

- **Jupyter Notebook** (this file) for a data science audience
- <u>___ GitHub repository</u> with documented source code
- Interactive Dashboard for risk visualization and model insights

1. 🚳 Business Understanding

1.1 @ Project Goals

The primary goal is to determine which aircraft present the **lowest risk** for the company's new aviation venture covering both **commercial** and **private enterprises**.

The final output must include three concrete, actionable business recommendations for the Head of the Aviation Division.

1.2 🌣 Business Problem

The company is expanding into **new industries** to diversify its portfolio specifically purchasing and operating aircraft for **commercial and private aviation**.

However, the company lacks knowledge about potential risks associated with aircraft operations.

This analysis will deliver data-driven insights to guide risk mitigation and aircraft selection decisions.

1.3 **1** Target Audience and Communication

Non-Technical Presentation

Audience: Head of the Aviation Division and business stakeholders

Focus:

- Clear, non-technical explanations (technical methods can be mentioned with brief context)
- A compelling narrative supported by simple, well-formatted visualizations

Jupyter Notebook (This Document)

Audience: Data Science and Analytics Teams

Focus:

- Technical documentation with Python + Markdown integration
- Emphasis on project goals, data, methods, and results
- Organized, modular, and easy to skim for quick understanding

2. In Data Understanding and Preparation

2.1 The Data Source

The dataset is sourced from the National Transportation Safety Board (NTSB) and contains civil aviation accident data spanning 1962 to 2023.

It includes records from both **United States airspace** and **international waters**, providing a comprehensive foundation for analyzing aviation risk patterns and identifying low-risk aircraft types.

2.2 Initial Load and Validation

Cell 1: Imports and Basic Settings

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')

sns.set_theme(style='darkgrid')
plt.rcParams.update({'figure.dpi': 120})
```

Cell 2: Load Dataset

```
file_path = 'aircraft_data.csv'
df = pd.read_csv(file_path, encoding='latin-1', low_memory=False)
print("Loaded rows:", len(df))
df.head()
```

Cell 3: Validate Columns

```
expected_columns = [
    "Event.Id","Investigation.Type","Accident.Number","Event.Date","Location","Country",
    "Latitude","Longitude","Airport.Code","Airport.Name","Injury.Severity","Aircraft.damage",
    "Aircraft.Category","Registration.Number","Make","Model","Amateur.Built",
    "Number.of.Engines","Engine.Type","FAR.Description","Schedule","Purpose.of.flight",
    "Air.carrier","Total.Fatal.Injuries","Total.Serious.Injuries","Total.Minor.Injuries",
    "Total.Uninjured","Weather.Condition","Broad.phase.of.flight","Report.Status",
    "Publication.Date"
]

print("Columns in file:", len(df.columns))
missing = set(expected_columns) - set(df.columns)
extra = set(df.columns) - set(expected_columns)
print("Missing columns:", missing)
print("Extra columns:", extra)
```

2.3 / Data Cleaning, Standardization, and Derivations

The data preparation focuses on **standardization**, **handling missing values**, and **creating key fields** necessary for risk analysis, utilizing pandas **vectorized operations** (idiomatic and performant pandas).

O Date Conversion

• Event.Date and Publication.Date are converted to datetime objects.

Whitespace & Missing Values

- Object columns are stripped of whitespace.
- Missing values (empty strings) are replaced with NaN, then filled with 'Unknown'.

Injury & Total People

• Injury-related columns are ensured to be numeric, with nulls filled as 0.

ſŌ

Q

10/31/25, 5:03 PM EOkeyo/aviator: # 🚅 Data Science Project: Aviation Risk Assessment This Jupyter Notebook documents the **process**, **analy...

• A new column Total.People is derived for comprehensive passenger and crew accounting.

8 Standardization

Make and Model fields are converted to uppercase for consistent grouping and comparison.

Derived Feature: Accident.Severity

A new categorical feature is created based on injury counts:

- Fatal → if Total.Fatal.Injuries > 0
- Serious → if Total.Fatal.Injuries = 0 and Total.Serious.Injuries > 0
- Minor → otherwise

Derived Feature: Flight.Category

The detailed Purpose.of.flight field is simplified into key categories relevant to the business goal:

- Commercial
- Business
- Personal
- Training
- Cargo/Ferry
- Other

🥽 Derived Feature: Weather.Category

The Weather. Condition field is simplified into broader analytical groups:

- Good (VMC)
- Poor (IMC)
- Unknown

Cell 4: Basic Cleaning & Standardization

