

ŘADA A

ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXV/1976 ČÍSLO 4

V TOMTO SEŠITĚ

Náš Interview	121
Bliancujeme před XV. sjezdem	122
Morální povinnost	123
Elektronika, podnik ÚV Svazarmu	124
Tiskii jame před 25 lety	124
R 15	124
Sami sobě	126
Monoiltické paměťové obvody	127
Reproduktorové soustavy	
v neobvyklém pohledu	128
Jak na to	129
Jednoduchý neladitelný konvertor	
pro II. TV program	131
Barevná hudba	133
Zapolení pro automatické ladění	
a stabilizaci kmitočtu	136
Obrazový mf zosliňovač	
vTVPMINITESLA	137
Elektroluminiscenční displeje	143
Nový magnetofon firmy Uher	145
Dodatek k článku Elektronický blesk	146
Anténa HB9CV pro kanál 1 až 5	146
Zalímavá zapolení	148
AKUTYNA 8A, akumulátorová	
nabílačka	150
Tranzistorová E10aK	151
Radioamatérský sport, KV	154
VKV, Mládež a kolektivky	155
Telegrafie, DX	156
Naše předpověď, SSTV,	
Přečteme sl	157
Četil isme	158
Četli jsme	159
Inzerce	159

AMATÉRSKÉ RADIO ŘADA A

vylimatelná

Škola měřicí techniky

příloha – na str. 139 až 142.

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu ve vydavatelství MAGNET, Vladislavova 26, PSČ 113 66 Praha 1, telefon 26 06 51
7. Šéfredaktor ing. František Smolik. zástupce Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, K. Donát, A. Glanc, I. Harminc, L. Hlinský, ing. L. Hloušek, Z. Hradiský, ing. J. T. Hyan, ing J. Jaroš, ing. F. Králík, ing. J. Navřátil, K. Novák, ing. O. Petráček, L. Tichý, ing. J. Vackář, CSc., laureát st. ceny KG, ing. J. Žíma, J. Ženíšek, laureát st. ceny KG. Redakce Jungmannova 24, PSČ 113 66 Praha 1, tel. 26 06 51-7, ing. Smolik linka 354, redaktoři Kalousek, ing. Engel, A. Hofhans I. 353, ing. Myslík I. 348, sekretářka I. 355. Ročně výde 12 čísel. Čena výtisku 5 Kčs. pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Vladislavova 26, Praha 1. Objednávky příjímá každá pošta i doručovatel. Dohlédací pošta Praha 07. Objednávky do zahraničí výřizuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Naše vojsko, n. p., závod 08, 162 00 Praha 6-Liboc, Vlastina 710. Inzerci přijímá vydavatelství MAGNET, Vladislavova 26, PSČ 113 66 Praha 1. tel. 26 06 51-7. linka 294. Za původnost a správnost příspěvku ručí autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hod. Č. indexu 46 043.

Toto číslo vyšlo 5. dubna 1976

©Vydavatelství MAGNET, Praha

s RNDr. Ľudovítem Ondrišem, OK3EM, předsedou Ústřední rady radioklubu Svazarmu a členem předsednictva ÚV Svazarmu, při příležitosti konání XV. sjezdu KSČ.

> Jakých úspěchů dosáhli českoslovenští radioamatéři v období od XIV. sjezdu

Při hodnocení období od XIV. sjezdu KSČ bych chtěl především vyzdvihnout aktivní přístup radioamatérů k této činnosti jako jedné z významných oblastí branné výchovy, která ve vzájemných vztazích a vazbách spolu s ostatními složkami komunistické výchovy pomáhá formovat občany naší socialistické

Zaznamenali jsme úspěšný rozvoj na různých úsecích práce, zejména však v oblasti politickovýchovné, organizační a řídicí a v získávání nových členů většinou z řad mládeže. Výrazných úspěchů bylo dosaženo v oblasti branných sportů, v práci na KV a VKV, a to jak ve vnitrostátním měřítku, tak i při reprezentaci v zahraničí.

Velmi pozitivně musíme hodnotit i pravidelná setkání radioamatérů v celostátním a národním měřítku, řadu IMZ a seminářů zaměřených zejména k prohloubení politickovýchovné práce. Podařilo se zabezpečit pravidelný systém soutěží v honu na lišku, radioamatérském víceboji i v telegrafii. souvislosti s organizováním těchto branných soutěží se podařilo technicky vybavit pro hon na lišku všechny okresy. Vyvinuli a vyrobili isme i dálkově ovládanou aparaturu pro pořádání soutěží v honu na lišku u nás i na mezinárodní úrovni.

Při pohledu na uplynulé období nemůžeme samozřejmě zapomenout na úspěšnou dlouholetou spolupráci s n. p. TESLA, s jednotlivými ministerstvy a řadou dalších státních, rezortních a vědeckých institucí.

> V loňském roce oslavila celá naše společnost 30. výročí osvobození naší vlasti od fašismu. Jakých úspěchů dosáhli v tomto roce svazarmovští radioamatéři?

Celý uplynulý rok můžeme charakterizovat jako období vysoké aktivity na všech úsecích činnosti. Koncepce radioamatérské činnosti dostala téměř definitivní podobu a byla kladně posouzena mnoha státními orgány a institucemi. Velkým přínosem byla dlouhodobá soutěž OK30, které se zúčastnilo více než 1200 československých a 1800 zahraničních stanic, které navázaly navzájem přes 600 000 radiových spojení. Úspěšný byl i náš příspěvek k CSS 1975. Postupových spartakiádních soutěží v honu na lišku se zúčastnilo přes 3000 závodníků všech okresů

Dalšími největšími akcemi bylo celostátní setkání radioamatérů v Olomouci, které se konalo za přítomnosti nejvyšších představitelů Svazarmu a představitelů státních a politických orgánů, a hlavně potom mezinárodní komplexní soutěže v Hradci Králové.

Velmi dobrých výsledků jsme dosáhli i v oblasti vrcholového sportu. Naši liškaři získali v NDR 1. místo v soutěži družstev žen, v Jugoslávii 1: místo v soutěži jednotlivců mužů; naši rychlotelegrafisté získali cenné 2.

RNDr. L. Ondriš, OK3EM

místo v soutěži družstev o Dunajský pohár v Rumunsku.

Rok 1975 byl úspěšný i při zabezpečování MTZ. Základní organizace dostaly 70 krátkovlnných transceiverů Otava, 500 ks přijímačů a 200 ks vysílačů pro hon na lišku a 150 transceiverů Meteor pro MVT. Mladí konstruktéři obdrželi kromě jiného materiálu i velké množství stavebnic a více než 3000 sáčků polovodičů.

Chtěl bych při této příležitosti zdůraznit, že vývoj, konstrukce prototypů, zkoušky a sériová výroba různých zařízení pro naší specializovanou brannou činnost představují velmi vysokou hodnotu a jsou jistě přínosem i pro naše národní hospodářství. Představují současně i náš podíl na realizaci usnesení ÚV KSČ o vědeckotechnickém rozvoji.

Jakými akcemi pozdraví radioamatéři zasedání XV. sjezdu KSČ?

Velká aktivita v čínnosti svazarmovských radioamatérů z uplynulého roku pokračuje i v tomto období. Mnoho kolektivů i jednotlivců uzavřelo hodnotné závazky na počest XV. sjezdu KSČ. Na počest XV. sjezdu se bude konat i řada akcí, které nebyly v plánu činnosti a budou proto vyžadovat zvýšené úsilí všech radioamatérů. Bude to např. pohotovostní závod na KV a celoroční soutěž aktivity. Budou se konat i různé dlouhodobé akce, které vyvrcholí sice až v posjezdovém období, ale jejich nižší kola proběhnou již nyní. Jsou to zejména soutěže technické dovednosti mládeže, různé propagační akce, výstavky, relace v rozhlase a televizi apod.

Na co bude kladen hlavní důraz v dalším rozvoji radioamatérské činnosti ve Sva-

Jak jsem již vzpomenul na začátku, rozvoj naší činnosti půjde podle vytyčené linie k cíli podílet se na výchově všestranně rozvinutého socialistického člověka. Budeme se podílet na výchově našich nejen členů, ale i nečlenů Svazarmu, zejména mládeže. Společně s jinými organizacemi, školou a rodinnou výchovou se budeme podílet na vytváření jejich názoru na život, budeme pěstovat jejich internacionální smýšlení, vztah k odpověd-nosti, obraně vlasti a vštěpovat jim socialistický způsob života. Naše politickovýchovná práce bude spolu s odbornou a branně sportovní výchovou vytvářet jednolitý a nedílný systém radioamatérské činnosti ve Sva-

Velký důraz budeme klást na komplexní výchovú našich vrcholových sportovců a reprezentantů, nebudeme ale samozřejmě zapomínat na masovost naší činnosti a její dobré materiálně technické zabezpečení.

Ještě více zintenzívníme spolupráci s bratrskými brannými organizacemi, zejména sovětskou DOSAAF. V budoucím období chceme též co nejvíce přispět k rozvoji našeho národního hospodářství, zejména v oblasti zlepšovacích návrhů a vynálezů, zlepšit naší organizační činnost a rozšířit a zkvalitnit výchovu kádrů.

Jak podle vašeho názoru plní svoji úlohu v rozvoji radioamatérské svazarmovské činnosti časopis Amatérské radio?

Náš časopis je jediným periodikem v ČSSR se širokou tematikou v oblasti elektroniky. Je určen pro čtenáře od školních lavic po pracovníky výzkumných pracovišť a širokou veřejnost. Úspěšné zvládnutí koordinace všech zájmů a požadavků si vyžaduje vysokou politickou a odbornou erudici členů redakční rady a hlavně potom jednotlivých redaktorů. Přesto bude nutné i v budoucnosti hledat neustále nové formy hlavně politickovýchovné práce, které otevřou další perspektivy zkvalitnění časopisu.

Při návštěvě delegace ÚRK v Ústředním radioklubu v Moskvě jsme byli velmi potěšeni pozitivním hodnocením Amatérského radia hlavním ředaktorem sovětského Radia. Myslím, že je to pro redakci zadostiučinění za dosavadní práci a impuls pro její další zkvalitnění v úzké spolupráci s ÚV Svazarmu a Ústřední radou radioklubu Svazarmu.

Rozmlouval ing. Alek Myslík

RÁVAZKY R 15. Ojezdu KOĽ

Radioklub Svazarmu OK1KHL v Holicích v Čechách se zavazuje:

* Získáme dva členy z řad mládeže

Dokončíme vysílací středisko na kótě Kamence vybudováním a montáží antén VKV s dálkovým ovládáním (plánovaný počet 280 h).
 Uspořádáme výběr talentů pro hon na

lišku tak, aby souprava, 'kterou jsme z vlastních prostředků zakoupili, byla plně využita.

* Povedeme radiotechnický kroužek mládeže při PO ZDŠ v Holicích tak, aby nejméně polovina účastníků jej s úspěchem dokončila.

 * Budeme zajišťovat rozhlasové a spojovací akce podle požadavků Svazarmu a MěV NF (podle plánu 1600 h).

Členové radioklubu OK3VSZ při Východoslovenských železárnách v Košicích se zavazuií

 Dokončit výcvikové a sportovní středisko v Čani a dovršit celkový počet odpracovaných brigádnických hodin na 5000.

Závazek kolektivky OK1KEO, Dolní Počernice, Praha 9.

- * Získáme čtyři nové členy z řad mládeže.
- * Do konce roku 1976 vycvičíme dva provozní operatéry kolektivní stanice.
- Na údržbě klubovny a zdokonalení vlastní MTZ odpracujeme 400 h (hodnota 3200 Kčs).
- Vystavímé novou anténu pro KV (hodnota 1600 Kčs).
- Opravíme rozhlasové přijímače pro potřebu ZDŠ (hodnota 500 Kčs).
- * Opravíme komunikační příjímač.

Bilancujeme XV. sjezdem

Péče o člověka a jeho blaho je hlavním cílem politiky komunistické strany

Rozvoj životní úrovně spolu s rozvojem socialistického způsobu života ovlivňují jak procesy, za kterých se životní úroveň utvářela v minulých letech, tak i nové rysy budoucího vývoje socialistického společenství.

Utváření socialistického způsobu života nezávisí přitom jen na ekonomických podmínkách, nezbytných pro vzestup životní úrovně, ale má přímou vazbu na změny ve společenských, ideově politických a morálních vztazích. Charakteristickou odlišností v zaměření socialistického způsobu života od způsobu života v kapitalistické společnosti je vedle třídních aspektů všestranné obohacování života člověka, při neustálém sjednocování zájmů jednotlivce se zájmy společnosti.

Základní vliv na utváření způsobu života má především pracovní proces a život v kolektivu, kde se vytváří prostor pro rozvoj schopností člověka pro jeho plné uplatnění ve společnosti, což je nemyslitelné bez vzestupu jeho hmotné a kulturní úrovně, rozvoje duševních i fyzických schopností, citového a morálního bohatství.

Nová etapa intenzívnějšího rozvoje ekonomiky, opírající se o rozsáhlé využívání vědeckotechnického pokroku a tvůrčí aktivity pracujících, si vyžaduje, aby v komplexním rozvoji životní úrovně byl nadále zvláště zdůrazněn rozvoj osobní hmotné zainteresovanosti na výsledcích práce a rozvoj osobní spotřeby. To vyplývá z celkového uspokojování základních i dalších potřeb i z úlohy osobní spotřeby při zabezpečování souladu zájmů celé společnosti se zájmy jejích jednotlivých členů. V tržní spotřebě se především uplatňují rostoucí příjmy obyvatelstva.

Za období páté pětiletky došlo ke zvýšení osobní spotřeby zhruba o 28 %. Při zabezpečování růstu hmotné spotřeby obyvatel náleží významná úloha vnitřnímu obchodu. Upevňování stability vnitřního trhu proto patří mezi základní životní jistoty pracujících, plynulé uspokojování poptávky na trhu pak mezi prvořadé politické a ekonomické záměry. Za léta pátého pětiletého plánu vzrostl maloobchodní obrat asi o 30 %, z toho obrat průmyslového zboží asi o 38 % a potravin o více jak 23 %. Tato výše obratu podložená růstem dodávek do tržních fondů plně zabezpečuje krytí rostoucí kupní síly obyvatelstva dané trvalým vzestupem reálných mezd a příjmů.

Významnou úlohu při uspokojování mnohostranných potřeb lidí mají vedle vnitřního obchodu placené služby obyvatelstvu, jejichž celkový objem vzrostl za období 5. pětiletky zhruba o 26 %. Značnou dynamiku zaznamenaly služby spojené s komplexním bydlením, vybavením bytů a služby spojené s motorismem. Přitom dynamiku jednotlivých forem placených služeb je třeba posuzovat v úzké návaznosti na současný stav i rozvoj bezplatných nebo částečně placených služeb. Například řada služeb v oblasti rekreace, lázeňské péče, kultury a sportu se poskytuje za značné dotace státu nebo společenských organizací. I tato široká oblast životní úrovně, v níž se stát podílí významnou mírou na úhradě nákladů, ukazuje na vymoženosti socialistického zřízení, na hloubku uplatňovaní sociální a kulturní politiky naší

Peněžní příjmy obyvatelstva vzrostly proti roku 1970 o více než 29 %. Průměrná měsíční mzda dosahuje dnes přibližně 2350 Kčs. V souladu s proporcemi plánu rychleji rostou výdaje obyvatelstva, růst příjmů spolu se zvýšenou zárukou sociálních jistot vedl i ke zvyšování míry spořivosti a k celkovému vzestupu vkladů.

V 5. pětiletce se také uskutečnila řada zásadních opatření v oblasti sociální politiky, která kromě velkého politického významu dále posílila podíl sociálních příjmů v celkové příjmové struktuře obyvatelstva. Podle směrnic XIV. sjezdu KSČ byly upraveny peněžní dávky na pomoc rodinám s dětmi, při narození dítěte, rozšířeno pobírání mateřského příspěvku, výrazným způsobem se zvyšily přídavky na děti. Mladým manželům pomáhají výhodné půjčky se státním příspěvkem při narození dítěte. Souhrn těchto opatření nadále posiluje péči našeho státu o rodinu s dětmi a příznivě ovlivňuje vývoj populace. Významná byla i úprava soustavy důchodového zabezpečení platná a realizovaná již od začátku letošního roku.

Nemálo se udělalo v průběhu pětiletky v oblasti ochrany a zlepšování životního prostředí. Bytová výstavba spolu s celkovou úrovní bydlení představuje jeden z dalších základních ukazatelů životní úrovně lidu. Úkol dokončit v 5. pětiletce půl miliónu bytů byl rovněž splněn a téměř o 100 000 bytů překročen. V průběhu posledního pětiletí bylo tak zajištěno bydlení v nových bytech asi pro 2,1 miliónu občanů.

Objem investic do terciární sféry představoval za léta 1971 až 1975 zhruba 48 % z celkových investic do národního hospodářství. Jde o nemalé prostředky, které přímo i nepřímo podmiňují růst životní úrovně. Výsledkem jsou však i hodnoty, které se projevují ve vyšší vzdělanosti, kulturní úrovní a zdraví lidu, zlepšováním kvality životního prostředí a dalšími mnohostrannými přínosy. Takový rozsah rozdělování společenských prostředků přímo ve prospěch lidu je schopna uskutečnit pouze socialistická společenost.

Dosavadní zkušenosti a výsledky potvrzují, že základní směrnice XIV. sjezdu KSČ pro rozvoj životní úrovně v 5. 5LP budou mít zřejmě dlouhodobější platnost. Všestranný rozvoj hmotné a kulturní úrovně našeho pracujícího lidu bude i nadále rozhodujícím posláním politiky strany. Program růstu životní úrovně a jeho důsledné uskutečňování se stanou významným politickým nástrojem, výrazem politického a hospodářského rozvoie socialistického Československa.

Jiří Kopecký

Zdravíme XV. sjezd naší Komunistické strany zvýšeným pracovním úsilím!

MORĀLNĪ POVINNOST

Je to již téměř pět měsíců, co vzrušila celou naši veřejnost zpráva o tom, že československý radioamatér zachytil SOS a předáním zprávy zachránil loď i s posádkou kdesi v dalekém moři. Každý si o tom již mohl přečíst všechny podrobnosti v nejrůznějších denících, týdenících a měsíčnících. Ještě nikdy se nedostalo u nás činu radioamatéra a tím i celé radioamatérské činnosti tolik pozornosti a publicity.

Amatérské radio vzhledem ke své dlouhé výrobní lhůtě nemohlo na tuto událost reagovat bezprostředně. Výjimečně to byla výhoda. Jak již patrně víte, nešlo ani o norskou loď, ani v Severním moři a ani nebyla zachráněna díky upozornění československého radioamatéra. Brazilská loď Corina o výtlaku 9003 btto reg. tun plula ve Středozemním moři z Terstu do Brazílie a došlo na ní k poruše. Byla odvlečena do Splitu, tam opravena a po několika dnech se znovu vydala na cestu.

Ztratil tím svoji hodnotu čin československého radioamatéra? Domnívám se, že nikoli.

Joko, OK3UL, byl postaven před těžké rozhodování. Volání SOS, tak jak ho zaslechl (poprvé v životě), bylo zcela atypické. Neobsahovalo ani volací značku lodi (loď Corinamá volací značku PPBO), ani polohu a další údaje. Bylo vysíláno v amatérském pásmu 7 MHz, přestože pro tísňová volání jsou vyhrazeny jiné kmitočty. Klíčování bylo velmi nekvalitní, pomalé, s mnoha chybami. Joko je vlastně zachytil díky tomu, že pásmo 7 MHz je jeho oblibeným pásmem a vyhledává tu často jihoamerické stanice, které se vyznačují velmi špatnou úrovní operatérů, špatným a někdy až nečitelným klíčováním. Domníval se zprvu, že narazil na jednu z těchto stanic.

Po krátké úvaze došel k přesvědčení, že je

možná jedinou stanicí, která toto volání SOS zaslechla. Neslyšel v okolí žádné stanice, které by na volání reagovaly. Bylo pozdě v noci a podmínky šíření byly z radioamatérského hlediska špatné. Bylo proto pravděpodobné, že z evropské oblasti není mnoho radioamatérů u svého zařízení se sluchátky na uších. Našel ještě několik dalších důvodů ke své domněnce.

"Kdybych za dva tři dny uviděl ve zprávách rakouské televize (která s oblibou přináší takovéto zprávy), že se někde potopila loď Corina a zahynulo při tom tolik a tolik lidí, do smrti bych se psychicky nevyrovnal s tím, že jsem mohl pomoci a neudělal jsem to."

Všechny tyto úvahy prošly Jokovi hlavou během jedné minuty. Během jedné minuty, o kterou – podle jeho výroku – "zdržel" předání zprávy dál.

Co bylo dál, již jistě víte. První zprávu, kterou přinesla většina sdělovacích prostřed-ků, získal Ústřední radioklub od MNO a předal ji prostřednictvím tiskového oddělení ÚV Svazarmu Československé tiskové kanceláři. Z této zprávy se i Joko poprvé dozvěděl o výsledku své snahy.

Zájem novinářů, rozhlasu, televize, filmu byl neutuchající. V Malackách si podávali u OK3UL dveře. Nejstarší babička a nejmladší dítě v Malackách vědí, kdo to Joko

Straka je a co dělá. Pro něho samotného to byl v jeho jinak samotářském životě velký nápor. Snažil se ke všem rozhovorům a informacím přistupovat co nejseriózněji a nedělal z celé události senzaci. Hovořil i s mnoha přáteli, s námořníky, o tom, jak k tomuto volání mohlo dojít. Zjištil, že je nejen možné, ale běžné, že kromě radisty není na lodi nikdo schopen s vysílacím zařízením zacházet. Že na menších lodích, na rybářských lodích ap. ani samostatný radista není, že se často vysílací zařízení vozí jenom z povinnosti, "jako lékárnička". To vše by mohlo pomoci vysvětlit způsob a formu zaslechnutého tísňového volání.

Joko vidí v celé akci – i když vyzněla naprázdno – i značný politický význam. Po konferenci o bezpečnosti a spolupráci v Evropě je to příklad kladného přístupu k jejím závěrům. Čelý řetěz lidí se obětavě zapojil do akce na záchranu lodi a životů, o kterých nikdo nevěděl, kterému státu patří, které národnosti jsou. Šlo o lidi.

Hodnota činu československého radioamatéra OK3UL se neztratila tím, že zpráva nedošla tam, kam měla dojít. Spočívá totiž v tom, že si Joko uvědomil (a stejně tak by to pravděpodobně učinila většina československých radioamatérů) svoji morální povinnost a rychle se rozhodl podle ní jednat.

-am

SOS from m/m CORINA

Zasedal odbor telegrafie ÚRRk

Při příležitosti krajského přeboru Východoslovenského kraje v telegrafii v Prakovcích se sešel dne 30. 1. 1976 na svém pravidelném zasedání federální odbor telegrafie. Z programu zásedání vyjímáme:

- odbor přijal jako dalšího zástupce SRK s. D. Vláčila, OK3CWW, a má nyní 7 členů,
- odbor zhodnotil mistrovství ČSSR 1975, pořádané OR radioamatérů z Ostravy v Trojanovicích,
- odbor projednal závěrečnou fázi přípravy na mezinárodní závody o Dunajský pohár v Bukurešti,
- * byl upřesněn plán akcí do konce března 1976, tj. soustředění reprezentantů, účast na Dunajském poháru a krajské přebory Středočeského a Jihomoravského kraje,
- * odbor zahájil přípravu na vzorové mistrovství ČSSR 1976 s mezinárodní účastí, které se uskuteční ve dnech 3. až 5. 12. 1976 v Hořovicích,
- odbor projednal zajištění všech akcí metodickými materiály a ostatními pomůckami.

Nejlepší sportovci Svazarmu ČSR

U příležitosti 8. plenárního zasedání ČÚV Svazarmu ve dnech 23. a 24. ledna 1976 v Brně byli vyhlášení nejlepší sportovci Svazarmu ČSR za rok 1975. V oblasti radioamatérského sportů to jsou:

Obr. 1. Alena Silná, OK1PUP

Alena Silná, Praha, hon na lišku, Jitka Vilčeková, Pardubice, MVT a telegrafie,

kolektiv RK Sumperk s trenérem F. Pohlem.

Jménem Amatérského radia a jeho čtenářů vyznamenaným blahopřejeme a přejeme jim mnoho sportovních úspěchů i v roce

Obr. 2. Jitka Vilčeková, OL5AQR

EUEKURONUKA

podnik ÚV Svazarmu

Podnik ústředního výboru Svazarmu Elektronika je účelová organizace pro poskytování výrobních, obchodních a servisních služeb v oboru elektroniky, Hi-Fi a audiovizuální techniky, především pro členy a základní organizace Svazarmu. Z vlastní výroby nebo z dovozu jim dodává elektroakustickou techniku vyšší kvalitativní třidy, zejména zesilovače, gramofony a reproduktorové soustavy, jednotlivé součástky a stavební návody k jejich individuální výrobě, dále zahraniční magnetofony, mikrofony, gramofonové přenosky a příslušenství.

Podnik Elektronika vznikl v nynější podobě v roce 1972, takže letos vstupuje do pátého roku své existence. Z výrobního programu obou začleněných VH - Hifi-servis a Elektroakustika - převzal základní přístroje pro nf techniku (gramofony SG40 a SG80, stereofonní zesilovač TW30G, reproduktorové soustavy RS20) a pro ozvučování (směšovací pult TM6, zesilovač TW200, reproduktorové sloupy RS50 a mikrofonní stojan). V roce 1973 vznikl technickonáborový program HIFI-JUNIOR jako sestava základních přístrojů pro věrnou reprodukcí hudby gramofon SG60, stereofonní zesilovač TW40, reproduktorové soustavy RS20 a RS22. Kromě finálních přístrojů s prodlouženou zárukou začal podnik prodávat hlavní díly těchto přístrojů, k nimž vydal a dále vydává i příslušné stavební návody pro jejich individuální výrobu. Přístrojová řada HIFI-JUNIOR se setkala s mimořádným ohlasem mezi členy a hifikluby Svazarmu. Zájem o hotové přístroje a jejich díly však od začátku podstatně přesahuje dodavatelské možnosti podniku, takže zájemci zůstávají z převážné části neuspokojení. Například počet vyrobených levistenových reproduktorových soustav a polotovarů, které byly v roce 1969 světovou novinkou, překročil už letos třicet tisíc.

Také v ozvučovací elektroakustice došlo k inovací a zjednodušení výrobního programu, takže přes dva roky byly ve výrobě směšovací pult TM102, zesilovač TW200B, reproduktorové sloupy RS508/516 a mikrofonní stojan MS180.

Snaha o další zvyšování počtu vyráběných přístrojů v roce 1974 a 1975 narazila na objektivní možnosti podniku, jehož drobná a nevyhovující pracoviště, rozptýlená celkem na 11 místech v Praze i mimo ni, nejsou pro větší množství výrobků "průchodná". Podnik proto hledal zásadní řešení rozporu mezi poptávkou a dodavatelskými možnostmi a začal je urychleně realizovat v roce 1975 jako nejduležitější opatření technického rozvoje. V roce 1975 měl podnik Elektronika 82 zaměst

V roce 1975 měl podník Elektronika 82 zaměstnance v Praze a 7 v Brně. Roční plán výkonů splnil přes 100 % při dodržení všech rozhodujících ukazatelů, přičemž byl podstatně překročen čistý zisk. Až na zdržení ve výrobě gramofonů SG60, následkem nedodání dílů z kooperace, byla splněna i výroba přístrojů podle plánu. Celkový maloobchodní obrat byl v roce 1975 přes 15 mil. Kčs, z toho však jen v prosinci 2,5 mil. Kčs (!), což je celostátní rekord na pracovníka v elektronickém oboru.

Jako jmenovitý úkol ÚV Svazarmu byl v roce 1975 zahájen servis speciální povelové elektroniky pro dálkové řízení modelů (RC) značky Graupner a ve 2. etapě také z výroby SSSR a NDR. V říjnu 1975 získal podnik nové servisní středisko v Brně, což znamená podstatné zlepšení služeb i na Moravě a Slovensku. V podniku vznikly 4 kolektivy socialistické práce, které se svými hodnotnými pracovními závazky soutěží o titul BSP.

Technický rozvoj podniku

Pod označením T120 se připravuje nová řada elektroakustických přístrojů, které budou mít vesměs vysoké technické parametry, odpovídající současným světovým požadavkům. Jsou to:

koncový stereofonní		
zesilovač 2 × 60 W		TW120,
univerzální předzesilovač		TP120,
kvadrofonní dekodér SQ	`	TQ120,
směšovač pro 4 mikrofony		TM120.

Důsledně unifikované součásti a výrobní technologie u všech přístrojů řady T120 značně snižují

výrobní náklady, takže prodejní cena bude neobyčejně příznivá a vyráběná množštví se proti dosavadnímu stavu podstatně zvýší. Zavedením této řady se postupně zastaví výroba některých kompletních přístrojů z dosavadního programu, které však zůstanou na trhu jako stavební návody a jednotlivé díly nejméně do roku 1980. Přístroje řady T120 jsou univerzální a víceúčelové. Hodí se stejně dobře prověrnou reprodukci hudby ve stereofonním a kvadrofonním provozu, pro ozvučení menších i velkých prostor při hudebních produkcích všeho druhu a konečně i pro trvalé elektroakustické instalace v monofonním nebo vícekanálovém provozu.

Třípásmová reproduktorová soustava RS 480 o objemu 45 lz nových pěnových plastických hmot, určena především pro větší poslechové místnosti, bude vývojově a technologicky zpracována nejen pro vlastní trh, ale také pro export. Podnik chce dosáhnout zvýšení produktivity práce a absolutního objemu výroby přibližně na dvojnásobek tím, že se výroba, administrativa a operativní mezisklady soustředí od počátku roku 1977 do jediného provozního objektu v ceně 3,5 mil. Kčs. jehož investiční výstavba v Praze 4-Lhotka už začala a má skončit ještě v letošním roce.

Podník Elektroníka vydává podrobné stavební návody řady HiFI-JUNIOR, určené pro méně zkušené zájemce, s popisem výroby všech jednoúčelových mechanických součástí a podrobnými pokyny ke stavbě jednotlivých přístrojů. Stručné stavební návody přístrojů řady HIFI-JUNIOR a některých dalších jednoduchých přístrojů a funkčních celků (modulů) z oboru Hi-Fi, audiovizuální techniky a dálkového řízení modelů jsou určeny především pro zkušenější zájemce. Připravují se podrobné stavební návody na přístroje řady T120 a jejich příslušenství i na soustavu RS480 a její varianty. "Informace o členských službách", vydávané zpočátku 2× ročně (jaro, podzím), později 4× ročně, přinesou podrobnou nabídku zboží a služeb podniku Elektronika i gramofonové edice pražského Klubu elektroakustiky, spolu s řadou technických zajímavostí a adresářem hifiklubů Svazarmu. Jako obchodně propagační materiál se "Informace" budou rozesílat bezplatně těm registrovaným členům základních organizací a klubů Svazarmu v odbornosti Hi-Fi a elektronické specializace leteckého modelářství, kteří splnili členské povinnosti.

V rámci plánovaného i mimořádného dovozu Svazarmu se podnik Elektronika orientuje na ty přístroje a části příslušenství, které se v kvalitě Hi-Fi nebo v poloprofesionální třídě v ČSSR nevyrábějí, ale jsou nezbytné ke zkompletování ucelených souprav pro věrnou reprodukci hudby, popř. pro ozvučovací účely klubů a základních organizací Svazarmu. Jsou to především stereofonní a kvadrofonní magnetofony s klasickým páskem, kazetové magnetofony třídy Hi-Fi, dynamické mikrofony vyšší kvalitativní třídy a magnetodynamické přenosky s diamantovým hrotem. Pro reprezentanty Svazarmu se počitá s dovozem speciálních vícekanálových souprav dálkového řízení modelů.

Distribuce dovážené techniky se uskuteční jako dosud výhradně podle plánu ústředního sekretariátu hifiklubu, popř. příslušných oddělení ÚV Svazarmu. Při dovozu se počítá i nadále s výrobky těch zahraničních firem, které splňují předpoklady vysoké kvality, v ČSSR jsou již tradičně zavedeny a podnik Elektronika zabezpečuje jejich servis na základě dohod s příslušnými podniky zahraničního obchodu. Množství dováženého zboží bude záviset především na devizové situaci v jednotlivých letech 6. pětiletky, popř. na vlastních devizových zdrojích Svazarmu, podaří-li se je pro tento účel vytvořit.

Podnik ÚV Svazarmu Elektronika je a nadále zústane pravidelným účastníkem jarních i podzimních mezinárodních veletrnů Brno, kde svou účast přizpůsobuje na jaře spotřebnímu, na podzim investičnímu charakteru této akce. Připravuje se účast na

přištích oborových výstavách AVRO/INTERKAME-RA s dvouletým cyklem. Mimořádně aktivní je podnik Elektronika na každoroční svazarmovské výstavě HIFI/AMA. Pro uvedené účely připravuje podnik Elektronika speciální výstavní expozici se souborem přístrojů, které budou pravidelně v chodu a budou doplněny výraznými informacemi pro návštěvníky Stavební díly i funkční celky (moduly a stavební návody) budou vystaveny ve vitrinách. Zvláštní výstavní služby připravují prodejna a servis, které podle charakteru výstavní akce představí přehled služeb v oblasti elektroakustiky, elektroniky a servisu zahraničních přístrojů, popř. zajistí některé služby přímo na místě, např. prodej nejžádanějších dílů a stavebních návodů, objektivní kontrolu gramofonových přenosek aj.

Aby služby podníku Elektronika odpovídaly i v budoucnu co nejvíce přání jeho zákazníků, počítá se s pravidelným a intenzívním stykem mezi zákazníku a pověřenými pracovníky podníku, jejichž úkolem je přenášet poznatky do praxe. Do průzkumu perspektivních potřeb se v nejbližší době zapojí také moderní děrnoštítkový systém, který umožní rychlé a relativně přesné vyhodnocení velkého množství informací. I nadále však zůstane zachován především osvědčený osobní kontakt podníku s ústředními radami odbornosti Hi-Fi a leteckých modelářů, s vedením aktivních klubů i s jednotlivými členy, jejichž neuspokojené potřeby by měly býtí i nadále rozhodující položkou podníkových plánů.

-i

TISKLI JSME 1 Med 25 lefy

Do čtvrtého čísla jsme vybrali jako ukázku konstrukci můstku *RLC* S. Nečáska z dubnového sešitu ročníku 1952. Přístroj pracuje na principu Wheatstoneova můstku a obsahuje elektronkový zesilovač pro indikátor vyvážení – "magické oko" EM1. Vzhled a konstrukce jsou patrné z obr. 1 a 2. Pro přesnější představu uvádíme rozměry: 200 × 300 mm (půdorys), výška 150 (50) mm. Pokrok v technologii za posledních 25 let je u tohoto přístroje stejně zřetelný, jako u přístrojů,

Obr. 1. Můstek RLC podle AR 8/1952

Obr. 2. Konstrukce můstku

které byly již v této rubrice popsány; nemělo by již smysl podobně se jím zabývat. V souvislosti-s tímto měřicím přístrojem jsme si však povšimli jedné zajímavé skutečnosti. Hledali jsme totiž analogickou moderní amatérskou konstrukci z posledních let. A co jsme zjistili? Od roku 1970 byl v AR

uveřejněn pouze jeden měřič RLC; pracuje však na odlišném principu (měří se rezonanění metodou) a navíc je konstruován jako přímoukazující, je tedy podstatně složitější a nehodí se k srovnání. Udělali jsme tedy malou bilanci článků (návodů) v AR 1952 a 1975 podle jejich námětů (tab. 1).

Tab. 1

Přiblížný počet konstrukcí				
Ročník měřících ostatí				
1952 1975	10 11	10 až 15 40 až 50		

Z údajů v ťabulce je vidět, že zatímco počet návodů na stavbu měřicích přístrojů se téměř nezměnil, množství konstrukcí zesilovačů, zábleskových zařízení, zdrojů apod. (můžeme je označit např. jako účelová zaří-zení) se podstatně zvětšilo (zvětšil se i rozsah časopisu).

