Safety steering column

Publication number: EP0856452 **Publication date:** 1998-08-05

Inventor:

GRAMS KAY-UWE (DE); VORTMEYER JENS (DE);

SCHAEFER BURKHARD (DE)

Applicant: LEMFOERDER METALLWAREN AG (DE)

Classification:

- international: B62D1/11; B62D1/19; F16F7/12; B62D1/11; B62D1/19;

F16F7/12; (IPC1-7): B62D1/19; F16F7/12

- European: B62D1/11; B62D1/19B; F16F7/12B

Application number: EP19970121497 19971206 Priority number(s): DE19971004013 19970204 Also published as:

ZA9800302 (A) JP10217980 (A) EP0856452 (A3) DE19704013 (A1

BR9800551 (A)

more >>

Cited documents:

US3916720 DE4404569

Report a data error he

Abstract of EP0856452

The column comprises a housing (1) and a cover tube (2) which extends into the passenger accommodation and contains a shortenable steering shaft for the steering wheel. The passenger end of the cover tube has weaknesses around its edge and a coaxial cone (4) whose smallest outer diameter is smaller or equal to the inner diameter of the tube, which it faces. The weaknesses preferably comprise notches (3). The outwardly directed surface of the cone may continually widen along a concavely cross-section line from the smallest outer diameter with a coaxial surface to a large outer diameter with a virtually radially extending surface.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 856 452 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 05.08.1998 Patentblatt 1998/32

(51) Int. Cl.⁶: **B62D 1/19**, F16F 7/12

(21) Anmeldenummer: 97121497.8

(22) Anmeldetag: 06.12.1997

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorităt: 04.02.1997 DE 19704013

(71) Anmelder:

Lemförder Metaliwaren AG 49448 Lemförde (DE) (72) Erfinder:

- Grams, Kay-Uwe
 49692 Cappeln (DE)
- Vortmeyer, Jens
 32361 Preussisch-Oldendorf (DE)
- Schäfer, Burkhard
 27777 Ganderkesee (DE)

(54) Sicherheitslenksäule

(57) Es wird eine Sicherheitslenksäule vorgestellt, die aus einem Lenksäulengehäuse, einem sich in den Fahrgastraum erstreckenden Mantelrohr und einer darin drehbar gelagerten und im Fall eines Unfalles verkürzbaren Lenkwelle zur Aufnahme eines Lenkrades besteht. In dem sich in den Fahrgastraum erstreckenden Ende des Mantelrohres (2) sind über den Umfang verteilte Materialschwächungen eingebracht, wobei zu dem Ende des Mantelrohres (2) benachbart, ein konusartiges Bauteil (4) koaxial angeordnet ist, dessen kleinster Außendurchmesser kleiner oder gleich dem Innendurchmesser des Mantelrohres (2) ist und das mit seinem kleinsten Außendurchmesser dem Mantelrohr (2) zugewandt ist.

FIGUR 1

25

30

35

Beschreibung

Die Erfindung betrifft eine Sicherheitslenksäule aus einem Lenksäulengehäuse mit einem sich in den Fahrgastraum erstreckenden Mantelrohr und einer darin drehbar gelagerten Lenkwelle zur Aufnahme eines Lenkrades, die im Fall eines Frontalunfalls verkürzbar ist.

Solche energieabsorbierenden Sicherheitslenksäuien kommen zur Anwendung, um den Aufprall eines Fahrers bei einem Frontalcrash / Offsetcrash zusätzlich zur Abstützung durch einen Airbag abzudämpfen. Es sind Sicherheitssysteme bekannt, bei denen vorgeformte Wellrohre in der Lenksäule während des Crashvorganges zieharmonikaartig verformt werden und somit die Bewegungsenergie absorbieren.

Bei der Abstützung des Fahrers werden dabei sowohl axiale als auch radiale Kräfte in die Lenksäule eingeleitet. Nachteilig an den bekannten Wellrohren ist, daß diese sehr biegeweich sind und dementsprechend 20 eine geringe Querstabilität aufweisen. Dadurch treten unerwünschte Schwingungen auf. Bei einer Verformung können nicht vorbestimmbare Deformationen entstehen, die sich nachteilig auf die Sicherheit eines Fahrzeugführers auswirken.

Der Erfindung liegt das technische Problem zugrunde, eine energieabsorbierende Sicherheitslenksäule zur Verfügung zu stellen, bei der eine uneingeschränkte Quersteifigkeit des Mantelrohres erhalten bleibt.

