Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, V. Bojkovic

1º Compitino — 7 aprile 2018

Esercizio 1. Siano W_1 e W_2 sottospazi vettoriali di V. Dimostrare che se $W_1 \cup W_2$ è un sottospazio vettoriale di V allora deve necessariamente essere $W_1 \subseteq W_2$ oppure $W_2 \subseteq W_1$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, \ldots, v_k \in V$.

- (a) È vero che se i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti allora necessariamente anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti?
- (b) È vero che se $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti allora necessariamente anche i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti?

(le risposte devono essere adeguatamente giustificate).

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, 1, 1, 0), u_2 = (0, 1, 3, 2), u_3 = (2, 1, -1, -2), u_4 = (1, 1, 3, 1).$

- (a) Verificare che i vettori u_1, u_2, u_3, u_4 sono linearmente dipendenti e scrivere uno di essi come combinazione lineare degli altri. Trovare una base di U.
- (b) Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_2 = 0$. Trovare una base di W e una base di $U \cap W$.
- (d) È possibile trovare due sottospazi vettoriali $L_1, L_2 \subset \mathbb{R}^4$ che siano in somma diretta tra loro e tali che $U \oplus L_1 = \mathbb{R}^4$ e $U \oplus L_2 = \mathbb{R}^4$? [la risposta deve essere giustificata]

Esercizio 4. Siano $v_1 = (2,1,0)$, $v_2 = (1,1,0)$, $v_3 = (-1,2,1)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo $f(v_1) = (2,0,-1,2)$, $f(v_2) = (-1,1,t,0)$, $f(v_3) = (3,1,1,4)$, ove t è un parametro reale.

- (a) Si scriva la matrice A di f rispetto alla base $\{v_1, v_2, v_3\}$ del dominio e alla base canonica del codominio e si determini il rango di tale matrice al variare di t.
- (b) Per il valore di t per cui il rango non è massimo si scriva la matrice B di f rispetto alle basi canoniche del dominio e del codominio.
- (c) Per il valore di t per cui f non \dot{e} iniettiva si determini una base di Ker(f) e una base di Im(f).
- (d) Dopo aver posto t=0, si stabilisca se esiste una funzione lineare $g\colon \mathbb{R}^4\to\mathbb{R}^3$ tale che $g\circ f\colon \mathbb{R}^3\to\mathbb{R}^3$ sia l'identità. Se una tale g esiste, è vero che anche la funzione composta $f\circ g\colon \mathbb{R}^4\to\mathbb{R}^4$ è l'identità?

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, V. Bojkovic

1º Compitino — 7 aprile 2018

Esercizio 1. Siano W_1 e W_2 sottospazi vettoriali di V. Dimostrare che se $W_1 \cup W_2$ è un sottospazio vettoriale di V allora deve necessariamente essere $W_1 \subseteq W_2$ oppure $W_2 \subseteq W_1$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, \ldots, v_k \in V$.

- (a) È vero che se i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti allora necessariamente anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti?
- (b) È vero che se $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti allora necessariamente anche i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti?

(le risposte devono essere adeguatamente giustificate).

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, 0, -2, 1),$ $u_2 = (-3, 2, 1, 0), u_3 = (-1, 2, -3, 2), u_4 = (4, 1, 3, 1).$

- (a) Verificare che i vettori u_1, u_2, u_3, u_4 sono linearmente dipendenti e scrivere uno di essi come combinazione lineare degli altri. Trovare una base di U.
- (b) Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 x_4 = 0$. Trovare una base di W e una base di $U \cap W$.
- (d) È possibile trovare due sottospazi vettoriali $L_1, L_2 \subset \mathbb{R}^4$ che siano in somma diretta tra loro e tali che $U \oplus L_1 = \mathbb{R}^4$ e $U \oplus L_2 = \mathbb{R}^4$? [la risposta deve essere giustificata]

Esercizio 4. Siano $v_1 = (1,0,1)$, $v_2 = (1,0,2)$, $v_3 = (-2,1,1)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo $f(v_1) = (1,-2,0,t)$, $f(v_2) = (2,1,-1,0)$, $f(v_3) = (3,4,-2,-2)$, ove t è un parametro reale.

- (a) Si scriva la matrice A di f rispetto alla base $\{v_1, v_2, v_3\}$ del dominio e alla base canonica del codominio e si determini il rango di tale matrice al variare di t.
- (b) Per il valore di t per cui il rango non è massimo si scriva la matrice B di f rispetto alle basi canoniche del dominio e del codominio.
- (c) Per il valore di t per cui f non \dot{e} iniettiva si determini una base di Ker(f) e una base di Im(f).
- (d) Dopo aver posto t=0, si stabilisca se esiste una funzione lineare $g: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g \circ f: \mathbb{R}^3 \to \mathbb{R}^3$ sia l'identità. Se una tale g esiste, è vero che anche la funzione composta $f \circ g: \mathbb{R}^4 \to \mathbb{R}^4$ è l'identità?

