Homework Assignment 4

CSE 151A: Introduction to Machine Learning

Due: May 30th, 2023, 9:30am (Pacific Time)

Instructions: Please answer the questions below, attach your code in the document, and insert figures to create a **single PDF** file. You may search information online but you will need to write code/find solutions to answer the questions yourself.

Grade: ____ out of 100 points

1 (40 points) Naïve Bayes

In this question, we would like to build a Naïve Bayes model for a classification task. Assume there is a classification dataset $S = \{(\mathbf{x}^{(i)}, y^{(i)}), i = 1, ..., 8\}$ where each data point (\mathbf{x}, y) contains a feature vector $\mathbf{x} = (x_1, x_2, x_3); x_1, x_2, x_3 \in \{0, 1\}$ and a ground-truth label $y \in \{0, 1\}$. The dataset S can be read from the table below:

i	x_1	x_2	x_3	y
1	0	0	1	1
2	0	1	1	1
3	1	1	0	1
4	0	0	1	1
5	0	1	0	0
6	1	1	0	0
7	1	0	0	0
8	0	0	1	0

In Naïve Bayes model, we use random variable $X_i \in \{0, 1\}$ to represent *i*-th dimension of the feature vector \mathbf{x} , and random variable $Y \in \{0, 1\}$ to represent the class label y. Thus, we can estimate probabilities P(Y), $P(X_i|Y)$ and $P(X_i, Y)$ by counting data points in dataset S, for example:

$$P(Y = 1) = \frac{\#\{\text{data points with } y = 1\}}{\#\{\text{all data points}\}} = \frac{4}{8} = 0.5$$

$$P(X_1 = 1 | Y = 0) = \frac{\#\{\text{data points with } x_1 = 1 \text{ and } y = 0\}}{\#\{\text{data points with } y = 0\}} = \frac{2}{4} = 0.5$$

$$P(X_1 = 1, Y = 1) = P(X_1 = 1 | Y = 1) P(Y = 1)$$

$$= \frac{\#\{\text{data points with } x_1 = 1 \text{ and } y = 1\}}{\#\{\text{all data points}\}} = \frac{1}{8} = 0.125$$

It is noteworthy that **only** probabilities P(Y), $P(X_i|Y)$ and $P(X_i,Y)$ can be **directly** estimated from dataset S in Naïve Bayes model. Other joint probabilities (e.g. $P(X_1, X_2)$ and $P(X_1, X_2, X_3)$) should **not** be estimated by directly counting the data points.

Next, we can use the probabilities P(Y) and $P(X_i|Y)$ to build our Naïve Bayes model for classification: For a feature vector $\mathbf{x} = (x_1, x_2, x_3)$, we can estimate the probability $P(Y = y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$ with the **conditional independence assumptions**:

$$P(Y = y | X_1 = x_1, X_2 = x_2, X_3 = x_3) = \frac{P(X_1 = x_1, X_2 = x_2, X_3 = x_3, Y = y)}{P(X_1 = x_1, X_2 = x_2, X_3 = x_3)}$$

$$= \frac{P(X_1 = x_1, X_2 = x_2, X_3 = x_3 | Y = y)P(Y = y)}{P(X_1 = x_1, X_2 = x_2, X_3 = x_3)}$$

$$= \frac{\left(\prod_{i=1}^3 P(X_i = x_i | Y = y)\right)P(Y = y)}{P(X_1 = x_1, X_2 = x_2, X_3 = x_3)}$$

where the joint probability $P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$ can be calculated as:

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3) = \sum_{y=0}^{1} P(X_1 = x_1, X_2 = x_2, X_3 = x_3, Y = y)$$

$$= \sum_{y=0}^{1} \left(P(X_1 = x_1, X_2 = x_2, X_3 = x_3 | Y = y) P(Y = y) \right)$$

$$= \sum_{y=0}^{1} \left(\left(\prod_{i=1}^{3} P(X_i = x_i | Y = y) \right) P(Y = y) \right)$$

Finally, if we find:

$$P(Y = 1|X_1 = x_1, X_2 = x_2, X_3 = x_3) > P(Y = 0|X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

then we can predict the class of feature vector $\mathbf{x} = (x_1, x_2, x_3)$ to be 1, otherwise 0. It is noteworthy that although conditional independence assumptions are made in Naïve Bayes model, $P(Y = 1|X_1 = x_1, X_2 = x_2, X_3 = x_3) + P(Y = 0|X_1 = x_1, X_2 = x_2, X_3 = x_3)$ should still be 1.

