Moderne Methoden der Regelungstechnik

2. Einführung zur Regelung im Zustandsraum

Prof. Dr. Horst Schulte

Sommer-Semester April – Juli 2021

Inhalt

- 1. Zustandsraumbegriff in der Modellbildung
- 2. Lineare zeitinvariante Zustandsraummodelle
- 3. Einführung in die Zustandsregelung
- 4. Quadratische Ljapunov-Funktionen

Literatur: Feedback Control of Dynamic Systems (Sixth Edition)

Authors: Gene F. Franklin, J. David Powell (Stanford University), Abbas Emami-Naeini, SC Solutions, Inc.

Chapter 7: State-Space Design (online copy on Moodle)

- Zustände x1, x2, ..., xn beschreiben die Variablen von n (inneren) konzentrierten Energiespeichern eines dynamischen Systems n'ter Ordnung
- Dynamik in System setzt Energiespeicherung voraus
- Zustände bzw. Zustandsvariablen beschreiben den Energiegehalt der in einem dynamischen System enthaltenen Speicherelemente
- Zustandsvariablen sind z. B.
 - Spannung u an einem Kondensator
 - Strom *i* in einer Induktivität
 - Auslenkung x der Feder
 - Geschwindigkeit dx/dt der Masse
 - Drehzahl omega einer rotierenden Masse

- Neben realen physikalischen Energien kann der Energiebegriff auch auf rein informationsverarbeitende Systeme (Routing Systeme, Warteschlangen Mechanismen etc.) oder hybride Systeme (Cyberphysical systems) erweitert werden
- Zustände werden in Zustandsvektoren zusammengefasst

$$\mathbf{X} = (X1, X2, \dots, Xn)^T \setminus In R^n Xn$$

- Zustandsvektoren spannen Zustandsräume der n'ten Dimension auf
- Zustandsraummodelle enthalten den Zustandsvektor x (Dimension n), den Eingangsvektor u (Dimension m) und den Ausgangsvektor y (Dimension p) als Variablen
- Zustandsraummodelle bestehen aus einer Differentialgleichung des Zustandsvektors mit Eingangsvektor und einer Ausgangsgleichung

- Tustandsraummodell: Zustandsdifferentialgleichung, Ausgangsgleichung dx/dt = f(x, u) mit x als Zustandsvektor, u als Eingangsvektor y = g(x, u) mit y als Ausgangsvektor
- Zustandsraummodelle ermittelt man über die Methoden der mathematischen Modellbildung oder Systemidentifikation
- Lösung eines Zustandsraumodelles lautet x(t) für t = [0 infinit)
- Analytische Lösung ist bei Nichtlinearitäten meist nicht bestimmbar
- Simulation als Integration von f(x,u) liefert numerische Lösung
- Bestimmte Klassen von Zustandsraummodellen lassen sich auch ohne analytische Lösung über die Eigenschaften der Systemmatrizen, dem bestimmen einer Lyapunov Funktion etc. analysieren

Zustandsraummodelle Beispiele

Zustandsraummodelle Beispiele

Zustandsraummodelle Beispiele

(3) where (4) we see in line Dol must den

Farstands we have
$$X = (x_1 \times_2)^T$$
 Fur an uner goloff

$$\dot{X} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1/C \times_2 \\ -1/L \times_4 - \frac{R}{L} \times_2 + \frac{1}{L} u \end{pmatrix}$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1/C \\ 1/L & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0$$

Zustandsraummodelle Beispiele

Die Phospassileichen erzicht siec durch all
$$y(t)$$
 $y(t)$
 $y(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} u(t) \qquad y(t) = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix}$$

Zustandsraummodelle Beispiele

1.) elektrischer Schaltkreis

(3) vac (4) were in line DOL unt den

Russland wehlor
$$X = (x_1 \times_2)^T$$
 Euraman soleft

$$\dot{X} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1/C \times_2 \\ -\frac{1}{L} \times_1 - \frac{R}{L} \times_2 + \frac{1}{L} u \end{pmatrix}$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1/C \\ 1/L & -R_{1L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1/L \end{pmatrix}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} u(t) \qquad y(t) = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} u_C(t) \\ i(t) \end{bmatrix}$$

