

USER MANUAL

ComSync/PCI-104

Table of Contents

Table of Contents	2
Introduction	3
Features	3
System Overview	4
Hardware Installation	5
Slot Selection Rotary Switch (RSW1)	5
Software Development	6
Hardware Information	
PCI Configuration Space	6
Decoded Address Map	
PCI Base Address Register 2 (PCIBAR2)	7
FPGA Register Descriptions	9
PCI Base Address Register 3 (PCIBAR3)	
DMA Support	
Interrupts	
System Block Diagrams	
Duplex Modes	
IUSC Clock Control	
Software Selectable Line Interface Modes	
Connecting Serial Devices	
V.28 Connections	
RS-422/V.11 Connections	
ComSync/PCI-104 Synchronous Clocking	
Loopback Connectors	
Connector Pinouts	
PCI-104 Header (P1)	
Appendix	
ComSync/PCI-104 Specifications	
Operating Environment	
Communications	
ESD Protection	
Power	
Connectors	
Dimensions	
Cable Options	
I/O Connect Pin Assignments	
Multi-drop communications using V.11/RS-422/485 line modes	
Asynchronous Communications Tutorial	24
Serial Line Interface Tutorial	
RS-232 Line Interface:	
Differential Line Interface:	
Multi-drop 4-Wire, Full Duplex Communications:	
Basic 2-Wire, Half Duplex Multi-drop Connection:	
Termination Resistors in Differential Networks	
Limited Lifetime Warranty	
Copyright Notice	
Trademark Acknowledgement	
Customer Support Overview	
Contact Information	

Introduction

Connect Tech's ComSync/PCI-104 is a two channel synchronous/asynchronous serial adapter card designed for PCI-104 bus systems.

Multi-protocol ComSync/PCI-104 offers high performance and reliable communications for industrial and embedded applications. ComSync/PCI-104 utilizes the features and functionality of the Zilog Z16C32 Integrated Universal Serial Controller along with a simple register structure to provide users with full featured synchronous/asynchronous communications.

Features

- PCI-104 form factor. Universal PCI 2.2 bus 33MHz/32-bit PCI interface
- Two software selectable synchronous/asynchronous serial ports
- Supports two software programmable PCI Bus DMA (Direct Memory Access) channels to on-board 512KB SRAM.
- Seven software selectable electrical interfaces: RS-232 (V.28), RS-422/485, RS-449(V.36), EIA-530, EIA-530/A, V.35 and X.21 (V.11)
- Multiple communication protocols supported; HDLC, SDLC, MonoSync, BiSync, Transparent BiSync, Async, external character sync and others
- Supports data encoding methods: NRZI, NRZB, NRZI-Mark, NRZI-Space, Biphase-Space (FM0), Biphase-Mark (FM1), Biphase-Level (Manchester), Differential Biphase, Baud rates up to 20 Mbps (synchronous, using special build options) 10 Mbps (synchronous, standard model), 230.4 Kbps (asynchronous)
- Software selectable internal and external clocking modes. External clocking is provided on TxC and RxC pins.
- Operating temperature range of 0°C to 70°C.
- · RoHS compliant

System Overview

Based on the PCI bus and a compact form factor, ComsSync/PCI-104 provides maximum flexibility. The ComSync/PCI-104 enables users to choose from multiple electrical interfaces, protocols and encoding schemes to provide a hardware solution that is ideally suited to each specific application.

ComSync/PCI-104 is PCI-104 1.0 compliant. Lifetime warranty and free technical support are included.

The following conceptual block diagram provides a high level overview of the ComSync/PCI-104 and illustrates the general interconnection between components and connectors.

Figure 1: ComSync/PCI-104 Block Diagram

Figure 2: ComSync/PCI-104 Board Layout

Hardware Installation

The following section describes the function of the PCI slot selection rotary dip-switch. Be sure to establish settings prior to the physical installation of the ComSync/PCI-104 adapter in your PCI-104 stack.

Slot Selection Rotary Switch (RSW1)

This rotary switch selects a slot position in the PCI-104 stack. When installing ComSync/PCI-104 in a stack, ensure that the rotary switch matches the card position in the stack.

Table 1: Slot Selection (RWSI)

Position	Slot
0,4	0
1,5	1
2,6	2
3,7	3

Software Development

Hardware Information

This section offers information about how the ComSync/PCI-104 on-board functions can be accessed through the PCI bus. Below are details about the PCI Bridge Configuration Space, the PCI Base Address Registers, and detailed Memory Maps for each of the decoded Base Address Register regions that allow access to the on-board SRAM, FPGA control and status registers, as well as, two Zilog Z16C32 Integrated Universal Serial Controllers (IUSCs). This information is the framework for software development.

PCI Configuration Space

Accessibility to the on-board functions of the ComSync/PCI-104 is available via the PLX-9054 PCI-Bridge. This PCI-Bridge accesses the on-board functions by mapping them to different PCI Base Address Registers (PCIBARn). The contents of the PCI-Bridge's 256-Byte PCI Configuration Space and the location of the on-board functions as decoded by the PCI Base Address registers is illustrated in <u>Table 2</u>.

The SRAM is accessible to both the host (through the PCI-Bridge) and the two IUSCs. This accessibility is the mechanism for running the two IUSCs in DMA mode.

The details of the operation of each of the registers are listed below.