1. (15 pts) Please estimate the following probabilities:

(1)
$$P(X_1 = 1, Y = 0)$$
, (2) $P(Y = 0)$, (3) $P(X_1 = 1|Y = 1)$.

Note that these probabilities can be directly estimated by counting from dataset S.

$$P(x,=1, y=0) = \frac{2}{8} = \boxed{0.25}$$

$$P(y=0) = \frac{4}{8} = \boxed{0.5}$$

$$P(x,=1|y=1) = \frac{1}{4} = \boxed{0.25}$$

2. (18 pts) Please calculate the probability $P(Y = 1|X_1 = 1, X_2 = 1, X_3 = 0)$ in Naïve Bayes model using conditional independence assumptions.

$$P(Y=1 \mid X_1=1, X_2=1, X_3=0) = \left(\underbrace{\Pi_{i=1}^3 P(X_i=x_i \mid Y=1)) P(Y=1)}_{P(X_i=x_1, X_2=x_2, X_3=x_3)} \right)$$

$$\left(\mathsf{TT}_{i=1}^{3} P(\mathsf{x}_{i} = \mathsf{x}_{i} \mid \mathsf{Y} = 1)\right) P(\mathsf{Y} = 1) = \left(\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4}\right) \cdot \frac{1}{2}$$
$$= \frac{1}{64}$$

$$P(X_{i}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}) = \sum_{q=0}^{1} \left(\left(T_{i=1}^{3} P(X_{i}=x_{i}|Y=y) \right) P(Y=y) \right)$$

$$= \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \right) \cdot \frac{1}{2} + \frac{1}{64} = \frac{7}{64}$$

$$\frac{\left(T_{i=1}^{3} P(x_{i}=x_{i}|y=1)\right) P(y=1)}{P(x_{i}=x_{i}, x_{2}=x_{2}, x_{3}=x_{3})} = \frac{1/64}{7/64} = \boxed{\frac{1}{7}}$$

3. (7 pts) Please calculate the probability $P(Y = 0|X_1 = 1, X_2 = 1, X_3 = 0)$ in Naïve Bayes model and predict the class of feature vector $\mathbf{x} = (1, 1, 0)$.

$$P(Y=0|X_1=1,X_2=1,X_3=0) = \frac{\left(\prod_{i=1}^3 P(X_i=x_i|Y=0)\right)P(Y=0)}{P(X_1=1,X_2=1,X_3=0)}$$

$$=\frac{6/64}{7/64}=\frac{6}{7}$$

$$P(Y=0|X_1=1,X_2=1,X_3=0) = \frac{6}{7} > P(Y=1|X_1=1,X_2=1,X_3=0) = \frac{1}{7}$$

$$x: y = 0$$

2 (40 points) Decision Tree

In this question, we would like to create a decision tree model for a binary classification task. Assume there is a classification dataset $T = \{(\mathbf{x}^{(i)}, y^{(i)}), i = 1, ..., 5\}$ where each data point (\mathbf{x}, y) contains a feature vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ and a ground-truth label $y \in \{0, 1\}$. The dataset T can be read from the table below:

i	x_1	x_2	y
1	1.0	2.0	1
2	2.0	2.0	1
3	3.0	2.0	0
4	2.0	3.0	0
5	1.0	3.0	0

To build the decision tree model, we use a simplified CART algorithm, which is a recursive procedure as follows:

