

Trabajo de Fin de Grado

Grado en Ingeniería Informática

Predicción de flujos de tráfico mediante técnicas de Machine Learning

Prediction of traffic flows using Machine Learning techniques.

Javier Ramos Fernández

D. **Jesús Manuel Jorge Santiso**, con N.I.F. 42.097.398-S profesor Titular de Universidad adscrito al Departamento de Ingeniería Informática y de Sistemas de la Universidad de La Laguna, como tutor

CERTIFICA

Que la presente memoria titulada:

"Predicción de flujos de tráfico mediante técnicas de Machine Learning"

ha sido realizada bajo su dirección por D. **Javier Ramos Fernández**, con N.I.F. 45.865.421-V.

Y para que así conste, en cumplimiento de la legislación vigente y a los efectos oportunos firman la presente en La Laguna a 7 de mayo de 2018

Agradecimientos

Gracias a mis padres Jose Luís y Conchi por apoyarme día a día, por el cariño que me han dado, proporcionarme el sustento necesario, ser una fuente de inspiración y soportar mis frustraciones durante el desarrollo de este trabajo.

A mi hermano mayor Eduardo por ser siempre un ejemplo a seguir y por sus consejos de incalculable valor.

A mi hermano mellizo por ser un compañero leal, honesto, trabajador y hacer que el recorrido de mi vida sea un camino lleno de alegrías.

Al resto de mi familia que, a pesar del alejamiento, me hagan pasar unos veranos inolvidables y su apoyo incondicional.

A mis compañeros de clase por proporcionarme ayuda académica constantemente siempre que la he necesitado.

A mi tutor Jesús por haber confiado en mí desde el principio y por la comprensión que ha tenido conmigo en todo momento para llevar a cabo este proyecto.

A mis amigos de toda la vida por ayudarme a evadirme de mis obligaciones y hacerme pasar muy buenos ratos.

A la gente que ha dedicado su tiempo a escuchar mis problemas y me ha animado a seguir adelante.

A todos gracias de corazón. Con paciencia y dedicación se puede conseguir todo lo que te propongas

Javier

Licencia

* Si quiere permitir que se compartan las adaptaciones de tu obra mientras se comparta de la misma manera y quieres permitir usos comerciales de tu obra (licencia de Cultura Libre) indica:

© Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional.

Resumen

El objetivo de este trabajo ha sido realizar predicciones del tiempo promedio de viaje y el volumen de tráfico en la red de carreteras propuesta por la competición KDDCup 2017 (concretamente en **Hangzhou**, provincia de **Zhejiang**, en China). Para llevar a cabo esta tarea, nos hemos basado en la utilización de técnicas de aprendizaje automático para construir modelos de predicción que estimen de la forma más precisa posible los futuros valores reales de tiempo promedio de viaje y volumen de tráfico. De esta forma, se pretende contribuir a la ejecución de medidas preventivas por parte de las autoridades de gestión del tráfico a través de la realización de predicciones fiables para el futuro flujo del tráfico.

Las herramientas principales utilizadas para desarrollar este proyecto son el sistema de gestión de bases de datos relacional denominado **PostgreSQL** (para guardar los datos suministrados) y el lenguaje de programación **Python** (para hacer uso de las librerías que contienen las técnicas de aprendizaje automático, así como otras bibliotecas de utilidad). Mediante la integración de estas dos herramientas, se ha establecido un canal de comunicación entre las diferentes combinaciones de datos creadas y los algoritmos de aprendizaje automático elegidos para llevar a cabo las estimaciones oportunas y realizar evaluaciones de las mismas.

Palabras clave: KDDCup 2017, Aprendizaje Automático, Tráfico carreteras, Tiempo Promedio de Viaje, Volumen de Tráfico, PostgreSQL, Python

Abstract

The objective of this work has been to make predictions of the average travel time and traffic volume on the road network proposed by the KDDCup 2017 competition (specifically in **Hangzhou**, **Zhejiang** Province, China). To carry out this task, we have relied on the use of automatic learning techniques to construct predictive models that estimate as accurately as possible the real future values of average travel time and traffic volume. In this way, it is intended to contribute to the implementation of preventive measures by traffic management authorities by making reliable predictions for the future flow of traffic.

The main tools used to develop this project are the relational database management system called **PostgreSQL** (to save the supplied data) and the **Python** programming language (to make use of the libraries containing the machine learning techniques, as well as other useful libraries). Through the integration of these two tools, a communication channel has been established between the different data combinations created and the chosen machine learning algorithms to carry out the appropriate estimations and evaluations of them.

Keywords: KDDCup 2017, Machine Learning, Road Traffic, Average Travel Time, Traffic Volume, PostgreSQL, Python

Índice general

Capítulo 1 Introducción	1
1.1 Antecedentes. Problemática y estado del arte	2
1.2 Objetivos	
1.3 Organización de la memoria	7
Capítulo 2 Tecnologías	8
2.1 Almacenamiento de datos	8
2.1.1 En el proyecto	8
2.1.1.1 PostgreSQL	8
2.1.2 Otras tecnologías posibles	g
2.1.2.1 MySQL	
2.1.2.2 Oracle	11
2.1.2.3 Microsoft SQL Server	11
2.2 Ciencia de datos	
2.2.1 En el proyecto	13
2.2.1.1 Python	13
2.2.2 Otras tecnologías posibles	13
2.2.2.1 RapidMiner	
2.2.2.2 Lenguaje R	14
2.2.2.3 Weka	15
Capítulo 3 La minería de datos	17

3.1 Introducción	17
3.2 Técnicas de minería de datos	20
3.2.1 XGBOOST	20
3.2.1.1 Definición	20
3.2.1.2 Gradient boosting	21
3.2.1.3 Implementación del algoritmo	24
3.2.2 LightGBM	25
3.2.2.1 Definición	25
3.2.2.2 Ventajas	26
3.2.3 Perceptrón multicapa (Redes neuronales)	27
3.2.3.1 Definición	27
3.2.3.2 Neuronas	27
3.2.3.3 Redes de neuronas	29
3.2.3.4 Entrenamiento de una red neuronal	30
3.2.4 Modelo ARIMA	32
3.2.4.1 Definición de una serie temporal	32
3.2.4.2 Características de las series temporales	33
3.2.4.3 Componentes de las series temporales	38
3.2.4.4 Tipos de esquemas para series temporales	39
3.2.4.5 Clasificación descriptiva de las series temporales	41
3.2.4.6 Funciones de autocorrelación y autocorrelación parcial	44
3.2.4.7 Estimación de las componentes de una serie temporal	45
3.2.4.8 Definición del modelo ARIMA	55
3.2.4.9 Modelos autorregresivos AR(p)	57
3.2.4.10 Modelo de medias móviles $MA(q)$	57
3.2.4.11 Modelos ARMA(p,q)	57
3.2.4.12 Fases del modelo ARIMA	
3 2 4 13 Identificación práctica del modelo ARIMA	61

3.2.5 k-Vecinos Más Cercanos	62
3.2.5.1 Definición	62
3.2.5.2 El algoritmo K-NN básico	63
3.2.5.3 Método de regresión basado en KNN	65
3.2.5.4 Regresión Lineal	66
Capítulo 4 Fases del proyecto	67
4.1 Problema planteado por la competición KDDCup 2017	68
4.1.1 Contexto.	68
4.1.2 Tareas	69
4.1.3 Etapas y reglas de la competición	70
4.1.4 Métricas de evaluación	71
4.2 Creación de bases de datos para almacenar los datos de la competio	ción
y modificaciones	73
4.2.1 Estructura de bases de datos propuesta	73
4.2.2 Base de datos con los datos originales	74
4.2.2.1 Tabla vehicle_routes ("routes_table4.csv")	74
4.2.2.2 Tabla road_links ("links_table3.csv")	74
$4.2.2.3~Tabla~vehicle_trajectories_training~("trajectories_table$	
5_training.csv")	76
4.2.2.4 Tabla traffic_volume_tollgates_training	
("volume_table6_training.csv")	
4.2.2.5 Tabla weather_data ("weather (table 7)_training.csv")	80
4.2.2.6 Tabla travel_time_intersection_to_tollgate	01
("trajectories_table5_training_20min_avg_travel_time.csv")	81
4.2.2.7 Tabla traffic_volume_tollgates ("volume_table	ດດ
6_training_20min_avg_volume.csv")	
4.2.3 Base de datos con los datos modificados	
4.2.3.1 Tabla road_links_modified ("links_table3.csv")	
4.7.5.7 Tadia vehicle rollies modified ("rollies tadie4.csv")	84

4.2.3.3 Tabla vehicle_trajectories_training_modified	
("trajectories_table 5_training.csv")	84
4.2.3.4 Tabla traffic_volume_tollgates_training_modified	
$("volume_table6_training.csv")$	86
$4.2.3.5$ Tabla weather_data_modified ("weather (table	
7)_training.csv")	87
$4.2.3.6~Tabla~travel_time_intersection_to_tollgate_modified$	
$("trajectories_table5_training_20min_avg_travel_time.csv")$	87
$4.2.3.7~Tabla~traffic_volume_tollgates_modified~("volume_tab")$	le
6_training_20min_avg_volume.csv")	88
4.2.4 Base de datos con los datos relacionados con la fase de prueb	oas90
$4.2.4.1~Tabla~travel_time_intersection_to_tollgate_test1$	
$("test1_20min_avg_travel_time.csv")$	90
4.2.4.2 Tabla traffic_volume_tollgates_test1	
("test1_20min_avg_volume.csv")	91
4.2.4.3 Tabla tabla_resultado_average_travel_time	92
4.2.4.4 Tabla tabla_resultado_traffic_volume	93
4.3 Creación de gráficas para visualizar los datos almacenados	94
4.3.1 Gráficas del tiempo promedio de viaje de todos los días por r	utas.94
4.3.2 Gráficas del tiempo promedio de viaje de algunos días en tod	las las
horas en cada una de las rutas	97
4.3.3 Gráficas del volumen de tráfico de todos los días en todas las	horas
en cada una de los pares barrera de peaje-dirección	101
4.4 Predicciones del tiempo promedio de viaje	104
4.4.1 Primera aproximación	104
4.4.1.1 Creación de las vistas minables	107
4.4.1.2 Realización de predicciones a partir de las vistas	112
4.4.2 Segunda aproximación	115
4.4.2.1 Preparación de los datos	115
4.4.2.2 Realización de estimaciones	116

4.5 Predicciones del volumen de tráfico	118
Capítulo 5 Conclusiones y líneas futuras	119
Capítulo 6 Summary and Conclusions	120
Capítulo 7 Presupuesto	121
7.1 Sección Uno	121
Capítulo 8 Título del Apéndice 1	122
8.1 Algoritmo XXX	122
8.2 Algoritmo YYY	122
Capítulo 9 Título del Apéndice 2	124
9.1 Otro apéndice: Sección 1	124
9.2 Otro apéndice: Sección 2	124

Índice de figuras

Figura 2.1: C	Consola interactiva de PostgreSQL9
Figura 2.2: E	Entorno gráfico de MySQL Workbench10
Figura 2.3: E	Entorno gráfico del entorno de desarollo Oracle JDeveloper11
Figura 2.4: E	Entorno gráfico de Microsoft SQL Server Management Studio.12
Figura 2.5: E	Entorno gráfico de RapidMiner14
Figura 2.6: E	Entorno gráfico de Weka16
Figura 3.1: E	El proceso de descubrimiento de conocimiento en bases de datos
(KDD)	17
Figura 3.2: C	Cuatro de las tareas principales de minería de datos19
Figura 3.3: C	Crecimiento level-wise del árbol en XGBoost26
Figura 3.4: C	Crecimiento leaf-wise del árbol en LightGBM26
Figura 3.5: E	Estructura de una neurona artificial28
Figura 3.6: E	Estructura de una red neuronal29
Figura 3.7: E	Ejemplo de serie temporal32
Figura 3.8: E	Ejemplo de una serie temporal con tendencia33
Figura 3.9: E	Ejemplo de una serie temporal con ciclos estacionales34
Figura 3.10: 3	Serie temporal con pulsos34
Figura 3.11: 1	Distintos tipos de valores atípicos
Figura 3.12: (Comparación de una serie estacionaria con una no estacionaria
con respecto	a la autocovarianza37
Figura 3.13: 3	Serie temporal con tendencia agregada a la estacionalidad40

Figura 3.14: Serie temporal con tendencia multiplicada por la	
estacionalidad	40
Figura 3.15: Ejemplo de serie estacionaria	41
Figura 3.16: Ejemplo de serie no estacionaria	41
Figura 3.17: Comparación de una serie estacionaria con una no estacio	naria
con respecto a la media	42
Figura 3.18: Comparación de una serie estacionaria con una no estacio	naria
con respecto a la varianza	43
Figura 3.19: Comparación de una serie estacionaria con una no estacio con respecto a la autocovarianza	
Figura 3.20: Ejemplo de un gráfico de autocorrelación	
Figura 3.21: Serie temporal y su tendencia	
Figura 3.22: Componente regular de la serie temporal tras eliminar su	
tendencia	
Figura 3.23: Número de accidentes de tráfico durante 10 meses	47
Figura 3.24: Representación de los datos de accidentes de tráfico	48
Figura 3.25: Primera media de la serie	48
Figura 3.26: Segunda media de la serie	48
Figura 3.27: Tercer media de la serie	49
Figura 3.28: Medias móviles de orden 3	49
	49
Figura 3.30: Ejemplo de estimación de la tendencia mediante medias	
móviles	50
Figura 3.31: Componente irregular tras eliminar la tendencia	50
Figura 3.32: Serie temporal antes de la diferenciación	51
Figura 3.33: Serie temporal después de la diferenciación	51
Figura 3.34: Serie temporales antes de la desestacionalización	
Figura 3.35: Los últimos 6 años de la serie temporal de la Figura 3.34.	
Figura 3.36: Serie desestacionalizada	

Figura 3.37: Fases del modelo ARIMA59
Figura 3.38: Algoritmo básico KNN
Figura 3.39: Ejemplo de aplicación del algoritmo K-NN básico64
Figura 4.1: Topología de la red de carreteras de la zona objetivo70
Figura 4.2: Ventanas de tiempo para la predicción del tráfico71
Figura 4.3: Cálculo del error de predicción del tiempo promedio de viaje72
Figura 4.4: Cálculo del error de predicción del volumen de tráfico72
Figura 4.5: Rutas de la competición KDDCup2017 con los enlaces que las forman
Figura 4.6: Tiempo promedio de viaje medio en cada uno de los días en las diferentes rutas
Figura 4.7: Continuación de la gráfica de la Figura 4.496
Figura 4.8: Tiempo promedio de viaje por horas en algunos días en la ruta A-2
Figura 4.9: Tiempo promedio de viaje por horas en algunos días en la ruta A-398
Figura 4.10 Tiempo promedio de viaje por horas en algunos días en la ruta B-198
Figura 4.11: Tiempo promedio de viaje por horas en algunos días en la ruta B-399
Figura 4.12: Tiempo promedio de viaje por horas en algunos días en la ruta C-1
Figura 4.13: Tiempo promedio de viaje por horas en algunos días en la ruta C-3
Figura 4.14: Barrera de peaje 1 en la dirección de entrada
Figura 4.15: Barrera de peaje 1 en la dirección de salida
Figura 4.16: Barrera de peaje 2 en la dirección de entrada102
Figura 4.17: Barrera de peaje 3 en la dirección de entrada103
Figura 4.18: Barrera de peaje 3 en la dirección de salida

Figura 4.19: Bloque principal de código que crea la evolución de las 2 horas
previas a la ventana de tiempo correspondiente en los datos de
entrenamiento
Figura 4.20: Obtención de las rutas de tráfico junto con las ventanas de
tiempo comprendidas en los intervalos de tiempo a predecir108
Figura 4.21: Estructura iterativa para crear las columnas relacionadas con
la evolución del tráfico en las dos horas previas a la ventana de tiempo
considerada109
Figura 4.22: Consulta SQL que rellena la columna del tiempo promedio de viaje 20 minutos antes de la ventana de tiempo considerada
Figura 4.23: Consulta SQL que establece los valores de las columnas de la evolución del tiempo promedio de viaje de las 2 horas previas a la ventana de tiempo en consideración utilizando los valores de las columnas del anterior intervalo de tiempo
Figura 4.24: Combinación de la tabla con los datos de entrenamiento del tiempo promedio de viaje junto con los datos meteorológicos
Figura 4.25: Código SQL que crea una vista para cada ruta e intervalo a partir de la vista con los datos combinados
Figura 4.26: Obtención de los datos de entrenamiento para la ruta e
intervalo en consideración113
Figura 4.27: Obtención de los datos de prueba para la ruta e intervalo en consideración
Figura 4.28: Entrenamiento y predicción del tiempo promedio de viaje en los distintos días de predicción con el modelo XGBoost
Figura 4.29: Cálculo del error medio de los días de predicción para una ruta
e intervalo determinado
Figura 4.30: Acumulación de los errores correspondiente a los días a predecir de cada uno de los intervalos a estimar
Figura 4.31: Cálculo del segundo sumatorio de la fórmula del error MAPE
para un algoritmo
Figura 4.32: Acumulación de los errores del segundo sumatorio de la

fórmula del error MAPE11
Figura 4.33: Cálculo del primer sumatorio de la fórmula del error MAPE
para un algoritmo11
Figura 4.34: Obtención de los valores reales del tiempo promedio de viaje
para las rutas e intervalos de tiempo a predecir110
Figura 4.35: Cálculo del valor del tiempo promedio de viaje de una parte de
aquellas rutas e intervalos de las que no disponemos datos110
Figura 4.36: Concatenación de los datos de entrenamiento de una ruta
determinada con los datos reales de las dos horas previas a un intervalo a
predecir en un día y ruta determinada11
Figura 4.37: Cálculo del mejor modelo ARIMA para una ruta, día y
ventana de tiempo a estimar118

Índice de tablas

Tabla 3.1: Obtención de los parámetros (p, d, q) en los distintos modelo	os. 62
Tabla 3.2: Estructura de los datos de entrada para el algoritmo KNN	63
Tabla 4.1: Tabla vehicle_routes	74
Tabla 4.2: Tabla road_links	75
Tabla 4.3: Tabla vehicle_trajectories_training	77
Tabla 4.4: Tabla traffic_volume_tollgates_training	79
Tabla 4.5: Tabla weather_data	80
Tabla 4.6: Tabla travel_time_intersection_to_tollgate	81
Tabla 4.7: Tabla traffic_volume_tollgates	82
Tabla 4.8: Tabla road_links_modified	83
Tabla 4.9: Tabla vehicle_routes_modified	84
Tabla 4.10: Tabla vehicle_trajectories_training_modified	85
Tabla 4.11: Tabla traffic_volume_tollgates_training_modified	86
Tabla 4.12: Tabla travel_time_intersection_to_tollgate_modified	88
Tabla 4.13: Tabla traffic_volume_tollgates_modified	89
Tabla 4.14: Tabla travel_time_intersection_to_tollgate_test1	90
Tabla 4.15: Tabla traffic_volume_tollgates_test1	91
Tabla 4.16: Tabla tabla_resultado_average_travel_time	92
Tabla 4.17: Tabla tabla_resultado_traffic_volume	93
Tabla 4.18: Vista minable creada sobre los datos a utilizar para	
entrenamiento y testeo de la primera aproximación de predicciones	106

Capítulo 1 Introducción

Cada día generamos una gran cantidad de información, algunas veces conscientes de que lo hacemos y otras veces inconscientes de ello porque lo desconocemos. Nos damos cuenta de que generamos información cuando registramos nuestra entrada en el trabajo, cuando entramos en un servidor para ver nuestro correo, cuando pagamos con una tarjeta de crédito o cuando reservamos un billete de avión. Otras veces no nos damos cuenta de que generamos información, como cuando conducimos por una vía donde están contabilizando el número de automóviles que pasan por minuto, cuando se sigue nuestra navegación por Internet o cuando nos sacan una fotografía del rostro al haber pasado cerca de una oficina gubernamental.

Este aumento exponencial del volumen y variedad de información que se ha presentado en las últimas décadas gracias a la era de la información ha propiciado que se generen grandes volúmenes de conjuntos de datos. El almacenamiento masivo de datos ha generado un interés por analizar, interpretar y extraer información útil de los mismos con el objetivo de obtener conocimiento. Actualmente, los datos son la materia prima para conseguir información provechosa, que se puede utilizar para llevar a cabo una toma de decisiones y la realización de conclusiones. De esta manera, surge el concepto de **minería de datos**, que se define como el proceso de *extraer conocimiento útil y comprensible*, previamente desconocido, desde grandes cantidades de datos almacenados en distintos formatos. Es decir, la tarea fundamental de la misma es encontrar modelos inteligibles a partir de los datos que permitan encontrar aspectos previamente desconocidos de los mismos.

Hoy en día, la minería de datos se considera un campo multidisciplinar que se ha desarrollado en paralelo o como prolongación de otras tecnologías, por lo que la investigación y los avances en la minería de datos se nutren de los que se producen en una serie de áreas relacionadas como las bases de datos, la recuperación de información, la visualización de

datos, la estadística, el aprendizaje automático, etcétera. De esta manera, este campo de conocimiento es ampliamente utilizado en diversas áreas, que cada vez son más a medida que la tecnología sigue avanzando en este campo y que lo han integrado en su actividad para obtener información de gran valor. Algunas de ellas son el análisis de datos financieros, la industria minorista, la industria de las telecomunicaciones, el análisis de datos biológicos, tráfico, educación, etcétera.

En muchas situaciones, el método tradicional de convertir los datos en conocimiento consiste en un análisis e interpretación realizada de forma manual. El especialista en la materia analiza los datos y elabora un informe o hipótesis que refleja las tendencias o pautas de los mismos. Esta forma de actuar es pausado, costosa y muy subjetiva. En realidad, el análisis manual es dominios donde el volumen de losimpracticable en exponencialmente. Consecuentemente, muchas decisiones importantes realizan no sobre la base de los datos disponibles, sino siguiendo la propia intuición del usuario al no disponer de las herramientas necesarias. No actualmente existen herramientas de apoyo, como son herramientas **OLAP**(On-line Analytical Processing, Procesamiento Analítico en Línea), que son técnicas de análisis descriptivo y de sumarización que permite transformar los datos en otros datos agregados o cruzados de manera sofisticada.

En el caso del trabajo que nos ocupa, la minería de datos es un concepto crucial a emplear en los datos de los que parte el mismo, proporcionados por la competición KDDCup 2017. En este proyecto se pretende utilizar las técnicas y los algoritmos que nos proporciona este área de conocimiento para aplicarlos sobre los datos de tráfico de la competición y obtener previsiones acerca de la tendencia del mismo en una serie de intervalos de tiempo que se nos propone predecir. Así, con la ayuda de dichas estimaciones se puede realizar un control el tráfico a través de la ejecución de decisiones proactivas sobre la red de carreteras (anticiparse al inicio de la congestión del tráfico).

1.1 Antecedentes. Problemática y estado del arte

La realización de predicciones de flujo de tráfico tiene un papel relevante en la sociedad actual debido al gran impacto que tiene el tráfico en la vida diaria de la gente. En muchas ocasiones nos encontramos con un problema recurrente en las carreteras: la **congestión vehicular**. Actualmente se están realizando una gran cantidad de estudios sobre este tema dada la gran complejidad que presenta puesto que intervienen un considerable número de factores. Las investigaciones que se llevan a cabo en este aspecto son fundamentales para diseñar las topologías de las carreteras (intersecciones viales, planes semafóricos, demarcaciones de las vías, señalizaciones verticales, etcétera) de forma óptima y desarrollar estrategias de planificación que permitan gestionar de una forma eficaz y eficiente el tráfico; es decir, llevar un control dinámico del mismo que permita realizar y actualizar continuamente predicciones de los factores que intervienen en su desarrollo. Esto propiciará un efecto positivo en la economía, el comportamiento de los viajeros, el uso del terreno y otros aspectos.

