REPRESENT & PROCESS KNOWLEDGE

Nguyễn Thị Hải Bình, PhD

Al agent

Knowledge Representation

- A knowledge-based agent has a knowledge base (KB).
- The KB contains a set of sentences.

How to represent knowledge?

PROPOSITIONAL LOGIC

Definition of Proposition

• A proposition:

- is a sentence, written in a language,
- that has a truth value (i.e., it is true or false) in a world.

• Examples:

- P = "Hanoi is the capital of Vietnam"
- Q = "6 is a prime number"
- $R = (x+2 \ge y)$

Syntax

• An atomic proposition, or just an atom, is a symbol.

 Propositions can be built from simpler propositions using logical connectives.

Order of logical connectives:

 $\bullet \neg$, \land , \lor , \Rightarrow , \Leftrightarrow

$\neg p$	"not p "	negation of p
$p \wedge q$	" $m{p}$ and $m{q}$ "	conjunction of \emph{p} and \emph{q}
$p \lor q$	" $m{p}$ or $m{q}$ "	disjunction of \emph{p} and \emph{q}
p o q	" $m{p}$ implies $m{q}$ "	$\mathbf{implication} \; \mathrm{of} \; q \; \mathrm{from} \; p$
$p \leftarrow q$	" $m{p}$ if $m{q}$ "	$\mathbf{implication} \; \mathrm{of} \; p \; \mathrm{from} \; q$
$p \leftrightarrow q$	" p if and only if q "	equivalence of \boldsymbol{p} and \boldsymbol{q}

Syntax

• Examples:

$$\neg p$$
 $(\neg p) \land true$
 $\neg ((\neg p) \lor false)$
 $(\neg p) \Rightarrow (\neg ((\neg p) \lor false))$
 $(p \land (q \lor r)) \Leftrightarrow (p \land q) \lor (p \land r)$
 $p \land \neg q \Rightarrow r$

Semantics of the Propositional Logic

• Semantics defines the meaning of the sentences of a language.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Semantics of the Propositional Logic

A knowledge base is a set of propositions that are stated to be true

• An element of the knowledge base is an axiom.

• A model of a knowledge base KB is an interpretation in which all the propositions in KB are true.

Example 1:

- Complete the truth table of $(P \Rightarrow Q) \land S$
- Find a model of the given proposition.

P	Q	S	$P \Rightarrow Q$	$(P \Rightarrow Q) \land S$

Example 2:

- Complete the truth table of $(p \land \neg p)$
- Find a model of the given proposition.

I .	I .	I .	

Example 3:

- Complete the truth table of $((P \lor H) \land \neg H) \Rightarrow P$
- Find a model of the given proposition.

Example 4:

- Complete the truth table of $\neg p \lor (q \land r)$
- Find a model of the given proposition.

ī	Î		T .

Laws of Propositional Logic

- 1. Double-negation law: -(-p) = p
 - $\neg(\neg P) \equiv P$
- 2. Complement law:
 - a. $P \lor \neg P \equiv True$
 - b. $P \land \neg P \equiv False$
- 3. Identity law:
 - a. $P \vee False \equiv P$
 - b. $P \wedge True \equiv P$
- 4. Conditional identities:
 - a. $P \Rightarrow Q \equiv \neg P \lor Q$
 - b. $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$

5. Conditional identities:

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

- 6. De Morgan's law:
 - a. $\neg (P \lor Q) \equiv \neg P \land \neg Q$
 - b. $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- 7. Distributive law:
 - a. $R \lor (P \land Q) \equiv (R \lor P) \land (R \lor Q)$
 - b. $R \wedge (P \vee Q) \equiv (R \wedge P) \vee (R \wedge Q)$
- 8. Commutative law:
 - a. $P \wedge Q \equiv Q \wedge P$
 - b. $P \lor Q \equiv Q \lor P$

Laws of Propositional Logic

9. Associative law:

a.
$$(P \land Q) \land R \equiv P \land (Q \land R)$$

b.
$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

10. Idempotent law:

a.
$$P \wedge P \equiv P$$

b.
$$P \vee P \equiv P$$

11. Domination law:

- a. $P \wedge False \equiv False$
- *b.* $P \lor True \equiv True$

12. Absorption law:

a.
$$P \lor (P \land Q) \equiv P$$

b.
$$P \wedge (P \vee Q) \equiv P$$

Laws of propositional logic can be proof using truth table.

