Bank Loan Case Study

Final Project-2

Sowmiya R | Data Analytics | 30th July 2023

PROJECT DESCRIPTION

Imagine myself as a data analyst at a finance company that specializes in lending various types of loans to urban customers. Your company faces a challenge: some customers who don't have a sufficient credit history take advantage of this and default on their loans.

Your task is to use **Exploratory Data Analysis (EDA)** to analyze patterns in the data and ensure that capable applicants are not rejected.

From above picture, can see a picture done a EDA analysis. I have attached a excel file which is included as a EDA analysis and final data....

https://docs.google.com/spreadsheets/d/1C9u00Xftuc0-4z5Tpgzo4FtUPvboujw/edit?usp=drive_link&ouid=1037685967101401136 95&rtpof=true&sd=true

When a customer applies for a loan, your company faces two risks:

- If the applicant can repay the loan but is not approved, the company loses business.
- If the applicant cannot repay the loan and is approved, the company faces a financial loss.
- The dataset you'll be working with contains information about loan applications.

It includes two types of scenarios:

- Customers with payment difficulties: These are customers who had a late payment of more than X days on at least one of the first Y installments of the loan.
- All other cases: These are cases where the payment was made on time.

When a customer applies for a loan, there are four possible outcomes:

- **Approved:** The company has approved the loan application.
- Cancelled: The customer cancelled the application during the approval process.
- Refused: The company rejected the loan.
- Unused Offer: The loan was approved but the customer did not use it.

I need to be use the EDA analysis final dataset for the whole tasks of this project. Goal in this project is to use EDA to understand how customer attributes and loan attributes influence the likelihood of default.

Business Objectives:

The main aim of this project is to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The company wants to understand the key factors

behind loan default so it can make better decisions about loan approval.

APPROACH

- First of all, in this project they have provided with a 2 datasets which are current application and previous application. So I have started cleaning the datasets and grouped as one, removed blanks, unwanted and unrelated columns and so on.
- I thought that in the given datasets unneeded columns are present there so I thought to remove the useless columns which are not needed for risk analysis. I analyzed in given reference that helped me to analyze this risk assessment analysis.
- Next, I am supposed to find the outliers then removed the outliers, then I count the blanks of making it percentage how much the blanks are present so the percentage helped me to

remove the unwanted columns and blanks by using excel **count functions.**

• By finding and cleaning all these data and moving on to tasks, my excel file named as **Final data** helped me to calculate the tasks and visually given a various insights like bar chart, box plot, column chart by make using excel pivot tables.

TECH-STACK USED

I have used Microsoft excel 2011 and Tableau public . For the whole, MS Excel is been used for all calculating and analyzing the tasks and driven a multiple insights with a visual representation.

INSIGHTS AND RESULTS

1. Identify Missing Data and Deal with it Appropriately: As a data analyst, you come across missing data in the loan application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis.

Task: Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

i) Application.csv Dataset

In this task, I have analyzed a missing data and unwanted, unrelated columns and blanks. So I used a excel count functions to see a percentage of each and every columns calculated and kept as a separate sheet as **EDA analysis** analyzed every other columns with a

percentage and comes with a final dataset that too I kept as a separate sheet as **Final Data** .

- > 'application data.csv' contains all of the client's information at the time of application. The information pertains to whether or not a client is having financial issues.
- ➤ 'previous application.csv' provides data from the client's previous loans. It indicates if the prior application was Accepted, Cancelled, Refused, or Unused.

Categorical variables (non-numerical variables)- person's occupation, education status.

Numerical variables - income, credit etc.,

The following are some of the categorical and numerical variables from the provided data set.

