Correction des exercices de TD

Table des matières

1 TD/TP1 : Preuves en logique du premier ordre

TD/TP2: Preuves en logique équationnelle

1 4

TD/TP1: Preuves en logique du premier ordre 1

Exercice 1 (Logique propositionnelle)

Démontrer les propositions suivantes dans LJ et LK :

1.
$$A \Rightarrow B \Rightarrow A$$

2.
$$(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$$

3.
$$A \wedge B \Rightarrow B$$

4.
$$B \Rightarrow A \lor B$$

5.
$$(A \lor B) \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C$$

6.
$$A \Rightarrow \bot \Rightarrow \neg A$$

7.
$$\perp \Rightarrow A$$

8.
$$(A \Leftrightarrow B) \Rightarrow A \Rightarrow B$$

9.
$$(A \Leftrightarrow B) \Rightarrow B \Rightarrow A$$

10.
$$(A \Rightarrow B) \Rightarrow (B \Rightarrow A) \Rightarrow (A \Leftrightarrow B)$$

1.
$$\frac{\overline{A, B \vdash A} \xrightarrow{\text{ax}} \Rightarrow_{\text{right}}}{\overline{A \vdash B \Rightarrow A} \Rightarrow_{\text{right}}} \Rightarrow_{\text{right}}$$

Ici, la preuve en LJ est la même que la preuve en LK.

$$2. \begin{bmatrix} \overline{B,A \vdash B} \text{ ax} & \overline{A \vdash A} \text{ ax} \\ A \Rightarrow B, A \vdash B & \Rightarrow_{\text{left}} & \overline{C,A \Rightarrow B,A \vdash C} \text{ ax} \\ B \Rightarrow C, A \Rightarrow B, A \vdash C & \Rightarrow_{\text{left}} & \overline{A \Rightarrow B,A \vdash A} \text{ ax} \\ A \Rightarrow B \Rightarrow C, A \Rightarrow B, A \vdash C & \Rightarrow_{\text{right}} \times 3 \\ \hline + (A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C & \Rightarrow_{\text{right}} \times 3 \end{bmatrix}$$

 $\begin{array}{c|c} +A,B,C \Rightarrow_{\mathrm{left}} & \xrightarrow{} \\ C, & \xrightarrow{} \\ B \Rightarrow C,A \Rightarrow B,A \vdash C \end{array} \xrightarrow{} \begin{array}{c} \mathrm{ax} \\ \Rightarrow_{\mathrm{left}} & \xrightarrow{} \\ A \Rightarrow B,A \vdash C,A \end{array}$ $\begin{array}{c|c} A \Rightarrow B,A \vdash C \\ & \xrightarrow{} \\ A \Rightarrow B \Rightarrow C,A \Rightarrow B,A \vdash C \end{array} \xrightarrow{} \begin{array}{c} \Rightarrow_{\mathrm{right}} \times 3 \end{array}$

Preuve dans LJ

Preuve dans LK

3.
$$\frac{\overline{A, B \vdash B} \text{ ax}}{\overline{A \land B \vdash B}} \stackrel{\wedge_{\text{left}}}{\Rightarrow_{\text{right}}}$$

Ici, la preuve en LJ est la même que la preuve en LK.

4.
$$\frac{\overline{B \vdash B} \text{ ax}}{B \vdash A \lor B} \lor_{\text{right}} \Rightarrow_{\text{right}} + B \Rightarrow A \lor B$$
Preuve dans LJ

$$\frac{\overline{B \vdash A, B}}{B \vdash A \lor B} \lor_{\text{right}} \Rightarrow_{\text{right}}$$
$$\vdash B \Rightarrow A \lor B$$

Preuve dans LK

Exercice 2 (Logique du premier ordre)

Démontrer les propositions suivantes dans LJ et LK (si la proposition n'admet pas de preuve intuitionniste, démontrer la proposition dans $\mathrm{LJ}_{(\mathrm{em})}$) :

