2.1 Equivalence Relations

Define $R = \{(x, y): x, y \in X, x \sim y\} \subseteq X \times X$ R: set of all pairs that are equivalent

~ is an equivalence relation if it satisfies:

- Reflexive: $x \sim x \ \forall x \in X$
- Symmetric: $x \sim y \leftrightarrow y \sim x$
- Transitive: If $x \sim y$ and $y \sim z$, then $x \sim z$

2.2 Equivalence Classes

$$[x] = \{ y \in X : y \sim x \}$$

3.1 Well-Defined Operations

An operation \cdot is well defined if:

$$\begin{cases} x \sim y \\ w \sim z \end{cases} \to (x \cdot w) \sim (y \cdot z)$$

Note:
$$x \sim y \leftrightarrow [x] = [y]$$

+ Theorems

- ▶ Let *X* be a set with an equivalence relation, then $[x] \cap [y] \neq \emptyset \rightarrow [x] = [y]$
- Equivalence classes are either disjoint or equal
- ▶ Let *X* be a set with an equivalence relation, then the equivalence classes form a partition of *X*
- ▶ Let R_j ($j \in J$, for some index set J) form a partition of X. Say that $x \sim y$ means $x, y \in R_j$ for some j, then \sim is an equivalence relation on X

3.2 Number Theory

- ▶ Any non-empty set $S \subseteq \mathbb{N}$ has a unique $d \in S$ such that $\forall x \in S, \ d \leq x$
- ▶ For $a, b \in \mathbb{Z}$, b > 0, then $\exists ! q, r \in \mathbb{Z}$ such that a = bq + r, $0 \le r < b$

3.3 Refinements

For two equivalence relations \approx and \sim , we say \approx is a refinement of \sim if each equivalence class of \approx is contained in an equivalence class of \sim

In other words, $a \approx b \rightarrow a \sim b$

5.1 Divisibility and Modulo

 $m \mid n \text{ means } \exists x \in \mathbb{Z} \text{ such that } n = mx$

 $a \equiv b \mod n \text{ means } n \mid (a - b) \to \frac{a - b}{n} \in \mathbb{Z}$

+ Theorems

- ▶ Congruence modulo n is an equivalence relation
- If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then:
 - $a + b \equiv a' + b' \pmod{n}$
 - $ab \equiv a'b' \pmod{n}$

5.2 Prime and Irreducible

For $p \in \mathbb{Z}$ where p > 1:

- p is irreducible if the only divisors of p are 1 and p
- p is prime if whenever $p \mid ab$, then $p \mid a$ and $p \mid b$

+ Theorems

- ▶ p is prime $\leftrightarrow p$ is irreducible
- For n > 1, $\exists ! \begin{cases} p_1, \dots, p_s \text{ primes} \\ e_1, \dots, e_s \text{ positives} \end{cases}$ s.t $n = p_1^{e_1} \times \dots \times p_s^{e_s}$

5.3 GCD and LCM

- d = GCD(a, b) if and only if:
 - $d \mid a$ and $d \mid b$
 - If $c \mid a$ and $c \mid b$, then $c \mid d$
- m = LCM(a, b) if and only if:
 - $a \mid m$ and $b \mid m$
 - If $a \mid n$ and $b \mid n$, then $m \mid n$

+ Theorems

- \blacktriangleright $\forall a, b \in \mathbb{Z}$, $\exists !$ GCD d and $\exists x, y \in \mathbb{Z}$ such that d = ax + by
- ▶ $\forall a, b \in \mathbb{Z}$, \exists ! LCM m
- If GCD(a, b) = 1, then $\exists x, y$ such that ax + by = 1
- ▶ If GCD(a, b) = d, then $\{ax + by : x, y \in \mathbb{Z}\} = d \times \mathbb{Z}$
- $ightharpoonup \operatorname{GCD}(a,b) \times \operatorname{LCM}(a,b) = |ab|$

6.1 Groups

For some set *S* and an operation \cdot , (S, \cdot) is a group if:

