Datenstrukturen und Algorithmen

Vorlesung 10: Binäre Suchbäume

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

https://moves.rwth-aachen.de/teaching/ss-18/dsal/

28. Mai 2018

Übersicht

- Binäre Suchbäume
 - Suche
 - Einfügen
 - Einige Operationen (die das Löschen vereinfachen)
 - Löschen

2 Rotationen

Übersicht

- Binäre Suchbäume
 - Suche
 - Einfügen
 - Einige Operationen (die das Löschen vereinfachen)
 - Löschen

2 Rotationer

Suchbäume unterstützen Operationen auf dynamischen Mengen, wie:

 Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder minimales Element)

Suchbäume unterstützen Operationen auf dynamischen Mengen, wie:

 Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder minimales Element)

Die Basisoperationen auf binären Suchbäumen benötigen eine Laufzeit, die proportional zur Höhe des Baums ist.

Suchbäume unterstützen Operationen auf dynamischen Mengen, wie:

► Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder minimales Element)

Die Basisoperationen auf binären Suchbäumen benötigen eine Laufzeit, die proportional zur Höhe des Baums ist.

Für vollständige binäre Bäume mit n Elementen liefert dies eine Laufzeit in $\Theta(\log(n))$ für eine Basisoperation.

Suchbäume unterstützen Operationen auf dynamischen Mengen, wie:

 Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder minimales Element)

Die Basisoperationen auf binären Suchbäumen benötigen eine Laufzeit, die proportional zur Höhe des Baums ist.

Für vollständige binäre Bäume mit n Elementen liefert dies eine Laufzeit in $\Theta(\log(n))$ für eine Basisoperation.

Für einen Baum, der einer linearen Kette entspricht, ist dies jedoch in $\Theta(n)$.

Suchbäume unterstützen Operationen auf dynamischen Mengen, wie:

 Suchen, Einfügen, Löschen, Abfragen (z. B. Nachfolger oder minimales Element)

Die Basisoperationen auf binären Suchbäumen benötigen eine Laufzeit, die proportional zur Höhe des Baums ist.

Für vollständige binäre Bäume mit n Elementen liefert dies eine Laufzeit in $\Theta(\log(n))$ für eine Basisoperation.

Für einen Baum, der einer linearen Kette entspricht, ist dies jedoch in $\Theta(n)$.

Wir werden später binäre Suchbäume kennen lernen, deren Operationen immer Laufzeiten in $\Theta(\log(n))$ haben (s. nächste Vorlesung).

Binärer Suchbaum

Ein binärer Suchbaum (BST) ist ein Binärbaum, der Elemente mit Schlüsseln enthält, wobei der Schlüssel jedes Knotens

- mindestens so groß wie jeder Schlüssel im linken Teilbaum und
- höchstens so groß wie jeder Schlüssel im rechten Teilbaum ist.

Binärer Suchbaum

Ein binärer Suchbaum (BST) ist ein Binärbaum, der Elemente mit Schlüsseln enthält, wobei der Schlüssel jedes Knotens

- mindestens so groß wie jeder Schlüssel im linken Teilbaum und
- höchstens so groß wie jeder Schlüssel im rechten Teilbaum ist.

Binärer Suchbaum

Ein binärer Suchbaum (BST) ist ein Binärbaum, der Elemente mit Schlüsseln enthält, wobei der Schlüssel jedes Knotens

- mindestens so groß wie jeder Schlüssel im linken Teilbaum und
- höchstens so groß wie jeder Schlüssel im rechten Teilbaum ist.

Zwei binäre Suchbäume, die jeweils die Schlüssel 2, 3, 5, 6, 7, 9 enthalten.

Knoten in einem binären Suchbaum bestehen aus vier Feldern:

► Einem Schlüssel – dem "Wert" des Knotens,

- ► Einem Schlüssel dem "Wert" des Knotens,
- einem (möglicherweise leeren) linken und rechten Teilbaum (bzw. Zeiger darauf) sowie

- Einem Schlüssel dem "Wert" des Knotens,
- einem (möglicherweise leeren) linken und rechten Teilbaum (bzw. Zeiger darauf) sowie
- einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).

- ► Einem Schlüssel dem "Wert" des Knotens,
- einem (möglicherweise leeren) linken und rechten Teilbaum (bzw. Zeiger darauf) sowie
- einem Zeiger auf den Vater-/Mutterknoten (bei der Wurzel leer).

