김솔 2차 발표

- 1. Analyze seroprevalence data
- 2. Deterministic vs Stochastic
- 3. Economic Evaluation
- 4. Sensitivity Analysis

1. Analyze seroprevalence data

- key parameter를 추정하기 위해 seroprevalence data를 사용한다
- seroprevalence data 의 Catalytic model을 만족시는 FOI 추정하기 (MLE)
- 추정한 FOI값으로 부터 (1)Age of infection, (2)proportion susceptible and (3)R_0 계산하기
- 모체 항체(maternal antibody)
- Time dependence in FOI

1-0. what is seroprevalence data?

- Ö Mumps 가 Rubella 보다 더 급격하게 항체가 생성되었다
- Ö 훨씬 감염력이 높다는 것을 의미한다

1-0. introduction

▶ 중요한 변수:

```
pre-infectious period : 1/f infectious period : 1/\gamma birth and death rate : b , \mu 단위시간동안 두 명의 특정 개인끼리 effective contact가 이루어지는 비율 \beta
```

lacktriangleright eta를 구하는 방법 : $eta=rac{R_0}{ND}$

N: 전체 모집단 인구, D: 감염 지속 기간, $R_0:$ basic reproduction number.

- ▶ R_0 를 구하는 방법 : seropositive data 를 이용하여
- ▶ seropositive data 를 이용하여 알아낼 수 있는 것 : λ (FOI)
- ▶평균 λ (FOI) 를 이용하여 알아 낼 수 있는 것 : 평균감염연령 / proportion S/ R_0 /herd immunity threshold

1-0. introduction

평균 $\lambda(\text{FOI})$ 를 이용하여 알아 낼 수 있는 것 : average 감염연령 / proportion S/ R_0

감염 시	$A pprox rac{1}{\lambda}$	
	Proportion of S	$s \approx \frac{1}{\lambda L}$
직사각형 연령분포	Basic Reproduction number	$R_0 = \frac{1}{s} \approx \frac{L}{A} \approx \lambda L$
	Proportion of S	$S \approx \frac{1}{1 + \frac{A}{L}}$
지수함수 연령분포	Basic Reproduction number	$R_0 = \frac{1}{s} \approx 1 + \frac{L}{A} \approx 1 + \lambda L$

1-1. Catalytic model

- ▶ Endemic 상황에서 FOI는 시간에 따라 계속 변화하지만 그 평균은 변하지 않는다.
- ► Catalytic model

$$\frac{ds(a)}{da} = -\lambda s(a)$$
$$\frac{dz(a)}{da} = -\lambda z(a)$$

$$s(a) = e^{-\lambda a}$$
$$z(a) = 1 - e^{-\lambda a}$$

1-2. average FOI 추정하기(MLE)

- $ightharpoonup O_a$: (Observation) a세의 실제 관측된 양성자 수
- ▶ n_a : a 세의 총 인구 수
- ▶ z(a) = 1 e^{-λa} : a 세의 나이에 이미 면역을 가지고 있는 비율 (확률)

확률변수 X 를 실제 관측된 양성자 수라고 하자 $X \sim B(n_a, z(a))$

ightharpoonup a세의 n_a 명 중에 O_a 명이 양성일 확률

$$P_a = \binom{n_a}{o_a} z(a)^{o_a} (1 - z(a))^{n_a - o_a}$$

$$P_a(\lambda) = \binom{n_a}{o_a} (1 - e^{-\lambda a})^{o_a} (e^{-\lambda a})^{n_a - o_a}$$

$$(a = 0.5, 1, 1, 5, \dots, 43.5)$$

1-2. UK rubella seropositive data 를 이용하여 average FOI 추정하기

$$P_a(\lambda) = \binom{n_a}{o_a} (1 - e^{-\lambda a})^{o_a} (e^{-\lambda a})^{n_a - o_a}$$
 function y = z(lambda,a) y = 1-exp(-lambda.*a);

$$\max_{0 < \lambda < 1} \prod_{a} P_a(\lambda)$$

$$\max_{0 < \lambda < 1} \sum_{a} \ln(P_a(\lambda))$$

$$\min_{0 < \lambda < 1} - \sum_{a} \ln(P_a(\lambda))$$

```
function y = z(lambda,a)
y = 1-exp(-lambda.*a); <<< z(\lambda,a) = 1 - e^{-\lambda a}
```

