Rest Available Copy

INTERNATIONAL SEARCH REPORT

Internation No
PCT/FR2004/050471

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D417/06 C07D413/06 C07D403/06 C07D421/06 A61K31/423
A61K31/428 A61K31/536 A61K31/5415

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data, BEILSTEIN Data

C. DOCUM	DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
X	SASTRY, C. V. REDDY ET AL: "Synthesis and antimicrobial activity of 1-'(aryl)-3-oxo-1,4-benzoxazin-6-yl)methyl!-1H-imidazoles" INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES (1991), 53(2), 67-9, 1991, XP009027217	7,8					
Α	page 68; table 1 composés 5(a)-(e)	1-6					
Y	EP 0 371 564 A (JANSSEN PHARMACEUTICA NV) 6 June 1990 (1990-06-06) page 32, lines 1-20 page 43; tables 6-A composés n° 15(a)-20(a),28(a) claim 1	1-8					
	-/						

"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
9 February 2005	23/02/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Samsam Bakhtiary, M

Y Patent family members are listed in annex.

Further documents are listed in the continuation of box C.

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/FR2004/050471

		PC1/FR2004/0504/1
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	US 4 792 561 A (BRUNO JOHN J ET AL) 20 December 1988 (1988-12-20) column 1, line 37; claims 2-4,14	1-8
Y	EP 0 260 744 A (JANSSEN PHARMACEUTICA NV) 23 March 1988 (1988-03-23) page 9, lines 50-55 formule I-c page 16, lines 30-33	1-8
Y	WERMUTH ET AL: "The Practise of Medicinal Chemistry" PRACTICE OF MEDICINAL CHEMISTRY, XX, XX, 1996, pages 203-237, XP002190259 page 211; figure 13.5	1-8
Α	MARTINEZ, GREGORY R. ET AL: "3,4-Dihydroquinolin-2(1H)-ones as combined inhibitors of thromboxane A2 synthase and cAMP phosphodiesterase" JOURNAL OF MEDICINAL CHEMISTRY (1992), 35(4), 620-8, 1992, XP002272616 page 623; table I example 4B	1-8
A	WO 97/16443 A (JANSSEN PHARMACEUTICA NV; ANGIBAUD PATRICK RENE (FR); SANZ GERARD) 9 May 1997 (1997-05-09) page 1, lines 1-25; claim 1	1-8
A	DONALD W. COMBS: ""heteroatom analogues of bemoradan: chemistry and cardiotonic activity of 1,4-benzothiazinylpyridazinones"" JOURNAL OF MEDICINAL CHEMISTRY, vol. 35, 1992, pages 172-176, XP002315660 NEW JERSEY, USA page 173; table I; compound 5	1-8
A	VICENT GALET: ""benzoselenazolinone derivatives designed to be glutathione peroxidase mimetics feature inhibition of cyclooxygenase/5-lioxygenase pathways and anti-inflammatory activity"" JOURNAL OF MEDICINAL CHEMISTRY, vol. 37, 1994, pages 2903-2911, XP002315661 CLAMART,FRANCE table 1	1-8

INTERNATIONAL SEARCH REPORT

information on patent family members

Internation No
PCT/FR2004/050471

		Database			5.18.28
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0371564	A	06-06-1990	ATUUAAN CON CON DEEF GHHUUE LPPONZTUSAMWSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	124941 T 620946 B2 4564689 A 2002864 A1 1042912 A ,C 1106005 A ,C 1920 A 68923430 D1 599489 A 0371564 A2 2088889 T3 101964 B1 3017351 T3 118196 A 52498 A2 9500329 A3 67803 B1 92486 A 2223579 A 2916181 B2 894734 A ,B, 231441 A 92448 A ,B 1780536 A3 5037829 A 8909076 A 4289 A1 15889 A1 5441954 A 5612354 A 5185346 A	15-07-1995 27-02-1992 07-06-1990 29-05-1990 13-06-1990 02-08-1995 02-08-1995 07-03-1997 17-08-1995 30-05-1990 06-06-1990 01-10-1996 30-09-1998 31-12-1995 12-07-1996 28-07-1990 30-10-1995 01-05-1996 08-07-1993 05-09-1990 05-07-1999 30-05-1990 28-05-1991 31-07-1991 31-07-1991 15-08-1995 18-03-1997 09-02-1993 07-12-1993 07-12-1993
			US 	5151421 A	29-09-1992
US 4792561 	A 	20-12-1988	US 	4921862 A 	01-05-1990
EP 0260744	Α	23-03-1988	AAUUGRANSYEEKHUELL	83478 T 595064 B2 7838587 A 61321 B2 1101052 A3 1323366 C 87106423 A ,C 9103826 A3 1803 A 3783107 D1 3783107 T2 479487 A 0260744 A2 2053524 T3 873977 A ,B, 3006841 T3 123694 A 45051 A2 60514 B1 83892 A	15-01-1993 22-03-1990 14-04-1988 30-05-1997 28-03-2000 19-10-1993 20-04-1988 15-04-1992 09-09-1987 28-01-1993 22-04-1993 16-03-1988 23-03-1988 30-06-1994 16-03-1988 30-06-1993 18-11-1994 30-05-1988 27-07-1994 21-11-1991

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation No
PCT/FR2004/050471

Cited in search report Cate member(s) Cate				
JP 1875175 C 26-09 JP 5087071 B 15-12 KR 9614353 B1 15-10 KR 9615004 B1 23-10 LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 NO 873840 A , B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A , B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CA 2231143 A1 09-05 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06	report			Publication date
JP 1875175 C 26-09 JP 5087071 B 15-12 KR 9614353 B1 15-10 KR 9615004 B1 23-10 LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CA 2231143 A1 09-05 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06	14 A	JP 1(085975 A	30-03-1989
JP 5087071 B 15-12 KR 9614353 B1 15-10 KR 9615004 B1 23-10 LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 N0 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 W0 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 712435 B2 04-11 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 W0 9716443 A1 09-05 EP 1106610 A1 13-06				26-09-1994
KR 9614353 B1 15-10 KR 9615004 B1 23-10 LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			_	15-12-1993
KR 9615004 B1 23-10 LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			-	15-10-1996
LT 2087 R3 15-07 LV 5029 A3 10-06 LV 5770 A4 20-12 N0 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				23-10-1996
LV 5029 A3 10-06 LV 5770 A4 20-12 NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				15 - 07-1993
LV 5770 A4 20-12 NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EA 980395 A1 29-10 WO 9716443 A1 09-05				10-06-1993
NO 873840 A ,B, 16-03 NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				20-12-1996
NZ 221729 A 27-07 PH 25022 A 28-01 PT 85692 A , B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A , C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				20-12-1990 16-03-1988
PH 25022 A 28-01 PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				
PT 85692 A ,B 01-10 SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				
SG 118994 G 28-04 SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				28-01-1991
SU 1662350 A3 07-07 US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			•	01-10-1987
US 4859684 A 22-08 ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				28-04-1995
ZA 8706881 A 26-04 WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				07-07-1991
WO 9716443 A 09-05-1997 AT 269322 T 15-07 AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			_	22-08-1989
AT 212627 T 15-02 AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06		ZA 8/		26-04-1989
AU 712435 B2 04-11 AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06	13 A C			15-07-2004
AU 7493396 A 22-05 CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				15-02-2002
CA 2231143 A1 09-05 CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				04-11-1999
CN 1200732 A ,C 02-12 CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				22-05-1997
CY 2287 A 04-07 CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				09-05-1997
CZ 9801272 A3 16-12 DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			:00732 A ,C (02-12-1998
DE 69618999 D1 14-03 DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			2287 A (04-07-2003
DE 69618999 T2 26-09 DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			01272 A3 J	16-12-1998
DE 69632751 D1 22-07 DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			18999 D1 1	14-03-2002
DK 1019395 T3 06-05 EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06				26-09-2002
EA 980395 A1 29-10 WO 9716443 A1 09-05 EP 1106610 A1 13-06			32751 D1 2	22-07-2004
WO 9716443 A1 09-05 EP 1106610 A1 13-06			19395 T3 (06-05-2002
EP 1106610 A1 13-06		EA 9	80395 A1 2	29-10-1998
			'16443 A1 (9-05-1997
EP 1019395 A1 19-07		EP 11	.06610 A1 1	13-06-2001
			19395 A1 J	19-07-2000
ES 2171736 T3 16-09				16-09-2002
HK 1027576 A1 24-05			27576 A1 2	24-05-2002
				9-11-2004
				28-10-1999
				0-11-2002
				4-12-1999
				9-04-1998
				8-05-1999
				8-01-1999
				31-07-2002
				30-06-2002
				1-02-1999
		- 1,		
			00720 T2 2	/ _()Q1QQQ
ZA 9609087 A 29-04		TR 98		21-09-1998 19-10-1999

Internationale No PCT/FR2004/050471

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO7D417/06 CO7D413/06 A61K31/428 A61K31/536

CO7D403/06 A61K31/5415

CO7D421/06

A61K31/423

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 CO7D A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, CHEM ABS Data, WPI Data, BEILSTEIN Data

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
x	SASTRY, C. V. REDDY ET AL: "Synthesis and antimicrobial activity of 1-'(aryl)-3-oxo-1,4-benzoxazin-6-yl)methyl!-1H-imidazoles" INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES (1991), 53(2), 67-9, 1991, XP009027217	7,8
A	page 68; tableau 1 composés 5(a)-(e)	1–6
Y	EP 0 371 564 A (JANSSEN PHARMACEUTICA NV) 6 juin 1990 (1990-06-06) page 32, ligne 1-20 page 43; tableaux 6-A composés n° 15(a)-20(a),28(a) revendication 1	1-8
Y Voir	a suite du cadre C pour la fin de la liste des documents X Les documents de famille	s de brevets sont indiqués en annexe

"A" document définissant l'état général de la technique, non considéré comme particultèrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais	 document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinalson étant évidente pour une personne du métier document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 9 février 2005	Date d'expédition du présent rapport de recherche internationale 23/02/2005
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Samsam Bakhtiary, M

Dema Internationale No PCT/FR2004/050471

		PC1/FR200	747 03047 1
	OCUMENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'Indication des passages p	pertinents	no. des revendications visées
Υ	US 4 792 561 A (BRUNO JOHN J ET AL) 20 décembre 1988 (1988-12-20) colonne 1, ligne 37; revendications 2-4,14		1-8
Υ	EP 0 260 744 A (JANSSEN PHARMACEUTICA NV) 23 mars 1988 (1988-03-23) page 9, ligne 50-55 formule I-c page 16, ligne 30-33		1-8
Υ	WERMUTH ET AL: "The Practise of Medicinal Chemistry" PRACTICE OF MEDICINAL CHEMISTRY, XX, XX, 1996, pages 203-237, XP002190259 page 211; figure 13.5		1-8
Α	MARTINEZ, GREGORY R. ET AL: "3,4-Dihydroquinolin-2(1H)-ones as combined inhibitors of thromboxane A2 synthase and cAMP phosphodiesterase" JOURNAL OF MEDICINAL CHEMISTRY (1992), 35(4), 620-8, 1992, XP002272616 page 623; tableau I exemple 4B		1-8
A	WO 97/16443 A (JANSSEN PHARMACEUTICA NV; ANGIBAUD PATRICK RENE (FR); SANZ GERARD) 9 mai 1997 (1997-05-09) page 1, ligne 1-25; revendication 1		1-8
Α	DONALD W. COMBS: ""heteroatom analogues of bemoradan: chemistry and cardiotonic activity of 1,4-benzothiazinylpyridazinones"" JOURNAL OF MEDICINAL CHEMISTRY, vol. 35, 1992, pages 172-176, XP002315660 NEW JERSEY, USA page 173; tableau I; composé 5		1-8
A	VICENT GALET: ""benzoselenazolinone derivatives designed to be glutathione peroxidase mimetics feature inhibition of cyclooxygenase/5-lioxygenase pathways and anti-inflammatory activity"" JOURNAL OF MEDICINAL CHEMISTRY, vol. 37, 1994, pages 2903-2911, XP002315661 CLAMART, FRANCE tableau 1		1-8
	•,		

Renselgnements relatifs aux membres de familles de brevets

Demai Internationale No PCT/FR2004/050471

				10171182	KZU04/U5U4/1	
Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication	
EP 0371564	A	06-06-1990	ATUUAA NOO COO DEE FIRKUUUE LIPPONTUSAMWSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	124941 T 620946 B2 4564689 A 2002864 A1 1042912 A ,C 1106005 A ,C 1920 A 68923430 D1 599489 A 0371564 A2 2088889 T3 101964 B1 3017351 T3 118196 A 52498 A2 9500329 A3 67803 B1 92486 A 2223579 A 22916181 B2 894734 A ,B, 231441 A 92448 A ,B 1780536 A3 5037829 A 8909076 A 4289 A1 15889 A1 5441954 A 5612354 A 5185346 A 5268380 A 5028606 A 5151421 A	15-07-1995 27-02-1992 07-06-1990 29-05-1990 13-06-1995 02-08-1995 07-03-1997 17-08-1995 30-05-1990 06-06-1990 01-10-1996 30-09-1998 31-12-1995 12-07-1996 28-07-1990 30-10-1995 01-05-1996 08-07-1993 05-09-1990 05-07-1999 30-05-1990 28-05-1991 31-05-1990 07-12-1992 06-08-1991 31-07-1991 15-08-1995 18-03-1997 09-02-1993 07-12-1993 07-12-1993 07-12-1993	
US 4792561	A	20-12-1988	US	4921862 A	01-05-1990	
EP 0260744	A	23-03-1988	AT AU BR CN CSY DE DK ES HHU IL	83478 T 595064 B2 7838587 A 61321 B2 1101052 A3 1323366 C 87106423 A ,C 9103826 A3 1803 A 3783107 D1 3783107 T2 479487 A 0260744 A2 2053524 T3 873977 A ,B, 3006841 T3 123694 A 45051 A2 60514 B1 83892 A	15-01-1993 22-03-1990 14-04-1988 30-05-1997 28-03-2000 19-10-1993 20-04-1988 15-04-1992 09-09-1987 28-01-1993 22-04-1993 16-03-1988 23-03-1988 01-08-1994 16-03-1988 30-06-1993 18-11-1994 30-05-1988 27-07-1994 21-11-1991	

Renseignements relatifs aux membres de familles de brevets

Demai Internationale No PCT/FR2004/050471

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
EP 0260744			JP		
LI 0200744	^	•	JP	1085975 A 1875175 C	30-03-1989
			JP		26-09-1994
				5087071 B	15-12-1993
			KR	9614353 B1	15-10-1996
			KR	9615004 B1	23-10-1996
			LT	2087 R3	15-07-1993
			LV	5029 A3	10-06-1993
			LV	5770 A4	20-12-1996
			NO	873840 A ,B,	16-03-1988
			NZ	221729 A	27-07-1989
			PH	25022 A	28-01-1991
			PT	85692 A ,B	01-10-1987
			SG	118994 G	28-04-1995
			SÜ	1662350 A3	07-07-1991
			US	4859684 A	22-08-1989
			ZA	8706881 A	26-04-1989
					
WO 9716443	Α	09-05-1997	AT	269322 T	15-07-2004
			AT	212627 T	15-02-2002
			AU	712435 B2	04-11-1999
			ΑU	7493396 A	22-05-1997
			CA	2231143 A1	09-05-1997
			CN	1200732 A ,C	02-12-1998
			CY	2287 A ´	04-07-2003
			CZ	9801272 A3	16-12-1998
			DE	69618999 D1	14-03-2002
			DE	69618999 T2	26-09-2002
			DĒ	69632751 D1	22-07-2004
			DK	1019395 T3	06-05-2002
			EA	980395 A1	29-10-1998
			WO		
			WO EP	9716443 A1	09-05-1997
				1106610 A1	13-06-2001
			EP	1019395 A1	19-07-2000
			ES	2171736 T3	16-09-2002
			HK	1027576 A1	24-05-2002
			HK	1036064 A1	19-11-2004
			HU	9802424 A2	28-10-1999
			IL	123567 A	10-11-2002
			JP	11514635 T	14-12-1999
			NO	980928 A	29-04-1998
			NZ	321576 A	28-05-1999
			PL	328230 A1	18-01-1999
			PT	1019395 T	31-07-2002
			SI	1019395 T1	30-06-2002
			SK	55698 A3	11-02-1999
			TR	9800720 T2	21-09-1998
			ÜS	5968952 A	19-10-1999
			ZA	9609087 A	29-04-1998

WO 2005/033104 PCT/FR2004/050471

Utilisation d'un composé de formule (I) inhibiteur de l'aromatase à des fins thérapeutiques et composés de formule (I) en tant que tels DOMAINE DE L'INVENTION

5

La présente invention se rapporte à de nouveaux composés inhibiteurs de l'aromatase et à leur utilisation dans le domaine médical, et plus spécifiquement dans la prévention et le traitement d'un cancer, particulièrement un cancer du sein, ou du psoriasis.

