Applied Statistics

Feb 4th 2021

Prof.ssa Chiara Seghieri,

Laboratorio di Management e Sanità, Istituto di Management, Scuola Superiore Sant'Anna, Pisa c.seghieri@santannapisa.it

EXPLORING AND SUMMARIZING DATA

The research study process

Summarize Data to Reveal Meaningful Information, Patterns, and Relationships

- How you do this depends on the nature of the data, e.g.,
 - nominal, ordinal, etc.
- One variable at a time (Univariate Analysis)
- Two variables at a time (Bivariate Analysis)
- Multiple variables at a time (Multivariate Analysis)

Two stages:

- reduce the data to a single relatively compact table (frequency table, crosstabulation, control table, etc.) or corresponding chart (bar graph, histogram, dot chart, box chart, scattergram, etc.)
- reduce it further, if possible and depending on the nature of the variable, to one or several *summary statistical measures* (measures of central tendency, dispersion, correlation, etc.).
- We first look at the process of summarizing data down to frequency tables, bar graphs, and histograms.
 - Then (univariate) measures of central tendency and dispersion.

We first look at the process of summarizing data down to frequency tables, bar graphs, and histograms.

- Then (univariate) measures of central tendency and dispersion.

Frequency tables

- After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.
- This is the goal of descriptive statistical techniques.
- One method for simplifying and organizing data is to construct a frequency table.

Data Matrix (nxp): individual (person) level

wave	country	hid	pid	pd001	age	sex	maritalstatu	pe001	personalincome	healthstatus
w2 surve	spain	6068101	60681101	1948	47	male	married	paid emp	2400695	good
w6 surve	denmark	5445702	54457103	1974	25	female	married	paid emp	129000	very goo
w3 surve	spain	5882101	58821101	1934	62	male	married	paid emp	7350000	na
w3 surve	spain	3612101	36121101	1924	72	male	married	retired	1820000	bad
w1 surve	italy	97301	973101	1949	45	male	married	paid emp	40100	good
w6 surve	italy	614001	6140102	1945	54	female	married	housewor	0	very goo
w5 surve	italy	779601	7796103	1971	27	female	never ma	paid emp	12900	good
w4 surve	italy	545301	5453102	1965	32	female	married	self-emp	0	good
w1 surve	spain	5153101	51531103	1946	48	female	widowed	housewor	447996	good
w1 surve	spain	13813101	1.38E+08	1961	33	male	married	paid emp	1458000	fair
w6 surve	ireland	921001	9210101	1942	57	male	married	self-emp	7968	good
w5 surve	italy	352201	3522102	1930	68	female	married	retired	26640	fair
w1 surve	spain	3587101	35871101	1930	64	male	married	retired	1850426	good
w4 surve	ireland	1732601	17326102	1955	42	female	married	paid emp	8976	very goo
w6 surve	spain	2391101	23911101	1951	48	male	married	paid emp	1546726	good
w5 surve	denmark	264601	2646101	1919	79	female	widowed	retired	120612	very goo

n =1000 individuals (sample size) on the rows p=number of variables on the colums

Notation

$$X = {}^{\mathsf{variable}}$$

$$n = \text{sample size}$$

$$k = \text{num of values of X}$$

$$x_i = \text{value i of X}$$

$$m_i$$
 = absolute frequency of xi

$$f_i$$
 = relative frequency of xi

X	n_{i}	$f_i = n_i/n$
x_1	n_1	f_1
x_2	n_2	f_2
•	•	•
\mathcal{X}_i	n_{i}	f_i
•	•	•
x_k	n_k	f_k
Totale	n	1

tab sex

	n: absolute freq	f: relative freq (%)	cumulative freq (%)
sex of individual	Freq.	Percent	Cum.
male female	457 543	45.70 54.30	45.70 100.00
Total	1,000	100.00	

