Symbolic Calculus

Release 10.3

The Sage Development Team

CONTENTS

1	Using	g calculus	3
2	Inter	nal functionality supporting calculus	5
	2.1	Symbolic Expressions	5
	2.2	Callable Symbolic Expressions	
	2.3	Assumptions	146
	2.4	Symbolic Equations and Inequalities	155
	2.5	Symbolic Computation	172
	2.6	Units of measurement	198
	2.7	The symbolic ring	204
	2.8	Subrings of the Symbolic Ring	211
	2.9	Classes for symbolic functions	
	2.10	Factory for symbolic functions	220
	2.11	Functional notation support for common calculus methods	
	2.12	Symbolic Integration	
	2.13	TESTS::	
	2.14	A Sample Session using SymPy	246
	2.15	Calculus Tests and Examples	250
	2.16	Conversion of symbolic expressions to other types	253
	2.17	Complexity Measures	275
	2.18	Further examples from Wester's paper	276
	2.19	Solving ordinary differential equations	286
	2.20	Discrete Wavelet Transform	304
	2.21	Discrete Fourier Transforms	307
	2.22	Fast Fourier Transforms Using GSL	315
	2.23	Solving ODE numerically by GSL	319
	2.24	Numerical Integration	
	2.25	Riemann Mapping	328
	2.26	Real Interpolation using GSL	339
	2.27	Complex Interpolation	342
	2.28	Calculus functions	345
	2.29	Symbolic variables	346
	2.30	Access to Maxima methods	352
	2.31	Operators	353
	2.32	Benchmarks	355
	2.33	Randomized tests of GiNaC / PyNaC	357
3	Indic	es and Tables	363
Py	thon N	Module Index	365

Index 367

Calculus is done using symbolic expressions which consist of symbols and numeric objects linked by operators (functions).

Note: While polynomial manipulation can be done with expressions, it is more efficient to use polynomial ring elements

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

USING CALCULUS

- Symbolic Computation
- Examples
 - Calculus examples
 - Calculus Tests and Examples
 - Further examples from Wester's paper
- More about symbolic variables and functions
- Main operations on symbolic expressions
- Assumptions about symbols and functions
- Symbolic Equations and Inequalities
- Symbolic Integration
- Solving ordinary differential equations
- Solving ODE numerically by GSL
- Numerical Integration
- Real Interpolation using GSL
- Transforms
 - Discrete Wavelet Transform
 - Discrete Fourier Transforms
 - Fast Fourier Transforms Using GSL
- Vector Calculus
- Riemann Mapping
- Other calculus functionality
- Complexity Measures
- Units of measurement

CHAPTER

TWO

INTERNAL FUNCTIONALITY SUPPORTING CALCULUS

- The symbolic ring
- Subrings of the Symbolic Ring
- Operators
- Classes for symbolic functions
- Functional notation support for common calculus methods
- Factory for symbolic functions
- Internals of Callable Symbolic Expressions
- Conversion of symbolic expressions to other types
- Benchmarks
- Randomized tests of GiNaC / PyNaC
- Access to Maxima methods
- External integrators
- External interpolators

2.1 Symbolic Expressions

RELATIONAL EXPRESSIONS:

We create a relational expression:

```
sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.subs(x == 5)
16 <= 18</pre>
```

Notice that squaring the relation squares both sides.

```
sage: eqn^2
(x - 1)^4 <= (x^2 - 2*x + 3)^2
sage: eqn.expand()
x^2 - 2*x + 1 <= x^2 - 2*x + 3</pre>
```

This can transform a true relation into a false one:

```
sage: eqn = SR(-5) < SR(-3); eqn
-5 < -3
sage: bool(eqn)
True
sage: eqn^2
25 < 9
sage: bool(eqn^2)
False</pre>
```

We can do arithmetic with relations:

```
sage: e = x+1 <= x-2
sage: e + 2
x + 3 <= x
sage: e - 1
x <= x - 3
sage: e* (-1)
-x - 1 <= -x + 2
sage: (-2) *e
-2*x - 2 \le -2*x + 4
sage: e*5
5*x + 5 <= 5*x - 10
sage: e/5
1/5*x + 1/5 \le 1/5*x - 2/5
sage: 5/e
5/(x + 1) \le 5/(x - 2)
sage: e/(-2)
-1/2*x - 1/2 \le -1/2*x + 1
sage: -2/e
-2/(x + 1) \le -2/(x - 2)
```

We can even add together two relations, as long as the operators are the same:

```
sage: (x^3 + x \le x - 17) + (-x \le x - 10)
x^3 \le 2^*x - 27
```

Here they are not:

```
sage: (x^3 + x <= x - 17) + (-x >= x - 10)
Traceback (most recent call last):
...
TypeError: incompatible relations
```

ARBITRARY SAGE ELEMENTS:

You can work symbolically with any Sage data type. This can lead to nonsense if the data type is strange, e.g., an element of a finite field (at present).

We mix Singular variables with symbolic variables:

```
sage: R.<u,v> = QQ[]
sage: var('a,b,c')
(a, b, c)
sage: expand((u + v + a + b + c)^2)
a^2 + 2*a*b + b^2 + 2*a*c + 2*b*c + c^2 + 2*a*u + 2*b*u + 2*c*u + u^2 + 2*a*v + 2*b*v

+ 2*c*v + 2*u*v + v^2
```

class sage.symbolic.expression.E

Bases: Expression

Dummy class to represent base of the natural logarithm.

The base of the natural logarithm e is not a constant in GiNaC/Sage. It is represented by exp(1).

This class provides a dummy object that behaves well under addition, multiplication, etc. and on exponentiation calls the function exp.

EXAMPLES:

The constant defined at the top level is just exp(1):

```
sage: e.operator()
exp
sage: e.operands()
[1]
```

Arithmetic works:

```
sage: e + 2
e + 2
sage: 2 + e
e + 2
sage: 2*e
2*e
sage: e*2
2*e
sage: x*e
x*e
sage: var('a,b')
(a, b)
sage: t = e^(a+b); t
e^(a + b)
sage: t.operands()
[a + b]
```

Numeric evaluation, conversion to other systems, and pickling works as expected. Note that these are properties of the exp() function, not this class:

```
sage: RR(e)
2.71828182845905
sage: R = RealField(200); R
Real Field with 200 bits of precision
sage: R(e)
2.7182818284590452353602874713526624977572470936999595749670
sage: em = 1 + e^{(1-e)}; em
e^{(-e + 1)} + 1
sage: R(em)
1.1793740787340171819619895873183164984596816017589156131574
sage: maxima(e).float()
2.718281828459045
                                        # optional - mathematica
sage: t = mathematica(e)
                                        # optional - mathematica
sage: t
sage: float(t)
                                        # optional - mathematica
2.718281828459045...
```

class sage.symbolic.expression.Expression

Bases: Expression

Nearly all expressions are created by calling new_Expression_from_*, but we need to make sure this at least does not leave self._gobj uninitialized and segfault.

Order (hold=False)

Return the order of the expression, as in big oh notation.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: n = var('n')
sage: t = (17*n^3).Order(); t
Order(n^3)
sage: t.derivative(n)
Order(n^2)
```

To prevent automatic evaluation use the hold argument:

```
sage: (17*n^3).Order(hold=True)
Order(17*n^3)
```

$WZ_certificate(n, k)$

Return the Wilf-Zeilberger certificate for this hypergeometric summand in n, k.

To prove the identity $\sum_k F(n,k) = \text{const}$ it suffices to show that F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k), with G = RF and R the WZ certificate.

EXAMPLES:

To show that $\sum_{k} \binom{n}{k} = 2^n$ do:

```
sage: _ = var('k n')
sage: F(n,k) = binomial(n,k) / 2^n
sage: c = F(n,k).WZ_certificate(n,k); c
1/2*k/(k - n - 1)
sage: G(n,k) = c * F(n,k); G
(continue on next res)
```

```
(n, k) \mid --> 1/2*k*binomial(n, k)/(2^n*(k - n - 1))
sage: (F(n+1,k) - F(n,k) - G(n,k+1) + G(n,k)).simplify_full()
```

abs (hold=False)

Return the absolute value of this expression.

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: (x+y).abs()
abs(x + y)
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(-5).abs(hold=True)
abs(-5)
```

To then evaluate again, we use unhold():

```
sage: a = SR(-5).abs(hold=True); a.unhold()
5
```

add (hold=False, *args)

Return the sum of the current expression and the given arguments.

To prevent automatic evaluation use the hold argument.

EXAMPLES:

```
sage: x.add(x)
2*x
sage: x.add(x, hold=True)
x + x
sage: x.add(x, (2+x), hold=True)
(x + 2) + x + x
sage: x.add(x, (2+x), x, hold=True)
(x + 2) + x + x + x
sage: x.add(x, (2+x), x, 2*x, hold=True)
(x + 2) + 2*x + x + x + x
```

To then evaluate again, we use unhold():

```
sage: a = x.add(x, hold=True); a.unhold()
2*x
```

add_to_both_sides(x)

Return a relation obtained by adding x to both sides of this relation.

EXAMPLES:

```
sage: var('x y z')
(x, y, z)
sage: eqn = x^2 + y^2 + z^2 <= 1
sage: eqn.add_to_both_sides(-z^2)
x^2 + y^2 <= -z^2 + 1</pre>
(continues on part page)
```

```
sage: eqn.add_to_both_sides(I)
x^2 + y^2 + z^2 + I <= (I + 1)</pre>
```

arccos (hold=False)

Return the arc cosine of self.

EXAMPLES:

To prevent automatic evaluation use the hold argument:

```
sage: SR(1).arccos(hold=True)
arccos(1)
```

This also works using functional notation:

```
sage: arccos(1,hold=True)
arccos(1)
sage: arccos(1)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(1).arccos(hold=True); a.unhold()
0
```

arccosh (hold=False)

Return the inverse hyperbolic cosine of self.

EXAMPLES:

```
sage: x.arccosh()
arccosh(x)
sage: SR(0).arccosh()
1/2*I*pi
sage: SR(1/2).arccosh()
arccosh(1/2)
sage: SR(CDF(1/2)).arccosh() # rel tol 1e-15
1.0471975511965976*I
sage: z = maxima('acosh(0.5)')
sage: z.real(), z.imag() # abs tol 1e-15
(0.0, 1.047197551196598)
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(-1).arccosh()
I*pi
sage: SR(-1).arccosh(hold=True)
arccosh(-1)
```

This also works using functional notation:

```
sage: arccosh(-1,hold=True)
arccosh(-1)
sage: arccosh(-1)
I*pi
```

To then evaluate again, we use unhold():

```
sage: a = SR(-1).arccosh(hold=True); a.unhold()
I*pi
```

arcsin (hold=False)

Return the arcsin of x, i.e., the number y between -pi and pi such that sin(y) == x.

EXAMPLES:

```
sage: x.arcsin()
arcsin(x)
sage: SR(0.5).arcsin()
1/6*pi
sage: SR(0.999).arcsin()
1.52607123962616
sage: SR(1/3).arcsin()
arcsin(1/3)
sage: SR(-1/3).arcsin()
-arcsin(1/3)
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(0).arcsin()
0
sage: SR(0).arcsin(hold=True)
arcsin(0)
```

This also works using functional notation:

```
sage: arcsin(0,hold=True)
arcsin(0)
sage: arcsin(0)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(0).arcsin(hold=True); a.unhold()
0
```

arcsinh (hold=False)

Return the inverse hyperbolic sine of self.

EXAMPLES:

```
sage: x.arcsinh()
arcsinh(x)
sage: SR(0).arcsinh()
0
sage: SR(1).arcsinh()
arcsinh(1)
sage: SR(1.0).arcsinh()
0.881373587019543
sage: maxima('asinh(2.0)')
1.4436354751788...
```

Sage automatically applies certain identities:

```
sage: SR(3/2).arcsinh().cosh()
1/2*sqrt(13)
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(-2).arcsinh()
-arcsinh(2)
sage: SR(-2).arcsinh(hold=True)
arcsinh(-2)
```

This also works using functional notation:

```
sage: arcsinh(-2,hold=True)
arcsinh(-2)
sage: arcsinh(-2)
-arcsinh(2)
```

To then evaluate again, we use unhold():

```
sage: a = SR(-2).arcsinh(hold=True); a.unhold()
-arcsinh(2)
```

arctan (hold=False)

Return the arc tangent of self.

EXAMPLES:

```
sage: x = var('x')
sage: x.arctan()
arctan(x)
sage: SR(1).arctan()
1/4*pi
sage: SR(1/2).arctan()
arctan(1/2)
sage: SR(0.5).arctan()
0.463647609000806
sage: plot(lambda x: SR(x).arctan(), -20,20)
    → needs sage.plot
Graphics object consisting of 1 graphics primitive
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(1).arctan(hold=True)
arctan(1)
```

This also works using functional notation:

```
sage: arctan(1,hold=True)
arctan(1)
sage: arctan(1)
1/4*pi
```

To then evaluate again, we use unhold():

```
sage: a = SR(1).arctan(hold=True); a.unhold()
1/4*pi
```

arctan2 (x, hold=False)

Return the inverse of the 2-variable tan function on self and x.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: x.arctan2(y)
arctan2(x, y)
sage: SR(1/2).arctan2(1/2)
1/4*pi
sage: maxima.eval('atan2(1/2,1/2)')
'%pi/4'
sage: SR(-0.7).arctan2(SR(-0.6))
-2.27942259892257
```

To prevent automatic evaluation use the hold argument:

```
      sage:
      SR(1/2).arctan2(1/2, hold=True)

      arctan2(1/2, 1/2)
```

This also works using functional notation:

```
sage: arctan2(1,2,hold=True)
arctan2(1, 2)
sage: arctan2(1,2)
arctan(1/2)
```

To then evaluate again, we use unhold():

```
sage: a = SR(1/2).arctan2(1/2, hold=True); a.unhold() <math>1/4*pi
```

arctanh (hold=False)

Return the inverse hyperbolic tangent of self.

EXAMPLES:

```
sage: x.arctanh()
arctanh(x)
sage: SR(0).arctanh()
0
sage: SR(1/2).arctanh()
1/2*log(3)
sage: SR(0.5).arctanh()
```

```
0.549306144334055

sage: SR(0.5).arctanh().tanh()

0.500000000000000

sage: maxima('atanh(0.5)') # abs tol 2e-16

0.5493061443340548
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(-1/2).arctanh()
-1/2*log(3)
sage: SR(-1/2).arctanh(hold=True)
arctanh(-1/2)
```

This also works using functional notation:

```
sage: arctanh(-1/2,hold=True)
arctanh(-1/2)
sage: arctanh(-1/2)
-1/2*log(3)
```

To then evaluate again, we use unhold():

```
sage: a = SR(-1/2).arctanh(hold=True); a.unhold() -1/2*log(3)
```

args()

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f = x + y
sage: f.arguments()
(x, y)

sage: g = f.function(x)
sage: g.arguments()
(x,)
```

arguments()

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f = x + y
sage: f.arguments()
(x, y)

sage: g = f.function(x)
sage: g.arguments()
(x,)
```

assume()

Assume that this equation holds. This is relevant for symbolic integration, among other things.

EXAMPLES: We call the assume method to assume that x > 2:

```
sage: (x > 2).assume()
```

Bool returns True below if the inequality is *definitely* known to be True.

```
sage: bool(x > 0)
True
sage: bool(x < 0)
False</pre>
```

This may or may not be True, so bool returns False:

```
sage: bool(x > 3)
False
```

If you make inconsistent or meaningless assumptions, Sage will let you know:

```
sage: forget()
sage: assume(x<0)
sage: assume(x>0)
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent
sage: assumptions()
[x < 0]
sage: forget()</pre>
```

binomial(k, hold=False)

Return binomial coefficient "self choose k".

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: SR(5).binomial(SR(3))
10
sage: x.binomial(SR(3))
1/6*(x - 1)*(x - 2)*x
sage: x.binomial(y)
binomial(x, y)
```

To prevent automatic evaluation use the hold argument:

```
sage: x.binomial(3, hold=True)
binomial(x, 3)
sage: SR(5).binomial(3, hold=True)
binomial(5, 3)
```

To then evaluate again, we use unhold():

```
sage: a = SR(5).binomial(3, hold=True); a.unhold()
10
```

The hold parameter is also supported in functional notation:

```
sage: binomial(5,3, hold=True)
binomial(5, 3)
```

canonicalize_radical()

Choose a canonical branch of the given expression.

The square root, cube root, natural log, etc. functions are multi-valued. The canonicalize_radical() method will choose *one* of these values based on a heuristic.

For example, $sqrt(x^2)$ has two values: x, and -x. The canonicalize_radical() function will choose *one* of them, consistently, based on the behavior of the expression as x tends to positive infinity. The solution chosen is the one which exhibits this same behavior. Since $sqrt(x^2)$ approaches positive infinity as x does, the solution chosen is x (which also tends to positive infinity).

Warning: As shown in the examples below, a canonical form is not always returned, i.e., two mathematically identical expressions might be converted to different expressions.

Assumptions are not taken into account during the transformation. This may result in a branch choice inconsistent with your assumptions.

ALGORITHM:

This uses the Maxima radcan () command. From the Maxima documentation:

Simplifies an expression, which can contain logs, exponentials, and radicals, by converting it into a form which is canonical over a large class of expressions and a given ordering of variables; that is, all functionally equivalent forms are mapped into a unique form. For a somewhat larger class of expressions, radcan produces a regular form. Two equivalent expressions in this class do not necessarily have the same appearance, but their difference can be simplified by radcan to zero.

For some expressions radcan is quite time consuming. This is the cost of exploring certain relationships among the components of the expression for simplifications based on factoring and partial fraction expansions of exponents.

EXAMPLES:

canonicalize_radical() can perform some of the same manipulations as <code>log_expand()</code>:

```
sage: y = SR.symbol('y')
sage: f = log(x*y)
sage: f.log_expand()
log(x) + log(y)
sage: f.canonicalize_radical()
log(x) + log(y)
```

And also handles some exponential functions:

```
sage: f = (e^x-1)/(1+e^(x/2))
sage: f.canonicalize_radical()
e^(1/2*x) - 1
```

It can also be used to change the base of a logarithm when the arguments to log () are positive real numbers:

```
sage: f = log(8)/log(2)
sage: f.canonicalize_radical()
3
```

```
sage: a = SR.symbol('a')
sage: f = (log(x+x^2)-log(x))^a/log(1+x)^(a/2)
sage: f.canonicalize_radical()
log(x + 1)^(1/2*a)
```

The simplest example of counter-intuitive behavior is what happens when we take the square root of a square:

```
sage: sqrt(x^2).canonicalize_radical()
x
```

If you don't want this kind of "simplification," don't use canonicalize_radical().

This behavior can also be triggered when the expression under the radical is not given explicitly as a square:

```
sage: sqrt(x^2 - 2*x + 1).canonicalize_radical()
x - 1
```

Another place where this can become confusing is with logarithms of complex numbers. Suppose x is complex with $x == r^*e^*(I^*t)$ (r real). Then log(x) is $log(r) + I^*(t + 2^*k^*pi)$ for some integer k.

Calling canonicalize_radical() will choose a branch, eliminating the solutions for all choices of k but one. Simplified by hand, the expression below is (1/2) *log(2) + I*pi*k for integer k. However, canonicalize_radical() will take each log expression, and choose one particular solution, dropping the other. When the results are subtracted, we're left with no imaginary part:

```
sage: f = (1/2)*log(2*x) + (1/2)*log(1/x)
sage: f.canonicalize_radical()
1/2*log(2)
```

Naturally the result is wrong for some choices of x:

```
sage: f(x = -1)

I*pi + 1/2*log(2)
```

The example below shows two expressions e1 and e2 which are "simplified" to different expressions, while their difference is "simplified" to zero; thus canonicalize_radical() does not return a canonical form:

```
sage: e1 = 1/(sqrt(5)+sqrt(2))
sage: e2 = (sqrt(5)-sqrt(2))/3
sage: e1.canonicalize_radical()
1/(sqrt(5) + sqrt(2))
sage: e2.canonicalize_radical()
1/3*sqrt(5) - 1/3*sqrt(2)
sage: (e1-e2).canonicalize_radical()
0
```

The issue reported in github issue #3520 is a case where canonicalize_radical() causes a numerical integral to be calculated incorrectly:

```
sage: f1 = sqrt(25 - x) * sqrt(1 + 1/(4*(25-x)))
sage: f2 = f1.canonicalize_radical()
sage: numerical_integral(f1.real(), 0, 1)[0] # abs tol 1e-10
4.974852579915647
sage: numerical_integral(f2.real(), 0, 1)[0] # abs tol 1e-10
-4.974852579915647
```

coefficient (s, n=1)

Return the coefficient of s^n in this symbolic expression.

INPUT:

• s - expression

• n - expression, default 1

OUTPUT:

A symbolic expression. The coefficient of s^n .

Sometimes it may be necessary to expand or factor first, since this is not done automatically.

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*\sin(x^*y) + a^*x + x^*y + x/y + 2*\sin(x^*y)/x + 100
sage: f.collect(x)
x^3*\sin(x^*y) + (a + y + 1/y)*x + 2*\sin(x^*y)/x + 100
sage: f.coefficient(x,0)
sage: f.coefficient(x, -1)
2*sin(x*y)
sage: f.coefficient(x,1)
a + y + 1/y
sage: f.coefficient(x,2)
sage: f.coefficient(x,3)
sin(x*y)
sage: f.coefficient(x^3)
sin(x*y)
sage: f.coefficient(sin(x*y))
x^3 + 2/x
sage: f.collect(sin(x*y))
a*x + x*y + (x^3 + 2/x)*sin(x*y) + x/y + 100
sage: var('a, x, y, z')
(a, x, y, z)
sage: f = (a*sqrt(2))*x^2 + sin(y)*x^(1/2) + z^z
sage: f.coefficient(sin(y))
sqrt(x)
sage: f.coefficient(x^2)
sqrt (2) *a
sage: f.coefficient(x^(1/2))
sin(y)
sage: f.coefficient(1)
sage: f.coefficient(x, 0)
z^z
```

Any coefficient can be queried:

```
sage: (x^2 + 3*x^pi).coefficient(x, pi)
3
sage: (2^x + 5*x^x).coefficient(x, x)
5
```

coefficients (x=None, sparse=True)

Return the coefficients of this symbolic expression as a polynomial in x.

INPUT:

x – optional variable.

OUTPUT:

Depending on the value of sparse,

- A list of pairs (expr, n), where expr is a symbolic expression and n is a power (sparse=True, default)
- A list of expressions where the n-th element is the coefficient of x^n when self is seen as polynomial in x (sparse=False).

EXAMPLES:

```
sage: var('x, y, a')
(x, y, a)
sage: p = x^3 - (x-3) * (x^2+x) + 1
sage: p.coefficients()
[[1, 0], [3, 1], [2, 2]]
sage: p.coefficients(sparse=False)
[1, 3, 2]
sage: p = x - x^3 + 5/7*x^5
sage: p.coefficients()
[[1, 1], [-1, 3], [5/7, 5]]
sage: p.coefficients(sparse=False)
[0, 1, 0, -1, 0, 5/7]
sage: p = expand((x-a*sqrt(2))^2 + x + 1); p
-2*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: p.coefficients(a)
[[x^2 + x + 1, 0], [-2*sqrt(2)*x, 1], [2, 2]]
sage: p.coefficients(a, sparse=False)
[x^2 + x + 1, -2*sqrt(2)*x, 2]
sage: p.coefficients(x)
[[2*a^2 + 1, 0], [-2*sqrt(2)*a + 1, 1], [1, 2]]
sage: p.coefficients(x, sparse=False)
[2*a^2 + 1, -2*sqrt(2)*a + 1, 1]
```

collect(s)

Collect the coefficients of s into a group.

INPUT:

• s – the symbol whose coefficients will be collected.

OUTPUT:

A new expression, equivalent to the original one, with the coefficients of s grouped.

Note: The expression is not expanded or factored before the grouping takes place. For best results, call <code>expand()</code> on the expression before <code>collect()</code>.

EXAMPLES:

In the first term of f, x has a coefficient of 4y. In the second term, x has a coefficient of z. Therefore, if we collect those coefficients, x will have a coefficient of 4y + z:

```
sage: x,y,z = var('x,y,z')
sage: f = 4*x*y + x*z + 20*y^2 + 21*y*z + 4*z^2 + x^2*y^2*z^2
sage: f.collect(x)
x^2*y^2*z^2 + x*(4*y + z) + 20*y^2 + 21*y*z + 4*z^2
```

Here we do the same thing for y and z; however, note that we do not factor the y^2 and z^2 terms before collecting coefficients:

```
sage: f.collect(y)
(x^2*z^2 + 20)*y^2 + (4*x + 21*z)*y + x*z + 4*z^2
sage: f.collect(z)
(x^2*y^2 + 4)*z^2 + 4*x*y + 20*y^2 + (x + 21*y)*z
```

The terms are collected, whether the expression is expanded or not:

```
sage: f = (x + y)*(x - z)
sage: f.collect(x)
x^2 + x*(y - z) - y*z
sage: f.expand().collect(x)
x^2 + x*(y - z) - y*z
```

collect_common_factors()

This function does not perform a full factorization but only looks for factors which are already explicitly present.

Polynomials can often be brought into a more compact form by collecting common factors from the terms of sums. This is accomplished by this function.

EXAMPLES:

```
sage: var('x')
x
sage: (x/(x^2 + x)).collect_common_factors()
1/(x + 1)

sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: (a*x+a*y).collect_common_factors()
a*(x + y)
sage: (a*x^2+2*a*x*y+a*y^2).collect_common_factors()
(x^2 + 2*x*y + y^2)*a
sage: (a*(b*(a+c)*x+b*((a+c)*x+(a+c)*y)*y)).collect_common_factors()
((x + y)*y + x)*(a + c)*a*b
```

combine (deep=False)

Return a simplified version of this symbolic expression by combining all toplevel terms with the same denominator into a single term.

Please use the keyword deep=True to apply the process recursively.

EXAMPLES:

```
sage: var('x, y, a, b, c')
(x, y, a, b, c)
sage: f = x*(x-1)/(x^2 - 7) + y^2/(x^2-7) + 1/(x+1) + b/a + c/a; f
(x - 1)*x/(x^2 - 7) + y^2/(x^2 - 7) + b/a + c/a + 1/(x + 1)
sage: f.combine()
((x - 1)*x + y^2)/(x^2 - 7) + (b + c)/a + 1/(x + 1)
sage: (1/x + 1/x^2 + (x+1)/x).combine()
(x + 2)/x + 1/x^2
sage: ex = 1/x + ((x + 1)/x - 1/x)/x^2 + (x+1)/x; ex
(x + 1)/x + 1/x + ((x + 1)/x - 1/x)/x^2
sage: ex.combine()
```

```
(x + 2)/x + ((x + 1)/x - 1/x)/x^2

sage: ex.combine(deep=True)
(x + 2)/x + 1/x^2

sage: (1+\sin((x + 1)/x - 1/x)).combine(deep=True)
\sin(1) + 1
```

conjugate (hold=False)

Return the complex conjugate of this symbolic expression.

EXAMPLES:

```
sage: a = 1 + 2*I
sage: a.conjugate()
-2*I + 1
sage: a = sqrt(2) + 3^{(1/3)*I}; a
sqrt(2) + I*3^{(1/3)}
sage: a.conjugate()
sqrt(2) - I*3^{(1/3)}
sage: SR(CDF.0).conjugate()
-1.0*I
sage: x.conjugate()
conjugate(x)
sage: SR(RDF(1.5)).conjugate()
sage: SR(float(1.5)).conjugate()
1.5
sage: SR(I).conjugate()
sage: (1+I + (2-3*I)*x).conjugate()
(3*I + 2)*conjugate(x) - I + 1
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(I).conjugate(hold=True)
conjugate(I)
```

This also works in functional notation:

```
sage: conjugate(I)
-I
sage: conjugate(I,hold=True)
conjugate(I)
```

To then evaluate again, we use unhold():

```
sage: a = SR(I).conjugate(hold=True); a.unhold()
-I
```

content(s)

Return the content of this expression when considered as a polynomial in s.

```
See also unit (), primitive_part (), and unit_content_primitive ().
```

INPUT:

• s – a symbolic expression.

OUTPUT:

The content part of a polynomial as a symbolic expression. It is defined as the gcd of the coefficients.

Warning: The expression is considered to be a univariate polynomial in s. The output is different from the content () method provided by multivariate polynomial rings in Sage.

EXAMPLES:

```
sage: (2*x+4).content(x)
2
sage: (2*x+1).content(x)
1
sage: (2*x+1/2).content(x)
1/2
sage: var('y')
y
sage: (2*x + 4*sin(y)).content(sin(y))
2
```

contradicts (soln)

Return True if this relation is violated by the given variable assignment(s).

EXAMPLES:

```
sage: (x<3).contradicts(x==0)
False
sage: (x<3).contradicts(x==3)
True
sage: (x<=3).contradicts(x==3)
False
sage: y = var('y')
sage: (x<y).contradicts(x==30)
False
sage: (x<y).contradicts(x==30)
True</pre>
```

convert (target=None)

Call the convert function in the units package. For symbolic variables that are not units, this function just returns the variable.

INPUT:

- self the symbolic expression converting from
- target (default None) the symbolic expression converting to

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: units.length.foot.convert()
381/1250*meter
sage: units.mass.kilogram.convert(units.mass.pound)
100000000/45359237*pound
```

We do not get anything new by converting an ordinary symbolic variable:

```
sage: a = var('a')
sage: a - a.convert()
0
```

Raises ValueError if self and target are not convertible:

```
sage: units.mass.kilogram.convert(units.length.foot)
Traceback (most recent call last):
...
ValueError: Incompatible units
sage: (units.length.meter^2).convert(units.length.foot)
Traceback (most recent call last):
...
ValueError: Incompatible units
```

Recognizes derived unit relationships to base units and other derived units:

For decimal answers multiply by 1.0:

Converting temperatures works as well:

```
sage: s = 68*units.temperature.fahrenheit
sage: s.convert(units.temperature.celsius)
20*celsius
sage: s.convert()
293.150000000000*kelvin
```

Trying to multiply temperatures by another unit then converting raises a ValueError:

```
sage: wrong = 50*units.temperature.celsius*units.length.foot
sage: wrong.convert()
Traceback (most recent call last):
...
ValueError: cannot convert
```

cos (hold=False)

Return the cosine of self.

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: cos(x^2 + y^2)
cos(x^2 + y^2)
sage: cos(sage.symbolic.constants.pi)
-1
sage: cos(SR(1))
cos(1)
sage: cos(SR(RealField(150)(1)))
0.54030230586813971740093660744297660373231042
```

In order to get a numeric approximation use .n():

```
sage: SR(RR(1)).cos().n()
0.540302305868140
sage: SR(float(1)).cos().n()
0.540302305868140
```

To prevent automatic evaluation use the hold argument:

```
sage: pi.cos()
-1
sage: pi.cos(hold=True)
cos(pi)
```

This also works using functional notation:

```
sage: cos(pi,hold=True)
cos(pi)
sage: cos(pi)
-1
```

To then evaluate again, we use unhold():

```
sage: a = pi.cos(hold=True); a.unhold()
-1
```

cosh (hold=False)

Return cosh of self.

We have $\cosh(x) = (e^x + e^{-x})/2$.

EXAMPLES:

To prevent automatic evaluation use the hold argument:

```
sage: arcsinh(x).cosh()
sqrt(x^2 + 1)
sage: arcsinh(x).cosh(hold=True)
cosh(arcsinh(x))
```

This also works using functional notation:

```
sage: cosh(arcsinh(x), hold=True)
cosh(arcsinh(x))
sage: cosh(arcsinh(x))
sqrt(x^2 + 1)
```

To then evaluate again, we use unhold():

```
sage: a = arcsinh(x).cosh(hold=True); a.unhold()
sqrt(x^2 + 1)
```

csgn (hold=False)

Return the sign of self, which is -1 if self < 0, 0 if self == 0, and 1 if self > 0, or unevaluated when self is a nonconstant symbolic expression.

If self is not real, return the complex half-plane (left or right) in which the number lies. If self is pure imaginary, return the sign of the imaginary part of self.

EXAMPLES:

```
sage: x = var('x')
sage: SR(-2).csgn()
-1
sage: SR(0.0).csgn()
sage: SR(10).csgn()
1
sage: x.csgn()
csgn(x)
sage: SR(CDF.0).csgn()
sage: SR(I).csgn()
sage: SR(-I).csgn()
sage: SR(1+I).csgn()
sage: SR(1-I).csqn()
sage: SR(-1+I).csgn()
-1
sage: SR(-1-I).csgn()
-1
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(I).csgn(hold=True)
csgn(I)
```

decl_assume (decl)

decl_forget (decl)

default_variable()

Return the default variable, which is by definition the first variable in self, or x is there are no variables in self. The result is cached.

EXAMPLES:

```
sage: sqrt(2).default_variable()
x
sage: x, theta, a = var('x, theta, a')
sage: f = x^2 + theta^3 - a^x
sage: f.default_variable()
a
```

Note that this is the first *variable*, not the first *argument*:

```
sage: f(theta, a, x) = a + theta^3
sage: f.default_variable()
a
sage: f.variables()
(a, theta)
sage: f.arguments()
(theta, a, x)
```

degree (s)

Return the exponent of the highest power of s in self.

OUTPUT:

An integer

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y^10 + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + 2*sin(x*y)/x + x/y^10 + 100
sage: f.degree(x)
3
sage: f.degree(y)
1
sage: f.degree(sin(x*y))
1
sage: (x^-3+y).degree(x)
0
sage: (1/x+1/x**2).degree(x)
-1
```

demoivre(force=False)

Return this symbolic expression with complex exponentials (optionally all exponentials) replaced by (at least partially) trigonometric/hyperbolic expressions.

EXAMPLES:

```
sage: x, a, b = SR.var("x, a, b")
sage: exp(a + I*b).demoivre()
(cos(b) + I*sin(b))*e^a
sage: exp(I*x).demoivre()
```

```
cos(x) + I*sin(x)
sage: exp(x).demoivre()
e^x
sage: exp(x).demoivre(force=True)
cosh(x) + sinh(x)
```

denominator (normalize=True)

Return the denominator of this symbolic expression

INPUT:

• normalize - (default: True) a boolean.

If normalize is True, the expression is first normalized to have it as a fraction before getting the denominator.

If normalize is False, the expression is kept and if it is not a quotient, then this will just return 1.

See also:

normalize(), numerator(), numerator_denominator(), combine()

EXAMPLES:

```
sage: x, y, z, theta = var('x, y, z, theta')
sage: f = (sqrt(x) + sqrt(y) + sqrt(z))/(x^10 - y^10 - sqrt(theta))
sage: f.numerator()
sqrt(x) + sqrt(y) + sqrt(z)
sage: f.denominator()
x^10 - y^10 - sqrt(theta)
sage: f.numerator(normalize=False)
(sqrt(x) + sqrt(y) + sqrt(z))
sage: f.denominator(normalize=False)
x^10 - y^10 - sqrt(theta)
sage: y = var('y')
sage: g = x + y/(x + 2); g
x + y/(x + 2)
sage: g.numerator(normalize=False)
x + y/(x + 2)
sage: g.denominator(normalize=False)
```

derivative (*args)

Return the derivative of this expressions with respect to the variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

This is implemented in the _derivative method (see the source code).

EXAMPLES:

```
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
sage: t.derivative(x)
```

```
4*(x^2 + y) *x
sage: t.derivative(x, 2)
12*x^2 + 4*y
sage: t.derivative(x, 2, y)
4
sage: t.derivative(y)
2*x^2 + 2*y
```

If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:

```
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)
```

Some expressions can't be cleanly differentiated by the chain rule:

```
sage: _ = var('x', domain='real')
sage: _ = var('w z')
sage: (x^z).conjugate().diff(x)
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)
w^(z - 1)*z*D[0] (conjugate) (w^z)
sage: atanh(x).real_part().diff(x)
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)
sage: atanh(w).real_part().diff(w)
-D[0] (real_part) (arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)
-D[0] (imag_part) (arctanh(w))/(w^2 - 1)
sage: abs(log(x)).diff(x)
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
sage: forget()
sage: t = \sin(x+y^2) * \tan(x*y)
sage: t.derivative(x)
(\tan(x*y)^2 + 1)*y*\sin(y^2 + x) + \cos(y^2 + x)*\tan(x*y)
sage: t.derivative(y)
(\tan(x^*y)^2 + 1)^*x^*\sin(y^2 + x) + 2^*y^*\cos(y^2 + x)^*\tan(x^*y)
```

```
sage: h = sin(x)/cos(x)
sage: derivative(h,x,x,x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
sage: derivative(h,x,3)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
```

```
sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u,x,y)
-cos(x)*cos(y) + sin(x)*sin(y)
(continue or next see)
```

```
sage: f = ((x^2+1)/(x^2-1))^(1/4)
sage: g = derivative(f, x); g # this is a complex expression
-1/2*((x^2 + 1)*x/(x^2 - 1)^2 - x/(x^2 - 1))/((x^2 + 1)/(x^2 - 1))^(3/4)
sage: g.factor()
-x/((x + 1)^2*(x - 1)^2*((x^2 + 1)/(x^2 - 1))^(3/4))
```

```
sage: y = var('y')
sage: f = y^(sin(x))
sage: derivative(f, x)
y^sin(x)*cos(x)*log(y)
```

```
sage: g(x) = sqrt(5-2*x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3
```

```
sage: f = x*e^(-x)
sage: derivative(f, 100)
x*e^(-x) - 100*e^(-x)
```

```
sage: g = 1/(sqrt((x^2-1)*(x+5)^6))
sage: derivative(g, x)
-((x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2)
```

diff(*args)

Return the derivative of this expressions with respect to the variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global <code>derivative()</code> function for more details.

