machine learning exercise

in this exercies we will be working with titanic dataset to descover patterns and extract information from the data after preprocessing it work by sharifah saleh

▼ import libraries and dataset

import pandas as pd
import numpy as np

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

titanic = pd.read_csv("/content/titanic.csv")

titanic

\Rightarrow	Passenge	rId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN

891 rows × 12 columns

titanic.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Ducu	COTAMILE (COC	ar re coramiis).	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

preprocessing the data

in this section we will deal with missing data, standrizing the data and prepare it before the training process

missing data

titanic.isna().sum()

PassengerId	6
Survived	6
Pclass	6
Name	6
Sex	6
Age	177
SibSp	6
Parch	6
Ticket	6
Fare	6
Cabin	687
Embarked	2
dtvne: int64	

 $\verb|sns.heatmap(titanic.isna())| | \verb|wisulaze| | the missing data| \\$

titanic['Age'] = titanic['Age'].fillna(titanic['Age'].mean())
#fill the column age from the titanic dataset with it's mean

sns.heatmap(titanic.isna())

titanic.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarke
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	(
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

titanic.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 11 columns): Non-Null Count Dtype # Column -----0 PassengerId 891 non-null int64 Survived 891 non-null int64 1 Pclass 891 non-null int64 891 non-null object 3 Name 4 Sex 891 non-null object 891 non-null float64 5 Age SibSp 891 non-null int64 6 Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 10 Embarked 889 non-null object dtypes: float64(2), int64(5), object(4) memory usage: 76.7+ KB

converting categorical features(encoding) the process of encoding categorical data into 1s and 0s to be easier to work with later on

```
titanic['Sex'].value_counts()
     male
     female
              314
     Name: Sex, dtype: int64
titanic['Embarked'].value_counts()
#where did the passengers come from
     S
          644
     C
          168
          77
     Name: Embarked, dtype: int64
#start incodinf with the get dummies function
sex = pd.get_dummies(titanic['Sex'])
sex
```

	male	\blacksquare
0	1	th
1	0	
2	0	
3	0	
4	1	
886	1	
887	0	
888	0	
889	1	
890	1	

891 rows × 1 columns

emb = pd.get_dummies(titanic['Embarked'])
emb

		С	Q	S	=	
	0	0	0	1	11.	
	1	1	0	0		
	2	0	0	1		
	3	0	0	1		
	4	0	0	1		
8	386	0	0	1		
8	387	0	0	1		
8	388	0	0	1		
8	389	1	0	0		
8	390	0	1	0		
89	91 ro	ws >	< 3 c	olumns	S	

now we want to merge the column we just created into the dataset

```
titanic ['Sex']= sex
emb = pd.Series(['C', 'S', 'C'], name='emb')
titanic['emb'] = emb

titanic = pd.concat([titanic, sex, emb], axis = 1)
encoded_emb = pd.get_dummies(titanic['emb'], prefix='emb')
titanic = pd.concat([titanic, encoded_emb], axis=1)
```

```
titanic = titanic.drop('emb', axis=1)
```

now we want to drop the columns that won't be useful in determine if the person dies or sruvives

titanic

	Survived	Pclass	Age	SibSp	Parch	Fare	male	emb_C	emb_S	emb_C	emb_S	\blacksquare
0	0	3	22.000000	1	0	7.2500	1	1	0	1	0	ıl.
1	1	1	38.000000	1	0	71.2833	0	0	1	0	1	
2	1	3	26.000000	0	0	7.9250	0	1	0	1	0	
3	1	1	35.000000	1	0	53.1000	0	0	0	0	0	
4	0	3	35.000000	0	0	8.0500	1	0	0	0	0	
886	0	2	27.000000	0	0	13.0000	1	0	0	0	0	
887	1	1	19.000000	0	0	30.0000	0	0	0	0	0	
888	0	3	29.699118	1	2	23.4500	0	0	0	0	0	
889	1	1	26.000000	0	0	30.0000	1	0	0	0	0	
890	0	3	32.000000	0	0	7.7500	1	0	0	0	0	

891 rows × 11 columns

titanic.rename(columns={'male':'Gender'}, inplace = True)

titanic

	Survived	Pclass	Age	SibSp	Parch	Fare	Gender	emb_C	emb_S	emb_C	emb_S	##
0	0	3	22.000000	1	0	7.2500	1	1	0	1	0	ıl.
1	1	1	38.000000	1	0	71.2833	0	0	1	0	1	
2	1	3	26.000000	0	0	7.9250	0	1	0	1	0	
3	1	1	35.000000	1	0	53.1000	0	0	0	0	0	
4	0	3	35.000000	0	0	8.0500	1	0	0	0	0	
886	0	2	27.000000	0	0	13.0000	1	0	0	0	0	
887	1	1	19.000000	0	0	30.0000	0	0	0	0	0	
888	0	3	29.699118	1	2	23.4500	0	0	0	0	0	
889	1	1	26.000000	0	0	30.0000	1	0	0	0	0	
890	0	3	32.000000	0	0	7.7500	1	0	0	0	0	

