Álgebra I Práctica 6 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:
 - 1. 3. 5. 7. 9. 11. 13. 15.
 - 2. 4. 6. 8. 10. 12. 14.
- Ejercicios Extras
 - **1**. **2**. **3**. **4**.

Disclaimer: Esto va a dirigido para aquél que esté listo para escucharlo, más bien leerlo.

¡Si usás este apunte vas a reprobar!

Depende de vos lo que hagas con él. Si estás trabado antes de ver lo que hizo otra persona:

- No mires la solución inmediatamente, porque te condicionas pavlovianamente.
- Intentá un ejercicio similar, pero **más fácil**.
- No sale el fácil, intentá uno aún más fácil.
- 🔟 Repasar las teóricas. Ver videos de Teresa 🔼
- Ver algún ejercicio similar hecho en clase.
- Tomate 2 minutos para formular una pregunta que realmente sea lo que **no** entendés. Decir *no me sale* ∄ más. Y si encima escribís esa pregunta, vas a dormir mejor.

Si no te salen los ejercicios fáciles de un tema en particular, no te van a salir los ejercicios más difíciles: Sentido común. Pero los más fáciles van a salir y eso te va a dar un confidence boost.

Si hacés miles de parciales en el afán de tener un ejemplo hecho de todas las variantes, estás apelando demasiado a la suerte. Un poco de originalidad de los profes y te la ponen.

Los videos de Teresa son buenísimos .

Los ejercicios que se dan en clase suelen ser similares a los parciales, a

Eh, loco, fatalista, distópico, relajá un toque te vas a quedar (más) pelado...

El repo en github para descargar las guías con los últimos updates.

La Guía 6 se actualizó por última vez: 19/08/24 @ 17:01

Guía 6

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

Notas teóricas:

Raíces de un número complejo:

- Sean $z, w \in \mathbb{C} \{0\}$, $z = r_z e^{\theta_z i}$ y $w = r_w e^{\theta_w i}$ con r_z , $s_w \in \mathbb{R}_{>0}$ y θ_z , $\theta_w \in \mathbb{R}$. Entonces $z=w \stackrel{!!}{\Longleftrightarrow} \left\{ \begin{array}{l} r_z=r_w \\ \theta_z=\theta_w+2k\pi, \text{ para algún } k\in\mathbb{Z} \end{array} \right.$
- raíces n-esimas: $w^n=z \iff \left\{ \begin{array}{l} (r_w)^n=r_z\\ \theta_w\cdot n=\theta_z+2k\pi \end{array} \right.$ para algún $k\in\mathbb{Z}$

De donde se obtendrán n raíces distintas:

$$w_k = z_w e^{\theta_{w_k} i}$$
, donde $r_w = \sqrt[n]{r_z}$ y $\theta_{w_k} = \frac{\theta_z}{n} + \frac{2k\pi}{n} = \frac{\theta_z + 2k\pi}{n}$

Entender bien como sacar raíces n-ésimas es importantísimo para toda la guía de complejos y la próxima de polinomios.

Grupos G_n :

•
$$G_n = \{ w \in \mathbb{C} / w^n = 1 \} = \{ e^{\frac{2k\pi}{n}i} : 0 \le k \le n - 1 \}$$

$$(n=1) \ w=1$$

$$(n=2) \ w = \pm 1$$

Notar que:

- Si n es par el grupo tiene al -1.
- Toda raíz compleja tiene a su conjugado complejo.
- Para ir de un punto a otro, se lo múltiplica por $e^{i\theta}$ eso rota al número en θ respecto al origen.
- \bullet (G_n, \cdot) es un grupo abeliano, o conmutativo.

$$- \quad \forall w, z \in G_n, wz = zw \ y \ zm \in G_n.$$

$$-1 \in G_n, \ w \cdot 1 = 1 \cdot w = w \qquad \forall w \in G_n.$$

$$- w \in G_n \Rightarrow \exists w^{-1} \in G_n, \ w \cdot w^{-1} = w^{-1} \cdot w = 1$$

*
$$\overline{w} \in G_n$$
, $w \cdot \overline{w} = |w|^2 = 1 \Rightarrow \overline{w} = w^{-1}$

• Propiedades: $w \in G_n$

$$-m \in \mathbb{Z} \text{ y } n \mid m \Rightarrow w^m = 1.$$

$$-m \equiv m'(n) \Rightarrow w^m = w^{m'} \quad (w^m = w^{r_n(m)})$$

$$-n \mid m \iff G_n \subseteq G_m$$

$$-G_n \cap G_m = G_{(n:m)}$$

– La suma de una raíz w de G_n : $\sum_{k=0}^{n-1} w^k = \frac{w^n-1}{w-1} = 0 \text{ si } w \neq 1$

Ejercicios de la guía:

1. Some has a superior of the superior of the

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

2. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

3. Some suppose that the same of the same suppose that the same suppose the same suppose that the same suppose the same suppose the same suppose that the same suppose the same suppose

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

4. S... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

5. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

6.

