1.2 Affine toric varieties from monomial maps

Let $T \simeq (\mathbb{C}^4)^m$ be a torus with claracter

lattice M and fix $A = \{m_1, ..., m_s\} \subset M$.

We consider the map $A : T \longrightarrow \mathbb{C}^s$ given by $A : \mathbb{C}^s$ given by $A : \mathbb{C}^s$ given by $A : \mathbb{C}^s$ The closure of the mage is $A : \mathbb{C}^s = \mathbb{C}^s$

Prop: Yet is an affine tonic variety whose dense torus has character lattice Z vb.

Fact: for a morphism $\phi: T_1 \to T_2$ of toni that is a group homomorphism, $\phi(T_1)$ is a closed subtonus of T_2 .

proof $T' = \operatorname{im} \phi_{ij}$ is a closed subtonus of $(\mathbb{C}^*)^S$,

since ϕ_{ij} can be viewed as a map $T \to (\mathbb{C}^*)^S$.

it's the complement, Hence $(C^*)^{\frac{1}{2}} = T^{\frac{1}{2}}$, so that $Y_{\mathcal{A}} = \overline{T}^{\frac{1}{2}}$ is irreducible with a Zarirki deux torus. $t \in T' \subset (C^*)^s$ acts on C^s and takes varieties to varieties. Hence T'= t.T' C t. /, and since $\frac{1}{4}$ - $\frac{1}{4}$, we find $\frac{1}{4}$ c $\frac{1}{4}$. replacing t with ti, we see that You a tiby and hence to you a you a to you.

To see what the character lattice of Yes is, we consider the diagrams

which shows that the char lattice M' ~ Zob. II.

Concretely: collect the lattice points in $\forall s$ in the columns of a matrix $A \in \mathbb{Z}^{n \times s}$. Then dim $\chi_s = \operatorname{rank} A$.

Example
$$(n=1)$$
 $\forall b = \{2,4\} \subset \mathbb{Z}$

$$d_{\mathcal{A}}(t) = (t^2, t^4)$$

$$d_{\mathcal{A}}: C^2 \to C^2$$

$$A : \mathbb{Z}^2 \to \mathbb{Z}$$

$$A : \mathbb{Z}^2 \to \mathbb{Z}$$

$$A : \mathbb{Z}^2 \to \mathbb{Z}$$

Example
$$(n=2)$$
 $A = \{(1,0), (0,1), (1,1)\}$

$$\{t_1,t_2\} = \{t_1,t_2,t_1,t_2\}$$

In general an affire toric voriety is a torus with something

Example: (h=2) $\forall b = \frac{1}{4}(1,1), (2,2), (3,3)$ $\forall_A \subset \mathbb{C}^3 \text{ is like twisted cubic curve.}$ re A = A.

We might have $Y_{A} = Y_{A}$ for $A \neq A$, see Ex. 1.1.6. in CLS.

1.3 Toric Ideals

goal: describe the ideal $\mathbb{I}(y_{u}) \subset \mathbb{C}[x_1, ..., x_5]$.

example: find egns vanishing on the image of (t_1,t_2) to (t_1,t_2,t_1,t_2)

 $I(\gamma_d) = \langle z - xy \rangle$. ~ find relations between the exponents $m_i \in \mathcal{A}$.

The map $\phi_{\mathcal{H}}$ induces a map of character lattices $\widehat{\phi}_{\mathcal{H}}: \mathbb{Z}^S \longrightarrow M$ which sends e_i to m_i .

The relations we are looking for are given by its kernel.

