This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 2 of 13

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A computer instruction comprises:

a move and duplicate instruction that causes a processor to load a first portion of bits of a source into a first portion of a destination register and duplicate that first portion of bits in a subsequent portion of the destination register.

- 2. (Original) The instruction of claim 1 in which the first portion of the source is 64-bits representing a double floating point data type in a memory location.
- 3. (Original) The instruction of claim 1 in which the first portion of the source is 64-bits representing a double floating point data type in a source register.
- 4. (Original) The instruction of claim 1 in which the first portion of the destination register is loaded with bits [63-0] of the first portion of the source and the subsequent portion of the destination register is loaded with bits [63-0] of the first portion of the source.
- 5. (Original) A method comprising:

in a processor, loading a first portion of bits of a source into a first portion of a destination register; and

duplicating the first portion of bits in a subsequent portion of the destination register.

Serial No.: 10/032,144

Filed

: December 20, 2001

Page : 3 of 13

6. (Original) The method of claim 5 in which the first portion of the source is 64-bits representing a double floating point data type in a memory location.

- 7. (Original) The method of claim 5 in which the first portion of the source is 64-bits representing a double floating point data type in a source register.
- 8. (Original) The method of claim 5 in which the first portion of the destination register is loaded with bits [63-0] of the first portion of the source and the subsequent portion of the destination register is loaded with bits [63-0] of the first portion of the source.
- 9. (Original) A computer program product residing on a computer readable medium having instructions stored thereon which, when executed by the processor, cause the processor to: load a first portion of bits of a source into a first portion of a destination register; and duplicate the first portion of bits in a subsequent portion of the destination register.
- 10. (Original) The computer program product of claim 9 in which the first portion of the source is 64-bits representing a double floating point data type in a memory location.
- 11. (Original) The computer program product of claim 9 in which the first portion of the source is 64-bits representing a double floating point data type in a source register.
- 12. (Original) The computer program product of claim 9 in which the first portion of the destination register is loaded with bits [63-0] of the first portion of the source and the subsequent portion of the destination register is loaded with bits [63-0] of the first portion of the source.
- 13. (Original) A computer instruction comprises:

Serial No.: 10/032,144

Filed: December 20, 2001

Page

: 4 of 13

a move one double floating point and duplicate instruction that causes a processor to load 64-bits of a source and return the 64-bits in a lower half of a destination and a upper half of a destination.

14. (Original) The instruction of claim 13 further comprising:

a source operand; and

a destination operand.

15. (Original) The instruction of claim 13 in which the source operand is a memory location.

16. (Original) The instruction of claim 15 in which the memory location has a 128-bit value that represents a double floating point data type.

17. (Original) The instruction of claim 13 in which the source operand is a 128-bit source

register.

18. (Original) The instruction of claim 17 in which the source register has a 128-bit value that

represents a double floating point data type.

19. (Original) A method executed in a processor comprising:

loading a first number N of bits from a source into a lower half of a 2N wide-bit destination

register and in a upper half of the 2N-bit wide destination register.

20. (Original) The method of claim 19 in which the source is a memory location and where N is

64 bits.

21. (Original) The method of claim 20 in which the memory location contains a double floating

point data type.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 5 of 13

22. (Original) The method of claim 19 in which the source is a 128-bit source register and N is 64 bits.

- 23. (Original) The method of claim 19 in which the 128-bit source register contains a double floating point data type.
- 24. (Original) A computer program product residing on a computer readable medium having instructions stored thereon which, when executed by the processor, cause the processor to:

load 64-bits from a source in a lower half of a 128-bit destination register and in an upper half of the 128-bit destination register.

- 25. (Original) The computer program product of claim 24 in which the source is a memory location containing a 128-bit double floating point data type.
- 26. (Original) The computer program product of claim 24 in which the source is a 128-bit source register containing a 128-bit double floating point data type.
- 27. (Original) A computer instruction comprises:

a move packed single floating point high and duplicate instruction that causes a processor to load bits [127-0] of a source and return bits [63-32] of the source in bits [31-0] of a 128-bit destination register, bits [63-32] of the source in bits [63-32] of the destination register, bits [127-96] of the source in bits [95-64] of the destination register and bits [127-96] of the source in bits [127-96] of the destination register.

28. (Original) The instruction of claim 27 further comprising:

a source operand field; and

the destination operand field.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 6 of 13

29. (Original) The instruction of claim 27 in which the source operand is a memory location.

- 30. (Original) The instruction of claim 29 in which the memory location has 128-bits representing a packed single floating point data type.
- 31. (Original) The instruction of claim 27 in which the source operand is a 128-bit source register.
- 32. (Original) The instruction of claim 31 in which the source register has 128-bits representing a packed single floating point data type.
- 33. (Original) A method executed in a processor comprising:

accessing bits [127-0] of a source; and

returning bits [63-32] of the source in bits [31-0] and bits [63-32] of the destination register; and

bits [127-96] of the source in bits [95-64] and bits [127-96] of the destination register.

- 34. (Original) The method of claim 33 in which the source is a memory location.
- 35. (Original) The method of claim 34 in which the memory location contains a packed single floating point data type.
- 36. (Original) The method of claim 33 in which the source is a 128-bit source register.
- 37. (Original) The method of claim 36 in which the 128-bit source register contains a packed single floating point data type.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 7 of 13

38. (Original) A computer program product residing on a computer readable medium having instructions stored thereon which, when executed by the processor, cause the processor to:

load bits [127-0] of a source;

return bits [63-32] of the source in bits [31-0] of a 128-bit destination register; return bits [63-32] of the source in bits [63-32] of the destination register; return bits [127-96] of the source in bits [95-64] of the destination register; and return bits [127-96] of the source in bits [127-96] of the destination register.

