показаны на рисунках.

Работу, совершенную силой, проще и точнее рассчитать, как изменение кинетической энергии тела

$$A = \frac{mv^2}{2} \approx 12,5$$
Дж.

10 класс

1. Каждый атом в кристалле имеет три колебательных степени свободы. Следовательно, энергия колебательного движения одного атома равна 3kT, а энергия одного моля атомов $3kTN_A = 3RT$, где N_A - число Авогадро. Таким образом, молярная теплоемкость кристалла $C_\mu = 3R$. Заметим, что данный факт был установлен экспериментально еще в первой половине XIX века и носит название закона Дюлонга-Пти. Данный закон не учитывает изменение потенциальной энергии взаимодействия атомов кристаллической решетки, которая мало изменяется при изменении температуры.

Проверим справедливость закона Дюлонга-Пти для имеющихся данных. Для этого рассчитаем молярные теплоемкости металлов по формуле $C_{\mu}=C\mu$, и определим примерное значение газовой постоянной $R'=C_{\mu}/3$

Таблица.

1 tooling.				
металл	<i>C</i> ,	μ,	C_{μ} ,	R',
	кДж / (кг · К)	г/ моль	Дж / (моль · K)	Дж / (моль · К)
алюминий	0,88	27,0	23,76	7,92
железо	0,46	55,8	25,67	8,56
золото	0,13	197,0	25,61	8,54
магний	1,05	24,3	25,52	8,51
натрий	1,20	23,0	27,60	9,20
олово	0,20	118,6	23,72	7,91
марганец	0,50	54,9	27,45	9,15
медь	0,38	63,5	24,13	8,04

Как видно из проведенных расчетов, молярная теплоемкость действительно оказывается примерно одинаковой для всех металлов. Для более точной оценки газовой постоянной вычислим среднее значение величин R', а также оценим погрешность найденного значения.

$$\overline{R} = \frac{\sum R'_{i}}{n} \approx 8,48 \; \text{Дже / (моль · K)};$$

$$\Delta R \approx 2\sqrt{\frac{\sum (R'_i - \overline{R})^2}{n(n-1)}} \approx 0.35$$
.

Таким образом получим окончательную оценку

$$\overline{R} pprox (8.5 \pm 0.4)$$
 Джс / (моль · K)

2. С помощью закона Кулона рассчитаем силу \vec{f} , с которой притягивается каждый шарик к «полубесконечной» цепочке:

$$f = \frac{q^2}{4\pi\epsilon_0 d^2} (1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots) \approx 0.81 f_0,$$
 (1)

где $\frac{q^2}{4\pi\epsilon_0 d^2}$ = f_0 - сила притяжения двух соседних шариков. Так как

нас устраивает точность порядка 5%, то при вычислении суммы можно ограничиться 5-6 слагаемыми. Очевидно, что это и будет минимально необходимая сила для разрыва цепочки. $\overline{F_{min}} \approx 8,1H$ Если приложить такую силу к крайнему шарику, то он начнет смещаться.

Рассмотрим теперь силы, действующие на второй шарик. Вправо на него действует сила $f_2 = f_0$ со стороны первого шарика, а влево сила $f = 0.81 f_0$, поэтому второй шарик также начнет смещаться вместе с первым. На третий шарик со стороны двух крайних действует сила $f_3 = f_0(1 - \frac{1}{2^2}) = 0.75 f_0$, которая меньше, чем сила притяжения к остальным шарикам, расположенным слева. Следовательно, это шарик не сдвинется, поэтому цепочка разорвется между вторым и третьим шариками.