6b. Lineare Programmierung Das Simplex-Verfahren I

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Polyeder und Eckpunkte
- Herleitung des Simplex-Verfahrens

Hyperebene und Halbräume

- Seien $a \in \mathbb{R}^n \setminus \{0\}$ und $b \in \mathbb{R}$
- Zu *a* senkrechte Hyperebene:

$${x \in \mathbb{R}^n : a^T x = b}$$

Zugehörige Halbräume:

$$\{x \in \mathbb{R}^n : a^T x \le b\}$$

$$\{x \in \mathbb{R}^n : a^T x \ge b\}$$

Polyeder

• Ein Polyeder ist die Schnittmenge endlich vieler Halbräume:

Ein beschränktes Polyeder heißt Polytop

Eckpunkte

$$P = \{x : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

• $\bar{x} \in P$ heißt Eckpunkt, falls $\exists c \in \mathbb{R}^n$ sodass:

$$c^T \bar{x} > c^T x \quad \forall x \in P \setminus \{\bar{x}\}$$

Extremalpunkte

$$P = \{x : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

• $\bar{x} \in P$ heißt Extremalpunkt, falls $\forall y, z \in P, \forall \alpha \in (0,1)$:

$$\bar{x} = \alpha y + (1 - \alpha)z \Rightarrow \bar{x} = y = z$$

Basislösungen

$$P = \{x : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

- Sei $\bar{x} \in P$ und sei $\mathcal{A}(\bar{x}) = \{i : a_i^T \bar{x} = b_i\}$ die aktive Menge bei \bar{x}
- $\bar{x} \in P$ heißt Basislösung, falls:

$$\operatorname{rang}(A[\mathcal{A}(\bar{x}),:]) = n \quad (\Rightarrow \bar{x} = A[\mathcal{A}(\bar{x}),:]^{-1}b)$$

Schnittpunkt zweier (nicht kollinearer) Geraden in \mathbb{R}^2 Schnittpunkt dreier (nicht koplanarer) Ebenen in \mathbb{R}^3

Satz 6.5. Eckpunkte

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Sei $\bar{x} \in P$. Die folgenden Aussagen sind äquivalent:

- 1. \bar{x} ist ein Eckpunkt
- 2. \bar{x} ist ein Extremalpunkt
- 3. \bar{x} ist eine Basislösung

Beweis

Behauptung: \bar{x} ist ein Eckpunkt $\Rightarrow \bar{x}$ ist ein Extremalpunkt

Sei \bar{x} ein Eckpunkt

Angenommen,
$$\bar{x} = \alpha y + (1 - \alpha)z$$
 mit $y, z \in P, \alpha \in (0,1)$

$$c^{T}\bar{x} = \alpha c^{T}y + (1 - \alpha)c^{T}z$$

$$\leq \alpha c^{T}\bar{x} + (1 - \alpha)c^{T}\bar{x} = c^{T}\bar{x}$$

$$c^{T}y = c^{T}z = c^{T}\bar{x}$$

$$y = z = \bar{x}$$
 \bar{x} ist ein Eckpunkt

 $\Rightarrow \bar{x}$ ist ein Extremalpunkt

Beweis

Behauptung: \bar{x} ist ein Extremalpunkt $\Rightarrow \bar{x}$ ist eine Basislösung

Sei
$$\bar{x}$$
 ein Extremalpunkt
$$\mathcal{A}(\bar{x}) = \{i: a_i^T \bar{x} = b_i\}$$
 Angenommen, $\operatorname{rang}(A[\mathcal{A}(\bar{x}),:]) < n$

