

HIGH END SINGLE CHIP 8-BIT MICROCOMPUTER ROM-LESS DEVELOPMENT DEVICE

DESCRIPTION

The NEC μ PD7800 is an advanced 8-bit general purpose single-chip microcomputer fabricated with N-channel Silicon Gate MOS Technology. Intended as a ROM-less development device for NEC μ PD7801/7802 designs, the μ PD7800 can also be used as a powerful microprocessor in volume production enabling program memory flexibility. Basic on-chip functional blocks include 128 bytes of RAM data memory, 8-bit ALU, 32 I/O lines, Serial I/O port, and 12-bit timer. Fully compatible with the industry standard 8080A bus structure, expanded system operation can be easily implemented using any of 8080A/8085A peripheral and memory products. Total memory address space is 64K bytes.

FEATURES

- NMOS Silicon Gate Technology Requiring Single +5V Supply.
- Single-Chip Microcomputer with On-Chip ALU, RAM and I/O
 - 128 Bytes RAM
 - 32 I/O Lines
- Internal 12-Bit Programmable Timer
- On-Chip 1 MHz Serial Port
- Five-Level Vectored, Prioritized Interrupt Structure
 - Serial Port
 - Timer
 - 3 External Interrupts
- Bus Expansion Capabilities
 - Fully 8080A Bus Compatible
 - 64K Byte Memory Address Range
- Wait State Capability
- Alternate Z80TM Type Register Set
- Powerful 140 Instruction Set
- 8 Address Modes; Including Auto-Increment/Decrement
- Multi-Level Stack-Capabilities
- Fast 2 μs Cycle Time
- Bus Sharing Capabilities

PIN CONFIGURATION

7

PIN NO.	DESIGNATION	FUNCTION	
1, 49-63 2	AB ₀ -AB ₁₅ EXT	(Tri-State, Output) 16-bit address bus. (Output) EXT is used to simulate μPD <u>7801</u> /7802 external memory reference operation. EXT distin-	
		guishes between internal and external memory references, and goes low when locations 4096 through 65407 are accessed.	
3-10	DB ₀ -DB ₇	(Tri-State Input/Output, active high) 8-bit true bi-directional data bus used for external data exchanges with I/O and memory.	
11	INT ₀	(Input, active high) Level-sensitive interrupt input.	
12	INT ₁	(Input, active high) Rising-edge sensitive interrupt input. Interrupts are initiated on low-to-high transitions, providing interrupts are enabled.	
13	INT ₂	(Input) INT ₂ is an edge sensitive interrupt input where the desired activation transition is programmable. By setting the ES bit in the Mask Register to a 1, INT ₂ is rising edge sensitive. When ES is set to 0, INT ₂ is falling edge sensitive.	
14	WAIT .	(Input, active low) WAIT, when active, extends read or write timing to interface with slower external memory or I/O. WAIT is sampled at the end of T2, if active processor enters a wait state TW and remains in that state as long as WAIT is active.	
15	M1	(Output, active high) when active, M1 indicates that the current machine cycle is an OP CODE FETCH.	
16	WR	(Tri-State Output, active low) WR, when active, indicates that the data bus holds valid data. Used as a strobe signal for external memory or I/O write operations. WR goes to the high impedance state during HALT, HOLD, or RESET.	
17	RD	(Tri-State Output, active low) RD is used as a strobe to gate data from external devices on the data bus. RD goes to the high impedance state during HALT, HOLD, and RESET.	
18-25	PC ₀ -PC ₇	(Input/Output) 8-bit I/O configured as a nibble I/O port or as control lines.	
26	SCK	(Input/Output) SCK provides control clocks for Serial Port Input/Output operations. Data on the SI line is clocked into the Serial Register on the rising edge. Contents of the Serial Register is clocked onto SO line on falling edges.	
27	SI	(Input) Serial data is input to the processor through the SI line. Data is clocked into the <u>Serial</u> Register MSB to LSB with the rising edge of <u>SCK</u> .	
28	so	(Output) SO is the Serial Output Port. Serial data is output on this line on the falling edge of SCK, MSB to LSB.	
29	RESET	(Input, active low) \overline{RESET} initializes the $\mu PD7801$.	
30	STB	(Output) Used to simulate $\mu PD7801$ Port E operation, indicating that a Port E operation is being performed when active.	
31	X1	(Input) Clock Input	
33-40	PA ₀ -PA ₇	(Output) 8-bit output port with latch capability.	
41-48	PB ₀ -PB ₇	(Tri-State Input/Output) 8-bit programmable I/O port. Each line configurable independently as an input or output.	

