

k-Means Clustering

Prof. Dr. Jan Kirenz HdM Stuttgart k-Means algorithm example

Assign each observation to one of k clusters based on the nearest clustering clustering.

OBSERVATIONS

cluster

Specify the number of clusters (in this example, k = 3).

Then imagine k cluster centroids are created.

Those k centroids get randomly placed in your space.

Each observation gets temporarily "assigned" to its closest centroid.

(e.g. by Euclidean distance)

Then the centroid of each cluster is calculated based on all observations assigned to that cluster...

UH OH. Now that the cluster centroids have moved, some of the observations are now closer to a different centroid!

NO PROBLEM!

Observations get reassigned to a different cluster based on the recalculated centroid.

But now that observations have been reassigned, the centroids need to move again [recalculate centroids from updated clusters]

7

Again, now observations are reassigned as needed to the closest centroid.

Then the centroid for each cluster is recalculated...

... which means observations will be reassigned ...

That iterative process of

Recalculate cluster centroids

Reassign observations to nearest centroid

Recalculate cluster centroids

> Reassign observations to nearest centroid

Recalculate cluster centroids

Reassign observations to nearest centroid

Continues until nothing is moving or being reassigned anymore!

Which means the iteration is done and each observation is assigned to its final cluster.

Advantages of k-means

- Relatively simple to implement.
- Easily adapts to new examples.
- Generalizes to clusters of different shapes and sizes, such as elliptical clusters.

Disadvantages of k-means

- Choosing k manually.
- Being dependent on initial values
- Clustering data of varying sizes and density.
- Clustering outliers.
- Scaling with number of **dimensions**.

Silhouette analysis

- Silhouette coefficient is between -1 and +1
- Higher is better
- Pick **k** where average silhouette is closest to 1

announce comments raises

Selecting the number of clusters with silhouette analysis on K-Means clustering

- Can be used to study the separation distance between the resulting clusters.
- Measure of how close each point in one cluster is to points in the neighboring clusters
- Assess parameters like number of clusters visually.
- Measure has a range of [-1, 1].

Silhouette coefficients

- Near +1 indicate that the sample is far away from the neighboring clusters.
- Indicates that the sample is on or very close to the decision boundary between two neighboring clusters
- Negative values indicate that those samples might have been assigned to the wrong cluster or are outliers