智慧社群洞察與熱門話題分析平台

第10組 林君瑋、羅振豪

簡報目錄

- 1. Introduction
- 2. Related Work
- 3. Proposed Scheme
- 4. 實作與功能說明
- 5. 結論
- 6. 参考文獻

Introduction

1. 背景與動機

- 社群媒體使用量日益增長,各種議題發酵速度加快。
- 企業與研究單位需要即時了解社群趨勢與熱門話題。

2. 專案目標

- · 開發「智慧社群洞察與熱門話題分析平台」,即時掌握網路聲量 與趨勢。
- •協助決策者洞察消費者觀點、關鍵議題,便於更快做出決策。

3. 重要性與應用

• 有助於行銷策略制定、危機應對、產業動態追蹤…

related work Hootsuite

功能與定位

主要提供多社群平台整合、排程發布、基礎數據分析

優勢(依官方與第三方評測歸納)

多帳號集中管理、操作介面相對友善

不足

深度語意分析或情緒偵測較為薄弱,偏向社群「管理」與「排程」

現有社群分析工具概述(精選3種)

related work

現有社群分析工具概述(精選3種)

功能與定位

聚焦「品牌監測」與「社群聆聽」,可支援多語言大規模數據處理優勢

多平台整合度高,圖表與儀表板呈現豐富

不足

系統設定複雜、付費成本較高,對中文(尤其繁體)的情感分析精確度需進一步測試

related work

現有社群分析工具概述(精選3種)

BuzzSumo

功能與定位

強調「內容行銷洞察」,分析關鍵字或主題的熱門程度與分享量優勢

可快速找出在各社群上最受歡迎的內容,對行銷人員規劃內容策略相當有利

不足

偏重「社群分享量」與「話題熱度」數據,不具備深度語意或情緒 偵測功能

related work 工具比較表

工具/指標	多平台管理	中文情感分析	即時更新	自動產出洞察	費用/複雜度
Hootsuite	有(主流社群)	弱(僅關鍵字層級)	中(排程可 行)	無(需人工分析)	中等/操作簡單
Brandwatch	有(多來源)	有(但中文精度待 測)	高(近即時)	有(可視化報 告)	偏高/設定較複 雜
BuzzSumo	部分(重內容分 享)	無(不做情感判斷)	中(非即時)	無(以列表為 主)	中等/上手容易

資料來源:官網功能說明、第三方評測平台(G2、Capterra)以及使用者分享。

註:圖片由專案團隊製作

related work 主要痛點歸納

- 1. 中文語意與深度情感分析有限:
- 大多數工具以英文語料為主,對繁體中文網路用語的準確度不高。
- 2. 即時多平台整合不足:
- · 少數工具能即時更新,但未必能整合論壇、新聞等多元來源。
- 3. 自動產出洞察報告較少:
- 大多提供數據可視化,深度議題脈絡剖析仍需仰賴人工。

