PCT/DE 99 / 03259

BUNDE EPUBLIK DEUT CHLAND

10/019 198,

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
SUBMITTED WITH RULE 17.1(a) OR (b)

ŧ

0C 99 | 3 Z) C | 0 5 JAN 2000 | WIPO PCT

Bescheinigung

Die Akzenta Paneele + Profile GmbH in Kaisersesch/Deutschland hat eine Gebrauchsmusteranmeldung unter der Bezeichnung

"Paneel sowie Befestigungssystem für Paneele"

am 2. Juli 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig das Symbol E 04 F 13/08 der Internationalen Patentklassifikation erhalten.

München, den 15. Dezember 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

eichen: <u>299 11 462.7</u>

HolB

LIPPERT, STACHOW, SCHMIDT & PARTNER

Patentanwälte European Patent Attorneys European Trademark Attorneys
P.O. Box 30 02 08, D-51412 Bergisch Gladbach

Telefon +49 (0) 22 04. 92 33-0 Telefax +49 (0) 22 04.6 26 06 L-fl

30. Juni 1999

5

15

20

Akzenta Paneele + Profile GmbH 56759 Kaisersesch

10 Paneel sowie Befestigungssystem für Paneele

Die Erfindung betrifft ein Paneel sowie ein Befestigungssystem für Paneele, insbesondere für Fußbodenpaneele, die auf einem Untergrund zu verlegen und deren Schmalseiten mit Halteprofilen versehen sind, wobei das Halteprofil einer langen Schmalseite und das Halteprofil der gegenüberliegenden Schmalseite sowie die Halteprofile der beiden übrigen kurzen Schmalseiten eines Paneels derart zueinanderpassen, daß an den freien Schmalseiten eines verlegten Paneels weitere Paneele befestigbar sind, wobei zumindest die Halteprofile der langen Schmalseiten der Paneele als einander zugeordnete Formschlußprofile ausgebildet und die Paneele durch eine drehende Fügebewegung aneinander befestigbar sind, daß das Formschlußprofil einer der langen Schmalseiten eines Paneels eine Aussparung und die gegenüberliegende Schmalseite dieses Paneels einen dazu passenden Vorsprung aufweist, daß die dem Untergrund zugewandte Wand der Aussparung innenseitig einen Querschnitt mit einer konkaven Wölbung aufweist und, daß das zugeordnete Formschlußprofil der gegenüberliegenden Schmalseite des Paneels einen Vorsprung aufweist, der an seiner dem Untergrund zugewandten Unterseite einen Querschitt mit einer konvexen Wölbung aufweist, und daß die konvexe Wölbung des Vorsprungs und die konkave Wölbung der Aussparung im wesentlichen komplementär ausgebildet sind.

35

30

Befestigungssysteme der genannten Art halten Paneele im fertig verlegten Zustand durch eine formschlüssige Verbindung zusammen. Insbesondere bei schwimmend auf einem Untergrund verlegten Fußbodenpaneelen verhindert eine formschlüssige Verbindung zwischen den Paneelen das Entstehen von Fugen, die beispielsweise durch Wärmeausdehnung bzw. Verkürzung bei Temperaturabfall entstehen können.

5

10

Aus dem deutschen Gebrauchsmuster G 79 28 703 U1 ist ein gattungsgemäßes Befestigungssystem bekannt. Fußbodenpaneele mit einem derartigen Formschlußprofil lassen sich sehr leicht durch eine drehende Fügebewegung miteinander verbinden. Die Verbindung eignet sich prinzipiell auch für eine Mehrfachverlegung. Die entstehende formschlüssige Verbindung ist sehr steif und verhindert dadurch die Entstehung von Fugen sehr zuverlässig.

20

Nachteiligerweise eignet sich das bekannte Befestigungssystem nur für besonders ebene Untergründe. Bei unregelmäßigen, rauhen und gewellten Untergründen schmiegt sich ein Paneelfußboden mit dem bekannten Befestigungssystem nur sehr schlecht an die Form des unregelmäßigen Untergrunds an. Wird beispielsweise ein Paneel, das im verlegten Zustand durch die benachbarten Paneele mit etwas Luft über einem gewellten Untergrund gehalten ist bei Belastung auf den Untergrund gedrückt, so biegen sich aneinander befestigte Fußbodenpaneele durch. Diese Durchbiegung beansprucht insbesondere die Verbindungsstellen mit den ineinandergreifenden Formschlußprofilen. Je nach Belastung werden die miteinander verbundenen Paneele nach unten oder oben durchgeknickt und dabei aus der normalen Verlegeebene herausgedrückt. Wegen der hohen Steifigkeit der Verbindung tritt eine hohe Belastung in den schwachen Querschnitten der Formschlußprofile auf, die dadurch sehr schnell ermüden. Die Schädigung schreitet schnell voran bis ein Vorsprung oder eine Aussparungswand bricht.

