



# Proseminar "Convolutional Neural Networks - Methoden und Anwendungen"

Bilderkennung mit Vgg

Justin Schartner

18. Mai 2022







### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick







#### **Thema**

#### Problemstellung

Gibt es CNN-Architekturen, welche Bilder noch besser, als schon bekannte Architekturen klassifizieren können?

#### Lösung

Durch die Erhöhung der Tiefe eines CNN verspricht man sich genauere Aussagen über Bilder machen zu können.

#### Ergebnis

Die VGG-Architektur hat bewiesen, dass die Tiefe eines CNN, eine ausschlaggebende Komponente hinsichtlich der Bilder-Klassifizierung ist.







# Gliederung

- Was ist VGG? Allgemeines
- Wie funktioniert VGG, was macht es besonders? Architektur
- Wie trainiert man ein VGG-net, was ist wichtig? **Training**
- Wie implementiert man ein VGG-net? Beispiel
- Wie gut ist VGG? Bewertung





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick







### **Eckdaten**

- Visual Geometry Group
- Department of Engineering Sciecne, University of Oxford
- Karen Simonyan und Andrew Zisserman
- Veröffentlicht: 4 Sep 2014
- Letzte Änderung: 10 Apr 2015





# Idee

#### Steigerung der Genauigkeit durch:

- Steigerung der Tiefe, des CNNs
- Schachtelung von Convolutional-Layer-Blöcken
- Einsatz von kleinen 3x3-Filtern und einer Stride von 1





# Aufgaben/ Einsatz

#### Bilderkennung

- Imagenet
- Pneumoina Image
- Deep Facial Emotion Recognition
- Plankton Classification
- Plant Image Classification
- ...





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick





# **Architekturarten**

| layers   l  |           |           | ConvNet C       | onfiguration  |           |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------|---------------|-----------|-----------|
| layers   l  | A         | A-LRN     | В               | С             | D         | E         |
| input (224 x 224 RGB-image) conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 LRN conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-128 conv3-256 con | 11 weight | 11 weight | 13 weight       | 16 weight     | 16 weight | 19 weight |
| Conv3-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | layers    | layers    | layers          | layers        | layers    | layers    |
| LRN         comv3-64         comv3-128         comv3-256         comv3-512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           | input (224 x 22 | 24 RGB-image) |           |           |
| maxpool conv3-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | conv3-64  | conv3-64  | conv3-64        | conv3-64      | conv3-64  | conv3-64  |
| conv3-128         conv3-256         conv3-512         conv3-512 <t< td=""><td></td><td>LRN</td><td>conv3-64</td><td>conv3-64</td><td>conv3-64</td><td>conv3-64</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | LRN       | conv3-64        | conv3-64      | conv3-64  | conv3-64  |
| Conv3-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           | max             | cpool         |           |           |
| maxpool         conv3-256         conv3-512         conv3-512 <th< td=""><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | conv3-128 | conv3-128 | conv3-128       | conv3-128     | conv3-128 | conv3-128 |
| com/3-256         com/3-512         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           | conv3-128       | conv3-128     | conv3-128 | conv3-128 |
| Conv3-256   Con   |           |           | max             | cpool         |           |           |
| Conv3-256   Conv3-512   Con   | conv3-256 | conv3-256 | conv3-256       | conv3-256     | conv3-256 | conv3-256 |
| maxpool   com/3-256   com/3-512   com/3   | conv3-256 | conv3-256 | conv3-256       | conv3-256     | conv3-256 | conv3-256 |
| maxpool         maxpool           onv3-512         conv3-512         conv3-512<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |           |                 | conv1-256     | conv3-256 |           |
| comy3-512 com                       |           |           |                 |               |           | conv3-256 |
| conv3-512         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           | max             | rpool         |           |           |
| conv1-512   conv3-512   con   | conv3-512 | conv3-512 | conv3-512       | conv3-512     | conv3-512 | conv3-512 |
| maxpool   com/3-512   com/3-  | conv3-512 | conv3-512 | conv3-512       |               |           |           |
| maxpcol conv3-512 FC-4096 FC-4096 FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |                 | conv1-512     | conv3-512 |           |
| comy3-512 com                       |           |           |                 |               |           | conv3-512 |
| conv3-512         conv3-512 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |                 |               |           |           |
| conv3-512   conv3-512   conv3-512   conv3-512   conv3-512     maxpool   FC-4096   FC-1000   FC  | conv3-512 |           |                 |               |           |           |
| maxpool<br>FC-4096<br>FC-4096<br>FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conv3-512 | conv3-512 | conv3-512       |               |           |           |
| maxpool<br>FC-4096<br>FC-4096<br>FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |                 | conv3-512     | conv3-512 |           |
| FC-4096<br>FC-4096<br>FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |                 |               |           | conv3-512 |
| FC-4096<br>FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |                 |               |           |           |
| FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           |                 |               |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |                 |               |           |           |
| soft-max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |           |                 |               |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           | soft            | -max          |           |           |





