成年人高血压关联因素探索

吴沛豪

2023-05-16

目录

<u> </u>	2
数据准备 2.1 运行 DataClean.Rmd 脚本以获取清洗后数据; 2.2 运行 DataClean2.Rmd 脚本重编码变量; 2.3 运行 DataClean3.Rmd 脚本将有序分类变量及无序二分类变量转换成 numeric 2.4 运行 data_use2.R 脚本合并数据 2.5 检查数据	E
数据标准化、虚拟化	9
方差选择法	9
相关性计算 5.1 收缩压关联因素	12
选择变量 6.1 特征筛选 6.2 过采样平衡结局变量 6.3 交互作用 6.4 最终数据集	17 17 26 26 34
	数据准备 2.1 运行 DataClean.Rmd 脚本以获取清洗后数据; 2.2 运行 DataClean2.Rmd 脚本重编码变量; 2.3 运行 DataClean3.Rmd 脚本将有序分类变量及无序二分类变量转换成 numeric 2.4 运行 data_use2.R 脚本合并数据 2.5 检查数据 数据标准化、虚拟化 方差选择法 相关性计算 5.1 收缩压关联因素 5.2 舒张压关联因素 5.3 高血压关联因素(logistic) 选择变量 6.1 特征筛选 6.2 过采样平衡结局变量 6.3 交互作用

1 环境准备

##

1 环境准备

sessionInfo() ## R version 4.2.2 (2022-10-31 ucrt) ## Platform: x86_64-w64-mingw32/x64 (64-bit) ## Running under: Windows 10 x64 (build 22000) ## ## Matrix products: default ## ## locale: ## [1] LC_COLLATE=Chinese (Simplified)_China.utf8 [2] LC_CTYPE=Chinese (Simplified)_China.utf8 [3] LC_MONETARY=Chinese (Simplified)_China.utf8 [4] LC_NUMERIC=C [5] LC_TIME=Chinese (Simplified)_China.utf8 ## ## attached base packages: [1] stats4 grid stats graphics grDevices utils datasets [8] methods ## base ## ## other attached packages: [1] ggpubr_0.6.0 runway_0.0.0.9000 ## pROC_1.18.0 [4] tensorflow_2.11.0 keras_2.11.1 ## party_1.3-13 [7] strucchange_1.5-3 sandwich_3.0-2 zoo_1.8-11 ## [10] modeltools_0.2-23 mvtnorm_1.1-3 RWeka_0.4-46 ## [13] rattle_5.5.1 bitops_1.0-7 xgboost_1.7.5.1 ## [16] glmnet_4.1-7 $Matrix_1.5-4$ e1071_1.7-13 ## [19] MASS_7.3-58.3 caret_6.0-94 lattice_0.20-45 ## [22] randomForest_4.7-1.1 rpart.plot_3.1.1 rpart_4.1.19 ## [25] mice_3.15.0 yardstick_1.1.0 workflowsets_1.0.1 ## [28] workflows_1.1.3 tune_1.1.0 rsample_1.1.1 ## [31] recipes_1.0.5 parsnip_1.0.4 modeldata_1.1.0 ## [34] infer_1.0.4 dials_1.2.0 scales_1.2.1 ## [37] broom_1.0.4 tidymodels_1.0.0 VIM_6.2.2 ## [40] colorspace_2.1-0 patchwork_1.1.2 qgraph_1.9.4 ## [43] reshape2_1.4.4 lubridate_1.9.2 forcats_1.0.0 ## [46] stringr_1.5.0 dplyr_1.1.1 purrr_1.0.1 ## [49] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1 [52] ggplot2_3.4.2 tidyverse_2.0.0 igraph_1.4.1

1 环境准备

plyr_1.8.8

 $Hmisc_5.0-1$

loaded via a namespace (and not attached):

[1] backports_1.4.1

##

3

```
[4] sp_1.6-0
                               splines_4.2.2
##
                                                     listenv_0.9.0
     [7] tfruns_1.5.1
                               TH.data_1.1-1
                                                     digest_0.6.31
##
    [10] foreach 1.5.2
                               htmltools_0.5.4
                                                     fansi 1.0.4
##
##
    [13] magrittr_2.0.3
                               checkmate_2.1.0
                                                     cluster_2.1.4
    [16] tzdb_0.3.0
                               globals_0.16.2
##
                                                     gower_1.0.1
                               hardhat_1.3.0
    [19] matrixStats_0.63.0
                                                     timechange_0.2.0
##
##
    [22] jpeg_0.1-10
                               xfun_0.37
                                                     libcoin_1.0-9
    [25] jsonlite_1.8.4
                               zeallot_0.1.0
                                                     survival_3.5-5
##
    [28] iterators_1.0.14
                               glue_1.6.2
                                                     gtable_0.3.3
##
##
    [31] ipred_0.9-14
                               car_3.1-2
                                                     shape_1.4.6
    [34] future.apply_1.10.0
                                                     abind 1.4-5
##
                               DEoptimR_1.0-12
    [37] rstatix 0.7.2
##
                               Rcpp 1.0.10
                                                     laeken 0.5.2
    [40] htmlTable_2.4.1
                               reticulate_1.28
                                                     GPfit_1.0-8
##
    [43] foreign_0.8-84
                               proxy_0.4-27
                                                     Formula_1.2-5
##
##
    [46] lava_1.7.2.1
                               prodlim_2023.03.31
                                                     vcd_1.4-11
    [49] htmlwidgets_1.6.2
                               lavaan_0.6-15
                                                     rJava_1.0-6
##
                               nnet 7.3-18
    [52] pkgconfig_2.0.3
                                                     utf8_1.2.3
##
##
    [55] tidyselect_1.2.0
                               rlang_1.1.0
                                                     DiceDesign 1.9
##
    [58] munsell_0.5.0
                               tools_4.2.2
                                                     cli_3.6.0
##
    [61] generics_0.1.3
                               ranger_0.15.1
                                                     fdrtool_1.2.17
    [64] evaluate_0.20
                               fastmap_1.1.1
                                                     yaml_2.3.7
##
    [67] rticles_0.24
                               ModelMetrics_1.2.2.2 knitr_1.42
##
    [70] robustbase_0.95-1
##
                               coin_1.4-2
                                                     glasso_1.11
    [73] pbapply_1.7-0
                               future_1.32.0
                                                     nlme_3.1-162
##
##
    [76] whisker_0.4.1
                               compiler_4.2.2
                                                     rstudioapi_0.14
##
    [79] png_0.1-8
                               ggsignif_0.6.4
                                                     lhs_1.1.6
    [82] pbivnorm_0.6.0
                               stringi_1.7.12
                                                     psych_2.3.3
##
    [85] RWekajars_3.9.3-2
                               vctrs_0.6.1
                                                     pillar_1.9.0
##
##
    [88] lifecycle_1.0.3
                               furrr_0.3.1
                                                     lmtest_0.9-40
    [91] data.table_1.14.8
                               corpcor_1.6.10
                                                     R6_2.5.1
##
    [94] gridExtra_2.3
##
                               parallelly_1.35.0
                                                     codetools_0.2-19
    [97] boot_1.3-28.1
                               gtools_3.9.4
                                                     withr_2.5.0
   [100] mnormt_2.1.1
                               multcomp_1.4-23
                                                     parallel_4.2.2
## [103] hms_1.1.3
                               quadprog_1.5-8
                                                     timeDate_4022.108
   [106] class_7.3-21
                               rmarkdown_2.21
                                                     carData_3.0-5
## [109] base64enc_0.1-3
if (length(tf$config$list_physical_devices("GPU"))) {
  message("TensorFlow **IS** using the GPU")
} else {
```

1 环境准备 4

```
message("TensorFlow **IS NOT** using the GPU")
}
```

2 数据准备

5

2 数据准备

- 2.1 运行 DataClean.Rmd 脚本以获取清洗后数据;
- 2.2 运行 DataClean2.Rmd 脚本重编码变量:
- 2.3 运行 DataClean3.Rmd 脚本将有序分类变量及无序二分类变量转换成 numeric
- 2.4 运行 data use2.R 脚本合并数据

```
load(file = paste0(getwd(), "/data_use/data_use_4_old.RData"))
```

