

0000000000000000 (array): int $array[2] = \{1, 2\};$ 01 00 %eax, (%rax) addint main() %al, (%rax) 00 00 add 4: 02 00 (%rax), %a1 add 0000000000000000 (main): int val = sum(array, 2): \$0x8, %rsp 48 83 ec 08 汇编指令 return val; be 02 00 00 00 \$0x2, %esi main.c bf 00 00 00 00 mov \$0x0, %edi a: R X86 64 32 array 链接 callq 13 \(\text{main+0x13} \) e8 00 00 00 00 内存地址 f: R X86 64 PC32 sum-0x4 48 83 c4 08 \$0x8, %rsp add 00000000004004d0 \(\text{main}\): 17: c3main.o 4004d0: 48 83 ec 08 4004d4: be 02 00 00 00 机器指令 4004d9: bf 18 10 60 00 4004de: e8 05 00 00 00 CPU Memory 4004e3: 48 83 c4 08 运行 Addresses 4004e7: c3数据段 00000000004004e8 <sum>: Registers 4004e8: b8 00 00 00 00 P 00 00 Data 4004ed: ba 00 00 00 00 代码段 4004f2: eb 09 Condition 4004f4: 48 63 ca Instructions 4004d4: 4004f7: 03 04 8f 4004de: 4004fa: 83 c2 01 48 83 c4 08 4004e7: 4004fd: 39 f2 4004ff: 7c f3 400501: f3 c3 #〈array〉没有给出 程序在机器层面的表示与运行

C程序在硬件层面的表示

- 数据
 - 整数 (第二讲)
 - 浮点数 (第三讲)
 - · 数组、结构 (第八讲)
- 代码
 - · 基本概念/基本指令/寻 址方式(第五讲)
 - 程序控制流与相关指令 (第六讲)
 - 函数调用与相关指令 (第七讲)

- ·IEEE的浮点数标准
- Rounding (舍入)
- ·C语言中的浮点数

IEEE Floating Point

。IEEE的754标准

。1985年建立

二进制表示方式

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

三 浮点数示例

▶值

5.3/4 2.7/8 0.63/64

二进制表示

101.11₂ 10.111₂ 0.111111₂

局限性

。只能精确地表示X/2½这类形式的数据

值

1/3

1/5

1/10

二进制表示

0.0101010101[01]...₂

0.001100110011[0011]...₂

 $0.0001100110011[0011]..._{2}$

计算机中的浮点数二进制表示

数字形式

- \circ (-1)⁵ M 2^E
 - 符号: s
 - 尾数: M, 是一个位于区间[1.0,2.0)内的小数
 - 阶码: E

> 编码

s exp frac

- ∘ exp域: E
- ∘ frac域: M

编码

s exp frac

- · 单精度浮点数: exp域宽度为8 bits, frac域宽度为23 bits 总共32 bits。
- · 双精度浮点数: exp域宽度为11 bits, frac域宽度为52bits 总共64 bits。

扩展精度浮点数: exp域宽度为15 bits, frac域宽度为63bits 总共80 bits。 *(1 bit 无用)*

半精度浮点数: exp域宽度为5 bits, frac域宽度为10 bits

浮点数的类型

- ・规格化浮点数
- ・非规格化浮点数
- 一些特殊值

■ 规格化浮点数 (Normalized)

- 満足条件: exp ≠ 000...0 且 exp ≠ 111...1
- ▶ 真实的阶码值需要减去一个偏置 (biased) 量
 - E = Exp Bias
 - · Exp: exp域所表示的无符号数值
 - 。 Bias的取值
 - 单精度数: 127 (Exp: 1...254, E: -126...127)
 - 双精度数: 1023 (Exp: 1...2046, E: -1022...1023)
 - Bias = 2^{e-1} 1, e = exp域的位数
- ▶ frac域的第一位隐含为1
 - $M = 1.xxx...x_2$
 - 。因此,第一位的"1"可以省去,xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0ϵ)

规格化浮点数示例

▶ Float F = 15213.0

```
\circ 15213<sub>10</sub> = 11101101101101<sub>2</sub> = 1.1101101101101<sub>2</sub> X 2<sup>13</sup>
```

