Tema Nr. 8: Mulțimi disjuncte

Timp alocat: 2 ore

Implementare

Se cere implementarea **corectă** și **eficientă** a operațiilor de bază pe **mulțimi disjuncte** (capitolul 21.1 din carte¹) și a algoritmului lui **Kruskal** (găsirea arborelui de acoperire minimă) folosind mulțimi disjuncte (capitolul 23.2).

Se cere să folosiți o pădure de arbori pentru reprezentarea mulțimilor disjuncte. Fiecare arbore trebuie extins cu un câmp *rank* (înălțimea arborelui).

Operațiile de bază pe mulțimi disjuncte:

- MAKE SET (x)
 - o creează o mulțime nouă ce conține elementul x
- UNION (x, y)
 - o realizează reuniunea dintre mulțimea care îl conține pe x și mulțimea care îl conține pe y
 - o euristica *union by rank* ține cont de înălțime celor doi arbori pentru a realiza reuniunea dintre mulțimi
 - o pseudocodul poate fi găsit la Capitolul 21.3 din carte¹
- FIND SET (x)
 - o caută mulțime în care se afla x
 - o euristica *path compression* leagă toate elementele de pe ramura cu x la rădăcina arborelui

Praguri de notare

Nota	Cerințe
5	Implementarea corectă a operațiilor: MAKE_SET, UNION și FIND_SET + demo
7	Implementarea corectă și eficientă a algoritmului lui Kruskal
9	Evaluarea operațiilor pe mulțimi disjuncte folosind algoritmului lui Kruskal
10	Interpretări și discuții

Evaluare

¹ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. *Introduction to Algorithms*

! Înainte de a începe să lucrați pe partea de evaluare, asigurați-vă că aveți un **algoritm corect**! Corectitudinea algoritmilor va trebui demonstrată pe date de intrare de dimensiuni mici (ex: creați 10 mulțimi și executați secvența UNION și FIND_SET pentru 5 elemente).

O dată ce sunteți siguri că algoritmul funcționează corect:

- variați *n* de la 100 la 10000 cu un prag de 100;
- pentru fiecare *n*
 - construiți un graf conex, neorientat și aleatoriu cu ponderi pe muchii (n noduri, n*4 muchii)
 - o determinați arborele de acoperire minima folosind algoritmul lui Kruskal

Evaluați complexitatea operațiilor pe mulțimi disjuncte ca și suma atribuirilor și a comparațiilor pentru fiecare valoare a lui n.