Identyfikacja parametrów ciągłego obiektu liniowego.

Michał Jarzyna

13 grudnia 2019

Spis treści

1	Zad	anie identyfikacyjne	3
2	Wyznaczanie algorytmu		4
	2.1	Założenia uzupełniające	4
	2.2	Model identyfikacyjny	4
	2.3	Algorytm identyfikacyjny	5
3	Sym	nulacja algorytmu identyfikacyjnego	7
	3.1	Symulowany układ	7
	3.2	Sygnał sterujący	8
	3.3	Przykładowa symulacja	8

1 Zadanie identyfikacyjne

Proces do identyfikacji zadany jest następującym równaniem:

$$\dot{y}(t) = -a \cdot y(t) + u(t). \tag{1.1}$$

Należy zaprojektować i zasymulować algorytm adaptacyjny postaci:

$$\dot{k}(t) = f(y(t)) \tag{1.2}$$

służący do identyfikacji nieznanego parametru a zakładając, że sterowanie jest funkcją odpowiedzi procesu:

$$u(t) = g(y(t)), \qquad (1.3)$$

oraz gwarantując jego stabilność.

2 Wyznaczanie algorytmu

Rozpoczynając od tego rozdziału dla wszystkich uprzednio zdefiniowanych funkcji czasu zostaje pominięty jawny zapis zależności od czasu $(y(t) \to y)$ w celu zwiększenia klarowności zapisu.

2.1 Założenia uzupełniające

Stabilność obiektu wymaga spełnienia warunków Hurwitza, w szczególności, dla zadanego obiektu warunek ten sprowadza się do postaci:

$$a > 0. (2.1)$$

Założono występowanie nieznanego parametru obiektu skalującego wpływ sterowania. Zmodyfikowane równanie 1.1 przyjmuje postać:

$$\dot{y} = -a \cdot y + b \cdot u \tag{2.2}$$

Identyfikacji będą podlegać dwa parametry, więc algorytm identyfikacyjny (1.2) przyjmie postać:

$$\dot{k} = \begin{bmatrix} \dot{\Theta}_1(t) \\ \dot{\Theta}_2(t) \end{bmatrix} = \begin{bmatrix} f_1(y(t)) \\ f_2(y(t)) \end{bmatrix}$$
 (2.3)

2.2 Model identyfikacyjny

Identyfikację parametrów zrealizowano poprzez zastosowanie referencyjnego obiektu liniowego:

$$\dot{\hat{y}}(t) = -\hat{a}\hat{y}(t) + \hat{b}u_c(t), \hat{a} > 0.$$
(2.4)

Wykorzystując tak skonstruowany model i algorytm identyfikacji (2.3) sterowanie (1.3) wyznaczono w następujący sposób:

$$u = \Theta_1 u_c - \Theta_2 y. \tag{2.5}$$

Zagwarantowanie równoważnego zachowania obiektu (1.1) oraz modelu (2.4) od momentu zrównania się wyjść obu obiektów $y = \hat{y}$ wymaga spełnienia warunku:

$$\dot{y} = \dot{\hat{y}}$$

$$-ay + bu = -\hat{a}\hat{y} + \hat{b}u_c \qquad |u = \Theta_1 u_c - \Theta_2 y|$$

$$-ay + b(\Theta_1 u_c - \Theta_2 y) = -\hat{a}\hat{y} + \hat{b}u_c$$

$$\hat{a}\hat{y} - ay - b\Theta_2 y + b\Theta_1 u_c - \hat{b}u_c = 0 \qquad |y = \hat{y}|$$

$$y(\hat{a} - a - b\Theta_2) + u_c(b\Theta_1 - \hat{b}) = 0 \qquad |(y \not\equiv 0 \land \hat{y} \not\equiv 0).$$

Powyższy warunek jest spełniony, jeśli parametry Θ przyjmą następujące wartości:

$$\Theta_1 = \frac{\hat{b}}{b} \wedge \Theta_2 = \frac{\hat{a} - a}{b}. \tag{2.6}$$

