Advanced Machine Learning - Deep Generative Models Exercise Sheet 02

Variational Inference

Problem 1: Consider the following latent variable model.

$$p_{\theta}(z) = \operatorname{Exp}(z|\theta) = \begin{cases} \theta \exp(-\theta z) & \text{if } z > 0, \\ 0 & \text{else.} \end{cases}$$
$$p(x|z) = \mathcal{N}(x|z, 1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-z)^2\right),$$

where $x \in \mathbb{R}$ is the observed data and $z \in \mathbb{R}_+$ is the latent variable. We have observed a single data point x and now would like to maximize the marginal log-likelihood $\log p_{\theta}(x) = \log \left(\int p(x|z) p_{\theta}(z) dz \right)$ w.r.t. the model parameters $\theta \in \mathbb{R}_+$. For this we will use variational inference.

We define the following parametric family of variational distributions

$$q_{\phi}(z) = \operatorname{Exp}(z|\phi) = \begin{cases} \phi \exp(-\phi z) & \text{if } z > 0 \\ 0 & \text{else;} \end{cases}$$

that is parametrized by $\phi \in \mathbb{R}_+$. We are interested in solving the optimization problem

$$\max_{\theta>0,\phi>0} \mathcal{L}(\theta,\phi).$$

a) Assume that θ is known and fixed. Does there exist a value of ϕ such that the ELBO is tight, i.e. $\log p_{\theta}(x) = \mathcal{L}(\theta, \phi)$? Justify your answer.

We remember from the lecture that

$$\log p_{\theta}(x) = \mathcal{L}(\theta, \phi) + \mathbb{KL}(q_{\phi}(z) || p_{\theta}(z|x))$$

For a fixed θ , if we find some value of ϕ such that $\mathbb{KL}(q_{\phi}(z)||p_{\theta}(z|x)) = 0$, then we'll have

$$\log p_{\theta}(x) = \mathcal{L}(\theta, \phi)$$

We also remember from the lecture that $\mathbb{KL}(q_{\phi}(z)||p_{\theta}(z|x)) = 0$ only holds if $q_{\phi}(z) \equiv p_{\theta}(z|x)$. Therefore, the original question can be reformulated as

"Does there exist a value ϕ , such that $q_{\phi}(z) = p_{\theta}(z|x)$ for all z"?

To answer this question, we look at the unnormalized posterior over z

$$p_{\theta}(z|x) \propto p(x|z)p_{\theta}(z)$$

$$\propto \exp\left(-\frac{1}{2}(x-z)^2\right) \exp(-\theta z)\mathbf{1}(z>0)$$

$$= \exp\left(-\frac{1}{2}x^2 + xz - \frac{1}{2}z^2 - \theta z\right)\mathbf{1}(z>0)$$

$$\propto \exp\left(-\frac{1}{2}z^2 + (x-\theta)z\right)\mathbf{1}(z>0)$$

Here, $\mathbf{1}(\cdot)$ is the indicator function.

$$\mathbf{1}(\text{condition}) = \begin{cases} 1 & \text{if condition is true,} \\ 0 & \text{else.} \end{cases}$$

We absorb the terms that don't depend on z into the \propto sign since we only care about the distribution over z.

Now, let's have a look at our approximate posterior $q_{\phi}(z)$

$$q_{\phi}(z) \propto \exp(-\phi z) \mathbf{1}(z > 0)$$

No matter which value of ϕ we choose, it cannot happen that

$$-\phi z = -\frac{1}{2}z^2 + (x - \theta)z$$

because we have a term quadratic in z on the right hand side. Hence, we conclude that for any $\phi \in \mathbb{R}_+$ it holds that $\mathbb{KL}(q_{\phi}(z)||p_{\theta}(z|x)) > 0$, and therefore $\log p_{\theta}(x) > \mathcal{L}(\theta, \phi)$.

b) Write down the ELBO $\mathcal{L}(\theta, \phi)$ for the above probabilistic model $p_{\theta}(x, z)$ and the variational distribution $q_{\phi}(z)$ and simplify it as far as you can. Your final answer should be a closed-form expression (no integrals or expectations).

