ЗАДАНИЕ ПО КУРСУ «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Автор : Хоружий Кирил	IЛ
------------------------------	----

От: 8 апреля 2022 г.

Содержание

ТеорМин №1	2
ТеорМин №2	3
1 Неделя I	7
2 Неделя II	8
3 Неделя III	10
4 Неделя V	11

ТеорМин №1

Вычеты. Интеграл по замкнутому контуру C может быть найден, как

$$\int_C f(z) dz = 2\pi i \sum_{z_j} \operatorname{res}_{z_j} f(z), \qquad \operatorname{res}_a f(z) = \lim_{\varepsilon \to 0} \varepsilon \int_0^{2\pi} \frac{d\varphi}{2\pi} e^{i\varphi} f(a + \varepsilon e^{i\varphi})$$

$$= \frac{1}{(m-1)!} \lim_{z \to a} \left(\frac{d^{m-1}}{dz^{m-1}} (z - a)^m f(z) \right),$$

где m — степень полюса.

Излучение. Волновое уравнение с источником:

$$(\partial_t^2 - c^2 \nabla^2) u = \chi, \tag{1}$$

с законом дисперсии $\varpi=cq$.

Функция Грина оператора $\partial_t^2 - c^2 \nabla^2$:

$$G(t,r) = \frac{\theta(t)}{4\pi cr} \delta(r - ct),$$

а значит выражение для поля:

$$u(t, \mathbf{r}) = \frac{1}{4\pi c^2} \int \frac{d^3 r_1}{R} \ \chi(t - R/c, \mathbf{r}_1), \tag{2}$$

где $R = |r - r_1|$.

Уравнение диффузии. Уравнение диффузии:

$$\left(\partial_t - \nabla^2\right) u = 0,\tag{3}$$

решение которого может быть найдено в виде:

$$u(t, \boldsymbol{x}) = \int_{\mathbb{R}^d} \frac{dy_1 \dots dy_d}{(4\pi t)^{d/2}} \exp\left(-\frac{(\boldsymbol{x} - \boldsymbol{y})^2}{4t}\right) u_0(\boldsymbol{y}). \tag{4}$$

Асимтотики могут быть найдены в виде

$$u(t, \boldsymbol{x}) \approx \frac{A}{(4\pi t)^{d/2}} \exp\left(-\frac{\boldsymbol{x}^2}{4t}\right), \quad A = \int_{\mathbb{R}^d} dy_1 \dots dy_d \ u_0(\boldsymbol{y}).$$
 (5)

При A=0 асимтотика будет соответствовать

$$u(t, \boldsymbol{x}) \approx \frac{\boldsymbol{B} \cdot \boldsymbol{x}}{(4\pi t)^{d/2+1}} \exp\left(-\frac{\boldsymbol{x}^2}{4t}\right), \quad \bar{B} = 2\pi \int_{\mathbb{R}^d} dy_1 \dots dy_d \ \boldsymbol{y} \ u_0(\boldsymbol{y}),$$
 (6)

где асимтотики имеют место при $t\gg l^2,\,l$ – масштаб на котором локализовано поле.

Уравнение диффузии (с накачкой). При наличии правой части:

$$(\partial_t - \nabla^2)u = \varphi,$$

можем найти функцию Грина для оператора $\partial_t - \nabla^2$

$$u(t, \boldsymbol{x}) = \int G(t - \tau, \boldsymbol{x} - \boldsymbol{y}) \varphi(t, \boldsymbol{y}) d\tau d^d \boldsymbol{y}, \qquad G(t, \boldsymbol{r}) = \frac{\theta(t)}{(4\pi t)^{d/2}} \exp\left(-\frac{r^2}{4t}\right).$$

Меленные переменные. Рассмотрим прозвольное возмущение гармонического осциллятора:

$$\left(\partial_t^2 + \omega_0^2\right) x(t) = \varepsilon f(t, x, \dot{x}). \tag{7}$$

Приближенно (до $o(\varepsilon)$) можем методом Боголюбова-Крылова найти решение в виде

$$x(t) = A(t)\cos(\omega_0 t + \varphi(t)), \tag{8}$$

где зависимость от времени амплитуды и фазы определяестся уравнениями

$$\partial_t A(t) = \frac{1}{2\pi\omega_0} \int_{\omega_0 t - \pi}^{\omega_0 t + \pi} f(\tau, x, \dot{x}) \cos(\omega_0 \tau + \varphi(t)) \ d(\omega_0 \tau), \tag{9}$$

$$\partial_t \varphi(t) = \frac{-1}{2\pi A\omega_0} \int_{\omega_0 t - \pi}^{\omega_0 t + \pi} f(\tau, x, \dot{x}) \sin(\omega_0 \tau + \varphi(t)) d(\omega_0 \tau). \tag{10}$$

Уравнение Хопфа. В акустике естественно возникает уравнение Хопфа:

$$\partial_t u + u \, \partial_x u = 0.$$

Решение может быть найдено в виде

$$x(t) = x_0 + u_0(x_0)t, \quad u(x(t), t) = c(x_0) = u_0(x_0).$$

где сначала разрешаем уравнение $c=u_0(x_0)$ относительно $c=c(x_0)$, а потом разрешаем уравнение на x(t) относительно c=c(x(t),t). Зная, что u(x(t),t)=c(x(t),t), находим u(x,t)=c(x,t).

