WILDLIFE ON WORKING FORESTS CHANGES IN MOUNTAIN BEAVER MANAGEMENT

Wendy Arjo

Aplodontia

- Monotypic genera
- Primitive morphological characteristics
- Endemic to the western U.S
 - Various management practices

Management extremes

- BC: listed as species of concern
- CA: 5 subspecies,1 federally endangered
- OR/WA: pest species
- Management
 - Habitat differences
 - Forest practices and differences
 - NPS vs private
 - WA and OR vs CA

Why manage mountain beaver?

- Clip seedlings and lateral branches, girdle bases and undermine roots of larger trees
- 1979 survey: 0.1 million ha damaged (WA, OR, CA)
- 121,500 ha of Douglasfir in PNW affected
- Successful regeneration limited without control

Management Tools

- Repellents and frightening devices
- Burrow disruption
 - Fumigants
 - Collapse burrows
- Traps
- Barriers
- IPM
- Silvicultural practices

Sample of Re-trapping Efforts

Reinvasion Potential

Spring 2003: 39 animals Fall 2003: 25 animals Spring 2004: 16 animals

Exclusions

Fencing - Good luck!

Tree shelter

Protection net

Rigid mesh tube

Fabric sleeve

Fabric sleeve over rigid mesh

Tree Barrier Code

Mountain Beaver Motivation

The Need for an IPM Strategy

Which IPM Strategy Do You Use?

- Trap then bait
 - Pros
 - Reduce population first, less bait
 - Cons
 - More cost

- Bait then trap
 - Pros
 - Baits cached underground by residents
 - Less cost
 - Cons
 - More bait in the environment
 - Bait hoarding

Economics of the two systems

- No difference in seedling damage
- Baiting hours more for treatment 1
- Trapping hours more for treatment 2

T1:Bait-Trap	Res William			
	Bait Cost/acre	Trap Cost/acre	Bait \$/acre	Total \$ T1/acre
Satsop	\$8.76	\$21.24	\$10.19	\$36.82
Canyon	\$9.84	\$23.71	\$10.09	\$48.12
AVERAGE	\$9.30	\$22.47	\$10.14	\$42.47
T2:Trap-Bait				March 1
	Bait Cost/acre	Trap Cost/acre	Bait \$/acre	Total \$ T2/acre
D-Line	\$9.84	\$48.80	\$7.09	\$65.73
West Satsop	\$5.92	\$23.98	\$3.74	\$33.64
AVERAGE	\$7.88	\$36.39	\$5.41	\$49.69

Silvicultural practices

- Alternative forage
- Reduce stand openings
- Limit slash piles

Impact of Forest Management Practices on Mt. Beaver Populations

- Sylvia (8.9 ha) no herbicide treatment
 - 2002: 2.13 beaver/ha
 - 2003: 4.38 beaver/ha
- Donovan (16.6 ha)- herbicide treatment
 - 2002: 0.99 beaver/ha
 - 2003: 0.49 beaver/ha

- Vesta (20.3ha)
 - +40-year old stand in 2002 0.64 beaver/ha
 - Fall 2003 after harvest 0.74 beaver/ha
 - June 2004 half herbicide treatment- 0.99 beaver/ha
 - June 2005 half herbicide treatment- 0.74 beaver/ha

Core Use Areas after Treatment

Home Ranges and Site Preparation

	Home range	Core	n
Pre-harvest	2.63 ± 0.51	0.48 ± 0.12	12
Pre-treatment	0.81 ± 0.19	0.12 ± 0.02	20
Treatment	3.37 ± 0.9	0.49 ± 0.13	5
No Treatment	0.82 ± 0.17	0.11 ± 0.02	8

Distribution of adult males and females and juvenile mountain beaver captured at 3 sites in coastal Washington

Unit	Harvest management	Year	Adult Females	Adult Males	Juveniles	Unknown ¹ Juveniles
Donovan	herbicide	2002	8	8	0	
		2003	2	7	0	
Sylvia	none	2002	8	11	4	4
		2003	18	21	12	
		2004	3	13	4	
Vesta	forested	2002	6	7	NA	
	new clear cut	2003	7	8	2	
	none/herbicide	2004	4/3	8/5	8/6	
ME	none/herbicide	2005	8/2	3/2	9/2	

¹ Unable to distinguish gender in juveniles

Vesta Tree Damage

What's to eat?

