Assignment 2

Jame Tran, tranj 52, 400144141

Q.1

Q2

```
Epsilon:1.490200e-08, Relative Error X1:3.00e+00 , Relative Error X2:6.71e+07, Condition: 3.014213e+16 Epsilon:1.341180e-07, Relative Error X1:2.00e+00 , Relative Error X2:8.41e+02, Condition: 2.208770e+14 Epsilon:1.490200e-07, Relative Error X1:1.99e+00 , Relative Error X2:3.41e+04, Condition: 1.765839e+14 Epsilon:3.725500e-07, Relative Error X1:2.00e+00 , Relative Error X2:3.04e+02, Condition: 2.878851e+13
```

As we can see from the results, the farther you get away from the machine epsilon (1.4902e-08), the lower the condition number is. If is a condition number is high, that means it is ill-conditioned, and gives it more room for round off error.

Q3

Experiment a\b	No Pivoting	cond(A)
1 1.832783e-10 2 3.747209e-10 3 2.177635e-09 4 3.584733e-09 5 1.100695e-09	8.620528e-08 3.690514e-06 7.292065e-07 1.237084e-06 1.671659e-07	2.602101e+03 4.842738e+03 2.598909e+04 3.892096e+04 1.563455e+04
>>		

The more ill-conditioned the matrix A is, the greater the errors are.

```
GΕ
```

```
function b = GE(A)
a = A;
b = gauss_eliml(a);
function A = gauss_eliml(A)
    [n, \sim] = size(A);
    L = zeros(n);
    for k = 1:n - 1
        for i = k + 1:n
            m = A(i, k) / A(k, k);
            for j = k + 1:n
                A(i, j) = A(i, j) - m * A(k, j);
            L(i, k) = m;
        end
        A(k + 1:n, k) = 0;
    end
    A = A + L;
end
```

```
backward
```

```
function x = backwards(B, b, ipivot)
b = b(ipivot, :);
z = [];
U = triu(B);
[n, n] = size(B);
L = tril(B, -1) + eye(n);
% Lower trianglular thing
z(1) = b(1);
for i = 2:n
   sum = 0;
   for j = 1:i-1
       sum = sum + L(i,j)*z(j);
   end
   z(i) = b(i) - sum;
end
%Upper Triangular ting
z = z';
x = zeros(1, n);
x(n) = z(n)/U(n, n);
for i = n - 1: -1: 1
   sum2 = 0;
   for j = i+1:n
       sum2 = sum2 + U(i,j)*x(j);
   x(i) = (z(i) - sum2)/U(i,i);
end
end
main_ge
function main_ge
n = 2000;
experiment = 0;
fprintf("Experiment a\\b No Pivoting cond(A)\n")
fprintf("-----
for i = 1:5
A = randn(n);
x = ones(n, 1);
b = A*x;
B = GE(A);
%Backwards Sub Stuff
ipivot = 1:size(A);
c = backwards(B, b, ipivot)';
better_c = A\b;
```

```
r = b - A*c;
error_c = cond(A)*((norm(r)/norm(b)));
r_better_c = b - A*better_c;
error_better_c = cond(A)*(norm(r_better_c)/norm(b));
experiment = experiment + 1;
fprintf("%d\t%d \t%d \t %d\n", experiment, error_better_c, error_c, cond(A))
end
end
```


Q.5

```
f_x =
    1.0247    1.0724

M =
    0.9375

error =
    5.8594e-06

ans_c =
    1.0e-04 *
    0.0492    0.3053
```


Figure 1: Question 6a

Figure 2: Question 6b

Figure 3: Question 6c

Figure 4: Chebyshev Error

Figure 5:Question 7a

Figure 6:Question 7b

Figure 7: Question 7c Chebyshev

Figure 8: Question 7c Errors

Explanation

The errors are much higher for |x| compared to $\sin(x)$ for a variety of reasons. For our interpolation of |x| on equally spaced points between [-1, 1], we can see that there is a lot of oscillation near the end of the interval. This is the result of Runge's phenomenon, since we have equispaced interpolation points. For the Chebyshev nodes, these nodes are not evenly spaced, and the maximum error is guaranteed to reduce with increasing error, which typically increases Runge's phenomenon. For $\sin(x)$ over [-pi, pi], the interpolation is much nicer because there is a series expansion which turns it into a polynomial. We get very accurate results for both equally spaced points and Chebyshev points for $\sin(x)$, which allows us to conclude that the errors in |x| are primarily from Runge's phenomenon, as we can see Chebyshev nodes help to reduce the error. However, interpolating $\sin(x)$ will still have lower errors.

Question 8

Figure 9: Question 8

Newton

```
function p = newton(x, y, degree)
t = sym('t');
a = divDif(x, y)
terms = 1;
poly_eq = a(1);
    for i = 2:degree+1;
        terms = terms * (t - x(i-1));
        poly_eq = poly_eq + terms*a(i);
    end
p = expand(poly_eq);
sym2poly(p);
function coeff = divDif(x, y)
n=length(x);
y=y';
y(n,n)=0;
    for column=2:n
        for row=column:n
```

```
y(row,column)=(y(row,column-1)-y(row-1,column-1))/...
            (x(row)-x(row-column+1));
        end
    end
coeff(n)=0;
    for row=1:n
        coeff(row)=y(row,row);
    end
end
end
hornerN
function horny = hornerN(coefs, val, degree)
horny = coefs(1);
    for i = 2:degree + 1
       horny = coefs(i) + (val * horny);
    end
end
```