Уравнение Хопфа (с накачкой). Добавим к уравнению накачку:

$$\partial_t u + u \, \partial_x u = f(x, t).$$

Система может быть сведена к

$$\begin{cases} \dot{u} = f(t, x(t)) \\ \dot{x} = u(t, x(t)) \end{cases} \Leftrightarrow \ddot{x} = f(x, t), \quad \Rightarrow \quad x(t) = x(t, x_0, \dot{x}_0),$$

где $\dot{x}_0 = u_0(x_0)$. Сначала разрешаем уравнение x(t) относительно $x_0 = x_0(t,x)$, а потом подставляем этот x_0 в $u(t,x) = \dot{x}(t,x_0(t,x))$, что и является решением исходной задачи.

Уравнение Бюргерса. Добавим диссипацию в уравнение Хопфа:

$$\partial_t u + u \, \partial_x u = \partial_x^2 u,$$

так получим уравнение Бюргерса.

Заметим, что преобразование Коула-Хопфа

$$\psi = \exp\left(-\frac{1}{2}h\right), \quad u = \partial_x h, \quad \Rightarrow \quad (\partial_t - \partial_x^2)\psi = 0.$$

Имея начальные условия для $\psi_0(x)$, можем найти

$$\psi(t,x) = \int_{\mathbb{R}} \psi_0(y) \frac{\theta(t)}{\sqrt{4\pi t}} \exp\left(-\frac{(x-y)^2}{4t}\right) dy,$$

откуда находим решение

$$u(t,x) = -2\partial_x \ln \psi(t,x).$$

ТеорМин №2

Автомодельные решения. Если уравнения вида $\hat{L}\,u({m r},t)=\dots$ – однородно и изотропно, то может помочь автомодельная подстановка:

$$u(t, \mathbf{r}) = \frac{1}{t^a} f\left(\frac{r}{t^b}\right) : t \to \lambda t \Rightarrow u \to \lambda^{-a} u, \ r \to \lambda^b r.$$
 (11)

Восстановить a в общем виде нельзя, но требуя, например, локальности решения $\int_{\mathbb{R}^n} u \, dV = \text{const}$ можем иногда найти и a.

Уравнение Фредгольма. Есть уравнение Фредгольма I рода:

$$\int_{a}^{b} ds \ K(t,s)f(s) = g(t),$$

и уравнение Фредгольма II рода:

$$f(t) = g(t) + \lambda \int_{a}^{b} K(t, s) f(s), \quad \Leftrightarrow \quad f = g + \lambda \hat{K} f, \tag{12}$$

где мы ввели интегральный оператор $\hat{K}f=\int_a^b ds\ K(t,s)f(s).$ Решение можем найти в виде

$$f = \frac{1}{1 - \lambda \hat{K}} g = (\mathbb{1} + \lambda \hat{R}) g, \qquad \hat{R} \stackrel{\text{def}}{=} \hat{K} + \lambda \hat{K}^2 + \dots$$

В терминах интегрирования резульвента R(t,s) выражается, как

$$R(t,s) = K(t,s) + \lambda \int_{a}^{b} dp_1 \ K(t,p_1)K(p_1,s) + \lambda^2 \int_{a}^{b} dp_1 \int_{a}^{b} dp_2 \ K(t,p_1)K(p_1,p_2)K(p_2,s) + \dots$$
 (13)

Линейные интегральные уравнения

Свертка I. Рассмотрим уравнение на φ , вида

$$\int_{-\infty}^{\infty} K(x - y)\varphi(y) = f(x), \tag{14}$$

то есть уравнение Фредгольма первого рода с $(a,b) = \mathbb{R}$ и K(x,y) = K(x-y). Решение можем найти через преобразование Фурье

$$\tilde{f}(k) = \int_{\mathbb{R}} f(x)e^{-ikx} dx, \qquad f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \tilde{f}(k)e^{ikx} dx,$$

которое переводит свёртку в произведение:

$$\tilde{\varphi}(k) = \frac{\tilde{f}(k)}{\tilde{K}(k)}, \quad \Rightarrow \quad \varphi(x) = \int_{\mathbb{R}} \frac{dk}{2\pi} e^{ikx} \frac{\tilde{f}(k)}{\tilde{K}(k)}.$$
 (15)

Свертка II. Аналогично для уравнения Фредгольма второго рода

$$\varphi(x) = f(x) + \lambda \int_{\mathbb{R}} dy \ K(x - y)\varphi(y), \tag{16}$$

для которого также

$$\varphi(x) = f(x) + \lambda \int_{\mathbb{R}} dy \ f(y) R(x - y), \qquad R(x) = \int_{\mathbb{R}} \frac{dk}{2\pi} e^{ikx} \frac{\tilde{K}(k)}{1 - \lambda \tilde{K}(k)}. \tag{17}$$

Уравнение Вольтерра I. Рассмотрим интегральное уранвение Фредгольма I на (a,b)=(0,t):

$$f(t) = \int_0^t ds \ K(t-s)\varphi(s).$$

Здесь хорошо работает преобразование Лапласа

$$f(p) = \int_0^\infty f(t)e^{-pt} dt,$$
 $f(t) = \frac{1}{2\pi i} \int_{p_0 - i\infty}^{p_0 + i\infty} f(p)e^{pt} dp,$

