ZIMSKI ISPITNI ROK 15.02.2021.

Ime i prezime:	
JMBAG:	

Tijekom ove provjere znanja neću od drugoga primiti niti drugome pružiti pomoć te se neću koristiti nedopuštenim sredstvima. Ove su radnje povreda Kodeksa ponašanja te mogu uzrokovati trajno isključenje s Fakulteta.

Zdravstveno stanje dozvoljava mi pisanje ovog ispita.

Vlastoručni	potnis	studenta:	
V Idbuol delli	POOPIS	suddilua.	-

- 1. (6 bodova)
 - (a) (2b) U skupu \mathbb{C} riješite jednadžbu $(z+i)^2+1=0$.
 - (b) (4b) U skupu \mathbb{C} riješite jednadžbu $\arg(z^4(1+\sqrt{3}i))=\arg(\pi z^2)$. Skicirajte skup rješenja.
- 2. (9 bodova)
 - (a) (1b) Napišite definiciju konvergencije niza realnih brojeva.
 - (b) (4b) Postoji li niz $(a_n)_n$ koji
 - (b1) je omeđen, ali nije konvergentan?
 - (b2) je konvergentan, ali nije monoton?
 - (b3) ima točno 3 različita gomilišta?

Ako postoji, navedite primjer takvog niza. Ako ne postoji, dokažite da ne postoji.

(c) (4b) Izračunajte sljedeće limese:

$$(c1) \qquad \lim_{n \to \infty} \frac{\sin(3n^2)}{n}$$

(c1)
$$\lim_{n \to \infty} \frac{\sin(3n^2)}{n}$$
(c2)
$$\lim_{n \to \infty} \left(\frac{n+1}{n+2}\right)^{2n+3}$$

- 3. (9 bodova)
 - (a) (4b) Funkcija $f: \mathbb{R} \to \mathbb{R}$ zadana je izrazom:

$$f(x) = \begin{cases} ax^2 + bx + b, & x < 1\\ \ln(x), & x \ge 1 \end{cases}$$

Odredite konstante $a, b \in \mathbb{R}$ tako da f bude neprekinuta i diferencijabilna za sve $x \in \mathbb{R}$. Za takve a, b skicirajte graf od f.

- (b) (2b) Po definiciji izvedite f'(x) ako je $f(x) = \sqrt{x}$.
- (c) (3b) Izračunajte f'(0) ako je $f(x) = \sqrt{e^{-\sin(2x)}}$.

OKRENITE STRANICU!

- 4. (8 bodova) Neka je $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ neprekinuta na [a,b] i diferencijabilna na $\langle a,b\rangle$. Ako je f(a)=f(b), tada je samo jedna od sljedeće 3 tvrdnje uvijek istinita:
 - (T1) $\exists c \in \langle a, b \rangle$ t.d. f(a) = f(c) = f(b)
 - (T2) $\exists c \in \langle a, b \rangle$ t.d. f'(c) = 0
 - (T3) $\exists c \in \langle a, b \rangle$ t.d. f(c) = 0.

Tvrdnju koja je uvijek istinita dokažite, a za preostale dvije nađite protuprimjer.

- 5. (8 bodova) Iz točke na osi ordinata povučene su dvije tangente na krivulju $y = 1 x^2$ tako da te tangente s osi apscisa zatvaraju trokut minimalne površine. Koliko iznosi ta površina? Dokažite da se radi o minimumu.
- 6. (7 bodova)
 - (a) (5b) Iskažite i dokažite Teorem srednje vrijednosti integralnog računa.
 - (b) (2b) Koristeći teorem pod (a), pokažite da vrijedi:

$$\left| \int_{1}^{3} \sin(x) dx \right| \le 2.$$

- 7. (9 bodova)
 - (a) (1b) Iskažite formulu parcijalne integracije u neodređenom integralu.
 - (b) (4b) Izračunajte:

$$\int \frac{dx}{e^x + 1}.$$

(c) (4b) Izračunajte:

$$\int_0^{\frac{\pi}{2}} e^{\sin(x)} \sin(2x) dx.$$

- 8. (8 bodova)
 - (a) (4b) Izračunajte površinu omeđenog lika između krivulja $x=2(y-1)^2$ i $x=(y-1)^2+1$.
 - (b) (4b) Zadana je funkcija $f:[0,\frac{\pi}{2}]\to\mathbb{R}, f(x)=\sin(x)$. Izračunajte volumen tijela dobivenog rotacijom površine ispod grafa ove funkcije oko osi y.

Napomena: Ispit se piše 150 minuta. Na ispitu je dozvoljena upotreba samo pribora za pisanje i službenog podsjetnika.