

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

5776456

FIG. 1

APPROVED BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

LINKER #1 15bp | SV40 ORIGIN=332bp
 GACGTCGCGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAU 60
 AGGCCGAGGC GGCCCTGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCLA TGCAATGGGGC 120
 GGAGAATGGG CGGAACGTGGG CGGAGTTAGG GGCGGGATG| GCGGAGTTAG GGGCGGGACT 180
 ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCATACTTC TGCCCTGCTGG GGAGCCTGGG 240
 GACTTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300
 GGGGAGCCTG GGGACTTCC ACACCCCTAAC TGACACACAT TCCACAGAAAT TAATTCCCCT| 360
 347 8 360 1
 AGTTATTAAAT AGTAATCAAT TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC 420
 GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCATTG 480
 CMV PROMOTER-ENHANCER=567bp
 ACGTCAATAA TGACGTATGT TCCCCTAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA 540
 TGGGTGGACT ATTACGGTA AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA 600
 AGTACGCCCT CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATT A TGCCCACTAC 660
 ATGACCTTAT GGGACTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTAC 720
 ATGGTGATGC GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTGA CTCACGGGGA 780
 TTTCCAAGTC TCCACCCCCAT TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG 840
 GACTTTCAA AATGTCGTA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGT 900
 CGGTGGGAGG TCTATATAAG CAGAGCTGGG TACGTGAACC GTCAGATCGC CTGGAGACGC 960
 727 8
Bgl II LEADER=60bp
 CATCACAGAT CTCTCACCAT GAGGGTCCCC GCTCAGCTCC TGGGGCTCCT GCTGCTCTGG 1020
 978 9
 +1 101 102 107 108
 CTCACAGGTG CACGATGTGA TGGTACCAAG GTGGAAATCA AACGTACGGT GGCTGCACCA 1080
 1038 9 1062 3 Bsi WI
 TCTGTCTTCA TCTTCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACTGC CTCTGTTGTG 1140
 TGCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC AGTGGAAAGGT GGATAACGCC 1200
 HUMAN KAPPA CONSTANT 324bp 107 AMINO ACID & STOP CODON
 CTCCAATCGG GTAACCTCCA GGAGAGTGT ACAGAGCAGG ACAGCAAGGA CAGCACCTAC 1260
 AGCCTCAGCA GCACCCGTAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC 1320
 TGCGAAGTCA CCCATCAGGG CCTGAGCTCG CCCGTACCAA AGAGCTTCAA CAGGGGAGAG 1380
 STOP
 LIGHT
 CHAIN Eco RI LINKER #4=85bp
 TGT TGAATTC AGATCCGTTA ACGGTTACCA ACTACCTACA CTGGATTCTG GACAACATGC 1440
 1386 7
 GGCGGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1500
 1471 2

FIG. 2A

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

GTTTGCCCTT CCCCCGTGCC TTCCCTGACC CTGGAAAGGTG CCACTCCCAC TGTCCCTTCC 1560
 TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1620
 GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1680
 GCGGTGGGCT CTATGGAACC AGCTGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 1740
 1702 3 1717 8
 LINKER #5=15bp
 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGGACT 1800
 TTCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCCGTTTT 1860
 GGCAGTACAT CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC 1920
 CCATTGACGT CAATGGGAGT TTGTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC 1980
 GTAACAACTC CGCCCCATLG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2040
 LINKER #6=7bp Sal I
 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCGAC 2100
 2051 2 2058 9 LEADER=51bp Mlu I 2151 2 Nhe I
 ATGGTGGTGA GCCTCATCTT GCTCTTCCTT GTCGCTGTTG CTACCGCTGT CGCTAGCACC 2160
 START HEAVY CHAIN -5 -4 -3 114 115
 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG 2220
 GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTC GTGGAACCTA 2280
 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCCTC AGGACTC 2340
 HUMAN GAMMA 1 CONSTANT
 TCCCTCAGCA GCGTGGTGAC CGTGCCTCAGC AGCAGCTTGG GCACCCAGAC CTACATCTGC 2400
 993bp=330 AMINO ACID & STOP CODON
 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGCAGAGCC CAAATCTTGT 2460
 GACAAAACACACACATGCC ACCGTGCCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC 2520
 TTCCTCTTCC CCCCCAAACC CAAGGACACC CTCATGATCT CCCGGACCCCG TGAGGTCA 2580
 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC 2640
 GGCCTGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTACAA CAGCACGTAC 2700
 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGACTACAAG 2760
 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA 2820
 GGGCAGCCCC GAGAACCAACA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAGG 2880
 AACCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG 2940
 TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA CGCCTCCCGT GCTGGACTCC 3000

