Python and Asset Pricing

Reading Group Presentation

Simina Pușcașu

June 12, 2020

Table of contents

1. Python Scientific Libraries

Overview

NumPy

SciPy

Pandas

Numba

- 2. Object-oriented programming
- 3. Application

Python Scientific Libraries

Overview

Main libraries:

- NumPy
- SciPy
- Pandas
- Numba
- Matplotlib (not included in this presentation)

^{*} Text in red contains links to resources.

NumPy

- How to: import numpy as np
- Scope: fast array processing
- Data structure: np.array()
- Similar functionalities to Matlab:
 See here a comprehensive list of equivalent expressions

SciPy

- How to: from scipy import subpackage 1,..., subpackage n
- Scope: algorithms and functions built on NumPy
- Subpackages must be imported separately

SciPy: Useful subpackages

- constants : Physical and mathematical constants
- integrate : Integration and ODE solvers
- interpolate : Interpolation and smoothing splines
- linalg : Linear algebra
- optimize : Optimization and root-finding routines
- stats : Statistical distributions and functions

SciPy: scipy.optimize

- Optimization
 - local: minimize([...],method ='...')
 - global: differential_evolution()
- Root finding
 - 1-D: bisect(), newton(), fixed_point()
 - n-D: root()
- Linear programming
 - linprog()
- Other (legacy) functions:
 - fmin(),fsolve()

Pandas

- How to: import pandas as pd
- Scope: data analysis (handling)
- Data structures: pd.Series(), pd.DataFrames()
- Easily translates to R
- Similar functionalities in Stata
- Related libraries:
 - statsmodels
 - linearmodels
 - scikit-Learn

Pandas: statsmodels

- How to: import statsmodels.api as sm
- Scope: statistical models, tests, data exploration
- Useful models are implemented as classes or modules:
 - class sm.OLS()
 - module sm.tsa with classes such as :

```
.ar_model.AutoReg()
```

- .arima_model.ARMA()
- .regime_switching.markov_regression.MarkovRegression()
- module statsmodels.tsa.statespace with corresponding classes and methods
- Check User guide for full list of functionalities

Pandas: linearmodels

- How to: from linearmodels.ModuleName import ModelName
- Scope: complements statsmodels with
 - panel data models (including Fama-MacBeth routine)
 - IV estimators
 - factor asset pricing models (including GMM)
 - system regressions (SUR, SURE, 3SLS, GMM)

Pandas: scikit-learn

- How to: from sklearn import subpackage
- Scope:
 - Supervised learning
 - Unsupervised learning
 - Model selection and evaluation
 - Inspection
 - Visualization
 - Data transformation and importing

Pandas: scikit-learn supervised learning useful modules

- linear model
 - linear_model.LinearRegression()
 - linear_model.Ridge()
 - linear_model.Lasso()
 - LogisticRegression()
 - svm
- neighbors
- tree

Numba

- Scope: Python code \rightarrow fast-running optimized code
- Works for functions and classes
- Key aspect: infers input type to speed things up

```
from numba import jit
import random

@jit(nopython=True) # decorator
def monte_carlo_pi(nsamples):
    acc = 0
    for i in range(nsamples):
        x = random.random()
        y = random.random()
        if (x ** 2 + y ** 2) < 1.0:
            acc += 1
    return 4.0 * acc / nsamples</pre>
```

Object-oriented programming

00P

- In Python everything is an object.
- Examples of objects:
 - functions
 - modules (scripts)
 - variables such as integers, strings...
- An object is characterized by
 - type (string, integer, function, class etc.)
 - identity (its address in memory)
 - content (data)
 - methods (functions/ callable attributes)

OOP

- A Class acts as a blueprint for creating your own objects
- An object is therefore an instance of a class
- Objects will have their own content and can use the methods provided in the class definition
- Attributes of objects = {content, methods}

Application

Bansal and Yaron (2004)

$$x_{t+1} = \rho x_t + \varphi_x \sigma_t \varepsilon_{t+1}^x \tag{1}$$

$$g_{t+1}^c = \mu + x_t + \sigma_t \varepsilon_{t+1}^c \tag{2}$$

$$g_{t+1}^d = \mu_d + \phi x_t + \varphi_d \sigma_t \varepsilon_{t+1}^d + \varphi_{dc} \sigma_t \varepsilon_{t+1}^c$$
 (3)

$$\sigma_{t+1}^2 = \sigma^2 + \nu_1(\sigma_t^2 - \sigma^2) + \varphi_s \varepsilon_{t+1}^{\sigma}$$
(4)