- No direct correlation between herbicide treatment and damage
- Feeder hole caches do not "dry out" in PNW
- Are mountain beavers eating other plants?
- What are the fates of different plant species?
- Combination of field and pen trial information

Feeder Holes

Feeder holes without sword fern

What is the Purpose of Feeder Holes?

- Two-choice test
 - Dry vs. wet
 - Salal and sword fern
 - Dried in oven at 40°C for 24 hrs
 - Individually marked
- Fate of sword fern
- Fate of salal
- Video monitored for 4 hours

Sword fern

What is Important: Taste or Water?

- On the menu
 - Plants that occur during the late winter months
 - Douglas-fir seedlings
- 3 blocks/pen
- Fate of each species

Results of Cafeteria Trial

Plant Chemistry and Nutritional Quality

Component	Douglas fir	Salal	Sword fern	Cats ear	Salmonberry	Vine maple	Oxalis
100000000000000000000000000000000000000							
Moisture (%)	64.5	57.1	66.9	84.8	64.6	50.8	89.3
Crude Protein (%)	3.1	2.9	4.0	1.5	5.8	3.2	2.01
Neutral Detergent Fiber (%)	14.9	15.1	18.6	7.7	15.1	28.0	2.8
Total digestible nutrients (%)	20.7	27.7	16.0	9.7	23.9	24.2	8.1
Net energy-maint. (Mcal/lb)	0.2	0.3	0.1	0.1	0.2	0.2	0.1
Relative feed value (digestibility and intake potential)	130.0	165.8	85.8	120.3	145.8	88.1	253.4

Results of foraging trials

- Sword fern preferred over salal
- Wet material preferred over dry to eat
- Forage soaked in water
- Cafeteria study salmonberry and cat's ear preferred (not seen in field)
 - Cat's ear high water but low nutrient content
 - Salmonberry average water content, but high nutrient content
- Forbs (oxalis, bleeding heart) high water content (88-90%) and very high feed value
- So what??
 - Site prep
 - Implications for endangered subspecies?

Pt. Arena mountain beaver

•Available habitat in 24 mi²

•Manchester State Park populations: n = 24 and n = 16

Plant Analyses

Component	Iris	Angelica	Ice Plant	Coyote Brush
Moisture (%)	23.64	15.6	85.7	11.9
Crude Protein (%)	5.1	6.8	0.7	8.8
Neutral Detergent Fiber (%)	36.5	20.0	4.4	39.9
Total digestible nutrients (%)	40.5	67.2	12.2	58.9
Net energy-maint. (Mcal/lb)	0.39	0.7	0.1	0.6
Relative feed value	107	287.0	293.3	133.7

Point Arena: endangered versus invasive species

Gene flow and barriers

7 distinct demes

The New Phylogeny

- Distribution based on genetics
- A. rufa humboldtiana, phaea, and nigra recent divergence
- A. rufa pacifica distribution reduced (ancestral lineage), separate species designation?
- New designation of subspecies name
 - A. rufa rufa
 - A. rufa olympica

Management Implications

- Forage preference and water necessity
 - Clear cut forest preference in the PNW
 - California forests more disjunct populations and closed-canopy habitat
 - Southern populations in drier habitat (limited feeder holes)
- Subspecies distribution changes
 - WA and BC one subspecies
 - OR reduced distribution of ancestral lineage, and possibly different species
 - CA more recent divergence of coastal subspecies
 - High population differentiation within CA subspecies (not well connected)

Acknowledgements

- NWRC Sabbatical program
- OFIC and WFPA
- Bill Zielinski
- Gary Fellers
- Bruce Kimball
- UBC
- The many foresters who contributed samples

