Abusive Language Detection in Social Media

STOR 565 Final Project

Team: MLFs

Sathvik Chatta, Lillian Hurban, Elizabeth Singletary, Grace Sosa, Rujula Yete

Introduction

Motivations:

- Children are increasingly exposed to social media
- Age restrictions are not enough to prevent children from seeing harmful material

Goals:

- Develop machine learning model to classify text as abusive and non-abusive language
- Can be implemented as a browser extension to filter online content

Project Workflow

Data Acquisition / Cleaning **EDA Model Selection Feature Extraction Model Fitting** Model Evaluation

Original Dataset

- Compiled by Cornell University researchers based on Twitter API searches using terms from an established offensive language lexicon¹
- 24,783 randomly sampled tweets, manually classified:
 - O: Hate Speech (1430)
 - 1: Offensive but not Hate Speech (19190)
 - 2: Neither Offensive nor Hate Speech (4163)

Old Label	New Label
2: Neither Offensive nor Hate Speech (4163)	O: Non-Abusive Speech (4163)
O: Hate Speech (1430) 1: Offensive but not Hate Speech (19190)	1: Abusive Speech (20620)

¹ https://huggingface.co/datasets/tdavidson/hate_speech_offensive

Imbalanced data

Average Tweet Length

Average Word Length

Evaluation

Sentiment Score

Additional Datasets

 To combat these issues, we created a new dataset by combining our original dataset with two other datasets

Data Acquisition / Cleaning **EDA Model Selection** Feature Extraction **Model Fitting** Model Evaluation

YouTube Comments Dataset²

Reddit, Twitter, YouTube Dataset³

- From 29 manually selected YT videos⁴, chosen for their large number of comments
- Random sample of over 160,000 comments
- Manually classified:
 - O: Not Abusive(2009)
 - 1: Abusive (1970)

- Continuous abusive-speech score, with a score of > 0.5 being classified as abusive
- From r/all, random Twitter API, and the trending tab from the top 300 most populated US cities
- Random sample of 20,000 posts/comments from 39,565 manually classified:
 - O: Not Abusive(12755)
 - 1: Abusive (7245)

²https://github.com/Noman712/contextual-abusive-language-detection/tree/main/dataset/labelled

³https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech/viewer

⁴https://docs.google.com/spreadsheets/d/1wYtrNMxdv6OgkEXVk3lital6JE6dAhC3BsNZHMb1KmA/edit#gid=1358874100

Final Ensemble Dataset

- 48,762 posts from various social media platforms
 - O: Non-Abusive (18927)
 - 1: Abusive (29835)

Data Cleaning

- Converted all text to lowercase
- Removed URLs/links
- Removed user handles (any contiguous string after an @ symbol, typically a username/ID)
- Removed stopwords ('the, 'is', 'and', etc..)
- Removed 'rt' (indicating a retweet)
- Removed extra spaces
- Removed special characters
- Converted contractions (isn't -> is not, etc)
- Removed any non-English words/characters
- Removed "nonsensical" or spam strings
- Tokenizing

Cleaning Example

Original tweet

"Cleaned" tweet

recipe calls leftover brownie hell leftover brownie that's brownie eaten yet ericanadine

Original tweet

"Cleaned" tweet

worldseriesgame hunter pence annoying red sox player shave fool take vyvanse yankees

Classification Models

O2 O3

TF-IDF + Naive TF-IDF + KNN

Bayes Clustering

05

c Word2Vec + Neural Network (FFNN)

Word Vectorizing

Numeric vectors created based on frequency of word in data, uses calculated TF-IDF scores

→ How we extract the most relevant terms from the posts

GloVe Vectors + Word2Vec

Loading Pre-trained GloVe Vectors, that have been saved in Word2Vec format

→ Provides pre-trained word embeddings

Parameter Tuning on the Validation Set

SVM: Kernel – Linear, C – 1

KNN: Neighbors - 10, Distance: Euclidean

Naive Bayes: Alpha - 0.1

Logistic Regression: C - 10**S**

Model Building Summary

l. Data Preparation

a. Cleaning and tokenization of data

2. Data Splitting

a. 70-10-20 training/validation/testing split

3. Text Vectorization

 Text from train/test data is vectorized using TF-IDF or pre-trained GloVe Vectors & Word2Vec

4. Hyperparameter Tuning

a. Grid-searching on the validation set

5. Model Training and Evaluation

 Vectorized data then used to train our models and performance is compared to its respective test set

Evaluation on the Testing Set

Train: 34,132

Validation: 4,877

Test: 9,753

Chosen Metrics for Evaluation

Balances recall and precision to reflect completeness and accuracy of abusive speech detection

A measure of a model's ability to correctly identify all actual positive instances (E.g. abusive text) from a dataset.

To measure overall classifier performance

Measure of the proportion of correctly classified instances out of all instances.

