Groupes ExaMath	Examen en mathématiques Classe : SV	Préparé par : Georges H. Maamari Edité par : Hassan Ahmad
Nombre de questions : 3	Exemplaire 01 – année 2023	Nom:
	Durée : 1½ heures	N^o :

- ، إن هذا النموذج أعد بشكل تطوعي من المؤلف دون أي مقابل بهدف تأمين مادة هدفها تدريبي فقط.
- حقوق التأليف محفوظة للمؤلف ويستطيع الزملاء الأعزاء والأحباء التلامذة الإستفادة منه فنيًا وتعليميا بأي طريقة ممكنة مع حفظ الحقوق تقديرا للجهد المبذول في التأليف.
 - يمنع منعا باتا مقاربة هذا النموذج بشكل مادى بأى طريقة من الطرق فهو نموذج مجانى بالمطلق و هدفه الخدمة العامة فقط.
- ، لا توجد صفة رسمية لمضمون النّموذج فهو اُجتهاد شخصي للمؤلف ولا علاقة لّه بأي شُكل من الأشكال بأي لجان رسمية وغيرها، ومستوى النموذج مستقل كليا عن مستوى الإمتحان الرسمي المفترض ، فهدف النموذج تدريبي محض.
- Cet examen comprend trois problèmes inscrits sur trois pages.
- L'usage d'une calculatrice non programmable est autorisé.

I- (5 points)

Dans le tableau ci-dessous, une seule parmi les réponses proposées est correcte. Choisir la bonne réponse en justifiant votre choix.

7.10	0 4	Réponses proposées			
Nº	Question	A	В	C	
1)	L'ensemble solution de l'équation : $\ln(x+2) + \ln(x-2) = \ln 3 + \ln 4$ est :	$S = \left\{ \sqrt{11}; -\sqrt{11} \right\}$	$S = \{4; -4\}$	$S = \{4\}$	
2)	$\lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(\frac{1}{x}\right) =$	2	0	+∞	
3)	Soit la fonction g définie sur $I = [1; e^2]$ par $g(x) = (\ln x)^2 - 2 \ln x$. L'image de l'intervalle I par g est $g(I) =$	[-1; 0]	[0;1]	[-1; 1]	
4)	Une entreprise fabrique des puces électroniques. Chaque pièce peut présenter deux défauts A et B . On sait que 2,8% des pièces ont le défaut A , 2,2% ont le défaut B et 95,4% n'ont aucun défaut. La probabilité qu'une pièce ait les deux défauts est :	0,005	0,004	0,046	
5)	On donne ci-dessous la courbe $(C_{f''})$ représentant la fonction dérivée seconde f'' d'une fonction f définie sur l'intervalle $[-3,5;6]$.	f est convexe sur [-3; 3]	La courbe représentative de <i>f</i> admet trois points d'inflexion	La fonction f' dérivée de f est décroissante sur $[0; 2]$	

II- (6 points)

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.

La leucose féline est une maladie touchant les chats ; elle est provoquée par un virus.

Dans un grand centre vétérinaire, on estime à 40 % la proportion de chats porteurs de la maladie.

On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire.

Ce test possède les caractéristiques suivantes :

- Lorsque le chat est porteur de la maladie, son test est positif dans 90 % des cas.
- Lorsque le chat n'est pas porteur de la maladie, son test est négatif dans 85 % des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants :

M: « Le chat est porteur de la maladie » ;

T: « Le test du chat est positif » ;

 \overline{M} et \overline{T} désignent les événements contraires des événements M et T respectivement.

- 1) a) Traduire la situation par un arbre pondéré.
 - b) Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
 - c) Montrer que la probabilité que le test du chat soit positif est égale à 0,45.
 - d) On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu'il soit porteur de la maladie.
- 2) On choisit dans le centre vétérinaire un échantillon de 20 chats au hasard dont 15 femelles (évènement F). On admet que l'on peut assimiler ce choix à un tirage avec remise.

