Tentamen Vektoralgebra MAA150 - TEN2 Datum: 2016-08-18 Hjälpmedel: inga

(3p)

(2p)

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar.

- 1 Låt T vara den linjära transformationen $T(x_1, x_2, x_3) = (1, -2, 1) \times (x_1, x_2, x_3)$. Bestäm standardmatrisen för T och $T \circ T$. (5p)
- 2 Låt $S_a = \{(1,0,1,-1), (1,3a,1,-1), (1,3,1+a,-1)\}$, för $a \in \mathbb{R}$. Bestäm de värden på a sådana att S_a är linjärt beroende, och bestäm dimensionen av span (S_a) för varje sådant a. (5p)
- **3** Den linjära transformationen T definieras av $T(\mathbf{x}) = A\mathbf{x}$ där

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

- a. Bestäm en bas till värderummet till T.
- **b.** Avgör om vektorn (-1, 2, 1) tillhör T:s värderum.
- 4 Matrisen

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & 0 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

har egenvärden $\lambda = 1$, $\lambda = -2$, och $\lambda = 4$.

- **a.** Bestäm alla egenvektorer till A. (4p)
- **b.** Avgör om A är diagonaliserbar. Motivera ditt svar. (1p)
- 5 Låt $S = \{(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}), (0, 1, 0), (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})\}.$ a. Visa att S är en ortonormal bas till \mathbb{R}^3 .
- **a.** Visa att S är en ortonormal bas till \mathbb{R}^3 . (3p)
- **b.** Vektorn \mathbf{v} har koordinater (1,2,3) i standardbasen. Bestäm \mathbf{v} :s koordinater i basen S, alltså bestäm $(\mathbf{v})_S$.

Divsion of Mathematics and applied mathematics Mälardalen University Examiner: Mats Bodin

Examination Vector algebra **MAA150 - TEN2** Date: Aug 18, 2016

Exam aids: not any

(3p)

(2p)

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

- Let T be the linear transformation $T(x_1, x_2, x_3) = (1, -2, 1) \times (x_1, x_2, x_3)$. Find the standard 1 matrix for T and $T \circ T$. (5p)
- $\mathbf{2}$ Let $S_a = \{(1,0,1,-1), (1,3a,1,-1), (1,3,1+a,-1)\}$, for $a \in \mathbb{R}$. Determine the values of a such that S_a is linearly dependent, and find the dimension of span (S_a) for each such a. (5p)
- 3 The linear transformation T is defined by $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

- **a.** Find a basis for the range of T.
- **b.** Determine if the vector (-1, 2, 1) is in the range of T.
- 4 The matrix

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & 0 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

has eigenvalues $\lambda = 1$, $\lambda = -2$, and $\lambda = 4$.

- Find all eigenvectors of A. (4p)
- **b.** Determine if A is diagonalizable. Motivate your answer. (1p)
- Let $S = \{(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}), (0, 1, 0), (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})\}.$
- Show that S is an orthonormal basis for \mathbb{R}^3 . (3p)
- The vector \mathbf{v} has coordinate vector (1,2,3) in the standard basis. Find the coordinate vector of **v** relative to the basis S, that is find $(\mathbf{v})_S$. (2p)

MAA150 Vektoralgebra, vt-16.

Assessment criterias for TEN2 2016-08-18

General assessment criteria

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

Assessment problems

1. [5 points]

computing the cross product (2p), finding the standard matrix for T (2p), computing the standard matrix for $T \circ T$ (1p)

2. [5 points]

the equation for linear dependence $(1\mathbf{p})$, relevant method that shows that they are linearly independent for $a \neq 0$ $(1\mathbf{p})$, correct motivation of linear dependence for a = 0 $(2\mathbf{p})$, correct dimension for a = 0 $(1\mathbf{p})$

3. [5 points]

- a. Relevant method with row operations (2p), a correct basis (1p)
- **b.** correct motivation that the vector is in the range of T (2p)

4. [5 points]

- a. Relevant method for finding eigenvectors (1p), each correct eigenvector 1p (3p)
- **b.** correct motivation (1p)

5. [5 points]

- a. checking that the vectors are orthonormal (2p), checking they form a basis (1p)
- b. Finding $(\mathbf{v})_{\mathbf{S}}$ $(\mathbf{2p})$

MAAISO: TEN 2

 $T(x_{1},x_{2},x_{3}) = (1_{1}-2_{1}) \times (x_{1},x_{2},x_{3}) =$ $= \begin{vmatrix} i & j & k \\ i & -2 & 1 \end{vmatrix} = (-2x_{3}-x_{2}, -(x_{3}-x_{1}), x_{2}+2x_{1})$ $\times_{1} \times_{2} \times_{3} = (-2x_{3}-x_{2}, -x_{3}, +x_{1}, x_{2}+2x_{1})(2p)$

