Customer Purchase Prediction Report

1. Data Preprocessing Steps

1.1 Data Loading and Initial Exploration

- The dataset online_shoppers_intention.csv was loaded using pandas.
- The dataset contains 12,330 rows and 18 columns, including numerical, categorical, and boolean features.
- Basic exploration was performed using .head(), .info(), and .describe() to understand the structure and summary statistics of the data.

1.2 Handling Missing Values

 Missing values were checked using .isnull().sum(). No missing values were found in the dataset.

1.3 Encoding Categorical Variables

 One-hot encoding was applied to categorical variables (Month, OperatingSystems, Browser, Region, TrafficType, VisitorType, Weekend) to convert them into numerical format for modeling.

1.4 Feature Creating

New Features Created:

- TimeSpentOnSite: Sum of ProductRelated_Duration,
 Administrative_Duration, and Informational_Duration to capture total user engagement.
- VisitorType_New: Derived from VisitorType_Returning_Visitor to simplify the analysis of returning visitors.

1.5 Normalization

Normalization of the continuous variables Administrative,
 ProductRelated, and BounceRates using MinMaxScaler.

2. Exploratory Data Analysis (EDA) Findings

2.1 Distribution of Numerical Variables

• Administrative Page Visits:

The histogram shows a right-skewed distribution, with most users visiting a small number of administrative pages. The box plot confirms the presence of outliers, indicating some users interact significantly more with administrative pages.

Bounce Rates:

The histogram reveals a right-skewed distribution, with most users having low bounce rates. The box plot shows a few outliers, indicating some users have unusually high bounce rates.

Exit Rates:

The histogram also shows a right-skewed distribution, with most users having low exit rates. The box plot highlights outliers, suggesting some users exit the site at a much higher rate.

2.2 Distribution of Categorical Variables

Month:

The bar chart shows that visits are highest in **May** and **November**, indicating seasonal trends in user activity.

• Operating Systems:

The bar chart reveals that most users use **Operating System 2**, followed by **Operating System 3** and **4**.

Browser:

The bar chart highlights that **Browser 2** is the most popular, followed by **Browser 4** and **Browser 5**.

• Traffic Type:

The bar chart shows that **Traffic Type 2** is the most common, followed by **Traffic Type 3** and **Traffic Type 4**.

• Visitor Type:

The pie chart reveals that the dataset is evenly split between **Returning Visitors** and **New Visitors** (both 49.8%) and a small percentage of **Other** visitors.

• Weekend:

The pie chart shows that **76.7**% of visits occur on weekdays, while **23.3**% occur on weekends.

2.3 Correlation Analysis

- The correlation heatmap reveals relationships between numerical variables:
 - Strong Positive Correlations:
 - ProductRelated and ProductRelated_Duration (0.86): Users who view more product-related pages tend to spend more time on them.
 - Administrative and Administrative_Duration (0.60): Users who visit more administrative pages also spend more time on them.
 - Negative Correlations:
 - Administrative and ExitRates (-0.32): Higher administrative rates are associated with lower exit rates.
 - ExitRates and ProductRelated (-0.26): Higher exit rates are linked to lower product related.

2.4 Purchase Rates: Weekend vs. Non-Weekend

- The bar plot compares purchase rates for weekend and non-weekend visits:
 - Non-Weekend Visits: Purchase rate is 15%.
 - Weekend Visits: Purchase rate is 17.5%.

 Insight: While weekdays drive the majority of purchases due to higher traffic, weekend visits have a slightly higher purchase rate, indicating that weekend users may be more intentional or engaged.

2.5 Relationship Between Numerical Variables and Revenue

ProductRelated_Duration vs. Revenue:

The box plot shows that users who made a purchase (Revenue = Yes) spent significantly more time on product-related pages compared to non-purchasers (Revenue = No). This indicates that higher engagement with product content is strongly associated with conversions.

BounceRates vs. Revenue:

The box plot reveals that users who made a purchase (Revenue = Yes) had lower bounce rates compared to non-purchasers (Revenue = No). This suggests that users who engage beyond the landing page are more likely to convert.

3. Feature Engineering

3.1 New Features Created

- TimeSpentOnSite: Sum of ProductRelated_Duration, Administrative_Duration, and Informational_Duration to capture total user engagement.
- VisitorType_New: Derived from VisitorType_Returning_Visitor to simplify the analysis of returning visitors.
- Normalization: not required as numerical features were already scaled between 0 and 1.

