

Campus de Cascavel Centro de Ciências Exatas e Tecnológicas - CCET

Curso de Ciência da Computação

Disciplina: Algoritmos Professor: Josué Castro

Lista de Exercícios Aula Teórica - Unidade 5

Instruções:

Implemente uma solução para os problemas abaixo em Portugol.

Questão 1:

Escreva um algoritmo em Portugol que leia um vetor A, com N elementos reais não negativos (N \leq 100) e construa um outro vetor B de mesmo tamanho, formado da seguinte maneira:

- a) Os elementos nas posições pares correspondem aos elementos de A divididos por 2
- b) Os elementos nas posições ímpares correspondem aos elementos de A multiplicados por 3

Entrada:

O vetor A será apresentado na forma de 1 elemento por linha da entrada. O último o elemento, que indicará o final da entrada, e não deve ser processado, conterá um valor negativo qualquer.

Saída:

Seu programa deve imprimir duas colunas de dados na tela. A primeira coluna deve conter os elementos do vetor A, formatados com 10 casas inteiras e 5 casas decimais, e a segunda coluna deve conter os elementos do vetor B com a mesma formatação. As duas colunas deverão conter um cabeçalho com os nomes dos vetores, A e B posicionados acima dos pontos decimais em cada coluna.

Obs: Os vetores iniciam na posição 1

Exemplos:

Entradas	Saídas		
48	A	В	
92	48.00000	144.00000	
28	92.00000	46.00000	
11	28.00000	84.00000	
60	11.00000	5.50000	
30	60.00000	180.00000	
100	30.00000	15.00000	
21	100.00000	300.00000	
82	21.00000	10.50000	
44	82.00000	246.00000	
-2	44.00000	22.00000	

Questão 2:

Faça um algoritmo que leia um conjunto de notas de alunos de uma turma e imprima quantos alunos tiveram notas acima da média.

Entrada:

São dadas N notas (N \leq 40), uma nota por linha, como números inteiros no intervalo [0, 100]. O último valor do conjunto tem valor negativo, e serve apenas para indicar o final da entrada.

Saída:

Imprima duas linhas na saída. A primeira com a frase "Média da turma = MMM.MM" onde MMM.MM representa a média formatada com campo tamanho 6 com l decimal, e na segunda linha escreva a frase "Número de alunos com nota acima da média = NN", onde NN representa o número de alunos com nota acima da média.

Exemplos:

Entradas Saídas	
43 41 33 58 12 35 55 68 30 65 -1	= 4

Questão 3:

Escrever um algoritmo para gerar a série de Fibonacci com $0 < n \le 100$ termos e imprimir conforme o modelo a seguir (onde n = 7)

```
1
11
112
1123
11235
112358
112358
11235
1123
1123
112
```

Entrada:

A entrada é composta por várias linhas. Cada linha contém um inteiro n, que indica o tamanho da sequencia de fibonacci a ser escrita. O seu algoritmo deve parar quando for lido um valor qualquer para n que esteja fora dos limites especificados acima.

Dica de implementação: utilize um vetor para armazenar o valor da série de fibonacci antes de processar as entradas. Isto tornará o processamento mais rápido, pois o cálculo da série será feito apenas uma vez. Após o pré-cálculo dos valores da série, basta escrever os elementos do vetor da forma como foi requerido pelo problema.

Saída:

Para linha da entrada, seu programa deve imprimir uma linha de cabeçalho com a frase "Teste i", onde i representa um identificador para o caso de teste que está sendo processado e corresponde a linha da entrada que está sendo processada, é um número sequencial que inicia sempre em 1. As próximas 2n-1 linhas conterão a sequência de Fibonacci, conforme mostrado abaixo. A última linha deve ser deixada em branco.

Exemplos:

Entradas	Saídas
1 2 4 8 0	Teste 1 1 Teste 2 1 1 1 1 1
	Teste 3 1 1 1 1 1 2 1 1 2 3 1 1 2 1 1 1 1 1
	Teste 4 1 1 1 1 1 1 1 2 1 1 2 3 1 1 2 3 5 1 1 2 3 5 8 1 1 2 3 5 8 13 1 1 2 3 5 8 13 1 1 2 3 5 8 1 1 2 3 5 8 1 1 2 3 5 1 1 2 3 1 1 2 1 1 1 2 1 1 1

Questão 4:

Seja o polinômio

$$P = a_0 x^n + a_1 x^{n-1} + \dots + a_n x^0$$

Escreva um algoritmo que:

- a) Leia o valor de n (n = grau do polinômio, onde $0 \le n \le 20$)
- b) Leia os coeficientes do polinômio (a_i)
- c) Calcule o valor de P para um dado valor de x

Entrada:

A entrada é composta por várias linhas. A primeira linha da entrada contém o grau do polinômio.

As próximas n linhas contém o valor dos coeficientes a_i , começando em a_0 A última linha contém o valor de x

Saída:

Seu algoritmo deve imprimir duas linhas de dado na saída: a primeira linha deve conter o polinômio escrito de acordo com o exemplo, e a segunda linha deve ter o valor do polinômio. Todos os valores devem ser formatados com uma casa decimal.

Exemplos:

Entradas	Saídas
3 1 -2 3 -4 5	$P = +1x^3 -2x^2 +3x^1 -4$ P = 194

Questão 5:

Escreva um algoritmo que leia um vetor A de N elementos reais ($N \le 50$) e construa um novo vetor B de mesmo tipo e tamanho, de acordo com as seguintes regras de formação:

- Se o valor do índice i for par, o valor de B[i] será igual ao valor de A[i] multiplicado por 5.
- Se o valor de i for ímpar, o valor de B[i] será igual ao valor de A[i] somado com 5.

Entrada:

A primeira linha da entrada contém um inteiro N ($0 \le N \le 50$) que indica o tamanho dos vetores. As próximas N linhas contém os N elementos do vetor A.

Saída:

Seu programa deve imprimir duas colunas de dados na tela. A primeira coluna deve conter os elementos do vetor A, formatados com 10 casas inteiras e 5 casas decimais, e a segunda coluna deve conter os elementos do vetor B com a mesma formatação. As duas colunas deverão conter um cabeçalho com os nomes dos vetores, A e B posicionados acima dos pontos decimais em cada coluna.

Obs: Os vetores iniciam na posição 0.

Exemplos:

Entradas	Saídas
10	A B
48	48.00000 240.00000
92	92.00000 97.00000
28	28.00000 140.00000
11	11.00000 16.50000
60	60.00000 300.00000
30	30.00000 35.00000
100	100.00000 500.00000
21	21.00000 26.50000
82	82.00000 410.00000
44	44.00000 49.00000