Categorical variables:

- Gender
- Name contract type

- Income type
- Education
- Housing type

Numeric variables:

- Age
- Days Employed
- Amount Income
- Amount Annuity
- Amount Credit

There I have left with a 30 header rows and 307512 rows are left there. Below are these of 30 header row names listed here:

- > INDEX
- > SK_ID_CURR
- > TARGET
- > NAME_CONTRACT_TYPE
- > CODE_GENDER
- > FLAG_OWN_CAR
- > FLAG_OWN_REALTY
- > CNT_CHILDREN

- > AMT_INCOME_TOTAL
- > INCOME BIN
- > AMT_CREDIT
- > CREDIT BIN
- > AMT_ANNUITY
- > AMT_GOODS_PRICE
- > NAME_INCOME_TYPE
- > NAME_EDUCATION_TYPE
- > NAME_FAMILY_STATUS
- > NAME_HOUSING_TYPE
- > REGION_POPULATION_RELATIVE
- > DAYS_BIRTH(yrs)
- > DAYS_EMPLOYED(YRS)
- DAYS_REG (YRS)
- > DAYS_ID_PUBLISH(YRS)
- > FLAG_MOBIL
- > FLAG_CONT_MOBILE
- > CNT_FAM_MEMBERS
- > REGION_RATING_CLIENT
- > WEEKDAY_APPR_PROCESS_START

> HOUR_APPR_PROCESS_START

> ORGANIZATION_TYPE

From the above picture, I have represented the EDA analysis by percentage values and final dataset which are cleaned are pasted above as picture. Also then I have included a excel file as **EDA**analysis and Final data. This can be referred as in this file...

https://docs.google.com/spreadsheets/d/1RwBFqWdMVj8QUFE mBDAnmrCg8qgD0uwC/edit?usp=drive_link

ii) Previous application.csv dataset

'previous application.csv' provides data from the client's previous loans. It indicates if the prior application was Accepted, Cancelled, Refused, or Unused.

From this previous application dataset, I have started cleaning the dataset by removing every blanks on calculating in excel itself, then I found a percentage every other header columns and removed which were unwanted and the percentage is above 25%.

So finally I arrived at **39256** entries are left and 17 header rows. They are:

- > SK_ID_PREV
- > SK_ID_CURR
- > NAME_CONTRACT_TYPE

- > AMT_ANNUITY
- > AMT_APPLICATION
- > AMT_CREDIT
- > AMT_GOODS_PRICE
- > WEEKDAY_APPR_PROCESS_START
- > HOUR_APPR_PROCESS_START
- > NAME_CONTRACT_STATUS
- > DAYS_DECISION
- > NAME_PAYMENT_TYPE
- > CODE_REJECT_REASON
- > NAME_CLIENT_TYPE
- > NAME_GOODS_CATEGORY
- > CNT_PAYMENT
- > PRODUCT_COMBINATION

А	В	С	D		E	F	G	Н	I	J
% of null values	0%	0%		0%	21%	0%	0%	50%	21%	0%
Count of Rows	49999	49999		49999	39407	49999	49999	24801	39255	49999
	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT	Г_ТҮРЕ	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_PAYMENT	AMT_GOODS_PRICE	WEEKDAY_APPR_PROCESS_START H
	2030495	271877	Consumer loans		1730.43	17145	17145	0	17145	SATURDAY
	2802425	108129	Cash loans		25188.615	607500	679671		607500	THURSDAY
	2523466	122040	Cash loans		15060.735	112500	136444.5		112500	TUESDAY
	2819243	176158	Cash loans		47041.335	450000	470790		450000	MONDAY
	1784265	202054	Cash loans		31924.395	337500	404055		337500	THURSDAY
	1383531	199383	Cash loans		23703.93	315000	340573.5		315000	SATURDAY
	2315218	175704	Cash loans			0	0			TUESDAY
	1656711	296299	Cash loans			0	0			MONDAY
	2367563	342292	Cash loans			0	0			MONDAY
	2579447	334349	Cash loans			0	0			SATURDAY
	1715995	447712	Cash loans		11368.62	270000	335754		270000	FRIDAY
	2257824	161140	Cash loans		13832.775	211500	246397.5		211500	FRIDAY
	2330894	258628	Cash loans		12165.21	148500	174361.5		148500	TUESDAY
	1397919	321676	Consumer loans		7654.86	53779.5	57564	0	53779.5	SUNDAY
	2273188	270658	Consumer loans		9644.22	26550	27252	0	26550	SATURDAY
	1232483	151612	Consumer loans		21307.455	126490.5	119853	12649.5	126490.5	TUESDAY
	2163253	154602	Consumer loans		4187.34	26955	27297	1350	26955	SATURDAY
	1285768	142748	Revolving loans		9000	180000	180000		180000	FRIDAY
	2393109	396305	Cash loans		10181.7	180000	180000		180000	THURSDAY
	1173070	199178	Cash loans		4666.5	45000	49455		45000	SATURDAY
	1506815		Cash loans		25454.025	450000	491580		450000	MONDAY
h h previous	annlication	nrevious ar	onli Final datacot	Ø1/				4 "		N

