The Rectilinear Marco Polo Problem

Ofek Gila¹, Michael T. Goodrich¹, Zahra Hadizadeh², Daniel S. Hirschberg¹, and Shayan Taherijam¹

¹University of California, Irvine

²University of Rochester

CCCG, 2025

- Point of Interest (POI) X
- X within distance n from origin

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X.

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' X..

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... √
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... √
- $\bullet \ \ \text{`finding': distance } \Delta \leftrightarrow \textit{\textbf{X}} \leq 1$
- Δ must know this!

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... √
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- 'finding': distance $\Delta \leftrightarrow \emph{X} \leq 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... √
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - ullet Δ 's memory if any

Figure 1: A search area in L_2 .

- Point of Interest (POI) X
- X within distance n from origin
- Probes with radius d, p(x, y, d)
- Probe until 'finding' ✗... ✓
- ullet 'finding': distance $\Delta \leftrightarrow {\it X} \le 1$
- Δ must know this!
- Variants:
 - # of POIs present (k)
 - find all POIs
 - Distance metrics (L_1, L_{∞})
 - # of dimensions (2D, 3D, ...?)
 - Probe response (T/F, d, i)
 - Δ's memory if any
 - multiple ∆, etc...

Figure 1: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)

 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by \triangle , D(n)

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - $\ \square$ Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by Δ , D(n)
 - \checkmark # of POI responses, R(n)

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by Δ , D(n)
 - \checkmark # of POI responses, R(n)
 - Input sensitivity?

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by \triangle , D(n)
 - \checkmark # of POI responses, R(n)
 - Input sensitivity?
 - ✓ TSP tour length, OPT

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by \triangle , D(n)
 - \checkmark # of POI responses, R(n)
 - Input sensitivity?
 - ✓ TSP tour length, OPT
 - \square Dist. to nearest POI, δ_{\min}

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - \square Distance metrics (L_1, L_{∞})
 - \square # of dimensions (2D, 3D, ...?)
 - \square Probe response (T/F, d, i)
 - \square Δ 's memory if any
 - \square multiple \triangle , etc...
- Effectiveness metrics:
 - \square # of probes, P(n)
 - \square Distance traveled by \triangle , D(n)
 - \checkmark # of POI responses, R(n)
 - Input sensitivity?
 - ✓ TSP tour length, OPT

Simplicity / practicality

 \square Dist. to nearest POI, δ_{\min}

Figure 2: A search area in L_2 .

- Variants:
 - \checkmark # of POIs present (k)
 - find all POIs
 - ightharpoonup Distance metrics (L_1, L_{∞})

 - Arr Probe response (T/F, d, i)
 - ? Δ 's memory if any
 - \blacksquare multiple \triangle , etc...
- Effectiveness metrics:
 - \checkmark # of probes, P(n)
 - ightharpoonup Distance traveled by Δ , D(n)
 - \checkmark # of POI responses, R(n)
 - Input sensitivity?
 - ▼ TSP tour length, OPT
 - ightharpoons Dist. to nearest POI, δ_{\min}

Figure 2: A search area in L_2 .

3 / 17

Simplicity / practicality

Rectilinear Distances

• 1D: All identical

Ofek Gila (UCI) Rectilinear Marco Polo CCCG, 2025

Rectilinear Distances

- 1D: All identical
- 2D: L_1 and L_{∞} geometrically similar

Rectilinear Distances

- 1D: All identical
- 2D: L_1 and L_{∞} geometrically similar
- $\geq 3D$: All different

Figure 3: L_1 search area.

Figure 4: L_2 search area.

Figure 5: L_{∞} search area.

• Consider a 2×2 lattice

Figure 6: Quadrant Search

- Consider a 2×2 lattice
- Probe each quadrant.

Figure 6: Quadrant Search

- Consider a 2×2 lattice
- Probe each quadrant..

Figure 6: Quadrant Search

- Consider a 2×2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$
- Total responses?

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$
- Total responses?
- At most one per layer...

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$
- Distance traveled?

Figure 6: Quadrant Search

- Consider a 2 × 2 lattice
- Probe each quadrant...
- If 3 fail, POI/s must be in final
- Continue recursively!
- After 3 probes... distance halved!
- $P(n) \leq 3\lceil \log n \rceil$
- Total responses?
- At most one per layer...
- $R(n) \leq \lceil \log n \rceil$
- Distance traveled?
- $D(n) \leq 6n$

Figure 6: Quadrant Search

• Quadrant: $P(n) \leq 3\lceil \log n \rceil$

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$
- Optimal is $2\lceil \log n \rceil$!