35

30

Auch bei einem ebenen Untergrund können Paneele eine wechselnde Durchbiegung erleiden dann nämlich, wenn auf dem Untergrund
eine weiche Zwischenlage, beispielsweise eine trittschalldämmende Folie oder dergleichen verlegt ist. An einer Belasteten Stelle wird die Zwischenlage eingedrückt und die Paneele

knicken bevorzugt an ihren Verbindugsstellen durch.

Der Erfindung liegt daher die Aufgabe zugrunde, das bekannte Befestigungssystem so weiterzubilden, daß die Steifigkeit der Verbindung zweier ineinandergefügter Formschlußprofile an die Beanspruchung angepaßt ist, die die Verbindungen bei Verlegung der Paneele auf einem unregelmäßigem Untergrund zu ertragen haben.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die Formschlußprofile der langen Schmalseiten zweier Paneele im verlegten Zustand zweier Paneele ein gemeinsames Gelenk bilden, daß die dem Untergrund abgewandte Oberseite des Vorsprungs eines Paneels eine schräge Materialabtragung aufweist, die sich bis zum freien Ende des Vorsprungs erstreckt, daß die Dicke des Vorsprungs durch die Materialabtragung zum freien Ende hin zunehmend verringert ist, und daß durch die Materialabtragung ein Bewegungsfreiraum für das gemeinsame Gelenk geschaffen ist.

Die neue Konstruktion gestattet eine gelenkige Bewegung zweier miteinander verbundener Paneele. Insbesondere können zwei miteinander verbundene Paneele an der Verbindungsstelle nach oben durchgeknickt werden. Liegt beispielsweise ein Paneel auf einem Untergrund mit einer Erhebung, so daß eine Schmalseite des Paneels bei Belastung auf den Untergrund gedrückt wird und sich die gegenüberliegende Schmalseite aufwärts wippt, so wird ein an der aufwärts wippenden Schmalseite befestigtes zweites Paneel mit nach oben bewegt. Die dabei wikenden Biegekräfte schädigen die schmalen Querschnitte der Formschlußprofile jedoch nicht. Statt dessen findet eine Gelenkbewegung statt. Ein mit dem vorgeschlagenen Befestigungsystem verlegter Fußboden weist eine an unregelmäßige rauhe oder gewellte Untergründe angepaßte Nachgiebigkeit auf. Das Befestigungsystem eignet sich daher besonders gut für Paneele zur Renovierung unregelmäßiger Fußböden in Altbauten. Selbstverständlich ist es auch für eine Verlegung von Paneelen auf einer weichen Zwischenlage besser geeignet als das bekannte Befestigungs-

20

30

35

5

10

5

10

15

20

30

35

Die Konstruktion trägt dem Prinzip der "angepaßten Verformbarkeit" Rechnung. Dieses Prinzip beruht auf der Erkenntnis, daß
sehr steife und dadurch vermeintlich stabile Verbindungsstellen hohe Kerbspannungen verursachen und dadurch leicht versagen. Um dies zu vermeiden, sollen Bauteile so gestaltet sein,
daß sie eine auf den Einsatzzweck abgestimmte Nachgiebigkeit
oder "angepaßte Verformbarkeit" aufweisen und auf diese Weise
Kerbspannungen vermindert werden.

Darüber hinaus sind die Formschlußprofile so ausgelegt, daß eine Belastung der Oberseite der Fußbodenpaneele im verlegten Zustand von der oberseitigen Wand der Aussparung eines ersten Paneels in den Vorsprung des zweiten Paneels und von dem Vorsprung des zweiten Paneels in die unterseitige Wand des ersten Paneels übertragen wird. Die Wände der Aussparung des ersten Paneels haben in verlegtem Zustand Kontakt mit der Ober- und Unterseite des Vorsprungs des zweiten Paneels. Die obere Wand der Aussparung hat jedoch nur in einem kurzen Bereich an dem freien Ende der oberen Wand der Aussparung Kontakt mit dem Vorsprung des zweiten Paneels. Auf diese Weise gestattet die Konstruktion unter geringer elastischer Verformung der Wände der Aussparung eine Gelenkbewegung zwischen dem Paneel mit der Aussparung und dem Paneel mit dem Vorsprung. Auf diese Weise ist die Steifigkeit der Verbindung bestens angepaßt an eine unregelmäßige Unterlage, welche zwangsläufig zu einer Knickbewegung zwischen aneinander befestigten Paneelen führt.

Ein weiterer Vorteil wird darin gesehen, daß sich Paneele mit dem erfindungsgemäßen Befestigungssystem besser für eine mehrfache Verlegung eignen als Paneele mit dem bekannten Befestigungssystem, weil die Paneele mit dem erfindungsgemäßen Befestigungssystem auch nach langem Gebrauch auf einem unregelmäßigen Untergrund keine Vorschädigung der Formschlußprofile aufweisen. Die Formschlußprofile sind formstabil und haltbar. Sie können wesentlich länger benutzt und während ihres Lebenszyklus häufiger wiederverlegt werden.

