DSC 40B - Discussion 09

Problem 1.

Compute the minimum spanning tree for the following graph using Kruskal's algorithm. (Also compute the MST using Prim's algorithm and compare the results.)

Problem 2.

Suppose we are given both an undirected graph G with weighted edges and a minimum spanning tree T of G.

a) Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge e in T is decreased.

Solution: The minimum spanning tree of the updated graph would be T.

b) Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge e not in T is increased.

Solution: The minimum spanning tree of the updated graph would be T.

c) Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge e in T is increased.

Solution: Let e = (u, v) be the edge whose weight is increased. Remove the edge e from the minimum spanning tree T. This divides the tree T into two connected components. Let T_u be the component which contains u and T_v be the component which contains v. We can identify T_u and T_v by running a BFS or DFS with u and v as the sources. This takes time $\Theta(V + E)$. While running BFS we can also label each node as 0 if it is a part of T_u and 1 if it is a part of T_v . We can now examine each edge e in the graph and find the minimum weight edge which connects a node labelled 0 to a node labelled 1. This takes time $\Theta(E)$. We can then add this edge to T to get the minimum spanning tree of the updated graph. The total time complexity is $\Theta(V + E)$.

d) Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge e not in T is decreased.

Solution: Let e = (u, v) be the edge whose weight is decreased. Add the edge e to the minimum spanning tree T. This would result in a cycle in T. We can identify the nodes and the edges on the cycle by running BFS or DFS, with minimal modifications, with u or v as the source. This takes time $\Theta(V + E)$. Find the maximum weight edge on the cycle and remove it from T. This takes time $\Theta(E)$. The resultant tree would be a minimum spanning tree for the updated graph. The total time complexity is $\Theta(V + E)$.