Sprawozdanie z Laboratorium 1.

Pomiary wielkości geometrycznych Prawo Ohma

Piotr Lewandowski Dymitr Lubczyk Krzysztof Tabeau 15.03.2020

1 Pomiar wielkości geometrycznych

1.1 Wstęp

Celem przeprowadzonego ćwiczenia było zapoznanie się z metodyką poprawnego mierzenia wielkości fizycznych. W tym celu dokonaliśmy z użyciem śruby mikrometrycznej 10 pomiarów średnicy kuli, oraz przy pomocy suwmiarki 3 pomiarów długości, szerokości i wysokości prostopadłościanu. Wyniki pomiarów są zawarte w poniższych tabelach.

d
15,35
15,38
15,39
15,35
15,33
15,32
15,36
15,35
15,40
15,41

Tablica 1: Średnica kuli (w milimetrach)

a	b	c
40,08	29,40	3,50
40,10	29,38	3,70
40,08	29,40	3,70

Tablica 2: Długość, szerokość oraz wysokość prostopadłościanu (w milimetrach)

1.2 Wyznaczanie niepewności pomiaru

Niepewność pomiaru dzielimy na dwa typy: typ A, oparty na metodzie statystycznego opracowywania danych oraz typ B, zależny od osądu badacza, na który wpływ ma m.in. niepewność pomiarowa urządzenia.

1.2.1 Średnica kuli

Przy mierzeniu średnicy kuli, niepewność typu B wynosiła, dla najmniejszej podziałki rozmiaru 0.01mm.

$$u_B(d) = \frac{0.01}{\sqrt{3}} = 0.0058$$

Niepewność typu A wyliczyliśmy w następujący sposób:

$$\overline{d} = \sum_{1}^{10} d_i = 15.364$$

$$u_A(d) = \sqrt{\frac{\sum_{1}^{10} (d_i - \overline{d})^2}{10(10 - 1)}} = 0.0095$$

Ostatecznie wyznaczona średnica kuli, z uwzględnieniem niepewności to:

$$u(d) = \sqrt{u_A(d)^2 + u_B(d)^2} = 0.011$$

 $d = 15.364(11)[mm]$

1.2.2 Objętość prostopadłościanu

Wszystkie pomiary zostały wykonane z wykorzystaniem tego samego narzędzia, więc w tym przypadku niepewność typu B, dla najmniejszej podziałki rozmiaru 0.02mm, jest równa:

$$u_B(a) = u_B(b) = u_B(c) = \frac{0.02}{\sqrt{3}} = 0.012$$

Szukamy objętości zadanej wzorem V=abc, więc niepewność możemy wyliczyć korzystając ze wzoru:

$$u(V) = \sqrt{\left(\frac{\partial V}{\partial a}u(a)\right)^2 + \left(\frac{\partial V}{\partial b}u(b)\right)^2 + \left(\frac{\partial V}{\partial c}u(c)\right)^2} = 0.44[mm^3]$$

Ostateczny wynik to:

$$V = 4281.09(44)[mm^3]$$

2 Prawo Ohma

2.1 Wstęp

Celem drugiej części laboratorium było wyznaczenie rezystancji oporników korzystając z Prawa Ohma. Zmierzyliśmy napięcie i natężenie na każdym z oporników R_1, R_2, R_3, R_4 podłączanych zgodnie z poniższym schematem do analogowego woltomierza i cyfrowego amperomierza. Pomiary dla oporników R_1, R_2, R_3 zostały przeprowadzone jednokrotnie, a pomiary dla opornika R_4 wykonaliśmy 15 razy.

Rysunek 1: Schemat obwodu

2.2 Teoria

Prawo Ohma mówi o tym, że stosunek natężenia prądu stałego płynącego przez przewodnik jest wprost proporcjonalne do napięcia przyłożonego do jego końców.

$$I \sim U$$

Regresja liniowa to w modelowaniu statystycznym, metody oparte o liniowe kombinacje zmiennych i parametrów dopasowujących model do danych. Dopasowana linia regresji reprezentuje oszacowaną wartość oczekiwaną zmiennej y przy różnych wartościach zmiennych x.

