DATA AND FORMULAE

Data

 $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$ speed of light in free space

 $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ permeability of free space

 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F m^{-1}}$ permittivity of free space

 $(\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ m F}^{-1})$

 $e = 1.60 \times 10^{-19} \text{ C}$ elementary charge

 $h = 6.63 \times 10^{-34} \,\mathrm{J s}$ Planck constant

 $u = 1.66 \times 10^{-27} \text{ kg}$ unified atomic mass constant

rest mass of electron $m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$

 $m_{\rm p} = 1.67 \times 10^{-27} \, \rm kg$ rest mass of proton

 $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ molar gas constant

 $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Avogadro constant

 $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ Boltzmann constant

 $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ gravitational constant

 $g = 9.81 \text{ m s}^{-2}$ acceleration of free fall

Formulae

 $s = ut + \frac{1}{2}at^2$ uniformly accelerated motion

 $v^2 = u^2 + 2as$

 $W = p \Delta V$ work done on / by a gas

 $p = \frac{F}{A}$ pressure

 $\phi = -\frac{GM}{r}$ gravitational potential

 $T/K = T/^{\circ}C + 273.15$ temperature

 $p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$ pressure of an ideal gas

 $E = \frac{3}{2}kT$ mean translational kinetic energy of an ideal gas particle

9478 PHYSICS GCE ADVANCED LEVEL H2 SYLLABUS

displacement of particle in s.h.m.	$x = x_0 \sin \omega t$
velocity of particle in s.h.m.	$v = v_0 \cos \omega t = \pm \omega \sqrt{(x_0^2 - x^2)}$
electric current	I = nAvq
resistors in series	$R = R_1 + R_2 + \dots$
resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
capacitors in series	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
capacitors in parallel	$C = C_1 + C_2 + \dots$
energy in a capacitor	$U = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$
charging a capacitor	$Q = Q_0 \left[1 - e^{-\frac{t}{\tau}} \right]$
discharging a capacitor	$Q = Q_0 e^{-\frac{t}{\tau}}$
RC time constant	$\tau = RC$
electric potential	$V = \frac{Q}{4\pi\varepsilon_0 r}$
alternating current / voltage	$x = x_0 \sin \omega t$
magnetic flux density due to a long straight wire	$B = \frac{\mu_0 I}{2\pi d}$
magnetic flux density due to a flat circular coil	$B = \frac{\mu_0 NI}{2r}$
magnetic flux density due to a long solenoid	$B = \mu_0 nI$
energy states for quantum particle in a box	$E_n = \frac{h^2}{8mL^2}n^2$
radioactive decay	$x = x_0 e^{-\lambda t}$
radioactive decay constant	$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$