AP Calculus Class 15

2. d)
$$y=tounX$$
, $y=2sinX$, $-\frac{\pi}{3} \leq \chi \leq \frac{\pi}{3}$

$$A = 2 \int_{0}^{\frac{\pi}{3}} 2 \sin x - \tan x dx$$

$$= 2 \left[2(-\cos x) - (-\ln|\cos x|) \right]_{0}^{\frac{4}{3}}$$

$$= 2[-1+ln(\frac{1}{2})]-2[-2(1)+ln1]$$

3,

 $A = A_1 + A_2$

$$= \int_{-1}^{0} \left(-\frac{5}{3}x + \frac{13}{3}\right) - \left(-6x\right) dx + \int_{0}^{2} \left(-\frac{5}{3}x + \frac{13}{3}\right) - \frac{1}{2}x dx$$

$$\frac{18}{3}x - \frac{16}{6}x$$

$$= \int_{1}^{0} \frac{13}{3} \times t + \frac{13}{3} dx + \int_{0}^{2} -\frac{13}{6} \times t + \frac{13}{3} dx$$

$$=\frac{13}{3}\left[\frac{1}{2}\chi^{2}+\chi\right]^{0}+\frac{13}{3}\left[-\frac{1}{4}\chi^{2}+\chi\right]^{0}$$

$$=\frac{13}{3},\frac{1}{2}+\frac{13}{3}=\frac{13}{2}$$

let $f = ln \times g' = \frac{1}{\sqrt{x}}$ $f' = \frac{1}{x}$ $g = 2\sqrt{x}$

$$\int_{t}^{1} \frac{\ln x}{\sqrt{x}} dx = \left[2\sqrt{x} \ln x \right]_{t}^{1} - 2\int_{t}^{1} \frac{1}{\sqrt{x}} dx$$

$$= \left[2\sqrt{x} \ln x \right]_{t}^{1} - 4\left[\sqrt{x} \right]_{t}^{1}$$

$$= -2\sqrt{t} \ln t - 4 + 4\sqrt{t}$$

$$\Rightarrow \int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx = \lim_{t \to 0^{+}} \left[-2\sqrt{t} \ln t - 4 + 4\sqrt{t} \right].$$

$$= 0 - 4 = -4. \qquad \Rightarrow \text{ owergent.}$$

$$\Rightarrow \text{ Convergent.}$$

$$-2t^{\frac{1}{2}} \leftarrow \frac{1}{\sqrt{t}} \frac{\ln t}{\sqrt{t}} \Rightarrow \infty$$

Area Between Curves.

$$A = \int_{c}^{d} (\chi_{R} - \chi_{L}) dy$$

Example: Find the area enclosed by the line y=x-1 and the parabola $y^2=2x+6$.

$$y = x-1$$
 => $x = y+1$
 $y^2 = 2(y+1)+6$ $x = \frac{1}{2}y^2 - 3$
 $y^2 = 2y+8$.
=> $y^2 - 2y - 8 = 0$.
 $(y+2)(y-4) = 0$.
=> $y = -2$ $y = 4$.

$$A = \int_{-2}^{4} (\chi_{R} - \chi_{L}) dy$$

$$= \int_{-2}^{4} ((9+1) - (\frac{1}{2}y^{2} - 3)) dy$$

$$= \int_{-2}^{4} (-\frac{1}{2}y^{2} + y + 4) dy$$

$$= \frac{1}{2} (\frac{y^{3}}{3} + \frac{y^{2}}{2} + 4y) \int_{-2}^{4}$$

$$= -\frac{1}{6} (64) + 8 + 16 - (\frac{4}{3} + 2 - 8)$$

$$= 18$$

Volume.

slice the volume into pieces of equal width $\Delta \chi$,

choose a sample point Xi between [Xi-1, Xi],

$$V \approx A(\chi_i^*) \triangle X$$

The total volume, $V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x$ $n \to \infty$

$$V = \lim_{n \to \infty} \frac{\hat{\lambda}}{\hat{\lambda}} A(\hat{x}_{i}^{*}) \Delta \hat{x} = \int_{\alpha}^{b} A(\hat{x}) d\hat{x}$$

