

A Proposed Realtime Psychoacoustic Anomaly Detection On The Edge

Course: Problems in Machine Learning // ECE-551 // Spring 2023

Prepared by: Silas Curfman

Instructor: Dr. Marios Pattichis

Outline

- I. Proposed Problem
- II. Motivation
- III. Background and History
- IV. State of the Art
- V. Emerging Methods
- VI. Demonstration
- VII. Future Modifications
- VIII.Conclusion
- IX. Question & Answer

Case: Vertical Turbine Pump Stations

1,250 HP Pumps, 460 V 3ph Motors,

Very Remote Location, Harsh Conditions, Demanding Uptime, Strict Maintenance Window / Season

Motivation

- Proposed Use Case: Monitoring Large Scale Irrigation in Remote Locations
 - Critical Infrastructure
 - Edge / Remote Locations
 - HITL (Human In The Loop)
 - Very High Economic ROI
 - HVA (Cyber:High Value Asset)

- Cross Domain Case Study
 - Machine Learning
 - Digital Signal Processing
 - Statistical Learning
 - Deep Learning
 - Embedded Systems
 - Low Power IoT
 - Edge / Tiny ML
 - Machine Condition Monitoring
 - Early Warning Failure
 - Preventitive Maintenance
 - Machine Health Tracking

VTPS Case: Cross Domain Challenges

Internet-of-Things

- Connectivity
- Sensing
- Automation
- Scalable
- •ML / Al Capapble
- •Low Power

Machine Learning

- Deep Learning
- •CNN, AN
- Shallow Learning
- Traditional ML
- •SVM, MLP
- Statistical ML

Condition Monitoring

- Vibration Analysis
- Tribology
- Motor Circuit Analysis
- Thermography
- Radiography
- Performance Monitoring

VTPS Case: Cross Domain Challenges

Machine Learning + Condition Monitoring

 Human In The Loop Data Labeling, Audible Range (Psychoacoustic)

Condition Monitoring + Embedded Systems

 Remote Sense & Data Capture w/o Interfering With PLC Network

Embedded Systems + Machine Learning

• Train in the Cloud, Deploy on The Edge

Current Knowledge Base:

Precision Agriculture | Condition Monitoring

MIMII Dataset: Sound dataset for malfunctioning industrial machine inve

Abnormal vertical pump suction recirculation problems due to pump-syst

A hybrid prototype selection-based deep learning approach for anomaly

Semi-supervised machine condition monitoring by learning deep discriming

Applications of machine learning to machine fault diagnosis: A review an

Acoustic event classification using spectrogram features

 \square

 $\overline{\mathbf{A}}$

ML

 \square

 $\overline{\mathbf{V}}$

 $\overline{\mathbf{V}}$

Many Examples Across 1-2 Domains.

Irrigation water pumps

Very Few Across All 3

scherer1993irrigation

schiavello2004abnormal

purohit2019mimii mulimani2018acoustic

de2022hybrid

thoidis2021semi

lei2020applications

CM

muller2020acoustic

wissbrock2022discussion

potovcnik2021condition

stowell2015detection

	mesaros2017detection	Detection and cla	assification of acoustic scenes and events: Outcome of		
	dohi2022description	Description and	discussion on DCASE 2022 challenge task 2: Unsupervise		
	koizumi2019toyadmos	ToyADMOS: A da	taset of miniature-machine operating sounds for anoma		☑
	han2015deep	Deep compression	on: Compressing deep neural networks with pruning, trai	\square	
	habib2021toward	Toward an autor	matic quality assessment of voice-based telemedicine co		
	sculley2015hidden	Hidden technical	debt in machine learning systems	☑	
	shin2023rohust	Robust and Light	weight Deep Learning Model for Industrial Fault Diagnos		
Mach		Conditiono	r infrared thermal image based machine health monitori		
Learr	ning Systems		g-based methods for acoustic emission testing: a review		☑
			omalous sound detection using self-supervised classifica		
✓			ng approach for locating acoustic emission		
✓			y detection in additive manufacturing with long short-te	☑	☑
			ificial neural networks to model the acoustic behaviour		✓
✓		☑ ch	nes for anomaly detection from sound	\square	
✓			ased approach for detecting anomalous audio events	\square	
✓		✓ In	d detection based on interpolation deep neural network	Ø	
			·		

