HW3 Intelligent Systems
Unsupervised Machine Learning

Fardin Abbasi 810199456

School of Electrical & Computer Engineering

College of Engineering

University of Tehran

Questions

Q1: Distance Metrics	3
A: Choose the best distance metric	3
B: Dissimilarity matrix	4
Q2: Clustering algorithms	6
A: K-means clustering	6
B: Hierarchical clustering	10
Q3: K-means Vs. K-median	13
K-means++	13
C:	13
D:	13
K-median++	14
A:	14
B:	14

Q1: Distance Metrics

A: Choose the best distance metric

Distance Metric	Dataset
Euclidean distance	Astronomical
Cosine similarity	Text documents
Jaccard similarity	Medical experiments
DBSCAN	Housing data

DBSCAN

The pseudocode of DBSCAN algorithm is as followed: Read More

```
ALGORITHM 1: Pseudocode of Original Sequential DBSCAN Algorithm
   Input: DB: Database
   Input: \varepsilon: Radius
   Input: minPts: Density threshold
   Input: dist: Distance function
   Data: label: Point labels, initially undefined
 1 foreach point p in database DB do
                                                                              // Iterate over every point
        if label(p) \neq undefined then continue
                                                                              // Skip processed points
        Neighbors N \leftarrow \text{RangeQuery}(DB, dist, p, \varepsilon)
                                                                              // Find initial neighbors
        if |N| < minPts then
                                                                              // Non-core points are noise
             label(p) \leftarrow Noise
            continue
        c \leftarrow \text{next cluster label}
                                                                              // Start a new cluster
        label(p) \leftarrow c
 8
        Seed set S \leftarrow N \setminus \{p\}
                                                                              // Expand neighborhood
        foreach q in S do
10
             if label(q) = Noise then label(q) \leftarrow c
11
             if label(q) \neq undefined then continue
12
             Neighbors N \leftarrow \text{RangeQuery}(DB, dist, q, \varepsilon)
13
             label(q) \leftarrow c
14
             if |N| < minPts then continue
                                                                              // Core-point check
15
             S \leftarrow S \cup N
16
```

Since there are some obstacles between houses that deform their regular shape, it's necessary to use the DBSCAN algorithm, which clusters houses based on their density reachability.

Jaccard similarity

Read More

$$J(x,y) = \frac{n(x \cap y)}{n(x \cup y)}$$

Since this metric is designed for categorical features, its recommended for medical experiments dataset which is consist of categorical features.

Euclidean distance

$$d(X,Y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

Considering, astronomical dataset is represented with its 3D coordination, using Euclidean distance is the best choice.

Cosine similarity

cosine similarity(A, B) =
$$\frac{A.B}{||A|| ||B||}$$

If text documents are represented as numerical embedded features, cosine similarity would be the appropriate metric for it.

B: Dissimilarity matrix

#	Categorical feature	Ordinal feature	Numerical feature
1	А	Excellent	45
2	В	Average	22
3	С	Good	64
4	А	Excellent	28

$Ordinal\ Encode$

#	Categorical feature	Ordinal feature	Numerical feature
1	А	3	45
2	В	1	22
3	С	2	64
4	Α	3	28

For the categorical feature, **Jaccard distance** is used: $d_{i,j} = 1 - \frac{n(x_i \cap x_j)}{n(x_i \cup x_j)}$

The table below is the dissimilarity matrix for the categorical feature:

#	1	2	3	4
1	0	1	1	0
2	1	0	1	1
3	1	1	0	1
4	0	1	1	0

For the ordinal feature **Manhattan distance** is used: $d_{i,j} = |x_i - x_j|$

The table below is the dissimilarity matrix for the categorical feature:

#	1	2	3	4
1	0	2	1	0
2	2	0	1	2
3	1	1	0	1
4	0	2	1	0

For the numerical feature **distance** is defined as: $d(x_i, x_j) = \frac{|x_i - x_j|}{\max x - \min x}$

The table below is the dissimilarity matrix for the numerical feature:

#	1	2	3	4
1	0	0.55	0.45	0.40
2	0.55	0	1	0.14
3	0.45	1	0	0.86
4	0.40	0.14	0.86	0

The final dissimilarity matrix for all features results from averaging the dissimilarity matrix for each feature.

