

Logistic Regression

Classification

Machine Learning

Classification

- → Email: Spam / Not Spam?
- → Online Transactions: Fraudulent (Yes / No)?
- > Tumor: Malignant / Benign?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)
$$y \in \{0,1\}$$
 1: "Positive Class" (e.g., malignant tumor)

 \rightarrow Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"
$$\text{If } h_{\theta}(x) < 0.5 \text{, predict "y = 0"}$$

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be ≥ 1 or ≤ 0

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

$$0 \le h_{\theta}(x) \le 1$$

Machine Learning

Logistic Regression

Hypothesis Representation

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = \mathbf{g}(\theta^T x)$$

Sigmoid functionLogistic function

Interpretation of Hypothesis Output

$$h_{\theta}(x)$$
 = estimated probability that $y = 1$ on input $x \leftarrow$

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \text{tumorSize} \end{bmatrix}$$

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x;\Theta)$$

$$y = 0 \text{ or } 1$$

"probability that y = 1, given x, parameterized by θ "

$$P(y=0|y) + P(y=1|y) = 1$$

$$\rightarrow P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$

predict "
$$y=0$$
" if $h_{\theta}(x)<0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \underline{\theta}_1 x_1 + \underline{\theta}_2 x_2)$$

Decision boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

OTX

Non-linear decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Logistic Regression

Cost function

Machine Learning

 $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \left[\begin{array}{c} x_0 \\ x_1 \\ \cdots \\ x_n \end{array}\right] \quad x_0 = 1, y \in \{0,1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta}^T x}}$$

How to choose parameters θ ?

Cost function

-> Linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

 \rightarrow (ost(he(x))

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet} \right)^{2} \longleftarrow$$

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1$$
, $h_{\theta}(x) = 1$
But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

$$\Rightarrow J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\Rightarrow \operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\text{Note: } y = 0 \text{ or } 1 \text{ always}$$

$$\Rightarrow \operatorname{Cost}(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (y \log(1 - h_{\theta}(x))) = -y \log(h_{\theta}(x))$$

$$\text{If } y = 1 \text{: } \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\text{If } y = 0 \text{: } \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$
 Great Θ

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Vant
$$\underline{\min_{\theta} J(\theta)}$$
:

Repeat $\{$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\{ \text{simultaneously update all } \theta_j \}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{n} \underbrace{\{ (h_{\theta}(x^{(i)}) - y^{(i)}) \times j \}}$$

Gradient Descent

Algorithm looks identical to linear regression!

Machine Learning

Logistic Regression

Advanced optimization

Optimization algorithm

Cost function $\underline{J(\theta)}$. Want $\min_{\theta} J(\underline{\theta})$.

Given θ , we have code that can compute

Gradient descent:

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Optimization algorithm

Given θ , we have code that can compute

Optimization algorithms:

- Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

- More complex <

```
min 310)
    Example:
                                            function [jVal, gradient]
                                                           = costFunction(theta)
                                               jVal = (theta(1)-5)^2 + ...
                                                          (t<u>he</u>ta(2)-5)^2;
                                               gradient = zeros(2,1);
                                               gradient(1) = 2*(theta(1)-5);
                                               gradient(2) = 2*(theta(2)-5);
	ag{\partial} \frac{\partial}{\partial 	heta_2} J(	heta) = 2(	heta_2 - 5)
                             means already privide gradient objection
-> options = optimset(\(\frac{\text{GradObj', \text{\tentor}}{\text{on'}}\), \(\text{MaxIter', \text{\text{100'}}}\);
\rightarrow initialTheta = zeros(2,1)
  [optTheta, functionVal, exitFlag] ...
          = fminunc(@costFunction, initialTheta, options);
  this function will return the optimal value of theta
```

```
\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \begin{cases} \text{theta(i)} \\ \text{theta(2)} \\ \text{theta(nti)} \end{cases}
function (jVal) gradient) = costFunction(theta)
           jVal = [code to compute J(\theta)];
          gradient(1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)
          gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J
          gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta)
```


Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class \underline{i} to predict the probability that $\underline{y}=\underline{i}$.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{\underline{i}} h_{\theta}^{(i)}(x)$$