Aula 3: Aritmética Computacional - Parte II

Professor(a): Virgínia Fernandes Mota

OCS (TEORIA) - SETOR DE INFORMÁTICA

Aritmética Computacional

- Ponto Flutuante
- Falácias e Armadilhas

- Precisamos de representação para números reais!
- Utilizaremos na representação números normalizados em notação científica.
- Notação científica normalizada: possui único dígito à esquerda do ponto decimal (ou ponto binário, caso a base seja 2)

Ex.: $1,0 \times 10^{-9}$

- Ponto flutuante: aritmética computacional que representa os números em que o ponto binário não é fixo.
- Representados na forma 1, aaaaaa x 2^{bbbb}
- Precisamos de compromisso entre tamanho da fração e do expoente.
- Aumento da precisão x aumento do intervalo dos números que podem ser representados.

- Números em ponto flutuante múltiplos do tamanho de uma palavra.
 - Precisão simples (floats em C): uma palavra usada na representação
 - Precisão dupla (doubles em C): duas palavras usadas na representação

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

Expoente Fração

 $X = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- Representações anteriores chamada de sinal e magnitude
 - Sinal possui um bit separado do restante do número
- Representação em precisão simples
 - Números tão pequenos quanto 2×10^{-38} e tão grandes quanto 2×10^{38}
 - Overflow ainda pode ocorrer
 - Expoente positivo torna-se muito grande para caber no campo de expoente
 - Também podemos ter underflow
 - Expoente negativo torna-se muito grande para caber no campo de expoente

- Representação em precisão dupla
 - Números tão pequenos quanto 2×10^{-308} e tão grandes quanto 2×10^{308}
- Formato de ponto flutuante do IEEE: IEEE 754
- Mais bits podem ser colocados na fração
 - Números sempre na forma 1,xxx
 - Um implícito
 - Bits da fração numerados da esquerda para direita
 - Termo significando utilizado

Precisão Simples		Precisão Dupla		Objeto Representado
Expoente	Fração	Expoente	Fração	
0	0	0	0	0
0	não zero	0	não zero	± número desnormalizado
1-254	qualquer coisa	1-2046	qualquer coisa	± númeroponto flutuante
255	0	2047		± infinito
255	não zero	2047	não zero	NaN (Not a Number)

Codificação de Ponto Flutuante (Números, NaN, Inf)

- Comparação de números seria simplificada se representação do expoente mais negativo fosse próxima a 0000....000 e expoente mais positivo como 1111...111

- Solução: uso de notação deslocada
- Bias adicionado ao expoente
- No padrão IEEE valor 127 utilizado como bias para precisão simples e 1023 para precisão dupla $(-1)^s \times (1 + \text{fração}) \times 2^{(expoente-bias)}$
- No exemplo anterior:

$$-1 + 127 = 126 \rightarrow 0111 \ 1110 + 1 + 127 = 128 \rightarrow 1000 \ 0000$$

- Exemplo: Representar -0,75 em precisão simples e dupla
- $-0.75_{10} = 0.11_2$ $0.75 \times 2 = (1).50$ $0.50 \times 2 = (1).00$
- Na notação científica normalizada: (-1) \times 1,1 \times 2⁻¹

- Representando -0,75:
 - S = 1
 - Fração = $1000...00_2$
 - Expoente = -1 + Bias
 - Simples: $-1 + 127 = 126 = 011111110_2$
 - Dupla: $-1 + 1023 = 1022 = 0111111111110_2$
- Logo:

Simples: 1 01111110 1000...00 Dupla: 1 01111111110 1000...00

 Que número decimal é representado por este float de precisão simples?

- S = 0
- Fração = $01000...00_2 = 0 \times 2^{-1} + 1 \times 2^{-2} + ...$
- Expoente = $10000001_2 = 129$ $x = (-1)^0 \times (1 + 0, 01_2) \times 2^{(129-127)}$ $= (-1) \times 1,25 \times 2^2$ = 5.0

Ponto Flutuante - Adição

 A adição de ponto flutuante é bem mais complexa que a adição de inteiros.