K_ID_PREV SK_	ID_CURR NAME_CONTRACT_TYPE	AMT_ANNUITY A	MT_APPLICATION	AMT_CREDIT A	MT_GOODS_PRICE WEEKDAY_APPR_PROCESS_STAR	T HOUR_AP NAME_CONTRACT_STATUS
2030495	271877 Consumer loans	1730.43	17145	17145	17145 SATURDAY	15 Approved
2802425	108129 Cash loans	25188.615	607500	679671	607500 THURSDAY	11 Approved
2523466	122040 Cash loans	15060.735	112500	136444.5	112500 TUESDAY	11 Approved
2819243	176158 Cash loans	47041.335	450000	470790	450000 MONDAY	7 Approved
1784265	202054 Cash loans	31924.395	337500	404055	337500 THURSDAY	9 Refused
1383531	199383 Cash loans	23703.93	315000	340573.5	315000 SATURDAY	8 Approved
1715995	447712 Cash loans	11368.62	270000	335754	270000 FRIDAY	7 Approved
2257824	161140 Cash loans	13832.775	211500	246397.5	211500 FRIDAY	10 Approved
2330894	258628 Cash loans	12165.21	148500	174361.5	148500 TUESDAY	15 Approved
1397919	321676 Consumer loans	7654.86	53779.5	57564	53779.5 SUNDAY	15 Approved
2273188	270658 Consumer loans	9644.22	26550	27252	26550 SATURDAY	10 Approved
1232483	151612 Consumer loans	21307.455	126490.5	119853	126490.5 TUESDAY	7 Approved
2163253	154602 Consumer loans	4187.34	26955	27297	26955 SATURDAY	12 Approved
1285768	142748 Revolving loans	9000	180000	180000	180000 FRIDAY	13 Approved
2393109	396305 Cash loans	10181.7	180000	180000	180000 THURSDAY	14 Approved
1173070	199178 Cash loans	4666.5	45000	49455	45000 SATURDAY	16 Refused
1506815	166490 Cash loans	25454.025	450000	491580	450000 MONDAY	6 Refused
1182516	267782 Cash loans	20361.6	405000	451777.5	405000 SATURDAY	4 Approved
1172937	302212 Cash loans	39475.305	1129500	1277104.5	1129500 THURSDAY	5 Refused
1543131	275707 Cash loans	22619.52	229500	241920	229500 THURSDAY	8 Approved
2536650	338725 Cash loans	16708.32	369000	369000	369000 WEDNESDAY	13 Approved
1676258	433469 Cash loans	22242.825	247500	268083	247500 THURSDAY	14 Approved
2075578	418383 Consumer loans	7656.705	74610	65610	74610 MONDAY	14 Approved

From the above 2 pictures, I had shown that counting the number of null rows with the percentage of every other columns and resulted to be 39256 entries and 17 header rows. Also I have attached a excel file which was added as a previous_application and Previous appli final dataset (link):

https://docs.google.com/spreadsheets/d/1gNqPVbP9FZ OTC3OjzlB18tFZelwVA1/edit?usp=drive_link

2. Identify Outliers in the Dataset: Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset. Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Outliers are values within a dataset that vary greatly from the others—they're either much larger, or significantly smaller.
 Outliers may indicate variabilities in a measurement, experimental errors, or a novelty.

Also then, I have found in this application dataset there are much more outliers which are calculated as the quartile ranges that is Q1, Q3, inner Quartile range, upper limit, lower limit using excel quartile functions itself.

