AZ MI FOGALMA

mesterséges intelligencia -MI (artificial intelligence - AI)

sokan sokfélét értenek alatta

Nem egy rész-területe az informatikának, hanem egy szemléletmód, amely az informatika fejlődését szolgálja: olyan problémákra keres számítógépes megoldásokat, amelyek megoldásában az ember jobbnak tűnik.

Erős MI

Cél: az emberi gondolkodás számítógéppel történő reprodukálása.

MI szkeptikusok

A számítógép soha nem lesz okosabb az embernél.

Gyenge MI

Cél: Azon elméletek és módszerek kutatása, fejlesztése, rendszerezése, amelyekkel az emberi intelligencia számára is érdekes és nehéz problémákra adhatunk számítógépes megoldásokat.

MI története

kétszemélyes játékok (sakk) beszélgető program (ELIZA,1966)

ELIZA

Minta-válasz párok:

Úgy érzem, hogy ön mostanában engem un.

<a> ön engem ⟨c>.

- 1. Miért gondolja, hogy ön <a> én <c>?
- 2. Tegyük fel, hogy én önt <c>. Mit változtat ez a dolgokon?

Ismétlés felismerése:

"Miért ismételgeti ugyanazt újra és újra?"

Folytatás:

Igen, értem. Kérem folytassa. Ez nagyon érdekes. Még miről szeretne beszélgetni?

MI története

MI története

MI története

Miről ismerhető fel egy szoftverben az MI?

Megoldandó feladat: nehéz

■ Szoftver viselkedése

□ Felhasznált technológiák

Utazó ügynök problémája

Adott n város a közöttük vezető utak költségeivel. Melyik a legolcsóbb olyan útvonal, amely az A városból indulva mindegyik várost egyszer érintve visszatér az A városba?

Miről ismerhető fel egy szoftverben az MI?

- Megoldandó feladat: nehéz
 - A feladat problématere hatalmas,
 - szisztematikus keresés helyett intuícióra, kreativitásra (azaz heurisztikára) van szükségünk ahhoz, hogy elkerüljük a kombinatorikus robbanást.
- □ Szoftver viselkedése

□ Felhasznált technológiák

Utazó ügynök problémája

Adott n város a közöttük vezető utak költségeivel. Melyik a legolcsóbb olyan útvonal, amely az A városból indulva mindegyik várost egyszer érintve <u>visszatér</u> az A városba? szomszédos start: ABCDEA 2+9+5+3+4=23 elempár cseréje **ABCEDA ABDCEA ACBDEA** 2+9+1+3+1=16 1+9+1+3+4=18 2+1+5+1+4=13 legjobb elem AEDCBA választása ABDECA 2+1+3+1+1=8 **AEDBCA ACEDBA** felesleges ACEBDA ADBECA elemek 1+1+1+1+1=5 elhagyása

Utazó ügynök problémája

Adott n város a közöttük vezető utak költségeivel. Melyik a legolcsóbb olyan útvonal, amely az A városból indulva mindegyik várost egyszer érintve visszatér az A városba?

Miről ismerhető fel egy szoftverben az MI?

- Megoldandó feladat: nehéz
 - A feladat problématere hatalmas,
 - szisztematikus keresés helyett intuícióra, kreativitásra (azaz heurisztikára) van szükségünk ahhoz, hogy elkerüljük a kombinatorikus robbanást.
- □ Szoftver viselkedése: intelligens
 - Turing teszt
- □ Felhasznált technológiák

Miről ismerhető fel egy szoftverben az MI?

- Megoldandó feladat: nehéz
 - A feladat problématere hatalmas,

Intelligens szoftver jellemzői

- megszerzett ismeret tárolása
- automatikus következtetés
- tanulás
- term. nyelvű kommunikáció
- + gépi látás, gépi cselekvés
- szisztematikus keresés helyett intuícióra, kreativitásra (azaz heurisztikára) van szükségünk ahhoz, hogy elkerüljük a kombinatorikus robbanást.
- □ Szoftver viselkedése: intelligens
 - Turing teszt vs. kínai szoba elmélet
 - általános mesterséges intelligencia
- □ Felhasznált technológiák: sajátosak
 - speciális reprezentáció a feladat modellezéséhez
 - heurisztikával megerősített hatékony algoritmusok
 - gépi tanulás módszerei

gépi tanulás

modellezés és keresés

MODELLEZÉS & KERESÉS

Állapottér modell Probléma redukció Probléma dekompozíció Korlátprogramozási modell Kétszemélyes játék modellje Logikai reprezentációk Valószínűségi háló