Table 2: PCI-Bridge Configuration Space Description

PCI Config.	Area Accessed	Area Accessed	Register A	ccessed	PCI Writ-
Register	Bits	Bits			able
Address					
Offset					
(Hex)					
	3116	150	Conte	nt	
0000	Device ID	Vendor ID	9054	10B5	N
0004	Status	Command	0680	000B	Y
0008	Class Code	Class Code /Bridge Rev ID	0000	0100	N
000C	Bist Header	PCI Bus LAT Cache	0000	0000	Y
0010	PCI Base Address	Space 0 (PCIBAR0)	Memory Mapped Co	Y	
0014	PCI Base Address	Space 1 (PCIBAR1)	I/O Mapped Configu	Y	
0018	PCI Base Address	Space 2 (PCIBAR2)	IUSC and FPGA Re	Y	
001C	PCI Base Address	Space 3 (PCIBAR3)	SRAM Access	Y	
0020	PCI Base Address	Space 4 (PCIBAR4)	Not Used		Y
0024	PCI Base Address	Space 5 (PCIBAR5)	Not Used		Y
0028	Cardbus CIS Point	ter	Not Used		Y
002C	Subsystem ID	Subsystem Vendor ID	0800 12	C4	N
0030			·		
0034					

The ComSync/PCI-104 has both IUSCs and FPGA control and status registers all mapped into the PCIBAR2 memory region. The on-board SRAM is mapped into PCIBAR3. <u>Table 3</u> below indicates the size and function of the memory regions decoded by the different PCI Base Address Registers.

Decoded Address Map

Table 3: PCI Bridge - Base Address Registers

Item	PCI Configuration Offset(Hex)	PCI BAR	Decoded Memory Size	Relative Size(hex) of Decoded Memory
IUSC and FPGA internal registers	18	PCIBAR2	8 Kbyte	0x0000 1FFF
SRAM	1C	PCIBAR3	512 KByte	0x0007 FFFF

PCI Base Address Register 2 (PCIBAR2)

As previously stated, the ComSync/PCI-104's IUSC serial controllers, the FPGA control registers and the FPGA status registers are mapped to the PCIBAR2 memory region. <u>Table 4</u> below presents the Offset Address of the internal registers of both IUSCs relative to PCIBAR2. Detailed information about how to configure and control the IUSCs can be found in the Zilog Z16C32 Integrated Universal Serial Controller User's Manual, seen at http://www.zilog.com/docs/serial/um0140.pdf

Table 4: Memory Map of PCIBAR2 – IUSC Registers

Address	Area (item)	Register	Notes
Offset	Accessed	Accessed	
(in hex)			
	IUSC Area		
	IUSC-1		
0000	IUSC-1 Sreg [1]	CCAR	
0002	IUSC-1 Sreg	CMR	
0004	IUSC-1 Sreg	CCSR	
0006	IUSC-1 Sreg	CCR	
0008	IUSC-1 Sreg	PSR	
000A	IUSC-1 Sreg	PCR	
000C	IUSC-1 Sreg	TMDR	
000E	IUSC-1 Sreg	TMCR	
0010	IUSC-1 Sreg	CMCR	
0012	IUSC-1 Sreg	HCR	
0014	IUSC-1 Sreg	IVR	
0016	IUSC-1 Sreg	IOCR	
0018	IUSC-1 Sreg	ICR	
001A	IUSC-1 Sreg	DCCR	
001C	IUSC-1 Sreg	MISR	
001E	IUSC-1 Sreg	SICR	
0020	IUSC-1 Sreg	RDR(TDR)	8/16 bit serial data (byte/word)
			Writes go to the Transmitter FIFO
			Reads come from the Receiver
			FIFO
0022	IUSC-1 Sreg	RMR	

Address	Area (item)	Register	Notes
Offset	Accessed	Accessed	1
(in hex)		'	
0024	IUSC-1 Sreg	RCSR	
0026	IUSC-1 Sreg	RICR	
0028	IUSC-1 Sreg	RSR	
002A	IUSC-1 Sreg	RCLR	
002C	IUSC-1 Sreg	RCCR	
002E	IUSC-1 Sreg	TCOR	
0030	IUSC-1 Sreg	TDR(RDR)	8/16 bit serial data (byte/word)
		,	Writes go to the Transmitter FIFO
			Reads come from the Receiver FIFO
0032	IUSC-1 Sreg	TMR	
0034	IUSC-1 Sreg	TCSR	
0036	IUSC-1 Sreg	TICR	
0038	IUSC-1 Sreg	TSR	
003A	IUSC-1 Sreg	TCLR	
003C	IUSC-1 Sreg	TCCR	
003E	IUSC-1 Sreg	TC1R	
0040→007F			Aliases of addresses 00→3F
0080->009F	IUSC	RDR/TDR	16 bit serial data transfers ONLY!
0000 > 00>1	Data FIFOs	RDIG IDIC	Writes go to the Transmitter FIFO
	(32 bytes)		Reads come from the Receiver
	(= = 5 = =)		FIFO
			(useful for block data movements)
00A0→00FE			Aliases of 080->9F
0100	IUSC-1 Dreg [2]	DCAR	
0102	IUSC-1 Dreg	TDMR	
0104			Reserved, do not access
0106	IUSC-1 Dreg	DCR	,
0108	IUSC-1 Dreg	DACR	
010A→0111			Reserved, do not access
0112	IUSC-1 Dreg	BDCR	·
0114	IUSC-1 Dreg	DIVR	
0116			Reserved, do not access
0118	IUSC-1 Dreg	DICR	
011A	IUSC-1 Dreg	CDIR	
011C	IUSC-1 Dreg	SDIR	
011E	IUSC-1 Dreg	TDIAR	
0120→0129			Reserved, do not access
012A	IUSC-1 Dreg	TBCR	
012C	IUSC-1 Dreg	TARL	
012E	IUSC-1 Dreg	TARU	
0130→0139			Reserved, do not access
0130 0 0139	IUSC-1 Dreg	NTBCR	110001100, 00 1101 000000
013C	IUSC-1 Dreg	NTARL	
013E	IUSC-1 Dreg	NTARU	
0140→0181	105C-1 Dieg	NIAKU	Reserved, do not access
0140→0181 0182	ILICC 1 Dans	RDMR	Reserved, do not access
	IUSC-1 Dreg	KDMK	Pasaryad do not agains
0184→019D			Reserved, do not access
019E	IUSC-1 Dreg	RDIAR	