See also:

This is implemented in the _derivative method (see the source code).

EXAMPLES:

```
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
sage: t.derivative(x)
4*(x^2 + y)*x
sage: t.derivative(x, 2)
12*x^2 + 4*y
sage: t.derivative(x, 2, y)
4
sage: t.derivative(y)
2*x^2 + 2*y
```

If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:

```
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)
```

Some expressions can't be cleanly differentiated by the chain rule:

```
sage: _ = var('x', domain='real')
sage: _ = var('w z')
sage: (x^z).conjugate().diff(x)
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)
w^(z - 1)*z*D[0] (conjugate) (w^z)
sage: atanh(x).real_part().diff(x)
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)
sage: atanh(w).real_part().diff(w)
-D[0] (real_part) (arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)
-D[0] (imag_part) (arctanh(w))/(w^2 - 1)
sage: abs(log(x)).diff(x)
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
sage: forget()
sage: t = sin(x+y^2)*tan(x*y)
sage: t.derivative(x)
(\tan(x^*y)^2 + 1)^*y^*\sin(y^2 + x) + \cos(y^2 + x)^*\tan(x^*y)
sage: t.derivative(y)
(\tan(x^*y)^2 + 1)^*x^*\sin(y^2 + x) + 2^*y^*\cos(y^2 + x)^*\tan(x^*y)
```

```
sage: h = sin(x)/cos(x)
sage: derivative(h,x,x,x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
sage: derivative(h,x,3)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
```

```
sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u,x,y)
-cos(x)*cos(y) + sin(x)*sin(y)
sage: f = ((x^2+1)/(x^2-1))^(1/4)
sage: g = derivative(f, x); g # this is a complex expression
-1/2*((x^2 + 1)*x/(x^2 - 1)^2 - x/(x^2 - 1))/((x^2 + 1)/(x^2 - 1))^(3/4)
sage: g.factor()
-x/((x + 1)^2*(x - 1)^2*((x^2 + 1)/(x^2 - 1))^(3/4))
```

```
sage: y = var('y')
sage: f = y^(sin(x))
sage: derivative(f, x)
y^sin(x)*cos(x)*log(y)
```

```
sage: g(x) = sqrt(5-2*x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3
```

```
sage: f = x*e^{(-x)}
sage: derivative(f, 100)
x*e^{(-x)} - 100*e^{(-x)}
```

```
\begin{cases} sage: g = 1/(sqrt((x^2-1)*(x+5)^6)) \\ sage: derivative(g, x) \\ -((x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2) \end{cases}
```

differentiate(*args)

Return the derivative of this expressions with respect to the variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global *derivative()* function for more details.

See also:

This is implemented in the _derivative method (see the source code).

EXAMPLES:

```
sage: var("x y")
(x, y)
sage: t = (x^2+y)^2
sage: t.derivative(x)
4*(x^2 + y)*x
sage: t.derivative(x, 2)
12*x^2 + 4*y
sage: t.derivative(x, 2, y)
4
sage: t.derivative(y)
2*x^2 + 2*y
```

If the function depends on only one variable, you may omit the variable. Giving just a number (for the order of the derivative) also works:

```
sage: f(x) = x^3 + sin(x)
sage: f.derivative()
x |--> 3*x^2 + cos(x)
sage: f.derivative(2)
x |--> 6*x - sin(x)
```

Some expressions can't be cleanly differentiated by the chain rule:

```
sage: _ = var('x', domain='real')
sage: _ = var('w z')
sage: (x^z).conjugate().diff(x)
conjugate(x^(z - 1))*conjugate(z)
sage: (w^z).conjugate().diff(w)
w^(z - 1)*z*D[0] (conjugate) (w^z)
sage: atanh(x).real_part().diff(x)
-1/(x^2 - 1)
sage: atanh(x).imag_part().diff(x)
sage: atanh(w).real_part().diff(w)
-D[0] (real_part) (arctanh(w))/(w^2 - 1)
sage: atanh(w).imag_part().diff(w)
-D[0] (imag_part) (arctanh(w)) / (w^2 - 1)
sage: abs(log(x)).diff(x)
1/2*(conjugate(log(x))/x + log(x)/x)/abs(log(x))
sage: abs(log(z)).diff(z)
1/2*(conjugate(log(z))/z + log(z)/conjugate(z))/abs(log(z))
sage: forget()
```

```
sage: t = sin(x+y^2)*tan(x*y)
sage: t.derivative(x)
(tan(x*y)^2 + 1)*y*sin(y^2 + x) + cos(y^2 + x)*tan(x*y)
sage: t.derivative(y)
(tan(x*y)^2 + 1)*x*sin(y^2 + x) + 2*y*cos(y^2 + x)*tan(x*y)
```

```
sage: h = sin(x)/cos(x)
sage: derivative(h,x,x,x)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
sage: derivative(h,x,3)
8*sin(x)^2/cos(x)^2 + 6*sin(x)^4/cos(x)^4 + 2
```

```
sage: var('x, y')
(x, y)
sage: u = (sin(x) + cos(y))*(cos(x) - sin(y))
sage: derivative(u,x,y)
-cos(x)*cos(y) + sin(x)*sin(y)
sage: f = ((x^2+1)/(x^2-1))^(1/4)
sage: g = derivative(f, x); g # this is a complex expression
-1/2*((x^2 + 1)*x/(x^2 - 1)^2 - x/(x^2 - 1))/((x^2 + 1)/(x^2 - 1))^(3/4)
sage: g.factor()
-x/((x + 1)^2*(x - 1)^2*((x^2 + 1)/(x^2 - 1))^(3/4))
```

```
sage: y = var('y')
sage: f = y^(sin(x))
sage: derivative(f, x)
y^sin(x)*cos(x)*log(y)
```

```
sage: g(x) = sqrt(5-2*x)
sage: g_3 = derivative(g, x, 3); g_3(2)
-3
```

```
sage: f = x*e^(-x)
sage: derivative(f, 100)
x*e^(-x) - 100*e^(-x)
```

```
sage: g = 1/(sqrt((x^2-1)*(x+5)^6))
sage: derivative(g, x)
-((x + 5)^6*x + 3*(x^2 - 1)*(x + 5)^5)/((x^2 - 1)*(x + 5)^6)^(3/2)
```

distribute (recursive=True)

Distribute some indexed operators over similar operators in order to allow further groupings or simplifications.

Implemented cases (so far):

- Symbolic sum of a sum ==> sum of symbolic sums
- Integral (definite or not) of a sum ==> sum of integrals.
- Symbolic product of a product ==> product of symbolic products.

INPUT:

• recursive – (default: True) the distribution proceeds along the subtrees of the expression.

AUTHORS:

• Emmanuel Charpentier, Ralf Stephan (05-2017)

```
divide_both_sides (x, checksign=None)
```

Return a relation obtained by dividing both sides of this relation by x.

Note: The checksign keyword argument is currently ignored and is included for backward compatibility reasons only.

EXAMPLES:

```
sage: theta = var('theta')
sage: eqn = (x^3 + theta < sin(x*theta))
sage: eqn.divide_both_sides(theta, checksign=False)
(x^3 + theta)/theta < sin(theta*x)/theta
sage: eqn.divide_both_sides(theta)
(x^3 + theta)/theta < sin(theta*x)/theta
sage: eqn/theta
(x^3 + theta)/theta < sin(theta*x)/theta</pre>
```

exp (hold=False)

Return exponential function of self, i.e., e to the power of self.

EXAMPLES:

```
sage: x.exp()
e^x
sage: SR(0).exp()
1
sage: SR(1/2).exp()
e^(1/2)
sage: SR(0.5).exp()
1.64872127070013
sage: math.exp(0.5)
1.6487212707001282

sage: SR(0.5).exp().log()
0.5000000000000000
sage: (pi*I).exp()
-1
```

To prevent automatic evaluation use the hold argument:

```
sage: (pi*I).exp(hold=True)
e^(I*pi)
```

This also works using functional notation:

```
sage: exp(I*pi,hold=True)
e^(I*pi)
sage: exp(I*pi)
-1
```

To then evaluate again, we use unhold():

```
sage: a = (pi*I).exp(hold=True); a.unhold()
-1
```

expand (side=None)

Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numerators of rational expressions which are sums are split into their respective terms, and multiplications are distributed over addition at all levels.

EXAMPLES:

We expand the expression $(x-y)^5$ using both method and functional notation.

```
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:

```
sage: expand((x-1)^3/(y-1))
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
sage: expand((x+sin((x+y)^2))^2)
x^2 + 2*x*sin(x^2 + 2*x*y + y^2) + sin(x^2 + 2*x*y + y^2)^2
```

Observe that expand () also expands function arguments:

```
sage: f(x) = function('f')(x)
sage: fx = f(x*(x+1)); fx
f((x + 1)*x)
sage: fx.expand()
f(x^2 + x)
```

We can expand individual sides of a relation:

```
sage: a = (16*x-13)^2 == (3*x+5)^2/2
sage: a.expand()
256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2
sage: a.expand('left')
256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2
sage: a.expand('right')
(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2
```

expand_log (algorithm='products')

Simplify symbolic expression, which can contain logs.

Expands logarithms of powers, logarithms of products and logarithms of quotients. The option algorithm specifies which expression types should be expanded.

INPUT:

- self expression to be simplified
- algorithm (default: 'products') optional, governs which expression is expanded. Possible values are
 - 'nothing' (no expansion),
 - 'powers' (log(a^r) is expanded),
 - 'products' (like 'powers' and also log(a*b) are expanded),
 - 'all' (all possible expansion).

See also examples below.

DETAILS: This uses the Maxima simplifier and sets logexpand option for this simplifier. From the Maxima documentation: "Logexpand:true causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-log(b) for rational numbers a/b, a#1. (log(1/b), for integer b, always simplifies.) If it is set to false, all of these simplifications will be turned off. "

ALIAS: log_expand() and expand_log() are the same

EXAMPLES:

By default powers and products (and quotients) are expanded, but not quotients of integers:

```
sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)
```

To expand also log(3/4) use algorithm='all':

```
sage: (log(3/4*x^pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)
```

To expand only the power use algorithm='powers'.:

```
sage: (log(x^6)).log_expand('powers')
6*log(x)
```

The expression $\log ((3*x)^6)$ is not expanded with algorithm='powers', since it is converted into product first:

```
sage: (log((3*x)^6)).log_expand('powers')
log(729*x^6)
```

This shows that the option algorithm from the previous call has no influence to future calls (we changed some default Maxima flag, and have to ensure that this flag has been restored):

```
sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)

sage: (log(3/4*x^pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)

sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)
```

AUTHORS:

• Robert Marik (11-2009)

expand_rational (side=None)

Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numerators of rational expressions which are sums are split into their respective terms, and multiplications are distributed over addition at all levels.

EXAMPLES:

We expand the expression $(x - y)^5$ using both method and functional notation.

```
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
```

```
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:

```
sage: expand((x-1)^3/(y-1))
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
sage: expand((x+sin((x+y)^2))^2)
x^2 + 2*x*sin(x^2 + 2*x*y + y^2) + sin(x^2 + 2*x*y + y^2)^2
```

Observe that *expand()* also expands function arguments:

```
sage: f(x) = function('f')(x)
sage: fx = f(x*(x+1)); fx
f((x + 1)*x)
sage: fx.expand()
f(x^2 + x)
```

We can expand individual sides of a relation:

```
sage: a = (16*x-13)^2 == (3*x+5)^2/2
sage: a.expand()
256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2
sage: a.expand('left')
256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2
sage: a.expand('right')
(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2
```

expand_sum()

For every symbolic sum in the given expression, try to expand it, symbolically or numerically.

While symbolic sum expressions with constant limits are evaluated immediately on the command line, unevaluated sums of this kind can result from, e.g., substitution of limit variables.

INPUT:

36

• self - symbolic expression

EXAMPLES:

```
sage: (k,n) = var('k,n')
sage: ex = sum(abs(-k*k+n),k,1,n) (n=8); ex
sum(abs(-k^2 + 8), k, 1, 8)
sage: ex.expand_sum()
162
sage: f(x,k) = sum((2/n)*(sin(n*x)*(-1)^(n+1)), n, 1, k)
sage: f(x,2)
-2*sum((-1)^n*sin(n*x)/n, n, 1, 2)
sage: f(x,2).expand_sum()
-sin(2*x) + 2*sin(x)
```

We can use this to do floating-point approximation as well:

```
sage: (k,n) = var('k,n')
sage: f(n)=sum(sqrt(abs(-k*k+n)),k,1,n)
sage: f(n=8)
```

```
sum(sqrt(abs(-k^2 + 8)), k, 1, 8)
sage: f(8).expand_sum()
sqrt(41) + sqrt(17) + 2*sqrt(14) + 3*sqrt(7) + 2*sqrt(2) + 3
sage: f(8).expand_sum().n()
31.7752256945384
```

See github issue #9424 for making the following no longer raise an error:

```
sage: f(8).n()
31.7752256945384
```

expand_trig (full=False, half_angles=False, plus=True, times=True)

Expand trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self.

For best results, self should already be expanded.

INPUT:

- full-(default: False) To enhance user control of simplification, this function expands only one level at a time by default, expanding sums of angles or multiple angles. To obtain full expansion into sines and cosines immediately, set the optional parameter full to True.
- half_angles (default: False) If True, causes half-angles to be simplified away.
- plus (default: True) Controls the sum rule; expansion of sums (e.g. $\sin(x+y)$) will take place only if plus is True.
- times (default: True) Controls the product rule, expansion of products (e.g. $\sin(2x)$) will take place only if times is True.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: sin(5*x).expand_trig()
5*cos(x)^4*sin(x) - 10*cos(x)^2*sin(x)^3 + sin(x)^5
sage: cos(2*x + var('y')).expand_trig()
cos(2*x)*cos(y) - sin(2*x)*sin(y)
```

We illustrate various options to this function:

```
sage: sin(x/2).expand_trig(half_angles=False)
sin(1/2*x)
sage: sin(x/2).expand_trig(half_angles=True)
(-1)^floor(1/2*x/pi)*sqrt(-1/2*cos(x) + 1/2)
```

If the expression contains terms which are factored, we expand first:

```
sage: (x, k1, k2) = var('x, k1, k2')
sage: cos((k1-k2)*x).expand().expand_trig()
cos(k1*x)*cos(k2*x) + sin(k1*x)*sin(k2*x)
```

ALIAS:

trig_expand() and expand_trig() are the same

exponentialize()

Return this symbolic expression with all circular and hyperbolic functions replaced by their respective exponential expressions.

EXAMPLES:

```
sage: x = SR.var("x")
sage: sin(x).exponentialize()
-1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
sage: sec(x).exponentialize()
2/(e^(I*x) + e^(-I*x))
sage: tan(x).exponentialize()
(-I*e^(I*x) + I*e^(-I*x))/(e^(I*x) + e^(-I*x))
sage: sin(x).exponentialize()
-1/2*e^(-x) + 1/2*e^x
sage: sech(x).exponentialize()
2/(e^(-x) + e^x)
sage: tanh(x).exponentialize()
-(e^(-x) - e^x)/(e^(-x) + e^x)
```

factor (dontfactor=None)

Factor the expression, containing any number of variables or functions, into factors irreducible over the integers.

INPUT:

- self a symbolic expression
- dontfactor list (default: []), a list of variables with respect to which factoring is not to occur. Factoring also will not take place with respect to any variables which are less important (using the variable ordering assumed for CRE form) than those on the 'dontfactor' list.

```
sage: x,y,z = var('x, y, z')
sage: (x^3-y^3).factor()
(x^2 + x*y + y^2)*(x - y)
sage: factor(-8*y - 4*x + z^2*(2*y + x))
(x + 2*y)*(z + 2)*(z - 2)
sage: f = -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2
sage: F = factor(f/(36*(1 + 2*y + y^2)), dontfactor=[x]); F
1/36*(x^2 + 2*x + 1)*(y - 1)/(y + 1)
```

If you are factoring a polynomial with rational coefficients (and dontfactor is empty) the factorization is done using Singular instead of Maxima, so the following is very fast instead of dreadfully slow:

```
sage: var('x,y')
(x, y)
sage: (x^99 + y^99).factor()
(x^60 + x^57*y^3 - x^51*y^9 - x^48*y^12 + x^42*y^18 + x^39*y^21 -
x^33*y^27 - x^30*y^30 - x^27*y^33 + x^21*y^39 + x^18*y^42 -
x^12*y^48 - x^9*y^51 + x^3*y^57 + y^60)*(x^20 + x^19*y -
x^17*y^3 - x^16*y^4 + x^14*y^6 + x^13*y^7 - x^11*y^9 -
x^10*y^10 - x^9*y^11 + x^7*y^13 + x^6*y^14 - x^4*y^16 -
x^3*y^17 + x*y^19 + y^20)*(x^10 - x^9*y + x^8*y^2 - x^7*y^3 +
x^6*y^4 - x^5*y^5 + x^4*y^6 - x^3*y^7 + x^2*y^8 - x*y^9 +
y^10)*(x^6 - x^3*y^3 + y^6)*(x^2 - x*y + y^2)*(x + y)
```

factor list(dontfactor=None)

Return a list of the factors of self, as computed by the factor command.

INPUT:

- self a symbolic expression
- dontfactor see docs for factor ()

Note: If you already have a factored expression and just want to get at the individual factors, use the _factor_list method instead.

EXAMPLES:

```
sage: var('x, y, z')
(x, y, z)
sage: f = x^3-y^3
sage: f.factor()
(x^2 + x*y + y^2)*(x - y)
```

Notice that the -1 factor is separated out:

```
sage: f.factor_list()
[(x^2 + x*y + y^2, 1), (x - y, 1)]
```

We factor a fairly straightforward expression:

```
sage: factor(-8*y - 4*x + z^2*(2*y + x)).factor_list() [(x + 2*y, 1), (z + 2, 1), (z - 2, 1)]
```

A more complicated example:

```
sage: var('x, u, v')
(x, u, v)
sage: f = expand((2*u*v^2-v^2-4*u^3)^2 * (-u)^3 * (x-sin(x))^3)
sage: f.factor()
-(4*u^3 - 2*u*v^2 + v^2)^2*u^3*(x - sin(x))^3
sage: g = f.factor_list(); g
[(4*u^3 - 2*u*v^2 + v^2, 2), (u, 3), (x - sin(x), 3), (-1, 1)]
```

This function also works for quotients:

```
sage: f = -1 - 2*x - x^2 + y^2 + 2*x*y^2 + x^2*y^2
sage: g = f/(36*(1 + 2*y + y^2)); g
1/36*(x^2*y^2 + 2*x*y^2 - x^2 + y^2 - 2*x - 1)/(y^2 + 2*y + 1)
sage: g.factor(dontfactor=[x])
1/36*(x^2 + 2*x + 1)*(y - 1)/(y + 1)
sage: g.factor_list(dontfactor=[x])
[(x^2 + 2*x + 1, 1), (y + 1, -1), (y - 1, 1), (1/36, 1)]
```

This example also illustrates that the exponents do not have to be integers:

```
sage: f = x^(2*sin(x)) * (x-1)^(sqrt(2)*x); f
(x - 1)^(sqrt(2)*x)*x^(2*sin(x))
sage: f.factor_list()
[(x - 1, sqrt(2)*x), (x, 2*sin(x))]
```

factorial (hold=False)

Return the factorial of self.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: SR(5).factorial()
120
sage: x.factorial()
factorial(x)
sage: (x^2+y^3).factorial()
factorial(y^3 + x^2)
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(5).factorial(hold=True)
factorial(5)
```

This also works using functional notation:

```
sage: factorial(5,hold=True)
factorial(5)
sage: factorial(5)
120
```

To then evaluate again, we use unhold():

```
sage: a = SR(5).factorial(hold=True); a.unhold()
120
```

factorial_simplify()

Simplify by combining expressions with factorials, and by expanding binomials into factorials.

ALIAS: factorial_simplify and simplify_factorial are the same

EXAMPLES:

Some examples are relatively clear:

```
sage: var('n,k')
(n, k)
sage: f = factorial(n+1)/factorial(n); f
factorial(n + 1)/factorial(n)
sage: f.simplify_factorial()
n + 1
```

```
sage: f = factorial(n)*(n+1); f
(n + 1)*factorial(n)
sage: simplify(f)
(n + 1)*factorial(n)
sage: f.simplify_factorial()
factorial(n + 1)
```

```
sage: f = binomial(n, k)*factorial(k)*factorial(n-k); f
binomial(n, k)*factorial(k)*factorial(-k + n)
sage: f.simplify_factorial()
factorial(n)
```

A more complicated example, which needs further processing:

```
sage: f = factorial(x)/factorial(x-2)/2 + factorial(x+1)/factorial(x)/2; f
1/2*factorial(x + 1)/factorial(x) + 1/2*factorial(x)/factorial(x - 2)
sage: g = f.simplify_factorial(); g
1/2*(x - 1)*x + 1/2*x + 1/2
sage: g.simplify_rational()
1/2*x^2 + 1/2
```

find (pattern)

Find all occurrences of the given pattern in this expression.

Note that once a subexpression matches the pattern, the search does not extend to subexpressions of it.

```
sage: var('x,y,z,a,b')
(x, y, z, a, b)
sage: w0 = SR.wild(0); w1 = SR.wild(1)

sage: (sin(x)*sin(y)).find(sin(w0))
[sin(y), sin(x)]

sage: ((sin(x)+sin(y))*(a+b)).expand().find(sin(w0))
[sin(y), sin(x)]

sage: (1+x+x^2+x^3).find(x)
[x]
sage: (1+x+x^2+x^3).find(x^w0)
[x^2, x^3]

sage: (1+x+x^2+x^3).find(y)
[]

# subexpressions of a match are not listed
sage: ((x^y)^z).find(w0^w1)
[(x^y)^z]
```

 $find_local_maximum (a, b, var=None, tol=1.48e-08, maxfun=500, imaginary_tolerance=1e-08)$

Numerically find a local maximum of the expression self on the interval [a,b] (or [b,a]) along with the point at which the maximum is attained.

See the documentation for find_local_minimum() for more details.

EXAMPLES:

find local_minimum (a, b, var=None, tol=1.48e-08, maxfun=500, imaginary_tolerance=1e-08)

Numerically find a local minimum of the expression self on the interval [a,b] (or [b,a]) and the point at which it attains that minimum. Note that self must be a function of (at most) one variable.

INPUT:

- a real number; left endpoint of interval on which to minimize
- b real number; right endpoint of interval on which to minimize
- var variable (default: first variable in self); the variable in self to maximize over
- tol positive real (default: 1.48e-08); the convergence tolerance
- maxfun natural number (default: 500); maximum function evaluations
- imaginary_tolerance (default: 1e-8); if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored when we are expecting a real answer.

OUTPUT:

A tuple (minval, x), where

- minval float. The minimum value that self takes on in the interval [a,b].
- x float. The point at which self takes on the minimum value.

EXAMPLES:

```
sage: # needs scipy
sage: f = x*cos(x)
sage: f.find_local_minimum(1, 5)
(-3.288371395590..., 3.4256184695...)
sage: f.find_local_minimum(1, 5, tol=1e-3)
(-3.288371361890..., 3.4257507903...)
sage: f.find_local_minimum(1, 5, tol=1e-2, maxfun=10)
(-3.288370845983..., 3.4250840220...)
sage: show(f.plot(0, 20))
    →needs sage.plot
sage: f.find_local_minimum(1, 15)
(-9.477294259479..., 9.5293344109...)
```

ALGORITHM:

Uses sage.numerical.optimize.find_local_minimum().

AUTHORS:

William Stein (2007-12-07)

find_root (a, b, var=None, xtol=1e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, imaginary_tolerance=1e-08)

Numerically find a root of self on the closed interval [a,b] (or [b,a]) if possible, where self is a function in the one variable. Note: this function only works in fixed (machine) precision, it is not possible to get arbitrary precision approximations with it.

INPUT:

- a, b endpoints of the interval
- var optional variable
- xtol, rtol the routine converges when a root is known to lie within xtol of the value return. Should be >= 0. The routine modifies this to take into account the relative precision of doubles.
- maxiter integer; if convergence is not achieved in maxiter iterations, an error is raised. Must be >=
 0.
- full_output bool (default: False), if True, also return object that contains information about convergence.
- imaginary_tolerance (default: 1e-8); if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored when we are expecting a real answer.

EXAMPLES:

Note that in this example both f(-2) and f(3) are positive, yet we still find a root in that interval:

```
sage: # needs scipy
sage: f = x^2 - 1
sage: f.find_root(-2, 3)
1.0
sage: f.find_root(-2, 3, x)
1.0
sage: z, result = f.find_root(-2, 3, full_output=True)
sage: result.converged
True
sage: result.flag
'converged'
sage: result.function_calls
11
sage: result.iterations
10
sage: result.root
1.0
```

More examples:

This example was fixed along with github issue #4942 - there was an error in the example pi is a root for tan(x), but an asymptote to 1/tan(x) added an example to show handling of both cases:

An example with a square root:

Some examples that Ted Kosan came up with:

With this expression, we can see there is a zero very close to the origin:

It is easy to approximate with find_root:

Using solve takes more effort, and even then gives only a solution with free (integer) variables:

```
sage: a.solve(t)
[]
sage: b = a.canonicalize_radical(); b
(46080.0*e^(1800*t) - 576000.0*e^(900*t) + 737280.0)*e^(-2400*t)
sage: b.solve(t)
[]
sage: b.solve(t, to_poly_solve=True)
[t == 1/450*I*pi*z... + 1/900*log(-3/4*sqrt(41) + 25/4),
    t == 1/450*I*pi*z... + 1/900*log(3/4*sqrt(41) + 25/4)]
sage: n(1/900*log(-3/4*sqrt(41) + 25/4))
0.000411051404934985
```

We illustrate that root finding is only implemented in one dimension:

```
sage: x, y = var('x,y')
sage: (x-y).find_root(-2,2)
Traceback (most recent call last):
...
NotImplementedError: root finding currently only implemented in 1 dimension.
```

forget()

Forget the given constraint.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: forget()
sage: assume(x>0, y < 2)
sage: assumptions()
[x > 0, y < 2]
sage: forget(y < 2)
sage: assumptions()
[x > 0]
```

fraction (base_ring)

Return this expression as element of the algebraic fraction field over the base ring given.

EXAMPLES:

```
sage: fr = (1/x).fraction(ZZ); fr
1/x
sage: parent(fr)
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: parent(((pi+sqrt(2)/x).fraction(SR)))
Fraction Field of Univariate Polynomial Ring in x over Symbolic Ring
sage: parent(((pi+sqrt(2))/x).fraction(SR))
Fraction Field of Univariate Polynomial Ring in x over Symbolic Ring
sage: y = var('y')
sage: fr = ((3*x^5 - 5*y^5)^7/(x*y)).fraction(GF(7)); fr
(3*x^35 + 2*y^35)/(x*y)
sage: parent(fr)
Fraction Field of Multivariate Polynomial Ring in x, y over Finite Field of
⇒size 7
```

free variables()

Return sorted tuple of unbound variables that occur in this expression.

EXAMPLES:

```
sage: (x,y,z) = var('x,y,z')
sage: (x+y).free_variables()
(x, y)
sage: (2*x).free_variables()
(x,)
sage: (x^y).free_variables()
(x, y)
sage: sin(x+y^z).free_variables()
(x, y, z)
sage: _ = function('f')
sage: e = limit( f(x,y), x=0 ); e
limit(f(x, y), x, 0)
sage: e.free_variables()
(y,)
```

full_simplify()

Apply simplify_factorial(), simplify_rectform(), simplify_trig(), simplify_rational(), and then expand_sum() to self (in that order).

ALIAS: simplify_full and full_simplify are the same.

EXAMPLES:

```
sage: f = sin(x)^2 + cos(x)^2
sage: f.simplify_full()
1
```

```
sage: f = sin(x/(x^2 + x))
sage: f.simplify_full()
sin(1/(x + 1))
```

```
sage: var('n,k')
(n, k)
sage: f = binomial(n,k)*factorial(k)*factorial(n-k)
sage: f.simplify_full()
factorial(n)
```

function(*args)

Return a callable symbolic expression with the given variables.

EXAMPLES:

We will use several symbolic variables in the examples below:

```
sage: var('x, y, z, t, a, w, n')
(x, y, z, t, a, w, n)
```

```
sage: u = sin(x) + x*cos(y)
sage: g = u.function(x,y)
sage: g(x,y)
x*cos(y) + sin(x)
sage: g(t,z)
t*cos(z) + sin(t)
sage: g(x^2, x^y)
x^2*cos(x^y) + sin(x^2)
```

```
sage: f = (x^2 + sin(a*w)).function(a,x,w); f
(a, x, w) |--> x^2 + sin(a*w)
sage: f(1,2,3)
sin(3) + 4
```

Using the function() method we can obtain the above function f, but viewed as a function of different variables:

```
sage: h = f.function(w,a); h
(w, a) \mid --> x^2 + \sin(a^*w)
```

This notation also works:

```
sage: h(w,a) = f
sage: h
(w, a) |--> x^2 + sin(a*w)
```

You can even make a symbolic expression f into a function by writing f(x, y) = f:

```
sage: f = x^n + y^n; f
x^n + y^n
sage: f(x,y) = f
sage: f
(x, y) |--> x^n + y^n
sage: f(2,3)
3^n + 2^n
```

gamma (hold=False)

Return the Gamma function evaluated at self.

EXAMPLES:

```
sage: x = var('x')
sage: x.gamma()
gamma(x)
sage: SR(2).gamma()
1
sage: SR(10).gamma()
362880
sage: SR(10.0r).gamma() # For ARM: rel tol 2e-15
362880.0
sage: SR(CDF(1,1)).gamma()
0.49801566811835607 - 0.15494982830181067*I
```

```
sage: gp('gamma(1+I)')
0.4980156681183560427136911175 - 0.1549498283018106851249551305*I # 32-bit
0.49801566811835604271369111746219809195 - 0.

→15494982830181068512495513048388660520*I # 64-bit
```

We plot the familiar plot of this log-convex function:

```
sage: plot(gamma(x), -6, 4).show(ymin=-3, ymax=3) #_{\rightarrow} needs sage.plot #_{\rightarrow}
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(1/2).gamma()
sqrt(pi)
sage: SR(1/2).gamma(hold=True)
gamma(1/2)
```

This also works using functional notation:

```
sage: gamma (1/2,hold=True)
gamma (1/2)
sage: gamma (1/2)
sqrt (pi)
```

To then evaluate again, we use unhold():

```
sage: a = SR(1/2).gamma(hold=True); a.unhold()
sqrt(pi)
```

gamma_normalize()

Return the expression with any gamma functions that have a common base converted to that base.

Additionally the expression is normalized so any fractions can be simplified through cancellation.

EXAMPLES:

```
sage: m,n = var('m n', domain='integer')
sage: (gamma(n+2)/gamma(n)).gamma_normalize()
(n + 1)*n
sage: (gamma(n+2)*gamma(n)).gamma_normalize()
(n + 1)*n*gamma(n)^2
sage: (gamma(n+2)*gamma(m-1)/gamma(n)/gamma(m+1)).gamma_normalize()
(n + 1)*n/((m - 1)*m)
```

Check that github issue #22826 is fixed:

```
sage: _ = var('n')
sage: (n-1).gcd(n+1)
1
sage: ex = (n-1)^2*gamma(2*n+5)/gamma(n+3) + gamma(2*n+3)/gamma(n+1)
sage: ex.gamma_normalize()
(4*n^3 - 2*n^2 - 7*n + 7)*gamma(2*n + 3)/((n + 1)*gamma(n + 1))
```

gcd(b)

Return the symbolic gcd of self and b.

Note that the polynomial GCD is unique up to the multiplication by an invertible constant. The following examples make sure all results are caught.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: SR(10).gcd(SR(15))
5
sage: (x^3 - 1).gcd(x-1) / (x-1) in QQ
True
sage: (x^3 - 1).gcd(x^2+x+1) / (x^2+x+1) in QQ
True
sage: (x^3 - x^2 + pi + x^2 - pi^2).qcd(x-pi) / (x-pi) in QQ
True
sage: gcd(sin(x)^2 + sin(x), sin(x)^2 - 1) / (sin(x) + 1) in QQ
True
sage: gcd(x^3 - y^3, x-y) / (x-y) in QQ
sage: gcd(x^100-y^100, x^10-y^10) / (x^10-y^10) in QQ
True
sage: r = gcd(expand((x^2+17*x+3/7*y)*(x^5 - 17*y + 2/3)), expand((x^*)
\hookrightarrow 13+17*x+3/7*y)*(x^5 - 17*y + 2/3)))
sage: r / (x^5 - 17*y + 2/3) in QQ
True
```

Embedded Sage objects of all kinds get basic support. Note that full algebraic GCD is not implemented yet:

```
sage: gcd(I - I*x, x^2 - 1)
x - 1
sage: gcd(I + I*x, x^2 - 1)
x + 1
sage: alg = SR(QQbar(sqrt(2) + I*sqrt(3)))
sage: gcd(alg + alg*x, x^2 - 1) # known bug (trac #28489)
x + 1
sage: gcd(alg - alg*x, x^2 - 1) # known bug (trac #28489)
```

```
x - 1
sage: sqrt2 = SR(QQbar(sqrt(2)))
sage: gcd(sqrt2 + x, x^2 - 2)  # known bug
1
```

gosper_sum (*args)

Return the summation of this hypergeometric expression using Gosper's algorithm.

INPUT:

- a symbolic expression that may contain rational functions, powers, factorials, gamma function terms, binomial coefficients, and Pochhammer symbols that are rational-linear in their arguments
- the main variable and, optionally, summation limits

EXAMPLES:

```
sage: a,b,k,m,n = var('a b k m n')
sage: SR(1).gosper_sum(n)
n
sage: SR(1).gosper_sum(n,5,8)
4
sage: n.gosper_sum(n)
1/2*(n - 1)*n
sage: n.gosper_sum(n,0,5)
15
sage: n.gosper_sum(n,0,m)
1/2*(m + 1)*m
sage: n.gosper_sum(n,a,b)
-1/2*(a + b)*(a - b - 1)
```

```
sage: (factorial(m + n)/factorial(n)).gosper_sum(n)
n*factorial(m + n)/((m + 1)*factorial(n))
sage: (binomial(m + n, n)).gosper_sum(n)
n*binomial(m + n, n)/(m + 1)
sage: (binomial(m + n, n)).gosper_sum(n, 0, a)
(a + m + 1)*binomial(a + m, a)/(m + 1)
sage: (binomial(m + n, n)).gosper_sum(n, 0, 5)
1/120*(m + 6)*(m + 5)*(m + 4)*(m + 3)*(m + 2)
sage: (rising_factorial(a,n)/rising_factorial(b,n)).gosper_sum(n)
(b + n - 1)*gamma(a + n)*gamma(b)/((a - b + 1)*gamma(a)*gamma(b + n))
sage: factorial(n).gosper_term(n)
Traceback (most recent call last):
...
ValueError: expression not Gosper-summable
```

$gosper_term(n)$

Return Gosper's hypergeometric term for self.

Suppose f``=``self is a hypergeometric term such that:

$$s_n = \sum_{k=0}^{n-1} f_k$$

and f_k doesn't depend on n. Return a hypergeometric term g_n such that $g_{n+1} - g_n = f_n$.

```
sage: _ = var('n')
sage: SR(1).gosper_term(n)
n
sage: n.gosper_term(n)
1/2*(n^2 - n)/n
sage: (n*factorial(n)).gosper_term(n)
1/n
sage: factorial(n).gosper_term(n)
Traceback (most recent call last):
...
ValueError: expression not Gosper-summable
```

gradient (variables=None)

Compute the gradient of a symbolic function.

This function returns a vector whose components are the derivatives of the original function with respect to the arguments of the original function. Alternatively, you can specify the variables as a list.

EXAMPLES:

```
sage: x,y = var('x y')
sage: f = x^2+y^2
sage: f.gradient()
(2*x, 2*y)
sage: g(x,y) = x^2+y^2
sage: g.gradient()
(x, y) |--> (2*x, 2*y)
sage: n = var('n')
sage: f(x,y) = x^n+y^n
sage: f.gradient()
(x, y) |--> (n*x^n(n-1), n*y^n(n-1))
sage: f.gradient([y,x])
(x, y) |--> (n*y^n(n-1), n*x^n(n-1))
```

See also:

gradient () of scalar fields on Euclidean spaces (and more generally pseudo-Riemannian manifolds), in particular for computing the gradient in curvilinear coordinates.

has (pattern)

EXAMPLES:

```
sage: var('x,y,a'); w0 = SR.wild(); w1 = SR.wild()
(x, y, a)
sage: (x*sin(x + y + 2*a)).has(y)
True
```

Here "x+y" is not a subexpression of "x+y+2*a" (which has the subexpressions "x", "y" and "2*a"):

```
sage: (x*sin(x + y + 2*a)).has(x+y)
False
sage: (x*sin(x + y + 2*a)).has(x + y + w0)
True
```

The following fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of which "x+y" is not a subexpression:

```
sage: (x*sin(2*(x+y) + 2*a)).has(x+y)
False
```

Although $x^1==x$ and $x^0==1$, neither "x" nor "1" are actually of the form "x^something":

```
sage: (x+1).has(x^w0)
False
```

Here is another possible pitfall, where the first expression matches because the term "-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial contains a linear term you should use the coeff() function instead.

```
sage: (4*x^2 - x + 3).has(w0*x)
True
sage: (4*x^2 + x + 3).has(w0*x)
False
sage: (4*x^2 + x + 3).has(x)
True
sage: (4*x^2 - x + 3).coefficient(x,1)
-1
sage: (4*x^2 + x + 3).coefficient(x,1)
1
```

has_wild()

Return True if this expression contains a wildcard.

