Cryptography

© André Zúquete, João Paulo Barraca

Securit

1

Cryptography: terminology (1/2)

- Cryptography
 - · Art or science of hidden writing
 - from Gr. kryptós, hidden + graph, r. of graphein, to write
 - It was initially used to maintain the confidentiality of information
 - Steganography
 - from Gr. steganós, hidden + graph, r. of graphein, to write
- Cryptanalysis
 - Art or science of breaking cryptographic systems or encrypted information
- · Cryptology
 - Cryptography + cryptanalysis

© André Zúquete, João Paulo Barraca

Security

Cryptanalysis: goals

- · Discover original plaintext
 - · Which originated a given ciphertext
- · Discover a cipher key
 - · Allows the decryption of ciphertexts created with the same key
- · Discover the cipher algorithm
 - · Or an equivalent algorithm
 - Usually algorithms are not secret, but there are exceptions
 - Lorenz, A5 (GSM), RC4 (WEP), Crypto-1 (Mifare)
 - Algorithms for DRM (Digital Rights Management)
 - · Reverse engineering

© André Zúquete, João Paulo Barraca

Security

Cryptanalysis attacks: approaches

- Brute force
 - Exhaustive search along the key space until finding a suitable key
 - · Usually infeasible for a large key space
 - e.g. 2128 random keys (or keys with 128 bits)
 - Randomness is fundamental!
- Cleaver attacks
 - Reduce the search space to a smaller set of potential candidates

© André Zúquete, João Paulo Barraca

Security

Ciphers: basic types (1/3)

- Transposition
 - Original cleartext is scrambled
 Onexcl raatre ilriad gctsm ilesb
 - Block permutations
 (13524) → boklc pruem ttoai ns

- · Each original symbol is replaced by another
 - · Original symbols were letters, digits and punctuation
 - Actually they are blocks of bits
- Substitution strategies
 - Mono-alphabetic (one→one)
 - Polyalphabetic (many one→one)
 - Homophonic (one→many)

© André Zúquete, João Paulo Barraca

Security

9

ONEXCL

Ciphers: basic types (2/3): Mono-alphabetic

- · Use a single substitution alphabet
 - With $\#\alpha$ elements
- Examples
 - Additive (translation)
 - crypto-symbol = (symbol + key) mod # α
 - symbol = (crypto-symbol key) mod # α
 - Possible keys = $\#\alpha$
 - Caesar Cipher (ROT-x)
 - With sentence key

ABCDEFGHIJKLMNOPQRSTUVWXYZ QRUVWXZSENTCKYABDFGHIJLMOP

- Possible keys = # α ! \rightarrow 26! \approx 288
- Problems
 - · Reproduce plaintext pattern
 - Individual characters, digrams, trigrams, etc.
 - · Statistical analysis facilitates cryptanalysis
 - "The Gold Bug", Edgar Alan Poe

© André Zúquete, João Paulo Barraca

Security

53###305))6*;4826)4#.)
4#);806*;48#860))85;1#
(;:#*8#83(88)5**;46(;8
8*96*?;8)*#(;485);5**#2
:*#(;4956*2(5*~4)88*;4
069285);)6#8)4##;1(#9;
48081;8:8#1;48#85;4)48
5†528806*81(#9;48;(88;
4(#?34;48)4#;161;:188;
#?;

A good glass in the bishop's hostel in the devil's seat fifty-one degrees and thirteen minutes northeast and by north main branch seventh limb east side shoot from the left eye of the death's-head a bee line from the tree through the shot forty feet out

Ciphers: basic types (3/3): Polyalphabetic

- Use N substitution alphabets
 - · Periodical ciphers, with period N
- Example
 - · Vigenère cipher
- Problems
 - Once known the period, are as easy to cryptanalyze as N monoalphabetic ones
 - The period can be discovered using statistics
 - · Kasiski method
 - · Factoring of distances between equal ciphertext blocks
 - Coincidence index
 - · Factoring of self-correlation offsets that yield higher coincidences

