Extensive Animal Nutrition

Dr Stuart Barber

The amazing foregut fermenter

- All camelids and ruminants are foregut fermenters
- Each species has slight adaptation of the mouth/teeth/tongue important for selecting fodder and chewing cud (regurgitated forestomach contents)
- Multiple stomachs to enable digestion of food that monogastrics are not capable of surviving on e.g. cellulose (four stomachs in ruminant and three in camelids)
- Within the forestomachs (prior to the acidic stomach) massive population of bacteria and protozoa – these digest the fodder into protein and energy useable by the animal

Teeth

- The ability to chew is vital for a ruminant or camelid
 - Physical breakdown of food particles to enable access for microbes
 - Chewing produces saliva which helps buffer the forestomach pH
- Most feed is re-chewed multiple times depending on its digestibility and how rapidly it can be made small enough to pass into the later stomachs/intestines

 Camelids have the ability to spit their cud if they take a dislike to someone/something

The stomachs

- Differences in physical structure between ruminant and camelid forestomachs
- Play the same role breaking down feed into energy and protein that is useable by the animal with assistance of microbes
- Ruminants/camelids can survive on food not useable by humans (and produce human food)
- Forestomachs act as a feed reserve as they have a large capacity

Sheep

(Ovis aries) Body length: 110 cm

(Ruminant foregut fermenter)

Gastrointestinal tract to production and conservation of nutrients:. Physiol Re, (2), 393-427

https://line.17gg.com/articles/fpfpeofz.htm

Energy and protein

- Energy from
 - Acetic acid
 - Butyric acid
 - Propionic acid
- Absorbed across rumen

- Microbial protein
- Plant based protein

Anatomy and physiology

 You will get further information on ruminant and camelid anatomy and physiology within digestion and other subjects

Amazing combination to digest relatively indigestible feedstuffs!

 Now we need to talk about the plant part of the equation- first we need to understand how we measure plant quality as a feed

Quality: Testing feeds – what do we measure?

Essential Nutrients		Chemical Components Analytical Procedures		ires	
Fatty acids, Fat-soluable vitamins		Lipids, pigments, sterols	Ether Extract		
Protein, amino acids		Nitrogen-containing compounds - Protein, Nonprotein nitrogen	Kjeldahl Procedure (Crude Protein)		
Inorganic minerals		Ash	Ashing (complete combustion)		
Carbohydrates	Glucose	Sugars	Nonstructural		
	Gideose	Starches	Carbohydrates**	Nonfiber Carbohydrates ⁺	
		Soluable Fiber			
	Dietary Fiber	Hemicellulose		Neutral	
		Cellulose	Acid Detergent	Detergent	
		Lignin*	Fiber	Fiber	

^{*}Lignin is not truly a carbohydrate compound but is so intimately associated with cell wall carbohydrates that it is often included as such.

Table from https://extension.psu.edu/determining-forage-quality-understanding-feed-analysis

^{**}Newer methods are being used to measure starch content.

⁺Determined by difference (100 - CP - EE - NDF - Ash).

Average and variation of feed: why test?

Table showing mean & range of quality measurements of grain samples from the 2019/2020 season