10

15

20

25

30

35

ART ANTERIEUR

Certains dérivés des benzazolinones et plus particulièrement de la benzoxazolinone, ont déjà été décrits pour leurs propriétés gonadotropes, antiprolifératives et immunomodulatrices (BERGER et al. 1981; BUTTERSTEIN, et al. 1988; SCHADLER et al. 1988).

Au cours des dix dernières années, une classe de composés azolés (imidazoles et triazoles) a montré une activité inhibitrice de l'aromatase ayant conduit à leur utilisation dans le traitement de certains cancers du sein (KUIJPERS et al. 1998 ; SERALINI et al. 2001 ; BRODIE et al. 2002).

On a montré que, chez les mammifères, et en particulier les humains, les œstrogènes sont synthétisés à partir des androgènes par catalyse enzymatique avec l'aromatase. Il est couramment admis qu'une inhibition de l'aromatase est utile dans la prévention ou le traitement de troubles et de pathologies associées aux œstrogènes chez les mammifères, tels que le cancer du sein. Les autres maladies associées aux œstrogènes qui peuvent être traitées avec un composé inhibiteur de l'aromatase incluent l'endométriose, le cancer du col de l'utérus, le cancer des ovaires, le syndrome des ovaires polykystiques. On considère aussi qu'un composé inhibiteur de l'aromatase est utile pour le contrôle de la conception. Plus particulièrement, dans le cas du cancer du sein, il est dit qu'un composé inhibiteur de l'aromatase peut être avantageusement utilisé, en remplacement d'un traitement chirurgical classique tel que l'ovariectomie ou encore l'adrénalectomie.

10

15

On sait aussi qu'un composé inhibiteur de l'aromatase est utile dans la prévention ou le traitement du cancer de la prostate.

On a aussi mis en évidence l'intérêt d'utiliser un composé inhibiteur de l'aromatase pour le traitement du psoriasis.

On a notamment décrit des composés oléfiniques inhibiteurs de l'aromatase comprenant un ou plusieurs hétérocycles dans la demande de brevet européen n° EP-299 683. D'autres composés inhibiteurs de l'aromatase, tels que le composé désigné « TAN-931 », ont été décrits dans la demande de brevet européen n° EP-342 665. On connaît aussi des composés inhibiteurs de l'aromatase diarylalkyl hétérocycliques tels que ceux décrits dans la demande PCT n° WO 94/13645 ou dans la demande PCT n° WO 02/087571. On connaît également des dérivés hétérocycliques d'aralkyle inhibiteurs de l'aromatase, comme décrit dans la demande de brevet européen n° EP-296 749. On a aussi décrit des composés inhibiteurs de l'aromatase constitués de dérivés imidazolyl ou triazolyl de pyridine ou de dihydropyridine substituée par un phényle, comme dans les demandes de brevet européen n° EP-755 931 et n° EP-533 504, ou encore dans la demande PCT n° WO 90/06923. Des inhibiteurs de l'aromatase tricycliques condensés ont aussi été décrits dans la demande de brevet européen n° EP-360 324.

Toutefois, il existe un besoin, dans l'état de la technique, pour de nouveaux composés inhibiteurs de l'aromatase, utiles en thérapie, qui présentent de bonnes propriétés d'inhibition de cette enzyme, et qui soient dépourvus de toxicité, aussi bien *in vitro* qu'*in vivo*.

25

30

20

DESCRIPTION DETAILLEE DE L'INVENTION

La présente invention concerne la préparation de nouveaux dérivés azolés de diverses benzazolinones, (benzoxazolinone, benzothiazolinone, benzoselenazolinone, benzoxazinone, benzothiazinone et indolinone), qui possèdent des propriétés inhibitrices de l'aromatase et sont doués de remarquables propriétés anticancéreuses et antipsoriasis.

L'invention a pour objet l'utilisation d'un composé de formule (I) cidessous :

10

15

25

30

$$\begin{array}{c|c}
 & Z \\
 & Z \\
 & A \\
 & A
\end{array}$$

dans laquelle:

- . R₁ représente un atome d'hydrogène ou un radical alkyle (C₁-C₆), alkényle (C₁-C₆), ou alkynyle (C₁-C₆), linéaire ou ramifié,
- . X représente un atome d'oxygène, de soufre, ou de sélénium ;
- . Y représente une liaison simple ou un groupement CH₂, éventuellement substitué par un ou deux groupements alkyles inférieurs,
- . Z représente un atome d'hydrogène ou d'halogène, ou un groupement hydroxy ou alkoxy linéaire ou ramifié,
- . A représente un noyau imidazole, triazole ou tétrazole,
- . B représente un groupement choisi parmi les groupes phényle, naphtyle, biphényle ou encore un groupe hétéroaryle monocyclique ou bicyclique ayant de 5 à 10 chaînons et comprenant de 1 à 3 hétéroatomes.

les groupements phényle, naphtyle, biphényle et hétéroaryle étant non susbtitués ou substitués par 1 à 3 groupements choisis parmi alkyle (C₁-C₆), alkoxy (C₁-C₆), carboxy, formyle, amino, amido, ester, nitro, cyano, trifluorométhyle, ou atomes d'halogène,

20 ainsi que les énantiomères et diastéréoisomères des composés de formule (I),

ainsi que les sels d'addition à un acide ou à une base pharmaceutiquement acceptable des composés de formule (I),

pour la préparation d'une composition pharmaceutique destinée au traitement d'un cancer ou du psoriasis.

Par « hétéroaryle » on entend, selon l'invention, tout groupement mono- ou bi-cyclique contenant 5 à 10 chaînons et 1 à 3 hétéroatomes choisis parmi oxygène, azote et soufre. Sont inclus, au sens de l'invention, les groupes hétéroaryles contenant 5, 6, 7, 8, 9 ou 10 chaînons. Sont inclus les groupes hétéroaryles comprenant 1, 2 ou 3 hétéroatomes choisis parmi oxygène, azote et soufre.

Les groupements aryle et hétéroaryle B d'un composé de formule (I) tel que défini ci-dessus peuvent être substitués par 1, 2 ou 3 groupements choisis parmi alkyle (C₁-C₆),alkoxy (C₁-C₆), carboxy, formyle, amino, amido, ester, nitro, cyano, trifluorométhyle, ou atomes d'halogènes. Sont donc inclus, au sens de l'invention, les groupes C₁-, C₂-, C₃-, C₄-, C₅- et C₆- alkyle, ainsi que les groupes C₁-, C₂-, C₃-, C₄-, C₅- et C₆- alkoxy.

5

10

15

20

25

30

Fait partie de l'invention tout sel d'addition d'un composé de formule (I) avec un acide pharmaceutiquement acceptable. Parmi les acides pharmaceutiquement acceptables, on cite de préférence, à titre non limitatif, les acides chlorhydrique, bromhydrique, sulfurique, acétique, trifluoroacétique, lactique, succinique, fumarique, citrique, oxalique ou encore méthane sulfonique.

Fait partie de l'invention, tout sel d'addition d'un composé de formule (I) à une base pharmaceutiquement acceptable. Parmi les bases pharmaceutiquement acceptables, on cite de préférence, à titre non limitatif, l'hydroxyde de sodium, l'hydroxyde de potassium ou encore la triéthylamine.

On a montré selon l'invention que les composés de formule (I) définis ci-dessus sont d'une grande innocuité, aussi bien *in vitro* qu'*in vivo*. Ainsi, on a montré que les composés de formule (I) ne sont pas cytotoxiques *in vitro*. On a aussi montré qu'un composé de formule (I) ne présente aucun danger, même à forte dose, lorsqu'il est administré à l'individu.

On a aussi montré selon l'invention que les composés de formule (I) possédent une bonne capacité à inhiber l'aromatase. Certains des composés de formule (I) présentent un pouvoir inhibiteur IC₅₀ de l'ordre de 1 nM.

On a également montré que les composés de formule (I) sont actifs *in vivo*, comme l'illustre leur capacité à inhiber et, dans certains cas, bloquer, l'hypertrophie utérine induite par l'androstènedione.

De manière générale, les composés de formule (I) préférés selon l'invention sont les composés n° 1 à 51, décrits aux exemples 1 à 51, dont la structure est détaillée dans le Tableau IV.

10

15

20

25

30

35

Une première famille de composés de formule (I) préférés selon l'invention est constituée des composés pour lesquels le groupe B est choisi parmi :

- un benzène non substitué ou substitué en position méta ou para par un groupe choisi parmi les groupes cyano ou nitro, par un atome de chlore :
- un hétérocycle pyridine.

Une seconde famille de composés de formule (I) préférés selon l'invention est constituée des composés pour lesquels le groupe R1 représente un atome d'hydrogène ou un groupe méthyle.

Une troisième famille de composés de formule (I) préférés selon l'invention est constituée des composés pour lesquels le groupe Z représente un atome d'hydrogène ou un groupe méthoxy.

Une quatrième famille de composés de formule (I) préférés selon l'invention est constituée des composés pour lesquels le groupe A représente un groupe 1,3-imidazolyle ou 1,2,4 triazolyle.

Une cinquième famille de composés de formule (I) préférés selon l'invention est constituée des composés pour lesquels, simultanément :

- (i) le groupe B est choisi parmi :
 - un benzène non substitué ou substitué en position méta ou para par un groupe choisi parmi les groupes cyano ou nitro, par un atome de chlore;
 - un hétérocycle pyridine ;
- (ii) le groupe R1 représente un atome d'hydrogène ou un groupe méthyle :
- (iii) le groupe Z représente un atome d'hydrogène ou un groupe méthoxy ; et
- (iv) le groupe A représente un groupe 1,3-imidazolyle ou 1,2,4 triazolyle.

L'invention a aussi pour objet un composé inhibiteur de l'aromatase, tel que défini ci-dessus, pour son utilisation en tant que principe actif d'un médicament.

L'invention est également relative, à titre de composé nouveau, à l'un quelconque des composés de formule (I) tels que décrits dans la présente description.

Dans leur utilisation en thérapie, les composés de formule (I) sont particulièrement utiles lorsqu'ils sont mis en œuvre pour la fabrication d'une composition pharmaceutique destinée à la prévention ou au traitement de troubles et de pathologies associées aux œstrogènes chez les mammifères, tels que le cancer du sein, l'endométriose, le cancer du col de l'utérus, le cancer des ovaires, le cancer de la prostate, le syndrome des ovaires polykystiques.

5

10

15

20

25

30

Un composé de formule (I) est également avantageusement utilisé pour la fabrication d'une composition pharmaceutique destinée au traitement du psoriasis.

La présente invention a en outre pour objet une composition pharmaceutique caractérisée en ce qu'elle comprend au moins un composé de formule générale (I) décrit ci-dessus, en association avec au moins un excipient choisi dans le groupe constitué par les excipients pharmaceutiquement acceptables.

Pour formuler une composition pharmaceutique selon l'invention, l'homme du métier pourra avantageusement se référer à la dernière édition de la Pharmacopée Européenne ou de la pharmacopée des Etats-Unis d'Amérique (USP).

L'homme du métier pourra notamment avantageusement se référer à la 4^{ème} édition « 2002 » de la Pharmacopée Européenne, ou encore à l'édition USP 25-NF20 de la pharmacopée américaine (U.S. Pharmacopeia).

Avantageusement, une composition pharmaceutique telle que définie est adaptée pour une administration quotidienne, de préférence par voie orale ou topique, d'une quantité d'un composé de formule (I) comprise entre 1 µg et 10 mg et de préférence entre 0,5 mg et 10 mg.

Avantageusement, une composition pharmaceutique telle que définie ci-dessus est adaptée pour une administration systémique quotidienne d'une quantité d'un composé de formule (I) comprise entre 0,5 mg et 10 mg.

Lorsque la composition selon l'invention comprend au moins un excipient pharmaceutiquement acceptable, il s'agit en particulier d'un excipient approprié pour une administration de la composition par voie

10

15

20

25

30

topique et/ou d'un excipient approprié pour une administration de la composition par voie orale.

On préfère une administration par voie systémique d'une composition pharmaceutique comprenant un composé de formule (I), par exemple par voie orale, pour la prévention ou le traitement d'un cancer.

On préfère une administration par voie topique d'une composition pharmaceutique comprenant un composé de formule (I) pour le traitement du psoriasis.

L'invention concerne aussi une méthode pour traiter un cancer chez un patient, préférentiellement un cancer associé aux oestrogènes, ladite méthode comprenant une étape au cours de laquelle on administre au patient une quantité thérapeutiquement efficace d'un composé de formule (I) ou d'une composition pharmaceutique contenant un composé de formule (I).

L'invention concerne aussi une méthode pour prévenir un cancer chez un patient, préférentiellement un cancer associé aux oestrogènes, ladite méthode comprenant une étape au cours de laquelle on administre au patient une quantité thérapeutiquement efficace d'un composé de formule (I) ou d'une composition pharmaceutique contenant un composé de formule (I).

L'invention concerne aussi une méthode pour traiter un psoriasis chez un patient ladite méthode comprenant une étape au cours de laquelle on administre au patient une quantité thérapeutiquement efficace d'un composé de formule (I) ou d'une composition pharmaceutique contenant un composé de formule (I).

La présente invention concerne également le procédé d'obtention des composés de formule (I) caractérisé en ce que l'on utilise comme produit de départ un composé de formule (II) :

$$\begin{array}{c|c}
 & Z \\
 & X \\$$

dans laquelle R₁, X, Y, Z et B ont la même signification que dans la formule (I) obtenu selon l'un des protocoles expérimentaux décrit par

10

15

20

25

BONTE et al. (1974), AICHAOUI et al. (1990, 1991 et 1992), MOUSSAVI et al. (1989), SASTRY et al. (1988) et YOUS et al. (1994)

qui est réduit pour obtenir un composé de formule (III)

$$O \bigvee_{X}^{R_1} \bigvee_{OH}^{Z} C^{-B}$$

dans laquelle R_1 , X, Y, Z et B ont la même signification que dans la formule (I)

qui est ensuite :

-soit traité par le carbonyldiimidazole afin d'obtenir un composé de formule (I).