Algunos ejemplos de estudio en este ámbito son los siguientes:

- 1. En el artículo [1] se propone utilizar series temporales multivariadas (método de predicción multivariante) para pronosticar variables de tráfico. Este método se plantea frente a las series temporales escalares que, aunque en teoría son genéricamente suficientes para reconstruir la dinámica de los sistemassubyacentes, resulta más enriquecedor utilizar todas las variables disponibles.
- 2. En el artículo [2] se estudia la cuestión acerca del tiempo de validez en que se mantiene eficaz una serie histórica de tiempos de flujo del tráfico para predecir el futuro. Es decir, se plantea el tiempo t que puede perdurar la eficacia de los datos de flujo de tráfico existentes en un tiempo t_0 para estimar tendencias de variación del flujo de tráfico en un tiempo t_0+t . Para ello, recopilan los datos de las series temporales de flujo de tráfico con diferentes granularidades y realizan una serie de análisis y métodos como analizar la propiedad de memoria larga de las series temporales del flujo de tráfico mediante el cálculo del exponente Hurst, además de un conjunto de comparaciones.
- 3. El artículo [3] es un Trabajo de Fin de Grado en el que se trata el tema de la predicción del tráfico en las carreteras de la red de la Generalitat Valenciana. El autor pretendía con este trabajo la posibilidad de mejorar la metodología empleada en algunas fases de la explotación de los datos de aforos a través del uso de métodos científicos, complementándola con herramientas estadísticas. Esto se hace puesto que los planes de aforo no pueden obtener el muestreo completo de toda la red durante todo el año dado el alto número de puntos de toma de datos y los recursos necesarios para abarcarlos todos de forma permanente. Para realizar la mejora, el autor considera la Intensidad

Media Diaria(IMD) como la variable más importante a calcular en un Plan de Aforos. Para poder llevar a cabo el cálculo de dicha variable, define los tramos sobre la red de carreteras (además de realizar estudios de retramificación para valorar los cambios en la red y adaptar los tramos definidos a la realidad viaria conforme ésta va evolucionando). A continuación, realiza un diseño de muestreo (de cada uno de los tramos de aforo con el objetivo de obtener muestras lo suficientemente representativas como para caracterizar el tráfico en cada tramo, de forma que la asignación de recursos sea óptima) y, a partir de esto, se diseña el plan de distribución de muestreo de estaciones (diversos tipos de estación según la frecuencia de muestreo de los mismos), asignando cada una de ellas a una tipología. Para llevar a cabo esto último se tienen en cuenta los recursos materiales y humanos de los que se dispone para poder cumplir con el muestreo del plan anual de aforos resultante de dichas asignaciones.

- 4. En el artículo [4] se estudian las tendencias de movilidad urbana en Paris, Santiago de Chile, Singapur y Viena con el objetivo de analizar la demanda de las diversas formas de transporte que existen en esas ciudades y establecer políticas adecuadas. No solo se examinan estas tendencias, sino también sus causas. Para ello, primero se identifican las tendencias específicas de cada una de las ciudades principalmente a través de indicadores de transporte, como los datos de viaje con respecto a los usuarios y estructuras espaciales, además de analizar el contexto de cada ciudad (infraestructura, desarrollo económico y desarrollo social de la ciudad) y realizar un modelo para explicar el comportamiento de los usuarios frente unas tendencias u otras a partir de la diferenciación entre los motivos socio-emocionales y racionales de los mismos. A continuación, se consultan a expertos en el sistema de transporte de cada una de las ciudades para validar esas tendencias identificadas y preparar análisis cualitativos. Por último, se realizan análisis para comprender y describir las tendencias desde la perspectiva de los viajeros. El artículo examina una amplia gama de modos de transportes espacialmente y socialmente diferenciados.
- 5. El tema del artículo [5] consiste en realizar estimaciones a corto plazo (15 minutos en el futuro) con la información histórica del tráfico de la red de autopistas del Reino Unido utilizando redes neuronales, de tal forma que esto permita reducir la congestión del transporte mediante la mejora de sistemas inteligentes de transporte utilizados para controlar el tráfico para que realicen decisiones proactivas sobre la red de carreteras (anticiparse al inicio de la congestión del tráfico). Se plantean efectuar estas decisiones anticipadas a través de advertencias de la congestión

esperada, lo que permitiría a los controladores disponer de más tiempo para evaluar las diferentes estrategias de mitigación, en lugar de una vez que se materialice la congestión. También se propone que las predicciones se hagan visibles al público, de manera que el sistema de transporte se pueda beneficiar ya que permitiría a los usuarios optimizar sus planes de viaje, ya sea redirigiendo o reprogramando el itinerario de su viaje.

Además de los artículos anteriormente mencionados, la competición KDDCup 2017 tiene publicadas las presentaciones de los ganadores de la misma. A continuación se exponen dichos documentos:

- 1. El documento [6] presenta los resultados del equipo que acabó en el primer puesto de predicción del tiempo promedio de viaje. Para realizar las predicciones, se basaron en unos cuantos modelos de aprendizaje automático como XGBoost, LightGBM y Multilayer Perceptron y se sirven de técnicas combinadas de aprendizaje basadas en funciones de pérdidas, transformaciones de logaritmos y otros métodos.
- 2. El documento [7] presenta los resultados del equipo que acabó en el segundo puesto de predicción del tiempo promedio de viaje. Se basa principalmente en utilizar XGBoost para realizar las estimaciones de tiempo promedio de viaje, haciendo hincapié en cómo resolver la falta de datos en los conjuntos de datos proporcionados por la competición.
- 3. El documento [8] presenta los resultados del equipo que acabó en el tercer puesto de predicción del tiempo promedio de viaje. En este trabajo se sigue un adecuado orden de ejecución de fases para realizar las predicciones, desde el preprocesado de datos hasta la realización de métodos combinados de aprendizaje, pasando por la extracción de características y el análisis y elección de modelos de predicción. Aparte de utilizar XGBoost para realizar las predicciones, utilizan el modelo ARIMA, que es muy utilizado para la predicción de series temporales.
- 4. El documento [9] presenta los resultados del equipo que acabó en el primer puesto de predicción del volumen de tráfico. Este equipo es el mismo que quedó en el primer puesto en la tarea de predicción del tiempo promedio de viaje. Los modelos que utilizan son prácticamente los mismo que utilizaron para estimar el tiempo promedio de viaje, y prestaron gran atención a las características estadísticas de los datos.
- 5. El documento [10] presenta los resultados del equipo que acabó en el segundo puesto de predicción del volumen de tráfico. En este trabajo se realizaron pruebas sobre muchos modelos de predicción, entre los que se incluyen algunos mencionados en los trabajos anteriores y el modelo

KNN (k-Nearest Neighbours).

6. El documento [11] presenta los resultados del equipo que acabó en el tercer puesto de predicción del volumen de tráfico. El aspecto más relevante de este trabajo es que el autor realiza las predicciones con un sólo modelo, que es la regresión lineal. Para que este modelo pudiera dar buenos resultados, se hizo hincapié en la eliminación de ruido sobre los datos.

Para poder desarrollar este trabajo de predicción de flujos de tráfico, se ha considerado utilizar los datos proporcionados por la competición denominada KDDCup, concretamente la edición del año 2017. Esta competición es una competición anual de Minería de Datos y Descubrimiento de Conocimiento organizada por SIGKDD (Association for Computing Machinery's Special Interest Group on Knowledge Discovery and Data Mining), la organización profesional líder de minería de datos. En dicha competición se plantea una problemática, se proporcionan los datos necesarios para solventarla y se premian las mejores soluciones propuestas.

El tema elegido por la organización de la KDD Cup 2017 para este año estaba directamente relacionado con la predicción de los flujos de tráfico de las autopistas de peaje en China (concretamente en **Hangzhou**, provincia de **Zhejiang**). El objetivo final era ofrecer a los responsables de la gestión del tráfico medidas preventivas basadas en datos y preparar el camino hacia una solución holística y realista a los cuellos de botella del tráfico.

1.2 Objetivos

Los objetivos contemplados a completar en el desarrollo de este proyecto son los siguientes:

- Realización de predicciones del tiempo promedio de viaje. Uno de los dos objetivos propuestos por la competición es predecir el tiempo promedio de viaje en las rutas y los intervalos de tiempo requeridos por la competición.
- Realización de varias aproximaciones de predicciones del volumen de tráfico. El otro objetivo establecido a cumplir es llevar a cabo estimaciones del volumen de tráfico en las distintas barreras de peaje en las direcciones de entrada y salida en los intervalos de

1.3 Organización de la memoria

La disposición de la información que se va a seguir para abarcar todo lo relacionado con el desarrollo y ejecución del proyecto es la siguiente:

- En el capítulo 2 se introducen las tecnologías utilizadas para llevar a cabo la carga de las bases de datos que almacenan los datos de la competición y la aplicación de diferentes modelos de predicción sobre los mismos.
- En el capítulo 3 se explican las nociones fundamentales de la minería de datos, así como la descripción de distintas técnicas de aprendizaje automático empleadas para descubrir patrones y tendencias que existen en nuestros datos.
- En el capítulo 4 se abordan de forma detallada las distintas fases del proyecto, desde la creación de las bases de datos hasta la comparación de resultados de los distintos algoritmos de aprendizaje automático.
- En el capítulo 5 se exponen las conclusiones y las líneas futuras planteadas para seguir desarrollando el proyecto desarrollado.

Capítulo 2 Tecnologías

La elección de las herramientas y tecnologías empleadas para el desarrollo del proyecto se ha realizado cautelosamente, de tal forma que nos ha permitido concentrarnos en el problema en cuestión en lugar de tener que instruirnos exhaustivamente en ellas y que aumentara la complejidad del trabajo. A continuación, se enumeran las principales tareas del proyecto junto con el software al que se ha recurrido para completarlas.

2.1 Almacenamiento de datos

2.1.1 En el proyecto

 $2.1.1.1 \, PostgreSQL$

PostgreSQL es un potente sistema de base de datos objeto-relacional de código abierto basado en el paquete POSTGRES, desarrollado en el Departamento de Informática de la Universidad de California en Berkeley y liberado bajo la licencia BSD. Es un sistema que permite la creación, gestión y administración de bases de datos, así como la elección y manejo de las estructuras necesarias para el almacenamiento y búsqueda de la información del modo más eficiente posible. Como muchos otros proyectos de código abierto, el desarrollo de PostgreSQL no es manejado por una sola compañía, sino que es dirigido por una comunidad de desarrolladores y organizaciones comerciales las cuales trabajan en su desarrollo; dicha comunidad es denominada el PGDG (PostgreSQL Global Development Group).

Este sistema de base de datos soporta una gran parte del estándar SQL y ofrece muchas características modernas incluyendo las siguientes:

- Consultas SQL complejas
- Sub-selectiones SQL

- Claves externas
- Disparadores
- Vistas actualizables
- Transacciones
- Control de concurrencia multi-versión (MVCC)
- Integridad transaccional
- Replicación de Streaming (a partir de 9.0)
- Espera en caliente (a partir de 9.0)
- Etc.

Además, PostgreSQL puede ser ampliado por el usuario de muchas maneras, por ejemplo, añadiendo nuevo

- tipos de datos
- funciones
- operadores
- funciones agregadas
- métodos de indexación
- lenguajes procedimentales

```
javisunami@javiramos:~/Escritorio/TFG/machineLearningProyecto/Aproximaciones/Tiempo promedio de viaje/2ª aproximacion$ psql tfgdatosmodificados
psql (9.3.20)
Type "help" for help.
tfgdatosmodificados=# select *
from road_links_modified ;
tfgdatosmodificados=# |
```

Figura 2.1: Consola interactiva de PostgreSQL

2.1.2 Otras tecnologías posibles

Existen multitud de herramientas, aparte de la mencionada anteriormente, para almacenar los datos sistemáticamente para su posterior uso. A continuación se mencionan algunas destacadas.

$2.1.2.1\,MySQL$

MySQL es un sistema de administración de bases de datos relacional. Se trata de un programa capaz de almacenar una enorme cantidad de datos de gran variedad y de distribuirlos para cubrir las necesidades de cualquier tipo de organización, desde pequeños establecimientos comerciales a grandes empresas y organismos administrativos. Este sistema incluye todos los elementos necesarios para instalar el programa, preparar diferentes niveles de acceso de usuario, administrar el sistema y proteger y hacer volcados de datos. Puede desarrollar sus propias aplicaciones de base de datos en la mayor parte de los lenguajes de programación utilizados en la actualidad y ejecutarlos en casi todos los sistemas operativos. Además, utiliza el lenguaje de consulta estructurado (SQL). Se trata del lenguaje utilizado por todas las bases de datos relacionales.

Comparado con PostgreSQL, este sistema de administración de bases de datos se ha enfocado tradicionalmente en aplicaciones web de lectura mayormente, usualmente escritas en PHP, donde la principal preocupación es la optimización de consultas sencillas. En cambio, PostgreSQL se ha enfocado tradicionalmente en la fiabilidad, integridad de datos y características integradas enfocadas al desarrollador. Tiene un planificador de consultas extremadamente sofisticado, que es capaz de unir cantidades relativamente grandes de tablas eficientemente.

Figura 2.2: Entorno gráfico de MySQL Workbench

2.1.2.2 Oracle

Oracle Database es un sistema de gestión de bases de datos de tipo objeto-relacional desarrollado por *Oracle Corporation*. Se considera como uno de los sistemas de bases de datos mas completos, destacando el sopore de transacciones, la estabilidad, la escalabilidad y el soporte multiplataforma. No obstante, la gran potencia que tiene y su elevado precio hace que solo se utilice en empresas muy grandes y multinacionales, por norma general.

La diferencia principal entre Oracle y PostgreSQL es el hecho de que el primero no es software de código abierto, mientras que el segundo si. Por otra parte, PostgreSQL hace más sencillo el análisis de datos y tiene una mayor seguridad, pero Oracle si soporta consultas en paralelo.

Figura 2.3: Entorno gráfico del entorno de desarollo Oracle J Developer 2.1.2.3 2.1.2.3 Microsoft SQL Server

Microsoft SQL Server es un sistema de gestión de base de datos relacional (RDBMS) producido por Microsoft. Su principal lenguaje de consulta es *Transact-SQL*, una aplicación de las normas ANSI / ISO estándar Structured Query Language (SQL). Las características principales de este sistema son las siguientes:

• Soporte de transacciones.

- Escalabilidad, estabilidad y seguridad.
- Soporta procedimientos almacenados.
- Incluye también un potente entorno gráfico de administración, que permite el uso de comandos DDL y DML gráficamente.
- Permite trabajar en modo cliente-servidor, donde la información y los datos se alojan en el servidor y las terminales o clientes de la red acceden a la información.
- Permite administrar información de otros servidores de datos.

Una de las diferencias principales de *PostgreSQL* con respecto a *Microsoft SQL Server* es que es **multiplataforma**; el primero puede ejecutarse en Linux, BSD y Windows, pero el segundo solo se puede ejecutar en Windows. Además, el primero posee una facilidad de uso mayor que el segundo. No obstante, *PostgreSQL* es más lento que *Microsoft SQL Server*.

Figura 2.4: Entorno gráfico de Microsoft SQL Server Management Studio

2.2 Ciencia de datos

2.2.1 En el proyecto

2.2.1.1 Python

Python es un lenguaje de programación interpretado cuya filosofía hace hincapié en una sintaxis que favorezca un código legible. Se trata de un lenguaje de programación multiparadigma, ya que soporta orientación a objetos, programación imperativa y, en menor medida, programación funcional. Aparte de esto, es un lenguaje dinámico y multiplataforma, muy adecuado para el desarrollo interactivo y la creación rápida de prototipos con la capacidad de soportar el desarrollo de grandes aplicaciones. También es ampliamente utilizado para el aprendizaje automático y la ciencia de datos debido al excelente soporte de bibliotecas y a que es un lenguaje de programación de propósito general.

Este lenguaje tiene a su disposición un ecosistema de bibliotecas en Python para matemáticas, ciencias e ingeniería denominado **SciPy**. Es un complemento de Python necesario para el aprendizaje automático y está compuesto por los siguientes módulos básicos relevantes:

- *NumPy*: Un módulo para SciPy que permite trabajar eficientemente con datos en vectores y matrices.
- *Matplotlib*: Una biblioteca que permite crear gráficos en 2D y gráficos a partir de datos.
- *Pandas*: Una biblioteca que contiene herramientas y estructuras de datos para organizar y analizar datos.

Por otra parte, la biblioteca fundamental para desarrollar y realizar aprendizaje automático en Python se denomina **scikit-learn**. Se basa en el ecosistema de SciPy y lo requiere. El núcleo de la biblioteca son los algoritmos de aprendizaje automático para clasificación, regresión, agrupamiento y más, y también proporciona herramientas para tareas relacionadas tales como la evaluación de modelos, ajuste de parámetros y preprocesamiento de datos. Al igual que Python y SciPy, **scikit-learn** es de código abierto y es utilizable comercialmente bajo la licencia BSD.

2.2.2 Otras tecnologías posibles

Existen muchas más herramientas, aparte de la mencionada anteriormente, para poner en práctica el aprendizaje automático. A

continuación se nombran algunas de las más importantes.

2.2.2.1 Rapid Miner

RapidMiner es un programa informático para el análisis y la minería de datos. Permite el desarrollo de procesos de análisis de datos mediante el encadenamiento de operadores a través de un entorno gráfico. Se usa en investigación, educación, capacitación, creación rápida de prototipos y en aplicaciones empresariales. Las características principales de este software es que está desarrollado en Java, es multiplataforma, utiliza ficheros XML para la representación interna de los procesos de análisis de datos, permite el desarrollo de programas a través de un lenguaje script, puede usarse de diversas maneras (a través de GUI, en línea de comandos, en lotes y desde otros programas a través de llamadas a sus bibliotecas), es extensible, incluye gráficos y herramientas de visualización de datos y dispone de un módulo de integración con el lenguaje R.

Figura 2.5: Entorno gráfico de RapidMiner

2.2.2.2.2.2.2 Lenguaje R

R es un entorno y un lenguaje de programación enfocado en el **análisis estadístico** de los más utilizados en el campo de la minería de datos que pueden aplicarse a gran variedad de disciplinas. Este lenguaje es un *proyecto*

colaborativo y abierto, por lo que los desarrolladores pueden descargar el código de forma gratuita y modificarlo para incluir mejoras. Por otra parte, es un lenguaje interpretado, funciona mediante comandos, proporciona una amplia gama de herramientas estadísticas que incluyen análisis de datos y generación de gráficos de alta calidad. Gracias a este lenguaje de programación los ingenieros de datos pueden manejar grandes volúmenes de datos.

Python, con respecto a R, es un lenguaje de propósito general con una sintaxis fácil de entender y con una curva de aprendizaje muy corta. En cambio la funcionalidad de R se desarrolla pensando en los estadísticos, lo que le da ventajas específicas de campo tales como importantes características para la visualización de datos, pero es más difícil de aprender.

2.2.2.3 Weka

Weka es un software libre y de código abierto basado en Java, licenciado bajo la GPL de GNU y disponible para su uso en Linux, Mac OS X y Windows. Comprende una colección de algoritmos de aprendizaje automático para minería de datos y empaqueta herramientas de preprocesamiento, clasificación, regresión, clustering, reglas de asociación y visualización de datos. Además, tiene una interfaz gráfica fácil de usar para la visualización bidimensional de datos minados, permite importar los datos sin procesar desde varios formatos de archivo y soporta algoritmos bien conocidos para diferentes acciones de minería de datos como filtrado, agrupación, clasificación y selección de atributos. Este software también proporciona un Java Appetiser para su uso en aplicaciones y puede conectarse a bases de datos utilizando CJD.

Figura 2.6: Entorno gráfico de Weka

Capítulo 3 La minería de datos

3.1 Introducción

La minería de datos es el proceso de descubrir automáticamente información útil en grandes repositorios de datos. Las técnicas de minería de datos se utilizan para rastrear grandes bases de datos con el fin de encontrar patrones novedosos y útiles que, de otro modo, podrían seguir siendo desconocidos. También proporcionan capacidades para predecir el resultado de una observación futura, como predecir el tiempo meteorológico o, en relación a este trabajo, características de tráfico.

La minería de datos es una parte integral del descubrimiento de conocimiento en bases de datos (KDD, Knowledge Discovery in Databases), que es el proceso general de conversión de datos brutos en información útil, como se muestra en la Figura 3.1. Este proceso consiste en una serie de pasos de transformación, desde el preprocesamiento de datos hasta el postprocesamiento de los resultados de la minería de datos.

Figura 3.1: El proceso de descubrimiento de conocimiento en bases de datos (KDD)

• Los datos de entrada pueden almacenarse en una variedad de

formatos (archivos planos, hojas de cálculo o tablas relacionales) y pueden residir en un repositorio de datos centralizado o distribuirse en varios sitios.

- El propósito del **preprocesamiento** es transformar los datos de entrada brutos en un formato apropiado para el análisis posterior. Los pasos involucrados en el preprocesamiento de datos incluyen la fusión de datos de múltiples fuentes, la limpieza de datos para eliminar el ruido y la duplicación de observaciones, y la selección de registros y características que son relevantes para la tarea de minería de datos a mano. Debido a las muchas maneras en que los datos pueden ser recolectados y almacenados, el preprocesamiento de datos es quizás el paso más laborioso y que consume más tiempo en el proceso general de descubrimiento de conocimiento.
- El objetivo del siguiente proceso es **integrar los resultados de la minería de datos** en los sistemas de apoyo a la toma de decisiones. Es la **fase de modelamiento** propiamente tal, en donde métodos inteligentes son aplicados con el objetivo de extraer patrones previamente desconocidos, válidos, nuevos, potencialmente útiles y comprensibles y que están contenidos u "ocultos" en los datos.
- La fase anterior (de integración de resultados) requiere una etapa de **tratamiento posterior** que garantice que en el sistema de apoyo a la adopción de decisiones sólo se incorporen resultados válidos y útiles. Es decir, se **identifican los patrones obtenidos** y que son realmente interesantes, basándose en algunas medidas y se realiza una **evaluación** de los resultados obtenidos.

Las tareas de minería de datos se dividen generalmente en dos categorías principales:

- Tareas predictivas. El objetivo de estas tareas es predecir el valor de un atributo particular basado en los valores de otros atributos. El atributo a predecir se conoce comúnmente como la variable objetivo o dependiente, mientras que los atributos utilizados para hacer la predicción se conocen como las variables explicativas o independientes.
- Tareas descriptivas. El objetivo es derivar patrones (correlaciones, tendencias, clusters, trayectorias y anomalías) que resumen las relaciones subyacentes en los datos. Las tareas descriptivas de minería de datos son a menudo de naturaleza exploratoria y con frecuencia requieren técnicas de postprocesamiento para validar y explicar los

Figura 3.2: Cuatro de las tareas principales de minería de datos

En estas dos categorías se engloban cuatro de las tareas de minería de datos principales:

- Modelado predictivo: Se refiere a la tarea de construir un modelo para la variable objetivo en función de una serie de variables explicativas. Existen dos tipos de tareas de modelado predictivo: la clasificación, que se utiliza para las variables objetivo discretas, y la regresión, que se utiliza para las variables objetivo continuas. Por ejemplo, predecir si un usuario Web realizará una compra en una librería en línea es una tarea de clasificación porque la variable objetivo es binaria. Por otra parte, la previsión del precio futuro de un stock es una tarea de regresión porque el precio es un atributo de valor continuo. El objetivo de ambas tareas es aprender un modelo que minimice el error entre el valor predicho y el verdadero de la variable objetivo.
- Análisis de asociaciones: Se utiliza para descubrir patrones que describan características fuertemente asociadas en los datos. Los patrones descubiertos se representan típicamente en forma de reglas de implicación o subconjuntos de características. Debido al tamaño exponencial de su espacio de búsqueda, el objetivo del análisis de asociaciones es extraer los patrones más interesantes de manera eficiente. Las aplicaciones útiles del análisis de asociaciones incluyen la búsqueda de grupos de genes que tienen funcionalidad relacionada, la identificación de páginas Web a las que se accede de forma conjunta o la

comprensión de las relaciones entre los diferentes elementos del sistema climático de la Tierra.

