Содержание

Задачи на 3		2
Задача 13A .	Малыш и Карлсон [0.1 sec, 256 mb]	2
Задача 13В.	План эвакуации [0.05 sec, 256 mb]	3
Задача 13С.	Платные дороги [0.5 sec, 256 mb]	5
Задача 1 3 D.	К минимумов на отрезке [3.0 sec, 256 mb]	6
Задачи на 4		7
Задача 13Е.	Сервера [0.7 sec, 256 mb]	7
Задача 13F.	Расстояние между многоугольниками [0.4 sec, 256 mb]	8
Задача 13 G .	Рефрен [0.5 sec, 256 mb]	9
Задача 13Н.	k паросочетаний [0.4 sec, 256 mb]	10
Задачи на 5		11
Задача 13І.	Великая стена [0.5 sec, 256 mb]	11
Задача 13Ј.	Дуэль [0.2 sec, 256 mb]	12
Задача 13К.	Illumination [0.7 sec, 256 mb]	13
Задача 13L.	Вирусы [0.05 sec, 256 mb]	14
Задача 13М.	Общая подпоследовательность [3 sec, 256 mb]	15
Задача 13N.	XOR [5 sec, 256 mb]	16
Гробы		17
Задача 130.	Композиция многочленов [2 sec, 256 mb]	17
Задача 13Р.	Выстрелы по стенам [0.4 sec, 256 mb]	18

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

Задачи на 3

Задача 13A. Малыш и Карлсон [0.1 sec, 256 mb]

На свой День рождения Малыш позвал своего лучшего друга Карлсона. Мама испекла его любимый пирог прямоугольной формы $a \times b \times c$ сантиметров. Карлсон знает, что у Малыша еще есть килограмм колбасы. Чтобы заполучить ее, он предложил поиграть следующим образом: они по очереди разрезают пирог на две ненулевые по объему прямоугольные части с целыми измерениями и съедают меньшую часть (в случае, когда части равные, можно съесть любую). Проигрывает тот, кто не может сделать хода (то есть когда размеры будут $1 \times 1 \times 1$). Естественно, победителю достается колбаса.

Малыш настаивает на том, чтобы он ходил вторым.

Помогите Карлсону выяснить, сможет ли он выиграть, и если сможет — какой должен быть его первый ход для этого.

Считается, что Малыш всегда ходит оптимально.

Формат входных данных

Во входном файле содержится 3 целых числа $a, b, c \ (1 \le a, b, c \le 5\,000)$ — размеры пирога.

Формат выходных данных

В случае, если Карлсон не сможет выиграть у Малыша, выведите NO. В противном случае в первой строке выведите YES, во второй — размеры пирога после первого хода Карлсона в том же порядке, что и во входном файле.

stdin	stdout
1 1 1	NO
2 1 1	YES
	1 1 1

Задача 13В. План эвакуации [0.05 sec, 256 mb]

В городе есть муниципальные здания и бомобоубежища, которые были специально построены для эвакуации служащих в случае ядерной войны. Каждое бомбоубежище имеет ограниченную вместительность по количеству людей, которые могут в нем находиться. В идеале все работники из одного муниципального здания должны были бы бежать к ближайшему бомбоубежищу. Однако, в таком случае, некоторые бомбоубежища могли бы переполниться, в то время как остальные остались бы наполовину пустыми.

Чтобы резрешить эту проблему Городской Совет разработал специальный план эвакуации. Вместо того, чтобы каждому служащему индивидульно приписать, в какое бомбоубежище он должен бежать, для каждого муниципального здания определили, сколько служащих из него в какое бомобоубежище должны бежать. Задача индивидального распределения была переложена на внутреннее управление муниципальных зданий.

План эвакуации учитывает количество служащих в каждом здании — каждый служащий должен быть учтен в плане и в каждое бомбоубежище может быть направлено количество служащих, не превосходящее вместимости бомбоубежища.

Городской Совет заявляет, что их план эвакуации оптиматен в том смысле, что суммарное время эвакуации всех служащих города минимально.