- soit traité par le chlorure de thionyle pour conduire intermédiairement à un composé de formule (IV) non isolé.

$$\begin{array}{c|c}
 & Z \\
 & X \\
 & C \\$$

qui est mis en réaction avec un dérivé azolé : imidazole, triazole ou tétrazole, afin d'obtenir les composés de formule (I)

Les séparations préparatives des énantiomères de certains composés choisis parmi les plus actifs ont été réalisées à l'aide de colonnes de phase stationnaire chirale polysaccharide (cellulose ou amylose) en utilisant des phases mobiles apolaires.

La pureté optique de chaque énantiomère isolé a ensuite été évaluée à l'aide des colonnes analytiques de même phase stationnaire chirale que celle ayant permis leur séparation préparative et dans les mêmes conditions opératoires.

Les matières premières utilisées dans le procédé précédemment décrit sont soit commerciales, soit aisément accessibles à l'homme du métier d'après la littérature et les exemples de préparation donnés ciaprès.

Par exemple, il est possible de préparer les composés de formule (IIIa) ou (IIIb)

dans laquelle R_1 , X, Y, Z et B ont la même signification que dans la formule (I)

par réaction d'un composé de formule (V)

$$0 \bigvee_{X}^{R_1} Z$$

$$(V)$$

10

15

5

dans laquelle R_1 , X, Y et Z ont la même signification que dans la formule (i)

. soit avec un chlorure ou un anhydride d'acide de formule B-COCl ou (B-CO)₂O, en présence de trichlorure d'aluminium et de diméthylformamide

. soit avec un acide de formule B-COOH, en présence d'acide polyphosphorique

pour obtenir un composé de formule (Ila) ou (Ilb)

20

dans laquelle R_1 , X, Y, Z et B ont la même signification que dans la formule (I)

qui est réduit par le borohydrure de sodium pour obtenir un composé de formule (IIIa) ou (IIIb)

20

25

Un autre exemple de préparation des composés de formule (I) consiste à utiliser les 4-acyl 2-aminophénols de formule (VI)

dans laquelle R₁ et B ont la même signification que dans la formule (I) pour accéder par hétérocyclisation selon un protocole décrit par AICHAOUI et al. (1990) aux 5-acyl benzoxazolinones de formule (IIc)

qui sont ensuite soumises à la même séquence réactionnelle que précédemment.

D'autres voies de synthèse des composés de formule (I) selon l'invention sont décrites dans les exemples et illustrées dans les figures 4 et 5.

La présente invention est en outre illustrée par les figures et les exemples suivants.

DESCRIPTION DES FIGURES

La Figure 1 illustre un premier schéma de synthèse d'un composé de formule (I) selon l'invention.

La **Figure 2** illustre un second schéma de synthèse d'un composé de formule (I) selon l'invention.

La Figure 3 illustre un troisième schéma de synthèse d'un composé de formule (I) selon l'invention.

La figure 4 illustre un schéma de synthèse d'un composé de formule (I) selon l'invention, du type 5-benzothiazolinone.

La **figure 5** illustre un schéma de synthèse d'un composé de formule (I) selon l'invention, du type 6-benzoselenazolinone.

EXEMPLES

Les modes de réalisation suivants illustrent l'invention et ne la limitent en aucune façon. Les préparations suivantes conduisent à des intermédiaires de synthèse utiles dans la préparation de l'invention.

5

10

15

20

25

Les produits décrits dans les « préparations » ne font pas partie de l'invention. Leur description facilite cependant la réalisation des composés de formule (I) de l'invention.

A. Méthode générale de synthèse des composés de formule (I) de l'invention.

A.1. Préparation 1 : 6-Acyl benzazinones et 7-acyl-benzothiazinone (Tableau I-A)

Les 6-acyl benzoxazolinones, benzothiazolinones, benzoxazinones, indolinones et 7-acyl-benzothiazinones et benzoselenazolinones sont obtenues à partir des benzazolinones correspondantes selon deux procédés connus et utilisant soit le chlorure ou l'anhydride d'acide en présence de trichlorure d'aluminium dans le diméthylformamide (Méthode B), soit l'acide organique lui-même en présence d'acide polyphosphorique (Méthode A) (AICHAOUI et al, 1992; BONTE et al, 1974; SASTRY et al, 1988; YOUS et al, 1994).

A.2. Préparation 2 : 5-Acyl benzoxazolinones (Tableau II).

Les 5-acyl benzoxazolinones sont préparées à partir des 4-acyl-2-aminophénols selon le procédé décrit par AICHOUI et al, (1990).

A.3. Préparation 3 : 7-Acyl benzoxazinones (Tableau II)

Les 7-acyl benzoxazinones sont préparées à partir des 5-acyl-2-aminophénols selon le procédé décrit par MOUSSAVI et al. (1989).

30

35

A.4. Préparation 4 : Hydroxyarylméthyl benzazinones (Tableau III-A)

Solubiliser l'acyl benzazinone dans le méthanol (R_1 = alkyle, méthode A) ou dans une solution aqueuse d'hydroxyde de sodium (R_1 = H, méthode B). Ajouter lentement et sous agitation 2 équivalents de borohydrure de sodium puis agiter à température ambiante pendant trois

heures et acidifier par de l'acide chlorhydrique 6M. Essorer le précipité, laver à l'eau, sécher et recristalliser dans un solvant convenable.

B. Exemples de synthèse des composés de formule (I)

5

10

Exemple 1: 6-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-1,3-benzoxazol-2(3*H*)-one. Dans 30 ml d'acétonitrile, 5 mmole de 6-[1-hydroxy-1-(4-cyanophényl)méthyl]-1,3-benzoxazol-2(3*H*)-one et 5 mmole de *N,N'*-carbonyldiimidazole sont chauffés à reflux pendant 24 heures. Le solvant est ensuite évaporé sous vide. Le résidu est trituré avec 100 ml d'eau puis acidifié avec de l'acide chlorhydrique 6M et extrait par de l'éther diéthylique. La phase aqueuse est alcalinisée par une solution saturée de carbonate de sodium puis extraite à deux reprises par 100 ml d'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium et évaporée. Le résidu obtenu est purifié par chromatographie sur colonne. Les fractions contenant le produit pur sont évaporées et le résidu obtenu et trituré avec de l'éther de pétrole puis essoré. F°C: 122-126 °C.

- Exemples 2 à 19: En procédant comme dans l'exemple 1, mais en remplaçant la 6-[1-hydroxy-1-(4-cyanophényl)méthyl]-1,3-benzoxazol-2(3H)-one par l'hydroxyarylméthyl benzazinone adéquate, on obtient les produits des exemples 2 à 19 (tableau IV)
- Exemple 20 : la 6-[(4-Cyanophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-3-méthyl-1,3-benzothiazol-2(3*H*)-one. Le Chlorure de thionyle (15 mmol) est ajouté à une solution du 1*H*-1,2,4-triazole (60 mmol) dans l'acetonitrile (30 ml). Le milieu réactionnel est agité 1h à température ambiante avant d'être filtré. La solution obtenue est ajoutée goutte à goutte à une solution du 6-[1-hydroxy-1-(4-cyanophényl)méthyl]-1,3-benzothiazol-2(3*H*)-one (4 mmol) dans l'acetonitrile (10 ml). Après 5 h d'agitation à température ambiante le solvant est évaporé sous vide. Le résidu obtenu est trituré avec 100 ml d'eau puis acidifié avec de l'acide chlorhydrique 6M et extrait par de l'éther diéthylique. La phase aqueuse est alcalinisée par une solution saturée de carbonate de sodium puis

extraite à deux reprises par 100 ml d'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de magnésium et évaporée. Le résidu obtenu est purifié par chromatographie sur colonne. Les fractions contenant le produit pur sont évaporées et le résidu obtenu et trituré avec de l'éther de pétrole puis essoré. F°C 127-130 °C.

Exemples 21 à 24: En procédant comme dans l'exemple 20, mais en remplaçant la 6-[1-hydroxy-1-(4-cyanophényl)méthyl]-1,3-benzothiazol-2(3H)-one par l'hydroxyarylméthyl benzazinone adéquate, on obtient les produits des exemples 21 à 24 (tableau IV)

Exemples 25 à 43

En procédant comme dans les exemples précédents, on obtient de même :

15

30

10

5

- 6-[1*H*-Imidazol-1-yl(phényl)méthyl]-1,3-benzoxazol-2(3*H*)-one (25). F °C 193-195 °C
- 6 -[1H-Imidazol-1-yl(phényl)méthyl]-3-méthyl-1,3-benzoxazol-2(3H)-one (26). F °C73-74 °C
- 6 -[(4-Chlorophényl)(1*H*-imidazol-1-yl)méthyl]-3-méthyl-1,3-benzoxazol-2(3*H*)-one (27).

F °C 76-78 °C

- 3-Méthyl-6-[phényl(4*H*-1,3,4-triazol-4-yl)méthyl]-1,3-benzoxazol-2(3*H*)-one (28).
- 25 F °C 225-226 °C
 - 3-Méthyl-6-[phényl(1*H*-1,2,4-triazol-1-yl)méthyl]-1,3-benzoxazol-2(3*H*)-one **(29**).

F °C 76-78 °C

- 5-[1*H*-lmidazol-1-yl(phényl)méthyl]-1,3-benzoxazol-2(3*H*)-one (**30**). F °C 108-111 °C
- 3-Méthyl-5-[1*H*-imidazol-1-yl-(phényl)méthyl]-1,3-benzoxazol-2(3*H*)-one (31). F °C 133-135°C
- 3 -Méthyl-5-[phényl(1*H*-1,2,4-triazol-1-yl)méthyl]-1,3-benzoxazol-2(3*H*)-one (32). F °C 135-138°C

- 5-[(4-Chlorophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-3-méthyl-1,3-benzoxazol-2(3*H*)-one (33).

F °C 70-74°C

- 5-[(4-Cyanophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-6-méthoxy-1,3-5 benzoxazol-2(3*H*)-one (34).

F °C 125-130°C

- 6-[1*H*-lmidazol-1-yl(phényl)méthyl]-1,3-benzothiazol-2(3*H*)-one (**35**).F °C 55-60 °C
- 6-[1*H*-Imidazol-1-yl(phényl)méthyl]-3-méthyl-1,3-benzothiazol-
- 10 2(3*H*)-one (36).

F °C 65-68 °C

- 3-Méthyl-6-[phényl(1*H*-1,2,4-triazol-1-yl)méthyl]-1,3-benzothiazol-2(3*H*)-one (37).

F °C 150-154 °C

- 6-[(4-Chlorophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-1,3-benzothiazol-2(3*H*)-one (**38**).

F °C 106-112 °C

- 6-[1*H*-Imidazol-1-yl(4-nitrophényl)méthyl]-1,3-benzothiazol-2(3*H*)-one
 (39). F °C 238-241
- 4-Méthyl-7-[1*H*-imidazol-1-yl(phényl)méthyl]-1,4-benzoxazin-3(4*H*)-one
 (40).

F °C 66-68 °C

- 4-Méthyl-7-[phényl(1*H*-1,2,4-triazol-1-yl)méthyl]-1,4-benzoxazin-3(4*H*)-one (41).
- 25 F ·C 160-164 °C
 - 4-Méthyl-6-[phényl(1*H*-1,2,4-triazol-1-yl)méthyl]-1,4-benzoxazin-3(4*H*)-one (42).

F ·C 140-150 °C

- 7 -[1H-Imidazol-1-yl(phényl)méthyl]-1,4-benzothiazin-3(4H)-one (43). F

30 °C 187-189 °C

10

15

20

PREPARATION DES COMPOSES DES EXEMPLES 44 à 49 (Tableaux I-B, III-B, IV)

$$\overset{R_{1}}{\searrow} \overset{C-B}{\searrow}$$

Ref	R ₁	x	Y	Z	Isomère	В
1	н	S	_	н	6	NO ₂
2	CH ₂ CH ₃	S	_	H	6	—⟨
3	H	Se	-	н	6	-(T)-CN
4	CH ₃	Se	_	H	6	→CN
5	CH₂CH₃	Se		H	6	- ⟨
6	H	Se	_	H	6	-√NO₂
7	CH ₃	Se	-	H	6	-NO ₂
8	CH ₂ CH ₃	Se	-	H	6	NO ₂

6-(4-Nitrobezoyl)-1,3-benzothiazol-2(3H)-one (1; Tableau I-B). Dans une fiole de 100 ml contenant 35.0 g (265 mmol) chlorure d'aluminium, additionner goutte à goutte et sous agitation magnétique 5.9 m l de diméthylformamide (76 mmol). Pour suivre l'agitation pendant 25 minutes, ajouter lentement 5.0 g (33 mmol) de 2(3H)-benzothiazolone et chauffer à 90 °C. Additioner goutte à goutte 7.36 g de 4-nitrobenzoyl chloride (40 mmol) et continuer d'agiter à 100-110 °C pendant 4 heures. Versel lentement le milieu réactionnel sur de la glace tout en agitant vigoureusement. Ajouter 15 ml d'acide chlorhydrique à 37% et poursuivre l'agitation durant 15 minutes. Essorer le précipité puis laver à l'eau jusqu'à neu tralité des eaux de lavage. Sécher le produit obtenu et le recristalliser dans le dioxane (5.85 g, 59 %). Rf = 0.39 (EtOAc/Cyclohexane = 4/6): mp 260-265 °C; ir γ NH 3369 cm⁻¹, CO 1682 cm⁻¹, 1651 cm⁻¹, NO₂ 1521 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 7.26 (d, 1H, H₄, $J_{4.5} = 7.8$ Hz), 7.72-7.74 (m, 1H, H₅), 7.92 (d, 2H, H₃, H₅, J = 9.0Hz), 8.09 (s, 1H, H_7), 8.36 (d, 2H, H_2 , H_6 , J = 9.0 Hz), 12.3 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₁₄H₈N₂O₄S)

15

20

25

3-Ethyl-6-(4-nitrobezoyl)-1,3-benzothiazol-2(3H)-one (2). Dans un ballon de 100 ml, dissoudre 2.5 g (8.3 mmol) de la 6-(4-nitrobezoyl)-1,3-benzothiazol-2(3H)-one dans 25 ml d'acétone. Ajouter 3.5 g (25 mmol) de carbonate de potassium et chauffer à 60 °C pendant 1 heure. Ajouter goutte à goutte et sous agitation magnétique 0.08 ml (10 mmol) d'iodoéthane. Agiter à température ambiante pendant 6 heures. Le milieu réactionnel évaporer l'acétone.

