Preliminaries Quiz

Due Sep 12 at 9:30am **Points** 62 **Questions** 9

Available Sep 12 at 9:05am - Sep 12 at 9:30am 25 minutes

Time Limit 20 Minutes

Instructions

Read the directions of each question carefully, and work quickly so that you get to all of the questions. (You can always make a second pass if you finish early.)

This quiz was locked Sep 12 at 9:30am.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	20 minutes	50.73 out of 62

(!) Correct answers are hidden.

Score for this quiz: 50.73 out of 62

Submitted Sep 12 at 9:25am This attempt took 20 minutes.

Question 1 6 / 6 pts

For each of the following English sentences in the first column of the table below, choose the correct translation from the dropdown in the second column. Assume a universe of discourse consisting of students, including the specific students john, paul, ringo, and george, and the predicates man(x), woman(x), knows(x, y), and studies(x), which stand for "x is a man", "x is a woman", "x knows y", and "x studies", respectively.

John knows a woman.	exists x, woman(x) ∧ knows(john,x)
No woman who studies knows	not (exists x, woman(x) \land studies(x)
Ringo.	∧ knows(x,ringo))

A man who knows John knows exists x, man(x) \(\lambda \) knows(x,john) \(\lambda \) forall y, studies(y) -> knows(x,y)

Answer 1:

exists x, woman(x) \(\lambda \) knows(john,x)

Answer 2:

not (exists x, woman(x) \(\lambda \) studies(x) \(\lambda \) knows(x,ringo))

Answer 3:

exists x, man(x) \(\lambda \) knows(x,john) \(\lambda \) forall y, studies(y) -> knows(x,y)

Partial

Question 2 6.4 / 8 pts

Suppose that the universe of discourse is the set of natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$. Which are of the following quantified statements is true? (Select all that apply.)

- forall x, forall y, xy = yx
- forall x, forall y, forall z, $x < y \lor y < z \lor z < x$
- exists x, exists y, $x > y \land xy = 3$
- forall x, exists y, x > y
- exists x, forall y, x <= y
- forall x, exists y, $x = 2y \lor x = 2y + 1$
- forall x, exists y, x < y
- \square exists x, forall y, x >= y

Partial

Question 3 4 / 5 pts

Suppose that the sets A, B, and C are as follows:

$$A = \{1,4,5\}$$
 $B = \{3,4\}$ $C = \{3,5,6\}$

Match the set operations on the left with their results on the right

Partial

Question 4 8 / 10 pts

Which of the following statements are true for arbitrary sets A, B, and C? (Select all that apply.)

- A intersect A = A
- A A = A
- (A B) intersect (B A) = {}
- ☐ A union (B intersect C) = (A union B) intersect C

B subset (A - B)
(A - B) union (B - A) = A union B
B subset (A intersect B)
(A intersect B) subset B
A union A = A
A subset (A union B)

Partial

Question 5 11 / 12 pts

For each of the four relations between natural numbers x and y in the left column of the table below, and each of the three properties of relations in the top row, indicate whether the given relation has the given property by writing a lowercase "y" or "n" (for "yes" or "no") in each cell.

{(x,y) x <- N , y <- N , relation}	reflexive	symmetric	transitive
x /= y	n	у	n
x >= y	У	n	У
x + y >= 10	n	у	n
even (x + y)	У	у	n

Answer 1:

n

Answer 2:

у

Answer 3:	
n	
Answer 4:	
у	
Answer 5:	
n	
Answer 6:	
У	
Answer 7:	
n	
Answer 8:	
У	
Answer 9:	
n	
Answer 10:	
У	
Answer 11:	
У	
Answer 12:	
n	

Partial

Question 6

3.33 / 5 pts

Which of the following are equivalence relations on the set $A = \{1,2,3\}$? (Select all that apply.)

8 / 8 pts **Question 7** Which of the following are partitions of the set $A = \{1,2,3,4,5,6,7\}$? (Select all that apply.) **{\(5,3\),\{4,2\),\{7,6\}\ {1},{2},{3},{4},{5},{6},{7} 4** {{1,4,2}, {3,5}, {7,6}} **(**} **(**{1,3,5,7},{2,4,6,8}} [1,2,3,4,5,6,7] {{1,2},{3,4,5},{7,6,5}} **(**{1,2,3,4,5,6,7}}

Partial Question 8 1 / 4 pts

Consider the function $f : \mathbf{N} \rightarrow \mathbf{N}$ on the natural numbers given by $f(x) = x$
3, where '/' is integer division (i.e., / on int in C/C++ or div in
Haskell), and the relation R on N defined by

$$R = \{ (x,y) | f(x) = f(y) \}$$

In other words, R is the kernel of f. For each natural number n on the left below, select the correct value of $[n]_R$ from the right.

2	{0,1,2}	~
4	{1,2,3}	~
6	{3,4,5}	•
8	{5,6,7}	~

Partial

Question 9 3 / 4 pts

Consider again the function $f: \mathbf{N} \to \mathbf{N}$ and relation R from the previous question and define

$$P = \{ [a]_R \mid a \in N \}$$

Which of the following statements are true about f, R, and P? (Select all that apply.)

- R is an equivalence relation
- P is a partition
- R is the kernel of f

f is a quotient

Quiz Score: 50.73 out of 62