Log_MLE_ftn = @(lambda) -sum(log(binopdf(Pa, Na, z(lambda,time_stamp))));
lambda_MLE = fminsearch(Log_MLE_ftn,0.1);

 $>>> \lambda = 0.115859$

1-2. UK rubella seropositive data 를 이용하여 average FOI 추정하기

1-2. Result ($\lambda = 0.115859$)

Force of infection		λ	0.115859	[0.110912, 0.121005]
감염 시 평균연령		$A pprox rac{1}{\lambda}$	8.631153	[8.264116 , 9.016150]
	Proportion of S	$s \approx \frac{1}{\lambda L}$	0.1439	[0.137735, 0.150269]
직사각 형 연령 분포	Basic Reproduction number	$R_0 = \frac{1}{s} \approx \frac{L}{A} \approx \lambda L$	6.951563	[6.654725 , 7.260305]
一 定坐	Herd immunity	$H = 1 - \frac{1}{R_0}$	0.856147	[0.849731, 0.862265]

1-3. Maternally immunity

- ▶ 모든 인구가 취약하게 태어난다는 가정이 사실이 아닐 경우 실제 감염력이 과소평과 되는 결과를 초래할 수 있다.
- ▶ 촉매 모델 수정 (6개월의 모계항체가 존재한다면)

Maternal
Protection
(6 month = 0.5yrears)

Susceptible

$$s(a) = e^{-\lambda(a-0.5)}$$

 $z(a) = 1 - e^{\lambda(a-0.5)}$

infected

1-3. UK rubella seropositive data 를 이용하여 average FOI 추정하기

1-4. Time dependence in FOI

▶ 감염력이 연령에 따라 달라지는지를 추론하기 위해 그래픽 방법을 사용할 수 있다.

$$z(\lambda_1, \lambda_2, a) = \begin{cases} 1 - e^{-\lambda_1 a}, & a < 15\\ 1 - e^{-\lambda_2 (a - 15) - 15\lambda_1}, & a \ge 15 \end{cases}$$

$$z(\lambda_1, \lambda_2, a) = \begin{cases} 1 - e^{-\lambda_1 a}, & a < 15 \\ 1 - e^{-\lambda_2 (a - 15) - 15\lambda_1}, & a \ge 15 \end{cases} - \log(z(\lambda_1, \lambda_2, a)) = \begin{cases} \lambda_1 a, & a < 15 \\ \lambda_2 (a - 15) + 15\lambda_1, & a \ge 15 \end{cases}$$

1-4. UK rubella seropositive data 를 이용하여 시간에 따라 달라지는 average FOI 추정하기

2. Deterministic vs Stochastic

- Choose model method: Stochastic, Deterministic
- 두 모델의 차이점 (장단점)
- DTMC(method) (SIS,SIR)
- CTMC vs DTMC (SIR)
- Except SDE

2-1. Deterministic & Stochastic

- Deterministic
- 일어날 수 있는 일의 평균을 보여준다.
- 같은 초기값과 변수를 사용한다면 항상 같은 값이 나오는 결정론적 모델
- Stochastic
- 시뮬레이션을 할 때마다 결과가 달라진다.
- 확률에 따라 움직이므로 R_0 값이 1보다 작더라도 전염병이 확산될 수도 있다.

2-1. Deterministic & Stochastic

Stochastic model을 활용하는 경우

- ▶ 소규모 인구에서의 전염역학을 설명 할 때 (현실적인 모델)
- ▶ 대규모 인구이지만 소규모의 감염자가 발생하는 감염의 경우 (새로 생성된 질병, 제거된 질병, 계절성 질병)
- ▶ 감염 지속성을 위한 critical population 의 크기 또는 감염이 지속되는 다른 기준을 탐구하는데 유용 (ex. 홍역)

