Thema und Aufgabenstellung der Masterarbeit MA AI 29/2021

FÜR HERRN ALEXANDER JOHR

Entwicklung einer Formularanwendung mit Kompatibilitätsvalidierung der Einfach- und Mehrfachauswahl-Eingabefelder

Das Thünen-Institut für Ländliche Räume wertet Daten zu Maßnahmen auf landwirtschaftlich genutzten Flächen aus. Dafür müssen entsprechende Maßnahmen bundesweit mit Zeitbezug auswertbar sein und mit Attributen versehen werden. Um die Eingabe für die Wissenschaftler des Instituts zu beschleunigen und um fehlerhafte Eingaben zu minimieren, soll eine spezielle Formularanwendung entwickelt werden. Neben herkömmlichen Freitextfeldern beinhaltet das gewünschte Formular zum Großteil Eingabefelder für Einfach- und Mehrfachauswahl. Je nach Feld kann die Anzahl der Auswahloptionen mitunter zahlreich sein. Dem Nutzer sollen daher nur solche Auswahloptionen angeboten werden, die zusammen mit der zuvor getroffenen Auswahl sinnvoll sind.

Im Wesentlichen ergibt sich die Kompatibilität der Auswahloptionen aus der Bedingung, dass für dasselbe oder ein anderes Eingabefeld eine Auswahlmöglichkeit gewählt bzw. nicht gewählt wurde. Diese Bedingungen müssen durch Konjunktion und Disjunktion verknüpft werden können. In Sonderfällen muss ein Formularfeld jedoch auch die Konfiguration einer vom Standard abweichenden Bedingung ermöglichen. Wird dennoch versucht, eine deaktivierte Option zu selektieren, wäre eine Anzeige der inkompatiblen sowie der stattdessen notwendigen Auswahl ideal.

Die primäre Zielplattform der Anwendung ist das Desktop-Betriebssystem Microsoft Windows 10. Idealerweise ist die Formularanwendung auch auf weiteren Desktop-Plattformen sowie mobilen Endgeräten wie Android- und iOS-Smartphones und -Tablets lauffähig. Die Serialisierung der eingegebenen Daten genügt dem Institut zunächst als Ablage einer lokalen Datei im JSON-Format.

Die Masterarbeit umfasst folgende Teilaufgaben:

- Analyse der Anforderungen an die Formularanwendung
- Evaluation der angemessenen Technologie für die Implementierung
- Entwurf und Umsetzung der Übersichts- und Eingabeoberfläche
- Konzeption und Implementierung der Validierung der Eingabefelder
- Entwicklung von automatisierten Testfällen zur Qualitätskontrolle
- Bewertung der Implementierung und Vergleich mit den Wunschkriterien

Digital unterschrieben von Juergen K. Singer o= Hochschule Harz, Hochschule fuer angewandte Wissenschaften, l= Wernigerode Datum: 2021.03.23 12:30:

Prof. Jürgen Singer Ph.D.

1. Prüfer

Prof. Daniel Ackermann

2. Prüfer

Inhaltsverzeichnis

Abbildungsverzeichnis	5
Tabellenverzeichnis	7
Listingverzeichnis	g
I. Vorbereitung	11
II. Implementierung	13
1. Schritt 5	15
2. Schritt 5 neu	19
III. Anhang Eidesstattliche Erklärung	2 3

Abbildungsverzeichnis

1.1.	Das Card-Widget wird einmal neu gezeichnet	17
1.2.	Das Card-Widget wird zweimal mal neu gezeichnet	18
1.3.	Das Card-Widget wird siebenmal neu gezeichnet	18
2.1.	Das Card-Widget wird sechsmal neu gezeichnet	19
2.2.	Das Card-Widget wird einmal neu gezeichnet	21
2.3.	Das Card-Widget wird zweimal neu gezeichnet	22

