# Supplement

 $\label{lem:continuous} \begin{tabular}{ll} Supplementary information: $Predictive performance of multi-model ensemble forecasts of $COVID-19$ across $European nations$ \end{tabular}$ 

## Participating teams

The following teams participated in the European Forecast Hub by contributing forecasts over the study period. Information below is taken from metadata provided by each team.

| Team                                                                                   | Authors                                                                                | Methods                                                                                                                    | Metadata                      |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| BIOCOMSC                                                                               | Martí Català, Enric Álvarez, Sergio<br>Alonso, Daniel López, Clara Prats               | Empirical model based on cases and deaths dynamics.                                                                        | BIOCOMSC-<br>Gompertz         |
| University of<br>Cologne<br>Covid<br>Metrics                                           | Tom Zimmermann, Arne Rodloff                                                           | Forecasts are based on TBATS - models (DeLivera, Hyndman and Snyder (2011)) and are updated daily for each German state.   | CovidMetrics-<br>epiBATS      |
| Epiforecasts / London School of Hygiene and Tropical Medicine                          | Nikos Bosse, Sam Abbott, Sebastian Funk                                                | Semi-mechanistic estimation of the time-varying reproduction number for latent infections mapped to reported cases/deaths. | epiforecasts-<br>EpiNow2      |
| epiforecasts                                                                           | Sam Abbott                                                                             | A Bayesian autoregressive model using weekly incidence data, application of the forecast.vocs R package.                   | epiforecasts-<br>weeklygrowth |
| epiMOX                                                                                 | Giovanni Ardenghi, Giovanni Ziarelli, Luca<br>Dede', Nicola Parolini, Alfio Quarteroni | Compartmental model SUIHTER                                                                                                | epiMOX-<br>SUIHTER            |
| European<br>COVID-19<br>Forecast Hub                                                   | Katharine Sherratt, Nikos Bosse,<br>Sebastian Funk                                     | An ensemble, or model average, of submitted forecasts to the European COVID-19 Forecast Hub.                               | EuroCOVIDhub-<br>ensemble     |
| Frankfurt<br>Institute for<br>Advanced<br>Studies &                                    | Maria V. Barbarossa, Jan Fuhrmann,<br>Stefan Krieg, Jan H. Meinke                      | An extended SEIR model with additional compartments for undetected cases                                                   | FIAS_FZJ-<br>Epi1Ger          |
| Forschungszen-<br>trum Jülich<br>Helmholtz<br>Zentrum fuer<br>Infektions-<br>forschung | Isti Rodiah, Berit Lange, Pratizio Vanella, Alexander Kuhlmann, Wolfgang Bock          | Deterministic SEIR type model                                                                                              | HZI-<br>AgeExtendedSEII       |

| Team                                                                                  | Authors                                                                                                                                                                                                                                   | Methods                                                                                                                                                                                                 | Metadata                       |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ICM /<br>University of<br>Warsaw                                                      | Rafał Bartczuk, Łukasz Górski, Magdalena<br>Gruziel-Słomka, Artur Kaczorek, Jan<br>Kisielewski, Antoni Moszyński, Karol<br>Niedzielewski, Jędrzej Nowosielski, Maciej<br>Radwan, Franciszek Rakowski, Marcin<br>Semeniuk, Jakub Zieliński | Agent-based model                                                                                                                                                                                       | ICM-<br>agentModel             |
| IEM Health                                                                            | Brad Suchoski, Steve Stage, Heidi Gurung, Sid Baccam                                                                                                                                                                                      | SEIR model projections for daily incident confirmed COVID cases and deaths by using AI to fit actual cases observed.                                                                                    | IEM_Health-CovidProject        |
| ILM                                                                                   | Stefan Heyder, Thomas Hotz                                                                                                                                                                                                                | Extended Kalman filter based on reproduction equation                                                                                                                                                   | ILM-<br>EKF                    |
| Fraunhofer<br>Institute for<br>Industrial<br>Mathematics<br>ITWM                      | Jan Mohring, Neele Leithäuser, Michael Helmling                                                                                                                                                                                           | Integral equation model based on age cohorts taking into account vaccination and testing. The parameters are adjusted to the counted cases and deaths.                                                  | itwm-<br>dSEIR                 |
| ITWW                                                                                  | Przemyslaw Biecek, Viktor Bezborodov,<br>Marcin Bodych, Jan Pablo Burgard,<br>Stefan Heyder, Thomas Hotz, Tyll Krüger                                                                                                                     | Forecasts of county level incidence<br>based on regional reproduction<br>numbers.                                                                                                                       | ITWW-county_repro              |
| JBUD                                                                                  | Jozef Budzinski                                                                                                                                                                                                                           | Heavily modified infection-age SIR-X model with waning immunity, vaccinations, seasonality and undetected cases.                                                                                        | JBUD-<br>HMXK                  |
| MOCOS<br>group                                                                        | Marek Bawiec, Marcin Bodych, Tyll<br>Krueger, Tomasz Ozanski, Barbara<br>Pabjan, Agata Migalska, Przemyslaw<br>Biecak, Viktor Bezborodov, Ewa Szczurek,<br>Ewaryst Rafajłowicz, Ewa Rafajłowicz,<br>Wojciech Rafajłowicz                  | Agent-based microsimulation model                                                                                                                                                                       | MOCOS-agent1                   |
| Masaryk<br>University                                                                 | Andrea Kraus, David Kraus                                                                                                                                                                                                                 | ARIMA model with outlier detection fitted to transformed weekly aggregated series.                                                                                                                      | MUNI-<br>ARIMA                 |
| Department<br>of<br>Mathematics<br>and<br>Statistics<br>Masaryk<br>University<br>Team | Veronika Eclerova, Lenka Pribylova                                                                                                                                                                                                        | SEIAR model with A compartment of absent unobserved infected estimated from hospital data with incorporated mobility data dependence; optimized to the compartment of all exposed (unobserved included) | MUNI_DMS-<br>SEIAR             |
| Grzegorz<br>Redlarski                                                                 | Grzegorz Redlarski                                                                                                                                                                                                                        | Modified SIR method, applied to all districts. Forecasts for districts are summed up.                                                                                                                   | PL_GRedlarski-<br>DistrictsSum |
| prolix                                                                                | Loïc Pottier                                                                                                                                                                                                                              | Offsets obtained by correlations, best linear approximation of reproduction rates (using vaccination approximation) by least euclidean distance, and linear prediction.                                 | prolix-<br>euclidean           |
| Robert<br>Walraven                                                                    | Robert Walraven                                                                                                                                                                                                                           | Multiple skewed gaussian distribution peaks fit to raw data                                                                                                                                             | RobertWalraven-<br>ESG         |