Ajouter 70 ml d'eau et 6 N HCl jusqu'à l'obtention d'un pH acid. Essorer le précipité formé, laver à l'eau, le sécher et le recristalliser par l'acétonitrile (2.33 g, 85 %). Rf = 0.69 (EtOAc/Cyclohexane = 5/5): mp 148-152 °C; ir γ CO 1678 cm⁻¹, 1622 cm⁻¹, NO₂ 1518 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 1.20 (t, 3H, CH₃), 4.00 (q, 2H, CH₂), 7.54 (d, 1H, H₄, J_{4-5} = 8.1 Hz), 7.77 (dd, 1H, H₅, J_{5-4} = 8.1 Hz, J_{5-7} = 1.8 Hz), 7.93 (d, 2H, H₃, H₅, J = 9 Hz), 8.17 (d, 1H, H₇, J_{7-5} = 1.8 Hz), 8.35 (d, 2H, H₂, H₆, J = 9 Hz). Anal. (C₁₆H₁₂N₂O₄S)

4-[(2-Oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl]benzonitrile

(3). Il est identique à celui décrit pour l'obtention de (1) page 2. 2(3H)-benzoselenazolone (5 g, 25 mmol), diméthylformamide (4.5 ml, 58 mmol), chlorure d'aluminium (26.9 g, 202 mmol) et 4 -cyanobenzoyl chloride (6.58 g, 30 mmol), le produit 3 obtenu et le recristalliser dans l'acétonitrile (4.1 g, 50 %). Rf = 0.41 (EtOAc/Cyclohexane = 4/6): mp 230-232 °C; ir γ NH 3248 cm⁻¹, CN 2229 cm⁻¹, CO 1701 cm⁻¹, 1678 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 7.22 (d, 1H, H₄, $J_{4.5}$ = 9.0 Hz), 7.67-7.70 (m, 1H, H₅), 7.82 (d, 2H, H₃, H₅, J = 8.1 Hz), 8.00 (d, 2H, H₂, H₆, J = 8.1 Hz), 8.16 (s, 1H, H₇), 12.18 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₁₅H₁₈N₂O₂Se)

4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl]
benzonitrile (4). Il est identique à celui décrit pour l'obtention de (1)

page 2. 3-methyl-2(3*H*)-benzoselenazolone (5 g, 24 mmol), diméthylformamide (4.2 ml, 54 mmol), chlorure d'aluminium (25 g, 189 mmol) et 4-cyanobenzoyl chloride (4.7 g, 28 mmol), le produit 4 obtenu et le recristalliser dans l'acétonitrile (6.4 g, 80 %). Rf = 0.51 (EtOAc/Cyclohexane = 4/6): mp 205-210 °C; ir γ CN 2231 cm⁻¹, CO 1699 cm⁻¹, 1658 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 3.45 (s, 3H, CH₃), 7.45 (d, 1H, H₄, $J_{4.5}$ = 8.1 Hz), 7.76- 7.78 (m, 1H, H₅), 7.83 (d, 2H, H₃, H₅, J = 8.1 Hz), 8.02 (d, 2H, H₂, H₆, J = 8.1 Hz), 8.25 (s, 1H, H₇). Anal. (C₁₆H₁₀N₂O₂Se)

10

15

25

30

4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl) carbonyl] **benzonitrile (5)**. Il est identique à celui décrit pour l'obtention de (2) page 2. 4-[(2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl]benzonitrile (1.2 g, 3.7 mmol), acetone (50 ml), carbonate de potassium (1.52 g, 11 mmol) et iodoethane (0.35 ml, 4.4 mmol), le produit 5 obtenu et le recristalliser dans l'acétonitrile (1.1 g, 87 %). Rf = 0.55 (EtOAc/Cyclohexane = 4/6): mp 130-135 °C; ir γ CN 2231 cm⁻¹, CO 1697 cm⁻¹, 1674 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 1.19 (t, 3H, CH₃), 4.00 (q, 2H, CH₂), 7.50 (d, 1H, H₄, $J_{4.5}$ = 8.4 Hz), 7.76 (dd, 1H, H₅, $J_{5.4}$ = 8.4 Hz, $J_{5.7}$ = 1.5 Hz), 7.85 (d, 2H, H₃, H₅, J = 8.4 Hz), 8.02(d, 2H, H₂, H₆, J = 8.4 Hz), 8.27(s, 1H, H₇). Anal. (C₁₇H₁₂N₂O₂Se)

6-(4-Nitrobezoyl)-1,3-benzoselenazol-2(3*H***)-one (6). II est identique à celui décrit pour l'obtention de (1) page 2. 3-methyl-2(3***H***)-benzoselenazolone (5 g, 24 mmol), diméthylformamide (4.2 ml, 54 mmol), chlorure d'aluminium (25 g, 189 mmol) et 4-nitrobenzoyl chloride (5.62 g, 30 mmol), le produit 6 obtenu et le recristalliser dans le acétonitrile (6.2 g, 70 %). Rf = 0.45 (EtOAc/Cyclohexane = 4/6): mp 241-245 °C; ir γ NH 3250 cm⁻¹, CO 1695 cm⁻¹, 1647 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 7.25 (d, 1H, H₄, J_{4-5} = 8.4 Hz), 7.70 (dd, 1H, H₅, J_{5-4} = 8.4 Hz, J_{5-7} = 1.5 Hz), 7.91 (d, 2H, H₃, H₅, J = 9.0 Hz), 8.18 (d,**

1H, H₇, $J_{7-5} = 1.5$ Hz), 8.35 (d, 2H, H₂, H₆, J = 9.0 Hz), 12.2 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₁₄H₈N₂O₄Se)

3-Methyl-6-(4-nitrophenyl)-1,3-benzoselenazol-2(3*H***)-one (7). Il est identique à celui décrit pour l'obtention de (2) page 2. 6-(4-Nitrobezoyl)-1,3-benzoselenazol-2(3***H***)-one (2.5 g, 7.2 mmol), acetone (100 ml), carbonate de potassium (2.99 g, 22 mmol) et iodomethane (0.54 ml, 8.6 mmol), le produit 7 obtenu et le recristalliser dans le acétonitrile (2.42 g, 93 %). Rf = 0.37 (EtOAc/Cyclohexane = 3/7): mp 151-155 °C; ir \gamma CO 1680 cm⁻¹, 1655 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) \delta 3.45 (s, 3H, CH₃), 7.44 (d, 1H, H₄, J= 8.7 Hz), 7.78 (dd, 1H, H₅, J₅₋₄ = 8.7 Hz, J₅₋₇ = 1.8 Hz), 7.92 (d, 2H, H₃, H₅, J= 9.0 Hz), 8.28 (d, 1H, H₇, J₇₋₅ = 1.8 Hz), 8.36 (d, 2H, H₂, H₆, J= 9.0 Hz). Anal. (C₁₅H₁₀N₂O₄Se)**

10

3-Ethyl-6-(4-nitrobezoyl)-1,3-benzoselenazol-2(3*H*)-one (8). Il est identique à celui décrit pour l'obtention de (2) page 2. 6-(4-Nitrobezoyl)-1,3-benzoselenazol-2(3*H*)-one (2.5 g, 7.2 mmol), acetone (100 ml), potassium carbonate (2.99 g, 22 mmol) et iodoéthane (0.69 ml, 8.6 mmol), le poroduit 8 obtenu et le recristalliser dans le méthanol (2.2 g, 82 %). Rf = 0.60 (EtOAc/Cyclohexane = 4/6): mp 97-102 °C; ir γ CO 1678 cm⁻¹, 1657 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 1.20 (t, 3H, CH₃), 4.01 (q, 2H, CH₂), 7.51 (d, 1H, H₄, J₄₋₅ = 8.4 Hz), 7.78 (dd, 1H, H₅, J₅₋₄ = 8.4 Hz, J₅₋₇ = 1.5 Hz), 7.94 (d, 2H, H₃, H₆, J = 8.7 Hz), 8.30 (d, 1H, H₇, J₇₋₅ = 1.5 Hz), 8.37 (d, 2H, H₂, H₆, J = 8.7 Hz). Anal. (C₁₆H₁₂N₂O₄Se)

Methode A: NaBH4, MeOH Methode B: NaBH4, NaOH, H20

Ref	R ₁	х	Y	Z	Isomère	В	Methode
1a	CH ₂ CH ₃	s	-	н	6	→NO ₂	A
2a	H	Se	_	H	6	-{∑ }CN	A
3a	CH₃	Se	_	H	6	− CN	A
4a	CH ₂ CH ₃	Se	-	\mathbf{H}	6	-{∑ }-CN	A
5a	СН₃	Se	_	H	6	$-\sqrt{}$ NO ₂	A
6a	CH ₂ CH ₃	Se		н	6	$-$ NO $_2$	A

5

10

15

3-Ethyl-6-[hydroxy(4-nitrophenyl)methyl]-1,3-benzothiazol-2(3*H*)-one (1a). Dans un ballon de 100 ml contenant 2.3 g (7 mmol) de 3-ethyl-6-(4-nitrobezoyl)-1,3-benzothiazol-2(3*H*)-one (2.3 g, 7 mmol), ajouter 30 ml de méthonel. Enquit ejector potit à potit et acur a sitetion que el (12 mmol).

méthanol. Ensuit, ajouter petit à petit et sous agitation magnétique, 0.3 g (7 mmol) de borohydrure de sodium. Poursuivre l'agitation pendant 2 heures à température ambiante. Evaporer la totalité du solvant à l'évaporateur rotatif, puis reprendre le résidue par 50 ml d'eau légèrement acide. Essorer le précipité formé, laver à l'eau, jusqu'à neutralité des eaux de lavage. Sécher le produit obtenu et le recristalliser dans l'acétate d'éthyle (2.2 g, 96 %). Rf = 0.4 (EtOAc / Cyclohexane = 5/5); mp 160-162 °C; ir γ OH 3423cm⁻¹, CO 1647cm⁻¹, NO₂ 1520 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 1.14 (t, 3H, CH₃), 3.90 (q, 2H, CH₂), 5.89 (s, 1H, CH), 6.30 (s, 1H, OH, échangeable avec D₂O), 7.30 (d, 1H, H₄, J₄₋₅ = 8.1 Hz), 7.37-7.40 (m. 1H, H₅), 7.66-7.68 (m, 3H, H₇, H₃, H₅), 8.16 (d,

20 2H, H_{2} , H_{6} , J = 8.1 Hz). Anal. ($C_{16}H_{14}N_{2}O_{4}S$)

10

15

20

4-[Hydroxy(2-oxo-2,3-dihydro-1,3-benzoselenazol-6- yl)methyl] benzonitrile (2a). Il est identique à celui décrit pour l'obtention de (1a) page 4. 4-[(2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl]benzonitrile (2 g, 6.1 mmol), méthanol (30 ml) et borohydrure de sodium (0.5 g, 6.1 mmol), le poroduit 2a obtenu et le recristalliser dans l'acétonitrile. (1.4 g, 70 %). Rf = 0.37 (EtOAc/Cyclohexane = 5/5): mp 209-213 °C; ir γ OH 3506 cm⁻¹, NH 3146 cm⁻¹, CN 2227 cm⁻¹, CO 1695 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 5.76 (s, 1H, CH), 6.17(s, 1H, OH, , échangeable avec D₂O), 7.02 (d, 1H, H₄, J_{4-5} = 8.1 Hz), 7.25 (dd, 1H, H₅, J_{5-4} = 8.1 Hz, J_{5-7} = 1.5 Hz), 7.54 (d, 3H, H₃, H₅, J = 8.1 Hz), 7.66 (d, 2H, H₂, H₆, J = 8.1 Hz), 7.43 (d, 1H, H₇, J_{7-5} = 1.5 Hz), 11.85 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₁₅H₁₀N₂O₂Se)

4-[Hydroxy(3-methyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-

yl)methyl]benzonitrile (3a). Il est identique à celui décrit pour l'obtention de (1a) page 4. 4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl] benzonitrile (2.0 g, 5.9 mmol), méthanol (50 ml) et borohydrure de sodium (1.2 g, 32 mmol), le poroduit 3a obtenu et le recristalliser dans l'acétate d'éthyle (1.8 g, 90 %). Rf = 0.38 (EtOAc/Cyclohexane = 5/5); mp 205-208 °C; ir γ OH 3472 cm⁻¹, CN 2224 cm⁻¹, CO 1651 cm⁻¹; 1 H-NMR (300MHz, DMSO-d₆) δ 3.30 (s, 3H, CH₃), 5.80 (s, 1H, CH), 5.82 (s, 1H, OH, échangeable avec D₂O), 7.19 (d, 1H, H₄, J₄₋₅ = 8.4 Hz), 7.34-7.36 (m, 1H, H₅), 7.55 (d, 2H, H₃, H₅, J= 7.8 Hz), 7.73-7.77 (m, 3H, H₇, H₂, H₆). Anal. (C₁₆H₁₂N₂O₂Se)

25

30

4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(hydroxy) methyl]benzonitrile (4a).

Il est identique à celui décrit pour l'obtention de (1a) page 4. 4-[(3-ethyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)carbonyl]benzonitrile (1.1 g, 3.0 mmol), méthanol (15 ml) et borohydrure de sodium (0.06 g, 1.5

mmol), le poroduit 4a obtenu et le recristalliser dans l'acétate d'éthyle (0.92 g, 86 %). Rf = 0.31 (EtOAc/Cyclohexane = 4/6): mp 132-134 °C; ir γ OH 3427 cm⁻¹, CN 2227 cm⁻¹, CO 1641 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆) δ 1.13 (t, 3H, CH₃), 3.89 (q, 2H, CH₂), 5.80 (d, 1H, CH, J = 3.9 Hz), 6.19 (d, 1H, OH, J = 3.6 Hz, , échangeable avec D₂O), 7.26 (d, 1H, H₄, J₄₋₅ = 8.1 Hz), 7.34 (dd, 1H, H₅, J₅₋₄ = 8.1 Hz, J₅₋₇ = 1.8 Hz), 7.57 (d, 2H, H₃, H₅, J = 8.4 Hz), 7.75-7.79 (m, 3H, H₇, H₂, H₆). Anal. (C₁₇H₁₄N₂O₂Se)

6-[Hydroxy(4-nitrophenyl)methyl]-3-methyl-1,3-benzoselenazol-

2(3*H*)-one (5a). Il est identique à celui décrit pour l'obtention de (1a) page 4. 3-Methyl-6-(4-nitrophenyl)-1,3-benzoselenazol-2(3*H*)-one (2.3 g, 6.4 mmol), méthanol (30 ml) et borohydrure de sodium (0.3 g, 6.4 mmol), le poroduit 5a obtenu et le recristalliser dans l'acétonitrile (1.9 g, 84 %). Rf = 0.31 (EtOAc / Cyclohexane = 4/6); mp 182-183 °C; ir γ OH 3406 cm⁻¹, CO 1645 cm⁻¹, NO₂ 1512 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 3.35 (s, 3H, CH₃), 5.88 (s, 1H, CH), 6.29 (s, 1H, OH, échangeable avec D₂O), 7.21 (d, 1H, H₄, J₄₋₅ = 8.1 Hz), 7.37 (dd, 1H, H₅, J₅₋₄ = 8.1 Hz, J₅₋₇ = 1.8 Hz), 7.64 (d, 2H, H₃', H₅', J = 8.7 Hz), 7.75 (d, 1H, H₇, J₇₋₅ = 1.8 Hz), 8.16 (d, 2H, H₂', H₆', J = 8.7 Hz). Anal. (C₁₅H₁₂N₂O₄Se)

20

25

3-Ethyl-6-[hydroxy(4-nitrophenyl)methyl]-1,3-benzoselenazol-2(3*H***)-one (6a).). Il est identique à celui décrit pour l'obtention de (1a) page 4. 3-Ethyl-6-(4-nitrobezoyl)-1,3-benzoselenazol-2(3***H***)-one (2.2 g, 5.8 mmol), méthanol (30 ml) et borohydrure de sodium (0.3 g, 5.8 mmol), le poroduit 6a obtenu et le recristalliser dans l'acétate d'éthyle (1.2 g, 57 %). Rf = 0.35 (EtOAc / Cyclohexane = 4/6); mp 135-137 °C; ir \gamma OH 3420 cm⁻¹, CO 1653 cm⁻¹, NO₂ 1514 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) \delta 1.13 (t, 3H, CH₃), 3.89 (q, 2H, CH₂), 5.87 (s, 1H, CH), 6.28 (s, 1H, OH, échangeable avec D₂O), 7.27 (d, 1H, H₄, J_{4-5} = 8.4 Hz), 7.36 (dd, 1H, H₅,**

 $J_{5-4} = 8.4$ Hz, $J_{5-7} = 1.8$ Hz), 7.65(d, 2H, H₃, H₅, J = 9 Hz), 7.76 (d, 1H, H₇, $J_{7-5} = 1.8$ Hz), 8.17-8.20 (m, 2H, H₂, H₆). Anal. (C₁₆H₁₄N₂O₄Se)

Substitution

5

Ref	R _I	x	Y	Z	Isomère	triazole B
1 b	CH ₂ CH ₃	S	_	H	6	1,2,4 -\(\bigs\) NO ₂
2 b	H	Se	*****	н	6	1,2,4 — CN
3ъ	CH₃	Se	_	H	6	1,2,4 — CN
4Ъ	CH ₂ CH ₃	Se		H	6	1,2,4 ———————————————————————————————————
5b	CH ₃	Se		H	6	1,2,4 —\(\bigcap_{\text{NO}_2}\)
6ь	CH ₂ CH ₃	Se		н	6	1,2,4 — NO ₂

EXEMPLE 44:

10

15

3-Ethyl-6-[(4-nitrophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1,3-benzothiazol-2(3H)-one.

