Constructing the lattice of wide subcategories

Haruhisa Enomoto (Osaka Prefecture University) 4 January 2022, Flash Talks in Representation Theory at NTNU

Setting

- Λ: a finite-dimensional algebra.
- $mod \Lambda$: the category of f.g. right Λ -modules.

Definition

- A subcategory T of mod Λ is a torsion class
 :⇔ closed under extensions and quotients.
 tors Λ: the poset of torsion classes.
- A subcategory W of mod Λ is a wide subcategory
 :⇔ closed under extensions, kernels, and cokernels.
 wide Λ: the poset of wide subcategories.

tors Λ and wide Λ are complete lattices with $\Lambda = \bigcap$ and \bigvee .

Setting

For simplicity, we assume tors Λ is finite.

Assume we are given tors Λ just as an abstract lattice!

 \rightsquigarrow I'll construct the poset wide Λ .

Example

 $\Lambda = k(\bullet \to \bullet)$. The Hasse quiver of tors Λ :

3

The join-irreducible labeling

Definition

For each Hasse arrow $a \rightarrow b$ in tors Λ , we label its arrow by

$$\gamma(a \to b) := \min\{x \in \operatorname{tors} \Lambda \mid b \lor x = a\}.$$

This is well-defined and called the join-irreducible label.

The extended kappa map $\overline{\kappa}$

Barnard–Todorov–Zhu introduced the map $\overline{\kappa}$ as follows:

Definition

For each $x \in \text{tors } \Lambda$, there's unique $\overline{\kappa}(x) \in \text{tors } \Lambda$ satisfying

{labels of Hasse arrows starting at
$$x$$
} ={labels of Hasse arrows ending at $\overline{\kappa}(x)$ }

$$\frac{1}{\chi} = \overline{K}(\alpha)$$

The extended kappa map $\overline{\kappa}$

Red: the orbit of $\overline{\kappa}$.

The kappa order and Main Theorem

Definition (The kappa order)

For $x, y \in \text{tors } \Lambda$, define

$$x \leq_{\kappa} y : \iff x \leq y \text{ and } \overline{\kappa}(x) \geq \overline{\kappa}(y).$$

Theorem (E, in today's arxiv!)

T: wide $\Lambda \rightarrow \text{tors } \Lambda$ induces a poset isomorphism:

wide
$$\Lambda \cong (\mathsf{tors}\,\Lambda, \leq_{\kappa})$$

Works with a little modification for any abelian length category.

Example

tors Λ

 $(\mathsf{tors}\,\Lambda,\leq_{\kappa})\cong\mathsf{wide}\,\Lambda$

$$y \le x \text{ but } \overline{\kappa}(y) \not \ge \overline{\kappa}(x), \quad \text{hence } y \not \le_{\kappa} x!$$

Lattice properties of wide Λ

Theorem

The lattice wide Λ is

- ranked (graded) with rank func: #{simples},
- rank-vector is symmetric and unimodal [Aoki-Higashitani-Iyama-Kase-Mizuno].

Conjecture for wide Λ

Conjecture

The lattice wide Λ has the following properties:

- · (strongly) Sperner.
- The generating function of rank-vector has only real roots.
- Has the symmetric Boolean decomposition.

(d) A symmetric Boolean decomposition into four parts.

Figure from [Mühle, Symmetric chain decompositions and the strong Sperner property for noncrossing partition lattices]

SageMath Program

I developed a program

The Lattice of torsion classes in SageMath

which can compute various things from tors Λ .

Youtube Video for how to use this program