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!

- Quadrant: $P(n) \le 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...
 - Either way... $n \times n/2$ 'domino'

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...
 - Either way... $n \times n/2$ 'domino'
 - ullet Two probes o halve dimensions

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...
 - Either way... $n \times n/2$ 'domino'
- ullet Two probes o halve dimensions
- $P(n) = 2\lceil \log n \rceil$

- Quadrant: $P(n) \leq 3\lceil \log n \rceil$ can we do better?
- Optimal is $2\lceil \log n \rceil$!
- Consider a $2n \times n$ '2-domino' configuration
- One side known to be empty, other known to contain POI/s
- Probe center
- Probe remaining quadrant
 - If 1st probe succeeded...
 - If 1st probe failed...
- Either way... $n \times n/2$ 'domino'
- ullet Two probes o halve dimensions
- $P(n) = 2\lceil \log n \rceil$
- How to reach domino?

• How to reach domino?

- How to reach domino?
- Start quadrant search...

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and ②

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and [©]
- If first probe fails...

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and [©]
- If first probe fails...
- 2-domino guaranteed!

CCCG, 2025

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and ©
- If first probe fails...
- 2-domino guaranteed!
- $P(n) \leq 2\lceil \log n \rceil + 1$

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and ©
- If first probe fails...
- 2-domino guaranteed!
- $P(n) \leq 2\lceil \log n \rceil + 1 \checkmark$

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and ⁽²⁾
- If first probe fails...
- 2-domino guaranteed!
- $P(n) \leq \frac{2}{\log n} + 1 \checkmark$
- $P(n) = \frac{2}{\log n} 1$

- How to reach domino?
- Start quadrant search...
- If first probe succeeds...
- Reduce area by factor of 4!
- Just recurse and ^②
- If first probe fails...
- 2-domino guaranteed!
- $P(n) \leq \frac{2}{\log n} + 1 \checkmark$
- $R(n) = 2\lceil \log n \rceil 1$
- D(n) < 6n

• Recall: $D(n) \in \mathcal{O}(n)$

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby?

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search.

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search..

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance
- Determine edge containing POI.

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance
- Determine edge containing POI...
- 2 probes

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance
- Determine edge containing POI..
- 2 probes near origin!

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance
- Determine edge containing POI...
- 2 probes near origin!
- $\mathcal{O}(1)$ distance

- Recall: $D(n) \in \mathcal{O}(n)$
- If POI is nearby? still $\mathcal{O}(n)$
- Nearest POI at distance δ_{\min}
- Can we do $\mathcal{O}(\delta_{\min})$?
- Perform binary search...
- Stop when width-1 shell*
- $\lceil \log n \rceil$ probes, 0 distance
- Determine edge containing POI...
- 2 probes near origin!
- $\mathcal{O}(1)$ distance
- What now?

• What now?

- What now?
- Another binary search!

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance?

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$

- What now?
- Another binary search!
- At most [log n] probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\min}/4$

- What now?
- Another binary search!
- At most [log n] probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\min}/4 \rightarrow \Sigma... \leq \delta_{\min}$

- What now?
- Another binary search!
- At most [log n] probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- 2 remaining 1×1 regions

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\min}/4 \rightarrow \Sigma... \leq \delta_{\min}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance
- $\leq \delta_{\min}$ distance to reach POI...

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance
- $\leq \delta_{\min}$ distance to reach POI...
- $D(n) \leq \frac{2\delta_{\min}}{2\delta_{\min}} + \mathcal{O}(1)$

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance
- $\leq \delta_{\min}$ distance to reach POI...
- $D(n) \leq 2\delta_{\min} + \mathcal{O}(1)$ \checkmark

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance
- $\leq \delta_{\min}$ distance to reach POI...
- $D(n) \leq \frac{2\delta_{\min}}{2\delta_{\min}} + \mathcal{O}(1)$
- $P(n) \leq 2\lceil \log n \rceil + 1$

- What now?
- Another binary search!
- At most $\lceil \log n \rceil$ probes
- Distance? not stationary!
- Always moves along axis...
- First probe, $\leq \delta_{\min}/2$
- Second, $\leq \delta_{\mathsf{min}}/4 \to \Sigma ... \leq \delta_{\mathsf{min}}$
- ullet 2 remaining 1×1 regions
- 1 more probe, $\mathcal{O}(1)$ distance
- $\leq \delta_{min}$ distance to reach POI...
- $D(n) \leq 2\delta_{\min} + \mathcal{O}(1)$
- $P(n) \leq 2\lceil \log n \rceil + 1 \checkmark$

• Is 2D the limit?

