CIE 6020 Assignment 2

WU, Chenhao 117010285

February 18, 2019

1. Let X, Y, Z be three random variables with a joint probability mass function p(x, y, z). The relative entropy between the joint distribution and the product of the marginal is

$$D(p(x, y, z)||p(x)p(y)p(z)) = E[\log \frac{p(x, y, z)}{p(x)p(y)p(z)}]$$

Expand this in terms of entropies. When is this quantity zero?

Answer

$$\begin{split} E[\log \frac{p(x,y,z)}{p(x)p(y)p(z)}] &= \sum_{z \in \mathcal{Z}} p(z) \sum_{y \in \mathcal{Y}} p(y \mid z) \sum_{x \in \mathcal{X}} p(x \mid y,z) \log \frac{p(x,y,z)}{p(x)p(y)p(z)} \\ &= \sum_{z \in \mathcal{Z}} p(z) \sum_{y \in \mathcal{Y}} p(y \mid z) \sum_{x \in \mathcal{X}} p(x \mid y,z) [\log p(x,y,z) - \log p(x)p(y)p(z)] \\ &= \end{split}$$

2. Let the random variable X have three possible outcomes a, b, c. Consider two distributions on this random variable:

symbol	p(x)	p(y)
a	$\frac{1}{2}$	$\frac{1}{3}$
b	$\frac{1}{4}$	$\frac{1}{3}$
С	$\frac{1}{4}$	$\frac{1}{3}$

Calculate H(p), H(q), D(p||q) and D(q||p). Verify that in this case, $D(p||q) \neq D(q||p)$

Answer

$$H(p) = -\left(\frac{1}{2}\log\frac{1}{2} + \frac{1}{4}\log\frac{1}{4} + \frac{1}{4}\log\frac{1}{4}\right) = \frac{3}{2}$$

$$H(q) = -\left(\frac{1}{3}\log\frac{1}{3} + \frac{1}{3}\log\frac{1}{3} + \frac{1}{3}\log\frac{1}{3}\right) = \log 3$$

$$D(p||q) = \frac{1}{2}\log\frac{\frac{1}{2}}{\frac{1}{3}} + \frac{1}{4}\log\frac{\frac{1}{4}}{\frac{1}{3}} + \frac{1}{4}\log\frac{\frac{1}{4}}{\frac{1}{3}} = \log 3 - \frac{3}{2}$$

$$D(q||p) = \frac{1}{3}\log\frac{\frac{1}{3}}{\frac{1}{2}} + \frac{1}{3}\log\frac{\frac{1}{3}}{\frac{1}{4}} + \frac{1}{3}\log\frac{\frac{1}{3}}{\frac{1}{4}} = -\log 3 + \frac{5}{3}$$

3. Show that $lnx \ge 1 - \frac{1}{x}$ for x > 0, where the equality holds when x = 1.

Proof

Let
$$f(x) = \ln x + \frac{1}{x} - 1$$
, and $f(1) = 0$.

The derivative of f(x) is $\frac{d}{dx}f(x) = \frac{1}{x} - \frac{1}{x^2}$.

(1).When

- 4. Conditioning reduces entropy. Show that $H(Y|X) \leq H(Y)$ with equality iff X and Y are independent.
 - 5. Show that $I(X;Y|Z) \ge 0$ with equality iff $X \to Z \to Y$.
 - 6. Data processing. Let $X_1 \to X_2 \to X_3 \to \dots \to X_n$ form a Markov chain, i.e.,

$$p(x_1, x_2, ..., x_n) = p(x_1)p(x_2|x_1)...p(x_n|x_{n-1})$$

Reduce $I(X_1; X_2, ..., X_n)$ to its simplest form.

- 7. Let X and Y be two random variables and let Z be independent of (X, Y). Show that $I(X; Y) \ge I(X; g(Y, Z))$ for any function g.
- 8. Bottleneck. Suppose that a (non-stationary) Markov chain starts in one of n states, necks down to k < n states, and then fans back to m > k states. Thus $X_1 \to X_2 \to X_3$, that is, $p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$, for all $x_1 \in \{1, 2, ..., n\}$, $x_2 \in \{1, 2, ..., k\}$, $x_3 \in \{1, 2, ..., m\}$