الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION SESSION DE CONTROLE EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION: MATHEMATIQUES

EPREUVE: MATHEMATIQUES

DURÉE : 4 Heures

COEFFICIENT: 4

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4est à rendre avec la copie.

Exercice 1 (3 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 0,75 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1) Soit z un nombre complexe de module 2.

Alors le conjugué Z de z est égal à

- a) $\frac{\sqrt{2}}{z}$
- b) $\frac{2}{z}$
- c) $\frac{4}{z}$
- 2) Dans Le plan muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A et B d'affixes respectives 1 et i . L'ensemble des points M d'affixe z tel que $\frac{z-i}{z-1}$ est réel est
 - a) la droite (AB) privée de A
 - b) le segment [AB] privé de A
 - c) le cercle de diamètre [AB] privé de A
- 3) Soit (u_n) une suite arithmétique de raison $(-\ln 2)$. Alors la suite (v_n) définie par $v_n = e^{u_n}$ est
 - a) une suite arithmétique de raison (-2)
 - b) une suite géométrique de raison (-2)
 - c) une suite géométrique de raison $(\frac{1}{2})$
- 4) La limite de $x \ln(1 + \frac{2}{x})$ quand x tend vers $+\infty$ est égale à
 - a) 0
 - b) 1
 - c) 2

الشبكة التربوية التونسية www.edunet.tn

Exercice 2 (5 points)

Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = x + (x-1)e^{-x}$ et soit \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$. (unité graphique 2 cm)

- 1) a) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$
 - b) Montrer que la droite Δ d'équation y = x est asymptote à la courbe $\mathscr C$ au voisinage de $+\infty$.
 - c) Déterminer la position relative de $\mathscr C$ et Δ .
- 2) On donne ci-dessous le tableau de variation de la fonction f.

- a) Montrer que l'équation f(x) = 0 admet, dans \mathbb{R}_+ , une seule solution α et vérifier que $0 < \alpha < \frac{1}{2}$
- b) Tracer la droite Δ et la courbe $\mathscr C$. (On précisera la demi tangente à $\mathscr C$ au point d'abscisse 0 et on prendra $\alpha \simeq 0.4$).
- 3) On désigne par (u_n) la suite définie sur \mathbb{N}^* par $u_n = \int_{\alpha}^{1} [f(x)]^n dx$.
 - a) Calculer u₁. Interpréter graphiquement le résultat obtenu.
 - b) Montrer que pour tout entier naturel non nul n, $0 \le u_n \le \frac{1}{n+1}$.
 - c) En déduire la limite de la suite (un).

Exercice 3 (4 points)

On considère les suites (un) et (vn) définies sur IN par

$$\left\{ \begin{array}{ll} u_0 = 0 & ; & u_{n+1} = \frac{2u_n + v_n}{3} \\ \\ v_0 = 1 & ; & v_{n+1} = \frac{3u_n + 2v_n}{5} \end{array} \right.$$

- 1) Montrer que pour tout entier naturel non nul n, $u_n \leq v_n$.
- 2) Montrer que la suite (un) est croissante et que la suite (vn) est décroissante.
- Montrer que les suites (un) et (vn) sont convergentes et qu'elles admettent la même limite.
- Soit la suite (w_n) définie sur IN par w_n = 9u_n + 5v_n
 - a) Montrer que (w_n) est une suite constante.
 - b) En déduire la limite commune des suites (un) et (vn).

الشبكة التربوية التونسية www.edunet.tn

Exercice 4 (5 points)

Dans l'annexe ci-jointe (page 4/4), ABCD est un rectangle de centre 0 et tel que $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{6} [2\pi]$.

Le point E désigne le symétrique du point A par rapport à D.

Soit S la similitude directe de centre C, de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{3}$

- 1) a) Justifier que S(A) = B
 - b) Montrer que le triangle ACE est équilatéral et en déduire que S(E) = 0.
- Soit I un point du segment [EO], distinct des points O et E et soit (Γ) le cercle de centre I et passant par A.

Les droites (AD) et (AB) recoupent le cercle (Γ) respectivement en M et P.

- a) Tracer (Γ) et placer les points M et P.
- b) Justifier que le point C appartient à (Γ).
- 3) Soit N le projeté orthogonal du point C sur la droite (MP).
 - a) Montrer que $(\widehat{MP}, \widehat{MC}) \equiv \frac{\pi}{6} [2\pi]$.
 - b) En déduire que S(M) = N.
- 4) Montrer que les points B, D et N sont alignés.

Exercice 5 (3 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 3x + 4y = -8.

- 1) a) Vérifier que (0, -2) est une solution de (E).
 - b) Résoudre dans Z x Z l'équation (E) .
- 2) Dans le plan rapporté à un repère orthonormé $\left(0,\ \vec{i},\ \vec{j}\right)$, on considère la droite Δ dont une équation est : 3x + 4y + 8 = 0 et on désigne par A le point de Δ d'abscisse 0 .
 - a) Montrer que si M est un point de Δ à coordonnées entières alors AM est un multiple de 5.
 - b) Soit N un point de Δ de coordonnées (x, y).

Vérifier que $AN = \frac{5}{4} |x|$

c) En déduire que si AN est un multiple de 5 alors x et y sont des entiers.

الشبكة التربوية التونسية www.edunet.tn

	Section:	Signature des Surveillants
	Date et lieu de naissance :	
×		
	Annexe à rendre avec la copie	

Exercice 4