 M =
 1.1101101101101_2

 frac
 =
 11011011011010000000000002

Hex: 4 6 6 D B 4 0 0

140: 100 0110 0

15213: *1*110 1101 1011 01

■ 非规格化浮点数 (Denormalized)

满足条件

- \circ exp = 000...0
- **) 其它域的取值**
 - E = 1 Bias Bias = $2^{e-1} 1$, $e = \exp$ 域的位数 (注:对规格化数而言**E = Exp Bias**)
 - $M = 0.xxx...x_2$
 - xxx...x: bits of frac
- **▶ 具体示例**
 - \circ exp = 000...0, frac = 000...0
 - 表示0
 - 注意有 +0 与 -0
 - \circ exp = 000...0, frac \neq 000...0
 - 表示"非常接近"于0的浮点数
 - 会逐步丧失精度
 - 称为 "Gradual underflow"

一些特殊值

- **满足条件**
 - o exp = 111...1
- **▶ 具体示例**
 - exp = 111...1, frac = 000...0
 - 表示无穷
 - 可用于表示数值的溢出
 - 有 正无穷与负无穷
 - E.g., $1.0/0.0 = +\infty$, $-1.0/0.0 = -\infty$
 - $\exp = 111...1$, frac $\neq 000...0$
 - Not-a-Number (NaN)
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

各种浮点数类型在数轴上的相对位置

一种"小"浮点数实例

▶ 8位浮点数表示

。exp域宽度为4 bits, frac域宽度为3bits

7	6	3	2	0
S	exp		frac	

▶ 其他规则符合IEEE 754规范

- 。 规格化 / 非规格化
- · 表示0, NaN与无穷

偏置的值是多少?

```
2<sup>E</sup>
Exp
             E
     exp
                           (非规格化数)
      0000
                    1/64
0
             -6
      0001
                    1/64
             -6
2
      0010
                    1/32
             -5
3
      0011
             -4
                    1/16
      0100
                    1/8
4
             -3
5
      0101
                    1/4
             -2
6
      0110
                    1/2
             -1
     0111
             0
                    2
8
      1000
             +1
                    4
      1001
9
             +2
                    8
      1010
10
             +3
     1011
                    16
11
             +4
      1100
                    32
12
             +5
13
     1101
             +6
                    64
      1110
14
             +7
                    128
      1111
15
             n/a
                           (inf, NaN)
```

取值范围

	s exp	frac	E	Value	
	0 0000	000	-6	0	
	0 0000	001/	-6	$1/8*1/64 = 1/512 \leftarrow \text{closest to zero}$	
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512 ← largest denorm	
	0 0001	000	∧−6	8/8*1/64 = 8/512 ← smallest norm	
	0 0001	. 001	-6	9/8*1/64 = 9/512	
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111/	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$	
	0 0111	. 000	0	8/8*1 = 1	
Normalized	0 0111	. 001	0	9/8*1 = 9/8 ← closest to 1 above	ļ
numbers	0 0111	. 010	0	10/8*1 = 10/8	
	•••				
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240 ← largest norm	
	0 1111	. 000	n/a	inf	• • •

数轴上的分布

一些特例

Description	ехр	frac
-------------	-----	------

Zero 00...00 00...00

▶ Smallest Pos. Denorm. 00...00 00...01

- Single $\approx 1.4 \times 10^{-45}$
- ∘ Double $\approx 4.9 \times 10^{-324}$
- ▶ Largest Denormalized 00...00 11...11
 - ∘ Single ≈ 1.18 X 10^{-38}
 - ∘ Double ≈ 2.2 X 10^{-308}
- ▶ Smallest Pos. Normalized 00...01 00...00
 - Just larger than largest denormalized
- One 01...11 00...00
- Largest Normalized 11...10 11...11
 - Single $\approx 3.4 \times 10^{38}$
 - Double $\approx 1.8 \times 10^{308}$

