1. Suppose U is a subspace of a finite-dimensional vector space V over some field F. Recall that the annihilator U° of U consists of all linear maps $\ell \in V$ which are zero on the vectors in U.

$$\dim U^{\circ} + \dim U = \dim V$$

Since V is finite-dimensional, $U \subseteq V$ is also finite-dimensional. So, construct a basis $\{u_1, \ldots, u_n\}$ of U and extend it to a basis $\mathcal{B} = \{u_1, \dots, u_n, v_1, \dots, v_m\}$ of V.

 \mathcal{B} induces a dual basis $\mathcal{B}^* = \{u_1^*, \dots, u_n^*, v_1^*, \dots v_m^*\}$ of V^* , where $b_i^*(b_j) = \delta_{ij}$ for all $b_i^* \in \mathcal{B}^*, b_j \in \mathcal{B}$. It suffices to show that dim $U^\circ = m$, since then dim $U^\circ + \dim U = m + n = \dim V$.

Claim. $\{v_1^*, \ldots, v_m^*\}$ is a basis of U° .

Since $\{v_1^*, \dots, v_m^*\} \subseteq \mathcal{B}^*$, we have linear independence.

Let $\ell \in U^{\circ}$ and consider the map $\ell' : V \to \mathbb{R}$ given by $\ell'(v) := \sum \ell(v) v_i^*(v)$. Then, for any $b \in \mathcal{B}$, we have two cases:

- If $b = u_i$ for some i, then $\ell'(u_i) = 0 = \ell(u_i)$.
- If $b = v_i$ for some i, then $\ell'(v_i) = \sum \ell(v_i)v_i^*(v_i) = 0 + \dots + 0 + \ell(v_i)v_i^*(v_i) + 0 + \dots + 0 = \ell(v_i)$.

Since a linear map is uniquely characterized by its behavior on a basis, we conclude that $\ell' = \ell$, so $\{v_1^*,\ldots,v_m^*\}$ spans U° .

2. Suppose $T:V\to W$ is a linear map between two finite-dimensional vector spaces and $T^*:W^*\to V^*$ is the dual map. Prove that

(a) $N(T^*) = (R(T))^{\circ}$

Let $\ell \in N(T^*)$, so $\ell \circ T = 0$. Fix $w \in R(T)$ and pick $v \in V$ such that T(v) = w. Then, $\ell(w) = \ell(T(v)) = (\ell \circ T)(v) = 0$. Hence, $\ell \in (R(T))^{\circ}$.

Let $\ell \in (R(T))^{\circ}$, so $\ell(w) = 0$ for all $w \in R(T)$. Fix $v \in V$ and set w = T(v). Then, $(T^*(\ell))(v) = (\ell \circ T)(v) = \ell(w) = 0$. Hence, $\ell \in N(T^*)$.

(b) $\dim R(T^*) = \dim R(T)$

> Since W is finite-dimensional, $R(T) \subseteq W$ is finite-dimensional. So, we can apply the result from problem 1 to get $\dim(R(T))^{\circ} + \dim R(T) = \dim W$. It then follows from (a) that $\dim N(T^{*}) + \dim R(T) = \dim W$.

> Recall from Rank/Nullity that $\dim R(T^*) = \dim W^* - \dim N(T^*)$. So, by some algebra, we conclude that $\dim W^* - \dim R(T^*) + \dim R(T) = \dim W$.

Then, since dim $W = \dim W^*$, we conclude that dim $R(T) = \dim R(T^*)$.

(c) for any $m \times n$ matrix A, the rank of A equals the rank of its transpose A^T .

Let $A=(a_{ij})\in M_{m,n}(F)$. Then, by Lemma 16.3 from lecture, we have $L_{A^T}=L_A^*$. So, by (b), we conclude that $\dim R(L_A)=\dim R(L_A^*)=\dim R(L_{A^T})$.

3. Assume that V, W are finite-dimensional vector spaces. Prove that if $T^*: W^* \to V^*$ is injective, then $T: V \to W$ is surjective.

Since W is finite-dimensional, $R(T) \subseteq W$ is also finite-dimensional. So, we apply the result from problem 1 to get $(\dim R(T))^{\circ} + \dim R(T) = \dim W$. Moreover, 2(a) implies that $(R(T))^{\circ} = N(T^{*})$, so we rewrite the left-hand side of the equation to get $\dim N(T^{*}) + \dim R(T) = \dim W$. But, since T^{*} is injective, $\dim N(T^{*}) = 0$, so we conclude that $\dim R(T) = \dim W$. Thus, T is surjective.