Dans un ballon de 100 ml dissoudre 4.83 g (70 mmol) de 1*H*-1,2,4-triazol dans 35 ml d'acétonitrile puis ajouter lentement 1.3 ml (18 mmol) de chlorure de thionyle. Pour suivre l'agitation pendant 30 minutes à température ambiante. Essorer le filtrat obtenu. Le filtrat ajouter goutte à goutte dans un solution de 1.5 g (4.5 mmol) de 3-ethyl-6-[hydroxy(4-nitrophenyl)methyl]-1,3-benzothiazol-2(3*H*)-one et 10 ml d'acétonitrile. Poursuivre l'agitation pendant 5 heures à température ambiante. Evaporer le solvant à l'évaporateur rotatif : Ajouter 100 ml d'eau et

15

20

25

ajouter à 6 N HCl jusqu'à l'obtention d'un pH acid. Extraire par 150 ml d'acétate d'éthyle. La phase aqueuse alcalinisé par une solution de carbonate de potassium jusqu'à neutralité. Extraire par 150 ml de l'acétate d'éthyle, sécher la phase organique sur MgSO4 puis l'évaporer et le purifier par chromatographie sur gel de silice. (éluant: EtOAc) (0.34 g, 20 %). Rf = 0.28 (EtOAc): mp 79-83 °C; ir γ CO 1676 cm⁻¹, 1602 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H-NMR (300MHz, CDCl₃) δ 1.17 (t, 3H, CH₃), 3.93 (q, 2H, CH₂), 7.30-7.35 (m, 2H, CH, H₄), 7.40-7.47 (m, 3H, H₅, H₃, H₅), 7.62 (s, 1H, H₇), 8.12 (s, 1H, H_{triazloe}), 8.23 (d, 2H, H₂, H₆, J= 8.1 Hz), 8.69 (s, 1H, H_{triazloe}). Anal. (C₁₇H₁₃N₅O₃S)

EXEMPLE 45:

4-[(2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1H-1,2,4-triazol-1-

yl)methyl]benzonitrile . Il est identique à celui décrit pour l'obtention de (1b) page 6. 4-[Hydroxy(2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)methyl]benzonitrile (1.5 g, 4.6 mmol), chlorure de thionyl (1.3 ml, 18 mmol), 1H-1,2,4-triazol (4.84 g, 70 mmol) et THF (35 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc) (0.17 g, 10 %). Rf = 0.46 (EtOAc): mp 223-226 °C; ir γ NH 3435 cm⁻¹, CN 2229 cm⁻¹, CO 1685 cm⁻¹; 1 H-NMR (300MHz, DMSO-d₆) δ 7.09 (d, 1H, 1 H₄, 1 J₄₋₅ = 8.1 Hz), 7.13 (dd, 1H, 1 H₅, 1 J₅₋₄ = 8.1 Hz, 1 J₅₋₇ = 1.5 Hz), 7.20 (s, 1H, CH), 7.33 (d, 2H, 1 H₃, 1 H₅, 1 J = 7.8 Hz), 7.56 (d, 1H, 1 H₇, 1 J₅₋₅ = 1.5 Hz), 7.83 (d, 2H, 1 H₂, 1 H₆, 1 J = 7.8 Hz), 8.08 (s, 1H, 1 H_{triazioe}), 8.62 (s, 1H, 1 H_{triazioe}), 11.83 (br s, 1H, NH, échangeable avec 1 D₂O). Anal. (C₁₇H₁₁N₅OSe)

EXEMPLE 46:

4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1H-1,2,4-

triazol-1-yl)methyl]benzonitrile. Il est identique à celui décrit pour l'obtention de (1b) page 6. 4-[Hydroxy(3-methyl-2-oxo-2,3-dihydro-1,3-

benzoselenazol-6-yl)methyl]benonitrile (1.5 g, 4.4 mmol), chlorure de thionyl (1.3 ml, 18 mmol), 1H-1,2,4-triazol (4.65 g, 67 mmol) et acétonitrile (40 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc) (0.35 g, 20 %). Rf = 0.42 (EtOAc): mp 154-158 °C; ir γ CN 2229 cm⁻¹ CO 1657 cm⁻¹; 1 H-NMR (300MHz, DMSO-d₆) δ 3.37 (s, 3H, CH₃), 7.25-7.30 (m, 3H, CH, H₄, H₅), 7.34 (d, 2H, H₃, H₅, J = 8.7 Hz), 7.66 (s, 1H, H₇), 7.84 (d, 2H, H₂, H₆, J = 8.7 Hz), 8.09 (s, 1H, H_{triazloe}), 8.64 (s, 1H, H_{triazloe}). Anal. (C₁₈H₁₃N₅OSe)

10 **EXEMPLE 47**:

4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1*H*-1,2,4triazol-1-yl)methyl] benzonitrile. Il est identique à celui décrit pour l'obtention de (1b) 6. 4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3page benzoselenazol-6-yl)(hydroxy)methyl]benzonitrile (0.9 g, 2.5 mmol), chlorure de thionyl (0.7 ml, 10 mmol), 1H-1,2,4-triazol (2.68 g, 39 mmol) 15 et acetonitrile (35 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc) (0.2 g, 19 %). Rf = 0.44 (EtOAc); mp 95-98 °C; ir γ CN 2229 cm⁻¹, CO 1670 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 1.15 (t, 3H, CH₃), 3.91 (q, 2H, CH₂), 7.26 (m, 2H, CH, H_4), 7.35-7.39 (m, 3H, H_5 , $H_{3'}$, $H_{5'}$), 7.69 (s, 1H, H_7), 7.86 (d, 2H, $H_{2'}$, $H_{6'}$, J20 = 8.1 Hz), 8.11 (s, 1H, $H_{triazole}$), 8.67 (s, 1H, $H_{triazole}$). Anal. ($C_{19}H_{15}N_{5}OSe$)

EXEMPLE 48

3-Methyl-6-[(4-nitrophenyl)(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-

benzoselenazoi-2(3*H*)-one. Il est identique à celui décrit pour l'obtention de (1b) page 6. 6-[Hydroxy(4-nitrophenyl)methyl]-3-methyl-1,3-benzoselenazoi-2(3*H*)-one (1.5 g, 4.1 mmol), chlorure de thionyl (1.γ ml, 17 mmol), 1*H*-1,2,4-triazol (4.39 g, 64 mmol) et acétonitrile (40 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice
(éluant: EtOAc) (0.29 g, 17 %). Rf = 0.46 (EtOAc); mp 190-195 °C; ir γ CO 1651 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 3.36 (s,

20

3H, CH₃), 7.30-7.35 (m, 3H, CH, H₄, H₅), 7.44 (d, 2H, H_{3',} H_{5',} J = 8.7), 7.69 (s, 1H, H₇), 8.12 (s, 1H, H_{triazole}), 8.24 (d, 2H, H_{2',} H_{6',} J = 8.7), 8.68 (s, 1H, H_{triazole}). Anal. (C₁₇H₁₃N₅O₃Se)

5 **EXEMPLE 49**

3-Ethyl-6-[(4-nitrophenyl)(1*H***-1,2,4-triazol-1-yl)methyl]-1,3-benzoselenazol-2(3***H***)-one.** Il est identique à celui décrit pour l'obtention de (1b) page 6. 3-ethyl-6-[hydroxy(4-nitrophenyl)methyl]-1,3-benzoselenazol-2(3*H*)-one (1.2 g, 3.2 mmol), chlorure de thionyl (0.9 ml, 13 mmol), 1*H*-1,2,4-triazol (3.38 g, 49 mmol) et acétonitrile (35 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc) (0.28 g, 21 %). Rf = 0.44 (EtOAc): mp 79-82 °C; ir γ CO 1670 cm⁻¹, NO₂ 1520 cm⁻¹; ¹H-NMR (300MHz, CDCl₃) δ 1.13 (t, 3H, CH₃), 3.91 (q, 2H, CH₂), 7.27-7.39 (m, 3H, CH, H₄, H₅), 7.45 (d, 2H, H₃, H₅, J = 8.7 Hz), 7.70 (s, 1H, H₇), 8.12 (s, 1H, H_{triazloe}), 8.24 (d, 2H, H₂, H₆, J = 8.7 Hz), 8.69 (s, 1H, H_{triazloe}) Anal. (C₁₈H₁₅N₅O₃Se)

PREPARATION DES COMPOSES DES EXEMPLES 50 ET 51 (Tableaux I-B, III-B, IV)

Methyl 4-chloro-3-nitrenzoate (1). Dissoudre le 4-chloro-3-nitro-benzoic acid (5.0 g, 24.8 mmol) dans 200 ml de méthanol et ajouter 4.15 ml (29.8 mmol) de triéthylamine. Refroidir dans un bain de glace-sel et ajouter goutte à goutte 3.19 ml (44.7 mmol) de chlorure d'acétyle. Agiter à reflux pendant 6 heures. Evaporer sous pression réduit le solvant. Reprendre le résidu par 100 ml d'eau et extraire 2 fois par de l'acétate d'éthyle (100 ml). Sécher la phase organique sur du MgSO4 et l'évaporer

sous pression réduite et le purifier par l'éther (10 ml) (4.81 g, 92 %). Rf = 0.55 (EtOAc/Cyclohexane = 7/3); mp 79-80 °C; ir. CO 17/6 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 3.90 (s, 3H, OCH₃), 7.90 (d, 1H, H₅, J_{5-6} = 8.1 Hz), 8.15 (dd, 1H, H₆, J_{6-5} = 8.1 Hz, J_{5-2} = 1.5 Hz), 8.49(d, 1H, H₂, J_{2-6} = 1.5 Hz). Anal. (C₈H₆CINO₄).

10

15

20

5

Methyl-3-nitro-4-sulfanylbenzoate (2). Dans un ballon de 250 ml, mettre en suspension sulfate de sodium (2.7 g, 34 mmol) et methyl 4-chloro-3-nitrobenzoate (5 g, 23 mmol) dans 150 ml d'absolute éthanol. Agiter à température ambiante pendant 7 heures. Verser le milieu réactionnel sur de la glace (200 ml). Ajouter d'acide acétique jusque'à pH 2 et extraire 3 fois par de CH₂Cl₂ (100 ml). Sécher la phase organique sur du MgSO4 et l'évaporer sous pression réduite et le purifierrpar l'éther (3.9 g, 80 %). Rf = 0.31 (EtOAc/Cyclohexane = 3/7); mp 98-101 °C; ir . SH 2546, CO 1722 cm⁻¹; ¹H-NMR (300 MHz, DMSO-d₆) δ 381 (s, 3H, OCH₃), 4.31 (br s, 1H, SH, exchangeable with D₂O), 7.82 (d, 1H, H₅, J₅₋₆ = 8.2 Hz), 8.17 (dd, 1H, H₆, J₆₋₅ = 8.2 Hz, , J₅₋₂ = 1.5 Hz), 8.41 (d, 1H, H₂, J₂₋₆ = 1.5 Hz). Anal. (C₈H₇NO₄S).

25

Chlorhydrate d'acide 3-Amino-4-sulfanyl benzoique (3). Dans un ballon de 250 ml, mettre en suspension thin(II) chloride (17.3 g, 91.4

mmol) et methyl-3-nitro-4-sulfanylbenzoate (3.9 g, 18.3 mmol) dans 50 ml de 6 N HCl. Agiter à reflux pendant 4 heures. Versel le milieu réactionnel sur de la glace (200 ml). Essorer le précipité formé, le sécher et le recristalliser par l'éther (3.3 g, 81 %). Rf = 0.32 (EtOAc/Cyclohexane = 5/5); mp 215-217 °C (décomposition); ir NH₂ 3331 cm⁻¹, SH 2511 cm⁻¹, CO 1711 cm⁻¹; ¹H-NMR (300 MHz, DMSO-d₆) δ 4.42 (br s, 1H, SH, échangeable avec D₂O), 7.76 (d, 1H, H₅, J_{5-6} = 8.2 Hz), 8.31 (dd, 1H, H₆, J_{6-5} = 8.1 Hz, J_{5-2} = 1.5 Hz), 8.44(d, 1H, H₂, J_{2-6} = 1.5 Hz), 12.2 (br s, 1H, OH, échangeable avec D₂O). Anal. (C₈H₁₀NO₂ClS).

10

15

20

Acide 2-Oxo-2,3-dihydro-1,3-benzothiazolone-5-carboxylique (4). Mélanger 5 g (24.3 mmol) de 3-amino-4-sulfanyl benzoic acid HCl salt et 14.6 g (243 mmol) d'urée. Agiter à 140-145 °C pendant 4 heures. Versel le milieu réactionnel sur de la glace (200 ml) et ajouter d'acide acétique 6N jusque'à pH 2. Essorer le précipité formé, le sécher et le recristalliser par l'éther (2.9 g, 49 %). Rf = 0.65 (MeOH/EtOH/Cyclohexane = 3/5/2), mp 275-277 °C; ir OH 3099 cm⁻¹, CO 1718 cm⁻¹, NCO 1682 cm⁻¹; 1 H-NMR (300 MHz, DMSO-d₆) δ 7.62 (s, 1H, H₄), 7.69-7.72 (m, 2H, H_{5,6}), 12.10(br s, 1H, NH, échangeable avec D₂O), 13.06 (br s, 1H, échangeable avec D₂O). Anal. (C₉H₇NO₃S).

10

Methyl-2-oxo-2,3-benzothiazolone-5-carboxylate (5). Mettre le 2-oxo-2,3-dihydro-1,3-benzothiazolone-5-carboxylic acid (5.0 g, 24.8 mmol) dans 200 ml de méthanol. Refroidir dans un bain de glace-sel à 0 °C et ajouter goutte à goutte 9.34 ml (128.1 mmol) de chlorure de thionyle. Agiter à reflux pendant 5 heures . Evaporer sous pression réduit le solvant. Reprendre le résidue par 100 ml d'eau et extraire 2 fois par de l'acétate d'éthyle (100 ml). Sécher la phase organique sur du MgSO₄ et l'évaporer sous pression réduite et le purifier par l'éther (10 ml) (4.0 g, 75 %). Rf = 0.58 (EtOAc/Cyclohexane = 5/5); mp 217-219 °C; ir CO 1695 cm⁻¹, NCO 1684 cm⁻¹; 1 H-NMR(300MHz, DMSO-d₆) δ 3.85 (s, 3H, OCH₃), 7.60 (d, 1H, H₄, J_{4-6} = 2.7 Hz), 7.67-7.69 (m, 2H, H_{6,7}), 12.13 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₉H₇NO₃S).

