Example 2.8:

An FM modulator is operating with a peak frequency deviation $\Delta f = 20$ kHz. The modulating signal frequency, f_m is 10kHz, and the 100 kHz carrier signal has an amplitude of 10 V. Determine :

- a) The minimum bandwidth using Bessel Function table.
- b) The minimum bandwidth using Carson's Rule.

Sketch the frequency spectrum for (a), with actual amplitudes.

Solution:

a) From equation (2.24),
$$BW_{FM} = 2 \times n \times f_m$$

$$Modulation\ index\ , \qquad m_f = \Delta f/f_m$$

$$= 20k/10k$$

$$= \underline{2.0}$$

So , from Bessel Function table, at m_f = 2.0 , number of sideband, n is 4, giving,

$$BW_{FM} = 2 \times 4 \times 10k$$
$$= 80 \text{ kHz}$$

b) From equation (25), using Carson's rule,

$$BW_{FM} = 2[\Delta f + f_m] Hz$$
$$= 60 kHz$$

The frequency spectrum,

