PATENT ABSTRACTS OF JAPAN

(11) Publication number:

03-152184

(43) Date of publication of application: 28.06.1991

(51)Int.CI.

C09K 11/06 H05B 33/20

(21)Application number : 01-288824

(71)Applicant: NEC CORP

(22)Date of filing:

08.11.1989

(72)Inventor: UTSUKI KOJI

(54) EL ELEMENT OF ORGANIC THIN FILM

(57) Abstract:

PURPOSE: To obtain the subject EL element useful for plane light source or display having an improved elemental emission effect and a reduced deteriorating ratio of emitting brightness comprising a principal component of an organic electron-conductive thin film of a specific diphenoquinone derivative.

CONSTITUTION: In an EL element in which an organic positive hole-conductive thin film, an organic fluorescent thin film and an organic electron-conductive thin film are laminated in turn between a pair of electrodes containing an least one transparent electrode, principal component of the organic electron- conductive thin film is composed of a diphenoquinone derivative expressed by the formula (R1 to R4 are alkyl, allyl, alkoxy or halogen) (e.g. 2,6- dimethyl-2',6'-di-t-butyl diphenoquinone; 2,2',6,6'-tetra-t-butyl diphenoquinone or 2,2',6,6'-tetramethyl diphenoquinone) to afford the aimed EL element.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

http://www1.ipdl.jpo.go.jp/PA1/result/detail/main/wAAAa12570DA403152184P1.htm

11/22/2002

@ 公 開 特 許 公 報 (A) 平3-152184

@Int. Cl. 3

識別記号

庁内整理番号

個公開 平成3年(1991)6月28日

C 09 K 11/06 H 05 B 33/20 Z 7043-4H 6649-3K

審査請求 未請求 請求項の数 1 (全4頁)

図発明の名称 有機薄膜EL素子

②特 願 平1-288824

②出 願 平1(1989)11月8日

⑫発 明 者 宇 津 木 功 二

東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 願 人 日本電気株式会社 東京都

東京都港区芝5丁目7番1号

砂代 理 人 弁理士 舘野 千恵子

明 相 白雲

1. 発明の名称

· 有機薄膜 E L 素子

- 2. 特許請求の範囲
- (1) 少なくとも一方が透明な一対の電極間に、有機正孔伝導性薄膜、有機蛍光体薄膜および有機電子伝導性薄膜が順次積層された有機薄膜EL素子において、有機電子伝導性薄膜の主成分が一般式:

(式中、R¹~R⁴はそれぞれ同一もしくは異なる基であって、アルキル基、アリル基、アルコキシル基またはハロゲン原子を示す)で表されるジフェノキノン誘導体であることを特徴とする有機譲渡 E L 素子。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は平面光源やディスプレイに使用される 有機薄膜EL素子に関するものである。

[従来の技術]

ところが、最近、有機薄膜を3層構造にした新しいタイプの有機薄膜EL素子が報告され、強い関心を集めている(ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス、 27 巻、 713ページ、1988年参照)。報告によれば、この有機薄膜EL素子は、第2図に示すように、強い蛍光

[発明が解決しようとする課題]

前述したように、有機蛍光体薄膜、有機正孔伝導性薄膜および有機電子伝導性薄膜が3層積層した構造を有する新しい有機薄膜EL素子は、最大発光輝度が500 cd/m² 以上の明るい黄色発光を示す。この素子は電流駆動型であるために、上記の輝度を得るためには 100mA/cm² 以上の電流を流さなければならない。

しかし、従来使用していた有概物の電子伝導性 薄膜層では、安定して充分電流を流すことができ なかった。これは通電とともに電子伝導性薄膜層 が劣化し、その結果、電子が有限蛍光体薄膜層に 注入されにくくなるためである。また、電力損 (ジュール熱)の増大により劣化速度が加速され、 素子の発光効率の低下を招いていた。更に、電子 伝導性薄膜層の材料の還元電位が非常に大きいた めに(約~1.5 V)、背面電極からの電子注入効 率が低かった。

本発明は、以上述べたような従来の事情に鑑み てなされたもので、素子発光効率が更に向上し、 かつ発光輝度の劣化速度が低下した有機薄膜EL 素子を提供することを目的とする。

[課題を解決するための手段]

本発明は、少なくとも一方が透明な一対の電極間に、有機正孔伝導性薄膜、有機蛍光体薄膜および有機電子伝導性薄膜が順次積層された有機薄膜 E L 素子において、有機電子伝導性薄膜の主成分が一般式 [I]:

... [I]

(式中、R 1 ~ R 4 はそれぞれ同一もしくは異なる基であって、アルキル基、アリル基、アルコキシル基またはハロゲン原子を示す)で表されるジフェノキノン誘導体であることを特徴とする有機 薄膜 E L 素子である。

本発明は、有機電子伝導性薄膜層として、特定のジフェノキノン誘導体を用いると優れた特性を 示す有機薄膜Eし素子が得られるという知見に基 づいてなされたものである。

本発明の有機薄膜Eし素子は、第1回に示すように、背面電極16であるIn電極と有機蛍光体薄膜層14との間に電子伝導性薄膜層としてジフェノキノン誘導体薄膜層15を形成し、In電極からの電子注入効率および電子伝導性薄膜層内の輸送効率を高めている。