Beispiel (Binärer Suchbaum in C/C++)

```
1 typedef struct _node* Node;
2 struct _node {
3    int key;
4    Node left, right;
5    Node parent;
6    // ... evtl. eigene Datenfelder
7 };
9 struct _tree {
10    Node root;
11 };
12 typedef struct _tree* Tree;
```

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Sortieren

Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im Suchbaum in sortierter Reihenfolge aus.

Sortieren

Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der BST-Eigenschaft.

Sortieren

Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der BST-Eigenschaft.

Beispiel

Beispiel Inorder Traversierung BST.

inorder Traversierung!

inorder
$$\left(\frac{3}{25}\right)$$
, b, horder $\left(\frac{3}{5}\right)$
 $= 2, 3, 5, 6, 7, 9$

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/38

Sortieren

Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der BST-Eigenschaft.

Beispiel

Beispiel Inorder Traversierung BST.

Zeitkomplexität

Da die Zeitkomplexität einer Inorder Traversierung eines Baumes mit n Knoten $\Theta(n)$ ist, liefert uns dies einen Sortieralgorithmus in $\Theta(n)$.

Sortieren

Eine Inorder Traversierung eines binären Suchbaumes gibt alle Schlüssel im Suchbaum in sortierter Reihenfolge aus.

Die Korrektheit dieses Sortierverfahrens folgt per Induktion direkt aus der BST-Eigenschaft.

Beispiel

Beispiel Inorder Traversierung BST.

Zeitkomplexität

Da die Zeitkomplexität einer Inorder Traversierung eines Baumes mit n Knoten $\Theta(n)$ ist, liefert uns dies einen Sortieralgorithmus in $\Theta(n)$.

Dies setzt jedoch voraus, dass alle Daten als ein BST gespeichert sind.

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2    while (root) {
3         if (k < root.key) {
4             root = root.left;
5         } else if (k > root.key) {
6             root = root.right;
7         } else { // k == root.key
8             return root;
9         }
10     }
11     return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2    while (root) {
3         if (k < root.key) {
4             root = root.left;
5         } else if (k > root.key) {
6             root = root.right;
7         } else { // k == root.key
8             return root;
9         }
10     }
11     return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10    }
11    return null; // nicht gefunden
12 }
```

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: $\Theta(h)$.

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: $\Theta(h)$.

▶ Für einen kettenartigen Baum mit n Knoten ergibt das $\Theta(n)$.

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: $\Theta(h)$.

- ▶ Für einen kettenartigen Baum mit n Knoten ergibt das $\Theta(n)$.
- ▶ Ist der BST so balanciert wie möglich, erhält man $\Theta(\log(n))$.

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: $\Theta(h)$.

- ▶ Für einen kettenartigen Baum mit n Knoten ergibt das $\Theta(n)$.
- ▶ Ist der BST so balanciert wie möglich, erhält man $\Theta(\log(n))$.

Funktioniert dieses Suchverfahren auch bei Heaps?

```
1 Node bstSearch(Node root, int k) {
2  while (root) {
3    if (k < root.key) {
4      root = root.left;
5    } else if (k > root.key) {
6      root = root.right;
7    } else { // k == root.key
8      return root;
9    }
10  }
11  return null; // nicht gefunden
12 }
```

Die Worst-Case Komplexität ist linear in der Höhe h des Baumes: $\Theta(h)$.

- ▶ Für einen kettenartigen Baum mit n Knoten ergibt das $\Theta(n)$.
- ▶ Ist der BST so balanciert wie möglich, erhält man $\Theta(\log(n))$.

Funktioniert dieses Suchverfahren auch bei Heaps? Nein.

Einfügen

Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen, ohne die BST-Eigenschaft zu zerstören:

Einfügen

Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen, ohne die BST-Eigenschaft zu zerstören:

Suche einen geeigneten, freien Platz:

Einfügen

Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen, ohne die BST-Eigenschaft zu zerstören:

Suche einen geeigneten, freien Platz:

Wie bei der regulären Suche, außer dass, selbst bei gefundenem Schlüssel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes Kind erreicht ist.

Einfügen

Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen, ohne die BST-Eigenschaft zu zerstören:

Suche einen geeigneten, freien Platz:

Wie bei der regulären Suche, außer dass, selbst bei gefundenem Schlüssel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes Kind erreicht ist.

Hänge den neuen Knoten an:

Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

Einfügen

Man kann einen neuen Knoten mit Schlüssel k in den BST t einfügen, ohne die BST-Eigenschaft zu zerstören:

Suche einen geeigneten, freien Platz:

Wie bei der regulären Suche, außer dass, selbst bei gefundenem Schlüssel, weiter abgestiegen wird, bis ein Knoten ohne entsprechendes Kind erreicht ist.

Hänge den neuen Knoten an:

Verbinde den neuen Knoten mit dem gefundenen Vaterknoten.

▶ Komplexität: $\Theta(h)$, wegen der Suche.

Einfügen von 18 in den BST t – Beispiel

Einfügen in einen BST – Algorithmus