Zustandsraummodelle Beispiele

2.) mechanisches 1-DOF Modell mit nichtlinearer Feder, nichtlinearem Dämpfer

nichtlineare Feder

$$k(x) = c_0 x + c_1 x^3$$
, $c_0 > 0$, $c_1 > 0$

nichtlinearer Dämpfer

$$d(\dot{x}) = d_0 \, \dot{x} + \operatorname{sgn}(\dot{x}) \, d_1 \, \sqrt{|\dot{x}|} = \begin{cases} d_0 \, \dot{x} - d_1 \, \sqrt{|\dot{x}|} & \text{falls } \dot{x} < 0 \\ d_0 \, \dot{x} + d_1 \, \sqrt{\dot{x}} & \text{sonst} \end{cases}$$

Zustandsraummodelle Beispiele

2.) mechanisches 1-DOF Modell mit nichtlinearer Feder, nichtlinearem Dämpfer

$$m\ddot{x} = F - d_{0}\dot{x} - s_{Sn}(\dot{x}) d_{A} |\dot{x}| - c_{0}x - c_{A}x^{3}$$

$$X_{A} = X \qquad X = \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix}$$

$$m\dot{X}_{1} = F - d_{0}X_{1} - s_{Sn}(X_{1}) d_{1} |\dot{x}| - c_{0}X_{1} - c_{1}X_{1}^{3}$$

$$\dot{X}_{2} = \frac{1}{m} F - \frac{d_{0}}{m} x_{1} - \frac{d_{1}}{m} s_{gn}(x_{2}) |\dot{x}_{2}| - \frac{c_{0}}{m} x_{1} - \frac{c_{1}}{m} x_{1}^{3}$$

$$\dot{X}_{1} = X_{2}$$

Zustandsraummodelle Beispiele

2.) mechanisches 1-DOF Modell mit nichtlinearer Feder, nichtlinearem Dämpfer

Zustandsraummodelle Beispiele

3.) Mathematisches Pendel

Struktur

$$d\mathbf{x}/dt = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}$$

$$y = C x + D u$$

$$\mathbf{x} = [x_1, x_2, \dots, x_n]^{\mathsf{T}}$$

$$u = [u_1, u_2,, u_m]^T$$

$$y = [y_1, y_2,, y_p]^T$$

Zustandsdifferentialgleichung

Ausgangsgleichung

Zustandsvektor mit Zustandsvariablen

Eingangsvektor mit m-Eingängen

Ausgangsvektor mit p-Ausgängen

Modellbildung

- Folgt aus den first prinziples (Newton-Euler, Kirchhoff) und konstituierenden Gleichungen
- Unterteilung der Variablen in Eingänge, Ausgänge und innere Zustandsvariablen
- Zustandsvariablen sind die Energiespeichern des System zugeordnet
- Wahl der Ausgänge ergibt sich aus den vorhandenen Messwerten (Sensoren)
- Wahl der Eingänge folgt aus den vorhandenen Aktuatoren
- System was sich aus der Modellbildung ergibt ist entweder linear zeitinvariant oder nichtlinear in den Eingängen und/oder Zuständen
- Beispiele: elektrischer Schaltkreis, nichtlinear in den Zuständen

Näherung des nichtlinearen Systems um Gleichgewichtspunkte mittels Lineares zeitinvariantes Zusstandsraummodell