Address Offset	Area (item) Accessed	Register Accessed	Notes
(in hex)	Accessed	Accessed	
01A0→01A9			Reserved, do not access
01AA	IUSC-1 Dreg	RBCR	
01AC	IUSC-1 Dreg	RARL	
01AE	IUSC-1 Dreg	RARU	
01B0→01B9			Reserved, do not access
01BA	IUSC-1 Dreg	NRBCR	
01BC	IUSC-1 Dreg	NRARL	
01BE	IUSC-1 Dreg	NRARU	
01C0→01FF			Reserved, do not access
0200	IUSC-1		Interrupt Acknowledge (read only)
0202→03FF	IUSC-1		Reserved, do not access
	IUSC-2		
0400→05FF	IUSC-2	As Above	Same registers as addresses
			000→1FF
0600	IUSC-2		Interrupt Acknowledge (read only)
0602-07FF	IUSC-2		Reserved, do not access

FPGA Register Descriptions

Again, the ComSync/PCI-104's FPGA control and status registers are mapped to the PCIBAR2 memory region. <u>Table 5</u> below shows the Offset Address of the FPGA registers relative to PCIBAR2. The details of the operation of each bit in the registers is also outlined in the description below.

Table 5: Memory Map of PCIBAR – FPGA Register Summary

Address	Area (item)	Register	Notes
Offset	Accessed	Accessed	
(in hex)			
	FPGA Area		See "FPGA Registers" for details.
1000	LEDC		LED Control. 16 Bit Read/write
1002			Alias of 1000
1004	LIFC1		Serial Port-1 Line I/F control. 16 Bit
			Read/Write
1006			Alias of 1004
1008	LIFC2		Serial Port-2 Line I/F control. 16 Bit
			Read/Write
100A			Alias of 1008
100C	FPGA_CNTRL		Control Bits. 16 Bit Read/Write
100E			Alias of 100C
1010	FPGA_STATUS		Status bits. 16 Bit Read Only.
1012			Alias of 1010
1014→1FFF			Unused

Table 6: FPGA Register Detailed Description

Offset	Reg.	R/W	Valid			÷	ubic o.	11 0/1	Kegist		Bit Descr									Reset
	Name		Bits																	Values (Hex)
1000	LEDC	R/W	D150	Control	Bits: Rea	d/Write	only as	a 16 Bit v	vord.											0000
												Auto I	Flash Mo	de		Direct	Mode			
	LED			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	<u> </u>
I	Control Register			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	#AFM	⋣
					Reserved	for futu	ıre use. S	1 = LE set to zero	D off. for Write	•		•	ond, a sy	stem hear	rt beat.					
1004	LIFC 1							a 16 Bit v						T =			1.			0007
	Line			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Interface			X	X	X	X	X	X	X	X	X	X	42W	DM	SPT	SP2	SP1	SP0	
1008	LIFC 2			Duplex of DM 42W NOTE: S For Futt X	Control : Duple 4/2 W See Duple ure Use Reserv	and RT ex Mode ire mode ex Mode	CS Pin Co e selection de selection es for con	ontrol bit on: (0=Fu ion: (0=2 mplete in	ll, 1=Dup wire (or ½ formation ero for W	lex) 2 Duplex on imple), 1=4wire	e (or Mul	ti-Drop S	1						
				15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Line			X	X	X	X	X	X	X	X	X	X	42W	DM	SPT	SP2	SP1	SP0	0007
	Interface IUSC '2'Control Register			Basic Li SP[20] SPT Duplex of the control of the	ne Mode SP508 SP508 Control : Duple 4/2 W See Duple ure Use	e Contr 3 Line M 3 Termi and RT ex Mode (ire modex Modex Modex Modex Modex)	rol bits: Mode set inator En TS Pin Co e selection de selection es for con	ting bits: nable: (0: ontrol bit on: (0=Fu ion: (0=2	See <u>Tabl</u> =disable t	e 10 for erminator lex) 2 Duplex on imple	Line Inter	rface Mo le termin e (or Mu n <u>Duplex</u>	de setting ator). Po	gs. Power wer up S	r-up state		1	122	122	

