

The University of Azad Jammu and Kashmir, Muzaffarabad

Name	Kamal Ali Akmal		
Course Name	Computer Architecture and Logic Design		
Submitted to	Engr. Sidra Rafique		
Semester	2nd		
Session	2024-2028		
Roll No	2024-SE-38		
Lab No	05		
Submission date	09 August 2025		

Full Adder:

A full adder is a combinational logic circuit that adds three input bits (A, B, and a carry input, Cin) and generates two outputs: a sum (S) and a carry out (Cout).

$$S = \overline{XYZ} + \overline{XYZ} + X\overline{YZ} + XYZ$$
$$= X \oplus Y \oplus Z$$
$$C = XY + XZ + YZ$$

The truth table for a full adder is as follows:

INPUTS		OUTPUTS		
X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Figure 1. Full Adder Truth Table

Logic Expressions

- Sum = $A \oplus B \oplus Cin$
- Cout = $(A \cdot B) + (B \cdot Cin) + (A \cdot Cin)$

Implementation

- Can be built using two **Half Adders** and one **OR** gate.
- Widely used in multi-bit binary addition by connecting several full adders in series (Ripple Carry Adder).

Applications

- Arithmetic Logic Units (ALUs)
- Digital calculators
- Processors and microcontrollers
- Multipliers and digital signal processing

Truth Table (Sum)

Truth Table (Carry)

Circuit Diagram & Equation (Sum)

Circuit Diagram & Equation (Carry)

1) Half Subtractor

The half-subtractor is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, A (minuend) and B (subtrahend) and two outputs Difference and Borrow. The logic symbol and truth table are shown below.

Figure-1: Logic Symbol of Half subtractor

Inputs		Outputs		
А	В	Difference	Borrow	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Figure-2: Truth Table of Half subtractor

Figure-3: Circuit Diagram of Half subtractor

From the above truth table, we can find the Boolean expression.

Difference = $A \oplus B$ Borrow = A' B

From the equation we can draw the half-subtractor circuit as shown in figure 3.

Truth Table & Equation (Difference)

Truth Table & Equation (Borrow)

2) Full Subtractor

A full subtractor is a combinational circuit that performs subtraction involving three bits, namely A (minuend), B (subtrahend), and Bin (borrow-in). It accepts three inputs: A (minuend), B (subtrahend) and a Bin (borrow bit) and it produces two outputs: D (difference) and Bout (borrow out). The logic symbol and truth table are shown below.

Figure-4: Logic Symbol of Full subtractor

A	В	$\mathbf{B_{in}}$	D	B _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Figure-5: Truth Table of Full subtractor

From the above truth table we can find the boolean expression.

$$D = A \oplus B \oplus Bin$$

Bout = A' Bin + A' B + B Bin

From the equation we can draw the Full-subtractor circuit as shown in the figure 6.

Figure-6: Circuit Diagram of Full subtractor.

Circuit Diagram & Equation (Difference)

Circuit Diagram & Equation (Borrow)

