Лабораторная работа №13

Средства, применяемые при разработке программного обеспечения в ОС типа UNIX/Linux

Перевощиков Данил Алексеевич

Содержание

1	Цель работы	5
2	Ход работы	6
3	Вывод	9
4	Контрольные вопросы	10

Список иллюстраций

2.1	Компиляция программы	6
2.2	Исправленный makefile	6
2.3	Работа программы	7
2.4	Работа c breakpoints	7
2.5	split calculate.c	8
2.6	split main.c	8

Список таблиц

1 Цель работы

Приобрести простейшие навыки разработки, анализа, тестирования и отладки приложений в ОС типа UNIX/Linux на примере создания на языке программирования С калькулятора с простейшими функциями.

2 Ход работы

- **1.** В домашнем каталоге создали подкаталог ~/work/os/lab_prog, в нем создали файлы calculate.h, calculate.c, main.c и переписали в них код.
 - 2. Выполнили компиляцию программы посредством дсс. (рис. 2.1)

```
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: $ cd work/os/lab_prog/
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: "work/os/lab_prog$ ls
calculate.c calculate.h main.c Makefile Makefile"
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: "work/os/lab_prog$ gcc -c calculate.c
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: "work/os/lab_prog$ gcc -c -g main.c
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: "work/os/lab_prog$ gcc calculate.o main.o -o calcul -lm
daniledanil-ASUS-TUF-Gaming-A15-FA506II-FX506II: "work/os/lab_prog$ gcc
calcul calculate.c calculate.h calculate.o main.c main.o Makefile Makefile"
```

Рис. 2.1: Компиляция программы.

3. Создали makefile и исправили его.(рис. 2.2)

```
1 CC=gcc
2 CFLAGS=-g
3 LIBS=-lm
4
5 calcul: calculate.o main.o
6     gcc calculate.o main.o -o calcul $(LIBS)
7
8 calculate.o: calculate.c calculate.h
9     gcc -c calculate.c $(CFLAGS)
10
11 main.o: main.c calculate.h
12     gcc -c main.c $(CFLAGS)
13
14 clean:
15     -rm calcul *.o
```

Рис. 2.2: Исправленный makefile.

4. Запустили наш калькулятор с помощью gdb командой gdb ./calcul и командой run, проверили его работу. Далее вывели командой list первые 9 строк файла main.c и командой list 12,15 выводим строки с 12 по 15 файла main.c.(рис. 2.3)

Рис. 2.3: Работа программы.

5. Создали breakpoint на на 16 строке файла main.c, далее проверили информацию о breakpoints командой *info breakpoints*. После чего запустили калькулятор и убедились, что breakpoint сработал. Посмотрели чему на этом этапе равно значение переменной Numeral и удалили точка останова командой *delete 1*.(рис. 2.4)

Рис. 2.4: Работа c breakpoints.

6. С помощью утилиты splint проанализировали коды файлов calculate.c и main.c.(рис. 2.5)

Рис. 2.5: split calculate.c.

Рис. 2.6: split main.c.

3 Вывод

Приобрели простейшие навыки разработки, анализа, тестирования и отладки приложений в ОС типа UNIX/Linux на примере создания на языке программирования С калькулятора с простейшими функциями.

4 Контрольные вопросы

1. Как получить информацию о возможностях программ gcc, make, gdb и др.?

Дополнительную информацию о этих программах можно получить с помощью функций info и man.

- 2. Назовите и дайте краткую характеристику основным этапам разработки приложений в UNIX.
- создание исходного кода программы;
- представляется в виде файла;
- сохранение различных вариантов исходного текста;
- анализ исходного текста; Необходимо отслеживать изменения исходного кода, а также при работе более двух программистов над проектом программы нужно, чтобы они не делали изменений кода в одно время.
- компиляция исходного текста и построение исполняемого модуля;
- тестирование и отладка;
- проверка кода на наличие ошибок
- сохранение всех изменений, выполняемых при тестировании и отладке.
- 3. Что такое суффикс в контексте языка программирования? Приведите примеры использования.