EXAMPLES:

```
sage: (1 + x^2).has_wild()
False
sage: (SR.wild(0) + x^2).has_wild()
True
sage: SR.wild(0).has_wild()
True
```

hessian()

Compute the hessian of a function. This returns a matrix components are the 2nd partial derivatives of the original function.

EXAMPLES:

```
sage: x,y = var('x y')
sage: f = x^2+y^2
sage: f.hessian()
[2 0]
[0 2]
sage: g(x,y) = x^2+y^2
sage: g.hessian()
[(x, y) |--> 2 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
```

horner(x)

Rewrite this expression as a polynomial in Horner form in x.

EXAMPLES:

```
sage: add((i+1)*x^i for i in range(5)).horner(x)
(((5*x + 4)*x + 3)*x + 2)*x + 1
```

```
sage: x, y, z = SR.var('x,y,z')
sage: (x^5 + y*cos(x) + z^3 + (x + y)^2 + y^x).horner(x)
z^3 + ((x^3 + 1)*x + 2*y)*x + y^2 + y*cos(x) + y^x

sage: expr = sin(5*x).expand_trig(); expr
5*cos(x)^4*sin(x) - 10*cos(x)^2*sin(x)^3 + sin(x)^5
sage: expr.horner(sin(x))
(5*cos(x)^4 - (10*cos(x)^2 - sin(x)^2)*sin(x)^2)*sin(x)
sage: expr.horner(cos(x))
sin(x)^5 + 5*(cos(x)^2*sin(x) - 2*sin(x)^3)*cos(x)^2
```

hypergeometric_simplify (algorithm='maxima')

Simplify an expression containing hypergeometric or confluent hypergeometric functions.

INPUT:

• algorithm - (default: 'maxima') the algorithm to use for for simplification. Implemented are 'maxima', which uses Maxima's hgfred function, and 'sage', which uses an algorithm implemented in the hypergeometric module

ALIAS: hypergeometric_simplify() and simplify_hypergeometric() are the same

EXAMPLES:

```
sage: hypergeometric((5, 4), (4, 1, 2, 3),
                    x).simplify_hypergeometric()
1/144*x^2*hypergeometric((), (3, 4), x) + ...
1/3*x*hypergeometric((), (2, 3), x) + hypergeometric((), (1, 2), x)
sage: (2*hypergeometric((), (), x)).simplify_hypergeometric()
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, __
⇔unstable
....: .simplify_hypergeometric())
laguerre (-laguerre (-e^x, x), x)
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, __
....: .simplify_hypergeometric(algorithm='sage'))
hypergeometric((hypergeometric((e^x,), (1,), x),), (1,), x)
sage: hypergeometric_M(1, 3, x).simplify_hypergeometric()
-2*((x + 1)*e^{(-x)} - 1)*e^{x/x^2}
sage: (2 * hypergeometric_U(1, 3, x)).simplify_hypergeometric()
2*(x + 1)/x^2
```

imag (hold=False)

Return the imaginary part of this symbolic expression.

EXAMPLES:

```
sage: sqrt(-2).imag_part()
sqrt(2)
```

We simplify $\ln(\exp(z))$ to z. This should only be for $-\pi < \operatorname{Im}(z) <= \pi$, but Maxima does not have a symbolic imaginary part function, so we cannot use assume to assume that first:

```
sage: z = var('z')
sage: f = log(exp(z))

(continues on next page)
```

```
sage: f
log(e^z)
sage: f.simplify()
z
sage: forget()
```

A more symbolic example:

```
sage: var('a, b')
(a, b)
sage: f = log(a + b*I)
sage: f.imag_part()
arctan2(imag_part(a) + real_part(b), -imag_part(b) + real_part(a))
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(I).imag_part()
1
sage: SR(I).imag_part(hold=True)
imag_part(I)
```

This also works using functional notation:

```
sage: imag_part(I, hold=True)
imag_part(I)
sage: imag_part(SR(I))
1
```

To then evaluate again, we use unhold():

```
sage: a = SR(I).imag_part(hold=True); a.unhold()
1
```

imag_part (hold=False)

Return the imaginary part of this symbolic expression.

EXAMPLES:

```
sage: sqrt(-2).imag_part()
sqrt(2)
```

We simplify $\ln(\exp(z))$ to z. This should only be for $-\pi < \operatorname{Im}(z) <= \pi$, but Maxima does not have a symbolic imaginary part function, so we cannot use assume to assume that first:

```
sage: z = var('z')
sage: f = log(exp(z))
sage: f
log(e^z)
sage: f.simplify()
z
sage: forget()
```

A more symbolic example:

```
sage: var('a, b')
(a, b)
```

```
sage: f = log(a + b*I)
sage: f.imag_part()
arctan2(imag_part(a) + real_part(b), -imag_part(b) + real_part(a))
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(I).imag_part()
1
sage: SR(I).imag_part(hold=True)
imag_part(I)
```

This also works using functional notation:

```
sage: imag_part(I, hold=True)
imag_part(I)
sage: imag_part(SR(I))
1
```

To then evaluate again, we use unhold():

```
sage: a = SR(I).imag_part(hold=True); a.unhold()
1
```

$implicit_derivative(Y, X, n=1)$

Return the n-th derivative of Y with respect to X given implicitly by this expression.

INPUT:

- Y The dependent variable of the implicit expression.
- X The independent variable with respect to which the derivative is taken.
- n (default: 1) the order of the derivative.

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: f = cos(x)*sin(y)
sage: f.implicit_derivative(y, x)
sin(x)*sin(y)/(cos(x)*cos(y))
sage: g = x*y^2
sage: g.implicit_derivative(y, x, 3)
-1/4*(y + 2*y/x)/x^2 + 1/4*(2*y^2/x - y^2/x^2)/(x*y) - 3/4*y/x^3
```

It is an error to not include an independent variable term in the expression:

```
sage: (cos(x)*sin(x)).implicit_derivative(y, x)
Traceback (most recent call last):
...
ValueError: Expression cos(x)*sin(x) contains no y terms
```

integral(*args, **kwds)

Compute the integral of self.

Please see sage.symbolic.integration.integral.integrate() for more details.

```
sage: sin(x).integral(x,0,3)
-cos(3) + 1
sage: sin(x).integral(x)
-cos(x)
```

integrate (*args, **kwds)

Compute the integral of self.

Please see sage.symbolic.integration.integral.integrate() for more details.

EXAMPLES:

```
sage: sin(x).integral(x,0,3)
-cos(3) + 1
sage: sin(x).integral(x)
-cos(x)
```

$inverse_laplace(t, s)$

Return inverse Laplace transform of self.

See sage.calculus.calculus.inverse_laplace

EXAMPLES:

```
sage: var('w, m')
(w, m)
sage: f = (1/(w^2+10)).inverse_laplace(w, m); f
1/10*sqrt(10)*sin(sqrt(10)*m)
```

is_algebraic()

Return True if this expression is known to be algebraic.

EXAMPLES:

```
sage: sqrt(2).is_algebraic()
True
sage: (5*sqrt(2)).is_algebraic()
True
sage: (sqrt(2) + 2^(1/3) - 1).is_algebraic()
True
sage: (I*golden_ratio + sqrt(2)).is_algebraic()
True
sage: (sqrt(2) + pi).is_algebraic()
False
sage: SR(QQ(2/3)).is_algebraic()
True
sage: SR(1.2).is_algebraic()
False
sage: complex_root_of(x^3 - x^2 - x - 1, 0).is_algebraic()
True
```

is callable()

Return True if self is a callable symbolic expression.

```
sage: var('a x y z')
(a, x, y, z)
sage: f(x, y) = a + 2*x + 3*y + z
sage: f.is_callable()
True
sage: (a+2*x).is_callable()
False
```

is_constant()

Return whether this symbolic expression is a constant.

A symbolic expression is constant if it does not contain any variables.

EXAMPLES:

```
sage: pi.is_constant()
True
sage: SR(1).is_constant()
True
sage: SR(2).is_constant()
True
sage: log(2).is_constant()
True
sage: SR(I).is_constant()
True
sage: x.is_constant()
False
```

is_exact()

Return True if this expression only contains exact numerical coefficients.

EXAMPLES:

```
sage: x, y = var('x, y')
sage: (x+y-1).is_exact()
True
sage: (x+y-1.9).is_exact()
False
sage: x.is_exact()
True
sage: pi.is_exact()
True
sage: (sqrt(x-y) - 2*x + 1).is_exact()
True
sage: ((x-y)^0.5 - 2*x + 1).is_exact()
False
```

is_infinity()

Return True if self is an infinite expression.

```
sage: SR(oo).is_infinity()
True
sage: x.is_infinity()
False
```

is_integer()

Return True if this expression is known to be an integer.

EXAMPLES:

```
sage: SR(5).is_integer()
True
```

is_negative()

Return True if this expression is known to be negative.

EXAMPLES:

```
sage: SR(-5).is_negative()
True
```

Check if we can correctly deduce negativity of mul objects:

```
sage: t0 = SR.symbol("t0", domain='positive')
sage: t0.is_negative()
False
sage: (-t0).is_negative()
True
sage: (-pi).is_negative()
True
```

Assumptions on symbols are handled correctly:

```
sage: y = var('y')
sage: assume(y < 0)
sage: y.is_positive()
False
sage: y.is_negative()
True
sage: forget()</pre>
```

is_negative_infinity()

Return True if self is a negative infinite expression.

EXAMPLES:

```
sage: SR(oo).is_negative_infinity()
False
sage: SR(-oo).is_negative_infinity()
True
sage: x.is_negative_infinity()
False
```

is_numeric()

A Pynac numeric is an object you can do arithmetic with that is not a symbolic variable, function, or constant. Return True if this expression only consists of a numeric object.

EXAMPLES:

```
sage: SR(1).is_numeric()
True
sage: x.is_numeric()
False
```

```
sage: pi.is_numeric()
False
sage: sin(x).is_numeric()
False
```

is_polynomial(var)

Return True if self is a polynomial in the given variable.

EXAMPLES:

```
sage: var('x,y,z')
(x, y, z)
sage: t = x^2 + y; t
x^2 + y
sage: t.is_polynomial(x)
True
sage: t.is_polynomial(y)
sage: t.is_polynomial(z)
True
sage: t = sin(x) + y; t
y + \sin(x)
sage: t.is_polynomial(x)
sage: t.is_polynomial(y)
True
sage: t.is_polynomial(sin(x))
True
```

is_positive()

Return True if this expression is known to be positive.

EXAMPLES:

```
sage: t0 = SR.symbol("t0", domain='positive')
sage: t0.is_positive()
True
sage: t0.is_negative()
False
sage: t0.is_real()
True
sage: t1 = SR.symbol("t1", domain='positive')
sage: (t0*t1).is_positive()
True
sage: (t0 + t1).is_positive()
True
sage: (t0 + t1).is_positive()
```

```
sage: forget()
sage: assume(x>0)
sage: x.is_positive()
True
sage: cosh(x).is_positive()
True
```

```
sage: f = function('f')(x)
sage: assume(f>0)
sage: f.is_positive()
True
sage: forget()
```

is_positive_infinity()

Return True if self is a positive infinite expression.

EXAMPLES:

```
sage: SR(oo).is_positive_infinity()
True
sage: SR(-oo).is_positive_infinity()
False
sage: x.is_infinity()
False
```

is_rational_expression()

Return True if this expression if a rational expression, i.e., a quotient of polynomials.

EXAMPLES:

```
sage: var('x y z')
(x, y, z)
sage: ((x + y + z)/(1 + x^2)).is_rational_expression()
True
sage: ((1 + x + y)^10).is_rational_expression()
True
sage: ((1/x + z)^5 - 1).is_rational_expression()
True
sage: (1/(x + y)).is_rational_expression()
True
sage: (exp(x) + 1).is_rational_expression()
False
sage: (sin(x*y) + z^3).is_rational_expression()
False
sage: (exp(x) + exp(-x)).is_rational_expression()
```

is_real()

Return True if this expression is known to be a real number.

EXAMPLES:

```
sage: t0 = SR.symbol("t0", domain='real')
sage: t0.is_real()
True
sage: t0.is_positive()
False
sage: t1 = SR.symbol("t1", domain='positive')
sage: (t0+t1).is_real()
True
sage: (t0+x).is_real()
False
sage: (t0*t1).is_real()
True
```

```
sage: t2 = SR.symbol("t2", domain='positive')
sage: (t1**t2).is_real()
True
sage: (t0*x).is_real()
False
sage: (t0^t1).is_real()
False
sage: (t1^t2).is_real()
True
sage: gamma(pi).is_real()
True
sage: cosh(-3).is_real()
sage: cos(exp(-3) + log(2)).is_real()
sage: gamma(t1).is_real()
True
sage: (x^pi).is_real()
False
sage: (cos(exp(t0) + log(t1))^8).is_real()
True
sage: cos(I + 1).is_real()
False
sage: sin(2 - I).is_real()
False
sage: (2^t0).is_real()
True
```

The following is real, but we cannot deduce that.:

```
sage: (x*x.conjugate()).is_real()
False
```

Assumption of real has the same effect as setting the domain:

```
sage: forget()
sage: assume(x, 'real')
sage: x.is_real()
True
sage: cosh(x).is_real()
True
sage: forget()
```

The real domain is also set with the integer domain:

```
sage: SR.var('x', domain='integer').is_real()
True
```

is_relational()

Return True if self is a relational expression.

```
sage: x = var('x')
sage: eqn = (x-1)^2 = x^2 - 2*x + 3
sage: eqn.is_relational()
True
                                                                        (continues on next page)
```

```
sage: sin(x).is_relational()
False
```

is_square()

Return True if self is the square of another symbolic expression.

This is True for all constant, non-relational expressions (containing no variables or comparison), and not implemented otherwise.

EXAMPLES:

```
sage: SR(4).is_square()
True
sage: SR(5).is_square()
True
sage: pi.is_square()
True
sage: x.is_square()
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for non-constant
or relational elements of Symbolic Ring
sage: r = SR(4) == SR(5)
sage: r.is_square()
Traceback (most recent call last):
...
NotImplementedError: is_square() not implemented for non-constant
or relational elements of Symbolic Ring
```

is_symbol()

Return True if this symbolic expression consists of only a symbol, i.e., a symbolic variable.

EXAMPLES:

```
sage: x.is_symbol()
True
sage: var('y')
y
sage: y.is_symbol()
True
sage: (x*y).is_symbol()
False
sage: pi.is_symbol()
False
```

```
sage: ((x*y)/y).is_symbol()
True
sage: (x^y).is_symbol()
False
```

is_terminating_series()

Return True if self is a series without order term.

A series is terminating if it can be represented exactly, without requiring an order term. You can explicitly request terminating series by setting the order to positive infinity.

OUTPUT:

Boolean. Whether self was constructed by series () and has no order term.

EXAMPLES:

```
sage: (x^5+x^2+1).series(x, +oo)
1 + 1*x^2 + 1*x^5
sage: (x^5+x^2+1).series(x,+oo).is_terminating_series()
True
sage: SR(5).is_terminating_series()
False
sage: var('x')
x
sage: x.is_terminating_series()
False
sage: exp(x).series(x,10).is_terminating_series()
False
```

is_trivial_zero()

Check if this expression is trivially equal to zero without any simplification.

This method is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.

EXAMPLES:

```
sage: SR(0).is_trivial_zero()
True
sage: SR(0.0).is_trivial_zero()
True
sage: SR(float(0.0)).is_trivial_zero()
True

sage: (SR(1)/2^1000).is_trivial_zero()
False
sage: SR(1./2^10000).is_trivial_zero()
False
```

The is_zero() method is more capable:

```
sage: t = pi + (pi - 1)*pi - pi^2
sage: t.is_trivial_zero()
False
sage: t.is_zero()
True
sage: t = pi + x*pi + (pi - 1 - x)*pi - pi^2
sage: t.is_zero()
True
sage: u = sin(x)^2 + cos(x)^2 - 1
sage: u.is_trivial_zero()
False
sage: u.is_zero()
True
```

is_trivially_equal(other)

Check if this expression is trivially equal to the argument expression, without any simplification.

Note that the expressions may still be subject to immediate evaluation.

This method is intended to be used in library code where trying to obtain a mathematically correct result by applying potentially expensive rewrite rules is not desirable.

EXAMPLES:

```
sage: (x^2).is_trivially_equal(x^2)
sage: ((x+1)^2 - 2*x - 1).is_trivially_equal(x^2)
False
sage: (x*(x+1)).is\_trivially\_equal((x+1)*x)
True
sage: (x^2 + x).is_{trivially_equal((x+1)*x)}
False
sage: ((x+1)*(x+1)).is_trivially_equal((x+1)^2)
True
sage: (x^2 + 2*x + 1).is_{trivially_equal((x+1)^2)}
False
sage: (x^-1).is\_trivially\_equal(1/x)
True
sage: (x/x^2).is_trivially_equal(1/x)
sage: ((x^2+x) / (x+1)).is\_trivially\_equal(1/x)
False
```

is_unit()

Return True if this expression is a unit of the symbolic ring.

Note that a proof may be attempted to get the result. To avoid this use (ex-1).is_trivial_zero().

EXAMPLES:

```
sage: SR(1).is_unit()
True
sage: SR(-1).is_unit()
True
sage: SR(0).is_unit()
False
```

iterator()

Return an iterator over the operands of this expression.

EXAMPLES:

```
sage: x,y,z = var('x,y,z')
sage: list((x+y+z).iterator())
[x, y, z]
sage: list((x*y*z).iterator())
[x, y, z]
sage: list((x^y*z*(x+y)).iterator())
[x + y, x^y, z]
```

Note that symbols, constants and numeric objects do not have operands, so the iterator function raises an error in these cases:

```
sage: x.iterator()
Traceback (most recent call last):
...
ValueError: expressions containing only a numeric coefficient,
constant or symbol have no operands
sage: pi.iterator()
Traceback (most recent call last):
```

```
ValueError: expressions containing only a numeric coefficient, constant or symbol have no operands

sage: SR(5).iterator()

Traceback (most recent call last):
...

ValueError: expressions containing only a numeric coefficient, constant or symbol have no operands
```

laplace(t, s)

Return Laplace transform of self.

See sage.calculus.calculus.laplace

EXAMPLES:

```
sage: var('x,s,z')
(x, s, z)
sage: (z + exp(x)).laplace(x, s)
z/s + 1/(s - 1)
```

laurent_polynomial (base_ring=None, ring=None)

Return this symbolic expression as a Laurent polynomial over the given base ring, if possible.

INPUT:

- base_ring (optional) the base ring for the polynomial
- ring (optional) the parent for the polynomial

You can specify either the base ring (base_ring) you want the output Laurent polynomial to be over, or you can specify the full laurent polynomial ring (ring) you want the output laurent polynomial to be an element of.

EXAMPLES:

```
sage: f = x^2 -2/3/x + 1
sage: f.laurent_polynomial(QQ)
-2/3*x^-1 + 1 + x^2
sage: f.laurent_polynomial(GF(19))
12*x^-1 + 1 + x^2
```

lcm(b)

Return the lcm of self and b.

The lcm is computed from the gcd of self and b implicitly from the relation self * b = gcd(self, b) * lcm(self, b).

Note: In agreement with the convention in use for integers, if self * b == 0, then gcd(self, b) == max(self, b) and lcm(self, b) == 0.

Note: Since the polynomial lcm is computed from the gcd, and the polynomial gcd is unique up to a constant factor (which can be negative), the polynomial lcm is unique up to a factor of -1.

```
sage: var('x,y')
(x, y)
sage: SR(10).lcm(SR(15))
30
sage: (x^3 - 1).lcm(x-1)
x^3 - 1
sage: (x^3 - 1).lcm(x^2+x+1)
x^3 - 1
sage: (x^3 - sage.symbolic.constants.pi).lcm(x-sage.symbolic.constants.pi)
(pi - x^3)*(pi - x)
sage: lcm(x^3 - y^3, x-y) / (x^3 - y^3) in [1,-1]
True
sage: lcm(x^100-y^100, x^10-y^10) / (x^100 - y^100) in [1,-1]
True
sage: a = expand((x^2+17*x+3/7*y)*(x^5 - 17*y + 2/3))
sage: b = expand((x^13+17*x+3/7*y)*(x^5 - 17*y + 2/3))
sage: gcd(a,b) * lcm(a,b) / (a * b) in [1,-1]
True
```

The result is not automatically simplified:

```
sage: ex = lcm(sin(x)^2 - 1, sin(x)^2 + sin(x)); ex
(sin(x)^2 + sin(x))*(sin(x)^2 - 1)/(sin(x) + 1)
sage: ex.simplify_full()
sin(x)^3 - sin(x)
```

leading_coeff(s)

Return the leading coefficient of s in self.

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.leading_coefficient(x)
sin(x*y)
sage: f.leading_coefficient(y)
x
sage: f.leading_coefficient(sin(x*y))
x^3 + 2/x
```

$leading_coefficient(s)$

Return the leading coefficient of s in self.

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.leading_coefficient(x)
sin(x*y)
sage: f.leading_coefficient(y)
x
sage: f.leading_coefficient(sin(x*y))
x^3 + 2/x
```

left()

If self is a relational expression, return the left hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

left_hand_side()

If self is a relational expression, return the left hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

1hs()

If self is a relational expression, return the left hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 == x^2 - 2*x + 3
sage: eqn.left_hand_side()
(x - 1)^2
sage: eqn.lhs()
(x - 1)^2
sage: eqn.left()
(x - 1)^2
```

limit (*args, **kwds)

Return a symbolic limit.

See sage.calculus.calculus.limit

EXAMPLES:

list (x=None)

Return the coefficients of this symbolic expression as a polynomial in x.

INPUT:

• x – optional variable.

OUTPUT:

A list of expressions where the n-th element is the coefficient of x^n when self is seen as polynomial in x.

EXAMPLES:

```
sage: var('x, y, a')
(x, y, a)
sage: (x^5).list()
[0, 0, 0, 0, 0, 1]
sage: p = x - x^3 + 5/7*x^5
sage: p.list()
[0, 1, 0, -1, 0, 5/7]
sage: p = expand((x-a*sqrt(2))^2 + x + 1); p
-2*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: p.list(a)
[x^2 + x + 1, -2*sqrt(2)*x, 2]
sage: s = (1/(1-x)).series(x,6); s
1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + 0rder(x^6)
sage: s.list()
[1, 1, 1, 1, 1, 1]
```

log (b=None, hold=False)

Return the logarithm of self.

EXAMPLES:

```
sage: x, y = var('x, y')
sage: x.log()
log(x)
sage: (x^y + y^x).log()
log(x^y + y^x)
sage: SR(0).log()
-Infinity
sage: SR(-1).log()
sage: SR(1).log()
sage: SR(1/2).log()
log(1/2)
sage: SR(0.5).log()
-0.693147180559945
sage: SR(0.5).log().exp()
0.500000000000000
sage: math.log(0.5)
-0.6931471805599453
sage: plot(lambda x: SR(x).log(), 0.1,10)
                                                                               #__
→needs sage.plot
Graphics object consisting of 1 graphics primitive
```

To prevent automatic evaluation use the hold argument:

```
sage: I.log()
1/2*I*pi
sage: I.log(hold=True)
log(I)
```

To then evaluate again, we use unhold():

```
sage: a = I.log(hold=True); a.unhold()
1/2*I*pi
```

The hold parameter also works in functional notation:

```
sage: log(-1,hold=True)
log(-1)
sage: log(-1)
I*pi
```

log_expand(algorithm='products')

Simplify symbolic expression, which can contain logs.

Expands logarithms of powers, logarithms of products and logarithms of quotients. The option algorithm specifies which expression types should be expanded.

INPUT:

- self expression to be simplified
- algorithm (default: 'products') optional, governs which expression is expanded. Possible values are
 - 'nothing' (no expansion),
 - 'powers' (log(a^r) is expanded),
 - 'products' (like 'powers' and also log(a*b) are expanded),
 - 'all' (all possible expansion).

See also examples below.

DETAILS: This uses the Maxima simplifier and sets logexpand option for this simplifier. From the Maxima documentation: "Logexpand:true causes log(a^b) to become b*log(a). If it is set to all, log(a*b) will also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-log(b) for rational numbers a/b, a#1. (log(1/b), for integer b, always simplifies.) If it is set to false, all of these simplifications will be turned off. "

ALIAS: log_expand() and expand_log() are the same

EXAMPLES:

By default powers and products (and quotients) are expanded, but not quotients of integers:

```
sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)
```

To expand also log(3/4) use algorithm='all':

```
sage: (log(3/4*x^pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)
```

To expand only the power use algorithm='powers'.:

```
sage: (log(x^6)).log_expand('powers')
6*log(x)
```

The expression $\log ((3*x)^6)$ is not expanded with algorithm='powers', since it is converted into product first:

```
sage: (log((3*x)^6)).log_expand('powers')
log(729*x^6)
```

This shows that the option algorithm from the previous call has no influence to future calls (we changed some default Maxima flag, and have to ensure that this flag has been restored):

```
sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)

sage: (log(3/4*x^pi)).log_expand('all')
pi*log(x) + log(3) - 2*log(2)

sage: (log(3/4*x^pi)).log_expand()
pi*log(x) + log(3/4)
```

AUTHORS:

• Robert Marik (11-2009)

log_gamma (hold=False)

Return the log gamma function evaluated at self. This is the logarithm of gamma of self, where gamma is a complex function such that gamma(n) equals factorial(n-1).

EXAMPLES:

```
sage: x = var('x')
sage: x.log_gamma()
log_gamma(x)
sage: SR(2).log_gamma()
sage: SR(5).log_gamma()
log(24)
sage: a = SR(5).log_gamma(); a.n()
3.17805383034795
sage: SR(5-1).factorial().log()
log(24)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: plot(lambda x: SR(x).log_gamma(), -7,8, plot_points=1000).show()
→needs sage.plot
sage: math.exp(0.5)
1.6487212707001282
sage: plot(lambda x: (SR(x).exp() - SR(-x).exp())/2 - SR(x).sinh(), -1, 1)
→needs sage.plot
Graphics object consisting of 1 graphics primitive
```

To prevent automatic evaluation use the hold argument:

```
sage: SR(5).log_gamma(hold=True)
log_gamma(5)
```

To evaluate again, currently we must use numerical evaluation via n ():

```
sage: a = SR(5).log_gamma(hold=True); a.n()
3.17805383034795
```

log simplify (algorithm=None)

Simplify a (real) symbolic expression that contains logarithms.

The given expression is scanned recursively, transforming subexpressions of the form $a \log(b) + c \log(d)$ into $\log(b^a d^c)$ before simplifying within the $\log(b)$.

The user can specify conditions that a and c must satisfy before this transformation will be performed using the optional parameter algorithm.

Warning: This is only safe to call if every variable in the given expression is assumed to be real. The simplification it performs is in general not valid over the complex numbers. For example:

```
sage: x,y = SR.var('x,y')
sage: f = log(x*y) - (log(x) + log(y))
sage: f(x=-1, y=i)
-2*I*pi
sage: f.simplify_log()
0
```

INPUT:

- self expression to be simplified
- algorithm (default: None) optional, governs the condition on a and c which must be satisfied to contract expression $a \log(b) + c \log(d)$. Values are
 - None (use Maxima default, integers),
 - 'one' (1 and -1),
 - 'ratios' (rational numbers),
 - 'constants' (constants),
 - 'all' (all expressions).

ALGORITHM:

This uses the Maxima logcontract () command.

ALIAS:

log_simplify() and simplify_log() are the same.

EXAMPLES:

```
\begin{array}{lll}
sage: x, y, t = var('x y t')
\end{array}
```

Only two first terms are contracted in the following example; the logarithm with coefficient $\frac{1}{2}$ is not contracted:

```
sage: f = log(x)+2*log(y)+1/2*log(t)
sage: f.simplify_log()
log(x*y^2) + 1/2*log(t)
```

To contract all terms in the previous example, we use the 'ratios' algorithm:

```
sage: f.simplify_log(algorithm='ratios')
log(sqrt(t)*x*y^2)
```

To contract terms with no coefficient (more precisely, with coefficients 1 and -1), we use the 'one' algorithm:

```
sage: f = log(x)+2*log(y)-log(t)
sage: f.simplify_log('one')
2*log(y) + log(x/t)
```

```
sage: f = log(x)+log(y)-1/3*log((x+1))
sage: f.simplify_log()
log(x*y) - 1/3*log(x + 1)

sage: f.simplify_log('ratios')
log(x*y/(x + 1)^(1/3))
```

 π is an irrational number; to contract logarithms in the following example we have to set algorithm to 'constants' or 'all':

```
sage: f = log(x)+log(y)-pi*log((x+1))
sage: f.simplify_log('constants')
log(x*y/(x + 1)^pi)
```

x*log(9) is contracted only if algorithm is 'all':

```
sage: (x*log(9)).simplify_log()
2*x*log(3)
sage: (x*log(9)).simplify_log('all')
log(3^(2*x))
```

AUTHORS:

• Robert Marik (11-2009)

low_degree (s)

Return the exponent of the lowest power of s in self.

OUTPUT:

An integer

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y^10 + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + 2*sin(x*y)/x + x/y^10 + 100
sage: f.low_degree(x)
-1
sage: f.low_degree(y)
-10
sage: f.low_degree(sin(x*y))
0
sage: (x^3+y).low_degree(x)
0
sage: (x+x**2).low_degree(x)
```

match (pattern)

Check if self matches the given pattern.

INPUT:

• pattern – a symbolic expression, possibly containing wildcards to match for

OUTPUT:

One of

None if there is no match, or a dictionary mapping the wildcards to the matching values if a match was found. Note that the dictionary is empty if there were no wildcards in the given pattern.

See also http://www.ginac.de/tutorial/Pattern-matching-and-advanced-substitutions.html

EXAMPLES:

```
sage: var('x,y,z,a,b,c,d,f,g')
(x, y, z, a, b, c, d, f, g)
sage: w0 = SR.wild(0); w1 = SR.wild(1); w2 = SR.wild(2)
sage: ((x+y)^a).match((x+y)^a) # no wildcards, so empty dict
{ }
sage: print(((x+y)^a).match((x+y)^b))
None
sage: t = ((x+y)^a).match(w0^w1)
sage: t[w0], t[w1]
(x + y, a)
sage: print(((x+y)^a).match(w0^w0))
None
sage: ((x+y)^(x+y)).match(w0^w0)
\{\$0: x + y\}
sage: t = ((a+b)*(a+c)).match((a+w0)*(a+w1))
sage: set([t[w0], t[w1]]) == set([b, c])
True
sage: ((a+b)*(a+c)).match((w0+b)*(w0+c))
{$0: a}
sage: t = ((a+b)*(a+c)).match((w0+w1)*(w0+w2))
sage: t[w0]
sage: set([t[w1], t[w2]]) == set([b, c])
True
sage: t = ((a+b)*(a+c)).match((w0+w1)*(w1+w2))
sage: t[w1]
sage: set([t[w0], t[w2]]) == set([b, c])
sage: t = (a*(x+y)+a*z+b).match(a*w0+w1)
sage: s = set([t[w0], t[w1]])
sage: s == set([x+y, a*z+b]) or s == set([z, a*(x+y)+b])
sage: print((a+b+c+d+f+g).match(c))
sage: (a+b+c+d+f+g).has(c)
True
sage: (a+b+c+d+f+g).match(c+w0)
\{\$0: a + b + d + f + g\}
sage: (a+b+c+d+f+g).match(c+g+w0)
\{\$0: a + b + d + f\}
sage: (a+b).match(a+b+w0) # known bug
{$0: 0}
sage: print((a*b^2).match(a^w0*b^w1))
None
sage: (a*b^2).match(a*b^w1)
sage: (x*x.arctan2(x^2)).match(w0*w0.arctan2(w0^2))
{$0: x}
```

Beware that behind-the-scenes simplification can lead to surprising results in matching:

```
sage: print((x+x).match(w0+w1))
None
sage: t = x+x; t
2*x
sage: t.operator()
<function mul_vararg ...>
```

Since asking to match w0+w1 looks for an addition operator, there is no match.

maxima_methods()

Provide easy access to maxima methods, converting the result to a Sage expression automatically.

EXAMPLES:

```
sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
log(sqrt(2) + 1) + log(sqrt(2) - 1)
sage: res = t.maxima_methods().logcontract(); res
log((sqrt(2) + 1)*(sqrt(2) - 1))
sage: type(res)
<class 'sage.symbolic.expression.Expression'>
```

minpoly (*args, **kwds)

Return the minimal polynomial of this symbolic expression.

EXAMPLES:

```
sage: golden_ratio.minpoly()
x^2 - x - 1
```

mul (hold=False, *args)

Return the product of the current expression and the given arguments.

To prevent automatic evaluation use the hold argument.

EXAMPLES:

```
sage: x.mul(x)
x^2
sage: x.mul(x, hold=True)
x*x
sage: x.mul(x, (2+x), hold=True)
(x + 2) *x*x
sage: x.mul(x, (2+x), x, hold=True)
(x + 2) *x*x*x
sage: x.mul(x, (2+x), x, hold=True)
(x + 2) *x*x*x
sage: x.mul(x, (2+x), x, 2*x, hold=True)
(2*x) *(x + 2) *x*x*x
```

To then evaluate again, we use unhold():

```
sage: a = x.mul(x, hold=True); a.unhold()
x^2
```

multiply_both_sides (x, checksign=None)

Return a relation obtained by multiplying both sides of this relation by x.

Note: The *checksign* keyword argument is currently ignored and is included for backward compatibility reasons only.

EXAMPLES:

```
sage: var('x,y'); f = x + 3 < y - 2
(x, y)
sage: f.multiply_both_sides(7)
7*x + 21 < 7*y - 14
sage: f.multiply_both_sides(-1/2)
-1/2*x - 3/2 < -1/2*y + 1
sage: f*(-2/3)
-2/3*x - 2 < -2/3*y + 4/3
sage: f*(-pi)
-pi*(x + 3) < -pi*(y - 2)</pre>
```

Since the direction of the inequality never changes when doing arithmetic with equations, you can multiply or divide the equation by a quantity with unknown sign:

```
sage: f*(1+I)
(I + 1)*x + 3*I + 3 < (I + 1)*y - 2*I - 2
sage: f = sqrt(2) + x == y^3
sage: f.multiply_both_sides(I)
I*x + I*sqrt(2) == I*y^3
sage: f.multiply_both_sides(-1)
-x - sqrt(2) == -y^3</pre>
```

Note that the direction of the following inequalities is not reversed:

```
sage: (x^3 + 1 > 2*sqrt(3)) * (-1)
-x^3 - 1 > -2*sqrt(3)) * (-1)
sage: (x^3 + 1 >= 2*sqrt(3)) * (-1)
-x^3 - 1 >= -2*sqrt(3)
sage: (x^3 + 1 <= 2*sqrt(3)) * (-1)
-x^3 - 1 <= -2*sqrt(3)</pre>
```

negation()

Return the negated version of self.

This is the relation that is False iff self is True.

EXAMPLES:

```
sage: (x < 5).negation()
x >= 5
sage: (x == sin(3)).negation()
x != sin(3)
sage: (2*x >= sqrt(2)).negation()
2*x < sqrt(2)</pre>
```

nintegral(*args, **kwds)

Compute the numerical integral of self.

Please see sage.calculus.calculus.nintegral for more details.

EXAMPLES:

```
sage: sin(x).nintegral(x,0,3)
(1.989992496600..., 2.209335488557...e-14, 21, 0)
```

```
nintegrate(*args, **kwds)
```

Compute the numerical integral of self.

Please see sage.calculus.calculus.nintegral for more details.

EXAMPLES:

```
sage: sin(x).nintegral(x,0,3)
(1.989992496600..., 2.209335488557...e-14, 21, 0)
```

nops()

Return the number of operands of this expression.

EXAMPLES:

```
sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: a.number_of_operands()
0
sage: (a^2 + b^2 + (x+y)^2).number_of_operands()
3
sage: (a^2).number_of_operands()
2
sage: (a*b^2*c).number_of_operands()
```

norm()

Return the complex norm of this symbolic expression, i.e., the expression times its complex conjugate. If c = a + bi is a complex number, then the norm of c is defined as the product of c and its complex conjugate

$$\operatorname{norm}(c) = \operatorname{norm}(a + bi) = c \cdot \overline{c} = a^2 + b^2.$$

The norm of a complex number is different from its absolute value. The absolute value of a complex number is defined to be the square root of its norm. A typical use of the complex norm is in the integral domain $\mathbf{Z}[i]$ of Gaussian integers, where the norm of each Gaussian integer c = a + bi is defined as its complex norm.

See also:

```
sage.misc.functional.norm()
```

EXAMPLES:

```
sage: a = 1 + 2*I
sage: a.norm()
5
sage: a = sqrt(2) + 3^(1/3)*I; a
sqrt(2) + I*3^(1/3)
sage: a.norm()
3^(2/3) + 2
sage: CDF(a).norm()
4.080083823051...
sage: CDF(a.norm())
4.080083823051904
```

normalize()

Return this expression normalized as a fraction

See also:

```
numerator(), denominator(), numerator_denominator(), combine()
```

EXAMPLES:

ALGORITHM: Uses GiNaC.

number_of_arguments()

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f = x + y
sage: f.number_of_arguments()
2
sage: g = f.function(x)
sage: g.number_of_arguments()
1
```

```
sage: x,y,z = var('x,y,z')
sage: (x+y).number_of_arguments()
2
sage: (x+1).number_of_arguments()
1
sage: (sin(x)+1).number_of_arguments()
1
sage: (sin(z)+x+y).number_of_arguments()
3
sage: (sin(x+y)).number_of_arguments()
```

number_of_operands()

Return the number of operands of this expression.

