Predict Kickstarter Campaign Success

Author:

GORDON MACMILLAN

Problem Statement

Dataset of Kickstarter Campaign

- 400,000+ Past Sales
- Campaign data from 2009-2017
- o fundraising goals between \$.01 \$100 million
- 31 initial model features

GOAL

- Predict Future Kickstarter Campaign Success
- Predict Future Staff Picks

Data Analysis Files

Divided the analysis into 3 notebooks

- data_exploration.ipynb
- modeling_success.ipynb
- modeling_staff_picks.ipynb

And one python file

helper_functions.py

EDA: Goals / Dates

Key Findings:

 The hour the campaigns are launched at and created at seem to make a difference

EDA: Configuration

Key Transformed Features:

- Conversion of Unix time values to pandas datetime entries
- Conversion of target variable to True/False (1.0/0.0)
- Name and blurb text information cleaning of stopwords and excess whitespace

Key Engineered Features

- Time delta between creation and launch measured in days
- Time delta between launch and deadline
- Time components from datetime entries
- Conversion of time components of datetimes to one-hot encoded booleans
- Conversion of category to one-hot encoded booleans

EDA: Interesting Realization

Large spike in the number of Kickstarters launched in July 2014

Not sure why the legends in the center of page. Will fix later

EDA: Dropping Columns

Given enough time would go into full detail as to why.

Dropped columns:

- id
- backers_count
- pledged
- usd_pledged
- etc...

Model Selection

Logistic Regression (I2 regularization)

Random Forest

Gradient Boosted Trees (best)

Feature Importance

Standouts:

- Goal amount
- Time diff launched-created
- Time diff deadline-launched
- exchange rate

Given more time would have tried

XGBoost

SVC

Neural Network

Future Work

Spend more time working on EDA and Feature engineering

Enhance use of Cross-validation and hyper parameter tuning

Fit similarly valued goals into bins