- Closure: $ab \in S$
- Associativity: (ab)c = a(bc)
- Identity: $\exists \epsilon \in S$ such that $x\epsilon = \epsilon x = x$
- Inverses: $\forall x \in S$, $\exists y \in S$ such that $xy = yx = \epsilon$

9.1 Laws of Exponents

For a group G with some operation \cdot :

- $x^n = x \cdot x \cdot ... \cdot x$ (*n* times)
- $x^{-n} = (x^{-1})^n = (x^n)^{-1}$
- $x^m \cdot x^n = x^{m+n}$
- $(x^m)^n = x^{mn}$

If $xy = yx \ \forall x, y \in G$, then G is abelian (commutative)

9.2 - 10.1 Properties of Groups

- The identity is unique
- The inverse of each element is unique
- ax = b has a unique solution $x \forall a, b \in G$
- $ab = ac \rightarrow bc$
- $(ab)^{-1} = b^{-1}a^{-1}$
- $(a^{-1})^{-1} = a$
- If xy = x for some $x, y \in G$, then $y = \epsilon$
- If $xy = \epsilon$ for some $x, y \in G$, then $y = x^{-1}$

8.1 Cayley Tables

•	а	b	
а	a	b	
b	b	$a \cdot b$	
:	:	:	•

9.3 Properties of Cayley Tables

- Only one row and column matches the header completely and no other row or column matches the header in a single position
- Each row and column contains each element once

9.4 Product of Groups

For two groups G, H, their product is defined as: $G \times H = \{(g,h): g \in H, h \in H\}$ $(x,a) \cdot_{G \times H} (y,b) = (x \cdot_G a, y \cdot_H b)$

Theorems

- The product of groups is a group
- For $x = (a_1, ..., a_t) \in G_1 \times \cdots \times G_t$, then
- $|x| = LCM(|a_1|, ..., |a_t|)$ $Each G_i \text{ is cyclic} \leftrightarrow \begin{cases} CD(|G_i|, |G_j|) = 1 & \forall i \neq j \end{cases}$

9.5 Isomorphisms

If $\phi: G \to H$ is a bijection with $\phi(x \cdot_G y) = \phi(x) \cdot_H \phi(y)$ Then ϕ is an isomorphism, and G, H are isomorphic

If G, H are isomorphic, then permuting the Cayley Table of G gives the Cayley Table of H

9.6 Isomorphisms

If $\phi: G \to G$ is an isomorphism, then ϕ is an automorphism aut(G) = The set of all automorphisms of G and it's a group

6.2 Symmetries

 $S = \{\alpha, \beta, ...\}$ is the set of symmetries of some object with the operation composition

- Example of Symmetries: $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$
- Example of Composition:

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 3 & 4 & 1 & 2 \end{pmatrix} \stackrel{\sim}{\sim} \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

6.3 Properties of Symmetries

- $\alpha \circ \beta$ is a symmetry $\forall \alpha, \beta \in S$
- $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma) \ \forall \alpha, \beta, \gamma \in S$
- $\exists \epsilon \in S \text{ such that } \epsilon \circ \alpha = \alpha \circ \epsilon = \alpha \ \forall \alpha \in S$
- $\forall \alpha \in S$, $\exists \beta \in S$ such that $\alpha \circ \beta = \epsilon$

11.4 Generating Sets

If $\forall g \in S$, g can be written with α , β , then $\{\alpha, \beta\}$ generates S

11.1 Subgroups

For a group G with operation \cdot , if $H \subseteq G$, and it's a group with the same operation \cdot , then H is a subgroup **Notation:**

If H is a subgroup of G, we write $H \leq G$, H < G (if $H \neq G$)

11.2 Subgroup Test

Suppose *H* is a subset of *G*, then if:

- H ≠ Ø
- $x, y \in H \rightarrow x \cdot y \in H$
- $x \in H \rightarrow x^{-1} \in H$

