

# SPECIFICATIONS FOR LCD **MODULE**

| CUSTOMER             |                      |
|----------------------|----------------------|
| MODEL                | XRDZ-B00457AHUFGWSNN |
| CUSTOMER<br>APPROVED |                      |

| APPROVED BY | CHECKED BY | ORGANIZED BY |
|-------------|------------|--------------|
|             |            |              |
|             |            |              |
|             |            |              |

ADD: F5,Bld A3,Fangzheng Technology Park, Shiyan Town,SZ,China

TEL: 0755-29519354 29519834

FAX: 0755-29519832

# **Specification Revision History**

| Version | Content            | Date        |
|---------|--------------------|-------------|
| A0      | First Issue        | 03-Nov-2021 |
| A1      | 修改 VDD 和数据信号为 3.3V | 07-Dec-2021 |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |
|         |                    |             |

# **CONTENTS**

- MODULE CLASSIFICATION INFORMATION
- **PHYSICAL DATA**
- MECHANICAL DIMENSIONS
- BLOCK DIAGRAM
- INTERFACE PIN CONNECTIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- **■** BACKLIGHT
- OPTICAL CHARACTERISTICS
- OPERATING PRINCIPLES & METHODS
- DISPLAY DATA RAM ADDRESS MAP
- **SCHEMATIC DIAGRAM**
- **RELIABILITY**
- INSPECTION CRITERIA
- PRECAUTIONS FOR USING LCD MODULES
- USING LCD MODULES

# ■ MODULE CLASSIFICATION INFORMATION



#### **■ PHYSICAL DATA**

| ITEM                   | STANDARD VALUE      | UNIT    |
|------------------------|---------------------|---------|
| NUMBER OF CHARACTERS   |                     | mm      |
| MODULE DIMENSION       | 76.0×58.0×21.0(MAX) | mm      |
| EFFECTIVE DISPLAY AREA | 60.0×32.5           | mm      |
| CHARACTER SIZE         | /                   | mm      |
| CHARACTER PITCH        | /                   | mm      |
| LCD TYPE               | HTN/POSITIVE(GREY)  |         |
| DUTY                   | 1/4D, 1/3B          |         |
| VIEWING DIRECTION      | 12:00               | o'clock |
| BACK LIGHT TYPE        | SIDE LIT LED        |         |
| BACK LIGHT COLOR       | White               |         |
| APPROX. WEIGHT         | TBD                 | g       |

# ■ MECHANICAL DIMENSIONS



NOTES:

ALL UNMARKED TOLERANCES:  $\pm 0.2$ mm;

# ■ INTERFACE PIN CONNECTIONS

#### CON1:

| NO | SYMBOL        | LEVEL | FUNCTION                                                                                                                            |
|----|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1  | LCD-DATA      | H/L   | Serial data input/output.                                                                                                           |
| 2  | LCD-CLOCK     | H/L   | WRITE clock input with pull-high resistor Data on the DATA line are latched into the CS1621 on the rising edge of the CLOCK signal. |
| 3  | LCD-BACKLIGHT | Н     | Backlight Control                                                                                                                   |
| 4  | LCD-DS        | L     | Chip selection input with pull-high resistor                                                                                        |
| 5  | GND           | OV    | Ground                                                                                                                              |
| 6  | FUNCT2        |       | Connect CON2.2                                                                                                                      |
| 7  | VDD           | +3.3V | Positive power supply                                                                                                               |
| 8  | FUNCTION      |       | Connect CON2.4                                                                                                                      |
| 9  | ON. P         |       | Connect CON2.5                                                                                                                      |
| 10 | SW2           |       | Connect CON2.6                                                                                                                      |

#### CON2:

| CO112. |          |       |                       |
|--------|----------|-------|-----------------------|
| NO     | SYMBOL   | LEVEL | FUNCTION              |
| 1      | NC       |       |                       |
| 2      | FUNCT2   |       | Connect CON1.6        |
| 3      | VDD      | +3.3V | Positive power supply |
| 4      | FUNCTION |       | Connect CON1.8        |
| 5      | ON. P    |       | Connect CON1.9        |
| 6      | SW2      |       | Connect CON1.10       |

# ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER                | SYMBOL | MIN  | MAX     | UNIT |
|--------------------------|--------|------|---------|------|
| Supply voltage for logic | VCC    | -0.3 | 5.5     | V    |
| Input voltage            | VI     | -0.3 | VDD+0.3 | V    |
| Operating temperature    | TOP    | -20  | +70     | °C   |
| Storage temperature      | TST    | -30  | +80     | °C   |

# ■ ELECTRICAL CHARACTERISTICS

#### **▼** DC Characteristics

| Parameter                | Symbol | Condition | Min | Тур | Max | Unit |
|--------------------------|--------|-----------|-----|-----|-----|------|
| Supply voltage for logic | VDD    |           | 3.1 | 3.3 | 3.5 | V    |
| Supply current for logic | IDD    |           |     | 150 | 300 | μΑ   |
| Input voltage 'H'level   | VIH    |           | 2.4 |     | 3.5 | V    |
| Input voltage 'L' level  | VIL    |           | 0   |     | 0.6 | V    |

#### **▼** AC Characteristics

| Parameter                              | Symbol | Condition             | Min  | Тур     | Max | Unit |
|----------------------------------------|--------|-----------------------|------|---------|-----|------|
| System Clock                           | fsys   | On-chip RC oscillator |      | 256     |     | KHz  |
| LCD Clock                              | flcd   | On-chip RC oscillator |      | 256/768 |     | KHz  |
| LCD Common Peried                      | tcom   |                       |      | 4/ flcd |     | S    |
| Serial interface reset                 | tcs    | VDD=3.3V, /CS         |      | 250     |     | ns   |
| /WR Input pulse wide                   | tclk   | VDD=3.3V,Write mode   | 3.34 |         |     | us   |
| Rise/Fall time serial DATA clock width | tr,tf  | VDD=3.3V              |      | 120     |     | ns   |
| Setup time for DATA to /WR clock width | tsu    | VDD=3.3V              |      | 120     |     | ns   |
| Hold time for DATA to /WR clock width  | th     | VDD=3.3V              |      | 120     |     | ns   |
| Setup time for /CS to /WR clock width  | tsu1   | VDD=3.3V              |      | 100     |     | ns   |
| Hold time for /CS to /WR clock width   | th1    | VDD=3.3V              |      | 100     |     | ns   |







#### **■ BACKLIGHT**

▼ Backlight Type: LED▼ Backlight color: White

**▼** Power Supply For Backlight



#### **▼** Absolute Maximum Rating

| PARAMETER                        | SYMBOL | CONDITION                  | MAX | UNIT |
|----------------------------------|--------|----------------------------|-----|------|
| Absolute maximum forward current | Ifm    |                            | 60  | mA   |
| Peak forward current             | Ifp    | 1 MSEC plus 10% Duty Cycle | 80  | mA   |
| Reverse voltage                  | VR     |                            | 5.0 | V    |

Note: For operation above  $25^{\circ}$ C, Then Ifm Ifp must be decreased, the Current decreased is -1.08mA/°C for DC drive and -2.58mA/°C Pulse drive, the power dissipation is -4.5mW/°C. The product working current must not more than the 70% of the Ifm or Ifp according to the working temperature.

### **▼** Electrical-Optical Characteristics

| PARAMETER       | SYMBOL | CONDITION                  | MIN    | TYP    | MAX    | UNIT  |
|-----------------|--------|----------------------------|--------|--------|--------|-------|
| Forward voltage | Vf     |                            | 3.1    | 3.3    | 3.5    | V     |
| Forward current | If     |                            |        | 30     | 40     | mA    |
| Reverse current | Ir     | VR=5.0V                    |        |        | 10     | μΑ    |
| Chromoticity    |        | If(forward aument) = 20m A | x=0.28 | x=0.30 | x=0.32 |       |
| Chromaticity    |        | If(forward current) = 30mA | y=0.27 | y=0.29 | y=0.31 |       |
| Luminance       | Lv     | If(forward current) = 30mA |        |        |        | cd/m² |

Note: The Master Screen's luminance is the average value of 5 points, and The Lvmin./Lvmax. is not less than 75%. The measurement instrument is BM-7 luminance Colorimeter. The aperture is  $\Phi$ 5 mm.