© André Zúquete, João Paulo Barraca

Security

11

Vigenère cipher (or the Vigenère square)

Example of encryption of character M with key S, yielding cryptogram E
 Decryption is the opposite, E and S yield M

© André Zúquete, João Paulo Barraca

Security

Cryptanalysis of a Vigenère cryptogram: Example (1/2)

• Plaintext:

Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, como esta pedra cinzenta em que me sento e descanso, como este ribeiro manso, em serenos sobressaltos como estes pinheiros altos

Cipher with the Vigenère square and key "poema"

- Kasiski test
 - · With text above:

 $\begin{array}{|c|c|c|c|}\hline mpa & 20 = 2 \times 2 \times 5 \\ tp & 20 = 2 \times 2 \times 5 \end{array}$

· With the complete poem:

$175 = 5 \times 5 \times 7$	1
$105 = 3 \times 5 \times 7$	3
$35 = 5 \times 7$	1
$20=2\times2\times5$	4

© André Zúquete, João Paulo Barraca

Security

Rotor machines (2/3)

- Rotor machines implement complex polyalphabetic ciphers
 - Each rotor contains a permutation
 - Same as a set of substitutions
 - The position of a rotor implements a substitution alphabet
 - Spinning of a rotor implements a polyalphabetic cipher
 - Stacking several rotors and spinning them at different times adds complexity to the cipher
- The cipher key is:
 - · The set of rotors used
 - The relative order of the rotors
 - The position of the spinning ring
 - The original position of all the rotors
- Symmetrical (two-way) rotors allow decryption by "double encryption"
 - Using a reflection disk (half-rotor)

© André Zúquete, João Paulo Barraca

Security

Cryptography: practical approaches (1/4)

- Theoretical security vs. practical security
 - Expected use ≠ practical exploitation
 - · Defective practices can introduce vulnerabilities
 - Example: re-use of one-time pad key blocks
- Computational security
 - Security is measured by the computational complexity of break-in attacks
 - Using brute force
 - Security bounds:
 - Cost of cryptanalysis
 - Availability of cryptanalysis infra-structure
 - · Lifetime of ciphertext

© André Zúquete, João Paulo Barraca

Security

Cryptography: practical approaches (2/4)

- 5 Shannon criteria
 - · The amount of offered secrecy
 - · e.g. key length
 - · Complexity of key selection
 - e.g. key generation, detection of weak keys
 - · Implementation simplicity
 - · Error propagation
 - Relevant in error-prone environments
 - · e.g. noisy communication channels
 - Dimension of ciphertexts
 - · Regarding the related plaintexts

© André Zúquete, João Paulo Barraca

Security

21

Cryptography: practical approaches (3/4)

- Confusion
 - Complex relationship between the key, plaintext and the ciphertext
 - Output bits (ciphertext) should depend on the input bits (plaintext + key) in a very complex way
- Diffusion
 - Plaintext statistics are dissipated in the ciphertext
 - If one plaintext bit toggles, then the ciphertext changes substantially, in an unpredictable or pseudorandom manner
 - · Avalanche effect

© André Zúquete, João Paulo Barraca

Security

Cryptography: practical approaches (4/4)

- Always assume the worst case
 - · Cryptanalysts knows the algorithm
 - Security lies in the key
 - Cryptanalysts know/have many ciphertext samples produced with the same algorithm & key
 - Ciphertext are not secret!
 - Cryptanalysts partially know original plaintexts
 - As they have some idea of what they are looking for
 - Know-plaintext attacks
 - Chosen-plaintext attacks

© André Zúquete, João Paulo Barraca

Security

23

Cryptographic robustness

- The robustness of algorithms is their resistance to attacks
 - · No one can evaluate it precisely
 - Only speculate or demonstrate using some other robustness assumptions
 - · They are robust until someone breaks them
 - There are public guidelines with what should/must not be used
 - Sometimes antecipating future problems
- Public algorithms without known attacks are likely to be more robust
 - · More people looking for weaknesses
- Algorithms with longer keys are likely to be more robust
 - · And usually slower ...

