HW Assignment 3 M 385C - Theory of Probability

Lianghao Cao

October 9, 2018

Problem 3.1. Let (S, \mathcal{S}, μ) be a measure space and suppose $f \in \mathcal{L}^1$. Show that for each $\epsilon > 0$ there exists $\delta > 0$ such that if $A \in \mathcal{S}$ and $\mu(A) < \delta$, then $|\int_A f \ d\mu| < \epsilon$.

Proof. Consider $g \in \mathcal{L}_{+}^{\text{Simp},0}$ s.t. $0 \leq g \leq |f|$ and

$$\int_{A} (|f| - g) d\mu < \frac{\epsilon}{2} \tag{1}$$

Since $g = \sum_{k=1}^{n} \beta_k \mathbf{1}_{B_k}$, where $\beta_1, \beta_2, ..., \beta_n \in \mathbb{R}$ and $B_1, B_2, ..., B_n \in \mathcal{S}$ are pairwise disjoint, we have

$$\int_A g \ d\mu = \sum_{k=1}^n \beta_k \mu(B_k \cap A) \le \mu(A) \sum_{k=1}^n \beta_k$$

If $\sum_{k=1}^{n} \beta_k = 0$, then the desired conclusion is reached with (1). Assume $\sum_{k=1}^{n} \beta_k \neq 0$, then let $\delta = \epsilon/(2\sum_{k=1}^{n} \beta_k)$. Consequently,

$$\mu(A) < \delta \Rightarrow \mu(A) \sum_{k=1}^{n} \beta_k \le \frac{\epsilon}{2}$$

$$\Rightarrow \mu(A) \sum_{k=1}^{n} \beta_k + \int_A (|f| - g) d\mu < \epsilon$$

$$\Rightarrow \int_A g d\mu + \int_A (|f| - g) d\mu < \epsilon$$

$$\Rightarrow \left| \int_A f d\mu \right| \le \int_A |f| d\mu < \epsilon$$

Problem 3.2. Let (S, \mathcal{S}, μ) be a finite measure space. For $f \in \mathcal{L}^0_+$, show that $f \in \mathcal{L}^1$ if and only if

$$\sum_{n\in\mathbb{N}}\mu(\{f\geq n\})<\infty,$$

where, as usual, $\{f \ge n\} = \{x \in S : f(x) \ge n\}.$

Proof. Let $A_n = \{f \geq n\}$ and consider $B_k = \{x \in S : f(x) \in [k, k+1)\}, k \in \mathbb{Z}^+$. Notice that $B_n = A_{n+1} \setminus A_n \ \forall n \in \mathbb{N} \ \text{and} \ B_k \in \mathcal{S} \ \forall k \in \mathbb{Z}^+ \ \text{are pairwise disjoint. Also,} \ A_n = \bigcup_{k=n}^{\infty} B_k$ and $S = \bigcup_{k=0}^{\infty} B_k$.

1. "⇒ "

If $f \in \mathcal{L}^1$ and is non-negative, then $\int_S f \ d\mu < \infty$. Now consider the simple function $g = \sum_{k=0}^N k \mathbf{1}_{B_k} = \sum_{k=1}^N k \mathbf{1}_{B_k} \le f \ \forall N \in \mathbb{N}$. By definition of Lebesgue integral and \mathcal{L}^0_+ :

$$\lim_{N \to \infty} \int_S g \ d\mu = \sum_{k=1}^\infty k\mu(B_k) = \mu(A_1) + \sum_{k=2}^\infty (k-1)\mu(B_k)$$
$$= \mu(A_1) + \mu(A_2) + \sum_{k=3}^\infty (k-2)\mu(B_k)$$
$$= \dots = \sum_{n \in \mathbb{N}} \mu(A_n)$$
$$\leq \int_S f \ d\mu < \infty$$

2 "⇐"

Assume $\sum_{n\in\mathbb{N}} \mu(A_n) < \infty$. Since $f \in \mathcal{L}^0_+$ is bounded on $B_k \ \forall k \in \mathbb{Z}^+$, f is integratable on these sets. Thus, we can represent the Lebesgue integral of f by:

$$\int_{S} f \ d\mu = \sum_{k=0}^{\infty} \int_{B_{k}} f \ d\mu$$

Notice that $(k+1)\mathbf{1}_{B_k} \geq f\mathbf{1}_{B_k}$. With a finite measure space, we have

$$\int_{S} f \, d\mu \le \sum_{k=0}^{\infty} \int_{B_{k}} (k+1) \mathbf{1}_{B_{k}} \, d\mu \le \sum_{k=0}^{\infty} (k+1) \mu(B_{k}) = \mu(S) + \sum_{k=1}^{\infty} k \mu(B_{k})$$
$$= \mu(S) + \sum_{n \in \mathbb{N}} \mu(A_{k}) < \infty$$

Therefore, $f \in \mathcal{L}^1$.