#### ■ OPTICAL CHARACTERISTICS

Test instrument is LCD-5000, made in Japan

| Item              | Symbol | Condition     | Min | Тур | Max | Unit | Remarks | Note |
|-------------------|--------|---------------|-----|-----|-----|------|---------|------|
| Operating voltage | Vop    | 25℃           | 2.9 | 3.1 | 3.3 | V    |         |      |
| Dagmanga tima     | Tr     |               |     | 150 | 230 | ms   |         | 1    |
| Response time     | Td     |               |     | 180 | 230 | ms   |         | 1    |
| Contrast ratio    | Cr     |               | 3   | 5   |     |      |         | 2    |
| Viewing angle     | 0      | Cr≥3          |     | 20  |     | deg  | Ø=0°    | 3    |
| range             | θ      | U1 <u>≤</u> 3 |     | 40  |     | deg  | Ø=180°  | 3    |

# **▼** Definition Of Viewing Angle

Note1: Definition of response time



Note2: Definition of contrast ratio 'Cr'

Note3: Definition of viewing angle range ' $\theta$ '





# Note4:Measuring Instruments For Electro-optical Characteristics



<sup>\*1.</sup>Light source position for measuring the reflective type of LCD panel

<sup>\*2.</sup>Light source position for measuring the transflective / transmissive types of LCD panel

#### ■ OPERATING PRINCIPLES & METHODS

#### **▼** Display memory-RAM

The static display memory (RAM) is organized into 32x4 bits and stores the displayed data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in the RAM can be accessed by the READ, WRITE, and READ-MODIFY-WRITE commands. The following is a mapping from the RAM to the LCD pattern:



**RAM** mapping

#### **▼** System oscillator

The LCD OFF command is used to turn the LCD bias generator off. After the LCD bias generator switches off by issuing the LCD OFF command, using the SYS DIS command reduces power consumption, serving as a system power down command. At the initial system power on, the CS1621 is at the SYS DIS state.

#### Command format

The CS1621 can be configured by the S/W setting. There are two mode commands to configure the CS1621 resources and to transfer the LCD display data. The configuration mode of the CS1621 is called command mode, and its command mode ID is 100. The command mode consists of a system configuration command, a system frequency selection command, a LCD configuration command, and an operating command. The data mode, on the other hand, includes WRITE operations. The following are the data mode IDs and the command mode ID:

| Operation | Mode    | ID  |
|-----------|---------|-----|
| WRITE     | Data    | 101 |
| COMMAND   | Command | 100 |

The mode command should be issued before the data or command is transferred. If successive commands have been issued, the command mode ID, namely 100, can be omitted. While the system is operating in the non-successive command or the non-successive address data mode, the CS pin should be set to "1" and the previous operation mode will be reset also. Once the CS pin returns to "0" a new operation mode ID should be issued first.

#### **▼** Timing Diagrams





Note: It is recommended that the host controller should read in the data from the DATA line between the rising edge of the  $\overline{RD}$  line and the falling edge of the next  $\overline{RD}$  line.

#### **▼** Command Summary

| Name      | ID  | <b>Command Code</b>  | D/C | Function                                                                                          | Def. |
|-----------|-----|----------------------|-----|---------------------------------------------------------------------------------------------------|------|
| WRITE     | 101 | A5A4A3A2A1A0D0D1D2D3 | D   | Write data to the RAM                                                                             |      |
| SYS DIS   | 100 | 0000-0000-X          | С   | Turn off both system oscillator and LCD bias generator                                            | Yes  |
| SYS EN    | 100 | 0000-0001-X          | C   | Turn on system oscillator                                                                         |      |
| LCD OFF   | 100 | 0000-0010-X          | C   | Turn off LCD bias generator                                                                       | Yes  |
| LCD ON    | 100 | 0000-0011-X          | C   | Turn on LCD bias generator                                                                        |      |
| TIMER DIS | 100 | 0000-0100-X          | C   | Disable time base output                                                                          |      |
| TIMER EN  | 100 | 0000-0110-X          | С   | Enable time base output                                                                           |      |
| CLR TIMER | 100 | 0000-11XX-X          | С   | Clear the contents of time base generator                                                         |      |
| RC 256K   | 100 | 0001-10XX-X          | С   | System clock source, on-chip RC oscillator                                                        | Yes  |
| BIAS 1/2  | 100 | 0010-abX0-X          | С   | LCD 1/2 bias option<br>ab=00:2 commons option<br>ab=01:3 commons option<br>ab=10:4 commons option |      |
| BIAS 1/3  | 100 | 0010-abXl-X          | С   | LCD 1/3 bias option<br>ab=00:2 commons option<br>ab=01:3 commons option<br>ab=10:4 commons option |      |
| NORMAL    | 100 | 1110-0011-X          | С   | Normal mode                                                                                       | Yes  |

