4

Instruction tables

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs

By Agner Fog. Copenhagen University College of Engineering. Copyright © 1996 - 2012. Last updated 2012-02-29.

Introduction

This is the fourth in a series of five manuals:

- 1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms.
- 2. Optimizing subroutines in assembly language: An optimization guide for x86 platforms.
- 3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and compiler makers.
- 4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs.
- 5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize. Copyright conditions are listed below.

The present manual contains tables of instruction latencies, throughputs and micro-operation breakdown and other tables for x86 family microprocessors from Intel, AMD and VIA.

The figures in the instruction tables represent the results of my measurements rather than the official values published by microprocessor vendors. Some values in my tables are higher or lower than the values published elsewhere. The discrepancies can be explained by the following factors:

- My figures are experimental values while figures published by microprocessor vendors may be based on theory or simulations.
- My figures are obtained with a particular test method under particular conditions. It is possible that different values can be obtained under other conditions.
- Some latencies are difficult or impossible to measure accurately, especially for memory access and type conversions that cannot be chained.
- Latencies for moving data from one execution unit to another are listed explicitly in some of my tables while they are included in the general latencies in some tables published by Intel.

Most values are the same in all microprocessor modes (real, virtual, protected, 16-bit, 32-bit, 64-bit). Values for far calls and interrupts may be different in different modes. Call gates have not been tested.

Instructions with a LOCK prefix have a long latency that depends on cache organization and possibly RAM speed. If there are multiple processors or cores or direct memory access (DMA) devices then all locked instructions will lock a cache line for exclusive access, which may involve RAM access. A LOCK prefix typically costs more than a hundred clock cycles, even on single-processor systems. This also applies to the XCHG instruction with a memory operand.

Introduction

If any text in the pdf version of this manual is unreadable, then please refer to the spreadsheet version.

Copyright notice

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is not allowed. Non-public distribution to a limited audience for educational purposes is allowed. The code examples in these manuals can be used without restrictions. A GNU Free Documentation License shall automatically come into force when I die. See www.gnu.org/copyleft/fdl.html

Definition of terms

Operands

Operands can be different types of registers, memory, or immediate constants. Abbreviations used in the tables are: i = immediate constant, r = any general purpose register, r32 = 32-bit register, etc., mm = 64 bit mmx register, x or xmm = 128 bit xmm register, y = 256 bit ymm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Latency

The latency of an instruction is the delay that the instruction generates in a dependency chain. The measurement unit is clock cycles. Where the clock frequency is varied dynamically, the figures refer to the core clock frequency. The numbers listed are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity may increase the latencies by possibly more than 100 clock cycles on many processors, except in move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results may give a similar delay. A missing value in the table means that the value has not been measured or that it cannot be measured in a meaningful way.

Some processors have a pipelined execution unit that is smaller than the largest register size so that different parts of the operand are calculated at different times. Assume, for example, that we have a long dependency chain of 128-bit vector instructions running in a fully pipelined 64-bit execution unit with a latency of 4. The lower 64 bits of each operation will be calculated at times 0, 4, 8, 12, 16, etc. And the upper 64 bits of each operation will be calculated at times 1, 5, 9, 13, 17, etc. as shown in the figure below. If we look at one 128-bit instruction in isolation, the latency will be 5. But if we look at a long chain of 128-bit instructions, the total latency will be 4 clock cycles per instruction plus one extra clock cycle in the end. The latency in this case is listed as 4 in the tables because this is the value it adds to a dependency chain.

Reciprocal throughput

The throughput is the maximum number of instructions of the same kind that can be executed per clock cycle when the operands of each instruction are independent of the preceding instructions. The values listed are the reciprocals of the throughputs, i.e. the average number of clock cycles per instruction when the instructions are not part of a limiting dependency chain. For example, a reciprocal throughput of 2 for FMUL means that a new FMUL instruction can start executing 2 clock cycles after a previous FMUL. A reciprocal throughput of 0.33 for ADD means that the execution units can handle 3 integer additions per clock cycle.

The reason for listing the reciprocal values is that this makes comparisons between latency and throughput easier. The reciprocal throughput is also called issue latency. The values listed are for a single thread or a single core. A missing value in the table means that the value has not been measured.

Definition of terms

µops

Uop or μ op is an abbreviation for micro-operation. Processors with out-of-order cores are capable of splitting complex instructions into μ ops. For example, a read-modify instruction may be split into a read- μ op and a modify- μ op. The number of μ ops that an instruction generates is important when certain bottlenecks in the pipeline limit the number of μ ops per clock cycle.

Execution unit

The execution core of a microprocessor has several execution units. Each execution unit can handle a particular category of μ ops, for example floating point additions. The information about which execution unit a particular μ op goes to can be useful for two purposes. Firstly, two μ ops cannot execute simultaneously if they need the same execution unit. And secondly, some processors have a latency of an extra clock cycle when the result of a μ op executing in one execution unit is needed as input for a μ op in another execution unit.

Execution port

The execution units are clustered around a few execution ports on most Intel processors. Each μ op passes through an execution port to get to the right execution unit. An execution port can be a bottleneck because it can handle only one μ op at a time. Two μ ops cannot execute simultaneously if they need the same execution port, even if they are going to different execution units.

Instruction set

This indicates which instruction set an instruction belongs to. The instruction is only available in processors that support this instruction set. The different instruction sets are listed at the end of this manual. Availability in processors prior to 80386 does not apply for 32-bit and 64-bit operands. Availability in the MMX instruction set does not apply to 128-bit packed integer instructions, which require SSE2. Availability in the SSE instruction set does not apply to double precision floating point instructions, which require SSE2.

32-bit instructions are available in 80386 and later. 64-bit instructions in general purpose registers are available only under 64-bit operating systems. Instructions that use XMM registers (SSE and later) are only available under operating systems that support this register set. Instructions that use YMM registers (AVX and later) are only available under operating systems that support this register set.

How the values were measured

The values in the tables are measured with the use of my own test programs, which are available from www.agner.org/optimize/testp.zip

The time unit for all measurements is CPU clock cycles. It is attempted to obtain the highest clock frequency if the clock frequency is varying with the workload. Many Intel processors have a performance counter named "core clock cycles". This counter gives measurements that are independent of the varying clock frequency. Where no "core clock cycles" counter is available, the "time stamp counter" is used (RDTSC instruction). In cases where this gives inconsistent results (e.g. in AMD Bobcat) it is necessary to make the processor boost the clock frequency by executing a large number of instructions (> 1 million) or turn off the power-saving feature in the BIOS setup.

Instruction throughputs are measured with a long sequence of instructions of the same kind, where subsequent instructions use different registers in order to avoid dependence of each instruction on the previous one. The input registers are cleared in the cases where it is impossible to use different registers. The test code is carefully constructed in each case to make sure that no other bottleneck is limiting the throughput than the one that is being measured.

Instruction latencies are measured in a long dependency chain of identical instructions where the output of each instruction is needed as input for the next instruction.

The sequence of instructions should be long, but not so long that it doesn't fit into the level-1 code cache. A typical length is 100 instructions of the same type. This sequence is repeated in a loop if a larger number of instructions is desired.

Definition of terms

It is not possible to measure the latency of a memory read or write instruction with software methods. It is only possible to measure the combined latency of a memory write followed by a memory read from the same address. What is measured here is not actually the cache access time, because in most cases the microprocessor is smart enough to make a "store forwarding" directly from the write unit to the read unit rather than waiting for the data to go to the cache and back again. The latency of this store forwarding process is arbitrarily divided into a write latency and a read latency in the tables. But in fact, the only value that makes sense to performance optimization is the sum of the write time and the read time.

A similar problem occurs where the input and the output of an instruction use different types of registers. For example, the MOVD instruction can transfer data between general purpose registers and XMM vector registers. The value that can be measured is the combined latency of data transfer from one type of registers to another type and back again ($A \rightarrow B \rightarrow A$). The division of this latency between the $A \rightarrow B$ latency and the $B \rightarrow A$ latency is sometimes obvious, sometimes based on guesswork, μ 0 counts, indirect evidence, or triangular sequences such as $A \rightarrow B \rightarrow M$ 6 memory $A \rightarrow B$ 7. In many cases, however, the division of the total latency between $A \rightarrow B$ 8 latency and $B \rightarrow A$ 8 latency is arbitrary. However, what cannot be measured cannot matter for performance optimization. What counts is the sum of the $A \rightarrow B$ 8 latency and the $B \rightarrow A$ 8 latency, not the individual terms.

The µop counts are usually measured with the use of the performance monitor counters (PMCs) that are built into modern microprocessors. The PMCs for VIA processors are undocumented, and the interpretation of these PMCs is based on experimentation.

The execution ports and execution units that are used by each instruction or μ op are detected in different ways depending on the particular microprocessor. Some microprocessors have PMCs that can give this information directly. In other cases it is necessary to obtain this information indirectly by testing whether a particular instruction or μ op can execute simultaneously with another instruction/ μ op that is known to go to a particular execution port or execution unit. On some processors, there is a delay for transmitting data from one execution unit (or cluster of execution units) to another. This delay can be used for detecting whether two different instructions/ μ ops are using the same or different execution units.

Microprocessor versions tested

The tables in this manual are based on testing of the following microprocessors

Processor name	Microarchitecture Code name	Family number (hex)	Model number (hex)	Comment
AMD K7 Athlon		6	6	Step. 2, rev. A5
AMD K8 Opteron		F	5	Stepping A
AMD K10 Opteron		10	2	2350, step. 1
AMD Bulldozer	Bulldozer, Zambezi	15	1	FX-6100, step 2
AMD Bobcat	Bobcat	14	1	E350, step. 0
Intel Pentium		5	2	
Intel Pentium MMX	P5	5	4	Stepping 4
Intel Pentium II	P6	6	6	
Intel Pentium III	P6	6	7	
Intel Pentium 4	Netburst	F	2	Stepping 4, rev. B0
Intel Pentium 4 EM64T	Netburst, Prescott	F	4	Xeon. Stepping 1
Intel Pentium M	Dothan	6	D	Stepping 6, rev. B1
Intel Core Duo	Yonah	6	E	Not fully tested
Intel Core 2 (65 nm)	Merom	6	F	T5500, Step. 6, rev. B2
Intel Core 2 (45 nm)	Wolfdale	6	17	E8400, Step. 6
Intel Core i7	Nehalem	6	1A	i7-920, Step. 5, rev. D0
Intel Core i5	Sandy Bridge	6	2A	i5-2500, Step 7
Intel Atom 330	Diamondville	6	1C	Step. 2
VIA Nano L2200		6	F	Step. 2
VIA Nano L3050	Isaiah	6	F	Step. 8 (prerel. sample)

AMD K7

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory op-

erand where the operand is listed as register or memory (r/m).

Reciprocal throughput: This is also called issue latency. This value indicates the average number of

clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the

pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means

any of the three integer ALU's. ALU0_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-operations can execute simultaneously if they go to different

execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
						Any addr. mode. Add 1 clk if code segment base ≠
MOV	r8,m8	1	4	1/2	ALU, AGU	0
MOV	r16,m16	1	4	1/2	ALU, AGU	do.
MOV	r32,m32	1	3	1/2	AGU	do.
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
MOV	m8,r8L	1	2	1/2	AGU	Any other 8-bit register Any addressing
MOV	m16/32,r	1	2	1/2	AGU	mode
MOV	m,i	1	2	1/2	AGU	
MOV	r,sr	1	2	1		

MOV	sr,r/m	6	9-13	8		
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
CMOVcc	r,r	1	1	1/3	ÁLU	
CMOVcc	r,m	1		1/2	ALU, AGU	
XCHG	r,r	3	2	1	ALU	
7.01.0		Ū	_		, 120	Timing depends
XCHG	r,m	3	16	16	ALU, AGU	on hw
XLAT		2	5		ALU, AGU	
PUSH	r	1		1	ALU, AGU	
PUSH	i	1		1	ALU, AGU	
PUSH	m	2		1	ALU, AGU	
PUSH	sr	2		1	ALU, AGU	
PUSHF(D)		1		1	ALU, AGU	
PUSHA(D)		9		4	ALU, AGU	
POP	r	2		1	ALU, AGU	
POP	m m	3		1	ALU, AGU	
POP	DS/ES/FS/GS	6		10	ALU, AGU	
POP	SS	9		18	ALU, AGU	
POPF(D)		2		10	ALU, AGU	
POPA(D)		9		4	ALU, AGU	
LEA	r16 [m]		2	1	ALU, AGU AGU	Any oddr oizo
	r16,[m]	2	3			Any addr. size
LEA	r32,[m]	1	2	1/3	AGU	Any addr. size
LAHF		4	3	2	ALU	
SAHF		2	2	2	ALU	
SALC		1	1	1	ALU	
LDS, LES,	r,m	10		9		
BSWAP	r	1	1	1/3	ALU	
Arithmetic instructions						
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/2	ALU, AGU	
ADD, SUB	m,r	1	7	2.5	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1	1	1/2	ALU, AGU	
ADC, SBB	m,r/i	1	7	2.5	ALU, AGU	
CMP	r,r/i	1	1	1/3	ÁLU	
CMP	r,m	1		1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5	,	ALU0	
AAM		31	13		ALU	
MUL, IMUL	r8/m8	3	3	2	ALU0	
	.5/1115	J		_ -	, 1200	latency ax=3,
MUL, IMUL	r16/m16	3	3	2	ALU0_1	dx=4
MUL, IMUL	r32/m32	3	4	3	ALU0_1	
IMUL						

IMUL	r32,r32/m32	2	4	2.5	ALU0
IMUL	r16,(r16),i	2	4	1	ALU0
IMUL	r32,(r32),i	2	5	2	ALU0
IMUL	r16,m16,i	3	5	2	ALU0
IMUL	r32,m32,i	3		2	ALU0
DIV	r8/m8	32	24		ALU
DIV	r16/m16	32 47		23	ALU
DIV			24 40	23 40	ALU
	r32/m32 r8	79			
IDIV		41	17	17 25	ALU
IDIV	r16	56	25	25	ALU
IDIV	r32	88	41	41	ALU
IDIV	m8	42	17	17	ALU
IDIV	m16	57	25	25	ALU
IDIV	m32	89	41	41	ALU
CBW, CWDE		1	1	1/3	ALU
CWD, CDQ		1	1	1/3	ALU
Logic instructions					
AND, OR, XOR	r,r	1	1	1/3	ALU
AND, OR, XOR	r,m	1	1	1/2	ALU, AGU
AND, OR, XOR	m,r	1	7	2.5	ALU, AGU
TEST	r,r	1	1	1/3	ALU
TEST	r,m	1	1	1/2	ALU, AGU
NOT	r,	1	1	1/3	ALU
NOT	m	1	7	2.5	ALU, AGU
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU
ROL, ROR	r,i/CL	1	1	1/3	ALU
RCL, RCR	r,1	1	1	1/3	ALU
RCL	r,i	9	4	4	ALU
RCR	r,i	7	3	3	ALU
RCL	r,CL	9	3	3	ALU
RCR	r,CL	7	3	3	ALU
SHL,SHR,SAR,ROL,ROR	m,i /CL	1	7	3	ALU, AGU
RCL, RCR	m,1	1	7	4	ALU, AGU
RCL	m,i	10	5	4	ALU, AGU
RCR	m,i	9	8	4	ALU, AGU
RCL	m,CL	9	6	4	ALU, AGU
RCR	m,CL	8	7	3	ALU, AGU ALU, AGU
		6	4	3 2	ALU, AGU ALU
SHLD, SHRD	r,r,i	7		3	
SHLD, SHRD	r,r,cl		4	3 3	ALU
SHLD, SHRD	m,r,i/CL	8	7		ALU, AGU
BT	r,r/i	1	1	1/3	ALU
BT	m,i	1		1/2	ALU, AGU
BT DTD DTC	m,r	5		2	ALU, AGU
BTC, BTR, BTS	r,r/i	2	2	1	ALU
BTC	m,i	5	7	2	ALU, AGU
BTR, BTS	m,i	4	7	2	ALU, AGU
BTC, BTR, BTS	m,r	8	6	3	ALU, AGU
BSF	r,r	19	7	7	ALU
BSR	r,r	23	9	9	ALU

BSF	r,m	20	8	8	ALU, AGU	
BSR	r,m	23	10	10	ALU, AGU	
					1	
SETcc	r	1 1	1	1/3	ALU	
SETcc	m	1 1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1	1	1/3	ALU	
CLD		2		1	ALU	
STD		3		2	ALU	
Control transfer instruction	ons					
JMP	short/near	1 1		2	ALU	
						low values = real
JMP	far	16-20	23-32			mode
JMP	r	1		2	ALU	
JMP	m(near)	1 1		2	ALU, AGU	
Olvii	m(near)	'		_	ALO, AGO	low values = real
JMP	m(far)	17-21	25-33			mode
Jcc	short/near	1 1	20 00	1/3 - 2	ALU	rcp. t.= 2 if jump
		2		1/3 - 2	ALU	1 ' ' '
J(E)CXZ	short		0.4			rcp. t.= 2 if jump
LOOP	short	7	3-4	3-4	ALU	
CALL	near	3	2	2	ALU	
	_					low values = real
CALL	far	16-22	23-32			mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3	ALU, AGU	
						low values = real
CALL	m(far)	16-22	24-33			mode
RETN		2	3	3	ALU	
RETN	i	2	3	3	ALU	
RETF		15-23	24-35			low values = real mode
DETE		45.04	04.05			low values = real
RETF	i	15-24	24-35			mode
IRET	_	32	81			real mode
INT	i	33	42			real mode
BOUND	m	6		2		values are for no jump
DOUND	m					values are for no
INTO		2		2		jump
String instructions						
LODS		4	2	2		
REP LODS		5	2	2		values per count
STOS		4	2	2		values per count
REP STOS		3				values per sount
			1	1		values per count
MOVS		7	3	3		
REP MOVS		4	1-4	1-4		values per count
SCAS		5	2	2		
REP SCAS		5	2	2		values per count
CMPS		7	6	6		
REP CMPS		6	3-4	3-4		values per count

		AMD K7			
Other NOP (90) Long NOP (0F 1F) ENTER	1 1 i,0	0 0 12	1/3 1/3 12	ALU ALU 12	
LEAVE CLI	3 8-		3 5		3 ops, 5 clk if 16 bit
STI CPUID RDTSC RDPMC	16-2 19-2 5 9		27 11 11		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4		
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260		188		
FXCH	r	1	0	0.4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
						Low latency im- mediately after
FCMOVcc	st0,r	9	6	5	FMISC, FA/M	FCOMI
FFREE	r	1		1/3	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency im- mediately after
FNSTSW	AX	2	6-12	12		FCOM FTST
FSTSW	AX	3	6-12	12	FMISC, ALU	do.
FNSTSW	m16	2		8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	
FLDCW	m16	14		42	FMISC, ALU	faster if unchanged
Arithmetic instructions						
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	
FIADD,FISUB(R)	m	2	4	1-2	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	Low values are for round divisors

FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS		1	2	1	FMUL	
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP		1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1	2	1	FADD	
FXAM		2		2	FMISC, ALU	
FRNDINT		5	10	3		
FPREM		1	7-10	8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math						
FSQRT		1	35	12	FMUL	
FSIN		44	90-100			
FCOS		51	90-100			
FSINCOS		76	100-150			
FPTAN		46	100-200			
FPATAN		72	160-170			
FSCALE		5	8			
FXTRACT		7	11			
F2XM1		8	27			
FYL2X		49	126			
FYL2XP1		63	147			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		7		24	FMISC	
FNINIT		25		92	FMISC	
FNSAVE		76		147		
FRSTOR		65		120		
FXSAVE		44		59		
FXRSTOR		85		87		

Integer MMX instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	2	7	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	m32, r	1		1	FMISC	
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	mm,m64	1		1/2	FANY	
MOVQ	m64,mm	1		1	FMISC	
MOVNTQ	m,mm	1		2	FMISC	
PACKSSWB/DW PACK- USWB	mm,r/m	1	2	2	FA/M	

PUNPCKH/LBW/WD	mm,r/m	1	2	2	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
MASKMOVQ	mm,mm	32		24		
PMOVMSKB	r32,mm	3		3	FADD	
PEXTRW	r32,mm,i	2	5	2	FMISC, ALU	
PINSRW	mm,r32,i	2	12	2	FA/M	
Arithmetic instructions						
PADDB/W/D PADDSB/W						
PADDUSB/W						
PSUBB/W/D PSUBSB/W						
PSUBUSB/W						
	mm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW						
PMULHUW	mm,r/m	1	3	1	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
Logic						
PAND PANDN POR						
PXOR	mm,r/m	1	2	1/2	FA/M	
PSLL/RLW/D/Q						
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS	r,r	2	2	1	FA/M	
MOVAPS	r,m	2		2	FMISC	
MOVAPS	m,r	2		2	FMISC	
MOVUPS	r,r	2	2	1	FA/M	
MOVUPS	r,m	5		2		
MOVUPS	m,r	5		2		
MOVSS	r,r	1	2	1	FA/M	
MOVSS	r,m	2	4	1	FANY FMISC	
MOVSS	m,r	1	3	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS, MOVLPS	r,m	1		1/2	FMISC	
MOVHPS, MOVLPS	m,r	1		1	FMISC	
MOVNTPS	m,r	2		4	FMISC	
MOVMSKPS	r32,r	3		2	FADD	
SHUFPS	r,r/m,i	3	3	3	FMUL	

UNPCK H/L PS	r,r/m	2	3	3	FMUL	
Conversion						
CVTPI2PS	xmm,mm	1	4		FMISC	
CVT(T)PS2PI	mm,xmm	1	6		FMISC	
CVTSI2SS	xmm,r32	4		10	FMISC	
CVT(T)SS2SI	r32,xmm	2		3	FMISC	
Arithmetic						
ADDSS SUBSS	r,r/m	1	4	1	FADD	
ADDPS SUBPS	r,r/m	2	4	2	FADD	
MULSS	r,r/m	1	4	1	FMUL	
MULPS	r,r/m	2	4	2	FMUL	
						Low values are
						for round di- visors, e.g.
DIVSS	r,r/m	1	11-16	8-13	FMUL	powers of 2.
DIVPS	r,r/m	2	18-30	18-30	FMUL	do.
RCPSS	r,r/m	1	3	1	FMUL	40.
RCPPS	r,r/m	2	3	2	FMUL	
MAXSS MINSS	r,r/m	1	2	1	FADD	
MAXPS MINPS	r,r/m	2	2	2	FADD	
CMPccSS	r,r/m	1	2	1	FADD	
CMPccPS	r,r/m	2	2	2	FADD	
COMISS UCOMISS	r,r/m	1	2	1	FADD	
	,,,,,,,,,		_	·		
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	2	2	FMUL	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	2	36	36	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

3DNow instructions (obsolete)

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move and convert in	structions					
PREFETCH(W)	m	1		1/2	AGU	
PF2ID	mm,mm	1	5	1	FMISC	
PI2FD	mm,mm	1	5	1	FMISC	
PF2IW	mm,mm	1	5	1	FMISC	3DNow E
PI2FW	mm,mm	1	5	1	FMISC	3DNow E
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow E

Integer instructions PAVGUSB	mm,mm	1	2	1/2	FA/M	
PMULHRW	mm,mm	1	3	1	FMUL	
Floating point instruction	 s					
PFADD/SUB/SUBR	mm,mm	1	4	1	FADD	
PFCMPEQ/GE/GT	mm,mm	1	2	1	FADD	
PFMAX/MIN	mm,mm	1	2	1	FADD	
PFMUL	mm,mm	1	4	1	FMUL	
PFACC	mm,mm	1	4	1	FADD	
PFNACC, PFPNACC	mm,mm	1	4	1	FADD	3DNow E
PFRCP	mm,mm	1	3	1	FMUL	
PFRCPIT1/2	mm,mm	1	4	1	FMUL	
PFRSQRT	mm,mm	1	3	1	FMUL	
PFRSQIT1	mm,mm	1	4	1	FMUL	
Other						
FEMMS	mm,mm	1		1/3	FANY	

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the oper-

and is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means any of

the three integer ALU's. ALUO_1 means that ALUO and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-operations can

execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions	S					
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addressing
MOV	r16,m16	1	4	1/2	ALU, AGU	mode. Add 1 clock if
MOV	r32,m32	1	3	1/2	AGU	code segment base
MOV	r64,m64	1	3	1/2	AGU	≠ 0
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
						Any other 8-bit re-
MOV	m8,r8L	1	3	1/2	AGU	gister
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing mode
MOV	m,i	1	3	1/2	AGU	
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	2	1/2-1		
MOV	sr,r/m	6	9-13	8		

MOVNTI	m,r	1		2-3	AGU	
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
MOVSXD	r64,r32	1	1	1/3	ALU	
MOVSXD	r64,m32	1		1/2	ALU, AGU	
CMOVcc	r,r	1	1	1/3	ALU ALU	
CMOVcc	· ·	1	ı	1/3	ALU, AGU	
XCHG	r,m	3	2			
ACIG	r,r	3	2	1	ALU	Timeira e da sa sa da la sa
XCHG	r,m	3	16	16	ALU, AGU	Timing depends on hw
XLAT	1,111	2	5	10	ALU, AGU	TIVV
PUSH	r	1	1	1	ALU, AGU	
	r :		-	1		
PUSH	i	1	1	1	ALU, AGU	
PUSH	m	2	1	1	ALU, AGU	
PUSH	sr	2	1	1	ALU, AGU	
PUSHF(D/Q)		5	2	2	ALU, AGU	
PUSHA(D)		9	4	4	ALU, AGU	
POP	r	2	1	1	ALU, AGU	
POP	m	3	1	1	ALU, AGU	
POP	DS/ES/FS/GS	4-6	8	8	ALU, AGU	
POP	SS	7-9	28	28	ALU, AGU	
POPF(D/Q)		25	10	10	ALU, AGU	
POPA(D)		9	4	4	ALU, AGU	
LEA	r16,[m]	2	3	1	AGU	Any address size
LEA	r32,[m]	1	2	1/3	AGU	Any address size
LEA	r64,[m]	1	2	1/3	AGU	Any address size
LAHF	, []	4	3	2	ALU	,
SAHF		1	1	1/3	ALU	
SALC		1	1	1/3	ALU	
LDS, LES,	r,m	10		9	7120	
BSWAP	r	1	1	1/3	ALU	
PREFETCHNTA	m	1		1/2	AGU	
PREFETCHT0/1/2		1		1/2	AGU	
SFENCE	m	6			AGU	
LFENCE				8 5		
		1 7				
MFENCE	- :/D\/			16		
IN	r,i/DX	270				
OUT	i/DX,r	300				
Arithmetic instruction			_			
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/2	ALU, AGU	
ADD, SUB	m,r	1	7	2.5	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1	1	1/2	ALU, AGU	
ADC, SBB	m,r/i	1	7	2.5	ALU, AGU	
CMP	r,r/i	1	1	1/3	ALU	
CMP	r,m	1		1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	

1000 000		0			A111	
AAA, AAS		9	5 6	5 6	ALU	
DAA		12		7	ALU	
DAS		16	7	/	ALU	
AAD		4	5		ALU0	
AAM	24.0	31	13	_	ALU	
MUL, IMUL	r8/m8	1	3	1	ALU0	
MUL, IMUL	r16/m16	3	3-4	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3	1	ALU0_1	
MUL, IMUL	r64/m64	2	4-5	2	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16	1	3	1	ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3		2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL	r64,m64,i	3		2	ALU0_1	
DIV	r8/m8	31	15	15	ALU	
DIV	r16/m16	46	23	23	ALU	
DIV	r32/m32	78	39	39	ALU	
DIV	r64/m64	143	71	71	ALU	
IDIV	r8	40	17	17	ALU	
IDIV	r16	55	25	25	ALU	
IDIV	r32	87	41	41	ALU	
IDIV	r64	152	73	73	ALU	
IDIV	m8	41	17	17	ALU	
IDIV						
	m16	56	25	25	ALU	
IDIV	m32	88	41	41	ALU	
IDIV	m64	153	73	73	ALU	
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
Logic instructions						
Logic instructions AND, OR, XOR	rr	1	1	1/3	ALU	
	r,r			1/3	ALU, AGU	
AND, OR, XOR	r,m	1	1			
AND, OR, XOR	m,r	1	7	2.5	ALU, AGU	
TEST	r,r	1	1	1/3	ALU	
TEST	r,m	1	1	1/2	ALU, AGU	
NOT	r	1	1 -	1/3	ALU	
NOT	m	1	7	2.5	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1	1/3	ALU	
RCL, RCR	r,1	1	1	1/3	ALU	
RCL	r,i	9	3	3	ALU	
RCR	r,i	7	3	3	ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,R						
OR	m,i /CL	1	7	3	ALU, AGU	

1	ı			ı	1	1
RCL, RCR	m,1	1	7	4	ALU, AGU	
RCL	m,i	10	9	4	ALU, AGU	
RCR	m,i	9	8	4	ALU, AGU	
RCL	m,CL	9	7	4	ALU, AGU	
RCR	m,CL	8	8	3	ALU, AGU	
SHLD, SHRD	r,r,i	6	3	3	ALU	
SHLD, SHRD	r,r,cl	7	3	3	ALU	
SHLD, SHRD	m,r,i/CL	8	6	3	ALU, AGU	
BT	r,r/i	1	1	1/3	ALU	
BT	m,i	1 1	'	1/2	ALU, AGU	
BT		5		2	ALU, AGU	
	m,r	2	2		ALU, AGU	
BTC, BTR, BTS	r,r/i		2	1		
BTC	m,i	5	7	2	ALU, AGU	
BTR, BTS	m,i	4	7	2	ALU, AGU	
BTC	m,r	8	5	5	ALU, AGU	
BTR, BTS	m,r	8	8	3	ALU, AGU	
BSF	r16/32,r	21	8	8	ALU	
BSF	r64,r	22	9	9	ALU	
BSR	r,r	28	10	10	ALU	
BSF	r16,m	20	8	8	ALU, AGU	
BSF	r32,m	22	9	9	ALU, AGU	
BSF	r64,m	25	10	10	ALU, AGU	
BSR	r,m	28	10	10	ALU, AGU	
SETcc	r	1	1	1/3	ALU	
SETcc	m	1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1	1	1/3	ALU	
CLD		1		1/3	ALU	
STD		2		1/3	ALU	
Control transfer instru	1					
JMP	short/near	1		2	ALU	
JMP	far	16-20	23-32			low values = real mode
JMP	r	1		2	ALU	
JMP	m(near)	1		2	ALU, AGU	
JMP	m(far)	17-21	25-33			low values = real mode
Jcc	short/near	1		1/3 - 2	ALU	recip. thrp.= 2 if jump
J(E/R)CXZ	short	2		1/3 - 2	ALU	recip. thrp.= 2 if jump
LOOP	short	7	3-4	3-4	ALU	
CALL	near	3	2	2	ALU	
CALL	far	16-22	23-32			low values = real mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3	ALU, AGU	
CALL	m(far)	16-22	24-33			low values = real mode
RETN	, ,	2	3	3	ALU	
RETN	i	2	3	3	ALU	
RETF		15-23	24-35			low values = real mode
RETF	i	15-24	24-35			low values = real mode
IRET		32	81			real mode
INT	i	33	42			real mode
T .	l .	1 1		I .	1	1

BOUND	m	6		2		values are for no jump
INTO		2		2		values are for no jump
String instructions						
LODS		4	2	2		
REP LODS		5	2	2		values are per count
STOS		4	2	2		
REP STOS		1.5 - 2	0.5 - 1	0.5 - 1		values are per count
MOVS		7	3	3		
REP MOVS		3	1-2	1-2		values are per count
SCAS		5	2	2		
REP SCAS		5	2	2		values are per count
CMPS		2	3	3		
REP CMPS		6	2	2		values are per count
Other						
NOP (90)		1	0	1/3	ALU	
Long NOP (0F 1F)		1	0	1/3	ALU	
ENTER		i,0	12	12	12	
LEAVE		2		3		3 ops, 5 clk if 16 bit
CLI		8-9		5		
STI		16-17		27		
CPUID		22-50	47-164			
RDTSC		6	10	7		
RDPMC		9	12	7		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions	•					
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4		
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260	173	160		
FXCH	r	1	0	0.4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
FCMOVcc	st0,r	9	4-15	4	FMISC, FA/M	Low latency immediately after FCOMI
	510,1	9	4-15	2		atery after PCOM
FFREE	ſ			_	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency immediately after FCOM
FNSTSW	AX	2	6-12	12	FMISC, ALU	FTST
FSTSW	AX	3	6-12	12	FMISC, ALU	do.

FNSTSW	m16	2		8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	
FLDCW	m16	18		50	FMISC, ALU	faster if unchanged
Arithmetic instruction	s					
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	
FIADD,FISUB(R)	m	2	4	1-2	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
					,	Low values are for
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	round divisors
FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS		1	2	1	FMUL	
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP		1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1	2	1	FADD	
FXAM		2		1	FMISC, ALU	
FRNDINT		5	10	3		
FPREM		1	7-10	8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math						
FSQRT		1	27	12	FMUL	
FLDPI, etc.		1		1	FMISC	
FSIN		66	140-190			
FCOS		73	150-190			
FSINCOS		98	170-200			
FPTAN		67	150-180			
FPATAN		97	217			
FSCALE		5	8			
FXTRACT		7	12	7		
F2XM1		53	126			
FYL2X		72	179			
FYL2XP1		75	175			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		27	FMISC	
FNINIT		26		100	FMISC	
FNSAVE		77		171		
FRSTOR		70		136		
FXSAVE		61		56		
FXRSTOR		101		95		
FXSAVE		61		56		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions	<u> </u>			am cagnipat		
MOVD	r32, mm	2	4	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	r32, xmm	3	2	2	FMISC, ALU	
MOVD	xmm, r32	3	3	2	,	
MOVD	xmm,m32	2		1	FANY	
MOVD	m32, r	1		1	FMISC	
	, , ,	-				Moves 64 bits.Name
MOVD (MOVQ)	r64,mm/xmm	2	4	2	FMISC, ALU	of instruction differs
MOVD (MOVQ)	mm,r64	2	9	2	FANY, ALU	do.
MOVD (MOVQ)	xmm,r64	3	9	2	FANY, ALU	do.
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	xmm,xmm	2	2	1	FA/M, FMISC	
MOVQ	mm,m64	1		1/2	FANY	
MOVQ	xmm,m64	2		1	FANY, FMISC	
MOVQ	m64,mm/x	1		1	FMISC	
MOVDQA	xmm,xmm	2	2	1	FA/M	
MOVDQA	xmm,m	2	_	2	FMISC	
MOVDQA	m,xmm	2		2	FMISC	
MOVDQU	xmm,m	4		2	1 1/1100	
MOVDQU	m,xmm	5		2		
MOVDQ2Q	mm,xmm	1	2	1/2	FA/M	
MOVQ2DQ	xmm,mm	2	2	1	FA/M, FMISC	
MOVNTQ	m,mm	1		2	FMISC	
MOVNTDQ	m,xmm	2		3	FMISC	
PACKSSWB/DW	111,7111111			3	1 WIGC	
PACKUSWB	mm,r/m	1	2	2	FA/M	
PACKSSWB/DW	111111,17111	'	_	_	170101	
PACKUSWB	xmm,r/m	3	3	2	FA/M	
PUNPCKH/LBW/WD/				_		
DQ	mm,r/m	1	2	2	FA/M	
PUNPCKH/LBW/WD/						
DQ	xmm,r/m	2	2	2	FA/M	
PUNPCKHQDQ	xmm,r/m	2	2	1	FA/M	
PUNPCKLQDQ	xmm,r/m	1	2	1/2	FA/M	
PSHUFD	xmm,xmm,i	3	3	1.5	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
PSHUFL/HW	xmm,xmm,i	2	2	1	FA/M	
MASKMOVQ	mm,mm	32		13		
MASKMOVDQU	xmm,xmm	64		26		
PMOVMSKB	r32,mm/xmm	1	2	1	FADD	
PEXTRW	r32,mm/x,i	2	5	2	FMISC, ALU	
PINSRW	mm,r32,i	2	12	2	FA/M	
PINSRW	xmm,r32,i	3	12	3	FA/M	
Arithmetic instruction	 S					

PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W PADDB/W/D/Q PADDSB/W ADDUSB/W PSUBB/W/D/Q PSUBB/W/D/Q	mm,r/m	1	2	1/2	FA/M	
PSUBUSB/W	xmm,r/m	2	2	1	FA/M	
PCMPEQ/GT B/W/D	mm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	xmm,r/m	2	2	1	FA/M	
PMULLW PMULHW PMULHUW PMULUDQ	·					
	mm,r/m	1	3	1	FMUL	
PMULLW PMULHW PMULHUW						
PMULUDQ	xmm,r/m	2	3	2	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PMADDWD	xmm,r/m	2	3	2	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
	· '					
PAVGB/W	xmm,r/m	2	2	1 1/2	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	xmm,r/m	2	2	1	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
PSADBW	xmm,r/m	2	3	2	FADD	
Logic						
PAND PANDN POR				1.00		
PXOR	mm,r/m	1	2	1/2	FA/M	
PAND PANDN POR		•		_	E A /3.4	
PXOR	xmm,r/m	2	2	1	FA/M	
PSLL/RL W/D/Q	ma ma :///	4		1/0	E A / N /	
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q	v ibdaa	0	_	4	E A /N/I	
PSRAW/D	x,i/x/m	2	2 2	1	FA/M	
PSLLDQ, PSRLDQ	xmm,i	2		1	FA/M	
Othor						
Other	-	4		1/2		
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	2	2	1	FA/M	
MOVAPS/D	r,m	2		2	FMISC	
MOVAPS/D	m,r	2		2	FMISC	
MOVUPS/D	r,r	2	2	1	FA/M	

1.10\ (1.1D0 (D	1		l		I	1
MOVUPS/D	r,m	4		2		
MOVUPS/D	m,r	5		2		
MOVSS/D	r,r	1	2	1	FA/M	
MOVSS/D	r,m	2	4	1	FANY FMISC	
MOVSS/D	m,r	1	3	1	FMISC	
MOVHLPS,		4		4.0	- a /a 4	
MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS/D,		4		4	EMICO	
MOVLPS/D	r,m	1		1	FMISC	
MOVHPS/D, MOVLPS/D	m r	1		1	FMISC	
MOVDDUP	m,r	2	2	1	1 WIGC	SSE3
MOVSH/LDUP	r,r	2	2	2		SSE3
MOVNTPS/D	r,r m r	2		3	FMISC	SSES
MOVMSKPS/D	m,r	1	8	1	FADD	
SHUFPS/D	r32,r	-	3	2	FMUL	
UNPCK H/L PS/D	r,r/m,i	3 2	3	3	FMUL	
UNPCK H/L P3/D	r,r/m		S	3	FIVIUL	
Conversion						
CVTPS2PD	r,r/m	2	4	2	FMISC	
CVTPD2PS	r,r/m	4	8	3	FMISC	
CVTSD2SS	r,r/m	3	8	8	FMISC	
CVTSS2SD	r,r/m	1	2	1	FMISC	
CVTDQ2PS	r,r/m	2	5	2	FMISC	
CVTDQ2PD	r,r/m	2	5	2	FMISC	
CVT(T)PS2DQ	r,r/m	2	5	2	FMISC	
CVT(T)PD2DQ	r,r/m	4	8	3	FMISC	
CVTPI2PS	xmm,mm	1	4	1	FMISC	
CVTPI2PD	xmm,mm	2	5	2	FMISC	
CVT(T)PS2PI	mm,xmm	1	6	1	FMISC	
CVT(T)PD2PI	mm,xmm	3	8	2	FMISC	
CVTSI2SS	xmm,r32	3	14	2	FMISC	
CVTSI2SD	xmm,r32	2	12	2	FMISC	
CVT(T)SD2SI	r32,xmm	2	10	2	FMISC	
CVT(T)SS2SI	r32,xmm	2	9	2	FMISC	
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	4	1	FADD	
ADDPS/D SUBPS/D	r,r/m	2	4	2	FADD	
HADDPS/D						
HSUBPS/D	r,r/m	2	4	2	FADD	SSE3
MULSS/D	r,r/m	1	4	1	FMUL	
MULPS/D	r,r/m	2	4	2	FMUL	
						Low values are for
Di) (00	,		444-	6.45		round divisors, e.g.
DIVSS	r,r/m	1	11-16	8-13	FMUL	powers of 2.
DIVPS	r,r/m	2	18-30	18-30	FMUL	do.
DIVSD	r,r/m	1	11-20	8-17	FMUL	do.
DIVPD	r,r/m	2	16-34	16-34	FMUL	do.
RCPSS	r,r/m	1	3	1	FMUL	
RCPPS	r,r/m	2	3	2	FMUL	

MAXSS/D MINSS/D	r,r/m	1	2	1	FADD	
MAXPS/D MINPS/D	r,r/m	2	2	2	FADD	
CMPccSS/D	r,r/m	1	2	1	FADD	
CMPccPS/D	r,r/m	2	2	2	FADD	
COMISS/D						
UCOMISS/D	r,r/m	1	2	1	FADD	
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	2	2	FMUL	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	2	36	36	FMUL	
SQRTSD	r,r/m	1	27	24	FMUL	
SQRTPD	r,r/m	2	48	48	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the

operand is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means any

of the three integer ALU's. ALU0_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-opera-

tions can execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions	<u>'</u>					
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addressing
MOV	r16,m16	1	4	1/2	ALU, AGU	mode. Add 1 clock if
MOV	r32,m32	1	3	1/2	AGU	code segment base
MOV	r64,m64	1	3	1/2	AGU	≠ 0
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
						Any other 8-bit
MOV	m8,r8L	1	3	1/2	AGU	register
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing
MOV	m,i	1	3	1/2	AGU	mode
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	3-4	1/2		
MOV	sr,r/m	6	8-26	8		from AMD manual

MOVNTI	m,r	1		1	AGU	
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
MOVSXD	r64,r32	1	1	1/3	ALU	
MOVSXD	r64,m32	1 1	4	1/2	ALU, AGU	
CMOVcc	r,r		1	1/3	ALU ALU	
CMOVcc	r,m	1	4	1/3	ALU, AGU	
XCHG	r,r	2	1	1	ALU, AGU	
XCHG	r,m	2	21	19	ALU, AGU	Timing depends on hw
XLAT	1,111	2	5	5	ALU, AGU	Tilling depends on riw
PUSH	r	1	3	1/2	ALU, AGU	
PUSH	r i			1/2		
PUSH		1 2			ALU, AGU	
	m			1	ALU, AGU	
PUSH	sr	2		1	ALU, AGU	
PUSHF(D/Q)		9	0	3	ALU, AGU	
PUSHA(D)		9	6	6	ALU, AGU	
POP	r	1	•	1/2	ALU, AGU	
POP	m	3	3	1	ALU, AGU	
POP	DS/ES/FS/GS	6	10	8	ALU, AGU	
POP	SS	10	26	16	ALU, AGU	
POPF(D/Q)		28	16	11	ALU, AGU	
POPA(D)		9	6	6	ALU, AGU	
LEA	r16,[m]	2	3	1	ALU, AGU	Any address size
	-20/04 []	,	4	4/0	A1.11	≤ 2 source
LEA	r32/64,[m]	1	1	1/3	ALU	operands
LEA	r32/64,[m]	1	2	1/3	AGU	W. scale or 3 opr.
LAHF		4	3	2	ALU	
SAHF		1	1	1/3	ALU	
SALC		1	1	1	ALU	
LDS, LES,	r,m	10	4	10		
BSWAP	r	1	1	1/3	ALU	
PREFETCHNTA	m	1		1/2	AGU	
PREFETCHT0/1/2	m	1		1/2	AGU	
SFENCE		6		8		
LFENCE		1		1		
MFENCE		4		33		
IN	r,i/DX	~270				
OUT	i/DX,r	~300				
Arithmetic instruction	 S					
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	•	1/2	ALU, AGU	
ADD, SUB	m,r	1	4	1	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1		1/2	ALU, AGU	
ADC, SBB	m,r/i		4	1	ALU, AGU	
CMP	r,r/i		1	1/3	ALU, AGU	
CMP	r,m		ı	1/3	ALU, AGU	
INC, DEC, NEG	r	1	1	1/2	ALU, AGU ALU	
INC, DEC, NEG		1	7	2	ALU, AGU	
ING, DEG, NEG	m	1	1		ALU, AGU	

AAA AAC	1 1	0		l -		i I
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5	5	ALU0	
AAM		30	13	13	ALU	
MUL, IMUL	r8/m8	1	3	1	ALU0	
MUL, IMUL	r16/m16	3	3	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3	1	ALU0_1	
MUL, IMUL	r64/m64	2	4	2	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16	1	3	1	ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3		2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL	r64,m64,i	3		2	ALU0_1	
DIV	r8/m8		17	17	ALU	
IDIV	r8		19	19	ALU	
IDIV	m8		22	22	ALU	
DIV	r16/m16		15-30	15-30	ALU	Depends on number
DIV	r32/m32		15-46	15-46	ALU	of significant bits in
DIV	r64/m64		15-78	15-78	ALU	absolute value of
IDIV	r16/m16		24-39	24-39	ALU	dividend. See AMD
IDIV	r32/m32		24-55	24-55	ALU	software optimiza- tion guide.
IDIV	r64/m64		24-87	24-87	ALU	tion gaide.
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
Logic instructions						
AND, OR, XOR	r,r	1	1	1/3	ALU	
AND, OR, XOR	r,m	1		1/2	ALU, AGU	
AND, OR, XOR	m,r	1	4	1	ALU, AGU	
TEST	r,r	1	1	1/3	ALU	
TEST	r,m	1		1/2	ALU, AGU	
NOT	r	1	1	1/3	ALU	
NOT	m	1	7	1	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1	1/3	ALU	
RCL, RCR	r,1	1	1	1	ALU	
RCL	r,i	9	3	3	ALU	
RCR	r,i	7	3	3	ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,RO		1	7	1	ALU, AGU	
RCL, RCR	m,1	1	7	1	ALU, AGU	
RCL	m,i	10	7	5	ALU, AGU	
RCR	m,i	9	7	6	ALU, AGU	
RCL	m,CL	9	8	6	ALU, AGU	
1	, , =	-	-	· -	-,	1

RCR	m Cl	0	7		ALLI ACII	
	m,CL	8	7 3	5 2	ALU, AGU	
SHLD, SHRD	r,r,i				ALU	
SHLD, SHRD	r,r,cl	7	3	3	ALU	
SHLD, SHRD	m,r,i/CL	8	7.5	6	ALU, AGU	
BT	r,r/i	1 1	1	1/3	ALU	
BT	m,i	1	_	1/2	ALU, AGU	
BT	m,r	5	7	2	ALU, AGU	
BTC, BTR, BTS	r,r/i	2	2	1/3	ALU	
BTC	m,i	5	9	1.5	ALU, AGU	
BTR, BTS	m,i	4	9	1.5	ALU, AGU	
BTC	m,r	8	8	10	ALU, AGU	
BTR, BTS	m,r	8	8	7	ALU, AGU	
BSF	r,r	6	4	3	ALU	
BSR	r,r	7	4	3	ALU	
BSF	r,m	7	7	3	ALU, AGU	
BSR	r,m	8	7	3	ALU, AGU	
POPCNT	r,r/m	1	2	1	ALU	SSE4.A / SSE4.2
LZCNT	r,r/m	1	2	1	ALU	SSE4.A, AMD only
SETcc	r	1	1	1/3	ALU	
SETcc	m	1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1 1	1	1/3	ALU	
CLD		1 1		1/3	ALU	
STD		2		2/3	ALU	
Control transfer instru	ıctions					
JMP	short/near	1 1		2	ALU	
JMP	far	16-20	23-32			low values = real mode
JMP	r	1		2	ALU	
JMP	m(near)	1		2	ALU, AGU	
JMP	m(far)	17-21	25-33		ŕ	low values = real mode
Jcc	short/near	1		1/3 - 2	ALU	recip. thrp.= 2 if jump
J(E/R)CXZ	short	2		2/3 - 2	ALU	recip. thrp.= 2 if jump
LOOP	short	7		3	ALU	
CALL	near	3	2	2	ALU	
CALL	far	16-22	23-32	_	7.20	low values = real mode
CALL	r	4	3	3	ALU	low values – real mode
CALL	m(near)	5	3	3	ALU, AGU	
CALL	m(far)	16-22	24-33		7120,7100	low values = real mode
RETN	miliar	2	3	3	ALU	low values – real filode
RETN	i	2	3	3	ALU	
RETF	'	15-23	24-35	3	ALO	low voluce = real made
RETF	i	15-24	24-35			low values = real mode
IRET	'	32	24-33 81			low values = real mode real mode
INT	i	33	42			real mode
BOUND	m	6		2		values are for no jump
INTO		2		2		values are for no jump
Ctuing inctured:						
String instructions LODS			2	2		
ILUDO		4	2	2		

REP LODS	5	2	2		values are per count
STOS	4	2	2		
REP STOS	2	1	1		values are per count
MOVS	7	3	3		
REP MOVS	3	1	1		values are per count
SCAS	5	2	2		
REP SCAS	5	2	2		values are per count
CMPS	7	3	3		
REP CMPS	3	1	1		values are per count
Other					
NOP (90)	1	0	1/3	ALU	
Long NOP (0F 1F)	1	0	1/3	ALU	
ENTER	i,0	12		12	
LEAVE	2		3		3 ops, 5 clk if 16 bit
CLI	8-9		5		
STI	16-17		27		
CPUID	22-50	47-164			
RDTSC	30		67		
RDPMC	13		5		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	13	4		
FBLD	m80	20	94	30		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	2	1	FMISC	
FSTP	m80	10	8	7		
FBSTP	m80	218	167	163		
FXCH	r	1	0	1/3		
FILD	m	1	6	1	FMISC	
FIST(P)	m	1	4	1	FMISC	
FLDZ, FLD1		1		1	FMISC	
						Low latency imme-
FCMOVcc	st0,r	9			FMISC, FA/M	diately after FCOMI
FFREE	r	1		1/3	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency
FNSTSW	AX	2		16	FMISC, ALU	immediately after FCOM FTST
FSTSW	AX	3		14	FMISC, ALU	do.
FNSTSW	m16	2		9	FMISC, ALU	do.
FNSTCW	m16	3		2	FMISC, ALU	
FLDCW	m16	12		14	FMISC, ALU	faster if unchanged
Arithmetic instruction	 IS					

EADD/D) EQUID/D)/D)	r/m	1	4	1	FADD	
FADD(P),FSUB(R)(P) FIADD,FISUB(R)		1 2	4	4	FADD,FMISC	
FMUL(P)	m r/m	1	4	1	FMUL	
FIMUL	m	2	4	4	FMUL,FMISC	
	r/m	1	?	24	FMUL	
FDIV(R)(P) FIDIV(R)		2	31	24	FMUL,FMISC	
FABS, FCHS	m	1	2	24	FMUL	
FCOM(P), FUCOM(P)	r/m	1		1	FADD	
FCOMPP, FUCOMPP	1/111	1		1	FADD	
FCOMI(P)	r	1		1	FADD	
` '	r	2		1	FADD, FMISC	
FICOM(P) FTST	m	1		1	FADD, FMISC	
FXAM		2		1	FMISC, ALU	
FRNDINT		6		37	FIVIISC, ALU	
FPREM		1		7	FMUL	
FPREM1		1		7	FMUL	
FFREIVII		Į Į		/	FIVIOL	
Math						
FSQRT		1	35	35	FMUL	
FLDPI, etc.		1		1	FMISC	
FSIN		45	~51?			
FCOS		51	~90?			
FSINCOS		76	~125?			
FPTAN		45	~119			
FPATAN		9	151?	45?		
FSCALE		5	9	29		
FXTRACT		11	9	41		
F2XM1		8	65	30?		
FYL2X		8	13	30?		
FYL2XP1		12	114	44?		
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		28	FMISC	
FNINIT		26		103	FMISC	
FNSAVE	m	77	162	149		
FRSTOR	m	70	133	149		
FXSAVE	m	61	63	58		
FXRSTOR	m	85	89	79		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	1	3	1	FADD	
MOVD	mm, r32	2	6	3		
MOVD	mm,m32	1	4	1/2	FANY	
MOVD	r32, xmm	1	3	1	FADD	

MOVD	xmm, r32	2	6	3	Ī	
MOVD	xmm,m32	1	2	1/2		
MOVD	m32,mm/x	1	2	1	FMISC	
	,	•	_			Moves 64 bits.
						Name of instruction
MOVD (MOVQ)	r64,(x)mm	1	3	1	FADD	differs
MOVD (MOVQ)	mm,r64	2	6	3		do.
MOVD (MOVQ)	xmm,r64	2	6	3	FMUL, ALU	do.
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	xmm,xmm	1	2.5	1/3	FANY	
MOVQ	mm,m64	1	4	1/2	FANY	
MOVQ	xmm,m64	1	2	1/2	?	
MOVQ	m64,(x)mm	1	2	1	FMISC	
MOVDQA	xmm,xmm	1	2.5	1/3	FANY	
MOVDQA	xmm,m	1	2	1/2	?	
MOVDQA	m,xmm	2	2	1	FMUL,FMISC	
MOVDQU	xmm,m	1	2	1/2		
MOVDQU	m,xmm	3	3	2		
MOVDQ2Q	mm,xmm	1	2	1/3	FANY	
MOVQ2DQ	xmm,mm	1	2	1/3	FANY	
MOVNTQ	m,mm	1		1	FMISC	
MOVNTDQ	m,xmm	2		1	FMUL,FMISC	
PACKSSWB/DW						
PACKUSWB	mm,r/m	1	2	1/2	FA/M	
PACKSSWB/DW			_			
PACKUSWB	xmm,r/m	1	3	1/2	FA/M	
PUNPCKH/LBW/WD/		4	_	1/0	E A /N 4	
DQ	mm,r/m	1	2	1/2	FA/M	
PUNPCKH/LBW/WD/ DQ	xmm,r/m	1	3	1/2	FA/M	
PUNPCKHQDQ	xmm,r/m	1	3	1/2	FA/M	
PUNPCKLQDQ	xmm,r/m	1	3	1/2	FA/M	
PSHUFD	xmm,xmm,i	1	3	1/2	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
PSHUFL/HW	xmm,xmm,i	1	2	1/2	FA/M	
MASKMOVQ	mm,mm	32		13	1 70101	
MASKMOVDQU	xmm,xmm	64		24		
PMOVMSKB	r32,mm/xmm	1	3	1	FADD	
PEXTRW	r32,(x)mm,i	2	6	1	17,00	
PINSRW	(x)mm,r32,i	2	9	3	FA/M	
INSERTQ	xmm,xmm	3	6	2	FA/M	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	6	2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm	1	2	1/2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	1/2	FA/M	SSE4.A, AMD only
	23(1111)23(11111)1)1	•	_	.,,_	1 7 0 101	OSE III (, / WID OIII)
Arithmetic instruction	S					

PADDB/W/D/Q PADDSB/W PADDUSB/W PSUBB/W/D/Q PSUBSB/W PSUBUSB/W	mm/xmm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm/xmm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW PMULHUW						
PMULUDQ	mm/xmm,r/m	1	3	1	FMUL	
PMADDWD	mm/xmm,r/m	1	3	1	FMUL	
PAVGB/W	mm/xmm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm/xmm,r/m	1	2	1/2	FA/M	
PSADBW	mm/xmm,r/m	1	3	1	FADD	
Logic						
PAND PANDN POR			_			
PXOR	mm/xmm,r/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q	111111,1/111111/111	1		1/2	I AVIVI	
PSRAW/D	x,i/(x)mm	1	3	1/2	FA/M	
PSLLDQ, PSRLDQ	xmm,i	1	3	1/2	FA/M	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	1	2.5	1/2	FANY	
MOVAPS/D	r,m	1	2	1/2	?	
MOVAPS/D	m,r	2	2	1	FMUL,FMISC	
MOVUPS/D	r,r	1	2.5	1/2	FANY	
MOVUPS/D	r,m	1	2	1/2	?	
MOVUPS/D	m,r	3	3	2	FMISC	
MOVSS/D	r,r	1	2	1/2	FA/M	
MOVSS/D	r,m	1	2	1/2	?	
MOVSS/D	m,r	1	2	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	3	1/2	FA/M	
MOVHPS/D, MOVLPS/D	r,m	1	4	1/2	FA/M	
MOVHPS/D, MOVLPS/D	m,r	1		1	FMISC	
MOVNTPS/D	m,r	2		3	FMUL,FMISC	
MOVNTSS/D	m,r	1		1	FMISC	SSE4.A, AMD only
MOVMSKPS/D	r32,r	1	3	1	FADD	
SHUFPS/D	r,r/m,i	1	3	1/2	FA/M	

UNPCK H/L PS/D	r,r/m	1	3	1/2	FA/M
Conversion					
CVTPS2PD	r,r/m	1	2	1	FMISC
CVTPD2PS	r,r/m	2	7	1	
CVTSD2SS	r,r/m	3	8	2	
CVTSS2SD	r,r/m	3	7	2	
CVTDQ2PS	r,r/m	1	4	1	FMISC
CVTDQ2F3 CVTDQ2PD	r,r/m	1	4	1	FMISC
CVTDQ2PD CVT(T)PS2DQ		1	4	1	FMISC
` '	r,r/m	1	7	-	FIVIISC
CVT(T)PD2DQ	r,r/m	2		1	
CVTPI2PS	xmm,mm	2	7	1	51,110.0
CVTPI2PD	xmm,mm	1	4	1	FMISC
CVT(T)PS2PI	mm,xmm	1	4	1	FMISC
CVT(T)PD2PI	mm,xmm	2	7	1	
CVTSI2SS	xmm,r32	3	14	3	
CVTSI2SD	xmm,r32	3	14	3	
CVT(T)SD2SI	r32,xmm	2	8	1	FADD,FMISC
CVT(T)SS2SI	r32,xmm	2	8	1	FADD,FMISC
Arithmetic					
ADDSS/D SUBSS/D	r,r/m	1	4	1	FADD
ADDPS/D SUBPS/D	r,r/m	1	4	1	FADD
MULSS/D	r,r/m	1	4	1	FMUL
MULPS/D	r,r/m	1	4	1	FMUL
DIVSS	r,r/m	1	16	13	FMUL
DIVPS	r,r/m	1	18	15	FMUL
DIVSD	r,r/m	1	20	17	FMUL
DIVPD	r,r/m	1	20	17	FMUL
RCPSS RCPPS	r,r/m	1	3	1	FMUL
MAXSS/D MINSS/D	r,r/m	1	2	1	FADD
MAXPS/D MINPS/D	r,r/m	1	2	1	FADD
CMPccSS/D	r,r/m	1	2	1	FADD
CMPccPS/D	r,r/m	1	2	1	FADD
COMISS/D	.,		_		
UCOMISS/D	r,r/m	1		1	FADD
Logic					
ANDPS/D ANDNPS/D					
ORPS/D XORPS/D	r,r/m	1	2	1/2	FA/M
Math					
SQRTSS	r,r/m	1	19	16	FMUL
SQRTPS	r,r/m	1	21	18	FMUL
SQRTSD	r,r/m	1	27	24	FMUL
SQRTPD	r,r/m	1	27	24	FMUL
RSQRTSS	r,r/m	1	3	1	FMUL
RSQRTPS	r,r/m	1	3	1	FMUL
Other					

LDMXCSR	m	12	12	10	
STMXCSR	m	3	12	11	

3DNow instructions (obsolete)

Instruction	Operands	Ops	Latency	Reciprocal	Execution unit	Notes
Move and convert instructions				throughput		
		-		1/0	AGU	
PREFETCH(W)	m	1	_	1/2		
PF2ID	mm,mm	1	5	1	FMISC	
PI2FD	mm,mm	1	5	1	FMISC	
PF2IW	mm,mm	1	5	1	FMISC	3DNow extension
PI2FW	mm,mm	1	5	1	FMISC	3DNow extension
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow extension
Integer instructions						
PAVGUSB	mm,mm	1	2	1/2	FA/M	
PMULHRW	mm,mm	1	3	1	FMUL	
Floating point instruc	tions					
PFADD/SUB/SUBR	mm,mm	1	4	1	FADD	
PFCMPEQ/GE/GT	mm,mm	1	2	1	FADD	
PFMAX/MIN	mm,mm	1	2	1	FADD	
PFMUL	mm,mm	1	4	1	FMUL	
PFACC	mm,mm	1	4	1	FADD	
PFNACC, PFPNACC	mm,mm	1	4	1	FADD	3DNow extension
PFRCP	mm,mm	1	3	1	FMUL	
PFRCPIT1/2	mm,mm	1	4	1	FMUL	
PFRSQRT	mm,mm	1	3	1	FMUL	
PFRSQIT1	mm,mm	1	4	1	FMUL	
Other						
FEMMS	mm,mm	1		1/3	FANY	

Thank you to Xucheng Tang for doing the measurements on the K10.

