Midterm

October 24, 2022

1 STA4364 Midterm Exam

Matthias Rathbun 10/24/2022

1.1 Import Libraries

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import statsmodels.api as sm
     import statsmodels.formula.api as smf
     from statsmodels.tools.tools import maybe_unwrap_results
     from statsmodels.graphics.gofplots import ProbPlot
     from statsmodels.stats.outliers_influence import variance_inflation_factor
     import statsmodels
     from typing import Type
     import missingno as msno
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import PolynomialFeatures
     from sklearn_pandas import DataFrameMapper
     from sklearn.metrics import mean_squared_error
```

1.2 Regression Diagnostic Class

```
def __init__(self,
                 results: Type[statsmodels.regression.linear_model.
→RegressionResultsWrapper]) -> None:
       For a linear regression model, generates following diagnostic plots:
       a. residual
       b. qq
       c. scale location and
       d. leverage
       and a table
       e. vif
       Args:
            results \ (\textit{Type} [stats models.regression.linear\_model.
\rightarrow RegressionResultsWrapper]):
                must be instance of statsmodels.regression.linear_model object
       Raises:
            TypeError: if instance does not belong to above object
       Example:
       >>> import numpy as np
       >>> import pandas as pd
       >>> import statsmodels.formula.api as smf
       \Rightarrow \Rightarrow x = np.linspace(-np.pi, np.pi, 100)
       >>> y = 3*x + 8 + np.random.normal(0,1, 100)
       >>> df = pd.DataFrame({'x':x, 'y':y})
       >>> res = smf.ols(formula= "y ~ x", data=df).fit()
       >>> cls = Linear_Reg_Diagnostic(res)
       >>> cls(plot_context="seaborn-paper")
       In case you do not need all plots you can also independently make an_{\sqcup}
\rightarrow individual plot/table
       in following ways
       >>> cls = Linear_Reg_Diagnostic(res)
       >>> cls.residual_plot()
       >>> cls.qq_plot()
       >>> cls.scale_location_plot()
       >>> cls.leverage_plot()
       >>> cls.vif_table()
       11 11 11
```

```
if isinstance(results, statsmodels.regression.linear_model.
→RegressionResultsWrapper) is False:
           raise TypeError("result must be instance of statsmodels.regression.
→linear_model.RegressionResultsWrapper object")
       self.results = maybe_unwrap_results(results)
       self.y_true = self.results.model.endog
       self.y_predict = self.results.fittedvalues
       self.xvar = self.results.model.exog
       self.xvar_names = self.results.model.exog_names
       self.residual = np.array(self.results.resid)
       influence = self.results.get_influence()
       self.residual_norm = influence.resid_studentized_internal
       self.leverage = influence.hat_matrix_diag
       self.cooks_distance = influence.cooks_distance[0]
       self.nparams = len(self.results.params)
   def __call__(self, plot_context='seaborn-paper'):
       # print(plt.style.available)
       with plt.style.context(plot_context):
           fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10,10))
           self.residual_plot(ax=ax[0,0])
           self.qq_plot(ax=ax[0,1])
           self.scale_location_plot(ax=ax[1,0])
           self.leverage plot(ax=ax[1,1])
           plt.show()
       self.vif_table()
       return fig, ax
   def residual plot(self, ax=None):
       Residual vs Fitted Plot
       Graphical tool to identify non-linearity.
       (Roughly) Horizontal red line is an indicator that the residual has a_{\sqcup}
\hookrightarrow linear pattern
       if ax is None:
           fig, ax = plt.subplots()
       sns.residplot(
           x=self.y_predict,
           y=self.residual,
```

```
lowess=True,
           scatter_kws={'alpha': 0.5},
           line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8},
           ax=ax)
       # annotations
       residual_abs = np.abs(self.residual)
       abs_resid = np.flip(np.sort(residual_abs))
       abs_resid_top_3 = abs_resid[:3]
       for i, _ in enumerate(abs_resid_top_3):
           ax.annotate(
               xy=(self.y_predict[i], self.residual[i]),
               color='C3')
       ax.set_title('Residuals vs Fitted', fontweight="bold")
       ax.set_xlabel('Fitted values')
       ax.set_ylabel('Residuals')
       return ax
   def qq_plot(self, ax=None):
       11 11 11
       Standarized Residual vs Theoretical Quantile plot
       Used to visually check if residuals are normally distributed.
       Points spread along the diagonal line will suggest so.
       if ax is None:
           fig, ax = plt.subplots()
       QQ = ProbPlot(self.residual_norm)
       QQ.qqplot(line='45', alpha=0.5, lw=1, ax=ax)
       # annotations
       abs_norm_resid = np.flip(np.argsort(np.abs(self.residual_norm)), 0)
       abs_norm_resid_top_3 = abs_norm_resid[:3]
       for r, i in enumerate(abs_norm_resid_top_3):
           ax.annotate(
               i.
               xy=(np.flip(QQ.theoretical_quantiles, 0)[r], self.
→residual norm[i]),
               ha='right', color='C3')
       ax.set_title('Normal Q-Q', fontweight="bold")
       ax.set_xlabel('Theoretical Quantiles')
       ax.set_ylabel('Standardized Residuals')
       return ax
```

```
def scale_location_plot(self, ax=None):
       Sqrt(Standarized Residual) vs Fitted values plot
       Used to check homoscedasticity of the residuals.
       Horizontal line will suggest so.
       if ax is None:
           fig, ax = plt.subplots()
       residual_norm_abs_sqrt = np.sqrt(np.abs(self.residual_norm))
       ax.scatter(self.y_predict, residual_norm_abs_sqrt, alpha=0.5);
       sns.regplot(
           x=self.y_predict,
           y=residual_norm_abs_sqrt,
           scatter=False, ci=False,
           lowess=True,
           line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8},
           ax=ax)
       # annotations
       abs_sq_norm_resid = np.flip(np.argsort(residual_norm_abs_sqrt), 0)
       abs_sq_norm_resid_top_3 = abs_sq_norm_resid[:3]
       for i in abs_sq_norm_resid_top_3:
           ax.annotate(
               i.
               xy=(self.y_predict[i], residual_norm_abs_sqrt[i]),
               color='C3')
       ax.set_title('Scale-Location', fontweight="bold")
       ax.set_xlabel('Fitted values')
       ax.set_ylabel(r'$\sqrt{|\mathrm{Standardized\ Residuals}|}$');
       return ax
   def leverage_plot(self, ax=None):
       Residual vs Leverage plot
       Points falling outside Cook's distance curves are considered.
⇒observation that can sway the fit
       aka are influential.
       Good to have none outside the curves.
       if ax is None:
           fig, ax = plt.subplots()
```

