Hyungjin Chung

Email: hj.chung@kaist.ac.kr GitHub: github.com/HJ-harry Office: KAIST N5 2219

Phone: (+82)10-7175-0466 **Homepage**: hj-chung.com

Research interests Generative models, Diffusion models, Inverse problems

Work Experience EverEx Seoul, Korea

AI Research Advisor 2024.08 - Current

NVIDIA Research
Research Scientist Intern, AI4Science 2023.11 - 2024.01

Google Research
Student Researcher, team LUMA (perception) 2023.07 - 2023.10

Los Alamos National Laboratory Los Alamos, USA

Research intern, Applied math & Plasma physics (T-5) 2022.06 - 2022.08

Education KAIST Daejeon, Korea

Ph.D., Bio & Brain Engineering 2019.03 – 2025.02 (expected)

Advisor: Jong Chul Ye

Korea University Seoul, Korea B.S., Biomedical Engineering 2015.03 – 2019.02

Awards Google Conference Scholarship (\$3000) 2024.5

30th Samsung Humantech Gold Award (\$20000) 2024.2

- 1st prize in Signal Processing

Bronze Prize, IPIU 2024 2024.2 29th Samsung Humantech Gold Award (\$10000) 2023.2

- 1st prize in Signal Processing

2020-2023 BISPL Best Researcher Award (\$4000×4) 2020-2023.12

Professional Advisory board member Seoul, Korea

Service SNUHRad-AICON: SNUH-Radiology AI Collaboration Network 2021.05 – Present

Conf. publication [C10] Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Prob-

lems

Hyungjin Chung and Jong Chul Ye

ECCV 2024

[C9] Prompt-tuning Latent Diffusion Models for Inverse Problems

Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, Mauricio Delbracio

ICML 2024

[C8] Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems

Hyungjin Chung, Suhyeon Lee, Jong Chul Ye

ICLR 2024

[C7] Direct Diffusion Bridge using Data Consistency for Inverse Problems

Hyungjin Chung, Jeongsol Kim, Jong Chul Ye

NeurIPS 2023

[C6] Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models Suhyeon Lee*, Hyungjin Chung*, Minyoung Park, Jonghyuk Park, Wi-Sun Ryu, Jong Chul Ye

ICCV 2023

[C5] Score-based Diffusion Models for Bayesian Image Reconstruction

Michael T. Mccann, Hyungjin Chung, Jong Chul Ye, Marc L. Klasky

ICIP 2023

[C4] Parallel Diffusion Models of Operator and Image for Blind Inverse Problems

Hyungjin Chung*, Jeongsol Kim*, Sehui Kim, Jong Chul Ye

CVPR 2023

[C3] Diffusion Posterior Sampling for General Noisy Inverse Problems

Hyungjin Chung*, Jeongsol Kim*, Michael T. Mccann, Marc L. Klasky, Jong Chul Ye *ICLR 2023 (Notable-top-25%)*

[C2] Improving Diffusion Models for Inverse Problems using Manifold Constraints

Hyungjin Chung*, Byeongsu Sim*, Dohoon Ryu, Jong Chul Ye

NeurIPS 2022

[C1] Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye

CVPR 2022

Journal publications

[J12] Fundus image enhancement through direct diffusion bridges

Sehui Kim*, Hyungjin Chung*, Se Hie Park, Eui-Sang Chung, Kayoung Yi, Jong Chul Ye $\it I\!E\!E\!E$ $\it J\!B\!H\!I,\,2024$

[J11] MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion Hyungjin Chung, Eun Sun Lee, Jong Chul Ye

IEEE TMI, 2022

[J10] Low-dose sparse-view HAADF-STEM-EDX tomography of nanocrystals using unsupervised deep learning

Eunju Cha*, Hyungjin Chung*, Jaeduck Jang, Junho Lee, Eunha Lee, Jong Chul Ye ACS Nano, 2022

[J9] Score-based diffusion models for accelerated MRI

Hyungjin Chung and Jong Chul Ye

Medical Image Analysis, 2021

[J8] Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement

Mehmet Akçakaya, Burhaneddin Yaman, Hyungjin Chung, Jong Chul Ye *IEEE SPM*, 2021

[J7] A Deep Learning Model for Diagnosing Gastric Mucosal Lesions Using Endoscopic Images: Development, Validation, and Method Comparison

Joon Yeul Nam*, Hyungjin Chung*, Kyu Sung Choi*, Hyuk Lee* et al.

