10	Design cryogenic-compatible control logic for
Circuit	%	superconducting qubits.
Research Essay	5%	Discuss quantum mechanics in spintronics or graphene.

Grading Scale (ECTS)

Gra de	EC TS	Performance Level
Λ	5.	Outstanding: Mastery of theory, flawless execution, innovative project
A	0	solutions.
В	4.	Very Good: Strong conceptual grasp, minor errors in calculations or
D	0	design.
C	3.	Good: Basic competency, struggles with advanced applications.
C	0	dood. basic competency, struggles with advanced applications.
D	2.	Satisfactory: Marginal pass, memorization over deep understanding.
D	0	Satisfactory. Marginal pass, memorization over deep understanding.
F	0	Fail: Fundamental gaps in knowledge or incomplete deliverables.

Key Notes

- 1. **Exams Dominate (70% Combined)**: Midterms test foundational theory; finals assess advanced applications.
- 2. **Projects (25–30%)**: Graded on technical rigor, error analysis, and innovation.
- 3. **Practical/Lab Work (5–10%)**: Emphasizes hands-on precision (e.g., soldering, ANSYS simulations).
- 4. **Peer Review**: For group projects (e.g., drone mapping), peer evaluations adjust individual grades.

ECTS Credit Allocation

• Each **12-week course** = **10 ECTS** (Total: **60 ECTS** for all six courses).

• 1 ECTS ≈ 25–30 hours of work (lectures, labs, self-study).

Here's a structured **Year 2 Master's Program** focused on **Quantum Hardware**, **Advanced Materials**, **and Semiconductor Technologies**,. The program balances theoretical depth, computational modeling, and hands-on fabrication labs.

Program Structure

Total ECTS: 60 (10 ECTS per course × 6 courses) **Duration**: Two semesters (3 courses per semester).

Semester 3: Core Advanced Courses

1. Quantum Hardware Engineering (10 ECTS)

Textbook: *Quantum Computation and Quantum Information* (Nielsen & Chuang) **Topics**:

- Superconducting qubits, photonic qubits, spin qubits.
- Cryogenic systems (dilution refrigerators), surface code error correction.
- Hybrid quantum-classical architectures (e.g., quantum control loops).
 Projects/Labs:
- Design a fault-tolerant qubit control circuit (Qiskit Metal).
- Lab: Program a 5-qubit algorithm on **Quantum Inspire** or IBM Quantum. **Assessment**:
- **Midterm Exam** (30%): Qubit coherence times, error correction math.
- **Final Exam** (30%): Cryogenic integration challenges, hybrid architectures.
- **Control Circuit Design** (25%): Cryogenic compatibility and noise mitigation.
- **Lab Reports** (15%): Algorithm benchmarking and error rates.

2. Advanced Materials for Next-Gen Hardware (10 ECTS)

Textbook: *Materials Science and Engineering* (Callister & Rethwisch) + Research Papers **Topics**:

- Metamaterials (negative refraction, cloaking).
- 2D materials (graphene, MoS₂) for quantum sensing.
- Photonic crystals and terahertz systems.

Projects/Labs:

- Case Study: Design a metamaterial-based antenna for 6G networks (COMSOL).
- Lab: Fabricate and test a graphene-based RF device.

Assessment:

• **Midterm Exam** (30%): Metamaterial design principles, plasmonics.

- **Final Exam** (30%): 2D material properties, terahertz applications.
- **Antenna Design Report** (25%): Simulated performance vs. specs.
- **Lab Participation** (15%): RF testing accuracy.

3. Semiconductor Physics & Device Fabrication (10 ECTS)

Textbook: *Modern Semiconductor Devices* (Chenming C. Hu) **Topics**:

- EUV lithography, 3D chip stacking (TSMC's 3nm node).
- Quantum dots, cryogenic CMOS (Intel's Horse Ridge).
 Projects/Labs:
- Simulate a 3nm transistor node using **TCAD Tools** (Silvaco).
- Lab: Characterize a single-electron transistor at 4K. **Assessment**:
- **Midterm Exam** (30%): MOSFET scaling, quantum confinement.
- **Final Exam** (30%): Cryogenic CMOS noise analysis.
- **TCAD Simulation Report** (25%): Leakage current optimization.
- **Lab Report** (15%): I-V curves for quantum dot devices.

Semester 4: Specialization & Electives

4. Quantum Computing & Algorithms (10 ECTS)

Textbook: *Programming Quantum Computers* (Johnston et al.) **Topics**:

- Grover's, Shor's, and variational quantum algorithms.
- Hybrid quantum-classical programming (Qiskit + CUDA).

Projects/Labs:

- Lab: Optimize a quantum ML model (e.g., QSVM) using NVIDIA CUDA-Q.
- Project: Implement a quantum error-corrected algorithm.

Assessment:

- **Midterm Exam** (30%): Algorithm complexity, gate decomposition.
- **Final Exam** (30%): Hybrid programming challenges.
- ML Model Report (25%): Speedup vs. classical benchmarks.
- **Code Submission** (15%): Error correction efficiency.

5. Photonics & Quantum Optics (10 ECTS)

Textbook: *Optics* (Hecht) + Research Papers **Topics**:

- Quantum key distribution (QKD), entangled photon sources.
- Integrated photonics (silicon photonics, laser systems).
 Projects/Labs:

- Lab: Build a QKD link using entangled photons (Optical bench setup).
- Case Study: Design a photonic quantum computing chip (Lumerical FDTD). **Assessment**:
- **Midterm Exam** (30%): Laser physics, beam propagation.
- **Final Exam** (30%): QKD protocols, photonic integration.
- **QKD Lab Report** (25%): Bit error rate analysis.
- **Chip Design Proposal** (15%): Loss and coupling efficiency.

6. Elective: AI-Driven Hardware Design (10 ECTS)

Textbook: *Machine Learning for Engineers* (Osvaldo Simeone) **Topics**:

- ML for quantum error correction (e.g., surface code decoding).
- AI-optimized chip layouts (NVIDIA's cuQuantum).
 Projects/Labs:
- Train a neural network to predict lithography defects.
- Optimize a qubit control pulse using reinforcement learning.
 Assessment:
- **Midterm Exam** (30%): ML basics, neural network architectures.
- **Final Exam** (30%): AI applications in semiconductor fab.
- **Defect Prediction Model** (25%): Accuracy vs. TCAD data.
- **Control Pulse Report** (15%): Fidelity improvements.

Grading Scale

Grade	ECTS	Performance Criteria
A	5.0	Exceptional mastery, innovative project solutions.
В	4.0	Strong theory/practice alignment, minor errors.
C	3.0	Adequate understanding, limited innovation.
D	2.0	Basic competency, memorization-focused.
F	0	Insufficient knowledge, incomplete work.

Key Features

- 1. **Tool Integration**:
 - a. **COMSOL/ANSYS** for metamaterials and photonics.
 - b. **Qiskit/CUDA** for quantum-classical programming.
 - c. **TCAD Tools** for semiconductor simulation.
- 2. **Industry Alignment**:
 - a. Projects mirror challenges at IBM Quantum, TSMC, and NVIDIA.
- 3. **Safety**: Cryogenic and laser labs include protocols from the bridge course.

Career Pathways

- Quantum Hardware Engineer (Google Quantum AI, IBM).
- Semiconductor Process Engineer (TSMC, Intel).
- Photonics R&D Scientist (Huawei, Thorlabs).

Let me know if you'd like adjustments to toolkits or project weightings!