ZAMZAM ISSACK 665415

> iris<-iris%>%mutate_if(is.character, as.factor)

> iris

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa
22	5.1	3.7	1.5	0.4	setosa
23	4.6	3.6	1.0	0.2	setosa
24	5.1	3.3	1.7	0.5	setosa
25	4.8	3.4	1.9	0.2	setosa
26	5.0	3.0	1.6	0.2	setosa
27	5.0	3.4	1.6	0.4	setosa
28	5.2	3.5	1.5	0.2	setosa
29	5.2	3.4	1.4	0.2	setosa
30	4.7	3.2	1.6	0.2	setosa
31	4.8	3.1	1.6	0.2	setosa
32	5.4	3.4	1.5	0.4	setosa
33	5.2	4.1	1.5	0.1	setosa
34	5.5	4.2	1.4	0.2	setosa
35	4.9	3.1	1.5	0.2	setosa
36	5.0	3.2	1.2	0.2	setosa
37	5.5	3.5	1.3	0.2	setosa

38	4.9	3.6	1.4	0.1	setosa
39	4.4	3.0	1.3	0.2	setosa
40	5.1	3.4	1.5	0.2	setosa
41	5.0	3.5	1.3	0.3	setosa
42	4.5	2.3	1.3	0.3	setosa
43	4.4	3.2	1.3	0.2	setosa
44	5.0	3.5	1.6	0.6	setosa
45	5.1	3.8	1.9	0.4	setosa
46	4.8	3.0	1.4	0.3	setosa
47	5.1	3.8	1.6	0.2	setosa
48	4.6	3.2	1.4	0.2	setosa
49	5.3	3.7	1.5	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4 ve	rsicolor
52	6.4	3.2	4.5	1.5 ve	rsicolor
53	6.9	3.1	4.9	1.5 ve	rsicolor
54	5.5	2.3	4.0	1.3 ve	rsicolor
55	6.5	2.8	4.6	1.5 ve	rsicolor
56	5.7	2.8	4.5	1.3 ve	rsicolor
57	6.3	3.3	4.7	1.6 ve	rsicolor
58	4.9	2.4	3.3	1.0 ve	rsicolor
59	6.6	2.9	4.6	1.3 ve	rsicolor
60	5.2	2.7	3.9	1.4 ve	rsicolor
61	5.0	2.0	3.5	1.0 ve	rsicolor
62	5.9	3.0	4.2	1.5 ve	rsicolor
63	6.0	2.2	4.0	1.0 ve	rsicolor
64	6.1	2.9	4.7	1.4 ve	rsicolor
65	5.6	2.9	3.6	1.3 ve	rsicolor
66	6.7	3.1	4.4	1.4 ve	rsicolor
67	5.6	3.0	4.5	1.5 ve	rsicolor
68	5.8	2.7	4.1	1.0 ve	rsicolor
69	6.2	2.2	4.5	1.5 ve	rsicolor
70	5.6	2.5	3.9	1.1 ve	rsicolor
71	5.9	3.2	4.8	1.8 ve	rsicolor
72	6.1	2.8	4.0	1.3 ve	rsicolor
73	6.3	2.5	4.9	1.5 ve	rsicolor
74	6.1	2.8	4.7	1.2 ve	rsicolor
75	6.4	2.9	4.3	1.3 ve	rsicolor
76	6.6	3.0	4.4	1.4 ve	rsicolor
77	6.8	2.8	4.8	1.4 ve	rsicolor
78	6.7	3.0	5.0	1.7 ve	rsicolor
79	6.0	2.9	4.5	1.5 ve	rsicolor
80	5.7	2.6	3.5	1.0 ve	rsicolor
81	5.5	2.4	3.8	1.1 ve	rsicolor
82	5.5	2.4	3.7		rsicolor
83	5.8	2.7	3.9		rsicolor
				_	

84	6.0	2.7	5.1	1.6	versicolor
85	5.4	3.0	4.5	1.5	versicolor
86	6.0	3.4	4.5	1.6	versicolor
87	6.7	3.1	4.7	1.5	versicolor
88	6.3	2.3	4.4	1.3	versicolor
89	5.6	3.0	4.1	1.3	versicolor
90	5.5	2.5	4.0	1.3	versicolor
91	5.5	2.6	4.4	1.2	versicolor
92	6.1	3.0	4.6	1.4	versicolor
93	5.8	2.6	4.0	1.2	versicolor
94	5.0	2.3	3.3	1.0	versicolor
95	5.6	2.7	4.2	1.3	versicolor
96	5.7	3.0	4.2	1.2	versicolor
97	5.7	2.9	4.2	1.3	versicolor
98	6.2	2.9	4.3	1.3	versicolor
99	5.1	2.5	3.0	1.1	versicolor
100	5.7	2.8	4.1		versicolor
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica
103	7.1	3.0	5.9	2.1	virginica
104	6.3	2.9	5.6	1.8	virginica
105	6.5	3.0	5.8	2.2	virginica
106	7.6	3.0	6.6	2.1	virginica
107	4.9	2.5	4.5	1.7	virginica
108	7.3	2.9	6.3	1.8	virginica
109	6.7	2.5	5.8	1.8	virginica
110	7.2	3.6	6.1	2.5	virginica
111	6.5	3.2	5.1	2.0	virginica
112	6.4	2.7	5.3	1.9	virginica
113	6.8	3.0	5.5	2.1	virginica
114	5.7	2.5	5.0	2.0	virginica
115	5.8	2.8	5.1	2.4	virginica
116	6.4	3.2	5.3	2.3	virginica
117	6.5	3.0	5.5	1.8	virginica
118	7.7	3.8	6.7	2.2	virginica
119	7.7	2.6	6.9	2.3	virginica
120	6.0	2.2	5.0	1.5	virginica
121	6.9	3.2	5.7	2.3	virginica
122	5.6	2.8	4.9	2.0	virginica
123	7.7	2.8	6.7	2.0	virginica
124	6.3	2.7	4.9	1.8	virginica
125	6.7	3.3	5.7	2.1	virginica
126	7.2	3.2	6.0	1.8	virginica
127	6.2	2.8	4.8	1.8	virginica
128	6.1	3.0	4.9	1.8	virginica
129	6.4	2.8	5.6	2.1	virginica

```
130
              7.2
                           3.0
                                         5.8
                                                      1.6 virginica
131
              7.4
                           2.8
                                         6.1
                                                      1.9 virginica
132
              7.9
                           3.8
                                         6.4
                                                      2.0 virginica
                           2.8
                                         5.6
133
              6.4
                                                      2.2 virginica
134
              6.3
                           2.8
                                         5.1
                                                      1.5 virginica
135
              6.1
                           2.6
                                         5.6
                                                      1.4 virginica
136
              7.7
                           3.0
                                         6.1
                                                      2.3 virginica
              6.3
                                         5.6
137
                           3.4
                                                      2.4 virginica
138
              6.4
                           3.1
                                         5.5
                                                      1.8 virginica
139
              6.0
                           3.0
                                         4.8
                                                      1.8 virginica
140
              6.9
                           3.1
                                         5.4
                                                      2.1 virginica
141
              6.7
                           3.1
                                         5.6
                                                      2.4 virginica
142
              6.9
                           3.1
                                         5.1
                                                      2.3 virginica
                           2.7
                                         5.1
143
              5.8
                                                      1.9 virginica
144
              6.8
                           3.2
                                         5.9
                                                      2.3 virginica
145
              6.7
                           3.3
                                         5.7
                                                      2.5 virginica
146
              6.7
                           3.0
                                         5.2
                                                      2.3 virginica
147
              6.3
                           2.5
                                         5.0
                                                      1.9 virginica
              6.5
                           3.0
                                         5.2
                                                      2.0 virginica
148
149
              6.2
                           3.4
                                         5.4
                                                      2.3 virginica
150
                                                      1.8 virginica
              5.9
                           3.0
                                         5.1
```