Ponadto różnica pomiędzy wyjściami obiektu i modelu jest następująca:

$$e(t) = y - \hat{y}. \tag{2.7}$$

Pożądany punkt stabilności jest więc następującej postaci:

$$x^* = \begin{bmatrix} e^* \\ \Theta_1^* \\ \Theta_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{\hat{b}}{b} \\ \frac{\hat{a}-a}{b} \end{bmatrix}. \tag{2.8}$$

2.3 Algorytm identyfikacyjny

Dysponując pożadanym punktem stabilności (2.8) można zaproponować funkcję Lapunowa w formie połowy modyfikowanej normy L_2 wektora łączącego bieżący stan z pożądanym:

$$V(e, \Theta_1, \Theta_2) = \frac{1}{2} \left[e^2 + \frac{1}{\gamma b} \left(b\Theta_1 - \hat{b} \right)^2 + \frac{1}{\gamma b} \left(b\Theta_2 - (\hat{a} - a) \right)^2 \right]. \tag{2.9}$$

Wartość tak skonstruowanej funkcji Lapunowa w punkcie x_0 wynosi:

$$V(x^*) = \frac{1}{2} \left[e^2 + \frac{1}{\gamma b} \left(b \frac{\hat{b}}{b} - \hat{b} \right)^2 + \frac{1}{\gamma b} \left(b \frac{\hat{a} - a}{b} - (\hat{a} - a) \right)^2 \right] = 0, \tag{2.10}$$

więc spełnia 1° warunek twierdzenia Lapunowa o stabilności.

Parametr b jest nieznany, jednak znając jego znak(dla obiektu liniowego parametr b>0 da odpowiedź prostą, natomiast b<0 odpowiedź odwrotną; określenie znaku wymaga więc jedynie jednego prostego eksperymentu) łatwo dobrać parametr γ tak, żeby iloczyn $b\gamma>0$. Tak dobrany parametr γ sprawia, że funkcja Lapunowa określona równaniem (2.9) jest sumą kwadratów zmiennych ważoną dodatnimi parametrami, a więc dla dowolnych zmiennych niezerujących całego wyrażenia wartość tej funkcji będzie dodatnia. To spostrzeżenie gwarantuje spełnienie 2° warunku twierdzenia Lapunowa o stabilności.

3° warunku twierdzenia Lapunowa o stabilności wymaga wyznaczenia pochodnej funkcji Lapunowa po czasie:

$$\dot{V}(e,\Theta_{1},\Theta_{2}) = e\dot{e} + \frac{1}{\gamma} \left(b\Theta_{1} - \hat{b} \right) \dot{\Theta}_{1} + \frac{1}{\gamma} \left(b\Theta_{2} - (\hat{a} - a) \right) \dot{\Theta}_{2}$$

$$/\dot{e} = \dot{y} - \dot{\hat{y}} \qquad |\dot{y} = -ay + bu \wedge \dot{\hat{y}} = -\hat{a}\hat{y} + \hat{b}u_{c} / (\dot{e} = -ay + bu - (-\hat{a}\hat{y} + \hat{b}u_{c})) \qquad |u = \Theta_{1}u_{c} - \Theta_{2}y / (\dot{e} = -ay + b(\Theta_{1}u_{c} - \Theta_{2}y) + \hat{a}\hat{y} - \hat{b}u_{c} + 0) \qquad |0 = \hat{a}y - \hat{a}y / (\dot{e} = -ay + b\Theta_{1}u_{c} - b\Theta_{2}y + \hat{a}\hat{y} - \hat{b}u_{c} + \hat{a}y - \hat{a}y / (\dot{e} = -\hat{a}(y - \hat{y}) + (b\Theta_{1} - \hat{b})u_{c} + (\hat{a} - a - b\Theta_{2})y \qquad |e = y - \hat{y} / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} = -\hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} - \hat{a}e^{2} + (b\Theta_{1} - \hat{b})u_{c}e + (\hat{a} - a - b\Theta_{2})ye / (\dot{e} - \hat{a}e^{2} + (b\Theta_{1} - \hat{b}e^{2} + (b\Theta_{1} - \hat{b}e^{2})u_{c}e + (\hat{a} - a - b\Theta_{2})u_{c}e + (\hat{a} - a - b\Theta$$

