Finite representation of real numbers Fixed-point and floating-point formats

Ing. Rodrigo González

rodralez@frm.utn.edu.ar

Técnicas Digitales III

Universidad Tecnológica Nacional, Facultad Regional Mendoza.

Resumen

- Integers
- 2 Fixed-point
 - Fractional point
 - Scale of representation
 - Dynamic range
 - Examples
 - ExamplesAddition
 - Auguston
 - Overflow
 - Saturation
 - Multiplication

- Accumulator
- Rounding schemes
- Floating-point
 - Number Representation
 - Standards
 - Normalized Form
 - De-normalized Form
 - Rounding schemes
 - Dynamic range
 - Precision
- Fixed-point vs floating-point

Floating-point

Representation

Unsigned integers

- An N-bit binary word can represent a total of 2^N separate values.
- Range: 0 to 2^N − 1

•
$$n_{10} = 2^{N-1}b_{N-1} + 2^{N-2}b_{N-2} + \dots + 2^{1}b_{1} + 2^{0}b_{0}$$

2's complement signed integers

• Range:
$$-2^{N-1}$$
 to $2^{N-1} - 1$.

•
$$n_{10} = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

Bit Pattern	Unsigned	2's Complemen
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
•	•	•
•	•	•
0111 1110	126	126
0111 1111	127	127
1000 0000	128	-128
1000 0001	129	-127
•	•	•
•	•	•
1111 1110	254	-2
1111 1111	255	-1

How much bits are needed to represent $-\alpha_{min} \leq \alpha \leq \alpha_{max}$?

$$N = floor(log_2(max([\alpha_{min}, \alpha_{max}])) + 2)$$

Representation, cont'd

$$N = \mathsf{floor}(\mathsf{log}_2(\mathsf{max}([\alpha_{\mathit{min}}, \alpha_{\mathit{max}}])) + 2)$$

- \bigcirc » a_m = 15; a_M = 15;
- ② » N = floor (log2 (max ([a_m , a_M])) + 2);

$$N = \mathsf{floor}(\mathsf{log}_2(\mathsf{max}([\alpha_{\mathit{min}}, \alpha_{\mathit{max}}])) + 2)$$

MATLAB

Integers

- \bigcirc » a_m = 15; a_M = 15;
- ② » N = floor (log2 (max ([a_m , a_M])) + 2);
- 0 > N = 5.00

"Q" notation

The fractional notation can be applied to the 2's complement notation.

Qm.n

- m represents the number of bits to the left of the binary point.
- *n* represents the number of bits to the right of the binary point.
- The weights of bits that are to the right of the binary point are negative powers of 2: $2^{-1} = \frac{1}{2}$, $2^{-2} = \frac{1}{4}$..., etc.
- The naming convention does not take the MSB of the number (sign bit) into account. A Qm.n notation therefore uses m + n + 1 bits.
- $n_{10} = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^{i-n}$
- Precision: 2^{-n} .
- Range: -2^m to $2^m 2^{-n}$.

Fractional point "Q" notation, cont'd

For instance:

- Q0.15 (Q15)
 - 16 bits;
 - Range: -1 to 0.99996948;
 - Precision: 1/32768 (2⁻¹⁵).
- Q3.12
 - 16 bits:
 - Range: -8 to 7.9998;
 - Precision: 1/4096 (2⁻¹²).
- Q0.31 (Q31)
 - 32 bits;
 - Range: -1 to 0.999999999534339;
 - Precision: 4.6566129e-10 (2⁻³¹).

a power-of-two scale factor, 2^n .

- Values represented in Qm.n notation can be seen as an integer simply divided by
- The scale factor is in the head of the designer.
- So, the scale factor can be an arbitrary scale that is not a power of two.
- Example: 16-bit 2's complement numbers between 8000H and 7FFFH can represent decimal values between –5 and +5, where the scale factor is 5/32768.

Dynamic range

Dynamic range is defined as,

$$DR_{db} = 20 \log_{10} \left(\frac{\text{largest possible word value}}{\text{smallest possible word value}} \right) \text{dB}$$

$$DR_{dB} = 20 \log_{10} \left(\frac{2^b - 1}{1}\right) dB$$
 $DR_{dB} = 20 \left(\log_{10}(2^b - 1) - \log_{10}(1)\right) dB$
 $DR_{dB} = 20 \log_{10}(2) \cdot b dB$
 $DR_{dB} = 6.02 \cdot b dB$

