

Cours 3

BTS SIO

CAS PRATIQUE

Le Système Informatique de la société <u>:</u>

- 50 utilisateurs
- 50 ordinateurs

Les souhaits de la direction :

 Actuellement un ordinateur héberge les fichiers, quand il est éteint les autres ordinateurs n'y accèdent plus

- Comment répondre au besoin ?
- Mettre en place un matériel et un système adaptés qui fonctionne 24H/24
- Quels préconisations en tant que technicien informatique ?
- Mettre en place une sauvegarde

Quelles solutions?

Sommaire -Cours 1 Matériel et système d'exploitation Client-Serveur

La disponibilité

Technologies

Best Practices et Sécurisations

Travaux Pratiques

Le serveur

- Le serveur est un processus qui attend des demandes d'un client
- Un client est un processus qui envoi des demandes à un serveur et attend une réponse
- On parle plus couramment de modèle client-serveur
- On appelle un « service » ce que propose un serveur
 - Exemple : Site Internet
- On nomme « serveur » la machine qui héberge les services
- On nomme « client » la machine qui profite du service

Les clients

- Un client peut être dit « léger » :
 - Le client a besoin de peu de ressources
 - Il se contente en général d'afficher les données transmises par le serveur et de retransmettre les actions de l'utilisateur
 - La charge côté serveur est plus importante
 - Nécessite une bonne interconnexion réseau avec le serveur
 - Exemples: Web, prise en main à distance, etc.
- Un client peut être « lourd »:
 - ▶ Le client a besoin de ressources plus importantes
 - Une partie des calculs est réalisée par le client
 - Le serveur est moins sollicité
 - Exemples : Jeux vidéos, applications mobiles, etc.

Les différentes architectures client-serveur

- Le modèle pair à pair (P2P Peer To Peer) :
 - Les clients et les serveurs s'échangent le rôle au fur et à mesure de leurs besoins
 - Exemple : Protocole torrent
- Le modèle à deux niveaux
 - ▶ Le client interroge le serveur
 - Le serveur réalise le calcul et répond au client
 - Exemple : Partage de fichier
- Le modèle à trois niveaux :
 - ▶ Le client interroge le serveur
 - Le serveur interroge un autre serveur qui lui répond permettant la réponse au client

Schéma Client-Serveur

La disponibilité

- La disponibilité d'un service est le temps où il est possible d'utiliser le service proposé par un serveur
- On la mesure par un niveau en %
- Si on estime qu'un service doit être disponible 24H/24 toute l'année, sa disponibilité sera de 100% s'il n'y a jamais eu de coupure durant cette année
- Quand une coupure a lieu, on appelle cela une interruption de service
- Quand le service est à nouveau disponible, on appelle cela un rétablissement
- On peut garantir des temps de rétablissement

La disponibilité

- La disponibilité peut être améliorée soit de manière logicielle, soit via le matériel
- Via le matériel :
 - En l'optimisant via des composants de qualité
 - ► En en rajoutant : cela s'appelle de la redondance
 - ▶ En le changeant avant qu'il risque de tomber en panne
- Via la partie logicielle :
 - En utilisant un système d'exploitation prévu pour le service que nous souhaitons proposer
 - En minimisant le nombre de service proposé par un serveur
- Cela s'appelle procéder à de la haute disponibilité

Technologies Matérielles

- Les châssis pour ordinateur type « serveur » sont optimisés pour être plus stables
- Les composants eux-mêmes sont de meilleures qualités
- On va ignorer certaines caractéristiques pour gagner en stabilité :
 - La place occupée
 - Le bruit généré
 - Le design
- On va proposer des solutions pour remplacer les composants plus facilement :
 - Changement des disques dur et alimentation à chaud (Hot-Swap)
 - Changement de pièce sans tournevis

Kevin ROTH

20.09.23

11

Technologie Matérielle

Technologies Matérielles

- Afin d'éviter les pannes, certains composants sensibles seront redondés :
 - Les alimentations
 - Les disques durs
 - Les cartes réseaux
- Afin de pouvoir écrire sur plusieurs disques durs en même temps la technologie utilisé s'appelle RAID
- RAID signifie: Redundant Array of Independent Disks
- ▶ Plusieurs technologies RAID existe: 0, 1, 5, 6 etc.
- Le RAID doit être géré par une carte matérielle (contrôleur) ou par un logiciel adapté

EXPLICATIONS DIFFERENTS RAID

Technologies Logicielles

- Les systèmes d'exploitation dit « serveur » sont faits pour pouvoir plus facilement proposé des services
- Ils sont également optimisés pour nécessité moins d'opérations de maintenance
- Ils sont également conçus pour nécessité peu de redémarrage
- Il existe des technologies de haute disponibilité qui permette de faire de la redondance de serveur entier mêlant technologies matérielles et logicielles

Best Practices et Sécurisations

Pour le bon fonctionnement :

Le matériel serveur doit être suffisamment dimensionné pour éviter d'être « sur utilisé »

Le serveur doit s'occuper uniquement des services qu'il propose

Les entrées/sorties disques doivent être adaptées au besoin

Un contrôleur raid matériel avec du cache doit être présent si des performances importantes sont requises

Best Practices et Sécurisations

Pour la sécurité du matériel et des données :

Le serveur doit être dans une salle dont l'accès est contrôlé, à l'abri des évènements climatiques et de la chaleur

Le matériel serveur doit être redondé

Le serveur doit être sauvegardé

- TD: Calcul de capacité de stockage RAID + composition d'un serveur sur mesure
- TP: Mettre en place une solution de RAID logiciel sur notre serveur Windows
 - Rajouter un disque dur virtuel à la machine virtuelle Windows Serveur
 - Mettre en place un RAID 1 (Mirroring) du disque dur
 - Réaliser un tutoriel pas à pas

Travaux Pratiques et Travaux Dirigés