> train indices<-sample(c(1:nrow(iris)), data rows)</pre>

> train indices

[1] 10 40 109 41 82 42 22 46 73 1 107 112 17 84 56 90 12 121 30

[20] 16 98 127 18 61 97 20 62 123 55 144 129 105 70 59 89 49 67 88

[39] 130 74 31 32 71 19 76 48 143 72 116 111 8 50 37 77 13 69 28

[58] 108 120 102 58 63 4 132 114 149 96 86 39 36 34 79 140 68 150 11

[77] 66 113 119 52 117 139 53 135 136 93 137 35 78 6 26 21 25 80 126

[96] 9 60 29 141 5 146 142 85 64 3 44 118 145 15 38 110 94 83 7

[115] 148 81 43 99 131 54

- > test data <- iris[-train indices,]</pre>
- > test_data

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
2	4.9	3.0	1.4	0.2	setosa
14	4.3	3.0	1.1	0.1	setosa
23	4.6	3.6	1.0	0.2	setosa
24	5.1	3.3	1.7	0.5	setosa
27	5.0	3.4	1.6	0.4	setosa

```
5.2
                          4.1
                                                     0.1
33
                                        1.5
                                                             setosa
                          3.8
                                        1.9
45
             5.1
                                                     0.4
                                                             setosa
47
             5.1
                          3.8
                                        1.6
                                                     0.2
                                                             setosa
51
             7.0
                          3.2
                                        4.7
                                                     1.4 versicolor
             6.3
                                        4.7
57
                          3.3
                                                     1.6 versicolor
65
             5.6
                          2.9
                                        3.6
                                                     1.3 versicolor
75
                          2.9
                                        4.3
             6.4
                                                     1.3 versicolor
             6.7
                                        4.7
87
                          3.1
                                                     1.5 versicolor
91
             5.5
                          2.6
                                        4.4
                                                     1.2 versicolor
92
             6.1
                          3.0
                                        4.6
                                                     1.4 versicolor
                          2.7
                                        4.2
95
             5.6
                                                     1.3 versicolor
100
             5.7
                          2.8
                                        4.1
                                                     1.3 versicolor
                                        6.0
101
             6.3
                          3.3
                                                     2.5 virginica
                                        5.9
103
             7.1
                          3.0
                                                     2.1 virginica
             6.3
104
                          2.9
                                        5.6
                                                     1.8 virginica
                                                     2.1 virginica
106
             7.6
                          3.0
                                        6.6
115
             5.8
                          2.8
                                        5.1
                                                     2.4 virginica
                          2.8
                                        4.9
122
             5.6
                                                     2.0 virginica
             6.3
                                                     1.8 virginica
124
                          2.7
                                        4.9
125
             6.7
                          3.3
                                        5.7
                                                     2.1 virginica
128
             6.1
                          3.0
                                        4.9
                                                     1.8 virginica
133
             6.4
                          2.8
                                        5.6
                                                     2.2 virginica
134
             6.3
                          2.8
                                        5.1
                                                     1.5 virginica
                                        5.5
                                                     1.8 virginica
138
             6.4
                          3.1
             6.3
                          2.5
                                        5.0
147
                                                     1.9 virginica
> model <- neuralnet(Species ~ Sepal.Length + Sepal.Width + Petal.Length +
                         Petal.Width, data = train data, hidden = c(4,2),
linear.output = FALSE)
> model
$call
neuralnet(formula = Species ~ Sepal.Length + Sepal.Width + Petal.Length +
    Petal.Width, data = train data, hidden = c(4, 2), linear.output =
FALSE)
$response
    versicolor setosa virginica
         FALSE
                  TRUE
                           FALSE
1
2
          TRUE FALSE
                           FALSE
3
         FALSE FALSE
                            TRUE
4
         FALSE
                TRUE
                           FALSE
5
          TRUE FALSE
                           FALSE
```

6

7

8

FALSE FALSE

TRUE FALSE

FALSE TRUE

TRUE

FALSE

FALSE

9	FALSE	FALSE	TRUE
10	TRUE	FALSE	FALSE
11	FALSE	TRUE	FALSE
12	TRUE	FALSE	FALSE
13	FALSE	FALSE	TRUE
14	FALSE	FALSE	TRUE
15	FALSE	FALSE	TRUE
16	FALSE	FALSE	TRUE
17	FALSE	TRUE	FALSE
18	FALSE	FALSE	TRUE
19	FALSE	FALSE	TRUE
20	TRUE	FALSE	FALSE
21	FALSE	FALSE	TRUE
22	FALSE	FALSE	TRUE
23	FALSE	TRUE	FALSE
24	FALSE	FALSE	TRUE
25	FALSE	FALSE	TRUE
26	FALSE	FALSE	TRUE
27	FALSE	TRUE	FALSE
28	FALSE	FALSE	TRUE
29	TRUE	FALSE	FALSE
30	FALSE	TRUE	FALSE
31	FALSE	TRUE	FALSE
32	FALSE	TRUE	FALSE
33	FALSE	TRUE	FALSE
34	TRUE	FALSE	FALSE
35	TRUE	FALSE	FALSE
36	FALSE	TRUE	FALSE
37	FALSE	FALSE	TRUE
38	FALSE	FALSE	TRUE
39	FALSE	FALSE	TRUE
40	TRUE	FALSE	FALSE
41	TRUE	FALSE	FALSE
42	FALSE	TRUE	FALSE
43	TRUE	FALSE	FALSE
44	FALSE	TRUE	FALSE
45	TRUE	FALSE	FALSE
46	TRUE	FALSE	FALSE
47	TRUE	FALSE	FALSE
48	FALSE	TRUE	FALSE
49	TRUE	FALSE	FALSE
50	FALSE	TRUE	FALSE
51	FALSE	FALSE	TRUE
52	FALSE	FALSE	TRUE
53	FALSE	TRUE	FALSE
54	FALSE	FALSE	TRUE
55	FALSE	TRUE	FALSE

56	FALSE	FALSE	TRUE
57	TRUE	FALSE	FALSE
58	TRUE	FALSE	FALSE
59	TRUE	FALSE	FALSE
60	FALSE	TRUE	FALSE
61	FALSE	TRUE	FALSE
62	FALSE	TRUE	FALSE
63	TRUE	FALSE	FALSE
64	FALSE	FALSE	TRUE
65	TRUE	FALSE	FALSE
66	FALSE	FALSE	TRUE
67	FALSE	TRUE	FALSE
68	TRUE	FALSE	FALSE
69	TRUE	FALSE	FALSE
70	FALSE	TRUE	FALSE
71	FALSE	TRUE	FALSE
72	TRUE	FALSE	FALSE
73	FALSE	FALSE	TRUE
74	TRUE	FALSE	FALSE
75	FALSE	FALSE	TRUE
76	FALSE	FALSE	TRUE
77	FALSE	FALSE	TRUE
78	TRUE	FALSE	FALSE
79	TRUE	FALSE	FALSE
80	FALSE	TRUE	FALSE
81	FALSE	TRUE	FALSE
82	TRUE	FALSE	FALSE
83	TRUE	FALSE	FALSE
84	FALSE	TRUE	FALSE
85	FALSE	FALSE	TRUE
86	FALSE	FALSE	TRUE
87	TRUE	FALSE	FALSE
88	TRUE	FALSE	FALSE
89	FALSE		TRUE
90	FALSE		FALSE
91	TRUE	FALSE	FALSE
92	TRUE	FALSE	FALSE
93	FALSE	TRUE	FALSE
94	FALSE	TRUE	FALSE
95	TRUE	FALSE	FALSE
96	FALSE	TRUE	FALSE
97	FALSE		TRUE
98	FALSE	TRUE	FALSE
99	FALSE	TRUE	FALSE
100	FALSE		TRUE
101	FALSE		FALSE
102	FALSE	TRUE	FALSE
		- -	

