Expansion detected by cycles

Kai Renken Dmitry Kozlov January 29, 2020

Abstract

1 On the hitting number of sets

Let *S* be a set and $\mathcal{F} \subseteq 2^S$ a family of subsets. Then

$$\tau(\mathcal{F}) := \min\{|P| : P \subseteq S, P \cap F \neq \emptyset, \text{ for all } F \in \mathcal{F}\}$$

is called the **hitting number** of ${\mathcal F}$ and

$$\Delta_{\mathcal{F}} \coloneqq \left\{ S \subseteq \mathcal{F} : \bigcap_{F \in S} F \neq \emptyset \right\}$$

is called the **cut complex** of \mathcal{F} .

Let now X be a simplicial complex on the vertex set V and $S \subseteq X$ a set of simplices of X, then we call S a **covering** of X if for every vertex $v \in V$ there exists a simplex $\sigma \in S$, such that $v \in \sigma$.

The first obvious observation is that for every set *S* and every family of subsets $\mathcal{F} \subseteq 2^S$ we have:

$$\tau(\mathcal{F}) = \min\{|S| : S \text{ is a covering of } \Delta_{\mathcal{F}}\}\$$

2 The cut complex for families of cycles

Denote the complete simplex on n vertices by $\Delta^{[n]}$ and always work with coefficients in \mathbb{Z}_2 . Let now $\varphi \in C^k(\Delta^{[n]})$ be a k-cochain. Then we can define the family

$$T_{\varphi} := \{ \operatorname{supp}(\partial \sigma) : \sigma \in \operatorname{supp}(\delta \varphi) \}$$

where the sets are the supports of the boundaries of the simplices in the support of the coboundary of φ .

Let us now study the structure of the cut complex of T_{φ} . First, we see that

$$H_i(\Delta_{T_{\varphi}})=0$$

holds for all $i \geq 2$, as follows: If we have two 2-simplices $\{v_1,v_2,v_3\}$ and $\{v_2,v_3,v_4\}$ in $\Delta_{T_{\varphi}}$ which share an edge $\{v_2,v_3\}$, then the 3-simplex $\{v_1,v_2,v_3,v_4\}$ has to be contained in $\Delta_{T_{\varphi}}$ as well.

References