New perspectives for increasing efficiency of optimization schemes

Yurii Nesterov, CORE/INMA (UCL)

January 7, 2016 (Big Data Conference, UCL, London)

Joint results with S. Stich (ETH Zurich)

Thirty years ago ...

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, f is convex and

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \ x, y \in \mathbb{R}^n.$$

Fast gradient method (N.1984): $x_0 \in \mathbb{R}^n$,

$$y_k = x_k + \frac{k}{k+2}(x_k - x_{k-1}), \ x_{k+1} = y_k - \frac{1}{L}\nabla f(y_k), \ k \ge 0.$$

Result:
$$f(x_k) - f^* \le \frac{2LR^2}{k(k+1)}, k \ge 1$$
. (Optimal)

Compare: Heavy ball method (B.Polyak, 1964)

$$x_{k+1} = x_k + \alpha_k(x_k - x_{k-1}) - \beta_k \nabla f(x_k), \ k \ge 0.$$
 (Convergence analysis for QP)

Applications (1983-2003): Nothing ...

Twenty years later ...

Problem: $\min_{x \in Q} f(x)$, f is convex, Q is convex, and

$$\|\nabla f(x) - \nabla f(y)\|_* \le L\|x - y\|, \ x, y \in Q.$$

Prox-function: strongly convex d(x), $x \in Q$.

Fast gradient method (N.03): $v_0 = x_0 \in \mathbb{R}^n$,

$$v_k = \arg\min_{x \in Q} \left\{ d(x) + \sum_{i=0}^{k-1} \frac{i+1}{2L} [f(y_i) + \langle \nabla f(y_i), x - y_i \rangle] \right\},$$

$$y_k = \frac{k}{k+3} v_k + \frac{2}{k+3} x_k, \quad x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k), \ k \ge 0.$$

Result:
$$f(x_k) - f^* \le \frac{2LR^2}{k(k+1)}, k \ge 1.$$

Applications (2003 - 2015(?)): Smooth approximations of nonsmooth functions.

Smoothing technique

Problem:
$$\min_{x \in Q} f(x)$$
, diam $Q = D_1$.

Model:
$$f(x) = \max_{u \in U} \{ \langle Ax, u \rangle - \phi(u) \}.$$

Smoothing:
$$f_{\mu}(x) = \max_{u \in U} \{ \langle Ax, u \rangle - \phi(u) - \mu d_2(u) \},$$

where d_2 is strongly convex on U, diam $U = D_2$.

Then
$$\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{*} \leq \frac{1}{\mu} \|A\|^{2} \cdot \|x - y\|, \ x, y \in \mathbb{R}^{n}, \ \mu > 0,$$

where $\|A\| = \max_{x,u} \{\langle Ax, u \rangle : \|x\| \leq 1, \ \|u\| \leq 1\}.$

Complexity: Choose $\mu = O(\epsilon)$.

Then we get ϵ -solution in $O(\frac{1}{\epsilon}||A||D_1D_2)$ iterations.

NB: Subgradient schemes need $O(\frac{1}{\epsilon^2}||A||^2D_1^2D_2^2)$ iteratons.

Ten years later ...

 $Huge\text{-}scale\ problems \Rightarrow Coordinate\ descent\ methods$

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, with objective satisfying conditions

$$|\nabla_i f(x + he_i) - \nabla_i f(x)| \le L_i |h|, \, \forall x, h \in \mathbb{R}^n. \quad (\mathbf{NB:} \ L_i \le L_{\nabla f}.)$$

Hence:
$$f(x) - f\left(x - \frac{1}{L_i}\nabla_i f(x)e_i\right) \ge \frac{1}{2L_i} (\nabla_i f(x))^2, i = 1:n.$$

Consequences [N.12]: Denote $S_{\alpha} = \sum_{i=1}^{n} L_{i}^{\alpha}, \alpha \in [0, 1].$

Choose i with probability $\pi_i = \frac{1}{S_1} L_i$. Then $\mathcal{E}(f(x_+)) \leq f(x) - \frac{1}{2S_1} \|\nabla f(x)\|_{[0]}^2$ $\Rightarrow \mathcal{E}(f(x_k)) - f^* \leq \frac{S_1 R_0^2}{k}.$ $\left(\|x\|_{[\alpha]}^2 = \sum_{i=1}^n L_i^{\alpha} \left(x^{(i)}\right)^2, \quad \|g\|_{[\alpha]}^2 = \sum_{i=1}^n L_i^{-\alpha} \left(g^{(i)}\right)^2.\right)$

• Choose i with probability $\pi_i = \frac{1}{n}$. Then

Fast Coordinate Descent

Random generator: For $\beta \in [0,1]$, get $j = \mathcal{R}_{\beta}(L) \in \{1:n\}$ with probabilities $\pi_{\beta}[i] \equiv \operatorname{Prob}(j=i) \stackrel{\text{def}}{=} \frac{1}{S_{\beta}} L_i^{\beta}, \quad i \in \{1:n\}.$

- [N.12] $\beta = 0$: $\mathcal{E}(f(x_k)) f^* \le 2(\frac{n}{k+1})^2 L_{\max} R_{[0]}^2$.
- [Lee, Sidford 13] $\beta = 1$: $\mathcal{E}(f(x_k)) f^* \leq 2 \frac{n \dot{S}_1}{(k+1)^2} R_{[0]}^2$.
- [N., Stich 15] $\beta = \frac{1}{2}$: $\mathcal{E}(f(x_k)) f^* \le 2\left(\frac{S_{1/2}}{k+1}\right)^2 R_{[0]}^2$.

