Mean Flow Steepening in Internal Gravity Wave Breaking

Group Meeting Presentation

Yubo Su

Nov 30, 2018

Background

Goldreich & Nicholson 1989

- Tidal Friction in Early-Type Stars.
- Tidal torques excite outgoing internal gravity waves (IGW) at boundary between convective core and radiative envelope.
- IGW amplify as they propagate due to density rarefaction, break and deposit angular momentum.
- Transfers energy from the orbit to the star and synchronizing the spin to the orbit outside-in.

Problem Setup

- 2D incompressible, isothermal, stratified plane parallel atmosphere.
- For a barotropic $P(\rho, S) = P(\rho)$, incompressibility $c_s^2 \to \infty$ produces

$$\vec{\nabla} \cdot \vec{u} = 0, \qquad (1a)$$

$$\frac{\partial \rho}{\partial t} + \vec{u} \cdot \vec{\nabla} \rho = 0, \quad (1b)$$

$$\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla}\right) \vec{u} + \frac{\vec{\nabla}P}{\rho} + g\hat{z} = 0.$$
 (1c)

• Numerics: instead of $\frac{P}{\rho}$, $\rho T = P$ and $\rho = \rho_0 e^{\Upsilon}$ for stratification $\rho(z) \propto e^{-z/H}$.

$$\vec{\nabla} \cdot \vec{u} = 0$$
, (2a)

$$\frac{\partial Y}{\partial t} - \frac{u_z}{H} = 0, \quad (2b)$$

$$\frac{\partial \vec{u}}{\partial t} + \left(\vec{u} \cdot \vec{\nabla} \right) \vec{u} + \vec{\nabla} T + gH \vec{\nabla} \Upsilon$$

$$+T_1\vec{\nabla}\Upsilon - \frac{T_1\hat{z}}{H} = 0.$$
 (2c)

- In linear regime $\left(\vec{u} \cdot \vec{\nabla} \right) \ll \partial_t, \; \vec{u} \propto e^{z/2H}.$
- Perturbation (\vec{u}, ρ_1, P_1) carries average horizontal momentum flux $\langle F_{p,x} \rangle_x = \langle \rho u_x u_z \rangle_x$.
- Induces mean flow

$$\langle u_x \rangle_x \equiv \bar{U}_x(z) \neq 0 = \frac{\langle u_x u_z \rangle_x}{c_{g,z}}.$$
 (3)

- Critical layer (equivalent to corotation resonance in other systems): where Doppler-shifted frequency (in fluid rest frame) $\omega \Rightarrow \omega k_x \bar{U}_x = 0$.
- Note $\bar{U}_x \propto e^{z/H}$ so there is eventually $z_c : \omega k_x \bar{U}_x(z_c) = 0$.

- Since critical layers almost always induce full absorption (recall, $\propto \exp\left[-\pi\sqrt{\mathrm{Ri}^2-\frac{1}{4}}\right]$, $\mathrm{Ri}=\frac{N}{l^{\prime\prime}}$), hypothesis:
 - \vec{u}_1 is excited, induces \bar{U}_x mean flow.
 - Where \bar{U}_x satisfies critical layer criterion, $F_{p,x}$ is fully absorbed.
 - Horizontal momentum goes into spinning up more fluid up to $\bar{U}_{x,crit} = \frac{\omega}{k_x}$.
 - Thus, critical layer should propagate down.
- Exactly the spin up outside in tidal synchronization picture...

Large Domain, Low-Amplitude

- Permit $z \in [0H, 10H]$, full $\rho_0 \propto e^{-z/H}$, allow $\vec{u} \propto e^{z/2H}$ to source growing mean flow.
- Low-Amplitude ($k_z \xi_z \ll 1$ everywhere). Orange = analytical solution.

(a) Early Low-A

(b) Later Low-A

Large Domain, Low-Amplitude

Figure: Low-Amplitude, nearly zero viscosity.

Large Domain, High-Amplitude

• Note steepening region (N=1, so $\frac{\partial \bar{U}_x}{\partial z} = \frac{N}{\mathrm{Ri}} = \mathrm{Ri}^{-1}$).

(a) Lower-res.

(b) Double N_z .

8 / 14

Large Domain, High-Amplitude

Later

(a) Lower-res.

(b) Double N_z .

- While damping layers pump up \bar{U}_x , ran on higher amplitude, damping layer is not chief cause of \bar{U}_x critical layer behavior.
- ullet Would expect reflections due to Ri \gtrsim 1/2, different from hypothesis!
 - No reflections seen, could be viscously limited?
 - Indeed, $\mathrm{Ri}^{-1} \sim \left| \vec{k} \right| d$ where d is the width of the spinup layer, then $v \rho_0 \frac{\vec{U}_{x,c}}{\frac{J^2}{J^2}} \sim \frac{F_{p,x}}{\frac{J}{J}}$.
- Separately, matching $F_{p,x}=\langle \rho_0 u_x u_z \rangle$ with spinning up mass $F_{p,x}=u_{front}\rho_0 \bar{U}_{x,crit}$ lets us predict u_{front} , next page.

Large Domain, Predicting u_{front}

- Front position is $z_f=\mathrm{argmax}_z\,\frac{\mathrm{d} \bar{U}_x}{\mathrm{d} z}$, while $F_{p,x}=2F_{p,x}(z_f)$ (~ halfway in front).
- Predicts $u_{front} = \frac{F_{p,x}}{\rho_0(z)\bar{U}_{x,c}} \approx 2.2 \times 10^{-3} NH$ (using $z \approx 5.5H$), or 2H/3 in 300N. Pretty close, seems to imply perfect absorption.

(b) $F_{p,x} = \langle \rho u_x u_z \rangle_x$.

Local Boussinesq

- Go to Boussinesq, "zoom in." Use $\mathfrak{D}=\nabla^6$ regularization. Set up initial mean flow $\bar{U}_x(z)$ such that $\max_z \bar{U}_x(z) = \bar{U}_{x,c}$.
- Reflection indeed develops!

Local Boussinesq

- Expect Kelvin-Helmholtz instability to develop; resolution-limit?
- Not viscosity-limited: $v^{(6)}
 ho_0 \frac{ar{U}_{x,c}}{d^6} \ll \frac{F_{p,x}}{d}!$

Comparing u_{front}

- Same as for anelastic, but predicts $u_{front} \approx \frac{4.5 \times 10^{-7}}{\rho_0 \bar{U}_{x,c}} \approx 1.4 \times 10^{-5} HN$ or 0.014H in 1000N. $t \in [1000, 2000]$ accurate, $t \in [2000, 3000]$ less so.
- No front slowdown is expected since ρ_0 is constant in space, but is observed; could be explained by increasing reflectivity.

(a) Front Position. Slowing down.

(b) $F_{p,x}$.