Função Inversa

José Antônio O. Freitas

MAT-UnB

19 de setembro de 2020

Dado $f: A \rightarrow B$

Dado $f: A \rightarrow B$ uma função,

Dado $f: A \to B$ uma função, queremos construir uma função $g: B \to A$

$$g(f(x)) = x$$

$$g(f(x)) = x,$$

para todo $x \in A$.

Dado $f \colon A \to B$ uma função, queremos construir uma função $g \colon B \to A$ de modo que

$$g(f(x)) = x,$$

para todo $x \in A$. Mas f(x) = y

Dado $f \colon A \to B$ uma função, queremos construir uma função $g \colon B \to A$ de modo que

$$g(f(x))=x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$.

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g

Dado $f \colon A \to B$ uma função, queremos construir uma função $g \colon B \to A$ de modo que

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se,

2/16

Dado $f \colon A \to B$ uma função, queremos construir uma função $g \colon B \to A$ de modo que

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir $g \operatorname{como}$

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

2/16

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Com essa definição

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Com essa definição g é uma função?

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Com essa definição g é uma função? Vejamos um exemplo:

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$f(0) = 5$$

Dado $f \colon A \to B$ uma função, queremos construir uma função $g \colon B \to A$ de modo que

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$f(0) = 5$$

$$f(1) = 5$$

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$f(0) = 5$$

$$f(1) = 5$$

$$f(2) = 6$$

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$f(0) = 5$$

$$f(1) = 5$$

$$f(2) = 6$$

$$f(3) = 7.$$

$$g(f(x)) = x,$$

para todo $x \in A$. Mas $f(x) = y \operatorname{com} y \in B$. Assim podemos tentar definir g como

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

$$f(0) = 5$$

$$f(1) = 5$$

$$f(2) = 6$$

$$f(3) = 7.$$

$$g(5) = 0$$

$$g(5) = 0$$

$$g(5) = 0$$
$$g(5) = 1$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

Assim g definida dessa forma

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Assim g definida dessa forma não é uma função

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Assim g definida dessa forma não é uma função pois g atribui ao número 5

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Assim g definida dessa forma não é uma função pois g atribui ao número 5 dois possíveis valores:

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Assim g definida dessa forma não é uma função pois g atribui ao número 5 dois possíveis valores: 0 e 1.

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Assim g definida dessa forma não é uma função pois g atribui ao número 5 dois possíveis valores: 0 e 1. Isso ocorre pois f não é injetora.

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$f(0) = 5$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$f(0) = 5$$

$$f(1) = 4$$

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$f(0) = 5$$

$$f(1) = 4$$

$$f(2) = 6$$

A partir da definição acimas temos

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

Assim g definida dessa forma não é uma função pois g atribui ao número 5 dois possíveis valores: 0 e 1. Isso ocorre pois f não é injetora. Vamos então redefinir f de modo a torná-la injetora:

$$f(0) = 5$$

$$f(1) = 4$$

$$f(2) = 6$$

$$f(3) = 7.$$

A partir da definição acimas temos

$$g(5) = 0$$

$$g(5) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

Assim g definida dessa forma não é uma função pois g atribui ao número 5 dois possíveis valores: 0 e 1. Isso ocorre pois f não é injetora. Vamos então redefinir f de modo a torná-la injetora:

$$f(0) = 5$$

$$f(1) = 4$$

$$f(2) = 6$$

$$f(3) = 7.$$

$$g(5) = 0$$

$$g(5) = 0$$
$$g(4) = 1$$

$$g(4) = 1$$

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função

4/16

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

4/16

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

Portanto para que a condição dada

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3.$$

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

Portanto para que a condição dada defina uma função

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

Portanto para que a condição dada defina uma função é necessário que *f* seja bijetora.

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

Portanto para que a condição dada defina uma função é necessário que *f* seja bijetora. Temos então o seguinte teorema:

$$g(5) = 0$$

$$g(4) = 1$$

$$g(6) = 2$$

$$g(7) = 3$$
.

Ainda assim g não é função pois g não associa $8 \in B$ com nenhum elemento em A. Isso ocorre pois f não é sobrejetora.

Portanto para que a condição dada defina uma função é necessário que *f* seja bijetora. Temos então o seguinte teorema:

Seja $f: A \rightarrow B$ uma função.

$$g(y) = x, y \in B$$

$$g(y) = x, y \in B$$
 se, e somente se,

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x$$
, $y \in B$ se, e somente se, $f(x) = y$.

