

Help Å

<u>Curso Progreso Fechas Notas Discusión Temario Preguntas Frecuentes Resources Related Courses FAQ Backup</u>

★ Course / Section 4: Bias, Variance, and Hyperparameters / 4.3 Ridge and LASSO

()

Ridge regularization with validation only: step by step

Here we will go through Ridge regularization using using a single validation set using MSE as our loss.

For ridge regression there exist an analytical solution for the coefficients:

- 1. Split the data into train, validation, and test sets, $X, Y_{train}, X, Y_{validation}, X, Y_{test}$
- 2. Iterate over a range of λ values for λ in $\lambda_{min} \dots \lambda_{max}$:
 - ullet Determine the eta that minimizes the L_{ridge} using the train data, $eta_{ridge}\left(\lambda
 ight)=\left(X^TX+\lambda I
 ight)^{-1}X^TY$
 - ullet Record the MSE loss for this λ using the validation data, L_{MSE} (λ) .
- 3. Select the $oldsymbol{\lambda}$ that minimizes the $oldsymbol{MSE}$ loss on the validation data,

$$\lambda_{ridge} = argmin_{\lambda} L_{MSE}\left(\lambda
ight)$$

- 4. Refit the model using **both train and validation data combined** using the selected λ , $X, Y_{train}, X, Y_{validation}$, now using λ_{ridge} , resulting to $\hat{\beta}ridge(\lambda_{ridge})$
- 5. Report the MSE on the test set, X,Y_{test} given the $\hat{eta}_{ridge}\left(\lambda_{ridge}
 ight)$.

LASSO regularization with validation only: step by step

Here we will go through Lasso regularization using using a single validation set using $m{MSE}$ as our loss .

The steps are largely the same as with Ridge regression except that there is **no** analytical solution for the coefficients in Lasso regression, so we use a **solver**.

- 1. Split the data into train, validation, and test sets, $X, Y_{train}, X, Y_{validation}, X, Y_{test}$
- 2. Iterate over a range of λ values for λ in $\lambda_{min} \dots \lambda_{max}$:
 - ullet Determine the eta that minimizes the L_{lasso} , eta_{lasso} (λ) using the train data. This is done using a solver
 - ullet Record the MSE loss for this λ using the validation data, $L_{MSE}\left(\lambda
 ight)$.
- 3. Select the λ that minimizes the MSE loss on the validation data,

$$\lambda_{lasso} = argmin_{\lambda} L_{MSE}\left(\lambda
ight)$$

4. Refit the model using both train and validation data combined using the selected λ ,

 $X,Y_{train},X,Y_{validation}$, now using λ_{lasso} , resulting to $\hat{eta}_{ridge}\left(\lambda_{lasso}
ight)$

5. Report the MSE on the test set, X, Y_{test} , given the $\hat{eta}_{lasso}\left(\lambda_{lasso}\right)$.

Ridge regularization with CV: step by step

Lastly, let us go through Ridge regularization using using a **cross-validation** using MSE as our loss.

- 1. Split the data into train, validation, and test sets, $X, Y_{train}, X, Y_{validation}, X, Y_{test}$
- 2. Split the train data into K folds, $X, Y_{train}^{-k}, X, Y_{validation}^{k}$
- 3. Iterate over these K folds for k in $1, \ldots, K$
- 4. Iterate over a range of λ values for λ in $\lambda_0 \dots \lambda_n$:
 - Determine the eta that minimizes the $L_{ridge}, eta_{ridge}\left(\lambda,k
 ight) = \left(X^TX + \lambda I\right)^{-1}X^TY$ using the train data of the fold, X,Y_{train}^{-k}
 - ullet Record $L_{MSE}\left(\lambda,k
 ight)$ using the validation data of the fold $X,Y_{validation}^{k}$

At this point we have a 2-D matrix, rows are for different k, and columns are for different λ values.

- 1. Average the $L_{MSE}\left(\lambda,k
 ight)$ for each λ , $ar{L}_{MSE}\left(\lambda
 ight)$
- 2. Find the λ that minimizes the $ar{L}_{MSE}$ (λ) , resulting to λ_{ridge} .
- 3. Refit the model using the full training data, $X, Y_{train}, X, Y_{validation}$, resulting to $\hat{eta}_{ridge}\left(\lambda_{ridge}\right)$
- 4. Report the MSE on the test set, X,Y_{test} given the $\hat{eta}_{ridge}\left(\lambda_{ridge}\right)$

Discussion Board (External resource)

Haga clic en Aceptar para que su nombre de usuario y dirección de correo electrónico se envíen a una aplicación de terceros.

Aceptar

What did you learn?

Help future students by selecting the skills or subjects you learned from this unit.

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>