```
void bstIns(Tree t, Node node) { // Füge node in den Baum t ein
   // Suche freien Platz
   Node root = t.root, parent = null;
   while (root) {
     parent = root;
     if (node.key < root.key) {</pre>
       root = root.left;
root = root.right;
     }
10
   } // Einfügen
11
   node.parent = parent;
12
    if (!parent) { // t war leer => neue Wurzel
13
   t.root = node;
14
   } else if (node.key < parent.key) { // richtige Seite ...</pre>
15
16
     parent.left = node;
   } else {
17
     parent.right = node;
18
19
20 }
```

Joost-Pieter Katoen Datenstrukturen und Algorithmen 12

Pointers

13/38

Abfragen im BST: Minimum

Problem

Wir suchen den Knoten mit kleinstem Schlüssel im durch root gegebenen (Teil-)Baum.

Lösung

```
1 Node bstMin(Node root) { // root != null
2 while (root.left) {
3    root = root.left;
4  }
5    return root;
6 }
```

- ▶ Komplexität: $\Theta(h)$ bei Baumhöhe h.
- Analog kann das Maximum gefunden werden.

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten.

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten. Dessen Schlüssel ist mindestens so groß wie node.key.

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten. Dessen Schlüssel ist mindestens so groß wie node.key.

Lösung

Der rechte Teilbaum existiert:

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

15/38

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten. Dessen Schlüssel ist mindestens so groß wie node.key.

Lösung

Der rechte Teilbaum existiert:

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Andernfalls:

Der Nachfolger ist der jüngste Vorfahre, dessen linker Teilbaum node enthält.

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten.

Dessen Schlüssel ist mindestens so groß wie node.key.

Lösung

Der rechte Teilbaum existiert:

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Andernfalls:

Der Nachfolger ist der jüngste Vorfahre, dessen linker Teilbaum node enthält.

▶ Komplexität: $\Theta(h)$ bei Baumhöhe h.

Problem

Wir suchen den Nachfolger-Knoten von node, also den bei Inorder-Traversierung als nächstes zu besuchenden Knoten.

Dessen Schlüssel ist mindestens so groß wie node.key.

Lösung

Der rechte Teilbaum existiert:

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Andernfalls:

Der Nachfolger ist der jüngste Vorfahre, dessen linker Teilbaum node enthält.

- ▶ Komplexität: $\Theta(h)$ bei Baumhöhe h.
- Analog kann der Vorgänger gefunden werden.

Der rechte Teilbaum existiert:

Der Nachfolger ist der kleinste Knoten im rechten Teilbaum.

Andernfalls:

Der Nachfolger ist der jüngste Vorfahre, dessen linker Teilbaum node enthält.

```
1 Node bstSucc(Node node) { // node != null
2  if (node.right) {
3    return bstMin(node.right);
4  }
5  // Abbruch, wenn node nicht mehr rechtes Kind ist (also linkes!)
6  // oder node.parent leer ist (also kein Nachfolger existiert).
7  while (node.parent && node.parent.right == node) {
8    node = node.parent;
9  }
10  return node.parent;
11 }
```

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/38

Ersetzen von Teilbäumen im BST