- 1. $\forall x. P(x) \Rightarrow \exists y. P(y) \lor Q(y)$
- 2. $(\exists x. P(x) \lor Q(x)) \Rightarrow (\exists x. P(x)) \lor (\exists x. Q(x))$
- 3. $(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)$
- 4. $(\forall x.P(x) \land Q(x)) \Rightarrow (\forall x.P(x)) \land (\forall x.Q(x))$
- 5. $(\forall x. \neg P(x)) \Rightarrow \neg(\exists x. P(x))$
- 6. $\neg(\forall x.P(x)) \Rightarrow \exists x.\neg P(x)$

1.
$$\frac{P(x) \vdash P(x)}{P(x) \vdash P(x) \lor Q(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x) \lor Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\exists_{\text{right}}} \frac{P(x) \vdash P(x) \lor Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\exists_{\text{right}}} \frac{P(x) \vdash P(x) \lor Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\exists_{\text{right}}} \frac{P(x) \vdash \exists y. P(y) \lor Q(y)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash \exists y. P(y) \lor Q(y)}{P(x) \vdash \forall x. P(x) \Rightarrow \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash \exists y. P(y) \lor Q(y)}{P(x) \vdash \forall x. P(x) \Rightarrow \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(x), Q(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(x) \lor Q(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y) \lor Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y), Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y), Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y), Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash \exists y. P(y), Q(y)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash Q(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x) \vdash Q(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q(x)}{P(x)} \xrightarrow{\forall_{\text{right}}} \frac{P(x) \vdash P(x), Q$$

$$2. \begin{vmatrix} \frac{\frac{Q(x) \vdash Q(x)}{Q(x) \vdash (\exists x. Q(x))}}{\frac{Q(x) \vdash (\exists x. Q(x))}{Q(x) \vdash (\exists x. Q(x))}} \exists_{\text{right}} & \frac{\frac{P(x) \vdash P(x)}{P(x) \vdash (\exists x. P(x))}}{\frac{P(x) \vdash (\exists x. P(x))}{P(x) \vdash (\exists x. P(x))}} \exists_{\text{right}} \\ \frac{\frac{P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{P(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x) \vdash (\exists x. P(x)) \lor (\exists x. Q(x))}{\frac{\exists x. P(x) \lor Q(x)}{\frac{\exists x. P(x) \lor Q(x)}{\frac{\exists x. P(x) \lor Q(x)}{\frac{\exists x. P(x) \lor Q(x)}{\frac{\exists x. P(x)}{\frac{\exists x. P$$

3.
$$\frac{P(x), Q(x) \vdash Q(x)}{P(x), Q(x) \vdash P(x)} \xrightarrow{\text{ax}} \frac{P(x), Q(x) \vdash P(x)}{P(x), Q(x) \vdash P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{\forall x. P(x), \forall x. Q(x) \vdash P(x) \land Q(x)} \xrightarrow{\text{Vright}} \frac{\forall x. P(x), \forall x. Q(x) \vdash \forall x. P(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \vdash \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neift}} \frac{P(x), Q(x) \vdash Q(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Pright}} \frac{P(x), Q(x) \vdash Q(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x) \vdash P(x) \land Q(x)}{(\forall x. P(x)) \land Q(x)} \xrightarrow{\text{Neight}} \frac{P(x), Q(x)}{(\forall x. P(x)) \land Q(x)}$$

Ici, la preuve en LJ est la même que la preuve en LK

$$4. \begin{tabular}{l} $\frac{P(x),Q(x)\vdash Q(x)}{P(x),Q(x)\vdash Q(x)}$ ax \\ $\frac{P(x),Q(x)\vdash Q(x)}{P(x)\land Q(x)\vdash Q(x)}$ $$^{V_{left}}$ $$$$$$\frac{P(x),Q(x)\vdash P(x)}{P(x)\land Q(x)\vdash P(x)}$ $$^{V_{left}}$ $$$$$$$$\frac{V(x)\land Q(x)\vdash V(x)}{V(x)P(x)\land Q(x)\vdash V(x)}$ $$^{V_{left}}$ $$$$$$\frac{V(x)P(x)\land Q(x)\vdash V(x)}{V(x)P(x)\land Q(x)\vdash V(x)}$ $$^{V_{left}}$ $$$$$$$^{V_{left}}$ $$$$$$$\frac{V(x)P(x)\land Q(x)\vdash V(x)}{V(x)P(x)\land Q(x)}$ $$^{V_{left}}$ $$$$$$$^{V_{left}}$ $$$$$$$$\frac{V(x)P(x)\land Q(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$$$$$$$\frac{V(x)P(x)\land Q(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$$$$$$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$$$$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$$$$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$^{V_{left}}$ $$^{V_{left}}$ $$\frac{V(x)P(x)\vdash V(x)}{V(x)P(x)}$ $$\frac{V(x)P(x)}{V(x)P(x)}$ $$\frac{V(x)P(x)}{V(x)}$ $\frac{V($$

Ici, la preuve en LJ est la même que la preuve en LK.

