Useful Probability Prerequisites

Notes on Bayesian Statistics

Devere Anthony Weaver

1 Conditional Probability and Independence of Events

The **conditional probability** of an event is the probability (relative frequency interpretation) of the event given the fact that one or more events has already occurred.

Definition 1.1 (Conditional Probability). The conditional probability of an event A, given that an event B has occurred, is equal to

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Suppose that the probability of the occurrence of A is unaffected by the occurrence or nonoccurrence of event B. When this happens, we would be inclined to say that events A and B are **independent**.

Definition 1.2 (Independent). Two events A and B are said to be independent if any one of the following holds:

- 1. P(A|B) = P(A),
- 2. P(B|A) = P(B),
- 3. $P(A \cap B) = P(A)P(B)$.

Otherwise, the events are said to be dependent.

N.B.

• Utilize one of three conditions in the definition to test for independence of events.

2 Two Laws of Probability

The following two theorems can be used to obtain the probability of the intersection and union of two events.

Theorem 2.1 (The Multiplicative Law of Probability). The probability of the intersection of two events A and B is

$$P(A \cap B) = P(A)P(B|A)$$

$$= P(B)P(A|B).$$

If the two events are independent then,

$$P(A \cap B) = P(A)P(B)$$
.

Theorem 2.2 (The Additive Law of Probability). The probability of the union of two events A and B is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

If the two events are mutually exclusive then,

$$P(A \cup B) = P(A)P(B).$$

3 The Law of Total Probability and Bayes' Rule

Theorem 3.1 (Law of Total Probability). Assume that $\{B_1, B_2, ..., B_k\}$ is a partition of sample space S such that $P(B_i) > 0, i = 1...k$. Then for any event A,

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i).$$

In other words, the probability of an event A is equal to the sum of each intersection of A and B_i . To visualize this, think of a sample space S that is made up of each piece B_i , then A is some arbitrary event that happens to be in the sample space S. A is overlapping in each of the B_i but not in their entirety so their intersection is the portion of A that lies within the subspace B_i of S.

This theorem can be useful in determining P(A) when it is easier to compute $P(A|B_i)$ than to compute P(A) directly.

Theorem 3.2 (Bayes' Rule). Assume that $\{B_1, B_2, \dots, B_k\}$ is a partition of S such that $P(B_i) > 0, i = 1, 2, \dots, k$. Then

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}.$$

This seems confusing at first, but what it appears to be saying is that we want to know what the conditional probability of B_j is given that event A has occurred. Recall that B_j is some arbitrary subspace of the sample space S. Thus if we know the elements in the numerator and can compute the total probability of A in the denominator, then we can "reverse" the probability to find the probability of this subspace B_j .