| Team                                                                          | Authors                                                                                                                                                                                    | Methods                                                                                                                                                                                                               | Metadata                                                    |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Swiss Data<br>Science<br>Center /<br>University of<br>Geneva                  | Ekaterina Krymova, Dorina Thanou,<br>Benjamin Bejar Haro, Tao Sun, Gavin Lee,<br>Elisa Manetti, Christine Choirat, Antoine<br>Flahault, Guillaume Obozinski                                | The Trend Model predicts daily cases and deaths using linear extrapolation on the linear or log scale of the underlying trend estimated by a robust LOESS seasonal-trend decomposition model.                         | SDSC_ISG-<br>TrendModel                                     |
| Statgroup19 Statgroup19                                                       | Marco Mingione, Pierfrancesco Alaimo Di<br>Loro<br>Marco Mingione, Pierfrancesco Alaimo Di<br>Loro                                                                                         | Richards' curve based generalized growth model Richards' curve based generalized growth model taking into account spatial dependence                                                                                  | Statgroup19-<br>richards<br>Statgroup19-<br>spatialrichards |
| Universidad<br>Carlos III de<br>Madrid                                        | David E. Singh, Miguel Guzman Merino,<br>Maria Cristina Marinescu, Jesus Carretero,<br>Alberto Cascajo Garcia                                                                              | Agent-based parallel simulator that models individual interactions extracted from social networks and demographical data.                                                                                             | UC3M-<br>EpiGraph                                           |
| University of<br>Ljubljana,<br>Faculty of<br>Health<br>Sciences<br>Team       | Janez Zibert                                                                                                                                                                               | SEIHR model extended with compartments for hospitals, intensive care units, asymptomatic cases, separate submodels for vaccinated and unvaccinated, divided to 5 age subgroups of population                          | ULZF-<br>SEIRC19SI                                          |
| UMass-<br>Amherst                                                             | Dan Sheldon, Graham Gibson, Nick Reich                                                                                                                                                     | Bayesian compartmental model with observations on cumulative case counts and cumulative deaths. Model is fit independently to each state. Model includes observation noise and a case detection rate.                 | UMass-<br>MechBayes                                         |
| UNED                                                                          | José L. Aznarte, César Pérez, José<br>Almagro, Pedro Álvarez, Álvaro Ortiz,<br>Fernando Blat                                                                                               | Bayesian time series models with<br>ARIMA noise and fixed transfer<br>functions for each input.                                                                                                                       | UNED-<br>PreCoV2                                            |
| UNIPG_UNIM                                                                    | Alfrantista Blanding Antonietta Mira                                                                                                                                                       | Bayesian Dirichlet-Multinomial models<br>for counts of patients in mutually<br>exclusive and exhaustive categories<br>such as hospitalized in regular wards<br>and in intensive care units, deceased<br>and recovered | UpgUmibUsi-<br>MultiBayes                                   |
| University of<br>Southern<br>California                                       | Ajitesh Srivastava, Frost Tianjian Xu                                                                                                                                                      | A heterogeneous infection rate model with human mobility for epidemic modeling. Our model adapts to changing trends and provide predictions of confirmed cases and deaths.                                            | USC-<br>SIkJalpha                                           |
| University of<br>Virginia, Bio-<br>complexity<br>COVID-19<br>Response<br>Team | Aniruddha Adiga, Lijing Wang, Srinivasan<br>Venkatramanan, Akhil Sai Peddireddy,<br>Benjamin Hurt, Przemyslaw Porebski,<br>Bryan Lewis, Madhav Marathe, Jiangzhou<br>Chen, Anil Vullikanti | An ensemble of multiple methods such as auto-regressive (AR)models with exogenous variables, Long short-term memory (ISTM) models, Kalman filter and PatchSim (an SEIR model).                                        | UVA-<br>Ensemble                                            |