- Initialize a root node with dataset T and set it as current node.
- Start a procedure for current node:
 - Step 1: Assume the dataset in current node is T_{cur} . Check if all data points in T_{cur} are in the same class:
 - * If it is true, set current node as a leaf node to predict the common class in T_{cur} , and then terminate current procedure.
 - * If it is false, continue the procedure.
 - Step 2: Traverse all possible splitting rules. Each splitting rule is represented by a vector (j,t), which compares feature x_j and threshold t to split the dataset T_{cur} into two subsets T_1, T_2 :

$$T_1 = \{(\mathbf{x}, y) \in T_{\text{cur}} \text{ where } x_j \leq t\},\$$

 $T_2 = \{(\mathbf{x}, y) \in T_{\text{cur}} \text{ where } x_j > t\}.$

We will traverse the rules over all feature dimensions $j \in \{0, 1\}$ and thresholds $t \in \{x_j | (\mathbf{x}, y) \in T_{\text{cur}}\}.$

- Step 3: Decide the best splitting rule. The best splitting rule (j^*, t^*) minimizes the weighted sum of Gini indices of T_1, T_2 :

$$(j^*, t^*) = \arg\min_{j,t} \frac{|T_1|\operatorname{Gini}(T_1) + |T_2|\operatorname{Gini}(T_2)}{|T_1| + |T_2|}$$

where the $Gini(\cdot)$ is defined as:

$$Gini(T_i) = 1 - \sum_{y=0}^{1} P(Y = y)^2,$$

$$P(Y = y) = \frac{\#\{\text{data points with label } y \text{ in } T_i\}}{\#\{\text{data points in } T_i\}}.$$

- **Step 4**: We split the dataset T_{cur} into two subsets T_1^*, T_2^* following the best splitting rule (j^*, t^*) . Then we set current node as a *branch* node and create child nodes with the subsets T_1^*, T_2^* respectively. For each child node, start from **Step 1** again recursively.

If we run the above decision tree building procedure on dataset T and find the generated tree is shown below:

Please answer the questions:

1. (16 pts) Calculate the subsets $T_1^*, T_2^*, T_{11}^*, T_{12}^*$ using the given decision tree.

$$T_{1}^{\times} = \left\{ \left(\chi^{(1)}, q^{(1)} \right), \left(\chi^{(2)}, q^{(1)} \right), \left(\chi^{(3)}, q^{(0)} \right) \right\}$$

$$T_{2}^{\times} = \left\{ \left(\chi^{(4)}, q^{(0)} \right), \left(\chi^{(5)}, q^{(0)} \right) \right\}$$

$$T_{11}^{\times} = \left\{ \left(\chi^{(1)}, q^{(1)} \right), \left(\chi^{(2)}, q^{(1)} \right) \right\}$$

$$T_{12}^{\times} = \left\{ \left(\chi^{(2)}, q^{(0)} \right) \right\}$$

2. (12 pts) Calculate $Gini(T_1^*)$ and $Gini(T_2^*)$.

Gini
$$(T,^*) = 1 - \sum_{y=0}^{l} \rho(y=y)^2$$

= $1 - \left[\left(\frac{1}{3} \right)^2 + \left(\frac{2}{3} \right)^2 \right]$
= $1 - \left[\frac{1}{9} + \frac{4}{9} \right] = \left[\frac{4}{9} \right]$

Gini
$$(T_2^*) = 1 - \sum_{y=0}^{1} P(y=y)^2$$

= $1 - [(1)^2 + (0)^2]$
= 0

- 3. (12 pts) With the given tree, we can predict the class of a feature vector $\mathbf{x} = (x_1, x_2)$:
 - Start from the root node of the tree:
 - **Step 1**: If current node is a *branch* node, we evaluate conditions on branch edges with \mathbf{x} , choose the satisfied branch to go through, and repeat **Step 1**.
 - **Step 2**: If current node is a *leaf* node, the common class of the subset in the leaf node will be used as prediction.