103	FALSE	TRUE	FALSE
104	FALSE	FALSE	TRUE
105	TRUE	FALSE	FALSE
106	TRUE	FALSE	FALSE
107	TRUE	FALSE	FALSE
108	FALSE	FALSE	TRUE
109	FALSE	FALSE	TRUE
110	TRUE	FALSE	FALSE
111	FALSE	FALSE	TRUE
112	TRUE	FALSE	FALSE
113	FALSE	TRUE	FALSE
114	FALSE	TRUE	FALSE
115	FALSE	TRUE	FALSE
116	FALSE	TRUE	FALSE
117	TRUE	FALSE	FALSE
118	FALSE	TRUE	FALSE
119	FALSE	FALSE	TRUE
120	FALSE	FALSE	TRUE

\$covariate

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
55	6.5	2.8	4.6	1.5
37	5.5	3.5	1.3	0.2
146	6.7	3.0	5.2	2.3
70	5.6	2.5	3.9	1.1
45	5.1	3.8	1.9	0.4
124	6.3	2.7	4.9	1.8
20	5.1	3.8	1.5	0.3
76	6.6	3.0	4.4	1.4
144	6.8	3.2	5.9	2.3
3	4.7	3.2	1.3	0.2
88	6.3	2.3	4.4	1.3
10	4.9	3.1	1.5	0.1
136	7.7	3.0	6.1	2.3
126	7.2	3.2	6.0	1.8
102	5.8	2.7	5.1	1.9
125	6.7	3.3	5.7	2.1
64	6.1	2.9	4.7	1.4
111	6.5	3.2	5.1	2.0
122	5.6	2.8	4.9	2.0
32	5.4	3.4	1.5	0.4
147	6.3	2.5	5.0	1.9
123	7.7	2.8	6.7	2.0
95	5.6	2.7	4.2	1.3
101	6.3	3.3	6.0	2.5
149	6.2	3.4	5.4	2.3
143	5.8	2.7	5.1	1.9

94	5.0	2.3	3.3	1.0
150	5.9	3.0	5.1	1.8
11	5.4	3.7	1.5	0.2
83	5.8	2.7	3.9	1.2
54	5.5	2.3	4.0	1.3
57	6.3	3.3	4.7	1.6
61	5.0	2.0	3.5	1.0
48	4.6	3.2	1.4	0.2
29	5.2	3.4	1.4	0.2
69	6.2	2.2	4.5	1.5
130	7.2	3.0	5.8	1.6
115	5.8	2.8	5.1	2.4
145	6.7	3.3	5.7	2.5
17	5.4	3.9	1.3	0.4
50	5.0	3.3	1.4	0.2
96	5.7	3.0	4.2	1.2
35	4.9	3.1	1.5	0.2
93	5.8	2.6	4.0	1.2
49	5.3	3.7	1.5	0.2
12	4.8	3.4	1.6	0.2
14	4.3	3.0	1.1	0.1
60	5.2	2.7	3.9	1.4
18	5.1	3.5	1.4	0.3
97	5.7	2.9	4.2	1.3
109	6.7	2.5	5.8	1.8
134	6.3	2.8	5.1	1.5
62	5.9	3.0	4.2	1.5
113	6.8	3.0	5.5	2.1
75	6.4	2.9	4.3	1.3
119	7.7	2.6	6.9	2.3
41	5.0	3.5	1.3	0.3
27	5.0	3.4	1.6	0.4
25	4.8	3.4	1.9	0.2
89	5.6	3.0	4.1	1.3
100	5.7	2.8	4.1	1.3
91	5.5	2.6	4.4	1.2
19	5.7	3.8	1.7	0.3
137	6.3	3.4	5.6	2.4
46	4.8	3.0	1.4	0.3
103	7.1	3.0	5.9	2.1
85	5.4	3.0	4.5	1.5
6	5.4	3.9	1.7	0.4
44	5.0	3.5	1.6	0.6
86	6.0	3.4	4.5	1.6
71	5.9	3.2	4.8	1.8
36	5.0	3.2	1.2	0.2
104	6.3	2.9	5.6	1.8

42	4.5	2.3	1.3	0.3
139	6.0	3.0	4.8	1.8
118	7.7	3.8	6.7	2.2
106	7.6	3.0	6.6	2.1
9	4.4	2.9	1.4	0.2
43	4.4	3.2	1.3	0.2
84	6.0	2.7	5.1	1.6
66	6.7	3.1	4.4	1.4
39	4.4	3.0	1.3	0.2
7	4.6	3.4	1.4	0.3
72	6.1	2.8	4.0	1.3
117	6.5	3.0	5.5	1.8
108	7.3	2.9	6.3	1.8
4	4.6	3.1	1.5	0.2
38	4.9	3.6	1.4	0.1
138	6.4	3.1	5.5	1.8
65	5.6	2.9	3.6	1.3
5	5.0	3.6	1.4	0.2
2	4.9	3.0	1.4	0.2
87	6.7	3.1	4.7	1.5
82	5.5	2.4	3.7	1.0
40	5.1	3.4	1.5	0.2
77	6.8	2.8	4.8	1.4
128	6.1	3.0	4.9	1.8
67	5.6	3.0	4.5	1.5
92	6.1	3.0	4.6	1.4
131	7.4	2.8	6.1	1.9
74	6.1	2.8	4.7	1.2
56	5.7	2.8	4.5	1.3
59	6.6	2.9	4.6	1.3
120	6.0	2.2	5.0	1.5
23	4.6	3.6	1.0	0.2
13	4.8	3.0	1.4	0.1
33	5.2	4.1	1.5	0.1
107	4.9	2.5	4.5	1.7
127	6.2	2.8	4.8	1.8
24	5.1	3.3	1.7	0.5
116	6.4	3.2	5.3	2.3
34	5.5	4.2	1.4	0.2
68	5.8	2.7	4.1	1.0
58	4.9	2.4	3.3	1.0
73	6.3	2.5	4.9	1.5
80	5.7	2.6	3.5	1.0
8	5.0	3.4	1.5	0.2
99	5.1	2.5	3.0	1.1
121	6.9	3.2	5.7	2.3
133	6.4	2.8	5.6	2.2

```
$model.list
$model.list$response
[1] "versicolor" "setosa" "virginica"
$model.list$variables
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
$err.fct
function (x, y)
   1/2 * (y - x)^2
<bytecode: 0x5774ac69d0d8>
<environment: 0x5774ad1e7bf0>
attr(,"type")
[1] "sse"
$act.fct
function (x)
   1/(1 + \exp(-x))
}
<bytecode: 0x5774ac6aa000>
<environment: 0x5774ad1e7758>
attr(,"type")
[1] "logistic"
$linear.output
[1] FALSE
$data
    Sepal.Length Sepal.Width Petal.Length Petal.Width
55
             6.5
                         2.8
                                      4.6
                                                  1.5 versicolor
37
             5.5
                         3.5
                                      1.3
                                                  0.2
                                                          setosa
146
             6.7
                         3.0
                                      5.2
                                                  2.3 virginica
                         2.5
                                      3.9
                                                  1.1 versicolor
70
            5.6
             5.1
                         3.8
                                      1.9
                                                  0.4
45
                                                           setosa
124
             6.3
                         2.7
                                      4.9
                                                  1.8 virginica
20
            5.1
                         3.8
                                      1.5
                                                  0.3
                                                          setosa
                                                  1.4 versicolor
76
            6.6
                         3.0
                                      4.4
144
                         3.2
                                      5.9
            6.8
                                                  2.3 virginica
3
            4.7
                         3.2
                                      1.3
                                                  0.2
                                                          setosa
            6.3
                         2.3
                                      4.4
                                                  1.3 versicolor
88
                                                  0.1
10
            4.9
                         3.1
                                      1.5
                                                           setosa
136
            7.7
                         3.0
                                      6.1
                                                  2.3 virginica
```

