Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса MyArray	9
3.2 Алгоритм метода Sum класса MyArray	10
3.3 Алгоритм деструктора класса MyArray	10
3.4 Алгоритм функции CopyArray	11
3.5 Алгоритм функции main	11
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	19
5.1 Файл main.cpp	19
5.2 Файл MyArray.cpp	20
5.3 Файл MyArray.h	21
6 ТЕСТИРОВАНИЕ	22
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОИНИКОВ	72

1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая демонстрирует возможность использования дружественной функции.

Спроектировать объект, с свойствами в закрытом доступе:

- целого типа, для хранения размерности массива;
- указатель на объект целого типа;
- строкового типа, для хранения наименования объекта.

С параметризированным конструктором. У конструктора есть параметр целого типа. Параметр передает (содержит) значение размерности целочисленного массива. В конструкторе создается целочисленный массив заданной размерности. Вводится и выводиться значение наименования объекта. Вводится и выводится значения элементов.

Объект имеет метод, который возвращает сумму элементов целочисленного массива.

В деструкторе, первоначально выводится значение наименования объекта, а далее значения элементов целочисленного массива и освобождается память, выделенная для массива.

Спроектировать функцию, которая значения элементов массива одного объекта присвоит к элементам массива другого объекта.

Алгоритм конструирования и отработки системы:

- 1. Объявляется целочисленная переменная, для хранения значения количества объектов.
- 2. Объявляется целочисленная переменная, для хранения значения размерности массива.
- 3. Объявляется строковая переменная, для хранения наименования объекта.
- 4. Могут быть другие объявления.

- 5. Вводится значение количества объектов.
- 6. Вводится значение размерности массива.
- 7. В цикле создаются объекты, согласно введенному количеству.
- 8. Определяется значение суммы элементов для каждого объекта. Фиксируется объект, с первой минимальной суммой. Этот объект принимается за эталон.
- 9. В цикле, посредством последовательного вызова дружественной функции значения элементов массива эталонного объекта присваиваются элементам всех остальных объектов.
- 10. После завершения цикла, созданные объекты удаляются (уничтожаются).

1.1 Описание входных данных

Первая строка:

«целое число, количество объектов»

Вторая строка:

«целое число, размерность массива»

Начиная с третей строки, имя очередного объекта и значения элементов массивов, согласно количеству объектов:

```
«строка» «целое число» «целое число» . . . «целое число»
```

Количество целых чисел в этих строках больше или равно количеству размерности массива.

Пример ввода.

```
5
5
obj_2 2 2 2 2 2 2 2
```

```
obj_3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 obj_1 1 1 1 1 1 1 obj_4 4 4 4 4 4 4 4 4 4 4 4 4 0bj_5 5 5 5 5 5 5
```

1.2 Описание выходных данных

С первой строки, построчно, для каждого объекта:

```
«строка» «целое число» «целое число» . . . «целое число»
```

Имя объекта и значения элементов массива, согласно последовательности создания объектов.

Далее, построчно, для каждого объекта:

```
«имя объекта»: «целое число» «целое число» . . . «целое число»
```

Имя объекта и значения элементов массива, согласно последовательности создания объектов.

Пример вывода.

```
obj_2  2  2  2  2  2
obj_3  3  3  3  3  3
obj_1  1  1  1  1  1  1
obj_4  4  4  4  4  4
obj_5  5  5  5  5  5
obj_2:  1  1  1  1  1
obj_3:  1  1  1  1  1
obj_1:  1  1  1  1
obj_4:  1  1  1  1
obj_5:  1  1  1  1
```

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция main для определения входной точки программы;
- функция СоруАттау для копирования элементов одного массива в другой;
- библиотека ввода-вывода;
- указатели;
- заголовочный файл;
- динамический массив.

Класс MyArray:

- свойства/поля:
 - о поле хранит размер массива:
 - наименование m_size;
 - тип int;
 - модификатор доступа private;
 - о поле динамичесский массив:
 - наименование m_arr;
 - тип int*;
 - модификатор доступа private;
 - о поле хранит имя объекта:
 - наименование m_name;
 - тип std::string;
 - модификатор доступа private;
- функционал:
 - о метод MyArray параметризированный конструктор;
 - о метод Sum возвращает сумму элементов массива;
 - о метод \sim MyArray деструктор.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса МуАггау

Функционал: параметризированный конструктор.

Параметры: int size.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса MyArray

N₂	Предикат	Действия	
			перехода
1		выделение памяти для целочисленного	2
		динамического массива, размерностью равной	
		параметру size с помощью оператора new	
2		вызов метода ignore у объекта std::cin	3
3		ввод значения строковой переменной т_name	4
4		вывод значения строковой переменной m_name	5
5		инициализация целочисленной переменной i = 0	6
6	i < size	ввод значения m_arr[i]	
			10
7		вывод двух пробельных символов	
8		вывод значения m_arr[i]	
9		увеличение значения переменной і на 1	6
10		вывод символа переноса строки	

3.2 Алгоритм метода Sum класса MyArray

Функционал: возвращает сумму элементов массива.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода Sum класса MyArray

No	Предикат	Действия	Nº
			перехода
1		инициализация целочисленной переменной sum = 3	
		0	
2		инициализация целочисленной переменной i = 0	3
3	i < m_size	прибавление значения m_arr[i] к значению	4
		целочисленной переменной sum	
			5
4		увеличение значения переменной і на 1	3
5		возврат значения целочисленной переменной sum	Ø

3.3 Алгоритм деструктора класса МуАггау

Функционал: деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 3.

