CSC373 Week 8 Notes luring Machines: - Turing Machines (TM) are a mathematical model for what it means to perform a mechanical computation. It has the following: I. An infinitely long tope divided into cells. 2. A pointer that can move around the tape. It always starts off at the head of the tape. 3. A transition function that describes how to change states, move the pointer and read/write symbols on a tape. - The input is given on the tape. - Intermediate computations can go there. - The output is also on the tope. TMs also maintain an internal state. - The Church-Turing Thesis States that: Everything that is computable can be computed by a TM. It is widely accepted but cannot be proven. Also, there are some problems that a TM Cannot Solve, regardless of the time given. (E.g. Halting Problem

Encoding:

- Let 5 be a set of finite symbols.

- Let 5* be a set of all finite strings using symbols from s.

I.e. 5 = U 5"

- Input:

- West

- IWI = length of input = length of W on the tape Each cell of the tape can contain at most I symbol. So, if W takes up 5 cells, its length is 5.

- Output:

- f(w) E s*

- Length of output = I from)

- Note: For decision problems, the output is always Yes or No.

Going back to 5, our set of finite symbols, we will let 5 = 20,13.

(I.e. S will be binary)

Note: We could've used S = 3-ary or S = 18-ary, but the only difference is that the length of the encoding (input/output) would change by a constant factor.

If we're using binary to encode everything, then the length of the input and output, soy at and as will be logz at and logz as, respectively.

Ire.

Input -> a; length log ai

If we were to use 3-ary or 18-ary,
11 11 1500
then the length would differ by a constant
tactor.
I.e.
Let a; = input and ao = output. Then:
base Length of input Length of output
2 1 2: Import Largen or sorper
2 log 2 ai log 2 ao 3 log 3 ai log 3 ao
3 log 3 ai log 3 ao
18 log 18 ai log 18 ao
0.4
However, if we let 5 be viary, 1-ary, then
the length blows up exponentially.
in in its second of colors with the
E.g. Say the input is 2.
In binary > 10 Both are
In unary -> 11 (Note: These are lines) I length of 2
3
No. of Maintin
Now, say the input is loo.
In binary → 1100100 ← length of 7
In unary => 11 = Length of 100
100 lines
Binary is good enough, but unary isn't.
3

Efficient Computability:

- A TM solves a problem in polynomial time if there is a polynomial p s.t. on every instance of n-bit input and m-bit output that the TM halts/stops in at most p(n,m) steps.

Polynomial: n, n2, 5n100, nlogloo Non-polynomial: 2n, 25n, 2log2n

- Extended Church - Turing Thesis: Everything that is efficiently computable is computable by a TM in poly time.

Much less widely accepted, esp today.

Polynomial Time Problems:

- Denoted as p.

- Is the set of all decision problems computable by a TM in polynomial time.

Non-deterministic Polynomial Time Problems:

- Denoted as NP.

- Is the set of all decision problems where the answer is yes can be proved/verified in polynomial time by a TM.

- E.g. (Subset sum problem)

Given an array/set of numbers, is there a subarray/subset of numbers that add up to 0?

Can prove in polynomial time

Consider the set $\{-7, -3, -2, 5, 8\}$.

We can see that $\{-3, -2, 5\}$ is one such subset.

However, it would take an exponentially long amount of time to answer the original problem. Have to iterate over Hence, this an example of a NP problem.

- Informally:
 - Whenever the answer is Yes, it can be proved verified in polynomial time.
 - Whenever the answer is No, there may not be a Short proof/it may not be proved/verified in poly time.

Co-NP:

- Same as NP except whenever the answer is no, it can be proved in polynomial time.
- A decision problem X is co-NP iff its complement X is NP.

Cook's Conjecture:

- P is likely not equal to NP

Reductions:

- Problem A is p-reducible to problem B, denoted as A & p B, if an oracle/subroutine for B can be used to solve A.

 efficiently
 - I.e. You can solve A by making polynomially many calls to the oracle for B and doing additional polynomial-time computation.
- If A = pB and B can be solved efficiently, then so can A.
- If A = p B and A can't be solved efficiently, neither can B.
- Note: The Statement " If $A \leq_p B$ and B can't be solved efficiently then neither can A" is wrong.

 A could be an "easy" problem that can be reduced to B, a "hard" problem.

- If you want to prove that a problem is hard, you should reduce a hard problem to it.

known

Note: Reducing your problem to a hard problem doesn't work. Your problem could be easy and be reducible to a hard problem.