Please predict the following feature vectors using the given tree:

- $(1) \mathbf{x} = (2, 1),$
- $(2) \mathbf{x} = (3, 1),$
- $(3) \mathbf{x} = (3,3).$

$$x_1 \rightarrow T_{11}^* \rightarrow y^{-1}$$

$$x_2 \rightarrow T_{12}^* \rightarrow y^{-0}$$

$$x_3 \rightarrow T_2^* \rightarrow y^{-0}$$

4. (Bonus Question, 10 pts extra) In this question, you need to implement the decision tree algorithm. Please download the Jupyter notebook HW4_Decision_Tree.ipynb and fill in the blanks. Note that since the same dataset T is used in the notebook, you can use the code to check if your previous answers are correct or not. Please attach your code and results in Gradescope submission.

Part I. Implement a decision tree algorithm and make predictions.

```
In [ ]: import numpy as np
In [ ]: class TreeNode:
            """ Node class in the decision tree. """
            def __init__(self, T):
                self.type = 'leaf' # Type of current node. Could be 'leaf' or 'branch' (at default: 'leaf').
                self.left = None # Left branch of the tree (for leaf node, it is None).
                self.right = None # Right branch of the tree (for leaf node, it is None).
                self.dataset = T # Dataset of current node, which is a tuple (X, Y).
                                   # X is the feature array and Y is the label vector.
            def set_as_leaf(self, common_class):
                 """ Set current node as leaf node. """
                self.type = 'leaf'
                self.left = None
                self.right = None
                self.common_class = common_class
            def set_as_branch(self, left_node, right_node, split_rule):
                """ Set current node as branch node. """
                self.type = 'branch'
                self.left = left_node
                self.right = right_node
                # split_rule should be a tuple (j, t).
                # When x_j \ll t, it goes to left branch.
                    When x_j > t, it goes to right branch.
                self.split_rule = split_rule
In [ ]: # Prepare for dataset.
        def get_dataset():
            X = np.array(
                [[1.0, 2.0],
                 [2.0, 2.0],
                 [3.0, 2.0],
                  [2.0, 3.0],
                 [1.0, 3.0]
                1)
            Y = np.array(
                [1,
                 1,
                 0,
                 0.
                 0])
            T = (X, Y) # The dataset T is a tuple of feature array X and label vector Y.
            return T
        T = get_dataset()
        In this part, you are required to implement the decision tree algorithm shown in the problem description of Q2 in HW4:
```