Autory článků uveřejňovaných v AR jsou technici profesionálové i amatéři (přičemž mezi amatéry lze v současné době počítat i ty

profesionály, kteří se specializují na jeden obor elektroniky a v ostatních oborech nemohou sledovať nejnovější směry vývoje); obsah AR (nebo alespoň příspěvků, docházejících do redakce) nám tedy do jisté míry ukazuje, jak je která oblast elektroniky mezi čtenáři právě aktuální. A podíváme-lí se na náměty příspěvků, nemůžeme se ubránit dojmu, že celá řada čtenářů má zájem o konstrukci účelových zařízení, zatímco jednoduché klasické měřicí přístroje v moderním provedení jsou značně opomíjeny. Velké množství čtenářů si jistě zhotovilo např. nf zesilovač s minimálním zkreslením; kolik z nich se však asi pokusilo změřit zkreslení u hotového zesilovače, popř. postavit si jednoduchý přístroj pro toto měření? Čtenáře AR lze rozdělit do různých skupin. Jsou i extrémisté, o jejichž existenci se občas přesvědčujeme z dotazů asi tohoto druhu: "Stavím elektronické číslicové hodiny podle AR, ale nemohu pokračovat; v textu sice uvádíte průřez jádra síťového transformátoru, ale nepíšete, jakou má mít vzduchovou mezeru, což je velmi důležité!" Jde sice o vymyšlený, ale přitom typický dotaz. Zmíněným čtenářům doporučujeme, aby věnovali alespoň trochu pozornosti tomu, co se v té spleti drátů a součástek, kterou zhotoví,

ve skutečnosti děje. Většině ostatních amatérů, zvláště mladým, bychom chtěli jen připomenout: radost z tvůrčí práce při stavbě a úspěšném dokončení přístroje, zhotoveného podle návodu, vás potěší; mnohem větší uspokojení však pocítíte, budete-li samostatně konstruovat a ověříte-li si sami technické parametry zhotovených zařízení. V letošním ročníku jsme začalí otiskovat Školu měřicí techniky, která může být dobrým začátkem; doufáme, že na ni budeme moci navázat popisy alespoň některých základních, jednoduchých, ale přitom dostatečně přesných měřicích přístrojů. Pokud máte ve své "dílně" osvědčenou a vtipnou konstrukci např. měřiče indukčnosti, činitele jakosti cívek, zkreslení apod., rádi je uveřejníme.

Trochu jsme odbočili od původního námětu, ukázali jsme si však na další zkušenost z uplynulých 25 let. Značně se zvětšil rozsah aplikácí élektroniky a tím i počet zájemců o amatérskou činnost; zdá se však, že se v průměru změnilo i pojetí amatérské práce (nemám teď na mysli aktivní amatéry – vysílače), nebo jinak řečeno, zvětšuje se sice počet amatérů "zvídavých", ale nejméně stejně rychle roste i množství amatérů typu "už aby to nějak chodilo".

E_IMLADS

(R) 15 pro XV

(Dokončení soutěže z AR A2 a A3)

Z minula máte připravenou hvězdu i desku s plošnými spoji nebo desku s pájecími očky. Na desku zapájejte součástky podle obr. 1. Pohled na desku je ze strany součástek. Tranzistor T_1 je typu p-n-p, např. GC516, T_2 Transistor Jje typu pripri pripri Billi. GCS 7, 7_2 je typu n-p-n, např. 102NU71, R_1 je odpor TR 112a, $68 k\Omega$, R_2 je odpor TR 112a, 220Ω , C je elektrolytický kondenzátor TE 981, 20μ F, \tilde{Z} žárovka 3,8 V/0,3 A, B plochá baterie 4,5 V (obr. 2).

Dráty pro připojení baterie volte dostatečně dlouhé a odlište drát pro připojení kladného pólu baterie od drátu, jímž budete připo-jovat druhý pól baterie. Kladný pól napájecí-ho napětí označujeme obvykle červeně, tedy i drát budeme volit s červenou izolací. Desku se součástkami připevněte ke dnu hvězdy,

Obr. 1. Zapojovací schéma desky se součástkami

Obr. 2. Schéma zapojení přerušovače

k tomuto účelu je v něm volná díra. Díru lze popř. převrtat na průměr podle potřeby. Vývody k žárovce a k baterii zkratte na potřebnou míru a zapojte je. Do objímky zašroubujte žárovku, připojte baterii. Tran-zistorový přerušovač, který jste zhotovili, bude žárovku v pravidelných intervalech rozsvěcet a zhasínat.

Závěrem ještě jednu praktickou připo-mínku. Baterii je vhodnější umístit vně hvězdy. Přívody napájecího napětí pro přerušovač vyvedte proto dnem hvězdy a baterii umístěte tak, aby ji bylo možno snadno vyměňovat. Do přívodu napájecího napětí můžete připojit i spínač. Krycí víko připevně-te izolepou (víko je z průhledné plastické. hmoty).

klubu nebo oddílu, popř. i k jiné výzdobě, určené XV. sjezdu strany. Hvězdu instalujte, předveďte a předejte vedení Pionýrské organizace, školy, radioklubu Svazarmu nebo Domu pionýrů a mládeže. Je samozřejmé, že byste měli počítat i s údržbou po celou dobu, po níž bude váš výrobek v provozu. Do redakce AR zašlete nejpozději do 30. dubna 1976 kupón, který vystřihněte, vyplňte a dejte potvrdit. Ke kontrole splněných úkolů soutěže se pracovníci redakce zajedou podívat na některá z míst, na nichž funguje rudá hvězda rubriky R 15.

Času již mnoho nezbývá - těšíme se na hlášení, jak jsou využity vaše výrobky na počest XV. sjezdu Komunistické strany Čes-

koslovenska.

	Potvrzujeme, že
	(jméno nebo název kolektivu)
• 1	bytem
,	narozen
*	(u kolektivu datum narození nejstaršího člena kolektivu)
0(0	předvedl a předal do používání rudou hvězdu rubriky R.15 – práci na počest XV. sjezdů KSČ. Na tomto výrobku pracoval samostatně (platí pouze pro jednotlivce).
	Podpis a razítko školy, DPM, radioklubu apod.

Výrobek podle podmínek soutěže je tedy dohotoven. Poslední podmínkou vaší účasti v soutěži "15 pro XV" však je:

zapůjčte svoji hvězdu na nástěnku školy,

A/4 (Amatérske! A I) (1)

Elektronická hra MO2

Pobyt v klubovně za nepříznivého počasí zpestřují obvykle hry. Pro tuto nebo podobné příležitosti jsem navrhl hru, která cvičí odhad času. Vlastní elektronika je velmi jednoduchá a může ji zvládnout i začátečník.

Technické údaje

Napájení: dva tužkové články 1,5 V. Maximální odběr proudu: podle relé, asi 150 mA.

Nabíjecí čas: lze volit, vhodný je např. 5 s.

Činnost přístroje

Po stisknutí tlačítka Tl_1 se začne nabíjet kondenzátor C (obr. 1). Kondenzátor se nabíjí z baterie přes odpor R. Je-li náboj kondenzátoru dostatečný, sepne se po stisknutí tlačítka Tl₂ kontakt relé Re a rozsvítí se žárovka. Protože je při sepnutém kontaktu re trvale napětí na cívce relé (přes diodu), je relé trvale sepnuto. Má-li použité relé dva spínací kontakty, může druhý kontakt hahradit diodu. Obvod se přerušuje krátkým stisknutím přepínacího tlačítka Tl₃ - žárovka zhasne, kotva relé odpadne, současně se vybije i kondenzátor. Dobu nabíjení kondenzátoru určuje odpor R; chceme-li proto měnit během hry dobu nabíjení kondenzátoru, můžeme místo pevného odporu použít potenciometr, zapojený jako proměnný odpor.

Stiskneme-li tlačítko v době, kdy ještě není kondenzátor dostatečně nabit, žárovka se nerozsvítí a náboj kondenzátoru se vybije

přes vinutí relé.

Použité součásti

Nejprve musíme sehnat vhodné relé podle vlastností relé určíme napájecí napětí, napětí žárovky a minimální napětí, na které musí být dimenzován kondenzátor. (Já jsem použil relé, které spínalo spolehlivě již při napětí 3 V.) Vhodnou kapacitu kondenzátoru určíme tak, že kondenzátor nabijeme na napětí zdroje a přiložíme ho (jeho vývody) k vývodům cívky relé. Relé musí spolehlivě sepnout a po chvíli opět odpadnout. Odpor R se určí zkusmo (nebo použíjeme proměnný odpor) podle požadovaného nabíjecího času. Jako tlačítka jsem použil výprodějní tlačítka z magnetofonu.

Obr. 1. Schéma elektronické hry MO2

Konstrukce přistroje

Všechny součástí jsem umístil na nosnou desku z pertinaxu o rozměrech 105 × 65 mm. Relé a tlačítka jsem přišrouboval. Baterie jsem vložil do papírové trubky a do držáku, který je k destičce přinýtován. Ostatní součástky jsem připevnil pomocí pájecích nýtků. Skřiňka přistroje je plechová a je polepena samolepicí tapetou. Má rozměry asi $120 \times 80 \times 25$ mm.

Pravidla hry

1. Hrají dva nebo více hráčů.

2. Každý musí předem znát čas, po který musí být sepnuto tlačítko Tl₁, aby se po stisknutí tlačítka Tl2 rozsvítila žárovka.

Každý z hráčů (podle pořadí, které si hráči stanoví) stiskne nejprve tlačítko Tl₁.

Je-li hráč, který je na řadě, přesvědčen, že uplynula doba podle bodu 2, stiskne tlačítko Tl₂.

5. Rozsvítí-li se žárovka, hráč vyhrává

(popř. postupuje do dalšího kola atd.). Zárovku lze zhasnout tlačítkem Tl₃ a hra může pokračovat.

Nerozsvítí-li se žárovka, hráč prohrává. Pro další hru není nutné stisknout tlačítko

7. Při jednom tahu smí hráč stisknout pouze jedno z tlačítek Tl_1 nebo Tl_2 .

Seznam hlavních součástí

Odpor R – asi 4,7 k Ω nebo proměnný odpor (potenciometr) asi 10 kΩ, kondenzátor C – asi 2000 µF na napětí podle použité baterie, dioda D – KA501 nebo podobný typ, žárovka Ž – podle napětí baterie, relé Res co nejmenším odběrem proudu - jeden nebo dva spínací kontakty, viz text, baterie B – podle použitého relé; dále dvě spínací tlačítka a jedno přepínací, držák baterie, pájecí nýtky a další mechanický materiál.

Ota Macháň

Jednoduchý časový spínač

Časový spínač, který lze použít např. k odpálení rakety apod. je na obr. 2. Je založen na principu vybíjení náboje konden-zátoru. V poloze 1 Př₁ se podle polohy Př₂ nabíjí jeden z kondenzátorů C2 až Č4 na napětí zdroje. Přepneme-li Př. do polohy 2, kondenzátor se pomalu vybíjí přes odpor R, čímž se mění napětí na emitoru T. Po určité době se tranzistor T uzavře, relé Re přepne a jeho kontakt sepne nebo rozpojí (podle potřeby) ovládaný obvod. Odporem R lze v určitém rozmezí měnit spínací časy, dané především kapacitami kondenzátorů C2 až

Poznámky ke konstrukci

Stejnosměrné napětí na C₁ (tj. na bodech A, B, obr. 2) je podle napětí na sekundárním vinutí transformátoru asi 6 až 8 V. Tam, kde není k/dispozici sít, můžeme napájet spínač z baterií nebo z akumulátoru; kladný pól napájecího napětí pak připojujeme k bodu A, druhý pól k bodu B.

S uvedenými součástkami jsou spínací časy (hranice jsou dány minimálním a maximálním odporem proměnného odporu R) v tabulce.

Př ₂ v poloze	Min. čas	Max. cas.
1	2 s	23 s
2	7 s	57 s
3	42 s	342 s

Komu by uvedené spínací časy nevyhovovaly, může změnit kapacitu kondenzátorů C2 až C₄

Celý přístroj se vejde do krabičky B6. Proměnný odpor (potenciometr) je vhodné opatřit knoflíkem se šipkou a pod šipku umístit stupnici s časy.

Je třeba počítat s tím, že se časy budou během provozu měnit, použijeme-li jako C_2 až C₄ kondenzátory, které by nebyly před použitím v provozu (kondenzátory se budou formanetí) "formovat"), nebo bude-li přístroj delší dobu "odpočívat".

Použité součástky

T	tranzistor n-p-n, zesilovací činitel asi 70
Re	relé s odporem cívky 200 Ω
Tr	síťový transformátor se sekundárním
	napětím 5 až 6 V
D ₁ až D ₄	křemíkové diody KY130/150 nebo KY701
	anod.

2000 μF/10 V

200 μF

500 μF, 1500 μF (WK 705 37 z výprodeje nebo jiný typ), všechny tři kondenzátory na napětí nejméně 10 V

lineární potenciometr 25 kΩ

Jaroslav Mikeš

Nové obrazovky pro barevnou televizi firmy Mullard (A56/410X a A66/500X) mají rychle žhavenou katodu, takže se obraz objeví 5 s po zapnutí. Trysky jsou uspořádány "in line", vychylovací úhel je 110°. Jak z typového označení vyplývá, obrazovky mají úhlopříčky 56 a 66 cm.

Po dlouhém údobí testů a zkoušek se v USA přestalo diskutovat o problému, zda má či nemá být do automobilů montováno elektronické zapalování. Zůstala pouze otevřena otázka nejvhodnějšího systému. Pro některé modely 1976 jsou již dokonce při-praveny varianty elektronického zapalování s automatickou regulací předstihu.

PRIPRAVUJEME

Elektronický regulátor pro alternatory

Synchronizátor pro diaprojektor

Proporcionální souprava RC

Monolitické paměťové obvody

V elektronických přístrojích a zařízeních se velmi často setkáváme s různými druhy pamětí. Do paměti mohou být např. založený informace o funkci přístroje, nebo se do paměti přístroje při jeho činnosti mohou v určitých okamžicích informace ukládat a v jiných okamžicích mohou být přečteny a použity k řízení přístroje nebo zobrazeny pro čtení obsluhou. Způsobů využití pamětí je celá řada a ke konstrukci pamětí se používá mnoho různých technických principů

Různé druhy analogových pamětí, které dříve hrály velmi významnou roli, jsou v posledních dvaceti letech stále více vytlačovány číslicovými pamětmi. Číslicové paměti pracují (vzhledem ke snadné technické realizaci) v binární soustavě, tzn. že se určitá informacé vvjadřuje ve tvaru binárního čísla, které se skládá s posloupnosti nul a jedniček. Číslicové paměti se původně používaly především v počítačích, kde jak instrukce pro činnost počítače, tak i alfanumerická data se vyjadřují ve tvaru binárních čísel.

K tomu, aby bylo zřejmé, do jakého místa paměti isou příslušné informace (instrukce) nebo data uloženy, je každé místo paměti opatřeno číselnou adresou, která se opět vyjadřuje ve formě binárního čísla. Podle toho, kolik míst má binární číslo (nebo slovo), mluvíme o čtyřbitovém, osmibitovém, šestnáctibitovém apod. slově. Určitý bit (což je příslušné místo binárního čísla) může

nabýt hodnoty nula nebo jedna.

Např. paměťové místo jedna je při délce slova šestnáct bitů vyjádřeno binární adresou 0000 0000 0000 0001, místo dvě bude mít adresu 0000 0000 0000 0010 a například bude 32 769 mít adresu 1000 0000 0000 0001; jak jsme si již řekli, tento způsob zobrazení instrukcí a dat a jejich adres se používá při zpracování informací v počítači. Pro zadávání informací do počítače (především instrukcí) je tento způsob neefektivní, proto se k tomuto účelu používá nejčastěji tzv. hexadecimální kód. protože převod čísel mezi hexadecimálním a binárním kódem je snadnější, než převod mezi binárním a dekadickým kódem. Značnou roli v této praxi má též konvence, zvyklost.

Prvním deseti číslům v binárním kódu odpovídají v hexadecimálním kódu čísla 0 až 9 a binárním číslům od 10 do 15 odpovídají v hexadecimálním kódu písmena A až F. Pro převod je výhodné rozdělit binární číslo na bloky po čtyřech místech. Např. číslo 0110 1101 má v hexadecimálním kódu tvar 6D. Pro převod prvních šestnácti čísel mezi dekadickou, binární a hexadecimální sousta-

vou platí tab. 1.

Počítač je obvykle opatřen zařízením, které "překládá" informace z hexadecimálního kódu do binárního kódu (pro vlastní zpracování). Druhá skupina informací, tj. data, se do počítačů zadává nejčastěji v binární podobě s využitím dálnopisu nebo

jiných zařízení. V minulosti hrály dominantní roli v číslicových přístrojích a zařízeních paměti magnetické. Nejčastěji to byly paměti feritové, složené v maticovém uspořádání z velkého počtu feritových kruhových jader. Často se také používaly tzv. magnetické drátové paměti, páskové paměti, dískové paměti a bubnové paměti. Bubnové paměti se dnes již nepoužívají, ostatní vyjmenované druhy pamětí jsou však stále ještě dosti rozšířeny. V posledních letech se objevil vážný konkúrent především feritových a drátových pamětí: monolitické paměti. U dnešních číslico-vých systémů, jako jsou mikropočítače (a často i minipočítače) se tyto polovodičové paměti používají již výlučně. Polovodičové paméti se však používají dnes i u novějších větších počítačů, a to především jako rychlé operační paměti.

Polovodičové paměti se vyrábějí různými bipolárními a MOS technologiemi. Je zajímavé, že první údaje o bipolárních polovodičových pamětech byly publikovány firmou Texas Instr. již v r. 1966. Na základě kontraktu amerických leteckých sil (USAAF) byl u této firmy vyvíjen radarový systém v rámci projektu MERA (Molecular Electronic for Radar Applications). Pres tuto prioritu se však dříve a v širším měřítku začaly vyrábět paměti MOS. Důvodů bylo několik: technologie obvodů MOS je jednodušší, lze při ní dosáhnout větší hustoty prvků na ploše křemíkové destičky a také problémy s výkonovou ztrátou jsou menší. Tomuto předstihu obvodů MOS pomohly i práce spojené s vý-vojem a výrobou kapesních kalkulátorů, které jsou řešeny s ohledem na co nejmenší spotřebu energie výhradně s obvody MOS. Bipolární paměti se začaly realizovat s určitým zpožděním, i když jejich nespornou předností je větší pracovní rychlost. Kapacita polovodičových pamětí obou druhů se rok od roku stále zvětšuje, u pamětí MOS je kapacita až 32 000 bitů, u bipolárních pamětí až

Podle způsobu konstrukce a účelu se paměti rozdělují na několik základních skupin. První skupinu tvoří paměti RAM (Random Access Memory). Do těchto pamětí lze zapsat binární číslo, z této paměti lze binární číslo číst. Při čtení se obsah paměti neruší, neztrácí. U dosud známých pamětí RAM se však obsah ztrácí při přerušení napájecího napětí.

Pamět RAM má určitou architekturu vnitřního uspořádání, tzn., že určitý počet buněk vždy tvoří nbitové slovo. Např. hovoříme-li o 1024bitové paměti RAM s architekturou 1024 × 1, značí to, že má 1024 slov o délce jednoho bitu. Nebo paměť RAM s kapacitou 2048 bitů s architekturou (organizací) 256 × 8 má 256 slov o délce 8 bitů. MOS paměti RAM pracují podle principu buď ve statickém nebo dynamickém režimu. U dynamických pamětí RAM je každý bit zapsán v bůňce, jejíž obsah musí být stále periodicky obnovován (např. 32× za sekundu), jinak by se ztratil. K obnovování slouží speciální obvody, které jsou buď součástí vlastní paměti (jsou na společném čipu), nebo jsou umístěny vně vlastního obvodu paměti. Statické MOS obvody RAM pracují s různě uspořádanými klopnými obvody typu R-S, stejně jako všechny bipolární paměti RAM u těchto obvodů není třeba obsah pamětí obnovovat.

U některých pamětí, které jsou řešeny pomocí registrů, je možný sériový zápis i čtení. Rozlišují se dvě skupiny těchto pamětí: u pamětí FIFO (First In, First Out) se slova čtou ve stejném pořadí, v jakém byla zapsána; u pamětí LIFO (Last In, First Out) se slova čtou v opačném pořadí, než v jakém byla zapsána.

Druhou velmi důležitou skupinou pamětí jsou *paměti ROM* (Read Only Memory), které slouží pouze ke čtení. Při výrobě paměti jsou jednotlivé paměťové buňky nastavenypomocí sítě spojů na úroveň logické nuly nebo logické jedničky. Jednotlivé buňky jsou uspořádány tak, že tvoří slova o určité délce bitů. Každé slovo má určitou adresu. Pomocí adresovacích vstupů je možno zobrazit obsah na výstupech ROM. Proto např. pamět ROM s počtem adres 1024 má deset adresovacích vstupů (2¹⁰ = 1024). Jestliže je např. délka slova 8 bitů, má pamět ROM osm výstupů. Paměti ROM se používají k uložení hodnot funkcí např. v kalkulátorech, dále se používají k převodu kódů jako generátory znaků pro obrazovkové displeje, k uložení programů v mikropočítačích a k celé řadě dalších

účelů.

U pámětí ROM je obsah paměti "vestavěn" při výrobě obvodů. Pro vývojové práce nebo při výrobě menších sérií přístrojů by výroba malého počtu speciálních pamětí ROM byla neekonomická. K těmto účelům se proto používají paměti PROM (Programable Read Only Memory), které si uživatel může naprogramovat podle své okamžité potřeby. Paměťové buňky jsou při výrobě nastaveny na stejnou logickou úroveň a pomocí vnějších proudových impulsů lze porušit některé spoje uvnitř buněk a tím nastavit buňky do druhého logického stavu (např. se prorazí přechod emitor-báze, nebo se přeruší odpor v emitoru, popř. odpor v elektrodě S - source atd.). K programování u zákazníka se vyrábějí tzv. programátory, které umožňují buď manuální, nebo automatické programování např. z děrné pásky.

Třetí skupinou pamětí jsou tzv. paměti EPROM (Erasable Programable Read Only Memory). Tyto paměti jsou reprogramovarelné a jsou proto ideální k vývojovým pracem. Nejznámější paměti EPROM se strukturami MOS, vyráběné od roku 1971 fou Intel a postupně i dalšími výrobci, mají tzv. plovoucí hradlo (gate). Do tohoto hradla se "zabudovává" náboj lavinovitou injekcí z vodiče, který je od hradla elektricky izolován tenkou vrstvou SiO2. Hradlo se při programování opatří nábojem, který nemůže z něho vzhledem k okolní vrstvě SiO, uniknout. Elektrody D (drain) a S (source), které jsou od hradla (gate) odděleny vrstvou SiO₂, mají podobnou strukturu jako u běžného tranzistoru MOS. Podle uskutečněných zkoušek se odhaduje, že náboj na hradle se při teplotě 125 °C zmenší na 70 % své původní velikosti teprve za 10 let! Při nižších teplotách se doba, po níž se náboj udrží, ještě prodlužuje. Pamět EPROM si udrží svůj obsah pochopitelně i při přerušení napájecího napětí. Je-li třeba z nějakých důvodů již zapsaný obsah paměti smazat, lze to udělat jednoduše tak, že se křemíkový čip ozáří po určitou dobu (např. 5 minut) silným ultrafialovým zářením. K tomuto účelu je pouzdro obvodu opatřeno "okénkem" z křemíku. Při osvětlení se stane izolační vrstva kolem hradla vodivou a v celém čipu se vytvoří rovnováha prostorového náboje.

Mnohem méně jsou rozšířeny paměti EPROM, které lze přeprogramovat elektricky. Tyto paměti jsou výrobně složitě jší a proto také dražší. Pracují opět se strukturami MOS s plovoucím hradlem a s další izolační vrstvou z nitridu křemíku.

Tab. 1. Vztah desítkového (dekadického); binárního a hexadecimálního vyjádření čísel

desítková	Soustava binární	hexadecimální
0	4 0000	0
1 .	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	,6
7	0111	7
8	1000	8
- 9	1001	9
10 '	1010	Α
11'	1011	В
12	1100	C ·
13	1101	D
14	. 1110	Ε
15	1111	. F

V rámci těchto tří základních skupin pamětí existují další různé druhy pamětí se speciálními vlastnostmi. Jsou to např. paměti RAM, u nichž lze obsah slova na vstupu porovnávat s obsahem slova na zvolené adrese

Každý paměťový obvod má kromě výstupů vždy vstupy pro adresu a u pamětí RAM ještě vstupy pro zápis. Paměti RAM mají i tzv. řídicí vstup, který nastavuje paměť do stavů "zápis" nebo "čtení". Aby bylo možno řadit paměťové obvody do složitějších celků, mají paměťové obvody výběrové vstupy, které se používají k aktivaci. Aby bylo možno řadit např. paralelně odpovídající si výstupy několika pamětových obvodů (chceme-li získat např. paměť ROM s 1024 osmibitovými slovy, můžeme použít čtyři paměti RÓM s kapacitou 256 osmibitových slov, jejichž výstupy budou paralelně spojeny), mají pa-měťové obvody s vazbou TTL výstupy buď s otevřeným kolektorem nebo trojstavové výstupy. Ú prvně jmenovaných obvodů je výstup podobný výstupu obvodu MH7403. Druhé obvody mají na výstupu (při aktivaci) podle obsahu zobrazované buňky buď log. Ó nebo log. 1. Při deaktivací obvodu se výstup nastaví do třetího stavu, při němž jsou oba výstupní tranzistory "rozpojeny". Výstup má velkou impedanci a "pluje" na potenciálu připojených sběrnic. V tomto stavu také nezatěžuje aktivované výstupy jiných pamětových obvodů.

Dále se používají výběrové vstupy, které – pokud se na paměť nepřivádí, nebo z ní nečte žádná informace – nastavují paměť do stavu, při němž se značně zmenší odběr proudu z napájecího zdroje. Toto opatření výrazně redukuje potřebný napájecí příkon pro celé zařízení s paměťmi.

Pomocí výběrového vstupu lze i zablokovat zapisovací vstupy např. pamětí RAM, které pak značně méně zatěžují vstupní sběrnice při paralením řazení vstupů několika pamětových obvodů.

Monolitické paměťové-obvody se rychle rozšiřují nejen do počítačů, ale i do automatizačních a měřicích přístrojů. Kromě mnoha technických výhod přispívá k jejich rozšíření i jejich cenová dostupnost, široký sortiment a výroba stejných typů pamětí několika výrobci...

Ing. Jiří Hanzlík

Reproduktorové soustavy v neobvyklém pohledu

V posledních letech bylo v časopisu Amatérské radio otištěno několik příspěvků, týkajících se stavby a konstrukce reproduktorových soustav, uspořádání a volby reproduktorů i výpočtu vhodných výhybek. Tyto články vyvolaly řadu dopisů, byly i kritické připomínky a tak jsme se nakonec rozhodli shrnout všechny diskutované problémy, oddělit reálnou skutečnost od dohadů i ustálených a z generace na generaci přejímaných pověr.

Velmi často čteme, že reproduktorové soustavy jsou nejslabším článkem celého elektroakustického řetězu. To je do jisté míry pravda. Stejně je pravda také to, že reproduktorová soustava je tím článkem velektroakustického řetězu, který se teoreticky obtížně navrhuje a ještě obtížněji měří. Před několika lety prošla našima rukama rada reproduktorových soustav nejrůznějších výrobců: Grundig, Isóphon, Braun, Fisher, Goodmans a dalších. Při objektivních měřeních se soustavy vždy něčím lišily a při subjektivních testech hrála rovněž každá soustava poněkud jinak, než ty ostatní. V názorech na výsledný dojem byla nakonec naprostá nejednotnost. Bylo zcela zřejmé, že je především otázkou návyku anebo osobního vkusu, jakému charakteru reprodukce dáme přednost. Jsou totiž jedinci, kteří preferují spíše zdůraznění okrajových částí akustického pásma, jiní mají v oblibě co nejvyrovnanější přenos a nebyli výjimkou ti, kteří naopak dávali přednost reprodukci se zdůrázněnou prezencí, tedy se zdůrazněním v oblasti středních až vyšších kmitočtů

To jsme hovořili o hodnocení subjektivním. Avšak ani při objektivních měřeních nemusíme dostat výsledky zcela souhlasné s poslechovým dojmem. Existují totiž objektivní měřicí metody, které nás mohou dovést i k velmi odlišným výsledkům. Pro tyto případy lze obvykle nalézt uspokojující vysvětlení, avšak přesto může dojít i k rozporu se slyšenou skutečností. Jisté je jedno. Každá soustava, pokud je navržena jen trochu logicky, "nějak hraje". Odpověď na otázku jak má hrát, aby byl akustický vjem dokona-

lý, je prakticky nemožná. Jeden z hlavních důvodů je ten, že mezi koncertní síň a pokoj v panelovém domě nelze položit rovnítko. A tak rozumní konstruktéři volí často optimální řešení, aby soustavy hrály tak, jak si to asi většina posluchačů přeje – tedy líbivě – přičemž samozřejmě své výsledky bez výjimky kontrolují a upravují měřicími metodami.

Tolik obecně. A nyní se podíváme zblízka na jednotlivé prvky soustav. Jak je obecně známo, nepodařilo se dosud vyrobit dokonale vyhovující reproduktorové systémy, které by jedním prvkem obsáhly celé akustické pásmo. To nás nutí používat pro dosažení dobré reprodukce alespoň dvoupásmové, někdy i třípásmové soustavy. Každá soustava obsahuje tedy výškové systémy. Tyto výškové systémy nesmí být buzeny signály nižších kmitočtů, než udává výrobce, jinak by docházelo k zvětšenému zkreslení přenosu. Je proto třeba zajistit, aby tyto signály byly potlačeny horní propustí, které se všeobecné říká reproduktorová výhybka. V dvoupás-mové soustavě se obvykle používá podobná výhybka i pro reproduktor, vyzařující signály nízkých a středních kmitočtů, ovšem v zapojení jako dolní propust. Jsou-li soustavy řešeny jako třípásmové, tj. se samostatným středotónovým systémem, používá se navíc ještě kombinovaná výhybka v podobě pásmové propusti. Pro výpočet uvedených výhybek platí poměrně jednoduché vzorce, uvedené např. v článcích v AR 11/73 nebo AR

O těchto výhybkách jsou vedeny trvalé diskuse, zda je výhodnější používat jednodušší výhybky se strmostí –6 dB/oktávu, anebo složitější se strmostí –12 dB/oktávu. Strmost – 6 dB/oktávu je často považována za nedostačující k tomu, aby spolehlivě zamezila pronikání signálů středních kmitočtů do výškového systému. Tyto signály jsou v reprodukci obvykle velmi výrazně zastoupeny. Nedostatečné oddělení by mělo za následek přetížení výškového systému v uvedené oblasti a tedy i vznik zkreslení. Nejjednodušším řešením je volba co nejvyššího dělicího kmitočtu. Uvedené nebezpečí prakticky odstraňují výhybky se strmostí – 12 dB/oktávu. Ty však mají zase jiný nedostatek; na dělicím kmitočtu obracejí fázi. Podrobnější úvahu o tomto problému nalezne čtenář v AR 5/74 na str. 174.

V praktickém řešení výhybek se však vyskytuje ještě jiný problém. Jak je známo, je impedance reproduktoru složena z činného a indukčního odporu kmitací cívky. Reproduktor s činným odporem kmitací cívky 4 Ω bude mít na dělicím kmitočtu 5000 Hz impedanci podstatně větší. Přitom každý návrhář s naprostým klidem počítá výhybku tak, jako by měl použitý reproduktor výhrad-ně činný odpor. Je zcela nesporné, že pro exaktní výpočet by bylo nutno respektovat nejen činný, ale i indukční odpor reproduktoru a výhybku počítat jako složený obvod. To konstatujeme pouze proto, abychom prokázali, že každý jednoduchý výpočet výhyb-ky je již v základu zatížen menší či větší chybou. V praxi to ovšem není nikterak závažné, protože, jak jsme si již řekli, "každá soustava nějak hraje" a pokud konstruktéru skutečně záleží na výsledku jeho práce, není jiné cesty, než takto přibližně navrženou soustavu měřit a jednotlivé prvky trpělivě upravovat a korigovat. Je třeba ještě upozornit, že to není nikterak jednoduchá ani rychlá

Můžeme jít v našich úvahách ještě dál. Jestliže bychom dokázali i tyto problémy zvládnout (amatérsky je to však téměř ne-možné), zjistíme, že měření v oblasti nízkých kmitočtů v bezodrazovém prostoru nedává zdaleka přesné výsledky. Budeme tedy nuceni volit jinou měřicí metodu, třeba měření ve volném prostoru. Umístíme-li však nakonec soustavu do obytné místnosti běžných rozměrů, můžeme se dožít velkého zklamání, protože v těchto místnostech dochází vždv ke vzniku stojatých vln, kromě toho se v nich uplatňují i vlastní rezonance prostoru a tak je zcela možné, že soustava s dolním mezním kmitočtem o oktávu vyšším bude v určité místnosti "znít" mnohem lépe než jiná - jejíž mezní kmitočet v hloubkách je nižší. To může být způsobeno právě tím, že u soustavy se širším přenosovým pásmem se právě u nízkých kmitočtů mohou náhodně objevit slyšitelné nedostatky poslechové místnosti.

Aby nám to nebylo líto, tedy ani signály nejvyšších kmitočtů nejsou fyzikálními vlastnostmi reproduktorů nedotčeny. Jak je známo, jsou tyto signály vyzařovány přímovyzařujícími reproduktory ve velmi úzkém kuželu. Hodnotíme-li soustavu měřením či poslechem v její ose, může se nám zdát, že je její reprodukce i v této oblasti vyrovnaná. Odchýli-li se však posluchač od osy soustavy, způsobí to dobře patrný úbytek nejvyšších kmitočtů. Tato skutečnosť nemusí být vždy na závadu. Jestliže jsme nadšenými posluchači stereofonní reprodukce a sedáváme-li podle pravidel vždy ve středu před reproduktorovými soustavami, není žádný problém natočit osy obou soustav směrem k poslucha-1 či tak, aby k úbytku signálů nejvyšších kmitočtů nedocházelo. Naopak, požadujeme-li ozvučit poslechový prostor v co nejšir-ším úhlu, pak je výhodné použít několik vysokotónových systémů a jejich osy vzájemně natočit.

Pokud jsme hovořili o nedostatcích poslechového prostoru, mohou se ozvat námitky, že je možno prostor akusticky vhodně upravit. To je jistě teoreticky možné, prakticky to však naráží na téměř nepřekonatelné potíže. Zatlumit poslechovou místnost vhodně tak, aby nedocházelo k odrazům v oblasti středních a vysokých kmitočtů není tak obtížné. Uskutečnit však totéž pro signály nízkých kmitočtů, tedy v oblasti, kde se vlivy poslechové místnosti projevují nejrušivěji, by bylo možné pouze nákladnou úpravou obkladu stěn speciálními materiály, kromě toho by v místnosti nemohl být standardní nábytek. nejvýše tak čalouněná křesla. Z tohoto problému není v běžné bytové praxi zdaleka jednoduché východisko.

Byli bychom velmi neradi, kdyby náš článek vyvolal pochybnosti, zda je vůbec možné zajistit si doma skutečně kvalitní reprodukci. Jistěže je, protože mnohé ne-příznivé jevy, na které jsme zde upozornili, jsou (anebo mohou být redukovány) na hranici poznatelnosti. Tímto příspěvkem jsme chtěli naznačit, že věci bývají někdy daleko komplikovanější, než se jeví na první pohled a že právě při konstrukci a návrhu reproduktorových soustav můžeme narazit na mnohá úskalí a řadu málo známých a často velmi obtížně zjistitelných skutečností. S nimi se setkává nejen tovární konstruktér, ale především konstruktér amatérský - který o nich mnohdy naštěstí ani neví. Je to i odpověď těm našim přispěvatelům, kteří nám v nejlepší snaze posílají tabulky výpočtů výhybek s přesností na šest míst,i těm, kteří se snaží, aby prvky výhybky byly změřeny (podle teoretického výpočtu) s největší možnou přesností. A pro ty další, kteří budou konstruovat doma podobná zařízení, platí naše poslední připomínka: je velmi účelné podívat se nejdříve trochu pod povrch každého problému, než se pustíme odvážně do jeho řešení.

Funkční generátor 4302 fy Burr-Brown umožňuje řešit vybrané analogové početní operace. Výstupní napětí U_0 je závislé na třech vstupních proměnných napětích U_x , U_y a U_z podle vztahu

$$U_0 = U_y \left(\frac{U_z}{U_x}\right)^M$$

Činitele M lze volit – je definován úpravou vnější odporové sítě. Ž uvedeného vztahu vyplývají možné operace: násobení a dělení při M=I, odmocňování při M<I. Při M>I je možno realizovat mocninové a exponenciální funkce. Dodatečným operačním zesilovačem je možno rozšířit aplikaci o trigonometrické funkce sinus a cosinus. Udávaná chyba je vždy menší než 1 %. Uvedené vlastnosti zajištují širokou škálu velmi zajímavých aplikací. -F. K.

Firma Blaupunkt používá při výrobě černobílých televizorů v rozsáhlém měřítku technologii tlustých vrstev. Počítačem řízený výrobní pochod používá i lasery. Výsledkem je velká kvalita i spolehlivost výrobků. Nové černobílé šasi "SM Monochrome" je osazeno pouze polóvodiči a má příkon 65 W. Velkou výhodou pro servis je modulová koncepce; celý přístroj se skládá ze šesti snadno vyměnitelných modulů. Na těchto modulech je 80 % všech použitých prvků. Výrobce připomíná, že jednou z dosud nedoceněných předností modulového systému je možnost průběžně modernizovat přístroje pouhou výměnou některého modulu v souhlasu s technickým rozvojem. –F. K.–

Piezoelektrická jednotka k ovládání kanálového voliče televizního přijímače je novým stavebním prvkem, který budou mít k dispozici návrháři těchto přístrojů. Tuto jednotku vyvíjí Siemens AG pod označením B399IO. Tlakem prstu je možno u tohoto prvku vyvodit napěťový impuls pro ovládání bipolárních IO. Základní prvek se skládá z piezokeramického tělesa a filtru RC, potlačujícího vliv vibrací a rušivých krátkodobých signálů. Epoxidové pouzdro zabraňuje vnikání vlhkosti a nečistot. O použití těchto piezoelektrických měničů se uvažuje i v jiných oborech elektroniky, především u periferních zařízení. –F. K.–

Stálodržný triakový spínač

Stálodržný triakový spínač, který byl vyvinut v PBH Teplice se osvědčil v praxi. Oproti dosud publikovaným zapojením má některé přednosti.

