Representación de datos en la computadora

Bases numéricas

Verónica E. Arriola-Rios

Facultad de Ciencias. UNAM

14 de octubre de 2020

- Sistemas Numéricos
- Sistema binario y sus potencias
- Bibliografía

Sistemas Numéricos

00000

000000

- Sistemas Numéricos
 - De base b a base 10
 - De base 10 a base b

Sistemas Numéricos

De cualquier otra base a decimal:
 Utilizar notación desarrollada, con la base correspondiente.
 Ei:

$$23564_7 = 2 \times 7^4 + 3 \times 7^3 + 5 \times 7^2 + 6 \times 7^1 + 4 \times 7^0$$
$$= 2 \times 2401 + 3 \times 343 + 5 \times 49 + 6 \times 7 + 4 \times 1$$
$$= 6122$$

También se puede escribir:

$$23564_7 = ((((2) \times 7 + 3) \times 7 + 5) \times 7 + 6) \times 7 + 4 \times 7^0$$

Verónica E. Arriola-Rios De base b a base 10 Facultad de Ciencias, UNAM

000000

- Sistemas Numéricos
 - De base b a base 10.
 - De base 10 a base b

Sistemas Numéricos

000000

• De decimal a cualquier otra notación: Dividir el número en base 10 entre b, agregar el residuo como dígito a la izquierda y repetir el proceso con el cociente hasta que éste sea cero. Ej:

$$6122 \div 7 = 874$$
 $874 \div 7 = 124$
 $124 \div 7 = 17$
 $17 \div 7 = 2$
 $2 \div 7 = 0$
 $2 \mod 7 = 2$
 $2 \mod 7 = 2$
 $2 \mod 7 = 2$
 $2 \mod 7 = 2$

Algoritmo

Algoritmo 1 Base 10 a base b.

```
1: function BASE10ABASEB(num, b)
```

Require: num $\geqslant 0$ y b $\geqslant 2$

Ensure: $r = num_{10}$ escrito en base b

- 2: $r \leftarrow$ ""
- 3: $cociente \leftarrow num$
- repeat 4:
- 5: residuo \leftarrow cociente mód b
- $cociente \leftarrow cociente \div b$ 6:
- $r \leftarrow residuo concatenado con r$ 7:
- **until** cociente = 08:
- return r 9:

Sistema binario y sus potencias

- Sistemas Numéricos
- 2 Sistema binario y sus potencias
- Bibliografía

- 2 Sistema binario y sus potencias
 - Sistema binario
 - Sistema hexadecimal
 - Sistema octal

- Es el sistema base 2.
- Sólo existen dos dígitos: 0 y 1.
- En la computadora se representan como bits.
- La cantidad de números naturales que podamos representar depende la capacidad de almacenamiento disponible.

Sistemas Numéricos

- 2 Sistema binario y sus potencias
 - Sistema binario
 - Sistema hexadecimal
 - Sistema octal

Verónica E. Arriola-Rios Sistema hexadecimal Facultad de Ciencias, UNAM

Sistema hexadecimal

- Es el sistema base 16.
- Requiere símbolos únicos para representar los números del 0 al 15, de modo que se respete la notación posicional.
- Ya que los números arábigos sólo llegan al 9, se completa el conjunto con las primeras letras del abecedario:
 - 123456789ABCDEF

- 2 Sistema binario y sus potencias
 - Sistema binario
 - Sistema hexadecimal
 - Sistema octal

Binario-octal-hexadecimal

• Existe una relación especial entre el sistema binario (base 2), octal (base $8 = 2^3$) y hexadecimal (base $16 = 2^4$).

Base 10	Base 2	Base 8	Base 16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Verónica E. Arriola-Rios Sistema octal Facultad de Ciencias, UNAM

• Tres dígitos en binario corresponden a un dígito en octal.

Ej:
$$110101_2 = 110_2 | 101_2 = 6_8 | 5_8 = 65_8$$

• Cuatro dígitos en binario corresponden a un dígito en hexadecimal.

Ej:
$$11001011_2 = 1100_2 | 1011_2 = C_16 | B_16 = CB_16$$

- Por este motivo los sistemas octal y hexadecimal se utilizan para escribir números en binario de forma abreviada.
 - Ej:

Sistemas Numéricos

- El sistema de permisos de lectura, escritura y ejecución de archivos en linux, utiliza el sistema octal.
- Los colores en el sistema RGB (red, green, blue) a menudo se expresan en hexadecimal.

Verónica E. Arriola-Rios Sistema octal Facultad de Ciencias, UNAM

Operadores de Java que actúan sobre bits l

Sistemas Numéricos

Operadores. La primer columna indica la precedencia, entre mayor es el número, primero se realiza esa operación.

	Operandos	Operador	Tipo	Asociatividad
14	postfijo unario	++	Postincremento	der a izq
			Postdecremento	
13	prefijo unario	++	Preincremento	der a izqu
			Predecremento	
		~	Complemento en bits	

Operadores de Java que actúan sobre bits II

10	binario infijo	<<	corrimiento de bits a la iz-	izq a der
			quierda	
		>>	corrimiento de bits a la de-	
			recha con extensión de signo	
		>>>	corrimiento de bits a la dere-	,
			cha con llenando con ceros	
8		!=	relacional distinto de	
7	binario infijo	&	AND de bits	izq a der
6	binario infijo	^	OR exclusivo de bits	izq a der
5	binario infijo		OR inclusivo de bits	izq a der

Verónica E. Arriola-Rios Sistema octal Facultad de Ciencias, UNAM

Operadores de Java que actúan sobre bits III

1	binario infijo	=	Asignación	der a izq
		&= ^=		
		^=		
		=		
		<<=		
		>>=		
		>>>=		

Fuente: http://www.cs.bilkent.edu.tr/-guvenir/courses/CS101/op_precedence.html y Valdés y Gurovich 2008.

- Sistemas Numéricos
- Sistema binario y sus potencias
- 3 Bibliografía

Valdés, Canek Peláez y Elisa Viso Gurovich (1 de mar. de 2008). Introducción a las Ciencias de la Computación, Manual de Prácticas.

Licencia

Sistemas Numéricos

Creative Commons Atribución-No Comercial-Compartir Igual

