SISTEM DE MONITORIZARE A CALITATII AERULUI

Autor: Mihai-Octavian Coposescu

Coordonator: Prof. Dr. Ing. Zoltan Francisc BARUCH

Continutul prezentarii

- Contextul proiectului
- Obiectivele proiectului
- Studiu bibliografic
- Solutia aleasa
- Implementarea solutiei
- Teste si rezultate
- Concluzii
- Bibliografie

Contextul proiectului

Cum ne afecteaza calitatea aerului?

90% din timp il petrecem in spatii inchise...

Obiectivele proiectului

Masurarea parametrilor cheie de calitate a aerului.

Citirea parametrilor in timp real.

Citirea parametrilor istorici.

Oferirea unei interfete intuitive si usor de utilizat.

Studiu bibliografic

- Airthings
 - Conexiune Bluetooth sau SmartLink (proprietar)
 - Esantionarea gazului radioactiv Radon
 - Functionare pe baterie (15 luni).
- Awair
 - Conexiune Bluetooth, Wi-Fi, LoRa
 - Retea mesh
- Air Quality Egg
 - Platforma de dezvoltare
 - Harta a senzorilor
- Purple Air
 - Spatii inchise, deschise si industrial
 - Harta a senzorilor

PurpleAir

AirQualityEgg

Solutia Aleasa

- Un sistem de monitorizare a calitatii aerului avand caracteristicile:
 - Senzori pentru esantionarea parametrilor de calitate a aerului:
 - Temperatura, Umiditate, VOC, PM1.0, PM2.5, PM4.0, PM10.0, TPS
 - Conexiune Wi-Fi in banda de frecventa 2.4GHz
 - Broker MQTT pentru datele in timp real
 - Baza de date MongoDB pentru datele istorice
 - Server RESTful pentru accesul la baza de date
 - Aplicatie Android reprezentand interfata cu utilizatorul

Arhitectura sistemului

Arhitectura senzorului

- Modulul senzor:
 - Placa de dezvoltare ArtyZ7
 - Senzori pentru esantionarea parametrilor de calitate a aerului:
 - Texax Instruments HDC1080 pentru temperatura si umiditate
 - Sensirion SPS30 pentru particulele in suspensie
 - Sensirion SGP40 pentru compusii organici volatile
 - Controller de retea ATWINC1500
 - Esantionare parametrii periodic
 - Transmiterea parametrilor catre Brokerul MQTT


```
"Temperature" : 29.468,
"Humidity" : 59.301,
"PM1.0" : 30.597,
"PM2.5" : 32.356,
"PM4.0" : 32.356,
"PM10.0" : 32.356,
"TPS" : 446,
"VOCIndex" : 316
```

- Broker MQTT:
 - Am utilizat Brokerul MQTT Mosquitto
 - Exemplu topic: "readings/F8F005ADB2A9/airQ1"
 - Subscriber wildcard pentru interceptarea mesajelor de la senzori
 - "readings/#"
 - Transmiterea mesajelor interceptate catre serverul RESTful
 - Salvarea mesajelor in baza de date

- Baza de date:
 - Am utilizat baza de date MongoDB
 - Colectii de tip serii in timp
 - Datele sunt salvate in documente
 - O colectie este formata din mai multe documente
 - MongoDB structureaza automat datele in Buckets

```
timestamp: ISODate('2024-08-16T13:28:41.849Z'),
metadata: { sensorMAC: 'F8F005ADB2A9', type: 'airQl' },
'PM2.5': 19.96,
_id: ObjectId('66bf5409878dda90726c34a2'),
'PM1.0': 18.875,
VOCIndex: 100,
TPS: 418,
'PM4.0': 19.96,
Humidity: 56.689,
Temperature: 29.75,
'PM10.0': 19.96
}
```

