Text Obfuscation

Reverse Engineering a Hack

Nick Rogers Mar 9, 2017

Source Code (for Today's Talk)

https://github.com/harmonicradius/diyScgApi

Expensive Cardboard

Target Data

Name	Category	Mana	Туре	P/T	Rarity	Condition	Stock	Price	
Black Lotus	Alpha	0	Artifact		R	NM/M	Out of Stock	\$19999.99	Restock Alert
Black Lotus	Beta	0	Artifact		R	NM/M	Out of Stock	\$14999.99	Restock Alert
Black Lotus (SCAN 233-LEB- 11)	Beta	0	Artifact		R	NM/M	1	\$13999.99	0 +
Black Lotus (SCAN 233-LEB- 21)	Beta	0	Artifact		R	SP	1	\$9999.99	0 +
Black Lotus (SCAN 233-LEB- 23)	Beta	0	Artifact		R	SP	1	\$10999.99	0 +
Black Lotus (Beta) (BGS 8.5) (#0005038624)	BGS/PSA Graded Cards	0	Artifact		R	NM/M	1	\$13999.99	0 +
Black Lotus (Beta) (BGS 8.5) (#0008469248)	BGS/PSA Graded Cards	0	Artifact		R	NM/M	1	\$13999.99	0 +

Prices, Obscured

```
1 <style>
      .tabhkz {
          background-image: url(//sales.starcitygames.com/price icons.php?id=fTN3MiwLpwVN4R5GzG15mLpZePIRZI OZxdGTQXrAcE);
      .GiRDsu {
          width: 7px;
          float: left:
          height: 14px;
      .ruzrQx {
          background-position: -63px -2px;
          width: 3px;
      .ruzr0x2 {
          background-position: -63px 21px;
          width: 3px;
      .GiNbar {
          background-position: -21px -2px;
      .GiNbqr2 {
          background-position: -21px 21px;
          background-position: -56px -2px;
      .NFKvvm2 {
          background-position: -56px 21px;
      .xtecaS {
          background-position: -35px -2px;
      .xtecaS2 {
          background-position: -35px 21px;
```

2 3 4

5

6

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29 30

31

32 33

34

```
<div style='width:85px'>
          <div class="GiRDsu">$</div>
3
          <div class="GiRDsu tqbhkz GiNbqr2">&nbsp;</div>
          <div class="tqbhkz GiRDsu uAdqrR2">&nbsp;</div>
          <div class="tqbhkz GiRDsu uAdqrR2">&nbsp;</div>
          <div class="uAdqrR2 tqbhkz GiRDsu">&nbsp;</div>
8
          <div class="GiRDsu tqbhkz uAdqrR2">&nbsp;</div>
9
          <div class="ruzr0x2 tqbhkz GiRDsu">&nbsp;</div>
          <div class="GiRDsu tqbhkz uAdqrR2">&nbsp;</div>
10
          <div class="uAdgrR2 tgbhkz GiRDsu">&nbsp;</div>
11
12
      </div>
13 
14
```

Each time the page loads...

931748206.5 931748206.5

- A new numbers image is generated with the order randomized.
- Accompanying CSS is generated that tells the page how to replace numbers
- Some of the CSS is a 'red herring'

How to reverse this process

- Collect all of the CSS, and the randomly ordered image
- Use this to generate images for each number
- Compare those images to a known set of images representing the "true" numbers
- Return the numbers as a meaningful object

Tools I Used

- Requests, and BeautifulSoup tools to load the web page and save the data
- "convert.exe" from the ImageMagick library for cutting images up
- Github.com / rework css to convert css into something we can parse through
- PIL (python image library) for comparisons, histograms, differences

Relevant Mathematics

- To compare two images, we store the images as matrices (2-dimensional)
- To find the "distance" from one image to another, we need a "metric" which is positive (and zero if they are equal)
- A useful metric is the "root mean square"
- Find the difference between each pixel of the image, square the differences, sum the squares, divide by the size of the image

Thanks!

Nick Rogers

contact: rogersnick@live.com