Dispositivos de Saída e Formação de Imagens

SCC0250 - Computação Gráfica

Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br

Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP)

6 de março de 2014

Sumário

1 Dispositivos de Saída (Exibição)

2 Formação de Imagens

Sistema Computacional

- Um sistema computacional normalmente é composto por
 - Processador
 - Memória
 - Dispositivos de saída (sistema gráfico)
 - Dispositivos de entrada

Computação Gráfica: Dispositivos de Exibição

 De forma geral existem dois tipos de dispositivo de exibição: dispositivo vetorial e dispositivo matricial

- Dispositivos vetoriais ("vector")
 - natureza analógica
 - imagens formadas por segmentos de reta
 - geradas a partir de "display files"

- Dispositivos matriciais ("raster")
 - natureza digital
 - imagens formadas pelo preenchimento de matriz de "pixels"
 - geradas a partir de "frame-buffers"

Sistema Gráfico Matricial (Raster)

Geração da Imagem em Dispositivo Matricial

- Descrição da cena mantida no frame-buffer, que contém uma posição associada a cada pixel da tela
- Para cada pixel, o valor armazenado na posição correspondente define a intensidade (ou cor) com que o pixel será traçado
- Todos os objetos são pixels

Frame Buffer

- Resolução: número de pixels
- Implementado c/ memória VRAM/DRAM
 - Video random-access memory
 - Dynamic random-access memory
 - Acesso rápido para re-exibição e restauro
- frame buffer pode armazenar outras informações além da cor do pixel
 - múltiplas camadas, ou múltiplos buffers

Frame Buffer

- Profundidade do frame buffer (depth):
 - Número de bits p/ cada pixel, determina o número de cores que o sistema consegue exibir
 - 1 bit = 2 cores
 - 8 bits = $2^8 = 256$ cores
 - $24 \text{ bits} = 2^{24} = \text{sistema true color}$
 - d bits = 2^d cores possíveis (reais)
- Sistema RGB: grupos de bits associados a cada uma de 3 cores primárias: Red, Green, Blue

Frame Buffer

- A quantidade de cores representadas no frame buffer é limitada
 - Paleta de cor pode ser usada para permitir escolher qual faixa de cor utilizar
- O valor armazenado em uma posição do frame buffer pode ser usado como índice de uma tabela de cor
 - Clut: Color Lookup Table

Video Look-up Table

- Define a paleta de cores
 - Nesse exemplo uma paleta contém 256 cores das 4096 possíveis

Processador

- O processador é responsável por transformar as primitivas gráficas (linhas, círculos, polígonos, etc.) em pixels no f.b.
 - Essa conversão é conhecida como rasterização ou conversão matricial

Sumário

1 Dispositivos de Saída (Exibição)

2 Formação de Imagens

Formação de Imagens

- Em computação gráfica as imagens são formadas usando um processo análogo ao aplicado por sistemas físicos de imageamento
 - Câmeras
 - Microscópios
 - Telescópios

Modelo de Câmera Sintética

• (1) Objetos, (2) observador e (3) fonte(s) de luz

Ray Tracing

 Uma forma de implementação desse modelo de câmera é utilizando a abordagem de ray tracing

Pipeline Gráfico

- Outra implementação seria considerando uma arquitetura *Pipeline*, onde os objetos são **processados**, **um de cada vez**, na **ordem** que eles foram gerados pela aplicação
 - Só considera efeitos locais de luz
 - Abordagem empregada pela OpenGL

Pipeline Gráfico

- Muito do trabalho nesse pipeline está em converter representações de objetos de um sistema de coordenada para outro
 - Coordenadas dos objetos
 - Coordenadas de câmera (olho)
 - Coordenadas da tela

Processamento de Vértices

Processamento de Vértices

- Projeção é o processo que combina a visão 3D de um observador com objetos 3D para produzir imagens 2D
 - **Projeções perspectivas**: os raios de projeção se encontram no centro da projeção
 - **Projeção paralela**: os raios de projeção são paralelos, o centro da projeção é substituído por uma direção de projeção
- O processamento de vértices também calcula cor

Montagem de Primitivas

Montagem de Primitivas

- Vértices devem compor objetos geométricos antes de acontecer o recorte e a rasterização
 - Segmentos de linha
 - Polígonos
 - Superfícies e curvas

Recorte

Recorte

- Assim como nenhuma câmera real pode "ver" completamente o mundo, a câmera virtual pode somente ver parte mundo ou espaço de objetos
 - Objetos que não estão dentro desse volume são "recortados" da cena

Rasterização

Rasterização

- Os objetos que não foram "recortados" geram pixels que são coloridos no frame buffer
 - Vértices e seus atributos são interpolados sobre os objetos pelo rasterizador
- A rasterização produz um conjunto de fragmentos ("pixels em potencial") para cada objeto
 - Tem uma localização no frame buffer
 - Tem atributos de cor e profundidade

Processamento de Fragmentos

Processamento de Fragmentos

- Fragmentos são processados para determinar a cor dos pixels correspondentes no frame buffer
 - Mapeamento de textura ou interpolação das cores dos vértices
- Fragmentos podem ser bloqueados por outros fragmentos mais próximos da câmera
 - Remoção de superfície oculta

Pipeline Programável

- A maioria das placas gráficas implementam esse Pipeline Gráfico com funcionalidades fixas
 - Processamento dos vértices
 - Processamento dos fragmentos
- Atualmente o processamento dos vértices e fragmentos é programável
 - Muitas técnicas que não podiam ser implementadas em tempo real agora são possíveis
- Isso é GLSL (OpenGL Shading Language)