#	1	2	3	4
1	0	1.18	0.81	0.13
2	1.18	0	1	1.04
3	0.81	1	0	0.95
4	0.13	1.04	0.95	0

Q2: Clustering algorithms

A: K-means clustering

The pseudocode of K-means algorithm is depicted below:

```
Algorithm 1 k-means clustering
 1: Initialise Cluster Centers
 2: for each iteration l do
       Compute r_{nk}:
 3:
       for each data point x_n do
 4:
         Assign each data point to a cluster:
 5:
         for each cluster k do
 6:
            if k == \operatorname{argmin} \|\mathbf{x}_n - \boldsymbol{\mu}_k^{l-1}\| then
 7:
 8:
               r_{nk} = 1
 9:
            else
              r_{nk} = 0
            end if
10:
11:
         end for
12:
       end for
13:
14:
       for each cluster k do
         Update cluster centers as the mean of each cluster:
15:
16:
       end for
17:
18: end for
```

Dataset:

i	x_1	x_2
Α	1	1
В	2	1
С	2	3
D	3	2
E	4	3
F	5	5

$$c_1 = B$$
$$c_2 = C$$

$$d = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

Iter=1:

i/distance	c_1	c_2
A	1	2.23
В	0	1
С	2	0
D	1.414	1.414
E	2.828	2
F	5	3.6

$$c_1 = \frac{A+B+C}{3} = (1.66,1.66)$$

$$c_2 = \frac{D+E+F}{3} = (4,3.33)$$

Iter =2:

i/distance	c_1	c_2
A	0.93	3.8
В	0.74	3.07
С	1.38	2.02
D	1.38	1.66
E	2.7	0.33
F	4.72	1.94

$$c_1 = \frac{A+B+C+D}{4} = (2,1.75)$$

 $c_2 = \frac{E+F}{2} = (4.5,4)$

Iter=3:

i/distance	c_1	c_2
А	1.25	4.6
В	0.75	3.9
С	1.25	2.7
D	1.03	2.5
E	2.36	1.11
F	4.42	1.11

Since the clusters are not changed during last 2 iterations, the algorithm stops with the following centroids:

$$c_1 = \frac{A+B+C+D}{4} = (2,1.75)$$

$$c_2 = \frac{E+F}{2} = (4.5,4)$$

i/distance	c_1	c_2
X = (3, 2.5)	1.25	2.12

X belongs to the first cluster owing to its smaller distance from first cluster's centroid.

B: Hierarchical clustering

$\overline{\textbf{Algorithm}} \ \ \text{AgglomerativeClustering}(D, linkage)$

Input:

D: a distance matrix of size $n \times n$

 $linkage(C_1, C_2)$: a distance function between clusters

- 1: Initialize L with n clusters, each containing a single data point
- 2: **while** |L| > 1 **do**
- 3: Find pair of clusters (C_1, C_2) in L with the smallest distance
- 4: Merge C_1 and C_2 into a new cluster C
- 5: Remove C_1 and C_2 from L
- 6: **for each** cluster $C' \in L$ **do**
- 7: $d \leftarrow linkage(C, C')$
- 8: Update the matrix D to set the distance between C and C' to d
- 9: Remove the distances related to C_1 and C_2 from D
- 10: Add C to L
- 11: **return** the hierarchy of clusters