Sei
$$d \in \ker A[\mathcal{A}(\bar{x}),:] \setminus \{0\}$$
 und sei $\varepsilon > 0$ so, dass:
$$A[\mathcal{A}(\bar{x})^c,:](x \pm \varepsilon d) < b[\mathcal{A}(\bar{x})^c]$$

$$x_{\pm} \coloneqq \bar{x} \pm \varepsilon d$$

$$x_{\pm} \in P \text{ und } \bar{x} = \frac{1}{2}(x_+ + x_-)$$
 Widerspruch

 $\Rightarrow \bar{x}$ ist eine Basislösung

Beweis

$$P = \{x \in \mathbb{R}^n : a_i^T x \le b_i, i = 1, ... m\}$$

Behauptung: \bar{x} ist eine Basislösung $\Rightarrow \bar{x}$ ist ein Eckpunkt

Sei \bar{x} eine Basislösung und setze $c\coloneqq\sum_{i\in\mathcal{A}(\bar{x})}a_i$

Sei
$$y \in P$$
, so gilt:

$$c^{T}y = \sum_{i \in \mathcal{A}(\bar{x})} a_{i}^{T}y \leq \sum_{i \in \mathcal{A}(\bar{x})} b_{i} = c^{T}\bar{x}$$

$$c^{T}y = c^{T}\bar{x} \iff a_{i}^{T}y = b_{i} \ \forall i \in \mathcal{A}(\bar{x})$$

$$\Leftrightarrow y = \bar{x} \qquad \ker A[\mathcal{A}(\bar{x}),:] = \{0\}$$

 $\Rightarrow \bar{x}$ ist ein Eckpunkt

Aufgabe 6.6. Eckpunkte

$$P = \{x : Ax = b, x \ge 0\}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \operatorname{rang}(A) = m$$

• $\bar{x} \in P$ heißt Basislösung zur Basis $\mathcal{B} = \{i_1, \dots, i_m\} \subseteq \{1, \dots, n\}$, falls: $\bar{x}_i = 0$ für $i \notin \mathcal{B}$ $A[:,\mathcal{B}] \text{ ist regulär } (\Rightarrow \bar{x}_{\mathcal{B}} = A[:,\mathcal{B}]^{-1}b)$

Die Definition der Basislösung hängt von der Darstellung von P ab

• Zeigen Sie, dass $\bar{x} \in P$ genau dann ein Eckpunkt ist, wenn \bar{x} eine Basislösung zu einer gewissen Basis \mathcal{B} ist.

Aufgabe 6.7. Eigenschaften der Eckpunkte

$$P = \{x : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

- Es gibt endlich viele Eckpunkte
- P enthält zumindest einen Eckpunkt $\Leftrightarrow P$ enthält keine Gerade
- Hauptsatz der linearen Optimierung. Angenommen, P hat Eckpunkte und $\inf_{x\in P}c^Tx>-\infty$. Dann gibt es einen Eckpunkt \bar{x} so, dass:

$$\bar{x} = argmin_{x \in P} c^T x$$

Plan

- Polyeder und Eckpunkte
- Herleitung des Simplex-Verfahrens

Minimiere $c^T x$ über $x \in \mathbb{R}^n$ u.d.N. Ax = b $x \ge 0$

- Wähle eine Startecke des zulässigen Bereiches $\mathcal{F} = \{x : Ax = b, x \geq 0\}$
- Finde eine benachbarte Kante entlang welcher $c^T x$ sich verkleinert
- Gehe entlang dieser Kante zu einem benachbarten Eckpunkt von ${\mathcal F}$

Minimiere $c^T x$ über $x \in \mathbb{R}^n$ u.d.N. Ax = b $x \ge 0$

- Wähle eine Startecke des zulässigen Bereiches $\mathcal{F} = \{x : Ax = b, x \geq 0\}$
- Finde eine benachbarte Kante entlang welcher $c^T x$ sich verkleinert
- Gehe entlang dieser Kante zu einem benachbarten Eckpunkt von ${\mathcal F}$

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$ $x \ge 0$

- Wähle eine Startecke des zulässigen Bereiches $\mathcal{F} = \{x : Ax = b, x \geq 0\}$
- Finde eine benachbarte Kante entlang welcher $c^T x$ sich verkleinert
- Gehe entlang dieser Kante zu einem benachbarten Eckpunkt von ${\mathcal F}$

