Plan-And-Write: Towards Better Automatic Storytelling

Lili Yao^{1,3*}, Nanyun Peng^{2*}, Ralph Weischedel² Kevin Knight², Dongyan Zhao¹ and Rui Yan^{1†}

¹ Institute of Computer Science and Technology, Peking University

² Information Sciences Institute, University of Southern California, ³ Tencent AI Lab

AAAI 2019

Story Generation

Two steps:

- 1. a sensible sequence of events
- 2. composing coherent natural language texts to describe them

Harder than text generation

Previous Work

Most focused on

Two steps:

- 1. a sensible sequence of events
- 2. composing coherent natural language texts to describe them
- these approaches rely heavily on human annotation or are restricted to limited domains.

Introduction

- In poetry compositon, Wang et al.[2016] provides a sequence of words to guide poetry generation.
- In conversational systems, Mou et al.[2016] takes keywords as the main gist of the reply to guide response generation.
- They take a similar approach to represent a story plot with a sequence of words.

Contributions

Propose a *plan-and-write* generation framework:

- input: title
- first plans a storyline
- then generate a story based on the storyline

Two planning strategies:

- dynamic schema
- static schema

Title (Given)	The Bike Accident
Storyline	Carrie \rightarrow bike \rightarrow sneak \rightarrow nervous \rightarrow
(Extracted)	leg
Story	Carrie had just learned how to ride a
(Human	bike. She didn't have a bike of her
Written)	own. Carrie would <u>sneak</u> rides on her sister's bike. She got <u>nervous</u> on a hill and crashed into a wall. The bike frame bent and Carrie got a deep gash on her <u>leg</u> .

Table 1: An example of title, storyline and story in our system. A storyline is represented by an ordered list of words.

Problem Formulation

• Input:

title:
$$t = \{t_1, t_2, ..., t_n\}$$
 where t_i is the *i*-th word in the title

• Output:

a story:
$$s = \{s_1, s_2, ..., s_m\}$$
 where s_i denotes a sentence

• Storyline:

a storyline:
$$l = \{l_1, l_2, ..., l_m\}$$
 where l_i denotes a word

Storyline Preparation

• Extract one word from each sentence of a story to form a storyline

Method:

- RAKE algorithm(Rose et al.2010): combines several word frequency based and graph-based metrics to weight the importance of the words
- extract the most important word from each sentence

RAKE algorithm

- keyword extraction: unsupervised method
- Document-oriented method: regardless of the current state of a corpus
- Method:
 - text -> a set of candidate keywords
 split by phrase delimiters and stop words
 - compute scores based on word co-occurrences

$$\frac{deg(w)}{freq(w)}$$

select top T scoring keywords

Method

- Dynamic Schema: adjust the plot while writing progresses.
- Static Schema: plans the entire plot before writing.

Figure 1: An overview of our system.

Dynamic Schema

• It generates the next word in the storyline and the next sentence in the story at each step.

(a) Dynamic schema work-flow.

Static Schema

• It first generates a whole storyline which does not change during story writing.

(b) Static schema work-flow.

Content-introducing Method

- Towards Implicit Content-Introducing for Generative Short-text Conversation Systems,
 Yao et al. EMNLP 2017
- incorporate additional information into the Seq2Seq model

Dynamic: Storyline Planning

content-introducing generation problem

context + the previous word in storyline

 $ctx = [t, s_{1:i-1}]$ context

$$\tilde{h}_{ctx} = Encode_{ctx}(ctx) = [\overrightarrow{h_{ctx}}; \overleftarrow{h_{ctx}}]$$

$$h_y = GRU(BOS, C_{att})$$
 $h_w = GRU(l_{i-1}, C_{att})$
 $h'_y = tanh(W_1h_y)$ $h'_w = tanh(W_2h_y)$

$$h_y' = tanh(W_1h_y) \quad h_w' = tanh(W_2h_y)$$

$$k = \sigma(W_k[h_y';h_w'])$$
 the beginning of decoding

$$p(l_i|ctx, l_{i-1}) = g(k \circ h_y + (1-k) \circ h_w)$$

the first i-1 sentences in the story

(a) Dynamic schema work-flow.