4. Let V, W be two vector spaces. Prove that the space of bilinear maps

$$Bilin(V, W; \mathbb{R}) := \{ b : V \times W \to \mathbb{R} \mid b \text{ is bilinear } \}$$

is a vector space with scalar multiplication and vector addition defined by

$$(\lambda b)(v,w) := \lambda b(v,w)$$
 for all $\lambda \in \mathbb{R}, v \in V, w \in W$

and

$$(b_1 + b_2)(v, w) := b_1(v, w) + b_2(v, w)$$
 for all $v \in V, w \in W$.

Let $b_1, b_2 \in \text{Bilin}(V, W; \mathbb{R}), \lambda, \mu \in \mathbb{R}, v \in V, \text{ and } w \in W.$

1. Addition is commutative:

$$(b_1 + b_2)(v, w) = b_1(v, w) + b_2(v, w) = b_2(v, w) + b_1(v, w) = (b_2 + b_1)(v, w)$$

2. Addition is associative:

$$(b_1 + (b_2 + b_3))(v, w) = b_1(v, w) + (b_2 + b_3)(v, w) = b_1(v, w) + (b_2(v, w) + b_3(v, w))$$

= $(b_1(v, w) + b_2(v, w)) + b_3(v, w) = (b_1 + b_2)(v, w) + b_3(v, w) = ((b_1 + b_2) + b_3)(v, w)$

3. The map $0: V \times W \to \mathbb{R}$, $(v, w) \mapsto 0_{\mathbb{R}}$ behaves like a zero:

$$b_1(v, w) + 0(v, w) = b_1(v, w) + 0_{\mathbb{R}} = b_1(v, w) = 0_{\mathbb{R}} + b_1(v, w) = 0(v, w) + b_1(v, w)$$

4. $-b_1: V \times W \to \mathbb{R}$, $(v, w) \mapsto -b(v, w)$ is the additive inverse of b_1 :

$$(b_1 + -b_1)(v, w) = b_1(v, w) + -b_1(v, w) = b_1(v, w) - b_1(v, w) = 0_{\mathbb{R}} = 0(v, w)$$

5. $1 \in \mathbb{R}$ is the multiplicative identity:

$$(1 \cdot b_1)(v, w) = 1 \cdot b_1(v, w) = b_1(v, w)$$

6. Scalar multiplication is associative:

$$(\lambda \cdot \mu b_1)(v, w) = \lambda(\mu b_1)(v, w) = (\lambda \mu)b_1(v, w) = ((\lambda \mu)b_1)(v, w)$$

7. Scalar multiplication distributes over vector addition:

$$(\lambda(b_1 + b_2))(v, w) = \lambda(b_1 + b_2)(v, w) = \lambda(b_1(v, w) + b_2(v, w)) = \lambda b_1(v, w) + \lambda b_2(v, w)$$

8. Scalar multiplication distributes over field addition:

$$((\lambda + \mu)b_1)(v, w) = (\lambda + \mu)b_1(v, w) = \lambda b_1(v, w) + \mu b_1(v, w)$$

Hence, $Bilin(V, W; \mathbb{R})$ is a vector space.

- **5.** Let V, W be two vector spaces over \mathbb{R} . Let $b: V \times W \to \mathbb{R}$ be a bilinear map.
- (a) Prove that for any $w \in W$, the function $w^{\#}: V \to \mathbb{R}$ defined by

$$w^{\#}(v) := b(v, w)$$
 for all $v \in V$ i.e., $w^{\#}(\cdot) = b(\cdot, w)$

is linear.

For all $v, v' \in V, \lambda, \mu \in \mathbb{R}$,

$$w^{\#}(\lambda v + \mu v') = b(\lambda v + \mu v', w)$$

$$= \lambda b(v, w) + \mu b(v', w)$$

$$= \lambda w^{\#}(v) + \mu w^{\#}(v')$$
(b is bilinear)

So, $w^{\#}$ is linear.

(b) Prove that the map

$$\#: W \to V^*, \qquad w \mapsto w^{\#}$$

is linear.

For all $w, w' \in W, \lambda, \mu \in \mathbb{R}$, we have for every $v \in V$ that

$$\#(\lambda w + \mu w')(v) = (\lambda w + \mu w')^{\#}(v)$$

$$= b(v, \lambda w + \mu w')$$

$$= \lambda b(v, w) + \mu b(v, w')$$

$$= \lambda \#(w)(v) + \mu \#(w')(v)$$
(b is bilinear)

So. # is linear.

(c) Prove that the null space N(#) of # is

$$S = \{ w \in W \mid b(v, w) = 0 \text{ for all } v \in V \}$$

Let $w \in W$ be such that b(v, w) = 0 for all $v \in V$. Then, for all $v \in V$,

$$\#(w)(v) = w^{\#}(v)$$

= $b(v, w)$
= 0

Hence, #(w) is the zero vector in V^* , so $w \in N(\#)$.