Offset	Reg. Name	R/W	Valid Bits								Bit	Descri	ptions									Reset Values (Hex)
100C	FPGA_	R/W	D150	Control	ntrol Bits: Read/Write only as a 16 Bit word.																	
	CNTRL			15 X									0000									
	Control Bits			IABT	"Line Mas e IUSC cont IUS auto auto pt Infoi Both	Interface ter Inter are disablinue to sh C DMA (nomous I rmation the IUSO	e Control I crupt I led, bu now co operat IUSC.	rol" bits Enable: t the Interrect station Abo Power u	0]=Port1, is for the given This bit with the control of the logical of the logica	wen Portill enable tus bits fUSC in g this bir fIABT combin	t are set le the in hterrupt t will ab 'is '0', i	back to tterrupts PCI b bits. Th port any IABT no	their power the I bus. If the interpretation of the power down the I bus at active.	er-up stat USC dev MIE bit is efault sta sfer unde	e. Power ices three turned te of Merway, a	er up drough to OFF, IE is 'and is a	lefaul the Fl (MII 0', M main	It of SR PGA, th E = 0) th HE is di ly used t	[10] is rough ne inten sabled so abru	s 0. the PCI- rupt sig	Bridge nals	
1010	FPGA_	Read	D150			ead only a							T -									1
	STATUS	Only		15	14	13		12	11	10	9		8	7	6	5	4	3	2	1	0	H
	Status Bits			IS[10] ID[30] Rev[3 For Fu	FPG 0] FPG ture Use	FA ÎD: Bo FA Revisi e	atus: I egins a ion: B	at "1" an egins at	Rev[0] ort1, IS[1]= d increment "1" and in t to zero fo	nts. crement	ts.	D[1]	ID[0] on Reads.	X	X	X	X	X	X	IS[1]	IS[0]	<u>П</u>

PCI Base Address Register 3 (PCIBAR3)

The ComSync/PCI-104 has mapped the on-board SRAM to the PCIBAR3 memory region. <u>Table 7</u> below presents the locations in PCI memory at which the on-board SRAM appears. The SRAM is used when the IUSCs run in DMA mode. The SRAM can be accessed by 8, 16 or 32 bit read or write operations.

Table 7: Memory Map of PCIBAR3 - SRAM Memory

Address Offset (in hex)	Area (item) Accessed	Notes
	SRAM Area	512 Kbyte
0 0000	1 st memory location	SRAM – data
0 0001	memory area	SRAM – data
0 0002	memory area	SRAM – data
0 0003	memory area	SRAM – data
0 0004	memory area	SRAM – data
0 0005	memory area	SRAM – data
0 0006	memory area	SRAM – data
0 0007	memory area	SRAM – data
\rightarrow		
7 FFFF	last memory location	SRAM – data

DMA Support

To allow for fast, continuous data reception and transmission, the ComSync/PCI-104 supports four DMA channels where each of the two IUSCs has a Transmit and a Receive channel. By writing configuration data to the IUSC registers listed in Table 4 and by carefully following the Zilog Z16C32 Integrated Universal Serial Controller User's Manual, seen at http://www.zilog.com/docs/serial/um0140.pdf, both IUSCs can be set up to perform automated data transmission and reception using DMA through ComSync/PCI-104's onboard SRAM. The host can configure the IUSCs to run in one of four DMA modes: Single Buffer, Pipelined, Array, or Linked List. Once the IUSCs are setup and started, data can be placed into the assigned area in SRAM memory to be transmitted (or received data can be removed from the SRAM) by the host software. The host must respond to interrupts, or poll the IUSCs to detect when data has been received to the SRAM.

Please contact Connect Tech Inc. at support@connecttech.com for more information on available resources, example code and configuration files for ComSync/PCI-104.

Interrupts

The two IUSC interrupt outputs are connected to the FPGA. Inside the FPGA the interrupts are logically combined, controlled by an MIE register control bit (Master Interrupt Enable), routed through to the PCI-Bridge local bus interrupt input, and appear as a single PCI Interrupt on the INTA# signal of the PCI Bus. The FPGA_CONTROL register MIE bit can mask the interrupts or it may enable these IUSC interrupts to be passed through the FPGA to the host. The host will then read the status registers of the IUSC to determine the source of the interrupt.

Table 8: ComSync/PCI-104 Interrupts

INT	Usage
/INT	/Interrupt request output of the IUSCs combined and connected to ComSync/PCI-104
	PCI Interrupt.

System Block Diagrams

Figure 3: ComSync/PCI-104 FPGA Connection Diagram

Figure 4: ComSync/PCI-104 IUSC to Line Driver Connection Diagram

Duplex Modes

ComSync/PCI-104 gives the user the ability to enable or disable the transmission and reception of data. The data transmission and reception enable is controlled through an interaction between the function of each IUSC Port-7 pin and register assignments in the FPGA. Both IUSC Port-7 pins are connected to the SP508 line driver of each channel through logic on the FPGA.

The Port-7 pin is one of eight pins on each IUSC which can be assigned to perform a specific function or become a general purpose input/output. A general discussion of the implementation of all the port pins can be found in Zilog Z16C32 Integrated Universal Serial Controller User's Manual, section 4.12 seen at http://www.zilog.com/docs/serial/um0140.pdf. Port-7's specific function is the "Tx Complete" signal which is suitable for controlling the enable of a line driver. More information about this function can be found in Zilog Z16C32 Integrated Universal Serial Controller User's Manual, section 4.10.

The ComSync/PCI-104 has adopted the IUSC Port-7 pin to act as the RTS signal, which can be manipulated directly by software, or autonomously by the IUSC. In conjunction with several control bits in the FPGA (LIFCx[bits 4 and 5]), several different duplex modes can be implemented. Figure 5 and Table 9 below describe the interaction of the IUSC Port-7 and the logic within the FPGA that controls the SP508 TX and RX enable.

