Holographic Entanglement Entropy in the FLRW Universe

Fumiya Sano

Institute of Science Tokyo / IBS CTPU-CGA

Contribute talk

August 27, 2025 at National Tsing Hua University

Based on

2504.10457 with Toshifumi Noumi (UTokyo), Yu-ki Suzuki (YITP)

Friedmann-Lemaitre-Robertson-Walker spacetime

Cosmological principle: the universe is isotropic and homogeneous

$$ds^2 = a^2(\eta) \left(-d\eta^2 + \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right) \qquad \begin{cases} k > 0 : \text{Sphere} \\ k = 0 : \text{Flat} \\ k < 0 : \text{Hyperbolic} \end{cases}$$

$$\begin{cases} k > 0 : \text{Sphere} \\ k = 0 : \text{Flat} \\ k < 0 : \text{Hyperbolic} \end{cases}$$

energy density pressure

Matter fields: perfect fluid
$$T^{\mu}_{\nu}=(\rho+p)u^{\mu}u_{\nu}+p\delta^{\mu}_{\nu}=\mathop{\mathrm{diag}}(-\rho,p,p,p)$$
 with equation of state $p=w\rho$

Anisotropy and inhomogeneity

There exist deviation from FLRW metric

Cosmic inflation and current observations

☐ A natural initial condition of the universe: cosmic inflation

$$ds^2 \simeq rac{1}{H^2\eta^2}(-d\eta^2 + e^{2\zeta}d{f x}^2)$$
 : quasi-de Sitter spacetime with curvature perturbations

- > Background evolution: quasi-de Sitter prepares flat and causally connected initial condition for the universe.
- \triangleright Cosmo. perturbation: sourced by vacuum fluctuation and gravitational particle production of ζ .
 - \checkmark Correlation functions $\langle 0|\zeta^n(\eta_e)|0\rangle$ at inflation end are transported to observables.

☐ Current observations: power spectrum of curvature perturbations

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'}(\eta_{\mathrm{e}}) \rangle = (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') \frac{2\pi^2}{k^3} P_{\zeta}$$

$$P_{\zeta} \simeq \frac{H^2}{8\pi^2 \epsilon} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

$$n_s \simeq 0.965, \quad \frac{dn_s}{d\log k} \simeq 0.002, \dots$$
 Inflation is consistent to observation.

Future observations and cosmological bootstrap

- **Next observations:** tensor power spectrum and precise observation of scalar bispectrum
- **Bispectrum:** "collider" signal of heavy particles [Chen and Wang 0911.3380, Noumi et al. 1211.1624, Arkani-Hamed and Maldacena 1503.08043]

$$\propto \cos\left(\frac{m_\sigma}{H}\log\frac{k_{\mathrm{long}}}{k_{\mathrm{short}}}\right)$$
 Mass of heavy particles can be determined.

Future observations and cosmological bootstrap

- ☐ Next observations: tensor power spectrum and precise observation of scalar bispectrum
- **Bispectrum:** "collider" signal of heavy particles [Chen and Wang 0911.3380, Noumi et al. 1211.1624, Arkani-Hamed and Maldacena 1503.08043]

$$\propto \cos\left(\frac{m_\sigma}{H}\log\frac{k_{\mathrm{long}}}{k_{\mathrm{short}}}\right)$$
 Mass of heavy particles can be determined.

- Calculation is hard. **bootstrap approach**
 - \blacktriangleright de Sitter symmetry SO(1,4) for "conformal" bootstrap [Baumann, Lee, Pimentel et al. 1811.00024, 1910.14051, 2005.04234]
 - Unitarity and (non-)analyticity: "collider" signal is on branch cut.
 - ✓ Cosmological cutting rules, pole information, and bootstrapping full signal from them [Goodhew et al. 2009.02898, Melville and Pajer 2103.09832, Baumann et al. 2106.05294, Liu et al. 2407.12299, etc.]
 - Perturbative unitarity bounds [Kim et al. 2102.04101, Pueyo et al. 2410.23709 etc.]

Cosmology meets holography

- ☐ dS/CFT and cosmological bootstrap
 - ho $\Psi_{
 m dS}\sim Z_{
 m ECFT}$ on the future boundary [Maldacena astro-ph/0210603]
 - ✓ How is unitarity of Euclidean CFT on the boundary? How to generalize it to quasi-de Sitter?
 - Constraints on dS amplitudes from holography? [AdS/CFT: Hartman et al. 1509.00014, Caron-Huot et al. 2106.10274, etc.]