- Análisis de clústeres: El objetivo es encontrar grupos de observaciones estrechamente relacionados de tal forma que las observaciones que pertenecen al mismo clúster sean más similares entre sí que con respecto a observaciones que pertenecen a otros clústeres. La agrupación en clústeres se ha utilizado para agrupar conjuntos de clientes relacionados, encontrar áreas de océanos que tienen un impacto significativo en el clima de la Tierra y comprimir datos.
- Detección de anomalías: Es la tarea de identificar observaciones cuyas características son significativamente diferentes del resto de los datos. Estas observaciones se conocen como anomalías o valores atípicos. El objetivo de un algoritmo de detección de anomalías es descubrir las anomalías reales y evitar etiquetar falsamente los objetos normales como anómalos. En otras palabras, un buen detector de anomalías debe tener un alto índice de detección y un bajo índice de falsas alarmas. Las aplicaciones de detección de anomalías incluyen la detección de fraudes, intrusiones en la red, patrones inusuales de enfermedades y perturbaciones en los ecosistemas.

3.2 Técnicas de minería de datos

Para realizar las predicciones del tiempo promedio de viaje y el volumen de tráfico oportunas propuestas por la competición *KDDCup 2017* ha sido imprescindible la utilización de técnicas de minería de datos apropiadas para dichas tareas. En los siguientes apartados se lleva a cabo una explicación detallada de las mismas.

3.2.1 **XGBOOST**

3.2.1.1 Definición

XGBoost (eXtreme Gradient Boosting) es una implementación de árboles de decisión potenciados por gradientes, diseñados para lograr una velocidad y un rendimiento dominantes y competitivos en el aprendizaje automático. Por lo tanto, la biblioteca está centrada en la velocidad de cálculo y el rendimiento del modelo. Este algoritmo es realmente rápido en comparación con otras implementaciones de potenciación del gradiente.

Para entender esta técnica de minería de datos es de gran importancia comprender en qué consiste la **potenciación del gradient**e (o *gradient boosting*).

3.2.1.2 Gradient boosting

La potenciación del gradiente (o gradient boosting) es una de las técnicas más poderosas para construir modelos predictivos. Es una técnica en la que se crean nuevos modelos que predicen los residuos o errores de modelos anteriores y luego se suman para llevar a cabo la predicción final. Se denomina potenciación del gradiente porque utiliza un algoritmo de descenso de gradiente para minimizar la pérdida al añadir nuevos modelos. Es una técnica de aprendizaje automático utilizada para el análisis de regresión y los problemas de clasificación estadística, que produce un modelo predictivo en forma de un conjunto de modelos predictivos débiles, normalmente árboles de decisión. Construye el modelo de forma escalonada como hacen otros métodos de refuerzo, y los generaliza permitiendo la optimización arbitraria de una función de pérdida diferenciable.

Este algoritmo es un algoritmo eficiente para convertir hipótesis relativamente pobres en hipótesis muy buenas. Una hipótesis débil se define como aquella cuyo desempeño es al menos ligeramente mejor que el azar. La **potenciación de hipótesis** (hypothesis boosting) es la idea de filtrar las observaciones, dejando aquellas observaciones que el **weak learner** puede manejar y enfocándose en desarrollar nuevos aprendizajes débiles para manejar las observaciones difíciles restantes. La idea es utilizar el método de aprendizaje débil varias veces para obtener una sucesión de hipótesis, cada una reorientada hacia los ejemplos que los anteriores encontraban difíciles y mal clasificados.

La potenciación del gradiente implica tres elementos:

- Una *función coste* a optimizar. Esta función asigna un *evento* o valores de una o más variables en un número real que representa intuitivamente algún "coste" asociado al evento. Ésta debe ser diferenciable (una función diferenciable de una variable real es una función cuya derivada existe en cada punto de su dominio). Un problema de optimización busca minimizar una función de pérdida.
- Un **weak learner** para hacer predicciones. Los árboles de decisión se utilizan como el **weak learner** en la potenciación del gradiente. Específicamente se utilizan árboles de regresión que emiten valores reales para las particiones y cuya salida puede sumarse, permitiendo que

las salidas de los modelos subsiguientes se sumen y "corrijan" los residuos en las predicciones. Los árboles se construyen de una manera codiciosa, eligiendo los mejores puntos de división en función de las puntuaciones de pureza como *Gini* o para minimizar el error. No obstante, es común restringir los **weak learners** de manera específica (un número máximo de capas, nodos, divisiones o nodos hoja) para asegurar que permanezcan débiles pero que aún puedan ser construidos de una manera codiciosa, como veremos más adelante. Es necesario que los modelos que se vayan generando permanezcan débiles ya que, si se sobreajusta a los datos, no habrá ningún residuo o error para los modelos subsiguientes sobre los que construir.

Un *modelo aditivo* para añadir **weak learners** para minimizar la función de error. Los árboles se añaden uno a la vez y los árboles existentes en el modelo no se modifican. Se utiliza un procedimiento de descenso por gradiente para minimizar el error al añadir árboles. Tradicionalmente, el descenso en gradiente se utiliza para minimizar un conjunto de parámetros, como los coeficientes en una ecuación de regresión o los pesos en una red neuronal. Después de calcular el error, los pesos se actualizan para minimizar ese error. En lugar de parámetros, tenemos sub-modelos de aprendizaje débiles o, más específicamente, árboles de decisión. Después de calcular el error, para realizar el procedimiento de descenso por gradiente, debemos añadir un árbol al modelo que reduzca la pérdida (es decir, seguir el gradiente). Hacemos esto parametrizando el árbol, luego modificando parámetros del árbol y después moviéndonos en la dirección correcta reduciendo la pérdida residual. Se agrega un número fijo de árboles o se detiene el entrenamiento una vez que la pérdida alcanza un nivel aceptable o ya no mejora un conjunto de datos de validación externa.

La potenciación del gradiente es un algoritmo codicioso y puede sobreajustar rápidamente un conjunto de datos de entrenamiento. Ante esto, esta técnica de aprendizaje automático puede beneficiarse de los **métodos de regularización** que penalizan varias partes del algoritmo y, en general, mejoran el rendimiento del algoritmo al reducir el sobreajuste. Algunas mejoras que se aplican a la potenciación del gradiente son las siguientes:

• Restricciones de los árboles: Es importante que los weak learners tengan destreza pero permanezcan débiles. Hay varias maneras en que los árboles pueden ser restringidos. Una buena heurística general es que mientras más restringida sea la creación de árboles, más árboles necesitará en el modelo, y al revés, cuanto

menos árboles individuales sean restringidos, menos árboles se necesitarán. Algunas de las restricciones que se imponen a la construción de estos árboles son el número de árboles, profundidad del árbol, número de nodos o número de hojas y el número de observaciones por división (impone una restricción mínima en la cantidad de datos de entrenamiento en un nodo de entrenamiento antes de que se pueda considerar una división)

- Velocidad de aprendizaje: Las predicciones de cada árbol se suman secuencialmente y la contribución de cada árbol a esta suma puede ser ponderada para ralentizar el aprendizaje por el algoritmo. Esta ponderación se denomina velocidad de aprendizaje y cada actualización se escala por el valor de este parámetro. El efecto es que el aprendizaje se ralentiza, lo que a su vez requiere que se añadan más árboles al modelo, lo que a su vez lleva más tiempo entrenar, proporcionando un compromiso de configuración entre el número de árboles y el ritmo de aprendizaje. Esto es, disminuir el valor del ritmo de aprendizaje aumenta el mejor valor para el número de árboles; es común tener valores pequeños en el rango de 0.1 a 0.3, así como valores menores a 0.1. De esta manera, el parámetro de velocidad de aprendizaje reduce la influencia de cada árbol individual y deja espacio para que los árboles futuros mejoren el modelo.
- Muestreo aleatorio: En cada iteración se extrae submuestra de los datos de entrenamiento al azar (sin reemplazo) del conjunto completo de datos de entrenamiento. La submuestra seleccionada al azar se utiliza entonces, en lugar de la muestra completa, para adaptarse al base learner. El beneficio de esto es que reduce la correlación entre los árboles en la secuencia en modelos de potenciación del gradiente. Esta variación de la potenciación del gradiente se denomina potenciación del gradiente estocástico y algunas variantes que se pueden utilizar de este algoritmos son el submuestreo de filas antes de crear cada árbol, submuestreo de columnas antes de crear cada árbol y el submuestreo de columnas antes de considerar cada división. En general, el submuestreo agresivo, como seleccionar sólo el 50% de los datos, ha demostrado ser beneficioso.
- Aprendizaje penalizado: Se pueden imponer restricciones adicionales a los árboles parametrizados aparte de modificar su estructura. Los árboles de decisión clásicos no se utilizan como weak learners, sino que se utiliza una forma modificada denominada árbol de regresión que tiene valores numéricos

(denominados pesos) en los nodos hoja (también llamados nodos terminales). Como tal, los valores de peso de las hojas de los árboles pueden ser regularizados usando una serie de funciones de regularización, tales como la regularización L1 en los pesos y la regularización L2 en los pesos. El término adicional de regularización ayuda a suavizar los pesos finales aprendidos para evitar sobreajustes.

3.2.1.3 Implementación del algoritmo

La implementación del algoritmo fue diseñada para conseguir la mejor utilización eficiente de los recursos de tiempo y memoria de computación. para entrenar el modelo. Algunas de las características clave de implementación del algoritmo incluyen:

- Implementación de un algoritmo Sparse Aware que puede tratar matrices dispersas, ahorrando memoria (sin necesidad de matrices densas) y tiempo de computación (los valores a cero se manejan de una forma especial).
- Paralelización de la construcción de árboles utilizando todos los núcleos de la CPU durante el entrenamiento.
- Computación distribuida para entrenar conjuntos de datos muy grandes utilizando un clúster de máquinas.
- Computación fuera del núcleo en una sola máquina para tratar grandes conjuntos de datos que no caben en la memoria. Se utiliza una solución de almacenamiento de datos denominado bloque de columnas. Esta solución organiza los datos por columnas, de tal forma que se ahorra tiempo al extraer los datos del disco tal y como lo espera el algoritmo de optimización (que funciona en columnas vectoriales).
- Optimización de las estructuras de datos y algoritmos de la memoria caché para un mejor uso del hardware.
- Estructura de bloques para soportar la paralelización de la construcción de árboles.
- Entrenamiento continuado para que se pueda seguir impulsando un modelo ya ajustado con nuevos datos.
- Tratamiento de datos que faltan de una forma efectiva. Otros métodos de combinación de árboles requieren primero datos faltantes con el objetivo de desarollar una ramificación apropiada del árbol para tratar dichos valores. XGBoost, en su lugar, primer ajusta todos los valores no faltantes y, despues de haber creado la ramificación de la

variable, decide qué rama es la mejor que deben escoger otros valores faltantes para minimizar el error de predición. Esta aproximación conduce tanto a árboles más compactos como a una estrategia de imputación eficaz, lo que conllevan un mayor poder de predicción.

3.2.2 LightGBM

3.2.2.1 Definición

LightGBM es un framework de potenciación del gradiente que utiliza un algoritmo de aprendizaje basado en árboles. Es un framework rápido, distribuido y de alto rendimiento, utilizado para clasificar, priorizar y muchas otras tareas de aprendizaje automático.

LightGBM es similar a XGBoost pero varía en algunas formas específicas, especialmente en la forma en que crea los árboles. LightGBM realiza la construcción de los árboles verticalmente, mientras que el otro algoritmo lo hace horizontalmente, lo que significa que el primero genera los árboles leaf-wise (búsqueda primero el mejor) mientras que el otro los genera level-wise (búsqueda en anchura). Es decir, dado que LightGBM se basa en algoritmos de árbol de decisión, divide la hoja del árbol leaf-wise con el mejor ajuste, mientras que otros algoritmos de refuerzo dividen la profundidad del árbol depth-wise o level-wise en lugar de leaf-wise.

En comparación con el crecimiento **depth-wise**, el algoritmo **leaf-wise** puede converger mucho más rápido. Esto se debe a que, al crecer el árbol sobre la misma hoja en *LightGBM*, el algoritmo **leaf-wise** puede reducir más errores que el algoritmo l**evel-wise** y, por lo tanto, da como resultado una precisión mucho mejor que raramente puede lograrse con cualquiera de los algoritmos de *boosting* existentes. Además, es sorprendentemente muy rápido, de ahí la palabra *Light* ('Ligero').

Sin embargo, las divisiones **leaf-wise** provocan un aumento de la complejidad y pueden dar lugar a un ajuste excesivo si no se utilizan con los parámetros adecuados. Se puede superar este inconveniente especificando otro parámetro de *profundidad máxima* que especifica la profundidad a la que se producirá la división.

A continuación se exponen una serie de figuras para explicar la diferencia de forma visual:

Figura 3.3: Crecimiento level-wise del árbol en XGBoost

Figura 3.4: Crecimiento leaf-wise del árbol en LightGBM 3.2.2.2 3.2.2 Ventajas

Las ventajas que presenta LightGBM con respecto a otros algoritmos de boosting son las siguientes:

- Mayor velocidad de entrenamiento y mayor eficiencia: LightGBM utiliza un algoritmo basado en histogramas, es decir, almacena valores de características continuas en contenedores discretos que fijan el procedimiento de entrenamiento.
- Menor uso de memoria: Reemplaza valores continuos a contenedores discretos, lo que resulta en un menor uso de memoria.
- Mayor precisión que cualquier otro algoritmo de *boosting*: Genera árboles mucho más complejos al seguir un enfoque de división

leaf-wise en lugar de un enfoque level-wise, que es el factor principal para lograr una mayor precisión. Sin embargo, a veces puede llevar a un sobreajuste del moelo que puede evitarse configurando el parámetro de profundidad máxima.

- Compatibilidad con grandes conjuntos de datos: Es capaz de funcionar igual de bien con grandes conjuntos de datos con una reducción significativa del tiempo de entrenamiento en comparación con XGBoost.
- Aprendizaje paralelo soportado.

No es aconsejable utilizar LightGBM en pequeños conjuntos de datos. Este algoritmo es sensible al sobreajuste y puede sobreajustar datos pequeños fácilmente. No hay umbral en el número de filas, pero es recomendable usarlo sólo para datos con más de 10.000 filas.

3.2.3 Perceptrón multicapa (Redes neuronales)

3.2.3.1 Definición

El campo de las redes neuronales artificiales a menudo se llama simplemente redes neuronales o perceptrones multicapa,. Un perceptrón es un modelo de una sola neurona que fue precursor de redes neuronales de mayor tamaño. Es un campo que investiga cómo modelos simples de cerebros biológicos pueden ser usados para resolver tareas computacionales difíciles como las tareas de modelado predictivo. El objetivo no es crear modelos realistas del cerebro, sino desarrollar algoritmos robustos y estructuras de datos que podamos usar para modelar problemas difíciles.

El poder de las redes neuronales proviene de su capacidad para aprender la representación en sus datos de entrenamiento y cómo relacionarla mejor con la variable de salida que desea predecir. En este sentido las redes neuronales aprenden un **mapeo**. Matemáticamente, son capaces de aprender cualquier función de mapeo y han demostrado ser un algoritmo de aproximación universal.

3.2.3.2 Neuronas

El bloque de construcción de las redes neuronales son las *neuronas* artificiales. Éstas son unidades computacionales simples que ponderan las señales de entrada y producen una señal de salida usando una función de

activación.

Figura 3.5: Estructura de una neurona artificial funcionamiento de una neurona artificial es el siguiente:

- 1. Recibe una serie de **entradas**, que pueden ser características de un conjunto de entrenamiento o salidas de otras neuronas.
- 2. A continuación, se aplican unos **pesos** a las entradas. Estos pesos se inicializan a menudo a valores aleatorios pequeños, como valores en el rango de 0 a 0.3, aunque se pueden utilizar esquemas de inicialización más complejos. Es deseable mantener pesos pequeños en la red y se pueden utilizar técnicas de regularización para ello.
- 3. Después, las entradas ponderadas se suman junto con un sesgo que tiene la neurona (se interpreta como una entrada que permite desplazar la función de activación a la izquierda o a la derecha, que siempre tiene el valor 1.0 y que también debe ser ponderada) y pasan a través de una función de activación, obteniendo así las salidas. Esta función de activación es un simple mapeo de la entrada ponderada sumada a la salida de la neurona. Se llama función de activación porque gobierna el umbral a partir del cual se activa la neurona y la fuerza de la señal de salida. Es decir, Sse utiliza para determinar la salida de la red neuronal como si o no: mapea los valores resultantes de 0 a 1 o de -1 a 1, etc. (dependiendo de la función). Las distintas funciones de activación se engloban en dos tipos, funciones de activación lineales y funciones de activación no lineales y existen una gran variedad de ellas: función sigmoide, Tanh, ReLU, etc. Tradicionalmente se utilizan funciones de activación no

lineales puesto que permiten a la red neuronal combinar las entradas de maneras más complejas y, a su vez, proporcionar una mejor capacidad en las funciones que pueden modelar.

3.2.3.3 Redes de neuronas

Las neuronas están dispuestas en **redes neuronales**. Una fila de neuronas se denomina **capa** y una red puede tener múltiples capas. La arquitectura de las neuronas en la red a menudo se denomina **topología de red**.

Figura 3.6: Estructura de una red neuronal

La estructura de una red neuronal se compone de las siguientes partes:

- Capa de entrada: La capa que toma la entrada del conjunto de datos se denomina capa de entrada o capa visible, ya que es la parte expuesta de la red. A menudo una red neuronal se representa con una capa visible con una neurona por valor de entrada o columna en el conjunto de datos. Éstas no son neuronas como se describió anteriormente, sino que simplemente pasan el valor de entrada a la siguiente capa.
- Capas ocultas: Las capas posteriores a la capa de entrada se denominan *capas ocultas* porque no están expuestas directamente a la entrada. La estructura de red neuronal más simple es tener

una sola neurona en la capa oculta que produzca directamente el valor de salida. Dado el aumento de la potencia de cálculo y la eficiencia de las bibliotecas, se pueden construir redes neuronales muy profundas. El aprendizaje profundo se refiere a tener muchas capas ocultas en una red neuronal. Son profundas porque habrían sido inimaginablemente lentas para entrenar históricamente, pero pueden tardar segundos o minutos para entrenar dichas redes neuronales usando técnicas y hardware modernos.

• Capa de salida: La última capa oculta se denomina capa de salida y es responsable de emitir un valor o vector de valores que corresponden al formato requerido para el problema. La elección de la función de activación en la capa de salida está fuertemente limitada por el tipo de problema que se está modelando. Por ejemplo, un problema de regresión puede tener una neurona de salida única y la neurona puede no tener función de activación. Otro ejemplo sería un problema de clasificación binaria, que puede tener una neurona de salida única y utilizar una función de activación sigmoide para emitir un valor entre 0 y 1 para representar la probabilidad de predecir un valor para la clase 1. Esto se puede convertir en un valor de clase definido utilizando un umbral de 0.5 y ajustar valores inferiores al umbral a 0 y superiores a 1.

3.2.3.4 Entrenamiento de una red neuronal

Para comenzar a entrenar una red neuronal, es imprescindible primero preparar los datos. Éstos deben ser *numéricos*; si los datos son *categóricos*, como un atributo de sexo con los valores "masculino" y "femenino", se puede convertir en una representación de valores reales denominada **codificación en caliente**. Aquí es donde se añade una nueva columna para cada valor de clase (dos columnas en el caso del sexo de hombres y mujeres) y un 0 o 1 para cada fila dependiendo del valor de clase para esa fila.

Esta misma codificación en caliente se puede utilizar en la variable de salida en *problemas de clasificación* con más de una clase. Esto crearía un

vector binario a partir de una sola columna que sería fácil de comparar directamente con la salida de la neurona en la capa de salida de la red neuronal que, como se describió anteriormente, produciría un valor para cada clase.

Las redes neuronales requieren que la entrada esté escalada de manera consistente. Se puede rescalar al rango entre 0 y 1 y esto se denomina **normalización**. Otra técnica bastante utilizada es **estandarizarla** para que la distribución de cada columna tenga la media de cero y la desviación estándar de 1, de modo que todas las entradas se expresan en rangos similares. Con la *normalización* y la *estandarización* el proceso de entrenamiento de la red neuronal se realiza con mucha mayor velocidad.

El clásico y aún preferido algoritmo de entrenamiento para redes neuronales se denomina descenso por gradiente estocástico, en el que una fila de datos se expone a la red neuronal a la vez como entrada. La red procesa la entrada hacia delante activando las neuronas a medida que se va avanzando a través de las capas ocultas hasta que finalmente se obtiene un valor de salida. Esto se denomina propagación hacia delante en la red neuronal. Es el tipo de propagación que también se utiliza después de que la red neuronal es entrenada para hacer predicciones sobre nuevos datos.

La salida del grafo se compara con la salida esperada y se calcula el error. Este error es entonces propagado de nuevo hacia atrás a través de la red neuronal, una capa a la vez, y los pesos son actualizados de acuerdo a su grado de contribución al error calculado. Esta propagación del error hacia atrás se denomina el algoritmo de retropropagación. El proceso se repite para todos los ejemplos de los datos de entrenamiento y un proceso de actualizar la red neuronal para todo el conjunto de datos de entrenamiento se denomina época. Una red neuronal puede ser entrenada por decenas, cientos o muchos miles de épocas.

Los pesos en la red neuronal se pueden actualizar a partir de los errores calculados para cada ejemplo de entrenamiento y esto se denomina aprendizaje en línea. Puede resultar en cambios rápidos pero también caóticos en la red. De forma alternativa, los errores se pueden guardar en todos los ejemplos de entrenamiento y la red se puede actualizar al final. Esto se denomina aprendizaje por lotes y a menudo es más estable.

Típicamente, debido a que los conjuntos de datos son tan grandes y a las eficiencias computacionales, el tamaño del lote (el número de ejemplos que se le muestra a la red neuronal antes de una actualización), a menudo se reduce a un pequeño número, como decenas o cientos de ejemplos. El grado en el que se actualizan los pesos es controlado por un parámetro de configuración denominado velocidad de aprendizaje. Este parámetro controla el cambio

realizado en el peso de la red neuronal para un error determinado. A menudo se utilizan tamaños de peso pequeños tales como 0.1 o 0.01 o más pequeños.

Una vez que una red neuronal ha sido entrenada puede ser usada para realizar predicciones. La topología de la red neuronal y el conjunto final de pesos es todo lo que necesita para implantar el modelo. Las predicciones se realizan proporcionando la entrada a la red y ejecutando una propagación hacia delante que genera una salida que se utiliza como predicción.

3.2.4 Modelo ARIMA

Para comprender el funcionamiento del modelo ARIMA, resulta relevante entender los conceptos englobados dentro de lo que se denominan *series* temporales.

3.2.4.1 Definición de una serie temporal

Una serie temporal es una colección ordenada de mediciones tomadas en intervalos regulares; por ejemplo, los precios diarios de las acciones o los datos de ventas semanales. Los intervalos pueden representar cualquier unidad de tiempo, pero debe utilizarse un mismo intervalo para todas las mediciones. Además, si algún intervalo no tiene ninguna medición, debe definirse en el valor perdido. De esta forma, el número de intervalos con mediciones (incluidos los que tienen valores perdidos) define la duración del período histórico de los datos. Un ejemplo de serie temporal es el siguiente:

Figura 3.7: Ejemplo de serie temporal

3.2.4.2 Características de las series temporales

Estudiar el comportamiento pasado de una serie temporal ayuda a

identificar los patrones y realizar mejores previsiones. Cuando se representan, muchas series temporales muestran una o varias de estas características:

• **Tendencia:** Una **tendencia** es un cambio gradual ascendente o descendente en el nivel de la serie o la trayectoria que siguen los valores de la serie de aumentar o disminuir a lo largo del tiempo.

Figura 3.8: Ejemplo de una serie temporal con tendencia

Las tendencias también pueden ser **lineales** o **no lineales**. Las tendencias *lineales* son incrementos aditivos positivos o negativos en el nivel de la serie y las tendencias *no lineales* suelen ser multiplicativas, con incrementos proporcionales a los valores de series anteriores. Las tendencias lineales globales son adecuadas y hacen previsiones correctas con el modelo ARIMA.