Мэр города, находящийся в постоянной конфронтации с Городским Советом, не слишком то верит этому заявлению. Поэтому он нанял Вас в качестве независимого эксперта для проверки плана эвакуации. Ваша задача состоит в том, чтобы либо убедиться в оптимальности плана Городского Совета, либо доказать обратное, представив в качестве доказательства другой план эвакуации с меньшим суммарным временем для эвакуации всех служащих.

Карта города может быть представлена в виде квадратной сетки. Расположение муниципальных зданий и бомбоубежищ задается парой целых чисел, а время эвакуации из муниципального здания с координатами (X_i, Y_i) в бомбоубежище с координатами (P_j, Q_j) составляет $D_{ij} = |X_i - P_j| + |Y_i - Q_j| + 1$ минут.

Формат входных данных

Входной файл содержит описание карты города и плана эвакуации, предложенного Городским Советом. Первая строка входного файла содержит два целых числа N ($1 \le N \le 100$) и M ($1 \le M \le 100$), разделенных пробелом. N — число муниципальных зданий в городе (все они занумерованы числами от 1 до N), M — число бомбоубежищ (все они занумерованы числами от 1 до M).

Последующие N строк содержат описания муниципальных зданий. Каждая строка содержит целые числа X_i, Y_i и B_i , разделенные пробелами, где X_i, Y_i ($-1000 \leqslant X_i, Y_i \leqslant 1000$) — координаты здания, а B_i ($1 \leqslant B_i \leqslant 1000$) — число служащих в здании.

Описание бомбоубежищ содержится в последующих M строках. Каждая строка содержит целые числа $P_j,\ Q_j$ и C_j , разделенные пробелами, где $P_j,\ Q_j\ (-1000\leqslant P_j,Q_j\leqslant 1000)$ — координаты бомбоубежища, а $C_j\ (1\leqslant C_j\leqslant 1000)$ — вместимость бомбоубежища.

В последующихся N строках содержится описание плана эвакуации. Каждая строка представляет собой описание плана эвакуации для отдельного здания. План эвакуации из i-го здания состоит из M целых чисел E_{ij} , разделенных пробелами. E_{ij} ($0 \le E_{ij} \le 10\,000$) — количество служащих, которые должны эвакуироваться из i-го здания в j-е бомбоубежище.

Гарантируется, что план, заданный во входном файле, корректен.

Формат выходных данных

Если план эвакуации Городского Совета оптимален, то выведите одно слово $\mathtt{OPTIMAL}$. В противном случае выведите на первой строке слово $\mathtt{SUBOPTIMAL}$, а в последующих N строках

выведите Ваш план эвакуации (более оптимальный) в том же формате, что и во входном файле. Ваш план не обязан быть оптимальным, но должен быть лучше плана Городского Совета.

stdin	stdout
3 4	SUBOPTIMAL
-3 3 5	3 0 1 1
-2 2 6	0 0 6 0
2 2 5	0 4 0 1
-1 1 3	
1 1 4	
-2 -2 7	
0 -1 3	
3 1 1 0	
0 0 6 0	
0 3 0 2	
3 4	OPTIMAL
-3 3 5	
-2 2 6	
2 2 5	
-1 1 3	
1 1 4	
-2 -2 7	
0 -1 3	
3 0 1 1	
0 0 6 0	
0 4 0 1	

Задача 13С. Платные дороги [0.5 sec, 256 mb]

Мэр одного большого города решил ввести плату за проезд по шоссе, проходящим в районе города, чтобы снизить объем транзитного транспорта. В районе города проходит n шоссе.

Но руководство области, в которой расположен город, воспротивилось планам мэра. Действительно — дальнобойщики представляют собой неплохой источник доходов для большого количества кафе и гостиниц в небольших городках.

В результате решили, что плата будет введена только на шоссе, которые npoxodsm через sopod.