Stochastic model 단점

▶ 계산 문제: 평균결과와 분산의 추정치를 구하기 위해 많은 시뮬레이션을 실행

2-2. DTMC

- \triangleright S(t), I(t), R(t): Discrete random variables for the number of S,I,R at time t.
- ▶ 전체 인구 N 명을 고정 시키고 이 인구를 S,I,R compartment 에서 이리저리 옮겨 다니는 것.
- ► For all $t \in \{0, \Delta t, 2\Delta t, 3\Delta t, ...\}$, $S(t), I(t), R(t) \in \{0, 1, 2, 3, ..., N\}$ such that S + I + R = N
- ▶ definition : $P_i(t) = Prob \{I(t) = i\}$ t 시간에 I의 인구가 i명일 확률 = $P_i(t)$
- ▶ Note: At time t, $P_0(t) + P_1(t) + P_2(t) + \cdots + P_N(t) = 1$

▶ definion :
$$P(t) = \begin{bmatrix} P_0(t) \\ P_1(t) \\ P_2(t) \\ P_N(t) \end{bmatrix}$$
: Probability vector associated with I(t).

2-2. DTMC

- ▶ Markov property : $t + \Delta t$ 의 시점에서의 사건을 결정짓는 것은 오로지 t시점
- $P_{ji}(t+\Delta t,t)$ 가 t 에 대해 독립일 때 (t 값에 관계없을 때), $P_{ji}(\Delta t)$ 로 표시한다. 인터벌에 의존한다""
- ight
 ight
 ight
 ight
 ho ho
 - ex) <u>하루에 10명씩 compartment를 이동하면 한 시간</u>에 0명 or 1명 이동하도록 하자.

2-2. DTMC: SIS model

'I' compartment population

casel $i \ominus \rightarrow i + 1 \ominus$

Probability of this case

$$b(i) = \frac{\beta}{N}i(N-i) dt$$

$$s(i) = 1 - b(i) - d(i)$$

$$d(i) = i(b + \gamma) dt$$

2-2. DTMC: SIS model

Transition Matrix

1명감소할 확률 $b(i) = \frac{\beta}{N}i(N-i)$ dt 그대로 유지될 확률 s(i) = 1 - b(i) - d(i)1명 증가할 확률 $d(i) = i(b+\gamma)$ dt

있전 이후	0명	1명	2명			99명	100 명
0명	1	d(1)	0	0	 0	0	0
1명	0	s(1)	<i>d</i> (2)	0	 0	0	0
2명	0	b(1)	s(2)	d(3)		0	0
	0	0	<i>b</i> (2)	s(2)		0	0
	•						
	0	0	0			d(99)	0
99 명	0	0	0	0	 0	s(99)	d(100)
100 명	0	0	0	0	 0	b(99)	1– d(100)

2-2. DTMC_SIS model

Simulation

2-2. DTMC: SIR model

Case	S		해석	확률
1	+1	0	S 하나 추가 = R에서 사망 발생 (for 모집단 크기 유지)	$f_1(s,i) = b(N-i-s)$ dt
2	+1	-1	S 하나 추가 = I에서 사망 발생 (for 모집단 크기 유지)	$f_2(s,i) = bi$ dt
3	0	-1	회복인구 한 명 발생	$f_3(s,i) = \gamma i dt$
4	-1	+1	감염인구 한 명 발생	$f_4(s,i) = \frac{\beta}{N} si$ dt
5	0	0	변화 없음	$f_5 = 1 - (f_1 + f_2 + f_3 + f_4)$

2-2. DTMC: SIR model

Case	S		확률
1	+1	0	$f_1(s,i) = b(N-i-s) dt$
2	+1	-1	$f_2(s,i) = bi$ dt
3	0	-1	$f_3(s,i) = \gamma i \mathrm{dt}$
4	-1	+1	$f_4(s,i) = \frac{\beta}{N} \dot{s}$ dt
5	0	0	$f_5 = 1 - (f_1 + f_2 + f_3 + f_4)$

Simulation

2-2. DTMC: SIR model

Simulation

2-3. CTMC: SIR model

▶ DTMC와의 차이점: For all $t \in R$, $S(t), I(t), R(t) \in \{0,1,2,3,...,N\}$ such that S + I + R = N

Gillespie algorithm

 $M = f_1 + f_2 + f_3 + f_4$: 총 움직일 확률

& uniform random number = c 추출

$$T = -\frac{\ln(c)}{M}$$

계산하여 다음 움직임이 일어날 때 까지 걸린 시간을 구함 (지수분포를 이용)

T 이후의 시간에서 또 <mark>랜덤변수</mark>를 추출하여

어떤 움직임이었는지 정한다

그에 맞춰 인구를 이동시킨다.