Vorteilhaft bilden die konvexe Wölbung des Vorsprungs und die konkave Wölbung der Aussparung im wesentlichen je einen Kreisabschnitt, wobei im verlegten Zustand der Kreismittelpunkt der Kreisabschnitte auf der Oberseite des Vorsprungs oder unterhalb der Oberseite des Vorsprungs angeordnet ist. Im letzteren Fall liegt der Kreismittelpunkt innerhalb des Querschnitts des Vorsprungs.

5

10

15

20

30

35

Durch diese einfache Konstruktion ergibt sich ein Gelenk, dessen konvexe Wölbung des Vorsprungs ähnlich einer Gelenkkugel und die konkave Wölbung der Aussparung ähnlich einer Gelenkpfanne ausgebildet sind, wobei im Unterschied zu einem Pfannengelenk selbstverständlich nur eine ebene Drehbewegung aber keine sphärische Drehbewegung möglich ist.

In einer günstigen Weiterbildung ist der weitest hervorstehende Punkt der konvexen Wölbung des Vorsprungs eines Paneels so angeordnet, daß er sich etwa unterhalb der Oberkante des Paneels befindet. Dadurch ergibt sich ein im Verhältnis zur Gesamtdicke des Paneels relativ starker Querschnitt für den Vorsprung. Außerdem bietet die konkave Wölbung der Aussparung eine ausreichend große Hinterschneidung für die konvexe Wölbung des Vorsprungs, so daß diese durch in der Verlegeebene wirkende Zugkräfte kaum auseinander zu bewegen sind.

Die Gelenkeigenschaften zweier miteinander verbundener Paneele können weiter verbessert werden, wenn die dem Untergrund zugewandte Wand der Aussparung eines Paneels auf ihrer Innenseite eine schräge Materialabtragung aufweist, die sich bis zum freien Ende der Wand erstreckt und die Wandstärke dieser Wand zum freien Ende zunehmend dünner ist. Dabei ist durch die Materialabtragung im verlegten Zustand zweier Paneele ein Bewegungsfreiraum für das gemeinsame Gelenk geschaffen. Mit dieser Verbesserung wird der Anteil an elastischer Verformung der Wände der Aussparung während der Durchbiegung der verlegten Paneele nach oben weiter verringert.

Zweckmäßig ist es auch, wenn die Aussparung eines Paneels zur

Verbindung mit dem Vorsprung eines weiteren Paneels durch eine federelastische Verformung ihrer unteren Wand aufweitbar ist und, daß die während des Fügens auftretende federelastische Verformung der unteren Wand im fertig verbundenen Zustand zweier Paneele wieder zurückgenommen ist. Die Formschlußprofile werden dadurch nur für den Fügevorgang und während einer Gelenkbewegung elastisch verformt und unterliegen, wenn sie nicht belastet sind, keiner elastischen Verspannung.

5

15

20

30

Nützlich ist es, wenn die Halteprofile der kurzen Schmalseiten eines Paneels ebenfalls als einander zugeordnete Formschluβprofile ausgebildet und durch eine geradlinige Fügebewegung aneinander befestigbar sind.

Einfacherweise sind die Halteprofile der kurzen Schmalseite eines Paneels mit herkömmlichen etwas rechteckigen Nut- und Federquerschnitten versehen. Diese sind sehr einfach und kostengünstig herstellbar und lassen sich nach dem Fügen der langen Schmalseiten eines Paneels besonders einfach durch seitliches Verschieben ineinander bringen. Auch lassen sich die langen Schmalseiten der Paneele auf ihrer ganzen Länge in paralleler Richtung ineinander schieben.

Eine andere Weiterbildung der kurzen Schmalseite eines Paneels sieht vor, daß die Querschnitte der Formschlußprofile im wesentliche den Querschnitten der Formschlußprofile der langen Schmalseiten des Paneels entsprechen. Die Fähigkeit, zwei Paneele auch an deren kurzen Schmalseiten gelenkig zu verbinden, kommt der Nachgiebigkeit eines Fußbodenbelags zugute.

Bevorzugt sind die Formschlußprofile einstückig an den Schmalseiten der Paneele angeformt. Die Paneele lassen sich sehr einfach und mit geringem Verschnitt herstellen.

Besonders geeignet sind die erfindungsgemäßen Formschlußprofile, wenn die Paneele im wesentlichen aus einem MDF (Medium Density Fiberboard), HDF (High Densitiy Fiberboard) oder einem Spanplattenmaterial bestehen. Diese Materialien sind einfach zu bearbeiten und erhalten, beispielsweise durch eine spanende Bearbeitung, eine ausreichende Oberflächenqualität. Außerdem weisen diese Materialien eine hohe Formstabilität der gefrästen Profile auf.