EXAMPLES:

```
sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: a.number_of_operands()
0
sage: (a^2 + b^2 + (x+y)^2).number_of_operands()
3
sage: (a^2).number_of_operands()
2
sage: (a*b^2*c).number_of_operands()
```

numerator(normalize=True)

Return the numerator of this symbolic expression

INPUT:

• normalize - (default: True) a boolean.

If normalize is True, the expression is first normalized to have it as a fraction before getting the numerator.

If normalize is False, the expression is kept and if it is not a quotient, then this will return the expression itself.

See also:

```
normalize(), denominator(), numerator denominator(), combine()
```

EXAMPLES:

```
sage: a, x, y = var('a, x, y')
sage: f = x*(x-a)/((x^2 - y)*(x-a)); f
x/(x^2 - y)
sage: f.numerator()
sage: f.denominator()
x^2 - v
sage: f.numerator(normalize=False)
sage: f.denominator(normalize=False)
x^2 - y
sage: y = var('y')
sage: g = x + y/(x + 2); g
x + y/(x + 2)
sage: g.numerator()
x^2 + 2x + y
sage: q.denominator()
x + 2
sage: g.numerator(normalize=False)
x + y/(x + 2)
sage: g.denominator(normalize=False)
```

numerator_denominator (normalize=True)

Return the numerator and the denominator of this symbolic expression

INPUT:

• normalize - (default: True) a boolean.

If normalize is True, the expression is first normalized to have it as a fraction before getting the numerator and denominator.

If normalize is False, the expression is kept and if it is not a quotient, then this will return the expression itself together with 1.

See also:

```
normalize(), numerator(), denominator(), combine()
```

EXAMPLES:

```
sage: x, y, a = var("x y a")
sage: ((x+y)^2/(x-y)^3*x^3).numerator_denominator()
((x + y)^2*x^3, (x - y)^3)
sage: ((x+y)^2/(x-y)^3*x^3).numerator_denominator(False)
```

```
((x + y)^2*x^3, (x - y)^3)

sage: g = x + y/(x + 2)
sage: g.numerator_denominator()
(x^2 + 2*x + y, x + 2)
sage: g.numerator_denominator(normalize=False)
(x + y/(x + 2), 1)

sage: g = x^2*(x + 2)
sage: g.numerator_denominator()
((x + 2)*x^2, 1)
sage: g.numerator_denominator(normalize=False)
((x + 2)*x^2, 1)
```

numerical_approx (prec=None, digits=None, algorithm=None)

Return a numerical approximation of self with prec bits (or decimal digits) of precision.

No guarantee is made about the accuracy of the result.

INPUT:

- prec precision in bits
- digits precision in decimal digits (only used if prec is not given)
- algorithm which algorithm to use to compute this approximation

If neither prec nor digits is given, the default precision is 53 bits (roughly 16 digits).

EXAMPLES:

```
sage: sin(x).subs(x=5).n()
-0.958924274663138
sage: sin(x).subs(x=5).n(100)
-0.95892427466313846889315440616
sage: sin(x).subs(x=5).n(digits=50)
-0.95892427466313846889315440615599397335246154396460\\
sage: zeta(x).subs(x=2).numerical_approx(digits=50)
1.6449340668482264364724151666460251892189499012068
sage: cos(3).numerical_approx(200)
-0.98999249660044545727157279473126130239367909661558832881409\\
sage: numerical_approx(cos(3),200)
sage: numerical_approx(cos(3), digits=10)
-0.9899924966
sage: (i + 1).numerical_approx(32)
1.00000000 + 1.00000000*I
sage: (pi + e + sqrt(2)).numerical_approx(100)
7.2740880444219335226246195788
```

op

Provide access to the operands of an expression through a property.

EXAMPLES:

```
sage: t = 1+x+x^2
sage: t.op
Operands of x^2 + x + 1
```

```
sage: x.op
Traceback (most recent call last):
...
TypeError: expressions containing only a numeric coefficient,
constant or symbol have no operands
sage: t.op[0]
x^2
```

Indexing directly with t [1] causes problems with numpy types.

sage: t[1] Traceback (most recent call last): ... TypeError: 'sage.symbolic.expression.Expression' object ...

operands()

Return a list containing the operands of this expression.

EXAMPLES:

```
sage: var('a,b,c,x,y')
(a, b, c, x, y)
sage: (a^2 + b^2 + (x+y)^2).operands()
[a^2, b^2, (x + y)^2]
sage: (a^2).operands()
[a, 2]
sage: (a*b^2*c).operands()
[a, b^2, c]
```

operator()

Return the topmost operator in this expression.

EXAMPLES:

```
sage: x, y, z = var('x, y, z')
sage: (x+y).operator()
<function add_vararg ...>
sage: (x^y).operator()
<built-in function pow>
sage: (x^y * z).operator()
<function mul_vararg ...>
sage: (x < y).operator()</pre>
<built-in function lt>
sage: abs(x).operator()
abs
sage: r = gamma(x).operator(); type(r)
<class 'sage.functions.gamma.Function_gamma'>
sage: psi = function('psi', nargs=1)
sage: psi(x).operator()
psi
sage: r = psi(x).operator()
sage: r == psi
sage: f = function('f', nargs=1, conjugate_func=lambda self, x: 2*x)
sage: nf = f(x).operator()
```

```
sage: nf(x).conjugate()
2*x

sage: f = function('f')
sage: a = f(x).diff(x); a
diff(f(x), x)
sage: a.operator()
D[0](f)
```

partial_fraction(var=None)

Return the partial fraction expansion of self with respect to the given variable.

INPUT:

• var – variable name or string (default: first variable)

OUTPUT:

A symbolic expression

See also:

```
partial_fraction_decomposition()
```

EXAMPLES:

```
sage: f = x^2/(x+1)^3
sage: f.partial_fraction()
1/(x+1) - 2/(x+1)^2 + 1/(x+1)^3
```

Notice that the first variable in the expression is used by default:

```
sage: y = var('y')
sage: f = y^2/(y+1)^3
sage: f.partial_fraction()
1/(y + 1) - 2/(y + 1)^2 + 1/(y + 1)^3

sage: f = y^2/(y+1)^3 + x/(x-1)^3
sage: f.partial_fraction()
y^2/(y^3 + 3*y^2 + 3*y + 1) + 1/(x - 1)^2 + 1/(x - 1)^3
```

You can explicitly specify which variable is used:

```
\begin{cases} \text{sage: f.partial\_fraction(y)} \\ x/(x^3 - 3*x^2 + 3*x - 1) + 1/(y + 1) - 2/(y + 1)^2 + 1/(y + 1)^3 \end{cases}
```

${\tt partial_fraction_decomposition}~(\textit{var} = None)$

Return the partial fraction decomposition of self with respect to the given variable.

INPUT:

• var – variable name or string (default: first variable)

OUTPUT:

A list of symbolic expressions

See also:

```
partial_fraction()
```

EXAMPLES:

```
sage: f = x^2/(x+1)^3
sage: f.partial_fraction_decomposition()
[1/(x + 1), -2/(x + 1)^2, (x + 1)^(-3)]
sage: (4+f).partial_fraction_decomposition()
[1/(x + 1), -2/(x + 1)^2, (x + 1)^(-3), 4]
```

Notice that the first variable in the expression is used by default:

```
sage: y = var('y')
sage: f = y^2/(y+1)^3
sage: f.partial_fraction_decomposition()
[1/(y + 1), -2/(y + 1)^2, (y + 1)^(-3)]

sage: f = y^2/(y+1)^3 + x/(x-1)^3
sage: f.partial_fraction_decomposition()
[y^2/(y^3 + 3*y^2 + 3*y + 1), (x - 1)^(-2), (x - 1)^(-3)]
```

You can explicitly specify which variable is used:

```
sage: f.partial_fraction_decomposition(y) [1/(y + 1), -2/(y + 1)^2, (y + 1)^{-3}, x/(x^3 - 3*x^2 + 3*x - 1)]
```

plot (*args, **kwds)

Plot a symbolic expression. All arguments are passed onto the standard plot command.

EXAMPLES:

This displays a straight line:

This draws a red oscillatory curve:

```
sage: \sin(x^2).plot((x,0,2*pi), rgbcolor=(1,0,0))
\rightarrow needs \ sage.plot
Graphics object consisting of 1 graphics primitive
```

Another plot using the variable theta:

```
sage: var('theta')
theta
sage: (cos(theta) - erf(theta)).plot((theta,-2*pi,2*pi)) #
→ needs sage.plot
Graphics object consisting of 1 graphics primitive
```

A very thick green plot with a frame:

You can embed 2d plots in 3d space as follows:

```
sage: plot(sin(x^2), (x, -pi, pi), thickness=2).plot3d(z=1) # long_
→ time, needs sage.plot
Graphics3d Object
```

A more complicated family:

```
sage: G = sum(plot(sin(n*x), (x, -2*pi, 2*pi)).plot3d(z=n) #_ → needs sage.plot ...: for n in [0,0.1,..1]) sage: G.show(frame_aspect_ratio=[1,1,1/2]) # long time (5s on sage.math, \rightarrow 2012), needs sage.plot
```

A plot involving the floor function:

Sage used to allow symbolic functions with "no arguments"; this no longer works:

You should evaluate the function first:

poly(x=None)

Express this symbolic expression as a polynomial in x. If this is not a polynomial in x, then some coefficients may be functions of x.

Warning: This is different from polynomial() which returns a Sage polynomial over a given base ring.

EXAMPLES:

```
sage: var('a, x')
(a, x)
sage: p = expand((x-a*sqrt(2))^2 + x + 1); p
-2*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: p.poly(a)
-2*sqrt(2)*a*x + 2*a^2 + x^2 + x + 1
sage: bool(p.poly(a) == (x-a*sqrt(2))^2 + x + 1)
True
sage: p.poly(x)
2*a^2 - (2*sqrt(2)*a - 1)*x + x^2 + 1
```

polynomial (base_ring=None, ring=None)

Return this symbolic expression as an algebraic polynomial over the given base ring, if possible.

The point of this function is that it converts purely symbolic polynomials into optimised algebraic polynomials over a given base ring.

You can specify either the base ring (base_ring) you want the output polynomial to be over, or you can specify the full polynomial ring (ring) you want the output polynomial to be an element of.

INPUT:

- base_ring (optional) the base ring for the polynomial
- ring (optional) the parent for the polynomial

Warning: This is different from poly() which is used to rewrite self as a polynomial in terms of one of the variables.

EXAMPLES:

```
sage: f = x^2 -2/3*x + 1
sage: f.polynomial(QQ)
x^2 - 2/3*x + 1
sage: f.polynomial(GF(19))
x^2 + 12*x + 1
```

Polynomials can be useful for getting the coefficients of an expression:

```
sage: g = 6*x^2 - 5
sage: g.coefficients()
[[-5, 0], [6, 2]]
sage: g.polynomial(QQ).list()
[-5, 0, 6]
sage: g.polynomial(QQ).dict()
{0: -5, 2: 6}
```

```
sage: f = x^2*e + x + pi/e
sage: f.polynomial(RDF) # abs tol 5e-16
2.718281828459045*x^2 + x + 1.1557273497909217
sage: g = f.polynomial(RR); g
2.71828182845905*x^2 + x + 1.15572734979092
sage: g.parent()
Univariate Polynomial Ring in x over Real Field with 53 bits of precision
sage: f.polynomial(RealField(100))
2.7182818284590452353602874714*x^2 + x + 1.1557273497909217179100931833
sage: f.polynomial(CDF) # abs tol 5e-16
2.718281828459045*x^2 + x + 1.1557273497909217
sage: f.polynomial(CC)
2.71828182845905*x^2 + x + 1.15572734979092
```

We coerce a multivariate polynomial with complex symbolic coefficients:

```
sage: x, y, n = var('x, y, n')
sage: f = pi^3*x - y^2*e - I; f
pi^3*x - y^2*e - I
sage: f.polynomial(CDF) # abs tol 1e-15
(-2.718281828459045)*y^2 + 31.006276680299816*x - 1.0*I
sage: f.polynomial(CC)
(-2.71828182845905)*y^2 + 31.0062766802998*x - 1.00000000000000*I
sage: f.polynomial(ComplexField(70))
(-2.7182818284590452354)*y^2 + 31.006276680299820175*x - 1.
→00000000000000000000000000000
```

Another polynomial:

```
sage: f = sum((e*I)^n*x^n for n in range(5)); f
x^4*e^4 - I*x^3*e^3 - x^2*e^2 + I*x*e + 1
sage: f.polynomial(CDF) # abs tol 5e-16
54.598150033144236*x^4 - 20.085536923187668*I*x^3 - 7.38905609893065*x^2
+ 2.718281828459045*I*x + 1.0
sage: f.polynomial(CC)
54.5981500331442*x^4 - 20.0855369231877*I*x^3 - 7.38905609893065*x^2
+ 2.71828182845905*I*x + 1.00000000000000
```

A multivariate polynomial over a finite field:

```
sage: f = (3*x^5 - 5*y^5)^7; f
(3*x^5 - 5*y^5)^7
sage: g = f.polynomial(GF(7)); g
3*x^35 + 2*y^35
sage: parent(g)
Multivariate Polynomial Ring in x, y over Finite Field of size 7
```

We check to make sure constants are converted appropriately:

```
sage: (pi*x).polynomial(SR)
pi*x
```

Using the ring parameter, you can also create polynomials rings over the symbolic ring where only certain variables are considered generators of the polynomial ring and the others are considered "constants":

```
sage: a, x, y = var('a,x,y')
sage: f = a*x^10*y+3*x
sage: B = f.polynomial(ring=SR['x,y'])
sage: B.coefficients()
[a, 3]
```

power (exp, hold=False)

Return the current expression to the power exp.

To prevent automatic evaluation use the hold argument.

EXAMPLES:

```
sage: (x^2).power(2)
x^4
sage: (x^2).power(2, hold=True)
(x^2)^2
```

To then evaluate again, we use unhold():

```
sage: a = (x^2).power(2, hold=True); a.unhold()
x^4
```

power_series (base_ring)

Return algebraic power series associated to this symbolic expression, which must be a polynomial in one variable, with coefficients coercible to the base ring.

The power series is truncated one more than the degree.

EXAMPLES:

```
sage: theta = var('theta')
sage: f = theta^3 + (1/3)*theta - 17/3
sage: g = f.power_series(QQ); g
-17/3 + 1/3*theta + theta^3 + O(theta^4)
sage: g^3
-4913/27 + 289/9*theta - 17/9*theta^2 + 2602/27*theta^3 + O(theta^4)
sage: g.parent()
Power Series Ring in theta over Rational Field
```

primitive_part(s)

Return the primitive polynomial of this expression when considered as a polynomial in s.

See also unit(), content(), and unit_content_primitive().

INPUT:

• s – a symbolic expression.

OUTPUT:

The primitive polynomial as a symbolic expression. It is defined as the quotient by the unit () and content () parts (with respect to the variable s).

EXAMPLES:

```
sage: (2*x+4).primitive_part(x)
x + 2
sage: (2*x+1).primitive_part(x)
2*x + 1
sage: (2*x+1/2).primitive_part(x)
4*x + 1
sage: var('y')
y
sage: (2*x + 4*sin(y)).primitive_part(sin(y))
x + 2*sin(y)
```

prod (*args, **kwds)

Return the symbolic product $\prod_{v=a}^{b}$ self.

This is the product respect to the variable v with endpoints a and b.

INPUT:

- expression a symbolic expression
- v a variable or variable name
- a lower endpoint of the product
- b upper endpoint of the product
- algorithm (default: 'maxima') one of
 - 'maxima' use Maxima (the default)
 - 'giac' (optional) use Giac
 - 'sympy' use SymPy
- hold (default: False) if True, don't evaluate

pyobject()

Get the underlying Python object.

OUTPUT:

The Python object corresponding to this expression, assuming this expression is a single numerical value or an infinity representable in Python. Otherwise, a TypeError is raised.

EXAMPLES:

```
sage: var('x')
x
sage: b = -17.3
sage: a = SR(b)
sage: a.pyobject()
-17.3000000000000
sage: a.pyobject() is b
True
```

Integers and Rationals are converted internally though, so you won't get back the same object:

```
sage: b = -17/3
sage: a = SR(b)
sage: a.pyobject()
-17/3
sage: a.pyobject() is b
False
```

rational_expand(side=None)

Expand this symbolic expression. Products of sums and exponentiated sums are multiplied out, numerators of rational expressions which are sums are split into their respective terms, and multiplications are distributed over addition at all levels.

EXAMPLES:

We expand the expression $(x-y)^5$ using both method and functional notation.

```
sage: x,y = var('x,y')
sage: a = (x-y)^5
sage: a.expand()
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
sage: expand(a)
x^5 - 5*x^4*y + 10*x^3*y^2 - 10*x^2*y^3 + 5*x*y^4 - y^5
```

We expand some other expressions:

```
sage: expand((x-1)^3/(y-1))
x^3/(y - 1) - 3*x^2/(y - 1) + 3*x/(y - 1) - 1/(y - 1)
sage: expand((x+sin((x+y)^2))^2)
x^2 + 2*x*sin(x^2 + 2*x*y + y^2) + sin(x^2 + 2*x*y + y^2)^2
```

Observe that expand () also expands function arguments:

```
sage: f(x) = function('f')(x)
sage: fx = f(x*(x+1)); fx
f((x + 1)*x)
sage: fx.expand()
f(x^2 + x)
```

We can expand individual sides of a relation:

```
sage: a = (16*x-13)^2 == (3*x+5)^2/2
sage: a.expand()
256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2
sage: a.expand('left')
256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2
sage: a.expand('right')
(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2
```

rational_simplify (algorithm='full', map=False)

Simplify rational expressions.

INPUT:

- self symbolic expression
- algorithm (default: 'full') string which switches the algorithm for simplifications. Possible values are
 - 'simple' (simplify rational functions into quotient of two polynomials),
 - 'full' (apply repeatedly, if necessary)
 - 'noexpand' (convert to common denominator and add)
- map (default: False) if True, the result is an expression whose leading operator is the same as
 that of the expression self but whose subparts are the results of applying simplification rules to the
 corresponding subparts of the expressions.

ALIAS: rational_simplify() and simplify_rational() are the same

DETAILS: We call Maxima functions ratsimp, fullratsimp and xthru. If each part of the expression has to be simplified separately, we use Maxima function map.

EXAMPLES:

```
sage: f = sin(x/(x^2 + x))
sage: f
sin(x/(x^2 + x))
sage: f.simplify_rational()
sin(1/(x + 1))
```

```
sage: f = ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1)); f
-((x + 1)*sqrt(x - 1) - (x - 1)^(3/2))/sqrt((x + 1)*(x - 1))
sage: f.simplify_rational()
-2*sqrt(x - 1)/sqrt(x^2 - 1)
```

With map=True each term in a sum is simplified separately and thus the results are shorter for functions which are combination of rational and nonrational functions. In the following example, we use this option if we want not to combine logarithm and the rational function into one fraction:

```
sage: f = (x^2-1)/(x+1)-\ln(x)/(x+2)
sage: f.simplify_rational()
(x^2 + x - \log(x) - 2)/(x + 2)
sage: f.simplify_rational(map=True)
x - \log(x)/(x + 2) - 1
```

Here is an example from the Maxima documentation of where algorithm='simple' produces an (possibly useful) intermediate step:

With option algorithm='noexpand' we only convert to common denominators and add. No expansion of products is performed:

```
sage: f = 1/(x+1)+x/(x+2)^2
sage: f.simplify_rational()
(2*x^2 + 5*x + 4)/(x^3 + 5*x^2 + 8*x + 4)
sage: f.simplify_rational(algorithm='noexpand')
((x + 2)^2 + (x + 1)*x)/((x + 2)^2*(x + 1))
```

real (hold=False)

Return the real part of this symbolic expression.

EXAMPLES:

```
sage: x = var('x')
sage: x.real_part()
real_part(x)
sage: SR(2+3*I).real_part()
2
sage: SR(CDF(2,3)).real_part()
2.0
sage: SR(CC(2,3)).real_part()
2.00000000000000

sage: f = log(x)
sage: f.real_part()
log(abs(x))
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(2).real_part()
2
sage: SR(2).real_part(hold=True)
real_part(2)
```

This also works using functional notation:

```
sage: real_part(I,hold=True)
real_part(I)
sage: real_part(I)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(2).real_part(hold=True); a.unhold()
2
```

real_part (hold=False)

Return the real part of this symbolic expression.

EXAMPLES:

```
sage: x = var('x')
sage: x.real_part()
real_part(x)
sage: SR(2+3*I).real_part()
2
sage: SR(CDF(2,3)).real_part()
2.0
sage: SR(CC(2,3)).real_part()
2.00000000000000

sage: f = log(x)
sage: f.real_part()
log(abs(x))
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(2).real_part()
2
sage: SR(2).real_part(hold=True)
real_part(2)
```

This also works using functional notation:

```
sage: real_part(I,hold=True)
real_part(I)
sage: real_part(I)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(2).real_part(hold=True); a.unhold()
2
```

rectform()

Convert this symbolic expression to rectangular form; that is, the form a + bi where a and b are real numbers and i is the imaginary unit.

Note: The name "rectangular" comes from the fact that, in the complex plane, a and bi are perpendicular.

INPUT:

• self – the expression to convert.

OUTPUT:

A new expression, equivalent to the original, but expressed in the form a + bi.

ALGORITHM:

We call Maxima's rectform() and return the result unmodified.

EXAMPLES:

The exponential form of sin(x):

```
sage: f = (e^(I*x) - e^(-I*x)) / (2*I)
sage: f.rectform()
sin(x)
```

And cos(x):

```
sage: f = (e^(I*x) + e^(-I*x)) / 2
sage: f.rectform()
cos(x)
```

In some cases, this will simplify the given expression. For example, here, $e^{ik\pi}$, $\sin(k\pi) = 0$ should cancel leaving only $\cos(k\pi)$ which can then be simplified:

```
sage: k = var('k')
sage: assume(k, 'integer')
sage: f = e^(I*pi*k)
sage: f.rectform()
(-1)^k
```

However, in general, the resulting expression may be more complicated than the original:

```
sage: f = e^(I*x)
sage: f.rectform()
cos(x) + I*sin(x)
```

reduce_trig(var=None)

Combine products and powers of trigonometric and hyperbolic sin's and cos's of x into those of multiples of x. It also tries to eliminate these functions when they occur in denominators.

INPUT:

- self a symbolic expression
- var (default: None) the variable which is used for these transformations. If not specified, all variables
 are used.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: y = var('y')
sage: f = sin(x)*cos(x)^3+sin(y)^2
sage: f.reduce_trig()
-1/2*cos(2*y) + 1/8*sin(4*x) + 1/4*sin(2*x) + 1/2
```

To reduce only the expressions involving x we use optional parameter:

```
sage: f.reduce_trig(x)
sin(y)^2 + 1/8*sin(4*x) + 1/4*sin(2*x)
```

ALIAS: trig_reduce() and reduce_trig() are the same

residue (symbol)

Calculate the residue of self with respect to symbol.

INPUT:

• symbol - a symbolic variable or symbolic equality such as x = 5. If an equality is given, the expansion is around the value on the right hand side of the equality, otherwise at 0.

OUTPUT:

The residue of self.

Say, symbol is x == a, then this function calculates the residue of self at x = a, i.e., the coefficient of 1/(x-a) of the series expansion of self around a.

EXAMPLES:

```
sage: (1/x).residue(x == 0)
1
sage: (1/x).residue(x == 00)
-1
sage: (1/x^2).residue(x == 0)
0
sage: (1/sin(x)).residue(x == 0)
1
sage: var('q, n, z')
(q, n, z)
sage: (-z^(-n-1)/(1-z/q)^2).residue(z == q).simplify_full()
(n + 1)/q^n
sage: var('s')
s
sage: zeta(s).residue(s == 1)
```

We can also compute the residue at more general places, given that the pole is recognized:

```
sage: k = var('k', domain='integer')
sage: (gamma(1+x)/(1 - exp(-x))).residue(x==2*I*pi*k)
gamma(2*I*pi*k + 1)
sage: csc(x).residue(x==2*pi*k)
1
```

resultant (other, var)

Compute the resultant of this polynomial expression and the first argument with respect to the variable given as the second argument.

EXAMPLES:

```
sage: _ = var('a b n k u x y')
sage: x.resultant(y, x)
y
sage: (x+y).resultant(x-y, x)
-2*y
sage: r = (x^4*y^2+x^2*y-y).resultant(x*y-y*a-x*b+a*b+u,x)
sage: r.coefficient(a^4)
b^4*y^2 - 4*b^3*y^3 + 6*b^2*y^4 - 4*b*y^5 + y^6
sage: x.resultant(sin(x), x)
Traceback (most recent call last):
...
RuntimeError: resultant(): arguments must be polynomials
```

rhs()

If self is a relational expression, return the right hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3</pre>
```

```
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3
```

right()

If self is a relational expression, return the right hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3</pre>
```

right_hand_side()

If self is a relational expression, return the right hand side of the relation. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: x = var('x')
sage: eqn = (x-1)^2 <= x^2 - 2*x + 3
sage: eqn.right_hand_side()
x^2 - 2*x + 3
sage: eqn.rhs()
x^2 - 2*x + 3
sage: eqn.right()
x^2 - 2*x + 3</pre>
```

roots (x=None, explicit_solutions=True, multiplicities=True, ring=None)

Return roots of self that can be found exactly, possibly with multiplicities. Not all roots are guaranteed to be found.

Warning: This is *not* a numerical solver - use find_root to solve for self == 0 numerically on an interval.

INPUT:

- x variable to view the function in terms of (use default variable if not given)
- explicit_solutions bool (default True); require that roots be explicit rather than implicit
- multiplicities bool (default True); when True, return multiplicities
- ring a ring (default None): if not None, convert self to a polynomial over ring and find roots over ring

OUTPUT:

A list of pairs (root, multiplicity) or list of roots.

If there are infinitely many roots, e.g., a function like sin(x), only one is returned.

EXAMPLES:

```
sage: var('x, a')
(x, a)
```

A simple example:

```
sage: ((x^2-1)^2).roots()
[(-1, 2), (1, 2)]
sage: ((x^2-1)^2).roots(multiplicities=False)
[-1, 1]
```

A complicated example:

```
sage: f = expand((x^2 - 1)^3*(x^2 + 1)*(x-a)); f
-a*x^8 + x^9 + 2*a*x^6 - 2*x^7 - 2*a*x^2 + 2*x^3 + a - x
```

The default variable is a, since it is the first in alphabetical order:

```
sage: f.roots()
[(x, 1)]
```

As a polynomial in a, x is indeed a root:

```
sage: f.poly(a)
x^9 - 2*x^7 + 2*x^3 - (x^8 - 2*x^6 + 2*x^2 - 1)*a - x
sage: f(a=x)
0
```

The roots in terms of x are what we expect:

```
sage: f.roots(x)
[(a, 1), (-I, 1), (I, 1), (1, 3), (-1, 3)]
```

Only one root of sin(x) = 0 is given:

```
sage: f = sin(x)
sage: f.roots(x)
[(0, 1)]
```

Note: It is possible to solve a greater variety of equations using solve() and the keyword to_poly_solve, but only at the price of possibly encountering approximate solutions. See documentation for f.solve for more details.

We derive the roots of a general quadratic polynomial:

```
sage: var('a,b,c,x')
(a, b, c, x)
sage: (a*x^2 + b*x + c).roots(x)
[(-1/2*(b + sqrt(b^2 - 4*a*c))/a, 1), (-1/2*(b - sqrt(b^2 - 4*a*c))/a, 1)]
```

By default, all the roots are required to be explicit rather than implicit. To get implicit roots, pass explicit_solutions=False to .roots()

```
sage: var('x')

x

sage: f = x^{(1/9)} + (2^{(8/9)} - 2^{(1/9)})*(x - 1) - x^{(8/9)}
```

```
sage: f.roots()
Traceback (most recent call last):
...
RuntimeError: no explicit roots found
sage: f.roots(explicit_solutions=False)
[((2^(8/9) + x^(8/9) - 2^(1/9) - x^(1/9))/(2^(8/9) - 2^(1/9)), 1)]
```

Another example, but involving a degree 5 poly whose roots do not get computed explicitly:

```
sage: f = x^5 + x^3 + 17*x + 1
sage: f.roots()
Traceback (most recent call last):
...
RuntimeError: no explicit roots found
sage: f.roots(explicit_solutions=False)
[(x^5 + x^3 + 17*x + 1, 1)]
sage: f.roots(explicit_solutions=False, multiplicities=False)
[x^5 + x^3 + 17*x + 1]
```

Now let us find some roots over different rings:

```
sage: f.roots(ring=CC)
[(-0.0588115223184..., 1),
 (-1.331099917875... - 1.52241655183732*I, 1),
 (-1.331099917875... + 1.52241655183732*I, 1),
 (1.36050567903502 - 1.51880872209965*I, 1),
 (1.36050567903502 + 1.51880872209965*I, 1)]
sage: (2.5*f).roots(ring=RR)
[(-0.058811522318449..., 1)]
sage: f.roots(ring=CC, multiplicities=False)
[-0.05881152231844...,
 -1.331099917875... - 1.52241655183732*I,
-1.331099917875... + 1.52241655183732*I,
1.36050567903502 - 1.51880872209965*I
 1.36050567903502 + 1.51880872209965*I
sage: f.roots(ring=QQ)
[]
sage: f.roots(ring=QQbar, multiplicities=False)
[-0.05881152231844944?,
-1.331099917875796? - 1.522416551837318?*I,
-1.331099917875796? + 1.522416551837318?*I
1.360505679035020? - 1.518808722099650?*I,
1.360505679035020? + 1.518808722099650?*I]
```

Root finding over finite fields:

round()

Round this expression to the nearest integer.

EXAMPLES:

```
sage: u = sqrt(43203735824841025516773866131535024)
sage: u.round()
```

```
207855083711803945
sage: t = sqrt(Integer('1'*1000)).round(); print(str(t)[-10:])
3333333333
sage: (-sqrt(110)).round()
-10
sage: (-sqrt(115)).round()
-11
sage: (sqrt(-3)).round()
Traceback (most recent call last):
...
ValueError: could not convert sqrt(-3) to a real number
```

series (symbol, order=None)

Return the power series expansion of self in terms of the given variable to the given order.

INPUT:

- symbol a symbolic variable or symbolic equality such as x == 5; if an equality is given, the expansion is around the value on the right hand side of the equality
- order an integer; if nothing given, it is set to the global default (20), which can be changed using set_series_precision()

OUTPUT:

A power series.

To truncate the power series and obtain a normal expression, use the truncate() command.

EXAMPLES:

We expand a polynomial in x about 0, about 1, and also truncate it back to a polynomial:

```
sage: var('x,y')
(x, y)
sage: f = (x^3 - sin(y)*x^2 - 5*x + 3); f
x^3 - x^2*sin(y) - 5*x + 3
sage: g = f.series(x, 4); g
3 + (-5)*x + (-sin(y))*x^2 + 1*x^3 + Order(x^4)
sage: g.truncate()
x^3 - x^2*sin(y) - 5*x + 3
sage: g = f.series(x==1, 4); g
(-sin(y) - 1) + (-2*sin(y) - 2)*(x - 1) + (-sin(y) + 3)*(x - 1)^2
+ 1*(x - 1)^3 + Order((x - 1)^4)
sage: h = g.truncate(); h
(x - 1)^3 - (x - 1)^2*(sin(y) - 3) - 2*(x - 1)*(sin(y) + 1) - sin(y) - 1
sage: h.expand()
x^3 - x^2*sin(y) - 5*x + 3
```

We computer another series expansion of an analytic function:

```
sage: f = sin(x)/x^2
sage: f.series(x,7)

1*x^(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + Order(x^7)
sage: f.series(x)

1*x^(-1) + (-1/6)*x + ... + Order(x^20)
sage: f.series(x==1,3)
(sin(1)) + (cos(1) - 2*sin(1))*(x - 1) + (-2*cos(1) + 5/2*sin(1))*(x - 1)^2
+ Order((x - 1)^3)
```

Expressions formed by combining series can be expanded by applying series again:

```
sage: (1/(1-x)).series(x, 3)+(1/(1+x)).series(x,3)
(1 + 1*x + 1*x^2 + Order(x^3)) + (1 + (-1)*x + 1*x^2 + Order(x^3))
sage: _.series(x,3)
2 + 2*x^2 + Order(x^3)
sage: (1/(1-x)).series(x, 3)*(1/(1+x)).series(x,3)
(1 + 1*x + 1*x^2 + Order(x^3))*(1 + (-1)*x + 1*x^2 + Order(x^3))
sage: _.series(x,3)
1 + 1*x^2 + Order(x^3)
```

Following the GiNaC tutorial, we use John Machin's amazing formula $\pi = 16 \tan^{-1}(1/5) - 4 \tan^{-1}(1/239)$ to compute digits of π . We expand the arc tangent around 0 and insert the fractions 1/5 and 1/239.

```
sage: x = var('x')
sage: f = atan(x).series(x, 10); f

1*x + (-1/3)*x^3 + 1/5*x^5 + (-1/7)*x^7 + 1/9*x^9 + Order(x^10)
sage: float(16*f.subs(x==1/5) - 4*f.subs(x==1/239))
3.1415926824043994
```

show()

Pretty-print this symbolic expression.

This typesets it nicely and prints it immediately.

OUTPUT:

This method does not return anything. Like print, output is sent directly to the screen.

Note that the output depends on the display preferences. For details, see pretty_print().

EXAMPLES:

```
sage: (x^2 + 1).show()
x^2 + 1
```

EXAMPLES:

```
sage: %display ascii_art # not tested
sage: (x^2 + 1).show()
2
x + 1
```

simplify (algorithm='maxima', **kwds)

Return a simplified version of this symbolic expression.

INPUT:

- algorithm one of:
 - maxima: (default) sends the expression to maxima and converts it back to Sage
 - sympy: converts the expression to sympy, simplifies it (passing any optional keyword(s)), and converts the result to Sage
 - giac: converts the expression to giac, simplifies it, and converts the result to Sage

- fricas: converts the expression to fricas, simplifies it, and converts the result to Sage

See also:

```
simplify_full(), simplify_trig(), simplify_rational(), simplify_rectform()
simplify_factorial(), simplify_log(), simplify_real(), simplify_hypergeo-
metric(), canonicalize radical()
```

EXAMPLES:

```
sage: a = var('a'); f = x*sin(2)/(x^a); f
x*sin(2)/x^a
sage: f.simplify()
x^(-a + 1)*sin(2)
```

Some simplifications are quite algorithm-specific:

```
sage: x, t = var("x, t")
sage: ex = cos(t).exponentialize()
sage: ex = ex.subs((sin(t).exponentialize()==x).solve(t)[0])
sage: ex
1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/2/(I*x + I*sqrt(x^2 - 1))
sage: ex.simplify()
1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/(2*I*x + 2*I*sqrt(x^2 - 1))
sage: ex.simplify(algorithm="sympy")
I*(x^2 + sqrt(x^2 - 1)*x - 1)/(x + sqrt(x^2 - 1))
sage: ex.simplify(algorithm="giac")
I*sqrt(x^2 - 1)
sage: ex.simplify(algorithm="fricas") # optional - fricas
(I*x^2 + I*sqrt(x^2 - 1)*x - I)/(x + sqrt(x^2 - 1))
```

simplify_factorial()

Simplify by combining expressions with factorials, and by expanding binomials into factorials.

ALIAS: factorial_simplify and simplify_factorial are the same

EXAMPLES:

Some examples are relatively clear:

```
sage: var('n,k')
(n, k)
sage: f = factorial(n+1)/factorial(n); f
factorial(n + 1)/factorial(n)
sage: f.simplify_factorial()
n + 1
```

```
sage: f = factorial(n) * (n+1); f
(n + 1) *factorial(n)
sage: simplify(f)
(n + 1) *factorial(n)
sage: f.simplify_factorial()
factorial(n + 1)
```

```
sage: f = binomial(n, k)*factorial(k)*factorial(n-k); f
binomial(n, k)*factorial(k)*factorial(-k + n)
sage: f.simplify_factorial()
factorial(n)
```

A more complicated example, which needs further processing:

```
sage: f = factorial(x)/factorial(x-2)/2 + factorial(x+1)/factorial(x)/2; f
1/2*factorial(x + 1)/factorial(x) + 1/2*factorial(x)/factorial(x - 2)
sage: g = f.simplify_factorial(); g
1/2*(x - 1)*x + 1/2*x + 1/2
sage: g.simplify_rational()
1/2*x^2 + 1/2
```

simplify_full()

Apply simplify_factorial(), simplify_rectform(), simplify_trig(), simplify rational(), and then expand sum() to self (in that order).

