

ey concept Tuto11 Topic7

Sample Proportion

Sample proportion: $\hat{p} = \frac{X}{n}$

- X: no. of obs
- n: sample size
- Categorical variable two levels
- Random sample

Follow binomial distribution:

- $X \sim B(n, p)$

Approximate the sampling distribution by a normal distribution.

$$\hat{p} \sim N(\mu_p, \sigma_p^2)$$

For <u>large n</u>, approximately normal distribution:

$$np \ge 5$$
 and $n(1-p) \ge 5$ (p cannot be too small or too large)

Topic 3: binomial distribution

• What is the probability that x out of n obs meet the criterion?

$$P(X = x) = \frac{n!}{x! (n-x)!} p^{x} (1-p)^{(n-x)}$$

- X event of interest/meet the criterion
- o x no. of event of interest
- o n no. of obs
- o *p* probability of an event of interest
- Summary measures
 - Center Expected value/mean

$$\mu = np$$

- Variation
 - Standard deviation (s.d.)

$$\sigma = \sqrt{np(1-p)}$$

Sampling Distribution of Sample Proportion

Probability: sample $(\hat{p}) \xrightarrow{\text{estimate}}$ population (p)

Mean of sample proportions

$$\mu_{\hat{p}} = p$$

s.d. of sample proportions

$$\sigma_{\widehat{p}} = \frac{p}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}} = \frac{\sqrt{np(1-p)}}{n}$$

Priority: population > sample:

• If pop p, is known, use p for

$$\mu_{\widehat{p}} = p$$
 and $\sigma_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$

• If pop p, is unknown, use sample to estimate: $\hat{p} \rightarrow p$

$$\mu_{\hat{p}} = \hat{p}$$
 and $\sigma_{\hat{p}} = S_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Topic 4: sampling distribution

Mean: sample $(\mu_{\bar{X}})$ population (μ)

Mean of sample means

$$\mu_{\bar{X}} = \mu$$

s.d. of *sample means* = standard error of the mean

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Priority: population > sample:

• If pop μ and σ is known, use

$$\mu_{ar{X}} = \mu$$
 and $\sigma_{ar{X}} = rac{\sigma}{\sqrt{n}}$

If pop μ and σ is unknown, use sample to estimate:

$$\bar{X}$$
-> μ , S -> σ

$$\mu_{ar{X}}=ar{X}$$
 and $\sigma_{ar{X}}=S_{ar{X}}=rac{S}{\sqrt{n}}$

Sampling Distribution of Sample Proportion

Standardization (Z-distribution):

For sample proportion:

$$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Topic 3 & 4

Standardization (Z-distribution):

For population:

$$Z = \frac{X - \mu}{\sigma}$$

For sample:

$$Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Confidence Interval of Sample Proportion

Confidence intervals

Special considerations

- If $\hat{p} Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} < 0$, replace lower bound by 0
- If $\hat{p} + Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} > 1$, replace upper bound by 1

(because the range of any probability is [0,1])

Width:

- Level of confidence, (1α)
- Sample size, n
- Sample proportion, \hat{p} :
 - \hat{p} increases from 0 to 0.5, then $\hat{p}(1-\hat{p}) \uparrow$, width \uparrow
 - \hat{p} increases from 0.5 to 1, then $\hat{p}(1-\hat{p}) \downarrow$, width \downarrow

Topic 5

Confidence Interval of Sample Proportion

Sampling error (or margin of error):

$$E = Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

=>

Sample size:

$$n = \frac{\left(Z_{\alpha/2}\right)^2 p(1-p)}{E^2}$$

(always round up)

Standard deviation:

o p -> use \hat{p} to replace p -> use 0.5 to estimate (When p= 0.5, p(1-p) becomes the largest)

Topic 5

$$E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

=>

$$n=(\frac{Z_{\alpha/2}\sigma}{E})^2$$

(always round up)

Standard deviation:

o σ -> use S to replace σ -> use range/4 to estimate

Hypothesis Testing of Sample Proportion

The no. of successes, *X*, follows Binomial distribution Normal approximation can be used:

$$n \ge 30$$

$$n\hat{p} \ge 5$$

$$n(1 - \hat{p}) \ge 5$$

Test statistic:
$$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Reject / Do not reject H_0 :

- o Reject H_0 if Z < C.V. or Z > C.V. or p-value $< \alpha$
- There is sufficient evidence that the true mean is not xxx
- Do not reject H_0 as p-value > α
- There is insufficient evidence that the true mean is not xxx

Topic 6

Test statistic:
$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

p-value: obtained from test statistic,

• two-tail: P(Z < -|Z|) + P(Z > |Z|)

• lower-tail: P(Z < Z)

upper-tail: P(Z > Z)

Steps

Step 1: p (if p is not available, use \hat{p} to estimate)

- Mean of sample proportions: $\mu_{\hat{p}} = p$
- s.d. of sample proportions: $\sigma_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$

Step 2: check distribution:

- $n \ge 30, np \ge 5 \text{ and } n(1-p) \ge 5$
- \rightarrow The sampling distribution of \hat{p} follows Normal distribution approximately, i.e. $\hat{p} \sim N(\mu_{\hat{p}}, \sigma_{\hat{p}}^2)$

Step 3: standardization i.e. Z distribution

• Probability:
$$P(\hat{p} < a) = P(Z < \frac{a - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{a - p}{\sqrt{\frac{p(1 - p)}{n}}})$$

• Confidence interval: $\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$

• Confidence interval:
$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• Hypothesis testing:
$$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Step 4: decision/explanation/summary:

- We are xx% confident that the population proportion of xx is between xx and xx
- Reject / Do not reject H_0 at α =xx. There is sufficient / insufficient evidence that the population proportion is not / less than / larger than xxx.

Confidence Interval - Z table

P(z <a)< th=""><th>Z=a</th></a)<>	Z=a
0.01	-2.33
0.025	-1.96
0.05	-1.645
0.1	1.28
0.5	0
0.9	-1.28
0.95	1.645
0.975	1.96
0.99	2.33

Confidence level	$P(Z>Z_{\alpha/2})$	$Z_{lpha/2}$
80%	0.1	1.28
90%	0.05	1.645
95%	0.025	1.96
99%	0.005	2.575