CPE201 Digital Design

By Benjamin Haas

Class 9: Truth Tables and Karnaugh Maps

Truth Table from SOP

• A'BC + ABC + ABC' + A'BC' = 0'11 + 111 + 110' + 0'10'

The only truth table lines that gipological

Truth Table from POS

- (A' + B + C) (A + B + C)(A + B + C')(A' + B + C')(A' + B + C') = (1'+0+0)(0+0+0)(0+0+1')(1'+0)(1'+
- The only truth table lines that gi

Converting Standard Form to the Other

- Convert the one you have to a truth table
- Find the opposite logic terms
- Write the terms out

• ABC' + A'B'C' + AB'C

Α	В	С	Outpu t
0	0	0	1
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	

(A+B+C')(A+B'+C)(A+B'+C')(A'+B+C)
 (A'+B'+C')

Simplification

- Boolean Algebra
- Karnaugh Maps

Karnaugh Map

• Good for 4-5 inpu

Truth Table to Karnaugh Map

A	В	С	D	Outpu t
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0

A	В	С	D	Outpu t
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

AB CL	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

Karnaugh Map of Standard SOP

- A standard SOP gives all terms that have output of 1
- Same as converting a truth table

Karnaugh Map of Non-Standard SOP

• Terms need to be expanded to include all input options $\frac{\mathcal{L}}{\mathcal{L}}$

• B' + A'B + ABC'

Then put into the m

B'	A'B	ABC
000	010	110
001	011	
100		
101		

SOP Minimization

- Make groups of 1's (by a power of 2)
 - 1's that are adjacent
 - Groups that are squares or rectangles only
 - Make the biggest ones possible
 - Overlap is okay
 - Complete overlaps are not used

AB	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1

SOP Minimization

• Next make a minimum product term for

the group

3 Inpu	3 Input Variables				
1 cell	3 input product term				
2 cells	2 input product term				
4 cells	1 input product term				
8	All terms true. F=1				

	4 Input Variables				
	1 cell	4 input product term			
	2 cells	3 input product term			
	4 cells	2 input product term			
ersity	8 cells	1 input product term			

- B' + A'B + ABC'
- 3 4-cell groups
- A' + B' + C'

Wrap-around adjacency

Wrap-around adjacency

- Minimize:
- AB + AC' + A'BC
- ABC' + BC' + D

Don't Care Condition

 Used for conditions that cannot occur

Can be used to further

simplify logic

Inputs				Output
A	B	$\boldsymbol{\mathcal{C}}$	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Don't cares

Can be used to further simplify logic

AB CL	00	01	11	10
00	1			
01	1	1		
11	1		Х	
10	1		X	

Reading

- This lecture
 - Sections 4.7-4.9
- Next lecture
 - Sections 1.8, 3.9, 4.10-4.11, Ch4 Applied
 Logic