```
1 // Ersetzt im Baum t den Teilbaum old durch
2 // den Teilbaum node (ohne Sortierung!)
3 void bstReplace(Tree t, Node old, Node node) {
   if (node) { // erlaube node == null!
                                            ersetze
     node.parent = old.parent;
5
                                            old
            - node != null
6
   if (!old.parent) { // war die Wurzel
     t.root = node:
8
   } else if (old == old.parent.left) {
   // war linkes Kind
10
   old.parent.left = node;
11
   } else { // rechtes Kind
                                         left
12
     old.parent.right = node;
13
   }
14
                                         node
15 }
                                                        right
```

Das Ersetzen eines Teilbaums hat die Zeitkomplexität $\Theta(1)$.

Austauschen von Knoten im BST

```
1 // Tauscht den Knoten old gegen node aus;
2 // die Kinder von old sind weiter im BST!
3 void bstSwap(Tree t, Node old, Node node) {
  // übernimm linken Teilbaum
   node.left = old.left; // auch möglich: swap()
 if (node.left) {
     node.left.parent = node;
8
   // rechten Teilbaum
   node.right = old.right;
10
    if (node.right) {
11
     node.right.parent = node;
12
   }
13
   // füge den Knoten ein
14
    bstReplace(t, old, node);
15
16 }
```

Das Austauschen eines Knotens hat die Zeitkomplexität $\Theta(1)$.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 18/38

Löschen im BST: Die beiden einfachen Fälle

Löschen im BST: Der aufwändigere Fall

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:

Ersetze im Vaterknoten von node den Zeiger auf node durch null.

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:

Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:

Wir schneiden node aus, indem wir den Vater und das Kind direkt miteinander verbinden (den Teilbaum ersetzen).

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:

Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:

Wir schneiden node aus, indem wir den Vater und das Kind direkt miteinander verbinden (den Teilbaum ersetzen).

node hat zwei Kinder:

Wir finden den Nachfolger von node, entfernen ihn aus seiner ursprünglichen Position und tauschen node gegen den Nachfolger.

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:

Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:

Wir schneiden node aus, indem wir den Vater und das Kind direkt miteinander verbinden (den Teilbaum ersetzen).

node hat zwei Kinder:

Wir finden den Nachfolger von node, entfernen ihn aus seiner ursprünglichen Position und tauschen node gegen den Nachfolger.

► Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.

Löschen

Um Knoten node aus dem BST zu löschen, verfahren wir folgendermaßen:

node hat keine Kinder:

Ersetze im Vaterknoten von node den Zeiger auf node durch null.

node hat ein Kind:

Wir schneiden node aus, indem wir den Vater und das Kind direkt miteinander verbinden (den Teilbaum ersetzen).

node hat zwei Kinder:

Wir finden den Nachfolger von node, entfernen ihn aus seiner ursprünglichen Position und tauschen node gegen den Nachfolger.

- ► Es tritt nur der erste Fall (bstMin(node.right)) aus bstSucc auf.
- ▶ Der gesuchte Nachfolger hat kein linkes Kind.

Löschen im BST – Algorithmus

