Estimating gradients using quantum computation and Forest

Rigetti quantum computing meetup November 2, 2017

Keri A. McKiernan kmckiern.github.io

Gradients are fundamental to research and engineering applications

Optimization problems

Dynamical systems

https://wikidocs.net/3413

https://www.math.uci.edu/~asgor/dynsys/

Computing numerical gradient estimates

Computing numerical gradient estimates

$$E(h) \approx E(0) + h\nabla E(0)$$

Computing numerical gradient estimates

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum	
Derivative	Numerical	Analytical	Numerical	
$\frac{\mathrm{d}E}{\mathrm{d}oldsymbol{\mu}}$	d+1	0 (1)	1	
$\frac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$	$d^2 + 1$	$O\left(d\right)$	2	
$rac{\mathrm{d} E}{\mathrm{d} \mu} \ rac{\mathrm{d}^2 E}{\mathrm{d} \mu^2} \ rac{\mathrm{d}^3 E}{\mathrm{d} \mu^3}$	$d^3 + 1$	$O\left(d\right)$	4	
$\frac{\mathrm{d}^n E}{\mathrm{d} \mu^n}$	$d^{n} + 1$	$O\left(d^{\lfloor n/2 \rfloor}\right)$	2^{n-1}	

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum
Derivative	Numerical	Analytical	Numerical
$\frac{\mathrm{d}E}{\mathrm{d}oldsymbol{\mu}}$	d+1	O(1)	1
$\frac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$	$d^2 + 1$	$O\left(d\right)$	2
$rac{\mathrm{d} E}{\mathrm{d} \mu}$ $rac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$ $rac{\mathrm{d}^3 E}{\mathrm{d} \mu^3}$	$d^3 + 1$	$O\left(d\right)$	4
			•
$\frac{\mathrm{d}^n E}{\mathrm{d} \mu^n}$	$d^{n} + 1$	$O\left(d^{\lfloor n/2 \rfloor}\right)$	2^{n-1}

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum
Derivative	Numerical	Analytical	Numerical
$rac{\mathrm{d} oldsymbol{E}}{\mathrm{d}oldsymbol{\mu}}$	d+1	$O\left(1\right)$	1
$rac{\overline{\mathrm{d}}oldsymbol{\mu}}{\mathrm{d}oldsymbol{\mu^2}}$	$d^{2} + 1$	$O\left(d ight)$	2
$rac{\overline{\mathrm{d}} oldsymbol{\mu^2}}{\mathrm{d}^3 E}$	$d^{3} + 1$	$O\left(d ight)$	4
:	:	:	:
$rac{\mathrm{d}^{m{n}} E}{\mathrm{d}m{\mu}^{m{n}}}$	$d^{n} + 1$	$O\left(d^{\lfloor n/2 \rfloor} ight)$	2^{n-1}

$$f: \mathbb{R}^d \to \mathbb{R}$$

$$\vec{\nabla} f(\vec{x}) \approx 0.b_0 \cdots b_{n-1}$$

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure	–	М

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		M

$$|x_0\rangle - H - \frac{1}{2^{N_{q_i}/2}}(|0\rangle + |1\rangle)$$

$$\vdots - H - \vdots$$

$$|x_{N_{q_i}-1}\rangle - H - \frac{1}{2^{N_{q_i}/2}}(|0\rangle + |1\rangle)$$

$$|y\rangle - X - QFT - |\psi\rangle$$

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}-1}} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}}-1} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)


```
from pyquil.gates import X
from grove.qft.fourier import qft
import pyquil.quil as pq
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
   # ancilla qubits to plane wave state
    ic_out = list(map(X, ancilla_qubits))
    ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
   ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
    # combine programs
    p_ic = p_ic_out + p_ic_in
    return p_ic
```



```
from pyquil.gates import X
from grove.qft.fourier import qft
import pyquil.quil as pq
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
   # ancilla qubits to plane wave state
   ic_out = list(map(X, ancilla_qubits))
   ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
   ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
    # combine programs
    p_ic = p_ic_out + p_ic_in
    return p_ic
```


Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}-1}} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}-1}} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

from pyquil.gates import H

```
# ancilla qubits to plane wave state
ic_out = list(map(X, ancilla_qubits))
ft_out = qft(ancilla_qubits)
p_ic_out = pq.Program(ic_out) + ft_out
# input qubits to equal superposition
ic_in = list(map(H, input_qubits))
p_ic_in = pq.Program(ic_in)
# combine programs
p_ic = p_ic_out + p_ic_in
return p_ic
```


from pyquil.gates import H

ancilla qubits to plane wave state
ic_out = list(map(X, ancilla_qubits))
ft_out = qft(ancilla_qubits)
p_ic_out = pq.Program(ic_out) + ft_out
input qubits to equal superposition
ic_in = list(map(H, input_qubits))
p_ic_in = pq.Program(ic_in)
combine programs
p_ic = p_ic_out + p_ic_in
return p_ic

program	ancilla qubits	input qubits
initialize system	QFT, X	Н

```
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
    11 11 11
    # ancilla qubits to plane wave state
    ic_out = list(map(X, ancilla_qubits))
    ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
    ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
   # combine programs
    p_ic = p_ic_out + p_ic_in
   return p_ic
```