µPD7800

Architecturally consistent with μ PD7801/7802 devices, the μ PD7800 uses a slightly different pin-out to accommodate for the address bus and lack of on-chip clock generator. For complete μ PD7800 functional operation, please refer to μ PD7801 product information. Listed below are functional differences that exist between μ PD7800 and μ PD7801 devices.

FUNCTIONAL DESCRIPTION

μPD7800/7801 Functional Differences

- The functionality of μPD7801 Port E is somewhat different on the μPD7800.
 Because the μPD7800 contains no program memory, the address bus is made accessible to address external program memory. Thus, lines normally used for Port E operation with the μPD7801 are used as the address bus on the μPD7800. AB₀-AB₁₅ is active during memory access 0 through 4095.
- Consequently Port E instructions (PEX, PEN, and PER) have different functionality.

PEX Instruction — The contents of B and C register are output to the address bus. The value 01H is output to the data bus. STB becomes active.

PEN Instruction — B and C register contents are output to the address bus. The value 02H is output to the data bus. STB becomes active.

PER Instruction — The address bus goes to the high impedance state. The value 04H is output to the data bus. STB becomes active.

- ON-CHIP CLOCK GENERATOR. The μPD7800 contains no internal clock generator. An external clock source is input to the X1 input.
- 4. PIN 30. This pin functions as the X2 crystal connection on the μPD7801. On the μPD7800, pin 30 functions as a strobe output (STB) and becomes active when a Port E instruction is executed. This control signal is useful in simulating μPD7801 Port E operation indicating that a port E operation is being performed.
- 5. PIN 2. Functions as the Φ out clock output used for synchronizing system external memory and I/O devices, on the μ PD7801. On the μ PD7800, this pin is used to simulate external memory reference operation of the μ PD7801. $\overline{\text{EXT}}$ is used to distinguish between internal and external memory references and goes low when location 4096 through 65407 are accessed.

RECOMMENDED CLOCK DRIVE CIRCUIT

ABSOLUTE MAXIMUM **RATINGS***

Operating Temperature	10°C to +70°C
Storage Temperature	-65°C to +125°C
Voltage On Any Pin	0.3V to +7.0V

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*T_a = 25°C

DC CHARACTERISTICS $T_a = -10 \sim +70^{\circ}$ C, $V_{CC} = +5.0$ V ± 10%

			LIMIT	s		TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITIONS
Input Low Voltage	VIL	0		0.8	V	
Input High Voltage	V _{IH1}	2.0		Vcc	V	Except SCK, X1
input riigii voitage	V _{IH2}	3.8		Vcc	V	SCK, X1
Output Low Voltage	VOL			0.45	٧	I _{OL} = 2.0 mA
Output High Voltage	V _{OH1}	2.4			٧	$I_{OH} = -100 \mu A$
Output High Voltage	V _{OH2}	2.0			v	I _{OH} = -500 μA
Low Level Input Leakage Current	¹ L1L			-10	μΑ	V _{IN} = 0V
High Level Input Leakage Current	LIH			10	μΑ	V _{IN} = V _{CC}
Low Level Output Leakage Current	^I LOL			-10	μΑ	V _{OUT} = 0.45V
High Level Output Leakage Current	ILOH			10	μΑ	V _{OUT} ≈ V _{CC}
V _{CC} Power Supply Current	Icc		110	200	· mA	

