

## GenX

**problem**: we would like to predict the clinical response of immunotherapy, and identify the most relevant genetic pathways.

- Approaches (two 'pathways')
- Classification results
- Pathway visualisation?
- Suggestions



# Approaches

In general: focus on immunotherapy response

- Pathway-focused: find graphs directly → aborted on day 2: need metabolic pathways to create intraset connections..
- Classification-focused: create classifiers per layer..then
  - Combo 1: meta-classifier on top of individual estimations
  - Combo 2: create classifier with the most important features per classifer

Caveat: we did **not** explictly introduce any first principles in the dataset connectivity..

# Approaches





Per omics the predictors are weak (max 70% acc)

Combining the omic's based on the most important features wins. (does not include methylation data yet)

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| response    | 1         | 0.89   | 0.94     | 19      |
| No response | 0.9       | 1      | 0.95     | 19      |
| avg / total | 0.95      | 0.95   | 0.95     | 38      |



- We find BRAF pv600e in the mutation classification as the single most important gene for the less important mutations
- miRNA and RNA data contributed the most, protein the least
- Strand matters





MMRN1, +strand

TFF3, -strand





Similar for: LRRC2, MFAP4, FAM151A



Confirmation of sorts with IPA tool..TP53 and APP were important in our final model





## Pathway visualisation?

We take the most important features per omic, per patients and connect the omics per patient.





# Suggestions

- Add metabolic pathway information: focus on pathways directly
- Specifically find the model that connects the omics
- In general: try to 'prime' the model with first principles
- Perform similarity analysis per omics over all features, per patient group
- Apply methylation and RNA expression to mutations, i.e. merge by element with a transformation function f(meth, rna)