Algorytmy Optymalizacji Dyskretnej

Felix Zieliński 272336

Lista 2

 ${f Zadanie~1.}$ W tym zadaniu należało zminimalizowad koszty zakupu paliwa poprzez wyznaczenie planu zakupu i dostaw paliwa na lotniska.

Uogólnione parametry z zadania:

- L_i j-te lotnisko
- F_i i-ta firma
- z_j zapotrzebowanie j-tego lotniska
- p_i podaż paliwa z i-tej firmy
- $\bullet \ k_{ij}$ koszt zakupu galonu paliwa od i-tej firmy przez j-te lotnisko

Zmienne decezyjne:

 x_{ij} - ilość paliwa dostarczona przez i-tą firmę na j-te lotnisko.

Ograniczenia:

- $x_{ij} \geq 0$ ilość paliwa musi być nieujemna
- $\bullet \ \sum_i x_{ij} = z_j$ suma dostaw do danego lotniska musi zaspoko
ić jego zapotrzebowanie
- $\sum_{i} x_{ij} \leq p_{i}$ firma nie może dostarczyć więcej paliwa, niż sama produkuje

Funkcja celu:

Koszt wszystkich dostaw: $min \sum_{i,j} x_{ij} * k_{ij}$

Rozwiazanie:

	Firma 1	Firma 2	Firma 3	Firma 4
Lotnisko 1	0.0	110000.0	0.0	110000.0
Lotnisko 2	165000.0	55000.0	0.0	220000.0
Lotnisko 3	0.0	0.0	330000.0	330000.0
Lotnisko 4	110000.0	0.0	330000.0	440000.0
Suma	275000.0	165000.0	660000.0	

Tabela 1: Optymalne dostawy, w galonach

- 1. Minimalny łączny koszt dostaw wymaganych ilości paliwa wynosi 8525000
- 2. Każda z firm dostarcza paliwo
- 3. 1. oraz 3. firma wyczerpały możliwości swoich dostaw

Zadanie 2. W tym zadaniu należało zmaksymalizować zysk zakładu poprzez wyznaczenie optymalnego tygodniowego planu placy.

Uogólnione parametry z zadania:

- L_i i-ty wyrób
- M_i j-ta maszyna
- \bullet cp_{ij} czas (w minutach na kilogram) obróbki i-tego wyroby na j-tej maszynie
- \bullet C_j czas dostępności j-tej maszyny w minutach
- $\bullet \ sp_i$ cena sprzedaży i-tego wyrobu
- kp_j koszt za minutę pracy j-tej maszyny
- \bullet km_i koszt materiałowy za kilogram i-tego wyrobu
- \bullet z_i maksymalny tygodniowy popyt na i-ty wyrób

Zmienne decezyjne:

 x_i - liczba kilogramów wyprodukowanego i-tego wyrobu.

Ograniczenia:

- $x_{ij} \geq 0$ ilość wyprodukowanego wyrobu musi być nieujemna
- $\sum_i x_i * c p_{ij} \leq C_j$ maszyny mają ograniczony czas pracy

• $x_i \leq z_i$ - nie ma sensu produkować więcej wyrobu, niż jest na niego popyt

Funkcja celu:

Zysk, jako różnica między przychodem a kosztami zmiennymi: $\max(x_i*(\sum_i(sp_i-km_i)-\sum_i(kp_j)*\sum_i(cp_{ij})))$

Rozwiazanie:

W celu sprawniejszych obliczeń, dane z zadania zamieniam na minuty.

	Maszyna 1	Maszyna 2	Maszyna 3
Produkt 1	625.0	1250.0	750.0
Produkt 2	300.0	600.0	400.0
Produkt 3	600.0	750.0	450.0
Produkt 4	2000.0	1000.0	500.0

Tabela 2: Czas na maszynę

	Kilogram wyrobu
Produkt 1	125.0
Produkt 2	100.0
Produkt 3	150.0
Produkt 4	500.0

Tabela 3: Produkcja (w kilogramach) każdego z wyrobów

Zysk wynosi 3632.5 dolarów.

Zadanie 3. W tym zadaniu należało zminimalizować łączny koszt produkcji w firmie poprzez wyznaczenie optymalnego planu produkcji oraz magazynowania.