tab pd005

marital status	Freq.	Percent	Cum.	
married	584	58.40	58.40	=f1
separated	20	2.00	60.40	=f1+f2
divorced	17	1.70	62.10	=f1+f2+f3
widowed	80	8.00	70.10	=
never married	299	29.90	100.00	
Total	1,000	100.00		

tab ph001

health in general	Freq.	Percent	Cum.
very good	335	33.67	33.67
good	388	38.99	72.66
fair	196	19.70	92.36
bad	60	6.03	98.39
very bad	16	1.61	100.00
Total	995	100.00	

tab ph001, m

health in general	Freq.	Percent	Cum.
very good	335	33.50	33.50
good	388	38.80	72.30
fair	196	19.60	91.90
bad	60	6.00	97.90
very bad	16	1.60	99.50
	5	0.50	100.00
Total	1,000	100.00	

Age is a continuous variable, we need to create a new variable in which age is divided in classes!

tab agegr

RECODE of age (age of individual)	Freq.	Percent	Cum.
up_to_25_years	185	18.50	18.50
from_26_to_35	175	17.50	36.00
from_36_to_45	204	20.40	56.40
from_46_to_55	161	16.10	72.50
from_56_to_65	111	11.10	83.60
from_66_to_75	91	9.10	92.70
over_76_years	73	7.30	100.00
Total	1,000	100.00	

Pie Charts and Bar Charts

health in general	Freq.	Percent	Cum.
very good	335	33.67	33.67
good	388	38.99	72.66
fair	196	19.70	92.36
bad	60	6.03	98.39
very bad	16	1.61	100.00
Total	995	100.00	

for qualitative variables!

the frequencies are on the vertical axis and are proportional to the heights of the bars

Histogram

A graph in which the classes are marked on the horizontal axis and the class frequencies on the vertical axis. The class frequencies are represented by the heights of the bars and the bars are drawn adjacent to each other.

Frequency table for income

		<u>Freq.</u>	<u>Percent</u>	Valid %	<u>Cum. %</u>
	Less than \$15,000	145	12.0	13.7	13.7
	\$15,000 to \$25,000	121	10.0	11.4	25.2
	\$25,000 to \$35,000	102	8.4	9.7	34.9
	\$35,000 to \$50,000	154	12.7	14.6	49.5
	\$50,000 to \$80,000	246	20.3	23.3	72.8
	\$80,000 to \$120,000	167	13.8	15.8	88.6
	More than \$120,000	120	9.9	11.4	100.0
	Total	1055	87.0	100.0	
Missing	NA	157	13.0		
Total		1212	100.0		

Bar Chart

V65D DOLLAR INCOME (2004)

- The bar chart appears to display a distribution of income that is approximately "uniform" that is, all bars are approximately the same height, except for a distinctive peak (or "mode") in the third highest income category.
 - Indeed, the impression the bar graph conveys to the eye is that there are more well-off than not-so-well-off people.
- However, this impression is quite misleading, as you can begin to understand when you look more closely at the income class intervals and notice that they are not of equal width.
- Here is the histogram of the same INCOME data =>

Histogram

- The fundamental difference between a bar graph and a histogram:
 - in a bar graph, frequency is represented by the <u>height</u> of the bars (all of which have the same width);
 - in a histogram, frequency is represented by the <u>area</u> of the "bars" (which may have different widths, reflecting the different "widths" of the class intervals).
- With equal class intervals, the area of a bar depends only on its height, so Histogram ≈ Frequency Bar Chart
- But with unequal class intervals, the area of a bar depends on both its height and its width, so Histogram ≠ Frequency Bar Chart

Histogram (cont.)

- the area [not height] of each rectangle is proportional to the frequency associated with that class interval.
- How tall should each rectangle be?
- The width of each rectangle is the width of the class interval, and you should remember that:

Area = Height × Width so Height = Area / Width

 Since Area here represents Frequency, we have the formula:

Height = Frequency / Width,

where Width is the width of the class interval.

Histogram (cont.)

 Now we can calculate the following (relative) heights of all the bars/rectangles. (Since only relative magnitudes matter, we can ignore the \$000 = \$K in INCOME values.)