```
ax.scatter(
           self.leverage,
           self.residual_norm,
           alpha=0.5);
       sns.regplot(
           x=self.leverage,
           y=self.residual_norm,
           scatter=False,
           ci=False,
           lowess=True.
           line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8},
           ax=ax)
       # annotations
       leverage_top_3 = np.flip(np.argsort(self.cooks_distance), 0)[:3]
       for i in leverage_top_3:
           ax.annotate(
               i,
               xy=(self.leverage[i], self.residual_norm[i]),
               color = 'C3')
       xtemp, ytemp = self.__cooks_dist_line(0.5) # 0.5 line
       ax.plot(xtemp, ytemp, label="Cook's distance", lw=1, ls='--',__

¬color='red')
       xtemp, ytemp = self.__cooks_dist_line(1) # 1 line
       ax.plot(xtemp, ytemp, lw=1, ls='--', color='red')
       ax.set_xlim(0, max(self.leverage)+0.01)
       ax.set_title('Residuals vs Leverage', fontweight="bold")
       ax.set_xlabel('Leverage')
       ax.set_ylabel('Standardized Residuals')
       ax.legend(loc='upper right')
       return ax
   def vif_table(self):
       VIF table
       VIF, the variance inflation factor, is a measure of multicollinearity.
       VIF > 5 for a variable indicates that it is highly collinear with the
       other input variables.
       11 11 11
       vif_df = pd.DataFrame()
       vif df["Features"] = self.xvar names
       vif_df["VIF Factor"] = [variance_inflation_factor(self.xvar, i) for i
→in range(self.xvar.shape[1])]
```

```
print(vif_df
                                                                             .sort_values("VIF Factor")
                                                                             .round(2))
                                def __cooks_dist_line(self, factor):
                                               Helper function for plotting Cook's distance curves
                                              p = self.nparams
                                               formula = lambda x: np.sqrt((factor * p * (1 - x)) / x)
                                               x = np.linspace(0.001, max(self.leverage), 50)
                                               y = formula(x)
                                               return x, y
               1.3 Import and Clean Data
[3]: df = pd.read_csv("midterm_data_1.csv", index_col = "row")
                  df = df.dropna()
                  df['feat.c'] = df['feat.c'].astype(int)
                  df = df.rename(columns={"feat.a": "A", "feat.b": "B", "feat.c":"C", "feat.d":
                    \label{eq:continuous} \begin{subarray}{ll} \begin
                  df.head()
                                                                                                                                         B C
                                                                                                                                                                                        D
                                                                                                                                                                                                                            Ε
                                                                                                                                                                                                                                                                    F G \
                                       response
                                                                                                     Α
                 row
                                        1.658814 -0.879361 -2.297552 2 -2.052926 -1.458801
                  1
                                                                                                                                                                                                                                           6.463630
                                    10.691572 1.550930 -2.332102 4 1.110204 -1.744876 -11.834376
                  2
```

```
[3]:
    3
         32.508862 -1.506886 -5.306166 1 -1.814569 -3.747318 -18.031607
         37.747154 5.785842 -3.683903 2 6.453664 -3.645221 -10.534296
    4
         18.072661 1.988523 -3.895907 2 1.600221 -1.874998 -22.835629 1
                          Ι
                Η
    row
    1
        -0.438952 -1.307249
         3.157077 -1.750373
    3
         0.065876 -3.795091
        -0.293807 -3.495105
    4
         2.482003 -1.888469
```

```
[4]: df = pd.get_dummies(df, columns = ['C','G'])
df.head()
```

```
[4]: response A B D E F H \
row
1 1.658814 -0.879361 -2.297552 -2.052926 -1.458801 6.463630 -0.438952
```

```
2
     10.691572 1.550930 -2.332102 1.110204 -1.744876 -11.834376 3.157077
     32.508862 -1.506886 -5.306166 -1.814569 -3.747318 -18.031607
3
                                                                  0.065876
4
     37.747154 5.785842 -3.683903 6.453664 -3.645221 -10.534296 -0.293807
     18.072661 1.988523 -3.895907 1.600221 -1.874998 -22.835629
           I C_1 C_2 C_3 C_4 G_1 G_2 G_3
row
   -1.307249
                0
                          0
                               0
                                    0
                                              0
1
                     1
                                         1
2
    -1.750373
                     0
                0
                          0
                               1
                                    1
                                         0
                                              0
3
   -3.795091
                1
                     0
                          0
                               0
                                    1
                                         0
                                              0
4
    -3.495105
                0
                          0
                               0
                                    0
                                              1
    -1.888469
                     1
                          0
                               0
                                              0
```

1.4 Plots

```
[5]: sns.pairplot(df.iloc[:,:8])
```

[5]: <seaborn.axisgrid.PairGrid at 0x2b09958d250>


```
[6]: plt.figure(figsize = (10,10))
sns.heatmap(df.iloc[:,:8].corr(),annot = True)
```

[6]: <AxesSubplot:>

1.5 Train Test Split

```
[7]: X = df.iloc[:,1:]
y = df.iloc[:,:1]
```

```
[8]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, u →random_state=101)
```

1.6 First Order Model

