Lecture 13 – Intro to Complexity theory

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 12

- the Diagonal language L_D is not recursively enumerable
- the Universal language L_U, the Universal TM: simulate any M
 on any w
- recursive languages are closed under complement
- Post's theorem: L recursive iff both L, \overline{L} are RE
- \bullet L_U , L_D are recursively enumerable but not recursive
- reductions between decision problems
- the Halting problem is undecidable
- (Rice's thm: nontriv. properties of programs are undecidable)
- Undecidable problems about context-free grammars
- Source of undecidability: Post's correspondence problem

Summary of Lecture 13

- time complexity
- .

CHAPTER 5: INTRO TO COMPLEXITY

Time complexity

Asymptotic notation

Big-O notation: Let $f,g:\mathbb{N}\to\mathbb{R}^+$. We say that $f(n)\in O(g(n))$, if there exist $C,n_0\in\mathbb{N}^+$ such that $(\forall n>n_0)\ f(n)\leq C\cdot g(n)$

e.g. $\limsup_{n\to\infty} \frac{f(n)}{g(n)} < \infty$. In that case we say that g(n) is an [asymptotic] upper bound [up to a constant multiple] for f(n).

Note: Often the imprecise term 'upper bound' is used; sometimes you will encounter f(n) = O(g(n)).

For example, $f(5n^3 + 2n^2 + 22n + 6) \in O(n^3)$ with $n_0 = 10$, C = 6.

Little-o notation: $f(n) \in o(g(n))$, if for all c > 0 there exists $n_0 \in \mathbb{N}^+$ so that $(\forall n \ge n_0)$ $f(n) < c \cdot g(n)$, i.e. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Then we say f(n) is [asymptotically] dominated by g(n).

Analogously for \geq instead of \leq : Ω, ω .

Classes of time complexity

Definition

Let M be a Turing machine that halts on every input. The time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of computation steps for inputs of length n.

Definition

For $t: \mathbb{N} \to \mathbb{R}^+$, $\mathrm{TIME}(t(n))$ is the class of all languages decidable by a TM of time complexity in O(t(n)) (i.e., always halts and for |w| = n correctly answers in at most O(t(n)) steps).

NB: Here we mean the standard, single-tape, deterministic TM.

Example

Example $(L = \{0^i 1^i \mid i \ge 0\} \text{ is in } TIME(n^2))$

- 1. check if the input is $0^i 1^j$, if a 0 follows a 1, reject (time O(n))
- 2. return to the beginning: hidden in the constant O(2n) = O(n)
- 3. go through the 0s, in time $O(n^2)$
 - 3.1 rewrite the next 0 to X
 - 3.2 find the first 1, rewrite to X
 - 3.3 return to the beginning
- 4. if no more 0s, check that no more 1s remain and accept (if 1 found, reject) (time O(n))

Can we do it faster?

Can we do it faster?

Idea: "compare the binary representations of i and j", $\log n$ bits, for each bit need to traverse through the word

```
Example (L = \{0^i 1^i \mid i \ge 0\} \text{ is also in } TIME(n \log n))
```

- 1. check if the input is $0^i 1^j$ and even length (time O(n))
- 2. iterate while there are 0s, in time $O(n \log n)$
 - 2.1 rewrite every other 0 to X, then every other 1 to X
 - 2.2 check if the number of remaining 0s+1s is even, if not, reject
- 3. if no more 0s, check that no more 1s and accept (time O(n))

Can we do it even faster?

Time complexity and regular languages

Can we do it even faster? Not really.

Theorem

Every language decidable in time $o(n \log n)$ [on a single-tape, deterministic TM] is regular.

[We omit the proof.]

Multi-tape TM

Example (Multi-tape TM for $L = \{0^i 1^i \mid i \ge 0\}$ **)**

- copy 0s to Tape 2
- at first 1, switch state; erase 1 from Tape 1 & 0 from Tape 2
- · accept if both tapes are erased

Lemma

Every multi-tape Turing Machine with time complexity t(n) is equivalent to a [single-tape] Turing Machine with time complexity $O(t^2(n))$.

Proof: Simulation of n steps of a k-tape TM can be done in $O(n^2)$ moves since one step takes 4n + 2k moves (heads at most 2n fields apart, read, write, move head marks).

Nondeterministic time complexity

The time complexity of a **nondeterministic** Turing machine that always halts is defined analogously: f(n) is the maximum number of steps in **any branch** of the computation tree.

Definition

For $t : \mathbb{N} \to \mathbb{R}^+$, $\overline{\text{NTIME}}(t(n))$ is the class of all languages decidable by a nondetermistic TM of time complexity in O(t(n)).

(An NTM decides L if halts on all inputs and recognizes L.)

Theorem

Any nondeterministic TM of time complexity $t(n) \ge n$, has a determistic equivalent of time complexity in $2^{O(t(n))}$.

Corollary

If $t(n) \ge n$, then $\text{NTIME}(t(n)) \subseteq \text{TIME}(2^{O(t(n))})$.

Proof

Recall the construction: BFS of the computation graph, keep a queue of configurations to process.

- At most *d* possible transitions for any $(q, X) \in (Q \setminus F) \times \Gamma$.
- So after k steps at most d^k configurations.
- Processing one configuration can be 'hidden' in the constant.
- Therefore the simulation is in time:

$$O(t(n)d^{t(n)}) = 2^{O(t(n))}$$

We need to simulate multiple tapes, but:

$$(2^{O(t(n))})^2 = 2^{O(2t(n))} = 2^{O(t(n))}$$

P vs. NP

The class P

Definition

Let P (also PTIME) be the class of all languages decidable in polynomial time by a [single-tape, deterministic] Turing machine:

$$P = \bigcup_k \mathrm{TIME}(n^k)$$

- Path in a graph
- Primality of an integer (Agrawal–Kayal–Saxena 2002)
- Linear programming
- Horn-SAT

(The last two are P-complete under LOGSPACE reductions.)

Theorem ($CFL \subseteq P$)

Every context free language belongs to P.

Proof: Take a ChNF grammar for L. Given input ω , run the CYK algorithm (polynomial, in $O(n^3)$).