15

20

25

5-(Hydroxymethyl)-1,3-benzothiazol-2(3H)-one (6). Dissoudre le methyl-2-oxo-2,3-benzothiazolone-5-carboxylate (5.0 g, 23.9 mmol) dans 100 ml de THF. Refroidir dans un bain de glace-sel et ajouter petit à petit 1.1 g (28.7 mmol) de LiAlH₄. Agiter à température ambiante pendant 3 heures. Ajouter lentement 100 ml d'eau dans le milieu réactionnel et ajouter d'acide acétique 1 N jusque'à pH 7. Extraire 2 fois par de CH_2Cl_2 (100 ml). Sécher la phase organique sur du MgSO4 et l'évaporer sous pression réduite et le purifier par l'éther (10 ml) (3.4 g, 79 %). Rf = 0.33 (EtOAc/ Cyclohexane = 3/7); mp 178-181 °C; ir OH 3319 cm⁻¹, NCO 1684 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 4.49 (d, 2H, CH_2OH , J = 5.7 Hz), 5.26 (t, 1H, CH_2OH , J = 5.7 Hz, exchangeable with D_2O), 7.02 (d, 1H, CH_2OH), 7.09 (s, 1H, CH_2OH), 7.45 (d, 1H, CH_2OH), 7.6 = 8.1 Hz), 1.85 (s, 1H, NH, échangeable avec CL_2OH). Anal. (CL_2OH) Anal. (CL_2OH) (CL_2OH).

10

$$0 \longrightarrow S \longrightarrow 0 \longrightarrow S \longrightarrow H$$

2-Oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (7). Dissoudre le 5-(hydroxymethyl)-1,3-benzothiazol-2(3*H*)-one (1 g, 5.5 mmol) dans 100 ml de CH_2Cl_2 . Ajouter 10 g (177 mmol) de dioxide de manganese et agiter à température ambiante pendant 4 heures. Le milieu réactionnel essorer et évaporer le solvant sous pression réduite et le purifier par l'éther (10 ml) (0.69 g, 69 %). Rf = 0.56 (EtOAc/Cyclohexane = 5/5); mp 211-215 °C; ir CO 1730 cm⁻¹, NCO 1691 cm⁻¹; 1 H-NMR(300MHz, DMSO-d₆) δ 7.53 (s, 1H, H₄), 7.65 (d, 1H, H₆, J_{6-7} = 8.1 Hz), 7.80 (d, 1H, H₇, J_{7-6} = 8.1 Hz), 9.95 (s, 1H, COH), 12.22 (br s, 1H, NH, échangeable avec D₂O). Anal. (C₈H₅NO₂S).

Ref	R	yield	
8a	СН3	84%	
8b	CH₂CH₃	87%	

15

20

3-Methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (8a). Dans un ballon de 100 ml, dissoudre 1.0 g (5.6 mmol) de la 2-oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde dans 50 ml d'acétone. Ajouter 2.3 g (16.7 mmol) de carbonate de potassium et 0.42 ml (6.7 mmol) d'iodométhane. Agiter à température ambiante pendant 3 heures. Le milieu réactionnel évaporer l'acétone. Ajouter 100 ml d'eau et l'extraire 2 fois par de l'acétate d'éthyle (100 ml). Sécher la phase organique sur du MgSO₄ et l'évaporer sous pression réduite et le purifier par l'éther (10 ml)

(0.91 g, 84 %). Rf = 0.59 (EtOAc/Cyclohexane = 5/5); mp 140-142 °C; ir . CO1682 cm⁻¹, NCO 1674 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 3.46 (s, 3H, NCH₃), 7.73-7.75 (m, 2H, H_{4,6}), 7.90 (d, 1H, H₇, J_{7-6} = 8.1 Hz), 9.99 (s, 1H, COH). Anal. (C₉H₇NO₂S).

5

10

15

20

25

3-Ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (8b). II est identique à celui décrit pour l'obtention de (8a). 2-Oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (2 g, 11.1 mmol), carbonate de potassium (4.6 g, 33.3 mmol), iodoéthane (1.1 ml, 13.3 mmol) et acétone (50 ml), le produit 8b obtenu et le purifier par l'éther (2.01 g, 87 %). Rf = 0.63 (EtOAc/Cyclo-hexane = 5/5); mp 155-156 °C; ir CO 1689 cm⁻¹, NCO 1664 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 1.23 (t, 3H, CH₂CH₃, J = 6.7 Hz), 4.03 (q, 2H, CH₂CH₃, J = 6.7 Hz), 7.74 (dd, 1H, H₆, J₆₋₇ = 8.1 Hz, J₆₋₄ = 2.1 Hz), 7.85 (d, 1H, H₄, J₄₋₆ = 2.1 Hz), 7.91 (d, 1H, H₇, J₇₋₆ = 8.1 Hz), 10.04 (s, 1H, COH). Anal. (C₁₀H₉NO₂S).

№ н — →		P OH	
Ref	R	yield	-
9a	CH ₃	18%	
9ь	CH₂CH₃	29%	

4-[Hydroxy(3-methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-yl)methyl]benzonitrile (9a).

Dissoudre le 4-bromobenzonitrile (1.9 g, 10.4 mmol) dans 20 ml de THF et ajouter 5.2 ml (10.4 mmol) de *i*-propyl magnesium chloride 2M solution dans THF. Agiter à température ambiante pendant 2 heures. Ensuit verser goutte à goutte 2 g (10.4 mmol) de 3-methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (2 g, 10.4 mmol) préalablement dilué

dans 20 ml de THF. Ajouter lentement 100 ml d'eau dans le milieu réactionnel et extraire 2 fois par de l'acétate d'éthyle (100 ml). Sécher la phase organique sur du MgSO4 et l'évaporer sous pression réduite et le purifier par chromatographie sur gel de silice. (éluant: EtOAc/C-hexane = 3/7) (0.55 g, 18 %) Rf = 0.29 (EtOAc/Cyclohexane = 5/5); mp 183-186 °C; ir OH 3398 cm⁻¹, CN 2224 cm⁻¹, CO 1658 cm⁻¹; ¹H-NMR(300MHz, DMSO-d₆) δ 3.38 (s, 3H, NCH₃), 5.84 (d, 1H, CH, J = 3.9 Hz), 6.28 (d, 1H, OH, J = 3.9 Hz, échangeable avec D₂O), 7.16 (d, 1H, H₇, J₇₋₆ = 8.1 Hz), 7.36 (s, 1H, H₄), 7.54 (d, 1H, H₆, J₆₋₇ = 8.1 Hz), 7.60 (d, 2H, H_{2,6}, J₂₋₃ = 8.1 Hz), 7.75 (d, 2H, H_{3,5}, J₃₋₂ = 8.1 Hz). Anal. (C₁₆H₁₂N₂O₂S).

4-[Hydroxy(3-ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-

10

yl)methyl]benzonitrile (9b). Il est identique à celui décrit pour l'obtention de (9a). 3-Ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-carbaldehyde (2g, 9.7 mmol), 4-bromobenzonitrile (1.7 g, 9.7 mmol), i-propyl magnesium 15 chloride 2M solution dans THF (4.8 ml, 9.7 mmol) et THF (40 ml), le poroduit 9b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc/C-hexane = 3/7) (0.87 g, 29 %). Rf = 0.31 (EtOAc/ Cyclohexane = 5/5); mp 156-158 °C; ir OH 3433 cm⁻¹, CN 2227 cm⁻¹, NCO 1674 cm⁻¹; 1 H-NMR(300MHz, DMSO-d₆) δ 1.80 (t, 3H, CH₂CH₃, J = 20 7.2 Hz), 3.93 (q, 2H, CH₂CH₃, J = 7.2 Hz), 5.97 (d, 1H, CH, J = 3.9 Hz), 6.30 (d, 1H, OH, J = 3.9 Hz, échangeable avec D_2O), 7.17 (d, 1H, H_7 , J_7 . $_{6}$ = 8.0 Hz), 7.45 (s, 1H, H₄), 7.56 (d, 1H, H₆, J_{6-7} = 8.0 Hz), 7.62 (d, 2H, $H_{2',6'}$, $J_{2'-3'} = 8.1$ Hz), 7.77 (d, 2H, $H_{3',5'}$, $J_{3'-2'} = 8.1$ Hz). Anal. 25 $(C_{17}H_{14}N_2O_2S).$

5 **EXEMPLE 50**:

10

15

20

25

4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-yl)(1H-1,2,4triazol-1-yl)methyl] benzonitrile . Dans un ballon de 100 ml dissoudre 1.3 g (18.8 mmol) de 1H-1,2,4-triazol dans 20 ml d'acétonitrile puis ajouter lentement 0.37 ml (5.1 mmol) de chlorure de thionyle. Pour suivre l'agitation pendant 30 minutes à température ambiante. Essorer le filtrat obtenu. Le filtrat ajouter goutte à goutte dans un solution de 0.38 g (1.3 mmol) de 4-[hydroxy(3-methyl-2-oxo-2,3-dihydro-1,3-benzothiazol -5yl)methyl]benzonitrile et 10 ml d'acétonitrile. Poursuivre l'agitation pendant 5 heures à température ambiante. Evaporer le solvant à l'évaporateur rotatif : Ajouter 100 ml d'eau et ajouter à 6 N HCl jusqu'à l'obtention d'un pH acid. Extraire par 150 ml d'acétate d'éthyle. La phase aqueuse alcalinisé par une solution de carbonate de potassium jusqu'à neutralité. Extraire par 150 ml de l'acétate d'éthyle, sécher la phase organique sur MgSO4 puis l'évaporer et le purifier par chromatographie sur gel de silice. (éluant: EtOAc/MeOH = 9/1) (0.14 g, 32 %). Rf = 0.54 (EtOAc/MeOH = 9/1): mp 122-125 °C; ir, CN 2229 cm⁻¹, NCO 1680 cm⁻¹; 1 H-NMR(300MHz, DMSO-d₆) δ 3.34 (s, 3H, NCH₃), 7.10 (dd, 1H, H₆, J_{6-7} = 8.1 Hz, J_{6-4} = 1.5 Hz), 7.27-7.28 (m, 2H, CH, H₄), 7.35 (d, 2H, H_{2',6'}, $J_{2'-}$ $_{3'}$ = 8.4 Hz), 7.66 (d, 1H, H₇, J_{7-6} = 8.1 Hz), 7.84 (d, 2H, H_{3',5'}, $J_{3'-2'}$ = 8.4 Hz), 8.11 (s, 1H, H_{triazole}), 8.66 (s, 1H, H_{triazole}). Anal. (C₁₈H₁₃N₅OS).

EXEMPLE 51:

4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-yl)(1H-1,2,4-triazol-1-yl)methyl] benzonitrile . Il est identique à celui décrit pour l'obtention 5 4-[Hydroxy(3-ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5yl)methyl] benzonitrile) (0.87 g, 2.8 mmol), 1,2,4-triazole (2.9 g, 42.0 mmol), chlorure de thionyl (0.82 ml, 1.1 mmol) et acétonitrile (100 ml), le poroduit 2b obtenu et le purifier par chromatographie sur gel de silice (éluant: EtOAc/MeOH = 9/1) (0.21 g, 21 %). Rf = 0.58 (EtOAc/MeOH = 10 9/1); mp 125-127 °C; ir CN 2229 cm⁻¹, NCO 1674 cm⁻¹: ¹H-NMR(300MHz, DMSO-d₆) δ 1.12 (s, 3H, CH₂CH₃, J = 7.5 Hz), 3.88 (q, 2H, CH₂CH₃, J = 7.5 Hz), 7.10 (dd, 1H, H₆, $J_{6-7} = 8.1$ Hz, $J_{6-4} = 1.5$ Hz), 7.29 (s, 1H, CH), 7.35 (d, 2H, $H_{2',6'}$, $J_{2'-3'} = 8.1$ Hz), 7.40 (s, 1H, H_4), 7.68 (d, 1H, H₇, $J_{7-6} = 8.1$ Hz), 7.86 (d, 2H, H_{2',6'}, $J_{2'-3'} = 8.1$ Hz), 8.12 (s, 1H, 15 H_{triazole}), 8.69 (s, 1H, H_{triazole}). Anal. (C₁₉H₁₅N₅OS).

Les exemples ci-dessus illustrent l'invention et ne la limitent en aucune façon. Les préparations ci-dessus conduisent aussi à des intermédiaires de synthèse utiles dans la préparation des composés de formule (I) de l'invention.

20

25

ETUDE PHARMACOLOGIQUE (Tableau V)

Exemple A : Etude de la toxicité aiguë

La toxicité aiguë a été appréciée après administration orale à des lots de 8 souris (26 g). Les animaux ont été observés à intervalles réguliers au cours de la première journée et quotidiennement pendant les deux semalnes suivant le traitement.

La dose pour laquelle on observe 50 % de mortalité chez les animaux (DL_{50}) a été évaluée et a montré la faible toxicité des composés de l'invention.

30

Exemple B : Etude du pouvoir inhibiteur de l'aromatase in vitro

Les IC₅₀, concentrations inhibant 50% de l'activité de l'enzyme, ont été déterminées en utilisant des microsomes de placenta humain

comme source de l'enzyme selon la méthode à l'eau tritiée décrite par PURBA et al (1990).

Les composés les plus actifs présentent une IC50 voisine de 1 nanomolaire.

Exemple C : Etude de cytotoxicité cellulaire

5

15

20

25

30

Le protocole d'étude de la cytotoxicité cellulaire est adapté d'après MOSMANN (1983).

Il repose sur la transformation de MTT en formazan par la succinate deshydrogénase mitochondriale. Ce test est réalisé sur des cellules E293 de rein embryonnaire humain qui n'expriment pas l'aromatase.

Les résultats ont montré que les composés ne sont pas cytotoxiques.

Exemple D : Etude de l'activité in vivo

L'activité in vivo d'inhibition de l'aromatase par les composés de formule (I) selon l'invention a été testée selon le modèle établi par Bharnagar et al. (1990).

De manière générale, des rates femelles immatures de la lignée Sprague-Dawley d'un poids allant de 40 à 50 g ont été traitées avec une dose d'androstène dione de 30 mg/kg pendant 4 jours, en l'absence ou en présence de doses variées des composés de formules (I).

Quatre heures après l'administration d'inhibiteur d'aromatase, les rats ont été sacrifiés. Leur utérus a été prélevé, débarrassé de la graisse et du tissu conjonctif adhérent, puis les utérus ont été pesés (poids humide). Le poids sec des utérus a été déterminé le jour suivant après une étape de séchage pendant une nuit à 80°C.

WO 2005/033104 PCT/FR2004/050471 35

Les résultats détaillés de l'activité in vitro et in vivo de divers inhibiteurs d'aromatase de formule (I) selon l'invention sont présentées dans le tableau V, dans la présente description.

Les résultats montrent que les composés de formule (I) selon l'invention induisent une réduction de l'hypertrophie utérine induite par l'androstènedione qui est dépendante de la dose du composé de formule (I) utilisée, avec, pour certains des composés de formule (I), une inhibition presque complète de l'hypertrophie utérine induite par l'androstènedione.