Then *H* is a subgroup

Theorems

- ▶ If $H \leq G$, then $\epsilon_G \in H$ and $\epsilon_H = \epsilon_G$
- ▶ If $H_1 \le G$ and $H_2 \le G$, then $H_1 \cap H_2 \le G$
- If $K \leq H_1$ and $K \leq H_2$, then $K \leq H_1 \cap H_2$
- For $H_1 \leq G$ and $H_2 \leq G$: If $H_1 \cup H_2 \leq G$, then $H_1 \leq H_2$ or $H_2 \leq H_1$

11.5 Product Set

If $S \subseteq G$, then $\langle S \rangle$ is the set of all possible products of elements in S and their inverses

Theorems

- \triangleright $S \subseteq G \rightarrow \langle S \rangle \leq G$
- ▶ If $H_1 \le K$ and $H_2 \le K$, then $\langle H_1 \cup H_2 \rangle \le K$

11.7 Greatest Lower Bound

If $\exists \alpha \in X$ such that $\begin{cases} \alpha \leq x, \ \alpha \leq y \\ z \leq x \ \text{and} \ z \leq y \rightarrow z \leq \alpha \end{cases} \ \forall x, y \in X$, then α is the greatest lower bound of x, y, denoted glb(x, y)

11.8 Least Upper Bound

If $\exists \beta \in X$ such that $\begin{cases} x \leq \beta, \ y \leq \beta \\ x \leq z \ \text{and} \ y \leq z \to \beta \leq z \end{cases} \ \forall x, y \in X$, then β is the least upper bound of x, y, denoted lub(x, y)

11.6 Lattices

A lattice is the set X with operation \leq such that glb(x, y) and lub(x, y) exists $\forall x, y \in X$

It's a diagram of subgroups, where each line connecting H and K (with K vertically higher than H in the diagram) means $H \leq K$

Note: If $H \leq K$, and we have some subgroup F such that $H \leq$ $F \leq K$, then F = H or F = K

11.3 Symmetries of a Square Example

To show a square has at most 8 symmetries:

Let γ be some symmetry, then:

- v(1) (1st corner) has 4 options
- v(2) (2nd corner) is adjacent to v(1), so 2 options
- $\gamma(4)$ (4th corner) is adjacent to $\gamma(1)$, so 1 option left
- $\gamma(3)$ (3rd corner) has 1 option left

So $4 \times 2 \times 1 \times 1 = 8$ possibilities

To show a square has at least 8 symmetries, we show the above 8 symmetries are all possible, with matrices form

To find the subgroups of the symmetries of a square, we go through the product set of every subset of *G*, for instance: $\langle \epsilon \rangle$, $\langle \mu \rangle$, $\langle \rho \rangle$, $\langle \mu, \rho \rangle$, ...

If the product set generates G, it's not a subgroup, otherwise, it is, and we can use the subgroups to draw the lattice:

14.1 Cyclic Groups

G is cyclic $\leftrightarrow \exists$ a generator $g \in G$ s.t $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ The order of g is the smallest positive integer n with $g^n = \epsilon$

Notation:

- |g| =Order of an element, $|g| = \infty \leftrightarrow g^k \neq \epsilon \ \forall k \in \mathbb{Z}$
- |G| =Size of a group

The set $\{k: g^k = \epsilon\} = |g|\mathbb{Z}$, so $g^k = \epsilon \leftrightarrow |g|$ divides k

|x| = |y| is equivalent to $x^k = \epsilon \leftrightarrow y^k = \epsilon$

If *G* is a group with *n* elements and $|g| = n < \infty$ then:

- $G = \langle g \rangle = \{g, g^2, \dots, g^n = \epsilon\}$ • |G| = |g| n
- $|g^k| = \frac{n}{GCD(n,k)}$
- Generators of *G* are exactly $\{g^k : GCD(n, k) = 1\}$

To check if a group is cyclic or not, check all the generators, if the order of some generator *g* is the length of the group, then the group is cyclic