Acoustic anomaly detection for machine sounds based on image transfer

Discussion of Features for Acoustic Anomaly Detection under Industrial [

Condition classification of heating systems valves based on acoustic feat

Detection and classification of acoustic scenes and events

kane2020critical	Critical evaluation and comparison of psychoacoustics, acoustics and vib			☑	ind detection with machine learning: A systematic review ☑				
serin2020review	Review of tool condition monitoring in machining and opportunities for c						-	lot	
poveda2020comparison	A comparison between psychoacoustic parameters and condition indicat				_				
oxenham2012pitch	Pitch perceptionPitch perceptionPitch perception				Citation	Embedded Systems Research	Machine	Embedded	Condition
kudelina 2021 trends	Trends and challenges in intelligent condition monitoring of electrical ma			☑		▼	Learning 🔼	Systems	Monitoring T
mithen2012thirst	Thirst: Water and power in the ancient world			☑	hervas2016fpga	An FPGA Platform Proposal for real-time Acoustic Event Detection: Optir		\square	\square
tagawa2021acoustic	Acoustic anomaly detection of mechanical failures in noisy real-life factor			☑	zabinski2021fpga	FPGA-Embedded Anomaly Detection System for Milling Process	☑	Ø	Ø
gong2018design	Design and implementation of acoustic sensing system for online early fa	☑		☑	seva2020low	A low energy FPGA platform for real-time event-based control	☑	☑	
wisser2008global	Global irrigation water demand: Variability and uncertainties arising from			\square	taguchi2021fpga	FPGA Implementation of Support Vector Machine Using Ising Model fo	Ø	Ø	Ø
mohanty2014machinery	Machinery condition monitoring: Principles and practices			\square	thomas2019hierarchical	Hierarchical and distributed machine learning inference beyond the edge	☑		
volkovas2006acoustic	Acoustic emission used for detection of crack generation in propellers of			☑	ren2021tinyol	Tinyol: Tinyml with online-learning on microcontrollers			
alfayez2005application	The application of acoustic emission for detecting incipient cavitation an			☑	karges2022soundscapes	Soundscapes on edge-The real-time machine learning approach for meas			
murovec2020psychoacoustic	Psychoacoustic approach for cavitation detection in centrifugal pumps			\square	barksdale2018condition	Condition monitoring of electrical machines with Internet of Things			☑
tsuji2021machine	A machine sound monitoring for predictive maintenance focusing on ver		☑	☑	murshed2021machine	Machine learning at the network edge: A survey	☑	☑	
stoney2012development	The development of surface acoustic wave sensors (SAWs) for process m			☑	ray2021review	A review on TinyML: State-of-the-art and prospects			
					coady2019remote	Remote acoustic analysis for tool condition monitoring		☑	☑
					humphreys2014fpga	FPGA based monitoring platform for condition monitoring in cylindrical g		☑	a

Emerging Concepts / Models

- Image Transfer Learning + Acoustic Anomaly Detection
 - [muller2020acoustic], [wissbrock2022discussion]
- Transfering Deep Learning Models to Low Power IoT Devices
 - [ren2021tinyol], [ray2021review]
- Human Recognizable Audio Frequency, Acoustic Condition Monitoring
 - [mulimani2018acoustic], [kane2020critical], [tagawa2021acoustic]

Problem Statement

Propose a Means of Remotely Monitoring Vertical Turbine Pump Stations That...

- Can Properly Recognize Predicted Running Conditions,
- Can Label Priorly Unknown Anomaly Conditions,
- Can Be Deployed Without Physically Modifying the Pumps,
- And Do So Reliably Despite Harsh Conditions And Limited Network Availability.

Proposed Approach:

- Initial Data Collection / Ingest
- 2. DSP / Time Domain -> Freq Domain
- 3. Freq Domain > Image Representation
- 4. Upload to Deep Learning Infrastructure
- 5. Deep Learning Model / Analysis
- 6. Convert Model Inference to Firmware
- 7. Download Firmware to Edge, IoT Device
- 8. Test Embedded Neural Net on Live Device

Define Hardware Scope:

Targe Specification:

- 1. Capable of running TensorFlow Lite
- 2. Onboard Microphone
- 3. 32 bit (i.e. Arm Cortex M0+ ... M4)
- 4. Networkable (i.e. BLE)
- 5. Min 1MB Flash

Arduino Nano BLE 33 Sense:

- 1. Runs TensorFlow Lite
- 2. MEMS Microphone
- 3. Arm Cortex M4F / 64 MHz + FPU
- 4. Bluetooth Low Energy
- 5. 1MB Flash / 256 KB Ram

End to End Data Pipeline

- 1. Record Audio In Fixed Duration . Wav Files (I.E. 5s-10s)
- Apply Windowing To .Wav Files, Reduce Durations, Specify Overlap.
- 3. Split New Smaller .Wav Files Into Train / Test Groups
- 4. Convert Time Domain Waveforms To Frequency Domain, FFT / STFT
- Convert Freq Domain To Image Representation (Mel, Log-mel, MFCC)
- Run Image Based Neural Network
 Classification On "Audio" Images Using
 Training Data
- 7. Test & Retrain NN Model With Testing Data
- 8. Once NN Model Is Trained, Optimize For Tensorflow Lite & Export As Firmware
- 9. Install Firmware On MCU And Test Live

Data Ingest: FFT, Filter Banks, MFCC

Tune DSP Looking for best combination of...