Source: FeedTest 1 April 2019 - 30 April 2020

Product	No. of Samples		Bulk Density (kg/hL)	Crude Protein (CP) (% dmb) (N x 6.25)	Dry Matter Digestibility (DMD) (% dmb)	Metabolisable Energy (ME) (MJ/kg DM)	Neutral Detergent Fibre (NDF) (% dmb)	Acid Detergent Fibre (ADF) (% dmb)	Starch (% dmb)	Fat (% dmb)
Oats	86	Mean	50.0	12.8	71.7	12.4	33.4	13.8	48.4	7.4
Oats	Range	Range	32.1 - 59.0	8.9 - 18.7	57.3 - 80.3	10.0 - 14.2	19.3 - 47.6	8.4 - 22.6	31.3 - 58.9	3.4 - 10.1
Barloy	Barley 402	Mean	63.1	13.1	86.9	13.2	16.7	7.6	63.6	NA
barrey		Range	33.2 - 78.5	7.8 - 19.5	79.7 - 93.9	11.8 - 14.2	10.1 - 26.3	3.7 - 12.9	45.6 - 79.1	
Wheat	Wheat 142	Mean	77.1	12.1	93.2	14.0	11.7	4.8	73.1	NA
wileat		Range	49.7 - 85.3	9.1 - 22.3	84.3 - 96.4	12.9 - 14.5	5.5 - 20.4	2.9 - 8.9	57.0 - 82.0	
Triticale	< 20		Insufficient Data							
Lunine	Lupins 61	Mean	NA	31.3	86.8	14.3	34.1	19.4	NIA	NA
Lupins		Range	NA	16.8 - 40.0	79.4 - 96.5	13.0 - 15.9	19.3 - 49.2	12.0 - 26.3	NA	
Lentils 22	Mean		26.3	93.1	13.2	13.5	5.5	NA	NA	
		Range	NA	22.6 - 29.8	84.4 - 97.5	12.7 - 14.6	9.4 - 24.4	3.8 - 11.0	NA	NA
Maize	< 20		Insufficient Data							

PLEASE NOTE: This information is produced using data from FeedTest records, derived from samples submitted by clients. FeedTest produces tables for the information of clients, merely to demonstrate the range in quality which can occur for a given type of feed.

Extract from https://feedtest.com.au/index.php/about/feedtest-information

Table showing mean & range of quality measurements of cereal hay samples from the 2019/2020 season

Source: FeedTest 1 April 2019 - 30 April 2020

Product	No. of Samples		Crude Protein (CP) (% dmb) (N x 6.25)	Dry Matter Digestibility (DMD) (% dmb)	Metabolisable Energy (ME) (MJ/kg DM)	Neutral Detergent Fibre (NDF) (% dmb)	Acid Detergent Fibre (ADF) (% dmb)	Water Soluble Carbohydrates (WSC) (% dmb)
Hay, Barley	344	Mean	8.8	68.3	10.1	52.6	27.1	24.0
riay, barrey	344	Range	1.4 - 17.8	46.1 - 85.1	6.3 - 13.0	35.3 - 77.4	17.1 - 42.5	2.4 - 44.8
Hay Oaton	1460	Mean	7.6	66	9.7	53.4	28.3	24.3
Hay, Oaten	1400	Range	1.4 - 23.0	42.5 - 84.8	5.7 - 13.0	35.2 - 77.2	17.2 - 42.0	3.0 - 42.3
Hay, Triticale	<20		Insufficient Data					
Hay Wheat	1058	Mean	9.0	64.8	9.5	54.3	28.2	23.4
Hay, Wheat		Range	1.2 - 22.5	36.7 - 79.8	4.7 - 12.1	35.9 - 82.7	17.0 - 47.9	2.4 - 44.6
Hay, Cereal	1318	Mean	8.1	65.0	9.6	52.9	27.6	23.8
(unspecified)		Range	2.1 - 18.6	39.2 - 88.4	5.1 - 13.6	30.5 - 82.5	15.9 - 44.9	1.1 - 42.4
Hay, Cereal &	259	Mean	10.8	66.5	9.8	52.7	28.6	17.8
Legume		Range	3.9 - 24.8	49.2 - 80.0	9.5	34.8 - 69.3	19.5 - 39.3	4.4 -34.7
Hay Caraal & Dastura	222	Mean	7.6	64.3	9.5	56.8	29.9	21.2
Hay, Cereal & Pasture	232	Range	1.2 - 19.6	39.9 - 83.1	5.3 - 12.7	39.2 - 81.2	19.5 - 46.8	2.2 - 37.8

PLEASE NOTE: This information is produced using data from FeedTest records, derived from samples submitted by clients. FeedTest produces tables for the information of clients, merely to demonstrate the range in quality which can occur for a given type of feed.