#### **Architekur**

#### Convolutional Layers

- receiptive field: 3x3, 1x1
- activation: ReIU, stride: 1, padding: 1, channels: 64, 128, 512, 512

#### Pooling Layer

- Max-Pool
- field: 2x2, stride: 2

#### Fully-Connected Layers

- activation: RelU
- channels: 4096, 4096, 1000

#### Softmax Layer





# **Convolutional Layers**

- 2D Convolution
- Aktivierungsfunktion: ReLU
- Stride: 1x1
- Padding: 1, 0
  - $\Rightarrow$  Die Breite und Höhe des Inputs wird beibehalten
- Kernel: 3x3 oder 1x1
  - $\Rightarrow$  Minimaler Kernel für den Vergleich von Links/Rechts Oben/Unten
- Filter Anzahl: 64, 128, 256, 512
  - ⇒ Filter lernen Muster des Inputs zu erkennen





# **Convolutional Layers**



Abbildung: Quelle?

(Breite x Höhe x Tiefe)  $\xrightarrow{\text{Conv2d(Filter: 3x3xTiefe, Filter Anzahl: n)}}$  (Breite x Höhe x n)







#### ReLU Rectified Linerar Unit



$$f(x) = \begin{cases} x & x > 0 \\ 0 & \text{sonst} \end{cases}$$

Abbildung: 
$$f(x)$$

$$f'(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$



Abbildung: f'(x)





# **Max-Pooling**

Stride: 2x2

Kernel: 2x2

⇒ Die Breite und Höhe wird halbiert

⇒ Daten werden auf die auschlaggebenden Informationen reduziert



# **Fully Connected Layers**

- Input: (7x7x512)
  - $\Rightarrow$  (7x7x512) Input-Neuronen
- Aktivierungsfunktion: ReLU
- Zwei versteckte Layer mit jeweils 4096 Neuronen
- ImageNet-Klassifiezunrg von 1000 Klassen
  - ⇒ 1000 Output-Neuronen



Abbildung: full-yconnected layer





# **Softmax**

$$\sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

- normalisierte Exponentialfunktion
- kategoriale Verteilung
- Transformation in den Wertebereich [0,1]



Abbildung: e<sup>x</sup>

$$\begin{pmatrix} -0.5\\0.8\\1.3 \end{pmatrix} \xrightarrow{Softmax} \begin{pmatrix} 0.093\\0.342\\0.564 \end{pmatrix}$$





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick





# **Training**

#### Optimierung des Traininigs durch:

- Stochastic Gradient Descent
- Dropout, p=0.5
- L2-Normalisation
- Momentum
- Batch-Size: 256

#### Weitere nützliche Faktoren:

- Kleinere Filter-Grösen
- Vor-Initialisierung von Gewichten
- Die Tiefe des Netzwerkes







# Training Details

- Learninig-rate: 10e-2 10e-4
- Momentum: 0.9
- Weight-Decay: 5e-4
- Biases wurden mit 0 initialisiert
- VGG16 wurde mit VGG11-Gewichten initialisiert





# Training Bild-Processing

- Bilder wurden zufällig aus anderen Bildern ausgeschnitten
- Bilder wurden zufällig horizontal gedreht
- Bilder wurden zufällig skaliert
  - ⇒ Filter werden trainiert Features auf verschieden Arten zu erkennen





