Comunicaciones de Datos

Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste

Serie de Trabajos Prácticos Nº 1

Teoría de la Información y Codificación

- 1. Se lanzan dos dados. Especificar el conjunto de posibles resultados (mensajes), calcular la probabilidad de ocurrencia de cada mensaje y su cantidad de información.
- 2. Dado un alfabeto compuesto por los símbolos del sistema hexadecimal, calcular:
 - i) La probabilidad de ocurrencia de cada uno de los símbolos.
 - ii) La cantidad de información obtenida al presentarse el símbolo F.
 - iii) La cantidad de información de un mensaje compuesto por dos símbolos cualesquiera.
- 3. De una caja que contiene bolas de billar¹, se elige una al azar:
- a) Calcular la cantidad de información contenida en el mensaje si la bola extraída es:
 - i) Rayada.
 - ii) La bola número 7.
 - iii) Lisa.
- 4. Se tiene un alfabeto binario $S = \{0, 1\}$. Calcular la cantidad de información contenida en el mensaje 1011 sabiendo que $P(1) = \frac{1}{3}$ y $P(0) = \frac{2}{3}$.
- 5. Una fuente de memoria nula produce cinco símbolos pertenecientes al alfabeto $S = \{a, b, c, d, e\}$ de acuerdo a la siguiente ley de probabilidades $P(a) = \frac{1}{4}$; $P(b) = \frac{1}{2}$; $P(c) = \frac{1}{16}$; $P(d) = \frac{P(a)}{2}$ y $P(e) = \frac{1}{16}$. Calcular la entropía de la fuente.
- 6. Considerando una fuente que emite símbolos pertenecientes al alfabeto $S = \{s_1, s_2, s_3\}$ con probabilidades $P(s_1) = 1/2$, $P(s_2) = 1/4$ y $P(s_3) = 1/4$.
 - i) Calcular la entropía de la fuente.
 - ii) Defina las extensiones de segundo y tercer orden de la fuente y calcular su entropía.
- 7. Calcular la tasa de información de un sistema de transmisión donde:

P(punto) = 1/3;

P(raya) = 2/3;

 $\tau(punto) = 0.25 s;$

 $\tau(raya) = 0.33 \, s.$

8. Se tiene una fuente de 32 símbolos equiprobables, cada uno compuesto por 4 bits. La duración de cada símbolo es de 1 ms. La información se transmite en bloques de 10 símbolos, separados por un pulso de sincronización de 5 ms cada uno. Calcular la tasa de información del sistema.

Comunicaciones de Datos 2021

¹ Las bolas rayadas están numeradas del 9 al 15 y las lisas del 1 al 7. La bola número 8 también es lisa.

- 9. Considerando la fuente de memoria nula $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$, con probabilidades:
- $P(s_1) = 0.06$; $P(s_2) = 0.4$; $P(s_3) = 0.1$; $P(s_4) = 0.1$; $P(s_5) = 0.3$ y $P(s_6) = 0.04$.
 - i) Obtener un código compacto binario para la fuente dada utilizando el algoritmo de *Huffman*.
 - ii) Calcular la longitud media del código obtenido.
 - iii) Calcular la entropía de la fuente.
 - iii) Calcular el rendimiento del código.
 - iv) Calcular la tasa de compresión del código compacto.
- 10. Dada la fuente de memoria nula $S = \{s_1, s_2\}$, con $P(s_1) = 1/4$ y $P(s_2) = 3/4$ obtener un código compacto binario y calcular su rendimiento. Codificar las extensiones de segundo y tercer orden y obtener sus respectivos rendimientos. ¿Qué observa?

Bibliografía recomendada

- [1] David Luis La Red Martínez. Presentaciones de Clases Teóricas. Comunicaciones de Datos, Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste.
- [2] N. Abramson. Teoría de la Información y la Codificación, 5ta Edición, Parainfo, Madrid, 1981.

Comunicaciones de Datos 2021