3.2 Target Variable Creation

 Creation of new variable Revenue as Binary Target (1 for purchase, 0 for no purchase).

4. Model Development

4.1 Train-Test Split

• The dataset was split into training (80%) and testing (20%) sets, with stratification to ensure the proportion of buyers (Revenue = 1) and non-buyers (Revenue = 0) remained consistent in both sets.

Training Set Class Distribution:

Non-Buyers: 84.53%

■ Buyers: **15.47**%

Testing Set Class Distribution:

Non-Buyers: 84.51%

■ Buyers: **15.49**%

4.2 Models Evaluated

Three models were trained and evaluated:

- Logistic Regression (Scaled features using StandardScaler).
- Random Forest
- XGBoost (Gradient Boosting)

5. Model Comparison and Performance Metrics

5.1 Evaluation Results

The three models were evaluated using key metrics: **Accuracy**, **Precision**, **Recall**, **F1-Score**, and **ROC-AUC Score**. Below is a summary of their performance:

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	0.8812	0.7380	0.3613	0.4851	0.8810
Random Forest	0.8978	0.7407	0.5236	0.6135	0.9168
XGBoost (Gradient Boosting)	0.8950	0.6804	0.6073	0.6418	0.9213

5.2 Best Model Selection

- XGBoost is the best-performing model overall due to its:
 - Highest **Recall (0.6073)**: Identifies more actual buyers.

- Highest **F1-Score** (0.6418): Balances precision and recall effectively.
- Highest ROC-AUC (0.9213): Best at distinguishing between buyers and non-buyers.

6. Key Business Insights

6.1 Variable Importance (SHAP Analysis)

The SHAP summary plot highlights the most influential features for predicting purchases:

1. PageValues:

The average value of pages visited by a customer is the most critical factor. Higher page values correlate with higher purchase intent.

2. Month_May and Month_Mar:

Visits in May and March are highly influential, indicating seasonal trends or promotions that drive purchases.

3. ExitRates:

Lower exit rates are associated with higher purchase probabilities, emphasizing the importance of retaining users on the site.

4. TimeSpentOnSite:

Total time spent on the site is a strong indicator of purchase intent. Engaged users are more likely to convert.

5. ProductRelated and ProductRelated_Duration:

Engagement with product-related pages significantly impacts purchase decisions.

6. BounceRates:

Lower bounce rates are preferable, as users who leave after viewing only one page are less likely to purchase.

7. VisitorType_Returning_Visitor:

Returning visitors are more likely to make purchases, highlighting the importance of customer retention strategies.

8. Weekend_True:

Weekend visits have a positive impact on purchase likelihood, likely due to users having more leisure time.

7. Recommendations to Improve Customer Retention and Purchases

7.1 Enhance Page Value

 Implement personalized recommendations and targeted promotions to increase the value of pages.

7.2 Seasonal Campaigns

 Run targeted marketing campaigns and promotions during high-impact months (May, March, December).

7.3 Reduce Exit and Bounce Rates

 Improve website usability, content relevance, and page load speed to retain users and reduce early exits.

7.4 Engage Customers with Product Content

• Ensure product-related pages are informative, visually appealing, and easy to navigate to encourage longer visits.

7.5 Retain Returning Visitors

 Implement loyalty programs, personalized offers, and email marketing to encourage repeat visits and purchases.

7.6 Weekend Promotions

• Introduce special weekend promotions, flash sales, or events to capitalize on higher purchase intent during weekends.

8. Actionable Recommendations for Marketing and Sales Teams

8.1 Target High-Value Customers

- Use the XGBoost model to identify high-value customers based on their engagement patterns (e.g., high PageValues, long TimeSpentOnSite).
- Focus on returning visitors and users who spend significant time on product-related pages.

8.2 Personalized Marketing

• Leverage insights from SHAP analysis to create personalized marketing campaigns targeting users with high purchase intent.

8.3 Optimize Website Experience

 Continuously monitor and optimize the website to reduce bounce and exit rates, ensuring a seamless user experience.

Conclusion

- The **XGBoost model** is the best-performing model for predicting customer purchases, with strong performance in recall, F1-score, and ROC-AUC.
- Key drivers of purchase intent include **PageValues**, **TimeSpentOnSite**, and **ProductRelated_Duration**.
- Actionable recommendations focus on improving user engagement, reducing bounce and exit rates, and leveraging seasonal trends to boost revenue.