Tabellenverzeichnis

Listingverzeichnis

1.1.	Schritt 5 Der Stream validityChanged in Schritt 5	17
2.1.	Schritt 4 Der Klassenvariable ha des Typs $ZielflaecheChoice$ wird eine Be-	
	dingung hinzugefügt	20
2.2.	Schritt 5 Der Stream validityChanged in Schritt 5	21

Teil I

VORBEREITUNG

Teil II

IMPLEMENTIERUNG

1. Schritt 5

Im letzten Schritt wurde das primäre Problem der Formularanwendung gelöst: Auswahloptionen sollen nur dann anwählbar sein, wenn sie die ihr hinterlegte Bedingung erfüllen.
Darüber hinaus können nur Maßnahmen gespeichert werden, deren Auswahloptionen untereinander kompatibel sind.

Durch das Lösen dieses Problems ist ein neues Problem entstanden: Alle Selektionskarten müssen bei einer Selektion neu gezeichnet werden. Bei einer geringen Anzahl von Auswahlfeldern sollte das noch keine gravierenden Auswirkungen auf das Laufzeitverhalten der Applikation haben. Doch je zahlreicher die Auswahlfelder werden, desto länger dauert die Aktualisierung der Oberfläche.

Das Problem kann folgendermaßen entschärft werden: Noch bevor das Widget SelectionCard den StreamBuilder in der build-Methode zurückgibt, wird ein neuer Stream namens validityChanged erstellt (Listing 2.2, S. 21, Z. 51-54).

Es handelt sich um eine sogenannte Transformation des Streams priorChoices, welcher die Momentaufnahme aller ausgewählten Optionen im gesamten Formular übermittelt. Immer dann, wenn der Stream priorChoices ein neues Ereignis sendet, geschieht für die Abwandlung dieses Streams folgendes: Die Methode map wandelt jedes Ereignis in ein neues Objekt um (Z. 52). Die aktuelle Momentaufnahme der Auswahloptionen im Formular wird dazu im Parameter choices gespeichert. Bei der Umwandlung des Ereignisses werden die ausgewählten Optionen der aktuellen Selektionskarte über selectionViewModel.value abgerufen. Sollte es sich beispielsweise bei der aktuellen Selektionskarte um das Auswahlfeld der Kategorie handeln, so könnte der ausgewählte Wert Düngemanagement sein. Für den Wert oder die Werte wird nun überprüft, ob sie mit der neuen Momentaufnahme der Selektionen im Formular kompatibel sind. Wurde also beispielsweise bei der neuen Selektion in der Förderklasse nun Ökolandbau ausgewählt, so würde die Option Düngemanagement nun invalide werden, da sie nur mit der Förderklasse Agrarumwelt-(und Klima)Maßnahme: nur Vertragsnaturschutz bzw. Agrarumwelt-(und Klima)Maßnahmen, tw. auch mit Tierwohlaspekten, aber OHNE Vertragsnaturschutz kompatibel ist. Die Methode map wandelt also das neue Ereignis der Momentaufnahme aller Selektionen im Formular in einen einzigen Wahrheitswert um. Ist der Wahrheitswert true, bedeutet dies, dass alle ausgewählten Optionen in der aktuellen Selektionskate valide sind. Ist er dagegen false, so ist wenigstens eine der Auswahloption mit den restlichen Auswahloptionen der anderen Auswahlfelder im

Formularen nicht kompatibel.

Der resultierende Stream wird weiter transformiert: Durch die Funktion distinct (Z. 54) werden nur Ereignisse gesendet, sofern sie sich von dem letzten Ereignis unterscheiden. Ein Beispiel: Für die Kategorie ist Düngemanagement ausgewählt. Für die Förderklasse ist Erschwernisausgleich im letzten Ereignis ausgewählt worden. Düngemanagement ist mit Erschwernisausgleich nicht kompatibel, weshalb das letzte Ereignis des durch map transformierten Streams false war. Nun wird für die Förderklasse eine weitere Selektion vorgenommen: Ökolandbau wird ausgewählt. Auch diese Option ist mit Düngemanagement nicht kompatibel. Der durch map transformierten Stream wird also erneut ein Ereignis mit dem Wert false senden. Doch bereits das letzte Ereignis war false. Die Methode distinct verhindert, dass dieses redundante Ereignis weitergeleitet wird. Nun erfolgt noch eine weitere Selektion: Für die Förderklasse wird Agrarumwelt-(und Klima)Maßnahme: nur Vertragsnaturschutz selektiert. Nun ist die Kategorie Düngemanagement mit der neuen Selektion kompatibel. Der aus der Methode map resultierende Stream liefert dieses Mal den Wert true. Das letzte Ereignis hatte den Wert false. Die Werte der beiden letzten Ereignisse unterscheiden sich also, was dazu führt, dass die Methode distinct das veränderte Ereignis nicht filtert sondern weiterleitet.