Je ve své podstatě univerzální. V podniku PBH velmi vhodně nahradil zastaralé zapojení pro stálodržné spínání teplovodních čerpadel hydroforu, provedené kombinací stykač-relé, ovládané kontaktním manometrem. Původní zapojení se neosvědčilo pro silně navlhavé prostředí, jež působilo časté proražení izolační vrstvy stykače nebo relé. Proudem cívky stykače se nadměrně opalovaly kontakty manometru. Triakový spínač vestavěný do skříňky relé RP 102 vyhovuje jak z hlediska navlhavosti, tak i zatížitelnosti kontaktů manometru. V sérii s triakem je zapojen buď motor v kombinaci s kondenzá-torem, solenoidový ventil, nebo (podle potřeby) cívka stykače, topná spirála aj. Další výhodou tohoto zapojení je, že ke spínání nepotřebuje jako jiná zapojení dvojici kontaktů, ale pouze dva kontakty se společným přívodem, což je zvláště výhodné při kombinaci s koncovými vypínači, termostaty aj.

Po úpravě (kontakty spínače nahrazeny elektrodami, napájení pomocí oddělovacího transformátoru a změna odporů) lze použít popisovaný spínač pro automatickou regulaci stavu kapalin v nádržích.

Obr. 1. Schéma zapojení spínače

Funkce spínače je jasná ze schématu na obr. 1; zmíním se ještě o použitých součást-kách.

Triak byl zvolen podle proudové zatížitelnosti co nejmenší. Kapacita kondenzátoru není kritická, může být až 0,5 μF. Odpory volíme pro zatížení asi 6 W.

Přívody ke kontaktům je vhodné s ohledem na stabilitu spínače stínit; při velkém kolísání sítového napětí je vhodné připojit paralelně k triaku člen RC. Eduard Vacek

Praktická pomůcka pro paralelní spojování odporů

Čtenář F. Losman nám před časem zaslal jednoduchou pomůcku pro rychlé určení výsledného odporu při paralelním zapojování dvou odporů. S touto úlohou se amatér setkává velmi často; výpočet je sice jednoduchý, ale "nepříjemný", zvláště máme-li jej několikrát opakovat.

Základem pomůcky je grafický výpočet (byl popsán např. v AR 6/1952), znázorněný na obr. 1. Na dvou svislých osách jsou stupnice s odpory, které zapojujeme paralelně. Spojíme-li nulu jedné stupnice s údajem na druhé stupnici, odpovídajícím jednomu z odporů a provedeme-li totéž pro druhý odpor, ale na opačných stupnicích, pak průsečík obou spojnic určuje výsledný odpor paralelní kombinace (obr. 1).

Obr. 1. Grafický výpočet odporu

Pomůcka zjednodušuje celý postup. Spojnice nemusíme kreslit. Jsou nahrazeny přímkami, narýsovanými nebo vyrytými na dvou proužcích z tuhého průhledného materiálu, které jsou otočně upevněny (u vzorku pomocí hřebíčků, upravených jako nýtky) k základní destičce, na níž je nalepen milimetrový papír, s nakreslenými stupnicemi (obr. 2). Body, kolem nichž se oba proužky z transparentního materiálu otáčejí, leží v nulách obou stupnic a současně jimi musí procházet i vyryté přímky na proužcích. Kreslení spojnic je tedy nahrazeno pootáčením proužků (rysky se nastavují na příslušný odpor na opačné stupnici).

Obr. 2. Pomůcka pro výpočet odporu

Popis celého postupu je složitější než skutečná práce s pomůckou, jejíž zhotovení je velice snadné. Aby se milimetrový papír na základní destičce neumazal nebo neodřel, je přes něj nalepena transparentní fólie z podobného materiálu, z jakého jsou zhotoveny oba proužky (např. z rentgenového filmu). Při používání této jednoduché pomůcky nesmíme zapomenout na to, že oba odpory musí být stejného řádu (např. k Ω) a i výsledný odpor má pak stejný řád.

Jednoduchá pájačka

Popisované pájadlo je veľmi jednoduchej konštrukcie a možno ho vyhotoviť za pôl hodiny. Je napájané striedavým prúdom o napátí 3 až 4 V, prúdový odber je 7 až 9 A. Predpokladá to vlastniť vhodný transformátor, alebo mať ľubovoľný sieťový transformátor s prierezom jadra minimálne 6 cm², u ktorého stačí previnúť sekundárne vinutie, čo nie je problémom, keďže sa jedná o navinutie okolo sto závitov (podľa prierezu jadra). Pájadlo je bezporuchové a opotrebováva

sa prakticky len pájacie teliesko, ktoré je ľahko vymeniteľné.

Pájacie teliesko *I* (obr. 1) sa vyrobí z medeného drôtu o priemere asi 2 mm a dĺžke 2 cm, ohnutím do tvaru U. Ohrievacie teliesko 2 z odporového drôtu (konštantan apod.), napr. zo špirály do variča. Priemer drôtu je minimálne 0,7 mm. Ohrievacie teliesko možno vyrobiť z dvoch tenších drôtov, ich vzájomným spletením.

Pájacie teliesko 1 sa upevní na ohrievacie teliesko 2 ovinutím pocínovaným drôtom 3 o priereze okolo 0,3 mm, tesne závit podľa závitu (asi 8). Konce drôtu sa zaistia ovinutím jedného až dvoch závitov okolo telieska 1, alebo ohrievacieho telieska. Prívod prúdu do telieska 2, aj jeho mechanické uchytenie je zaistené pomocou lámacej svorkovnice 4 (lustrová svorka) dvoma skrutkami. Na drúhom konci svorky je taktiež dvoma skrutkami upevnená prívodná dvojpramenná šnôra 5. Priemer žily je minimálne 2 mm. Prívod 5 od transformátora má byť čo najkratší, približne 80 cm až 1 m.

Držiak spájkovadla pozostáva z dvoch doštičiek 6, vyrezaných z materiálu o nízkej tepelnej vodivosti (sklotextit apod.), aby sa držiak neohrieval vedením tepla od ohrievacieho telieska. Šnôra je proti posunutiu zaistená v bloku 7 z novoduru jednoducho násilným pretiahnutím šnôry dierou, vyvŕtanou v tomto bloku. V bloku sa ešte vyhotovia dva závity M3, do ktorých sa pomocou dvoch skrutiek upevnia doštičky držiaku 6. V takto vytvorenom držiaků je dosť miesta i pre upevnenie tlačítkového vypínača, podobne ako u pištoľového pájadla, nie je však nutný. Tlačítko možno vyhotoviť napr. z dvoch párov kontaktových zväzkov z relé RP100.

Sekundárne vinutie transformátora sa navinie z lakovaného drôtu o priemere približne 2 mm. Transformátor musí poskytnúť pri zaťažení prúdom 8 A napätie 3 až 4 V; návrh transformátora je známy a v prípade potreby možno nájsť návrh a výpočet v literatúre

Poznámka: minimálny stratový výkon ohrievacieho telesa 2 je okolo 20 W a prierez drôtu (ohrievacieho telesa) musí byť dostau nás jezdí hodně Trabantů, starších Wartburgů i jiných vozů s šestivoltovým rozvodem. Pro tyto vozy jsem navrhl přerušovač světel se třemi tranzistory.

Zapojení přerušovače je na obr. 1. Tvoří jej astabilní multivibrátor, který se při dodržení hodnot všech součástek přepíná vždy jednou za 0,6 s a žárovka svítí tedy vždy 0,3 s. Výkonový multivibrátor je schopen spínat při napětí 6 V až 5,3 A, tedy výkon až 32 W. Zárovky používané do blikacích světel mají příkon 15 W, současně blikají vždy dvě, takže spolu s kontrolní žárovkou o příkonu 2 W má tato kombinace příkon 32 W.

Obr. 1. Schéma zapojení blikače

Jako tranzistor T_1 je možno použít libovolný typ p-n-p s $\beta \stackrel{\geq}{=} 40$; $I_C = 0,2$ A. Vyhoví např. GC510, GC510K, SFT130 ap. Jako tranzistor T_2 postačí GC500, 501 nebo 502; jako T_3 jsem-použil typ 2NU74. Tranzistory není třeba chladit, u tranzistoru T_3 postačí malé plechové křidélko, za které bude přišroubován. Kondenzátor C_1 jsem složil ze dvou kondenzátorů o kápacitě 2000 μ F, složených paralelně. Odpory R_2 a R_3 jsou pro zatížení 0,25 W, odpor R_1 pro zatížení 4 W. Neužil

Obr. 1. Konštrukcia spájkovadla

točný, keďže je odporový drôt zlým vodičom tepla. Teplota telesa je okolo 600 °C, teda pomerne vysoká. Je to preto, aby bylo možno prehriať i mohutnejšie spoje. Z hľadiska oxidácie konštantanového drôtu je to však pomerne nízka teplota a zaručuje jeho dlhú dobu života. Údržba spájkovadla preto pozostavá prakticky z výmeny telieska *I* a ovinovacieho drôtu 3. Pájadlo je ľahké, dobre ša drží i v dvoch prstoch a držadlo sa neohrieva ani pri dlhodobej prevádzke.

Ing. Michal Koša

Elektronický blikač pro automobily s šestivoltovým akumulátorem

Na majitele vozů s rozvodem o napětí 6 V se někdy tak trochu pozapomíná, přestože

Jsou chromdioxidové pásky pohromou pro magnetofonové hlavy?

V některých odborných kruzích a také v našich prodejnách, kde jsou tyto záznamové materiály k dostání, je často slyšet názor, že chromdioxidové pásky jsou příčinou nadměrného opotřebení magnetofonových hlavic. Zákazníci, kteří nemají magnetofony s lavou typu long-life (dlouhou dobou života) jsou před použitím pásků CrO_2 varováni.

Jaká je skutečnost?

Na to byli dotázáni dva přední výrobci magnetofonových pásků AGFA a BASF. Odpověď obou firem byla jednoznačná. Pásky na bázi chromdioxidu nezpůsobují v žádném případě větší opotřebení magnetofonových hlav, než pásky na bázi kysličníku železa. Je samozřejmé, že toto prohlášení se týkalo výrobků jmenovaných firem. Výrobci přístrojů byli naproti tomu poněkud odlišného názoru. Firma GRUNDIG na stejný dotaz odpověděla, že řadou provozních zkoušek bylo zjištěno, že chromdioxidové materiály sice nezpůsobují větší opotřebení hlav, že však mezi pásky různých výrobců jsou velmi podstatné rozdíly. Některé výrobky způsobují až pětinásobný otěr hlav, přičemž však vůbec nerozhoduje, zda se jedná o pásek chromdioxidový anebo o pásek s kysličníkem železa. Firmy PHILIPS a UHER připustily, že je sice možné zjistit u chromdioxidových pásků mírně zvětšený abrazívní účinek – při rychlosti 4,75 cm/s je však zcela zanedbatelný.

Závěrem tedy můžeme jednoznačně konstatovat, že použití chromdioxidových pásků v žádném případě neovlivní nepříznivě opotřebení hlav kazetových magnetofonů. Jinou otázkou ovšem zůstává, jaké faktické výhody přinese používání chromdioxidových pásků těm použivatelům, jejichž přístroje nejsou pro tyto materiály přizpůsobeny. U těchto magnetofonů může dojít k nepříjemnému zdůraznění vysokých kmitočtů, případně k potížím při mazání starých záznamů. Opotřebení hlav se tedy obávat nemusíte, na tyto okolnosti však musíte pamatovat.

V této souvislosti upozorňují výrobci kazetových magnetofonů na použití tzv. čisticích kazet. Zatímco firma AGFA připouští jako nejdelší dobu pro jedno čistění asi 1 minutu, firma BASF omezuje tento čas na nejvýše 5 až 10 sekund. Firmy PHILIPS a GRUNDIG na dotaz odpovídají, že "rozumné používání" čisticích kazet hlavám neškodí. Z této šalamounské odpovědi vyplývá, že by se čisticí kazety měly používat pouze v nutných případech. Na základě zkoušek se doporučuje čistění hlav a dráhy pásku vždy asi po padesáti provozních hodinách, častěji jen tehdy, je-li to nezbytně nutné. Pak není třeba ani v tomto případě mít obavu z nadměrného opotřebení hlav. –Lx-

Amaterske! A 1 (1) A/4

Jednoducký neladitelný konvertor o pro 11.TV program o

Zdeněk Šoupal

Při zahájení vysílání druhého televizního programu vyvstala otázka, jak tyto vysílače (zatím většinou malého výkonu) přijímat ve větších vzdálenosiech od vysílače. Pokusy o příjem na vzdálenost asi 100 km (Praha-Pardubice), kdy byla naměřena v místě příjmu na kanálu 24 síla elektromagnetického pole nosné obrazu 15 μV/m a nosné zvuku 10 μV/m daly vzniknout

(mimo jiné) konvertoru, který je popsán v tomto článku. Od oné doby uplynulo několik let. Postupně byly a jsou uváděny do provozu další a další vysílače druhého programu, které postupně umožňují pokrýt území naší republiky signálem druhého programu [1]. Každý nový vysílač vyvolá pak vždy v širokém okruhu kolem místa svého umístění značný zájem o příjem, který je ovšem mnohdy dálkového charakteru. S otázkou antén pak souvisí otázka, jak signál přijímat. V provozu je ještě mnoho televizorů, které nemají anten pak souvisi otazka, jak signai prijimai. r provoza je jesie minoto kie izoka, kielinika, vstupní díl pro UHF (UKV) – pro ty je konvertor vhodný především. Avšak pomocí konvertoru si mohou zlepšit příjem i ti majitelé televizorů, jejichž přístroj má jednotku UHF, ale kteří mají obraz se šumem nebo jinak nekvalitní. Pomocí konvertoru lze totiž využít relativně bezšumového zesílení vstupní jednotky TVP v prvním nebo třetím pásmu.

V současné době je na celém našem území citelný nedostatek všech typů konvertorů. Vůbec nelze sehnat plynule laditelné konvertory TESLA (Orava 4952A, Strašnice 4950A), které se již nevyrábějí. V některém kraji se občas dají sehnat pevně laděné konvertory TESLA B. Bystrica typu 4956A, ovšem ty mají kanál ve ÍV. pásmu, takže je třeba tento konvertor přeladit; amatérsky lze

ho však přeladit jen velmi obtížně, někdy je to i nemožné, není-li k dispozici rozmítač např. typu Polyskop. A přitom zájem o konvertory na trhu stále stoupá.

V uplynulých letech bylo zveřejněno značné množství návodů na stavbu konvertorů, z nich však bylo skutečně jakostních jen několik, např. [2], [3], [4], [5], [6]. U těchto, i když konstrukčně jednoduchých konverto-

Obr. 1. Celkový pohled na hotový konvertor

rů se však vždy předpokládaly určité znalosti a zkušenosti z obvodové techniky UHF.

Protože o stavbu konvertorů projevují. zájem i relativně nezkušení radioamatéři a ďalší pracovníci, je tento článek zpracován jako velmi podrobný a přitom jednoduchý konstrukční návod, který umožňuje stoprocentní reprodukovatelnost konvertoru se zaručenými výsledky. Rozdíly ve výsledcích stavby budou pouze v napěťovém zesílení a v šumových vlastnostech, a to podle toho, jaký tranzistor bude použit na vstupu konvertoru, a jaké zesílení bude mít tranzistor kmitajícího směšovače. Uvedené reprodukovatelnosti bylo dosaženo účelnou jednoduchou konstrukcí z desek oboustranně plátovaných mědí (oboustranný cuprextit), které lze velmi snadno přesně opracovat a pájet, a dále pak dvěma deskami s plošnými spoji, z nichž první se symetrizačním transformátorem tvoří čelo konvertoru a druhá je nosnou deskou součástek.

Při konstrukci tohoto konvertoru (obr. 1 a 2), který při své jednoduchosti má špičkové parametry, bylo dbáno i toho, aby jej bylo možno nastavit na požadovaný kanál i bez měřicích přístrojů. Všechny parametry konvertoru byly navíc během uplynulých let ověřeny špičkovými měřicímnohokrát mi přístroji.

V článku budou popsány i údaje ke stavbě čtyřprvkových antén pro 22. a 31. kanál. Antény byly rovněž ověřeny jak měřením, tak prakticky, příjmem vysílače ve vzdále-

nosti 100 km.

A konečně v závěru článku budou pro úplnost a přehled uvedeny napěťové závislosti intenzity elektromagnetického pole, zisku antény, útlumu napáječe, zisku konvertoru pro kanály 22 a 31.

Požadavky na konvertor a způsoby řešení

Z hlediska příjmu na IV. a V. TV pásmu jsou na parametry konvertoru kladeny následující požadavky: 1. malé šumové číslo,

- 2. optimální přizpůsobení (300 Ω) anténa napáječ – vstup konvertoru, výstup konvertoru – napáječ – TV přijímač, 3. napětové zesílení alespoň 15 dB,
- 4. minimální šířka pásma pro pokles 3 dB asi 8 MHz.
- 5. kmitočtová stabilita oscilátoru lepší než ± 150 kHz v rozsahu teplot -10 až +50 °C,

Z hlediska vlastního příjmu je pak třeba vhodná anténa s dobrým ziskem, se šířkou pásma větší než 10 MHz, avšak menší než 30 MHz a konečně s velkým předozadním poměrem [7], [8].

Z konstrukčního hlediska je třeba dále

splnit tyto požadavky:

1. jednoduchá, reprodukovatelná konstrukce,

2. dostupné součástky,

3. volba konvertujícího kanálu,

 snadnost naladění na libovolný kanál IV. a V. pásma,

5. malé zatížení tranzistorů (kmitočtová stabilita).

Šumové číslo, přizpůsobení

Co je obecně šum, to je dobře známo, jeho absolutní velikost vyjadřujeme šumovým číslem F v jednotkách kT_0 , jiným vyjádřením šumu je tzv. míra šumu, udávaná v jednotkách dB; je to dekadický logaritmus šumového čísla F. (Pro názornost – málo viditelnému šumu na obrazovce odpovídá malé šumové číslo a naopak.) Bližší vysvětlení je v [9] na str. 28 až 33 a v [10].

S otázkou dálkového příjmu vystupuje do popředí otázka maximální citlivosti přijímací cesty, neboli napěťového zesílení konvertoru a minimálního možného šumového čísla konvertoru. O všech, problémech, souvisících s dálkovým příjmem se lze dozvědět v [11]

a [12], [5] a [8].

Abychom měli představu, jak dosáhnout malého šumového čísla při současných možnostech elektroniky, podívejme se na obr. 3. Vidíme, že pro konvertor nepřicházejí v úvahu elektronky, vyhovují pouze polovodičové prvky. Na obr. 4 je porovnáno dosažitelně šumové číslo u tuzemského tranzistoru GF507b (bílá čepička) se zahraničním tran-

Obr. 3. Dosažitelné šumové číslo v am a cm pásmu pro elektronky a polovodičové prvky. A – polovodičové prvky, B – diskové elektronky, C – speciální elektronky, D – běžné strmé elektronky

Obr. 4. Dosažitelné šumové číslo s tranzistory (současný stav)

zistorem AF279, který je jedním z nejlepších současných tranzistorů pro UHF. Šrafovaná oblast na obr. 4 znázorňuje rozptyl údajů, naměřených u dvaceti kusů každého druhu tranzistoru. Oba dva typy jsou germaniové, p-n-p. Jediným našim tranzistorem p-n-p pro použití v pásmu UHF je typ KF272, který má při f = 500 MHz šumové číslo 7 dB, tj. 5 kT_0 , při 900 MHz 12,5 dB, tj. 11 kT_0 . Naproti tomu křemíkový ekvivalent zahraniční výroby (BF272, Siemens) dosahuje vlastností AF279.

Chceme-li tedy dosáhnout co nejmenšího šumového čísla konvertoru, je nutno (kromě vhodného vstupního tranzistoru a volby vhodného pracovního bodu, viz obr. 5) použít i vhodné zapojení vstupního obvodu.

Obr. 5. Závislost šumového čísla tranzistorů GF507 a KF272 na stejnosměrném proudu kolektoru (v zapojení se společnou bází)

Nejpoužívanější zapojení vstupních obvodů jsou na obr. 6a až 6d; méně obvyklá (avšak nejlepší) zapojení jsou na obr. 6e a 6f.

Na obr. 6a je velmi často používané zapojení [2], [3], [5]. Nesymetrický svod od antény je připojen přímo na vhodnou odbočku rezonátoru – cívky L_1 . Místo připojení svodu se obvykle zjišťuje experimentálně – jde o proudovou vazbu v místě s co nejmenší impedancí (blízko uzemněného konce L_1 ; na horním konci L_1 je impedance největší, asi 4000 až 6000 Ω). Při tomto navázání svodu k rezonátoru (transformaci) se však změnou naladění L_1 mění průběh exponenciálního rozložení proudu stojaté vlny a tím i vstupní impedance, což zhoršuje činitele stojatých vln na napáječí (svodu). Současně se mění i šumové číslo.

Aby se zmíněné nedostatky alespoň částečně odstranily, používá se k impedančnímu přizpůsobení (transformaci) vazební smyčka L_1 na obr. 6b [4], [5], jejímž přibližováním nebo oddalováním od rezonátoru L_2 se mění stupeň vazby a tím se zvětšuje (přibližováním) nebo zmenšuje (oddalováním) impedance pro přizpůsobení vstupu. Vzhlédem ke změně stupně vazby se nepatrně mění i impedance na konci rezonátoru L2; proudové rozložení stojaté vlny se proto mění mnohem méně než u zapojení na obr. 6a a změna se nepřenáší na vstupní vedení - svod. I šumové číslo je nepatrně lepší. Obě zapojení však vyžadují nesymetrický svod od antény (souokabel). Použije-li se symetrický svod (dvoulinka), je třeba zapojení upravit podle obr. 6c; L_1 je symetrizační smyčka, o jejímž přizpůsobení k rezonátoru platí totéž, co bylo řečeno pro obr. 6b [13], [14], [15].

Dosud popsaná zapojení vstupních obvodů s laděným rezonátorem je třeba vhodně navázat na vstupní tranzistor – používá se opět vazební smyčka, L_2 na obr. 6a, popř. L_3 na obr. 6b, 6c,s velmi volnou vazbou.

Tranzistory pro IV. a V. TV pásmo mají při zapojení se společnou bází malou vstupní impedanci přechodu emitor-báze (střední impedance je asi 75 Ω na 400 MHz). Tato impedance se však při zvyšujícím se kmitočtu zvětšuje. Pro kmitočty vyšší než 400 MHz

je proto třeba opět transformovat velkou impedanci rezonátoru při zapojených podle obr. 6a až c na impedanci, odpovídající impedanci přechodu emitor-báze tranzistoru. Z toho vidíme, že dosud popsaná zapojení vstupních obvodů nejsou z energetického hlediska nejvhodnější, nebot nikdy nedosáhneme tak dobrého impedačního přizpůsobení, aby se signál z antény přenesl na vstup tranzistorů beze ztrát.

Na obr. 6d je zapojení vstupního obvodu bez rezonátoru. Zapojení přizpůsobuje nesymetrický svod od antény ke vstupu tranzistoru bez rezonančních prvků [5], [16]. K transformaci slouží kmitočtově závislá kapacitní vazba (sériová reaktance se zmenšuje při zvyšujícím se kmitočtu). Kapacitní vazbu tvoří kondenzátory C_1 a C_2 ; člen C_1 , L_1 $(0,1~\mu H)$, C_2 je současně článkem T (dolní zádrž), který zamezuje pronikání signálů kmitočtů nižších, než je kmitočet vstupního signálu (např. signálu oscilátoru) zpět do anténního obvodu. Kapacitní vazba tohoto typu zajištuje velmi dobré přizpůsobení vstupu (svod 75 Ω) ke vstupní impedanci tranzistoru.

Zapojení na obr. 6e, 6f jsou výsledkem několikaletého vývoje a zkušeností v optimalizaci vstupních obvodů konvertorů a zesilovačů. Jsou to, stejně jako zapojení na obr. 6d, zapojení širokopásmová. Na obr. 6e je zapojení pro nesymetrický vstup 75 Ω [16], [17]. Signál ze souosého kabelu je přes oddělovací kondenzátor typu SK 737 50 (SK 790 02) veden přímo na emitor vstupního tranzistoru. Jak již bylo řečeno, střední impedance přechodu báze-emitor je právě 75 Ω, takže vstup je přesně přizpůsoben impedanci tranzistoru. Malé odchylky impedance tranzistoru lze v tomto případě zanedbat, neboť konvertor nepřeladujeme plynule, ladíme ho pro jeden jediný kmitočet. Dolaďovacím kondenzátorem je C_2 . Při této příležitosti je třeba upozornit, že všechny druhy průchodek na kmitočtech UHF okamžitě změní impedanci vstupu, proto se jim zásadně vyhýbáme a svod připojujeme pouze pomocí konektoru se zaručenou impedancí 75 Ω.

Na obr. 6f je zapojení vstupního obvodu pro symetrický vstup. K symetrizaci slouží symetrizaci flouží symetrizaci flouží symetrizací transformátor ST ve formě meandru na desce s plošnými spoji. Z vývodu I transformátoru jde signál přes oddělovací a transformační kondenzátor 10 pF přímo na emitor tranzistoru. I tento vstup má optimální přenos energie a malé šumové číslo a proto je použit při konstrukci popisovaného konvertoru.

Obr. 6. Používaná zapojení vstupních obvodů

Na provedení symetrizačního transformátoru velmi záleží, mají-li být ztráty přenosem co nejmenší - transformátor byl proto navržen na oboustranně plátované desce pro plošné spoje, která současně tvoří čelo konvertoru. Spoj anténního vstupu a emitoru tranzistoru je pak velmi krátký, čímž získáme i velmi malý činitel odrazu.

U symetrizačních transformátorů podle popisu (které jsou použity v popisovaném konvertoru) byly změřeny ztráty max. 0,2 dB a nesymetrie max. ± 0,05 dB! U symetrizačních transformátorů podle [2], [3], [5] byly změřeny ztráty až 8 dB, nesymetrie až 3 dB(!!), což je jistě zbytečné plýtvání vzácnou a někdy i nedostatečnou vf energií. Údaje byly změřeny rozmítačem Rohde-Schwarz, typ ZWA a Polyskopem II.

Napěťové zesílení

U dobrého až špičkového konvertoru s malým šumovým číslem je třeba, aby celkový napětový zisk byl minimálně 14 až 15 dB. Tento zisk není možno realizovat v jediném stupni s ohledem na potřebnou rezervu zesílení, proto je vhodné řešit konvertor jako dvoustupňový: první stupeň - vf zesilovač s napětovým získem 9 až 14 dB (zesílení 2,8 až 5), druhý stupeň – kmitající směšovač s napěťovým ziskem 6 až 11 dB (zesílení 2 až 3,5); celkový zisk konvertoru bude tedy 15 až 25 dB (zesílení 5,7 až 17,5) při vstupní impedanci 300 Ω a výstupní impedanci též $300 \Omega.*)$

*) V literatuře se někdy používá výraz výkonový zisk v dB, $A_{\rm P}=10~{\rm log}~P_1/P_2$, napěťový zisk je $A_U = 20 \log U_1/U_2$. Zapamatujme si, že napěťový zisk při stejných výstupních a vstupních impedancích (v našem případě 300 Ω) se rovná zisku výkonovému. Jinak to lze vyjádřit větou, že poměr výkonů se rovná poměru druhých mocnin napětí při stejných impe-dancích. Např. konvertor či zesilovač při vstupním dancieri. Např. konvěrtor či zestlovac při vstupním napětí 500 µV bude mít výstupní napětí 9,2 mV. Po-měr napětí bude tedy 9,2/0,5 = 18,4, tj. napěťový zisk $A_U = 25,5$ dB. Při vyjádření výkonovým ziskem bude $9,2^2/0,5^2 = 84,64/0,25 = 338,56 = poměr výkonů, tj.$ asi 25,5 dB. Stručně ize napsat, že $(poměr napětí)^2 = 18,4^2 = 338,56 = poměr výkonů.$

Šířka pásma

Celkové požadované šířky pásma (min. 8 MHz pro útlum 3 dB) lze dosáhnout vhodnou konstrukcí pásmové propusti, vhodnou vazbou na směšovač a konečně konstrukcí

výstupního transformátoru.

Pásmová propust je v popisovaném konvertoru tvořená rezonátorem L1, vazební smyčkou L_2 (spolu se štěrbinou v přepážce), rezonátorem L_3 a konečně vazební smyčkou L_4 (viz obr. 9). Tato pásmová propust má vlastní šířku pásma minimálně 12 MHz pro -3 dB. Šířku pásma lze ovlivnit pouze nepatrně, a to vazební smyčkou L4, která má mít velmi těsnou vazbu na rezonátor L₃. Šířku pásma by bylo možné měnit i vazební smyčkou L2, smýčka by však musela být z tenkého drátu.

Proto, aby byla zaručena potřebná jakost Q obvodů pásmové propusti, jsou všechny prvky, tj. rezonátory a smyčka L2 z měděného postříbřeného drátu (Ag 10 μm).

Oscilátor, volba kmitočtů, kmitočtová stabilita

U každého konvertoru jsou na kmitočtovou stabilitu a minimální vyzařování signálu oscilátoru přísná měřítka, popisovaná konstrukce vyhoví i těm nejpřísnějším nárokům v tomto směru.

 Kmitočet oscilátoru je jednoznačně určen přijímaným kanálem a "konvertujícím" ka-nálem v I., popř. II. TV pásmu.

Je-li tedy zvolen přijímaný kanál a kanál, na který budeme signál převádět, určíme potřebný kmitočet oscilátoru pro nosný kmitočet obrazu (NO) přijímaného signálu ze vztahu

$$f_{\rm osc} = f_{\rm phij.} - f_{\rm konv.} ,$$

kde $f_{konv.}$ je kmitočet nosného obrazu kanálu, na který původní signál ze IV. nebo V. pásma konvertujeme. Příklad:

je-li $f_{\text{prij.}}$ (kanál 31) = 551,25 MHz (nosná obrazu),

obrazu, f_{konv} (kanál 2) = 59,25 MHz (nosná obrazu), pak f_{osc} = 551,25 - 59,25 = 492 MHz. Na obr. 7 je převod knitočtů znázorněn pro přijímané kanály 22 a 31 s převodem na kanály 1 až 3. Je třeba zdůraznit, že kmitočet oscilátoru musí být vždy nižší, než je přijíma-ný kmitočet! V opačném případě bychom nemohli přijímat zvukový doprovod!

Kmitočet oscilátoru musí být co nejstabilnější, jeho malé odchylky musí být možno doladit oscilátorem na televizním přijímači.

Na stabilitu kmitočtu oscilátoru má vliv především:

Použité zapojení a volba vhodných součástek, např. odporů a kondenzátorů s malým teplotním součinitelem.

2. Mechanicky dokonale stabilní kon-

3. Jakost Q laděného obvodu – čím větší je Q, tím volnější může být vazba na tranzistor. Volba pracovního bodu tranzistoru, tj. jeho kolektorový proud musí být zvolen tak,

Obr. 7. Znázornění převodu kmitočtů

aby oscilátor nevysazoval a aby oscilátorové napětí bylo dostatečné, tj. 200 až 300 mV. Pracovní bod je proto třeba nastavovat individuálně podle typu a vlastností použitého tranzistoru.

Literatura

- [1] Náš interview s ing. V. Chalupou, ministrem spojů ČSSR. AR 5/1973. Grafe, R.: UHF-Konvertortuner hoher
- Leistung. Funktechnik 15/1969, s. 573 až 575.
- [3] Svobodný, Z.: Jakostní konvertor pro UHF. RK 2/1970, s. 33 až 77.
 [4] Kuzman, F.: Plynule preladitelný konvertor pre IV. a V. TV pásmo. AR 3/1971, s. 91 až 95.
- Libal, R.: Konvertory pro dálkový pří-jem TV. AR 5/1971, s. 183 až 185; AR 6/1971, s. 224 až 225.
- [6] OK-12782: Konvertor pro II. TV pro-
- [7] OA-12/02: Nonvertor pro II. IV program. AR 1/1972, s. 26 až 27.
 [7] Ceský, M.: Příjem druhého TV programu. Práce: Praha 1970.
 [8] Vít, V.; Kočí, J.: Televizní příjem ve IV. a V. pásmu. SNTL: Praha 1973.
 [9] Český, M.: Televizní anténní zesilovače a rozvody. SNTI Praha 1060.
- a rozvody. SNTL: Praha 1960.

 [10] Vajda, J.: Šumovė čislo Fa mira šumu F[dB]. AR 12/1967, s. 372.
- [11] Přibyl, J.: Dálkový příjem v I. a III. pásmu. Hodinár, K.; Studničný, M.: Televize ve IV. a V. TV pásmu. RK 1/1967, s. 13 až 64.
- [12] Lusk, J.: Televizní příjem ve IV. a V. pásmu. AR 8/1968, s. 295 až 296.
- [13] Vančata, M.: Konvertor pro IV. a V. pásmo. AR 8/69.
- Vančata, M.: Jednoduchý konvertor pro IV. a V. TV pásmo. AR 6/1970.
- [15] Volný, J.: Konvertor pro IV. a V. TV
- pásmo. AR 8/70. Firem. lit. Siemens: Neue Transistoren
- und Abstimmdioden für UHF-Kanalwähler 1967.
- [17] Firem. lit. Intermetall 45/1967.

(Pokračování)

Dr. L. Kellner

Ještě štěstí v neštěstí je, že stěny paneláků propouštějí "jen" kakofonii zvuků: zleva tranzistorák, zprava zesilovač, zdola magnetofon, shora cvičení na trombón a ze vzdálenějších bytů další příslušný výběr nejrůznějších zvuků. Nedovedu si představit, co by bylo, kdyby zdi propouštěly i doprovodná světla: barevnou hudbu, nebo vznešeněji světelné varhany, s nimiž se v poslední době jaksi "roztrhl pytel"; je o ně stále větší a větší zájem.

A tak k dosavadním konstrukcím chci přispět další variantou světelných varhan, které se vyznačují dobrou selektivitou a které

jsou přitom poměrně levné.
Popsané zařízení má oproti jiným konstrukcím jednu zvláštnost: dosud popsané konstrukce - pokud vím - pracovaly s pasívními filtry nejrůznější konstrukce (dolní pro-pusti, články T apod.). Popsané zařízení pracuje s aktivními filtry. Pasívní filtry (velmi obecně) propouštějí určité pásmo kmitočtů s malým útlumem, ostatní kmity tlumí nebo nepropouštějí. Aktivní filtr v určitých kmitočtových pásmech užitečný signál zesiluje, na jiných kmitočtech však zvětšuje jeho útlum, proto jsou hranice pásem ostré, nedochází k neurčitému stavu. Aktivní filtry navíc i vyrovnávají ztráty přenášeného signálu, vyžadují však přesněji vybírat součástky filtru (především kondenzátory). Protože v popisovaném zařízení jsou použity velmi jednoduché filtry a protože nepožadujeme velmi přísně definovaná propustná pásma kmitočtů, nastavení filtrů nebude dělat potíže.

Při konstrukci jsem vycházel z několika hledisek:

1. nepoužít síťový transformátor, s jehož zhotovením nebo koupí jsou vždy potíže, zařízení napájet přímo ze sítě, místo žárovek na malé napětí, které také nejsou vždy k dispozici, použít žárovky sítové na 120 V; dosáhnout maximální selektivity jednotlivých kanálů, aby se jejich činnost vzájemně neovlivňovala ani laděním, ani zatížením;

3. kde je to jen trochu možné použít levné součástky, staré "šuplíkové" zásoby, nebo součástky z výprodeje.

Popis zapojení

Zařízení konstruované podle uvedených hledisek je na obr. 1. Čtyři žárovky čtyř kanálů (které mohou mít při použití tyristorů KT505 s chladiči příkon do 100 W) napájíme přímo ze sítě. Barvy pro jednotlivé kanály si zvolíme podle libosti, žárovky můžeme zbarvit průhledným lakem TEXBA. Umístění žárovek, příp. náhradu jedné žárovky 100 W paralelně zapojenými žárovkami 15 či 25 W si může každý vyřešit podle svých představ a požadavků. Žárovky na 120 V použijeme proto, že jsou napájeny ze sítě přes tyristor, tj. jen jednou půlvlnou sítového napětí. Kdybychom místo tyristorů použili triaky, které jsou však mnohem dražší, bylo by možno použít žárovky na 220 V.

Sítové napájecí napětí usměrníme diodou D_1 a filtrujeme kondenzátorem C_1 . Pro napájení přístroje potřebujeme napětí asi 18 V, které získáme z usměrněného sítového napětí obvodem s R₁, C₂ a se Zenerovou diodou D2. Tímto uspořádáním jsme ušetřili síťový transformátor, při manipulaci s přístrojem však musíme být velmi opatrní, protože všechny součástky celého zařízení jsou galvanicky spojeny se sítí. Při připojení sítového napětí připojíme nulový vodič na

šasi zařízení.