CAPACITANCE T_a = 25°C, V_{CC} = GND = 0V

			LIMIT	S		TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITIONS
Input Capacitance	Cl			10	pF	fc = 1 MHz
Output Capacitance	CO			20	ρF	All pins not
Input/Output Capacitance	CIO			20	pF	under test at 0V

 $T_a = -10 \text{ to } +70^{\circ}\text{C}, V_{CC} = +5.0\text{V} \pm 10\%$

CLOCK TIMING

		LIN	MITS		TEST
PARAMETER	SYMBOL	MIN	MAX	UNITS	CONDITIONS
X _{OUT} Cycle Time	tCYX	454	2000	ns	tCYX
XOUT Low Level Width	tXXL	212		ns	tXXL
XOUT High Level Width	tXXH	212		ns	t _{XXH}

READ/WRITE OPERATION

PARAMETER SYMBOL MIN MAX UNITS	f		LIM	ITS	· ·	TEST
Address (PE0.15) → Data Input tAD1 550 + 500 x N ns RD T.E. → Address tRA 200(T3); 700(T4) ns RD T.E. → Data Input tRD 350 + 500 x N ns RD T.E. → Data Hold Time tRDH 0 ns RD Low Level Width tRR 850 + 500 x N ns RD L.E. → WAIT L.E. tRWT 450 ns Address (PE0.15) → WANT1 650 ns WAIT Set Up Time (Referenced from XOUT L.E.) tWTS 180 ns WAIT Hold Time (Referenced from XOUT L.E.) tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE0.15) → tAX 300 ns XOUT T.E. tAD2 450 ns Address (PE0.15) → tAX 300 ns XOUT T.E. tAD2 450 ns <td< th=""><th>PARAMETER</th><th>SYMBOL</th><th>MIN</th><th>MAX</th><th>UNITS</th><th></th></td<>	PARAMETER	SYMBOL	MIN	MAX	UNITS	
Input RD T.E. → Address tRA 200(T3); 700(T4) ns RD T.E. → Data Input tRD 350 + 500 × N ns RD T.E. → Data Hold tRDH 0 ns RD L.E. → WAIT L.E. tRWT 450 ns Address (PE _{0.15}) → WAIT L.E. tWT 650 ns WAIT Set Up Time (Referenced from X _{OUT} L.E.) WAIT Hold Time (Referenced from X _{OUT} L.E.) WAIT Hold Time (Referenced from X _{OUT} L.E.) MI → RD L.E. tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → IO/M tRI 200 ns RD T.E. → WR L.E. tXW 270 ns Address (PE _{0.15}) → tAX 300 ns T.E. → Data Output → WR T.E. → Data Stabilization Time tWA 400 ns WR T.E. → Address tWA 200 ns	RD L.E. → X _{OUT} L.E.	^t RX	20		ns	
RD T.E. → Address	Address (PE ₀₋₁₅) → Data	tAD1		550 + 500 × N	ns	
RD L.E. → Data Input tRD 350 + 500 x N ns RD T.E. → Data Hold Time tRD H 0 ns RD L.E. → WAIT L.E. tRR 850 + 500 x N ns RD L.E. → WAIT L.E. tRWT 450 ns Address (PE0.15) → WAIT L.E. tRWT 450 ns WAIT Set Up Time (Referenced from XOUT L.E.) tWTS 180 ns WAIT Hold Time (Referenced from XOUT L.E.) tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → IO/M TELE. tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE0.15) → Data Output tAX 300 ns Address (PE0.15) → Data Output → WR tDW 600 + 500 x N ns VR T.E. → Data Stabilization Time tAW 400 ns WR T.E. → Address Stabilization Time tWA 200 ns WR Low Level Width tWW 600 + 500 x N ns <						
RD T.E. → Data Hold Time TRDH Time TRDH Time TRDH Time TRDL Low Level Width TRR READY TANK TRR TR	RD T.E. → Address	^t RA	200(T3); 700(T4)		ns	
