ASSIGNMENT-4

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")
```

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

from sklearn.linear model import LinearRegression

from sklearn import metrics

df=pd.read_csv('/content/abalone.csv')

df.head(10)

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera
weight	\					
0 M	0.455	0.365	0.095	0.5140	0.2245	
0.1010						
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485						
2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415						
3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395						
5 I	0.425	0.300	0.095	0.3515	0.1410	
0.0775						
6 F	0.530	0.415	0.150	0.7775	0.2370	
0.1415						
7 F	0.545	0.425	0.125	0.7680	0.2940	
0.1495						
8 M	0.475	0.370	0.125	0.5095	0.2165	
0.1125						
9 F	0.550	0.440	0.150	0.8945	0.3145	
0.1510						

	Shell	weight	Rings
0		0.150	15
1		0.070	7
2		0.210	9
3		0.155	10

0.055	7
0.120	8
0.330	20
0.260	16
0.165	9
0.320	19
	0.120 0.330 0.260 0.165

df.shape

(4177, 9)

df.describe()

	Length	Diameter	Height	Whole weight	Shucked
weight \ count 41 4177.0000		177.000000 41	177.000000	4177.000000	
Mean 0.359367		0.407881	0.139516	0.828742	
Std 0.221963	0.120093	0.099240	0.041827	0.490389	
Min 0.001000	0.075000	0.055000	0.00000	0.002000	
25% 0.186000	0.450000	0.350000	0.115000	0.441500	
50% 0.336000	0.545000	0.425000	0.140000	0.799500	
75% 0.502000	0.615000	0.480000	0.165000	1.153000	
Max 1.488000	0.815000	0.650000	1.130000	2.825500	
		Shell weight			
count mean		4177.000000			
std	0.100594				
	0.000500				
25%		0.130000			
50%		0.234000			
		0.329000			
max	0.760000	1.005000	29.000	000	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64

```
Diameter 4177 non-null float64
 3
    Height
                  4177 non-null float64
4
   Whole weight
                 4177 non-null float64
5
   Shucked weight 4177 non-null float64
   Viscera weight 4177 non-null float64
 6
7
    Shell weight
                  4177 non-null float64
    Rings
                  4177 non-null
                                int64
8
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
df['age']=df['Rings']+1.5
df=df.drop('Rings', axis = 1)
df.head(10)
 Sex Length Diameter Height Whole weight Shucked weight Viscera
weight \
       0.455
                0.365
                     0.095
                                  0.5140
0
  Μ
                                                 0.2245
0.1010
1 M 0.350 0.265 0.090
                                  0.2255
                                                 0.0995
0.0485
2 F
      0.530
               0.420
                     0.135
                                  0.6770
                                                 0.2565
0.1415
3 M
       0.440 0.365
                       0.125
                                  0.5160
                                                 0.2155
0.1140
4 I
      0.330
               0.255
                       0.080
                                  0.2050
                                                 0.0895
0.0395
5 I
      0.425
            0.300
                       0.095
                                  0.3515
                                                 0.1410
0.0775
6 F
      0.530 0.415
                       0.150
                                  0.7775
                                                 0.2370
0.1415
      0.545
               0.425
                       0.125
                                  0.7680
                                                 0.2940
   F
0.1495
      0.475 0.370
                       0.125
                                  0.5095
8 M
                                                 0.2165
0.1125
9 F
      0.550
               0.440
                       0.150
                                  0.8945
                                                 0.3145
0.1510
  Shell weight age
0
        0.150 16.5
1
        0.070
              8.5
2
        0.210 10.5
3
        0.155 11.5
4
        0.055
              8.5
5
        0.120
               9.5
6
        0.330 21.5
7
        0.260 17.5
8
        0.165 10.5
        0.320 20.5
df.isnull().sum()
```

```
Sex
                   0
Length
Diameter
                   0
Height
                   0
Whole weight
                   0
Shucked weight
                   0
                   0
Viscera weight
Shell weight
                   0
                   0
dtype: int64
```

df.columns

sns.distplot(df['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f6285125e10>

sns.boxplot(df.Sex,df.Height)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f62847d9810>

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7f62842be8d0>


```
dummy_df = df
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Shell weight'] > 0.6) & (df['age'] < 25)].index,
inplace = True)
df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace
= True)
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Whole weight'] >= 2.5) & (df['age'] < 25)].index,
inplace = True)
df.drop(df[(df['Whole weight']<2.5) & (df['age'] > 25)].index, inplace
= True)
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
df.drop(df[(df['Diameter'] <0.1) & (df['age'] < 5)].index, inplace =
True)
df.drop(df[(df['Diameter']<0.6) & (df['age'] > 25)].index, inplace =
True)
df.drop(df[(df['Diameter']>=0.6) & (df['age'] < 25)].index, inplace =
True)
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)</pre>
```



```
df.drop(df[(df['Height'] > 0.4) & (df['age'] < 15)].index, inplace =
True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace =
True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

```
numerical_features
Index(['Length', 'Diameter', 'Height',
```

```
plt.figure(figsize = (24,7))
sns.heatmap(df[numerical_features].corr(),annot = True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f627e059c90>

df.columns

LINEAR REGRESSION

```
from sklearn.feature selection import SelectKBest
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
standardScale = StandardScaler()
standardScale.fit transform(X)
selectkBest = SelectKBest()
X new = selectkBest.fit transform(X, y)
X train, X test, y train, y test = train test split(X new, y,
test size = 0.25)
lr = LinearRegression()
lr.fit(X train, y train)
LinearRegression()
y train pred = lr.predict(X train)
y_test_pred = lr.predict(X_test)
from sklearn.metrics import mean absolute error, mean squared error
s = mean squared error(y train, y train pred)
```

```
print('Mean Squared Error of training set :%2f'%s)

p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared Error of testing set :%2f'%p)

Mean Squared Error of training set :4.458678
Mean Squared Error of testing set :4.748683

from sklearn.metrics import r2_score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)

p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of training set:0.53
R2 Score of testing set:0.53
```