Correction examen UV Modélisation Partie - Problèmes inverses

Tout document est interdit.

Exercice 1 - Questions de chauffe

Dans tout cet exercice, $A \in \mathbb{R}^{m \times n}$ est une matrice de rang r. On note une SVD de A sous la forme $U\Sigma V^T$ avec $U = [u_1, \dots, u_m]$ et $V = [v_1, \dots, v_n]$. Les valeurs $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$ sont les valeurs singulières de A.

1. On considère la matrice

$$B = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Déterminez une SVD de B.

On peut écrire $B = U\Sigma V^T$ avec

$$U = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

2. Montrer que si $m \ge n$ et r = n, alors $\sigma_n ||x||_2 \le ||Ax||_2 \le \sigma_1 ||x||_2$. Quelle minoration peut-on avoir si r < n?

Soit $\alpha \in \mathbb{R}^n$ tel que $x = V\alpha$. On a $||x||_2 = ||V\alpha||_2$ comme V est orthogonale. De plus :

$$\begin{split} \|Ax\|_2 &= \|U\Sigma V^T x\|_2 \\ &= \|U\Sigma\alpha\|_2 \\ &= \|\Sigma\alpha\|_2 \\ &\geq \sigma_n \|\alpha\|_2. \end{split}$$

Si r < n, le seul minorant est 0, car en prenant $x \in ker(A)$, on a $||Ax||_2 = 0$.

3. Montrer que si m=n et r=n alors $|||A^{-1}|||=\frac{1}{\sigma_n}$.

Si $r=n, \Sigma$ est inversible et $A^{-1}=V\Sigma^{-1}U^T$. La plus grande valeur sur la diagonale de Σ^{-1} est $\frac{1}{\sigma_n}$.

4. Soit

$$J: \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R}^n \\ x & \mapsto & \langle x, Wx \rangle \end{array}$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel et $W \in \mathbb{R}^{n \times n}$ est une matrice.

- Calculez $\nabla J(x)$.

On a:

$$J(x+h) = \langle (x+h), W(x+h) \rangle$$

= $\langle x, Wx \rangle + \langle h, Wx \rangle + \langle x, Wh \rangle + \langle h, Wh \rangle$
= $J(x) + \langle (W+W^T)x, h \rangle + o(\|h\|_2).$

Donc $\nabla J(x) = (W + W^T)x$.

– Est-ce que le problème $\min_{x \in \mathbb{R}^n} J(x)$ admet toujours une solution? (Justifier).

Non. Par exemple, si n = 1 et W = -1, $J(x) = -x^2$ qui tend vers $-\infty$ en $-\infty$. Il n'y a donc pas de minimiseur sur \mathbb{R} .

Exercice 2 - Pseudo-inverse (le problème)

1. Montrer que pour toute matrice $A \in \mathbb{R}^{m \times n}$ et tout $t \neq 0$ suffisamment petit, les matrices $tI_n + A^*A$ et $tI_m + AA^*$ sont inversibles.

Soit $A = U\Sigma V^T$ avec

$$\Sigma = \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix}.$$

On a:

$$tI_n + A^*A = V(\Sigma^T \Sigma + tI_n)V^T.$$

La matrice $(\Sigma^T \Sigma + tI_n)$ est diagonale et contient uniquement des valeurs non nulles sur sa diagonale dès que $|t| < \sigma_r^2$ où σ_r est la plus petite valeur singulière de A.

Donc $tI_n + A^*A$ est inversible pour $|t| < \sigma_r^2$. Le même raisonnement fonctionne aussi pour la matrice $tI_m + AA^*$.

2. En déduire que

$$A^{\dagger} = \lim_{t \to 0} (tI_n + A^*A)^{-1}A^* = \lim_{t \to 0} A^*(tI_m + AA^*)^{-1}.$$

La pseudo-inverse de A est la matrice

$$A^{\dagger} = VSU^T$$

οù

$$S = \begin{pmatrix} \Sigma_r^{-1} & 0 \\ 0 & 0 \end{pmatrix}.$$

On a:

$$(tI_n + A^*A)^{-1}A^*$$

$$= V(\Sigma^T \Sigma + tI_n)^{-1}V^T V \Sigma U^T$$

$$= V(\Sigma^T \Sigma + tI_n)^{-1} \Sigma U^T.$$

On pose $\tilde{S}(t) = (\Sigma^T \Sigma + tI_n)^{-1} \Sigma$. Les valeurs diagonales de $\tilde{S}(t)$ sont :

$$\tilde{s}_i(t) = \begin{cases} \frac{\sigma_i}{\sigma_i^2 + t} & \text{si } i \leq r \\ 0 & \text{sinon.} \end{cases}$$

Et donc

$$\lim_{t \to 0} \tilde{s}_i(t) = \begin{cases} \sigma_i^{-1} & \text{si } i \le r \\ 0 & \text{sinon.} \end{cases}$$

Donc $\lim_{t\to 0} \tilde{S}(t) = S$ ce qui montre la première égalité. La preuve de la dernière égalité peut être faite avec un raisonnement similaire.

Exercice 3 - Influence de la norme (question jugeote)

Soit la matrice $A=\begin{bmatrix}1\\1\\1\end{bmatrix}$ et le vecteur $b=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}$ avec $b_1\geq b_2\geq b_3$. Soit $p\in[1,+\infty]$. On veut résoudre le problème de minimisation

$$\min_{x \in \mathbb{R}} ||Ax - b||_p.$$

Ce n'est pas un problème de moindre carré puisqu'on a remplacé la norme l^2 par une norme l^p .

- 1. Calculer la solution x pour $p \in \{1, 2, \infty\}$.
 - Cas $p = \infty$. On cherche $\min_{x \in \mathbb{R}} \max(|x b_1|, |x b_2|, |x b_3|)$. La solution est $x_{\infty} = \frac{b_1 + b_3}{2}$ (la preuve est graphique).
 - Cas p=2. On cherche $\min_{x\in\mathbb{R}}(x-b_1)^2+(x-b_2)^2+(x-b_3)^2$. En dérivant et en annulant la dérivée, on trouve la solution $x_2=\frac{b_1+b_2+b_3}{3}$ (la moyenne).

- Cas p=1. On cherche $\min_{x\in\mathbb{R}}f(x)=|x-b_1|+|x-b_2|+|x-b_3|$. Il est clair que $x\in[b_3,b_1]$. Si $x\in]b_3,b_2[$, $f(x)=b_1-x+b_2-x+x-b_3$. Donc f'(x)=-1. De même si $x\in]b_2,b_3[$, f'(x)=1. Donc f atteint son minimum en $x_1=b_2$. Notez que b_2 est la valeur médiane de l'ensemble $\{b_1,b_2,b_3\}$.
- 2. Que se passe-t'il si $b_1 \to +\infty$? Ce résultat montre la robustesse de la norme l^1 aux points aberrants. Quelque soit la valeur de b_1 , la solution du problème l^1 est constante et vaut b_2 . La norme l^1 est donc robuste aux point aberrants.