なお、透明電極12としては、通常用いられるも

のであればいずれでもよく、例えば ITO. SnO2 : Sb, ZnO3 : A2 , A1 等が挙げられる。また、背面電極 16には、In1 Mg : A2 等が使われる。

本発明の電子伝導性薄膜に用いられるジフェノキノン誘導体の具体的な例としては、2,6-ジメチルー2',6'-ジーt-プチルジフェノキノン、2,2',6,6'ーテトラーt-プチルジフェノキノン、2,2',6,6'ーテトラメチルジフェノキノンなどがあるが、この限りではない。

また、本発明に用いられる有機蛍光体の具体的な例としては、トリス(8-ヒドロキシキノリン)アルミニウム、12-フタロペリノン、8,9,10,11-テトラクロロ-12-フタロペリノン、1,2,3,4-テトラフェニルシクロペンタジエン、ナフタルイミド、4-アミノナフタルイミド、N-エチルー4-アミノナフタルイミド、N-エチルー4-アミノナフタルイミド、N-アコタルイミド、N-アコタルイミド、N-アコタルイミド、N-アコタルイミド、N-アコタルイミド、N-アコタルイミド、N-アコタルイミド、N-スチルー4-アセチルアミノナフタルイミド、N-メチルー4-アセチルアミ

ノナフタルイミド、N-エチルー4-アセチルアミノナフタルイミド、N-n-ブチルー4-アセチルアミノナフタルイミド、N-メチルー4-メトキシナフタルイミド、N-エチルー4-メトキシナフタルイミド、Cープロピルー4-メトキシナフタルイミド、N-エチルー4-エトナフタルイミド、N-アチルー4-エトキシナフタルイミド、N-ロピルー4-エトキシーイミド、N-アチルー4-アミノナフタルイミド、N-アチルー4-アミノナフタルイミド、N-アチルー4-アミノナフタルイミド、N-アチルー4-アミノナフタルイミドがあるが、この限りではない。

本発明による有機薄膜EL素子は、従来の有機 薄膜EL素子に比べて発光効率は2から3倍改善 された。また、従来よりも発光効率が改善された だけ、ジュール熱の発生量が少なくなり、この結 果、素子発熱に伴う発光特性の劣化も少なくなっ

このように、本発明で重要な点は、電子伝導性 薄膜層に用いる材料の主成分がジフェノキノン誘

本発明において、有機電子伝導性薄膜圏の主成分として、一般式 [I]で示されるジフェノキノン誘導体を用いると、該薄膜圏の劣化が防止されると共に、遠元電位も小さいので(約~0.5 V)、特性の優れた素子が得られる。

[実施例]

以下、本発明の実施例について詳細に説明する。 実施例 1 導体である点であり、電子伝導性薄膜魔以外の素子を構成する材料については限定されない。 「作用〕

3 層構造の有機薄膜 E L 素子の発光効率を向上させるには、電荷注入効率、電荷の輸送効率、励起子生成および発光遷移確率を高めることが重要である。特に素子の印加電圧が高くなると、有機蛍光体薄膜層と正孔伝導性薄膜層の界面での電子

有機蛍光体としてトリス(8-ヒドロキシキノリン)アルミニウムを用いた。第1図に示すよしてから、第1図に示す成してから、有機正孔伝導性神膜暦13として1、1-ピス・サウムを 10-6 Torr以下を 500人の膜厚で、10-6 Torr以での 真性神膜圏として形成した。 その後、V VS. S C E)である2、2・6、6・テトラメチルジフェーク 10-6 Torr以下の 真電 で ある2、2・6、6・テトラメチルジフェーク 10-6 Torr以下の 真電 を 1500人の膜で で 10-6 Torr以下の 真電 を 1500人の 人形成して 有機 膜 とし 素子が完成する。

この素子の発光特性を乾燥窒素中で測定したところ、約8 Vの直流電圧の印加で、300 cd/m² の緑色発光が得られた。従来の素子に比べ、発光輝度・効率が2から3倍改善されている。この有機薄膜Eし素子を電流密度 0.5 mA/cm² の状態でエージング試験をしたところ、輝度半減時間は 500

時間以上であった。従来の素子では 100から 300 時間であった。

実施例2

有機蛍光体としてN-(2.4-キシリル) - 4-アミノナフタルイミドを用いた以外は、実施例 1 と同様にして有機薄膜EL素子を作製・評価した。約10 Vの直流電圧の印加で200 cd/m² の黄色発光が得られ、実施例 1 と同様な結果が得られた。

[発明の効果]

以上説明したように、本発明によれば発光特性 および信頼性が大幅に改善された有機薄膜EL素 子が提供される。

このように、本発明により有機薄膜EL素子を 実用レベルまで引き上げることができ、その工業 的価値は高い。

4. 図面の簡単な説明

第1図は本発明の有機薄膜EL素子の概略断面図、第2図は従来例による3層構造の有機薄膜EL素子の概略断面図である。

11,21,…ガラス基板

12,22,…透明電極

13,23 …有機正孔伝導性薄膜膜

14,24,…有機蛍光体薄膜層

15…ジフェノキノン誘導体薄膜層

16,26 …背面電極

25…有機電子伝導性薄膜腫

特許出願人 日本電気株式会社代理人 弁理士 舘野 千惠子

第1区

第2図

				a
				i
				ı