

GWAS model extensions

Christian Werner

(Computational biologist and quantitative geneticist) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio

(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

GWAS for other gene actions

Additive coding

Genotype	101 coding	012 coding	Centered coding
ВВ	-a _i	0	-2p _i a _i
Bb	0	a _i	(1-2p _i)a _i
bb	a _i	2a _{i<}	(2-2p _i)a _i

EXAMPLE

101 coding:
$$\mathbf{Z}\mathbf{a} = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

012 coding:
$$\mathbf{Z}\mathbf{a} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

centered coding:
$$\mathbf{Z}\boldsymbol{a} = \begin{pmatrix} -0.75 & 0.75 \\ 1.25 & -0.25 \\ 0.25 & -0.25 \\ -0.75 & -0.25 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \quad p_1 = 0.375; \ p_2 = 0.125;$$

Dominance coding

Genotype	010 coding	012 coding (optional additive)	Centered coding
ВВ	0	0	-2p² _i d _i
Bb	d _i	a _i	2p _i q _i d _i
bb	0	2a _i	2q _i d _i

EXAMPLE

aa

Bb

AA bb

Aa bb

aa bb

101 coding

$$Zd = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Centered coding

$$Zd = \begin{pmatrix} 0.78 & 0.22 \\ -0.28 & 1.53 \\ 0.47 & 1.53 \\ 0.78 & 1.53 \end{pmatrix}$$

A#A Epistasis coding

Genotype 1	AA (0)	Aa (1)	aa (2)
BB (0)	00	01	02
Bb (1)	10	11	12
bb (2)	20	21	22

CAUTION

This codification does not necessary keep linearity (covariates is not recommended, use factors, or separate 3 gene interactions ($x_1 = \{00,01,02\}; x_2 = \{10,11,12\}; x_3 = \{20,21,22\}$)

Centered coding is also possible with appropriate products

A#D Epistasis coding

Genotype 1	AA (0)	Aa (1)	aa (0)
BB (0)	00	01	00
Bb (1)	10	11	10
bb (2)	20	21	20

CAUTION

This codification does not necessary keep linearity (covariates is not recommended, use factors, or separate 3 gene interactions $(x_1 = \{00,01,00\}; x_2 = \{10,11,10\}; x_3 = \{20,21,20\})$

D#D Epistasis coding

Genotype 1	AA (0)	Aa (1)	aa (0)
BB (0)	00	01	00
Bb (1)	10	11	10
bb (0)	00	01	00

CAUTION

This codification does not necessary keep linearity (covariates is not recommended, use factors, or separate 3 gene interactions $(x_1 = \{00,01,00\}; x_2 = \{10,11,10\}; x_3 = \{00,01,00\})$

Other additive codifications (A#A#A, A#D#A, ...)

Just follow the same rationale

Genotype x Environment coding

Genotype 1	Teatment (T1)	Control
BB (0)	T_0	C_0
Bb (1)	T_1	C_1
bb (2)	T_1	C_2

CAUTION

This codification does not necessary keep linearity (covariates is not recommended, use factors, or separate 2 covariates ($x_1 = \{T0, T1, T2\}; x_2 = \{C0, C1, C2\}$)

Centered coding is also possible with appropriate products

Genotype x Environment coding