Through then AMT_INCOME_TOTAL, CNT_CHILDREN,

DAYS_EMPLOYED(yrs) has some number of outliers.

I have used Tableau for finding out the outliers box plot which are visually represented in the above 3 images .

https://public.tableau.com/app/profile/sowmiya.r1850/viz/banklo an_16905603122070/AMT_INCOME_TOTAL?publish=yes

From above link I have attached is that Tableau Public which I used to make a box plots data driven insights.

Quartile 1 87750

Quartile 3 248273

Inter Quartile Range 160523

Upper Limit 489057

Lower Limit 328534

This is the findings of outliers quartile ranges for amt_income_total which are shown above.

I have attached a excel file which is included, the calculations of statistics that is mean, median, mode and so on.

https://docs.google.com/spreadsheets/d/15E-puu5RNJL3Xcsi1iz3NF9XLfPaMH68/edit?usp=drive_link

ii) Also the Previous_application.csv dataset, I have found the outliers for some of the columns those are:

AMT_ANNUITY AMT_APPLICATION AMT_CREDIT AMT_GOODS_PRICE CNT_PAYMENT SK_ID_CURR

With this column names, I have found out the outliers with the techstack of Tableau Public.

From the above dashboard is then ouliers of amt_credit, amt_goods_price, amt_application, cnt_payment, sk_id_curr, amt_annuity and inferred that number of outliers with the relation between the previous application.

Here I have attached my excel link:

https://docs.google.com/spreadsheets/d/1gNqPVbP9FZ_OTC3OjzlB18tFZelwVAl/edit?usp=drive_link Tableau Public Link: PRE APPLICATION | Tableau Public

3. **Analyze Data Imbalance:** Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

In this data imbalance tasks, I have inferred that accuracy of data in the representation of visual charts as counting off the applicants which are grouped as ${\bf 0}$ and ${\bf 1}$.

Target	count
0	45973
1	4026
Grand Total	49999

The above table says that the total number of applicants as Target (0 and 1) in the count which is total of 49999.

From the above chart represents the data imbalancement of target as 0 and 1 (applicants) and the count of those referred to the repayment of loan status.

Here I have attached a excel link:

https://docs.google.com/spreadsheets/d/1mPqQiRTEdbybe5B11J T04IYUpEMBBTdx/edit?usp=drive_link

4. Perform Univariate, Segmented Univariate, and Bivariate

Analysis: To gain insights into the driving factors of loan default, it is important to conduct various analyses on consumer and loan attributes.

Task: Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the target variable using Excel functions and features.

In this univariate and bivariate analysis, I had found out the class intervals of income bins and credit bins.

Income	Income Bins
0	0-25K
25,001	25K-50K
50,001	50K-75K
75,001	75K-100K
1,00,001	100K-125K
1,25,001	125K-150K
1,50,001	150K-175K
1,75,001	175K-200K
2,00,001	200K-225K

2,25,001	225K-250K
2,50,001	250K-275K
2,75,001	275K-300K
3,00,001	300K-325K
3,25,001	325K-350K
3,50,001	350K-375K
3,75,001	375K-400K
4,00,001	400K-425K
4,25,001	425K-450K
4,50,001	450K-475K
4,75,001	475K-500K
5,00,001	5 Lacs and above

Credit	Credit Bins
0	0 - 1.5 Lacs
1,50,001	1.5 Lacs - 2 Lacs
2,00,001	2 Lacs - 2.5 Lacs
2,50,001	2.5 Lacs - 3 Lacs
3,00,001	3 Lacs - 3.5 Lacs
3,50,001	3.5 Lacs - 4 Lacs
4,00,001	4 Lacs - 4.5 Lacs
4,50,001	4.5 Lacs - 5 Lacs
5,00,001	5 Lacs - 5.5 Lacs
5,50,001	5.5 Lacs - 6 Lacs
6,00,001	6 Lacs - 6.5 Lacs
6,50,001	6.5 Lacs - 7 Lacs
7,00,001	7 Lacs - 7.5 Lacs
7,50,001	7.5 Lacs - 8 Lacs
8,00,001	8 Lacs - 8.5 Lacs
8,50,001	8.5 Lacs - 9 Lacs
9,00,001	9 Lacs and above

These are the class intervals which are to found in the univariate, segmented univariate, bivariate analysis.

i) So for the analysis of **segmented univariate**, I have taken target as applicants, income_bins and amt_income_total then I converted this table as pivot table and then filtered through the class intervals of segmented univariate analysis and calculated with respect to the applicants who were getting the salary of above mentioned class intervals, through this I have analyzed a salary whoever can pay the loan or repay.