5.
$$\frac{\frac{P(x) \vdash P(x)}{\neg P(x), P(x) \vdash} \text{ax}}{\frac{\neg P(x), P(x) \vdash}{\neg V_{\text{left}}}} \\
\frac{\forall x. \neg P(x), P(x) \vdash}{\forall x. \neg P(x), \exists x. P(x) \vdash} \\
\frac{\neg P(x) \vdash P(x)}{\forall V_{\text{left}}} \\
\frac{\neg P(x) \vdash P(x)}{\neg V_{\text{left}}} \\
\frac{\neg P(x) \vdash P(x)}{\neg V_{\text{left}}} \\
\frac{\neg P(x) \vdash P(x)}{\neg V_{\text{left}}} \\
\frac{\neg V_{\text{left}}}{\neg V_{\text{left}}} \\
\frac{\neg V_{\text{$$

Ici, la preuve en LJ est la même que la preuve en LK.

6.
$$\frac{\frac{\neg P(x) \vdash \neg P(x)}{\neg P(x) \vdash \exists x. \neg P(x)}}{\frac{\neg P(x) \vdash \exists x. \neg P(x)}{\neg \exists x. \neg P(x) \vdash \neg P(x)}} \xrightarrow{\text{right}} \frac{\neg \text{left}}{\neg \text{right}} \\
\frac{\neg \exists x. \neg P(x) \vdash \neg \neg P(x)}{\neg \exists x. \neg P(x) \vdash \neg P(x)} \xrightarrow{\text{wm}} \frac{\neg \text{left}}{\forall \text{right}} \\
\frac{\neg \exists x. \neg P(x) \vdash \forall x. P(x)}{\neg \exists x. \neg P(x) \vdash \neg P(x)} \xrightarrow{\neg \text{left}} \frac{\neg \text{left}}{\neg \text{right}} \\
\frac{\neg (\forall x. P(x)) \vdash \neg \neg \exists x. \neg P(x)}{\neg (\forall x. P(x)) \vdash \exists x. \neg P(x)} \xrightarrow{\text{right}} \xrightarrow{\text{em}} \\
\frac{\neg (\forall x. P(x)) \vdash \exists x. \neg P(x)}{\vdash \neg (\forall x. P(x)) \Rightarrow \exists x. \neg P(x)} \xrightarrow{\Rightarrow \text{right}}$$

$$\frac{P(x) \vdash P(x)}{P(x) \vdash P(x)} \xrightarrow{\text{right}} \frac{P(x) \vdash P(x)}{P(x) \vdash \exists x . \neg P(x), P(x)} \xrightarrow{\exists_{\text{right}}} \frac{P(x) \vdash \exists x . \neg P(x), P(x)}{P(x) \vdash \exists x . \neg P(x)} \xrightarrow{\neg \text{left}} \frac{P(x) \vdash \exists x . \neg P(x)}{P(x) \vdash \exists x . \neg P(x)} \xrightarrow{\Rightarrow_{\text{right}}} P(x) \xrightarrow{\text{Preuve dans LK}}$$

Preuve dans $LJ_{(em)}$ (pas de preuve dans LJ possible)

Exercice 3 (Preuves en Coq)

Démontrer les propositions des exercices 1 et 2 en Coq.

On rappelle que pour lancer Coq, il suffit de se mettre dans un terminal et de taper la commande coqide, qui lance l'IDE de Coq.