```
# Convert dates
df['Event.Date'] = pd.to_datetime(df['Event.Date'], errors='coerce')
df['Publication.Date'] = pd.to_datetime(df['Publication.Date'], errors='coerce')
# Trim whitespace for text columns
df = df.apply(lambda col: col.str.strip() if col.dtype == 'object' else col)
# Replace empty strings in object columns with NaN, then fill 'Unknown'
obj_cols = df.select_dtypes(include=['object']).columns
df[obj_cols] = df[obj_cols].replace({'': np.nan})
df[obj_cols] = df[obj_cols].fillna('Unknown')
# Ensure numeric injury fields exist and are numeric
injury_cols = ['Total.Fatal.Injuries','Total.Serious.Injuries','Total.Minor.Injuries','Total.Uninjured']
for c in injury_cols:
    if c not in df.columns:
        df[c] = 0
    df[c] = pd.to_numeric(df[c], errors='coerce').fillna(0).astype(int)
# Derived columns
df['Total.People'] = df[injury_cols].sum(axis=1)
df['Make'] = df['Make'].astype(str).str.upper()
df['Model'] = df['Model'].astype(str).str.upper()
print("Cleaned. Rows:", len(df))
df.head()
```

Q

Cell 5: Accident Severity & Flight Category

```
Q
# Severity
df['Accident.Severity'] = 'Minor'
df.loc[df['Total.Fatal.Injuries'] > 0, 'Accident.Severity'] = 'Fatal'
df.loc[(df['Total.Fatal.Injuries'] == 0) & (df['Total.Serious.Injuries'] > 0), 'Accident.Severity'] = 'Serious'
# Simplify Purpose.of.flight into Flight.Category
def categorize_purpose(p):
    s = str(p).upper()
    if 'PERSONAL' in s or 'RECREAT' in s or 'PLEASURE' in s:
        return 'Personal'
    if 'BUSINESS' in s or 'CORPORATE' in s:
        return 'Business'
    if any(x in s for x in ['INSTRUCTION', 'TRAINING']):
        return 'Training'
    if any(x in s for x in ['AIRLINE', 'SCHEDULED', 'COMMUTER', 'PART 121', 'PART 135']):
        return 'Commercial'
    if 'CARGO' in s or 'FERRY' in s:
        return 'Cargo/Ferry'
    if s == 'UNKNOWN':
        return 'Unknown
    return 'Other'
df['Flight.Category'] = df['Purpose.of.flight'].apply(categorize_purpose)
df[['Purpose.of.flight','Flight.Category']].head(6)
```

Cell 6: Weather Category Simplification

```
def categorize_weather(w):
    s = str(w).upper()
    if any(x in s for x in ['VMC','CLEAR','FAIR']):
        return 'Good (VMC)'
    if any(x in s for x in ['IMC','CLOUD','RAIN','FOG','SNOW','STORM','THUNDER']):
        return 'Poor (IMC)'
    return 'Unknown'

df['Weather.Category'] = df['Weather.Condition'].apply(categorize_weather)
df[['Weather.Condition','Weather.Category']].head(6)
```

3. Zana Data Analysis and Visualization

The analysis focuses on identifying aircraft (Make/Model) with the lowest fatal accident rate to inform the company's purchasing decision.

To ensure statistical relevance, the data is filtered to include only aircraft Makes and Models with a significant number of recorded accidents before calculating the fatal accident rate.

3.1 Exploratory Summaries

Cell 7: Exploratory Summaries

