

MBA Business Analytics e Big Data Análise Preditiva

Prof. Dr. João Rafael Dias

1º semestre - 2020

Agenda Na aula de hoje...

Aprendizagem supervisionada

Regressão e classificação

Formas de treino e validação

Bias-variance trade-off

Avaliação e comparação de modelos

Prática no RStudio

Estrutura de uma árvore de decisão

Intuição

Particionamento dos nós na regressão

e classificação

Poda da árvores vs overfitting

Prática no RStudio

Regressão linear múltipla
Coeficiente de determinação
Regressão logística
Odds e log odds
Comparação entre as regressões
Multicolinearidade

Seleção de variáveis step-wise

Prática no RStudio

Modelos de ensemble
Bootstrap
Random forest
Adaptive boosting
Prática no RStudio

Overview

FGV

- Trata-se de uma abordagem completamente diferente da regressão logística
- Comumente denominada de algoritmo de particionamento recursivo
- A ideia por trás é o de quebrar o conjunto de dados em diferentes subconjuntos mais homogêneos em termos da variável alvo. Cada subconjunto por sua vez é particionado sucessivamente até que algum critério préestabelecido seja atingido

O algoritmo prevê um target y aprendendo regras de decisão através das características **x** (variáveis indepententes)

Árvores de decisão Estrutura geral

A figura abaixo representa uma árvore de decisão em termos de nomenclatura

• Aqui vamos simular uma distribuição hipotética

• Aqui vamos simular uma distribuição hipotética

Aqui vamos simular uma distribuição hipotética

FGV

Aqui vamos simular uma distribuição hipotética

Lembrete: a classificação vai sempre ser feita pela categoria majoritária no nó final

Aqui vamos simular uma distribuição hipotética

Lembrete: a classificação vai sempre ser feita pela categoria majoritária no nó final

Árvores de decisão Particionamento dos nós nas árvores [extra]

- Como mencionado anteriormente no processo da construção da árvore de decisão, o algoritmo vai realizando particionamentos sucessivos dos nós
- Existem diversos critérios entre as tarefas de regressão e classificação que permitem fazer a seleção da variável que melhor conduz à partição do nó
- Esses critérios na verdade conduzem à maximização de uma função durante a aprendizagem do algoritmo, que é denominada information gain (IG)

$$IG(D_p, f) = I(D_p) - \left(\frac{N_{left}}{N_p}I(D_{left}) + \frac{N_{right}}{N_p}I(D_{right})\right)$$

O ganho de informação é dado pela diferença de impureza do nó pai e dos nós filhos. Na expressão D_p, D_{left}, D_{right} são as observações que encontram-se nos nós pais e filhos. f é a feature usada na quebra, e I é uma medida de impureza do nó. N_p, N_{left} e N_{right} são os números de observações nos nós.

Particionamento para regressão

- A árvore de decisão usada para regressão são usadas para output numérico contínuo
- O valor obtido nos nós finais é dado pela média das observações que estão contidas dentro daquele nó

Para regressão a medida de impureza deve ser adequada para o target y contínuo. Ela é dada pelo erro médio quadrático (MSE) ponderados nós filhos (em algumas implementações pode se usar a variância)

Particionamento para regressão

- A árvore de decisão usada para regressão são usadas para output numérico contínuo
- O valor obtido nos nós finais é dado pela média das observações que estão contidas dentro daquele nó

$$MSE = \frac{1}{N_t} \sum_{i \in D_t} (y_i - \bar{y}_t)^2$$

$$\bar{y}_t = \frac{1}{N_t} \sum_{i \in D_t} y_i$$

Para regressão a medida de impureza deve ser adequada para o target y contínuo. Ela é dada pelo erro médio quadrático (MSE) ponderados nós filhos (em algumas implementações pode se usar a variância)

Particionamento para classificação

- A árvore de decisão usada para classificação são usadas para *output* categórico (*labels*)
- O label nos nós finais é dado pela categoria dominante das observações dentro daquele nó

Para classificação a medida de impureza deve ser adequada para o target y contínuo. Ela é dada pelo índice de impureza de Gini ponderados nós filhos (em algumas implementações pode se usar a entropia)