▶ Voir TP1

2 TD/TP2 : Preuves en logique équationnelle

Exercice 1 (Preuves dans les CCC dans LJ_{EQ})

Dans les Catégories Cartésiennes Closes (CCC), tous les isomorphismes de types sont capturés par une théorie équationnelle démontrée complètement par Sergei Soloviev en 1983. Cette théorie est la suivante :

- 1. $\forall x, y.x \times y \doteq y \times x$
- 2. $\forall x, y, z.x \times (y \times z) \doteq (x \times y) \times z$
- 3. $\forall x, y, z.((x \times y) \to z) \doteq (x \to (y \to z))$
- 4. $\forall x, y, z.(x \to (y \times z)) \doteq (x \to y) \times (x \to z)$
- 5. $\forall x.x \times 1 \doteq x$
- 6. $\forall x.(x \to 1) \doteq 1$
- 7. $\forall x.(\mathbb{1} \to x) \doteq x$

où 1 est une constante.

Démontrer dans cette théorie en utilisant $\mathrm{LJ_{EQ}}$ les propositions suivantes :

- 1. $\forall x, y.x \times (y \to 1) \doteq x$
- 2. $\forall x, y.((x \times 1) \times y) \doteq (y \times (1 \times x))$
- 3. $\forall x, y, z.((x \times 1) \to (y \times (z \times 1))) \doteq (((x \times 1) \to (z \to 1) \times z) \times (1 \to (x \to y)))$
- 1. Preuve:

$$\frac{\frac{ \overline{\mid x \stackrel{.}{=} x} \text{ refl}}{\vdash x \times \mathbb{1} \stackrel{.}{=} x} =_{\text{right}_2} (5)}{\vdash x \times (y \to \mathbb{1}) \stackrel{.}{=} x} =_{\text{right}_2}, (6), \, \sigma = [y/x]}{\frac{}{\vdash \forall x, y.x \times (y \to \mathbb{1}) \stackrel{.}{=} x} \forall_{\text{right}} \times 2}$$

2. Preuve:

$$\frac{\frac{\vdash (x \times y) \stackrel{.}{=} (x \times y)}{\vdash (x \times y) \stackrel{.}{=} (y \times x)}}{\vdash (x \times y) \stackrel{.}{=} (y \times x)} =_{\mathrm{right}_{2}}, (1)}{\frac{\vdash ((x \times 1) \times y) \stackrel{.}{=} (y \times (x \times 1))}{\vdash ((x \times 1) \times y) \stackrel{.}{=} (y \times (1 \times x))}} =_{\mathrm{right}_{2}}, (5)}{\frac{\vdash ((x \times 1) \times y) \stackrel{.}{=} (y \times (1 \times x))}{\vdash \forall x, y. ((x \times 1) \times y) \stackrel{.}{=} (y \times (1 \times x))}} \forall_{\mathrm{right}} \times 2$$

3. Preuve:

$$\frac{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)}{+\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow z\right)\times\left(x\rightarrow y\right)\right)}}{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow z\right)\times\left(x\rightarrow y\right)\right)}{+\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow z\times 1\right)\times\left(x\rightarrow y\right)\right)\right)}}{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow x\times 1\right)\times\left(x\rightarrow y\right)\right)\right)}{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow 1\times z\right)\times\left(x\rightarrow y\right)\right)\right)}}{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow 1\times z\right)\times\left(x\rightarrow y\right)\right)\right)}{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow 1\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}}{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow 1\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow 1\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}}{\frac{-\left(x\rightarrow y\right)\times\left(x\rightarrow z\right)\doteq\left(\left(x\rightarrow x\times 1\right)\times\left(x\rightarrow y\right)\right)}{-\left(x\rightarrow y\times z\right)\doteq\left(\left(x\rightarrow x\times 1\right)\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}}{\frac{-\left(x\rightarrow y\times x\times 1\right)}{-\left(x\rightarrow y\times x\times 1\right)\mapsto\left(\left(x\rightarrow x\times 1\right)\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}}{\frac{-\left(x\rightarrow y\times x\times 1\right)\mapsto\left(\left(x\rightarrow x\times 1\right)\times z\times\left(1\rightarrow (x\rightarrow y)\right)\right)}{-\left(\left(x\times 1\right)\rightarrow\left(y\times (z\times 1)\right)\right)\doteq\left(\left((x\times 1)\rightarrow (z\rightarrow 1)\times z\right)\times\left(1\rightarrow (x\rightarrow y)\right)\right)}}}{\frac{-\left(x\rightarrow y\times x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\times\left(x\rightarrow x\times 1\right)}{-\left(x\rightarrow y\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}}}{\frac{-\left(x\rightarrow y\times x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\times\left(x\rightarrow x\times 1\right)}{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}}}{\frac{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\times\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}}}{\frac{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}}}{\frac{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\times 1\right)}{-\left(x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\rightarrow x\times 1\right)\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right)\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right)\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right)\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right)\mapsto\left(x\rightarrow x\rightarrow x\rightarrow 1\right\mapsto\left(x\rightarrow x\rightarrow x$$