Lokális keresések
Visszalépéses keresés
Gráfkeresések
Evolúciós algoritmus
Játékfa kiértékelő módszerek
Logikai következtetések
Bizonytalanság kezelés

Mire kell a modellezésnek fókuszálni

- □ Problématér elemei: probléma lehetséges válaszai
- □ *Cél*: egy helyes válasz (megoldás) megtalálása
- □ *Keresést segítő ötletek* (heurisztikák):
 - Problématér hasznos elemeinek elválasztása a haszontalanoktól.
 - Kiinduló elem kijelölése.
 - Az elemek szomszédsági kapcsolatainak kijelölése, hogy a probléma tér elemeinek szisztematikus bejárását segítsük.
 - Adott pillanatban elérhető elemek rangsorolása.

Útkeresési probléma

- □ Útkeresési probléma az, amelynek megoldása megfeleltethető egy élsúlyozott irányított gráfbeli
 - csúcsnak (célcsúcs), vagy még inkább
 - útnak (startcsúcsból célcsúcsba, esetleg a legolcsóbb)

Számos olyan modellező módszert ismerünk, amely a kitűzött feladatot útkeresési problémává fogalmazza át.

- \Box Ez a gráf (δ -gráf) lehet végtelen nagy, de
 - csúcsainak kifoka véges, és
 - élei súlyának (költségének) van egy konstans globális pozitív alsó korlátja (δ).

Gráf fogalmak 1.

- csúcsok, irányított élek
- él *n*-ből *m*-be
- *n* utódai
- n szülei
- irányított gráf
- véges sok kivezető él
- élköltség
- δ -tulajdonság ($\delta \in \mathbb{R}^+$)
- δ-gráf

$$N, A \subseteq N \times N$$
 (végtelen számosság)
 $(n,m) \in A$ $(n,m \in N)$
 $\Gamma(n) = \{m \in N \mid (n,m) \in A\}$
 $\pi(n) \in \Pi(n) = \{m \in N \mid (m,n) \in A\}$
 $R = (N,A)$
 $|\Gamma(n)| < \infty$ $(\forall n \in N)$
 $c:A \to \mathbb{R}$
 $c(n,m) \ge \delta > 0$ $(\forall (n,m) \in A)$

δ-tulajdonságú, véges sok kivezető

élű, élsúlyozott irányított gráf

Gráf fogalmak 2.

irányított út

δ-gráfokban ez végtelen sok út esetén is értelmes.

Értéke ∞, ha nincs egy út se.

- út hossza
- út költsége
- opt. költség
- opt. költségű út

```
\alpha = (n, n_1), (n_1, n_2), ..., (n_{k-1}, m)
     = \langle n, n_1, n_2, ..., n_{k-1}, m \rangle
 n \longrightarrow \alpha m, n \longrightarrow m, n \longrightarrow M (M \subseteq N)
 \{n \longrightarrow m\}, \{n \longrightarrow M\} (M \subset N)
 az út éleinek száma: α
 c(\alpha) = c^{\alpha}(n,m) := \sum_{i=1,k} c(n_{i-1},n_i)
 ha \alpha = \langle n = n_0, n_1, n_2, ..., n_{k-1}, m = n_k \rangle
c^*(n,m) := \min_{\alpha \in \{n \to m\}} c^{\alpha}(n,m)
 c^*(n,M) := \min_{\alpha \in \{n \to M\}} c^{\alpha}(n,m)
 n \longrightarrow^* m := \min_{c} \{ \alpha \mid \alpha \in \{n \longrightarrow m\} \}
 n \longrightarrow^* M := \min_{\alpha} \{ \alpha \mid \alpha \in \{n \longrightarrow M\} \}
```

ÉS/VAGY gráfok

- \square R=(N,A) élsúlyozott irányított hipergráf, ahol
 - N a csúcsok halmaza
 - $A \subseteq \{ (n,M) \in N \times N^+ \mid 0 \neq |M| < \infty \}$ a hiperélek halmaza hiperél ~ ugyanazon csúcsból induló ÉS kapcsolatú élek kötege
 - |M| a hiperél rendje
 - c(n,M) az (n,M) él költsége
- Egy csúcsból csak véges sok hiperél indulhat.
- \bigcirc $0 < \delta \le c(n,M)$