2.5 检查数据

str(YData)

```
## 'data.frame':
                   4335 obs. of 4 variables:
   $ SEQN
             : num 93705 93706 93708 93711 93712 ...
   $ BPXSY
            : num 200 111 142 101 113 ...
##
   $ BPXDI
              : num 68 73.3 76 66.7 70 ...
   $ response: num 1 0 1 0 0 0 1 0 0 0 ...
str(XData)
  'data.frame':
                   4335 obs. of 140 variables:
   $ SEQN
           : num 93705 93706 93708 93711 93712 ...
   $ RIAGENDR: num 0 1 0 1 1 1 0 1 1 1 ...
   $ RIDRETH3: Factor w/ 6 levels "Mexican American",..: 4 5 5 5 1 3 4 6 5 3 ...
   $ DMDBORN4: num 1 1 0 0 0 1 1 1 0 1 ...
##
   $ DMDCITZN: num 1 1 1 1 0 1 1 1 1 1 ...
##
   $ DMDHHSIZ: num 1 5 2 3 4 1 3 5 3 2 ...
##
   $ DMDFMSIZ: num 1 5 2 3 4 1 3 5 3 1 ...
   $ DMDHHSZA: num 0 0 0 0 0 0 1 0 0 ...
##
   $ DMDHHSZB: num 0 0 0 0 2 0 1 2 0 0 ...
##
   $ DMDHHSZE: num 1 1 2 0 0 1 0 1 1 0 ...
##
   $ DMDHRGND: num 0 1 1 1 0 1 1 1 1 1 ...
##
   $ DMDHRAGZ: num 4 4 4 3 3 4 3 4 4 2 ...
   $ DMDHREDZ: num 1 3 1 3 1 2 2 2 3 1 ...
##
   $ DMDHRMAZ: Factor w/ 3 levels "Married/Living with partner",..: 2 1 1 1 2 2 1 1 1 3 ...
##
   $ INDHHIN2: num 1 2 2 3 1 2 2 2 3 1 ...
##
   $ INDFMIN2: num 1 2 2 3 1 2 2 2 3 1 ...
```

\$ AGE : num 66 18 66 56 18 67 54 71 61 22 ... ## \$ DMDEDUC : num 1 2 1 3 1 2 3 2 3 2 ... ## \$ WTDRD1 : num 7186 6464 10826 9098 60947 ... ## \$ WTDR2D : num 5640 6464 22482 8230 89066 ... ## \$ DBQ095Z : num 1 3 1 3 3 3 3 3 3 3 ... ## \$ DRQSPREP: num 3 3 4 2 3 1 4 4 3 3 ... \$ DRQSDIET: num 0 0 0 1 0 0 0 0 0 ... ## \$ DR1TNUMF: int 17 8 14 27 12 17 16 9 18 18 ... ## \$ DR1TKCAL: int 1202 1987 1251 2840 2045 2040 2493 1287 2917 3151 ... ## \$ DR1TPROT: num 20 94.2 51 101.3 99.7 ... \$ DR1TCARB: num 157.4 89.8 123.7 339.6 268.2 ... ## \$ DR1TSUGR: num 91.5 14.7 49.8 148.2 125 ... ## \$ DR1TFIBE: num 8.4 7.1 16.6 44.5 22.3 14.6 11.1 2.4 31.4 18 ... ## \$ DR1TTFAT: num 57 137.4 65.5 124.2 63.9 ... ## \$ DR1TSFAT: num 16.4 35.2 17.4 41.3 15.9 ... ## \$ DR1TMFAT: num 16.4 45.8 29 39.6 24.2 ... ## ## \$ DR1TPFAT: num 19.8 49.9 14.8 31.3 19 ... \$ DR1TCHOL: int 14 462 71 546 216 176 965 470 300 384 ... ## \$ DR1TATOC: num 5.66 10.02 6.2 14.27 7.05 ... ## \$ DR1TATOA: num 0 0 0 0 0 0 0 0 0 ... ## \$ DR1TRET : int 32 198 35 691 23 212 584 280 384 472 ... ## \$ DR1TVARA: int 436 431 236 1012 46 577 608 300 1222 886 ... ## \$ DR1TACAR: int 1551 872 323 414 51 1095 9 0 3314 287 ... ## 4096 2363 2245 3639 171 3736 265 181 7461 4736 ... \$ DR1TBCAR: int ## \$ DR1TCRYP: int 2 2 26 31 156 200 34 65 1774 167 ... \$ DR1TLYCO: int 1573 4605 0 23074 618 548 25 342 0 6435 ... ## \$ DR1TLZ : int 1645 313 2148 5629 316 1745 928 628 2054 3932 ... ## ## \$ DR1TVB1 : num 0.589 1.152 1.143 1.79 1.619 ... \$ DR1TVB2 : num 1.24 1.03 0.84 3.22 1.51 ... \$ DR1TNIAC: num 7.58 26.83 15.37 17.38 31.34 ... ## \$ DR1TVB6 : num 0.458 1.821 1.096 2.177 2.59 ... \$ DR1TFOLA: int 179 267 260 609 437 262 203 120 655 519 ... ## \$ DR1TFA : int 32 125 74 84 76 55 33 45 328 256 ... ## \$ DR1TFF : int 146 139 185 526 361 206 169 75 327 263 ... ## \$ DR1TFDFE: int 202 354 311 669 490 300 224 152 888 696 ... ## ## \$ DR1TCHL : num 95 368 176 546 373 ... \$ DR1TVB12: num ## 0.33 2.3 1.09 3.62 3.62 2.55 3.72 3.24 3.22 3.02 ... \$ DR1TB12A: num 0 0 0 0 0 0 0 0 0 ... ## \$ DR1TVC : num 21.4 9.7 146.4 124 182.1 ... ## \$ DR1TVD : num 0.2 0.7 0.8 4.7 1.3 0.6 7 6.7 4.2 7.6 ... \$ DR1TVK : num 156 138 137 277 49 ...

2 数据准备

##

```
$ DR1TCALC: int 314 869 412 1635 391 583 981 623 972 1959 ...
##
   $ DR1TPHOS: int 466 1025 635 2141 1256 950 1908 839 1638 2027 ...
##
   $ DR1TMAGN: int 162 187 248 541 260 210 276 119 451 282 ...
##
   $ DR1TIRON: num 8.8 8.52 11.49 17 12.07 ...
##
   $ DR1TZINC: num 2.93 8.05 6.45 13.25 15 ...
##
   $ DR1TCOPP: num 0.689 0.614 1.049 1.983 1.256 ...
   $ DR1TSODI: int 3574 3657 2135 4382 3753 2456 5000 1430 4831 6470 ...
##
   $ DR1TPOTA: int 1640 1247 1631 4457 3358 2488 2449 1634 4190 3089 ...
##
   $ DR1TSELE: num 22.1 118.5 54.3 129.7 109.7 ...
##
   $ DR1TCAFF: int 361 0 33 347 0 385 60 432 95 70 ...
   $ DR1TTHEO: int 120 0 69 68 0 125 161 0 0 25 ...
##
   $ DR1TALCO: num 0 0 0 0 0 0 0 0 0 ...
##
   $ DR1TMOIS: num 1774 3405 2822 4345 3217 ...
##
##
   $ DR1TS040: num 0.156 0.263 0.07 0.88 0.033 0.543 0.982 0.252 0.491 0.936 ...
   $ DR1TS060: num 0.077 0.203 0.044 0.594 0.027 0.368 0.624 0.198 0.376 0.706 ...
##
   $ DR1TS080: num 0.058 0.14 0.027 0.459 0.02 0.253 0.457 0.136 0.267 0.457 ...
##
##
   $ DR1TS100: num 0.122 0.377 0.091 1.022 0.07 ...
   $ DR1TS120: num 0.145 0.459 0.097 1.601 0.07 ...
##
   $ DR1TS140: num 0.447 1.816 0.499 3.742 0.633 ...
##
   $ DR1TS160: num 8.95 23.15 9.44 23.52 10.38 ...
##
   $ DR1TS180: num 5.98 7.75 6.13 8.38 4.24 ...
##
   $ DR1TM161: num 0.118 3.387 0.446 1.027 1.085 ...
##
   $ DR1TM181: num 16 41.6 28.2 38.2 22.7 ...
##
   $ DR1TM201: num 0.101 0.524 0.31 0.285 0.248 0.312 0.564 0.186 0.306 0.586 ...
##
   $ DR1TM221: num 0.014 0.011 0.003 0.004 0.001 0.017 0.078 0.038 0 0.131 ...
   $ DR1TP182: num 17.8 44.1 13.9 21.7 17.1 ...
##
   $ DR1TP183: num 1.943 5.074 0.804 9.337 1.522 ...
##
##
   $ DR1TP184: num 0 0.016 0 0 0 0.005 0.002 0 0.008 ...
   $ DR1TP204: num 0.014 0.308 0.038 0.254 0.161 0.102 0.49 0.231 0.137 0.249 ...
##
   $ DR1TP205: num 0.001 0.021 0.001 0.004 0.003 0.006 0.007 0.007 0.015 0.014 ...
##
##
   $ DR1TP225: num 0.001 0.044 0.004 0.02 0.03 0.009 0.033 0.023 0.015 0.039 ...
   $ DR1TP226: num 0.001 0.021 0 0.062 0.001 0.002 0.097 0.059 0.018 0.018 ...
##
##
   $ DR1 300 : int 2 3 2 2 3 1 1 1 2 2 ...
   $ DR1_320Z: num 315 3042 2160 1902 1014 ...
   $ DR1_330Z: num 315 0 720 1902 0 ...
##
##
   $ DR1BWATZ: num 0 3042 1440 0 1014 ...
##
   $ DRD360 : num 0 1 1 0 1 0 1 1 1 1 ...
   $ BMXWT : num 79.5 66.3 53.5 62.1 58.9 74.9 87.1 65.6 77.7 74.4 ...
##
##
   $ BMXHT : num 158 176 150 171 173 ...
##
   $ BMXBMI : num 31.7 21.5 23.7 21.3 19.7 23.5 39.9 22.5 30.7 24.5 ...
```

