National University of Modern Languages Islamabad DEPARTMENT OF SOFTWARE ENGINEERING FACULTY OF ENGINEERING & CS

Artificial Intelligence Assignment # 2

Name: Hamza Mehmood

Roll No: SP-21-110

Submitted to: Sir Farhad

Section: BSSE-V (Evening)

Duestion #1 Explain the wooking as ication of the ms. You need example for each case. a) Decision Tree Algorithm For Charification Paramelric supervised for classification inferred ealises and escale person will be buy Scanned with CamScanner

b) Decision Tree Algorithm For Regression	
Decision have	-
Decision locas can also be used for posterion problems	J€
where the togsession pooblems	
where the larget variable is	
continuous instead of categorical.	
Let's say you want to predict	
The say you want to predict	
the price of a house based or	1
ils size, location and number	
of bedooms. The decision will	
- chil the data into subsets base	0
on these features and execute	1
decision rules la predict the	
price of the house.	
C) Principal Component Analysis (PCA)	
C) Principal Component Analysis (PCA) This algorithm is used to	
seduce the dimensionality of a	
dataset while retaining as much	1
of the original variance as possible	r.
It achieves this by finding a	
new set of variables that are	
linear combinations of the original	
uneas combinations of the organic	
variables. These new variables are	
called principal components, and	
they capture the max amount	
of variance in the data.	
Example:	
Il can be used to reduce the	
number of features needed to	
Scanned with Cam	

Scanned with CamScanner

17 (10	- exouth algorithms
	This algorithm is used to
Pin	I forguent itereds in a data
sel	. It is a two pass algorithm
th	at tiest constants à facquent
ila	nsel tree (ff-tree) and then
Tuse	I it to generale frequent
iler	nsels. It is faster and more
me	mosy efficient then the Apsiosi
olg	osithm.
Ex	ample:
FP	- Growth is To identify the
	al frequently bought items
	a goodery store.
De	ep Q-Network (DQN):
	This algorithm combines
bei	ofoscement leaving and deep
ne	usal networks to solve complex
olo	ecision making problems. Il
48	es a Q-value (function) algorithm
1	leason the optimal action-
10	
Vo	lue function which maps
Vo (1)	lue function which maps ale-action paiss to their
sl sl	lue function, which maps ale-action pairs to their
sl ex	lue function, which maps ale-action pairs to their peded seward. The Q-value action is approximated using
sl ex fu	lue function, which maps ale-action pairs to their peded seward. The Q-value notion is approximated using
sl ex fu	lue function, which maps ale-action pairs to their peded seward. The Q-value notion is approximated using
sl ex fu ho	lue function, which maps ale-action pairs to their peded seward. The Q-value action is approximated using

Scanned with CamScanner