- 39. (Original) The computer program product of claim 38 in which the source is a memory location.
- 40. (Original) The computer program product of claim 39 in which the memory location contains a packed single floating point data type.
- 41. (Original) The computer program product of claim 38 in which the source is a 128-bit source register.
- 42. (Original) The computer program product of claim 41 in which the 128-bit source register contains a packed single floating point data type.
- 43. (Original) A computer instruction comprises:

a move a packed single floating point low and duplicate instruction that causes a processor to load bits [127-0] of a source and return bits [31-0] of the source in bits [31-0] of a 128-bit destination register, bits [31-0] of the source in bits [63-32] of the destination register, bits [95-64] of the source in bits [95-64] of the destination register and bits [95-64] of the source in bits [127-96] of the destination register.

44. (Original) The instruction of claim 43 further comprising:

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 8 of 13

a source address field; and the destination register.

- 45. (Original) The instruction of claim 44 in which the source is a memory location.
- 46. (Original) The instruction of claim 45 in which the memory location contains 128-bits representing a packed single floating point data type.
- 47. (Original) The instruction of claim 43 in which the source is a 128-bit source register.
- 48. (Original) The instruction of claim 47 in which the source register contains 128-bits representing a packed single floating point data type.
- 49. (Original) A method comprising:

in a processor, loading bits [127-0] of a source; returning bits [31-0] of the source in bits [31-0] of a 128-bit destination register; returning bits [31-0] of the source in bits [63-32] of the destination register; returning bits [95-64] of the source in bits [95-64] of the destination register; and returning bits [95-64] of the source in bits [127-96] of the destination register.

- 50. (Original) The method of claim 49 in which the source is a memory location.
- 51. (Original) The method of claim 50 in which the memory location contains a packed single floating point data type.
- 52. (Original) The method of claim 51 in which the source is a 128-bit source register.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 9 of 13

53. (Original) The method of claim 52 in which the 128-bit source register contains a packed single floating point data type.

54. (Original) A computer program product residing on a computer readable medium having instructions stored thereon which, when executed by the processor, cause the processor to:

load bits [127-0] of a source;

return bits [31-0] of the source in bits [31-0] of a 128-bit destination register; return bits [31-0] of the source in bits [63-32] of the destination register; return bits [95-64] of the source in bits [95-64] of the destination register; and return bits [95-64] of the source in bits [127-96] of the destination register.

55. (Original) The computer program product of claim 54 in which the source is a memory location.

56. (Original) The computer program product of claim 55 in which the memory location contains a packed single floating point data type.

57. (Original) The computer program product of claim 54 in which the source is a 128-bit source register.

58. (Original) The computer program product of claim 57 in which the 128-bit source register contains a packed single floating point data type.

New claims:

59. (New) A hardware-based multithreaded processor comprising:

a plurality of microengines, each of the microengines comprising:

a control store;

controller logic;

Serial No.: 10/032,144

Filed : December 20, 2001

Page : 10 of 13

context event switching logic; and

an execution box data path including an arithmetic logic unit (ALU) and a general purpose register set, the ALU performing functions in response to instructions, one of the instructions causing the ALU to load a first portion of bits of a source into a first portion of a destination register and duplicate that first portion of bits in a subsequent portion of the destination register.

- 60. (New) The processor of claim 59 in which the first portion of the source is 64-bits representing a double floating point data type in a memory location.
- 61. (New) The processor of claim 59 in which the first portion of the source is 64-bits representing a double floating point data type in a source register.
- 62. (New) The processor of claim 59 in which the first portion of the destination register is loaded with bits [63-0] of the first portion of the source and the subsequent portion of the destination register is loaded with bits [63-0] of the first portion of the source.
- 63. (New) A hardware-based multithreaded processor comprising:

a plurality of microengines, each of the microengines comprising:

a control store;

controller logic;

context event switching logic; and

an execution box data path including an arithmetic logic unit (ALU) and a general purpose register set, the ALU performing functions in response to instructions, one of the instructions causing the ALU to load a first number N of bits from a source into a lower half of a 2N wide-bit destination register and in a upper half of the 2N-bit wide destination register.

Serial No.: 10/032,144

Filed: December 20, 2001

Page : 11 of 13

64. (New) The processor of claim 63 in which the source is a memory location and where N is 64 bits.

- 65. (New) The processor of claim 64 in which the memory location contains a double floating point data type.
- 66. (New) The processor of claim 63 in which the source is a 128-bit source register and N is 64 bits.
- 67. (New) The processor of claim 63 in which the 128-bit source register contains a double floating point data type.
- 68. (New) A hardware-based multithreaded processor comprising:
 - a plurality of microengines, each of the microengines comprising:

a control store;

controller logic;

context event switching logic; and

an execution box data path including an arithmetic logic unit (ALU) and a general purpose register set, the ALU performing functions in response to instructions, one of the instructions causing the ALU to access bits [127-0] of a source, return bits [63-32] of the source in bits [31-0] and bits [63-32] of the destination register, and bits [127-96] of the source in bits [95-64] and bits [127-96] of the destination register.

- 69. (New) The processor of claim 68 in which the source is a memory location.
- 70. (New) The processor of claim 69 in which the memory location contains a packed single floating point data type.

Serial No.: 10/032,144

Filed December 20, 20

Filed: December 20, 2001

Page : 12 of 13

71. (New) The processor of claim 68 in which the source is a 128-bit source register.

72. (New) The processor of claim 71 in which the 128-bit source register contains a packed / single floating point data type.