Devoir surveillé n° 3 – v2

Durée : 4 heures, calculatrices et documents interdits

I. Réduction des matrices nilpotentes (extrait du concours Centrale-Supelec 2019, maths 2 PSI)

Notations et rappels

Dans tout le sujet, n désigne un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

Si $M \in \mathcal{M}_n(\mathbb{C})$, on note M^T la transposée de M.

Si M est une matrice de $\mathcal{M}_n(\mathbb{C})$, on définit la suite des puissances de M par $M^0 = I_n$ et, pour tout entier naturel k, par la relation $M^{k+1} = M M^k$.

De même, si u est un endomorphisme de E, on définit la suite des puissances de u par $u^0 = \operatorname{Id}_E$ et, pour tout entier naturel k, par la relation $u^{k+1} = u \circ u^k$.

Une matrice M est dite nilpotente s'il existe un entier naturel $k \ge 1$ tel que $M^k = 0$. Dans ce cas, le plus petit entier naturel $k \ge 1$ tel que $M^k = 0$ s'appelle l'indice de nilpotence de M.

Soit \mathcal{B} une base de E, un endomorphisme de E est nilpotent d'indice p si sa matrice dans \mathcal{B} est nilpotente d'indice p.

On pose
$$J_1 = (0)$$
 et, pour un entier $\alpha \ge 2$, $J_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{\alpha}(\mathbb{C}).$

Si $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$, on note diag(A, B), la matrice diagonale par blocs

$$\operatorname{diag}(A, B) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in \mathcal{M}_{n+m}(\mathbb{C}).$$

Plus généralement, si $A_1 \in \mathcal{M}_{n_1}(\mathbb{C}), A_2 \in \mathcal{M}_{n_2}(\mathbb{C}), \cdots, A_k \in \mathcal{M}_{n_k}(\mathbb{C}),$ on note

$$\operatorname{diag}(A_1, A_2, \dots, A_k) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A_k \end{pmatrix} \in \mathcal{M}_{n_1 + n_2 + \dots + n_k}(\mathbb{C}).$$

1) Que peut-on dire d'un endomorphisme nilpotent d'indice 1?

A - Réduction d'une matrice de $\mathscr{M}_2(\mathbb{C})$ nilpotente d'indice 2

On suppose que n=2. Soit u un endomorphisme de E nilpotent d'indice $p \geqslant 2$.

- 2) Montrer qu'il existe un vecteur x de E tel que $u^{p-1}(x) \neq 0$.
- 3) Vérifier que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre. En déduire que p=2.
- 4) Montrer que Ker(u) = Im(u).
- 5) Construire une base de E dans laquelle la matrice de u est égale à J_2 .
- **6)** Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Montrer que $A^2 \operatorname{tr}(A)A + \det(A)I_2 = 0$.
- 7) En déduire que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{C})$ sont exactement les matrices de trace et déterminant nuls.

B - Réduction d'une matrice de $\mathscr{M}_n(\mathbb{C})$ nilpotente d'indice 2

On suppose que $n \ge 3$. Soit u un endomorphisme de E nilpotent d'indice 2 et de rang r.

- 8) Montrer que $\operatorname{Im}(u) \subset \operatorname{Ker}(u)$ et que $2r \leqslant n$.
- 9) On suppose que $\operatorname{Im}(u) = \operatorname{Ker}(u)$. Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E tels que la famille $(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r))$ est une base de E.
- 10) Donner la matrice de u dans cette base.
- 11) On suppose $\operatorname{Im}(u) \neq \operatorname{Ker}(u)$.

 Montrer qu'il existe des vecteurs e_1, e_2, \ldots, e_r de E et des vecteurs $v_1, v_2, \ldots, v_{n-2r}$ appartenant à $\operatorname{Ker}(u)$ tels que $\left(e_1, u(e_1), e_2, u(e_2), \ldots, e_r, u(e_r), v_1, v_2, \ldots, v_{n-2r}\right)$ est une base de E.
- **12)** Quelle est la matrice de u dans cette base?