Precision examples

Forma	(N.M)	Largest positive value (0x7FFF)	Least negative value (0x8000)	Precision	Precision (0x0001)	
1	15	0,999969482421875	-1	3,05176E-05	2^-15	90,30873362
2	14	1,99993896484375	-2	6,10352E-05	2^-14	90,30873362
3	13	3,9998779296875	-4	0,00012207	2^-13	90,30873362
4	12	7,999755859375	-8	0,000244141	2^-12	90,30873362
5	11	15,99951171875	-16	0,000488281	2^-11	90,30873362
6	10	31,99902344	-32	0,000976563	2^-10	90,30873362
7	9	63,99804688	-64	0,001953125	2^-9	90,30873362
8	8	127,9960938	-128	0,00390625	2^-8	90,30873362
9	7	255,9921875	-256	0,0078125	2^-7	90,30873362
10	6	511,984375	-512	0,015625	2^-6	90,30873362
11	5	1023,96875	-1024	0,03125	2^-5	90,30873362
12	4	2047,9375	-2048	0,0625	2^-4	90,30873362
13	3	4095,875	-4096	0,125	2^-3	90,30873362
14	2	8191,75	-8192	0,25	2^-2	90,30873362
15	1	16383,5	-16384	0,5	2^-1	90,30873362
16	0	32767	-32768	1	2^-0	90,30873362

Scale factor examples

Format	Scaling factor ()	Range in Hex (fractional value)
(1.15)	2 ¹⁵ = 32768	0x7FFF (0.99) → 0x8000 (-1)
(2.14)	214 = 16384	0x7FFF (1.99) → 0x8000 (-2)
(3.13)	2 ¹³ = 8192	0x7FFF (3.99) → 0x8000 (-4)
(4.12)	2 ¹² = 4096	0x7FFF (7.99) → 0x8000 (-8)
(5.11)	2 ¹¹ = 2048	0x7FFF (15.99) → 0x8000 (-16)
(6.10)	2 ¹⁰ = 1024	0x7FFF (31.99) → 0x8000 (-32)
(7.9)	2 ⁹ = 512	0x7FFF (63.99) → 0x8000 (-64)
(8.8)	2 ⁸ = 256	0x7FFF (127.99) → 0x8000 (-128)
(9.7)	2 ⁷ = 128	0x7FFF (511.99) → 0x8000 (-512)
(10.6)		
(11.5)	2 ⁵ = 32	0x7FFF (2047.99) → 0x8000 (–2048)
(12.4)	2 ⁴ = 16	0x7FFF (4095.99) → 0x8000 (–4096)
(13.3)	2 ³ = 8	0x7FFF (4095.99) → 0x8000 (–4096)
(14.2)	2 ² = 4	0x7FFF (8191.99) → 0x8000 (-8192)
(15.1)	2 ¹ = 2	0x7FFF (16383.99) → 0x8000 (–16384)
(16.0)	2 ⁰ = 1(Integer)	0x7FFF (32767) → 0x8000h (–32768)

Addition in 2's complement

Fixed-point

- Adding two N-bits numbers can produce a N+1 bits result.
- The last two bits of the carry row show if overflow occurs.
- Saving the result in a N+1 word avoids overflows.
- The general rule is the sum of *m* individual *b*-bit can require as many as $b + log_2(m)$.

Example: 256 8-bits words requires an accumulator whose word length is $8 + log_2(256) = 16$

Overflow

- An overflow occurs in an N-bit 2's complement notation when a result is greater than 2^{N-1} - 1.
- An overflow produces a roll-over (wrap).
- An **underflow** occurs if a result is less than 2^{-N} .

Overflow, cont'd

- A roll-over usually has catastrophic consequences on a process.
- Only happen when two very large positive operands, or two very large negative operands are added.
- It can never happen during the addition of a positive operand and a negative operand, whatever their magnitude.

Saturation

- To avoid a rollover, overflow is detected and the result is saturated to the most positive or most negative value that can be represented.
- This procedure is called **saturation arithmetic**.
- PDSP allows the results to be saturated automatically in hardware.

Multiplication in 2's complement

- The product of two N-bit numbers requires 2N bits to contain all possible values.
- But the two MSB are always equal (sign extension bit).
- Therefore, 2N-1 bits are enough to store the result.
- Q15 will not produce an overflow.

Multiplication and division by 2 in 2's complement

- Multiplication: all bits are shifted left by one position.
- Division: all bits are shifted right by one position, however the sign bit must be preserved (arithmetic shift).
- Arithmetic shift ≠ logical shift.