The 4 steps are marked in comments of the following code. Please fill in the missing blanks (e.g. "...") in the TODOs:

```
In [ ]: # Initialization.
       root_node = TreeNode(T)
In [ ]: # Procedure for current node.
       def build_decision_tree_procedure(node_cur, depth=0):
          # Step 1. Check if all data points in T_cur are in the same class
           #
                   - If it is true, set current node as a *leaf node* to predict the common class in T_cur,
           #
                    and then terminate current procedure.
                    - If it is false, continue the procedure.
           T_cur = node_cur.dataset
           X_cur, Y_cur = T_cur # Get current feature array X_cur and label vector Y_cur.
           if (Y_cur == 1).all():
               print(' ' * depth + '+-> leaf node (predict 1).')
                      print('
              print('
                                          samples: {}'.format(len(X_cur)))
              node_cur.set_as_leaf(1)
               return
           elif (Y_cur == 0).all():
              ' * depth + '+-> leaf node (predict 0).')
                                       Gini: {:.3T} ...ormac(cor)
samples: {}'.format(len(X_cur)))
                                         Gini: {:.3f}'.format(Gini(T_cur)))
               print(' ' * depth + '
               node_cur.set_as_leaf(0)
```

```
# Step 2. Traverse all possible splitting rules.
             – We will traverse the rules over all feature dimensions j in \{0,\ 1\} and
              thresholds t in X_{cur}[:, j] (i.e. all x_{-}j in current feature array X_{-}cur).
   all_rules = []
   #### TODO 1 STARTS ###
   # Please traverse the rules over all feature dimensions j in {0, 1} and
   # thresholds t in X_cur[:, j] (i.e. all x_j in current feature array X_cur),
      and save all rules in all_rules variable.
   # The all_rules variable should be a list of tuples such as [(0, 1.0), (0, 2.0), \ldots]
   for j in (0,1):
       for t in X_cur[:,j]:
           all_rules.append((j,t))
   #### TODO 1 ENDS ###
   # print('All rules:', all_rules) # Code for debugging.
   # Step 3. Decide the best splitting rule.
   best_rule = (_, _)
   best_weighted_sum = 1.0
   for (j, t) in all_rules:
       #### TODO 2 STARTS ###
       # For each splitting rule (j, t), we use it to split the dataset T_cur into T1 and T2.
       # Hint: You may refer to Step 4 to understand how to set inds1, X1, Y1, len_T1 and inds2, X2, Y2, len_T2.
       # - Create subset T1.
       inds1 = [x for x in range(len(T_cur[0])) if T_cur[0][x][j] <= t]</pre>
                                                                                      # Indices vector for those data points with
       X1 = [T_cur[0][i] for i in inds1]
                                                          # Feature array with inds1 in X_cur.
       Y1 = [T_cur[1][i] for i in inds1]
                                                          # Label vector with inds1 in Y_cur.
       T1 = (X1, Y1)
                          # Subset T1 contains feature array and label vector.
       len_T1 = len(X1)
                                      # Size of subset T1.
       # - Create subset T2.
       inds2 = [x for x in range(len(T_cur[0])) if T_cur[0][x][j] > t]
                                                                                      # Indices vector for those data points with
                                                          # Feature array with inds2 in X_cur.
       X2 = [T_cur[0][i]  for i  in inds2]
       Y2 = [T_cur[1][i] for i in inds2]
                                                          # Label vector with inds2 in Y_cur.
                             # Subset T2 contains feature array and label vector.
       T2 = (X2, Y2)
       len_T2 = len(X2)
                                     # Size of subset T2.
       #### TODO 2 ENDS ###
       # Calculate weighted sum and try to find the best one.
       weighted_sum = (len_T1*Gini(T1) + len_T2*Gini(T2)) / (len_T1 + len_T2)
       # print('Rule:', (j, t), 'len_T1, len_T2:', len_T1, len_T2, 'weighted_sum:', weighted_sum) # Code for debugging.
       if weighted_sum < best_weighted_sum:</pre>
           #### TODO 3 STARTS ####
           # Update the best rule and best weighted sum with current ones.
           best_rule = (j,t)
           best_weighted_sum = weighted_sum
           #### TODO 3 ENDS ####
   # Step 4. - We split the dataset T_cur into two subsets best_T1, best_T2 following
                   the best splitting rule (best_j, best_t).
   #
             - Then we set current node as a *branch* node and create child nodes with
   #
                  the subsets best_T1, best_T2 respectively.
             - For each child node, start from *Step 1* again recursively.
   best_j, best_t = best_rule
   # - Create subset best_T1 and corresponding child node.
   best_inds1 = X_cur[:,best_j] <= best_t</pre>
   best_X1 = X_cur[best_inds1]
   best_Y1 = Y_cur[best_inds1]
   best_T1 = (best_X1, best_Y1)
   node1 = TreeNode(best_T1)
   # - Create subset best T2 and corresponding child node.
   best_inds2 = X_cur[:,best_j] > best_t
   best_X2 = X_cur[best_inds2]
   best_Y2 = Y_cur[best_inds2]
   best_T2 = (best_X2, best_Y2)
   node2 = TreeNode(best_T2)
   # - Set current node as branch node and create child nodes.
   node_cur.set_as_branch(left_node=node1, right_node=node2, split_rule=best_rule)
   print(' ' * depth + '+-> branch node')
             ' * depth + '
   print('
                               Gini: {:.3f}'.format(Gini(T_cur)))
            ' * depth + '
   print('
                                samples: {}'.format(len(X_cur)))
   # - For each child node, start from Step 1 again recursively.
   print(' '* (depth + 1) + '| \rightarrow left branch: x_{{}} <= {} (with {} data point(s)).'.format(best_j, best_t, len(best_X1)))
   build_decision_tree_procedure(node1, depth+1) # Note: The depth is only used for logging.
   build_decision_tree_procedure(node2, depth+1)
def Gini(Ti):
   """ Calculate the Gini index given dataset Ti. """
```

```
Xi, Yi = Ti  # Get the feature array Xi and label vector Yi.
if len(Yi) == 0:  # If the dataset Ti is empty, it simply returns 0.
    return 0

#### TODO 4 STARTS ###

# Implement the Gini index function.
P_Y1 = len([x for x in Yi if x == 1]) / len(Yi)  # Estimate probability P(Y=1) in Yi
P_Y0 = len([x for x in Yi if x == 0]) / len(Yi)  # Estimate probability P(Y=0) in Yi
Gini_Ti = 1 - (P_Y1 ** 2) - (P_Y0 ** 2)  # Calculate Gini index: Gini_Ti = 1 - P(Y=1)^2 - P(Y=0)^2
#### TODO 4 ENDS ###
return Gini_Ti
```

