4 (a) A spherical oil drop has a radius of 1.2×10^{-6} m. The density of the oil is 940 kg.
--

(i) Show that the mass of the oil drop is 6.8×10^{-15} kg.

1.	_
 -	

(ii) The oil drop is charged. Explain why it is impossible for the magnitude of the charge to be 8.0×10^{-20} C.

(b) The charged oil drop in **(a)** is in a vacuum between two horizontal metal plates, as illustrated in Fig. 4.1.

Fig. 4.1

The plates are separated by a distance of 8.0 mm. The electric field between the plates is uniform and has a field strength of $2.1 \times 10^5 \text{V m}^{-1}$.

The oil drop moves vertically downwards with a constant speed.

(i) Calculate the potential difference *V* between the plates.

(ii) Explain how the motion of the oil drop shows that it is in equilibrium.

C
[3
is decreased.
[2
of force) representing the
[1
r, but cannot act on an oil is stationary or when it is
[1
[1
[Total: 14

(iii) Determine the charge on the oil drop.