Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

	0.0.1	Полные метрические пространства		 2
1 Непрерывные функции			3	
	1.1 Преде	ы функции в долке		3

Следствие (Больцано-Вейерштрасса). Любая ограниченная последовательность в \mathbb{R}^n имеет сходящуюся подпоследовательность

Пример. $X=\mathbb{R}$ с дискретной метрикой, $K=[0,1]\Rightarrow K$ ограничено и замкнуто. Однако, из отрытого покрытия $\{B_{\frac{1}{2}}(x), x\in K\}$ нельзя выбрать конечное подпокрытие, т.к. $B_{\frac{1}{2}}(x)=\{x\}$

0.0.1 Полные метрические пространства

Пусть (X, ρ) — метрической пространство

Определение 0.1. Последовательность $\{x_n\}$ называется фундаментальной в X, если $\forall \varepsilon > 0 \exists N : \forall n, m(\rho(x_n, x_m) < \varepsilon)$

Лемма 0.1. Любая сходящаяся последовательность фундаментальна.

Доказательство. Пусть
$$x_n \to a, \varepsilon > 0$$
. Тогда $\exists N : \forall n > N \rho(x_n, a) < \frac{\varepsilon}{2} \Rightarrow \forall n > N \rho(x_n, x_m) \leqslant \rho(x_n, a) + \rho(x_m, a) < \varepsilon$

Замечание. Обратное утвеждение неверно

Пример. $X=(0,1], \rho(x,y)=|x-y|.$ Тогда $\left\{\frac{1}{n}\right\}$ — фундаментальна, но не имеет предела в X.

Определение 0.2. Метрическое пространство называется полным, если всякая фундаментальная сходится к некоторой точке этого пространства

Лемма 0.2. Евклидово пространство \mathbb{R}^n полно.

Доказательство. Пусть дана фундаментальная последовательность $\{x_k = (x_{1k}, x_{2k}, \dots x_{nk})\} \subset \mathbb{R}^n, \varepsilon > 0$. Т.к. $\forall i = 1, 2, \dots n | x_{ik} - x_{im} | \leqslant \rho(x_k, x_m) \Rightarrow \{x_n\}$ тоже фундаментальна. Положим $a_i = \lim_{k \to \infty} x_{ik}, a = (a_1, a_2, \dots a_n)$. Заметим, что $\rho(a, x_n) = \sum_{i=1}^n |a_i - x_{in}|^2 \to 0 \Rightarrow x_n \to a$.

Определение 0.3. Пусть $E \neq \emptyset$. Рассмотрим B(E) — линейное пространство ограниченных функций $f: E \to \mathbb{R}$ (или Cm).

Замечание. B(E) является нормированным пространством, относительно нормы $||f|||_{\infty} = \sup_{x \in E} |f(x)|$

Но тогда
$$f_n \to f$$
 в $B(E) \Leftrightarrow \|f_n - f\| \to 0 \Leftrightarrow \sup_{x \in E} |f_n(x) - f(x)| \to 0 \Leftrightarrow f_n \rightrightarrows f$ на E

Лемма 0.3. Пространство B(E) полное

Доказательство. Пусть $\{f_n\}$ фундаментальна в B(E), и $\varepsilon > 0$. Тогда $\exists N \forall n, m > \geqslant N(\sup_{x \in E} |f_n(x) - f_m(x)| < \varepsilon)$. По Критерию Коши равномерной сходимости, $\exists f: f_n \Rightarrow f$ на E. Покажем, что f ограничена в определении равномерной сходимости. Положим $\varepsilon = 1 \Rightarrow \exists N \forall x \in E(|f_n(x) - f(x)| < 1) \Rightarrow |f(x) < 1 + |f_n(x)||$

Замечание. C[a,b] полное относительно ($||f||_{\infty}$)

1 Непрерывные функции

1.1 Предел функции в точке

Пусть $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, a — предельная точка X, и задана функция $f: X \setminus \{a\} \to Y$.