- i) Determinar la formar binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
- ii) Determinar la forma binomial de $(-1 + \sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.

7. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$(\sqrt{3} - i)^n = 2^{n-1}(-1 + \sqrt{3}i)$$

$$(\sqrt{3} - i)^n = 2^n e^{i\frac{11}{12}\pi n} = 2^{n+1} \cdot 2e^{i\frac{2}{3}\pi}$$

$$\rightarrow \begin{cases} 2^n = 2^n \\ \frac{11}{12}\pi n = \frac{2}{3}\pi + 2k\pi \to 11n = 8 + 8k \xrightarrow{8(k+1)} n \equiv 0 \ (8) \end{cases}$$

ii) $(-\sqrt{3}+i)^n \cdot \left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$ es un número real negativo.

Un número real negativo tendrá un $\arg(z) = \pi$ $\underbrace{(-\sqrt{3}+i)^n}_{2^n e^{i\frac{5}{6}\pi n}} \cdot \underbrace{\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)}_{e^{\frac{\pi}{3}i}} = 2^n e^{i(\frac{5}{6}n + \frac{1}{3})\pi} \to \theta = (\frac{5}{6}n + \frac{1}{3})\pi$ $\underbrace{\frac{\theta = \pi + 2k\pi}{2^n e^{i\frac{5}{6}\pi n}}}_{2^n e^{i\frac{5}{6}\pi n}} \cdot \underbrace{\frac{1}{2} + \frac{\sqrt{3}}{2}i}_{e^{\frac{\pi}{3}i}} = \pi + 2k\pi \xrightarrow{\text{acomodo} \atop \text{congruencia}} 5n \equiv 4 \text{ (12)} \xrightarrow{\text{por } 5} \boxed{n \equiv 8 \text{ (12)}}$

iii)
$$\arg((-1+i)^{2n}) = \frac{\pi}{2} y \arg((1-\sqrt{3}i)^{n-1}) = \frac{2}{3}\pi$$

😕 ... hay que hacerlo! 📦

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A} \to \bigcirc$.

Hallar todos los $z \in \mathbb{C}$ tales que $3z^5 + 2|z|^5 + 32 = 0$

$$3z^5 + 2|z|^5 + 32 = 0 \Leftrightarrow \underbrace{3z^5}_{\in \mathbb{C}} = \underbrace{-2|z|^5 - 32}_{\in \mathbb{R}} \iff \left\{ \begin{array}{l} \operatorname{Re}(3z^5) = -2|z|^5 - 32 \\ \operatorname{Im}(3z^5) = 0 \end{array} \right\} \quad \checkmark$$

De la ecuación de la parte imaginaria:

$$\begin{cases} \operatorname{Im}(3z^5) = 3 \cdot \frac{z^5 - \overline{z}^5}{2} = 0 \iff z^5 = \overline{z}^5 \iff |z|^5 e^{5\theta i} = |z|^5 e^{-5\theta i} \iff \begin{cases} 5\theta = -5\theta + 2k\pi \\ \to \theta_k = \frac{1}{5}k\pi \end{cases} \operatorname{con} k \in [0, 4] \end{cases}$$

