Project Development Phase Model Performance Test

Date	18 November 2022	
Team ID	PNT2022TMID08012	
Project Name Exploratory Analysis of Rainfall Data in India for Agric		
Maximum Marks 10 Marks		

Model Performance Testing:

S.N o.	Parameter	Values	Screenshot
1.	Metrics 1	Classification Model: Random Forest Confusion Matrix – [[31372 1448] [4726 4691]] Accuracy Score 0.8538248455145963 Classification Report – Accuracy: 0.8538248455145963 Precision: 0.7641309659553673 Recall: 0.49814165870234683 F1-score: 0.6031113396760092	Random forest Confusion matrix conf_matrix = metrics.confusion_matrix(y_test,t1) fig.ax = plt.subplots(figsize=(7.5,7.5)) ax.matsbew(conf_matrix.shape(3)): for 1 is n=neg(conf_matrix.shape(3)): is n.test(x=0,y=0,s=oren_matrix)(1,5), vs = 'center', hs='center', size='xx-largelt.shape(1)): is n.test(x=0,y=0,s=oren_matrix)(1,5), vs = 'center', hs='center', size='xx-largelt.shape(1)): is n.test(x=0,y=0,s=0): plt.slabel('Artsalis', fontsize=18) plt.title('Confusion Matrix', fontsize=18) plt.show() Confusion Matrix ** **Transpar** **Transpar**

```
print("*"*10, "Classification Report", "*"*10)
                                                  print("-"*30)
                                                  print(classification_report(y_test, t1))
                                                  print("-"*30)
                                                  ******* Classification Report *********
                                                            precision recall f1-score support
                                                                0.87 0.96 0.91
0.76 0.50 0.60
                                                                                         32820
                                                           0
                                                           1
                                                                                           9417
                                                                                          42237
                                                     accuracy
                                                                                  0.85
                                                    macro avg
                                                                0.82 0.73 0.76
                                                                                          42237
                                                  weighted avg 0.85 0.85 0.84
                                                                                         42237
2.
     Tune the
                   Hyperparameter Tuning
     Model
                   & Validation Method -
                                                   Hyperparameter Tuning
                   RandomizedSearchCV
                                                 from sklearn.ensemble import RandomForestRegressor
                                                   rf = RandomForestRegressor(random_state = 42)
                                                   from pprint import pprint
                                                   # Look at parameters used by our current forest
                                                   print('Parameters currently in use:\n')
                                                   pprint(rf.get_params())
                                                   Parameters currently in use:
                                                   {'bootstrap': True,
                                                    'ccp_alpha': 0.0,
                                                    'criterion': 'mse',
                                                    'max_depth': None,
                                                    'max_features': 'auto',
                                                    'max leaf nodes': None,
                                                    'max_samples': None,
                                                    'min_impurity_decrease': 0.0,
                                                    'min_impurity_split': None,
                                                    'min samples leaf': 1,
                                                    'min_samples_split': 2,
                                                    'min_weight_fraction_leaf': 0.0,
                                                    'n_estimators': 100,
                                                    'n_jobs': None,
                                                    'oob_score': False,
                                                    'random_state': 42,
                                                    'verbose': 0,
                                                    'warm_start': False}
```

```
n_estimators = [10,20,30,50]
max_features = ['auto', 'sqrt']
max_depth = [int(x) for x in mp.linspace(10, 50, num = 8)]
min_samples_leaf = [2, 4, 6]
bootstrap = [True, False]
# Create the random grid
random grid = [1 = 1, 4, 10]
random_grid = {'n_estimators': n_estimators,
                      'max features': max features,
'max depth': max depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap)
from sklearn.model_selection import #andomizedSearchCV
rf = RandomForestRegressor()
rf_random = RandomizedSearchCV(estimator = rf,param_distributions = random_grid,r
4
rf_random.fit(X_train_scaled, y_train)
 Fitting 5 folds for each of 100 candidates, totalling 500 fits
 RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n_iter=100,
                             n iobs--1.
                            random_state=35, verbose=2)
best_params = rf_random.best_params_
print ('Best Parameters is', best_params)
Best Parameters is ('m_estimators': 50, 'min_samples_split': 10, 'min_samples_1 eaf': 6, 'max_features': 'sqrt', 'max_depth': 21, 'bootstrap': False)
print(f'Accuracy =: {round(rf_random.score(X_train_scaled, y_train) * 180, 2))%']
 Accourage at 75 976
```