Der Stream validityChanged sendet also immer genau dann Ereignisse, wenn sich etwas an der Validität der Auswahloptionen der aktuellen Selektionskarte ändert. Doch dieser Stream kann nicht für den StreamBuilder benutzt werden. Denn wenn sich die Auswahl in der aktuellen Selektionskarte ändert und die Validität dadurch unverändert bleibt, so erfolgt kein neues Zeichnen der Selektionskarte. Deshalb ist eine Kombination der Streams validityChanged und selectionViewModel erforderlich. Das BehaviorSubject needsRepaint soll als diese Kombination fungieren (Z. 56). Es wird mit dem Wert (Z. true) initialisiert. Es ist unerheblich, welcher Wert in dem Stream aktuell gespeichert ist. Lediglich dass ein neues Ereignis hinzugefügt wird, um die Aktualisierung der Oberfläche auszulösen, ist wesentlich. Mit der Methode listen wird nun sowohl auf den Stream validityChanged (Z. 57) als auch auf selectionViewModel (Z. 58) gehorcht. Jedes empfangene Ereignis wird dabei dem BehaviorSubject needsRepaint hinzugefügt.

Dadurch, dass needsRepaint für den StreamBuilder verwendet wird (Z. 61), zeichnet sich die Selektionskarte immer dann neu, wenn sich die beinhaltenden Auswahloptionen oder aber dessen Validität ändert.

Dieses Verhalten kann auch bei Ausführung der Applikation im Debugmodus in Android Studio beobachtet werden. Der Flutter Performance-Tab gibt eine Übersicht über die
Anzahl der im letzten Frame neu gezeichneten Widgets (Abb. 1.1). Angenommen für die
Förderklasse ist Agrarumwelt-(und Klima)Maßnahme: nur Vertragsnaturschutz und für die
Kategorie ist Düngemanagement ausgewählt. Wenn nun für die Förderklasse die Option
Agrarumwelt-(und Klima)Maßnahmen, tw. auch mit Tierwohlaspekten, aber OHNE Vertragsnaturschutz selektiert wird, so ist im Flutter Performance-Tab zu beobachten, dass

```
final validityChanged = priorChoices
51
       .map((choices) =>
52
           selectionViewModel.value.any((c) => !c.conditionMatches(choices)))
53
        .distinct();
54
55
   final needsRepaint = BehaviorSubject.seeded(true);
56
   validityChanged.listen((value) => needsRepaint.add(true));
57
   selectionViewModel.listen((value) => needsRepaint.add(true));
58
59
   return StreamBuilder(
60
       stream: needsRepaint,
61
       builder: (context, snapshot) {
62
         final selectedChoices = selectionViewModel.value;
63
         final bool wrongSelection = selectedChoices
64
              .any((c) => !c.conditionMatches(priorChoices.value));
65
66
         return Card(
67
           child: Column(
68
              crossAxisAlignment: CrossAxisAlignment.start,
69
70
              children: [
71
                ListTile(
```

Listing 1.1.: Der Stream validityChanged in Schritt 5, Quelle: Eigenes Listing, Datei: Quellcode/ Schritt-5/conditional_form/lib/widgets/selection_card.dart

⊤Widget rebuild st	tats	✓	Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	56
Text	selection_card.dart:126	7	56
Card	selection_card.dart:67	1	6

Abbildung 1.1.: Das Card-Widget wird einmal neu gezeichnet, Quelle: Eigene Abbildung

das Widget Card nur einmal neu gezeichnet wurde.