```
[9]: X_train_c = sm.add_constant(X_train)
model = sm.OLS(y_train, X_train_c)
results = model.fit()
results.summary()
```

 $\begin{tabular}{ll} C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: Future\Warning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only \end{tabular}$

x = pd.concat(x[::order], 1)

[9]: <class 'statsmodels.iolib.summary.Summary'>

${\tt OLS} \ {\tt Regression} \ {\tt Results}$

______ Dep. Variable: R-squared: 0.750 response Model: OLS Adj. R-squared: 0.746 Method: Least Squares F-statistic: 183.7 Date: Mon, 24 Oct 2022 Prob (F-statistic): 1.10e-211 18:52:09 Log-Likelihood: -3106.6 Time: No. Observations: 747 AIC: 6239. Df Residuals: 734 BIC: 6299.

Df Model: 12 Covariance Type: nonrobust

========		========				=======
	coef	std err	t	P> t	[0.025	0.975]
const	-3.8786	1.167	-3.323	0.001	-6.170	-1.587
A	3.7415	0.895	4.179	0.000	1.984	5.499
В	-0.0530	0.362	-0.146	0.884	-0.763	0.657
D	-0.0715	0.875	-0.082	0.935	-1.789	1.646
E	-5.2308	5.757	-0.909	0.364	-16.532	6.071
F	0.1578	0.074	2.122	0.034	0.012	0.304
H	3.7632	0.286	13.148	0.000	3.201	4.325
I	-6.2058	5.744	-1.080	0.280	-17.483	5.071
C_1	1.1466	1.080	1.061	0.289	-0.975	3.268
C_2	-5.2634	0.999	-5.266	0.000	-7.225	-3.301
C_3	3.0249	1.051	2.879	0.004	0.962	5.087
C_4	-2.7867	1.035	-2.693	0.007	-4.819	-0.755
G_1	-1.1730	0.905	-1.297	0.195	-2.949	0.603
G_2	-0.0701	0.920	-0.076	0.939	-1.876	1.736
G_3	-2.6355	0.889	-2.965	0.003	-4.380	-0.891
Omnibus:	========	312.	======== 758 Durbin	 ı-Watson:	:=======	1.951
Prob(Omnibu	s):			e-Bera (JB):	:	1907.076
Skew:	-, -		784 Prob(J			0.00
Kurtosis:			967 Cond.			1.02e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 8.11e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

[10]: np.sqrt(results.scale)

[10]: 15.621821010599554

The coefficients of Feature C mean what the predicted change in the response is when the feature equals that value. If Feature C = 1, response is expected to change by -0.52, if it equals 2, response changes by -6.93, and so on. The R squared of 0.75 means that 75% of the variance in the response is explained by the model. The RSE shows that the model predicts the response with an average error of 15.62. This number can be interpreded when compared to different model with same units in order to compare performance. The F statistic shows that the model with all the variables fits better than the model without variables (intercept-only)

```
[11]: cls = Linear_Reg_Diagnostic(results)
fig, ax = cls()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
ax.plot(x, y, fmt, **plot_style)

	${\tt Features}$	VIF Factor
0	const	0.00
2	В	1.01
6	Н	1.03
5	F	1.04
1	A	24.09
3	D	24.18
4	E	399.93
7	I	399.93
8	C_1	inf
9	C_2	inf
10	C_3	inf
11	C_4	inf
12	G_1	inf

The Linear Regression Diagnostic Plots show that there is a quadratic pattern in the residuals. This fails the Linearity and constant variance assumptions.

1.7 Make Data for 2nd Order Model

```
[12]: poly = PolynomialFeatures(2, interaction_only=True)
X_train_p = pd.DataFrame(poly.fit_transform(X_train))
X_train_p.columns = poly.get_feature_names(X_train.columns)

X_test_p = pd.DataFrame(poly.fit_transform(X_test))
X_test_p.columns = poly.get_feature_names(X_test.columns)
```

```
[13]: X_train_p['A^2'] = X_train_p['A'].pow(2)
X_test_p['A^2'] = X_test_p['A'].pow(2)

X_train_p['B^2'] = X_train_p['B'].pow(2)
X_test_p['B^2'] = X_test_p['B'].pow(2)

X_train_p['D^2'] = X_train_p['D'].pow(2)

X_test_p['D^2'] = X_test_p['D'].pow(2)

X_test_p['E^2'] = X_train_p['E'].pow(2)

X_test_p['E^2'] = X_test_p['E'].pow(2)

X_test_p['F^2'] = X_test_p['F'].pow(2)

X_test_p['F^2'] = X_test_p['F'].pow(2)

X_test_p['H^2'] = X_test_p['H'].pow(2)

X_train_p['H^2'] = X_test_p['H'].pow(2)

X_test_p['H^2'] = X_test_p['H'].pow(2)

X_test_p['I^2'] = X_test_p['I'].pow(2)

X_test_p['I^2'] = X_test_p['I'].pow(2)

X_test_p['I^2'] = X_test_p['I'].pow(2)
```

```
[14]: X_train_p = X_train_p.iloc[:,1:]
X_test_p = X_test_p.iloc[:,1:]
```

```
[15]: y_train = y_train.reset_index().drop("row", axis = 1)
      y_test = y_test.reset_index().drop("row", axis = 1)
[16]: for column in X_train_p.columns:
          if column.count('^') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('A') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('B') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('C') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('D') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('E') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('F') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('G') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
          elif column.count('H') == 2:
              X train p.drop(column,axis=1, inplace=True)
          elif column.count('I') == 2:
              X_train_p.drop(column,axis=1, inplace=True)
[17]: for column in X_test_p.columns:
          if column.count('^') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('A') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('B') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('C') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('D') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('E') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('F') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('G') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('H') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
          elif column.count('I') == 2:
              X_test_p.drop(column,axis=1, inplace=True)
```

