Finitude

18 de fevereiro de 2013

Se $\phi \vdash \varphi$, então existe um $\phi_f(\delta) \subseteq \phi$, ϕ_f finito, tal que $\phi_f \vdash \varphi$.

Demonstração. Indução no comprimento da derivação $\varphi_1,...,\varphi_n$ de φ apartir de ϕ . Base: n=1. Então $\varphi \in \phi$ ou φ é um axioma. Se $\varphi \in \phi$, então $\varphi \vdash \varphi$ e $\varphi \subseteq \phi$, φ é finito. Se φ é um axioma, então $\varnothing \vdash \varphi$, $\varnothing \subseteq \phi$.

Passo indutivo. Seja $\varphi_1,...,\varphi_n,\varphi_{n+1}$ uma derivação de φ apartir de ϕ . Se φ_{n+1} é um axioma ou $\varphi_{n+1} \in \phi$, então podemos argumentar, como na base. Supomos $\varphi_i,\varphi_i \to \varphi_{n+1} \Longrightarrow \varphi_{n+1}$ por modus ponens. Pela H], existem δ_1 e $\delta_2 \subseteq \phi$ tal que δ_1 e δ_2 são finitos. E $\delta_1 \vdash \varphi_i$ e $\delta_2 \vdash \varphi_i \to \varphi_{n+1}$. Mas então $\delta_1 \cup \delta_2$ é finito e $\delta_1 \cup \delta_2 \subseteq \phi$. E $\delta_1 \cup \delta_2 \vdash \varphi_i$, $\delta_1 \cup \delta_2 \vdash \varphi_i \to \varphi_{n+1}$. Isto é, contém derivações $\psi_1,...,\psi_i=\varphi_i$ e $\zeta_1,...,\zeta_k=\varphi_i\to\varphi_{n+1}$ apartir de $\delta_1 \cup \delta_2$. Juntando estas duas derivações e aplicando modus ponens resulta numa derivação $\psi_1,...,\psi_n$, $\zeta_1,...,\zeta_k$, φ_{n+1} apartir de $\delta_1 \cup \delta_2$. $\delta_1 \cup \delta_2 \vdash \varphi_{n+1},\varphi_{n+1}=\varphi$.

Lema 1: $\phi \vdash \varphi \rightarrow \neg \psi$, $\Longrightarrow \phi \vdash \psi \stackrel{\cdot}{\rightarrow} \neg \varphi$.

- b) $\vdash \varphi \rightarrow \psi \rightarrow \varphi$.
- c) $\vdash \varphi \rightarrow \varphi$.
- $d) \vdash \varphi \rightarrow \neg \neg \varphi.$
- e) $\vdash \psi \rightarrow \neg \psi \rightarrow \varphi$.

Prova Item a).

 $\phi \vdash (\varphi \to \neg \psi) \to (\psi \to \neg \varphi)$. Por (A5) e por hipótese, $\phi \vdash \varphi \to \neg \psi$. Por modus ponens resulta em $\phi \vdash \psi \to \neg \varphi$.

Prova item b)

Por (A4), $\vdash \psi \land \neg \varphi \rightarrow \neg \varphi$. Por a), $\vdash \varphi \rightarrow \neg (\psi \land \neg \varphi)^1$.

¹rever o item b da prova