CPSC 340: Machine Learning and Data Mining

Generative Models
Fall 2016

Admin

- Assignment 1 is out, due September 23rd.
 - Setup your CS undergrad account ASAP to use Handin:
 - https://www.cs.ubc.ca/getacct
 - Instructions for handin will be posted to Piazza.
 - Try to do the assignment this week, BEFORE add/drop deadline.
 - The material will be getting much harder and the workload much higher.
 - Tutorial slides posted.
- Registration:
 - Keep checking your registration, if could change quickly.
 - You need to be registered in a tutorial section to stay enrolled.

• Scenario 1:

- "I built a model based on the data you gave me."
- "It classified your data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They are reporting training error.
- This might have nothing to do with test error.
- E.g., they could have fit a very deep decision tree.

Why 'probably'?

- If they only tried a few very simple models, the 98% might be reliable.
- E.g., they only considered decision stumps with simple 1-variable rules.

• Scenario 2:

- "I built a model based on half of the data you gave me."
- "It classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error once.
- This is an unbiased approximation of the test error.
- Trust them if you believe they didn't violate the golden rule.

• Scenario 3:

- "I built 10 models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the validation error a small number of times.
- Maximizing over these errors is a biased approximation of test error.
- But they only maximized it over 10 models, so bias is probably small.
- They probably know about the golden rule.

• Scenario 4:

- "I built 1 billion models based on half of the data you gave me."
- "One of them classified the other half of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably not:

- They computed the validation error a huge number of times.
- Maximizing over these errors is a biased approximation of test error.
- They tried so many models, one of them is likely to work by chance.

Why 'probably'?

- If the 1 billion models were all extremely-simple, 98% might be reliable.

• Scenario 5:

- "I built 1 billion models based on the first third of the data you gave me."
- "One of them classified the second third of the data with 98% accuracy."
- "It also classified the last third of the data with 98% accuracy."
- "It should get 98% accuracy on the rest of your data."

Probably:

- They computed the first validation error a huge number of times.
- But they had a second validation set that they only looked at once.
- The second validation set gives unbiased test error approximation.
- This is ideal, as long as they didn't violate golden rule on second set.
- And assuming you are using IID data in the first place.

The 'Best' Machine Learning Model

- Decision trees are not always most accurate.
- What is the 'best' machine learning model?
- No free lunch theorem:
 - There is **no** 'best' model achieving the best test error for every problem.
 - If model A works better than model B on one dataset,
 there is another dataset where model B works better.
- This question is like asking which is 'best' among "rock", "paper", and "scissors".

The 'Best' Machine Learning Model

- Implications of the lack of a 'best' model:
 - We need to learn about and try out multiple models.
- So which ones to study in CPSC 340?
 - We'll usually motivate a method by a specific application.
 - But we'll focus on models that are effective in many applications.
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured.
 - Some datasets are more likely than others.
 - Model A really could be better than model B on every real dataset in practice.
- Machine learning research:
 - Large focus on models that are useful across many applications.

Application: E-mail Spam Filtering

Want a build a system that filters spam e-mails.

- We have a big collection of e-mails, labeled by users.
- Can we formulate as supervised learning?

First a bit more supervised learning notation

• We have been using the notation 'X' and 'y' for supervised learning:

- X is matrix of all features, y is vector of all labels.
- Need a way to refer to the features and label of specific object 'i'.
 - We use y_i for the label of object 'i' (element 'i' of 'y').
 - We use x_i for the features object 'i' (row 'i' of 'X').
 - We use x_{ii} for feature 'j' of object 'i'.

Feature Representation for Spam

- How do we make label 'y_i' of an individual e-mail?
 - $-(y_i = 1)$ means 'spam', $(y_i = 0)$ means 'not spam'.
- How do we construct features 'x_i' for an e-mail?
 - Use bag of words:
 - "hello", "vicodin", "\$".
 - "vicodin" feature is 1 if "vicodin" is in the message, and 0 otherwise.
 - Could add phrases:
 - "be your own boss", "you're a winner", "CPSC 340".
 - Could add regular expressions:
 - <recipient>, <sender domain == "mail.com">

Probabilistic Classifiers

- For years, best spam filtering methods used naïve Bayes.
 - Naïve Bayes is a probabilistic classifier based on Bayes rule.
 - It's "naïve" because it makes a strong conditional independence assumption.
 - But it tends to work well with bag of words.
- Probabilistic classifiers model the conditional probability, $p(y_i \mid x_i)$.
 - "If a message has words x_i , what is probability that message is spam?"
- If $p(y_i = 'spam' \mid x_i) > p(y_i = 'not spam' \mid x_i)$, classify as spam.

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

Probabilities defined on 'event space':

D1\D2	1	2	3	4	5	6
1						
2						
3		D ₁ =3,D ₂ =2				
4						
5						
6						

- Dungeons & Dragons scenario:
 - You roll dice 1:
 - Roll 5 or 6 you sneak past monster.
 - Otherwise, you are eaten.
 - If you survive, you roll dice 2:
 - Roll 4-6, find pizza.
 - Otherwise, you find nothing.

Probabilities defined on 'event space':

D1\D2	1	2	3	4	5	6
1						
2			-Sur	`\		
3			Jui	VIV		
4						
5			Sur	ivid)i77	
6		,	3UI	/IVE	IZZC	

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - -p(-Survive) = 1 p(Survive) = 2/3.

Calculating Basic Probabilities

- Probability of event 'A' is ratio:
 - p(A) = Area(A)/TotalArea.
 - "Likelihood" that 'A' happens.
- Examples:
 - p(Survive) = 12/36 = 1/3.
 - p(Pizza) = 6/36 = 1/6.
 - -p(-Survive) = 1 p(Survive) = 2/3.
 - $p(D_1 \text{ is even}) = 18/36 = \frac{1}{2}$.