After you finish the above code blank filling, you can use the following code to build the decision tree. The following code also shows the structure of the tree.

```
# If your code is correct, you should output:
        # +-> branch node
        #
                Gini: 0.480
        #
                samples: 5
               \mid -> left branch: x_1 <= 2.0 (with 3 data point(s)).
        #
        #
              +-> branch node
        #
                   Gini: 0.444
        #
                    samples: 3
              . . . . .
        # You can also use the sklearn results to validate your decision tree
        # (the threshold could be slightly different but the structure of the tree should be the same).
       +-> branch node
             Gini: 0.480
             samples: 5
           \mid - \rangle left branch: x_1 \le 2.0 (with 3 data point(s)).
           +-> branch node
                 Gini: 0.444
                 samples: 3
               \mid - \rangle left branch: x_0 \ll 2.0 (with 2 data point(s)).
               +-> leaf node (predict 1).
                     Gini: 0.000
                     samples: 2
               |-> right branch: x_0 > 2.0 (with 1 data point(s)).
               +-> leaf node (predict 0).
                     Gini: 0.000
                      samples: 1
           |-> right branch: x_1 > 2.0 (with 2 data point(s)).
           +-> leaf node (predict 0).
                 Gini: 0.000
                 samples: 2
        With the obtained decision tree, you can predict the class of new feature vectors:
In [ ]: def decision_tree_predict(node_cur, x):
             if node_cur.type == 'leaf':
                 return node_cur.common_class
             else:
                 j, t = node_cur.split_rule
                 if x[j] <= t:
                    return decision_tree_predict(node_cur.left, x)
                 else:
                     return decision_tree_predict(node_cur.right, x)
In []: for x in [(2,1), (3,1), (3,3)]:
            y_pred = decision_tree_predict(root_node, x)
             print('Prediction of {} is {}'.format(x, y_pred))
```

Part II. Use Scikit-learn to build the tree and make predictions.

In []: # Build the decision tree.

Prediction of (2, 1) is 1 Prediction of (3, 1) is 0 Prediction of (3, 3) is 0

build_decision_tree_procedure(root_node)

The following code uses Scikit-learn to build the decision tree. You can use it to check if your previous implementation is correct or not.

```
In []: # Ref: https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
    from sklearn import tree
X, Y = T
    clf = tree.DecisionTreeClassifier()
    clf = clf.fit(X, Y)
```