ALIAS: simplify_full and full_simplify are the same.

EXAMPLES:

```
sage: f = sin(x)^2 + cos(x)^2
sage: f.simplify_full()
1
```

```
sage: f = sin(x/(x^2 + x))
sage: f.simplify_full()
sin(1/(x + 1))
```

```
sage: var('n,k')
(n, k)
sage: f = binomial(n,k)*factorial(k)*factorial(n-k)
sage: f.simplify_full()
factorial(n)
```

simplify_hypergeometric (algorithm='maxima')

Simplify an expression containing hypergeometric or confluent hypergeometric functions.

INPUT:

• algorithm — (default: 'maxima') the algorithm to use for for simplification. Implemented are 'maxima', which uses Maxima's hgfred function, and 'sage', which uses an algorithm implemented in the hypergeometric module

ALIAS: hypergeometric simplify() and simplify hypergeometric() are the same

EXAMPLES:

```
sage: hypergeometric((5, 4), (4, 1, 2, 3),
                    x).simplify_hypergeometric()
1/144*x^2*hypergeometric((), (3, 4), x) +...
1/3*x*hypergeometric((), (2, 3), x) + hypergeometric((), (1, 2), x)
sage: (2*hypergeometric((), (), x)).simplify_hypergeometric()
2*e^x
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, __
⇔unstable
....: .simplify_hypergeometric())
laguerre (-laguerre (-e^x, x), x)
sage: (nest(lambda y: hypergeometric([y], [1], x), 3, 1) # not tested, __
→unstable
....: .simplify_hypergeometric(algorithm='sage'))
hypergeometric((e^x,), (1,), x),), (1,), x)
sage: hypergeometric_M(1, 3, x).simplify_hypergeometric()
-2*((x + 1)*e^{-(-x)} - 1)*e^{-x/x^2}
```

```
sage: (2 * hypergeometric_U(1, 3, x)).simplify_hypergeometric()
2*(x + 1)/x^2
```

simplify_log(algorithm=None)

Simplify a (real) symbolic expression that contains logarithms.

The given expression is scanned recursively, transforming subexpressions of the form $a \log(b) + c \log(d)$ into $\log(b^a d^c)$ before simplifying within the $\log(b)$.

The user can specify conditions that a and c must satisfy before this transformation will be performed using the optional parameter algorithm.

Warning: This is only safe to call if every variable in the given expression is assumed to be real. The simplification it performs is in general not valid over the complex numbers. For example:

```
sage: x,y = SR.var('x,y')
sage: f = log(x*y) - (log(x) + log(y))
sage: f(x=-1, y=i)
-2*I*pi
sage: f.simplify_log()
0
```

INPUT:

- self expression to be simplified
- algorithm (default: None) optional, governs the condition on a and c which must be satisfied to contract expression $a \log(b) + c \log(d)$. Values are
 - None (use Maxima default, integers),
 - 'one' (1 and -1),
 - 'ratios' (rational numbers),
 - 'constants' (constants),
 - 'all' (all expressions).

ALGORITHM:

This uses the Maxima logcontract () command.

ALIAS:

log_simplify() and simplify_log() are the same.

EXAMPLES:

```
sage: x,y,t = var('x y t')
```

Only two first terms are contracted in the following example; the logarithm with coefficient $\frac{1}{2}$ is not contracted:

```
sage: f = log(x)+2*log(y)+1/2*log(t)
sage: f.simplify_log()
log(x*y^2) + 1/2*log(t)
```

To contract all terms in the previous example, we use the 'ratios' algorithm:

```
sage: f.simplify_log(algorithm='ratios')
log(sqrt(t)*x*y^2)
```

To contract terms with no coefficient (more precisely, with coefficients 1 and -1), we use the 'one' algorithm:

```
sage: f = log(x)+2*log(y)-log(t)
sage: f.simplify_log('one')
2*log(y) + log(x/t)
```

```
sage: f = log(x)+log(y)-1/3*log((x+1))
sage: f.simplify_log()
log(x*y) - 1/3*log(x + 1)

sage: f.simplify_log('ratios')
log(x*y/(x + 1)^(1/3))
```

 π is an irrational number; to contract logarithms in the following example we have to set algorithm to 'constants' or 'all':

```
sage: f = log(x)+log(y)-pi*log((x+1))
sage: f.simplify_log('constants')
log(x*y/(x + 1)^pi)
```

x*log(9) is contracted only if algorithm is 'all':

```
sage: (x*log(9)).simplify_log()
2*x*log(3)
sage: (x*log(9)).simplify_log('all')
log(3^(2*x))
```

AUTHORS:

• Robert Marik (11-2009)

```
simplify_rational (algorithm='full', map=False)
```

Simplify rational expressions.

INPUT:

- self symbolic expression
- algorithm (default: 'full') string which switches the algorithm for simplifications. Possible values are
 - 'simple' (simplify rational functions into quotient of two polynomials),
 - 'full' (apply repeatedly, if necessary)
 - 'noexpand' (convert to common denominator and add)
- map (default: False) if True, the result is an expression whose leading operator is the same as that of the expression self but whose subparts are the results of applying simplification rules to the corresponding subparts of the expressions.

ALIAS: rational_simplify() and simplify_rational() are the same

DETAILS: We call Maxima functions ratsimp, fullratsimp and xthru. If each part of the expression has to be simplified separately, we use Maxima function map.

EXAMPLES:

```
sage: f = sin(x/(x^2 + x))
sage: f
sin(x/(x^2 + x))
sage: f.simplify_rational()
sin(1/(x + 1))
```

```
sage: f = ((x - 1)^(3/2) - (x + 1)*sqrt(x - 1))/sqrt((x - 1)*(x + 1)); f
-((x + 1)*sqrt(x - 1) - (x - 1)^(3/2))/sqrt((x + 1)*(x - 1))
sage: f.simplify_rational()
-2*sqrt(x - 1)/sqrt(x^2 - 1)
```

With map=True each term in a sum is simplified separately and thus the results are shorter for functions which are combination of rational and nonrational functions. In the following example, we use this option if we want not to combine logarithm and the rational function into one fraction:

```
sage: f = (x^2-1)/(x+1)-\ln(x)/(x+2)
sage: f.simplify_rational()
(x^2 + x - \log(x) - 2)/(x + 2)
sage: f.simplify_rational(map=True)
x - \log(x)/(x + 2) - 1
```

Here is an example from the Maxima documentation of where algorithm='simple' produces an (possibly useful) intermediate step:

```
sage: y = var('y')
sage: g = (x^(y/2) + 1)^2*(x^(y/2) - 1)^2/(x^y - 1)
sage: g.simplify_rational(algorithm='simple')
(x^(2*y) - 2*x^y + 1)/(x^y - 1)
sage: g.simplify_rational()
x^y - 1
```

With option algorithm='noexpand' we only convert to common denominators and add. No expansion of products is performed:

```
sage: f = 1/(x+1)+x/(x+2)^2
sage: f.simplify_rational()
(2*x^2 + 5*x + 4)/(x^3 + 5*x^2 + 8*x + 4)
sage: f.simplify_rational(algorithm='noexpand')
((x + 2)^2 + (x + 1)*x)/((x + 2)^2*(x + 1))
```

simplify_real()

Simplify the given expression over the real numbers. This allows the simplification of $\sqrt{x^2}$ into |x| and the contraction of $\log(x) + \log(y)$ into $\log(xy)$.

INPUT:

• self – the expression to convert.

OUTPUT:

A new expression, equivalent to the original one under the assumption that the variables involved are real.

EXAMPLES:

```
sage: f = sqrt(x^2)
sage: f.simplify_real()
abs(x)
```

```
sage: y = SR.var('y')
sage: f = log(x) + 2*log(y)
sage: f.simplify_real()
log(x*y^2)
```

simplify_rectform (complexity_measure='string_length')

Attempt to simplify this expression by expressing it in the form a+bi where both a and b are real. This transformation is generally not a simplification, so we use the given <code>complexity_measure</code> to discard non-simplifications.

INPUT:

- self the expression to simplify.
- complexity_measure (default: sage.symbolic.complexity_measures. string_length) a function taking a symbolic expression as an argument and returning a measure of that expressions complexity. If None is supplied, the simplification will be performed regardless of the result.

OUTPUT:

If the transformation produces a simpler expression (according to complexity_measure) then that simpler expression is returned. Otherwise, the original expression is returned.

ALGORITHM:

We first call rectform() on the given expression. Then, the supplied complexity measure is used to determine whether or not the result is simpler than the original expression.

EXAMPLES:

The exponential form of tan(x):

This should not be expanded with Euler's formula since the resulting expression is longer when considered as a string, and the default complexity_measure uses string length to determine which expression is simpler:

```
sage: f = e^(I*x)
sage: f.simplify_rectform()
e^(I*x)
```

However, if we pass None as our complexity measure, it is:

```
sage: f = e^(I*x)
sage: f.simplify_rectform(complexity_measure = None)
cos(x) + I*sin(x)
```

simplify_trig(expand=True)

Optionally expand and then employ identities such as $\sin(x)^2 + \cos(x)^2 = 1$, $\cosh(x)^2 - \sinh(x)^2 = 1$, $\sin(x)\csc(x) = 1$, or $\tanh(x) = \sinh(x)/\cosh(x)$ to simplify expressions containing tan, sec, etc., to sin, cos, sinh, cosh.

INPUT:

• self - symbolic expression

• expand - (default:True) if True, expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self first. For best results, self should be expanded. See also expand_trig() to get more controls on this expansion.

ALIAS: trig_simplify() and simplify_trig() are the same

EXAMPLES:

```
sage: f = sin(x)^2 + cos(x)^2; f
cos(x)^2 + sin(x)^2
sage: f.simplify()
cos(x)^2 + sin(x)^2
sage: f.simplify_trig()
1
sage: h = sin(x)*csc(x)
sage: h.simplify_trig()
1
sage: k = tanh(x)*cosh(2*x)
sage: k.simplify_trig()
(2*sinh(x)^3 + sinh(x))/cosh(x)
```

In some cases we do not want to expand:

```
sage: f = tan(3*x)
sage: f.simplify_trig()
-(4*cos(x)^2 - 1)*sin(x)/(4*cos(x)*sin(x)^2 - cos(x))
sage: f.simplify_trig(False)
sin(3*x)/cos(3*x)
```

sin (hold=False)

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: sin(x^2 + y^2)
sin(x^2 + y^2)
sage: sin(sage.symbolic.constants.pi)
0
sage: sin(SR(1))
sin(1)
sage: sin(SR(RealField(150)(1)))
0.84147098480789650665250232163029899962256306
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(0).sin()
0
sage: SR(0).sin(hold=True)
sin(0)
```

This also works using functional notation:

```
sage: sin(0,hold=True)
sin(0)
sage: sin(0)
0
```

To then evaluate again, we use unhold():

```
sage: a = SR(0).sin(hold=True); a.unhold()
0
```

sinh (hold=False)

Return sinh of self.

We have $sinh(x) = (e^x - e^{-x})/2$.

EXAMPLES:

To prevent automatic evaluation use the hold argument:

```
sage: arccosh(x).sinh()
sqrt(x + 1)*sqrt(x - 1)
sage: arccosh(x).sinh(hold=True)
sinh(arccosh(x))
```

This also works using functional notation:

```
sage: sinh(arccosh(x),hold=True)
sinh(arccosh(x))
sage: sinh(arccosh(x))
sqrt(x + 1)*sqrt(x - 1)
```

To then evaluate again, we use unhold():

```
sage: a = arccosh(x).sinh(hold=True); a.simplify()
sqrt(x + 1)*sqrt(x - 1)
```

solve (x, multiplicities=False, solution_dict=False, explicit_solutions=False, to_poly_solve=False, algorithm=None, domain=None)

Analytically solve the equation self == 0 or a univariate inequality for the variable x.

Warning: This is not a numerical solver – use $find_root()$ to solve for self == 0 numerically on an interval.

INPUT:

• x – variable(s) to solve for

- multiplicities bool (default: False); if True, return corresponding multiplicities. This keyword is incompatible with to_poly_solve=True and does not make any sense when solving an inequality.
- solution_dict bool (default: False); if True or non-zero, return a list of dictionaries containing solutions. Not used when solving an inequality.
- explicit_solutions bool (default: False); require that all roots be explicit rather than implicit. Not used when solving an inequality.
- to_poly_solve bool (default: False) or string; use Maxima's to_poly_solver package to search for more possible solutions, but possibly encounter approximate solutions. This keyword is incompatible with multiplicities=True and is not used when solving an inequality. Setting to_poly_solve to 'force' omits Maxima's solve command (useful when some solutions of trigonometric equations are lost).

EXAMPLES:

```
sage: z = var('z')
sage: (z^5 - 1).solve(z)
[z == 1/4*sqrt(5) + 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
z == -1/4*sqrt(5) + 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
z == -1/4*sqrt(5) - 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
z == 1/4*sqrt(5) - 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
z == 1/4*sqrt(5) - 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
z == 1]

sage: solve((z^3-1)^3, z, multiplicities=True)
([z == 1/2*I*sqrt(3) - 1/2, z == -1/2*I*sqrt(3) - 1/2, z == 1], [3, 3, 3])
```

solve_diophantine (x=None, solution_dict=False)

Solve a polynomial equation in the integers (a so called Diophantine).

If the argument is just a polynomial expression, equate to zero. If solution_dict=True return a list of dictionaries instead of a list of tuples.

EXAMPLES:

The function is used when solve () is called with all variables assumed integer:

You can also pick specific variables, and get the solution as a dictionary:

If the solution is parametrized the parameter(s) are not defined, but you can substitute them with specific integer values:

```
sage: # needs sympy
sage: x,y,z = var('x,y,z')
sage: sol = solve_diophantine(x^2-y == 0); sol
(t, t^2)
sage: [(sol[0].subs(t=t),sol[1].subs(t=t)) for t in range(-3,4)]
[(-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9)]
sage: sol = solve_diophantine(x^2 + y^2 == z^2); sol
(2*p*q, p^2 - q^2, p^2 + q^2)
sage: [(sol[0].subs(p=p,q=q), sol[1].subs(p=p,q=q), sol[2].subs(p=p,q=q))
...: for p in range(1,4) for q in range(1,4)]
[(2, 0, 2), (4, -3, 5), (6, -8, 10), (4, 3, 5), (8, 0, 8),
(12, -5, 13), (6, 8, 10), (12, 5, 13), (18, 0, 18)]
```

Solve Brahmagupta-Pell equations:

See also:

http://docs.sympy.org/latest/modules/solvers/diophantine.html

sqrt (hold=False)

Return the square root of this expression

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: SR(2).sqrt()
sqrt(2)
sage: (x^2+y^2).sqrt()
sqrt(x^2 + y^2)
sage: (x^2).sqrt()
sqrt(x^2)
```

Immediate simplifications are applied:

```
sage: sqrt(x^2)
sqrt(x^2)
sage: x = SR.symbol('x', domain='real')
sage: sqrt(x^2)
abs(x)
sage: forget()
sage: assume(x<0)</pre>
sage: sqrt(x^2)
-x
sage: sqrt(x^4)
x^2
sage: forget()
sage: x = SR.symbol('x', domain='real')
sage: sqrt(x^4)
x^2
sage: sqrt(sin(x)^2)
abs(sin(x))
sage: sqrt((x+1)^2)
abs(x + 1)
sage: forget()
sage: assume (x<0)
sage: sqrt((x-1)^2)
-x + 1
sage: forget()
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(4).sqrt()
2
sage: SR(4).sqrt(hold=True)
sqrt(4)
```

To then evaluate again, we use unhold():

```
sage: a = SR(4).sqrt(hold=True); a.unhold()
2
```

To use this parameter in functional notation, you must coerce to the symbolic ring:

```
sage: sqrt(SR(4),hold=True)
sqrt(4)
sage: sqrt(4,hold=True)
Traceback (most recent call last):
...
TypeError: ..._do_sqrt() got an unexpected keyword argument 'hold'
```

step(hold=False)

Return the value of the unit step function, which is 0 for negative x, 1 for 0, and 1 for positive x.

See also:

sage.functions.generalized.FunctionUnitStep

EXAMPLES:

```
sage: x = var('x')
sage: SR(1.5).step()
1
```

```
sage: SR(0).step()
1
sage: SR(-1/2).step()
0
sage: SR(float(-1)).step()
0
```

Using the hold parameter it is possible to prevent automatic evaluation:

```
sage: SR(2).step()
1
sage: SR(2).step(hold=True)
unit_step(2)
```

subs (*args, **kwds)

Substitute the given subexpressions in this expression.

EXAMPLES:

```
sage: var('x,y,z,a,b,c,d,f,g')
(x, y, z, a, b, c, d, f, g)
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: t = a^2 + b^2 + (x+y)^3
```

Substitute with keyword arguments (works only with symbols):

```
sage: t.subs(a=c)
(x + y)^3 + b^2 + c^2
sage: t.subs(b=19, x=z)
(y + z)^3 + a^2 + 361
```

Substitute with a dictionary argument:

```
sage: t.subs({a^2: c})
(x + y)^3 + b^2 + c

sage: t.subs({w0^2: w0^3})
a^3 + b^3 + (x + y)^3
```

Substitute with one or more relational expressions:

```
sage: t.subs(w0^2 == w0^3)
a^3 + b^3 + (x + y)^3

sage: t.subs(w0 == w0^2)
a^8 + b^8 + (x^2 + y^2)^6

sage: t.subs(a == b, b == c)
(x + y)^3 + b^2 + c^2
```

Any number of arguments is accepted:

```
sage: t.subs(a=b, b=c)
(x + y)^3 + b^2 + c^2
sage: t.subs({a:b}, b=c)
```

```
(x + y)^3 + b^2 + c^2

sage: t.subs([x == 3, y == 2], a == 2, {b:3})

138
```

It can even accept lists of lists:

```
sage: eqn1 = (a*x + b*y == 0)
sage: eqn2 = (1 + y == 0)
sage: soln = solve([eqn1, eqn2], [x, y])
sage: soln
[[x == b/a, y == -1]]
sage: f = x + y
sage: f.subs(soln)
b/a - 1
```

Duplicate assignments will throw an error:

```
sage: t.subs({a:b}, a=c)
Traceback (most recent call last):
...
ValueError: duplicate substitution for a, got values b and c

sage: t.subs([x == 1], a = 1, b = 2, x = 2)
Traceback (most recent call last):
...
ValueError: duplicate substitution for x, got values 1 and 2
```

All substitutions are performed at the same time:

```
sage: t.subs({a:b, b:c})
(x + y)^3 + b^2 + c^2
```

Substitutions are done term by term, in other words Sage is not able to identify partial sums in a substitution (see github issue #18396):

Note that it is the very same behavior as in Maxima:

```
sage: E = 'x^4 + x^2 + x'
sage: subs = [('x','y'), ('x^2','y'), ('x^2+x','y'), ('x^4+x^2+x','y')]

sage: cmd = '{}, {}={}'
sage: for s1,s2 in subs:
...: maxima.eval(cmd.format(E, s1, s2))
'y^4+y^2+y'
'y+x^4+x'
```

```
'x^4+x^2+x'
'y'
```

Or as in Maple:

```
sage: cmd = 'subs({}={}, {})'  # optional - maple
sage: for s1,s2 in subs:  # optional - maple
...:  maple.eval(cmd.format(s1,s2, E))
'y^4+y^2+y'
'x^4+x+y'
'x^4+x+y'
'y'
```

But Mathematica does something different on the third example:

The same, with formatting more suitable for cut and paste:

```
sage: for s1,s2 in subs: # optional - mathematica
....: mathematica(cmd.format(E,s1,s2))
y + y^2 + y^4
x + x^4 + y
x^4 + y
```

Warning: Unexpected results may occur if the left-hand side of some substitution is not just a single variable (or is a "wildcard" variable). For example, the result of $\cos(\cos(\cos(x)))$. subs($\cos(x)$: x}) is x, because the substitution is applied repeatedly. Such repeated substitutions (and pattern-matching code that may be somewhat unpredictable) are disabled only in the basic case where the left-hand side of every substitution is a variable. In particular, although the result of $(x^2).subs(x: sqrt(x))$ is x, the result of $(x^2).subs(x: sqrt(x), y^2: y)$ is sqrt(x), because repeated substitution is enabled by the presence of the expression y^2 in the left-hand side of one of the substitutions, even though that particular substitution does not get applied.

substitute_function(*args, **kwds)

Substitute the given functions by their replacements in this expression.

EXAMPLES:

```
sage: x,y = var('x,y')
sage: foo = function('foo'); bar = function('bar')
sage: f = foo(x) + 1/foo(pi*y)
```

Substitute with a dictionary:

```
sage: f.substitute_function({foo: bar})
1/bar(pi*y) + bar(x)
sage: f.substitute_function({foo(x): bar(x)})
1/bar(pi*y) + bar(x)
```

If the function expression to be substituted includes its arguments, the right hand side can be an arbitrary symbolic expression:

```
sage: f.substitute_function({foo(x): x^2})
x^2 + 1/(pi^2*y^2)
```

Substitute with keyword arguments (works only if no function arguments are given):

```
sage: f.substitute_function(foo=bar)
1/bar(pi*y) + bar(x)
```

Substitute with a relational expression:

```
sage: f.substitute_function(foo(x) == bar(x))
1/bar(pi*y) + bar(x)
sage: f.substitute_function(foo(x) == bar(x+1))
1/bar(pi*y + 1) + bar(x + 1)
```

All substitutions are performed at the same time:

```
sage: g = foo(x) + 1/bar(pi*y)
sage: g.substitute_function({foo: bar, bar: foo})
1/foo(pi*y) + bar(x)
```

Any number of arguments is accepted:

```
sage: g.substitute_function({foo: bar}, bar(x) == x^2)
1/(pi^2*y^2) + bar(x)
```

As well as lists of substitutions:

```
sage: g.substitute_function([foo(x) == 1, bar(x) == x])
1/(pi*y) + 1
```

Alternative syntax:

```
sage: g.substitute_function(foo, bar)
1/bar(pi*y) + bar(x)
```

Duplicate assignments will throw an error:

```
sage: g.substitute_function({foo:bar}, foo(x) == x^2)
Traceback (most recent call last):
...
ValueError: duplicate substitution for foo, got values bar and x |--> x^2

sage: g.substitute_function([foo(x) == x^2], foo = bar)
Traceback (most recent call last):
...
ValueError: duplicate substitution for foo, got values x |--> x^2 and bar
```

substitution_delayed(pattern, replacement)

Replace all occurrences of pattern by the result of replacement.

In contrast to *subs* (), the pattern may contains wildcards and the replacement can depend on the particular term matched by the pattern.

INPUT:

- pattern an Expression, usually containing wildcards.
- replacement a function. Its argument is a dictionary mapping the wildcard occurring in pattern to the actual values. If it returns None, this occurrence of pattern is not replaced. Otherwise, it is replaced by the output of replacement.

OUTPUT:

An Expression.

EXAMPLES:

See also:

match()

$subtract_from_both_sides(x)$

Return a relation obtained by subtracting x from both sides of this relation.

EXAMPLES:

```
sage: eqn = x*sin(x)*sqrt(3) + sqrt(2) > cos(sin(x))
sage: eqn.subtract_from_both_sides(sqrt(2))
sqrt(3)*x*sin(x) > -sqrt(2) + cos(sin(x))
sage: eqn.subtract_from_both_sides(cos(sin(x)))
sqrt(3)*x*sin(x) + sqrt(2) - cos(sin(x)) > 0
```

```
sum(*args, **kwds)
```

Return the symbolic sum $\sum_{v=a}^{b}$ self

with respect to the variable v with endpoints a and b.

INPUT:

- v − a variable or variable name
- a lower endpoint of the sum
- b upper endpoint of the sum
- algorithm (default: 'maxima') one of

- 'maxima' use Maxima (the default)
- 'maple' (optional) use Maple
- 'mathematica' (optional) use Mathematica
- 'giac' (optional) use Giac
- 'sympy' use SymPy

EXAMPLES:

```
sage: k, n = var('k,n')
sage: k.sum(k, 1, n).factor()
1/2*(n + 1)*n
```

```
sage: (1/k^4).sum(k, 1, 00)
1/90*pi^4
```

```
sage: (1/k^5).sum(k, 1, 00) zeta(5)
```

A well known binomial identity:

```
sage: assume(n>=0)
sage: binomial(n,k).sum(k, 0, n)
2^n
```

And some truncations thereof:

```
sage: binomial(n,k).sum(k,1,n)
2^n - 1
sage: binomial(n,k).sum(k,2,n)
2^n - n - 1
sage: binomial(n,k).sum(k,0,n-1)
2^n - 1
sage: binomial(n,k).sum(k,1,n-1)
2^n - 2
```

The binomial theorem:

```
sage: x, y = var('x, y')
sage: (binomial(n,k) * x^k * y^(n-k)).sum(k, 0, n)
(x + y)^n
```

```
sage: (k * binomial(n, k)).sum(k, 1, n)
2^(n - 1)*n
```

```
sage: ((-1)^k*binomial(n,k)).sum(k, 0, n)
0
```

Summing a hypergeometric term:

```
sage: (binomial(n, k) * factorial(k) / factorial(n+1+k)).sum(k, 0, n)
1/2*sqrt(pi)/factorial(n + 1/2)
```

We check a well known identity:

A geometric sum:

```
sage: a, q = var('a, q')
sage: (a*q^k).sum(k, 0, n)
(a*q^(n + 1) - a)/(q - 1)
```

The geometric series:

```
sage: assume(abs(q) < 1)
sage: (a*q^k).sum(k, 0, oo)
-a/(q - 1)
```

A divergent geometric series. Do not forget to forget your assumptions:

```
sage: forget()
sage: assume(q > 1)
sage: (a*q^k).sum(k, 0, oo)
Traceback (most recent call last):
...
ValueError: Sum is divergent.
```

This summation only Mathematica can perform:

```
sage: (1/(1+k^2)).sum(k, -oo, oo, algorithm = 'mathematica') # optional -\_
\( \to mathematica \)
pi*coth(pi)
```

Use Giac to perform this summation:

```
sage: (sum(1/(1+k^2), k, -oo, oo, algorithm = 'giac')).factor()
pi*(e^(2*pi) + 1)/((e^pi + 1)*(e^pi - 1))
```

Use Maple as a backend for summation:

Note:

1. Sage can currently only understand a subset of the output of Maxima, Maple and Mathematica, so even if the chosen backend can perform the summation the result might not be convertible into a usable Sage expression.

tan (hold=False)

EXAMPLES:

```
sage: var('x, y')
(x, y)
sage: tan(x^2 + y^2)
tan(x^2 + y^2)
```

```
sage: tan(sage.symbolic.constants.pi/2)
Infinity
sage: tan(SR(1))
tan(1)
sage: tan(SR(RealField(150)(1)))
1.5574077246549022305069748074583601730872508
```

To prevent automatic evaluation use the hold argument:

```
sage: (pi/12).tan()
-sqrt(3) + 2
sage: (pi/12).tan(hold=True)
tan(1/12*pi)
```

This also works using functional notation:

```
sage: tan(pi/12,hold=True)
tan(1/12*pi)
sage: tan(pi/12)
-sqrt(3) + 2
```

To then evaluate again, we use unhold():

```
sage: a = (pi/12).tan(hold=True); a.unhold()
-sqrt(3) + 2
```

tanh (hold=False)

Return tanh of self.

We have tanh(x) = sinh(x)/cosh(x).

EXAMPLES:

To prevent automatic evaluation use the hold argument:

```
sage: arcsinh(x).tanh()
x/sqrt(x^2 + 1)
sage: arcsinh(x).tanh(hold=True)
tanh(arcsinh(x))
```

This also works using functional notation:

```
sage: tanh(arcsinh(x),hold=True)
tanh(arcsinh(x))
sage: tanh(arcsinh(x))
x/sqrt(x^2 + 1)
```

To then evaluate again, we use unhold():

```
sage: a = arcsinh(x).tanh(hold=True); a.unhold()
x/sqrt(x^2 + 1)
```

taylor(*args)

Expand this symbolic expression in a truncated Taylor or Laurent series in the variable v around the point a, containing terms through $(x-a)^n$. Functions in more variables is also supported.

INPUT:

- *args the following notation is supported
 - x, a, n variable, point, degree
 - (x, a), (y, b), n-variables with points, degree of polynomial

EXAMPLES:

```
sage: var('a, x, z')
(a, x, z)
sage: taylor(a*log(z), z, 2, 3)
1/24*a*(z - 2)^3 - 1/8*a*(z - 2)^2 + 1/2*a*(z - 2) + a*log(2)
```

```
sage: taylor(sqrt(sin(x) + a*x + 1), x, 0, 3) 1/48*(3*a^3 + 9*a^2 + 9*a - 1)*x^3 - 1/8*(a^2 + 2*a + 1)*x^2 + 1/2*(a + 1)*x_ <math>\leftrightarrow + 1
```

```
sage: taylor(sqrt(x + 1), x, 0, 5)
7/256*x^5 - 5/128*x^4 + 1/16*x^3 - 1/8*x^2 + 1/2*x + 1
```

```
sage: taylor(1/log(x + 1), x, 0, 3)
-19/720*x^3 + 1/24*x^2 - 1/12*x + 1/x + 1/2
```

```
sage: taylor((cos(x) - sec(x))^3, x, 0, 9)
-1/2*x^8 - x^6
```

```
sage: taylor(1/(cos(x) - sec(x))^3, x, 0, 5)
-15377/7983360*x^4 - 6767/604800*x^2 + 11/120/x^2 + 1/2/x^4 - 1/x^6 - 347/
\Rightarrow15120
```

test_relation (ntests=20, domain=None, proof=True)

Test this relation at several random values, attempting to find a contradiction. If this relation has no variables, it will also test this relation after casting into the domain.

Because the interval fields never return false positives, we can be assured that if True or False is returned (and proof is False) then the answer is correct.

INPUT:

- ntests (default 20) the number of iterations to run
- domain (optional) the domain from which to draw the random values defaults to CIF for equality testing and RIF for order testing
- proof (default True) if False and the domain is an interval field, regard overlapping (potentially equal) intervals as equal, and return True if all tests succeeded.

OUTPUT:

Boolean or NotImplemented, meaning

- True this relation holds in the domain and has no variables.
- False a contradiction was found.
- NotImplemented no contradiction found.

EXAMPLES:

```
sage: (3 < pi).test_relation()</pre>
sage: (0 >= pi).test_relation()
False
sage: (exp(pi) - pi).n()
19.9990999791895
sage: (exp(pi) - pi == 20).test_relation()
False
sage: (\sin(x)^2 + \cos(x)^2 == 1).test_relation()
NotImplemented
sage: (\sin(x)^2 + \cos(x)^2 == 1).\text{test\_relation}(\text{proof} = \textbf{False})
True
sage: (x == 1).test_relation()
False
sage: var('x,y')
(x, y)
sage: (x < y).test_relation()</pre>
False
```

to_gamma()

Convert factorial, binomial, and Pochhammer symbol expressions to their gamma function equivalents.

EXAMPLES:

```
sage: m,n = var('m n', domain='integer')
sage: factorial(n).to_gamma()
gamma(n + 1)
sage: binomial(m,n).to_gamma()
gamma(m + 1)/(gamma(m - n + 1)*gamma(n + 1))
```

trailing_coeff(s)

Return the trailing coefficient of s in self, i.e., the coefficient of the smallest power of s in self.

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*sin(x*y) + a*x + x*y + x/y + 2*sin(x*y)/x + 100
sage: f.trailing_coefficient(x)
2*sin(x*y)
```

```
sage: f.trailing_coefficient(y)
sage: f.trailing_coefficient(sin(x*y))
a*x + x*y + x/y + 100
```

trailing_coefficient(s)

Return the trailing coefficient of s in self, i.e., the coefficient of the smallest power of s in self.

EXAMPLES:

```
sage: var('x,y,a')
(x, y, a)
sage: f = 100 + a*x + x^3*sin(x*y) + x*y + x/y + 2*sin(x*y)/x; f
x^3*\sin(x^*y) + a^*x + x^*y + x/y + 2*\sin(x^*y)/x + 100
sage: f.trailing_coefficient(x)
2*sin(x*y)
sage: f.trailing_coefficient(y)
sage: f.trailing_coefficient(sin(x*y))
a*x + x*y + x/y + 100
```

trig_expand (full=False, half_angles=False, plus=True, times=True)

Expand trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self.

For best results, self should already be expanded.

INPUT:

- full (default: False) To enhance user control of simplification, this function expands only one level at a time by default, expanding sums of angles or multiple angles. To obtain full expansion into sines and cosines immediately, set the optional parameter full to True.
- half_angles (default: False) If True, causes half-angles to be simplified away.
- plus (default: True) Controls the sum rule; expansion of sums (e.g. $\sin(x+y)$) will take place only if plus is True.
- times (default: True) Controls the product rule, expansion of products (e.g. $\sin(2x)$) will take place only if times is True.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: sin(5*x).expand_trig()
5*\cos(x)^4*\sin(x) - 10*\cos(x)^2*\sin(x)^3 + \sin(x)^5
sage: cos(2*x + var('y')).expand_trig()
cos(2*x)*cos(y) - sin(2*x)*sin(y)
```

We illustrate various options to this function:

```
sage: f = \sin(\sin(3*\cos(2*x))*x)
sage: f.expand_trig()
\sin((3*\cos(\cos(2*x))^2*\sin(\cos(2*x)) - \sin(\cos(2*x))^3)*x)
sage: f.expand_trig(full=True)
sin((3*(cos(cos(x)^2)*cos(sin(x)^2)
       + \sin(\cos(x)^2) \cdot \sin(\sin(x)^2) \cdot 2 \cdot (\cos(\sin(x)^2) \cdot \sin(\cos(x)^2)
```

```
- cos(cos(x)^2)*sin(sin(x)^2)
- (cos(sin(x)^2)*sin(cos(x)^2) - cos(cos(x)^2)*sin(sin(x)^2))^3)*x)

sage: sin(2*x).expand_trig(times=False)
sin(2*x)

sage: sin(2*x).expand_trig(times=True)

2*cos(x)*sin(x)

sage: sin(2 + x).expand_trig(plus=False)
sin(x + 2)

sage: sin(2 + x).expand_trig(plus=True)
cos(x)*sin(2) + cos(2)*sin(x)

sage: sin(x/2).expand_trig(half_angles=False)
sin(1/2*x)

sage: sin(x/2).expand_trig(half_angles=True)
(-1)^floor(1/2*x/pi)*sqrt(-1/2*cos(x) + 1/2)
```

If the expression contains terms which are factored, we expand first:

```
sage: (x, k1, k2) = var('x, k1, k2')
sage: cos((k1-k2)*x).expand().expand_trig()
cos(k1*x)*cos(k2*x) + sin(k1*x)*sin(k2*x)
```

ALIAS:

trig_expand() and expand_trig() are the same

trig_reduce(var=None)

Combine products and powers of trigonometric and hyperbolic sin's and cos's of x into those of multiples of x. It also tries to eliminate these functions when they occur in denominators.

