Probability and Statistics – Problem Set 6

March 10, 2022 March 24, 2022 in class

Problem 1

Consider two discrete random variables X and Y which are independent and have the following probability mass functions:

$$\begin{cases} p_X(1) = 0.7 \\ p_X(2) = 0.3 \\ p_X(x) = 0 \text{ if } x \neq 1 \text{ , } x \neq 2 \end{cases} \begin{cases} p_Y(-2) = 0.3 \\ p_Y(5) = 0.5 \\ p_Y(8) = 0.2 \\ p_Y(y) = 0 \text{ if } y \neq -2 \text{ , } y \neq 5 \text{ , } y \neq 8 \end{cases}$$

- 1. What is the joint probability mass function of X and Y? You may use a table to represent it.
- 2. What is the probability that both X and Y are even?
- 3. What is the probability that X = 1 given that Y is positive?

Problem 2

In this problem, you pick two cards from a standard deck of 52 cards, and consider the following random variables:

X is the number of diamonds picked.

Y is the number of queens picked.

- 1. What is the joint probability mass function of X and Y? You may use a table to represent it.
- 2. Construct the marginal distribution p_X of X, and the marginal distribution p_Y of Y.
- 3. A friend of yours saw the cards before you, and tells you that at least one of the two cards is a diamond. What is the probability that you picked at least one queen?

Problem 3

Two independently running geolocation systems are subject to failures. The number of failures per day is given by the following table.

System X			System Y		
x_i	$p_X(x_i)$		y_i	$p_Y(y_i)$	
0	0.07		0	0.1	
1	0.35		1	0.2	
2	0.34		2	0.5	
3	0.18		3	0.17	
4	0.06		4	0.03	

- 1. Give the probability of the following events:
 - \bullet Y has at least two failures per day
 - ullet The number of failures of X is strictly less than 2, and the number of failures of Y is greater than or equal to 3
 - $\bullet\,$ There is only one failure in the day
 - \bullet X has the same number of failures as Y
- 2. What is the joint probability mass function of X and Y? You may use a table to represent it.
- 3. Compute E[X] and E[Y].

Problem 4

You are given the following incomplete table for the joint probability mass function of X and Y. Complete the table, given the information that for any x and y, P(X = x, Y = y) is either 0 or 1/14.

	x						$p_Y(y)$
		1	2	3	4	5	PY(g)
y	1						5/14
	2						4/14
	3						2/14
	4						2/14
	5						1/14
p_X	(x)	1/14	5/14	4/14	2/14	2/14	1

Problem 5

Consider the function of two variables $f_{X,Y}$ given by

$$f_{X,Y}(x,y) = \begin{cases} Ke^{-3x-2y} & \text{if } x > 0, y > 0\\ 0 & \text{otherwise} \end{cases}$$

where K is a real constant.

- 1. For which value of K can $f_{X,Y}$ be a joint probability density function?
- 2. Compute the corresponding joint distribution function $F_{X,Y}(x,y)$ for all possible values of x and y.
- 3. Compute $P(X \le 1, Y \le 2)$

Remember to justify your answers!