Síťový transformátor sice nepotřebujeme, ale budeme muset navinout oddělovací transformátor pro přenos nf signálu, který zároveň odděluje reprodukční zařízení od síťového napětí. Transformátor Tr je navinut na feritovém jádru velikosti M12 (M42). jádro však může být i ze železa nebo z permaloye; jde pouze o to, aby na něj bylo možno navinout potřebná vinutí.

Cívka L₁ má 50 závitů drátu o Ø 0.1 mm a je připojena přes P_1 paralelně k reproduktoru o impedanci 4 až 25 Ω . Připojení L_1 neovlivní hlasitost reproduktoru nebo reproduktorové soustavy. Jako sekundární vinutí navineme čtyřikrát 2000 závitů (je-li to možné, nejlépe čtyřmi dráty současně) drátu o Ø 0,08 mm nebo tenčím, aby se vinutí "vešla" do okénka. Použijeme-li tlustší dráty, musíme použít i jádro větších rozměrů, např. jádro M17 (M55). Mezi L_1 a sekundární vinutí dáme několikavrstvovou izolaci, aby vinutí se síťovým napětím bylo patřičně odděleno. Po navinutí cívku vyvaříme v parafínu nebo v izolačním laku.

Zhotovili jsme tedy oddělovací transformátor s převodním poměrem 1:40. Je možné, že se někomu bude zdát převod transformátoru příliš velký, je však lepší pracovat s rezervou, abychom i při slabém signálu dostali vyhovující řídicí napětí. Kupř. na výstupu z rozhlasového přijímače VEF-204 bylo naměřeno při slabé reprodukci hudby 30 až 50 mV, při střední hlasitosti 100 až 150 mV, při maximální hlasitosti 1 V. Použijeme-li popsaný transformátor, dostaneme při slabé reprodukci na svorkách sekundárního vinutí signál 1,2 V, který k vybuzení přístroje zcela vyhoví. Při větší hlasitosti zmenšujeme vstupní signál potenciometrem

P₁. Ctyři kanály (I až IV) jsou identické až na kondenzátory aktivního filtru a dva odpory v bázi tranzistorů. Kmitočty signálů, které budí jednotlivé kanály s uvedeným součástkami, jsou rozděleny takto: I. hloubky 100 až 500 Hz (nižší kmitočet není

žádoucí, žárovka pak bliká), II. střední 500 až 1000 Hz, III. střední 1000 až 3500 Hz. IV. výšky 3500 až 20 000 Hz.

Sekundární vinutí převodního transformátoru je přemostěno odporovým trimrem P2

(uvádím značení součástek 1. kanálu, ostatní jsou identické), který může být 10 až 22 kΩ. Z běžce trimru odebíráme potřebnou část napětí, které přes R2 vedeme na aktivní filtr se třemi kondenzátory, s tranzistorem T_1 , několika odpory a trimrem P_3 : Filtr propouští signál v určitém kmitočtovém pásmu, zesílí jej a ostatní signály potlačí. Zesílený signál usměrníme a kladné tepavé napětí znovu zesílíme tranzistorem T_2 a přivádíme ho na řídicí elektrodu tyristoru, který se otevírá v rytmu zesíleného signálu a napájí žárovku Z_1 . Stejně pracuje obvod na všech dalších kanálech, které propouštějí jiná pásma kmitočtů. Díky odděleným vinutím L_2 až L₅ jsou kanály na sobě naprosto nezávislé.

Stavba zařízení

Při stavbě celého zařízení bych doporučoval následující postup: nejprve si obstaráme všechny součástky. Změříme tranzistory, aby neměly velké proudy I_{CB0} a I_{CE0}. Můžeme použít tranzistory i jiných typů (germaniové nebo křemíkové).

Nejprve sestavíme na "prkně" jeden kanál včetně napájecí části. Místo odporů R₂ a R₆ dáme odporové trimry $10 \text{ k}\Omega$, u nichž nastavíme největší odpor. Na vinutí L_1 oddělovacího transformátoru přivedeme ze signálního generátoru signál příslušného kmitočtu, P2 je nastaven na maximální odpor. Regulací záporné zpětné vazby (P3) se snažíme rozsvítit žárovku. Možná, že bude třeba zmenšit odpory R_2 a R_n , jimiž ovládáme signál pro řídicí elektrodu Ty. Kondenzátory C_3 a C_4 obvykle budou vyhovovat. Zmenšením kapacity C₅ zvyšujeme dolní kmitočet kanálu (nebo obráceně), odporovým trimrem P3 nastavujeme horní kmitočet filtru. Je-li kanál nastaven, R2 a R6 nahradíme pevnými odporỳ, kondenzátory C_3 , C_4 , C_5 a tyristor odpojíme, označíme a odložíme. Na jejich místo dáme potřebné součásti dalšího kanálu, který stejnou metodou nastavíme na zvolený kmitočet. Tato metoda je nutná vzhledem k obvyklé velké toleranci součástek.

Když jsou všechny kanály "oživeny", pak můžeme označenými součástkami osadit desku s plošnými spoji podle obr. 2. Na této desce je umístěn i transformátor a všechny ostatní součástky kromě P_1 , který je zároveň i spínačem sítového napětí. Odporové trimry použijeme buď novější (typ TP 040) nebo starší (TP 038, oba typy "ležaté"), pájecí body na desce jsou upraveny pro oba typy. Po osazení desky vyzkoušíme kanály, nastavíme P_3 a přistoupíme k poslední – avšak nejkom-plikovanější části stavby: vestavíme přístroj do vlastnoručně zhotovené skříňky. K výrobě skříňky použijeme buď sololit, nebo překližku, příp. plastickou hmotu a skříňku polepíme tapetou. Pro vstup řídicího signálu vyhovují zdířky pro banánky, na boku nebo na víku skříňky jsou čtyři sítové zásuvky (nikoli dvojité, ty se nehodí), z nichž napájíme žárovky.

Uspořádání a hotový přístroj je na obr. 3.

Použité součástky

Polovodičové prvky

KY705 8N270 D₃ až D₄ KA501 Tı až Ts 101NU71 (nebo viz text) Tyı až Tyı KT505

Obr..2. Deska s plošnými spoji K 13

Kondenzátory

C₁
C₂
C₃ až C₅
C₆, C₇
C₉, C₁₀
C₁₂, C₁₃
C₆, C₁₁, C₁₄ TE 992, 20 μF/350 V TE 986, 500 μF/35 V TC 181, 0.1 μF/100 V TC 180 nebo TC 181, 47 nF TC 181 nebo TC 183, 22 nF TC 181, 10 nF

Odpory a potenciometry

 $\begin{array}{lll} P_2,\; P_4,\; P_6,\; P_8 & 22\; k\Omega\; (viz\; text) \\ P_3,\; P_8,\; P_7,\; P_9 & 2,2\; k\Omega\; (viz\; text) \\ R_1 & TR\; 551,\; 10\; k\Omega/10\; W \\ \\ Ostatni_odpory\;\; miniaturni,\;\; uhlíkové\;\; TR\;\; 143\;\; nebo \end{array}$

pod.

Pi potenciometr se spínačem pro siťové napětí, 5
až 10 kΩ, lin. nebo log., libovolný typ

Zapojení pro automatické ladění a stabilizaci kmitočtu

Milan Tintěra

Při práci na KV mi chyběla možnost lokalizovat stanici v určitém libovolném kmitočtovém pásmu. Rozhodl jsem se vyhnout se stálému otáčení ladicím knoflíkem a prohledávání pásma konstrukcí zařízení, které sonduje pásmo automaticky a po zjištění nosné vlny se na ni automaticky naladí a stabilizuje odchylky od základního kmitočtu. Zařízením lze též stabilizovat kmitočet oscilátoru s přesností, závislou na selektivitě mf zesilovače.

Obr. 4. Deska s plošnými spoji K14 automatického ladění

Hlavní součástí zařízení (obr. 1) je generátor pilovitých kmitů, z jehož výstupu se odebírá ladící napětí pro varikapy. Po zjištění nosné vlny se pomocí tranzistoru T₃ zastaví činnost generátoru v určité části náběžné hrany pilovitého průběhu (obr. 2).

Popis činnosti

Kondenzátor C_{16} se nabíjí přes odpor R_{15} . Dosáhne-li napětí velikosti nastavené proměnným odporem (potenciometrem), otevře se dvojice doplňkových tranzistorů T_1 , T_2 a kondenzátor se vybíjí. Po poklesu napětí pod určitou velikost, závislou na velikosti saturačních napětí dvojice, se dvojice uzavře a kondenzátor se opět nabíjí. Přivádíme-li toto pilovité napětí na varikapy ladicích obvodů, získáme přijímač, který stále sonduje pásmo. Šířka proladovaného pásma se dá nastavit potenciometrem P_2 . Kmitočet generátoru je asi 20 Hz.

Při přítomnosti nosné vlny vznikne napětí na bázi T_3 , která je připojena přes regulátor napětí (popř. zesilovací stupeň) na detektor. Detektorem dodávané napětí musí být dostatečně filtrováno, aby se ladicí obvody nerozlaďovaly nf signálem. Regulátor napětí, který je tvořen například potenciometrem, zajištuje naladění přijímače do správného místa křivky selektivity. Tranzistor T_3 udržuje ladicí napětí na takové velikosti, která odpovídá naladěnému kmitočtu. Při odchylce kmitočtu signálu od naladěného kmitočtu reaguje T_3 změnou ladicího napětí. Jakmile se nosná vlna v pásmu nevyskytuje, běží generátor volně a přijímač sonduje pásmo.

Obr. 1. Zapojení obvodu automatického ladění

Obr. 2. Znázornění činnosti obvodu

Obr. 3. Použití obvodu v přijímači

Použití

Při použití obvodu k automatickému ladění je připojen jeho vstup přes regulátor napětí; popř. zesilovací stupeň na detektor. Chceme-li použít zařízení pro stabilizaci kmitočtu (oscilátoru apod.), připojíme vstup přes mf zesilovač a detektor k vysílači (oscilátoru). Napětí pro varikapy odebíráme z bodu U_{lat}

 $U_{\rm hd}$ Zapojení ovládacího zařízení a regulátoru napětí pro tranzistor T_3 u superhetu se liší od zapojení u superreakčního přijímače, v němž se využívá superreakčního šumu. U superhetu budeme muset využít napětí, tvořícího se na filtračním kondenzátoru detektoru.

V obou případech je však nutno správně nastavit fázi napětí pro T_3 . Tranzistor T_3 musí ukončit zvyšování napětí na kondenzátoru C_{16} a udržet napětí na stálé velikosti. Nesmí toto zvyšování podporovat; v tom případě je špatně nafázován vstup.

Ve schématu, na němž je příklad použití přístroje (obr. 3), neuvádím údaje cívek, použitých v přijímači. Jejich parametry závisí na použitých varikapech a na zvoleném kmitočtu. Cívky je vhodné vinout na kostřičkách z mf zesilovačů, pracujících na kmitočtu 10,7 MHz. Dolaďovací jadra použijeme ke slaďování. Tlumivka L, má asi 550 až 700 z (železové jádro) a indukčnost 10 až 20 mH. Dioda D₁ chrání přechod báze-emitor T.

Po zapojení zařízení do přijímače nastavíme požadovanou sondovanou šířku pásma potenciometrem P₂. Regulátor napětí detektoru P₁. nastavíme na maximum. Po zjištění nosné vlny zmenšujeme regulátorem napětí z detektoru a nastavujeme ho tak, aby úroveň nosné vlny byla maximální.

Přístroj je konstruován na desce s plošnými spoji (obr. 4) s použitím klasických prvků.

Použité součástky

Kondenzátory

C1	trimr 50 pF
C_2	10 nF
ત્રે	470 pF
À.	82 pF
3	220 pF
2	8,2 pF
Zn .	470 pF
	220 až 330 pF
À	8,2 pF
Cto	27 pF
Cu ·	100 nF
D12	3,3 nF
213	2 μF/15 V
C)4 .	68 nF
Cis	22 nF
D16	20 μF/15 V
C17	10 nF
Cis	470 pF
'n	odděluje ss složku

Odpory

R _i	2.2 kΩ
R₂	27 kΩ
R ₃	1 MΩ
R₄	39 kΩ
R _s	3,3 kΩ
R₄	27 kΩ
R ₇	1 MΩ
R ₈	270 Ω
R₁	0,2 MΩ
R ₁₀	- 0,1 MΩ
Ru	4,7 kΩ
R12	1 MΩ
R 13	1 kΩ
R ₁₄	10 kΩ
R ₁₅	2,7 kΩ
R ₁₆	330 Ω
P ₁	10 kΩ
P ₂	330 Ω

Polovodičové součástky		<i>T</i> ₄	KC149
		T ₅	KF125
Tı	KF503 (102NU71),	To, T7	KF524
T_2	KF517 (GC507)	Dı až Dı	KA201
T ₃	. KC149	D ₄	GA751

Vbrazový mp zosilňovač **▼ TVP MINITESLA**

Ing. Ján Michlík

Národný podnik TESLA Orava obohatil v minulých mesiacoch náš trh prenosným celotranzistorovaným televíznym prijímačom 4156 AB Minitesla s uhlopriečkou obrazovky celotranzistorovanym televiznym prijimacom 4130 AD Minuesia s unioprieckou obrucovky 31 cm. Tento prijímač je osadený kanálovým voličom plynule preladiteľným vo všetkých televíznych pásmach VHF i UHF, je vybavený prútovou anténou a napájaný môže byť zo siete i z jednosmerného zdroja 12 V (autobatéria). V TVP Minitesla sú použité tri integrované obvody. Jeden z nich (CA3068) plní funkciu obrazového MF zosilňovača a niektorých pomocných obvodov (kľúčované AVC, detekcia nosnej zvuku). V-tomto článku je bližší popis zapojenia a činnosti tohto obvodu.

Na obr. 1 je zapojenie obrazového mf zosilňovača v TVP Minitesla. Výstup z kanálového voliča je cez väzobný kondenzátor C_{302} naviazaný na sériové odladovače kmitočtov 39,5 MHz (nosná zvuku susedného kanálu), 30 MHz (nosná obrazu susedného kanálu) a 31,5 MHz (nosná zvuku prijímaného kanálu). Cez obvod ladený približne na stred mf pásma (35 MHz) je signál privádza-

ný na vstup integrovaného obvodu IO302 -CA3068, ktorý plní tieto funkcie:

- 1. obrazový mf zosilňovač,
- videodetektor,
 predzosilňovač videosignálu s potlače-
- 4. obvod kľúčovaného AVC s protiporuchovým obvodom,

100 z křížově neutralizuje C_{bo} [µH; MHz; pF])

- 5. obvody oneskorenia AVC pre kanálový volič,
- zosilňovač nosných kmitočtov,
- 7. detektor medzinosného zvuku,
- 8. zosilňovač medzinosného kmitočtu

Bloková schéma integrovaného obvodu CA3068 je na obr. 2, na obr. 3 je jeho štruktúrna schéma.

Prvý zosilňovací stupeň OMF pracuje v kaskódovom zapojení. Oddeľovací stupeň tvorený tranzistormi T_{19} a T_{20} budí kaskódovú dvojicu T₃, T₂. Napätie pre riadenie zisku sa privádza zo špičky 4 do báze tranzistora T_{19} (špička 6). Regulačný rozsah AVC je asi 40 dB. Riadenie zisku je negatívneho typu, tj. pri zvyšovaní úrovne vstupného signálu sa regulačné napätie zmenšuje z istej kladnej jednosmernej úrovne. Po uzavretí tranzistora T_3 jeho funkciu preberá tranzistor T_4 . Spätná väzba v emitore tranzistora T₄ zväčšuje dynamický rozsah zosilňovača vzhľadom k úrovni spracovávaného vstupného signálu. Je zrejmé, že tranzistory T_1 , T_{20} a T_3 sa zatvárajú približne pri rovnakej úrovni signálu. Pri zatváraní tranzistora T_1 sa zväčšuje napätie na špičke 8 integrovaného obvodu a zväčšuje sa riadiaci prúd tranzistora T_{21} .

do zasilňovača ZMP

Obr. 1. Schéma zapojenia obrazového mf zosilňovača v TVP Minitesla

Obr. 2. Bloková schéma integrovaného obvodu CA3068

Bod, v ktorom sa tento tranzistor začína otvárať, je určený odporom potenciometra zapojeného medzi špičku 8 a napájací zdroj. Týmto potenciometrom sa dá teda nastavit oneskorenie riadiaceho napätia AVC pre kanálový volič. Keď sa otvára tranzistor T_{21} , začne sa otvárať i tranzistor T₅ a napätie na špičke 7, ktorým sa riadi zisk kanálového voliča, sa zmenšuje. Tranzistor T_{21} je zároveň súčastou spätnoväzobnej slučky AVC pre prvý stupeň OMF a zväčšuje v nej zisk. Pri zatváraní vstupného kaskódového zosilňovacieho stupňa sa totiž zisk v regulačnej slučke zmenšuje a takto tranzistor T_{21} pokles zisku kompenzuje. Takto upravenými pracovnými podmienkami obvodov AVC sa získava 10 dB regulačního rozsahu. Prednosťou použitého systému AC negatívneho typu je dobrá stabilita v celom regulačnom rozsahu.

Širokopásmový mf zosilňovač pozostáva z tranzistorov T_6 , T_7 a T_8 . Tranzistor T_6 slúži ako oddeľovací stupeň v zapojení so spoločným kolektorom. Vlastné zosilnenie mf signálu obstarávajú tranzistory T_7 a T_8 ako druhý a tretí stupeň obrazového mí zosilňovača. Tranzistor T_8 je budiaci zdroj pre videodetektor – tranzistor T_{22} . V dôsledku spätnej väzby cez odpor R₁₃ je impedancia budiaceho zdroja asi 500 Ω, čím sa dosahuje frekvenčný rozsah pre pokles o 3 dB až 70 MHz. V konvenčných, doteraz používaných detekčných systémoch je detektor budený zo zdroja s veľkou impedanciou s ladeným transformátorom s rôznymi činiteľmi akosti Q primárneho a sekundárneho obvodu. V řakomto systéme zmeny impedancie detektora (spôsobené zmenami videosignálu) môžu spôsobovať nežiadúce fázové posuny. Neladený detekčný obvod s budením na malej impedancii v integrovanom obvode CA3068 zaručuje takmer optimálne vlastnosti detekovaného videosignálu. Detektor sa skladá z T22 a predpäťového obvodu T9, T_{23} a R_{19} . Tranzistor T_{23} má približne rovnaké predpätie ako tranzistor T_{22} , lebo bázy sú viazané cez odpor dolnej priepusti tvorenej prvkami R_{18} a C_1 . Odpor R_{19} a kondenzátor C₂ sú obvyklé súčiastky špičkového detektora. Časová konštanta je volená vzhľadom k optimálnej účinnosti detektora a požadovanej šírke videopásma. Takto navrhnutý systém detekuje videosignál s minimálnym amplitúdovým skreslením a pri eventuálnom použití vo farebnom prijímači nezavádza pri detekcii farbonosnej informácie skreslenie diferenciálnou fázou.

Na videodetektor je jednosmerne naviazaný predzosilňovač videosignálu. Napätie $U_{\rm BE}$ tranzistora T_{12} (asi 0,7 V) určuje úroveň bielej na výstupe integrovaného obvodu. Pri neprítomnosti videosignálu musí byť teda zaručená vodivosť tranzistora T₁₂, čo je úlohou dvojice tranzistorov T_{10} , T_{24} v diferenciálnom zapojení. Bez budenia videosignálom je jednosmerný potenciál na emitoroch T_{10} a T_{24} identický. Pretože odpory R_{21} a R_{22} sú rovnaké, tranzistormi tečú rovnaké prúdy. Emitorový prúd tranzistora T_{10} (jeho časť) zaručuje, že tranzistor T_{11} je otvorený. To má za následok, že takmer celý emitorový prúd tranzistora T_{24} tečie tranzistorom T_{11} a tranzistor T₁₂ je udržiavaný na hranici vodivosti. Ak je prítomný signál, prúd tranzistora T_{24} narastá úmerne úrovni vstupného signálu. Pretože prúd tranzistora T10 zostáva konštantný, prírastok emitorového prúdu T_{24} tečie diódou D2, spôsobuje vzrast prúdu tranzistora T₁₂ a pokles napätia na výstupe integrovaného obvodu. Pri príliš silnom videosignále tranzistor T_{12} sa dostáva do oblasti saturácie. Dolná hranica napätia na špičke 19 pri normálnom signále je asi 0,8 V. Akékolvek ďalšie zväčšovanie úrovne signálu je kľúčované. Táto vlastnosť slúži ako veľmi účinný mechanismus pre obmedzenie impulzových porúch.

Synchronizačné impulzy obsiahnuté v úplnom videosignále na emitore tranzistora T_{25} zatvárajú tranzistor T_{13} , čím sa otvára tranzistor T₁₄. V neprítomnosti videosignálu tranzistor T₁₃ vedie počas kľúčujúcich horizontálnych impulzov privádzaných na špičku 3 z výstupného riadkového transformátora. Pri silnom videosignále sa špičkové napätie Fri sinom videosignale sa spickove napatie báze T_{13} zmenšuje pod 0,8 V a prúdové klúčujúce impulzy, ktoré v neprítomnosti videosignálu tiekli tranzistorom T_{13} , začnú tiecť diódou D_4 a prúd báze T_{14} sa začne zväčšovat. Kondenzátor C_{328} , 10 μ F, je zapojený medzi špičkou 4 a zem, čiže je pripojený paralelne k tranzistoru T₁₄. Náboj na kon-v denzátore C₃₂₈ sa vytvára napätím z napájacieho zdroja cez odporový delič R₃₁₂, R₃₁₄. Tým, že sa tranzistor T_{14} otvára, kondenzátor C_{328} sa vybíja a riadiace napätie AVC (integrál z celkového náboja kondenzátora počas kľúčovacieho intervalu) sa zmenšuje, pri veľmi silnom signále až k nule.

Každý systém AVC s dobrými vlastnosťami musí byť odolný voči poruchovým impulzom, aby bola vylúčená možnosť vzniku nesprávnej úrovne napätia pre AVC. V integrovanom obvode CA3068 tvoria protiporu-

chový obvod tranzistory T26 a T15. Náhodný rušivý impulz je vedený cez hornú priepusť C_3 , R_{27} na vstup poruchového detektora T_{26} . Tranzistor T₂₆ a kondenzátor C₄ tvoria bežný špičkový detektor. Jednosmerné napätie na kondenzátore C4, ktoré je úmerné úrovni rušivého impulzu, spína tranzistor T_{15} , čím je zopnuté kľúčovacie napätie (riadkové impulzy zo špičky 3) na zem. Odpor R₃₁₈ (viď obr. 1) obmedzuje prúdový odber z riadkového transformátora približne na 0,8 mA.

Zvukový a obrazový mf signál, ktorých nosné kmitočty sú 31,5 MHz a 38 MHz, sa privádzajú na špičku 12. Tranzistor T₁₆ pracuje ako oddeľovací stupeň medzi ladenými obvodmi a zosilňovačom T₁₇. Špičkovým detektorom T_{27} a C_5 je detekovaný medzinosný signál (rozdiel medzi nosnými obrazu a zvuku). Výsledný frekvenčne modulovaný medzinosný signál sa privádza do báze tranzistora T_{28} , ktorý spolu s tranzistorom T_{18} tvorí diferenciálny zosilňovač. Výstup emitorového sledovača T_{29} (špička 2) je (cez obvod ladený na kmitočet 6,5 MHz) naviazaný na vstup zvukového mf zosilňovača TAA691.

Integrovaný obvod CA3068 umožňuje konštrukciu obrazového mf zosilňovača dobrými parametrami pri nenáročnom priestorovom usporiadaní. Súčasný svetový trend v konštrukcii televíznych prijímačov sa okrem iného orientuje na využitie veľmi dobrých vlastností synchrónnej detekcie pre demoduláciu videosignálu (napr. integrova-ný obvod TDA440). S využitím tohto princípu sa perspektívne počíta i vo výrobkoch n. p. TESLA Orava integrovaným obvodom ekvivalentným k TDA440.

Literatúra

- [1] Linear Integrated Circuits, aplikačný list fv RCA.
- Podniková dokumentácia n. p. TESLA Orava.

KOLA měricí lechniky

Ing. Jiří Vackář, CSc.

(Pokračování)

Zapojení je opět kmitočtově nezávislé, pro určitou velikost impedance Z se dá vyrovnat např. malými změnami kapacity C_2 , nebo též změnou C_1 , popř. vzájemné vazby M. Dolní mezní kmitočet je dán výrazem $f_{\min} = R/2\pi L_2$, přičemž má platit podmínka pro zmenšení fázových chyb $R_1 = L_2/R$ ($C_1 + C_2$). Horní mezní kmitočet může pak být určen jako kmitočet, na němž již není možné splnit některou z uvedených dalších podmínek $3Z \le 1/2\pi f C_1$; $2\pi f C_3 \le 1/3R$, $2\pi \sqrt{C_2 L_3} \le 1/3R$. 2π těchto podmínek jsou zřejmé také zásady pro návrh a konstrukci reflektometru.

Přístroj se často používá na nesouměrných napájecích vedeních. Pro souměrná vedení se zapojení používá ve dvojité verzi podle obr. 35. Má tu výhodu, že umožňuje kontrolovat i souměrnost vedení a odkrýt případnou nesouměrnou složku vf proudu.

Obr. 35. Směrový vazební článek pro souměrné vedení

Zajímavou alternativou reflektometrického zapojení je zapojení podle obr. 36. První dvě ramena můstku jsou tvořena kondenzátorem C a odporem Rt, další rameno je opět tvořeno zakončovací impedancí Z a jako poslední rameno slouží vzájemná indukčnost M mezi měřeným vedením a vazební smyčkou s indukčností L2. Smyčka je zapojena podobně jako v předchozím případě k indikátoru V, není však překlenuta odporem. Podmínku rovnováhy tohoto zapojení pro postupující vlnu můžeme odvodit ve tvaru $CR_1 \leq M/Z$ za předpokladu, že $CR_1 = 1/30f$. Vazební útlum pro odraženou vlnu je u tohoto zapojení kmitočtově závislý, protože platí $U_v = U_1 2\omega CR_1$. Citlivost přístroje se tedy zvětšuje směrem k vyšším kmitočtům. Nejvíce se v praxi používá další varianta tohoto zapojení, u něhož je kondenzátor C realizován vzájemnou kapacitou me-

Obr. 36. Směrový vazební článek s členem RC

Obr. 37. Směrový článek s vazebním vedením

zi měřeným vedením a indukčností L_2 . Kapacita je tedy rozložena podél této indukčnosti. Indukčnost L_2 pak můžeme považovat za část vedení, které je indukčně i kapacitně navázáno k měřenému vedení podle obr. 37. Podmínka vyrovnání pro postupnou vlnu zní $R_1 = Z_1$, tj. zakončovací odpor smyčky se musí rovnat jejímu vlnovému odporu, nezávisle na činiteli vazby. Vazební útlum pak závisí na činiteli vazby obou vedení, který můžeme zjistit buď jako poměr mezi vazební kapacitou a vlastní kapacitou vazební smyčky, nebo jako poměr vzájemné indukčnosti a vlastní indukčnosti.

Všechna čtyři popsaná zapojení zjišťují samozřejmě pouze amplitudu signálu odraženého od zátěže. Chceme-li měřit poměr stojatých vln, musíme zjistit poměr amplitudy odražené vlny k amplitudě vlny postupné a tedy měřit velikost signálu postupujícího oběma směry. Užíváme proto kombinace dvou směrových vazebních článků zapojených proti sobě. Takové reflektometrické zapojení odvozené např. od zapojení z obr. 36 je na obr. 38. Na jeho výstupu lze použít buď dva stejné indikátory napětí V_1 a V_2 , které ukazují amplitudy signálu postupujícího a odraženého, nebo jeden indikátor přepínáme střídavě na jednu a na druhou stranu. Používáme pokud možno indikátor s tineární závislostí výchylky na měřeném vf napětí.

Obr. 38. Reflektometr s členem RC

Při praktickém návrhu reflektometru, který má být součástí nějakého vf zařízení, nejprve zvolíme jeho základní zapojení. Pro malé výkony a nižší kmitočty používáme zapojení podle obr. 34, pro větší výkony a vyšší kmitočty jsou obvykle lepší zapojení podle obr. 36 nebo 37. Určíme pak základní podmínky, tj. pracovní impedanci a rozměry vedení, k němuž má být reflektometr navázán, dále minimální průchozí výkon, kmitočtový rozsah a žádanou citlivosť pro odražený signál. Podle uvedených vztahů navrhujeme reflektometr tak, aby na indikátoru vf napětí bylo napětí asi 5 až 10 V (aby bylo možno zajistit lineární usměrnění). Návrh není příliš složitým úkolem po stránce výpočtu, vyžaduje však velmi pečlivou práci po stránce konstrukční. Je třeba nalézt takové uspořádání součástí, aby v celém zapojení bylo co nejméně parazitních kapacit a sériových indukčností, které by mohly ohrozit přesnost a zúžit kmitočtový rozsah reflektometru.

Nakonec je třeba ještě uvést několik poznámek o měření vlastností samotných vf vedení, napáječů apod.

Vlnový odpor, nazývaný též charakteristická impedance, je taková impedance, která při zapojení na konec vedení zajišťuje přenos signálu čistou postupnou vlnou, s činitelem odrazu rovným nule a se vstupní impedance o stejné velikosti, jakou má impedance zakončovací. Je to impedance, při níž se vzájemně vyrovnávají účinky příčné kapacity C a podělné indukčnosti L každého elementárního úseku vedení. Proto také může být tato impedance určena ze změřené kapacity a indukčnosti jakékoli délky vedení pomocí výrazu $Z_0 = \sqrt{L/C}$.

Důležitým parametrem zejména u vedení pro přenos televizních signálů je homogenita (stejnorodost) impedance vedení. Tu měříme nejsnáze impulsní metodou, při níž na vstup vedení připojujeme generátor impulsů a na připojeném osciloskopu pozorujeme odražené impulsy, vzniklé následkem nerovnoměrností impedance podél vedení. Amplituda těchto signálů by neměla být větší než 1 až 2 % amplitudy budicího impulsu. Homogenitu můžeme posoudit též tím, že měříme kmitočty příslušné k jednotlivým rezonancím nezakončeného vedení a zjišťujeme, jak přesně odpovídají aritmetické řadě počtu půlvln na měřené délce vedení. Také zde by odchylky neměly být větší než 1 % základního kmitočtového intervalu.

Posledním důležitým parametrem je účinnost vedení a jeho ztráty, příp. útlum na jednotku délky. Tyto parametry určíme nejsnáze měřením rezonanční impedance nezakončeného nebo zkratovaného úseku vedení na kmitočtu blízkém kmitočtu pracovnímu. Naměříme-li při vlastní rezonanci vedení o délce d vstupní reálnou impedanci $Z_r = kZ_0$, můžeme odvodit, že útlum G přepočtený na jednotku délky d_0 , v logaritmické míře [dB] pak při tomto kmitočtu bude

$$G = \frac{d_0}{2d} 20 \log \frac{k-1}{k+1},$$

kde $k = Z_r/Z_0$ při kmitočtu rezonance. Opakovaným měřením při jednotlivých rezonančních kmitočtech můžeme pak zjistit i žávislost útlumu vedení na kmitočtu.

V. Měření aktivních prvků

Aktivní prvky elektronických obvodů jsou takové prvky, které vytvářejí nové složky signálu neobsažené v signálu dodávaném, nebo tento signál zesilují. Aktivním prvkem (podle uvedené definice) může být tedy obecně každá nelineární impedance, jejíž velikost se mění v závislosti na napětí nebo proudu, přiváděném na její vývody. Podle

počtu vývodů můžeme rozdělovat aktivní prvky na:

aktivní dvojpóly (diody, varistory, termistory, varikapy, nelineární indukčnosti),

 aktivní trojpóly (tranzistory, tyristory, triody, atd.),

 aktivní mnohopóly (integrované obvody, vícemřížkové elektronky).

Rozsáhlou teorii všech těchto prvků a jejich aplikací rozebírat nemůžeme, musíme se spokojit s přehledem nejdůležitějších parametrů a měřicích metod, které jsou přístupné pro průměrně vybaveného amatéra.

U každého aktivního prvku můžeme určit jeden či dva parametry (číselně vyjádřené vlastnosti), které jsou nejdůležitější pro jeho praktické použití k zamýšlenému účelu, a které je tedy třeba zjišťovat. Jsou to zpravidla vlastnosti určující velikost přenosu užitečného signálu, např. činitel zesílení na-pětí, proudu nebo výkonu, směšovací nebo detekční součinitel přenosu atd. Měřit tyto parametry bývá ovšem dosti složité, protože jsou k tomu nutné generátory měřicích signálů, měřiče úrovně nebo napětí, útlumové články atd. Proto využíváme skutečnosti, že velikost těchto přenosových parametrů (říkáme jim též parametry dynamické) souvisí u většiny aktivních prvků dosti těsně s velikostí parametrů stejnosměrných, tzv. statických, které můžeme měřit podstatně snadněji i v amatérských podmínkách, a to pouze pomocí vhodných zdrojů ss napětí, voltme-trů, miliampérmetrů, příp. pomocí jedno-duchých měřicích přípravků. U každého aktivního prvku proto nejdříve kontrolujeme hlavní stejnosměrné parametry při doporučených pracovních podmínkách a jejich změny při změnách těchto podmínek. Jsou ovšem případy, kdy amatér chce použít nějaký aktivní prvek originálním a nekonvenčním způsobem a potřebuje zjistit vlastnosti tohoto prvku v těchto neobvyklých podmínkách. I když nemůžeme v plném rozsahu rozebírat všechny tyto případy, předpokládáme, že na základě dále uvedených poznatků a metod bude moci zkušenější amatér odvodit způsoby, jak řešit méně obvyklé úlohy. V dalších statích podáme tedy nejprve přehled proble-matiky měření aktivních dvojpólů, trojpólů a mnohopólů a pak několik poznámek k potřebným měřicím přístrojům, zejména k napájecím zdrojům, o nichž ostatně v AR vyšla v poslední době řada článků.

1. Měření diod a ostatních aktivních dvojpólů

Při měření diod a ostatních aktivních dvojpólů obvykle zjišťujeme, zda jsou diody nebo jiné prvky schopny funkce, popř. zjišťujeme jejich nelineární vlastnosti za určitých podmínek.

Diody kontrolujeme proto nejčastěji jednoduchým ohmmetrem (viz stať IV) tak, že zjišťujeme rozdíl jejich odporů v propustném a závěrném směru. Poněvadž většina běžných ohmmetrů namáhá měřenou diodu v propustném směru proudem 0,1 až 1 mA a v závěrném směru napětím 1 až 5 V, bývá takto zjištěný rozdíl (či správněji poměr) odporů u křemíkových detekčních diod řádu 1 : 100 až 1 : 1000, u výkonových usměrňovacích diod pouze 1:10 až 1:100. Měření je pro uvedené diody zcela bezpečné, určitá opatrnost je nutná jen při měření speciálních mikrovlnných směšovacích diod a kuproxidových článků pro můstkové usměrňovače měřidel, které není vhodné namáhat v závěrném směru napětím větším než 3 V

U diod nás často zajímá také úbytek napětí v propustném směru při určitém proudu nebo největší dovolené závěrné napětí při určitém

KOLA měřicí Lechniky

14

Obr. 39. Určení mezních parametrů diody-

proudu v závěrném směru. Oba tyto parametry měříme pomocí vhodného zdroje regulovatelného ss napětí voltmetrem a ampérmetrem. Při měření musíme mít na paměti, že namáháme-li diodu v propustném směru, nesmíme překročit dovolený ztrátový výkon diody udávaný výrobcem, při namáhání v závěrném směru pak ztrátový výkon diody nesmí zpravídla překročit 10 % dovoleného ztrátového výkonu; odpor diody v závěrném směru se nemá zmenšit pod 1/3 největšího odporu v závěrném směru, změřeného při menších napětích. Tyto podmínky graficky vyjadřuje obr. 39, v němž jsou vyznačeny na charakteristice diody mezní body trvalého stejnosměrného namáhání. Impulsní namáhání může být ovšem větší zejména v propustném směru, což výrobce diody obvykle udává v katalogových údajích.