которое переводит свертку в произведение, а значит можем сразу написать решение

$$\varphi(t) = \int_{p_0 - i\infty}^{p_0 + i\infty} \frac{f(p)}{K(p)} e^{pt} \frac{dp}{2\pi i}.$$
 (18)

Уравнение Вольтерра II. Аналогично для уравнения Фредгольма II

$$\varphi(x) = f(x) + \lambda \int_0^t K(x - y)\varphi(y) \, dy, \tag{19}$$

находим решение

$$\varphi(x) = f(x) + \lambda \int_0^t R(t-s)f(s) ds, \qquad R(t) = \int_{p_0 - i\infty}^{p_0 + i\infty} \frac{dp}{2\pi i} e^{pt} \frac{K(p)}{1 - \lambda K(p)}.$$

Периодическое ядро I. Рассмотрим f(t) и K(t) периодчиные с T=b-a, тогда и $\varphi(t)$ периодично по T. Решим уравнение, вида

$$\int_{a}^{b} K(t-s)\varphi(s) ds = f(t). \tag{20}$$

Раскладывая всё в ряд Фурье (вводя $\omega = \frac{2\pi}{T}$):

$$f(t) = \sum_{n \in \mathbb{Z}} e^{-in\omega t} f_n, \quad f_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{in\omega t} dt.$$

Решение находим в виде суммы

$$\varphi_n = \frac{f_n}{TK_n}, \quad \Rightarrow \quad \varphi(t) = \sum_{n \in \mathbb{Z}} \frac{f_n}{TK_n} e^{-in\omega t}.$$
(21)

Периодическое ядро II. Аналогично можем найти резольвенту для уравнения Фредгольма второго рода:

$$\varphi(t) = f(t) + \lambda \int_{a}^{b} ds \ K(t - s)\varphi(s).$$

Peme $\varphi(t)$

$$\varphi(t) = f(t) + \lambda \int_{a}^{b} ds \ R(t-s)f(s), \qquad R(t) = \sum_{n \in \mathbb{Z}} \frac{K_n}{1 - \lambda T K_n} e^{-in\omega t}.$$
 (22)

Нелинейные интегральные уравнения

Уравнение типа свёртки. Рассмотрим уравнение вида

$$\int_{-\infty}^{+\infty} \varphi(t-s)\varphi(s) = f(t). \tag{23}$$

Аналогично смотрим на фурье-образ, откуда находим выражение для $\varphi(t)$:

$$\varphi(t) = \pm \int_{-\infty}^{+\infty} \sqrt{f(\omega)} e^{i\omega t} \frac{d\omega}{2\pi}.$$
 (24)

Обобщение. Обобщим происходящее, введя L(s)

$$L(s) = \sum_{n=0}^{N} a_n s^n, \qquad \int_{-\infty}^{+\infty} ds \ \varphi(t-s) L(s) \varphi(s) = f(t), \tag{25}$$

решим в виде

$$\varphi(\omega)L(i\partial_{\omega})\varphi(\omega) = f(\omega), \tag{26}$$

то есть можем свести интегральное уравнение к дифференциальному.

Лаплас. Рассмотрим уравнение вида

$$\int_0^t ds \ \varphi(t-s)L(s)\varphi(s) = f(t),$$

решение которого также находится в виде

$$\varphi(p)L(-\partial_p)\varphi(p) = f(p).$$

Периодический сдучай. Аналогично линейному случаю рассмотрим

$$\int_{-\pi}^{+\pi} ds \ \varphi(t-s)\varphi(s) = f(t),$$

периодичное с $T=2\pi$ и $\omega=1$. Тогда решение находится в виде

$$\varphi(t) = \sum_{n \in \mathbb{Z}} (\pm) \sqrt{\frac{f_n}{2\pi}} e^{-int}.$$

Факторизуемое ядро. Для факторизуемого ядра уравнение примет вид

$$\varphi(t) = x(t) \int_{a}^{b} ds \ \varphi^{n}(s)y(s) + f(t),$$

решение которого можем найти в виде

$$\varphi(t) = \alpha x(t) + f(t),$$
 $\alpha \colon \alpha = \int_a^b dt \ y(t) \left(\alpha x(t) + f(t)\right)^n,$

где α задан неявно алгебраическим уравнением.

Факторизуемое ядро'. Для уравнения на интервале [0,t] уравнение вида

$$\varphi(t) = f(t) + x(t) \int_0^t ds \ y(s) \varphi^n(s),$$

может быть сведено к дифференциальному уравнению по $z(t) \stackrel{\text{def}}{=} \varphi(t)/x(t)$:

$$z'(t) = y(t)x^{n}(t)z^{n}(t) + \frac{d}{dt}\left(\frac{f(t)}{x(t)}\right), \qquad z(0) = \frac{f(0)}{x(0)}.$$

Сингулярные интегральные уравнения

Сингулярные интегральные уравнения. Основой решения станет формула Сохоцкого:

v. p.
$$\int_{a}^{b} \frac{f(x)}{x - x_0} dx = \pm i\pi f(x_0) + \lim_{\varepsilon \to +0} \int_{a}^{b} \frac{f(x)}{x - x_0 \pm i\varepsilon} dx.$$
 (27)

Полезно ввести преобразование Гильберта \hat{H} :

$$\hat{H}\varphi(x) = \lim_{\varepsilon \to +0} \int_{-\infty}^{+\infty} \frac{\varphi(y) \, dy}{2\pi} \left(\frac{1}{y-x+i\varepsilon} + \frac{1}{y-x-i\varepsilon} \right),$$

для которого верно, что $\hat{H}^2 = -1$.