$$\dot{V} = -\hat{a}e^2 + (b\Theta_1 - \hat{b})u_c e + (\hat{a} - a - b\Theta_2)ye + \frac{1}{\gamma}\left(b\Theta_1 - \hat{b}\right)\dot{\Theta}_1 + \frac{1}{\gamma}\left(b\Theta_2 - (\hat{a} - a)\right)\dot{\Theta}_2$$

$$\dot{V} = -\hat{a}e^2 + (b\Theta_1 - \hat{b})\left(\frac{\dot{\Theta}_1}{\gamma} + u_c e\right) + (b\Theta_2 - (\hat{a} - a))\left(\frac{\dot{\Theta}_2}{\gamma} - ye\right) \tag{2.11}$$

Spełnienie 3° warunku twierdzenia Lapunowa o stabilności wymaga, aby wartość wyrażenia (2.11) była ujemna wszędzie poza punktem stabilności. Wyraz $-\hat{a}e^2$ spełnia ten warunek zawsze, ze względu na założenia (2.4). Można wpływać na wartości $\dot{\Theta}_1$ i $\dot{\Theta}_2$, a więc najprostszą metodą zapewnienia wymagań 3° warunku twierdzenia Lapunowa o stabilności jest wyzerowanie pozostałych wyrazów wyrażenia (2.11) w następujący sposób:

$$\begin{bmatrix} \dot{\Theta}_1 \\ \dot{\Theta}_2 \end{bmatrix} = \begin{bmatrix} -u_c e \gamma \\ y e \gamma \end{bmatrix}. \tag{2.12}$$

Dysponując metodą wyznaczania parametru γ powyższe wyrażenie jest gotowym algorytmem identyfikującym zadane parametry. Gdy wartość e ustabilizuje się w 0, to poszukiwane parametry procesu można odczytać w następujący sposób:

$$\begin{bmatrix} a_{est} \\ b_{est} \end{bmatrix} = \begin{bmatrix} \hat{a} - \hat{b} \frac{\Theta_2}{\Theta_1} \\ \frac{\hat{b}}{\Theta_1} \end{bmatrix}$$
 (2.13)

3 Symulacja algorytmu identyfikacyjnego

Symulację zaprojektowanego algorytmu przeprowadzono za pomocą pakietu MATLAB.

3.1 Symulowany układ

Układ równań różniczkowych opisujących układ wraz z algorytmem identyfikacyjnym składa się z równań (1.1), (2.4), (2.7) oraz (2.12) i wyraża się w następujący sposób:

$$\begin{bmatrix} \dot{y} \\ \dot{\hat{y}} \\ \dot{e} \\ \dot{\theta}_{1} \\ \dot{\Theta}_{2} \end{bmatrix} = \begin{bmatrix} -ay + bu \\ -\hat{a}\hat{y} + \hat{b}u_{c} \\ \dot{y} - \dot{\hat{y}} \\ -u_{c}e\gamma \\ ye\gamma \end{bmatrix} = |u = \Theta_{1}u_{c} - \Theta_{2}y| = \begin{bmatrix} -ay + b\Theta_{1}u_{c} - b\Theta_{2}y \\ -\hat{a}\hat{y} + \hat{b}u_{c} \\ \dot{y} - \dot{\hat{y}} \\ -u_{c}e\gamma \\ ye\gamma \end{bmatrix}. \tag{3.1}$$

W układzie tym występują następujące obiekty:

- zmienne stanu: $[y, \hat{y}, e, \Theta_1, \Theta_2]^T$ (nie występują przekształcenia między stanem, a wyjściem, więc można je traktować jako tożsame),
- sygnał sterujący $[u_c]$,
- parametry znane: $[\hat{a}, \hat{b}, \gamma]$,
- parametry nieznane: [a, b].