891 rows × 11 columns

▼ Data analysis

here we will begin analysing the data to see how can we predect a person's sruvival chances with the given data

```
sns.countplot(x='Survived', data= titanic, palette= 'pastel')
```

<Axes: xlabel='Survived', ylabel='count'>

 $sns.countplot(x='Survived',\ data=\ titanic,\ hue='Gender',\ palette=\ 'pastel')\\$ #print the surivial rate depending on the Gender feature

<Axes: xlabel='Survived', ylabel='count'>

titanic['Age'].hist(bins=12)
#hisograph shows sruvival rate depending on age feature

building the model

titanic

	Survived	Pclass	Age	SibSp	Parch	Fare	Gender	emb_C	emb_S	emb_C	emb_S	#
0	0	3	22.000000	1	0	7.2500	1	1	0	1	0	ılı
1	1	1	38.000000	1	0	71.2833	0	0	1	0	1	
2	1	3	26.000000	0	0	7.9250	0	1	0	1	0	
3	1	1	35.000000	1	0	53.1000	0	0	0	0	0	
4	0	3	35.000000	0	0	8.0500	1	0	0	0	0	
886	0	2	27.000000	0	0	13.0000	1	0	0	0	0	
887	1	1	19.000000	0	0	30.0000	0	0	0	0	0	
888	0	3	29.699118	1	2	23.4500	0	0	0	0	0	
889	1	1	26.000000	0	0	30.0000	1	0	0	0	0	
890	0	3	32.000000	0	0	7.7500	1	0	0	0	0	

891 rows × 11 columns

y = titanic['Survived']

#this is the class feature we want to predict using the data

X = titanic.drop('Survived', axis = 1)

#this way x will store all the columns of dataset after dropping the class label

Χ

	Pclass	Age	SibSp	Parch	Fare	Gender	emb_C	emb_S	emb_C	emb_S	##
0	3	22.000000	1	0	7.2500	1	1	0	1	0	th
1	1	38.000000	1	0	71.2833	0	0	1	0	1	
2	3	26.000000	0	0	7.9250	0	1	0	1	0	
3	1	35.000000	1	0	53.1000	0	0	0	0	0	
4	3	35.000000	0	0	8.0500	1	0	0	0	0	
886	2	27.000000	0	0	13.0000	1	0	0	0	0	
887	1	19.000000	0	0	30.0000	0	0	0	0	0	
888	3	29.699118	1	2	23.4500	0	0	0	0	0	
889	1	26.000000	0	0	30.0000	1	0	0	0	0	
890	3	32.000000	0	0	7.7500	1	0	0	0	0	

891 rows × 10 columns

У

```
886
           0
     887
     888
           0
     889
           1
     890
           a
     Name: Survived, Length: 891, dtype: int64
now we will split the data using sklearn model
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=40 )
X train.shape
     (623, 10)
y_train.shape
     (623,)
training the model
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
     ▼ KNeighborsClassifier
     KNeighborsClassifier()
y_pred = classifier.predict(X_test)
y_pred
#it's in series form and we will have to turn it into array later
     0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
           1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
           1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
           1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,
           1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
           1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
           1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,
           1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,
           1, 0, 0, 0])
now we will compare the y_pred with the y_test to see how accurate our model was
y_test.values
#values funtion turn array into series
     1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
           1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
           1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1,
           1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
           0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,
           0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
           1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
           0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
           0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,
           0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
           1, 1, 0, 1])
```

model evaluation

here we will work on inhancing our model's predictions to be more accurate

the sum of 26 + 24 is 50 and that's the number of wrong predictions we made

from sklearn.metrics import classification_report

The classification_report function in scikit-learn (sklearn) is used to generate a text report that provides a comprehensive evaluation of a classification model's performance. It is particularly useful for evaluating the quality of predictions made by a classifier on a classification task

print(classification_report(y_pred, y_test))

support	f1-score	recall	precision	
170	0.75	0.72	0.78	0
98	0.61	0.65	0.57	1
268	0.69			accuracy
268 268	0.68 0.70	0.69 0.69	0.68 0.71	macro avg weighted avg
	0.70	0.69	0.71	weighted avg