• Is 2D the limit?

• Recall: Quadrant algorithm

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq \frac{7}{\log n}$

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses?

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!
- Further?

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!
- Further?
- kD hypercube $\rightarrow 2^k$ 'orthants'

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!
- Further?
- kD hypercube $\rightarrow 2^k$ 'orthants'
- Orthant algorithm
- $P(n) \leq (2^k 1) \lceil \log n \rceil$

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!
- Further?
- kD hypercube $\rightarrow 2^k$ 'orthants'
- Orthant algorithm
- $P(n) \leq (2^k 1) \lceil \log n \rceil$
- Terrible distance $> 2^k n$

- Is 2D the limit?
- Recall: Quadrant algorithm
- Octant algorithm?
- $P(n) \leq 7 \lceil \log n \rceil$
- # responses? still [log n]!
- Further?
- kD hypercube $\rightarrow 2^k$ 'orthants'
- Orthant algorithm
- $P(n) \leq (2^k 1) \lceil \log n \rceil$
- Terrible distance $> 2^k n$
- Excellent responses, $\leq \lceil \log n \rceil$

• How about 3D domino?

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes.

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes..

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$
- How to reach 4-domino?

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$
- How to reach 4-domino?
- May take more than 4 probes...

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$
- How to reach 4-domino?
- May take more than 4 probes. . .
- If 4th probe always succeeds. . .

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$
- How to reach 4-domino?
- May take more than 4 probes. . .
- If 4th probe always succeeds. . .
- $P(n) \leq 4\lceil \log n \rceil$

- How about 3D domino?
- Consider $2n \times 2n \times n$ '4-domino'
- 3 empty, 1 contains POI/s
- After 3 probes...
- 1/8 volume
- Probes halve volume optimal
- $P(n) = 3\lceil \log n \rceil$
- How to reach 4-domino?
- May take more than 4 probes. . .
- If 4th probe always succeeds...
- $P(n) \leq 4\lceil \log n \rceil$ not optimal!

• Idea: Intermediate configuration

• Idea: Intermediate configuration

• 3D 2-domino: $2n \times n \times n$

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - **1** Otherwise, more probes...

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - Otherwise, more probes... but 4-domino guaranteed!

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - Otherwise, more probes... but 4-domino guaranteed!
 - Octants → 2-domino → 4-domino

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - Otherwise, more probes... but 4-domino guaranteed!
 - Octants → 2-domino → 4-domino
- $P(n) \leq 3\lceil \log n \rceil + 4$

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - Otherwise, more probes... but 4-domino guaranteed!
- Octants \rightarrow 2-domino \rightarrow 4-domino
- $P(n) \leq 3\lceil \log n \rceil + 4$
- Great but...

- Idea: Intermediate configuration
- 3D 2-domino: $2n \times n \times n$
- Probe center
- Probe remaining 'quadrant'
 - If success...2-domino!
 - Otherwise, more probes... but 4-domino guaranteed!
 - Octants \rightarrow 2-domino \rightarrow 4-domino
- $P(n) \leq 3\lceil \log n \rceil + 4$
- Great but...
- Doesn't generalize further 🕃

Good general algorithm?

- Good general algorithm?
- Recall CBS—

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD?

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD? yes!

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD? yes!
- Generalized CBS
- $P(n) \leq \frac{k}{\log n} + g(k)$

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD? yes!
- Generalized CBS
- $P(n) \leq k \lceil \log n \rceil + g(k)$
- $D(n) \leq k\delta_{\min} + g(k)$

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD? yes!
- Generalized CBS
- $P(n) \leq k \lceil \log n \rceil + g(k)$
- $D(n) \leq k\delta_{\min} + g(k)$
- How?