$$\begin{cases} \text{Re}(3z^5) = 3 \cdot \frac{z^5 + \overline{z}^5}{2} = 3 \cdot \frac{|z|^5 e^{5\theta i} + |z|^5 e^{-5\theta i}}{2} = 3|z|^5 \cos(5\theta) = -2|z|^5 - 32 \Leftrightarrow \\ \Leftrightarrow |z|^5 (3\cos(5\theta) + 2) = -2^5 \xrightarrow{\text{evaluando} \\ \text{en } \theta_k} |z|^5 (3\cos(k\pi) + 2) = -2^5 \begin{cases} \xrightarrow{k} & 0 < |z|^5 (3+2) \neq -2^5 \\ \xrightarrow{\text{par}} & |z|^5 (-3+2) = -2^5 \Leftrightarrow |z| = -2^5 \end{cases} \\ \Rightarrow |z|^5 (3\cos(5\theta) + 2) = -2^5 \xrightarrow{\text{evaluando} \\ \text{en } \theta_k} |z|^5 (3\cos(k\pi) + 2) = -2^5 \begin{cases} \xrightarrow{k} & 0 < |z|^5 (3+2) \neq -2^5 \\ \xrightarrow{\text{impar}} & |z|^5 (-3+2) = -2^5 \Leftrightarrow |z| = -2^5 \end{cases}$$

10. Hallar todos los $n \in \mathbb{N}$ para los cuales la ecuación $z^n + i\overline{z}^2 = 0$, tenga exactamente 6 soluciones y resolver en ese caso.

$$\frac{\text{acomodo la}}{\text{ecuación}} z^n = -i\overline{z}^2 \xrightarrow[\text{en notación exponencial}]{r = |z|, \text{ expreso todo}} \left\{ \begin{array}{l} z^n = r^n e^{n\theta i} \\ \overline{z}^2 = r^2 e^{-2\theta i} \\ -i = e^{\frac{3}{2}\pi} \end{array} \right\} \checkmark$$

$$\frac{\text{reescribo ecuación con notación exponencial}}{\text{notación exponencial}} r^n e^{n\theta i} = r^2 e^{(\frac{3}{2}\pi - 2\theta)i} \iff \left\{ \begin{array}{l} n\theta = \frac{3}{2}\pi - 2\theta + 2k\pi & (k \in \mathbb{Z}) \\ r^n = r^2 \to r^2 (r^{n-2} - 1) = 0 \end{array} \right\}$$

La ecuación de r:

r=0 aporta una solución trivial para cualquier $n\in\mathbb{N}$.

r=1 es un comodín que me deja usar cualquier n para jugar con la ecuación de θ .

n=2 es un valor que daría una solución para cada $r\in\mathbb{R}_{>0}$. No sirve porque necesito solo 6 soluciones.

$$\begin{array}{c} \text{La ecuación de } \theta\colon \\ \xrightarrow{r=1} n \text{ libre} (n+2)\theta = (\frac{3}{2}+2k)\pi \xrightarrow{n+2\neq 0} \theta = \frac{1}{n+2}(\frac{3}{2}+2k)\pi \xrightarrow{n=3\text{C\'omo justificar esto elegantemente?}} \theta = \frac{3+4k}{10}\pi \\ \text{Las } \theta \text{ soluciones para } n=3: \\ \bullet \quad n=3 \end{array}$$

$$z^{n} + i\overline{z}^{2} = 0 \iff \begin{cases} n = 3\\ z = 0, \text{ cuando } r = 0\\ 0\\ z_{k} = e^{\theta_{k}i} \text{ con } \theta_{k} = \frac{3+4k}{10}\pi, \ k \in [0, 4] \end{cases}$$

11.

a) Calcular
$$w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2)$$
 para cada $w \in G_7$.

b) Calcular
$$w^{73} + \overline{w} \cdot w^9 + 8$$
 para cada $w \in G_3$.

c) Calcular
$$1 + w^2 + w^{-2} + w^4 + w^{-4}$$
 para cada $w \in G_{10}$.

d) Calcular
$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$$
 para cada $w \in G_5$

Voy a estar usando las siguientes propiedades en
$$G_n$$
:
$$\begin{cases} w^n = 1 \Rightarrow w^k = w^{r_n(k)} \\ \overline{w}^k = w^{r_n(-k)} \end{cases}$$
Si $w \in G_n \Rightarrow \begin{cases} \sum_{k=0}^{n-1} w^k = 0 \\ m \mid n \Rightarrow G_m \subseteq G_n, \text{ lo uso para saber con cuales raíces hay que tener cuidado} \\ \text{Si } w \in G_p \text{ con } p \text{ primo} \end{cases}$

a) Calcular
$$w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2)$$
 para cada $w \in G_7$.

