1. Zeige:

$$\binom{n}{n-k} = \binom{n}{k}$$

Lösung:

(a)

2. Bei der Strich- Sternmalerei hätten wir auch mit Sternen anfangen können und n-1 davon durch Striche ersetzen. Stelle eine Formel für die Anzahl der Möglichkeiten hierfur auf!

Zeige, dass diese Formel dieselben Werte liefert wie

$$\binom{n+k-1}{k}$$

(na hoffentlich!)

Lösung:

(a)

3. Zeige:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

und gib damit ein Schema zum Berechnen der Binomialkoeffizienten nur mittels von Additionen an (zum Rechnen von Hand sehr praktisch!). Wo haben wir dieses Schema schon mal gesehen?

Lösung:

(a)

4. Gib die Koeffizienten des Polynoms $(1+x)^n$ mittels Binomialkoeffizienten an und zeige durch geschickes Verwenden dieser Formel

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, n > 0, \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0$$

Lösung:

(a)

5. Wie viele verschiedene Möglichkeiten zu tippen hat man beim klassischen Lotto "6 aus 49" (Berechnen mit Taschenrechner oder per Hand mit Runden auf zwei gültige Ziffern)?

Lösung:

(a)

6. Wie viele verschiedene Möglichkeiten gibt es beim Fußball-Toto? (13 Spiele sind zu tippen, jeweils Heimsieg, Heimniederlage oder Unentschieden – wieder Taschenrechner verwenden oder runden).

Lösung:

(a)

7. Wieviele mögliche Ergebnisse gibt es beim Würfeln mit n nicht unterscheidbaren Würfeln (Ergebnis sind dabei die Punkte der einzelnen Würfel, also wäre z.B. bei fünf Würfeln 2, 3, 5, 6, 6 ein mögliches Ergebnis)?

Lösung:

(a)

8. Wie viele verschiedene "Full House" gibt es beim Poker? (52 Karten, vier Farben mit je 2, 3, 4, . . . , 10, Bube, Dame, König, As)
Lösung:

(a)

9. Wie viele Anagramme (Wörter, die aus denselben Buchstaben bestehen – es geht nur um die möglichen Buchstabenvertauschungen, aussprechen können muss man die Anagramme nicht; Groß- und Kleinbuchstaben werden nicht unterschieden) gibt es von dem Wort Muh? Wie viele Anagramme gibt es von Atlantis und wie viele von Mississippi?

Lösung:

(a)