An Image is Worth 16x16 Words Transformers for Image Recognition at Scale

ICLR 2021 Alexey Dosovitskiy, Lucas Beyer, Neil Houlsby

https://github.com/google-research/vision_transformer

Authors

Alexey Dosovitskiy Google

Neural Networks

Computer Vision

Unsupervised Learning

Lucas Beyer (Link) Google DeepMind

Robotics

Representation Learning

Good Shift **Computer Vision**

Neil Houlsby (Link) Google

Artificial Intelligence

NLP

Machine Learning | Computer Vision

1. Introduction - NLP

Dominant Approach

[Pre-Train]
Large Text Corpus

[Fine-Tune]
Smaller Task-Specific Dataset

Efficiency & Scalability

Model of Unprecedented Size (e.g. over 100B parameters)

Transformers (Self-Attention-based Architecture)

1. Introduction - CV

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
conv2_x	56×56	3×3 max pool, stride 2				
		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	3×3, 64 3×3, 64 ×3	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	3×3, 128 3×3, 128 ×2	3×3, 128 3×3, 128 ×4	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4 x	14×14	3×3, 256 ×2	3×3, 256 3×3, 256	1×1, 256 3×3, 256 1×1, 1024	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 23 \]	1×1, 256 3×3, 256 1×1, 1024
conv5_x	7×7	3×3,512 ×2 3×3,512	3×3,512 ×3	1×1, 512 3×3, 512 1×1, 2048	1×1,512 3×3,512 1×1,2048	1×1,512 3×3,512 1×1,2048

ares for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of block

 1×1

FLOPs

average pool, 1000-d fc, softmax

 7.6×10^{9}

 11.3×10^{8}

 3.8×10^{8}

CNN-Like Architecture with Self-Attention

Replacing the Convolutions entirely

특수한 Attention Pattern의 사용 때문에 Modern HW에 효과적으로 적용되지 못함

1. Introduction - Contributions

약간의 변화로 기존의 Transformer의 직접적인 적용

- Image를 여러 Patch의 형태로 분할
- Transformer의 입력으로 일련의 Patch의 Embedding 사용
- Image Classification Task와 Supervised Fashion

대용량의 Dataset을 통한 Pre-Trained Model

- CNN에 비해 낮은 Inductive Bias(e.g. Locality, Translation Equivariance)로 인한 낮은 성능 향상을 개선

2D Images

 $x \in \mathbb{R}^{H \times W \times C}$

1D Token Embedding

$$x_p \in \mathbb{R}^{N \times (P^2C)}$$

Resolution of Image Patch (P, P)Number of Patches $N = HW/P^2$

$$\mathbf{z}_0 = [\mathbf{x}_{\mathrm{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos},$$

$$\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \ \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
 (1)

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1},$$

$$\ell = 1 \dots L \tag{2}$$

$$\mathbf{z}_{\ell} = \mathrm{MLP}(\mathrm{LN}(\mathbf{z'}_{\ell})) + \mathbf{z'}_{\ell}, \quad \text{With GELU}$$

$$\ell = 1 \dots L \tag{3}$$

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0) \tag{4}$$

Inductive Bias: CNN > Transformer > FC

Locality

Translation Equivariance

Inductive Bias: CNN > Transformer > FC

Patch/(Positional)Embedding: 2D Neighborhood Structure

MLP: Locality + Translation Equivariance

MSA: Global

Hybrid Architecture

Fine-Tuning and Higher Resolution

Pre-Training: MLP with One Hidden Layer

Fine-Tuning: Single Linear Layer(DxK)

Fine-Turning and Higher Resolution

Pre-Training 과정에서보다 높은 Resolution 이미지로 Fine-Tuning 하는 것이 효과적

입력 데이터의 크기가 달라짐에 따라 기존의 Positional Embedding의 의미가 없어짐

- 새로운 입력 이미지의 크기에 맞게 2D Interpolation 수행

3. Conclusion

Image Recognition Task에 직접적으로 Transformer를 적용한 첫 번째 사례

간단하면서 높은 확장성을 가진 Transformer 구조를 적용하면서 SOTA 성능을 이름

이미지에 특정된 Inductive Bias를 아키텍처에 적용하지 않음 (초기의 Patch 분할 과정 제외)

- 대신, 이미지를 일련의 Patch로서 NLP에서 사용하는 것처럼 Transformer에서 활용함
- Inductive Bias가 CNN-Like 아키텍처에 비해 약하기 때문에 Generalization 성능이 높음
- Inductive Bias가 낮음에 따라 대용량 Dataset을 활용