LINEAR MODEL NOTES

CARSON JAMES

Contents

1.	Matrix Algebra	1
1.1.	. Column and Null Space	1
1.2.	. Generalized Inverses	2
1.3.	. Projections	3
1.4.	. Differentiation	5
2.	The Linear Model	6
2.1.	. Model Description	6
2.2.	. Least Squares Optimization	6

1. Matrix Algebra

1.1. Column and Null Space.

Exercise 1.1. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^TX)$.

Proof. Let $a \in \mathcal{N}(X)$. Then Xa = 0. So $X^TXa = 0$. Thus $a \in \mathcal{N}(X^TX)$. Conversely, suppose that $a \in \mathcal{N}(X^TX)$. Then $X^TXa = 0$. So

$$0 = a^T X^T X a$$
$$= (Xa)^T (Xa)$$
$$= ||Xa||^2$$

Hence Xa = 0 and $a \in \mathcal{N}(X)$.

Exercise 1.2. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(X^T) = \mathcal{C}(X^TX)$.

Proof.

$$\mathcal{C}(X^T) = \mathcal{N}(X)^{\perp}$$
$$= \mathcal{N}(X^T X)^{\perp}$$
$$= \mathcal{C}(X^T X)$$

Exercise 1.3. Let $X \in \mathcal{M}_{m,n}$. If $X^TX = 0$, then X = 0.

2 JAMES

Proof. Suppose that $X^TX = 0$. Then

$$rank(X^{T}) = \dim \mathcal{C}(X^{T})$$

$$= \dim \mathcal{C}(X^{T}X)$$

$$= rank(X^{T}X)$$

$$= 0$$

So
$$X^{T} = X = 0$$
.

Exercise 1.4. Let $X \in \mathcal{M}_{m,n}$ and $A, B \in \mathcal{M}_{n,p}$. Then $X^TXA = X^TXB$ iff XA = XB.

Proof. Clearly if XA = XB, then $X^TXA = X^TXB$. Conversely, suppose that $X^TXA = X^TXB$. Then $X^TX(A - B) = 0$. So for each $i = 1, \dots, p$, $X^TX(A - B)e_i = 0$. Thus for each $i = 1, \dots, p$ $X(A - B)e_i \in \mathcal{N}(X^T) \cap \mathcal{C}(X) = \{0\}$. Hence X(A - B) = 0 and XA = XB.

1.2. Generalized Inverses.

Definition 1.5. Let $A \in \mathcal{M}_{m,n}$ and $G \in \mathcal{M}_{n,m}$. Then G is said to be a **generalized** inverse of A if AGA = A.

Theorem 1.6. Let $A \in \mathcal{M}_{m,n}$. Then there exists $G \in \mathcal{M}_{n,m}$ such that G is a generalized inverse of A.

Note 1.7. We will denote a generalized inverse of A by A^- .

Exercise 1.8. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = (X^-)^T$.

Proof.

$$X^{T}(X^{-})^{T}X^{T} = (XX^{-}X)^{T}$$
$$= X^{T}$$

Exercise 1.9. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(XX^-) = \mathcal{C}(X)$.

Proof. Clearly $\mathcal{C}(XX^-) \subset \mathcal{C}(X)$. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. Then

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

So $b \in \mathcal{C}(XX^-)$. Thus $\mathcal{C}(X) \subset \mathcal{C}(XX^-)$ and $\mathcal{C}(X) = \mathcal{C}(XX^-)$

Exercise 1.10. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^-X)$

Proof. From the previous exercise, we have that

$$\mathcal{N}(X) = \mathcal{C}(X^T)^{\perp}$$

$$= \mathcal{C}(X^T(X^T)^{-})^{\perp}$$

$$= \mathcal{C}(X^T(X^{-})^T)^{\perp}$$

$$= \mathcal{C}((X^{-}X)^T)^{\perp}$$

$$= \mathcal{N}(X^{-}X)$$

Definition 1.11. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathbb{R}^m$. Then the system Ax = b is said to be **consistent** if $b \in \mathcal{C}(A)$.

Exercise 1.12. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathbb{R}^m$. If the system Ax = b is consistent, then $x = A^-b$ satisfies Ax = b.

Proof. Suppose that the system Ax = b is consistent. Then $b \in \mathcal{C}(A)$. So there exists $x^* \in \mathbb{R}^n$ such that $Ax^* = b$. Then

$$A(A^{-}b) = A(A^{-}Ax^{*})$$
$$= Ax^{*}$$
$$= b$$

Hence A^-b satisfies Ax = b.

Exercise 1.13. Let $X \in \mathcal{M}_{m.n}$. Then $X^- = (X^T X)^- X^T$.

Proof. By definition, $X^TX(X^TX)^-X^TX = X^TX$. A previous exercise implies that $X(X^TX)^-X^TX = X$. Thus $X^- = (X^TX)^-X^T$.

Exercise 1.14. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = X(X^TX)^-$.