\$ BMXLEG : num 37 46.6 31.8 40.1 44.5 39.1 26 42 37.4 44 ...

2 数据准备 8

\$ BMXARML : num 36 38.8 30.6 37.2 37.2 41.4 32 39.3 32.6 41.4 ...

[list output truncated]

3 数据标准化、虚拟化 9

数据标准化、虚拟化

source("std.r")

4 方差选择法

选择方差较大的特征。如果一个特征的方差很小,那么它对预测结果的影响也很小

```
df_var2 <- nearZeroVar(Data_SD[-c(1, 2, 3)], saveMetrics = TRUE)</pre>
Data_SD <- Data_SD[, !df_var2$nzv]</pre>
```

重命名变量, 防止作图显示问题

```
Data_SD <- Data_SD %>%
  dplyr::rename(RIDRETH3MA = RIDRETH3Mexican.American,
                RIDRETH3OH = RIDRETH3Other.Hispanic,
                RIDRETH3NHW = RIDRETH3Non.Hispanic.White,
                RIDRETH3NHB = RIDRETH3Non.Hispanic.Black,
                RIDRETH3NHA = RIDRETH3Non.Hispanic.Asian,
                RIDRETH3OR = RIDRETH3Other.Race...Including.Multi.Rac,
                DMDHRMAZWDS = DMDHRMAZWidowed.Divorced.Separated,
                DMDHRMAZNM = DMDHRMAZNever.Married,
                PHDSESNA = PHDSESNafternoon,
                PHDSESNE = PHDSESNevening)
```

5 相关性计算

5.1 收缩压关联因素

```
cor.f \leftarrow function(m, n = 4, data = Data_SD)  {
  cor <- NULL
  t value <- NULL
  p value <- NULL
  for (i in n:ncol(data)) {
    temp <- cor.test(data[, m], data[, i])</pre>
    cor <- cor %>% append(temp$estimate)
    t_value <- t_value %>% append(temp$statistic)
    p_value <- p_value %>% append(temp$p.value)
  }
  opt <- data.frame(</pre>
    cor = cor,
    t_value = t_value,
    p_value = p_value
  )
  rownames(opt) <- colnames(data)[n:ncol(data)]</pre>
  return(opt)
cor_S <- cor.f(1, data = Data_SD)</pre>
cor_S <- cor_S %>%
  dplyr::filter(p_value < 0.05) %>%
  arrange(-cor)
pA <- ggplot(data = cor_S, aes(y = cor, x = reorder(rownames(cor_S), -cor))) +
  geom_col(aes(fill = cor), col = "lightblue") +
  scale_fill_gradient(low = "skyblue", high = "#FA8072") +
  theme(axis.text.x = element_text(angle = 45,
                                    vjust = 1,
                                     size = 12,
                                     hjust = 1)) +
  coord_flip() +
  labs(x = "", y = "Correlation") +
  ggtitle("Factors related to systolic blood pressure (p<0.05)") +
  scale_y_continuous(expand = c(0,0),
                      limits = c(-0.25, 0.58)) +
  geom_text(aes(label = round(cor, 3)),
```

```
vjust = 0.1, hjust = if_else(cor_S$cor >0,-0.5,1.2),
           size = 3) +
  theme_bw()+
  theme(panel.background = element_rect(fill = "transparent"),# 设置背景透明
         axis.ticks = element_line(color = "black"),# 设置刻度线颜色
         axis.line = element_line(size = 0.5,
                                 colour = "black"),# 设置边框线颜色
         axis.title = element_text(colour = "black",
                                  size = 10,
                                  face = "bold"),# 设置标题字体
         axis.text = element_text(colour = "black",
                                 size = 10,
                                 face = "bold"),# 设置 x,y 轴标签字体
         axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
         text = element_text(size = 8,
                             color = "#264653",
                            family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
рA
```

Factors related to systolic blood pressure (p<0.05)

5.2 舒张压关联因素

```
cor_D <- cor.f(2, data = Data_SD)</pre>
cor_D <- cor_D %>%
  dplyr::filter(p_value < 0.05) %>%
  arrange(-cor)
pB <- ggplot(data = cor_D, aes(y = cor, x = reorder(rownames(cor_D), -cor))) +
  geom_col(aes(fill = cor), col = "lightblue") +
  scale_fill_gradient(low = "skyblue", high = "#FA8072") +
  theme(axis.text.x = element_text(angle = 45,
                                   vjust = 1,
                                   size = 12.
                                   hjust = 1)) +
  coord_flip() +
  labs(x = "", y = "Correlation") +
  ggtitle("Diastolic blood pressure related factors (p<0.05)") +</pre>
  scale_y_continuous(expand = c(0, 0),
                     limits = c(-0.15, 0.23)) +
  geom_text(aes(label = round(cor, 3)),
            vjust = 0.1, hjust = if_else(cor_D$cor >0,-0.5,1.2),
            size = 3) +
  theme_bw()+
  theme(panel.background = element_rect(fill = "transparent"),# 设置背景透明
          axis.ticks = element_line(color = "black"),# 设置刻度线颜色
          axis.line = element line(size = 0.5,
                                   colour = "black"),# 设置边框线颜色
          axis.title = element_text(colour = "black",
                                    size = 10.
                                    face = "bold"),# 设置标题字体
          axis.text = element text(colour = "black",
                                   size = 10,
                                   face = "bold"),# 设置 x,y 轴标签字体
          axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
          text = element_text(size = 8,
                              color = "#264653",
                              family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
pВ
```


