Módulo 6: Optimización con Restricciones

Departamento MACC

Matemáticas Aplicadas y Ciencias de la Computación

Universidad del Rosario

Primer Semestre de 2021

1 / 47

Agenda

- Problemas con restricciones de desigualdad
 - Introducción
 - Condición de primer orden KKT
 - Condiciones de segundo orden KKT

Sensibilidad

Introducción

$$x\in\mathbb{R}^n$$
, $f:\mathbb{R}^n o\mathbb{R}$, $\Omega\subset\mathbb{R}^n$ min $f(x)$ s.a. $x\in\Omega$

- $h_i: \mathbb{R}^n \to \mathbb{R}, i = 1, \ldots, m$
- $g_j: \mathbb{R}^n \to \mathbb{R}, j = 1, \ldots, p$

min
$$f(x)$$

s.a. $h_i(x) = 0, i = 1, \dots, m$
 $g_j(x) \le 0, j = 1, \dots, p$

Introducción (cont.)

$$x \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^n \to \mathbb{R}^p$

$$\min f(x)$$
s.a. $h(x) = 0$

$$g(x) \le 0$$

Restricciones activas - Ejemplo

min
$$(x_1 - 3)^2 - (x_2 - 3)^2$$

s.a. $x_1^2 + x_2^2 \le 5$
 $3x_1 + x_2 \le 5$

Región factible:

Definiciones

- Sea x^* un punto factible: $h(x^*) = 0$, $g(x^*) \le 0$. $J(x^*)$ es el conjunto de restricciones activas en x^* : $J(x^*) = \{j : g_j(x^*) = 0\}$
- Un punto factible x^* es un punto **regular** si los gradientes $\nabla h_1(x^*), \ldots, \nabla h_m(x^*)$ y $\nabla g_j(x^*)$, para $j \in J(x^*)$, son linealmente independientes

Ejemplo

min
$$2x_1^2 - 3x_2$$

s.a. $x_1^2 + x_2^2 \le 5$
 $x_1 + x_2 \le 1$

•
$$g_1(x) = x_1^2 + x_2^2 - 5 \le 0$$
, $\nabla g_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$

•
$$g_2(x) = x_1 + x_2 - 1 \le 0$$
, $\nabla g_2(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Ejemplo (cont.)

min
$$2x_1^2 - 3x_2$$

s.a. $x_1^2 + x_2^2 \le 5$
 $x_1 + x_2 \le 1$

- $x_A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $J(x_A) = \{\} \Rightarrow x_A$ interior
- $x_B = \begin{bmatrix} -\sqrt{5} \\ 0 \end{bmatrix}$, $J(x_B) = \{1\}$, $\nabla g_1(x_B) = \begin{bmatrix} -2\sqrt{5} \\ 0 \end{bmatrix} \Rightarrow x_B$ regular
- $x_C = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $J(x_C) = \{1, 2\}$, $\nabla g_1(x_C) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\nabla g_2(x_C) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow x_C$ regular

Condición de primer orden - Karush-Kuhn-Tucker

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$ con $m \le n$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $f, h, g \in \mathcal{C}^1$. Sea x^* un mínimo local de f s.a. h(x) = 0, $g(x) \le 0$ $y x^*$ un punto regular. Entonces $\exists \lambda^* \in \mathbb{R}^m$ $y \mu^* \in \mathbb{R}^p$:

- **1** $Df(x^*) + \lambda^{*'}Dh(x^*) + \mu^{*'}Dg(x^*) = 0$
- $\mu^* \geq 0$

Condición de primer orden - KKT (cont.)

- x^* factible: $h(x^*) = 0$ y $g(x^*) \le 0$
- Condición 3:

$$\mu^{*'}g(x^*) = \sum_{j=1}^{p} \mu_j^*g_j(x^*) = 0$$

Para las restricciones no activas $(g_j(x^*) < 0)$ se cumple que $\mu_j^* = 0$

Condición de primer orden - KKT (cont.)

• $\nabla f(x^*)$ comb. lineal de los gradientes de las restricciones de igualdad y de las restricciones activas en x^* :

$$abla f(x^*) = -\sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) - \sum_{j=1}^p \mu_j^* \nabla g_j(x^*)$$
 $-\nabla f(x^*) = \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) + \sum_{j \in J(x^*)} \mu_j^* \nabla g_j(x^*)$

Condición de primer orden - KKT (cont.)

