NOIP训练赛

题目名称	异或难题	最大公约数	数组	树上跳跃
源程序文件名	xor.cpp	gcd.cpp	array.cpp	tree.cpp
输入文件名	xor.in	gcd.in	array.in	tree.in
输出文件名	xor.out	gcd.out	array.out	tree.out
测试点数量	10	10	10	10
每个测试点时限	1.0s	1.0s	1.0s	1.0s
运行内存上限	512MB	512MB	512MB	512MB

异或难题(xor)

题目描述

Cauchy喜欢异或,他有一天突然在思考一个问题。他构造了一个无穷多的数组 a ,其中第一个元素 $a_1=1$,第二个元素 $a_2=1\oplus 2$,…,第 i 个元素 $a_i=1\oplus 2\oplus\cdots\oplus i$ …

其中⊕表示二进制异或运算。

他想知道在 $1\sim n$ 的所有整数中,有多少整数不在数组 a 中。

输入格式

一行一个整数 $n(1 \le n \le 10^{18})$ 。

输出格式

输出一个数表示答案。

输入样例

2

输出样例

1

说明:

$$a_1=1, a_2=3, a_3=0, a_4=4, \dots$$

测试点	n的范围
1, 2, 3	$1 \leq n \leq 10^4$
4, 5	$1 \le n \le 10^7$
6, 7, 8, 9, 10	$1 \leq n \leq 10^{18}$

最大公约数(gcd)

题目描述

我们常常用gcd(x,y)描述x和y的最大公约数,所谓最大公约数就是指最大的正整数t,同时满足t是x的约数,且t是y的约数。

现在我们给定一个正整数序列 $a_1,a_2,a_3,\dots a_n$,你需要快速计算 $\displaystyle\sum_{i=1}^n \sum_{j=i+1}^n gcd(a_i,a_j)$ 。

输入格式

第一行,仅一个正整数 $n(1 \le n \le 10^5)$ 。

第二行, n 个正整数 a_i , 满足 $1 \le a_i \le 10^3$ 。

输出格式

输出一个数表示答案。

输入样例

5 1 2 3 4 5

输出样例

11

测试点	n的范围	ai的范围
1, 2, 3	$1 \le n \le 10^3$	$1 \le a_i \le 10^3$
4, 5, 6	$1 \le n \le 10^4$	$1 \le a_i \le 10^3$
7, 8	$1 \leq n \leq 10^5$	$1 \leq a_i \leq 10^2$
9, 10	$1 \le n \le 10^5$	$1 \le a_i \le 10^3$

数组(array)

题目描述

给定数组n个数构成的数组 $a[1,2,\ldots,n]$,现在你需要统计多少个子区间[L,R] $(1\leq L\leq R\leq n)$,满足 $a[L,L+1,\ldots,R]$ 中存在某个数字出现次数大于 $\frac{R-L+1}{2}$ 。

输入格式

第一行给一个正整数 $n(1 \le n \le 10^5)$,表示数组元素个数。

接下来一行n个数 a_i $(1 \le a_i \le 10)$

输出格式

输出一个数表示答案。

输入样例

6

1 1 4 5 1 4

输出样例

9

说明: 9个子区间分别为

 $a[1] = \{1\}$

 $a[2] = \{1\}$

 $a[3] = \{4\}$

 $a[4] = \{5\}$

 $a[5] = \{1\}$

 $a[6] = \{4\}$

 $a[1,2]=\{1,1\}$

 $a[1,2,3] = \{1,1,4\}$

 $a[1, 2, 3, 4, 5] = \{1, 1, 4, 5, 1\}$

测试点	n的范围	ai的范围
1, 2, 3	$1 \le n \le 10^3$	$1 \leq a_i \leq 10$
4, 5	$1 \leq n \leq 10^4$	$1 \leq a_i \leq 10$
6, 7	$1 \leq n \leq 10^5$	$1 \leq a_i \leq 2$
8, 9, 10	$1 \leq n \leq 10^5$	$1 \leq a_i \leq 10$

树上跳跃(tree)

题目描述

这里有一棵有n个结点的有根树,其中1为根节点。Cauchy的初始位置在节点s。在迷宫中,通过任意两个节点连接的路径都需要花费w个单位时间,但Cauchy也拥有一定的跳跃力,它能跳跃到到与自身节点深度相差的绝对值为k的任意节点,即若两个节点u,v满足 $|dep_u-dep_v|=k$,那么吉就能够从u跳到v或从v跳到u,但需要花费p个单位时间,可以跳跃任意次。

现在Cauchy想知道从s点作为起点跳到任意点的最短时间是多少。

输入格式

第一行给一个正整数 $n(1 \le n \le 3 \times 10^5)$, 表示有根树中结点的个数。

接下来n-1行,每行给出两个数 $u,v(1\leq u,v\leq n)$,表示结点u到v直接有一条边,需要花费 $w(1\leq w\leq 10^3)$ 的体力。

接下来一行给两个整数 $k(1 \le k \le 10^3), p(0 \le p \le 10^3)$,表示深度相差k的结点可以传送,且时间为p。 最后一行给出一个正整数 $s(1 \le s \le n)$,表示Cauchy的初始位置。

输出格式

输出一个数表示答案。

输入样例

```
6
6 1 21
3 5 24
2 4 61
5 2 22
5 6 20
3 15
6
```

输出样例

```
21
36
36
15
20
0
```

测试点	n的范围	数据性质
1, 2, 3	$1 \leq n \leq 300$	无
4, 5	$1 \leq n \leq 3000$	无
6, 7	$1 \leq n \leq 3 imes 10^5$	s = 1
8, 9, 10	$1 \leq n \leq 3 imes 10^5$	无