Week 10, Lecture 19

Database Systems Introduction to Databases and Data Warehouses

CHAPTER 3 - Relational Database ModelingPart 2

MAIN TOPICS

- Review: Map relationships: 1:M, M:N
- Map relationships: Binary (1:1)
- Example 1: Map ERD to Relational Schema
- Map Candidate Keys
- Map Multivalued Attributes
- Map Derived Attributes
- Map Entity with Various Attribute Types
- Map Unary Relationships

MAPPING ER DIAGRAM INTO RELATIONAL SCHEMA

Review

- Map a regular entity to a relation
- Map a regular attribute to a regular column
- Map a unique attribute to a unique column
 - If only one unique attribute in the entity, then it's the primary key of the mapped relation.
- Map a relationship based on its type
 - For 1:M, add a foreign key column to the relation for entity on M side
 - For M:N, add a new relation with a composite primary key
 - * Each component of the composite primary key references the primary key column in the relation for a participating entity

MAPPING RELATIONSHIPS

Example Mapping an
M:N
relationship
Optional
participation on
both sides

Sample data records for the mapped ER diagram

	STUDENT				
	StudentID	StudentName	StudentGender		
	1111	Robin	Male		
	2222	Pat	Male		
	3333	Jami	Female		
	4444	Abby	Female		
ı		,			

			. '
OrgID OrgLocation		OrgType	
011	Student Hall	Charity	
O41	Damen Hall	Sport	
O47	Student Hall	Charity	
O50	Damen Hall	Politics	

ORGANIZATION

BLEONGOIO		
StudentID	OrgID	
1111	011	
1111	O41	
2222	O11	
2222	O41	
2222	O47	
3333	011	

RELONGSTO

MAPPING RELATIONSHIPS

Example - Map a M:N relationship with an attribute

Add a
 column for
 each
 attribute to
 the new
 relation for
 M:N
 relationship

Sample data records for the mapped ER diagram

STUDENT StudentID StudentName

StudentID	StudentName	StudentGender
1111	Robin	Male
2222	Pat	Male
3333	Jami	Female

ORGANIZATION

OrgID	OrgLocation	OrgType
O11	Student Hall	Charity
O41	Damen Hall	Sport
O47	Student Hall	Charity

BELONGSTO

StudentID	OrgID	Function
1111	011	President
1111	O41	Member
2222	011	V.P.
2222	O41	Member
2222	O47	Treasurer
3333	011	Member

MAPPING RELATIONSHIPS

- Mapping 1:1 relationships
 - In the same way as mapping 1:M relationships
 - Add a foreign key column to either of the two resulting relations
 - The foreign key points to the primary key of the other resulting relation
 - Recommendation for choosing the resulting relation to add a FK column
 - Choose the one that has an advantage if possible
 - * Choose mandatory foreign key over optional foreign key
 - The case of mandatory---1: optional-1 relationship
 - Example in next slide
 - Advantage: not have to manage null values
 - Otherwise, choose either relation
 - * The case of mandatory—1: mandatory—1 or
 - * The case of optional—1: optional—1

MAPPING RELATIONSHIPS INTO RELATIONAL DATABASE CONSTRUCTS

Example -Map a 1:1 relationship

mandatory-1: optional-1

Sample data records for the mapped ER diagram

EmpID	E	mpName	
1234	В	ecky	
2345	М	olly	
3456	R	ob	
1324	Te		
1024	16	ea	
VEHICL Vehicle	E	Vehicletype	EmplD
VEHICL	E		EmpID 1234
VEHICL Vehicle	E	Vehicletype	

REFERENTIAL INTEGRITY CONSTRAINT

- Referential integrity constraint
 - A rule defining valid values of foreign keys
 - In each row of a relation containing a foreign key, the value of the foreign key EITHER matches one of the values in the primary key column of the referred relation OR the value of the foreign key is null (empty).
 - Valid foreign key value: either of
 - * Matching primary key value of the referred relation
 - Existing primary key value in the referred relation
 - * Null
 - In the case of optional participation
- Referential integrity constraint lines
 - Lines pointing from the foreign key to the corresponding primary key in a relational schema