Az n csúcsból az M csúcs-sorozatba vezető irányított hiperút fogalma

□ Egy ÉS/VAGY gráf $n^{\alpha} \rightarrow M$ hiperútja $(n \in N, M \in N^{+})$ egy olyan véges részgráf, amelyben $a \rightarrow \langle d, e \rangle$ • *M* csúcsaiból nem indul hiperél, *M*-en kívüli csúcsokból pontosan egy hiperél indul, a hiperút minden csúcsa elérhető az n csúcsból egy közönséges irányított úton. □ A megoldás-gráf egy $s \rightarrow M$ hiperút, ahol s a startesúes, az Egyértelmű haladási M pedig célcsúcsok sorozata. irányok *a*-ból <*d*,*e*>-be

A hiperút bejárása

- Az n→M hiperút bejárását a hiperéleinek adott sorrendű felsorolásával kapjuk, amelyet a hiperút csúcsaiból képzett csúcssorozatok felsorolásával is megadhatunk :
 - első sorozat: <*n*>
 - C sorozatot a $C^{k \leftarrow K}$ sorozat követi, ha van az $n \rightarrow M$ hiperútban (k, K) hiperél, és $k \in C$, de $k \notin M$. $C^{k \leftarrow K}$ úgy kapjuk, hogy C-ben a k helyére mindenhol K-t írunk.
- ☐ Így egy hiperutat közönséges irányított útként foghatunk fel igaz többféleképpen is, mert több bejárása is lehet:

$$\langle n \rangle \rightarrow \langle a,b \rangle \rightarrow \langle a,a \rangle \rightarrow \langle c,d,c,d \rangle$$

 $\langle n \rangle \rightarrow \langle a,b \rangle \rightarrow \langle c,d,b \rangle \rightarrow \langle c,d,a \rangle \rightarrow \langle c,d,c,d \rangle$

Gráfreprezentáció fogalma

- Minden útkeresési probléma rendelkezik egy (a probléma modellezéséből származó) gráfreprezentációval, ami egy (*R*,*s*,*T*) hármas, amelyben
 - R=(N,A,c) a reprezentációs gráf (δ vagy ÉS/VAGY gráf)
 - az $s \in N$ startcsúcs,
 - a *T*⊆*N* halmazbeli célcsúcsok.
- és a probléma megoldása:
 - t cél vagy $\langle t_1, \dots, t_m \rangle$ célcsúcs-sorozat megtalálása $(t, t_1, \dots, t_m \in T)$, vagy
 - s→t vagy s→ $< t_1$, ..., $t_m>$ esetleg egy optimális s→ *T út megtalálása

Útkeresés δ-gráfban

- Egy útkeresési probléma megoldásához a reprezentációs gráfjának nagy mérete miatt speciális (nem-determinisztikus, heurisztikus) útkereső algoritmusra van szükség, amely
 - a startcsúcsból indul (kezdeti aktuális csúcs);
 - minden lépésben nem-determinisztikus módon új aktuális csúcso(ka)t választ a korábbi aktuális csúcs(ok) segítségével (gyakran azok gyerekei közül);
 - tárolja a már feltárt reprezentációs gráf egy részét;
 - megáll, ha célcsúcsot talál vagy nyilvánvalóvá válik, hogy erre semmi esélye.

Útkeresés ÉS/VAGY gráfban

- ÉS/VAGY gráfbeli megoldás-gráf keresése visszavezethető egy δ-gráfban történő útkeresésre.
- A startcsúcsból induló hiperutakat (köztük a megoldás-gráfokat is) a bejárásukkal (közönséges irányított utakkal) ábrázolhatjuk, amelyek egy δ-gráfot(!) határoznak meg. A δ-gráf
 - csúcsai az eredeti ÉS/VAGY gráf csúcsainak sorozatai
 - startcsúcsa az ÉS/VAGY gráf startcsúcsából álló sorozat
 - célcsúcsai az ÉS/VAGY gráf célcsúcsaiból álló sorozatok
- □ Az így nyert δ-gráf megoldási útjai az eredeti ÉS/VAGY gráfbeli megoldás-gráfokat reprezentálják. Ezért egy ÉS/VAGY gráfban a megoldás-gráf megkeresése a neki megfeleltetett δ-gráfban történő megoldási út megkeresésével helyettesíthető.