On rappelle que M: « Le chat est porteur de la maladie » et que p(M) = 0,4.

a) Compléter le tableau ci-dessous :

	F	\overline{F}	Total
M	6		8
$ar{M}$			
Total	15		20

- b) Calculer la probabilité que le chat choisi soit une femelle qui porte la maladie.
- 3) Parmi les 15 femelles, on choisit simultanément et au hasard 3 chats.
 - a) Quelle est la probabilité qu'au moins l'un de ces trois soit porteur de la maladie ?
 - **b)** Quelle est la probabilité que deux exactement des trois chats choisis soient atteints de la maladie ?

III- (9 points)

Partie A

Dans le plan rapporté à un repère orthonormé, on donne la courbe (C') représentant la fonction dérivée f' d'une fonction f dérivable sur \mathbb{R} .

- 1) À l'aide de la courbe (C'), déterminer, en justifiant les réponses :
 - a) Le sens de variations de la fonction f sur \mathbb{R} .
 - **b)** La convexité de la fonction f sur \mathbb{R} .
- 2) On admet que la fonction f est définie sur \mathbb{R} par $f(x) = (x+a)e^{-x}$ où a est un réel.
 - a) Exprimer f'(x), la fonction dérivée de f sur \mathbb{R} en fonction de a.
 - b) Déterminer graphiquement f'(0) puis déduire la valeur de a.

Partie B

Dans cette partie on prend a = 2 ainsi $f(x) = (x+2)e^{-x}$.

On note (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) a) Calculer $\lim_{x\to +\infty} f(x)$. En déduire une asymptote à (C).
 - **b)** Calculer $\lim_{x \to -\infty} f(x)$.
- 2) a) Montrer que, pour tout nombre réel x, $f'(x) = (-x-1)e^{-x}$.
 - **b)** Dresser le tableau de variations de la fonction f.
 - c) Montrer que l'équation f(x) = 2 admet une unique solution α sur l'intervalle [-1,6;-1,5].
- 3) a) Déterminer, pour tout nombre réel x, l'expression de f''(x) et étudier la convexité de la fonction f.

Que représente pour la courbe (C) son point A d'abscisse 0?

- **b)** Ecrire l'équation de la tangente (T) à (C) au point A.
- 4) Tracer (C) et (T) dans le même repère.

QI	Réponses	5 pts
	Condition d'existence : $\begin{cases} x+2>0 \\ x-2>0 \end{cases}, \begin{cases} x>-2 \\ x>2 \end{cases}, x \in]2; +\infty[.$	
1)	L'équation est équivalente à $\ln(x^2-4) = \ln 12$; $x^2 = 16$ donc $x = 4 \in]2$; $+\infty[$	1
	(acceptable) ou $x = -2 \notin]2$; $+\infty[$ (à rejeter).	
	La bonne réponse est c .	
2)	$\lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(\frac{1}{x}\right) = \lim_{\substack{x \to 0 \\ x > 0}} x \left[\ln 1 - \ln x\right] = -\lim_{\substack{x \to 0 \\ x > 0}} (x \ln x) = 0.$	1
	La bonne réponse est b .	
	Tableau de variations de g sur $I = \begin{bmatrix} 1 \ ; e^2 \end{bmatrix}$:	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	g'(x) - 0 +	
3)	g(x) 0 0	1
	Donc $g(I) = g([1; e]) \cup g([e; e^2]) = [-1; 0] \cup [-1; 0] = [-1; 0].$	
	La bonne réponse est a.	
4)	$P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{2.8}{100} + \frac{2.2}{100} - \left(\frac{100}{100} - \frac{95.4}{100}\right) = \frac{0.4}{100} = 0,004.$	1
	La bonne réponse est b .	
	Dans $[-3,5;6]$, $f''(x)$ s'annule trois fois en changeant de signe chaque fois, donc	
5)	la courbe représentative de f admet trois points d'inflexion.	1
	La bonne réponse est b .	