5.3 高血压关联因素(logistic)

```
beta <- NULL
P_value <- NULL
for (i in 4:139) {
  temp.fit <- glm(response ~ Data_SD[, i],</pre>
    data = Data_SD,
    family = binomial(link = "logit")
  )
  temp <- summary(temp.fit)</pre>
  beta <- beta %>% append(temp$coefficients[2, 1])
  P_value <- P_value %>% append(temp$coefficients[2, 4])
opt <- data.frame(</pre>
  beta = beta,
  P_value = P_value
)
rownames(opt) <- colnames(Data_SD[4:139])</pre>
opt$OR_value <- exp(opt$beta)</pre>
```

```
opt$Q_value <- sprintf("%0.3f",
                       p.adjust(opt$P_value,
                                method = "BH", nrow(opt)))
opt <- opt %>%
  dplyr::filter(P_value < 0.05) %>%
  arrange(-OR value, P value)
pC \leftarrow ggplot(data = opt, aes(y = OR_value, x = reorder(rownames(opt), OR_value))) +
  geom_col(aes(fill = OR_value), col = "lightblue") +
  scale_fill_gradient(low = "white", high = "#FA8072") +
  theme(axis.text.x = element_text(angle = 45,
                                   vjust = 1,
                                   size = 12,
                                   hjust = 1)) +
  coord_flip() +
  labs(x = "", y = "OR Value") +
  ggtitle("Hypertension (binary classification) related factors (p<0.05)") +
  scale_y_continuous(expand = c(0, 0),
                     limits = c(0, 37)) +
  geom_text(aes(label = round(OR_value, 3)),
            vjust = 0.1, hjust = -0.5,
            size = 3) +
  theme_bw()+
  theme(panel.background = element_rect(fill = "transparent"),# 设置背景透明
          axis.ticks = element_line(color = "black"),# 设置刻度线颜色
          axis.line = element_line(size = 0.5,
                                   colour = "black"),# 设置边框线颜色
          axis.title = element_text(colour = "black",
                                    size = 10,
                                    face = "bold"),# 设置标题字体
          axis.text = element_text(colour = "black",
                                   size = 10.
                                   face = "bold"),# 设置 x,y 轴标签字体
          axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
          text = element_text(size = 8,
                              color = "#264653",
                              family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
pC
```


6 选择变量

6.1 特征筛选

6.1.1 合并上述相关性计算的有效变量

```
namesc <- unique(c(rownames(cor_D),</pre>
                    rownames(cor_S),
                    row.names(opt)))
namesc
                        "LBXTC"
    [1] "BMXWT"
                                       "LBDTCSI"
                                                       "BMXHT"
##
                                                                      "RIAGENDR"
    [6] "BMXBMI"
                        "SLQ030"
##
                                       "RIDRETH3NHB"
                                                      "SLQ040"
                                                                      "BMXLEG"
##
   [11] "ALQ121"
                        "DR1TKCAL"
                                       "DMDEDUC"
                                                       "DR1TPROT"
                                                                      "RIDRETH3NHA"
##
   [16] "DR1TCHL"
                        "DR1TCARB"
                                       "DR1TP204"
                                                       "DR1TCHOL"
                                                                      "DR1TALCO"
   [21] "PAQ605"
                        "DR1TMOIS"
                                       "DMDHHSZB"
                                                      "DR1TS180"
                                                                      "DR1TSODI"
##
   [26] "ALQ111"
                        "DRD360"
                                       "DR1BWATZ"
                                                      "AGE"
                                                                      "DR1TSUGR"
##
   [31] "DR1TNIAC"
                        "DR1TFF"
                                       "DR1TM161"
                                                      "DR1TSFAT"
                                                                      "DR1TS160"
   [36]
        "DMDHRGND"
                        "DR1TS120"
                                       "DR1TMFAT"
                                                      "DR1TTFAT"
                                                                      "OCD390G"
##
##
   [41]
        "DR1TM181"
                        "INDFMIN2"
                                       "DR1TPHOS"
                                                       "DR1TZINC"
                                                                      "INDHHIN2"
##
   [46] "DRQSDIET"
                        "DPQ050"
                                       "DMDHHSZA"
                                                       "DR1TRET"
                                                                      "DMDHRMAZWDS"
                        "DBQ095Z"
                                                      "PAQ650"
   [51] "DR1_300"
                                       "SLD013"
                                                                      "SLQ120"
##
##
   [56] "DMDBORN4"
                        "DPQ040"
                                       "LBDHDDSI"
                                                       "LBDHDD"
                                                                      "DMDHHSZE"
        "SLD012"
##
   [61]
                        "RIDRETH3NHW"
                                       "OCD150"
                                                       "DMDHRAGZ"
                                                                      "SMQ020"
                        "SLQ050"
   [66]
        "DMDCITZN"
                                                       "DR1_330Z"
##
                                       "DR1TB12A"
                                                                      "DMDHRMAZNM"
   [71] "RIDRETH3MA"
                                       "DR1TVB1"
                                                       "DR1TFA"
                                                                      "DR1TS080"
##
                        "DR1TVARA"
   [76] "DR1TMAGN"
                        "DR1TIRON"
                                       "DR1TFOLA"
                                                      "DR1TFDFE"
                                                                      "DR1TLYCO"
##
                                       "DR1TATOC"
   [81] "DR1_320Z"
                        "DR1TS040"
                                                       "DR1TS060"
                                                                      "DR1TVB2"
   [86] "DR1TS100"
                        "DR1TS140"
                                       "PAQ620"
                                                       "DR1TCALC"
                                                                      "PAQ665"
   [91] "DRQSPREP"
                        "DMDHREDZ"
                                       "WTDRD1"
                                                       "WTDR2D"
                                                                      "DMDFMSIZ"
##
##
   [96] "DMDHHSIZ"
Data_SD2 <- Data_SD[c("response", namesc)]</pre>
X <- Data_SD2[-1]</pre>
Y <- Data_SD2[, 1]
```

6.1.2 计算皮尔逊相关

```
library(FeatureSelection)
Featurepearson <- func_correlation(
   data = Data_SD2,</pre>
```

```
target = "response",
use_obs = "all.obs",
correlation_thresh = 0.001,
correlation_method = "pearson"
)

Featurepearson
```

```
##
                  response
## AGE
               0.355938709
## DMDHRAGZ
               0.243454132
## DMDHHSZE
               0.214914074
## BMXBMI
               0.142271320
               0.135595445
## BMXWT
## LBXTC
               0.116209357
## LBDTCSI
               0.116187276
## OCD150
               0.110862022
## SLQ030
               0.110840612
## RIDRETH3NHB 0.085781203
## RIAGENDR
               0.074144752
## SLQ040
               0.068196162
## DRD360
               0.066596042
## SLQ050
               0.057264346
## DMDHRMAZWDS 0.054687344
## SMQ020
               0.045866003
## DMDCITZN
               0.035397160
## DR1TS120
               0.025810225
## DR1TCHOL
               0.019210230
## DR1TCHL
               0.017532844
## DR1TS080
               0.017187118
## DMDHRGND
               0.016879421
## DR1TP204
               0.011527295
## DR1BWATZ
               0.008295425
## DR1TS180
               0.005334887
## BMXHT
               0.005299287
## DR1TALCO
               0.003353245
## DRQSDIET
               0.001540367
```

6.1.3 基于集成学习选择变量

```
params_glmnet <- list(
   alpha = 1,</pre>
```

```
family = "gaussian",
  nfolds = 3,
  parallel = TRUE
params_xgboost <- list(</pre>
  params = list(
    "objective" = "reg:linear",
    "bst:eta" = 0.001,
    "subsample" = 0.75,
    max_depth = 5,
    "colsample_bytree" = 0.75,
    "nthread" = 6
  ),
  nrounds = 1000,
  print.every.n = 250,
  maximize = FALSE
params_ranger <- list(</pre>
  dependent.variable.name = "y",
  probability = FALSE, num.trees = 1000,
  verbose = TRUE, mtry = 5,
  min.node.size = 10, num.threads = 6,
  classification = FALSE, importance = "permutation"
params_features <- list(keep_number_feat = NULL, union = TRUE)</pre>
params_barplot <- list(keep_features = 96,</pre>
                        horiz = TRUE,
                        cex.names = 1.0)
barplot_feat_select(feat, params_barplot, xgb_sort = "Cover")
feat_lasso <- cbind.data.frame(Feature = feat$all_feat$`glmnet-lasso`$Feature,</pre>
                                 coef = feat$all_feat$`glmnet-lasso`$coefficients)
feat_xgboost <- cbind.data.frame(Feature = feat$all_feat$xgboost$Feature,</pre>
                                 coef = feat$all_feat$xgboost$Cover)
feat_ranger <- cbind.data.frame(Feature = feat$all_feat$ranger$Feature,</pre>
                                 coef = feat$all_feat$ranger$permutation)
feat_union <- cbind.data.frame(Feature = feat$union_feat$feature,</pre>
```