© André Zúquete, João Paulo Barraca

Security

Stream ciphers (2/2)

- Keystream may be infinite but with a finite period
 - · The period depends on the generator
- Practical security issues
 - Each keystream should be used only once!
 - Otherwise, the sum of cryptograms yields the sum of plaintexts

 $C1 = P1 \oplus Ks$, $C2 = P2 \oplus Ks$ \rightarrow $C1 \oplus C2 = P1 \oplus P2$

- · Plaintext length should be smaller than the keystream period
 - Keystream exposure is total under know/chosen plaintext attacks
 - Keystream cycles help the cryptanalysts knowing plaintext samples
- Integrity control is mandatory
 - No diffusion! (only confusion)
 - · Ciphertexts can easily be changed deterministically

© André Zúquete, João Paulo Barraca

Security

Cryptanalysis of Tunny in Bletchley Park (2/4)

- The mistake (30 August 1941)
 - · A German operator had a long message (~4,000) to send
 - He set up his Lorenz and sent a 12 letter indicator (wheel setup) to the receiver
 - After ~4,000 characters had been keyed, by hand, the receiver said "send it again"
 - The operator resets the machine to the same initial setup
 - Same keystream! Absolutely forbidden!
 - · The sender began to key in the message again (by hand)
 - But he typed a slightly different message!
 - C = M ⊕ Ks
 - C' = M' ⊕ Ks → M' = C ⊕ C' ⊕ M → text variations
 - If you know part of the initial text, you can find the variations

© André Zúquete, João Paulo Barraca

Security

29

Cryptanalysis of Tunny in Bletchley Park (3/4)

- · Breakthrough
 - Messages began with a well known SPRUCHNUMMER "msg number"
 - The first time the operator keyed in SPRUCHNUMMER
 - . The second time he keyed in SPRUCHNR
 - Thus, immediately following the N the two texts were different!
 - Both messages were sent to John Tiltman at Bletchley Park, which was able to fully decrypt them using an additive combination of the messages (called *Depths*)
 - The 2nd message was ~500 characters shorter than the first one
 - Tiltman managed to discover the correct message for the 1st ciphertext
 - They got for the 1st time a long stretch of the Lorenz keystream
 - They did not know how the machine did it, ...
 - ... but they knew that this was what it was generating!

© André Zúquete, João Paulo Barraca

Security

Cryptanalysis of Tunny in Bletchley Park (4/4):

Colossus

- The cipher structure was determined from the keystream
 - But deciphering it required knowing the initial position of rotors
- Germans started using numbers for the initial wheels' state

- · The Colossus was built to apply the double-delta method
- Colossus
 - Design started in March 1943
 - The 1,500 valve Colossus Mark 1 was operational in January 1944
 - · Colossus reduced the time to break Lorenz from weeks to hours

© André Zúquete, João Paulo Barraca

Security

31

Modern ciphers: types

- Concerning operation
 - Block ciphers (mono-alphabetic)
 - Stream ciphers (polyalphabetic)
- Concerning their key
 - · Symmetric ciphers (secret key or shared key ciphers)
 - Asymmetric ciphers (or public key ciphers)
- Arrangements

	Block ciphers	Stream ciphers
Symmetric ciphers		
Asymmetric ciphers		

© André Zúquete, João Paulo Barraca

Security

Symmetric ciphers

- Secret key
 - · Shared by 2 or more peers
- Allow
 - · Confidentiality among the key holders
 - · Limited authentication of messages
 - · When block ciphers are used
- Advantages
 - · Performance (usually very efficient)
- Disadvantages
 - N interacting peers, pairwise secrecy \Rightarrow N x (N-1)/2 keys
- Problems
 - · Key distribution