Theorems

- G is cyclic $\rightarrow G$ is abelian (commutative)
- G is cylic \rightarrow All subgroups are cyclic
- G has no subgroups other than $\{\epsilon\}$ and G
 - \leftrightarrow *G* is cyclic of prime order
 - \leftrightarrow |*G*| = *n* is prime
- ▶ If G, H are both cyclic, then $G \cong H \leftrightarrow |G| = |H|$

15.1 Complex Numbers

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$

 $\mathbb{C} = \{ re^{i\theta} : r, \theta \in \mathbb{R} \}$ where $r \ge 0$ and $0 \le \theta < 2\pi$

$$re^{i\theta} = r\cos\theta + ri\sin\theta \rightarrow e^{i\theta} = \cos\theta + i\sin\theta$$

For $z \in \mathbb{C}$:

- $|z| = |a + bi| = \sqrt{a^2 + b^2} = r$
- $\frac{b}{a} = \tan \theta$

15.2 Roots of Unity

The *n*th root of unity is the solution to $z^n = 1$ for $z \in \mathbb{C}$

$$R_n = \left\{ e^{i2\pi \times \frac{1}{n}}, \ e^{i2\pi \times \frac{2}{n}}, \dots, e^{i2\pi \times \frac{n}{n}} \right\} = \left\langle e^{\frac{i2\pi}{n}} \right\rangle$$

Example: R₆

$$\mathbb{T} = \{ z \in \mathbb{Z} : |z| = 1 \} = \{ e^{i\theta} : \theta \in \mathbb{R} \}$$

 \mathbb{T} is a subgroup of \mathbb{C}^{\times}

 R_n is a subgroup of \mathbb{T} (and of \mathbb{C}^{\times})

Let
$$R = \bigcup_{n=1}^{\infty} R_n = \left\{ e^{\frac{2\pi i j}{n}} : 0 \le j < n, \ n \ge 1 \right\}$$

15.3 Subgroup Hierarchy

$$R_n < R < \mathbb{T} < \mathbb{C}^{\times}$$

15.4 Properties of R

- |z| is finite $\forall z \in R$
- |R| is infinite
- It's abelian but not cyclic
- Every finite subset is contained in a finite subgroup
- Every finite subgroup is cyclic
- Every infinite subgroup is not cyclic
- $R = \left\langle \left\{ e^{\frac{2\pi i}{n}} : n \ge 1 \right\} \right\rangle = \left\langle \left\{ e^{\frac{2\pi i}{n}} : n \ge k \right\} \right\rangle \ \forall k$

15.5 Subgroups of \mathbb{T}

- $R = \left\{ e^{\frac{2\pi i j}{n}}: 0 \le j < n, n \ge 1 \right\}$ $Z = \left\{ e^{ik}: k \in \mathbb{Z} \right\}$

17.1 Permutations

 S_{Ω} is the set of all bijections $\Omega \to \Omega$, S_{Ω} is a symmetric group S_{Ω} is denoted as S_n if $|\Omega| = n$

A subgroup of S_n is called a permutation group

If
$$\sigma \in S_n$$
, then $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$

Theorems

- S_{Ω} with the operation composition is a group
- $|S_n| = n!$

17.2 Cycles and Cycle Notation in S_n

$$\sigma \in S_n$$
 is a cycle if $\exists a_1, ..., a_k$ such that
$$\begin{cases} \sigma(a_j) = a_{j+1} \\ \sigma(a_k) = a_1 \\ \sigma(x) = x, & x \neq a_j \end{cases}$$

17.3 Cycle Order

- A k-cycle has a_1, \dots, a_k terms based on the above defition
- All 1-cycles can be omitted
- 2-cycles are called transpositions

17.4 Cycle Notations

▶ Two-line notation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

One-Line Notation:

$$\sigma = (1 \ 3 \ 5 \ 4) (2) (6) = (1 \ 3 \ 5 \ 4)$$

 $\sigma^{-1} = (1 \ 4 \ 5 \ 3) = (4 \ 5 \ 3 \ 1)$, just σ inverted

17.5 Multiplying Cycles

For $\alpha = (1 \ 3 \ 4 \ 7)$ and $\beta = (2 \ 3 \ 5 \ 7)$, we perform multiplication:

- $\alpha(\beta(x))$ $\beta(x)$
- $\beta(1) = 1 \quad \alpha(1) = 3$
- 2 $\beta(2) = 3$ $\alpha(3) = 4$
- 3 $\beta(3) = 5$ $\alpha(5) = 5$ $\rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 7 & 1 & 6 & 2 \end{pmatrix}$ 4 $\beta(4) = 4$ $\alpha(4) = 7$
- 5 $\beta(5) = 7$ $\alpha(7) = 1$
- $\beta(6) = 6$ $\alpha(6) = 6$
- $\beta(7) = 2 \quad \alpha(2) = 2$
- $= (1 \ 3 \ 5)(2 \ 4 \ 7)(6) = (1 \ 3 \ 5)(2 \ 4 \ 7)$

18.1 Supports

The support of a permutation π is $\{x: \pi(x) \neq x\}$

Two permutations are disjoint if their supports are disjoint Example:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}$$
, support(α) = {1,4,5}

18.2 Cycle Types

The cycle type of a permutation π is the list (with repetition) of the length of its disjoint cycles

Theorems

- Disjoint permutations commute: $\alpha(\beta(x)) = \beta(\alpha(x))$
- $\pi(\pi(x)), ... \in \text{support}(\pi)$ $x \in \operatorname{support}(\pi) \to \pi(x)$,
- Order of a permutation π is the LCM of the lengths of its disjoint cycles, so the LCM of its cycle type
- Every permutation π can be written as a product of disjoint cycles
- \triangleright S_n is generated by the set of all cycles
- k-cycles can be written as product of k-1 transpositions
- $(a_1 \quad a_2 \quad \dots \quad a_k) = (a_1 \quad a_k) (a_1 \quad a_{k-1}) \dots (a_1 \quad a_2)$ $= (a_1 \quad a_2) (a_2 \quad a_3) \dots (a_{k-1} \quad a_k)$
- The set of all transpositions generates S_n , so $S_n = \langle \{ (a \quad b) : 1 \le a < b \le n \} \rangle$
- ▶ The following are minimal generating sets for S_n :
 - $\circ \{(1 \ a): 2 \le a \le n\}$
 - $\circ \{(a \ a+1): 1 \le a \le n-1\}$
 - \circ {(1 2), (1 2 ... n)}

18.3 Dihedral Group

It's the symmetries of a regular n-gon with the following:

- $-\rho = \text{rotation by } \frac{1}{n} \text{ circle } = (1 \ 2 \ \dots \ n)$
- $-\mu$ = reflection through corner 1
- $\begin{cases} (1) \ (2 & 2m) \ (3 & 2m-1) \dots (m & m+2) \ (m+1), \ n=2m \\ (1) \ (2 & 2m+1) \ (3 & 2m) \dots (m+1 & m+2), \ n=2m+1 \end{cases}$

Theorems

 D_n is a subgroup of S_n

20.1 Conjugation

 $\sigma\pi\sigma^{-1}$ is the conjugation of π by σ

$$\pi(i) = j \leftrightarrow (\sigma \pi \sigma^{-1})(\sigma(i)) = \sigma(j)$$

Conjugation Example:

$$\sigma = (1 \quad 3 \quad 4 \quad 5) (7 \quad 9) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 4 & 5 & 1 & 6 & 9 & 8 & 7 \end{pmatrix}$$

$$\pi = (1 \quad 7 \quad 3) (4 \quad 6 \quad 9) (8 \quad 2)$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad by \sigma$$

$$\sigma \pi \sigma^{-1} = (3 \quad 9 \quad 4) (5 \quad 6 \quad 7) (8 \quad 2)$$

+ Theorems

 $\alpha, \beta \in S_n$ have the same cycle type $\leftrightarrow \beta = \sigma \alpha \sigma^{-1}$ for $\alpha \in S_n$