Fast CD: Choose $v_0 = x_0 \in \mathbb{R}^n$. Set $A_0 = 0$

- 1) Choose active coordinate $i_t = \mathcal{R}_{1/2}(L)$.
- 2) Solve $a_{t+1}^2 S_{1/2}^2 = A_t + a_{t+1}$. Set $A_{t+1} = A_t + a_{t+1}$, $\alpha_t = \frac{a_{t+1}}{A_{t+1}}$.
- 3) Set $y_t = (1 \alpha_t)x_t + \alpha_t v_t$, $x_{t+1} = y_t \frac{1}{L_{i_t}} \nabla_{i_t} f(y_t) e_{i_t}$, $v_{t+1} = v_t \frac{a_{t+1} S_{1/2}}{L_{i_t}^{1/2}} \nabla_{i_t} f(y_t) e_{i_t}$.

NB: Each iteration needs O(n) a.o. \Rightarrow Not for Huge Scale.

Complexity |

For getting ϵ -accuracy we need $\frac{S_{1/2}R_{[0]}}{\epsilon^{1/2}}$ iterations $\leq \frac{nL_{\nabla f}^{1/2}R_{[0]}}{\epsilon^{1/2}}$.

Main question: When CD-oracle is n times cheaper?

NB: For FGM, complexity oracle/method is often unbalanced.

Model: f(x) = F(Ax, x), where $F(s, x) : \mathbb{R}^{m+n} \to \mathbb{R}$.

Main assumption: F(s,x) can be computed in O(m+n)a.o.

(And $\nabla F \in \mathbb{R}^{m+n}$ too!)

Consequences: Let $A = (A_1, \ldots, A_n)$.

- After coordinate move, product Ax can be computed in O(m) a.o.
- If Ax is known, $\nabla_i f(x) = \langle A_i, \nabla_s F \rangle + \nabla_{x_i} F$ can be computed in O(m) a.o.
- If Ax and Ay are known, $\alpha Ax + \beta Ay$ can be computed in

Example 1: Unconstrained quadratic minimization

Let $A = A^T \succ 0 \in \mathbb{R}^{n \times n}$ is dense.

Define $F(s,x) = \frac{1}{2}\langle s, x \rangle - \langle b, x \rangle$.

Then $f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$. We have

$$T_{CD} = O\left(\frac{nS_{1/2}}{\epsilon^{1/2}}R_{[0]}\right) \leq T_{FGM} = O\left(\frac{n^2\lambda_{\max}^{1/2}(A)}{\epsilon^{1/2}}R_{[0]}\right).$$

NB: We use inequality $L_i^{1/2} \leq \lambda_{\max}^{1/2}(A)$, $i \in \{1:n\}$.

For some cases it is too weak.

Example: $0 < \gamma_1 \le A^{(i,j)} \le \gamma_2, i, j \in \{1 : n\}.$

Then $L_i^{1/2} \le \gamma_2^{1/2}$ and $\lambda_{\max}(A) \ge \gamma_1 \lambda_{\max}(1_n 1_n^T) = n \gamma_2$.

We gain $O(n^{1/2})$ in the total number of operations.

Example 2: Smoothing technique

Consider function $f(x) = \max_{u \in Q} \{ \langle Ax, u \rangle - \phi(u) \}$, where $Q \subset \mathbb{R}^m$ is closed convex and bounded.

Define
$$f_{\mu}(x) = \max_{u \in Q} \{ \langle Ax, u \rangle - \phi(u) - \mu d(u) \}, \ \mu > 0.$$

Main assumption: $F(s) = \max_{u \in Q} \{\langle s, u \rangle - \phi(u) - \mu d(u)\}$ is computable in O(m) operations $(m \ge n)$. Then

$$T_{CD} = O\left(\frac{mR_{[0]}}{\mu^{1/2}\epsilon^{1/2}} \sum_{i=1}^{n} ||Ae_i||\right) \le T_{FGM} = O\left(\frac{mnR_{[0]}}{\mu^{1/2}\epsilon^{1/2}} ||A||\right).$$

It can be that $||Ae_i|| << ||A||$, $i \in \{1 : n\}$.

Example: $0 < \gamma_1 \le A^{(i,j)} \le \gamma_2, \quad i \in \{1:m\}, j \in \{1:n\}.$

Then $||Ae_i|| \le \gamma_2 \sqrt{m}$, and $||A|| \ge \gamma_1 ||1_m 1_n^T|| = \gamma_1 \sqrt{mn}$.

We gain $O(\sqrt{n})$ in the complexity.

Conclusion

- 1. Provided that $T(\nabla_i f(x)) = \frac{1}{n} T(f)$, we get methods, which are always more efficient than usual FGM.
- **2.** Sometimes the gain reaches $O(\sqrt{n})$.
- **3.** We get better results on a problem class, which contains many applications of Smoothing Technique.
- **4.** Our method is oracle/iteration balanced (O(n+m)) operations for both).

But:

- **5.** Constrained minimization is not covered.
- **6.** Numerical testing is needed.