```
1 // Entfernt node aus dem Baum.
2 // Danach kann node qqf. auch aus dem Speicher entfernt werden.
3 void bstDel(Tree t, Node node) {
    if (node.left && node.right) { // zwei Kinder
     Node tmp = bstMin(node.right);
     bstDel(t, tmp); // höchstens ein Kind, rechts
     bstSwap(t, node, tmp);
   } else if (node.left) { // ein Kind. links
9
     bstReplace(t, node, node.left);
   } else { // ein Kind, oder kein Kind (node.right == null)
10
     bstReplace(t, node, node.right);
11
12
13 }
```

Joost-Pieter Katoen Datenstrukturen und Algorithmen 2:

Komplexität der Operationen auf BSTs

Operation	Zeit
bstSearch	$\Theta(h)$
bstSucc	$\Theta(h)$
bstMin	$\Theta(h)$
bstIns	$\Theta(h)$
bstDel	Θ(<i>h</i>)

▶ Alle Operationen sind linear in der Höhe *h* des BSTs.

Komplexität der Operationen auf BSTs

Operation	Zeit
bstSearch	$\Theta(h)$
bstSucc	$\Theta(h)$
bstMin	$\Theta(h)$
bstIns	$\Theta(h)$
bstDel	$\Theta(h)$

- ▶ Alle Operationen sind linear in der Höhe h des BSTs.
- ▶ Die Höhe ist $log_2(n)$, wenn der Baum nicht zu "unbalanciert" ist.

Komplexität der Operationen auf BSTs

Operation	Zeit
bstSearch	$\Theta(h)$
bstSucc	$\Theta(h)$
bstMin	$\Theta(h)$
bstIns	$\Theta(h)$
bstDel	$\Theta(h)$

- ▶ Alle Operationen sind linear in der Höhe h des BSTs.
- ▶ Die Höhe ist $log_2(n)$, wenn der Baum nicht zu "unbalanciert" ist.
- ▶ Man kann einen binären Baum mittels Rotationen wieder balancieren.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 23/38

Zufällig erzeugter BST

Ein zufällig erzeugter BST mit n Elementen ist ein BST, der durch das Einfügen von n (unterschiedlichen) Schlüsseln in zufälliger Reihenfolge in einen anfangs leeren Baum entsteht.

Zufällig erzeugter BST

Ein zufällig erzeugter BST mit n Elementen ist ein BST, der durch das Einfügen von n (unterschiedlichen) Schlüsseln in zufälliger Reihenfolge in einen anfangs leeren Baum entsteht.

Annahme: jede der n! möglichen Einfügungsordnungen hat die gleiche Wahrscheinlichkeit.

Zufällig erzeugter BST

Ein zufällig erzeugter BST mit n Elementen ist ein BST, der durch das Einfügen von n (unterschiedlichen) Schlüsseln in zufälliger Reihenfolge in einen anfangs leeren Baum entsteht.

Annahme: jede der n! möglichen Einfügungsordnungen hat die gleiche Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Höhe eines zufällig erzeugten BSTs mit n Elementen ist $\mathcal{O}(\log(n))$.

Zufällig erzeugter BST

Ein zufällig erzeugter BST mit n Elementen ist ein BST, der durch das Einfügen von n (unterschiedlichen) Schlüsseln in zufälliger Reihenfolge in einen anfangs leeren Baum entsteht.

Annahme: jede der n! möglichen Einfügungsordnungen hat die gleiche Wahrscheinlichkeit.

Theorem (ohne Beweis)

Die erwartete Höhe eines zufällig erzeugten BSTs mit n Elementen ist $\mathcal{O}(\log(n))$.

Fazit: Im Schnitt verhält sich eine binäre Suchbaum wie ein (fast) balancierter Suchbaum.

Rotationen

Übersicht

- Binäre Suchbäume
 - Suche
 - Einfügen
 - Einige Operationen (die das Löschen vereinfachen)
 - Löschen

2 Rotationen

leftRotate - Konzept und Beispiel

Rotationen: Eigenschaften und Komplexität

Rotationen: Eigenschaften und Komplexität

Rotationen: Eigenschaften und Komplexität

Rotationen

Lemma

Binäre Suchbäume

- Ein rotierter BST ist ein BST
- Die Inorder-Traversierung beider Bäume bleibt unverändert.

Zeitkomplexität

Die Zeitkomplexität von Links- oder Rechtsrotieren ist in $\Theta(1)$.

Joost-Pieter Katoen Datenstrukturen und Algorithmen

leftRotate – **Algorithmus**