By definition, the ELBO is equal to

$$\begin{split} \mathcal{L}(\theta,\phi) &= \underset{z \sim q_{\phi}(z)}{\mathbb{E}} \left[\log p(x|z) + \log p_{\theta}(z) - \log q_{\phi}(z) \right] \\ &= \underset{z \sim q_{\phi}(z)}{\mathbb{E}} \left[-\frac{1}{2} \log(2\pi) - \frac{1}{2} (x-z)^2 + \log \theta - \theta z - \log \phi + \phi z \right] \\ &= \underset{z \sim q_{\phi}(z)}{\mathbb{E}} \left[-\frac{1}{2} z^2 + xz + \log \theta - \theta z - \log \phi + \phi z \right] + \text{const.} \end{split}$$

From the properties of the exponential distribution (https://en.wikipedia.org/wiki/Exponential_distribution) we know that $\mathbb{E}_{z \sim q_{\phi}(z)}[z] = \frac{1}{\phi}$ and $\mathbb{E}_{z \sim q_{\phi}(z)}[z^2] = \frac{2}{\phi^2}$

$$= -\frac{1}{\phi^2} + \frac{x}{\phi} + \log \theta - \frac{\theta}{\phi} - \log \phi + 1 + \text{const.}$$

$$= -\frac{1}{\phi^2} + \frac{x - \theta}{\phi} + \log \theta - \log \phi + \text{const.}$$

Note that our distribution $q_{\phi}(z)$ can only produce positive values of z, so we don't have to worry about what happens when $z \leq 0$.

c) Compute the gradients of the ELBO $\nabla_{\theta} \mathcal{L}(\theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\theta, \phi)$.

We simply need to compute the derivatives of the expression obtain in (b) w.r.t. θ and ϕ and obtain

$$\begin{split} \frac{\partial}{\partial \theta} \mathcal{L}(\theta, \phi) &= -\frac{1}{\phi} + \frac{1}{\theta} \\ \frac{\partial}{\partial \phi} \mathcal{L}(\theta, \phi) &= \frac{2}{\phi^3} - \frac{x - \theta}{\phi^2} - \frac{1}{\phi} \end{split}$$

Problem 2: You want to draw samples from an exponential distribution with rate ϕ with reparametrization. Assume that

$$q_{\phi}(z) = \operatorname{Exp}(z|\phi) = \begin{cases} \phi \exp(-\phi z) & \text{if } z > 0 \\ 0 & \text{else;} \end{cases}$$

where $\phi \in \mathbb{R}_+$.

a) You have access to an algorithm that produces samples ϵ from an exponential distribution with unit rate, that is

$$b(\epsilon) = \operatorname{Exp}(\epsilon|1) = \begin{cases} \exp(-\epsilon) & \text{if } \epsilon > 0 \\ 0 & \text{else.} \end{cases}$$

Find a deterministic transformation $T_{\phi} \colon \mathbb{R}_{+} \to \mathbb{R}_{+}$ that converts a sample $\epsilon \sim b(\epsilon)$ into a sample from $q_{\phi}(z)$.

We can find the transformation T_{ϕ} that transforms $\epsilon \sim \text{Exp}(1)$ into $z = T_{\phi}(\epsilon) \sim \text{Exp}(\phi)$ by considering the cumulative distribution functions (CDFs) of the two random variables. We denote the CDF of ϵ as $F_{\epsilon}(a) = \text{Pr}(\epsilon \leq a)$, and the CDF of z as $F_{z}(a) = \text{Pr}(z \leq a)$.

Our goal is to find a transformation T_{ϕ} such that

$$F_z(a) = \Pr(z \le a)$$

$$= \Pr(T_{\phi}(\epsilon) \le a)$$

$$= \Pr(\epsilon \le T_{\phi}^{-1}(a))$$

$$= F_{\epsilon}(T_{\phi}^{-1}(a))$$

From the properties of the exponential distribution we know that

$$F_z(a) = 1 - \exp(-\phi a)$$
 and $F_\epsilon(T_\phi^{-1}(a)) = 1 - \exp(-T_\phi^{-1}(a))$

This means that

$$T_{\phi}^{-1}(a) = \phi a$$
 \Longrightarrow $T_{\phi}(x) = \frac{1}{\phi}x$

That is, $z = T_{\phi}(\epsilon) = \frac{1}{\phi}\epsilon$ is the desired transformation.

b) Now, you have access to an algorithm that produces samples u from a uniform distribution on [0, 1], that is

$$b(u) = \begin{cases} 1 & \text{if } u \in [0, 1] \\ 0 & \text{else.} \end{cases}$$

Find a deterministic transformation $S_{\phi} \colon [0,1] \to \mathbb{R}_+$ that converts a sample $u \sim b(u)$ into a sample $z = S_{\phi}(u) \sim q_{\phi}(z)$.