Raíces de G_7 de interés: 7 es primo e impar $\Rightarrow w = 1$ se hace a parte.

$$Si \ w = 1$$
:

$$w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2) = 6$$

$$Si \ w \neq 1$$

Si
$$w \neq 1$$
:
 $w + \underbrace{\overline{w}}_{w^6} + (w + w^2)^2 - w^{38}(1 - w^2) = w + w^6 + w^2 + 2w^3 + w^4 - \underbrace{(w^7)^5}_{=1} w^3(1 - w^2) =$

$$= -1 + \underbrace{1 + w + w^2 + w^3 + w^4 + w^5 + w^6}_{=0} = -1 \quad \checkmark$$

b) Calcular
$$w^{73} + \overline{w} \cdot w^9 + 8$$
 para cada $w \in G_3$.

Raíces de G_3 de interés: 3 es primo e impar $\Rightarrow w = 1$ se hace a parte.

$$Si \ w = 1$$
:

$$w^{73} + \overline{w} \cdot w^9 + 8 = 10$$

$$Si \ w \neq 1$$

$$\underbrace{w^{73}}_{w} + \underbrace{\overline{w} \cdot w^{9}}_{w^{2},1} + 8 = -1 + \underbrace{1 + w + w^{2}}_{=0} + 8 = 7$$

c) Calcular
$$1 + w^2 + w^{-2} + w^4 + w^{-4}$$
 para cada $w \in G_{10}$.

Raíces de G_{10} de interés: 2 | 10 y 5 | 10. 10 es par $\Rightarrow w = \pm 1$ y raíces de G_2 y de G_5 se hacen a parte.

$$- Si \ w = \pm 1:$$

$$1 + w^2 + w^{-2} + w^4 + w^{-4} = 5 \quad \checkmark$$

$$-Si \ w \in G_{10} \quad y \quad w \neq \pm 1$$
:

$$1 + w^2 + w^{-2} + w^4 + w^{-4} = 1 + w^2 + w^8 + w^4 + w^6 = 0$$

$$1 + w^{2} + w^{-2} + w^{4} + w^{-4} = 1 + w^{2} + w^{8} + w^{4} + w^{6} =$$

$$= \sum_{k=0}^{4} (w^{2})^{k} = \frac{(w^{2})^{5} - 1}{w^{2} - 1} = \frac{w^{10} - 1}{w^{2} - 1} = 0$$

d) Calcular
$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$$
 para cada $w \in G_5$

$$Si \ w = 1$$
:

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}} = 4$$

$$Si \ w \neq 1$$
:

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}} = w^4 + w^2 + w + w^3 = -1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0} = -1$$

12.

i) Sea
$$w \in G_{36}$$
, $w^4 \neq 1$. Calcular $\sum_{k=7}^{60} w^{4k}$

ii) Sea
$$w \in G_{11}$$
, $w \neq 1$. Calcular Re $\left(\sum_{k=0}^{60} w^k\right)$.

i) Sea
$$w \in G_{36}$$
, $w^4 \neq 1$. Calcular $\sum_{k=7}^{60} w^{4k}$

Sé que si
$$w \in G_{36} \Rightarrow \begin{cases} w^{36} = 1 \\ \sum\limits_{k=0}^{35} w^k = 0 \end{cases}$$

Como $w^4 \neq 1$ sé que $w \neq \pm 1$. Si no tendría que considerar casos particulares para la suma.

Si
$$\sum_{k=7}^{60} w^{4k} = \sum_{k=7}^{60} w^{4k} + \sum_{k=0}^{6} w^{4k} - \sum_{k=0}^{60} w^{4k} = \sum_{k=0}^{60} w^{4k} - \sum_{k=0}^{6} w^{4k} = \frac{(w^4)^{61} - 1}{w^4 - 1} - \frac{(w^4)^7 - 1}{w^4 - 1} = \frac{(w^4)^{61} - (w^4)^7}{w^4 - 1}$$

$$\sum_{k=0}^{60} w^{4k}$$

$$\frac{61 = 9 \cdot 6 + 7}{w^3 6 = 1} \xrightarrow{(w^{36})^6 \cdot (w^4)^7 - (w^4)^7} \xrightarrow{b = 7} \sum_{k=7}^{60} w^{4k} = 0$$

ii) Sea
$$w \in G_{11}$$
, $w \neq 1$. Calcular Re $\left(\sum_{k=0}^{60} w^k\right)$.