Тогда простейшее сингулярное уравнение вида

$$\pi \hat{H}\varphi(x) + \lambda \varphi(x) = f(x) \tag{28}$$

будет иметь решение относительно $\varphi(x)$:

$$\varphi(x) = \frac{\lambda}{\lambda^2 + \pi^2} f(x) - \frac{1}{\lambda^2 + \pi^2} \hat{H}[f](x) = \frac{1}{\lambda + i\pi} f(x) - \frac{1}{\lambda^2 + \pi^2} \int_{-\infty}^{+\infty} dy \, \frac{f(y)}{y - x + i\varepsilon}.$$
 (29)

Сингулярные интегральные уравнения с полиномильными коэффициентами. Рассмотрим уравнение вида

v.p.
$$\int_{-\infty}^{\infty} \frac{\varphi(y)}{y-x} dy = x^2 \varphi(x) + f(x).$$

Применяя оператор $\int_{-\infty}^{+\infty} \frac{dx}{x-z+i\varepsilon}$, приходим к уравнению

$$-\pi i \int_{-\infty}^{+\infty} \frac{\varphi(y)}{y-z+i\varepsilon} \, dy = \int_{-\infty}^{+\infty} \frac{y^2 \varphi(y)}{y-z+i\varepsilon} \, dy + \int_{-\infty}^{+\infty} \frac{f(y)}{y-z+i\varepsilon} \, dy.$$

Здесь можем провести следующие рассуждения:

$$\int_{-\infty}^{+\infty} \frac{y(y-z+i\varepsilon+z-i\varepsilon)}{y-z+i\varepsilon} \varphi(y) \, dy = \int_{-\infty}^{+\infty} y \varphi(y) \, dy + z \int_{-\infty}^{+\infty} \frac{y-z+z}{y-z+i\varepsilon} \varphi(y) \, dy =$$

$$= \underbrace{\int_{-\infty}^{+\infty} y \varphi(y) \, dy}_{C_1} + z \underbrace{\int_{-\infty}^{+\infty} \varphi(y) \, dy}_{C_2} + z^2 \int_{-\infty}^{+\infty} \frac{\varphi(y)}{y-z+i\varepsilon} \, dy,$$

а значит исходное уравнение переписывается в виде

$$\int_{-\infty}^{+\infty} \frac{\varphi(y)}{y-z+i\varepsilon} \, dy = -\frac{-}{z^2+i\pi} \int_{-\infty}^{+\infty} \frac{f(y)}{y-z+i\varepsilon} \, dy - \frac{C_1+C_2z}{z^2+i\pi},$$

решение которого мы уже знаем:

$$\varphi(x) = -\frac{C_1 + C_2 x}{x^4 + \pi^2} - \frac{f(x)}{x^2 - i\pi} - \frac{1}{x^4 + \pi^2} \int_{-\infty}^{+\infty} \frac{f(y)}{y - z + i\varepsilon} \, dy.$$

Сингулярные интегральные уравнения на отрезке. Рассмотрим уравнение на конечном отрезке

v.p.
$$\int_{-1}^{1} \frac{\varphi(y)}{y - x} \, dy = f(x).$$

Решение можем найти при условии на $f \colon \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} \, dx = 0$, тогда

$$\varphi(x) = \frac{1}{\pi i} \left(f(x) + \frac{\sqrt{1 - x^2}}{\pi i} \int_{-1}^1 \frac{f(y) \, dy}{\sqrt{1 - y^2} (y - x + i\varepsilon)} \right).$$

1 Неделя I

№ 4.1.6

Найдём решение волнового уравнения (1) для точечного гармонческого источника

$$\chi = \cos(\omega t)\delta(\mathbf{r}).$$

Подставляя ξ в (2), находим

$$u(t, \mathbf{r}) = \frac{1}{4\pi c^2} \int \frac{d^3 r_1}{|\mathbf{r} - \mathbf{r}_1|} \cos(\omega t - \omega |\mathbf{r} - \mathbf{r}_1|/c) \delta(\mathbf{r}_1) = \frac{1}{4\pi c^2} \frac{\cos\left(\omega (t - \frac{r}{c})\right)}{r}.$$

№ 4.1.7

Найдём значение функции Грина при r=0 для оператора $\partial_t^2 + \nabla^4$. Для начала перейдём к Фурье образу

$$\tilde{G}(t, \boldsymbol{q}) = \int d^3 \boldsymbol{x} \ e^{-i \boldsymbol{q} \cdot \boldsymbol{x}} G(t, \boldsymbol{x}), \quad \Rightarrow \quad \left(\partial_t^2 + q^4\right) \tilde{G} = \delta(t).$$