1.8 Full Model

```
[18]: X_train_p_c = sm.add_constant(X_train_p)
model_full = sm.OLS(y_train, X_train_p_c)
results_full = model_full.fit()
results_full.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

[18]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: response R-squared: 0.942 Model: Adj. R-squared: 0.935 Method: Least Squares F-statistic: 134.3 Date: Mon, 24 Oct 2022 Prob (F-statistic): 0.00 Time: 18:52:10 Log-Likelihood: -2558.8 No. Observations: 747 AIC: 5282. Df Residuals: 665 BIC: 5660.

Df Model: 81
Covariance Type: nonrobust

P>|t| std err t Γ0.025 coef 2.9099 0.500 1.227 2.371 0.018 5.320 const 1.013 0.000 5.845 Α 3.8567 3.808 1.868 В 0.7810 0.496 1.574 0.116 -0.1941.756 D -1.85590.988 -1.8790.061 -3.7950.083 Ε -7.37240.267 6.642 -1.110-20.4145.670 F -0.0182 0.084 -0.216 0.829 -0.183 0.147 Η 0.2626 0.323 0.813 0.416 -0.3710.897 Ι 8.2915 6.578 1.260 0.208 -4.625 21.208 C_1 1.320 0.931 -2.4782.707 0.1144 0.087 C_2 -1.70441.284 -1.3280.185 -4.2250.816 C_3 0.000 5.0610 1.392 3.637 2.328 7.794 C_4 -0.56111.259 -0.4460.656 -3.0331.911 G_1 -0.98521.175 -0.838 0.402 -3.2921.322 G_2 1.206 2.707 3.2642 0.007 0.896 5.632 G_3 0.6309 1.173 0.538 0.591 -1.6722.934 A B 0.4109 0.313 1.312 0.190 -0.204 1.026 A D 1.069 -1.2014-1.1240.261 -3.3000.897 ΑE 9.5224 5.168 1.843 0.066 -0.62419.669 A F 0.062 -0.0601-0.9640.335 -0.1830.062 A H -0.04290.242 -0.1770.860 -0.5180.432

AI	-9.0693	5.180	-1.751	0.080	-19.240	1.101
A C_1	1.6114	0.906	1.778	0.076	-0.168	3.391
A C_2	0.5045	0.873	0.578	0.563	-1.209	2.218
A C_3	1.0040	0.845	1.188	0.235	-0.656	2.664
A C_4	0.7369	0.852	0.865	0.387	-0.935	2.409
A G_1	1.0407	0.763	1.365	0.173	-0.457	2.538
A G_2	1.0505	0.751	1.399	0.162	-0.424	2.525
A G_3	1.7655	0.763	2.315	0.021	0.268	3.263
B D	-0.4541	0.308	-1.477	0.140	-1.058	0.150
ВЕ	-3.0456	2.075	-1.468	0.143	-7.120	1.029
ВF	-0.0035	0.026	-0.135	0.892	-0.054	0.047
ВН	-0.2219	0.099	-2.232	0.026	-0.417	-0.027
ΒΙ	3.0914	2.064	1.497	0.135	-0.962	7.145
B C_1	0.0023	0.368	0.006	0.995	-0.720	0.724
B C_2	0.0649	0.352	0.184	0.854	-0.626	0.756
B C_3	0.6540	0.369	1.771	0.077	-0.071	1.379
B C_4	0.0599	0.337	0.178	0.859	-0.603	0.722
B G_1	-0.1822	0.312	-0.585	0.559	-0.794	0.430
B G_2	0.5442	0.329	1.652	0.099	-0.103	1.191
B G_3	0.4190	0.310	1.350	0.177	-0.190	1.028
DΕ	-7.9389	5.051	-1.572	0.117	-17.857	1.979
D F	0.0525	0.060	0.875	0.382	-0.065	0.170
DΗ	0.0446	0.234	0.190	0.849	-0.416	0.505
DΙ	7.4853	5.060	1.479	0.140	-2.451	17.422
D C_1	-1.2885	0.879	-1.466	0.143	-3.014	0.437
D C_2	0.0853	0.861	0.099	0.921	-1.605	1.776
D C_3	-0.3924	0.830	-0.473	0.636	-2.022	1.237
D C_4	-0.2603	0.834	-0.312	0.755	-1.898	1.378
D G_1	-0.0925	0.743	-0.125	0.901	-1.552	1.367
D G_2	-0.4450	0.740	-0.601	0.548	-1.898	1.008
D G_3	-1.3183	0.745	-1.770	0.077	-2.781	0.144
E F	0.0974	0.405	0.240	0.810	-0.699	0.894
ЕН	-2.4030	1.532	-1.568	0.117	-5.411	0.606
ΕI	40.4695	45.775	0.884	0.377	-49.411	130.350
E C_1	-12.5087	5.936	-2.107	0.035	-24.164	-0.854
E C_2	-3.8846	5.367	-0.724	0.469	-14.423	6.654
E C_3	9.6150	5.604	1.716	0.087	-1.388	20.618
E C_4	-0.5941	5.615	-0.106	0.916	-11.620	10.432
E G_1	-2.8401	4.990	-0.569	0.569	-12.638	6.958
E G_2	3.3920	5.165	0.657	0.512	-6.750	13.535
E G_3	-7.9243	4.643	-1.707	0.088	-17.041	1.193
F H	-0.0251	0.021	-1.205	0.229	-0.066	0.016
FΙ	-0.0951	0.405	-0.235	0.815	-0.891	0.701
F C_1	-0.0661	0.070	-0.944	0.345	-0.204	0.071
F C_2	0.0544	0.072	0.751	0.453	-0.088	0.197
F C_3	-0.0143	0.071	-0.202	0.840	-0.153	0.124
F C_4	0.0078	0.074	0.105	0.916	-0.137	0.153

п а 4	0 0000	0 005	0 400	0.000	0 100	2 222
F G_1	-0.0320	0.065	-0.492	0.623	-0.160	0.096
F G_2	-0.0126	0.065	-0.195		-0.139	0.114
F G_3	0.0264	0.063	0.419		-0.097	0.150
H I	1.5519	1.527	1.016	0.310	-1.447	4.551
H C_1	0.2501	0.286	0.874		-0.312	0.812
H C_2	-0.1462	0.281	-0.520		-0.698	0.406
H C_3	-0.1179	0.287	-0.412		-0.681	0.445
H C_4	0.2767	0.260	1.063		-0.235	0.788
H G_1	-0.1986	0.246	-0.807		-0.682	0.285
H G_2	0.0040	0.253	0.016		-0.492	0.500
H G_3	0.4572	0.234	1.958		-0.001	0.916
I C_1	12.3156	5.899	2.088		0.733	23.898
I C_2	4.2197	5.368	0.786		-6.321	14.760
I C_3	-9.4487	5.603	-1.686		-20.450	1.553
I C_4	1.2049	5.580	0.216		-9.752	12.161
I G_1	3.2633	4.990	0.654		-6.535	13.062
I G_2	-2.9061	5.126	-0.567	0.571	-12.972	7.160
I G_3	7.9343	4.628	1.714	0.087	-1.153	17.021
C_1 G_1	-1.6435	0.977	-1.681	0.093	-3.563	0.276
C_1 G_2	1.6514	0.921	1.793	0.073	-0.157	3.460
C_1 G_3	0.1065	0.913	0.117	0.907	-1.686	1.899
C_2 G_1	-0.6739	0.838	-0.805	0.421	-2.318	0.971
C_2 G_2	-0.3288	0.896	-0.367	0.714	-2.089	1.431
C_2 G_3	-0.7016	0.909	-0.772	0.440	-2.486	1.083
C_3 G_1	0.9019	0.942	0.957	0.339	-0.948	2.752
C_3 G_2	1.9707	0.913	2.159	0.031	0.178	3.763
C_3 G_3	2.1884	0.922	2.374	0.018	0.378	3.999
C_4 G_1	0.4303	0.893	0.482	0.630	-1.324	2.185
C_4 G_2	-0.0291	0.979	-0.030	0.976	-1.951	1.893
C_4 G_3	-0.9623	0.815	-1.181	0.238	-2.562	0.638
A^2	0.6047	0.548	1.104	0.270	-0.471	1.680
B^2	0.1002	0.085	1.178	0.239	-0.067	0.267
D^2	0.6172	0.532	1.161	0.246	-0.427	1.661
E^2	-17.9185	22.939	-0.781	0.435	-62.960	27.123
F^2	-0.0037	0.004	-0.911	0.362	-0.012	0.004
H^2	-0.0480	0.056	-0.851	0.395	-0.159	0.063
I^2	-20.1967	22.859		0.377	-65.081	24.687
Omnibus:	=========			========= bin-Watson:	=======	1.920
Prob(Omnil	bus):			que-Bera (JB)	:	0.321
Skew:	•		050 Pro	-		0.852
Kurtosis:				d. No.		2.39e+16
========				=========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.6e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
ax.plot(x, y, fmt, **plot_style)

C:\Users\matth\anaconda3\lib\sitepackages\statsmodels\regression\linear_model.py:1715: RuntimeWarning: divide by
zero encountered in double_scalars