```
void leftRotate(Tree t, Node node1) { // analog: rightRotate()
   Node node2 = node1.right;
   // Baum B verschieben
   node1.right = node2.left;
   fif (node1.right) {
     node1.right.parent = node1;
   // node2 wieder einhängen
   node2.parent = node1.parent;
  # if (!node1.parent) { // node1 war die Wurzel
     t.root = node2;
11
   } else if (node1 == node1.parent.left) { // war linkes Kind
12
     node2.parent.left = node2;
13
    } else { // war rechtes Kind
14
     node2.parent.right = node2;
15
16
   // node1 einhängen
17
   node2.left = node1;
18
   node1.parent = node2;
19
20 }
```

Rotationen - AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

Rotationen - AVL-Baum

Adelson-Velsky Landin

1962

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

► Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.

balance
$$(x) = H$$
 be rechter Teilbaum (x)
- H bhe linker Teilbaum (x)

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- ▶ Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- Bei AVI -Bäumen wird die Höhe der Teilbäume der Knoten balanciert.

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- ▶ Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
- ▶ Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über die Höhe dieses Unterbaums Buch geführt.

29/38

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- ▶ Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
- Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über die Höhe dieses Unterbaums Buch geführt.
- ▶ Nach jeder (kritischen) Operation wird die Balance wiederhergestellt.

löschen hinzafige

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- ► Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- ▶ Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
- ▶ Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über die Höhe dieses Unterbaums Buch geführt.
- Nach jeder (kritischen) Operation wird die Balance wiederhergestellt. Dies ist in $\Theta(h)$ möglich! $\Theta(h)$ möglich! $\Theta(h)$ möglich!

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/38

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- ► Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- ▶ Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
- Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über die Höhe dieses Unterbaums Buch geführt.
- Nach jeder (kritischen) Operation wird die Balance wiederhergestellt. Dies ist in $\Theta(h)$ möglich!
- ▶ Dadurch bleibt stets $h \in \Theta(\log(n))$ und $\Theta(\log(n))$ kann für die Operationen auf dem BST garantiert werden.

Rotationen – AVL-Baum

An welchen Knoten müssen die Rotationen durchgeführt werden?

AVL-Baum

- ► Ein AVL-Baum ist ein balancierter BST, bei dem für jeden Knoten die Höhe der beiden Teilbäume höchstens um 1 differiert.
- ▶ Bei AVL-Bäumen wird die Höhe der Teilbäume der Knoten balanciert.
- ▶ Dazu wird (in einem zusätzlichem Datenfeld) an jedem Knoten über die Höhe dieses Unterbaums Buch geführt.
- Nach jeder (kritischen) Operation wird die Balance wiederhergestellt. Dies ist in $\Theta(h)$ möglich!
- ▶ Dadurch bleibt stets $h \in \Theta(\log(n))$ und $\Theta(\log(n))$ kann für die Operationen auf dem BST garantiert werden.
- ► Eine andere Möglichkeit, um Bäume zu balancieren, sind Rot-Schwarz-Bäume (nächste Vorlesung).

Joost-Pieter Katoen Datenstrukturen und Algorithmen 29/38

AVL-Bäume: Balancieren nach Einfügen

- Betrachten wir einen AVL-Baum.
- ▶ Jeder AVL-Baum ist (höhen-)balanciert, d. h., für alle Knoten x:

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/38

- Betrachten wir einen AVL-Baum.
- ▶ Jeder AVL-Baum ist (höhen-)balanciert, d. h., für alle Knoten x:

$$|\underbrace{\textit{rechte Teilbaumh\"{o}he} - \textit{linke Teilbaumh\"{o}he}}_{\textit{balance}(x)}| \leqslant 1$$
 .

▶ Wir fügen einen neuen Knoten in den Baum ein.

- Betrachten wir einen AVL-Baum.
- ▶ Jeder AVL-Baum ist (höhen-)balanciert, d. h., für alle Knoten x:

$$|\underbrace{\textit{rechte Teilbaumh\"{o}he} - \textit{linke Teilbaumh\"{o}he}}_{\textit{balance}(\mathsf{x})}| \leqslant 1$$
 .

- Wir fügen einen neuen Knoten in den Baum ein.
- Dadurch kann der Baum unbalanciert werden.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/38

- Betrachten wir einen AVL-Baum.
- ▶ Jeder AVL-Baum ist (höhen-)balanciert, d. h., für alle Knoten x:

$$|\underbrace{\textit{rechte Teilbaumh\"{o}he} - \textit{linke Teilbaumh\"{o}he}}_{\textit{balance}(x)}| \leqslant 1$$
 .

- ▶ Wir fügen einen neuen Knoten in den Baum ein.
- Dadurch kann der Baum unbalanciert werden.
- ► Balancierung durch Rotation.
- ► Einfachrotation, wenn die tieferen Blätter "außen" liegen.
- ▶ Doppelrotation, wenn die tieferen Blätter "innen" liegen.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 30/38

AVL-Bäume: Balancieren nach Einfügen

Sei A der <u>tiefste</u> unbalancierte Knoten auf dem Pfad von der <u>Wurzel</u> zum neu eingefügten Knoten (unbalanciert: *linke Teilbaumhöhe* – rechte Teilbaumhöhe = ± 2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen

AVL-Bäume: Balancieren nach Einfügen

Sei A der tiefste unbalancierte Knoten auf dem Pfad von der Wurzel zum neu eingefügten Knoten (unbalanciert: linke Teilbaumhöhe – rechte Teilbaumhöhe = ± 2).

Joost-Pieter Katoen Datenstrukturen und Algorithmen

AVL-Bäume: Balancieren nach Einfügen

Joost-Pieter Katoen Datenstrukturen und Algorithmen 33/38

