vv214: Linear transformations II.

Dr.Olga Danilkina

UM-SJTU Joint Institute

June 11, 2019

This week

Today

- 1. Kerenel and image of a linear transpromation.
- 2. Rank-Nullity Theorem.
- 3. Inverse linear transformations.

Next class

Coordinates.

Definition: The kernel and image of a linear operator $T: V \to W$ are defined by

$$Ker\ T = \{v \in V : Tv = 0\} \quad Im\ T = \{w \in W : w = Tv, v \in V\}$$

Examples: 1. $T: \mathbb{R} \to \mathbb{R}, Tx = x^2$ (not linear)

$$\textit{Ker } T = \{0\}, \textit{Im } T = \mathbb{R}_+ \cup \{0\}$$

2.
$$T: \mathbb{R} \to \mathbb{R}^2$$
, $T(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ (not linear)

$$Ker T = \emptyset$$
, $Im T = unit circle$

3.
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$

Ker
$$T = k \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
, $k = const$, Im $T = xy$ plane

4.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\bar{x} = A\bar{x}$, $A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$

$$\mathit{Ker}\, A = t \left(egin{array}{c} -3/2 \\ 1 \end{array}
ight), \, \mathit{Im}\, A = \mathit{span} \left(egin{array}{c} 1 \\ 3 \end{array}
ight)$$

5.
$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R}), \ Tp(t) = p'(t)$$

$$p(t) = a_0 + a_1 t + a_2 t^2 \Rightarrow Tp(t) = p'(t) = a_1 + 2a_2 t$$

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\textit{Ker } T = \{\textit{p}(t) \colon \textit{Tp} = 0\} = \{\textit{a}_0\} = \textit{span}(1), \textit{Im } T = \textit{span}(1,t)$$

Lemma 1: Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be defined by the matrix $A_{n \times m}$. The columns of the matrix A are linearly independent iff

$$Ker A_{n \times m} = \{\overline{0}\} \iff rank A = m \Rightarrow m \le n$$

Lemma 2: Let $T: V \to W$ be a linear operator. Im T and Ker T are linear subspaces of V and $W \Rightarrow$ there exist bases of the kernel and the image of a linear transformation.

Definition: A map $T: V \to W$ is called injective if Tu = Tv implies u = v.

"distinct inputs to distinct outputs"

Lemma: A linear operator $T: V \to W$ is injective iff $Ker\ T = \{0\}.$

▶ Let T be injective. As $\{0\} \subset Ker\ T$, so we need to show that $Ker\ T \subset \{0\}$.

Let
$$v \in \mathit{Ker} \ T \Rightarrow \mathit{Tv} = 0 = \mathit{T}(0) \Rightarrow v = 0 \Rightarrow \mathit{Ker} \ T \subset \{0\}.$$

Let $Ker\ T = \{0\}$. If Tu = Tv, then $T(u - v) = 0 \Rightarrow u - v \in Ker\ T \Rightarrow u - v = 0 \Rightarrow u = v$

Example: $T: \mathbb{R}^2 \to \mathbb{R}^3, \ T(x,y) = (2x, 3y, x + 2y)$

Definition: A map $T: V \to W$ is called surjective if Im T = W.

Example: $T: P_5(\mathbb{R}) \to P_5(\mathbb{R}), \ Tp(t) = p'(t)$ is not surjective.

$$T \colon \mathbb{R}^6 \to \mathbb{R}^4, \ A = \left(\begin{array}{ccccc} 0 & 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

$$\Rightarrow$$
 Ker $A = \{\bar{x} \in \mathbb{R}^6 : A\bar{x} = 0\}$

$$\Rightarrow \begin{cases} x_2 + 2x_3 + 3x_6 = 0 & \Rightarrow x_2 = -2x_3 - 3x_6 \\ x_4 + 4x_6 = 0 & \Rightarrow x_4 = -4x_6 \\ x_5 + 5x_6 = 0 & \Rightarrow x_5 = -5x_6 \end{cases}$$

$$\bar{x} = r \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 3 \\ -3 \\ 0 \\ -4 \\ -5 \end{pmatrix} \Rightarrow \dim Ker A = 3$$

Rank-Nullity Theorem

$$\dim Ker T + \dim Im T = \dim V$$

Example: $T: \mathbb{R}^3 \to \mathbb{R}^3, \ T\bar{x} = proj_V \bar{x}, \ V \subset \mathbb{R}^3$

$$\textit{Ker } T = \{\bar{x} \in \mathbb{R}^3 \colon \textit{proj}_V \bar{x} = \bar{0}\}, \, \textit{Im } T = V$$

$$Ker T = line orthogonal to V$$

$$\underbrace{m}_{3} - \underbrace{\dim(Ker\ T)}_{1} = \underbrace{\dim Im\ T}_{2}$$

Rank-Nullity Theorem: Proof

Let dim $(Ker\ T) = n$ and dim $Ker\ T = k \Rightarrow k \leq n$.