## Summary of evaluated forecasts



Figure 1: Total number of forecasts included in evaluation, by target location, week ahead horizon, and variable

## Comparison of contributed forecasts and the Hub ensemble



Figure 2: Comparison of scores between participating model forecasts and Hub ensemble of all available forecasts for each target

## EPIFORGE guidelines for reporting of epidemic forecasting research

Table 2: EPIFORGE guidelines (Pollet et. al., 2021)

| Section of manuscript | Iten | n Checklist item                                                                                                        | Reported on page                                 |
|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Title/Abstra          | ict1 | Describe the study as forecast or prediction research in at least the title or abstract                                 | 1                                                |
| Introduction          | 2    | Define the purpose of study and forecasting targets                                                                     | 4                                                |
| Methods               | 3    | Fully document the methods                                                                                              | 4,5,6,7,8                                        |
| Methods               | 4    | Identify whether the forecast was performed prospectively, in real time, and/or retrospectively                         | 5                                                |
| Methods               | 5    | Explicitly describe the origin of input source data, with references                                                    | 5                                                |
| Methods               | 6    | Provide source data with publication, or document reasons as to<br>why this was not possible                            | see Github<br>epiforecasts/euro-<br>hub-ensemble |
| Methods               | 7    | Describe input data processing procedures in detail                                                                     | 5,6                                              |
| Methods               | 8    | State and describe the model type, and document model assumptions, including references                                 | 5,6, Supplement<br>Table 1                       |
| Methods               | 9    | Make the model code available, or document the reasons why this was not possible                                        | see Github<br>epiforecasts/euro-<br>hub-ensemble |
| Methods               | 10   | Describe the model validation, and justify the approach                                                                 | 5,6                                              |
| Methods               | 11   | Describe the forecast accuracy evaluation method used, with justification                                               | 6,7                                              |
| Methods               | 12   | Where possible, compare model results to a benchmark or other comparator model, with justification of comparator choice | 6,7                                              |

| Section of<br>manuscript | Iter | n Checklist item                                                                                                                                    | Reported on page                                 |
|--------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Methods                  | 13   | Describe the forecast horizon, with justification of its length                                                                                     | 5                                                |
| Results                  | 14   | Present and explain uncertainty of forecasting results                                                                                              | 8,9,10,11,12                                     |
| Results                  | 15   | Briefly summarize the results in nontechnical terms, including a nontechnical interpretation of forecast uncertainty                                | 12,13,14                                         |
| Results                  | 16   | If results are published as a data object, encourage a time-stamped version number                                                                  | see Github<br>epiforecasts/euro-<br>hub-ensemble |
| Discussion               | 17   | Describe the weaknesses of the forecast, including weaknesses specific to data quality and methods                                                  | 12,13,14                                         |
| Discussion               | 18   | If the research is applicable to a specific epidemic, comment on its potential implications and impact for public health action and decision-making | 14,15                                            |
| Discussion               | 19   | If the research is applicable to a specific epidemic, comment on how generalizable it may be across populations                                     | 15                                               |

## Following:

Pollett S, Johansson MA, Reich NG, Brett-Major D, Del Valle SY, Venkatramanan S, Lowe R, Porco T, Berry IM, Deshpande A, Kraemer MUG, Blazes DL, Pan-Ngum W, Vespigiani A, Mate SE, Silal SP, Kandula S, Sippy R, Quandelacy TM, Morgan JJ, Ball J, Morton LC, Althouse BM, Pavlin J, van Panhuis W, Riley S, Biggerstaff M, Viboud C, Brady O, Rivers C. Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Med. 2021 Oct 19;18(10):e1003793. doi: 10.1371/journal.pmed.1003793. PMID: 34665805; PMCID: PMC8525759.