Cosmology meets holography

- ☐ dS/CFT and cosmological bootstrap
 - ho $\Psi_{
 m dS}\sim Z_{
 m ECFT}$ on the future boundary [Maldacena astro-ph/0210603]
 - ✓ How is unitarity of Euclidean CFT on the boundary? How to generalize it to quasi-de Sitter?
 - Constraints on dS amplitudes from holography? [AdS/CFT: Hartman et al. 1509.00014, Caron-Huot et al. 2106.10274, etc.]
- ☐ Topics in the late time universe
 - GW and amplitude methods in Minkowski background Gravitational EFT, amplitudes for BH merger, ... [Tokuda et al. 2007.15009, Bern et al. 1901.04424, etc.]
 - Dark matter, dark energy, structure formation, ... FFT, entropy growth of the universe, ... [Fan et al. 1008.1591, Gubitoni et al. 1210.0201, Hawking '85, etc.]
 - (How) is holography useful for constraining/UV completing/calculating these phenomena in cosmology?

Holographic principle and entropy ['t Hooft gr-qc/9310026, Susskind hep-th/9409089]

☐ Black hole entropy (Schwarzschild)

- ightharpoonup Bekenstein-Hawking entropy $S_{\mathrm{BH}} = rac{A}{4G}$
- ightharpoonup First law: dM=TdS, Second law: $dS_{\mathrm{BH}}+dS_{\mathrm{rad.}}\geq 0$
- Event horizon have all information of internal region of BH.

Holographic principle and entropy

['t Hooft gr-qc/9310026, Susskind hep-th/9409089]

Black hole entropy (Schwarzschild)

- Event horizon have all information of internal region of BH.

AdS/CFT [Maldacena hep-th/9711200]

$$ds^{2} = \frac{1}{z^{2}}(-dt^{2} + dz^{2} + d\mathbf{x}^{2}), \quad -\infty < z < 0$$

- ightharpoonup CFT on the boundary z=0 reproduce bulk phenomena ($Z_{\rm CFT}=Z_{\rm AdS}$).
- $ightharpoonup ext{Ryu-Takayanagi entropy} ext{ } S = ext{Tr}[
 ho_A \ln
 ho_A] = rac{ ext{Area}(\Sigma_{\partial A})}{ ext{A}G}$ [Ryu and Takayanagi hep-th/0603001, hep-th/0605073]

Guessing holographic dual for a given bulk theory

(Complementary to bulk reconstruction [e.g., Hamilton et al. hep-th/0506118])

☐ RT prescription

Derivation using Euclidean gravitational path integral [Lewkowycz and Maldacena 1304.4926]

$$Z_{
m bd}=Z_{
m grav}$$
 $S=\left.rac{\partial}{\partial n}\ln Z(n)
ight|_{n=1}$, $Z(n)$: generating functional for n-copied theory (replica trick)

$$\Rightarrow \left. \frac{\partial}{\partial n} \ln Z_{\rm grav}(n) \right|_{n=1} = \frac{1}{4G} \int_{\Sigma} \sqrt{g}$$
 Putting Ryu-Takayanagi formula as a conjecture of holography

How to guess dual boundary theory?

Guessing holographic dual for a given bulk theory

(Complementary to bulk reconstruction [e.g., Hamilton et al. hep-th/0506118])

☐ RT prescription

Derivation using Euclidean gravitational path integral [Lewkowycz and Maldacena 1304.4926]

$$\Rightarrow \frac{\partial}{\partial n} \ln Z_{\rm grav}(n) \bigg|_{n=1} = \frac{1}{4G} \int_{\Sigma} \sqrt{g}$$
 Putting Ryu-Takayanagi formula as a conjecture of holography

How to guess dual boundary theory?

- \Box Subadditivity $S_{AB} \leq S_A + S_B$
 - ightharpoonup Concavity of entropy regarding subsystem. E.g., $\frac{\partial^2 S}{\partial x^2} \leq 0$ for 1-dim subsystem ($x \to \lambda x + (1-\lambda)x$)

 - Super-area law of RT entropy (SA violation) imply non-local dual QFT.

 [Li and Takayanagi 1010.3700]

 Constraining boundary theory from RT prescription

de Sitter holographies (in 2+1-dim.)

