Exercício Programa 2

1 Matriz Constante

Uma *Matriz Constante* é uma matriz quadrada de ordem $n \geq 3$, preenchida com os valores $1, 2, \ldots, n^2$, tal que a soma dos elementos em cada linha, coluna, diagonal principal e diagonal secundária, possui o mesmo valor. Este valor é chamado de *constante da matriz*. Por exemplo,

8	1	6
3	5	7
4	9	2

é uma matriz constante de ordem n=3 e sua constante é 15.

2 Gerando Matrizes Constantes

Para gerar uma matriz constante de ordem $n \ge 3$ separamos em três casos: quando n é ímpar; quando n = 4m para algum $m \ge 1$; e para n = 4m + 2 para algum $m \ge 1$.

2.1 Caso 1: n impar

Este método começa colocando o valor 1 na posição que está no meio da primeira linha. Por exemplo, para n=3, teríamos:

A partir desta posição, a ideia é ir caminhando sempre para cima e para a direita, preenchendo os quadrados com os inteiros $2, 3, \ldots, n^2$, nesta ordem. Se você andar para cima e cair para fora da matriz, você é jogado para a última linha; se você andar para a direita e cair para fora da matriz, você é jogado para a primeira coluna. Continuando o exemplo, ao andarmos para cima e para a direita, cairemos em uma posição que está fora dos limites da matriz, nos levando a preencher a terceira coluna da última linha:

1	
	2

Seguindo para cima e para a direita, cairemos para fora também. Logo o próximo passo é colocar o 3 na segunda linha e primeira coluna:

	1	
3		
		2

Continuando a partir do quadrado onde está o 3, se andarmos para cima e para a direita veremos que o próximo quadrado já está ocupado pelo 1. Sempre que o próximo quadrado estiver ocupado, você anda apenas para baixo:

	1	
3		
4		2

Agora é só continuar com o mesmo raciocínio:

	1				1	6			1	6		8	1	6		8	1	6
3	5		\longrightarrow	3	5		\longrightarrow	3	5	7	\longrightarrow	3	5	7	\longrightarrow	3	5	7
4		2		4		2		4		2		4		2		4	9	2

Note que após colocar o 6 na matriz, tentamos camimhar para cima e para a direita, caindo para fora da matriz, tanto na parte de cima quanto na parte da direita. Neste caso, tentaremos colocar o 7 na última linha e primera coluna; mas como esta posição está ocupada pelo 4, caminhamos apenas para baixo.

2.2 Caso 2: n = 4m para $m \ge 1$

Neste caso iremos construir matrizes constantes para n múltiplo de 4, ou seja, 4, 8, 12, 16, Vamos utilizar um exemplo com n = 8. O primeiro passo é preencher a matriz com os números $1, 2, \ldots, n^2$, da esquerda para a direita e de cima para baixo:

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

O passo seguinte é dividir esta matriz em submatrizes de tamanho 4×4 , fazendo um X no meio de cada uma para marcar a diagonal principal e secundária:

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

O próximo passo é substituir cada elemento $a_{i,j}$ nas diagonais pelo valor $(n^2+1)-a_{i,j}$. Por exemplo, o elemento $a_{0,0}$ que vale 1 deve ser substituido por $(8^2+1)-1=64$. Fazendo isso para todos os quadrados coloridos temos:

64	2	3	61	60	6	7	57
9	55	54	12	13	51	50	16
17	47	46	20	21	43	42	24
40	26	27	37	36	30	31	33
32	34	35	29	28	38	39	25
41	23	22	44	45	19	18	48
49	15	14	52	53	11	10	56
8	58	59	5	4	62	63	1

A matriz acima é uma matriz constante de ordem 8 e o sua constante é 260. Confira!

2.3 Caso 3: n = 4m + 2 para $m \ge 1$

Aqui iremos construir matrizes constantes de ordem n=4m+2, onde $m\geq 1$, ou seja, $n=6,10,14,\ldots$ Para exemplificar, iremos usar n=10, ou seja, m=2.

O primeiro passo é criar uma matriz auxiliar de tamanho $(2m+1) \times (2m+1)$ e preenche-la da seguinte maneira:

- m+1 linhas com L's;
- 1 linha com U's;
- m-1 linhas com X's;
- Trocar o U central pelo L acima dele.

