Les variables booléennes

Capacités attendues

• Dresser la table d'une expression booléenne.

.....

Définition

Un booléen est une variable informatique qui ne peut prendre que deux valeurs : True ou False.

Un booléen est représenté en machine par un bit, qui vaut :

- 1 pour la valeur True;
- 0 pour la valeur False.

Il existe trois opérations élémentaires sur les booléens : disjonction, conjonction et négation.

• La disjonction de A et B est notée A or B.

 $A \ \mathrm{or} \ B$ vaut True si et seulement si A vaut True ou B vaut True.

A	B	A or B
0	0	0
0	1	1
1	0	1
1	1	1

• La conjonction de A et B est notée A and B. A and B vaut True si et seulement si A vaut True et B vaut True.

A	В	A and B
0	0	0
0	1	0
1	0	0
1	1	1

• La **négation** de A est notée $\cot A$ ou encore \overline{A} . \overline{A} vaut True si et seulement si A vaut False.

A	$\mathtt{not}\ A$
0	1
1	0

Définition

Une expression booléenne est une combinaison d'opérations élémentaires (or, and, not) portant sur une ou plusieurs variables booléennes.

Exercice 1

Compléter les égalités suivantes.

$$A \text{ or } A = \dots \qquad A \text{ and } A = \dots \qquad \operatorname{not} \left(\operatorname{not} A \right) = \dots \qquad A \text{ or } \left(\operatorname{not} A \right) = \dots \qquad A \text{ and } \left(\operatorname{not} A \right) = \dots$$

Exercice 2 Formules de Morgan

1. Compléter les tables de vérité ci-dessous.

A	В	$A ext{ or } B$	\overline{A} or \overline{B}	A	В	\overline{A}	\overline{B}	\overline{A} and \overline{B}
0	0			0	0			
0	1			0	1			
1	0			1	0			
1	1			1	1			

- 2. En déduire que \overline{A} or $\overline{B} = \overline{A}$ and \overline{B} .
- 3. Montrer de même que \overline{A} and $\overline{B} = \overline{A}$ or \overline{B} .

Exercice 3

1. Dresser la table de vérité de l'expression $S=(A \text{ or } B) \text{ and } (\overline{A} \text{ or } B).$

A	В	$A ext{ or } B$	\overline{A}	$(\overline{A} \text{ or } B)$	S
0	0				
0	1				
1	0				
1	1				

2. Quelle égalité booléenne peut en déduire ?

Exercice 4

Dresser la table de vérité de l'expression S = (A and B) or (A and not C) or (not B and C).

A	В	C	$A \; \mathtt{and} \; B$	A and not C	$\verb"not"B \verb" and"C$	S
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Exercice 5

On donne ci-dessous les tables de vérité de différentes expressions booléennes U, V et W.

Retrouver les expressions de U, V et W en fonction de A et B.

A	B	U
0	0	0
0	1	0
1	0	1
1	1	0

A	B	V
0	0	1
0	1	0
1	0	0
1	1	0

A	B	W
0	0	1
0	1	0
1	0	1
1	1	0

Proposition (non exigible)

Appelons monôme une expression ne comportant que des conjonctions de variables ou de leur négation. Par exemple, A and \overline{B} , \overline{A} and \overline{B} , A and \overline{B} and C, A sont des monômes.

Alors, étant donnée une expression booléenne, il est toujours possible de la transformer en une disjonction de monômes : cette écriture est appelée forme normale disjonctive.

Exercice 6

L'opération « ou exclusif », noté xor , est défini par A xor B=(A or B) and \overline{A} and \overline{B} .

- 1. Dresser la table de vérité de l'expression $A \times B$.
- 2. En déduire la forme normale disjonctive de $A \times B$.

Exercice 7

On donne ci-dessous les tables de vérité de différentes expressions booléennes U, V et W.

Retrouver les expressions de U, V et W en fonction de A et B et C.

A	B	C	U
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

A	B	C	V
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A	B	C	W
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0
'	· •	'	0

Exercice 8 QCM

Si A et B sont des variables booléennes, quelle est l'expression booléenne équivalente à (not A) or B?

- (A and B) or (not A and B) or (not A and not B)
- (A and B) or (not A and B)
- (not A and B) or (not A and not B)
- (A and B) or (not A and not B)