Accumulator

- PDSP have an accumulator with extra bits to avoid overflow during internal calculations.
- Guard bits: extra bits to avoid addition overflows.
- Only round final results to the final data size and format if possible.

b39-b32	b31-b16	b15-b0
G	Н	L
Guard bits	High-order bits	Low-order bits

Truncation and roundoff

- A 2N bits number after multiplication must be stored in memory as a N-bits word.
- Truncation: e = Q[x] x, $-\Delta \le e < 0$, $\mu = -\frac{\Delta}{2}$, $\sigma^2 = \frac{\Delta}{12}$.
- Roundoff: e = Q[x + 0.5] x, $-\Delta/2 < e \le \Delta/2$, $\mu = 0$, $\sigma^2 = \frac{\Delta}{12}$.

Number Representation

A floating-point number can represent a very large or a very small value, positive and negative.

Floating-point Numbers (Decimal)

A floating-point number is typically expressed in the scientific notation in the form of

$$F \times r^E$$
,

where

- F, fraction.
- E, exponent.
- r, certain radix. Binary, r = 2; decimal, r = 10.

Standards

Standards

IEEE Standard P754 Format

IBM Format

DEC (Digital Equipment Corp.) Format

Bit	31	30	29	28	27	26	25	24	23	22	21	20		2	1	()
	S	27	2 ⁶	25	24	2^3	2 ²	21	20	2.2	2 -3	2 4		2 22	2 -23	2-24
Sign	ı (s)		+	- Exp	onen	t (e)	→					← Fr	actio	n (f)	<i>→</i>	

MIL-STD 1750A Format

Bit	31	30	29	 11	10	9	8	7	6	5	4	3	2	1	0
	20	2 1	2 2	 2-20	2 21	2 22	2 -23	27	26	25	24	23	2 ²	21	20

 \leftarrow Fraction $(f) \rightarrow$ ← Exponent (e) →

Modern computers adopt IEEE 754 standard for representing floating-point numbers.

IEEE 754-2008 standard

IEEE 754-2008 standard defines several formats.

	Binary form	tats $(B=2)$	Decimal formats $(B = 10)$				
Parameter	Binary 16	Binary 32	Binary 64	Binary 128	Decimal 132	Decimal 164	Decimal 128
p, digits	10 + 1	23 + 1	52 + 1	112 + 1	7	16	34
e_{max}	+15	+127	+1023	+16383	+96	+384	+16,383
e_{min}	-14	-126	-1022	-16382	-95	-383	-16,382
Common name	Half precision	Single precision	Double precision	Quadruple precision			

Standards

IEEE-754 32-bit Single-Precision

S, sign bit. 0 for negative numbers and 1 for positive numbers.

Floating-point

- E, 8-bits exponent.
- We need to represent both positive and negative exponents.
- E = [1, 254], bias = 127; -126 < E bias < 127.
- F = 0 and E = 255 are reserved.
- F, 23-bits fraction.

Normalized Form

Format

- Representation of a floating point number may not be unique: $11.01_2 = 1.101_2 \times 2^1 = 110.1_2 \times 2^{-1}$.
- Therefore, the fractional part *F* is normalized.
- 1.F, implicit leading 1.

Example 1

Represent 3215.020002₁₀

```
Decimal Value Entered: 3215.020002
```

Single precision (32 bits):

```
Binary: Status: normal
```

```
Bit 31 | Bits 30 - 23 | Bits 22 - 0 | Significand | 1.00 0101 0 | Decimal value of exponent field and exponent | Decimal value of exponent field and exponent | 1.5698340 | 1.5698340
```

```
Hexadecimal: 4548F052 Decimal: 3215.0200
```

(http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html)

Example 2

Represent $3215.020002_{10} \times 2 = 6430.040004_{10}$

Decimal Value Entered: 6430.040004

Single precision (32 bits):

Binary: Status: normal

Bit 31
Sign Bit

0
0: +
1: Decimal value of exponent field and exponent

139 - 127 = 12

Bits 22 - 0 Significand 1.10010001111000001010010 Decimal value of the significand

1.5698340

Hexadecimal: 45C8F052 Decimal: 6430.0400

1.5698340

Integers

Example 3

1: -

Represent $3215.020002_{10}/4 = 803.7550005_{10}$

Decimal Value Entered: 803.7550005

Single precision (32 bits):

Hexadecimal: 4448F052 Decimal: 803.75500

136

-127 = 9

Floating-point numbers are auto-scaled!.

Format

Integers

Not all real numbers in the range are representable

Normalized floating-point numbers

Denormalized floating-point numbers

- Normalized form has a serious problem, with an implicit leading 1 for the fraction, it cannot represent the number zero!
- De-normalized form was devised to represent zero and other numbers.
- $E = 0 \Rightarrow 0.F$, implicit leading 0.