5

Ein weiterer Nutzen ergibt sich, wenn im verlegten Zustand der Paneele die Bewegungsfreiräume für die gemeinsamen Gelenke mit einem weichelastisch aushärtendem Füllstoff versehen sind. Dieser Füllstoff verschließt vorzugsweise alle Fugen und insbesondere die oberseitige Fuge derart, daß keine Feuchtigkeit und kein Schmutz eindringen kann. Bei einer Gelenkbewegung der miteinander verbundenen Paneele wird der weichelastische Füllstoff je nach Drehrichtung der Gelenkbewegung gequetscht oder gedehnt. Er haftet dabei stets an den Kontaktflächen der Schmalseiten der Paneele und nimmt beim Rückgang der Gelenkbewegung wieder seine Ausgangsform an. Der Füllstoff trägt durch seine elastische innere Verformung zur Rückstellung des Gelenks bei.

15

10

Nachstehend ist die Erfindung beispielhaft in einer Zeichnung dargestellt und anhand der Figuren 1 bis 6 detailliert beschrieben. Es zeigen:

- Fig. 1 ein Befestigungssystem ausschnittsweise anhand der Querschnitte zweier Paneele vor dem Ineinanderfügen,
- Fig. 2 das Befestigungssystem gemäß Fig. 1 im aneinander befestigten Zustand,
- 30 Fig. 3 einen Fügevorgang, bei dem der Vorsprung eines Paneels in Pfeilrichtung in die Aussparung eines zweiten Paneels gesteckt und das erste Paneel nachfolgend mit einer Drehbewegung arretiert wird,
- 35 Fig. 4 einen weiteren Fügevorgang, bei dem der Vorsprung eines ersten Paneels parallel zur Verlegeebene in die Aussparung eines zweiten Paneels eingeschoben wird,

- Fig. 5 das Befestigungssystem im befestigten Zustand gemäß Fig. 2, wobei das gemeinsame Gelenk aus der Verlegeebene nach oben bewegt ist und die beiden Paneele einen Knick bilden,
- Fig. 6 das Befestigungssystem im verlegten Zustand gemäß Fig.2, wobei das Gelenk aus der Verlegeebene nach unten bewegt ist und die beiden Paneele einen Knick bilden,
- 10 Fig. 7 ein Befestigungssystem im verlegten Zustand zweier Paneele mit einem Füllstoff zwischen den Formschlußprofilen der Schmalseiten.

- Nach der Zeichnung ist das Befestigungssystem 1 am Beispiel langgestreckter rechteckiger Paneele 2 und 3 erläutert, von denen in Fig. 1 ein Ausschnitt dargestellt ist. Das Befestigungssystem 1 weist an den Schmalseiten der Paneele angeordnete Halteprofile auf, die als komplementäre Formschlußprofile 4 und 5 ausgebildet sind. Die sich gegenüberliegenden Formschlußprofile eines Paneels sind jeweils komplementär ausgebildet. Auf diese Weise kann an jedes bereits verlegte Paneel 2 ein weiteres Paneel 3 angebracht werden.
 - Die Formschlußprofile 4 und 5 basieren auf dem Stand der Technik des deutschen Gebrauchsmusters G 79 28 703 Ul. Insbesondere auf den Formschlußprofilen des Ausführungsbeispiels, das in den Figuren 14, 15 und 16 sowie in dem zugehörigen Beschreibungsteil der G 79 28 703 Ul offenbart ist.
- Die erfindungsgemäßen Formschlußprofile sind derart weitergebildet, daß sie eine gelenkige und nachgiebige Verbindung von Paneelen ermöglichen.
- Eines der Formschlußprofile 4 der vorliegenden Erfindung ist 35 mit einem von der Schmalseite abstehenden Vorsprung 6 versehen. Die Unterseite des Vorsprungs 6, die im verlegten Zustand der Unterlage zugewandt ist, weist zum Zweck der gelenkigen Verbindung einen Querschnitt mit einer konvexen Wölbung 7 auf.

Die konvexe Wölbung 7 ist in dem komlementären Formschlußprofil 5 drehgelagert. In dem dargestellten Ausführungsbeispiel ist die konvexe Wölbung 7 kreisabschnittsförmig ausgebildet. Der unterhalb des Vorsprungs 6 angeordnete Teil 8 der Schmalseite des Paneels 3, der im verlegten Zustand der Unterlage zugewandt ist, steht von dem freien Ende des Vorsprungs 6 weiter zurück als der oberhalb des Vorsprungs 6 angeordnete Teil 9 der Schmalseite. In dem gezeigten Ausführungsbeispiel tritt der unterhalb des Vorsprungs 6 angeordnete Teil 8 der Schmalseite etwa doppelt so weit von dem freien Ende des Vorsprungs 6 zurück, wie der oberhalb des Vorsprungs 6 angeordnete Teil 9 der Schmalseite. Dies liegt darin begründet, daß der Kreisabschnitt der konvexen Wölbung 7 relativ breit ausgebildet ist. Dadurch ist der weitest hervorstehende Punkt der konvexen Wölbung 7 des Vorsprungs 6 so angeordnet, daß er sich etwa unterhalb der Oberkante 10 des Paneels 3 befindet.

