No-Regret Learning in Unknown Games with Correlated Payoffs

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause ETH Zürich

Motivation

Consider learning to play an unknown repeated game.

- Bandit algorithms: slow convergence rates.
- Full-information algorithms: improved rates but are often unrealistic.

Under some regularity assumptions and a *new feedback model*, we propose **GP-MW** algorithm. **GP-MW** improves upon bandit regret guarantees while not relying on full-information feedback.

Set-Up

- player i picks action $a_t^i \in \mathcal{A}_i$
- other players pick actions a_t^-
- player i receives reward $r^i(a_t^i, a_t^{-i})$

$$R^{i}(T) = \max_{a \in \mathcal{A}^{i}} \sum_{t=1}^{T} r^{i}(a, a_{t}^{-i}) - \sum_{t=1}^{T} r^{i}(a_{t}^{i}, a_{t}^{-i})$$

- Reward function $r^i: \mathscr{A}^i \times \cdots \times \mathscr{A}^N \to [0,1]$ is **unknown**
- Each time t, player i observes:
- 1) $\tilde{r}_t^i = r^i(a_t^i, a_t^{-i}) + \epsilon_t^i$, ϵ_t^i σ_i -sub-Gaussian (noisy bandit feedback)
- 2) a_t^{-i} (actions of the other players)
- Regularity (smoothness) assumption: $r^i(\cdot)$ has a bounded RKHS norm w.r.t. a kernel function $k^i(\cdot,\cdot)$

Key Idea

• Player i can use the observed data $\{a_{\tau}^i, a_{\tau}^{-i}, \tilde{r}_{\tau}^i\}_{\tau=0}^{t-1}$ to build a shrinking Upper Confidence Bound on $r^i(\cdot)$:

$$UCB_t(\cdot) = \mu_t(\cdot) + \beta_t^{1/2} \sigma_t(\cdot)$$

• $\mu_t(\cdot)$ and $\sigma_t(\cdot)$ are the posterior mean and covariance functions computed using standard **GP regression**.

Main Results

GP-MW algorithm for player i

Initialize mixed strategy: $\mathbf{w}_1 = [^1/_{K_i}, ..., ^1/_{K_i}] \in \mathbb{R}^{K_i}$ For t = 1, ..., T:

- Sample action: $a_t^i \sim \mathbf{w}_t$
- Observe: noisy reward $ilde{r}_t^i$ & opponents actions a_t^{-i}
- Compute <u>optimistic</u> full-info. feedback $\mathbf{r}_t \in \mathbb{R}^{K_i}$:

$$\mathbf{r}_{t}[k] = \min\{\frac{UCB_{t}(a_{k}, a_{t}^{-i}), 1\}, \quad k = 1, ..., K_{i}$$

- Update mixed strategy :

$$\mathbf{w}_{t+1}[k] \propto \mathbf{w}_t[k] \cdot \exp\left(\eta \cdot \mathbf{r}_t[k]\right), \quad k = 1, ..., K_i$$

- Update GP model based on the new observed data

Def. Maximum information gain:

since $r^l(\cdot, \cdot)$ is unknown

$$\gamma_T = \max_{x_1, \dots, x_T} I(\mathbf{r}_T; r^i) \qquad \text{Mutual information btw.}$$

$$r^i(\cdot) \text{ and } \mathbf{r}_T = [r^i(x_t) + \epsilon]_{t=1}^T$$

• γ_T grows with domain's dimension d. E.g., $\gamma_T = \mathcal{O}((\log T)^{d+1})$ for SE kernels

Theorem. Assume $||r^i||_{k^i} \le B$. If player i uses **GP-MW**, with $\beta_t = B + \sqrt{2\gamma_{t-1} + \log(2/\delta)}$ and $\eta = \sqrt{(8\log K_i)/T}$. Then, w.p. $(1 - \delta)$,

$$R^{i}(T) = \mathcal{O}\left(\sqrt{T\log K_{i}} + B\sqrt{T\gamma_{T}} + \gamma_{T}\sqrt{T}\right)$$

• For $a^i \in \mathbb{R}^{d_i}$ and Lipschitz rewards: $R^i(T) = \mathcal{O}(\sqrt{d_i T \log(d_i T)} + \gamma_T \sqrt{T})$

Summary

	Full-information	Bandit	Proposed model
Feedback:	$\{r^i(a, a_t^{-i}), \forall a \in \mathcal{A}^i\}$	$r^i(a_t, a_t^{-i})$	$r^{i}(a_t^i, a_t^{-i}) + \epsilon_t^i, a_t^{-i}$
Regret:	$\mathcal{O}(\sqrt{T\log K_i})$	$\mathcal{O}(\sqrt{TK_i \log K_i})$	$\mathcal{O}(\sqrt{T\log K_i} + \gamma_T \sqrt{T})$
	Hedge [Freund and Schapire '97]	Exp3 [Auer et al. '02]	GP-MW [This paper]
Unrealistic feedback.			

Experiments

• Random zero-sum games:

Player-I uses Hedge, Exp3.P, or GP-MW.
 Player-2 plays random actions.

• Player-I uses GP-MW, Player-2 uses Exp3.P

• Repeated traffic routing:

- 528 agents, $K_i = 5$ possible routes for each agent
- Agents want to miminize traveltimes:

$$r^{i}(a^{i}, \mathbf{a}^{-i}) = - \text{traveltime}^{i}(a^{i}, \mathbf{a}^{-i})$$

Simulated with BPR congestion model

At every round each agent observes:

- I) Incurred travel time, subject to noise
- 2) Total occupancy on each edge (i.e., $a_t^i + a_t^{-i}$)

Sioux Falls Network
[http://www.bgu.ac.il/ bargera/tntp/]

u contial pagy ia paggarage and atian. The pullar outland at a cotal movielens (100)

• Sequential movie recommendation: [https://grouplens.org/datasets/movielens/100k/.]

Don't know a-priori who will see our recommendations.

- At every round: We select a movie a_t
 - Adversary selects a user u_t
 - Rating: $r(a_t, \mathbf{u}_t) = a_t^{\mathsf{T}} \mathbf{r}_{\mathbf{u}_t} + \epsilon$

Bayesian Optimization baselines:

- GP-UCB [Srinivas et al. 2010]: $a_t = \arg\max\max \frac{UCB_t(a, \mathbf{u})}{t}$
- StableOpt [Bogunovic et al. 2018]: $a_t = \arg\max\min \frac{UCB_t(a, \mathbf{u})}{UCB_t(a, \mathbf{u})}$

^[1] P. Auer, N. Cesa-Bianchi, Y. Freund, R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 2003.
[2] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997.

Scales badly with K_i

This work was gratefully supported by Swiss National Science Foundation, under the grant SNSF 200021_172781, and by the ERC grant 815943.