Die Lösung dieses technischen Problems wird in Verbindung mit den Oberbegriffsmerkmalen erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebene technische Lehre vermittelt.

Dabei sind in das sich in den Fahrgastraum erstrekkenden Ende des Manteirohres Materialschwächungen eingebracht, die über den Umfang des Mantelrohres verteilt sind. Benachbart dem Ende des Mantelrohres ist ein konusartiges Bauteil koaxial angeordnet, dessen kleinster Außendurchmesser dem des Innendurchmessers des Endes des Mantelrohres entspricht, wobei diekleinste Außendurchmesser dem Ende des Mantelrohres zugewandt ist.

Von besonderem Vorteil bei dieser erfinderischen Sicherheitslenksäule ist, daß eine sehr hohe Quersteifigkeit des Rohres erzielt, beziehungsweise aufrechterhalten werden kann. Die während des Crashs auftretenden elastischen Biegekräfte können sich bei dieser Konstruktion nicht auf die Lenksäule auswirken, da eine Verkürzung der Sicherheitslenksäule dazu fuhrt, daß das konusartige Bauteil in das Mantelrohr eindringt. Das Mantelende reißt dabei in mehrere streifenförmige axiale Abschnitte auf. Diese axialen Abschnitte verformen sich während des Aufreißens plastisch. Durch die auftretenden Reibungs- und Verformungskräfte wird die Aufprallenergie absorbiert. Nach einem Aufprall wird eine axiale Bewegung des Lenkrades in einer zur Fahrtrichtung entgegengesetzten Richtung durch die zwischen Mantelrohr und konusartigem Bauteil vorhandene Reibung wirksam verhindert.

Bei einer besonders vorteilhaften Ausführungsform der Erfindung sind die Materialschwächungen als in den Randbereich des Mantelrohres eingebrachte Einkerbungen ausgeführt. Diese Einkerbungen können in regelmäßigen oder unregelmäßigen Abständen über den Umfang des Endes des Mantelrohres verteilt sein. Über eine Variation der Wanddicke des Mantelrohres und der Anzahl und Anordnung der Einkerbungen läßt sich das Verhalten der Sicherheitslenksäule in einem weiten Bereich an die zu erwarten Beanspruchungen anpassen.

Gemäß einer bevorzugten Ausführungsform der Erfindung erweitert sich die Oberfläche des konusartigen Bauteils entlang einer konkav verlaufenden Konturlinie von einem kleinen Außendurchmesser mit koaxialer Oberfläche bis zu einem großen Außendurchmesser mit einer sich radial erstreckenden Oberfläche. Bei einem Frontalunfall und einem Zusammenschieben der Sicherheitslenksäule entstehen an den Einkerbungen axiale Risse, wobei sich die entstehenden streifenförmigen Segmente des Mantelrohres auftulpen beziehungsweise sich lockenförmig ineinander drehen.

Von besonderem Vorteil ist eine Ausführungsform der Erfindung, bei der das konusartige Bauteil auch als Lagersitz für die Lagerung der Lenkwelle ausgebildet ist. Bei einer solchen Version ist das konusartige Bauteil kraftsschlüssig und/oder formschlüssig mit dem Ende des Mantelrohres verbunden.

Bei einer anderen zu bevorzugenden Ausführungsform kann das konusartige Bauteil als Außenschale der Lagerung der Lenksäule ausgeführt sein. Dies führt zu einer wesentlichen Verringerung der Anzahl der benötigen Bauteile.

Bei einer weiteren Ausführungsform des Gegenstandes der Erfindung ist das konusartige Bauteil als rückseitiges Bauteil des Lenkrades ausgeführt, so daß es im Normalbetrieb des Kraftfahrzeuges gegenüber dem Mantelrohr verdrehbar ist und nur im Falle eines Frontalzusammenstoßes mit dem Mantelrohr in Kontakt tritt.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Nachfolgend ist ein Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher beschrieben. Es zeigen:

- Figur 1 eine Teilansicht der Sicherheitslenksäule.
- Figur 2 eine Schnittdarstellung der Figur 1 und
 - Figur 3 eine Schnittdarstellung der Sicherheitslenksäule nach einem Frontalunfall.