- $I: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}: I(x, \lambda, \mu) = f(x) + \lambda' h(x) + \mu' g(x)$
- Condición necesaria de primer orden para problema no restringido mín $I(x,\lambda,\mu)$
- $DI(x,\lambda,\mu) = [D_xI(x,\lambda,\mu), D_\lambda I(x,\lambda,\mu), D_\mu I(x,\lambda,\mu)] = 0$
- $D_x I(x, \lambda, \mu) = Df(x) + \lambda' Dh(x) + \mu' Dg(x) = 0$
- $D_{\lambda}I(x,\lambda,\mu)=h(x)=0$ (factibilidad restricciones de igualdad)

Condición de primer orden - KKT - Ejemplo 1

min
$$2x_1^2 - 3x_2$$

s.a. $x_1^2 + x_2^2 \le 5$
 $x_1 + x_2 \le 1$

•
$$g_1(x) = x_1^2 + x_2^2 - 5 \le 0$$
, $\nabla g_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$

•
$$g_2(x) = x_1 + x_2 - 1 \le 0$$
, $\nabla g_2(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Condición de primer orden:

$$4x_1 + 2\mu_1 x_1 + \mu_2 = 0$$

$$-3 + 2\mu_1 x_2 + \mu_2 = 0$$

$$\mu_1(x_1^2 + x_2^2 - 5) + \mu_2(x_1 + x_2 - 1) = 0$$

$$\mu_1 \ge 0$$

$$\mu_2 \ge 0$$

$$x_1^2 + x_2^2 \le 5$$

$$x_1 + x_2 \le 1$$

Posibles soluciones:

- $\mu_1 = 0$, $\mu_2 = 0 \Rightarrow -3 = 0$: NO
- $\mu_1 = 0$, $x_1 + x_2 = 1 \Rightarrow \mu_2 = 3$, $x_1 = -3/4$, $x_2 = 7/4$, $x_1^2 + x_2^2 \le 5$: Cumple CNPO
- $\mu_2 = 0$, $x_1^2 + x_2^2 = 5 \Rightarrow x_1 = 0$, $x_2 = \pm \sqrt{5} > 1$: NO factible
- $x_1 + x_2 = 1$, $x_1^2 + x_2^2 = 5$
 - \Rightarrow $x_1=-1$, $x_2=2$, $\mu_1=-1/6<0$: NO cumple CNPO
 - $\Rightarrow x_1 = 2$, $x_2 = -1$, $\mu_1 = -11/6 < 0$: NO cumple CNPO

Único punto factible que cumple CNPO:
$$x^* = \begin{bmatrix} -3/4 \\ 7/4 \end{bmatrix}$$
, $\mu^* = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$

- $f(x^*) = -33/8$
- Restricción g₁ no activa (no lineal)
- Restricción g₂ activa (lineal)
- x* es regular

$$\min \ 2x_1^2 - 3x_2 \ \text{s.a.} \ x_1^2 + x_2^2 \leq 5, \ x_1 + x_2 \leq 1$$

(Universidad del Rosario)

$$\min \ 2x_1^2 - 3x_2 \ \text{s.a.} \ x_1^2 + x_2^2 \le 5, \ x_1 + x_2 \le 1$$

$$\min 2x_1^2 - 3x_2 \text{ s.a. } x_1^2 + x_2^2 \le 5, \ x_1 + x_2 \le 1$$

4□ > 4□ > 4□ > 4 = > 4 = > = 900

Definiciones

 Espacio tangente a la superficie formada por las restricciones de igualdad y las restricciones activas en x*:

$$T(x^*) = \{y : Dh(x^*)y = 0, Dg_j(x^*)y = 0, j \in J(x^*)\}$$

- $I(x, \lambda, \mu) = f(x) + \sum_{j=1}^{m} \lambda_j h_j(x) + \sum_{j=1}^{p} \mu_j g_j(x)$
- $L(x, \lambda, \mu)$: Hesiana de $I(x, \lambda, \mu)$ con respecto a x
- $L(x,\lambda,\mu) = H(x) + \sum_{j=1}^{m} \lambda_j H_j(x) + \sum_{j=1}^{p} \mu_j G_j(x)$
- $H(x), H_j(x), G_j(x)$: Hesianas de f, h_j y g_j , respectivamente

