Corollary 4.10. If $(T(t))_{t \in \mathbb{R}}$ is a positive group on a space L^2 or $C_0(X)$ with generator A , then

(4.11) $\sigma(T(t)) \cap \mathbb{R}_{+} = \exp(t\sigma(A) \cap \mathbb{R})$ for every $t \ge 0$.

<u>Proof.</u> We borrow from the next chapter that for positive semigroups on spaces L^1 , L^2 or $C_O(X)$ spectral bound and growth bound coincide (see C-IV,Thm.1.1).

We only have to show that $\exp(t\rho(A) \cap \mathbb{R}) \subseteq \rho(T(t)) \cap \mathbb{R}_+$.

If we consider a positive semigroup on an L^2 -space, Thm.4.8 can be applied directly: Given $\mu\in\rho(A)\cap\mathbb{R}$, then $E=I_{\mu}\oplus J_{\mu}$ according to Thm.4.8 . The result mentioned above implies $r(T(t)|I_{\mu})< e^{\mu t}$ and $r(T(-t)|J_{\mu})< e^{\mu t}$. Hence $\sigma(T(t)|I_{\mu})\subset\{\lambda\in\mathbb{C}:|\lambda|< e^{\mu t}\}$ and $\sigma(T(t)|J_{\mu})=\left(\sigma(T(-t)|J_{\mu})\right)^{-1}\subset\{\lambda\in\mathbb{C}:|\lambda|> e^{\mu t}\}$.

Thus $\sigma(T(t)) = \sigma(T(t)|I_n) \cup \sigma(T(t)|J_n)$ does not contain $e^{\mu t}$.

In case (T(t)) is a positive group on $C_O(X)$ then the adjoint group (T(t)') is a group of lattice homomorphisms on E'. It follows that E* is a sublattice of $C_O(X)$ ' \cong $M_D(X)$ hence a L^1 -space. The argument given for the L^2 -space yields $C_O(X) = C_O(X) = C_O(X) = C_O(X)$

 $\sigma(T(t)*)\cap \mathbb{R}_+=\exp(t\sigma(A^*)\cap \mathbb{R})$ for every $t\geqq 0$. Thus the assertion follows from A-III,4.4 .

We conclude by describing a general situation where lattice semigroups occur. In Section 4 of B-III we constructed semigroups of lattice homomorphisms on $C_O(X)$ starting with a continuous (semi-)flow on the locally compact space X and a multiplication operator. One can perform similar constructions on spaces $L^p(\mu)$ for $1 \le p < \infty$ under certain conditions on the flow. We consider an example which shows where the problems are.

Define the semiflow ϕ on \mathbb{R}_+ as follows: $\phi(t,x):=x-t$ for $x \ge t$ and $\phi(t,x):=0$ for $x \le t$. For $f \in L^p(\mu)$ one has difficulties to define $f \circ \phi_t$ properly since the preimage of the zero-set $\{0\}$ does not have measure zero. This problem does not arise in case every transformation ϕ_t is measure preserving, i.e. $\mu(\phi_t^{-1}(C))=\mu(C)$ for every Borel set C. A more general criterion is stated in the following proposition.

<u>Proposition</u> 4.11. Let X be a locally compact space and let μ be a regular, positive Borel measure on X. Assume that the continuous semiflow ϕ : $\mathbb{R}_{\perp} \times X \to X$ satisfies the following condition:

(4.12) $\phi_t^{-1}(K)$ is compact for every compact set $K \subset X$, $t \ge 0$.