FGV

Particionamento para classificação

- A árvore de decisão usada para classificação são usadas para output categórico (lαbels)
- O label nos nós finais é dado pela categoria dominante das observações dentro daquele nó

$$IG(p) = 1 - \sum_{i=1}^{labels} p_i^2$$

$$p_i = \frac{n_i}{N_t}$$

Para classificação a medida de impureza deve ser adequada para o *target* y contínuo. Ela é dada pelo índice de impureza de Gini ponderados nós filhos (em algumas implementações pode se usar a entropia)

Controlando o desenvolvimento das árvores

- Após a construção da árvore, um passo de poda pode ser realizado afim de reduzir a complexidade e o tamanho da árvore de classificação.
- Árvores muito grandes são suscetíveis ao fenômeno de *overfitting*; o corte de galhos da árvore pode contribuir para uma melhora da capacidade de generalização da árvore de classificação.
- Árvores com muitos nós terminais e poucos indivíduos em cada um também apresentam overfitting.

Figure 6.7 Pruning chooses the tree whose miscalculation rate is minimized on the validation set.

Linoff & Berry, Data Mining Techniques, Wiley

Arvores muito complexas, com

bastante profundidade possuem

erros elevados na amostra de

teste e possui um ajuste quase

perfeito na amostra de treino

Controlando o desenvolvimento das árvores

Pré-poda

- O algoritmo interrompe o processo de construção da árvore quando:
- a redução da medida de impureza não é mais significativa
- o número de observações em um nó a ser particionado atinge um mínimo prédefinido
- a partição, independente da feature escolhida gera nós filhos com um número de observações menor que um valor prédeterminado
- atinge uma profundidade máxima
- a partição gera nós filhos com distribuições que não são significantemente diferentes em relação ao nó pai

Pós-poda

- Aqui o algoritmo constrói a árvore com todo o particionamento possível
- os ramos inferiores da árvore vão sendo substituídos por nós terminais
- caso não haja o comprometimento de performance na amostra de teste, podam-se esses ramos
- o algoritmo seleciona sub-árvores candidatas à poda por um critério que leva em consideração o aumento do erro ao podar o ramo em questão e a redução do nó
- evita-se árvores de grande complexidade
- método preferível ao pré-poda por permitir o desenvolvimento da árvore na sua forma mais completa

FGV

Poda da árvore usando cross validation [extra]

- Uma das formas de poda da árvore é usando a técnica de otimização com base no valor cp (complexity parameter) que leva em consideração o número de folhas terminais
- Essa técnica é baseada no *minimal cost complexity pruning* que leva em consideração o número de quebras e o erro de predição.

 O objetivo é construir uma árvore com o melhor número de quebras que conduza a menor ocorrência de overfitting e à menor taxa de erro

$\sum_{i=1}^{n} erro_i + \lambda splits$

T terminal nodes

O método subdivide o dado usado na aprendizagem do modelo em k sub-amostras de tamanho igual (folds)

Das k sub-amostras, k-1 são usadas para treinar o modelo e um é usada como validação. O processo é repetido k vezes, sendo que a cada vez uma porção do dado é usada para validação e o restante para treinamento. No final faz-se a média do erro

Árvores de decisão Prós e contras do algoritmo

Prós

É uma técnica que não assume linearidade e nem normalidade

Pode lidar com variáveis quantitativas e qualitativas (em muitas implementações)

Visualização e interpretabilidade simples

Facilidade do entendimento das regras construídas (facilidade de interpretação pelos tomadores de decisão)

Consegue lidar com *missing data* com mais facilidade

Contras

Os resultados são bastante dependentes do conjunto de dados de treino (i.e. alta variância)

Podem apresentar grande instabilidade em bases de dados muito pequenas

Podem apresentar overfitting

Podemos correr o risco de não ter sido encontrada a melhor árvore

Prática no RStudio

...foco de hoje

Treinando os algoritmos de árvore de decisão sobre as bases de estudo

Criando as amostras de treino e teste. Ajuste dos algoritmos, aprimoramento dos resultados, poda e visualização da árvore. Avaliações dos *outputs* dos modelos