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$ $x \ge 0$

- Wähle eine Startecke des zulässigen Bereiches $\mathcal{F} = \{x : Ax = b, x \geq 0\}$
- Finde eine benachbarte Kante entlang welcher $c^T x$ sich verkleinert
- Gehe entlang dieser Kante zu einem benachbarten Eckpunkt von ${\mathcal F}$

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$ $x \ge 0$

- Wähle eine Startecke des zulässigen Bereiches $\mathcal{F} = \{x : Ax = b, x \geq 0\}$
- Finde eine benachbarte Kante entlang welcher $c^T x$ sich verkleinert
- Gehe entlang dieser Kante zu einem benachbarten Eckpunkt von ${\mathcal F}$

Reduktion zur kanonischen Form

Minimiere
$$z=c^Tx$$
 Wähle einen Eckpunkt \bar{x} Sei \mathcal{B} die zugehörige Basis (Aufgabe 6.6) $x\geq 0$
$$A_{\mathcal{B}}:=A[:,\mathcal{B}]$$

$$A_{\mathcal{B}}:=A[:,\mathcal{B}]$$

$$A_{\mathcal{N}}:=A[:,\mathcal{N}], \, \mathcal{N}:=\mathcal{B}^c$$
 Minimiere $z=c_{\mathcal{B}}^Tx_{\mathcal{B}}+c_{\mathcal{N}}^Tx_{\mathcal{N}}$ $|Z_0|$ u.d.N. $A_{\mathcal{N}}x_{\mathcal{N}}+A_{\mathcal{B}}x_{\mathcal{B}}=b$ $|Z|$
$$x_{\mathcal{N}},x_{\mathcal{B}}\geq 0$$
 $A_{\mathcal{B}}$ ist invertierbar

$$\begin{array}{ll} \text{Minimiere} & z = \left(c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}}\right)^T x_{\mathcal{N}} + b^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}} + r \quad \left| Z_0 - c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} Z \right| \\ & \text{u.d.N.} & A_{\mathcal{B}}^{-1} A_{\mathcal{N}} x_{\mathcal{N}} + x_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b \quad \left| A_{\mathcal{B}}^{-1} Z \right| \\ & x_{\mathcal{N}}, x_{\mathcal{B}} \geq 0 \end{array}$$

Kanonische Form des LP zur Basis ${\mathcal B}$

Basis- und Nichtbasisvariablen

$$\bar{A} = A_{\mathcal{B}}^{-1}A$$
 , $\bar{b} = A_{\mathcal{B}}^{-1}b$ $\bar{c} = c - c_{\mathcal{B}}^T\bar{A}$, $\bar{z} = c_{\mathcal{B}}^T\bar{b}$

Min.
$$z = \left(c_{\mathcal{N}} - A_{\mathcal{N}}^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}}\right)^T x_{\mathcal{N}} + b^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$$
 Min. $z = \bar{c}_{\mathcal{N}}^T x_{\mathcal{N}} + \bar{z}$ $\bar{c}_{\mathcal{B}} = 0$ u.d.N. $\bar{A}_{\mathcal{N}}^T x_{\mathcal{N}} + x_{\mathcal{B}} = \bar{b}$ $\bar{A}_{\mathcal{B}} = I$ $x_{\mathcal{N}}, x_{\mathcal{B}} \ge 0$
$$x_{\mathcal{N}}, x_{\mathcal{B}} \ge 0$$
 kanonische Form

- Die Komponenten von $x_{\mathcal{B}}$ heißen Basisvariablen und die Komponenten von $x_{\mathcal{N}}$ heißen Nichtbasisvariablen
- $x_{\mathcal{N}} \coloneqq 0 \Rightarrow x_{\mathcal{B}} = \overline{b} = A_{\mathcal{B}}^{-1}b$ aus den Nebenbedingungen Das ist die Basislösung zur Basis \mathcal{B} (Aufgabe 6.6)