Определение 1.1 (Коши). Точка $b \in Y$ называется пределом функции f в a, если

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in X(0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), b) < \varepsilon)$$

Определение 1.2 (Гейне). Точка $b \in Y$ называется пределом функции f в a, если

$$\forall \{x_n\} \to \subset X \setminus \{a\}(x_n \to a \Rightarrow f(x_n) \to b)$$

Пишут $\lim_{x\to a} f(x) = b$ или $f(x) \to b$ при $x \to a$

Утверждение 1.1. $\lim_{x\to a} f(x) = b, \lim_{x\to a} f(x) = c \Rightarrow b = c.$

Доказательство. Пусть $x_n \to a, x_n \neq a$. Тогда по определению Гейне, $f(x_n) \to b, f(x_n) \to c$. В силу единственности предела последовательности в (Y, ρ_Y) , получаем, что b = c

Рассмотрим $f: X \setminus \{a\} \Rightarrow \mathbb{R}^m$. Если $x \in X \setminus \{a\}$, то $f(x) = (y_1, \dots y_m) \Rightarrow f_i: X \setminus \{a\} \rightarrow \mathbb{R}$, $f_i(x) = y_i$ (*i*-ая координата f(x)), $f = (f_1, f_2, \dots f_m)$

Лемма 1.1. Пусть $f: X \setminus \{a\} \to \mathbb{R}^m, f = (f_1, f_2, \dots f_m)$. Тогда $\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{x \to a} f_i(x) = b_i \forall i = 1, \dots m$

Доказательство. Следует из $|y_i - b_i| \leqslant \rho_2(y, b) \leqslant \sum_{i=1}^m |y_i - b_i|$

Пример. $f: \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{x^3+y^3}{x^2+y^2}, \lim_{x\to 0, y\to 0} f(x,y) = 0$? Зафиксируем $\varepsilon > 0$.

$$\left|\frac{x^3+y^3}{x^2+y^2}-0\right| \leqslant \frac{|x|^3+|y|^3}{x^2+y^2} \leqslant \frac{2(\sqrt{x^2+y^2})^3}{x^2+y^2} = 2\sqrt{x^2+y^2}$$

Утверждение 1.2. Если a-npeдельная точка множества $E\subset X$ и $\lim_{x\to a} f(x)=b$, то $\lim_{x\to a} (f|_E)(x)=b$

Доказательство. $E \ni x \to a, x_n \neq a \Rightarrow (f|_E)(x_n) = f(x_n) \to b \Rightarrow$ по Гейне $b = \lim_{x \to a} (f|_E)(x)$

Определение 1.3. $f: D \setminus \{a\} \to \mathbb{R}, D \subset \mathbb{R}^n, a \in \mathbb{R}^n, u \in \mathbb{R}^n, |u| = 1$. Если $\{a + tu | t \in (0, \Delta)\} \subset D \setminus \{a\}$ для некоторго $\Delta > 0$ и существует конечный предел $\lim_{t \to +0} f(a + tu)$, то этот предел называется пределом f в точке a по направлению u.

Следствие.

Пример.

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \left\{ \begin{array}{l} 1, y = x^2, x > 0 \\ 0, \text{ иначе} \end{array} \right., u = (\alpha,\beta), |u| = 1$$

$$\exists \delta > 0 \forall t \in (0,\delta) f(t\alpha,t\beta) = 0 \Rightarrow \lim_{t \to +0} f(t\alpha,t\beta) = 0$$

Утверждение 1.3. *Если* $f, g: X \setminus \{a\} \to \mathbb{R} : \lim_{x \to a} f(x) = b, \lim_{x \to a} g(x) = c, mo$

- 1. $\lim_{x\to a} f(x) + g(x) = b + c$
- 2. $\lim_{x\to a} f(x)g(x) = bc$

Доказательство. Возьмем $x_n \to a, x_n \neq a \Rightarrow f(x_n) \to b, g(x_n) \to c$. Тогда по свойству пределов числовых последовательностей, $(f \pm g) \to b \pm c, (fg) \to bc$. Тогда по определению Гейне, получаем желаемое

Утверждение 1.4 (Локальная ограниченность). Если $\exists \lim_{x\to a} f(x)$, то f ограничено ε некоторой проколотой окрестности $a, m.e. \ \exists \delta > 0 f(\overset{\circ}{B}_{\delta}(a))$ ограничено

Доказательство. Достаточно в определении Коши положить $\varepsilon=1$

Замечание. Пусть $Z=X\times Y\Rightarrow \rho_Z((x,a),(y,b))=\sqrt{\rho_X(x,y)^2+\rho_Y(a,b)^2}$ — метрика на Z