No nosso caso teríamos uma matriz assim:

L	L	L	L	L
L	L	L	L	L
L	L	U	L	L
U	U	L	U	U
X	X	X	X	X

Cada letra na matriz acima corresponde a uma submatriz 2×2 na matriz final. Por exemplo, o L na matriz em vermelho corresponde à submatriz em vermelho na matriz final abaixo:

Cada letra (L, U ou X), indica a ordem como devemos preencher a submatriz 2×2 :

A primeira submatriz a ser preenchida é a submatriz em vermelho da figura anterior. Devemos preencher de acordo com a ordem indicada pela letra L:

		4	1		
		2	3		

Agora iremos caminhar na matriz da mesma maneira que caminhamos no método Siamese, sempre preenchendo a submatriz de acordo com a ordem indicada pela respectiva letra. Sendo assim, a próxima submatriz a ser preenchida é a submatriz correspondente ao X em verde abaixo:

L	L	L	L	L
L	L	L	L	L
L	L	U	L	L
U	U	L	U	U
X	X	X	X	X

Sendo assim, temos na matriz final:

		4	1			
		2	3			
				5	8	
				7	6	

Caminhando para cima e para a direita teremos:

		4	1				
		2	3				
						9	12
						10	11
				5	8		
	·			7	6		

Seguindo este algoritmo, a matriz final deverá ser:

68	65	96	93	4	1	32	29	60	57
66	67	94	95	2	3	30	31	58	59
92	89	20	17	28	25	56	53	64	61
90	91	18	19	26	27	54	55	62	63
16	13	24	21	49	52	80	77	88	85
14	15	22	23	50	51	78	79	86	87
37	40	45	48	76	73	81	84	9	12
38	39	46	47	74	75	82	83	10	11
41	44	69	72	97	100	5	8	33	36
43	42	71	70	99	98	7	6	35	34

A matriz acima é uma matriz constante de ordem n = 10 e sua constante é 505.

3 Implementação

Você deverá escrever um programa em linguagem Python 3 que recebe como entrada um inteiro n, onde $3 \le n \le 100$, e imprime como saída uma matriz constante de ordem n.

3.1 Exemplo de entrada

A entrada consiste de um inteiro n, tal que $3 \le n \le 100$. Por exemplo:

4

3.2 Exemplo de saída

A saída consiste em imprimir uma matriz constante de ordem n, dado como entrada. Observe que após cada número existe uma tabulação, e não um espaço em branco:

Caso	2:		
16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1
4	14	15	1

4 Entrega

Instruções para entrega do seu trabalho:

1. Forma de entrega

A entrega será realizada diretamente no site do AVA. Você pode entregar o seu código quantas vezes quiser até às 23 horas e 59 minutos do dia 28 de junho de 2022. A última versão entregue é aquela que será corrigida. Encerrado o prazo, o arquivo não será mais aceito.

2. Atrasos

Trabalhos atrasados não serão aceitos. Não deixe para entregar seu trabalho na última hora. Para prevenir imprevistos como queda de energia, problemas com o sistema, falha de conexão com a internet, sugiro que a entrega do exercício seja feita pelo menos um dia antes do prazo determinado.

3. O que entregar?

Você deve entregar um único arquivo contendo APENAS o seu programa fonte cujo nome deve ser, seunome_ultimonome.py. Por exemplo, no meu caso seria carlos_higa.py. NÃO entregue qualquer outro arquivo.

4. Verificação dos dados de entrada

Não se preocupe com a verificação dos dados de entrada do seu programa. Seu programa não precisa fazer consistência dos dados de entrada. Isto significa que o usuário não irá digitar um n < 3, por exemplo.

5. Conduta ética

A atividade deve ser feita INDIVIDUALMENTE. Cada estudante tem responsabilidade sobre cópias de seu código fonte, mesmo que parciais. Não faça o exercício em grupo e não compartilhe seu programa ou trechos do seu programa. Você pode consultar seus colegas para esclarecer dúvidas e discutir ideias sobre o trabalho, mas NÃO copie o programa!

Em caso de plágio, os envolvidos receberão nota zero na MÉDIA DOS EXERCÍCIOS, ou seja, ME=0 no cálculo da média de aproveitamento.