SEGMENTED UNIVARIATE

ii) So for the analysis of **univariate**, I have taken Applicants,
Amt_credit, Credit_bin in this. Next I grouped this as tables
in the excel and performed a pivot table calculation for
filtering the tables and then through the class intervals of
credit bins and calculated with respect to the applicants who
has the highest score of credit bins. So with this I have
accomplished a univariate analysis.

CREDIT_BINS	APPLICANTS
0 - 1.5 Lacs	2964
1.5 Lacs - 2 Lacs	2936
2 Lacs - 2.5 Lacs	3822
2.5 Lacs - 3 Lacs	5027
3 Lacs - 3.5 Lacs	2634
3.5 Lacs - 4 Lacs	1622
4 Lacs - 4.5 Lacs	2960
4.5 Lacs - 5 Lacs	2268
5 Lacs - 5.5 Lacs	3708
5.5 Lacs - 6 Lacs	1846
6 Lacs - 6.5 Lacs	1464
6.5 Lacs - 7 Lacs	2445
7 Lacs - 7.5 Lacs	1066
7.5 Lacs - 8 Lacs	1996
8 Lacs - 8.5 Lacs	1911
8.5 Lacs - 9 Lacs	11330
(blank)	
Grand Total	49999

UNIVARIATE ANALYSIS

From the above chart, I analyzed that the credit bins is the score of applicants pay the loan or not.

iii) For the **Bivariate analysis**, I have found with both the intervals of credit bins and amt_income. Then I have created a table and the pivoted in the excel for filtering those class intervals of credit bins with respect to the average of amount credits. So with this I have inferred with a column chart and pivot table filtering for the bivariate analysis.

INCOME_BIN	Average of AMT_CREDIT
100K-125K	496518.7668
125K-150K	548318.112
150K-175K	629686.4004
175K-200K	654776.5956
200K-225K	704078.6153
225K-250K	834911.416
250K-275K	772695.1337
25K-50K	383814.5844
275K-300K	768453.375
300K-325K	876861.8617
325K-350K	836116.3929
350K-375K	817785.4932
375K-400K	858555.45
400K-425K	886368.5526
425K-450K	868797.4355
450K-475K	1327648.5
475K-500K	882098.1486
50K-75K	408129.1212
75K-100K	469470.5171
(blank)	
Grand Total	603931.5578

BIVARIATE ANALYSIS

From the above insights, I have inferred as the income bins with respect to the average of amt_credits and also I have attached a excel files that included everything.

Excel file: https://docs.google.com/spreadsheets/d/1YQXLFoFK-jtF4oVWNMxCQ-RK49-6bTT1/edit?usp=drive_link

5. Identify Top Correlations for Different Scenarios:

Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default. Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other

cases) and identify the top correlations for each segmented data using Excel functions.

For this task, I have been finding out the correlation between different scenarios that the client is facing any issue or difficulties with all other cases. So then I will be finding out different scenarios of each and every other to correlations in the excel functions.

i) So I have taken up of **target 0** as one correlation. Then I included these columns alone from the final dataset and performed correlation between them.