Figure 5: ComSync/PCI-104 SP508 TX/RX Driver Enable Diagram

Table 9: ComSync/PCI-104 SP508 TX/RX Driver Enable

MODE		INPUT		OUTPUT			TxD	RxD
PORT 7	PORT 7	LIFC(5)	LIFC(4)	#TX_EN	#RX_EN	#RTS		
Full Duplex	0	don't care	0	1	0	0	Active	Active
1/2 Duplex, 2 wire	0	0	1	1	1	0	Active	Disabled
1/2 Duplex, 4 wire	0	1	1	1	0	0	Active	Active
Full Duplex	1	don't care	0	1	0	1	Active	Active
1/2 Duplex, 2 wires	1	0	1	0	0	1	Tri-state	Active
1/2 Duplex, 4 wire	1	1	1	0	0	1	Tri-state	Active

IUSC Clock Control

The ComSync/PCI-104's implementation of the Zilog Z16C32 clocking system is extremely flexible. This flexibility adds complexity to the set up of the clocking system.

A diagram of the ComSync/PCI-104's clock system and how it is integrated with the IUSC is displayed below. The user has the option of receiving a system clock on: RxC or TxC or driving out a system clock on TxC or RxC. By writing the appropriate register in the IUSC, the line driver SP508 clock direction selection is automatically controlled by the FPGA. The user has the option of using the on-board 18.432MHz clock as the source, or the externally received clock to drive the IUSC data structure. The user also has the option of dividing the clock frequency down using the features of the IUSC.

Users are strongly advised to refer to the Z16C32 Integrated Universal Serial Controller User's Manual, seen at http://www.zilog.com/docs/serial/um0140.pdf, section 4.3 Transmit and Receive Clocking.

Users <u>must correctly</u> configure the following IUSC registers: CMCR, CCSR, HCR, TC0R, TC1R and IOCR to configure the clock. Great care must be used when assigning values to these registers or unexpected operation may be the result. The clock structure diagram below must be followed precisely.

Figure 6: ComSync/PCI-104 Diagram of the Clock Integration with the IUSC

Software Selectable Line Interface Modes

The Serial Line Interface utilizes Sipex devices SP508. Refer to the data sheet, seen at http://www.exar.com/Common/Content/ProductDetails.aspx?ID=SP508, for all electrical characteristics of the interface.

The Line Interface Mode is software selectable for each channel. The following modes are available:

Table 10: Line Interface Mode Settings

Signal Name	P	Pin# Line Interface Mode Settings (binary values) LIFC1/2[SP20					[SP20]		
(V.28 in brackets)	26 Pin Header	25 pin D-Sub	EIA- 530A Mode	EIA- 530 Mode	X.21 Mode (V.11)	V.35 Mode	RS- 449 (V.36)	RS-232 (V.28)	Shutdown
			001	010	011	100	101	110	111
TX+	2	14	V.11	V.11	V.11	V.35 ^[2]	V.11	High-Z	High-Z
TX- (TX)	3	2	V.11	V.11	V.11	V.35 ^[2]	V.11	V.28	High-Z
RX+	6	16	V.11 ^[1]	V.11 ^[1]	V.11 ^[1]	V.35 ^[2]	V.11 ^[1]	High-Z	High-Z
RX- (RX)	5	3	V.11 ^[1]	V.11 ^[1]	V.11 ^[1]	V.35 ^[2]	V.11 ^[1]	V.28	High-Z
DTR+	20	23	High-Z	V.11	V.11	High-Z	V.11	High-Z	High-Z
DTR- (DTR)	14	20	V.10	V.11	V.11	V.28	V.11	V.28	High-Z
RTS+	12	19	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z
RTS- (RTS)	7	4	V.11	V.11	V.11	V.28	V.11	V.28	High-Z
CTS+	25	13	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z
CTS- (CTS)	9	5	V.11	V.11	V.11	V.28	V.11	V.28	High-Z
DSR+	18	22	High-Z	V.11	V.11	High-Z	V.11	High-Z	High-Z
DSR- (DSR)	11	6	V.10	V.11	V.11	V.28	V.11	V.28	High-Z
DCD+	19	10	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z
DCD- (DCD)	15	8	V.11	V.11	V.11	V.28	V.11	V.28	High-Z
RxC+	17	9	V.11 ^[1]	V.11 ^[1]	V.11 ^[1]	V.35 ^[2]	V.11 ^[1]	High-Z	High-Z
RxC- (RxC)	8	17	V.11 ^[1]	V.11 ^[1]	V.11 ^[1]	V.35 ^[2]	V.11 ^[1]	V.28	High-Z
RXSYNCO+	21	11	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z
RXSYNCO-	22	24	V.11	V.11	V.11	V.28	V.11	V.28	High-Z
TxC+	23	12	V.11	V.11	V.11	$V.35^{[2,3]}$	V.11	High-Z	High-Z
TxC- (TxC)	4	15	V.11	V.11	V.11	$V.35^{[2,3]}$	V.11	V.28	High-Z
RI/RXREQ	24	25	V.10	V.10	High-Z	V.28	V.10	V.28	High-Z
GND	1, 13	1, 7	GND	GND	GND	GND	GND	GND	GND

Notes:

Greater than 100Ω termination resistor is applied between the (+) and (-) signals.