 \Rightarrow there exists a basis v_1, \ldots, v_k , of Ker T. Complete this basis up to the basis of $V: v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$

We are to prove that Tv_{k+1}, \ldots, Tv_n form the basis for Im T:

1 Tv_{k+1}, \ldots, Tv_n are linearly independent:

$$\alpha_1 T v_{k+1} + \ldots + \alpha_{n-k} T v_n = 0 \Rightarrow T(\alpha_1 v_{k+1} + \ldots + \alpha_{n-k} v_n) = 0$$

$$\Rightarrow \alpha_1 v_{k+1} + \ldots + \alpha_{n-k} v_n \in Ker T$$

$$\Rightarrow \alpha_1 v_{k+1} + \ldots + \alpha_{n-k} v_n \in span(v_1, \ldots, v_k)$$

But
$$v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$$
 are linearly independent $\Rightarrow \alpha_1 = \ldots = \alpha_{n-k} = 0$

2
$$span(Tv_{k+1}, \ldots, Tv_n) = Im T$$

A
$$w \in Im T \Rightarrow \exists v \in V : Tv = w \Rightarrow T(\beta_1 w_1 + \ldots + \beta_n v_n) = w$$

$$w = \beta_1 \underbrace{Tv_1}_{=0} + \ldots + \beta_k \underbrace{Tv_k}_{=0} + \beta_{k+1} Tv_{k+1} + \ldots + \beta_n Tv_n$$

$$w \in span(Tv_{k+1}, \ldots, Tv_n) \Rightarrow Im T \subset span(Tv_{k+1}, \ldots, Tv_n)$$

B
$$w \in span(Tv_{k+1}, ..., Tv_n) \Rightarrow w = \alpha_{k+1}Tv_{k+1} + ... + \alpha_{n-k}Tv_n$$

 $w = T(\alpha_{k+1}v_{k+1} + ... + \alpha_{n-k}v_n) \Rightarrow w \in Im T$

Definition: Let V, W be linear spaces.

A linear operator $T\colon V\to W$ is called invertible if there exists a linear operator $S\colon W\to V$ such that ST equals the identity map on V and TS equals the identity map on W.

A linear operator $S: W \to V$ satisfying ST = I and TS = I is called an inverse of T.

Here the first I is the identity map on V and the second I is the identity map on W. We shall denote the inverse linear operator by T^{-1} .

$$T^{-1}(Tv) = v$$
 and $T(T^{-1}w) = w$ $\forall v \in V \forall w \in W$

Lemma: A linear operator is invertible iff it is one-to-one (injective) and onto (surjective).

Let T^{-1} exists.

A Let
$$u, v \in V$$
 and $Tu = Tv$

$$u = T^{-1}(Tu) = T^{-1}(Tv) = v \Rightarrow T$$
 is injective

B Let $w \in W \Rightarrow w = T(T^{-1}w) \Rightarrow w \in Im T \Rightarrow W \subset Im T$ As also $Im T \subset W$, so W = Im T

Let T be injective and surjective. For any $w \in W$, define Sw be a unique element of V such that T(Sw) = w. This element exists since T is one-to-one and onto.

A From the definition, TS = I. Also

Similarly, $S(\alpha w) = \alpha Sw \ \forall w \in W \ \forall \alpha \in \mathbb{K}$

$$T((ST)v) = (TS)(Tv) = ITv = Tv \Rightarrow STv = v \Rightarrow ST = I$$

B *S* is linear:

$$w_1, w_2 \in W \Rightarrow T(Sw_1 + Sw_2) = TSw_1 + TSw_2 = w_1 + w_2$$

Apply the definition of $S \Rightarrow S(w_1 + w_2) = Sw_1 + Sw_2$

Remarks:

- 1. $(T^{-1})^{-1} = T$
- 2. Let $V,W=\mathbb{R}^n$. A linear transformation $T\colon\mathbb{R}^n\to\mathbb{R}^n$ is invertible if the system $A\bar{x}=\bar{y}$ has a unique solution

$$\iff$$
 rank $A = n \iff$ rref $A = I_n$

Definition: A square matrix A is invertible if the linear transformation $T\bar{x} = A\bar{x}$ is invertible.

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -1 & 3 & 2 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & -5 & 7 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & -5 & 7 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -\frac{7}{5} & \frac{3}{5} & -\frac{1}{5} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{4}{5} & -\frac{1}{5} & \frac{2}{5} \\ 0 & 0 & 1 & -\frac{7}{5} & \frac{3}{5} & -\frac{1}{5} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -\frac{2}{5} & \frac{3}{5} & -\frac{1}{5} \\ 0 & 1 & 0 & \frac{4}{5} & -\frac{1}{5} & \frac{2}{5} \\ 0 & 0 & 1 & -\frac{7}{5} & \frac{3}{5} & -\frac{1}{5} \end{pmatrix}$$

$$I\bar{y} = A^{-1}\bar{x} \Rightarrow A^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 3 & -1 \\ 4 & -1 & 2 \\ -7 & 3 & -1 \end{pmatrix}$$

 $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix} \Rightarrow A\bar{x} = I\bar{y}$

1. Let $A_{n\times n}$. If A^{-1} exists, then the system $A\bar{x}=\bar{0}$ has a unique solution

$$\Rightarrow$$
 rank $A = n \Rightarrow$ columns of A are linearly independent.

- 2. If A^{-1} exists, then $A^{-1}A = AA^{-1} = I$.
- 3. $(AB)^{-1} = B^{-1}A^{-1}$