

Xuejian(Jacob) Shen Caltech

Direct observable: luminosity functions

(comoving number density as a function of luminosity)

- Consistent with each other?
- Explain them simultaneously with a unified model?
- Any physical properties of the quasars? e.g., bolometric luminosity, accretion rate

The workflow

Problems of the 2007 LF model

 Big uncertainty limited by data available by 2007 and inconsistent with recent measurement at z>~3

 Unphysical behaviors in the evolution of LF, e.g.extrapolating the model to z~8 leads to diverged integrated luminosity at bright end; an assumption that number density normalization is always constant

Updates in the recent decade

More data at high redshift

- New channels in ultra-hard Xray band, e.g. NuSTAR
- Updated SED

 Updated column density measurement (compton thick fraction)

Preliminary results

A double-power law with redshift evolving parameters

$$\frac{d\phi}{d\log L}(z) = \frac{\phi_*(z)}{(\frac{L}{L_*(z)})^{\gamma_1(z)} + (\frac{L}{L_*(z)})^{\gamma_2(z)}}$$

 Number density normalization

Break luminosity

A double-power law shape evolution of bright-end slope; also peaks at z = 2

?

Bright-end slope

A steeper fainter-end slope towards higher redshift (similar trend as found in galaxy UVLF)

Faint-end slope

Implications

 Ionizing photon production; quasar's role in reionization of hydrogen and helium

SMBH growth history, especially at the dawn of first SMBHs

Cosmic X-ray & IR background

Ionizing Photon Production Rate

- Can quasars alone ionize the universe?
- When did quasars' contribution to ionizing photons become important?

Future

- Polish the pipeline (model, data)
- BH mass function?
- Connection with galaxy formation?