LUNAR-LANDER

Bruno Fornaro Juan Belieni Vanessa Berwanger Wille

Sobre

Objetivo: Ensinar um Módulo Lunar a pousar com segurança em uma plataforma de pouso fixada no ponto (0,0).

Espaço de ação:

- 0: não faça nada
- 1: motor de orientação à esquerda
- 2: motor principal de orientação para baixo
- 3: motor de orientação à direita

Espaço de observação: vetor de 8 dimensões

- Posição do agente (coordenadas x e y)
- Velocidades lineares (em x e y)
- Ângulo
- Velocidade angular
- Booleanos que representam se cada perna está em contato com o solo ou não.

Recompensas

Para cada etapa, a recompensa:

- Aumenta ao:
 - Se aproximar da plataforma de pouso
 - Se movimentar mais lento
- Diminui ao
 - Se afastar da plataforma de pouso
 - Se movimentar mais rápido
 - Inclinar o módulo de pouso
- + 10 pontos para cada perna em contato com o solo
- - 0,03 pontos a cada quadro que um motor lateral está disparando
- - 0,3 pontos a cada quadro que o motor principal está disparando
- - 100 por bater ou +100 pontos por pousar com segurança

Um episódio é considerado solução se obtiver pelo menos 200 pontos.

Término

O episódio termina se:

- o módulo de pouso cai (o corpo do módulo de pouso entra em contato com a lua);
- o módulo de pouso sai da janela de visualização (a coordenada x é maior que 1);
- o módulo de pouso não está acordado. Dos documentos do Box2D, um corpo que não está acordado é um corpo que não se move e não colide com nenhum outro corpo

Q-LEARNING

Q-Learning atualiza o valor Q usando o valor Q do próximo estado e a ação gananciosa depois disso.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(r_{t+1} + \gamma max_a Q(s_{t+1}, a) - Q(s_t, a_t))$$

Algortimos

SARSA

O algoritmo SARSA é uma modificação do Q-learning, não adotando a maximização das ações. Atualiza o valor Q usando o valor Q do próximo estado e a próxima ação da política.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

No caso do Lunar-lander a representação do estado é contínua, logo usamos uma rede neural para estimar os valores de ação do estado e para construir uma política ideal para um determinado agente, ou seja, trabalhamos com os algoritmos **Deep Q-learning** e **Deep Sarsa**.

Algortimo Deep Q-learning (DQN)

- Usa uma rede neural multicamadas para estimar a tabela Q para (os valores de ação para um determinado estado).
- Usa um buffer de repetição para amostrar as informações do que aconteceu no episódio e para atualizar/treinar a rede neural.
- Usa a estratégia epsilon-greedy para exploração. Em alguns casos, escolhe a melhor ação conhecida (greedy), aquela que tem a estimativa mais alta de ser a melhor escolha e, ocasionalmente, o agente também faz escolhas aleatórias (exploração), selecionando uma ação aleatória.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(r_{t+1} + \gamma max_a Q(s_{t+1}, a) - Q(s_t, a_t))$$

Resultados

Algortimo Deep Sarsa (S, a, r, s', a')

Faz o uso das mesmas ideias do algoritmo DQN.

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

- Parâmetros:
 - ∘ y= 0.99
 - \circ $\alpha = 5e-4$
 - 1000 steps
 - ∘ 1000 epochs

Resultados

Ambiente aleatório

- Menos steps de mais envs x Mais steps de uma env
- Randomização dos parâmetros dos ambientes (envs)
 - enable_wind
 - wind_power
 - turbulence_power
- Tenta aprender a vencer o jogo em diferentes ambientes com um único modelo
- Modelos utilizados:
 - SARSA
 - o A2C

Resultados SARSA (ruins)

- Mais envs: melhora a estabilidade
- Valor pequeno para steps:
 - Reward inicial maior
 - Platô de reward baixo
 - Desliga a nave e para de aprender

Resultados SARSA ("bons")

- Randomize = False
- Parâmetros:
 - ∘ 250 *envs*
 - ∘ 250 steps
 - 100.000 epochs
- Melhor reward (média): 125

Resultados SARSA ("bons")

- Randomize = True
- Parâmetros:
 - ∘ 250 *envs*
 - ∘ 250 steps
 - 100.000 epochs
- Melhor reward (média): 128

Conclusões

- Sem o ambiente aleatório resolvemos o jogo sem muito esforço
- Com o ambiente aleatório:
 - A complexidade do problema aumenta muito (não conseguimos uma solução consistente)
 - A instabilidade do aprendizado aumenta muito
 - O ator aprende "estratégias" ruins (como desligar a nave) e demora para sair delas