[3] When signal is an input.

 $\begin{array}{lll} V.10 = RS-423 & single\ ended\ +/-\ 5.0V\ max\ @450\ \Omega \\ V.11 = RS-422 & differential\ 1.5\ to\ 4.5\ max\ @100\ \Omega \\ V.28 = RS-232 & single\ ended\ +/-\ 12.0V\ max\ @\ 3k\ \Omega \\ V.35 = V.35 & differential\ 550\ mV,\ R-network. \end{array}$

V.35 Termination Network is applied between the (+) and (-) signals.

Mode	Equivalent Standard	Electrical	Typical Voltage
V.10	RS-423	Single ended	+/- 5VDC
V.11	RS-422 / RS485	Differential	1.5VDC to 4.5VDC
V.28	RS-232	Single ended	+/-12VDC
V.35	V.35	Differential	550mVDC

Connecting Serial Devices

V.28 Connections

V.28 has signaling levels compatible with EIA RS-232. The Signal Reference (SR) pin must always be connected. This pin provides the ground return path for all signaling.

Basic Asynchronous (V.28) RS-232

The figure below illustrates the typical way to connect the ComSync/PCI-104 to a serial device.

Figure 7: Basic V.28 Asynchronous Connections

Figure 8: Basic V.28 Synchronous Connections

RS-422/V.11 Connections

The following basic connections are achieved when the I/O levels are in V.11 (RS-422) mode. V.11 mode signaling can be enabled with EIA-530, RS-449 or X.21 modes on your ComSync/PCI-104. The Signal Reference (SR) pin should always be connected. This pin provides the ground return path for all signaling.

Figure 9: Basic RS-422/V.11 Asynchronous Connections

Figure 10: Basic RS-422/V.11 Synchronous Connections

NOTE: ComSync/PCI-104 synchronous clock signals are bidirectional. See below.

ComSync/PCI-104 Synchronous Clocking

The clocking circuits on the ComSync/PCI-104 are very flexible. The ComSync/PCI-104 DB-25 clock pins are bi-directional. This means that the TXC or RXC pins can be inputs receiving a clock or outputs driving a clock. Functionally the two pins are equal. For example, the following clocking combinations are possible:

- RXC as clock input and TXC as clock input.
- RXC as clock output and TXC as clock output.
- RXC as clock input and TXC as clock output.
- RXC as clock output and TXC as clock input

The ComSync/PCI-104 receivers and transmitters can be clocked independently from any combination of the above or from internal clock sources.

Loopback Connectors

Loopback connectors are useful for performing diagnostics. <u>Figure 11</u> and <u>Figure 12</u> illustrate the recommended pinouts for creating loopback connectors for ComSync/PCI-104.

Figure 11: Recommended Pinouts for V.28 (RS-232) Loopback Connector

Figure 12: Recommended Pinouts for a V.11 (RS-422) Loopback Connector

NOTES:

- 1. For an asynchronous loopback, omit the TXC and RXC pins.
- 2. When using clock signals, one signal must be configured as an input, while the other must be configured as an output.
- 3. When using a DB-25 female loopback connector, solder cup DB-25 connectors and 24 AWG solid core wire, such as wire from a CAT5 cable is recommended.

Connector Pinouts

PCI-104 Header (P1)

Refer to PCI-104 specifications at http://www.pc104.org.

NOTE:

P1 must be connected to a PCI-104 stack supplying 5V only, or both 5V and 3.3V. The ComSync/PCI-104 is <u>not able</u> to operate in a 3.3V only PCI-104 stack.

Appendix

ComSync/PCI-104 Specifications

Operating Environment

0°C to 70°C (32°F to 158°F)

Communications

Synchronous: Up to 18.432 Mbps with internal clock reference, up to 20Mbps with external clock reference Asynchronous: 230.4 Kbps

Custom baud rates are also available. Please contact sales@connecttech.com for more information.

ESD Protection

15kV

Power

5V @1.0 A maximum: V.35, 530 or 530A synchronous mode at maximum clock rate.

 $5V\ @\ 700\ mA$ or less typical: X.21, V.28

Connectors

Two 26 pin dual row headers, 0.100" pitch. Cables for serial I/O: DB-25 Female.

Dimensions

Compliant with PCI-104 specification 1.0

Cable Options

If required, cabling options are available for the ComSync/PCI-104.

Cable Part Number	Board-end Connector	Device Connector			
CB001	1 x 26-pin Header	1 x DB-25 Female			

NOTE: One CBG001 is required per port on the ComSync/PCI-104

As model options for the ComSync/PCI-104 continue to grow, cabling options may grow as well. Please contact sales@connnecttech.com for the most recent list of cables.

I/O Connect Pin Assignments

Table 12: Pin Assignments for Cable Part Number CBG001

	Table 12: Pin Assignments for Cable Part Number CBG001						
Header Pin #	DB-25 Pin #	Signal	Header Pin #	DB-25 Pin #	Signal		
1	1	GND/SR	14	20	DTR-		
2	14	TX+	15	8	DCD-/RxSYNC_IN-		
3	2	TX-	16	21			
4	15	TXC-	17	9	RXC+		
5	3	RX-	18	22	DSR+		
6	16	RX+	19	10	DCD+/RxSYNC_IN+		
7	4	RTS-	20	23	DTR+		
8	17	RXC-	21	11	RxSYNC_OUT+		
9	5	CTS-	22	24	RxSYNC_OUT-		
10	18		23	12	TXC+		
11	6	DSR-	24	25	RI		
12	19	RTS+	25	13	CTS+		
13	7	GND/SR	26				
	Top view of DB-25 cable						
	Arrow = pin 1						
					Red stripe = pin 1 Ribbon Cable		
	Female DB-25 Connector						

NOTE:

ComSync/PCI-104 does <u>not</u> include this cable (CBG001) unless it is ordered as part of the SKU. All ComSync/PCI-104 model numbers using a "-01" suffix include the CBG001 cable.

