GCD

2019年4月17日 13:08

GCD:

欧几里得算法

贝祖定理及其2个推论

基本算数定理

同余除法

素数猜想

解线性同余方程和方程组: 模逆和中国剩余定理

欧拉定理和费马小定理

元根

欧几里得算法	求gcd 证明:使用因子集合完全相同来证明 扩展:形如gcd (a,b) =gcd(c,d) 可考虑如此证明
	证明: 逆用欧几里得 算法: 扩展欧几里得 推论: If c (a·b), then c (a·gcd(b,c)). 推论证明: 将贝祖等式代入gcd (b,c) 即可
基本算数定理	证明唯一性: 反证 假设两个不同的分解形式,将相同部分抹去后,有pi1pi2 ···piu = qj1qj2 ···qjv v gcd (pi1, qik) =1,由贝祖推论,可得pi1 qik for some k,与pi1和qik为互异质数矛盾 证明存在性:
同余式除法	If ac ≡ bc (mod m) and gcd(c,m) = 1, then a ≡ b (mod m). 证明:应用同余式定义 和贝祖定理推论
素数猜想	Mersenne Primes 2^p-1 Goldbach's Conjecture 哥德巴赫猜想 n>2的数都是两素数之和 孪生素数猜想 存在无穷多相差为2的素数对
解线性 同余方	单个方程 gcd (a,m) =d 若d不 b 则无解

程 ax=b (mod m)	若d b 则在模m意义下有d解分别为x0, x0+1*(m/d)., x0+(d-1)(m/d) gcd (a,m) =1 则利用模逆求得模意义下唯一解 方程组: 若m1mn两两互质 利用中国剩余定理求解 若不互质 分别分解质因数 再利用中国剩余定理求解
理	$\phi(p) = p - 1$ $\phi(pq) = (p - 1)(q - 1)$ $\phi(p^i) = p^i - p^{i-1}$ • Theorem (Euler's theorem) : Let n be a positive integer, and let x be an integer such that $\gcd(x, n) = 1$. Then $x^{\phi(n)} \equiv 1 \pmod{n}.$
费马小 定理	■ Theorem (Fermat's little theorem) : Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then $x^{p-1} \equiv 1 \pmod{p}.$
元根	1.运算过程中不可重复 2. Theorem * There is a primitive root modulo n if and only if $n=2,4,p^e$ or $2p^e$, where p is an odd prime.