FIG. 2B

APPROVED BY DRAFTSMAN	O.G. FIG.	
	CLASS	SUBCLASS

GAGGCGCTCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG 3060
 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC 3120
 STOP HEAVY CHAIN |Bam HI LINKER #7=81bp
 CTCTCCCTGT CTCCGGGTAA ATGAGGATCC GTTAACGGTT ACCAACTACC TAGACTGGAT 3180
 3144 5
 TCGTGACAAC ATGCGGCCGT GATATCTACG TATGATCAGC CTCGACTGTG CCTTCTAGTT 3240
 3225 6
 GCCAGCCATC TGTGTTGC CCCTCCCCG TGCTTCCTT GACCCCTGGAA GGTGCCACTC 3300
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 CCACTGTCCT TTCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT 3360
 CTATTCTGGG GGGTGGGGTG GGGCAGGACA GCAAGGGGGAA GGATTGGGAA GACAATAGCA 3420
 LINKER #8=34bp
 GGCATGCTGG GGATGCGGTG GGCTCTATGG AACCAAGCTGG GGCTCGACAG CGCTGGATCT 3480
 3456 7
 CCCGATCCCC AGCTTGCTT CTCAATTCT TATTCGATA ATGAGAAAAA AAGGAAAATT 3540
 3490 1
 AATTTAACCA CCAATTCAAGT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 3600
 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC CCAGAGCTGA 3660
 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT CATCACCGAA 3720
 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 3780
 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATTTGCTT 3840
 LINKER #9=19bp 5' UNTRANSLATED DHFR=82bp
 CTGACATAGT TGTGTTGGGA GCTTGGATAG CTTGGACAGC TCAGGGCTGC GATTTGGCGC 3900
 3856 7 3875 6 START DHFR
 CAAACTTGAC GGCAATCTA GCGTGAAGGC TGGTAGGATT TTATCCCCGC TGCCCATG 3960
 3957 8
 GTTCGACCAT TGAAC TGACAT CGTCGCCGTG TCCC AAAATA TGGGGATTGG CAAGAACCGA 4020
 GACCTACCCCT GGCCTCCGCT CAGGAACGAG TTCAAGTACT TCCAAAGAAT GACCACAAACC 4080
 TCTTCAGTGG AAGGTAAACA GAATCTGGTG ATTATGGTA GGAAAACCTG GTTCTCCATT 4140
 MOUSE DHFR=564bp=187 AMINO ACID & STOP CODON
 CCTGAGAAGA ATCGACCTT AAAGGACAGA ATTAATATAG TTCTCAGTAG AGAACTCAAA 4200
 GAACCACCAAC GAGGAGCTCA TTTCTTGCC AAAAGTTGG ATGATGCCTT AAGACTTATT 4260
 GAACAAACCGG AATTGGCAAG TAAAGTAGAC ATGGTTGGA TAGTCGGAGG CAGTTCTGTT 4320
 TACCAAGGAAG CCATGAATCA ACCAGGCCAC CTTAGACTCT TTGTGACAAG GATCATGCAG 4380
 GAATTTGAAA GTGACACGTT TTTCCAGAA ATTGATTGG GGAAATATAA ACTTCTCCCA 4440
 GAATACCCAG GCGTCCTCTC TGAGGTCCAG GAGGAAAAAG GCATCAAGTA TAAGTTGAA 4500

FIG. 2C

APPROVED BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

STOP DHFR

GTCTACGAGA AGAAAGAC~~T~~A ACAGGAAGAT GCTTTCAAGT TCTCTGCTCC CCTCCTAAAG 4560
 4521 2

3' UNTRANSLATED DHFR=82bp LINKER #10=10bp
 TCATGCATT TTATAAGACC ATGGGACTTT TGCTGGCTTT AGATCAGUUT CGACTGTACI 4620
 4603 4 4613 4

TTCTAGTTGC CAGCCATCTG TTGTTTGCCTC CTCCCCGTG CCTTCCTTGA CCCTGGAAGG 4680
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 TGCCACTCCC ACTGTCCTTT CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG 4740

GTGTCATTCT ATTCTGGGG GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA 4800
 CAATAGCAGG CATGCTGGGG ATGCGGTGGG CTCTATGGAA CCAGCTGGGG CTCGAGCTAC 4860
 4844 5

TAAGCTTGCT TCTCAATTTC TTATTTGCAT AATGAGAAAA AAAGGAAAAT TAATTTAAC 4920

ACCAATTCAAG TAGTTGATTG AGCAAATGCG TTGCCAAAAAA GGATGCTTTA GAGACAGTGT 4980
 MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 TCTCTGCACA GATAAGGACA AACATTATTC AGAGGGAGTA CCCAGAGCTG AGACTCCTAA 5040