Das ergibt Sinn, denn es hat sich nichts an der Validität eines anderen Auswahlfeld geändert. Lediglich die Selektionskarte für die Förderklasse muss neu gezeichnet werden, da sich seine Selektion angepasst hat. Wird nun aber die Förderklasse Ökolandbau ausgewählt, so ist zu beobachten, dass das Card-Widget zweimal gebaut wurde: Einmal für die Selektionskarte der Förderklasse, da sich dessen ViewModel änderte; Ein weiteres Mal für die Selektionskarte der Kategorie, da die Auswahl Düngemanagement nicht länger valide ist und die Karte deshalb mit einem roten Hintergrund eingefärbt werden muss (Abb. 1.2).

Ohne die Änderungen in diesem Schritt zeigt der Flutter Performance-Tab, dass sich bei jeder Auswahl einer Option sechs Card-Elemente aktualisieren (Abb. 1.3). Das ist der Fall, weil es in Summe sechs Auswahlfelder gibt.

-Widget rebuild st	tats		Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	42
Text	selection_card.dart:126	7	42
Card	selection_card.dart:67	2	7

Abbildung 1.2.: Das Card-Widget wird zweimal mal neu gezeichnet, Quelle: Eigene Abbildung

-Widget rebuild st	tats	Z	Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	28
Text	selection_card.dart:126	7	28
Card	selection_card.dart:67	6	12

 ${\bf Abbildung~1.3.:}$ Das ${\it Card\text{-}Widget}$ wird siebenmal neu gezeichnet, Quelle: Eigene Abbildung

2. Schritt 5 neu

Im letzten Schritt wurde das primäre Problem der Formularanwendung gelöst: Auswahloptionen sollen nur dann anwählbar sein, wenn sie die ihr hinterlegte Bedingung erfüllen.
Darüber hinaus können nur Maßnahmen gespeichert werden, deren Auswahloptionen untereinander kompatibel sind.

Durch das Lösen dieses Problems ist ein neues Problem entstanden: Alle Selektionskarten müssen bei einer Selektion neu gezeichnet werden. Dieses Verhalten kann auch bei Ausführung der Applikation im Debugmodus in Android Studio beobachtet werden. Der Flutter Performance-Tab gibt eine Übersicht über die Anzahl der im letzten Frame neu gezeichneten Widgets. Dieser zeigt, dass sich bei jeder Auswahl einer Option sechs Card-Elemente aktualisieren (Abb. 2.1). Das ist der Fall, da es im Formular in Summe sechs Selektionskarten mit einem darin befindlichen Card-Widget gibt.

⊤Widget rebuild st	tats	V	Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	28
Text	selection_card.dart:126	7	28
Card	selection_card.dart:67	6	12

Abbildung 2.1.: Das Card-Widget wird sechsmal neu gezeichnet, Quelle: Eigene Abbildung

Bei einer geringen Anzahl von Auswahlfeldern sollte das noch keine gravierenden Auswirkungen auf das Laufzeitverhalten der Applikation haben. Doch je zahlreicher die Auswahlfelder werden, desto länger dauert die Aktualisierung der Oberfläche.

Das Problem kann folgendermaßen entschärft werden: Noch bevor das Widget SelectionCard den StreamBuilder in der build-Methode zurückgibt, wird der Stream validityChanged erstellt (Listing 2.2, S. 21, Z. 51-54).