• Ciclos estacionales y no estacionales: Un ciclo estacional es un patrón repetitivo y predecible de los valores de las series temporales. Por ejemplo, los datos mensuales suelen mostrar un comportamiento cíclico a lo largo de trimestres y años. Una serie mensual puede mostrar un ciclo trimestral significativo con un mínimo en el primer trimestre o un ciclo anual con un pico en cada mes de diciembre. Se dice que las series con un ciclo estacional muestran estacionalidad; los patrones estacionales resultan útiles para obtener buenos ajustes y previsiones.

Figura 3.9: Ejemplo de una serie temporal con ciclos estacionales

Por otra parte, un ciclo no estacional es un patrón repetitivo y posiblemente impredecible de los valores de las series. Algunas series, como la tasa de desempleo, muestran un claro comportamiento cíclico; no obstante, la periodicidad del ciclo varía a lo largo del tiempo, por lo que resulta difícil predecir cuándo se van a producir máximos o mínimos. Este tipo de patrones son difíciles de modelar y suelen aumentar la incertidumbre de las previsiones.

• Pulsos y pasos: Muchas series temporales experimentan cambios bruscos de nivel. Normalmente son de dos tipos: un cambio repentino y temporal, o pulso, en el nivel de la serie, y un cambio repentino y permanente, o paso, en el nivel de la serie.

Figura 3.10: Serie temporal con pulsos

Cuando se observan pasos o pulsos, es importante encontrar una explicación convincente. Los modelos de series temporales están diseñados para explicar cambios graduales y no repentinos. Por tanto, suelen subestimar los pulsos y pueden quedar inutilizados por los pasos, lo que da como resultado modelos poco ajustados y previsiones imprecisas. No obstante, si se puede explicar una alteración, se puede modelar mediante una **intervención** o un **evento**. Por ejemplo, puede que un comercio minorista descubra que sus ventas se incrementaron mucho más de lo normal un día que todos los artículos se rebajaron un 50%. Si se especifica una promoción de rebajas del 50% como **evento** recurrente, puede mejorar el ajuste del modelo y estimar la repercusión que tendría esa misma promoción en el futuro.

• Valores atípicos: Los desplazamientos en el nivel de una serie temporal que no se pueden explicar se denominan valores atípicos. Estas observaciones no coinciden con el resto de las series y pueden influir considerablemente en el análisis y, por lo tanto, afectar a la capacidad de previsión del modelo de serie temporal.

En las siguientes figuras se muestran los distintos tipos de valores atípicos que se producen normalmente en las series temporales. Las líneas azules representan una serie sin valores atípicos. Las líneas rojas sugieren un patrón que podría estar presente si la serie contuviera valores atípicos.

Figura 3.11: Distintos tipos de valores atípicos

- Valor atípico aditivo. Un valor atípico aditivo aparece como un valor inesperadamente alto o bajo que se produce para una única observación. Las siguientes observaciones no se ven afectadas por un valor atípico aditivo. Los valores atípicos aditivos consecutivos se denominan normalmente parches de valores atípicos aditivos.
- Valor atípico innovador. Un valor atípico innovador se caracteriza por un impacto inicial con efectos que se extienden sobre las siguientes observaciones. La influencia de los valores atípicos puede aumentar mientras avanza el tiempo.

0

0

0

0

Figura 3.12: Comparación de una serie estacionaria con una no estacionaria con respecto a la autocovarianza

Valor atípico de cambio de nivel. En el cambio de nivel, todas las observaciones que aparecen después del valor atípico se desplazan a un nuevo nivel. A diferencia de los valores atípicos aditivos, un valor atípico de cambio de nivel afecta a diversas observaciones y tiene un efecto permanente.

- Valor atípico de cambio transitorio. Los valores atípicos de cambio transitorio son similares a los valores atípicos de cambio de nivel, pero su efecto se reduce exponencialmente en las siguientes observaciones. Finalmente, las series vuelven a su nivel normal.
- *Valor atípico aditivo estacional*. Un valor atípico aditivo estacional aparece como un valor inesperadamente alto o bajo que se produce repetidamente en intervalos regulares.
- Valor atípico de tendencia local. Un valor atípico de tendencia local produce un cambio general en la serie causado por un patrón en los valores atípicos después de la aparición del valor atípico inicial.

La detección de valores atípicos en una serie temporal implica determinar la ubicación, tipo y magnitud de todos los valores atípicos presentes. Tsay (1988) propuso un procedimiento iterativo para detectar el cambio del nivel de la media con el fin de identificar los valores atípicos deterministas. Este proceso implica la comparación de un modelo de serie temporal que supone que no hay presentes valores atípicos con otro modelo que incorpore valores atípicos. Las diferencias entre modelos permiten calcular el efecto de tratar cualquier punto como un valor atípico.

3.2.4.3 Componentes de las series temporales

El estudio descriptivo de series temporales se basa en la idea de descomponer la variación de una serie en varias componentes básicas. Este enfoque no siempre resulta ser el más adecuado, pero es interesante cuando en la serie se observa cierta tendencia o cierta periodicidad. Hay que resaltar que esta descomposición no es en general única.

Este enfoque descriptivo consiste en encontrar componentes que correspondan a una *tendencia a largo plazo*, un *comportamiento estacional* y una *parte aleatoria*. Las componentes o fuentes de variación que se consideran habitualmente son las siguientes:

- **Tendencia secular o regular**: Se puede definir como un *cambio a largo plazo* que se produce en relación al nivel medio, o el cambio a largo plazo de la media. La tendencia se identifica con un movimiento suave de la serie a largo plazo. La notaremos *t*.
- Efecto Estacional (Variación estacional): Muchas series temporales presentan cierta periodicidad o, dicho de otro modo, variación de cierto periodo (anual, mensual ...). Por ejemplo, el paro laboral aumenta en general en invierno y disminuye en verano. Estos tipos de efectos son fáciles de entender y se pueden medir explícitamente o incluso se pueden eliminar del conjunto de los datos, desestacionalizando la serie original. La notaremos e.
- Componente Aleatoria (Variación aleatoria, residual, irregular o accidental): Una vez identificados los componentes anteriores y después de haberlos eliminado, persisten unos valores que son aleatorios. Se pretende estudiar qué tipo de comportamiento aleatorio presentan estos residuos, utilizando algún tipo de modelo probabilístico que los describa. La notaremos r.

Es necesario aislar de alguna manera la componente aleatoria y estudiar qué modelo probabilístico es el más adecuado. Conocido éste, podremos

conocer el comportamiento de la serie a largo plazo.

3.2.4.4 Tipos de esquemas para series temporales

Las tres componentes enumeradas determinan conjuntamente los valores de la variable analizada en cada instante, sin que pueda valorarse con precisión el influjo individual de cada una de ellas. En relación a estos componentes, los dos esquemas generalmente más admitidos sobre la forma en que la serie temporal se descompone en sus tres componentes son el *aditivo* y el *multiplicativo*.

• El **esquema aditivo s**upone que las observaciones se generan como suma de las tres componentes, es decir:

$$Y=t+e+r$$

En este caso cada componente se expresa en el mismo tipo de unidad que las observaciones. La variación residual, en este modelo, es independiente de las demás componentes, es decir la magnitud de dichos residuos no depende del valor que tome cualquier otra componente de la serie (análogamente la variación estacional y la tendencia). ¿Decir que éste es el modelo en el que nos vamos a basar?

• El **esquema multiplicativo** supone que las observaciones se generan como producto de las tres componentes, es decir:

$$Y = t \times e \times r$$

En este modelo (multiplicativo puro) la tendencia secular se expresa en el mismo tipo de unidad que las observaciones, y el resto de las componentes en tanto por uno. Aquí no se cumple la hipótesis de independencia del esquema aditivo.

• Otro tipo de modelo multiplicativo que si cumple la hipótesis de independencia es aquél llamado **modelo multiplicativo** mixto, que es el siguiente:

$$Y=t\times e+r$$

Para diferenciar un esquema de otro, vamos a observar las siguientes imágenes:

Figura 3.14: Serie temporal con tendencia multiplicada por la estacionalidad

En la primera imagen, la tendencia se ha agregado a la estacionalidad. Por ello, la banda que ocupa la serie es siempre del mismo grosor. En la segunda imagen, la tendencia se multiplica por la estacionalidad. Por eso, el efecto de ésta es superior cuanto mayor sea la tendencia. Esta observación distingue el primer modelo de los dos últimos. La distinción entre el modelo multiplicativo y el mixto tiene que ver con el comportamiento de la componente irregular.

3.2.4.5 Clasificación descriptiva de las series temporales

Las series temporales se pueden clasificar en:

• Estacionarias: Una serie es estacionaria cuando es estable, es decir, cuando la media y la variabilidad son constantes a lo largo del tiempo. Esto se refleja gráficamente en que los valores de la serie tienden a oscilar alrededor de una media constante y la variabilidad con respecto a esa media también permanece constante en el tiempo. Es una serie básicamente estable a lo largo del tiempo, sin que se aprecien aumentos o disminuciones sistemáticos de sus valores. En la serie temporal de la Figura 3.14 se presenta una serie estacionaria discreta.

Figura 3.15: Ejemplo de serie estacionaria

• No Estacionarias: Son series en las cuales la media y/o variabilidad cambian en el tiempo. Los cambios en la media determinan una tendencia a crecer o decrecer a largo plazo, por lo que la serie no oscila alrededor de un valor constante. Por ejemplo, la serie de la Figura 3.15 presenta una fuerte tendencia creciente aunque existen importantes oscilaciones con relación a esa tendencia de crecimiento lineal.

Figura 3.16: Ejemplo de serie no estacionaria

La diferencia entre los dos tipos de series temporales se puede visualizar mejor en las siguientes imágenes:

Figura 3.17: Comparación de una serie estacionaria con una no estacionaria con respecto a la media

La serie de la izquierda tiene una media constante, en cambio la figura de la derecha muestra tendencia, y su media se incrementa con el paso del tiempo.

Figura 3.18: Comparación de una serie estacionaria con una no estacionaria

con respecto a la varianza

La serie de la derecha no es estacionaria, su varianza se incrementa.

Figura 3.19: Comparación de una serie estacionaria con una no estacionaria con respecto a la autocovarianza

En la serie de la derecha, la autocovarianza (covarianza) no es constante.

3.2.4.6 Funciones de autocorrelación y autocorrelación parcial

La *autocorrelación* y la *autocorrelación parcial* son medidas de asociación entre valores de series actuales y pasadas e indican cuáles son los valores de series pasadas más útiles para predecir valores futuros. Con estos datos se puede determinar el orden de los procesos en un modelo ARIMA.

• La autocorrelación simple (FAC) mide la relación lineal entre las observaciones de una serie de dato Y_t , distanciados en un lapso de tiempo k. El lapso de tiempo k se conoce como retardo o retraso. Este

retardo denota el periodo de tiempo entre los valores de la serie para el cual se mide el tipo y grado de correlación de la variable considerada.

• La autocorrelación parcial (FACP), es una medida asociada a la autocorrelación simple. Es la estimación de la autocorrelación simple, para el mismo retardo k, con la eliminación del efecto producido por las autocorrelaciones para retardos menores a k, las cuales están presentes en la estimación de la autocorrelación simple. La autocorrelación parcial no considera las autocorrelaciones acumuladas para el retardo k para el que se estima.

Un ejemplo de gráfico de autocorrelación es el siguiente:

Figura 3.20: Ejemplo de un gráfico de autocorrelación

El eje \boldsymbol{x} del gráfico indica el retardo en el que se calcula la autocorrelación; el eje y indica el valor de la correlación (entre -1 y 1). Una correlación positiva indica que los valores grandes actuales se corresponden con valores grandes en el retardo especificado; una correlación negativa indica que los valores grandes actuales se corresponden con valores pequeños en el retardo especificado. El valor absoluto de una correlación es una medida de la fuerza de la asociación, con valores absolutos mayores que indican relaciones más fuertes.

Para saber los tipos de modelo **AR** y **MA** (explicados más adelante), es preciso observar las funciones de autocorrelación parcial y autocorrelación simple respectivamente.

3.2.4.7 Estimación de las componentes de una serie temporal

Con el objetivo de aislar la componente aleatoria de una serie temporal y realizar un análisis para saber qué modelo probabilístico se le adecúa más y saber el comportamiento de la serie a largo plazo, es necesario identificar las componentes de tendencia y estacionalidad de la misma.

Para estimar la variable de *tendencia* de la serie temporal, supondremos que tenemos una serie no estacionaria sin componente estacional, es decir, que la serie se puede descomponer en

$$Y_t = t + r$$

Para estimar t debemos realizar alguna hipótesis sobre su forma:

• **Tendencia determinista:** En este caso supondremos que la tendencia es una función determinística. La función más sencilla posible es una recta, es decir,

$$t = a + bt$$

donde a y b son dos constantes a determinar. La forma de estimar estas constantes es mediante un modelo de regresión lineal entre las variables Yt y el tiempo t=1,2,3,... De esta forma, si estimamos los parámetros a y b, entonces la componente irregular será

$$r=Y-a-bt$$

El siguiente ejemplo presenta una tendencia que se podría expresar de forma lineal. La tendencia de la serie y la componente irregular serían, en este ejemplo,

serie y tendencia lineal

Figura 3.21: Serie temporal y su tendencia

Figura 3.22: Componente regular de la serie temporal tras eliminar su tendencia

• Tendencia evolutiva: A menudo, la tendencia de la serie no sigue una recta y evoluciona a lo largo del tiempo. En ese caso, un método general de estimar la tendencia es suponer que evoluciona lentamente en el tiempo, y que se puede aproximar con una función sencilla para intervalos cortos del tiempo. Para ello, suponemos que la representación de la tendencia por una recta es válida para tres

períodos consecutivos de tiempo t-1, t y t+1, y representamos las tendencias en los tres periodos consecutivos de la siguiente manera:

$$T_{t-1} = T_t - \nabla T$$

$$T_t = T_t$$

$$T_{t+1} = T_t + \nabla T$$

Si hacemos la media de tres observaciones consecutivas

$$m_t = \frac{x_{t-1} + x_t + x_{t+1}}{3}$$

entonces

$$m_t = T_t + \frac{I_{t-1} + I_t + I_{t+1}}{3}$$

y como la componente irregular tiene **media cero**, la media de los tres valores del componente irregular se puede suponer que es despreciable frente a la tendencia, y m_t representa la tendencia en ese instante. Esta operación se denomina media móvil de orden tres.

Este método, denominado medias m'oviles, consiste fundamentalmente en agrupar sistemáticamente un número fijo k de valores de la serie y determinar para cada grupo su media. Para entender este concepto, se expone el siguiente ejemplo:

mes	1	2	3	4	5	6	7	8	9	10
n° accidentes	20	25	15	22	30	42	48	51	45	49

Figura 3.23: Número de accidentes de tráfico durante 10 meses

número de accidentes

Figura 3.24: Representación de los datos de accidentes de tráfico

Los siguientes datos corresponden al número de accidentes de tráfico durante 10 meses registrados en una determinada zona considerada como conflictiva (**Figura 3.23**). Si nos fijamos en la representación de estos datos (**Figura 3.24**), vemos que su tendencia es ascendente. Para obtenerla, vamos a obtenerla mediante *medias móviles de orden 3*. Tomemos por tanto, los tres primeros valores de la serie y calculemos su media:

$$20,25,15 \rightarrow y_1 = \frac{20+25+15}{3} = 20$$

Figura 3.25: Primera media de la serie

Quitemos ahora el primer valor y añadamos el cuarto:

$$25,15,22 \rightarrow y_2' = \frac{25+15+22}{3} = 20,67$$

Figura 3.26: Segunda media de la serie

Quitando el segundo valor y añadiendo el quinto:

$$15,22,30 \rightarrow y_3' = \frac{15+22+30}{3} = 22,33$$

Figura 3.27: Tercer media de la serie

Repitiendo esta operación aparecen todas las medias móviles de orden 3. Asignaremos cada una de ellas al periodo mediano correspondiente:

mes	1	2	3	4	5	6	7	8	9	10
y'i		20.00	20.67	22.33	31.33	40.00	47.00	48.00	48.33	

Figura 3.28: Medias móviles de orden 3

tendencia (por medias móviles de orden 3)

Figura 3.29: Nueva serie de medias móviles

Un ejemplo más visual de cómo quedaría la estimación de la tendencia y la componente regular tras eliminar dicha tendencia es la siguiente:

Figura 3.30: Ejemplo de estimación de la tendencia mediante medias móviles

Figura 3.31: Componente irregular tras eliminar la tendencia

• Diferenciación de la serie: Los dos métodos vistos con anterioridad sirven para estimar la tendencia y poder eliminarla de la serie temporal. Un tercer método más general para eliminar la tendencia consiste en suponer que la tendencia evoluciona lentamente en el tiempo, de manera que en el instante t la tendencia debe estar próxima a la tendencia en el instante t-1. De esta forma, si restamos a cada valor de la serie el valor anterior, la serie resultante estará aproximadamente libre de tendencia.

Esta operación se denomina diferenciación de la serie y consiste en pasar de la serie original x_t a la serie y_t mediante:

$$y_t = x_t - x_{t-1}$$

Un ejemplo de este método es el siguiente:

Figura 3.32: Serie temporal antes de la diferenciación

Figura 3.33: Serie temporal después de la diferenciación

Para estimar la variable de *estacionalidad* se pueden tener en cuenta estos métodos:

• Variación de la media del período respecto de la media global: Un método de estimar el efecto estacional (por ejemplo mensual) es considerar cómo varía la media del período (mes) respecto de la media global. Para entender este método, vamos a eliminar de la serie la componente estacional, es decir, se desestacionaliza la serie mediante los últimos 6 años de la serie de la . Esta serie presenta una estacionalidad mensual, de modo que se colocan los datos en una tabla de doble entrada (Figura 3.35):

Figura 3.34: Serie temporales antes de la desestacionalización

	90	91	92	93	94	95	medias	coef. est.
Enero	5.49	5.65	5.75	5.83	5.89	6.03	5.77	-0.14
Febrero	5.45	5.62	5.71	5.76	5.83	5.97	5.72	-0.19
Marzo	5.59	5.76	5.87	5.89	6.01	6.04	5.86	-0.05
Abril	5.59	5.75	5.85	5.85	5.98	6.13	5.86	-0.05
Mayo	5.60	5.76	5.87	5.89	6.04	6.16	5.89	-0.02
Junio	5.75	5.92	6.05	6.08	6.16	6.28	6.04	0.13
Julio	5.90	6.02	6.14	6.20	6.31	6.43	6.17	0.26
Agosto	5.85	6.00	6.15	6.22	6.33	6.41	6.16	0.25
Septiembre	5.74	5.87	6.00	6.00	6.14	6.23	6.00	0.09
Octubre	5.61	5.72	5.85	5.88	6.01	6.13	5.87	-0.04
Noviembre	5.47	5.60	5.72	5.74	5.89	5.97	5.73	-0.18
Diciembre	5.63	5.72	5.82	5.82	6.00	6.07	5.84	-0.07

Figura 3.35: Los últimos 6 años de la serie temporal de la Figura 3.34

En este ejemplo hay efecto estacional mensual y, por tanto, existen 12 coeficientes estacionales, uno para cada mes del año. Para estimarlos, se calcula primero la media de las observaciones para cada mes, $\mathbf{M_1}$, ..., $\mathbf{M_{12}}$, y el coeficiente estacional resulta ser:

$$S_i = M_i - M$$

para
$$i = 1, ..., 12$$

donde M es la media total de las observaciones. Así se puede observar que los meses con observaciones más pequeñas (por debajo de la media general) tienen coeficientes estacionales negativos, mientras que los meses con observaciones mayores tienen coeficientes estacionales positivos. Un ejemplo de cálculo de este coficiente estacional es el siguiente:

- Media total de las observaciones es M=5,91,
- Por lo tanto, S1=M1 M = 5,77 5,91 = -0,14

La suma de los coeficientes estacionales tiene que ser cero. Las temporadas más bajas son las correspondientes a los meses de febrero y noviembre, y las más altas las de los meses de julio y agosto.

Tras aplicar este método sobre la serie temporal se obtiene una serie desestacionalizada, es decir, una serie donde se ha eliminado el efecto de cada mes y que se obtiene restando al valor de cada mes el coeficiente estacional de dicho mes. Teniendo una serie desestacionalizada, podemos observar el comportamiento general de una serie cronológica sin tener en cuenta la componente estacional. En nuestro ejemplo, con todos los datos, la serie desestacionalizada es:

Figura 3.36: Serie desestacionalizada

• Diferenciación estacional de la serie: Es un método más general que consiste en no hacer ninguna hipótesis sobre la forma general de la estacionalidad a corto plazo y suponer simplemente que evoluciona lentamente en el tiempo. Para ello, construimos una nueva serie diferenciando cada valor en un instante determinado con aquel valor anterior que se encuentra s instantes de tiempo hacia detrás:

$$y_t = x_t - x_{t-s}$$

Ese decir, diferenciar estacionalmente la serie equivale a suponer que la

estacionalidad en t es el valor de serie en t-s:

$$S_t = X_{t-s}$$

Esta serie se denomina serie diferenciada estacionalmente.

A la hora de eliminar tanto la tendencia como la estacionalidad de una serie temporal para aplicar un modelo probabilístico sobre la componente irregular de la misma, es aconsejable eliminar primero la tendencia y en segundo lugar desestacionalizar la serie puesto que, si se realiza esto al revés, puede que siga habiendo estacionalidad tras eliminar previamente la estacionalidad y luego la tendencia y se tenga que volver a repetir pasos.

Las transformaciones suelen ser útiles para estabilizar una serie antes de estimar modelos y se aplican sobre las componentes de las series temporales. Esto es especialmente importante para **modelos ARIMA**, que necesitan que las series sean estacionarias antes de estimar los modelos.

3.2.4.8 Definición del modelo ARIMA

Un *modelo ARIMA* es una clase de modelos estadísticos para *analizar* y pronosticar datos de series temporales. Abarca explícitamente un conjunto de estructuras estándar en los datos de series temporales y, como tal, proporciona un método simple pero potente para hacer pronósticos hábiles de series temporales.

ARIMA es el acrónimo de *AutoRegressive Integrated Moving Average* (Modelo Autorregresivo Integrado de Media Móvil). Este acrónimo es descriptivo, capturando los aspectos clave del modelo mismo:

- AR: Autoregresión. Un modelo que utiliza la relación dependiente entre una observación y un cierto número de observaciones pasadas.
- I: Integrado. El uso de la diferenciación de observaciones brutas (por ejemplo, restar una observación de una observación en el paso temporal anterior) para que la serie temporal sea estacionaria.
- MA: Media móvil. Un modelo que utiliza la dependencia entre una

observación y un error residual de un modelo de media móvil aplicado a observaciones pasadas.

Cada uno de estos componentes se especifica explícitamente en el modelo como parámetro. Se utiliza la notación estándar ARIMA(p,d,q). Los parámetros del modelo ARIMA se definen de la siguiente manera:

- Autorregresivo (p). Es el número de órdenes autorregresivos del modelo. Los órdenes autorregresivos especifican los valores previos de la serie utilizados para predecir los valores actuales. Por ejemplo, un orden autorregresivo igual a 2 especifica que se van a utilizar los valores de la serie correspondientes a dos períodos de tiempo del pasado para predecir el valor actual.
- Diferencia (d). Especifica el orden de diferenciación aplicado a la serie antes de estimar los modelos. La diferenciación es necesaria si hay tendencias (las series con tendencias suelen ser no estacionarias y el modelado de ARIMA asume la estacionariedad) y se utiliza para eliminar su efecto. El orden de diferenciación se corresponde con el grado de la tendencia de la serie (la diferenciación de primer orden representa las tendencias lineales, la diferenciación de segundo orden representa las tendencias cuadráticas, etc.).
- Media móvil (q). Es el número de órdenes de media móvil presentes en el modelo. Los órdenes de media móvil especifican el modo en que se utilizan las desviaciones de la media de la serie para los valores previos con el fin de predecir los valores actuales. Por ejemplo, los órdenes de media móvil de 1 y 2 especifican que las desviaciones del valor medio de la serie de cada uno de los dos últimos períodos de tiempo se tienen en cuenta al predecir los valores actuales de la serie.