GCCAGTGAGT GGCACAGCAT TCTAGGGAGA AATATGCTTG TCATCACCGA AGCCTGATTG 5100

CGTAGAGCCA CACCTTGGTA AGGGCCAATC TGCTCACACA GGATAGAGAG GGCAGGAUCG 5160

AGGGCAGAGC ATATAAGGTG AGTAGGATC AGTTGCTCCT CACATTGCT TCTGACATAG 5220

TTGTGTTGGG AGCTTGGATC GATCCTCTAT ~~GGTTGAACAA~~ GATGGATTGC ACGCAGGTT 5280
 5227 8 5248 9

LINKER #12=21bp START NEO
 TCCGGCCGCT TGGGTGGAGA GGCTATTGG CTATGACTGG GCACAAACAGA CAATCGGCTG 5340

CTCTGATGCC GCCGTGTTCC GGCTGTCAGC GCAGGGGCGC CCGGTTCTTT TTGTCAAGAC 5400
 NEOMYCIN PHOSPHOTRANSFERASE
 CGACCTGTCC GGTGCCCTGA ATGAACTGCA GGACGAGGCA GCGCGGCTAT CGTGGCTGGC 5460

795bp=264 AMINO ACIDS & STOP CODON
 CACGACGGGC GTTCCCTTGCG CAGCTGTGCT CGACGTTGTC ACTGAAGCGG GAAGGGACTG 5520

GCTGCTATTG GGCAGAAGTGC CGGGGCAGGA TCTCCTGTCA TCTCACCTTG CTCCTGCCGA 5580

GAAAGTATCC ATCATGGCTG ATGCAATGCG GCGGCTGCAT ACCGCTTGATC CGGCTACCTG 5640

CCCATTGAC CACCAAGCGA AACATCGCAT CGAGCGAGCA CGTACTCGGA TGGAAGCCGG 5700

TCTTGTGAT CAGGATGATC TGGACGAAGA GCATCAGGGG CTCGGCGCCAG CCGAACTGTT 5760

CGCCAGGCTC AAGGCGCGCA TGCCCGACGG CGAGGATCTC GTCGTGACCC ATGGCGATGC 5820

CTGCTTGGCCG AATATCATGG TGGAAAATGG CCGCTTTCT GGATTGATCG ACTGTGGCCG 5880

GCTGGGTGTG GCGGACCGCT ATCAGGACAT AGCGTTGGCT ACCCGTGATA TTGCTGAAGA 5940

GCTTGGCCGGC GAATGGGCTG ACCGCTTCCT CGTGCTTAC GGTATCGCCG CTTCCCGATTC 6000

FIG. 2D

APPROVED BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

STOP NEO
 GCAGCGCATC GCCTTCTATC GCCTTCTTGA CGAGTTCTTC TGAGCGGGAC TCTGGGTTC 6060
 6043 4
 ·GAAATGACCG ACCAAGCGAC GCCCAACCTG CCATCACAGAG ATTCGATT CACCGCCGCC 6120
 3' UNTRANSLATED NEO=173bp
 TTCTATGAAA GGTTGGGCTT CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG 6180
 CGCGGGGATC TCATGCTGGA GTTCTTCGCC CACCCCCACT TGTTTATTGC AGCTTATAAT 6240
 6216 7
 GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTC TTCACTGCAT 6300
 SV40 POLY A EARLY=133bp LINKER #13=19bp
 TCTAGTTGTG GTTTGTCCAA ACTCATCAAT CTATCTTATC ATGTCGGAT CGCGGGCCGC 6360
 6349 50
 ATCCC GTGGA GAGCTTGGCG TAATCATGGT CATAGCTGTT TCCTGTGTGA AATTGTTATC 6420
 6368 9
 CGCTCACAAT TCCACACAAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT 6480
 AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGAA 6540
 ACCTGTCGTG CCAGCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC GGTTTGCATA 6600
 PVC 19
 TTGGGCGCTC TTCCGCTTCC TCGCTCACTG ACTCGCTGCG CTCGGTCGTT CGGCTGCAGC 6660
 GAGCGGTATC AGCTCACTCA AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG 6720
 CAGGAAAGAA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCST 6780
 6792=BACTERIAL ORIGIN OF REPLICATION
 TGCTGGCGTT TCTCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAAG 6840
 GTCAGAGGTG GCGAAACCCCG ACAGGACTAT AAAGATACCA GGGCTTTCCC CCTGGAAGCT 6900
 CCCTCGTGCCT CTCTCCTGTT CCGACCCCTGC CGCTTACCGG ATACCTGTCC GCCTTCTCC 6960
 CTTCGGGAAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG 7020
 TCGTTCGCTC CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCCAC CGCTGCGCCT 7080
 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG 7140
 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA 7200
 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA 7260
 AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG 7320
 GTAGCGGTGG TTTTTTGTG TGCAAGCAGC AGATTACCGC CAGAAAAAAA GGATCTCAAG 7380
 AAGATCCTTT GATCTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG 7440
 GGATTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA GATCCTTTA AATTAAAAAT 7500