Gastrointestinal Endoscopy, 2021

[J6] Feature Disentanglement in generating three-dimensional structure from two-dimensional slice with sliceGAN

Hyungjin Chung, Jong Chul Ye

Nature Machine Intelligence, 2021

[J5] Missing Cone Artifacts Removal in ODT using Unsupervised Deep Learning in Projection Domain

Hyungjin Chung*, Jaeyoung Huh*, Geon Kim, Yong Keun Park, Jong Chul Ye

IEEE Transactions on Computational Imaging, 2021

 $\cbox{\bf [J4]}$ Two-Stage Deep Learning for Accelerated 3D Time-of-Flight MRA without Matched Training Data

Hyungjin Chung, Eunju Cha, Leonard Sunwoo, Jong Chul Ye

	Medical Image Analysis, 2021				
	[J3] Deep learning STEM-EDX tomography of nanocrystals				
	Yoseob Han*, Jaeduck Jang*, Eunju Cha*, Junho Lee*, Hyungjin Chung* et al.				
	Nature Machine Intelligence, 2021 (March Issue cover)				
	[J2] Unpaired training of deep learning tMRA for flexible spatio-temporal resolution				
	Eunju Cha, Hyungjin Chung, Eung Yeop Kim, Jong Chul Ye				
	IEEE Transactions on Medical Imaging, 2020				
	[J1] Unpaired deep learning for accelerated MRI using optimal transport dr	riven cv-			
	cleGAN	iven ey			
	Gyutaek Oh, Byeongsu Sim, Hyungjin Chung, Leonard Sunwoo, Jong Chul Ye				
	IEEE Transactions on Computational Imaging, 2020				
Workshop publication	[W1] Progressive Deblurring of Diffusion Models for Coarse-to-Fine Image Synthesis				
	Sangyun Lee, Hyungjin Chung, Jaehyeon Kim, Jong Chul Ye				
	NeurIPS Workshop on score-based methods (SBM), 2022				
Books	[B1] Deep Learning for Biomedical Image Reconstruction				
	Chapter 12: Image Synthesis in Multi-Contrast MRI with Generative Adversarial Net	works			
	Tolga Çukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin Chung, Jong Chul Ye				
Reviewer (Conference)	ICLR 2024-2025				
	NeurIPS 2022-2024				
	NeurIPS Datasets&Benchmarks 2023-2024				
	CVPR 2023-2024				
	ECCV 2022, 2024				
	ICCV 2023				
	MICCAI 2022-2023				
Reviewer (Journal)	NEJM AI				
(0 /	Nature Communications				
	Medical Image Analysis				
	IEEE TMI (Gold Distinguished reviewer 2024, Bronze Distinguished reviewer 2023)				
	IEEE TPAMI, TCI, TSP, TIP, SPS				
	See full list				
Invited talks	Texts in inverse problem solving using diffusion models				
& Letures	- University of Michigan	2024.10			
& Letures	Tutorial on Denoising Diffusion Model: Fundamentals & Application				
	- IEIE: Winter School on Biomedical Signal Processing	2024.02			
	Adapting diffusion models for inverse problems	2024.02			
	- UCLA, Caltech: Grundfest Memorial Lecture Series in Graphics and Imaging	2024.02			
	- 2023 NeurIPS Workshop on diffusion models	2024.02			
		2023.12			
	- Google Research				
	Advances in diffusion models and their applications to inverse proble				
	- Guest Lecture, Korea University	2023.11			