```
print("Top 10 Makes:")
display(df['Make'].value_counts().head(10))

print("\nFlight Category Distribution:")
display(df['Flight.Category'].value_counts())

print("\nAccident Severity counts:")
```

```
print("\nYear range:", df['Event.Date'].dt.year.min(), "to", df['Event.Date'].dt.year.max())
```

Interpretation

• The data covers a long period (1962-2023).

display(df['Accident.Severity'].value_counts())

- General aviation manufacturers (CESSNA, PIPER, BEECH, BELL) dominate the accident count, suggesting a focus on lower-risk, light aircraft is appropriate for the company's "start" phase.
- The "Personal" flight category accounts for the vast majority of accidents.

3.2 4 Key Metric: Fatal Accident Rate by Make (Filter: ≥ 50 Accidents)

We calculate the fatal accident rate per Make to identify manufacturers associated with lower risk.

$$\mbox{Fatal Accident Rate} = \frac{\mbox{Number of Fatal Accidents}}{\mbox{Total Accidents}} \times 100$$

Cell 8: Make-Level Fatal Accident Rate

```
if 'Event.Id' not in df.columns:
    df['Event.Id'] = df.index.astype(str)

make_stats = df.groupby('Make').agg(
    Total_Accidents=('Event.Id','count'),
    Fatal_Accidents=('Accident.Severity', lambda s: (s=='Fatal').sum())
).sort_values('Total_Accidents', ascending=False)

make_stats['Fatal_Accident_Rate'] = (make_stats['Fatal_Accidents'] / make_stats['Total_Accidents'] * 100).round(2)
make_stats_filtered = make_stats[make_stats['Total_Accidents'] >= 50].sort_values('Fatal_Accident_Rate')
make_stats_filtered.head(15)
```

Interpretation

- Filtering for Makes with at least 50 accidents provides a more reliable comparison.
- Makes like MCDONNELL DOUGLAS and AIRBUS show very low fatal accident rates (0–2%), likely due to stringent commercial regulations and maintenance.
- Traditional light aircraft manufacturers like **CESSNA** and **PIPER** have higher rates (8–10.5%), but still provide a lower barrier to entry for the new division.

3.3 💸 Key Metric: Fatal Accident Rate by Model (Common Light Aircraft Makes)

Given the potential focus on light aircraft (Cessna, Piper, Beech), we dive deeper into the models for a more granular risk assessment.

Cell 9: Model-Level for Common Manufacturers

```
top_makes = ['CESSNA','PIPER','BEECH','BOEING','AIRBUS']
model_stats = df[df['Make'].isin(top_makes)].groupby(['Make','Model']).agg(
    Total_Accidents=('Event.Id','count'),
    Fatal_Accidents=('Accident.Severity', lambda s: (s=='Fatal').sum())
)
model_stats['Fatal_Accident_Rate'] = (model_stats['Fatal_Accidents'] / model_stats['Total_Accidents'] * 100).round(2)
model_stats_filtered = model_stats[model_stats['Total_Accidents'] >= 20].sort_values('Fatal_Accident_Rate')
model_stats_filtered.head(20)
```

Interpretation

10/31/25, 5:03 PM EOkeyo/aviator: # 💇 Data Science Project: Aviation Risk Assessment This Jupyter Notebook documents the **process**, **analy...

- Within the most common light aircraft manufacturers:
 - o Cessna 172 models, popular for training and private use, have some of the lowest fatal accident rates (4.8–6.6%).
 - o Larger, more complex, or older models (e.g., BEECH B35, CESSNA 185) tend to have higher fatal rates.
 - Selecting models with proven lower rates (like the C-172 series) minimizes initial operational risk.

3.4 🔀 Risk Over Time: Fatal Accident Rate by Year

Understanding the trend of the fatal accident rate over time is crucial for long-term strategy.

Cell 10: Yearly Accident Counts and Fatal Rate

```
yearly = df.groupby(df['Event.Date'].dt.year).agg(
    Total_Accidents=('Event.Id','count'),
    Fatal_Accidents=('Accident.Severity', lambda s: (s=='Fatal').sum())
).dropna().sort_index()

yearly['Fatal_Rate'] = (yearly['Fatal_Accidents'] / yearly['Total_Accidents'] * 100).round(2)
yearly.tail(15)
```

Interpretation

- The total number of accidents has generally decreased over the long term.
- The **Fatal Accident Rate** (as a percentage of total accidents) also shows a general though sometimes **volatile downward trend** in recent decades.
- This indicates an overall improvement in safety and risk management practices.

3.5 Interactive Visualizations

The following cells generate several interactive visualizations.

The key visuals selected for the final non-technical presentation must directly support the three business recommendations.

Cell 11: Interactive Visualizations with Plotly