AMD Bulldozer

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the listing

for register and memory operand are joined (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div, convert, shuffle, shift

P1: floating point add, mul, div, shuffle, shift

P2: move, integer add, boolean P3: move, integer add, boolean, store

P01: can use either P0 or P1 P23: can use either P2 or P3

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit.fp: floating point execution unit.fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before

memory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOV	r,r	1	1	0.5	EX01	
MOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	4	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	5	2		
MOVZX, MOVSX	r,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1 1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc		1	1	0.5	EX01	
CMOVcc	r,r		I	0.5	EX01	
	r,m	1	4			
XCHG	r,r	2	1	1	EX01	Timin a demande en
XCHG	r,m	2	~50	~50	EX01	Timing depends on hw
XLAT	1,111	2	6	2	LXOT	
PUSH	r	1		1		
PUSH	r	1		1		
PUSH		2				
	m			1.5		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		19		
POPA(D)		14		8		
LEA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	1	2-3		EX01	16 bit addr. size
		_	_			scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
LAHF		4	3	2		
SAHF		2	2	1		
SALC		1	1	1		
BSWAP	r	1	1	0.5	EX01	
PREFETCHNTA	m	1		0.5		
PREFETCHT0/1/2	m	1		0.5		
SFENCE		6		89		
LFENCE		1		0.25		
MFENCE		6		89		
Arithmetic instruction	ns					
ADD, SUB	r,r	1	1	0.5	EX01	
ADD, SUB	r,i	1	1	0.5	EX01	
ADD, SUB	r,m	1		0.5	EX01	

ADD, SUB	ADD, SUB	m,r	1	7-8	1	EX01
ADC, SBB						
ADC, SBB			· ·		'	
ADC, SBB			· ·			
ADC, SBB ADC, SBB ADC, SBB M,i ADC, SBC M,i ADC, SBB M,i ADC, SBB M,i ADC, SBB M,i ADC, SBB M,i ADC, SCD M,i					1	
ADC, SBB			· ·			
CMP r,r 1 1 0.5 EX01 CMP r,i 1 1 0.5 EX01 CMP r,i 1 1 0.5 EX01 INC, DEC, NEG r 1 1 0.5 EX01 INC, DEC, NEG m 1 7-8 1 EX01 AAA, AAS 10 6 DAA DAA 16 9 DAA 16 9 20 10 AAA AAAA AAAA AAAA AAAA AAAA AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			-			
CMP r,i 1 1 0.5 EX01 CMP r,m 1 0.5 EX01 INC, DEC, NEG r 1 1 0.5 EX01 INC, DEC, NEG m 1 7-8 1 EX01 AAA, AAS 10 6 B DAS 20 10 AAD 4 6 B AAD 4 6 AAD AAD 4 6 AAM 4 6 AAM AAM 9 20 20 AAM AAM 9 20 20 AAM AAM AAM 9 20 20 AAM AAM AAM AA 2 EX1 MUL, IMUL r16/m16 2 4 2 EX1 AMUL, IMUL r16/m16 1 4 2 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL						
CMP						
INC, DEC, NEG			· ·	1		
INC, DEC, NEG			· ·	_		
AAA, AAS 10 6 DAA 16 9 DAS 20 10 AAD 4 6 AAM 9 20 20 MUL, IMUL r8/m8 1 4 2 EX1 MUL, IMUL r16/m16 2 4 2 EX1 MUL, IMUL r64/m64 1 6 4 EX1 MUL, IMUL r16,r16/m16 1 4 2 EX1 MUL, IMUL r16,r16/m16 1 4 2 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32,i 1 4 2 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r32/m32 1 4 20 EX0 DIV			-			
DAA 16 9 DAS 20 10 AAD 4 6 AAM 9 20 20 MUL, IMUL r8/m8 1 4 2 EX1 MUL, IMUL r16/m16 2 4 2 EX1 MUL, IMUL r64/m64 1 6 4 EX1 MUL, IMUL r16,r16/m16 1 4 2 EX1 MUL, IMUL r16,r16/m16 1 4 2 EX1 MUL, IMUL r16,r16/m16 1 4 2 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r16,r16,ii 2 5 2 EX1 IMUL r16,r16,i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r16,m16,i 2 <td< td=""><td></td><td>m</td><td></td><td></td><td>1</td><td>EX01</td></td<>		m			1	EX01
DAS AAD AAM AAM MUL, IMUL R8/m8 1 4 2 EX1 MUL, IMUL R16/m16 2 4 2 EX1 MUL, IMUL R16/m64 1 MUL, IMUL R16,R16/m16 1 MUL, IMUL R16,R16/m16 1 MUL R16,R16/m64 1 MUL R16,R16,M1 R16,M16 R16 R16 R2 R2 RX1 RMUL R16,R16,M1 R16 R16 R2 RX1	·					
AAD AAM AAM MUL, IMUL						
AAM MUL, IMUL MUL MUL, IMUL MUL MUL MUL MUL MUL MUL MUL						
MUL, IMUL r8/m8 1 4 2 EX1 MUL, IMUL r16/m16 2 4 2 EX1 MUL, IMUL r32/m32 1 4 2 EX1 MUL, IMUL r64/m64 1 6 4 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r16,m16,i 1 2 0 EX1 DIV						
MUL, IMUL r16/m16 2 4 2 EX1 MUL, IMUL r32/m32 1 4 2 EX1 MUL, IMUL r64/m64 1 6 4 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 DIV r16/m16 18 15-27 15-28 EX0 DIV r16/m64 16 16-43 16-43 EX0 DID						
MUL, IMUL r32/m32 1 4 2 EX1 MUL, IMUL r64/m64 1 6 4 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r16,(r64),i 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 DIV r8/m8 14 20 20 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV	MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL r64/m64 1 6 4 EX1 IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 DIV r8/m8 14 20 20 EX0 DIV r16/m16 18 15-27 15-28 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV	MUL, IMUL	r16/m16	2	4	2	EX1
IMUL r16,r16/m16 1 4 2 EX1 IMUL r32,r32/m32 1 4 2 EX1 IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r32,m32,i 2 4 EX1 IMUL r64,m64,i 2 4 EX1 DIV r16/m16 18 15-27 15-28 EX0 DIV r16/m16 18 15-27 15-28 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r32/	MUL, IMUL	r32/m32	1	4	2	EX1
IMUL r32,r32/m32 1 4 2 EX1 IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r32,m32,i 2 4 EX1 IMUL r64,m64,i 2 4 EX1 IMUL r64,m64,i 2 4 EX1 IDIV r16/m16 18 15-27 15-28 EX0 DIV r16/m16 18 15-27 15-28 EX0 IDIV r64/m64 16 16-75 16-75 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32	MUL, IMUL	r64/m64	1	6	4	EX1
IMUL r64,r64/m64 1 6 4 EX1 IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 IMUL r64,m64,i 2 4 EX1 IMUL r64,m64,i 2 4 EX1 DIV r8/m8 14 20 20 EX0 DIV r64/m64 16 16-43 16-43 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r32/m32 36 23-33 20-27 EX0 IDIV r64/m64 36 2	IMUL	r16,r16/m16	1	4	2	EX1
IMUL r16,(r16),i 2 5 2 EX1 IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 DIV r8/m8 14 20 20 EX0 DIV r16/m16 18 15-27 15-28 EX0 DIV r32/m32 16 16-43 16-43 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32 36 22-48 20-43 EX0 IDIV r64/m64 36 22-79 20-75 EX0	IMUL	r32,r32/m32	1	4	2	EX1
IMUL	IMUL	r64,r64/m64	1	6	4	EX1
IMUL r32,(r32),i 1 4 2 EX1 IMUL r64,(r64),i 1 6 4 EX1 IMUL r16,m16,i 2 2 EX1 IMUL r32,m32,i 2 2 EX1 IMUL r64,m64,i 2 4 EX1 DIV r8/m8 14 20 20 EX0 DIV r16/m16 18 15-27 15-28 EX0 DIV r32/m32 16 16-43 16-43 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32 36 22-48 20-43 EX0 IDIV r64/m64 36 22-79 20-75 EX0 CBW, CWDE, CDQE 1 1 0.5 EX01 CWD	IMUL	r16,(r16),i	2	5	2	EX1
IMUL	IMUL	, ,	1	4	2	EX1
IMUL			1	6		
IMUL			2		2	
IMUL						
DIV r8/m8 14 20 20 EX0 DIV r16/m16 18 15-27 15-28 EX0 DIV r32/m32 16 16-43 16-43 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32 36 22-48 20-43 EX0 IDIV r64/m64 36 22-79 20-75 EX0 CBW, CWDE, CDQE 1 1 EX01 CDQ, CQO 1 1 0.5 EX01 CWD 2 1 1 EX01 Logic instructions 2 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 7-8 1 EX01 AND,						
DIV r16/m16 18 15-27 15-28 EX0 DIV r32/m32 16 16-43 16-43 EX0 DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32 36 22-48 20-43 EX0 IDIV r64/m64 36 22-79 20-75 EX0 CBW, CWDE, CDQE 1 1 0.5 EX01 CDQ, CQO 1 1 0.5 EX01 CWD 2 1 1 EX01 Logic instructions 7,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 </td <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td>				20		
DIV r32/m32 16 16-43 16-43 EXO DIV r64/m64 16 16-75 16-75 EXO IDIV r8/m8 33 23 20 EXO IDIV r16/m16 36 23-33 20-27 EXO IDIV r32/m32 36 22-48 20-43 EXO IDIV r64/m64 36 22-79 20-75 EXO CBW, CWDE, CDQE 1 1 0.5 EX01 CDQ, CQO 1 1 0.5 EX01 CWD 2 1 1 EX01 Logic instructions 7,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 7-8 1 EX01 AND, OR, XOR </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
DIV r64/m64 16 16-75 16-75 EX0 IDIV r8/m8 33 23 20 EX0 IDIV r16/m16 36 23-33 20-27 EX0 IDIV r32/m32 36 22-48 20-43 EX0 IDIV r64/m64 36 22-79 20-75 EX0 CBW, CWDE, CDQE 1 1 0.5 EX01 CDQ, CQO 1 1 0.5 EX01 CWD 2 1 1 EX01 Logic instructions r,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01						
IDIV						
IDIV						
IDIV						
IDIV						
CBW, CWDE, CDQE 1 1 0.5 EX01 CDQ, CQO 2 1 1 EX01 CWD 2 1 1 EX01 Logic instructions AND, OR, XOR r,r 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR r,m 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01						
CDQ, CQO 1 1 0.5 EX01 CWD 2 1 1 EX01 Logic instructions VAND, OR, XOR r,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01		104/11104			20-73	
CWD 2 1 1 EX01 Logic instructions AND, OR, XOR r,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01				-	0.5	
Logic instructions AND, OR, XOR r,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01						
AND, OR, XOR r,r 1 1 0.5 EX01 AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01	CVVD		۷	'		LXUI
AND, OR, XOR r,i 1 1 0.5 EX01 AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01	Logic instructions					
AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01	AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR r,m 1 0.5 EX01 AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01	AND, OR, XOR		1	1	0.5	EX01
AND, OR, XOR m,r 1 7-8 1 EX01 AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01	AND, OR, XOR		1		0.5	EX01
AND, OR, XOR m,i 1 7-8 1 EX01 TEST r,r 1 1 0.5 EX01			1	7-8		
TEST r,r 1 1 0.5 EX01			1	7-8	1	EX01
			1		0.5	
	TEST		1	1		

TEST TEST NOT NOT SHL, SHR, SAR ROL, ROR RCL RCL RCL RCR RCR RCR RCR SHLD, SHRD SHLD, SHRD SHLD, SHRD SHLD, SHRD SHLD, SHRD BT BT BT BT BT BT BTC, BTR, BTS BTC, BTR, BTS BTC, BTR, BTS BSF BSF BSR BSR LZCNT POPCNT SETcc SETcc CLC, STC CMC CLD	m,r m,i r m r,i/CL r,i/CL r,1 r,i r,cl r,cl r,r,i r,r,cl m,r,i/CL r,r/i m,i m,r r,r/i m,r r,r/i m,r r,r r,m r,r r,m r,r r,m r,r r,m r,r r,m r,r r,m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 8 9 1 8 8 3 4 1 2 4 1	0.5 0.5 0.5 1 0.5 0.5 0.5 3.5 0.5 3.5 0.5 3.5 1 2 5 3 4 4 5 2 2 0.5 1 0.5	EX01 EX01 EX01 EX01 EX01 EX01 EX01 EX01	SSE4.A SSE4.2
		2 2				
STD		2		4		
Control transfer instru	ctions					
JMP	short/near	1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1		2	EX1	
Jcc	short/near	1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1		1-2	EX1	2 if jumping
CALL	near	2		2	EX1	
CALL CALL	r	2 3		2 2	EX1 EX1	
RET	m	3 1		2	EX1 EX1	
RET	i	4		2-3	EX1	
BOUND	m	11		2-3 5	LAI	for no jump
INTO	'''	4		24		for no jump
	I	•	I			ISI IIS Juilip

String instructions						
LODS		3		3		
REP LODS		6n		3n		
STOS		3		3		
REP STOS		2n		2n		small n
REP STOS		3 per 16B		3 per 16B		best case
MOVS		5		3		5001 0000
REP MOVS		2n		2n		small n
REP MOVS		4 per 16B		3 per 16B		best case
SCAS		3		3		5001 0000
REP SCAS		7n		4n		
CMPS		6		3		
REP CMPS		9n		4n		
INET CIVIL O		311		711		
Synchronization						
LOCK ADD	m,r	1	~55			
XADD	m,r	4	10			
LOCK XADD	m,r	4	~51			
CMPXCHG	m8,r8	5	15			
LOCK CMPXCHG	m8,r8	5	~51			
CMPXCHG	m,r16/32/64	6	14			
LOCK CMPXCHG	m,r16/32/64	6	~52			
CMPXCHG8B		18	15			
LOCK CMPXCHG8B	m64	18	~53			
CMPXCHG16B	m64	22	52			
LOCK CMPXCHG16B	m64	22	~94			
Other						
NOP (90)		1		0.25	none	
Long NOP (0F 1F)		1		0.25	none	
PAUSE		40		43		
ENTER	a,0	13		22		
ENTER	a,b	11+5b		16+4b		
LEAVE	ŕ	2		4		
CPUID		37-63		112-280		
RDTSC		36		42		
RDPMC		22		30		
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	5	6	6		
XGETBV	,	4	•	31		
	l					

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						
FLD	r	1	2	0.5	P01	fp
FLD	m32/64	1	8	1		fp

FLD	m80	8	14	4		fp
FBLD	m80	60	61	40	P0 P1 P2 P3	fp
FST(P)	r	1	2	0.5	P01	fp
FST(P)	m32/64	2	8	1	101	fp
FSTP	m80	13	9	20		fp
FBSTP	m80		240	20 244	D0 D4 F2	-
		239			P0 P1 F3	fp in b o rit
FXCH	r	1	0	0.5	P01	inherit
FILD	m	1	12	1	F3	fp
FIST(P)	m	2	8	1	P0 F3	fp
FLDZ, FLD1		1		0.5	P01	fp
FCMOVcc	st0,r	8	3	3	P0 P1 F3	fp
FFREE	r	1		0.25	none	
FINCSTP, FDECSTP		1	0	0.25	none	inherit
FNSTSW	AX	4	~13	22	P0 P2 P3	
FNSTSW	m16	3	~13	19	P0 P2 P3	
FLDCW	m16	1		3		
FNSTCW	m16	3		2		
Arithmetic instructions					_	_
FADD(P),FSUB(R)(P)	r/m	1	5-6	1	P01	fma
FIADD,FISUB(R)	m	2		2	P01	fma
FMUL(P)	r/m	1	5-6	1	P01	fma
FIMUL	m	2		2	P01	fma
FDIV(R)(P)	r	1	10-42	5-18	P01	fp
FDIV(R)	m	2			P01	fp
FIDIV(R)	m	2			P01	fp
FABS, FCHS		1	2	0.5	P01	fp
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp
FCOMPP, FUCOMPP		1		0.5	P01	fp
FCOMI(P)	r	2	2	1	P0 P1 F3	fp
FICOM(P)	m	2		1	P01	fp
FTST		1		0.5	P01	fp
FXAM		1	~20	0.5	P01	fp
FRNDINT		1	4	1	P0	fp
FPREM		1	19-62		P0	fp
FPREM1		1	19-65		P0	fp
		-				
Math						
FSQRT		1	10-53		P01	
FLDPI, etc.		1		0.5	P01	
FSIN		10-162	65-210	65-210	P0 P1 P3	
FCOS		160-170	~160	~160	P0 P1 P3	
FSINCOS		12-166	95-160	95-160	P0 P1 P3	
FPTAN		11-190	95-245	95-245	P0 P1 P3	
FPATAN		10-355	60-440	60-440	P0 P1 P3	
FSCALE		8	52		P0 P1 P3	
FXTRACT		12	10	5	P0 P1 P3	
F2XM1		10	64-71		P0 P1 P3	
FYL2X		10-175	60-290		P0 P1 P3	
FYL2XP1		10-175	60-320		P0 P1 P3	
1	ı					ı

Bulldozer									
Other									
FNOP		1		0.25	none				
(F)WAIT		1		0.25	none				
FNCLEX		18		57	P0				
FNINIT		31		170	P0				
FNSAVE	m864	103	300	300	P0 P1 P2 P3				
FRSTOR	m864	76	312	312	P0 P3				

Integer MMX and XMM instructions

Integer MMX and X	Integer MMX and XMM instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes			
Move instructions									
MOVD	r32/64, mm/x	1	8	1 1					
MOVD	mm/x, r32/64	2	10	1 1					
MOVD	mm/x,m32	1	6	0.5					
MOVD	m32,mm/x	1	5	1 1					
MOVQ	mm/x,mm/x	1	2	0.5	P23				
MOVQ	mm/x,m64	1	6	0.5					
MOVQ	m64,mm/x	1	5	1 1	P3				
MOVDQA	xmm,xmm	1	0	0.25	none	inherit			
MOVDQA	xmm,m	1	6	0.5					
MOVDQA	m,xmm	1	5	1 1	P3				
VMOVDQA	ymm,ymm	2	2	0.5	P23				
VMOVDQA	ymm,m256	2	6	1 1					
VMOVDQA	m256,ymm	4	5	3	P3				
MOVDQU	xmm,xmm	1	0	0.25	none	inherit			
MOVDQU	xmm,m	1	6	0.5					
MOVDQU	m,xmm	1	5	1 1	P3				
LDDQU	xmm,m	1	6	0.5					
VMOVDQU	ymm,m256	2	6	1-2					
VMOVDQU	m256,ymm	8	6	10	P2 P3				
MOVDQ2Q	mm,xmm	1	2	0.5	P23				
MOVQ2DQ	xmm,mm	1	2	0.5	P23				
MOVNTQ	m,mm	1	6	2	P3				
MOVNTDQ	m,xmm	1	6	2	P3				
MOVNTDQA	xmm,m	1	6	0.5					
PACKSSWB/DW	(x)mm,r/m	1	2	1 1	P1				
PACKUSWB	(x)mm,r/m	1	2	1 1	P1				
PUNPCKH/LBW/WD/D									
Q	(x)mm,r/m	1	2	1	P1				
PUNPCKHQDQ	xmm,r/m	1	2	1	P1				
PUNPCKLQDQ	xmm,r/m	1	2	1	P1				
PSHUFB	(x)mm,r/m	1	3	1	P1				
PSHUFD	xmm,xmm,i	1	2	1 1	P1				
PSHUFW	mm,mm,i	1	2	1 1	P1				
PSHUFL/HW	xmm,xmm,i	1	2	1 1	P1				
PALIGNR	(x)mm,r/m,i	1	2	1	P1				
PBLENDW	xmm,r/m	1	2	0.5	P23	SSE4.1			

MASKMOVQ	mm,mm	31	38	37	P3	1 1
MASKMOVQ	xmm,xmm	64	48	61	P1 P3	
PMOVMSKB	r32,mm/x	2	10	1	P1 P3	
PEXTRB/W/D/Q	r,x/mm,i	2	10	1	P1 P3	AVX
PINSRB/W/D/Q		2	12	2	P1	AVA
	x/mm,r,i	2	12		PI	
PMOVSXBW/BD/BQ/ WD/WQ/DQ	vmm vmm	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/	xmm,xmm	'		l '	Г	33E4.1
WD/WQ/DQ	xmm,xmm	1	2	1	P1	SSE4.1
WD/WQ/DQ	AIIIII, AIIIIII	'	_			OOL4.1
Arithmetic instructions	 :					
PADDB/W/D/Q/SB/SW						
/USB/USW	(x)mm,r/m	1	2	0.5	P23	
PSUBB/W/D/Q/SB/SW	(,,		_			
/USB/USW	(x)mm,r/m	1	2	0.5	P23	
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P23	
PMULLW PMULHW						
PMULHUW PMULUDQ						
	(x)mm,r/m	1	4	1	P0	
PMULLD	xmm,r/m	1	5	2	P0	SSE4.1
PMULDQ	xmm,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P23	
PMIN/MAX SB/SW/ SD	,					
UB/UW/UD	(x)mm,r/m	1	2	0.5	P23	
PHMINPOSUW	xmm,r/m	2	4	1	P1 P23	SSE4.1
PABSB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P23	
MPSADBW	x,x,i	8	8	4	P1 P23	SSE4.1
	, ,					
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P23	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	xmm,i	1	2	1	P1	
PTEST	xmm,r/m	2		1	P1 P3	SSE4.1
Ctrima in atmostic						
String instructions		27	17	10	D4 D2 D2	00540
PCMPESTRI	x,x,i	27	17	10	P1 P2 P3	SSE4.2
PCMPESTRM	x,x,i	27	10	10	P1 P2 P3	SSE4.2
PCMPISTRI	x,x,i	7	14	3	P1 P2 P3	SSE4.2
PCMPISTRM	x,x,i	7	7	4	P1 P2 P3	SSE4.2
Encryption						
PCLMULQDQ	xmm,r/m	5	12	7	P1	pclmul
I OFINIOF ADA	A111111,1/111)	12	ļ <i>'</i>	, , ,	Poilliui

AESDEC	x,x	2	5	2	P01	aes
AESDECLAST	x,x	2	5	2	P01	aes
AESENC	x,x	2	5	2	P01	aes
AESENCLAST	x,x	2	5	2	P01	aes
AESIMC	x,x	1	5	1	P0	aes
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes
Other						
EMMS		1		0.25		

Floating point XMM and YMM instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes		
Move instructions								
MOVAPS/D								
MOVUPS/D	x,x	1	0	0.25	none	inherit		
VMOVAPS/D	y,y	2	2	0.5	P23	ivec		
MOVAPS/D			_					
MOVUPS/D	x,m128	1	6	0.5				
VMOVAPS/D	v ==0.56	2	6	4.0				
VMOVUPS/D	y,m256	2	6	1-2				
MOVAPS/D MOVUPS/D	m128,x	1	5	1	P3			
VMOVAPS/D	m256,y	4	5	3	P3			
VMOVUPS/D	m256,y	8	6	10	P2 P3			
MOVSS/D	X,X	1	2	0.5	P01	fp		
MOVSS/D	x,m32/64	1	6	0.5	FUI	ıρ		
MOVSS/D	m32/64,x	1	5	1				
MOVHPS/D	11132/04,X	1		'				
MOVLPS/D	x,m64	1	7	1				
MOVHPS/D	m64,x	2	8	1	P1 P3			
MOVLPS/D	m64,x	1	7	1	P3			
MOVLHPS MOVHLPS	x,x	1	2	1	P1	ivec		
MOVMSKPS/D	r32,x	2	10	1	P1 P3			
VMOVMSKPS/D	r32,y							
MOVNTPS/D	m128,x	1	6	2	P3			
VMOVNTPS/D	m256,y							
SHUFPS/D	x,x/m,i	1	2	1	P1	ivec		
VSHUFPS/D	y,y,y/m,i	2	2	2	P1	ivec		
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec		
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec		
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec		
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec		
VPERM2F128	y,y,y,i	8	4	3	P23	ivec		
VPERM2F128	y,y,m,i	10		4	P23	ivec		
BLENDPS/PD	x,x/m,i	1	2	0.5	P23	ivec		
VBLENDPS/PD	y,y,y/m,i	2	2	1	P23	ivec		
BLENDVPS/PD	x,x/m,xmm0	1	2	1	P1	ivec		
VBLENDVPS/PD	y,y,y/m,y	2	2	2	P1	ivec		

MOVDDUP	x,x	1	2	1	P1	ivec
MOVDDUP	x,m64	1	_	0.5		1,00
VMOVDDUP	у,у	2	2	2	P1	ivec
VMOVDDUP	y,m256	2	_	1		
VBROADCASTSS	x,m32	1	6	0.5		
VBROADCASTSS	y,m32	2	6	0.5	P23	
VBROADCASTSD	y,m64	2	6	0.5	P23	
VBROADCASTF128	y,m128	2	6	0.5	P23	
MOVSH/LDUP	X,X	1	2	1	P1	ivec
MOVSH/LDUP	x,m128	1	_	0.5	' '	1000
VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,m256	1	_	1		1,00
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2	10	1	P1 P3	1000
EXTRACTPS	m32,x,i	2	14	1	P1 P3	
VEXTRACTF128		1	2	1	P23	ivec
VEXTRACTF128	x,y,i m128,y,i	2	7	1	P23	IVEC
INSERTPS		1	2	1	P1	
INSERTPS	X,X,İ				P1	
VINSERTF128	x,m32,i	1 2	2	1 1	P23	ivoo
	y,y,x,i	2	2	1	P23	ivec
VINSERTF128	y,y,m128,i		9	1		
VMASKMOVPS/D	x,x,m128	1	9	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	9	1	P01	
VMASKMOVPS/D	m128,x,x	18	22	7	P0 P1 P2 P3	
VMASKMOVPS/D	m256,y,y	34	25	13	P0 P1 P2 P3	
Conversion						
CVTPD2PS	x,x	2	7	1	P01	fp
VCVTPD2PS	x,y	4	7	2	P01	fp
CVTPS2PD	x,x	2	7	1	P01	fp
VCVTPS2PD	y,x	4	7	2	P01	fp
CVTSD2SS	x,x	1	4	1	P0	fp
CVTSS2SD	x,x	1	4	1	P0	fp
CVTDQ2PS	x,x	1	4	1	P0	fp
VCVTDQ2PS	y,y	2	4	2	P0	fp
CVT(T) PS2DQ	x,x	1	4	1	P0	fp
VCVT(T) PS2DQ	y,y	2	4	2	P0	fp
CVTDQ2PD	x,x	2	7	1	P01	fp
VCVTDQ2PD	y,x	4	8	2	P01	fp
CVT(T)PD2DQ	x,x	2	7	1	P01	fp
VCVT(T)PD2DQ	x,y	4	7	2	P01	fp
CVTPI2PS	x,mm	1	4	1	P0	fp
CVT(T)PS2PI	mm,x	1	4	1	P0	fp
CVTPI2PD	x,mm	2	7	1	P0 P1	fp
CVT(T) PD2PI	mm,x	2	7	1	P0 P1	fp
CVTSI2SS	x,r32	2	14	1	P0	fp
CVT(T)SS2SI	r32,x	2	13	1	P0	fp
CVTSI2SD	x,r32/64	2	14	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	13	1	P0	fp
	· ,	I	1	I	1	l r

Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	0.5	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
HADDPS/D HSUBPS/D	x,x	3	10	2	P01 P1	ivec/fma
HADDPS/D HSUBPS/D	x,m128	4		2	P01 P1	ivec/fma
VHADDPS/D VHSUBPS/D	у,у,у	8	10	4	P01 P1	ivec/fma
VHADDPS/D VHSUBPS/D		10		4	P01 P1	ivec/fma
	y,y,m		F 6			
MULSS MULSD MULPS MULPD	x,x/m	1	5-6 5-6	0.5 0.5	P01 P01	fma fma
	x,x/m	1				
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-24	4.5-9.5	P01	fp
VDIVPS	y,y,y/m	2	9-24	9-19	P01	fp
DIVSD DIVPD	x,x/m	1	9-27	4.5-11	P01	fp
VDIVPD	y,y,y/m	2	9-27	9-22	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D	3,3,5				_	r
UCOMISS/D	x,x/m	2		1	P01 P3	fp
MAXSS/SD/PS/PD						
MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
VMAXPS/D VMINPS/D	y,y,y/m	2	2	1	P01	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/						
PD	y,y/m,i	2	4	2	P0	fp
DPPS	x,x,i	16	25	6	P01 P23	fma
DPPS	x,m128,i	18		7	P01 P23	fma
VDPPS	y,y,y,i	25	27	13	P01 P3	fma
VDPPS	y,m256,i	29		13	P01 P3	fma
DPPD	x,x,i	15	15	5	P01 P23	fma
DPPD	x,m128,i	17		6	P01 P23	fma
Math						
SQRTSS/PS	x,x/m	1	14-15	4.5-12	P01	fp
VSQRTPS	y,y/m	2	14-15	9-24	P01	fp
SQRTSD/PD	x,x/m	1	24-26	4.5-16.5	P01	fp
VSQRTPD	y,y/m	2	24-26	9-33	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp

Logio						
AND/ANDN/OR/XORPS/PD	x,x/m	1	2	0.5	P23	ivec
VAND/ANDN/OR/XOR					D 00	
PS/PD	y,y,y/m	2	2	1	P23	ivec
Other						
VZEROUPPER		9		4		32 bit mode
VZEROUPPER		16		5		64 bit mode
VZEROALL		17		6	P2 P3	32 bit mode
VZEROALL		32		10	P2 P3	64 bit mode
LDMXCSR	m32	1	10	4	P0 P3	
STMXCSR	m32	2	19	19	P0 P3	
FXSAVE	m4096	67	136	136	P0 P1 P2 P3	
FXRSTOR	m4096	116	176	176	P0 P1 P2 P3	
XSAVE	m	122	196	196	P0 P1 P2 P3	
XRSTOR	m	177	250	250	P0 P1 P2 P3	

AMD-specific instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
3DNow instructions						
PREFETCH/W	m	1		0.5		
SSE4A instructions						
LZCNT	r,r	2	2	2		
POPCNT	r16/32,r16/32	1	4	2		
POPCNT	r64,r64	1	4	4		
EXTRQ	x,i,i	1	3	1 1	P1	
EXTRQ	X,X	1	3	1 1	P1	
INSERTQ	x,x,i,i	1	3	1 1	P1	
INSERTQ	X,X	1	3	1 1	P1	
MOVNTSS/SD	m,x	1		4	P3	
XOP instructions						
VFRCZSS/SD/PS/PD	x,x	2	10	2	P01	
VFRCZSS/SD/PS/PD	x,m	3	10	2	P01	
VPCMOV	x,x,x,x/m	1	2	1 1	P1	
VPCMOV	y,y,y,y/m	2	2	2	P1	
VPPERM	x,x,x,x/m	1	2	1 1	P1	
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6, 7
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6, 7
VPHADDBW/BD/BQ/						
WD/WQ/DQ	x,x/m	1	2	0.5	P23	
VPHADDUBW/BD/BQ/						
WD/WQ/DQ	x,x/m	1	2	0.5	P23	
VPHSUBBW/WD/DQ	x,x/m	1	2	0.5	P23	
VPMACSWW/WD	x,x,x/m,x	1	4	1	P0	

VPMACSDD	x,x,x/m,x	1	5	2	P0		
VPMACSDQH/L	x,x,x/m,x	1	4	1	P0		
VPMACSSWW/WD	x,x,x/m,x	1	4	1	P0		
VPMACSSDD	x,x,x/m,x	1	5	2	P0		
VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0		
VPMADCSWD	x,x,x/m,x	1	4	1	P0		
VPMADCSSWD	x,x,x/m,x	1	4	1	P0		
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1		
VPROTB/W/D/Q	x,x,i	1	2	1	P1		
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1		
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1		
FMA4 instructions							
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMADDSSPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMADDSSPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	
VFMSUBSS/SD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMSUBSSPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMSUBSSPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	
VFMADDSUBPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMADDSUBPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	
VFMSUBADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFMSUBADDPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	
VFNMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFNMADDSSPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFNMADDSSPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	
VFNMSUBSS/SD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFNMSUBSSPS/PD	x,x,x,x/m	1	5-6	0.5	P01	fma	
VFNMSUBSSPS/PD	y,y,y,y/m	2	5-6	1	P01	fma	

AMD Bobcat

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, m = any memory operand including in-

direct operands, m64 means 64-bit memory operand, etc.

Ops: Number of micro-operations issued from instruction decoder to schedulers. Instruc-

tions with more than 2 micro-operations are micro-coded.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latencies listed do not include memory operands where the operand is

listed as register or memory (r/m).

The clock frequency varies dynamically, which makes it difficult to measure latencies. The values listed are measured after the execution of millions of similar instructions, assuming that this will make the processor boost the clock frequency to

the highest possible value.

Reciprocal throughput: This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/2 indicates that the execution units can handle 2 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe is used for the micro-operations. I0 means integer

pipe 0. I0/1 means integer pipe 0 or 1. FP0 means floating point pipe 0 (ADD). FP1 means floating point pipe 1 (MUL). FP0/1 means either one of the two floating point pipes. Two micro-operations can execute simultaneously if they go to differ-

ent execution pipes.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOV	r,r	1	1	1/2	IO/1	
MOV	r,i	1		1/2	IO/1	
MOV	r,m	1	4	1	AGU	Any addressing mode
MOV	m,r	1	4	1	AGU	Any addressing mode
MOV	m8,r8H	1	7	1	AGU	AH, BH, CH, DH
MOV	m,i	1		1	AGU	
MOVNTI	m,r	1	6	1	AGU	
MOVZX, MOVSX	r,r	1	1	1/2	I0/1	
MOVZX, MOVSX	r,m	1	5	1		
MOVSXD	r64,r32	1	1	1/2		
MOVSXD	r64,m32	1	5	1		
CMOVcc	r,r	1	1	1/2	IO/1	
CMOVcc	r,m	1		1		
XCHG	r,r	2	1	1	IO/1	

VOLIC		2	20	 	1	
XCHG	r,m	3	20			Timing depends on hw
XLAT		2	5			
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	3		2		
PUSHF(D/Q)		9		6		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	4		4		
POPF(D/Q)		29		22		
POPA(D)		9		8		
LEA	r16,[m]	2	3	2	10	Any address size
LEA	r32/64,[m]	1	1	1/2	10/1	no scale, no offset
LEA	r32/64,[m]	1	2-4	1	10	w. scale or offset
LEA	r64,[m]	1		1/2	10/1	RIP relative
LAHF		4	4	2		
SAHF		1	1	1/2	10/1	
SALC		1	1			
BSWAP	r	1	1	1/2	I0/1	
PREFETCHNTA	m	1		1	AGU	
PREFETCHT0/1/2	m	1		1	AGU	
PREFETCH	m	1		1	AGU	AMD only
SFENCE		4		~45	AGU	7 TIVID OTHY
LFENCE		1		1	AGU	
MFENCE		4		~45	AGU	
WIFEINGE		4		~45	AGU	
Arithmetic instruction	S					
ADD, SUB	r,r/i	1	1	1/2	10/1	
ADD, SUB	r,m	1		1		
ADD, SUB	m,r	1		1		
ADC, SBB	r,r/i	1	1	1	10/1	
ADC, SBB	r,m	1		1		
ADC, SBB	m,r/i	1	6-7			
CMP	r,r/i	1	1	1/2	10/1	
CMP	r,m	1		1	_	
INC, DEC, NEG	r	1	1	1/2	I0/1	
INC, DEC, NEG	m	1	6			
AAA		9	5			
AAS		9	10			
DAA		12	7			
DAS		16	8			
AAD		4	5			
AAM		33	23	23		
MUL, IMUL	r8/m8	33 1	3	1	10	
MUL, IMUL	r16/m16	3	3 3-5	'	10	latency av=3 dv=5
				2		latency ax=3, dx=5
MUL, IMUL	r32/m32	2	3-4	2	10	latency eax=3, edx=4
MUL, IMUL	r64/m64	2	6-7	_	10	latency rax=6, rdx=7
IMUL	r16,r16/m16	1	3	1	10	
IMUL	r32,r32/m32	1	3	1	10	
IMUL	r64,r64/m64	1	6	4	10	

IMUL	r16,(r16),i	2	4	3	10	
IMUL	r32,(r32),i	1	3	1	10	
IMUL	r64,(r64),i	1	7	4	10	
DIV	r8/m8	1	27	27	10	
DIV	r16/m16	1	33	33	10	
DIV	r32/m32	1	49	49	10	
DIV	r64/m64	1	81	81	10	
IDIV	r8/m8	1	29	29	10	
IDIV	r16/m16	1	37	37	10	
IDIV	r32/m32	1 1	55	55	10	
IDIV						
	r64/m64	1	81	81	10	
CBW, CWDE, CDQE		1	1		10/1	
CWD, CDQ, CQO		1	1		I0/1	
Logic instructions						
AND, OR, XOR	r,r	1	1	1/2	10/1	
AND, OR, XOR	r,m	1		1		
AND, OR, XOR	m,r	1		1		
TEST	r,r	1	1	1/2	I0/1	
TEST	r,m	1		1	1071	
NOT	r	1	1	1/2	10/1	
NOT	m	1	'	1	10/1	
SHL, SHR, SAR	r,i/CL	1 1	1	1/2	I0/1	
ROL, ROR	r,i/CL	1	1	1/2	10/1	
RCL, RCR	r,1	1	1 5	1	I0/1	
RCL	r,i	9	5	5		
RCR	r,i	7	4	4		
RCL	r,CL	9	6	5		
RCR	r,CL	9	5	4		
SHL,SHR,SAR,ROL,			_			
ROR	m,i /CL	1	7	1		
RCL, RCR	m,1	1	7	1		
RCL	m,i	10		~15		
RCR	m,i	9	18	~14		
RCL	m,CL	9		15		
RCR	m,CL	8		15		
SHLD, SHRD	r,r,i	6	3	3		
SHLD, SHRD	r,r,cl	7	4	4		
SHLD, SHRD	m,r,i/CL	8	18	15		
ВТ	r,r/i	1		1/2		
ВТ	m,i	1		1		
ВТ	m,r	5		3		
BTC, BTR, BTS	r,r/i	2	2	1		
ВТС	m,i	5		15		
BTR, BTS	m,i	4-5		15		
BTC	m,r	8	16	13		
BTR, BTS	m,r	8	15	15		
BSF, BSR		11	6	6		
BSF, BSR	r,r	11	0	6		
	r,m		10			QQE4 A/QQE4 Q
POPCNT	r,r/m	9	12	5		SSE4.A/SSE4.2

LZCNT	r,r/m	8	5			SSE4.A, AMD only
SETcc	r	1	1	1/2		, , , , , , , , , , , , , , , , , , , ,
SETcc	m	1 1	•	1		
CLC, STC	•••	1		1/2	I0/1	
CMC		1	1	1/2	10/1	
CLD		1	•	1	10	
STD		2		2	10,11	
SID					10,11	
Control transfer instru	ıctions					
JMP	short/near	1 1		2		
JMP	r	1		2		
JMP	m(near)	1		2		
Jcc	short/near	1 1		1/2 - 2		recip. thrp.= 2 if jump
J(E/R)CXZ	short	2		1 - 2		recip. thrp.= 2 if jump
LOOP	short	8		4		
CALL	near	2		2		
CALL	r	2		2		
CALL	m(near)	5		2		
RET	()	1		~3		
RET	i	4		~4		
BOUND	m	8		4		values are for no jump
INTO	•••	4		2		values are for no jump
				_		values are for he jump
String instructions						
LODS		4		~3		
REP LODS		5		~3		values are per count
STOS		4		2		
REP STOS		2				best case 6-7 Byte/clk
MOVS		7		5		
REP MOVS		2				best case 5 Byte/clk
SCAS		5		3		
REP SCAS		6		3		values are per count
CMPS		7		4		
REP CMPS		6		3		values are per count
Other						
NOP (90)		1	0	1/2	I0/1	
Long NOP (0F 1F)		1	0	1/2	10/1	
PAUSE		6	Ū	6		
ENTER		i,0	12		36	
ENTER		a,b	10+6b		34+6b	
LEAVE		2	10.00	3	04.00	32 bit mode
CPUID		30-52	70-830]		OZ DIL HIOGE
RDTSC		26	10-000	87		
RDPMC		14		8		
INDEINIC		14		O		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal	Execution	Notes
				throughput	pipe	

Move instructions					
FLD	r	1	2	1/2	FP0/1
FLD	m32/64	1	6	1	FP0/1
FLD	m80	7	14	5	110/1
FBLD	m80	21	30	35	
FST(P)	r	1	2	1/2	FP0/1
FST(P)	m32/64	1 1	6	1/2	FP1
FSTP	m80	16	19	9	111
FBSTP	m80	217	177	180	
FXCH	r	1	0	1	FP1
FILD		1 1	9	1	FP1
	m m	1	6	1	FFI
FIST(T)(P)	m		6	1	FP1
FLDZ, FLD1	a40 m		7	=	
FCMOVcc	st0,r	12	7	7	FP0/1
FFREE	r	1	_	1	FP1
FINCSTP, FDECSTP	A.V.	1	1	1	FP1
FNSTSW	AX	2	~20	10	FP1
FNSTSW	m16	2	~20	10	FP1
FNSTCW	m16	3		2	FP0
FLDCW	m16	12		10	FP1
Arithmetic instructions	S				
FADD(P),FSUB(R)(P)	r	1	3	1	FP0
FADD(P),FSUB(R)(P)	m	1	3	1	FP0
FIADD,FISUB(R)	m	2		3	FP0,FP1
FMUL(P)	r	1	5	3	FP1
FMUL(P)	m	1	5	3	FP1
FIMUL	m	2			FP1
FDIV(R)(P)	r	1	19	19	FP1
FDIV(R)(P)	m	1		19	FP1
FIDIV(R)	m	2		19	FP1
FABS, FCHS		1	2	2	FP1
FCOM(P), FUCOM(P)	r	1	_	1	FP0
FCOM(P), FUCOM(P)	m	1		1	FP0
FCOMPP, FUCOMPP		1		1	FP0
FCOMI(P)	r	1	2	2	FP0
FICOM(P)	m	2	_	1	FP0, FP1
FTST	111	1		1	FP0
FXAM		2		2	FP1
FRNDINT		5	11	_	FP0, FP1
FPREM		1	11-16		FP1
FPREM1		1	11-10		FP1
Math					
FSQRT		1	31		FP1
FLDPI, etc.		1		1	FP0
FSIN		4-44	27-105	27-105	FP0, FP1
FCOS		11-51	51-94	51-94	FP0, FP1
FSINCOS		11-75	48-110	48-110	FP0, FP1
FPTAN		~45	~113	~113	FP0, FP1

FPATAN		9-75	49-163	49-163	FP0, FP1	
FSCALE		5	8		FP0, FP1	
FXTRACT		7	9		FP0, FP1	
F2XM1		30-56	~60		FP0, FP1	
FYL2X		8	29		FP0, FP1	
FYL2XP1		12	44		FP0, FP1	
Other						
FNOP		1	0	1/2	FP0, FP1	
(F)WAIT		1	0	1/2	ALU	
FNCLEX		9		30	FP0, FP1	
FNINIT		26		78	FP0, FP1	
FNSAVE	m	85		163	FP0, FP1	
FRSTOR	m	80		123	FP0, FP1	
FXSAVE	m	71		105	FP0, FP1	
FXRSTOR	m	111		118	FP0, FP1	

Integer MMX and XMM instructions

Integer MMX and	XIVINI INSTRUC	tions				
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOVD	r32, mm	1	7	1	FP0	
MOVD	mm, r32	1	7	3	FP0/1	
MOVD	mm,m32	1	5	1	FP0/1	
MOVD	r32, xmm	1	6	1	FP0	
MOVD	xmm, r32	3	6	3	FP1	
MOVD	xmm,m32	2	5	1	FP1	
MOVD	m32,(x)mm	1	6	2	FP1	
MOVD (MOVQ)	r64,(x)mm	1	7	1	FP0	Moves 64 bits.Name of instruction differs
MOVD (MOVQ)	mm,r64	2	7	3	FP0/1	do.
MOVD (MOVQ)	xmm,r64	3	7	3	FP0/1 FP0/1	do.
MOVQ (MOVQ)	mm,mm	1	1	1/2	FP0/1 FP0/1	uo.
MOVQ	· ·	2	1	1/2	FP0/1 FP0/1	
MOVQ	xmm,xmm mm,m64	1	5	1	FP0/1 FP0/1	
MOVQ	xmm,m64	2	5	1	FP0/1	
MOVQ	m64,(x)mm	1	6	2	FP1	
MOVDQA	xmm,xmm	2	1	1	FP0/1	
MOVDQA	xmm,m	2	6	2	AGU	
MOVDQA	m,xmm	2	6	3	FP1	
MOVDQU, LDDQU	xmm,m	2	6-9	2-5.5	AGU	
MOVDQU, LDDQU MOVDQU	m,xmm	2	6-9	3-6	FP1	
MOVDQ2Q	mm,xmm	1	1	1/2	FP0/1	
MOVQ2DQ	xmm,mm	2	1	1/2	FP0/1	
MOVNTQ	m,mm	1	13	1.5	FP1	
MOVNTDQ	m,xmm	2	13	3	FP1	
PACKSSWB/DW PACKUSWB PACKSSWB/DW	mm,r/m	1	1	1/2	FP0/1	
PACKUSWB	xmm,r/m	3	2	2	FP0/1	

l	1	I	1 1		I.	
PUNPCKH/LBW/WD/	mm r/m	4	1	1/2		
DQ	mm,r/m	1	1	1/2		
PUNPCKH/LBW/WD/ DQ	xmm,r/m	2	1	1		
PUNPCKHQDQ	xmm,r/m	2	1 1	1	FP0, FP1	
PUNPCKLQDQ		1	1 1	1/2	FP0, FF1	
	xmm,r/m	-				Cumpl CCF3
PSHUFB	mm,mm	1	2	1	FP0/1	Suppl. SSE3
PSHUFB	xmm,xmm	6	3	3	FP0/1	Suppl. SSE3
PSHUFD	xmm,xmm,i	3	2	2	FP0/1	
PSHUFW	mm,mm,i	1	1	1/2	FP0/1	
PSHUFL/HW	xmm,xmm,i	2	2	2	FP0/1	
PALIGNR	xmm,xmm,i	20	19	12	FP0/1	Suppl. SSE3
MASKMOVQ	mm,mm	32	146-1400	130-1170	FP0, FP1	
MASKMOVDQU	xmm,xmm	64	279-3000	260-2300	FP0, FP1	
PMOVMSKB	r32,(x)mm	1	8	2	FP0	
PEXTRW	r32,(x)mm,i	2	12	2	FP0, FP1	
PINSRW	mm,r32,i	2	10	6	FP0/1	
PINSRW	xmm,r32,i	3	10		FP0/1	
INSERTQ	xmm,xmm	3	3-4	3	FP0, FP1	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	3-4	3	FP0, FP1	SSE4.A, AMD only
EXTRQ	xmm,xmm	1	1	1	FP0/1	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	2	FP0/1	SSE4.A, AMD only
Arithmetic instruction	S					
PADDB/W/D/Q						
PADDSB/W						
PADDUSB/W						
PSUBB/W/D/Q PSUBSB/W						
PSUBUSB/W	mm,r/m	1	1	1/2	FP0/1	
PADDB/W/D/Q	111111,17111	ļ !	I I	1/2		
PADDSB/W						
ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	xmm,r/m	2	1	1	FP0/1	
PHADD/SUBW/SW/D	mm,r/m	1	1	1/2	FP0/1	Suppl. SSE3
PHADD/SUBW/SW/D	xmm,r/m	2	4	1	FP0/1	Suppl. SSE3
PCMPEQ/GT B/W/D	mm,r/m	1	1	1/2	FP0/1	
PCMPEQ/GT B/W/D	xmm,r/m	2	1	1	FP0/1	
PMULLW PMULHW						
PMULHUW						
PMULUDQ	mm,r/m	1	2	1	FP0	
PMULLW PMULHW						
PMULHUW		_	_	_		
PMULUDQ	xmm,r/m	2	2	2	FP0	
PMULHRSW	mm,r/m	1	2	1	FP0	Suppl. SSE3
PMULHRSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3
PMADDWD	mm,r/m	1	2	1	FP0	
PMADDWD	xmm,r/m	2	2	2	FP0	
PMADDUBSW	mm,r/m	1	2	1	FP0	Suppl. SSE3
PMADDUBSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3

PAVGB/W	mm,r/m	1	1	1/2	FP0/1	
PAVGB/W	xmm,r/m	2	1	1	FP0/1	
PMIN/MAX SW/UB	mm,r/m	1	1	1/2	FP0/1	
PMIN/MAX SW/UB	xmm,r/m	2	1	1	FP0/1	
PABSB/W/D	mm,r/m	1	1	1/2	FP0/1	Suppl. SSE3
PABSB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSIGNB/W/D	mm,r/m	1	1	1/2	FP0/1	Suppl. SSE3
PSIGNB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSADBW	mm,r/m	1	2	2	FP0	
PSADBW	xmm,r/m	2	2	2	FP0, FP1	
Logic						
PAND PANDN POR						
PXOR	mm,r/m	1	1	1/2	FP0/1	
PAND PANDN POR	,	•	_	_	ED0/4	
PXOR	xmm,r/m	2	1	1	FP0/1	
PSLL/RL W/D/Q PSRAW/D	mm i/mm/m	1	1	1	ED0/4	
	mm,i/mm/m	ı	I	ı	FP0/1	
PSLL/RL W/D/Q PSRAW/D	xmm,i/xmm/m	2	1	1	FP0/1	
PSLLDQ, PSRLDQ	xmm,i	2	1	1	FP0/1	
I OLLDQ, I OILDQ	AIIIII,I	_	'	'	110/1	
Other						
EMMS		1		1/2	FP0/1	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions				an angripes	Pipo	
MOVAPS/D	r,r	2	1	1	FP0/1	
MOVAPS/D	r,m	2	6	2	AGU	
MOVAPS/D	m,r	2	6	3	FP1	
MOVUPS/D	r,r	2	1	1	FP0/1	
MOVUPS/D	r,m	2	6-9	2-6	AGU	
MOVUPS/D	m,r	2	6-9	3-6	FP1	
MOVSS/D	r,r	1	1	1/2	FP0/1	
MOVSS/D	r,m	2	6	2	FP1	
MOVSS/D	m,r	1	5	2	FP1	
MOVHLPS, MOVLHPS						
	r,r	1	1	1/2	FP0/1	
MOVHPS/D, MOVLPS/D	r,m	1	6	2	AGU	
MOVHPS/D,	.,			_	,,,,,	
MOVLPS/D	m,r	1	5	3	FP1	
MOVNTPS/D	m,r	2	12	3	FP1	
MOVNTSS/D	m,r	1	12	2	FP1	SSE4.A, AMD only
MOVDDUP	r,r	2	2	1	FP0/1	SSE3
MOVDDUP	r,m64	2	7	2	FP0/1	SSE3
MOVSHDUP,						
MOVSLDUP	r,r	2	1	1	FP0/1	

MOVSHDUP,						
MOVSLDUP	r,m	2	12	3	AGU	
MOVMSKPS/D	r32,r	1	~6	2	FP0	
SHUFPS/D	r,r/m,i	3	2	2	FP0/1	
UNPCK H/L PS/D	r,r/m	2	1	1	FP0/1	
Conversion						
CVTPS2PD	r,r/m	2	5	2	FP1	
CVTPD2PS	r,r/m	4	5	3	FP0, FP1	
CVTSD2SS	r,r/m	3	5	3	FP0, FP1	
CVTSS2SD	r,r/m	1	4	1	FP1	
CVTDQ2PS	r,r/m	2	4	4	FP1	
CVTDQ2PD	r,r/m	2	5	2	FP1	
CVT(T)PS2DQ	r,r/m	2	4	4	FP1	
CVT(T)PD2DQ	r,r/m	4	6	3	FP0, FP1	
CVTPI2PS	xmm,mm	1	4	2	FP1	
CVTPI2PD	xmm,mm	2	5	2	FP1	
CVT(T)PS2PI	mm,xmm	1	4	1	FP1	
CVT(T)PD2PI	mm,xmm	3	6	2	FP0, FP1	
CVTSI2SS	xmm,r32	3	12	3	FP0, FP1	
CVTSI2SD	xmm,r32	2	11	3	FP1	
CVT(T)SS2SI	r32,xmm	2	12	1	FP0, FP1	
CVT(T)SD2SI	r32,xmm	2	11	1	FP0, FP1	
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	3	1	FP0	
ADDPS/D SUBPS/D	r,r/m	2	3	2	FP0	
ADDSUBPS/D	r,r/m	2	3	2	FP0	SSE3
HADDPS/D	1,1/111	_	3		110	JOLJ
HSUBPS/D	r,r/m	2	3	2	FP0	SSE3
MULSS	r,r/m	1	2	1	FP1	0020
MULSD	r,r/m	1	4	2	FP1	
MULPS	r,r/m	2	2	2	FP1	
MULPD	r,r/m	2	4	4	FP1	
DIVSS	r,r/m	1	13	13	FP1	
DIVPS	r,r/m	2	38	38	FP1	
DIVSD	r,r/m	1	17	17	FP1	
DIVPD	r,r/m	2	34	34	FP1	
RCPSS	r,r/m	1	3	1	FP1	
RCPPS	r,r/m	2	3	2	FP1	
MAXSS/D MINSS/D	r,r/m	1	2	1	FP0	
MAXPS/D MINPS/D	r,r/m	2	2	2	FP0	
CMPccSS/D	r,r/m	1	2	1	FP0	
CMPccPS/D	r,r/m	2	2	2	FP0	
COMISS/D	1,1/111		_	_	110	
UCOMISS/D	r,r/m	1		1	FP0	
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	1	1	FP0/1	
	,	-	-			
į.	I	I	I	I	I	I

Math					
SQRTSS	r,r/m	1	14	14	FP1
SQRTPS	r,r/m	2	48	48	FP1
SQRTSD	r,r/m	1	24	24	FP1
SQRTPD	r,r/m	2	48	48	FP1
RSQRTSS	r,r/m	1	3	1	FP1
RSQRTPS	r,r/m	2	3	2	FP1
Other					
LDMXCSR	m	12		10	FP0, FP1
STMXCSR	m	3		11	FP0, FP1

Intel Pentium and Pentium MMX

List of instruction timings

Explanation of column headings:

Operands r = register, accum = al, ax or eax, m = memory, i = immediate

data, sr = segment register, m32 = 32 bit memory operand, etc.

