

IBM Data Science SpaceX Capstone Project

Nermeen Nabegh Ahmed Sep 7th, 2021

OUTLINE

- **Executive Summary**
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Business Problem
 - Space Rockets launch costing (based on stage 1 landing) challenge
- Data requirements
 - Historical launches data of landing success
- Methodology
 - Data collection
 - Data wrangling
 - EDA with data visualization
 - EDA with SQL
 - Folium interactive geographical map
 - Plotly Dash live dashboard
 - Stage 1 landing predictive classifier
- Results
 - EDA insights
 - Interactive map and dashboard demo
 - Predictive classifier outcome

INTRODUCTION

Project Background:

- SpaceX advertises Falcon 9 rocket launches at a cost of 62 million dollars versus 165 million dollars launches by other providers
- The primary cost saving agent is the high success rate of stage 1 landing and thus its reusability in future launches
- The challenge here is to set a right costing forecast of the rocket launches through predicting its potential to land stage 1 successfully

Key questions to answer:

- What are the most influential features of a rocket launch that control the probability of stage 1 landing successfully?
- Given the compound effect of different features (such as site location, payload mass, etc.), how can we predict the potential of having a successful launch?
- What conditions shall we recommend for a new rocket launch to increase its landing success probability?

METHODOLOGY

- Data collection
 - SpaceX REST API
 - Wikipedia Web scrapping
- Data wrangling
- EDA
 - Data Viz (Correlation studies of different features and landing success)
 - SQL (Data population statistics understanding)
- Interactive visuals
 - Geographical relations study through Folium maps
 - Live Dashboard statistical analysis
- Best predictive classifier model building
 - Experiment usability and compatibility of SVM, Tree maps, KNN, Logistic Regression optimizing parameters
 - Select the best test data performing classifier

METHODOLOGY – DATA COLLECTION

SpaceX REST API

Extract

from API data

```
spacex url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex url)
```

Convert

to .json static file

```
r = response.json()
data = pd.json_normalize(r)
```

Clean

data for relevance in dict format

```
getBoosterVersion(data)
getLaunchSite(data)
# Call getPayloadData
getPayloadData(data)
```

```
# Call getCoreData
getCoreData(data)
```

```
launch dict = {'FlightNumber': list(data['flight number']),
                                        'Date': list(data['date']),
                                        'BoosterVersion':BoosterVersion,
                                        'PayloadMass':PayloadMass,
                                        'Orbit':Orbit,
                                        'LaunchSite':LaunchSite,
                                        'Outcome':Outcome,
                                        'Flights':Flights,
                                        'GridFins':GridFins,
                                        'Reused':Reused,
                                        'Legs':Legs,
                                        'LandingPad':LandingPad,
                                        'Block':Block,
                                         'ReusedCount':ReusedCount,
                                         'Serial':Serial,
                                        'Longitude': Longitude,
                                        'Latitude': Latitude}
data = data[data['BoosterVersion']!='Falcon 1']
```

Export

.csv format for further analysis

```
df = pd.DataFrame(launch dict)
                                data falcon9.to csv('dataset part\ 1.csv', index=False)
```

Link to Github Repository

Wikipedia Page - Web scrapping

Extract

from HTML

```
static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=10276869
response = requests.get(static url)
```

Convert

to beautiful soup parse-able format

```
soup = BeautifulSoup(response.text)
```

Clean

data for relevance in dict format

```
html tables=soup.find all('table')
temp = first launch table.find all('th')
for t in temp:
   n = extract column from header(t)
   if( n is not None and len(n) > 0):
       column names.append(n)
```

```
launch dict= dict.fromkeys(column names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
launch dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch_dict['Payload mass'] = []
launch dict['Orbit'] = []
launch_dict['Customer'] = []
launch dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch_dict['Booster landing']=[]
launch dict['Date']=[]
launch_dict['Time']=[]
```

df = pd.DataFrame(launch dict)

Export

.csv format for further analysis

df.to csv('spacex web scraped.csv', index=False)

METHODOLOGY – DATA WRANGLING

For Data fairness check, basic grouping statistics, and ML data preparation:

Calculate the number of launches per site:


```
MEO
landing outcomes=df.value counts('Outcome')
                                                   for i,outcome in enumerate(landing outcomes.keys()):
                                                                                                              ES-L1
landing outcomes
                                                       print(i,outcome)
                                                                                                              GEO
Outcome
                                                   0 True ASDS
                                                                                                              HEO
True ASDS
                                                   1 None None
                41
                                                                                                              S0
None None
                 19
                                                   2 True RTLS
                                                                                                              dtype: int64
                                                   3 False ASDS
True RTLS
                 14
                                                   4 True Ocean
False ASDS
                 6
                                                   5 False Ocean
True Ocean
                 5
                                                   6 None ASDS
False Ocean
                                                   7 False RTLS
None ASDS
False RTLS
                                               bad_outcomes=set(landing_outcomes.keys()[[1,3,5,6,7]])
dtype: int64
                                               {'False ASDS', 'False Ocean', 'False RTLS', 'None ASDS', 'None None'}
```