© André Zúquete, João Paulo Barraca

Security

33

Symmetric block ciphers

- Usual approaches
 - · Large bit blocks
 - 64, 128, 256, etc.
 - · Diffusion & confusion
 - Permutation, substitution, expansion, compression
 - Feistel Networks
 - $L_i=R_{i-1}$ $R_i=L_{i-1}\oplus f(R_{i-1},K_i)$
 - Iterations

Most common algorithms

- · DES (Data Enc. Stand.), D=64; K=56
- IDEA (Int. Data Enc. Alg.), D=64; K=128
- AES (Adv. Enc. Stand., aka Rijndael), D=128, K=128, 192, 256
- Other (Blowfish, CAST, RC5, etc.)

© André Zúquete, João Paulo Barraca

Securit

DES (Data Encryption Standard) (1/4)

- 1970: the need of a standard cipher for civilians was identified
- 1972: NBS opens a contest for a new cipher, requiring:
 - The cryptographic algorithm must be secure to a high degree
 - · Algorithm details described in an easy-to-understand language
 - The details of the algorithm must be publicly available
 - So that anyone could implement it in software or hardware
 - · The security of the algorithm must depend on the key
 - · Not on keeping the method itself (or part of it) secret
 - The method must be adaptable for use in many applications
 - · Hardware implementations of the algorithm must be practical
 - i.e. not prohibitively expensive or extremely slow
 - · The method must be efficient
 - · Test and validation under real-life conditions
 - · The algorithm should be exportable

© André Zúquete, João Paulo Barraca

Security

35

DES (2/4)

- + 1974: new contest
 - · Proposal based on Lucifer from IBM
 - · 64-bit blocks
 - 56-bit keys
 - 48-bit subkeys (key schedules)
 - Diffusion & confusion
 - Feistel networks
 - Permutations, substitutions, expansions, compressions
 - 16 iterations
 - Several modes of operation
 - ECB (Electronic Code Book), CBC (Cypher Block Chaining)
 - OFB (Output Feedback), CFB (Cypher Feedback)
- 1976: adopted at US as a federal standard

© André Zúquete, João Paulo Barraca

Security

- · Key selection
 - · Most 56-bit values are suitable keys
 - · 4 weak, 12 semi-weak keys, 48 possibly weak keys
 - Produce equal key schedules (one Ks, two Ks or four Ks)
 - Easy to spot and avoid
- Known attacks
 - · Exhaustive key space search
- Key length
 - · 56 bits are actually too few
 - Exhaustive search is technically possible and economically interesting
 - · Solution: multiple encryption
 - Double encryption is not (theoretically) more secure
 - Triple encryption: 3DES (Triple-DES)
 - · With 2 or 3 keys
 - · Equivalent key length of 112 or 168 bits

© André Zúquete, João Paulo Barraca

Security

(Symmetric) stream ciphers

- Approaches
 - Cryptographically secure pseudo-random generators (PRNG)
 - Using linear feedback shift registers (LFSR)
 - · Using block ciphers
 - Other (families of functions, etc.)
 - · Usually not self-synchronized
 - · Usually without uniform random access
- Most common algorithms
 - A5/1 (US, Europe), A5/2 (GSM)
 - RC4 (802.11 WEP/TKIP, etc.)
 - · EO (Bluetooth BR/EDR)
 - SEAL (w/ uniform random access)

© André Zúquete, João Paulo Barraca

Security

Security

· CTR (Counter Mode)

© André Zúquete, João Paulo Barraca

· GCM (Galois/Counter Mode)

Cipher modes: Pros and cons								
	Block		Stream					
	E <i>C</i> B	CBC	OFB	<i>C</i> FB	CTR			
Input pattern hiding		✓	✓	✓	✓			
Confusion on the cipher input		✓		✓	Secret counter			
Same key for different messages	✓	✓	other IV	other IV	other IV			
Tampering difficulty	✓	√ ()		✓				
Pre-processing			✓		✓			
Parallel processing	1	Decryption	w/ pre- processing	Decryption only	✓			
Uniform random access		Only						
Error propagation	Same block	Same block Next block		Some bits afterwards				
Capacity to recover from losses	Block Losses	Block Losses		✓				