W naszym przypadku użyliśmy regresji liniowej i prawa Ohma do wyznaczenia oporu opornika R4, przy wielokrotnych pomiarach napięcia i natężenia w rożnych zakresach pomiarowych.

2.3 Wyniki Pomiarów

I [mA]	U [V]	zak. I [mA]	zak. U [V]
1,347	0,52	2	1
1,9	0,72	2	1
3,26	1,3	20	3
5,43	2,1	20	3
6,86	2,7	20	3
8,18	3,2	20	10
9,02	3,6	20	10
10,85	4,2	20	10
13,03	5	20	10
14,92	5,8	20	10
17	6,6	20	10
21,8	8,6	200	10
25,8	10,2	200	30
31,5	12,5	200	30
41,1	15,4	200	30

Tablica 3: Napięcie i natężenie zmierzone na oporniku ${\cal R}_4$

	I [mA]	U [V]	zak. I [mA]	zak. U [V]
R_1	43,2	2,45	200	3
R_2	23	2,25	200	3
R_3	25,3	2,6	200	10

Tablica 4: Wyniki pomiarów dla oporników ${\cal R}_1, {\cal R}_2, {\cal R}_3$

2.4 Wyznaczanie rezystancji oporników R_1, R_2, R_3

W przypadku jednokrotnego pomiaru uwzględniamy jedynie niepewność typu B, więc dla wszystkich trzech oporników

$$u(U) = u_B(U) = \frac{kz}{100} * \frac{1}{\sqrt{3}}$$

Gdzie k to klasa woltomierza, a z to aktualny zakres pomiarowy.

$$u(I) = u_B(I) = 0.05w + 0.01z$$

Gdzie w to wynik pomiaru, a z to aktualny zakres pomiarowy.

$$u(R) = \sqrt{\left(\frac{\partial R}{\partial U}u(U)\right)^2 + \left(\frac{\partial R}{\partial I}u(I)\right)^2} = \sqrt{\left(\frac{1}{I}u(U)\right)^2 + \left(\frac{-U}{I^2}u(I)\right)^2}$$

$u_b(I)[mA]$	$u_b(U)[V]$	$u(R)[\Omega]$	$r[\Omega]$
3,31	0,017	4,37	56,71
2,30	0,017	9,83	97,83
2,42	0,058	10,09	102,77

Tablica 5: Niepewności pomiarowe dla oporników R_1, R_2, R_3

Ostatecznie zmierzone wartości rezystancji dla tych oporników to:

$$R_1 = 56.71(4.37)[\Omega]$$

 $R_2 = 97.82(9.83)[\Omega]$
 $R_3 = 102.77(10.09)[\Omega]$

2.5 Wyznaczanie rezystancji opornika R_4

Z powodu mierzenia pomiarów w różnych zakresach, odchylenie standardowe wyszło bardzo duże zarówno dla napięcia i natężenia, co skutkuje w dużych niepewnościach dla tych danych. Jako że błąd typu B w niektórych przypadkach jest o rząd niższy niż błąd typu A, jest on pomijany w wyliczeniach. Obliczenie niepewności oporu zostało wykonane metodami statystycznymi w arkuszu kalkulacyjnym. Poniżej przedstawiamy nasze wyniki.

$$R = 387(2.6)[\Omega]$$

 $u_A(I) = 2.98$
 $u_A(U) = 1.15$

$u_b(I)$	$u_b(U)$	u(I)	u(U)
0,079	0,0058	2,98	1,15
0,11	0,0058	2,98	1,15
0,28	0,017	2,99	1,15
0,39	0,017	3,01	1,15
0,46	0,017	3,02	1,15
0,52	0,058	3,03	1,15
0,57	0,058	3,03	1,15
0,66	0,058	3,05	1,15
0,77	0,058	3,08	1,15
0,86	0,058	3,10	1,15
0,97	0,058	3,13	1,15
2,24	0,058	3,73	1,15
2,44	0,17	3,86	1,16
2,73	0,17	4,04	1,16
3,21	0,17	4,38	1,16

Tablica 6: Niepewności pomiarów dla opornika ${\cal R}_4$

Rysunek 2: Wykres pomiarów napięcia i natężenia wraz z linią dopasowania