coef = feat\$union_feat\$importance)

```
plasso <- ggplot(data = feat_lasso, aes(y = coef,</pre>
                                       x = reorder(Feature, coef))) +
  geom_col(aes(fill = coef), col = "lightblue") +
  scale_fill_gradient(low = "skyblue", high = "#FA8072") +
  theme(axis.text.x = element_text(angle = 45,
                                  vjust = 1,
                                  size = 12,
                                  hjust = 1)) +
  coord_flip() +
  labs(x = "", y = "Varible Importance") +
  ggtitle("Glmnet Lasso") +
  scale_y_continuous(expand = c(0, 0),
                    limits = c(-0.19, 0.9)) +
  geom_text(aes(label = round(coef, 3)),
            vjust = 0.1, hjust = if_else(feat_lasso$coef >0,-0.5,1.2),
           size = 3) +
  theme_bw()+
  theme(panel.background = element_rect(fill = "transparent"),# 设置背景透明
          axis.ticks = element_line(color = "black"),# 设置刻度线颜色
          axis.line = element_line(size = 0.5,
                                  colour = "black"),# 设置边框线颜色
          axis.title = element_text(colour = "black",
                                   size = 10,
                                   face = "bold"),# 设置标题字体
         axis.text = element_text(colour = "black",
                                  size = 10.
                                  face = "bold"),# 设置 x,y 轴标签字体
         axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
         text = element_text(size = 8,
                             color = "#264653",
                             family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
feat_xgboost <- feat_xgboost %>%
```

vjust = 1,

```
size = 12,
                                  hjust = 1)) +
  coord_flip() +
  labs(x = "", y = "Varible Importance") +
  ggtitle("XGBoost") +
  scale_y_continuous(expand = c(0, 0),
                    limits = c(0, 0.1) +
  geom_text(aes(label = round(coef, 3)),
           vjust = 0.1, hjust = if_else(feat_xgboost$coef >0,-0.5,1.2),
           size = 3) +
  theme_bw()+
  theme(panel.background = element_rect(fill = "transparent"),# 设置背景透明
          axis.ticks = element_line(color = "black"),# 设置刻度线颜色
          axis.line = element_line(size = 0.5,
                                  colour = "black"),# 设置边框线颜色
         axis.title = element_text(colour = "black",
                                   size = 10,
                                   face = "bold"),# 设置标题字体
         axis.text = element_text(colour = "black",
                                  size = 10,
                                  face = "bold"),# 设置 x,y 轴标签字体
          axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
         text = element_text(size = 8,
                             color = "#264653",
                             family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
feat_ranger <- feat_ranger %>% dplyr::filter(coef > 0.001)
pranger <- ggplot(data = feat_ranger, aes(y = coef,</pre>
                                       x = reorder(Feature, coef))) +
  geom_col(aes(fill = coef), col = "lightblue") +
  scale_fill_gradient(low = "skyblue", high = "#FA8072") +
  theme(axis.text.x = element_text(angle = 45,
                                  vjust = 1,
                                  size = 12,
                                  hjust = 1)) +
  coord flip() +
  labs(x = "", y = "Varible Importance") +
  ggtitle("Ranger") +
  scale_y_continuous(expand = c(0, 0),
```

```
limits = c(-0.0001, 0.05)) +
  geom_text(aes(label = round(coef, 3)),
           vjust = 0.1, hjust = if_else(feat_ranger$coef >0,-0.5,1.2),
           size = 3) +
  theme bw()+
  theme(panel.background = element rect(fill = "transparent"),# 设置背景透明
         axis.ticks = element_line(color = "black"),# 设置刻度线颜色
         axis.line = element_line(size = 0.5,
                                  colour = "black"),# 设置边框线颜色
         axis.title = element_text(colour = "black",
                                   size = 10,
                                   face = "bold"),# 设置标题字体
         axis.text = element_text(colour = "black",
                                  size = 10,
                                  face = "bold"),# 设置 x,y 轴标签字体
         axis.text.x = element_text(angle = 0,hjust = 0.5,vjust = 0.5),
         text = element_text(size = 8,
                             color = "#264653",
                             family = "serif"))+# 设置文本字体
  guides(fill=FALSE)
feat_union <- feat_union %>%
  dplyr::filter(coef > 0.2)
punion <- ggplot(data = feat_union, aes(y = coef,</pre>
                                       x = reorder(Feature, coef))) +
  geom_col(aes(fill = coef), col = "lightblue") +
```



```
names_ts <- data.frame(
   imp = feat$union_feat$importance,
   feat = feat$union_feat$feature
)
names_fin <- names_ts %>%
   dplyr::filter(imp > 0.5)
names_final <- names_fin[, 2]</pre>
```

6.1.4 手动去除强共线性

```
match(names_final, colnames(Data_SD2))

## [1] 30 2 3 7 95 6 94 55 38 11 26 20 84 9 8 5 18 12 59 65 76 4 17 29 25

## [26] 50

Data3 <- data.frame(
    response = Y,
    Data_SD2[, names_final]
)

# Calculate the correlation matrix
cor_matrix <- cor(Data3)</pre>
```

6.1.4.1 共线性图


```
names_ex <- c(
   'DR1TS080','WTDRD1','BMXHT','LBDTCSI','BMXBMI','DR1TCHL'
)
Data5 <- Data3[-match(names_ex, colnames(Data3))]</pre>
```

6.1.4.2 相关性大于 0.85

6.1.4.3 相关性大于 **0.75** 由于去除相关性 >0.85 的变量后,模型仍存在共线性。

6.2 过采样平衡结局变量

```
names_ex <- c(</pre>
  'DR1TSO80', 'WTDRD1', 'BMXHT', 'LBDTCSI', 'BMXBMI', 'DR1TCHL'
)
Data5 <- Data3[-match(names_ex, colnames(Data3))]</pre>
set.seed(1234)
Data5 <- Data5 %>%
  mutate(response = factor(response, levels = c(0, 1)))
Data6 <- DMwR::SMOTE(response ~ ., Data5, perc.over = 100)</pre>
set.seed(1234)
# 使用 downSample 函数进行负采样
Data_ds <- caret::downSample(x = Data5[, -1], y = Data5$response, yname = "response", list = FALSE)
Data_ds <- Data_ds %>%
  dplyr::select(response, everything())
table(Data5$response)
##
##
      0
           1
## 2494 1841
table(Data6$response)
##
      0
           1
## 3682 3682
table(Data_ds$response)
##
##
      0
```

