← Données utilisateur	Résultats Lexique Tableaux Mode d'emploi
Largeur de la section transversale (b) Largeur de la section transversale (h)	Point de rupture (Vérification = 1) (Vérification = 0.85)
Longueur de flambement autour de l'axe y $(1_{f,y})$ [cm] Longueur de flambement autour de l'axe z $(1_{f,x})$ [cm]	Section carrée b h b h
Classe de résistance Classe de durée de chargement cumulée	[mm] [mm] [mm] [mm] Section rectangulaire
Classe de service Coeff. partiel pour les propriétés des matériaux (γ _M)	
Valeur de calcul de l'effort normal de compression $(N_{{\bf E},{\bf d}})$ $[kN]$	
Calculs	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\mathbf{fc}_{,0,k}$ (tabl.) $\mathbf{I_z} = \frac{h \times b^3}{12}$ $\beta \mathbf{c}$	= 0.20 pour le bois massif $k_{r} \geq k_{t} + \sqrt{k_{t}^{2} - \lambda_{ret,t}^{2}}$ $k_{r} \leq 1 \lambda_{ret,r} \leq 0.30 \text{ et } \lambda_{ret,t} \leq 0.30 \text{ alors } : k_{r} = 1.00$
	$= o \operatorname{S}[1 + \beta_i(k_{id_2} - a_3) + \lambda_{id_3}^2]$ $= o \operatorname{S}[1 + \beta_i(k_{id_2} - a_3) + \lambda_{id_3}^2]$ $= o \operatorname{S}[1 + \beta_i(k_{id_2} - a_3) + \lambda_{id_3}^2]$ $Vérification = \frac{a_{id_1}}{a_{id_2}}$