Condición necesaria de segundo orden - KKT

Teorema

Sea x^* un mínimo local de $f: \mathbb{R}^n \to \mathbb{R}$ sujeto a h(x) = 0, $g(x) \le 0$ con $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $m \le n$, $f, h, g \in \mathcal{C}^2$. Si x^* es un punto regular, entonces $\exists \lambda^* \in \mathbb{R}^m$ y $\mu^* \in \mathbb{R}^p$:

- **1** $Df(x^*) + \lambda^{*'}Dh(x^*) + \mu^{*'}Dg(x^*) = 0, \ \mu^* \ge 0, \ \mu^{*'}g(x^*) = 0$
- $y'L(x^*, \lambda^*, \mu^*)y \geq 0, \forall y \in T(x^*)$
 - $L(x^*, \lambda^*, \mu^*)$ semidefinida positiva en $T(x^*)$

Otras definiciones

- $\tilde{J}(x^*, \mu^*) = \{j : g_j(x^*) = 0, \mu_j^* > 0\}$: conjunto de restricciones de desigualdad activas en x^* y con variable dual asociada diferente de cero
- $\tilde{T}(x^*, \mu^*) = \{y : Dh(x^*)y = 0, Dg_j(x^*)y = 0, j \in \tilde{J}(x^*, \mu^*)\}$: espacio tangente a la superficie formada por las restricciones de igualdad y las restricciones activas en el punto x^* y con variable dual asociada diferente de cero

Condición suficiente de segundo orden - KKT

Teorema

Sea x^* un punto tal que $h(x^*) = 0$, $g(x^*) \le 0$ (factible) con $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $f, h, g \in \mathcal{C}^2$. Si $\exists \lambda^* \in \mathbb{R}^m$ y $\mu^* \in \mathbb{R}^p$:

- **1** $Df(x^*) + \lambda^{*'}Dh(x^*) + \mu^{*'}Dg(x^*) = 0$, $\mu^* \ge 0$, $\mu^{*'}g(x^*) = 0$
- ② $y'L(x^*, \lambda^*, \mu^*)y > 0$, $\forall y \in \tilde{T}(x^*, \mu^*)$, $y \neq 0$

Entonces x^* es un mínimo local estricto de f en la región factible

• $L(x^*, \lambda^*, \mu^*)$ definida positiva en $\tilde{T}(x^*, \mu^*)$

min
$$2x_1^2 - 3x_2$$

s.a. $x_1^2 + x_2^2 \le 5$
 $x_1 + x_2 \le 1$

•
$$H(x) = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$$
, $G_1(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, $G_2(x) = 0$

- Punto que cumple CNPO: $x^* = \begin{bmatrix} -3/4 \\ 7/4 \end{bmatrix}$, $\mu^* = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$
- $L(x,\mu) = \begin{bmatrix} 4+2\mu_1 & 0\\ 0 & 2\mu_1 \end{bmatrix}$
- $L(x^*, \mu^*) = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$

Restricciones activas en x^* : $J(x^*) = \{2\}$

Espacio tangente $T(x^*)$:

$$T(x^*) = \{y : \nabla g_2(x^*)y = 0\}$$

$$= \left\{y : \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \right\}$$

$$= \{y : y_2 = -y_1\} = \left\{y = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \alpha, \ \alpha \in \mathbb{R} \right\}$$

Evaluando la CNSO:

$$y'L(x^*, \mu^*)y = 4\alpha^2 \ge 0, \ \forall \alpha \in \mathbb{R}$$

 $\Rightarrow x^*$ cumple CNSO

Dado que
$$\mu_2^* \neq 0$$
, $\widetilde{J}(x^*, \mu^*) = J(x^*) = \{2\} \Rightarrow \widetilde{T}(x^*, \mu^*) = T(x^*)$

Evaluando la CSSO:

$$y'L(x^*, \mu^*)y = 4\alpha^2 > 0, \ \forall \alpha \in \mathbb{R}, \alpha \neq 0$$

 $\Rightarrow x^*$ cumple CSSO

$$\min 2x_1^2 - 3x_2 \text{ s.a. } x_1^2 + x_2^2 \le 5, \ x_1 + x_2 \le 1$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

min
$$3x_1$$

s.a. $x_1^2 + x_2^2 \ge 1$

•
$$g_1(x) = x_1^2 + x_2^2 - 1 \ge 0$$
, $\nabla g_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$, $G_1(x) = 2I$

- $\nabla f(x) = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, H(x) = 0
- Restricción ≥
- Todo punto factible regular