Sé que si
$$w \in G_{11} \Rightarrow \begin{cases} w^{11} = 1 \\ \sum\limits_{k=0}^{10} w^k = 0 \\ 11 \text{ es impar } \Rightarrow -1 \not\in G_{11} \end{cases}$$

Como $w \neq 1$ no calculo caso particular para la suma. Me piden la parte real $\xrightarrow{\text{uso}} \text{Re}(z) = \frac{z+\overline{z}}{2}$.

Probé hacer la suma de Gauss como en el anterior, pero no llegué a nada, abro sumatoria y uso que $61 = 5 \cdot 11 + 6$, porque hay 61 sumandos.

$$\sum_{k=0}^{60} w^k = w^0 + \dots + w^{60} = 5 \cdot \underbrace{(w^0 + w^1 + \dots + w^9 + w^{10})}_{\text{agrupé usando: } w \in G^{11} \Rightarrow w^k = w^{r_{11}(k)}} + w^{55} + w^{56} + w^{57} + w^{58} + w^{59} + w^{60} = \underbrace{(w^0 + w^1 + w^2 + w^3 + w^4 + w^5)}_{\text{agrupé usando: } w \in G^{11} \Rightarrow w^k = w^{r_{11}(k)}}$$

También voy a usar que si $w \in G_{11} \Rightarrow \overline{w}^k = w^{r_{11}(-k)}$

$$\operatorname{Re}\left(\sum_{k=0}^{60} w^{k}\right) = \frac{\sum_{k=0}^{60} w^{k} + \sum_{k=0}^{60} \overline{w}^{k}}{2} \stackrel{\bigstar^{1}}{=} \frac{w^{0} + w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + \overline{w}^{0} + \overline{w}^{1} + \overline{w}^{2} + \overline{w}^{3} + \overline{w}^{4} + \overline{w}^{5}}{2} = \frac{w^{0}}{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{0} + w^{1} + w^{2} + w^{10} + w^{10} + w^{10} + w^{10} + w^{10} + w^{10} + w^{10}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{0} + w^{1} +$$

Sea $w=e^{\frac{2\pi}{3}i}$ raíz cúbica de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida 13. por:

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}$, $\forall n \in \mathbb{N}$.

Probar que para todo $n \in \mathbb{N}$ vale que $z_n = \begin{cases} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{cases}$. Concluir que $z_n \in G_6$ para todo $n \in \mathbb{N}$.

Hay que probar por inducción. Quiero probar:
$$p(n): z_n = \left\{ \begin{array}{ll} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{array} \right. \forall n \in \mathbb{N}$$

Caso base:

$$\begin{cases} p(1): z_1 = 1 + e^{\frac{2\pi}{3}i} = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\frac{\pi}{3}i} \\ p(2): z_2 = 1 + z_1^2 = 1 + e^{\frac{2\pi}{3}i} = 1 + e^{-\frac{2\pi}{3}i} = e^{-\frac{\pi}{3}i} \end{cases} \checkmark$$

$$\begin{cases} p(2k) : z_{2k} = e^{-\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+2) \text{ ¿Verdadero?} \\ p(2k+1) : z_{2k+1} = e^{\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+3) \text{ ¿Verdadero?} \\ z_{2k+2} = \overline{1 + z_{2k+1}^2} \overset{\text{HI}}{\Longleftrightarrow} z_{2k+2} = \overline{1 + e^{\frac{2\pi}{3}i}} = \overline{e^{\frac{\pi}{3}i}} = e^{-\frac{\pi}{3}i} \checkmark \\ z_{2k+3} = \overline{1 + z_{2k+2}^2} \overset{\text{HI}}{\Longleftrightarrow} z_{2k+3} = \overline{1 + e^{-\frac{2\pi}{3}i}} = \overline{e^{-\frac{\pi}{3}i}} = e^{\frac{\pi}{3}i} \checkmark \end{cases}$$

Dado que p(1), p(2), p(2k), p(2k+1), p(2k+2), p(2k+3) resultaron ser verdaderas, entonces por el principio de inducción se concluye que p(n) también lo es $\forall n \in$

Dado que la sucesión z_n tiene solo 2 imágenes, para cualquier $n \in \mathbb{N}$ y teniendo en cuenta que $e^{-i\frac{2\pi}{6}} = e^{i\frac{2\pi}{6} \cdot 5} \in G_6 \quad \forall n \in \mathbb{N}$