QII		Répo	nses		5 pts
1) a)	0.4 M	0.9 T 0.11			1
1) b)	$P(M \cap T) = P(M) \times P(T/M) = 0.4 \times 0.9 = 0.36$.			1/2	
1) c)	$P(T) = P(M \cap T) + P(\overline{M} \cap T) = 0.36 + 0.6 \times 0.15 = 0.45$.			1/2	
1) d)	$P(M/T) = \frac{P(M \cap T)}{P(T)} = 0.8 .$			1/2	
		F	$\overline{ar{F}}$	Total	
2) a)	M	6	2	8	1
2) a)	$ar{M}$	9	3	12	1
	Total	15	5	20	
2) b)	$P(F \cap M) = \frac{6}{20} = 0,$,3.			1/2

	P(au moins l'un des trois chats soit porteur de la maladie) = 1 - P(aucun chat est)	
3) a)	porteur de la maladie) = $1 - \frac{C_9^3}{C_{15}^3} = 0.815$.	1/2
3) b)	$p = \frac{C_6^2 \times C_9^1}{C_{15}^3} = 0,297.$	1/2

QIII	Réponses	10 pts
A.1.a	 La fonction f' est positive sur]-∞; 1], donc la fonction f est croissante sur cet intervalle; La fonction f' est négative sur [-1; +∞[, donc la fonction f est décroissante sur cet intervalle. 	3/4
A.1.b	 La fonction f' est décroissante sur]-∞; 0[, donc f''(x)<0 sur cet intervalle, donc la fonction f est concave sur]-∞; 0[; La fonction f' est croissante sur]0; +∞[, donc f''(x)>0 sur cet intervalle, donc la fonction f est convexe sur]0; +∞[. 	3/4
A.2.a.	$f'(x) = e^{-x} - (x+a)e^{-x} = (1-x-a)e^{-x}$.	1/2
A.2.b.	f'(0) = -1; 1-a = -1; a = 2.	1/2
B.1.a.	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+2}{e^x} = 0, \text{ donc la droite } (x'x) : y = 0 \text{ est une asymptote}$ horizontale à (C) en $+\infty$.	3/4
B.1.b.	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x+2)e^{-x} = -\infty \times (+\infty) = -\infty.$	1/4
B.2.a.	D'après la partie A $f'(x) = (1-x-a)e^{-x} = (1-x-2)e^{-x} = (-x-1)e^{-x}$.	1/2
B.2.b.	$ \begin{array}{c ccccc} x & -\infty & -1 & +\infty \\ f'(x) & + & \phi & - & & \\ \hline f(x) & & & e & & \\ & & & & & & \\ \end{array} $	1
B.2.c.	Sur l'intervalle $[-1,6;-1,5]$, la fonction f est continue et strictement croissante. $f(-1,6) < 2$ et $f(-1,5) > 2$ donc, d'après le corollaire du théorème des valeurs intermédiaires, l'équation $f(x) = 2$ admet une solution unique α sur l'intervalle $[-1,6;-1,5]$.	3/4
B.3.a.	$f''(x) = (-1) \times e^{-x} + (-x-1) \times (-1) e^{-x} = (-1+x+1) e^{-x} = x e^{-x};$ $e^{-x} > 0 \text{ pour tout } x, \text{ donc } f''(x) \text{ est du signe de } x.$ • Sur $]-\infty$; $0[f''(x) < 0 \text{ donc la fonction } f \text{ est concave.}$ • Sur $]0; +\infty[, f''(x) > 0 \text{ donc la fonction } f \text{ est convexe.}$ • En $x = 0$, la dérivée seconde s'annule et change de signe donc le point A d'abscisse 0 de (C) est le point d'inflexion de cette courbe.	1½
B.3.b.	$y_A = f(0) = 2$ $(T): y = f'(x_A)(x - x_A) + y_A = -1(x - 0) + 2 \text{ donc } (T): y = -x + 2.$	3/4