- Good general algorithm?
- Recall CBS—
- Binary search per dimension...
- Generalize to kD? yes!
- Generalized CBS
- $P(n) \leq k \lceil \log n \rceil + g(k)$
- $D(n) \leq k\delta_{\min} + g(k)$
- How?
- Read the full paper :P

Rectilinear Strategies: Comparing # Probes

	C	Orthant	Algorit	hm	Ger	neralize	d CBS /	Algorithm
k	σ	Avg	Max	Bound	σ	Avg	Max	Bound
1D	0.00	0.95	0.95	1.00	0.00	0.95	1.00	1.00
2D	0.18	2.14	2.85	3.00	0.03	1.93	2.00	2.15/2.25
3D	0.46	4.16	6.35	7.00	0.07	2.96	3.10	3.40/4.10
4D	0.98	8.02	13.2	15.0	0.10	4.00	4.25	4.75/7.75
5D	2.00	15.6	26.1	31.0	0.14	5.06	5.40	6.20/16.8
6D	4.02	30.9	50.6	63.0	0.17	6.15	6.65	7.75/42.0
7D	8.05	61.3	103	127	0.21	7.26	7.95	9.40/116
8D	16.1	122	209	255	0.25	8.40	9.30	11.2/336

	Domino Algorithms						
k	σ	Avg	Max	Bound			
2D	0.04	1.92	1.95	2.05			
3D	0.11	2.92	3.05	3.20			

Rectilinear Strategies: Comparing Distance Traveled

	С)rthant	Algorith	m	Gene	ralized (CBS Alg	gorithm
k	σ	Avg	Max	Bound	σ	Avg	Max	Bound
1D	$\sim 10^4$	27.8	$\sim 10^7$	$\sim 10^6$	0.00	1.00	1.00	1.00
2D	17.1	8.00	$\sim 10^4$	$\sim 10^6$	0.29	1.50	2.00	2.00
3D	8.14	12.0	$\sim 10^3$	$\sim 10^7$	0.41	2.00	3.00	3.00
4D	10.4	21.3	$\sim 10^3$	$\sim 10^7$	0.50	2.50	3.99	4.00
5D	16.7	40.0	$\sim 10^3$	$\sim 10^7$	0.58	3.00	4.97	5.00
6D	29.7	76.8	$\sim 10^3$	$\sim 10^8$	0.65	3.50	5.94	6.00
7D	55.2	149	$\sim 10^3$	$\sim 10^8$	0.71	4.00	6.86	7.00
8D	105	293	$\sim 10^3$	$\sim 10^8$	0.76	4.50	7.76	8.00

	Domino Algorithms						
k	σ	Avg	Max	Bound			
2D	17.2	7.68	$\sim 10^4$	$\sim 10^6$			
3D	7.17	11.0	$\sim 10^3$	$\sim 10^7$			

Rectilinear Strategies: Comparing # Responses

	Orthant Algorithm				Generalized CBS Algorithm			
k	σ	Avg	Max	Bound	σ	Avg	Max	Bound
1D	0.11	0.47	0.95	1.00	0.11	0.47	0.95	1.05
2D	0.09	0.71	0.95	1.00	0.15	0.94	1.75	2.10
3D	0.07	0.83	0.95	1.00	0.18	1.42	2.45	3.15
4D	0.05	0.89	0.95	1.00	0.21	1.88	3.00	4.20
5D	0.04	0.92	0.95	1.00	0.23	2.33	3.50	5.25
6D	0.03	0.94	0.95	1.00	0.25	2.78	4.20	6.30
7D	0.02	0.94	0.95	1.00	0.27	3.22	4.65	7.35
8D	0.01	0.95	0.95	1.00	0.28	3.65	5.25	8.40

	Domino Algorithms						
k	σ	Avg	Max	Bound			
2D	0.15	0.93	1.70	2.05			
3D	0.18	1.39	2.35	3.20			

Open Problems

- 2D rectilinear algs. work under both L_1 and L_{∞} norms Confession: Only L_{∞} works for higher dimensions Can we adapt general algs. for L_1 ?
- g(k) constant in generalized CBS algorithm pretty large (3^k) Under reasonable assumptions can reduce to k^2 Can we do better?
- Distance traveled of δ_{\min} instead of $k\delta_{\min}$?
- Mix & match distance metrics
- Other norms?