IN 406 – Théorie des Langages Cours 5 : Langage non-régulier, lemme de l'étoile

Franck Quessette - Franck.Quessette@uvsq.fr

Université de Versailles – Saint-Quentin

V4 2020-2021

Rappel 1

Notions déjà vues :

- ▶ lettre, alphabet **fini** ;
- ▶ mot, langage fini ou infini ;
- langage rationnel (opérations ensemblistes);
- automate fini non-déterminsite (AFN), automate fini déterministe;
- ▶ langage reconnaissable par automate | fini ;
- expression régulière.
- langage reconnaissable par une expression régulière.

Langage fini

Soit $L = \{a^n b^n, 0 \le n \le K\}$, est fini, il contient K + 1 mots.

Automate

Théorème

Soit $L = \{a^n b^n, 0 \le n\}$, il n'existe pas d'automate fini reconnaissant exactement L.

Preuve

Par l'absurde : supposons qu'un automate sans ε -transition $\mathcal A$ reconnaisse exactement L. Soit N le nombre d'états de cet automate et considérons le mot $w=a^Nb^N$. Soient $q_0^{(w)}, q_1^{(w)}, \ldots, q_{2\times N}^{(w)}$ ($q_0^{(w)}=q_0$ et $q_{2\times N}^{(w)}\in F$) la suite des états utilisés lors de la reconnaissance de w. w étant plus long que le nombre d'états de l'automate, la suite des états contient nécessairement un état qui apparait au moins deux fois. Soit q le premier état dans la suite des $q_i^{(w)}$ qui apparait deux fois.

Preuve (suite)

La reconnaissance de w peut être factorisée en trois morceaux :

- ▶ De l'état initial $q_0^{(w)}$ jusqu'au premier passage par l'état \boxed{q} , ce qui reconnait un mot w_1 .
- ▶ Du premier passage par q jusqu'au deuxième passage par q, ce qui reconnait un mot w_2 .
- ▶ Du deuxième passage par q jusqu'à l'état final $q_{2\times N}^{(w)}$, ce qui reconnait un mot w_3 .

Donc $w = w_1w_2w_3$ avec $0 < |w_2| \le N$. Le mot $w' = w_1w_2w_2w_3$ est également reconnu par le langage puisque pour reconnaitre w_2 on commence par q et on termine par q. Ce cycle peut donc être emprunté autant de fois que l'on veut.

Preuve (suite)

On va montrer que $w' \notin L$, ce qui est contradictoire puisque l'automate est censé reconnaître exactement L.

Comme $w = w_1 w_2 w_3 = a^N b^N$, il y a trois "découpages" possibles de w:

- ▶ $\frac{w_2}{w_3}$ ne contient que des a: $w_1 = a^x$, $w_2 = a^y$ (y > 0) et $w_3 = a^{N-x-y}b^N$. Dans ce cas $w' = a^{N+y}b^N$ et $w' \notin L$.
- ▶ $\frac{w_2 \text{ contient des } a \text{ et des } b}{(x+y>0) \text{ et } w_3 = b^{N-y}}$. Dans ce cas $w' = a^N b^y a^x b^N$ et $w' \notin L$.
- ▶ w_2 ne contient que des b: $w_1 = a^N b^x$, $w_2 = b^y$ (y > 0) et $w_3 = b^{N-x-y}$. Dans ce cas $w' = a^N b^{N+y}$ et $w' \notin L$.

On a donc une contradiction ce qui prouve qu'un automate fini reconnaissant L n'existe pas

Pourquoi $a^n b^n$ pose problème?

Idée intuitive

- ▶ Dans le langage aⁿbⁿ, il faut "compter" le nombre de a pour faire le même nombre de b. Ce compteur n'est pas borné.
- L'automate n'a comme mémoire uniquement l'état courant, comme le nombre d'états est fini, on ne peut pas mémoriser un nombre quelconque de valeurs.
- On va, par la suite rajouter une pile pour pouvoir faire compteur infini.

Lemme de l'étoile (ou lemme de la pompe)

Lemme de l'étoile

SI L est reconnaissable par un automate fini \mathcal{A} à N états, ALORS

 $\forall w \in L \text{ avec } |w| \geq N$, \exists factorisation w = xyz avec |y| > 0 telle que $\forall n \geq 0$, xy^nz est reconnu par A et donc appartient à L.

Utilisation du lemme de l'étoile

Utilisation de la **contraposée** du lemme pour montrer qu'un langage n'est pas régulier :

SI $\exists w \in L, \forall x, y, z \text{ avec } w = xyz \text{ et } |y| > 0, \exists n > 1, xy^nz \notin L$ AL ORS

L n'est pas régulier

Preuve du lemme de l'étoile

Preuve

Même idée que pour $a^n b^n$.

S'il n'existe pas de mot plus long que |Q|, le lemme est vérifié. Soit w, tel que |W|>|Q|. Soient $q_0^{(w)},q_1^{(w)},\ldots,q_{|w|}^{(w)}$ ($q_0^{(w)}=q_0$

et $q_{|w|}^{(w)} \in F$) la suite des états utilisés lors de la reconnaissance de w.

w étant plus long que le nombre d'états de l'automate, la suite des états contient nécessairement un état qui apparait au moins deux fois. Soit q le premier état dans la suite des $q_i^{(w)}$ qui apparait deux fois.