Proof. The previous exercise tells us that $X^- = (X^T X)^- X^T$. Transposing both sides, we obtain $(X^T)^- = X(X^T X)^-$.

1.3. Projections.

Definition 1.15. Let $A \in \mathcal{M}_{m,m}$. Then X is said to be **idempotent** if $A^2 = A$.

Exercise 1.16. Let $X \in \mathcal{M}_{m.n}$. Then XX^- and X^-X are idempotent

Proof.

$$(XX^{-})(XX^{-}) = (XX^{-}X)X^{-}$$

= XX^{-}

The case is similar for X^-X .

Exercise 1.17. Let $A \in \mathcal{M}_{m.m}$. If X is idempotent, then I - A is idempotent.

Proof. Suppose that A is idempotent. Then

$$(I - A)(I - A) = I^2 - IA - AI + A^2$$
$$= I - 2A + A$$
$$= I - A$$

Theorem 1.18. Let $A \in \mathcal{M}_{m,m}$. If A is idempotent, then rank(A) = tr(A).

Definition 1.19. Let $P \in \mathcal{M}_{m,m}$ and $S \subset \mathbb{R}^m$ a subspace. Then P is said to be a **projection** matrix onto S if

4 JAMES

- (1) C(X) = S
- (2) P is idempotent
- (3) for each $x \in S$, Px = x

Exercise 1.20. Let $S \subset \mathbb{R}^m$ and P, Q projection matrices onto S. Then PQ = Q.

Proof. Let
$$x \in \mathbb{R}^m$$
. Then $Qx \in \mathcal{C}(Q) = S$. So $PQx = Qx$. Thus $PQ = Q$.

Exercise 1.21. Let $X \in \mathcal{M}_{m,n}$. Then XX^- is a projection onto $\mathcal{C}(X)$.

Proof. A previous exercise tells us that $\mathcal{C}(XX^-) = \mathcal{C}(X)$. Another previous exercises tells us that XX^- is idempotent. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. So

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

Exercise 1.22. Let $X \in \mathcal{M}_{m,n}$. Then $I - X^-X$ is a projection onto $\mathcal{N}(X)$

Proof. Since X^-X is idempotent, so is $I - X^-X$. Let $b \in \mathcal{C}(I - X^-X)$. Then there exists $a \in \mathbb{R}^n$ such that $(I - X^-X)a = b$. Then

$$Xb = X(I - X^{-}X)a$$

$$= (X - XX^{-}X)a$$

$$= (X - X)a$$

$$= 0a$$

$$= 0$$

So $\mathcal{C}(I-X^-X)\subset\mathcal{N}(X)$. Let $a\in\mathcal{N}(X)$. Then Xa=0 and

$$(I - X^{-}X)a = a - X^{-}Xa$$
$$= a$$

So $\mathcal{N}(X) \subset \mathcal{C}(I - X^{-}X)$ and therefore $\mathcal{C}(I - X^{-}X) = \mathcal{N}(X)$.

Exercise 1.23. Let $S \subset \mathbb{R}^m$ be a subspace and $P \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then P is unique.

Proof. Let $Q \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then

$$(P - Q)^{T}(P - Q) = P^{T}P - P^{T}Q - Q^{T}P + Q^{T}Q$$

= $P^{2} - PQ - QP + Q^{2}$
= $P - Q - P + Q$
= 0

Thus P - Q = 0 and P = Q.

Definition 1.24. Let $X \in \mathcal{M}_{m,n}$. We define P_X by

$$P_X = X(X^T X)^- X^T$$

Exercise 1.25. Let $X \in \mathcal{M}_{m,n}$. Then P_X is well defined. That is, independent of the choice of $(X^TX)^-$.

Proof. Suppose that G, H are generalized inverses of X^TX . By definition, we have

$$\begin{split} X^TXGX^TX &= X^TXHX^TX \Rightarrow XGX^TX = XHX^TX \\ &\Rightarrow X^TXG^TX^T = X^TXHX^T \\ &\Rightarrow XG^TX^T = XHX^T \\ &\Rightarrow XGX^T = XHX^T = P_X \end{split}$$

Note 1.26. Recall that $X^- = (X^T X)^- X^T$. So that $P_X = X X^-$ is indeed a projection onto C(X). Since P_X is symmetric, it is the unique symmetric projection onto C(X).

Note 1.27. Recall that $(X^T)^- = X(X^TX)^-$. So that $P_X = (X^T)^-X^T$. A previous exercises tells us that $I - P_X$ is a projection on $\mathcal{N}(X^T)$. Since $I - P_X$ is symmetric, it is the unique symmetric projection onto $\mathcal{N}(X^T)$.