В городе используется развитая система метрополитена, всего в городе есть m станций метро. Решено было, что шоссе проходит через город, если либо одна из станций метро расположена непосредственно на шоссе, либо есть хотя бы одна станция с каждой стороны от шоссе.

Помогите теперь мэру определить, какие шоссе проходят через город.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m — количество шоссе и количество станций метро, соответственно ($1 \le n, m \le 100\,000$).

Следующие n строк описывают шоссе. Каждое шоссе описывается тремя целыми числами a, b и c и представляет собой прямую на плоскости, задаваемую уравнением ax + by + c = 0 ($|a|, |b|, |c| \le 10^9$).

Следующие m строк входного файла описывают станции метро. Каждая станция описывается двумя целыми числами x и y и представляет собой точку на плоскости с координатами (x,y) ($|x|,|y| \leq 10^9$).

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число — количество шоссе, которые проходят через город. Вторая строка должна содержать номера этих шоссе в возрастающем порядке. Шоссе нумеруются от 1 до n в порядке, в котором они описаны во входном файле.

stdin	stdout
4 2	3
0 1 0	1 3 4
1 0 1	
1 1 0	
1 1 -1	
0 0	
2 0	

Задача 13D. К минимумов на отрезке [3.0 sec, 256 mb]

Дан массив a из n целых чисел и q запросов вида «вывести k первых чисел в отсортированной версии отрезка $[l \dots r]$ нашего массива».

Пример: $n=7,\ a=[6,1,5,2,4,3,1],\ l=2,\ r=4,\ k=2.$ Отрезок $[l\dots r]=[1,5,2].$ Его отсортированная версия =[1,2,5]. Первые 2 числа =[1,2].

Формат входных данных

На первой строке число $n \ (1 \le n \le 100\,000)$.

На второй строке массив a (n целых чисел от 1 до 10^9).

На третьей строке количество запросов q ($1 \le q \le 100\,000$).

Следующие q строк содержат тройки чисел l_i r_i k_i

 $1 \leqslant l_i \leqslant r_i \leqslant n, \ 1 \leqslant k_i \leqslant \min(r_i - l_i + 1, 10)$

Формат выходных данных

Для каждого из q запросов выведите ответ (k_i чисел) на отдельной строке. Числа внутри одного запроса нужно выводить в порядке возрастания. Для лучшего понимания условия и формата данных смотрите пример.

Система оценки

В этой задаче есть две группы тестов:

 $n, q \leq 100\,000, l_i \leq l_{i+1}, r_i \leq r_{i+1}.$

 $n, q \leq 30\,000, l_i$ и r_i произвольны.

stdin	stdout
7	1 1 2 3 4 5 6
6 1 5 2 4 3 1	1 2
4	2
1 7 7	1 3
2 4 2	
3 5 1	
5 7 2	

Задачи на 4

Задача 13E. Сервера [0.7 sec, 256 mb]

Спонсор этой задачи — всесибирская олимпиада 2009. Новосибирск – город мечты!

Компьютерная сеть в некотором доме строилась по принципу присоединения нового компьютера к последнему из уже подключенных. Никакие два компьютера, будучи подключенными в сеть, между собой дополнительно никак не связывались. Таким образом, в сеть были объединены последовательно N компьютеров. Соседи обменивались информацией между собой, но в какой-то момент поняли, что им нужны прокси-серверы. Компьютерное сообщество дома решило установить прокси-серверы ровно на K компьютеров. Осталось только решить, какие именно компьютеры выбрать для этой цели. Главным критерием является ежемесячная стоимость обслуживания серверами всех компьютеров.

Для каждого компьютера установлен тариф его обслуживания, выраженный в рублях за метр провода. Стоимость обслуживания одного компьютера каким-то сервером равна тарифу компьютера, умноженному на суммарную длину провода от этого компьютера до сервера, которым он обслуживается.

Ваша задача написать программу, которая выберет такие K компьютеров, чтобы установить на них прокси-серверы, что общие затраты на обслуживание всех компьютеров были бы минимальными

Формат входных данных

В первой строке входного файла записано два целых числа N и K — количество компьютеров в сети и количество прокси-серверов, которые нужно установить ($1 \le K \le N \le 2000$).