6.3 交互作用

1841 1841

```
glm.fit <- glm(response ~ .,</pre>
 data = Data6,
 family = binomial(link = "logit")
)
summary(glm.fit)
##
## Call:
## glm(formula = response ~ ., family = binomial(link = "logit"),
       data = Data6)
##
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                  3Q
                                          Max
## -2.2449 -0.9685
                     0.1005
                              0.9563
                                        2.4939
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                          0.199935 -11.707 < 2e-16 ***
## (Intercept) -2.340642
## AGE
                          0.157600 18.356 < 2e-16 ***
               2.892937
## BMXWT
                           0.259259 10.329 < 2e-16 ***
               2.677805
                           0.252000 8.584 < 2e-16 ***
## LBXTC
               2.163160
## WTDR2D
              -1.620922
                           0.368247 -4.402 1.07e-05 ***
## RIAGENDR
               0.380387
                           0.073381 5.184 2.17e-07 ***
## PAQ650
              -0.306036
                           0.065061 -4.704 2.55e-06 ***
                           0.782198 2.159 0.03083 *
## DR1TS120
               1.688981
## BMXLEG
              -1.316264
                           0.269451 -4.885 1.03e-06 ***
## DR1TSODI
               0.202581
                           0.575714 0.352 0.72493
## DR1TCHOL
                           0.341545 -0.182 0.85527
              -0.062298
## DR1TATOC
              -2.959167
                           0.740623 -3.996 6.46e-05 ***
## RIDRETH3NHB 0.413014
                           0.070072 5.894 3.77e-09 ***
## SLQ030
                0.006471
                           0.071083 0.091 0.92746
## DR1TCARB
               0.989508
                           0.409233
                                     2.418 0.01561 *
## ALQ121
               0.262234
                           0.093491
                                     2.805 0.00503 **
## LBDHDDSI
              -0.385518
                           0.351949 -1.095 0.27335
## DMDHRAGZ
              -0.197996
                           0.149058 -1.328 0.18407
## DR1BWATZ
               0.862139
                           0.288748
                                     2.986
                                            0.00283 **
## DR1TS180
               0.746903
                           0.405824
                                     1.840
                                            0.06570 .
## DR1TRET
                                            0.00379 **
              -1.637694
                           0.565709 -2.895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 10208.7 on 7363
                                       degrees of freedom
## Residual deviance: 8663.4 on 7343 degrees of freedom
## AIC: 8705.4
##
## Number of Fisher Scoring iterations: 4
# create a new model with interaction terms
glm.fit_int <- glm(response ~ . + (AGE + BMXWT+ LBXTC + WTDR2D + RIAGENDR + PAQ650 + DR1TS120 + BMXLEG + D
 data = Data6,
 family = binomial(link = "logit")
)
summary(glm.fit_int)
##
## Call:
## glm(formula = response ~ . + (AGE + BMXWT + LBXTC + WTDR2D +
##
      RIAGENDR + PAQ650 + DR1TS120 + BMXLEG + DR1TATOC + RIDRETH3NHB +
##
      DR1TCARB + ALQ121 + DR1BWATZ + DR1TRET) * (AGE + BMXWT +
##
      LBXTC + WTDR2D + RIAGENDR + PAQ650 + DR1TS120 + BMXLEG +
##
      DR1TATOC + RIDRETH3NHB + DR1TCARB + ALQ121 + DR1BWATZ + DR1TRET),
      family = binomial(link = "logit"), data = Data6)
##
## Deviance Residuals:
       Min
##
                   1Q
                        Median
                                       3Q
                                                Max
## -2.39311 -0.94837
                        0.07241
                                 0.92599
                                            2.65998
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
                                    0.806674 -4.076 4.58e-05 ***
                         -3.288190
## (Intercept)
                                               7.466 8.24e-14 ***
## AGE
                         4.979154
                                    0.666871
## BMXWT
                          5.137970
                                    1.489237
                                                3.450 0.000560 ***
## LBXTC
                          3.300739
                                    1.641900
                                                2.010 0.044398 *
## WTDR2D
                         -3.792343
                                    2.913247 -1.302 0.192999
## RIAGENDR
                                    0.510496 2.844 0.004448 **
                         1.452098
## PAQ650
                        -1.479028
                                    0.452374 -3.269 0.001077 **
## DR1TS120
                         -2.700219
                                    6.801412 -0.397 0.691361
## BMXLEG
                        -1.560711
                                    1.569548 -0.994 0.320043
## DR1TSODI
                         0.171927
                                    0.618498 0.278 0.781032
## DR1TCHOL
                         -0.096527
                                    0.360070 -0.268 0.788639
```

##	DR1TATOC	-0.013985	4.685374	-0.003	0.997619	
##	RIDRETH3NHB	0.831887	0.502431	1.656	0.097778	
##	SLQ030	0.007617	0.074287	0.103	0.918336	
##	DR1TCARB	-5.630564	2.478774	-2.272	0.023116	*
##	ALQ121	-0.747796	0.662394	-1.129	0.258927	
##	LBDHDDSI	-0.504551	0.377561	-1.336	0.181437	
##	DMDHRAGZ	-0.179074	0.159695	-1.121	0.262139	
##	DR1BWATZ	0.566107	2.024537	0.280	0.779767	
##	DR1TS180	1.096945	0.437461	2.508	0.012158	*
##	DR1TRET	22.279256	3.939551	5.655	1.56e-08	***
##	AGE:BMXWT	-7.597307	1.086434	-6.993	2.69e-12	***
##	AGE:LBXTC	-2.136734	1.151123	-1.856	0.063423	
##	AGE:WTDR2D	-4.214178	1.822266	-2.313	0.020744	*
##	AGE:RIAGENDR	-2.931103	0.309696	-9.464	< 2e-16	***
##	AGE:PAQ650	0.251250	0.279037	0.900	0.367897	
##	AGE:DR1TS120	-1.813720	4.062054	-0.447	0.655234	
##	AGE:BMXLEG	4.357222	1.154599	3.774	0.000161	***
##	AGE:DR1TATOC	-1.625637	3.069601	-0.530	0.596395	
##	AGE:RIDRETH3NHB	-0.834951	0.333464	-2.504	0.012284	*
##	AGE:DR1TCARB	5.287795	1.583667	3.339	0.000841	***
##	AGE:ALQ121	0.379928	0.406256	0.935	0.349689	
##	AGE:DR1BWATZ	2.035055	1.382836	1.472	0.141115	
##	AGE: DR1TRET	-12.383697	2.416847	-5.124	2.99e-07	***
##	BMXWT:LBXTC	0.912470	2.541394	0.359	0.719563	
##	BMXWT:WTDR2D	7.879018	3.946215	1.997	0.045869	*
##	BMXWT:RIAGENDR	-0.127026	0.674119	-0.188	0.850538	
##	BMXWT:PAQ650	-0.306742	0.675367	-0.454	0.649696	
##	BMXWT:DR1TS120	-3.307803	8.607116	-0.384	0.700748	
##	BMXWT:BMXLEG	1.884150	2.311863	0.815	0.415077	
##	BMXWT:DR1TATOC	-16.754269	6.695925	-2.502	0.012344	*
##	BMXWT:RIDRETH3NHB	0.220348	0.635174	0.347	0.728660	
##	BMXWT:DR1TCARB	3.543327	3.241961	1.093	0.274412	
##	BMXWT:ALQ121	-2.156622	0.932066	-2.314	0.020678	*
##	BMXWT:DR1BWATZ	0.494248	2.517749	0.196	0.844371	
##	BMXWT:DR1TRET	14.502100	6.156508	2.356	0.018494	*
##	LBXTC:WTDR2D	6.734199	4.156929	1.620	0.105234	
##	LBXTC:RIAGENDR	1.377444	0.714800	1.927	0.053975	•
##	LBXTC:PAQ650	-0.431625	0.651699	-0.662	0.507774	
##	LBXTC:DR1TS120	-1.464489	10.330152	-0.142	0.887263	
##	LBXTC:BMXLEG	-5.831493	2.648810	-2.202	0.027697	*
##	LBXTC:DR1TATOC	7.719012	6.730131	1.147	0.251409	