1.4. Differentiation.

Definition 1.28. Let $Q: \mathbb{R}^n \to \mathbb{R}$ given by $b \mapsto Q(b)$. Suppose that $Q \in C^1(\mathbb{R}^n)$. We define

$$\frac{\partial Q}{\partial b} = \begin{pmatrix} \frac{\partial Q}{\partial b_1} \\ \vdots \\ \frac{\partial Q}{\partial b_n} \end{pmatrix}$$

Exercise 1.29. Let $a, b \in \mathbb{R}_n$ and $A \in \mathcal{M}_{n,n}$. Then

$$\frac{\partial a^T b}{\partial b} = a$$

(2)
$$\frac{\partial b^T A b}{\partial b} = (A + A^T) b$$

Proof.

(1) Since

$$a^T b = \sum_{i=1}^n a_i b_i$$

We have that

$$\frac{\partial a^T b}{\partial b_i} = a_i$$

and therefore

$$\frac{\partial a^T b}{\partial b} = a$$

(2) Since
$$b^{T}Ab = \sum_{i=1}^{n} b_{i} \sum_{j=1}^{n} A_{i,j}b_{j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i}A_{i,j}b_{j}$$

6 JAMES

The terms containing b_i are

$$A_{i,i}b_i^2 + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_ib_j$$

This implies that

$$\frac{\partial b^T A b}{\partial b_i} = 2A_{i,i}b_i + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_j$$
$$= \sum_{j=1}^n (A_{i,j} + A_{i,j}^T)b_j$$
$$= [(A + A^T)b]_i$$
$$\frac{\partial b^T A b}{\partial b} = (A + A^T)b$$

So

2. The Linear Model

2.1. Model Description.

Definition 2.1. Given $y \in \mathbb{R}_m$ a vector of observed responses to the matrix $X \in \mathcal{M}_{m,n}$ of observed inputs, we will consider the model

$$y = Xb + e$$

where $b \in \mathbb{R}_n$ is a vector of unknown parameters and $e \in \mathbb{R}^m$ is a random vector of unobserved errors with zero mean.

Definition 2.2. For a parameter vector $b \in \mathbb{R}^n$, we have that e = y - Xb. For this reason, e is called the **residual vector** or simply the "residuals".

Note 2.3. The goal will be to find a parameter vector $b \in \mathbb{R}^n$ that makes the causes the residuals to be as small as possible.

2.2. Least Squares Optimization.

Definition 2.4. We define the **cost function**, $Q: \mathbb{R}^n \to \mathbb{R}$ by

$$Q(b) = ||y - Xb||^{2}$$

= $(y - Xb)^{T}(y - Xb)$

Definition 2.5. Let $b \in \mathbb{R}^n$. Then b is said to be a **least squares solution** for the model if

$$Q(b) = \inf_{c \in \mathbb{R}^n} Q(c)$$

Exercise 2.6. If b is a least squares solution for the model, then $X^TXb = X^Ty$.

Proof. Suppose that b is a least squares solution for the model, then Q has a local minimum at b. Thus

$$\frac{\partial Q}{\partial b}(b) = 0$$

By definition,

$$Q(b) = y^T y - y^T X b - b^T X^T y + b^T X^T X b$$
$$= y^T y - 2y^T X b + b^T X^T X b$$

Thus

$$0 = \frac{\partial Q}{\partial b}(b)$$
$$= -2X^{T}y + 2X^{T}Xb$$

Hence $X^T X b = X^T y$.

Definition 2.7. For $y \in \mathbb{R}^m$ and $X \in \mathcal{M}_{m,n}$, we define the **normal equation** to be

$$X^T X b = X^T y$$

Exercise 2.8. The normal equation is consistent.

Proof. We have that
$$X^T y \in \mathcal{C}(X^T) = \mathcal{C}(X^T X)$$
.

Exercise 2.9. Let $b \in \mathbb{R}^n$. Then b is a least squares solution for the model iff b satisfies the normal equation.

Proof. The previous exercises tells us that if b is a least squares solution for the model, then b satisfies the normal equation. Conversely, suppose that b satisfies the normal equation. Then

$$Q(c) = (y - Xc)^{T}(y - Xc)$$

$$= (y - Xb + Xb - Xc)^{T}(y - Xb + Xb - Xc)$$

$$= (y - Xb)^{T}(y - Xb) - (y - Xb)^{T}(X(b - c)) - (b - c)^{T}X^{T}(y - Xb) + (b - c)^{T}X^{T}(X(b - c))$$

$$= Q(b) - 2(b - c)^{T}X^{T}(y - Xb) + ||X(b - c)||^{2}$$

$$= Q(b) + ||X(b - c)||^{2}$$

Thus b minimizes Q.

Exercise 2.10. Let $b \in \mathbb{R}^n$ be a least squares solution for the model. Then $||y||^2 = ||Xb||^2 + ||e||^2$

Proof. Since b satisfies the normal equation, we have that $X^{T}(y - Xb) = 0$. Thus

$$Xb \cdot e = b^{T}X^{T}e$$

$$= b^{T}X^{T}(y - Xb)$$

$$= b^{T}0$$

$$= 0$$

So Xb and e are orthogonal. Therefore

$$||y||^2 = ||Xb + e||^2$$

= $||Xb||^2 + ||e||^2$