Все компьютеры в сети пронумерованы числами от 1 до N по порядку подключения.

Во второй строке записано одно целое число T_1 — тариф обслуживания первого компьютера.

В следующих N-1 строках записано через пробел по два целых неотрицательных числа L_i , T_i — информация об остальных компьютерах в сети по порядку номеров. L_i — длина провода, соединяющего i — компьютер с соседним с меньшим номером, T_i — тариф обслуживания данного компьютера ($2 \le i \le N$). Все L_i и T_i от 0 до 10^6 .

Формат выходных данных

В первую строку выходного файла необходимо вывести одно целое число — минимальную стоимость обслуживания всех компьютеров всеми серверами. Во второй строке должны быть записаны через пробел K номеров компьютеров, на которые необходимо установить серверы. При существовании нескольких вариантов размещения разрешается вывести любой.

stdin	stdout
3 1	19
10	1
2 2	
3 3	
3 2	4
10	1 3
2 2	
3 3	

Задача 13F. Расстояние между многоугольниками [0.4 sec, 256 mb]

Нужно найти расстояние между двумя выпуклыми непересекающимися многоугольниками.

Формат входных данных

Во входном файле содержатся описания двух многоугольников.

Многоугольник задается числом вершин — N ($1 \le N \le 50\,000$). И координатами N вершин. Вершины даны в порядке обхода по часовой стрелке. Координаты целые и не превосходят 10^9 по модулю.

В обоих многоугольниках никакие три точки не лежат на одной прямой.

Формат выходных данных

Выведите одно вещественное число — расстояние между многоугольниками. Выводите ответ с максимально возможной точностью. Ваше решение будет считаться верным, если относительная или абсолютная погрешность ответа не превосходит 10^{-10} .

stdin	stdout
4	1.0000000000000000000000000000000000000
0 0	
0 1	
1 1	
1 0	
3	
2 0	
2 2	
4 0	

Задача 13G. Рефрен [0.5 sec, 256 mb]

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется $pe\phi peнom$, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Два целых числа: n и m ($1 \le n \le 150\,000$, $1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

Пример

stdin	stdout
9 3	9
1 2 1 2 1 3 1 2 1	3
	1 2 1

Замечание

Эту задачу обязательно сдавать суффмассивом.

Даже если больше вам по душе деревья и автоматы.

Задача 13H. k паросочетаний [0.4 sec, 256 mb]

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется выбрать k максимальных попарно не пересекающихся паросочетаний так, чтобы их суммарный вес был минимален.

Формат входных данных

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний ($2 \le n \le 50$, $1 \le k \le n$). Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомый суммарный вес паросочетаний. Следующие k строк должны содержать n чисел — номера вершины, правой доли, соответствующие вершинам левой.

stdin	stdout
3 2	6
1 2 1	1 2 3
1 1 2	3 1 2
2 1 1	

Задачи на 5

Задача 13I. Великая стена [0.5 sec, 256 mb]

У короля Людовика двое сыновей. Они ненавидят друг друга, и король боится, что после его смерти страна будет уничтожена страшными войнами. Поэтому Людовик решил разделить свою страну на две части, в каждой из которых будет властвовать один из его сыновей. Он посадил их на трон в города A и B, и хочет построить минимально возможное количество фрагментов стены таким образом, чтобы не существовало пути из города A в город B.

Страну, в которой властвует Людовик, можно упрощенно представить в виде прямоугольника $m \times n$. В некоторых клетках этого прямоугольника расположены горы, по остальным же можно свободно перемещаться. Кроме этого, ландшафт в некоторых клетках удобен для строительства стены, в остальных же строительство невозможно.

При поездках по стране можно перемещаться из клетки в соседнюю по стороне, только если ни одна из этих клеток не содержит горы или построенного фрагмента стены.