Stejným způsobem měříme i Zenerovy diody. Jejich charakteristika má v závěrné části ostrý zlom při dosažení tzv. Zenerova napětí; jeho velikost závisí na technologickém zpracování přechodu p-n. Zenerovo napětí bývá v rozmezí 5 až 100 V a je pro každý typ diody konstantní. U Zenerových diod můžeme využívat plné dovolené zátěže (ztrátového výkonu) i v závěrné části charakteristiky

Podobným způsobem měříme i tunelové diody, které mají na své charakteristice oblast záporného odporu. Měřit parametry diody v této oblasti je velmi nesnadné, poněvadž dioda generuje oscilace, jejichž kmitočet je určen kapacitou a indukčností jejích přívodů. Měření bez oscilací je možné jen tehdy, je-li vnitřní odpor napájecího zdroje menší než záporný diferenciální odpor diody (bývá řádu jednotek Ω) a nemají-li přívody k diodě vlastní rezonance až do mezního kmitočtu diody, který bývá řádu GHz. Pro tato měření se konstruují speciální držáky diod s malou indukčností a s útlumovými články proti vlastním rezonancím. Pro amatéra však dává dostatečnou informaci o vlastnostech diody měření podstatně jednodušší podle obr. 40. Diodu napájíme ze zdroje napětí 4,5 až 6 V přes proměnný odpor v rozmezí 200 Ω až 10, popř. 20 kΩ. Měření začínáme při největším odporu, odpor pak zmenšujeme, takže proud I i napětí U se stále zvětšují a pracovní bod se posouvá vzhůru po levé stoupající větvi charakteristiky na obr. 40a. Při dalším zmen-

Obr. 40. Určení mezních bodů charakteristiky tunelové diody

šování odporu se proud zvětšuje pomaleji, až se dostáváme k maximu, kdy přečteme a zaznamenáme proud I_{\max} a napětí U_{\max} . Při dalším zmenšování odporu se napětí změní skokem na velikost U_1 a pracovní bod přejde na pravou stoupající větev charakteristiky. Nyní odpor znovu zvětšujeme, takže proud i napětí se zmenšují a pracovní bod se posouvá dolů až k bodu U_{\min} , I_{\min} . Tyto údaje zaznamenáme, při dalším zvětšování odporu pak se napětí skokem zmenší na velikost U_2 a pracovní bod se vrací na levou část charakteristiky. Střední část charakteristiky se záporným odporem tedy vůbec neměříme, její tvar však můžeme s dostatečnou přesností odhadnout na základě znalosti zjištěných krajních bodů, což pro většinu aplikací postačí.

Podobným způsobem měříme také charakteristiky varistorů a termistorů. Jejich charakteristiky jsou ovšem souměrné vzhledem k počátku, takže stačí měřit pouze při jediné polaritě měřicího napětí. Také zde platí omezení vzhledem k maximálnímu ztrátovému výkonu. Při měření termistorů (a také žárovek) musíme ovšem brát ohled na tepelnou časovou konstantu měřeného prvku a při každém měření vyčkat ustáleného stavu. Tepelná časová konstanta je určena součinem tepelné kapacity prvku a tepelného odporu pro odvod tepla a je dále závislá na rozdílu teplot (ohřátí) měřeného prvku a okolí. Při větším ohřátí je časová konstanta menší, protože se zvětšuje účinnost chlazení. U termistorů chlazených vzduchem se tato konstanta mění v poměru 1 : 2, u termistorů vakuových a u žárovek, které se chladí vyzařováním, se mění v poměru 1:10.

Nakonec je třeba se zmínit o vlastnostech kapacitních diod (varikapů, varaktorů) a nelineárních indukčností. Varikapy a varaktory zahrnujeme pod společný název kapacitní diody, poněvadž pracují na stejném principu: závěrně polarizovaný přechod p-n v diodě se chová jako kondenzátor, jehož kapacita závisí na přiloženém stejnosměrném napětí. Rozdíl je jen v aplikační oblasti – varikapy s kapacitami řádu jednotek až stovek přoužíváme k ladění nebo dolaďování rezonančních obvodů na kmitočtech řádu až stovek MHz, varaktory s kapacitami řádu zlomků až jednotek př používáme v tzv. parametrických zesilovačích, směšovačích a násobičích kmitočtu v rozsahu l až 10 GHz (i výše)

(i výše). U kapacitních diod nás obykle zajímá závislost jejich kapacity na přiloženém ss napětí, kterou můžeme změřit v zapojení na obr. 41. Stejnosměrné napětí řídíme potenciometrem a měříme voltmetrem V, na diodu je přivádíme podle obr. 41a přes odpor R, který musí vyhovět dvěma podmínkám: musí být alespoň dvacetkrát menší než stejnosměrný odpor měřené diody v závěrném směru, abychom mohli zanedbat úbytek ss napětí, který na něm vzniká; musí však být také alespoň dvacetkrát větší než reaktance kapacity diody při měřicím kmitočtu. Proto volíme měřicí kmitočet dostatečně vysoký. Připojený měřič kapacity MC, jímž pak

Obr. 41. Měření charakteristiky kapacitní diody

Obr. 42. Měření nelineární indukčnosti

měříme kapacitu diody a který obsahuje generátor měřicího signálu, může pracovat (podle stati IV) na principu substitučním, můstkovém nebo rezonančním, tj. změnu kapacity diody zjišťujeme ze změny rezonančního kmitočtu připojeného rezonančního obvodu. Měřicí vf napětí nesmí však být větší než 0,5 V, příp. než 10 % z přiloženého ss napětí, aby se nelineární závislost kapacity diody na napětí neprojevila rušivě. Kondenzátor C, který odděluje ss napětí diody od měřiče kapacity, musí mít kapacitu alespoň stokrát větší než dioda. Má-li měřič kapacit vstupní svorku spojenu se zemí přes malou impedanci, můžeme použít jednodušší měřicí zapojení podle obr. 41b. Takto můžeme zjišťovat závislost kapacity polovodičového přechodu na napětí i u diod, které nelze označit jako kapacitní, např. u běžných usměrňovacích diod, a využívat je např. pro nf obvody a filtry laditelné ss napětím apod. Pro tyto nekonvenční aplikace mohou být zajímavé i nelineární indukčnosti, nejčastěji s feritovými jádry, využívající změn magnetických vlastností těchto jader v závislosti na ss magnetickém sycení. Na obr. 42 je zapojení k měření nelineárních vlastností cívky s feritovým jádrem tvaru EI, jehož krajní sloupky opatříme magnetizačními vinutími s označením směru proudu a magnetického toku, střední sloupek pak měřicím vinutím, jehož indukčnost L měříme měřičem ML(můstkovou, subsituční nebo rezonanční metodou). Magnetizační proud I způsobuje zmenšení permitivity jádra a tím i zmenšení indukčnosti L. Výsledek měření zpravidla přepočítáváme do tvaru nezávislého na počtu závitů použitých vinutí, tj. zjišťujeme závis-lost činitele indukčnosti K příslušného jádra na stejnosměrném sycení B. Platí pak vztahy

$$K = \frac{L}{z^2}, \quad [H; H, -],$$

$$B = I(z_1 + z_2) \frac{K_0}{1.5F}$$
 [T; A, H, m²],

kde z_1 a z_2 jsou počty závitů magnetizačních, vinutí L_1 a L_2 ($z_1 = z_2$),

 z_3 počet závitů měřené cívky L_3 ,

B sycení feritu (stejnosměrné, v v jednotkách tesla – 1 T = = 10⁴ G),

K₀ činitel indukčnosti jádra bez ss sycení feritu (stejnosměrné, v jednotkách tesla: 1 T = 10⁴ závitu),

F plocha průřezu středního sloupku jádra [m²].

Při plném nasycení jádra (B = 0.3 až 0.5 T) se L zmenšuje až na desetinu původní velikosti při současném zmenšení činitele Q.

Samostatnou problematikou je měření fotodiod a fotoodporů. Zde nás zajímá především závislost proudu příp. odporu těchto
prvků na intenzitě dopadajícího světla. V
amatérských podmínkách budeme ovšem
těžko shánět prostředky k absolutnímu měření intenzity světla, ale relativní změny
intenzity můžeme experimentálně realizovat
dosti jednoduchými prostředky. Umístíme-li
v zatemněné místnosti stůl potažený černým
papírem, postavíme-li na jednu stranu stolu

KOLA měřicí Lechniky

15

žárovku napájenou stálým napětím a vyloučíme-li odrazy světla od stěn vhodnými stínítky z černého papíru, můžeme předpokládat s dostatečnou přesností, že intenzita světla ubývá nepřímo úměrně s dvojmocí vzdálenosti. Máme-li tedy např. žárovku 6 V/3 W se světelnou účinností asi 5,3 lm/W, pak ve vzdálenosti 10 cm od žárovky bude intenzita světla asi 400 lx, ve vzdálenosti 20 cm 100 lx a ve vzdálenosti 2 m 1 lx. Měřenou fotodiodu nebo fotoodpor pak posouváme podél stolu a měříme změny jejich parametrů. U fotoodporů CdS při malých osvětleních musíme opět respektovat jejich časovou konstantu, která souvisí s rekombinační dobou nositelů náboje a roste nepřímo úměrně s osvětlením. Dosti těžko je možné v amatérských podmínkách měřit křivky spektrální citlivosti těchto prvků. Orientační údaje je však možné získat použitím barevných filtrů, které se používají v barevné fotografii.

2. Měření tranzistorů a ostatních aktivních trojpólů

Tranzistory a ostatní aktivní trojpóly měříme opět buď pouze orientačně (zjišťujeme funkční schopnosti), nebo s cílem zjistit určité funkční parametry.

U tranzistorů zjišťujeme funkční schopnost (dobrý-špatný) opět jednoduchým ohmmetrem. Ú běžných bipolárních tranzistorů můžeme považovat tranzistor za dvojici diod se společnou elektrodou - bází, u tranzistorů p-n-p budou mít tedy obě diody (báze-emitor a báze-kolektor) malý odpor, bude-li na bázi záporný a na emitoru, příp. kolektoru kladný pól baterie ohmmetru, při opačné polaritě baterie ohmmetru budou odpory velké, u tranzistorů n-p-n je tomu naopak. Odpor mezi emitorem a kolektorem (báze nepřipojena) bude vždy velký, řádu jednotek kiloohmů u výkonových germaniových tran-zistorů, příp. desítek až stovek kiloohmů u ostatních tranzistorů. U neznámého tranzistoru zjistíme ohmmetrem tedy i to, která z elektrod je báze a která emitor (odpor diody báze-emitor je zpravidla menší než odpor diody báze-kolektor) a zda jde o tran-

zistor p-n-p nebo n-p-n.
Poněkud jinak se chovají tranzistory řízené
polem, známé též jako tranzistory unipolární.

U tranzistorů s hradlem odděleným přechodem p-n naměříme ohmmetrem mezi emitorem (elektroda S) a kolektorem (elektroda D) poměrně malý odpor řádu stovek až tisíců ohmů při jakékoli polaritě ohmmetru, což je společným znakem všech tranzistorů FET, pracujících s ochuzováním vodivého kanálu (tj. s vázáním nositelů náboje na náboj elektrody G). Odpor mezi kteroukoli elektrodou a elektrodou G závisí pak na polaritě měřicího napětí a na typu vodivosti tranzistorů, což je vlastností přechodu p-n. Malý odpor naměřený mezi emitorem a řídicí elektrodou G při kladném napětí na G svědčí tedy o vodivosti typu n, při záporném napětí na G o vodivosti typu p.

U tranzistorů s izolovanou řídicí elektrodou naměříme mezi elektrodou G a ostatními elektrodami veliký odpor řádu gigaohmů při kterékoli polaritě měřicího napětí, odpor mezi emitorem a kolektorem pak také málo závisí na polaritě měřicího napětí, avšak jeho změny v závislosti na změnách napětí řídicí elektrody spolehlivě prozradí typ vodivosti tranzistorů i způsob jeho řízení. Tak se ovšem dostáváme již k úloze, jak měřit základní parametry tranzistorů.

Nejdůležitějším parametrem u bipolárních tranzistorů je proudový zesilovací činitel v zapojení se společným emitorem, který značíme obvykle jako hale nebo B. Je definován jako poměr přírůstku proudu kolektoru k přírůstku proudu báze. Zapojení pro jeho přesné měření nalezneme v katalozích a učebnicích. Pro amatéra je důležité, že u většiny tranzistorů je tato závislost velmi uspokojivě lineární, a že tedy s poměrně malou chybou můžeme určit zesilovací činitel přímo jako poměr proudu kolektoru k proudu báze. V zapojení podle obr. 43 můžeme tedy měřit většinu bipolárních tranzistorů tímto postupem: po připojení tranzistoru zvolíme přepínačem Př₁ polaritu napájecího napětí podle typu měřeného tranzistoru (p-n-p – n-p-n) a přepínač Př₂ přepneme nejprve do nulové polohy. Na miliampérmet-

Obr. 43. Měřič bipolárních tranzistorů

Tabulka druhů tranzistorů řízených polem

Vlastnosti	ł	Tranzistory FET				
Izolace elektrody G	Přech	Přechod p-n Izolační vrstva oxidu nebo nitridu			idu	
Označení	JFET		MIS, MOS; MNS, MNOS			
Typ vodivosti (kanál)	р	n		p .		n
Způsob řízení Polarita <i>U</i> _C Proud <i>I</i> _C	ochuz. -	ochuz. +	ochuz. -	obohac.	ochuz. +	obohac. +
při $U_G = 0$ Změna I_C	max. zmenšuje se	max. zmenšuje se	max. zmenšūje se	min. zvětšuje se	max. zmenšuje se	min. zvětšuje se
při U _G = 0 s polár. Příklad – typ výrobce	+ 2N2497 Valvo	BC264 Texas Instr.	+	BSV20 SGS	KF521 TESLA	+ KF520 TESLA

nebo FET (Field-Effect-Transistors). Zde si musíme nejprve připomenout, že tyto tranzistory existují v šesti základních druzích, jejichž vlastnosti ukazuje připojená tabulka.

ru pak čteme zbytkový proud kolektoru I_{CED} , který porovnáme s katalogovým údajem. Pak přepneme přepínač P_2^{r} do první, druhé čj třetí polohy, čímž přivedeme přes vhodně zvolené odpory do báze proudy asi 10, 100 nebo 1000 μA a na miliampérmetru čteme na jednotlivých rozsazích přímo velikost zesilovacího činitele. Máme-li miliampérmetr s rozsahem 0 až 20 mA, budou jednotlivým polohám přepínače $P\tilde{r}_2$ odpovídat rozsahy $h_{21E} = 0$ až 2000, 0 až 200 a 0 až 20. Tento velmi jednoduchý měřič tedy umožňuje měřit zbytkový proud kolektoru I_{CE0} při $U_{CE} = 4,5 \text{ V}$ a zesilovací činitel h_{21E} při jediném proudu I_B. Zvětšíme-li počet poloh přepínače Př2, budeme moci přepínat proudy IB v menších intervalech a tak získáme možnost měřit h21E ve více pracovních bodecn. Uspokojivé přesnosti měření dosáhneme ovšem jen tehdy, bude-li proud kolektoru alespoň desetkrát větší než zbytkový proud I_{CE0}; v opačném případě musíme zbytkový proud od proudu kolektoru odečíst.

Máme-li k dispozici více ručkových přístrojů a zdrojů regulovatelného napětí, můžeme improvizovat zapojení k měření static-kých charakteristik tranzistorů podle obr. 44. S měřicím uspořádáním tohoto druhu můžeme měřit charakteristiku všech typů tranzistorů bipolárních i unipolárních. Zdroj kolektorového napětí je účelné dimenzovat pro rozsah 0 až 200 V a proud 0 až 1A, zdroj pro předpětí báze pro napětí 0 až 50 V s jemnou regulací v oblasti 0 až 1 V a pro proud 0 až 50 mA. V libovolném pracovním bodu tranzistoru můžeme pak určovat všechny jeho základní parametry podle jejich definic, které byly již mnohokrát zveřejněny v příručkách, katalozích i učebnicích, a které již tedy nebudeme opakovat.

tomtéž uspořádání můžeme měřit vlastnosti tyristorů, u nichž musíme do obvodu kolektoru zapojit omezovací odpor, aby tyristor nebyl ve vodivém stavu přetížen a aby nedošlo ke zkratu. Jako omezovací odpor volíme odpor 100 až 1000 Ω o zatížitelnosti řádu wattů až desítek wattů (úměrně k typu zkoušeného tyristoru). U tyristorů měříme především napětí a proud řídicí elektrody v závislosti na spínaném napětí.

Je jasné, že ve stejném uspořádání je možno měřit i vlastnosti elektronek, doplníme-li napájecí zdroj o zdroj žhavicího napětí a příp. o další zdroje, potřebné k napájení elektrod vícemřížkových elektronek. Tyto možnosti však zde již nebudeme rozebírat, poněvadž většina amatérů má přístup k profesionálním zařízením pro zkoušení elektronek a potřeba v tomto směru je již dosti malá.

3. Měření integrovaných obvodů a aktivních mnohopólů

Měření těchto součástí představuje značně rozsáhlou problematiku, neboť postup a me-

Obr. 44. Zapojení k měření statických parametrů tranzistorů

KOLA měřicí sechniky 16

toda měření závisí především na druhu měřeného prvku. V amatérské praxi přicházejí v této oblasti v úvahu zejména integrované obvody lineární (nízkofrekvenční, výkonové, operační zesilovače, stabilizátory napětí), integrované obvody digitální (klopné obvody, logické obvody, expandèry, střádače, čítače, převodníky kódů), několikamřížkové elektronky a hybridní obvody nejrůznějších typů. Již z tohoto výčtu je zřejmé, že problematika této oblasti by stačila sama zaplnit několik pokračování tohoto seriálu. Omezíme se proto na informativní přehled této oblasti součástek s vyjasněním základních pojmů a s odkazy na nejdůležitější literární prameny.

Lineární integrované obvody zkoušíme vždy v měřicím zapojení, které je doporučeno výrobcem pro příslušný typ obvodu a uvedeno v katalogu. Pro zesilovací obvody typů MAA115, MAA125 a MAA145 je např. doporučeno zapojení podle obr. 45. Integro-

Obr. 47. Zpětnovazební Wienův článek s fázovým posuvem 0°

obvody mají tři zesilovací stupně a výstupní signál má opačnou fázi vzhledem k fázi vstupního signálu, musíme při měření použít zpětnovazební článek s posuvem fáze 180° na pracovním kmitočtu, např. článek TT. Činitel zesílení integrovaného obvodu stanovíme tak, že nejprve nastavíme odpor R_2 na maximum, także zapojeni neosciluje, odporem R₁ nastavíme pracovní bod podle ss voltmetru jako v předchozím případě (výstupní ss napětí = polovina napájecího napětí) a pak zmenšujeme odpor R2 tak dlouho, až se na voltmetru Ust objeví napětí

Zapojení Obr. 46. k měření zesilovacího činitele lineárního integrovaného obvodu

ných obvodů

Obr. 45.

vaný obvod nastavíme do doporučeného pracovního bodu proměnným odporem 1 MΩ podle ss voltmetru na výstupu tak, aby výstupní ss napětí bylo rovno polovině napětí napájecího. Výstupní napětí z generátoru nf napětí G, který je vybaven děličem napětí (dělič umožňuje nastavit definované budicí napětí pro měřený obvod od 0,1 mV), nastavíme tak, aby výstupní napětí bylo nápř. 1 V. (Špičková hodnota nesmí být větší než 70 % naměřeného ss napětí na výstupu, aby pracovní podmínky umožňovaly lineární zesílení.) Z poměru výstupního a vstupního napětí pak určíme zesílení obvodu. Podobné měřicí obvody, k nimž potřebujeme vždy napájecí zdroj, generátor budicího signálu, ss voltmetr a st voltmetr, používáme i pro nf obvody řady MAA225, MAA325, MBA225 a MA0403 Zesílení integrovaných obvodů těchto druhů můžeme však stanovit i bez generátoru budicího signálu, použijeme-li zapojení podle obr. 46, v němž integrovaný obvod pracuje sám jako nf generátor. Protože uvedené

oscilací s rozkmitem asi 1 V. Činitel zesílení se pak rovná přibližně desetinásobku poměru R_2/R_3 , ponevadž útlum zpětnovazebního článku TT je přibližně 10. S uvedenými součástkami bude zapojení pracovat přibližně na kmitočtu 1 kHz, jako odpor R₂ můžeme použít lineární potenciometr 100 kΩ, jehož stupnice je ocejchována ve velikostech činitele zesílení 0 až 25 000, což odpovídá desetinásobku poměru R_2/R_3 . U integrovaných obvodů se sudým počtem stupňů, jenych obvodu se sudym pociem stupnu, jejichž výstupní napětí je se vstupním napětím ve fázi, využíváme zpětnovazebního článku ty u Wienova můstku podle obr. 47, jehož úfium je pouze 3. Činitel zesílení při nasazení oscilací se pak rovná trojnásobku poměru R_2/R_3 . Podobným způsobem můžeme zkoušet i integrované obvody MAA3005 apod. Na obr. 48 ie uvedeno zapojení k měření

Na obr. 48 je uvedeno zapojení k měření zesílení integrovaných operačních zesilovačů řady MAA501 až 4, což jsou vlastně diferen-ciální zesilovače, zesilující rozdíl napětí mezi vstupními svorkami 2 a 3.

Obr. 48. Zapojení k měření zesílení operačního zesilovače

Elektroluminiscenční • • • displeje •

Když se asi před sedmi lety objevily na trhu první fluorescenční zobrazovací elektronky, neměly velký komerční úspěch. Elektronky byly konstruovány podobně jako triody, měly zeleně zářící citlivou vrstvu, číslice byly tvořeny anodovými segmenty. K rozsvícení elektronek bylo třeba napětí asi 20 V na řídicí mřížce, 250 V na anodě; žhavicí proud byl asi 360 mA při žhavicím napětí 1,5 V. Fluorescenční elektronky však měly proti běžným digitronům několik výhod: lepší kontrast, možnost čtení bez paralaxy a co bylo nejdůležitějí, byly mnohem levnější. Nezanedbatelné bylo i to, že číslice byly umístěny v jedné rovině, podobně jako u displejů na bázi diod LED nebo tekutých krystalů. Největší překážkou při aplikacích byla potřebná napětí a velký žhavicí proud.

Po dalších pracech na vývoji těchto prvků se podařilo zmenšit potřebná napětí (anodové napětí se zmenšilo např. na 25 V) i žhavicí proud (asi na 45 mA při napětí 1,5 V). Skutečným převratem v konstrukci však byly teprve fluorescenční zobrazovací prvky japonského výrobce ISE, které pracovaly se žhavicím proudem menším než 20 mA při napětí 1,5 V. V současné době jsou tyto zobrazovací prvky téměř

bez konkurence a to především vzhledem k velmi nízké ceně (např. typy DG 12H, výška číslice 12,2 mm: při odběru větším než 1000 kusů je cena za kus 3,90 DM). Protože lze k buzení těchto zobrazovacích prvků používat přímo obvody C-MOS a obvody s kanálem typu p, není třeba používat při jejich aplikaci další interface (tj. jiné pomocné obvody). Prvky lze snadno používat i při multiplexním provozu, např. v kapesních

kalkulátorech i jinde. Mezi největší výhody současných výrobků tohoto typu patří široký pozorovací úhel, velká stabilita svítící vrstvy a v neposlední řadě i jasné obrysy svítících znaků a čísel, což umožňuje číst údaje i u bloků segmentů ještě ze vzdálenosti až 10 m. Protože je výroba fluorescenčních zobrazovacích prvků u firmy ISE dokonale organizována, doznaly tyto prvky vzhledem ke své ceně i jakosti velkého rozšíření – v současné době se používají v kapesních i stolních kalkulátorech, v registračních pokladnách, v autech, v automatech pro prodej jízdenek, v hracích automatech, v číslicových hodinách atd.

Princip činnosti

Fluorescenční zobrazovací prvky jsou v principu konstruovány asi jako obrazovky, u nichž elektrony po dopadu na fluorescenční vrstvu způsobí její rozsvícení. Proti běžným obrazovkám mají několik odlišností: malé napájecí napětí, velmi malou spotřebu, plošné uspořádání a konečně jasné, modrozelené světlo. Pohled na obr. 1, na němž je schematické uspořádání fluorescenčního prvku, ihned prozradí jeho velkou podobnost s konstrukcí triody, nebo, přesněji, s elektronkou

Obr. 1. Základní uspořádání fluorescenčního zobrazovacího prvku. 1 – přímožhavená katoda, 2 – základní materiál anody, 3 – elektricky vodívá vrstva, 4 – elektrony, 5 – řídicí mřížka, 6 – elektroluminiscenční vrstva, 7 – anodové přívody (segmenty a až g, viz obr. 2)

Obr. 2. Základní uspořádání nejpoužívanějších fluorescenčních zobrazovacích prvků DG19E až DG8F. D. P. – desetinná tečka, G – mřížka, žh. – žhavení

Obr. 3. Základní typy fluorescenčních prvků (nahoře zleva doprava): DG19E, DG12H, DG10F1, DG10A, DG8F; (dole zleva doprava): DP61A, DP81A, DP91A

zapojenou jako trioda. Systém každého fluorescenčního prvku se skládá z katody, řídicí mřížky, anody a "stínicí mřížky".

Katoda je přímožhavená a tvoří ji kovové vlákno s tenkou vrstvou oxidu. Řídicí mřížka má tvar husté kovové mřížky z tak tenkých drátů, aby nebyla narušena čitelnost znaků nebo číslic. Stínicí mřížka má tvar tenké kovové desky, která je uvnitř systému spojena s řídicí mřížkou. Konstrukce anody je poněkud složitější: je to základní materiál, nanesený na izolační destičce, na němž je jednak vrstva vodivého materiálu a jednak vrstva fluorescenční hmoty. Všechny elektrody jsou ve skleněné baňce, z níž je vyčerpán vzduch.

Teče-li elektronkou žhavicí proud, nutný k emisi elektronů, a je-li řídicí mřížka vzhledem ke katodě kladná, bude tok elektronů řízen řídicí mřížkou, elektrony projdou stínicí mřížkou a dopadnou na fluorescenční vrstvu, která se rozzáří.

Není-li na řídicí mřížce kladné napětí (vzhledem ke katodě), přesto se některé z elektronů dostanou až na anodu. Aby se potlačila tato nežádaná emise elektronů, musí se na řídicí mřížku přivádět (v klidovém stavu) malé záporné napětí. Toto napětí se

označuje jako mezní napětí mřížky (grid cut-off voltage)

Na obr. 1 jsou nakresleny tři anody (A_1, A_2, A_3) , které se rozsvítí, přiloží-li se na ně požadované napětí. Podle obr. 1 se rozsvítí anody A_1 a A_3 . Tvar anod může být libovolný, takže kromě sedmisegmentových číslic mohou být z nich realizovány i různé znaky, symboly atd.

Provedení

Kromě jednotlivých sedmisegmentových číslic (obr. 2 nahoře) mohou mít zobrazovací prvky i devět svítících segmentů (obr. 2 nahoře vlevo), navíc mají všechny prvky desetinnou tečku. Prvky na obr. 3 nahoře mají výšku od 36 do 53 mm a průměr od 8,5 do 19,5 mm. Typické jsou pro ně tyto údaje: mřížkové a anodové napětí 24 V, anodový proud 3 mA, žhavicí napětí 1,5 V, žhavicí proud 22 mA, typický jas je 200 FtL (footlumen). Vícenásobné zobrazovací prvky (obr. 3 dole) mají délku 59 až 65 mm a výšku 13 až 18,7 mm. Kromě uvedených provedení se dodávají i ploché zobrazovácí prvky s přívodními kontakty na zadní stěně.

Zapojení s fluorescenčními zobrazovacími prvky

Popisované zobrazovací prvky lze budit přímo obvody C-MOS bez jakýchkoli dalších vnějších prvků. Podle obr. 4 lze k buzení použít např. C-MOS desítkový čítač/dělič typu CM4026AE nebo CM4033AE (Solidev). Vzhledem k malé spotřebě zobrazovacíhó prvku lze jeho sedm segmentů budit přímo z odpovídajících výstupů IO. Napájecí napětí pro IO i pro zobrazovací prvek může být shodné. Katodu lze žhavit stejnosměrným nebo střídavým napětím 1,5 V (popř. u typu DG12H1 napětím 0,7 V), spotřeba je 24 mA (popř. 80 mA)

Zobrazovací prvek lze budit i běžnými obvody TTL (obr. 5). V zapojení se používá dekodér z kódu BCD na sedmičkový kód, SN7448N, a šestice výkonových invertorů s odpojeným kolektorem, SN7407N. Desetinná tečka se budí spínacím tranzistorem. Podobně lze zapojit jako budiče zobrazovacího prvku integrované obvody SN7447N a SG3081N, popř. SN7447N a sedm tranzis-

torů p-n-p

Praktické zapojení miniaturních číslicových hodin se šestidigitovým zobrazovacím prvkem DP61A firmy ISE Electronics je na obr. 6. V zapojení se používá integrovaný "hodinový" obvod MOS typu MM5314N firmy National Semiconductor. V uspořádání podle obrázku bude čas indikován na hodiny, minuty a sekundy. Podle způsobu zapojení integrovaného obvodu lze však použít k indikaci času pouze hodiny a minuty, popř. lze čas indikovat pouze do 12 hodin. Hodiny jsou napájeny ze sítě a synchronizovány sítovým kmitočtem. K přenosu časové infor-mace se používá multiplexní provoz. Multiplexní kmitočet lze volit ve velkém rozmezí volbou prvků článku RC na vývodu 23 integrovaného obvodu; bude-li mít kondenzátor, připojený k vývodu 23 kapacitu např. 20 nF, bude multiplexní kmitočet asi 1000 Hz. Podobným způsobem lze konstru-ovat s IO fy Mostek (MK5017BB) hodiny, u nichž lze tlačítkem přepínat indikaci času na indikaci dnů a měsíců.

S dalším z obvodů fy Mostek, MM5316, lze konstruovat hodiny v rozhlasovém přijí-mači a navíc s budíkem (nebo buzením). Zapojení je na obr. 7. Přístroj lze programó-

Obr. 4. Displej C-MOS

Obr. 5. Interface TTL s invertorem SN7407N

Obr. 7. Hodiny v rozhlasovém přijímači s budíkem

Obr. 8. Kapesní kalkulátor s pamětí

vat – vypne nebo zapne rozhlasový přijímač v určenou dobu nebo za určitý časový interval, popř. zapne budicí (poplachové) zařízení.

Napájecí napětí pro zobrazovací prvek použitého typu je 2,9 V, spotřeba proudu je maximálně 80 mA.

Z mnoha dalších aplikací si uvedeme na závěr ještě jednu: kapesní kalkulátor s osminístným displejem na bázi fluorescenčních zobrazovacích prvků typu DP93A (žhavicí napětí 2,9 V, žhavicí proud 21 mA). Kalkulátor "umí" čtyři základní početní úkony, počítá procenta a počítá s konstantou, lze k němu připojit vnější pamět apod. Kalkulátor má i indikaci přeplnění. Použitý integrovaný obvod MOS/LSI vyrábí firma ISE, stejně jako zobrazovací prvek – displej. Zadávací tlačítková souprava je typu N7C. Přístroj pracuje s časovým multiplexem (obr. 8).

Závěr

Jak je z uvedených případů zřejmé, je tento typ zobrazovacích prvků, u nás zatím víceméně neznámý, v zahraničí velmi rozšířen pro své výhodné vlastnosti zejména u těch zařízení, která jsou napájena ze sítě nebo vyžadují relativně velké napájecí napětí. V těchto případech není potřeba značně velkého anodového napětí zobrazovacího prvku na závadu. A až se vám dostane do ruky kapesní kalkulátor se zeleně svítícím displejem, v jehož vnitřku lze lupou rozeznat před svítícím číslem jemnou mřížku, budete vědět, že jde o relativně nový výrobek elektronického průmyslu, o fluorescenční zobrazovací prvek.

Podle zahraničních pramenů

-Mi-

Monofonní čtyřstopý jednorychlostní magnetofon III. třídy "Jiněj-303" bude vyráběn v Novosibiřském elektromechanickém závodě. Je osazen čtrnácti tranzistory. Na rozdíl od předešlého typu má pozměněné zapojení, větší výstupní výkon, zlepšený mechanismus navíjení pásku a elektrické přepínání stop dvoukanálové magnetické hlavy.

Příkon magnetofonu je 40 W. Rychlost posuvu pásku je 9,53 cm/s. Přístroj o rozměrech 140×375×355 mm má hmotnost 9,5 kg. -jb-

Tiskové zpravodajství čs.-sovětské obchodní komory

Nový magnetofon firmy Uher

Pod názvem UHER SG 630 LOGIC uvedla tato firma na trh magnetofon, u něhož byly uplatněny některé zcela neobvyklé konstrukční principy. Přístroj je určen pro rychlost posuvu 4,75, 9,5 a 19 cm/s a je možno použít cívky až do Ø 27 cm. Je to první komerční magnetofon, který nemá přítlačnou kladku, takže podle slov výrobce nemůže dojít ke zvlnění okrajů záznamového materiálu v důsledku jeho vymačkávání přítlačnou kladkou a také se do pásku nemohou vtlačit částečky nejrůznějších nečistot. Posuv pásku je vyřešen tak, že záznamový materiál obepíná tónový hřídel smyčkou ve tvaru písmene Ω. Tímto způsobem bylo dosaženo mimořádné rovnoměrnosti posuvu pásku, přičemž odchylky od jmenovité rychlosti posuvu - podle výrobce - jsou tak malé, že je téměř nelze změřit. Zcela nově vyvinutý mechanický díl magnetofonu je opatřen čtyřmi stejnosměrnými motory. Dva pohánějí

obě cívky s páskem, třetí motor zajišťuje pohon hlavního hnacího hřídele a je elektronicky řízen; poslední motor zajištuje optimální opásání záznamového materiálu na hnacím hřídeli. Magnetofon je opatřen výměnným nosičem hlav pro dvou nebo čtyřstopý záznam. Při přetržení pásku se mechanika okamžitě zastaví.

V magnetofonu je vestavěna i pilotní hlava pro záznam a reprodukci impulsů, sloužících k ovládání diaprojektoru. Elektronická část je vybavena obvodem systému DOLBY, který lze vypojit. Systém DOLBY zvětšuje dynamiku magnetofonu o 8 až 10 dB. Dále je vestavěn tónový generátor, umožňující nastavit optimální vybuzení pro každý použitý záznamový materiál pomocí zvláštních regulátorů úrovně. Vstupní obvody dovolují směšovat dva signály, každý kanál je možno řídit samostatně. Mikrofonní vstup je opatřen normovaným šestipólovým konekto-

rem, do něhož lze připojit i kondenzátorové mikrofony s malým napájecím napětím. Indikátor vybuzení reaguje na špičkovou hodnotu signálu s dlouhou dobou doběhu (asi 1,5 s). Při záznamu lze též zapojit omezovač (Peak Level Limiter), který se uplatní při náhodných krátkých špičkách budicího signálu. Činnost omezovače je signalizována luminiscenčními diodami. Jako u dřívějších modelů DE LUXE, i u tohoto typu je možno jednoduše měnit kolmost štěrbiny reprodukční hlavy v případě, že cizí nahrávka byla pořízena záznamovou hlavou s nesprávně nastavenou kolmostí štěrbiny. Počitadlo je vázáno se zařízením k vypínání na konci pásku pomocí fólie tak, že v nulové poloze na začátku pásku je vypínání fólie vyřazeno. Magnetofon umožňuje kontrolu nahrávaného i nahraného pořadu, má oddělené regulátory hlasitosti i regulátory hloubek a výšek.

-Lx-

Dodatek k článku Elektronický blesk

Stanislav Bětík

Původní článek neměl být stavebním návodem. Chtěl jsem pouze vybídnout čtenáře a hlavně kutily v tomto oboru k experimentování. Jednak z tohoto důvodu, jednak pro poměrně velké množství aktivních prvků, použitých v zapojení, jsem nepočítal s tím, že by mohl být větší zájem o stavbu tohoto zařízení. Proto jsem neuvedl obrazec plošných spojů. Množství korespondence mne přesvědčilo o pravém opaku, a proto jsem se rozhodl dodatečně zveřejnit i obrazec plošných spojů (obr. 1).

Kromě desky s plošnými spoji uvádím ještě úpravu zapalovacích obvodů výbojky. Několikrát se totiž stalo, že mi blesk ne-zapálil. V jednom případě šlo o nespolehlivé zapalování ve tmě. Tento jev je patrný i u obyčejných doutnavek - zvětšení zápalného napětí ve tmě (použijeme-li doutnavku v obvodech automatiky, mohl by se zničit kondenzátor).

Ve druhém případě selhaly zapalovací obvody patnáct až třicet minut po přechodu

ze studeného prostředí do teplého. Protože při přímém zkratu na konektoru zapálil blesk spolehlivě pokaždé, usoudil jsem na závadu ve fotografickém přístroji. Byla způsobena orosením synchronizačního kontaktu. Při spínání se nejprve tlumeně vybil zapalovací kondenzátor přes kapičky vody a přímé spojení kontaktů zůstalo bez odezvy.

Oba nedostatky jsem odstranil v zapojení podle obr. 2. Zapojení je velmi jednoduché a pracuje takto: zvětší-li se napětí na doutnavce na zápalné napětí, začne jí protékat proud. Úbytek napětí, způsobený tímto proudem na odporu, zapojeném v sérii s doutnavkou, nabije kondenzátor 10 μF připojený paralelně k tomuto odporu asi na napětí 4 až 5 V. Po sepnutí synchronizačního kontaktu se tento kondenzátor vybije do řídici elektrody tyristoru, ten sepne a vybije zapalovací kondenzátor do zapalovacího transformátorku. Vzhledem k velkému dovolenému proudu tyristorem jsem zvolil kapacitu zapalovacího kondenzátoru patřičně

Obr. 1. Deska s plošnými spoji K15 pro elektronický blesk podle AR 5/1975

Oldřich Burger

Isou případy, kdy s koupí nového televizoru vzroste "apetit" televizního diváka a kdy se jeho zájem začne upírat na další vylepšení obrazu. Zpravidla se podobné tendence projevují navenek touhou pořídit si kvalitní anténu. V domácnostech s technicky vyspělým tatínkem či manželem často končí podobné případy svépomocí, při níž hlava rodiny demonstruje svůj technický um a stává se na čas ("přes televizní obrazovku") uznávaným členem domácnosti i v očích sousedů.