5

10

15

20

30

Der oberhalb des Vorsprungs 6 angeordnete Teil 9 der Schmalseite seite tritt an der Oberseite des Paneels 3 von der Schmalseite hervor und bildet eine Fugenstoßfläche 9a. Zwischen dieser Fugenstoßfläche 9a und dem Vorsprung 6 des Paneels 3 ist der Teil 9 der Schmalseite zurückgesetzt. Dies gewährleistet, daß der Teil 9 der Schmalseite immer eine geschlossene oberseitige Fuge mit der komplementäten Schmalseite eines weiteren Paneels 2 bildet.

Die der konvexen Wölbung 7 des Vorsprungs 6 gegenüberliegende Oberseite des Vorsprungs 6 weist ein kurzes gerades Teilstück 11 auf, das im verlegten Zustand ebenfalls parallel zum Untergrund U angeordnet ist. Von diesem kurzen Teilstück 11 zum freien Ende hin weist die Oberseite des Vorsprungs 6 eine schräge Materialabtragung 12 auf, die sich bis zum freien Ende des Vorsprungs 6 erstreckt.

Das zu dem besprochenen Formschlußprofil 4 komplementäre Formschlußprofil 5 einer Schmalseite weist eine Aussparung 20 auf. Diese ist im wesentlichen von einer unteren im verlegten Zustand dem Untergrund U zugewandten Wand 21 und einer oberen

Wand 22 begrenzt. Auf der Innenseite der Aussparung 20 ist die untere Wand 21 mit einer konkaven Wölbung 23 versehen. Dieser kommt die Funktion einer Lagerschale zu. Die konkave Wölbung 23 ist ebenfalls kreisabschnittsförmig ausgebildet. Damit die relativ breite konkave Wölbung 23 an der unteren Wand 21 der Aussparung 20 Platz findet, steht die untere Wand 21 weiter von der Schmalseite des Paneels 2 hervor als die obere Wand 22. Die konkave Wölbung 23 bildet an dem freien Ende der unteren Wand 21 eine Hinterschneidung. Im fertig verlegten Zustand zweier Paneele 2 und 3 wird diese Hinterschneidung von dem Vorsprung 6 des zugeordneten Formschlußprofils 4 des benachbarten Paneels 3 hintergriffen. Das Maß an Hintergreifung, die Differenz also zwischen der dicksten Stelle des freien Endes der unteren Wand sowie der Dicke der unteren Wand an dem tiefsten Punkt der konkaven Wölbung 23 ist so abgestimmt, daß ein guter Kompromiß zwischen einer gelenkigen Nachgiebigkeit zweier Paneele 2 und 3 sowie einem guten Halt gegen ein Auseinanderziehen der Formschlußprofile 4 und 5 in der Verlegeebene qeqeben ist.

20

15

5

10

Das Befestigungssystem des Standes der Technik gemäß der Figuren 14, 15 und 16 des Gebrauchsmusters G 79 28 703 U1 weist demgegenüber ein erheblich größeres Maß an Hinterschneidung auf. Es ergeben sich dadurch außerordentlich steife Verbindungsstellen, die durch die Beanspruchung auf einem unregelmäßigen Untergrund U hohe Kerbspannungen verursachen.

30

35

Die Innenseite der oberen Wand 22 der Aussparung 20 des Paneels 2 ist nach dem Ausführungsbeispiel im verlegten Zustand parallel zu dem Untergrund U angeordnet.

Auf der dem Untergrund U zugewandten unteren Wand 21 der Aussparung 20 des Paneels 2 weist die Innenseite der Wand 21 eine schräge Materialabtragung 24 auf, die sich bis zum freien Ende der unteren Wand 21 erstreckt. Dadurch wird die Wandstärke dieser Wand zum freien Ende zunehmend dünner. Die Materialabtragung 24 schließt sich gemäß dem Ausführungsbeispiel an das eine Ende der konkaven Wölbung 23 an.

Der Vorsprung 6 des Paneels 3 und die Aussparung 20 des Paneels 2 bilden, wie in der Fig. 2 zu sehen, ein gemeinsames Gelenk G. Die oben besprochene Materialabtragung 12 an der Oberseite des Vorsprungs 6 des Paneels 3 sowie die Materialabtragung 24 der unteren Wand 21 der Aussparung 20 des Paneels 2 schaffen im verlegten Zustand der Paneele 2 und 3 Bewegungsfreiräume 13 beziehungsweise 25, die dem Gelenk G in einem kleinen Winkelbereich eine Drehung ermöglichen.

Im verlegten Zustand steht das kurze gerade Teilstück 11 der Oberseite des Vorsprungs 6 des Paneels 3 mit der Innenseite der oberen Wand 22 der Aussparung 20 des Paneels 2 in Kontakt. Außerdem liegt die konvexe Wölbung 7 des Vorsprungs 6 an der konkaven Wölbung 23 der unteren Wand 21 der Aussparung 20 des Paneels 2 an.

