EC102: Electronic Devices and Circuits Tutorial Sheet-1

1. The atomic number of silver is 47. Determine its orbital distribution of electrons.

[Ans: 2, 8, 18, 1]

2. What is the valency of gallium whose atomic number is 31?

[Ans: 3]

3. Antimony has atomic number of 51. How many valence electrons does it have?

[Ans: 5] **4.** At room temperature ,copper has free-electron density of 8.4×10^{28} per m3. Find electron drift velocity in a copper conductor having a cross-section of 10⁻⁶ m², a length of 1.5 m and carrying a current of 5.4 A.

[Ans: 0.4mm/s]

5. Determine the intrinsic carrier concentration of germanium if its intrinsic resistivity at 300 K is 0.47 ohm-m. Given that the electron and hole mobilities are $0.39 \text{ m}^2/\text{Vs}$ and $0.19 \text{ m}^2/\text{Vs}$, respectively.

[Ans: $2.3 \times 1019 / \text{m}^3$]

6. A sample of silicon is doped with phosphorous to a density of 10^{21} /m³ as well as with boron to a density of 5 x 10^{20} /m³. Determine the conductivity of the silicon sample. Given that $\mu_n = 0.18 \text{ m}^2/\text{Vs}$.

[Ans: 14.4 S/m]

7. Determine the resistivity of a N-type germanium at 300 K with donor density of $N_d=10^{20}/m^3$, all donors are assumed ionized .Given that $\mu_n=0.38$ m2/Vs.

[Ans: 0.164 ohm-m]

8. Compute the mobility of free electrons in Al for which the density is 2.7 g/cm³, atomic weight is 26.98 and resistivity is 3.44 x 10⁻⁶ ohm-cm .Assume that the Al has 3 valence electron / atom.

[Ans: $10.0 \text{cm}^2/\text{Vs}$]

9. What percentage of the electron leaving a tungsten filament at 2700K can surmount a barrier whose height is 1eV?

[Ans: 0.014]

10. The specific gravity of tungsten is 18.8 and atomic weight is 184. Assume that there are 2 free electrons per atom. Calculate n and E_F.

[Ans: 8.95 eV]

- 11. A donor type impurity is added to the extent of 1 atom per 10⁶ atom of an intrinsic semiconductor (Silicon). Calculate:
 - a. Resulting donor atom concentration

[Ans: 5x 10¹⁶ per cm³] [Ans: 5x 10¹⁶ per cm³]

b. Resulting mobile electron concentration

[Ans: 4.205x 10³ per cm³]

c. Resulting hole concentration d. Conductivity of doped silicon sample

[Ans: 10.413 S/ ohm]

e. If silicon bar is 0.5cm long, cross sectional area of (50e-4)² cm². Find its [Ans: 1920 ohm]

The concentration of Si atoms = 5×10^{22} cm⁻³ and n_i = 1.45 x 10^{10} cm⁻³ $\mu_e = 1300 \text{cm}^2/\text{Vs}$.

- 12. The resistivity of doped silicon material is 9x 10⁻³ ohm-m. the hall coefficient is 3.6x10⁻⁴ m³ coulomb⁻¹. Assuming single carrier conduction. Find the mobility of the charged carrier.

 [Ans: 0.04m²/vs]
 13. The electron concentration in an n-type Si varies linearly from 10¹¹ cm⁻³ at x = 0
- 13. The electron concentration in an n-type Si varies linearly from 10^{17} cm⁻³ at x = 0 to $6x10^{16}$ cm⁻³ at x = 2 μ m. Electrons are supplied to keep their concentration constant with time. Calculate the current density if no electric field is present. $D_n = 35 \text{ cm}^2/\text{S}$.
- 14. A Si bar Doped with 10^{17} cm⁻³ atoms of Sb has a length of 0.1 cm and an area of cross-section $100 \ \mu m^2$. Determine the current when the voltage of $10 \ V$ is applied across the bar. Assume $\mu_n = 1000 \ cm^2/V$ -sec.
- 15. The Hall effect is used to determine the mobility of holes in a p type Si bar. Assume the bar resistivity $\rho = 3.2 \times 10^5~\Omega$ -cm, the magnetic field $B_z = 0.1~Wb/m^2$ and d = W = 3 mm. The measured values of current $I_x = 10~\mu A$. and the Hall voltage $V_H = 50~mV$. Determine the hole mobility μ_p .