Latent Variable Methods to Address Measurement Error from Ordered Categorical Data

Ramses Llobet, Ph.D. Candidate
Political Science, University of Washington

Survey data – Germany (ESS 5)

	Source data	Adjusted data		Income deciles
01	less than 945 € per month		J	0-220 (week) 0-945 (month) 0-11340 (year)
02	946 €-1285 €		R	221-300 (week) 946-1290 (month) 11341-15420 (year)
03	1286 € - 1579 €		С	301-360 (week) 1291-1580 (month) 15421-18950 (year)
04	1580 € - 1886 €		М	361-430 (week) 1581-1890 (month) 18951-22630 (year)
05	1887 €- 2208 €		F	431-510 (week) 1891-2210 (month) 22631-26500 (year)
06	2209 € - 2558 €		S	511-590 (week) 2211-2560 (month) 26501-30700 (year)
07	2559 € - 2976 €		К	591-690 (week) 2561-2980 (month) 30701-35710 (year)
08	2977 € - 3532 €		Р	691-820 (week) 2981-3530 (month) 35711-42380 (year)
09	3533 €- 4481 €		D	821-1030 (week) 3531-4480 (month) 42381-53770 (year)
10	4482 € or more		Н	1031 or more (week) 4481 or more (month) 53771 or more (year)

income
$$Z \xrightarrow{\gamma_1} Y \xrightarrow{social}_{preferences}$$

(a) No measurement error.

(b) Measurement error.

(b) Measurement error.

1. Misclassification

- i. Item non-response
- ii. Underreporting

(b) Measurement error.

1. Misclassification

- i. Item non-response
- ii. Underreporting

2. Censoring

- i. Interval-censoring
- ii. Top-coding problem

Measurement Error: Midpoint Imputation

ID	True income Z	Category R	$\operatorname{Lower} L$	Upper U
57	55,300	5	40,000	60,000
12	3,900	1	0	5,000

Measurement Error: Midpoint Imputation

ID	True income Z	Category R	Lower L	Upper ${\cal U}$
57	55,300	5	40,000	60,000
12	3,900	1	0	5,000
83	72,800	6	60,000	80,000
145	9,600	2	5,000	10,000
230	277,000	10	200,000	$+\infty$
34	16,200	3	10,000	25,000

Measurement Error: Midpoint Imputation

ID	True income ${\cal Z}$	Category R	$\operatorname{Lower} L$	Upper U	Midpoint
57	55,300	5	40,000	60,000	50,000
12	3,900	1	0	5,000	2,500
83	72,800	6	60,000	80,000	70,000
145	9,600	2	5,000	10,000	7,500
230	277,000	10	200,000	$+\infty$	_
34	16,200	3	10,000	25,000	17,500

1. Fit R as a numeric continuous.

$$Y = \gamma_0 + \gamma_1 R + \epsilon$$

2. Fit Midpoint regressor.

$$Y = \gamma_0 + \gamma_1 Z_{MP} + \epsilon$$

ID	True income Z	Category R	Lower L	Upper U	Midpoint
57	55,300	5	40,000	60,000	50,000
12	3,900	1	0	5,000	2,500
83	72,800	6	60,000	80,000	70,000
145	9,600	2	5,000	10,000	7,500
230	277,000	10	200,000	$+\infty$	_
34	16,200	3	10,000	25,000	17,500

• We set: $\gamma_1 = 1$

- We set: $\gamma_1 = 1$
- Three distributional assumptions on Z:
 - *Normal*(0,1)
 - Lognormal (mu, 0.2)
 - Pareto(mu,1.5)

- We set: $\gamma_1 = 1$
- Three distributional assumptions on Z:
 - *Normal*(0,1)
 - Lognormal (mu, 0.2)
 - Pareto(mu,1.5)
- From 3 to 30 categorical levels (k)
 - 1,000 simulations (sims)
 - In every sims, a sample of 1,000 observations (n)

Sampling from Normal(0,1), k=10

Sampling from Lognormal(24,0.2), k=10

Sampling from Pareto(24,1.5), k=10

Results: R as Continuous

R as Continuous Bias Under Different Latent Z Distributions

Results: Midpoint Imputation

Midpoint Bias Under Different Latent Z Distributions

Results Sensitivity at Different Scenarios

Midpoint Bias At Different Lognormal $Var(\varepsilon)$

Midpoint Bias At Different Pareto Tails (α)

- When R is fitted as continuous:
 - Bias and Inconsistent Estimates.
 - As we increase *k*, higher attrition towards 0.

- When R is fitted as continuous:
 - Bias and Inconsistent Estimates.
 - \blacksquare As we increase k, higher attrition towards 0.
- When Z is midpoint imputed:
 - Biased estimates, but it decreases as k increases.
 - Skewness and variance of Z makes bias unpredictable.

