Планирование вычислений с использованием жадных стратегий и ограниченного перебора

Илья Савицкий

2 мая 2022 г.

Аннотация

Для построения расписаний можно использовать много всякой херни. вот одна из них.

Содержание

1	Введение	4
2	Постановка задачи	4
3	Обзор предметной области 3.1 Жадные алгоритмы	4 4
4	Алгоритм решения 4.1 Дополнительные обозначения 4.2 Словесное описание алгоритма 4.3 Блок-схема алгоритма	4
5	Программная реализация алгоритма	8
6	Экспериментальное исследование алгоритма	8
7	Заключение	8

1 Введение

2 Постановка задачи

3 Обзор предметной области

3.1 Жадные алгоритмы

Жадные алгоритмы подразумевают декомпозицию задачи на ряд более простых подзадач.

3.2 Жадные алгоритмы с процедурой ограниченного перебора

4 Алгоритм решения

4.1 Дополнительные обозначения

- 1. $D=(d_1,d_2,\ldots,d_l)$, где l количество вершин, доступных для добавления(т.е. у которых нет предшественников в исходном графе) множество вершин, доступных для добавления в расписание.
- 2. k вектор длин критических путей от "головной вершины до каждой вершины графа.
- 3. (s_i, p_i) достаточное количество информации для размещения работы в расписании.

Жадные критерии

- $1. \ GR1$ критерий, используемый в выборе работы на постановку
- 2. GR2 критерий, используемый в выборе места постановки работы

Процедуры ограниченного перебора

- 1. Н1 процедура перебора для создания места для постановки работы
- 2. H2 процедура перебора для приближения времени старта работы к длине критического пути до нее

4.2 Словесное описание алгоритма

1. Сформировать множество вершин, у которых нет предшественников. Множество $D=(d_1,d_2\dots d_i)$ где d_i – номер работы, доступной для добавления в расписание (т.е. у которой нет предшественников в исходном графе)

- 2. В случае, если в множестве D одна вершина обозначим ее за d, в противном случае создадим фиктивную вершину с нулевой длительностью, у которой все потомки будут из множества D, и обозначим ее за d
- 3. Зададим вектор k вектор длин критических путей до вершин от d. При помощи алгоритма Дейкстры этот вектор заполняется значениями k_i , где i номер вершины. Поскольку алгоритм Дейкстры работает со взвешенными графами, каждое ребро получает вес минимального времени работы на вычислительной системе вершины, из которой исходит
- 4. По жадному критерию выбора работы выбирается работа из множества D для размещения в расписании. Пусть выбранная работа d_i
- 5. Производится пробное размещение работы d в расписании с учетом жадного критерия выбора места работы и дополнительных ограничений. В случае, если не получилось найти подходящее место для работы запускается процедура ограниченного перебора с проверяемым критерием возможности добавления работы в расписание. Становится известно s время старта работы и p процессор, на котором работа выполняется. Выбор места выполнения работы происходит по системе допусков. Изначально места ранжируются по жадному критерию и берутся верхние n% (n параметр алгоритма) списка. Оставшиеся места ранжируются по первому дополнительному ограничению, после чего снова берутся верхние n%, и так далее по всем ограничениям. После прохода по всем ограничениям, из оставшегося списка берется место в соответствии с жадным критерием
- 6. Если s_i больше длины критического пути (с точностью до Δ , где Δ параметр алгоритма), то вызывается процедура ограниченного перебора с проверяемым критерием $S = \sum s_k$, где s_k времена начал всех перебираемых работ, в результате которой работа размещается в расписании. Если работу разместить не удалось завершить алгоритм. Если s_i не превосходит длину критического пути(с точностью Δ), то работа размещается в расписании.
- 7. d_i удаляется из списка размещенных работ и в графе G удаляется соответствующая вершина и все дуги, исходящие из нее.
- 8. Обновляется множество D. Если D не пустое, то алгоритм переходит на пункт 4.

Жадный критерий выбора работы

• Максимальное количество потомков у работы

Жадный критерий выбора места работы в расписании

• Скорейшее завершение частично построенного расписания

Ограниченный перебор

После неудачной пробной постановки работы в расписание алгоритм создает набор $K=(k_1,k_2,\ldots,k_t)$, состоящий из t последних добавленных работ (t – параметр алгоритма). Далее, процедурой полного перебора пробуются различные расписания до тех пор, пока не получится расписание, удовлетворяющее критерию критичности пути до последней поставленной работы и удовлетворяющее дополнительным ограничениям.

Расчет времени начала работы

Для того, чтобы рассчитать время начала для конкретной работы на процессоре p требуется:

- 1. Вычислить вектор $PJ_{k=1}^L$, где L количество предшественников у работы. Элементами этого вектора будут являться суммы вида $s_k + C_{kr} + D_{rj}$, где r номер процессора, на котором размещен предшественник.
- 2. Максимумом этого вектора и будет являться первое доступное начало выполнения работы на данном процессоре. $n_i = \max PJ$

4.3 Блок-схема алгоритма

- 5 Программная реализация алгоритма
- 6 Экспериментальное исследование алгоритма
- 7 Заключение

Список литературы