Condición necesaria de primer orden:

$$3 + 2\mu_1 x_1 = 0$$

$$2\mu_1 x_2 = 0$$

$$\mu_1 \le 0$$

$$\mu_1(x_1^2 + x_2^2 - 1) = 0$$

$$x_1^2 + x_2^2 \ge 1$$

Posibles soluciones:

- $\mu_1 = 0$: NO cumple CNPO
- $x_1^2 + x_2^2 = 1$: $x_2 = 0$, $x_1 = \pm 1$
 - $x_1 = 1$: $\mu_1 = -3/2$, Cumple CNPO
 - $x_1 = -1$: $\mu_1 = 3/2 > 0$, NO cumple CNPO

- Punto que cumple CNPO: $x^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mu^* = -3/2$.
- Restricciones activas en x^* : $J(x^*) = \{1\}$
- H(x) = 0, $H_1(x) = 2I$
- $L(x^*, \mu^*) = 2\mu_1^* I = -3I$
- $T(x^*) = \left\{ y = \begin{bmatrix} 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$

Evaluando CNSO: $y'L(x^*, \mu^*)y = -3\alpha^2 \le 0, \alpha \in \mathbb{R}$: NO cumple CNSO

min
$$3x_1$$
 s.a. $x_1^2 + x_2^1 \ge 1$

$$\begin{aligned} &\min \ x_1^2 + x_2^2 \\ &\text{s.a.} \ x_1^2 + 2x_1x_2 + x_2^2 = 1 \\ &x_1^2 - x_2 \leq 0 \end{aligned}$$

•
$$h_1(x) = x_1^2 + 2x_1x_2 + x_2^2 - 1 = 0$$
, $\nabla h_1(x) = \begin{bmatrix} 2x_1 + 2x_2 \\ 2x_2 + 2x_1 \end{bmatrix}$, $H_1(x) = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$

•
$$g_1(x) = x_1^2 - x_2 \le 0$$
, $\nabla g_1(x) = \begin{bmatrix} 2x_1 \\ -1 \end{bmatrix}$, $G_1(x) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

•
$$\nabla f(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$$
, $H(x) = 2I$

Condición necesaria de primer orden:

$$2x_1 + 2\lambda_1(x_1 + x_2) + 2\mu_1x_1 = 0$$

$$2x_2 + 2\lambda_1(x_1 + x_2) - \mu_1 = 0$$

$$\mu_1 \ge 0$$

$$\mu_1(x_1^2 - x_2) = 0$$

$$x_1^2 + 2x_1x_2 + x_2^2 = 1$$

$$x_1^2 - x_2 \le 0$$

Posibles soluciones:

- $\mu_1 = 0$, $\lambda_1 = 0$: $x_1 = 0$, $x_2 = 0$, NO factible
- $\mu_1 = 0$: $x_1 = x_2 = \pm 1/2$, $\lambda_1 = -1/2$
 - $x_1 = x_2 = 1/2$: cumple CNPO
 - $x_1 = x_2 = -1/2$: $x_1^2 > x_2$, NO factible

- Punto que cumple CNPO: $x^* = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_1^* = -1/2$, $\mu_1^* = 0$.
- Restricciones activas en x^* : $J(x^*) = \{\}$
- $\nabla h_1(x^*) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \neq 0$: x^* regular
- $H(x^*) = 2I$, $H_1(x^*) = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, $G_1(x^*) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$
- $L(x^*, \mu^*) = 2I \frac{1}{2} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} + 0 \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

•
$$T(x^*) = \left\{ y : \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \right\} = \left\{ y = \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}, \alpha \in \mathbb{R} \right\}$$

- Evaluando CNSO: $y'L(x^*, \lambda^*, \mu^*)y = 4\alpha^2 \ge 0, \forall \alpha \in \mathbb{R}$: Cumple CNSO
- $\tilde{J}(x^*, \mu^*) = J(x^*) \Rightarrow \tilde{T}(x^*, \mu^*) = T(x^*)$
- Evaluando CSSO: $y'L(x^*, \lambda^*, \mu^*)y = 4\alpha^2 > 0, \forall \alpha \in \mathbb{R}, \alpha \neq 0$: Cumple CSSO

$$\min \ x_1^2 + x_2^2 \ \text{s.a.} \ x_1^2 + 2x_1x_2 + x_2^2 = 1, \ x_1^2 - x_2 \leq 0$$