We can reuse the result from part (a) here and simply look for a transformation $R: [0,1] \to \mathbb{R}_+$ that converts $u \sim U([0,1])$ into a sample from $\epsilon \sim \operatorname{Exp}(1)$. Then we can convert $\epsilon = R(u) \sim \operatorname{Exp}(1)$ into $z \sim \operatorname{Exp}(\phi)$ using the transformation T_{ϕ} that we found in part (a) as $z = S_{\phi}(u) = T_{\phi}(R(u))$.

We again use the CDFs $F_u(a) = \Pr(u \le a)$ and $F_{\epsilon}(a) = \Pr(\epsilon \le a)$. Using similar reasoning as before, we need to satisfy

$$1 - \exp(-a) = F_{\epsilon}(a)$$

$$= \Pr(\epsilon \le a)$$

$$= \Pr(R(u) \le a)$$

$$= \Pr(u \le R^{-1}(a))$$

$$= F_{u}(R^{-1}(a))$$

$$= R^{-1}(a)$$

We see that $R(x) = -\log(1-x)$ satisfies the above equation.

Therefore, $S_{\phi}(x) = T_{\phi}(R(u)) = -\frac{\log(1-u)}{\phi}$ is the desired transformation.

Problem 3: You are given two distributions q(z) and p(z) over some random vector $z \in \mathbb{R}^D$. Assume that both distributions can be factorized as

$$q(\boldsymbol{z}) = \prod_{i=1}^D q_i(z_i)$$
 $p(\boldsymbol{z}) = \prod_{i=1}^D p_i(z_i).$

(This is equivalent to saying that each component z_i is independent of z_j for $j \neq i$ under the distributions q and p). Your task is to prove that in this case the following equality holds

$$\mathbb{KL}(q(oldsymbol{z}) \| p(oldsymbol{z})) = \sum_{i=1}^D \mathbb{KL}(q_i(z_i) \| p_i(z_i)).$$

$$\mathbb{KL}(q(z)||p(z)) = \int q(z) \log \frac{q(z)}{p(z)} dz$$
 (1)

$$= \int \cdots \int q(z_1, ..., z_D) \log \frac{q(z_1, ..., z_D)}{p(z_1, ..., z_D)} dz_1 ... dz_D$$
 (2)

$$= \int \cdots \int q_1(z_1) \cdots q_D(z_D) \log \left(\prod_{i=1}^D \frac{q_i(z_i)}{p_i(z_i)} \right) dz_1 \dots dz_D$$
(3)

$$= \sum_{i=1}^{D} \left(\int \cdots \int q_1(z_1) \cdots q_D(z_D) \log \frac{q_i(z_i)}{p_i(z_i)} dz_1 \dots dz_D \right)$$

$$\tag{4}$$

$$= \sum_{i=1}^{D} \left(\int q_i(z_i) \log \frac{q_i(z_i)}{p_i(z_i)} \right)$$

$$\underbrace{\left(\int \cdots \int q_1(z_1) \cdots q_{i-1}(z_{i-1}) q_{i+1}(z_{i+1}) \cdots q_D(z_D) dz_1 \dots dz_{i-1} dz_{i+1} \dots dz_D\right)}_{=1} dz_i$$

$$(5)$$

$$= \sum_{i=1}^{D} \left(\int q_i(z_i) \log \frac{q_i(z_i)}{p_i(z_i)} dz_i \right) \tag{6}$$

$$= \sum_{i=1}^{D} \mathbb{KL}(q_i(z_i) || p_i(z_i)) \tag{7}$$

Here, we used the following properties:

- Lines 1-2: $q(z) = q(z_1, ..., z_D)$ is just another way of writing the same thing.
- Lines 2-3: Distributions q(z) and p(z) factorize (from the problem statement).
- Lines 3-4: $\log(\prod_i x_i) = \sum_i \log x_i$ and "integral of a sum = sum of integrals".
- Lines 4-5: We can change the order in which we compute the integrals.
- Lines 5-6: $\int q_j(z_j)dz_j = 1$ for every j since each q_j is a valid probability density.
- Lines 6-7: Use the definition of KL divergence.