TARGET, CNT_CHILDREN, AMT_INCOME_TOTAL, AMT_CREDIT,

REGION_POPULATION_RELATIVE, DAYS_BIRTH(yrs), DAYS_EMPLOYED(YRS),

DAYS_ID_PUBLISH(YRS), REGION_RATING_CLIENT

	CORRELATION FOR APPLICANTS WITH PAYMENT MADE ON TIME								
CNT_CHILDREN	1	0.047	0.011	-0.026	-0.322	-0.250	0.044	0.011	
AMT_INCOME_TOTAL	0.047	1	0.406	0.175	-0.073	-0.183	-0.033	-0.231	
AMT_CREDIT	0.011	0.406	1	0.070	0.052	-0.083	0.019	-0.103	
REGION_POPULATION_RELATIVE	-0.026	0.175	-0.026	1	0.033	-7E-03	-0.001	-0.534	
DAYS_BIRTH(YEARS)	-0.322	-0.073	0.052	0.033	1	0.633	0.262	0.003	
DAYS_EMPLOYED(YEARS)	-0.250	-0.183	-0.083	7E-05	0.633	1	0.259	0.043	
DAYS_ID_PUBLISH(YEARS)	0.044	-0.033	0.019	-0.001	0.262	0.259	1	0.015	
REGION_RATING_CLIENT	0.011	-0.231	-0.103	-0.534	0.003	0.043	0.015	1	
	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	REGION_POPULATION_RELATIVE	DAYS_BIRTH(YEARS)	DAYS_EMPLOYED(YEARS)	DAYS_ID_PUBLISH(YEARS)	REGION_RATING_CLIENT	

So from the above selected columns I have correlated and inferred to create a heat map for this **Target 0.** In the above heat map itself says the answer that is the correlation of each and every different scenarios.

ii) For the **Target 1** correlation, the same as above the calculations as including the columns of particular needed headed rows and performing calculation of correlation of different scenarios.

TARGET, CNT_CHILDREN, AMT_INCOME_TOTAL, AMT_CREDIT,

REGION_POPULATION_RELATIVE, DAYS_BIRTH(yrs), DAYS_EMPLOYED(YRS),

DAYS_ID_PUBLISH(YRS), REGION_RATING_CLIENT

With this columns I have inferred a **correlation of target 1**in the kind of heat maps.

CORRELATION FOR APPLICANTS WITH PAYMENT DIFFICULTIES										
CNT_CHILDREN	1	-0.068	0.053	-0.009	-0.235	-0.162	0.100	-0.025		
AMT_INCOME_TOTAL	-0.068	1	0.379	0.144	0.039	-0.108	-0.019	-0.144		
AMT_CREDIT	0.053	0.379	1	0.061	0.165	-0.043	0.095	-0.015		
REGION_POPULATION_RELATIVE	-0.009	0.144	0.061	1	-0.052	-0.114	0.022	-0.498		
DAYS_BIRTH(Years)	-0.235	0.039	0.165	-0.052	1	0.545	0.288	0.100		
DAYS_EMPLOYED (Years)	-0.162	-0.108	-0.043	-0.114	0.545	1	0.224	0.090		
DAYS_ID_PUBLISH(Years)	0.100	-0.019	0.095	0.022	0.288	0.224	1	0.019		
REGION_RATING_CLIENT	-0.025	-0.144	-0.015	-0.498	0.100	0.090	0.019	1		
	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	REGION_POPULATION_RELATIVE	DAYS_BIRTH(Years)	DAYS_EMPLOYED (Years)	DAYS_ID_PUBLISH(Years)	REGION_RATING_CLIENT		

From the above heat map, I have analyzed that the correlation between the different scenarios of **correlation for target 1** and above map itself calculated for this tasks for correlation of each and every other loan scenarios.

Excel link:

https://docs.google.com/spreadsheets/d/10_SMG1RDWcuLIeCy2 KHP3WP3KVy5xKXz/edit?usp=drive_link

RESULTS

➤ In this project, I have inferred that the given datasets of application_data and previous_data is been used for the whole tasks using the excel functions to create a charts, tables, pivot tables and so on.

- ➤ I have applied EDA analysis technique and understand the excel functions of calculating percentage of null rows in the real business scenarios.
- ➤ I learned risk analysis in this case study by making visual insights in banking and financial services, Then this project is for me challenging for the whole analyzed datasets by implementation of correlations, data imbalance, outliers factors in this.

DRIVE LINK

https://drive.google.com/drive/folders/1BPXUmps2cb8 Q4bD1HmBHuwsYSGuSYyl5?usp=drive_link