Sygnał *e* jest wyznacznikiem realizacji zadania identyfikacji, jednak łatwo go wyrugować z równań, a następnie ponownie wyznaczyć na podstawie pozostałych przebiegów. Dodatkowo zmniejszenie układu równań przyspieszy obliczenia (w tym przypadku nieznacznie, ale w ogólności warto się o to starać). Zmodyfikowany układ przyjmie postać:

$$\begin{bmatrix} \dot{y} \\ \dot{\hat{y}} \\ \dot{\theta}_1 \\ \dot{\Theta}_2 \end{bmatrix} = \begin{bmatrix} -ay + b\Theta_1 u_c - b\Theta_2 y \\ -\hat{a}\hat{y} + \hat{b}u_c \\ -u_c(y - \hat{y})\gamma \\ y(y - \hat{y})\gamma \end{bmatrix}.$$
(3.2)

Uzyskany układ składa się z równań różniczkowych pierwszego rzędu i jako taki nie wymaga dalszych modyfikacji przed implementacją. Aspekty, które wymagają komentarza są następujące:

• stan początkowy $x_0 = [y_0, \hat{y}_0, \Theta_{10}, \Theta_{20}]^T$ będzie generowany w następujący sposób: y_0 losowe - nie ma powodu zakładać czegokolwiek o nieznanym obiekcie, $\hat{y}_0 = 0$ w obiekcie nie występuje wyraz $\sim \frac{1}{\hat{y}}$, więc to bezpieczny punkt sartowy, $\Theta_{10} = 1$ optymistyczne założenie, że obiekt i model mają takie same parametry b, $\Theta_{20} = 0$ optymistyczne założenie, że obiekt i model mają równe parametry a;

- parametry nieznane [a, b] będą losowane;
- parametry znane $[\hat{a},\hat{b}]$ będą wybierane jako [11] najprostszy nietrywialny obiekt, natomiast parametr γ będzie określony jako $\gamma = sign(b)$, w celu spełnienia założenia $b\gamma > 0$.

3.2 Sygnał sterujący

Analizując układ równań (3.2) widać, że pochodne sygnałów identyfikujących $\dot{\Theta}_1, \dot{\Theta}_2$ są zależne liniowo od różnicy pomiędzy wyjściami obiektu i modelu $e=y-\hat{y},$ w szczególności, gdy wyraz e=0 nadmienione pochodne zerują się, co oznacza, że algorytm adaptacyjny zatrzyma się. Wyzerowanie się sygnału e może nastąpić w dwóch przypadkach: identyfikacja obiektu zakończyła się sukcesem, albo sygnały y i \hat{y} ustaliły się na równym poziomie ze względu na stałość sterowania u_c , jednak parametry Θ_1, Θ_2 zidentyfikowały inny obiekt liniowy, który dla sterowania $u=\Theta_1u_c-\Theta_2y$ ustala się akurat na tym samym poziomie (istnieje nieskończenie wiele takich obiektów liniowych dla zadanego poziomu). Zabezpieczenie się przed zagrożeniem zajścia drugiej sytuacji wymaga zmienności sygnału sterującego u_c w czasie. Z tego względu zaproponowano sinusoidalny przebieg sygnału sterującego $u_c=\sin(t)$.

3.3 Przykładowa symulacja

Przygotowany projekt symuluje algorytm identyfikacji nieznanych parametrów obiektu liniowego. Poniżej przedstawiono przykładowy wynik symulacji:

Rysunek 1: Przebiegi sygnałów symulacji algorytmu identyfikacyjnego.