1. Conclusion Explained

The analysis concludes that salary and age are the primary drivers of EV affordability, with high-income individuals aged 35+ most likely to afford EVs. The model accurately identifies potential buyers (F1-score: 0.91 for class "Yes") but struggles with budget-constrained groups (F1-score: 0.57 for class "No"). This imbalance arises because the dataset contains fewer examples of customers who cannot afford EVs (4 vs. 16 in the test set).

Key Insights:

- Salary Threshold: Individuals need a salary $\geq 1.5 \times$ the EV price to afford it.
- Age Correlation: Affordability increases with age (peak at 35+), likely due to higher career stability and income.
- Minority-Class Limitations: The model biases toward predicting "Yes" due to imbalanced data.

2. Process: Models, Frameworks & Libraries

Tech Stack

- Language: Python
- Libraries:
 - o pandas: Data loading/manipulation.
 - o scikit-learn: Machine learning (encoding, model training, evaluation).
- Model: Random Forest Classifier (ensemble method using decision trees).

Workflow

1. Data Preparation:

- Created target variable Can Afford EV (Yes/No) based on salary-to-price ratio (Total Salary ≥ 1.5 * Price).
- Encoded categorical features (Profession, Education, etc.) into numerical values using LabelEncoder.

2. Model Training:

- Split data into training (80%) and testing sets (20%).
- Trained a RandomForestClassifier to predict affordability.

3. Evaluation:

- Generated a classification_report with precision, recall, and F1-scores.
- Analyzed feature importances to identify key predictors.

4. Inference:

• Tested synthetic age-based profiles to simulate affordability scenarios.

3. Graphs, Visualizations & Implications

While the provided code lacks visualizations, key outputs imply:

A. Classification Report

```
precision recall f1-score support 0 0.67 0.50 0.57 4 \rightarrow "Cannot Afford" 1 0.88 0.94 0.91 16 \rightarrow "Can Afford"
```

• Implication: High precision/recall for class 1 (afford) but low recall for class 0 (cannot afford). The model misses 50% of budget-constrained users.

B. Feature Importances

Feature	Importance
Age	30.5%
Total Salary	30.3%
No of Dependents	16.9%
Education	7.2%
Marrital Status	6.9%
Profession	4.1%
Personal loan	4.1%

Implication:

- Age and salary dominate predictions (60.8% combined).
- o Dependents reduce affordability (e.g., childcare costs).
- o Profession/loan status are minor factors.

C. Synthetic Age-Group Predictions

Age	Prediction
25	Cannot Afford EV
35	Can Afford EV
45	Can Afford EV
55	Can Afford EV

Implication: Affordability spikes after age 35, aligning with career progression.

4. Data-Driven Solutions for the Company

- 1. Target High-Probability Groups:
 - \circ Focus marketing on salaried professionals aged 35–60 with salaries \geq 2M.
 - o Offer loyalty discounts to customers in this segment.
- 2. Address Younger Demographics:
 - \circ Launch financing schemes (EMI, subsidies) for customers aged 21–34.
 - o Partner with banks for low-interest EV loans.
- 3. Improve Model Reliability:
 - Collect more data for budget-constrained users to rebalance classes.
 - Add features: existing debts, location (urban/rural), fuel costs.
- 4. Operational Adjustments:
 - Use the model to pre-qualify leads in sales pipelines.

o Develop dynamic pricing: Adjust EV packages based on predicted affordability.

5. GitHub Repository

Access the full code, dataset, and detailed analysis here:

& EV Affordability Prediction GitHub Link