Time		^t RD		350 + 500 × N	ns	
RD Low Level Width tRR 850 + 500 x N ns RD L.E. → WAIT L.E. tRWT 450 ns Address (PE _{0.15}) → WAIT L.E. tAWT1 650 ns WAIT Set Up Time (Referenced from XOUT L.E.) tWTS 180 ns WAIT Hold Time (Referenced from XOUT L.E.) tWTH 0 ns M1 → RD L.E. tMR 200 ns RD T.E. → M1 tRM 200 ns IO/M → RD L.E. t IR 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. t XW 270 ns Address (PE _{0.15}) → tAX 300 ns XOUT T.E. tAX 300 ns Address (PE _{0.15}) → tAD2 450 ns ns Data Output tDW 600 + 500 x N ns T.E. TDW 150 ns ns Stabilization Time tAW 400 ns ns WR T.E. → Address Stabilization Time tWA 200 ns ns WR L.E. t _I W 600 + 500 x N ns IO/M → WR L.E. t _I W 500 ns<		tRDH	0		ns	
RD L.E. → WAIT L.E. tRWT 450 ns Address (PE _{0.15}) → WAIT L.E. tAWT1 650 ns WAIT Set Up Time (Referenced from XOUT L.E.) tWTS 180 ns WAIT Hold Time (Referenced from XOUT L.E.) tWTH 0 ns M1 → RD L.E. tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE _{0.15}) → Address (PE _{0.15}) → TAD2 450 ns Data Output TAD2 450 ns Data Output → WR tDW 600 + 500 x N ns T.E. Data Output → WR tDW 150 ns Address (PE _{0.15}) → WR L.E. tAW 400 ns WR T.E. → Address Stabilization Time tWA 200 ns WR L.E. t _{IW} 600 + 500 x N ns IO/M → WR L.E. t _{IW} 600 + 500 x N ns						
Address (PE ₀₋₁₅) → tAWT1 WAIT L.E. WAIT Set Up Time (Referenced from XOUT L.E.) WAIT Hold Time (Referenced from XOUT L.E.) MI → RD L.E. The table ta		tRR	850 + 500 x N		ns	
WAIT L.E. WAIT Set Up Time (Referenced from XOUT L.E.) tWTS 180 ns WAIT Hold Time (Referenced from XOUT L.E.) tWTH 0 ns M1 → RD L.E. tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → M2 L.E. tXW 270 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE0-15) → tAX 300 ns Address (PE0-15) → tAD2 450 ns Data Output → WR tDW 600 + 500 x N ns T.E. WB T.E. → Data Stabilization Time tWA 400 ns WR T.E. → Address (PE0-15) → WR L.E. tWA 200 ns WR T.E. → Address Stabilization Time tWA 200 ns WR L.E. tWA 500 ns		tRWT			ns	
WAIT Set Up Time (Referenced from X _{OUT} L.E.) twts 180 ns WAIT Hold Time (Referenced from X _{OUT} L.E.) twth 0 ns WAIT ADD L.E. tmR 200 ns RD T.E. → M1 trm 200 ns RD T.E. → M1 trm 200 ns RD T.E. → IO/M trill 200 ns XOUT L.E. → WR L.E. txw 270 ns Address (PE ₀₋₁₅) → tAX 300 ns Address (PE ₀₋₁₅) → tAD2 450 ns Data Output → WR T.E. tDW 600 + 500 x N ns T.E. Twn T.E. → Data twn 150 ns Stabilization Time tAW 400 ns WR T.E. → Address (PE ₀₋₁₅) → tAW 400 ns WR T.E. → Address Stabilization Time twn 600 + 500 x N ns WR Low Level Width tww 600 + 500 x N ns IO/M → WR L.E. t _{IW} 500 ns		tAWT1		650	ns	