- When R is fitted as continuous:
 - Bias and Inconsistent Estimates.
 - \blacksquare As we increase k, higher attrition towards 0.
- When Z is midpoint imputed:
 - Biased estimates, but it decreases as k increases.
 - Skewness and variance of Z makes bias unpredictable.

Can we do better? Maybe model Z? Two candidates

Interval Regression

- Interval regression is a special case of ordinal regression.
 - The metric and interval bounds of the cutpoints are known.

$$Z_i \sim F(X_i'\beta, \sigma^2).$$

$$\Pr(L_i \le Z_i < U_i) = F\left(\frac{U_i - X_i'\beta}{\sigma}\right) - F\left(\frac{L_i - X_i'\beta}{\sigma}\right)$$

Bayesian Rank Likelihood

 A semiparametric approach to inference that uses the ordering of the outcome to make inference

$$Z_i = X_i'\beta + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2), \quad R_i = g(Z_i)$$

 $\mathcal{R}(R) = \{ \mathbf{z} \in \mathbb{R}^n : z_{i_1} < z_{i_2} \text{ whenever } R_{i_1} < R_{i_2} \},$

- Inference is via Gibbs sampling:
 - a prior distribution must be provided to Z
 - truncated continuous distribution is used to update intervals

• First experiment, but now we make Z endogenous to a model.

- First experiment, but now we make Z endogenous to a model.
 - Z is a function of two variables: X1 and X2
 - where beta_1 = beta_2 = 1

- First experiment, but now we make Z endogenous to a model.
 - Z is a function of two variables: X1 and X2
 - where beta_1 = beta_2 = 1

• From 3 to 20 categorical levels (k)

First Stage Regression

$$Z = \beta_1 X_1 + \beta_2 X_2 + \varepsilon_Z,$$

$$R = g(Z; \tau_k),$$

First Stage Regression

This model is estimated with:

- 1. Interval regression or
- 2. Bayesian Rank Likelihood

$$Z = \beta_1 X_1 + \beta_2 X_2 + \varepsilon_Z,$$

$$R = g(Z; \tau_k),$$

First Stage Regression

$$Z = \beta_1 X_1 + \beta_2 X_2 + \varepsilon_Z,$$

$$R = g(Z; \tau_k),$$

This model is estimated with:

- 1. Interval regression or
- 2. Bayesian Rank Likelihood

Two scenarios:

- 1. With **full model** (Xs)
- 2. With no variables, intercept-only

Second Stage Regression

$$Z^* \xrightarrow{\gamma_1} Y$$

$$Y = \gamma_1 Z^* + \varepsilon_Y,$$

We predict Z from the First Stage.

Second Stage Regression

$$Z^* \xrightarrow{\gamma_1} Y$$
 $Y = \gamma_1 Z^* + \varepsilon_Y,$

- We predict Z from the First Stage.
- Then we evaluate gamma_1 under three predictions:
 - 1. Z from Interval Regression.
 - 2. Z from Bayesian Rank Likelihood.
 - 3. Z from Midpoint.

MC Results – Normality (with covariates)

Measurement error in γ_1 when Z is Normal(μ ,1) – with covariates X1 and X2

MC Results – Normality (intercept only)

Measurement error in γ_1 when Z is Normal(μ ,1) – intercept only models

MC Results – Lognormal (with covariates)

Measurement error in γ_1 when Z is Lognormal(μ ,0.2) – with covariates X1 and X2

MC Results – Lognormal (intercept only)

Measurement error in γ_1 when Z is Lognormal(μ ,0.2) – intercept only models

MC Results - Pareto (with covariates)

Measurement error in γ_1 when Z is Pareto(μ ,1.25) – with covariates X1 and X2

MC Results – Pareto (intercept only)

Measurement error in γ_1 when Z is Pareto(μ ,1.25) – intercept only models

- Ordinal variables should **not** be fitted as continuous variables.
 - Increasing the **number of categories** (k) does not help.

- Ordinal variables should not be fitted as continuous variables.
 - Increasing the **number of categories** (*k*) does not help.
- If metric is of interest, should you use midpoint imputation?
 - If you assume **Z is normal**, and you have **more than 12 categories**, OK!
 - Otherwise, use interval regression or Bayesian Rank Likelihood to predict Z!

- Ordinal variables should not be fitted as continuous variables.
 - Increasing the **number of categories** (*k*) does not help.
- If metric is of interest, should you use midpoint imputation?
 - If you assume Z is normal, and you have more than 12 categories, OK!
 - Otherwise, use interval regression or Bayesian Rank Likelihood to predict Z!
- The results show that an intercept-only model, is good enough,
- But perhaps a **model** can be more relevant if the DGP is more complex (like in a Pareto).

Thanks for your attention!

FIN