Формат входных данных

В первой строке входного файла содержатся числа m и n ($1 \le m, n \le 50$). Во второй строке заданы числа k и l, где $0 \le k, l, k+l \le mn-2, k$ — количество клеток, на которых расположены горы, а l — количество клеток, на которых можно строить стену. Естественно, что на горах строить стену нельзя. Следующие k строк содержат координаты клеток с горами x_i и y_i , а за ними следуют l строк, содержащие координаты клеток, на которых можно построить стену — x_j и y_j . Последние две строки содержат координаты городов A (x_A и x_A) и x_A 0 и x_A 1 и x_A 2 соответственно. Среди клеток, описанных в этих x_A 3 у x_A 4 и x_A 5 совпадающих. Гарантируется, что x_A 5 и x_A 6 совпадающих. Гарантируется, что x_A 6 совпадающих.

Формат выходных данных

В первой строке выходного файла должно быть выведено минимальное количество фрагментов стены F, которые необходимо построить. В последующих F строках необходимо вывести один из возможных вариантов застройки.

Если невозможно произвести требуемую застройку, то необходимо вывести в выходной файл единственное число -1.

stdin	stdout
5 5	3
3 8	3 1
3 2	1 3
2 4	3 3
3 4	
3 1	
1 3	
2 3	
3 3	
4 3	
5 3	
1 4	
1 5	
2 1	
5 5	

Задача 13J. Дуэль [0.2 sec, 256 mb]

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Формат входных данных

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит $100\,000$ символов.

Формат выходных данных

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Примеры

stdin	stdout
101010101	4
101001	0

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.

Задача 13K. Illumination [0.7 sec, 256 mb]

In the room, shaped as the simple polygon with N vertices (i.e. closed polyline without self-intersections), an light source is put in the point (X_c, Y_c) . Find out an area of illuminated part of the room.

Формат входных данных

First line of the input file contains one integer T — number of the test cases ($1 \le T < 200$). First line of each test case contains two real numbers X_c and Y_c — coordinates of the light source. Next line contains one integer N — number of vertices of the polyline ($3 \le N \le 5 \cdot 10^4$). Each of the next N lines contain coordinate of one vertices of the polyline — two real numbers X_i and Y_i . All coordinates are given with no more than 4 digits after the decimal point and does not exceed 1000 by absolute value. It is guaranteed that light source is strictly inside the room.

Формат выходных данных

For each test case print one integer — area of illuminated part of the room with precision 10^{-2} or better.

stdin	stdout
1	5.00
1 2	
5	
0 0	
1 0	
1 1	
3 3	
0 3	

Задача 13L. Вирусы [0.05 sec, 256 mb]

Комитет По Исследованию Бинарных Вирусов обнаружил, что некоторые последовательности единиц и нулей являются кодами вирусов. Комитет изолировал набор кодов вирусов. Последовательность из единиц и нулей называется безопасной, если никакой ее сегмент (т.е. последовательность из соседних элементов) не является кодом вируса. Сейчас цель комитета состоит в том, чтобы установить, существует ли бесконечная безопасная последовательность из единиц и нулей.

Пример

Для множества кодов {011, 11, 0000} примером бесконечной безопасной последовательности является 010101.... Для множества {01, 11, 00000} бесконечной безопасной последовательности не существует.

Формат входных данных

Первая строка входного файла virus. in содержит одно целое число N, равное количеству всех вирусных кодов. Каждая из следующих n строк содержит непустое слово, составленное из символов 0 и 1 — код вируса. Суммарная длина всех слов не превосходит $30\,000$.

Формат выходных данных

Первая и единственная строка выходного файла должна содержать слово:

- ТАК если бесконечная, безопасная последовательность из нулей и единиц существует;
- NIE в противном случае.

stdin	stdout
3	NIE
01	
11	
00000	
3	TAK
011	
11	
0000	

Задача 13M. Общая подпоследовательность [3 sec, 256 mb]

Cпонсор сегодняшней задачи — $APIO\ 2014\ u\ Mаксим\ Aхмедов$

Вы играетесь с последовательностью n неотрицательных целых чисел. Цель игры – разбить последовательность на k+1 непустую часть (k+1 отрезок). Чтобы получить k+1 часть вы k раз делаете следующие шаги:

- 1. Выберите часть, содержащую больше одного элемента (изначально у вас ровно одна часть вся последовательность).
- 2. Разбейте выбранную часть на две не пустых части.