☐ Original dS/CFT at future horizon [Strominger hep-th/0106113]

- > Bulk and boundary do not share time direction.
- Ryu-Takayanagi prescription gives imaginary entropy,

$$S = \frac{iL}{2G} \ln \left(\frac{l}{\epsilon} \right)$$
 for dS₃/CFT₂

de Sitter holographies (in 2+1-dim.)

Original dS/CFT at future horizon [Strominger hep-th/0106113]

- > Bulk and boundary do not share time direction.
- Ryu-Takayanagi prescription gives imaginary entropy,

$$S = \frac{iL}{2G} \ln \left(\frac{l}{\epsilon} \right)$$
 for dS₃/CFT₂

☐ Timelike boundary: time directions are shared.

Static patch holography [Susskind 2106.03964]

Boundary: event horizon $ar = \frac{1}{H}$

Subsystem: $0 < \phi < \phi_*, \ \eta = \eta_*$

RT entropy: area law $S=\frac{\phi_*}{4G}$

Half holography [Kawamoto et al. 2306.07575]

Boundary: y = Const.

Subsystem: $-x_* < x < x_*, \ \eta = \eta_*$

RT entropy: $S = \frac{\arccos\left(1 - 2x_*^2\right)}{4G}$ (convex)

Extension to FLRW holography

[Nomura et al. 1607.02508, 1611.02702, Franken et al. 2310.20652]

■ Introducing matter fields

$$a(\eta) = L(w\eta)^{1/w}$$
 with $p = w\rho$. $(w = -1 \text{ is de Sitter})$

$$a(\eta) = L(w\eta)^{1/w} \quad \text{with} \quad p = w\rho. \\ \qquad \qquad (w = -1 \text{ is de Sitter}) \qquad \begin{cases} \text{Accelerating} \quad \ddot{a} > 0 \colon & w < 0, \; -\infty < \eta < 0 \\ \text{Decelerating} \quad \ddot{a} < 0 \colon & w > 0, \; 0 < \eta < \infty \end{cases}$$

Weak energy condition

$$T_{\mu\nu}p^{\mu}p^{\nu} \geq 0$$
, p^{μ} : timelike $(1+w)\rho > 0$: positivity of energy (dS saturates the ineq.: vacuum solution)

- Event horizon and apparent horizon
 - Apparent horizon: a surface not feeling expansion $\partial_{\mu}(ar)\partial^{\mu}(ar)=0 \Rightarrow \dot{a}r=1 \Rightarrow r_{\rm AH}=w\eta$
 - Fivent horizon: limitation in propagation of light $r_{\rm EH} = \int_0^0 d\eta = -\eta$ (no EH for decelerating universe) (no EH for decelerating universe)

r = Const.

Simplification in matter entropy

When are matters negligible?

$$S_{\rm RT} + S_m \sim \frac{\mathcal{A}}{4G} + s_m \mathcal{V} + \mathcal{O}(G^0)$$

Entropy of background matters is, in general, leading effect.

> Single component

$$\checkmark$$
 Perfect fluid
$$\begin{cases} s_m = \frac{\rho + P}{T} \sim \frac{\rho}{T} \\ \text{Einstein eq. } \rho \sim \frac{H^2}{G} \end{cases}$$

$$\checkmark$$
 d+1-dim. $\mathcal{A} \sim L^{d-1}, \mathcal{V} \sim L^d$

Simplification in matter entropy

When are matters negligible?

$$S_{\mathrm{RT}} + S_m \sim \frac{\mathcal{A}}{4G} + s_m \mathcal{V} + \mathcal{O}(G^0)$$

Entropy of background matters is, in general, leading effect.

Single component

$$\checkmark$$
 Perfect fluid
$$\begin{cases} s_m = \frac{\rho + \rho}{T} \sim \frac{\rho}{T} \\ \text{Einstein eq. } \rho \sim \frac{H^2}{G} \end{cases}$$

$$\checkmark$$
 d+1-dim. $\mathcal{A} \sim L^{d-1}, \mathcal{V} \sim L^d$

- Outlook: multiple components, perturbations, and realistic entropic growth of the universe.
 - Dominant components in entropy and energy can be different. E.g., radiation vs. non-relativistic matter.
 - Contributions from structure formations (e.g., dark matter halo) and BH entropy? [Egan and Lineweaver 0909.3983, Profumo et al. 2412.11282]

Half FLRW holography

☐ RT prescription for linear subsystem

 \triangleright Subadditivity is violated for any w and any subsystem size (non-standard dual).