Svým článkem bych chtěl dát návod technicky zdatným tatínkům a manželům, jak postavit dobrou anténu pro TV. Obohacuji touto cestou plejádu známých a méně známých antén, které je možno vidět na střechách a balkónech domů o staronovou anténu, s níž se setkáváme nejčastěji mezi vysílajícími radioamatéry pod pojmem "švýcarský bím", "švýcar", nebo jen "HB9CV". Před vlastním popisem a praktickým návodem na stavbu antény bych chtěl shrnout několik podstatných faktů, vzhledem k nimž si anténa HB9CV zaslouží větší pozornosti i u vlastníků TV přijímačů.

Pro dobrý přenos rozhlasového a televizního signálu na pásmech VKV (VHF) se dnes používají především směrové antény. Jejich "nasazení" je plně opodstatněné, neboť ve srovnání s klasickým dipólem dosahují směrové anténní soustavy značného zisku. Je to dáno jednak tím, že u anténních soustav je ztrátový odpor na rozdíl od dipólu zanedbatelný, a dále i tím, že se k signálu, přijímanému záříčem (aktivní prvek), přičítá i signál, "vrácený" na zářič pasívními prvky.

Nejrozšířenějším druhem směrové antény je anténa typu YAGI, která je oblíbena především pro jednoduché napájení a výhodné mechanické vlastnosti, nebot je ji možno bez ovlivnění funkčních a elektrických vlastností konstruovat jako celokovovou. Anténa typu YAGI má však pouze jeden aktivní prvek a účinnost pasívních prvků v žádném případě nelze srovnávat s účinností přímobuzených (aktivních) prvků.

V roce 1961 popsal švýcarský radioamatér R. Baumgartner, HB9CV, anténu, která je plně buzená. Anténa vyniká kromě jiného velkou účinností a vynikajícími směrovými

Obr. 2. Úprava zapojení pro spouštění blesku tyristorem

větší - 0,22 μF. Převod zapalovacího transformátorku jsem zvětšil odvinutím asi poloviny závitů primárního vinutí a do jeho dutiny jsem vložil úlomek kulaté feritové antény

Výhodou tohoto zapojení je, že nepotře-bujeme oddělený zdroj napájecího napětí pro zapalování tyristoru; dále vzhledem k tomu, že fotoaparát spíná velmi malé napětí do činné zátěže, nedochází téměř k opotřebe-ní kontaktů i při velké zapalovací energii pro výbojku; izolace mezi kontakty fotografického přístroje není namáhána velkým napětím, takže zvlhnutí kontaktů a izolace nemá vliv na funkci a navíc získáváme možnost spouštět zařízení jiným bleskem pomocí sondy s jedinou součástkou (fototranzistorem) na vzdálenost tří až pěti metrů.

Desku s plošnými spoji neuvádím, protože si zřejmě každý bude muset upravit rozmístění součástek podle svých možností. Toto zapojení používám asi půl roku a zatím bez

jediné závady.

vlastnostmi. Přednosti antény HB9CV lze shrnout do těchto několika bodů:

- malé náklady ve vztahu k vlastnímu zisku,
- nekritické elektrické nastavení,
 dobrá šířka pásma a vynikající ČSV (činitel stojatých vln)
- jednoduchá mechanická konstrukce,
- příznivé napájecí poměry.

Vzhledem k tomu, že na nejnižších TV pásmech a v rozhlasovém pásmu VKV jsou rozměry antén typu YAGI značné, nachází právě zde anténa HB9CV možnost výhodného uplatnění pro své vynikající elektrické vlastnosti, minimální rozměry a značnou úsporu materiálu.

Pro srovnání uvádím v tab. 1 elektrické parametry těchto čtyř antén:

- tříprvková YAGI 3 Y, pětiprvková YAGI 5 Y
- pětiprvková YAGI s dvojitým reflektorem
 5 Y (2 R),
 HB9CV.

Z tab. 1 je zřejmé, že anténa HB9CV je ve všech sledovaných parametrech stejně dobrá nebo lepší než pětiprvková anténa YAGI se dvěma reflektory. Anténu HB9CV lze napájet jednoduchým způsobem přímo buď symetrickým vedením o impedanci 300 Ω , nebo nesymetrickým vedením 75 Ω . Tato chutečnost is vedením 75 Ω . skutečnost je významná z toho důvodu, že odpadají problémy s řešením impedančního přizpůsobení při použití souosého napáječe, nebot u antén typu YAGI je třeba i tuto otázku řešit, chceme-li jako svod od antény použít souosý kabel.

Tab. 1. Srovnání elektrických vlastností různých antén

Parametr	3 Y	5 Y	5 Y (2 R)	нвэсч
Zisk [dB]	4,6 až 5,2	7	6 až 6,4	7
Předozadní poměr [dB]	12 až 14	14	20	25 až 40
ČSV (na f _s)	1,25	1,5	1,3	1,1
Vyzařovací úhel [°]	68 až 72	56	65	60

Pozn.: fe je střední kmitočet přijímaného kanálu.

Anténu HB9CV lze pro příjem TV programu v I. a II. TV pásmu s výhodou použít v členitém terénu, v němž lze potlačit odražené signály rozměrnými víceprvkovými anténami, přestože by jinak bylo možné při dostatečné úrovni signálu zajistit v místě kvalitativní příjem i pomocí jednodušší antény. Extrémně velký činitel předobočního příjmu (podle literatury [1] je potlačení bočního příjmu až -60 dB proti příjmu ve směru čelního laloku) předurčuje popisova-nou anténu právě pro použití v členitějším terénu, i když bude mít poněkud menší zisk, než dosud běžně používané anténní soustavy, neboť pomocí této antény můžeme snadno potlačit příjem signálu z jakéhokoli nežádoucího směru (odstranění duchů nebo jiného zdroje rušení). U moderních TV přijímačů je navíc rezerva v zesílení taková, že jakákoli obava z případného zmenšení zisku antény je naprosto zbytečná.

Anténu HB9CV je možné zhotovit z libovolného materiálu. Z praktického hlediska však bude pravděpodobně nejvýhodnější použít tenkostěnné ocelové trubky, které jednoduše svaříme podle výkresu (obr. 1 až 4) do tvaru písmene H.

Přizpůsobovací úseky a fázovací vedení lze nejlépe zhotovit z mosazného svařovacího drátu o průměru 3 až 4 mm, který zapájíme natvrdo přímo na prvky antény. Na čárkovanou část vedení (viz obr. 1 a 2) je vhodné nasunout bužírku, aby nedošlo ke zkratu na nosnou tyč. Napáječ se připojuje vždy ke kratšímu prvku (v bodu X_1 a X_2). Druh spoje (pájený, přišroubovaný apod.) ponechávám na konstrukční dovednosti a možnostech každého jednotlivce.

Závěrem bych chtěl upozornit, že je vhodné konec napájecího vedení zalít Dentacrylem nebo epoxidovou pryskyřicí, a to zejména u souosého kabelu, který se po vnitřním navlhnutí zničí.

Rozměry antény HB9CV pro jednotlivé TV kanály jsou v ťab. 2

Obr. 1. Anténa HB9CV napájená souměrným vedením (dvoulinkou) s charakteristickou impedancí $Z_0 = 300 \Omega$

Obr. 2. Anténa HB9CV napájená nesouměrným vedením (souosým kabelem) s charakteristickou impedancí $Z_0 = 75 \Omega$

Obr. 3. Detail k obr. 1

Obr. 4. Detail k obr. 2

Literatura

- Radioamatérský zpravodaj č. 11/1969.
- Český, M.: Antény pro příjem rozhlasu a televize. SNTL: Praha 1967.

2. Rozměry antény HB9CV pro jednotlivé kanály

				T .		
Kan	ál	1	2	. 3	4	5 (
fs	[MHz]	. 53	62,5	80,5	88,5	96,5
λ	[m]	5,66	4,8	3,72	3,39	3,11
D ₁	[m]	2,83	2,40	1,86	1,69	1,55
D ₂	[m]	2,60	2,21	۱,71	1,55	1,43
S ₁	[m]	0,91	0,77	0,60	0,54	0,50
S2	[m].	0,85	0,72	0,56	0,51	0,47
а	(m)	0,71	0,60	0,47	0,42	0,39
b	[cm]	3	- 2,5	2	1,5	1,5
d	[mm]	12 až 16	10 až 12	8 až 10	. 6 až 8	6 až 8
t ₁	[m]	0,38	0,32	0,25	0,23	0,21
t ₂	[m]	0,35	0,30	0,23	0,21	- 0,19

Nová kapesní kalkulačka firmy Texas Instruments s typovým označením SR-52 je opatřena magnetickými kartami, které umožňují programovat až 224 kroků. Navíc je přístroj opatřen ještě 20 samostatnými paměťovými registry, neovlivnítelnými prů-během počítání. Předprogramováno je 23 funkcí (trigonometrické, logaritmické, od-mocniny atd.). Přístroj používá již také al-pedrajskou kojíky. La jíže požívá již také algebraickou logiku. Je jím možno vypočítávat hotové programy obsažené na magnetických kartách (jejich rozměry jsou 7×2 cm), nebo vlastní programy a lze ho použít i jako běžný vědecký kalkulátor bez použití karet. Vzhle-

dem k tomu, že umožňuje výpočty až s devíti složenými závorkami, lze jím řešit i velmi složité matematické operace. Jeho vynikajícím vlastnostem odpovídá i poměrně značná cena, která je 700 až 800 DM. -Ba-

Firma Bang a Olufsen vyvinula nový snímací systém pro kvadrofonní soustavy SQ, QS a CD-4. Aby bylo možno zajistit přenos diskrétních informací v pásmu 20 až 45 kHz, které obsahuje soustava CD-4, byla co nejví-

ce zmenšena hmotnost snímače. Snímač i s diamantem má hmotnost pouze 0,22 mg. Místo eliptického výbrusu hrotu diamantu byl použit tzv. multiradiální výbrus (7 μm horizontálně a 50 μm vertikálně), což podstatně zlepšilo kontakt hrotu s povrchem drážky. Novým snímacím systémem je možno přehrávat také běžné stereofonní záznamy.

-Ra-

Zajímavá zapojení

Selenové fotočlánky

Na našem radioamatérském trhu je poměrně malý sortiment fotoelektrických součástek. Fotodiodu, která má hradlový efekt (při osvětlení má vlastnosti aktivního prvku a dodává napětí úměrné osvětlení) vyrábí n. p. TESLA pouze jedinou - typ 1PP75. Ta má relativně malou aktivní plochu, takže elektrický výkon, který je schopna při osvětlení dodat, je malý. Chceme-li z těchto fotodiod složit např. sluneční baterii, potřebujeme jich velké množství. Lépe jsou na tom a-matéři v NDR, kde firma VEB Röhrenwerk Rudolfstadt vyrábí celou řadu selenových fotočlánků (přehled je v tab. 1). Selenové fotočlánky jsou ve srovnání s kře-míkovými fotodiodami levnější, mají podstatně větší aktivní plochu (tedy i dodávaný výkon). Selenový fotočlánek má proti křemíkové hradlové fotodiodě i několik dalších výhod: maximum spektrální citlivosti má v příznivější části světelného spektra, rozsah spektrální citlivosti je asi od 350 do 800 nm se středem kolem 550 nm, což je lepší než u křemíkových diod, protože ty mají spektrum posunuto tak, že maximum je již v oblasti infračerveného záření.

Selenový fotočlánek je součástka, jejíž hlavní částí je polovodičový selenový přechod n-p, na který dopadají světelné paprsky. Jeho voltampérová charakteristika je na

Obr. 1. Voltampérová charakteristika selenového fotoelektrického článku SeH 13 × 26, a - za tmy, b - za světla

obr. 1. Je vybrán jeden z typů uvedených v tab. 1, selenový fotočlánek ŠeH 13×26. Za tmy platí křivka a, což je běžná charakteristi-ka dříve hojně používaného selenového usměrňovače. Ve srovnání s dnes používaný-mi křemíkovými diodami má selenový polovodičový přechod relativně malé závěrné napětí (při usměrňování větších napětí je nutno řadit články do série) a velký závěrný proud, který je navíc značně teplotně závislý. Další podstatnou nevýhodou je velký úbytek napětí, který vzniká při průchodu předního, tj. usměrňovaného proudu. Znamená to, že selenové usměrňovače bylo možno používat pouze pro usměrňování poměrně malých proudů. Při osvětlení se voltampérová charakteristika podstatně změní. Posune se zejména závěrná část; v přední části se projeví hradlový efekt. Charakteristiku osvětleného selenového fotočlánku znázorňuje na obr. 1 křivka b.

Uvedené selenové fotočlánky se používají jako aktivní prvky v luxmetrech, expozimetrech, měřičích délky expozice u zvětšovacích přístrojů a lze je skládat do slunečních baterií pro napájení přístrojů s malým odběrem. Jsou známy i různé světelné spínače, ovládače závor u modelových železnic, zabezpečovací zařízení řízená světelným paprskem,

automatizační prvky a jiné. Na obr. 2 a 4 jsou dvě jednoduché aplikace selenových fotočlánků uvedených v tab. 1. První z nich (obr. 2) je akustický signální blok, který plní funkci automatického hlídače. Může se připojit dvojím způsobem. Varovný signál zazní buď při dopadu světla, nebo při přerušení světla, podle toho, je-li signální blok zapojen tak, že reaguje buď na světlo (obr. 2b) nebo na tmu (obr. 2a). Tyto funkce lze přepínat přepojováním fotočlánku na vývodech 1 a 4, nebo použít jediný

Tab. 1. Vlastnosti selenových fotoelektrických článků z výroby NDR

Тур	Provedení	Rozměr	Aktivní	1 ' 1		Prou	d I _g v [μΑ] př	i:	
	ļ	[mm]	plocha [cm²]	[µA/Lm] 1)	$R_a = 2.5 \text{ k}\Omega$		$R_{\rm a} = 7 \rm k\Omega$		$R_a = 25 \text{ k}\Omega$
				Œ	3 lx	50 lx	500 lx	5 000 lx	10 000 lx
SeG 18	knoflíkové pouzdro	Ø 18	1,3	500	0,2				110
SeG 25	knoflíkové pouzdro	Ø 25	3,1	500	0,55			,	120 `
SeG 35	knoflíkové pouzdro	Ø 35	6,1	500	0,9				120
SeG 45	knoflíkové pouzdro	Ø 45	11,3	500	1,7 .				150
SeG 67	knoflíkové pouzdro	Ø 67	27,3	500	4				150
SeH 13×26	ploché obdélníkové pouzdro	13,2×26,5	2,7	600		>6,4	32	51	
SeH 14×23	ploché obdélníkové pouzdro	14×23,5	2,6	600		>8,4	35	52	

1) – při barvě světla odpovídající 2 850 °K pro 3 lx < G <50 lx při $R_{\rm a}$ = 100 Ω

Obr. 2. Signální blok

čtyřnásobný přepínač podle obr. 3. Podstatou celého zařízení je jednoduchý multivibrátor, pracující na akustickém kmitočtu, jehož činnost je indikována malým reproduktorem (8 Ω). K napájení stačí malý knoflíkový niklokadmiový akumulátor 2 V. Přístroj má naprázdno (nezní-li akustický signál) odběr asi 1 mA, plně vybuzený (tj. kmitá-li multivibrátor) asi 10 mA.

Na obr. 4 je druhá aplikace: zapojení k automatickému spínání parkovacích světel pro Trabant 601 (zapojení lze použít i pro jiný vůz). Činnost obvodu je jednoduchá. Přestane-li na fotočlánek dopadat světlo, sepne relé Re_1 . Úroveň světla, při níž relé přepíná, se nastavuje potenciometrem $500~k\Omega$ v bázi T_1 . Zařízení se používá při parkování na nebezpečném místě s větší hustotou provozu.

Obr. 4. Automatické zapínání parkovacích světel u Trabantu 601

Literatura

Schlenzing, K.: Selén-Optoelektronik. Fotoelektronische Effekte in der Amateurpraxis. Militärverlag der DDR: Berlin 1972.

Ing. M. Arendáš

Přímoukazující měřič kapacity

Na obr. 5 je schéma přímoukazujícího měřiče kapacity, který měří zkoušený kondenzátor jako reaktanci při konstantním sítovém kmitočtu. Princip měření a celého zapojení je patrný ze zjednodušeného schématu na obr. 6. Střídavé napětí se přivádí ze sekundárního vinutí sítového transformátoru na dělič, složený z měřeného kondenzátoru C_x a z odporu R_N ; R_N je ve skutečném schématu nahrazen jedním ze zvolených odporů R_1 až R_8 . Volí se přepínačem P_{L_1} , tím se volí i měřicí rozsah celého přístroje.

Pro střídavý proud má kondenzátor reaktanci

$$\frac{1}{\omega C_x}$$

Jelikož je kmitočet sítě konstantní, tj. $\omega = 2\pi f = 2 \cdot 3,14 \cdot 50, \text{ je } X_{\text{C}} = \frac{3,2 \cdot 10^{-3}}{C}$

Sekundární napětí síťového transformátoru považujeme za konstantní veličinu; po dělení je v bodě A (obr. 6) napětí

$$U_{\rm a} = U_{\rm s} \frac{X_{\rm C}}{R}$$

Zbývá tedy pouze jediná proměnná veličina, měřená kapacita C_x ; napětí je tedy úměrné měřené kapacitě. Toto napětí se přivádí na bázi emitorového sledovače (tranzistor T_1). Z jeho emitoru se vede přes C_2 střídavý signál na druhý stupeň (tranzistor T_2 , který má v emitoru zapojen ručkový měřící přístroj M); M je ocejchován v jednotkách měřené kapacity C_x . Přístroj M je proti přetížení chráněn paralelně připojenou diodou D_s . Přístroj se kalibruje trimrem P_s ; mění se jím velikost záporné zpětné vazby a tím i zesílení emitorového sledovače.

Obr. 6. Schéma měření

Pro cejchování přístroje je možné C_x nahradit přesným odporem R_x , rovným velikosti X_C podle tab. 1.

Použité součástky

	•
Tr .	síťový transformátor: primární vinutí 220 V, sekundární vinutí 10 V, 15 V s odbočkou 3 V
Po	0.1 A
s	jednopólový síťový spínač
Pħ	přepínač 2 × 8 poloh
M	mikroampérmetr 50 µA,
IVI	vnitřní odpor 1 kΩ
0 - 5 0	
D₁ až D₄	germaniová dioda GY100
Ds .	germaniová dioda GA103
· T1	germaniový tranzistor GC116
T ₂	křemíkový tranzistor SC206c
Cı	elektrolytický kondenzátor
	250 μF/35 V
C2	47 nF/63 V
P	10 kΩ, lin., 0,1 W
R ₁	1 MΩ
FI2	100 kΩ
R ₃	10 kΩ
R₄	1 kΩ
As	100 Ω
R ₆	-50 Ω
R ₇	5 Ω, 0,5 W

Tab. 1.

140. 1.					
Rozsah	C _x [pF]	χ _C ¯ [Ω]	R _N [Ω]		
H .	200 500 10 ³	15·10 ⁶ 6,35·10 ⁶ 3,18·10 ⁶	$ \begin{bmatrix} 10^{5} \\ 10^{5} \\ 10^{5} \end{bmatrix} R_{2} $		
111	$ \begin{array}{r} 2 \cdot 10^3 \\ 5 \cdot 10^3 \\ 10^4 \end{array} $	1,59·10 ⁶ 6,35·10 ⁵ 3,18·10 ⁵	$10^4 \\ 10^4 \\ 10^4 \\ R_3$		
IV .	2·10 ⁴ 5·10 ⁴ 10 ⁵	1,59·10 ⁵ 6,35·10 ⁴ 3,18·10 ⁴	$\begin{bmatrix} 10^{3} \\ 10^{3} \\ 10^{3} \end{bmatrix} R_{4}$		
V	2 · 10 ⁵ 5 · 10 ⁵ 1 · 10 ⁶	$ \begin{array}{r} 1,59 \cdot 10^4 \\ 6,35 \cdot 10^3 \\ 3,18 \cdot 10^3 \end{array} $	100 100 100 100		
VI	$2 \cdot 10^6$ $5 \cdot 10^6$ 10^7	1,59·10 ³ 635 318	$\begin{bmatrix} 50\\50\\50 \end{bmatrix} R_6$		
VII	2·10 ⁸ 5·10 ⁸ 10 ⁹	158 63,5 31,8	$\left\{\begin{array}{c}5\\5\\5\\5\end{array}\right\}R_{7}$		
VIII	2·10 ⁹ 5·10 ⁹ 10 ¹⁰	15,9 6,35 3,18	$ \left\{ \begin{array}{l} 0.5 \\ 0.5 \\ 0.5 \end{array} \right\} R_8 $		

R ₈		0,5 Ω+3 W	
Rio		6.8 kΩ	
Ru	*	100 kΩ	
Ris		10 kΩ	
R₁₊		10 kΩ	
R_{15}		100 kΩ	
R16		10 kΩ	
R17	•	470 Ω	

Pozn.: všechny odpory kromě Rz a R mají 0,1 W. Deska s plošnými spojí je na obr. 7. (D_1 až D_4 = KY701, D_5 = GA201 až 203, T_1 např. GC507, T2.např. KC508)

Technické údaje

I: 20 pF až 1 nF, II: do 10 nF, III: do 1 nF, IV: do 0,1 μ F, V: do 1 μ F, VII: do 10 μ F, VIII: do 100 μ F, VIII: do 1000 μ F. Rozsahv:

Vstupní odpor

zesilovače: menší než 1 MΩ.

Měřicí

50 Hz. kmitočet: Měřicí napětí: 15 a 3 V. Ss napětí pro zesilovač: 14 V. Odběr ss napětí: max. 1 mA. Napájení: 220 V/50 Hz.

všechny druhy kondenzátorů od 20 do 1000 µF (kromě Rozsah použití: elektrolytických konden-

zátorů).

Anders, R.; Jahn, D.: Transistorisierte Messgeräte, selbstgebaut. Milititärverlag der DDR: Berlin 1972. -Ar-

AKUTYNA 8A akumulátorová nabýačka

∠Ladislav Búci

Tyristorová nabíjačka je zhotovená podľa AR 1/72. Nabíjačka podľa horeuvedeného AR má nejaké nedostatky, preto som si ju dovolil vylepšiť. V pôvodnom zapojení tyristor pracoval ako jednocestný usmerňovač. Keď sme chceli z nabíjačky odoberať prúd aspoň 6 A (takýto býva potrebný pri niektorých 6 V olovených autobatériách), vznikali veľké prúdové nárazy a transformátor sa zohrieval ani nie pri 1/2hodinovom prúdovom zaťažení.

Zmeny zapojenia a jeho vlastnosti

Zapojenie je na obr. 1. V mojom prípade som použil transformátor s prierezom stredného stĺpca 16 cm². Primárne vinutie je lakovaným vodičom navinuté o Ø 0,5 mm. Počet závitov primárného vinutia (220 V) je 616. Sekundárňe vinutie je tiež z medeného vodiča, ten má naviac hodvábne opletenie, jeho priemer je 2,2 mm (prierez 4 mm²). Počet závitov (18 V) je 50,5. Pomocné vinutie pre riadiaci obvod je vinuté paralelne so sekundárnym vinutím. Priemer drôtu je 0,15 mm, počet závitov na 10 V je

Hlavné sekundárne napätie je počítané na 18 V, teda nie ako v pôvodnom zapojení 22 V. Tým, že pôvodné zapojenie pracovalo ako jednocestné, tak autor si pomohol tým, že volil sekundárne vinutie pre napätie 22 V. Tým dosiahol väčší prúd, samozrejme za cenu zväčšeného prierezu transformátora a väčšieho prierezu vodičov primárneho a sekundárného vinutia. V mojom prípade je napatie sekundárneho vinutia 18 V. Tyristor som zaradil do jednej vetvy dvojcestného usmerňovača, preto nie sú tak veľké prúdové nárazy na transformátor a zväčši sa tým prúd s použitím toho istého transformátora.

Radiaci obvod zostáva nezmenený. Potenciometer je s vypínačom, vývody jeho kontaktov som paralelne prepojil a primárne vinutie pripájam k sieti pomocou tohto spínača (kontakty sú teraz na 1 A).

Pri zapnutí potenciometra je na výstupe napätie 5,5 V; regulácia nie je až od nuly, a to preto, že neriadime zápornú polvlnu ale len kladnú. Nie je to na závadu preto, lebo keď chceme nabíjať 6 V autobatériu, musíme zvýšiť napätie zdroja na vyššie ako je v spotrebiči (v tomto prípade autobatéria); aby nám zdroj "pretlačil" prúd cez spotrebič. Funkcia riadiaceho obvodu bola popísaná v spomenutom článku, preto ju nie je treba opakovať. Pri skúške som použil najskôr jednu žiarovku 100 W na napatie 11 V. V druhom prípade som použil dve tieto žiarovky spojené v sérii. Výsledky sú uvedené

Už pri zbežnom nahliadnutí na namerané údaje vidno, že regulácia je jemná a dostačujúca i na formovanie všetkých autobatérií s napätím 6 a 12 V.

Keď k pôvodnému zapojeniu pripočítame ešte cenu 3 diod KY710, náklady nám trochu stúpnu. Cena celej nabíjačky je dosť vysoká, ale keď uvážime, že si dostatočne dobre

Obr. 1. Schéma zapojení nabíjačky

Obr. 3. Zadná strana prístroja

budeme udržiavať autobatériu, tak sa nám to veľmi dobre oplatí raz investovať.

Súčiastky sú uvedené v schématu. Diody a tyristor treba dostatočne dobre ochladzovať.

Rozmery a konštrukcia prístroja sú patrné z obr. 2 a 3.

Tab. 1.

2 × 100 W/11 V		1 × 100	0 W/11 V
Napätie [V]	Prúd (A)	Napätie [V]	Prúd [A]
7	4 ·	7	6
8	4,75	8	7
9	5,1	9	7,5
10	5,5	10	8
11	5,85	11	9
12	6,2	12	Pozn.; žiarov-
13	6,6	13	ka zhorela
14	7		•

TRANZISTOROVĀ E10aK

Jiří Bittner, OK10A

Řada radioamatérů používá inkurantní přijímače typu E10aK nebo EK10. Tyto přijímače mají pro současný provoz na amatérských pásmech nedostatečné parametry. Totéž platí i na pásmech VKV, kde s rozšiřujícím se provozem SSB a CW nevystačíme s původní selektivitou. Proto jsem se rozhodl k úpravě tohoto přijímače.

Po celkové přestavbě na tranzistory vznikne úplně nový přijímač, který má s E10aK společnou pouze mechanickou konstrukci. Je tedy možno celý přijímač konstruovat i do nové, rozměrově menší a modernější skříňky. Popsané úpravy mají sloužit té části radioamatérů, v jejichž možnostech není konstruovat nové, mechanicky stabilní šasi a skříň. Značné rozměry původní skříně vyváží amatérsky těžko dosažitelná pevnost a dokonalé stínění. Je též vhodné vymezit vůli původního ozubeného převodu. Nejvhodnější je úprava na třecí převod. Úvodem se zmíním o některých vyzkoušených úpravách původní elektronkové verze přijímače E10aK.

Obr. 2. Kmitočtová charakteristika jednokrystalového filtru

Jednokrystalový filtr

Nahrazením prvního mf transformátoru krystalovým filtrem získáme možnost regulace šířky propouštěného pásma v rozmezí asi 0 kHz až 200 Hz. Jednokrystalový filtr je vhodný zejména pro provoz CW, jelikož vrchol charakteristiky je velice ostrý. Rejekcí lze dokonale potlačit nežádoucí zázněj. Dochází i k podstatnému zlepšení příjmu stanic SSB, i když charakteristika nemá obdělníkový tvar potřebný pro SSB.

Obr. 3. Zapojení dvojkrystalového filtru

stejné, jako u jednokrystaľového filtru. Cívky L_1, L_2 jsou shodné s provedením na obr. 1.

Čtyřkrystalový filtr

Čtyřkrystalový filtr byl sestaven na kmitočtu 1 MHz s použitím krystalů K1 nebo F1 ze stanice RM31. Původně jsem zkoušel filtr v zapojení "Mc-Coy". I při nejpečlivějším nastavení docházelo k značnému útlumu v sedle charakteristiky. Podstatně lepších výsledků bylo dosaženo s' filtrem podle obr. 4. Změřená charakteristika je na obr. 5. Rejekční kapacity je nutno pro každý filtr individuálně nastavit. Rejekce zlepšují strmost boků, naopak však zhoršují potlačení mimo propustné pásmo; to není na závadu, protože následující pásmové filtry LC tyto kmitočty potlačí. Krystaly byly upraveny odškrábáním části stříbrného náparu. Kmitočty horní dvojice jsou $f_0+1,4$ kHz. Indukčnosti L_1 a L_2 je nutno navzájem stínit. Celý filtr včetně relé, vyřazujícího filtr z činnosti při příjmu AM, je sestaven na kuprextitové destičce v boxu po 1. mf transformátoru.

Úprava detektoru na MBA145

Původní detektor je nevhodný pro příjem SSB. Schéma nového zapojení je na obr. 6.

Obr. S. Kmitočtová charakteristika čtyřkrystalového filtru

Obr. 1. Zapojení jednokrystalového filtru (L₁ má 2 × 60 z bifilárně drátem o Ø 0,15 mm CuL na Ø 10 mm, L₂ má 40 z drátem o Ø 0,15 CuL přes L₁)

S použitím filtru je vhodné zavést rozlaďování BFO. K rozlaďování jsem použil varikap KA204. Schéma zapojení jednokrystalového filtru je na obr. 1. Filtr je vestavěn do boxu po prvním mf transformátoru. Použil jsem krystal 1 MHz s označením F1 ze stanice RM31P. Při změně mf kmitočtu na 1 MHz je nutné ke všem mf rezonančním obvodům přidat para-lelně kapacitu 180 pF. Z tohoto důvodu je třeba mf transformátory rozebrat, jelikož "živé" vývody nejsou na všech cívkách vyvedeny ven. Je třeba upravit i kmitočet oscilátoru a doladit souběh. Původní stupnice po změně mezifrekvence nebude samozřejmě souhlasit. Výhodnější by bylo použít krystal s kmitočtem bližším k původní mf. Filtr se nastavuje změnou indukčnosti L_1 feritovým jádrem (nejlépe z máteriálu N2) a kondenzátorem C_r . Potenciometr P_1 se nastaví běžcem k největšímu napětí - odpovídá to největší šířce pásma. Kondenzátor C_r je nastaven na Obr. 4. Zapojení čtyřkrystalového filtru $(X_1, X_2 mají vyš-$ ší kmitočet, X_3, X_4 mají nižší kmitočet $L_1 = L_2 mají 2 \times 70$ z bifilárně drátem o \emptyset 0,1 mm CuLH na \emptyset 5 mm s feritovým jádrem M4 z hmoty N2)

minimální kapacitu. Jádrem L_1 nastavíme obvod do rezonance (nejsilnější signál). Zmenšením napětí na varikapu dojde k rozladění obvodu a ke zmenšení šířky pásma. Kapacitu C_1 nastavíme na minimální přenos kmitočtů mimo rezonanční kmitočet krystalu. Jemnou korekci rejekčního kmitočtu nastavíme s optimálně naladěným BFO tak, aby kmitočtová charakteristika odpovídala obr. 2. Tímto naladěním dosáhneme značného potlačení parazitního příjmu.

Dvoukrystalový filtr

Dvoukrystalový filtr lze opět vestavět do boxu místo prvního mf transformátoru. Je podstatně výhodnější pro příjem stanic SSB, při příjmu CW chybí ostrá špička, umožňující zúžení pásma na minimální šířku. Krystaly se nastavují běžnými způsoby (škrábáním, jodováním) na rozdíl 1,4 až 2 kHz. Zapojení filtru je na obr. 3. Zásady volby kmitočtů jsou

Cívka L_1 je navinuta na "botičce" s jádrem M4. Bylo by však možné upravit původní mf obvod. Detektor je konstruován na malé kuprextitové destičce a upevněn v boxu po Rö 7. Pro příjem AM vyhovuje společný detektor s AVC. AVC je při CW a SSB vhodné vypínat zkratováním za odporem $0.22 \,\mathrm{M}\Omega.$ Se změnou mf kmitočtu je nutno upravit i kmitočet BFO.

Tranzistorové obvody v elektronkovém přijímači jsou napájeny zdrojem podle obr. 7. Zapojení AVC je na obr. 8.

Tranzistorová E10aK

Celkové schéma přijímače s tranzistory je na obr. 9, 10 a 1.1. Vstupní zesilovač (obr. 9)

Obr. 6. Produkt detektor (L₁ má 77 z drátu o Ø 0,15 mm CuLH s jádrem M4 z hmoty N2, L₂ má 2 × 5 z přes L₁

je osazen tranzistorem KF524 v zapojení se společným emitorem. V tomto zapojení je spolecným emitorem. v tomito zapojeni je největší zesílení za cenu horší stability zesilovače. Jelikož Q obvodů i zesílení jsou značné, bylo nutné preselektor neutralizovat. Neutralizační kapacita C₄ je vytvořena zkroucenými dráty s izolací PVC. Proti případným VKV zákmitům, vznikajícím na delších přívodech k obvodům jsou v těsné blízkosti přívodů báze a kolektoru tlumicí odpory. Diody KA206 chrání vstupní přechod proti přetížení z vlastního vysílače. Při extrémně silných vstupních signálech může dojít ke vzniku křížové modula-ce na ochranných diodách. V takovém přípa-dě je jediná možnost: zařadit úflumový člen do vstupu přijímače. Zisk předzesilovače je regulován kolektorovým proudem. Toto ře-šení však není nejvýhodnější vzhledem k nelinearitě v oblasti malého kolektoro-vého proudu, tedy zejména při silnějších signálech. Taková nelinearita se projeví směšováním vstupních signálů a vznikem křížové modulace. Lepší odolnosti by se dosáhlo opačným způsobem regulace získu předzesilovače, stejně jako je řízeno zesílení tranzístorové mezifrekvence v televizních přijímačích; maximálnímu kolektorovému proudu

Obr. 7. Zdroj pro tranzistorové obvody

odpovídá minimální zesílení, jelikož U_{CE} se zmenšuje při zvětšujícím se kolektorovém proudu. Nejúčinnější a i v profesionální praxi zavedené opatření proti vzniku křížové modulace na nelinearitách zesilovačů je regulovatelný útlumový člen v anténním přívodu přijímače. Zde bývají často použity potenciometry asi 500 Ω . Jelikož přijímač používám s konvertorem, mám anténní zeslabovač (otočný kondenzátor) zamontovaný už v konvertoru.

Zesílení dobře naladěného zesilovače je tak velké, že lze použít pasívní směšovač s velkým útlumem' (asi 10 dB). Hlavní výhodou symetrického diodového směšovače je značná odolnost vůči přetížení silnými signály a potlačení průchodu nežádoucích signálů do mezifrekvece. Dodatečné vyvážení připojením kompenzačních kapacit není nutné. Nevýhodou diodového směšovače je potřeba většího oscilátorového napětí. Oscilátorový obvod zůstává v původním zapojení a je rozšířen o možnost jemného doladění kmitočtu varikapem KA204. V obvodech oscilátorů nedoporučují používat blokovací keramické kondenzátory s označením X (TK 750 apod.), vyhnete se tím nepříjemnému "cvrlikání" signálu a značné teplotní nestabilitě oscilátoru. To platí zejména o vazebním kondenzátoru v bázi a blokovací

Obr. 8. Zapojení AVC

Obr. 10. Zapojení detektorů

v emitoru oscilačního tranzistoru. V kolektorovém obvodu oddělovacího zesilovače je použito miniaturní feritové toroidní jádro z materiálu N2. Lze použít i jinou cívku, podmínkou je, aby kolektorové vinutí spolu s paralelním kondenzátorem rezonovalo zhruba ve středu kmitočtového pásma oscilátoru (5,5 MHz). Paralelní kapacita se nastaví tak, aby na obou koncích pásma bylo na kolektoru T2 stejné vf napětí.