```
return 1 - self.ssr/self.centered_tss
C:\Users\matth\anaconda3\lib\site-
packages\statsmodels\stats\outliers_influence.py:193: RuntimeWarning: divide by
zero encountered in double_scalars
  vif = 1. / (1. - r_squared_i)
```

	Features	VIF Factor
0	const	0.00
102	H^2	1.22
61	F H	1.95
101	F^2	3.00
31	ВН	9.27
		•••
50	D G_3	inf
49	D G_2	inf
48	D G_1	inf
46	D C_3	inf
7	I	inf

[104 rows x 2 columns]

1.9 Intermediary Models

```
[20]: X_train_p_r = X_train_p.copy()
    X_test_p_r = X_test_p.copy()
    for column in X_train_p_r.columns:
        if results_full.pvalues.loc[column] > 0.38:
            X_train_p_r.drop(column,axis=1, inplace=True)
            X_test_p_r.drop(column,axis=1, inplace=True)
```

```
[21]: X_train_p_r_c = sm.add_constant(X_train_p_r)
model_3 = sm.OLS(y_train, X_train_p_r_c)
results_3 = model_3.fit()
results_3.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for
the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

[21]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: response R-squared: 0.942
Model: 0LS Adj. R-squared: 0.938
Method: Least Squares F-statistic: 220.5
Date: Mon, 24 Oct 2022 Prob (F-statistic): 0.00

 Time:
 18:52:11
 Log-Likelihood:
 -2562.5

 No. Observations:
 747
 AIC:
 5229.

 Df Residuals:
 695
 BIC:
 5469.

Df Model: 51 Covariance Type: nonrobust

	- 1ypo. 					
	coef	std err	t	P> t	[0.025	0.975]
const	2.2089	1.993	1.108	0.268	-1.704	6.122
Α	4.5733	1.122	4.077	0.000	2.371	6.776
В	0.8821	0.755	1.168	0.243	-0.600	2.364
D	-2.3827	1.520	-1.567	0.118	-5.368	0.602
E	-11.2307	10.620	-1.057	0.291	-32.083	9.621
I	13.0433	10.535	1.238	0.216	-7.640	33.727
C_2	-1.7580	0.877	-2.005	0.045	-3.480	-0.036
C_3	5.5559	1.679	3.308	0.001	2.259	8.853
G_2	3.3193	1.921	1.728	0.084	-0.453	7.092
A B	0.3986	0.294	1.355	0.176	-0.179	0.976
A D	-1.1547	1.016	-1.137	0.256	-3.149	0.840
A E	9.8072	4.876	2.011	0.045	0.234	19.380
A F	-0.0068	0.013	-0.532	0.595	-0.032	0.018
AI	-9.3694	4.882	-1.919	0.055	-18.954	0.215
A C_1	0.9470	1.096	0.864	0.388	-1.206	3.100
A C_3	0.0769	0.222	0.347	0.729	-0.358	0.512
A G_1	1.3451	0.526	2.558	0.011	0.313	2.378
A G_2	1.0146	0.517	1.963	0.050	-1.92e-05	2.029
A G_3	2.2137	0.725	3.052	0.002	0.789	3.638
B D	-0.4367	0.287	-1.519	0.129	-1.001	0.128
ВЕ	-3.2412	2.006	-1.616	0.107	-7.179	0.697
ВН	-0.2361	0.055	-4.282	0.000	-0.344	-0.128
ВI	3.2842	1.996	1.645	0.100	-0.635	7.203
B C_3	0.6425	0.433	1.483	0.139	-0.208	1.493
B G_2	0.5689	0.417	1.364	0.173	-0.250	1.388
B G_3	0.3314	0.268	1.236	0.217	-0.195	0.858
D E	-8.1971	4.772	-1.718	0.086	-17.567	1.172
DI	7.7594	4.776	1.625	0.105	-1.618	17.137
D C_1	-1.1211	1.065	-1.053	0.293	-3.211	0.969
D G_3	-1.3648	0.946	-1.443	0.150	-3.222	0.492
ΕH	-2.3694	1.447	-1.637	0.102	-5.211	0.472
ΕΙ	4.7519	1.476	3.219	0.001	1.854	7.650
E C_1	-9.4881	7.615	-1.246	0.213	-24.440	5.464
E C_3	11.6877	7.161	1.632	0.103	-2.372	25.747
E G_3	-7.7059	6.102	-1.263	0.207	-19.687	4.275
F H	-0.0289	0.018	-1.570	0.117	-0.065	0.007
F C_1	-0.0864	0.077	-1.118	0.264	-0.238	0.065
ΗI	1.5069	1.442	1.045	0.296	-1.325	4.339
H C_4	0.2900	0.318	0.911	0.363	-0.335	0.915