Problem 3.3. Let (S, \mathcal{S}, μ) and (T, \mathcal{T}, ν) be two measurable spaces, and let $F: S \to T$ be a measurable function with the property that $\nu = F_*\mu$ (i.e., ν is the push-forward of μ through F). Show that for every $f \in \mathcal{L}^0_+(T, \mathcal{T})$ or $f \in \mathcal{L}^1(T, \mathcal{T})$, we have

$$\int f \ d\nu = \int (f \circ F) \ d\mu$$

Proof. Apply the standard machine.

1. Indicator functions

Let $B \in \mathcal{T}$ and $f = \mathbf{1}_B$, then

$$\int_T f \ d\nu = \nu(B) = \mu(F^{-1}(B)) = \int_S \mathbf{1}_{F^{-1}(B)} \ d\mu$$

Notice that $\mathbf{1}_{F^{-1}(B)} = \mathbf{1}_B \circ F$. They only take $x \in S$ to 1 when $F(x) \in B$. Therefore,

$$\int_T f \ d\nu = \int_S (f \circ F) \ d\mu$$

2. Simple functions

Let $f = \sum_{k=1}^{n} \beta_k \mathbf{1}_{B_k}$, where $\beta_1, \beta_2, ..., \beta_n \in \mathbb{R}$ and $B_1, B_2..., B_k \in \mathcal{T}$ are pairwise disjoint. Notice that $F^{-1}(B_1), F^{-1}(B_2), ..., F^{-1}(B_n)$ are pairwise disjoint as well. By definition of Lebesgue integration for simple functions:

$$\int_{T} f \, d\nu = \int_{T} \left(\sum_{k=1}^{n} \beta_{k} \mathbf{1}_{B_{K}} \right) d\nu = \sum_{k=1}^{n} \beta_{k} \nu(B_{k}) = \sum_{k=1}^{n} \beta_{k} \mu(F^{-1}(B_{k}))$$

$$= \int_{S} \left(\sum_{k=1}^{n} \beta_{k} \mathbf{1}_{F^{-1}(B_{k})} \right) d\mu = \int_{S} \left(\sum_{k=1}^{n} \beta_{k} \left(\mathbf{1}_{B_{k}} \circ F \right) \right) d\mu$$

$$= \int_{S} \left(\left(\sum_{k=1}^{n} \beta_{k} \mathbf{1}_{B_{k}} \right) \circ F \right) d\mu = \int_{S} (f \circ F) d\mu.$$

3. Non-negative measurable functions

Let $f \in \mathcal{L}^0_+(T,\mathcal{T})$, then $f \circ F \in \mathcal{L}^0_+(S,\mathcal{S})$. By approximation by simple functions (Prop. 3.10), $\exists \{g_n\}_{n\in\mathbb{N}} \in \mathcal{L}^{\operatorname{Simp},0}_+$ s.t. $g_1 \leq g_2 \leq ... \leq g_n \leq ... \leq f$ and $f = \lim_{n\to\infty} g_n$. This also implies that $\{g_n \circ F\}_{n\in\mathbb{N}}$ is a non-decreasing sequence and $\lim_{n\to\infty} g_n \circ F = f \circ F$. Apply Monotone convergence theorem twice:

$$\int_{T} f \, d\nu = \lim_{n \to \infty} \int_{T} g_n \, d\nu = \lim_{n \to \infty} \int_{S} (g_n \circ F) \, d\mu = \int_{S} \left(\lim_{n \to \infty} g_n \circ F \right) \, d\mu$$
$$= \int_{S} (f \circ F) \, d\mu$$

4. All measurable functions

Let $f \in \mathcal{L}^1(T, \mathcal{T})$, then $f = f^+ - f^-$, where $f^+, f^- \in \mathcal{L}^0_+(T, \mathcal{T})$, and $f \circ F \in \mathcal{L}^1(S, \mathcal{S})$. Notice that $(f \circ F)^+ = f^+ \circ F$ and $(f \circ F)^- = f^- \circ F$. Therefore, we have:

$$\int_{T} f \, d\nu = \int_{T} f^{+} \, d\nu - \int_{T} f^{-} \, f\nu = \int_{S} (f^{+} \circ F) \, d\mu - \int_{S} (f^{-} \circ F) \, d\mu$$
$$= \int_{S} (f \circ F)^{+} \, d\mu - \int_{S} (f \circ F)^{-} \, d\mu$$
$$= \int_{S} (f \circ F) \, d\mu$$

Problem 3.4. Let $S \neq \emptyset$ be a set and let $f: S \to \mathbb{R}$ be a function. Prove that a function $g: S \to \mathbb{R}$ is measurable with respect to the pair $(\sigma(f), \mathcal{B}(\mathbb{R}))$ if and only if there exists a Borel function $h: \mathbb{R} \to \mathbb{R}$ such that $q = h \circ f$

Proof.