REFERENTIAL INTEGRITY CONSTRAINT

Example of Foreign Key column with optional participation

Optional Foreign Key column DeptID in EMPLOYEE

REFERENTIAL INTEGRITY CONSTRAINT

Referential integrity constraint — compliance and violation examples

Matching PK

Matching PK or null

Not matching PK

MAPPING ER DIAGRAM INTO RELATIONAL SCHEMA

- Mapping an ER diagram into a relational schema
 - 1. Map all entities and their attributes
 - From left to right and from top to bottom
 - 2. Map all relationships
 - From left to right and from top to bottom
 - Steps to map each relationship
 - 1) Identify the type: 1:1, 1:M, or M:N
 - 2) Map the relationship according to its type
 - M:N, add a new relation with composite PK
 - 1:M, add a FK to relation for entity on M side
 - 1:1, decide which relation to add a FK, then add FK
 - 3. Verify the resulting relational schema
 - Compare the relational schema to the ER diagram

₩ap Example ER diagram : ZAGI Retail Company Sales Department Database

Example mapped relational schema: ZAGI Retail Company Sales Department Database

Example: Sample data records for the ZAGI Retail Company Sales Department Database

REGION

RegionID	RegionName
С	Chicagoland
T	Tristate

STORE

StoreID	StoreZip	RegionID
S1	60600	С
S2	60605	С
S3	35400	T

SALES TRANSACTION

TID	CustomerID	StoreID	TDate
T111	1-2-333	S1	1-Jan-2013
T222	2-3-444	S2	1-Jan-2013
T333	1-2-333	S3	2-Jan-2013
T444	3-4-555	S3	2-Jan-2013
T555	2-3-444	S3	2-Jan-2013

PRODUCT

ProductID	ProductName	ProductPrice	VendorID	CategoryID
1X1	Zzz Bag	\$100	PG	CP
2X2	Easy Boot	\$70	MK	FW
3X3	Cosy Sock	\$15	MK	FW
4X4	Dura Boot	\$90	PG	FW
5X5	Tiny Tent	\$150	MK	CP
6X6	Biggy Tent	\$250	MK	СР

VENDOR

VendorID	VendorName
PG	Pacifica Gear
MK	Mountain King

CATEGORY

CategoryID	CategoryName
CP	Camping
FW	Footwear

SOLDVIA

ProductID	TID	NoOfItems
1X1	T111	1
2X2	T222	1
3X3	T333	5
1X1	T333	1
4X4	T444	1
2X2	T444	2
4X4	T555	4
5X5	T555	2
6X6	T555	1

CUSTOMER

CustomerID	CustomerName	CustomerZip
1-2-333	Tina	60137
2-3-444	Tony	60611
3-4-555	Pam	35401

MAPPING CANDIDATE KEYS

- Mapping entities with candidate keys (multiple unique attributes) into relations
 - One of the candidate keys is chosen by database designer as the primary key during the mapping process
 - Other candidate keys are mapped as unique but non-primary key columns

MAPPING ENTITIES WITH CANDIDATE KEYS (MULTIPLE UNIQUE ATTRIBUTES) INTO RELATIONS

Entity with candidate keys mapped into a relation

- Choose one as primary key
- Mark the others with (U)

Sample data records for the mapped relation

EmpID	SSN	Salary
1234	111-11-1111	\$75,000
2345	222-22-2222	\$50,000
3456	333-33-3333	\$55,000
1324	444-44-4444	\$70,000

MAPPING CANDIDATE KEYS

Entity with regular and composite candidate keys mapped into a relation

- Choose noncomposite one as primary key
- Mark the others with (U)

Sample data records for the mapped relation

VEHICL	- -		T		
VIN	LPNumber	State	Make	Model	Year
11111	X123	IL	Ford	Fiesta	2012
22222	X456	IL	Ford	Escape	2009
33333	X123	MI	Chevrolet	Volt	2012