Uogólnione parametry z zadania:

- m_i maksymalna produkcja towaru w j-tym okresie (w jednostkach)
- \bullet k_j j-ty okres (w którym wytwarzane jest maksymalnie 100 jednostek towaru)
- $\bullet \ c_j$ koszt produkcji jednej jednostki towaru w j-tym okresie
- $\bullet \ a_j$ maksymalna wielkość (w jednostkach) opcjonalnej produkcji ponadwymiarowej w j-tym okresie
- \bullet o_i koszt jednostkowy w j-tej opcjonalnej produkcji ponadwymiarowej
- d_j zapotrzebowanie na towar w j-tym okresie

- \bullet s maksymalna ilość jednostek możliwa do przechowania z jednego okresu na kolejny
- \bullet sm_i stan magazynu na początku okresu
- \bullet km koszt magazynowania za jednostkę
- mp poczatkowa ilość jednostek w magazynie

Zmienne decezyjne:

- $\bullet \ x_j$ ilość jednostek wyprodukowanych w j-tym okresie
- $\bullet \ y_j$ ilość jednostek wyprodukowanych w j-tym okresie w produkcji opcjonalnej
- $\bullet \ z_i$ ilość jednostek do przechowania na koniec j-tego okresu

Ograniczenia:

- $x_j \geq 0$ ilość jednostek wyprodukowanych w j-tym okresie musi być nieujemna
- $y_j \ge 0$ ilość jednostek wyprodukowanych w j-tym okresie w produkcji opcjonalnej musi być nieujemna
- $\bullet \ z_j \geq 0$ ilość jednostek do przechowania na koniec j-tego okresu musi być nieujemna
- \bullet $x_j \leq m_j$ nie można wyprodukować jednostek ponad maksymalną produkcję towaru w j-tym okresie
- $\bullet~y_j \le a_j$ nie można wyprodukować jednostek dodatkowych ponad maksymalną opcjonalną produkcję towaru w j-tym okresie
- \bullet $z_j \leq s$ nie można przechowywać jednostek ponad maksymalną ilość jednostek możliwą do przechowania z jednego okresu na kolejny
- koszt produkcji jednostek opcjonalnych przewyższa koszt produkcji podstawowej, a więc nie ma potrzeby ograniczania wykorzystania wszystkich jednostek przed rozpoczęciem produkcji opcjonalnej
- \bullet $sm_1=mp$ na początku pierwszego okresu stan magazynu jest równy stanowi początkowemu
- $\bullet \ s_K+1=0$ na koniec nie powinno zostać jednostek w magazynie
- $x_j + y_j + z_j d_j = z_{j+1}$ zapotrzebowanie na towar musi zostać spełnione

Funkcja celu:

Koszt produkcji oraz magazynowania: $\min \sum_{j=1}^K (x_j*c_j + y_j*o_j + z_j*km)$

Rozwiazanie:

	Produkcja normalna	Produkcja dodatkowa	Stan magazynu
Period 1	100.0	15.0	15.0
Period 2	100.0	50.0	0.0
Period 3	100.0	0.0	70.0
Period 4	100.0	50.0	45.0
Period 5			0.0

Tabela 4: Produkcja (w kilogramach) każdego z wyrobów

- 1. Minimalny łączny koszt produkcji oraz magazynowania wynosi 3842500
- 2. Firma musi zaplanować produkcję ponadwymiarową w okresach: $1.,\,2.,\,4.$
- 3. Możliwości magazynowania są wyczerpane w okresie 2. na 3.

Zadanie 4. W tym zadaniu należało zminimalizować koszt podróży z miasta i° do miasta j° poprzez znalezienie połączenia, które nie przekracza z góry zadanego czasu.

Uogólnione parametry z zadania:

- $\bullet\,$ T zadany czas T, którego całkowity czas przejazdu nie może przekroczyć
- \bullet G=(N,A) skierowany graf połączeń między miastami
- $\bullet~N$ zbiór miast
- \bullet A zbiór połączeń
- \bullet c_{ij} koszt przejazdu z miasta i do j
- ullet t_{ij} czas przejazdu z miasta i do j
- i° miasto poczatkowe
- j° miasto końcowe

Zmienne decezyjne:

 x_{ij} - zmienna boolowska oznaczająca, czy dane połączenie między miastem i oraz j
 jest używane.

Ograniczenia:

- $x_{ij} \in \{0,1\}$
- $\bullet \ \sum_{j} x_{i^{\circ}j} = 1$ należy zacząć ścieżkę w mieście początkowym
- $\bullet \ \sum_{j} x_{ij^{\circ}} = 1$ należy zakończyć ścieżkę w mieście końcowym

- $\bullet \ \sum_{j} x_{ij} * t_{ij} \leq T$ nie można przekroczyć maksymalnego czasu przejazdu
- $\sum x_{kj}=\sum x_{ik}$ każde miasto (nie licząc miasta początkowego oraz końcowego) musi mieć tyle samo połączeń wchodzących, co wychodzących

Funkcja celu:

Koszt przejazdu: $\min \sum_{i,j} c_{ij} * x_{ij}$

Rozwiazanie:

egzemplarz prowadzącego

Miasto i	Miasto j	Koszt	Czas
1	2	3.0	4.0
2	3	2.0	3.0
3	5	2.0	2.0
5	7	3.0	3.0
7	9	1.0	1.0
9	10	2.0	2.0

