Graphical Nadaraya-Watson Estimator on Latent Position Models

Martin Gjorgjevski¹, Nicolas Keriven¹, Simon Barthelme¹, Yohann De Castro²

¹CNRS, Gipsa-Lab, Grenoble, ²Ecole Centrale Lyon, Lyon

Summary

The *Graphical Nadaraya Watson* Estimator \hat{f}_{GNW} is a signal averaging estimator on graphs, inspired by the *Nadaraya-Watson Estimator* \hat{f}_{NW} in nonparametric estimation. We study concentration properties and risk decay rates of \hat{f}_{GNW} in terms of the growth of the degree of the node. Under mild assumptions on the signal, the estimator concentrates with a rate *inversly* proportional to the node **degree**. For smooth signals \hat{f}_{GNW} and \hat{f}_{NW} achieve similar risk rates.

Framework: Latent Position Models

- $ightharpoonup X_1, ... X_n, X$ i.i.d. $\sim p, p$ a density on \mathbb{R}^d not observed
- $ightharpoonup k_n: \mathbb{R}^d \to [0,1]$ probability kernel
- $ightharpoonup a(X_i, X_j) = bern(k_n(X_i, X_j))$ edge between nodes i and j
- $Y_i f(X_i) + \epsilon_i$, $\epsilon = (\epsilon_i)_{i=1}^n$ noise independent from $(X_i)_{i=1}^n$, with $\mathbb{E}\epsilon_i = 0$, $\mathbb{E}\epsilon_i^2 = \sigma^2 < \infty$
- \blacktriangleright $d_n(x) = \mathbb{E}(\sum_{i=1}^n a(X, X_i)|X=x)$ local expected degree at x

Goal: **Estimate** f(X)

Figure: Left- latent positions, Right - Latent Position Random Graph

Main result: A Sharp Variance Bound

LLN heuristics: by setting $b_n(f,x) = \frac{\int f(z)k_n(x,z)p(z)dz}{\int k_n(x,z)p(z)dz}$ we have $\hat{f}_{GNW}(x) \sim b_n(f,x)$

Suprisingly, we can compute

$$\mathbb{E}(\hat{f}_{GNW}(x)) = b_n(f, x)(1 - (1 - \frac{d_n(x)}{n})^n)$$

We focus on bounding $\mathbb{E}(\hat{f}_{GNW}(x) - b_n(f, x))^2$ instead of $\mathbb{V}(\hat{f}_{GNW}(x))$

Theorem

If $f \colon \mathbb{R}^d \to \mathbb{R}$ is s.t. $||f||_{\infty} \leqslant B$ and $\mathbb{E}(\epsilon_1^2) = \sigma^2$. Then $\frac{\sigma^2(1 - e^{-d_n(x)})}{d_n(x)} \leqslant \mathbb{E}(\hat{f}_{GNW}(x) - b_n(f, x))^2 \leqslant \frac{C(B, \sigma^2)}{d_n(x)}$

- As soon as $d_n(x) \to \infty$, the variance term tends to 0
- Left to bound $|b_n(f, x) f(x)|$ (the bias term)
- ► $d_n(x) \sim nh_n^d p(x)$ (Lebesgue Density theorem)

Figure: Sparse random graphs. Left: $d_n(x) \sim \log(n)$, Right: $d_n(x) \sim \log(\log(n))$

Outlooks

- Signal estimation via recovered latent positions
- Guarantees for other nonspectral estimators
- Guarantees for GNNs

The NW and GNW estimators

When the positions X_1, X_n are known, a popular approach is Nadaraya-Watson Estimator

$$\hat{f}_{NW}(X) = \frac{\sum_{i=1}^{n} Y_i K(\frac{X - X_i}{h_n})}{\sum_{i=1}^{n} K(\frac{X - X_i}{h_n})}$$

In the LPM setting, we consider Graphical Nadaraya-Watson Estimator

$$\hat{f}_{GNW}(X) = \frac{\sum_{i=1}^{n} Y_i a(X, X_i)}{\sum_{i=1}^{n} a(X, X_i)}$$

The L^2 risk of the NW estimator admits the bias-variance decomposition

$$\mathbb{E}(\hat{f}_{NW}(x) - f(x))^2 = \mathbb{V}(\hat{f}_{NW}(x)) + (\mathbb{E}(\hat{f}_{NW}(x)) - f(x))^2$$

Questions

- 1. How does the quality of \hat{f}_{GNW} depend on the degree ?
- 2. How does the L^2 risk of \hat{f}_{GNW} compare to that of \hat{f}_{NW} ?

Proof Sketch - the Decoupling trick

1\

For $I \subseteq [n]$. Define

$$R_I(x) = \frac{1}{|I| + \sum_{j \notin I} a(x, X_i)}$$

For all pairs of **disjoint** subsets $I, J \subseteq [n]$ we have

$$R_J(x)\prod_{i\in I}a(x,X_i)=R_{I\cup J}(x)\prod_{i\in I}a(x,X_i)$$

and $R_{I \cup J}(x)$ is *independent* from $\{a(x, X_i) | i \in I\}$.

- "linearized" representation $\hat{f}_{GNW}(x) = \sum_{i=1}^{n} Y_i a(x, X_i) R_i(x)$
- concentration inequalities
- Specific to **Bernoulli** variables

MISE bound for convolutional kernels

1

Convolutional kernels $k_n(x,z) = K(\frac{x-z}{h_n})$ with $K: \mathbb{R}^d \to [0,1], h_n > 0$

Theorem

- K compactly supported
- $ightharpoonup p(x) \geqslant p_0 > 0$ on supp p and supp p satisfies interior cone condition
- f is α Hölder continuous on supp p

then for sufficiently small bandwiths h_n we have

$$\mathbb{E}(\hat{f}_{GNW}(X) - f(X))^2 \leqslant C_1(\alpha)h_n^{\alpha} + \frac{C(B, \sigma)}{nh_n^d}$$

Simulations

V

Figure: NW vs **GNW** estimators: Left- sample size n=100, center- sample size= 500, right- sample size n=2000

References

- [1] B. Tsybakov. Introduction to Nonparametric Estimation. 1st. Springer Publishing Company
- Vershynin. **High-Dimensional Probability: An Introduction with Applications in Data Science**.

 Cambridge University Press, 2018
- Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent Space Ap proaches to Social Network Analysis. Journal of the American Statistical Association 97.460 (2002)