Se puede utilizar el valor 0 para cualquier parámetro del modelo, lo que indica que no se debe utilizar ese elemento del modelo. De esta manera, el modelo ARIMA puede configurarse para realizar la función de un modelo ARMA, e incluso de un simple modelo AR, I o MA.

3.2.4.9 Modelos autorregresivos AR(p)

Un **modelo autorregresivo** AR describe una clase particular de proceso en que las observaciones en un momento dado son predecibles a partir de las observaciones previas del proceso más un término de error. El caso más simple es el ARIMA(1,0,0) o AR(1) o de primer orden, cuya expresión matemática es:

$$AR(1) \equiv X_{t} = \Phi_{1} X_{t-1} + a_{t}$$

El proceso autorregresivo de orden \mathbf{p} , representado por ARIMA(p,0,0) o simplemente por AR(p), tiene la siguiente expresión matemática:

$$AR(p) \equiv X_t = \Phi_1 X_{t-1} + \Phi_2 X_{t-2} + ... + \Phi_p X_{t-p} + a_t$$

3.2.4.10 Modelo de medias móviles MA(q)

Un modelo de medias móviles MA describe una serie temporal en la que el valor actual puede predecirse a partir de la componente aleatoria de este momento y, en menor medida, de los impulsos aleatorias anteriores. El modelo ARIMA(0,0,1), también denotado por MA(1), viene dado por la expresión:

$$MA(1) \equiv X_t = a_t - v_1 a_{t-1}$$

El proceso de medias móviles de orden \mathbf{q} , representado por ARIMA(0,0,q) o también por MA(q), viene dado por la expresión:

$$MA(q) \equiv X_t = a_t - v_1 a_{t-1} - v_2 a_{t-2} - ... - v_a a_{t-a}$$

3.2.4.11 Modelos ARMA(p,q)

Una extensión natural de los modelos AR(p) y MA(q) es un tipo de modelos que incluyen tanto términos autorregresivos como de medias móviles y se definen como ARIMA(p, 0, q). Se representan por la ecuación:

$$ARMA(p,q) \equiv X_{t} = \Phi_{1} X_{t-1} + \Phi_{2} X_{t-2} + ... + \Phi_{p} X_{t-p} + a_{t} - v_{1} a_{t-1} - v_{2} a_{t-2} - ... - v_{q} a_{t-q}$$

A partir de esta fórmula se establece el modelo $\mathbf{ARIMA}(\mathbf{p}, \mathbf{d}, \mathbf{q})$. Un modelo ARIMA(0,d,0) es una serie temporal que se convierte en ruido blanco (proceso puramente aleatorio) después de ser diferenciada \mathbf{d} veces. El modelo (0, d, 0) se expresa mediante el operador de cambio retroactivo B:

$$(1-B)^d X_t = a_t$$

El modelo general ARIMA(p, d, q) toma la expresión:

$$ARIMA(p,d,q) \equiv (X_t - \Phi_1 X_{t-1} - \Phi_2 X_{t-2} - \dots - \Phi_p X_{t-p})(1-B)^d = a_t - v_1 a_{t-1} - v_2 a_{t-2} - \dots - v_q a_{t-q} - \dots - v_q$$

Un modelo $\mathbf{ARIMA}(\mathbf{p}, \mathbf{d}, \mathbf{q})$ permite describir una serie de observaciones después de que hayan sido diferenciadas d veces, a fin de extraer las posibles fuentes de no estacionariedad. Esta fórmula se puede aplicar a cualquier modelo.

3.2.4.12 Fases del modelo ARIMA

La metodología de Box y Jenkins se resume en cuatro fases:

- La primera fase consiste en identificar el posible modelo ARIMA que sigue la serie, lo que requiere:
 - Decidir qué transformaciones aplicar para convertir la serie observada en una serie estacionaria.
 - Determinar un modelo ARMA para la serie estacionaria, es decir, los órdenes p y q de su estructura autorregresiva y de media móvil.
- La segunda fase: seleccionar provisionalmente un modelo para la serie estacionaria. Se pasa a la segunda etapa de estimación, donde los parámetros AR y MA del modelo se estiman y se obtienen sus errores estándar y los residuos del modelo.

- La tercera fase es el diagnóstico, donde se comprueba que los residuos no tienen estructura de dependencia y siguen un proceso de ruido blanco. Si los residuos muestran estructura se modifica el modelo para incorporarla y se repiten las etapas anteriores hasta obtener un modelo adecuado.
- La cuarta fase es la *predicción*, una vez que se ha obtenido un modelo adecuado se realizan predicciones con el mismo.

Figura 3.37: Fases del modelo ARIMA

Los pasos a seguir para llevar a cabo el análisis de datos con el objetivo de construir el modelo ARIMA son los siguientes:

- 1. **Recogida de datos:** Es conveniente disponer de 50 o más datos y, en el caso de series mensuales, trabajar entre seis y diez años completos.
- 2. **Representación gráfica:** Es de gran utilidad disponer de un gráfico de la serie para decidir sobre la *estacionariedad*. En ocasiones, se utilizan medias y desviaciones típicas por subperiodo para juzgar sobre la estacionariedad de la serie.
- 3. Transformación previa de la serie: Cuando la serie no es estacionaria en varianza se requiere una transformación logarítmica. No obstante, la transformación logarítmica es muy frecuente incluso en series con dispersión relativamente constante en el tiempo. Una práctica habitual es ensayar con la serie original y en logaritmos y comprobar resultados.
- 4. Eliminación de la tendencia: La observación del gráfico de la serie indica la existencia o no de tendencia. Una tendencia lineal será corregida tomando primeras diferencias, que será el caso más frecuente. Una tendencia no lineal suele llevar en la práctica al uso de dos diferencias como mucho.
- 5. Identificación del modelo: Consiste en determinar el tipo de modelo más adecuado, esto es, el orden de los procesos autorregresivos y de medias móviles de las componentes regular y estacional. Técnicamente esta decisión se toma en base a las funciones de autocorrelación (FAC) y autocorrelación parcial (FAC parcial), tanto en la parte regular como estacional. Es habitual terminar eligiendo entre los procesos más simples AR(1), AR(2), MA(1), MA(2) y ARMA(1,1), tanto en la parte regular como estacional. En caso de duda pueden seleccionarse varios modelos alternativos que serán estimados y contrastados posteriormente, para definir finalmente el modelo adoptado.
- 6. Estimación de los coeficientes del modelo: Decidido el modelo, se procede a la estimación de sus parámetros, dado que se trata de un procedimiento iterativo de cálculo, pueden sugerirse valores iniciales.

- 7. Contraste de validez del modelo: Se utilizan distintos procedimientos para valorar el modelo o modelos inicialmente seleccionados: contraste de significación de parámetros, covarianzas entre estimadores, coeficiente de correlación, suma de cuadrados de errores, etc.
- 8. Análisis detallado de los errores: Se tendrán en cuenta las diferencias históricas entre valores reales y estimados por el modelo para su valoración final. Hay que verificar un comportamiento no sistemático de los mismos, así como analizar la posible existencia de errores especialmente significativos.
- 9. **Selección del modelo:** En base a los resultados de pasos anteriores, se decide sobre el modelo adoptado.
- 10. **Predicción:** El modelo seleccionado se utilizará como fórmula inicial de predicción.

3.2.4.13 Identificación práctica del modelo ARIMA

Identificar un modelo significa utilizar los datos recogidos, así como cualquier información de cómo se genera la serie temporal objeto de estudio para sugerir un conjunto reducido de posibles modelos que tengan muchas posibilidades de ajustarse a los datos. Ante una serie temporal empírica, se deben encontrar los valores (p, d, q) más apropiados.

- Si la serie temporal presenta una tendencia, lo primero que se debe hacer es convertirla en estacionaria mediante una diferenciación de orden d. Una vez diferenciada la serie, una buena estrategia consiste en comparar los correlogramas de la función de autocorrelación (ACF) y la función de autocorrelación parcial (ACFP), proceso que suele ofrecer una orientación para la formulación del modelo orientativo.
- Los procesos autorregresivos presentan función de autocorrelación parcial (ACFP) con un número finito de valores distinto de cero. Un proceso **AR(p)** tiene los primeros **p** términos de la función de autocorrelación parcial distintos de cero y los demás son nulos. En la práctica se considera que una muestra dada proviene de un proceso autorregresivo de orden **p** si los términos de la función de

autocorrelación parcial son casi cero a partir del que ocupa el lugar p.

• Los procesos de medias móviles presentan función de autocorrelación con un número finito de valores distintos de cero. Un proceso $\mathbf{MA}(\mathbf{q})$ tiene los primeros \boldsymbol{q} términos de la función de autocorrelación distintos de cero y los demás son nulos.

Las dos propiedades descritas son muy importantes con vistas a la identificación de un proceso mediante el análisis de las funciones de autocorrelación y autocorrelación parcial (**Tabla 3.1**).

Proceso	Función de autocorrelación (ACF)	Función de autocorrelación parcial (ACFP)		
MA(q)	Solo los q primeros coeficientes son significativos. El resto se anulan bruscamente (coef. 0 para retardo >q)	Decrecimiento rápido exponencial atenuado u ondas sinusoidales.		
AR(p)	Decrecimiento rápido exponencial atenuado u ondas sinusoidales.	Solo los p primeros coeficientes son significativos. El resto se anulan bruscamente (coef. 0 para retardo >q)		
ARIMA(p, d, q)	Comportamiento irregular en los retardos $(1,, q)$ con ${\bf q}$ picos. Decrecimiento para retardos posteriores a ${\bf q}$.			

Tabla 3.1: Obtención de los parámetros (p, d, q) en los distintos modelos

3.2.5 k-Vecinos Más Cercanos

3.2.5.1 Definición

 un paradigma clasificatorio muy extendido.

3.2.5.2 El algoritmo K-NN básico

Para comprender el algoritmo básico de esta técnica de aprendizaje automático se expone el siguiente ejemplo:

		X_1	 X_{j}	 X_n	C
$({f x}_1, c_1)$	1	x_{11}	 x_{1j}	 x_{1n}	c_1
	:	:	:	:	:
(\mathbf{x}_i, c_i)	i	x_{i1}	 x_{ij}	 x_{in}	c_i
	:	:	:	:	:
(\mathbf{x}_N, c_N)	N	x_{N1}	 x_{Nj}	 x_{Nn}	c_N
X	N+1	$x_{N+1,1}$	 $x_{N+1,j}$	 $X_{N+1,n}$?

Tabla 3.2: Estructura de los datos de entrada para el algoritmo KNN

La notación a utilizar es la siguiente:

- La **Tabla 3.2** corresponde a un fichero D de N casos, cada uno de los cuales está caracterizado por n variables predictoras, $X_1, ..., X_n$, y una variable a predecir, la clase C.
- Los N casos se denotan por:

$$(x_1, c_1), ..., (x_n, c_n)$$

para todo i=1,...,N donde

$$x_i = (x_{i,1} \dots x_{i,n})$$

para todo $i{=}1,{\dots},\!N$ y

$$c_i \in (c^1, \dots, c^m)$$

para todo i=1,...,M

 c^1, \dots, c^m denotan los m posibles valores de la variable clase C.

• El nuevo caso que se pretende clasificar se denota por

$$x = (x_1, ..., x_n)$$

En la siguiente figura se presenta un pseudocódigo para el clasificador K-NN básico:

```
COMIENZO Entrada: D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\} \mathbf{x} = (x_1, \dots, x_n) nuevo caso a clasificar PARA todo objeto ya clasificado (x_i, c_i) calcular d_i = d(\mathbf{x}_i, \mathbf{x}) Ordenar d_i (i = 1, \dots, N) en orden ascendente Quedarnos con los K casos D_{\mathbf{x}}^K ya clasificados más cercanos a \mathbf{x} Asignar a \mathbf{x} la clase más frecuente en D_{\mathbf{x}}^K FIN
```

Figura 3.38: Algoritmo básico KNN

Tal y como puede observarse en el mismo, se calculan las distancias de todos los casos ya clasificados al nuevo caso, \boldsymbol{x} , que se pretende clasificar. Una vez seleccionados los \boldsymbol{K} casos ya clasificados más cercanos al nuevo caso, \boldsymbol{x} , a éste se le asignará la clase (valor de la variable \boldsymbol{C}) más frecuente de entre los \boldsymbol{K} objetos. La siguiente figura muestra de manera gráfica un ejemplo de esto:

Figura 3.39: Ejemplo de aplicación del algoritmo K-NN básico

Tal y como se puede apreciar en la figura, tenemos 24 casos ya clasificados en dos posibles valores (m=2). Las variables predictoras son X_1 y X_2 , y se ha seleccionado K=3. De los 3 casos ya clasificados que se encuentran más cercanos al nuevo caso a clasificar, x (representado por \bullet), dos de ellos pertenecen a la clase \circ , por lo que el clasificador 3-NN predice la clase \circ para el nuevo caso. Nótese que el caso más cercano a x pertenece a la clase +. Es decir, que si hubiésemos utilizado un clasificador 1-NN, x se hubiese asignado a +.

En caso de que se produzca un *empate entre dos o más clases*, conviene tener una *regla heurística* para su ruptura. Un ejemplo de de regla heurística para la ruptura de empates pueden ser seleccionar la clase con distancia menor, etc.

¿Meter regresión lineal y máquinas de soporte vectorial de forma muy resumida?

¿Quitar KNN?

3.2.5.3 Método de regresión basado en KNN

El método de los k-vecinos más cercanos se adapta fácilmente a la regresión de funciones con valores continuos. Mediante una medida de distancia en el conjunto de datos ya clasificados se determinan los k datos más cercanos al nuevo dato x_q para aproximar una función a partir de los k valores ya seleccionados. Esta función corresponde al promedio de los k valores más cercanos; si se considera el promedio aritmético (todos los datos dentro del grupo tienen igual relevancia), la función aproximación tiene la siguiente forma:

$$\hat{f}(x_q): \frac{1}{k} \sum_{i=1}^{k} f(x_i)$$

Todos los datos deben estar normalizados, para evitar que las características en el conjunto de entrada con valores más altos dominen el cálculo de la distancia.

Capítulo 4 Fases del proyecto

Con el objetivo de desarrollar el proyecto de una forma ordenada, estructurada y adecuada, se ha procedido a dividir el mismo en una serie de fases:

- Comprensión del problema planteado por la competición KDDCup 2017. En primer lugar se ha llevado a cabo un estudio de las tareas encomendadas por la competición y de las reglas a aplicar en las predicciones que se realizaran.
- Creación de una serie de bases de datos para almacenar los datos proporcionados por la competición. Con el objetivo de poder acceder fácilmente y de forma flexible a la información suministrada por la competición KDDCup 2017, se ha planteado crear un conjunto de bases de datos que permita ordenar y clasificar los datos, de tal forma que se tenga una comprensión más acertada de ellos, se puedan realizar distinas combinaciones sobre los mismos y se genere nuevo conocimiento para llevar a cabo estimaciones.
- Modificación de las bases de datos creadas para adecuarlas a las tareas de predicción. Una vez realizada la carga de las bases de datos, se propone modificar los esquemas de las tablas que componen dichos almacenes de datos para que la información contenida en ellos sea lo más manejable posible. En este aspecto, nos centramos en la modificación de los tipos de datos de los atributos de las distintas tablas de las bases de datos.
- Creación de gráficas para visualizar los datos almacenados. Con el fin de visualizar la información contenida en los datos suministrados y tener una comprensión global de la misma, se pretende desarrollar una serie de gráficas que nos permitan conocer las características de los datos y poder abordar las predicciones a realizar de la mejor forma posible.

- Realización de varias aproximaciones de predicciones del tiempo promedio de viaje. Tras llevar a cabo la preparación preliminar de los datos a utilizar, se ha propuesto llevar a cabo diversas aproximaciones para predecir el tiempo promedio de viaje en las rutas y los intervalos de tiempo requeridos por la competición.
- Realización de varias aproximaciones de predicciones del volumen de tráfico. De igual manera que el tiempo promedio de viaje, también se procede a construir aproximaciones de predicciones del volumen de tráfico en las distintas barreras de peaje en las direcciones de entrada y salida y en los intervalos solicitados por la competición.
- Desarrollo de un análisis comparativo de los resultados obtenidos a partir de la utilización de las distintas técnicas de minería de datos contempladas. Tras utilizar diversas técnicas de minería de datos sobre los datos proporcionados por la competición para realizar estimaciones del tiempo promedio de viaje y del volumen de tráfico, se ha propuesto llevar a cabo una comparación de los resultados de los distintos algoritmos empleados con el objetivo de obtener una visión general sobre la actuación de cada uno de ellos.

4.1 Problema planteado por la competición $KDDCup\ 2017$

4.1.1 Contexto

Los peajes de las autopistas son cuellos de botella bien conocidos en las redes de tráfico de vehículos. Durante las horas punta, las largas colas que se crean en los peajes pueden abrumar a las autoridades de gestión del tráfico. Por lo tanto, se desea implantar una serie de contramedidas efectivas preventivas para resolver este desafío. Tales contramedidas agilizar el proceso de cobro de peaje y optimizar el flujo de tráfico futuro. La optimización de la recaudación del peaje se podría llevar a cabo simplemente distribuyendo temporalmente recaudadores de peaje carriles. Además, El futuro flujo de tráfico podría ser optimizado adaptando las señales de tráfico en función del flujo de tráfico intersecciones. Las contramedidas preventivas sólo presente en las

funcionarán cuando las autoridades de gestión del tráfico reciban predicciones fiables para el flujo de tráfico futuro. Por ejemplo, si se predice un tráfico denso en la siguiente hora, los reguladores de tráfico podrían desplegar inmediatamente más recaudadores de peaje y/o desviar tráfico en las intersecciones.

Los patrones del flujo de tráfico varían debido a diferentes factores estocásticos, como las condiciones meteorológicas, los días festivos, la hora del día, etc. La predicción del futuro flujo de tráfico del ETA (Tiempo Estimado de Llegada) es un reto conocido. Una gran cantidad sin precedentes de datos de tráfico de aplicaciones móviles como Waze (en EE.UU.) o Amap (en China) puede ayudarnos a resolver este reto de forma más precisa.

4.1.2 Tareas

Las tareas propuestas por la competición KDDCup2017 son las que se enumeran a continuación:

- Tarea 1: Estimar el *tiempo promedio de viaje* desde las intersecciones designadas hasta las barreras de peaje. Para cada ventana de tiempo de 20 minutos, predecir el tiempo promedio de viaje de los vehículos para una ruta específica (ver la *Figura 4.1*):
 - \circ Rutas desde la intersección A hasta las intersecciones 2 y 3.
 - \circ Rutas desde la intersección B hasta las intersecciones 1 y 3.
 - \circ Rutas desde la intersección C hasta las intersecciones 1 y 3.

Nota: El tiempo estimado de viaje (ETA) de una ventana de tiempo de 20 minutos para una ruta determinada es el tiempo medio de viaje de todas las trayectorias de vehículos que entran en la ruta en esa ventana de tiempo. Cada ventana de tiempo de 20 minutos se define como un intervalo semiabierto por la derecha; por ejemplo, [2016-09-18 23:40:00, 2016-09-19 00:00:00).

• Tarea 2: Para cada ventana de tiempo de 20 minutos, predecir el volumen de tráfico de entrada en las barreras de peaje 1, 2 y 3. Hay que tener en cuenta que la barrera de peaje 2 sólo permite el tráfico de entrada a la autopista, mientras que las demás barreras de peaje permiten el tráfico en ambos sentidos (entrada y salida). Por lo tanto,

necesitamos predecir el volumen de tráfico para 5 pares barrera de peaje-dirección en total.

Figura 4.1: Topología de la red de carreteras de la zona objetivo

4.1.3 Etapas y reglas de la competición

Las predicciones de tráfico se llevarán a cabo en las horas punta desde el día 18 al 24 de octubre. Concretamente, se debe predecir el tráfico resultante durante las franjas horarias mostradas en la Figura 4.2; es decir, en las franjas horarias 8:00-10:00 y 17:00-19:00.

Para la predicción del tiempo de viaje, el conjunto de entrenamiento inicial contiene los datos recogidos desde el día 19 de Julio hasta el 17 de Octubre de 2016. Con respecto a la estimación del volúmen de tráfico, el conjunto de entrenamiento inicial contiene los datos recogidos desde el día 19 de Septiembre hasta el 17 de Octubre de 2016. ¿Poner que más adelante se añade datos de entrenamiento del día 18 de Octubre hasta el 24 de Octubre o, en vez de esto, que se añaden estos datos para comprobar las predicciones (aunque falten datos de intervalos)?

Figura 4.2: Ventanas de tiempo para la predicción del tráfico

En los conjuntos de datos de pruebas se proporcionan datos de tráfico durante las franjas horarias verdes mostradas en la *Figura 4.2*. Esta información se puede utilizar como un indicar de tráfico en las próximas dos horas, que es lo que se va a proceder a predecir. En este aspecto, los concursantes no están restringidos a usar sólo los datos anteriores de las 2 horas antes de los intervalos de tiempo a estimar. No obstante, cada predicción está restringida a usar sólo los datos de tráfico anteriores a la ventana de tiempo predicha. Por ejemplo, no se permite utilizar los datos de tráfico del día 20 de Octubre para predecir el tráfico del día 19 de Octubre.

4.1.4 Métricas de evaluación

Para evaluar los resultados de las predicciones realizadas, se ha elegido la medida de error denominada MAPE (*Mean Absolute Percentage Error*, Error Porcentual Absoluto Medio). La fórmula para calcular esta medida de error es la siguiente:

$$MAPE = \frac{1}{R} \sum_{r=1}^{R} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{D} \sum_{d=1}^{D} \left| \frac{d_{rtd} - p_{rtd}}{d_{rtd}} \right|$$

Figura 4.3: Cálculo del error de predicción del tiempo promedio de viaje

Esta fórmula se aplica a la primera tarea propuesta por la competición donde R, T, D, d_{rtd} y p_{rtd} son el número de rutas, el número de ventanas de tiempo a predecir, el número de días en los que hay que predecir y los valores actual y predicho del tiempo promedio de viaje para una ruta r durante la ventana de tiempo t y el día d.

Para la segunda tarea propuesta, la fórmula es la que se muestra a continuación:

$$MAPE = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{D} \sum_{d=1}^{D} \left| \frac{f_{ctd} - p_{ctd}}{f_{ctd}} \right|$$

Figura 4.4: Cálculo del error de predicción del volumen de tráfico

donde C, T, D, f_{ctd} y p_{ctd} son el número de pares barrera de peaje-dirección , el número de ventanas de tiempo a predecir, el número de días en los que hay que predecir y los valores actual y predicho del volumen de tráfico para un par barrera de peaje-dirección específico r durante la ventana de tiempo t y el día d.

¿Mencionar el MAPE propuesto por la competición también sin los días?

4.2 Creación de bases de datos para almacenar los datos de la competición y modificaciones

Con el fin de almacenar los datos proporcionados por la competición de forma que sean fácilmente accesibles y permita una mejor comprensibilidad de los mismos, se ha utilizado el sistema de gestión de bases de datos denominado PostgreSQL.

4.2.1 Estructura de bases de datos propuesta

La información suministrada por la competición KDDCup 2017 se ha almacenado en tres bases de datos distintas. Por un lado, se ha construido una base de datos con los datos de entrenamiento originales de la competición denominada tfgdatosoriginales y tiene el objetivo de ser un almacén de datos de referencia para las alteraciones pertinentes que se quieran llevar a cabo sobre la misma. Por otro lado, se ha procedido a crear una base de datos denominada tfgdatosmodificados similar a la anterior pero con los tipos de los atributos modificados para adecuarse a las tareas a realizar y otra serie de alteraciones llevadas a cabo. Además, por conveniencia de separación de los datos de entrenamiento de los de testeo, se ha construido una base de datos con los datos de prueba denominada tfgtest. Aparte, se ha generado otro almacén de datos denominado tfgrealvalues para guardar los datos reales de los días a predecir; es decir, se almacenan los datos reales de los intervalos de tiempo a estimar para poder compararlos con los valores que se vayan a predecir.