Die der Oberseite zugewandten seitlichen Fugenstoßflächen 9a und 26 zweier verbundener Paneele 2 und 3 liegen immer eindeutig aneinander an. In der Praxis ist eine gleichzeitige exakte Anlage der konvexen Wölbung 7 des Vorsprung 6 des Paneels 3 an der konkaven Wölbung 23 der Aussparung 20 des Paneels 2 nicht möglich. Fertigungstoleranzen würden dazu führen, daß entweder die Fugenstoßflächen 9a und 26 exakt aneinander anliegen oder Vorsprung 6/Aussparung 20 exakt aneinander anliegen. In der Praxis sind die Formschlußprofile daher so ausgelegt, daß die Fugenstoßflächen 9a und 26 immer exakt aneinander anliegen und Vorsprung 6/Aussparung 20 für eine exakte Anlage nicht genügend weit ineinander bewegt werden können. Da die Fertigungstoleranzen jedoch in der Größenordnung von hundertstel Millimeter liegen, schmiegen sich auch Vorsprung 6/Aussparung 20 nahezu exakt aneinander an.

Paneele 2 und 3 mit den beschriebenen komplementären Formschlußprofilen 4 und 5 lassen sich auf verschiedene Weisen aneinander befestigen. Nach Fig. 3 ist ein Paneel 2 mit einer Aussparung 20 bereits verlegt, während ein zweites Paneel 3 mit einem komplementären Vorsprung 6 in Pfeilrichtung P schräg stehend in die Aussparung 20 des ersten Paneels 2 eingesteckt

wird. Danach wird das zweite Paneel 3 um den gemeinsamen Kreismittelpunkt K der Kreisabschnitte der konvexen Wölbung 7 des Vorsprungs 6 und der konkaven Wölbung 23 der Aussparung 20 gedreht, bis das zweite Paneel 3 auf dem Untergrund U aufliegt.

5

10

15

20

30

35

Eine weitere Fügeart der besprochenen Paneele 2 und 3 ist in Fig. 4 dargestellt, wonach das erste Paneel 2 mit einer Aussparung 20 verlegt ist und ein zweites Paneel 3 mit einem Vorsprung 6 in der Verlegeebene und senkrecht zu den Formschlußprofilen 4 und 5 in Pfeilrichtung P verschoben wird, bis sich die Wände 21 und 22 der Aussparung 20 ein wenig elastisch aufweiten und die konvexe Wölbung 7 des Vorsprungs 6 die Hinterschneidung an dem vorderen Ende der konkaven Wölbung 23 der unteren Wand überwunden hat und die endgültige Verlegeposition erreicht ist.

Letztere Fügeart wird bevorzugt für die kurzen Schmalseiten eines Paneels verwendet, wenn diese mit den gleichen komplementären Formschlußprofilen 4 und 5 versehen sind, wie die langen Schmalseiten der Paneele.

In Fig. 5 ist das Befestigungssystem 1 im Einsatz dargestellt. Die Paneele 2 und 3 liegen auf einem unregelmäßigen Untergrund U. Das erste Paneel 2 mit dem Formschlußprofil 5 ist auf seiner Oberseite belastet worden. Dadurch ist die Schmalseite des Paneels 2 mit dem Formschlußprofil 5 angehoben worden. Das mit dem Formschlußprofil 5 verbundene Formschlußprofil 4 des Paneels 3 ist mit angehoben worden. Durch das Gelenk G ergibt sich ein Knick zwischen den beiden Paneelen 2 und 3. Die Bewegungsfreiräume 13 und 25 schaffen Platz für die Drehbewegung des Gelenks. Das aus beiden Paneelen 2 und 3 gebildete Gelenk G ist ein Stück weit aus der Verlegeebene nach oben bewegt worden. Der Bewegungsfreiraum 13 ist für die Drehung komplett ausgenutzt worden, so daß die Oberseite des Vorsprungs 6 des Paneels 3 im Bereich der Materialabtragung 12 an der Innenseite der Wand 22 des Paneels 2 anliegt. Die Verbindungsstelle ist in sich nachgiebig und zwingt den beteiligten Formschluβprofilen 4 und 4 keine unnötige und materialermüdende Biegebelastung auf.

Die bei Formschlußprofilen nach dem Stand der Technik früh eintretende Schädigung durch Bruch des Vorsprungs oder der wände der Formschlußprofile wird somit vermieden.