- Se define en $\mathbb{C} \{0\}$ la relación \mathcal{R} dada por $z \mathcal{R} w \iff z\overline{w} \in \mathbb{R}_{>0}$.
 - i) Probar que \mathcal{R} es una relación de equivalencia.
 - ii) Dibujar en le plano complejo la clase de equivalencia de z = 1 + i.
 - i) Dado un $z = re^{i\theta}$, tengo que $z \in \mathbb{R}_{>0} \iff \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) = 0 \iff r > 0 \wedge \theta = 2k\pi$ con
 - Reflexividad: $z = re^{i\theta}$, $z \mathcal{R} z = r^2 e^{2\theta i}$ por lo tanto $z \mathcal{R} z \iff 2\theta = 2k\pi \iff \theta = 2k\pi$

 - $-Simetria: \begin{cases} z \mathcal{R} \ w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \quad \checkmark \\ w \mathcal{R} \ z = rse^{(\varphi \theta)i} \iff \theta = -2k_2\pi + \varphi = 2k_3\pi + \varphi \quad \checkmark \end{cases}$ $-Transitividad: \begin{cases} z \mathcal{R} \ w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \\ w \mathcal{R} \ v = rte^{(\varphi \alpha)i} \iff \varphi = 2k_2\pi + \alpha \\ \Rightarrow z \mathcal{R} \ v \iff \theta = 2k_1\pi + \varphi = 2\pi(k_1 + k_2) + \alpha = 2k_3\pi + \alpha \end{cases}$ La relación \mathcal{R} er de equivalencia

La relación \mathcal{R} es de equivalencia

Tengo que el $\arg(1+i)=\frac{\pi}{4}$. La clase \overline{z} estará formada por los $w\in\mathbb{C}$ tal que: $\boxed{w\ \mathcal{R}\ z\iff \arg(w)=\frac{1}{4}\pi}$

Se define la siguiente relación \mathcal{R} en G_{20} :

$$z \mathcal{R} w \iff zw^9 \in G_2.$$

- i) Probar que \mathcal{R} es una relación de equivalencia.
- ii) Calcular la cantidad de elementos que hay en cada clase de equivalencia.
- i) Reflexividad:

$$z = e^{i\frac{1}{10}\pi k_z} \Rightarrow z \ \mathcal{R} \ z \iff e^{i\frac{1}{10}\pi k_z} \cdot e^{i\frac{9}{10}\pi k_z} = e^{ik_z\pi} = \begin{cases} 1 & k_z \text{ par} \\ -1 & k_z \text{ impar} \end{cases}$$

Simetría:

$$z = e^{i\frac{1}{10}\pi k_z}$$
 y $w = e^{i\frac{1}{10}\pi k_w} \in G_{20}$.

$$\mathcal{R} \text{ es simétrica si: } z \,\mathcal{R} \,w \iff w \,\mathcal{R} \,z \\
\begin{cases}
zw^9 = e^{i\frac{\pi}{10}(k_z + 9k_w)} \in G_2 \Leftrightarrow \frac{1}{10}(k_z + 9k_w) = k \Leftrightarrow k_z + 9k_w = 10k \Leftrightarrow k_z \equiv -9k_w \,(10) \Leftrightarrow k_z \equiv k_w \,(10) \\
\Rightarrow \begin{bmatrix} z \,\mathcal{R} \,w \iff k_z \equiv k_w \,(10) \\ wz^9 = e^{i\frac{\pi}{10}(k_w + 9k_z)} = e^{i\frac{\pi}{10}(k_w + 9(10k + k_w))} = e^{i\frac{\pi}{10}(90k + 10k_w)} = e^{i(9k + k_w)\pi} = e^{ik'\pi}
\end{cases}$$

$$z \mathcal{R} w \iff w \mathcal{R} z \mid \forall k, k_w \in \mathbb{Z} \text{ con } k_z \equiv k_w (10)$$

