ECE 459/559 Secure & Trustworthy Computer Hardware Design

Hardware Metering

Garrett S. Rose Spring 2017

Background: Test and Yield

- Errors in fabrication process cause defects on chip which causes chip to malfunction
- Chips tested in order to detect defects
- Failing chips are discarded
- Yield percentage of remaining good chips

$$Yield = \frac{total\ chips - discarded\ chips}{total\ chips}$$

Foundry decides/predicts yield

Any of these steps can be untrusted

Untrusted

Untrusted

Chip Production Flow

- Little communication between IP owner and foundry
- Foundry usually trusted with full design
- Responsible for production of requested amount of chips
- IP holder provides foundry with all test patterns and responses

Chip Production Flow

- Foundry looks for its own profit
- Once mask is produced, IC fabrication relatively simple
 - Lack of communication makes it difficult for owner to track chips

Cloned ICs, Recycled ICs

Need for Hardware Metering

Need better communication between IP owner & foundry

Need for IP owner ability to <u>track produced chips</u>

Hardware Metering

- Set of security protocols that enable IP owners to achieve post-fabrication control over their integrated circuits
- Methods attempt to uniquely tag each chip to facilitate tracing them once in the market
- Two main categories: Active and Passive

Passive Metering

- ICs can be passively monitored
- Can be achieved by physically identifying:
 - Serial numbers on chips
 - Strong unique identifiers in memory nonfunctional identification
- Tagging an IC's functionality: Functional Identification

Nonfunctional Identification

- Unique ID is separate from the chip's functionality
- Vulnerable to cloning and/or removal
- Possible to overproduce
 - Foundry can produce multiple chips with same tag
 - Out of millions of chips, probability of finding two matching tags is small
- Two main types:
 - Reproducible
 - Unclonable

Nonfunctional Identification: Reproducible Identifiers

- Unique ID stored on package, on die, or in on-chip memory
- Examples:
 - Indented serial numbers
 - Digitally stored serial numbers
- Advantages:
 - Do not depend on randomness
 - Easy to track/identify
- Disadvantages:
 - Easy to clone/modify
 - Easy to overproduce

Nonfunctional Identification: Unclonable Identifiers

- Uses random process variations in silicon to generate random unique numbers or fingerprints
- If additional logic needed to generate these values, the method is said to be extrinsic
- If no additional logic needed, method is intrinsic
- Advantages:
 - Values cannot be reproduced due to randomness in process
- Disadvantages:
 - Foundry could overproduce ICs without knowledge of IP owner
 - Method does not prevent counterfeiting but owner can detect overproduced chip by comparing to fingerprint database

Unclonable Identifiers

- Extrinsic methods:
 - Require additional logic such as PUF or ICID
 - ICID threshold mismatch in array of transistors incurs different currents and therefore random numbers
 - PUF (Physical Unclonable Function) several types
 - Series of ring oscillators (ROs) generate random value due to differences in oscillator frequencies
 - PUF sensitive to power supply noise, temperature, delay, etc.
 - the values likely change often (unreliable)
- Intrinsic methods:
 - Unique identification if external test vectors applied
 - Use IC leakage, power, timing, and path signatures
 - Does not need additional logic and can be readily used with existing designs

Functional Identification

- Identifiers linked to chip's internal functional details during synthesis
- Each chip's function gets a unique signature
 - Additional states added that generate same output
- Function unchanged from input to output
- Internal transactions unique to each chip
- Challenge in fabricating ICs with different paths from same mask

Functional Identification

- One method is fabricating chips from same mask and maintaining one programmable path
 - datapath programmed post-fabrication
 - IP owner provides correct input/key combination to foundry to program chip post-fabrication
- Additional work proposed adding redundant states
 - Programmable read logic enables selection of correct permutation for a control sequence
- Drawbacks
 - Testing such circuitry provides low coverage because functionality hidden during test by foundy & assembly
 - Requires additional circuitry that is useless after testing

Active Metering

- Provides active method for designer to enable, control or disable IC
- Unlike passive metering, active metering requires communication between design house (IP owner) and foundry
- Two types: internal and external

Internal (Integrated) Active Metering

- Hides states and transition in design that can only be accessed by designer
- Locks are embedded within structure of computation model in hardware design in form of FSM
- Adding additional states or duplicating certain states in FSM adds ability for designer to decide which datapath (sequence of states) to use post-fabrication
 - Since states are added, specific combinations are needed to bring FSM to correct output
 - Only IP owner knows the correct combinations

Internal (Integrated) Active Metering

- States and transitions for controlling chip integrated in functional specifications
- K = log₂(S) flops needed to implement S states
- Adding S1 states requires K1
 = log₂(S1+S) flops
- Few additional flops can exponentially increase number of states

Internal (Integrated) Active Metering

- PUF generates random values, sends device into random FSM state
- Only IP owner with knowledge of FSM can find correct sequence to set FSM to RESET state
- Storing sequence on-chip requires additional logic and also requires long wait to shift in entire sequence

External Active Metering

- External asymmetric cryptographic techniques lock IC
- Cryptographic circuits rely on public and private keys to give IP owner control over activation/correct function
- Only IP owner knows private key to unlock IC functionality or testability

