King County Dataset Regression, SGD, Evaluation Metrics

Last Week

Aurélien Géron, Hands-on-Machine Learning

- 1. Look at the big picture
- 2. Get the data and set aside a test set
- 3. Discover and visualise the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Identify a suitable metric for evaluating the task
- 6. Select a model and train it
- 7. Fine-tune your model
- 8. Present your solution
- 9. Launch, monitor and maintain your system

1. Frame the Problem

 We want to be able to predict the price of houses in King County, Washington, US.

- Questions for you to consider:
 - Is it **supervised**, unsupervised, or reinforcement learning?
 - Is it a classification task, a regression task or something else?
 - Should you use batch learning or online learning techniques?

2. Get the data

First of all let's import the data from the CSV file.

1 housing = pd.read_csv("../datasets/kings-county-housing-data.csv")

kings-county-housing-data

id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	lat	long	sqft_living15	sqft_lot
7129300520	20141013T000000	221900.0	3	1.0	1180	5650	1.0	0	0	3	7	1180	0	1955	0	47.5112	-122.257	1340	56
6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	3	7	2170	400	1951	1991	47.721	-122.319	1690	76
5631500400	20150225T000000	180000.0	2	1.0	770	10000	1.0	0	0	3	6	770	0	1933	0	47.7379	-122.233	2720	80
2487200875	20141209T000000	604000.0	4	3.0	1960	5000	1.0	0	0	5	7	1050	910	1965	0	47.5208	-122.393	1360	50
1954400510	20150218T000000	510000.0	3	2.0	1680	8080	1.0	0	0	3	8	1680	0	1987	0	47.6168	-122.045	1800	75
7237550310	20140512T000000	1225000.0	4	4.5	5420	101930	1.0	0	0	3	11	3890	1530	2001	0	47.6561	-122.005	4760	1019
1321400060	20140627T000000	257500.0	3	2.25	1715	6819	2.0	0	0	3	7	1715	0	1995	0	47.3097	-122.327	2238	68
2008000270	20150115T000000	291850.0	3	1.5	1060	9711	1.0	0	0	3	7	1060	0	1963	0	47.4095	-122.315	1650	97
2414600126	20150415T000000	229500.0	3	1.0	1780	7470	1.0	0	0	3	7	1050	730	1960	0	47.5123	-122.337	1780	81
3793500160	20150312T000000	323000.0	3	2.5	1890	6560	2.0	0	0	3	7	1890	0	2003	0	47.3684	-122.031	2390	75
1736800520	20150403T000000	662500.0	3	2.5	3560	9796	1.0	0	0	3	8	1860	1700	1965	0	47.6007	-122.145	2210	89
9212900260	20140527T000000	468000.0	2	1.0	1160	6000	1.0	0	0	4	7	860	300	1942	0	47.69	-122.292	1330	60
114101516	20140528T000000	310000.0	3	1.0	1430	19901	1.5	0	0	4	7	1430	0	1927	0	47.7558	-122.229	1780	126
6054650070	20141007T000000	400000.0	3	1.75	1370	9680	1.0	0	0	4	7	1370	0	1977	0	47.6127	-122.045	1370	102

2. stratified_split ahead of EDA

```
from sklearn.model_selection import StratifiedShuffleSplit
splitter = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in splitter.split(housing, housing.sqft_living_cat):
    train_set = housing.loc[train_index]
    test_set = housing.loc[test_index]

    0.0s
```

```
1 train_set.sqft_living_cat.value_counts() / len(train_set)
                                                                     1 test_set.sqft_living_cat.value_counts() / len(test_set)
   0.0s
                                                                   ✓ 0.0s
sqft_living_cat
                                                                 sqft_living_cat
   0.473
                                                                     0.473
   0.316
                                                                     0.316
   0.106
                                                                     0.106
   0.069
                                                                     0.069
   0.036
                                                                     0.036
                                                                 Name: count, dtype: float64
Name: count, dtype: float64
```

3. Inspect the data

Description of the features:

Here follows a detailed description of all the features (i.e. columns/variables) in the dataset.