Example

Represent -3.4E-39₁₀

Decimal Value Entered: |-3.4e-39

Single precision (32 bits):

```
Binary: Status: denormalized
```

Hexadecimal: 802505D1 Decimal: -3.3999999e-39

(http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html)

Special values

- **Zero**: E = 0 and F = 0. Two representations: +0 with S = 0 and -0 with S = 1.
- Infinity (Inf): E = 0xFF (all 1's) and F = 0. Two representations: +inf with S = 0 and -inf with S = 1.
- Not a Number (NaN): a value that cannot be represented as real number (e.g. 0/0). E = 0xFF (all 1's) and $F \neq 0$

- $0 \gg a = 1/0$
- 2 » ans = Inf

Rounding schemes

- ulp (unit of least precision, eps()).
- s, significant, s = 1.F.
- s' and s'' being two successive multiples of ulp.
- Assume that s' < s < s'', s'' = s' + ulp,
- Then, the rounding function round(s) associates to s either s' or s", according to some rounding strategy.

Rounding schemes are:

- Truncation method (also called round toward 0 or chopping): round(s) = s' if s is positive, round(-s) = s'' if s is negative.
- Round toward plus infinity: round(s) = s"
- Round toward minus infinity: round(s) = s'
- Round to nearest (default): if s < s' + ulp/2, round(s) = s', and if s > s' + ulp/2, round(s) = s''.

Dynamic range

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$

where b_E is the number of bits of E.

For single precision (32-bits):

$$DR_{dB} \approx 6.02 \cdot 2^8 \approx 1541 \, dB$$

For fixed-point Q31 (32-bits):

$$DR_{dB} \approx 6.02 \cdot 32 \approx 192 \, dB$$

Precision

- Precision is not constant throughout floating point numbers' range.
- As the numbers get larger, the precision gets worse.

- 0 » u = linspace (-15, 15, 1000);
- ② » q = quantizer([6 4],'float'); % [wordlength exponentlength]
- \odot » y1 = quantize(q,u);
- 3 >>
- 🗿 » y2 = quantize(q,u);

Precision, cont'd

Precision, cont'd

eps(x) returns the positive distance from abs(X) to the next larger in magnitude floating point number of the same precision.

- \bullet » e1 = eps(single(1))
- 2 » e1 = 1.1920929e-07

Precision, cont'd

eps(x) returns the positive distance from abs(X) to the next larger in magnitude floating point number of the same precision.

- ② » e1 = 1.1920929e-07

Precision, cont'd

eps(x) returns the positive distance from abs(X) to the next larger in magnitude floating point number of the same precision.

- \bigcirc » e1 = eps(single(1))
- ② » e1 = 1.1920929e-07
- 3 » e2 = eps(single(1e1))
- » e2 = 9.5367432e-07

Precision, cont'd

eps(x) returns the positive distance from abs(X) to the next larger in magnitude floating point number of the same precision.

- \bigcirc » e1 = eps(single(1))
- 2 » e1 = 1.1920929e-07
- » e2 = 9.5367432e-07
- » e3 = 1024
- \bullet > t = 10000001024.00

Precision, cont'd

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

MATLAB

0 » (2⁵³ + 1) - 2⁵³

Precision, cont'd

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

- ① » (2⁵³ + 1) 2⁵³
- 2 » ans = 0

Precision, cont'd

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

- \bigcirc » (2^53 + 1) 2^53
- \bigcirc » ans = 0
- $3 \gg x=1$, t = tan(x) sin(x)/cos(x)

Precision, cont'd

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

- 0 » (2⁵³ + 1) 2⁵³
- 0 > x=1, t = tan(x) sin(x)/cos(x)
- 4 » t = 2.2204e-16 % eps(1)

Fixed-point vs floating-point

Bibliography

- Bruno Paillard. An Introduction To Digital Signal Processors, Chapter 5 "Binary representations and fixed-point arithmetic".
- Richard G. Lyons. Understanding Digital Signal, Chapter 12 "Digital data formats" and their effects".
- Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12 "Floating Point Arithmetic".
- Erick L. Oberstar. Fixed-Point Representation & Fractional Math.
- A Tutorial on Data Representation Integers, Floating-point Numbers, and Characters http://www3.ntu.edu.sg/home/ehchua/programming/java/DataRepresentation.html
- Greg Duckett. Fixed-Point vs. Floating-Point DSP for Superior Audio. http://web.archive.org/web/20060515074349/http://www.rane.com/note153.html