2° Teste de Geometria Analítica e Álgebra Linear - 2021/I

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102026

- 1. Seja $V = \{(x,y) \in \mathbb{R}^2 : x > 0\}$ um espaço vetorial com as seguintes operações de adição e multiplicação:
 - (i) $(x_1, y_1) + (x_2, y_2) = (x_1x_2, y_1 + y_2)$
 - (ii) $\alpha(x,y) = (x^{\alpha}, \alpha y)$

Considere as seguintes afirmações:

- (I) O vetor (1,0) é o elemento neutro de V.
- (II) O vetor simétrico de (2,1) é o vetor (-2,-1).
- (III) A equação x(1,1) + y(2,1) = (1,0) tem única solução.

Estão corretas:

- (a) I e II
- (b) II e III
- (c) I e III
- (d) todas
- (e) não sei
- 2. Sejam V um espaço vetorial de dimensão 5, com U, W subespaços de V, ambos de dimensão 3, e definimos o subespaço $U V = \{v = u w : u \in U, w \in W\}$. Considere as afirmações:
 - (I) O maior valor possível para $\dim(U \cap W)$ é 3.
 - (II) $U U = \{0\}.$
 - (III) Se $\dim(U \cap W) = 1$, então existe uma base de V com vetores que estão em U + W.

Estão corretas:

- (a) I e II
- (b) II e III
- (c) I e III
- (d) todas
- (e) não sei

- 3. Sejam $U = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = 0, x + z = 0\}$ e W = [(0, 1, 2)], então U + W =
 - (a) $\{(x, y, y), x, y \in \mathbb{R}\}$
 - (b) $\{(x, y, 2y), x, y \in \mathbb{R}\}$
 - (c) $\{(x, y, -2x), y \in \mathbb{R}\}\$
 - (d) $\{(x, y, -y), x, y \in \mathbb{R}\}$
 - (e) não sei
- 4. Sejam $u=(1,0,1),\,v=(b,1,1)$ e w=(2,1,a), em que $a,b\in\mathbb{R}.$ Se w é combinação linear de u e v, então a+b=
 - (a) 3
 - (b) 2
 - (c) 1
 - (d) 0
 - (e) não sei
- 5. Seja o subespaço W=[(1,-1,2),(1,2,-1)], então pertence a W:
 - (a) (4,3,-1)
 - (b) (2, -5, 1)
 - (c) (3,5,4)
 - (d) (-2,3,-5)
 - (e) não sei
- 6. Sejam $B=\{u,v\}$ e $C=\{-u+v,u\}$ bases de um espaço vetorial V. Se $[u+2v]_C=\begin{bmatrix} a\\b \end{bmatrix}$, então a+b=

- (a) 5
- (b) 4
- (c) 3
- (d) 2
- (e) não sei
- 7. Sejam as afirmações a respeito de um operador linear T sobre um espaço vetorial V com $u, v \in V$.
 - (I) Se T é injetora e $\{u,v\}$ é linearmente independente, então $\{T(u),T(v)\}$ é linearmente independente.
 - (II) Sejam u, v não nulos, se T(u) = 2u e T(v) = v, então $\{T(u), T(v)\}$ é linearmente independente.

Está correto o que se afirma em:

- (a) Nenhuma
- (b) I
- (c) II
- (d) I e II
- (e) não sei
- 8. Seja T um operador do \mathbb{R}^2 . Se T(1,0)=(2,-1) e $T(1,1)=(1,-1), \, \text{então} \, \, T(2,1)=$
 - (a) (3,-1)
 - (b) (2,1)
 - (c) (3,-2)
 - (d) (2,0)
 - (e) não sei

- 9. Seja $T: \mathbb{R}^4 \to \mathbb{R}^2$, uma transformação linear tal que T(x,y,z,t) = (x+2y,x-y+z). O núcleo de T é:
 - (a) $N(T) = \{(-2y, y, 3y, t), y, t \in \mathbb{R}\}$
 - (b) $N(T) = \{(2y, y, -y, t), y, t \in \mathbb{R}\}\$
 - (c) $N(T) = \{(-2y, y, 3y, 0), y \in \mathbb{R}\}$
 - (d) $N(T) = \{(2y, y, -y, 0), y \in \mathbb{R}\}$
 - (e) não sei
- 10. Sejam $T: P_2(\mathbb{R}) \to \mathbb{R}^2$, uma transformação linear tal que $T(a+bx+cx^2)=(a+b,a-c)$ e a matriz $[T]_C^B$ (matriz de T da base B para a base C), em que $B=\{1,x,-x^2\}$ e $C=\{(1,1),(-1,0)\}$. A **segunda** coluna de $[T]_C^B$ é igual a:
 - (a) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$
 - (e) não sei