Asymmetric (block) ciphers

- · Use key pairs
 - · One private key (personal, not transmittable)
 - One public key
- Allow
 - · Confidentiality without any previous exchange of secrets
 - · Authentication
 - Of contents (data integrity)
 - Of origin (source authentication, or digital signature)
- Disadvantages
 - · Performance (usually very inefficient and memory consuming)
- Advantages
 - N peers requiring pairwise, secret interaction ⇒ N key pairs
- Problems
 - · Distribution of public keys
 - · Lifetime of key pairs

© André Zúquete, João Paulo Barraca

Securit

51

- · Only the key pair of the recipient is involved
 - C = E(K, P) $P = D(K^{-1}, C)$
 - To send something with confidentiality to X is only required to know X's public key (K_X)
- There is no source authentication
 - X has no means to know who produced the ciphertext
 - If K_x is really public, then everybody can do it

© André Zúquete, João Paulo Barraca

Security

Asymmetric (block) ciphers

- Approaches: complex mathematic problems
 - $\boldsymbol{\cdot}$ Discrete logarithms of large numbers
 - Integer factorization of large numbers
 - Knapsack problems
- Most common algorithms
 - · RSA
 - ElGamal
 - Elliptic curves (ECC)
- Other techniques with asymmetric key pairs
 - · Diffie-Hellman (key agreement)

© André Zúquete, João Paulo Barraca

Securit

RSA (Rivest, Shamir, Adelman)

- Published in 1978
- Computational complexity
 - Discrete logarithm
 - Integer factoring
- · Operations and keys
 - K = (e, n)
 - $K^{-1} = (d, n)$
 - $C = P^e \mod n$ $P = C^d \mod n$
 - $C = P^d \mod n$ $P = C^e \mod n$

- Key selection
 - · Large n (hundreds or thousands of bits)
 - $n = p \times q$ p and q being large (secret) prime numbers
 - Chose an e co-prime with (p-1)×(q-1)
 - Compute d such that $e \times d \equiv 1 \mod (p-1) \times (q-1)$
 - · Discard p and q
 - The value of d cannot be computed out of e and n
 - Only from p and q

© André Zúquete, João Paulo Barraca

Security

57

RSA: example

```
+ p = 5 q = 11 (small primes)
```

- \cdot n=pxq=55
- $(p-1) \times (q-1) = 40$
- e = 3
 - · Co-prime with 40
- + d = 27
 - $e \times d \equiv 1 \mod 40$
- P = 26 (note that $P, C \in [0, n-1]$)
 - $C = P^e \mod n = 26^3 \mod 55 = 31$
 - $P = C^d \mod n = 31^{27} \mod 55 = 26$

© André Zúquete, João Paulo Barraca

Security

ElGamal

- Published by El Gamal in 1984
- Similar to RSA
 - · But using only the discrete logarithm complexity
- · A variant is used for digital signatures
 - DSA (Digital Signature Algorithm)
 - US Digital Signature Standard (DSS)
- Operations and keys (for signature handling)
 - $\beta = a^x \mod p$
- $K^{-1} = (x, \alpha, p)$ $K = (\beta, \alpha, p)$
 - k random, $k \cdot k^{-1} \equiv 1 \mod (p-1)$
 - Signature of M: (γ, δ) $\gamma = a^k \mod p$ $\delta = k^{-1} (M x\gamma) \mod (p-1)$
 - Validation of signature over M: $\beta^{\nu}\gamma^{\delta} \equiv a^{M} \pmod{p}$
- - Knowing k reveals x out of δ
 - · k must be randomly generated and remain secret

