Package 'ctrlGene'

October 12, 2022

Title Assess the Stability of Candidate Housekeeping Genes
Version 1.0.1
Description A simple way to assess the stability of candidate housekeeping genes is implemented in this package.
Depends R (>= $3.2.3$)
Imports psych, stats, graphics
License GPL (>= 2)
LazyData true
RoxygenNote 6.1.1
<pre>URL http://www.bioinf.com.cn/</pre>
NeedsCompilation no
Author Shanliang Zhong [aut, cre]
Maintainer Shanliang Zhong <slzhong@foxmail.com></slzhong@foxmail.com>
Repository CRAN
Date/Publication 2019-07-04 09:40:28 UTC
R topics documented:
•
bestKeeper
bki
FIB
FIBct
geNorm
geNorm2

Index

pairwiseV...pearsonCor...plotM...plotV...

11

2 bki

hact	+Kaa	nor
best	tkee	ber

Determines stability of genes

Description

This function combines the results of cpSta(), pearsonCor() and bki().

Usage

```
bestKeeper(expression, ctVal = TRUE)
```

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A list containing CP.statistics, pair.Wise.cor and HKG.vs.BestKeeper, which are returned by cp-Sta(), pearsonCor() and bki(), respectively.

References

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>

Examples

FIBct
bestKeeper(FIBct)

bki

Analyzes genes versus BestKeeper index

Description

All genes are combined into an index. Then, correlation between each genes and the index is calculated, describing the relation between the index and the contributing gene by the Pearson correlation coefficient (r), coefficient of determination (r2) and the p-value.

Usage

```
bki(expression, ctVal = TRUE)
```

cpSta 3

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A matrix of the Pearson correlation coefficient (r), coefficient of determination (r2) and the p-value.

References

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>

Examples

FIBct bki(FIBct)

cpSta

Calculates descriptive statistics

Description

This function calculates descriptive statistics of genes.

Usage

```
cpSta(expression, ctVal = TRUE)
```

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A matrix of descriptive statistics:

N: number of samples;

GM[CP]: the geometric mean of CP;

AM[CP]: the arithmetic mean of CP;

Min[CP] and Max [CP]: the extreme values of CP;

SD[+/- CP]: the standard deviation of the CP;

4 FIBct

CV[CP]: the coefficient of variance expressed as a percentage on the CP level;

Min[x-fold] and Max [x-fold]: the extreme values of expression levels expressed as an absolute x-fold over- or under-regulation coefficient;

SD[+/- x-fold]: standard deviation of the absolute regulation coefficients.

References

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>

Examples

```
FIBct cpSta(FIBct)
```

FIB

Reload Saved Datasets

Description

The normalized expression level of the ten housekeeping genes in fibroblast cells

Details

The normalized expression level of the ten housekeeping genes in fibroblast cells

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

FIBct

Reload Saved Datasets

Description

The CT values of the ten housekeeping genes in fibroblast cells

Details

The CT values of the ten housekeeping genes in fibroblast cells

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

geNorm 5

	geNorm	Ranks genes		
--	--------	-------------	--	--

Description

Uses the geNorm algorithm to determine the most stably expressed genes.

Usage

```
geNorm(expression, genes = data.frame(Genes = character(0), Avg.M =
   numeric(0)), ctVal = TRUE)
```

Arguments

expression	a matrix of expression levels. Each row corresponds to a sample and each column to a gene.
genes	a data frame to output the result of the function
ctVal	a logical value indicating data type. If ct-values are input, ctVal=TRUE, otherwise, ctVal=FALSE.

Value

A sorted dataframe with two columns, 'Genes' and 'Avg.M'. The last two genes are the two most stable control genes.

Avg.M is average expression stability values (M) of remaining control genes during stepwise exclusion of the least stable control gene.

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
geNorm(FIB,ctVal=FALSE)
FIBct
geNorm(FIBct)
```

geNorm2

|--|

Description

Uses the geNorm algorithm to determine the most stably expressed genes.

Usage

```
geNorm2(expression, genes = data.frame(Genes = character(0), Avg.M =
   numeric(0)), ctVal = TRUE)
```

Arguments

expression	a matrix of expression levels. Each row corresponds to a sample and each column to a gene.
genes	a data frame to output the result of the function
ctVal	a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A sorted dataframe with two columns, 'Genes' and 'Avg.M'. The last two genes are the two most stable control genes.

Avg.M is average expression stability values (M) of remaining control genes during stepwise exclusion of the least stable control gene.

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
geNorm2(FIB,ctVal=FALSE)
FIBct
geNorm2(FIBct)
```

measureM 7

measureM	Calculates measure M	
----------	----------------------	--

Description

This function calculates measure M according to algorithm of geNorm

Usage

```
measureM(expression, ctVal = TRUE)
```

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A sorted dataframe with two columns, 'Genes' and 'M' (the relative stability; lower means more stable).

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
measureM(FIB,ctVal=FALSE)
FIBct
measureM(FIBct)
```

pairwiseV

Calculates V(n+1/n) values

Description

Useful for establishing the quality of your normalization regime. See Vandesompele 2002 for advice on interpretation.

Usage

```
pairwiseV(expression, ctVal = TRUE)
```

8 pearsonCor

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A Series of values [V2/3, V3/V4, V4/V5, ...].

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
pairwiseV(FIB,ctVal=FALSE)
FIBct
pairwiseV(FIBct)
```

pearsonCor

Analyzes pair-wise correlation

Description

This function performs numerous pair-wise correlation analyses of genes. Within each such correlation the Pearson correlation coefficient (r) and the probability p value are calculated.

Usage

```
pearsonCor(expression, ctVal = TRUE)
```

Arguments

expression a matrix of expression levels. Each row corresponds to a sample and each col-

umn to a gene.

ctVal a logical value indicating data type. If ct-values are input, ctVal=TRUE, other-

wise, ctVal=FALSE.

Value

A matrix of the Pearson correlation coefficient (r) and the probability p value.

References

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Biotechnol Lett (2004) <doi: 10.1023/B:BILE.0000019559.84305.47>

plotM 9

Examples

```
FIBct
pearsonCor(FIBct)
```

plotM

Plots average M of remaining genes

Description

This function plots the average expression stability values of remaining control genes.

Usage

```
plotM(Mrem)
```

Arguments

Mrem

the result returned by function of geNorm()

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
x=geNorm(FIB,ctVal=FALSE)
plotM(x)

FIBct
y=geNorm(FIBct)
plotM(y)
```

plotV

Plots V(n+1/n) values

Description

This function plots the average expression stability values of remaining control genes.

Usage

```
plotV(Vs)
```

10 plotV

Arguments

۷s

the result returned by function of pairwise V()

References

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) <doi: 10.1186/gb-2002-3-7-research0034>.

Examples

```
FIB
Vs1=pairwiseV(FIB,ctVal=F)
plotV(Vs1)

FIBct
Vs2=pairwiseV(FIBct)
plotV(Vs2)
```

Index

```
bestKeeper, 2
bki, 2
cpSta, 3
FIB, 4
FIBct, 4
geNorm, 5
geNorm2, 6
measureM, 7
pairwiseV, 7
pearsonCor, 8
plotM, 9
plotV, 9
```