

WHAT IS CLAIMED IS:

5

1. An apparatus for reading recorded data,  
said apparatus comprising:

a sampling part sampling a read signal  
from recorded data of a recording medium by  
10 synchronizing with a first clock signal;

a first storing part consecutively storing  
a sample value obtained by said sampling part; and

15 a data detecting part retrieving the  
sample value from said first storing part by  
synchronizing a second clock signal different from  
the first clock signal and detecting data by  
processing the sample value in accordance with a  
predetermined algorithm,

20 so that the recorded data is read based on  
the data detected by said data detecting part.

25

2. The apparatus as claimed in claim 1,  
wherein said data detecting part comprises a  
recursive process conducting part conducting a  
recursive process for the sample data retrieved from  
the first storing part in accordance with the  
30 predetermined algorithm so that maximum likelihood  
data is detected.

35

3. The apparatus as claimed in claim 1,  
wherein the second clock signal is faster than the

first clock signal.

5

4. The apparatus as claimed in claim 1,  
wherein when said recorded data is an address  
recorded in an address part, the second clock signal  
is faster than the first clock signal for storing the  
10 sample value of the address part to said first  
storing part.

15

5. The apparatus as claimed in claim 1,  
wherein when said recorded data is data recorded in a  
data part, the second clock signal is faster than the  
first clock signal for storing the sample value of  
the data to said first storing part.

20

25

6. The apparatus as claimed in claim 2,  
wherein said recursive process conduction part  
conducts said recursive process based on an iterative  
number, which number is defined so that a required  
time required completing said recursive process does  
not exceed a storing time required storing the sample  
30 value by said first storing part.

35

7. The apparatus as claimed in claim 2,  
wherein said recursive process conduction part  
conducts said recursive process based on the

iterative number, which number in a case in which the recorded data is the address recorded in the address part is different from that in a case in which the recorded data is the data recorded in the data part.

5

8. The apparatus as claimed in claim 2,  
10 wherein said recursive process conduction part  
conducts said recursive process based on an iterative  
number, which number is defined so that a required  
time required completing said recursive process  
conducted does not exceed a scanning time required  
15 scanning a gap provided between an address part  
recording an address of data and a data part  
recording the data.

20

9. The apparatus as claimed in claim 1,  
further comprising:  
a second storing part consecutively  
25 storing a sample value obtained by said sampling  
part;  
a first switching part switching to one of  
said first storing part and said second storing part;  
a second switching part switching to  
30 another one of said first storing part and said  
second storing part, which is not switched to by said  
first switching part;  
whereby one of said first storing part and  
said second storing part, which is switched to by  
35 said first switching part, stores the sample value,  
while said data detecting part retrieves the sample  
value from another one of said first storing part and

said second storing part, which is switched to by said second switching part.

5

10. The apparatus as claimed in claim 9,  
wherein one of said first storing part and said  
second storing part, which is switched to by said  
first switching part, stores the sample value of an  
address recorded in an address part, while said data  
detecting part retrieves the sample value of data  
recorded in a data part from another one of said  
first storing part and said second storing part,  
15 which is switched to by said second switching part.

20. 11. The apparatus as claimed in claim 9,  
wherein said data detecting part comprises a  
recursive process conducting part conducting a  
recursive process for the sample value, which is  
retrieved from one of said first storing part and  
25 said second storing part, which is switched by said  
second switching part, in accordance with the  
predetermined algorithm, and detecting the maximum  
likelihood data, by synchronizing with said second  
clock signal.

30

12. The apparatus as claimed in claim 11,  
35 wherein said second clock signal is faster than said  
first clock signal which the one of said first  
storing part and said second storing part, which is

switched by said first switching part, synchronizes with when the one of said first storing part and said second storing part stores the sample value.

5

13. The apparatus as claimed in claim 11,  
wherein said recursive process conduction part  
10 conducts said recursive process based on an iterative number, which number is defined so that a required time required completing said recursive process does not exceed a storing time required storing the sample value by one of said first storing part and said 15 second part, which is switched by said first switching part.

20

14. The apparatus as claimed in claim 11,  
wherein said recursive process conduction part  
conducts said recursive process based on an iterative 25 number, which number is defined so that a required time, which is required retrieving the sample value of the data part from one of said first storing part and said second storing part, which one is switched by said second switching part, and completing said recursive process, does not exceed a storing time, 30 which is required storing the sample value of the address part to another one of said first storing part and said second storing part, which one is switched by said first switching part.

35

15. The apparatus as claimed in claim 15,  
wherein said iterative number is set when one of said  
first storing part and said second storing part,  
which one is switched by said first switching part,  
5 stores the sample value of the address part.

10                 16. The apparatus as claimed in claim 11,  
wherein said recursive process conduction part  
conducts said recursive process based on an iterative  
number, which number is defined so that a required  
time, which is required retrieving the sample value  
15 of the address part from one of said first storing  
part and said second storing part, which one is  
switched by said second switching part, and  
completing said recursive process, does not exceed a  
storing time, which is required storing the sample  
20 value of the data part to another one of said first  
storing part and said second storing part, which one  
is switched by said first switching part.

25

17. The apparatus as claimed in claim 16,  
wherein said iterative number is set when one of said  
first storing part and said second storing part,  
30 which one is switched by said first switching part,  
stores the sample value of the data part.