100	7 0	2 0	C 0	1 0	
126	7.2	3.2	6.0	1.8	virginica
102	5.8	2.7	5.1	1.9	virginica
125	6.7	3.3	5.7	2.1	virginica
64	6.1	2.9	4.7	1.4	versicolor
111	6.5	3.2	5.1	2.0	virginica
					_
122	5.6	2.8	4.9	2.0	virginica
32	5.4	3.4	1.5	0.4	setosa
147	6.3	2.5	5.0	1.9	virginica
123	7.7	2.8	6.7	2.0	virginica
95	5.6	2.7	4.2	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
149	6.2	3.4	5.4	2.3	virginica
					_
143	5.8	2.7	5.1	1.9	virginica
94	5.0	2.3	3.3	1.0	versicolor
150	5.9	3.0	5.1	1.8	virginica
11	5.4	3.7	1.5	0.2	setosa
83	5.8	2.7	3.9	1.2	versicolor
54	5.5	2.3	4.0		versicolor
57	6.3	3.3	4.7		versicolor
61	5.0	2.0	3.5		versicolor
48	4.6	3.2	1.4	0.2	setosa
29	5.2	3.4	1.4	0.2	setosa
69	6.2	2.2	4.5	1.5	versicolor
130	7.2	3.0	5.8	1.6	virginica
115	5.8	2.8	5.1	2.4	virginica
145	6.7	3.3	5.7	2.5	virginica
					_
17	5.4	3.9	1.3	0.4	setosa
50	5.0	3.3	1.4	0.2	setosa
96	5.7	3.0	4.2	1.2	versicolor
35	4.9	3.1	1.5	0.2	setosa
93	5.8	2.6	4.0	1.2	versicolor
49	5.3	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
14	4.3	3.0	1.1	0.1	setosa
60	5.2	2.7	3.9		versicolor
18	5.1	3.5	1.4	0.3	setosa
97	5.7	2.9	4.2	1.3	versicolor
109	6.7	2.5	5.8	1.8	virginica
134	6.3	2.8	5.1	1.5	
62	5.9	3.0	4.2		versicolor
113	6.8	3.0	5.5	2.1	-
75	6.4	2.9	4.3		versicolor
119	7.7	2.6	6.9	2.3	virginica
41	5.0	3.5	1.3	0.3	setosa
27	5.0	3.4	1.6	0.4	setosa
25	4.8	3.4	1.9	0.2	setosa
89	5.6	3.0	4.1		versicolor
- -		- -	• -		

100	5.7	2.8	4.1	1.3	versicolor
91	5.5	2.6	4.4		versicolor
19	5.7	3.8	1.7	0.3	setosa
137	6.3	3.4	5.6	2.4	virginica
46	4.8	3.0	1.4	0.3	setosa
103	7.1	3.0	5.9	2.1	virginica
85	5.4	3.0	4.5		versicolor
6	5.4	3.9	1.7	0.4	setosa
44	5.0	3.5	1.6	0.6	setosa
86	6.0	3.4	4.5		versicolor
71	5.9	3.2	4.8		versicolor
36	5.0	3.2	1.2	0.2	setosa
104	6.3	2.9	5.6	1.8	virginica
42	4.5	2.3	1.3	0.3	setosa
139	6.0	3.0	4.8	1.8	virginica
118	7.7	3.8	6.7		_
				2.2	virginica
106	7.6	3.0	6.6	2.1	virginica
9	4.4	2.9	1.4	0.2	setosa
43	4.4	3.2	1.3	0.2	setosa
84	6.0	2.7	5.1		versicolor
66	6.7	3.1	4.4		versicolor
39	4.4	3.0	1.3	0.2	setosa
7	4.6	3.4	1.4	0.3	setosa
72	6.1	2.8	4.0	1.3	versicolor
117	6.5	3.0	5.5	1.8	virginica
108	7.3	2.9	6.3	1.8	virginica
4	4.6	3.1	1.5	0.2	setosa
38	4.9	3.6	1.4	0.1	setosa
138	6.4	3.1	5.5	1.8	virginica
65	5.6	2.9	3.6	1.3	versicolor
5	5.0	3.6	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
87	6.7	3.1	4.7	1.5	versicolor
82	5.5	2.4	3.7	1.0	versicolor
40	5.1	3.4	1.5	0.2	setosa
77	6.8	2.8	4.8		versicolor
128	6.1	3.0	4.9		virginica
67	5.6	3.0	4.5		versicolor
92	6.1	3.0	4.6		versicolor
131	7.4	2.8	6.1	1.9	
74	6.1	2.8	4.7		versicolor
56	5.7	2.8	4.5		versicolor
59	6.6	2.9	4.6		versicolor
120	6.0	2.2	5.0	1.5	virginica
23	4.6	3.6	1.0	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
33	5.2	4.1	1.5	0.1	setosa

virginica	1.7	4.5	2.5	4.9	107
virginica	1.8	4.8	2.8	6.2	127
setosa	0.5	1.7	3.3	5.1	24
virginica	2.3	5.3	3.2	6.4	116
setosa	0.2	1.4	4.2	5.5	34
versicolor	1.0	4.1	2.7	5.8	68
versicolor	1.0	3.3	2.4	4.9	58
versicolor	1.5	4.9	2.5	6.3	73
versicolor	1.0	3.5	2.6	5.7	80
setosa	0.2	1.5	3.4	5.0	8
versicolor	1.1	3.0	2.5	5.1	99
virginica	2.3	5.7	3.2	6.9	121
virginica	2.2	5.6	2.8	6.4	133

\$exclude NULL

\$net.result

\$net.result[[1]]