FIG. 2E

APPROVED BY	O.G. FIG.	
DRAFTSMAN	CLASS	SUBCLASS

STOP BETA LACTAMASE

GAAGTTTAA ATCAATCTAA AGTATATATG AGTAAACTTG GTCTGACAGT TACCAATGCT 7560
 7550

TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTTCG TTCAATCCATA GTTGCCGTGAC 7620

TCCCCGTCGT GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680

TGATACCGCG AGACCCCACCGC TCACCCGGCTC CAGATTATC AGCAATAAAC CAGCCAGCCG 7740

BETA LACTAMASE=861bp

GAAGGGCCGA GCGCAGAAGT GGTCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAAATT 7800

286 AMINO ACID & STOP CODON

GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTGCGCAAC GTTGTGCCC 7860

TTGCTACAGG CATCGTGGTG TCACCGCTCGT CGTTGGTAT GGCTTCATTG AGCTCCGGTT 7920

CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAAGCG GTTAGCTCCT 7980

TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040

CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTCT GTGACTGGTG 8100

AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTGCCCGG 8160

CGTCAATACG GGATAATACC GCGCCACATA GCAGAACCTT AAAAGTGCTC ATCATTGGAA 8220

AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTCGATGT 8280

AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTAC TTTCACCGAGC GTTCTGGGT 8340

GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 8400

START BETA LACTAMASE

GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460
 8410

TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAAC AATAGGGGTT CCGCGCACAT 8520

TTCCCCGAAA AGTGCCACCT

FIG. 2F

APPROVED BY	O.G. FIG.
DRAFTSMAN	CLASS SUBCLASS

LINKER #1=15bp |
 GACGTGGCGG CCGCTAGG CCTCCAAAAA AGCCTCCCA CTACTTCTGG AATAGCTAG 60
 15 6

AGGCCGAGGC GGCCCTGGCC TCTGCATAAA TAAAAAAAAT TAGTCACCCA TGCACTGGGG 120
 SV40 ORIGIN=332bp
 GGAGAATGGG CGGAACCTGGG CGGAGTTAGG GGCGGGATGG GCGGAGTTAG GGGCGGGACT 180

ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCACTACTC TGCCCTGCTGG GGAGCCTGG 240

GACTTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300

GGGGAGCCTG GGGACTTTCC ACACCCCTAAC TGACACACAT TCCACAGAAAT TAATTCCCCT 360
 347 8

AGTTATTAAT AGTAATCAAT TACGGGGTCA TTAGTTCAT A GCCATATAT GGAGTTCCGC 420

GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCCATTG 480

ACGTCAATAA TGACGTATGT TCCCATAAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA 540

CVM PROMOTER-ENHANCER=567bp
 TGGGTGGACT ATTACGGTA AACTGCCAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA 600

AGTACGCCAC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATT TGCCCAAGTAC 660

ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC 720

ATGGTGATGC GGTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTGA CTCACGGGA 780

TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG 840

GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGCGG TAGGCGTGT 900

LINKER #3=7bp |
 CGGTGGGAGG TCTATATAAG CAGAGCTGGG TACGTAACC GTCAGATCGC CTGGAGACGC 960
 927 8 934 5

Bgl 2 | START LIGHT CHAIN NATURAL LEADER=66bp
 CATCACAGAT CTCTCACTAT GGATTTCAAG GTGCAGATTA TCAGCTTCCT GCTAATCAGT 1020
 978 9

GCTTCAGTCA TAATGTCCAG AGGACAAATT GTTCTCTCCC AGTCTCCAGC AATCCTGTCT 1080
 1044 5 +1

GCATCTCCAG GGGAGAAGGT CACAATGACT TGCAAGGCCA GCTGAAGTGT AAGTTACATC 1140

CACTGGTTCC AGCAGAAGCC AGGATCCTCC CCCAAACCCCT GGATTTATGC CACATCCAAC 1200

LIGHT CHAIN VARIABLE REGION 318bp 106 AMINO ACID
 CTGGCTTCTG GAGTCCCTGT TCGCTTCAGT GGCAGTGGGT CTGGGACTTC TTACTCTCTC 1260

ACCATCAGCA GAGTGGAGGC TGAAGATGCT GCCACTTATT ACTGCCAGCA GTGGACTAGT 1320

AACCCACCCA CGTTGGAGG GGGGACCAAG CTGGAAATCA AACGTACGGT GGCTGCACCA 1380
 1362 3

TCTGTCTTCA TCTTCCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACAGC CTCTGTTGTG 1440

TGCCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC AGTGGAAAGGT GGATAACGCC 1500