##	LBXTC:RIDRETH3NHB	1.940953	0.727583	2.668	0.007638	**
##	LBXTC:DR1TCARB	-1.350577	3.654210	-0.370	0.711684	
##	LBXTC:ALQ121	1.738998	0.907714	1.916	0.055391	
##	LBXTC:DR1BWATZ	-0.948110	2.899322	-0.327	0.743659	
##	LBXTC:DR1TRET	-0.584296	5.416785	-0.108	0.914101	
##	WTDR2D:RIAGENDR	3.639289	1.109624	3.280	0.001039	**
##	WTDR2D:PAQ650	-2.909426	0.970858	-2.997	0.002729	**
##	WTDR2D:DR1TS120	-3.489925	13.740443	-0.254	0.799504	
##	WTDR2D:BMXLEG	-4.273589	4.120792	-1.037	0.299699	
##	WTDR2D:DR1TATOC	12.631086	9.371235	1.348	0.177704	
##	WTDR2D:RIDRETH3NHB	-4.273564	2.716515	-1.573	0.115677	
##	WTDR2D:DR1TCARB	-9.749714	5.029413	-1.939	0.052557	
##	WTDR2D:ALQ121	2.205960	1.343048	1.643	0.100486	
##	WTDR2D:DR1BWATZ	10.757887	4.452933	2.416	0.015696	*
##	WTDR2D:DR1TRET	5.110234	8.688990	0.588	0.556447	
##	RIAGENDR:PAQ650	-0.204630	0.180804	-1.132	0.257729	
##	RIAGENDR:DR1TS120	-7.210777	2.617320	-2.755	0.005869	**
##	RIAGENDR: BMXLEG	-0.906939	0.592708	-1.530	0.125977	
##	RIAGENDR: DR1TATOC	1.542633	1.969480	0.783	0.433469	
##	RIAGENDR:RIDRETH3NHB	0.035425	0.191956	0.185	0.853586	
##	RIAGENDR: DR1TCARB	0.953547	1.033085	0.923	0.356002	
##	RIAGENDR: ALQ121	-0.058141	0.259976	-0.224	0.823037	
##	RIAGENDR:DR1BWATZ	-0.681414	0.854374	-0.798	0.425126	
##	RIAGENDR: DR1TRET	7.029967	1.738013	4.045	5.24e-05	***
##	PAQ650:DR1TS120	0.344489	2.199524	0.157	0.875545	
##	PAQ650:BMXLEG	2.255079	0.702347	3.211	0.001324	**
##	PAQ650:DR1TATOC	-3.240801	1.705711	-1.900	0.057437	•
##	PAQ650:RIDRETH3NHB	-0.374450	0.179712	-2.084	0.037196	*
##	PAQ650:DR1TCARB	1.497227	0.908289	1.648	0.099270	
##	PAQ650:ALQ121	0.422591	0.246842	1.712	0.086898	
##	PAQ650:DR1BWATZ	0.713155	0.737168	0.967	0.333332	
##	PAQ650:DR1TRET	2.908535	1.469997	1.979	0.047861	*
##	DR1TS120:BMXLEG	24.208939	9.759893	2.480	0.013122	*
##	DR1TS120:DR1TATOC	-20.340827	18.659455	-1.090	0.275665	
##	DR1TS120:RIDRETH3NHB	-2.720973	2.656056	-1.024	0.305627	
##	DR1TS120:DR1TCARB	-0.026618	6.986100	-0.004	0.996960	
##	DR1TS120:ALQ121	1.668030	3.618515	0.461	0.644820	
##	DR1TS120:DR1BWATZ	-9.741829	12.481867	-0.780	0.435109	
##	DR1TS120:DR1TRET	10.955888	12.775453	0.858	0.391128	
##	BMXLEG: DR1TATOC	1.020790	7.604710	0.134	0.893220	
##	BMXLEG:RIDRETH3NHB	-0.499492	0.664229	-0.752	0.452059	

```
## BMXLEG:DR1TCARB
                          7.710742
                                     3.817321
                                                2.020 0.043390 *
## BMXLEG:ALQ121
                                     0.980980
                          1.860763
                                                1.897 0.057849 .
## BMXLEG:DR1BWATZ
                                     2.834764 -0.900 0.368274
                         -2.550466
                                     7.235108 -7.139 9.39e-13 ***
## BMXLEG:DR1TRET
                        -51.652123
## DR1TATOC:RIDRETH3NHB
                          5.880033
                                     1.940984
                                               3.029 0.002450 **
## DR1TATOC: DR1TCARB
                         -1.061285
                                     5.402641 -0.196 0.844267
## DR1TATOC:ALQ121
                        -10.748001
                                     2.646718 -4.061 4.89e-05 ***
## DR1TATOC:DR1BWATZ
                                                1.264 0.206408
                         10.141878
                                     8.026779
## DR1TATOC:DR1TRET
                         16.668424
                                    10.727004
                                                1.554 0.120214
## RIDRETH3NHB:DR1TCARB
                        -2.473597
                                     0.988560 -2.502 0.012342 *
## RIDRETH3NHB:ALQ121
                         -0.458388
                                     0.249800 -1.835 0.066503 .
## RIDRETH3NHB:DR1BWATZ -0.445103
                                     0.847513 -0.525 0.599453
## RIDRETH3NHB:DR1TRET
                                     1.584755
                                                2.418 0.015610 *
                         3.831790
## DR1TCARB:ALQ121
                          1.279979
                                     1.292442
                                               0.990 0.322000
## DR1TCARB:DR1BWATZ
                                     3.796777 -1.705 0.088179 .
                         -6.473824
## DR1TCARB:DR1TRET
                        -10.206569
                                     5.567008 -1.833 0.066743 .
## ALQ121:DR1BWATZ
                         3.885199
                                     1.141159
                                               3.405 0.000663 ***
## ALQ121:DR1TRET
                                     1.932678
                                               0.531 0.595539
                          1.025916
## DR1BWATZ:DR1TRET
                                     6.427084 -1.048 0.294625
                         -6.735771
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 10208.7 on 7363 degrees of freedom
## Residual deviance: 8213.1 on 7252 degrees of freedom
## AIC: 8437.1
##
## Number of Fisher Scoring iterations: 5
glm.fit_int <- glm(</pre>
  response ~ . +
    AGE:BMXWT +
   AGE:WTDR2D +
   AGE:RIAGENDR +
   AGE:BMXLEG +
   AGE:DR1TCARB +
   AGE: DR1TRET +
   BMXWT:DR1TATOC +
   BMXWT:ALQ121 +
   BMXWT:DR1TRET +
   WTDR2D:RIAGENDR +
```

```
WTDR2D:PAQ650 +
    WTDR2D:DR1BWATZ +
    RIAGENDR:DR1TS120 +
    RIAGENDR: DR1TRET +
   PAQ650:BMXLEG +
   PAQ650:DR1TRET +
   DR1TS120:BMXLEG +
    BMXLEG:DR1TCARB +
    BMXLEG:DR1TRET +
    DR1TATOC:RIDRETH3NHB +
   DR1TATOC: ALQ121 +
   RIDRETH3NHB:DR1TCARB +
   RIDRETH3NHB:DR1TRET +
   ALQ121:DR1BWATZ,
 data = Data6,
  family = binomial(link = "logit")
summary(glm.fit_int)
##
## Call:
## glm(formula = response ~ . + AGE:BMXWT + AGE:WTDR2D + AGE:RIAGENDR +
       AGE:BMXLEG + AGE:DR1TCARB + AGE:DR1TRET + BMXWT:DR1TATOC +
##
       BMXWT:ALQ121 + BMXWT:DR1TRET + WTDR2D:RIAGENDR + WTDR2D:PAQ650 +
       WTDR2D:DR1BWATZ + RIAGENDR:DR1TS120 + RIAGENDR:DR1TRET +
##
```

```
PAQ650:BMXLEG + PAQ650:DR1TRET + DR1TS120:BMXLEG + BMXLEG:DR1TCARB +
##
##
      BMXLEG:DR1TRET + DR1TATOC:RIDRETH3NHB + DR1TATOC:ALQ121 +
##
      RIDRETH3NHB:DR1TCARB + RIDRETH3NHB:DR1TRET + ALQ121:DR1BWATZ,
      family = binomial(link = "logit"), data = Data6)
##
##
## Deviance Residuals:
##
       Min
                  1Q
                        Median
                                      3Q
                                              Max
## -2.41927 -0.95874
                       0.03838 0.93624 2.71602
##
## Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
##
                        -2.874445 0.459077 -6.261 3.82e-10 ***
## (Intercept)
## AGE
                         4.292591 0.521349 8.234 < 2e-16 ***
## BMXWT
                         6.899319 0.735456 9.381 < 2e-16 ***
## LBXTC
                         1.641931
                                   0.262820 6.247 4.17e-10 ***
                        -2.068900
                                   1.232998 -1.678 0.093358 .
## WTDR2D
```