Bansal and Yaron (2004)

$$x_{t+1} = \rho x_t + \varphi_x \sigma_t \varepsilon_{t+1}^{\mathsf{x}} \tag{1}$$

$$g_{t+1}^c = \mu + x_t + \sigma_t \varepsilon_{t+1}^c \tag{2}$$

$$g_{t+1}^d = \mu_d + \phi x_t + \varphi_d \sigma_t \varepsilon_{t+1}^d + \varphi_{dc} \sigma_t \varepsilon_{t+1}^c$$
 (3)

$$\sigma_{t+1}^2 = \sigma^2 + \nu_1(\sigma_t^2 - \sigma^2) + \varphi_s \varepsilon_{t+1}^{\sigma}$$
(4)

$$r_{t+1}^{c} = \kappa_0 + \kappa_1 w c_{t+1} - w c_t + g_{t+1}^{c}$$
(5)

$$wc_t = A_0 + A_1 x_t + A_2 \sigma_t^2 \tag{6}$$

$$r_{t+1}^d = \kappa_0^m + \kappa_1^m p d_{t+1} - p d_t + g_{t+1}^d$$
 (7)

$$pd_t = A_0^m + A_1^m x_t + A_2^m \sigma_t^2 (8)$$

Goal

- Build LLR model class
- Instances of the class: BY2004 with and without stochastic volatility for various parametrizations
- Class methods:
 - Simulate the stochastic variables
 - Produce log-linear approximation solution
 - Produce projection method solution (implemented: the collocation method as in Pohl, Schmedders and Wilms (2018))
 - Compute asset pricing moments
 - *Methods for visualizing model output

Goal

- Build LLR model class
- Instances of the class: BY2004 with and without stochastic volatility for various parametrizations
- Class methods:
 - Simulate the stochastic variables
 - Produce log-linear approximation solution
 - Produce projection method solution (implemented: the collocation method as in Pohl, Schmedders and Wilms (2018))
 - Compute asset pricing moments
 - *Methods for visualizing model output

Numerical approximation: the collocation method

• The time invariant Euler equation for consumption is:

$$0 = \int \left[1 - \exp\left(\theta\left(\log \delta + \left(1 - \frac{1}{\psi}\right)\Delta c(s'|s) + z(s') - \log(\exp(z(s)) - 1)\right)\right)\right] df_{\varepsilon}$$

- $s = (x, \sigma^2)$
- $s' = (x, \sigma^2; \varepsilon)$
- z as wc ratio

Numerical approximation: the collocation method

■ Approximate the wc ratio using Chebyshev polynomial series, $\Lambda_k = T_k\Big(\tfrac{2x-a-b}{b-a}\Big), \, \Lambda_h = T_h\Big(\tfrac{2\sigma^2-c-d}{d-c}\Big), \, \text{with } x \in [a,b], \, \sigma^2 \in [c,d]:$

$$\hat{z}(x,\sigma^2;\alpha) = \sum_{k=0}^{n} \sum_{h=0}^{n} \alpha_{kh} \Lambda_k(x) \Lambda_h(\sigma^2)$$

 $T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Numerical approximation: the collocation method

$$\hat{z}(x,\sigma^2;\alpha) = \sum_{k=0}^{n} \sum_{h=0}^{n} \alpha_{kh} \Lambda_k(x) \Lambda_h(\sigma^2)$$

■ The coefficients in α are obtained by imposing that the Euler equation holds at each $s_{ij} = (x_i, \sigma_j^2)$ pair with $i, j \in \{1, ..., n\}$ (approximation nodes) with $s'_{ij}(x_i, \sigma_j^2; \varepsilon)$ as next period state:

$$0 = \int \left[1 - \exp\left(\theta\left(\log \delta + \left(1 - \frac{1}{\psi}\right)\Delta c(s'_{ij}|s_{ij}) + \hat{z}(s'_{ij}, \alpha) - \log(\exp(\hat{z}(s_{ij}, \alpha)) - 1)\right)\right)\right] df_{\varepsilon}$$

Numerical approximation: the collocation method cont'd

$$0 = \int \left[1 - \exp\Bigl(\theta\Bigl(\log\delta + \Bigl(1 - \frac{1}{\psi}\Bigr)\Delta c(s'_{ij}|s_{ij}) + \hat{z}(s'_{ij},\alpha) - \log(\exp(\hat{z}(s_{ij},\alpha)) - 1)\Bigr)\Bigr)\right] df_{\varepsilon}$$

 Finally, the integral above is computed using Gauss-Hermite quadrature of degree L over each of the 4 normal shocks:

$$0 = \sum_{\ell=1}^{(\mathcal{L})^4} \Big[1 - exp\Big(...\Big)\Big] w_\ell(arepsilon)$$

 A similar procedure is performed for the pd ratio. Details in Judd (1998) or in the appendix of Pohl, Schmedders and Wilms (2018)

Implementation

- My Python code
- The original Matlab code for PSW(2018) (downloads code on click)
- 1:1 translation of Matlab code to Python of PSW(2018)