Part 1 Linear Systems

SoE1.tex

Exercise 1 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} x + 2y &= 5 \\ x &= 6 \end{cases}$$

Exercise 1.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

- (a) one solution ✓
- (b) no solutions
- (c) infinite solutions

Exercise 1.1.1 The solution to this system is $\left(\boxed{6}, \boxed{-\frac{1}{2}}\right)$

SoE2.tex

Exercise 2 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} 2y - 3x = 1 \\ y = -3 \end{cases}$$

Exercise 2.1 Classify this system as having one solution, no solutions, or infinite solutions.

- (a) one solution ✓
- (b) no solutions

Exercise 2.1.1 The solution to this system is $\left(-\frac{7}{3}, -3 \right)$.

SoE3.tex

Exercise 3 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} \frac{x+2y}{4} = -5\\ \frac{3x-y}{2} = 1 \end{cases}$$

Exercise 3.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

- (a) one solution \checkmark
- (b) no solutions
- (c) infinite solutions

Exercise 3.1.1 The solution to this system is $\left(\left\lfloor -\frac{16}{7} \right\rfloor, \left\lfloor -\frac{62}{7} \right\rfloor \right)$.

SoE4.tex

Exercise 4 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} \frac{2}{3}x - \frac{1}{5}y & = 3\\ \frac{1}{2}x + \frac{3}{4}y & = 1 \end{cases}$$

Exercise 4.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

- (a) one solution \checkmark
- (b) no solutions
- (c) infinite solutions

Exercise 4.1.1 The solution to this system is $\left(\begin{bmatrix} \frac{49}{12} \end{bmatrix}, \begin{bmatrix} -\frac{25}{18} \end{bmatrix}\right)$

SoE5.tex

Exercise 5 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} \frac{1}{2}x - \frac{1}{3}y = -1\\ 2y - 3x = 6 \end{cases}$$

Exercise 5.1 Classify this system as having one solution, no solutions, or infinite solutions.

- (a) one solution
- (b) no solutions
- (c) infinite solutions \checkmark

SoE6.tex

Exercise 6 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} x + 4y &= 6 \\ \frac{1}{12}x + \frac{1}{3}y &= \frac{1}{2} \end{cases}$$

Exercise 6.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

- (a) one solution
- (b) no solutions
- (c) infinite solutions \checkmark

SoE7.tex

Exercise 7 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} 3y - \frac{3}{2}x &= -\frac{15}{2} \\ \frac{1}{2}x - y &= \frac{3}{2} \end{cases}$$

Exercise 7.1 Classify this system as having one solution, no solutions, or infinite solutions.

- (a) one solution
- (b) no solutions ✓

(c)	c) infinite solutions												

SoE8.tex

Exercise 8 Solve the given system using substitution and/or elimination. Classify the system as having one solution, no solutions, or infinite solutions. Check your answer both algebraically and graphically.

$$\begin{cases} \frac{5}{6}x + \frac{5}{3}y & = -\frac{7}{3} \\ -\frac{10}{3}x - \frac{20}{3}y & = 10 \end{cases}$$

Exercise 8.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

- (a) one solution
- (b) no solutions ✓
- (c) infinite solutions

SoE9.tex

Exercise 9 A local buffet charges \$7.50 per person for the basic buffet and \$9.25 for the deluxe buffet (which includes crab legs.) If 27 diners went out to eat and the total bill was \$227.00 before taxes, how many chose the basic buffet and how many chose the deluxe buffet?

Answer: 13 chose the basic buffet and 14 chose the deluxe buffet.

SoE10.tex

Exercise 10 At The Old Home Fill'er Up and Keep on a-Truckin' Cafe, Mavis mixes two different types of coffee beans to produce a house blend. The first type costs \$3 per pound and the second costs \$8 per pound. How much of each type does Mavis use to make 50 pounds of a blend which costs \$6 per pound?

Answer: Mavis needs 20 pounds of \$3 per pound coffee and 30 pounds of \$8 per pound coffee.

SoE11.tex

Exercise 11 Skippy has a total of \$10,000 to split between two investments. One account offers 3% simple interest, and the other account offers 8% simple interest. For tax reasons, he can only earn \$500 in interest the entire year. How much money should Skippy invest in each account to earn \$500 in interest for the year?

Answer: Skippy needs to invest \$6000 in the 3% account and \$4000 in the 8% account.

SoE12.tex

Exercise 12 A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution. How much of each are needed?

Answer: 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

SoE13.tex

Exercise 13 At The Crispy Critter's Head Shop and Patchouli Emporium along with their dried up weeds, sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%, 20% and 40%, respectively. How much of each Type of tea is needed to make a new blend of tea that is equal parts peppermint, rose hips and chamomile?

Exercise 13.1 First, assume you want to make 12 pounds of the new blend of tea. How much of each type would you need?

Answer: 8 pounds of Type I, 4 pounds of Type II.

Exercise 13.1.1 Now, assume you want to make 2 pounds of the new blend of tea. How much of each type would you need?

Answer: $\begin{bmatrix} \frac{4}{3} \end{bmatrix}$ pounds of Type I, $\begin{bmatrix} \frac{2}{3} \end{bmatrix}$ pounds of Type II.

Exercise 13.1.1.1 Now, let t be the amount of the new tea you would like to make in pounds. How much of each type would you need? (Your answer will depend on t).

Answer:	$\left[\frac{2}{3}t\right]$ pound	ds of Type I ,	$\frac{1}{3}t$ pounds of	Type II.	

SoE14.tex

Exercise 14 The following system of equations is given graphically. Determine if the system has one solution, no solutions, or infinite solutions.

Exercise 14.1 Classify this system as having one solution, no solutions, or infinite solutions.

Multiple Choice:

(a) one solution \checkmark

- (b) no solutions
- (c) infinite solutions

Exercise 14.1.1 The solution to this system is (0, -2).

SoE15.tex

Exercise 15 The following system of equations is given graphically. Determine if the system has one solution, no solutions, or infinite solutions.

Exercise 15.1 Classify this system as having one solution, no solutions, or infinite solutions.

- (a) one solution
- (b) no solutions ✓
- (c) infinite solutions

SoE16.tex

Exercise 16 The following system of equations is given graphically. Determine if the system has one solution, no solutions, or infinite solutions.

 $\textbf{Exercise} \quad \textbf{16.1} \quad \textit{Classify this system as having one solution, no solutions, or infinite solutions.}$

Multiple Choice:

- (a) one solution \checkmark
- (b) no solutions
- (c) infinite solutions

Exercise 16.1.1 The solution to this system is $(\boxed{1}, \boxed{0})$.