(Referenced from X _{OUT} L.E.) WAIT Hold Time (Referenced from X _{OUT} L.E.) tWTH 0 ns WAIT Hold Time (Referenced from X _{OUT} L.E.) tMR 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → M1 tRM 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE ₀₋₁₅) → tAX 300 ns Address (PE ₀₋₁₅) → tAD2 450 ns Data Output TDW 600 + 500 x N ns T.E. TE. TE. N WR T.E. → Data Stabilization Time tWD 150 ns Address (PE ₀₋₁₅) → tAW 400 ns ns WR T.E. → Address Stabilization Time tWA 200 ns WR L.E. tWA 200 ns WR Low Level Width tWW 600 + 500 x N ns IO/M → WR L.E. t _{IW} 500 ns						
XOUT L.E.) WAIT Hold Time (Referenced from XOUT L.E.) tWTH 0 ns MT → RD L.E. tMR 200 ns RD T.E. → M1 tRM 200 ns IO/M → RD L.E. t1R 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE0.15) → XOUT T.E. tAX 300 ns Address (PE0.15) → Data Output tAD2 450 ns Data Output → WR tDW 600 + 500 x N ns T.E. TE. → Data Stabilization Time tWD 150 ns Address (PE0.15) → WR L.E. tWA 400 ns WR T.E. → Address Stabilization Time tWA 200 ns WR T.E. → Address Stabilization Time tWA 200 ns WR L.E. tyWA 500 ns		twts	180		ns	
WAIT Hold Time (Referenced from X _{OUT} L.E.) M1 → RD L.E. t _{MR} 200 ns t _{CYX} = 500 ns	1			ĺ	i i	
(Referenced from XOUT L.E.) XOUT L.E.) tMR 200 ns M1 → RD L.E. tRM 200 ns RD T.E. → M1 tRM 200 ns IO/M → RD L.E. t1R 200 ns RD T.E. → IO/M tRI 200 ns XOUT L.E. → WR L.E. tXW 270 ns Address (PE _{0.15}) → tAX 300 ns Address (PE _{0.15}) → tAD2 450 ns Data Output TDW 600 + 500 x N ns T.E. Data Output → WR tDW 150 ns Address (PE _{0.15}) → tAW 400 ns ns Address (PE _{0.15}) → WR L.E. tWA 200 ns WR T.E. → Address Stabilization Time tWA 200 ns WR Low Level Width tWW 600 + 500 x N ns IO/M → WR L.E. t _{IW} 500 ns		TIACTE I	0		ne	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł .	*****	Ĭ		'''	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X _{OUT} L.E.)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tMR	200		ns	
RD T.E. → IO/M	RD T.E. → M1		200		ns	tCYX = 500 ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IO/M → RD L.E.	tıR	200		ns	i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RD T.E. → IO/M		200	l	ns	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X _{OUT} L.E. → WR L.E.			270	ns	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Address (PE ₀₋₁₅) →	tAX		300	ns	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X _{OUT} T.E.				Ì	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		tAD2	450		ns	1
T.E.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		tDW	600 + 500 × N		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tWD .	150		ns	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			400		ļ ———	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		^t AW	400		ns	
		TIMA	200		ns	1
10/M→ WR L.E. t _{IW} 500 ns		WA	200	1	113	
IO/M→ WR L.E. t _{IW} 500 ns	WR Low Level Width	tww	600 + 500 × N		ns	1
	IO/M → WR L.E.		500		ns	†
	WR T,E. → IO/M	twi	250		ns	1