[,1] [,2] [,3] 5.510968e-62 1.000000e+00 3.495000e-34 37 1.000000e+00 2.383741e-03 1.114457e-81 146 1.118932e-73 2.935025e-19 1.000000e+00 70 2.605431e-61 1.000000e+00 3.863890e-38 45 1.000000e+00 2.377365e-03 1.120145e-81 124 1.773171e-69 2.862667e-06 1.000000e+00 1.000000e+00 2.381823e-03 1.116163e-81 76 3.677713e-61 1.000000e+00 5.118417e-39 144 1.463396e-74 5.437448e-22 1.000000e+00 1.000000e+00 2.380866e-03 1.117016e-81 88 3.457192e-62 1.000000e+00 5.382853e-33 10 1.000000e+00 2.381766e-03 1.116214e-81 136 3.331727e-74 6.925302e-21 1.000000e+00 126 7.865024e-72 1.511826e-13 1.000000e+00 102 9.312413e-74 1.663398e-19 1.000000e+00 125 2.102869e-73 2.065557e-18 1.000000e+00 64 1.993266e-63 1.000000e+00 9.952266e-26 111 3.434009e-69 2.210669e-05 1.000000e+00 122 9.005676e-74 1.499720e-19 1.000000e+00 32 1.000000e+00 2.380331e-03 1.117494e-81 147 1.438490e-72 7.901908e-16 1.000000e+00 123 3.784652e-74 1.027164e-20 1.000000e+00 95 3.240998e-62 1.000000e+00 7.861003e-33 101 6.144976e-75 3.714824e-23 1.000000e+00 149 4.892277e-74 2.272109e-20 1.000000e+00 143 9.312413e-74 1.663398e-19 1.000000e+00 94 3.999636e-61 1.000000e+00 3.129118e-39

```
150 5.530746e-72 5.088361e-14 1.000000e+00
11 1.000000e+00 2.383744e-03 1.114455e-81
   3.727793e-61 1.000000e+00 4.728126e-39
8.3
54
   1.533889e-62 1.000000e+00 6.320193e-31
   4.629354e-62 1.000000e+00 9.714613e-34
57
   1.444481e-61 1.000000e+00 1.228269e-36
61
48
   1.000000e+00 2.379590e-03 1.118155e-81
   1.000000e+00 2.382865e-03 1.115236e-81
29
69
    5.320708e-65 1.000000e+00 1.683079e-16
130 2.494088e-69 8.222171e-06 1.000000e+00
115 6.244517e-75 3.904102e-23 1.000000e+00
145 8.733447e-75 1.101758e-22 1.000000e+00
   1.000000e+00 2.382163e-03 1.115861e-81
17
50 1.000000e+00 2.381995e-03 1.116010e-81
   2.112806e-61 1.000000e+00 1.320693e-37
96
35
   1.000000e+00 2.380569e-03 1.117281e-81
93
   2.699288e-61 1.000000e+00 3.139726e-38
49
   1.000000e+00 2.383462e-03 1.114705e-81
   1.000000e+00 2.379818e-03 1.117952e-81
12
14
   1.000000e+00 2.380630e-03 1.117227e-81
60
   3.797882e-62 1.000000e+00 3.101985e-33
   1.000000e+00 2.381570e-03 1.116388e-81
18
   1.296262e-61 1.000000e+00 2.317567e-36
109 1.009941e-73 2.137785e-19 1.000000e+00
134 3.958197e-68 4.073568e-02 9.973322e-01
62 1.711760e-61 1.000000e+00 4.538435e-37
113 3.010026e-73 6.262526e-18 1.000000e+00
   3.644473e-61 1.000000e+00 5.398333e-39
119 7.328586e-75 6.405154e-23 1.000000e+00
41 1.000000e+00 2.381509e-03 1.116443e-81
27
   1.000000e+00 2.378303e-03 1.119306e-81
25 1.000000e+00 2.375997e-03 1.121371e-81
   2.065120e-61 1.000000e+00 1.509885e-37
100 1.742567e-61 1.000000e+00 4.087682e-37
91
   2.555245e-64 1.000000e+00 1.697219e-20
19 1.000000e+00 2.383281e-03 1.114866e-81
137 1.398345e-74 4.724127e-22 1.000000e+00
46 1.000000e+00 2.378657e-03 1.118989e-81
103 7.521713e-74 8.593353e-20 1.000000e+00
   9.793317e-66 9.999991e-01 3.440845e-12
85
    1.000000e+00 2.381301e-03 1.116629e-81
6
44 1.000000e+00 2.374023e-03 1.123144e-81
86 9.135104e-62 1.000000e+00 1.804253e-35
    3.197331e-67 9.644949e-01 1.783242e-03
36 1.000000e+00 2.382250e-03 1.115784e-81
104 1.885182e-73 1.473200e-18 1.000000e+00
42 1.000000e+00 2.372951e-03 1.124109e-81
```

```
139 3.600903e-68 3.071988e-02 9.984664e-01
118 8.136661e-74 1.095758e-19 1.000000e+00
106 2.782045e-74 3.965194e-21 1.000000e+00
    1.000000e+00 2.377055e-03 1.120423e-81
43
   1.000000e+00 2.378855e-03 1.118812e-81
84 2.043611e-71 2.897591e-12 1.000000e+00
   4.184693e-61 1.000000e+00 2.400089e-39
66
   1.000000e+00 2.378378e-03 1.119239e-81
39
7
    1.000000e+00 2.378537e-03 1.119097e-81
   4.032466e-61 1.000000e+00 2.982650e-39
117 3.228895e-72 9.632137e-15 1.000000e+00
108 2.395985e-73 3.092477e-18 1.000000e+00
    1.000000e+00 2.378452e-03 1.119172e-81
38 1.000000e+00 2.383060e-03 1.115063e-81
138 2.946197e-72 7.255337e-15 1.000000e+00
65
   4.536115e-61 1.000000e+00 1.495731e-39
5
    1.000000e+00 2.382572e-03 1.115496e-81
2
    1.000000e+00 2.380773e-03 1.117099e-81
   1.820233e-61 1.000000e+00 3.165331e-37
87
82
   3.631450e-61 1.000000e+00 5.512860e-39
40
   1.000000e+00 2.382220e-03 1.115809e-81
   7.494639e-62 1.000000e+00 5.759926e-35
128 9.652789e-69 5.400823e-04 9.999993e-01
67
   2.319426e-64 1.000000e+00 2.994661e-20
92 2.493843e-62 1.000000e+00 3.655124e-32
131 4.621612e-73 2.358749e-17 1.000000e+00
   5.468321e-63 1.000000e+00 2.676857e-28
74
56 1.085553e-63 1.000000e+00 3.512515e-24
   2.268084e-61 1.000000e+00 8.713283e-38
120 1.475580e-71 1.058328e-12 1.000000e+00
23 1.000000e+00 2.382464e-03 1.115592e-81
13 1.000000e+00 2.381590e-03 1.116371e-81
33 1.000000e+00 2.384281e-03 1.113977e-81
107 3.782582e-73 1.269407e-17 1.000000e+00
127 3.178755e-68 2.109730e-02 9.992613e-01
24 1.000000e+00 2.375779e-03 1.121566e-81
116 5.121451e-74 2.617690e-20 1.000000e+00
34 1.000000e+00 2.384853e-03 1.113469e-81
   3.018805e-61 1.000000e+00 1.629166e-38
   3.956279e-61 1.000000e+00 3.335658e-39
73
   2.990162e-67 9.566758e-01 2.639065e-03
80
   4.889727e-61 1.000000e+00 9.631498e-40
    1.000000e+00 2.381778e-03 1.116204e-81
8
99 8.423283e-46 1.000000e+00 4.222135e-48
121 3.158893e-74 5.873416e-21 1.000000e+00
133 1.159636e-74 2.647944e-22 1.000000e+00
```

```
$weights
$weights[[1]]
$weights[[1]]
```

\$weights[[1]][[1]]

[,1] [,2] [,3] [,4] [1,1] 2.954165 -0.1889898 2.9590994 -0.5822692 [2,] 3.632602 -1.2922141 -0.3148418 -0.5708703 [3,] 4.266830 0.2061764 0.6226494 -1.5850129 [4,] 5.528042 1.4646955 0.6562208 1.9048024 [5,] 3.716274 0.5999010 -2.4618863 0.1547923

\$weights[[1]][[2]]

[,1] [,2]
[1,] 1.109641 -8.291534
[2,] 1.081212 -8.107311
[3,] -6.425414 348.463875
[4,] 7.201311 -136.626766
[5,] -5.840216 350.993181

\$weights[[1]][[3]]

[,1] [,2] [,3] [1,] 4.167595 -106.7679 4.606187 [2,] 32.574117 100.7418 -191.027388 [3,] -175.539255 53.5948 96.154620

\$generalized.weights

\$generalized.weights[[1]]

	[,1]	[,2]	[,3]	[,4]	[, 5]
55	5.4232733	5.1065348	-9.4551159	-6.3836547	NaN
37	NaN	NaN	NaN	NaN	4.219762e-04
146	5.7349465	7.6354918	-9.1360788	-15.8227539	1.773645e+01
70	1.7985531	1.5684620	-3.1994660	-1.5530637	NaN
45	NaN	NaN	NaN	NaN	4.707113e-03
124	17.3387736	16.1886914	-27.5197672	-29.8777340	5.362356e+01
20	NaN	NaN	NaN	NaN	1.994012e-03
76	0.8292691	0.8124906	-1.4807435	-0.9333301	NaN
144	1.2699087	2.1265668	-1.8537187	-5.2766376	3.927442e+00
3	NaN	NaN	NaN	NaN	2.157148e-03
88	5.9501457	5.3600832	-10.2007922	-6.9866782	NaN
10	NaN	NaN	NaN	NaN	2.153037e-03
136	3.2077081	3.0536206	-3.9755415	-9.7330155	9.920467e+00
126	10.3374634	6.8133408	-15.2883909	-14.3305554	3.197063e+01
102	3.7804899	4.5575405	-5.8671922	-9.7295641	1.169191e+01
125	5.0236544	6.4081259	-8.2977439	-12.0451017	1.553664e+01
64	12.3112844	10.0010233	-21.2064443	-11.1964723	3.807506e+01

