7. Prove that for any natural number n, $2+2^2+2^3+\ldots+2^n=2^{n+1}-2$.

PROOF By mathematical induction:

- 1. For n = 1, the identity reduces to $2^1 = 2^{1+1} 2$, which simplifies to 2 = 2. The identity is true for n = 1.
- 2. Assume the identity is true for n. Therefore, $2+2^2+2^3+\ldots+2^n=2^{n+1}-2$.
- 3. Add 2^{n+1} to the LHS: $(2+2^2+2^3+\ldots+2^n)+2^{n+1}$. But, we know $2+2^2+2^3+\ldots+2^n=2^{n+1}-2$ from (2).
- 4. Simplifying the LHS in (3): $(2^{n+1}-2)+2^{n+1}=2*2^{n+1}-2=2^{n+2}-2$, which is the result for n+1.

Hence, by the principle of mathematical induction, the identity is true. ■