INPUT:

- self a symbolic expression
- var (default: None) the variable which is used for these transformations. If not specified, all variables are used.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: y = var('y')
sage: f = sin(x)*cos(x)^3+sin(y)^2
sage: f.reduce_trig()
-1/2*cos(2*y) + 1/8*sin(4*x) + 1/4*sin(2*x) + 1/2
```

To reduce only the expressions involving x we use optional parameter:

```
sage: f.reduce_trig(x)
sin(y)^2 + 1/8*sin(4*x) + 1/4*sin(2*x)
```

ALIAS: trig_reduce() and reduce_trig() are the same

trig_simplify(expand=True)

Optionally expand and then employ identities such as $\sin(x)^2 + \cos(x)^2 = 1$, $\cosh(x)^2 - \sinh(x)^2 = 1$, $\sin(x)\csc(x) = 1$, or $\tanh(x) = \sinh(x)/\cosh(x)$ to simplify expressions containing tan, sec, etc., to sin, cos, sinh, cosh.

INPUT:

- self symbolic expression
- expand (default:True) if True, expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in self first. For best results, self should be expanded. See also expand_trig() to get more controls on this expansion.

ALIAS: trig_simplify() and simplify_trig() are the same

EXAMPLES:

```
sage: f = sin(x)^2 + cos(x)^2; f
cos(x)^2 + sin(x)^2
sage: f.simplify()
cos(x)^2 + sin(x)^2
sage: f.simplify_trig()
1
sage: h = sin(x)*csc(x)
sage: h.simplify_trig()
1
sage: k = tanh(x)*cosh(2*x)
sage: k.simplify_trig()
(2*sinh(x)^3 + sinh(x))/cosh(x)
```

In some cases we do not want to expand:

```
sage: f = tan(3*x)
sage: f.simplify_trig()
-(4*cos(x)^2 - 1)*sin(x)/(4*cos(x)*sin(x)^2 - cos(x))
sage: f.simplify_trig(False)
sin(3*x)/cos(3*x)
```

truncate()

Given a power series or expression, return the corresponding expression without the big oh.

INPUT:

• self – a series as output by the series () command.

OUTPUT:

A symbolic expression.

EXAMPLES:

```
sage: f = \sin(x)/x^2

sage: f.truncate()

\sin(x)/x^2

sage: f.series(x,7)

1*x^*(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + 0rder(x^7)

sage: f.series(x,7).truncate()

-1/5040*x^5 + 1/120*x^3 - 1/6*x + 1/x

sage: f.series(x==1,3).truncate().expand()

-2*x^2\cos(1) + 5/2*x^2\sin(1) + 5*x*\cos(1) - 7*x*\sin(1) - 3*\cos(1) + 11/

\rightarrow 2*\sin(1)
```

unhold(exclude=None)

Evaluates any held operations (with the hold keyword) in the expression

INPUT:

• self - an expression with held operations

• exclude – (default: None) a list of operators to exclude from evaluation. Excluding arithmetic operators does not yet work (see github issue #10169).

OUTPUT:

A new expression with held operations, except those in exclude, evaluated

EXAMPLES:

```
sage: a = exp(I * pi, hold=True)
e^(I*pi)
sage: a.unhold()
sage: b = x.add(x, hold=True)
sage: b
x + x
sage: b.unhold()
sage: (a + b).unhold()
2*x - 1
sage: c = (x.mul(x, hold=True)).add(x.mul(x, hold=True), hold=True)
sage: c
x*x + x*x
sage: c.unhold()
sage: sin(tan(0, hold=True), hold=True).unhold()
sage: sin(tan(0, hold=True), hold=True).unhold(exclude=[sin])
sin(0)
sage: (e^sgn(0, hold=True)).unhold()
sage: (e^sqn(0, hold=True)).unhold(exclude=[exp])
e^0
sage: log(3).unhold()
log(3)
```

unit(s)

Return the unit of this expression when considered as a polynomial in s.

See also content (), primitive_part (), and unit_content_primitive ().

INPUT:

• s – a symbolic expression.

OUTPUT:

The unit part of a polynomial as a symbolic expression. It is defined as the sign of the leading coefficient.

EXAMPLES:

```
sage: (2*x+4).unit(x)
1
sage: (-2*x+1).unit(x)
-1
sage: (2*x+1/2).unit(x)
1
sage: var('y')
y
```

```
sage: (2*x - 4*sin(y)).unit(sin(y))
-1
```

unit_content_primitive(s)

Return the factorization into unit, content, and primitive part.

INPUT:

• s – a symbolic expression, usually a symbolic variable. The whole symbolic expression self will be considered as a univariate polynomial in s.

OUTPUT:

A triple (unit, content, primitive polynomial)` containing the unit, content, and primitive polynomial. Their product equals self.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: ex = 9*x^3*y+3*y
sage: ex.unit_content_primitive(x)
(1, 3*y, 3*x^3 + 1)
sage: ex.unit_content_primitive(y)
(1, 9*x^3 + 3, y)
```

variables()

Return sorted tuple of variables that occur in this expression.

EXAMPLES:

```
sage: (x,y,z) = var('x,y,z')
sage: (x+y).variables()
(x, y)
sage: (2*x).variables()
(x,)
sage: (x^y).variables()
(x, y)
sage: sin(x+y^z).variables()
(x, y, z)
```

zeta (hold=False)

EXAMPLES:

To prevent automatic evaluation use the hold argument:

```
sage: SR(2).zeta(hold=True)
zeta(2)
```

This also works using functional notation:

```
sage: zeta(2,hold=True)
zeta(2)
sage: zeta(2)
1/6*pi^2
```

To then evaluate again, we use unhold():

```
sage: a = SR(2).zeta(hold=True); a.unhold()
1/6*pi^2
```

class sage.symbolic.expression.ExpressionIterator

Bases: object

class sage.symbolic.expression.OperandsWrapper

Bases: SageObject

Operands wrapper for symbolic expressions.

EXAMPLES:

```
sage: x, y, z = var('x, y, z')
sage: e = x + x*y + z^y + 3*y*z; e
x*y + 3*y*z + x + z^y
sage: e.op[1]
3*v*z
sage: e.op[1,1]
sage: e.op[-1]
sage: e.op[1:]
[3*y*z, x, z^y]
sage: e.op[:2]
[x*y, 3*y*z]
sage: e.op[-2:]
[x, z^y]
sage: e.op[:-2]
[x*y, 3*y*z]
sage: e.op[-5]
Traceback (most recent call last):
IndexError: operand index out of range, got -5, expect between -4 and 3
sage: e.op[5]
Traceback (most recent call last):
IndexError: operand index out of range, got 5, expect between -4 and 3
sage: e.op[1,1,0]
Traceback (most recent call last):
```

class sage.symbolic.expression.PynacConstant

Bases: object

expression()

Returns this constant as an Expression.

EXAMPLES:

```
sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f + 2
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: '<class 'sage.symbolic.
→expression.PynacConstant'>' and 'Integer Ring'

sage: foo = f.expression(); foo
foo
sage: foo + 2
foo + 2
```

name()

Returns the name of this constant.

EXAMPLES:

```
sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f.name()
'foo'
```

serial()

Returns the underlying Pynac serial for this constant.

EXAMPLES:

```
sage: from sage.symbolic.expression import PynacConstant
sage: f = PynacConstant('foo', 'foo', 'real')
sage: f.serial() #random
15
```

class sage.symbolic.expression.SubstitutionMap

Bases: SageObject

apply_to (expr, options)

Apply the substitution to a symbolic expression

EXAMPLES:

```
sage: from sage.symbolic.expression import make_map
sage: subs = make_map({x:x+1})
sage: subs.apply_to(x^2, 0)
(x + 1)^2
```

class sage.symbolic.expression.SymbolicSeries

```
Bases: Expression
```

Trivial constructor.

EXAMPLES:

```
sage: loads(dumps((x+x^3).series(x,2)))
1*x + Order(x^2)
```

coefficients (x=None, sparse=True)

Return the coefficients of this symbolic series as a list of pairs.

INPUT:

- x optional variable.
- sparse Boolean. If False return a list with as much entries as the order of the series.

OUTPUT:

Depending on the value of sparse,

- A list of pairs (expr, n), where expr is a symbolic expression and n is a power (sparse=True, default)
- A list of expressions where the n-th element is the coefficient of x^n when self is seen as polynomial in x (sparse=False).

EXAMPLES:

```
sage: s = (1/(1-x)).series(x,6); s
1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + Order(x^6)
sage: s.coefficients()
[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5]]
sage: s.coefficients(x, sparse=False)
[1, 1, 1, 1, 1, 1]
sage: x,y = var("x,y")
sage: s = (1/(1-y*x-x)).series(x,3); s
1 + (y + 1)*x + ((y + 1)^2)*x^2 + Order(x^3)
sage: s.coefficients(x, sparse=False)
[1, y + 1, (y + 1)^2]
```

default_variable()

Return the expansion variable of this symbolic series.

```
sage: s = (1/(1-x)).series(x,3); s
1 + 1*x + 1*x^2 + Order(x^3)
sage: s.default_variable()
x
```

is_terminating_series()

Return True if the series is without order term.

A series is terminating if it can be represented exactly, without requiring an order term. You can explicitly request terminating series by setting the order to positive infinity.

OUTPUT:

Boolean. True if the series has no order term.

EXAMPLES:

```
sage: (x^5+x^2+1).series(x, +oo)
1 + 1*x^2 + 1*x^5
sage: (x^5+x^2+1).series(x,+oo).is_terminating_series()
True
sage: SR(5).is_terminating_series()
False
sage: exp(x).series(x,10).is_terminating_series()
False
```

power_series (base_ring)

Return the algebraic power series associated to this symbolic series.

The coefficients must be coercible to the base ring.

EXAMPLES:

```
sage: ex = (gamma(1-x)).series(x,3); ex
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
sage: g = ex.power_series(SR); g
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + O(x^3)
sage: g.parent()
Power Series Ring in x over Symbolic Ring
```

truncate()

Given a power series or expression, return the corresponding expression without the big oh.

OUTPUT:

A symbolic expression.

```
sage: f = \sin(x)/x^2
sage: f.truncate()
\sin(x)/x^2
sage: f.series(x,7)
1*x^*(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + 0rder(x^7)
sage: f.series(x,7).truncate()
-1/5040*x^5 + 1/120*x^3 - 1/6*x + 1/x
sage: f.series(x=1,3).truncate().expand()
-2*x^2\cos(1) + 5/2*x^2\sin(1) + 5*x*\cos(1) - 7*x*\sin(1) - 3*\cos(1) + 11/
\rightarrow 2*\sin(1)
```

Call a function registered with Pynac (GiNaC).

INPUT:

- serial serial number of the function
- nargs declared number of args (0 is variadic)
- args a list of arguments to pass to the function; each must be an Expression
- hold whether to leave the call unevaluated
- allow_numeric_result if True, keep numeric results numeric; if False, make all results symbolic expressions
- result_parent an instance of SymbolicRing

EXAMPLES:

```
sage: from sage.symbolic.expression import find_registered_function, call_
→registered_function
sage: s_arctan = find_registered_function('arctan', 1)
sage: call_registered_function(s_arctan, 1, [SR(1)], False, True, SR)
1/4*pi
sage: call_registered_function(s_arctan, 1, [SR(1)], True, True, SR)
arctan(1)
sage: call_registered_function(s_arctan, 1, [SR(0)], False, True, SR)
0
sage: call_registered_function(s_arctan, 1, [SR(0)], False, True, SR).parent()
Integer Ring
sage: call_registered_function(s_arctan, 1, [SR(0)], False, False, SR).parent()
Symbolic Ring
```

sage.symbolic.expression.doublefactorial(n)

The double factorial combinatorial function:

```
n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1.
```

INPUT:

• n - an integer > = 1

```
sage: from sage.symbolic.expression import doublefactorial
sage: doublefactorial(-1)
1
sage: doublefactorial(0)
1
sage: doublefactorial(1)
1
sage: doublefactorial(5)
15
sage: doublefactorial(20)
3715891200
sage: prod( [20,18,..,2] )
3715891200
```

```
sage.symbolic.expression.find_registered_function(name, nargs)
```

Look up a function registered with Pynac (GiNaC).

Raise a ValueError if the function is not registered.

OUTPUT:

• serial number of the function, for use in call registered function()

EXAMPLES:

```
sage: from sage.symbolic.expression import find_registered_function
sage: find_registered_function('arctan', 1) # random
19
sage: find_registered_function('archenemy', 1)
Traceback (most recent call last):
...
ValueError: cannot find GiNaC function with name archenemy and 1 arguments
```

```
sage.symbolic.expression.get_fn_serial()
```

Return the overall size of the Pynac function registry which corresponds to the last serial value plus one.

EXAMPLES:

```
sage: from sage.symbolic.expression import get_fn_serial
sage: from sage.symbolic.function import get_sfunction_from_serial
sage: get_fn_serial() > 125
True
sage: print(get_sfunction_from_serial(get_fn_serial()))
None
sage: get_sfunction_from_serial(get_fn_serial() - 1) is not None
True
```

```
sage.symbolic.expression.get_ginac_serial()
```

Number of C++ level functions defined by GiNaC. (Defined mainly for testing.)

EXAMPLES:

```
sage: sage.symbolic.expression.get_ginac_serial() >= 35
True
```

sage.symbolic.expression.get_sfunction_from_hash(myhash)

Return an already created SymbolicFunction given the hash.

EXAMPLES:

```
sage: from sage.symbolic.expression import get_sfunction_from_hash
sage: get_sfunction_from_hash(1) # random
```

```
\verb|sage.symbolic.expression.get_sfunction_from_serial| (\textit{serial}) \\
```

Return an already created SymbolicFunction given the serial.

These are stored in the dictionary sfunction_serial_dict.

```
sage: from sage.symbolic.function import get_sfunction_from_serial
sage: get_sfunction_from_serial(65) #random
f
```

```
class sage.symbolic.expression.hold_class
```

Bases: object

Instances of this class can be used with Python with.

EXAMPLES:

```
sage: with hold:
....: tan(1/12*pi)
. . . . :
tan(1/12*pi)
sage: tan(1/12*pi)
-sqrt(3) + 2
sage: with hold:
        2^5
. . . . :
sage: with hold:
....: SR(2)^5
2^5
sage: with hold:
. . . . :
        t=tan(1/12*pi)
. . . . :
sage: t
tan(1/12*pi)
sage: t.unhold()
-sqrt(3) + 2
```

start()

Start a hold context.

EXAMPLES:

```
sage: hold.start()
sage: SR(2)^5
2^5
sage: hold.stop()
sage: SR(2)^5
32
```

stop()

Stop any hold context.

EXAMPLES:

```
sage: hold.start()
sage: SR(2)^5
2^5
sage: hold.stop()
sage: SR(2)^5
32
```

```
sage.symbolic.expression.init_function_table()
```

Initializes the function pointer table in Pynac. This must be called before Pynac is used; otherwise, there will be segfaults.

```
sage.symbolic.expression.init_pynac_I()
```

EXAMPLES:

```
sage: from sage.symbolic.constants import I as symbolic_I
sage: symbolic_I
I
sage: symbolic_I^2
-1
```

Note that conversions to real fields will give TypeError:

```
sage: float(symbolic_I)
Traceback (most recent call last):
...
TypeError: unable to simplify to float approximation
sage: gp(symbolic_I)
I
sage: RR(symbolic_I)
Traceback (most recent call last):
...
TypeError: unable to convert '1.0000000000000*I' to a real number
```

We can convert to complex fields:

```
sage: C = ComplexField(200); C
Complex Field with 200 bits of precision
sage: C(symbolic_I)
sage: symbolic_I._complex_mpfr_field_(ComplexField(53))
1.000000000000000*I
sage: symbolic_I._complex_double_(CDF)
1.0*I
sage: CDF(symbolic_I)
1.0*I
sage: z = symbolic_I + symbolic_I; z
2*I
sage: C(z)
sage: 1e8*symbolic_I
1.000000000000000e8*I
sage: complex(symbolic_I)
1j
sage: QQbar(symbolic_I)
sage: abs(symbolic_I)
sage: symbolic_I.minpoly()
x^2 + 1
sage: maxima(2*symbolic_I)
2*%i
```

sage.symbolic.expression.is_SymbolicEquation (x)

Return True if x is a symbolic equation.

This function is deprecated.

EXAMPLES:

The following two examples are symbolic equations:

```
sage: from sage.symbolic.expression import is_SymbolicEquation
sage: is_SymbolicEquation(sin(x) == x)
doctest:warning...
DeprecationWarning: is_SymbolicEquation is deprecated; use
'isinstance(x, sage.structure.element.Expression) and x.is_relational()' instead
See https://github.com/sagemath/sage/issues/35505 for details.
True
sage: is_SymbolicEquation(sin(x) < x)
True
sage: is_SymbolicEquation(x)
False</pre>
```

This is not, since 2==3 evaluates to the boolean False:

```
sage: is_SymbolicEquation(2 == 3)
False
```

However here since both 2 and 3 are coerced to be symbolic, we obtain a symbolic equation:

```
sage: is_SymbolicEquation(SR(2) == SR(3))
True
```

sage.symbolic.expression.make_map(subs_dict)

Construct a new substitution map

OUTPUT:

A new SubstitutionMap for doctesting

EXAMPLES:

```
sage: from sage.symbolic.expression import make_map
sage: make_map({x:x+1})
SubsMap
```

sage.symbolic.expression.math_sorted(expressions)

Sort a list of symbolic numbers in the "Mathematics" order

INPUT:

• expressions – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.

OUTPUT

The list sorted by ascending (real) value. If an entry does not define a real value (or plus/minus infinity), or if the comparison is not known, a ValueError is raised.

```
sage: from sage.symbolic.expression import math_sorted
sage: math_sorted([SR(1), SR(e), SR(pi), sqrt(2)])
[1, sqrt(2), e, pi]
```

```
sage.symbolic.expression.mixed_order(lhs, rhs)
```

Comparison in the mixed order

INPUT:

• 1hs, rhs – two symbolic expressions or something that can be converted to one.

OUTPUT:

Either -1, 0, or +1 indicating the comparison. An exception is raised if the arguments cannot be converted into the symbolic ring.

EXAMPLES:

```
sage: from sage.symbolic.expression import mixed_order
sage: mixed_order(1, oo)
-1
sage: mixed_order(e, oo)
-1
sage: mixed_order(pi, oo)
-1
sage: mixed_order(1, sqrt(2))
-1
sage: mixed_order(x + x^2, x*(x+1))
-1
```

Check that github issue #12967 is fixed:

```
sage: mixed_order(SR(oo), sqrt(2))
1
```

Ensure that github issue #32185 is fixed:

```
sage: mixed_order(pi, 0)
1
sage: mixed_order(golden_ratio, 0)
1
sage: mixed_order(log2, 0)
1
```

sage.symbolic.expression.mixed_sorted(expressions)

Sort a list of symbolic numbers in the "Mixed" order

INPUT:

• expressions – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.

OUTPUT:

In the list the numeric values are sorted by ascending (real) value, and the expressions with variables according to print order. If an entry does not define a real value (or plus/minus infinity), or if the comparison is not known, a ValueError is raised.

```
sage: from sage.symbolic.expression import mixed_sorted
sage: mixed_sorted([SR(1), SR(e), SR(pi), sqrt(2), x, sqrt(x), sin(1/x)])
[1, sqrt(2), e, pi, sin(1/x), sqrt(x), x]
```

```
sage.symbolic.expression.new_Expression(parent, x)
```

Convert x into the symbolic expression ring parent.

This is the element constructor.

EXAMPLES:

```
sage: a = SR(-3/4); a
-3/4
sage: type(a)
<class 'sage.symbolic.expression.Expression'>
sage: a.parent()
Symbolic Ring
sage: K.<a> = QuadraticField(-3)
→needs sage.rings.number_field
sage: a + \sin(x)
→needs sage.rings.number_field
I*sqrt(3) + sin(x)
sage: x = var('x'); y0, y1 = PolynomialRing(ZZ, 2, 'y').gens()
sage: x+y0/y1
x + y0/y1
sage: x.subs(x=y0/y1)
y0/y1
sage: x + int(1)
x + 1
```

Wrap the given Python object in a symbolic expression even if it cannot be coerced to the Symbolic Ring.

INPUT:

- parent a symbolic ring.
- x a Python object.
- force bool, default True, if True, the Python object is taken as is without attempting coercion or list traversal.
- recursive bool, default True, disables recursive traversal of lists.

EXAMPLES:

```
sage: t = SR._force_pyobject(QQ); t # indirect doctest
Rational Field
sage: type(t)
<class 'sage.symbolic.expression.Expression'>

sage: from sage.symbolic.expression import new_Expression_from_pyobject
sage: t = new_Expression_from_pyobject(SR, 17); t
17
sage: type(t)
<class 'sage.symbolic.expression.Expression'>

sage: t2 = new_Expression_from_pyobject(SR, t, False); t2
17
sage: t2 is t
True
sage: t1 = new_Expression_from_pyobject(SR, t, True); tt
```

```
17
sage: tt is t
False
```

Look up or create a symbol.

EXAMPLES:

```
sage: t0 = SR.symbol("t0")
sage: t0.conjugate()
conjugate(t0)

sage: t1 = SR.symbol("t1", domain='real')
sage: t1.conjugate()
t1

sage: t0.abs()
abs(t0)

sage: t0_2 = SR.symbol("t0", domain='positive')
sage: t0_2.abs()
t0
sage: bool(t0_2 == t0)
True
sage: t0.conjugate()
t0

sage: SR.symbol() # temporary variable
symbol...
```

sage.symbolic.expression.new_Expression_wild(parent, n=0)

Return the n-th wild-card for pattern matching and substitution.

INPUT:

- parent a symbolic ring.
- n a nonnegative integer.

OUTPUT:

• n-th wildcard expression.

```
sage: x,y = var('x,y')
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: pattern = sin(x)*w0*w1^2; pattern
$1^2*$0*sin(x)
sage: f = atan(sin(x)*3*x^2); f
arctan(3*x^2*sin(x))
sage: f.has(pattern)
True
sage: f.subs(pattern == x^2)
arctan(x^2)
```

```
sage.symbolic.expression.normalize_index_for_doctests(arg, nops)
```

Wrapper function to test normalize_index.

sage.symbolic.expression.paramset_from_Expression(e)

EXAMPLES:

```
sage: from sage.symbolic.expression import paramset_from_Expression
sage: f = function('f')
sage: paramset_from_Expression(f(x).diff(x))
[0]
```

sage.symbolic.expression.print_order(lhs, rhs)

Comparison in the print order

INPUT:

• lhs, rhs – two symbolic expressions or something that can be converted to one.

OUTPUT:

Either -1, 0, or +1 indicating the comparison. An exception is raised if the arguments cannot be converted into the symbolic ring.

EXAMPLES:

```
sage: from sage.symbolic.expression import print_order
sage: print_order(1, oo)
1
sage: print_order(e, oo)
-1
sage: print_order(pi, oo)
1
sage: print_order(1, sqrt(2))
1
```

Check that github issue #12967 is fixed:

```
sage: print_order(SR(oo), sqrt(2))
1
```

sage.symbolic.expression.print_sorted(expressions)

Sort a list in print order

INPUT:

• expressions – a list/tuple/iterable of symbolic expressions, or something that can be converted to one.

OUTPUT:

The list sorted by <code>print_order()</code>.

EXAMPLES:

```
sage: from sage.symbolic.expression import print_sorted
sage: print_sorted([SR(1), SR(e), SR(pi), sqrt(2)])
[e, sqrt(2), pi, 1]
```

```
sage.symbolic.expression.py_atan2_for_doctests(x, y)
```

Wrapper function to test py_atan2.

```
sage.symbolic.expression.py_denom_for_doctests(n)
     This function is used to test py_denom().
     EXAMPLES:
     sage: from sage.symbolic.expression import py_denom_for_doctests
     sage: py_denom_for_doctests(2/3)
     3
sage.symbolic.expression.py_eval_infinity_for_doctests()
     This function tests py_eval_infinity.
sage.symbolic.expression.py_eval_neg_infinity_for_doctests()
     This function tests py_eval_neg_infinity.
sage.symbolic.expression.py_eval_unsigned_infinity_for_doctests()
     This function tests py_eval_unsigned_infinity.
sage.symbolic.expression.py_exp_for_doctests(x)
     This function tests py_exp.
     EXAMPLES:
     sage: from sage.symbolic.expression import py_exp_for_doctests
     sage: py_exp_for_doctests(CC(2))
     7.38905609893065
sage.symbolic.expression.py_factorial_py(x)
     This function is a python wrapper around py_factorial(). This wrapper is needed when we override the eval()
     method for GiNaC's factorial function in sage.functions.other.Function factorial.
sage.symbolic.expression.py_float_for_doctests(n, kwds)
     This function is for testing py_float.
     EXAMPLES:
     sage: from sage.symbolic.expression import py_float_for_doctests
     sage: py_float_for_doctests(pi, {'parent':RealField(80)})
     3.1415926535897932384626
     sage: py_float_for_doctests(I, {'parent':RealField(80)})
     1.00000000000000000000000000*I
     sage: py_float_for_doctests(I, {'parent':float})
     sage: py_float_for_doctests(pi, {'parent':complex})
     (3.141592653589793+0j)
sage.symbolic.expression.py_imag_for_doctests(x)
     Used for doctesting py imag.
sage.symbolic.expression.py_is_cinteger_for_doctest(x)
     Returns True if pynac should treat this object as an element of \mathbf{Z}(i).
sage.symbolic.expression.py is crational_for_doctest(x)
     Return True if pynac should treat this object as an element of \mathbf{Q}(i).
sage.symbolic.expression.py_is_integer_for_doctests(x)
     Used internally for doctesting purposes.
```

sage.symbolic.expression.py_latex_fderivative_for_doctests(id, params, args)

Used internally for writing doctests for certain cdef'd functions.

EXAMPLES:

Test latex name:

```
sage: foo = function('foo', nargs=2, latex_name=r'\mathrm{bar}')
sage: for i in range(get_ginac_serial(), get_fn_serial()):
...: if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_fderivative(i, (0, 1, 0, 1), (x, y^z))
\mathrm{D}_{0, 1, 0, 1}\left(\mathrm{bar}\right)\left(x, y^{z}\right)
```

Test custom func:

```
sage: def my_print(self, *args): return "func_with_args(" + ', '.join(map(repr,_args)) +')'
sage: foo = function('foo', nargs=2, print_latex_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
...: if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_fderivative(i, (0, 1, 0, 1), (x, y^z))
\mathrm{D}_{0}, 1, 0, 1} func_with_args(x, y^z)
```

sage.symbolic.expression.py_latex_function_pystring(id, args, fname_paren=False)

Return a string with the latex representation of the symbolic function specified by the given id applied to args.

See documentation of py_print_function_pystring for more information.

EXAMPLES:

```
if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'{\\rm foo}\\left(x, y^{z}\\right)'
sage: py_latex_function_pystring(i, (x,y^z), True)
'\\left({\\rm foo}\\right)\\left(x, y^{z}\\right)'
sage: py_latex_function_pystring(i, (int(0),x))
'{\\rm foo}\\left(0, x\\right)'
```

Test latex_name:

```
sage: foo = function('foo', nargs=2, latex_name=r'\mathrm{bar}')
sage: for i in range(get_ginac_serial(), get_fn_serial()):
...: if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'\\mathrm{bar}\\left(x, y^{z}\\right)'
```

Test custom func:

```
sage: def my_print(self, *args): return "my args are: " + ', '.join(map(repr,_
args))
sage: foo = function('foo', nargs=2, print_latex_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
...: if get_sfunction_from_serial(i) == foo: break

sage: get_sfunction_from_serial(i) == foo
True
sage: py_latex_function_pystring(i, (x,y^z))
'my args are: x, y^z'
```

 $sage.symbolic.expression.py_latex_variable_for_doctests(x)$

Internal function used so we can doctest a certain cdef'd method.

EXAMPLES:

```
sage: sage.symbolic.expression.py_latex_variable_for_doctests('x')
x
sage: sage.symbolic.expression.py_latex_variable_for_doctests('sigma')
\sigma
```

sage.symbolic.expression.py_lgamma_for_doctests(x)

This function tests py_lgamma.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_lgamma_for_doctests
sage: py_lgamma_for_doctests(CC(I))
-0.650923199301856 - 1.87243664726243*I
```

sage.symbolic.expression.py_li2_for_doctests(x)

This function is a python wrapper so py_psi2 can be tested. The real tests are in the docstring for py_psi2.

```
sage: from sage.symbolic.expression import py_li2_for_doctests
sage: py_li2_for_doctests(-1.1)
-0.890838090262283
```

sage.symbolic.expression.py_li_for_doctests(x, n, parent)

This function is a python wrapper so py_li can be tested. The real tests are in the docstring for py_li.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_li_for_doctests
sage: py_li_for_doctests(0,2,float)
0.000000000000000
```

sage.symbolic.expression.py_log_for_doctests(x)

This function tests py_log.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_log_for_doctests
sage: py_log_for_doctests(CC(e))
1.00000000000000
```

sage.symbolic.expression.py_mod_for_doctests (x, n)

This function is a python wrapper so py_mod can be tested. The real tests are in the docstring for py_mod.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_mod_for_doctests
sage: py_mod_for_doctests(5, 2)
1
```

sage.symbolic.expression.py_numer_for_doctests(n)

This function is used to test py_numer().

EXAMPLES:

```
sage: from sage.symbolic.expression import py_numer_for_doctests
sage: py_numer_for_doctests(2/3)
2
```

sage.symbolic.expression.py_print_fderivative_for_doctests(id, params, args)

Used for testing a cdef'd function.

Test custom print function:

sage.symbolic.expression.py_print_function_pystring(id, args, fname_paren=False)

Return a string with the representation of the symbolic function specified by the given id applied to args.

INPUT:

- id serial number of the corresponding symbolic function
- params Set of parameter numbers with respect to which to take the derivative.
- args arguments of the function.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_print_function_pystring, get_ginac_
⇒serial, get_fn_serial
sage: from sage.symbolic.function import get_sfunction_from_serial
sage: var('x,y,z')
(x, y, z)
sage: foo = function('foo', nargs=2)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....: if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
sage: py_print_function_pystring(i, (x,y))
'foo(x, y)'
sage: py_print_function_pystring(i, (x,y), True)
'(foo)(x, y)'
sage: def my_print(self, *args): return "my args are: " + ', '.join(map(repr,_
sage: foo = function('foo', nargs=2, print_func=my_print)
sage: for i in range(get_ginac_serial(), get_fn_serial()):
....: if get_sfunction_from_serial(i) == foo: break
sage: get_sfunction_from_serial(i) == foo
sage: py_print_function_pystring(i, (x,y))
'my args are: x, y'
```

sage.symbolic.expression.py_psi2_for_doctests (n, x)

This function is a python wrapper so py_psi2 can be tested. The real tests are in the docstring for py_psi2.

```
sage: from sage.symbolic.expression import py_psi2_for_doctests
sage: py_psi2_for_doctests(1, 2)
0.644934066848226
```

```
sage.symbolic.expression.py_psi_for_doctests(x)
```

This function is a python wrapper so py_psi can be tested. The real tests are in the docstring for py_psi.

EXAMPLES:

```
sage: from sage.symbolic.expression import py_psi_for_doctests
sage: py_psi_for_doctests(2)
0.422784335098467
```

```
sage.symbolic.expression.py_real_for_doctests(x)
```

Used for doctesting py_real.

```
sage.symbolic.expression.py_stieltjes_for_doctests(x)
```

This function is for testing py_stieltjes().

EXAMPLES:

```
sage: from sage.symbolic.expression import py_stieltjes_for_doctests
sage: py_stieltjes_for_doctests(0.0)
0.577215664901533
```

```
sage.symbolic.expression.py_tgamma_for_doctests(x)
```

This function is for testing py_tgamma().

```
sage.symbolic.expression.py_zeta_for_doctests(x)
```

This function is for testing py_zeta().

EXAMPLES:

```
sage: from sage.symbolic.expression import py_zeta_for_doctests
sage: py_zeta_for_doctests(CC.0)
0.00330022368532410 - 0.418155449141322*I
```

Register the function self with Pynac (GiNaC).

OUTPUT:

• serial number of the function, for use in call registered function()

EXAMPLES

```
sage: from sage.symbolic.function import BuiltinFunction
sage: class Archosaurian(BuiltinFunction):
...:     def __init__(self):
...:         BuiltinFunction.__init__(self, 'archsaur', nargs=1)
...:     def __eval__(self, x):
...:         return x * exp(x)
sage: archsaur = Archosaurian() # indirect doctest
sage: archsaur(2)
2*e^2
```

```
sage.symbolic.expression.restore_op_wrapper(expr)
```

```
sage.symbolic.expression.solve_diophantine(f, *args, **kwds)
```

Solve a Diophantine equation.

The argument, if not given as symbolic equation, is set equal to zero. It can be given in any form that can be converted to symbolic. Please see <code>Expression.solve_diophantine()</code> for a detailed synopsis.

EXAMPLES:

```
sage.symbolic.expression.test_binomial (n, k)
```

The Binomial coefficients. It computes the binomial coefficients. For integer n and k and positive n this is the number of ways of choosing k objects from n distinct objects. If n is negative, the formula binomial(n,k) == $(-1)^k$ *binomial(k-n-1,k) is used to compute the result.

INPUT:

• n, k – integers, with $k \ge 0$.

OUTPUT:

integer

EXAMPLES:

```
sage: import sage.symbolic.expression
sage: sage.symbolic.expression.test_binomial(5,2)
10
sage: sage.symbolic.expression.test_binomial(-5,3)
-35
sage: -sage.symbolic.expression.test_binomial(3-(-5)-1, 3)
-35
```

```
sage.symbolic.expression.tolerant_is_symbol(a)
```

Utility function to test if something is a symbol.

Returns False for arguments that do not have an is_symbol attribute. Returns the result of calling the is_symbol method otherwise.

EXAMPLES:

```
sage: from sage.symbolic.expression import tolerant_is_symbol
sage: tolerant_is_symbol(var("x"))
True
sage: tolerant_is_symbol(None)
False
sage: None.is_symbol()
Traceback (most recent call last):
...
AttributeError: 'NoneType' object has no attribute 'is_symbol'...
```

sage.symbolic.expression.unpack_operands(ex)

EXAMPLES:

2.2 Callable Symbolic Expressions

EXAMPLES:

When you do arithmetic with:

```
sage: f(x, y, z) = sin(x+y+z)
sage: g(x, y) = y + 2*x
sage: f + g
(x, y, z) |--> 2*x + y + sin(x + y + z)
```

```
sage: f(x, y, z) = sin(x+y+z)
sage: g(w, t) = cos(w - t)
sage: f + g
(t, w, x, y, z) |--> cos(-t + w) + sin(x + y + z)
```

```
sage: f(x, y, t) = y*(x^2-t)
sage: g(x, y, w) = x + y - cos(w)
sage: f*g
(x, y, t, w) |--> (x^2 - t)*(x + y - cos(w))*y
```

```
sage: f(x,y, t) = x+y
sage: g(x, y, w) = w + t
sage: f + g
(x, y, t, w) |--> t + w + x + y
```

class sage.symbolic.callable.CallableSymbolicExpressionFunctor(arguments)

Bases: ConstructionFunctor

A functor which produces a CallableSymbolicExpressionRing from the SymbolicRing.

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: f = CallableSymbolicExpressionFunctor((x,y)); f
CallableSymbolicExpressionFunctor(x, y)
sage: f(SR)
```

(continues on next page)

```
Callable function ring with arguments (x, y)

sage: loads(dumps(f))
CallableSymbolicExpressionFunctor(x, y)
```

arguments()

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,y))
sage: a.arguments()
(x, y)
```

merge (other)

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,))
sage: b = CallableSymbolicExpressionFunctor((y,))
sage: a.merge(b)
CallableSymbolicExpressionFunctor(x, y)
```

$unify_arguments(x)$

Takes the variable list from another CallableSymbolicExpression object and compares it with the current CallableSymbolicExpression object's variable list, combining them according to the following rules:

Let a be self's variable list, let b be y's variable list.

- 1. If a == b, then the variable lists are identical, so return that variable list.
- 2. If $a \neq b$, then check if the first n items in a are the first n items in b, or vice versa. If so, return a list with these n items, followed by the remaining items in a and b sorted together in alphabetical order.

Note: When used for arithmetic between CallableSymbolicExpression's, these rules ensure that the set of CallableSymbolicExpression's will have certain properties. In particular, it ensures that the set is a *commutative* ring, i.e., the order of the input variables is the same no matter in which order arithmetic is done.

INPUT:

• x - A CallableSymbolicExpression

OUTPUT: A tuple of variables.

EXAMPLES:

```
sage: from sage.symbolic.callable import CallableSymbolicExpressionFunctor
sage: x,y = var('x,y')
sage: a = CallableSymbolicExpressionFunctor((x,))
sage: b = CallableSymbolicExpressionFunctor((y,))
sage: a.unify_arguments(b)
(x, y)
```

AUTHORS:

• Bobby Moretti: thanks to William Stein for the rules

class sage.symbolic.callable.CallableSymbolicExpressionRingFactory

Bases: UniqueFactory

create_key (args, check=True)

EXAMPLES:

```
sage: x,y = var('x,y')
sage: CallableSymbolicExpressionRing.create_key((x,y))
(x, y)
```

create_object (version, key, **extra_args)

Return a CallableSymbolicExpressionRing given a version and a key.

EXAMPLES:

```
sage: x,y = var('x,y')
sage: CallableSymbolicExpressionRing.create_object(0, (x, y))
Callable function ring with arguments (x, y)
```

class sage.symbolic.callable.CallableSymbolicExpressionRing_class(arguments)

Bases: SymbolicRing, CallableSymbolicExpressionRing

EXAMPLES:

We verify that coercion works in the case where x is not an instance of SymbolicExpression, but its parent is still the SymbolicRing:

```
sage: f(x) = 1
sage: f*e
x |--> e
```

args()

Return the arguments of self.

The order that the variables appear in self.arguments() is the order that is used in evaluating the elements of self.