Clock cycles The numbers are minimum values. Cache misses, misalignment,

and exceptions may increase the clock counts considerably.

Pairability u = pairable in u-pipe, v = pairable in v-pipe, uv = pairable in

either pipe, np = not pairable.

Integer instructions (Pentium and Pentium MMX)

Instruction	Operands	Clock cycles	Pairability
NOP		1	uv
MOV	r/m, r/m/i	1	uv
MOV	r/m, sr	1	np
MOV	sr , r/m	>= 2 b)	np
MOV	m , accum	1	uv h)
XCHG	(E)AX, r	2	np
XCHG	r,r	3	np
XCHG	r, m	>15	np
XLAT		4	np
PUSH	r/i	1	uv
POP	r	1	uv
PUSH	m	2	np
POP	m	3	np
PUSH	sr	1 b)	np
POP	sr	>= 3 b)	np
PUSHF		3-5	np
POPF		4-6	np
PUSHA POPA		5-9 i)	np
PUSHAD POPAD		5	np
LAHF SAHF		2	np
MOVSX MOVZX	r , r/m	3 a)	np
LEA	r, m	1	uv
LDS LES LFS LGS LSS	m	4 c)	np
ADD SUB AND OR XOR	r , r/i	1	uv
ADD SUB AND OR XOR	r, m	2	uv
ADD SUB AND OR XOR	m , r/i	3	uv
ADC SBB	r , r/i	1	u
ADC SBB	r, m	2	u
ADC SBB	m , r/i	3	u
CMP	r , r/i	1	uv
CMP	m , r/i	2	uv
TEST	r,r	1	uv
TEST	m,r	2	uv
TEST	r,i	1	f)

Intel Pentium

TEST	m , i	2	np
INC DEC	r	1	uv
INC DEC	m	3	uv
NEG NOT	r/m	1/3	np
MUL IMUL	r8/r16/m8/m16	11	np
MUL IMUL	all other versions	9 d)	np
DIV	r8/m8	17	np
DIV	r16/m16	25	np
DIV	r32/m32	41	np
IDIV	r8/m8	22	np
IDIV	r16/m16	30	np
IDIV	r32/m32	46	np
CBW CWDE	102/11102	3	np
CWD CDQ		2	np
SHR SHL SAR SAL	r,i	1	u
SHR SHL SAR SAL		3	
SHR SHL SAR SAL	m,i		u
	r/m, CL	4/5	np
ROR ROL RCR RCL	r/m, 1	1/3	u
ROR ROL	r/m, i(><1)	1/3	np
ROR ROL	r/m, CL	4/5	np
RCR RCL	r/m, i(><1)	8/10	np
RCR RCL	r/m, CL	7/9	np
SHLD SHRD	r, i/CL	4 a)	np
SHLD SHRD	m, i/CL	5 a)	np
BT	r, r/i	4 a)	np
BT	m, i	4 a)	np
BT	m, i	9 a)	np
BTR BTS BTC	r, r/i	7 a)	np
BTR BTS BTC	m, i	8 a)	np
BTR BTS BTC	m, r	14 a)	np
BSF BSR	r , r/m	7-73 a)	np
SETcc	r/m	1/2 a)	np
JMP CALL	short/near	1 e)	V
JMP CALL	far	>= 3 e)	np
conditional jump	short/near	1/4/5/6 e)	V
CALL JMP	r/m	2/5 e	np
RETN		2/5 e	np
RETN	i	3/6 e)	np
RETF		4/7 e)	np
RETF	i	5/8 e)	np
J(E)CXZ	short	4-11 e)	np
LOOP	short	5-10 e)	np
BOUND	r, m	8	np
CLC STC CMC CLD STD		2	np
CLI STI		6-9	np
LODS		2	np
REP LODS		7+3*n g)	np
STOS		3	np
REP STOS		10+n g)	np
MOVS		4	np
	l l	'	ייף

Intel Pentium

REP MOVS		12+n g)	np
SCAS		4	np
REP(N)E SCAS		9+4*n g)	np
CMPS		5	np
REP(N)E CMPS		8+4*n g)	np
BSWAP	r	1 a)	np
CPUID		13-16 a)	np
RDTSC		6-13 a) j)	np

Notes:

a This instruction has a 0FH prefix which takes one clock cycle extra to decode on a P1 unless preceded by a multi-cycle instruc-

tion.

b versions with FS and GS have a 0FH prefix. see note a.
c versions with SS, FS, and GS have a 0FH prefix. see note a.
d versions with two operands and no immediate have a 0FH prefix,

see note a.

e high values are for mispredicted jumps/branches.

f only pairable if register is AL, AX or EAX.

g add one clock cycle for decoding the repeat prefix unless pre-

ceded by a multi-cycle instruction (such as CLD).

pairs as if it were writing to the accumulator.9 if SP divisible by 4 (imperfect pairing).

on P1: 6 in privileged or real mode; 11 in non-privileged; error in

virtual mode. On PMMX: 8 and 13 clocks respectively.

Floating point instructions (Pentium and Pentium MMX)

Explanation of column headings

Operands r = register, m = memory, m32 = 32-bit memory operand, etc.

Clock cycles The numbers are minimum values. Cache misses, misalignment,

denormal operands, and exceptions may increase the clock

counts considerably.

Pairability + = pairable with FXCH, np = not pairable with FXCH.

i-ov Overlap with integer instructions. i-ov = 4 means that the last four

clock cycles can overlap with subsequent integer instructions.

fp-ov Overlap with floating point instructions. fp-ov = 2 means that the

last two clock cycles can overlap with subsequent floating point instructions. (WAIT is considered a floating point instruction here)

Instruction	Operand	Clock cycles	Pairability	i-ov	fp-ov
FLD	r/m32/m64	1	0	0	0
FLD	m80	3	np	0	0
FBLD	m80	48-58	np	0	0
FST(P)	r	1	np	0	0
FST(P)	m32/m64	2 m)	np	0	0
FST(P)	m80	3 m)	np	0	0
FBSTP	m80	148-154	np	0	0
FILD	m	3	np	2	2

Intel Pentium

FIST(P)	m	6	np	0	0
FLDZ FLD1		2	np	0	0
FLDPI FLDL2E etc.		5 s)	np	2	2
FNSTSW	AX/m16	6 q)	np	0	0
FLDCW	m16	8	np	0	0
FNSTCW	m16	2	np	0	0
FADD(P)	r/m	3	0	2	2
FSUB(R)(P)	r/m	3	0	2	2
FMUL(P)	r/m	3	0	2	2 n)
FDIV(R)(P)	r/m	19/33/39 p)	0	38 o)	2
FCHS FABS		1	0	0	0
FCOM(P)(P) FUCOM	r/m	1	0	0	0
FIADD FISUB(R)	m	6	np	2	2
FIMUL	m	6	np	2	2
FIDIV(R)	m	22/36/42 p)	np	38 o)	2
FICOM	m	4	np	0	0
FTST		1	np	0	0
FXAM		17-21	np	4	0
FPREM		16-64	np	2	2
FPREM1		20-70	np	2	2
FRNDINT		9-20	np	0	0
FSCALE		20-32	np	5	0
FXTRACT		12-66	np	0	0
FSQRT		70	np	69 o)	2
FSIN FCOS		65-100 r)	np	2	2
FSINCOS		89-112 r)	np	2	2
F2XM1		53-59 r)	np	2	2
FYL2X		103 r)	np	2	2
FYL2XP1		105 r)	np	2	2
FPTAN		120-147 r)	np	36 o)	0
FPATAN		112-134 r)	np	2	2
FNOP		1	np	0	0
FXCH	r	1	np	0	0
FINCSTP FDECSTP		2	np	0	0
FFREE	r	2	np	0	0
FNCLEX		6-9	np	0	0
FNINIT		12-22	np	0	0
FNSAVE	m	124-300	np	0	0
FRSTOR	m	70-95	np	0	0
WAIT		1	np	0	0

N	_	_	_	

q

m The value to store is needed one clock cycle in advance.

n 1 if the overlapping instruction is also an FMUL.

o Cannot overlap integer multiplication instructions.

p FDIV takes 19, 33, or 39 clock cycles for 24, 53, and 64 bit precision respectively. FIDIV takes 3 clocks more. The precision is

defined by bit 8-9 of the floating point control word.

The first 4 clock cycles can overlap with preceding integer instruc-

tions.

r Clock counts are typical. Trivial cases may be faster, extreme

cases may be slower.

May be up to 3 clocks more when output needed for FST, FCHS, or FABS.

MMX instructions (Pentium MMX)

A list of MMX instruction timings is not needed because they all take one clock cycle, except the MMX multiply instructions which take 3. MMX multiply instructions can be pipelined to yield a throughput of one multiplication per clock cycle.

The EMMS instruction takes only one clock cycle, but the first floating point instruction after an EMMS takes approximately 58 clocks extra, and the first MMX instruction after a floating point instruction takes approximately 38 clocks extra. There is no penalty for an MMX instruction after EMMS on the PMMX.

There is no penalty for using a memory operand in an MMX instruction because the MMX arithmetic unit is one step later in the pipeline than the load unit. But the penalty comes when you store data from an MMX register to memory or to a 32-bit register: The data have to be ready one clock cycle in advance. This is analogous to the floating point store instructions.

All MMX instructions except EMMS are pairable in either pipe. Pairing rules for MMX instructions are described in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

Intel Pentium II and Pentium III

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, sr = segment register, m = memory, m32 = 32-bit memory operand, etc.

μops: The number of μops that the instruction generates for each execution port.

p0: Port 0: ALU, etc.p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency chain. (This is

not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a

similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent

instructions of the same kind.

Integer instructions (Pentium Pro. Pentium II and Pentium III)

Instruction	Operands		μops					Latency	Reciprocal
		p0	p1	p01	p2	рЗ	p4		throughput
MOV	r,r/i			1					
MOV	r,m				1				
MOV	m,r/i					1	1		
MOV	r,sr			1					
MOV	m,sr			1		1	1		
MOV	sr,r	8						5	
MOV	sr,m	7			1			8	
MOVSX MOVZX	r,r			1					
MOVSX MOVZX	r,m				1				
CMOVcc	r,r	1		1					
CMOVcc	r,m	1		1	1				
XCHG	r,r			3					
XCHG	r,m			4	1	1	1	high b)	
XLAT				1	1				
PUSH	r/i			1		1	1		
POP	r			1	1				
POP	(E)SP			2	1				
PUSH	m			1	1	1	1		
POP	m			5	1	1	1		
PUSH	sr			2		1	1		
POP	sr			8	1				

	I	۱ ۵	ı		ı	 a		I	I
PUSHF(D)		3		11		1	1		
POPF(D)		10		6	1				
PUSHA(D)				2	_	8	8		
POPA(D)				2	8				
LAHF SAHF				1					
LEA	r,m	1						1 c)	
LDS LES LFS LGS									
LSS	m			8	3				
ADD SUB AND OR XOR	r,r/i			1					
ADD SUB AND OR XOR	r,m			1	1				
ADD SUB AND OR XOR	m,r/i			1	1	1	1		
ADC SBB	r,r/i			2					
ADC SBB	r,m			2	1				
ADC SBB	m,r/i			3	1	1	1		
CMP TEST	r,r/i			1					
CMP TEST	m,r/i			1	1				
INC DEC NEG NOT	r			1					
INC DEC NEG NOT	m			1	1	1	1		
AAA AAS DAA DAS			1						
AAD		1		2				4	
AAM		1	1	2				15	
IMUL	r,(r),(i)	1	-	_				4	1
IMUL	(r),m	1			1			4	1
DIV IDIV	r8	2		1	'			19	12
DIV IDIV	r16	3		1				23	21
DIV IDIV	r32	3		1				39	37
DIV IDIV	m8	2		1	1			19	12
DIV IDIV	m16	2		1	1			23	21
DIV IDIV	m32	2		1	1			39	37
CBW CWDE	11102			1	'			39	37
CWD CDQ		1		'					
SHR SHL SAR ROR		'							
ROL	r,i/CL	1							
	I,I/CL	1							
SHR SHL SAR ROR	:/Cl	4			4	,	4		
ROL	m,i/CL	1		,	1	1	1		
RCR RCL	r,1	1		1					
RCR RCL	r8,i/CL	4		4					
RCR RCL	r16/32,i/CL	3		3	.		_		
RCR RCL	m,1	1		2	1	1	1		
RCR RCL	m8,i/CL	4		3	1	1	1		
RCR RCL	m16/32,i/CL	4		2	1	1	1		
SHLD SHRD	r,r,i/CL	2							
SHLD SHRD	m,r,i/CL	2		1	1	1	1		
BT	r,r/i			1					
ВТ	m,r/i	1		6	1				
BTR BTS BTC	r,r/i			1					
BTR BTS BTC	m,r/i	1		6	1	1	1		
BSF BSR	r,r		1	1					
BSF BSR	r,m		1	1	1				
SETcc	r			1					

SETcc	m		1	1		1	1		
JMP	short/near		1	ļ .			•		2
JMP	far	21	'		1				_
JMP	r		1						2
JMP	m(near)		1		1				2
JMP	m(far)	21	'		2				_
conditional jump	short/near		1		_				2
CALL	near		1	1		1	1		2
CALL	far	28	'	'	1	2	2		_
CALL	r	20	1	2	•	1	1		2
CALL	m(near)			4	1	1	1		2
CALL	m(far)	28	'	"	2	2	2		_
RETN	in(iai)	20	1	2	1	_	_		2
RETN	i			3	1				2
RETF	'	23	'	3	3				
RETF	i	23			3				
J(E)CXZ	short	23	1	1	3				
LOOP	short	2		1 8					
LOOP LOOP(N)E	short	2		8					
ENTER	i,0		'	12		1	1		
ENTER		00	18	+4b		b-1	2b		
LEAVE	a,b	ca.	10	2	1	D-1	20		
BOUND	r m	7		6	2				
CLC STC CMC	r,m	,		1					
CLD STD				4					
CLUSTO		9		4					
STI		17							
INTO		17		5					
LODS				5	2				
REP LODS			10+6	 in					
STOS			10+0) 	1	1	1		
REP STOS			ca. 5	n		'	'		
MOVS			ca. 5		a) 3	4	4		
REP MOVS			20 6	1		1	1		
			ca. 6		a) 2				
SCAS			40.7	1	2				
REP(N)E SCAS			12+7	1					
CMPS			40.0	4	2				
REP(N)E CMPS	_	_	12+9	1					
BSWAP	r	1		1					0.5
NOP (90)				1					0.5
Long NOP (0F 1F)		22.40		1					1
CPUID RDTSC		23-48	ſ						
		31						>200	
IN		18						>300	
OUT		18						>300	
PREFETCHITO(1/2, d)	m				1				
PREFETCHT0/1/2 d)	m				1	4	_		
SFENCE d)						1	1		6

Notes

- a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".
- b) Has an implicit LOCK prefix.
- c) 3 if constant without base or index register
- d) P3 only.

Floating point x87 instructions (Pentium Pro, II and III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		p0	p1	p01		р3	p4	- · · · · · · · · · · · · · · · · · · ·	throughput
FLD	r	1	•	•	•	•			
FLD	m32/64				1			1	
FLD	m80	2			2				
FBLD	m80	38			2				
FST(P)	r	1							
FST(P)	m32/m64					1	1	1	
FSTP	m80	2				2	2		
FBSTP	m80	165				2	2		
FXCH	r							0	⅓ f)
FILD	m	3			1			5	
FIST(P)	m	2				1	1	5	
FLDZ		1							
FLD1 FLDPI FLDL2E etc.		2							
FCMOVcc	r	2						2	
FNSTSW	AX	3						7	
FNSTSW	m16	1				1	1		
FLDCW	m16	1		1	1			10	
FNSTCW	m16	1				1	1		
FADD(P) FSUB(R)(P)	r	1						3	1
FADD(P) FSUB(R)(P)	m	1			1			3-4	1
FMUL(P)	r	1						5	2 g)
FMUL(P)	m	1			1			5-6	2 g)
FDIV(R)(P)	r	1						38 h)	37
FDIV(R)(P)	m	1			1			38 h)	37
FABS		1							
FCHS		3						2	
FCOM(P) FUCOM	r	1						1	
FCOM(P) FUCOM	m	1			1			1	
FCOMPP FUCOMPP		1		1				1	
FCOMI(P) FUCOMI(P)	r	1						1	
FCOMI(P) FUCOMI(P)	m	1			1			1	
FIADD FISUB(R)	m	6			1				
FIMUL	m	6			1				
FIDIV(R)	m	6			1				
FICOM(P)	m	6			1				
FTST		1						1	
FXAM		1						2	
FPREM		23							
FPREM1		33							
FRNDINT		30							

FSCALE		56				
FXTRACT		15				
FSQRT		1			69	e,i)
FSIN FCOS		17-97		27-103	e)	
FSINCOS		18-110		29-130	e)	
F2XM1		17-48		66	e)	
FYL2X		36-54		103	e)	
FYL2XP1		31-53		98-107	e)	
FPTAN		21-102		13-143	e)	
FPATAN		25-86		44-143	e)	
FNOP		1				
FINCSTP FDECSTP		1				
FFREE	r	1				
FFREEP	r	2				
FNCLEX			3			
FNINIT		13				
FNSAVE		141				
FRSTOR		72				
WAIT			2			

Notes:

e) Not pipelined

f) FXCH generates 1 μop that is resolved by register renaming without going to

any port.

g) FMUL uses the same circuitry as integer multiplication. Therefore, the combined

throughput of mixed floating point and integer multiplications is 1 FMUL + 1

IMUL per 3 clock cycles.

h) FDIV latency depends on precision specified in control word: 64 bits precision

gives latency 38, 53 bits precision gives latency 32, 24 bits precision gives latency 18. Division by a power of 2 takes 9 clocks. Reciprocal throughput is 1/

(latency-1).

i) Faster for lower precision.

Integer MMX instructions (Pentium II and Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal	
		p0	p1	p01	p2	рЗ	р4		throughput	
MOVD MOVQ	r,r			1				1	0.5	
MOVD MOVQ	mm,m32/64				1				1	
MOVD MOVQ	m32/64,mm					1	1		1	
PADD PSUB PCMP	mm,mm			1				1	0.5	
PADD PSUB PCMP	mm,m64			1	1				1	
PMUL PMADD	mm,mm	1						3	1	
PMUL PMADD	mm,m64	1			1			3	1	
PAND(N) POR PXOR	mm,mm			1				1	0.5	
PAND(N) POR PXOR	mm,m64			1	1				1	
PSRA PSRL PSLL	mm,mm/i		1					1	1	
PSRA PSRL PSLL	mm,m64		1		1				1	
PACK PUNPCK	mm,mm		1					1	1	
PACK PUNPCK	mm,m64		1		1				1	
EMMS		11						6 k)		
MASKMOVQ d)	mm,mm			1		1	1	2-8	2 - 30	

PMOVMSKB d)	r32,mm		1					1	1 1
MOVNTQ d)	m64,mm					1	1		1 - 30
PSHUFW d)	mm,mm,i		1					1	1 1
PSHUFW d)	mm,m64,i		1		1			2	1 1
PEXTRW d)	r32,mm,i		1	1				2	1 1
PINSRW d)	mm,r32,i		1					1	1 1
PINSRW d)	mm,m16,i		1		1			2	1 1
PAVGB PAVGW d)	mm,mm			1				1	0.5
PAVGB PAVGW d)	mm,m64			1	1			2	1 1
PMIN/MAXUB/SW d)	mm,mm			1				1	0.5
PMIN/MAXUB/SW d)	mm,m64			1	1			2	1 1
PMULHUW d)	mm,mm	1						3	1 1
PMULHUW d)	mm,m64	1			1			4	1 1
PSADBW d)	mm,mm	2		1				5	2
PSADBW d)	mm,m64	2		1	1			6	2

Notes:

d) P3 only.

k) The delay can be hidden by inserting other instructions between EMMS and any subsequent floating point instruction.

Floating point XMM instructions (Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		p0	p1	p01	p2	р3	p4		throughput
MOVAPS	xmm,xmm			2				1	1
MOVAPS	xmm,m128				2			2	2
MOVAPS	m128,xmm					2	2	3	2
MOVUPS	xmm,m128				4			2	4
MOVUPS	m128,xmm		1			4	4	3	4
MOVSS	xmm,xmm			1				1	1
MOVSS	xmm,m32			1	1			1	1
MOVSS	m32,xmm					1	1	1	1
MOVHPS MOVLPS	xmm,m64			1				1	1
MOVHPS MOVLPS	m64,xmm					1	1	1	1
MOVLHPS MOVHLPS	xmm,xmm			1				1	1
MOVMSKPS	r32,xmm	1						1	1
MOVNTPS	m128,xmm					2	2		2 - 15
CVTPI2PS	xmm,mm		2					3	1
CVTPI2PS	xmm,m64		2		1			4	2
CVT(T)PS2PI	mm,xmm		2					3	1
CVTPS2PI	mm,m128		1		2			4	1
CVTSI2SS	xmm,r32		2		1			4	2
CVTSI2SS	xmm,m32		2		2			5	2
CVT(T)SS2SI	r32,xmm		1		1			3	1
CVTSS2SI	r32,m128		1		2			4	2
ADDPS SUBPS	xmm,xmm		2					3	2
ADDPS SUBPS	xmm,m128		2		2			3	2
ADDSS SUBSS	xmm,xmm		1					3	1
ADDSS SUBSS	xmm,m32		1		1			3	1

MULPS	xmm,xmm	2				4	2
MULPS	xmm,m128	2			2	4	2
MULSS	xmm,xmm	1				4	1 1
MULSS	xmm,m32	1			1	4	1 1
DIVPS	xmm,xmm	2				48	34
DIVPS	xmm,m128	2			2	48	34
DIVSS	xmm,xmm	1				18	17
DIVSS	xmm,m32	1			1	18	17
AND(N)PS ORPS XORPS	xmm,xmm		2			2	2
AND(N)PS ORPS XORPS	xmm,m128		2		2	2	2
MAXPS MINPS	xmm,xmm		2			3	2
MAXPS MINPS	xmm,m128		2		2	3	2
MAXSS MINSS	xmm,xmm		1			3	1
MAXSS MINSS	xmm,m32		1		1	3	1
CMPccPS	xmm,xmm		2			3	2
CMPccPS	xmm,m128		2		2	3	2
CMPccSS	xmm,xmm		1			3	1
CMPccSS	xmm,m32		1		1	3	1
COMISS UCOMISS	xmm,xmm		1			1	1
COMISS UCOMISS	xmm,m32		1		1	1	1
SQRTPS	xmm,xmm	2				56	56
SQRTPS	xmm,m128	2			2	57	56
SQRTSS	xmm,xmm	2				30	28
SQRTSS	xmm,m32	2			1	31	28
RSQRTPS	xmm,xmm	2				2	2
RSQRTPS	xmm,m128	2			2	3	2
RSQRTSS	xmm,xmm	1				1	1
RSQRTSS	xmm,m32	1			1	2	1
RCPPS	xmm,xmm	2				2	2
RCPPS	xmm,m128	2			2	3	2
RCPSS	xmm,xmm	1				1	1
RCPSS	xmm,m32	1			1	2	1
SHUFPS	xmm,xmm,i		2	1		2	2
SHUFPS	xmm,m128,i		2		2	2	2
UNPCKHPS UNPCKLPS	xmm,xmm		2	2		3	2
UNPCKHPS UNPCKLPS	xmm,m128		2		2	3	2
LDMXCSR	m32	11				15	15
STMXCSR	m32	6				7	9
FXSAVE	m4096	116				62	
FXRSTOR	m4096	89				68	

Intel Pentium M, Core Solo and Core Duo

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm =

128 bit xmm register, sr = segment register, m = memory, m32 =

32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retire-

ment stages in the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as

two.

p0: Port 0: ALU, etc.p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant

first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency

chain. (This is not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar

delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of

independent instructions of the same kind.

Integer instructions

Instruction	Operands	μops	μ	ops	unfus	in	Latency			
		fused domain	p0	p1	p01	p2	р3	p4		rocal through put
Move instructions										
MOV	r,r/i	1			1					0.5
MOV	r,m	1				1				1
MOV	m,r	1					1	1		1
MOV	m,i	2					1	1		1
MOV	r,sr	1			1					
MOV	m,sr	2			1		1	1		
MOV	sr,r	8	8						5	
MOV	sr,m	8	7			1			8	
MOVNTI	m,r32	2					1	1		2
MOVSX MOVZX	r,r	1			1				1	0.5
MOVSX MOVZX	r,m	1				1				1
CMOVcc	r,r	2	1		1				2	1.5
CMOVcc	r,m	2	1		1	1				

Pentium M

XCHG XCHG XLAT PUSH PUSH PUSH PUSH PUSHF(D)	r,r r,m r i m sr	3 7 2 1 2 2 2 2	3		3 4 1 1	1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	2 high b) 1 1 2	1.5 1 1 1 1
PUSHA(D)		18			2		8	8	8	8
POP	r	1				1				
POP	(E)SP	3			2	1				
POP	m	2				1	1	1	2	1
POP	sr	10			9	1				
POPF(D)		17	10		6	1			_	16
POPA(D)		10			2	8			7	7
LAHF SAHF		1			1				1	1
SALC		2	1	1						1
LEA	r,m	1	1						1	1
BSWAP LDS LES LFS LGS LSS	r	2	1		8	_				
PREFETCHNTA	m m	11 1			0	3				4
PREFETCHT0/1/2	m m	1				1				1
SFENCE/LFENCE/MFENCE		2				'	1	1		6
IN	-		18				'	'	>300	0
OUT			18						>300	
			.0							
Arithmetic instructions										
ADD SUB	r,r/i	1			1				1	0.5
ADD SUB	r,m	1			1	1			2	1
ADD SUB	m,r/i	3			1	1	1	1		1
ADC SBB	r,r/i	2		1	1				2	2
ADC SBB	r,m	2		1	1	1				
ADC SBB	m,r/i	7			4	1	1	1		
CMP	r,r/i	1			1				1 1	0.5
CMP	m,r	1			1	1			1	1
CMP	m,i	2			1	1			_	1
INC DEC NEG NOT	r	1			1				1	0.5
INC DEC NEG NOT	m	3			1	1	1	1		
AAA AAS DAA DAS		1	1	1	_					
AAD AAM		3 4	1 1	1	2 2				2 15	
MUL IMUL	r8	1	1	'	2				4	1
MUL IMUL	r16/r32	3	3						5	1
IMUL	r,r	1	1						4	1
IMUL	r,r,i	1							4	1
MUL IMUL	m8	1	1			1			4	1
MUL IMUL	m16/m32	3	3			1			5	1
IMUL	r,m	1	1			1			4	1
IMUL	r,m,i	2	1			1			4	1
DIV IDIV	r8	5	4		1				15-16 c)	12
•	•		•							'

	1	1	1 .	ı	1 .	ı	ı	ı	1	l
DIV IDIV	r16	4	3		1					12-20 c)
DIV IDIV	r32	4	3		1				15-39 c)	12-20 c)
DIV IDIV	m8	6	4		1	1			15-16 c)	12
DIV IDIV	m16	5	3		1	1			15-24 c)	12-20 c)
DIV IDIV	m32	5	3		1	1			15-39 c)	12-20 c)
CBW CWDE		1		1					1	1
CWD CDQ		1		1					1	1
Logic instructions										
AND OR XOR	r,r/i	1			1				1	0.5
AND OR XOR	r,m	1			1	1			2	1
AND OR XOR	m,r/i	3			1	1	1	1		1
TEST	r,r/i	1			1				1	0.5
TEST	m,r	1			1	1			1	1
TEST	m,i	2			1	1				1
SHR SHL SAR ROR ROL	r,i/CL	1	1						1	1
SHR SHL SAR ROR ROL	m,i/CL	3	1			1	1	1		
RCR RCL	r,1	2	1		1				2	2
RCR	r8,i/CL	9	5		4				11	
RCL	r8,i/CL	8	4		4				10	
RCR RCL	r16/32,i/CL	6	3		3				9	9
RCR RCL	m,1	7	2		2	1	1	1		
RCR	m8,i/CL	12	6		3	1	1	1		
RCL	m8,i/CL	11	5		3	1	1	1		
RCR RCL	m16/32,i/CL	10	5		2	1	1	1		
SHLD SHRD	r,r,i/CL	2	2		_	'	'		2	2
SHLD SHRD	m,r,i/CL	4	1		1	1	1	1		_
BT	r,r/i	1	'	1	'	'	'	'	1	1
BT	m,r	8		'	7	1			'	'
BT	m,i	2		1	'					
BTR BTS BTC	r,r/i	1		1		'				
BTR BTS BTC	m,r	10		'	7	1	1	1	6	
BTR BTS BTC	m,i	3		1	\	1	1	1	0	
BSF BSR		2		1	1	!	'	ı		
BSF BSR	r,r	2		1		1				
	r,m			-						
SETcc	r	1		1			_	_		
SETCC	m	2		1			1	1		_
CLC STC CMC		1		1						1 7
CLD STD		4			4					7
Control transfer instructio										
JMP	short/near	1		1						1
JMP	far	22	21			1				28
JMP	r	1		1						1
JMP	m(near)	2		1		1				2
JMP	m(far)	25	23			2				31
conditional jump	short/near	1		1						1
J(E)CXZ	short	2		1	1					1
LOOP	short	11	2	1	8					6
LOOP(N)E	short	11	2	1	8					6
LOOP(N)E	short	11	2	1	8					6

CALL	near	4		1	1		1	1		2
CALL	far	32	27			1	2	2		27
CALL	r	4		1	2		1	1		9
CALL	m(near)	4		1		1	1	1		2
CALL	m(far)	35	29			2	2	2		30
RETN	,	2		1	2	1				2
RETN	i	3		1	1	1				2
RETF		27	24			3				30
RETF	i	27	24			3				30
BOUND	r,m	15	7		6	2				8
INTO	,	5			5					4
String instructions										
LODS		2				2				4
REP LODS		6n			10+6r	ı				0.5
STOS		3				1	1	1		1
REP STOS		5n		(¢a. 5r	a)				0.7
MOVS		6			1	3	1	1		0.7
REP MOVS		6n		(ca. 6r	a)				0.5
SCAS		3			1	2				1.3
REP(N)E SCAS		7n			12+7r	1				0.6
CMPS		6			4	2				0.7
REP(N)E CMPS		9n			12+9r	1				0.5
Other										
NOP (90)		1			1					0.5
Long NOP (0F 1F)		1			1					1
PAUSE		2			2					
CLI			9							
STI			17							
ENTER	i,0	12			10		1	1		
ENTER	a,b		ca.	18	+4b		b-1	2b		
LEAVE		3			2	1				
CPUID		38-59	38-59)					ca. 130	
RDTSC		13	13							42

Notes:

a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

b) Has an implicit LOCK prefix.

c) High values are typical, low values are for round divisors. Core Solo/Duo is more efficient than Pentium M in cases with round values that allow an early-out algorithm.

Floating point x87 instructions

Instruction	Operands	µops fused	μ	ops ı	Latency	Recip- rocal				
		domain	p0	p1	p01	p2	р3	p4		through put
Move instructions										

FLD FLD	r m32/64	1 1	1			1			1 1	
FLD	m80	4	2			2				
FBLD	m80	40	38			2				
FST(P)	r	1	1							
FST(P)	m32/m64	1					1	1	1	
FSTP	m80	6	2				2	2		3
FBSTP	m80	169	165				2	2		167
FXCH	r	1							0	0.33 f)
FILD	m	4	3			1			5	2
FIST(P)	m	4	2				1	1	5	2
FISTTP g)	m	4	2				1	1	5	2
FLDZ		1	1							
FLD1 FLDPI FLDL2E etc.		2	2							
FCMOVcc	r	2	2						2	
FNSTSW	AX	3	3						7	3
FNSTSW	m16	2	1				1	1		
FLDCW	m16	3	1		1	1				19
FNSTCW	m16	3	1				1	1		3
FINCSTP FDECSTP		1	1						1	
FFREE	r	1	1							1
FFREEP	r	2	2							2
FNSAVE		142	142							131
FRSTOR		72	72							91
Arithmetic instructions										
FADD(P) FSUB(R)(P)	r	1			1				3	1
FADD(P) FSUB(R)(P)	m	1			1	1			3	1
FMUL(P)	r	1	1						5	2
FMUL(P)	m	1	1			1			5	2
FDIV(R)(P)	r	1	1						9-38 c)	8-37 c)
FDIV(R)(P)	m	1	1			1			9-38 c)	8-37 c)
FABS		1	1						1	1
FCHS		1	1						1	1
FCOM(P) FUCOM	r	1		1					1	1
FCOM(P) FUCOM	m	1		1		1			1	1
FCOMPP FUCOMPP		2		1	1				1	1
FCOMI(P) FUCOMI(P)	r	1		1					1	1
FIADD FISUB(R)	m	6	3	1	1	1			3	3
FIMUL	m	6	5			1			5	3
FIDIV(R)	m	6	5			1			9-38 c)	8-37 c)
FICOM(P)	m	6	3	2		1			,	4
FTST		1		1						1
FXAM		1		1						1 1
FPREM FPREM1		26	26						37	
FRNDINT		15	15						19	
Math		20	00						42	
FSCALE		28	28		1 =				43	
FXTRACT		15			15				9	

FSQRT	1	1					9 h)	8
FSIN FCOS	80-100	80-10	00			80-1	10	
FSINCOS	90-110	90-1	10			100-	130	
F2XM1	~ 20	~20				~45		
FYL2X	~ 40	~40				~60		
FYL2XP1	~ 55	~55				~65		
FPTAN	~ 100	~100				~140		
FPATAN	~ 85	~85				~140		
Other								
FNOP	1	1						1
WAIT	2		1	1				1
FNCLEX	3	3						13
FNINIT	14	14						27

Notes:

c) High values are typical, low values are for low precision or round divisors.

f) FXCH generates 1 μop that is resolved by register renaming without going

to any port.

g) SSE3 instruction only available on Core Solo and Core Duo.

Integer MMX and XMM instructions

Instruction	Operands	µops	μ	ops	unfus	ed d	loma	in	Latency	Recip-
		fused domain	p0	p1	p01	p2	рЗ	p4		rocal through put
Move instructions										
MOVD	r32,mm	1			1				1	0.5
MOVD	mm,r32	1			1				1	0.5
MOVD	mm,m32	1				1				1
MOVD	m32,mm	1					1	1		1
MOVD	r32,xmm	1		1					1	1
MOVD	xmm,r32	2			2					1
MOVD	xmm,m32	2			1	1				1
MOVD	m32, xmm	1					1	1		1
MOVQ	mm,mm	1			1					0.5
MOVQ	mm,m64	1				1				1
MOVQ	m64,mm	1					1	1		1
MOVQ	xmm,xmm	2			2				1	1
MOVQ	xmm,m64	2			1	1				1
MOVQ	m64, xmm	1					1	1		1
MOVDQA	xmm, xmm	2			2				1	1
MOVDQA	xmm, m128	2				2				2
MOVDQA	m128, xmm	2					2	2		2
MOVDQU	xmm, m128	4			2	2				2-10
MOVDQU	m128, xmm	8			5-6		2-3	2-3		4-20
LDDQU g)	xmm, m128	4								2
MOVDQ2Q	mm, xmm	1		1					1	1
MOVQ2DQ	xmm,mm	2		1	1				1	1
MOVNTQ	m64,mm	1					1	1		2

MOVNTDQ	m128,xmm	4					2	2		3
PACKSSWB/DW PACKUSWB	mm,mm	1	1						1	1
PACKSSWB/DW PACKUSWB	mm,m64	1	1			1			1	1
PACKSSWB/DW	111111,1110	'								'
PACKUSWB	xmm,xmm	3	2	1					2	2
PACKSSWB/DW									0	
PACKUSWB PUNPCKH/LBW/WD/DQ	xmm,m128	4	1	1		2			2	2
PUNPCKH/LBW/WD/DQ	mm,mm mm,m64	1	1			1			I	1
PUNPCKH/LBW/WD/DQ	,	2	2			'			2	2
PUNPCKH/LBW/WD/DQ	xmm,xmm xmm,m128	3	1			2				2
PUNPCKHQDQ	xmm,xmm	2	'	1	1	2			1	1
PUNPCKHQDQ	xmm, m128	3		1	'	2			I	1 1
PUNPCKLQDQ	xmm,xmm	1		1					1	1 1
PUNPCKLQDQ	xmm, m128	1		'		1			l I	1 1
PSHUFW	mm,mm,i	1	1			'			1	1
PSHUFW	mm,m64,i	2				1			'	1
PSHUFD	xmm,xmm,i	3	2	1		'			2	2
PSHUFD	xmm,m128,i	4	1	1		2			_	2
PSHUFL/HW	xmm,xmm,i	2		1		_				1
PSHUFL/HW	xmm, m128,i	3	'	1		2				1
MASKMOVQ	mm,mm	3		'	1	_	1	1		· ·
MASKMOVDQU	xmm,xmm	8		1	ļ .		2	2		
PMOVMSKB	r32,mm	1	1	'			_	_	1	1
PMOVMSKB	r32,xmm	1	1	j)					1	1
PEXTRW	r32,mm,i	2	1	1					2	1
PEXTRW	r32,xmm,i	4	2	2					3	2
PINSRW	mm,r32,i	1	1	_					1	1
PINSRW	xmm,r32,i	2	2						1	2
Arithmetic instructions										
PADD/SUB(U)(S)B/W/D	mm,mm	1			1				1	0.5
PADD/SUB(U)(S)B/W/D	mm,m64	1			1	1				1
PADD/SUB(U)(S)B/W/D	xmm,xmm	2			2				1	1
PADD/SUB(U)(S)B/W/D	xmm,m128	4			2	2				2
PADDQ PSUBQ	mm,mm	2			2				2	1
PADDQ PSUBQ	mm,m64	2			2	1				1
PADDQ PSUBQ	xmm,xmm	4			4				2	2
PADDQ PSUBQ	xmm,m128	6			4	2				2
PCMPEQ/GTB/W/D	mm,mm	1			1				1	0.5
PCMPEQ/GTB/W/D	mm,m64	1			1	1				1
PCMPEQ/GTB/W/D	xmm,xmm	2			2				1	1
PCMPEQ/GTB/W/D	xmm,m128	2			2	2				2
PMULL/HW PMULHUW	mm,mm	1			1				3	1
PMULL/HW PMULHUW	mm,m64	1			1	1			3	1
PMULL/HW PMULHUW	xmm,xmm	2			2				3	2
PMULL/HW PMULHUW	xmm,m128	4			2	2			3	2
PMULUDQ	mm,mm	1	1						4	1
PMULUDQ	mm,m64	1	1			1			4	1

PMULUDQ	xmm,xmm	2	2					4	2
PMULUDQ	xmm,m128	4	2			2		4	2
PMADDWD	mm,mm	1			1			3	1
PMADDWD	mm,m64	1			1	1		3	1
PMADDWD	xmm,xmm	2			2			3	2
PMADDWD	xmm,m128	4			2	2		3	2
PAVGB/W	mm,mm	1			1			1	0.5
PAVGB/W	mm,m64	1			1	1			1
PAVGB/W	xmm,xmm	2			2			1	1
PAVGB/W	xmm,m128	4			2	2			2
PMIN/MAXUB/SW	mm,mm	1			1			1	0.5
PMIN/MAXUB/SW	mm,m64	1			1	1			1
PMIN/MAXUB/SW	xmm,xmm	2			2			1	1
PMIN/MAXUB/SW	xmm,m128	4			2	2			2
PSADBW	mm,mm	2			2			4	1
PSADBW	mm,m64	2			2	1		4	1
PSADBW	xmm,xmm	4			4			4	2
PSADBW	xmm,m128	6			4	2		4	2
Logic instructions									
PAND(N) POR PXOR	mm,mm	1			1			1	0.5
PAND(N) POR PXOR	mm,m64	1			1	1			1
PAND(N) POR PXOR	xmm,xmm	2			2			1	1
PAND(N) POR PXOR	xmm,m128	4			2	2			2
PSLL/RL/RAW/D/Q	mm,mm/i	1	1					1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1			1			1
PSLL/RL/RAW/D/Q	xmm,i	2	2					2	2
PSLL/RL/RAW/D/Q	xmm,xmm	3	2	1				2	2
PSLL/RL/RAW/D/Q	xmm,m128	3		1		2			2
PSLL/RLDQ	xmm,i	4	3	1				3	3
Other									
EMMS		11			11			6 k)	6

Notes:

g) SSE3 instruction only available on Core Solo and Core Duo.

j) Also uses some execution units under port 1.

You may hide the delay by inserting other instructions between EMMS and any subsequent floating point instruction. k)

Floating point XMM instructions

Instruction	Operands	µops fused	μops unfused domain						Latency	Recip- rocal
		domain	p0	p1	p01	p2	р3	p4		through put
Move instructions										
MOVAPS/D	xmm,xmm	2			2				1	1
MOVAPS/D	xmm,m128	2				2			2	2
MOVAPS/D	m128,xmm	2					2	2	3	2
MOVUPS/D	xmm,m128	4				4			2	2

MOVUPS/D	m128,xmm	8			4		2	2	3	4
MOVSS/D	xmm,xmm	1		1					1	1 1
MOVSS/D	xmm,m32/64	2		1		1			1	1 1
MOVSS/D	m32/64,xmm	1					1	1	1	1 1
MOVHPS/D MOVLPS/D	xmm,m64	1		1		1		-	1	1 1
MOVHPS/D MOVLPS/D	m64,xmm	1		'		-	1	1	1	1 1
MOVLHPS MOVHLPS	xmm,xmm	1		1				•	1	1 1
MOVMSKPS/D	r32,xmm	1	1	j)					2	1 1
MOVNTPS/D	m128,xmm	2	'	۱,			2	2	_	3
SHUFPS/D	xmm,xmm,i	3	2	1			_	_	2	2
SHUFPS/D	xmm,m128,i	4	1	1		2			_	2
MOVDDUP g)	xmm,xmm	2	'	'		_			1	1
MOVSH/LDUP g)	xmm,xmm	2							2	2
MOVSH/LDUP g)	xmm,m128	4								_
UNPCKH/LPS	xmm,xmm	4	2	2					3-4	5
UNPCKH/LPS	xmm,m128	4		2		2			J -4	5
UNPCKH/LPD		2		1	1				1	1
UNPCKH/LPD	xmm,xmm	3		1		1			ı	
UNPCKH/LPD	xmm,m128	3		'	'	I				1
Conversion										
CVTPS2PD	xmm,xmm	4	2	2					3	3
CVTPS2PD	xmm,m64	4	1	2		1				3
CVTPD2PS	xmm,xmm	4	3	1					4	3
CVTPD2PS	xmm,m128	6	3	1		2				3
CVTSD2SS	xmm,xmm	2			2				4	2
CVTSD2SS	xmm,m64	3			2	1				2
CVTSS2SD	xmm,xmm	2	2						2	2
CVTSS2SD	xmm,m64	3	2			1				2
CVTDQ2PS	xmm,xmm	2			2				3	2
CVTDQ2PS	xmm,m128	4			2	2				2
CVT(T) PS2DQ	xmm,xmm	2			2				3	2
CVT(T) PS2DQ	xmm,m128	4			2	2				2
CVTDQ2PD	xmm,xmm	4			4				4	2
CVTDQ2PD	xmm,m64	5			4	1				2
CVT(T)PD2DQ	xmm,xmm	4			4				4	3
CVT(T)PD2DQ	xmm,m128	6			4	2				3
CVTPI2PS	xmm,mm	1		1					3	1 1
CVTPI2PS	xmm,m64	2		1		1				1 1
CVT(T)PS2PI	mm,xmm	1		1		-			3	1 1
CVT(T)PS2PI	mm,m128	2		1		1				1
CVTPI2PD	xmm,mm	4	2	2		•			5	2
CVTPI2PD	xmm,m64	5	2	2		1				2
CVT(T) PD2PI	mm,xmm	3	-	_	3	•			4	2
CVT(T) PD2PI	mm,m128	5			3	2			-	2
CVTSI2SS	xmm,r32	2	1	1		_			4	1 1
CVT(T)SS2SI	r32,xmm	2	'	1	1				4	1 1
CVT(T)SS2SI	r32,m32	3		1	1	1				1 1
CVTSI2SD	xmm,r32	2	1	1	'	'			4	1 1
CVTSI2SD	xmm,m32	3	1	1		1				1 1
CVT(T)SD2SI	r32,xmm	2	'	1	1	'			4	1 1
10.1.1.705201	102,701111	_	1			I	I	l l	•	

CVT(T)SD2SI	r32,m64	3		1	1	1		1
Arithmetic								
ADDSS/D SUBSS/D	xmm,xmm	1			1		3	1
ADDSS/D SUBSS/D	xmm,m32/64	2			1	1	3	1 1
ADDPS/D SUBPS/D	xmm,xmm	2			2		3	2
ADDPS/D SUBPS/D	xmm,m128	4			2	2	3	2
ADDSUBPS/D g)	xmm,xmm	2			2		3	2
HADDPS HSUBPS g)	xmm,xmm	6?			?		7	4
HADDPD HSUBPD g)	xmm,xmm	3			3		4	2
MULSS	xmm,xmm	1	1				4	1 1
MULSD	xmm,xmm	1	1				5	2
MULSS	xmm,m32	2	1			1	4	1 1
MULSD	xmm,m64	2	1			1	5	2
MULPS	xmm,xmm	2	2				4	2
MULPD	xmm,xmm	2	2				5	4
MULPS	xmm,m128	4	2			2	4	2
MULPD	xmm,m128	4	2			2	5	4
DIVSS	xmm,xmm	1	1				9-18 c)	8-17 c)
DIVSD	xmm,xmm	1	1				9-32 c)	8-31 c)
DIVSS	xmm,m32	2	1			1	9-18 c)	8-17 c)
DIVSD	xmm,m64	2	1			1	9-32 c)	8-31 c)
DIVPS	xmm,xmm	2	2				16-34 c)	16-34 c)
DIVPD	xmm,xmm	2	2				16-62 c)	16-62 c)
DIVPS	xmm,m128	4	2			2	16-34 c)	16-34 c)
DIVPD	xmm,m128	4	2			2	16-62 c)	16-62 c)
CMPccSS/D	xmm,xmm	1			1		3	1 1
CMPccSS/D	xmm,m32/64	2			1	1		1 1
CMPccPS/D	xmm,xmm	2			2		3	2
CMPccPS/D	xmm,m128	4			2	2		2
COMISS/D UCOMISS/D	xmm,xmm	1		1				1
COMISS/D UCOMISS/D	xmm,m32/64	2		1		1		1
MAXSS/D MINSS/D	xmm,xmm	1			1		3	1
MAXSS/D MINSS/D	xmm,m32/64	2			1	1	3	1
MAXPS/D MINPS/D	xmm,xmm	2			2		3	2
MAXPS/D MINPS/D	xmm,m128	4			2	2	3	2
RCPSS	xmm,xmm	1		1			3	1
RCPSS	xmm,m32	2		1		1		1
RCPPS	xmm,xmm	2		2			3	2
RCPPS	xmm,m128	4		2		2		2
Math								
SQRTSS	xmm,xmm	2	2				6-30	4-28
SQRTSS	xmm,m32	3	2			1		4-28
SQRTSD	xmm,xmm	1	1				5-58	4-57
SQRTSD	xmm,m64	2	1			1		4-57
SQRTPS	xmm,xmm	2	2				8-56	16-55
SQRTPD	xmm,xmm	2	2				16-114	16-114
SQRTPS	xmm,m128	4	2			2		16-55
SQRTPD	xmm,m128	4	2			2		16-114

RSQRTSS	xmm,xmm	1		1					3	1
RSQRTSS	xmm,m32	2		1		1				1
RSQRTPS	xmm,xmm	2		3					3	2
RSQRTPS	xmm,m128	4		2		2				2
Logic										
AND/ANDN/OR/XORPS/D	xmm,xmm	2			2				1	1
AND/ANDN/OR/XORPS/D	xmm,m128	4			2	2				1
Other										
LDMXCSR	m32	9	9							20
STMXCSR	m32	6	6							12
FXSAVE	m4096	118	32				43	43		63
FXRSTOR	m4096	87	43			44				72

Notes:

c) High values are typical, low values are for round divisors.

g) SSE3 instruction only available on Core Solo and Core Duo.

j) Also uses some execution units under port 1.