Решение этого уравнение известно¹:

$$\tilde{G}(t) = \theta(t) \frac{1}{q^2} \sin(q^2 t).$$

Осталось найти

$$G(t,0) = \theta(t) \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \frac{\sin(q^2 t)}{q^2} = \frac{\theta(t)}{(2\pi)^3} \int_0^{\pi} \sin\theta \, d\theta \int_0^{2\pi} d\varphi \int_0^{\infty} \sin\left(q^2 t\right) = \frac{1}{8\sqrt{2}\pi^{5/2}} \cdot \frac{\theta(t)}{\sqrt{t}}.$$

№ 4.2.2

Найдём решение одномерного дифузионного уравнения для

$$\left(\partial_t - \partial_x^2\right) u = 0,$$
 $u_0(x) = \exp\left(-\frac{x^2}{2l^2}\right).$

Точное решение. Воспользуемся (4), тогда

$$u(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(-\frac{(x-y)^2}{4t} - \frac{y^2}{2l^2}\right) dy.$$

Выделяя полный квадрат, находим, что

$$\frac{(x-y)^2}{4t} + \frac{y^2}{2l^2} = \left(\sqrt{\frac{1}{2l^2} + \frac{1}{4t}}y - \frac{x}{4t\sqrt{\frac{1}{2l^2} + \frac{1}{4t}}}\right)^2 + \frac{x^2}{2l^2 + 4t},$$

а значит

$$u(t,x) = \frac{l}{\sqrt{l^2 + 2t}} \exp\left(-\frac{x^2}{2l^2 + 4t}\right).$$

Асимптотика. Так как фунция u_0 симметрична, то через (5) находим

$$A = \int_{\mathbb{R}} u_0(x) dx = l\sqrt{2\pi}, \quad \Rightarrow \quad u(t,x) \approx \frac{l}{\sqrt{2t}} \exp\left(-\frac{x^2}{4t}\right),$$

что является асимптотикой точного решения при $t\gg l^2$.

№ 4.2.3

Найдём асимтотическое поведение решение одномерного диффузного уравнения (3) для различных начальных условий.

1. Рассмотрим

$$u_0(x) = x \exp\left(-\frac{x^2}{2l^2}\right).$$

В силу нечетности функции, через (6), находим

$$B = 2\pi \int_{\mathbb{R}} x^2 \exp\left(-\frac{x^2}{2l^2}\right) = -4\pi l^2 \,\partial_{\alpha} \int_{-\infty}^{+\infty} e^{-\alpha x^2/2l^2} \,dx = -4\pi l^2 \sqrt{2\pi} l \,\partial_{\alpha} \frac{1}{\sqrt{\alpha}} = l^3 (2\pi)^{3/2},$$

¹Конпект, (1.11).

а значит искомая асимптотика

$$u(t,x) \approx \left(\frac{l}{\sqrt{2}}\right)^3 \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

2. Рассмотрим

$$u_0(x) = \exp\left(-\frac{|x|}{l}\right).$$

В силу четности функции, через (5), находим

$$A = 2 \int_0^\infty e^{-x/l} dx = 2l.$$

Тогда искомая асимптотика

$$u(t,x) \approx \frac{l}{\sqrt{\pi}} \frac{e^{-x^2/4t}}{\sqrt{t}}.$$

3. Рассмотрим

$$u_0(x) = x \exp\left(-\frac{|x|}{l}\right).$$

В силу нечетности функции, через (6), находим

$$B=4\pi\int_0^\infty x^2\exp\left(-\frac{|x|}{l}\right)\,dx=4\pi l^2\,\,\partial_\alpha^2\int_0^\infty e^{-\alpha x/l}\,dx=2\pi l^2\partial_\alpha^2\left(\frac{l}{\alpha}\right)=8\pi l^3,$$

а значит

$$u(t,x) \approx \frac{l^3}{\sqrt{\pi}} \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

4. Рассмотрим

$$u_0(x) = \frac{1}{x^2 + l^2}.$$

В силу четности функции, через (5), находим

$$A = \int_{-\infty}^{\infty} \frac{1}{x^2 + l^2} \, dx = 2\pi i \frac{1}{2il} = \frac{\pi}{l},$$

тогда искомая асимптотика

$$u(t,x) \approx \frac{\sqrt{\pi}}{2l} \frac{e^{-x^2/4t}}{\sqrt{t}}.$$

5. Рассмотрим

$$u_0(x) = \frac{x}{(x^2 + l^2)^2}.$$

В силу четности функции, через (6), находим

$$B = 2\pi \int_{\mathbb{R}} \frac{x}{(x^2 + l^2)^2} dx = 4\pi i \lim_{x \to il} \left(\frac{x^2}{(x + il)^2} \right)' = \frac{\pi^2}{l}.$$

Тогда искомая асимптотика

$$u(t,x) = \frac{\sqrt{\pi}}{8l} \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

2 Неделя II

№1. 6.2.2

Решим уравнение (7) для $f(\dot{x}) = -\varepsilon \dot{x}^3$. Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\dot{A} = -\frac{3}{8}\varepsilon A^3 \omega_0^2, \qquad \dot{\varphi} = 0,$$

откуда сразу находим $\varphi(t) = \varphi_0$ и

$$\frac{dA}{A^3} = \left(-\frac{3}{8}\varepsilon\omega_0^2\right)\,dt, \quad \Rightarrow \quad A = \frac{A_0}{\sqrt{1 + \frac{3}{4}A_0\varepsilon\omega_0^2t}},$$

а значит искомое решение

$$x(t) = \frac{A_0}{\sqrt{1 + \frac{3}{4}A_0\varepsilon t}}\sin(t + \varphi_0).$$

НЕДЕЛЯ II

№2. 6.2.6

Решим уравнение (7) для $f(t) = \cos t$. Знаем, что точное решение

$$x(t) = A\sin(t + \varphi_0) + \frac{\varepsilon t}{2}\sin(t).$$

Однако решим методом медленных амплитуд.

Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\begin{cases} \dot{A}(t) = \frac{\varepsilon}{2}\cos(\varphi(t)), \\ \dot{\varphi}(t) = \frac{-\varepsilon}{2A(t)}\sin(\varphi(t)), \end{cases}$$

которые приводят к двум случаям.

Нулевая фаза. При $\varphi(0) \stackrel{\text{def}}{=} \varphi_0 = \frac{\pi}{2} \pm \frac{\pi}{2} + 2\pi k$ видим, что $\dot{\varphi} = 0$, а значит $\varphi(t) = \text{const.}$ Тогда уравнение на амплитуду легко интегрируется, и находим (считая $A(0) \stackrel{\text{def}}{=} A_0$)

$$A(t) = A_0 + \frac{\varepsilon}{2}\cos(\varphi_0)t,$$

что прекрасно описывает резонанс:

$$x(t) = \left(A_0 + \frac{\varepsilon}{2}\cos(\varphi_0)t\right)\sin(t), \quad \varphi_0 = 0.$$

Ненулевая фаза. Разделим два уравнения друг на друга:

$$\frac{dA}{d\varphi} = -\frac{A}{\operatorname{tg}\varphi}, \quad \Rightarrow \quad \log A = -\log \sin \varphi + \tilde{c}, \quad \Rightarrow \quad A = A_0 \frac{\sin \varphi_0}{\sin \varphi},$$

таким образом нашли удобный первый интеграл системы.

Подставляя в выражение для $\dot{\varphi}$ находим

$$\dot{\varphi} = -\frac{\varepsilon}{2}\sin^2(\varphi), \quad \Rightarrow \quad \frac{d\varphi}{\sin^2\varphi} = -\frac{\varepsilon}{2}\,dt, \quad \Rightarrow \quad \varphi = \arctan\left(\frac{1}{\frac{1}{\lg\varphi_0} + \frac{\varepsilon t}{2}}\right).$$

Теперь нужно подставить $\varphi(t)$ в выражение для \dot{A} и разложить по ε :

$$\cos \arctan x = \frac{1}{\sqrt{1+x^2}}, \quad \Rightarrow \quad \dot{A} = \frac{\varepsilon}{2} \frac{1}{\sqrt{1+\left(\frac{t\varepsilon}{2} + \frac{1}{\operatorname{tg}(\varphi_0)}\right)^2}} = \frac{\varepsilon}{2\sqrt{1+\operatorname{tg}^2\varphi_0}} + o(\varepsilon),$$

а значит искомая амплитуда

$$A(t) = A_0 + \frac{1}{\sqrt{1 + \lg^2 \varphi_0}} \frac{\varepsilon}{2} t.$$

Итого находим (при $\varphi_0 \neq \pi/2$)

$$x(t) = \left(A_0 + \frac{1}{\sqrt{1 + \lg^2 \varphi_0}} \frac{\varepsilon t}{2}\right) \sin\left(t + \arctan\left(\frac{1}{\frac{1}{\lg \varphi_0} + \frac{\varepsilon t}{2}}\right)\right).$$

№3. 6.2.8

Решим уравнение (7) для $f(t) = \kappa \cos t + (1 - x^2)\dot{x}$. Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\dot{A} = \frac{1}{2}\varepsilon\left(\kappa\cos\varphi + A\left(1 - \frac{A^2}{4}\right)\right), \qquad \ \, \dot{\varphi} = -\frac{1}{2A}\varepsilon\kappa\sin(\varphi).$$

Считая к тоже малым параметром, решаем, аналогично семинару, уравнение с разделяющимеся переменными:

$$\dot{A} = \frac{1}{2} \varepsilon A \left(1 - \frac{A^2}{4} \right), \quad \Rightarrow \quad A(t) = 2 \frac{A_0}{\sqrt{4e^{-\varepsilon t} + A_0^2 \left(1 - e^{-\varepsilon t} \right)}},$$

что похоже на правду, так как всё также

$$\lim_{t \to \infty} A(t) = 2,$$

то есть сохраняется предельный цикл на плоскости $\{x, \dot{x}\}$.

Для фазы можем найти решение при $t \to \infty$:

$$\dot{\varphi} = -\frac{\varepsilon \kappa}{2} \sin(\varphi) \sqrt{\frac{4 + A_0^2(e^{\varepsilon t} - 1)}{4A_0^2 e^{\varepsilon t}}} \approx -\frac{\varepsilon \kappa}{4} \sin(\varphi), \quad \Rightarrow \quad \operatorname{tg}\left(\frac{1}{2}\varphi(t)\right) = \operatorname{tg}\left(\frac{1}{2}\varphi_0\right) \exp\left(-\frac{\varepsilon \kappa}{4}t\right).$$

Возможно даже корректным будет выражение

$$\varphi(t) = 2 \arctan\left(\operatorname{tg}\left(\frac{1}{2}\varphi_0\right) \exp\left(-\frac{\varepsilon\kappa}{4}t\right)\right),$$

получается малая накачка определяет асимптотику на фазы на бесконечности.