- id unique identifier for a house
- date house was sold
- price price, our prediction target
- bedrooms number of Bedrooms/House
- bathrooms number of bedrooms
- sqft_living square footage of the home
- sqft_lot square footage of the entire lot
- floors total number of floors (levels) in house
- waterfront house which has a view to a waterfront
- view quality of view
- condition how good the condition is (overall)
- grade overall grade given to the housing unit, based on King County grading system
- sqft_above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built Built Year
- **yr_renovated** Year when house was renovated
- zipcode_group 9 groups aggregating some of the 70 zipcodes having similar characteristics
- lat Latitude coordinate
- long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbours
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbours

1 housing.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
    Column
                   Non-Null Count Dtype
                   21613 non-null int64
                   21613 non-null object
     date
    price
                   21613 non-null float64
    bedrooms
                   21613 non-null int64
    bathrooms
                   21613 non-null float64
    sqft_living
                   21613 non-null int64
    sqft_lot
                    21613 non-null int64
     floors
                    21613 non-null float64
    waterfront
                   21613 non-null int64
    view
                   21613 non-null int64
    condition
                   21613 non-null int64
    arade
                   21613 non-null int64
 12 sqft_above
                   21613 non-null int64
    sqft_basement
                   21613 non-null int64
 14 yr_built
                   21613 non-null int64
    yr_renovated
                   21613 non-null int64
     lat
 16
                   21613 non-null float64
     lona
                    21613 non-null float64
    sqft living15
                   21613 non-null int64
                   21613 non-null int64
    sqft_lot15
    zipcode group 21613 non-null object
dtypes: float64(5), int64(14), object(2)
memory usage: 3.5+ MB
```

sns.heatmap

- Pearson's correlation coefficient drawn as a 'heat' map
- Colour coded for accessibility
- +1 = perfect positive correlation – hotter!
- -1 = perfect negative correlation – cooler!

price -	1	0.31	0.52	0.7	0.091	0.26	0.26	0.39	0.037	0.67	0.6	0.32	0.06	0.11	0.59	0.089
bedrooms -	0.31	1	0.51	0.57	0.031	0.17	-0.006	0.077	0.035	0.35	0.47	0.31	0.15	0.018	0.39	0.026
bathrooms -	0.52	0.51	1	0.75	0.087	0.5	0.062	0.18	-0.12	0.67	0.68	0.28	0.51	0.044	0.57	0.089
sqft_living -	0.7	0.57	0.75	1	0.17	0.35	0.1	0.28	-0.056	0.77	0.88	0.43	0.32	0.049	0.76	0.18
sqft_lot -	0.091	0.031	0.087	0.17	1	-0.005	0.023	0.075	-0.011	0.12	0.18	0.011	0.051	0.004	0.14	0.7
floors -	0.26	0.17	0.5	0.35	-0.005	1	0.024	0.023	-0.26	0.46	0.52	-0.25	0.49	0.005	0.28	-0.012
waterfront -	0.26	-0.006	0.062	0.1	0.023	0.024	1	0.41	0.02	0.083	0.069	0.08	-0.025	0.1	0.085	0.035
view -	0.39	0.077	0.18	0.28	0.075	0.023	0.41	1	0.048	0.25	0.16	0.28	-0.053	0.1	0.28	0.076
condition -	0.037	0.035	-0.12	-0.056	-0.011	-0.26	0.02	0.048	1	-0.15	-0.16	0.18	-0.36	-0.058	-0.089	-0.006
grade -	0.67	0.35	0.67	0.77	0.12	0.46	0.083	0.25	-0.15	1	0.76	0.17	0.45	0.008	0.71	0.13
sqft_above -	0.6	0.47	0.68	0.88	0.18	0.52	0.069	0.16	-0.16	0.76	1	-0.058	0.43	0.021	0.74	0.2
sqft_basement -	0.32	0.31	0.28	0.43	0.011	-0.25	0.08	0.28	0.18	0.17	-0.058	1	-0.13	0.063	0.2	0.011
yr_built -	0.06	0.15	0.51	0.32	0.051	0.49	-0.025	-0.053	-0.36	0.45	0.43	-0.13	1	-0.23	0.33	0.071
yr_renovated -	0.11	0.018	0.044	0.049	0.004	0.005	0.1	0.1	-0.058	0.008	0.021	0.063	-0.23	1	-0.01	0.007
sqft_living15 -	0.59	0.39	0.57	0.76	0.14	0.28	0.085	0.28	-0.089	0.71	0.74	0.2	0.33	-0.01	1	0.18
sqft_lot15 -	0.089	0.026	0.089	0.18	0.7		0.035		-0.006		0.2	0.011		0.007	0.18	1
	price -	bedrooms -	bathrooms -	sqft_living -	sqft_lot -	floors -	waterfront -	view -	condition -	grade -	sqft_above -	sqft_basement -	yr_built -	yr_renovated -	sqft_living15 -	sqft_lot15 -
												S				

sns.boxplot

3. Check distribution of housing data

4. Prepare the data (pre-processing / cleaning)

- Drop columns with large amounts of missing data (> 50%)
- Data imputation filling in missing values with various strategies
 - Mean (when normally distributed)
 - Median (when data is skewed or significant outliers)
 - Mode (for categorical data)
- Encoding (for categorical data)
 - Ordinal (for preserving order / ranking)
 - One Hot (creates a column for each category)
- Feature Scaling
 - Min Max Scaler [-1 to +1] or [0 to +1]
 - Standard Scaler (scaled around the mean of 0 and variance = 1)
- Preparing a 'pipeline' of the above processes

4. Bringing all this together with Pipeline

- Think of a literal pipeline
- We can create a 'wrapper' for these different steps:
 - Dropping columns
 - Imputation
 - Scaling

4. Bringing all this together with Column Transformation

 Furthermore, Column Transformation can handle both continuous and categorical feature engineering:

```
from sklearn.compose import ColumnTransformer
    column_transformer = ColumnTransformer(
            ("numerical", num_pipeline, num_feats),
            ("categorical", OneHotEncoder(categories='auto', sparse_output=False).set_output(transform="pandas"), cat_feats),
        remainder="passthrough",
        verbose_feature_names_out=False,
    ).set_output(transform="pandas")
11
    column transformer
                                                                                                                           Python
               ColumnTransformer
                   categorical
   numerical
                                    remainder
▶ SimpleImputer
                 ▶ OneHotEncoder
                                  ▶ passthrough
▶ StandardScaler
```

▶ StandardScaler

```
1 train_data_prepared = full_pipeline.transform(train_set.drop(columns=["price"]))
2 train_data_prepared
```

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	view	condition	grade	sqft_lot15
20474	-0.409	1.479	-0.767	-0.330	2.794	-0.305	-0.629	0.290	-0.427
3840	-1.509	-1.455	-1.380	-0.108	-0.915	-0.305	0.910	-0.557	-0.054
7426	-0.409	1.805	2.367	0.159	0.940	-0.305	-0.629	1.985	0.143
4038	0.691	-1.455	-1.030	-0.209	0.013	-0.305	-0.629	-1.405	-0.424

This Week

Aurélien Géron, Hands-on-Machine Learning

- 1. Look at the big picture
- 2. Get the data and set aside a test set
- 3. Discover and visualise the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Identify a suitable metric for evaluating the task
- 6. Select a model and train it
- 7. Fine-tune your model
- 8. Present your solution
- 9. Launch, monitor and maintain your system

Agenda

- Evaluation Metrics for Regression Tasks: MAE, MSE, RMSE, R²
- Regression models Linear to Polynomial
- Gradient Descent algo for the SGDRegressor
- Hyperparameters vs parameters (learnt by the model)
- Regularisation and Lasso / Ridge penalties
- Cross-Validation (CV)

5. Identify a metric for evaluation

Metrics for Regression tasks:

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² (variance explanation)

Metrics for Classification tasks:

- Precision -> F1-score
- Recall
- Accuracy
- Confusion Matrix (type I and II errors)

5. Metrics: Mean Absolute Error (MAE)

• This is the mean of the absolute value of errors.

$$\frac{1}{N} \sum_{i=1}^{N} |y_i - \widehat{y}_i|$$

- Abs(7 5) = 2
- Abs(5-7) = 2

5. Metrics: Mean Squared Error (MSE)

- This is the mean of the squared errors.
- Larger errors are noted more than with MAE, making MSE more popular.

5. Metrics: Root Mean Squared Error (RMSE)

- This is the root of the mean of the squared errors. $\sqrt{MSE} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y_i})^2}$ Most popular as it has same units as the factor of the squared errors.
- Context matters: A RMSE of \$10 is fantastic for predicting our house prices, but not so good for predicting the price of coffee!

5. Metrics: R²

$$R^{2} = 1 - \frac{MSE(model)}{MSE(baseline)} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$

- The R² score (also called the coefficient of determination) measures how well the regression model explains the variance in the target variable.
- The numerator represents the unexplained variance (errors in prediction).
- The denominator represents the total variance in y_test.
- 1.0 Perfect fit (model explains all variance)
- **0.0** Model explains **none** of the variance
- Negative Model performs worse than a horizontal line

6. Select a model (algorithm) and train it

- Linear Regression: Ordinary Least Squares
