AMENDMENTS TO THE CLAIMS

1. (Original) An aminoquinoxaline compound of the following formula (1a) [Chemical Formula 1]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be

substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents –NH-R⁵-NH₂ or –NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

2. (Original) The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (2)

[Chemical Formula 2]

$$\begin{array}{c}
R^7 \\
R^8 \\
R^{11} \\
R^{9}
\end{array}$$
(2)

wherein R^7 – R^{11} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_4 haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_4 cyanoalkyl group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a

C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

3. (Original) The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (3)

[Chemical Formula 3]

$$R^{17} R^{18}$$

$$R^{16} \frac{1}{1!} R^{12}$$

$$R^{15} R^{14} R^{13}$$
(3)

wherein R^{12} – R^{18} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

4. (Original) The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (4)

[Chemical Formula 4]

$$R^{21}$$

$$R^{20} = \mathbb{I} \xrightarrow{\mathbb{I}^{19}} \mathbb{I}^{19}$$

$$(4)$$

wherein R^{19} – R^{21} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group; and

A¹ represents NH, O or S.

5. (Original) The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) represent a group of the following formula (5)

[Chemical Formula 5]

$$R^{26}$$
 CH_2R^{22}
 R^{25}
 R^{24}
 R^{23}
 (5)

wherein R^{22} represents a halogen atom or a cyano group, R^{23} – R^{26} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

6. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (6) [Chemical Formula 6]

$$R^{30} = \frac{1}{100} R^{27}$$

$$R^{29} = R^{28}$$
(6)

wherein R^{27} – R^{30} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

7. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (7) [Chemical Formula 7]

wherein R³¹-R³² independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an

epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group; and

W¹ represents NH, O or S.

8. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (8) [Chemical Formula 8]

$$R^{33} \qquad R^{34}$$

$$N \qquad N$$

$$Q^{1}$$

$$(8)$$

wherein R^{33} – R^{34} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group; and

Q¹ represents NH, O or S.

9. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (9) [Chemical Formula 9]

$$R^{39} = \frac{1}{11} R^{35}$$

$$R^{38} = R^{37} R^{36}$$

$$R^{36}$$
(9)

wherein R^{35} – R^{40} independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

10. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁶ in the formula (1) represents a group of the following formula (10) [Chemical Formula 10]

$$R^{45}$$
 R^{41}
 R^{44}
 R^{43}
 R^{42}
 R^{43}

wherein R^{41} – R^{45} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

11. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁶ in the formula (1) represents a group of the following formula (11) [Chemical Formula 11]

$$R^{46}$$
 R^{47} (11)

wherein R^{46} – R^{48} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group; and

W² represents NH, O or S.

12. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁶ in the formula (1) represents a group of the following formula (12) [Chemical Formula 12]

$$\begin{array}{c|c}
R^{49} & R^{50} \\
N & N \\
\hline
Q^2 & R^{51}
\end{array}$$
(12)

wherein R^{49} – R^{51} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group; and

Q² represents NH, O or S.

13. (Currently amended) The aminoquinoxaline compound according to any one of claims 1 to 5 claim 1, wherein R⁶ in the formula (1) represents a group of the following formula (13) [Chemical Formula 13]

$$R^{57}$$
 R^{58}
 R^{52}
 R^{56}
 R^{55}
 R^{54}
 R^{53}
 R^{53}

wherein R^{52} – R^{58} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

14. (Original) The aminoquinoxaline compound according to claim 1, wherein the group formed by bonding R¹ and R² through a singe bond in the formula (1) is represented by the formula (14)

[Chemical Formula 14]

wherein A2 are each CN or N, R^{59} – R^{66} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when A^2 represents N, R^{62} and R^{63} are both non-existent.

15. (Original) An aminoquinoxaline compound of the following formula (1b), [Chemical Formula 15]

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

16. (Original) An aminoquinoxaline compound of the following formula (1c), [Chemical Formula 16]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a haphthyl group which may be substituted

with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

17. (Original) An aminoquinoxaline compound of the following formula (1d), [Chemical Formula 17]

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

20

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

Docket No.: 0171-1289PUS1

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z, and R^{3'} and R^{4'} join together to form

-CH₂CH₂CH₂-, -CH₂CH₂O-, -OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-,

-SCH₂CH₂-, -CH₂SCH₂-, -CH₂CH₂N(R')-, -N(R')CH₂CH₂-,

-CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-,

-CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-, -OCH₂CH₂O-, -SCH₂CH₂S-,

-OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-,

-CH=CHO-, -SCH=CH-, -CH=CHS-, -N(R')CH=CH-, -CH=CHN(R')-,

-OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R')CH=N-, -N=CHN(R')-,

-N(R')N=CH-, -CH=N(R')N-, -CH=CHCH=CH-, -OCH₂CH=CH-,

-CH=CHCH₂O-, -N=CHCH=CH-, -CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-,

or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a

naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

18. (Currently amended) The aminoquinoxaline compound according to claim 15 or 17, wherein the group formed by joining R^{1'} and R^{2'} together is of the following formula (15) [Chemical Formula 18]

$$\begin{array}{c|c}
A^{3} & A^{3} \\
R^{70} & R^{69} & R^{67}
\end{array} \tag{15}$$

wherein A^3 represents O or S, and R^{67} – R^{70} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