10

Tableau I - A: 6-ACYL-BENZAZINONES ET 7-ACYL-BEZOTHIAZINONES

6-Acyl-benzoxazolinones, 6-acyl-benzothiazolinones, 6-acyl-benzoxazinones, 6-acyl-benzothiazinones et 7-acyl-benzothiazinones

	Méthode	B (AICI ₃ /DMF)	Ф	æ	В	Ø	В
1	F°C	260-261	202-204	260-261	200-201	181-182	163-164
ا ر	Molécule	NO THE PERSON NO.	\$ - 2 \ 0	₹- ₹	₹ - ≥ 0	\$ -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FHJ. W
	B	Con	Co	ğ	N N	Ŷ	N=
	Z	н	Ξ	Н	H	Н	H
	Υ .	•	1	ı	ı	ŧ	1
	X	0	0	0	0	0	0
	ጸ	н	CH3	H	CH3	СН3	СН3
	Ex.	1a	2a	3a	4a	5 a	68

Tableau I-A (suite)-BENZAZINONES ET 7-ACYL-BEZOTHIAZINONES

6-Acyl-benzoxazolinones, 6-acyl-benzothiazolinones, 6-acyl-benzoxazinones, 6-acyl-benzothiazinones et 7-acyl-benzothiazinones

	_					
	Méthode	В	В	æ	В	A (PPA)
	F°C	205-209	196-199	136-138	250-253	182-185
=0	Molécule	Z-Z-Z-2	\$\frac{1}{2} - \frac{1}{2} \fr	NO N	Z - Z - O	0=
<u>/</u>	B	Co	\$ \rightarrow	S C	Co	\Diamond
	Z	H	н	工	Ξ	Н
	Y	•	1	1	1	CH;
	Х	S	S	S	CH ₂	0
	$R_{\rm I}$	エ	CH ₃	CH ₂ CH ₃	Н	н
	Ex.	7a	8a	9a	10a	11a

Tableau I-A (suite)-BENZAZINONES ET 7-ACYL-BEZOTHIAZINONES

6-Acyl-benzoxazolinones, 6-acyl-benzothiazolinones, 6-acyl-benzoxazinones, 6-acyl-benzothiazinones et 7-acyl-benzothiazinones

	_			T	,	
	Méthode	A	B	В	В	В
	PoC	173-176	280-283	208-211	261-263	179-180
Z +C-B	Molécule		S	OH, CH,	25 S	
-×	8	\Diamond	CN	CN	CN	Co
	7	н	Ξ	エ	н	Н
• ·	Y	CH;	CH ₂	Ġ.	£,	Ĥ
	X	0	0	0	S	S
	$\mathbf{R}_{\!\scriptscriptstyle \mathrm{I}}$	CH ₃	Н	CH³	Н	CH3
	Ex.	12a	13a	14a	15a	16a

Tableau I-A (suite)-BENZAZINONES ET 7-ACYL-BEZOTHIAZINONES

6-Acyl-benzoxazolinones, 6-acyl-benzothiazolinones, 6-acyl-benzoxazinones, 6-acyl-benzothiazinones et 7-acyl-benzothiazinones

	Méthode	A (PPA)	¥	A	Y	V V
	PoC	169-170	147-148	216-217	148-149	190-191
B − − − − − − − − − − − − − − − − − − −	Molécule	x-2	£	T-Z Y N	£	5
>-/ >->*	В					•
	Z	н	н	н	Ξ	Н
	λ.	ı	•	ı	1	1
	X	0	0	W	S	0
	Ŗ	H	СН	Ħ	CH3	CH ₃
	Ex.	17a	18a	19a	20a	21a

Ś

Tableau I-A (suite)-BENZAZINONES ET 7-ACYL-BEZOTHIAZINONES

6-Acyl-benzoxazolinones, 6-acyl-benzothiazolinones, 6-acyl-benzoxazinones, 6-acyl-benzothiazinones et 7-acyl-benzothiazinones

	_			_	
	· Méthode	∀	В	В	В
	F°C		260-265	281-282	194-196
N = 0	Molécule	To some second s	S Z Z-Z	0 = Z 0 = Z 1 - Z 0	3-2
ğ-z ×	æ	o d	ON-	Ž	
	7	н	H	н	Н
	J	. 1	ı	CH ²	CH ²
	X	S	S	0	S
	R	CH3	Н	н	Н
	Ex.	22a	23a	24a	25a

v

Tableau 1-B: 6-ACYL-BENZAZINONES

6-acyl-benzothiazolinones, 6-acyl- benzoselenazolinones

Méthode	B (AICI,/DMF)	N-alkyl	В	В	N-alkyl
LoC	260-265	148-152	230-532	205-210	130-135
Molécule	T-Z y	SON SHOOP NOS	Ses CN	See Contraction of the Contracti	O Section CIN
Isomère	9	9	9	9	9
В	ON	ON-	NO-CN	NO -CN	CN
Z	H	Н	Н	Н	Н
λ	•	•	•	•	ı
X	S	S	Se	Se	Se
R ₁	н	CH ₂ CH ₃	Н	CH ₃	CH ₂ CH ₃
Ex.	1	2	3	4	5
	R _i X Y Z B Isomère Molécule F°C.	R_1 X Y Z B Isomère Molécule F°C H H S H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

S

		·
Ф	N-alkyl	N-alkyl
241-245	151-155	97-102
L-N-S	O Se Se O	CH2CH3 SS SS
9	9	9
ON-	NO ₂	NO-NO
д	н	王
1	,	,
Se	Se	Se
н	CH,	СН2СН3
9	7	80

TABLEAU II: 5 et 7-ACYL-BENZAZINONES 5-Acyl-benzoxazolinones, 7-acyl-benzoxazinones

Préparation	2	2	2	2	2	2
F°C	250-253	307-310	224-226	153-160	152-156	163-164
Molécule	O = O	0 = Z	2 0-0 2 0-0 2 0-0		S. F. S.	0 £7-7 0 =
В	-CN	Ŷ	Co	0	P	D C
Z	工	н	6-0CH ₃	Н	Н	H
λ	1	1	1	ı	1	1
X	0	0	0	0	0	0
R	Н	Н	Н	н	ĊĦ,	Æ
Ex.	26a	27a	28a	29a	30a	31a

TABLEAU II (suite): 5 et 7-ACYL-BENZAZINONES 5-Acyl-benzoxazolinones, 7-acyl-benzoxazinones

3	
210-213	117-119
	£-2
н	Ŧ
CH ₂	CH ₂
0	0
I	CH,
32a	33a

Tableau III-A: DERIVES REDUITS
Hydroxyarylméthyl benzazinones

Æ-N Z	A C-B
o'	

F°C	195-197	145-146	130-131	83-85	243-245
Molécule	O HO HO	NO N		\$5-2\\ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹
B	CO	-CN	N N	No.	~
7	Н	Н	Н	н	H
Y	•	1		•	1
X	0	0	0	0	0
R	H	CH³	H	CH ₃	CH ³
Ex.	16	2b	3b	4b	Sb

v

Tableau III-A (suite): DERIVES REDUITS
Hydroxyarylméthyl benzazinones

FoC	157-158	202-203	196-197	146-150	178-180	180-182	instable
Molécule	± - ≥ 0	2 × × × × × × × × × × × × × × × × × × ×	S S S S S S S S S S S S S S S S S S S	O S S S S S S S S S S S S S S S S S S S	\$ 	₹-Z	₹×
В	\$\bigs\{\rightarrow}^{\mathbb{N}}	-CN	CO	Co	CN		
Z	π	Ξ	н	Ή	H	ж	H
Y	1	ı	1	ı	1	CH;	CH ₂
X	0	S	S	S	CH ₂	0	0
R,	СН	Н	CH ₃	CH ₂ CH ₃	Н	н	CH3
Ex.	q 9	J.b	8b	96	10b	11b	12b

S

	Г	<u> </u>		<u> </u>]		Ţ	
	FoC	156-160	115-118	238-240	115-118	143-144	119-120	159-160	127-129
Tableau III-A (suite): DERIVES REDUITS Hydroxyarylméthyl benzazinones	Molécule	£	H- H- N-		Ğ	T-20	₹		\$- - 5
III-A (suite): I droxyarylméth	m	Co	Cov	Co	Co				
Tableau Hy	Z	Ξ.		н	н	Н	H .	н	н
	λ	CH3	CH ₂	$ m CH_2$	CH;	1	•	,	
	X	0	0	S	S	0	0	S	S
	R ₁	H	CF,	Н	CH3	Н	CH ₃	ж	СН3
	Ex.	13b	14b	15b	16b	17b	18b	19b	20b

154-155	152-155	208-212	257-260	173-179	208-212	216-220	156-157
5 5-2	5	L-N NO S	T-N 0		T-X O	r-50	F 0-55
Ç		SON -	Ç	\Diamond	CN	Š	CN
三	Ξ	н	Ξ	н	王	Н	6-ОСН3
		1	G.	CH ²	1	t	1
0	S	S	0	ω	0	0	0
CH	CH3	H	Н	н	Ή	Η	Н
21b	22b	23b	24b	25b	26b	27b	28b

Tableau III-A (suite): DERIVES REDUITS
Hydroxyarylméthyl benzazinones

Г	_	 			
Car	153-154	127-128	149-153	132-137	117-119
Molémila	HO H	- H- N-	₹z		\$ \frac{1}{5} \fra
R			ō		
7	Ŧ	 н	H	H	Ŧ
λ	,	 3	•	CH ₂	CH ₂
X	0	 0	0	0	0
R	H	СН	CH3	エ	CH,
Ex.	29b	30b	31b	32b	33b

Tableau III-B: DERIVES REDUITS Hydroxylméthyl benzazinone

	F								
	F°C	160-162	209-213	205-208	132-134	182-183	135-137	183-186	156-158
	Molécule	o≠ N NO2	E NOW	S S S S S S S S S S S S S S S S S S S	CH-CCH ₃	ā 🔆	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	5 5 J	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Isomère	9	. 9	9	9	9	9	2	5
5	В	20N -	- CN	Co	Co	SN-	CON -	Co	-CN
	7	I	H	Н	Н	H	Н	н	H
	_	ı	1	•		1	1	1	1
>	۷,	SO.	Se	Se	s	Se	ઝ	S	S
2	110	CH ₂ CH ₃	н	CH ₃	CH ₂ CH ₃	Æ	CH ₂ CH ₃	CH³	СӉСН
χĔ	10	8	2a	3a	4a	5a	ба	<i>7</i> a	88

Tableau IV R O N CH-B	1
---------------------------	---

_			·
Tol	122-126	85-87	113-117
Molécule	Z Z Z	\$ -2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z Z Z
B	3	Č.	₽
A	~z^z	-z^z	~z^z
Z	н	н	Ξ
Y	ı	1	1
×	0	0	0
R.	т.	GH,	Ξ
Code	PCH113	PCH27	PCH119
Ex.		7	က

Tableau IV (suite)

185-187	89-99	60-65	214-216	105-108
PN			No Z	4-2-X-8
₹	Ç	Ç	NO	-CN
~z^z	-z^z	~z^;z	~z^z	~z^.z
III.	н	H	H	H
	1	,	1	•
0	0	0	ω	ω
ව ි	CH ³	G ₃	エ	CH,
PCH122	PCH30	PCH116	PCH215	PCH165
4	ડ	9	7	∞

Tableau IV (suite)

	T			,
95-98	200-209	139-143	123-125	135-140
S S S S S S S S S S S S S S S S S S S	₹ 12 0	1-2 1-2	₹>	Z Z Z
5	3	0		CS
~z^z	~z^;z	~z^z	~z^z	~z^;z
Ξ.	н	н	н	エ
ı	1	f	f	СН,
S	පි	0	0	0
CH ₂ CH ₃	н	H	CH ₃	н
PCH241	PCH234	PCH218	PCH213	PCH225
6	10	11	12	13

TABLEAU IV (suite)

	- 				
80-87	150-155	74-80	128-132	75-80	165-160
\$ - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	5		I-Z		T-Z 0-0
CN	CON	Co.	Co	۲	No O
~=<->z	~z^z	~z^z	~z^;z	~z^z	~z^.z
ж	н	н	н	н	6-ОСН3
CH,	CH ₂	CH,	1	1	
0	S	S	0	0	0
CH ₃	ж	CH ₃	н	Ξ	н
PCH222	PCH229	PCH240	PCH128	PCH129	GCA36
14	15	16	17	18	19

S

Tableau IV (suite)

127-130	165-168	215-218	95-100
Z Z Z	S S S S S S S S S S S S S S S S S S S		
§		CON	CN
-z.z	-z.z.	-z.z	-z.z
Ξ	н	Н	ж
1	,	ජි	CH ₂
ω		ω	S
Ξ	GP.	工	CH ₃
PCH216	PCH158	PCH230	PCH231
20	21	22	23

0

	203-206	193-195	73-74	76-78	225-226
	-2/2	x-z 0	# # # # # # # # # # # # # # # # # # #	PD-N-0 PD	24-7-5-0 5-7-7-0 5-7-7-0 5-7-7-0
	0	\Diamond	\bigcirc	٥	
IV (suite)	~z^;z	-z^z	-z^z	~z^z	z.z) Lz (
TABLEAU IV (suite)	ж	н	н	Н	Н
	CH ₂	•	•	•	•
	0	0	0	0	0
	н	н	CH ₃	CH_3	CH,
	PCH211	PCH10	AL22	PCH15	PCH21
	24	25	26	27	78

TABLEAU IV (suite)	77-79	108-111	133-135	135-138	70-74
		1-2	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	f. z	
		.			₽
IV (suite)	-z' ^z	~z^z	~z^.z	-z.z	-z ^{.²} >
TABLEAU IV	д	II	Н	н	H
		1	•		
	0	0	0	0	0
	CH ₃	H	CH,	CH ₃	CH ₃
	PCH20	PCH124	PCH31	PCH183	PCH160
	29	30	31	32	33

	125-130	55-60	65-68	150-154
	Z-Z-O-Ö	x-z v	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	S S S S S S S S S S S S S S S S S S S
	Š	0		0
V (suite)	-z ^{,z} >	~z^.z	~z^.z	-z ^{.z} >
TABLEAU IV (suite)	6-0CH ₃	H	н	Ξ
	•	1	r	•
	0	ω	w	ω
	Ι	Η	СН	ĊŦ,
	GCA37	PCH100	PCH28	PCH208
	34	35	36	37

3

Tableau IV (suite)

106-112	238-241	89-99	160-164	140-150	187-189
2-x, y	Z-Z %	£	\$ - 2 \ 2 \ 2 \ 3 \ 2 \ 3 \ 3 \ 3 \ 3 \ 3 \	₹	- z^z
Ç	ON-C	\Diamond	\Diamond	0	\Diamond
-z ^{,z} >	~z^z	~z^z	-z. ^z)	-z.² \= <u>z</u>	~~^x
н	Ξ	I	ж	Ξ	Н
1	1	ਲੌ	ਲਿੰ	CH ²	H H
ω	ω	0	0	0	ω
Ğ.	Ξ.	CH ³	CH	CH3	ı. II
PCH164	PCH249	PCH19	PCH210	PCH214	PCH227
38	39	40	41	42	43

