Gradient Descent

Linear Regression Single Variable

Training Set

	Size in feet ² (x)	Price (\$) in 1000's (y)
•	2104	460
	1416	232
	1534	315
	852	178
	•••	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_0, \theta_1$$

$$\theta_1$$

Cost Function:

on:
=
$$\frac{1}{m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)})$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\min_{\theta_0,\theta_1} \text{i=1}$$

$$=1$$
 $I(\theta_0, \theta_1)$

$$\mid$$
 m

$$(0, heta_1)$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\lim_{i=1}^{2m} \sum_{i=1}^{2m} (i \cdot i)(x_i)$$

$$\min_{ heta_1}^{i=1} J(heta_1)$$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$h_{\theta}(x) = \theta_1 x$$

 $J(heta_1)$

(function of the parameter θ_1)

 $J(heta_1)$

(function of the parameter θ_1)

(function of the parameter θ_1) $J(\theta_1)$ 0.5 0.5 $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

 $J(\theta_1)$

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

 $J(\theta_0,\theta_1)$

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) =$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) =$$

$$j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=$$

Gradient descent algorithm

repeat until convergence { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \quad \text{simultaneously}$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0, \theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

Reference

Slides adapted from Machine Learning By Andrew Ng