CÁLCULO DAS PERDAS DE COMUTAÇÃO NO FERRO DO INDUTOR

TIARLES GUTERRES¹

SUMÁRIO

ı muoduça	10	
2 Objetivos		3
3 Desenvol	vimento	4
4 Resultado	os	5
LISTA DE	FIGURAS	
Figura 1	Mapa de perdas apresentado para a série SK-Core de indutores. Fonte: [1]	2
Figura 2	(a) Relação B x H que mostra a obtenção dos <i>quasi-loops</i> e (b) as áreas S ₁ e S ₂ que	
	são somadas para formar o gráfico da Figura 1. Fonte: [1]	2
Figura 3	Vista geral do esquema de teste para o Half-Bridge monofásico	3
Figura 4	Trecho de código com as coordenadas para obtenção dos polinômios do mapa de	
	perdas	4
Figura 5	Curvas da (a) Tensão no indutor e (b) comando da chave S	4
Figura 6	Polinômios do artigo [1] interpolados com os pontos da Figura 4	5
Figura 7	Métricas utilizadas para a busca no mapa de perdas	5

Grupo de Eletrônica de Potência e Controle (GEPOC), UFSM, Santa Maria, Brasil

INTRODUÇÃO

Nos trabalhos [1] e [2] é abordado o problema do cálculo das perdas nos indutores. A proposta é a partir do mapa de perdas, Figura 1, específico de um indutor testado e das curvas obtidas no conversor modulado calcular as perdas no ferro do componente magnético.

Figura 1: Mapa de perdas apresentado para a série SK-Core de indutores. Fonte: [1]

Esse mapa é criado em ensaios que tabelam as áreas formadas pelos "Minor loop's" [1], que são trechos descontínuos da variação do fluxo magnético no indutor (Figura 2)

Figura 2: (a) Relação B x H que mostra a obtenção dos quasi-loops e (b) as áreas S1 e S2 que são somadas para formar o gráfico da Figura 1. Fonte: [1]

O indutor testado no artigo citado foi da série SK-Core da empresa TOHO ZINC CO. LTD., os parâmetros do indutor estão mostrados na Tabela 1.

Material do núcleo	Núcleo de ferro em pó compactado
Forma	Toroidal
Comprimento efetivo do caminho magnético, le	61.24 mm
Área efetiva da seção transversal, S _e	74.19 mm ²
Volume, V_e	4543 mm ³
Peso, M	32 g
Número de espiras	50 voltas
Indutância	266 μΗ

Tabela 1: Caracterização do indutor da série SK-Core utilizado para gerar o mapa de perdas.

2 **OBJETIVOS**

A partir da planta de testes escolhida, half-bridge monofásico (Figura 3) com modulação baseada em portadora (carrier based), criar um código para:

- 1. Criar os polinômios para o mapa de perdas, será utilizado o mapa de perdas da Figura 1.
- 2. Descrição das equações que verificam qual das curvas presentes na Figura 1 serão utilizadas para cada ΔB ou ΔH calculados e qual dos pontos de deslocamento (bias) do campo magnético (Ho) será usado para contribuir no cálculo de perdas.
- 3. E a simulação do circuito half-bridge com os parâmetros da Tabela 2.

Figura 3: Vista geral do esquema de teste para o Half-Bridge monofásico.

Tabela 2: Tabela com os valores dos componente do circuito da Figura 3.

Componente	Unidade	Medida
Е	25	V
L	266	μН
С	100	μF
R	1	Ω

3 **DESENVOLVIMENTO**

Analisando o mapa de perdas do artigo [1] foi obtido alguns pontos para a interpolação dos polinômios. A Figura 4 mostra um trecho do código em que as coordenadas foram descritas.

```
dH = \{2600: [(-12.289, 183.66), (1187.1, 109.38), (2804.4, 50.625), (4505.3, 26.339), (6535.5, 16.429)],
     2050: [(-11.954,114.19),(1197.7,58.045),(2825.8,31.055),(4523.2,16.176),(6526.6,11.159)],
     1530: [(-7.1721,56.228),(1197.7,30.969),(2813.9,18.512),(4523.2,11.246),(6543.4,5.9689)],
     1080: [(-2.3907,24.74),(1200.1,16.263),(2818.6,10.64),(4518.4,7.0934),(6531.4,5.7093)]}
dB = {400e-3: [(-16.735,106.14),(1193,109.86),(2811.5,120.76),(4518.4,131.23),(6517.1,138.15)],
      286e-3: [(-4.7814,58.045),(1195.4,58.045),(2809.1,64.446),(4520.8,73.702),(6529,74.135)],
     200e-3: [(0,30.882),(1193,31.142),(2813.9,34.256),(4518.4,38.668),(6529,40.744)],
     133e-3: [(-4.7814,16.09),(1212.1,16.349),(2821,18.685),(4523.2,17.82),(6533.8,17.993)]}
```

Figura 4: Trecho de código com as coordenadas para obtenção dos polinômios do mapa de perdas.

Após esta etapa os polinômios foram gerados para que a busca com os valores de ΔH , ΔB e H_o pudessem ser realizados. A seguir, o circuito, utilizando a mesma indutância mostrada na Tabela 1 foi simulado para obtenção da tensão sobre o indutor V_{L_1} e o comando da chave d. As curvas obtidas nestas medidas estão nas Figuras 5a e 5b.

Figura 5: Curvas da (a) Tensão no indutor e (b) comando da chave S.

Esses dois sinais foram utilizados para calcular as grandezas magnéticas do indutor, como regem as equações para a densidade do fluxo magnético (1)), para o campo magnético (equação (2)) e para o desvio (ou bias) do campo magnético (equação (3)):

$$\Delta B = \frac{V_L d}{Nf_s A}$$
 (1)

$$\Delta H = \frac{V_L d}{\mu_0 Nf_s A}$$
 (2)

$$H_o = \frac{N d V_i}{R l},$$
 (3)

$$\Delta H = \frac{V_L d}{\mu_0 N f_0 A}$$
 (2)

$$H_o = \frac{N d V_i}{P_i I}, \tag{3}$$

em que V_L é a tensão no indutor L, d é a razão cíclica da chave S, N é o número de espiras do projeto.

RESULTADOS 4

Utilizando o código mostrado na Figura 4 foram obtidos polinômios semelhantes ao da Figura 1.

Figura 6: Polinômios do artigo [1] interpolados com os pontos da Figura 4.

Com a equação (1) foi obtido a densidade do fluxo magnético no indutor (Figura 7a), este sinal foi utilizado em conjunto com o valor de desvio do campo magnético (Figura 7b) para calcular o somatório das áreas Minor Loops com o valor em J/m³.

Figura 7: Métricas utilizadas para a busca no mapa de perdas.

Por fim, utilizando a equação (4) que relaciona o tempo de duração dos sinais captados, o somatório das perdas obtidas no mapa de perdas por ΔB e H_0 e o volume do indutor 1 a potência calculada considerando os sinais simulados foi de 0.43 Watts.

$$P = \sum lossMap(\Delta B, H_0) * (t_{final} - t_{inicial}) * v_{toroide}$$
 (4)

REFERÊNCIAS

- [1] S. Iyasu, T. Shimizu, and K. Ishii. A novel iron loss calculation method on power converters based on dynamic minor loop. In 2005 European Conference on Power Electronics and Applications, pages 9 pp.-P.10, Sep. 2005.
- [2] Yoshihiro Miwa, Toshihisa Shimizu, Koushi Takano, and Hitoshi Ishii. Calculating the iron losses in gapped inductors using the loss-map method. IEEJ Journal of Industry Applications, 8:57–65, o1 2019.