SMAI - Mini Project -1 - Report Rollno: 20161163

METHOD OF PCA:

```
# PCA Algo
def pca(imlist):
    X = find X(imlist)
    no img, dim = X.shape
    mean X = X.mean(axis = ∅) #Mean Image
    X = X - mean X
    Xtr = np.transpose(X)
    if dim > no img:
    M = np.dot(X,Xtr)
    e, EV = np.linalg.eigh(M)
    EV = np.transpose(EV)
    tmp = np.transpose(np.dot(Xtr, EV))
    V = tmp[::-1]
    e = e[::-1]
    for i in range(V.shape[1]):
         V[:,i] /= np.linalg.norm(V[:,i])
    else:
    U,S,V = np.linalg.svd(X)
    V = V[:num data]
    return X, V,e,mean X
```

The above code snippet gives an idea of the PCA algorithm used Here as the number of features are more than dimensions, the trick of inverting matrices has been used.

TOP 3 eugen features:

The mean image and the eigen features have been observed as above

Plots:

1. 1D Decomposition

2. 2D Decomposition

3D Decomposition

It can be observed that the feature points are becoming more widely spread

Variance versus number of principal components:

Due to the variances being of the order of 10¹⁰. The graph has been scaled on the Y-axis.

The change in the variance is negligible when compared to the magnitude of variance itself and hence the graph shows only an appreciable amount of increase