4.2.2 Base de datos con los datos originales

4.2.2.1 Tabla vehicle_routes ("routes_table4.csv")

El esquema de la tabla original proporcionada por la competición es la que se expone en la **Tabla 8.1**. La red de carreteras utilizada en la competición es un grafo dirigido formado por *enlaces* o *tramos* de carreteras interconectados. Una ruta en la red está representada por una secuencia de

tramos. Para cada tramo de la ruta, el tráfico de vehículos proviene de uno o más "enlaces viales entrantes" y entra en uno o más "enlaces viales salientes" (ver **Figura 4.5**)

4.2.2.2 Tabla road_links ("links_table3.csv")

El esquema de la tabla original proporcionada por la competición es la que se visualiza en la **Tabla 8.2**. Esta tabla contiene la **descripción de cada uno de los tramos** que forman una ruta (ver **Figura 4.5**).

Figura 4.5: Rutas de la competición KDDCup2017 con los enlaces que las forman

¿Señalar el propietario de la imagen?

4.2.2.3 Tabla vehicle_trajectories_training ("trajectories_table 5_training.csv")

El esquema de la tabla original proporcionada por la competición es la

que se expone en la **Tabla 8.3**. Esta tabla contiene cada uno de los vehículos que han viajado en algún momento, entre el **19 de Julio** y el **17 de Octubre**, por alguna de las rutas establecidas en la tabla *vehicle_routes*. Para cada vehículo se establece el momento en el que entró en una ruta, el tiempo que estuvo ese vehículo en cada uno de los tramos que forman dicha ruta y el tiempo total de viaje que tardó en realizar esa ruta.

```
4.2.2.4 Tabla traffic_volume_tollgates_training
("volume_table6_training.csv")
```

El esquema de la tabla original proporcionada por la competición es la que se visualiza en la **Tabla 8.4**. En esta tabla se registran todos los vehículos que han pasado por alguna barrera de peaje situada en la topología de carreteras proporcionada por la competición en una dirección determinada. Con respecto al atributo *vehicle_type*, la competición no proporciona datos en esta columna, por lo que no se considera importante.

```
4.2.2.5 Tabla weather_data ("weather (table 7)_training.csv")
```

El esquema de la tabla original proporcionada por la competición es la que se expone en la **Tabla 8.5**. Esta tabla contiene los datos meteorológicos de cada una de las fechas contenidas en intervalos de 3 horas dentro del conjunto de entrenamiento.

Nota: En meteorología, es importante tener en cuenta que la dirección nos indica de dónde viene el viento, no hacia dónde va. Se mide en grados, desde 0º (excluido) hasta 360º (incluido), girando en el sentido de las agujas del reloj en el plano horizontal visto desde arriba. Valores cercanos a 1º y 360º indican viento del norte, cercanos a 90º viento del este, 180º del sur y 270º del oeste. Entre estos valores tendremos el resto de direcciones: nordeste, sureste, suroeste y noroeste.

```
4.2.2.6 Tabla travel_time_intersection_to_tollgate

("trajectories_table5_training_20min_avg_travel_time.csv")
```

El esquema de la tabla original proporcionado por la competición es la que se visualiza en la **Tabla 8.6**. Esta tabla se obtiene como resultado de la ejecución del script **aggregate_travel_time.py** proporcionado por la competición sobre la tabla **vehicle_trajectories_training** con el objetivo de agrupar datos. Para construir esta tabla, el script crea un diccionario para

guardar el tiempo de viaje para cada una de las rutas por cada ventana de tiempo y calcula la media del tiempo de viaje para cada una de esas rutas por Por lo tanto. ventana de tiempo. a partir vehicle trajectories training almacena lase en tabla travel time intersection to tollgate el tiempo medio de viaje para cada una de las rutas y ventana de tiempo de 20 minutos en el conjunto de entrenamiento.

El esquema de la tabla original proporcionado por la competición es la que se expone en la **Tabla 8.7**. Esta tabla se obtiene como resultado de la ejecución del script aggregate_volume.py proporcionado por la competición sobre la tabla traffic_volume_tollgates_training con el objetivo de agrupar datos. Para construir esta tabla, el script crea un diccionario para guardar el volumen de vehículos y la dirección en la que atraviesan cada una de las barreras de peaje cada ventana de 20 minutos. Por lo tanto, a partir de la tabla traffic_volume_tollgates_training se almacena en la tabla traffic_volume_tollgates el volumen de tráfico para cada una de los pares barrera de peaje-dirección en cada ventana de tiempo de 20 minutos en el conjunto de entrenamiento.

4.2.3 Base de datos con los datos modificados

4.2.3.1 Tabla road_links_modified ("links_table3.csv")

El nuevo esquema de la tabla es la que se visualiza en la **Tabla 8.8**. Uno de los cambios que se realizó fue cambiar el tipo de dato de la columna link_id a **smallint**. Por otra parte, los tipos de las columnas in_top y out_top se establecieron como **arrays de smallint** puesto que sus valores son conjuntos de enlaces. Para poder cargar desde el archivo .csv la tabla y que

no surgiera conflicto de tipos, inicialmente se crearon las columnas con el tipo **varchar**, se generaron arrays a partir de los valores de esas columnas y se alteró la tabla para realizar una conversión explícita a arrays de tipo **smallint**.

```
4.2.3.2 Tabla vehicle_routes_modified ("routes_table4.csv")
```

El nuevo esquema de la tabla es la que se expone en la **Tabla 8.9**. En esta tabla se cambió el tipo de la columna $tollgate_id$ a **smallint** y la columna $link_seq$ a **smallint**[]. Este último atributo se modificó de la misma forma que las columnas in_top y out_top de la tabla anterior.

```
4.2.3.3 Tabla vehicle_trajectories_training_modified

("trajectories table 5 training.csv")
```

El nuevo esquema de la tabla es la que se visualiza en la **Tabla 8.10**. En esta tabla se modificó los tipos de las columnas tollgate_id (a **smallint**), vehicle_id (a **int**) y travel_seq (a **link_object**[]). Esta última columna tiene un tipo compuesto con el objetivo de acceder mejor a la información, formado por los siguientes atributos:

- *id* : Identificador del enlace (smallint).
- *entrance_time*: Momento del tiempo en el que el vehículo entra en ese enlace (**timestamp**).
- *duration*: Tiempo que pasa el vehículo atravesando dicho enlace en segundos (**float**).

Para convertir los valores de la columna travel_seq a un conjunto de objetos de tipo link_object[], primero se convirtieron en arrays de varchar y se cambió el tipo de la columna a este tipo de arrays. A continuación, se recorrió cada una de las filas de la tabla, de tal forma que, por cada fila, se cogió el array de varchar, se creó un objeto link_object por cada uno de los elementos del array y se guardaron estos objetos en un link_object[]. Así, se actualizó la tabla con este nuevo tipo y, para que la columna tenga el tipo correcto, se realizó la conversión explícita a link_object[].

```
4.2.3.4 Tabla traffic_volume_tollgates_training_modified

("volume_table6_training.csv")
```

El nuevo esquema de la tabla es la que se expone en la **Tabla 8.11**. En esta tabla se eliminaron las columnas *vehicle_model* y *vehicle_type* puesto que no son relevantes a la hora de realizar las predicciones pertinentes. Por otra parte, se modificaron los tipos de los atributos *tollgate_id* (a **smallint**), *direction* (a **smallint**) y *has_etc* (a **boolean**).

```
4.2.3.5 Tabla weather_data_modified ("weather (table 7)_training.csv")
```

El esquema de la tabla no se modificó debido a que los tipos de las columnas en la tabla original son los correctos. Sin embargo, se alteraron aquellas filas en las que la columna $wind_direction$ tenía el valor 999017 puesto que el valor que admite este atributo son grados y el valor debe estar entre θ y 36θ grados. La modificación que se procedió a realizar fue realizar la $media\ entre\ la\ dirección\ del\ viento\ del\ día\ anterior\ y\ del\ dia\ posterior$, con el objetivo de realizar una aproximación y no eliminar completamente una fila.

Por otro lado, se añadió una fila de una fecha que no existía en la tabla y que es necesaria para combinarse con otras tablas (día 10/10/16).

```
4.2.3.6 Tabla travel_time_intersection_to_tollgate_modified

("trajectories_table5_training_20min_avg_travel_time.csv")
```

El nuevo esquema de la tabla es la que se visualiza en la **Tabla 8.12**. En esta tabla se modificaron los tipos de las columnas tollgate_id (a **smallint**) y time_window (a **timestamp ARRAY[2]**). El proceso que se llevó a cabo para convertir esta última columna al nuevo tipo es similar al que se llevó a cabo para el tipo link_object[] en la tabla vehicle_trajectories_training_modified. Para representar el intervalo en la columna time_window se ha utilizado un array de dos posiciones por conveniencia.

```
4.2.3.7 Tabla traffic_volume_tollgates_modified ("volume_table 6_training_20min_avg_volume.csv")
```

El nuevo esquema de la tabla es la que se expone en la Tabla 8.13. En

esta tabla se modificaron los tipos de las variables tollgate_id (a smallint), time_window (a timestamp ARRAY[2]) y direction (a smallint). Para realizar el cambio del tipo del atributo time_window se realizó el mismo proceso que la columna time_window en la tabla anterior. Además, en el script proporcionado por la competición que construye esta tabla (aggregate_volume.py) se alteró para que en esta tabla apareciera la proporción de coches que pasan por la ventana de 20 minutos y que utilizan el dispositivo ETC. Este atributo es importante tenerlo en cuenta puesto que los coches pasan más rápido por la barrera de peaje si no tienen que pararse a pagar en la barrera de peaje puesto que con este dispositivo se cobra al vehículo automáticamente al atravesar la misma.

4.2.4 Base de datos con los datos relacionados con la fase de pruebas

Para separar la fase de entrenamiento de la fase de pruebas y estructurar mejor la información, se construyó una nueva base de datos para manejar los datos proporcionados por la competición para la fase de pruebas.

El esquema de la tabla es la que se visualiza en la **Tabla 8.14**. Para comprender el sentido de esta relación, es necesario observar la **Figura 4.2**. En esta tabla se proporciona el tiempo promedio de viaje de cada una de las rutas en los intervalos de tiempo previos (color verde) a los intervalos de tiempo a predecir. Particularmente, se especifica el tiempo promedio de viaje en intervalos de tiempo de 20 minutos contenidos dentro de los intervalos de tiempo de 2 horas previos a los intervalos de tiempo a predecir. En este caso, los datos proporcionados corresponden a los días desde el **18 de Octubre de 2016** hasta el día **24 de Octubre de 2016** en los intervalos de tiempo de **6:00 a 8:00** (2 horas antes del intervalo a predecir de 8:00 a 10:00) y de **15:00 a 17:00** (2 horas antes del intervalo a predecir de 17:00 a 19:00).

```
4.2.4.2 Tabla traffic_volume_tollgates_test1
("test1_20min_avg_volume.csv")
```

El esquema de la tabla es la que se expone en la Tabla 8.15. En esta

tabla se proporciona el volumen de tráfico de cada una de las barreras de peaje en las direcciones de entrada y salida (menos la barrera de peaje 2 que no tiene dirección de salida) en los intervalos de tiempo previos (color verde) a los intervalos de tiempo a predecir. Particularmente, se especifica el volumen de tráfico en intervalos de tiempo de 20 minutos contenidos dentro de los intervalos de tiempo de 2 horas previos a los intervalos de tiempo a predecir. Los datos proporcionados corresponden a los mismos días establecidos para la predicción del tiempo promedio de viaje.

$4.2.4.3 \ Tabla \ tabla_resultado_average_travel_time$

El esquema de la tabla es la que se visualiza en la **Tabla 8.16**. Esta tabla contiene los intervalos que nos insta la competición a predecir en la *fase de testeo*. Específicamente, en esta tabla se guardan las predicciones realizadas con respecto al tiempo promedio de viaje en los intervalos a predecir (**Figura 4.2**).

4.2.4.4 Tabla tabla_resultado_traffic_volume

El esquema de la tabla es la que se expone en la **Tabla 8.17**. Esta tabla contiene los intervalos que nos insta la competición a predecir en la fase de testeo. Específicamente, en esta tabla se guardan las predicciones realizadas con respecto al volumen de tráfico en los intervalos a predecir (**Figura 4.2**).

Falta añadir la base de datos con los datos reales de los intervalos a predecir.

4.3 Creación de gráficas para visualizar los datos almacenados

Tras realizar un almacenado de los datos suministrados por la competición, es fundamental presentar dicha información en *gráficas* con el fin de facilitar la comprensión de los mismos y descubrir las relaciones subyacentes en la información contenida en ellos. En los siguientes apartados se visualizan distintos gráficos generados a partir de las tablas mencionadas anteriormente.

4.3.1 Gráficas del tiempo promedio de viaje de todos los días por rutas

Figura 4.6: Tiempo promedio de viaje medio en cada uno de los días en las diferentes

rutas

Figura 4.7: Continuación de la gráfica de la Figura 4.4

En estas gráficas se representa el valor medio de los tiempos promedios de viaje de todos los intervalos de tiempo de 20 minutos por cada uno de los días y rutas proporcionados por la competición. Como se puede apreciar en ellas, cada una de las rutas tiene su propio patrón de valores del tiempo promedio de viaje, de tal forma que en rutas como la C-1 y C-3 presentan valores mayores, mientras que las demás adquieren valores más bajos, siendo la ruta A-2 la que menos tarda en recorrerse. Este comportamiento de la gráfica es normal debido a que estos valores tienen que ver con la capacidad, anchura y longitud de las carreteras que las forman (Figura 4.5).

4.3.2 Gráficas del tiempo promedio de viaje de algunos días en todas las horas en cada una de las rutas

Figura 4.8: Tiempo promedio de viaje por horas en algunos días en la ruta A-2

Figura 4.9: Tiempo promedio de viaje por horas en algunos días en la ruta A-3

Figura 4.10 Tiempo promedio de viaje por horas en algunos días en la ruta B-1 $83\,$

Figura 4.11: Tiempo promedio de viaje por horas en algunos días en la ruta B-3

Figura 4.12: Tiempo promedio de viaje por horas en algunos días en la ruta C-1

Figura 4.13: Tiempo promedio de viaje por horas en algunos días en la ruta

C-3

En estas imágenes se grafica el tiempo promedio de viaje por horas de algunos días en todas las rutas propuestas por la competición. A través de la superposición de las series temporales de varios días se puede contemplar que todas ellas se asemejan en forma debido a la propiedad de estacionalidad que presentan las series temporales relacionadas con el tráfico en las carreteras. No obstante, puesto que las características de tráfico poseen una naturaleza bastante estocástica (ya que son muchos los factores que influyen en el mismo y tienen una componente aleatoria) y hay una falta de datos de intervalos de tiempo de 20 minutos, las series tienen una serie de diferencias que dificultan el descubrimiento de un comportamiento totalmente estacional en las mismas.

4.3.3 Gráficas del volumen de tráfico de todos los días en todas las horas en cada una de los pares barrera de peaje-dirección

Figura 4.14: Barrera de peaje 1 en la dirección de entrada

Figura 4.15: Barrera de peaje 1 en la dirección de salida

Figura 4.16: Barrera de peaje 2 en la dirección de entrada

Figura 4.17: Barrera de peaje 3 en la dirección de entrada

Figura 4.18: Barrera de peaje 3 en la dirección de salida

Como podemos visualizar en las gráficas anteriores, cada uno de los pares barrera de peaje-dirección posee un determinado patrón en cuanto al número de vehículos a lo largo de un día. No obstante, si nos fijamos detenidamente, se aprecia que en todas las gráficas la forma de las gráficas es la misma: en la primeras horas del día hay poco tráfico; en las primeras horas de la mañana hay un pico en el número de vehículos y disminuye en las últimas horas del horario de mañana y, a medida que avanza la tarde, el tráfico va disminuyendo. Esto se corresponde con un día típico.

En algunas gráficas (como la que se visualiza en la **Figura 4.14**) se observa que en algunos días se sigue el patrón del número de vehículos normal pero no la forma de las gráficas de la mayoría de los días. Aquellos días que poseen dicho comportamiento se considera *ruido* y es necesario eliminarlo para que esos valores no influyan negativamente a la hora de realizar las predicciones del volumen de tráfico.

4.4 Predicciones del tiempo promedio de viaje

El primer objetivo a conseguir propuesto por la competición es estimar el *tiempo promedio de viaje* que se va a producir en una serie de intervalos de 20 minutos (según la **Figura 4.2**). Para llevar a cabo esto, se ha procedido a desarrollar una serie de aproximaciones en las que se aplican diferentes técnicas de aprendizaje automático y se analiza y evalúa el comportamiento de los mismos sobre los datos contenidos en las bases de datos creadas para su tratamiento.

4.4.1 Primera aproximación

La primera aproximación de predicciones del tiempo promedio de viaje desarrollada parte de la generación de unas vistas minables sobre las bases de datos de los datos modificados y de los datos de prueba. Con el propósito de ejecutar el primer conjunto de predicciones, se ha creado una nueva estructura de los datos para pasarla como entrada a los algoritmos a utilizar para estimar valores. Dicha estructura se representa en la siguiente tabla:

Campo	Tipo	Descripción
$type_day$	date	Tipo de día de la semana (laborable (1) o fin de semana (0))
$twenty_min_previous$	float	Tiempo medio de viaje 20 minutos antes de la ventana de tiempo (segundos)
$forty_min_previous$	float	Tiempo medio de viaje 40 minutos antes de la ventana de tiempo (segundos)
$sixty_min_previous$	float	Tiempo medio de viaje 60 minutos antes de la ventana de tiempo (segundos)
$eighty_min_previous$	float	Tiempo medio de viaje 80 minutos antes de la ventana de tiempo (segundos)
$onehundred_min_pre$ $vious$	float	Tiempo medio de viaje 100 minutos antes de la ventana de tiempo (segundos)
$onehundredtwenty_mi$ $n_previous$	float	Tiempo medio de viaje 120 minutos antes de la ventana de tiempo (segundos)
pressure	float	Presión del aire (hPa)

$sea_pressure$	float	Presión del nivel del mar (hPa)
$wind_direction$	float	Dirección del viento (º)
$wind_speed$	float	Velocidad del viento (m/s)
temperature	float	Temperatura(°C)
$rel_humidity$	float	Humedad relativa
precipitation	float	Precipitaciones (mm)
avg_travel_time	float	Tiempo medio de viaje (segundos)

Tabla 4.1: Vista minable creada sobre los datos a utilizar para entrenamiento y testeo de la primera aproximación de predicciones

Esta nueva estructura de los datos almacenados en las bases de datos creadas se ha generado con el objetivo de que albergue los datos de entrenamiento y los datos de testeo para suministrar a las técnicas de aprendizaje automático pertinentes. Este esquema se sustenta en dos características principales: los datos meteorológicos y la evolución del tiempo promedio de viaje durante las dos horas previas a la ventana de tiempo. Por un lado, se tiene en cuenta el tiempo meteorológico puesto que es un factor que influye notablemente en el flujo de tráfico, de tal forma que si por ejemplo un día es muy lluvioso, entonces ese día el tráfico va a circular con menor velocidad debido a las medidas de precaución y el tiempo promedio de viaje será mayor. Por otro lado, si proporcionamos a los algoritmos de minería de datos la evolución de los cambios que sufre el tiempo promedio de viaje en las dos horas previas a cada una de las ventanas de tiempo, entonces éstos pueden hallar un patrón en los datos y realizar las tareas de predicción de forma más precisa. Además, en esta aproximación se tuvo en cuenta el tipo de día (si era laborable o fin de semana) puesto que no es lo mismo el tiempo promedio de viaje un día laborable en horario de mañana que un día en fin de semana en el mismo horario.

4.4.1.1 Creación de las vistas minables

```
DO $$
<<blook>>
DECLARE
  termina boolean DEFAULT FALSE;
  rutas_intervalos tipo_fila ARRAY;
  rutaintervalo_anterior tipo_fila;
  contador integer DEFAULT 1;
  routes ruta ARRAY:
  tiempos time ARRAY:
  route ruta;
  tiempo time;
BEGIN
rutas_intervalos := ARRAY(SELECT '(' ||intersection_id || ', ' || tollgate_id || ', ' || time_window[1] || ')' FROM travel_time_intersection_to_tollgate_modified WHERE (time_window[1].time BETWEEN TIME '08:00:00' AND TIME '09:40:00') OR (time_window[1].time BETWEEN TIME '17:00:00' AND TIME '18:40:00')
ORDER BY intersection_id, tollgate_id, time_window);
 WHILE contador <= ARRAY_LENGTH(rutas_intervalos, 1) LOOP
        termina := FALSE:
       PERFORM create_firstrow_route_interval(rutas_intervalos[contador]);
        rutaintervalo_anterior = rutas_intervalos[contador];
       contador = contador + 1;
         WHILE NOT(termina) LOOF
             IF (rutas_intervalos[contador].intersection = rutaintervalo_anterior.intersection AND rutas_intervalos[contador].tollgate = rutaintervalo_anterior.tollgate AND
(rutas_intervalos[contador].left_side_interval - rutaintervalo_anterior.left_side_interval) = INTERVAL '20 min') THEN
                  PERFORM actualizar_filaactual_con_filaanterior(rutas_intervalos[contador], rutaintervalo_anterior);
                  rutaintervalo_anterior = rutas_intervalos[contador];
                  contador := contador + 1;
                  termina := TRUE;
             END IF;
        END LOOP:
   END LOOP:
```

Figura 4.19: Bloque principal de código que crea la evolución de las 2 horas previas a la ventana de tiempo correspondiente en los datos de entrenamiento

Para poder crear el esquema de datos comentado anteriormente, primero fue necesario crear un script sql que creara las columnas que componen la evolución del tiempo promedio de viaje en las dos horas previas a la ventana de tiempo correspondiente en la **Tabla** travel_time_intersection_to_tollgate_modified. Concretamente, este script genera dichas columnas sobre los datos de entrenamiento. El bloque de código principal que las crea es el siguiente:

En primer lugar, obtenemos las diferentes rutas de la competición junto con las ventanas de tiempo comprendidas en los intervalos de tiempo que se nos pide predecir. Esto se lleva a cabo debido a que, en esta aproximación de predicciones, se van a tener en cuenta sólo aquellos datos de entrenamiento cuya ventana de tiempo esté contenida en los intervalos a predecir:

Figura 4.20: Obtención de las rutas de tráfico junto con las ventanas de tiempo comprendidas en los intervalos de tiempo a predecir

A continuación, para cada uno de los pares ruta-ventana de tiempo obtenidos, se crean las columnas que indican la evolución del tiempo promedio de viaje las dos horas previas. Para ello, en la primera iteración se llama a una función (create firstrow route interval) que crea el primer conjunto de valores de estas columnas para el primer par ruta-ventana de tiempo. Una vez hecho esto, en la siguiente iteración, si la ruta del nuevo par ruta-ventana de tiempo corresponde con el de la anterior iteración y las ventanas de tiempo se diferencian en 20 minutos (es decir, son intervalos de tiempo contiguos), entonces se crean los valores de las columnas con datos de la anterior iteración (con la función actualizar filaactual con filaanterior). Esto se lleva a cabo debido a que, por ejemplo, el valor de la columna que indica el tiempo promedio de viaje 60 minutos previos con respecto a la ventana de tiempo de la actual iteración corresponde con el valor de la columna que indica el tiempo promedio de viaje 40 minutos previos a la ventana de tiempo de la iteración anterior, ya que, como los pares ruta-ventana de tiempo están ordenados por intersección, barrera de peaje y ventana de tiempo tras realizar la consulta previa y las ventanas de tiempo se diferencian 20 minutos (ya que la competición proporciona los datos en intervalos de 20 minutos).

