City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>B</u> 20_17_/_18_

Part I Course Over	view
Course Title:	Introduction to Optimization
Course Code:	MA3515
Course Duration:	One semester
Credit Units:	3
Level:	B3
Duamagad Awas	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations
Proposed Area: (for GE courses only)	Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	MA2503 Linear Algebra
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	Nil

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course introduces basic concepts and methods of optimization. It emphasizes equally all three aspects of understanding, algorithms and applications. It also equips students with computing techniques and ability of applying taught methods to solve practical problems.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-en	riched
		(if	curricu	ılum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	explain clearly basic concepts of linear and non-linear	10%	Y		
	programming.				
2.	solve problems of linear programming, integer	20%	Y	Y	
	programming and non-linear programming with				
	fundamental methods in optimization.				
3.	apply linear programming tools to solve two-person	20%	Y	Y	
	zero-sum games.				
4.	apply mathematical and computational methods of	20%		Y	Y
	optimization in formulating and solving real-life problems.				
5.	the combination of CILOs 1-4	30%	Y	Y	Y
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.						Hours/week (if
		1	2	3	4	5		applicable)
Lecture	Learning through teaching is primarily based on lectures.	Y	Y	Y	Y	Y		39 hours in total
Take-home assignments	Learning through take-home assignments helps students understand techniques of basic	Y	Y	Y	Y			after-class
	methods in linear, integer and							

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

	Г		1			Г	1
	non-linear programming as well						
	as their applications in solving						
	optimization problems.						
Projects	Learning through project(s) helps			Y	Y		
	students apply mathematical and						
	computational methods of						
	optimization in formulating and						
	solving more sophisticated						
	real-life problems on						
	linear/integer/non-linear						
	programming. It also helps						
	students to communicate and						
	collaborate effectively in the						
	team.						
Online	Learning through online				Y		after-class
applications	examples for applications helps						
	students create and formulate						
	mathematical models and apply to						
	a range of practical problems in						
	economics/science.						
Math Help	Learning activities in Math Help	Y	Y		Y		after-class
Centre	Centre provides students extra						
	help.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: _309	%						
Test	Y	Y		Y		15-30%	Questions are designed for the part of the course to see how well the students have learned basic concepts of methods in linear programming and recognized their applications in solving

							optimization problems.
Hand-in assignments	Y	Y	Y	Y		0-15%	These are skills based
							assessment to enable
							students to demonstrate
							techniques of applying
							optimization methods
							in a diversity of
							problems.
Project(s)			Y	Y		0-15%	Students are assessed
							on their ability in
							applying mathematical
							and computational
							methods to solve
							real-life optimization
							problems, as well as on
							the presentation of
							solutions with analysis.
Formative take-home	Y	Y	Y	Y		0%	The assignments
assignments							provide students
							chances to demonstrate
							their achievements on
							techniques of
							optimization learned in
							this course.
Examination, 70 0/ (dynation	2 h	no if	omm1:	aabla			Examination quartiens
Examination: _70% (duration	1: 3 h	rs, 11	appli	cable)		Examination questions are designed to see how far students have achieved their intended
							learning outcomes. Questions will
							primarily be skills and
							understanding based to assess the student's
							versatility in basic
							methods of mathematical
							programming.
* The weightings should add up to 1	00%.					100%	

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	Ability to understand the basic concepts of methods in linear programming and recognize their applications in solving optimization problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	Ability to apply the techniques of optimization methods in a diversity of problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Projects	Ability to apply mathematical and computational methods to solve real-life optimization problems and present the solutions with analysis					
4. Examination	Ability to solve linear and non-linear programming problems with fundamental methods in optimization.	High	Significant	Moderate	Basic	Not even reaching marginal levels
5. Formative take-home assignments	Ability to demonstrate students' achievements on techniques of optimization learned in this course	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Examples of Optimization Problems. Simplex Method for Linear Programming Problems. Duality Theory of Linear Optimization. Sensitivity Analysis for Linear Programming Problems, Cutting Plane Methods for Integer Programming Problems, Two-person Zero-sum Games, The Fundamental Theorem and Computational Techniques.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Text(s): Paul R. Thie, "An Introduction to Linear Programming and Game Theory",
	John Wiley & Sons, 1988.
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	