

Session 3:

VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, Patricio Cerda-Mardini*, Felipe del Río Pontificia Universidad Católica de Chile

* mindsdb

Visually-Aware Fashion Recommendation and Design with Generative Image Models

Wang-Cheng Kang UC San Diego wckang@eng.ucsd.edu

Chen Fang Adobe Research cfang@adobe.com Zhaowen Wang Adobe Research zhawang@adobe.com Julian McAuley
UC San Diego
jmcauley@eng.ucsd.edu

a.k.a. DVBPR:
Deep Visually-aware Bayesian Personalized Ranking

About the paper

- Accepted at the International Conference on Data Mining (ICDM), 2017

Authors: Adobe Research & Prof. McAuley's Lab @ UCSD

- Proposes fashion 1) recommendation and 2) design (through GANs)

- We focus on 1)

Methodology

Source: Kang et al. 2017

Context

 Fashion domain is complex: long tails, cold starts, evolving dynamics

 Content-aware recommender systems are well-suited to it

Source: Kang et al. 2017

DVBPR Key Insights

- Opt for "domain-aware" visual embeddings instead of "off-the-shelf" as in VBPR

- Joint training of visual embeddings and recommender system

- Generate new items consistent with each user's preference

Approach

- BPR framework: optimize rank of purchased vs non-purchased items

- Siamese trainable CNNs contrast positive and negative pairs
 - Images are retrieved and rescaled in the DataLoader

Original datasets: Amazon fashion + Tradesy

In this tutorial: Wikimedia Commons dataset

Model

- Users $u \in \mathcal{U}$
- Items $i \in \mathcal{I}$
- Positive items \mathcal{I}_u^+
- Item image X_i

VBPR:

$$x_{u,i} = \beta_i + \gamma_u^T \gamma_i + \theta_u^T (E \cdot f_i)$$

DVBPR:

$$x_{u,i} = \beta_i + \gamma_u^T \gamma_i + \theta_u^T \phi(X_i)$$

Model

$$x_{u,i} = \beta_i + \gamma_u^T \gamma_i + \theta_u^T \phi(X_i)$$

$$\uparrow \qquad \uparrow$$
We keep this! Trainable CNN

Convolutional Neural Networks

- We use AlexNet with K=100

AlexNet. Source: Han et al. 2017

- Paper uses CNN-F with K=50

conv1	conv2	conv3	conv4	conv5	full6	full7	full8
64x11x11	256x5x5	256x3x3	256x3x3	256x3x3	4096	4096	K
st. 4, pad 0	st. 1, pad 2	st. 1, pad 1	st. 1, pad 1	st. 1, pad 1	drop-	drop-	-
x2 pool	x2 pool	-	-	x2 pool	out	out	-

CNN-F. Source: Kang et al. 2017

BPR Optimization

$$u \in \mathcal{U}$$
 $i \in \mathcal{I}_u^+$ $j \in \mathcal{I} \setminus \mathcal{I}_u^+$ $(u, i, j) \in \mathcal{D}$

$$\mathcal{D} = \{(u, i, j) | u \in \mathcal{U} \land i \in \mathcal{I}_u^+ \land j \in \mathcal{I} \setminus \mathcal{I}_u^+ \}$$

$$\max \sum_{(u,i,j)\in\mathcal{D}} \ln \sigma(x_{u,i,j}) - \lambda_{\Theta} \|\Theta\|^2$$

$$x_{u,i,j} = x_{u,i} - x_{u,j}$$

Retrieval / Recommendation

$$\delta(u, c) = \underset{i \in X_c}{\operatorname{argmax}} \ x_{u,i} = \underset{i \in X_c}{\operatorname{argmax}} \ \beta_i + \gamma_u^T \gamma_i + \theta_u^T \phi(X_i)$$

Observations

- Model converges after 5 epochs (~12 hours on an 8-core CPU + GTX 1080 Ti)

In our experience, latent CF factors are crucial for the model to learn

Datasets

Dataset	# Users	# Items	# Interactions	# Categories
Amazon Fashion	64583	234892	513367	6
Amazon Women	97678	347591	827678	53
Amazon Men	34244	110636	254870	50
Tradesy.com	33864	326393	655409	N/A
Wikimedia	1078	32959	96991	N/A