Intel Core 2 (Merom, 65nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Unit: Tells which execution unit cluster is used. An additional delay of 1 clock cycle

is generated if a register written by a µop in the integer unit (int) is read by a µop in the floating point unit (float) or vice versa. flt→int means that an instruction with multiple µops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either unlikely to occur or unavoidable and therefore included in the

latency figure.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles

given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

												_
Instruction	Operands	μοps fused	µops u	nfus	ed d	oma	ain		Unit	Laten- cv	Reci- procal	
		do-	p015 p0	p1	р5	p2	рЗ	р4		•	through-	
		main		1		1		1			put	

Move instructions												
MOV	r,r/i	1	1	x	x	Х				int	1	0.33
MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	8	4	X	x	x	4	•	'	int		16
MOV	sr,m	8	3	X	^	X	5			int		16
MOVNTI	m,r	2		^		^	"	1	1	int		2
MOVSX MOVZX	111,1	_						'	'	1110		
MOVSXD	r,r	1	1	X	x	x				int	1	0.33
MOVSX MOVZX	r,m	1		^	^	^	1			int		1
CMOVcc	r,r	2	2	X	x	x	'			int	2	1
CMOVcc	r,m	2	2	X	x	X	1			int	_	•
XCHG	r,r	3	3	X	x	x	'			int	2	2
XCHG		7		^	^	^	1	1	1	int	high b)	
XLAT	r,m	2	1				1		'	int	4	4
PUSH	_	1	'				'	1	4		3	1
	r i							-	1	int	3	1
PUSH		1					_	1	1	int		1
PUSH	m	2					1	1	1	int		1
PUSH	sr	2	1					1	1	int		1
PUSHF(D/Q)		17	15	X	Х	Х		1	1	int		7
PUSHA(D) i)		18	9					1	8	int	_	8
POP	r	1					1			int	2	1
POP	(E/R)SP	4	3				1			int		
POP	m	2					1	1	1	int		1.5
POP	sr	10	9				1			int		17
POPF(D/Q)		24	23	Х	Х	Х	1			int	20	
POPA(D) i)		10	2				8			int		7
LAHF SAHF		1	1	Х	Х	Х				int	1	0.33
SALC i)		2	2	Х	Х	Х				int	4	1
LEA a)	r,m	1	1	1						int	1	1
BSWAP	r	2	2	1		1				int	4	1
LDS LES LFS LGS LSS	m	11	11				1			int		17
PREFETCHNTA	m	1					1			int		1
PREFETCHT0/1/2	m	1					1			int		1
LFENCE		2						1	1	int		8
MFENCE		2						1	1	int		9
SFENCE		2						1	1	int		9
CLFLUSH	m8	4	2	Х	х	х		1	1	int	240	117
IN										int		
OUT										int		
Arithmetic instructions												
ADD SUB	r,r/i	1	1	Х	х	х				int	1	0.33
ADD SUB	r,m	1	1	х	х	х	1			int		1
ADD SUB	m,r/i	2	1	х	х	х	1	1	1	int	6	1
ADC SBB	r,r/i	2	2	х	х	х				int	2	2
ADC SBB	r,m	2	2	х	х	х	1			int	2	2

ADC SBB	m,r/i	4	3	x	x	x	1	1	1	int	7	
CMP	r,r/i	1	1	X	X	X	'	'	•	int	1	0.33
CMP	m,r/i	1	1	X	X	X	1			int	1	1
INC DEC NEG NOT	r	1	1	X	X	X	'			int	1	0.33
INC DEC NEG NOT	m	3	1	X	X	X	1	1	1	int	6	1
AAA AAS DAA DAS i)		1	1	^	1	^	'	'	•	int		1
AAD i)		3	3	x	X	x				int		1
AAM i)		4	4	^						int	17	
MUL IMUL	r8	1	1		1					int	3	1
MUL IMUL	r16	3	3	x	Х	x				int	5	1.5
MUL IMUL	r32	3	3	x	X	x				int	5	1.5
MUL IMUL	r64	3	3	x	X	x				int	7	4
IMUL	r16,r16	1	1	^	1	^				int	3	1
IMUL	r32,r32	1	1		' 1					int	3	1
IMUL	r64,r64	1		1	'					int	5	2
IMUL	r164,164	1	1	'	1					int	3	1
IMUL	r32,r32,i	1	1		' 1					int	3	1
IMUL	r64,r64,i	1	1	1	'					int		2
MUL IMUL	m8	1	1	'	1		1			int	5 3	1
MUL IMUL	m16	3	3	\ ,	· ·	\ ,	1			int	5	1.5
MUL IMUL	m32	3	3	X	X	X	1			int	5	1.5
MUL IMUL	m64	3	2	2	X	X	1			int	7	4
IMUL	r16,m16	ა 1	1	~	1		1			int	3	1
IMUL			-		' 1		-					
IMUL	r32,m32	1	1	1	'		1			int	3 5	2
	r64,m64	1	-	'	,		1			int	5	l I
IMUL IMUL	r16,m16,i	1	1		1		1			int		2
	r32,m32,i	1	1	4	1		1			int		1 2
IMUL DIV IDIV	r64,m64,i r8	1 3	3	1			1			int int	18	12
DIV IDIV	r16		5								18-26	
DIV IDIV	r32	5	4							int	18-42	12-20 c) 12-36 c)
		4								int		
DIV	r64	32	32							int	29-61	18-37 c)
IDIV	r64	56	56				,			int	39-72	28-40 c)
DIV IDIV	m8	4	3				1			int	18	12
DIV IDIV	m16	6	5				1			int	18-26	12-20 c)
DIV IDIV	m32	5	4				1			int	18-42	12-36 c)
DIV	m64	32	31				1			int	29-61	18-37 c)
IDIV	m64	56	55				1			int	39-72	28-40 c)
CBW CWDE CDQE		1	1	Х	X	X				int	1	
CWD CDQ CQO		1	1	Х		X				int	1	
Logic instructions												
AND OR XOR	r,r/i	1	1	х	х	х				int	1	0.33
AND OR XOR	r,m	1	1	х	х	х	1			int		1
AND OR XOR	m,r/i	2	1	х	х	х	1	1	1	int	6	1
TEST	r,r/i	1	1	х	х	х				int	1	0.33
TEST	m,r/i	1	1	х	х	х	1			int		1
SHR SHL SAR	r,i/cl	1	1	х		х				int	1	0.5
SHR SHL SAR	m,i/cl	3	2	х		х	1	1	1	int	6	1
ROR ROL	r,i/cl	1	1	x		x				int	1	1

DOD DOI		•		ı	I	ı		۱.				4
ROR ROL	m,i/cl	3	2	X		X	1	1	1	int	6	1
RCR RCL	r,1	2	2	X	Х	X				int	2	2
RCR	r8,i/cl	9	9	X	Х	X				int	12	
RCL	r8,i/cl	8	8	X	Х	X				int	11	
RCR RCL	r16/32/64,i/cl	6	6	X	Х	X				int	11	
RCR RCL	m,1	4	3	X	X	X	1	1	1	int	7	
RCR	m8,i/cl	12	9	X	Х	Х	1	1	1	int	14	
RCL	m8,i/cl	11	8	Х	Х	Х	1	1	1	int	13	
RCR RCL	m16/32/64,i/cl	10	7	Х	Х	Х	1	1	1	int	13	
SHLD SHRD	r,r,i/cl	2	2	Х	Х	Х				int	2	1
SHLD SHRD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	7	
BT	r,r/i	1	1	Х	Х	Х				int	1	1
BT	m,r	10	9	Х	Х	Х	1			int		5
ВТ	m,i	2	1	Х	Х	Х	1			int		1
BTR BTS BTC	r,r/i	1	1	Х	Х	Х				int	1	
BTR BTS BTC	m,r	11	8	Х	Х	Х	1	1	1	int	5	
BTR BTS BTC	m,i	3	1	Х	х	Х	1	1	1	int	6	
BSF BSR	r,r	2	2	Х	1	Х				int	2	1
BSF BSR	r,m	2	2	Х	1	Х	1			int		2
SETcc	r	1	1	Х	х	Х				int	1	1
SETcc	m	2	1	Х	х	Х		1	1	int		1
CLC STC CMC		1	1	Х	х	Х				int	1	0.33
CLD		7	7	х	х	х				int		4
STD		6	6	Х	х	х				int		14
Control transfer instructi	ions											
JMP	short/near	1	1			1				int	0	1-2
JMP i)	far	30	30							int		76
JMP	r	1	1			1				int	0	1-2
JMP	m(near)	1	1			1	1			int	0	1-2
JMP	m(far)	31	29				2			int		68
Conditional jump	short/near	1	1			1				int	0	1
Fused compare/test and b	ranch e,i)	1	1			1				int	0	1
J(E/R)CXZ	short	2	2	Х	х	1				int		1-2
LOOP	short	11	11	х	Х	х				int		5
LOOP(N)E	short	11	11	Х	х	Х				int		5
CALL	near	3	2	х	х	х		1	1	int		2
CALL i)	far	43	43							int		75
CALL	r	3	2					1	1	int		2
CALL	m(near)	4	3				1	1	1	int		2
CALL	m(far)	44	42				2			int		75
RETN	, ,	1				1	1			int		2
RETN	i	3	1			1	1			int		2
RETF		32	30				2			int		78
RETF	i	32	30				2			int		78
BOUND i)	r,m	15	13				2			int		8
INTO i)		5	5							int		3
,												
String instructions												
LODS]	3	2				1			int		1
•			•						•	•	'	

REP LODS		4+7n -	14+6r	1						int	1+5n - 2	21+3n
STOS		4	2					1	1	int		1
REP STOS		8+5n - 2	20+1.	2n						int	7+2n - ().55n
MOVS		8	5							int		
		1	1	1		5				int		
REP MOVS		7+7n -	13+n							int	1+3n - ().63n
SCAS		4	3				1			int		1
REP(N)E SCAS		7+8n -	17+7r	1						int	3+8n - 2	23+6n
CMPS		7	5				2			int		3
REP(N)E CMPS		7+10n -	7+9r	1						int	2+7n - 2	22+5n
Other												
NOP (90)		1	1	х	х	Х				int		0.33
Long NOP (0F 1F)		1	1	х	х	Х				int		1
PAUSE		3	3	х	х	Х				int		8
ENTER	i,0	12	10					1	1	int		8
ENTER	a,b									int		
LEAVE		3	2				1			int		
CPUID		46-100								int		180-215
RDTSC		29								int		64
RDPMC		23								int		54

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

Floating point x87 instructions

Instruction	Operands	µops fused	µops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38				2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	Х	х	х		2	2	float	4	5
FBSTP	m80	170	166	Х	Х	х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1	1			1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1
FISTTP g)	m	3	1		1			1	1	float	6	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2

FLDPI FLDL2E etc. FCMOVcc FNSTSW FNSTSW FLDCW FNSTCW FINCSTP FDECSTP FFREE(P) FNSAVE FRSTOR	r AX m16 m16 m16	2 2 1 2 2 3 1 2 142 78	2 2 1 1 1 1 1 2	2 1 1 1 2	2	1	1	1	float float float float float float float float float	1 184 169	2 2 1 2 10 8 1 2 192 177
Arithmetic instructions FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P) FMUL(P) FDIV(R)(P) FDIV(R)(P) FABS FCHS FCOM(P) FUCOM FCOM(P) FUCOM FCOMPP FUCOMPP FCOMI(P) FUCOMI(P) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FTST FXAM FPREM FPREM1 FRNDINT	r m r m r m r m m m	1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 21-27 7-15	1 1 1 1 1 1 1 2 2 2 2 2 1 1 21-27 7-15	1 1 1 1 1 2 2 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			float float	3 5 6-38 d) 1 1 1 16-56 22-29	1 1 2 2 5-37 d) 5-37 d) 1 1 1 1 2 2 5-37 d) 2 1 1
FSCALE FXTRACT FSQRT FSIN FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN Other FNOP WAIT FNCLEX FNINIT		27 82 1 ~96 ~100 ~19 ~53 ~98 ~70	27 82 1 ~96 ~100 ~19 ~53 ~98 ~70 1 2 4 15	1					float float float float float float float float float float float float	41 170 6-69 ~96 ~115 ~45 ~96 ~136 ~119	1 1 15 63

Notes:

- d) Round divisors or low precision give low values.
- f) Resolved by register renaming. Generates no μops in the unfused domain.
- g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μορs fused	μops	un	fuse	ed d	oma	in		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	р3	p4	-		through- put
Move instructions												
MOVD k)	r32/64,(x)mm	1	1	х	Х	Х				int	2	0.33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	х		Х				int	2	0.5
MOVD k)	(x)mm,m32/64	. 1					1			int	2	1
MOVQ	(x)mm, (x)mm	1	1	х	х	Х				int	1	0.33
MOVQ	(x)mm,m64	1					1			int	2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	х	Х	Х				int	1	0.33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	m128, xmm	9	4	х	х	Х	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	x		х	2			int	2-8	2
LDDQU g)	xmm, m128	4	2	X		x	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	x	X	х				int	1	0.33
MOVQ2DQ	xmm,mm	1	1	X	X	x				int	1	0.33
MOVNTQ	m64,mm	1						1	1			2
MOVNTDQ	m128,xmm	1						1	1			2
PACKSSWB/DW PACK-	mm,mm	1	1	1						int	1	1
USWB	mm,m64	1	1	1			1			int		1
PACKSSWB/DW PACK-	xmm,xmm	3	3							flt→int	3	2
USWB	xmm,m128	4	3				1			int		2
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1						int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int		1
PUNPCKH/LBW/WD/DQ	xmm,xmm	3	3							flt→int	3	2
PUNPCKH/LBW/WD/DQ	xmm,m128	4	3				1			int		2
PUNPCKH/LQDQ	xmm,xmm	1	1							int	1	1
PUNPCKH/LQDQ	xmm, m128	2	1				1			int		1
PSHUFB h)	mm,mm	1	1			1				int	1	1
PSHUFB h)	mm,m64	2	1			1	1			int		1
PSHUFB h)	xmm,xmm	4	4							int	3	2
PSHUFB h)	xmm,m128	5	4				1			int		2
PSHUFW	mm,mm,i	1	1			1				int	1	1
PSHUFW	mm,m64,i	2	1			1	1			int		1
PSHUFD	xmm,xmm,i	2	2	x	x	1				flt→int	3	1
PSHUFD	xmm,m128,i	3	2	x	x	1	1			int		1
PSHUFL/HW	xmm,xmm,i	1	1			1				int	1	1
PSHUFL/HW	xmm, m128,i	2	1			1	1			int		1
PALIGNR h)	mm,mm,i	2	2	x	x	x				int	2	1
PALIGNR h)	mm,m64,i	2	2	x	x	x	1			int		1
PALIGNR h)	xmm,xmm,i	2	2	x	x	x				int	2	1

PALIGNR h)	xmm,m128,i	2	2	x	x	х	1	int		1
MASKMOVQ	mm,mm	4						int		2-5
MASKMOVDQU	xmm,xmm	10						int		6-10
PMOVMSKB	r32,(x)mm	1	1	1				int	2	1
PEXTRW	r32,mm,i	2	2					int	3	1
PEXTRW	r32,xmm,i	3	3					int	5	1
PINSRW	mm,r32,i	1	1			1		int	2	1
PINSRW	mm,m16,i	2	1			1	1	int		1
PINSRW	xmm,r32,i	3	3	x	х	Х		int	6	1.5
PINSRW	xmm,m16,i	4	3	х	х	х	1	int		1.5
Arithmetic instructions										
PADD/SUB(U)(S)B/W/D	(x)mm,(x)mm	1	1	x		х		int	1	0.5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1	1	x		х	1	int		1
PADDQ PSUBQ	(x)mm,(x)mm	2	2	x		х		int	2	1
PADDQ PSUBQ	(x)mm,m	2	2	x		х	1	int		1
PHADD(S)W										
PHSUB(S)W h) PHADD(S)W	mm,mm	5	5					int	5	4
PHSUB(S)W h)	mm,m64	6	5				1	int		4
PHADD(S)W PHSUB(S)W h)	xmm,xmm	7	7					int	6	4
PHADD(S)W PHSUB(S)W h)	xmm,m128	8	7				1	int		4
PHADDD PHSUBD h)	mm,mm	3	3				-	int	3	2
PHADDD PHSUBD h)	mm,m64	4	3				1	int		2
PHADDD PHSUBD h)	xmm,xmm	5	5				•	int	5	3
PHADDD PHSUBD h)	xmm,m128	6	5				1	int		3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		x	•	int	1	0.5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	x		x	1	int	'	1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1	^	1	^	'	int	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1	int		1
PMULHRSW h)	(x)mm,(x)mm	1	1		1		'	int	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1	int	3	1
PMULUDQ	, ,	1	1		1		'		3	1
	(x)mm,(x)mm	-	1		1		,	int	3	
PMULUDQ PMADDWD	(x)mm,m	1					1	int	_	1
	(x)mm,(x)mm	1	1		1			int	3	1
PMADDWD	(x)mm,m	1	1		1		1	int		1
PMADDUBSW h)	(x)mm,(x)mm	1	1		1			int	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1	int	_	1
PAVGB/W	(x)mm,(x)mm	1	1	X		Х		int	1	0.5
PAVGB/W	(x)mm,m	1	1	X		х	1	int		1
PMIN/MAXUB/SW	(x)mm,(x)mm	1	1	Х		Х		int	1	0.5
PMIN/MAXUB/SW	(x)mm,m	1	1	Х		х	1	int		1
PABSB PABSW PABSD	(x)mm,(x)mm	1	1	Х		х		int	1	0.5
h)	(x)mm,m	1	1	Х		х	1	int		1
PSIGNB PSIGNW	(x)mm,(x)mm	1	1	Х		х		int	1	0.5
PSIGND h)	(x)mm,m	1	1	Х		х	1	int		1
PSADBW	(x)mm,(x)mm	1	1		1			int	3	1
PSADBW	(x)mm,m	1	1		1		1	int		1

Logic instructions											
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	х	Х	х			int	1	0.33
PAND(N) POR PXOR	(x)mm,m	1	1	х	х	х	1		int		1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		int		1
PSLL/RL/RAW/D/Q	xmm,i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	х	х				int	2	1
PSLL/RL/RAW/D/Q	xmm,m128	3	2	х	х		1		int		1
PSLL/RLDQ	xmm,i	2	2	х	х				int	2	1
Other											
EMMS		11	11	х	х	х			float		6

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

MASM uses the name MOVD rather than MOVQ for this instruction even when

k) moving 64 bits.

Floating point XMM instructions

Instruction	Operands	μορs fused	μops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	p3	p4			through- put
Move instructions												
MOVAPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0.33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	Х	х	Х	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	Х	х	Х				int	1	0.33
MOVSS/D	xmm,m32/64	1					1			int	2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1			int	3	1
MOVHPS/D	m64,xmm	2	1	1				1	1		5	1
MOVLPS/D	m64,xmm	1						1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1						float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1	1
MOVNTPS/D	m128,xmm	1						1	1			2-3
SHUFPS	xmm,xmm,i	3	3		3					flt→int	3	2
SHUFPS	xmm,m128,i	4	3		3		1			flt→int		2
SHUFPD	xmm,xmm,i	1	1	1						float	1	1
SHUFPD	xmm,m128,i	2	1	1			1			float		1
MOVDDUP g)	xmm,xmm	1	1	1						int	1	1
MOVDDUP g)	xmm,m64	2	1	1			1			int		1
MOVSH/LDUP g)	xmm,xmm	1	1			1				int	1	1
MOVSH/LDUP g)	xmm,m128	2	1			1	1			int		1
UNPCKH/LPS	xmm,xmm	3	3		3					flt→int	3	2
UNPCKH/LPS	xmm,m128	4	3		3		1			int		2
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1

UNPCKH/LPD	xmm,m128	2	1	1		1		float		1
Conversion										
CVTPD2PS	xmm,xmm	2	2					float	4	1
CVTPD2PS	xmm,m128	2	2			1		float		1
CVTSD2SS	xmm,xmm	2	2					float	4	1
CVTSD2SS	xmm,m64	2	2			1		float		1
CVTPS2PD	xmm,xmm	2	2	2				float	2	2
CVTPS2PD	xmm,m64	2	2	2		1		float	_	2
CVTSS2SD	xmm,xmm	2	2	-		•		float	2	2
CVTSS2SD	xmm,m32	2	2	2		1		float	_	2
CVTDQ2PS	xmm,xmm	1	1	-	1	'		float	3	1
CVTDQ2PS	xmm,m128	1	1			1		float		1
CVT(T) PS2DQ	xmm,xmm	1	1			'		float	3	1
CVT(T) PS2DQ	xmm,m128	1	1			1		float	3	1
CVTQ2PD	xmm,xmm	2	2	1		'		float	4	1
CVTDQ2PD	xmm,m64	3	2	'	'	1		float	4	1
· ·		2	2			'		float	4	
CVT(T)PD2DQ	xmm,xmm	2							4	1
CVT(T)PD2DQ	xmm,m128		2			1		float	2	1
CVTPI2PS	xmm,mm	1	1		1			float	3	3
CVT/TVPCOPI	xmm,m64	1	1		1	1		float	_	3
CVT(T)PS2PI	mm,xmm	1	1		1			float	3	1
CVT(T)PS2PI	mm,m128	1	1	١.	1	1		float		1
CVTPI2PD	xmm,mm	2	2	1	1			float	4	1
CVTPI2PD	xmm,m64	2	2	1	1	1		float	_	1
CVT(T) PD2PI	mm,xmm	2	2	1	1			float	4	1
CVT(T) PD2PI	mm,m128	2	2	1	1	1		float		1
CVTSI2SS	xmm,r32	1	1		1			float	4	3
CVTSI2SS	xmm,m32	1	1		1	1		float		3
CVT(T)SS2SI	r32,xmm	1	1		1			float	3	1
CVT(T)SS2SI	r32,m32	1	1		1	1		float		1
CVTSI2SD	xmm,r32	2	2	1	1			float	4	3
CVTSI2SD	xmm,m32	2	1		1	1		float		3
CVT(T)SD2SI	r32,xmm	1	1		1			float	3	1
CVT(T)SD2SI	r32,m64	1	1		1	1		float		1
Arithmetic										
ADDSS/D SUBSS/D	xmm,xmm	1	1		1			float	3	1
ADDSS/D SUBSS/D	xmm,m32/64	1	1		1	1		float		1
ADDPS/D SUBPS/D	xmm,xmm	1	1		1			float	3	1
ADDPS/D SUBPS/D	xmm,m128	1	1		1	1		float		1
ADDSUBPS/D g)	xmm,xmm	1	1		1			float	3	1
ADDSUBPS/D g)	xmm,m128	1	1		1	1		float		1
HADDPS HSUBPS g)	xmm,xmm	6	6					float	9	3
HADDPS HSUBPS g)	xmm,m128	7	6			1		float		3
HADDPD HSUBPD g)	xmm,xmm	3	3					float	5	2
HADDPD HSUBPD g)	xmm,m128	4	3			1		float		2
MULSS	xmm,xmm	1	1	1				float	4	1
MULSS	xmm,m32	1	1	1		1		float		1
MULSD	xmm,xmm	1	1	1				float	5	1
	1	-	1 .	1 .	1 1	1 1	1 1		. •	

MULSD	xmm,m64	1	1	1		I	1	l		float		1
MULPS	xmm,xmm	1		1			1			float	4	1
MULPS	xmm,m128	1	1	1			1			float	-	1
MULPD	xmm,xmm	1	1	1			'			float	5	1
MULPD	xmm,m128	1		1			1			float		1
DIVSS	xmm,xmm	1	1				'			float	6-18 d)	5-17 d)
DIVSS	xmm,m32	1	1				1			float	0-10 d)	5-17 d) 5-17 d)
DIVSD	xmm,xmm	1	1	1			'			float	6-32 d)	5-31 d)
DIVSD	xmm,m64	1	1	1			1			float	0 02 0)	5-31 d)
DIVPS	xmm,xmm	1	1	1			'			float	6-18 d)	5-17 d)
DIVPS	xmm,m128	1	1	1			1			float	0 10 4)	5-17 d)
DIVPD	xmm,xmm	1	1	1			ļ •			float	6-32 d)	5-31 d)
DIVPD	xmm,m128	1	1	1			1			float	0 02 0,	5-31 d)
RCPSS/PS	xmm,xmm	1	1		1					float	3	2
RCPSS/PS	xmm,m	1	1		1		1			float		2
CMPccSS/D	xmm,xmm	1	1		1					float	3	1
CMPccSS/D	xmm,m32/64	1	1		1		1			float		1
CMPccPS/D	xmm,xmm	1	1		1					float	3	1
CMPccPS/D	xmm,m128	1	1		1		1			float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1					float	3	1
COMISS/D UCOMISS/D	xmm,m32/64	1	1		1		1			float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1					float	3	1
MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
	·											
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	6-29	6-29
SQRTSS/PS	xmm,m	2	1	1			1			float		6-29
SQRTSD/PD	xmm,xmm	1	1	1						float	6-58	6-58
SQRTSD/PD	xmm,m	2	1	1			1			float		6-58
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0.33
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	Х	х	Х	1			int		1
Other		4.										4.5
LDMXCSR	m32	14	13				1					42
STMXCSR	m32	6	4					1	1		,	19
FXSAVE	m4096	141									145	145
FXRSTOR	m4096	119									164	164

Notes:

d) Round divisors give low values.

g) SSE3 instruction set.

Intel Core 2 (Wolfdale, 45nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x

under p0 and p5 means one µop which can go to either port 0 or port 5,

whichever is vacant first. A value listed under p015 but nothing under p0, p1 and

p5 means that it is not known which of the three ports these µops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Unit: Tells which execution unit cluster is used. An additional delay of 1 clock cycle is

generated if a register written by a μop in the integer unit (int) is read by a μop in the floating point unit (float) or vice versa. flt—int means that an instruction with multiple μops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either un-

likely to occur or unavoidable and therefore included in the latency figure.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles given by

the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

Instruction	-	μορs fused	μops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put

Move instructions											
MOV	r,r/i	1	1	х	х	х				1	0.33
MOV a)	r,m	1					1			2	1
MOV a)	m,r	1						1	1	3	1
MOV	m,i	1						1	1	3	1
MOV	r,sr	1					1				1
MOV	m,sr	2					1	1	1		1
MOV	sr,r	8	4	Х	Х	х	4				16
MOV	sr,m	8	3	Х		х	5				16
MOVNTI	m,r	2						1	1		2
MOVSX MOVZX											
MOVSXD	r,r	1	1	Х	Х	Х				1	0.33
MOVSX MOVZX	r16/32,m	1					1				1
MOVSX MOVSXD	r64,m	2	1	Х	Х	Х	1				1
CMOVcc	r,r	2	2	Х	Х	Х				2	1
CMOVcc	r,m	2	2	Х	х	х	1				
XCHG	r,r	3	3	х	х	х				2	2
XCHG	r,m	7					1	1	1	high b)	
XLAT		2	1				1			4	1
PUSH	r	1						1	1	3	1
PUSH	i	1						1	1		1
PUSH	m	2					1	1	1		1
PUSH	sr	2	1					1	1		1
PUSHF(D/Q)		17	15	Х	Х	х		1	1		7
PUSHA(D) i)		18	9					1	8		8
POP	r	1					1			2	1
POP	(E/R)SP	4	3				1				
POP	m	2					1	1	1		1.5
POP	sr	10	9				1				17
POPF(D/Q)		24	23	Х	Х	Х	1			20	
POPA(D) i)		10	2				8				7
LAHF SAHF		1	1	Х	Х	Х				1	0.33
SALC i)		2	2	Х	Х	Х				4	1
LEA a)	r,m	1	1	1						1	1
BSWAP	r	2	2	1		1				4	1
LDS LES LFS LGS LSS	m	11	11				1				17
PREFETCHNTA	m	1					1				1
PREFETCHT0/1/2	m	1					1				1
LFENCE		2						1	1		8
MFENCE		2						1	1		6
SFENCE		2						1	1		9
CLFLUSH	m8	4	2	1		1		1	1	120	90
IN											
OUT											
Arithmetic instructions											
ADD SUB	r,r/i	1	1	Х	Х	х				1	0.33
ADD SUB	r,m	1	1	Х	Х	х	1				1
ADD SUB	m,r/i	2	1	Х	Х	х	1	1	1	6	1
ADC SBB	r,r/i	2	2	Х	Х	Х				2	2

ADC SBB	r,m	2	2	х	х	х	1			1	2	2
ADC SBB	m,r/i	4	3	X	X	x	1	1	1		7	-
CMP	r,r/i	1	1	X	X	X					1	0.33
CMP	m,r/i	1	1	X	X	X	1				1	1
INC DEC NEG NOT	r	1	1	X	X	X					1	0.33
INC DEC NEG NOT	m .	3	1	X	X	X	1	1	1		6	1
AAA AAS DAA DAS i)		1	1	^	1	^		'	'			1
AAD i)		3	3	х	X	x						1
AAM i)		5	5	X	X	X					17	
MUL IMUL	r8	1	1	^	1						3	1
MUL IMUL	r16	3	3	х	X	x					5	1.5
MUL IMUL	r32	3	3	X	X	X					5	1.5
MUL IMUL	r64	3	3	X	X	X					7	4
IMUL	r16,r16	1	1	^	1	^					3	1
IMUL	r32,r32	1	1		1						3	1
IMUL	r64,r64	1	1	1							5	2
IMUL	r16,r16,i	1	1		1						3	1
IMUL	r32,r32,i	1	1		1						3	1
IMUL	r64,r64,i	1	1	1							5	2
MUL IMUL	m8	1	1		1		1				3	1
MUL IMUL	m16	3	3	х	X	x	1				5	1.5
MUL IMUL	m32	3	3	X	X	x	1				5	1.5
MUL IMUL	m64	3	2	2	^	^	1				7	4
IMUL	r16,m16	1	1	_	1		1				3	1
IMUL	r32,m32	1	1		1		1				3	1
IMUL	r64,m64	1	1	1			1				5	2
IMUL	r16,m16,i	1	1	'	1		1					2
IMUL	r32,m32,i	1	1		1		1					1
IMUL	r64,m64,i	1	1	1			1					2
DIV IDIV	r8	4	4	1	2	1					9-18 c)	-
DIV IDIV	r16	7	7	X	X	X					14-22 c)	
DIV IDIV	r32	7	7	2	3	2					14-23 c)	
DIV	r64	32-38			10						18-57 c)	
IDIV	r64	56-62			X	X					34-88 c)	
DIV IDIV	m8	4	3	1	2	_	1				9-18	
DIV IDIV	m16	7	6	2	3	2	1				14-22 c)	
DIV IDIV	m32	7	6	X	X	x	1				14-23 c)	
DIV	m64	32	31	X	X	x	1				34-88 c)	
IDIV	m64	56	55	X	X	x	1				39-72 c)	
CBW CWDE CDQE	11104	1	1	X	X	x	'				1	
CWD CDQ CQO		1	1	X	^	x					1	
OWD ODG OGO		'	•	^		_					'	
Logic instructions												
AND OR XOR	r,r/i	1	1	Х	Х	Х					1	0.33
AND OR XOR	r,m	1	1	Х	Х	Х	1					1
AND OR XOR	m,r/i	2	1	Х	Х	Х	1	1	1		6	1
TEST	r,r/i	1	1	Х	Х	Х					1	0.33
TEST	m,r/i	1	1	Х	Х	Х	1					1
SHR SHL SAR	r,i/cl	1	1	Х		Х					1	0.5
SHR SHL SAR	m,i/cl	3	2	Х		Х	1	1	1		6	1

ROR ROL ROR ROL	r,i/cl m,i/cl	1 3	1 2	x x		x x	1	1	1	1 6	1 1
RCR RCL	r,1	2	2	Х	Х	Х				2	2
RCR	r8,i/cl	9	9	Х	Х	Х				12	
RCL	r8,i/cl	8	8	Х	Х	х				11	
RCR RCL	r16/32/64,i/cl	6	6	Х	Х	х				11	
RCR RCL	m,1	4	3	Х	Х	х	1	1	1	7	
RCR	m8,i/cl	12	9	Х	Х	х	1	1	1	14	
RCL	m8,i/cl	11	8	Х	Х	х	1	1	1	13	
RCR RCL	m16/32/64,i/cl	10	7	Х	Х	х	1	1	1	13	
SHLD SHRD	r,r,i/cl	2	2	Х	Х	х				2	1
SHLD SHRD	m,r,i/cl	3	2	х	х	x	1	1	1	7	
BT	r,r/i	1	1	х	х	x				1	1
ВТ	m,r	9	8	х	х	x	1				4
BT	m,i	3	2	Х	Х	X	1				1
BTR BTS BTC	r,r/i	1	1	X	X	X				1	•
BTR BTS BTC	m,r	10	7	X	X	X	1	1	1	5	
BTR BTS BTC	m,i	3	1	X	X	x	1	1	1	6	
BSF BSR	r,r	2	2	X	1	X	ļ .	ļ '	ļ .	2	1
BSF BSR	r,m	2	2	X	1	x	1			_	1
SETcc	r	1	1	X	X	x	ļ '			1	1
SETcc	m '	2	1	x	X	x		1	1	'	1
CLC STC CMC	""	1	1	X	X	x		'	'	1	0.33
CLD		6	6	X	X	x				'	3
STD		6	6								14
310		O	0	Х	Х	X					14
Control transfer instructi											
JMP	short/near	1	1			1				0	1-2
JMP i)	far	30	30								76
JMP	r	1	1			1				0	1-2
JMP	m(near)	1	1			1	1			0	1-2
JMP	m(far)	31	29				2				68
Conditional jump	short/near	1	1			1				0	1
Fused compare/test and b	. ' '	1	1			1				0	1
J(E/R)CXZ	short	2	2	Х	Х	1					1-2
LOOP	short	11	11	Х	Х	Х					5
LOOP(N)E	short	11	11	Χ	Х	Х					5
CALL	near	3	2	Χ	Х	Х		1	1		2
CALL i)	far	43	43								75
CALL	r	3	2					1	1		2
CALL	m(near)	4	3				1	1	1		2
CALL	m(far)	44	42				2				75
RETN		1				1	1				2
RETN	i	3	1			1	1				2
RETF		32	30				2				78
RETF	i	32	30				2				78
BOUND i)	r,m	15	13				2				8
INTO i)		5	5								3
String instructions											

LODS		3	2				1				1
REP LODS		4+7n-1	4+6n		'			'		1+5n-2	1+3n
STOS		4	2					1	1		1
REP STOS		8+5n-2	0+1.2	n			•			7+2n-0.	55n
MOVS		8	5								
		1	1	1		5					
REP MOVS		7+7n-1	3+n		•		•			1+3n-0.	63n
SCAS		4	3				1				1
REP(N)E SCAS		7+8n-1	7+7n							3+8n-23	3+6n
CMPS		7	5				2				3
REP(N)E CMPS		7+10n-	7+9n		•					2+7n-22	2+5n
Other											
NOP (90)		1	1	Х	Х	Х					0.33
Long NOP (0F 1F)		1	1	Х	Х	Х					1
PAUSE		3	3	Х	Х	Х					8
ENTER	i,0	12	10					1	1		8
ENTER	a,b										
LEAVE		3	2				1				
CPUID		53-117									53-211
RDTSC		13									32
RDPMC		23									54

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results. The reciprocal

throughput is only slightly less than the latency.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

Floating point x87 instructions

Instruction	Operands	µops fused	µops	un	fuse	ed d	loma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	p3	p4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38	Х	Х	Х	2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	Х	Х	Х		2	2	float	4	5
FBSTP	m80	171	167	Х	Х	Х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1		1		1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1

FISTTP g) FLDZ FLD1 FLDPI FLDL2E etc. FCMOVcc FNSTSW FNSTSW FLDCW FNSTCW FINCSTP FDECSTP FFREE(P) FNSAVE FRSTOR	r AX m16 m16 m16	3 1 2 2 2 1 2 3 1 2 141 78	1 1 2 2 2 1 1 1 1 2 95 51	1 1 2 1 1 X X X X	1 1 2 x x x x	1 x x x x	1 7 27	1 1 23	1 1 23	float float float float float float float float float float float float float	2	1 1 2 2 2 1 2 10 8 1 2 142 177
Arithmetic instructions FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P) FMUL(P) FDIV(R)(P) FDIV(R)(P) FABS FCHS FCOM(P) FUCOM FCOM(P) FUCOMPP FCOMI(P) FUCOMI(P) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FTST FXAM FPREM FPREM1 FRNDINT	r m r m r m m m	1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 26-29 28-35 17-19	1 1 1 1 1 1 1 1 2 2 2 2 1	1 1 1 1 1 1 X X X X	1 1 1 1 1 2 1 1 1 x x x x	x x x	1 1 1 1 1 1 1			float float	3 5 6-21 d) 6-21 d) 1 1 3 5 6-21 13-40 18-41 10-22	1 2 2 5-20 d) 5-20 d) 1 1 1 2 2 5-20 d) 2 1
Math FSCALE FXTRACT FSQRT FSIN FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN		28 53-84 1 18-85 76-100 18- 105 19 57-65 19-100 23-87	19	x x 1 x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x				float float float float float float float float float	43 ~170 6-20 32-85 70-100 38-107 45 50-100 40-130 55-130	

Other									
FNOP	1	1	1				float	1	
WAIT	2	2	Х	Х	х		float	1	
FNCLEX	4	4		Х	х		float	15	
FNINIT	15	15	Х	Х	х		float	63	

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μορs fused	μops	un	fus	ed d	lom	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	р3	p4			through- put
Move instructions												
MOVD k)	r32/64,(x)mm	1	1	Х	Х	Х				int	2	0.33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	Х		Х				int	2	0.5
MOVD k)	(x)mm,m32/64	1					1			int	2	1
MOVQ	(x)mm, (x)mm	1	1	Х	Х	Х				int	1	0.33
MOVQ	(x)mm,m64	1					1			int	2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	Х	Х	X				int	1	0.33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	m128, xmm	9	4	Х	Х	х	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	Х		Х	2			int	2-8	2
LDDQU g)	xmm, m128	4	2	Х		Х	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	Х	х	Х				int	1	0.33
MOVQ2DQ	xmm,mm	1	1	Х	х	Х				int	1	0.33
MOVNTQ	m64,mm	1						1	1			2
MOVNTDQ	m128,xmm	1						1	1			2
MOVNTDQA j)	xmm, m128	1					1				2	1
PACKSSWB/DW PACK- USWB	mm,mm	1	1	1						int	1	1
PACKSSWB/DW PACK- USWB	mm,m64	1	1	1			1			int		1
PACKSSWB/DW PACK- USWB	xmm,xmm	1	1			1				int	1	1
PACKSSWB/DW PACK- USWB	xmm,m128	1	1			1	1			int		1
PACKUSDW j)	xmm,xmm	1	1			1				int	1	1
PACKUSDW j)	xmm,m	1	1			1	1			int		1
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1						int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int		1
PUNPCKH/LBW/WD/DQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LBW/WD/DQ	xmm,m128	1	1			1	1			int		1
PUNPCKH/LQDQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LQDQ	xmm, m128	2	1			1	1			int		1

PMOVSX/ZXBW j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBW j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXBD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBD j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXBQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBQ j)	xmm,m16	1	1			1	1			int		1
PMOVSX/ZXWD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWD j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXWQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWQ j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXDQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXDQ j)	xmm,m64	1	1			1	1			int		1
PSHUFB h)	mm,mm	1	1			1				int	1	1
PSHUFB h)	mm,m64	2	1			1	1			int		1
PSHUFB h)	xmm,xmm	1	1			1				int	1	1
PSHUFB h)	xmm,m128	1	1			1	1			int		1
PSHUFW	mm,mm,i	1	1			1				int	1	1
PSHUFW	mm,m64,i	2	1			1	1			int		1
PSHUFD	xmm,xmm,i	1	1			1				int	1	1
PSHUFD	xmm,m128,i	2	1			1	1			int		1
PSHUFL/HW	xmm,xmm,i	1	1			1				int	1	1
PSHUFL/HW	xmm, m128,i	2	1			1	1			int		1
PALIGNR h)	mm,mm,i	2	2			2				int	2	1
PALIGNR h)	mm,m64,i	3	2			3	1			int		1
PALIGNR h)	xmm,xmm,i	1	1			1				int	1	1
PALIGNR h)	xmm,m128,i	1	1			1	1			int		1
PBLENDVB j)	x,x,xmm0	2	2			2				int	2	2
PBLENDVB j)	x,m,xmm0	2	2			2	1			int		2
PBLENDW j)	xmm,xmm,i	1	1			1				int	1	1
PBLENDW j)	xmm,m,i	1	1			1	1			int		1
MASKMOVQ	mm,mm	4	1	1			1	1	1	int		2-5
MASKMOVDQU	xmm,xmm	10	4	1		3	2	2	3	int		6-10
PMOVMSKB	r32,(x)mm	1	1	1						int	2	1
PEXTRB j)	r32,xmm,i	2	2	Х	Х	х				int	3	1
PEXTRB j)	m8,xmm,i	2	2	х	Х	х				int	3	1
PEXTRW	r32,(x)mm,i	2	2	Х	х	х	1			int	3	1
PEXTRW j)	m16,(x)mm,i	2	2			1		1	1	int		1
PEXTRD j)	r32,xmm,i	2	2	Х	Х	Х				int	3	1
PEXTRD j)	m32,xmm,i	2	1			1		1	1	int		1
PEXTRQ j,m)	r64,xmm,i	2	2	х	Х	х				int	3	1
PEXTRQ j,m)	m64,xmm,i	2	1			1		1	1	int		1
PINSRB j)	xmm,r32,i	1	1			1				int	1	1
PINSRB j)	xmm,m8,i	2	1			1	1			int		1
PINSRW	(x)mm,r32,i	1	1			1				int	2	1
PINSRW	(x)mm,m16,i	2	1			1	1			int		1
PINSRD j)	xmm,r32,i	1	1			1				int	1	1
PINSRD j)	xmm,m32,i	2	1			1	1			int		1
PINSRQ j,m)	xmm,r64,i	1	1			1				int	1	1
PINSRQ j,m)	xmm,m64,i	2	1			1	1			int		1
,	,	_										
ı	1	I	I	1	ı	ı	ı	ı	ı l		1	ı l

Arithmetic instructions											
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	1	x		x			int	1	0.5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1	1	X		X	1		int	_	1
PADDQ PSUBQ	(x)mm, (x)mm	2	2	X		X			int	2	1
PADDQ PSUBQ	(x)mm,m	2	2	X		X	1		int	_	1
PHADD(S)W	(//////////////////////////////////////	_	_								
PHSUB(S)W h)	(x)mm, (x)mm	3	3	1		2			int	3	2
PHADD(S)W											
PHSUB(S)W h)	(x)mm,m64	4	3	1		2	1		int		2
PHADDD PHSUBD h)	(x)mm, (x)mm	3	3	1		2			int	3	2
PHADDD PHSUBD h)	(x)mm,m64	4	3	1		2	1		int		2
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	Х		Х			int	1	0.5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	Х		Х	1		int		1
PCMPEQQ j)	xmm,xmm	1	1			1			int	1	1
PCMPEQQ j)	xmm,m128	1	1			1	1		int		1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1				int	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1		int		1
PMULHRSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1		int		1
PMULLD j)	xmm,xmm	4	4		2	2			int	5	2
PMULLD j)	xmm,m128	6	5	1	2	2	1		int	5	4
PMULDQ j)	xmm,xmm	1	1		1				int	3	1
PMULDQ j)	xmm,m128	1	1		1		1		int		1
PMULUDQ	(x)mm,(x)mm	1	1		1				int	3	1
PMULUDQ	(x)mm,m	1	1		1		1		int		1
PMADDWD	(x)mm,(x)mm	1	1		1				int	3	1
PMADDWD	(x)mm,m	1	1		1		1		int		1
PMADDUBSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1		int		1
PAVGB/W	(x)mm,(x)mm	1	1	Х		Х			int	1	0.5
PAVGB/W	(x)mm,m	1	1	Х		х	1		int		1
PMIN/MAXSB j)	xmm,xmm	1	1	1					int	1	1
PMIN/MAXSB j)	xmm,m128	1	1	1			1		int		1
PMIN/MAXUB	(x)mm,(x)mm	1	1	Х		х			int	1	0.5
PMIN/MAXUB	(x)mm,m	1	1	Х		х	1		int		1
PMIN/MAXSW	(x)mm,(x)mm	1	1	Х		х			int	1	0.5
PMIN/MAXSW	(x)mm,m	1	1	Х		х	1		int		1
PMIN/MAXUW j)	xmm,xmm	1	1	1					int	1	1
PMIN/MAXUW j)	xmm,m	1	1				1		int		1
PMIN/MAXSD j)	xmm,xmm	1	1	1					int	1	1
PMIN/MAXSD j)	xmm,m128	1	1	1			1		int		1
PMIN/MAXUD j)	xmm,xmm	1	1	1					int	1	1
PMIN/MAXUD j)	xmm,m128	1	1	1			1		int		1
PHMINPOSUW j)	xmm,xmm	4	4			4			int	4	4
PHMINPOSUW j)	xmm,m128	4	4			4	1		int		4
PABSB PABSW PABSD		1	1	Х		х			int	1	0.5
PABSB PABSW PABSD											
h)	(x)mm,m	1	1	Х		х	1		int		1
PSIGNB PSIGNW											
PSIGND h)	(x)mm,(x)mm	1	1	Х		х			int	1	0.5

PSIGNB PSIGNW												
PSIGND h)	(x)mm,m	1	1	Х		Х	1		int		1	
PSADBW	(x)mm,(x)mm	1	1		1				int	3	1	
PSADBW	(x)mm,m	1	1		1		1		int		1	
MPSADBW j)	xmm,xmm,i	3	3		1	2			int	5	2	
MPSADBW j)	xmm,m,i	4	3		1	2	1		int		2	
Logic instructions												
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	Х	Χ	Х			int	1	0.33	
PAND(N) POR PXOR	(x)mm,m	1	1	Х	Х	Х	1		int		1	
PTEST j)	xmm,xmm	2	2	1	Х	Х			int	1	1	
PTEST j)	xmm,m128	2	2	1	Х	Х	1		int		1	
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1					int	1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		int		1	
PSLL/RL/RAW/D/Q	xmm,i	1	1	1					int	1	1	
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	Х		Х			int	2	1	
PSLL/RL/RAW/D/Q	xmm,m128	3	2	Х		Х	1		int		1	
PSLL/RLDQ	xmm,i	1	1	x		x			int	1	1	
Other												
EMMS		11	11	Х	Х	Х			float		6	

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

j) SSE4.1 instruction set

k) MASM uses the name MOVD rather than MOVQ for this instruction even when

moving 64 bits

m) Only available in 64 bit mode

Floating point XMM instructions

Instruction	Operands	μοps fused	µops	un	fuse	ed d	om	ain	Unit	Laten- cy	Reci- procal	
		do- main	p015	p0	p1	р5	p2	рЗ	p4			through- put
Move instructions												
MOVAPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0.33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	Х	Х	Х	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0.33
MOVSS/D	xmm,m32/64	1					1			int	2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1			int	3	1
MOVHPS/D	m64,xmm	2	1	1				1	1		5	1
MOVLPS/D	m64,xmm	1						1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1						float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1	1
MOVNTPS/D	m128,xmm	1						1	1			2-3
SHUFPS	xmm,xmm,i	1	1			1				int	1	1

CHILIEDS	vmama ma 100 ;	_	۱ ،	ı	ı	1	4	l		int		4	1
SHUFPS	xmm,m128,i	2	1	4		!	1			int	4	1	
SHUFPD	xmm,xmm,i	1	1	1			4			float	1	1	
SHUFPD	xmm,m128,i	2	1			4	1			float	4	1	
BLENDPS/PD j)	xmm,xmm,i	1	1			1	4			int	1	1	
BLENDPS/PD j)	xmm,m128,i	1	1			1	1			int	0	1	
BLENDVPS/PD j)	xmm,xmm,xmm0	2	2			2				int	2	2	
BLENDVPS/PD j)	xmm,m,xmm0	2	2			2	1			int	_	2	
MOVDDUP g)	xmm,xmm	1	1	1						int	1	1	
MOVDDUP g)	xmm,m64	2	1	1			1			int		1	
MOVSH/LDUP g)	xmm,xmm	1	1			1				int	1	1	
MOVSH/LDUP g)	xmm,m128	2	1			1	1			int		1	
UNPCKH/LPS	xmm,xmm	1	1			1				int	1	1	
UNPCKH/LPS	xmm,m128	1	1			1	1			int		1	
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1	
UNPCKH/LPD	xmm,m128	2	1	1			1			float		1	
EXTRACTPS j)	r32,xmm,i	2	2	Х	Х	Х				int	4	1	
EXTRACTPS j)	m32,xmm,i	2	1			1		1	1	int		1	
INSERTPS j)	xmm,xmm,i	1	1			1				int	1	1	
INSERTPS j)	xmm,m32,i	2	1			1	1			int		1	
Conversion													
CVTPD2PS	xmm,xmm	2	2	1	1					float	4	1	
CVTPD2PS	xmm,m128	2	2	1	1		1			float		1	
CVTSD2SS	xmm,xmm	2	2	1	1					float	4	1	
CVTSD2SS	xmm,m64	2	2	1	1		1			float		1	
CVTPS2PD	xmm,xmm	2	2	2						float	2	2	
CVTPS2PD	xmm,m64	2	2	2			1			float		2	
CVTSS2SD	xmm,xmm	2	2	2						float	2	2	
CVTSS2SD	xmm,m32	2	2	2			1			float		2	
CVTDQ2PS	xmm,xmm	1	1		1					float	3	1	
CVTDQ2PS	xmm,m128	1	1		1		1			float		1	
CVT(T) PS2DQ	xmm,xmm	1	1		1					float	3	1	
CVT(T) PS2DQ	xmm,m128	1	1		1		1			float		1	
CVTDQ2PD	xmm,xmm	2	2	1	1					float	4	1	
CVTDQ2PD	xmm,m64	2	2	1	1		1			float		1	
CVT(T)PD2DQ	xmm,xmm	2	2	1	1					float	4	1	
CVT(T)PD2DQ	xmm,m128	2	2	1	1		1			float		1	
CVTPI2PS	xmm,mm	1	1		1					float	3	3	
CVTPI2PS	xmm,m64	1	1		1		1			float		3	
CVT(T)PS2PI	mm,xmm	1	1		1					float	3	1	
CVT(T)PS2PI	mm,m128	1	1		1		1			float		1	
CVTPI2PD	xmm,mm	2	2	1	1					float	4	1	
CVTPI2PD	xmm,m64	2	2	1	1		1			float		1	
CVT(T) PD2PI	mm,xmm	2	2	1	1					float	4	1	
CVT(T) PD2PI	mm,m128	2	2	1	1		1			float		1	
CVTSI2SS	xmm,r32	1	1		1					float	4	3	
CVTSI2SS	xmm,m32	1	1		1		1			float		3	
CVT(T)SS2SI	r32,xmm	1	1		1					float	3	1	
CVT(T)SS2SI	r32,m32	1	1		1		1			float		1	
CVTSI2SD	xmm,r32	2	2	1	1					float	4	3	
ı	, - 1		I	1	I	ı	1	1	ı İ	-			1

CVTSI2SD	xmm,m32	2	1		1		1		float		3
CVT(T)SD2SI	r32,xmm	1	1		1				float	3	1
CVT(T)SD2SI	r32,m64	1	1		1		1		float		1
Arithmetic											
ADDSS/D SUBSS/D	xmm,xmm	1	1		1				float	3	1
ADDSS/D SUBSS/D	xmm,m32/64	1	1		1		1		float		1
ADDPS/D SUBPS/D	xmm,xmm	1	1		1				float	3	1
ADDPS/D SUBPS/D	xmm,m128	1	1		1		1		float		1
ADDSUBPS/D g)	xmm,xmm	1	1		1				float	3	1
ADDSUBPS/D g)	xmm,m128	1	1		1		1		float		1
HADDPS HSUBPS g)	xmm,xmm	3	3		1	2			float	7	3
HADDPS HSUBPS g)	xmm,m128	4	3		1	2	1		float		3
HADDPD HSUBPD g)	xmm,xmm	3	3	х	X	X	·		float	6	1.5
HADDPD HSUBPD g)	xmm,m128	4	3	X	X	X	1		float		1.5
MULSS	xmm,xmm	1	1	1	^	^	'		float	4	1.0
MULSS	xmm,m32	1	1	1			1		float		1
MULSD	xmm,xmm	1	1	1			'		float	5	1
MULSD	xmm,m64	1	1	1			1		float		1
MULPS	xmm,xmm	1	1	1					float	4	1
MULPS	xmm,m128	1	1	1			1		float	4	1
MULPD	,		1	1			'			5	1
MULPD	xmm,xmm	1		-			4		float	5	1
	xmm,m128	1	1	1			1		float	6 40 4)	1 5 40 4
DIVSS	xmm,xmm	1	1	1					float	6-13 d)	5-12 d)
DIVSS	xmm,m32	1	1	1			1		float	C 04 4)	5-12 d)
DIVSD	xmm,xmm	1	1	1					float	6-21 d)	5-20 d)
DIVSD	xmm,m64	1	1	1			1		float		5-20 d)
DIVPS	xmm,xmm	1	1	1					float	6-13 d)	5-12 d)
DIVPS	xmm,m128	1	1	1			1		float		5-12 d)
DIVPD	xmm,xmm	1	1	1					float	6-21 d)	5-20 d)
DIVPD	xmm,m128	1	1	1			1		float		5-20 d)
RCPSS/PS	xmm,xmm	1	1		1				float	3	2
RCPSS/PS	xmm,m	1	1		1		1		float		2
CMPccSS/D	xmm,xmm	1	1		1				float	3	1
CMPccSS/D	xmm,m32/64	1	1		1		1		float		1
CMPccPS/D	xmm,xmm	1	1		1				float	3	1
CMPccPS/D	xmm,m128	1	1		1		1		float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1				float	3	1
COMISS/D UCOMISS/D	xmm,m32/64	1	1		1		1		float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1				float	3	1
MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1		float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1				float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1		float		1
ROUNDSS/D j)	xmm,xmm,i	1	1		1				float	3	1
ROUNDSS/D j)	xmm,m128,i	1	1		1		1		float		1
ROUNDPS/D j)	xmm,xmm,i	1	1		1				float	3	1
ROUNDPS/D j)	xmm,m128,i	1	1		1		1		float		1
DPPS j)	xmm,xmm,i	4	4	2	2				float	11	3
DPPS j)	xmm,m128,i	4	4	2	2		1		float		3
DPPD j)	xmm,xmm,i	4	4	Х	х	Х			float	9	3
J		т т	1 "	_ ^	^	^		- 1	, noat		9

DPPD j)	xmm,m128,i	4	4	x	х	x	1			float		3
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	6-13	5-12
SQRTSS/PS	xmm,m	2	1	1			1			float		5-12
SQRTSD/PD	xmm,xmm	1	1	1						float	6-20	5-19
SQRTSD/PD	xmm,m	2	1	1			1			float		5-19
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0.33
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	х	х	х	1			int		1
Other												
LDMXCSR	m32	13	12	Х	Х	Х	1					38
STMXCSR	m32	10	8	Х	Х	Х		1	1			20
FXSAVE	m4096	151	67	Х	х	х	8	38	38			145
FXRSTOR	m4096	121	74	Х	Х	х	47					150

Notes:

Round divisors give low values.

d) g) SSE3 instruction set.

Intel Nehalem

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Domain: Tells which execution unit domain is used: "int" = integer unit (general purpose

registers), "ivec" = integer vector unit (SIMD), "fp" = floating point unit (XMM and x87 floating point). An additional "bypass delay" is generated if a register written by a µop in one domain is read by a µop in another domain. The bypass delay is 1 clock cycle between the "int" and "ivec" units, and 2 clock cycles

between the "int" and "fp", and between the "ivec" and "fp" units.

The bypass delay is indicated under latency only where it is unavoidable because either the source operand or the destination operand is in an unnatural domain such as a general purpose register (e.g. eax) in the "ivec" domain. For example, the PEXTRW instruction executes in the "int" domain. The source operand is an xmm register and the destination operand is a general purpose register. The latency for this instruction is indicated as 2+1, where 2 is the latency of the instruction itself and 1 is the bypass delay, assuming that the xmm operand is most likely to come from the "ivec" domain. If the xmm operand comes from the "fp" domain then the bypass delay will be 2 rather than one. The flags register can also have a bypass delay. For example, the COMISS instruction (floating point compare) executes in the "fp" domain and returns the result in the integer flags. Almost all instructions that read these flags execute in the "int" domain. Here the latency is indicated as 1+2, where 1 is the latency of the instruction itself and 2 is the bypass delay from the "fp" domain to the "int" domain.

The bypass delay from the memory read unit to any other unit and from any unit to the memory write unit are included in the latency figures in the table. Where the domain is not listed, the bypass delays are either unlikely to occur or unavoidable and therefore included in the latency figure.