C - Réduction des matrices nilpotentes

On suppose $n \ge 2$. Soit u un endomorphisme de E nilpotent d'indice $p \ge 2$.

- 13) Démontrer que Im(u) est stable par u et que l'endomorphisme induit par u sur Im(u) est nilpotent. Préciser son indice de nilpotence.
- **14)** Pour tout vecteur x non nul de E, on note $C_u(x)$ l'espace vectoriel engendré par les $\left(u^k(x)\right)_{k\in\mathbb{N}}$; démontrer que $C_u(x)$ est stable par u et qu'il existe un plus petit entier $s(x) \ge 1$ tel que $u^{s(x)}(x) = 0$.
- **15)** Démontrer que $(x, u(x), \ldots, u^{s(x)-1}(x))$ est une base de $C_u(x)$ et donner la matrice, dans cette base, de l'endomorphisme induit par u sur $C_u(x)$.
- **16)** Démontrer par récurrence sur p qu'il existe des vecteurs x_1, \ldots, x_t de E tels que $E = \bigoplus_{i=1}^t C_u(x_i)$.

Indication : on pourra appliquer l'hypothèse de récurrence à l'endomorphisme induit par u sur Im(u).

Commentaire de votre prof de maths : cette question est de loin la plus difficile du sujet.

17) Donner la matrice de u dans une base adaptée à la décomposition $E = \bigoplus_{i=1}^{t} C_u(x_i)$.

II. Exponentielle tronquée (extrait du concours Mines-Ponts 2017, épreuve II PC)

On rappelle la formule de Taylor avec reste intégral, que l'on pourra utiliser librement :

Formule de Taylor avec reste intégral : Soient $n \in \mathbb{N}$ et $f \in \mathscr{C}^{n+1}(I, \mathbb{R})$ et $(a, b) \in I^2$. Alors :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{f^{(n+1)}(t)}{n!} (b-t)^{n} dt.$$

Pour x réel strictement positif et n entier naturel, on pose

$$T_n(x) = \sum_{k=0}^n \frac{n^k x^k}{k!}$$
 et $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{n^k x^k}{k!}$.

- 1) Justifier l'existence de $R_n(x)$. Que vaut la somme $T_n(x) + R_n(x)$?
- 2) En appliquant la formule de Taylor avec reste intégral à la fonction $t \mapsto e^{nt}$, prouver pour tout réel x strictement positif, pour tout entier n, la relation :

$$R_n(x) = \frac{e^{nx}n^{n+1}}{n!} \int_0^x (ue^{-u})^n du.$$

Soit y un réel strictement positif. On pose

$$a_n = \frac{n^{n+1}}{n!} y^n.$$

3) Calculer $\lim_{n \to +\infty} a_{n+1}/a_n$. En déduire que, si $y < e^{-1}$, alors

$$\lim_{n \to +\infty} a_n = 0.$$

4) On suppose dans cette question que $x \in]0,1[$. Montrer que la fonction $u \mapsto u e^{-u}$ admet, sur [0,x], un maximum M tel que $M < e^{-1}$. En déduire qu'au voisinage de l'infini,

$$R_n(x) = o(e^{nx})$$
 puis que $T_n(x) \underset{n \to +\infty}{\sim} e^{nx}$.

5) Soit $n \in \mathbb{N}$. Après avoir justifié la convergence de $\int_0^{+\infty} t^n e^{-t} dt$, démontrer la relation

$$n! = \int_0^{+\infty} t^n e^{-t} dt.$$

6) Pour tout entier $n \geqslant 1$ et tout réel x > 0, montrer l'identité suivante :

$$T_n(x) = e^{nx} \frac{n^{n+1}}{n!} \int_x^{+\infty} (ue^{-u})^n du.$$

7) En déduire que, si x > 1, alors $T_n(x) = o(e^{nx})$ lorsque n tend vers $+\infty$. On pourra écrire $(ue^{-u})^n \leq (xe^{-x})^{n-1}ue^{-u}$ pour $u \geq x$.

— FIN —