Es handelt sich um eine sogenannte Transformation des *Streams* priorChoices, welcher die Momentaufnahme aller ausgewählten Optionen im gesamten Formular übermittelt. Immer dann, wenn der *Stream* priorChoices ein neues Ereignis sendet, geschieht für die Abwandlung dieses *Streams* folgendes: Die Methode map wandelt jedes Ereignis in ein neues Objekt um (Z. 52). Die aktuelle Momentaufnahme der Auswahloptionen im Formular wird dazu im Parameter choices gespeichert. Bei der Umwandlung des Ereignisses werden

die ausgewählten Optionen der aktuellen Selektionskarte über selectionViewModel.value abgerufen (Z. 53). Sollte es sich beispielsweise bei der aktuellen Selektionskarte um das Auswahlfeld der Zieleinheit handeln, so könnte der ausgewählte Wert ha sein.

Mit dem Aufruf .any((c) => !c.conditionMatches(choices)) wird nun überprüft, ob der ausgewählte Wert – im Fall eines Einfachauswahlfeldes – oder die ausgewählten Werte – bei einem Mehrfachauswahlfeld – mit der neuen Momentaufnahme der Selektionen im Formular kompatibel sind. Für die Zieleinheit ha gelten folgenden Bedingungen: Für die Zielfläche dürfen die Option keine Angabe/Vorgabe und bitte um Unterstützung nicht gewählt sein (Listing 2.1, Z. 166-167). Das bedeutet im Umkehrschluss, dass nur die Optionen AL, GL, LF, DK/SK, HFF, Landschaftselement/Biotop o.Ä. oder Wald/Forst gewählt sein dürfen.

```
static final ha = ZieleinheitChoice("ha", "ha",
condition: (choices) =>
lchoices.contains(ZielflaecheChoice.ka) &&
lchoices.contains(ZielflaecheChoice.contact));
```

Listing 2.1.: Der Klassenvariable ha des Typs Zielflaeche Choice wird eine Bedingung hinzugefügt, Quelle: Eigenes Listing, Datei: Quellcode/Schritt-5/conditional_form/lib/choices/choices.dart

Wurde also beispielsweise bei der neuen Selektion in der Zielfläche die Option keine Angabe/Vorgabe ausgewählt, so würde die Option ha invalide werden, da sie nicht mit den Zieleinheit-Optionen keine Angabe/Vorgabe bzw. bitte um Unterstützung kompatibel ist.

Die Methode map (Listing 2.2, S. 21, Z. 52) wandelt also das neue Ereignis der Momentaufnahme aller Selektionen im Formular in einen einzigen Wahrheitswert um. Ist der Wahrheitswert true, bedeutet dies, dass alle ausgewählten Optionen in der aktuellen Selektionskarte valide sind. Ist er dagegen false, so ist wenigstens eine der Auswahloptionen mit den restlichen Selektionen der anderen Auswahlfelder im Formular inkompatibel.

Der resultierende *Stream* wird weiter transformiert: Durch die Funktion distinct (Z. 54) werden nur Ereignisse gesendet, sofern sie sich von dem letzten Ereignis unterscheiden. Der *Stream* validityChanged sendet also immer genau dann Ereignisse, wenn sich etwas an der Validität der Auswahloptionen der aktuellen Selektionskarte ändert.

Doch dieser Stream kann nicht für den StreamBuilder benutzt werden. Denn wenn sich die Auswahl in der aktuellen Selektionskarte ändert und die Validität dadurch unverändert bleibt, so erfolgt kein neues Zeichnen der Selektionskarte. Es muss aber eine Aktualisierung stattfinden, damit der neue Wert in der Selektionskarte abgebildet wird. Deshalb ist eine Kombination der Streams validityChanged und selectionViewModel erforderlich. Das BehaviorSubject needsRepaint soll als diese Kombination fungieren (Z. 56). Es wird mit dem Wert true initialisiert. Es ist unerheblich, welcher Wert in dem Stream aktuell gespeichert ist. Lediglich dass ein neues Ereignis hinzugefügt wird, um die Aktualisierung der Oberfläche auszulösen, ist wesentlich. Mit der Methode listen wird nun sowohl auf

```
final validityChanged = priorChoices
51
       .map((choices) =>
52
           selectionViewModel.value.any((c) => !c.conditionMatches(choices)))
53
        .distinct();
54
55
   final needsRepaint = BehaviorSubject.seeded(true);
56
   validityChanged.listen((value) => needsRepaint.add(true));
57
   selectionViewModel.listen((value) => needsRepaint.add(true));
58
59
   return StreamBuilder(
60
61
       stream: needsRepaint,
       builder: (context, snapshot) {
62
         final selectedChoices = selectionViewModel.value;
63
         final bool wrongSelection = selectedChoices
64
              .any((c) => !c.conditionMatches(priorChoices.value));
65
66
         return Card(
67
           child: Column(
68
              crossAxisAlignment: CrossAxisAlignment.start,
69
70
             children: [
71
               ListTile(
```