```
Q
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# Ensure Event.Id exists (create from index if missing)
if 'Event.Id' not in df.columns:
    df['Event.Id'] = df.index.astype(str)
# 1. Interactive Events by Year with Severity Breakdown
yearly_severity = df.groupby([df['Event.Date'].dt.year, 'Accident.Severity']).size().unstack(fill_value=0)
yearly_severity = yearly_severity.dropna()
fig1 = go.Figure()
for severity in yearly_severity.columns:
    fig1.add_trace(go.Bar(
        x=yearly_severity.index,
        y=yearly severity[severity],
        name=severity,
        \label{lowertemplate} hovertemplate = '<b>Year:</b> %{x}<b>Count:</b> %{y}<b>Severity:</b> ' + severity + '<extra></extra>' |
    ))
fig1.update_layout(
    title='Interactive Events by Year and Severity',
    xaxis_title='Year',
    yaxis_title='Number of Accidents',
```

```
barmode='stack',
    hovermode='x unified',
    height=500.
    legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
fig1.show()
# 2. Interactive Fatal Rate Over Time with Hover Details
yearly_detailed = df.groupby(df['Event.Date'].dt.year).agg(
    Total_Accidents=('Event.Id','count'),
    Fatal_Accidents=('Accident.Severity', lambda s: (s=='Fatal').sum()),
    Serious_Accidents=('Accident.Severity', lambda s: (s=='Serious').sum()),
    Minor_Accidents=('Accident.Severity', lambda s: (s=='Minor').sum())
).dropna().sort_index()
yearly_detailed['Fatal_Rate'] = (yearly_detailed['Fatal_Accidents'] / yearly_detailed['Total_Accidents'] * 100).round(2)
fig2 = go.Figure()
fig2.add_trace(go.Scatter(
    x=yearly_detailed.index,
    y=yearly_detailed['Fatal_Rate'],
    mode='lines+markers',
    name='Fatal Rate',
    line=dict(color='red', width=2),
    marker=dict(size=8),
    hovertemplate='<b>Year:</b> %{x}<br>Fatal Rate:</b> %{y}%<extra></extra>'
fig2.update_layout(
    title='Fatal Accident Rate (%) Over Time',
    xaxis_title='Year',
    yaxis_title='Fatal Rate (%)',
    hovermode='x unified',
    height=450
fig2.show()
# 3. Interactive Pie Chart - Accident Severity Distribution
severity_counts = df['Accident.Severity'].value_counts()
fig3 = go.Figure(data=[go.Pie(
    labels=severity_counts.index,
    values=severity_counts.values,
    hole=0.3,
    hovertemplate='<b>%{label}</b><br>Count: %{value}<br>Percentage: %{percent}<extra></extra>
)])
fig3.update_layout(
    title='Accident Severity Distribution',
    height=500
fig3.show()
# 4. Interactive Manufacturer Analysis (Top 15 by accident count)
top_15_makes = df['Make'].value_counts().head(15).index
make_severity = df[df['Make'].isin(top_15_makes)].groupby(['Make', 'Accident.Severity']).size().unstack(fill_value=0)
fig4 = go.Figure()
for severity in make_severity.columns:
    fig4.add_trace(go.Bar(
       name=severity,
        x=make_severity.index,
        y=make_severity[severity],
        hover template = '<b>Make: </b> %{x}<br><b>Count: </b> %{y}<br><b>Severity: </b> ' + severity + '<extra>' |
    ))
fig4.update_layout(
    title='Top 15 Manufacturers by Accident Count and Severity',
    xaxis_title='Manufacturer',
    yaxis_title='Number of Accidents',
```

