FoldFusion-PoC: A Ligand Transplantation & Optimization Pipeline

Marius Rueve

May 19, 2025

Talk Outline

- ► Background: AlphaFill algorithm
- ► FoldFusion implementation overview
- ► Key differences between AlphaFill and FoldFusion
- ► AlphaFill's scientific evaluation
- FoldFusion's current evaluation approach & future improvements

What the AlphaFill Paper Did

Goal: "Transplant" small molecules & ions from experimentally determined PDB structures into AlphaFold models to enrich them with biologically relevant ligands.

- 1. BLAST each AlphaFold sequence against PDB-REDO database
- 2. Filter hits by $\geq 25\%$ identity over ≥ 85 residues
- 3. Perform global ($C\alpha$) and local (backbone within 6 Å) structural alignments
- 4. Transplant compounds if no duplicate within 3.5 Å of centroid
- 5. Record global & local RMSD and calculate TCS (clash score)

AlphaFill's Scientific Evaluation

- ▶ **Validation Set:** 28,619 transplants from 100%-identity donors.
- Quality Metrics:
 - ▶ **LEV score:** All-atom RMSD of ligand + nearby protein atoms within 6 Å
 - ▶ Local RMSD: Proxy for LEV; calculated for every transplant
 - **TCS:** $\sqrt{\sum (\text{overlap})^2/N}$, quantifying van der Waals clashes
- ▶ Refinement: Energy-minimize selected complexes in YASARA; evaluate before/after TCS & LEV
- ► Confidence Annotation: Statistical cutoffs (IQR + 1.5×IQR) on local RMSD & TCS to label high/medium/low confidence

 $\label{eq:abbreviation: RMSD = Root-Mean-Square Deviation; LEV = Local Environment Validation; TCS = Transplant Clash Score; IQR = Interquartile Range$

What I Did in FoldFusion

Pipeline Components:

- 1. AlphaFoldFetcher: Download AF-DB models
- 2. **DogSite3:** Detect pockets & generate EDF files
- 3. Siena: Build ensemble of homolog structures around predicted pocket
- 4. LigandExtractor: Identify & extract ligands (HETATM) from SIENA PDBs
- 5. JamdaScorer: Optimize & score each ligand-protein complex

Implementation: Modular Python package (foldfusion/), TOML config, structured logging

FoldFusion's Current Scientific Evaluation

- ► Core Metric: Transplant Clash Score (TCS) via clash_scorer.calculate_tcs
 - ► Parses protein (PDB) & ligand (SDF) atoms
 - ► Computes van der Waals overlap squared sums within cutoff (4 Å)
 - ightharpoonup Returns $\sqrt{\text{mean overlap}^2}$
- What's Missing:
 - Local RMSD / LEV-style metric for transplant geometry
 - Global RMSD to donor structures
 - Statistical confidence annotations (IQR cutoffs)
 - ▶ On-the-fly refinement & re-scoring akin to YASARA minimization

Key Differences

Aspect	AlphaFill	FoldFusion
Homology	Sequence-based BLAST vs.	Pocket-centric: DogSite3 +
Search	PDB-REDO	SIENA
Transplant Cri-	Seq. identity \geq 25%, lo-	Pocket detection & ensemble
teria	cal/global RMSD	extraction
Evaluation	LEV, local RMSD, TCS + re-	?
	finement	
Refinement	YASARA energy minimization	JamdaScorer "optimize" flag
Confidence	Statistical cutoffs on metrics	Not yet implemented

FoldFusion - What Can Be Improved

- 1. **Add Local RMSD Calculation:** Use structural alignment of pocket residues (backbone within 6 Å) to compute local RMSD, mirroring LEV
- 2. **Record Global RMSD:** After SIENA alignment, compute $C\alpha$ -based global RMSD to donor PDB
- 3. **Implement Confidence Tiers:** Analyze distributions of local RMSD & TCS; define IQR-based cutoffs for high/med/low confidence
- 4. **Integrate On-Demand Refinement:** Hook into YASARA or another minimizer; recalculate TCS post-minimization
- 5. **Visual & Statistical Reporting:** Summarize per-model transplant quality (histograms, boxplots) for pipeline validation

Next Steps & Roadmap

- ▶ Metric Expansion: Add LEV-style and global RMSD metrics
- Dashboard & Reports: Generate per-project quality summaries
- Benchmarking: Compare against AlphaFill on a shared test set

Summary & Conclusions

- ► **AlphaFill** set the stage with homology-driven ligand transplantation, multi-metric validation, and confidence annotation
- ► FoldFusion reimagines the workflow around pocket detection (DogSite3) and ensemble extraction (SIENA), with a modular Python framework
- ▶ **Opportunities:** Enrich evaluation with additional metrics, statistical confidence levels, and refinement to match and surpass AlphaFill's rigor

Thank you!