Example: Show that the volume of a sphere of radius r is $V = \frac{4}{3}$, r^3 .

$$\chi^2 + y^2 = r^2 \rightarrow y^2 = r^2 - \chi^2$$

$$y = \pm \int \gamma^2 - \chi^2$$

$$A(x) = \pi y^2 = \pi (y^2 - x^2)$$

$$a = -r$$
 $b = r$

Apply the definition
$$V = \int_{-r}^{r} A(x) dx = \int_{-r}^{r} \pi(r^{2} - x^{2}) dx$$

$$= 2\pi \int_{0}^{r} r^{2} - x^{2} dx = 2\pi \left[r^{2} x - \frac{x^{3}}{3} \right]_{0}^{r}$$

$$= 2\pi \left(r^{3} - \frac{r^{3}}{3} \right) = \frac{4}{3} \pi r^{3}$$

Example: Find the volume of the solid obtained by rotating about the x-axis the region under the curve y = Tx from 0 to 1.

Cross-sectional area

$$A(x) = \pi \int_{x}^{x} = \pi x$$

The volume for one cylinder is $A(X) \circ X = \pi_1 X \circ X$.

$$\Rightarrow V = \int_0^1 A(x) dx = \int_0^1 \pi x dx = \pi \frac{x^2}{2} \int_0^1 = \frac{\pi}{2}$$

Example: the region R is enclosed by the curves $y=\chi$ and $y=\chi^2$ is rotated around the χ -axis. Find the volume of the resulting solid.

The above three examples show solids that are called solids of revolution

$$V = \int_a^b A(x) dx$$

The For the 2nd example with a solid cylinder, $A = 71 (radius)^2$.

2) For the 3rd example with a hollow cylinder, $A = \pi \left(\text{radius} \right)^{2}$ $= \pi \left(\text{outter radius} \right)^{2} - \pi \left(\text{inner radius} \right)^{2}.$

Def n of Volume.

Let S be a solid that lies between X=a and X=b. If the cross-sectional area of S in the plane $P\times$, through X and perpendicular to the X-axis is A(X), where A is a continuous fun, then the volume of S is $V=\lim_{n\to\infty}\sum_{i=1}^n A(X_i^*) \ge X=\int_a^b A(X) dX$.

$$\int_{-\infty}^{\infty} \frac{1}{x} dx = \int_{-\infty}^{\infty} \frac{1}{x} dx + \int_{0}^{\infty} \frac{1}{x} dx$$

Divergent,

$$\int_{-\infty}^{\infty} \frac{1}{x} dx = \int_{-\infty}^{\infty} \frac{1}{x} dx + \int_{0}^{\infty} \frac{1}{x} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{x} (-dx) + \int_{0}^{\infty} \frac{1}{x} dx$$

$$= \int_{0}^{\infty} \frac{1}{x} dx + \int_{0}^{\infty} \frac{1}{x} dx$$

$$= -\int_{0}^{\infty} \frac{1}{x} dx + \int_{0}^{\infty} \frac{1}{x} dx$$

$$= 0.$$

$$\int_{1}^{0} \frac{1}{-x} (-dx)$$

$$\det u := -x$$

$$\det u := -dx$$

$$u(0) := 0$$

$$u(1) := -1$$

$$\int_{-1}^{1} \frac{1}{x} dx = -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{1} \frac{1}{x} dx$$

$$= -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{2} \frac{1}{2} x dx$$

$$= -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{2} \frac{1}{2} x dx$$

$$= -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{2} \frac{1}{x} dx$$

$$= -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{1} \frac{1}{x} dx$$

$$= -\int_{0}^{1} \frac{1}{x} dx + \int_{0}^{1} \frac{1}{x} dx$$

$$= \int_{0}^{2} \frac{1}{x} dx$$

Cauchy principle value. singularity! "special discontinuities!

$$\int_{-\infty}^{\infty} \frac{1}{x} dx = \lim_{\alpha \to \infty} \lim_{\epsilon \to 0} \left[\int_{-\alpha}^{-\epsilon} \frac{1}{x} dx + \int_{\epsilon}^{\alpha} \frac{1}{x} dx \right] = 0.$$