```
barmode='stack',
        height=500,
        xaxis_tickangle=-45,
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
fig4.show()
# 5. Interactive Flight Category Distribution
flight_cat_counts = df['Flight.Category'].value_counts()
fig5 = px.bar(
        x=flight_cat_counts.index,
        y=flight_cat_counts.values,
        labels={'x': 'Flight Category', 'y': 'Number of Accidents'},
        title='Accidents by Flight Category',
        color=flight_cat_counts.values,
        color_continuous_scale='Viridis'
fig5.update_traces(
        hovertemplate='\cb>Category:\c</b>\ %\{x\}\cb>\cCount:\c</b>\ %\{y\}\cextra>\c</extra>'
fig5.update layout(height=450, showlegend=False)
fig5.show()
# 6. Interactive Weather Conditions
weather_severity = df.groupby(['Weather.Category', 'Accident.Severity']).size().unstack(fill_value=0)
fig6 = go.Figure()
for severity in weather_severity.columns:
        fig6.add_trace(go.Bar(
                name=severity,
                x=weather_severity.index,
                y=weather_severity[severity],
                hover template = ' < b > Weather : < /b > %{x} < b > Count : < /b > %{y} < b > Severity : < /b > ' + severity + ' < extra > < / extra > ' < extra > 
        ))
fig6.update_layout(
        title='Weather Conditions vs Accident Severity',
        xaxis_title='Weather Category',
        yaxis_title='Number of Accidents',
        barmode='group',
        height=450,
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
fig6.show()
# 7. Interactive Sunburst - Hierarchical View
sunburst_data = df[df['Make'].isin(top_15_makes)].copy()
sunburst_data = sunburst_data[sunburst_data['Total.Fatal.Injuries'] >= 0]
fig7 = px.sunburst(
        sunburst_data,
        path=['Make', 'Accident.Severity'],
        title='Hierarchical View: Manufacturer → Accident Severity',
        height=600
fig7.update_traces(
        hovertemplate='<b>%{label}</b>Count: %{value}<extra></extra>'
fig7.show()
# 8. Interactive Scatter: Geographic Distribution (if coordinates available)
# Convert Latitude and Longitude to numeric, coercing errors to NaN
df['Latitude'] = pd.to_numeric(df['Latitude'], errors='coerce')
df['Longitude'] = pd.to_numeric(df['Longitude'], errors='coerce')
# Filter for valid coordinates (not NaN and within valid ranges)
```