FIG. 3A

APPROVED BY DRAFTSMAN	O.G. FIG.
	CLASS SUBCLASS

HUMAN KAPPA CONSTANT=324bp=107 AMINO ACID & STOP CODON
 CTCCAATCGG GTAACCCCCA GGAGAGTGT ACAGAGCAGG ACAGCAAAGGA CAGCACCTAC 1560
 AGCCTCAGCA GCACCCCTGAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC 1620
 TGCAGAAGTCA CCCATCAGGG CCTGAGCTCG CCCGTACAA AGAGCTTCAA CAGGGGAGAG 1680
 STOP
 LIGHT
CHAIN Eco RI LINKER #4=81bp
 TGTTGAATTC AGATCCGTTA ACGGTTACCA ACTACCTAGA CTGGATTCTG GACAACATGC 1740
 1646 7
 GCCCGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1800
 1771 2
 GTTTGCCCTT CCCCCGTGCC TTCCCTGACC CTGGAAAGGTG CCACTCCCCAC TGTCCTTTCC 1860
 TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1920
 BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp
 GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1980
 GCGGTGGGCT CTATGGAACC AGCTGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 2040
 2002 3 2017 8
 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGACT 2100
 TTCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT 2160
 CMV PROMOTER-ENHANCER=334bp
 GGCAGTACAT CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC 2220
 CCATTGACGT CAATGGGAGT TTGTTTGCC ACCAAAATCA ACGGGACTTT CCAAAATGTC 2280
 GTAACAACTC CGCCCCATTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2340
 LINKER #6=7bp Sal I
 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCCAC 2400
 START 2351 2 2358 9
HEAVY CHAIN SYNTHETIC & NATURAL LEADER Mlu I 2457 8
 ATGGGTTGGA GCCTCATCTT GCTCTTCCTT GTCGCTGTTG CTACGGTGT CCTGTCAG 2460
 2401 -5 -4 -3 -2 -1 +1
 GTACAACCTGC AGCAGCCTGG GGCTGAGCTG GTGAAGCCTG GGGCCTAGT GAAGATGTCC 2520
 TGCAAGGCTT CTGGCTACAC ATTACCAAGT TACAATATGC ACTGGGTAAA ACAGACACCT 2580
 HEAVY CHAIN VARIABLE=363bp=121 AMINO ACID
 GGTCGGGGCC TGGAAATGGAT TGGAGCTATT TATCCCGGAA ATGGTGATAC TTCCTACAAT 2640
 CAGAAGTTCA AAGGCAAGGC CACATTGACT GCAGACAAAT CCTCCAGCAC AGCCTACATG 2700
 CAGCTCAGCA GCCTGACATC TGAGGACTCT GCGGTCTATT ACTGTGCAAG ATCGACTTAC 2760
 TACGGCGGTG ACTGGTACTT CAATGTCTGG GGCGCAGGGA CCACGGTCAC CGTCTCTGCA 2820
Nhe I
 GCTAGCACCA AGGGCCCACATC GGTCTTCCCC CTGGCACCCCT CCTCCAAAGAG CACCTCTGGG 2880
 GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTCC CGAACCAGT GACGGTGCG 2940
 HUMAN GAMMA 1 CONSTANT=993bp
 TGGAACTCAG GCGCCCTGAC CAGCGGCGTG CACACCTTCC CGGCTGTCC ACAGTCCTCA 3000

FIG. 3B

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

330 AMINO ACID & STOP CODON

GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTTGGG CACCCAGACC 3060
 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGU TGGACAAGAA AGCAGAGCCC 3120
 AAATCTTGTG ACAAAAACCTCA CACATGCCCA CCGTGCCCCAG CACCTGAACCT CCTGGGGGGGA 3180
 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 3240
 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 3300
 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCAGGGAGGA GCAGTACAAC 3360
 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCTGCACC AGGACTGGCT GAATGGCAAG 3420
 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 3480
 AAAGCCAAAG GGCAGCCCCG AGAACACACAG GTGTACACCC TGCCCCCATC CCGGGATGAG 3540
 CTGACCAAGA ACCAGGTCAAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC 3600
 GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC GCCTCCCGTG 3660
 CTGGACTCCG ACGGCTCCTT CTTCCCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG 3720
 CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG 3780

STOP HEAVY CHAIN Bam HI LINKER #7=81bp

CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGAGGATCCG TTAACGGTTA CCAACTACCT 3840
 3813 4

AGACTGGATT CGTGACAACA TGCAGCCCGTG ATATCTACGT ATGATCAGCC TCGACTGTGC 3900
 3894 5

CTTCTAGTTG CCAGCCATCT GTTGTGTTGCC CCTCCCCGT GCCTTCCTTG ACCCTGGAAG 3960
 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGATCGCAT TGTCTGAGTA 4020

BOVINE GROWTH HORMONE POLYADENYLATION REGION=231bp

GGTGTCAATT TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG 4080

ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGA ACCAGCTGGG GCTCGACAGC 4140
 4125 6