H G_3	0.6030	0.297	2.030	0.043	0.020	1.186
I C_1	8.7145	7.584	1.149	0.251	-6.176	23.605
I C_3	-12.0503	7.154	-1.684	0.093	-26.097	1.997
I G_3	7.1880	6.089	1.181	0.238	-4.766	19.142
C_1 G_1	-1.0870	1.527	-0.712	0.477	-4.085	1.911
C_1 G_2	2.4711	1.559	1.585	0.113	-0.590	5.532
C_3 G_1	1.2407	1.122	1.106	0.269	-0.962	3.444
C_3 G_2	2.0713	1.172	1.767	0.078	-0.230	4.373
C_3 G_3	2.2440	1.172	1.915	0.056	-0.056	4.544
C_4 G_3	-1.4971	1.339	-1.118	0.264	-4.126	1.132
A^2	0.5808	0.521	1.114	0.266	-0.443	1.604
B^2	0.1082	0.082	1.322	0.187	-0.053	0.269
D^2	0.5920	0.505	1.172	0.241	-0.399	1.584
F^2	-0.0045	0.003	-1.594	0.111	-0.010	0.001
I^2	-2.4121	1.463	-1.649	0.100	-5.284	0.460
Omnibus:		0.	======================================	 n-Watson:		1.910
Prob(Omnik	ous):	0.	936 Jarque	e-Bera (JB):		0.132
Skew:		-0.	032 Prob(.			0.936
Kurtosis:		2.	987 Cond.	No.		1.37e+16
========			========			========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.96e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
 ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
38	H C_4	1.35
52	F^2	1.47
35	F H	1.58
39	H G_3	1.63
36	F C_1	1.73
43	C_1 G_1	1.81
15	A C_3	1.83
6	C_2	1.96
48	C_4 G_3	2.04
44	C_1 G_2	2.06
12	A F	2.15
21	ВН	2.95
25	B G_3	3.97

```
B C_3
                    8.76
23
24
      B G_2
                    9.68
8
                    9.95
        G_2
50
        B^2
                   14.86
2
          В
                   17.95
28
      D C_1
                   34.92
      A C_1
14
                   34.93
29
      D G_3
                   41.93
0
      const
                   49.42
9
        {\tt A} {\tt B}
                  201.52
19
        B D
                  204.53
3
          D
                  296.76
        A^2
49
                  792.09
51
        D^2
                  852.58
37
        ΗI
                 1082.65
        ЕН
30
                 1086.49
42
      I G_3
                 1309.96
34
      E G_3
                 1317.58
                 1403.09
41
      I C_3
      E C_3
33
                 1409.09
      I C_1
40
                 1555.06
32
      E C_1
                 1561.34
10
        A D
                 3157.24
53
        I^2
                 3929.62
31
        ΕI
                 3964.13
22
        ΒI
                 4455.20
20
        ΒЕ
                 4481.91
5
          Ι
                 5466.76
4
          Ε
                 5532.17
26
        D E
                33625.23
27
        DΙ
                33672.05
11
        ΑE
                33819.41
13
        ΑI
                33840.01
16
      A G_1
                     inf
46 C_3 G_2
                     inf
   C_3 G_3
47
                     inf
7
        C_3
                     inf
17
      A G_2
                     inf
18
      A G_3
                     inf
1
                     inf
          Α
45
    C_3 G_1
                     inf
```

C:\Users\matth\anaconda3\lib\site-

packages\statsmodels\stats\outliers_influence.py:193: RuntimeWarning: divide by zero encountered in double_scalars

```
vif = 1. / (1. - r_squared_i)
```

```
[24]: X_train_p_r_2_c = sm.add_constant(X_train_p_r_2)
model_4 = sm.OLS(y_train, X_train_p_r_2_c)
results_4 = model_4.fit()
results_4.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for
the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

[24]: <class 'statsmodels.iolib.summary.Summary'>

${\tt OLS} \ {\tt Regression} \ {\tt Results}$

Dep. Variable:	response	R-squared:	0.939
Model:	OLS	Adj. R-squared:	0.936
Method:	Least Squares	F-statistic:	352.6
Date:	Mon, 24 Oct 2022	Prob (F-statistic):	0.00
Time:	18:52:12	Log-Likelihood:	-2582.6
No. Observations:	747	AIC:	5229.
Df Residuals:	715	BIC:	5377.
Df Model:	31		

Covariance Type: nonrobust

=======	========	========		=======		=======
	coef	std err	t	P> t	[0.025	0.975]
const	-1.2644	0.850	-1.488	0.137	-2.933	0.404
Α	3.9325	1.054	3.733	0.000	1.864	6.001
D	-1.3406	1.422	-0.943	0.346	-4.133	1.451
C_2	-2.2669	0.729	-3.111	0.002	-3.697	-0.836
C_3	7.6656	2.303	3.329	0.001	3.144	12.187
G_2	2.6079	1.835	1.421	0.156	-0.995	6.211
A B	0.1927	0.288	0.669	0.504	-0.373	0.758
A E	12.3640	4.801	2.575	0.010	2.938	21.790
AI	-12.0402	4.810	-2.503	0.013	-21.484	-2.596
A G_1	1.0235	0.500	2.046	0.041	0.041	2.006
A G_2	0.7052	0.495	1.424	0.155	-0.267	1.677
A G_3	2.2037	0.718	3.068	0.002	0.793	3.614
B D	-0.2300	0.281	-0.820	0.413	-0.781	0.321
ВЕ	-0.3219	1.095	-0.294	0.769	-2.471	1.827
ВН	-0.2553	0.054	-4.717	0.000	-0.362	-0.149

ΒΙ	0.1629	1.090	0.149	0.881	-1.978	2.304
B C_3	0.6906	0.436	1.584	0.114	-0.165	1.546
B G_2	0.4175	0.392	1.066	0.287	-0.351	1.186
DΕ	-11.3615	4.697	-2.419	0.016	-20.583	-2.140
DI	11.0402	4.703	2.347	0.019	1.807	20.274
D G_3	-1.6571	0.939	-1.764	0.078	-3.501	0.187
ΕH	-0.8567	0.066	-13.076	0.000	-0.985	-0.728
ΕΙ	5.5581	1.293	4.297	0.000	3.019	8.098
E C_3	15.1282	6.727	2.249	0.025	1.920	28.336
F H	-0.0264	0.018	-1.438	0.151	-0.062	0.010
H G_3	0.5509	0.294	1.876	0.061	-0.026	1.128
I C_3	-15.0915	6.729	-2.243	0.025	-28.303	-1.880
C_1 G_2	4.2964	1.365	3.148	0.002	1.617	6.976
C_3 G_2	1.1338	1.675	0.677	0.499	-2.154	4.422
C_3 G_3	0.8347	1.468	0.569	0.570	-2.048	3.717
B^2	0.0546	0.034	1.629	0.104	-0.011	0.120
F^2	-0.0030	0.002	-1.227	0.220	-0.008	0.002
I^2	-3.3008	1.286	-2.568 	0.010	-5.825 	-0.777
Omnibus:		0.	 060 Durbir	 n-Watson:		1.919
Prob(Omnik	ous):	0.	970 Jarque	e-Bera (JB):		0.129
Skew:		-0.	002 Prob(3	JB):		0.937
Kurtosis:		2.	936 Cond.	No.		1.35e+16

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.02e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
31	F^2	1.09
3	C_2	1.32
24	F H	1.53
27	C_1 G_2	1.54
25	H G_3	1.55
29	C_3 G_3	1.93
21	ЕН	2.17
30	B^2	2.43
28	C_3 G_2	2.70
14	ВН	2.77
17	B G_2	8.32
16	B C_3	8.64
0	const	8.76