the attention-based context

Dynamic: Story Generation

context + an additional storyline word

content-introducing generation problem

(a) Dynamic schema work-flow.

$$L(\theta)_{dyna} = \frac{1}{N} \sum_{j=1}^{N} [-log \prod_{i=1}^{m} p(s_i | ctx, l_i)]_j$$

N: the number of stories in training data

m: the number of sentences in a story

Static Schema

• It first generates a whole storyline which does not change during story writing.

Storyline Planning:

Seq2Seq conditional generation model

$$p(l_i|t, l_{1:i-1}; \theta) = g(LSTM_{att}(\tilde{h}, l_{i-1}, h_{i-1}^{dec}))$$

Story Generation:

Seq2Seq conditional generation model

$$\tilde{h}_{tl} = Encode_{tl}([t, l]) = [\overrightarrow{h}_{tl}; \overleftarrow{h}_{tl}]$$

$$L(\theta)_{static} = \frac{1}{N} \sum_{j=1}^{N} [-log \prod_{i=1}^{m} p(s_i | \tilde{h}_{tl}, s_{1:i-1})]_j$$

(b) Static schema work-flow.

Dataset

ROCStories corpus (Mostafazadeh et al. 2016a)

- five-sentence stories
- capture a rich set of causal and temporal commonsense relations between daily events

Number of Stories	98, 161
Vocabulary size	33,215
Average number of words	50

Table 2: Statistics of the ROCStories dataset.

8:1:1 for training, validation and testing

Baseline

Inc-S2S: Seq2Seq with attention
 generate the first sentence from a given title,
 generate the i-th sentece from the title
 and the previously generated i-1 sentences.

resemble dynamic schema without planning

Cond-LM: Seq2Seq with attention
 generate the whole story word by word from a given title.

resemble static schema without planning

Evaluation

- Objective metrics
 - inter-story repetition
 - intra-story repetition
- Subjective metrics(human):
 - fidelity
 - coherence
 - interestingness
 - overall user preference

Objective Metrics

- quantify diversity across the generated stories.
- two meaurements: inter- and intra-story repetition.

each sentence position i

the repetition rate between stories at sentence i

the inter-story

$$r_e^i = 1 - \frac{T(\sum_{j=1}^N s^{ji})}{T_{all}(\sum_{j=1}^N s^{ji})}$$

the intra-story

$$r_a^i = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\sum_{k=1}^{i-1} T(s^i \cap s^k)}{(i-1) * T(s^i)} \right]^j$$

T() and $T_{all}()$: the number of distinct and total trigram

s^{ji}: i-th sentence in j-th story

 $s^i \cap s^k$: the distinct trigram intersection set between sentence s^i and s^k

Aggregate scores

$$r_e^{agg} = 1 - \frac{T(\sum_{j=1}^{N} \sum_{i=1}^{m} s^{ji})}{T_{all}(\sum_{j=1}^{N} \sum_{i=1}^{m} s^{ji})}$$

the overall repetition of all stories

$$r_a^{agg} = \frac{1}{m} \sum_{i=1}^m r_a^i$$

$$\sum_{j=1}^{N} \sum_{i=1}^{m} s^{ji}$$

the set of N stories with m sentences

Results-Objective

Figure 3: Inter- and intra-story repetition rates by sentences (curves) and for the whole stories (bars), the lower the better. As reference points, the aggregate repetition rates on the human-written training data are 34% and 0.3% for the inter- and intra-story measurements respectively.