Note: X: Don't care

A5~A0 : RAM addresses D3~D0 : RAM data

D/C : Data/command mode Def. : Power on reset default

All the bold forms, namely 101, and 100, are mode commands. Of these, 100 indicates the Command mode ID. If successive commands have been issued, the command mode ID except for the first command will be omitted.

# ■ DISPLAY DATA RAM ADDRESS MAP



| COM3 | COM2 | COM1 | COMO | 1     | PIN |      | COM 3 | COM2 | COM1 | COMO | 1     | PIN |
|------|------|------|------|-------|-----|------|-------|------|------|------|-------|-----|
| ŀ    | 1    | S17  | S18  | SEG16 | 21  | COMO | SMO5  |      | 1    | 1    | сомз  | 1   |
| 1    | 1    | S16  | S19  | SEG17 | 22  |      |       | COM2 | ł    | 1    | COM2  | 2   |
|      | 1    | S15  | S20  | SEG18 | 23  |      |       |      | COM1 | 1    | COM1  | 3   |
| 1    | 10B  | 106  | 10C  | SEG19 | 24  |      |       |      | ŀ    | сомо | сомо  | 4   |
| 10A  | 10F  | 10E  | 10D  | SEG20 | 25  | C    | 82    | S1   | S2   | S3   | SEG0  | 5   |
| 9B   | 96   | 90   | DP3  | SEG21 | 26  |      |       | S7   | SS   | S4   | SEG1  | 6   |
| 9A   | 9F   | 9E   | 9D   | SEG22 | 27  |      |       | 1E   | 16   | 1F   | SEG2  | 7   |
| 8B   | 86   | 8C   | DP2  | SEG23 | 28  | ō    | 10    | 10   | 1B   | 1A   | SEG3  | 8   |
| 8    | 8F   | 8E   | 8D   | SEG24 | 29  |      |       | 2E   | 2G   | 2F   | SEG4  | 9   |
| 7B   | 7G   | 7C   | DP1  | SEG25 | 30  | 1    | OC.   | 2C   | 2B   | 2A   | SEG5  | 10  |
| 7A   | 7F   | 7E   | 7D   | SEG26 | 31  | 000  | COI 1 | 3E   | 3G   | 3F   | SEG6  | 11  |
| ŀ    | 1    | S21  | S22  | SEG27 | 32  | Ü    | U.S.  | 3C   | 3B   | 3A   | SEG7  | 12  |
| 1    | 1    | S24  | S23  | SEG28 | 33  |      |       | 4E   | 4G   | 4F   | SEG8  | 13  |
| I    | 1    | S25  | S26  | SEG29 | 34  | ē    | 40    | 4C   | 4B   | 4A   | SEG9  | 14  |
| Т3   | Τ4   | -    | 1    | SEG30 | 35  | 0    | 6 100 | 35   | 56   | 5F   | SEG10 | 15  |
| Т2   | Τ1   | !    | !    | SEG31 | 36  | C    | 50    | 50   | 5B   | 5A   | SEG11 | 16  |
| 1    | 1    | !    | COMO | COMO  | 37  |      | 1     | 39   | 66   | 6F   | SEG12 | 17  |
| I    | 1    | COM1 | 1    | COM1  | 38  |      | GB.   | 96   | 6B   | 6A   | SEG13 | 18  |
| 1    | COM2 | !    | !    | COM2  | 39  | Ī    | 75    | 6S   | S11  | S13  | SEG14 | 19  |
| COM3 | 1    | 1    | 1    | COM3  | 40  |      |       | S10  | S12  | S14  | SEG15 | 20  |





