Examen d'Algèbre Linéaire du mardi 27 mars 2018

4 exercices indépendants (Durée : 2 heures)

Exercice I-

Soit ϕ , défini sur $\mathbb{C}[X]$ par $\phi(P) = P + P(a)U$ où $a \in \mathbb{C}$ et $U \in \mathbb{C}[X]$.

- 1. Montrer que ϕ est un endomorphisme.
- **2.** Montrer que $\ker \phi \subset \operatorname{vect}(U)$.
- 3. En déduire que, si U(a) = -1, ker $\phi = \text{vect}(U)$ et sinon que ϕ est injectif.
- **4.** Montrer que $\phi^2 (2 + U(a))\phi + (1 + U(a))$ id = 0 et en déduire une condition nécessaire et suffisante pour que ϕ soit bijectif ; donner alors sa réciproque.
- **5.** On suppose U(a) = -1; que peut-on dire de ϕ ? Donner son image.
- **6.** Résoudre l'équation P + P(a)U = V dans $\mathbb{C}[X]$.

Exercice II-

Dans \mathbb{R}^3 euclidien muni du produit scalaire (|) et de la norme || || associée, on considère les vecteurs u=(1,2,3) et v=(-3,1,5).

- 1. a) Déterminer la dimension du sous-espace vectoriel F de \mathbb{R}^3 engendré par les vecteurs u et v
 - b) Déterminer le nombre réel λ tel que le vecteur $v' = u + \lambda v$ soit orthogonal à u.
 - c) Montrer que le vecteur w = (-1, 2, -1) dirige F^{\perp} et que (u, v', w) est une base de \mathbb{R}^3 .
- **2.** Soit p_F la projection orthogonale sur F.
 - a) Déterminer la matrice A de p_F dans la base (u, v', w).
 - b) Déterminer la matrice B de p_F dans la base canonique.

3. Soit
$$C = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$$
.

- a) Montrer que C est diagonalisable puis trouver ses éléments propres.
- b) Montrer qu'il existe deux réels α et β tels que $C = \alpha I_3 + \beta B$ et retrouver ainsi les éléments propres de C.

Exercice III-

Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que ${}^tM = M^2$.

- 1. Montrer que $M^4 = M$.
- **2.** On suppose que M est inversible. Montrer que $M \in \mathcal{O}_2(\mathbb{R})$. Que vaut $\det(M)$?
- **3.** On suppose M non inversible.
 - a) Montrer que M est semblable à $\left(\begin{array}{cc} 0 & a \\ 0 & b \end{array}\right)$, avec $a\in\mathbb{R}$ et $b\in\{0,1\}.$
 - b) Que vaut M si b = 0?
 - c) Montrer que, si b=1, M est diagonalisable et que c'est la matrice d'un projecteur.

Exercice IV-

On considère la matrice
$$A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 3 \end{pmatrix}$$
 et le vecteur $b = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

- 1. Déterminer, si elles sont possibles, les factorisation LU et de Cholesky de A.
- **2.** Calculer les valeurs propres de A et montrer que A est inversible.
- **3.** Déterminer \overline{x} , l'unique solution de Ax = b.
- **4.** a) Écrire la matrice de Jacobi J et la matrice de Gauss-Seidel G associées à Ax = b.
- b) Déterminer les valeurs propres de J et de G et montrer que les méthodes de Jacobi et de Gauss-Seidel sont convergentes. Quelle est la méthode qui converge le plus vite ?
- c) Donner les 3 premières itérations des méthodes de Jacobi et de Gauss-Seidel en partant de $x^{(0)}=\ ^t(0,0,0).$
- **5.** Soit $x^{(k)}$ le k-ième itéré de la méthode de Jacobi, en partant de $x^{(0)} = t(0,0,0)$.
 - a) Vérifier que $x^{(k+1)} \overline{x} = J(x^{(k)} \overline{x}).$
- b) Déterminer s, le module de la plus petite valeur propre en module de A, et S le module de la plus grande valeur propre en module de J (on vérifiera que S<1...)
 - c) Montrer que $\|\overline{x}\|_2 \leq \frac{1}{s} \|b\|_2$ où $\|\ \|_2$ désigne la norme euclidienne.
 - d) Montrer que $||x^{(k)} \overline{x}||_2 \le \frac{S^k}{s} ||b||_2$.