##	RIAGENDR	1.438217	0.188438	7.632	2.31e-14	***
##	PAQ650	-1.117892	0.273862	-4.082	4.47e-05	***
##	DR1TS120	-4.724996	3.649713	-1.295	0.195451	
##	BMXLEG	-3.265718	0.817512	-3.995	6.48e-05	***
##	DR1TSODI	0.336304	0.598646	0.562	0.574270	
##	DR1TCHOL	-0.119249	0.350043	-0.341	0.733353	
##	DR1TATOC	1.518096	1.860596	0.816	0.414546	
##	RIDRETH3NHB	0.444590	0.149245	2.979	0.002893	**
##	SLQ030	-0.006754	0.072969	-0.093	0.926258	
##	DR1TCARB	-6.859332	1.733562	-3.957	7.60e-05	***
##	ALQ121	0.997473	0.272760	3.657	0.000255	***
##	LBDHDDSI	-0.430176	0.366459	-1.174	0.240446	
##	DMDHRAGZ	-0.168315	0.155506	-1.082	0.279089	
##	DR1BWATZ	-0.847638	0.512470	-1.654	0.098123	
##	DR1TS180	0.992033	0.420886	2.357	0.018423	*
##	DR1TRET	19.695528	3.300666	5.967	2.41e-09	***
##	AGE:BMXWT	-7.689665	0.972194	-7.910	2.58e-15	***
##	AGE:WTDR2D	-2.721259	1.605269	-1.695	0.090037	•
##	AGE:RIAGENDR	-2.658604	0.265710	-10.006	< 2e-16	***
##	AGE:BMXLEG	3.927557	1.023557	3.837	0.000124	***
##	AGE:DR1TCARB	5.290942	1.326482	3.989	6.64e-05	***
##	AGE:DR1TRET	-11.418738	2.155312	-5.298	1.17e-07	***
##	BMXWT:DR1TATOC	-11.427764	5.839869	-1.957	0.050365	•
##	BMXWT:ALQ121	-1.688631	0.836824	-2.018	0.043601	*
##	BMXWT: DR1TRET	15.888327	5.516527	2.880	0.003975	**
##	WTDR2D:RIAGENDR	3.033012	0.770120	3.938	8.20e-05	***
##	WTDR2D:PAQ650	-2.093020	0.874124		0.016647	
	WTDR2D:DR1BWATZ	9.580427	4.094084	2.340	0.019280	*
	RIAGENDR:DR1TS120		2.255976	-3.064	0.002182	**
##	RIAGENDR: DR1TRET	7.015371	1.494841	4.693	2.69e-06	***
##	PAQ650:BMXLEG	1.388223	0.490036	2.833	0.004613	**
##	PAQ650:DR1TRET	2.956654	1.213941	2.436	0.014868	*
		19.954181	8.255079		0.015640	
	BMXLEG: DR1TCARB	10.433415			5.13e-05	
	BMXLEG: DR1TRET	-48.918075			8.13e-14	
	DR1TATOC:RIDRETH3NHB		1.552677		0.046136	
	DR1TATOC: ALQ121				0.001438	
	RIDRETH3NHB: DR1TCARB				0.012582	
	RIDRETH3NHB:DR1TRET				0.010350	
##	ALQ121:DR1BWATZ	2.740719	1.003869	2.730	0.006330	**
##						

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 10208.7 on 7363 degrees of freedom
##
## Residual deviance: 8298.5 on 7319 degrees of freedom
## AIC: 8388.5
##
## Number of Fisher Scoring iterations: 4
# compare the two models using anova()
anova(glm.fit, glm.fit_int, test = "Chi")
## Analysis of Deviance Table
##
## Model 1: response ~ AGE + BMXWT + LBXTC + WTDR2D + RIAGENDR + PAQ650 +
      DR1TS120 + BMXLEG + DR1TSODI + DR1TCHOL + DR1TATOC + RIDRETH3NHB +
       SLQ030 + DR1TCARB + ALQ121 + LBDHDDSI + DMDHRAGZ + DR1BWATZ +
##
      DR1TS180 + DR1TRET
## Model 2: response ~ AGE + BMXWT + LBXTC + WTDR2D + RIAGENDR + PAQ650 +
      DR1TS120 + BMXLEG + DR1TSODI + DR1TCHOL + DR1TATOC + RIDRETH3NHB +
##
       SLQ030 + DR1TCARB + ALQ121 + LBDHDDSI + DMDHRAGZ + DR1BWATZ +
##
      DR1TS180 + DR1TRET + AGE:BMXWT + AGE:WTDR2D + AGE:RIAGENDR +
##
       AGE:BMXLEG + AGE:DR1TCARB + AGE:DR1TRET + BMXWT:DR1TATOC +
##
      BMXWT:ALQ121 + BMXWT:DR1TRET + WTDR2D:RIAGENDR + WTDR2D:PAQ650 +
##
      WTDR2D:DR1BWATZ + RIAGENDR:DR1TS120 + RIAGENDR:DR1TRET +
##
      PAQ650:BMXLEG + PAQ650:DR1TRET + DR1TS120:BMXLEG + BMXLEG:DR1TCARB +
##
##
      BMXLEG:DR1TRET + DR1TATOC:RIDRETH3NHB + DR1TATOC:ALQ121 +
      RIDRETH3NHB:DR1TCARB + RIDRETH3NHB:DR1TRET + ALQ121:DR1BWATZ
##
##
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
         7343
                  8663.4
         7319
                   8298.5 24 364.83 < 2.2e-16 ***
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

6.4 最终数据集

```
Data7 <- Data6 %>%
mutate(
   AGE_BMXWT = AGE*BMXWT,
   AGE_WTDR2D = AGE*WTDR2D,
```

```
AGE_RIAGENDR = AGE*RIAGENDR,
    AGE_BMXLEG = AGE*BMXLEG,
    AGE_DR1TCARB = AGE*DR1TCARB,
    AGE_DR1TRET = AGE*DR1TRET,
    BMXWT_DR1TATOC = BMXWT*DR1TATOC,
   BMXWT_ALQ121 = BMXWT*ALQ121,
    BMXWT_DR1TRET = BMXWT*DR1TRET,
    WTDR2D_RIAGENDR = WTDR2D*RIAGENDR,
   WTDR2D_PAQ650 = WTDR2D*PAQ650,
    WTDR2D_DR1BWATZ = WTDR2D*DR1BWATZ,
   RIAGENDR_DR1TS120 = RIAGENDR*DR1TS120,
   RIAGENDR_DR1TRET = RIAGENDR*DR1TRET,
   PAQ650_BMXLEG = PAQ650*BMXLEG,
   PAQ650_DR1TRET = PAQ650*DR1TRET,
   DR1TS120_BMXLEG = DR1TS120*BMXLEG,
    BMXLEG_DR1TCARB = BMXLEG*DR1TCARB,
    BMXLEG_DR1TRET = BMXLEG*DR1TRET,
    DR1TATOC_RIDRETH3NHB = DR1TATOC*RIDRETH3NHB,
   DR1TATOC_ALQ121 = DR1TATOC*ALQ121,
   RIDRETH3NHB_DR1TCARB = RIDRETH3NHB*DR1TCARB,
   RIDRETH3NHB_DR1TRET = RIDRETH3NHB*DR1TRET,
    ALQ121_DR1BWATZ = ALQ121*DR1BWATZ
  )
Data_ds <- Data_ds %>%
 mutate(
   AGE_BMXWT = AGE*BMXWT,
    AGE_WTDR2D = AGE*WTDR2D,
   AGE_RIAGENDR = AGE*RIAGENDR,
   AGE_BMXLEG = AGE*BMXLEG,
   AGE_DR1TCARB = AGE*DR1TCARB,
   AGE_DR1TRET = AGE*DR1TRET,
   BMXWT_DR1TATOC = BMXWT*DR1TATOC,
   BMXWT_ALQ121 = BMXWT*ALQ121,
    BMXWT_DR1TRET = BMXWT*DR1TRET,
   WTDR2D_RIAGENDR = WTDR2D*RIAGENDR,
   WTDR2D_PAQ650 = WTDR2D*PAQ650,
    WTDR2D DR1BWATZ = WTDR2D*DR1BWATZ,
    RIAGENDR_DR1TS120 = RIAGENDR*DR1TS120,
    RIAGENDR_DR1TRET = RIAGENDR*DR1TRET,
   PAQ650_BMXLEG = PAQ650*BMXLEG,
    PAQ650_DR1TRET = PAQ650*DR1TRET,
```

```
DR1TS120_BMXLEG = DR1TS120*BMXLEG,

BMXLEG_DR1TCARB = BMXLEG*DR1TCARB,

BMXLEG_DR1TRET = BMXLEG*DR1TRET,

DR1TATOC_RIDRETH3NHB = DR1TATOC*RIDRETH3NHB,

DR1TATOC_ALQ121 = DR1TATOC*ALQ121,

RIDRETH3NHB_DR1TCARB = RIDRETH3NHB*DR1TCARB,

RIDRETH3NHB_DR1TRET = RIDRETH3NHB*DR1TRET,

ALQ121_DR1BWATZ = ALQ121*DR1BWATZ
```

```
save(Data7,Data_ds,
    file = paste0(getwd(), "/data_use/featureS_old.RData"))
```