Figure 2	Agglomerative clustering schemes.	
Name	Distance update formula Formula for $d(I \cup J, K)$	Cluster dissimilarity between clusters A and B
single	$\min(d(I,K),d(J,K))$	$\min_{a \in A, b \in B} d[a, b]$
complete	$\max(d(I,K),d(J,K))$	$\max_{a \in A, b \in B} d[a, b]$
average	$\frac{n_Id(I,K)+n_Jd(J,K)}{n_I+n_J}$	$\frac{1}{ A B } \sum_{a \in A} \sum_{b \in B} d[a,b]$
weighted	$\frac{d(I,K)+d(J,K)}{2}$	
Ward	$\sqrt{rac{(n_I+n_K)d(I,K)+(n_J+n_K)d(J,K)-n_Kd(I,J)}{n_I+n_J+n_K}}$	$\sqrt{rac{2 A B }{ A + B }} \cdot \ ec{c}_A - ec{c}_B \ _2$
centroid	$\sqrt{rac{n_Id(I,K)+n_Jd(J,K)}{n_I+n_J}-rac{n_In_Jd(I,J)}{(n_I+n_J)^2}}$	$\ ec{c}_A - ec{c}_B \ _2$
median	$\sqrt{\frac{d(I,K)}{2}+\frac{d(J,K)}{2}-\frac{d(I,J)}{4}}$	$\ \vec{w}_A - \vec{w}_B\ _2$

i	x_1	x_2
А	0.45	0.3
В	0.22	0.38
С	0.08	0.41
D	0.26	0.19
E	0.35	0.32

$$d = \int_{i=1}^{N} (x_i - y_i)^2$$

Single Linkage:

Dissimilarity matrix	Α	В	С	D	E
Α	0	0.24	0.38	0.22	0.1
В		0	0.143	0.2	0.143
С			0	0.28	0.28
D				0	0.15
E					0

 $\min d = d(A, E) \rightarrow A, E \text{ new cluster}$

Dissimilarity matrix	В	С	D	A,E
В	0	0.14	0.2	0.14
С		0	0.28	0.28
D			0	0.15
A,E				0

 $\min d = d(B,C) \rightarrow B, C \text{ new cluster}$

Dissimilarity matrix	D	B,C	A,E
D	0	0.19	0.15
В,С		0	0.14
A,E			0

 $\min d = d((B,C),(A,E)) \rightarrow A,B,C,E \text{ new cluster}$

Complete Linkage:

Dissimilarity matrix	В	С	D	A,E
В	0	0.14	0.19	0.24
С		0	0.28	0.38
D			0	0.21
A,E				0

 $\min d = d(B,C) \rightarrow B, C \text{ new cluster}$

Dissimilarity matrix	D	B,C	A,E
D	0	0.28	0.21
B,C		0	0.38
A,E			0

 $\min d = d((A, E), D) \rightarrow A, D, E \text{ new cluster}$

Q3: K-means Vs. K-median

K-means++

	Clustering Pseudo Code Using K-means++ and K-means			
	Input : Number of cluster (K), set of Requirements' RPV $(Y) = \{y_1, y_2, y_r\}$			
	Output: Three clusters of requirements (low, medium, high)			
	Start			
1	Choose the first cluster centroid (c_1) uniformly at random from Y			
2	Repeat			
3	For each y_r , compute the distance y to the nearest cluster centroid c_i using			
	$E(y_r) = \sqrt{(c_i - y_r)^2}$			
4	Choose the next cluster centroid c_i , selecting $c_i = y_r \in Y$ with probability			
	$ \frac{E(y_r)^2}{\sum_{\mathbf{y}\in\mathbf{Y}}E(\mathbf{y})^2} $			
	$\sum_{\mathbf{y}\in\mathbf{Y}}E(\mathbf{y})^2$			
5	Until all the total of cluster centroids have been chosen			
6	Do			
7	For each y, compute the distance y_r to each defined cluster centroid c_i using			
	$E_{ir} = \sqrt{(c_i - y_r)^2}$			
8	, , , , , , , , , , , , , , , , , , ,			
9	Update each cluster centroids c_i by taking the average of the all assigned y_r			
	in each cluster.			
10	While (no longer changes in the cluster centroids).			
11	End			

C:

D:

The best number of clusters can be estimated using elbow point which here is 2 or 3 clusters.

K-median++

A:

B: The norm of centroid differences with and without outliers for each cluster is depicted below.

K-median is more robust to outliers rather than k-means since its distance function is Manhattan distance instead of Euclidean distance. K-means is more sensitive to outliers.

Source code