Výstup směšovače je symetricky připojen na krystalový pásmový filtr, shodný s filtrem popsaným ve stati o čtyřkrystalovém filtru. Přepínání šířky pásma obstará miniaturní nf relé, nebo relé LUN. Z výstupu filtru je nutno přetransformovat velkou výstupní impedanci ná malý vstupní odpor tranzistorového mf zesilovače dalším rezonančním obvodem a vazebním vinutím s malou impedancí. Tento obvod navíc zlepšuje příjem signálů AM při zkratovaném filtru. První mf zesilovač je druhým a posledním řízeným stupněm přijímače. Dvoustupňová regulace zisku umožňuje zmenšit zesílení tak, že není slyšet žádný signál, ani z vlastního vysílače. Toho je využito k nastavitelnému zmenšení citlivosti současně s vlastním vysíláním. Obvod zmenšení zesílení je osazen libovolným tranzistorem n-p-n, který se otevírá po přivedení ovládacího napětí 3 až 20 V-z vysílače. Pokud bude třeba přizpůsobit obvod na větší ovládací (klíčovací) napětí, bude nutno zvětšit odpor R_{60} tak, aby proud báze byl asi 1 mA. Potenciometrem R_{58} nastavíme vhodnou hlasitost příposlechu vlastního vysílače. Z prostorových důvodů byl odstraněn i druhý mf transformátor a do vzniklého místa vestavěn pásmový filtr L_{12} , C_{36} , L_{15} , C_{37} , krystal a přepínací relé. Pokud nebude použit krystal pro příjem CW, je možno ponechat původní mf transformátor a přeladit jej na nový mf kmitočet. Do filtru CW doporučuji použít krystal typu F1, který má poněkud lepší vlastnosti než krystal typu K1. Za filtrem CW následuje kaskóda, složená z polem řízeného tranzistoru v zapojení sledovače a zesilovače s bipolárním tranzistorem. Na prvním stupni kaskódy byl zkoušen»KF521, který však nedoporučuji, jelikož jeho zesílení je sice nepatrně větší, ale podstatně větší je nebezpečí náhodného zničení. Rezerva zesílení je taková, že i s málo strmým KF520 bude zisk dostatečný. Kaskóda s polem řízeným tranzistorem je použita proto, aby nedocházelo k tlumení pásmového filtru vstupním odporem zesilovače. Krystal ve filtru CW nepracuje do malého reálného zatěžovacího odporu, jak bývá v podobných filtrech zvykem, přesto je rezonanční špička velice ostrá a nevyžaduje k dosažení selekti-· vity značné rozladění vstupního obvodu LC. Kaskóda je přímo vázaná, proto proud druhého tranzistoru bude záviset především na vlastnostech KF520. Pokud by úbytek na emitorovém odporu T_0 nebyl v rozmezí 3 až 6 V, bude nutno změnit R_{26} . V kolektoru T_{13} je původní pásmový filtr přeladěný na 1 MHz přidáním paralelního kondenzátoru 180 pF.

Stejně jako pro první mf zesilovač, je nutné upravit impedanci pro produkt detektor s integrovaným obvodem MBA145. Vstup pro MBA145 musí být symetrický, nejlépe vinutý bifilárně. Produkt detektor s diferenciálním zesilovačem MBA145 má značné zesílení a velmi dobrou linearitu zpracování signálu SSB. Pracovní bod je nastaven na 3 mA společného emitorového proudu. K odfiltrování zbytku vf signálu je použita dolní propust RC. BFO je v klasickém zapojení, lze použít libovolný křemíkový tranzistor n-p-n. Jemné rozladění kmitočtu obstará varikap KA204. Sériová kapacita C₆₆ je nastavena tak, aby bylo možno rozladit BFO v dostatečném rozsahu pro příjem obou postranních pásem. BFO stejně jako oscilátor jsou napájeny stabilizovaným napětím. Zejména dolaďovací varikapy je nutné napájet z dokonale stabilizovaného a vyfiltrovaného zdroje. Jelikož je vzhledem ke značné citlivosti produkt detektoru napětí na výstupu mezifrekvence velmi malé a nepostačuje pro činnost diodového detektoru AM, je zvoleno audio-nové zapojení detektoru AM. Takto zapojený detektor dává přibližně shodné ví napětí jako produkt detektor. Detektory se přepínají připojením napájecího napětí. Ní zesilovač je osazen integrovaným obvodem MA0403. Lze samozřejmě použít i jiná zapojení s diskrétními polovodiči. Pokud nebudete požadovat nf výkon pro reproduktor, postačí dvoustupňový nf zesilovač. tranzistorový (Pokračování)

36 V z 12 V bez transformátoru

Často je zapotřebí použít v zařízení, napájeném "normalizovaným" napětím 12 V,
i napětí vyšší. Bež transformátoru to umožňuje zapojení podle obr. 1. Vstupní stejnosměrné napětí je "rozsekáno" tranzistorem
T₁, který je stejně jako tranzistory T₂ a T₃
buzen do báze obdélníkovým napětí m vyššího kmitočtu. "Rozsekané" napětí je-pak
přivedeno na ztrojovač napětí. Vstupní tranzistor musí být ve vodivém stavu, když T₂ a T₃
jsou uzavřeny. Diody jsou křemíkové, dimenzované na potřebný proud, rovněž tak
tranzistory jsou křemíkové, spínací typy.
Jako u každého násobiče napětí závisí "tvrdost" zdroje na kapacitě použitých kondenzátorů.

Radio Communication 6/75

Obr. 1. 36 V z 12 V bez transformátoru

Mini QUAD pro 14 MHz

Směrová anténa typu QUAD zmenšených rozměrů pro pásmo 14 MHz je nakreslena na obr. 1. Zmenšení rozměrů je umožněno prodlužovacími cívkami: jsou navinuty na novodurové trubce o Ø 45 mm a mají po 25 závitech. Zářič je naladěn na 14,000 MHz, direktor na 14,250 MHz. Anténa je napájena souosým kabelem o impedanci 75 Ω a zářič s direktorem jsou propojeny "žebříčem" o impedanci 300 Ω. —ra Radio REF 4/75

Obr. 1. Mini QUAD pro 14 MHz

Anténa typu T pro pásma 7, 14, 21 a 28 MHz

Anténa pro uvedená čtyři pásma, navržená DJ1ZB, je nakreslena na obr. 1. Impedance mezi body A a E je na 7 MHz 1,5 k Ω , na 14 MHz 800 Ω , na 21 MHz 700 Ω , na 28 MHz 600 Ω . Pro přizpůsobení k souosému kabelu jsou zapotřebí tyto indukčnosti L a kapacity C.

 Pásmo [MHz]
 7
 14
 21
 28

 Indukčnost L [μΗ]
 6
 2,3
 1,4
 1

 Kapacita C [pF]
 80
 50
 40
 30

QRV 2/75 -ra

Obr. 1. Anténa typu T podle DJ1ZB

Umikia značka OK1ARZ

Dne 13. 1. 1976 navždy opustil svůj klíč Richard Zák, OK1ARZ, aktivní amatér, známý z pásma mnohým koncesionářům, držitel celé řady hodnotných diplomů, dobrý přítel a obětavý kamarád. Opustil nás náhle beze slova rozloučení uprostřed cesty naplněné optimismem, plány a aktivní činností ve věku 39 let. Prosíme všechny amatéry, kteří ho znali, aby mu věnovalí tichou vzpomínku.

Za kolektív městského radioklubu Hradec Králové OK1CJM

Zemřel OK2PCU, ex-OK2UA

Odešel nejstarší brněnský amatér vysílač. Nikoli "služebně" nejstarší. Své první spojení navázal v roce 1936 se stanicí OK2ON (zkusmo na středních vlnách). Byl nejstarší věkem. Josef Běloch se narodil 19. března 1897 ve Velkých Bílovicích, okr. Hodonín. 23. února 1937 dostal koncesi s volací značkou OK2UA. Postavil si "Hartley" o příkonu 6 W a dvouelektronkový přijímač. Posílal staniční lístky lemované červenomodrobílými pruhy a pečlivě vypíňované ozdobným gotickým písmem.

Za mobilizace v r. 1938 konal spotu s dalšími brněnskými amatéry spojovací hlásnou službu v pásmu 5 m. Po obsazení českých zemí nacisty v r. 1939 předával zpravodajské složce odboje informace, které přijímací stanice získávaly sledováním německé vojenské rádiové korespondence. V posledních týdnech okupace přechovával ve svém sklepě pod uhlím důležité úřední dokumenty, aby je ochránil před případným úmyslem zničení při útěku nacistů před Rudou armádou. Po osvobození byl u toho, když se hledal vhodný objekt pro brněnskou KSR. Byl činný jako radiotelegrafista na stanici OK2Y, která přejímala k další dopravě poštovní telegramy od amatérských stanic. Dne 27, 11. 1948 mu byl udělen od MNO dipiom za záslužnou spoluúčast a podporu národního boje za osvobození Československa a 9. května 1951 byl vyznamenán pamětním odznakem druhého národního odboie.

24. listopadu 1975 se jeho klíč odmlčel navždy. Opustil nás nenadále. Ještě den před smrtí se potkal s OK2PAT a srdečně si popovídali. V Josefu Bělochovi ztrácíme jednoho z nadšených starých radioamatérů, kteří si dovedli vážit i skromných možností, uměli se radovat a těšit z práce s jednoduchým zařízením a o svou radost se dělit s přáteli.

Ing. Daneš, OK1YG

Vstupní útlumový článek

V poslední době se k řízení vf citlivosti komunikačních přijímačů používá stále častěji útlumový článek na vstupu přijíma če. Je nutno, aby byl dobře impedančně přizpůsoben k anténě a aby i jeho výstup měl konstantní impedanci. Na obr. 1 je takový útlumový článek, složený z odporů zapojených ve článku II. Spinači S₁ až S₇ lze zvolit útlum -3 dB, -6 dB, -10 dB, -16 dB,

Obr. 1. Vstupní útlumový článek

-20 dB, -30 dB a -40 dB. Jde vlastně o zařazování jednoho ze sedmi samostatných článků. Konstrukce celého útlumového článku musí odpovídat zásadám, používaným při konstrukcích vf zařízení. Old Man 6/75

Všepásmová anténa typu T

Anténu pro všechny pásma od 1,8 MHz do 28 MHz podle obr. 1 vyzkouśel G2RO. Ramena AB = BCs co největším sevřeným úhlem jsou doladěna GDO jako nezávislý zářič $\lambda/2$ do pásma 3,5 MHz. Úsek DE je nezávisle naladěn jako uzemněný vertikál $\lambda/4$ rovněž na 3,5 MHz. Body B a D jsou potom trvale propojeny. Pro pásmo 1,8 MHz je bod E připojen k "živému" vodiči souosého kabelu přes sériový kondenzátor asi 680 pF. V ostatních pásmech jsou bod E i souosý kabel připojeny přepínačem Př k odbočkám cívky L. Odbočky jsou vyhledány tak, aby do antény tekl maximální proud a ČSV byl přitom co nejmenší. Radio Communication 5/75

Obr. 1. Všepásmová anténa typu T

DIOAMAT

Mistrovství ČSSR v práci na KV

- 1. Pro mistrovství ČSSR se započítávají výsledky z těchto závodů:
 - a) Závod míru.
 - b) OK SSB.
 - CQ MIR (SSSR). c) OK DX Contest.
- e) Radiotelefonní závod. 2. Hodnocení stanic:
- a) Vyhodnocení bude provedeno v kategoriích jednotlivci, kolektivní stanice, posluchačí.
 b) Aby byla stanice v mistrovství ČSSR hodnoce-
- na, musí se zúčastnit alespoň jednoho ze závodů mezinárodních.
- c) Pro MR se započítávají tři nejlepší bodové výsledky z uvedených závodů, s přihlédnutím k bodu 2b).
- Bodové hodnocení závodů mistrovství ČSSR: a) U závodů vyhodnocených i za jednotlivá pásma'apod. se vyhodnocují pořadí podle dosaženého bodového výsledku bez ohledu na pořadí na
- jednotlivých pásmech. b) Pro MR se hodnotí nejlepších 20 stanic z celkového pořadí tak, že stanice na 1. místě získává 25 bodů, na 2. místě 22 bodů, na 3. místě 19 bodů, na 4. místě 17 bodů, na 5. místě 16 bodů . . . atd., až stanice na 20. místě získává jeden bod

- Uvedené počty bodů získají stanice bez ohledu
- na počet účastníků závodu. c) Součet tří nejvyšších bodových výsledků dává konečný výsledek, při rovnosti dvou či více stanic je rozhodující vzájemné umístění v OK-DX Con-testu; při neúčasti jedné z nich v tomto závodě je stanice v OK-DX Contestu zvýhodněna.
- Výsledky vyhlašuje Ústřední radioklub ČSSR; vítěz získává titul mistra ČSSR za uplynulý rok, odznak a diplom, stanice na druhém a třetím místě diplom a odznak, stanice až do počtu jedné třetiny účastníků diplom s uvedením pořadí. O případných věcných odměnách bude rozhodnuto každoročně zvlášť.

CQ M (Světu mír) ...

pořádá každoročně druhou sobotu a neděli v květnu Ústřední radioklub SSSR. Začátek je vždy v sobotu ve 21.00 GMT, konec v nedělí v tutéž dobu. Výzva CQ M, závodí se pouze provozem CW. Kategorie J/J, J/M, K, P. Spojení s evropskou stanicí se hodnotí jedním bodem, se stanicí jiného kontinentu třemí body, nenavazují se spojení se stanicemi vlastní země. Posluchačí si hodnotí příjem kódů obou korespondujících stanic třemi body, za odposlouchaný kód pouze jedné z korespondujících stanic jeden bod. Volací značky obou stanic musí být v každém případě správně zaznamenány. Násobiče jsou země podle seznamu R150S a to pouze jednou v závodě, bez ohledu na pásma. Jakákoli nepřesnost v zachyceném kódu nebo značce znamená anulování tohoto spojení. Rovněž se anulují násobiče ze

zemí, odkud nedojdou deníky. Diplom může obdržet stanice v každé kategorii pouze za předpokladu, že pracuje v závodě nejméně po dobu 6 hodin. Na základě deníku ze závodu je možno žádat o vydání všech sovětských diplomů, pokud budou během závodu splněny podmínky pro jejich vydání.

WTD Contest

pořádá každoročně 17. května brazilské minister-stvo spojů u příležitosti mezinárodního dne telekomunikací. Pořádá se ve dvou samostatně hodnoce ných částech: část CW vždy v sobotu před 17. květnem, začátek v 00.00, konec v nedělí ve 24.00 GMT. Část fone začíná následující sobotu v 00.00 GMT a končí v neděli ve 24.00 GMT. V.obou částech se závodí ve všech radioamatérských pásmech včetně 160 m v jedíné kategorií: jeden operatér, všechna pásma. Kolektivní stanice se tohoto závodu neúčastní! Vyměňuje se kód složený z RST nebo RS a čísla zóny ITU. Bodování: spojení se stanicemi vlastní země se bodově nehodnotí, s ostatními stanicemi ve vlastní zóně ITU v pásmech 28, 21, 14 a 7 MHz - 1 bod, v pásmech 3,5 a 1,8 MHz - 2 body Sociení s jinými stanicemi na vlastním kontinentě v pásmu 28, 21 a 14 MHz - 2 body, v pásmu 7 MHz - 3 body, v pásmech 3,5 a 1,8 MHz - 4 body. Spojení se stanicemi na jiných kontinentech v pásmech 28, 21 a 14 MHz – 3 body, v pásmu 7 MHz – 5 bodů a v pásmech 3,5 a 1,8 MHz 6 bodů. Konečný výsledek získáme vynásobením součtu bodů ze všech pásem počtem různých zón, se kterými jsme během závodu pracovali, bez ohledu na pásma.

Vyhodnocení závodu A1 Contest 1975

145 MHz - stálé QTH:

					bouu
1.	OK3KMY	1146g	70 QSO		16 167
2.	OK2KTE	IJ57d	77		'15 561
3.	OK2KRT	JJ41j	70 _		14 727
4.	OK2KVI	JJ12g	61		11 950
5.	OK2KUM	IJ46a	62		11 397
6.	OK1DKM	HK73b	51	•	9 160
7.	OK2SKH	IJ57b	50		8 591
8.	OK1AGI	HK71a	49		8 374
9.	OK3CDR	1166c	43 .		8 032
10.	OK1FRA	HJ05a	47		7 854
Ηo	dnoceno 23 s	tanic.			

145 MHz - přechodné QTH:

				bood
1.	OK1KTL	GK45d	146 QSO	51 564
2.	OK1AGE	HK29b	105	30 571
3.	OK1XN	HK29d	77	18 153
4.	OK3KCM	JI64g	67	16 242
5.	OK1KCU	GK29j	63	14 568
6.	OK1KRY	GJ19j	60	13 707
7.	OK1ATX	HK37h	64	12 308
8.	OK1KCI	IK77h	60	12 154
9.	OK3KBM	II57h	62	11 928
10.	OK1IAC	GJ24j	49	11 269
Hoo	dnoceno 16	stanic.		

hodů

bođů

157

129

435 MHz – stálé QTH:

			bodů
1. OK1KKD	HK61e	14 QSO	1 535 ⁶
OK1MG	HK71a	14	1 533
OK1OFG	HK74h	12	941
4. OK1DKM	HK73b	10	820
5. OK1AQT	HK73f	10	655
6. OK1AAZ	GJ30c	4	344
7. OK1AZ	HK73j	5	227
	•		

435 MHz – přechodné QTH:

1. OK1AIB

3. OKTAIY

OK1KKL

 OK1KCI 	IK77h	13 QSO	2 521
OK1AIB	HK29b	13	1 884
OK1KKL	HK37h	11	1 431
4. OK1AIY	HK28c	10	1 285
OK1KKH	HJ06c	11	1 089
1296 MHz – stá	lé QTH:	*	
			bodů
1. OK1OFG	HK74h	2 QSO	180
1296 MHz – pře	chodné Q	тн:	*

HK29b 3 QSO

2

HK37h

HK28c

XXVIII. čs. Polní den 1976

Již po osmadvacáté vyjedou operatéří našich stanic do přírody, aby absolvovali největší a nejmasovější VKV závod ve ztížených a skutečně polních podmínkách. Tohoto závodu se zúčastní též mnoho stanic z dalších zemí Evropy a je proto potřeba, aby se na něj naše stanice včas a zejměna po technické stránce dobře připravily a se ctí obhájily dobré jměno značky OK.

Na základě širokého průzkumu mezi našimi amatéry, zejména při VKV setkáních a seminářích techniky VKV, v zájmu technického pokroku při aplikaci polovodičové techniky doporučil odbor VKV ÚRRk a Ústřední rada RK Svazarmu ČSSR schválila některé změny v kategoriích tohoto závodu oproti minulým ročníkům. Zcela byly zrušeny kategorie "stálé QTH", protože se v tomto závodě mají uplatnit zejména prvky brannosti a schopnost naších operatérů dobře pracovat i ve ztížených polních podmínkách. Další změna se týká pásma 145 MHz, kde bude první kategorie určena pouze pro zařízení, která budou kompletně napájena výhradně z chemických zdrojů proudu (baterie a akumulátory) a mají příkon koncového stupně do 5 W. Těch 5 W je proto, aby přestaly dohady kolem zařízení typu "PETR 101 speciál" případně "Sněžka", která neodpovídají dřívějším kategoriím do příkonu 1 W, avšak stanice je v této kategorii velmi často používaly. V provozu je dost továrně i amatérsky zhotovených zařízení, osazených polovodiči, schopných pracovat všemi druhy provozu a majících příkon PA právě kolem 5 W. V takovém hotovém zařízení není dost dobře možné dělat zásahy, aby pro závod PD mohl mít PA příkon jen 1 W. Druhá kategorie s příkonem PA do 12 W byla zvolena proto, że mezi našimi amatéry je také dost zařízení, která slouží pro provoz ze stálého QTH jako budič a mají PA osazen běžnou elektronkou QQE03/12.

Stručné podmínky PD 1976

Doba závodu: 3. července 1976 od 16.00 hodin GMT do 4. července 16.00 GMT.

Soutěží se pouze z přechodných QTH v kategoriich:

1. 145 MHz, max. příkon 5 W, celotranzistorová
zařízení (TX i RX), napájení jen z chemických zdro-

II. 145 MHz, max. příkon 12 W, libovolné napájení. III. 435 MHz, max. příkon 5 W, libovolné napájení IV. 435 MHz, příkon podle povolovacích podmínek

V. 1296 MHz, příkon podle povolovacích podmínek.
VI. 2304 MHz, příkon podle povolovacích podmínek

Na pásmech vyšších než 2304 MHz se nesoutěží, případné výsledky však budou zveřejněny. Etapy:

145 a 2304 MHz – jedna etapa 24 hodin. 432 MHz – dvě etapy po 12 hodinách.

432 MHz – dvě etapy po 12 hodinách. 1296 MHz – tři etapy po 8 hodinách.

V každé etapě tze započítat jen jedno soutěžní spojení s toutéž stanicí. Neplatí spojení navázaná přes převáděče.

Z technických ustanovení: Příkonem vysílače se rozumí úhrnný příkon anod elektronek, kolektorů tranzistorů nebo varaktorů, použitých v koncovém stupni. Při použití varaktorů v koncovém stupni může být příkon použitého budicího stupně subharmonického kmitočtu roven dvojnásobku povoleného příkonu kategorie. Soutěžící stanice nesmí mít s sebou na soutěžním QTH zařízení, která nevyhovují podmínkám kategorií, v nichž stanice soutěží.

Soutěžní deníky obsahují všechny náležitosti tiskopisů "VKV soutěžní deník", s vyznačením soutěžní kategorie, vyplněné právdívě ve všech rubrikách, podepsané s čestným prohlášením (u kol. stanic VO nebo jeho zástupcem) a se správně vypočítaným výsledkem musí být rodeslány do desetí dnů po závodu na adresu ÚRK ČSSR v Praze.

Časy všech spojení musí být v GMT! Podrobné podmínky PD 1976 budou otištěny v časopisu RZ.

OK1MG

III. čs. Polní den mládeže 1976

Závod vyhlašuje ÚRK ČSSR pro mladé operatéry, kterým v den konání závodu ještě není 18 let. Bude uspořádán dne 3. července 1976 od 11.00 do 14.00 hodin GMT. Závod je vyhlášen pro RO kolektivních stanic a koncesionáře třídy OL.

Soutěžní kategorie:

 1. 145 MHz, do příkonů 12 W, libovolné napájení (OL stanice musí v tomto případě dodržet povolovací podmínky, tj. používat TX o příkonu maximálně 10 W). 432 MHz, do příkonu 5 W, libovolné napájení.
 Soutěří se nouze z přechodných OTH

Soutěží se pouze z přechodných QTH. Soutěžíní kód se skládá z RS nebo RST, pořadového čísla spojení počínaje číslem 101 a čtverce QTH. Zahraničním stanicím se pořadové číslo spojení nepředává, ale u příslušného spojení musí být poznamenáno v deníku. S každou stanicí je možno na každém pásmu navázat jedno platné spojení. Z každého QTH se smí pracovat jen pod jednou značkou. Do závodu se počítají i spojení se stanicemi, které nesoutěží a nepředávají pořadové číslo spojení, avšak musí soutěžící stanice předa report a čtverec QTH. Od, soutěžící stanice musí tato stanice převzít kompletní kód a ten zaznamenat ve svém deníku. Stanice, které nesoutěží, neposílají deníky.

Za jeden km překlenuté vzdálenosti si soutěžící stanice počítá jeden bod a to na každém soutěžním pásmu.

Deníky na obvyklých formulářích "VKV soutěžní deník", vyplněné pravdivě ve všech rubrikách s podepsaným čestným prohlášením (u kolektivních stanic od VO nebo jeho zástupce) musí být odeslány do deseti dnů po závodu na adresu ÚRK ČSSR. Deníky musí rovněž obsahovat pracovní čísla RO obsluhujících kol. stanici a data jejich narození. Nesplnění této podmínky má za následek diskvalítikaci stanice. Čas spojení musí být uváděn výhradně v GMT!

Odbor VKV ÚRK ČSSR vás zve k učasti na letošním PD mládeže. Hojnou účastí mladých členů vašich radioklubů prokážete dobré výsledky práce s mládeží a do budoucna si zajistite operatéry a cvičitele, kteří budou zdárně pokračovat ve vaší práci.

Pokud ve vašem radioklubu nejsou operatéří mladší než 18 let, zúčastněte se PD mládeže alespoň jako protistanice soutěžících stanic. Pomůžete tak našim mladým operatérům k dobrým výsledkům v závodě a pro vás to bude vhodnou příležitostí k vyzkoušení zařízení před naším největším závodem na VKV, XXVIII. Polním dnem 1976.

Za VKV odbor ÚRK ČŠSR OK1MG

MLĀDEŽ A KOLEKTIVKY

Rubriku vede J. Čech, OK2-4857, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

Dostal jsem již několik prvních dotazů a návrhů, čím bychom se v naší rubrice měli zabývat. Od tohoto čísla ji tedy budete již pravidelně nacházet na stránkách Amatérského radia.

V rubrice by se měla především odrážet naše činnost v kolektivních stanicích, činnost posluchačů a mládých koncesionářů OL, kteří jsou ve velké míře také RO a PO naších kolektivních stanic a podíleji se spolu s ostatními operatéry na jejich více či méně úspěšně činnosti. Přičiňme se tedy i v naší rubrice, aby činnost kolektivních stanic byla ještě úspěšnější. Bude to jistě záležet na nás všech, jak budeme chtít pomoci, třeba jen radou nebo předanou zkušeností v naší rubrice. Napište, jaké máte problémy a jakých úspěčnů jste ve vašem kolektivu dosáhli. Pro jedny to bude ponaučením, další se mohou vyvarovat zbytečných neúspěchů a pro mnohé to bude vzpruhou, aby jejich kolektivka dosahovala ještě lepších výsledků. Někteří z vás budou možná namítat, že nejsou spisovatelé nebo se třeba budou ostýchat psát. Stačí však na lístek napsat připomínku, radu, upozornění a dohromady se nám podaří vytvořit rubriku zalímavou a poučnou.

vytvořit rubriku zajímavou a poučnou.

Bez Amatérského radia si dnes již těžko dovedeme představit radioamatéra nebo zájemce o radiotechniku. Věřím, že se nám pomocí naší rubriky podaří získat mnoho dalších zájemců o posluchačskou činnost nebo činnost na kolektivní stanici. Jistě ne všichni odběratelé a čtenáři Amatérského radia jsou členy radioklubů a kolektivních stanic. Nejsem optimista a nepředpokládám, že na základě naší rubriky se do naších kolektivních stanic pohrnou stovky nových zájemců o radioamatérský sport. Bylo by přehnané o takových cílech uvažovat. Dokažme však, že činnost naších kolektivních stanic je zajímavá a prospěšná a jistě se nám podaří získat i ty

čtenáře Amatérského radia, kteří ještě dnes stojí stranou veškerého dění v radioklubech a na kolektivních stanicích. Jistě z toho budeme mít všichni velikou radost

Během naší činnosti na kolektivkách jste již zažilí mnoho veselých a zajímavých příhod při sportovních soutěžích, přípravě na Polní den nebo při provozu na pásmech které by jistě zajímaly i ostatní čtenáře naší rubriky. Napište je a nezapomeňte přiložit také fotografie z vaší činnosti. Napište také, která zajímavá spojení jste navázali, které vzácné QSL jistky a diplomy jste za vaší úspěšnou činnost obdrželi.

Zvláště naše provozní činnost na krátkovlnných pásmech je málo známa a přistupna široké veřejnosti. Snažme se ji tedy popularizovat nejen na stránkách Amatérského radia, ale využijte všech možnos tí ve vašem okolí, jak vaši činnost přiblížit spoluobčanům. Každá kolektívní stanice nebo radioklub by měly mít propagační skříňku, ve které by pravidelně zveřejňovaly svoji činnost. Nezapomínejte ani na vývěsky na školách a v závodech. I tak můžete upozornit na radioamatérský sport a získat nové zájemce. Vhodným prostředkem k propagaci naší činnosti mohou být i místní výstavky prací zájmových kroužků Domů pionýrů a mládeže, mezi nimiž jistě nikde nechybí ani kroužek mladých radiotech-niků. Pokud z výstavy nemůžete zajistit přímo provoz vaší kolektivní stanice, nezapomeňte na svoji činnost upozornit alespoň na některém z vystavovaných panelů. Jistě příjdete ještě na mnoho dalších možností, jak seznámit veřejnost s naší úspěšnou a prospěšnou činností.

Na mnohých kolektivních stanicích a v radioklubech se aktívně zúčastňujete předvojenského výcvi-ku branců. Přichází k vám řada mladých chlapců, kterým se radiotechnika a rádiový provoz stane na určitou dobu jejich každodenním zaměstnáním ve vojenské službě. Mnozí z nich mají o těto službě nejasné představy. Zde máte příležitost všichni cvičitelé – operatéři kolektivních stanic. Nebojte se brancům při výcviku ukázat a přiblížit činnost vaší kolektivní stanice. Učebních cílů určitě dosáhnete snáze, brancům se radistická profese zalíbí a po ukončení základní vojenské služby přijdou opět do radioklubů a stanou se z nich operatéři kolektivních stanic. Vždyť právě z mnohých branců a vojáků radiostus se vypracovala řada naších úspěšných radioamatérů. Byla by proto veliká škoda tuto možnost ztratit strohým a nezáživným přistupem k výcviku.

Od dvanáctiletého Jirky z jižních Čech jsem dostal otázku kdy začít s radioamatérskou činností. Na tuto otázku je jednoduchá odpověď - kdykoli. Nikdy není pozdě. Znám osobně radioamatéry, kteří svoji dráhu radioamatéra začínali až v důchodu. Do činností kolektívu se zapojili s plným elánem a nic nenasvědčuje tomu, že by něco zameškali. Pokud snad přece něco, jistě to brzy dohoní. Naproti tomu nespornou výhodu mají nejmladší zájemci o radioamatérský sport. V kroužcích radiotechniky nebo radioamatérského provozu mládeže v radioklubech nebo v Domech pionýrů a mládeže a na školách získají potřebné vědomosti již ve školním věku. Dosud však ještě ne všichni tito mladí zájemci maj možnost navštěvovat zmíněné kursy, které jsou pro ně vzdáleny ve větších městech. Snaží se alespoň prostřednictvím Amatérského radia a dalšího odborného tisku získat co neivíce informací. Každý z nich by se tedy měl snažit získat ještě dalšího zájemce, protože ne nadarmo se říká, že ve dvou se to lépe táhne. Rodiče jistě mohou pomoci zakoupením nejnutnějšího radiomateriálu nebo stavebnice, které jsou v současné době v širším výběru k dostání ve větších prodeinách hraček a ve specializovaných prodejnách modelářských potřeb.

Na stránkách Amatérského radia najdete plánky jednoduchých zařízení a zapojení. Pokud nemáte v okolí zkušeného radioamatéra, který by mohl poradit a usměrňovat zájem o radioamatérskou činnost, Ize o radu požádat ve škole učitele fyziky. Snad by pak bylo možné ve škole založit i zájmový kroužek. Prostředky k tomu na mnohých školách jsou. Kde je snaha, východisko z nouze se najde. Je třeba nestát stranou a přiložit ruce k dliu a spolupráci. A o tuto spolupráci a pomoc jsem vás všechny dnes chtěl požádat.

Od kolektívu OK1KOK jsem obdržel smutnou zprávu, že 6. ledna 1976 neočekávaně zemřel jeden z jejich mladých a obětavých operatérů – Miloš Žák. Ještě 3. ledna prostřednictvím radiových vin předával radioamatérům přání hodně zdraví a úspěchů. Jistě zůstane ve vzpomínkách všech, kteří s ním navázali spojení, právě tak jako ve vzpomínkách

jeho přátel z kolektivní stanice OK1KOK, kterým bude chybět.

Operatérům kolektivních stanic přeji mnoho pěkných spojení a posluchačům mnoho poslechů v probíhající celoroční soutěži OK – maratón, kterého se listě všichní zúčastní.

tě všichní zúčastní. Těším se na vaše dotazy a připomínky.

73! OK2-4857

% TELEGRAFIE %

Krajské přebory v telegrafii

Po několikaleté přestávce se v letošním roce díky zvýšené aktivitě odboru telegrafiè ÚRk začínají uskutečňovat krajské přebory v telegrafii jednotlivých krajů ČSSR.

První vlastovkou byl krajský přebor Východoslovenského kraje. Uspořádal jej z pověření KV Svazarmu v Košicích radioklub OK3KXC v Prakovcích dne 31. 1. 1976. Zúčastnilo se jej čelkem 14 závodníků ve všech třech kategoriích. V kategorii A zvítězil Karol Bondra, OK3ZBK, ze Staré Lubovni, v kategorii B československý reprezentant Pavol Grega z Prakovců (s cejkově nejlepším výsledkem) a v kategorii C Peter Dyba rovněž z Prakovců. Mimo soutěž v kategorii C startovali další českoslovenští reprezentanti G. Komorová, D. Korfanta a M. Gordan. Hlavním rozhodčím byl ing. P. Vik, OK2NA. Přítomný pracovník KV Svazarmu s. M. Déri přislibil, že se vynasnaží o to, aby v přiští sezôně, tj. od října 1976, byly uspořádány okresní přebory v telegratii ve všech 13 okresech Východoslovenského kraje.

Týden poté, v sobotu 7. února, se uskutečnil krajský přebor hlavního města Prahy. Uspořádala jej 607. ZO Svazarmu v Městském radioklubu Praha v Janovského ulici. Přebor měl dobrou sportovní úroveň. Dvanáct účastníků závodu bylo hodnoceno v kategorii A. Ostatní kategorie nebyly obsazeny. Nejmladším účastníkem byla Jitka Vilčeková (1958). nejstarším K. Jaroš (1915). Většina závodníků splnila limit pro udělení třetí výkonnostní třídy, nejlepší tři limit II. VT. Zvítězila československá reprezentantka J. Vilčeková, OL5AQR, z Pardubic. Přebornící Prahy se stala na druhém místě Olga Turčanová z VÚ 3255. Třetí místo obsadil V. Sládek, OK1FCW. V příjmu byla nejlepší O. Turčanová, ve vysilání na ručním klíčí V. Sládek, ve vysílání na poloautomatickém klíči B. Kačírek. Hlavním rozhodčím krajského přeboru byl D. Vláčil, OK3CWW.

Chybějí zatím iniciátoři krajských přeborů v Západočeském, Severočeském, Východočeském a Severomoravském krají – není to jeri konstatování, je to i výzva! Odbor telegrafie ÚRk poskytne veškerou pomoc! – mx

Obr. 1. Československá reprezentantka Gita Komorová z Prakovců přijala na krajském přeboru Východoslovenského kraje tempo 140 písmen za minutu

Rubriku vede ing. V. Srdinko, OK1SV, Havličkova 5, Hlinsko v Č.

Největší událostí počátku roku byla nesporně expedice manželů Colvinových, Lloyda, W6KG, a Iris, W6DOD, na ostrov Elice, který od 1. 1. 1976

získal nezávislost a jmenuje se nyní Tuvalu. Samozřejmě, že to je také nová země DXCC. Používali značky VR8B, zřídka i VR8C a pracovali jak na CW, tak i na SSB. Vzhledem ke špatným podmínkám byla expedice špatně slyšitelná. Přesto na ni byl nepopsatelný nával, a několika předním OK-DXmanům se spojení podařilo navázat. Těm, kterým to tentokráte nevyšlo, budiž útěchou, že na tomto ostrově pracuje stabilní stanice VR8A, "bývalý VR1AT, takže při lepších podmínkách je stále naděje na úspěch.

Dne 6. 1. 1976 se objevila na SSB stanice 3Y2BL, údajně z ostrova Bouvet. Zatím nelze získat nikde informace, ale o její pravosti velmi pochybujeme.

Nový prefix se objevil po vyhlášení nazávislosti z Kapverdských ostrovů, kde místo původního CR4 pracují stanice s prefixem D4C, a za tím svoje původní dvě písmena, takže např. známý CR4BS se nyní hlásí jako D4CBS. Není a nebude to však nová země DXCC.
FR7ZL/G na Glorioso ukončil svoji práci v polovi-

FR7ZL/G na Glorioso ukončil svoji práci v polovině ledna a vrátil se domů na FR7. Proslýchá se, že by se měl asi v dubnu objevit jako FR7ZL/E z ostrova Europe.

Další expedicí v této oblasti má být 3B9DA, který sliboval, že bude během měsíce března a dubna t. r. pracovat z ostrova Agalega pod značkou 3B7DA.

Platí spolu s Brandonem za jednu zemi DXCC. Slibně vypadá i příslib TI2CF, který již oznámil, že plánuje novou expedici asi v červnu letošního roku. Má dvě alternativy, a sice buď nejprve ostrov Malpello pod značkou HKOAA, nebo Bajo de Nuevo v červnu. a Malpello koncem roku 1976.

Z ostrova Anguilla pracovala krátkodobá expedice W4GSM pod značkou VP2EEA. Pracovala zejména na 1,8 MHz a QSL žádá na svoji domovskou značku. Dále tam je expedice VP2EEG, která pracuje hlavně na 14 MHz SSB a žádá QSL přes W3HNK.

EA9FG ve španělské Sahaře musel ukončit svoje vysílání. Je dost pravděpodobné, že Špan. Sahara bude jako země DXCC k 1. 1. 1976 zrušena a nebude asi nahrazena žádnou novou zemí, dojde-li k rozdělení území mezi sousední státy.

Upřesňují ještě podmínky díplomu USA-WPX-76, uveřejněné v minulém čísle: k získání díplomu je zapotřebí celkem 200 různých nově vydaných značek, začínajících písmenem A, a mimo to 35 různých prefixů z těchto nových značek, např. tedy AA1, AA4, AB2, AJ4 atd. Zatím však těchto stanic nevysílé příliš mnoho a je na ně nával jako na expedicel

Z ostrova Minami Toroshima pracuje v současné době stanice JABIEV/JD1 obvykle na kmitočtu 7 005 kHz CW. Objevuje se občas i v pásmu 80 m. Jeho QSL manažérem je JABJL.

KG6SW se objevil na 14 MHz SSB z ostrova Salpan, a platí pro DXCC jako Marianas. QSL žádá přes W7YBX.