Então g é uma função

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x$$
, $y \in B$ se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se,

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

Seja $f: A \rightarrow B$ uma função. Defina $g: B \rightarrow A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

Prova: Precisamos mostrar que:

i) Se g definida como acima é uma função,

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

Prova: Precisamos mostrar que:

i) Se g definida como acima é uma função, então f é bijetora.

Seja $f:A \to B$ uma função. Defina $g:B \to A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

- i) Se g definida como acima é uma função, então f é bijetora.
- ii) Se f é bijetora,

Seja $f: A \rightarrow B$ uma função. Defina $g: B \rightarrow A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

- i) Se g definida como acima é uma função, então f é bijetora.
- ii) Se f é bijetora, então g definida como acima é uma função.

Seja $f: A \rightarrow B$ uma função. Defina $g: B \rightarrow A$ por

$$g(y) = x, y \in B$$
 se, e somente se, $f(x) = y$.

Então g é uma função se, e somente se, f é bijetora.

- i) Se g definida como acima é uma função, então f é bijetora.
- ii) Se f é bijetora, então g definida como acima é uma função.

Provemos a primeira afirmação:

Provemos a primeira afirmação: suponha que g é uma função.

Provemos a primeira afirmação: suponha que g é uma função. Precisamos provar que f é injetora

Provemos a primeira afirmação: suponha que g é uma função. Precisamos provar que f é injetora e sobrejetora.

Provemos a primeira afirmação: suponha que g é uma função. Precisamos provar que f é injetora e sobrejetora.

Sejam x_1 ,

Sejam $x_1, x_2 \in A$

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y$

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$.

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$,

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso,

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$.

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função,

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$,

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja,

Sejam x_1 , $x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$,

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função,

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$,

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$, tal que g(y) = x,

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$, tal que g(y) = x, logo f(x) = y

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$, tal que g(y) = x, logo f(x) = y e assim f é sobrejetora.

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$, tal que g(y) = x, logo f(x) = y e assim f é sobrejetora.

Portanto f é bijetora.

Sejam $x_1, x_2 \in A$ tais que $f(x_1) = y = f(x_2)$. Como $f(x_1) = y$ temos $g(y) = x_1$, além disso, $g(y) = x_2$. Mas g é uma função, daí $x_1 = x_2$, ou seja, f é injetora.

Dado $y \in B$, como g é uma função, existe $x \in A$, tal que g(y) = x, logo f(x) = y e assim f é sobrejetora.

Portanto f é bijetora.

Agora vamos provar a segunda afirmação.

Agora vamos provar a segunda afirmação. Para isso suponha que f é bijetora.

Primeiramente,

Primeiramente, dado $y \in B$,

Primeiramente, dado $y \in B$, como f é sobrejetora,

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y) = x_1$

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y) = x_1$ e que $g(y) = x_2$.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y) = x_1$ e que $g(y) = x_2$. Daí, da definição de g

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y) = x_1$ e que $g(y) = x_2$. Daí, da definição de g temos $f(x_1) = y$ e $f(x_2) = y$.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y) = x_1$ e que $g(y) = x_2$. Daí, da definição de g temos $f(x_1) = y$ e $f(x_2) = y$. Mas f é injetora,

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então g(y)=

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1$

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1=x_2$.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1=x_2$. Assim g associa cada elemento de B

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1=x_2$. Assim g associa cada elemento de B com somente um elemento em A.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1=x_2$. Assim g associa cada elemento de B com somente um elemento em A.

Portanto g é função.

Primeiramente, dado $y \in B$, como f é sobrejetora, existe $x \in A$ tal que f(x) = y. Logo pela definição de g segue que $g(y) = x \in A$. Logo g associa cada elemento de B com algum elemento em A.

Agora, suponha que $g(y)=x_1$ e que $g(y)=x_2$. Daí, da definição de g temos $f(x_1)=y$ e $f(x_2)=y$. Mas f é injetora, logo $x_1=x_2$ e então $g(y)=x_1=x_2$. Assim g associa cada elemento de B com somente um elemento em A.

Portanto g é função.

A função $g:B\to A$

A função g : $B \rightarrow A$ do teorema anterior

A função $g: B \rightarrow A$ do teorema anterior é chamada de **função inversa**

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \rightarrow B$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \rightarrow B \ e \ g: A \rightarrow B \ funções.$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \rightarrow B$ e $g: A \rightarrow B$ funções. Então f = g

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x)

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$,

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$ dada por $i_A(x)$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$ dada por $i_A(x) = x$

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$ dada por $i_A(x) = x$ é chamada de

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$ dada por $i_A(x) = x$ é chamada de **função identidade**.