4. Create a landing outcome class

Link to Github Repository


```
landing class = []
for x in df['Outcome']:
    #print(x)
    if x in bad outcomes:
        landing class.append(0)
        #print(0)
    else:
        landing class.append(1)
        #print(1)
```

df.value counts('Orbit')

27

21

14

Orbit

GTO

ISS

VLEO

PO LEO

SSO

METHODOLOGY – EDA with Visualization

Scatter Plots:

- Flight # vs site
- Flight # vs payload mass
- Payload vs orbit
- Flight # vs Orbit

These enable showing correlation between different features

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Bar Chart:

Success rate vs orbit

This shows a categorical comparison of diff. orbit types

Link to Github Repository

This Photo by
Unknown Author is
licensed under CC
BY-SA

Line Graph:

Success rate vs dates

This shows a progression and behavior over time proving a growth (improvement) or decaying trend

<u>This Photo</u> by Unknown Author is licensed under CC BY-SA

METHODOLOGY – EDA with SQL

SQL Queries run to perform exploratory statistical and categorical analysis of: Link to Github Repository

- The unique launch sites names in the space mission
- First 5 records sample of 'KSC' launch sites
- The total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1
- Dates of successful landing outcome in drone ship
- Names of the boosters with successful ground pad landing at payload mass > 4000 and <6000
- Total number of successful and failed mission outcomes
- The booster_versions names which have carried the maximum payload mass
- Records of month names, successful ground pad landing_outcomes, booster versions, launch_site for the year 2017
- Ranking the count of successful landing_outcomes from 2010-06-04 to 2017-03-20 descendingly

METHODOLOGY – Folium map

Visualize the launch data map:

- Utilizing the lat, long coordinates of each site
- Describing the site features wth a circular marker
- Segregating failed and successful launches with a Red and Green color coding respectively
- Exploring different geographical features impact on success vs failure potential such as the proximity to: (utilizing Haversine's formula for distance calculation)
 - Highways
 - Railways
 - Coastal areas
 - Urban regions

METHODOLOGY – Plotly Dash

Link to Github Repository

Develop an interactive live dashboard providing insights through:

Pie chart of total launches for a selected site or the total sites collection

- Shows relative proportions of different sites successful landing distribution
- Shows % of success vs failure for a given site

<u>Scatter Plot</u> showing the correlation between Outcome and Payload Mass (Kg) for different Booster Versions with freedom of selection of the range of payload mass of interest

METHODOLOGY – Predictive Classifier

Classification model development:

- Split our data into training and test data sets
- Decide on machine learning algorithms to use
- Optimize our parameters for each algorithm by GridSearchCV
- Fit our training datasets into the GridSearchCV objects

Classification models evaluation:

- Check accuracy for each model
- Get tuned hyperparameters for each type of algorithms
- Plot Confusion Matrix

Improving the model:

- Feature Engineering
- Algorithm Tuning

Selecting the best model and parameters:

The model with the best accuracy score is selected

RESULTS – EDA with Visualization

Flight number vs Flight Site:

The more orange dots in each horizontal distribution the higher the success rate at a launch site

Payload Mass vs Flight number:

 $\overline{ ext{IBM Developer}}$ Looks like the higher the payload mass the greater the orange dots (success) representation vs total

RESULTS – EDA with Visualization

Success rate vs. Orbit type:

Orbit ES-L1, GEO, HEO, SSO, have the highest success Rate

Link to Github Repository

Flight Number vs. Orbit type:

Generally but specifically for LEO orbit success seems related to high # of flights except for GTO orbit (For SO the sample is not representative)

RESULTS – EDA with Visualization

Payload vs. Orbit type

Heavy payload mass seem inconclusive for in terms of success for LEO,GTO yet imperfectly positive for ISS, PO and negative for MEO, VLEO

Launch success yearly trend

Success rate improves over time specifically since 2013

RESULTS – EDA with SQL

Unique Launch sites	Records of 'KSC' Launch sites	Total payload of NASA (CRS) boosters	Avg. payload of F9 v1.1 booster	First date of successful drone ship landing
Iaunch_site CCAFS LC-40 CCAFS SLC-40 KSC LC-39A VAFB SLC-4E	Peryload_mass_kg_orbt customer mission_outcome anding_outcome and and anding_outcome and and anding_outcome a	sum_paylooad_kg 23589	avg_payload_kg 1806	DATE 2012-05-22
1 Developer	DATE time_utc_ booster_version launch_site payload 2012- 2013- 7.44.00 F9 V1.0 B0005 40 2022- 2014- 19.25.00 F9 V1.1 CCAFS LC SpaceX 2014- 15.25.00 F9 V1.1 CCAFS LC SpaceX 2014- 15.15.00 F9 V1.1 CCAFS LC SpaceX 2014- 15.25.00 F9 V1.1 B1010 CCAFS LC SpaceX 2014- 50.10.00 F9 V1.1 B1015 CCAFS LC SpaceX 2014- 20.10.00 F9 V1.1 B1015 CCAFS LC SpaceX 2014- 20.10.00 F9 V1.1 B1015 CCAFS LC SpaceX		SKILI	LS NETWORK 峰

