

Cairo University

Faculty Of Computers and Artificial Intelligence

Decision and Game Theory

Course code: DS414/DS411

Sequential Game Problem

Names & IDs

Seif Mohammed Hassen 20200243

Michael Zaki Abd El-Sayed 20200418

Mohanad Arafa 20200563

Sherif yasser ismail 20200764

Supervision

Prof. Ayman Ghoneim

TA Afaf

Table of contents:

• Part 1

- 1. Problem Description.
- 2. players
- 3. Strategies
- 4. payoffs
- 5..type of game
- 6.type of information

Part2

- 1.payof matrix
- 2. The game tree
- 3. Summery of the game

• Part 3

- 1. Solving the game using backward induction.
- 2. Solving the game using SPNE.

• Part 4

1. List of References.

Part 1

1.Problem Description:

Three companies, Alpha, Beta, and Gamma, are competing in a market. Each company has to make a decision on whether to maintain (M) or reduce (R) their prices. The payoffs for each company depend not only on the immediate profit but also on the long-term market share and brand positioning.

2.Players:

- Player 1: Alpha
- Player 2: Beta
- Player 3: Gamma

3.Strategies:

- **Maintain** (M): Keep the current price.
- **Reduce** (R): Reduce the price to increase short-term market share.

Player one strategies {M,R}

Player two strategies {MM,MR,RM,RR}

Player three strategies

{MMMM,MMRM,MMRM,MRMM,MRMR,MRRM,MRRR,RMMM,RM MR,RMRM,RMRR,RRMM,RRMR,RRRM,RRRR}

4.Payoffs:

The payoffs are represented as tuples in the form of (Alpha, Beta, Gamma), where each element is the payoff for the respective company.eg (2,2,2) this means that alpha will play m and beta will play m and gamma will play and the payoff of them is (2,2,2)

5.type of game

The game is sequential game, between 3 players players make decisions one after another

6.type of information

he game is one of perfect information, as each player knows the payoff structure and the available strategies for all players.

<u>Part 2:</u>

Player 2

(beta)

1.The payoff matrix

If alpha choose m	Player 3	Maintain (M)	Reduce (R)
Maintain (M)		(2, 2, 2)	(1, 3, 3)
Reduce (R)		(3 1, 3)	(2, 4, 2)
If alpha play R Player 3(gamma)	Maintain (M)	Reduce (R)	(player2)
Maintain (M)	(4, 1, 2)	(3, 2, 4)	
Reduce (R)	(5, 3, 1)	(4, 4, 3)	

2.The game tree

Summery of the game

the game has 3 compaines plays an sequential game each p;

An action profile is a combination of strategies chosen by all three players. There are a total of 8 possible action

profiles:

- (M, M, M)
- (M, M, R)
- (M, R, M)
- $\bullet \quad (M, R, R)$
- (R, M, M)
- (R, M, R)

- (R, R, M)
- (R, R, R)

Part 3

• Solving The Problem Using Backward Indection:

The solution Using Backward is (R , R , R).

• Solving The Problem Using SPNE:

1.First Sub game:

				Alpha=M												
	MMMN	MMMR	MMRV	MMRR	MRMIV	MRMR	MRRM	MRRR	RMMV	RMMR	RMRM	RMRR	RRMM	RMRR	RRRM	RRRR
MM	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3
MR	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	2,2,2	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3	1,3,3
RM	3,1,3	3,1,3	3,1,3	3,1,3	2,4,4	2,4,4	2,4,4	2,4,4	3,1,3	3,1,3	3,1,3	3,1,3	2,4,2	2,4,2	2,4,2	2,4,2
RR	3,1,3	3,1,3	3,1,3	3,1,3	2,4,2	2,4,2	2,4,2	2,4,2	3,1,3	3,1,3	3,1,3	3,1,3	2,4,2	2,4,2	2,4,2	2,4,2
				Alpha=R												
MM	4,1,2	4,1,2	3,2,4	3,2,4	4,1,2	4,1,2	3,2,4	3,2,4	4,1,2	4,1,2	3,2,4	3,2,4	4,1,2	4,1,2	3,2,4	3,2,4
MR	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,3,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3
RM	4,1,2	4,1,2	3,3,4	3,2,4	4,1,2	4,1,2	3,2,4	3,2,4	4,1,2	4,1,2	3,2,4	3,2,4	4,4,2	4,1,2	3,2,4	3,2,4
RR	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3	5,3,1	4,4,3

2.Second Subgame:

Gamma choose **R**

3. Third Subgame:

Gamma choose R

4.Fourth Subgame:

			player 3					
		MM	MR	RM	RR			
	M	4,1,2	4,1,2	3,2,4	3,2,4			
player 2	R	5,3,1	4,4,3	5,3,1	4,4,3			

5.Fiftth Subgame:

Gamma choose M

6.the sixth Subgame:

7.the seventh Subgame:

Player2 MM. MR RM M 2,2,2 2,2,2 1,3,3 R 3,1,3 2,4,2 3,1,3

So Nash (M, RM)

	S1	82	83	S4	S 5	S 6	S7		
MRMMMR	✓	✓	×	✓	✓	×	×		
MRMMRR	✓	✓	✓	✓	✓	×	×		
MRMRMR	✓	✓	×	×	×	×	×		
MRMRRR	✓	✓	✓	✓	✓	*	×		
MRRRMR	✓	✓	×	✓	✓	✓	×		
MRRMRR	✓	✓	✓	✓	✓	✓	✓		
MRRRMR	✓	✓	×	✓	×	✓	✓		
MRRRR	✓	✓	✓	✓	×	✓	×		
MRMMMR	✓	✓	×	✓	✓	*	✓		
MRMMRR	✓	✓	✓	✓	✓	×	×		
MRMRMR	√	✓	×	✓	×	✓	×		

So Nash is (MR, RMRR) and (MR, RMRR)
The nash of this game is (R, MR, RRRR) and (R, RR, RMRR).

Part 4:

- List of references:
 - https://chatgpt.com/
 - https://books.google.com.eg/books?hl=en&lr=&id=1WXxDwAAQBAJ&oi=fnd&pg=PP1&dq=example+game+theory&ots=ysmC8aoJ8l&sig=-s5kYGEAqfLmN1h4nMEx1Q2k1zs&redir_esc=y-v=onepage&q=example%20game%20theory&f=false