

COMP34711 Week 3

Part 2 Querying and ranking

Goran Nenadic

with examples from the IIR book

The University of Manchester

Outline

- The Boolean model
- Ranked retrieval
 - Vector space model for IR
 - tf*idf
 - Ranking documents
- Measuring the quality of IR
 - Standard metrics
- Enhancing IR
 - User behaviour

The University of Manchester

Boolean queries

- The simplest query model: find all documents from the collection that fully match the query
 - Binary outcome for each document: yes/no
- Use operators
 - AND (set intersection)
 - OR (set union)
 - NOT (set difference, complement)
- E.g.

Boolean query processing: AND

Consider processing the query:

Brutus AND **Caesar**

- 1. Locate **Brutus** in the Dictionary
 - Retrieve its postings
- 2. Locate *Caesar* in the Dictionary
 - Retrieve its postings

3. "AND-merge" the two postings:

(IIR book)

Boolean query processing: AND

- "AND-merge":
 - walk through the two postings simultaneously (moving/ progressing through the postings with lower docID) until there is no possible matches
 - <u>crucial</u>: postings are sorted by docID.

Boolean model: pros

- Simple model: everything is considered as a set of terms
- Easy/efficient to implement
- Precise
 - Document either matches or does not match
- Widely used for commercial, legal retrieval and for specialist searches
 - Long, precise queries
- Works well when we know what we want: user feels in control

Boolean model: cons

- Users are not good in formulating queries: possible confusion with natural language
 - cats OR dogs
 - cats OR dogs AND NOT horses
- "feast or famine"
 - AND gives too few or no results
 (the more ANDs, the smaller the result set)
 - OR gives too many
- Basic Boolean expressions too limiting for information needs?

Boolean model: cons

- No relevance ordering/ranking of results
 - In principle, all retrieved documents are good
 - But note: the BoW model does not use word order in documents
 - How to 'read' them if there are too many?
 - Some notion of additional relevance could be added:
 - date reverse order of document creation?
 - the frequency of query terms in matched documents?
 - proximity of query terms in documents?

The University of Manchester

Extended Boolean model

Proximity operators

Embed term positions to the inverted index (proximity index)

- Queries can then refer to these, e.g.
 - /n (e.g. /3 within 3 words)
 - /s = in same sentence, /p in same paragraph
 - +s = term1 must precede term2 in same sentence

Ranked retrieval

- In Boolean query model
 - Documents match or don't match
 - Results are unranked

Documents that are 'close' are not retrieved

social AND worker AND union

- Will not retrieve a document that has social and worker in it if union is not not mentioned, although it may mention UCU or TUC
- Boolean querying is too rigid

Ranked retrieval

- Introducing <u>similarity</u> and <u>ranking</u> of matched documents
 - Attempt more than exact matching queries with docs
 - Score each document to say <u>how well it matches</u> query
 - E.g. assign a real number score in range 0..1
 - Typically aim to get top K (10?) ones correct
 - As user will likely not look much further
- Idea: use vector representation for both documents and queries, and calculate their similarity

Vector representations

- Represent both documents and queries as vectors in the same space
- Then, rank (all) documents according to their <u>proximity</u> to the given query in that space
 - Rank more relevant documents higher than less relevant documents
 - Recall: We do this because we want to get away from the "you're-either-in-or-out" Boolean model.

Weights

 What weight to use to represent terms that appear in documents/queries?

Term frequency (tf)

- Term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- How to use tf when computing query-document match scores?
- Raw term frequency is not what we want:
 - Document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But not 10 times more relevant
- Relevance does not increase proportionally with term frequency

Document frequency (df)

- Document frequency = in how many documents term appears
- Consider term in query that is rare in collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to a query that contains arachnocentric
 - → We want a high weight for rare terms (like *arachnocentric*)
- Rare terms are more informative and discriminative than frequent terms for IR

Document frequency (df)

- Consider a query term that is frequent in collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance
 - → For frequent terms, we want high positive weights, but lower weights than for rare terms

Collection vs. document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences (within the same document)
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

— Which word is a "better" search term (and should get a higher weight)?

(IIR book)

Inverse document frequency

- Document frequency (df_t) is the number of documents that contain term t
 - df_t is an inverse measure of the "informativeness" of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by

$$idf_t = log_{10} (N/df_t)$$

- We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf
- The base of the log is immaterial.

idf example

Collection of N = 1,000,000 documents

term	df_t	idf_t	
Calpurnia	1	6	(= log(1M/1))
animal	100	4	(= log(1M/100))
sunday	1,000	3	(= log(1000))
fly	10,000	2	(= log (100))
under	100,000	1	(= log(10))
the	1,000,000	0	(= log(1))

• There is one idf value for each term t in a collection $idf_t = log_{10} (N/df_t)$

$$idf_{f/y} = log_{10} (1,000,000/10,000) = log_{10} 100 = 2$$

(IIR book)

tf.idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight

$$tf.idf_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10} (N / df_t)$$

- Best known weighting scheme in information retrieval
 - Note alternative notations: tf-idf, tf x idf, tf*idf, tfidf
- Increases
 - with the number of occurrences within a document
 - with the rarity of the term in the collection

(IIR book)

The University of Manchester

frequency

Term-document count matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Each document is a count vector in \mathbb{N}^{v}

Binary \rightarrow count \rightarrow tf*idf weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf*idf weights ∈ R^{|V|}

(IIR book)

Vector Space Model for IR

- Documents and Queries are presented as vectors
- Match(Q,D) = distance between vectors
- Which distance to use?
 - Euclidean Distance?
 - Distance between the endpoints of the two vectors
 - Large for vectors of diff. lengths
 - Angle between the document and the query
 - Use cosine of the angle

Cosine distance

- Need to normalise for length to ensure fair comparison
 - Long and short documents then have comparable weights
- Dividing a vector by its norm makes it a unit (length) vector (on surface of unit hypersphere)

24

Cosine distance

 For length-normalized vectors, cosine similarity is the dot (or scalar) product:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

- Easy and efficient to calculate
 - Note that we need only the values for terms that appear in both the document and query.
- Use cosine values to rank the document based on their similarity (i.e. distance) to the query

Document ranking for a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- Score of a document d is sum over all tf.idf weights of each query term t found in d
- Indexing: for each term and document calculate tf*idf_{t,d}
- Typical output: a list of documents ranked according to score (q,d):

1 0 710 0 0.9234 0
1 0 213 0 0.7678 0
1 0 103 0 0.6761 0
1 0 13 0 0.6556 0
1 0 501 0 0.4301 0

Query id

Return top K documents

The University of Manchester

Summary of the steps

- Pre-process each document
 - tokenisation, stop-words removal (plus maybe some normalization – stemming, spelling corrections)
 - decide what will be index terms and calculate their tf.idf
- Represent each document as a weighted tf.idf vector
- Represent the query as a weighted tf.idf vector
- Compute the (cosine) similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K to the user