Сама асимптотика будет иметь вид

$$\varphi(t \to \infty) = 2 \operatorname{arcctg}\left(e^{\frac{\varepsilon \kappa}{4}t} \operatorname{ctg}\left(\frac{\varphi_0}{2}\right)\right).$$

3 Неделя III

№1. 7.1.2

Найдём решение уравнения Хопфа с начальными условиями u=0 при x<0 и $u=-c_1x+c_2x^2$ при x>0. Для начала считаем

$$\begin{cases} c(x_0) = -c_1 x_0 + c_2 x_0^2 \\ x(t) = x_0(c) + ct \end{cases} \Rightarrow x_0(c) = \frac{c_1 \pm \sqrt{c_1^2 + 4cc_2}}{2c_2}.$$

где выбор знака не принципиален. Подставляя x_0 в уравнение на x(t), выражаем c:

$$c = \frac{c_1}{2c_2^3t^2} \left(\pm \sqrt{c_1 \left(c_1(c_2t - 1)^2 + 4c_2^2tx \right)} - c_1c_2t + c_1 + 2c_2^2tx \right),$$

где + не удоволетворяет $c(t = 0, x) = u_0(x)$, а значит

$$u(x,t) = \frac{c_1}{2c_2^3t^2} \left(-\sqrt{c_1\left(c_1(c_2t-1)^2 + 4c_2^2tx\right)} - c_1c_2t + c_1 + 2c_2^2tx \right).$$

Стоит заметить, что до точки $x^* = c_1/c_2$ верно $u_0'(x) < 0$, а значит решение существует только до некоторого t^* .

№2. 7.1.3

Теперь решим уравнение Хопфа с накачкой:

$$\partial_t u + u \partial_x u = f,$$
 $f = \alpha^2 x,$ $u_0(x) = 0,$

где сделали замену $\varphi=\alpha^2$. Сначала находим

$$\ddot{x} - \alpha^2 x = 0, \quad \Rightarrow \quad x = x_0 \operatorname{ch}(\alpha t) + \frac{\dot{x}_0}{\alpha} \operatorname{sh}(\alpha t).$$

Находим, что $\dot{x}_0 = u_0(x_0) = 0$, а значит

$$\dot{x} = \alpha x_0 \operatorname{sh}(\alpha t) = \alpha x \operatorname{th}(\alpha t).$$

При $\varphi = -\alpha^2$ уравнение изменится на $\dot{x} = -\alpha x \operatorname{tg}(\alpha t)$. Итого, окончательный ответ

$$u(t,x) = \sqrt{|\varphi|} \operatorname{sign}(\varphi) \ x \cdot \begin{cases} \operatorname{th}(\sqrt{|\varphi|} \ t), & \varphi > 0; \\ \tan(\sqrt{|\varphi|} \ t), & \varphi < 0. \end{cases}$$

№3. 7.1.4

Аналогично решаем уравнение Хопфа с накачкой:

$$\partial_t u + u \partial_x u = f,$$
 $f = f_0,$ $u_0(x) = x.$

Сначала находим

$$\ddot{x} = f_0, \quad \Rightarrow \quad x(t) = \frac{1}{2}f_0t^2 + \dot{x}_0t + x_0,$$

где $\dot{x}_0 = u_0(x_0) = x_0$, а значит

$$x_0 = \frac{x - f_0 t^2 / 2}{t + 1}, \quad \Rightarrow \quad \dot{x} = f_0 t + \dot{x}_0 = \frac{\frac{1}{2} f_0 t^2 + f_0 t + x}{t + 1},$$

таким образом искомый ответ

$$u(t,x) = \frac{\frac{1}{2}f_0t^2 + f_0t + x}{t+1}.$$

№4. 7.1.5

Найдём решение уравнения Бюргерса с начальным условием

$$\psi_0 = \operatorname{ch}(ax) + B\operatorname{ch}(bx),$$

где a < b и $B \ll 1$.

Для начала находим ψ , как решение диффузного уравнения:

$$\psi(t,x) = \int_{\mathbb{R}} \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{(x-y)^2}{4t}\right) \psi_0(y) \, dy = e^{a^2 t} \operatorname{ch}(ax) + Be^{b^2 t} \operatorname{ch}(bx).$$

Теперь находим и

$$u = -2\partial_x \ln \psi = -\frac{2\left(ae^{a^2t}\operatorname{sh}(ax) + bBe^{b^2t}\operatorname{sh}(bx)\right)}{e^{a^2t}\operatorname{ch}(ax) + Be^{b^2t}\operatorname{ch}(bx)}.$$

Заметим, что при $x \to -0$ и $t \to \infty$, система будет определяться большим шоком:

$$u(x,t) \approx -2b^2x, \quad t \to \infty, x \to 0;$$

 $u(x,t) \approx -2b, \quad x \to 0, t \to \infty.$

4 Неделя V

№ 8.1.5

Найдём локализованное автомодельное решение уравнения

$$\partial_t u = \partial_x (u^{-1} \partial_x u) + \partial_x u.$$

Подстановкой (11), получаем систему

$$-a-1=-b-a=-2b, \quad \Rightarrow \quad a=b=1, \quad \Rightarrow \quad u(t,x)=\frac{1}{t}f\left(\frac{r}{t}\right).$$

Условие локализованности можем записать в виде

$$\int_{\mathbb{R}} u(t,x) \, dx = \text{const}, \quad \Rightarrow \quad a = b,$$

так что можем говорить о существование локализованного автомодельного решения.