Optimalitätsbedingung

Minimiere
$$z=\bar{c}_{\mathcal{N}}^Tx_{\mathcal{N}}+\bar{z}$$
 u.d.N. $\bar{A}_{\mathcal{N}}x_{\mathcal{N}}+x_{\mathcal{B}}=\bar{b}$ $x_{\mathcal{N}},x_{\mathcal{B}}\geq 0$

Entsprechende Basislösung:

$$\bar{x}_{\mathcal{B}} = \bar{b}$$
, $\bar{x}_{\mathcal{N}} = 0$ und $z = \bar{z}$

Lemma 6.8. Sei $\bar{c}_{\mathcal{N}} \geq 0$, so ist \bar{x} eine optimale Lösung

Beweis. Für alle zulässigen x gilt $z = \bar{c}_{\mathcal{N}}^T x_{\mathcal{N}}^2 + \bar{z} \geq \bar{z}$

Simplex-Schritt

Minimiere
$$z=\bar{c}_{\mathcal{N}}^Tx_{\mathcal{N}}+\bar{z}$$
 u.d.N. $\bar{A}_{\mathcal{N}}x_{\mathcal{N}}+x_{\mathcal{B}}=\bar{b}$, $x_{\mathcal{N}},x_{\mathcal{B}}\geq 0$

- Angenommen, $\exists j \in \mathcal{N} \text{ mit } \overline{c_i} < 0$
- Wir vergrößern x_i , indem x_k , $k \in \mathcal{N}\setminus\{j\}$ gleich 0 bleiben:

$$x_j(\Delta)\coloneqq \Delta \geq 0$$
 " j tritt in die Basis ein" $x_k(\Delta)\coloneqq 0, \quad k\in\mathcal{N}\backslash\{j\}$

$$\Rightarrow x_{\mathcal{B}}(\Delta) = \bar{b} - \bar{A}_{\mathcal{N}}[:,j]\Delta$$

$$\Rightarrow z(\Delta) = \bar{z} + \bar{c}_{j}\Delta$$

Unbeschränktheit

$$x_{\mathcal{B}}(\Delta) = \bar{b} - \bar{A}_{\mathcal{N}}[:,j]\Delta$$

$$z(\Delta) = \bar{z} + \bar{c}_{j}\Delta, \quad \bar{c}_{j} < 0$$

Lemma 6.9. Seien
$$\overline{c_j} < 0$$
, $\overline{A}_{\mathcal{N}}[:,j] \leq 0$, so ist
$$\inf_{x \in \mathcal{F}} c^T x = -\infty$$

Beweis.

$$x_{\mathcal{B}}(\Delta) \ge 0 \ \forall \Delta \ge 0 \Rightarrow x(\Delta) \text{ ist zulässig } \forall \Delta \ge 0$$

$$z(\Delta) \to -\infty \ \text{für } \Delta \to \infty$$

Simplex-Schritt

$$x_{\mathcal{B}}(\Delta) = \bar{b} - \bar{A}_{\mathcal{N}}[:,j]\Delta$$

 $z(\Delta) = \bar{z} + \bar{c}_{j}\Delta, \quad \bar{c}_{j} < 0$

Angenommen, $\mathcal{I}(i) = \{i: A_{\mathcal{N}}[i, i] > 0\} \neq \emptyset$

Wie groß kann Δ sein?