```
G_2
5
                   8.85
        C_3
                  11.94
      D G_3
20
                  40.31
6
        A B
                 188.39
        B D
12
                 190.06
                 253.21
          D
26
      I C 3
                1210.30
      E C 3
23
                1212.60
15
        ΒΙ
                1296.32
        ΒЕ
13
                1301.26
32
        I^2
                2960.24
22
        ΕI
                2968.38
18
        DΕ
               31761.15
        DΙ
19
               31835.97
7
        ΑE
               31974.90
8
        ΑI
               32037.87
9
      A G_1
                    inf
      A G_2
10
                    inf
11
      A G_3
                    inf
          Α
                     inf
```

C:\Users\matth\anaconda3\lib\site-

packages\statsmodels\stats\outliers_influence.py:193: RuntimeWarning: divide by zero encountered in double_scalars

```
vif = 1. / (1. - r_squared_i)
```

```
[26]: X_train_p_r_3 = X_train_p_r_2.copy()
X_test_p_r_3 = X_test_p_r_2.copy()
for column in X_train_p_r_2.columns:
    if results_4.pvalues.loc[column] > 0.20:
        X_train_p_r_3.drop(column,axis=1, inplace=True)
        X_test_p_r_3.drop(column,axis=1, inplace=True)
```

```
[27]: X_train_p_r_3_c = sm.add_constant(X_train_p_r_3)
model_5 = sm.OLS(y_train, X_train_p_r_3_c)
results_5 = model_5.fit()
results_5.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for
the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

[27]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: response R-squared: 0.938

Model:	OLS	Adj. R-squared:	0.936
Method:	Least Squares	F-statistic:	494.1
Date:	Mon, 24 Oct 2022	Prob (F-statistic):	0.00
Time:	18:52:13	Log-Likelihood:	-2588.8
No. Observations:	747	AIC:	5224.
Df Residuals:	724	BIC:	5330.
Df Model:	22		
Covariance Type:	nonrobust		

=======	coef	std err	t	P> t	[0.025	0.975]
const	-1.4414	0.735	-1.960	0.050	-2.885	0.002
A	3.0724	0.249	12.325	0.000	2.583	3.562
C_2	-2.2765	0.722	-3.155	0.002	-3.693	-0.860
C_3	9.0147	2.124	4.245	0.000	4.846	13.184
G_2	1.1884	0.740	1.606	0.109	-0.265	2.641
A E	12.7765	4.786	2.670	0.008	3.381	22.172
ΑΙ	-12.5752	4.789	-2.626	0.009	-21.978	-3.173
A G_1	0.7192	0.255	2.825	0.005	0.219	1.219
A G_2	0.3836	0.254	1.508	0.132	-0.116	0.883
A G_3	1.9696	0.662	2.975	0.003	0.670	3.269
ВН	-0.2651	0.053	-4.984	0.000	-0.370	-0.161
B C_3	0.7798	0.432	1.806	0.071	-0.068	1.627
D E	-11.5579	4.676	-2.472	0.014	-20.739	-2.377
DI	11.3598	4.677	2.429	0.015	2.177	20.543
D G_3	-1.7344	0.859	-2.019	0.044	-3.420	-0.048
ΕH	-0.8497	0.064	-13.181	0.000	-0.976	-0.723
ΕΙ	5.1486	0.928	5.548	0.000	3.327	6.971
E C_3	15.8171	6.359	2.487	0.013	3.332	28.302
F H	-0.0233	0.018	-1.278	0.202	-0.059	0.012
H G_3	0.5186	0.293	1.772	0.077	-0.056	1.093
I C_3	-15.6163	6.365	-2.453	0.014	-28.112	-3.120
C_1 G_2	4.0043	1.302	3.075	0.002	1.448	6.561
B^2	0.0042	0.025	0.168	0.867	-0.045	0.053
I^2	-2.9762	0.923	-3.226	0.001	-4.787	-1.165
Omnibus:		0.	======= 093	n-Watson:		1.930
Prob(Omnib	ous):	0.	955 Jarqu	e-Bera (JB):		0.144
Skew:		-0.	023 Prob(JB):		0.930
Kurtosis:		2.	950 Cond.	No.		4.80e+16

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 2.92e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

11 11 11

[28]: cls = Linear_Reg_Diagnostic(results_5)
fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
 ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
2	C_2	1.29
22	B^2	1.35
21	C_1 G_2	1.40
4	G 2	1.43

```
FΗ
18
                   1.51
19
      H G_3
                   1.54
        ЕН
                   2.09
15
10
        ВН
                   2.67
                   6.53
0
      const
11
      B C 3
                   8.44
3
        C 3
                  10.11
14
     D G 3
                  33.55
20
      I C 3
                1078.20
     E C_3
17
                1078.95
23
        I^2
                1517.79
16
        ΕI
               1521.57
12
        DΕ
               31349.21
        DΙ
13
               31354.09
        ΑI
               31624.02
6
5
        ΑE
               31631.82
8
      A G_2
                    inf
7
      A G_1
                    inf
1
                    inf
          Α
9
      A G_3
                    inf
```

