Oficina de Resolução de Problemas Guilherme Zeus Moura zeusdanmou@gmail.com

Problema 1. (OBM 2018) Guilherme escreve 2n números reais x_1, x_2, \ldots, x_{2n} , todos pertencentes ao intervalo [0,1], ao redor de um círculo e multiplica todos os pares de números vizinhos entre si, obtendo, no sentido anti-horário, os produtos $p_1 = x_1x_2$, $p_2 = x_2x_3$, ..., $p_{2n} = x_{2n}x_1$. Guilherme soma os produtos de índice par e subtrai os produtos de índice ímpar. Qual é o maior resultado que Guilherme pode obter?

Problema 2. (Reino Unido 2017/Fase 1) Seja ABC um triângulo com $\angle A < \angle B < 90^\circ$ e seja Γ o círculo que passa por A, B e C. As tangentes a Γ por A e C se intersectam em P. As retas AB e PC se intersectam em Q. É dado que

$$[ACP] = [ABC] = [BQC].$$

Prove que $\angle BCA = 90^{\circ}$.

Problema 3. (Rússia 2017) Um real x é escolhido tal que cada uma das somas $S = \sin 64x + \sin 65x$ e $C = \cos 64x + \cos 65x$ é racional. Prove que, em uma dessas somas, ambas as parcelas são racionais.

Problema 4. (Rússia 2017) Determine se para quaisquer inteiros positivos a, b e c existe um polinômio quadrático $P(x) = kx^2 + lx + m$, com k, l e m inteitos, k > 0, tal que para valores inteiros o polinômio assume a^3 , b^3 e c^3 ?