RESULTS – EDA with SQL

Link to Github Repository

Boosters with ground success & 4000 <payload<6000< th=""><th># of successful and failed landings</th><th>Booster versions w/ max. payload mass carried</th><th>Records of ground successes in 2017</th><th># of success. landing from 4/6/2010 to 20/3/2017</th></payload<6000<>	# of successful and failed landings	Booster versions w/ max. payload mass carried	Records of ground successes in 2017	# of success. landing from 4/6/2010 to 20/3/2017
booster_version F9 FT B1021.2 F9 FT B1026	mission_outcome 2 Failure (in flight) 1 Success 55	booster_version F9 B5 B1048.5 F9 B5 B1049.7 F9 B5 B1051.3 F9 B5 B1051.4 F9 B5 B1051.6 F9 B5 B1056.4 F9 B5 B1060.3	landing_outcome booster_version launch_site Precluded (drone ship) F9 v1.1 B1018 CCAFS LC-40	landing_outcome2Failure (drone ship)3No attempt3Success (drone ship)3Success (ground pad)3Controlled (ocean)2Uncontrolled (ocean)2Precluded (drone ship)1

IBM Devcloper

SKILLS NETWORK

RESULTS – Folium map

RESULTS – Plotly Dashboard

Link to Github Repository

SpaceX Launch Records Dashboard

All Sites X w Total Success Launches By all sites 41.7% 12.5%

RESULTS – Plotly Dashboard

RESULTS – ML Predictive Classification

Best Classifier:

Tree algorithm performing slightly better than the rest when tested and refined to parameters:

```
bestalgorithm = 'KNN'
bestalgorithm score = knn cv.best score
tree score = tree cv.best score
logreg score = logreg cv.best score
svm score = svm cv.best score
if tree score > bestalgorithm score:
    bestalgorithm = 'Tree'
    bestalgorithm score = tree score
if logreg score > bestalgorithm score:
    bestalgorithm = 'LogisticRegression'
    bestalgorithm score = logreg score
if svm score > bestalgorithm score:
    bestalgorithm = 'SVM'
    bestalgorithm score = svm score
print('Best Algorithm is', bestalgorithm, 'with a score of', bestalgorithm score)
if bestalgorithm == 'Tree':
    print('Best Params is :',tree cv.best params )
if bestalgorithm == 'KNN':
    print('Best Params is :',knn cv.best params )
if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg cv.best params )
if bestalgorithm == 'SVM':
    print('Best Params is :',svm cv.best params )
```

Link to Github Repository

Best Algorithm is Tree with a score of 0.8892857142857142

Best Params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 5, 'splitter': 'random'}

DISCUSSION

CONCLUSION

- The Tree Classifier Algorithm is the best for
- The success rates for SpaceX launches increases over time (+ve learning curve)
- KSC LC-39A had the highest # of successful launches from all the sites
- Orbit ES-L1, GEO, HEO, SSO have the best success rate

GRADING SYSTEM (for Peer Graded Assignment)

In the next exercise, you can find a provided PowerPoint template to help you get started. However, you are free to add additional slides, charts, and tables. There are a total of 40 points possible for the final assessment, and you will be graded by your peers, who are also completing this assignment. The main grading criteria will be:

- Uploaded the URL of your GitHub repository including all the completed notebooks and Python files (1 pt) Done
- Uploaded your completed presentation in PDF format (1 pt) Done
- Completed the required Executive Summary slide (1 pt) Done
- Completed the required Introduction slide (1 pt) Done
- Completed the required data collection and data wrangling methodology related slides (1 pt) Done
- Completed the required EDA and interactive visual analytics methodology related slides (3 pts)
- Completed the required predictive analysis methodology related slides (1 pt)
- Completed the required EDA with visualization results slides (6 pts)
- Completed the required EDA with SQL results slides (10 pts)
- Completed the required interactive map with Folium results slides (3 pts)
- Completed the required Plotly Dash dashboard results slides (3 pts)
- Completed the required predictive analysis (classification) results slides (6 pts)
- Completed the required Conclusion slide (1 pts)
- Applied your creativity to improve the presentation beyond the template (1 pts)
- Displayed any innovative insights (1 pts)

