§2. Операция сложения векторов и её свойства

Действие сложения векторов вводится двумя эквивалентными способами: с помощью «правила треугольника» или «правила параллелограмма».

Определение 2.1 (сложение векторов по правилу треугольника). Пусть даны два вектора \vec{a} и \vec{b} . Приложим вектор \vec{b} к концу вектора \vec{a} . Тогда вектор, начало которого совпадает с началом вектора \vec{a} , а конец – с концом вектора \vec{b} , называется суммой векторов \vec{a} и \vec{b} и обозначается $\vec{a} + \vec{b}$ (рис. 2.1).

Рис. 2.1. Сложение векторов по правилу треугольника

Рис. 2.2. Сложение векторов по правилу параллелограмма

Определение 2.2 (сложение двух неколлинеарных векторов по правилу параллелограмма). Пусть даны два вектора \vec{a} и \vec{b} . В какой-либо точке строят векторы, равные векторам \vec{a} и \vec{b} . Далее на этих векторах, как на сторонах, строят параллелограмм. Диагональ этого параллелограмма, исходящая из общего начала данных векторов, называется суммой векторов \vec{a} и \vec{b} (рис. 2.2).

Оба рассмотренных правила сложения для неколлинеарных векторов эквивалентны, т.е. если вектор $\vec{a} + \vec{b}$ является суммой векторов \vec{a} и \vec{b} в смысле определения 2.1, то он есть сумма этих векторов и в смысле определения 2.2. и наоборот (рис. 2.3).

Свойства операции сложения векторов

Пусть $\vec{a}, \vec{b}, \vec{c}$ – произвольные векторы. Тогда

- **1.** $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (коммутативное или переместительное свойство).
- **2.** $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (ассоциативное или сочетательное свойство).
- **3.** Существует единственный вектор, равный нуль-вектору $\vec{0}$, такой что $\vec{a} + \vec{0} = \vec{a}$ для любого вектора \vec{a} .
- **4.** Для любого вектора \vec{a} противоположный ему вектор $(-\vec{a})$ является единственным, для которого справедливо равенство $\vec{a} + (-\vec{a}) = \vec{0}$.
- ►Для доказательства свойств 1 и 2 достаточно сослаться на рис. 2.3 и 2.4, отдельно рассмотрев случай, когда векторы коллинеарны.

Рис. 2.3. Иллюстрация коммутативного свойства сложения векторов

Рис. 2.4. Иллюстрация ассоциативного свойства сложения векторов

Справедливость равенства $\vec{a} + \vec{0} = \vec{a}$ для любого вектора \vec{a} (свойство 3) следует из определения 2.1. Остаётся показать, что нуль-вектор является единственным, для которого выполняется это равенство. Рассуждая от противного, предположим, что существует вектор $\vec{b} \neq \vec{0}$ такой, что $\vec{a} + \vec{b} = \vec{a}$ для любого вектора \vec{a} . Возьмём $\vec{a} = \vec{0}$, тогда $\vec{0} + \vec{b} = \vec{0}$ и $\vec{0} + \vec{b} = \vec{b}$, т.е. $\vec{b} = \vec{0}$, что противоречит предположению.

Равенство: $\vec{a} + (-\vec{a}) = \vec{0}$ из свойства 4 справедливо для любого вектора \vec{a} в силу определения 2.1. Остаётся доказать, что вектор $(-\vec{a})$ является единственным, для которого оно выполняется. Рассуждая опять от противного, предположим, что существует вектор $\vec{b} \neq -\vec{a}$, такой, что $\vec{a} + \vec{b} = \vec{0}$. Прибавим к обеим частям этого равенства вектор $(-\vec{a})$, получим $\vec{a} + \vec{b} + (-\vec{a}) = \vec{0} + (-\vec{a})$. Для правой части последнего равенства имеем: $\vec{0} + (-\vec{a}) = -\vec{a}$. С другой стороны, его левую часть, в силу первых трёх свойств, можно записать в виде: $\vec{a} + \vec{b} + (-\vec{a}) = \vec{b} + (\vec{a} + (-\vec{a})) = \vec{b} + \vec{0} = \vec{b}$, что приводит к равенству $\vec{b} = -\vec{a}$. Полученное противоречие доказывает единственность вектора $(-\vec{a})$ и тем самым свойство 4 доказано. \blacktriangleleft

Понятие суммы двух векторов с помощью метода математической индукции

Рис. 2.5. Сложение векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$

можно обобщить на случай сложения n векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, сумма которых $\vec{a} = \vec{a}_1 + \vec{a}_2 + ... + \vec{a}_n$ определяется следующим образом: к концу первого вектора прикладывается начало второго вектора, к концу второго вектора — начало третьего и т. д. Тогда начало вектора \vec{a} совпадает с началом первого вектора, а конец — с концом последнего вектора (рис.2.5).

Определение 2.3. Разностью двух векторов \vec{a} и \vec{b} называется вектор \vec{c} такой, что $\vec{b} + \vec{c} = \vec{a}$ (рис. 2.6). Обозначение: $\vec{a} - \vec{b}$.

Для любых векторов \vec{a} и \vec{b} разность существует и выражается формулой:

$$\vec{c} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$
.

В самом деле,

2

$$\vec{a} + (-\vec{b}) + \vec{b} = \vec{a} + ((-\vec{b}) + \vec{b}) = \vec{a} + \vec{0} = \vec{a}.$$

Существует единственный вектор $\vec{c}=\vec{a}-\vec{b}$. Действительно, предположим, что кроме \vec{c} существует ещё один вектор \vec{d} со свойством $\vec{b}+\vec{d}=\vec{a}$. Тогда, с одной стороны, $(\vec{d}+\vec{b})+(-\vec{b})=\vec{a}+(-\vec{b})=\vec{c}$, а с другой $-\vec{d}+(\vec{b}+(-\vec{b}))=\vec{d}+\vec{0}=\vec{d}$, т.е. $\vec{d}=\vec{c}$.

Непосредственно из определений 2.1 и 2.3 вытекает правило построения разности $\vec{a}-\vec{b}$: разность векторов \vec{a} и \vec{b} , приведённых к общему началу, представляет собой вектор, идущий из конца вектора \vec{b} (вычитаемого) в конец вектора \vec{a} (уменьшаемого) (рис. 2.6).