Plants

	Types	Energy Fibre Protein
Forage	Fresh Ensiled (silage) Dry • Hay • Paddock • Straw (stubble)	Varying content through year Usually higher than hay, cut early Moderate energy/protein Moderate, will degrade over time Low energy/protein
Concentrate	Seeds e.g. grains Fruits	Very high energy & good protein Varies

Extensive livestock also occasionally are fed other feed types not used by people or that are out of date etc. to avoid waste e.g. grape marc, brewers grain

Variation in quality between categories

Physiology of Domestic Animals, p. 443

In SE Australia what does pasture look like throughout the year?

What does this actually look like on farm?

Link to Dookie VR

- Not every year is a typical year 2018/19 was a significant rainfall deficiency at Dookie so reduced the expected pasture growth significantly
- 2020 was a much improved year but images not yet available on DookieVR

How do we measure animal requirements?

- The most limiting element of extensive grazing nutrition tends to be energy followed by protein
- Energy in ruminant diets is expressed as megajoules of metabolizable energy MJ of ME (or just MJ)
- Different sized animals at various stage of their lives will have varying requirements e.g. a 2 year old wether sheep weighing 45 kilogram may require 7.7 MJ ME/day, a late pregnant ewe 12 MJ ME/day, a lactating ewe 18 MJ ME/day, milking dairy cow 170 MJ ME/day, late pregnant beef cow 70 MJ ME/day, etc.

How can we simply compare?

• We can choose an example animal and use that as a reference point

THE **DRY SHEEP EQUIVALENT** OR **DSE**

In Victoria a DSE is a 2 year old 45kg Merino sheep (wether or non-lactating, non-pregnant ewe) at maintenance = 7.7 MJ of ME

Other systems

Some feed program may use an adult equivalent (AE) based on a 450 kg Bos taurus steer at maintenance, 2.25 years of age, walking 7km per day = 72.6 MJ ME/day

 Livestock units (LSU) based on 650 kg dairy cow producing 3000kg milk annually = 124.9 MJ ME/day

- The above two are examples to demonstrate the range
- For beef/sheep material we tend to use the DSE

There is always a complication.....

 Unfortunately, sheep in NSW are overall a bit larger than Victorian sheep so the NSW version of a DSE is different FACE PALM

- In NSW the DSE = a 50kg dry sheep, not 45kg
- Hence the DSE MJ for a sheep in NSW is = 9.44 MJ of ME

 While we will use the 45 kg Victorian sheep version it is always important to ensure you are talking the same language as there is a substantial difference!

We can then turn MJ into DSE for our stock

Production class	Metabolisable energy				Crude protein	
	MJ/d DSE		MJ/d	DSE		
	Sheep		<u>Cattle</u>		<u>Sheep</u>	<u>Cattle</u>
Weaners/yearlings	8	1	40-60	6-8	12-16%	
Steers			60-80	8-11		6-12%^
Dry or early pregnant	7.7	1*	60	8-9	6%	6-8%
Late pregnant	9–12	1.5	70	10	8%	9%
Lactating (Merino/beef)	18	2.5	84-130	12-17	10-	12%
Milking dairy cow (20 L/d)			170	23		14-20%
Rams / bulls	15	2	100	15		10%

[•]DSE = 'dry sheep equivalents'

different DSE 'standards' exist, depending on the reference sheep's weight!
 A 45 kg wether requires ~7.2 MJ ME/d for maintenance; 1 DSE = 7.7 MJ/d is now also frequently quoted
 ^ higher protein levels required for weight gain

Primary challenge of extensive animal nutrition

- Calculate feed supply average and range over years and how varies from month to month
- Utilise this knowledge to design stocking rate, management timing/decisions and purchases/sales of livestock
- Some environments may not be suitable to continual stocking or only occasional rotational grazing due to low rainfall/high temperature

Pasture growth rate

- When is limiting time/s?
 - In this example winter maximum routinely limiting
 - Most summers to early autumn = low growth
- An example of where the average can be deceiving

Pasture growth rate varies across region

Decide on the PGR to work with

- Attitude to risk
- Attitude to longer term climate issues eg drying climate and lesser rainfall potentially shorter growing season but relatively gradual
- SE Australia research has produced equations such as the French equation (and others) to aid calculations of optimal stocking rate (SR) based on rainfall