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, V. Bojkovic

1º Compitino — 7 aprile 2018

Esercizio 1. Siano W_1 e W_2 sottospazi vettoriali di V. Dimostrare che se $W_1 \cup W_2$ è un sottospazio vettoriale di V allora deve necessariamente essere $W_1 \subseteq W_2$ oppure $W_2 \subseteq W_1$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, \ldots, v_k \in V$.

- (a) È vero che se i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti allora necessariamente anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti?
- (b) È vero che se $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti allora necessariamente anche i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti?

(le risposte devono essere adeguatamente giustificate).

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, 2, 1, 0), u_2 = (1, -1, 0, 2), u_3 = (1, 5, 2, -2), u_4 = (2, 2, 2, 1).$

- (a) Verificare che i vettori u_1, u_2, u_3, u_4 sono linearmente dipendenti e scrivere uno di essi come combinazione lineare degli altri. Trovare una base di U.
- (b) Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_2 x_3 = 0$. Trovare una base di W e una base di $U \cap W$.
- (d) È possibile trovare due sottospazi vettoriali $L_1, L_2 \subset \mathbb{R}^4$ che siano in somma diretta tra loro e tali che $U \oplus L_1 = \mathbb{R}^4$ e $U \oplus L_2 = \mathbb{R}^4$? [la risposta deve essere giustificata]

Esercizio 4. Siano $v_1 = (0, -2, 1)$, $v_2 = (0, 1, -1)$, $v_3 = (1, 1, 2)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo $f(v_1) = (0, -1, 2, -1)$, $f(v_2) = (-1, 0, t, 1)$, $f(v_3) = (1, -2, 5, -3)$, ove t è un parametro reale.

- (a) Si scriva la matrice A di f rispetto alla base $\{v_1, v_2, v_3\}$ del dominio e alla base canonica del codominio e si determini il rango di tale matrice al variare di t.
- (b) Per il valore di t per cui il rango non è massimo si scriva la matrice B di f rispetto alle basi canoniche del dominio e del codominio.
- (c) Per il valore di t per cui f non \dot{e} iniettiva si determini una base di Ker(f) e una base di Im(f).
- (d) Dopo aver posto t=0, si stabilisca se esiste una funzione lineare $g\colon \mathbb{R}^4\to\mathbb{R}^3$ tale che $g\circ f\colon \mathbb{R}^3\to\mathbb{R}^3$ sia l'identità. Se una tale g esiste, è vero che anche la funzione composta $f\circ g\colon \mathbb{R}^4\to\mathbb{R}^4$ è l'identità?

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, M. Imbesi, V. Bojkovic

1º Compitino — 7 aprile 2018

Esercizio 1. Siano W_1 e W_2 sottospazi vettoriali di V. Dimostrare che se $W_1 \cup W_2$ è un sottospazio vettoriale di V allora deve necessariamente essere $W_1 \subseteq W_2$ oppure $W_2 \subseteq W_1$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare e siano $v_1, v_2, \ldots, v_k \in V$.

- (a) È vero che se i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti allora necessariamente anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti?
- (b) È vero che se $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti allora necessariamente anche i vettori v_1, v_2, \ldots, v_k sono linearmente indipendenti?

(le risposte devono essere adeguatamente giustificate).

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, 0, 2, 1), u_2 = (2, 1, 0, 4), u_3 = (1, -1, 6, -1), u_4 = (1, 1, 2, -1).$

- (a) Verificare che i vettori u_1, u_2, u_3, u_4 sono linearmente dipendenti e scrivere uno di essi come combinazione lineare degli altri. Trovare una base di U.
- (b) Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_3 = 0$. Trovare una base di W e una base di $U \cap W$.
- (d) È possibile trovare due sottospazi vettoriali $L_1, L_2 \subset \mathbb{R}^4$ che siano in somma diretta tra loro e tali che $U \oplus L_1 = \mathbb{R}^4$ e $U \oplus L_2 = \mathbb{R}^4$? [la risposta deve essere giustificata]

Esercizio 4. Siano $v_1 = (2, 0, -1)$, $v_2 = (1, 0, -1)$, $v_3 = (1, 1, 2)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare definita ponendo $f(v_1) = (-1, 3, 2, t)$, $f(v_2) = (-1, 2, 0, -1)$, $f(v_3) = (-3, 7, 2, -1)$, ove t è un parametro reale.

- (a) Si scriva la matrice A di f rispetto alla base $\{v_1, v_2, v_3\}$ del dominio e alla base canonica del codominio e si determini il rango di tale matrice al variare di t.
- (b) Per il valore di t per cui il rango non è massimo si scriva la matrice B di f rispetto alle basi canoniche del dominio e del codominio.
- (c) Per il valore di t per cui f non \dot{e} iniettiva si determini una base di Ker(f) e una base di Im(f).
- (d) Dopo aver posto t=0, si stabilisca se esiste una funzione lineare $g\colon \mathbb{R}^4\to\mathbb{R}^3$ tale che $g\circ f\colon \mathbb{R}^3\to\mathbb{R}^3$ sia l'identità. Se una tale g esiste, è vero che anche la funzione composta $f\circ g\colon \mathbb{R}^4\to\mathbb{R}^4$ è l'identità?