Transitividad: $\begin{cases}
z = e^{i\frac{1}{10}\pi k_z} \\
w = e^{i\frac{1}{10}\pi k_w} \\
y = e^{i\frac{1}{10}\pi k_y}
\end{cases} \in G_{20} \to \mathcal{R} \text{ es transitiva si: } z \mathcal{R} w \text{ y } w \mathcal{R} y \Rightarrow z \mathcal{R} y$ $\begin{cases}
z \mathcal{R} w \iff k_z \equiv k_w (10) \bigstar^1 \\
w \mathcal{R} y \iff k_w \equiv k_y (10) \bigstar^2
\end{cases}$ $\Rightarrow zy^9 = e^{i\frac{\pi}{10}(k_z + 9k_y)} \stackrel{\bigstar}{=} e^{i\frac{\pi}{10}(10k + k_w + 9k_y)} \stackrel{\bigstar}{=} e^{i\frac{\pi}{10}(10k + 10k' + k_y + 9k_y)} = e^{i(k + k' + k_y)\pi} = e^{ik''\pi}$ $\begin{cases}
z \mathcal{R} w \\
w \mathcal{R} z
\end{cases} \Rightarrow z \mathcal{R} y$

ii) $\#e^{i\frac{2\pi}{20}k} = 2$ para algún $k \in \mathbb{Z}/r_{20}(k) < 20$. Dada la condición $k_z \equiv k_w$ (10), solo hay 2 números que tienen misma cifra de unidad entre 0 y 20. En el gráfico se ve que si $z \in \mathbb{R}$ $w \Rightarrow w = -z$

Ejercicios extras:

1. Para $w \in G_6$, calcular $S = w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023}$

 $Si \ w = 1$:

$$S = 5$$

$$Si \ w = -1$$
:

$$S = -1 + 1 + 5 - 1 - 4 - 1 = -1$$

$$Si \ w \neq \pm 1$$
:

$$S = w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023} = w^5 + w^4 + 5w^2 + w^3 - 4w^2 + w^1 = w^1 + w^2 + w^3 + w^4 + w^5 = -1 + \underbrace{1 + w^1 + w^2 + w^3 + w^4 + w^5}_{=0} = -1$$

Sea $w \in G_{14}$. Hallar todos los posibles valores de $w^7 + \sum_{i=1}^{140} w^{2j}$

Voy a usar que:
$$\begin{cases} w \in G_n \Rightarrow \sum_{k=0}^{n-1} w^k = 0 \\ \text{Si } m \mid n \Rightarrow G_m \subseteq G_n \end{cases}$$

 $\operatorname{Si} w = 1$:

$$\underbrace{w^7}_{=1} + \sum_{j=7}^{140} \underbrace{w^{2j}}_{=1} = 1 + \underbrace{(1 + 1 + \dots + 1)}_{=134} = 1 + 134 = 135 \quad \checkmark$$

Si w = -1:

$$\underbrace{w^7}_{=-1} + \sum_{j=7}^{140} \underbrace{(w^j)^2}_{1} = -1 + \underbrace{(1+1+\dots+1)}_{=134}) = -1 + 134 = 133 \quad \checkmark$$

Si $w \neq \pm 1$:

$$w \in G_{14} \Rightarrow w = e^{i\frac{2k\pi}{14}} \text{ con } k \in \mathbb{Z}_{[0,13]} \Rightarrow w^2 = \left(e^{i\frac{2k\pi}{14}}\right)^2 = e^{i\frac{2\pi}{7} \cdot k} \in G_7 \Rightarrow \sum_{j=0}^{6} (w^2)^j = 0$$

$$w^{7} + \sum_{j=7}^{140} w^{2j} = w^{7} + \sum_{j=0}^{140} (w^{2})^{j} - \underbrace{\sum_{j=0}^{6} (w^{2})^{j}}_{=0} = w^{7} + \underbrace{\frac{(w^{2})^{141} - 1}{w^{2} - 1}}_{=0} - 0 = w^{7} + \underbrace{\frac{w^{2}((w^{14})^{20} - 1)}{w^{2} - 1}}_{=1} = w^{7} + 1$$

Si
$$\begin{cases} w \in G_7 \Rightarrow w^7 = 1\\ w \in G_{14} - G_7 \Rightarrow w^7 = -1 \end{cases}$$

$$\begin{cases} w \in G_7 & \to 1 + 1 = 2 \checkmark \\ w \in G_{14} - G_7 & \to -1 + 1 = 0 \checkmark \end{cases}$$

3. Sea $z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente las siguientes condiciones:

$$-8|3n+|z^3|$$

$$-\arg(z^{7n+6}) = \arg(i)$$

$$\left\{ \begin{array}{l} |z| = 1 \\ \theta_z = \frac{11}{6}\pi \end{array} \right. \rightarrow z = |z| e^{\theta_z i} = e^{i\frac{11}{6}\pi} \Rightarrow z^3 = e^{i\frac{11}{2}\pi} = -1 \Leftrightarrow |z^3| = 1$$