111	17.3826314	20.1175837	-29.9764659	-31.6228434	5.375920e+01
122	3.8433524	5.8401720	-6.5656191	-10.9181296	1.188632e+01
32	NaN	NaN	NaN	NaN	9.333903e-04
147	9.2244959	8.5330512	-13.2668571	-20.6714683	2.852856e+01
123	2.3035792	1.2641637	-2.4149915	-6.1181178	7.124271e+00
95	6.9693328	5.8722325	-12.1480644	-6.3784046	NaN
101	0.1395644	0.7648629	-0.2059326	-1.9836847	4.316304e-01
149	2.8117543	5.7344743	-5.3915607	-9.7380844	8.695902e+00
143	3.7804899	4.5575405	-5.8671922	-9.7295641	1.169191e+01
94	0.6549725	0.5734253	-1.1528904	-0.6159937	NaN
150	9.3917696	10.5658231	-16.2968922	-15.9130633	2.904589e+01
11					
	NaN	NaN	NaN	NaN	1.076333e-03
83	0.8332002	0.7444354	-1.4685909	-0.8162174	NaN
54	8.2799735	7.2869798	-14.2166918	-9.1867425	2.560744e+01
57	6.0118262	5.3337244	-10.4554758	-6.3007409	NaN
61	3.2343471	2.8558036	-5.7258883	-2.9871684	NaN
48	NaN	NaN	NaN	NaN	3.141977e-03
29	NaN	NaN	NaN	NaN	1.127074e-03
69	15.3648873	12.7835851		-23.2781667	
			-24.1240422		4.751893e+01
130	16.8286316	8.8192754	-24.6211262	-18.2593139	5.204585e+01
115	0.4385983	1.0514374	-0.6965604	-2.4604753	1.356451e+00
145	0.8458168	1.7852066	-1.3819394	-3.9602017	2.615854e+00
17	NaN	NaN	NaN	NaN	6.746084e-04
50	NaN	NaN	NaN	NaN	1.601060e-03
96	2.4424916	1.8847786	-4.2313335	-1.8697528	NaN
35	NaN	NaN	NaN	NaN	2.279071e-03
93	1.6802091	1.5153301	-2.9860490	-1.5944668	NaN
49	NaN	NaN	NaN	NaN	1.295839e-03
12	NaN	NaN	NaN	NaN	3.453364e-03
14	NaN	NaN	NaN	NaN	2.574543e-03
60	6.4363451	5.7920051	-11.1947199	-6.9592548	NaN
18	NaN	NaN	NaN	NaN	1.459549e-03
97	3.6759868	3.0292114	-6.3973488	-3.2201823	NaN
109	3.9047091	2.2435805	-4.6598063	-8.5830338	1.207608e+01
134		12.8615358	-29.4287607	-19.6222684	
	18.4416476				5.703441e+01
62	2.8416247	2.5136640	-4.8648042	-3.2386670	NaN
113	6.5111338	7.1074475	-9.8086953	-15.8607253	2.013696e+01
75	0.8723983	0.8237542	-1.5626865	-0.8815928	NaN
119	0.3604397	0.5461369	-0.1907871	-2.5622342	1.114731e+00
41	NaN	NaN	NaN	NaN	1.401245e-03
27	NaN	NaN	NaN	NaN	2.822338e-03
25	NaN	NaN	NaN	NaN	6.186050e-03
89					
	2.4543504	1.9359435	-4.2093830	-2.1447475	NaN
100	2.8846762	2.4429687	-5.0203523	-2.7015280	NaN
91	15.2001223	11.4777349	-25.9740916	-12.2677862	4.700936e+01
19	NaN	NaN	NaN	NaN	1.016794e-03
137	1.1308799	2.7850830	-2.1219743	-5.3577570	3.497468e+00