NP- Completeness:

- Denoted as NPC.
- A problem B is NPC if it is in NP and every problem A in NP is p-reducible to B.
- Hardest problems in NP.
- If one of them can be solved efficiently, then every problem in NP can be solved efficiently, implying P-NP.
- If A is in NP and some NPC problem B is p-reducible to A, then A is NPC too.
 - Every problem in NP = pB = A

CNF Formulas:

- Conjunctive Normal Form (CNF)
- Let XI, Xz, ..., Xn be boolean vars.
- Let X, Xz, ..., Xn be their negations.
- Let L be a literal.
 - A literal is a var or its negation.
- A clause is a disjunction of literals.
 - Eig. C= liVlz V ... Vln
- A CNF formula is a conjunction of clouses.
 - Eig. F = Cincan ... n Cm
- KCNF: Each clause has at most k literals.
- Exact KCNF: Each clause has exactly k literals.

- Fig. $(X_1 \vee X_2) \wedge (X_1 \vee X_1 \vee X_2)$ is 3CNF $(X_1 \vee X_2 \vee X_3) \wedge (X_1 \vee X_2 \vee X_3)$ is exact 3CNF

SAT and Exact 3SAT:

- A CNF formula F is satisfiable if there is an assignment of truth values (T/F) to the vars s.t. the formula evaluates to True.
- I.e. In each clause, there must be at least 1 literal that is True. SAT: Criver a CNF formula, is it satisfiable?
- Exact 3SAT: Given an exact 3CNF formula, is it satisfiable?

Independent Set:

- Problem: Given an undirected graph (=(v, E) and an int k, does there exist a subset of vertices SEV with 151=k

S.t. for each edge, at most one of its endpoints is in S?

There exists an indep set of size 6, but not 7.

- Claim: Indep set is in NP.

- To prove that a problem is in NP, you must do the following:
 - 1. Prove that a "Yes" solution works in poly time.
 - 2. Reduce another NP problem to this problem.
- Proof of 1:

For each "Yes" answer,

- 1. Check if the length = k. This is easy to do and can be done in O(n) time.
- 2. Check to make sure that no 2 vertices have an edge connecting them. To do this, for each node, check if there's an edge with every other node in the subset. This can be done in O(n²) time.
- Proof of 2:
 - Claim: 35at reduces to Indep Set
 - This means that an oracle that solves Indep Set Can be used to solve Exact 3Sat.
 - Construct the graph like so:
 - 1. Given a formula F with k clauses, we want to solve Indep set with input (G,k).
 - 2. Let each clause be a triangle sit.

 all 3 literals in each clause are connected with each other.
 - 3. Connect a literal with all of its negations in the other clauses/triangles.

Formula: (XI V X2 VX3) N(XIVX2 VX3) N(XI VX2VX4)

- Exact 3 Sat -> Indep Set:
- If there is an assignment s.t. the formula evaluates to True, we know that at least

I literal in each clause must be True,

Choose I true literal from each clause. That is the indep set of size K.

- Indep Set - Exact 3 Sat:

- Set each literal to Tree and their negations to False.

- We know that we can never pick both X; and X; because of the edge connecting them.

- If there is an indep set of size k, then
we know exactly I node from each
clause/triongle will be selected. These
will be the literals that make the
entire formula True.

Different Types of Reductions: A = B - Karp Reductions: Take any arbitrary instance of A and in polynomial time, construct a single instance of B with the same answer. Is a very restricted type of reduction. - Turing/Cook Reductions: Take an arbitrary instance of A and solve it by making multiple polynomial calls to an oracle for solving B and Some polynomial-time extra computation. Is a very general type of reduction. Subset Sum: - Problem: Given a set of integers S= Ew, wz, ..., was and int w, is there a s' & s s.t. the numbers in s' adds exactly to w? - Claim: Subset Sum is in NP. Criven any subset of S, we can easily check if it adds up to wor not. - Claim: Exact 3SAT =p Subset Sum Given a formula F of Exact 3SAT, we want to construct (s, w) of Subset Sum with the Same answer.

Consider a 3CNF formula with vars X1, X2, ..., Xn and clauses C1, C2, ..., Cm.

We will construct a table s.t.

- 1. The vars and clauses make up the columns.