program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		M

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

Construct U such that

$$U^{2^{j}}|\psi\rangle = e^{i2\pi 2^{j}f(x)}|\psi\rangle \tag{2}$$

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

Hence, we may use the PHASE gate for $\cal U$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

p_kickback = pq.Program()

apply c-U^{2^j} to ancilla register

for i in input_qubits:
 if i > 0:
 U = np.dot(U, U)
 cU = controlled(U)
 name = "c-U{0}".format(2 ** i)
 p_kickback.defgate(name, cU)
 p_kickback.inst((name, i, ancilla_qubits[0]))

iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
return p_kickback

Hence, we may use the PHASE gate for U

return p_kickback

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

```
from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft
# encode f_h into CPHASE gate
U = np.array([[1, 0],
              [0, np.exp(1.0j * np.pi * f_h)]])
p_kickback = pq.Program()
# apply c-U^{2^j} to ancilla register
for i in input_qubits:
    if i > 0:
        U = np.dot(U, U)
   cU = controlled(U)
    name = "c-U\{0\}".format(2 ** i)
    p_kickback.defgate(name, cU)
    p_kickback.inst((name, i, ancilla_qubits[0]))
# iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
```


Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

So
$$e^{i2\pi 2^{j} f(h)} \approx e^{i2\pi 2^{j} f(0)} e^{i2\pi 2^{j} h} \nabla f(0)$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

So

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

So

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi 2^{N_{q_i}-1}h\nabla f(0)}|1\rangle) \qquad |2^{N_{q_i}-1}\nabla f(0)\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi 2^0h\nabla f(0)}|1\rangle) \qquad |\psi\rangle$$

$$|\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\frac{1}{2^{Nq_i/2}}(|0\rangle + e^{i2\pi h}2^{Nq_i-1}\nabla f(0)|1\rangle) \qquad |2^{Nq_i-1}\nabla f(0)\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{Nq_i/2}}(|0\rangle + e^{i2\pi h}2^{0}\nabla f(0)|1\rangle) \qquad |\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h2^{N_{q_i}-1}\nabla f(\mathbf{0})}|1\rangle) \qquad |2^{N_{q_i}-1}\nabla f(\mathbf{0})\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h2^{0}\nabla f(\mathbf{0})}|1\rangle) \qquad |2^{0}\nabla f(\mathbf{0})\rangle$$

$$|\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{N_{q_i}-1}\nabla f(0)}|1\rangle) \qquad |2^{N_{q_i}-1}\nabla f(0)\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{0}\nabla f(0)}|1\rangle) \qquad |\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

= $e^{i2\pi b_{j+1}\cdots b_{n-1}}$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

```
for i in input_qubits:
    if i > 0:
        U = np.dot(U, U)
    cU = controlled(U)
    name = "c-U{0}".format(2 ** i)
    p_kickback.defgate(name, cU)
    p_kickback.inst((name, i, ancilla_qubits[0]))
# iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
return p_kickback
```


from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

for i in input_qubits:
 if i > 0:
 U = np.dot(U, U)
 cU = controlled(U)
 name = "c-U{0}".format(2 ** i)
 p_kickback.defgate(name, cU)
 p_kickback.inst((name, i, ancilla_qubits[0]))
iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
return p_kickback

```
def phase_kickback(f_h, input_qubits, ancilla_qubits, precision):
    """ Phase kickback of f_h
```

		IOCT
phase kickback	U	IQFT

11 11 11

Jordan gradient estimation

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

Jordan gradient estimation

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure	—	М

measure

$$|b_{N_{q_i}-1}
angle \qquad \qquad b_{N_{q_i}-1}$$
 $\vdots \qquad \qquad \vdots \qquad \qquad \vdots$
 $|b_0\cdots b_{N_{q_i}-1}
angle \qquad \qquad b_0\cdots b_{N_{q_i}-1}$
 $|\psi
angle \qquad \qquad |\psi
angle \qquad \qquad |\psi
angle$

 $\nabla f(0) \approx 0.b_0 \cdots b_{n-1}$

measure

$$|b_{N_{q_i}-1}\rangle$$
 $b_{N_{q_i}-1}$ $|\psi\rangle$ $b_0\cdots b_{N_{q_i}-1}$ $|\psi\rangle$

 $\nabla f(0) \approx 0.b_0 \cdots b_{n-1}$

from pyquil.api import SyncConnection
qvm = SyncConnection()
measurement = qvm.run_and_measure(p_gradient, input_qubits)

Running this algorithm

Running this algorithm

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

Running this algorithm

Demo

Thank you

References

Fast Quantum Algorithm for Numerical Gradient Estimation Stephen P. Jordan 10.1103/PhysRevLett.95.050501

Quantum Algorithm for Molecular Properties and Geometry Optimization Ivan Kassal, Alán Aspuru-Guzik 10.1063/1.3266959

Code

github.com/rigetticomputing/grove github.com/kmckiern/grove/blob/master/grove/alpha/jordan_gradient