Die Sicherheitslenksäule besteht aus einem Lenksäulengehäuse 1 mit einem sich in den Fahrgastraum erstreckenden Mantelrohr 2 und einer darin drehbar gelagerten Lenkwelle 5, an der das Lenkrad befestigt

55

5

10

30

35

Das Mantelrohr 2 ist ein Stück auf das konische Bauteil 4 aufgeschoben und besitzt in regelmäßigen Abständen auf seinem Umfang verteilt axiale Einkerbungen, an denen das Mantelrohr während eines Frontalunfalles beim Ineinanderschieben von konischem Bauteil 4 und Mantelrohr 2 in definierter Weise aufreißt. Die dabei entstehenden streifenförmigen Segmente des Mantelrohres 2 werden durch die konische Fläche des konischen Bauteils 4 radial nach außen abgebogen, wobei sie sich, wie in der Figur 3 dargestellt, lokkenartig aufdrehen oder auftulpen.

Dies hat als positiven Nebeneffekt zur Folge, daß die derartig verformten Segmente 7 des Mantelrohres (2) sich zwar radial um die Lenksäule nach außen erstrecken, daß aber keine scharfen Blechteile über die Kontur der Lenkradnabe in den Fahrgastraum hervortreten.

Die Festigkeit des Mantelrohres 2 ist so ausgelegt, daß sich die Lenksäule bei einem Frontalcrash und Zündung des Airbags zunächst nicht verformt, sich jedoch beim Aufprall des Fahrers auf den Airbag zusammenschiebt. Dabei erfolgt keine Intrusion des Mantelrohres 2 in das Lenksäulengehäuse und somit auch keine Kollision mit anderen Bauteilen.

Bezugszeichenliste

- 1 Lenksäulengehäuse
- 2 Mantelrohr
- 3 Einkerbungen
- 4 konisches Bauteil
- 5 Lenkwelle
- 6 Lagerung
- 7 verformtes Segment

Patentansprüche

 Sicherheitslenksäule bestehend aus einem Lenksäulengehäuse, einem sich in den Fahrgastraum erstreckenden Mantelrohr und einer darin drehbar gelagerten und im Fall eines Unfalles verkürzbaren Lenkwelle zur Aufnahme eines Lenkrades,

dadurch gekennzeichnet, daß

in dem sich in den Fahrgastraum erstreckenden Ende des Mantelrohres (2) über den Umfang verteilte Materialschwächungen eingebracht sind, daß zu dem Ende des Mantelrohres (2) benachbart, ein konusartiges Bauteil (4) koaxial angeordnet ist, dessen kleinster Außendurchmesser kleiner oder gleich dem Innendurchmesser des Mantelrohres (2) ist und daß das konusartige Bauteil (4) mit seinem kleinsten Außendurchmesser dem Mantelrohr

(2) zugewandt ist.

 Sicherheitslenksäule nach Anspruch 1, dadurch gekennzeichnet, daß die Materialschwächungen als in den Randbereich des Mantelrohres (2) eingebrachte Einkerbungen (3) ausgeführt sind.

 Sicherheitslenksäule nach einem oder mehreren der vorgenannten Ansprüche,

dadurch gekennzeichnet, daß

die nach außen gerichtete Oberfläche des konusartigen Bauteils (4) sich entlang einer konkav verlaufenden Querschnittslinie kontinuierlich vom kleinsten Außendurchmesser mit koaxialer Oberfläche zu einem großen Außendurchmesser mit einer sich annähernd radial erstreckenden Oberfläche erweitert.

 Sicherheitslenksäule nach einem oder mehreren der vorgenannten Ansprüche,

dadurch gekennzeichnet, daß

das konusartige Bauteil (4) als Lagersitz für die Lagerung (6) der Lenkwelle (5) ausgebildet und im Ende des Mantelrohres (2) ortsfest angeordnet ist.

 Sicherheitslenksäule nach einem oder mehreren der Ansprüche 1 - 3,

dadurch gekennzeichnet, daß

das konusartige Bauteil (4) als Außenschale der Lagerung (6) der Lenkwelle (5) ausgebildet ist.

 Sicherheitslenksäule nach einem oder mehreren der Ansprüche 1 - 3,

dadurch gekennzeichnet, daß

das konusartige Bauteil (4) als rückseitiges Bauteil des Lenkrades ausgeführt ist.

 Sicherheitslenksäule nach einem oder mehreren der Ansprüche 1 - 3,

dadurch gekennzeichnet, daß

das konusartige Bauteil (4) ein Bestandteil der Lagerung (6) der Lenksäule ist.

 Sicherheitslenksäule nach einem oder mehreren der vorgenannten Ansprüche,

dadurch gekennzeichnet, daß

das Mantelrohr (2) einer definierten radialen und / oder axialen Mindestbelastung ohne Verformung standhält.

3

FIGUR 1