19. (Currently amended) The aminoquinoxaline compound according to claim 16 or 17, wherein the group formed by joining R^{3'} and R^{4'} together is of the following formula (16)

[Chemical Formula 19]

$$\begin{array}{c|c}
A^{4} & A^{4} \\
R^{74} & R^{71} \\
\hline
R^{73} & R^{72}
\end{array} (16)$$

wherein A^4 represents O or S, and R^{71} – R^{74} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

20. (Currently amended) The aminoquinoxaline compound according to claim 16 or 17, wherein the group formed by joining R^{3'} and R^{4'} together is of the following formula (17)

[Chemical Formula 20]

$$\begin{array}{c|c}
N & N \\
N & N \\
R^{75} & R^{76}
\end{array}$$
(17)

wherein R^{75} and R^{76} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

21. (Original) A polyaminoquinoxaline compound having recurring units of the following formula (18a) obtained by polymerizing the monomer defined in claim 1,

[Chemical Formula 21]

$$\begin{array}{c|cccc}
R^1 & R^2 \\
N & N \\
N & X^2 \\
R^3 & R^4 & n
\end{array}$$
(18a)

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hienyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be

substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X² represents –NH-R⁷⁷-NH- or –NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, a –C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent may be substituted with Y, a divalent furan ring which may be substituted with Y, a divalent furan ring which may be substituted with Y or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a

pyrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

22. (Original) A polyaminoquinoxaline compound having recurring units of the following formula (18b) obtained by polymerizing the monomer defined in claim 15,

[Chemical Formula 22]

wherein R1' and R2' join together to form -CH2CH2CH2-, -CH2CH2O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a furyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

 R^{77} and R^{78} independently represent a C_1 - C_{10} alkylene group, - $C(O)CH_2$ -, - $CH_2C(O)$ -, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be

substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

23. (Original) A polyaminoquinoxaline compound having recurring units of the following formula (18c) obtained by polymerizing the monomer defined in claim 16,

[Chemical Formula 23]

$$\begin{array}{c|cccc}
R^1 & R^2 \\
\hline
N & N \\
\hline
N & N \\
\hline
N & N \\
\end{array}$$

$$\begin{array}{c|cccc}
R^3' & R^{4'} & n
\end{array}$$
(18c)

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a hiphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CCH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

Docket No.: 0171-1289PUS1

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent furan ring which may be substituted with Y, a divalent furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a hienyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

24. (Original) A polyaminoquinoxaline compound having recurring units of the following formula (18d) obtained by polymerizing the monomer defined in claim 17,

[Chemical Formula 24]

$$\begin{array}{c|cccc}
R^{1'} & R^{2'} \\
\hline
N & N \\
\hline
N & N \\
\hline
X^2 & \\
R^{3'} & R^{4'} & \\
\end{array}$$
(18d)

wherein R1' and R2' join together to form -CH2CH2CH2-, -CH2CH2O-,

-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,

-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,

-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,

-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,

-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,

-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,

-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,

-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,

-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z, and R^{3'} and R^{4'} join together to form

-CH₂CH₂CH₂-, -CH₂CH₂O-, -OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-,

-SCH₂CH₂-, -CH₂SCH₂-, -CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-,

-CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-,

-CH₂OCH₂CH₂-, -CH₂OCH₂O-, -OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-,

-SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-, -CH=CHO-,

-SCH=CH-, -CH=CHS-, -N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-,

-N=CHO-, -SCH=N-, -N=CHS-, -N(R')CH=N-, -N=CHN(R')-,

-N(R')N=CH-, -CH=N(R')N-, -CH=CHCH=CH-, $-OCH_2CH=CH-$,

-CH=CHCH₂O-, -N=CHCH=CH-, -CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-,

or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent may be substituted with Y, a divalent furan ring which may be substituted with Y, a divalent furan ring which may be substituted with Y or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

35 GMM/smt

Docket No.: 0171-1289PUS1

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} haloalkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

n is an integer of 2 or over.

- 25. (Currently amended) A film obtained by use of an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.
- 26. (Original) The film according to claim 25, wherein the film is prepared by spin coating, casting or vacuum deposition.
- 27. (Original) The film according to claim 25, wherein the film is obtained by compression molding.
- 28. (Currently amended) An electro chromic device made by use of an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.
- 29. (Currently amended) A semiconductor device made by use of an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.

30. (Currently amended) A p-type semiconductor obtained by oxidizing, with an oxidizing agent or through electrochemical doping, an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.

- 31. (Currently amended) An n-type semiconductor obtained by reducing, with a reducing agent or through electrochemical doping, an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.
- 32. (Original) A solar cell made by use of the p-type semiconductor defined in claim 30 and the n-type semiconductor defined in claim 31.
- 33. (Currently amended) An organic electroluminescent device made by use of an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.
- 34. (Currently amended) A non-linear organic material made by use of an aminoquinoxaline compound or a polyaminoquinoxaline compound as defined in any one of claims 1 to 24 claim 1.