Methoden

- 1. <u>Taylor Linearisierung</u> des nichtlinearen Systems um Gleichgewichtspunkte
- 2. Approximation von Winkelbeziehungen mit der Gültigkeit der Annahme kleiner Winkel ϕ

$$\sin \varphi = \varphi, \quad \cos \varphi = 1$$

- Inverses Pendel
- Swing Equation in der elektrischen Energietechnik

Taylor Linearisierung

- Linearisierung des nichtlinearen Systems dx/dt = f(x,u)
- Motivation
 - ermöglicht Beschreibung der Dynamik des nichtlinearen Systems um Gleichgewichtspunkte
 - Beschreibung der Dynamik im Linearen ermöglicht eine umfangreiche Analyse und Synthese mittels Methoden der linearen Algebra (wolhbekannter Framework auch für große Systeme)
- Gleichgewichtspunkte $\{xc,uc\}$ erfüllen die Gleichung 0 = f(xc,uc)
- Dynamik des linearen Systems um die Gleichgewichtspunkte mit

$$\Delta X = X - X_{c} \qquad \Delta u = y - y_{c}$$

Taylor Linearisierung

Lineary Esdtmeall Original modell
$$\Delta \dot{x} = A \Delta x + B \Delta y \approx \dot{x} = f(x,y)$$

$$\int_{a}^{b} \int_{a}^{b} |x_{a}|^{2} dx$$

$$A = \frac{\partial f}{\partial x}|_{x_{a},y_{a}}$$

$$B = \frac{\partial f}{\partial x}|_{x_{a},y_{a}}$$

$$B = \frac{\partial f}{\partial x}|_{x_{a},y_{a}}$$

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_n} & \frac{\partial f}{\partial x_n} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

$$\frac{\partial f}{\partial x_n} = \begin{pmatrix} \frac{\partial f}{\partial x_n} & \frac{\partial f}{\partial x_n} & \cdots & \frac{\partial f}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_n} & \frac{\partial f}{\partial x_n} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

$$\frac{\partial f}{\partial u} = \begin{pmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial u} & \frac{\partial f}{\partial u} \\ \frac{\partial f}{\partial u} & \frac{\partial f}{\partial u} & \frac{\partial f}{\partial u} \end{pmatrix} \in \mathbb{R}^{h \times m}$$

Taylor Linearisierung: Beispiel mathematisches Pendel

$$\frac{\dot{x} = f(x_1 u)}{a_{11}s \cdot f_{11}u} = \begin{pmatrix} f_{11}(x_1) \\ f_{21}(x_1) \end{pmatrix} = \begin{pmatrix} f_{11}(x_2) \\ f_{21}(x_1) \end{pmatrix} = \begin{pmatrix} f_{11}(x_2) \\ f_{21}(x_1) \end{pmatrix}$$
Pendel ohne externe Enjaige
Thin autonomes System
$$f(x) = 0 \qquad \qquad x_1 = 0 \qquad \qquad x_2 = 0$$

Taylor Linearisierung: Beispiel mathematisches Pendel

Erschmodelle for
$$x_1 \neq 0, \pi \neq 0$$
: haryonde Pendel Inverses Result

$$\frac{\partial f_1}{\partial x_1} = \frac{\partial x_2}{\partial x_1} = 0$$

$$\frac{\partial f_2}{\partial x_1} = \frac{\partial x_2}{\partial x_2} = 0$$

$$\frac{\partial f_3}{\partial x_1} = \frac{\partial x_2}{\partial x_2} = 1$$

$$\frac{\partial f_4}{\partial x_2} = \frac{\partial x_2}{\partial x_1} = 0$$

$$\frac{\partial f_2}{\partial x_2} = 0$$

$$\frac{\partial f_3}{\partial x_2} = 0$$

$$\frac{\partial f_4}{\partial x_3} = \frac{\partial x_2}{\partial x_4} = 0$$

$$\frac{\partial f_4}{\partial x_2} = 0$$

$$\frac{\partial f_5}{\partial x_4} = 0$$

$$\frac{\partial f_7}{\partial x_5} = 0$$

$$\frac{\partial f_8}{\partial x_$$

Taylor Linearisierung: Beispiel mathematisches Pendel

$$\Delta \dot{X} = \begin{pmatrix} 0 & 1 \\ -g_{\parallel} & 0 \end{pmatrix} \Delta \dot{X} \qquad \text{for } X_1 = 0 \qquad \text{hangenes Percl}$$