Ponto Flutuante - Adição

- Considere a seguinte soma: $9,999 \times 10^{1} + 1,610 \times 10^{-1}$
- 1. Alinhar as casas decimais: Shift no número de menor expoente
 - $9,999 \times 10^1 + 0.016 \times 10^1$
- 2. Somar $9,999 \times 10^{1} + 0,016 \times 10^{1} = 10,015 \times 10^{1}$
- 3. Normalizar resultado e checar over/underflow 1.0015×10^{2}
- 4. Arredondar e (re)normalizar se necessário 1.002×10^{2}

- Instruções de ponto flutuante no MIPS
 - Adição simples e dupla: add.s e add.d
 - Subtração simples e dupla: sub.s e sub.d
 - Multiplicação simples e dupla: mul.s e mul.d
 - Divisão simples e dupla: div.s e div.d
 - Comparação simples e dupla: c.x.s e c.x.d
 - Onde x pode ser igual (eq), diferente (neq), menor que (lt), menor ou igual (le), maior que (gt) ou maior ou igual (ge)
 - Desvio verdadeiro em ponto flutuante (be1t) e falso (bc1f)

- Comparação em ponto flutuante define um bit como verdadeiro ou falso, dependendo da condição de comparação
- Desvio de ponto flutuante decide então se desviará ou não, dependendo da condição
- Projetistas MIPS acrescentaram registradores de ponto flutuante separados: \$f0, \$f1, ..., \$f31
- Usados para precisão simples ou dupla

- Loads e stores separados para ponto flutuante: lwc1 e swc1
- Exemplo: converter código abaixo para assembly

```
1 float f2c (float fahr) {
2    return ((5.0/9.0) * (fahr - 32.0));
3 }
```

• Supor que fahr seja passado em \$f12

 Supor que constantes 5.0, 9.0 e 32.0 alcançadas por meio do ponteiro global \$gp e retorno em \$f0 f2c:

```
lwc1 f16, const5(gp) # f16 = 5.0 lwc1 f18, const9(gp) # f18 = 9.0 div.s f16, f16, f18 # f16 = 5.0/9.0 lwc1 f18, const32(gp) # f18 = 32.0 sub.s f18, f12, f18 # fahr - 32.0 mul.s f0, f16, f18 # mult. result. intermediarios jr a # retorna
```

- Números em PF normalmente são aproximações para um número
- Arrendondamento pode ser crítico
- IEEE 754 define dois bits extras para arredondamento durante operações: Guarda e arredondamento

- Exemplo: Somar $2,56 \times 10^0$ a $2,34 \times 10^2$, supondo 3 dígitos significativos
- Guarda e arredondamento garantem 5 bits durante operação 2.3400 + 0.0256 = 2.3656 = 2.37
- Sem guarda e arredondamento teríamos: 2.34 + 0.02 = 2.36

Falácias e Armadilhas

Falácia: Adição de ponto flutuante é associativa $x = -1.5 \times 10^{38}$, $y = 1.5 \times 10^{38}$ e z = 1.0 $\times + (y + z) = -1.5 \times 10^{38} + (1.5 \times 10^{38} + 1.0) = -1.5 \times 10^{38} + 1.5 \times 10^{38} = 0.0$ $(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0 = 0.0 + 1.0$ = 1.0

Falácias e Armadilhas

- Falácia: Deslocamento à direita é o mesmo que uma divisão de inteiros por uma potência de dois

Falácias e Armadilhas

 Falácia: Somente matemáticos teóricos se importam com precisão do ponto flutuante
 Intel Pentium FDIV bug
 Erros no excel
 Outros??
 Pesquisar!!!!!

Exercícios

- Converta os números decimais em sua forma binária (em complemento a 2):
 - a) -2
 - b)10
 - c) 7550
 - d)13,25
 - e) -0,4217
- Converta os números binários em sua forma decimal:
 - a) $(10100)_2$
 - b) $(1101)_2$
 - $c)(0,1101)_2$
 - d) (11101, 01)₂
- Coloque os números no padrão IEEE 754

Próxima aula

Exercícios e Prova