© André Zúquete, João Paulo Barraca

Randomization of asymmetric encryptions

- Non-deterministic (unpredictable) result of asymmetric encryptions
 - · N encryptions of the same value, with the same key, should yield N different results
 - · Goal: prevent the trial & error discovery of encrypted values
- Technics
 - Concatenation of value to encrypt with two values
 - A fixed one (for integrity control)
 - A random one (para randomization)

© André Zúquete, João Paulo Barraca

Security

Digest functions

- Give a fixed-length value from a variable-length text
 - Sort of text "fingerprint"
- Produce very different values for similar texts
 - · Cryptographic one-way hash functions
- Relevant properties:
 - · Preimage resistance
 - · Given a digest, it is infeasible to find an original text producing it
 - 2nd-preimage resistance
 - Given a text, it is infeasible to find another one with the same digest
 - · Collision resistance
 - It is infeasible to find any two texts with the same digest
 - Birthday paradox

© André Zúquete, João Paulo Barraca

Security

Message Authentication Codes (MAC)

- Approaches
 - · Encryption of an ordinary digest
 - Using, for instance, a symmetric block cipher
 - Using encryption with feedback & error propagation
 - · ANSI X9.9 (or DES-MAC) with DES CBC (64 bits)
 - Adding a key to the hashed data
 - Keyed-MD5 (128 bits)
 - MD5(K, keyfill, text, K, MD5fill)
 - HMAC (output length depends on the function H used)
 - H(K, opad, H(K, ipad, text))
 - ipad = 0x36 B times opad = 0x5C B times
 - · HMAC-MD5, HMAC-SHA, etc.

© André Zúquete, João Paulo Barraca

Security

65

Authenticated encryption

- Encryption mixed with integrity control
 - · Error propagation
 - Authentication tags
- Examples
 - GCM (Galois/Counter Mode)
 - CCM (Counter with CBC-MAC)

© André Zúquete, João Paulo Barraca

Security

Digital signatures · Goal · Authenticate the contents of a document • Ensure its integrity · Authenticate its author • Ensure the identity of the creator/originator Prevent origin repudiation • Genuine authors cannot deny authorship Approaches Asymmetric encryption Digest functions (only for performance) · Algorithms $A_x(doc) = info + E(K_x^{-1}, digest(doc+info))$ Signing: Verification: info→K_x $D(K_x, A_x(doc)) \equiv digest(doc + info)$ © André Zúquete, João Paulo Barraca

Digital signature on a mail: Multipart content, signature w/ certificate From - Fri Oct 02 15:37:14 2009 Line: 7:51, 02 Oct 20:99 15:25:55 1000 Preci = 7:10 - 02:09 15:25:15 1000 Preci = 7:10 - 02:09 15:25:15 1000 Preci = 7:10 - 02:09 15:25:15 1000 Preci = 7:10 - 02:00 1000 Preci = 7:10 - 02:00 1000 Preci =

Blind signatures

- Signatures made by a "blinded" signer
 - Signer cannot observe the signed contents
 - Similar to a handwritten signature on an envelope containing a document and a carbon-copy sheet
- They are useful for ensuring anonymity of the signed information holder, while the signed information provides some extra functionality
 - Signer X knows who requires a signature (Y)
 - X signs T_1 , but Y afterwards transforms it into a signature over T_2
 - Not any T_2 , a specific one linked to T_1
 - Requester Y can present T₂ signed by X
 - But it cannot change T_2
 - X cannot link T_2 to the T_1 that it observed when signing

© André Zúquete, João Paulo Barraca

Security

Chaum Blind Signatures

- Implementation using RSA
 - Blinding
 - Random blinding factor K
 - $\mathbf{k} \times \mathbf{k}^{-1} \equiv 1 \pmod{N}$
 - $m' = k^e \times m \mod N$
 - Ordinary signature (encryption w/ private key)
 - A_{x} (m') = (m')^d mod N
 - Unblinding
 - A_{\times} (m) = $\mathbb{K}^{-1} \times A_{\times}$ (m') mod

© André Zúquete, João Paulo Barraca

Security