

UT7 PD1

Ejercicio 1

a. Dibuja el grafo.

b. Implementa el Algoritmo de Dijkstra con origen en B.

S	w	A	С	D	E
{B}	-	7	1	2	∞
{B, C}	С	7	1	2	∞
{B, C, D}	D	7	1	2	6
{B, C, D, E}	E	7	1	2	6
{B, C, D, E, A}	A	7	1	2	6

c. Indica los caminos de menor costo con un vector de predecesores.

P[0] B	P[1] C	P[2] D	P[3] E	P[4] A
-	0	0	2	0

d. Escribe un algoritmo para imprimir el camino entre el origen y un destino pasado como parámetro.

```
ImprimirCaminoHasta(Nodo destino)
    i = índiceDeDestinoEnVectorDePredecesores

Hacer
    resultado += P[i].Nodo
    i = P[i]
Hasta i == 0
```

Ejercicio 2

a. Dado el grafo dibuja la lista de adyacencia del mismo.

ADY[0]	A →	C (1) →	D (4) →	*
ADY[1]	В →	A (6) →	E (3) →	*
ADY[2]	C →	B (2) →	E (1) →	*
ADY[3]	D →	C (5) →	*	
ADY[4]	E →	A(3) →	*	

b. Encuentra los caminos de menor costo entre los vértices usando el Algoritmo de Floyd.

Inicial	A	В	С	D	Е
A	0	∞	1	4	∞
В	6	0	∞	∞	3
С	∞	2	0	∞	1
D	∞	∞	5	0	∞
E	3	∞	∞	∞	0
	A	В	С	D	E
A	0	∞	1	4	∞
В	6	0	7	10	3
С	∞	2	0	∞	1
D	∞	∞	5	0	∞
E	3	∞	4	7	0
	A	В	С	D	E
A	0	∞	1	4	∞
В	6	0	7	10	3
С	8	2	0	12	1
D	∞	∞	5	0	∞
E	3	∞	4	7	0

	A	В	С	D	E
A	0	3	1	4	2
В	6	0	7	10	3
С	8	2	0	12	1
D	13	7	5	0	6
Е	3	6	4	7	0
	A	В	С	D	E
A	0	3	1	4	2
В	6	0	7	10	3
С	8	2	0	12	1
D	13	7	5	0	6
E	3	6	4	7	0
	A	D		5	T.
		В	С	D	E
A	0	3	1	4	2
В	6	0	7	10	3
С	4	2	0	8	1
D	9	7	5	0	6
Е	3	6	4	7	0
			_	_	_
Final	A	В	С	D	Е
A	0	3	1	4	2
В	6	0	7	10	3
С	4	2	0	8	1
D	9	7	5	0	6
E	3	6	4	7	0

- c. Utilizando la matriz de predecesores, muestra la forma de recuperar un camino entre un par de vértices.
- d. ¿Cuál es el camino de menor costo entre A y E? El menor camino entre A y E es a través de C, es decir, haciendo $A \rightarrow C \rightarrow E$.
- e. ¿Cuáles en las excentricidades de los vértices del grafo?

e(A)	e(B)	e(C)	e(D)	e(E)
4	10	4	7	7

f. ¿Qué vértice es el centro del grafo? El centro del grafo sería el conjunto de grafos {A, C}.

Ejercicio 3

a. Dibuja la representación mediante una lista de adyacencias.

ADY[0]	A →	B (4) →	C (3) →	D (1) →	*
ADY[1]	В →	F (4) →	*		
ADY[2]	C →	E (7) →	*		
ADY[3]	D →	E (5) →	*		
ADY[4]	E →	F (3) →	*		
ADY[5]	F →	C (2) →	*		

b. Encuentra la cerradura transitiva del grafo.

•
$$A \rightarrow B, B \rightarrow F : A \rightarrow F$$

•
$$A \rightarrow C, C \rightarrow :: A \rightarrow E$$

•
$$A \rightarrow D, D \rightarrow A \rightarrow E$$

•
$$B \rightarrow F, F \rightarrow C : B \rightarrow C$$

•
$$D \rightarrow E, E \rightarrow F : D \rightarrow F$$