Z nové republiky Papua a New Guinea pracují v současné době stanice P29AZ kolem 14 232 kHz SSB (QSL na box 6666, Boroko), dále P29GS kolem 14 239 kHz SSB (QSL přes W2NHZ) a konečně P29CD, který žádá QSL přes ZL2FA.

Z Kréty pracuje aktivně SVOWKK, op. WA6AXY, a z ostrova Rhodos je velmi aktivní SVOWZ na 14 MHz SSB, ale o Evropu nejeví velký zájem.

Několik nových QSL informací: A2CRH a A2GFF přes Box 516. Gaberone, Botswana, A6XR přes G4CHP, FG0MM přes WA1JKJ, H31KC přes HP1KC, HL9VR přes WB4ZKG, HM0CPO na Box 1189, Seoul, HR1HD na Box 698, Tegucigalpa, HV3SJ za dobu 25 až 26. 10, 1975 přes DJ3HJ, KC6CG přes WA2MPE, PJ8AR přes W3HNK, PZ5AA na Box 396, Paramaribo, SV0WZ přes OE3NH, TA2SA přes DJ0ZG, VP5TI přes G3RWU, VP5MC přes W4ZMQ, VP2MSV na VE7SV, VP2M přes VE7BXG, VP2DAJ, VP2DAL, VP2MAC a VP2MF všichni přes VE3LSS, VQ9DF přes ON6FN, VQ9Z přes W46HNQ, YJ8DV na Box 179, Santo, ZD8AA přes W4USN, ZD8EW přes BBC, Ascension Isl. ZF1AL přes WA4SVH, ZF1GE přes W0IPU, ZF1NH přes WB4ZNH, ZF1TD a ZF1WW na W3KT, ZB1BS přeš VK5BS, ZS3JAM na Box 926, Otjiwaronga, p219 Sputz, West Africa, 3D2AJ přes W6SC, 5A2NB přes IT9LR, 5L2FU přes SM4GTK, 5L4D přes WA5ZWC, 5L7F přes DJ5KH, 9L1KH, 9L1JM přes WA4BAA, 9GSSW přes JA&JN, C5AU přes G3LQK, FW0LP přes WB5ERR, HC8GI přes W3HNK, HC8RG na Gerard D. Rubsam, Isl. Santa Gfuz, Galapagos, ST2AY na Box 4142, Central Post Office Khartoum.

Do dnešní rubriky přispěli zejména OK1ADM, OK2BRR, OK1MF, OK1AHV, OK1BL, OK1DJO a žádný posluchač! Prosím všechny dopisovatele, pište opět a pravidejněji!

Rubriku vede dr. J. Mrázek, CSc., OK1GM, U libeňského pivovaru 7,

Stále ještě máme téměř minimum v jedenáctiletém cyklu sluneční člnnosti a proto se budou v květnu nejvíce uplatňovat sezónní vlivy, odpovídalící pokročilému jarnímu období. Dny budou ilž dlouhé a proto kritický kmitočet vrstvy F2 nad Evropou ani v noci příliš neklesne, takže ani v osmdesátimetrovém pásmu již nezjistíme žádná pásma ticha, která dříve zejména těsně před svítáním zhoršovala provoz na blízké vzdálenosti. Zato během dne bude nastávat zřetelné relativní minumum elektronové koncentrace vrstvy F2 okolo poledne, a proto již nebude kritický kmltočet této vrstvy dosahovat hodnot, které umožňují dálkový provoz v desetlmetrovém pásmu. To ovšem neplatí pro občasnou slyšitelnost signálů z okrajových států Evropy, případně severních částí Afriky, kterou umožňuje zvýšený výskyt mimořádné vrstvy E. Letos se popsaný druh šíření, postlhulící kmitočty od 20 do 80 MHz (případně mimořádně ještě výše), začne objevovat kolem 20. května a okolo 25. května má nastat první relativní maximum. V desetimetrovém pásmu bude možno pracovat se stanicemi, ležícími v oblasti vzdálené 700 až 2300 km, a současně bude možno sledovat z téže oblasti i televizní pořady, vysílané v prvním televizním pásmu. Při větší intenzitě jevu se můžeme dočkat i dálkového příjmu kmitočtově modulovaného rozhlasu v pásmu OIRT a někdy dokonce

l CCIR. Mimořádné podmínky působené uvedenou vrstvou ionosféry nastávají nepravidelně, obyčejně začínají i končí náhle a mívají dvě zřetelná denní maxima – jedno asi v 10.00 hodin místního času a druhé později odpoledne, případně v pod-

Dálkové podmínky na běžných krátkovinných pásmech však budou zřetelně horší než v dubnú a během měsíce se budou nadále zhoršovat, třebaže např. dvacetlmetrové pásmo již bude ote-vřeno po celou noc. Také čtyřicetlmetrové pásmo nebude večer a v noci bez vyhlídek, zatímco ve dne (v klidných dnech) se vyplatí podívat se zeiména na 21 MHz.

Rubriku vede A. Glanc. OK1GW, Purkyňova 13, 411 17 Libochovice.

Z naší činnosti

V leďnu a v první polovině února t. r. jsme mohl pozorovat zvýšenou aktivitu evropských stanic SSTV a to hlavně v pásmu 80 m. Souviselo to s přípravami na SSTV Contest, který se konal druhý únorový víkend. V tomto přípravném období se dalo snadno pracovat, zpravidla několik kHz pod kmitočtem 3 730 kHz, s těmito stanicemi: G3WW. G3LKK, HB9AIG, OE9IM, SM5EEP, SM6ATK HA5LP, dlouhá řada DL v čele s DL2RZ. Po delší odmice (TVI) se znovu objevil DA1GW.

Anglické stanice můžeme najít na tomto kmitočtu prakticky denně od 18.00 do 20.00 GMT.

Nyní některé zajímavé stanice SSTV z pásma 14 MHz: HP1XMU, FM7WW, KH6IKB, VE6RM, VK7JV, KG6JBR, JA4LP, HK3DKX, HC1BU, vše na kmitočtu 14 230 kHz.

Potěšující je účast našich stanic v nedělních kroužcích SSTV. S kvalitním signálem se opět objevil OK3CGX, Dušan z Bratislavy. OK3TDH, Karol, QTH Zlaté Moravce, používá TX 30 W PEP a přesto dostává z celé republiky pěkné reporty. Pavel z OK3KAX dokončil novou kameru a tak jsme se na naších monitorech mohli sami přesvědčiť o vynikající rozlišovací schopnosti vysílaných obrázků ale i o výtvarném nadání kolektivu, který program

Aby byl výčet ze Slovenska úplný, zbývá dodat, že kromě dalších stanic je opět možno pracovat s OK3LF. Nejaktivnější slovenskou stanicí stále zůstává Jojo, OK3ZAS. Z moravských stanic zasluhuje pozornost OK2BDS, Ludvík. QTH Třebíč. který přesedial z VKV na KV a systematickou prací dosáhl již prvních úspěchů. Ochotně předvede své zařízení zájemcům o SSTV. Z dalších moravských stanic pracují: OK2BNE, OK2PBC, OK2SLS, OK2SXX a další. Aktivitou vyniká OK2O1, Olda, QTH Valašské Meziříčí.

V Čechách začal pravidelně vysílat OK1FW, Franta, QTH Liberec. Pro majitele elektronkových monitorů vyzkoušel řadu zajímavých zlepšení OK1ACS. Vzhledem k tomu, že tyto monitory jsou stále v oblibě, otiskneme v naší rubrice některá z těchto zapojení. OK1KO staví snímač diapozitivů (FSS). Z dalších stanic pracujících SSTV: OK1AHM, OK1DWZ, OK1ADP, OK1AMR, OK1GW a dlouhá řada

těch, kteří zatím jen provoz SSTV sledují.

Monitor OK2BNE – DIGI-AUTOMATIK, publikovaný v naší rubrice, je velice populárním námětem technických diskusí na pásmu. Dá se předpokládat, že v současné době je ve stavbě asi 50 kusů tohoto typu monitoru SSTV.

Všechny, kdo shánějí obrazovku pro monitor SSTV typu W4TB apod potěší zpráva, která došla od

vedoucího značkové prodejny TESLA v Pardubicích s. Pavla Horáka. V současné době má prodejna na skladě dlouhodosvitové obrazovky typu 8LO39V (540 Kčs) a 13LO36V (550 Kčs) v množství asi 70 ks každého typu. Prodejna upozorňuje, že obrazovky na dobírku vzhledem ke křehkosti zboží neposílá, avšak na písemnou, či telefonní objednávku může obrazovky až do vyzvednutí rezervovat. Vedoucí Pavel Horák dodává, že vítá každé ďalší návrhy týkající se nákupu zboží pro amatérskou veřejnost a vynasnaží se s maximálním úsilím požadované zboží zajistit. Naše díky adresujeme do Pardubic, Palackého 580, PSČ 530 02, telefon 200 96.

Heřman, J.: BEZKONTAKTNÍ SPÍNÁNÍ. SNTL: Praha 1975. Knižnice Polovodičová technika, sv. 5. 224 stran, 171 obr., 15 tab. Cena váz. 17 Kčs. Vydání 2., dopiněné.

V publikaci jsou popsány principy, součástky a obvody, používané v technice bezkontaktního spínání, se zaměřením na silnoproudou elektrotechniku. V úvodní části se čtenář seznámí s různými druhy výkonových polovodičových součástek od plošné diody až po diak a triak. U každé součástky je

schematicky znázorněna její struktura, uveden symbol používaný pro její označení, popsány základní fyzikální vlastnosti a činnost součástky a definice jejích elektrických parametrů. O speciálních druzích součástek (např. o výkonových hybridních modulech, optoelektronických členech apod.) se autor zmiňuje pouze informativně. Třetí kapitola je věnována základním problémům bezkontaktního spínání, fyzikálním jevům v součástkách, ztrátám a chlazení, použití různých typů spínačů apod. V dalších dvou kapitolách jsou popsány různé způsoby použití polovodičových součástek pro spínání jednak stejnosměrného, jednak střídavého proudu. Šestá kapitola je věnována problémům, souvisícím s provozem polovodičových spínacích prvků: ochraně proti přepětí, nadproudu, popř. proti rychlým časovým změnám proudu a napětí. Autor se zmíňuje též o rušení rozhlasového příjmu a o vzájemném ovlivňování. obvodů spínacích zařízení. Sedmá kapitola je určena konstruktérům; je v ní vysvětlen postup návrhu různých obvodů pro bezkontaktní spínání s příklady výpočtu. Dále uvádí autor zásady konstrukčního řešení a popisuje několik typů zařízení různých výrobců; základní údaje jsou doplněny fotografiemi spínačů. V poslední části knihy je zajímavé poro-vnání základních vlastností bezkontaktních a kontaktních spínačů z hlediska technického a ekonomického. K obiasnění výhod popř. nevýhod bezkontaktních spínačů slouží i několik příkladů jejich praktického použití, uvedených v závěru. Text je doplněn bohatým výčtem domácí i zahraniční literatury, věcným rejstříkem, obrázky a tabulkami.

Publikace je určena konstruktérům a pracovníkům v průmyslu, zabývajícím se regulační a spínací technikou. Ačkoti je výklad zaměřen na silnoproudou techniku, může v knize najít poučení i pracovník jiného odvětví elektrotechniky, zejména při řešení napájecích zdrojů, regulátorů a různých obvodů impulsové techniky.

Havlíček, M. a kolektiv: ROČENKA SDĚLOVACÍ TECHNIKY 1976. SNTL: Praha 1975. 336 stran, 182 obr., 20 tab., 1 příloha. Cena váz. 26 Kčs.

Osmnáctý ročník ročenky přináší ve dvanáctí kapitolách opět nejrůznější aktuální informace z oblasti sdělovací techniky. Protože většina čtenářů zná předchozí ročníky, není nutné zmiňovat se o způsobu, jakým je tento soubor každoročně doplňován. Uspořádání textu i obsahu kapitol zůstalo stejné jako v minulých letech.

Všimneme si radějí nejzajímavějších částí obsahu. V první kapitole jsou to právní předpisy pro zavádění měrové soustavy SI (na jiném místě ročenky je přehled nových jednotek) a nový rozhlasový a televizní řád, platný od 1. 4. 1974 (jsou v něj údaje o evidenci rozhlasových a televizních přijímačů, o poplatcích, popř. o osvobození od poplatků za přijímače). Z technických článků je zajímavý přehled vlastností nelineárních polovodičových odporů, dále základy gramofonového záznamu a reprodukce a několik stručných návodů ke stavbě jednoduchých elektronických přístrojů. Z informací o součástkách a materiálech jsou to údaje o miniaturních přepína-čích a některých dalších výrobcích n. p. TESLA Lanškroun a přehled vlastností nejpoužívanějších moderních izolačních materiálů. V kapitole "Stavba, opravy a úpravy přístrojů" je např. poučení o tom, jak zacházet s pouzdry integrovaných obvodů, popis různých drobných pomůcek a další praktické rady. V části věnované technické literatuře a odbornému názvosloví bude čtenáře zajímat názvosloví ploš-ných spojů (je uvedeno formou uceleného článku, popisujícího základy této technologie) a seznám vybraných mezinárodních zkratek ze sdělovací techniky

Ze souboru informací, obsažených v ročence, zde uvádím pouze malou část; i když žádná z kapitol nevyčerpává (a vzhledem k návaznosti ročníků ani nemůže vyčerpat) alespoň ucelený dílčí úsek daného tématu, bude jistě tato publikace dobrou pomůckou jak těm, kdo předchozí ročníky mají, tak zájemcům, kteří si letos zakoupí ročenku poprvé.

Na závěr ještě poznámka: cena publikace se zdá být příliš vysoká, porovnáme-li ji např. s Ročenkou sdělovací techniky 1966 (ta vyšla v nákladu větším o 10 %, rozsah byl také asi o 10 % větší, letošní ročenka je však o 30 % dražší), ale i s jinými odbornými publikacemi, bereme-li v úvahu i obsahovou náplň. Je otázka, zda by nebylo výhodné vydávat ročenku ve větším nákladu a tedy levnější; cena může mnohého zájemce odradit.

Radio (SSSR), č. 11/1975

Problémy řízení dispečerských sítí – Keramické kondenzátory – Zkoušecí stroj s MTCH90 – Retranslační stanice – Přijímač pro KV – Parametry amatérských přijímačů – Krystalové indikátory vlhkosti plynů – Digitální hodiny – Oddělovač synchronizačních impulsů – Zesilovač pro estrádní soubory – Amatérský magnetoton – Magnetoton Jauza 212 – Zapojení pro zvětšení vstupního odporu voltmetrů – Zapojení s integrovaným obvodem K1LB553 – Periodický spínač pro dekorační osvětlení – Měřicí sondy – Mikrofony – Rubriky.

Radio, Fernsehen, Elektronik (NDR), č. 21/1975

Desetibitový analogově číslicový převodník s automatickou korekcí nuly – A211D, integrovaný ní zesilovač 1 W – Jednoduchý korelátor pro potlačení vlivu poruch – Měřicí přístroje (34), hradlo B-3206.010 – Měřicí přístroje (35), tiskárna naměřených hodnot S-3291.000 – Pro serviš – Lipský podzimní veletrn 1975 – Cestovní přijímač Stern Contura 2500 pro příjem signálů AM a FM.

Radio, Fernsehen, Elektronik (NDR), č. 22/1975

Hybridní vidíkon s terčíkem s křemíkovými diodami, nová snímací elektronka – Rozhlas s poznávacím kmitočtem – Novinky u rozhlasových přijímačů – Cestovní přijímač Stern Contura 2500 – Informace o součástkách (4), tlustovrstvový odporový trimr – Pro servis – Stabilizace napětí Zenerovými diodami – Generátor impulsů synchronizovaných sítí pro analogově číslicový převodník s dvojitou integrací (dual-slope) – Násobení kmitočtu obvody TTL – Orientační boje s obvody TTL.

Radioamator i krótkofalowiec (PLR), č. 12/1975

Nové výrobky z domova i ze zahraničí – Stereofonie (11), problémy kvadrofonie – Tyristory malého výkonu typu BTP polské výroby – Generátory kmitočtu se smyčkou fázové synchronizace – Obsah ročníku 1975 – Soupravy stereofonních reprodukčních zařízení polské výroby – Stabilizace pracovních bodů tranzistorů – Automatické vypínání TV přijímače po skončení pořadu – Rubriky.

Radioamater (Jug.), č. 12/1975

Moderní zařízení pro pásma UKV (1), přijímače – Dálkové řízení modelů světlem – Televizní tenis (2) – Jednoduchý nl kompresor – O aktivních filtrech – Časové spínače (2) – Obsah ročníku 1975 – Převodník desetinného kódu na binární – Škola radiového konstruktéra (7), napájecí zdroje – Integrované obvody ze závodu Iskra – Rubriky – Zprávy z IARU.

Radio, televízija, elektronika (BLR), č. 9/1975

Kosmické spoje – Nový vysílač pro 2. TV program na vrchu Botev – 31. mezinárodní veletrh v Plovdívu – Televizní vysílač pro druhý program – Televizní servisní generátor – Anténa pro přijem televizního signálu v pásmu dm vln – Univerzální zkoušečka pro součástky a plošné spoje – Použití tranzistorů řízených polem v impulsních obvodech – Jakostní stereofonní zesilovač 2 × 20 W – Rádiová stanice LEN pro pásmo 50 MHz – Mikroelektronika, operační zesilovače – Konkurs na amatérské elektronické konstrukce – Elektronický zámek – Parametry a použití fotonky 1PP75 – Zapojení pro stabilizaci napájecích napětí a jištění – Barevná hudba – Způsob vytváření přesných kmitočtových spekter – Regulátor teploty s tyristorem – Rubriky.

Rádlótechnika (MLR), č. 12/1975

Integrovaná elektronika (36) – Zajímavá zapojení – Vlastnosti tranzistorů UJT (12) – Automatický vysílač pro lišku (4) – Amatérská zapojení – Vf výkonové zesilovače s tranzistory (5) – Tranzistorová kamera pro SSTV (3) – Pro začátečníky: koncový stupeň audionu – Rozdělení amatérských pásem KV – Řídicí obvody vychylovacích stupňů TVP – Blikač pro brzdová světla – TV servis – Moderní obvody elektronických varhan (3) – Napájecí zdroj s proudovou pojistkou – Měření s osciloskopem (27) – Tranzistorové výkonové zesilovače (3) – Zkušenosti s digitálním /O SN7404N – Obsah ročníku 1975.

Rádiótechnika (MLR), č. 1/1976

Zajímavá zapojení – Integrovaná elektronika (37) – Vlastnosti tranzistorů UJT (13) – Automatický vysílač pro lišku (5) – Kodér pro značky Morseovy abecedy – Amatérská zpojení – Ví výkonové zesilovače s tranzistory (6) – Pro začátečníky: koncový stupeň audionu (2) – Připravujeme se na zkoušky amatérů – TV servis – Řídicí obvody vychylovacích stupňů TVP (2) – Moderní obvody elektronických varhan (4) – Měření s osciloskopem (28) – ozvučení diaprojektoru – Nř předzesilovač s integrovanými obvody – Zkušenosti s digitálním IO SN7404N (2).

Funktechnik (NSR), č. 20/1975

Zapojení pro dálkové řízení ultrazvukem s IO(2) – Nové schematické značky pro logické obvody – Nové rozdělení kmitočtů v pásmu SV a DV – Nové měřicí přístroje – Z výzkumu a vývoje – Pro dínu a servis – Nové součástky – Rozhlas a amatéři na berlínské výstavě 1975 – Servisní přístroje na výstavě v Berlíně – Magnetofony.

Funktechnik (NSR), č. 21/1975

Kombinace stereofonního přijímače s magnetofonem "compact-center 6002 hifi" firmy Telefunken – Elektronická střelnice – Kamera pró barevnou televizi s jednou snímací elektronkou – Krátké zprávy – Z výzkumu a vývoje – Integrované obvodý pro stabilizované zdroje – Pro dílnu a servis – Přehled nových přijímačů pro barevnou televizi.

Funktechnik (NSR), č. 22/1975

Vf cívky s velkým činitelem jakosti – Z vývoje a výzkumu – Amatérský přijímač pro pásmo 2 m – Televizní zkušební přijímač T 111 – Nové součástky – Nové servisní přístroje – Přehled nových výrobků: přijímače pro barevnou televizi, rozhlasové přijímače HI-Fi – Test gramofonových přístrojů.

: Funkamateur (NDR), č. 12/1975

Měřič rezonance "RUFG-4" firmy INCO – Regulace hlasitosti s tranzistorem MOSFET SMY50 – Výpočet filtru pilotního kmitočtu s velkou strmostí – Elektronický časový spínač pro dlouhé intervaly s digitálními integrovanými obvody – Univerzální čítač do 20 MHz – Automatické řízení citlivosti u přijímaču pro SSB – Algoritmus pro návrh logických zapojení – Jednoduchý přijímač pro hon na lišku pro začátečníky – Krystalem řízený zdroj kmitočtů se smyčkou PLL – Anténa typu Ground Plane pro tři pásma – Elektronické spínače ze stavebnice Amateurelektronik – Rubriky.

Radio (SSSR), č. 12/1975

Technika rádiového sportu (výstava) – Parametry amatérských přijímačů – Jednoduchý přijímač pro hon na lišku – Elektromechanický terč – Krátké informace o nových výrobcích spotřební elektroniky – Kanálový volič pro TVP – Přijímač do auta – Sestava zařízení fonoamatéra – Výhybka pro reproduktorové soustavy – Úprava magnetofonového doplňku Nota-303 pro čtyři stopy – Blok vibráta a tremola pro elektronické hudební nástroje – Ladění elektronických varhan Elektronium – Generátor pravoúhlých kmitů – Měřič kmitočtu s integrovanými obvody – Generátor rozmítaného kmitočtu – Měřicí technika na výstavě – Automatický nabíječ akumulátorů – Stabilizátor světla – Synchronizátor pro elektronické hodiny – Stabilizátory napětí s operačními zesilovačí – Úprava hodin na budík – Tranzistory KT909 a KT911 – O volbě výstupního výkonu nf zesilovače – Obsah ročníku 1975 – Rubriky.

ZĀVND

V květnu

se konají tyto soutěže a závody:

Datum	Cas (GMT)	Závod
0 -	•	
8. a	21.00.21.00	COLUB
9. 5.	21.00-21.00	CQ MIR
15. 5.	00.00-24.00	World telecom. day contest, část CW
<i>22. 5.</i>	00.00-24.00	World telecom. day contest, část fone
23.5.	00.00-01.59	
	02.00-03.59	
	04.00-05.59	Závod míru

INZERCE

První tučný řádek 20,40 Kčs, další 10,20 Kčs. Příslušnou částku poukažte na účet č. 300/036, SBČS Praha, správa 611 pro Vydavatelství Magnet, inzerce AR, 113 66 Praha 1, Vladislavova 26. Uzávěr-ka tohoto čísla byla 2. 2. 1976. Při inzerci neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Upozorňujeme všechny zájemce o inzerci, aby uváděli svoje poštovní směrovací číslo!

PRODEJ

Stereo gramo NC 110-1, 2×4 W (1 200), stereo mgf B43 (2 500), 2 reprosoustavy 10 W (4 Ω) (500) vše mahagon, zachovalé. Nahrané mgf pásky (100). Josef Novotný, 394 01 Rynárec 155 u Pelhřimova. Výkonově tranzistory Si 110 W, 2N3055 RCA i páro-

vané (à 90), FET BF245 (45), stab. napětí µA723 (100).

J. Zdeněk, Topolová 14/2916, 106 00 Praha 10. SI BSY90 (à 60), /O SN7474 (à 40); IO mf zesil. RCA CA3042 (50); MAA435 (à 25); potřebují krystal 1 MHz. František Strnadel, 698 01 Veselí na Mor., Hutník 1420.

Mf zesilovač 10.7 MHz P001A (250), 2 výkonové zesilovače 20 W podle RK 1/75 (à 700), 4 anglické digitrony (à 150). M. Gola, K. Gottwalda 45, 738 01 Frýdek-Mistek

Kazet. mgf Sputnik 401 (1000), VKV diel Selena (120), KT705 (120), GT322 (15), triál 3×450 pF (85), skriň Akcent (30), aku AgZn 12 Ah (30), mf cievky Selena (5). J. Lopušek, Teplická 746, 049 16 -Jelšava.

Zapojené desky osciloskopu podle AR 12/1969 (470). Koupím i nehrající "Menuet", "Doly", neb pod. do 200 Kčs, dále i vadné měřiče BM365 a 366. J. Vašíř, Družstevní 1375, 594 01 Velké Meziříčí.

Mf zesilovač s AFS, AR 5/74 (250). F. Šimčík, 687 51 Nivnice 862, okr. Uh. Hradiště. Nový přijímač Mars RX mini, úplně nový nepoužitý

voj. J. Hubka, VÚ 6991/3, 530 02 Pardubice. NICd 225 (9) Filip, Uhrova 14, 911 01 Trenčín.

Velmi kval. barevná hudba, Si tranzistory, tyristory,

3 kanály, 6 barev, každý kanál samost. regul. úrovně V kov. skříňce. Bez sv. panelu (880). Konvertor CCIR-OIRT, OIRT-CCIR (240). Nabíječka 6 až 12 V do 5 A, přep. proudy (550). Otáčkoměr do auta, pro všechny vozy s aku 12 V (490), bez měřidla (190). Vše kval. bezv. s dokument. Síř trafo 2×16 V, velmi vhod. pro nf. zesil., bar. hudbu, nabíječku motocykl. aku (pův. 190 za 80). Trato 6,3 V (35). Kvartál VKV (80). 2× MAA501 (à 90). Týden záruka. Ing. Tomíček, Slavičkova 4, 638 00 Brno

Páskový dálnopis, IO SL623, AM, SSB DET, AVC, gen. Plessey, krystal filtr.10,7 MHz 250 kHz Balan. směšovač s FET, ant. zesíl. s FET. Levně. J. Houdek, Fabiánova 1058, 150 00 Praha 5.

MH74141 - 4× (à 100), J. Trnka, Nám. Svobody 18, 602 00 Brno, tel. 236 77.

Kapesní kalkulačka, 8míst. displ. +, -,:, ×, % (2000), kazety C90 chromdioxid (120), Böhm Otto, Vančurova 12, 669 02 Znojmo.

St. mgf Sony TC133CS, 2 × 6 W + repro (6300). Jiří Pražák, Purkyňova 496, 547 01 Náchod.

2 tyristory 250 A/1000 V (1300), jen písemně. Fr. Balus, Gagarinova 387, 530 09 Pardubice. Mag. Sonet B3, oprava (500), tel. Orava 230, (2000),

fb stav, destičky TTR 1 (100), AR 72, 73, 74, 75 celé (à 40) F. Hloušek, Holasická 26, 747 05 Opava. Tyto součástky s 25% slevou: KF508 (à 16), KF517

(à 21), KFY16 (à 52), KFY18 (à 35), KD503 (à 190), KU602 (à 35), KU605 (à 95), KUV12 (à 120), 4NU72 (à 28), 3NU74 (à 70), KY723 (à 5), K. Kroc, 783 53 Velká Bystřice 438, okr. Olomouc.

Minikalkulátor (2800), PC4019 8miest. displ. +, -, :,

 $\times \frac{1}{x}, x^2, \sqrt{x}, \%$, DP, pamäť: M + M –, napajanie bat. alebo sief. Tież vymením za mgf B100. J. Engel, 920 01 Hlohovec, Vinohradská C-1/A.

Kvadro zesilovač 4 × 10 W (1600), zesilovač 100 W, 6 vstupů (1500), MH5472, 74 (50). V. Fridrich, Jiráskova 115, 389 01 Vodňany.

Stereopřijímač 810A, Hi-Fi, SP 201, ve výborném stavu (4100) a repro ARS811 3 I (a 2000), J. Kuchar-

Stav (1700) a 1910 Andolf 17 (a 200), 5. Rushal-čík, Konzumní 17/204, 736 01 Havířov 3. Amat. hudební skříň R + MG + TV (1200), F. Troják, V úžlabině 2049, 100 00 Praha 10.

KF517 (20), KF552 (45), MAA325 (20), KU611, 12 (25.

30), MH7400 (28), 10 ks KY723 (40), KY705 (7). Koupím smalt. dráty Ø 0,9 až 1,5. M. Vondra, S. K. Neumana 13, 180 00 Praha 8.

Komuník. příjímač Sony CRF150 (5800). M. Hof-mann, Ruská 77, 100 00 Praha 10.

mann, Huska 77, 100 00 Prana 10. **EF22, 6N8S, 6P3S, AF115** (9), 2N3055 (85), též pár. SN7400, 7475 25, (80), 7490, 74141 (95, 105), 7 seg. LED displ. červ. v = 8 mm – jedna čísl. (200), p-n-p BC308B (23), BC307 (28), nř nš: n-p-n BC417C (14), p-n-p BC416C (28), č. LED 2 × 2 mm (30). J. Hájek, Černá 7, 110 00 Praha 1.

Japonský nový nepoužitý přijímač Zn.: Trio Communicatin receiver 9R5905 s amplionem (6000), ing. B. Zajíc, Smetanovo nábř. 14, 110 00 Praha 1.

TIS43 (dvoubázová dioda UJT) (à 35). Josef Kolář, Sezimova 2063, 390 01 Tábor.
Tuner ST100 v záruce (3000). Vstup FM ZST 100

(400), MF zes.s AFS podle AR 5/75 (250), polovodičové obsazení zes. 2 × 50 W z přílohy AR i s chladiči (2100), KU601, 605, 608 (25, 90, 110), MAA501 (125), BF272 (90), M47474 (75), J. Šmíd, Jerevanská 8. 100 00 Praha 10, tel. 73 79 00 5, večer.

Osciloskop Tesla TM694 (900). J. Týfa, Svornosti 23, 150 00 Praha 5.

 $2 \text{ ks zesilovače TW3 } 2 \times 10 \text{ W}$ bez osazení, jinak komplet ve skříňce, (500). S. Weingärtner, Novákových 7, 180 00 Praha 8.

KOUPĚ

Tranzistorové rádio BANGA i nehrající, výrobek USSR, M. Langfelner, Horská 85, 541 02 Trutnov. 282QQ52 a televizor Camping i bez obrazovky. L. Dubný, V. Dlážka 2779, 750 00 Přerov.

Odpory 100, 1k, 10k, M1, 1M/0,5W-1 % a Icomet nebo jiný RLC most. Ívan Urban, Famírova 56, 318 11

Nutně AR 12/1969 – 8, 12/1970, – 1, 5, 8/1971, 1974 celý ročník – 1/1975. Všechna čísla i s přílohou. F. Lopata, 338 21 Osek u Rokycan 195.

Dynamický omezovač šumu podle AR 8/75 k stereomagn. Sony. TC160. Jar. Šesták, Jiráskova 1, 690 00 Břeclav

Měř. přístroj AVOMET II (DU 10, 20), dobře zaplatím. M. Mazůrek, Belojanise 699, 686 00 Uh. Hradiště.

Knihu ing, Karel Tměj: Elektrárny na stožárech vyd. 1945. Variatory 1A 15-50 V, 3 ks, 1,4A 20-60 V2 ks, HaZ 3/67; KV 1/74; ST 7,8/60; 1, 2, 3, 4, 5, 6, 7, 8, 9, 12/68; 3, 4, 5, 6, 7, 8, 11, 12/69; 1, 2, 11, 12/70; celý ročník 71; 2/72 alebo vymením za iné čís. ST a AR. Otto Krása, Nár. povst. 2, 900 01 Modra. DU10 (Avomet II) i mírně poškozený. Libor Polan

Tržiště 9, 390 01 K. Vary.

Konvertor laditelný pro II. TV program (kanál 22) autodržák na Carinu. J. Bulant, Lešov 4, 393 01 Pelhřimov.

Jazýč, relé - kontakty. A. Vogel, Havlín 38, 671 69 Znoimo.

Lad. Konvertor Tesla 4952A-b. P. Voříšek, Na

dlouhých 25, 312 06 Plzeň 12. Miniat. jap. mt (460 kHz) – 2 sady; AR kompl. roč. 70-73, č. 1, 2, 3, 4/74; Krystal 26635 MHz. lng. J.

Staněk, Heyrovského 1577, 708 00 Ostrava 4. DU10, DHR5 nebo MP80 rozs. 0 až 100 µA Vlad. Malý, Divišova 596, 251 61 Uhříněves.

AR 1, 2, 3, 5/73; 4/74; RK 1, 2/73, F. Bůžek, Kosmonautů 191, 530 09 Pardubice. "Tesla Color" z 1. série t. j. so 6 kanál. voliči môže

byť i pokazený i bez obrazovky, za primeranú cenu. Ján Stuchlý, 932 01 Čalovo 1233.

Perličkový termistor 14NR15 (s odp. 80 až 100 kΩ), jen bezvadný (100), Boh. Unger, 261 01 Přibram 1/175

PU120 alebo AVOMET. R. Hučko, Zápotockého 85/2, 915 01 Nové Mesto nad Váhom

EZ6, MwEc, DU10 poškozený, Z1081, Z571M, písemně popis, cena. Vlček, Koněvova 249, 130 00

Keramický filtr SFW (SFG) 10,7 MA, varikapy KB105G kvartál nebo jakost, náhradu. M. Karban, Jerevanská 5, 100 00 Praha 10, tel. 73 28 01.

RŮZNÉ

Nabízím 21 ročníků AR komplet nevázané od r. 1955 do r. 1975. Ročník a 25 Kčs, i některá starší čísla, případně další radioamatérskou literaturu. M. Zelinka, 513 01 Semily 62.

Geofyzikální ústav ČSAV, lonosférická observatoř v Panské Vsl u Dubé, PSČ 471 41, okr. Česká Lípa, hledá pro příjem a zpracování telemetrie z družic (s užitím minipočítače) 1 technika – inženýra (slaboproud - počítače), 1 operátora - absolventa SPŠE, příp. i SVVŠ. Nabídky na shora uvedenou adresu.

VÝMĚNA

- taly 100 kHz až 30 MHz za číslicové IO. Fr. Sýkora, Volšovská 859/2, 342 01 Sušice.

IDEÁLNÍ STAVEBNÍ PRVEK

pro elektroniku a přesnou mechaniku

KOVOVÉ PŘÍSTROJOVÉ KNOFLÍKY K 186 a K 184 na hřídele Ø 6

na hřídele Ø 6 a 4 mm

- pro přístroje HIFI-JUNIOR
- pro elektronická měřidla
- pro mechanické aplikace
- pro jiné zesilovače a tunery
- pro amatérské experimenty -
- náhrada nevhodných knoflíků

Základní těleso z polomatného legovaného hliníku má vroubkovaný obvod pro lehké, ale spolehlivé uchopení. Robustní stavěcí šroub M4 zajišťuje pevné spojení bez prokluzu i na hladkém hřídeli bez drážky. Ani při silovém utažení knoflík nepraská, jak se to stává u výrobků z plastických hmot. Zvýšená středová patka se opírá o panel a vymezuje mezeru 1 mm mezi panelem a obvodem černého kónického indikačního kotouče. Bílá ryska na kotouči (je o 180° proti šroubu) tak umožňuje snadno a bez paralaxy rozeznávat nastavenou informaci. Moderní, technicky střízlivý vzhled a neutrální kombinace přírodního hliníku s černou a bílou dovolují použít tyto knoflíky v libovolně tvarovaném i barevném prostředí.

MALOOBCHODNÍ CENA ZA 1 ks: Prodej za hotové i poštou na dobírku. Prodej za OC i VC (bez daně). Dodací Ihůty: Do 200 ks ihned ze skladu, větší počty a prodej za VC na základě HS.

obchodní	určeno	číslo	číslo`
označení	pro hřídel	výkresu	jednotné klasifikace
K 186	Ø6 mm	992 102 001	384 997 020 013
K 184	Ø4 mm	992 102 003	384 997 020 014

podnik ÚV Svazarmu Ve Smečkách 22, 110 00 Praha 1

telefon: prodejna 24 83 00 odbyt (úterý a čtvrtek): 24 76 73

telex: 121601

nabízejí

a měřicí přístroje

PRO PODNIKY A ORGANIZACE prodej za velkoobchodní ceny – na faktury. Pište nebo navštivte tato oddělení:

- Praha 1, Karlova ul. 27 (roh Malého nám.), tel 26 21 14.
 Radio materiál: potenciometry, kondenzátory, odpory.
 Měřici přístroje pro elektroniku tel. 26 29 41.
 Praha 2, Karlovo nám. 6 (Václavská pasáž), tel. 29 28 51-8, linka 329. Vakuová technika a polovodiče: obrazovky, elektronky, diody, tyristory, diaky, triaky, tranzistory a integrované obvody.

PRO JEDNOTLIVCE - RADIOAMATÉRY A KUTILY, ale i pro podniky a organizace prodej též za maloobchodní ceny, za hotové, šeky a faktury. Široký sortiment součástek a náhradnich dílů obdržíte ve specializovaných prodejnách TESLA:

Praha 1, Martinská 3 @ Praha 1, Dlouhá 36 @ Pardubice, Palackého 580 (i na dobírku) @ Hradec Králové, Dukelská 7 @ Č. Budějovice, Jirovcova 5 @ Plzeň, Rooseweltova 20 @ Cheb, tř. ČSSP 26.