(Universidad del Rosario)

$$\min \ x_1^2 + x_2^2 \ \text{s.a.} \ x_1^2 + 2x_1x_2 + x_2^2 = 1, \ x_1^2 - x_2 \leq 0$$

$$\min \ x_1^2 + x_2^2 \ \text{s.a.} \ x_1^2 + 2x_1x_2 + x_2^2 = 1, \ x_1^2 - x_2 \leq 0$$

(Universidad del Rosario)

Caso $g(x) \ge 0$ - Cond. primer orden

Teorema

Sea $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$ con $m \le n$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $f, g \in \mathcal{C}^1$. Sea x^* un mínimo local de f s.a. h(x) = 0, $g(x) \ge 0$ y x^* un punto regular. Entonces $\exists \lambda^* \in \mathbb{R}^m$ y $\mu^* \in \mathbb{R}^p$:

- **2** $\mu^* \leq 0$
- $0 \mu^{*'}g(x^*) = 0$

Caso $g(x) \ge 0$ - Cond. *necesaria* segundo orden

Teorema

Sea x^* un mínimo local de $f: \mathbb{R}^n \to \mathbb{R}$ sujeto a h(x) = 0, $g(x) \ge 0$ con $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $m \le n$, $f, h, g \in \mathcal{C}^2$. Si x^* es un punto regular, entonces $\exists \lambda^* \in \mathbb{R}^m$ y $\mu^* \in \mathbb{R}^p$:

- **1** $Df(x^*) + \lambda^{*'}Dh(x^*) + \mu^{*'}Dg(x^*) = 0, \ \mu^* \le 0, \ \mu^{*'}g(x^*) = 0$
- ② $y'L(x^*, \lambda^*, \mu^*)y \ge 0$, $\forall y \in T(x^*)$

Caso $g(x) \ge 0$ - Cond. *suficiente* segundo orden

Teorema

Sea x^* un punto tal que $h(x^*) = 0$, $g(x^*) \ge 0$ (factible) con $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $f, h, g \in \mathcal{C}^2$. Si $\exists \lambda^* \in \mathbb{R}^m$ y $\mu^* \in \mathbb{R}^p$:

- **1** $Df(x^*) + \lambda^{*'}Dh(x^*) + \mu^{*'}Dg(x^*) = 0$, $\mu^* \le 0$, $\mu^{*'}g(x^*) = 0$
- ② $y'L(x^*, \lambda^*, \mu^*)y > 0$, $\forall y \in \tilde{T}(x^*, \mu^*)$, $y \neq 0$

Entonces x^* es un mínimo local estricto de f en la región factible

Agenda

- 1 Problemas con restricciones de desigualdad
 - Introducción
 - Condición de primer orden KKT
 - Condiciones de segundo orden KKT
- Sensibilidad

Sensibilidad

$$x \in \mathbb{R}^n, \ f : \mathbb{R}^n \to \mathbb{R}, \ h : \mathbb{R}^n \to \mathbb{R}^m, \ g : \mathbb{R}^n \to \mathbb{R}^p$$

$$\min \ f(x)$$
s.a. $h(x) = b$

$$g(x) \le c$$

- Condición necesaria de primer orden para problema no restringido en el óptimo mín $I(x^*, \lambda^*, \mu^*)$
- $I(x^*, \lambda^*, \mu^*) = f(x^*) + \lambda^{*'}h(x^*) + \mu^{*'}g(x^*)$
- $\frac{\partial f(x^*)}{\partial b} = -\lambda^*$, $\frac{\partial f(x^*)}{\partial c} = -\mu^*$

Sensibilidad - Ejemplo

min
$$x_1^2 - x_2$$

s.a. $x_1 + x_2 = 2$
 $x_1^2 + x_2^2 \le 6$
 $-x_1 + 1 \le 0$

- $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda = 1$, $\mu_1 = 0$, $\mu_2 = 2$
- Sensibilidad $x_1 + x_2 = 3$

Sensiblidad - Ejemplo (c.)

Condición necesaria de primer orden:

$$2x_1 + \lambda + 2\mu_1 x_1 - \mu_2 = 0$$

$$-1 + \lambda + 2\mu_1 x_1 = 0$$

$$\mu_1, \mu_2 \ge 0$$

$$\mu_1(x_1 + x_2 - 3) + \mu_2(1 - x_1) = 0$$

$$x_1 + x_2 - 3 = 0$$

$$x_1^2 + x_2^2 - 6 \le 6$$

$$-x_1 + 1 \le 0$$

•
$$x^* = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\lambda = 1$, $\mu_1 = 0$, $\mu_2 = 3$