AC CHARACTERISTICS (CONT.)

SERIAL I/O OPERATION

PARAMETER	SYMBOL	MIN	мах	UNIT	CONDITION
SCK Cycle Time		800		ns	SCK Input
SCR Cycle Time	tCYK	900	4000	ns	SCK Output
SCK Low Level Width	*****	350		ns	SCK Input
SCR Low Level Width	tKKL	400		ns	SCK Output
SCK High Level Width	*	350		ns	SCK Input
SCR High Level Width	tKKH	400		ns	SCK Output
SI Set-Up Time (referenced from SCK T.E.)	tsis	140		ns	
SI Hold Time (referenced from SCK T.E.)	tsiH	260		ns	
SCK L.E. → SO Delay Time	^t KO		180	ns	
SCS High → SCK L.E.	tCSK	100		ns	
SCK T.E. → SCS Low	tKCS	100		ns	
SCK T.E. → SAK Low	^t KSA		260	ns	

PEN, PEX, PER OPERATION

PARAMETER	SYMBOL	MIN	MAX	UNIT	CONDITION
X ₁ L.E. → EXT	†XE		250	ns	
Address (AB ₀₋₁₅) → STB L.E.	†AST	200			
Data (DB ₀₋₇) → STB L.E.	tDST	200			t _{CYX} = 500 ns
STB Hold Time	tstst	300			
STB → Data	tSTD	400			

HOLD OPERATION

PARAMETER	SYMBOL	MIN	мах	UNIT	CONDITION
HOLD Set-Up Time (referenced from XOUT L.E.)	tHDS ₁	100 100		ns	
	tHDS ₂	100		ns	
HOLD Hold Time (referenced from ØOUT L.E.)	tHDH	100		ns	
X _{OUT} L.E. → HLDA	tXHA		100	ns	
HLDA High → Bus Floating (High Z State)	tHABF	-150	150	ns	
HLDA Low → Bus Enable	tHABE		350	ns	

Notes:

1 AC Signal waveform (unless otherwise specified)

- ② Output Timing is measured with 1 TTL + 200 pF measuring points are V_{OH} = 2.0V V_{OL} = 0.8V
- 3 L.E. = Leading Edge, T.E. = Trailing Edge

μPD7800

tCYX DEPENDENT AC PARAMETERS

AC CHARACTERISTICS (CONT.)

PARAMETER	EQUATION	MIN/MAX	UNIT
^t RX	(1/25) T	MIN	ns
^t AD ₁	(3/2 + N) T - 200	MAX	ns
t _{RA} (T ₃)	(1/2) T - 50	MIN	ns
t _{RA} (T ₄)	(3/2) T - 50	MIN	ns
t _{RD}	(1 + N) T - 150	MAX	ns
^t RR	(2 + N) T - 150	MIN	ns
₹RWT	(3/2) T - 300 ·	MAX	ns
tAWT ₁	(2) T - 350	MAX	ns
^t MR	(1/2) T - 50	MIN	ns
^t RM	(1/2) T - 50	MIN	ns
^t IR	(1/2) T - 50	MIN	ns -
^t RI	(1/2) T - 50	MIN	ns
txw	(27/50) T	MAX	ns
tAD2	T - 50	MIN	ns
^t DW	(3/2 + N) T - 150	MIN	ns
^t WD	(1/2) T - 100	MIN	. ns
^t AW	T - 100	MIN	ns
^t WA	(1/2) T - 50	MIN	ns
tww	(3/2 + N) T - 150	MIN	ns .
t _{IW}	Т	MIN	ns
tWI	(1/2) T	MIN	ns
^t HABE	(1/2) T - 150	MAX	ns
^t AST	(2/5) T	MIN	ns
^t DST	(2/5) T	MIN	ns
^t STST	(3/5) T	MIN	ns
^t STD	(4/5) T	MIN	ns

Notes: 1 N = Number of Wait States

- ② T = t_{CYX}
- 3 Only above parameters are t_{CYX} dependent
- When a crystal frequency other than 4 MHz is used (t_{CYX} = 500 ns) the above equations can be used to calculate AC parameter values.

TIMING WAVEFORMS

μPD7800

TIMING WAVEFORMS (CONT.)

PACKAGE OUTLINE μPD7800C

ITEM	MILLIMETERS	INCHES	
A	41.8 MAX	1 65	
В	1.22	0.05	
С	2.54	0.1	
D	05:0.1	0.02 : 0 004	
E	39.37	1.55	
F	1.27	0.05	
G	6.75	0.27	
н	9.3	0.37	
I	3.6	0.14	
J	35.1	1.38	
K	30 0	1 18	
· L	16.5	0.65	
м	0.25 - 0.05	001 + 0002	

7800DS-12-80-CAT