- Clear visual distinctions between class samples
- Recording windows small enough for IoT device performance
- Recorindg windows large enough to capture class features
- Log based frequency spread to match human perception (human perception = labels)

Feature Extraction: CNN

Tune NN Classifier for...

- Good distinction between labeled classes,
- Minimal processing overhead,
- Generate as few feature parameters as possible, will impact anomaly detection.

Anomaly Detection is ...

- Essentially a One Class Classifier,
- Very Sensitive to High Dimensionality (keep feature generation low)
- Difficult due to extremely little training data, lack of "known unknowns"
- Try: K-NN, LOF, K-Means, SVM. Lots of trial and error.

Model Inference (Transfer to MCU):

- Heavy lifting done in cloud via DNN / TensorFlow
- Finished Model Optimized to run on TensorFlow Lite
- Flash Finished Model to Device, if possible.
- If not enough resources, reduce model size, i.e. smaller recording windows or lower bit rate. Retrain and attempt to flash again.

Live Demo, Pre-Deployment:

Model Simulation & Selection

Observations:

- Keep Window Size To 1 Sec @16 Khz
 Or 2 Sec @ 8 Khz
- Spectrogram Created 5-6 Times
 More Features During Auto Encoding
 Than MFE (Mel-scale Frequency
 Extraction)
- Both MFE And Spectrogram Created Too Many Feature Parameters For Use In Anomaly Detection.
- Try Again With MFCC?
- Consider 2 lot Devices: (1) For Status Classification (Idle, Speed1, Speed2, Etc) & (1) For Only Anomaly Detection

Live Demo, Model Architecture:

Model Simulation & Selection


```
# model architecture
model = Sequential()
channels = 1
columns = 32
rows = int(input_length / (columns * channels))
model.add(Reshape((rows, columns, channels), input_shape=(input_length, )))
model.add(Conv2D(32, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm
model.add(MaxPooling2D(pool_size=2, strides=2, padding='same'))
model.add(Conv2D(64, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm
model.add(MaxPooling2D(pool_size=2, strides=2, padding='same'))
model.add(Flatten())
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(classes, name='y_pred', activation='softmax'))
```

Learning Rate

```
# this controls the learning rate
opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999)
callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS)
```

Training Neural Network

```
# train the neural network
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']
model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose
```


Live Demo, Predicted Performance:

Live Demo:

(Used Different Recording Devices For Training Data Set Vs. Live Deployment)

idle.wav	3/4/2023 9:33 AM	WAV File	4,846 KB	00:01:17
cavitation.wav	3/4/2023 9:37 AM	WAV File	2,323 KB	00:00:37
speed1.wav	3/4/2023 9:35 AM	WAV File	2,122 KB	00:00:33
cavitation_1.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_2.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_3.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_4.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_5.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_6.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
cavitation_7.w	av 3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_01.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_02.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_03.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_04.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_05.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_06.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_07.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_08.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_09.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_10.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_11.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_12.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_13.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_14.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
idle_15.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_1.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_2.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_3.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_4.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_5.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed1_6.wav	3/4/2023 9:42 AM	WAV File	313 KB	00:00:05
speed2_01.wa	v 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_02.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_03.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_04.wa	v 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_05.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_06.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_07.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_08.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_09.wa	3/4/2023 9:43 AM	WAV File	313 KB	00:00:05
speed2_10.wa	y 3/4/2023 9:43 AM	WAV File	313 KB	00:00:05

Live Demo:

MFE Visualization Results: 1000 ms Window, 16 KHz, 500 ms Slide, 32 Frequency Bands

Live Demo:

ELECTRICAL & COMPUTER ENGINEERING

Simulation Performance

Production Performance

Raw Audio Tuning Processed Image Features Hyper-Parameters Features

16,000 5 870

Final MFE Tuning Parameters & Values:

- 1. MFE Frame Length = 0.1
- 2. MFE Frame Stride = 0.066
- 3. Number of Filterbanks = 30
- 4. FFT Length = 256
- 5. Frequency Cutoff = 1250 Hz low cutoff

Deployed Results (Sample)

- Classification Only, No Anomaly Detection
- Idle And Nominal Running (Speed1 + Speed2) Had Good Recognition
- Poor Distinction Between Speed_1 & Speed_2
- Dry Running Gave Was The Most Easy To Properly Classify.
- Additional 'Cavitation' Class
 Did Not Produce Expected
 Uncertainty In Other Classes,
 Strongly Misclassed As Dry
 Running.

- Development workflow overall was successful...
- Classification worked. Best online, less accurate as deployed but worked.
- Still working out Anomaly Detection. MFE Spectrograms to NN create too many features. Possibly try Spectral Analysis instead of Spectrogram.
- Use of different model microphones for training data vs live deploy did not have noticeable impact.
- Overall, project was majority success but with much room to continue development.

Conclusion / Remarks / References