Линейные преобразования плоскости

Листок №56

Рассмотрим двумерное линейное пространство над \mathbb{R} . Отождествляя векторы (рассматриваемые как радиус-вектор из начала координат) с точками на плоскости, можно считать, что векторы — это точки из \mathbb{R}^2 .

Точку с декартовыми координатами x и y будем обозначать через $\binom{x}{y}$.

Определение 1. Линейным отображением плоскости в себя называется отображение вида

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

Таблица вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ называется *матрицей* этого отображения.

Задача 1 $^{\varnothing}$. Докажите, что тождественное отображение имеет матрицу $E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Задача 2°. Найдите образы точек $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, а также образ единичного квадрата при отображении с матрицей

а)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
; б) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; в) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; г) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; д) $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$; е) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; ж) $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$.

Задача 3. Найдите все матрицы линейных преобразований, переводящих

a)
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 2 \end{pmatrix}$;
6) $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 2 \end{pmatrix}$;
B) $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 0 \end{pmatrix}$;

$$\mathbf{6}) \ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 2 \end{pmatrix};$$

$$\mathbf{B}) \ \left(\begin{matrix} 1\\1 \end{matrix}\right) \mapsto \left(\begin{matrix} 1\\0 \end{matrix}\right), \left(\begin{matrix} 2\\2 \end{matrix}\right) \mapsto \left(\begin{matrix} 2\\0 \end{matrix}\right);$$

Задача 4^{\varnothing} . Докажите, что линейное отображение

- а) однозначно задается образами векторов любого базиса:
- б) оставляет начало координат на месте;
- **в**) переводит прямые в прямые;
- г) сохраняет параллельность прямых.

Задача 5 $^{\varnothing}$. Докажите, что отображение $A:\mathbb{R}^2 \to \mathbb{R}^2$ является линейным тогда и только тогда, когда оно обладает следующими тремя свойствами

- $A(\vec{0}) = \vec{0}$;
- \bullet для любых $u,v\in\mathbb{R}^2$ выполнено A(u+v)=A(u)+A(v);
- для любого $v \in \mathbb{R}^2$ и любого $\lambda \in \mathbb{R}$ выполнено: $A(\lambda v) = \lambda A(v)$.

Определение 2. Образом линейного отображения $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ называется множество $\operatorname{Im} \varphi = \{ \varphi(a) : a \in \mathbb{R}^2 \}, \text{ а ядром} - \operatorname{множество} \operatorname{Ker} \varphi = \{ a \in \mathbb{R}^2 : \varphi(a) = \vec{0} \}.$

Задача 6 $^{\varnothing}$. **a)** Докажите, что и ядро, и образ — это либо $\vec{0}$, либо проходящая через начало координат прямая, либо вся плоскость. 6) Приведите соответствующие примеры.

Задача 7^{\varnothing} . Докажите, что dim Ker φ + dim Im φ = dim V.

Задача 8. Докажите, что линейное отображение сохраняет отношение отрезков, лежащих на одной прямой (если не переводит всю эту прямую в $\vec{0}$).

Задача 9°. Пусть три чевианы делят три стороны треугольника в отношениях α_1 , α_2 и α_3 . Докажите, что то, пересекаются ли они в одной точке, зависит только от чисел α_i (а от треугольника не зависит).

Задача 10*. Как при линейном отображении с матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ изменяется площадь

- а) единичного квадрата;
- б) произвольного параллелограмма;
- в) произвольного многоугольника?
- г) Докажите, что отображение с матрицей $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ биективно тогда и только тогда, когда $ad-bc \neq 0.$

Определение 3. Полярными координатами точки плоскости называются ее расстояние до начала координат и азимут (отсчитываемый против часовой стрелки угол радиус-вектора с осью x).

Задача 11 . Докажите, что точка с полярными координатами (r,φ) имеет декартовы координаты $\begin{pmatrix} r\cos\varphi\\r\sin\varphi \end{pmatrix}$.

Задача 12 $^{\varnothing}$. Найдите **a)** матрицу поворота на 90 $^{\circ}$; **б)** матрицу $R(\varphi)$ поворота на угол φ .

Задача 13°. **а)** Докажите, что линейное преобразование сохраняет углы тогда и только тогда, когда его матрица имеет вид либо $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, либо $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$. (Что это за преобразования геометрически?) **б)** Какие линейные преобразования сохраняют расстояния?

Определение 4. Произведением матриц, соответствующих линейным отображениям A и B, называется матрица, соответствующая композиции $A \circ B$ этих отображений. Она обозначается AB.

Задача 14 $^{\circ}$. **a)** Вычислите произведение матриц $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- **б)** Вычислите произведение $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$.
- в) Коммутативно ли умножение матриц?

Задача 15*. Решите уравнения **a)** $A^2 = E$; **б)** $A^2 = -E$; **в)** $A^2 = A$.

Задача 16 Вычислите явно произведение $R(\varphi)R(\psi)$. Какие тригонометрические тождества даёт равенство $R(\varphi)R(\psi)=R(\varphi+\psi)$?

1	2 a	2 6	2 B	2 Г	2 д	2 e	2 ж	3 a	3	3 B	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	$\begin{vmatrix} 4 \\ \Gamma \end{vmatrix}$	5	6 a	6 6	7	8	9	II.	10 б						15 a	15 б	15 B	16