Primera condición:

$$8 \mid 3n + |z^3| = 3n + 1 \iff 3n + 1 = 8k \iff 3n + 1 \equiv 0 \ (8) \Leftrightarrow 3n \equiv 7 \ (8) \iff 3n \equiv 21 \ (8) \Leftrightarrow n \equiv 5 \ (8) \quad \checkmark$$

Segunda condición:

$$\arg(z^{7n+6}) = \arg(i) \Leftrightarrow \left(e^{i\frac{11}{6}\pi}\right)^{7n+6} = e^{i\frac{\pi}{2}} \Leftrightarrow e^{i\frac{77}{6}\pi + 11\pi} = e^{i\frac{\pi}{2}} \Leftrightarrow \frac{77}{6}n\pi + 11\pi = \frac{\pi}{2} + 2k\pi$$

$$\xrightarrow[n]{\text{despejo}} \frac{77}{6}n + 11 = \frac{1}{2} + 2k \Leftrightarrow 77n = -63 + 12k \Leftrightarrow 77n \equiv -63 \text{ (12)} \Leftrightarrow 5n \equiv -3 \text{ (12)} \Leftrightarrow \frac{! \times 5}{(\Leftarrow)5 \perp 12}$$

$$n \equiv 9 \text{ (12)} \quad \checkmark$$

$$\xrightarrow[\text{T}]{\text{punto info}} \left\{ \begin{array}{l} n \equiv 9 \ (12) \\ n \equiv 5 \ (8) \end{array} \right. \xrightarrow[\text{divisores coprimos}]{\text{quiero}} \left\{ \begin{array}{l} n \equiv 1 \ (4) \\ n \equiv 0 \ (3) \\ n \equiv 1 \ (4) \end{array} \right. \checkmark \xrightarrow[\text{de mayor divisor}]{\text{me quedo con el}} \left\{ \begin{array}{l} n \equiv 0 \ (3) \\ n \equiv 5 \ (8) \end{array} \right.$$

Ahora sí, tengo el sistema con divisores coprimos, por TCHR tengo solución.

$$\xrightarrow{\text{de}} n = 3k \xrightarrow{*} \checkmark \xrightarrow{\text{reemplazo} \atop \text{en } \bigstar^2} 3k \equiv 5 \ (8) \iff k \equiv 7 \ (8) \iff k = 8j + 7 \quad \checkmark$$

$$\xrightarrow{\text{reemplazo} \atop \text{k en } \bigstar^3} n = 3(8j + 7) = 24j + 21 \iff \boxed{n \equiv 21 \ (24)} \qquad \checkmark$$

4. Sea $w = e^{\frac{\pi}{18}i}$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente:

$$\sum_{k=0}^{5n+1} w^{3k} = 0 \qquad \sum_{k=0}^{4n+6} w^{4k} = 0.$$

Expresar la solución como una única ecuación de congruencia.

Como $w=e^{\frac{\pi}{18}i}\neq\pm1$ { $w^3\neq\pm1\over w^4\neq\pm1$, puedo usar Gauss para las sumas.

$$\sum_{k=0}^{5n+1} w^{3k} = \sum_{k=0}^{5n+1} (w^3)^k = \frac{(w^3)^{5n+2}-1}{w^3-1} = 0 \Leftrightarrow (w^3)^{5n+2} = 1$$
$$(w^3)^{5n+2} = 1 \xrightarrow{\text{laburo}} \frac{15n+6}{18}\pi = 2k\pi \Leftrightarrow 5n+2 = 12k \xrightarrow{\text{def}} 5n \equiv 10 \ (12)^{12}$$

$$\sum_{k=0}^{4n+6} w^{4k} = \sum_{k=0}^{4n+6} (w^4)^k = \frac{(w^4)^{4n+7} - 1}{w^4 - 1} = 0 \Leftrightarrow (w^4)^{4n+7} = 1$$

$$(w^4)^{4n+7} = 1 \underset{\text{exponente}}{\longleftrightarrow} \frac{16n + 28}{18} \pi = 2k\pi \Leftrightarrow 4n + 7 = 9k \underset{\text{exponente}}{\longleftrightarrow} 4n \equiv 2 \ (9) \bigstar^2$$