逻辑分段

CD显示效果图

# **■ SCHEMATIC DIAGRAM**



#### **■ RELIABILITY**

# **▼** Content of Reliability Test

|     | Environmental Test                       |                                                                                                                                                                                                                                                                                                                                     |                           |  |  |  |  |  |  |  |
|-----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|
| No. | Test Item                                | Test Condition                                                                                                                                                                                                                                                                                                                      |                           |  |  |  |  |  |  |  |
| 1   | High temperature storage                 |                                                                                                                                                                                                                                                                                                                                     |                           |  |  |  |  |  |  |  |
| 2   | Low temperature storage                  | Endurance test applying the low storage temperature for a long time.                                                                                                                                                                                                                                                                | -30 °C<br>96hrs           |  |  |  |  |  |  |  |
| 3   | High temperature operation               | Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.                                                                                                                                                                                                              | 70°C<br>96hrs             |  |  |  |  |  |  |  |
| 4   | Low temperature operation                | Endurance test applying the electric stress under low temperature for a long time.                                                                                                                                                                                                                                                  | -20 °C<br>96hrs           |  |  |  |  |  |  |  |
| 5   | High temperature /<br>Humidity storage   | Endurance test applying the high tempera-ture and high humidity storage for a long time.                                                                                                                                                                                                                                            | 50°C,<br>90%RH<br>96hrs   |  |  |  |  |  |  |  |
| 6   | High temperature /<br>Humidity operation | Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.                                                                                                                                                                                                   | 40°C<br>90%RH<br>96hrs    |  |  |  |  |  |  |  |
| 7   | Temperature cycle                        | Endurance test applying the low and high temperature cycle. $ \begin{array}{ccc} -20^{\circ}\text{C} & \longrightarrow & 25^{\circ}\text{C} & \longrightarrow & 70^{\circ}\text{C} \\ 30\text{min.} & \longrightarrow & 5\text{min.} & \longrightarrow & 30\text{min.} \\ \hline & 1 \text{ cycle} & & & & & & & & \\ \end{array} $ | -20°C / 70°C<br>10 cycles |  |  |  |  |  |  |  |

<sup>\*\*\*</sup> Supply voltage for logic system = 3.3V. Supply voltage for LCD system = Operating voltage at 25°C.

# **▼** Failure Judgement Criterion

| Criterion Item            |   | Test Item No. |   |   |   |   |   | No. | , |    | Failure Judgment Criterion |                                                                                        |
|---------------------------|---|---------------|---|---|---|---|---|-----|---|----|----------------------------|----------------------------------------------------------------------------------------|
|                           | 1 | 2             | 3 | 4 | 5 | 6 | 7 | 8   | 9 | 10 | 11                         |                                                                                        |
| Basic specification       |   |               |   |   |   |   |   |     |   |    |                            | Out of the Basic Specification                                                         |
| Electrical characteristic |   |               |   |   |   |   |   |     |   |    |                            | Out of the DC and AC Characteristic                                                    |
| Mechanical characteristic |   |               |   |   |   |   |   |     |   |    |                            | Out of the Mechanical Specification Color change: Out of Limit Apperance Specification |
| Optical characteristic    |   |               |   |   |   |   |   |     |   |    |                            | Out of the Apperance Standard                                                          |

# ■ INSPECTION CRITERIA

see :Q/XRD0002-05

#### ■ PRECAUTIONS FOR USING LCD MODULES

#### **▼** Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
  - Isopropyl alcohol
  - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
  - Water
  - Ketone
  - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

#### ■ USING LCD MODULES

# **▼ Liquid Crystal Display Modules**

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

## **▼ Installing LCD Modules**

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.



(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be  $\pm 0.1$ mm.

## **▼** Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- (3) Do not damage or modify the pattern writing on the printed circuit board.
- (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- (6) Do not drop, bend or twist LCM.

#### **▼** Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

#### **▼** Precaution for soldering to the LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
  - Soldering iron temperature :  $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$ .
  - Soldering time : 3-4 sec.
  - Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

# **▼** Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
- (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40°C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.



#### **▼** Storage

When storing LCD's as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
- (4) Environmental conditions:
  - Do not leave them for more than 168hrs. at 70°C.
  - Should not be left for more than 48hrs. at -20°C.

#### Safety

- (1) It is recommended to crush damaged or unnecessary LCD's into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

# **▼** Limited Warranty

Unless agreed between X.R.D and customer, X.R.D will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with X.R.D LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to X.R.D within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of X.R.D limited to repair and/or replacement on the terms set forth above. X.R.D will not be responsible for any subsequent or consequential events.

#### **▼** Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.