Let $w \in N(\#)$. Then, $\#(w) = w^{\#} = b(\cdot, w) = 0_{V^*}$. Hence, $(b(\cdot, w))(v) = b(v, w) = 0$, for all $v \in V$, so $w \in S$.

(d) Now suppose that W is finite-dimensional, $V = W^*$, and $b: W^* \times W \to \mathbb{R}$ is given by

$$b(\ell,w)\coloneqq\ell(w)$$

Prove that, in this case, $\#: W \to (W^*)^*$ is injective.

Let $w \in N(\#)$ and $\ell \in W^*$. Then, we have $\#(w)(\ell) = w^\#(\ell) = b(\ell, w) = 0$. We want to show

Since W is finite-dimensional, it has a basis $\mathcal{B} = \{w_1, \dots, w_n\}$. So, there are $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ so that $\sum \lambda_i w_i = w$. For each w_i , consider the map $w_i^* : W \to \mathbb{R}$ given by $w_i(w_j) \coloneqq \delta_{ij}$ for each $w_j \in \mathcal{B}$. Then, $w_i^*(w) = w_i^*(\sum \lambda_j w_j) = 0 + \dots + 0 + w_i^*(\lambda_i w_i) + 0 + \dots + 0 = \lambda_i = 0$ by assumption. Hence, $\lambda_1 = \dots = \lambda_n = 0$, so w = 0, implying # is injective.

6. (a) Write the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ as a product of transpositions.

$$(12)(23)(45) = \begin{cases} 1 \mapsto 1 \mapsto 1 \mapsto 2 \\ 2 \mapsto 2 \mapsto 3 \mapsto 3 \\ 3 \mapsto 3 \mapsto 2 \mapsto 1 \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \\ 4 \mapsto 5 \mapsto 5 \mapsto 5 \\ 5 \mapsto 4 \mapsto 4 \mapsto 4 \end{cases}$$

(b) Compute the sign of the permutation σ .

We count the number of inversions in σ .

$$\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ \hline & & & & \\ 1 & 2 & 3 & 4 & 5 \end{array}\right)$$

Thus, the sign of σ is $(-1)^3 = -1$.

7. Recall that an inversion of a permutation σ is a pair of indices i, j so that i < j and $\sigma(i) > \sigma(j)$. The inversion number of σ is the number of all inversions of σ . What is the inversion number of

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

We count the crossings in σ .

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 4 \end{array}\right)$$

So, the inversion number of σ is 3.

8. Let $T: V \to W$ be a linear map and $\alpha: \overbrace{W \times \cdots \times W}^k \to \mathbb{R}$ be k-linear and alternating. Define

$$T^*\alpha: \overbrace{V \times \cdots \times V}^k \to \mathbb{R}$$

by

$$(T^*\alpha)(v_1,\ldots,v_k) := \alpha(T(v_1),\ldots,T(v_k))$$
 for all $v_1,\ldots,v_k \in V$.

Prove that $T^*\alpha$ is k-linear and alternating.

Let $\lambda, \mu \in \mathbb{R}$, $u, v \in V$, and $1 \leq i \leq k$. Then,

$$T^*\alpha(v_1,\ldots,\overbrace{\lambda u+\mu v}^{\text{ith slot}},\ldots,v_k) = \alpha(T(v_1),\ldots,\lambda T(u)+\mu T(v),\ldots,T(v_k))$$

$$= \lambda\alpha(T(v_1),\ldots,T(u),\ldots,T(v_k)) + \mu\alpha(T(v_1),\ldots,T(v),\ldots,T(v_k))$$

$$(\alpha \text{ is }k\text{-linear})$$

$$= \lambda T^*\alpha(v_1,\ldots,u,\ldots,v_k) + \mu T^*\alpha(v_1,\ldots,v,\ldots,v_k)$$

Hence, $T^*\alpha$ is k-linear.

Similarly, for $1 \le i < j \le k$, we have

$$T^*\alpha(v_1,\ldots,\underbrace{v_j}^{i\text{th slot}},\ldots,\underbrace{v_i}^{j\text{th slot}},\ldots,v_k) = \alpha(T(v_1),\ldots,T(v_j),\ldots,T(v_i),\ldots,v_k)$$

$$= -\alpha T(v_1,\ldots,T(v_i),\ldots,T(v_j),\ldots,v_k) \quad (\alpha \text{ is alternating})$$

$$= -T(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_k)$$

So, $T^*\alpha$ is alternating.