

DUAL J-K FLIP FLOP WITH PRESET AND CLEAR

- HIGH SPEED
- $f_{MAX} = 67 \text{ MHz} (TYP.) \text{ AT V}_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 2 \mu A AT T_A = 25 \degree C$
- HIGH NOISE IMMUNITY
- V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
 OUTPUT DRIVE CAPABILITY
- 10 LSTTL LOADS
 SYMMETRICAL OUTPUT IMPEDANCE
 ||OH| = |OL| = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS112

DESCRIPTION

The M54/74HC112 is a high speed CMOS DUAL J-K FLIP-FLOP WITH PRESET AND CLEAR fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true **CMOS** low power consumption. The M54HC112/M74HC112 dual JK flip-flop features individual J, K, clock, and asynchronous set and clear inputs for each flip-flop. When the clock goes high, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will function as shown in the truth table. Input data is transferred to the input on the negative going edge of the clock pulse. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

October 1992 1/11

TRUTH TABLE

		INPUTS			OUTI	PUTS	FUNCTION
CLR	PR	J	K	CK	Ø	q	TONCTION
L	Н	Χ	Χ	Χ	L	Н	CLEAR
Н	L	Х	Χ	Χ	Н	L	PRESET
L	L	Х	Х	Χ	Н	Н	
Н	H	L	Ш		Qn	Qn	NO CHANGE
Н	Н	Н	L		Н	L	
Н	Η	L	Ι		Ш	Н	
Н	Η	Н	Ι		I _Q n	Q_n	TOGGLE
Н	Η	Х	Х		Qn	Qn	NO CHANGE

X: Don't Care

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 13	1CK, 2CK	Clock Input (HIGH to LOW edge triggered)
2, 12	1K, 2K	Data Inputs: Flip-Flop 1 and 2
3, 11	1J, 2J	Data Inputs: Flip-Flop 1 and 2
4, 10	1PR, 2PR	Set Inputs
5, 9	1Q, 2Q	True Flip-Flop Outputs
6, 7	1\overline{Q}, 2\overline{Q}	Complement Flip-Flop Outputs
15, 14	1 <u>CLR,</u> 2CLR	Reset inputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

LOGIC DIAGRAM (1/2 Package)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	٧
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	O°
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V	
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ပိုဂိ
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	V _{CC}			T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	5
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI –	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		lo=-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
Ιι	Input Leakage Current	6.0	V _I = '	$V_I = V_{CC}$ or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			2		20		40	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test	t Conditions	Value							
Symbol	Symbol Parameter	Vcc			A = 25 °C and 7			85 °C HC			
	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{TLH}	Output Transition	2.0			30	75		95		110	
t_{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			52	125		155		190	
t_{PHL}	Delay Time	4.5			16	25		31		38	ns
	(CK - Q, Q)	6.0			14	21		26		32	
t _{PLH}	Propagation	2.0			68	135		170		205	
t_{PHL}	Delay Time	4.5			17	27		34		41	ns
	$(\overline{CLR}, \overline{PR} - Q, \overline{Q})$	6.0			14	23		29		35	
f_{MAX}	Maximum Clock	2.0		8	16		6.4		5.4		
	Frequency	4.5		40	68		32		27		MHz
		6.0		47	79		38		32		
t _{W(H)}	Minimum Pulse	2.0			20	75		95		110	
$t_{W(L)}$	Width	4.5			5	15		19		22	ns
	(CLOCK)	6.0			4	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			20	75		95		110	
	Width	4.5			5	15		19		22	ns
	(CLR, PR)	6.0			4	13		16		19	
ts	Minimum Set-up	2.0			28	75		95		110	
	Time	4.5			7	15		19		22	ns
		6.0			6	13		16		19	
th	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	ns
		6.0				0		0		0	
t _{REM} Minimum	2.0			24	50		60		70		
	Removal Time	4.5			4	10		12		14	ns
	(CLR, PR)	6.0			3	9		10		12	
C _{IN}	Input Capacitance		-		5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				33						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/2$ (per FLIP/FLOP)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm				
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