46	NaN	NaN	NaN	NaN	2.270214e-03
103	3.9050767		-5.2698266		1.207722e+01
85	16.7039571	16.7423329	-30.5636154		5.166027e+01
6	NaN	NaN	NaN	NaN	1.929869e-03
44	NaN	NaN	NaN	NaN	3.307903e-03
86	4.2921893	3.6618926	-7.3466814	-4.5385909	NaN
71	17.5900041	20.0578786	-32.0139735		5.440054e+01
36	NaN	NaN	NaN		9.409593e-04
104	4.3837474	3.8659868	-6.5311850		1.355760e+01
42	NaN	NaN	NaN		3.026565e-03
139	18.1500092	19.5292061	-31.6493845		5.613247e+01
118	3.0380432	3.4803251	-4.7408703	-7.2404754	9.395745e+00
106	1.9099248	1.4613785	-2.1064396		5.906817e+00
9	NaN	NaN	NaN		4.232503e-03
43	NaN	NaN	NaN		3.601212e-03
84	11.5944996				3.585827e+01
66	0.5047915	0.4912189	-0.8959206	-0.5789363	NaN
39	NaN	NaN	NaN		3.491292e-03
7	NaN	NaN	NaN		3.503106e-03
,	[,6]	[,7]	[,8]	[,9]	
55	NaN	NaN			-2.994672e+01
37		-6.209966e-05			-1.936184e-03
146		-2.825512e+01		NaN	
70	NaN	NaN			-9.198076e+00
45		-5.103240e-03			-1.166463e-03
124			-92.402756504		
20		-1.922107e-03		-3.781059e-03	
76	NaN	NaN			-4.764764e+00
144		-5.732989e+00		NaN	
3					-1.910912e-03
88	NaN	NaN			-3.143363e+01
10		-2.407563e-03			-1.741510e-03
136			-30.101260704		
126		-4.728235e+01		NaN	
102		-1.814544e+01		NaN	
125		-2.566240e+01		NaN	
64					-5.864992e+01
111	6.221758e+01	-9.270810e+01	-97.799849724	-1.019386e+02	-1.179774e+02
122		-2.030547e+01		NaN	
32	1.697299e-03	-4.170100e-04	-0.007667088		-3.218430e-03
147		-4.103036e+01		NaN	
123		-7.468835e+00		NaN	
95	NaN	NaN			-3.443707e+01
101		_	-6.134934192	NaN	
149		-1.667446e+01		NaN	
143		-1.814544e+01		NaN	
94	NaN	NaN	NaN	-3.841016e+00	-3.362791e+00

```
3.267688e+01 -5.040134e+01 -49.214271569
150
                                                        NaN
                                                                      NaN
     6.985015e-04 -9.375129e-04 -0.003838093 -2.040950e-03 -1.324503e-03
11
83
                                          NaN -4.886212e+00 -4.365661e+00
                            NaN
54
     2.253642e+01 -4.396791e+01 -28.411804165 -4.855701e+01 -4.273371e+01
57
                                          NaN -3.525571e+01 -3.127905e+01
                            NaN
61
                                          NaN -1.896748e+01 -1.674755e+01
              NaN
                            NaN
48
     9.164066e-04 -3.396466e-03 -0.005825422 -5.957838e-03 -1.737697e-03
     9.412628e-04 -9.571273e-04 -0.004665985 -2.137165e-03 -1.784829e-03
29
69
     3.953575e+01 -7.460834e+01 -71.992299399 -9.010572e+01 -7.496795e+01
130
     2.727534e+01 -7.614567e+01 -56.470511968 -9.868969e+01 -5.171969e+01
     3.251776e+00 -2.154250e+00 -7.609502803
115
                                                        NaN
145
                                                        NaN
     5.521102e+00 -4.273919e+00 -12.247700914
                                                                       NaN
                                -0.006039539 -1.279197e-03 -2.321475e-03
17
     1.224273e-03 -1.623595e-04
50
     9.695645e-04 -1.534557e-03
                                -0.005016434 -3.035941e-03 -1.838495e-03
96
                            NaN
                                          NaN -1.432373e+01 -1.105308e+01
35
     1.176482e-03 -2.442609e-03
                                -0.005662212 -4.321589e-03 -2.230854e-03
93
              NaN
                            NaN
                                          NaN -9.853405e+00 -8.886490e+00
49
     6.589273e-04 -1.200844e-03
                                -0.003875175 -2.457178e-03 -1.249462e-03
     6.713689e-04 -3.819302e-03
                                -0.005197065 -6.548292e-03 -1.273054e-03
12
14
     8.990175e-04 -2.737468e-03
                                -0.005332578 -4.881867e-03 -1.704723e-03
60
                                          NaN -3.774525e+01 -3.396659e+01
                            NaN
18
     1.075849e-03 -1.226111e-03
                                -0.005710599 -2.767607e-03 -2.040032e-03
97
              NaN
                            NaN
                                          NaN -2.155743e+01 -1.776448e+01
109
     6.938713e+00 -1.441137e+01 -26.544716481
                                                        NaN
134
     3.977682e+01 -9.101422e+01 -60.685716211 -1.081491e+02 -7.542509e+01
62
                            NaN
                                          NaN -1.666440e+01 -1.474111e+01
                                                        NaN
113
     2.198118e+01 -3.033532e+01 -49.052405932
75
                                          NaN -5.116085e+00 -4.830818e+00
                            NaN
     1.689036e+00 -5.900465e-01
119
                                -7.924212183
                                                        NaN
     1.099612e-03 -1.121071e-03 -0.005863358 -2.657050e-03 -2.085091e-03
41
27
     1.386876e-03 -2.765358e-03 -0.007767670 -5.351737e-03 -2.629805e-03
25
     6.069873e-04 -7.262199e-03
                                -0.006199536 -1.173003e-02 -1.150974e-03
89
                            NaN
                                          NaN -1.439327e+01 -1.135313e+01
100
              NaN
                            NaN
                                          NaN -1.691687e+01 -1.432653e+01
91
     3.549715e+01 -8.032998e+01 -37.940536637 -8.913948e+01 -6.730994e+01
     8.473310e-04 -8.124062e-04 -0.004389938 -1.928052e-03 -1.606715e-03
19
137
     8.613416e+00 -6.562622e+00 -16.569915164
                                                        NaN
     1.722257e-03 -2.221704e-03 -0.007870390 -4.304795e-03 -3.265756e-03
46
103
     1.149796e+01 -1.629797e+01 -31.820870814
                                                        NaN
     5.177895e+01 -9.452398e+01 -52.962999570 -9.795855e+01 -9.818360e+01
85
     8.669698e-04 -1.781121e-03 -0.005493665 -3.659431e-03 -1.643954e-03
6
44
     2.309409e-03 -2.794839e-03 -0.012541803 -6.272468e-03 -4.379118e-03
86
              NaN
                            NaN
                                          NaN -2.517108e+01 -2.147477e+01
71
     6.203293e+01 -9.900950e+01 -77.644941291 -1.031547e+02 -1.176273e+02
     1.197004e-03 -6.481656e-04 -0.005536143 -1.784254e-03 -2.269767e-03
36
     1.195632e+01 -2.019897e+01 -26.285260526
104
                                                        NaN
42
     4.138874e-03 -3.577416e-03 -0.013156511 -5.738994e-03 -7.848162e-03
```

```
139
     6.039790e+01 -9.788193e+01 -86.055930109 -1.064388e+02 -1.145269e+02
     1.076359e+01 -1.466207e+01 -22.392591340
118
                                                        NaN
                                                                      NaN
106
     4.519600e+00 -6.514578e+00 -17.915968692
                                                        NaN
                                                                      NaN
9
     1.386678e-03 -4.841721e-03 -0.007284916 -8.025702e-03 -2.629429e-03
     8.472447e-04 -3.886149e-03 -0.006161523 -6.828643e-03 -1.606551e-03
43
84
     2.723094e+01 -5.583565e+01 -49.093281052
                                                        NaN
66
              NaN
                           NaN
                                          NaN -2.960295e+00 -2.880700e+00
    1.176524e-03 -3.812804e-03 -0.006753081 -6.620212e-03 -2.230933e-03
39
    9.118833e-04 -3.644098e-03 -0.006721129 -6.642613e-03 -1.729119e-03
7
           [,11]
                       [,12]
55 5.544851e+01 3.743625e+01
37 1.177538e-04 8.721742e-03
146
            NaN
                         NaN
70 1.876292e+01 9.107774e+00
45 9.676800e-03 1.262730e-02
124 1.613867e+02 1.752147e+02
   3.644713e-03 9.181184e-03
76 8.683660e+00 5.473414e+00
144
             NaN
                          NaN
   4.113511e-03 1.061065e-02
88 5.982144e+01 4.097262e+01
10 4.565238e-03 8.481731e-03
136
             NaN
                          NaN
126
             NaN
                          NaN
102
             NaN
                          NaN
125
             NaN
                          NaN
64 1.243629e+02 6.566050e+01
111 1.757937e+02 1.854487e+02
             NaN
32 7.907373e-04 1.453838e-02
147
             NaN
                          NaN
123
             NaN
                          NaN
95 7.124101e+01 3.740546e+01
101
             NaN
                          NaN
149
             NaN
                          NaN
143
             NaN
                          NaN
94 6.761001e+00 3.612429e+00
150
            NaN
11
   1.777718e-03 7.277819e-03
83 8.612393e+00 4.786619e+00
54 8.337225e+01 5.387466e+01
57 6.131501e+01 3.695001e+01
61 3.357885e+01 1.751793e+01
48 6.440402e-03 1.104621e-02
29 1.814911e-03 8.847673e-03
69 1.414728e+02 1.365123e+02
```

130 1.443879e+02 1.070798e+02

```
115
             NaN
                          NaN
145
             NaN
                          NaN
17
   3.078671e-04 1.145222e-02
   2.909838e-03 9.512197e-03
50
   2.481420e+01 1.096496e+01
96
35 4.631692e-03 1.073673e-02
93
   1.751136e+01 9.350578e+00
49 2.277048e-03 7.348133e-03
12 7.242186e-03 9.854710e-03
   5.190805e-03 1.011167e-02
14
60 6.565023e+01 4.081180e+01
   2.324961e-03 1.082848e-02
18
97
   3.751656e+01 1.888441e+01
109
             NaN
                          NaN
134 1.725818e+02 1.150727e+02
    2.852912e+01 1.899281e+01
62
113
             NaN
                          NaN
75 9.164206e+00 5.170006e+00
119
             NaN
                          NaN
41
    2.125783e-03 1.111814e-02
   5.243690e-03 1.472911e-02
27
25 1.377063e-02 1.175560e-02
89 2.468547e+01 1.257764e+01
100 2.944131e+01 1.584282e+01
   1.523223e+02 7.194311e+01
91
19 1.540490e-03 8.324230e-03
137
             NaN
46
   4.212811e-03 1.492389e-02
103
             NaN
85 1.792370e+02 1.004288e+02
6
    3.377374e-03 1.041713e-02
44 5.299593e-03 2.378185e-02
  4.308382e+01 2.661608e+01
86
    1.877425e+02 1.472309e+02
36 1.229056e-03 1.049767e-02
104
             NaN
                          NaN
   6.783520e-03 2.494747e-02
42
139 1.856044e+02 1.631798e+02
118
             NaN
106
             NaN
    9.180905e-03 1.381371e-02
43
   7.368942e-03 1.168352e-02
84
             NaN
                          NaN
66 5.254030e+00 3.395110e+00
39
   7.229866e-03 1.280524e-02
    6.909964e-03 1.274465e-02
 [ reached getOption("max.print") -- omitted 37 rows ]
```

```
$startweights
$startweights[[1]]
$startweights[[1]][[1]]
                    [,2] [,3]
          [,1]
                                          [,4]
[1,] -1.0458348 0.77423195 -0.9602864 0.6787051
[2,] -0.3673978 -1.68289827 -1.1898026 -0.7665335
[3,] 0.2668296 0.06191503 -0.7462531 -0.2843683
[4,] 1.5280424 0.75299000 1.2208441 0.7467765
[5,] -0.2837257 -0.83605244 -0.3181927 -1.6039578
$startweights[[1]][[2]]
           [,1]
                    [,2]
[1,] 0.00651497 -0.5233031
[2,] -0.02191388 -0.3390795
[3,] -0.74364067 -1.2128671
[4,] 1.51092366 -1.0569400
[5,] -1.13580406 0.8177532
$startweights[[1]][[3]]
         [,1] [,2] [,3]
[1,] 0.3348667 -1.020637 0.4856726
[2,] 1.8163913 2.275452 0.1071237
[3,] 0.3894724 1.425514 0.9289246
```