При разбиении части на две вы получаете число очков, равное произведению сумм элементов в полученных новых частях. Задача — максимизировать итоговое число очков.

Формат входных данных

Первая строка содержит n и k ($k+1 \le n$, $2 \le n \le 100\,000$, $1 \le k \le \min(n-1,200)$). Вторая строка содержит n неотрицательные целых чисел a_1, a_2, \ldots, a_n ($0 \le a_i \le 10^4$) — сама последовательность.

Формат выходных данных

На первой строке выведите m — максимальное число очков. На второй строке выведите k чисел от 1 до n-1 — позиции элементов, после которых нужно проводить разделения, чтобы в итоге набрать m очков. Если есть несколько таких последовательностей разделений, выведите любую.

stdin	stdout
7 3	108
4 1 3 4 0 2 3	1 3 5

Задача 13N. XOR [5 sec, 256 mb]

Даны n прямоугольников левый нижний угол которых находится в (0,0), а правый верхний в (i,A_i) . Гарантируется, что A_i не возрастают

Площадью симметрической разности двух прямоугольников назовем площадь, которая покрывается одним или другим прямоугольником, но не обоими сразу.

Нужно находить два прямоугольника i, j, такие что $l \le i < j \le r,$ а площадь симметрической разности максимальна

Формат входных данных

В первой строке записано целое число $n\ (2\leqslant n\leqslant 100\,000)\ -$ количество прямоугольников.

Во второй строке записано n чисел, для каждого i $(1 \leqslant i \leqslant n)$ i-е обозначает A_i $(1 \leqslant A_i \leqslant 10^9, A_i \geqslant A_{i+1}).$

В следующей строке записано целое число $q~(1\leqslant q\leqslant 100\,000)~$ — количество запросов.

В последующих q строках вводятся $l_i, r_i \ (1 \leqslant l_i < r_i \leqslant n)$

Формат выходных данных

На каждый запрос вывести максимальную площадь симметрической разности двух прямоугольников на отрезке.

stdin	stdout
7	36 19 8 27
10 9 9 8 8 6 6	
4	
2 7	
1 3	
4 5	
3 6	

Гробы

Задача 13O. Композиция многочленов [2 sec, 256 mb]

Даны многочлены f(x), g(x), h(x) над полем $\mathbb{Z}/2\mathbb{Z}$. Найдите многочлен $f(g(x)) \mod h(x)$.

Формат входных данных

Три строки ввода содержат многочлены f, g и h, по одному на строке. Каждый многочлен p описывается как n p_0 p_1 p_2 ... p_n $(1 \le n \le 4000, p_i \in \{0,1\}$ для всех i, а $p_n = 1)$. Сам многочлен p(x) в таком случае равен $p_0 + p_1x + p_2x^2 + \cdots + p_nx^n$.

Формат выходных данных

Выведите ответ в том же формате.

Возможен ответ вида «О О», обозначающий тождественный ноль.

Примеры

stdin	stdout
5 0 1 0 1 0 1	1 1 1
2 1 1 1	
4 0 1 1 0 1	
2 1 1 1	3 1 0 0 1
3 0 0 1 1	
4 1 0 1 0 1	

Замечание

Напомним несколько определений.

Поле $\mathbb{Z}/2\mathbb{Z}$ — это множество из двух чисел 0 и 1, в котором результаты сложения, вычитания, умножения и деления — это остатки по модулю 2 от аналогичных результатов для обычных чисел.