C:\Users\matth\anaconda3\lib\site-

packages\statsmodels\stats\outliers_influence.py:193: RuntimeWarning: divide by zero encountered in double_scalars

```
vif = 1. / (1. - r_squared_i)
```

```
[29]: X_train_p_r_4 = X_train_p_r_3.copy()
X_test_p_r_4 = X_test_p_r_3.copy()
for column in X_train_p_r_3.columns:
    if results_5.pvalues.loc[column] > 0.05:
        X_train_p_r_4.drop(column,axis=1, inplace=True)
        X_test_p_r_4.drop(column,axis=1, inplace=True)
```

```
[30]: X_train_p_r_4_c = sm.add_constant(X_train_p_r_4)
model_6 = sm.OLS(y_train, X_train_p_r_4_c)
results_6 = model_6.fit()
results_6.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for
the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

[30]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: response R-squared: 0.937

Model:	OLS	Adj. R-squared:	0.935
Method:	Least Squares	F-statistic:	632.6
Date:	Mon, 24 Oct 2022	Prob (F-statistic):	0.00
Time:	18:52:13	Log-Likelihood:	-2595.0
No. Observations:	747	AIC:	5226.
Df Residuals:	729	BIC:	5309.
Df Model·	17		

Covariance Type: nonrobust

=======	coef	std err	t	P> t	[0.025	0.975]
const	-1.1726	0.570	-2.057	0.040	-2.292	-0.054
A	3.5285	0.197	17.928	0.000	3.142	3.915
C_2	-2.1416	0.715	-2.993	0.003	-3.546	-0.737
C_3	5.9581	1.153	5.166	0.000	3.694	8.223
A E	12.0627	4.792	2.517	0.012	2.654	21.471
ΑΙ	-11.8842	4.797	-2.478	0.013	-21.301	-2.467
A G_1	0.2341	0.222	1.053	0.293	-0.202	0.671
A G_3	1.5530	0.891	1.743	0.082	-0.196	3.302
ВН	-0.3260	0.047	-6.950	0.000	-0.418	-0.234
DΕ	-10.9865	4.679	-2.348	0.019	-20.172	-1.801
DI	10.8033	4.680	2.308	0.021	1.615	19.992
D G_3	-1.7922	0.861	-2.081	0.038	-3.483	-0.102
ΕH	-0.8613	0.064	-13.406	0.000	-0.987	-0.735
ΕΙ	5.1221	0.932	5.496	0.000	3.293	6.952
E C_3	14.6040	6.325	2.309	0.021	2.186	27.022
I C_3	-14.4318	6.333	-2.279	0.023	-26.865	-1.999
C_1 G_2	4.8182	1.182	4.076	0.000	2.497	7.139
I^2	-2.9534	0.926	-3.188	0.001	-4.772	-1.135
Omnibus:		0.	001 Durbi	n-Watson:		1.941
Prob(Omnib	ous):	1.	000 Jarqu	ue-Bera (JB)	:	0.019
Skew:		-0.	002 Prob(0.991
Kurtosis:		2.	976 Cond.	No.		883.

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[31]: cls = Linear_Reg_Diagnostic(results_6)
fig, ax = cls()

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
 ax.plot(x, y, fmt, **plot_style)

	Features	VIF Factor
16	C_1 G_2	1.14
2	C_2	1.25
6	A G_1	2.02
8	ВН	2.05
12	ЕН	2.06
3	C_3	2.95
0	const	3.89
1	A	4.55
11	D G_3	33.41
7	A G_3	34.49
15	I C_3	1057.05
14	E C_3	1057.13
17	I^2	1515.83

```
13 E I 1519.51

9 D E 31082.04

10 D I 31091.62

4 A E 31415.52

5 A I 31415.80
```

1.10 Reduced Model

```
[33]: X_train_p_r_5_c = sm.add_constant(X_train_p_r_5)
model_reduced = sm.OLS(y_train, X_train_p_r_5_c)
results_reduced = model_reduced.fit()
results_reduced.summary()
```

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for
the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

[33]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	response	R-squared:	0.936
Model:	OLS	Adj. R-squared:	0.935
Method:	Least Squares	F-statistic:	715.0
Date:	Mon, 24 Oct 2022	Prob (F-statistic):	0.00
Time:	18:52:14	Log-Likelihood:	-2596.9
No. Observations:	747	AIC:	5226.
Df Residuals:	731	BIC:	5300.
Df Model:	15		

Covariance Type: nonrobust

========		========				=======
	coef	std err	t	P> t	[0.025	0.975]
const	-1.0936	0.568	-1.925	0.055	-2.209	0.022
Α	3.6477	0.169	21.637	0.000	3.317	3.979
C_2	-2.2053	0.714	-3.089	0.002	-3.607	-0.804
C_3	5.7405	1.146	5.007	0.000	3.490	7.991
A E	11.8973	4.778	2.490	0.013	2.516	21.278
AI	-11.8318	4.786	-2.472	0.014	-21.228	-2.436
ВН	-0.3279	0.047	-6.987	0.000	-0.420	-0.236

DΕ	-10.7803	4.668	-2.309	0.021	-19.946	-1.615
DI	10.7010	4.674	2.290	0.022	1.526	19.876
D G_3	-0.4240	0.180	-2.352	0.019	-0.778	-0.070
ΕH	-0.8636	0.064	-13.471	0.000	-0.989	-0.738
ΕΙ	5.1271	0.933	5.495	0.000	3.295	6.959
E C_3	14.5780	6.324	2.305	0.021	2.163	26.993
I C_3	-14.4629	6.330	-2.285	0.023	-26.890	-2.035
C_1 G_2	4.6393	1.175	3.949	0.000	2.333	6.946
I^2	-2.9652	0.927	-3.197	0.001	-4.786	-1.144
Omnibus:	=========	0.	======= 004	 Watson:		1.930
Prob(Omnib	us):	0.	998 Jarque	-Bera (JB):	:	0.006
Skew:		-0.	002 Prob(J	B):		0.997
Kurtosis:		2.	987 Cond.	No.		878.
========		=======		========		=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

"""

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:993:
UserWarning: marker is redundantly defined by the 'marker' keyword argument and
the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.
 ax.plot(x, y, fmt, **plot_style)

	${\tt Features}$	VIF Factor
14	C_1 G_2	1.12
2	C_2	1.24
9	D G_3	1.46
10	ЕН	2.05
6	ВН	2.05
3	C_3	2.91
1	A	3.33
0	const	3.85
13	I C_3	1053.59
12	E C_3	1054.16
15	I^2	1515.54
11	ΕI	1519.34
7	DΕ	30867.66

```
8 D I 30926.69
4 A E 31154.42
5 A I 31203.94
```

The Resudial Plot no longer contains a quadratic trend and is now horizontal compared to part b.

1.11 Validation Set Testing

```
[35]: X_test_p_c = sm.add_constant(X_test_p)
    X_test_p_r_5_c = sm.add_constant(X_test_p_r_5)

C:\Users\matth\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142:
FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only
    x = pd.concat(x[::order], 1)

[36]: y_pred_f = results_full.predict(X_test_p_c)
    y_pred_r = results_reduced.predict(X_test_p_r_5_c)

[37]: mean_squared_error(y_test, y_pred_f)

[37]: 79.79269272903343

[38]: mean_squared_error(y_test, y_pred_r)
```

[38]: 80.93076620252883

MSE for the reduced and full models are very close. This does not indicate overfitting of the full model, but it is still preferable to use the model with 15 features instead of the one with 103 features if the performance on the validation set is similar. This could prevent future overfitting.

1.12 Interval Testing

[43]: 48

[44]: count/obs

[44]: 0.1927710843373494