1. Give the multiplication tables for S_3 and Δ_3 .

We know that the Symmtric Group of Degree 3 has 3! = 6 elements.

Then let us define S_3 on the set Z_3 as follows. primary_table: { '1,2,3': 'a', '1,3,2': 'b', '2,3,1': 'c', '2,1,3': 'd', '3,1,2': 'e', '3,2,1': 'f' },

a	b	c	d	е	f
b	a	d	c	f	е
c	f	е	b	a	d
d	е	f	a	b	С
е	d	a	f	С	b
f	С	b	е	d	a

Likewise, Δ_3 is the finite set $\{1, R, R^2, D_1, D_2, D_3\}$

 $1 = \{1,2,3\}$

 $R = \{3,1,2\}$

 $R^2 = \{2,3,1\}$

 $D_1 = \{1,3,2\}$

 $D_2 = \{3,2,1\}$ $D_3 = \{2,1,3\}$

- 5	(-;-;-)						
1	R	R^2	D_1	D_2	D_3		
R	R^2	1	D_3	D_1	D_2		
R^2	1	R	D_2	D_3	D_1		
D_1	D_2	D_3	1	R	R^2		
D_2	D_3	D_1	R^2	1	R		
D_3	D_1	D_2	R	R^2	1		