Nehalem

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μοps fused	µops	un	fus	ed d	lom	Do- main	1	Reci- procal		
		do- main	p015	p0	p1	p5	p2	р3	p4			through- put
Move instructions												
MOV	r,r/i	1	1	Х	х	X				int	1	0.33
MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	6	3	х	х	X	3			int		13
MOV	sr,m	6	2	х		X	4			int		14
MOVNTI	m,r	2						1	1	int	~270	1
MOVSX MOVZX												
MOVSXD	r,r	1	1	Х	Х	X				int	1	0.33
MOVSX MOVZX												
MOVSXD	r,m	1					1			int		1
CMOVcc	r,r	2	2	Х	Х	X				int	2	1
CMOVcc	r,m	2	2	Х	Х	X	1			int		
XCHG	r,r	3	3	Х	Х	X				int	2	2
XCHG	r,m	7					1	1	1	int	20 b)	
XLAT		2	1				1			int	5	1
PUSH	r	1						1	1	int	3	1
PUSH	i	1						1	1	int		1
PUSH	m	2					1	1	1	int		1
PUSH	sr	2	1					1	1	int		1
PUSHF(D/Q)		3	2	Х	х	X		1	1	int		1
PUSHA(D) i)		18	2	Х	1	X		8	8	int		8
POP	r	1					1			int	2	1
POP	(E/R)SP	3	2	Х	1	X	1			int		5
POP	m	2					1	1	1	int		1
POP	sr	7	2				5			int		15
POPF(D/Q)		8	7	х	х	x	1			int		14
POPA(D) i)		10	2				8			int		8
LAHF SAHF		1	1	х	х	x				int	1	0.33
SALC i)		2	2	х	х	x				int	4	1
LEA a)	r,m	1	1		1					int	1	1
BSWAP	r32	1	1		1					int	1	1

Nehalem

BSWAP	r64	1	1		1					int	3	1
LDS LES LFS LGS LSS	m	9	3	х	х	х	6			int		15
PREFETCHNTA	m	1					1			int		1
PREFETCHT0/1/2	m	1					1			int		1
LFENCE		2						1	1	int		9
MFENCE		3	1	x	x	x		1	1	int		23
SFENCE		2		^				1	1	int		5
0		_						•				
Arithmetic instructions												
ADD SUB	r,r/i	1	1	Х	х	х				int	1	0.33
ADD SUB	r,m	1	1	х	х	х	1			int		1
ADD SUB	m,r/i	2	1	х	х	х	1	1	1	int	6	1
ADC SBB	r,r/i	2	2	X	х	х				int	2	2
ADC SBB	r,m	2	2	X	х	х	1			int	2	2
ADC SBB	m,r/i	4	3	X	x	х	1	1	1	int	7	
CMP	r,r/i	1	1	x	x	x				int	1 1	0.33
CMP	m,r/i	1	1	X	X	X	1			int	1 1	1
INC DEC NEG NOT	r	1	1	X	X	X				int	1 1	0.33
INC DEC NEG NOT	m .	3	1	X	x	X	1	1	1	int	6	1
AAA AAS DAA DAS i)		1	1	^	1	^	'	'		int	3	1
AAD i)		3	3	x	×	x				int	15	2
AAM i)		5	5	x	x	x				int	20	7
MUL IMUL	r8	1	1	^	1	^				int	3	1
MUL IMUL	r16	3	3	,	-					int	5	2
MUL IMUL	r32	3	3	X	X	X				int	5	2
MUL IMUL	r64	3	3	X	X	X				_	3	2
IMUL			_	X	X	X				int	1	
	r16,r16	1	1		1					int	3	1
IMUL	r32,r32	1	1	4	1					int	3	1
IMUL	r64,r64	1	1	1	,					int	3	1
IMUL	r16,r16,i	1	1		1					int	3	1
IMUL	r32,r32,i	1	1		1					int	3	1
IMUL	r64,r64,i	1	1	1						int	3	2
MUL IMUL	m8	1	1		1		1			int	3	1
MUL IMUL	m16	3	3	X	Х	Х	1			int	5	2
MUL IMUL	m32	3	3	X	Х	Х	1			int	5	2
MUL IMUL	m64	3	2	2			1			int	3	2
IMUL	r16,m16	1	1		1		1			int	3	1
IMUL	r32,m32	1	1		1		1			int	3	1
IMUL	r64,m64	1	1	1			1			int	3	1
IMUL	r16,m16,i	1	1		1		1			int		1
IMUL	r32,m32,i	1	1		1		1			int		1
IMUL	r64,m64,i	1	1	1			1			int		1
DIV c)	r8	4	4	1	2	1				int	11-21	7-11
DIV c)	r16	6	6	Х	4	х				int	17-22	7-12
DIV c)	r32	6	6	х	3	х				int	17-28	7-17
DIV c)	r64	~40		х	х	х				int	28-90	19-69
IDIV c)	r8	4	4	1	2	1				int	10-22	7-11
IDIV c)	r16	8	8	x	5	х				int	18-23	7-12
IDIV c)	r32	7	7	x	3	х				int	17-28	7-17
IDIV c)	r64	~60		x	x	x				int	37-100	26-86

CBW CWDE CDQE		1	1	١,,	۱ ۷	١ ٧	ı	l		int	1	1
CWD CDQ CQO				X	X	X						
		1	1	X	,	X				int	1	1
POPCNT ()	r,r	1	1		1					int	3	1
POPCNT ()	r,m	1	1		1		1			int		1
CRC32 ()	r,r	1	1		1					int	3	1
CRC32 ()	r,m	1	1		1		1			int		1
Logic instructions												
AND OR XOR	r,r/i	1	1	x	x	x				int	1	0.33
AND OR XOR	r,m	1	1	X	x	x	1			int	'	1
AND OR XOR	m,r/i	2	1	x	x	x	<u>'</u>	1	1	int	6	1
TEST	r,r/i	1	1	x	x	x	'	'		int	1	0.33
TEST	m,r/i	1	1	x	x	x	1			int	'	1
SHR SHL SAR	r,i/cl	1	1	x	^	x	'			int	1 1	0.5
SHR SHL SAR	m,i/cl	3	2				1	1	1	int	6	1
ROR ROL	r,i/cl	1	1	X		X	'	'		int	1	1
ROR ROL	· ·	3	2	X		X	1	1			· ·	-
RCR RCL	m,i/cl	3 2	2	X		X			1	int	6 2	1 2
	r,1			X	Х	Х				int		2
RCR	r8,i/cl	9	9	X	Х	Х				int	13	
RCL	r8,i/cl	8	8	X	X	X				int	11	40.40
RCR RCL	r16/32/64,i/cl	6	6	X	X	X				int	12-13	12-13
RCR RCL	m,1	4	3	X	Х	X	1	1	1	int	7	
RCR	m8,i/cl	12	9	X	X	X	1	1	1	int	16	
RCL	m8,i/cl	11	8	Х	Х	Х	1	1	1	int	14	
RCR RCL	m16/32/64,i/cl	10	7	Х	Х	Х	1	1	1	int	15	
SHLD	r,r,i/cl	2	2	Х	Х	X				int	3	1
SHLD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	8	
SHRD	r,r,i/cl	2	2	Х	Х	Х				int	4	1
SHRD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	9	
ВТ	r,r/i	1	1	Х		Х				int	1	1
BT	m,r	9	8	Х		Х	1			int		5
BT	m,i	2	2	Х		Х	1			int		1
BTR BTS BTC	r,r/i	1	1	Х		Х				int	1	1
BTR BTS BTC	m,r	10	7	Х	х	Х	1	1	1	int	6	
BTR BTS BTC	m,i	3	3	Х		Х	1	1	1	int	6	
BSF BSR	r,r	1	1		1					int	3	1
BSF BSR	r,m	2	1		1		1			int	3	1
SETcc	r	1	1	х		Х				int	1	1
SETcc	m	2	1	х	х	х		1	1	int		1
CLC STC CMC		1	1	Х	х	х				int	1	0.33
CLD		2	2	х	х	Х				int		4
STD		2	2	x	х	x				int		5
Control transfer instructi	one											
JMP	short/near	1	1			1				int	0	2
JMP i)	far	31	31			'				int		67
JMP	r	3 i 1	1			1				int	_	
JMP	·	1				1	4				0	2 2
JMP	m(near)		1				1			int int	0	
	m(far)	31 1	31			4	11			int int		73
Conditional jump	short/near	1	1			1				int	0	2

Fused compare/test and b	ranch e)	1	1			1				int	0	2
J(E/R)CXZ	short	2	2	X	х	1				int		2
LOOP	short	6	6	x	x	X				int		4
LOOP(N)E	short	11	11	х	х	X				int		7
CALL	near	2	2			1		1	1	int		2
CALL i)	far	46	46				9			int		74
CALL	r	3	2			1		1	1	int		2
CALL	m(near)	4	3			1	1	1	1	int		2
CALL	m(far)	47	47				1			int		79
RETN	, ,	1	1			1	1			int		2
RETN	i	3	2			1	1			int		2
RETF		39	39							int		120
RETF	i	40	40							int		124
BOUND i)	r,m	15	13				2			int		7
INTO i)		4	4							int		5
,												
String instructions												
LODS		2	1	х	х	Х	1			int		1
REP LODS		11+4n								int	40+12n	
STOS		3	1	х	х	Х		1	1	int		1
REP STOS	small n	60+n								int	12+n	
REP STOS	large n	2.5/16	bytes							int	1 clk / 1	6 bytes
MOVS		5	2	х	х	Х	1	1	1	int		4
REP MOVS	small n	13+6n								int	12+n	
REP MOVS	large n	2/16 by	tes							int	1 clk / 1	6 bytes
SCAS		3	2	Х	х	Х	1			int		1 1
REP SCAS		37+6n								int	40+2n	
CMPS		5	3	Х	х	Х	2			int		4
REP CMPS		65+8n								int	42+2n	
Other												
NOP (90)		1	1	Х	Х	X				int		0.33
Long NOP (0F 1F)		1	1	Х	Х	Х				int		1
PAUSE		5	5	Х	Х	Х				int		9
ENTER	a,0	11	9	х	х	Х	1	1	1	int		8
ENTER	a,b	34+7b								int	79+5b	
LEAVE		3	3				1			int		5
CPUID		25-100								int	~200	~200
RDTSC		22								int		24
RDPMC		28								int		40-60

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

ℓ) SSE4.2 instruction set.

Floating point x87 instructions

Instruction	Operands	µops fused	ed						Do- main	Laten- cy	Reci- procal	
		do- main	p015	p0	p1	p5	p2	р3	p4	1		through put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	1	1		2			float	4	2
FBLD	m80	41	38	х	х	Х	3			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	4	1
FSTP	m80	7	3	х	х	Х		2	2	float	5	5
FBSTP	m80	208	204	x	X	X		2	2	float	242	245
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1		1		1			float	6	1
FIST(P)	m	3	1		1			1	1	float	7	1
FISTTP g)	m	3	1		1			1	1	float	7	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2	-					float	2+2	2
FNSTSW	AX	2	2	-						float		1
FNSTSW	m16	3	2					1	1	float		2
FLDCW	m16	2	1				1	'	'	float	7	31
FNSTCW	m16	2	1	1			'	1	1	float	5	1
FINCSTP FDECSTP	11110	1	1	1				'	'	float	1	1
FFREE(P)	r	2	2	×	x	X				float	'	4
FNSAVE	m	143	89	x	x	x	8	23	23	float	178	178
FRSTOR	m	79	52	x	x	x	27	23	23	float	156	156
TROTOR	111	75	32	^	^	^				lioat	130	130
Arithmetic instructions												
FADD(P) FSUB(R)(P)	r	1	1		1					float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1		1			float		1
FMUL(P)	r	1	1	1						float	5	1
FMUL(P)	m	1	1	1			1			float		1
FDIV(R)(P)	r	1	1	1						float	7-27 d)	7-27 d)
FDIV(R)(P)	m	1	1	1			1			float	7-27 d)	7-27 d)
FABS		1	1	1						float	1	1
FCHS		1	1	1						float	1	1
FCOM(P) FUCOM	r	1	1		1					float		1
FCOM(P) FUCOM	m	1	1		1		1			float		1
FCOMPP FUCOMPP		2	2	1	1					float		1
FCOMI(P) FUCOMI(P)	r	1	1		1					float		1
FIADD FISUB(R)	m	2	2		2		1			float	3	2
FIMUL	m	2	2	1	1		1			float	5	2
FIDIV(R)	m	2	2	1	1		1			float	7-27 d)	
FICOM(P)	m	2	2	,	2		1			float		1
FTST		1	1		1					float		1
FXAM		1	1		1					float		1

FPREM	25	25	Х	х	x		float	14		
FPREM1	35	35	Х	х	х		float	19		
FRNDINT	17	17	Х	х	х		float	22		
Math										
FSCALE	24	24	Χ	Х	Х		float	12		
FXTRACT	17	17	Χ	Х	х		float	13		
FSQRT	1	1	1				float	~27		
FSIN	~100	~100	Х	х	Х		float	40-100		
FCOS	~100	~100	Х	х	х		float	40-100		
FSINCOS	~100	~100	Χ	х	х		float	~110		
F2XM1	19	19	Χ	х	х		float	58		
FYL2X FYL2XP1	~55	~55	Χ	х	х		float	~80		
FPTAN	~100	~100	Χ	х	х		float	~115		
FPATAN	~82	~82	X	х	х		float	~120		
Other										
FNOP	1	1	1				float		1	
WAIT	2	2	Х	х	х		float		1	
FNCLEX	3	3		х	х		float		17	
FNINIT	~190	~190	Х	х	х		float		77	

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	µops fused	d							Do- main	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	р3	p4			through- put
Move instructions												
MOVD k)	r32/64,(x)mm	1	1	Х	Х	X				int	1+1	0.33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	х	х	X				ivec	1+1	0.33
MOVD k)	(x)mm,m32/64	1					1				2	1
MOVQ	(x)mm, (x)mm	1	1	х	х	X				ivec	1	0.33
MOVQ	(x)mm,m64	1					1				2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	х	х	X				ivec	1	0.33
MOVDQA	xmm, m128	1					1				2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	xmm, m128	1	1				1				2	1
MOVDQU	m128, xmm	1	1					1	1		3	1
LDDQU g)	xmm, m128	1	1				1				2	1
MOVDQ2Q	mm, xmm	1	1	x	х	X				ivec	1	0.33
MOVQ2DQ	xmm,mm	1	1	x	х	X				ivec	1	0.33
MOVNTQ	m64,mm	1						1	1		~270	2
MOVNTDQ	m128,xmm	1						1	1		~270	2

Mackagn Mack	MOVNTDQA j) PACKSSWB/DW PACK-	xmm, m128	1					1				2	1
USWB	USWB	mm,mm	1	1		1					ivec	1	1
USWB	USWB	mm,m64	1	1		1		1					2
USWB PACKUSDW		xmm,xmm	1	1	x		x				ivec	1	0.5
PACKUSDW		xmm.m128	1	1	×		x	1					2
PACKUSDW j)	PACKUSDW i)		1	1	x		×				ivec	1	
PUNPCKH/LBW/WD/DQ (x)mm, (x)mm	3,	·	1	1	x			1					
PUNPCKH/LBW/WD/DQ (x)mm,m 1 1 1 x x 1 1 0.5 2 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 1 0.5 1 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1 0.0 1	• • • • • • • • • • • • • • • • • • • •	·	1	1	X			-			ivec	1	
PUNPCKH/LQDQ		` '	1	1				1				-	
PUNPCKH/LQDQ		l ' '	1	1	x		x				ivec	1	
PMOVSX/ZXBW j)		·	2	1	x		x	1					
PMOVSX/ZXBW j		,		1	x		x				ivec	1	1 1
PMOVSX/ZXBD	37	· '	1	1				1				-	
PMOVSX/ZXBQ j)		·	1	1							ivec	1	
PMOVSX/ZXBQ j)	• • • • • • • • • • • • • • • • • • • •	· '	1	1				1				-	2
PMOVSX/ZXBQ j) xmm,m16 1 1 x x 1 i vec 1 1 2 ivec 1 1 2 ivec 1 1 1 x x 1 ivec 1 1 1 x x 1 1 1 1 1 1 1 2 ivec 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1	• • • • • • • • • • • • • • • • • • • •	· ·	-	-							ivec	1	
PMOVSX/ZXWD j) xmm,xmm 1 1 x x l ivec 1 1 PMOVSX/ZXWD j) xmm,m64 1 1 x x 1 1 2 PMOVSX/ZXWQ j) xmm,xmm 1 1 x x 1 1 2 PMOVSX/ZXDQ j) xmm,xmm 1 1 x x 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	•		-	ļ -				1			.,,,,		
PMOVSX/ZXWQ j) xmm,m64 1 1 x x 1 ivec 1 1 2 ivec 1 1 2 ivec 1 1 2 ivec 1 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 2 1 3 2 1 1 1 2 2 1 3 2 1 3 2 1 3 3 3 1 1 1 3 3 1 1 1 3 3 1 1 3 3 1 1 3 3 3 1 1 3 3 <	•	· · · · · · · · · · · · · · · · · · ·		ļ -							ivec	1	
PMOVSX/ZXWQ j) xmm,xmm 1 1 1 x x ivec 1 1 2 PMOVSX/ZXWQ j) xmm,m32 1 1 x x 1 2 PMOVSX/ZXDQ j) xmm,mmm 1 1 x x 1 1 2 PMOVSX/ZXDQ j) xmm,m64 1 1 x x 1 1 2 2 PMOVSX/ZXDQ j) xmm,m64 1 1 x x 1 2 2 1 X x 1 1 2 2 1 X x 1 0.5 2 1 X x 1 1 0.5 2 1 X x 1 1 1 X x 1<		·	-	ļ -				1			1700		
PMOVSX/ZXWQ j) xmm,m32 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 1 x x 1 1 1 1 x x 1	• • • • • • • • • • • • • • • • • • • •	·	-	-				'			ivec	1	
PMOVSX/ZXDQ j) xmm,xmm 1 1 x x 1 1 2 PSHUFB h) (x)mm, (x)mm 1 1 x x 1 1 2 PSHUFB h) (x)mm, (x)mm 1 1 x x 1 1 0.5 PSHUFB h) (x)mm, (x)mm 1 1 x x 1	•		-	ļ -				1			1700		
PMOVSX/ZXDQ j) xmm,m64 1 1 x x 1 ivec 1 0.5 PSHUFB h) (x)mm, (x)mm 1 1 x x 1 0.5 PSHUFB h) (x)mm, (x)mm 2 1 x x 1 1 0.5 PSHUFW mm,m64,i 2 1 x x 1	•			ļ -							ivec	1	
PSHUFB h)		·	-	ļ -				1			.,,,,	•	
PSHUFB h) (x)mm,m 2 1 x x 1 1 0.5 PSHUFW mm,mm,i 1 1 x x 1 0.5 PSHUFW mm,m64,i 2 1 x x 1 1 1 0.5 PSHUFD xmm,xmm,i 1 1 x x 1		·	-	ļ -				ļ ·			ivec	1	
PSHUFW	,	` '		ļ -				1			.,,,,		
PSHUFW PSHUFD mm,m64,i 2 1 x x 1 1 xmm,xmm,i 1 1 x x 1 1 xmm,xmm,i 1 1 xmm,xmm,i 1 1 x x 1 1 xmm,xmm,i 2 1 xmm,xmm,i 1 1 1 1 1 1 1 1 1 1	,	l ' '		ļ -							ivec	1	
PSHUFD xmm,xmm,i 1 1 x x ivec 1 0.5 PSHUFD xmm,m128,i 2 1 x x 1 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1<			-	ļ -				1			1700		
PSHUFD xmm,m128,i 2 1 x x 1 1 xmm,m128,i 2 1 x x 1 1 x x 1 1 x x 1 0.5 PSHUFL/HW xmm,xmm,i 1 1 x x 1 ivec 1 1 PALIGNR h) (x)mm,(x)mm,i 1 1 x x 1 ivec 1 1 PALIGNR h) (x)mm,m,i 2 1 x x 1		·		ļ -				ļ ·			ivec	1	· ·
PSHUFL/HW xmm,xmm,i 1 1 x x ivec 1 0.5 PSHUFL/HW xmm, m128,i 2 1 x x 1			-	ļ -				1			1700		
PSHUFL/HW xmm, m128,i 2 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 x x 1 1 1 x x 1 2 1 2 2								'			ivec	1	· .
PALIGNR h) (x)mm,(x)mm,i 1 1 x x ivec 1 1 PALIGNR h) (x)mm,m,i 2 1 x x 1 1 PBLENDVB j) xmm,mmm 2 2 1 1 1 1 1 PBLENDW j) xmm,xmm,i 1 1 x x 1								1			1700		
PALIGNR h) (x)mm,m,i 2 1 x x 1 ivec 2 1 PBLENDVB j) x,x,xmm0 2 2 1 1 ivec 2 1 PBLENDW j) xmm,m,xmm,i 1 1 x x ivec 1 0.5 PBLENDW j) xmm,xmm,i 2 1 x x 1 1 ivec 1 0.5 PBLENDW j) xmm,xmm,i 2 1 x x 1 1 ivec 1 0.5 PBLENDW j) xmm,xmm,i 1 1 x x 1 1 ivec 1 0.5 PBLENDW j) mm,mm 4 1 1 1 1 ivec 2 2 MASKMOVQ mm,mm 4 1 1 1 1 ivec 7 PMOVMSKB r32,(x)mm 1 1 1 1 ivec 2+1 1								'			ivec	1	· .
PBLENDVB j) x,x,xmm0 2 2 1 1 ivec 2 1 PBLENDVB j) xmm,m,xmm0 3 2 1	,	` ' ' '						1			.,,,,		
PBLENDVB j) xmm,m,xmm0 3 2 1	,	', '									ivec	2	
PBLENDW j) xmm,xmm,i 1 1 x x ivec 1 0.5 PBLENDW j) xmm,mn,i 2 1 x x 1	• • • • • • • • • • • • • • • • • • • •				-			1				_	
PBLENDW j) xmm,m,i 2 1 x 1	• • • • • • • • • • • • • • • • • • • •				-		-				ivec	1	
MASKMOVQ mm,mm 4 1 <t< td=""><td>• • • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>.,,,,</td><td></td><td></td></t<>	• • • • • • • • • • • • • • • • • • • •							1			.,,,,		
MASKMOVDQU xmm,xmm 10 4 x x 2 2 x ivec 7 PMOVMSKB r32,(x)mm 1	• • • • • • • • • • • • • • • • • • • •						^	-	1	1	ivec		
PMOVMSKB r32,(x)mm 1 2 2 x x x 1 1 1 1 1 1 1 1 1 1 1 2 2 x x 2 2 x x 2 2 x x 2 2 x x 1 1 1 1 1 2 2 x x 1 1 1 2 2 x x 2 2 x x 1 1		· ·	-		•	x	x	•					
PEXTRB j) r32,xmm,i 2 2 x		·					``	_	_			2+2	
PEXTRB j) m8,xmm,i 2 2 x x ivec 2+1 1 PEXTRW r32,(x)mm,i 2 2 x x ivec 2+1 1 PEXTRW j) m16,(x)mm,i 2 2 x x 1 1 1 PEXTRD j) r32,xmm,i 2 2 x x 1 1 ivec 2+1 1 PEXTRD j) m32,xmm,i 2 1 x x 1 1 1		` '			-	x	x						
PEXTRW r32,(x)mm,i 2 2 x x x ivec 2+1 1 PEXTRW j) m16,(x)mm,i 2 2 x x 1 1 1 PEXTRD j) r32,xmm,i 2 2 x x x 1 1 PEXTRD j) m32,xmm,i 2 1 x x 1 1 1	• • • • • • • • • • • • • • • • • • • •					``							
PEXTRW j) m16,(x)mm,i 2 2 x 1	• • • • • • • • • • • • • • • • • • • •	i				×					ivec	2+1	
PEXTRD j) r32,xmm,i 2 2 x x x		, ,				^			1	1	55		
PEXTRD j) m32,xmm,i 2 1 x x 1 1 1	• • • • • • • • • • • • • • • • • • • •	· ' /				x				•	ivec	2+1	
	• • • • • • • • • • • • • • • • • • • •					^`			1	1			
		· · · · · ·				x					ivec	2+1	

PEXTRQ j,m)	m64,xmm,i	2	1	x	I	x	l	1	1		I	1
PINSRB j)	xmm,r32,i	1	1	x		x		'	ı	ivec	1+1	
PINSRB j)	xmm,m8,i	2	1	x		x	1			IVEC	1.1	
PINSRW	(x)mm,r32,i	1	1							ivec	1+1	
PINSRW	' '	2	1	X		X	1			IVEC		
	(x)mm,m16,i	1	1	X		X				ivoo	1+1	
PINSRD j)	xmm,r32,i	· ·	-	X		X	4			ivec		1 1
PINSRD j)	xmm,m32,i	2	1	X		X	1				4.4	1 1
PINSRQ j,m)	xmm,r64,i	1 2	1	X		X	4			ivec	1+1	1 1
PINSRQ j,m)	xmm,m64,i	2	1	X		X	1					1
Arithmetic instructions												
PADD/SUB(U)												
(S)B/W/D/Q	(x)mm, (x)mm	1	1	х		х				ivec	1	0.5
PADD/SUB(U)												
(S)B/W/D/Q	(x)mm,m	1	1	х		х	1					2
PHADD/SUB(S)W/D h)	(x)mm, (x)mm	3	3	х		х				ivec	3	1.5
PHADD/SUB(S)W/D h)	(x)mm,m64	4	3	Х		х	1					3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	х		х				ivec	1	0.5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	х		х	1					2
PCMPEQQ j)	xmm,xmm	1	1	Х		х				ivec	1	0.5
PCMPEQQ j)	xmm,m128	1	1	х		х	1					2
PCMPGTQ ()	xmm,xmm	1	1		1					ivec	3	1
PCMPGTQ ()	xmm,m128	1	1		1		1					1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1					ivec	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1					1
PMULHRSW h)	(x)mm,(x)mm	1	1		1					ivec	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1					1
PMULLD j)	xmm,xmm	2	2		2					ivec	6	2
PMULLD j)	xmm,m128	3	2		2		1					
PMULDQ j)	xmm,xmm	1	1		1					ivec	3	1
PMULDQ j)	xmm,m128	1	1		1		1					1
PMULUDQ	(x)mm,(x)mm	1	1		1					ivec	3	1
PMULUDQ	(x)mm,m	1	1		1		1					1
PMADDWD	(x)mm,(x)mm	1	1		1					ivec	3	1
PMADDWD	(x)mm,m	1	1		1		1					1
PMADDUBSW h)	(x)mm,(x)mm	1	1		1					ivec	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1					1
PAVGB/W	(x)mm,(x)mm	1	1	x		х				ivec	1	0.5
PAVGB/W	(x)mm,m	1	1	X		X	1					1
PMIN/MAXSB j)	xmm,xmm	1	1	X		X				ivec	1	1
PMIN/MAXSB j)	xmm,m128	1	1	X		X	1					2
PMIN/MAXUB	(x)mm,(x)mm	1	1	X		X				ivec	1	0.5
PMIN/MAXUB	(x)mm,m	1	1	x		x	1					2
PMIN/MAXSW	(x)mm,(x)mm	1	1	x		х				ivec	1	0.5
PMIN/MAXSW	(x)mm,m	1	1	x		x	1					2
PMIN/MAXUW j)	xmm,xmm	1	1	x		x				ivec	1	1
PMIN/MAXUW j)	xmm,m	1	1	x		x	1					2
PMIN/MAXU/SD j)	xmm,xmm	1	1	x		x				ivec	1	1
PMIN/MAXU/SD j)	xmm,m128	1	1	x		x	1					2
PHMINPOSUW j)	xmm,xmm	1	1		1					ivec	3	1
	. '								. '		-	. '

PHMINPOSUW j)	xmm,m128	1	1		1		1				3
PABSB PABSW PABSD											
h)	(x)mm,(x)mm	1	1	Х		Х			ivec	1	0.5
PABSB PABSW PABSD											
h)	(x)mm,m	1	1	Х		Х	1				1
PSIGNB PSIGNW											
PSIGND h)	(x)mm,(x)mm	1	1	X		Х			ivec	1	0.5
PSIGNB PSIGNW PSIGND h)	(x)mm,m	1	1	,			1				2
PSADBW	(x)mm,(x)mm	1	1	X	1	X	'		ivec	3	1
PSADBW	(x)mm,m	1	1		1		1		IVEC	3	3
MPSADBW j)	xmm,xmm,i	3	3	,			'		ivec	5	1
MPSADBW j)	xmm,m,i	4	3	X	X	X	1		ivec	5	2
PCLMULQDQ n)	xmm,xmm,i	4	3	X	X	X	'			12	8
AESDEC, AESDECLAST,	XIIIIII,XIIIIII,I									12	0
AESENC, AESENCLAST											
n)										_	
	xmm,xmm									~5	~2
AESIMC n)	xmm,xmm									~5	~2
AESKEYGENASSIST n)	xmm,xmm,i									~5	~2
Logic instructions											
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	Х	Х	Х			ivec	1	0.33
PAND(N) POR PXOR	(x)mm,m	1	1	Х	Х	Х	1				1
PTEST j)	xmm,xmm	2	2	Х	Х	Х			ivec	3	1
PTEST j)	xmm,m128	2	2	Х	Х	Х	1				1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1		1				ivec	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1		1		1				2
PSLL/RL/RAW/D/Q	xmm,i	1	1		1				ivec	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	Х	1	Х			ivec	2	2
PSLL/RL/RAW/D/Q	xmm,m128	3	2	Х	1	Х	1				1
PSLL/RLDQ	xmm,i	1	1	х		Х			ivec	1	1
String instructions											
PCMPESTRI ℓ)	xmm,xmm,i	8	8	х	х	х			ivec	14	5
PCMPESTRI ℓ)	xmm,m128,i	9	8	х	х	х	1		ivec	14	6
PCMPESTRM ℓ)	xmm,xmm,i	9	9	х	х	х			ivec	7	6
PCMPESTRM ()	xmm,m128,i	10	10	х	х	х	1		ivec	7	6
PCMPISTRI ℓ)	xmm,xmm,i	3	3	х	х	х			ivec	8	2
PCMPISTRI ℓ)	xmm,m128,i	4	4	х	х	х	1		ivec	8	2
PCMPISTRM ℓ)	xmm,xmm,i	4	4	х	х	х			ivec	7	2
PCMPISTRM ()	xmm,m128,i	6	5	х	х	х	1		ivec	7	5
Other											
EMMS		11	11	x	х	х			float		6
			•	-							

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

j) SSE4.1 instruction set

k) MASM uses the name MOVD rather than MOVQ for this instruction even when

moving 64 bits

- **ℓ)** SSE4.2 instruction set
- m) Only available in 64 bit mode
- n) Only available on newer models

Floating point XMM instructions

Instruction	Operands	μοps fused	sed						Do- main	Laten- cy	Reci- procal	
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												
MOVAPS/D	xmm,xmm	1	1			1				float	1	1
MOVAPS/D	xmm,m128	1					1				2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	1					1				2	1-4
MOVUPS/D	m128,xmm	1						1	1		3	1-3
MOVSS/D	xmm,xmm	1	1			1					1	1
MOVSS/D	xmm,m32/64	1					1				2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1				3	2
MOVH/LPS/D	m64,xmm	2	1			1		1	1		5	1
MOVLHPS MOVHLPS	xmm,xmm	1	1			1				float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1+2	1
MOVNTPS/D	m128,xmm	1						1	1		~270	2
SHUFPS/D	xmm,xmm,i	1	1			1				float	1	1
SHUFPS/D	xmm,m128,i	2	1			1	1			float		1
BLENDPS/PD j)	xmm,xmm,i	1	1			1				float	1	1
BLENDPS/PD j)	xmm,m128,i	2	1			1	1			float		1
BLENDVPS/PD j)	x,x,xmm0	2	2			2				float	2	2
BLENDVPS/PD j)	xmm,m,xmm0	3	2			2	1			float		2
MOVDDUP g)	xmm,xmm	1	1			1				float	1	1
MOVDDUP g)	xmm,m64	1					1				2	1
MOVSH/LDUP g)	xmm,xmm	1	1			1				float	1	1
MOVSH/LDUP g)	xmm,m128	1					1					1
UNPCKH/LPS/D	xmm,xmm	1	1			1				float	1	1
UNPCKH/LPS/D	xmm,m128	1	1			1	1			float		1
EXTRACTPS j)	r32,xmm,i	1	1			1				float	1+2	1
EXTRACTPS j)	m32,xmm,i	2	1			1		1	1			1
INSERTPS j)	xmm,xmm,i	1	1			1				float	1	1
INSERTPS j)	xmm,m32,i	3	1			2	1			float		2
Conversion												
CVTPD2PS	xmm,xmm	2	2		1	1				float	4	1
CVTPD2PS	xmm,m128	2	2		1		1			float		1
CVTSD2SS	xmm,xmm	2	2		1	1				float	4	1
CVTSD2SS	xmm,m64	2	2		1		1			float		1
CVTPS2PD	xmm,xmm	2	2	1		1				float	2	1
CVTPS2PD	xmm,m64	2	2	1		1	1			float		1
CVTSS2SD	xmm,xmm	1	1	1						float	1	1
CVTSS2SD	xmm,m32	1	1	1			1			float		2

CVTDQ2PS	vmm vmm	1	1	l	1	l		float	3+2	1
CVTDQ2PS CVTDQ2PS	xmm,xmm	1	1		1		1	float	3+2	1
	xmm,m128				1		'		3+2	
CVT(T) PS2DQ	xmm,xmm	1	1				4	float	3+2	1
CVT(T) PS2DQ	xmm,m128	1	1		1		1	float	4.0	1
CVTDQ2PD	xmm,xmm	2	2		1	1		float	4+2	1
CVTDQ2PD	xmm,m64	2	2		1	1	1	float		1
CVT(T)PD2DQ	xmm,xmm	2	2		1	1		float	4+2	1
CVT(T)PD2DQ	xmm,m128	2	2		1	1	1	float		1
CVTPI2PS	xmm,mm	1	1		1			float	3+2	3
CVTPI2PS	xmm,m64	1	1		1		1	float		3
CVT(T)PS2PI	mm,xmm	1	1		1			float	3+2	1
CVT(T)PS2PI	mm,m128	1	1		1		1	float		1
CVTPI2PD	xmm,mm	2	2		1	1		ivec/float	6	1
CVTPI2PD	xmm,m64	2	2		1	1	1			1
CVT(T) PD2PI	mm,xmm	2	2	Х	1	Х		float/ivec	6	1
CVT(T) PD2PI	mm,m128	2	2	х	1	х	1			1
CVTSI2SS	xmm,r32	1	1		1			float	3+2	3
CVTSI2SS	xmm,m32	1	1		1		1	float		3
CVT(T)SS2SI	r32,xmm	1	1		1			float	3+2	1
CVT(T)SS2SI	r32,m32	1	1		1		1	float		1
CVTSI2SD	xmm,r32	2	2	1	1			float	4+2	3
CVTSI2SD	xmm,m32	2	1	•	1		1	float		3
CVT(T)SD2SI	r32,xmm	1	1		1		'	float	3+2	1
CVT(T)SD2SI	r32,m64	1	1		1		1	float	0.2	1
OV1(1)3D231	102,11104		'		'		'	lioat		'
Arithmetic										
ADDSS/D SUBSS/D	xmm,xmm	1	1		1			float	3	1
ADDSS/D SUBSS/D	xmm,m32/64	1					1	float		
	//////////////////////////////////////		1		1	1		IIOat		1
ADDPS/D SUBPS/D	· ·	1	1		1 1			float	3	1 1
ADDPS/D SUBPS/D ADDPS/D SUBPS/D	xmm,xmm		1		-		1	float	3	
ADDPS/D SUBPS/D	xmm,xmm xmm,m128	1	1		1		-		3	1
ADDPS/D SUBPS/D ADDSUBPS/D g)	xmm,xmm xmm,m128 xmm,xmm	1 1 1	1 1 1		1 1 1		-	float float float		1 1 1
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g)	xmm,xmm xmm,m128 xmm,xmm xmm,m128	1 1 1 1	1 1 1 1		1 1 1 1	2	1	float float float float	3	1 1 1
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g)	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 1 3	1 1 1 1 3		1 1 1 1 1	2	1	float float float float float		1 1 1 1 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g)	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128	1 1 1 1 3 4	1 1 1 1 3 3		1 1 1 1 1	2	1	float float float float float float	3 5	1 1 1 1 2 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g)	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 1 3 4 3	1 1 1 1 3 3 3		1 1 1 1 1 1 1	2 2	1 1 1	float float float float float float float	3	1 1 1 2 2 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g)	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 3 4 3 4	1 1 1 1 3 3 3 3	1	1 1 1 1 1	2	1	float float float float float float float float	3 5 3	1 1 1 2 2 2 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 1 3 4 3 4	1 1 1 1 3 3 3 3	1	1 1 1 1 1 1 1	2 2	1 1 1	float float float float float float float float	3 5	1 1 1 2 2 2 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 1 3 4 3 4 1	1 1 1 1 3 3 3 3 1	1	1 1 1 1 1 1 1	2 2	1 1 1	float float float float float float float float float	3 5 3 4	1 1 1 2 2 2 2 1 1
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1	1 1 1 1 3 3 3 3 1 1	1	1 1 1 1 1 1 1	2 2	1 1 1 1	float float float float float float float float float float float	3 5 3	1 1 1 2 2 2 2 1 1
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSD MULPD	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1	1 1 1 1 3 3 3 1 1 1	1 1 1	1 1 1 1 1 1 1	2 2	1 1 1	float float float float float float float float float float float float	3 5 3 4 5	1 1 1 2 2 2 2 1 1 1
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPD g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1	1 1 1 1 3 3 3 1 1 1	1 1 1 1	1 1 1 1 1 1 1	2 2	1 1 1 1 1	float float float float float float float float float float float float float	3 5 3 4	1 1 1 2 2 2 2 1 1 1 7-14
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPD g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1 1	1 1 1 1 3 3 3 3 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	2 2	1 1 1 1	float float float float float float float float float float float float float float	3 5 3 4 5 7-14	1 1 1 2 2 2 2 1 1 1 7-14 7-14
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 3 4 3 4 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float	3 5 3 4 5	1 1 1 2 2 2 2 2 1 1 1 7-14 7-14 7-22
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	2 2	1 1 1 1 1	float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14 7-22	1 1 1 2 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD DIVSD DIVPD RCPSS/PS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14	1 1 1 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD DIVSD DIVPD RCPSS/PS RCPSS/PS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14 7-22	1 1 1 2 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD DIVSD DIVPD RCPSS/PS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 3 4 3 4 1 1 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14 7-22 3	1 1 1 2 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22 2
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD DIVSD DIVPD RCPSS/PS RCPSS/PS CMPccSS/D CMPccPS/D	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 1 3 4 3 4 1 1 1 1 1 1	1 1 1 1 3 3 3 3 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14 7-22	1 1 1 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22
ADDPS/D SUBPS/D ADDSUBPS/D g) ADDSUBPS/D g) HADDPS HSUBPS g) HADDPS HSUBPS g) HADDPD HSUBPD g) HADDPD HSUBPD g) MULSS MULPS MULSS MULPS MULSD MULPD DIVSS DIVPS DIVSS DIVPS DIVSD DIVPD DIVSD DIVPD RCPSS/PS RCPSS/PS	xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm	1 1 1 3 4 3 4 1 1 1 1 1 1	1 1 1 1 3 3 3 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2	1 1 1 1 1 1	float float float float float float float float float float float float float float float float float float float	3 5 3 4 5 7-14 7-22 3	1 1 1 2 2 2 2 2 1 1 1 7-14 7-14 7-22 7-22 2

COMISS/D UCOMISS/D	xmm,xmm	1	1		1					float	1+2	1
COMISS/D UCOMISS/D	xmm,m32/64	1	1		1		1			float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1					float	3	1
MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
ROUNDSS/D												
ROUNDPS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDSS/D		_								<u>.</u> .		
ROUNDPS/D j)	xmm,m128,i	2	1		1		1			float		1
DPPS j)	xmm,xmm,i	4	4	1	2	1				float	11	2
DPPS j)	xmm,m128,i	6	5	Х	Х	Х	1			float		
DPPD j)	xmm,xmm,i	3	3	Х	Х	Х				float	9	1
DPPD j)	xmm,m128,i	4	3	Х	Х	Х	1			float		3
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	7-18	7-18
SQRTSS/PS	xmm,m	2	1	1			1			float		7-18
SQRTSD/PD	xmm,xmm	1	1	1						float	7-32	7-32
SQRTSD/PD	xmm,m	2	1	1			1			float		7-32
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1			1				float	1	1
AND/ANDN/OR/XORPS/D	xmm,m128	1	1			1	1			float		1
Other												
LDMXCSR	m32	6	6	Х	Х	Х	1					5
STMXCSR	m32	2	1			1		1	1			1
FXSAVE	m4096	141	141	х	х	х	5	38	38		90	90
FXRSTOR	m4096	112	90	х	х	х	42					100

Notes:

g) SSE3 instruction set.

Intel Sandy Bridge

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm re-

gister, (x)mm = mmx or xmm register, y = 256 bit ymm register, same = same register for both operands. m = memory operand, m32 = 32-bit memory oper-

and, etc.

μορs fused domain: The number of μορs at the decode, rename, allocate and retirement stages in

the pipeline. Fused uops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under μ 015 + μ 23 + μ 4 exceeds the number listed under μ 0ps fused domain. A number indicated as 1+ under a read or write port means a 256-bit read or write operation using two clock cycles for handling 128 bits each cycle. The port cannot receive another read or write μ 0p in the second clock cycle, but a read port can receive an address-calculation μ 0p in the second clock cycle. An x under μ 0, μ 1 or μ 5 means that at least one of the μ 0ps listed under μ 015 can optionally go to this port. For example, a 1 under μ 015 and an x under μ 0 and μ 5 means one μ 0p which can go to either port 0 or port 5, whichever is vacant first. A value listed under μ 015 but nothing under μ 0, μ 1 and μ 5 means that

it is not known which of the three ports these µops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).

p23: The number of μops going to port 2 or 3 (memory read or address calculation).

p4: The number of μops going to port 4 (memory write data).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by

the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

The latencies and throughputs listed below for addition and multiplication using full size YMM registers are obtained only after a warm-up period of a thousand instructions or more. The latencies may be one or two clock cycles longer and the reciprocal throughputs double the values for shorter sequences of code.

There is no warm-up effect when vectors are 128 bits wide or less.

Integer instructions

Instruction	Operands	µops	μops	un	fuse	d d	oma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											

			• ,	- 5							
MOV	r,r/i	1	1	X	X	X			1	0.33	
MOV	r,m	1					1		2	0.5	all ad-
INIO V	1,						ļ .		-	0.0	dressing
											modes
MOV		4					4	4	3	4	l lieuce
	m,r	1					1	1	3	1	
MOV	m,i	1					1	1		1	
MOVNTI	m,r	2					1	1	~350	1	
MOVSX MOVZX	r,r	1	1	х	X	Х			1	0.33	
MOVSXD											
MOVSX MOVZX	r,m	1					1			0.5	
MOVSXD	,										
CMOVcc	r,r	2	2	X	X	X			2	1	
CMOVcc	r,m	2	2	X	X	X	1		_	1	
XCHG		3	3				'		2	1	
	r,r	1	3	Х	X	X	_			I	
XCHG	r,m	8					2	1	25		implicit
											lock
XLAT		3	2				1		7	1	
PUSH	r	1					1	1	3	1	
PUSH	i	1					1	1		1	
PUSH	m	2					2	1		1	
PUSHF(D/Q)		3	2		\ ,	,	1	1		1	
				X	X	X		1 1			
PUSHA(D)		16	0				8	8		8	not 64 bit
POP	r	1					1		2	0.5	
POP	(E/R)SP	1	0				1			0.5	
POP	m	2					2	1		1	
POPF(D/Q)		9	8	x	X	X	1			18	
POPA(D)		18	10	^		``	8			9	not 64 bit
LAHF SAHF							"		4	1	not o4 bit
		1	1						1		
SALC		3	3						1	1	not 64 bit
LEA	r,m	1	1	1		1			1	0.5	simple
LEA	r,m	1	1		1				3	1	complex
											or rip rel-
											ative
BSWAP	r32	1	1		1				1	1	
BSWAP	r64	2	2		2				2	1	
PREFETCHNTA	m	1	_		_		1		-	0.5	
		1									
PREFETCHT0/1/2	m	1					1			0.5	
LFENCE		2					1	1		4	
MFENCE		3	1				1	1		33	
SFENCE		2					1	1		6	
Arithmetic instructions											
ADD SUB	r,r/i	1	1	x	x	X			1	0.33	
ADD SUB		1	1				4		'		
	r,m	1	1 -	Х	Х	Х	1		_	0.5	
ADD SUB	m,r/i	2	1	Х	Х	Х	2	1	6	1	
SUB	r,same	1	0						0	0.25	
ADC SBB	r,r/i	2	2	Х	Х	Х			2	1	
ADC SBB	r,m	2	2	х	Х	x	1		2	1	
ADC SBB	m,r/i	4	3	X	X	X	2	1	7	1.5	
CMP	r,r/i	1	1	X	X	X	_		1	0.33	
CMP		1	1				1		1	0.55	
CIVIE	m,r/i	1	1	X	X	X	l I		ı	0.5	

INC DEC NEC NOT		4	1	١.,	١.,	١.,	I	ı	4	0.22	1
INC DEC NEG NOT	r	1	1	X	X	X		_	1	0.33	
INC DEC NEG NOT	m	3	1	X	X	X	2	1	6	2	
AAA AAS		2	2						4		not 64 bit
DAA DAS		3	3						4		not 64 bit
AAD		3	3						2		not 64 bit
AAM		8	8						20	11	not 64 bit
MUL IMUL	r8	1	1		1				3	1	
MUL IMUL	r16	4	4						4	2	
MUL IMUL	r32	3	3						4	2	
MUL IMUL	r64	2	2						3	1	
IMUL	r,r	1	1		1				3	1	
IMUL	r16,r16,i	2	2						4	1	
IMUL	r32,r32,i	1	1		1				3	1	
IMUL	r64,r64,i	1	1		1				3	1	
MUL IMUL	m8	1	1		1		1		3	1	
MUL IMUL	m16	4	3				1			2	
MUL IMUL	m32	3	2				1			2	
MUL IMUL	m64	2	1				1			2	
IMUL	r,m	1	1		1		1			1	
IMUL	r16,m16,i	2	2				1			1	
IMUL	r32,m32,i	1	1		1		1			1	
IMUL	r64,m64,i	1	1		1		1			1	
DIV	r8	10	10						20-24	11-14	
DIV	r16	11	11						21-25	11-14	
DIV	r32	10	10						20-28	11-18	
DIV	r64	34-56							30-94	22-76	
IDIV	r8	10	10						21-24	11-14	
IDIV	r16	10	10						21-25	11-14	
IDIV	r32	9	9						20-27	11-18	
IDIV	r64	59-							40-103	25-84	
.5.0		138							10 100	200.	
CBW		1	1						1	0.5	
CWDE		1	1			1			1	1	
CDQE		1	1						1	0.5	
CWD		2	2						1	1	
CDQ		1	1						1	1	
CQO		1	1						1	0.5	
POPCNT	r,r	1	1		1				3	1	SSE4.2
POPCNT	r,m	1	1		1		1			1	SSE4.2
CRC32	r,r	1	1		1		•		3	1	SSE4.2
CRC32	r,m	1	1		1		1			1	SSE4.2
011002	,,,,,				'		•			•	0021.2
Logic instructions											
AND OR XOR	r,r/i	1	1	x	x	x			1	0.33	
AND OR XOR	r,m	1	1	X	x	X	1			0.5	
AND OR XOR	m,r/i	2	1	x	x	x	2	1	6	1	
XOR	r,same	1	0	^	^	^	_	Ι΄.	0	0.25	
TEST	r,r/i	1	1	x	x	x			1	0.23	
TEST	m,r/i	1	1	x	x	x	1		'	0.5	
SHR SHL SAR	r,i	1	1	X	^	x	'		1	0.5	
OTHE OAK	1,1	'	'	_ ^	l	^	l	I	'	0.5	1

	ı		,	,						ı	
SHR SHL SAR	m,i	3	1				2	1	1	2	
SHR SHL SAR	r,cl	3	3						2	2	
SHR SHL SAR	m,cl	5	3				2	1		4	
ROR ROL	r,i	1	1						1	1	
ROR ROL	m,i	4	3				2	1		2	
ROR ROL	r,cl	3	3						2	2	
ROR ROL	m,cl	5	3				2	1		4	
RCR	r8,1	high							high	high	
RCR	r16/32/64,1	3	3						2	2	
RCR	r,i	8	8						5	5	
RCR	m,i	11	7						-	6	
RCR	r,cl	8	8						5	5	
RCR	m,cl	11	7						Ū	6	
RCL	r,1	3	3						2	2	
RCL	r,i	8	8						6	6	
RCL	m,i	11	7						U	6	
RCL		8	8						6	6	
RCL	r,cl	11	7						O	6	
	m,cl										
SHRD SHLD	r,r,i	1	1							0.5	
SHRD SHLD	m,r,i	3					2	1	0	2	
SHRD SHLD	r,r,cl	4	4						2	2	
SHRD SHLD	m,r,cl	5	3				2	1		4	
BT	r,r/i	1	1						1	0.5	
BT	m,r	10	8				1			5	
BT	m,i	2	1				1			0.5	
BTR BTS BTC	r,r/i	1	1						1	0.5	
BTR BTS BTC	m,r	11	7				2	1		5	
BTR BTS BTC	m,i	3	1				2	1		2	
BSF BSR	r,r	1	1						3	1	
BSF BSR	r,m	1	1		1		1			1	
SETcc	r	1	1	х		х			1	0.5	
SETcc	m	2	1	х		х	1	1		1	
CLC		1	0							0.25	
STC CMC		1	1	х	Х	х			1	0.33	
CLD STD		3	3							4	
Control transfer instructi	1										
JMP	short/near	1	1			1			0	2	
JMP	r	1	1			1			0	2	
JMP	m	1	1			1	1		0	2	
Conditional jump	short/near	1	1			1			0	1-2	fastest if
											not jump-
Free and a with many time and a			_						0	4.0	ing
Fused arithmetic and branch		1	1			1			0	1-2	
	ob ort	2	2		,,	4				2.4	
J(E/R)CXZ	short	2 7	2	X	X	1				2-4	
LOOP(N)F	short		7							5	
LOOP(N)E	short	11	11			_	_			5	
CALL	near	3	2			1	1	1		2	
CALL	r	2	1			1	1	1		2	

CALL RET RET BOUND	m i r,m	3 2 3 15	2 2 2 13		1 1 1	2 1 1	1		2 2 2 7	not 64 bit
INTO		4	4						6	not 64 bit
String instructions LODS		3	2			1			1	
REP LODS		5n+12						~2n		
STOS		3	1			1	1		1	
REP STOS		2n						n		worst case
REP STOS		1.5/16E	3					1/16B		best case
MOVS		5							4	
REP MOVS		2n						1.5 n		worst case
REP MOVS		3/16B						1/16B		best case
SCAS		3							1	
REP SCAS		6n+47						2n+45		
CMPS		5							4	
REP CMPS		8n+80						2n+80		
Other										
NOP (90)		1	0						0.25	
Long NOP (0F 1F)		1	0						0.25	decode only 1 per
PAUSE		7	7						11	clk
ENTER	a,0	12	10			2	1		8	
ENTER	a,b	49+6b						84+3b		
LEAVE		3	3			1			7	
CPUID		31-75						100-250		
RDTSC		21							28	
RDPMC		35							42	

Floating point x87 instructions

Instruction	Operands	μops	μορε	un	fus	ed d	oma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
FLD	r	1	1	1					1	1	
FLD	m32/64	1	1				1		3	1	
FLD	m80	4	2	1	1		2		4	2	
FBLD	m80	43	40				3		45	21	
FST(P)	r	1	1	1					1	1	
FST(P)	m32/m64	1					1	1	4	1	
FSTP	m80	7	3				2	2	5	5	

FBSTP m80 246 252 FXCH r 1 0 0 0.5 FILD m 1 1 1 1 6 1	
FILD	
FIST(P) m 3 1 1 1 7 2	
	SSE3
FLDZ 1 1 1 1 2	
FLD1 2 2 1 1 2	
FLDPI FLDL2E etc. 2 2 2 2 2	
FCMOVcc r 3 3 2	
FNSTSW AX 2 2 1 1	
FNSTSW m16 2 1 1 1 1	
FLDCW m16 3 2 1 1 8	
FNSTCW m16 2 1 1 1 5 1	
FINCSTP FDECSTP 1 1 1 1 1	
FFREE(P) r 1 1 1 1	
FNSAVE m 143 166	
FRSTOR m 90 165	
Arithmetic instructions	
FADD(P) FSUB(R)(P) m 2 2 1 1 1 1	
FMUL(P) r 1 1 1 1 5 1	
FMUL(P) m 1 1 1 1 1 1 1	
FDIV(R)(P) r 1 1 1 1 1 10-24 10-24	
FDIV(R)(P) m 1 1 1 1 10-24	
FABS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FCHS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FCOM(P) FUCOM r 1 1 1 3 1	
FCOM(P) FUCOM	
FCOMPP FUCOMPP 2 2 1 1 1 1	
FIADD FISUB(R) m 2 2 2 1 1 1	
FIMUL m 2 2 1 1 1 1 1	
FIDIV(R) m 2 2 1 1 1 1 1	
FICOM(P) m 2 2 2 1 2 2 2	
FTST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FXAM 2 2 1 1 2	
FPREM 28 28 21 21 21	
FPREM1 41-87 26-50 26-50	
FRNDINT 17 17 22 2	
Math	
FSCALE 27 27 12 12	
FXTRACT 17 17 10 10	
FSQRT 1 1 1 1 10-24	
FCOS 20-110 47-115 40-100	
FSINCOS 20-110 43-123	
F2XM1 53-118 61-69 61-69	
FYL2X 454 454 724	

FYL2XP1	464	464			726		
FPTAN	102	102			130		l
FPATAN	28-91				93-146		l
Other							ı
FNOP	1	1	1			1	ı
WAIT	2	2				1	ĺ
FNCLEX	5	5				22	
FNINIT	26	26				81	ı

Integer MMX and XMM instructions

Instruction	Operands	μops	μορε	un	fus	ed d	loma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
MOVD	r32/64,(x)mm	1	1	х	х	Х			1	0.33	
MOVD	m32/64,(x)mm	1					1	1	3	1	
MOVD	(x)mm,r32/64	1	1	Х	Х	Х			1	0.33	
MOVD	(x)mm,m32/64	1					1		3	0.5	
MOVQ	(x)mm,(x)mm	1	1	Х	Х	X			1	0.33	
MOVQ	(x)mm,m64	1					1		1	0.5	
MOVQ	m64, (x)mm	1					1	1	3	1	
MOVDQA	x,x	1	1	х	х	Х			1	0.33	
MOVDQA	x, m128	1					1		3	0.5	
MOVDQA	m128, x	1					1	1	3	1	
MOVDQU	x, m128	1	1				1		3	0.5	
MOVDQU	m128, x	1	1				1	1	3	1	
LDDQU	x, m128	1	1				1		3	0.5	SSE3
MOVDQ2Q	mm, x	2	2						1	1	
MOVQ2DQ	x,mm	1	1						1	0.33	
MOVNTQ	m64,mm	1					1	1	~300	1	
MOVNTDQ	m128,x	1					1	1	~300		
MOVNTDQA	x, m128	1					1			0.5	SSE4.
PACKSSWB/DW PACK- USWB	mm,mm	1	1						1	1	
PACKSSWB/DW PACK- USWB	mm,m64	1	1		1		1				
PACKSSWB/DW PACK- USWB	x,x	1	1	x		x			1	0.5	
PACKSSWB/DW PACK- USWB	x,m128	1	1	x		x	1			0.5	
PACKUSDW	x,x	1	1	х		Х			1	0.5	SSE4.
PACKUSDW	x,m	1	1	х		х	1			0.5	SSE4.
PUNPCKH/LBW/WD/DQ	(x)mm,(x)mm	1	1	х		х			1	0.5	
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1	х		х	1			0.5	
PUNPCKH/LQDQ	x,x	1	1	х		х			1	0.5	
PUNPCKH/LQDQ	x, m128	2	1	х		х	1			0.5	
PMOVSX/ZXBW	x,x	1	1	х		х			1	0.5	SSE4.
PMOVSX/ZXBW	x,m64	1	1	х		х	1			0.5	SSE4.