方案概念

• 目的:提供一個基於 PTT 即時關鍵字分析的平台,幫助使用者快速掌握熱門話題的情感趨勢、討論熱度及用戶行為模式。

原理:透過即時爬蟲與分析模組,將關鍵字相關文章進行處理、 分析並以視覺化方式呈現結果。

主要特色

1. 即時響應

· 使用者只需輸入關鍵字,平台即可即時爬取 PTT 相關內容,無需等待長時間計算。

2. 多維度分析

· 涵蓋情感分析、趨勢預測及用戶分群,協助掌握話題整體熱度與 細節。

3. 可視化結果

· 結果以長條圖、折線圖等直觀呈現,方便使用者快速解讀。

4. 雲端部署

· 前端部署於 Streamlit Cloud,方便多用戶隨時使用;程式碼版本控管集中於 GitHub。

方案流程 / 系統架構圖

註:圖片由專案團隊製作

使用技術

1. 爬蟲技術

·透過 requests 與 Beautiful Soup, 爬取 PTT 文章標題、內文與相關元數據。

2. 文本處理與清洗

• 使用正則表達式移除雜訊與無效元數據,保留核心內容進行分析。

3. 情感分析模組

- 使用 Hugging Face 的 roberta-base-finetuned-jd-binary-chinese 模型
- ,對文章進行情感分類。

4. 趨勢預測模組

·使用 ARIMA 時間序列模型,分析歷史數據並預測未來幾期的熱度走勢。

5. 用戶行為分群

·利用 K-means 分群演算法,結合 PCA 降維,分析用戶發文與互動特徵。

6. 前端部署與可視化

· 前端採用 Streamlit,以長條圖、折線圖等形式即時呈現分析結果。

實作功能說明實作環境與工具

Python 3.12

優點:

- 1. 廣泛的庫支持:擁有豐富的函式庫(如 requests, BeautifulSoup, transformers, statsmodels, sklearn),滿足爬蟲、NLP、數據分析等多種需求。
- 2. 開發效率高:語法簡潔,適合快速開發與測試。
- 3. 社群支持: Python 擁有活躍的開發者社群,遇到問題可以快速找到解決方案。

實作功能說明

實作環境與工具

Streamlit Cloud

優點:

1. 快速部署: 簡單一行指令即可將應用部署到雲端,無需額外伺服器配置。

2. 即時互動:提供即時交互式的用戶界面,適合進行分析結果展示和使用者操作。

3. 免費方案:適合中小型專案測試和初期開發。

4. 內建支持可視化:輕鬆生成圖表與數據展示,減少額外設計工作量。

實作功能說明 實作環境與工具

GitHub

優點:

1. 版本控管:每次程式碼更新都會被記錄,方便回溯與管理歷史版本。

2.多人協作:團隊成員可同時參與開發,減少衝突,提升效率。

3. 開源共享:方便公開分享專案進度,並能獲取社群建議或參與。

實作功能說明情感分析

功能概述

·對 PTT 爬取的文章及回文進行正負向情感分類,幫助掌握討論內容的整體情緒傾向。

技術細節

- 使用模型: uer/roberta-base-finetuned-jd-binary-chinese
 - ·由 Hugging Face 提供,針對中文文本進行 fine-tune 的情感分析模型。
- · 函式庫: transformers
 - 使用 Hugging Face 的 pipeline 方法,快速調用預訓練模型進行推論。
- ·輸出結果:每篇文章的 label (POSITIVE/NEGATIVE)和 score (情感分數)。

實作功能說明情感分析

執行流程

- 1. 輸入文本: 爬取到的 PTT 文章內容。
- 2. 文本截斷:使用 AutoTokenizer 將過長文本截斷為 512 字元以內。
- 3. 情感分類:對每篇文章進行情感分析,輸出正負向標籤與信心分數。

應用價值

- · 與情監測: 快速定位正面或負面的高影響力討論,輔助危機管理或品牌評估。
- 數據可視化:將結果以長條圖呈現,清晰展現正負情緒的分布比例。

₹

Share ☆ 🖍 🔘 ᠄

功能選單

選擇功能

- 首頁
- 情感分析
- 趨勢預測
- 用戶行為分析
- 個性化推薦
- 文本摘要

情感分析模組

此模組將分析 PTT 文章的情感傾向(正面、中立、負面)。

請輸入關鍵字:

ΑI

搜尋期間(月)

3

開始分析

正在抓取文章內容...(最多抓取100篇文章)

總共抓取到100篇文章

正在分析情感...

