Herramientas Matemáticas

Facultad de Informática

August 16, 2024

Tabla de contenidos

 Demostraciones Métodos

Todas las demostraciones tienen algo en común:

- Hipótesis o afirmaciones que se toman como ciertas
- de dichas afirmaciones se pueden llegar a alguna tesis o conclusión
- Todas las demostraciónes se basan en los fundamentos de la lógica proposicional

Demostraciones

Técnicas de Demostración en general

Se trata de formalizarlo lo máximo para evitar ambigüedades.

- Directa
- Indirecta
 - Reducción al absurdo
 - Contrarrecíproco
 - Contraejemplo
- Inducción matemática:
 - Inducción simple
 - Inducción generalizada
 - Inducción constructiva
- por exhaustividad
- probabilísitica
- por combinatoria
- no constructiva

Demostraciones Técnicas de Demostración en general

- Directa: se realizan los pasos de los axiomas o lo que se sabe cierto hasta probar lo deseado.
- Contradicción, prueba indirecta o reducción al absurdo: Se demuestra la veracidad de una proposición matermática, probando que si no lo fuera conduciría a una contradicción, su negación da lugar a un contradicción.
- Inducción matemática:
 - Inducción simple: Se prueba el primer caso, se supone n y luego por pasos matemáticos se llega a probar n + 1.
 - Inducción generalizada
 - Inducción constructiva

Demostraciones

Técnicas de Demostración en general

- Directa: Agrupa las hipótesis y llega a la conclusión aplicando axiomas básicos, definiciones o teoremas que se conozcan como válidos. Se usan pasos lógicos.
- Ejemplo la suma de dos números pares es un número par
- Hipótesis ⊢ Conclusión

Demostraciones

Técnicas de Demostración en general

Indirecta:

- Reducción al absurdo:
 - $P \Rightarrow Q$
 - $\neg Q, P \Rightarrow ... \Rightarrow$ Contradicción
 - Q cierto
- Contrarecíproco:
 - $P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$
 - Ejemplo: la suma de dos números pares es un número par
 un numero impar no es la suma de dos números pares
 - Ejemplo: Sea $f, g : \mathbb{A} \to \mathbb{B}^+$ es inyectiva si: $a_1, a_2 \in \mathbb{A}, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$.

Demostraciones Pruebas por contradicción

Contradicción: Demostrar la validez de una hipotesis (existen infinitos nros. primos) probando que su negacion conduce a una contradiccion.

- Se quiere probar S.
- Se supone que S es falso
- Siguiendo pasos lógicos válidos, se deduce verdadera alguna proposicion conocida como falsa.
- Se concluye por lo tanto que la suposicion inicial era incorrecta.
 - Teorema 1: Existen infinitos números primos probar por el absurdo
 -tomar el conjunto P de números primos
 -multiplicar todos los números primos
 -llegamos a un absurdo

Demostrar: que existen infinitos números primos

- Número primo: es un número natural mayor que 1 que tiene únicamente dos divisores positivos distintos: él mismo y el 1
- Número compuesto o número no primo: número naturales que tiene algún divisor natural aparte de sí mismo y del 1. Es decir que es múltiplo de factores primos.

Demostraciones Por contradicción

- S= « existe un número infinito de números primos»,
- Sea $P = \{números primos\}.$
- $P \neq \emptyset$ y contiene al número 2.
- Sea $x = \prod_{i=1}^{s} (p_i)$, donde p_i es el iésimo primo, $x \neq \infty$.
- Sea y = x + 1
- Sea d un número, d > 1, tal que d es divisor de y.
- Si d es primo es también divisor de x, entonces un d divide a dos números consecutivos x, x + 1, lo cual es inviable.
- Por lo expuesto, P es ∞.

Demostraciones Por contradicción

- S= « existe un número infinito de números primos»,
- Sea $P = \{números primos\}.$
- Sea $x = \prod_{i=1}^{s} (p_i)$, donde p_i es el iésimo primo,
- Sea y = x + 1, entonces $y = p_1 * p_2 * ... * p_s + 1$,

y es el producto de todos los números primos mas 1 y, no es primo ya que no se contempla en la lista de números primos. Por ello podría descomponerse como el producto de dos o más números primos. Sin embargo, si dividimos y por cualquiera de los números primos obtendremos de resto 1.

Por lo expuesto, P es ∞ .

- S =« existe un número racional mínimo > 0 »,
- Sea k el número más pequeño .
- manipulemos k
-
- Por lo expuesto, NO existe un número racional mínimo mayor que 0.

Demostraciones Inducción vs Deducción

El razonamiento inductivo contrario al razonamiento deductivo

- Inducción
 - Propone principios generales a partir de observaciones concretas.
 - Ejemplo: Los investigadores han observado una alta tasa de recuperación en pacientes que recibieron un determinado medicamento contra la malaria.
 - Por lo tanto, hay pruebas sólidas que sugieren que este medicamento trata eficazmente la malaria.
- Deducción
 - Extrae conclusiones específicas a partir de principios generales.
 - Ejemplo: Por definición, todos los pájaros tienen plumas. Los petirrojos son pájaros. Por lo tanto, los petirrojos tienen plumas.

Demostraciones Inducción Matemática

Se puede dar conclusiones falsas, hay que probarlas

Demostraciones Deducción Matemática

 Deducción constructiva: puede dar conclusiones falsas, hay que probarlas

$$\sum_{k=1}^{n} k^3 = (\sum_{k=1}^{n} k)^2$$

Demostraciones Deducción Matemática

 Deducción constructiva: puede dar conclusiones falsas, hay que probarlas

$$P(0) = 0^2 + 0 + 41 = 41$$

 $P(1) = 1^2 + 1 + 41 = 43$
 $P(2) = 2^2 + 2 + 41 = 47$
 $P(3) = 3^3 + 3 + 41 = 71$

Pero no se cumple en :

$$95800^4 + 217519^4 + 414560^4 = 4224814$$

Demostraciones Inducción Matemática

Probar:

$$P(n) = \sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

- **1** P(1) = 1 es válida puesto que $P(1) = \frac{1 \cdot (1+1)}{2} = 1$
- 2 Supondremos P(k) se cumple y demostraremos que P(k+1) se cumple también.
- 3 Suponemos que P(k) es válida, agregamos k+1 en ambos miembros.

$$1+2+3+...+k+(k+1) = \frac{k \cdot (k+1)}{2} + k+1$$

$$= \frac{k \cdot (k+1)}{2} + \frac{2 \cdot (k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

- La deducción es una inferencia de una ley general a partir de instancias particulares
- para evitar errores se busca un absurdo o contraejemplo
 - Todos los alumnos pertenecientes a "Análisis de algoritmos" tienen la misma nota.
 - Números primos $p(n) = n^2 + n + 41$ p(0) = 41; p(1) = 43; p(10) = 151 pero p(40) = 1681 ese valor no es primo ya que $1681 = 41^2$