Использование суффикса ".с" для имени файла с программой на языке Си отражает удобное и полезное соглашение, принятое в ОС UNIX. Для любого имени входного файла суффикс определяет какая компиляция требуется. Суффиксы и префиксы указывают тип объекта. Одно из полезных свойств компилятора Си — его способность по суффиксам определять типы файлов. По суффиксу .с компилятор распознает, что файл abcd.c должен компилироваться, а по суффиксу .о, что файл abcd.o является объектным модулем и для получения исполняемой программы необходимо выполнить редактирование связей. Простейший пример командной строки для компиляции программы abcd.c и построения исполняемого модуля abcd имеет вид: gcc -о abcd abcd.c. Некоторые проекты предпочитают показывать префиксы в начале текста изменений для старых (old) и новых (new) файлов. Опция – prefix может быть использована для установки такого префикса. Плюс к этому команда bzr diff -p1 выводит префиксы в форме которая подходит для команды patch -p1.

4. Каково основное назначение компилятора языка С в UNIX?

Основное назначение компилятора с языка Си заключается в компиляции всей программы в целом и получении исполняемого модуля.

5. Для чего предназначена утилита таке?

При разработке большой программы, состоящей из нескольких исходных файлов заголовков, приходится постоянно следить за файлами, которые требуют перекомпиляции после внесения изменений. Программа make освобождает пользователя от такой рутинной работы и служит для документирования взаимосвязей между файлами. Описание взаимосвязей и соответствующих действий хранится в так называемом make-файле, который по умолчанию имеет имя makefile или Makefile.

6. Приведите пример структуры Makefile. Дайте характеристику основным элементам этого файла.

makefile для программы abcd.c мог бы иметь вид:

```
#
#
Makefile
#
CC = gcc
CFLAGS =
LIBS = -lm
calcul: calculate.o main.o gcc calculate.o main.o -o calcul $(LIBS) calculate.o:
c calculate.c $(CFLAGS) main.o: main.c calculate.h gcc -c main.c $(CFLAGS) clean:
rm calcul *.o *~
#End Makefile
```

В общем случае make-файл содержит последовательность записей (строк), определяющих зависимости между файлами. Первая строка записи представляет собой список целевых (зависимых) файлов, разделенных пробелами, за которыми следует двоеточие и список файлов, от которых зависят целевые. Текст, следующий за точкой с запятой, и все последующие строки, начинающиеся с литеры табуляции, являются командами ОС UNIX, которые необходимо выполнить для обновления целевого файла. Таким образом, спецификация взаимосвязей имеет формат: target1 [target2...]: [:] [dependment1...] [(tab)commands] [#commentary] [(tab)commands] [#commentary], где # — специфицирует начало комментария, так как содержимое строки, начиная с # и до конца строки, не будет обрабатываться командой make; : — последовательность команд ОС UNIX должна содержаться в одной строке make-файла (файла описаний), есть возможность переноса команд (), но она считается как одна строка; :: — последовательность команд ОС UNIX может содержаться в нескольких последовательных строках файла описаний. Приведённый выше make-файл для программы abcd.c включает два способа компиляции и построения исполняемого модуля. Первый способ предусматривает

обычную компиляцию с построением исполняемого модуля с именем abcd. Второй способ позволяет включать в исполняемый модуль testabcd возможность выполнить процесс отладки на уровне исходного текста.

7. Назовите основное свойство, присущее всем программам отладки. Что необходимо сделать, чтобы его можно было использовать?

Пошаговая отладка программ заключается в том, что выполняется один оператор программы и, затем контролируются те переменные, на которые должен был воздействовать данный оператор. Если в программе имеются уже отлаженные подпрограммы, то подпрограмму можно рассматривать, как один оператор программы и воспользоваться вторым способом отладки программ. Если в программе существует достаточно большой участок программы, уже отлаженный ранее, то его можно выполнить, не контролируя переменные, на которые он воздействует. Использование точек останова позволяет пропускать уже отлаженную часть программы. Точка останова устанавливается в местах, где необходимо проверить содержимое переменных или просто проконтролировать, передаётся ли управление данному оператору. Практически во всех отладчиках поддерживается это свойство (а также выполнение программы до курсора и выход из подпрограммы). Затем отладка программы продолжается в пошаговом режиме с контролем локальных и глобальных переменных, а также внутренних регистров микроконтроллера и напряжений на выводах этой микросхемы. 8. Назовите и дайте основную характеристику основным командам отладчика gdb. – backtrace – выводит весь путь к текущей точке останова, то есть названия всех функций, начиная от main(); иными словами, выводит весь стек функций; – break – устанавливает точку останова; параметром может быть номер строки или название функции;