Standard matrix

$$T(1,0,0) = (0,1,2)., T(0,1,0) = (-1.,0,1)$$

 $T(0,0,1) = (-2,-1,0)$

So
$$[T] = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
. $(2p)$ and

 $[T \circ T] = [T] \cdot [T] = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} = (1p)$

$$= \begin{bmatrix} -5 & -2 & 1 \\ -2 & -2 & -2 \\ 1 & -2 & -5 \end{bmatrix}$$

MAAISO: TEN	2	2016-	08-18
-------------	---	-------	-------

(2) $S = \{(1,0,1,-1),(1,3a,1,-1),(1,3,1+a,-1)\}$
S is linearly dependent iff there there is a non-trivial solution to
a non-trivial solution to
$k_{1} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + k_{2} \begin{bmatrix} -1 \\ 3a \end{bmatrix} + k_{3} \begin{bmatrix} 3 \\ 1+a \end{bmatrix} = \overline{0} $
i.e. at least one of the $k_i \neq 0$, where $i = 1,2,3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-> [-1-1-10] [0 0. 0 0]
If a ≠ 0 then k1 = k2=k3=0 is the only solution.
If a = 0 the row-eductor form of (x) is
0 0 1 which has infinitely many solutions 0 0 0 50 50 is linearly dependent. The (2p)
2 leading 115. (1P)
Answer: Sa is linearly dependent for a = 0 and then dim(Sa) = 2
and then dim (Sa) = 2

MAA 150 : TEN 2

(3)
$$T(\bar{x}) = A\bar{x}$$
 where $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$

a) The range in (T) = col(A)

b) Since dim(im(T)) = 3 and $im(T) \subset \mathbb{R}^3$ we have $im(T) = \mathbb{R}^3$ so especially $(-1,2,1) \in im(T)$

Answer: a) $B = \{(1,2,0),(2,3,1),(1,1,-1)\}$

b) Yes, (-1,2,1) is in the range of T.

MAA150: TEN2

(4) For Eigenveldors solve (A-LI) V = 0 , V= (V1, V2, V3) $V_3 = t \Rightarrow V_2 = t$; $V_1 = -2t$. Taking t = 1 gives $\overline{u}_{i} = (-2, 1, 1)$ (2ρ) $\lambda = 4 : \begin{bmatrix} -2 & 0 & 2 & 0 \\ 1 & -4 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -6 & 6 & 6 \\ 0 & 4 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ V3 = t => V2 = t , V, = t . Taking t=1 gives V3 = (1,1,1) Answer a) Eigenvalues and corresponding eigenvectors (1) $L_1 = 1$, $\overline{u}_1 = (-2,1,1)$ (2) $L_2 = -2$, $\overline{u}_2 = (-2,-5,4)$

(3) $l_3 = 4$, $u_3 = (1,1,1)$ Answer b) A is digonalizable since A have three (1p) distinct eigenvalues.

2016-08-18 MAA150: TENZ

(5) $S = \{ (\sqrt{2} 10, -\sqrt{2}), (0, 1, 0), (\sqrt{2}, 0, \sqrt{2}) \} = \{ V_1, V_2, \overline{V_3} \}$ V=(1,2,3)

a) S is an orthonormal basis iff

i) S is an orthonormal set

1) (= ,0,-=) • (0,1,0)=0+0+0=0 (1/2,0,-1/2) · (1/2,0,1/2) = 2+0-2=0 / ok! (0,1,0) · (1,0,1) = 0+0+0=0 $\|(\frac{1}{15},0,-\frac{1}{15})\| = |(\frac{1}{15})^2 + (-\frac{1}{15})^2 = 1$ 1((01/0) 1(= 112 = $\|(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})\| = \sqrt{(\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2} = 1$

in) S is a basis since, S is orthogonal => S linearly indep. and 3 linearly independent vectors in R3 form a basis for R3 (Thm 4.5.4)

b) Since S is an orthonormal basis.

 $(\bar{v})_{s} = (\bar{v} \cdot \bar{v}_{1}, \bar{v} \cdot \bar{v}_{2}, \bar{v} \cdot \bar{v}_{3}) = (\frac{1}{52}, \frac{3}{52}, \frac{2}{52}, \frac{1}{52}, \frac{3}{52})$ (Thm 6.3.2) = (-52,2,252) -