Tras varias iteraciones, como hemos obtenido los datos de los intervalos a predecir (8:00 – 10:00 y de 17:00 a 19:00) y éstos están ordenados por la ventana de tiempo, en la siguiente iteración ya los intervalos no avanzan de 20 en 20 minutos puesto que pasamos de la franja horaria de 8:00-10:00 a 17:00-19:00. También se puede dar el caso de que haya un intervalo de tiempo de 20 minutos que falte en esas franjas horarias debido a la falta de datos proporcionados por la competición. En estas dos situaciones, por lo tanto, como no tenemos filas previas con las que rellenar las columnas de la actual iteración (debido al cambio de franja horaria), es necesario volver a rellenar las columnas con la función create_firstrow_route_interval para crear el primer conjunto de valores de estas columnas en el primer intervalo de tiempo de 20 minutos de dicha franja horaria. A partir de este paso el proceso anterior se repite.

```
WHILE contador <= ARRAY_LENGTH(rutas_intervalos, 1) LOOP
      termina := FALSE:
      PERFORM create_firstrow_route_interval(rutas_intervalos[contador]);
      rutaintervalo_anterior = rutas_intervalos[contador];
      contador = contador + 1;
       WHILE NOT(termina) LOOP
           IF (rutas_intervalos[contador].intersection = rutaintervalo_anterior.intersection AND rutas_intervalos[contador].tollgate = rutaintervalo_anterior.tollgate AND (rutas_intervalos
[contador].left_side_interval - rutaintervalo_anterior.left_side_interval) = INTERVAL '20 min') THEN
               PERFORM actualizar_filaactual_con_filaanterior(rutas_intervalos[contador], rutaintervalo_anterior);
                rutaintervalo anterior = rutas intervalos[contador];
               contador := contador + 1:
           ELSE
              termina := TRUE:
           END IF;
       END LOOP:
  END LOOP:
```

Figura 4.21: Estructura iterativa para crear las columnas relacionadas con la evolución del tráfico en las dos horas previas a la ventana de tiempo considerada

Como se comentó anteriormente, para rellenar las columnas mencionadas previamente, los valores del primer intervalo de 20 minutos de cada una de las franjas horarias de los distintos días de entrenamiento se establecen con la función *create_firstrow_route_interval*. Para entender cómo se rellena cada una de estas columnas, se visualiza la siguiente imagen:

```
UPDATE
    travel_time_intersection_to_tollgate_modified AS thistable
    SET twenty_min_previous = othertable.avg_travel_time
    FROM travel_time_intersection_to_tollgate_modified othertable
    WHERE othertable.time_window[1] = (rutaintervalo.left_side_interval - INTERVAL '20 minute') AND othertable.time_window[2] = (rutaintervalo.left_side_interval)
    AND othertable.intersection_id = rutaintervalo.intersection AND othertable.time_window[2] = (rutaintervalo.left_side_interval)
    thistable.time_window[1] = rutaintervalo.left_side_interval AND thistable.time_window[2] = (rutaintervalo.left_side_interval + INTERVAL '20 minute')
    AND thistable.intersection_id = rutaintervalo.intersection AND thistable.tollgate_id = rutaintervalo.tollgate;

PERFORM checkAttributeValue(array['twenty_min_previous','20']::text[], rutaintervalo);
```

Figura 4.22: Consulta SQL que rellena la columna del tiempo promedio de viaje 20 minutos antes de la ventana de tiempo considerada

En esta consulta SQL se actualiza el valor de la columna que aloja el tiempo promedio de viaje de los 20 minutos previos a la ventana de tiempo que se considere en ese momento buscando aquella fila de la tabla con los datos de entrenamiento del tiempo promedio de viaje que se corresponda con el intervalo de tiempo que coincide con los 20 minutos previos y obteniendo el valor de su tiempo promedio de viaje. Tras esto, se comprueba si el valor establecido en la columna no es **nulo** y esta comprobación se realiza debido a dos razones. Por un lado, al intentar buscar el valor, puede ocurrir que no

haya datos en la tabla que correspondan a un intervalo de tiempo pasado ya que no se han proporcionado más datos.

Por otra parte, nos hemos percatado de que, al construir la **Tabla travel__time__intersection__to__tollgate__modified**, hay intervalos de tiempo que no existen en la tabla y, por tanto, no disponemos de su *tiempo promedio de viaje* para rellenar el valor de estas columnas. En el caso de que ocurriera alguna de estas dos circunstancias, esta columna adquiría el valor medio de los tiempos promedios de viaje de aquellas filas de la tabla cuyo intervalo de tiempo y el tipo de día (día de la semana) fuera el mismo que el de la fila en consideración. Por ejemplo, si la fila tomada en consideración corresponde a un **lunes** en el intervalo de tiempo **9:20-9:40** y la columna que corresponde al *tiempo promedio de viaje* 20 minutos antes de esa ventana de tiempo no se puede rellenar debido a que el dato no existe, entonces se establece el valor medio de los tiempos promedios de viaje de aquellas filas de entrenamiento tenga el mismo intervalo de tiempo y el día sea un lunes.

El procedimiento explicado anteriormente se sigue para los demás valores de la evolución del *tiempo promedio de viaje* en las dos horas previas a la ventana de tiempo que se esté teniendo en consideración.

Una vez llevado a cabo este proceso, para rellenar los siguientes intervalos de tiempo de 20 minutos a predecir contiguos a la ventana de tiempo rellenada con la función anterior (por ejemplo, rellenar los valores de las columnas de los intervalos de tiempo de 20 minutos comprendidos entre las 8:20 y las 10:00 a partir del intervalo 8:00-8:20), se realiza lo siguiente:

```
UPDATE travel_time_intersection_to_tollgate_modified AS actual

SET twenty_min_previous = before.avg_travel_time,|

forty_min_previous = before.twenty_min_previous,

sixty_min_previous = before.forty_min_previous,

eighty_min_previous = before.sixty_min_previous,

onehundred_min_previous = before.eighty_min_previous,

onehundred_min_previous = before.onehundred_min_previous

FROM travel_time_intersection_to_tollgate_modified before

WHERE actual.intersection_id = rutaintervalo_actual.intersection AND actual.tollgate_id = rutaintervalo_actual.tollgate AND actual.time_window[1] =

rutaintervalo_actual.left_side_interval AND before.intersection_id = rutaintervalo_anterior.intersection AND before.tollgate_id = rutaintervalo_anterior.tollgate AND before.time_window[1] =

rutaintervalo_anterior.left_side_interval;
```

Figura 4.23: Consulta SQL que establece los valores de las columnas de la evolución del tiempo promedio de viaje de las 2 horas previas a la ventana de tiempo en consideración utilizando los valores de las columnas del anterior intervalo de tiempo

En esta consulta SQL se accede a los valores de las columnas del intervalo de tiempo de 20 minutos previos a la ventana de tiempo en

consideración para actualizar las columnas del intervalo de tiempo actual.

Tras rellenar los valores de las columnas que corresponden a la evolución del *tiempo promedio de viaje* en las dos horas previas a cada uno de los intervalos de tiempo a predecir, se procedió a ejecutar lo que se visualiza en la siguiente imagen:

```
CREATE OR REPLACE VIEW tiempo_con_intervalos AS SELECT *

FROM weather_data_modified JOIN (SELECT *

FROM travel_time_intersection_to_tollgate_modified

WHERE (time_window[1].time BETWEEN TIME '08:00:00' AND TIME '09:40:00') OR (time_window[1].time BETWEEN TIME '17:00:00' AND TIME '18:40:00')

ORDER BY intersection_id, tollgate_id, time_window

) t ON date_ = time_window[1].date AND CEIL(EXTRACT(HOUR FROM time_window[1])/3) * 3 = hour

ORDER BY intersection_id, tollgate_id, time_window;
```

Figura 4.24: Combinación de la tabla con los datos de entrenamiento del tiempo promedio de viaje junto con los datos meteorológicos

En esta consulta SQL se combinaron aquellas filas de la **Tabla travel__time__intersection__to__tollgate__modified** (que contienen las columnas creadas) cuyos intervalos de tiempo correspondían con aquellas ventanas de tiempo a predecir con los datos meteorológicos de esos días.

Por último, para crear las vistas minables que se suministran como datos de entrenamiento a los algoritmos de minería de datos, se ejecutó el código de la imagen que se muestra a continuación:

```
FOREACH route IN ARRAY routes LOOP

FOREACH tiempo IN ARRAY tiempos LOOP

EXECUTE('CREATE TABLE ' || route.intersection ||'_' ||route.tollgate || '_' ||EXTRACT(HOUR FROM tiempo) || '_' ||EXTRACT(MINUTE FROM tiempo) || ' AS

EXECUTE EXTRACT(isodow FROM time_window[1].date) AS type_day, twenty_min_previous, forty_min_previous, sixty_min_previous, eighty_min_previous, onehundred_min_previous,
onehundredtwenty_min_previous, pressure,sea_pressure,wind_direction,wid_speed,temperature,rel_hunidity,precipitation,avg_travel_time FROM tiempo_con_intervalos WHERE intersection_id = ''' ||

route.intersection|| ''' AND tollgate_id = '|| route.tollgate || 'AND time_window[1].time = ''' ||

tiempo || ''' ORDER BY intersection_id, tollgate_id, time_window');

EXECUTE('UPDATE ' || route.intersection ||'_' ||route.tollgate || '_' ||EXTRACT(HOUR FROM tiempo) || '_' ||EXTRACT(MINUTE FROM tiempo) || ' SET type_day = 1

MHERE type_day BETWEEN 1 AND 5');

EXECUTE('UPDATE ' || route.intersection ||'_' ||route.tollgate || '_' ||EXTRACT(HOUR FROM tiempo) || '_' ||EXTRACT(MINUTE FROM tiempo) || ' SET type_day = 0

MHERE type_day IN (6,7)');

END LOOP;

END LOOP;
```

Figura 4.25: Código SQL que crea una vista para cada ruta e intervalo a partir de la vista con los datos combinados

En este código SQL, se genera una vista por cada uno de los pares rutaintervalo de tiempo a predecir a partir de la vista creada en la **Figura 4.25**.
Esta creación de distintas vistas por cada ruta e intervalo de tiempo a estimar
se realiza debido a que, si se quiere predecir el tiempo promedio de viaje en
una ruta e intervalo de tiempo determinado, es intuitivo pensar que van tener
una gran influencia los datos de entrenamiento que se correspondan con esa
ruta e intervalo de tiempo.

El procedimiento visto para crear las vistas minables necesarias como entrada de entrenamiento de los algoritmos de minería de datos en la primera aproximación de predicciones del tiempo promedio de viaje se aplica también a los datos que corresponden a las 2 horas previas a los intervalos a predecir, cuyas vistas se unen a las vistas de entrenamiento previos (esto se verá más detalladamente más adelante). Por otra parte, también se crean las vistas con la estructura de la **Tabla 4.1** para los datos de prueba puesto que son imprescindibles para poder proporcionar los mismos atributos en la fase de prueba con el objetivo de que prediga los valores del tiempo promedio de viaje de las ventanas de tiempo a predecir.

4.4.1.2 Realización de predicciones a partir de las vistas

Para llevar las estimaciones oportunas del tiempo promedio de viaje, se ha procedido a utilizar diversos algoritmos de minería de datos vistos en apartados anteriores; estos algoritmos son XGBoost, LightGBM, Regresión Lineal, Redes Neuronales, Máquinas de Soporte Vectorial y k-Vecinos Más Cercanos.

El primer paso para poder utilizar estas técnicas es entrenarlas con datos de entrenamiento. Como mencionamos anteriormente, para cada uno de las rutas e intervalos a predecir, se ha generado una vista con el fin de proporcionar a los algoritmos de minería de datos el conjunto de datos de entrenamiento que corresponde a cada ruta e intervalo. Por lo tanto, para cada par *ruta-intervalo*, se han seguido los siguientes pasos:

• En primer lugar se accede a la base de datos *tfgdatosmodificados* para obtener la vista que contiene los datos de entrenamiento correspondientes a la ruta y al intervalo que estamos considerando:

```
conn = psycopg2.connect("dbname='tfgdatosmodificados' user='javisunami' host='localhost' password='javier123'")
cur = conn.cursor()
query = "select * from " + route[0].lower() + "_" + str(route[1]) + "_" + str(interval.hour) + "_" + str(interval.minute) + ";"
cur.execute(query)
rows = cur.fetchall()
dataframe_traveltime = pd.DataFrame(rows, columns=colnames)
X_train = dataframe_traveltime.iloc[:, 0:14]
y_train = dataframe_traveltime.iloc[:, 14]
```

Figura 4.26: Obtención de los datos de entrenamiento para la ruta e intervalo en

consideración

• A continuación se accede a la base de datos *tfgtest* para obtener la vista que contiene los datos de prueba correspondientes a la ruta y al intervalo que estamos considerando. Es decir, obtenemos la vista que contiene los datos de los diferentes días de predicción en el par *ruta-intervalo* del que se obtuvieron los datos de entrenamiento anteriormente:

```
conn = psycopg2.connect("dbname='tfgtest1' user='javisunami' host='localhost' password='javier123'")
cur = conn.cursor()
query = "select * from " + route[0].lower() + "_" + str(route[1]) + "_" + str(interval.hour) + "_" + str(interval.minute) + ";"
cur.execute(query)
rows = cur.fetchall()
dataframe_traveltime = pd.DataFrame(rows, columns=colnames)
X_test = dataframe_traveltime.iloc[:, 0:14]
```

Figura $4.27\!\!:$ Obtención de los datos de prueba para la ruta e intervalo en

consideración

• Después realizamos la fase de entrenamiento y de predicción para cada uno de los modelos de aprendizaje automático contemplados previamente:

```
model = XGBRegressor()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

Figura 4.28: Entrenamiento y predicción del tiempo promedio de viaje en los distintos días de predicción con el modelo XGBoost

• Calculamos el error de estimación de cada una de las técnicas con la fórmula mencionada en la **Figura 4.3**. Para ello, para cada algoritmo, primero calculamos el error correspondiente a los días de predicción para una ruta e intervalo determinado (tercer sumatorio de la fórmula):

Figura 4.29: Cálculo del error medio de los días de predicción para una ruta e intervalo determinado

Este error se acumula para cada uno de los *intervalos de una ruta* con el objetivo de calcular el *error correspondiente a los intervalos de una ruta* (segundo sumatorio):

```
errores_predicciones_intervalos["XGBoost"] += y_test_sum
```

Figura 4.30: Acumulación de los errores correspondiente a los días a predecir de cada uno de los intervalos a estimar

```
errores_predicciones_intervalos[key]/len(time_intervals)
```

Figura 4.31: Cálculo del segundo sumatorio de la fórmula del error MAPE para un algoritmo

Nota: El key es cualquier algoritmo contemplado, en este caso XGBoost.

Una vez que se acumula el error correspondiente a los intervalos de una ruta a predecir, se acumula, a su vez, el error relacionado con cada una de las rutas de la competición (primer sumatorio). Esta acumuluación va sumando los errores del segundo sumatorio:

errores_predicciones_rutas[key] += errores_predicciones_intervalos[key]/len(time_intervals)

Figura 4.32: Acumulación de los errores del segundo sumatorio de la fórmula del error MAPE

errores_predicciones_rutas[key] = errores_predicciones_rutas[key]/len(routes);

Figura 4.33: Cálculo del primer sumatorio de la fórmula del error MAPE para un algoritmo

A la hora de calcular el error MAPE para cada uno de los intervalos y rutas de la competición, se tuvo que realizar una pequeña modificación. La causa de dicha modificación consistía en que la competición no proporcionaba los valores del tiempo promedio de viaje de todas las rutas e intervalos en los días predecir. Es decir, la competición proporcionaba datos de tráfico de los días a estimar pero, al agrupar dichos datos en intervalos de 20 minutos (con el script aggregate_travel_time.py) había intervalos de los que no se disponían datos. Por lo tanto, a la hora de comparar las predicciones con los valores reales, se compararon aquellos intervalos de los que se disponía el valor real, dejando sin equiparar aquellos de los que no había datos reales.

¿Meter la tabla con las predicciones de cada algoritmo para cada ruta e intervalo junto con los valores reales y los resultados?

Comentar el por qué de los resultados.

4.4.2 Segunda aproximación

Para realizar la segunda aproximación de predicciones del tiempo promedio de viaje se ha empleado un modelo estadístico para la predicción de series temporales denominado **ARIMA**. Para aplicar dicho modelo a los datos de tráfico proporcionados, se ha escogido crear dos modelos **ARIMA** para cada una de las rutas y días a predecir. La realización de estimaciones mediante este modelo se explica con detalles en los subsiguientes apartados.

4.4.2.1 Preparación de los datos

Con el objetivo de comparar las estimaciones que lleve a cabo cada uno de los modelo ARIMA a construir, es imprescindible tener los valores reales del tiempo promedio de viaje. Para ello, el primer paso para efectuar las predicciones es obtener dichos valores reales de la base de datos oportuna:

```
cur = conn.cursor()
cur.execute("""SELECT * FROM travel_time_intersection_to_tollgate_training2 WHERE (time_window[1].time BETWEEN TIME '08:00:00' AND TIME '09:40:00') OR (time_window[1].time
BETWEEN TIME '17:00:00' AND TIME '18:40:00') ORDER BY intersection_id, tollgate_id, time_window """)
rows = cur.fetchall()
colnames = ['intersection_id', 'tollgate_id', 'time_window', 'avg_travel_time']
```

Figura 4.34: Obtención de los valores reales del tiempo promedio de viaje para las rutas e intervalos de tiempo a predecir

Para poder aplicar el modelo ARIMA sobre nuestros datos, es necesario proporcionarle como entrada una serie temporal; es decir suministrarle como entrada datos de entrenamiento del tiempo promedio de viaje en intervalos de tiempo ordenados cronológicamente. No obstante, de forma similar a lo que sucedía con la falta de datos de tráfico reales en las rutas e intervalos mencionados en la primera aproximación de predicciones, en los datos de entrenamiento también hay ventanas de tiempo de los que no existen datos del tiempo promedio de viaje. Por lo tanto, para proporcionarle al modelo una entrada de entrenamiento coherente, se procedió a rellenar los intervalos faltantes con datos medios de los demás días de entrenamiento. Por ejemplo, si de la ruta A-2 en el intervalo 13:00-13:20 en un determinado día no tenemos el valor del tiempo promedio de viaje, entonces hallamos el valor medio de los días restantes en esta misma ruta e intervalo y lo establecemos como valor del tiempo promedio de viaje de esa ruta e intervalo.

Figura 4.35: Cálculo del valor del tiempo promedio de viaje de una parte de aquellas rutas e intervalos de las que no disponemos datos

4.4.2.2 Realización de estimaciones

A continuación, para una *ruta* y *día* concretos, se procede a realizar las estimaciones en los intervalos de tiempo a predecir. Es decir, como se trata de predicciones de series temporales, se deben hacer por cada par *ruta-día* para estimar la evolución de la serie temporal en las ventanas de tiempo de dicho

par. Para ello, por cada par *ruta-día*, se crean dos modelos *ARIMA*: uno para predecir los datos de la serie temporal en los intervalos de tiempo de 20 minutos incluidos en la ventana de tiempo 8:00-10:00 y otro modelo para estimar aquellos datos en los intervalos de tiempo de 20 minutos incluidos en la ventana de tiempo de 20 minutos 17:00-19:00. Para llevar a cabo esto, se llevan a cabo lo siguiente:

• De los días y rutas en los que se quiere estimar el tiempo promedio de viaje, la competición solo nos proporciona datos reales de los intervalos de tiempo de 20 minutos incluidos en las 2 horas previas a los intervalos a predecir. Al disponer de estos datos, por cada uno de los días, rutas e intervalos a predecir, se añaden los datos de esas 2 horas previas a los datos de entrenamiento correspondientes a una ruta determinada:

```
try:
    conn = psycopg2.connect("dbname='tfgtest1' user='javisunami' host='localhost' password='javier123'")
except:
    print("I am unable to connect to the database")
    cur = conn.cursor()
    query = "select time_window[1], avg_travel_time from travel_time_intersection_to_tollgate_test1 where intersection_id = '"+ str(route[0]) +"' AND tollgate_id = " + str(route[1])
+ " AND (time_window[1].time_BETWEEN " + intervalo1 + ") AND (time_window[1].date = DATE '"+str(day)+"') order by time_window;"
    cur.execute(query)
    rows = cur.fetchall()
    df2 = pd.DataFrame.from_records(rows, columns=['date', 'avg_travel_time'])
    result_dataframe = pd.concat([df1_aux,df2])
```

Figura 4.36: Concatenación de los datos de entrenamiento de una ruta determinada con los datos reales de las dos horas previas a un intervalo a predecir en un día y ruta determinada

• Una vez realizado este paso, se prueban diferentes modelos ARIMA para realizar las predicciones de un intervalo a predecir en un día y ruta determinadas. El paso llevado a cabo previamente es necesario para que el modelo ARIMA pueda realizar las estimaciones de los siguientes 6 valores de la serie a partir de los datos reales de las dos horas previas a los intervalos a predecir. Estos 6 valores de la serie temporal son los 6 intervalos de 20 minutos incluidos en la ventana de tiempo a estimar:

```
for p in range(3,10):
  for d in range(3):
    for q in range(5):
         print("ORDEN : ", (p,d,q))
         orderr = (p,d,q)
                 model = ARIMA(serie, order=orderr)
                 model_fit = model.fit(disp=0)
                 forecast = model_fit.forecast(steps=6)[0]
                 new forecast=[]
                 for element in rows2:
                           new\_fore cast.append(fore cast[((date time.date time(2018,1,1,element[\theta].hour,element[\theta].minute,\ \theta)-hora\_de\_referencia)/120\theta).seconds])
                 mse = mean_squared_error(valores_reales, new_forecast)
                 print("MSE : ", mse, " BEST_SCORE: ", best_score)
                  if mse < best_score:</pre>
                         print("BEST_SCORE : ", best_score)
                         best_score, best_cfg = mse, orderr
         except:
                 continue
print('Best ARIMA%s MSE=%.3f' % (best cfg, best score))
```

Figura 4.37: Cálculo del mejor modelo ARIMA para una ruta, día y ventana de tiempo a estimar

Para elegir el mejor modelo ARIMA que se adapta a cada ruta, día e intervalo a predecir se comparan las predicciones llevadas a cabo con los valores reales. Debido a la falta de algunos valores reales del tiempo promedio de viaje en los intervalos a predecir, solo se ha podido tener en cuenta el error de predicción en aquellas estimaciones de las que disponíamos datos verídicos.

• Por último, se ha procedido a calcular el *error MAPE* de las predicciones desarrolladas por cada uno de los modelos *ARIMA* construidos para cada ruta, día e intervalo que se requerían estimar. Las mejores predicciones obtenidas fueron las siguientes:

¿Introducir la tabla con las distintas predicciones?

4.4.3 Tercera aproximación

Para desarrollar la tercera aproximación de estimaciones del tiempo promedio de viaje se ha convertido la serie temporal de tiempos promedios de viaje proporcionada por la competición en un problema de aprendizaje supervisado. Esta transformación de los datos de la serie temporal nos permite acceder al conjunto de algoritmos estándar de aprendizaje de máquinas lineales y no lineales que hemos visto en apartados anteriores. Para ejecutar dicha conversión, se ha hecho uso de un método denominado ventana deslizante, que se expone con detalle en los siguientes apartados.

4.4.3.1 Preparación de los datos

Para poder aplicar el método de la ventana deslizante sobre los datos temporales, es imprescindible añadir a dichos datos aquellos intervalos de tiempo de los que no se dispone ningún dato sobre el tiempo promedio de viaje en los mismos. Para ello, es fundamental aplicar la transformación vista en la **Figura 4.35**. Este código establece la media de los valores de la serie temporal cuya ventana de tiempo es igual al intervalo de tiempo que se quiere añadir a la serie temporal y donde el día de la semana de éstos sean el mismo para dicho intervalo.

A partir de esto, en primer lugar, para cada una de las rutas y días propuestos a predecir, se sigue el procedimiento previo para rellenar los datos faltantes de la serie temporal (**Figura 4.35**.). A continuación, concatenamos a los tiempos promedios de viaje de la serie temporal de una ruta determinada aquellos datos de las dos horas previas de un día a predecir, de manera que poseemos una serie temporal que alcanza hasta el primer intervalo de tiempo a estimar en ese día:

```
except:
    print("I am unable to connect to the database")
    cur = conn.cursor()
    query = "select time_window[1], avg_travel_time from travel_time_intersection_to_tollgate_test1 where intersection_id = '" + str(route[0]) + "' AND tollgate_id = " + str(route[1]) +
" AND extract(day from time_window[1]) = " + str(day) + " AND extract(hour from time_window[1]) BETNEEN " + str(interval[0]) + " AND " + str((interval[1] - 1)) + " order by time_window;"
    cur.execute(query)
    row_2hoursintervals_before = cur.fetchall()
    dates_traveltime_2hoursintervals_before = pd.DataFrame.from_records(row_2hoursintervals_before, columns=['date', 'avg_travel_time'])
    dates_traveltime_filled = pd.concat([dates_traveltime_filled,dates_traveltime_2hoursintervals_before])
```

Figura 4.38: Concatenación de las dos horas previas a los intervalos de tiempo a predecir un día determinado con la serie temporal de una ruta

Tras este paso, se procede a utilizar el método de la ventana deslizante. Este método consiste en, dada una secuencia de números para un conjunto de datos de series de temporales, reestructurar los datos para que parezcan un problema de aprendizaje supervisado. Podemos llevar a cabo esto usando instantes de tiempo anteriores como variables de entrada y usar el siguiente instante de tiempo como variable de salida. Para ello, debemos elegir un determinado retraso de tiempo para establecer el número de instantes de tiempo hacia detrás que se van a emplear como atributos de entrada para los algoritmos de aprendizaje automático. Por ejemplo, si queremos que el tiempo promedio de viaje del siguiente instante de tiempo se prediga utilizando los valores de 5 instantes de tiempo anteriores, el retraso de tiempo es 5:

```
dates_traveltime_supervised = pd.DataFrame()
number_time_steps_previous = 5
for i in range(number_time_steps_previous,0,-1):
         dates_traveltime_supervised['t-'+str(i)] = series_dates_traveltime_filled.shift(i)
dates_traveltime_supervised['t'] = series_dates_traveltime_filled .values
dates_trafficvolume_supervised = dates_trafficvolume_supervised[number_time_steps_previous:]
```

Figura 4.39: Serie temporal a problema de aprendizaje supervisado

En la última línea de la **Figura 4.39** se eliminan las primeras 5 líneas debido a que, como hemos elegido un retraso de tiempo de 5 instantes de tiempo, los primeros 5 intervalos de tiempo van a tener datos faltantes puesto que no se disponen de más datos hacia atrás (por ejemplo el cuarto intervalo de tiempo no va a tener el *tiempo promedio de viaje* en el instante **t-5** puesto que no se proporciona dicho valor). Un ejemplo de la estructura se genera a partir del método de la *ventana deslizante* es el siguiente:

t-5	t-4	t-3	t-2	t-1	t
58.05	56.87	77.74	42.64	40.17	41.92
56.87	77.74	42.64	40.17	41.92	39.43
77.74	42.64	40.17	41.92	39.43	48.13
42.64	40.17	41.92	39.43	48.13	62.11
40.17	41.92	39.43	48.13	62.11	46.12
41.92	39.43	48.13	62.11	46.12	49.56
39.43	48.13	62.11	46.12	49.56	54.84
48.13	62.11	46.12	49.56	54.84	58.08
62.11	46.12	49.56	54.84	58.08	46.36
46.12	49.56	54.84	58.08	46.36	48.59
49.56	54.84	58.08	46.36	48.59	66.64
54.84	58.08	46.36	48.59	66.64	64.68
58.08	46.36	48.59	66.64	64.68	85.68
46.36	48.59	66.64	64.68	85.68	58.97
48.59	66.64	64.68	85.68	58.97	81.60
66.64	64.68	85.68	58.97	81.60	80.21
64.68	85.68	58.97	81.60	80.21	63.45
85.68	58.97	81.60	80.21	63.45	78.05
58.97	81.60	80.21	63.45	78.05	69.04
81.60	80.21	63.45	78.05	69.04	69.66

Figura 4.40: Estructura generada con el

método de la ventana deslizante

Una vez creada la estructura de los datos pertinentes, se proporciona como entrada a los algoritmos de minería de datos.

A la hora de generar las predicciones de los intervalos de tiempo a predecir, se accede a la última fila creada de la estructura construida anteriormente y se desplaza una posición a la izquierda , de tal forma que

tenemos los valores de tiempo promedio de viaje desde el instante de tiempo t-5 (en este ejemplo) al instante de tiempo t-1, dejando el instante de tiempo t sin dato puesto que es el primer instante de tiempo a predecir. Tras estimar el valor de la primera ventana de tiempo a predecir, se rellena el espacio vacío dejado en el instante t con el objetivo de volver a desplazar los valores de esta fila hacia la izquierda para volver a dejar vacío el instante t con el fin de predecir el segundo intervalo de tiempo a estimar. En este desplazamiento, el primer valor predicho se convierte en t-1 para predecir el tiempo promedio de viaje de la segunda ventana de tiempo a estimar; es decir, se utiliza el valor predicho como instante anterior al siguiente valor a predecir.

Para cada ruta, día e intervalo a estimar, se sigue el proceso comentado previamente. Después de obtener todos los valores a predecir, se obtiene el error MAPE correspondiente comparando los datos reales de la base de datos tfgrealvalues con los valores obtenidos.

Poner resultados con los distintos algoritmos

Comentar la razón por la que se dan errores MAPE más altos que en el tiempo promedio de viaje \rightarrow Disponemos de más datos reales en cuanto al volumen de tráfico.

4.5 Predicciones del volumen de tráfico

Inconvenientes del proyecto

- Se han proporcionado pocos datos de entrenamiento.
- Al agrupar datos, faltan datos de intervalos.

Capítulo 5

Conclusiones y líneas futuras

5.1.1 Conclusiones

En este proyecto se han aprendido los fundamentos de la minería de datos, así como el proceso de desarrollo de un trabajo que se requiere seguir en esta disciplina. Además, se ha adquirido experiencia en cuanto a utilización de distintas técnicas de aprendizaje automático con el fin de aplicarlas a tareas relacionadas con el flujo de tráfico en carreteras como son el tiempo promedio de viaje de los vehículos y el volumen de tráfico.

Por otra parte, nos hemos cultivado en la utilización del lenguaje de programación *Python* como herramienta para las labores de construcción de modelos de predicción y en el empleo del software *PostgreSQL* como almacén de datos para la información proporcionada por la competición *KDDCup2017*, indispensable para la ejecución de este trabajo. De igual manera se han adquirido una serie de conocimientos imprescindibles para organizar de forma adecuada el desarrollo de un proyecto con el fin de llevarlo a cabo de forma exitosa.

5.1.2 Líneas futuras

El planteamiento futuro que se pretende llevar a cabo sobre este proyecto consiste en aplicar las técnicas de minería de datos empleadas en la predicción de flujo de tráfico a la red de carreteras de la isla de Tenerife. Con la colaboración del Cabildo de Tenerife se persigue obtener la mayor cantidad de información de tráfico posible sobre la circulación de vehículos en Tenerife y realizar tareas de estimación de parámetros de tráfico con el objetivo de controlar aquellos aspectos del mismo que son críticos y de especial relevancia en la isla.

En relación a lo comentado previamente, se desea mejorar los resultados de predicción obtenidos con los datos de competición mediante la adquisición de una mayor cantidad y variedad de datos de tráfico por parte del Cabildo

de Tenerife. De la misma manera, se pretende realizar un estudio más exhaustivo de los modelos utilizados con el fin de optimizarlos y obtener unas estimaciones más precisas sobre el comportamiento futuro del flujo de tráfico de la isla.

Capítulo 6 Summary and Conclusions

6.1.1 Conclusions

In this project the fundamentals of data mining have been learned, as well as the process of developing a work that needs to be followed in this discipline. In addition, experience has been gained in the use of different automatic learning techniques to apply them to road traffic flow related tasks such as average vehicle travel time and traffic volume.

On the other hand, we have cultivated in the use of the *Python* programming language as a tool for the construction of prediction models and in the use of *PostgreSQL* software as a data warehouse for the information provided by the KDDCup2017 competition, indispensable for the execution of this work. Likewise, essential knowledge has been acquired to properly organize the development of a project in order to carry it out successfully.

6.1.2 Future lines

The future approach to this project is to apply the data mining techniques used to predict traffic flow in the road network of the island of Tenerife. With the collaboration of the town council of Tenerife, the aim is to obtain as much traffic information as possible about the circulation of vehicles in Tenerife and to carry out traffic parameter estimation tasks with the objective of controlling those aspects of it that are critical and of particular relevance to the island.

In relation to what was previously mentioned, we also wish to improve the prediction results obtained with the competition data by means of the acquisition of a greater quantity and variety of traffic data by the town council of Tenerife. Similarly, the aim is to carry out a more exhaustive study of the models used in order to optimise them and obtain more precise estimates of the future behaviour of the island's traffic flow.

Capítulo 7 Presupuesto

Este capítulo es obligatorio. Toda memoria de Trabajo de Fin de Grado debe incluir un presupuesto.

7.1 Sección Uno

Capítulo 8 Anexo

8.1.1 Tablas con los datos de la competición

Campo	Tipo	Descripción
$intersection_id$	$\begin{array}{c} \text{string} \\ (\text{char}(1)) \end{array}$	Identificador de la intersección
$tollgate_id$	$\begin{array}{c} \text{string} \\ (\text{char}(1)) \end{array}$	Identificador de la barrera de peaje
$link_seq$	string (varchar(47))	Secuencia de enlaces que conforman la ruta desde la intersección hasta la barrera de peaje

Tabla 8.1: Tabla $vehicle_routes$

Campo	Tipo	Descripción
$link_id$	string (char(3))	Identificador del enlace
length	float	Longitud del enlace en metros
width	float	Anchura del enlace en metros
lanes	int	Número de carriles
in_top	$ string \\ (varchar(7)) $	Este atributo contiene los enlaces entrantes al enlace actual, separados por comas
out_top	string (varchar(7))	Este atributo contiene los enlaces salientes del enlace actual, separados por comas
$lane_width$	float	Anchura de cada uno de los carriles del enlace en metros

Tabla 8.2: Tabla road_links

Campo	Tipo	Descripción
$intersection_id$	string (char(1))	Identificador de la intersección
$tollgate_id$	string (char(1))	Identificador de la barrera de peaje
$vehicle_id$	string (varchar(30))	Identificador del vehículo
$starting_time$	datetime (timestamp)	Momento del tiempo en el que el vehículo entra en la ruta
$travel_seq$	string (varchar(400))	Trayectoria de la ruta formada por un conjunto de enlaces. Estos enlaces están separados por un ";" y, para cada enlace, se especifica, separados por "#", su identificador, el momento del tiempo en el que el vehículo entra en ese enlace y el tiempo que pasa el vehículo atravesando dicho enlace en segundos.
$travel_time$	float	Tiempo total que tarda el vehículo en viajar desde la intersección hasta la barrera de peaje.

Tabla 8.3: Tabla $vehicle_trajectories_training$

Campo	Tipo	Descripción
time	$\begin{array}{c} \text{datetime} \\ \text{(timestamp)} \end{array}$	Momento en el que un vehículo atraviesa la barrera de peaje
$tollgate_id$	string $(char(1))$	Identificador de la barrera de peaje
direction	string (char(1))	Dirección en la que el vehículo atraviesa la barrera de peaje. Si es 0, la dirección es de salida; si es 1, la dirección es de entrada.
$vehicle_model$	${ m int}$	Modelo del vehículo. Este número (compendido entre los valores 0 y 7), cuanto mayor sea, mayor es su capacidad
has_etc	string (char(1))	Indica si el vehículo utiliza un ETC (Electronic Toll Collection)
$vehicle_type$	string(char(1))	Tipo de vehículo. Indica si el vehículo es de pasajeros o de carga

Tabla 8.4: Tabla $traffic_volume_tollgates_training$

Campo	Tipo	Descripción
date	date	Fecha
hour	int	Hora
pressure	float	Presión del aire (hPa)
sea_pressure	float	Presión del nivel del mar (hPa)
$wind_directio \\ n$	float	Dirección del viento (º)
$wind_speed$	float	Velocidad del viento (m/s)
temperature	float	Temperatura(°C)
$rel_humidity$	float	Humedad relativa
precipitation	float	Precipitaciones (mm)

Tabla 8.5: Tabla $weather_data$

Campo	Tipo	Descripción
$intersection_id$	string (char(1))	Identificador de la intersección
$tollgate_id$	string $(char(1))$	Identificador de la barrera de peaje
$time_window$	string(varchar(43)	Ventana de tiempo de 20 minutos
avg_travel_time	float	Tiempo medio de viaje (segundos)

Tabla 8.6: Tabla $travel_time_intersection_to_tollgate$

Campo	Tipo	Descripción
$tollgate_id$	string (char(1))	Identificador de la intersección
$time_window$	$\begin{array}{c} \text{string} \\ (\text{varchar}(45)) \end{array}$	Ventana de tiempo de 20 minutos
direction	string(char(1))	Dirección en la que se atraviesa la barrera de peaje
volume	$_{ m int}$	Número de vehículos que atraviesan la barrera de peaje en la ventana de tiempo de 20 minutos

Tabla 8.7: Tabla $traffic_volume_tollgates$

Campo	Tipo	Descripción
$link_id$	$\operatorname{smallint}$	Identificador del enlace
length	float	Longitud del enlace en metros
width	float	Anchura del enlace en metros
lanes	int	Número de carriles
in_top	$\operatorname{smallint}[]$	Este atributo contiene los enlaces entrantes al enlace actual
out_top	$\operatorname{smallint}[]$	Este atributo contiene los enlaces salientes del enlace actual
$lane_width$	float	Anchura de cada uno de los carriles del enlace en metros

Tabla 8.8: Tabla $road_links_modified$

Campo	Tipo	Descripción
$intersection_id$	char(1)	Identificador de la intersección
$tollgate_id$	$\operatorname{smallint}$	Identificador de la barrera de peaje
$link_seq$	$\operatorname{smallint}[]$	Secuencia de enlaces que conforman la ruta desde la intersección hasta la barrera de peaje

Tabla 8.9: Tabla $vehicle_routes_modified$

Campo	Tipo	Descripción
$intersection_id$	char(1)	Identificador de la intersección
$tollgate_id$	smallint	Identificador de la barrera de peaje
$vehicle_id$	$_{ m int}$	Identificador del vehículo
$starting_time$	$_{ m timestamp}$	Momento del tiempo en el que el vehículo entra en la ruta
$travel_seq$	link_object[]	Trayectoria de la ruta formada por un conjunto de enlaces. Estos enlaces están representados con un objeto link_object, que contiene su identificador, el momento del tiempo en el que el vehículo entra en ese enlace y el tiempo que pasa el vehículo atravesando dicho enlace en segundos.
$travel_time$	float	Tiempo total que tarda el vehículo en viajar desde la intersección hasta la barrera de peaje.

Tabla 8.10: Tabla $vehicle_trajectories_training_modified$

Campo	Tipo	Descripción
time	timestamp	Momento en el que un vehículo atraviesa la barrera de peaje
$tollgate_id$	$\operatorname{smallint}$	Identificador de la barrera de peaje
direction	${ m smallint}$	Dirección en la que el vehículo atraviesa la barrera de peaje. Si es 0, la dirección es de salida; si es 1, la dirección es de entrada.
has_etc	boolean	Indica si el vehículo utiliza un ETC (Electronic Toll Collection)

Tabla 8.11: Tabla $traffic_volume_tollgates_training_modified$

Campo	Tipo	Descripción
$intersection_id$	char(1)	Identificador de la intersección
$tollgate_id$	$\operatorname{smallint}$	Identificador de la barrera de peaje
$time_window$	Timestamp ARRAY[2]	Ventana de tiempo de 20 minutos
avg_travel_time	float	Tiempo medio de viaje (segundos)

Tabla 8.12: Tabla $travel_time_intersection_to_tollgate_modified$

Campo	Tipo	Descripción
$tollgate_id$	$\operatorname{smallint}$	Identificador de la intersección
$time_window$	$\begin{array}{c} \text{timestamp} \\ \text{ARRAY}[2] \end{array}$	Ventana de tiempo de 20 minutos
direction	$\operatorname{smallint}$	Dirección en la que se atraviesa la barrera de peaje
volume	int	Número de vehículos que atraviesan la barrera de peaje en la ventana de tiempo de 20 minutos
$proportion_h \\ asetc_vehicles$	Int	Proporción de coches que han pasado en la ventana de tiempo de 20 minutos que y que tienen ETC (Electronic Toll Collection)

Tabla 8.13: Tabla $traffic_volume_tollgates_modified$

Campo	Tipo	Descripción
$intersection_id$	char(1)	Identificador de la intersección
$tollgate_id$	$\operatorname{smallint}$	Identificador de la barrera de peaje
$time_window$	$\begin{array}{c} \text{timestamp} \\ \text{ARRAY}[2] \end{array}$	Ventana de tiempo de 20 minutos
avg_travel_time	float	Tiempo medio de viaje (segundos)

Tabla 8.14: Tabla $travel_time_intersection_to_tollgate_test1$

Campo	Tipo	Descripción
$tollgate_id$	$\operatorname{smallint}$	Identificador de la intersección
$time_window$	$\begin{array}{c} \text{timestamp} \\ \text{ARRAY}[2] \end{array}$	Ventana de tiempo de 20 minutos
direction	$\operatorname{smallint}$	Dirección en la que se atraviesa la barrera de peaje
volume	int	Número de vehículos que atraviesan la barrera de peaje en la ventana de tiempo de 20 minutos
proportion_hasetc _vehicles	int	Proporción de coches que han pasado en la ventana de tiempo de 20 minutos que tienen ETC (Electronic Toll Collection)

Tabla 8.15: $Tabla\ traffic_volume_tollgates_test1$

Campo	Tipo	Descripción
$intersection_id$	char(1)	Identificador de la intersección
$tollgate_id$	$\operatorname{smallint}$	Identificador de la barrera de peaje
$time_window$	timestamp ARRAY[2]	Ventana de tiempo de 20 minutos
avg_travel_time	float	Tiempo medio de viaje (segundos)

Tabla 8.16: Tabla $tabla_resultado_average_travel_time$

Campo	Tipo	Descripción
$tollgate_id$	$\operatorname{smallint}$	Identificador de la intersección
$time_window$	$ ext{timestamp} \\ ext{ARRAY[2]}$	Ventana de tiempo de 20 minutos
direction	$\operatorname{smallint}$	Dirección en la que se atraviesa la barrera de peaje
volume	$_{ m int}$	Número de vehículos que atraviesan la barrera de peaje en la ventana de tiempo de 20 minutos

Tabla 8.17: Tabla $tabla_resultado_traffic_volume$

8.2 Algoritmo XXX

*

```
* Fichero .h
************************************
* AUTORES
* FECHA
* DESCRIPCION
8.3 Algoritmo YYY
* Fichero .h
*******************************
* AUTORES
```

* FECHA

* DESCRIPCION

Capítulo 9 Título del Apéndice 2

- 9.1 Otro apéndice: Sección 1 $_{
 m texto}$
- 9.2 Otro apéndice: Sección 2 texto

Bibliografía

- [1] Y. Yin and P. Shang. "Forecasting traffic time series with multivariate predicting method". Applied Mathematics and Computation vol 291, pp. 266-278, 2016. [Online]. Disponible en: https://goo.gl/5gkEfP
- [2] P. Yuan and X. Lin. "How long will the traffic flow time series keep efficacious to forecast the future?". Physica A: Statistical Mechanics and its Applications vol 467, pp. 419-431, 2017. [Online]. Disponible en: https://drive.google.com/open? id=1r4ZF2wughH4nZcRUsQqqn hmrSSR6mw8
- [3] H. A. Sevilla, "Predicción de tráfico en las carreteras de la red de la Valenciana", Trabajo finde De Generalitat carrera, Dep. Sistemas Computación, Escola **Tècnica** Informáticos Superior d'Enginyeria Informàtica, Universitat Politècnica de València, Valencia, 2015. [Online]. Disponible https://drive.google.com/open?id=1usrXMdc7c-J3en: 1Rt2CjzAHLvZII3eeEO
- [4] M. Goletz, I. Feige and D. Heinrichs. "What Drives Mobility Trends: Results from Case Studies in Paris, Santiago de Chile, Singapore and Vienna,". Transportation Research Procedia vol 13, pp. 49-60, 2016. [Online]. Disponible en: https://drive.google.com/open?id=1590qIrBgZvJjANFsTvHYZlLkWRz9vfFN
- [5] C. Gloves, R. North, R. Johnston and G. Fletcher. "Short Term Traffic Prediction on the UK Motorway Network Using Neural Networks". Transportation Research Procedia vol 13, pp. 184-195, 2016. [Online]. Disponible en: https://drive.google.com/open? id=1rDz5GfONXSf7ZFhLcgQv FFfSnrmj55F

- [6] K. Hu, P. Huang, H. Chen and P. Yan, "KDD CUP 2017 Travel Time Prediction Predicting Travel Time The Winning Solution of KDD Cup 2017", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en: https://drive.google.com/open?id=12a4pBbxA6h zy517ARtHTtn61w7uZ7jJ
- [7] Y. Huang, "Highway Tollgates Traffic Flow Prediction Task 1. Travel Time Prediction", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en: https://drive.google.com/open?id=1GD1ZIpWDq7qMM7bvpTSTnIWqSnpDlS_t
- [8] H. Cai, R. Zhong, C.Wang et al., "KDD CUP 2017 Travel Time Prediction", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en: https://drive.google.com/open?id=1ew6oLOPHGoz8IMIt5g6XkZn67ADDtxJJ
- [9] K. Hu, P. Huang, H. Chen and P. Yan, "KDDCUP 2017 Volume Prediction Step by step modeling for travel volume prediction", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en: https://drive.google.com/open? id=1uK8IwRTe061NVbWQn4FQFxH7BUx6b6mq
- [10] J. Zhou, Y. Guo, Y. Chen, J. Lin and H. Lin, "Learning and Prediction over Light-Weight Spatio-Temporal Data", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en: https://drive.google.com/open?di=1Jbz0GNxYcjCghp0cfJia0omYKu1y5 aR
- [11] S. Luo, "KDD CUP 2017: Volume Prediction Task Solution", presented at the KDD 2017, Halifax, Nova Scotia Canada, 2017. [Online]. Disponible en:

 https://drive.google.com/open?id=1-krIjoSatfoPNnzYRSOZKfxIKK0RHT59

http://www.it.uc3m.es/jvillena/irc/practicas/06-07/22.pdf

 $\underline{\text{https://blog.es.logicalis.com/analytics/mineria-de-datos-aplicaciones-que-yason-una-realidad}$

http://www.it.uc3m.es/jvillena/irc/practicas/10-11/15mem.pdf

 $\underline{\text{http://sedici.unlp.edu.ar/bitstream/handle/10915/35555/Documento}} \ \underline{\text{to.pdf?sequence=1}}$

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

 $\frac{https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807 fa6 ca7 f$

 $\underline{\text{http://www.uokufa.edu.iq/staff/ehsanali/Tan.pdf}} \rightarrow Introducción a la minería de datos$

https://books.google.es/books?

 $\frac{id=lpjcDgAAQBAJ\&pg=PA228\&lpg=PA228\&dq=sparse+aware+missing+da}{ta\&source=bl\&ots=lZe-3Bk0x9\&sig=zDrvLwe2SL-CjMbskFtWFfITYTs\&hl=es\&sa=X\&ved=0ahUKEwiZhYn-}$

 $\frac{1K3aAhWKPBQKHYtICr0Q6AEIaTAI\#v=onepage\&q=sparse\%20aware}{\%20missing\%20data\&f=false}$

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

- Libro de introducción a la minería de datos

 $\underline{http://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html}$

 $\underline{http://halweb.uc3m.es/esp/Personal/personas/amalonso/esp/seriestemporales}.\underline{pdf}$

http://www.est.uc3m.es/esp/nueva_docencia/leganes/ing_industrial/estadist_ica_industrial/doc_grupo2/archivos/tablasARyMA.pdf