应用概率统计(一)

基本术语

样本空间 Ω

样本点 ω

随机事件 E

空集Ø

基本事件 $\{\omega\}$

求积符号 $\prod_{i=1}^{n}$

求和符号 $\sum_{i=1}^{n}$

基本关系

关系	表示方式	其他
包含	$A{\subset}B$ or $B{\subset}A$	
相等	<i>A</i> = <i>B</i> or <i>B</i> = <i>A</i>	
互斥 (互不相容)	$A\cap B=\varnothing$	
事件的并 (和)	$A \cup B$	$A_1 \cup A_2 \cup \cdots \cup A_n = \cup_{i=1}^n An$
事件的交 (积)	$A \cap B$	$A_1\cap A_2\cap \cdots \cap A_n=\cap_{i=1}^n A_i$
差事件	A - B = $\{\omega \omega\in A and \omega otin B\}$	
对立事件	$\overline{A} = B$, $\overline{B} = A$	$A\cap B=arnothing, A\cup B=\Omega$

事件的运算律

- 1. 交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 2. 结合律: $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$
- 3. 分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C), (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 4. 对偶律: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$

5. 若
$$A \subset B$$
,则 $A \cup B = B$, $A \cap B = A$

6. 事件
$$A$$
与 B 的差, $A - B = A \cap \overline{B} = A\overline{B} = A - AB$

随机事件的概率

概率的性质

1.
$$0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$

3.
$$P(\varnothing) = 0$$

4. (可列可加性)
$$P(\bigcup_{n=1}^{\infty})A_n = \sum_{n=1}^{\infty} P(A_n)$$

5. (有限可加性)
$$P(\bigcup_{i=1}^n)A_i = \sum_{i=1}^n P(A_i)$$

- 6. 对任意事件A,有 $P(\overline{A}) = 1 P(A)$
- 7. 对任意2个事件A, B, 有P(A B) = P(A) P(AB)
- 8. (加法公式) 对任意2个事件 $A, B, 有 P(A \cup B) = P(A) + P(B) P(AB)$
- 9. 对任意3个事件,有 $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(AB) P(AC) P(BC) + P(ABC)$

1.古典概型

$$P(A) = rac{n_A}{n_\Omega} = rac{A$$
包含的样本点数

2.计数原理

• 加法原理: 完成某件事有m类不同的方式,每个方式有n; 种完成方法

故共有
$$n_1+n_2+\cdots+n_m=\sum_{i=1}^m n_i$$

• 乘法原理: 完成某件事需要m个步骤,每个步骤有n; 种完成方法,故

共有
$$n_1 n_2 \cdots n_m = \prod_{i=1}^m n_i$$

• 排列:从n个元素中取r个有排列的元素
$$\begin{cases} 1. \text{ 有放回选取}: A_n^r = n^r \\ 2. \text{ 无放回选取}: A_n^r = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!} \\ \exists \, n = r \text{th} \,, A_n^r = n! \end{cases}$$

• 组合: 从n个元素中任意取r个元素,则有 C_n^r

$$A_n^r=C_n^r\cdot r! o C_n^r=rac{A_n^r}{r!}=rac{n(n-1)\cdots(n-r+1)}{r!}=rac{n!}{r!(n-r)!}$$

$$C_n^r = C_n^{n-r}$$
 $C_n^{r-1} + C_n^r = C_{n+1}^r$

3.条件概率

$$P(B \mid A) = \frac{P(AB)}{P(A)} \rightarrow P(AB) = P(B \mid A)P(A)$$

$$ightarrow \ P(A_1A_2A_3\cdots A_n) = P(A_1)\prod_{i=2}^n P(A_i|A_1A_2\cdots A_{i-1})$$

4.全概率公式

$$P(B) = \sum_{i=1}^n P(A_i) P(B|A_i)$$

5.贝叶斯公式

$$P(A_i|B) = rac{P(A_iB)}{P(B)} = rac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n} P(A_i)P(B|A_i)}$$

6.伯努利实验

若试验E中的两个事件 A_{Pl} \overline{A} (只有两种结果),他们发生的概率分别为

$$P(A) = p(0 ,这样的试验被称为伯努利试验,$$

n重独立重复试验称为n重伯努利试验。