MAPPING MULTIVALUED ATTRIBUTES

- Mapping entities with multivalued attributes into relational database constructs
 - Map the entity containing the multivalued attribute to an entity without the multi-valued attribute
 - Map the multi-valued attribute to a separate new relation with
 - Two columns
 - One column -- the multivalued attribute
 - One foreign key column referring to the primary key of the relation for the entity itself
 - A composite primary key consisting of
 - * Both columns in the separate new relation

MAPPING MULTIVALUED ATTRIBUTES

Entity with multivalued attributes mapped into 2 relations

Sample data records for the mapped relations

EMPLO	YEE	,	EMPPH	ONE
EmpID	EName		EmpID	PhoneNumber
1234	Becky		1234	630-111-4567
2345	Molly		1234	630-222-4567
3456	Rob		2345	630-333-4567
1324	Ted		3456	630-111-4567
			3456	630-444-4567
			1324	630-111-4567
			1324	630-555-4567
			1324	630-666-4567

MAPPING DERIVED ATTRIBUTES

- Mapping derived attributes
 - Derived attributes
 - Not stored in the database
 - Computed based on stored values of other attributes and/or additional data
 - Not add anything for derived attributes in the relational schema
 - Implement derived attributes in the database front-end application

MAPPING DERIVED ATTRIBUTES

Entity with derived attributes mapped into a relation

Sample data records for the mapped relation

STORE (RELATION)

StoreID	OpeningDate
1111	1.1.2000
2222	2.2.2001
3333	3.3.2002
4444	2.2.2001

The relation presented to a user in a frontend application

STORE

Sid	OpeningDate	YearsInBusiness
1111	1.1.2000	13
2222	2.2.2001	12
3333	3.3.2002	11
4444	2.2.2001	12

Example: Entity with various types of attributes mapped into a relation

Example: Entity with various types of attributes mapped into a relation

Example: Sample data records for the mapped relations

EMPLOYEE

EmpID	SSN	Email	FName	LName	Salary	Bonus	DateOfHire	DateOfBirth
1234	111-11-1111	bk@compx.com	Becky	Kaiser	\$75,000		1.1.2002	11.12.1970
2345	222-22-2222	mn@compx.com	Molly	Neps	\$50,000	\$10,000	2.2.2002	9.8.1973
3456	333-33-3333	rd@compx.com	Rob	Duzs	\$55,000	\$4,000	3.4.2003	11.11.1976
1324	444-44-4444	ti@compx.com	Ted	Lovett	\$70,000		9.8.2004	5.6.1971

EMPPHONE

	EmplD	PhoneNumber
П	1234	630-111-4567
	1234	630-222-4567
	2345	630-333-4567
	3456	630-111-4567
	3456	630-444-4567
	1324	630-111-4567
	1324	630-555-4567
	1324	630-666-4567

EMPSKILL

EmpID	Skill
1234	CPA
1234	CFP
2345	CPA
3456	CPA
3456	CFP
3456	CPP
1324	CFP

MAPPING UNARY RELATIONSHIPS

- Mapping unary relationships
 - In the same way as mapping binary relationships
 - Map binary relationships
 - M:N Add a new relation with composite primary key
 - 1:M -- Add a foreign key column to relation from entity on M side
 - 1:1 Add a foreign key column to chosen relation from one involved entity
 - While mapping 1:1 or 1:M unary relationships,
 - New columns are added to the relation for the only involving entity

MAPPING UNARY RELATIONSHIPS

- Mapping 1:M unary relationships
 - The relation mapped from an entity involved in a 1:M unary relationship contains a foreign key that corresponds to its own primary key

MAPPING UNARY RELATIONSHIPS

Mapping a 1:M unary relationship

Sample data records for the mapped relation

CLIENT			_
ClientID	ClientName	ReferredBy	1
C111	Mark		ı
C222	Mike	C111	ı
C333	Lilly	C111	ı
C444	Jane	C222	ı