\$result.matrix

	[,1]
error	1.003216e+00
reached.threshold	9.744090e-03
steps	1.157700e+04
<pre>Intercept.to.1layhid1</pre>	2.954165e+00
Sepal.Length.to.1layhid1	3.632602e+00
Sepal.Width.to.1layhid1	4.266830e+00
Petal.Length.to.1layhid1	5.528042e+00
Petal.Width.to.1layhid1	3.716274e+00
<pre>Intercept.to.1layhid2</pre>	-1.889898e-01
Sepal.Length.to.1layhid2	-1.292214e+00
Sepal.Width.to.1layhid2	2.061764e-01
Petal.Length.to.1layhid2	1.464695e+00
Petal.Width.to.1layhid2	5.999010e-01
<pre>Intercept.to.1layhid3</pre>	2.959099e+00
Sepal.Length.to.1layhid3	-3.148418e-01
Sepal.Width.to.1layhid3	6.226494e-01
Petal.Length.to.1layhid3	6.562208e-01

```
Petal.Width.to.1layhid3 -2.461886e+00
Intercept.to.1layhid4
                          -5.822692e-01
Sepal.Length.to.1layhid4 -5.708703e-01
Sepal.Width.to.1layhid4
                          -1.585013e+00
Petal.Length.to.1layhid4 1.904802e+00
Petal.Width.to.1layhid4
                           1.547923e-01
Intercept.to.2layhid1
                           1.109641e+00
1layhid1.to.2layhid1
                           1.081212e+00
1layhid2.to.2layhid1
                          -6.425414e+00
1layhid3.to.2layhid1
                           7.201311e+00
                          -5.840216e+00
1layhid4.to.2layhid1
Intercept.to.2layhid2
                          -8.291534e+00
1layhid1.to.2layhid2
                          -8.107311e+00
1layhid2.to.2layhid2
                           3.484639e+02
1layhid3.to.2layhid2
                          -1.366268e+02
1layhid4.to.2layhid2
                           3.509932e+02
Intercept.to.versicolor
                           4.167595e+00
2layhid1.to.versicolor
                           3.257412e+01
2layhid2.to.versicolor
                          -1.755393e+02
Intercept.to.setosa
                          -1.067679e+02
2layhid1.to.setosa
                           1.007418e+02
2layhid2.to.setosa
                           5.359480e+01
Intercept.to.virginica
                           4.606187e+00
2layhid1.to.virginica
                          -1.910274e+02
2layhid2.to.virginica
                           9.615462e+01
attr(,"class")
[1] "nn"
Sepal.Length
                  3.6326
                                                                versicolor
                                                32.57412
Sepal.Width
                                                                setosa
Petal.Length
                                                                virginica
Petal.Width
                           Error: 1.003216 Steps: 11577
> pred <- predict(model, test data)</pre>
```

```
1.000000e+00 2.382464e-03 1.115592e-81
23
   1.000000e+00 2.375779e-03 1.121566e-81
   1.000000e+00 2.378303e-03 1.119306e-81
27
   1.000000e+00 2.384281e-03 1.113977e-81
33
   1.000000e+00 2.377365e-03 1.120145e-81
    1.000000e+00 2.382340e-03 1.115703e-81
   3.841502e-61 1.000000e+00 3.964263e-39
51
57
   4.629354e-62 1.000000e+00 9.714613e-34
   4.536115e-61 1.000000e+00 1.495731e-39
65
75
   3.644473e-61 1.000000e+00 5.398333e-39
    1.820233e-61 1.000000e+00 3.165331e-37
91 2.555245e-64 1.000000e+00 1.697219e-20
92 2.493843e-62 1.000000e+00 3.655124e-32
   3.240998e-62 1.000000e+00 7.861003e-33
100 1.742567e-61 1.000000e+00 4.087682e-37
101 6.144976e-75 3.714824e-23 1.000000e+00
103 7.521713e-74 8.593353e-20 1.000000e+00
104 1.885182e-73 1.473200e-18 1.000000e+00
106 2.782045e-74 3.965194e-21 1.000000e+00
115 6.244517e-75 3.904102e-23 1.000000e+00
122 9.005676e-74 1.499720e-19 1.000000e+00
124 1.773171e-69 2.862667e-06 1.000000e+00
125 2.102869e-73 2.065557e-18 1.000000e+00
128 9.652789e-69 5.400823e-04 9.999993e-01
133 1.159636e-74 2.647944e-22 1.000000e+00
134 3.958197e-68 4.073568e-02 9.973322e-01
138 2.946197e-72 7.255337e-15 1.000000e+00
147 1.438490e-72 7.901908e-16 1.000000e+00
> labels<-c("setosa", "versicolor", "virginica")</pre>
> labels
[1] "setosa"
                 "versicolor" "virginica"
> prediction label <- data.frame(max.col(pred)) %>%
     mutate(pred=labels[max.col.pred.]) %>%
     select(2) %>%
     unlist()
> table(test data$Species, prediction label)
            prediction label
             setosa versicolor virginica
  setosa
                  8
                              0
                                        0
                  0
                              9
                                        0
  versicolor
                              0
  virginica
                  0
                                       13
> prediction label
                    pred2
                                  pred3
       pred1
                                               pred4
                                                             pred5
    "setosa"
                 "setosa"
                               "setosa"
                                            "setosa"
                                                          "setosa"
       pred6
                    pred7
                                                            pred10
                                  pred8
                                               pred9
```

1.000000e+00 2.380630e-03 1.117227e-81

```
"setosa" "setosa" "versicolor" "versicolor" pred11 pred12 pred13 pred14 pred15
"versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
    pred16 pred17 pred18 pred19 pred20
"versicolor" "versicolor" "virginica" "virginica" "virginica"
           pred22
                    pred23 pred24
    pred21
                                         pred25
"virginica" "virginica" "virginica" "virginica"
    pred26 pred27 pred28 pred29
                                          pred30
"virginica" "virginica" "virginica" "virginica" "virginica"
> check = as.numeric(test data$Species) == max.col(pred)
> check
[25] TRUE TRUE TRUE TRUE TRUE
> accuracy <- (sum(check)/nrow(test data))*100</pre>
> print(accuracy)
[1] 100
```

TABLE ANALYSIS

The table below i tried for different other layers and the accuracy it gives

	layers		accuracy	
-		- -		
	4-2		100	
	3-5		100	
	7-2		100	
	9-4		100	-

ANALYSIS

I noticed this analysis of the iris dataset …since it's a simple dataset, the results I got were 100 % accurate because simple models achieve high accuracy.

The iris dataset is also deemed to be balanced which means that the classes in the dataset iris are well distributed hence the reason I get 100% in all types of hidden layers.