PMOVSX/ZXBD		۱ ،	1	١.,	I	١.,			4	0.5	SSE4.1
PMOVSX/ZXBD	x,x x,m32	1	1	X		X	1		1	0.5 0.5	SSE4.1 SSE4.1
PMOVSX/ZXBQ	· ·	1	1	X		X	'		1	0.5	SSE4.1
PMOVSX/ZXBQ	X,X	1	1	X		X	1		ı	0.5	SSE4.1
	x,m16		•	X		X	'		4		SSE4.1 SSE4.1
PMOVSX/ZXWD	X,X	1	1	X		X	4		1	0.5	
PMOVSX/ZXWD	x,m64	1	1	X		X	1		4	0.5	SSE4.1
PMOVSX/ZXWQ	X,X	1	1	Х		Х	,		1	0.5	SSE4.1
PMOVSX/ZXWQ	x,m32	1	1	Х		Х	1		4	0.5	SSE4.1
PMOVSX/ZXDQ	X,X	1	1	X		X			1	0.5	SSE4.1
PMOVSX/ZXDQ	x,m64	1	1	X		Х	1			0.5	SSE4.1
PSHUFB	(x)mm,(x)mm	1	1	X		Х	١.		1	0.5	SSSE3
PSHUFB	(x)mm,m	2	1	X		Х	1			0.5	SSSE3
PSHUFW	mm,mm,i	1	1	X		Х			1	0.5	
PSHUFW	mm,m64,i	2	1	Х		Х	1			0.5	
PSHUFD	xmm,x,i	1	1	X		Х			1	0.5	
PSHUFD	x,m128,i	2	1	X		Х	1			0.5	
PSHUFL/HW	x,x,i	1	1	Х		Х			1	0.5	
PSHUFL/HW	x, m128,i	2	1	Х		Х	1			0.5	
PALIGNR	(x)mm,(x)mm,i	1	1	Х		х			1	0.5	SSSE3
PALIGNR	(x)mm,m,i	2	1	Х		Х	1			0.5	SSSE3
PBLENDVB	x,x,xmm0	2	2	1		1			2	1	SSE4.1
PBLENDVB	x,m,xmm0	3	2	1		1	1			1	SSE4.1
PBLENDW	x,x,i	1	1	Х		х			1	0.5	SSE4.1
PBLENDW	x,m,i	2	1	Х		х	1			0.5	SSE4.1
MASKMOVQ	mm,mm	4	1	1			2	1		1	
MASKMOVDQU	x,x	10	4				4	Х		6	
PMOVMSKB	r32,(x)mm	1	1	1					2	1	
PEXTRB	r32,x,i	2	2	Х	Х	х			2	1	SSE4.1
PEXTRB	m8,x,i	2	1	Х		х	1	1		1	SSE4.1
PEXTRW	r32,(x)mm,i	2	2	Х		х			2	1	
PEXTRW	m16,(x)mm,i	2	1	Х		х	1	1		2	SSE4.1
PEXTRD	r32,x,i	2	2	Х	Х	х			2	1	SSE4.1
PEXTRD	m32,x,i	3	2	Х		х	1	1		1	SSE4.1
PEXTRQ	r64,x,i	2	2	Х	х	х			2	1	SSE4.1,
PEXTRQ	m64,x,i	3	2	Х		х	1	1		1	64b
PINSRB	x,r32,i	2	2	Х		х			2	1	SSE4.1
PINSRB	x,m8,i	2	1	Х		х	1			0.5	SSE4.1
PINSRW	(x)mm,r32,i	2	2	Х		х			2	1	
PINSRW	(x)mm,m16,i	2	1	X		х	1			0.5	
PINSRD	x,r32,i	2	2	X		х			2	1	SSE4.1
PINSRD	x,m32,i	2	1	X		х	1			0.5	SSE4.1
PINSRQ	x,r64,i	2	2	X		x			2	1	SSE4.1,
PINSRQ	x,m64,i	2	1	x		х	1			0.5	64 b
Arithmetic instructions											
PADD/SUB(U,S)B/W/D/Q	(x)mm, (x)mm	1	1	x		х			1	0.5	
PADD/SUB(U,S)B/W/D/Q	(x)mm,m	1	1	x		х	1			0.5	
PHADD/SUB(S)W/D	(x)mm, (x)mm	3	3	x		х			2	1.5	SSSE3
PHADD/SUB(S)W/D	(x)mm,m64	4	3	x		x	1			1.5	SSSE3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	x		х			1	0.5	

PCMPEQ/GTB/W/D	(v)mm m	4	1	,	ı		1			0.5	
PCMPEQ/GTB/W/D	(x)mm,m	1 1	1	X		X	1		1	0.5	SSE4.1
	X,X	· ·	1	X		X	1		1		SSE4.1
PCMPEQQ	x,m128	1		X		X	1		_	0.5	
PCMPGTQ	X,X	1	1	1			_		5	1	SSE4.2
PCMPGTQ	x,m128	1	1	1			1		0	1	SSE4.2
PSUBxx, PCMPGTx	x,same	1	0						0	0.25	
PCMPEQx	x,same	1	1						0	0.5	
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1				5	1	
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1		_	1	
PMULHRSW	(x)mm,(x)mm	1	1	1					5	1	SSSE3
PMULHRSW	(x)mm,m	1	1	1			1			1	SSSE3
PMULLD	X,X	1	1	1					5	1	SSE4.1
PMULLD	x,m128	2	1	1			1			1	SSE4.1
PMULDQ	x,x	1	1	1					5	1	SSE4.1
PMULDQ	x,m128	1	1	1			1			1	SSE4.1
PMULUDQ	(x)mm,(x)mm	1	1	1					5	1	
PMULUDQ	(x)mm,m	1	1	1			1			1	
PMADDWD	(x)mm,(x)mm	1	1	1					5	1	
PMADDWD	(x)mm,m	1	1	1			1			1	
PMADDUBSW	(x)mm,(x)mm	1	1	1					5	1	SSSE3
PMADDUBSW	(x)mm,m	1	1	1			1			1	SSSE3
PAVGB/W	(x)mm,(x)mm	1	1	Х		х			1	0.5	
PAVGB/W	(x)mm,m	1	1	Х		х	1			0.5	
PMIN/MAXSB	X,X	1	1	Х		х			1	0.5	SSE4.1
PMIN/MAXSB	x,m128	1	1	Х		х	1			0.5	SSE4.1
PMIN/MAXUB	(x)mm,(x)mm	1	1	Х		х			1	0.5	
PMIN/MAXUB	(x)mm,m	1	1	X		х	1			0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	1	X		х			1	0.5	
PMIN/MAXSW	(x)mm,m	1	1	X		х	1			0.5	
PMIN/MAXUW	x,x	1	1	X		х			1	0.5	SSE4.1
PMIN/MAXUW	x,m	1	1	X		х	1			0.5	SSE4.1
PMIN/MAXU/SD	x,x	1	1	X		x			1	0.5	SSE4.1
PMIN/MAXU/SD	x,m128	1	1	X		x	1			0.5	SSE4.1
PHMINPOSUW	, x,x	1	1	1					5	1	SSE4.1
PHMINPOSUW	x,m128	1	1	1			1			1	SSE4.1
PABSB/W/D	(x)mm,(x)mm	1	1	X		x			1	0.5	SSSE3
PABSB/W/D	(x)mm,m	1	1	X		X	1		•	0.5	SSSE3
PSIGNB/W/D	(x)mm,(x)mm	1	1	X		X			1	0.5	SSSE3
PSIGNB/W/D	(x)mm,m	1	1	X		X	1		•	0.5	SSSE3
PSADBW	(x)mm,(x)mm	1	1	1		^	•		5	1	00020
PSADBW	(x)mm,m	1	1	1			1		Ū	1	
MPSADBW	x,x,i	3	3	ļ '			'		6	1	SSE4.1
MPSADBW	x,m,i	4	3				1		U	1	SSE4.1
WII GABBVV	Α,ιιι,ι	_	5				'			'	only in
											some
											pro-
PCLMULQDQ	x,x,i	18	18						14	8	cessors
AESDEC, AESDECLAST,											
AESENC, AESENCLAST											
		_							_	_	
	X,X	2	2						8	4	do.

AESIMC	x,x	2	2					2	2	do.
AESKEYGENASSIST	x,x,i	11	11					8	8	do.
Logic instructions										
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	Х	х	х		1	0.33	
PAND(N) POR PXOR	(x)mm,m	1	1	Х	х	х	1		0.5	
PXOR	x,same	1	0					0	0.25	
PTEST	X,X	1	1					1	1	SSE4.1
PTEST	x,m128	1	1				1		1	SSE4.1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1		1			1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1		1		1		2	
PSLL/RL/RAW/D/Q	xmm,i	1	1		1			1	1	
PSLL/RL/RAW/D/Q	X,X	2	2					2	1	
PSLL/RL/RAW/D/Q	x,m128	3	2				1		1	
PSLL/RLDQ	x,i	1	1					1	1	
String instructions										
PCMPESTRI	x,x,i	8	8					4	4	SSE4.2
PCMPESTRI	x,m128,i	8	7				1		4	SSE4.2
PCMPESTRM	x,x,i	8	8					11-12	4	SSE4.2
PCMPESTRM	x,m128,i	8	7				1		4	SSE4.2
PCMPISTRI	x,x,i	3	3					3	3	SSE4.2
PCMPISTRI	x,m128,i	4	3				1		3	SSE4.2
PCMPISTRM	x,x,i	3	3					11	3	SSE4.2
PCMPISTRM	x,m128,i	4	3				1		3	SSE4.2
Other										
EMMS		31	31						18	

Floating point XMM and YMM instructions

Instruction	Operands	μops	μορε	s un	fus	ed d	loma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
MOVAPS/D	X,X	1	1			1			1	1	
VMOVAPS/D	y,y	1	1			1			1	1	AVX
MOVAPS/D MOVUPS/D	x,m128	1					1		3	0.5	
VMOVAPS/D VMOVUPS/D	y,m256	1					1+		4	1	AVX
MOVAPS/D MOVUPS/D	m128,x	1					1	1	3	1	
VMOVAPS/D VMOVUPS/D	m256,y	1					1	1+	3	1	AVX
MOVSS/D	X,X	1	1			1			1	1	
MOVSS/D	x,m32/64	1					1		3	0.5	
MOVSS/D	m32/64,x	1					1	1	3	1	
MOVHPS/D MOVLPS/D	x,m64	1	1			1	1		3	1	
MOVH/LPS/D	m64,x	1	1			1	1	1	3	1	
MOVLHPS MOVHLPS	X,X	1	1			1			1	1	

MOVMSKPS/D	r32,x	1	1	1	I	ı			2	1	
VMOVMSKPS/D	r32,y	1	1						2	1	
MOVNTPS/D	m128,x	1	'				1	1	~300	1	
VMOVNTPS/D	m256,y	1					1	4	~300	25	AVX
SHUFPS/D	X,X,i	1	1			1	'		1	1	AVA
SHUFPS/D	x,m128,i	2	1			1	1		ı	1	
VSHUFPS/D		1	1			1	'		1	1	AVX
VSHUFPS/D	y,y,y,i y, y,m256,i	2	1			1	1+		1	1	AVX
VPERMILPS/PD	y, y,111230,1 x,x,x/i	1	1			1	1 +		1	1	AVX
VPERMILPS/PD	' '	1	1			1			1	1	AVX
VPERMILPS/PD	y,y,y/i	2	1			1	1		1	1	AVX
VPERMILPS/PD	x,x,m	2	1			1	1+			1	AVX
	y,y,m					·	-			1	
VPERMILPS/PD	x,m,i	2	1			1	1			1	AVX
VPERMILPS/PD	y,m,i	2	1			1	1+			1	AVX
VPERM2F128	y,y,y,i	1	1			1	۱.		2	1	AVX
VPERM2F128	y,y,m,i	2	1			1	1+			1	AVX
BLENDPS/PD	x,x,i	1	1			1			1	0.5	SSE4.1
BLENDPS/PD	x,m128,i	2	1			1	1			0.5	SSE4.1
VBLENDPS/PD	y,y,i	1	1			1			1	1	AVX
VBLENDPS/PD	y,m256,i	2	1			1	1+		_	1	AVX
BLENDVPS/PD	x,x,xmm0	2	2			2			2	1	SSE4.1
BLENDVPS/PD	x,m,xmm0	3	2			2	1			1	SSE4.1
VBLENDVPS/PD	y,y,y,y	2	2			2			2	1	AVX
VBLENDVPS/PD	y,y,m,y	3	2			2	1+			1	AVX
MOVDDUP	X,X	1	1			1			1	1	SSE3
MOVDDUP	x,m64	1					1		3	0.5	SSE3
VMOVDDUP	y,y	1	1			1			1	1	AVX
VMOVDDUP	y,m256	1					1+		3	1	AVX
VBROADCASTSS	x,m32	1					1			1	AVX
VBROADCASTSS	y,m32	2	1			1	1			1	AVX
VBROADCASTSD	y,m64	2	1			1	1			1	AVX
VBROADCASTF128	y,m128	2	1			1	1			1	AVX
MOVSH/LDUP	X,X	1	1			1			1	1	SSE3
MOVSH/LDUP	x,m128	1					1		3	0.5	SSE3
VMOVSH/LDUP	y,y	1	1			1			1	1	AVX
VMOVSH/LDUP	y,m256	1					1+		4	1	AVX
UNPCKH/LPS/D	x,x	1	1			1			1	1	SSE3
UNPCKH/LPS/D	x,m128	1	1			1	1			1	SSE3
VUNPCKH/LPS/D	y,y,y	1	1			1			1	1	AVX
VUNPCKH/LPS/D	y,y,m256	1	1			1	1+			1	AVX
EXTRACTPS	r32,x,i	2	2			1			2	1	SSE4.1
EXTRACTPS	m32,x,i	3	2			1	1	1		1	SSE4.1
VEXTRACTF128	x,y,i	1	1			1			2	1	AVX
VEXTRACTF128	m128,y,i	2	1				1	1		1	AVX
INSERTPS	x,x,i	1	1			1			1	1	SSE4.1
INSERTPS	x,m32,i	2	1			1	1			1	SSE4.1
VINSERTF128	y,y,x,i	1	1			1			2	1	AVX
VINSERTF128	y,y,m128,i	2	1			1	1			1	AVX
VMASKMOVPS/D	x,x,m128	3	2				1			1	AVX
VMASKMOVPS/D	y,y,m256	3	2				1+			1	AVX
T.	1 2.37	ı	1	1 1	ı			ı İ	'		ı I

Conversion x, x 2 1 1 1 1 1 AVX Corression x, x 2 2 1<	VMASKMOVPS/D	m128,x,x	4	2	ı	l	l	1	1		1	AVX
CONVEYSION CVYPD2PS X, x 2 2 2 1 1 1									1 1			
CVTPD2PS x,x 2 2 1 1 3 1 CVTPD2PS x,m128 2 2 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 4 1 AVX CVTSD2SS x,x 2 2 1 1 4 1 AVX CVTS2DSS x,x 2 2 1 1 1 1 AVX CVTPS2PD x,x 2 2 1 2 1 1 <	VIVIASKIVIO VP3/D	111250,y,y	4					'				AVA
CVTPD2PS x,x 2 2 1 1 3 1 CVTPD2PS x,m128 2 2 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 4 1 AVX CVTSD2SS x,x 2 2 1 1 4 1 AVX CVTS2DSS x,x 2 2 1 1 1 1 AVX CVTPS2PD x,x 2 2 1 2 1 1 <	Conversion											
CVTPD2PS			2	2		1	1			3	1	
VCVTPD2PS x,y 2 2 2 1 1 1 4 1 AVX VCVTPD2PS x,m256 2 2 1 1 1+ 1 AVX CVTSD2SS x,m64 2 2 1 1 3 1 CVTPS2PD x,x 2 2 1 1 3 1 VCVTPS2PD x,x 2 2 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 1 1 1 4 1 AVX VCVTPS2PD y,x 2 2 1 1 1 1 4 1 AVX VCVTS2SSD x,x 2 2 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td>· ·</td><td></td><td></td><td></td><td>1 -</td><td></td><td>1</td><td></td><td>Ū</td><td>•</td><td></td></t<>		· ·				1 -		1		Ū	•	
VCVTPD2PS x,m256 2 2 2 1 1+ 1 AVX CVTSD2SS x,x 2 2 1 1 3 1 CVTPS2PD x,m64 2 2 1 1 3 1 CVTPS2PD x,m64 2 2 1 1 1 1 CVTPS2PD y,m64 2 2 1 1 1 1 CVTPS2PD y,m128 3 3 1 1 1 1 CVTS2SDD x,x 2 2 1 1 1 1 AVX CVTS2S2D x,x 2 2 1			1			-	1	'		4	-	ΔVX
CVTSD2SS x,x 2 2 2 1 1 3 1 CVTSD2SS x,m64 2 2 1 1 1 1 CVTPS2PD x,x 2 2 1 1 1 1 CVTPS2PD x,m64 2 2 1 1 1 1 VCVTPS2PD y,x 2 2 1 1 1 4 1 AVX CVTSS2SD x,x 2 2 1 1 1 1 AVX CVTS2S2SD x,m32 2 1 1 1 3 1 CVTDQ2PS x,m32 2 1 1 1 3 1 CVTDQ2PS x,m128 1 1 1 1 1 1 1 1 4 AVX AVX CVTTQ2PS y,y 1 1 1 1 1 1 1 1 1 1		-	1			١.		1+		-	•	
CVTSD2SS		1				1 .	1			3	•	/ / / /
CVTPS2PD			1			١.	'	1		0	•	
CVTPS2PD		· ·	1		1	'	1	'		3	•	
VCVTPS2PD y,x 2 2 1 1 4 1 AVX VCVTPS2PD y,m128 3 3 1 1 1 AVX CVTSS2SD x,x 2 2 1 2 1 1			1		1 -			1		3	•	
VCVTPS2PD y,m128 3 3 1 1 1 AVX CVTSS2SD x,m32 2 1 2 2 1 1<		· ·			'		1 -	ľ		4	•	A\/Y
CVTSS2SD			1		'		1 -	1		4	•	
CVTS2SD			1		4		'	'		2	-	AVA
CVTDQ2PS					'			1		3	•	
CVTDQ2PS		· ·						I		0		
VCVTDQ2PS y,y 1 1 1 1 1 1 AVX VCVTDQ2PS y,m256 1 1 1 1 1 AVX CVT(T) PS2DQ x,m128 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 <td></td> <td></td> <td>1 -</td> <td></td> <td></td> <td>1 -</td> <td></td> <td></td> <td></td> <td>3</td> <td>1</td> <td></td>			1 -			1 -				3	1	
VCVTDQ2PS y,n256 1 1 1 1+ 3 1 AVX CVT(T) PS2DQ x,x 1 4 1 2 2 1 1 1 4 1 2 2 1 1 1 4 1 1 4 4 1 2 2 1 1 1 4 2 2 1 1 1 4 2 2 1 1 <td< td=""><td></td><td></td><td>1 -</td><td></td><td></td><td>1 .</td><td></td><td>1</td><td></td><td>•</td><td>-</td><td>A) () (</td></td<>			1 -			1 .		1		•	-	A) () (
CVT(T) PS2DQ			1 .			1 .				3	•	
CVT(T) PS2DQ x,m128 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 4 1 1 2 2 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1		1 -	1 -			1 .		1+		•	•	AVX
VCVT(T) PS2DQ y,y 1 1 1 1 1 1 AVX VCVT(T) PS2DQ y,m256 1 1 1 1+ 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1 CVTDQ2PD x,m64 2 2 1 1 1 1 VCVTDQ2PD y,x 2 2 1 1 1 1 VCVTDQ2PD y,m128 3 2 1 1 1 1 AVX VCVTQPD2PD y,m128 3 2 1 1 1 AVX VCVT(T)PD2DQ x,x 2 2 1 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1+ 1 AVX CVT(T)PD2PS x,m64 1 1 1 1 1 2 CVT(T)PS2PI mm,m128 2 1			1 -			1 .				3	•	
VCVT(T) PS2DQ y,m256 1 1 1 1+ 4 1 AVX CVTDQ2PD x,x 2 2 1 1 4 1 AVX CVTDQ2PD x,m64 2 2 1 1 1 1 4 1 1 VX VVX VVX VVX VX			1 -			1 .		1			-	
CVTDQ2PD x,x 2 2 1 1 4 1 CVTDQ2PD x,m64 2 2 1 1 1 1 VCVTDQ2PD y,x 2 2 1 1 1 1 VCVTQ2PD y,m128 3 2 1 1 1 AVX CVT(T)PD2DQ x,x 2 2 1 1 1 AVX CVT(T)PD2DQ x,m128 2 2 1 1 1 1 VCVT(T)PD2DQ x,m128 2 2 1 1 1 1 VCVT(T)PD2DQ x,m128 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 AVX 2 2 1 1 1 1 2 2 1 1 1 1 <	. ,		1 -	-		1 .				3	•	
CVTDQ2PD x,m64 2 2 1 1 1 AVX VCVTDQ2PD y,x 2 2 1 1 1 AVX VCVTDQ2PD y,m128 3 2 1 1 1 AVX CVT(T)PD2DQ x,x 2 2 1 1 1 AVX VCVT(T)PD2DQ x,m128 2 2 1 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1 AVX VCVT(T)PD2PS x,m64 1 1 1 1 2 2 CVT(T)PS2PI mm,x 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	1		1 -		1+			•	AVX
VCVTDQ2PD y,x 2 2 1 1 5 1 AVX VCVTDQ2PD y,m128 3 2 1 1 1 AVX CVT(T)PD2DQ x,x 2 2 1 1 1 AVX VCVT(T)PD2DQ x,m128 2 2 1 1 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1 4 2 2 1 1 1 AVX		· ·	1			1	1			4	1	
VCVTDQ2PD y,m128 3 2 1 1 1 AVX CVT(T)PD2DQ x,x 2 2 1 1 1 AVX VCVT(T)PD2DQ x,m128 2 2 1 1 1 1 AVX VCVT(T)PD2DQ x,y 2 2 1 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1 1 AVX VCVT(1)PD2PS x,mm 1 1 1 1 4 2 2 1 1 1 AVX		x,m64				1	1	1			1	
CVT(T)PD2DQ x,x 2 2 1 1 4 1 CVT(T)PD2DQ x,m128 2 2 1 1 1 1 VCVT(T)PD2DQ x,y 2 2 1 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1+ 1 AVX CVTP12PS x,mm 1 1 1 1 1 4 2 CVT(T)PS2PI mm,x 2 2 1 1 1 2 2 CVT(T)PS2PI mm,m128 2 1 <td< td=""><td></td><td>y,x</td><td></td><td>2</td><td></td><td>1</td><td>1</td><td></td><td></td><td>5</td><td>1</td><td>AVX</td></td<>		y,x		2		1	1			5	1	AVX
CVT(T)PD2DQ x,m128 2 2 1 1 1 AVX VCVT(T)PD2DQ x,y 2 2 1 1 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1+ 1 AVX CVTP12PS x,m64 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 4 2 2 1 1 1 1 4 1 1 1 1 1 1 2 2 1 <td></td> <td>y,m128</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>AVX</td>		y,m128	1			1	1	1			1	AVX
VCVT(T)PD2DQ x,y 2 2 1 1 5 1 AVX VCVT(T)PD2DQ x,m256 2 2 1 1 1+ 1 AVX CVTP12PS x,mm 1 1 1 1 1 2 CVTP12PS x,m64 1 1 1 1 2 2 CVT(T)PS2PI mm,x 2 2 1 <t< td=""><td>` ,</td><td></td><td>1</td><td>2</td><td></td><td>1</td><td>1</td><td></td><td></td><td>4</td><td>1</td><td></td></t<>	` ,		1	2		1	1			4	1	
VCVT(T)PD2DQ x,m256 2 2 1 1 1+ 4 2 CVTPI2PS x,mm 1 1 1 1 1 1 2 CVTPI2PS x,m64 1 1 1 1 2 2 CVT(T)PS2PI mm,x 2 2 1 1 1 1 1 CVT(T)PS2PI mm,m128 2 1 <td< td=""><td></td><td>x,m128</td><td>1</td><td>2</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td></td<>		x,m128	1	2		1	1	1			1	
CVTPI2PS x,mm 1 1 1 1 1 1 2 CVTPI2PS x,m64 1 1 1 1 2 2 CVT(T)PS2PI mm,x 2 2 1 1 4 1 CVT(T)PS2PI mm,m128 2 1 1 4 1 CVTPI2PD x,m64 2 2 1 1 4 1 CVT(T) PD2PI mm,x 2 2 1 1 1 1 CVT(T) PD2PI mm,m128 2 2 1		x,y	2	2		1	1			5	1	AVX
CVTPI2PS x,m64 1 1 1 1 1 2 CVT(T)PS2PI mm,x 2 2 1 1 4 1 CVT(T)PS2PI mm,m128 2 1 1 1 1 CVTPI2PD x,m64 2 2 1 1 1 1 CVT(T) PD2PI mm,x 2 2 1 1 1 1 CVTSI2SS x,r32 2 2 1 1 1 1.5 CVTSI2SS x,m32 1 1 1 1 1 1 CVT(T)SS2SI r32,x 2 2 1 1 1 1 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,r32 2 2 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 1 1.5 CVT(T)SD2SI r32,m6	VCVT(T)PD2DQ	x,m256	2	2		1	1	1+			1	AVX
CVT(T)PS2PI mm,x 2 2 1 4 1 CVT(T)PS2PI mm,m128 2 1 1 1 1 CVTPI2PD x,mm 2 2 1 1 4 1 CVTPI2PD x,m64 2 2 1 1 1 1 CVT(T) PD2PI mm,x 2 2 1 1 1 1 CVTSI2SS x,r32 2 2 1 4 1.5 CVTSI2SS x,m32 1 1 1 1 1 CVT(T)SS2SI r32,x 2 2 1 1 1 1 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 </td <td>CVTPI2PS</td> <td>x,mm</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>4</td> <td>2</td> <td></td>	CVTPI2PS	x,mm	1	1		1				4	2	
CVT(T)PS2PI mm,m128 2 1	CVTPI2PS	x,m64	1	1		1		1			2	
CVTPI2PD x,mm 2 2 1 1 4 1 CVTPI2PD x,m64 2 2 1 1 1 1 CVT(T) PD2PI mm,x 2 2 1 4 1 CVTSI2SS x,r32 2 2 1 4 1.5 CVTSI2SS x,m32 1 1 1 1 1.5 CVT(T)SS2SI r32,x 2 2 1 1 1 1 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1	CVT(T)PS2PI	mm,x	2	2		1				4	1	
CVTPI2PD x,m64 2 2 1 1 1 CVT(T) PD2PI mm,x 2 2 1 4 1 CVTSI2SS x,r32 2 2 1 4 1.5 CVTSI2SS x,m32 1 1 1 1 1.5 CVT(T)SS2SI r32,x 2 2 1 1 1 1 CVT(T)SS2SI r32,m32 2 2 1 1 1 1 CVTSI2SD x,r32 2 2 1 1 4 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1	CVT(T)PS2PI	mm,m128	2	1		1		1			1	
CVT(T) PD2PI mm,x 2 2 1 4 1 CVT(T) PD2PI mm,m128 2 2 1 1 1 CVTSI2SS x,r32 2 2 1 4 1.5 CVTSI2SS x,m32 1 1 1 1 1.5 CVT(T)SS2SI r32,x 2 2 1 1 1 1 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,x 2 2 1 1 1 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1	CVTPI2PD	x,mm	2	2		1	1			4	1	
CVT(T) PD2PI mm,m128 2 2 1 1 4 1.5 CVTSI2SS x,r32 2 2 1 1 1 1.5 CVTSI2SS x,m32 1 1 1 1 1.5 CVT(T)SS2SI r32,x 2 2 1 1 1 CVTSI2SD x,r32 2 2 1 1 1 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,x 2 2 1 1 1 1 CVT(T)SD2SI r32,x 2 2 1 1 1 1	CVTPI2PD	x,m64	2	2		1	1	1			1	
CVTSI2SS x,r32 2 2 1 4 1.5 CVTSI2SS x,m32 1 1 1 1 1.5 CVT(T)SS2SI r32,x 2 2 1 4 1 CVT(T)SS2SI r32,m32 2 2 1 1 1 CVTSI2SD x,r32 2 2 1 1 4 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1	CVT(T) PD2PI	mm,x	2	2						4	1	
CVTSI2SS x,m32 1 1 1 1 1 1 5 CVT(T)SS2SI r32,x 2 2 1 1 4 1 CVT(T)SS2SI r32,m32 2 2 1 1 1 1 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1	CVT(T) PD2PI	mm,m128	2	2				1			1	
CVTSI2SS x,m32 1 <t< td=""><td>CVTSI2SS</td><td>x,r32</td><td>2</td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td>4</td><td>1.5</td><td></td></t<>	CVTSI2SS	x,r32	2	2		1				4	1.5	
CVT(T)SS2SI r32,x 2 2 1 4 1 CVT(T)SS2SI r32,m32 2 2 1 1 1 CVTSI2SD x,r32 2 2 1 1 4 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1			1	1		1		1				
CVT(T)SS2SI r32,m32 2 2 1 1 1 CVTSI2SD x,r32 2 2 1 1 4 1.5 CVTSI2SD x,m32 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1			2	2		1				4		
CVTSI2SD x,r32 2 2 1 1 4 1.5 CVTSI2SD x,m32 1 1 1 1 1 1.5 CVT(T)SD2SI r32,x 2 2 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1			1			1		1			1	
CVTSI2SD x,m32 1 1 1 1 1 5 CVT(T)SD2SI r32,x 2 2 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1			1		1	1				4	1.5	
CVT(T)SD2SI r32,x 2 2 1 4 1 CVT(T)SD2SI r32,m64 2 2 1 1 1 1						1		1				
CVT(T)SD2SI r32,m64 2 2 1 1 1 1			1	_		1 .				4		
Arithmetic			1			-		1		·		
	Arithmetic											

ADDCC/D CLIDCC/D	l	۱ ،		I	۱,	ı		ı	•	4	1 1
ADDSS/D SUBSS/D	X,X	1	1		1				3	1	
ADDSS/D SUBSS/D	x,m32/64	1	1		1		1		•	1	
ADDPS/D SUBPS/D	X,X	1	1		1				3	1	
ADDPS/D SUBPS/D	x,m128	1	1		1		1		_	1	
VADDPS/D VSUBPS/D	у,у,у	1	1		1				3	1	AVX
VADDPS/D VSUBPS/D	y,y,m256	1	1		1		1+			1	AVX
ADDSUBPS/D	x,x	1	1		1				3	1	SSE3
ADDSUBPS/D	x,m128	1	1		1		1			1	SSE3
VADDSUBPS/D	y,y,y	1	1		1				3	1	AVX
VADDSUBPS/D	y,y,m256	1	1		1		1+			1	AVX
HADDPS/D HSUBPS/D	x,x	3	3		1	2			5	2	SSE3
HADDPS/D HSUBPS/D	x,m128	4	3		1	2	1			2	SSE3
VHADDPS/D											
VHSUBPS/D	y,y,y	3	3		1	2			5	2	AVX
VHADDPS/D											
VHSUBPS/D	y,y,m256	4	3		1	2	1+			2	AVX
MULSS MULPS	X,X	1	1	1					5	1	
MULSS MULPS	x,m	1	1	1			1			1	
VMULPS	y,y,y	1	1	1					5	1	AVX
VMULPS	y,y,m256	1	1	1			1+			1	AVX
MULSD MULPD	X,X	1	1	1					5	1	
MULSD MULPD	x,m	1	1	1			1			1	
VMULPD	y,y,y	1	1	1					5	1	AVX
VMULPD	y,y,m256	1	1	1			1+			1	AVX
DIVSS DIVPS	x,x	1	1	1					10-14	10-14	
DIVSS DIVPS	x,m	1	1	1			1			10-14	
VDIVPS	у,у,у	3	3	2		1			21-29	20-28	AVX
VDIVPS	y,y,m256	4	3	2		1	1+		2120	20-28	AVX
DIVSD DIVPD	x,x	1	1	1		'	'		10-22	10-22	7,07
DIVSD DIVPD	x,m	1	1	1			1		10-22	10-22	
VDIVPD	-	3	3	2		1	'		21-45	20-44	AVX
VDIVPD	y,y,y y,y,m256	4	3	2		'	1+		21-43	20-44	AVX
RCPSS/PS		1	1	1			'		5	1	AVA
RCPSS/PS	X,X		1	1			1		5		
	x,m128	1	3	'			ı		7	1	A \ /\/
VRCPPS	у,у	2					ا . ا		7	2	AVX
VRCPPS	y,m256	4	3				1+			2	AVX
CMPccSS/D CMPccPS/D	V V	1	1		1				3	1	
CMD = CC/D CMD = DC/D	x,x	ı	ı						3	ı	
CMPccSS/D CMPccPS/D	v m120	2	1		1		1			1	
VCMD coDC/D	x,m128				-		'		2		A \ /\/
VCMPccPS/D	y,y,y	1	1		1		ا . ا		3	1	AVX
VCMPccPS/D	y,y,m256	2	1		1		1+		0	1	AVX
COMISS/D UCOMISS/D	X,X	2	2						2	1	
COMISS/D UCOMISS/D	x,m32/64	2	2		1		1		•	1	
MAXSS/D MINSS/D	X,X	1	1		1				3	1	
MAXSS/D MINSS/D	x,m32/64	1	1		1		1			1	
MAXPS/D MINPS/D	X,X	1	1		1				3	1	
MAXPS/D MINPS/D	x,m128	1	1		1		1			1	
VMAXPS/D VMINPS/D	y,y,y	1	1		1				3	1	AVX
VMAXPS/D VMINPS/D	y,y,m256	1	1		1		1+			1	AVX
ROUNDSS/SD/PS/PD	x,x,i	1	1		1				3	1	SSE4.1

l											
ROUNDSS/SD/PS/PD	x,m128,i	2	1		1		1			1	SSE4.1
VROUNDSS/SD/PS/PD	y,y,i	1	1		1				3	1	AVX
VROUNDSS/SD/PS/PD	y,m256,i	2	1		1		1+			1	AVX
DPPS	x,x,i	4	4	1	2	1			12	2	SSE4.1
DPPS	x,m128,i	6	5				1			4	SSE4.1
VDPPS	y,y,y,i	4	4						12	2	AVX
VDPPS	y,m256,i	6	5				1+			4	AVX
DPPD	x,x,i	3	3						9	2	SSE4.1
DPPD	x,m128,i	4	3				1			2	SSE4.1
Math											
SQRTSS/PS	x,x	1	1	1					10-14	10-14	
SQRTSS/PS	x,m128	1	1	1			1			10-14	
VSQRTPS	y,y	3	3							21-28	AVX
VSQRTPS	y,m256	4	3				1+			21-28	AVX
SQRTSD/PD	x,x	1	1	1					10-21	10-21	
SQRTSD/PD	x,m128	2	1	1			1			10-21	
VSQRTPD	y,y	3	3						21-43	21-43	AVX
VSQRTPD	y,m256	4	3				1+			21-43	AVX
RSQRTSS/PS	x,x	1	1	1					5	1	
RSQRTSS/PS	x,m128	1	1	1			1			1	
VRSQRTPS	y,y	3	3						7	2	AVX
VRSQRTPS	y,m256	4	3				1+			2	AVX
Logic											
AND/ANDN/OR/XORPS/PD	x,x	1	1			1			1	1	
AND/ANDN/OR/XORPS/PD	x,m128	1	1			1	1			1	
VAND/ANDN/OR/XORPS											
/PD	y,y,y	1	1			1			1	1	AVX
VAND/ANDN/OR/XORPS											
/PD	y,y,m256	1	1			1	1+			1	AVX
(V)XORPS/PD	x/y,x/y,same	1	0						0	0.25	
Other											
VZEROUPPER		4							2	1	AVX
VZEROALL		12								11	AVX, 32 bit AVX,
VZEROALL		20								9	64 bit
LDMXCSR	m32	3	3				1			3	
STMXCSR	m32	3	3			1	1	1		1	
VSTMXCSR	m32	3	3			1	1	1		1	AVX
FXSAVE	m4096	130								68	
FXRSTOR	m4096	116								72	
XSAVEOPT	m	100-16	1						60-500		

Intel Pentium 4

List of instruction timings and µop breakdown

This list is measured for a Pentium 4, model 2. Timings for model 3 may be more like the values for P4E, listed on the next sheet

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory op-

erand, etc.

μορs: Number of μops issued from instruction decoder and stored in trace cache.

Microcode: Number of additional μops issued from microcode ROM.

Latency: This is the delay that the instruction generates in a dependency chain if the

next dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained

above under "How the values were measured".

Additional latency: This number is added to the latency if the next dependent instruction is in a

different execution unit. There is no additional latency between ALU0 and

ALU1.

Reciprocal This is also called issue latency. This value indicates the number of clock

throughput: cycles from the execution of an instruction begins to a subsequent independ-

ent instruction can begin to execute in the same execution subunit. A value of

0.25 indicates 4 instructions per clock cycle in one thread.

Port: The port through which each upp goes to an execution unit. Two independent

μops can start to execute simultaneously only if they are going through differ-

ent ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one µop uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit: Throughput measures apply only to instructions executing in the same sub-

unit.

Indicates the compatibility of an instruction with other 80x86 family micropro-

cessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	sdon	Microcode	Latency	Addition	Recipro put	Port	Execution unit	Subunit	Instruction set	Notes
			de		Additional latency	Reciprocal through- put		on unit		ion set	
Move instructions											
MOV	r,r	1	0	0.5	0.5-1	0.25	0/1	alu0/1		86	С
MOV	r,i	1	0	0.5		0.25		alu0/1		86	
MOV	r32,m	1	0	2	0	1	2	load		86	
MOV	r8/16,m	2	0	3	0	1	2	load		86	
MOV	m,r	1	0	1		2	0	store		86	b, c
MOV	m,i	3	0			2	0,3	store		86	,
MOV	r,sr	4	2			6	,			86	
MOV	sr,r/m	4	4	12	0	14				86	a, q
MOVNTI	m,r32	2	0			≈33				sse2	, ,
MOVZX	r,r	1	0	0.5	0.5-1		0/1	alu0/1		386	С
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r,r	1	0	0.5	0.5-1	0.5	0	alu0		386	С
MOVSX	r,m	2	0	3	0.5-1	1	2,0	5.1.5.0		386	
CMOVcc	r,r/m	3	0	6	0	3	_,-			ppro	а, е
XCHG	r,r	3	0	1.5	0.5-1	1	0/1	alu0/1		86	', '
XCHG	r,m	4	8	>100						86	
XLAT	,	4	0	3						86	
PUSH	r	2	0	1		2				86	
PUSH	i	2	0	1		2				186	
PUSH	m	3	0			2				86	
PUSH	sr	4	4			7				86	
PUSHF(D)		4	4			10				86	
PUSHA(D)		4	10			19				186	
POP	r	2	0	1	0	1				86	
POP	m	4	8			14				86	
POP	sr	4	5			13				86	
POPF(D)		4	8			52				86	
POPA(D)		4	16			14				186	
LEA	r,[r+r/i]	1	0	0.5	0.5-1		0/1	alu0/1		86	
LEA	r,[r+r+i]	2	0	1	0.5-1		0/1	alu0/1		86	
LEA	r,[r*i]	3	0	4	0.5-1		1	int,alu		386	
LEA	r,[r+r*i]	2	0	4	0.5-1		1	int,alu		386	
LEA	r,[r+r*i+i]	3	0	4	0.5-1		1	int,alu		386	
LAHF		1	0	4	0	4	1	int		86	
SAHF		1	0	0.5	0.5-1		0/1	alu0/1		86	d
SALC		3	0	5	0	1	1	int		86	
LDS, LES,	r,m	4	7			15				86	
BSWAP	r	3	0	7	0	2		int,alu		486	
IN, OUT	r,r/i	8	64			>100	0	,,,,,,,	86		
PREFETCHNTA	m	4	2			6				sse	
PREFETCHT0/1/2	m	4	2			6				sse	

SFENCE LFENCE		4	2 2			40 38				sse sse2	
MFENCE		4	2			100				sse2	
Arithmetic instructions											
ADD, SUB	r,r	1	0	0.5	0.5-1	0.25	0/1	alu0/1		86	c
ADD, SUB	r,m	2	0	1	0.5-1	1				86	c
ADD, SUB	m,r	3	0	≥ 8		≥ 4				86	c
ADC, SBB	r,r	4	4	6	0	6	1	int,alu		86	
ADC, SBB	r,i	3	0	6	0	6	1	int,alu		86	
ADC, SBB	r,m	4	6	8	0	8	1	int,alu		86	
ADC, SBB	m,r	4	7	≥ 9		8	-	,		86	
CMP	r,r	1	0	0.5	0.5-1	_	0/1	alu0/1		86	c
CMP	r,m	2	0	1	0.5-1	1	0, 1	aido, i		86	c
INC, DEC	r	2	0	0.5	0.5-1		0/1	alu0/1		86	
INC, DEC	m	4	0	4	0.0 1	≥ 4	0, 1	aido/ i		86	
NEG	r	1	0	0.5	0.5-1		0	alu0		86	
NEG	m	3	0	0.0	0.0 1	≥ 3		aido		86	
AAA, AAS		4	27	90		- 0				86	
DAA, DAS		4	57	100						86	
AAD		4	10	22			1	int	fpmul	86	
AAM		4	22	56			1	int	fpdiv	86	
MUL, IMUL	r8/32	4	6	16	0	8	1	int	fpmul	86	
MUL, IMUL	r16	4	7	17	0	8	1	int	fpmul	86	
MUL, IMUL	m8/32	4	7-8	16	0	8	1	int	fpmul	86	
MUL, IMUL	m16	4	10	16	0	8	1	int	fpmul	86	
IMUL	r32,r	4	0	14	0	4.5	1	int	fpmul	386	
IMUL	r32,(r),i	4	0	14	0	4.5	1	int	fpmul	386	
IMUL	r16,r	4	5	16	0	9	1	int	fpmul	386	
IMUL	r16,r,i	4	5	15	0	8	1	int	fpmul	186	
IMUL	r16,m16	4	7	15	0	10	1	int	fpmul	386	
IMUL	r32,m32	4	0	14	0	8	1	int	fpmul	386	
IMUL	r,m,i	4	7	14	0	10	1	int	fpmul	186	
DIV	r8/m8	4	20	61	0	24	1	int	fpdiv	86	a
DIV	r16/m16	4	18	53	0	23	1	int	fpdiv	86	a
DIV	r32/m32	4	21	50	0	23	1	int	fpdiv	386	a
IDIV	r8/m8	4	24	61	0	24	1	int	fpdiv	86	a
IDIV	r16/m16	4	22	53	0	23	1	int	fpdiv	86	a
IDIV	r32/m32	4	20	50	0	23	1	int	fpdiv	386	a
CBW	132/11132	2	0	1	0.5-1		0	alu0	ipuiv	86	a
CWD, CDQ		2	0	1	0.5-1		0/1	alu0/1		86	
CWD, CDQ CWDE		1	0	0.5	0.5-1		0/1	alu0/1		386	
CVVDE		'		0.5	0.5-1	0.5	U	aiuo		300	
Logic instructions											
AND, OR, XOR	r,r	1	0		0.5-1		0	alu0		86	С
AND, OR, XOR	r,m	2	0	≥ 1	0.5-1	≥ 1				86	С
AND, OR, XOR	m,r	3	0	≥ 8		≥ 4				86	С
TEST	r,r	1	0		0.5-1	1	0	alu0		86	С
TEST	r,m	2	0	≥ 1		1				86	С
NOT	r	1	0	0.5	0.5-1	0.5	0	alu0		86	

NOT m 4 0 d ≥ 4 d 86 SHL, SHR, SAR r,i 1 0 4 1 1 int mmxsh 186 SHL, SHR, SAR r,CL 2 0 6 0 1 1 int mmxsh 86 d ROL, ROR r,i 1 0 4 1 1 1 int mmxsh 186 d ROL, ROR r,CL 2 0 6 0 1 1 int mmxsh 86 d RCL, ROR r,1 1 0 4 1 1 int mmxsh 86 d RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 86 d RCL, RCR r,i 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL
SHL, SHR, SAR r,CL 2 0 6 0 1 1 int mmxsh 86 d ROL, ROR r,i 1 0 4 1 1 int mmxsh 186 d ROL, ROR r,CL 2 0 6 0 1 1 int mmxsh 86 d RCL, RCR r,1 1 0 4 1 1 int mmxsh 86 d RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 86 d RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d RCL, RCR r,CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7-8 10 0 10 1 int mmxsh
ROL, ROR r,i 1 0 4 1 1 int mmxsh 186 d ROL, ROR r,CL 2 0 6 0 1 1 int mmxsh 86 d RCL, RCR r,1 1 0 4 1 1 int mmxsh 86 d RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 86 d RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d RCL, RCR m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1/CL 4 7-8 10 0 10 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 18 18-28 14 1 int mmxsh <t< td=""></t<>
ROL, ROR r,CL 2 0 6 0 1 1 int mmxsh 86 d RCL, RCR r,1 1 0 4 1 1 int mmxsh 86 d RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 186 d RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d SHL,SHR,SAR,ROL, m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD m,r,r/CL 4 18 14-0 14-1 int mmxsh <td< td=""></td<>
RCL, RCR r,1 1 0 4 1 1 int mmxsh 86 d RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 186 d RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d SHL,SHR,SAR,ROL, ROR m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 18 14-0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 38
RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 186 d RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d SHL,SHR,SAR,ROL, ROR m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 18 14-28 14 1 int mmxsh 386 BT r,r,i/CL 4 18 14 0 14 1 int mmxsh 386 BT r,r 2 0 4 0 2 1 int mmxsh 386<
RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d SHL,SHR,SAR,ROL, ROR m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT r,r 2 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh
SHL,SHR,SAR,ROL, m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT r,r 2 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,r 4 12 12 0 12 1 int mmxsh
ROR m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,ri/CL 4 14 14 0 14 1 int mmxsh 386 BT m,ri/CL 4 18 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 1 1 int mmxsh 386 d
RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,i 4 12 12 0 12 1 int mmxsh 386
RCL, RCR m,i/CL 4 18 18-28 14 1 int mmxsh 86 d SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386 BT m,r,i/CL 4 18 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,r 2 0 6 0 4 1 int mmxsh 386 </td
SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386 BT r,i 3 0 4 0 2 1 int mmxsh 386 BT r,r 2 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,r 2 0 6 0 2 1 int mmxsh 386 BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 <t< td=""></t<>
SHLD, SHRD m,r,i/CL 4 18 14 0 14 1 int mmxsh 386 d BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT r,r 2 0 4 0 2 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,r 2 0 6 0 2 1 int mmxsh 386 B BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int
BT r,i 3 0 4 0 2 1 int mmxsh 386 d BT r,r 2 0 4 0 1 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 d BTR, BTS, BTC r,r 2 0 6 0 2 1 int mmxsh 386 d BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 38
BT r,r 2 0 4 0 1 1 int mmxsh 386 d BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,r 4 12 12 0 12 1 int mmxsh 386 d BTR, BTS, BTC r,r 2 0 6 0 2 1 int mmxsh 386 BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BT m,i 4 0 4 0 2 1 int mmxsh 386 d BT m,r 4 12 12 0 12 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BT m,r 4 12 12 0 12 1 int mmxsh 386 d BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 BTR, BTS, BTC r,r 2 0 6 0 4 1 int mmxsh 386 BTR, BTS, BTC m,r 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386 BTR, BTS, BTC r,r 2 0 6 0 4 1 int mmxsh 386 BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BTR, BTS, BTC r,r 2 0 6 0 4 1 int mmxsh 386 BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386 BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386 BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386
BSF, BSR r,m 3 0 4 0 3 1 int mmxsh 386
SETcc r 3 0 5 0 1 1 int 386
SETcc m 4 0 5 0 3 1 int 386
CLC, STC 3 0 10 0 2 86 d
CMC 3 0 10 0 2 86
CLD 4 7 52 0 52 86
STD 4 5 48 0 48 86
CLI 4 5 35 35 86
STI 4 12 43 43 86
Control transfer instructions
JMP short/near 1 0 0 1 0 alu0 branch 86
JMP far 4 28 118 118 0 86
JMP r 3 0 4 4 0 alu0 branch 86
JMP m(near) 3 0 4 0 alu0 branch 86
JMP m(far) 4 31 11 11 0 86
Jcc short/near 1 0 0 2-4 0 alu0 branch 86
J(E)CXZ short 4 4 0 2-4 0 alu0 branch 86
LOOP short 4 4 0 2-4 0 alu0 branch 86
CALL near 3 0 2 2 0 alu0 branch 86
CALL far 4 34 0 86
CALL r 4 4 8 0 alu0 branch 86
CALL m(near) 4 4 9 0 alu0 branch 86
CALL m(far) 4 38 0 86
RETN 4 0 2 0 alu0 branch 86
RETN i 4 0 2 0 alu0 branch 86
RETF 4 33 11 0 86

RETF	i	4	33	11			0			86	
IRET		4	48	24			0			86	
ENTER	i,0	4	12	26		26				186	
ENTER	i,n	4	45+2	4n		128+	16n		186		
LEAVE		4	0	3		3				186	
BOUND	m	4	14	14		14				186	
INTO		4	5	18		18				86	
INT	i	4	84	644						86	
String instructions											
LODS		4	3	6		6				86	
REP LODS		4	5n	≈ 4n+	-36			86			
STOS		4	2	6		6				86	
REP STOS		4	2n+3	≈ 3n+	⊦ 10			86			
MOVS		4	4	6		4				86	
REP MOVS		4	≈163·	+1.1n				86			
SCAS		4	3			6				86	
REP SCAS		4	≈ 40+	-6n	≈4n				86		
CMPS		4	5			8				86	
REP CMPS		4	≈ 50+	-8n 	≈4n				86		
Other											
NOP (90)		1	0	0		0.25	0/1	alu0/1		86	
Long NOP (0F 1F)		1	0	0		0.25	0/1	alu0/1		ppro	
PAUSE		4	2							sse2	
CPUID		4	39-81	1	200-5	500		p5			
RDTSC		4	7			80				p5	

Notes:

a) Add 1 μop if source is a memory operand.

b) Uses an extra μ op (port 3) if SIB byte used. A SIB byte is needed if the memory operand has more than one pointer register, or a scaled index, or

ESP is used as base pointer.

c) Add 1 µop if source or destination, but not both, is a high 8-bit register (AH,

BH, CH, DH).

d) Has (false) dependence on the flags in most cases.

e) Not available on PMMX

q) Latency is 12 in 16-bit real or virtual mode, 24 in 32-bit protected mode.

Floating point x87 instructions

Instruction	Operands	pops	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
FLD	r	1	0	6	0	1	0	mov		87	
FLD	m32/64	1	0	≈ 7	0	1	2	load		87	

FLD	m80	3	4			6	2	load		87	
FBLD	m80	3	75			90	2	load		87	
FST(P)	r	1	0	6	0	1	0	mov		87	
FST(P)	m32/64	2	0	≈ 7		2-3	0	store		87	
FSTP	m80	3	8			8	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	3	≈ 10		6	2	load		87	
FILD	m32/64	2	0	≈ 10		1	2	load		87	
FIST	m16	3	0	≈ 10		2-4	0	store		87	
FIST	m32/64	2	0	≈ 10		2-3	0	store		87	
FISTP	m	3	0	≈ 10		2-4	0	store		87	
FLDZ	•••	1	0			2	0	mov		87	
FLD1		2	0			2	0	mov		87	
FCMOVcc	st0,r	4	0	2-4	1	4	1	fp		PPro	e
FFREE	r	3	0		•	4	0	mov		87	
FINCSTP, FDECSTP	'	1	0	0	0	1	0	mov		87	
FNSTSW	AX	4	0	11	0	3	1	11104		287	
FSTSW	AX	6	0	11	0	3	1			287	
FNSTSW	m16	4	4	' '	U	6	0			87	
FNSTCW	m16	4	4			6	0			87	
FLDCW	m16	4	7	(2)			-			87	f
FLDCW	Шю	4	′	(3)		(8)	0,2			07	
Arithmetic instructions											
FADD(P),FSUB(R)(P)	r	1	0	5	1	1	1	fp	add	87	
FADD,FSUB(R)	m	2	0	5	1	1	1	fp	add	87	
FIADD,FISUB(R)	m16	3	4	6	0	6	1	fp	add	87	
FIADD,FISUB(R)	m32	3	0	5	1	2	1	fp	add	87	
FMUL(P)	r	1	0	7	1	2	1	fp	mul	87	
FMUL	m	2	0	7	1	2	1	fp	mul	87	
FIMUL	m16	3	4	7	1	6	1	fp	mul	87	
FIMUL	m32	3	0	7	1	2	1	fp	mul	87	
FDIV(R)(P)	r	1	0	43	0	43	1	fp	div	87	g, h
FDIV(R)	m	2	0	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m16	3	4	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m32	3	0	43	0	43	1	fp	div	87	g, h
FABS		1	0	2	1	1	1	fp	misc	87	
FCHS		1	0	2	1	1	1	fp	misc	87	
FCOM(P), FUCOM(P)	r	1	0	2	0	1	1	fp	misc	87	
FCOM(P)	m	2	0	2	0	1	1	fp	misc	87	
FCOMPP, FUCOMPP		2	0	2	0	1	1	fp	misc	87	
FCOMI(P)	r	3	0	10	0	3	0,1	fp	misc	PPro	
FICOM(P)	m16	4	4			6	1	fp	misc	87	
FICOM(P)	m32	3	0	2	0	2	1,2	fp	misc	87	
FTST		1	0	2	0	1	1	fp	misc	87	
FXAM		1	0	2	0	1	1	fp	misc	87	
FRNDINT		3	15	23	0	15	0,1	٠,٣		87	
FPREM		6	84	212	•		1	fp		87	
FPREM1									1		
1		6	84	212			1	fp		387	

Math										
FSQRT	1	0	43	0	43	1	fp	div	87	g, h
FLDPI, etc.	2	0			3	1	fp		87	
FSIN	6	≈150	≈180		≈170	1	fp		387	
FCOS	6	≈175	≈207		≈207	1	fp		387	
FSINCOS	7	≈178	≈216		≈211	1	fp		387	
FPTAN	6	≈160	≈230		≈200	1	fp		87	
FPATAN	3	92	≈187		≈153	1	fp		87	
FSCALE	3	24	57		66	1	fp		87	
FXTRACT	3	15	20		20	1	fp		87	
F2XM1	3	45	≈165		63	1	fp		87	
FYL2X	3	60	≈200		90	1	fp		87	
FYL2XP1	11	134	≈242		≈220	1	fp		87	
Other										
FNOP	1	0	1	0	1	0		mov	87	
(F)WAIT	2	0	0	0	1	0		mov	87	
FNCLEX	4	4			96	1			87	
FNINIT	6	29			172				87	
FNSAVE	4	174	456		420	0,1			87	
FRSTOR	4	96	528		532				87	
FXSAVE	4	69	132		96				sse	i
FXRSTOR	4	94	208		208				sse	i

Notes:

e) Not available on PMMX

f) The latency for FLDCW is 3 when the new value loaded is the same as the value of the control word before the preceding FLDCW, i.e. when alternating

between the same two values. In all other cases, the latency and reciprocal

throughput is 143.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 23, double precision: 38, long double precision

(default): 43.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes 6 μops more and 40-80 clocks more when XMM registers are disabled.

