[3.6.1.](a) Let F be a (d., d2, p., p2)-LSH family.

then, after a 2-way AND, we will get $F' = (d_1, d_2, p_1^2, p_2^2) - LSH$ applying 3-way OR on F', we get $F'' : (d_1, d_2, 1-(1-p_1^2)^3) - LSH$ Hence we get $a : (d_1, d_2, 1-(1-p_1^2)^3) - LSH$.

(b). Let F be a (di, dz, pi, pz) - LSH family

applying a 3-OR, we get $F': (d_1, d_2, 1-(1-p_1)^3, (1-(1-p_2)^3))$ - LSH applying a 2-AND on F', we get $F'': (d_1, d_2, [1-(1-p_1)^3]^2, [1-(1-p_3)^3]^2)$ - LSH

Mene ne get ~ $(d_1, d_2, [1-(1-p_1)^3]^2, [1-(1-p_2)^3]^2)$ _ L Sit

[4.3.3] Let false prob. rate be
$$f(k) = (1 - e^{-\frac{m}{n}k})^k$$

taking log of both sides, $\ln f(k) = k \ln (1 - e^{-\frac{m_k}{n \cdot k}})$

 $\frac{d}{dk} \left[\ln f(k) \right] = \frac{d}{dk} \left[k \ln \left(1 - e^{-\frac{m}{n}k} \right) \right]$

$$\frac{f(k)}{f(k)} = k \left[\frac{1}{1 - e^{\frac{m}{n}k}} \cdot \frac{m}{n} e^{-\frac{m}{n}k} \right] + l_n \left(1 - e^{\frac{m}{n}k} \right)$$

Set f'(k) = 0, so that

let
$$b = e^{-\frac{m}{n}k}$$

then $\ln b = \frac{m}{n}k$
 $k = \frac{-n}{m} \ln b$ \bigcirc
Substituting \bigcirc into \bigcirc $0 = -\ln b \cdot b + (1-b) \ln (1-b)$
 $b \ln b = (1-b) \ln (1-b)$

b
$$lnb = (1-b) ln (1-b)$$

So $b = (-b)$
 $2b = 1$
 $b = \frac{1}{2}$

Hence
$$k = \frac{-n}{m} \ln \frac{1}{2}$$

$$k = \frac{n}{m} \ln 2$$
 is the value that minimises flk), or the false prob. rate.