Multi-drop communications using V.11/RS-422/485 line modes

When wiring multi-drop RS-485 networks, it is necessary to wire the devices in a "daisy chain," they must not be wired with a "star" topology, see diagram.

Figure 13: Wiring Diagram for V.11/RS-422/RS-485 Line Modes

Asynchronous Communications Tutorial

The ComSync/PCI-104 features two asynchronous serial communication ports. Asynchronous communications is a simple, cost effective means of terminal serial communication. For this reason, it is widely used for communications on personal computers, bar codes readers, printers, terminals and much more.

In asynchronous serial communication, the electrical interface is held in the idle position between characters, also referred to as "mark". A change in signal level (known as space level) indicates the start of transmission of a character. The receiver recognizes this change as a "start bit". Once the start bit has been sent, the transmitter sends the actual data bits. In typical asynchronous communications there may be 5, 6, 7, or 8 data bits, depending on the application. Both the receiver and the transmitter must be set to the same number of data bits, baud rate and stop bits. Stop bits can be 1, 1.5, or 2 bit periods in length. When the transmitter has sent all the data bits, it sends a stop bit. This stop bit signals to the receiver that the data has finished transmission. The stop bit is the same state as the idle or mark state.

Figure 14: Typical Asynchronous Date Frame

Serial Line Interface Tutorial

RS-232 Line Interface:

RS-232 is the simplest, least expensive line interface standard. It is also referred to as EIA232 and TIA/EIA-232. The RS-232 specification signals levels of +3V to +15V for a logic 0 or Space, and -3V to -15V for a logic 1 or Mark. The ComSync/PCI-104 has RS-232 signal levels with a typical range of +/- 8 Volts. The maximum cable length you can use with RS-232 is dependant on a number of factors including:

Baud Rate

The faster the baud rate, the shorter the cable length must be.

Cable Quality

Quality refers to the capacitance of the cable. A higher capacitance (usually specified as pF or pico-Farads per foot) dictates a lower baud rate and a shorter maximum length. Low capacitance computer cables for RS-232 applications are available from all wire and cable suppliers.

Operation is usually possible with cable lengths of up to 100 feet (30 m) at baud rates up to 115.2 Kbps using low capacitance cable. For higher baud rates such as 230.4 Kbps and up, we recommend keeping the cable lengths to within 25 feet (7.6 m).

The TIA/EIA232 specification specifies a DB-25 connectors. This connector has a standardized pinout as seen in Table 12.

Differential Line Interface:

RS-485, or TIA/EIA485, is a differential line interface standard capable of high baud rates over long cables. RS-485 is fully compatible with RS-422; which is considered a subset of RS-485.

The use of differential transmitters and receivers ensures RS-485 communications are reliable and robust. This means two wires are used to transmit or receive a signal. One wire carries the true or non-inverted signal; the other wire carries the inverted signal. The non-inverted signal is labelled with a (+) and the inverted is labelled with a (-). The differential communication refers to the (+) as "Tx+" and the (-) as "Tx-". Any noise injected into the wires is cancelled at the receiver, leaving only the original, undistorted data signal. Twisted pair cables are always used in RS-485, this ensures that the communications are robust and as error free as possible. RS-485 signal levels are between 0 and 5 Volts, the differential voltage can be as little as 200mV.

Differential can operate in three different modes: a 4-wire full duplex interface, 4-wire multi-drop full duplex interface and a 2-wire half duplex interface. A full duplex (bi-directional) differential communication interface requires at least four wires, two for transmit and two for receive. A half duplex interface only requires two wires, this provides a cost effective cabling solution.

Multi-drop is a great feature of RS-485. Multiple RS-485 devices can be bussed together in a daisy chain type fashion to create a network. Up to 32 devices may be connected together on the same network. In multi-drop networks, one of the devices (usually the computer) is designated as the master, and all other devices are designated as slaves. All communication is initiated by the master. The master and slave designations are established by your communications application.

Figure 15: Basic 4-Wire, Full Duplex Communications

In a 4-wire RS-485 network, two devices are connected together. For example, a ComSync/PCI-104 RS-485 port and an RS-485 device may be connected.

Multi-drop 4-Wire, Full Duplex Communications:

In a multi-drop 4-wire differential network, two to 32 devices are connected together. Note that each RS-485 receiver counts as a device or "load". In this multi-drop mode of communication, a master slave protocol must be enforced, that is, all communication is initiated by the master, in this case a ComSync/PCI-104. The communication is "full duplex", meaning that receive and transmit traffic occur on different pairs of wires. The ComSync/PCI-104 can receive and transmit data from/to a device at the same time.