A função $g: B \to A$ do teorema anterior é chamada de **função inversa** de $f: A \to B$ e será denotada por $g = f^{-1}$.

Definição

Sejam $f: A \to B$ e $g: A \to B$ funções. Então f = g quando f(x) = g(x) para todo $x \in A$.

Definição

Dado um conjunto $A \neq \emptyset$, a função $i_A : A \rightarrow A$ dada por $i_A(x) = x$ é chamada de **função identidade**.

Se $f: A \rightarrow B$

Se $f: A \rightarrow B$ é bijetora,

Se $f: A \to B$ é bijetora, então $f \circ f^{-1}$

Se $f: A \rightarrow B$ é bijetora, então $f \circ f^{-1} = i_B$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova:

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos i_B :

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \rightarrow B$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \rightarrow B$ e $i_A:$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \rightarrow B$ e $i_A: A \rightarrow A$. Além disso,

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}:$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f$:

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1})$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) =$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora, $y \in B$,

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora, $y \in B$, $(f \circ f^{-1})(y)$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y))$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora, $y \in B$, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora, $y \in B$, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$,

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) =$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x))$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Portanto $f \circ f^{-1} =$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Portanto $f \circ f^{-1} = i_B$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Portanto $f \circ f^{-1} = i_B e f^{-1} \circ f =$

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí $\text{dom}(f \circ f^{-1}) = \text{dom}(i_B)$ e $\text{dom}(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Portanto $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$ como queríamos.

Se $f: A \to B$ é bijetora, então $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$.

Prova: Temos $i_B: B \to B$ e $i_A: A \to A$. Além disso, $f \circ f^{-1}: B \to B$ e $f^{-1} \circ f: A \to A$, daí dom $(f \circ f^{-1}) = \text{dom}(i_B)$ e dom $(f^{-1} \circ f) = \text{dom}(i_A)$.

Agora,
$$y \in B$$
, $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y = i_B(y)$. E se $x \in A$, $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = i_A(x)$.

Portanto $f \circ f^{-1} = i_B$ e $f^{-1} \circ f = i_A$ como queríamos.

Se $f: A \rightarrow B$

Se $f: A \rightarrow B$ e $g: B \rightarrow A$

i)
$$f \circ i_A = f$$

i)
$$f \circ i_A = f$$

$$ii)$$
 $i_B \circ f = f$

i)
$$f \circ i_A = f$$

ii)
$$i_B \circ f = f$$

iii)
$$g \circ i_B = g$$

i)
$$f \circ i_A = f$$

ii)
$$i_B \circ f = f$$

iii)
$$g \circ i_B = g$$

iv)
$$i_A \circ g = g$$

$$i) f \circ i_A = f$$

ii)
$$i_B \circ f = f$$

iii)
$$g \circ i_B = g$$

$$iv)$$
 $i_A \circ g = g$

$$v$$
) Se $g \circ f = i_A$

i)
$$f \circ i_A = f$$

ii)
$$i_B \circ f = f$$

$$iii)$$
 $g \circ i_B = g$

$$iv)$$
 $i_A \circ g = g$

v) Se
$$g \circ f = i_A$$
 e $f \circ g = i_B$,

i)
$$f \circ i_A = f$$

ii)
$$i_B \circ f = f$$

$$iii)$$
 $g \circ i_B = g$

$$iv)$$
 $i_A \circ g = g$

v) Se
$$g \circ f = i_A$$
 e $f \circ g = i_B$, então

Proposição

Se $f: A \rightarrow B$ e $g: B \rightarrow A$ são funções, então:

- i) $f \circ i_A = f$
- ii) $i_B \circ f = f$
- iii) $g \circ i_B = g$
- iv) $i_A \circ g = g$
- v) Se $g \circ f = i_A$ e $f \circ g = i_B$, então f e g são bijetoras

Proposição

Se $f: A \rightarrow B$ e $g: B \rightarrow A$ são funções, então:

- i) $f \circ i_A = f$
- ii) $i_B \circ f = f$
- iii) $g \circ i_B = g$
- iv) $i_A \circ g = g$
- v) Se $g \circ f = i_A$ e $f \circ g = i_B$, então f e g são bijetoras e $g = f^{-1}$.