The following code illustrates the obtained decision tree. It should have same structure and similar rules compared with the tree in your own implementation.

```
In [ ]: # Plotting the tree.
      tree.plot_tree(clf)
Out[]: [Text(0.6, 0.83333333333333333, 'X[1] \le 2.5 \neq 0.48 = 0.48 = 5 = 5 = [3, 2]'),
       Text(0.4, 0.5, 'X[0] \le 2.5 \cdot gini = 0.444 \cdot samples = 3 \cdot value = [1, 2]'),
      Text(0.8, 0.5, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]')]
                           X[1] <= 2.5
                           gini = 0.48
                           samples = 5
                          value = [3, 2]
                 X[0] <= 2.5
                                      gini = 0.0
                 gini = 0.444
                                    samples = 2
                 samples = 3
                                   value = [2, 0]
                value = [1, 2]
         gini = 0.0
                            gini = 0.0
       samples = 2
                           samples = 1
       value = [0, 2]
                          value = [1, 0]
```

Prediction of (3, 3) is 0

The following code makes the predictions using the obtained decision tree. It should have identical results as the ones for your own implementaion.

```
In []: # Predict the class.
    for x in [(2,1), (3,1), (3,3)]:
        y_pred = clf.predict(np.array([x]))[0]
        print('Prediction of {} is {}'.format(x, y_pred))

Prediction of (2, 1) is 1
Prediction of (3, 1) is 0
```

3 (20 points) Bagging and Boosting

Assume we obtain T linear classifiers $\{h_t, t = 1, ..., T\}$ where each classifier $h : \mathbb{R}^2 \to \{+1, -1\}$ predicts the class $\hat{y} \in \{+1, -1\}$ with given feature vector $\mathbf{x} = (x_1, x_2)$ as follows:

$$\hat{y} = h(\mathbf{x}) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + b) \quad \text{where} \quad \operatorname{sign}(a) = \begin{cases} +1 & \text{if } a \ge 0, \\ -1 & \text{if } a < 0. \end{cases}$$

where $w_1, w_2, b \in \mathbb{R}$ are the parameters.

• In a bagging model H_{bagging} of the T linear classifiers, we calculate the average prediction using classifiers $\{h_t\}$, and then use it to predict the class \hat{y}_{bagging} :

$$\hat{y}_{\text{bagging}} = H_{\text{bagging}}(\mathbf{x}) = \text{sign}\left(\frac{1}{T}\sum_{t=1}^{T} h_t(\mathbf{x})\right)$$

• In a boosting model H_{boosting} of the T linear classifiers, we calculate the weighted sum of predictions using classifiers $\{h_t\}$, and then use it to predict the class $\hat{y}_{\text{boosting}}$:

$$\hat{y}_{\text{boosting}} = H_{\text{boosting}}(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

where $\{\alpha_t, t = 1, ..., T\}$ are the weight coefficients.

In this problem, suppose we have 3 linear classifiers (i.e. T=3):

$$h_1(\mathbf{x}) = \operatorname{sign}(x_1 + x_2 + 1), \quad h_2(\mathbf{x}) = \operatorname{sign}(x_1 - x_2), \quad h_3(\mathbf{x}) = \operatorname{sign}(x_1 - 2x_2 + 1).$$

Please answer the questions below:

1. (10 pts) Please calculate the \hat{y}_{bagging} of feature vector $\mathbf{x} = (1, 2)$ using bagging on these three classifiers.

$$\hat{y}_{bagg:ng} = sign\left(\frac{1}{3}\sum_{t=1}^{3}h_{t}(x)\right)$$

$$= sign\left(\frac{1}{3}\left(1+(-1)+(-1)\right)\right)$$

$$= \boxed{-1}$$

2. (10 pts) Please calculate the $\hat{y}_{\text{boosting}}$ of feature vector $\mathbf{x} = (1,2)$ using boosting on these three classifiers. The weight coefficients are $\alpha_1 = 0.8, \ \alpha_2 = 0.2, \ \alpha_3 = 0.3$.

$$\hat{y} \text{ boosting} = \text{sign} \left(\sum_{t=1}^{3} \alpha_t h_t(x) \right)$$

$$= \text{sign} \left(0.8(4) + 0.2(-1) + 0.3(-1) \right)$$

$$= +1$$