Listing 2.2.: Der *Stream validityChanged* in Schritt 5, Quelle: Eigenes Listing, Datei: Quellcode/Schritt-5/conditional_form/lib/widgets/selection_card.dart

den Stream validityChanged (Z. 57) als auch auf selectionViewModel (Z. 58) gehorcht. Jedes empfangene Ereignis wird dabei dem BehaviorSubject needsRepaint hinzugefügt. Dadurch, dass needsRepaint für den StreamBuilder verwendet wird (Z. 61), zeichnet sich die Selektionskarte immer dann neu, wenn sich die beinhaltenden Auswahloptionen oder aber dessen Validität ändern.

Ein Beispiel: Für die Zielfläche ist AL und für die Zieleinheit ist ha ausgewählt. Beide Optionen sind miteinander kompatibel. Nun erfolg eine weitere Selektion. Für Zielfläche wird nun die Option GL gewählt. Auch sie ist mit der Zieleinheit ha kompatibel. Durch die Selektion hat sich der Wert der Selektionskarte der Zielfläche geändert, weshalb sie neu gezeichnet werden muss. Alle anderen Auswahlfelder im Formular sind nicht betroffen. Im $Flutter\ Performance$ -Tab ist zu beobachten, dass das $Widget\ Card\ nur\ einmal\ neu\ gezeichnet\ wurde\ (Abb. 2.2).$

- Widget rebuild st	ats	~	Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	56
Text	selection_card.dart:126	7	56
Card	selection_card.dart:67	1	6

Abbildung 2.2.: Das Card-Widget wird einmal neu gezeichnet, Quelle: Eigene Abbildung

Durch eine weitere Selektion für Zielfläche soll nun provoziert werden, dass die Auswahl der Zieleinheit invalide wird. Deshalb wird für die Zielfläche nun keine Angabe/Vorgabe selektiert. Die Zieleinheit ha ist damit nicht kompatibel. Deshalb müssen sich nun zwei Auswahlfelder aktualisieren:

- die Selektionskarte Zielfläche, weil sich der darin ausgewählte Wert geändert hat und
- die Selektionskarte Zieleinheit, da sie zuvor valide war und nun invalide ist.

Der Flutter Performance-Tab reflektiert dies, da sich das Widget Card nun zweimal neu zeichnet (Abb. 2.3).

⊤Widget rebuild st	tats	E	Track widget rebuilds
Widget	Location	Last Frame	Current Screen
Checkbox	selection_card.dart:122	7	42
Text	selection_card.dart:126	7	42
Card	selection_card.dart:67	2	7

Abbildung 2.3.: Das Card-Widget wird zweimal neu gezeichnet, Quelle: Eigene Abbildung

Teil III

ANHANG

Eidesstattliche Erklärung

Ich erkläre, dass ich die vorliegende Masterarbeit Entwicklung einer Formularanwendung mit Kompatibilitätsvalidierung der Einfach- und Mehrfachauswahl-Eingabefelder selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe und dass ich alle Stellen, die ich wörtlich oder sinngemäß aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe. Die Arbeit hat bisher in gleicher oder ähnlicher Form oder auszugsweise noch keiner Prüfungsbehörde vorgelegen.

Ich versichere, dass die eingereichte schriftliche Fassung der auf dem beigefügten Medium gespeicherten Fassung entspricht.

Wernigerode, den 01.09.2021

Alexander Johr