S

		η	1		
	F°C	79-83	223-226	154-158	95-98
	Molécule	COMACH ₃ OASCH ₃ N N N N N N N N N N N N N N N N N N N	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S
	Isomère	9	9	9	9
	B	ON-	CN CN	- CN	No.
Z CH-B	Ą	-z ^{.z} >	-z ^{.z} >	-z ^{,z} >	-z ^{.²} ∘ \=z
Tableau IV (Suite) R ₁ N X X A CH-I	Z	Н	Н	Н	н
0	Y	•	•	•	1
	X	S	Se	Se	Se
	R	CH ₂ CH ₃	н	CH3	CH ₂ CH ₃
	Code	PCH 243	PCH 302	PCH 300	PCH 303
	Ex.	4	45	46	47

te
Ξ
9
≥
\supset
≾
۳,
മ
_

H	7.7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	125-127
	N N N N N N N N N N N N N N N N N N N
-z.z -z.z -z.z	
	NO CO
ж ж ж	-z ^{.z})
	ж
	1
s s s	S
CH ₂ CH ₃	СН2СН3
PCH 304 PCH 305	PCH 246
49 49	51

TABLEAU V Résultats des essais in vitro et in vivo des composes de formule (I) selon l'invention

		Andrigas	
Code	Composé	Activite In vitro IC _{S0} (nM)	% d'inhibition aux doses (µg/Kg)
Letrozole	NC N	4.23	66 % (1) 57, 59 % (1) 74 % (3) 91, 86 % (5) 90 % (10) 94, 89 % (10)
(s)- Fadrozole	₹	61 (h) 260 (e)	

TABLEAU V (suite)

ONIQUES	títués	% d'inhibition aux doses			
AZOLIN	oxazolinoniques subst en position 6	Activité In vitro IC ₅₀ (nM)	84.63 (h) 103.3 (e)	320 (h) 340 (e)	>2000 (h)
DERIVES BENZOXAZOLINONIQUES	Dérivés benzoxazolinoniques substitués en position 6	Composé	x-Z 0		
DE	·	Code	PCH10	AL22	PCH15

TABLEAU V (suite)

		19 % (10) 50 % (100) 94 % (1000)		
38.0 (h) 47.7 (e)	33.7 (h) 34.6 (e)	13.25 (h) 14.6 (e)	46.2 (h) 72 (e)	25.05 (h) 27.7 (e)
		O=\(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Chr. Chr.	H-WOO
PCH30	PCH116	PCH113	PCH27	PCH119

TABLEA	PCH122	PCH21	PCH20
TABLEAU V (suite)	18.63 (h) 23.25 (e)	>3000 (h) nd (e)	>3000 (h) nd (e)
	39 % (10) 58 % (100 92 % (1000		

TABLEAU V (suite)

	Dérivés benzoxazolinoniques substitués en position 5	ues substitués	en position 5
Code	Composé	Activité In vitro ICso (nM)	% d'inhibition aux doses (110/kg)
PCH124	Z-Z-	14.95 (h) 14.1 (e)	34 % (10) 71 % (100) 92 % (1000)
PCH31	**************************************	46.6 (h) 50.1 (e)	
PCH129	I-Z	26.8	
PCH128	Z Z Z	5.83	29 % (1) 29 % (10) 53 % (100)
GCA36	1-Z 0-5	19.9	

(e)	1813	18.7	17.1	24.9	328
TABLEAU V (suite)	2 - N - N - N - N - N - N - N - N - N -	£		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N N N
	PCH183	PCH160	PCH195	PCH196	GCA37

TABLEAU V (suite)

dnes	titués	% d'inhibition aux doses(µg/Kg)		13 % (10) 25 % (100) 75 % (1000)			0 % (1) 56 % (10) 90 % (100)
hiazolinoni	thiazolinoniques subs en position 6	ActivitéIn vitro ICso (nM)	33.65 (h) 34.0 (e)	12.1 (h) 23.4 (e)	24.35 (h) 24.9 (e)	26.43 (h) 22.6 (e)	4.04
Dérivés benzothiazolinoniques	Dérivés benzothiazolinoniques substitués en position 6	Composé	S S S S S S S S S S S S S S S S S S S	£ }		,	O S C C C C C C C C C C C C C C C C C C
		Code	PCH100	(+/-) PCH28	(E1) PCH28	(E2) PCH28	PCH215

^

20

	22 % (1) 23 % (10) 66 % (100)			18 % (1) 37 % (3) 16 % (10)	21 % (1) 32 % (10) 76 % (100)	54, 60 % (1) 56, 74 % (10) 68, 100 % (100)	32 % (1) 50 % (10) 90 % (100)
TABLEAU (V) suite	4.54	8.81	4.94	4.29	7.51	8.71	4.49
TABLEA	P- N-			CHOCH ₃	T-Z S	O S C C C C C C C C C C C C C C C C C C	O S CN
	PCH165 (+/-)CD4	PCH165 (+)CD4	PCH165 (-)CD4	PCH241	PCH216	PCH158 (PCH190)	PCH260

V (suite)
TABLEAU 1

	58 OF ST.7	59	13 of 199	8 o c c c c c c c c c c c c c c c c c c
1	PCH258	PCH259	PCH243	PCH248

TABLEAU V (suite)

	Dérivés benzothiazolinoniques substitués en position 5	inoniques subs ition 5	titués
Code	Composé	Activité In vitro IC ₅₀ (nM)	% d'inhibition aux doses (µg/Kg)
PCH132		178	
PCH134	" this	179	
PCH163		5.78	57 % (1) 83 % (10) 95 % (100)
PCH246		5.51	22% (1) 45 % (10) 91 % (100)

TABLEAU V (suite)

noniques	bstitués	β % d'inhibtion aux doses(μg/Kg)	49 % (1) 86 % (10) 91 % (100)	45 % (1) 20 % (10) 63 % (100)	38 % (1) 60 % (10) 71 % (100)
lenazoli	nazolinoniques su en position 6	Activité In vitro IC ₅₀ (nM)	4.64	6.53	3.99
Dérivés benzoselenazolmoniques	Dérivés selenazolinoniques substitués en position 6	Composé	och chi	ose or	os o
The Total Control of the second Control of t		Code	PCH300	PCH302	PCH303

v

J V (suite)	3.64	3.70
TABLEAU V (suite)	· Hy services	°S °
	PCH304	PCH305

S

uite)
J V (s
EAU
ABL

	Dérivés benzoxazinoniques	xazinoniq	ies
-	Dérivés benzoxazinoniques substitués en position 7	es substitués en	position 7
Code	Composé	Activité In vitro IC _{So} (nM)	% d'inhibtion aux doses (µg/Kg)
PCH19	0 V N N N N N N N N N N N N N N N N N N N	52.48 (h) 59.87 (e)	
PCH211		74.4	

ABLEAU V (suite)

Code	Composé	Activité In vitro IC ₅₀ (nM)	% d'inhibition aux doses (µg/Kg)
PCH218		65.5	
PCH213		5.64	0 % (1) 3 % (10) 5 % (100)
PCH225	No O	06.6	
PCH222	O CH3 NN	3.44	0 % (1) 22 % (3) 32 % (10)
PCH 223			4 % (1) 22 % (10) 66 % (100)

TABLEAU V (suite)

miques	substitués	θ % d'inhibition aux σ doses (μg/Kg)			
thiazino	othiazinoniques en position 7	Activité In vitro IC ₅₀ (nM)	55.1	13.8	5.38
Dérivés benzothiazinoniques	Derives benzothiazinoniques substitués en position 7	Composé		S N N N N N N N N N N N N N N N N N N N	S C C C C C C C C C C C C C C C C C C C
		Code	PCH227	PCH229	PCH240

5 01

	2% (10) 22% (100) 74% (1000)	
J V (suite)	34.8	
TABLEAU V (suite)		CH.
	PCH230	

_

REFERENCES

AICHAOUI, H., LESIEUR, I., HENICHART, J.-P. Synthesis (1990), **8**, 679-680.

5

AICHAOUI, H., POUPAERT, J.-H., LESIEUR, D., HENICHART, J.-P. Tetrahedron (1991), 47, 6649-6654.

AICHAOUI, H., LESIEUR, D., HENICHART, J.-P.

Journal of Heterocyclic Chemistry (1992), 29: 171-175.

BERGER, P.-J.; NEGUS, N.-C.; SANDERS, E.-H.; GARDNER, P.-D. Science (1981), **214**:69-70.

BONTE, J.-P.; LESIEUR D.; LESPAGNOL, C.; CAZIN, J.-C. European Journal of Medicinal Chemistry (1974), 9: 491-496.

BRODIE, A.

Trends in Endocrinology and Metabolism (2002), 13: 61-65.

20

BUTTERSTEIN, G.-M.; SCHADLER, M.-H. Biology of Reproduction (1988), **39**:465-471.

KUIJPERS, A.-L.; VAN PELT, J.-P.; BERGERS, M.; BOEGHEIM, P.-J.;DEN BAKKER, J.-E.;SIEGENTHALER, G.; VAN DE KERKHOF, P.-C.;SCHALKWIJK, J.

The British Journal of Dermatology (1998), 139: 380-389.

MOSMANN, T.

Journal of Immunology Methods (1983), 65, 5-63.

MOUSSAVI, Z.; LESIEUR, D.; LESPAGNOL, C.; SAUZIERES, J.; OLIVIER, P. European Journal of Medicinal Chemistry (1989), **24**, 55-58.

PURBA, H.-S., Bhatnagar, A.-S.Journal of Enzyme Inhibition (1990), 4, 169-178.

SCHADLER, M. H.; BUTTERSTEIN, G. M.; FAULKNER, B. J.; RICE, S. C.; WEISINGER, L.A.

Biology of Reproduction (1988), 38:817-820.

5

SERALINI, G. E.; MOSLEMI, S.

Molecular and Cellular Endocrinology (2001), 178: 117-131.

SASTRY, C. V.; REDDY, RAO, K.; SRINIVASA, RASTOGI, K.; JAIN, M. L. Indian Journal Chemistry Section B (1988) 27; 871-873.

YOUS, S.; POUPAERT, J. H.; LESIEUR, I.; DEPREUX, P.; LESIEUR, D. Journal of Organic Chemistry (1994), **59**:1574-1576.

5

REVENDICATIONS

1. Utilisation d'un composé de formule (I) ci-dessous :

$$O \bigvee_{X}^{R_1} Z$$

$$CH-B$$

$$(I)$$

dans laquelle:

- . R_1 représente un atome d'hydrogène ou un radical alkyle (C_1 - C_6), alkényle (C_1 - C_6), ou alkynyle (C_1 - C_6), linéaire ou ramifié,
- . X représente un atome d'oxygène, de soufre ou de sélénium ;
- Y représente une liaison simple ou un groupement CH₂, éventuellement substitué par un ou deux groupements alkyles inférieurs,
 - . Z représente un atome d'hydrogène ou d'halogène, ou un groupement hydroxy ou alkoxy linéaire ou ramifié,
 - . A représente un noyau imidazole, triazole ou tétrazole,
- 15 **B** représente un groupement choisi parmi les groupes phényle, naphtyle, biphényle ou encore un groupe hétéroaryle monocyclique ou bicyclique ayant de 5 à 10 chaînons et comprenant de 1 à 3 hétéroatomes,

les groupements phényle, naphtyle, biphényle et hétéroaryle étant non susbtitués ou substitués par 1 à 3 groupements choisis parmi alkyle (C₁-C₆),

alcoxy (C_1 - C_6), carboxy, formyle, amino, amido, ester, nitro, cyano, trifluorométhyle, ou atomes d'halogène,

ainsi que les énantiomères et diastéréoisomères des composés de formule (I), ainsi que les sels d'addition à un acide ou à une base pharmaceutiquement acceptable des composés de formule (I),

- 25 pour la préparation d'une composition pharmaceutique destinée au traitement d'un cancer ou du psoriasis.
 - 2. Utilisation selon la revendication 1, caractérisée en ce que, pour le composé de formule (I), le groupe B est choisi parmi :
- un benzène non substitué ou substitué en position méta ou para par un groupe choisi parmi les groupes cyano ou nitro, par un atome de chlore ;
 un hétérocycle pyridine.

20

30

- 3. Utilisation selon l'une des revendications 1 ou 2, caractérisée en ce que, pour le composé de formule (I), R1 représente un atome d'hydrogène ou un groupe méthyle.
- 4. Utilisation selon l'une des revendications 1 à 3, caractérisée en ce que, pour le composé de formule (I), Z représente un atome d'hydrogène ou un groupe méthoxy.
- 5. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que, pour le composé de formule (I), A représente un groupe 1,3-imidazolyle ou 1,2,4 triazolyle.
 - 6. Utilisation selon la revendication 1, caractérisée en ce que le composé de formule (I) est choisi parmi les composés suivants :
- 15 la 5-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-1,3-benzoxazol-2(3*H*)-one;
 - la 6-[(4-Cyanophényl)(1H-imidazol-1-yl)méthyl]-1,3-benzothiazol-2(3H)-one;
 - la 6-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-3-méthyl-1,3-benzothiazol-2(3*H*)-one;
 - la 6-[(4-Cyanophényi)(1*H*-1,2,4-triazol-1-yi)méthyl]-1,3-benzothiazol-2(3*H*)-one:
 - la 6-[(4-Cyanophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-3-méthyl-1,3-benzothiazol-2(3*H*)-one;
 - la 6-[(4-Cyanophényl)(1*H*-1,2,4-triazol-1-yl)méthyl]-3-éthyl-1,3-benzothiazol-2(3*H*)-one;
- 25 la 6-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-1,4-benzoxazin-3(4*H*)-one;
 - la 6-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-4-méthyl-1,4-benzoxazin-3(4*H*)-one ; et
 - la 7-[(4-Cyanophényl)(1*H*-imidazol-1-yl)méthyl]-4-méthyl-1,4-benzothiazin-3(4*H*)-one;
 - la 3-Ethyl-6-[(4-nitrophenyl)(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-benzothiazol-2(3*H*)-one;
 - le 4-[(2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1*H*-1,2,4-triazol-1-yl)methyl]benzonitrile;
- le 4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1*H*-1,2,4-triazol-1-yl)methyl]benzonitrile;
 - le 4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzoselenazol-6-yl)(1*H*-1,2,4-triazol-1-yl)methyl] benzonitrile ;

- la 3-Methyl-6-[(4-nitrophenyl)(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-benzoselenazol-2(3*H*)-one;
- la 3-Ethyl-6-[(4-nitrophenyl)(1*H*-1,2,4-triazol-1-yl)methyl]-1,3-benzoselenazol-2(3*H*)-one;
- 5 le 4-[(3-Methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-yl)(1H-1,2,4-triazol-1-yl)methyl] benzonitrile; et
 - 4-[(3-Ethyl-2-oxo-2,3-dihydro-1,3-benzothiazol-5-yl)(1H-1,2,4-triazol-1-yl)methyl] benzonitrile
- 7. Composé inhibiteur de l'aromatase de formule (I), tel que défini dans l'une quelconque des revendications 1 à 6, pour son utilisation en tant que principe actif d'un médicament.
- 8. A titre de composé nouveau, un composé de formule (I) tel que défini dans l'une quelconque des revendications 1 à 6.

AlGl₃, BCOCl ou PPA, BCO₂H NaBH₄, H₂O ou NaBH₄, CH₃OH CDI, acetonitrile ou SOCl₂, triazole, acetonitrile

FIGURE 1

FIGURE 2

SOCi₂, 1,2,4-triazole

3/5

FIGURE 3

4/5

	TEA, ACCI, MeC	
	Na₂S, EtOH	'
$\overline{3}$.	SnCl ₂ , 6 N.HCl	
4:	Urée	
5 .	SOCI ₂ , MeOH	
6.	LIAIHa, THE	
7. 8	MnO₂, CH₂Cl₂ RI, K₂CO₃, aceto	
TOTAL SECTION SERVICE		trile, APrMgBr, THF
(10 ₀	1,2,4-triazole, St	DCI2. CH3CN

FIGURE 4

FIGURE 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ___ __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.