$$x_{\mathcal{B}}(\Delta) \geq 0 \Leftrightarrow x(\Delta) \text{ ist zulässig} \Leftrightarrow \bar{b} \geq \bar{A}_{\mathcal{N}}[:,j] \Delta$$

$$\Delta \leq \Delta^{+} = \min\{\bar{b}_{i}/\bar{A}_{\mathcal{N}}[i,j]: i \in \mathcal{I}(j)\}$$
Sei $i^{+} = \operatorname{argmin}_{i}\{\frac{\bar{b}_{i}}{\bar{A}_{\mathcal{N}}[i,j]}: i \in \mathcal{I}(j)\}$ Quotientenregel
$$\Rightarrow x_{\mathcal{B},i^{+}}(\Delta^{+}) = 0 \quad \text{"i^{+} tritt aus der Basis aus"}$$

Simplex-Schritt

$$\bar{x}^+ \coloneqq x(\Delta^+)$$
 $\bar{z}^+ \coloneqq z(\Delta^+) = \bar{z} + \bar{c}_j \Delta^+$ Simplex-Schritt
 $\mathcal{B}^+ \coloneqq \{j\} \cup \mathcal{B} \setminus \{i^+\}$

Lemma 6.10. \bar{x}^+ ist eine Basislösung zur Basis \mathcal{B}^+

Beweis.
$$i^{+} -i^{+}\text{-te Spalte}$$

$$\bar{A}[:,\mathcal{B}] = \begin{pmatrix} I & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I \end{pmatrix} \Rightarrow \bar{A}[:,\mathcal{B}^{+}] = \begin{pmatrix} \bar{A}_{\mathcal{N}}[< i^{+},j] / I & 0 \\ \bar{A}_{\mathcal{N}}[i^{+},j] / 0 & 0 \\ \bar{A}[> i^{+},j] & 0 & I \end{pmatrix} \text{ ist regulär}$$

$$A[:,\mathcal{B}^+] = A[:,\mathcal{B}] \bar{A}[:,\mathcal{B}^+] \longrightarrow \bar{x}^+$$
 ist Basislösung zur Basis \mathcal{B}^+ regulär regulär Aufgabe 6.6

Initialisierung: Basis \mathcal{B} und $\mathcal{N}=\mathcal{B}^c$

Nichtentartete Basen

Die Basis \mathcal{B} heißt nichtentartet falls $\bar{x}_{\mathcal{B}} = \bar{b} = A_{\mathcal{B}}^{-1}b > 0$

Lemma 6.11. Sei ${\mathcal B}$ nichtentartet. Dann gilt ${\bar z}^+ < {\bar z}$

Beweis.

$$\Delta^{+} = \min_{i} \{ \bar{b}_{i} / \bar{A}_{\mathcal{N}}[i,j] : \bar{A}_{\mathcal{N}}[i,j] > 0 \} > 0$$

$$\bar{z}^{+} = \bar{z} + \bar{c}_{j} \Delta^{+} < \bar{z}$$

Konvergenz

- Ein LP heißt nichtentartet falls alle Basen $\mathcal B$ nichtentartet sind
- Lemma 6.12. Ist das LP nichtentartet, so konvergiert das SV gegen eine optimale Lösung x_{st}

Beweis: In jedem Schritt wird die Zielfunktion verkleinert Es gibt endlich viele Eckpunkte, also konvergiert das SV

Bland-Regel

- Angenommen, die Iterationen $\bar{x}_1, \bar{x}_2, ...$ konvergieren nicht. Dann gibt es $1 \leq k < l$ so, dass $\bar{x}_k = \bar{x}_\ell$ Zyklus
- Bland-Regel. Auf jedem Schritt:
 - Wähle eine Nichtbasisvariable x_j mit $\overline{c_j} < 0$ und möglichst kleinem j als in die Basis eintretende Variable
 - Wähle eine Basisvariable x_i^+ durch die Quotientenregel und möglichst kleinem i^+ als aus der Basis austretende Variable
- Das Simplex-Verfahren mit Bland-Regel vermeidet die Zyklen

Zusammenfassung

- Polyeder und Eckpunkte
- Herleitung des Simplex-Verfahrens

Nächstes Video

6c. Lineare Programmierung: Simplex Verfahren II