- Serverul RESTful:
 - Am utilizat biblioteca Flask
 - Definire rute de intrare in server (adrese URI) (Rute)
 - Validarea datelor care intra si care ies din server (Controller)
 - Definire resurse specifice fiecarei adrese URL (Model)
 - Formatare date raspuns (View)
 - Marcaj temporal UTC

- Aplicatie Android:
 - Pagina principala prezinta o lista a senzorilor accesati
 - Selectarea unui senzor deschide pagina de vizualizare a parametrilor
 - Selectarea oricarui parametru din lista deschide pagina de grafice
 - Mentine o conexiune MQTT cu Brokerul
 - Realizeaza cereri HTTP pentru afisarea graficelor
 - Datele senzorilor instalati sunt salvate in memoria telefonului

Variatia mediului la care sunt expusi senzorii

> Variatia temperaturii

Variatia particulelor in suspensie

Masurarea consumului senzorului

150 mA/h

Scalabilitatea sistemului

20 de senzori simulati

orange <mark>Vol.</mark>	lat 🤋	10 1 59% ■ 1 7:22	orange <mark>আছ ু,।।।</mark> ক্র,	№ 30€ 58% ■ 17:36	orange Votte ,III 🥋 🛇	∅ 30€ 53% ■ 18:25
Air Quality Monitor			Air Quality Monitor		Air Quality Monitor	
	Name: AirQ1_B2A9 Type: AirQ1 Status: Connected MacAddress: F8F005ADB2A9 Last Reading: 2024-08-22 19:22:40.026		Name: AirQ1_B2A9 Type: AirQ1 Status: Connected MacAddress: F8F005ADB2A9 Last Reading: 2024-08-22 19:35:57.019		Name: AirQ1_B2A9 Type: AirQ1 Status: Connected MacAddress: F8F005ADB2A9 Last Reading: 2024-08-22 20:25:45.994	
Tempe 24.829	rature °C	Humidity 57.214 %	Temperature °C	Humidity 37.615 %	Temperature °C	Humidity 27.331 %
27.027	C	37.214 /6	30,173	37.013 /6	34,113 C	27.551 /6
PM1.0		PM2.5	PM1.0	PM2.5	PM1.0	PM2.5
2.173	μg/m³	2.298 μg/m³	1.179 μg/m³	1.247 μg/m³	327.0 μg/m³	346.0 μg/m³
PM- 2.298	4.0 μg/m³	PM10.0 2.298 μg/m³	PM4.0 1.247 μg/m³	PM10.0 1.247 μg/m³	PM4.0 346.0 μg/m³	PM10.0 346.0 μg/m³
TF 415.0	PS μg/m³	VOCIndex 97.0	TPS 428.0 μg/m³	VOCIndex 127.0	TPS 404.0 μg/m³	VOCIndex 99.0

- Latenta sistemului
 - Retea de 21 de senzori
 - T_timp_real = 1.624 secunde
 - T_istoric_10m = 134 milisecunde
 - T_istoric_6h = 634 milisecunde
 - T_istoric_1d = 1.556 secunde
 - T_db = 1.379 secunde

Concluzii

- Contributii personale:
 - Integrarea si imbunatatirea driverului Paho MQTT embedded
 - Integrarea controllerului de retea ATWINC1500 cu procesorul Zynq 7000
 - Structurarea datelor in baza de date pentru performante optime
 - Raportarea a 2 parametrii de calitate a aerului mai putin uzuali
 - PM4.0 si TPS

Bibliografie

- W. Stallings, Data and Computer Communications, 8th ed. Pearson Education, 2007.
- M. Grinberg, Flask Web Development, Developing Web Applications with Python, 2nd ed. O'Reilly Media, 2018.
- MQTT Version 3.1.1, OASIS Standard, 29 October 2014.
 [Online]. Available:http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
- M. Grinberg, Flask Web Development, Developing Web Applications with Python, 2nd ed. O'Reilly Media, 2018.

Multumesc pentru atentie!