Taylor Linearisierung: Beispiel mathematisches Pendel

$$\Delta \dot{x} = \begin{pmatrix} 0 & 1 \\ 8/9 & 0 \end{pmatrix} \Delta \dot{x} \qquad \text{for } \dot{x}_1 = \overline{i}_2^{\prime}$$

$$\Pi_2$$

Eigenschaften der Zustandsrückführung

Rückführung aller Systemzustände auf die Systemeingänge mit zusätzlicvher Vorgabe eines Referenzwerts $\mathbf{r}(t)$ zur Folgeregelung

$$\mathbf{u}\left(t\right) = \mathbf{f}_{\mathbf{u}}\left(\mathbf{x}\left(t\right), \mathbf{r}\left(t\right), t\right)$$

 Rückführung erfolgt bei der linearen Zustandsregelung als gewichtete lineare Kombination aller Zustände

$$\mathbf{u}(t) = -\mathbf{K} \mathbf{x}(t) + \mathbf{F} \mathbf{r}(t)$$

- Regler selber ist dynamiklos, allein durch Rückführung wird die Systemdynamik manipuliert (zielgerichtet => Reglerdesign)
- Beispiel m=1: $u = -k_1 x_1 \dots -k_n x_n + v_r$
- Abgrenzung zur PID Regelung
 - Ausgangsregelung, da nur diese zurückgeführt werden
 - enthält mit D- und I-Anteil eine eigene Dynamik

Regelungsstrukturen linearer Zustandsregler

- 1. einfache Zustandsrückführung
- Strukturbild mit Strecke / Regelgesetz

Nachteil

- Regelung aller Zustände in den Ursprung

Vorteile

- einfache Struktur
- ausreichend, wenn Regelziele damit erfüllt sind

Regelungsstrukturen linearer Zustandsregler

- 2. Zustandsrückführung mit Referenzwertvorgabe mittels Vorfilter
- Strukturbild mit Strecke/ Regelgesetz

Nachteil

 nicht stationär exakt (Referenzwert wird nicht erreicht) bei Modellunsicherheiten

Vorteile

schnell (da keine Integration enthalten , vgl. siehe 3.)

Regelungsstrukturen linearer Zustandsregler

- **3.** Zustandsrückführung mit Referenzwertvorgabe und zusätzlicher Ausgangsrückführung zur Bildung der Regelfehlers
- Strukturbild mit Strecke / Regelgesetz

- Vorteil
 - stationär exakt (Referenzwert wird nicht erreicht) auch bei Modellunsicherheiten
- Nachteil
 - langsamer als Referenzwertvorgabe mittels Vorfilter

Regelungsstrukturen linearer Zustandsregler

- **4.** Zustandsrückführung mit Referenzwertvorgabe, Ausgansgrückführung zur Bildung der Regelfehlers und Vorfilter
- Strukturbild mit Strecke / Regelgesetz

Vorteile

- stationär exakt (Referenzwert wird nicht erreicht) auch bei Modellunsicherheiten
- Schnelligkeit weil mittels Vorfilter Referenzwerte direkt aufgeschaltet werden

Nachteil

aufwendiger Entwurf

Methoden des Reglerentwurf für die Klasse der linearen Zustandsregler

- Annahme: System wird mittels linearer Zustandsraummodelle hinreichend gut beschrieben
- d.h. es wird mit dem folgenden Modell beschrieben

$$dx/dt = Ax + Bu$$
, $y = Cx + Du$ (siehe Abschnitt 2)

Methoden

1. Vorgabe der Polstellen des geschlossenen Kreises

$$\underbrace{\left\{\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4}\right\}}_{\text{desired closed loop poles}} = \underbrace{\text{eig (A-BK)}}_{\text{solution of eigenvalue problem}} \Rightarrow \underbrace{K}_{\text{gives state feedback gain}}$$