Многочлен f(x) над этим полем — это объект вида $f_n \cdot x^n + f_{n-1} \cdot x^{n-1} + \ldots + f_1 x + f_0$, где коэффициенты f_n, \ldots, f_0 — числа из $\mathbb{Z}/2\mathbb{Z}$, и переменная x тоже может принимать значения из $\mathbb{Z}/2\mathbb{Z}$. Число n — максимальное такое, что $f_n \neq 0$ — называется степенью многочлена p(x).

из $\mathbb{Z}/2\mathbb{Z}$. Число n — максимальное такое, что $f_n \neq 0$ — называется степенью многочлена p(x). Многочлены $a(x) = \sum_k a_k x^k$ и $b(x) = \sum_k b_k x^k$ равны, если для любого k числа a_k и b_k равны.

Сложение и вычитание многочленов определяются покомпонентно: $a(x)\pm b(x)=\sum\limits_{\mathbf{L}}(a_k\pm b_k)\cdot x^k.$

Произведение многочленов a(x) и b(x) определяется как $c(x) = \sum_k c_k x^k$, где

$$c_s = \sum_{t=0}^{s} (a_t \cdot b_{s-t}).$$

Многочлены можно делить друг на друга. Если многочлен b(x) не является тождественным нулём, говорят, что a(x)/b(x) = q(x) и $a(x) \mod b(x) = r(x)$, если $q(x) \cdot b(x) + r(x) = a(x)$, а степень r(x) строго меньше степени b(x). Несложно показать, что многочлены q(x) и r(x) определены однозначно.

Композиция a(b(x)) — это многочлен $\sum_k a_k(b(x))^k$, где степень многочлена определяется через произведение: $(b(x))^0 = 1$, $(b(x))^1 = b(x)$, $(b(x))^p = b(x) \cdot (b(x))^{p-1}$ для p > 1. Коэффициенты композиции можно получить, если раскрыть скобки и сложить коэффициенты при одинаковых степенях переменной x.

Задача 13Р. Выстрелы по стенам [0.4 sec, 256 mb]

Производится испытание нового пистолета, который может производить выстрелы с различными скоростями пуль. В некоторые моменты времени происходят выстрелы из начала координат с определенными горизонтальными скоростями, и в некоторые другие моменты строят стены на горизонтальной площадке — невырожденные отрезки, лежащие на прямых, не проходящих через начало координат. При этом стены могут пересекаться. Для обработки результатов эксперимента необходимо определить, сколько времени летела каждая пуля. Пуля летит с постоянной скоростью. Пуля останавливается сразу при касании стены.

Формат входных данных

В начале каждой строки написано одно из трех слов: shot, wall или end. Число строк не превышает 50 000. После слова shot следуют две координаты скорости пули. Скорость пули не может равняться нулю. После слова wall следуют четыре числа — координаты начала и конца стены. Слово end является признаком окончания набора входных данных. Все координаты являются целыми числами, по модулю не превосходящими 10 000. Все события записаны в хронологическом порядке, и интервалы времени между событиями больше, чем время, за которое строится стена, и чем время, за которое пуля пролетает расстояние до ближайшей стены или за границу испытательного полигона.

Формат выходных данных

Для каждого выстрела вывести на отдельной строке одно число — время, которое пролетит пуля, с точностью до 10^{-6} . Если пуля не попадет ни в какую стену, то вместо числа вывести слово Infinite.

stdin	stdout
shot 1 0 wall 1 0 0 1 shot 1 1 shot -1 3 wall 1 0 -1 2 shot -1 3 wall 1 1 -1 1 shot -1 3 wall 2 3 2 -3 wall 3 -2 -3 -2 shot 1 -1 shot 40 -39 shot 9999 -10000 shot -1 -1 shot -3000 -2000 shot -3001 -2000 shot 1 0 shot 1 1 wall -1 2 10 -10 shot 1 1 shot 0 1 shot 1 0 shot 1 1 shot 1 0 shot 1 -1 shot 0 1 shot 1 0 shot 1 -1 wall 0 -10000 -10000 0 shot -2 -1 end	Infinite 0.500000000000000000000000000000000000