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick





1. Variante: Die Komponenten einzeln erstellen und aneinander reihen.

Anpassbarkeit an das Problem

Das Trainieren des Netzwerkes nimmt mehr Zeit in Anspruch

2. Variante: Benutzen von schon bestehenden (und trainierten) Netzwerken.

Sind sofort einsatzbereit

Aufwand ist kleiner

Die vortrainierten Gewichte können die Trainingszeit minimieren

Konfigurierung kann aufwendig sein









```
import torch.nn as nn
vgg16 = [[64, 64], [128, 128], [256, 256, 256], [512, 512, 512], [512, 512, 512]]
vgg19 = [[64, 64], [128, 128], [256, 256, 256, 256], [512, 512, 512, 512], [512, 512, 512]]
class VGG_net(nn.Module):
    def __init__(self, in_channels=3, num_classes=1000, architecture=vgg16):
        super(VGG_net, self).__init__()
        #Convolutional Lavers
        self.conv_layers = self.create_conv_layers(in_channels, architecture)
        self.fully_connected_layers = self.create_fully_connected_layers(num_classes)
   def forward(self, x):
        x = self.conv lavers(x)
       x = x.reshape(x.shape[0], -1)
        x = self.fully_connected_layers(x)
        return x
```





```
(6): ReLU()
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(12): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU()
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU()
(20): ReLU()
(22): ReLU()
(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (27): ReLU()
(29): ReLU()
 (38): MaxPool2d(kernel size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil mode=False)
(0): Linear(in features=25088, out features=4096, bias=True)
(3): Linear(in features=4096, out features=4096, bias=True)
(4): ReLU()
(6): Linear(in features=4096, out features=1000, bias=True)
 (7): Softmax(dim=0)
```





```
(features): Sequential(
 (0): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (4): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (5): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (6): ReLU(inplace=True)
 (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (12): Conv2d(256, 256, kernel_size-(3, 3), stride-(1, 1), padding-(1, 1))
(13): ReLU(inplace=True)
 (14): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (16): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (18): ReLU(inplace=True)
 (20): ReLU(inplace=True)
 (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (22): ReLU(inplace=True)
 (23): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (24): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (25): ReLU(inplace=True)
 (26); Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (28): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
 (29): ReLU(inplace=True)
 (30): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
 (0): Linear(in_features=25088, out_features=4096, bias=True)
 (2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
 (4): ReLU(inplace=True)
 (5): Dropout(p=0.5, inplace=False)
 (6): Linear(in_features=4096, out_features=1000, bias=True)
```

```
import torch

if __name__ == "__main__":

net = torch.hub.load('pytorch/vision:v0.18.8', 'wgg16', pretrained=True)
print(net)
```





# Vgg trainieren

```
def train_network(net, x_train, y_train, epochs):
   learning_rate = 0.001
   momentum = 0.9
   #Loss function
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.SGD(net.parameters().
                          1r=learning_rate. momentum=momentum)
   for epoch in range(epochs):
        #reset the gradients in net
        optimizer.zero_grad()
        outputs = net(x_train)
        #calculate loss
        loss = criterion(outputs, y_train)
        #calculate gradients in net
        loss.backward()
        optimizer.step()
```





# Vgg benutzen

pug 0.9928255081176758





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick





# **Ergebnis**

- Die Anwendung von mehreren 3x3 Filtern ersetzt die Funktionalität von bsp. 7x7 Filtern und erhört die Diskriminietivität
- Die Tiefe eine CNNs ist auschlaggebend fù¼r die Genauigkeit
- VGG-Architekturen haben viele Anwendungsbereiche, erzielen auf verschiedensten Datenbanken erfolgreiche Resultate





# Komplexität

- Anzahl an Parametern: 15.1, 15.3, 20.6, 25.9 in Millionen
   Mehr Parameter fù⁄₄hren zu einer lĤngeren Trainigszeit
- Enspricht etwa 528MB
   Hoher Speicher-Verbrauch





# **Performance**





# Vergleich





### Struktur

- 1 Einleitung
- 2 Allgemeines
- 3 Architektur
- 4 Training
- 5 Beispiel
- 6 Bewertung
- 7 Ausblick





# **Ausblick**