 - Closed form solution (Normal Equation)
 - Gradient Descent
- Polynomial Regression
- Regularized Models
 - Ridge Regression
 - Lasso Regression
- Decision Trees Regression
- Something else (Support Vector Machines, Neural Networks...)
- Ensemble Models, Random Forests

6. Linear Regression

- Find the best linear model that fits our data
- This means finding two parameters: **slope** (β1) and **intercept** (β0)

Once trained, we can use the model to make predictions => machine learning!!

6. Linear Regression

- Find the best linear model that fits our data
- This means finding two parameters: **slope** (β1) and **intercept** (β0)

6. Linear Regression: sqft_living vs price

Let's look at sqft_living vs price:

6. Linear Regression: sqft_living vs price

Close Form Solution: Normal Equation

- Find the value of β that minimizes the squared sum of the estimation errors ϵ
- The issue here is the computational complexity of the explicit solution, especially the complexity of computing with respect to the number of features $(X^TX)^(-1) \Rightarrow O(n^2.4) \div O(n^3)$
- A different approach would be to use an optimisation algorithm to find the optimal solution

$$\widehat{\boldsymbol{\beta}} = \arg\min \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \|^{2}$$

$$\widehat{\boldsymbol{\beta}}$$

$$\underline{\boldsymbol{X}^{T} \boldsymbol{X}} \widehat{\boldsymbol{\beta}} = \underline{\boldsymbol{X}^{T}} \boldsymbol{y}$$

$$\widehat{\boldsymbol{\beta}} = (\underline{\boldsymbol{X}^{T} \boldsymbol{X}})^{-1} \underline{\boldsymbol{X}^{T}} \boldsymbol{y}$$

Gradient Descent

- Tweak (adjust) the weights **β** iteratively in order to **minimize a cost** function.
- Measure the local gradient of the error function with respect to the weights β , and tweak β in the direction of descending gradient.
- Once the gradient equals zero, you have reached a minimum.

Gradient Descent


```
from sklearn.linear_model import SGDRegressor
      sqd_reg = SGDRegressor(
   3
          loss="squared error", # default cost function (MSE)
          max iter=2000, # max numer of epochs. epoch = 1 full iteration over the training set
   4
   5
          penalty=None,
   6
          eta0=1e-3, # initial learning rate
          tol=1e-3, # stopping criterion tolerance. stop searching for a minimum
   8
                     # (or maximum) once some tolerance is achieved, i.e.
                     # once you're close enough.
   9
  10
          random state=77
  11
  12
  13
      sqd req.fit(X train, y train)
  14
      print(f"SGD Regressor intercept: {sgd_reg.intercept_})")
      print(f"SGD Regressor coefficient: {sgd_reg.coef_}")
SGD Regressor intercept: [617233.14])
SGD Regressor coefficient: [ -26465.9 3960.11 166890.12
                                                              9785.09
                                                                        -9283.81
                                                                                  47947.42
  22041.67
             65475.52 -7549.64 -128317.68 -251401.32 178259.88
-207806.75 -172014.33 -18649.67 270336.15 428669.8
                                                       518157.06
 498916.97 115957.43 -17641.41 -22332.87 -3167.11
```

7. Hyperparameters (fine tuning) and parameters

• SGDRegressor introduces us to **hyperparameters** (penalty, eta, tol) that can be set and 'fine tuned' by humans to optimise the model's performance.

• There are other **parameters** such as 'intercept' and 'coef' are 'learnt' by the model as it is trained – the human does not set

these.

