Date:_

Unit 12: Inverse functions

• Given the function:

$$f(x) = 2x + 1$$

Rearranged Tubles etc. Reuntfindin

Graphing method

- 1. Plot the function on the axes below.
- 2. Indicate in the table a few key values for (x,y).
- 3. Graph the line y=x as dotted line.

~	-	`
+	(า	<i>ر</i> ۱
	$(\wedge$	しり

See on Yexx

\boldsymbol{x}	y
-2	-3
-1	-
0	1
	3
2	5

Table method

5. Fill in the table below based on the table you filled for f(x).

	$\boldsymbol{\mathcal{X}}$
$f^{-1}(x)$	0
	1
	2
	3

Domen [0,00) Luye [-1,00)

6. Mark these point on the graph you produced in (4). Is this the same line?

Algebraic method

7. Using swapping $x \leftarrow \rightarrow y$ method, find the formula for the inverse function.

$$0 = \sqrt{x+1}$$
 $0 = \sqrt{x+1}$
 $0 = \sqrt{x+1}$

Date:____

II. Given the function:

$$f(x) = \sqrt{x+1}$$

Graphing method

- 1. Plot the function on the axes below.
- 2. Indicate in the table a few key values for (x,y).
- 3. Graph the line y=x as dotted line.
- 4. Find the inverse function by reflecting the original with respect to the symmetry line.

Range: $[0, \infty)$

\boldsymbol{x}	y
-	0
0)
3	2
8	3
15	4

Table method

5. Fill in the table below based on the table you filled for f(x).

$f^{-1}(x)$	\boldsymbol{x}	y
	-3	-7
Domain:	_1	-(
Range: ($\omega \omega$)		0
	3	(
	5	7

6. Mark these point on the graph you produced (4). Is this the same line?

Algebraic method

7. Using swapping $x \leftarrow \rightarrow y$ method, find the formula for the inverse function.

(1)
$$y = \sum_{x=1}^{\infty} x^{-1}$$

(2) $x = 2y + 1$
(3) $2y = x - 1$
 $y = \frac{1}{2}x - \frac{1}{2}$