情感分佈統計:

positive (stars 4 and 5): 89 篇

negative (stars 1, 2 and 3): 11 篇

展示各情感類別的文章:

positive (stars 4 and 5) 類文章(展示三篇):

文章 1: 作者lovecomics 獅子頭三叔看板Gossiping標題問卦 AI機器人 真的能當 老婆時間Tue Jan 7 140520 2025 鄉民老愛說AI機器人當老婆的時代就快到了 可 是AI這麼聰明 ...

```
"{
    "label": "positive (stars 4 and 5)"
    "score": 0.7927428483963013
}
```

查看原文

註:圖片由專案團隊製作

實作功能說明趨勢預測

功能概述

·以時間序列模型分析歷史文章數據,預測未來幾個月的討論熱度,判斷話題是否可能持續發酵。

技術細節

- ・模型選擇:ARIMA (Auto-Regressive Integrated Moving Average)
 - 適合分析時間序列數據的趨勢與週期性特徵。
- · 函式庫: statsmodels. tsa. arima. model
 - 提供專業的統計與建模工具,用於擬合與預測時間序列。
- •輸出結果:
 - 歷史文章數量的折線圖。
 - 未來數月的熱度預測(每月文章數)。

實作功能說明趨勢預測

執行流程

- 1. 數據準備:按月統計文章數量,生成時間序列數據。
- 1.模型訓練:基於歷史數據擬合 ARIMA 模型,確定最佳參數 (p, d, q)。
- 2. 趨勢預測:使用訓練好的模型進行 6 個月的熱度預測。
- 3. 結果可視化:以折線圖形式顯示歷史與預測數據。

應用價值

- •話題監測:提前發現可能爆發的熱門話題,為行銷或公關活動提供依據。
- •預測未來走勢:幫助使用者制定資源分配或策略調整計劃。

功能選單

選擇功能

- 首頁
- 情感分析
- 趨勢預測
- 用戶行為分析
- 個性化推薦
- 文本摘要

趨勢預測模組。

此模組將分析熱門關鍵字的趨勢並進行未來預測。

請輸入關鍵字進行趨勢分析:

ΑI

開始趨勢預測

正在爬取數據...

爬取完成!數據範圍:2024-01-01 00:00:00 到 2025-01-01 00:00:00

數據抓取成功!

	month	value
12	2024-01-01 00:00:00	106
11	2024-02-01 00:00:00	184
10	2024-03-01 00:00:00	233
9	2024-04-01 00:00:00	190
8	2024-05-01 00:00:00	213
7	2024-06-01 00:00:00	702
6	2024-07-01 00:00:00	264
5	2024-08-01 00:00:00	207
4	2024-09-01 00:00:00	327
3	2024-10-01 00:00:00	343

Share 🗘 🖊 😯

註:圖片由專案團隊製作

實作功能說明用戶行為分群

功能概述

·基於 PTT 用戶的發文與回文行為數據,將用戶劃分為不同群體,分析 其活躍度與行為模式。

技術細節

- ·演算法:K-means 分群
 - 利用聚類技術將用戶分為不同行為特徵的群體。
- 數據降維: PCA (Principal Component Analysis)
 - 將高維數據壓縮到 2 維,便於視覺化展示。
- · 函式庫:sklearn
 - · 提供高效的 K-means 與 PCA 模組。
- ·輸出結果:每個用戶的分群標籤 (Cluster ID)、行為特徵分布圖。

實作功能說明用戶行為分群

執行流程

- 1. 數據準備: 爬取 PTT 用戶的發文數與回文數,計算特徵統計 (如總發文量、總回文量)。
- 2. 數據標準化:對數據進行標準化處理,消除特徵單位差異的影響。
- 3. 聚類分析:使用 K-means 將用戶分為 3~5 群,根據用戶特徵劃分群體。
- 4. 降維與視覺化:通過 PCA 將聚類結果壓縮到 2 維,並以散佈圖形式展示。

應用價值

- •高效用戶洞察:快速識別高活躍用戶(核心參與者)與低互動用戶(潛在觀察者)。
- •行銷策略優化:針對不同用戶群制定差異化的溝通與互動策略。
- 輿情分析支援:發現對事件推波助瀾的關鍵用戶,輔助危機處理。

○ 趨勢預測

○ 用戶行為分析

○ 個性化推薦

○ 文本摘要

用戶行為分析模組。

此模組將分析 PTT 用戶發文行為模式與特性。

請輸入關鍵字:

ΑI

搜尋期間(月)

3

開始分析

已爬取 551 篇文章,目前爬取到的文章時間:2024-10-21,搜尋範圍最早日期:2024-10-07

停止爬取

正在抓取 PTT 數據...