 (Think of each number of a column as
 a digit)
- 2. Each var x_i will have 2 numbers y_i and $y_i = x_i$ $y_i = x_i$ $y_i = x_i$
- 3. Treat each row as a number in 5, represented in decimal.
- 4. Each Ji will have a I for its corresponding Var and for every clause that has Xi.

 Each Zi will have a I for its corresponding var and for every clause that has Xi.
 - 5. There will be dummy rows to help pod the clause columns to add up to the digit in wiff at least 1 literal is set to True.

	Table:						
		×	9	2	C	Cz	C3
Notice that each	(×	\	0	0	0	1	0
row var is 1 if	$\overline{\times}$	1	0	0	1	0	1
either the corresponding	5	0	1	0	\	0	0
col var is the same	5	0	١	0	0	1	\
or if it's used in	Z	0	6	1	1	1	0
a clouse.	Z	0	0	١	0	0	\
	7	0	O	6	1	0	0
	1.7.5	0	0	0	2	. 0	0
Donny		0	0	0	0	1	0
rows		0	0	0	0	2	0
		0	0	0	0	0	\
		0	O	0	0	0	2
	W	1		1	14	4	4
Fig. 2 F= (X, VX2 VX3) N (X, VX2 VX3)							

Table:							
		X,	X2	X3 1	, C, 1	C2	
	5,	1	0	0	1	10	t Each row is a
	7,	1	0	0	0	1	number in S
	42	0	1	0	1	1	
	72	0	1	0	0	0	represented by decimal/base 10.
	43	0	0	1	0	0	
	Z3	0	0	1	1	\\	
Dunny		0	0	0	1	0	
(00)		0	0	0	1	0	
		0	0	0	0	1	
		0	0	0	0	1	
	W	1	1	1	3	3	

Proof (Subset Sum = Yes -> Exact 3SAT = Yes):

If there is a subset of numbers that add up to w, then we know the following:

- I. Each Ji and Zi must have exactly one True value!

 have exactly one of them be chosen.

 This is because both (xi, Ji) and (Xi, Zi)

 have 1, so if both Ji and Zi are chosen,

 then we wouldn't add up to w who has

 I's for the var columns.
- a. For the clause columns, they only add up to their respective w digit iff at least one literal has a value of 1.

3 - Coloring:

- Problem: Given an undirected graph G=(V, E),

 Can we color each vertex of G using at most

 3 colors s.t. no 2 adjacent vertices have the

 same color?
- Claim: 3- Coloring is in NP.

Given any colored graph G, we can traverse it to see if any 2 adjacent nodes have the same color. If none do, return yes. Otherwise, return no. Worst-case time complexity: O(n2)

Claim: Exact 3SAT &p 3-Coloring Proof:

Part 1:

- We'll have 3 colors, T, F and Base.
- For each var Xi, we'll create 2 nodes: Xi and Xi. We'll also have a 3rd node to represent Base and well connect them like shown below

This way, exactly one of either Xi and Xi must be True and the other must be False.

Part 2:

- For each clause, we'll create the gadget shown in the example below.

Suppose $X_1 = X_2 = X_3 = F$, Then:

1. The nodes 1,2 and 3 can only be set to Base as they're connected to both True and False nodes.

- 2. Node 4 must be False as it's connected to True and Node 1, who's value is Base.
- 3. Node 5 must be True as it's connected to Node 4 (False) and Node 2 (Base)
- 4. Node 6 does not have a valid option.

 It is connected to:

 Node 3-Base

 Node 5-True

 False node

Now, suppose X3 is True and X1 and X2 are False. Then:

- 1. Node I can be either For B. Wlog, say it's F.
- 2. Nodes 2 and 3 must be B.
- 3. Node 4 must be B.
- 4. Node 5 must be F.

 If it's T, then node 6 will be connected to
 a T node, a B node and a F node.