Ein weiterer Vorteil ergibt sich bei einer Gelenkbewegung gemäß der Fig. 5. Dieser ist darin zu sehen, daß die beiden Paneele nach Entlastung durch ihr Eigengewicht wieder in ihre Verlegeebene zurückfallen. Eine geringe elastische Verformung der Wände der Aussparung liegt auch in diesem Fall vor. Diese elastische Verformung unterstützt das Zurückfallen der Paneele in die Verlegeebene. Es kommt lediglich zu einer sehr geringen elastische Verformung, weil der Drehpunkt des Gelenks, der durch die kreisabschnittsförmigen Wölbungen 7 und 23 festgelegt ist, sich innerhalb des Querschnitts des Vorsprungs 6 des Paneels 3 befindet.

In Fig. 6 ist eine Gelenkbewegung zweier verlegter Paneele 2 und 3 in entgegengesetzter Drehrichtung dargestellt. Die auf einem unregelmäßigen Untergrund U verlegten Paneele 2 und 3 sind nach unten durchgeknickt. Die Konstruktion ist so ausgelegt, daß bei einem Durchknicken der Verbindungsstelle aus der Verlegeebene zum Untergrund U hin eine deutlich stärkere elastische Verformung der unteren Wand 21 der Aussparung 20 auftritt als bei der Durchknickung aus der Verlegeebene nach oben. Der Sinn dieser Maßnahme ist darin zu sehen, daß die nach unten durchgeknickten Paneele 2 und 3 nach Entlastung nicht durch ihr Eigengewicht wieder in die Verlegeebene zurückkehren können. Die stärkere elastische Verformung der unteren Wand 21 der Aussparung 20 erzeugt jedoch eine Spannkraft, die die Paneele 2 und 3 nach Entlastung sofort wieder federelastisch in die Verlegeebene zurück bewegt.

Die beschriebenen Formschlußprofile 4 und 5 sind vorliegend einstückig an den Schmalseiten der Paneele 2 und 3 angeformt. Dies geschieht vorzugsweise durch einen sogenannten Formatier-

15

20

5

10

25

35

vorgang, bei dem in einem Durchlauf die Formschlußprofile 4 und 5 mit mehreren hintereinandergeschalteten Fräswerkzeugen die Form der Schmalseiten der Paneele 2 und 3 fräsen. Die Paneele 2 und 3 des beschriebenen Ausführungsbeispiels bestehen im wesentlichen aus einer MDF-Platte mit einer Dicke von 8 mm. Die MDF-Platte ist an Ihrer Oberseite verschleißfest und dekorativ beschichtet. An Ihrer Unterseite ist eine sogenannte Gegenzugschicht angebracht, die die von der oberseitigen Beschichtung verursachten Eigenspannungen kompensiert.

LIPPERT, STACHOW, SCHMIDT & PARTNER
Patentanwille - European Patent Attorneys - European Trademark Attorneys

P.O. Box 30 02 08, D-51412 Bergisch Gladbach

Telefon +49 (0) 22 04. 92 33-0 +49 (0) 22 04.6 26 06 Telefax

30. Juni 1999

5

10

Akzenta Paneele + Profile GmbH 56759 Kaisersesch

Paneel sowie Befestigungssystem für Paneele

Bezugszeichenliste

	1	Befestigungssystem
15	2	Paneel
	3	Paneel
	4	Formschlußprofil
	5	Formschlußprofil
	6	Vorsprung
20.	7	konvexe Wölbung
	8	Teil der Schmalseite
	9	Teil der Schmalseite
	9a	Fugenstoßfläche
	10	Oberkante
25	11	Teilstück
	12	Materialabtragung
	13	Bewegungsfreiraum
	20	Aussparung
	21	untere Wand
30	22	obere Wand
	23	konkave Wölbung
	24	Materialabtragung
	25	Bewegungsfreiraum
	26	Fugenstoßfläche
35	30	Füllstoff
33	31	oberseitige Fuge
	ЭI	operserride tade

G Gelenk

K Kreismittelpunkt

P Pfeil

U Unterlage

LIPPERT, STACHOW, SCHMIDT & PARTNER

Patentanwälte · European Patent Attorneys · European Trademark Attorneys P.O. Box 30 02 08, D-51412 Bergisch Gladbach