LINKER #8=34bp

GCTGGATCTC CCGATCCCCA GCTTGCTTC TCAATTCTT ATTTGCATAA TGAGAAAAAA 4200
 AGGAAAATTA ATTTAACAC CAATTCAAGTA GTTGATTGAG CAAATGCGTT GCCAAAAAGG 4260

MOUSE BETA GLOBIN MAJOR PROMOTER=366bp

ATGCTTTAGA GACAGTGGTC TCTGCACAGA TAAGGACAAA CATTATTCAAG AGGGAGTACC 4320
 CAGAGCTGAG ACTCCTAACG CAGTGAGTGG CACAGCATTG TAGGGAGAAA TATGCTTGTC 4380
 ATCACCGAAG CCTGATTCCG TAGAGCCACA CCTTGGTAAG GGCCAATCTG CTCACACAGG 4440
 ATAGAGAGGG CAGGAGCCAG GGCAGAGCAT ATAAGGTGAG GTAGGATCAG TTGCTCCTCA 4500

FIG. 3C

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

CATTTGCTTC TGACATAGTT LINKER #9=19bp 5' UNTRANSLATED DHFR=82bp
 4525 6 4544 5
 ATTTCGCGCC AAACCTGACG GCAATCCTAG CGTGAAGGCT GGTAGGATT TATCCCCGCT 4620
START DHFR
 GCCCATCATGG TTCGACCATT GAACTGCATC GTCGCCGTGT CCCAAAATAT GGGGATTGGC 4680
 4626 7
 AAGAACGGAG ACCTACCCCTG GCCTCCGCTC AGGAACGAGT TCAAGTACTT CCAAAGAATG 4740
 ACCACAAACCT CTTCACTGGGAGGTAACACAG AATCTGGTGA TTATGGGTAG GAAAACCTGG 4800
DHFR=564bp=187 AMINO ACID & STOP CODON
 TTCTCCATTC CTGAGAAGAA TCGACCTTTA AAGGACAGAA TTAATATAAGT TCTCAGTAGA 4860
 GAACTCAAAG AACCAACCACG AGGAGCTCAT TTTCTTGCCA AAAGTTGGAG TGATGCCCTA 4920
 AGACTTATTG AACAAACCGGA ATTGGCAAGT AAAGTAGACA TGGTTTGGAT AGTCGGAGGC 4980
 AGTTCTGTTT ACCAGGAAGC CATGAATCAA CCAGGCCACC TTAGACTCTT TGTGACAAGG 5040
 ATCATGCAGG AATTGAAAG TGACACGTT TTCCCAGAAA TTGATTTGGG GAAATATAAA 5100
 CTTCTCCAG AATAACCCAGG CGTCCTCTCT GAGGTCCAGG AGGAAAAAGG CATCAAGTAT 5160
STOP DHFR 3' UNTRANSLATED DHFR=82bp
 AAGTTTGAAG TCTACGAGAA GAAAGACTAA CAGGAAGATG CTTCAAGTT CTCTGCTCCTC 5220
 5140 1
LINKER #10
 CTCCTAAAGC TATGCATTT TATAAGACCA TGGGACTTTT GCTGGCTTTA GATCAGCCTC 5280
 =10bp 5272 3
 GACTGTGCCT TCTAGTTGCC AGCCATCTGT TGTTGCCCTC TCCCCCGTGC CTTCCCTGAC 5340
BOVINE GROWTH HORMONE POLYADENYLATION=231bp
 CCTGGAAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG CATCGCATTG 5400
 TCTGAGTAGG TGTCAATTCTA TTCTGGGGGG TGGGGTGGGG CAGGACAGCA AGGGGGAGGA 5460
LINKER #11
 TTGGGAAGAC AATAGCAGGC ATGCTGGGA TGCGGTGGC TCTATGGAAC CAGCTGGGGC 5520
 5513 4
=17bp
 TCGAGCTACT AGCTTTGCTT CTCATTCT TATTGCTATA ATGAGAAAAA AAGGAAAATT 5580
 5530 1
 AATTTAACCA CCAATTCACT AGTTGATTGA GCAAATGCCGT TGCCAAAAAG GATGCTTTAG 5640
MOUSE BETA GLOBIN MAJOR PROMOTER=366bp
 AGACAGTGTT CTCTGCACAG ATAAGGACAA CTAGGGAGAA ATATGCTTGT CATCACCGAA 5700
 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT CATCACCGAA 5760
 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 5820
 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCCTCCTC ACATTTGCTT 5880
LINKER #12=21bp START NEO
 CTGACATAGT TGTGTTGGGA GCTTGGATCG ATCCTCTATG GTTGAACAAG ATGGATTGCA 5940
 5896 7 5917 8
 CGCAGGTTCT CGGGCCGCTT GGGTGGAGAG GCTATTGGC TATGACTAGG CACAAACAGAC 6000