- clear удаляет все точки останова на текущем уровне стека (то есть в текущей функции);
- continue продолжает выполнение программы от текущей точки до конца;

- delete удаляет точку останова или контрольное выражение;
- display добавляет выражение в список выражений, значения которых отображаются каждый раз при остановке программы;
- finish выполняет программу до выхода из текущей функции; отображает возвращаемое значение,если такое имеется;
- info breakpoints выводит список всех имеющихся точек останова; info watchpoints выводит список всех имеющихся контрольных выражений;
- splist выводит исходный код; в качестве параметра передаются название файла исходного кода, затем, через двоеточие, номер начальной и конечной строки; – next – пошаговое выполнение программы, но, в отличие от команды step, не выполняет пошагово вызываемые функции;
- print выводит значение какого-либо выражения (выражение передаётся в качестве параметра);
- run запускает программу на выполнение;
- set устанавливает новое значение переменной
- step пошаговое выполнение программы;
- watch устанавливает контрольное выражение, программа остановится, как только значение контрольного выражения изменится;
- 8. Назовите и дайте основную характеристику основным командам отладчика gdb
- backtrace вывод на экран пути к текущей точке останова (по сути вывод названий всех функций)
- break установить точку останова (в качестве параметра может быть указан номер строки или название функции)

- clear удалить все точки останова в функции
- continue продолжить выполнение программы
- delete удалить точку останова
- display добавить выражение в список выражений, значения которых отображаются при достижении точки останова программы
- finish выполнить программу до момента выхода из функции
- info breakpoints вывести на экран список используемых точек останова
- info watchpoints вывести на экран список используемых контрольных выражений
- list вывести на экран исходный код (в качестве параметра может быть указано название файла и через двоеточие номера начальной и конечной строк)
- next выполнить программу пошагово, но без выполнения вызываемых в программе функций
- print вывести значение указываемого в качестве параметра выражения
- run запуск программы на выполнение
- set установить новое значение переменной
- step пошаговое выполнение программы
- watch установить контрольное выражение, при изменении значения которого программа будет остановлена
- 9. Опишите по шагам схему отладки программы, которую Вы использовали при выполнении лабораторной работы.
- Выполнили компиляцию программы
- Увидели ошибки в программе
- Открыли редактор и исправили программу
- Загрузили программу в отладчик gdb
- run отладчик выполнил программу, мы ввели требуемые значения.
- программа завершена, gdb не видит ошибок.

10. Прокомментируйте реакцию компилятора на синтаксические ошибки в программе при его первом запуске.

Отладчику не понравился формат %s для &Operation, т.к %s— символьный формат, а значит необходим только Operation.

11. Назовите основные средства, повышающие понимание исходного кода программы

Если вы работаете с исходным кодом, который не вами разрабатывался, то назначение различных конструкций может быть не совсем понятным. Система разработки приложений UNIX предоставляет различные средства, повышающие понимание исходного кода. К ним относятся: – сѕсоре - исследование функций, содержащихся в программе; – splint — критическая проверка программ, написанных на языке Си.

12. Каковы основные задачи, решаемые программой splint?

Эта утилита анализирует программный код, проверяет корректность задания аргументов использованных в программе функций и типов возвращаемых значений, обнаруживает синтаксические и семантические ошибки. В отличие от компилятора С анализатор splint генерирует комментарии с описанием разбора кода программы и осуществляет общий контроль, обнаруживая такие ошибки, как одинаковые объекты, определённые в разных файлах, или объекты, чьи значения не используются в работе программы, переменные с некорректно заданными значениями и типами и многое другое.