Proposição

Se $f: A \rightarrow B$ e $g: B \rightarrow A$ são funções, então:

- i) $f \circ i_A = f$
- ii) $i_B \circ f = f$
- iii) $g \circ i_B = g$
- iv) $i_A \circ g = g$
- v) Se $g \circ f = i_A$ e $f \circ g = i_B$, então f e g são bijetoras e $g = f^{-1}$.

i) Primeiro temos $f: A \rightarrow B$

i) Primeiro temos $f \colon A \to B$, $i_A \colon A \to A$

i) Primeiro temos $f:A\to B$, $i_A:A\to A$ e $f\circ i_A:A\to B$.

i) Primeiro temos $f:A\to B$, $i_A:A\to A$ e $f\circ i_A:A\to B$. Assim

i) Primeiro temos $f:A\to B$, $i_A:A\to A$ e $f\circ i_A:A\to B$. Assim $\mathrm{dom}\,(f\circ i_A)=$

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $dom(f \circ i_A) = dom(f)$.

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $dom(f \circ i_A) = dom(f)$. Agora dado $x \in A$,

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $\mathrm{dom}\,(f \circ i_A) = \mathrm{dom}\,(f)$. Agora dado $x \in A$, temos $(f \circ i_A)(x) =$

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $dom(f \circ i_A) = dom(f)$. Agora dado $x \in A$, temos $(f \circ i_A)(x) = f(i_A(x)) =$

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $\mathrm{dom}\,(f \circ i_A) = \mathrm{dom}\,(f)$. Agora dado $x \in A$, temos $(f \circ i_A)(x) = f(i_A(x)) = f(x)$. Portanto,

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $\mathrm{dom}\,(f \circ i_A) = \mathrm{dom}\,(f)$. Agora dado $x \in A$, temos $(f \circ i_A)(x) = f(i_A(x)) = f(x)$. Portanto, $f \circ i_A = f$.

i) Primeiro temos $f: A \to B$, $i_A: A \to A$ e $f \circ i_A: A \to B$. Assim $\mathrm{dom}\,(f \circ i_A) = \mathrm{dom}\,(f)$. Agora dado $x \in A$, temos $(f \circ i_A)(x) = f(i_A(x)) = f(x)$. Portanto, $f \circ i_A = f$.

ii)

iii)

iv)

v) Provemos que f é bijetora:

v) Provemos que f é bijetora: sejam x_1 ,

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) =$

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$.

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$,

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) =$

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$,

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja,

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1)$

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$.

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) =$

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$.

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo,

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$ e então f é injetora.

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$ e então f é injetora.

Agora, dado $y \in B$,

v) Provemos que f é bijetora: sejam $x_1, x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$ e então f é injetora.

Agora, dado $y \in B$, segue que y =

v) Provemos que f é bijetora: sejam x_1 , $x_2 \in B$ tais que $f(x_1) = f(x_2)$. Como $f: A \to B$ e $g: B \to A$, então $g(f(x_1)) = g(f(x_2))$, ou seja, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Daí, $i_A(x_1) = i_A(x_2)$. Logo, $x_1 = x_2$ e então f é injetora.

Agora, dado $y \in B$, segue que $y = i_B(y)$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B =$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, y =

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y)$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y)$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B =$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g =$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B =$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = f^{-1}$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, f(g(x)) = f(x) = f(x)

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora,

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora, $g(x) = f^{-1}(x)$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora, $g(x) = f^{-1}(x)$ para todo $x \in B$.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora, $g(x) = f^{-1}(x)$ para todo $x \in B$. Logo $g = f^{-1}$

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g=f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora, $g(x) = f^{-1}(x)$ para todo $x \in B$. Logo $g = f^{-1}$ como queríamos.

Agora, dado $y \in B$, segue que $y = i_B(y)$. Mas $i_B = f \circ g$. Daí, $y = i_B(y) = (f \circ g)(y) = f(g(y))$. Assim, $x = g(y) \in A$ e f(x) = y. Logo f é sobrejetora.

Portanto f é bijetora. Analogamente, prova-se que g é bijetora.

Provemos agora que $g = f^{-1}$. Para isso, primeiro temos $f^{-1}: B \to A$ e então $\mathrm{dom}\,(g) = B = \mathrm{dom}\,(f^{-1})$. Agora, $f \circ g = i_B = f \circ f^{-1}$. Assim, para todo $x \in B$, $(f \circ g)(x) = (f \circ f^{-1})(x)$. Isto é, $f(g(x)) = f(f^{-1}(x))$. Portanto como f é injetora, $g(x) = f^{-1}(x)$ para todo $x \in B$. Logo $g = f^{-1}$ como queríamos.

Exemplo

Verifique se a função $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ dada por $f(x, y) = (\sqrt[3]{x}, y^5)$ é bijetora. Caso afirmativo, encontre f^{-1} .

