Class 10

Shikhar Saxena

February 10, 2023

Contents

Recap	1
Ross' Notation	1
Policy Evaluation Algorithm	2
Underlying MRP under f	2
Optimal stationary policy f_{α}	2
Improving a policy f	3

Recap

- α -optimal policy
- $\circ V_{\alpha}$ policy and associated Bellman Equation

Ross' Notation

- \circ $B(\mathcal{S})$: Set of all bounded (real-valued) Functions on the state space
- $\circ u \in B(\mathcal{S})$
- Map $T_f: B(\mathcal{S}) \to B(\mathcal{S})$ for policy vector f over the state space. Each f(i) belongs to the action space.

$$(T_f u)(i) = r(i,f(i)) + \alpha \sum_{i=0}^{\infty} P_{ij}(f(i))u(j)$$

Intuition for the map is the policy evaluation equation:

$$V^\pi(s) = r(s,\pi(s)) + \alpha E_{s,\pi} \left[V^\pi(S') \right]$$

• **Terminal Reward**: Just the reward of terminating at the state (doesn't consider the immediate reward).

So, interpretation of $T_f u$ has the interpretation of following policy f for one step before terminating with terminal reward αu ($\alpha u(j)$ when final state is j).

Definition 1. $T_f^n = T_f(T_f^{n-1})$ or $T_f(T_f(T_f(...)))$ (n times).

Definition 2. For any two functions $u, v, u_n \in B(\mathcal{S})$:

- 1. $u \le v$ if $u(i) \le v(i)$ for all i
- 2. u = v if u(i) = v(i) for all i
- 3. $u_n \to u$ if $u_n(i) \to u(i)$ for all i

Lemma 1. For $u, v \in B(\mathcal{S})$ and a stationary policy f

- 1. $u \le v \implies T_f u \le T_f v$
- 2. $T_f V^f = V^f$
- $\mathcal{3}.\ T^n_fu\to V^f,\ \forall u\in B(\mathcal{S})$

Proof. 1. Easy to proof

- 2. Place revenue back in the conditioned expectation and it will be same as V_f
- 3. $T_f^n u$ is following f for n steps and obtaining a terminal reward of $\alpha^n u$ and then taking $n \to \infty$. Basically, $T_f^n u$ indiciates n-period value function and as $n \to \infty$, this will become the infinite horizon value function.

Policy Evaluation Algorithm

 $\circ\,$ For a policy f, keep applying T_f and you'll get V_f

Underlying MRP under f

Remark. Markov Reward Process: No action

The *Policy Evaluation* equation can be rewritten as

$$V^f = r^f + \alpha P^f V^f$$

Optimal stationary policy f_{α}

Let's say you have the optimal stationary policy f_{α} .

Theorem 1.

$$V^{f_\alpha}(i) = V_\alpha(i) \ \forall i \geq 0$$

and hence f_{α} is optimal

Proof. Apply $T_{f_{\alpha}}$ operator to V_{α} . This gives us $T_{f_{\alpha}}V_{\alpha}=V_{\alpha}$. Now repeatedly apply. This gives $\lim_{n\to\infty}T_{f_{\alpha}}^n=V_{f_{\alpha}}=V_{\alpha}$

Improving a policy f