9.3. Monday for MAT4002

Reviewing.

- 1. Homotopy: we denote the homotopic function pair as $f \cong g$.
- 2. If $Y \subseteq \mathbb{R}^n$ is convex, then the set of continuous functions $f: X \to Y$ form a single equivalence class, i.e., {continuous functions $f: X \to Y$ }/ \sim has only one element

9.3.1. Remarks on Homotopy

Proposition 9.4 Consider four continous mappings

$$W \xrightarrow{f} X$$
, $X \xrightarrow{g} Y$, $X \xrightarrow{h} Y$, $Y \xrightarrow{k} Z$.

If $g \cong h$, then

$$g \circ f \cong h \circ f$$
, $k \circ g \cong k \circ h$

Proof. Suppose there exists the homotopy $H: g \cong h$, then $k \circ H: X \times I \to Z$ gives the momotopy between $k \circ g$ and $k \circ h$.

Simiarly,
$$H \circ (f \times id_I) : W \times I \to Y$$
 gives the homotopy $g \circ f \simeq h \circ f$.

Definition 9.4 [Homotopy Equivalence] Two topological spaces X and Y are **homotopy** equivalent if there are continuous maps $f: X \to Y$, and $g: Y \to X$ such that

$$g \circ f \simeq \mathrm{id}_{X \to X}$$

$$f \circ g \simeq \mathrm{id}_{Y \to Y}$$

which is denoted as $X \simeq Y$.

- 1. If $X \cong Y$ are homeomorphic, then they are homotopic equivalent.
- 2. The homotopy equivalence $X \simeq Y$ gives a bijection between $\{\phi : \text{continuous } W \to X\}/\sim$ and $\{\phi : \text{continuous } W \to Y\}/\sim$, for any given topological space W.

3. The homotopy equivalence $X \simeq Y$ forms an equivalence relation between topological spaces

Compared with homeomorphism, some properties are lost when consider the homotopy equivalence.

Definition 9.5 [Contractible] The topological space X is **contractible** if it is homotopy equivalent to a point $\{c\}$.

In other words, there exists continuous mappings f, g such that

$$\{c\} \xrightarrow{f} X \xrightarrow{g} \{c\}, g \circ f \simeq id_{\{c\}}$$

 $X \xrightarrow{g} \{c\} \xrightarrow{f} X, f \circ g \simeq id_{X}$

Fortunately, the condition $g \circ f \simeq \operatorname{id}_{\{c\}}$ follows naturally; and since $X \cong X$, we can find f,g such that $f \circ g = c_y$ for some $y \in X$, where $c_y : X \to X$ is a constant function $c_y(x) = y, \forall x \in X$.

Therefore, to check *X* is contractible, it suffices to check $c_y \simeq id_X, \forall y \in X$.

Example 9.1 1. $X = \mathbb{R}^2$ is contractible:

It suffices to show that the mapping $f(x) = x, \forall x \in \mathbb{R}^2$ is homotopic to the constant function $g(x) = (0,0), \forall x \in \mathbb{R}^2$, i.e., $g = c_{(0,0)}$.

Consider the continuous mapping $H(\mathbf{x},t) = t f(\mathbf{x})$, with

$$H(x,0) = c_{(0,0)}, H(x,1) = id_X$$

Therefore, $c_{(0,0)} \simeq \mathrm{id}_X$. Since $c_{(0,0)} \simeq c_{\mathbf{y}}, \forall \mathbf{y} \in \mathbb{R}^2$, we imply $c_{\mathbf{y}} \simeq \mathrm{id}_X$ for any $\mathbf{y} \in \mathbb{R}^2$.

Therefore, X is contractible.

More generally, any convex $X \subseteq \mathbb{R}^n$ is contractible.

 S^1 is not contractible, and we will see it in 3 weeks' time. In particular, we are not able to construct the continuous mapping

$$H: S^1 \times [0,1] \rightarrow S^1$$

such that

$$H(e^{2\pi ix}, 0) = e^{2\pi ix}, \quad H(e^{2\pi ix}, 1) = e^{2\pi i(0)} = 1$$

How about the mapping $H(e^{2\pi ix},t)=e^{2\pi ixt}$? Unfortunately, it is not well-defined, since

$$H(e^{2\pi i(1)}, t) = e^{2\pi i t} = H(e^{2\pi i(0)}, t) = 1$$

and the equality is not true for $t \neq 0,1$.

Definition 9.6 [Homotopy Retract] Let $A \subseteq X$ and $i : A \hookrightarrow X$ be an inclusion. We say A is a **homotopy retract** of X if there exists continuous mapping $r : X \to A$ such that

$$r \circ i : A \hookrightarrow X \xrightarrow{r} A = id_A$$

$$i \circ r : X \xrightarrow{r} A \hookrightarrow X \simeq id_X$$

In particualr, $A \simeq X$.

■ Example 9.2 The 1-sphere S^1 is a homotopy retract of Mobius band M. Let $M = [0,1]^2/\sim$ and $S^1 = [0,1]/\sim$. Define the inclusion i and r as:

$$i: S^1 \hookrightarrow M$$

with
$$[x] \mapsto [(x, \frac{1}{2})]$$

$$r: M \to S^1$$

with
$$[(x,y)] \mapsto [x]$$

As a result

$$r \circ i = id_{S^1}, \quad i \circ r([(x, y)]) = [(x, 1/2)]$$

It suffices to show $i \circ r \simeq id_M$, where $id_M([(x,y)]) = [(x,y)]$.

Construct the continous mapping $H: M \times I \rightarrow M$ with

$$H([(x,y)],t) := [(x,(1-t)y + t/2)]$$

To show the well-definedness of H, we need to check

$$H([(0,y)],t) = H([(1,1-y)],t), \quad \forall y \in [0,1]$$

It's clear that H gives a homotopy between $i \circ r$ and id_M , i.e., $i \circ r \simeq \mathrm{id}_M$

■ Example 9.3 The n-1-sphere S^{n-1} is a homotopy retract of $\mathbb{R}^n \setminus \{\mathbf{0}\}$:

We have the inclusion $i: S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ and

$$r: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$
 with $x \mapsto \frac{x}{\|x\|}$

Therefore, $r \circ i = \mathrm{id}_{S^{n-1}}$ and $i \circ r(x) = \frac{x}{\|x\|}$.

It suffices to show that $i \circ r \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$. Consider the homotopy $H(x,t) = t\mathbf{x} + (1-t)\mathbf{x}/\|\mathbf{x}\|$ such that

$$H(x,0) = i \circ r(x), \quad H(x,1) = x = id(x)$$

To show the well-definedness of H, we need to check $H(x,t) \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $t \in [0,1]$.

Definition 9.7 [Homotopic Relative] Let $A \subseteq X$ be topological spaces. We say $f,g:X \to Y$ are homotopic relative to A if there eixsts $H:X \times I \to Y$ such that

$$\begin{cases} H(x,0) = f(x) \\ H(x,1) = g(x) \end{cases} \text{ and } H(a,t) = f(a) = g(a), \forall a \in A$$