Integer MMX and XMM instructions

Instruction	Operands	sdor	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVD	r32, mm	2	0	5	1	1	0	fp		mmx	
MOVD	mm, r32	2	0	2	0	2	1	mmx	alu	mmx	
MOVD	mm,m32	1	0	≈ 8	0	1	2	load		mmx	
MOVD	r32, xmm	2	0	10	1	2	0	fp		sse2	
MOVD	xmm, r32	2	0	6	1	2	1	mmx	shift	sse2	

MOVE		۱ ،	۱ ۵	ا م ا		a	۱ ۵			0	ĺ	ı
MOVD MOVD	xmm,m32	1 2	0	≈ 8	0	1	2	load		sse2		
MOVQ	m32, r	1	0	≈ 8	0	2	0,1	may		mmx		
MOVQ	mm,mm	1	0	6 2	1	2	1	mov	shift	mmx sse2		
MOVQ	xmm,xmm r,m64	1	0	∠ ≈8	ı	1	2	mmx load	SHIIL			
MOVQ	m64,r	2	0	~ o ≈ 8		2	0	mov		mmx		
MOVDQA	•	1	0	6	0	1	0	mov		sse2		
MOVDQA	xmm,xmm	1	0	≈ 8	U	1	2	load		sse2		
MOVDQA	xmm,m m,xmm	2	0	~ 8 ≈ 8		2	0	mov		sse2		
MOVDQU	xmm,m	4	0	~ 0		2	2	load		sse2	k	
MOVDQU	m,xmm	4	6			2	0	mov		sse2	k	
MOVDQ2Q	mm,xmm	3	0	8	1	2	0,1	mov-mmx	sse2	3362	_ ^	
MOVQ2DQ	xmm,mm	2	0	8	1	2	0,1	mov-mmx	sse2			
MOVNTQ	m,mm	3	0	0	'	75	0, 1	mov	3362	sse		
MOVNTDQ	m,xmm	2	0			18	0	mov		sse2		
PACKSSWB/DW	111,7111111	_				10	0	11104		3362		
PACKUSWB	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а	
PACKSSWB/DW PACKUSWB	xmm,r/m	1	0	4	1	2	1	mmx	shift	mmx	а	
PUNPCKH/LBW/WD/					_							
DQ	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а	
PUNPCKHBW/WD/DQ/ QDQ	xmm,r/m	1	0	4	1	2	1	mmx	shift	sse2	а	
PUNPCKLBW/WD/DQ/Q												
DQ	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а	
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2		
PSHUFL/HW	xmm,xmm,i	1	0	2	1	2	1	mmx	shift	sse2		
PSHUFW	mm,mm,i	1	0	2	1	1	1	mmx	shift	mmx		
MASKMOVQ	mm,mm	4	4			7	0	mov		sse		
MASKMOVDQU	xmm,xmm	4	6			10	0	mov		sse2		
PMOVMSKB	r32,r	2	0	7	1	3	0,1	mmx-alu0	sse			
PEXTRW	r32,mm,i	3	0	8	1	2	1	mmx-int	sse			
PEXTRW	r32,xmm,i	3	0	9	1	2	1	mmx-int	sse2			
PINSRW	mm,r32,i	2	0	3	1	2	1	int-mmx	sse			
PINSRW	xmm,r32,i	2	0	4	1	2	1	int-mmx	sse2			
Arithmetic instructions												
PADDB/W/D											_	
PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j	
PSUBB/W/D	w w/ma	4			4	4.0	_	ma max.	al		_ :	
PSUB(U)SB/W	r,r/m	1	0	2	1 1	1,2	1	mmx	alu	mmx	a,j	
PADDQ, PSUBQ	mm,r/m xmm,r/m	1	0	2	1	2	1	mmx	alu add	sse2	a	
PADDQ, PSUBQ PCMPEQB/W/D	XIIIIII,1/111	I	0	4	ı	2	I	fp	auu	sse2	а	
PCMPGTB/W/D	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j	
PMULLW PMULHW	r,r/m	1	0	6	1	1,2	1	fp	mul	mmx	a,j	
PMULHUW	r,r/m	1	0	6	1	1,2	1	fp	mul	sse	a,j	
PMADDWD	r,r/m	1	0	6	1	1,2	1	fp	mul	mmx	a,j	
PMULUDQ	r,r/m	1	0	6	1	1,2	1	fp	mul	sse2	a,j	
PAVGB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j	
PMIN/MAXUB	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j	
·			-				-					•

PMIN/MAXSW	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PSADBW	r,r/m	1	0	4	1	1,2	1	mmx	alu	sse	a,j
Logic											
PAND, PANDN	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
POR, PXOR	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSLL/RLW/D/Q,											
PSRAW/D	r,i/r/m	1	0	2	1	1,2	1	mmx	shift	mmx	a,j
PSLLDQ, PSRLDQ	xmm,i	1	0	4	1	2	1	mmx	shift	sse2	а
Other											
EMMS		4	11	12		12	0			mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves

Floating point XMM instructions

Instruction	Operands	hobs	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVAPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0	≈ 7	0	1	2			sse	
MOVAPS/D	m,r	2	0	≈ 7		2	0			sse	
MOVUPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	6			8	0			sse	k
MOVSS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0	≈ 7	0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	0	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D	r,m	3	0			4	2			sse	
MOVHPS/D, MOVLPS/D							_				
MOVATOCID	m,r	2	0			2	0			sse	
MOVNTPS/D	m,r	2	0		_	4	0	£		sse/2	
MOVMSKPS/D	r32,r	2	0	6	1	3	1	fp	a b iff	sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D UNPCKLPS/D	r,r/m r,r/m	1 1	0	2	1 1	2 2	1	mmx	shift shift	sse	

Conversion											
CVTPS2PD	r,r/m	4	0	7	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx	sse2	а	
CVTSD2SS	r,r/m	4	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	4	0	10	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	4	1	2	1	fp		sse2	a
CVTDQ2PD	r,r/m	3	0	9	1	4	1	mmx-fp	sse2	а	
CVT(T)PS2DQ	r,r/m	1	0	4	1	2	1	fp		sse2	a
CVT(T)PD2DQ	r,r/m	2	0	9	1	2	1	fp-mmx	sse2	а	
CVTPI2PS	xmm,mm	4	0	10	1	4	1	mmx		sse	a
CVTPI2PD	xmm,mm	4	0	11	1	5	1	fp-mmx	sse2	а	
CVT(T)PS2PI	mm,xmm	3	0	7	0	2	0,1	fp-mmx	sse	а	
CVT(T)PD2PI	mm,xmm	3	0	11	1	3	0,1	fp-mmx	sse2	a	
CVTSI2SS	xmm,r32	3	0	10	1	3	1	fp-mmx	sse	a	
CVTSI2SD	xmm,r32	4	0	15	1	6	1	fp-mmx	sse2	a	
CVT(T)SD2SI	r32,xmm	2	0	8	1	2.5	1	fp	0002	sse2	a
CVT(T)SS2SI	r32,xmm	2	0	8	1	2.5	1	fp		sse	a
0 1 1 (1) 0 0 2 0 1	102,811111	_			'	2.0	'	ıρ		330	"
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	a
SUBPS/D SUBSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	a
MULPS/D MULSS/D	r,r/m	1	0	6	1	2	1	fp	mul	sse	a
DIVSS	r,r/m	1	0	23	0	23	1	fp	div	sse	a,h
DIVPS	r,r/m	1	0	39	0	39	1	fp	div	sse	a,n
DIVSD	r,r/m	1	0	38	0	38		fp	div	sse2	a,n
DIVPD	r,r/m	1	0	69	0	69		fp	div	sse2	a,n
RCPPS RCPSS	r,r/m	2	0	4	1	4		mmx	aiv	sse	a
MAXPS/D	1,1/111			"	'	-	'	111111		330	a
MAXSS/DMINPS/D											
MINSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	a
CMPccPS/D	,										
CMPccSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	а
	·										
Logic											
ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	а
Math											
SQRTSS	r,r/m	1	0	23	0	23	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	39	0	39	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	38	0	38	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	69	0	69	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	4	1	3	1	mmx		sse	а
RSQRTPS	r,r/m	2	0	4	1	4	1	mmx		sse	а
Other											
LDMXCSR	m	4	8	98		100	1			sse	
STMXCSR	m	4	4			6	1			sse	
		1			l			1	l		

Notes:

a) Add 1 µop if source is a memory operand.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.k) It may be advantageous to replace this instruction by two 64-bit moves.

Prescott

Intel Pentium 4 w. EM64T (Prescott)

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc., mabs = memory operand with 64-bit absolute address.

μορs: Number of μops issued from instruction decoder and stored in trace cache.

Microcode: Number of additional μops issued from microcode ROM.

Latency: This is the delay that the instruction generates in a dependency chain if the

next dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained above

under "How the values were measured".

Additional latency: This number is added to the latency if the next dependent instruction is in a dif-

ferent execution unit. There is no additional latency between ALU0 and ALU1.

ReciprocalThis is also called issue latency. This value indicates the number of clock throughput:
cycles from the execution of an instruction begins to a subsequent independence

cycles from the execution of an instruction begins to a subsequent independent instruction can begin to execute in the same execution subunit. A value of 0.25

indicates 4 instructions per clock cycle in one thread.

Port: The port through which each μop goes to an execution unit. Two independent

μops can start to execute simultaneously only if they are going through different

ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one μ op uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit: Throughput measures apply only to instructions executing in the same subunit.

Indicates the compatibility of an instruction with other 80x86 family micropro-

Indicates the compatibility of an instruction with other 80x86 family microprocessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	pops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOV	r,r	1	0	1	0	0.25	0/1	alu0/1		86	С
MOV	r8/16/32,i	1	0	1	0	0.25	0/1	alu0/1		86	
MOV	r64,i32	1	0		0	0.5	0/1	alu0/1		x64	

In		_		1 1				1	1 1		1 1
MOV	r64,i64	2	0		0	1	1	alu1		x64	
MOV	r8/16,m	2	0	3	0	1	2	load		86	
MOV	r32/64,m	1	0	2	0	1	2	load		86	
MOV	m,r	1	0			2	0	store		86	b,c
MOV	m,i	2	0			2	0,3	store		86	
MOV	m64,i32	2	0			2	0,3	store		x64	
MOV	r,sr	1	2			8				86	
MOV	sr,r/m	1	8			27				86	a,q
MOV	r,mabs	3	0			1				x64	
MOV	mabs,r	3	0			2				x64	1
MOVNTI	m,r32	2	0			2				sse2	
MOVZX	r,r	1	0	1	0	0.25	0/1	alu0/1		386	С
MOVZX	r16,r8	2	0	2	0	1	0/1	alu0/1		386	С
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r16,r8	2	0	2	0	1	0	alu0		386	a,c,o
MOVSX	r32/64,r8/16	1	0	1	0	0.5	0	alu0		386	a,c,o
MOVSX	r,m	2	0	3	0	1 1	2	load		386	' '
MOVSXD	r64,r32	1	0	1	0	0.5	0	alu0		x64	a
CMOVcc	r,r/m	3	0	9.5	0	3				PPro	a,e
XCHG	r,r	3	0	2	0	1	0/1	alu0/1		86	,0
XCHG	r,m	2	6	- ≈100		'	0, .	alao, i		86	
XLAT	1,	4	0	6						86	
PUSH	r	2	0	2		2				86	
PUSH	i i	2	0	2		2				186	
PUSH	m	3	0	2		2				86	
PUSH	sr	1	3	_		9				86	
PUSHF(D/Q)	31	1	3			9				86	
PUSHA(D)		1	9			16				186	_ m
POP	r	2	0	1	0	1				86	m
POP	m	2	6	'	U	10				86	
POP		1	8			30				86	
POPF(D/Q)	sr		8			70				86	
		1 2	16			15				186	
POPA(D)	r [m]		1				0/4	ol. :0/1			m
LEA	r,[m]	1	0	م د	_	0.25	0/1	alu0/1		86	р
LEA	r,[r+r/i]	1	0	2.5	0	0.25	0/1	alu0/1		86	
LEA	r,[r+r+i]	2	0	3.5	0	0.5	0/1	alu0/1		86	
LEA	r,[r*i]	3	0	3.5	0	1	1	alu		386	
LEA	r,[r+r*i]	2	0	3.5	0	1	0,1	alu0,1		386	
LEA	r,[r+r*i+i]	3	0	3.5	0	1	1	alu		386	
LAHF		1	0	4	0		1	int		86	n
SAHF		1	0	5	0		0/1	alu0/1		86	d,n
SALC		2	0		0	1	1	int		86	m
LDS, LES,	r,m	2	10			28				86	m
LODS		1	3	8		8				86	
REP LODS		1	5n	≈ 4n+	-50			86			
STOS		1	2	8		8				86	
REP STOS		1	2.5n	≈ 3n				86			
MOVS		1	4	8		8				86	
REP MOVSB		9		≈.3n				86			
REP MOVSW		1	≈.5-1.1r	≈ .6-1	l.4n			86			

Arithmetic instructions ADD, SUB F,r	
ADD, SUB r,r 1 0 1 0 0.25 0/1 alu0/1 86 c ADD, SUB r,m 2 0 1 0 1 0 1 alu0/1 86 c ADD, SUB m,r 3 0 5 2 86 c ADC, SBB r,r/i 3 0 10 0 10 1 int,alu 86 c ADC, SBB r,m 2 5 10 0 10 1 int,alu 86 c ADC, SBB m,r 2 6 20 10 86 alu0/1 86 alu0/1 86 alu0/1 86 c CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c INC, DEC m 4 0 5 3 86 alu0/1 86 NEG m 3 0 <t< td=""><td></td></t<>	
ADD, SUB r,m 2 0 1 0 1 0 1 86 c ADD, SUB m,r 3 0 5 2 int,alu 86 c ADC, SBB r,r/i 3 0 10 0 10 1 int,alu 86 ADC, SBB m,r 2 5 10 0 10 1 int,alu 86 ADC, SBB m,r 2 6 20 10 86 86 ADC, SBB m,r 2 6 20 10 86 6 CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c CMP r,m 2 0 1 0 0.5 0/1 alu0/1 86 c INC, DEC m 4 0 5 3 3 86 m NEG m 3 0	С
ADD, SUB m,r 3 0 5 2 lint, alu 86 c ADC, SBB r,r/i 3 0 10 0 10 1 int, alu 86 c ADC, SBB r,m 2 5 10 0 10 1 int, alu 86 ADC, SBB m,r 2 6 20 10 86 86 ADC, SBB m,i 3 5 22 10 86 6 CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c CMP r,m 2 0 1 0 1 alu0/1 86 c INC, DEC r 2 0 1 0 0.5 0/1 alu0/1 86 alu0/1 86 NEG r 1 0 1 0 0.5 0 alu0/1 86 m A	
ADC, SBB ABC ADC, SBB ABC ADC, SBB ABC ADC, SBB ABC ADC, SBB ABC ADC, SBB ABC ABC ABC ABC ABC ABC ABC ABC ABC A	-
ADC, SBB r,m 2 5 10 0 10 1 int,alu 86 ADC, SBB m,r 2 6 20 10 86 ADC, SBB m,i 3 5 22 10 86 CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c CMP r,m 2 0 1 0 0.25 0/1 alu0/1 86 c INC, DEC r 2 0 1 0 0.5 0/1 alu0/1 86 c INC, DEC m 4 0 5 3 86 86 m NEG r 1 0 1 0 0.5 0 alu0 86 m NEG m 3 0 5 3 86 m 86 m DAA, DAS 1 16 29 1 <td></td>	
ADC, SBB m,r 2 6 20 10 86 86 ADC, SBB m,i 3 5 22 10 86 86 CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c CMP r,m 2 0 1 0 1 0 1 86 c INC, DEC r 2 0 1 0 0.5 0/1 alu0/1 86 n NEG r 1 0 1 0 0.5 0 alu0/1 86 n 86 m m 86 m 1 int mul<	
ADC, SBB m,i 3 5 22 10 86 86 CMP r,r 1 0 1 0 0.25 0/1 alu0/1 86 c CMP r,m 2 0 1 0 1 0 1 86 c INC, DEC r 2 0 1 0 0.5 0/1 alu0/1 86 r NEG r 1 0 1 0 0.5 0 alu0/1 86 86 NEG m 3 0 5 3 86 86 m AAA, AAS m 1 10 26 3 86 m 86 m AAD 2 5 13 1 int mul 86 m AAM 2 17 71 1 int mul 86 m MUL, IMUL r8 1 0<	
CMP r,m 2 0 1 0 1 description 86 c INC, DEC r 2 0 1 0 0.5 0/1 alu0/1 86 c INC, DEC m 4 0 5 3 3 alu0/1 86 86 NEG r 1 0 1 0 0.5 0 alu0 86 m AAA, AAS m 3 0 5 3 3 86 m BAA, DAS 1 16 29 1 1 int mul 86 m AAM 2 5 13 1 int mul 86 m MUL, IMUL r8 1 0 10 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul x64 MUL, IMUL <td< td=""><td></td></td<>	
INC, DEC	С
INC, DEC m 4 0 5 3 0.5 0 alu0 86 NEG m 3 0 5 3 0.5 0 alu0 86 NEG m 3 0 5 3 0.5 0 alu0 86 m AAA, AAS m 1 10 26 0 3 0 86 m AAD 1 16 29 0 1 int mul 86 m AAM 2 17 71 1 int fpdiv 86 m MUL, IMUL r8 1 0 10 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul x64 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8	С
NEG r 1 0 1 0 0.5 0 alu0 86 NEG m 3 0 5 3 0 86 86 AAA, AAS 1 10 26 86 m 86 m DAA, DAS 1 16 29 1 1 int mul 86 m AAD 2 5 13 1 1 int mul 86 m AAM 2 17 71 1 int fpdiv 86 m MUL, IMUL r8 1 0 10 0 1 int mul 86 m MUL, IMUL r16 4 0 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10	
NEG m 3 0 5 3 86 AAA, AAS 1 10 26 86 m DAA, DAS 1 16 29 1 int mul 86 m AAD 2 5 13 1 int mul 86 m AAM 2 17 71 1 int fpdiv 86 m MUL, IMUL r8 1 0 10 0 1 int mul 86 MUL, IMUL r16 4 0 11 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul x64 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul x64	
AAA, AAS DAA, DAS AAD AAM AAM AAM AAM AAM AUL, IMUL AUL AUL AUL AUL AUL AUL AUL AUL AUL A	
DAA, DAS 1 16 29 1 Inint Mul 86 m AAD 2 5 13 1 int mul 86 m AAM 2 17 71 1 int fpdiv 86 m MUL, IMUL r8 1 0 10 0 1 int mul 86 MUL, IMUL r16 4 0 11 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul x64	
AAD AAM AAM AAM BAM AAM AAM AAM	m
AAM MUL, IMUL r8 1 0 10 1 int fpdiv 86 m MUL, IMUL r16 4 0 11 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul 86 MUL, IMUL r34 0 11 int mul 86 MUL, IMUL r35 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul 86 MUL, IMUL r64 1 0 1 int mul 86 MUL, IMUL R64 MUL, IMUL R8 2 0 10 0 1 int mul 86	m
MUL, IMUL r8 1 0 10 0 1 int mul 86 MUL, IMUL r16 4 0 11 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul 86	m
MUL, IMUL r16 4 0 11 0 1 int mul 86 MUL, IMUL r32 3 0 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul 86	m
MUL, IMUL r32 3 0 11 0 1 int mul 86 MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul 86	
MUL, IMUL r64 1 5 11 0 1 int mul x64 MUL, IMUL m8 2 0 10 0 1 int mul 86	
MUL, IMUL m8 2 0 10 0 1 int mul 86	
MUL, IMUL m16 2 5 11 0 1 int mul 86 MUL, IMUL m32 3 0 11 0 1 int mul 86	
MUL, IMUL	
IMUL r16,r16 1 0 10 0 2.5 1 int mul 386	
IMUL r16,r16,i 2 0 11 0 2.5 1 int mul 186	
IMUL r32,r32 1 0 10 0 2.5 1 int mul 386	
IMUL r32,(r32),i 1 0 10 0 2.5 1 int mul 386	
IMUL r64,r64 1 0 10 0 2.5 1 int mul x64	
IMUL r64,(r64),i 1 0 10 0 2.5 1 int mul x64	
IMUL r16,m16 2 0 10 0 2.5 1 int mul 386	
IMUL r32,m32 2 0 10 0 2.5 1 int mul 386	
IMUL r64,m64 2 0 10 0 2.5 1 int mul x64	
IMUL r,m,i 3 0 10 0 1-2.5 1 int mul 186	
DIV r8/m8 1 20 74 0 34 1 int fpdiv 86 a	а
DIV r16/m16 1 19 73 0 34 1 int fpdiv 86 a	а
DIV r32/m32 1 21 76 0 34 1 int fpdiv 386 a	а
DIV r64/m64 1 31 63 0 52 1 int fpdiv x64 a	а

IDIV IDIV IDIV IDIV CBW CWD CDQ CQO CWDE CDQE SCAS REP SCAS CMPS REP CMPS	r8/m8 r16/m16 r32/m32 r64/m64	1 1 1 1 2 2 1 1 2 1 1 1 1	21 19 19 58 0 0 0 0 0 3 ≈ 54+6 5 ≈ 81+8		0 0 0 0 0 0 0 0 0 0 0 0 0 8 4n	34 34 34 91 1 1 1 1 8	1 1 1 0 0/1 0/1 0/1 0/1 0/1	int int int alu0 alu0/1 alu0/1 alu0/1 alu0/1	fpdiv fpdiv fpdiv fpdiv	86 86 386 x64 86 386 x64 386 x64 86	a a a a
Logic		4		4		0.5	_	۵۱۰۰۵		00	
AND, OR, XOR	r,r	1	0	1	0	0.5	0	alu0		86	С
AND, OR, XOR	r,m	2	0	1 5	0	1 2				86	С
AND, OR, XOR TEST	m,r	ა 1	0	1	0	0.5	0	alu0		86 86	С
TEST	r,r r,m	2	0	1	0	1	U	aiuu		86	C
NOT	r	1	0	1	0	0.5	0	alu0		86	
NOT	m	3	0	5		2		aido		86	
SHL	r,i	1	0	1	0	0.5	1	alu1		186	
SHR, SAR	r8/16/32,i	1	0	1	0	0.5	1	alu1		186	
SHR, SAR	r64,i	1	0	7	0	2	1	alu1		x64	
SHL	r,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r64,CL	2	0	8	0		1	alu1		x64	
ROL, ROR	r8/16/32,i	1	0	1	0	1	1	alu1		186	d
ROL, ROR	r64,i	1	0	7	0	7	1	alu1		x64	d
ROL, ROR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	d
ROL, ROR	r64,CL	2	0	8	0	8	1	alu1		x64	d
RCL, RCR	r,1	1	0	7	0	7	1	alu1		86	d
RCL	r,i	2	11	31	0	31	1	alu1		186	d
RCR	r,i	2	11	25	0	25	1	alu1		186	d
RCL	r,CL	1	11	31	0	31	1	alu1		86	d
RCR	r,CL	1	11	25	0	25	1	alu1		86	d
SHL, SHR, SAR	m8/16/32,i	3	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,i	3	6	10	0		1	alu1		86	d
SHL, SHR, SAR	m8/16/32,cl	2	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,cl	2	6	10	0		1	alu1		86	d
RCL, RCR	m8/16/32,1	2	5	27	0	27	1	alu1		86	d
RCL, RCR	m8/16/32,i	3	13	38	0	38	1	alu1		86	d
RCL, RCR	m8/16/32,cl	2	13	37	0	37	1	alu1		86	d
SHLD, SHRD	r8/16/32,r,i	3 4	0	8	0	7	1	alu1		386 v64	
SHLD SHRD	r64,r64,i	3	5 7	10	0		_	alu1		x64	
	r64,r64,i r8/16/32,r,cl	3 4	0	10 9	0	8	1	alu1		x64 386	
SHLD, SHRD SHLD	r64,r64,cl	4	5	14	0	0	1	alu1 alu1		x64	
	104,104,01	7	3	14	l O		'	alu I		∧U -1	

SHRD SHLD, SHRD SHLD, SHRD BT BT BT BT BT, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC CBTR, BTS, BTC CCC CCC, STC CMC CLD, STD	r64,r64,cl m,r,i m,r,CL r,i r,r m,i r,r m,i m,r r,r/m r	3 3 2 1 2 3 2 1 2 3 2 2 2 2 2 3 2 2 3 2 1	8 8 8 0 0 7 0 0 6 10 0 0 0 0	12 20 8 9 8 10 8 9 28 14 16 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 8 9 8 10 8 9 10 14 4 1 2 8	1 1 1 1 1 1 1 1 1 1 1 1	alu1 alu1 alu1 alu1 alu1 alu1 alu1 alu1		x64 386 386 386 386 386 386 386 386 386 386	d d d d
Control transfer instruct JMP JMP JMP JMP JMP JCC J(E)CXZ LOOP CALL CALL CALL CALL	short/near far r m(near) m(far) short/near short near far r	1 2 3 3 2 1 4 4 3 3 4	0 25 0 0 28 0 0 0 0 29	0	0	1 154 15 10 157 2-4 4 4 7 160 7	0 0 0 0 0 0 0	alu0 alu0 alu0 alu0 alu0 alu0 alu0 alu0	branch branch branch branch branch branch branch	86 86 86 86 86 86 86 86	m
CALL CALL RETN RETN RETF RETF IRET BOUND INT INTO	m(near) m(far) i m	4 2 4 4 1 2 1 2 2	0 32 0 0 30 30 49 11 67 4			9 160 7 7 160 160 325 12 470 26	0 0 0 0 0 0	alu0 alu0 alu0	branch branch branch	86 86	m m
Other NOP (90) Long NOP (0F 1F) PAUSE LEAVE CLI STI CPUID RDTSC		1 1 1 4 1 1 1	0 0 2 0 5 11 49-90	0 0 5	300-5	0.25 0.25 50 5 52 64 500	0/1 0/1	alu0/1 alu0/1		86 ppro sse2 186 86 86	

RDPMC (bit 31 = 1)	1	37	100	p5
RDPMC (bit $31 = 0$)	4	154	240	p5
MONITOR				(sse3)
MWAIT				(sse3)

Notes:

a) Add 1 μop if source is a memory operand.b) Uses an extra μop (port 3) if SIB byte used.

c) Add 1 µop if source or destination, but not both, is a high 8-bit register (AH, BH,

CH, DH).

d) Has (false) dependence on the flags in most cases.

e) Not available on PMMX

I) Move accumulator to/from memory with 64 bit absolute address (opcode A0 -

A3).

m) Not available in 64 bit mode.

n) Not available in 64 bit mode on some processors.

o) MOVSX uses an extra μop if the destination register is smaller than the biggest

register size available. Use a 32 bit destination register in 16 bit and 32 bit mode, and a 64 bit destination register in 64 bit mode for optimal performance.

p) LEA with a direct memory operand has 1 μop and a reciprocal throughput of

0.25. This also applies if there is a RIP-relative address in 64-bit mode. A sign-extended 32-bit direct memory operand in 64-bit mode without RIP-relative address takes 2 μ ops because of the SIB byte. The throughput is 1 in this case.

You may use a MOV instead.

q) These values are measured in 32-bit mode. In 16-bit real mode there is 1 mi-

crocode µop and a reciprocal throughput of 17.

Floating point x87 instructions

Instruction	Operands	sdorl	Microcode	Latency	Addit	Recip put	Port	Execu	Subunit	Instruction	Notes
			code	су	Additional latency	Reciprocal through-		Execution unit	nit	ction set	3
Move instructions											
FLD	r	1	0	7	0	1	0	mov		87	
FLD	m32/64	1	0		0	1	2	load		87	
FLD	m80	3	3			8	2	load		87	
FBLD	m80	3	74			90	2	load		87	
FST(P)	r	1	0	7	0	1	0	mov		87	
FST(P)	m32/64	2	0	7		2	0	store		87	
FSTP	m80	3	6			10	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	2			8	2	load		87	
FILD	m32/64	2	0			2	2	load		87	
FIST(P)	m	3	0			2.5	0	store		87	
FISTTP	m	3	0			2.5	0	store		sse3	
FLDZ		1	0			2	0	mov		87	

FLD1		2	0			2	0	mov		87		
FCMOVcc	st0,r	4	0	5	1	4	1	fp		PPro	е	
FFREE	r	3	0			3	0	mov		87		
FINCSTP, FDECSTP		1	0	0	0	1	0	mov		87		
FNSTSW	AX	4	0		0	3	1			287		
FSTSW	AX	6	0		0	3	1			287		
FNSTSW	m16	2	3			8	0			87		
FNSTCW	m16	4	0			3	0			87		
FLDCW	m16	3	6			10	0,2			87	f	
Arithmetic instructions												
FADD(P),FSUB(R)(P)	r	1	0	6	1	1	1	fp	add	87		
FADD,FSUB(R)	m	2	0	6	1	1	1	fp	add	87		
FIADD,FISUB(R)	m16	3	3	7	1	6	1	fp	add	87		
FIADD,FISUB(R)	m32	3	0	6	1	2	1	fp	add	87		
FMUL(P)	r	1	0	8	1	2	1	fp	mul	87		
FMUL	m	2	0	8	1	2	1	fp	mul	87		
FIMUL	m16	3	3	8	1	8	1	fp	mul	87		
FIMUL	m32	3	0	8	1	3	1	fp	mul	87		
FDIV(R)(P)	r	1	0	45	1	45	1	fp	div	87	g,h	
FDIV(R)	m	2	0	45	1	45	1	fp	div	87	g,h	
FIDIV(R)	m16	3	3	45	1	45	1	fp	div	87	g,h	
FIDIV(R)	m32	3	3	45	1	45	1	fp	div	87	g,h	
FABS	11102	1	0	3	1	1	1	fp	misc	87	9,	
FCHS		1	0	3	1	1	1	fp	misc	87		
FCOM(P), FUCOM(P)	r	1	0	3	0	1	1	fp	misc	87		
FCOM(P)	m	2	0	3	0	1	1	fp	misc	87		
FCOMPP, FUCOMPP	""	2	0	3	0	1	1	fp	misc	87		
FCOMI(P)	r	3	0		U	3	0,1	fp	misc	PPro		
FICOM(P)	m16	3	3			8	1	fp	misc	87		
FICOM(P)	m32	3	0			2	1,2	fp	misc	87		
FTST	11132	1	0			1	1,2	fp	misc	87		
FXAM		1	0			'	1	fp	misc	87		
FRNDINT		3	14	28	1	16		ıρ	IIIISC	87		
		8			1	10	0,1	fn				
FPREM			86	220	=		-	fp		87		
FPREM1		9	92	220	1		1	fp		387		
Math					,	45			-11	0.7		
FSQRT		1	0	45	1	45	1	fp	div	87	g,h	
FLDPI, etc.		2	0			2	1	fp		87		
FSIN, FCOS		3				≈200	1	fp		387		
FSINCOS		5	≈150			≈200		fp		387		
FPTAN		8	1			≈270		fp		87		
FPATAN		4	97	≈250		≈250		fp		87		
FSCALE		3	25	96			1	fp		87		
FXTRACT		4	16	27			1	fp		87		
F2XM1		3	190	≈270			1	fp		87		
FYL2X		3	63	≈170			1	fp		87		
FYL2XP1		3	58	≈170			1	fp		87		

Other										
FNOP	1	0	1	0	1	0	mov	87		
(F)WAIT	2	0	0	0	1	0	mov	87		
FNCLEX	1	4			120	1		87		
FNINIT	1	30			200			87		
FNSAVE	2	181	500			0,1		87		
FRSTOR	2	96	570					87		
FXSAVE	2	121			160			sse	i	
FXRSTOR	2	118			244			sse	i	

Notes:

e) Not available on PMMX

f) The latency for FLDCW is 3 when the new value loaded is the same as the value of the control word before the preceding FLDCW, i.e. when alternating

between the same two values. In all other cases, the latency and reciprocal

throughput is > 100.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 32, double precision: 40, long double precision

(default): 45.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes fewer microcode µops when XMM registers are disabled, but the

throughput is the same.

Integer MMX and XMM instructions

Instruction	Operands	hobs	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
						7					
Move instructions	r20 mm	2		6	1	4	0	fn		mmy	
MOVD MOVD	r32, mm	2	0	6	1	1	0	fp	alu	mmx	
	mm, r32	1	0	3	1	1	1	mmx	alu	mmx	
MOVD	mm,m32	1	0	7	4	1	2	load		mmx	
MOVD	r32, xmm	1	0	7	1	1	0	fp	- l- :£4	sse2	
MOVD	xmm, r32	2	0	4	1	2	1	mmx	shift	sse2	
MOVD	xmm,m32	1	0			1	2	load		sse2	
MOVD	m32, r	2	0	_		2	0,1			mmx	
MOVQ	mm,mm	1	0	7	0	1	0	mov	- 1- :64	mmx	
MOVQ	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse2	
MOVQ	r,m64	1	0			1	2	load		mmx	
MOVQ	m64,r	2	0	_		2	0	mov		mmx	
MOVDQA	xmm,xmm	1	0	7	0	1	0	mov		sse2	
MOVDQA	xmm,m	1	0			1	2	load		sse2	
MOVDQA	m,xmm	2	0			2	0	mov		sse2	
MOVDQU	xmm,m	4	0			23	2	load		sse2	k
MOVDQU	m,xmm	4	2			8	0	mov		sse2	k
LDDQU	xmm,m	4	0			2.5	2	load		sse3	
MOVDQ2Q	mm,xmm	3	0	10	1	2	0,1	mov-mmx	sse2		

1		1 .	Ι	1				1 1		I.	1 1
MOVQ2DQ	xmm,mm	2	0	10	1	2	0,1	mov-mmx	sse2		
MOVNTQ	m,mm	3	0			4	0	mov		sse	
MOVNTDQ	m,xmm	2	0			4	0	mov		sse2	
MOVDDUP	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse3	
MOVSHDUP											
MOVSLDUP	xmm,xmm	1	0	4	1	2	1	mmx	shift	sse3	
PACKSSWB/DW	·										
PACKUSWB	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	а
PACKSSWB/DW	,										
PACKUSWB	xmm,r/m	1	0	4	1	4	1	mmx	shift	mmx	а
PUNPCKH/LBW/WD/	,										
DQ	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	а
PUNPCKHBW/WD/DQ/	,			_	•	_	•		•		_
QDQ	xmm,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
PUNPCKLBW/WD/DQ/Q	7,						•	1111111	0	0002	_
DQ	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2	~
PSHUFL/HW		1	0	2	1	2	1		shift		
	xmm,xmm,i	-	_					mmx		sse	
PSHUFW	mm,mm,i	1	0	2	1	1	1	mmx	shift	sse	
MASKMOVQ	mm,mm	1	4			10	0	mov		sse	
MASKMOVDQU	xmm,xmm	1	6			12	0	mov		sse2	
PMOVMSKB	r32,r	2	0	7		3	0,1	mmx-alu0	sse		
PEXTRW	r32,mm,i	2	0	7		2	1	mmx-int	sse		
PEXTRW	r32,xmm,i	2	0	7		3	1	mmx-int	sse2		
PINSRW	r,r32,i	2	0	4		2	1	int-mmx	sse		
Arithmetic instructions											
Arithmetic instructions PADDR/W/D											
PADDB/W/D	r.r/m	1	0	2	1	1.2	1	mmx	alu	mmx	a.i
PADDB/W/D PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D					-						
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ	r,r/m mm,r/m	1	0	2 2	1	1,2 1	1 1	mmx mmx	alu alu	mmx sse2	a,j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D	r,r/m mm,r/m xmm,r/m	1 1 1	0 0 0	2 2 5	1 1 1	1,2 1 2	1 1 1	mmx mmx fp	alu alu add	mmx sse2 sse2	a,j a a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D	r,r/m mm,r/m xmm,r/m r,r/m	1 1 1	0 0 0	2 2 5	1 1 1	1,2 1 2 1,2	1 1 1	mmx mmx fp mmx	alu alu add alu	mmx sse2 sse2 mmx	a,j a a a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW	r,r/m mm,r/m xmm,r/m r,r/m r,r/m	1 1 1 1	0 0 0 0	2 2 5 2 7	1 1 1 1	1,2 1 2 1,2 1,2	1 1 1 1	mmx mmx fp mmx fp	alu alu add alu mul	mmx sse2 sse2 mmx mmx	a,j a a a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m	1 1 1 1 1	0 0 0 0	2 2 5 2 7 7	1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2	1 1 1 1 1	mmx mmx fp mmx fp fp	alu alu add alu mul mul	mmx sse2 sse2 mmx mmx sse	a,j a a a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1	0 0 0 0 0	2 2 5 7 7	1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2	1 1 1 1 1 1	mmx mmx fp mmx fp fp fp	alu alu add alu mul mul mul	mmx sse2 sse2 mmx mmx sse mmx	a,j a a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1	0 0 0 0 0 0	2 2 5 2 7 7 7	1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1	mmx mmx fp mmx fp fp	alu alu add alu mul mul mul mul	mmx sse2 sse2 mmx mmx sse	a,j a a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1	0 0 0 0 0 0 0	2 2 5 7 7 7 7	1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1	mmx mmx fp mmx fp fp fp	alu alu add alu mul mul mul	mmx sse2 sse2 mmx mmx sse mmx	a,j a a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1	0 0 0 0 0 0	2 2 5 2 7 7 7	1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp	alu alu add alu mul mul mul mul	mmx sse2 sse2 mmx mmx sse mmx sse2	a,j a a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	2 2 5 7 7 7 7	1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp fp mmx	alu alu add alu mul mul mul mul alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse	a,j a a,j a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	2 2 5 2 7 7 7 7 2 2	1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx	alu alu add alu mul mul mul alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse	a,j a a,j a,j a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 2	1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu alu add alu mul mul mul alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse	a,j a a,j a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 2	1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu alu add alu mul mul mul alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse	a,j a a,j a,j a,j a,j a,j a,j
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 2	1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu alu add alu mul mul mul alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse	a, j a a a, j a, j a, j a, j a, j a, j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic	r,r/m mm,r/m xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx mmx fp mmx fp fp fp fp mmx mmx mmx	alu alu add alu mul mul mul alu alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse sse	a, j a a a, j a, j a, j a, j a, j a, j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMULHUW PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR	r,r/m mm,r/m xmm,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx mmx fp mmx fp fp fp fp mmx mmx mmx mmx	alu alu add alu mul mul mul alu alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse sse	a, j a a a, j a, j a, j a, j a, j a, j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMULHUW PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN	r,r/m mm,r/m xmm,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx mmx fp mmx fp fp fp fp mmx mmx mmx mmx	alu alu add alu mul mul alu alu alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse	a, j a a a, j a, j a, j a, j a, j a, j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR PSLL/RLW/D/Q, PSRAW/D	r,r/m mm,r/m xmm,r/m r,r/m	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	2 2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx mmx fp mmx fp fp fp fp mmx mmx mmx mmx	alu alu alu mul mul mul alu alu alu alu alu shift	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse sse mmx mmx mmx	a, j a a a, j a, j a, j a, j a, j a, j a
PADDB/W/D PADD(U)SB/W PSUBB/W/D PSUB(U)SB/W PADDQ, PSUBQ PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMULHUW PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR PSLL/RLW/D/Q,	r,r/m mm,r/m xmm,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 2 5 7 7 7 2 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx mmx fp mmx fp fp fp mmx mmx mmx mmx	alu alu add alu mul mul alu alu alu alu	mmx sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse	a, j a a a, j a, j a, j a, j a, j a, j a

Other								
EMMS	10	10		12	0		mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves or LD-

DQU.

Floating point XMM instructions

Floating point XMN Instruction	Operands		3	<u></u>	>	Rec	P	Ü.	ည	5	Z
		sdon	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
			ode	~	nal	oca		ion	₹	tion	
					at	 		u n		ı se	
					enc			₹		*	
					Ÿ	gh-					
Move instructions											
MOVAPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0		0	1	2			sse	
MOVAPS/D	m,r	2	0			2	0			sse	
MOVUPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	2			8	0			sse	k
MOVSS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0		0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D	r,m	2	0			2	2			sse	
MOVHPS/D, MOVLPS/D	m,r	2	0			2	0			sse	
MOVSH/LDUP	r,r	1	0	4	1	2	1			sse3	
MOVDDUP	r,r	1	0	2	1	2	1			sse3	
MOVNTPS/D	m,r	2	0			4	0			sse	
MOVMSKPS/D	r32,r	2	0	5	1	3	1	fp		sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D	r,r/m	2	0	4	1	2	1	mmx	shift	sse	
UNPCKLPS/D	r,r/m	1	0	2	1	2	1	mmx	shift	sse	
Conversion											
CVTPS2PD	r,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx		а	
CVTSD2SS	r,r/m	3	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	2	0	8	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVTDQ2PD	r,r/m	3	0	10	1	4	1	mmx-fp	sse2	а	
CVT(T)PS2DQ	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVT(T)PD2DQ	r,r/m	2	0	11	1	2	1	fp-mmx	sse2	а	
CVTPI2PS	xmm,mm	4	0	12	1	6	1	mmx		sse	а

CVTPI2PD	xmm,mm	4	0	12	1	5	1	fp-mmx	sse2	а	
CVT(T)PS2PI	mm,xmm	3	0	8	0	2	0,1	fp-mmx	sse	а	
CVT(T)PD2PI	mm,xmm	4	0	12	1	3	0,1	fp-mmx	sse2	а	
CVTSI2SS	xmm,r32	3	0	20	1	4	1	fp-mmx	sse	а	
CVTSI2SD	xmm,r32	4	0	20	1	5	1	fp-mmx	sse2	а	
CVT(T)SD2SI	r32,xmm	2	0	12	1	4	1	fp		sse2	а
CVT(T)SS2SI	r32,xmm	2	0	17	1	4	1	fp		sse	а
	ŕ										
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
SUBPS/D SUBSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
ADDSUBPS/D	r,r/m	1	0	5	1	2	1	fp	add	sse3	а
HADDPS/D HSUBPS/D	r,r/m	3	0	13	1	5-6	1	fp	add	sse3	а
MULPS/D MULSS/D	r,r/m	1	0	7	1	2	1	fp	mul	sse	а
DIVSS	r,r/m	1	0	32	1	23	1	fp	div	sse	a,h
DIVPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
DIVSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
DIVPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RCPPS RCPSS	r,r/m	2	0	6	1	4	1	mmx		sse	а
MAXPS/D											
MAXSS/DMINPS/D											
MINSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
CMPccPS/D	_		_					_			
CMPccSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	а
Logic											
ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	а
	,										
Math											
SQRTSS	r,r/m	1	0	32	1	32	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	5	1	3	1	mmx		sse	а
RSQRTPS	r,r/m	2	0	6	1	4	1	mmx		sse	а
Other											
LDMXCSR	m	2	11			13	1			sse	
STMXCSR	m	3	0			3	1			sse	

Notes:

a) Add 1 µop if source is a memory operand.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

k) It may be advantageous to replace this instruction by two 64-bit moves or LDDQU.

Intel Atom

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE. etc.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops: The number of μops from the decoder or ROM.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

ALU0 and ALU1 means integer unit 0 or 1, respectively.

ALU0/1 means that either unit can be used. ALU0+1 means that both units

are used.

Mem means memory in/out unit.

FP0 means floating point unit 0 (includes multiply, divide and other SIMD in-

structions).

FP1 means floating point unit 1 (adder).

MUL means multiplier, shared between FP and integer units. DIV means divider, shared between FP and integer units.

np means not pairable: Cannot execute simultaneously with any other instruc-

tion.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar

delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent

instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Unit	Latency	Reciproc- al through- put	Remarks
Move instructions						
MOV	r,r	1	ALU0/1	1	1/2	
MOV	r,i	1	ALU0/1	1	1/2	
MOV	r,m	1	ALU0, Mem	1-3	1	All addr. modes
MOV	m,r	1	ALU0, Mem	1	1	All addr. modes
MOV	m,i	1	ALU0, Mem		1	
MOV	r,sr	1		1	1	
MOV	m,sr	2			5	
MOV	sr,r	7			21	
MOV	sr,m	8			26	
MOVNTI	m,r	1	ALU0, Mem		2.5	
MOVSX MOVZX MOVSXD	r,r/m	1	ALU0	1	1	
CMOVcc	r,r	1	ALU0+1	2	2	

CMOVcc	r,m	1			3	
XCHG	r,r	3		6	6	
XCHG	r,m	4		6	6	Implicit lock
XLAT	1,	3		6	6	Implioit look
PUSH	r	1	np	1	1	
PUSH	'i	1		ı	1 1	
PUSH		2	np		5	
PUSH	m	3			6	
	sr	14			12	
PUSHF(D/Q)		9			11	Not in x64 mode
PUSHA(D)	_			4		Not in xo4 mode
POP	r (E/D)OD	1	np	1	1	
POP	(E/R)SP	1	np	1	1	
POP	m	3			6	
POP	sr	7			31	
POPF(D/Q)		19			28	
POPA(D)		16		•	12	Not in x64 mode
LAHF		1	ALU0+1	2	2	
SAHF		1	ALU0/1	1	1/2	
SALC		2		7	5	Not in x64 mode
			1 0114		_	4 clock latency
LEA	r,m	1	AGU1	1-4	1	on input register
BSWAP	r	1	ALU0	1	1	
LDS LES LFS LGS LSS	m	10		30	30	
PREFETCHNTA	m	1	Mem		1	
PREFETCHT0/1/2	m	1	Mem		1	
LFENCE		1			1/2	
MFENCE		1			1	
SFENCE		1			1	
Arithmetic instructions						
ADD SUB	r,r/i	1	ALU0/1	1	1/2	
ADD SUB	r,m	1	ALU0/1, Men	n	1	
ADD SUB	m,r/i	1	,, .,	2	1	
ADC SBB	r,r/i	1		2	2	
ADC SBB	r,m	1		2	2	
ADC SBB	m,r/i	1		2	2	
CMP	r,r/i	1	ALU0/1	1	1/2	
CMP	m,r/i	1	7 12007 1	•	1	
INC DEC NEG NOT	r	1	ALU0/1	1	1/2	
INC DEC NEG NOT	m .	1	7120071	1	.,_	
AAA		13		16		Not in x64 mode
AAS		13		12		Not in x64 mode
DAA		20		20		Not in x64 mode
DAS		21		25		Not in x64 mode
AAD		4		7		Not in x64 mode
AAM		10		, 24		Not in x64 mode
MUL IMUL	r8	3	ALU0, Mul	7	7	I VOL III AUT IIIUUE
MUL IMUL	r16	4	ALU0, Mul	6	6	
MUL IMUL	r32	3	ALU0, Mul	6	6	
MUL IMUL	r64	8	ALU0, Mul	14	14	
IVIOL IIVIOL	104	0	ALOU, MUI	14	14	

MUL		1	ı	1		1	
MUL	IMUL	r16,r16	2	ALU0, Mul	6	5	
MUL	IMUL	r32,r32	1	ALU0, Mul	5	2	
MUL	IMUL	r64,r64	6	ALU0, Mul	13	11	
MUL MUL	IMUL	r16,r16,i	2	ALU0, Mul	5	5	
MUL IMUL m8 3 ALUO, Mul 6 7 ALUO, Mul 7 MUL IMUL MUL IMUL m32 4 ALUO, Mul 7 ALUO, Mul 7 MUL IMUL m64 8 ALUO, Div 22 22 22 DIV m64 8 ALUO, Div 49 49 49 DIV m64 8 ALUO, Div 49 49 49 49 40	IMUL	r32,r32,i	1	ALU0, Mul	5	2	
MUL IMUL m16 5 ALU0, Mul 7 7 MUL IMUL m64 8 ALU0, Mul 1 4 ALU0, Mul 1 4 ALU0, Mul 1 4 ALU0, Mul 1 4 ALU0, Mul 14 2 2 22 22 <	IMUL	r64,r64,i	7	ALU0, Mul	14	14	
MUL IMUL m32 4 ALU0, Mul 7 AU MUL IMUL m64 8 ALU0, Mul 14 14 DIV r/m8 9 ALU0, DiV 22 22 DIV r/m16 12 ALU0, DiV 49 49 DIV r/m64 38 ALU0, DiV 48 38 IDIV r/m64 38 ALU0, DiV 49 49 IDIV r/m64 38 ALU0, DiV 49 49 IDIV r/m64 20 ALU0, DiV 45 45 IDIV r/m64 60 ALU0, DiV 45 45 IDIV r/m64 60 ALU0, DiV 207 207 CBW 2 ALU0 5 CCDQ 207 207 CWDE 1 ALU0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>MUL IMUL</td> <td>m8</td> <td>3</td> <td>ALU0, Mul</td> <td>6</td> <td></td> <td></td>	MUL IMUL	m8	3	ALU0, Mul	6		
MUL IMUL m64 8 ALUO, Mul 14 2 DIV r/m8 9 ALUO, Div 22 22 DIV r/m16 12 ALUO, Div 33 33 DIV r/m32 12 ALUO, Div 49 49 DIV r/m64 38 ALUO, Div 49 49 DIV r/m64 38 ALUO, Div 49 49 IDIV r/m16 29 ALUO, Div 45 45 IDIV r/m16 29 ALUO, Div 61 61 IDIV r/m64 60 ALUO, Div 207 207 CBW 2 ALUO 5 CWDE 24 ALUO 1 CWDE 1 ALUO 1 ALUO 1 1 CWD 2 ALUO 5 C 2 ALUO 5 CDQ 1 ALUO/1, Mem 1 1 1/2 1 <td< td=""><td>MUL IMUL</td><td>m16</td><td>5</td><td>ALU0, Mul</td><td>7</td><td></td><td></td></td<>	MUL IMUL	m16	5	ALU0, Mul	7		
MUL IMUL m64 8 ALUO, Mul 14 22 20	MUL IMUL	m32	4	ALU0, Mul	7		
DIV	MUL IMUL	m64	8		14		
DIV	DIV	r/m8	9		22	22	
DIV	DIV	r/m16	12				
DIV r/m 64 38							
IDIV							
IDIV							
IDIV							
IDIV							
CBW CWDE							
CWDE 1 ALU0 1 ALU0 1 CWD 2 ALU0 5 CDQ CDQ 1 ALU0 1 ALU0 1 CQO 1 ALU0 1 ALU0 1 Logic instructions 7, r/i 1 ALU0/1 1 1/2 AND OR XOR r, m 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR m, r/i 1 ALU0/1, Mem 1 1 AND OR XOR r, r/i 1 ALU0/1, Mem 1 1 1 SHR SHL SAR r, r/i		1/1110-4				201	
CDQE 1 ALU0 1 ALU0 5 CDQ 1 ALU0 1 ALU0 1 CQQ 1 ALU0 1 ALU0 1 Logic instructions AND OR XOR r,r/i 1 ALU0/1, Mem 1 1/2 AND OR XOR r,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1							
CWD 2 ALU0 5 CDQ 1 ALU0 1 CQO 1 ALU0 1 Logic instructions AND OR XOR r,r/i 1 ALU0/1 1 1/2 AND OR XOR r,m 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 TEST r,r/i 1 ALU0/1, Mem 1 1/2 TEST m,r/i 1 ALU0/1, Mem 1 1 SHR SHL SAR r,i/icl 1 ALU0 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR r,1 2 ALU0 1 1							
CDQ 1 ALU0 1 Logic instructions 7,r/i 1 ALU0/1 1 AND OR XOR r,r/i 1 ALU0/1 1 1/2 AND OR XOR r,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 TEST r,r/i 1 ALU0/1, Mem 1 1 TEST m,r/i 1 ALU0/1, Mem 1 1 SHR SHL SAR r,r/i/c 1 ALU0 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL r,1 5 ALU0 1 1 RCL r,1 5 ALU0 1 1							
Logic instructions r,r/i 1 ALU0 1 1/2 AND OR XOR r,r/i 1 ALU0/1, Mem 1 1/2 AND OR XOR r,m 1 ALU0/1, Mem 1 1 AND OR XOR r,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 AND OR XOR m,r/i 1 ALU0/1, Mem 1 1 TEST m,r/i 1 ALU0/1, Mem 1 1 SHE SHL SAR r,i/cl 1 ALU0 1 1 SHE SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 2 ALU0 7 1 RCL r/m,i/cl							
Logic instructions							
AND OR XOR	CQO		ı	ALUU	I		
AND OR XOR	Logic instructions						
AND OR XOR AND OR XOR AND OR XOR T,m m,r/i TEST T,r/i TL TEST T,r/i TL TEST T,r/i TL TEST T,r/i TL TEST T,r/i TL TEST T,r/i TL TEST T,r/i TL TL TEST T,r/i TL TL TEST T,r/i TL TL TL TEST T,r/i TL TL TL TL TL TL TL TL TL TL TL TL TL		r r/i	1	ΔΙ Ι ΙΟ/1	1	1/2	
AND OR XOR TEST r,r/i TEST m,r/i 1 ALU0/1, Mem 1 1/2 TEST m,r/i 1 ALU0/1, Mem 1 1/2 TEST T,r/i 1 ALU0/1, Mem 1 1 SHR SHL SAR r,i/cl 1 ALU0 1 1 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 1 1 ROR ROL ROR ROL r,i/cl 1 ALU0 1 1 1 1 ROR ROL RCR r,1 5 ALU0 7 RCL r,1 2 ALU0 1 1 RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 11 1-2 more if mem SHLD r64,r64,i 10 ALU0 9 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHLD r64,r64,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHLD r64,r64,cl 9 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD R64,r64,i 10 ALU0 9 1-2 more if mem SHRD R64,r64,i 10 ALU0 9 1-2 more if mem SHRD R64,r64,i 10 ALU0 9 1-2 more if mem SHRD SHRD R64,r64,i 10 ALU0 9 1-2 more if mem SHRD SHRD R64,r64,i 10 ALU0 9 1-2 more if mem							
TEST r,r/i 1 ALU0/1 1 1/2 TEST m,r/i 1 ALU0/1, Mem 1 SHR SHL SAR r,i/cl 1 ALU0 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 7 RCL r,1 2 ALU0 1 1 RCL r/m,i/cl 12-17 ALU0 12-15 1 RCL r/m,i/cl 14-20 ALU0 14-18 1 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHD r64,r64,cl 9 ALU0 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>		· ·					
TEST m,r/i 1 ALU0/1, Mem 1 SHR SHL SAR r,i/cl 1 ALU0 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 7 RCL r,1 2 ALU0 1 1 RCL r/m,i/cl 12-17 ALU0 12-15 1 RCL r/m,i/cl 14-20 ALU0 14-18 1 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8							
SHR SHL SAR r,i/cl 1 ALU0 1 1 SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 7 RCL r,1 2 ALU0 1 1 RCL r/m,i/cl 12-17 ALU0 12-15 1 RCL r/m,i/cl 14-20 ALU0 14-18 1 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,							
SHR SHL SAR m,i/cl 1 ALU0 1 1 ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 7 RCL r,1 2 ALU0 1 1 RCR r/m,i/cl 12-17 ALU0 12-15 1 RCL r/m,i/cl 14-20 ALU0 14-18 1 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
ROR ROL r,i/cl 1 ALU0 1 1 ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 RCL r,1 2 ALU0 1 RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 5 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0							
ROR ROL m,i/cl 1 ALU0 1 1 RCR r,1 5 ALU0 7 RCL r,1 2 ALU0 1 RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r64,r64,cl 9 ALU0 5 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 AL						'	
RCR r,1 5 ALU0 7 RCL r,1 2 ALU0 1 RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r64,r64,i 10							
RCL r,1 2 ALU0 1 RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 9 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem		•				l I	
RCR r/m,i/cl 12-17 ALU0 12-15 RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem		· ·					
RCL r/m,i/cl 14-20 ALU0 14-18 SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem					•		
SHLD r16,r16,i 10 ALU0 10 1-2 more if mem SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHLD r32,r32,i 2 ALU0 5 1-2 more if mem SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem		· ·					
SHLD r64,r64,i 10 ALU0 11 1-2 more if mem SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHLD r16,r16,cl 9 ALU0 9 1-2 more if mem SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHLD r32,r32,cl 2 ALU0 5 1-2 more if mem SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem		l ' '					
SHLD r64,r64,cl 9 ALU0 10 1-2 more if mem SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHRD r16,r16,i 8 ALU0 8 1-2 more if mem SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHRD r32,r32,i 2 ALU0 5 1-2 more if mem SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHRD r64,r64,i 10 ALU0 9 1-2 more if mem SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHRD r16,r16,cl 7 ALU0 8 1-2 more if mem							
SHRD r32,r32,cl 2 ALU0 5 1-2 more if mem							
	SHRD	r32,r32,cl	2	ALU0	5		1-2 more if mem

SHRD BT BT BT BT BTR BTS BTC BTR BTS BTC BTR BTS BTC BTR BTS BTC BSF BSR SETcc	r64,r64,cl r,r/i m,r m,i r,r/i m,r m,i r,r/m	9 1 9 2 1 10 3 10	ALU0 ALU1 ALU1 ALU1 ALU1	9 1 10 5 1 11 6 16 2	1 1 2	1-2 more if mem
SETcc	m '	2	ALOUTI		5	
CLC STC		1	ALU0/1		1/2	
CMC		1		2	2	
CLD		5			7	
STD		6			25	
Control transfer instruction						
JMP	short/near	1	ALU1		2	
JMP	far	29			66	Not in x64 mode
JMP	r	1			4	
JMP	m(near)	2			7	
JMP	m(far)	30			78	
Conditional jump	short/near	1	ALU1		2	
J(E/R)CXZ	short	3			7	
LOOP	short	8			8	
LOOP(N)E	short	8			8	
CALL	near	1			3	
CALL	far	37			65	Not in x64 mode
CALL	r	1			18	
CALL	m(near)	2			20	
CALL	m(far)	38			64	
RETN		1	np		6	
RETN	i	1	np		6	
RETF		36			80	
RETF	i	36			80	
BOUND	r,m	11			10	Not in x64 mode
INTO		4			6	Not in x64 mode
String instructions						
LODS		3		6		
REP LODS		5n+11		3n+50		
STOS		2		5		
REP STOS		3n+10		2n+4		
MOVS		4		6		
REP MOVS		4n+11		2n - 4n		fastest for high n
SCAS		3		6		
REP SCAS		5n+16		3n+60		
CMPS		5		7		
REP CMPS		6n+16		4n+40		
Other						

NOP (90)		1	ALU0/1		1/2	
Long NOP (0F 1F)		1	ALU0/1		1/2	
PAUSE		5		24		
ENTER	a,0	14		23		
ENTER	a,b	20+6b				
LEAVE		4			6	
CPUID		40-80		100-170		
RDTSC		16		29		
RDPMC		24		48		

Floating point x87 instructions

	Operands	μops	Unit	Latency	Reciproc-	Remarks
Move instructions					through-	
FLD	r	1		1	1 1	
FLD	m32/m64	1		3	1 1	
FLD	m80	4		9	10	
FBLD	m80	52		92	92	
FST(P)	r	1		1	1	
FST(P)	m32/m64	3		7	9	
FSTP	m80	8		12	13	
FBSTP	m80	189		221	221	
FXCH	r	1		1	1	
FILD	m	1		7	6	
FIST(P)	m	3		11	9	
FISTTP	m	3		11	9	SSE3
FLDZ		1			1	
FLD1		2			8	
FLDPI FLDL2E etc.		2			10	
FCMOVcc	r	3		9	9	
FNSTSW	AX	4			10	
FNSTSW	m16	4			10	
FLDCW	m16	2			8	
FNSTCW	m16	3			9	
FINCSTP FDECSTP		1		1	1	
FFREE(P)		1			1	
FNSAVE	m	166		321	321	
FRSTOR	m	83		177	177	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1		5	1	
FMUL(P)	r/m	1	Mul	5	2	
FDIV(R)(P)	r/m	1	Div	71	71	
FABS		1		1	1	
FCHS		1		1	1	
FCOM(P) FUCOM	r/m	1		1	1	
FCOMPP FUCOMPP		1		1	1	
FCOMI(P) FUCOMI(P)	r	5			10	
FIADD FISUB(R)	m	3			9	

