Engineering Design Portfolio

Glyn Han Electrical Engineering Student The University of British Columbia

Table of Contents

- Reflow Oven Controller
- Electromagnetic Tethered Robot
- Pong Game
- Apache Flight PID Controller
- ❖ 5-Bar Robotic Arm and Electric Motor

Reflow Oven Controller

- Part of a 6 member team
- Concentrated work on hardware, and circuit prototyping
- Designed a circuit attached to a FPGA that controlled an ovens on and off function
- Reflow soldered lp51b microcontrollers

Electromagnetic Tether Robot

- Part of a 6 member team
- Majority of work done on circuitry and hardware prototyping
- Bent laser cut out of car body
- Utilized H bridge configuration for motor control
- Magnetic transmitters from ferrite inductors

Pong Game VHDL Hardware Design

- Worked with a partner in designing a VGA port display Pong game
- Utilized FPGA for easy prototyping and troubleshooting
- Added additional challenge to the game that increases speed over time
- Sample code to the right

```
when initial =>
     plot <= '1';
     colour <= "111"; -- white
     y <= std logic vector(temp y);
     x <= std logic vector(temp x);
     temp x := temp x + 1; --continue at this state on clk until condition
     if (temp x = 155) then
         temp x := "00000101";--boundary on x
         if (temp y = 115) then
             goalie1 := "0110110"; -- 54
             forward1 := "0110110";
             goalie2 := "0110110";
             forward2 := "0110110";
             temp y := "0000101";--5
             state := team1 g;
         else
             temp y := "1110011";-- 120-5=115
         end if:
     end if:
when team1 g =>
     plot <= '1';
     temp x := "00000101";
     temp y := temp y + 1; -- continue until end of y=115
     if (temp y >= goalie1 and temp y <= goalie1 + 10 and temp y < 115) then
         colour <= "001";
     elsif (temp y >= 115) then
         if (sw(17) = '1') then
             if (goalie1 > 6) then
                 goalie1 := goalie1 - 1;
             end if;
         else
                                        --goalie going down
             if (goalie1 < 104) then --115-10-1, top of goalie
                 goalie1 := goalie1 + 1;
             end if:
         end if:
         temp y := "0000101";
         colour <= "111";
         state := team1 f;
         colour <= "000":
     end if;
    y <= std logic vector(temp y);
     x <= std logic_vector(temp_x);</pre>
```

Apache Flight Control MATLAB/SIMULINK DESIGN

- My partner and I developed and designed a PID controller with a route error average of 7.08
 offset from original flight course
- Adjusted the PID values capable of handling a marginally stable helicopter system modelled through Simulink
- Determined transfer functions, used root locus, and nyquist criterion to analyze stability positions of the model
- Simulated entire design and constantly working to decrease the error in the overshoot while keeping constant and consistent stability though its entire flight path

Apache Transfer Functions

 Closed loop transfer function of the entire system simplified

Closed Loop TF: CLsys = TF4 =
$$\frac{KG}{1 + K * G * H} = \frac{\left(\frac{5.306}{s^4 + 31.33 * s^3 + 221.5 * s^2}\right)}{1 + \left(\frac{5.306}{s^4 + 31.33 * s^3 + 221.5 * s^2}\right)}$$

$$CLsys = TF4 = \frac{5.30597014925}{5.30597014925 + (s^4 + 31.3286902287 * s^3 + 221.498901943 * s^2)}$$

$$CLsys = \frac{5.31}{s^4 + 31.3 * s^3 + 222 * s^2 + 5.31}$$

 Open loop transfer function determined

Open Loop TF: OLsys =
$$K * G * H = \frac{5.31}{s^4 + 31.3 * s^3 + 222 * s^2}$$

Apache Flight Simulations

- Flight path given in the yellow graph and simulated flight path in the purple
- Below is the step response of the system using the calculated transfer functions

5-Bar Robotic Arm and Electric Motor

- Worked with 3 other people in designing and building a 5-bar robotic arm
- Designed and build an electric motor from water jet and 3d printed parts
- Robotic arm is controlled through a master/slave configuration
- Larger aluminum arms as the slave and a smaller scaled version 3d printed to be a master arm
- Used simple motors and attached sensors and current drivers in order to build custom servo motors

Electric Motor Design

- Solidworks design of commutator and armature laminations
- Intricate parts were 3d printed and laminations were water jet cut

Electrical Motor

Finished design and build of physical motor

Gearing System

 A planetary gearing system designed in Solidworks and 3d printed

5-Bar Arm Robot

- Created a lifted platform and connected arms in a freely moving attachment
- Machined custom lock collars for the motors to attach to the arms