Таблица 3 – Алгоритм деструктора класса MyArray

N₂	Предикат	Действия	
			перехода
1		вывод m_name ": "	2
2		инициализация целочисленной переменной i = 0	3
3	i < m_size	вывод значения m_arr[i]	4
			6
4	i!= m size - 1	вывод пробельного символа	5

No	Предикат	Действия	No
			перехода
			5
5		увеличение значения переменной і на 1	3
6		вывод символа переноса строки	7
7		освобождение памяти указателя m_arr с помощью	Ø
		оператора delete	

3.4 Алгоритм функции СоруАттау

Функционал: копирует элементы одного массива в другой.

Параметры: нет.

Возвращаемое значение: MyArray* oldArray, MyArray* newArray.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции CopyArray

N₂	Предикат	Действия	
			перехода
1		инициализация целочисленной переменной i = 0	2
2	i < oldArray->m_size	newArray->m_arr[i] = oldArray->m_arr[i]	3
			Ø
3		увеличение значения переменной і на 1	2

3.5 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

Nº	Предикат	Действия	№ перехода	
1		объявление двух целочисленных переменных		
		objCount, size		
2		ввод значений переменных objCount, size 3		
3		выделение памяти под динамический массив		
		objects указателей на объекты размером size c		
		помощью оператора new		
4		инициализация целочисленной переменной i = 0	5	
5	i < objCount	создание объекта класса MyArray с помощью	6	
		оператора new и присваивание ero objects[i]		
			7	
6		увеличение значения переменной і на 1	5	
7		инициализация указателя на объект класса	8	
		MyArray адресом объекта objects[0]		
8		инициализация целочисленной переменной i = 0	9	
9	i < objCount		10	
			12	
10	objects[i]->Sum()	minSumObj = objects[i]	11	
	minSumObj->Sum()			
			11	
11		увеличение значения переменной і на 1	9	
12		инициализация целочисленной переменной i = 0	13	
13	i < objCount	вызов CopyArray(minSumObj, objects[i])	14	
			15	
14		увеличение значения переменной і на 1	13	
15		инициализация целочисленной переменной i = 0		
16	6 i < objCount удаление объекта objects[i] с помощью операто		16	
		delete с освобождением памяти указателя		
			Ø	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-6.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include "MyArray.h"
#include <iostream>
#include <vector>
void CopyArray(MyArray* oldArray, MyArray* newArray)
  for (int i = 0; i < oldArray->m_size; i++)
     newArray->m_arr[i] = oldArray->m_arr[i];
}
int main()
  int objCount, size;
  std::cin >> objCount >> size;
  MyArray** objects = new MyArray*[objCount];
  for (int i = 0; i < objCount; i++)
     objects[i] = new MyArray(size);
  }
  MyArray* minSumObj = objects[0];
  for (int i = 0; i < objCount; i++)
     if (objects[i]->Sum() < minSumObj->Sum())
        minSumObj = objects[i];
  }
  for (int i = 0; i < objCount; i++)
     CopyArray(minSumObj, objects[i]);
```

```
for (int i = 0; i < objCount; i++)
{
    delete objects[i];
}
return 0;
}</pre>
```

5.2 Файл МуАггау.срр

Листинг 2 - MyArray.cpp

```
#include "MyArray.h"
MyArray::MyArray(int size) : m_size(size)
  m_arr = new int[size];
  std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
  std::cin >> m_name;
  std::cout << m_name;</pre>
  for (int i = 0; i < size; i++)
      std::cin >> m_arr[i];
      std::cout << " ";
     std::cout << m_arr[i];</pre>
  std::cout << std::endl;</pre>
}
int MyArray::Sum()
  int sum = 0;
  for (int i = 0; i < m_size; i++)
     sum += m_arr[i];
  }
  return sum;
}
MyArray::~MyArray()
  std::cout << m_name << ": ";
  for (int i = 0; i < m_size; i++)</pre>
     std::cout << m_arr[i];</pre>
```

```
if (i != m_size - 1) std::cout << " ";
}
std::cout << std::endl;
delete m_arr;
}</pre>
```

5.3 Файл MyArray.h

Листинг 3 - MyArray.h

```
#ifndef __MYARRAY__H
#define __MYARRAY__H
#include <iostream>
#include <string>
#include <limits>
class MyArray
  int m_size;
  int* m_arr;
  std::string m_name;
public:
  MyArray(int size);
  int Sum();
  ~MyArray();
  friend void CopyArray(MyArray* oldArray, MyArray* newArray);
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
5 obj_2 2 2 2 2 2 2 2 2 2 obj_3 3 3 3 3 3 3 3 3 obj_1 1 1 1 1 1 obj_4 4 4 4 4 4 4 4 obj_5 5 5 5 5 5	obj_2 2 2 2 2 2 2 0bj_3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	obj_2 2 2 2 2 2 2 0bj_3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).