

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления»

КАФЕДРА ИУ1 «Системы автоматического управления»

ОТЧЕТ

по домашним работам

№ 1 и 2

по дисциплине

«Модели динамических объектов»

Выполнила: Шевченко А. Д.

Группа: ИУ1 – 32Б

Проверил: Лобачёв И. В.

Работа выполнена:

Отчет сдан: 13.12.2022

Оценка:

Москва 2022

Получить математическую модель математического пружинного маятника, используя формализм механики Лагранжа.

$$x = x \sin(\theta)$$
$$y = x \cos(\theta)$$

$$\dot{x} = \dot{x}\sin(\theta) + x\dot{\theta}\cos(\theta)$$
$$\dot{y} = \dot{x}\cos(\theta) - x\dot{\theta}\sin(\theta)$$

Найдём T — кинетическую энергию системы и P — потенциальную энергию системы:

$$T = \frac{mv^{2}}{2} = \frac{m(\dot{x}^{2} + \dot{y}^{2})}{2} = \frac{m(\dot{x}^{2} \sin^{2}(\theta) + x^{2}\dot{\theta}^{2}\cos^{2}(\theta) + 2x\dot{x}\dot{\theta}\sin(\theta)\cos(\theta))}{2} + \frac{m(\dot{x}^{2} \sin^{2}(\theta) + x^{2}\dot{\theta}^{2}\cos^{2}(\theta) + 2x\dot{x}\dot{\theta}\sin(\theta)\cos(\theta))}{2} = \frac{m(\dot{x}^{2} + x^{2}\dot{\theta}^{2})}{2}$$

$$P = -mgx\cos(\theta) + \frac{kx^{2}}{2}$$

Функция Лагранжа:

$$L = T - P = \frac{m(\dot{x}^2 + x^2 \dot{\theta}^2)}{2} + mgx\cos(\theta) - \frac{kx^2}{2}$$

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} = \left[\frac{d}{dt}\right] = m\ddot{x}$$
$$\frac{\partial L}{\partial x} = mx\dot{\theta}^2 + mg\cos(\theta) - kx$$

$$\frac{\partial L}{\partial \dot{\theta}} = mx^2 \dot{\theta} = \left[\frac{d}{dt} \right] = m \left(2x\dot{x}\dot{\theta} + x^2 \ddot{\theta} \right)$$
$$\frac{\partial L}{\partial \theta} = -mgx \sin(\theta)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0$$

$$m\ddot{x} - mx\dot{\theta}^2 - mg\cos(\theta) + kx = 0$$
$$m(2x\dot{x}\dot{\theta} + x^2\ddot{\theta}) + mgx\sin(\theta) = 0$$

$$m\ddot{x} - mx\dot{\theta}^2 - mg\cos(\theta) + kx = 0$$
$$2\dot{x}\dot{\theta} + x\ddot{\theta} + g\sin(\theta) = 0$$

Выполнить численное моделирование системы из ДЗ №1 с произвольными начальными условиями для каждой из обобщенных координат. Исследовать влияние изменения указанного параметра на 20% в обе стороны от указанного значения на динамику системы. По результатам моделирования построить графики изменения обобщенных координат во времени, а также фазовый портрет системы. Вектор времени принять от 0 до 40 секунд с шагом 0.01 секунда.

Вариант	k	m	g(t)	Параметр
25	15	10	1/9.815t^2	g

Приведём систему к нормальной форме Коши:

Пусть

$$x1 = \theta$$

$$x2 = \dot{\theta}$$

$$x3 = x$$

$$x4 = \dot{x}$$

Тогда

$$x\dot{1} = x2$$

$$x\dot{2} = \frac{-g \cdot \sin(x1)}{x3} - \frac{2 \cdot x4 \cdot x2}{x3}$$

$$x\dot{3} = x4$$

$$x\dot{4} = x3 \cdot x2^2 - \frac{k}{m}x3 + g \cdot \cos(x1)$$

```
global Vhod
m = 10;
k = 15;
g = 1.\(Vhod.g*t.^2);
Theta = zeros(4, 1);

Theta(1) = X(2);
Theta(2) = - (g* sin(X(1)))/X(3) - 2*X(4)*X(2)/(X(3));
Theta(3) = X(4);
Theta(4) = X(3)*X(2)^2 - (k*X(3))/m + g*cos(X(1));
end
```

Рис.1. Функция, задающая ДУ в среде MATLAB.

Рис.2. Графики обобщенных координат от времени

График при изменении параметра g в промежутке от -20% до +20% представлены на Рис.3

Рис.3. График при изменении параметра д на 20%

Из данного графика следует вывод, что изменение параметра g на 20% не сильно влияет на функцию.

Фазовый портрет системы представлен на Рис.4.

Рис.4. Фазовый портрет системы со случайными входными данными

Фазовый портер при изменении параметра g в промежутке от -20% до +20% представлен на Рис.5

Рис. 5. Фазовый портрет системы с изменением g в фазовой области.

Рис.6. Фазовый портрет системы с изменением g во временной области.

Вывод:

Была получена математическая модель на основе системы нелинейных ДУ. 20-ти процентное изменение ускорения свободного падения не оказывает высокого влияния на полученную модель, при этом она не является хаотичной, т.к. при случайных входных условиях все равно стремится к определенной точке.