FIG. 3D

APPROVED BY DRAFTSMAN	O.G. FIG.	
	CLASS	SUBCLASS

AATCGGCTGC TCTGATGCCG CCGTGTCCG GCTGTCAGCG CAGGGGGCGCC CGGTTCTTT 6060
NEOMYCIN PHOSPHOTRANSFERASE=795bp=264 AMINO ACID & STOP CODON
TGTCAAGACC GACCTGTCCG GTGCCCTGAA TGAAC TGCAAGCAG GACGAGGCAG CGCGGCTATC 6120
GTGGCTGGCC ACGACGGGCG TTCCCTGCGC AGCTGTGCTC GACGTGTCA CTGAAGCGCG 6180
AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT CTCCCTGTCAT CTCACCTTGC 6240
TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCCG CGGCTGCATA CGCTTGATCC 6300
GGCTACCTGC CCATTCGACC ACCAAGCGAA ACATCGCATC GAGCGAGCAC GTACTCGGAT 6360
GGAAGCCGGT CTTGTCGATC AGGATGATCT GGACGAAGAG CATCAGGGGC TCGCGCCAGC 6420
CGAACTGTTG GCCAGGCTCA AGGCGCGCAT GCCCGACGGC GAGGATCTG TCGTGACCCA 6480
TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC CGCTTTCTG GATTGATCGA 6540
CTGTGGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA CCCGTGATAT 6600
TGCTGAAGAG CTTGGCGGCG AATGGGCTGA CCGCTTCCTC GTGCTTTACG GTATCGCCGC 6660
STOP NEO
TCCCGATTG CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTTGAGCGGGACT 6720
6712 3
CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGAGA TTTGATTGC 6780
3' UNTRANSLATED NEO=173bp
ACCGCCGCCCT TCTATGAAAG GTTGGGCTTC GGAATCGTT TCCGGGACGC CGGCTGGATG 6840
ATCCTCCAGC GCGGGGATCT CATGCTGGAG TTCTCGCCC ACCCGAAACTT GTTATTGCA 6900
6885 6
GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTC 6960
SV40 EARLY POLYADENYLATION REGION=133bp
TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATC TATCTTATCA TGTCTGGATC 7020
7018 9
LINKER #13=19bp
GCGGCCGCGA TCCCGTCGAG AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA 7080
7037 8
PUC 19
ATTGTTATCC GCTCACAAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGAAAGCCT 7140
GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTGC 7200
AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCCGG GGGAGAGCG 7260
GTTTGCAT TGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCAG TCGGTGTTG 7320
GGCTGCAGCG AGCGGTATCA GCTCACTCAA AGGCAGTAAT ACGGTTATCC ACAGAACAG 7380
GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA 7440
7461=BACTERIAL ORIGIN OF REPLICATION
AGGCCGCGTT GCTGGCGTT TCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC 7500

FIG. 3E

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAAG GCGTTCCCC 7560
 CTGGAAAGCTC CCTCGTGCAC TCTCCTGTTC CGACCCCTGCC GCTTACCGGA TACCTGTCCG 7620
 CCTTTCTCCC TTGGGGAAAGC GTGGCGCTTT CTCAATGTC ACGCTGTAGG TATCTCAGTT 7680
 CGGTGTAGGT CGTTCGCTCC AAGCTGGCT GTGTGCACGA ACCCCCCGTT CAGCCCCGACC 7740
 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800
 CACTGGCAGC AGCCACTGGT AACAGGATTAA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860
 AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTCCG 7920
 CTCTGCTGAA GCCAGTTACC TTGGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 7980
 CCACCGCTGG TAGCGGTGGT TTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG 8040
 GATCTCAAGA AGATCCTTTG ATCTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAAGT 8100
 CACGTTAAGG GATTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTAA 8160
 STOP
ATTAATAATG AAGTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT 8220
BETA LACTAMASE
ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTCGT TCATCCATAG 8280
 TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATAACGGGA GGGCTTACCA TCTGGCCCCA 8340
 GTGCTGCAAT GATAACGGCA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACCC 8400
 BETA LACTAMASE=861bp=286 AMINO ACID & STOP CODON
 AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460
 CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTGCC AGTTAATAGT TTGCGCAACG 8520
 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTGGTATG GCTTCATTCA 8580
 GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8640
 TTAGCTCCTT CGGTCCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700
 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTCTG 8760
 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCCGA CCGAGTTGCT 8820
 CTTGCCCGGC GTCAATAACCG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880
 TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940
 GGTGATGTA ACCCAACTCGT GCACCCAACT GATCTTCAGC ATCTTTACT TTCACCCAGCG 9000
 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCCACAC 9060
 START BETA LACTAMASE
 GGAAATGTTG AATACTCATC CTCTTCCTTT TTCAATATTAA TTGAAGCATT TATCAGGGTT 9120
 ATTGTCTCAT GAGCGGATAC ATATTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTT 9180
 CGGGCACATT TCCCCGAAAA GTGCCACCT