Subjective Metrics

- fidelity
 whether the story is on-topic with the given title
- coherence
 whether the story is logically consistent and coherent
- interestingness whether the story is interesting
- overall user preference how do users like the story

Results-Subjective

- Randomly sample 300 titles from the test data
- present a title and two generated sotries at a time
- ask them to decide which is better

Choice %	Dynamic vs Inc-S2S		Static vs Cond-LM			Dynamic vs Static			
Choice 70	Dyna.	Inc.	Kappa	Static	Cond.	Kappa	Dyna.	Static	Kappa
Fidelity	35.8	12.9	0.42	38.5	16.3	0.42	21.47	38.00	0.30
Coherence	37.2	28.6	0.30	39.4	32.3	0.35	28.27	49.47	0.36
Interestingness	43.5	26.7	0.31	39.5	35.7	0.42	34.40	42.60	0.35
Overall Popularity	42.9	27.0	0.34	40.9	34.2	0.38	30.07	50.07	0.38

Dynamic vs. Static

Storyline analysis

Method	1 -B1	l-B2	l-s
Dynamic	6.46	0.79	0.88
Static	9.53	1.59	0.89

Table 6: The storyline BLEU score (only BLEU-1 and BLEU-2) and the correlation of storyline-story l-s.

With better storylines, it is easier to generate more relevant and coherent stories.

Case study

	Title: Computer				
Baselines	Inc-S2S	Tom's computer broke down. He needed to buy a new computer. He decided to buy a new com-			
Dascilles		puter. Tom bought a new computer. Tom was able to buy a new computer.			
	Cond-LM	The man bought a new computer. He went to the store. He bought a new computer. He bought			
		the computer. He installed the computer.			
Dynamic Storyline needed		needed o money o computer o bought o happy			
Dynamic	Story	John <u>needed</u> a computer for his birthday. He worked hard to earn money. John was able to buy his			
		computer. He went to the store and bought a computer. John was happy with his new computer.			
Static	Storyline	$computer \rightarrow slow \rightarrow work \rightarrow day \rightarrow buy$			
Static	Story	I have an old computer. It was very slow. I tried to work on it but it wouldn't work. One day, I			
		decided to buy a new one. I bought a new computer.			

Baseline without storylines tend to generate repetitive sentences that do not exhibit much of a story progress.

Case study

Title: The Virus

Baselines	Inc-S2S	His computer was fixed and he fixed it. John got a new computer on his computer. John was able
Dascinics		to fix it himself. John was able to fix his computer and was able to fix his computer. John was
		able to fix his computer and had a virus and was able to fix his computer.
	Cond-LM	Tim was working on a project. He was working on a project. Tim was working on a project. The
		project was really good. Tim was able to finish the project.
Dynamic	Storyline	computer \rightarrow use \rightarrow anywhere \rightarrow house \rightarrow found
Dynamic	Story	I was working on my computer today. I was trying to use the computer. I couldn't find it
		anywhere. I looked all over the house for it. Finally, I found it.
Static	Storyline	$\text{work} \rightarrow \text{fix} \rightarrow \text{called} \rightarrow \text{found} \rightarrow \text{day}$
Static	Story	I had a virus on my computer. I tried to <u>fix</u> it but it wouldn't work. I <u>called</u> the repair company.
		They came and <u>found</u> the virus. The next <u>day</u> , my computer was fixed.

The storyline generated by dynamic schema is not very coherent and this affects story quality.

Error Analysis

Select from stories generated by static schema

Title / Problem	Story
Taxi / off-topic	I got a new car. It was one day. I decided to drive to the airport. I was driving for a long time. I had
	a great time.
Cut / repetitive	Anna was cutting her nails. She cut her finger and cut her finger. Then she cut her finger. It was
	bleeding! Anna had to bandage her finger.
Eight glasses/ incon-	Joe needed glasses. He went to the store to buy some. He did n't have any money. He found a pair
sistent	that he liked. He bought them.

The system can generate grammatical sentences that are coherent within a local context.

Generate a sequence of coherent and logically consistent sentences is still an challenge.

Conclusion

- propose a plan-and-write framework.
- generate stories from given titles with explicit storyline planning.
- compare two strategies: dynamic and static schema.
- both outperform the baselines without storylines.
- static schema performs better than the dynamic.