Exercice 2 (Preuves en arithmétique de Peano dans LJ_{EQ})

À la fin du 19ème siècle, Giuseppe Peano à proposé un ensemble d'axiomes (pour la plupart équationnels) pour l'arithmétique. Ces axiomes sont les suivants (nous avons omis un axiome qui est en fait un schéma d'axiome au premier ordre et qui représente la récurrence) :

- 1. $\forall x. \neg (s(x) \doteq o)$
- 2. $\forall x. \exists z. \neg (x \doteq o) \Rightarrow s(z) \doteq x$
- 3. $\forall x, y.s(x) \doteq s(y) \Rightarrow x \doteq y$
- 4. $\forall x.x + o \doteq x$
- 5. $\forall x, y.x + s(y) \doteq s(x+y)$
- 6. $\forall x.x \times o \doteq o$
- 7. $\forall x, y.x \times s(y) \doteq (x \times y) + x$

où o est une constante, s, + et \times des fonctions.

Démontrer dans cette théorie et en utilisant LJ_{EQ} les propositions suivantes :

- $-1 + 2 \doteq 3$
- $-2 + 2 \doteq 4$
- $-2 \times 2 \doteq 4$

 $\mathbf{NB}: 2 \equiv s(s(o)).$

— Preuve:

$$\frac{ \frac{-\operatorname{F}(s(s(o))) \doteq s(s(s(o)))}{\operatorname{F}(s(s(o) + o)) \doteq s(s(s(o)))}}{ \frac{-\operatorname{F}(s(s(o) + o)) \doteq s(s(s(o)))}{\operatorname{F}(s(o) + s(o)) \doteq s(s(s(o)))}} = \underset{\operatorname{right}_2}{\operatorname{right}_2}, (4), \ \sigma = [s(o)/x] \\ = \underset{\operatorname{right}_2}{\operatorname{right}_2}, (5), \ \sigma = [s(o)/x, o/y] \\ = \underset{\operatorname{right}_2}{\operatorname{right}_2}, (5), \ \sigma = [s(o)/x, s(o)/y]$$

— Preuve :

$$\frac{\frac{-\operatorname{Fefl}(s(s(s(o)))) \doteq s(s(s(s(o))))}{\operatorname{Fe}(s(s(s(o)))) \doteq s(s(s(s(o))))}}{\frac{\operatorname{Fe}(s(s(s(o)+o))) \doteq s(s(s(s(o))))}{\operatorname{Fe}(s(s(o))+s(o)) \doteq s(s(s(s(o))))}} = \operatorname{Fight}_{2}, \ (4), \ \sigma = [s(o)/x]$$