2-3. CTMC: SIR model

Simulation

3. Economic Evaluation

- 경제성판단에 필요한 것
- ICER
- QALY

3-1. economic evaluation

- ▶ 목적은 그저 돈만 절약하고자 하는 것이 아니다. (비윤리적)
- ▶ 한정된 돈으로 <u>최고의 효율</u>을 만들어내는 전략을 짜는 것.

Cost minimization analysis	(가장 간단한 방법) 순 비용을 최소화 시키는 방법이다.
Cost effectiveness	comparator 사이의 ICER* 을 비교할 것이다
analysis	(*ICER =정책변화 후 만족도대비 비용이 얼마나 쓰였는지 측정)
Cost utility analysis	Cost effectiveness analysis의 특별한 케이스다.
	Health utility 의 척도로 *QALY(or DALY) 를 사용하는 것이다.
Cost benefit analysis	Benefit(health & non health)과 Cost 의 비율을 따지는 방법 (돈)

29

3-1. ICER

Ö ICER(incremental cost effectiveness ratio)

Ö ICER은 무엇을 비교함으로써 얻어지나

Willingness to pay threshold: 하나의 QALY를 얻기 위해 지불할 수 있는 최대금액

Ö

By placing a tick in one box in each group below, please indicate which statements best describe your own health state today

Mobility	
I have no problems in walking about	
I have some problems in walking about	
I am confined to bed	
Self-Care	
I have no problems with self-care	
I have some problems washing or dressing myself	
I am unable to wash or dress myself	
Usual Activities (e.g. work, study, housework, family or	
leisure activities)	
I have no problems with performing my usual activities	
I have some problems with performing my usual activities	s =
I am unable to perform my usual activities	
Pain/Discomfort	
I have no pain or discomfort	
I have moderate pain or discomfort	
I have extreme pain or discomfort	
Anxiety/Depression	
I am not anxious or depressed	
I am moderately anxious or depressed	
I am extremely anxious or depressed	7

Source: adapted from the EuroQol Group: www.euroqol.org

3-1. cost-effectiveness acceptability plane

3-1. Practical Overview (SIR model 500days)

COST	Vaccine	\$8
COS1	Clinic	\$ 12
	Clinic	-0.005 QALY
QALY loss	Death	-30 QALY

WAIFW	0.0000 55	0.0000 02
Matrix	0.0000 08	0.0000 11

Vaccine A	어린이만 50%	
Vaccine B	어린이 25% , 성인 25%	

3-1. Result

 Vaccine A
 어린이만 50%

 Vaccine B
 어린이 25%, 성인 25%

	NO vaccine to A	NO vaccine to B
Total cost	49	43040
Total QALY	24	17
ICERs	1.9	2585.8

4. Sensitivity analysis

- 불확실한 변수를 변동시켜 보며 ICER이 변하는 폭을 관찰한다.
- One way SA: 나머지변수는 모두 고정시키고 하나만 변화시키며 관찰
- Multi way SA : 동시에 여러 변수를 같이 움직이며 변화를 관찰

4-1. sensitivity analysis

4-2. One-way SA for child-child (25%)

I <i>CER</i> =	=	COST
	_	\overline{QALY}

ICER of No vaccine to A WAIFW(1,1) = 0.000055	1.9
ICER of No vaccine to A (-25%) WAIFW(1,1) = 0.000055 * 0.75	3268.5
ICER of No vaccine to A (+25%) WAIFW(1,1) = 0.000055 * 1.25	368.02

4-3. Multi-way sensitivity analysis

COST	Vaccine	\$8
	Clinic	\$ 12
QALY loss	Clinic	-0.005 QALY
	Death	-30QALY

ICER mean: 4.218717

ICER 95% interval: (-778.719558, 1007.816940)