Tabela 5: Optymalne połaczenia

Łączny czas wyniósł 15, a koszt - 13.

egzemplarz własny

Dane:

- N 10
- *i*° 1
- j° 5
- T 9
- krawędzie [1, 2, 10, 2], [2, 3, 15, 3], [3, 4, 20, 5], [4, 5, 10, 2], [1, 6, 25, 4], [6, 7, 15, 3], [7, 5, 10, 2], [1, 8, 30, 6], [8, 9, 20, 3], [9, 10, 25, 4], [10, 5, 15, 3]

Miasto i	Miasto j	Koszt	\mathbf{Czas}
1	6	25.0	4.0
6	7	15.0	3.0
7	5	10.0	2.0

Tabela 6: Optymalne połączenia - egzemplarz własny

Łączny czas wyniósł 9, a koszt - 50.

Ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne. Gdy optymalne rozwiązanie nie będzie spełniać ograniczeń czasowych, zmienne decyzyjne będą przyjmować wartości niecałkowite. Poniższe dane spowodują pojawienie się takich rozwiazań:

- N 11
- i° 2
- j° 11
- T 6
- krawędzie [2, 3, 1, 6], [3, 11, 1, 2], [2, 11, 1, 9]

Koszt po usunięciu ograniczeń: 1.75

W przypadku usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń, otrzymane połączenie nie zawsze jest akceptowalne, bo solver może wyznaczyć rozwiązanie bez uzwględnienia maksymalnego czasu.

Zadanie 5. W tym zadaniu należało zminimalizować całkowitą liczbę radiowozów poprzez wyznaczenie przydziału radiowozów spełniających zadane wymagania.

Uogólnione parametry z zadania:

- p_i i-ta dzielnica
- z_j j-ta zmiana
- \bullet min_{ij} minimalna liczba radiowozów dla i-tej dzielnicy i j-tej zmiany
- \max_{ij} maksymalna liczba radiowozów dla i-tej dzielnicy i j-tej zmiany
- $zmin_j$ minimalna liczba radiowozów dla j-tej zmiany
- dmin_i minimalna liczba radiowozów dla i-tej dzielnicy

Zmienne decezyjne:

 \boldsymbol{x}_{ij} - liczba radiowozów przydzielona dzielnicy i podczas zmiany j

Ograniczenia:

- $x_{ij} \geq 0$ liczba radiowozów musi być nieujemna
- $x_{ij} \leq max_{ij}$ liczba radiowozów musi być mniejsza od maksymalnej
- $x_{ij} \geq min_{ij}$ liczba radiowozów musi być większa od minimalnej
- $\sum_i x_{ij} \geq zmin_j$ liczba radiowozów musi spełniać minimalną liczbę dla j-tej zmiany

 $\bullet \ \sum_j x_{ij} \geq dmin_i$ - liczba radiowozów musi spełniać minimalną liczbę dla i-tej dzielnicy

Funkcja celu:

Liczba radiowozów: $min \sum_{i} \sum_{j} x_{ij}$

Rozwiazanie:

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	2.0	5.0	3.0
Dzielnica 2	3.0	7.0	5.0
Dzielnica 3	5.0	8.0	10.0

Tabela 7: Optymalne rozłożenie radiowozów

Całkowita liczba wykorzystanych radiowozów wynosi 48.

Zadanie 6. W tym zadaniu należało zminimalizować liczbę kamer poprzez odpowiednie ich rozmieszczenie.

Uogólnione parametry z zadania:

- \bullet m szerokość terenu (w kwadratach)
- \bullet n wysokość terenu (w kwadratach)
- \bullet k zasięg kamery (w kwadratach)
- \bullet r_{ij} zmienna boolowska, rozmieszczenie kamer

Zmienne decezyjne:

 \boldsymbol{x}_{ij} - zmienna boolowska oznaczająca, czy w kwadracie ij umieszczona jest kamera.

Ograniczenia:

- $x_{ij} \in \{0,1\}$
- $x_{ij} + r_{ij} \leq 1$ nie można postawić kamery tam, gdzie jest kontener
- $\sum_{l=max(i-k,1)}^{min(i+k,m)} x_{lj} + \sum_{s=max(j-k,1)}^{min(i+k,m)} x_{is} \ge 1$ każdy kontener musi być obserwowany

Funkcja celu:

Liczba kamer: $min \sum_{i} \sum_{j} x_{ij}$

Rozwiazanie:

egzemplarz 1:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

 $\operatorname{Zasięg}=2$

Rozwiązanie:

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & -1 \\ -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Postawiono 4 kamery.

egzemplarz 2:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Zasieg = 4

Rozwiązanie:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ -1 & 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 1 \end{bmatrix}$$

Postawiono 3 kamery.