Step-1

The product rule of determinant says that if A and B are square matrices of the same order, then $\det(AB) = (\det A)(\det B)$.

It is also known that $\det I = 1$.

Therefore, we get

$$1 = \det I$$

$$= \det(Q^{\mathsf{T}}Q)$$

$$= \det(Q^{\mathsf{T}})\det(Q)$$

Step-2

We also know that determinant of a matrix A is equal to the determinant of its transpose, A^{T} . Therefore, $\det(Q) = \det(Q^{T})$.

Thus,
$$\left(\det(Q)\right)^2 = 1$$

Therefore, $\det(Q) = \pm 1$.

By the same logic, $\det(Q^T) = \pm 1$.

Step-3

Now we show that Q^2 is also an Orthogonal matrix. Thus, we need to show that $(Q^2)^{-1} = (Q^2)^T$.

$$Q^{2}(Q^{2})^{T} = (Q \cdot Q)(Q^{T} \cdot Q^{T})$$

$$= Q(Q \cdot Q^{T})Q^{T}$$

$$= Q \cdot Q^{T}$$

$$= I$$

Thus, Q^2 is an Orthogonal matrix. Similarly, it can be shown that Q^n is also an Orthogonal matrix.

Step-4

If $\det Q$ is not equal to ± 1 , then $\det (Q^n)$ would either tend to zero or would tend to plus or minus infinity.

But, Q^n remains an Orthogonal matrix.

This also shows that $\det Q = \pm 1$.