$$= \operatorname{right}_{2}, \ (5), \ \sigma = [s(s(o))/x, o/y]$$

$$= \operatorname{right}_{2}, \ (5), \ \sigma = [s(s(o))/x, s(o)/y]$$

— Preuve:

```
\vdash s(s(s(s(o)))) \doteq s(s(s(s(o))))
                                                                      =_{\text{right}_2}, (4), \sigma = [s(o)/x]
             \vdash s(s(s(s(o) + o))) \doteq s(s(s(s(o))))
                                                                      =_{\text{right}_2}, (5), \sigma = [s(s(o))/x, o/y]
             \vdash s(s(s(o)) + s(o)) \doteq s(s(s(s(o))))
                                                                     =_{\text{right}_2}, (5), \sigma = [s(s(o))/x, s(o)/y]
             \vdash s(s(o)) + s(s(o)) \doteq s(s(s(s(o))))
                                                                       -=_{\mathrm{right}_2}, (4), \sigma = [o/x]
          \vdash s(s(o+o)) + s(s(o)) \doteq s(s(s(s(o))))
                                                                         =_{\text{right}_2}, (5), \sigma = [o/x, o/y]
          \vdash s(o+s(o)) + s(s(o)) \doteq s(s(s(s(o))))
                                                                          =_{\mathrm{right}_2},\,(5),\,\sigma=[o/x,s(o)/y]
         \vdash (o + s(s(o))) + s(s(o)) \doteq s(s(s(s(o))))
\frac{\vdash ((s(s(o)) \times o) + s(s(o))) + s(s(o)) \doteq s(s(s(s(o))))}{\vdash ((s(s(o)) \times o) + s(s(o))) + s(s(o)) = s(s(s(s(o))))} =_{\text{right}_2}, (o), o = [s(s(o))/x, o/y]
                                                                                 - =_{\text{right}_2}, (6), \sigma = [s(s(o))/x]
       \vdash (s(s(o)) \times s(o)) + s(s(o)) \doteq s(s(s(s(o))))
                                                                            =_{\text{right}_2}, (7), \sigma = [s(s(o))/x, s(o)/y]
              \vdash s(s(o)) \times s(s(o)) \doteq s(s(s(s(o))))
```

Exercice 3 (Isomorphismes de types dans les CCC en Coq)

```
En Coq, la théorie équationnelle correspondant aux isomorphismes de types dans les CCC peut être implémentée comme suit :
```

Open Scope type_scope.

Section iso_axioms.

Variables A B C : Set.

```
Axiom Com : A * B = B * A.
```

Axiom Ass : A * (B * C) = A * B * C.

Axiom Cur : $(A * B \rightarrow C) = (A \rightarrow B \rightarrow C)$.

Axiom Dis : $(A \rightarrow B * C) = (A \rightarrow B) * (A \rightarrow C)$.

Axiom $P_{unit} : A * unit = A.$

Axiom AR_unit : $(A \rightarrow unit) = unit$. Axiom AL_unit : $(unit \rightarrow A) = A$.

End iso_axioms.

1. Démontrer les lemmes suivants dans cette théorie en Coq :

```
Lemma isos_ex1 : forall A B : Set, A * (B -> unit) = A.
Lemma isos_ex2 : forall A B : Set, A * unit * B = B * (unit * A).
```

```
Lemma isos_ex3 : forall A B C : Set,
     (A * unit -> B * (C * unit)) =
     (A * unit -> (C -> unit) * C) * (unit -> A -> B).
```

- 2. Écrire une tactique qui normalise les expressions selon les axiomes de la théorie (attention, tous les axiomes ne sont pas bons à prendre).
- 3. Démontrer les propositions précédentes à l'aide de cette tactique.
- ▶ Voir TP2

Exercice 4 (Arithmétique de Peano en Coq)

```
En Coq, la théorie de l'arithmétique de Peano peut être implémentée comme suit :
Section Peano.
Parameter N : Set.
Parameter o : N.
Parameter s : N \rightarrow N.
Parameters plus mult : N \rightarrow N \rightarrow N.
Variables x y : N.
Axiom ax1 : ~((s z) = o).
Axiom ax2 : exists z, (x = 0) \rightarrow (s z) = x.
Axiom ax3 : (s x) = (s y) -> x = y.
Axiom ax4 : (plus x o) = x.
Axiom ax5 : (plus x (s y)) = (s (plus x y)).
Axiom ax6 : (mult x o) = o.
Axiom ax7 : (\text{mult } x (s y)) = (\text{plus } (\text{mult } x y) x).
End Peano.
   1. Démontrer les propositions suivantes dans cette théorie en \mathsf{Coq} :
       -1+2=3
       -2+2=4
       -2 \times 2 = 4
   2. Écrire une tactique qui calcule automatiquement dans cette théorie.
  3. Démontrer les propositions précédentes à l'aide de cette tactique.
  4. Même question en utilisant la tactique autorewrite (voir la documentation).
▶ Voir TP2
```