

Fachbereich Mathematik Sommersemester 2014

Christian Eder Lucas Ruhstorfer

Einführung in die Topologie Übungsblatt 03

Abgabetermin: Mittwoch, 04.06.2014, 13:30 Uhr

Aufgabe 1. Sei X ein nicht kompakter Hausdorff Raum. Sei \hat{X} definiert durch die Kompaktifizierung $f: X \longrightarrow \hat{X}$ von X mit $\left| \hat{X} \setminus X \right| = 1$. \hat{X} ist eindeutig bis auf Homöomorphie und heißt *Einpunktkompaktifizierung von X*. Der eindeutige Punkt in $\hat{X} \setminus X$ heißt ∞ -ferner Punkt. Zeige:

- (a) $\mathcal{T} := \{U \subset X \text{ offen}\} \cup \{\hat{X} \setminus K \mid K \subset X \text{ kompakt}\}\$ ist eine Topologie auf \hat{X} .
- (b) (\hat{X}, \mathcal{T}) ist quasikompakt.
- (c) $\overline{X} = \hat{X}$, also X liegt dicht in \hat{X} .

Aufgabe 2. Sei X ein topologischer Raum. Zeige: X kompakt $\Longrightarrow X$ normal.

Aufgabe 3. Zeige: Die Sorgenfrey Topologie auf \mathbb{R} ist normal.

Aufgabe 4. Betrachte den Zylindermantel $X = S^1 \times I$ und verklebe an einem Rand die gegenüberliegenden Punkte, also $(z, 1) \sim (-z, 1)$ für alle $z \in S^1$. Zeige, dass X/\sim homöomorph zum Möbiusband ist.