 5. Node 6 must be T.

	16								
	Binary Integer Linear Programming (BLIP):								
	- Problem: Given CER, BERM, AERMAN, KER								
	does there exist $x \in \{0,1\}^n$ s.t. $c^Tx \ge k$ and								
	Ax \(\begin{align*} b \\								
	Note: For simplicity, let cake a so that cTx2k is always True.								
	- Claim: BLIP is in NP.								
	Proof:								
	Given c, b, A, k, let the advice be x. Then,								
	we can easily verify if ctx ≥k and Ax ≤b.								
	- Claim: Exact 3SAT =p BLIP								
	Proof: Exact 35AT								
	Take any formula F and convert each var Xi in F								
	to a binary var X; and each negated var X; in F								
	to binary (1-x).								
	I.e.								
	Var in F Binary Var in BLIP								
	X; Xi								
	\overline{x} ; $(1-xi) \leftarrow Use (1-x) $ to $(ep \overline{x})$								
Use addition	For each clause Ci, to make sure that at least								
for = OR" -									
	sum of its vars is at least 1.								
	I.e. $x_i + (1-x_2) + x_3 \ge 1 \leftarrow Doesnt have to be$								
	in Standard form.								
Use multiplic	ation To make sure all clauses are True, we multiply								
for > And" -									
	Easy to see that F is True iff the system								
	has a feasible soln.								

Integer Linear Programming:
- Problem: Given b E Rm and A E Rm, does there exist xez s.t. Ax =b? - We can easily see that we can reduce BLIP to ILP. This means ILP is NP-hard. I.e. BLIP Lp ILP However, it is not clear if for every YES instance that there's a polynomial-length advice vector x Satisfying AXEb.

Vertex Cover:

- Problem: Given an undirected graph G=(V, E) and int k, does there exist S = V with ISI=k S.t. every edge is connected to at least 1 vertex in S.
- Claim: Vertex Cover is in NP.

Proof:

Let the advice be S. Then, we can easily verify if 151=k and if every edge is connected to a node in S.

- Claim: G has a VC of size k iff G has an Indep Set of set n-k. n= |V|

Proof:

1 (VC -> Indep Set):

- Suppose G has a VC of size k. Call this set S.
- This means that every edge is connected to a node in S.
- This means that each edge is connected to any of the remaining n-k nodes at most once.
 - I.e. No edge can be connected to 2 nodes in the n-k or U/S set.
- This is the def of indep set. The num of nodes is n-k.

2 (Indep Set -> VC):

- Suppose & has an indep set of size n-k.
- We know each edge must be connected to those n-k nodes at most once.
- Hence, all edges will be connected to the remaining Ic nodes at least once.
- This is the def of VC. The num of nodes is k.

- Claim: S is a VC iff VNS is an indep set.
 Proof is similar to lost page's.
- Claim: Indep Set &p VC

 Proof:

 Given G = (V, E) and int k, try to create an instance of VC.

 Let (G, n-k) be the instance for VC.

 We've already shown the proof.

Set Cover:

- Problem: Given a universe of elements U, a family of subsets S and an int k, does there exist k sets from S whose union is U?
- E.g. $V = \{1, 2, 3, 4, 5, 6, 7\}$ $S = \{\{1, 3, 7\}, \{2, 4, 6\}, \{4, 5\}, \{1\}, \{1, 2, 6\}\}$ $k = 3 \rightarrow 9es(\{1, 3, 7\}, \{4, 5\}, \{1, 2, 6\})$ $k = 2 \rightarrow No$
- Claim: Set Cover is in NP. Proof:

Let the advice be the k sets. Checking to see if all k sets are in S and if their union is u can be done in quadratic time at worst.

- Claim: VC =p Set Cover

Proof:

Given an instance of VC, (G, K), we want to create an instance of Set Cover that solves the problem.

Let U= E

For each $v \in V$, S contain set Sv that has all the edges connected to v. See if k set = v.

the union of

Set Cover -> VC Proof:

- If we can find k sets whose union is U
from the creation above, then that means
there are k nodes in S s.t. every edge
is connected to at least one of them.

SAT = p 3SAT:

Proof:

Given a CNF formula F for SAT, we want to create an Exact 3CNF formula F' that solves it.

Let F=C, NC2N, NCM

For each clause Ci,

1. If C; has I liferal, add 2 new vars Z, and Za and replace C; with (l, VZ, VZz) r(l, VZ, VZz) r(l, VZ, VZz) r (l, VZ, VZz) r

2. If C; has 2 literals, add I new var Z, and replace C; with (l, Vl2 VZ) N(l, Vl2 VZ)

	21
3. If Ci has 3 literals, we do nothing.	
/ TR - 1	
4. If Ci has more than 3 literals then add	
Vars Zi,, Zk-3 and replace Ci with	
(l, Vl2 VZ) N(l3 V Z, VZ2) N N(, ZK-4	ZK-3)
M(lk-1 Vlk V Zk-3) lk-2	,
1. (XK-1 VXK V CK-3) XK-2	
1 Set out - Ne Plat	
The state of the s	