```
from sklearn.linear_model import SGDRegressor
    sgd_reg = SGDRegressor(
        loss="squared_error", # default cost function (MSE)
        max_iter=2000,  # max numer of epochs. epoch = 1 full iteration over the training set
        penalty=None,
        eta0=1e-3, # initial learning rate
                   # stopping criterion tolerance. stop searching for a minimum
                    # (or maximum) once some tolerance is achieved, i.e.
                    # once you're close enough.
10
        random state=77
11
12
    sgd_reg.fit(X_train, y_train)
    print(f"SGD Regressor intercept: {sgd_reg.intercept_})")
   print(f"SGD Regressor coefficient: {sgd reg.coef }")
```

```
print("Predictions:", sgd_reg.predict(some_data))
   2 print("Labels:", list(some_labels))
Predictions: [ 455016.95 146463.2 1392096.36 210096.8 409172.5
                                                                   290642.96
  687936.27 230551.52 660043.18 517299.32]
Labels: [379000.0, 173000.0, 1393000.0, 390000.0, 440500.0, 267300.0, 750000.0, 288000.0, 845000.0, 464950.0]
   1 y_pred_sgd = sgd_reg.predict(X_train)
   2 sgd_mse = mean_squared_error(y_pred_sgd, y_train)
   3 sgd_rmse = np.sqrt(sgd_mse)
      sgd_rmse
169752.25944316038
```

Stochastic Gradient Descent

- Batch Gradient Descent formula involves calculation over the full training set **X** at each Gradient Descent step.
- Stochastic Gradient Descent (SGD): pick a random instance in the training set at every step and computes the gradients based only on that single instance
- SGD: faster algorithm but slower to converge

source: https://wikidocs.net/3413

Batch vs Stochastic Gradient Descent

- Batch gradient descent (BGD) involves assessing the error for every example in the training dataset but holds off on updating the model until all examples have been processed.
- Stochastic gradient descent (SGD) entails both calculating the error and updating the model for each individual example in the training dataset.
- Mini-Batch gradient descent divides the training dataset into smaller batches, which are then utilised to compute model error and adjust model coefficients. This method, widely employed in deep learning, strikes a balance between BGD and SGD.

Batch Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

6. Polynomial Regression and Regularisaton

- Data is often more complex than a straight line (or a hyperplane)
- Polynomial regression is an extension of linear regression where we **fit a curve** instead of a straight line by **adding polynomial** terms (x^2 , x^3 , ...) or **'features'** to the model.

6. Reminder on overfitting and underfitting

- While a linear model is prone to underfit your data,
- a polynomial model may often be prone to overfitting
 -> need to use regularisation

Regularisation

What is it?

 Technique that constrains our optimization problem to discourage complex models and reduce overfitting

Why do we need it?

Improve generalization of our model on unseen data.

Common regularisation techniques:

- Dropout layers in Neural Networks (coming up)
- Early stopping in training models
- Penalising complexity in regression models

Regularisation: Early Stopping

• A way to regularise SGD would be to stop training as soon as the validation error reaches a minimum (before it starts to overfit).


```
from sklearn.linear_model import SGDRegressor

model = SGDRegressor(early_stopping=True,

validation_fraction=0.1,
tol=1e-4)
```

Regularisation: Penalising complexity

- SGDRegressor adjust the 'penalty' hyperparameter:
- "l2" for Ridge regression (default, adds squared weights penalty)
- "l1" for Lasso regression (absolute weights)
- "elasticnet" which is a combination of l1 and l2 penalties.
- "None" is no regularisation

```
from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(
   loss="squared_error", # default cost functs
   max_iter=2000, # max numer of epochs. epo
   penalty="",
   eta0=1e-3 ≡ "elasticnet"
   # once you're close enough.
   random_state=77
```

Lasso Regression (l1) absolute weights

- These regularization techniques penalise large model weights, preventing the model from overfitting.
- Selects features removes irrelevant features by shrinking these weights completely to zero.
- Good for sparse models.
- Lasso Regression tends to eliminate the weights of the least important features