^{*} Detailed discussions for behaviors of the entropy is postponed to horizon-type holography.

Horizon-type holography: intro. and pre-summary

- ☐ Parametrization of constant-radius subsystem
 - $ightharpoonup r_* = \lambda r_{
 m AH}$ where $r_{
 m AH} = w \eta_*$ is apparent horizon.

$$\begin{cases} \lambda = 1 & : \text{ AH} \\ \lambda = 1/|w| : \text{ EH if exist} \end{cases}$$

- $f \square$ RT prescription for horizon-type holography: $x_* o \lambda r_{
 m H} \sin rac{\phi_*}{2}$
 - Small scale subadditivity inside AH (defined from local quantity)

 Large scale subadditivity inside EH (defined from global structure)

Horizon-type 1: w > 0

- lacksquare No event horizon. Apparent horizon is at $r_*=w\eta_*$. (parametrization: $r_*=\lambda r_{\mathrm{AH}}$)
- □ Subadditivity
 - $\triangleright \lambda < 1$: SA is satisfied.
 - $\succ \lambda > 1$: SA is violated in small subsystems.
 - AH (locally defined) characterizes small subsystems.
- ☐ Small-subsystem expansion

$$S \simeq \frac{a(\eta_*)\lambda r_{\text{AH}}}{4G} \left(\phi_* - \frac{1}{24} (1 - \lambda^2) \phi_*^3 \right)$$

Sign of
$$\frac{\partial^2 S}{\partial \phi_*^2}$$
 changes at $\lambda=1$.

Horizon-type 2: -1 < w < 0

 $f \square$ Apparent horizon $r_*=w\eta_*$ is inside event horizon $r_*=-\eta_*$ ($r_*=\lambda r_{
m AH}$).

□ Subadditivity

- $\triangleright \lambda < 1$: SA is satisfied.
- $ightharpoonup 1 < \lambda < -1/w$: SA is violated in small subsystems.
- > $\lambda > -1/w$: Entropy diverges when it reaches $\eta = 0$ and becomes complex for larger systems.
 - No geodesic exists beyond event horizon.
 - ✓ EH (defined from global structure) characterizes large scale subsystems.

Horizon-type 3: w < -1

lacksquare Apparent horizon $r_*=w\eta_*$ is outside event horizon $r_*=-\eta_*$. $(r_*=\lambda r_{\mathrm{AH}})$

■ Subadditivity

- $\triangleright \lambda < -1/w$: SA is satisfied.
- $ightharpoonup -1/w < \lambda < 1$: SA is violated due to the discrete transition.
 - ✓ There exist two solutions outside event horizon.
- $\geq \lambda > 1$: Entropy becomes complex at future horizon.

Implication (or outlook): weak energy condition and horizon

[see, e.g., Allais and Tonni 1110.1607 for other spacetime]

□ Apparent horizon

- > Small subsystem expansion $S \simeq \frac{a(\eta_*)\lambda r_{\rm AH}}{4G} \left(\phi_* \frac{1}{24}(1-\lambda^2)\phi_*^3\right)$
- > Apparent horizon outside event horizon > some superluminal features in small scale?

☐ Weak energy condition

$$T_{\mu\nu}p^{\mu}p^{\nu}\geq 0, \quad p^{\mu}: \text{ timelike} \quad \Longrightarrow \quad (1+w)\rho\geq 0: \text{ positivity of energy}$$

- WEC is also defined at each point of spacetime.
- ➤ Violation of WEC can be associated with superluminal propagation [e.g., Dubovsky et al. hep-th/0512260].
- Convex entropy (e.g., non-locality on bdy.)
 WEC violation in bulk theory
 AH outside EH in bulk theory

may be related to each other through superluminality.

Summary

☐ Q. What if there exist FLRW holography?

Motivation: growing interests of EFT and amplitude in cosmology.

- ☐ Constraining boundary theory from RT prescription and subadditivity (~ unitarity and locality)
 - > Half holography

Subadditivity is violated.

Apparent horizon is a suitable screen for standard matter w > -1.

> Implication from horizon-type holography

Convex entropy (e.g., non-locality on bdy.)

WEC violation in bulk theory

AH outside EH in bulk theory

may be related to each other through superluminality.