Figure 16: Multi-drop 4-Wire, Full Duplex Communications

Basic 2-Wire, Half Duplex Multi-drop Connection:

In a 2-wire differential network, two to 32 devices are connected together. Note that each receiver counts as a device or "load." In this multi-drop mode of communication, a master slave protocol must be enforced, that is, all communication is initiated by the master (in this case a ComSync/PCI-104). The communication is "half duplex", meaning that receive and transmit traffic occur on the same wire. The ComSync/PCI-104 and devices cannot receive and transmit data at the same time.

Note that the Receiver +/- and the Transmitter +/- signals are connected together. This is performed at the DB-9 connectors. All communication between devices occurs over a single pair of wires; this can lower the cost of wiring your network.

Figure 17: Bus Contention on Differential Multi-drop Networks

Bus contention occurs when two or more devices enabled on a bus attempt to run the bus to opposite logic values. From the diagram above, we can see that there are multiple differential transmitters (TXD) on the bus. To avoid the bus contention problem, the differential transmitter features a tri-state, or high impedance mode controlled by an input pin (enable). Software and hardware in the ComSync/PCI-104 and the differential devices will always place the transmitter into high impedance mode when not transmitting. This feature is managed by the ComSync/PCI-104 and is fully transparent to your application.

For example, in a multi-drop network, the differential transmitter is enabled prior to the master initiating transmission. When transmission is complete, the transmitter is placed in high impedance mode. Each slave will receive that transmission from the master. A protocol must be in place to address or select the desired slave device; however, that discussion is beyond the scope of this tutorial and is entirely application dependent. When the slave device has received the data, it will respond by enabling its transmitter and transmitting data onto the bus and then placing its transmitter into high impedance mode just as the master did.

Termination Resistors in Differential Networks

Differential networks often benefit from the installation of termination resistors. Termination is rarely required for lower baud rates, for example 9.6 Kbps or less. However, differential networks are *transmission lines* and can suffer from the electrical effects of ringing, or undershoot and overshoot, all of which can cause data errors, especially at higher baud rates, like 115.2 Kbps. Termination resistors should always be installed at the extreme ends of the network, as close to the differential transceiver circuits as possible, as outlined in the diagram below.

Figure 18: Termination Resistors in Differential Networks

NOTE: The ComSync/PCI-104 features software selectable termination.

Limited Lifetime Warranty

Connect Tech Inc. provides a Lifetime Warranty for all Connect Tech Inc. products. Should this product, in Connect Tech Inc.'s opinion, fail to be in good working order during the warranty period, Connect Tech Inc. will, at its option, repair or replace this product at no charge, provided that the product has not been subjected to abuse, misuse, accident, disaster or non Connect Tech Inc. authorized modification or repair.

You may obtain warranty service by delivering this product to an authorized Connect Tech Inc. business partner or to Connect Tech Inc. along with proof of purchase. Product returned to Connect Tech Inc. must be pre-authorized by Connect Tech Inc. with an RMA (Return Material Authorization) number marked on the outside of the package and sent prepaid, insured and packaged for safe shipment. Connect Tech Inc. will return this product by prepaid shipment service.

The Connect Tech Inc. lifetime warranty is defined as the serviceable life of the product. This is defined as the period during which all components are available. Should the product prove to be irreparable, Connect Tech Inc. reserves the right to substitute an equivalent product if available or to retract lifetime warranty if no replacement is available.

The above warranty is the only warranty authorized by Connect Tech Inc. Under no circumstances will Connect Tech Inc. be liable in any way for any damages, including any lost profits, lost savings or other incidental or consequential damages arising out of the use of, or inability to use, such product.

Copyright Notice

The information contained in this document is subject to change without notice. Connect Tech Inc. shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use of this material. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Connect Tech, Inc.

Copyright © 2008 by Connect Tech Inc.

Trademark Acknowledgement

Connect Tech Inc. acknowledges all trademarks, registered trademarks and/or copyrights referred to in this document as the property of their respective owners.

Not listing all possible trademarks or copyright acknowledgments does not constitute a lack of acknowledgment to the rightful owners of the trademarks and copyrights mentioned in this document.

Customer Support Overview

If you experience difficulties after reading the manual and/or using the product, contact the Connect Tech reseller from which you purchased the product. In most cases the reseller can help you with product installation and difficulties.

In the event that the reseller is unable to resolve your problem, our highly qualified support staff can assist you. Our support section is available 24 hours a day, seven days a week on our website at: www.connecttech.com/sub/support/support.asp. See the contact information section below for more information on how to contact us directly. Our technical support is always free.

Contact Information

We offer three ways for you to contact us:

Telephone/Facsimile

Technical Support representatives are ready to answer your call Monday through Friday, from 8:30 a.m. to 5:00 p.m. Eastern Standard Time. Our numbers for calls are:

Telephone: 800-426-8979 (North America only)

Telephone: 519-836-1291 (Live assistance available 8:30 a.m. to 5:00 p.m. EST, Monday to Friday)

Facsimile: 519-836-4878 (online 24 hours)

Email/Internet

You may contact us through the Internet. Our email and URL addresses are:

sales@connecttech.com support@connecttech.com www.connecttech.com

Mail/Courier

You may contact us by letter and our mailing address for correspondence is:

Connect Tech Inc.

Technical Support

42 Arrow Road

Guelph, Ontario

Canada N1K 1S6

Note:

Please go to the <u>Download Zone</u> or the <u>Knowledge Database</u> in the <u>Support Center</u> on the Connect Tech website for product manuals, installation guides, device driver software and technical tips.

Submit your technical support questions to our customer support engineers via the <u>Support Center</u> on the Connect Tech website.