<u>Class Interval</u>	<u>Width</u>	<u>Freq.</u>	Freq/Width		<u>Height</u>
0-15	15	13.7	13.7 / 15	=	0.913
15-25	10	11.4	11.4 / 10	=	1.140
25-35	10	9.7	9.7 / 10	=	0.970
35-50	15	14.6	14.6 / 15	=	0.973
50-80	30	23.3	23.3 / 30	=	0.777
80-120	40	15.8	15.8 / 40	=	0.395
120-250	130	11.4	11.4/130	=	880.0

- Now we can draw the appropriate scale on the vertical axis.
- The tallest rectangle has a height of about 1.14

- V65D DOLLAR INCOME (2004)
- Given that height in a histogram does not represent frequency, what does it represent?
- The answer is that height represents density that is, how densly observed values of cases are "packed into" each class interval.
 - Note that the class interval \$50-80K includes about twice as many cases (23.3%) as the interval \$15-25K (11.4%).
 - This fact is reflected in the bar graph in Figure 1 by the fact that the bar on the \$50-80K interval is about twice as high as the bar over the \$15-25K interval.
 - It is reflected in the histogram in Figure 2 by the fact that the "bar" (rectangle) on the \$50-80K interval has about twice the area of the bar on the \$15-25K interval.
 - But the 23.3% of the cases in the \$50-80K interval are spread over an income interval that is three times as wide as the interval into which the 11.4% of the cases in the \$15-25K interval are packed, so the height of the former (wide) bar is actually less than the height of the latter (thin) bar.

Histogram vs. Frequency Bar Graph

- If all class intervals all have the same width, then the histogram is essentially no different from a bar chart
- Otherwise (i.e., if the class intervals are not all of equal width), a bar chart and a histogram of the same data may look quite different,
 - in which event the bar chart presents a misleading picture of the data,
 - while the histogram presents a more accurate picture.
- The histogram, unlike the bar chart takes account of the interval property of the variable.

A Continuous Income Density Curve ["Eyeball estimate"]

- Contrary to the (hypothetical) continuous density curve, INCOME data suggests that the distribution of household income has two "peaks" (or modes), one at about \$18K and another at about \$43K, with a slight "valley" between them.
- This probably results from the fact that there are two types of households: family or multi-person households (typically two or more adults and often children as well) and single-person households (typically widows/widowers or young adults). On average, the former type of household has (and needs) higher income than the latter. This tends to produce two peaks in the overall distribution of household income.

A Symmetric [Normal] Density Curve

An Asymmetric Density Curve

Key Concept

A histogram is an important type of graph that portrays the nature of the distribution.

Two-way frequency tables – bivariate analysis

Also known as *contingency tables*, crosstabs help you to analyze the relationship between two or more categorical variables

tab ph001 sex, row col

	dividual	sex of in	health in
Total	female	male	general
335	← 170	165	very good
100.00	▼ 50.75	49.25	
33.67	31.31	36.50	
388	208	180	good
100.00	53.61	46.39	
38.99	38.31	39.82	
196	118	78	fair
100.00	60.20	39.80	
19.70	21.73	17.26	
60	36	24	bad
100.00	60.00	40.00	
6.03	6.63	5.31	
16	11	5	very bad
100.00	68.75	31.25	
1.61	2.03	1.11	
995	543	452	Total
100.00	54.57	45.43	
100.00	100.00	100.00	

The first value in a cell: the number of observations for each xtab. In this case, 165 respondents are 'male' and reported to be in a 'very good' health status, 170 are 'female' and and reported to be in a 'very good' status.

The second value in a cell: row percentages for the first variable in the xtab. Out of those who report to be in 'very good' health status, 49.25% are males and 50.75% are females.

The third value in a cell: column percentages for the second variable in the xtab. Among males, 36.50% report a 'very good' health while 31.31% of females report a 'very good' health

catplot ph001 sex, percent(ph001) blabel(bar)