Numeric Value

0.0

$$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$$

1.0

 $(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

浮点数的一些编码特性

- **)** (几乎) 可以直接使用无符号整数的比较方式
 - 。 反例:
 - 必须先比较符号位
 - 考虑+0、-0的特例
 - 还有NaN的问题...
 - (不考虑符号位的话), NaN比其他值都大
 - 实际的比较结果如何?
 - 其他情况都可以直接使用无符号整数的比较方式
 - 规格化 vs. 非规格化
 - 规格化 vs. 无穷

	s	ехр	frac	E	Value
		0000		-6 -6	0 1/8*1/64 = 1/512 ← closest to zero
Denormalized		0000		-6	2/8*1/64 = 2/512
numbers	0	0000		-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6 -6	$8/8*1/64 = 8/512$ \leftarrow smallest norm $9/8*1/64 = 9/512$
	•••	0110		-1	14/8*1/2 = 14/16
	0	0110 0111	111	-1 0	15/8*1/2 = 15/16
Normalized	0	0111	001	0	9/8*1 = 9/8
numbers	 0	1110		7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240
	0	1111	000	n/a	inf

□ 给定一个实数,如何给出其浮点数表示?

基本流程

- 。首先计算出精确值
- 。然后将其转换为所需的精度
 - 可能会溢出 (如果指数绝对值很大)
 - 可能需要完成舍入(rounding)操作

▶ 各种舍入模式	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Zero	\$1	\$1	\$1	\$2	-\$1
Round down	\$1	\$1	\$1	\$2	-\$2
Round up	\$2	\$2	\$2	\$3	-\$1
 Nearest Even 	\$1	\$2	\$2	\$2	-\$2

向偶数舍入(Round-To-Even)

- > 这是计算机内默认的舍入方式,也称为"向最接近值的舍入"
 - 其它方式会产生统计误差 (statistically biased)
- 关键的设计决策的是确定两个可能结果的中间数值的舍入
 - 。确保舍入后的最低有效数字是偶数
 - E.g., round to nearest hundredth

• 1.2349999 / 1.23 (Less than half way)

• 1.2350001 1.24 (Greater than half way)

• 1.2350000 1.24 (Half way—round up)

• 1.2450000 1.24 (Half way—round down)

□ 向偶数舍入(Round-To-Even)

对于二进制数而言

- 。"Even"意味着最低有效数字需为0
- 。而最低有效数字右侧的位串为100...

> 实例

。舍入到小数点后2位

Value	Binary	Rounded
2 3/32	10.000112	10.00 ₂
2 3/16 /	10.001102	10.01 ₂
2 7/8	10.111002	11.00 ₂
2 5/8	10.101002	10.102

Action	Rounded Value
(<1/2—down)	2
(>1/2—up)	2 1/4
(1/2—up)	3
(1/2—down)	2 1/2

少骤

具体步骤

- 。将数值规格化(前导1)
- · 舍入 (round to even) 以便符合尾数的位数需求
- 。后调整

7	6	2	0
S	exp	frac	

实例

。将8位无符号数转换为8位浮点数 (exp域宽度为4 bits, frac域宽度为3bits)

128	10000000
15	00001111
17	00010001
19	00010011
138	10001010
63	00111111

规格化

_ 7	6	3 2	0
S	exp	frac	

Value	Binary	Fraction	Expo	onent
128	10000000	1.00000	000	7
15	00001111	1.11100	000	3
17	00010001	1.00010	000	4
19	00010011	1.00110	000	4
138	10001010	1.00010)10	7
63	00111111	1.11111	00	5

舍入

Value	Fraction	Incr?	Rounded
128	1.0000000	N	1.000
15	1.1110000	N	1.111
17	1.0001000	N	1.000
19	1.0011000	Υ	1.010
138	1.0001010	Υ	1.001
63	1.1111100	Y	10.000

過 调整 (Postnormalize)

。舍入操作可能引起溢出

ılt

C语言中的浮点数

float double 单精度浮点数 双精度浮点数

- > 类型转换
 - · 当int (32位宽), float, 与double等类型间进行转换时,基本的原则如下:
 - 。 double 或float 转换为 int
 - 尾数部分截断
 - · 如果溢出或者浮点数是NaN,则转换结果没有定义
 - 通常置为 Tmin or Tmax
 - · int转换为double
 - 能够精确转换
 - 。int转换为float
 - 不会溢出,但是可能被舍入

Floating Point Puzzles

。以下判断是否成立,如不成立请给出反例。

假设d 与 f 都不是 NaN

```
x == (int)(float) x
x == (int)(double) x
f == (float)(double) f
d == (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0 → ((d*2) < 0.0)</li>
d > f > -f > -d
d * d >= 0.0
```

• (d+f)-d == f