FIG. 3F

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

LEADER

-20		-15		-10		
FRAME 1 Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val						
ATG	GAT	TTT	CAG	GTG	CAG	
987		996		1005		
				1014		
					1023	
FR1						
-5	-1	+1				
Ile Met Ser Arg Gly	Gln	Ile	Val	Leu	Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser	
ATA ATG TCC AGA GGA	CAA	ATT	GTT	CTC	TCC CAG TCT CCA GCA ATC CTG TCT GCA TCT	
1038		1047		1056		
				1065		
				1074		
					1035	
CDR1						
20	23	24				
Pro Gly Glu Lys Val Thr Met Thr Cys	Arg	Ala	Ser	Ser Val	Ser Tyr Ile His	
CCA GGG GAG AAG GTC ACA ATG ACT TGC	AGG	GCC	AGC	TCA AGT GTA AGT TAC ATC CAC		
1095	1104	1113		1122		
				1131		
					1140	
FR2						
35	40	45		49	50	
Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr				Ala Thr Ser Asn		
TGG TTC CAG CAG AAG CCA GGA TCC TCC CCC AAA CCC TGG ATT TAT				GCC ACA TCC AAC		
1152	1161	1170		1179		
				1188		
					1197	
CDR2						
55	56	57	60	FR3	65	
Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser					70	
CTG GCT TCT GGA GTC CCT GTT CGC TTC AGT GGC AGT GGG TCT GGG ACT TCT TAC TCT						
1209		1218	1227		1236	
					1245	
					1254	
FR3						
75	80	85		88	89 90	
Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys				Gln Glu Trp		
CTC ACC ATC AGC AGA GTG GAG GCT GAA GAT GCT GCC ACT TAT TAC TGC				CAG CAG TGG		
1266	1275	1284		1293		
				1302		
					1311	
CDR3						
95	97	98	100	FR4	105	107
Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys						
ACT AGT AAC CCA CCC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATC AAA						
1323	1332	1341		1350		
				1359		

FIG. 4

APPROVED BY DRAFTSMAN	O.G. FIG. CLASS SUBCLASS
-----------------------------	-------------------------------

LEADER

-19 -15 -10 -5

FRAME 1 Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val
ATG GGT TGG AGC CTC ATC TTG CTC TTC CTT GTC GCT GTT GCT ACG CGT GTC
2409 2418 2427 2436 2445

-1 +1 FR1 10 15

Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Ala Gly Ala Ser
CTG TCC CAG GTA CAA CTG CAG CAG CCT GGG GCT GAG CTG GTG AAG CCT GGG GCC TCA
2460 2469 2478 2487 2496 2505

20 25 30 31 CDR1 35 36

Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp
GTG AAG ATG TCC TGC AAG GCT TCT GGC TAC ACA TTT ACC AGT TAC AAT ATG CAC TGG
2517 2526 2536 2544 2553 2562

40 FR2 45 49 50 52 52A 53 54

Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn
GTA AAA CAG ACA CCT GGT CGG GGC CTG GAA TGG ATT GGA GCT ATT TAT CCC GGA AAT
2574 2583 2592 2601 2610 2619

55 CDR2 60 65 66 FR3 70

Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys
GGT GAT ACT TCC TAC AAT CAG AAG TTC AAA GGC AAG GCC ACA TTG ACT GCA GAC AAA
2631 2640 2649 2658 2667 2676

75 80 82 82A 82B 82C 83 85

Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
TCC TCC AGC ACA GCC TAC ATG CAG CTC AGC AGC CTG ACA TCT GAG GAC TCT GCG GTC
2688 2697 2706 2715 2724 2733

90 94 95 CDR3 100 100A 100B 100C 100D 101 102 103

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly
TAT TAC TGT GCA AGA TCG ACT TAC TAC GGC GGT GAC TGG TAC TTC AAT GTC TGG GGC
2745 2754 2763 2772 2781 2790

105 FR4 110 113

Ala Gly Thr Thr Val Thr Val Ser Ala
GCA GGG ACC ACG GTC ACC GTC TCT GCA
2802 2811 2820

FIG. 5

APPROVED	O.G. FIG.
BY	CLASS SUBCLASS
DRAFTSMAN	

FIG. 6

FIG. 7

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

ANTIBODY

FIG. 8

FIG. 9A

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

FIG. 9B

FIG. 9C

APPROVED BY	O.G. FIG.
DRAFTSMAN	CLASS SUBCLASS

FIG. 10

FIG. 11

APPROVED	O.G. FIG.	
BY	CLASS	SUBCLASS
DRAFTSMAN		

FIG. 12

FIG. 13

APPROVED BY DRAFTSMAN	O.G. FIG. CLASS	SUBCLASS
-----------------------------	--------------------	----------

FIG. 14A

FIG. 14B