FIMUL	m	3	Mul		9	
FIDIV(R)	m	3	Div		73	
FICOM(P)	m	3			9	
FTST		1		1	1	
FXAM		1		1	1	
FPREM		26		~110		
FPREM1		37		~130		
FRNDINT		19		48		
Math						
FSCALE		30		56		
FXTRACT		15		24		
FSQRT		1	Div	71		
FSIN FCOS		9		~260		
FSINCOS		112		~260		
F2XM1		25		~100		
FYL2X FYL2XP1		63		~220		
FPTAN		100		~300		
FPATAN		91		~300		
Other						
FNOP		1			1	
WAIT		2		5	5	
FNCLEX		4			26	
FNINIT		23		74		

Integer MMX and XMM instructions

	Operands	μops	Unit	Latency	Reciproc- al	Remarks
Move instructions					through-	
MOVD	r32/64,(x)mm	1		4	2	
MOVD	m32/64,(x)mm	1	Mem	5	1 1	
MOVD	(x)mm,r32/64	1		3	1	
MOVD	(x)mm,m32/64	1	Mem	4	1 1	
MOVQ	(x)mm, (x)mm	1	FP0/1	1	1/2	
MOVQ	(x)mm,m64	1	Mem	4	1	
MOVQ	m64, (x)mm	1	Mem	5	1	
MOVDQA	xmm, xmm	1	FP0/1	1	1/2	
MOVDQA	xmm, m128	1	Mem	4	1 1	
MOVDQA	m128, xmm	1	Mem	5	1 1	
MOVDQU	m128, xmm	3	Mem	6	6	
MOVDQU	xmm, m128	4	Mem	6	6	
LDDQU	xmm, m128	4	Mem	6	6	
MOVDQ2Q	mm, xmm	1		1	1 1	
MOVQ2DQ	xmm,mm	1		1	1 1	
MOVNTQ	m64,mm	1	Mem	~400	1 1	
MOVNTDQ	m128,xmm	1	Mem	~450	3	

DA CKCCIMD/DIM	1	1	I	1		I
PACKSSWB/DW PACKUSWB	(x)mm, (x)mm	1	FP0	1	1	
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	FP0		1	
PUNPCKH/LQDQ	' ' ' ' '	-	FP0		1	
PSHUFB	(x)mm, (x)mm	1	FP0	1	1	
	mm,mm	1	FPU		•	
PSHUFB	xmm,xmm	4	ED0	6	6	
PSHUFW	mm,mm,i	1	FP0	1	1	
PSHUFL/HW	xmm,xmm,i	1	FP0	1	1	
PSHUFD	xmm,xmm,i	1	FP0	1	1	
PALIGNR	xmm, xmm,i	1	FP0	1	1	
MASKMOVQ	mm,mm	1	Mem		2	
MASKMOVDQU	xmm,xmm	2	Mem		7	
PMOVMSKB	r32,(x)mm	1		4	2	
PINSRW	(x)mm,r32,i	1		3	1	
PEXTRW	r32,(x)mm,i	2		5	5	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	FP0/1	1	1/2	
PADDQ PSUBQ	(x)mm, (x)mm	2		5	5	
PHADD(S)W PHSUB(S)W	(x)mm, (x)mm	7		8	8	
PHADDD PHSUBD	(x)mm, (x)mm	3		6		
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMULL/HW PMULHUW	mm,mm	1	FP0, Mul	4	1	
PMULL/HW PMULHUW	xmm,xmm	1	FP0, Mul	5	2	
PMULHRSW	mm,mm	1	FP0, Mul	4	1	
PMULHRSW	xmm,xmm	1	FP0, Mul	5	2	
PMULUDQ	mm,mm	1	FP0, Mul	4	1	
PMULUDQ	xmm,xmm	1	FP0, Mul	5	2	
PMADDWD	mm,mm	1	FP0, Mul	4	1	
PMADDWD	xmm,xmm	1	FP0, Mul	5	2	
PMADDUBSW	mm,mm	1	FP0, Mul	4	1	
PMADDUBSW	xmm,xmm	1	FP0, Mul	5	2	
PSADBW	mm,mm	1	FP0, Mul	4	1	
PSADBW	xmm,xmm	1	FP0, Mul	5	2	
PAVGB/W	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXUB	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXSW	(x)mm,(x)mm	1	FP0/1	1	1/2	
PABSB PABSW PABSD	(x)mm,(x)mm	1	FP0/1	1	1/2	
PSIGNB PSIGNW PSIGND	(**)***********************************	•	110/1		1/2	
I SIGNOT SIGNW I SIGNO	(x)mm,(x)mm	1	FP0/1	1	1/2	
Logic instructions						
PAND(N) POR PXOR	(x)mm,(x)mm	1	FP0/1	1	1/2	
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	2	FP0	5	5	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	FP0	1	1	
PSLL/RLDQ	xmm,i	1	FP0	1	1	
I OLL/INLDQ	AIIIII,I	'	FFU	'	ı	
Other						
EMMS		9			9	

Floating point XMM instructions

	Operands	μops	Unit	Latency	al	Remarks
Move instructions					through-	
MOVAPS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVAPS/D	xmm,m128	1	Mem	4	1 1	
MOVAPS/D	m128,xmm	1	Mem	5	1 1	
MOVUPS/D	xmm,m128	4	Mem	6	6	
MOVUPS/D	m128,xmm	3	Mem	6	6	
MOVSS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVSS/D	xmm,m32/64	1	Mem	4	1 1	
MOVSS/D	m32/64,xmm	1	Mem	5	1 1	
MOVHPS/D MOVLPS/D	xmm,m64	1	Mem	5	1 1	
MOVHPS/D	m64,xmm	1	Mem	4	1 1	
MOVLPS/D	m64,xmm	1	Mem	4	1 1	
MOVLHPS MOVHLPS	xmm,xmm	1	FP0	1	1 1	
MOVMSKPS/D	r32,xmm	1		4	2	
MOVNTPS/D	m128,xmm	1	Mem	~500	3	
SHUFPS	xmm,xmm,i	1	FP0	1	1	
SHUFPD	xmm,xmm,i	1	FP0	1	1 1	
MOVDDUP	xmm,xmm	1	FP0		1	
MOVSH/LDUP	xmm,xmm	1	FP0		1	
UNPCKH/LPS	xmm,xmm	1	FP0		1 1	
UNPCKH/LPD	xmm,xmm	1	FP0		'	
ON ON //LFD	AIIIII,AIIIII	'	110	'		
Conversion						
CVTPD2PS	xmm,xmm	4		11	11	
CVTSD2SS	xmm,xmm	3		10	10	
CVTPS2PD	xmm,xmm	4		7	6	
CVTSS2SD	xmm,xmm	3		6	6	
CVTDQ2PS	xmm,xmm	3		6	6	
CVT(T) PS2DQ	xmm,xmm	3		6	6	
CVTDQ2PD	xmm,xmm	3		7	6	
CVT(T)PD2DQ	xmm,xmm	3		6	6	
CVTPI2PS	xmm,mm	1		6	5	
CVT(T)PS2PI	mm,xmm	1		4	1 1	
CVTPI2PD	xmm,mm	3		7	6	
CVT(T) PD2PI	mm,xmm	4		7	7	
CVTSI2SS	xmm,r32	3		7	6	
CVT(T)SS2SI	r32,xmm	3		10	8	
CVTSI2SD	xmm,r32	3		8	6	
CVT(T)SD2SI	r32,xmm	3		10	8	
. ,						
Arithmetic						
ADDSS SUBSS	xmm,xmm	1	FP1	5	1	
ADDSD SUBSD	xmm,xmm	1	FP1	5	1	
ADDPS SUBPS	xmm,xmm	1	FP1	5	1	
ADDPD SUBPD	xmm,xmm	3	FP1	6	6	
ADDSUBPS	xmm,xmm	1	FP1	5	1	
ADDSUBPD	xmm,xmm	3	FP1	6	6	

HADDPS HSUBPS	xmm,xmm	5	FP0+1	8	7	
HADDPD HSUBPD	xmm,xmm	5	FP0+1	8	7	
MULSS	xmm,xmm	1	FP0, Mul	4	1	
MULSD	xmm,xmm	1	FP0, Mul	5	2	
MULPS	·	1	FP0, Mul	5	2	
MULPD	xmm,xmm xmm,xmm	6	FP0, Mul	9	9	
DIVSS		3	FP0, Mul	31	31	
DIVSD	xmm,xmm	3	FP0, Div	60	60	
DIVPS	xmm,xmm	6	FP0, Div	64	64	
DIVPS	xmm,xmm	6	· ·	122	122	
	xmm,xmm		FP0, Div			
RCPSS	xmm,xmm	1		4	1	
RCPPS	xmm,xmm	5	ED0	9	8	
CMPccSS/D	xmm,xmm	1	FP0	5	1	
CMPccPS/D	xmm,xmm	3	FP0	6	6	
COMISS/D UCOMISS/D	xmm,xmm	4	FP0	9	9	
MAXSS/D MINSS/D	xmm,xmm	1	FP0	5	1	
MAXPS/D MINPS/D	xmm,xmm	3	FP0	6	6	
Math						
SQRTSS	xmm,xmm	3	FP0, Div	31	31	
SQRTPS	xmm,xmm	5	FP0, Div	63	63	
SQRTSD	xmm,xmm	3	FP0, Div	60	60	
SQRTPD	xmm,xmm	5	FP0, Div	121	121	
RSQRTSS	xmm,xmm	1	FP0	4	1	
RSQRTPS	xmm,xmm	5	FP0	9	8	
Logic						
ANDPS/D	xmm,xmm	1	FP0/1	1	1/2	
ANDNPS/D	xmm,xmm	1	FP0/1	1	1/2	
ORPS/D	xmm,xmm	1	FP0/1	1	1/2	
XORPS/D	xmm,xmm	1	FP0/1	1	1/2	
Other						
LDMXCSR	m32	4		5	6	
STMXCSR	m32	4		14	15	
FXSAVE	m4096	121		142	144	
FXRSTOR	m4096	116		149	150	

VIA Nano 2000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

The number of micro-operations from the decoder or ROM. Note that the VIA µops:

Nano 2000 processor has no reliable performance monitor counter for µops. Therefore the number of µops cannot be determined except in simple cases.

Tells which execution port or unit is used. Instructions that use the same port Port:

cannot execute simultaneously.

Integer add, Boolean, shift, etc. 11: 12. Integer add, Boolean, move, jump.

Can use either I1 or I2, whichever is vacant first. 112: MA: Multiply, divide and square root on all operand types. MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA. Memory store address.

ST: Memory store. Memory load. LD:

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the same type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Port	Latency	Recipro- cal thruogh- put	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	12	1	1	
						Latency 4 on pointer
MOV	r,m	1	LD	2	1	register
MOV	m,r	1	SA, ST	2	1.5	
MOV	m,i	1	SA, ST		1.5	
MOV	r,sr				1	
MOV	m,sr				2	
MOV	sr,r			20	20	
MOV	sr,m			20	20	
MOVNTI	m,r		SA, ST	2	1.5	

MOVEY MOVEYD		1	1 1			1
MOVSX MOVSXD MOVZX	r,r	1	12	1	1	
MOVSX MOVSXD		2	LD, I2	3	1	
	r,m					
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	2	I1, I2	2	1	
CMOVcc	r,m	_	LD, I1	5	2	
XCHG	r,r	3	l2	3	3	
XCHG	r,m			20	20	Implicit lock
XLAT	m			6		
PUSH	r		SA, ST		1-2	
PUSH	i		SA, ST		1-2	
PUSH	m		Ld, SA, ST		2	
PUSH	sr				17	
PUSHF(D/Q)				8	8	
PUSHA(D)					15	Not in x64 mode
POP	r		LD		1.25	
POP	(E/R)SP				4	
POP	m				5	
POP	sr				20	
	51			0		
POPF(D/Q)				9	9	Notice woods
POPA(D)		_		4	12	Not in x64 mode
LAHF		1	I1	1	1	
SAHF		1	l1	1	1	
SALC				9	6	Not in x64 mode
LEA	r,m	1	SA	1	1	3 clock latency on
					_	input register
BSWAP	r	1	12	1	1	
LDS LES LFS LGS LSS						
	m			30	30	
PREFETCHNTA	m		LD		1-2	
PREFETCHT0/1/2	m		LD		1-2	
LFENCE					14	
MFENCE					14	
SFENCE					14	
Arithmetic instructions						
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	l1	1	1	
ADC SBB	r,m	2	LD I1		1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP	r,r/i	1	112	1	1/2	
CMP	m,r/i	2	LD 112	'	1/2	
INC DEC NEG NOT		1	112	1	1/2	
INC DEC NEG NOT	r	3		1 5	1/2	
	m	3	LD I12 SA ST	Э	07	Notice and 4 are a de-
AAA					37	Not in x64 mode
AAS					37	Not in x64 mode
DAA					22	Not in x64 mode
DAS					24	Not in x64 mode

AAD					23	Not in x64 mode
AAM					30	Not in x64 mode
						Extra latency to oth-
MUL IMUL	r8		MA	7-9		er ports
MUL IMUL	r16		MA	7-9		do.
MUL IMUL	r32		MA	7-9		do.
MUL IMUL	r64		MA	8-10		do.
IMUL	r16,r16		MA	4-6	1	do.
IMUL	r32,r32		MA	4-6	1	do.
IMUL	r64,r64		MA	5-7	2	do.
IMUL	r16,r16,i		MA	4-6	1	do.
IMUL	r32,r32,i		MA	4-6	1	do.
IMUL	r64,r64,i		MA	5-7	2	do.
DIV	r8		MA	26	26	do.
DIV	r16		MA	27-35	27-35	do.
DIV	r32		MA	25-41	25-41	do.
DIV	r64		MA	148-183	148-183	do.
IDIV	r8		MA	26	26	do.
IDIV	r16		MA	27-35	27-35	do.
IDIV	r32		MA	23-39	23-39	do.
IDIV	r64		MA	187-222	187-222	do.
CBW CWDE CDQE		1	l1	1	1	
CWD CDQ CQO		1	l1	1	1	
Logic instructions						
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12		1	
AND OR XOR	m,r/i	3	LD I12 SA ST	5	2	
TEST	r,r/i	1	l12	1	1/2	
TEST	m,r/i	2	LD I12		1	
SHR SHL SAR	r,i/cl	1	l1	1	1	
ROR ROL	r,i/cl	1	l1	1	1	
RCR RCL	r,1	1	l1	1	1	
RCR RCL	r,i/cl		l1	28+3n	28+3n	
SHLD SHRD	r16,r16,i		l1	11	11	
SHLD SHRD	r32,r32,i		l1	7	7	
SHLD	r64,r64,i		l1	33	33	
SHRD	r64,r64,i		l1	43	43	
SHLD SHRD	r16,r16,cl		l1	11	11	
SHLD SHRD	r32,r32,cl		l1	7	7	
SHLD	r64,r64,cl		l1	33	33	
SHRD	r64,r64,cl		l1	43	43	
BT	r,r/i	1	l1	1	1	
BT	m,r		l1		8	
BT	m,i	2	l1		1	
BTR BTS BTC	r,r/i	2	I1	2	2	
BTR BTS BTC	m,r		I1	10	10	
BTR BTS BTC	m,i		l1	8	8	
BSF BSR	r,r		I1	3	2	
SETcc	r		l1	2	1	

11 3 3 3 3 3 3 3 3 3	SETcc	l m				1	
Control transfer instructions				I 1	3		
Short/near 1 12 3 3 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode				••			
JMP Short/near far 1 12 3 3 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode 8 if >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Not in x64 mode Sif >2 jumps in 16 bytes block Sif >2 jumps in	Control transfer instru	tions					
JMP	Control transfer instruc	tions					8 if >2 jumns in 16
JMP	JMP	short/near	1	12	3	3	
JMP r m(near) 3 3 3 do. JMP m(far) 55 1-3-8 1-3-8 1 if not jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 3 if jumping. 4 if yelpungs in 16 bytes block LOOP (N)E short 25 25 25 CALL near 3 3 3 bytes block CALL far 72 72 Not in x64 mode CALL m(near) 4 3 3 bytes block CALL m(far) 72 72 72 CALL m(far) 72 72 RETN i 3 3 3 RETF i 39 39 39 BOUND r,m	JMP	far			58		Not in x64 mode
JMP							8 if >2 jumps in 16
JMP		-		12			-
Conditional jump		, ,				3	do.
Sif pimping Sif > 2 jumps in 16 bytes block		, ,				4.0.0	4 .6
LOOP	Conditional jump	short/near			1-3-8	1-3-8	3 if jumping. 8 if >2 jumps in 16
LOOP(N)E short 25 25 8 8 if >2 jumps in 16 bytes block CALL far 72 72 72 Not in x64 mode 8 if >2 jumps in 16 bytes block CALL r s 3 3 3 bytes block CALL m(near) 4 3 3 do. CALL m(near) 72 72 72 8 if >2 jumps in 16 bytes block CALL m(near) 72 72 72 8 if >2 jumps in 16 bytes block CALL m(far) 72 72 72 8 if >2 jumps in 16 bytes block RETN 8 3 3 3 do. RETR 8 39 39 39 39 39 39 39 39 39 39 39 39 39	J(E/R)CXZ	short			1-3-8	1-3-8	do.
CALL		short			1-3-8	1-3-8	do.
CALL near far 3 3 bytes block CALL far 72 72 Not in x64 mode S if >2 jumps in 16 bytes block CALL m(near) 4 3 do. CALL m(far) 72 72 3 3 if >2 jumps in 16 RETN 3 3 3 bytes block 3 3 if >2 jumps in 16 3 bytes block 4 3 if >2 jumps in 16 3 bytes block 4 3 if >2 jumps in 16 3 if >2 jumps in 16 4 if year 4 if year <td>LOOP(N)E</td> <td>short</td> <td></td> <td></td> <td>25</td> <td>25</td> <td></td>	LOOP(N)E	short			25	25	
CALL far 72 72 Not in x64 mode 8 if >2 jumps in 16 bytes block CALL r 3 3 do. CALL m(near) 4 3 do. CALL m(far) 72 72 8 if >2 jumps in 16 bytes block RETN i 3 3 do. RETF bytes block do. do. RETF mode mode Mot in x64 mode mode <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
CALL							3
CALL r 3 3 bytes block CALL m(near) 4 3 do. CALL m(far) 72 72 8 if >2 jumps in 16 RETN 3 3 3 bytes block RETN i 3 3 do. RETF i 39 39 39 RETF i 39 39 39 BOUND r,m 13 Not in x64 mode Not in x64 mode Not in x64 mode Not in x64 mode String instructions 1 3n+22 LODSB/W/D/Q 1 3n+22 STOSB/W/D/Q Small: 2n+2, Big: 6 bytes per clock Small: 2n+45, Big: 6 bytes per clock Small: 2n+45, Big: 6 bytes per clock The clock SCASB/W/D/Q 1 2.2n Small: 2n+50 Big: 5 bytes	CALL	Tar			12	12	
CALL m(near) m(far) 4 3 do. RETN 3 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3<	CALL	r			3	3	
CALL m(far) 72 72 8 if >2 jumps in 16 bytes block RETN i 3 3 do. RETF i 39 39 RETF i 39 39 BOUND r,m 13 Not in x64 mode INTO 1 Not in x64 mode String instructions 1 3n+22 LODSB/W/D/Q 3n+22 Small: STOSB/W/D/Q 1-2 Small: 2n+2, Big: 6 bytes per clock Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q 1 REP SCASB 2.2n Small: 2n+50 Big: 5 bytes							-
RETN RETN RETR RETF RETF RETF RETG BOUND REP LODSB/W/D/Q REP STOSB/W/D/Q REP MOVSB/W/D/Q REP MOVSB/W/D/Q REP SCASB REP SCASB REP SCASW/D/Q							
RETN		, ,					
RETF							
RETF		i					do.
BOUND							
Not in x64 mode String instructions		_			39		Notice would be and
String instructions LODSB/W/D/Q 1 REP LODSB/W/D/Q 3n+22 STOSB/W/D/Q 1-2 REP STOSB/W/D/Q Small: 2n+2, Big: 6 bytes per clock SEP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q 1 REP SCASB 2.2n REP SCASW/D/Q Small: 2n+50 Big: 5 bytes		r,m					
LODSB/W/D/Q 1 REP LODSB/W/D/Q 3n+22 STOSB/W/D/Q 1-2 REP STOSB/W/D/Q Small: 2n+2, Big: 6 bytes per 6 bytes per clock SCASB/W/D/Q Small: 2n+45, Big: 6 bytes per clock 1 SCASB/W/D/Q 1 REP SCASB 2.2n REP SCASW/D/Q Small: 2n+50 Big: 5 bytes	INTO					/	Not in xo4 mode
REP LODSB/W/D/Q 3n+22 STOSB/W/D/Q 1-2 REP STOSB/W/D/Q Small: MOVSB/W/D/Q Clock REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock 1 SCASB/W/D/Q 1 REP SCASB 2.2n REP SCASW/D/Q Small: 2n+50 Big: 5 bytes	String instructions						
STOSB/W/D/Q 1-2 REP STOSB/W/D/Q Small: MOVSB/W/D/Q 6 bytes per clock REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q 1 REP SCASB 2.2n REP SCASW/D/Q Small: 2n+50 Big: 5 bytes	LODSB/W/D/Q					1	
REP STOSB/W/D/Q MOVSB/W/D/Q REP MOVSB/W/D/Q REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q REP SCASB 1 2.2n Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q BEP SCASB SCASB/W/D/Q REP SCASB Big: 6 bytes per clock 1 2.2n Small: 2n+50 Big: 5 bytes						3n+22	
2n+2, Big: 6 bytes per clock Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q SCASB/W/D/Q 1 REP SCASB REP SCASB REP SCASW/D/Q Small: 2n+50 Big: 5 bytes	·						
MOVSB/W/D/Q REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q REP SCASB REP SCASB REP SCASW/D/Q Small: 2.2n Small: 2n+50 Big: 5 bytes	REP STOSB/W/D/Q						
MOVSB/W/D/Q REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q REP SCASB 2.2n Small: 2n+50 Big: 5 bytes							
REP MOVSB/W/D/Q Small: 2n+45, Big: 6 bytes per clock SCASB/W/D/Q REP SCASB REP SCASB REP SCASW/D/Q Small: 2.2n Small: 2.2n Small: 2n+50 Big: 5 bytes	MOVERANIDIO						
2n+45, Big: 6 bytes per clock SCASB/W/D/Q REP SCASB REP SCASW/D/Q Small: 2n+50 Big: 5 bytes	· ·					_	
Big: 6 bytes per clock SCASB/W/D/Q REP SCASB REP SCASW/D/Q Big: 5 bytes Big: 6 bytes	REF WOVSD/W/D/Q						
SCASB/W/D/Q REP SCASB REP SCASW/D/Q Small: 2n+50 Big: 5 bytes						Big: 6 bytes	
REP SCASB REP SCASW/D/Q Small: 2n+50 Big: 5 bytes						1 '	
REP SCASW/D/Q Small: 2n+50 Big: 5 bytes						1 .	
2n+50 Big: 5 bytes							
Big: 5 bytes	REP SCASW/D/Q						
l la la la la la la la la la la la la la							
	CMPSB/W/D/Q						

REP CMPSB/W/D/Q					2.4n+24	
Other						
NOP (90)		1	All		1	Blocks all ports
Long NOP (0F 1F)		1	l12		1/2	
PAUSE					25	
ENTER	a,0				23	
ENTER	a,b				52+5b	
LEAVE				4	4	
CPUID				53-173		
RDTSC					39	
RDPMC				40	40	

Floating point x87 instructions

	Operands	μops	Port and Unit	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
FLD	r	1	MB	1	1	
FLD	m32/m64	2	LD MB	4	1	
FLD	m80	2	LD MB	4	1	
FBLD	m80			54	54	
FST(P)	r	1	MB	1	1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80			125	125	
FXCH	r	1	12	0	1	
FILD	m16			7		
FILD	m32			5		
FILD	m64			5		
FIST(T)(P)	m16			6		
FIST(T)(P)	m32			5		
FIST(T)(P)	m64			5		
FLDZ FLD1		1	MB		1	
FLDPI FLDL2E etc.					10	
FCMOVcc	r			2	2	
FNSTSW	AX				5	
FNSTSW	m16				3	
FLDCW	m16			13	13	
FNSTCW	m16				2	
FINCSTP FDECSTP		1	12	0	1	
FFREE(P)		1	MB		1	
FNSAVE	m			321	321	
FRSTOR	m			195	195	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1	MB	2		Lower precision: Lat: 4, Thr: 2
FMUL(P)	r/m	1	MA	4	2	,
FDIV(R)(P)	r/m		MA	15-42	15-42	

FABS FCHS FCOM(P) FUCOM FCOMPP FUCOMPP FCOMI(P) FUCOMI(P) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FTST FXAM FPREM FPREM1 FRNDINT Math FSCALE FXTRACT FSQRT FSIN FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN	r/m r m m m	1 1 1 1 1	MB MB MB MB MB MB	1 1 1 151-171 106-155 29 39 36-57 73 51-159 270-360 50-200 ~60 ~170 300-370 ~170	1 1 1 1 2 4 42 2 1 41	
Other FNOP WAIT FNCLEX FNINIT		1 1	MB I12	0	1 1/2 57 85	

Integer MMX and XMM instructions

	Operands	μops	Port and Unit	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVD	r32/64,(x)mm	1		3	1	
MOVD	m32/64,(x)mm	1	SA ST	2-3	1-2	
MOVD	(x)mm,r32/64			4	1	
MOVD	(x)mm,m32/64	1	LD	2-3	1	
MOVQ	(x)mm, (x)mm	1	MB	1	1	
MOVQ	(x)mm,m64	1	LD	2-3	1	
MOVQ	m64, (x)mm	1	SA ST	2-3	1-2	
MOVDQA	xmm, xmm	1	MB	1	1	
MOVDQA	xmm, m128	1	LD	2-3	1	
MOVDQA	m128, xmm	1	SA ST	2-3	1-2	
MOVDQU	m128, xmm	1	SA ST	2-3	1-2	
MOVDQU	xmm, m128	1	LD	2-3	1	

LDDQU	xmm, m128	1	LD	2-3	1	
MOVDQ2Q	mm, xmm	1	MB	1	1	
MOVQ2DQ	xmm,mm	1	MB	1	1	
MOVNTQ	m64,mm	3	IVID	~300	2	
MOVNTDQ	-	3		~300	2	
	m128,xmm	3		~300		
PACKSSWB/DW PACKUSWB	(x)mm, (x)mm	1	MB	1	1	
PUNPCKH/LBW/WD/	(*)!!!!!, (*)!!!!!	'	IVID	'	'	
DQ	(x)mm, (x)mm	1	МВ	1	1	
PUNPCKH/LQDQ	(x)mm, (x)mm	1	MB	1	1	
PSHUFB	(x)mm,(x)mm	1	MB	1	1	
PSHUFW	mm,mm,i	1	MB	1	1	
PSHUFL/HW		1	MB	1	1	
	xmm,xmm,i	-			Ī -	
PSHUFD	xmm,xmm,i	1	MB	1	1	
PALIGNR	xmm, xmm,i	1	MB	1	1	
MASKMOVQ	mm,mm				1-3	
MASKMOVDQU	xmm,xmm			_	1-3	
PMOVMSKB	r32,(x)mm			3	1	
PEXTRW	r32 ,(x)mm,i			3	1	
PINSRW	(x)mm,r32,i			9	9	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D					_	
	(x)mm, (x)mm	1	MB	1	1	
PADDQ PSUBQ	(x)mm, (x)mm	1	MB	1	1	
PHADD(S)W		•				
PHSUB(S)W	(x)mm, (x)mm	3	MB	3	3	
PHADDD PHSUBD	(x)mm, (x)mm	3	MB	3	3	
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	MB	1	1	
PMULL/HW PMULHUW	(x)mm,(x)mm	1	MA	3	1	
PMULHRSW	(x)mm,(x)mm	1	MA	3	1	
PMULUDQ	(x)mm,(x)mm	1	MA	3	1	
PMADDWD	(x)mm,(x)mm			4	2	
PMADDUBSW	(x)mm,(x)mm			10	8	
PSADBW	(x)mm,(x)mm		MB	2	1	
PAVGB/W	(x)mm,(x)mm	1	MB	1	1	
PMIN/MAXUB	(x)mm,(x)mm	1	MB	1	1	
PMIN/MAXSW	(x)mm,(x)mm	1	MB	1	1	
PABSB PABSW PABSD						
	(x)mm,(x)mm	1	MB	1	1	
PSIGNB PSIGNW						
PSIGND	(x)mm,(x)mm	1	MB	1	1	
Logic instructions						
PAND(N) POR PXOR	(x)mm,(x)mm	1	MB	1	1	
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	1	MB	1	1	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	MB	1	1	
PSLL/RLDQ	xmm,i	1	MB	1	1	
Other						
EMMS		1	MB		1	

Floating point XMM instructions

	Operands	µops	Port and Unit	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVAPS/D	xmm,xmm	1	MB	1	1	
MOVAPS/D	xmm,m128	1	LD	2-3	1	
MOVAPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVUPS/D	xmm,m128	1	LD	2-3	1	
MOVUPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVSS/D	xmm,xmm	1	MB	1	1	
MOVSS/D	xmm,m32/64	1	LD	2-3	1	
MOVSS/D	m32/64,xmm	1	SA ST	2-3	1-2	
MOVHPS/D	xmm,m64			6	1	
MOVLPS/D	xmm,m64			6	1	
MOVHPS/D	m64,xmm			6	1-2	
MOVLPS/D	m64,xmm			2	1-2	
MOVLHPS MOVHLPS	xmm,xmm	1	MB	1	1	
MOVMSKPS/D	r32,xmm			3	1	
MOVNTPS/D	m128,xmm			~300	2.5	
SHUFPS	xmm,xmm,i	1	MB	1	1	
SHUFPD	xmm,xmm,i	1	MB	1	1	
MOVDDUP	xmm,xmm	1	MB	1	1	
MOVSH/LDUP	xmm,xmm	1	MB	1	1	
UNPCKH/LPS	xmm,xmm	1	MB	1	1	
UNPCKH/LPD	xmm,xmm	1	MB	1	1	
	-					
Conversion						
CVTPD2PS	xmm,xmm			3-4		
CVTSD2SS	xmm,xmm			15		
CVTPS2PD	xmm,xmm			3-4		
CVTSS2SD	xmm,xmm			15		
CVTDQ2PS	xmm,xmm			3		
CVT(T) PS2DQ	xmm,xmm			2		
CVTDQ2PD	xmm,xmm			4		
CVT(T)PD2DQ	xmm,xmm			3		
CVTPI2PS	xmm,mm			4		
CVT(T)PS2PI	mm,xmm			3		
CVTPI2PD	xmm,mm			4		
CVT(T) PD2PI	mm,xmm			3		
CVTSI2SS	xmm,r32			5		
CVT(T)SS2SI	r32,xmm			4		
CVTSI2SD	xmm,r32			5		
CVT(T)SD2SI	r32,xmm			4		
Arithmetic						
ADDSS SUBSS	xmm,xmm	1	MBfadd	2-3	1	
ADDSD SUBSD	xmm,xmm	1	MBfadd	2-3	1	
ADDPS SUBPS	xmm,xmm	1	MBfadd	2-3	1	

ADDDD CLIDDD			MDt- 44		4
ADDPD SUBPD	xmm,xmm	1	MBfadd	2-3	1
ADDSUBPS	xmm,xmm	1	MBfadd	2-3	1
ADDSUBPD	xmm,xmm	1	MBfadd	2-3	1
HADDPS HSUBPS	xmm,xmm		MBfadd	5	3
HADDPD HSUBPD	xmm,xmm		MBfadd	5	3
MULSS	xmm,xmm	1	MA	3	1
MULSD	xmm,xmm	1	MA	4	2
MULPS	xmm,xmm		MA	3	1
MULPD	xmm,xmm		MA	4	2
DIVSS	xmm,xmm		MA	15-22	15-22
DIVSD	xmm,xmm		MA	15-36	15-36
DIVPS	xmm,xmm		MA	42-82	42-82
DIVPD	xmm,xmm		MA	24-70	24-70
RCPSS	xmm,xmm			5	5
RCPPS	xmm,xmm			14	11
CMPccSS/D	xmm,xmm	1	MBfadd	2	1
CMPccPS/D	xmm,xmm	1	MBfadd	2	1
COMISS/D UCOMISS/D				_	
	xmm,xmm			3	1
MAXSS/D MINSS/D	xmm,xmm	1	MBfadd	2	1
MAXPS/D MINPS/D	xmm,xmm	1	MBfadd	2	1
Math				20	20
SQRTSS	xmm,xmm		MA	33	33
SQRTPS	xmm,xmm		MA	126	126
SQRTSD	xmm,xmm		MA	62	62
SQRTPD	xmm,xmm		MA	122	122
RSQRTSS	xmm,xmm			5	5
RSQRTPS	xmm,xmm			14	11
Logio					
Logic ANDPS/D	vmm vmm	1	MB	1	1
ANDNPS/D	xmm,xmm	1	MB	1	1
ORPS/D	xmm,xmm		MB	1	
XORPS/D	xmm,xmm	1	MB	1	1 1
NORFOID	xmm,xmm	1	IVID	'	'
Other					
LDMXCSR	m32			45	29
STMXCSR	m32			13	13
FXSAVE	m4096			208	208
FXRSTOR	m4096			232	232
	111.1000				

VIA-specific instructions

Instruction	Conditions	Clock cycles, approximately					
XSTORE	Data available	160-400 clock giving 8 bytes					
XSTORE	No data available	50-80 clock giving 0 bytes					
REP XSTORE	Quality factor = 0	4800 clock per 8 bytes					
REP XSTORE	Quality factor > 0	19200 clock per 8 bytes					
REP XCRYPTECB	128 bits key	44 clock per 16 bytes					

REP XCRYPTECB	192 bits key	46 clock per 16 bytes
REP XCRYPTECB	256 bits key	48 clock per 16 bytes
REP XCRYPTCBC	128 bits key	54 clock per 16 bytes
REP XCRYPTCBC	192 bits key	59 clock per 16 bytes
REP XCRYPTCBC	256 bits key	63 clock per 16 bytes
REP XCRYPTCTR	128 bits key	43 clock per 16 bytes
REP XCRYPTCTR	192 bits key	46 clock per 16 bytes
REP XCRYPTCTR	256 bits key	48 clock per 16 bytes
REP XCRYPTCFB	128 bits key	54 clock per 16 bytes
REP XCRYPTCFB	192 bits key	59 clock per 16 bytes
REP XCRYPTCFB	256 bits key	63 clock per 16 bytes
REP XCRYPTOFB	128 bits key	54 clock per 16 bytes
REP XCRYPTOFB	192 bits key	59 clock per 16 bytes
REP XCRYPTOFB	256 bits key	63 clock per 16 bytes
REP XSHA1		3 clock per byte
REP XSHA256		4 clock per byte

VIA Nano 3000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops: The number of micro-operations from the decoder or ROM. Note that the VIA

Nano 3000 processor has no reliable performance monitor counter for μ ops. Therefore the number of μ ops cannot be determined except in simple cases.

Port: Tells which execution port or unit is used. Instructions that use the same port

cannot execute simultaneously.

Integer add, Boolean, shift, etc.Integer add, Boolean, move, jump.

I12: Can use either I1 or I2, whichever is vacant first.MA: Multiply, divide and square root on all operand types.MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA: Memory store address.

ST: Memory store. LD: Memory load.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the same type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Port	Latency	Recipro- cal thruogh- put	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	l12	1	1/2	
						Latency 4 on pointer
MOV	r,m	1	LD	2	1	register
MOV	m,r	1	SA, ST	2	1.5	
MOV	m,i	1	SA, ST		1.5	
MOV	r,sr		l12		1/2	
MOV	m,sr				1.5	
MOV	sr,r			20	20	
MOV	sr,m			20	20	
MOVNTI	m,r		SA, ST	2	1.5	

MOVSX MOVZX		1	l12	1	1/2	
	r,r	1	112	1		
MOVSXD	r64,r32	1	1.0.140	1	1	
MOVSX MOVSXD	r,m	2	LD, I12	3	1	
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	1	I12	1	1/2	
CMOVcc	r,m		LD, I12	5	1	
XCHG	r,r	3	l12	3	1.5	
XCHG	r,m			18	18	Implicit lock
XLAT	m	3	LD, I1	6	2	
PUSH	r	1	SA, ST		1-2	
PUSH	i	1	SA, ST		1-2	
PUSH	m		LD, SA, ST		2	
PUSH	sr				6	
PUSHF(D/Q)		3		2	2	
PUSHA(D)		9			15	Not in x64 mode
POP	r	2	LD		1.25	
POP	(E/R)SP				4	
POP	m	3			2	
POP	sr				11	
POPF(D/Q)	<u> </u>	3			1	
POPA(D)		16			12	Not in x64 mode
LAHF		1	l1	1	1	140t III XO T IIIOGO
SAHF		1	11	1	1	
SALC		2	''	10	6	Not in x64 mode
SALO				10		
LEA	r,m	1	SA	1	1	Extra latency to other ports
BSWAP	r	1	12	1	1	Porto
LDS LES LFS LGS LSS	'		12	•		
	m	12		28	28	
PREFETCHNTA	m	1	LD		1	
PREFETCHT0/1/2	m	1	LD		1	
LFENCE MFENCE						
SFENCE					15	
Arithmetic instructions	l					
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	l1	1	1	
ADC SBB	r,m	2	LD I1		1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP	r,r/i	1	l12	1	1/2	
CMP	m,r/i	2	LD I12		1	
INC DEC NEG NOT	r	1	I12	1	1/2	
INC DEC NEG NOT	m	3	LD I12 SA ST	5	.,_	
AAA	""	12	LD 112 SA ST	9	37	Not in x64 mode
AAS		12			22	Not in x64 mode
DAA		14			22	Not in x64 mode
DAS		14			24	Not in x64 mode
AAD		7			24	Not in x64 mode

AAM MUL IMUL	r8	13 1		2	31	Not in x64 mode
MUL IMUL	r16	3	12	3		
MUL IMUL	r32	3	12	3		
IVIOL IIVIOL	132	3	12	3		Extra latanay to ather
MUL IMUL	r64	3	MA	8	8	Extra latency to other ports
IMUL	r16,r16	1	12	2	1	Porto
IMUL	r32,r32	1	12	2	1	
	.02,.02			_	•	Extra latency to other
IMUL	r64,r64	1	MA	5	2	ports
IMUL	r16,r16,i	1	12	2	1	
IMUL	r32,r32,i	1	12	2	1	
						Extra latency to other
IMUL	r64,r64,i	1	MA	5	2	ports
DIV	r8		MA	22-24	22-24	
DIV	r16		MA	24-28	24-28	
DIV	r32		MA	22-30	22-30	
DIV	r64		MA	145-162	145-162	
IDIV	r8		MA	21-24	21-24	
IDIV	r16		MA	24-28	24-28	
IDIV	r32		MA	18-26	18-26	
IDIV	r64		MA	182-200	182-200	
CBW CWDE CDQE		1	12	1	1	
CWD CDQ CQO		1	12	1	1	
Logic instructions						
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12		1	
AND OR XOR	m,r/i	3	LD I12 SA ST	5	2	
TEST	r,r/i	1	I12	1	1/2	
TEST	m,r/i	2	LD I12		1	
SHR SHL SAR	r,i/cl	1	l12	1	1/2	
ROR ROL	r,i/cl	1	l1	1	1	
RCR RCL	r,1	1	l1	1	1	
RCR RCL	r,i/cl	5+2n	l1	28+3n	28+3n	
SHLD SHRD	r16,r16,i/cl	2	l1	2	2	
SHLD SHRD	r32,r32,i/cl	2	l1	2	2	
SHLD	r64,r64,i/cl	16	l1	32	32	
SHRD	r64,r64,i/cl	23	l1	42	42	
BT	r,r/i	1	l1	1	1	
ВТ	m,r	6	l1		8	
BT	m,i	2	l1		1	
BTR BTS BTC	r,r/i	2	l1	2	2	
BTR BTS BTC	m,r	8	l1	10	10	
BTR BTS BTC	m,i	5	l1	8	8	
BSF BSR	r,r	2	l1	2	2	
SETcc	r8	1	l1	1	1	
SETcc	m	2			2	
CLC STC CMC		3	l1	3	3	
CLD STD		3	I1	3	3	

				ĺ		
Control transfer instruc	tions					
JMP	short/near	1	12	3	3	8 if >2 jumps in 16 bytes block
JMP	far	14			50	Not in x64 mode
						8 if >2 jumps in 16
JMP	r	2	12	3	3	bytes block
JMP	m(near)	2		3	3	do.
JMP	m(far)	17			42	
						1 if not jumping. 3 if jumping. 8 if >2 jumps in 16
Conditional jump	short/near	1	12	1-3-8	1-3-8	bytes block
J(E/R)CXZ	short	2		1-3-8	1-3-8	
LOOP	short	2		1-3-8	1-3-8	
LOOP(N)E	short	5		24	24	
	00					8 if >2 jumps in 16
CALL	near	2		3	3	bytes block
CALL	far	17			58	Not in x64 mode
						8 if >2 jumps in 16
CALL	r	2		3	3	bytes block
CALL	m(near)	3		4	3	do.
CALL	m(far)	19			54	
RETN		3		3	3	8 if >2 jumps in 16 bytes block
RETN	i	4		3	3	do.
RETF	1	20		3	49	uo.
RETF	i	20			49	
BOUND	r,m	9			13	Not in x64 mode
INTO	1,111	3			7	Not in x64 mode
					,	Trociii xo i modo
String instructions						
LODSB/W/D/Q		2			1	
REP LODSB/W/D/Q		3n			3n+27	
STOSB/W/D/Q		1			1-2	
					Small:	
DED 07000 444/D40					n+40, Big:	
REP STOSB/W/D/Q					6-7 bytes <i></i> ∕clk	
MOVSB/W/D/Q		3			_	
					Small:	
					2n+20, Big: 6-7	
REP MOVSB/W/D/Q					bytes/clk	
SCASB/W/D/Q		3			1	
REP SCASB					2.4n	
					Small:	
					2n+31,	
					Big: 5	
REP SCASW/D/Q					bytes/clk	
CMPSB/W/D/Q		5			6	
REP CMPSB/W/D/Q					2.2n+30	

Other						
NOP (90)		0-1	l12	0	1/2	Sometimes fused
long NOP (0F 1F)		0-1	l12	0	1/2	
PAUSE		2			6	
ENTER	a,0	10			21	
ENTER	a,b				52+5b	
LEAVE		3		2	2	
CPUID				55-146		
RDTSC					37	
RDPMC					40	

Floating point x87 instructions

Floating point x87 if	Operands	µops	Port	Latency	Reciprocal	Remarks
					thruogh-	
Move instructions					put	
FLD	r	1	MB	1	1 1	
FLD	m32/m64	2	LD MB	4	1 1	
FLD	m80	2	LD MB	4	1 1	
FBLD	m80	36		54	54	
FST(P)	r	1	MB	1	1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80	80		125	125	
FXCH	r	1	12	0	1	
FILD	m16	3		7		
FILD	m32	2		5		
FILD	m64	2		5		
FIST(T)(P)	m16	3		6		
FIST(T)(P)	m32	3		5		
FIST(T)(P)	m64	3		5		
FLDZ FLD1		1	MB		1	
FLDPI FLDL2E etc.		3			10	
FCMOVcc	r	1	MB	2	2	
FNSTSW	AX	1			1	
FNSTSW	m16	3			2	
FLDCW	m16	5			8	
FNSTCW	m16	3			2	
FINCSTP FDECSTP		1	12	0	1	
FFREE(P)		1	MB		1	
FNSAVE	m	122		319	319	
FRSTOR	m	115		196	196	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1	MB	2	1	
FMUL(P)	r/m	1	MA	4	2	
FDIV(R)(P)	r/m		MA	14-23	14-23	
FABS		1	MB	1	1	
FCHS		1	MB	1	1	
FCOM(P) FUCOM	r/m	1	MB		1 1	

FCOMPP FUCOMPP FCOMI(P) FUCOMI(P) FIADD FISUB(R)	r m	1 1 3	MB MB MB	2	1 1 2	
FIMUL	m	3			4	
FIDIV(R)	m	3			16	
FICOM(P)	m	3			2	
FTST		1	MB	2	1	
FXAM		15		38	38	
FPREM				~130		
FPREM1				~130		
FRNDINT		11		27		
Math						
FSCALE		22		37		
FXTRACT		13		57		
FSQRT				73		Less at lower precision
FSIN FCOS				~150		•
FSINCOS				270-360		
F2XM1				50-200		
FYL2X				~50		
FYL2XP1				~50		
FPTAN				300-370		
FPATAN				~180		
Other						
FNOP		1	MB		1	
WAIT		1	I12	0	1/2	
FNCLEX		•			59	
FNINIT					84	

Integer MMX and XMM instructions

	Operands	µops	Port	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVD	r32/64,(x)mm	1	MB	3	1 1	
MOVD	m32/64,(x)mm	1	SA ST	2	1-2	
MOVD	(x)mm,r32/64	1	12	4	1 1	
MOVD	(x)mm,m32/64	1	LD	2	1 1	
MOVQ	(x)mm, (x)mm	1	MB	1	1 1	
MOVQ	(x)mm,m64	1	LD	2	1 1	
MOVQ	m64, (x)mm	1	SA ST	2	1-2	
MOVDQA	xmm, xmm	1	MB	1	1 1	
MOVDQA	xmm, m128	1	LD	2	1 1	
MOVDQA	m128, xmm	1	SA ST	2	1-2	
MOVDQU	m128, xmm	1	SA ST	2	1-2	
MOVDQU	xmm, m128	1	LD	2	1	
LDDQU	xmm, m128	1	LD	2	1 1	
MOVDQ2Q	mm, xmm	1	MB	1	1	

MOVQ2DQ	xmm,mm	1	MB	1	1 1
MOVNTQ	m64,mm	2		~360	2
MOVNTDQ	m128,xmm	2		~360	2
MOVNTDQA	xmm,m128	1		2	1
PACKSSWB/DW					
PACKUSWB	(x)mm, (x)mm	1	MB	1	1
PACKUSDW	xmm,xmm	1	MB	1	1
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	MB	1	1
PUNPCKH/LQDQ	(x)mm, (x)mm	1	MB	1	1
PSHUFB	(x)mm,(x)mm	1	MB	1	1
PSHUFW	mm,mm,i	1	MB	1	1
PSHUFL/HW	xmm,xmm,i	1	MB	1	1
PSHUFD	xmm,xmm,i	1	MB	1	1
PBLENDVB	x,x,xmm0	1	MB	2	2
PBLENDW	xmm,xmm,i	1	MB	1	1
PALIGNR	xmm, xmm,i	1	MB	1	1
MASKMOVQ	mm,mm				1-2
MASKMOVDQU	xmm,xmm				1-2
PMOVMSKB	r32,(x)mm			3	1
PEXTRW	r32 ,(x)mm,i	1	MB	3	1
PEXTRB/D/Q	r32/64 ,xmm,i	1	MB	3	1
PINSRW	(x)mm,r32,i	2	MB	5	1
PINSRB/D/Q	xmm,r32/64,i	2	MB	5	1
PMOVSX/ZXBW/BD/					
BQ/WD/WQ/DQ	xmm,xmm	1	MB	1	1
Arithmetic instructions					
PADD/SUB(U)(S)B/W/D					
	(x)mm, (x)mm	1	MB	1	1
PADDQ PSUBQ	(x)mm, (x)mm	1	MB	1	1
PHADD(S)W					
PHSUB(S)W	(x)mm, (x)mm	3	MB	3	3
PHADDD PHSUBD	(x)mm, (x)mm	3	MB	3	3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	MB	1	1
PCMPEQQ	xmm,xmm	1	MB	1	1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	MA	3	1
PMULHRSW	(x)mm,(x)mm	1	MA	3	1
PMULLD	xmm,xmm	1	MA	3	1
PMULUDQ	(x)mm,(x)mm	1	MA	3	1
PMULDQ	xmm,xmm	1	MA	3	1
PMADDWD	(x)mm,(x)mm	1	MA	4	2
PMADDUBSW	(x)mm,(x)mm	7		10	8
PSADBW	(x)mm,(x)mm	1	MB	2	1
MPSADBW	xmm,xmm,i	1	MB	2	1
PAVGB/W	(x)mm,(x)mm	1	MB	1	1
PMIN/MAXSW	(x)mm,(x)mm	1	MB	1	1
PMIN/MAXUB	(x)mm,(x)mm	1	MB	1	1
PMIN/MAXSB/D	xmm,xmm	1	MB	1	1
PMIN/MAXUW/D	xmm,xmm	1	MB	1	1
PHMINPOSUW	xmm,xmm	1	MB	2	1 1

PABSB PABSW PABSD							
	(x)mm,(x)mm	1	MB	1	1		
PSIGNB PSIGNW				_	_		
PSIGND	(x)mm,(x)mm	1	MB	1	1		
1							
Logic instructions						I	ľ
PAND(N) POR PXOR	(x)mm,(x)mm	1	MB	1	1		
PTEST	xmm,xmm	1	MB	3	1		
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	1	MB	1	1		
PSLL/RL/RAW/D/Q	(x)xmm,i	1	MB	1	1		
PSLL/RLDQ	xmm,i	1	MB	1	1		
Other							
EMMS		1	MB		1		

Floating point XMM instructions

	Operands	µops	Port	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVAPS/D	xmm,xmm	1	MB	1	1	
MOVAPS/D	xmm,m128	1	LD	2	1 1	
MOVAPS/D	m128,xmm	1	SA ST	2	1 1	
MOVUPS/D	xmm,m128	1	LD	2	1 1	
MOVUPS/D	m128,xmm	2	SA ST	2	1 1	
MOVSS/D	xmm,xmm	1	MB	1	1 1	
MOVSS/D	xmm,m32/64	1	LD	2-3	1 1	
MOVSS/D	m32/64,xmm	2	SA ST	2-3	1-2	
MOVHPS/D	xmm,m64	2		6	1 1	
MOVLPS/D	xmm,m64	2		6	1 1	
MOVHPS/D	m64,xmm	3		6	1-2	
MOVLPS/D	m64,xmm	1		2	1-2	
MOVLHPS MOVHLPS	xmm,xmm	1		1	1 1	
MOVMSKPS/D	r32,xmm			3	1 1	
MOVNTPS/D	m128,xmm	2		~360	1-2	
SHUFPS	xmm,xmm,i	1	MB	1	1 1	
SHUFPD	xmm,xmm,i	1	MB	1	1 1	
MOVDDUP	xmm,xmm	1	MB	1	1 1	
MOVSH/LDUP	xmm,xmm	1	MB	1	1 1	
UNPCKH/LPS	xmm,xmm	1	MB	1	1 1	
UNPCKH/LPD	xmm,xmm	1	MB	1	1	
Conversion						
CVTPD2PS	xmm,xmm	2		5	2	
CVTSD2SS	xmm,xmm	1		2		
CVTPS2PD	xmm,xmm	2		5	1 1	
CVTSS2SD	xmm,xmm	1		2		
CVTDQ2PS	xmm,xmm	1	MB	3	1 1	
CVT(T) PS2DQ	xmm,xmm	1		2	1 1	
CVTDQ2PD	xmm,xmm	2		5	1	

CVT(T)BD2DO	ymm ymm	1	I	4	2
CVT(T)PD2DQ	xmm,xmm			<u> </u>	2
CVT/TVPCOPI	xmm,mm	2		5	
CVT(T)PS2PI	mm,xmm	1		4	1
CVTPI2PD	xmm,mm	2		4	1
CVT(T) PD2PI	mm,xmm	2		4	2
CVTSI2SS	xmm,r32	2		5	
CVT(T)SS2SI	r32,xmm	1		4	1
CVTSI2SD	xmm,r32	2		5	
CVT(T)SD2SI	r32,xmm	1		4	1
A with we at it					
Arithmetic		1	MDfodd	_	4
ADDSS SUBSS	xmm,xmm	1	MBfadd	2	1
ADDSD SUBSD	xmm,xmm	1	MBfadd	2	1
ADDPS SUBPS	xmm,xmm	1	MBfadd	2	1
ADDPD SUBPD	xmm,xmm	1	MBfadd	2	1
ADDSUBPS	xmm,xmm	1	MBfadd	2	1
ADDSUBPD	xmm,xmm	1	MBfadd	2	1
HADDPS HSUBPS	xmm,xmm	3	MBfadd	5	3
HADDPD HSUBPD	xmm,xmm	3	MBfadd	5	3
MULSS	xmm,xmm	1	MA	3	1
MULSD	xmm,xmm	1	MA	4	2
MULPS	xmm,xmm	1	MA	3	1
MULPD	xmm,xmm	1	MA	4	2
DIVSS	xmm,xmm	1	MA	13	13
DIVSD	xmm,xmm	1	MA	13-20	13-20
DIVPS	xmm,xmm	1	MA	24	24
DIVPD	xmm,xmm	1	MA	21-38	21-38
RCPSS	xmm,xmm	1	MA	5	5
RCPPS	xmm,xmm	3	MA	14	11
CMPccSS/D	xmm,xmm	1	MBfadd	2	1
CMPccPS/D	xmm,xmm	1	MBfadd	2	1
COMISS/D UCOMISS/D	жини, жини		Wibiaaa	_	
COMISS/D OCCIMISS/D	xmm,xmm	1	MBfadd	3	1
MAXSS/D MINSS/D	xmm,xmm	1	MBfadd	2	1
MAXPS/D MINPS/D	xmm,xmm	1	MBfadd	2	1
Wir da Grad Willand Grad	XIIIII,XIIIII	'	MBiada	_	
Math					
SQRTSS	xmm,xmm	1	MA	33	33
SQRTPS	xmm,xmm	1	MA	64	64
SQRTSD	xmm,xmm	1	MA	62	62
SQRTPD	xmm,xmm	1	MA	122	122
RSQRTSS	xmm,xmm	1		5	5
RSQRTPS	xmm,xmm	3		14	11
Logic					
ANDPS/D	xmm,xmm	1	MB	1	1
ANDNPS/D	xmm,xmm	1	MB	1	1
ORPS/D	xmm,xmm	1	MB	1	1
XORPS/D	xmm,xmm	1	MB	1	1

Other		
LDMXCSR	m32	31
STMXCSR	m32	13
FXSAVE	m4096	97
FXRSTOR	m4096	201

VIA-specific instructions

Instruction	Conditions	Clock cycles, approximately
XSTORE	Data available	160-400 clock giving 8 bytes
XSTORE	No data available	50-80 clock giving 0 bytes
REP XSTORE	Quality factor = 0	1300 clock per 8 bytes
REP XSTORE	Quality factor > 0	5455 clock per 8 bytes
REP XCRYPTECB	128 bits key	15 clock per 16 bytes
REP XCRYPTECB	192 bits key	17 clock per 16 bytes
REP XCRYPTECB	256 bits key	18 clock per 16 bytes
REP XCRYPTCBC	128 bits key	29 clock per 16 bytes
REP XCRYPTCBC	192 bits key	33 clock per 16 bytes
REP XCRYPTCBC	256 bits key	37 clock per 16 bytes
REP XCRYPTCTR	128 bits key	23 clock per 16 bytes
REP XCRYPTCTR	192 bits key	26 clock per 16 bytes
REP XCRYPTCTR	256 bits key	27 clock per 16 bytes
REP XCRYPTCFB	128 bits key	29 clock per 16 bytes
REP XCRYPTCFB	192 bits key	33 clock per 16 bytes
REP XCRYPTCFB	256 bits key	37 clock per 16 bytes
REP XCRYPTOFB	128 bits key	29 clock per 16 bytes
REP XCRYPTOFB	192 bits key	33 clock per 16 bytes
REP XCRYPTOFB	256 bits key	37 clock per 16 bytes
REP XSHA1		5 clock per byte
REP XSHA256		5 clock per byte