```
EOkeyo/aviator: # 💆 Data Science Project: Aviation Risk Assessment This Jupyter Notebook documents the **process**, **analy...
  geo_data = df[
      (df['Latitude'].notna()) &
      (df['Longitude'].notna()) &
      (df['Latitude'].between(-90, 90)) &
      (df['Longitude'].between(-180, 180))
  ].copy()
  if len(geo_data) > 0:
      sample_geo = geo_data.sample(min(5000, len(geo_data)))
      fig8 = px.scatter_mapbox(
          sample_geo,
          lat='Latitude',
          lon='Longitude',
          color='Accident.Severity',
          hover_data=['Make', 'Model', 'Event.Date', 'Country'],
          title=f'Geographic Distribution of Accidents (Sample of {len(sample_geo):,} points)',
          mapbox_style='carto-positron',
          zoom=2,
          height=600
      fig8.show()
      print(f" Mapped {len(sample geo):,} accidents out of {len(df):,} total records")
      print(" \( \) No valid geographic coordinates available for mapping")
  print("☑ All interactive visualizations created!")
  print(" ? Tips:")
  print("
           - Hover over elements for detailed information")
  print("
           - Click legend items to show/hide categories")
  print(" - Use the toolbar to zoom, pan, and save images")
  print(" - Double-click to reset view")
Cell 12: Export Cleaned Data
                                                                                                                              þ
  out_fn = 'aircraft_data_cleaned.csv'
  cols = ['Event.Date','Year','Make','Model','Aircraft.Category','Registration.Number',
          'Flight.Category', 'Weather.Category', 'Accident.Severity',
          'Total.Fatal.Injuries', 'Total.Serious.Injuries', 'Total.Minor.Injuries',
          'Total.Uninjured','Total.People','Latitude','Longitude','Country','Airport.Name']
  # keep only columns that exist
  cols = [c for c in cols if c in df.columns]
  df[cols].to_csv(out_fn, index=False)
  print("Saved cleaned file:", out_fn)
Cell: Check and Install Plotly
                                                                                                                              Q
  import sys
  import subprocess
  def check_and_install_plotly():
      """Check if Plotly is installed, install if not"""
      try:
```

import plotly

return True except ImportError:

import plotly

return True except Exception as e:

try:

print(f" Plotly is already installed!") print(f" Version: {plotly.__version__}}")

print(f" Plotly successfully installed!") print(f" Version: {plotly.__version__})")

subprocess.check_call([sys.executable, "-m", "pip", "install", "plotly"])

print("X Plotly is not installed.") print(" Installing Plotly now...")

4. **Second Second Secon**

Based on the analysis, the following concrete business recommendations are provided to the Head of the Aviation Division to minimize initial risk for the new enterprise.

4.1 🧩 Business Recommendation 1: Prioritize Proven, Low-Risk Light Aircraft

Finding:

Models like the **CESSNA 172** and **PIPER PA-28** series exhibit **low fatal accident rates (4–7%)** among the most common light aircraft, suitable for both *Private* and *Training* operations (a major segment of the current accident data).

Larger commercial aircraft (e.g., AIRBUS) show 0–2% fatal rates but represent a significantly higher initial investment and operational complexity.

Recommendation:

Focus initial procurement on well-established, low fatal-rate light aircraft models like the Cessna 172 series.

This approach minimizes per-flight risk while allowing the company to build operational expertise in a proven segment.

4.2 Musiness Recommendation 2: Implement Strict Safety Protocols for Weather Conditions

Finding:

The data, through the Weather.Category breakdown (Visualization 6), will likely show a significant number of accidents occurring in 'Poor (IMC)' conditions or when the weather is 'Unknown', even though the majority of flights occur in 'Good (VMC)' weather.

Recommendation:

Mandate and enforce enhanced safety protocols, training, and go/no-go decision tools for flights operating in or near Instrument Meteorological Conditions (IMC).

Investing in **reliable weather intelligence** and **pilot training** for adverse conditions is critical to reduce the likelihood of **serious and fatal accidents**.

4.3 Business Recommendation 3: Adopt a Proactive Maintenance and Inspection Strategy

Finding:

While not directly analyzed as a Make or Model risk, the overall trend of the Fatal Accident Rate Over Time (Visualization 2) shows a general long-term decrease in fatal rates.

This improvement is strongly correlated with **industry-wide advancements** in technology, maintenance standards, and regulatory oversight.

Recommendation:

Commit to a maintenance program that significantly exceeds minimum regulatory requirements, utilizing predictive analytics (as a next step) and prioritizing immediate fleet upgrades for known mechanical failure points.

Proactive maintenance is a key operational lever to capitalize on the industry's improving safety trend and **differentiate the company as** a **low-risk operator**.

5. Next Steps and Deliverables

5.1 Next Steps

• Cost-Benefit Analysis:

Cross-reference the identified low-risk aircraft (Make/Model) with acquisition and operating costs to finalize purchasing options.

• In-Depth Causal Factor Analysis:

Use the original NTSB data fields (Broad.phase.of.flight, FAR.Description) to determine **why accidents occur** in the recommended aircraft/models and tailor **pilot training** and **operational procedures**.

• Geographic Risk Analysis:

Analyze accident density in target operating regions (if the company has specific geographic plans).

5.2 Deliverable Summary

Deliverable	Audience	Format	Location
Non-Technical Presentation	Business Stakeholders	PDF / Live Slide Deck	Canvas, GitHub (presentation.pdf)
Jupyter Notebook	Data Science Audience	.ipynb / PDF	Canvas, GitHub (.ipynb file)
GitHub Repository	Public / Recruiters	Cloud-Hosted Directory	GitHub Link
Interactive Dashboard	Stakeholders / Explorers	Cloud-Hosted Views (Tableau)	Linked in GitHub README.md

Summary

This project provides a comprehensive data-driven analysis of aviation risk assessment, identifying the lowest-risk aircraft for a company entering the commercial and private aviation sectors. The analysis leverages NTSB data from 1962-2023 and delivers actionable recommendations focused on:

- 1. Proven, low-risk light aircraft models (Cessna 172, Piper PA-28)
- 2. Enhanced weather safety protocols

(

Releases

No releases published Create a new release

Packages

EOkeyo/aviator: # 🍱 Data Science Project: Aviation Risk Assessment This Jupyter Notebook documents the **process**, **analy...

No packages published Publish your first package

Deployments 13

github-pages 11 hours ago

+ 12 deployments

Languages

Jupyter Notebook 63.5%HTML 36.5%