已完成爬取 551 篇文章,正在進行分析...

正在進行數據預處理(包括極端值處理)...

處理前的回文數摘要:

數據預處理完成,開始用戶分群分析...

分群數據摘要

	cluster	avg_post_count	avg_reply_count	user_count
0	0	1.146	25.2066	363
1	1	3.72	75.88	25
2	2	1.4	227.1673	30

分群數據的應用價值

- 群 0:以普通用戶為主,活躍度較低,可能是大部分用戶的行為模式。
- 群1:回文數明顯較高,這些用戶可能是社群的高互動參與者,對回應討 論感興趣。

Share ☆ / ① :

 群2:活躍度最高,發文和回文數都非常高,可能是熱門話題的主要貢獻 者或核心用戶。

註:圖片由專案團隊製作

觀看方式:

- 群集(顏色區分): 顏色對應用戶的分群結果。
- 點的位置(分佈):表示用戶行為的特徵相似性,距離越近的點表明用戶行 為越相似。
- 可觀察:
 - 。 **各群是否有明顯分界**(不同顏色的點是否聚集)。
 - 。 某些群是否存在異常行為(例如遠離其他點的用戶)。

觀看方式:

- 群集編號 (X 軸)表示不同用戶群。
- 回文數 (Y軸)表示該群用戶的回文行為數據。
- 可以觀察:
 - 群間的回文數分佈差異。
 - 。 是否存在某些群有極高或極低的異常值。

各群平均特徵比較

總結

「從數據中挖掘價值,用智慧洞察引領決策。」

本專案透過即時關鍵字分析與多維度 輿情洞察,為使用者提供了一個高效、 直觀的工具。未來,我們將持續優化 技術,擴展應用場景,讓社群數據真 正成為決策的力量。

多考文獻

技術與工具

1. Hugging Face

- Transformers 文檔: https://huggingface.co/docs/transformers
- 模型: uer/roberta-base-finetuned-jd-binary-chinese
 - 模型頁面: https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese

2. ARIMA 時間序列模型

- Statsmodels 文檔: https://www.statsmodels.org
- 使用指南: "Introduction to ARIMA Models"

3. K-means 與 PCA

- scikit-learn 文檔: https://scikit-learn.org/stable/
- K-means 使用指南: "Clustering with K-Means"

多考文獻

參考文章與資源

- 4. Streamlit
 - 官方文檔: https://docs.streamlit.io
 - Streamlit Cloud 部署指南: https://streamlit.io/cloud
- 5. 爬蟲技術
 - Requests 文檔
 - Beautiful Soup 文檔
- 6. ARIMA時間序列模型python應用-銅價格預測(一)
- 7. Python爬下PTT文章內容技巧(含程式碼)

多考文獻

圖書與學術資源

- 9. "Python for Data Analysis, 3rd Edition"
 - 作者: Wes McKinney
 - 出版社: O'Reilly Media, 2022
- 10. "Applied Text Analysis with Python"
 - 作者: Benjamin Bengfort, Rebecca Bilbro
 - 出版社: O'Reilly Media, 2020

圖片來源

Hottsuite Brandwatech buzzsumo pyhton streamlit github • GitHub 專案連結:

「GitHub 專案程式碼」: https://github.com/jun-wei-lin/NCHU/tree/main/AIoT-DA/Final_Project

• Streamlit Cloud 前端連結:

「Streamlit Cloud 使用介面」:

https://eefzbzjg62yh54cyzxez5q.streamlit.app/