Group Theory Assignment 7

~ Robbert I het 6 be to group of order 380. Show that 6 has a normal subgroup H 4 6 of croller 1H1=11

Recall the Sylas theorems:

i) For every prime Pacter p with multiplicity in c the earler of a finite group 6, there exists a Sylow p-subgrap of 6, of order p.

5) bluen a finite group & and a prime number p all Sylve p-groups of to are conjugate to each other. That is, if It and K are Sylve p-salograps

of 6 then the exists an elevent go 6 with g-1 Hg = K

3) heb p be a prime factor point multiplicity in at the order of a finite group b, so one the order of 6 can be written as phin, where is and p does not divide in heb up be the number of Sylan p-subgraps of 6. Then a following hold:

" np divides m, which is the ender of the Sylves jo-subgroup in to

· np= 1 mod p

the normalizer.

m=30

So, the prine footoprization of $330 = 2.13 \times 5 \times 11$. Hence, the number $n_{11} = 3$ Sylow [1-50bgroups of 6 clivres $\frac{330}{11} = 30$. Furthermore, $n_{11} = 1$ mod $11 \Leftrightarrow n_{11} = 11$ kt 1 Ru some $k \in 10^{40}$. Therefore, k = 0 and $n_{11} = 1$. As a consequence of Theorem 2, 8inch $n_{11} = 1$, the unique Sylow 11-subgroup His conjugate to uself: $g \in G$ with $g^{-1}Hg = H$. Hence, $H \otimes G$.

~ Problem 2 Exhibit all Sylow 3-subgroups of S4

be how theto $1S_{7}1 = 4! = 24 = 3 \times 2^{3}$. The number n_{3} of $S_{7}100 \times 3^{-5}1000$ therefore divides $2^{3} = 8$ and $n_{3} = 1 \mod 3 \Leftrightarrow 3k+1$ for some $k \in 10^{10}$.

Hence, k = 0 or $1 \Rightarrow n_{3} = 1$ or 4.

But, every 3-cycle in S_{7} generative as subgroups of order S_{7} . Which are not equal if these cycles are disjoint $(c_{3} : \langle (123) \rangle \neq \langle (125) \rangle$. Here, $n_{3} = 4$. Moreover, there are $\frac{1 \times 3 \times 3}{12} = 8$ distinct 3-cycles in S_{7} .

Hance, each Sylow 3-subgroup contains 8/4=2 district 3-cycles.

If he denote the identity of Sa by C, then the Sylon 3-subgrays

<(123)>= \(\frac{1}{23}\), (132)\(\frac{1}{23}\), (132)\(\frac{1}{23}\), (132)\(\frac{1}{23}\), (132)\(\frac{1}{23}\)
<(134)>= \(\frac{1}{26}\), (134), (143)\(\frac{2}{234}\)
<(234)>= \(\frac{1}{26}\), (243)\(\frac{1}{243}\)

~ Problem 3 Find ble number d' Sylow 2 - and Sylow p-subgroups d' Dap.

We have Dapl = 2p. Therefore, N2 | p and its Pollows that either na=1er na=p. Consider the usual presentation of Dap:

Dap = $\langle r, s \mid r^p = s^2 = 1, rs = sr^{-1} \rangle$ If $\alpha \in Dap$, then $\alpha = s^{\alpha}r^{b}$ for sense $\alpha \in \{0,1\}$ and $\beta \in \{0,1\}, \dots, p-1\}$. If $\alpha = 0$, then $|\alpha| = p$, since $\langle rr \rangle$ is of prike order p. If $\alpha = 1$, then $2c \neq 1$ and $2c^2 = 3r^{b}s^{cb} = s^2r^{-b}r^{b} = 1$

=> 12cl=2. Therefore, ble elevents of cholor 2 are be elevents of be form
3r \$ for \$6 €0,1,2,..., p-13. Hence, \$n_2=p.

The number of Sylow p-subgroups divides 2 and hence is either 1 ar 2. But Kr) is a Sylow p-subgroup. Let oc = savo be any elevent of Dop and bet po be any elevent of Kr). Then, ocrea-' = sarbrer-bs-a = sarcs-a

Wha = 0, then ocrea-' & Kr).

Hence, Kr) \rightarrow \text{Dap} ic: np=1.