Test Evaluation Results

SVM						
precision recall f1-score suppor						
0	0.8393	0.8664	0.8526	3780.0000		
1	0.9137	0.8950	0.9043	5973.0000		
accuracy	0.8839	0.8839	0.8839	0.8839		

Logistic Regression							
precision recall f1-score support							
0	0.8577	0.8468	0.8522	3780.0000			
1	0.9038	0.9111	0.9075	5973.0000			
accuracy	0.8862	0.8862	0.8862	0.8862			

KNN							
precision recall f1-score support							
0	0.7426	0.7312	0.7369	3780.0000			
1	0.8315	0.8396	0.8356	5973.0000			
accuracy	0.7976	0.7976	0.7976	0.7976			

Naive Bayes							
precision recall f1-score suppor							
0	0.8269	0.7317	0.7764	3780.0000			
1	0.8418	0.9031	0.8713	5973.0000			
accuracy	0.8367	0.8367	0.8367	0.8367			

Word2Vec Neural Network							
precision recall f1-score supp							
0	0.8518	0.2966	0.4400	3780.0000			
1	0.6848	0.9674	0.8019	5973.0000			
accuracy	0.7074	0.7074	0.7074	0.7074			

Confusion Matrices

Confusion Matrices Continued

ROC Curves

Results

Model for OOS Data: SVM

Support Vector Machine

- Utilized GridSearch (cv=5) for optimal parameters
 - o C: 1
 - Kernel: 'Linear'

Parameter/Improving our SVM Model

- 1. Explored Linear, Polynomial, RBF Kernels, degree, gamma
 - a. Linear SVM still achieved best performance
- 2. Explored **SMOTE resampling** to account for unbalanced data
 - a. Improved f1-score & recall slightly, but precision decreased, was it significant?
 - i. **T-test**: p-value = 0.42, which is <u>not</u> statistically significant at alpha = .05

	SVM					
	precision recall f1-scor					
0	0.8393	0.8664	0.8526			
1	0.9137	0.8950	0.9043			
accuracy	0.8839	0.8839	0.8839			

Model for OOS Data- Part 1: Word2Vec

What is Word2Vec?

- Word2Vec: Converts words into a numeric space where semantic similarities are reflected by spatial proximity (generates Word Embeddings)
- **GloVe Model:** Pre-trained LLM trained on Twitter data (glove.twitter.27B.50d), providing an initial set of weights shaped by social media context.

Data Preparation:

- **Conversion:** GloVe vectors are transformed to Word2Vec format for compatibility.
- Vectorization: Tweets are converted into vectors by averaging Word2Vec vectors of constituent words.

These Word Embeddings generated from pre-trained Glove Vectors are then used to train the neural network (FFNN).

Word2Vec Word Embeddings FFNN Motivation

Model for OOS Data-Part 2: Neural Network (FFNN)

Fully Connected Feedforward Neural Network (FFNN) (aka Multilayer Perceptron)

- **Model Architecture:**
 - **Layers:** Input (vector size of 50) → Dense (128 units, ReLU) → Dropout $(0.5) \rightarrow Dense (64 units, ReLU) \rightarrow Dropout (0.5) \rightarrow Output (Sigmoid)$
- **Optimizer:** Adam with learning rate adjustments.
- Class Weights: Applied to address class imbalance, enhancing focus on
- - Trains on vectors derived from tweets, testing against a reserved set

		196	Nacional Confession	Resident selection of the	
min	ority classes.	1	0.6848	0.9674	0.8019
Trai	ning:	accuracy	0.7074	0.7074	0.7074
•	Utilizes early stopping and a learning rate scheduler.				
	The first of the control of the cont				

Word2Vec Neural Network

recall f1-score

precision

*Although doesn't achieve the best overall performance, high potential in NLP/text classification tasks for high recall on 1 and higher f-1 score by modifying class_weights and fine tuning

Conclusion

Best Performance:

- 1. TF-IDF Vectorizer + SVM
- Accuracy: 0.8839, Precision: 0.9137
 - **Recall:** 0.895
 - F-1 score: 0.9043
 - **AUC:** 0.94

2. Second Choice:

- TF-IDF Vectorizer + Logistic Regression
- 3. Potential for Best Performance on Specific Metrics:
- Word2Vec + FFNN

Potential Future Improvements

For a more robust model, train our model on data from more social media platforms like Twitter, Youtube, Instagram, Reddit, etc. to be able to flag content across several platforms

Further Model Exploration

- Fine tune the FFNN/Multilayer Perceptron
- Try utilizing Dimensionality Reduction (PCA) + T-SNE + Cosine Similarity as a different semantic similarity measure and calculation

Further Implementation

- Build, implement, and test with a Chrome extension or online user interface

Citations

Abusive language dataset - Twitter

https://huggingface.co/datasets/td avidson/hate_speech_offensive

Associated paper

https://arxiv.org/abs/1703.04 009

Abusive language dataset YouTube comments

https://github.com/Noman712/cont extual-abusive-language-detectio n/tree/main/dataset/labelled

Associated paper

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507480/

Dealing with Imbalanced Data

https://machinelearningmast ery.com/what-is-imbalanced -classification/

Abusive language dataset (testing) -Twitter

https://huggingface.co/datasets /ucberkeley-dlab/measuring-ha te-speech/viewer

Associated paper

https://arxiv.org/abs/2009. 10277