D1\D2	1	2	3	4	5	6
1						
2			D_1 is	even		
3						
4			D_1 is	even		
5						
6			D_1 is	even		

Random Variables and 'Sum to 1' Property

- Random variable: variable whose value depends on probability.
- Example: event $(D_1 = x)$ depends on random variable D_1 .
- Convention:
 - We'll use p(x) to mean p(X = x), when random variable X is obvious.
- Sum of probabilities of random variable over entire domain is 1:

$$-\sum_{x} p(x) = 1.$$
- E.g, $\sum_{i} p(D_{1} = i) = 1/6+1/6 + ...$

D1\D2	1	2	3	4	5	6
1			D_1	=1		
2			D_1	=2		
3			D_1	= 3		
4			D_1	= 4		
5			D_1	= 5		
6			D_1	= 6		

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 - Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.

Joint Probability

- Joint probability: probability that A and B happen, written 'p(A,B)'.
 - Intersection of Area(A) and Area(B).
- Examples:
 - $p(D_1 = 1, Survive) = 0.$
 - p(Survive, Pizza) = 6/36 = 1/6.
 - $p(D_1 \text{ even, Pizza}) = 3/36 = 1/12.$

D1\D2	1	2	3	4	5	6
1						
2			D_1 is	even		
3						
4			D_1 is	even		
5);	
6			D_1 is	even	1440	1

Note: order of A and B does not matter

Conditional Probability

Conditional probability:

- probability that A will happen if we know that B happens.
- "probability of A restricted to scenarios where B happens".
- Written p(A|B), said "probability of A given B".

Calculation:

- Within area of B:
 - Compute Area(A)/TotalArea.
- p(Pizza | Survive) =

D1\D2	1	2	3	4	5	6
1						
2			CIIV	```		
3			-Sur	vive		
4						
5			Cur	vive)i77	
6		•	Sul	VIVE		

Conditional Probability

D1\D2

5

Conditional probability:

- probability that A will happen if we know that B happens.
- "probability of A restricted to scenarios where B happens".
- Written p(A|B), said "probability of A given B".

• Calculation:

— Within area of B:

Compute Area(A)/TotalArea.

6 - p(Pizza | Survive) =

- p(Pizza, Survive)/p(Survive) = $6/12 = \frac{1}{2}$.
- Higher than p(Pizza, Survive) = 6/36 = 1/6.
- More generally, $p(A \mid B) = p(A,B)/p(B)$.

Geometrically: compute area of A on new space where B happened.

SurvivePizza

'Sum to 1' Properties and Bayes Rule.

- Conditional probability P(A | B) sums to one over all A:
 - $-\sum_{x} P(x \mid B) = 1.$
 - P(Pizza | Survive) + P(- Pizza | Survive) = 1.
 - P(Pizza | Survive) + P(Pizza | –Survive) ≠ 1.
- Bayes Rule:

- Allows you to "reverse" the conditional probability.
- Example:
 - P(Pizza | Survive) = P(Survive | Pizza)P(Pizza)/P(Survive) = (1) * (1/6) / (1/3) = $\frac{1}{2}$.
 - http://setosa.io/ev/conditional-probability

Back to E-mail Spam Filtering...

- Recall our spam filtering setup:
 - $-y_i$: whether or not the e-mail was spam.
 - $-x_i$: words/phrases/expressions in the e-mail.
- To model conditional probability, naïve Bayes uses Bayes rule:

- Easy part: p(x_i) is the same for all y_i, so we can ignore it.
- Easy part: $p(y_i = 'spam')$ is the probability that an e-mail is spam.
 - Count of number of times $(y_i = 'spam')$ divided by number of objects 'n'.
 - For (complicated) proof of this (simple) fact, see:
 - http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf

Generative Classifiers

- The hard part is estimating $p(x_i | y_i = 'spam')$:
 - the probability of seeing the words/expressions x_i if the e-mail is spam.
- This is called a generative classifier:
 - It needs to know the probability of the features, given the class.
 - How to "generate" features.
 - You need a model that knows what spam messages look like.
 - And a second that knows what non-spam messages look like.
 - This work well with tons of features compared to number of objects.

Generative Classifiers

- But does it need to know language to model $p(x_i | y_i)$???
- To fit generative models, usually make BIG assumptions:
 - Gaussian discriminant analysis (GDA):
 - Assume that $p(x_i | y_i)$ follows a multivariate normal distribution.
 - Naïve Bayes (NB):
 - Assume that each variables in x_i is independent of the others in x_i given y_i.

Independence of Random Variables

- Events A and B are independent if p(A,B) = p(A)p(B).
 - Equivalently: p(A|B) = p(A).
 - "Knowing B happened tells you nothing about A".
 - We use the notation:

- Random variables are independent if p(x,y) = p(x)p(y) for all x and y.
 - Flipping two coins:

```
p(C_1 = \text{'heads'}, C_2 = \text{'heads'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'heads'}).
p(C_1 = \text{'tails'}, C_2 = \text{'heads'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'heads'}).
p(C_1 = \text{'heads'}, C_2 = \text{'tails'}) = p(C_1 = \text{'heads'})p(C_2 = \text{'tails'}).
p(C_1 = \text{'tails'}, C_2 = \text{'tails'}) = p(C_1 = \text{'tails'})p(C_2 = \text{'tails'}).
```

Summary

- No free lunch theorem: there is no "best" ML model.
- Joint probability: probability of A and B happening.
- Conditional probability: probability of A if we know B happened.
- Generative classifiers: build a probability of seeing the features.
- Independent variables: variables do not affect each other.

- Next time:
 - A "best" machine learning model as 'n' goes to ∞.