- Wikimedia interactions are related to image quality

Implementation details - Model Class

```
class DVBPR(nn.Module):
   def init (self, n users, n items, K=2048, use cnnf=False):
       super(). init ()
       self.cache = None
       # CNN for learned image features
       if use cnnf:
            self.cnn = CNNF(hidden dim=K) # CNN-F is a smaller CNN
       else:
           alexnet = models.alexnet(pretrained=False)
            final len = alexnet.classifier[-1].weight.shape[1]
            alexnet.classifier[-1] = nn.Linear(final len, K)
            self.cnn = alexnet
       # Visual latent preference (theta)
        self.theta users = nn.Embedding(n users, K)
       # Latent factors (gamma)
        self.gamma users = nn.Embedding(n users, 100)
        self.gamma items = nn.Embedding(n items, 100)
       # Random weight initialization
        self.reset parameters()
```

Implementation details - Forward Pass

```
def forward(self, ui, pimg, nimg, pi, ni):
    ui visual factors = self.theta users(ui) # Visual factors of user u
    ui latent factors = self.gamma users(ui) # Latent factors of user u
    # Items
    pi features = self.cnn(pimg) # Pos. item visual features
    ni features = self.cnn(nimg) # Neg. item visual features
    pi latent factors = self.gamma items(pi) # Pos. item visual factors
    ni latent factors = self.gamma items(ni) # Neg. item visual factors
    x ui = (ui visual factors * pi features).sum(1) + (pi latent factors * ui latent factors).sum(1)
    x uj = (ui visual factors * ni features).sum(1) + (ni latent factors * ui latent factors).sum(1)
    return x ui, x uj
```

Implementation details - Optimization

```
# Forward pass
with torch.set_grad_enabled(phase == "train"):
    pos, neg = self.model(profile, pimg, nimg, pi, ni)
    output = pos-neg
    loss = self.criterion(output, target)
    loss += (1.0 * torch.norm(self.model.theta_users.weight))

# Backward pass
if phase == "train":
    loss.backward()
    self.optimizer.step()
```

Implementation details - Recommendation

```
recommend all(self, user, cache, grad enabled=False):
with torch.set grad enabled(grad enabled):
   # User
    u visual factors = self.theta users(user) # Visual factors of user u
    ui latent factors = self.gamma users(user)
   # Ttems
    i latent factors = self.gamma items.weight # Items visual factors
    x ui = ((i latent factors * ui latent factors).sum(dim=1).squeeze() + \
            (u visual factors * cache).sum(dim=2).squeeze())
    return x ui
```

17

Main Results

AUC	RR	R@20	P@20	nDCG@20	R@100	P@100	nDCG@100
0.83169	0.04507	0.12152	0.00608	0.05814	0.25696	0.00257	0.08245

- Better AUC than in Tradesy and Amazon

- Best Wikimedia performer out of 4 architectures presented in this tutorial

Example recommendations

Consumed (n=10)

Recommendation (n=20)

Recommendation (n=20)

Ground Truth (n=1)

Conclusions

- Wikimedia dataset is different from Amazon and Tradesy
 - Image quality is primary concern
 - Content < Collaborative Filtering

- This might explain why latent non-visual factors are needed
- DVBPR approach is simple yet effective for visual recommendation in challenging domains
- Newer CNN architectures might be interesting to explore
 - EfficientNet
 - Lambda Networks

References

[1] Kang, W., Fang, C., Wang, Z., & McAuley, J. (2017). Visually-Aware Fashion Recommendation and Design with Generative Image Models. *2017 IEEE International Conference on Data Mining (ICDM)*, 207-216.

[2] Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. *Communications of the ACM, 60*, 84 - 90.

[3] Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the Devil in the Details: Delving Deep into Convolutional Nets. *ArXiv*, abs/1405.3531.

Hands-on!

Now, let's (briefly) check out the notebook

Session 3:

VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, Patricio Cerda-Mardini*, Felipe del Río Pontificia Universidad Católica de Chile

* mindsdb