```
from sklearn.linear_model import Lasso
      ridge_reg = Lasso(alpha=2.5)
      cv_res = cross_validate(
          ridge_reg,
          X_train_poly,
          y_train,
          scoring=['neg_root_mean_squared_error', 'r2'],
          cv=k fold
       lasso_rmse_scores = -cv_res['test_neg_root_mean_square
      display_scores(lasso_rmse_scores)
Scores: [157093.3 143012.69 140620.71 128170.36 132516.67 1
 138492.77 131973.7 128035.61]
Mean: 136998.46
Standard deviation: 8452.28
```

Ridge Regression (l2) squared weights penalty

- These regularization techniques penalise large model weights, preventing the model from overfitting.
- Shrinks weights toward small but nonzero values.
- Helps in cases of multicollinearity.

```
from sklearn.linear_model import Ridge
      ridge_reg = Ridge(alpha=25, solver="cholesky")
     cv_res = cross_validate(
          ridge_reg,
         X_train_poly,
         y_train,
          scoring=['neg_root_mean_squared_error', 'r2'],
          cv=k_fold
     cv_res
{'fit_time': array([0.11, 0.29, 0.29, 0.29, 0.38, 0.3 , 0.3 , 0.29, 0.28
 'score time': array([0. , 0. , 0. , 0.01, 0. , 0. , 0.01, 0. , 0.
'test neg_root_mean_squared_error': array([-143860.6 , -140201.39, -141
       -140817.37, -133473.27, -138920.46, -128476.96, -128185.81),
 'test r2': array([0.83, 0.87, 0.84, 0.86, 0.86, 0.85, 0.89, 0.87, 0.86,
```

Elastic Net (is combination of Ridge + Lasso)

 Balances feature selection (L1) and generalization (L2).

```
from sklearn.linear model import ElasticNet
      el_net = ElasticNet(alpha=25, l1_ratio=0.1, max_iter=10000)
      cv_res = cross_validate(
          el_net,
          X_train_poly,
          y_train,
          scoring=['neg_root_mean_squared_error', 'r2'],
          cv=k_fold
   9
     cv res
{'fit_time': array([0.57, 0.42, 0.52, 0.38, 0.43, 0.2, 0.39, 0.36,
 'score_time': array([0. , 0. , 0.01, 0. , 0. , 0. , 0. , 0.
 'test_neg_root_mean_squared_error': array([-273684.95, -290343.6 ,
       -268025.23, -292559.02, -288252.1 , -262258.45, -257086.8 ])
 'test_r2': array([0.38, 0.45, 0.4 , 0.42, 0.43, 0.44, 0.45, 0.42, 0
```

Cross Validation

Cross Validation

```
1 from sklearn.model_selection import cross_validate, KFold
   2 \text{ n splits} = 10
      k_fold = KFold(n_splits=n_splits, shuffle=True, random_state=42)
      cv_res = cross_validate(
          lin_reg,
          X train,
          y_train,
          scoring=['neg_root_mean_squared_error', 'r2'],
          cv=k fold
   9
  10
     cv_res
{'fit_time': array([0.01, 0.01, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]),
 'score_time': array([0., 0., 0., 0., 0., 0., 0., 0., 0.]),
 'test_neg_root_mean_squared_error': array([-175290.3 , -183061.83, -167414.87, -156123.95, -169237.03,
        -167950.58, -177667.87, -174713.08, -158683.94, -154060.32),
 'test_r2': array([0.75, 0.78, 0.78, 0.79, 0.78, 0.78, 0.8 , 0.79, 0.79, 0.78])}
```

Coming up

Aurélien Géron, Hands-on-Machine Learning

- 1. Look at the big picture
- 2. Get the data and set aside a test set
- 3. Discover and visualise the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Identify a suitable metric for evaluating the task
- 6. Select a model and train it
- 7. Fine-tune your model
- 8. Present your solution
- 9. Launch, monitor and maintain your system