Подставновка предполагаемого вида u в исходное уравнение даёт выражение, вида

$$f(\xi)^2 + (\xi + 1)f(\xi)f'(\xi) + f''(\xi) = \frac{f'(\xi)^2}{f(\xi)},$$

где заменили $\frac{r}{t} \stackrel{\text{def}}{=} \xi$.

Вроде бы неплохой выглядит идея посмотреть на f(x) = 1/g(x), тогда

$$g(x)g''(x) - g'(x)^{2} + xg'(x) + g'(x) - g(x) = 0.$$

Если внимательно на уравнение посмотреть, то можно предположить

$$g(x) = e^{\alpha x} + ax + b, \quad \Rightarrow \quad a = -\frac{1}{\alpha}, \quad b = -\frac{1+\alpha}{\alpha},$$

но это не выглядит как что-то осмысленное.

№ 9.1.2

На интервале $(0, \infty)$ найдём резольвенту ядра $K(t, s) = \exp(t - 2s)$. Пользуясь (13), находим

$$\hat{K}^2 = \int_0^\infty K(t, p_1) K(p_1, s) \, dp_1 = e^{t - 2s} \int_0^\infty e^{-p_1} = e^{t - 2s}, \quad \Rightarrow \quad R(t, s) = e^{t - 2s} + \lambda e^{t - 2s} + \dots = \frac{e^{t - 2s}}{1 - \lambda},$$

что вполне соответствует факторизуемому ядру.

№ 9.1.4

Найдём решение (12) для $K = \exp(-t^2 - s^2)$ и $g(t) = t^2$. Для начала найдём резольвенту, как

$$\hat{R} = \hat{K} + \lambda \hat{K}^2 + \dots = K(t, s) + \lambda K(t, s) \int_{-\infty}^{\infty} e^{-2p_1^2} dp_1 + \dots = \frac{K(t, s)}{1 - \lambda \sqrt{\frac{\pi}{2}}}$$

Тогда f можем найти в виде

$$f(t) = g(t) + \lambda \hat{R} g(t) = t^2 + \lambda \int_{-\infty}^{\infty} \frac{e^{-t^2 - s^2}}{1 - \lambda \sqrt{\frac{\pi}{2}}} s^2 ds = t^2 + \frac{\lambda}{\sqrt{\frac{2}{\pi}} - \lambda} \frac{e^{-t^2}}{\sqrt{2}},$$

что и является искомым решением.

№ 9.1.7

Найдём решение (12) для $K=(1+ts)e^{-2t-s}$ и $g(t)=e^{t/2}$. Для начала найдём резольвенту:

$$\int_0^\infty K(t, p_1) K(p_1, s) dp_1 = \sum_i K_i(t, s) \int_0^\infty K_i(p_1, p_1) dp_1 = \alpha e^{-2t - s} + \beta t s e^{-2t - s},$$

где $K(t,s) = e^{-2t}e^{-s} + (te^{-2t})(se^{-s})$ – факторизуемо, и коэффициенты

$$\alpha = \int_0^\infty e^{-3p_1} dp_1 = \frac{1}{3}, \qquad \beta = \int_0^\infty p_1^2 e^{-3p_1} dp_1 = \frac{2}{27}.$$

Аналогично последующие слагамые

$$\hat{K}^3 = \alpha^2 e^{-2t-s} + \beta^2 t s e^{-2t-s}.$$

Суммируя, находим

$$R(t,s) = e^{-2t-s} \left(\frac{1}{1 - \frac{1}{3}\lambda} + \frac{ts}{1 - \frac{2}{27}\lambda} \right).$$

Осталось найти f в виде

$$f(t) = e^{t/2} + \int_0^\infty R(t,s)g(s)\,ds = e^{t/2} + 6\lambda e^{-2t}\left(\frac{1}{3-\lambda} + \frac{18t}{27-2\lambda}\right).$$

№ 9.1.6

Найдём решение (12) для $K=(1+ts)e^{-2t-s}$ и $g(t)=e^{t/2}$. Для начала найдём резольвенту, аналогично двум предыдущим номерам

$$R(t,s) = \frac{1}{1-\lambda} + \frac{t^2s^2}{1-\frac{1}{5}\lambda}.$$

Теперь можем найти f(t):

$$f(t) = g(t) + \lambda \int_0^1 R(t,s) \, ds = t^2 + \lambda \left(\frac{1}{3} \frac{1}{1-\lambda} + \frac{t^2}{5-\lambda} \right) = \frac{t^2}{1 - \frac{1}{5}\lambda} + \frac{\lambda/3}{1-\lambda},$$

где уже добавка не затухает со временем, в отличии от предыдущих задач.