```
void balance(Tree t, Node A){
   //A ist tiefster unbalancierter Knoten in t
    if (height(A.left) > height(A.right)) {
      if (height(A.left.left) >= height(A.left.right)) { //LL
       rightRotate(t,A);
  ) } else { //LR
        leftRotate(A.left); rightRotate(A);
    } else {
      if (height(A.right.right) >= height(A.right.left)) { //RR
  leftRotate(t.A):
        leftRotate(t,A);
11
     } else { //RL
       rightRotate(A.right); leftRotate(A);
14
15
16 }
```

Joost-Pieter Katoen Datenstrukturen und Algorithmen 34/38

- ▶ Baumhöhe von A nach der Rotation ist wieder die gleiche wie vor dem Einfügen des neuen Knotens.
- ▶ Das heißt, nach dem Balancieren von A ist der gesamte Baum wieder balanciert.

- Baumhöhe von A nach der Rotation ist wieder die gleiche wie vor dem Einfügen des neuen Knotens.
- ▶ Das heißt, nach dem Balancieren von A ist der gesamte Baum wieder balanciert.
- Die zweite Operation, die Unbalanciertheit verursachen kann, ist das Löschen eines Knotens.
- ▶ Die Balancierung des tiefsten unbalancierten Knotens kann auf die gleiche Weise erreicht werden wie beim Einfügen.

- ▶ Baumhöhe von A nach der Rotation ist wieder die gleiche wie vor dem Einfügen des neuen Knotens.
- ▶ Das heißt, nach dem Balancieren von A ist der gesamte Baum wieder balanciert.
- ▶ Die zweite Operation, die Unbalanciertheit verursachen kann, ist das Löschen eines Knotens.
- Die Balancierung des tiefsten unbalancierten Knotens kann auf die gleiche Weise erreicht werden wie beim Einfügen.
- Aber: der Teilbaum hat nicht die gleiche Höhe wie vor dem Löschen (sie ist um 1 kleiner)!

AVL-Bäume: Balancieren nach Löschen

- ▶ Baumhöhe von A nach der Rotation ist wieder die gleiche wie vor dem Einfügen des neuen Knotens.
- ▶ Das heißt, nach dem Balancieren von *A* ist der gesamte Baum wieder balanciert.
- ▶ Die zweite Operation, die Unbalanciertheit verursachen kann, ist das Löschen eines Knotens.
- Die Balancierung des tiefsten unbalancierten Knotens kann auf die gleiche Weise erreicht werden wie beim Einfügen.
- Aber: der Teilbaum hat nicht die gleiche Höhe wie vor dem Löschen (sie ist um 1 kleiner)!
- Im schlimmsten Fall müssen <u>alle</u> <u>unbalancierten Knoten</u> <u>einzeln</u> balanciert werden.
- ▶ Da aber die Balancierung eines Knotens nur einen konstanten Aufwand erfordert und es nur $\mathcal{O}(\log(n))$ unbalancierte Knoten geben kann, ist der Aufwand immer noch logarithmisch.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 35/38

```
void AVLDeI(Tree t, Node node) {
  bstDel(t,node);
   //Node deepestUnbalancedNode(Tree t, Node node)
   //qibt null zurück wenn t balanciert ist
  //und den tiefsten unbalancierten Knoten in t sonst
6 //(der Parameter node wird zur effizienten Implementierung
   //verwendet)
    Node A = deepestUnbalancedNode(t,node);
   while (A != null) {
      //bool balanced(Tree t, Node A)
10
                                                          A.parent.
     //gibt true zurück wenn A balanciert ist in t
11
     //und false sonst
12
      if (!balanced(t, A)) {
13
       balance(t, A);
14
        A = A.parent.parent;
15
      } else {
16
        A = A.parent;
17
18
19
20 }
```

Komplexität der Operationen auf AVL Bäume

Visualgo.net

▶ Da AVL Bäume balanciert sind, gilt $h = log_2(n)$

Nächste Vorlesung

Nächste Vorlesung

Freittag 1. Juni, 13:15 (Hörsaal H01). Bis dann!