- 1. "⇐" $q = h \circ f$ is a composition of a $(\sigma(f), \mathcal{B}(\mathbb{R}))$ -measurable function, f, and a Borel function, h. Thus g is $(\sigma(f), \mathcal{B}(\mathbb{R}))$ -measurable.
- Assume $g: S \to \mathbb{R}$ is $(\sigma(f), \mathcal{B}(\mathbb{R}))$ -measurable, i.e., $g^{-1}(B) \in \sigma(f)$ for each $B \in \mathcal{B}(\mathbb{R})$. Apply the standard machine.
 - (a) Indicator functions Let $g = \mathbf{1}_A$ for some $A \in \sigma(f)$. This means that $\exists B \in \mathcal{B}(\mathbb{R}) : A = f^{-1}(B)$. Let $h = \mathbf{1}_B$ and h is a Borel function, since it is define with a set B in the Borel σ -algebra. Notice that

$$g = \mathbf{1}_A = \mathbf{1}_{f^{-1}(B)} = \mathbf{1}_B \circ f = h \circ f.$$

(b) Simple functions

Let $g = \sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k}$, where $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R}$ and $A_1, A_2, ..., A_n \in \sigma(f)$ are pairwise disjoint. For each A_k , k = 1, 2, ..., n, there exists $B_k \in \mathcal{B}(\mathbb{R})$ s.t. $A_k = f^{-1}(B)$. Apparently, $\{B_k\}_{k=1}^n$ are pairwise disjoint. Consider $h = \sum_{k=1}^n \alpha_k \mathbf{1}_{B_k}$. It is a simple function defined on sets in the Borel σ -algebra, therefore it is a Borel function. Notice that

$$g = \sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k} = \sum_{k=1}^{n} \alpha_k (\mathbf{1}_{B_k} \circ f) = (\sum_{k=1}^{n} \alpha_k \mathbf{1}_{B_k}) \circ f = h \circ f.$$

(c) Non-negative measurable functions

For $g \in \mathcal{L}^0_+(S, \sigma(f))$, $\exists \{g_n\}_{n \in \mathbb{N}} \in \mathcal{L}^{\operatorname{Simp}, 0}_+$ s.t. $g_1 \leq g_2 \leq ... \leq g_n \leq ... \leq g$ and $g = \lim_{n \to \infty} g_n$. This implies that we have sequence of simple functions $\{h_k\}_{k=1}^n$ s.t. $g_n = h_n \circ f$. Notice that

$$g = \lim_{n \to \infty} g_n = \lim_{n \to \infty} (h_n \circ f) = (\lim_{n \to \infty} h_n) \circ f.$$

Let $h = \lim_{n \to \infty} h_n$. It is a Borel function, since limiting operation preserve measurability (Prop. 1.23). Therefore, $g = h \circ f$.

(d) All measurable functions

For $g \in \mathcal{L}^0$, consider having $g = g^+ - g^-$, where $g^+(x) = \max\{g(x), 0\}$ and $g^{-}(x) = \min\{g(x), 0\} \ \forall x \in S \text{ are all non-negative measurable functions. Thus,}$ there exist Borel functions, h^+ and h^- s.t.

$$g = g^+ - g^- = h^+ \circ g - h^- \circ g = (h^+ - h^-) \circ g$$

Let $h = h^+ - h^-$. Notice that h might be ill-defined if h^+ and h^- reach infinity simultaneously. Let $N = \{x \in \mathbb{R} : h^+(x) = \infty \land h^-(x) = \infty\}$. We have $N \cap f(S) = \emptyset$, since at least one of $h^+(f(x)) = g^+(x)$ and $h^-(f(x)) = g^-(x)$ is zero $\forall x \in S$. Consequently, we now define $h := \mathbf{1}_{\mathbb{R} \backslash N}(h^+ - h^-)$ and still have $g = h \circ f$. h is Borel because subtraction/composition of measurable functions is still measurable.