Generative (diffusion) models for medical imaging

- MGH, School of Medicine, Harvard University

- Michigan State University

- BRIC academic webinar

- Stanford MedAI

- International Congress on Magnetic Resonance Imaging (ICMRI) 2023

2023.11

2023.09

2023.08

2023.08

2023.03

Diffusion models: foundations and applications in biomedical	2022.06
	0 0
· IEEE International Symposium on Biomedical Imaging (ISBI) 2023	2023.05
Diffusion models for inverse problems	2024.00
- IPA seminar, Korea University	2024.09 2024.09
- Krafton AI - DRGem	
- Dr.Gem - LG AI Research	2024.08
- LG AI Researcn - Twelve Labs	2024.08
- Tweive Labs -AI SEOUL 2024	2024.00 2024.02
Inference & control group seminar, Donders Institute, Radboud Univ LANL T-CNLS seminar, 2022	2023.03 2022.08
- LANGE 1-CIVES SEMEMEN, 2022	2022.00
[P6] A survey on diffusion models for inverse problems	
Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Y ar, Alexandros G Dimakis, Mauricio Delbracio	Ye, Peyman Milan
[P5] Amortized Posterior Sampling with Diffusion Prior Distillation Abbas Mammadov*, Hyungjin Chung*, Jong Chul Ye	
[P4] CFG++: Manifold-constrained Classifier Free Guidance for Diffi	usion Models
Hyungjin Chung*, Jeongsol Kim*, Geon-Yeong Park*, Hyelin Nam*, Jong Ch	
[P3] Regularization by texts for latent diffusion inverse solvers	101 10
eongsol Kim*, Geon-Yeong Park*, Hyungjin Chung, Jong Chul Ye	
[P2] Steerable Conditional Diffusion for Out-of-Distribution Adapta	ation in Imagin
inverse Problems	8
Riccardo Barbano*, Alexander Denker*, Hyungjin Chung*, Tae Hoon Roh, Sir	non Arrdige. Pete
Maass, Bangti Jin, Jong Chul Ye	
[P1] Generative AI for Medical Imaging: extending the MONAI Fran	nework
Pinaya et al. (Hyungjin Chung: Contributing author)	
US patent application	
Score-based Diffusion Model for Accelerated MRI and Apparatus thereof	2023
Korea patent publication	202.
Tomography image processing method using neural network based on unsu	mervised learning
to remove missing cone artifacts and apparatus therefor	202
Two-Stage unsupervised learning method for 3D Time-of-flight MRA recor	
The stage ansapervised rearming method for the rame of inghi that recor	202
apparatus thereof	
apparatus thereof Korea patent application	
Korea patent application	ing stochastic con
Korea patent application Accelerating method of conditional diffusion models for inverse problems usi	_
Korea patent application Accelerating method of conditional diffusion models for inverse problems using traction and the apparatus thereof	202
Korea patent application Accelerating method of conditional diffusion models for inverse problems usi	202
Korea patent application Accelerating method of conditional diffusion models for inverse problems using a craction and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomography is eddeep learning and the apparatus thereof	202 ny using unsuper
Korea patent application Accelerating method of conditional diffusion models for inverse problems using the condition and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomography wised deep learning and the apparatus thereof Head TA, KAIST	202 ny using unsuper 202
Korea patent application Accelerating method of conditional diffusion models for inverse problems using the condition and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomographysised deep learning and the apparatus thereof Head TA, KAIST AI 618: Generative models and unsupervised learning	202 ny using unsuper
Korea patent application Accelerating method of conditional diffusion models for inverse problems using a caraction and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomography is eddeep learning and the apparatus thereof Head TA, KAIST AI 618: Generative models and unsupervised learning BiS 800: Machine Learning for Medical Image Analysis	202 ny using unsuper 202 2024-
Korea patent application Accelerating method of conditional diffusion models for inverse problems using traction and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomographysised deep learning and the apparatus thereof Head TA, KAIST AI 618: Generative models and unsupervised learning BIS 800: Machine Learning for Medical Image Analysis TA, KAIST	202 ny using unsuper 202 2024- 2021-
Korea patent application Accelerating method of conditional diffusion models for inverse problems using a caraction and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomography is ed deep learning and the apparatus thereof Head TA, KAIST AI 618: Generative models and unsupervised learning BiS 800: Machine Learning for Medical Image Analysis TA, KAIST AI 618: Generative models and unsupervised learning	202 ny using unsuper 202 2024-
Korea patent application Accelerating method of conditional diffusion models for inverse problems using traction and the apparatus thereof Extreme condition reconstruction method HAADF-STEM-EDX tomographysised deep learning and the apparatus thereof Head TA, KAIST AI 618: Generative models and unsupervised learning BIS 800: Machine Learning for Medical Image Analysis TA, KAIST	202 ny using unsuper 202 2024- 2021- 2022-

Preprints

Patent

Teaching experience

T	- (•			
ν	Δ †	ω.	ra.	n	ces
11	CI	C	ıc	ш	

Jong Chul Ye
Ph.D. advisor (KAIST)
Marc L. Klasky
Host (LANL)
Michael T. McCann
Host (LANL)
Mauricio Delbracio

Host (Google)

2019.03 - current jong.ye@kaist.ac.kr 2022.06 - 2022.08 mklasky@lanl.gov 2022.06 - 2022.08 mccann@lanl.gov 2023.07 - 2023.11 mdelbra@google.com