- 2 座標平面上の原点を O(0,0) とする . また x 座標および y 座標がともに整数であるような点を格子点という .
- (1) t を正の実数とする.点 P(-1,0) を通り,傾きが t の直線と単位円 $x^2+y^2=1$ との P 以外の交点を Q(t) とする.Q(t) の座標を求めよ.つぎに,0 < s < t を満たす 2 つの実数 s,t に対し,線分 Q(s)Q(t) の長さを求めよ.
- (2) $\angle Q(s)PO = \alpha$, $\angle Q(t)PO = \beta \ge 0$

$$u = \tan \frac{\alpha}{2}, \quad v = \tan \frac{\beta}{2}$$

とおく.もし u , v がともに有理数ならば , 線分 Q(s)Q(t) の長さもまた有理数となることを示せ.

- (3) 任意に与えられた 3 以上の整数 n に対し,つぎの条件 (C1),(C2),(C3) をすべて 満たす n 個の異なる点 A_1,A_2,\cdots,A_n が,座標平面上に存在することを証明せよ.
 - (C1) A_1, A_2, \dots, A_n はすべて格子点である.
 - (C2) A_1, A_2, \dots, A_n のどの異なる3点も一直線上にない.
 - (C3) A_1,A_2,\cdots,A_n のどの異なる 2 点 A_i , A_j に対しても , 線分 A_iA_j の長さ は整数である .