Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 6 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 30. Mai 2016

Aufgabe 6.1

a)

Zu zeigen ist, dass der angegebene Algorithmus kein 2-Approximationsalgorithmus ist. Zeigen kann man das mit einem Gegenbeispiel:

Sei $A = \{1, 2, 8\}$ und B = 10. Der Algorithmus findet nun folgende Mengen:

Index i	Gefundene Menge S
1	{1}
2	$\{1, 2\}$
3	$\{1, 2\}$

Der Algorithmus nimmt keine Zahlen mehr ab dem Index auf, da dann die Bedingung $\sum_{a_i \in S} a_i \leq B$ nicht mehr gelten würde, da 1+2+8=11>10 gilt.

Das Ergebnis erfüllt somit nicht die Bedingung eines ρ -Approquationsalgorithmus für Maximierungsprobleme $L^*/L_A \leq \rho$. Stattdessen gilt für das Ergebnis $L_A = 3$, die totale Summe $L^* = B = 10$ und $\rho = 2$ die Gleichung $L^*/L_A = 10/3 = \overline{3,3} \nleq \rho$.

Damit ist der angegebene Algorithmus kein 2-Approximationsalgorithmus.

b)

Algorithm 1 FindTotalSum

```
1: procedure FINDTOTALSUM(A, B, \rho)
         A \leftarrow \text{ConvertToList}(A)
 2:
         A \leftarrow \text{MergeSort}(A)
 3:
 4:
         T := 0
         S := \emptyset
 5:
         for i \in \{n, ..., 1\} do
 6:
              if T + a_i \leq B then
 7:
                   T \leftarrow T + a_i
 8:
                   S \leftarrow S \cup \{a_i\}
 9:
10:
```

Walter Stieben, Tim Reipschläger, Louis Kobras, Hauke Stieler

Seite 1 von 1

11: end for12: end procedure

Aufgabe 6.2