Telefon +49 (0) 22 04. 92 33-0 Telefax +49 (0) 22 04.626 06 L-fl

30. Juni 1999

5

Akzenta Paneele + Profile GmbH 56759 Kaisersesch

Paneel sowie Befestigungssystem für Paneele

10

Ansprüche

Befestigungssystem (1) für Paneele (2, 3), insbesondere 1. für Fuβbodenpaneele, die auf einem Untergrund (U) verlegen und deren Schmalseiten mit Halteprofilen verse-15 hen sind, wobei das Halteprofil einer langen Schmalseite und das Halteprofil der gegenüberliegenden Schmalseite sowie die Halteprofile der beiden übrigen kurzen Schmalseiten eines Paneels (2, 3) derart zueinanderpassen, daß an den freien Schmalseiten eines verlegten Paneels (2) 20 weitere Paneele (3) befestigbar sind, wobei zumindest die Halteprofile der langen Schmalseiten der Paneele (2, 3) als einander zugeordnete Formschlußprofile (4, 5) ausgebildet und die Paneele (2, 3) durch eine drehende Fügebewegung aneinander befestigbar sind, daß das Formschlußprofil (5) einer der langen Schmalseiten eines Paneels (2) eine Aussparung (20) und die gegenüberliegende Schmalseite dieses Paneels (2) einen dazu passenden Vorsprung aufweist, daβ die dem Untergrund (U) zugewandte 30 Wand (21) der Aussparung (20) innenseitig einen Querschnitt mit einer konkaven Wölbung (23) aufweist und, daß das zugeordnete Formschlußprofil der gegenüberliegenden Schmalseite des Paneels (2) einen Vorsprung aufweist, der an seiner dem Untergrund (U) zugewandten Unterseite einen Querschitt mit einer konvexen Wölbung aufweist, und daß 35

die konvexe Wölbung des Vorsprungs und die konkave Wölbung der Aussparung im wesentlichen komplementär ausgebildet sind, dadurch gekennzeichnet,

daß die Formschlußprofile der langen Schmalseiten zweier Paneele im verlegten Zustand zweier Paneele ein gemeinsames Gelenk bilden, daß die dem Untergrund abgewandte Oberseite des Vorsprungs eines Paneels eine schräge Materialabtragung aufweist, die sich bis zum freien Ende des Vorsprungs erstreckt, daß die Dicke des Vorsprungs durch die Materialabtragung zum freien Ende hin zunehmend verringert ist und, daß durch die Materialabtragung ein Bewegungsfreiraum für das gemeinsame Gelenk geschaffen ist.

15

10

5

- 2. Befestigungssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daβ die konvexe Wölbung (7) des Vorsprungs (6) und die konkave Wölbung (23) der Aussparung (20) im wesentlichen einen Kreisabschnitt bilden, wobei der Kreismittelpunkt (K) des Kreisabschnitts auf oder unterhalb der Oberseite des Vorsprungs (6) angeordnet ist.
- 3. Befestigungssystem nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der weitest hervorstehende Punkt der konvexen Wölbung (7) des Vorsprungs (6) so angeordnet ist, daß er sich etwa unterhalb der Oberkante des Paneels (3) befindet.
- 25

30

- 4. Befestigungssystem nach einem der Ansprüche 1 bis 4, da d u r c h g e k e n n z e i c h n e t, daβ die dem Untergrund (U) zugewandte untere Wand (21) der Aussparung (20) eines Paneels (2) auf ihrer Innenseite eine schräge Materialabtragung (24) aufweist, die sich bis zum freien Ende der unteren Wand (21) erstreckt und, daβ die Wandstärke dieser Wand (21) zum freien Ende zunehmend dünner ist, wobei durch die Materialabtragung (24) im verlegten Zustand zweier Paneele (2, 3) ein Bewegungsfreiraum (25) für das gemeinsame Gelenk (G) geschaffen ist.
- 5. Befestigungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daβ die Aus-

sparung (20) eines Paneels (2) zur Verbindung mit dem Vorsprung (6) eines weiteren Paneels (3) durch eine federelastische Verformung der unteren Wand (21) aufweitbar ist und, daß die während des Fügens auftretende federelastische Verformung der unteren Wand (21) im fertig verbundenen Zustand zweier Paneele (2, 3) wieder zurückgenommen ist.

6. Befestigungssystem nach einem der Ansprüche 1 bis 5, dad urch gekennzeichnet, daß die Halteprofile der kurzen Schmalseiten eines Paneels (2, 3) als einander zugeordnete Formschlußprofile ausgebildet und durch eine geradlinige Fügebewegung aneinander befestigbar sind.

5

10

20

- 7. Befestigungssystem nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daβ die Halteprofile der kurzen Schmalseiten eines Paneels (2, 3) mit herkömmlichen etwa rechteckigen Nut- und Federquerschnitten versehen sind.
- Befestigungssystem nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Querschnitte der Formschlußprofile der kurzen Schmalseiten eines Paneels (2, 3) im wesentlichen den Querschnitten der Formschlußprofile (4, 5) der langen Schmalseiten des Paneels (2, 3) entsprechen.
- 9. Befestigungssystem nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß die Formschlußprofile (4, 5) einstückig an den Schmalseiten der Paneele (2, 3) angeformt sind.
- 10. Befestigungssystem nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß die Paneele (2, 3) im wesentlichen aus einem MDF-, HDF-, oder Spanplattenmaterial bestehen.

11. Befestigungssystem nach einem der Ansprüche 1 bis 10, dad urch gekennzeichnet, daß im verlegten Zustand der Paneele (2, 3) die Bewegungsfreiräume (13, 25) für die gemeinsamen Gelenke (G) mit einem weichelastisch aushärtenden Füllstoff (30) versehen sind.

5

12. Paneel (2, 3) mit einem Befestigungssystem (1) gemäß einem der Ansprüche 1 bis 11.