Preuve du lemme de l'étoile

Preuve

w peut être factorisé en xyz avec :

- x le mot reconnu de $q_0^{(w)}$ au premier passage par q;
- ightharpoonup y le mot reconnu entre les deux premiers passages par q,
- ▶ 0 < |y| car il n'y a pas d' ε -transition;
- ▶ $|y| \le |Q|$ car |q| est le premier état rencontré deux fois;
- ightharpoonup z le mot reconnu entre q et l'état final $q_{|w|}^{(w)}$.

On peut donc reconnaître plusieurs y consécutifs et donc $xy^nz \in L$ pour tout entier $n \ge 0$

Exemples

Exemples

- ▶ le langage des mots ayant autant de *a* que de *b*;
- ▶ le langage des palindromes;
- ▶ le langage des mots ayant moins de *a* que de *b*;
- ▶ les mots de Dyck, mots bien parenthésés sur un alphabet de parenthèses : ([()[]])().

```
( [ ( ) [ ] ] ) ( )
```

Exemples

Exemples

- ▶ le langage des mots ayant autant de *a* que de *b*;
- ► le langage des palindromes;
- ▶ le langage des mots ayant moins de a que de b;
- ▶ les mots de Dyck, mots bien parenthésés sur un alphabet de parenthèses : ([()[]])().

Exemple de preuve plus compliquée

Exemple

Montrer que $L = \{a^{n^2}\}$ n'est pas régulier.

Observation 1

$$L = \{\varepsilon, a, a^4, a^9, a^{16}, \ldots\}.$$

Notons $w_n = a^{n^2}$ le $n^{\text{ème}}$ mot de cette suite.

Calculons $|w_{n+1}| - |w_n| = (n+1)^2 - n^2 = 2n+1$. La différence entre deux mots consécutifs augmente de façon linéaire avec n.

Exemple de preuve plus compliquée

Observation 2

Soit $w \in \Sigma^*$, et soit une factorisation de w en trois sous-mots : w = xyz.

Considérons la suite $\{xz, xyz, xy^2z, xy^3z, xy^4z, ...\}$. La différence du nombre de caractères entre deux mots consécutifs de cette suite est constante puisqu'elle est toujours égale à |y|.

Preuve

Soit $\mathcal{A} = (\Sigma, Q, q_0, F, T)$ l'automate reconnaissant L. On choisit un mot w_n tel que :

- $|w_n| \ge |Q|$
- $w_n = xyz$ avec $|y| \le |Q|$
- ▶ 2n + 1 > |Q|

Exemple de preuve plus compliquée

Fin de la preuve

En prenant N = |Q|, quelque soit la factoristaion $w_n = xyz$. Avec l'observation 1, on a que si xy^2z appartient au langage alors :

$$|xy^2z| - |xyz| \ge 2n + 1 > |Q|$$

Et par l'observation 2 on a :

$$|xy^2z| - |xyz| = |y| \le |Q|$$

Grammaire

Définition

Une **grammaire** $\mathcal{G} = (\Sigma, V, S, \mathcal{P})$ telle que :

- Σ un alphabet fini de symboles terminaux ;
- V un alphabet fini de symboles non terminaux ou variables, $V \cap \Sigma = \emptyset$;
- \triangleright $S \in V$ appelé axiome;
- ▶ $\mathcal{P} \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ l'ensemble des rêgles de production.

Exemple

$$\Sigma = \{a, b\}, \ V = \{S\} \text{ et } \mathcal{P} = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$$

Cette grammaire génère le langage aⁿbⁿ.

Grammaire

Exemple

$$\Sigma = \{a\}, \ V = \{S\} \ ext{et} \ \mathcal{P} = \{S\} \ A = \{S\} \$$

Langage des mots avec un nombre pair de a.

Exemple

$$\Sigma = \{a,b,c\},\ V = \{S,X\}$$
 et les règles de $\mathcal{P} = \{S,A\}$ et

Langage des mots qui se terminent par ab.

Écriture plus compacte : $\mathcal{P} = \{S o (a+b+c)S \mid ab \}$.

Hiérarchie de Chomski

Soit une grammaire $\mathcal{G} = (\Sigma, V, S, \mathcal{P})$:

Type	Langage	Grammaire	Machine
3	rationnel,	régulière droite	
	régulier	X o a, X o aY, X o arepsilon	automate
	ou	$X,Y\in V$, $a\in \Sigma$	fini
	reconnaissable	(régulière gauche)	
2	algébrique	algébrique ou hors-contexte	automate
	ou	$X \to \alpha$	à pile
	hors-contexte	$X \in V$, $\alpha \in (\Sigma \cup V)^*$	
1		contextuelle	machine
	contextuel	$\alpha X \beta \to \alpha \gamma \beta$	de Turing
		$X \in V$, $\alpha, \beta, \gamma \in (\Sigma \cup V)^*$	bornée
0	récursivement	générales	machine
	énumérable	$\alpha \to \beta$	de Turing
	Chamerable	$\alpha, \beta \in (\Sigma \cup V)^*$	ue ruring