

Data Collection and Preprocessing Phase

Date	28 Sep 2024
Team ID	team-740082
Project Title	Real-time Bone Fracture Detection with YOLO-V8 Using X-ray Images
Maximum Marks	6 Marks

Preprocessing Template

Preprocessing involves resizing X-ray images to a consistent input size, normalizing pixel values for uniformity, and applying noise reduction techniques to enhance image clarity. Data augmentation, including rotations, flips, and brightness adjustments, is used to improve model robustness. Labels are converted into YOLO-compatible formats for efficient training.

Section	Description
Data Overview	Give an overview of the data, which you're going to use in your project.
Resizing	Resize images to a specified target size.
Normalization	Normalize pixel values to a specific range.
Data Augmentation	Apply augmentation techniques such as flipping, rotation, shifting, zooming, or shearing.
Denoising	Apply denoising filters to reduce noise in the images.
Edge Detection	Apply edge detection algorithms to highlight prominent edges in the images.

Color Space Conversion	Convert images from one color space to another.
Image Cropping	Crop images to focus on the regions containing objects of interest.
Batch Normalization	Apply batch normalization to the input of each layer in the neural network.

Data Preprocessing Code Screenshots

```
#loading data
                                               {x}
                                                             import glob
                                                ⊙ಾ
                                                             import matplotlib.pyplot as plt
                                                image_paths = glob.glob('/content/three-1')
                                                             images=[cv2.imread(img_path) for img_path in image_paths]
                                                             if images:
Loading Data
                                                                 plt.imshow(cv2.cvtColor(images[0], cv2.COLOR_BGR2RGB))
                                                                 plt.show()
                                                                 print("No images found in the specified directory.")
                                                      import glob
                                               image_paths = glob.glob('/content/three-1/*.*') # Added /*.* to find files within the directory
                                                         print(image_paths)
                                               print("No images found in the specified directory. Check the path and file existence.")
Resizing
                                                              resized_images = [cv2.resize(img, (640, 640)) for img in images]
                                                              if resized_images: #Check if resized_images has any elements before attempting to access them
plt.imshow(cv2.cvtColor(resized_images[0], cv2.CoLoR_BGR2RGB))
```

plt.axis('off')
plt.show()

Normalization	#normalisation # fix the typo: 'ing' should be 'img' normalized_images = [img/255.0 for img in resized_images] # Check if the list is empty before accessing elements if normalized_images: #Display a normalized image as a sample plt.imshow(normalized_images[0]) plt.axis('off') plt.show() else: print("No images found or resizing failed, resulting in an empty normalized_images list.")
Data Augmentation	# #augmentation augmented_images=[] for img in resized_images: flipped_img- cv2.flip(img, 1) #Horizontal flip rotated img -cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE) #90-degree rotation #Fixed typo: CLOCWISE to CLOCKWISE augmented_images.extend([flipped_img, rotated_img]) # Check if augmented_images has any elements before attempting to access them if augmented_images: #IDISJUAY on augmented image as a sample plt.imshow(cv2.cvtColor(augmented_images[0], cv2.COLOR_BGR2RGB)) plt.axis('off') #Fixed typo: pit to plt plt.show() else: print("No images found or augmentation failed, resulting in an empty augmented_images list.")
Denoising	denoising denoised_images= [cv2.GaussianBlur(img, (5, 5), 0) for img in resized_images] # Check if the list is empty before accessing elements if denoised_images: #Display a denoised image as a sample plt.imshow(cv2.cvtcolor(denoised_images[0], cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() else: print("No images found or resizing failed, resulting in an empty denoised_images list.")
Edge Detection	import cv2 import matplotlib.pyplot as plt #edge detection edge_detected_images= [cv2.Canny (img, 100, 200) for img in resized_images] # Check if the list is empty before accessing elements if edge_detected_images: #Display an edge detected image as a sample plt.imshow(edge_detected_images[0], cmap='gray') #Fixed typo: cmap to cmap plt.axis('off') #Fixed typo: pit to plt plt.show() else: print("No images found or resizing failed, resulting in an empty edge_detected_images list.")
Color Space Conversion	import cv2 import cv2 import antipolitib.pyplot as plt # Colorspace convertion # Colorspace co
Image Cropping	import cv2 import matplotlib.pyplot as plt ### ### ### ### ### ### ### ### ### #

