SC3030 TERM PAPER NETWORK SECURITY PROTOCOLS

LIM DONG WAN U2122455D

OVERVIEW

- Introduction
- Significance of Network Security
- Network Security Vulnerability Issues
- Network Security Protocols:
 - Internet Protocol Security (IPSec)
 - Transport Layer Security (TLS)
- IPSec VS TLS
- Future of Network Security

INTRODUCTION

- Internet has become part and parcel of people's lives:
 - COVID-19 has made the Internet ubiquitous
- Network environment has become more complex
- Emerging security threats make computer networks more vulnerable

NETWORK SECURITY

- Essential subset of computer security
- Establishes a robust communication network and implements mitigatory measures:
 - Confer the CIA triad Confidentiality, Integrity, Availability of data
 - Prevent unauthorized access and malicious actions by external parties
 - Safeguard network connection, resources and assets
- Must continuously evolve to tackle present cybersecurity challenges

SIGNIFICANCE OF NETWORK SECURITY

NETWORK SECURITY VULNERABILITY ISSUES

NETWORK SECURITY PROTOCOLS

IPSEC – OVERVIEW

- Standard solution for strengthening data privacy, particularly in wireless networks
- Objectives:
 - Create a shareable set of security protocols.
 - Allow key exchange for authentication.
 - Encrypt / Hash data for secure data transmission across a network.

Internet Protocol Security

Core Protocols

IPSec Authentication Header

Encapsulating SecurityPayload

Support Components

Encryption / Hashing Algorithms

Security Policies / Security
Associations

Internet Key Exchange / Key Management

IPSEC - OPERATION MODES

IPSec Tunnel **New IP IPSec** IΡ **TCP Payload** Mode **IPSec Transport Payload** IΡ **IPSec TCP** Mode Without ΙP **TCP Payload IPSec**

IPSEC – REAL-WORLD APPLICATION

TLS – OVERVIEW

- Supersedes Secure Socket Layer (SSL) as the new security standard for web security today
- Latest version: TLS 1.3 (since 2017)
- Objectives:
 - Authenticate and validate parties that are exchanging information with one another.
 - Encrypt data transmission between client and server for confidentiality.
 - Safeguard data integrity between client and server.

TLS - FUNCTIONS

TLS -TLS HANDSHAKE

TLS - REAL-WORLD APPLICATION

IPSEC VSTLS

	IPSec	TLS
Advantages	 Transparent to end users Independent of the applications used with only operating system 	 More secure compared to IPSec Lower latency and overhead than IPSec
	modifications needed	
Disadvantages	Higher latency and overhead than TLSLess secure than TLS	 Few platforms support TLS 1.3 Requires modification to applications and operating system
Types of Attacks the Protocol is Vulnerable To	DoSVPN tunnel compromise	 Application Layer Protocol Confusion Attack (ALPCA) Reflection ("Selfie") attack
	Cross-protocol attack	Bleichenbacher's attackForced downgrade attacks

FUTURE OF NETWORK SECURITY

- Security infrastructure must be more robust and adaptable than before
- Integration of Artificial Intelligence and Machine Learning into Network Security

END