- Berechnungsverfahren für SISO Systeme
 - Ackermannformel (wird noch vorgestellt)
- Berechnungsverfahren für MIMO Systeme
 - Modale Regelung und Entkopplung nach Falb-Wolovich

Methoden des Reglerentwurfs für die Klasse der linearen Zustandsregler

Methoden

2. Ljapunov-basierte Vorgabe von Polstellenregionen

- Berechnungsverfahren für SISO und MIMO Systeme
- im Gegensatz zur exakten Polstellenvorgabe werden gewünschte <u>Polstellenregionen</u> vorgegeben
- Designansatz: Vorgabe Ljapunov-Funktionskandidaten in einer kanonischen quadratischen Form
- das Finden einer Ljapunovfunktion wird dabei zurückgeführt auf die Berechnung von positiv definiten Matrizen
- Berechnung basiert auf numerischen konvexen
 Optimierungsverfahren für lineare Matrixungleichungen
- Vorteil: sehr flexibel und skalierbar
 - -> skalierbar: Vorgabe von zusätzlich Anforderung an die Regelung

4. Quadratische Ljapunov Funktionen

Motivation

- Ljapunovfunktionen sind additiv wie die Energien bei der Lagrange Energiemethode
- Quadratische Funktionen eignen sich als Funktionskandidaten für lineare Systeme
- Gewichete Kombination von linearen Systemen zur Beschreibung von nichtlinearer Systemen können aufgrund der additiven Eigenschaften der Ljapunovfunktion ebenfalls mittels quadratischer Ljapunov Funktionen behandelt werden (Analyse / Synthese)
- das Finden von quadratischen Ljapunovfunktionen wird reduziert auf die berechnung von Linearen Matrixgleichungen und (flexibler) lienaren Matrixungleichungen
- aus diesem Grund werden im folgenden Grundlagen zur Matrixalgebra vorgestellt

4. Quadratische Ljapunov Funktionen

Grundlagen: Matrixalgebra

SYMMETRIC, SKEW-SYMMETRIC, AND POSITIVE DEFINITE MATRICES

Definition 3.10 A square matrix \mathbf{M} is symmetric if $\mathbf{M} = \mathbf{M}^T$ (in other words, if $\forall i, j \ M_{ij} = M_{ji}$). A square matrix \mathbf{M} is skew-symmetric if $\mathbf{M} = -\mathbf{M}^T$ (i.e., if $\forall i, j \ M_{ij} = -M_{ji}$).

An interesting fact is that any square $n \times n$ matrix M can be represented as the sum of a symmetric matrix and a skew-symmetric matrix. This can be shown by the following decomposition

$$\mathbf{M} = \frac{\mathbf{M} + \mathbf{M}^T}{2} + \frac{\mathbf{M} - \mathbf{M}^T}{2}$$

where the first term on the left side is symmetric and the second term is skew-symmetric.

4. Quadratische Ljapunov Funktionen

Grundlagen: Matrixalgebra

Another interesting fact is that the quadratic function associated with a skew-symmetric matrix is always zero. Specifically, let M be a $n \times n$ skew-symmetric matrix and x an arbitrary $n \times 1$ vector. Then the definition of a skew-symmetric matrix implies that

$$\mathbf{x}^T \mathbf{M} \mathbf{x} = -\mathbf{x}^T \mathbf{M}^T \mathbf{x}$$

Since $\mathbf{x}^T \mathbf{M}^T \mathbf{x}$ is a scalar, the right-hand side of the above equation can be replaced by its transpose. Therefore,

$$\mathbf{x}^T \mathbf{M} \mathbf{x} = -\mathbf{x}^T \mathbf{M} \mathbf{x}$$

This shows that

$$\forall \mathbf{x}, \mathbf{x}^T \mathbf{M} \mathbf{x} = 0 \tag{3.16}$$

In designing some tracking control systems for robots, for instance, this fact is very useful because it can simplify the control law, as we shall see in chapter 9.