ESC201A EndSem Part 3

SHIV NARAYAN

TOTAL POINTS

16 / 20

QUESTION 1

Q1 10 pts

1.1 1(a) 2/2

- √ + 2 pts Completely Correct
 - + 0 pts Completely Incorrect
 - + 0 pts Not Attempted
 - + 0 pts Copied

1.2 1(b) 0/3

- + 3 pts Completely Correct
- √ + 0 pts Completely Incorrect
 - + 0 pts Not Attempted
 - + 0 pts Copied
 - + 1 pts Correct number of 1 to 2 decoders used
 - + 2 pts Final implementation correct

1.3 1(c) 5 / 5

- + 5 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 2 pts Minimized PoS expression correct
- √ + 3 pts Final implementation using 2-input NOR
 gates correct

QUESTION 2

Q2 10 pts

2.1 2(a) 3 / 4

- + 4 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 2 pts Excitation table correct
 - + 2 pts Final implementation correct
- + 1 Point adjustment
 - Final implementation is partially correct

2.2 2(b) 6/6

- √ + 6 pts Completely Correct
 - + 0 pts Completely Incorrect
 - + 0 pts Not Attempted
 - + 0 pts Copied
- + 1 pts Counter states and transitions correctly identified
- + 3 pts Assignment to D inputs of the two flip flops correct
 - + 2 pts Final implementation schematic correct

Name

Wo Know

SHIV

/ NARAVAN

Roll No.

210978

Seat/Room No.

582 1 L20

1 (a). Prove using basic postulates of Boolean algebra that $x + \overline{x}.y = x + y$. [2]

Ntn. 8:

as x.(1+y) = x.1= N

ITY= 1 Always

replacing X n+4.9 + n.

x+4.9+7.9 ⇒ x+3(x+1)= x+y=1

Ut n = 1

 $1 (b). \ Implement \ a \ 3 \ to \ 8 \ decoder \ using \ only \ \ 1 \ to \ 2 \ decoders. \ Assume \ that \ each \ decoder \ has \ an \ enable \ signal. \ Label \ all \ the \ input \ and \ output \ lines. \ \ [3]$

I(c). Determine the minimized product of Sum (PoS) expression for the K-map shown below and implement using only 2-input NOR gates. Assume that complements of input variables are also available and need not be generated using gates. [5]

so municial POS = (M_1+M_3+My). (N_3+My). (N_4+M_3)(200)

 $2 (a). \ \ For the Flip-flop with two inputs A and B whose characteristic table is shown below, determine first the excitation table and then implement the flip-flop using a D flip-flop and a 4 to 1 multiplexer.$

(t) D	Q (++1)	A B	D
0	0	8	\bigcirc
0		8 Ø \$	
1	0	0.10	0
. 1	1	001	- 1

	Α	В	Q(t+1)	State		
	0	0	1	Set		
	0	1	Q(t)	Toggle		
	1	0	0	Reset		
1	1	1	Q(t)	Hold		

Q D +QD.

$$A = 2\overline{B} \bullet D = \overline{Q} \overline{A} \overline{B} + Q \overline{A} \overline{B}$$

$$B = 2\overline{Q} \overline{B} = \overline{A} \overline{B}$$

2(b). Design a synchronous circuit using D flip-flops that can produce the outputs y_0 and y_1 from a clock input X as shown below. The output sequence repeats after the dotted line shown below. [6]