Exercise

Using laws of propositional logic to proof:

- $P \Rightarrow (\neg P \Rightarrow P) \equiv \text{True}$
- $(P \land Q) \Rightarrow P \equiv \mathsf{True}$
- $P \Rightarrow (Q \Rightarrow (P \land Q)) \equiv \text{True}$
- $\neg(Q \Rightarrow P) \lor (P \land Q) \equiv Q$
- $P \lor ((P \land Q) \lor (P \land \neg R)) \equiv P \land ((\neg Q \Rightarrow R) \lor \neg (Q \lor (R \land S) \lor (R \land \neg S)))$

Let's consider a propositional language where:

- p means "Paola is happy",
- q means "Paola paints a picture",
- r means "Renzo is happy".

Formalize the following sentences:

- 1. "if Paola is happy and paints a picture then Renzo isn't happy"
- 2. "if Paola is happy, then she paints a picture"
- 3. "Paola is happy only if she paints a picture"

Aladdin finds two trunks A and B in a cave. He knows that each of them either contains a treasure or a fatal trap.

On trunk A is written: "At least one of these two trunks contains a treasure."

On trunk B is written: "In A there's a fatal trap."

Aladdin knows that either both the inscriptions are true, or they are both false.

Can Aladdin choose a trunk being sure that he will find a treasure? If this is the case, which trunk should he open?

Conjunctive Normal Form (CNF)

- CNF = conjunction of disjunction of literals.
- Example of CNF:

•
$$(A \lor \neg B \lor \neg C) \land (\neg D \lor E \lor F)$$

•
$$(A \vee B) \wedge (C)$$

- $(A \vee B)$
- \bullet (A)
- Convert a formula into a CNF:
 - Conditional identities
 - De Morgan's law
 - Distributive law

Conjunctive Normal Form (CNF) - Example

• Convert the following formular into CNF: $(P \Rightarrow Q) \lor \neg (R \lor \neg S)$

Logical Inference Problem

- Given:
 - A knowledge base KB (a set of sentences)
 - A sentence H (called a theorem)
- Does the KB semantically entail H? $(KB \models H)$

In other words: In all interpretations in which sentences in the KB are true, is also H true?

Inference Rules for Propositional Logic

Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

Modus Tollens:

$$\frac{\alpha \Rightarrow \beta, \neg \beta}{\neg \alpha}$$

Hypothetical syllogism

$$\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$$

Simplification

$$\frac{\alpha_1 \wedge \cdots \wedge \alpha_i \wedge \cdots \wedge \alpha_m}{\alpha_i}$$

Conjunction

$$\frac{\alpha_1,\ldots,\alpha_i,\ldots,\alpha_m}{\alpha_1\wedge\cdots\wedge\alpha_i\wedge\cdots\wedge\alpha_m}$$

Addition

$$\frac{\alpha_i}{\alpha_1 \vee \cdots \vee \alpha_i \vee \cdots \vee \alpha_m}$$

Resolution

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Unit resolution

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

Proof by Resolution

- **Purpose**: Proof $KB \models H$
- Các bước của thuật toán:
 - 1. Add $\neg H$ to KB;
 - 2. Convert all sentences in KB into CNF;
 - 3. Create DNF from CNF created in step 2;
 - 4. Loop until no new sentence generated:
 - a) Apply rule of resolution for all DNF created in step 3;
 - b) If a contradiction (empty clause) is reached, return TRUE.
 - ** Contradiction is obtained when apply resolution to a clause and its negation.
 - 5. Return FALSE

• KB:

- 1. $\neg A \lor \neg B \lor P$
- 2. $\neg C \lor \neg D \lor P$
- 3. $\neg E \lor C$
- 4. A
- 5. E
- 6. D
- Theorem: P.

• KB:

- 1. $\neg A \lor \neg B \lor P$
- 2. $\neg C \lor \neg D \lor P$
- 3. $\neg E \lor C$
- 4. A
- 5. E
- 6. D
- Theorem: $\neg P$

• KB:

1.
$$P \Rightarrow Q$$

2.
$$Q \Rightarrow R$$

3.
$$R \Rightarrow T$$

- 4. P
- Theorem: T.

- KB:
 - 1. $P \wedge Q \Rightarrow R$
 - 2. $Q \wedge R \Rightarrow S$
- Theorem: $P \land Q \Rightarrow S$