Examples:
$$T = (C^*)^n$$
, $M = Z^n$, $\widehat{\phi}_{ub} = A$
 $A = 1$, $A = \{2,3\}$, $\widehat{\phi}_{i} = [2,3]$: $Z^2 \rightarrow Z^1$
 $(3, -2)$ $\in \ker \widehat{\phi}_{i} \sim \times x^3 - y^2$
 $n = 1$, $A = \{1, 2, 3\}$, $\widehat{\phi}_{i} = [1, 2, 3]$: $Z^3 \rightarrow Z^1$
 $(1, -2, 1)$, $(1, 1)$, $(2, -1, 0)$
 $n = 2$, $a = \{(1, 0), (0, 1), (1, 1)\}$
 $\widehat{\phi}_{i} = [1, 0, 1]$: $Z^3 \rightarrow Z^2$
 $(1, 1, 1, -1)$ $\in \ker \widehat{\phi}_{i} \sim \times x^1 - z^1$

Let $l \in \mathbb{Z}^S$ be an element of ker $\hat{f}_{\mathcal{A}}$: $l = (l_1, ..., l_s)$, $\leq l_i m_i = 0$.

set $l_{+} = \sum_{i>0}^{n} l_{i} e_{i}$, $l_{-} = \sum_{i<0}^{n} - l_{i} e_{i}$.

It is easy to see that $x^{l} - x^{l}$ vanishes on mid.

Proposition: The ideal of $Y_{i,k} \subset \mathbb{C}^s$ is given by $I(Y_{i,k}) = \left\langle x^{l,r} - x^{l} \right| l \in \ker \widehat{\varphi}_{i,k} \right\rangle \subset \mathbb{C}[x_{i,r}, x_{s}].$ proof: based on lynosther bans and really nia. See [CLS, p15]. Try exercise 1.1.2.

TAKE AWAY: affine bonic varieties are defined by prime ideals, generated by bihomials. Such ideals are called tonic ideals.

(RMK: each $\chi_{\mathcal{A}}$ contains $(1,...,1) \in \mathbb{C}^s$).

1.4 Affine semigroups

An affine semigroup is a set S nith a binary operation '+' such that

• + is associative

- unial requirement for a 1 semigroup.
- . S has an identity element 0 € S
- · + is commutative
- S is finitely generated: there is a finite subset $vb \in S$ such that $Nvb = \{ \underbrace{S}_{m \in vb} a_m m \mid a_m \in Nvb = S . \}_{m \in vb}$
 - . S can be embedded in a lattice M.

Up to isomorphism, all affine semigroups are of the form IN it for some finite subset to CM of a lattice. The semigroup algebra C[S] associated to an affine semigroup $S \subset M$ is the C-algebra $C[S] = \{ \sum_{m \in S}^{\prime} c_m \chi^m \mid c_m \in C, \text{ finitely many }\}$ with multiplication induced by $\chi^m \cdot \chi^m = \chi^{m+m}$. If $J = \{m, \ldots, m, m\} \subset M$, then $C[NJD] = C[\chi^{m_1}, \ldots, \chi^{m_S}]$.

Example: $\mathbb{C}[H]^{-}$ $\mathbb{C}[t_{1}^{\pm 1},...,t_{n}^{\pm 1}]$ is the coordinate rung of T_{N} .

- trop: Let SCM be an affine semigroup. Then
 - (a) C[S] is an integral donain and a finitely generated C-algebra.
 - (b) Specm(C[S]) is an affine toric variety whose torus las character lattice ZS.

(a) C[S] C C[M] -> C[S] I.D. S = N & => C[S] J.g. (b) Let $\phi_{\mathbf{x}}^{\mathbf{x}}: \mathbb{C}[x_1,...,x_s] \to \mathbb{C}[M]$ be the pullback of $\phi_{\mathcal{A}}: T \longrightarrow \mathbb{C}^3$. There is a short exact sequence o → I(YA) ← C[x,...,x,] ♣ C[s] → o, from which $\mathbb{C}[S] \simeq \mathbb{C}[x_1,...,x_s]/\mathbb{I}(y_{st})$. Since Zet = ZS, the forms of Spec (C[S]) is ZS.

EQUIVALENCE OF CONSTRUCTIONS.

Theorem. Let V be an affine variety. TFAE:

- (a) V is an affine bonic variety
- (b) V = Yn for a finite subset its of a lattice.
- (c) V is defined by a tour ideal.
- (d) V = Specn (C[S]) for an affine semigroup S.

snegerted exercises 1.1.2 ((c)-(e) requires lprobner bases)

1.1.2

1.1.4

1.1.6

1.1.10

1. 1. 11

1.1.12