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f(x,y) = 2*x+y
sage: f.parent().arguments()
(x, y)
sage: f(y,x) = 2*x+y
sage: f.parent().arguments()
(y, x)
```

arguments()

Return the arguments of self.

The order that the variables appear in self.arguments() is the order that is used in evaluating the elements of self.

EXAMPLES:

```
sage: x,y = var('x,y')
sage: f(x,y) = 2*x+y
sage: f.parent().arguments()
(x, y)
sage: f(y,x) = 2*x+y
sage: f.parent().arguments()
(y, x)
```

construction()

EXAMPLES:

```
sage: f(x,y) = x^2 + y
sage: f.parent().construction()
(CallableSymbolicExpressionFunctor(x, y), Symbolic Ring)
```

2.3 Assumptions

The Generic Declaration class provides assumptions about a symbol or function in verbal form. Such assumptions can be made using the <code>assume()</code> function in this module, which also can take any relation of symbolic expressions as argument. Use <code>forget()</code> to clear all assumptions. Creating a variable with a specific domain is equivalent with making an assumption about it.

There is only rudimentary support for consistency and satisfiability checking in Sage. Assumptions are used both in Maxima and Pynac to support or refine some computations. In the following we show how to make and query assumptions. Please see the respective modules for more practical examples.

In addition to the global <code>assumptions()</code> database, <code>assuming()</code> creates reusable, stackable context managers allowing for temporary updates of the database for evaluation of a (block of) statements.

EXAMPLES:

The default domain of a symbolic variable is the complex plane:

```
sage: var('x')
x
sage: x.is_real()
False
sage: assume(x,'real')
sage: x.is_real()
True
sage: forget()
sage: x.is_real()
False
```

Here is the list of acceptable features:

```
sage: ", ".join(map(str, maxima("features")._sage_()))
'integer, noninteger, even, odd, rational, irrational, real, imaginary,
complex, analytic, increasing, decreasing, oddfun, evenfun, posfun,
constant, commutative, lassociative, rassociative, symmetric,
antisymmetric, integervalued'
```

Set positive domain using a relation:

```
sage: assume(x>0)
sage: x.is_positive()
True
sage: x.is_real()
True
sage: assumptions()
[x > 0]
```

Assumptions also affect operations that do not use Maxima:

```
sage: forget()
sage: assume(x, 'even')
sage: assume(x, 'real')
sage: (-1)^x
1
sage: (-gamma(pi))^x
gamma(pi)^x
sage: binomial(2*x, x).is_integer()
True
```

Assumptions are added and in some cases checked for consistency:

```
sage: assume(x>0)
sage: assume(x<0)
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent
sage: forget()</pre>
```

class sage.symbolic.assumptions.GenericDeclaration(var, assumption)

Bases: UniqueRepresentation

This class represents generic assumptions, such as a variable being an integer or a function being increasing. It passes such information to Maxima's declare (wrapped in a context so it is able to forget) and to Pynac.

INPUT:

- var the variable about which assumptions are being made
- assumption a string containing a Maxima feature, either user defined or in the list given by maxima ('features')

EXAMPLES:

```
sage: from sage.symbolic.assumptions import GenericDeclaration
sage: decl = GenericDeclaration(x, 'integer')
sage: decl.assume()
sage: sin(x*pi)
0
sage: decl.forget()
sage: sin(x*pi)
sin(pi*x)
sage: sin(x*pi).simplify()
sin(pi*x)
```

Here is the list of acceptable features:

2.3. Assumptions 147

```
sage: ", ".join(map(str, maxima("features")._sage_()))
'integer, noninteger, even, odd, rational, irrational, real, imaginary,
complex, analytic, increasing, decreasing, oddfun, evenfun, posfun,
constant, commutative, lassociative, rassociative, symmetric,
antisymmetric, integervalued'
```

Test unique representation behavior:

```
sage: GenericDeclaration(x, 'integer') is GenericDeclaration(SR.var("x"), 'integer \rightarrow')
True
```

assume()

Make this assumption.

contradicts (soln)

Return True if this assumption is violated by the given variable assignment(s).

INPUT:

• soln – Either a dictionary with variables as keys or a symbolic relation with a variable on the left hand side.

EXAMPLES:

```
sage: from sage.symbolic.assumptions import GenericDeclaration
sage: GenericDeclaration(x, 'integer').contradicts(x==4)
False
sage: GenericDeclaration(x, 'integer').contradicts(x==4.0)
False
sage: GenericDeclaration(x, 'integer').contradicts(x==4.5)
True
sage: GenericDeclaration(x, 'integer').contradicts(x==sqrt(17))
sage: GenericDeclaration(x, 'noninteger').contradicts(x==sqrt(17))
False
sage: GenericDeclaration(x, 'noninteger').contradicts(x==17)
True
sage: GenericDeclaration(x, 'even').contradicts(x==3)
sage: GenericDeclaration(x, 'complex').contradicts(x==3)
False
sage: GenericDeclaration(x, 'imaginary').contradicts(x==3)
sage: GenericDeclaration(x, 'imaginary').contradicts(x==I)
False
sage: var('y,z')
(y, z)
sage: GenericDeclaration(x, 'imaginary').contradicts(x==y+z)
False
sage: GenericDeclaration(x, 'rational').contradicts(y==pi)
False
sage: GenericDeclaration(x, 'rational').contradicts(x==pi)
True
sage: GenericDeclaration(x, 'irrational').contradicts(x!=pi)
False
```

(continues on next page)

```
sage: GenericDeclaration(x, 'rational').contradicts({x: pi, y: pi})
True
sage: GenericDeclaration(x, 'rational').contradicts({z: pi, y: pi})
False
```

forget()

Forget this assumption.

has (arg)

Check if this assumption contains the argument arg.

EXAMPLES:

```
sage: from sage.symbolic.assumptions import GenericDeclaration as GDecl
sage: var('y')
y
sage: d = GDecl(x, 'integer')
sage: d.has(x)
True
sage: d.has(y)
False
```

sage.symbolic.assumptions.assume(*args)

Make the given assumptions.

INPUT:

- *args a variable-length sequence of assumptions, each consisting of:
 - any number of symbolic inequalities, like 0 < x, x < 1
 - a subsequence of variable names, followed by some property that should be assumed for those variables;
 for example, x, y, z, 'integer' would assume that each of x, y, and z are integer variables,
 and x, 'odd' would assume that x is odd (as opposed to even).

The two types can be combined, but a symbolic inequality cannot appear in the middle of a list of variables.

OUTPUT:

If everything goes as planned, there is no output.

If you assume something that is not one of the two forms above, then an AttributeError is raised as we try to call its assume method.

If you make inconsistent assumptions (for example, that x is both even and odd), then a ValueError is raised.

Warning: Do not use Python's chained comparison notation in assumptions. Python literally translates the expression 0 < x < 1 to (0 < x) and (x < 1), but the value of bool (0 < x) is False when x is a symbolic variable. Therefore, by the definition of Python's logical "and" operator, the entire expression is equal to 0 < x.

EXAMPLES:

Assumptions are typically used to ensure certain relations are evaluated as true that are not true in general.

Here, we verify that for x > 0, $\sqrt{x^2} = x$:

2.3. Assumptions 149

```
sage: assume(x > 0)
sage: bool(sqrt(x^2) == x)
True
```

This will be assumed in the current Sage session until forgotten:

```
sage: bool(sqrt(x^2) == x)
True
sage: forget()
sage: bool(sqrt(x^2) == x)
False
```

Another major use case is in taking certain integrals and limits where the answers may depend on some sign condition:

```
sage: var('x, n')
(x, n)
sage: assume(n+1>0)
sage: integral(x^n,x)
x^(n + 1)/(n + 1)
sage: forget()
```

```
sage: var('q, a, k')
(q, a, k)
sage: assume(q > 1)
sage: sum(a*q^k, k, 0, oo)
Traceback (most recent call last):
...
ValueError: Sum is divergent.
sage: forget()
sage: assume(abs(q) < 1)
sage: sum(a*q^k, k, 0, oo)
-a/(q - 1)
sage: forget()</pre>
```

An integer constraint:

```
sage: n,P,r,r2 = SR.var('n, P, r, r2')
sage: assume(n, 'integer')
sage: c = P*e^(r*n)
sage: d = P*(1+r2)^n
sage: solve(c==d,r2)
[r2 == e^r - 1]
sage: forget()
```

Simplifying certain well-known identities works as well:

```
sage: n = SR.var('n')
sage: assume(n, 'integer')
sage: sin(n*pi)
0
sage: forget()
sage: sin(n*pi).simplify()
sin(pi*n)
```

Instead of using chained comparison notation, each relationship should be passed as a separate assumption:

```
sage: x = SR.var('x')
sage: assume(0 < x, x < 1) # instead of assume(0 < x < 1)
sage: assumptions()
[0 < x, x < 1]
sage: forget()</pre>
```

If you make inconsistent or meaningless assumptions, Sage will let you know:

```
sage: assume(x<0)
sage: assume(x>0)
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent
sage: assume(x<1)
Traceback (most recent call last):
...
ValueError: Assumption is redundant
sage: assumptions()
[x < 0]
sage: forget()
sage: assume(x,'even')
sage: assume(x,'odd')
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent
sage: forget()</pre>
```

You can also use assumptions to evaluate simple truth values:

```
sage: x, y, z = var('x, y, z')
sage: assume (x>=y, y>=z, z>=x)
sage: bool(x==z)
True
sage: bool(z<x)</pre>
False
sage: bool(z>y)
False
sage: bool(y==z)
True
sage: forget()
sage: assume (x>=1, x<=1)
sage: bool(x==1)
sage: bool(x>1)
False
sage: forget()
```

class sage.symbolic.assumptions.assuming(*args, **kwds)

Bases: object

Temporarily modify assumptions.

Create a context manager in which temporary assumptions are added (or substituted) to the current assumptions set.

The set of possible assumptions and declarations is the same as for assume ().

This can be useful in interactive mode to discover the assumptions necessary to a given integration, or the exact solution to a system of equations.

2.3. Assumptions 151

It can also be used to explore the branches of a cases () expression.

As with assume (), it is an error to add an assumption either redundant or inconsistent with the current assumption set (unless replace=True is used). See examples.

INPUT:

- *args assumptions (same format as for assume ()).
- replace a boolean (default

[False).] Specifies whether the new assumptions are added to (default) or replace (if replace=True) the current assumption set.

OUTPUT:

A context manager useable in a with statement (see examples).

EXAMPLES:

Basic functionality: inside a with assuming: () block, Sage uses the updated assumptions database. After exit, the original database is restored.

The local assumptions can be stacked. We can use this functionality to discover incrementally the assumptions necessary to a given calculation (and by the way, to check that Sage's default integrator (Maxima's, that is), sometimes nitpicks for naught).

```
sage: var("y,k,theta")
(y, k, theta)
sage: dgamma(y, k, theta) = y^(k-1) *e^(-y/theta) / (theta^k*gamma(k))
sage: integrate(dgamma(y,k,theta),y,0,00)
Traceback (most recent call last):
. . .
ValueError: Computation failed since Maxima requested additional constraints;
→using the 'assume' command before evaluation *may* help (example of legal_
→syntax is 'assume(theta>0)', see `assume?` for more details)
Is theta positive or negative?
sage: a1=assuming(theta>0)
sage: with a1:integrate(dgamma(y,k,theta),y,0,00)
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional constraints;
→using the 'assume' command before evaluation *may* help (example of legal_
\rightarrowsyntax is 'assume(k>0)', see `assume?` for more details)
Is k positive, negative or zero?
sage: a2=assuming(k>0)
sage: with a1,a2:integrate(dgamma(y,k,theta),y,0,oo)
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional constraints;
```

(continues on next page)

```
⇒using the 'assume' command before evaluation *may* help (example of legal.

⇒syntax is 'assume(k>0)', see `assume?` for more details)

Is k an integer?

sage: a3=assuming(k, "noninteger")

sage: with a1,a2,a3:integrate(dgamma(y,k,theta),y,0,oo)

1

sage: a4=assuming(k, "integer")

sage: with a1,a2,a4:integrate(dgamma(y,k,theta),y,0,oo)

1
```

As mentioned above, it is an error to try to introduce redundant or inconsistent assumptions.

```
sage: assume(x > 0)
sage: with assuming(x > -1): "I won't see this"
Traceback (most recent call last):
...
ValueError: Assumption is redundant

sage: with assuming(x < -1): "I won't see this"
Traceback (most recent call last):
...
ValueError: Assumption is inconsistent</pre>
```

sage.symbolic.assumptions.assumptions(*args)

List all current symbolic assumptions.

INPUT:

• args – list of variables which can be empty.

OUTPUT:

• list of assumptions on variables. If args is empty it returns all assumptions

EXAMPLES:

```
sage: var('x, y, z, w')
(x, y, z, w)
sage: forget()
sage: assume(x^2+y^2 > 0)
sage: assumptions()
[x^2 + y^2 > 0]
sage: forget(x^2+y^2 > 0)
sage: assumptions()
[]
sage: assume(x > y)
sage: assume(z > w)
sage: sorted(assumptions(), key=lambda x: str(x))
[x > y, z > w]
sage: forget()
sage: assumptions()
```

It is also possible to query for assumptions on a variable independently:

```
sage: x, y, z = var('x y z')
sage: assume(x, 'integer')
sage: assume(y > 0)

(continues on next page)
```

2.3. Assumptions 153

```
sage: assume (y^{**2} + z^{**2} == 1)
sage: assume (x < 0)
sage: assumptions()
[x is integer, y > 0, y^2 + z^2 == 1, x < 0]
sage: assumptions(x)
[x is integer, x < 0]
sage: assumptions(x, y)
[x is integer, x < 0, y > 0, y^2 + z^2 == 1]
sage: assumptions(z)
[y^2 + z^2 == 1]
```

sage.symbolic.assumptions.forget(*args)

Forget the given assumption, or call with no arguments to forget all assumptions.

Here an assumption is some sort of symbolic constraint.

INPUT:

• *args – assumptions (default: forget all assumptions)

EXAMPLES:

We define and forget multiple assumptions:

```
sage: forget()
sage: var('x,y,z')
(x, y, z)
sage: assume (x>0, y>0, z == 1, y>0)
sage: sorted(assumptions(), key=lambda x:str(x))
[x > 0, y > 0, z == 1]
sage: forget(x>0, z==1)
sage: assumptions()
[y > 0]
sage: assume(y, 'even', z, 'complex')
sage: assumptions()
[y > 0, y is even, z is complex]
sage: cos(y*pi).simplify()
sage: forget(y,'even')
sage: cos(y*pi).simplify()
cos(pi*y)
sage: assumptions()
[y > 0, z is complex]
sage: forget()
sage: assumptions()
[]
```

sage.symbolic.assumptions.preprocess_assumptions(args)

Turn a list of the form (var1, var2, ..., 'property') into a sequence of declarations (var1 is property), (var2 is property), ...

EXAMPLES:

```
sage: from sage.symbolic.assumptions import preprocess_assumptions
sage: preprocess_assumptions([x, 'integer', x > 4])
[x is integer, x > 4]
sage: var('x, y')
(x, y)
                                                                         (continues on next page)
```

```
sage: preprocess_assumptions([x, y, 'integer', x > 4, y, 'even'])
[x is integer, y is integer, x > 4, y is even]
```

2.4 Symbolic Equations and Inequalities

Sage can solve symbolic equations and inequalities. For example, we derive the quadratic formula as follows:

```
sage: a,b,c = var('a,b,c')
sage: qe = (a*x^2 + b*x + c == 0)
sage: qe
a*x^2 + b*x + c == 0
sage: print(solve(qe, x))
[
x == -1/2*(b + sqrt(b^2 - 4*a*c))/a,
x == -1/2*(b - sqrt(b^2 - 4*a*c))/a
]
```

2.4.1 The operator, left hand side, and right hand side

Operators:

```
sage: eqn = x^3 + 2/3 >= x - pi
sage: eqn.operator()
<built-in function ge>
sage: (x^3 + 2/3 < x - pi).operator()
<built-in function lt>
sage: (x^3 + 2/3 == x - pi).operator()
<built-in function eq>
```

Left hand side:

```
sage: eqn = x^3 + 2/3 >= x - pi
sage: eqn.lhs()
x^3 + 2/3
sage: eqn.left()
x^3 + 2/3
sage: eqn.left_hand_side()
x^3 + 2/3
```

Right hand side:

```
sage: (x + sqrt(2) >= sqrt(3) + 5/2).right()
sqrt(3) + 5/2
sage: (x + sqrt(2) >= sqrt(3) + 5/2).rhs()
sqrt(3) + 5/2
sage: (x + sqrt(2) >= sqrt(3) + 5/2).right_hand_side()
sqrt(3) + 5/2
```

2.4.2 Arithmetic

Add two symbolic equations:

```
sage: var('a,b')
(a, b)
sage: m = 144 == -10 * a + b
sage: n = 136 == 10 * a + b
sage: m + n
280 == 2*b
sage: int(-144) + m
0 == -10*a + b - 144
```

Subtract two symbolic equations:

```
sage: var('a,b')
(a, b)
sage: m = 144 == 20 * a + b
sage: n = 136 == 10 * a + b
sage: m - n
8 == 10*a
sage: int(144) - m
0 == -20*a - b + 144
```

Multiply two symbolic equations:

```
sage: x = var('x')
sage: m = x == 5*x + 1
sage: n = sin(x) == sin(x+2*pi, hold=True)
sage: m * n
x*sin(x) == (5*x + 1)*sin(2*pi + x)
sage: m = 2*x == 3*x^2 - 5
sage: int(-1) * m
-2*x == -3*x^2 + 5
```

Divide two symbolic equations:

```
sage: x = var('x')
sage: m = x == 5*x + 1
sage: n = sin(x) == sin(x+2*pi, hold=True)
sage: m/n
x/sin(x) == (5*x + 1)/sin(2*pi + x)
sage: m = x != 5*x + 1
sage: n = sin(x) != sin(x+2*pi, hold=True)
sage: m/n
x/sin(x) != (5*x + 1)/sin(2*pi + x)
```

2.4.3 Substitution

Substitution into relations:

```
sage: x, a = var('x, a')
sage: eq = (x^3 + a == sin(x/a)); eq
x^3 + a == sin(x/a)
sage: eq.substitute(x=5*x)
125*x^3 + a == sin(5*x/a)
sage: eq.substitute(a=1)
x^3 + 1 == sin(x)
sage: eq.substitute(a=x)
x^3 + x == sin(1)
sage: eq.substitute(a=x, x=1)
x + 1 == sin(1/x)
sage: eq.substitute({a:x, x:1})
x + 1 == sin(1/x)
```

You can even substitute multivariable and matrix expressions:

```
sage: x,y = var('x, y')
sage: M = Matrix([[x+1,y],[x^2,y^3]]); M
[x + 1      y]
[ x^2     y^3]
sage: M.substitute({x:0,y:1})
[1 1]
[0 1]
```

2.4.4 Solving

We can solve equations:

```
sage: x = var('x')
sage: S = solve(x^3 - 1 == 0, x)
sage: S
[x == 1/2*I*sqrt(3) - 1/2, x == -1/2*I*sqrt(3) - 1/2, x == 1]
sage: S[0]
x == 1/2*I*sqrt(3) - 1/2
sage: S[0].right()
1/2*I*sqrt(3) - 1/2
sage: S = solve(x^3 - 1 == 0, x, solution_dict=True)
sage: S
[{x: 1/2*I*sqrt(3) - 1/2}, {x: -1/2*I*sqrt(3) - 1/2}, {x: 1}]
sage: z = 5
sage: solve(z^2 == sqrt(3), z)
Traceback (most recent call last):
...
TypeError: 5 is not a valid variable.
```

We can also solve equations involving matrices. The following example defines a multivariable function f(x, y), then solves for where the partial derivatives with respect to x and y are zero. Then it substitutes one of the solutions into the Hessian matrix H for f:

```
sage: f(x,y) = x^2*y+y^2+y
sage: solutions = solve(list(f.diff()),[x,y],solution_dict=True)
sage: solutions == [{x: -I, y: 0}, {x: I, y: 0}, {x: 0, y: -1/2}]
```

(continues on next page)

```
True
sage: H = f.diff(2) # Hessian matrix
sage: H.subs(solutions[2])
[(x, y) |--> -1 (x, y) |--> 0]
[(x, y) |--> 0 (x, y) |--> 2]
sage: H(x,y).subs(solutions[2])
[-1 0]
[ 0 2]
```

We illustrate finding multiplicities of solutions:

```
sage: f = (x-1)^5*(x^2+1)
sage: solve(f == 0, x)
[x == -I, x == I, x == 1]
sage: solve(f == 0, x, multiplicities=True)
([x == -I, x == I, x == 1], [1, 1, 5])
```

We can also solve many inequalities:

```
sage: solve(1/(x-1) <= 8, x)
[[x < 1], [x >= (9/8)]]
```

We can numerically find roots of equations:

```
sage: (x == sin(x)).find_root(-2,2)
0.0
sage: (x^5 + 3*x + 2 == 0).find_root(-2,2,x)
-0.6328345202421523
sage: (cos(x) == sin(x)).find_root(10,20)
19.634954084936208
```

We illustrate some valid error conditions:

```
sage: (cos(x) != sin(x)).find_root(10,20)
Traceback (most recent call last):
...
ValueError: Symbolic equation must be an equality.
sage: (SR(3) == SR(2)).find_root(-1,1)
Traceback (most recent call last):
...
RuntimeError: no zero in the interval, since constant expression is not 0.
```

There must be at most one variable:

```
sage: x, y = var('x,y')
sage: (x == y).find_root(-2,2)
Traceback (most recent call last):
...
NotImplementedError: root finding currently only implemented in 1 dimension.
```

2.4.5 Assumptions

Forgetting assumptions:

```
sage: var('x,y')
(x, y)
sage: forget() #Clear assumptions
sage: assume(x>0, y < 2)
sage: assumptions()
[x > 0, y < 2]
sage: (y < 2).forget()
sage: assumptions()
[x > 0]
sage: forget()
sage: assumptions()
[]
```

2.4.6 Miscellaneous

Conversion to Maxima:

```
sage: x = var('x')
sage: eq = (x^(3/5) >= pi^2 + e^i)
sage: eq._maxima_init_()
'(_SAGE_VAR_x)^(3/5) >= ((%pi)^(2))+(exp(0+%i*1))'
sage: e1 = x^3 + x == sin(2*x)
sage: z = e1._maxima_()
sage: z.parent() is sage.calculus.calculus.maxima
True
sage: z = e1._maxima_(maxima)
sage: z.parent() is maxima
True
sage: z = maxima(e1)
sage: z.parent() is maxima
True
```

Conversion to Maple:

```
sage: x = var('x')
sage: eq = (x == 2)
sage: eq._maple_init_()
'x = 2'
```

Comparison:

```
sage: x = var('x')
sage: (x>0) == (x>0)
True
sage: (x>0) == (x>1)
False
sage: (x>0) != (x>1)
True
```

Variables appearing in the relation:

```
sage: var('x,y,z,w')
(x, y, z, w)
sage: f = (x+y+w) == (x^2 - y^2 - z^3);
w + x + y == -z^3 + x^2 - y^2
sage: f.variables()
(w, x, y, z)
```

LaTeX output:

```
sage: latex(x^(3/5) >= pi)
x^{\frac{3}{5}} \neq pi
```

When working with the symbolic complex number I, notice that comparisons do not automatically simplify even in trivial situations:

```
sage: SR(I)^2 == -1
-1 == -1
sage: SR(I)^2 < 0
-1 < 0
sage: (SR(I)+1)^4 > 0
-4 > 0
```

Nevertheless, if you force the comparison, you get the right answer (github issue #7160):

```
sage: bool(SR(I)^2 == -1)
True
sage: bool(SR(I)^2 < 0)
sage: bool((SR(I)+1)^4 > 0)
False
```

2.4.7 More Examples

```
sage: x,y,a = var('x,y,a')
sage: f = x^2 + y^2 == 1
sage: f.solve(x)
[x == -sqrt(-y^2 + 1), x == sqrt(-y^2 + 1)]
```

```
sage: f = x^5 + a
sage: solve (f==0, x)
[x = 1/4*(-a)^{(1/5)}*(sqrt(5) + I*sqrt(2*sqrt(5) + 10) - 1), x = -1/4*(-a)^{(1/5)}
\rightarrow5)*(sqrt(5) - I*sqrt(-2*sqrt(5) + 10) + 1), x == -1/4*(-a)^(1/5)*(sqrt(5) + I*sqrt(-
\rightarrow2*sqrt(5) + 10) + 1), x == 1/4*(-a)^(1/5)*(sqrt(5) - I*sqrt(2*sqrt(5) + 10) - 1), x
\rightarrow == (-a)^(1/5)
```

You can also do arithmetic with inequalities, as illustrated below:

```
sage: var('x y')
(x, y)
sage: f = x + 3 == y - 2
sage: f
x + 3 == y - 2
sage: g = f - 3; g
x == y - 5
sage: h = x^3 + sqrt(2) == x*y*sin(x)
                                                                               (continues on next page)
```

```
sage: h
x^3 + sqrt(2) == x*y*sin(x)
sage: h - sqrt(2)
x^3 == x*y*sin(x) - sqrt(2)
sage: h + f
x^3 + x + sqrt(2) + 3 == x*y*sin(x) + y - 2
sage: f = x + 3 < y - 2
sage: g = 2 < x+10
sage: f - g
x + 1 < -x + y - 12
sage: f + g
x + 5 < x + y + 8
sage: f*(-1)
-x - 3 < -y + 2</pre>
```

AUTHORS:

- Bobby Moretti: initial version (based on a trick that Robert Bradshaw suggested).
- · William Stein: second version
- William Stein (2007-07-16): added arithmetic with symbolic equations

```
sage.symbolic.relation.solve(f, *args, **kwds)
```

Algebraically solve an equation or system of equations (over the complex numbers) for given variables. Inequalities and systems of inequalities are also supported.

INPUT

- f equation or system of equations (given by a list or tuple)
- *args variables to solve for.
- solution_dict bool (default: False); if True or non-zero, return a list of dictionaries containing the solutions. If there are no solutions, return an empty list (rather than a list containing an empty dictionary). Likewise, if there's only a single solution, return a list containing one dictionary with that solution.

There are a few optional keywords if you are trying to solve a single equation. They may only be used in that context.

- multiplicities bool (default: False); if True, return corresponding multiplicities. This keyword is incompatible with to_poly_solve=True and does not make any sense when solving inequalities.
- explicit_solutions bool (default: False); require that all roots be explicit rather than implicit. Not used when solving inequalities.
- to_poly_solve bool (default: False) or string; use Maxima's to_poly_solver package to search for more possible solutions, but possibly encounter approximate solutions. This keyword is incompatible with multiplicities=True and is not used when solving inequalities. Setting to_poly_solve to 'force' (string) omits Maxima's solve command (useful when some solutions of trigonometric equations are lost).
- algorithm string (default: 'maxima'); to use SymPy's solvers set this to 'sympy'. Note that SymPy is always used for diophantine equations. Another choice is 'giac'.
- domain string (default: 'complex'); setting this to 'real' changes the way SymPy solves single equations; inequalities are always solved in the real domain.

EXAMPLES:

```
sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
sage: solve([x^2+y^2 == 1, y^2 == x^3 + x + 1], x, y)
[[x == -1/2*I*sqrt(3) - 1/2, y == -sqrt(-1/2*I*sqrt(3) + 3/2)],
[x = -1/2*I*sqrt(3) - 1/2, y = sqrt(-1/2*I*sqrt(3) + 3/2)],
[x == 1/2*I*sqrt(3) - 1/2, y == -sqrt(1/2*I*sqrt(3) + 3/2)],
[x == 1/2*I*sqrt(3) - 1/2, y == sqrt(1/2*I*sqrt(3) + 3/2)],
[x == 0, y == -1],
[x == 0, y == 1]]
sage: solve([sqrt(x) + sqrt(y) == 5, x + y == 10], x, y)
[[x = -5/2*I*sqrt(5) + 5, y = 5/2*I*sqrt(5) + 5], [x = 5/2*I*sqrt(5) + 5, y = 2]
\hookrightarrow -5/2*I*sqrt(5) + 5]]
sage: solutions = solve([x^2+y^2 == 1, y^2 == x^3 + x + 1], x, y, solution_
→dict=True)
sage: for solution in solutions: print("{}, {}".format(solution[x].n(digits=3),_

→solution[y].n(digits=3)))
-0.500 - 0.866*I, -1.27 + 0.341*I
-0.500 - 0.866*I , 1.27 - 0.341*I
-0.500 + 0.866*I, -1.27 - 0.341*I
-0.500 + 0.866*I , 1.27 + 0.341*I
0.000 , -1.00
0.000 , 1.00
```

Whenever possible, answers will be symbolic, but with systems of equations, at times approximations will be given by Maxima, due to the underlying algorithm:

```
sage: sols = solve([x^3==y,y^2==x], [x,y]); sols[-1], sols[0] # abs tol 1e-15
([x == 0, y == 0],
    [x == (0.3090169943749475 + 0.9510565162951535*I),
    y == (-0.8090169943749475 - 0.5877852522924731*I)])
sage: sols[0][0].rhs().pyobject().parent()
Complex Double Field

sage: solve([y^6==y],y)
[y == 1/4*sqrt(5) + 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
    y == -1/4*sqrt(5) + 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
    y == -1/4*sqrt(5) - 1/4*I*sqrt(-2*sqrt(5) + 10) - 1/4,
    y == 1/4*sqrt(5) - 1/4*I*sqrt(2*sqrt(5) + 10) - 1/4,
    y == 1,
    y == 0]
sage: solve([y^6 == y], y)==solve( y^6 == y, y)
True
```

Here we demonstrate very basic use of the optional keywords:

```
sage: ((x^2-1)^2).solve(x)
[x == -1, x == 1]
sage: ((x^2-1)^2).solve(x,multiplicities=True)
([x == -1, x == 1], [2, 2])
sage: solve(sin(x) == x, x)
[x == sin(x)]
sage: solve(sin(x) == x, x, explicit_solutions=True)
[]
sage: solve(sin(x) == x, x, explicit_solutions=True)
[]
sage: solve(abs(1-abs(1-x)) == 10, x)
[abs(abs(x - 1) - 1) == 10]
sage: solve(abs(1-abs(1-x)) == 10, x, to_poly_solve=True)
```

(continues on next page)

```
[x == -10, x == 12]
sage: from sage.symbolic.expression import Expression
sage: Expression.solve(x^2==1,x)
[x == -1, x == 1]
```

We must solve with respect to actual variables:

```
sage: z = 5
sage: solve([8*z + y == 3, -z +7*y == 0],y,z)
Traceback (most recent call last):
...
TypeError: 5 is not a valid variable.
```

If we ask for dictionaries containing the solutions, we get them:

```
sage: solve([x^2-1], x, solution_dict=True)
[{x: -1}, {x: 1}]
sage: solve([x^2-4*x+4], x, solution_dict=True)
[{x: 2}]
sage: res = solve([x^2 == y, y == 4], x, y, solution_dict=True)
sage: for soln in res: print("x: %s, y: %s" % (soln[x], soln[y]))
x: 2, y: 4
x: -2, y: 4
```

If there is a parameter in the answer, that will show up as a new variable. In the following example, r1 is an arbitrary constant (because of the r):

```
sage: forget()
sage: x, y = var('x,y')
sage: solve([x+y == 3, 2*x+2*y == 6],x,y)
[[x == -r1 + 3, y == r1]]
sage: var('b, c')
(b, c)
sage: solve((b-1)*(c-1), [b,c])
[[b == 1, c == r...], [b == r..., c == 1]]
```

Especially with trigonometric functions, the dummy variable may be implicitly an integer (hence the z):

```
sage: solve( sin(x) == cos(x), x, to_poly_solve=True)
[x == 1/4*pi + pi*z...]
sage: solve([cos(x)*sin(x) == 1/2, x+y == 0],x,y)
[[x == 1/4*pi + pi*z..., y == -1/4*pi - pi*z...]]
```

Expressions which are not equations are assumed to be set equal to zero, as with x in the following example:

```
sage: solve([x, y == 2],x,y)
[[x == 0, y == 2]]
```

If True appears in the list of equations it is ignored, and if False appears in the list then no solutions are returned. E.g., note that the first 3==3 evaluates to True, not to a symbolic equation.

```
sage: solve([3==3, 1.00000000000000*x^3 == 0], x)
[x == 0]
sage: solve([1.000000000000*x^3 == 0], x)
[x == 0]
```

Here, the first equation evaluates to False, so there are no solutions:

```
sage: solve([1==3, 1.00000000000000*x^3 == 0], x)
[]
```

Completely symbolic solutions are supported:

```
sage: var('s,j,b,m,g')
(s, j, b, m, g)
sage: sys = [ m*(1-s) - b*s*j, b*s*j-g*j ]
sage: solve(sys,s,j)
[[s == 1, j == 0], [s == g/b, j == (b - g)*m/(b*g)]]
sage: solve(sys,(s,j))
[[s == 1, j == 0], [s == g/b, j == (b - g)*m/(b*g)]]
sage: solve(sys,[s,j])
[[s == 1, j == 0], [s == g/b, j == (b - g)*m/(b*g)]]
sage: z = var('z')
sage: z = var('z')
sage: solve((x-z)^2==2, x)
[x == z - sqrt(2), x == z + sqrt(2)]
```

Inequalities can be also solved:

```
sage: solve(x^2>8,x)
[[x < -2*sqrt(2)], [x > 2*sqrt(2)]]
sage: x,y = var('x,y'); (ln(x)-ln(y)>0).solve(x)
[[log(x) - log(y) > 0]]
sage: x,y = var('x,y'); (ln(x)>ln(y)).solve(x) # random
[[0 < y, y < x, 0 < x]]
[[y < x, 0 < y]]</pre>
```

A simple example to show the use of the keyword multiplicities:

```
sage: ((x^2-1)^2).solve(x)
[x == -1, x == 1]
sage: ((x^2-1)^2).solve(x,multiplicities=True)
([x == -1, x == 1], [2, 2])
sage: ((x^2-1)^2).solve(x,multiplicities=True,to_poly_solve=True)
Traceback (most recent call last):
...
NotImplementedError: to_poly_solve does not return multiplicities
```

Here is how the explicit_solutions keyword functions:

```
sage: solve(sin(x) ==x, x)
[x == sin(x)]
sage: solve(sin(x) ==x, x, explicit_solutions=True)
[]
sage: solve(x*sin(x) ==x^2, x)
[x == 0, x == sin(x)]
sage: solve(x*sin(x) ==x^2, x, explicit_solutions=True)
[x == 0]
```

The following examples show the use of the keyword to_poly_solve:

```
sage: solve(abs(1-abs(1-x)) == 10, x)
[abs(abs(x - 1) - 1) == 10]
sage: solve(abs(1-abs(1-x)) == 10, x, to_poly_solve=True)
```

```
[x == -10, x == 12]

sage: var('Q')
Q
sage: solve(Q*sqrt(Q^2 + 2) - 1, Q)
[Q == 1/sqrt(Q^2 + 2)]
```

The following example is a regression in Maxima 5.39.0. It used to be possible to get one more solution here, namely 1/sqrt (sqrt (2) + 1), see https://sourceforge.net/p/maxima/bugs/3276/:

```
sage: solve(Q*sqrt(Q^2 + 2) - 1, Q, to_poly_solve=True)
[Q == -sqrt(-sqrt(2) - 1), Q == sqrt(sqrt(2) + 1)*(sqrt(2) - 1)]
```

An effort is made to only return solutions that satisfy the current assumptions:

```
sage: solve(x^2==4, x)
[x == -2, x == 2]
sage: assume(x<0)
sage: solve(x^2==4, x)
[x == -2]
sage: solve((x^2-4)^2 == 0, x, multiplicities=True)
([x == -2], [2])
sage: solve(x^2==2, x)
[x == -sqrt(2)]
sage: z = var('z')
sage: solve(x^2==2-z, x)
[x == -sqrt(-z + 2)]
sage: assume(x, 'rational')
sage: solve(x^2 == 2, x)
[]</pre>
```

In some cases it may be worthwhile to directly use to_poly_solve if one suspects some answers are being missed:

```
sage: forget()
sage: solve(cos(x) == 0, x)
[x == 1/2*pi]
sage: solve(cos(x) == 0, x, to_poly_solve=True)
[x == 1/2*pi]
sage: solve(cos(x) == 0, x, to_poly_solve='force')
[x == 1/2*pi + pi*z...]
```

The same may also apply if a returned unsolved expression has a denominator, but the original one did not:

```
sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve=True)
[sin(x) == 1/2/cos(x)]
sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve=True, explicit_
→ solutions=True)
[x == 1/4*pi + pi*z...]
sage: solve(cos(x) * sin(x) == 1/2, x, to_poly_solve='force')
[x == 1/4*pi + pi*z...]
```

We use use_grobner in Maxima if no solution is obtained from Maxima's to_poly_solve:

```
sage: x,y = var('x y')

sage: c1(x,y) = (x-5)^2+y^2-16 (continues on next page)
```

```
sage: c2(x,y) = (y-3)^2+x^2-9
sage: solve([c1(x,y),c2(x,y)],[x,y])
[[x == -9/68*sqrt(55) + 135/68, y == -15/68*sqrt(55) + 123/68],
[x == 9/68*sqrt(55) + 135/68, y == 15/68*sqrt(55) + 123/68]]
```

We use SymPy for Diophantine equations, see Expression.solve_diophantine:

```
sage: assume(x, 'integer')
sage: assume(z, 'integer')
sage: solve((x-z)^2==2, x)
[]
sage: forget()
```

The following shows some more of SymPy's capabilities that cannot be handled by Maxima:

```
sage: _ = var('t')
sage: r = solve([x^2 - y^2/exp(x), y-1], x, y, algorithm='sympy')
sage: (r[0][x], r[0][y])
(2*lambert_w(-1/2), 1)
sage: solve (-2*x**3 + 4*x**2 - 2*x + 6 > 0, x, algorithm='sympy')
[x < 1/3*(1/2)^{(1/3)}*(9*sqrt(77) + 79)^{(1/3)} + 2/3*(1/2)^{(2/3)}/(9*sqrt(77) + 79)^{(1/3)}
\hookrightarrow (1/3) + 2/3]
sage: solve(sqrt(2*x^2 - 7) - (3 - x), x, algorithm='sympy')
[x == -8, x == 2]
sage: solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4), x, algorithm='sympy')
sage: r = solve([x + y + z + t, -z - t], x, y, z, t, algorithm='sympy')
sage: (r[0][x], r[0][z])
(-y, -t)
sage: r = solve([x^2+y+z, y+x^2+z, x+y+z^2], x, y, z, algorithm='sympy')
sage: (r[0][x], r[0][y])
(z, -(z + 1)*z)
sage: (r[1][x], r[1][y])
(-z + 1, -z^2 + z - 1)
sage: solve(abs(x + 3) - 2*abs(x - 3),x,algorithm='sympy',domain='real')
[x == 1, x == 9]
```

We cannot translate all results from SymPy but we can at least print them:

A basic interface to Giac is provided:

```
sage: solve([(2/3)^x-2], [x], algorithm='giac')
...[[-log(2)/(log(3) - log(2))]]

(continues on next page)
```

```
sage.symbolic.relation.solve_ineq(ineq, vars=None)
```

Solves inequalities and systems of inequalities using Maxima. Switches between rational inequalities (sage.symbolic.relation.solve_ineq_rational) and Fourier elimination (sage.symbolic.relation.solve_ineq_fouried). See the documentation of these functions for more details.

INPUT:

• ineq - one inequality or a list of inequalities

Case1: If ineq is one equality, then it should be rational expression in one variable. This input is passed to sage.symbolic.relation.solve_ineq_univar function.

Case2: If ineq is a list involving one or more inequalities, than the input is passed to sage.symbolic.relation.solve_ineq_fourier function. This function can be used for system of linear inequalities and for some types of nonlinear inequalities. See http://maxima.cvs.sourceforge.net/viewvc/maxima/maxima/share/contrib/fourier_elim/rtest_fourier_elim.mac for a big gallery of problems covered by this algorithm.

• vars - optional parameter with list of variables. This list is used only if Fourier elimination is used. If omitted or if rational inequality is solved, then variables are determined automatically.

OUTPUT:

• list – output is list of solutions as a list of simple inequalities output [A,B,C] means (A or B or C) each A, B, C is again a list and if A=[a,b], then A means (a and b).

EXAMPLES:

```
sage: from sage.symbolic.relation import solve_ineq
```

Inequalities in one variable. The variable is detected automatically:

```
sage: solve_ineq(x^2-1>3)
[[x < -2], [x > 2]]

sage: solve_ineq(1/(x-1) <= 8)
[[x < 1], [x >= (9/8)]]
```

System of inequalities with automatically detected inequalities:

```
sage: y = var('y')
sage: solve_ineq([x-y<0,x+y-3<0],[y,x])
[[x < y, y < -x + 3, x < (3/2)]]
sage: solve_ineq([x-y<0,x+y-3<0],[x,y])
[[x < min(-y + 3, y)]]</pre>
```

Note that although Sage will detect the variables automatically, the order it puts them in may depend on the system, so the following command is only guaranteed to give you one of the above answers:

```
sage: solve_ineq([x-y<0,x+y-3<0]) # random
[[x < y, y < -x + 3, x < (3/2)]]</pre>
```

ALGORITHM:

Calls solve_ineq_fourier if inequalities are list and solve_ineq_univar of the inequality is symbolic expression. See the description of these commands for more details related to the set of inequalities which can be solved. The list is empty if there is no solution.

AUTHORS:

• Robert Marik (01-2010)

```
sage.symbolic.relation.solve_ineq_fourier(ineq, vars=None)
```

Solves system of inequalities using Maxima and Fourier elimination

Can be used for system of linear inequalities and for some types of nonlinear inequalities. For examples, see the example section below and http://maxima.cvs.sourceforge.net/viewvc/maxima/maxima/share/contrib/fourier_elim/rtest_fourier_elim.mac

INPUT:

- ineq list with system of inequalities
- vars optionally list with variables for Fourier elimination.

OUTPUT:

• list - output is list of solutions as a list of simple inequalities output [A,B,C] means (A or B or C) each A, B, C is again a list and if A=[a,b], then A means (a and b). The list is empty if there is no solution.

EXAMPLES:

```
sage: from sage.symbolic.relation import solve_ineq_fourier
sage: y = var('y')
sage: solve_ineq_fourier([x+y<9,x-y>4],[x,y])
[[y + 4 < x, x < -y + 9, y < (5/2)]]
sage: solve_ineq_fourier([x+y<9,x-y>4],[y,x])[0][0](x=42)
y < -33

sage: solve_ineq_fourier([x^2>=0])
[[x < +Infinity]]

sage: solve_ineq_fourier([log(x)>log(y)],[x,y])
[[y < x, 0 < y]]
sage: solve_ineq_fourier([log(x)>log(y)],[y,x])
[[0 < y, y < x, 0 < x]]</pre>
```

Note that different systems will find default variables in different orders, so the following is not tested:

```
sage: solve_ineq_fourier([log(x)>log(y)]) # random (one of the following appears)
[[0 < y, y < x, 0 < x]]
[[y < x, 0 < y]]</pre>
```

ALGORITHM:

Calls Maxima command fourier_elim

AUTHORS:

• Robert Marik (01-2010)

```
sage.symbolic.relation.solve_ineq_univar(ineq)
```

Function solves rational inequality in one variable.

INPUT:

• ineq - inequality in one variable

OUTPUT:

• list – output is list of solutions as a list of simple inequalities output [A,B,C] means (A or B or C) each A, B, C is again a list and if A=[a,b], then A means (a and b). The list is empty if there is no solution.

EXAMPLES:

```
sage: from sage.symbolic.relation import solve_ineq_univar
sage: solve_ineq_univar(x-1/x>0)
[[x > -1, x < 0], [x > 1]]

sage: solve_ineq_univar(x^2-1/x>0)
[[x < 0], [x > 1]]

sage: solve_ineq_univar((x^3-1)*x<=0)
[[x >= 0, x <= 1]]</pre>
```

ALGORITHM:

Calls Maxima command solve_rat_ineq

AUTHORS:

• Robert Marik (01-2010)

```
sage.symbolic.relation.solve_mod(eqns, modulus, solution_dict=False)
```

Return all solutions to an equation or list of equations modulo the given integer modulus. Each equation must involve only polynomials in 1 or many variables.

By default the solutions are returned as n-tuples, where n is the number of variables appearing anywhere in the given equations. The variables are in alphabetical order.

INPUT:

- eqns equation or list of equations
- modulus an integer
- solution_dict bool (default: False); if True or non-zero, return a list of dictionaries containing the solutions. If there are no solutions, return an empty list (rather than a list containing an empty dictionary). Likewise, if there's only a single solution, return a list containing one dictionary with that solution.

EXAMPLES:

```
sage: var('x,y')
(x, y)
sage: solve_mod([x^2 + 2 == x, x^2 + y == y^2], 14)
[(4, 2), (4, 6), (4, 9), (4, 13)]
sage: solve_mod([x^2 == 1, 4*x == 11], 15)
[(14,)]
```

Fermat's equation modulo 3 with exponent 5:

```
sage: var('x,y,z')
(x, y, z)
sage: solve_mod([x^5 + y^5 == z^5], 3)
[(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (1, 2, 0), (2, 0, 2), (2, 0, 1, 0), (2, 2, 1)]
```

We can solve with respect to a bigger modulus if it consists only of small prime factors:

For cases where there are relatively few solutions and the prime factors are small, this can be efficient even if the modulus itself is large:

```
sage: sorted(solve_mod([x^2 == 41], 10^20))
[(4538602480526452429,), (11445932736758703821,), (38554067263241296179,),
(45461397519473547571,), (54538602480526452429,), (61445932736758703821,),
(88554067263241296179,), (95461397519473547571,)]
```

We solve a simple equation modulo 2:

```
sage: x,y = var('x,y')
sage: solve_mod([x == y], 2)
[(0, 0), (1, 1)]
```

Warning: The current implementation splits the modulus into prime powers, then naively enumerates all possible solutions (starting modulo primes and then working up through prime powers), and finally combines the solution using the Chinese Remainder Theorem. The interface is good, but the algorithm is very inefficient if the modulus has some larger prime factors! Sage *does* have the ability to do something much faster in certain cases at least by using Groebner basis, linear algebra techniques, etc. But for a lot of toy problems this function as is might be useful. At least it establishes an interface.

```
sage.symbolic.relation.string_to_list_of_solutions(s)
```

Used internally by the symbolic solve command to convert the output of Maxima's solve command to a list of solutions in Sage's symbolic package.

EXAMPLES:

We derive the (monic) quadratic formula:

```
sage: var('x,a,b')
(x, a, b)
sage: solve(x^2 + a*x + b == 0, x)
[x == -1/2*a - 1/2*sqrt(a^2 - 4*b), x == -1/2*a + 1/2*sqrt(a^2 - 4*b)]
```

Behind the scenes when the above is evaluated the function $string_to_list_of_solutions()$ is called with input the string s below:

```
sage.symbolic.relation.test_relation_maxima(relation)
```

Return True if this (in)equality is definitely true. Return False if it is false or the algorithm for testing (in)equality is inconclusive.

EXAMPLES:

```
sage: from sage.symbolic.relation import test_relation_maxima
sage: k = var('k')
sage: pol = 1/(k-1) - 1/k -1/k/(k-1)
sage: test_relation_maxima(pol == 0)
sage: f = \sin(x)^2 + \cos(x)^2 - 1
sage: test_relation_maxima(f == 0)
sage: test_relation_maxima( x == x )
True
sage: test_relation_maxima( x != x )
False
sage: test_relation_maxima( x > x )
sage: test_relation_maxima( x^2 > x)
False
sage: test_relation_maxima( x + 2 > x )
sage: test_relation_maxima( x - 2 > x )
False
```

Here are some examples involving assumptions:

```
sage: x, y, z = var('x, y, z')
sage: assume (x>=y,y>=z,z>=x)
sage: test_relation_maxima(x==z)
sage: test_relation_maxima(z<x)</pre>
False
sage: test_relation_maxima(z>y)
False
sage: test_relation_maxima(y==z)
sage: forget()
sage: assume (x>=1, x<=1)
sage: test_relation_maxima(x==1)
sage: test_relation_maxima(x>1)
False
sage: test_relation_maxima(x>=1)
True
sage: test_relation_maxima(x!=1)
False
sage: forget()
sage: assume (x>0)
sage: test_relation_maxima(x==0)
False
sage: test_relation_maxima(x>-1)
True
sage: test_relation_maxima(x!=0)
sage: test_relation_maxima(x!=1)
False
sage: forget()
```

2.5 Symbolic Computation

AUTHORS:

- Bobby Moretti and William Stein (2006-2007)
- Robert Bradshaw (2007-10): minpoly(), numerical algorithm
- Robert Bradshaw (2008-10): minpoly(), algebraic algorithm
- Golam Mortuza Hossain (2009-06-15): _limit_latex()
- Golam Mortuza Hossain (2009-06-22): _laplace_latex(), _inverse_laplace_latex()
- Tom Coates (2010-06-11): fixed github issue #9217

EXAMPLES:

The basic units of the calculus package are symbolic expressions which are elements of the symbolic expression ring (SR). To create a symbolic variable object in Sage, use the *var()* function, whose argument is the text of that variable. Note that Sage is intelligent about LaTeXing variable names.

```
sage: x1 = var('x1'); x1
x1
sage: latex(x1)
x_{1}
sage: theta = var('theta'); theta
theta
theta
sage: latex(theta)
\theta
```

Sage predefines x to be a global indeterminate. Thus the following works:

```
sage: x^2
x^2
x^2
sage: type(x)
<class 'sage.symbolic.expression'>
```

More complicated expressions in Sage can be built up using ordinary arithmetic. The following are valid, and follow the rules of Python arithmetic: (The '=' operator represents assignment, and not equality)

```
sage: var('x,y,z')
(x, y, z)
sage: f = x + y + z/(2*sin(y*z/55))
sage: g = f^f; g
(x + y + 1/2*z/sin(1/55*y*z))^(x + y + 1/2*z/sin(1/55*y*z))
```

Differentiation and integration are available, but behind the scenes through Maxima:

```
sage: f = sin(x)/cos(2*y)
sage: f.derivative(y)
2*sin(x)*sin(2*y)/cos(2*y)^2
sage: g = f.integral(x); g
-cos(x)/cos(2*y)
```

Note that these methods usually require an explicit variable name. If none is given, Sage will try to find one for you.

```
sage: f = sin(x); f.derivative()
cos(x)
```

If the expression is a callable symbolic expression (i.e., the variable order is specified), then Sage can calculate the matrix derivative (i.e., the gradient, Jacobian matrix, etc.) if no variables are specified. In the example below, we use the second derivative test to determine that there is a saddle point at (0,-1/2).

```
sage: f(x,y) = x^2*y + y^2 + y
sage: f.diff() # gradient
(x, y) |--> (2*x*y, x^2 + 2*y + 1)
sage: solve(list(f.diff()), [x,y])
[[x == -I, y == 0], [x == I, y == 0], [x == 0, y == (-1/2)]]
sage: H=f.diff(2); H # Hessian matrix
[(x, y) |--> 2*y (x, y) |--> 2*x]
[(x, y) |--> 2*x (x, y) |--> 2]
sage: H(x=0, y=-1/2)
[-1 0]
[ 0 2]
sage: H(x=0, y=-1/2).eigenvalues()
[-1, 2]
```

Here we calculate the Jacobian for the polar coordinate transformation:

When the order of variables is ambiguous, Sage will raise an exception when differentiating:

```
sage: f = sin(x+y); f.derivative()
Traceback (most recent call last):
...
ValueError: No differentiation variable specified.
```

Simplifying symbolic sums is also possible, using the sum () command, which also uses Maxima in the background:

```
sage: k, m = var('k, m')
sage: sum(1/k^4, k, 1, oo)
1/90*pi^4
sage: sum(binomial(m,k), k, 0, m)
2^m
```

Symbolic matrices can be used as well in various ways, including exponentiation:

Complex exponentiation works, but may require a patched version of maxima (github issue #32898) for now:

```
sage: M = i*matrix([[pi]])
sage: e^M  # not tested, requires patched maxima
[-1]
sage: M = i*matrix([[pi,0],[0,2*pi]])
sage: e^M
[-1  0]
[  0  1]
sage: M = matrix([[0,pi],[-pi,0]])
sage: e^M
[-1  0]
[  0  -1]
```

Substitution works similarly. We can substitute with a python dict:

```
sage: f = sin(x*y - z)
sage: f({x: var('t'), y: z})
sin(t*z - z)
```

Also we can substitute with keywords:

```
sage: f = sin(x*y - z)
sage: f(x=t, y=z)
sin(t*z - z)
```

Another example:

```
sage: f = sin(2*pi*x/y)
sage: f(x=4)
sin(8*pi/y)
```

It is no longer allowed to call expressions with positional arguments:

```
sage: f = sin(x)
sage: f(y)
Traceback (most recent call last):
...
TypeError: Substitution using function-call syntax and unnamed
arguments has been removed. You can use named arguments instead, like
EXPR(x=..., y=...)
sage: f(x=pi)
0
```

We can also make a CallableSymbolicExpression, which is a SymbolicExpression that is a function of specified variables in a fixed order. Each SymbolicExpression has a function (...) method that is used to create a CallableSymbolicExpression, as illustrated below:

```
sage: u = log((2-x)/(y+5))
sage: f = u.function(x, y); f
(x, y) |--> log(-(x - 2)/(y + 5))
```

There is an easier way of creating a CallableSymbolicExpression, which relies on the Sage preparser.

```
sage: f(x,y) = log(x)*cos(y); f
(x, y) |--> cos(y)*log(x)
```

Then we have fixed an order of variables and there is no ambiguity substituting or evaluating:

```
sage: f(x,y) = log((2-x)/(y+5))
sage: f(7,t)
log(-5/(t + 5))
```

Some further examples:

```
sage: f = 5*sin(x)
sage: f
5*sin(x)
sage: f(x=2)
5*sin(2)
sage: f(x=pi)
0
sage: float(f(x=pi))
0.0
```

Another example:

```
sage: f = integrate(1/sqrt(9+x^2), x); f
arcsinh(1/3*x)
sage: f(x=3)
arcsinh(1)
sage: f.derivative(x)
1/sqrt(x^2 + 9)
```

We compute the length of the parabola from 0 to 2:

```
sage: x = var('x')
sage: y = x^2
sage: dy = derivative(y,x)
sage: z = integral(sqrt(1 + dy^2), x, 0, 2)
sage: z
sqrt(17) + 1/4*arcsinh(4)
sage: n(z,200)
4.6467837624329358733826155674904591885104869874232887508703
sage: float(z)
4.646783762432936
```

We test pickling:

```
sage: x, y = var('x,y')
sage: f = -sqrt(pi)*(x^3 + sin(x/cos(y)))
sage: bool(loads(dumps(f)) == f)
True
```

Coercion examples:

We coerce various symbolic expressions into the complex numbers:

(continues on next page)

```
cosh(1/2) + I*sinh(1)
sage: CC(f)
1.12762596520638 + 1.17520119364380*I
sage: ComplexField(200)(f)
1.1276259652063807852262251614026720125478471180986674836290\\
+ 1.1752011936438014568823818505956008151557179813340958702296*I
sage: ComplexField(100)(f)
1.1276259652063807852262251614 + 1.1752011936438014568823818506*I
```

We illustrate construction of an inverse sum where each denominator has a new variable name:

```
sage: f = sum(1/var('n%s'%i)^i for i in range(10))
sage: f
1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n7^7 + 1/n8^8 + 1/n9^9 + 1
```

Note that after calling var, the variables are immediately available for use:

```
sage: (n1 + n2)^5
(n1 + n2)^5
```

We can, of course, substitute:

```
sage: f(n9=9, n7=n6)
1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n6^7 + 1/n8^8
+ 387420490/387420489
```

```
sage.calculus.calculus.at (ex, *args, **kwds)
```

Parses at formulations from other systems, such as Maxima. Replaces evaluation 'at' a point with substitution method of a symbolic expression.

EXAMPLES:

We do not import at at the top level, but we can use it as a synonym for substitution if we import it:

```
sage: g = x^3 - 3
sage: from sage.calculus.calculus import at
sage: at (g, x=1)
sage: g.subs(x=1)
```

We find a formal Taylor expansion:

```
sage: h, x = var('h, x')
sage: u = function('u')
sage: u(x + h)
u(h + x)
sage: diff(u(x+h), x)
D[0](u)(h + x)
sage: taylor(u(x+h), h, 0, 4)
1/24*h^4*diff(u(x), x, x, x, x) + 1/6*h^3*diff(u(x), x, x, x)
+ 1/2*h^2*diff(u(x), x, x) + h*diff(u(x), x) + u(x)
```

We compute a Laplace transform:

```
sage: var('s,t')
(s, t)
                                                                                           (continues on next page)
```

```
sage: f = function('f')(t)
sage: f.diff(t, 2)
diff(f(t), t, t)
sage: f.diff(t,2).laplace(t,s)
s^2*laplace(f(t), t, s) - s*f(0) - D[0](f)(0)
```

We can also accept a non-keyword list of expression substitutions, like Maxima does (github issue #12796):

```
sage: from sage.calculus.calculus import at
sage: f = function('f')
sage: at(f(x), [x == 1])
f(1)
```

```
sage.calculus.calculus.dummy_diff(*args)
```

This function is called when 'diff' appears in a Maxima string.

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_diff
sage: x,y = var('x,y')
sage: dummy_diff(sin(x*y), x, SR(2), y, SR(1))
-x*y^2*cos(x*y) - 2*y*sin(x*y)
```

Here the function is used implicitly:

```
sage: a = var('a')
sage: f = function('cr')(a)
sage: g = f.diff(a); g
diff(cr(a), a)
```

sage.calculus.calculus.dummy_integrate(*args)

This function is called to create formal wrappers of integrals that Maxima can't compute:

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_integrate
sage: f = function('f')
sage: dummy_integrate(f(x), x)
integrate(f(x), x)
sage: a,b = var('a,b')
sage: dummy_integrate(f(x), x, a, b)
integrate(f(x), x, a, b)
```

sage.calculus.calculus.dummy_inverse_laplace(*args)

This function is called to create formal wrappers of inverse Laplace transforms that Maxima can't compute:

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_inverse_laplace
sage: s,t = var('s,t')
sage: F = function('F')
sage: dummy_inverse_laplace(F(s), s, t)
ilt(F(s), s, t)
```

sage.calculus.calculus.dummy_laplace(*args)

This function is called to create formal wrappers of laplace transforms that Maxima can't compute:

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_laplace
sage: s,t = var('s,t')
sage: f = function('f')
sage: dummy_laplace(f(t), t, s)
laplace(f(t), t, s)
```

sage.calculus.calculus.dummy_pochhammer(*args)

This function is called to create formal wrappers of Pochhammer symbols

EXAMPLES:

```
sage: from sage.calculus.calculus import dummy_pochhammer
sage: s,t = var('s,t')
sage: dummy_pochhammer(s, t)
gamma(s + t)/gamma(s)
```

```
sage.calculus.inverse_laplace (ex, s, t, algorithm='maxima')
```

Return the inverse Laplace transform with respect to the variable t and transform parameter s, if possible.

If this function cannot find a solution, a formal function is returned. The function that is returned may be viewed as a function of t.

DEFINITION:

The inverse Laplace transform of a function F(s) is the function f(t), defined by

$$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) ds,$$

where γ is chosen so that the contour path of integration is in the region of convergence of F(s).

INPUT:

- ex a symbolic expression
- s transform parameter
- t independent variable
- algorithm (default: 'maxima') one of
 - 'maxima' use Maxima (the default)
 - 'sympy' use SymPy
 - 'giac' use Giac

See also:

laplace()

EXAMPLES:

```
sage: var('w, m')
(w, m)
sage: f = (1/(w^2+10)).inverse_laplace(w, m); f
1/10*sqrt(10)*sin(sqrt(10)*m)
sage: laplace(f, m, w)
1/(w^2 + 10)
sage: f(t) = t*cos(t)
sage: s = var('s')
(continues on next page)
```

(continues on next page)

```
sage: L = laplace(f, t, s); L
t |--> 2*s^2/(s^2 + 1)^2 - 1/(s^2 + 1)
sage: inverse_laplace(L, s, t)
t |--> t*cos(t)
sage: inverse_laplace(1/(s^3+1), s, t)
1/3*(sqrt(3)*sin(1/2*sqrt(3)*t) - cos(1/2*sqrt(3)*t))*e^(1/2*t) + 1/3*e^(-t)
```

No explicit inverse Laplace transform, so one is returned formally a function ilt:

```
sage: inverse_laplace(cos(s), s, t)
ilt(cos(s), s, t)
```

Transform an expression involving a time-shift, via SymPy:

```
sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='sympy').simplify()
(t - 1)*heaviside(t - 1)
```

The same instance with Giac:

```
sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='giac')
(t - 1)*heaviside(t - 1)
```

Transform a rational expression:

The inverse Laplace transform of a constant is a delta distribution:

```
sage: inverse_laplace(1, s, t)
dirac_delta(t)
sage: inverse_laplace(1, s, t, algorithm='sympy')
dirac_delta(t)
sage: inverse_laplace(1, s, t, algorithm='giac')
dirac_delta(t)
```

sage.calculus.laplace(ex, t, s, algorithm='maxima')

Return the Laplace transform with respect to the variable t and transform parameter s, if possible.

If this function cannot find a solution, a formal function is returned. The function that is returned may be viewed as a function of s.

DEFINITION:

The Laplace transform of a function f(t), defined for all real numbers $t \ge 0$, is the function F(s) defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt.$$

INPUT:

ex – a symbolic expression

- t independent variable
- s transform parameter
- algorithm (default: 'maxima') one of
 - 'maxima' use Maxima (the default)
 - 'sympy' use SymPy
 - 'giac' use Giac

Note: The 'sympy' algorithm returns the tuple (F, a, cond) where F is the Laplace transform of f(t), Re(s) > a is the half-plane of convergence, and cond are auxiliary convergence conditions.

See also:

```
inverse_laplace()
```

EXAMPLES:

We compute a few Laplace transforms:

```
sage: var('x, s, z, t, t0')
(x, s, z, t, t0)
sage: sin(x).laplace(x, s)
1/(s^2 + 1)
sage: (z + exp(x)).laplace(x, s)
z/s + 1/(s - 1)
sage: log(t/t0).laplace(t, s)
-(euler_gamma + log(s) + log(t0))/s
```

We do a formal calculation:

```
sage: f = function('f')(x)
sage: g = f.diff(x); g
diff(f(x), x)
sage: g.laplace(x, s)
s*laplace(f(x), x, s) - f(0)
```

A BATTLE BETWEEN the X-women and the Y-men (by David Joyner): Solve

$$x' = -16y, x(0) = 270, y' = -x + 1, y(0) = 90.$$

This models a fight between two sides, the "X-women" and the "Y-men", where the X-women have 270 initially and the Y-men have 90, but the Y-men are better at fighting, because of the higher factor of "-16" vs "-1", and also get an occasional reinforcement, because of the "+1" term.

```
sage: var('t')
t
sage: t = var('t')
sage: x = function('x')(t)
sage: y = function('y')(t)
sage: de1 = x.diff(t) + 16*y
sage: de2 = y.diff(t) + x - 1
sage: de1.laplace(t, s)
s*laplace(x(t), t, s) + 16*laplace(y(t), t, s) - x(0)
sage: de2.laplace(t, s)
s*laplace(y(t), t, s) - 1/s + laplace(x(t), t, s) - y(0)
```

Next we form the augmented matrix of the above system:

```
sage: A = matrix([[s, 16, 270], [1, s, 90+1/s]])
sage: E = A.echelon_form()
sage: xt = E[0,2].inverse_laplace(s,t)
sage: yt = E[1,2].inverse_laplace(s,t)
sage: xt
-91/2*e^{(4*t)} + 629/2*e^{(-4*t)} + 1
sage: yt
91/8*e^{(4*t)} + 629/8*e^{(-4*t)}
sage: p1 = plot(xt, 0, 1/2, rgbcolor=(1,0,0))
                                                                                   #__
→needs sage.plot
sage: p2 = plot(yt, 0, 1/2, rgbcolor=(0,1,0))
→needs sage.plot
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
→needs sage.plot
          (p1 + p2).save(f.name)
```

Another example:

```
sage: var('a,s,t')
(a, s, t)
sage: f = exp (2*t + a) * sin(t) * t; f
t*e^(a + 2*t)*sin(t)
sage: L = laplace(f, t, s); L
2*(s - 2)*e^a/(s^2 - 4*s + 5)^2
sage: inverse_laplace(L, s, t)
t*e^(a + 2*t)*sin(t)
```

The Laplace transform of the exponential function:

```
sage: laplace(exp(x), x, s)
1/(s - 1)
```

Dirac's delta distribution is handled (the output of SymPy is related to a choice that has to be made when defining Laplace transforms of distributions):

```
sage: laplace(dirac_delta(t), t, s)
1
sage: F, a, cond = laplace(dirac_delta(t), t, s, algorithm='sympy')
sage: a, cond # random - sympy <1.10 gives (-oo, True)
(0, True)
sage: F # random - sympy <1.9 includes undefined heaviside(0) in answer
1
sage: laplace(dirac_delta(t), t, s, algorithm='giac')
1</pre>
```

Heaviside step function can be handled with different interfaces. Try with Maxima:

```
sage: laplace(heaviside(t-1), t, s)
e^(-s)/s
```

Try with giac:

```
sage: laplace(heaviside(t-1), t, s, algorithm='giac')
e^(-s)/s
```

Try with SymPy:

```
sage: laplace(heaviside(t-1), t, s, algorithm='sympy')
(e^(-s)/s, 0, True)
```

sage.calculus.lim(ex, dir=None, taylor=False, algorithm='maxima', **argv)

Return the limit as the variable v approaches a from the given direction.

```
expr.limit(x = a)
expr.limit(x = a, dir='+')
```

INPUT:

- dir (default: None); may have the value 'plus' (or '+' or 'right' or 'above') for a limit from above, 'minus' (or '-' or 'left' or 'below') for a limit from below, or may be omitted (implying a two-sided limit is to be computed).
- taylor (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).
- **argv 1 named parameter

Note: The output may also use und (undefined), ind (indefinite but bounded), and infinity (complex infinity).

EXAMPLES:

```
sage: x = var('x')
sage: f = (1 + 1/x)^x
sage: f.limit(x=00)
e
sage: f.limit(x=5)
7776/3125
```

Domain to real, a regression in 5.46.0, see https://sf.net/p/maxima/bugs/4138

```
sage: maxima_calculus.eval("domain:real")
...
sage: f.limit(x=1.2).n()
2.06961575467...
sage: maxima_calculus.eval("domain:complex");
...
```

Otherwise, it works

```
sage: f.limit(x=I, taylor=True)
(-I + 1)^I
sage: f(x=1.2)
2.0696157546720...
sage: f(x=I)
(-I + 1)^I
sage: CDF(f(x=I))
2.0628722350809046 + 0.7450070621797239*I
sage: CDF(f.limit(x=I))
2.0628722350809046 + 0.7450070621797239*I
```

Notice that Maxima may ask for more information:

```
sage: var('a')
a
sage: limit(x^a, x=0)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)', see
`assume?` for more details)
Is a positive, negative or zero?
```

With this example, Maxima is looking for a LOT of information:

```
sage: assume(a>0)
sage: limit(x^a, x=0) # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation *may* help
(example of legal syntax is 'assume(a>0)', see `assume?` for
more details)
Is a an integer?
sage: assume(a, 'integer')
sage: limit(x^a, x=0) # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation *may* help
(example of legal syntax is 'assume(a>0)', see `assume?` for
more details)
Is a an even number?
sage: assume(a, 'even')
sage: limit(x^a, x=0)
sage: forget()
```

More examples:

```
sage: limit(x*log(x), x=0, dir='+')
0
sage: lim((x+1)^(1/x), x=0)
e
sage: lim(e^x/x, x=oo)
+Infinity
sage: lim(e^x/x, x=-oo)
0
sage: lim(-e^x/x, x=oo)
-Infinity
sage: lim((cos(x))/(x^2), x=0)
+Infinity
sage: lim(sqrt(x^2+1) - x, x=oo)
0
sage: lim(x^2/(sec(x)-1), x=0)
2
sage: lim(cos(x)/(cos(x)-1), x=0)
-Infinity
sage: lim(x*sin(1/x), x=0)
```

(continues on next page)

```
sage: limit(e^(-1/x), x=0, dir='right')

sage: limit(e^(-1/x), x=0, dir='left')

+Infinity
```

```
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()</pre>
```

Here ind means "indefinite but bounded":

```
sage: lim(sin(1/x), x = 0)
ind
```

We can use other packages than maxima, namely "sympy", "giac", "fricas".

With the standard package Giac:

```
sage: from sage.libs.giac.giac import libgiac # random
sage: (exp(-x)/(2+sin(x))).limit(x=oo, algorithm='giac')
0
sage: limit(e^(-1/x), x=0, dir='right', algorithm='giac')
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='giac')
+Infinity
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='giac')
1
```

With the optional package FriCAS:

```
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='fricas') #

→ optional - fricas
1
sage: limit(e^(-1/x), x=0, dir='right', algorithm='fricas') #

→ optional - fricas
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='fricas') #

→ optional - fricas
+Infinity
```

One can also call Mathematica's online interface:

```
sage: limit(pi+log(x)/x,x=oo, algorithm='mathematica_free') # optional - internet
pi
```

sage.calculus.limit(ex, dir=None, taylor=False, algorithm='maxima', **argv)

Return the limit as the variable v approaches a from the given direction.

```
expr.limit(x = a)
expr.limit(x = a, dir='+')
```

INPUT:

• dir - (default: None); may have the value 'plus' (or '+' or 'right' or 'above') for a limit from above, 'minus' (or '-' or 'left' or 'below') for a limit from below, or may be omitted (implying a

two-sided limit is to be computed).

- taylor (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).
- **argv 1 named parameter

Note: The output may also use und (undefined), ind (indefinite but bounded), and infinity (complex infinity).

EXAMPLES:

```
sage: x = var('x')
sage: f = (1 + 1/x)^x
sage: f.limit(x=oo)
e
sage: f.limit(x=5)
7776/3125
```

Domain to real, a regression in 5.46.0, see https://sf.net/p/maxima/bugs/4138

```
sage: maxima_calculus.eval("domain:real")
...
sage: f.limit(x=1.2).n()
2.06961575467...
sage: maxima_calculus.eval("domain:complex");
...
```

Otherwise, it works

```
sage: f.limit(x=I, taylor=True)
(-I + 1)^I
sage: f(x=1.2)
2.0696157546720...
sage: f(x=I)
(-I + 1)^I
sage: CDF(f(x=I))
2.0628722350809046 + 0.7450070621797239*I
sage: CDF(f.limit(x=I))
2.0628722350809046 + 0.7450070621797239*I
```

Notice that Maxima may ask for more information:

```
sage: var('a')
a
sage: limit(x^a, x=0)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)', see
`assume?` for more details)
Is a positive, negative or zero?
```

With this example, Maxima is looking for a LOT of information:

```
sage: assume(a>0)
sage: limit(x^a, x=0) # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation *may* help
(example of legal syntax is 'assume(a>0)', see `assume?` for
more details)
Is a an integer?
sage: assume(a, 'integer')
sage: limit(x^a, x=0) # random - maxima 5.46.0 does not need extra assumption
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation *may* help
(example of legal syntax is 'assume(a>0)', see `assume?` for
more details)
Is a an even number?
sage: assume(a, 'even')
sage: limit(x^a, x=0)
sage: forget()
```

More examples:

```
sage: limit (x*log(x), x=0, dir='+')
sage: \lim ((x+1)^{(1/x)}, x=0)
sage: lim(e^x/x, x=00)
+Infinity
sage: lim(e^x/x, x=-00)
sage: \lim(-e^x/x, x=00)
-Infinity
sage: lim((cos(x))/(x^2), x=0)
+Infinity
sage: \lim (\operatorname{sgrt}(x^2+1) - x, x=00)
sage: \lim (x^2/(\sec(x)-1), x=0)
sage: \lim(\cos(x)/(\cos(x)-1), x=0)
-Infinity
sage: \lim (x * \sin (1/x), x=0)
sage: limit(e^{(-1/x)}, x=0, dir='right')
sage: limit(e^{(-1/x)}, x=0, dir='left')
+Infinity
```

```
sage: f = log(log(x)) / log(x)
sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
0
sage: forget()</pre>
```

Here ind means "indefinite but bounded":

```
sage: lim(sin(1/x), x = 0)
ind
```

We can use other packages than maxima, namely "sympy", "giac", "fricas".

With the standard package Giac:

```
sage: from sage.libs.giac.giac import libgiac # random
sage: (exp(-x)/(2+sin(x))).limit(x=oo, algorithm='giac')
0
sage: limit(e^(-1/x), x=0, dir='right', algorithm='giac')
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='giac')
+Infinity
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='giac')
1
```

With the optional package FriCAS:

```
sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='fricas') #

→ optional - fricas
1
sage: limit(e^(-1/x), x=0, dir='right', algorithm='fricas') #

→ optional - fricas
0
sage: limit(e^(-1/x), x=0, dir='left', algorithm='fricas') #

→ optional - fricas
+Infinity
```

One can also call Mathematica's online interface:

```
sage: limit(pi+log(x)/x,x=oo, algorithm='mathematica_free') # optional - internet
pi
```

sage.calculus.calculus.mapped_opts(v)

Used internally when creating a string of options to pass to Maxima.

INPUT:

• v – an object

OUTPUT: a string.

The main use of this is to turn Python bools into lower case strings.

EXAMPLES:

```
sage: sage.calculus.calculus.mapped_opts(True)
'true'
sage: sage.calculus.calculus.mapped_opts(False)
'false'
sage: sage.calculus.calculus.mapped_opts('bar')
'bar'
```

sage.calculus.calculus.maxima_options(**kwds)

Used internally to create a string of options to pass to Maxima.

EXAMPLES:

sage.calculus.calculus.minpoly(ex, var='x', algorithm=None, bits=None, degree=None, epsilon=0)

Return the minimal polynomial of self, if possible.

INPUT:

- var polynomial variable name (default 'x')
- algorithm 'algebraic' or 'numerical' (default both, but with numerical first)
- bits the number of bits to use in numerical approx
- degree the expected algebraic degree
- epsilon return without error as long as f(self) epsilon, in the case that the result cannot be proven.

All of the above parameters are optional, with epsilon=0, bits and degree tested up to 1000 and 24 by default respectively. The numerical algorithm will be faster if bits and/or degree are given explicitly. The algebraic algorithm ignores the last three parameters.

OUTPUT: The minimal polynomial of self. If the numerical algorithm is used, then it is proved symbolically when epsilon=0 (default).

If the minimal polynomial could not be found, two distinct kinds of errors are raised. If no reasonable candidate was found with the given bits/degree parameters, a ValueError will be raised. If a reasonable candidate was found but (perhaps due to limits in the underlying symbolic package) was unable to be proved correct, a NotImplementedError will be raised.

ALGORITHM: Two distinct algorithms are used, depending on the algorithm parameter. By default, the numerical algorithm is attempted first, then the algebraic one.

Algebraic: Attempt to evaluate this expression in QQbar, using cyclotomic fields to resolve exponential and trig functions at rational multiples of π , field extensions to handle roots and rational exponents, and computing compositums to represent the full expression as an element of a number field where the minimal polynomial can be computed exactly. The bits, degree, and epsilon parameters are ignored.

Numerical: Computes a numerical approximation of self and use PARI's pari:algdep to get a candidate minpoly f. If f(self), evaluated to a higher precision, is close enough to 0 then evaluate f(self) symbolically, attempting to prove vanishing. If this fails, and epsilon is non-zero, return f if and only if f(self) < epsilon. Otherwise raise a ValueError (if no suitable candidate was found) or a NotImplementedError (if a likely candidate was found but could not be proved correct).

EXAMPLES: First some simple examples:

```
sage: sqrt(2).minpoly()
x^2 - 2
sage: minpoly(2^(1/3))
x^3 - 2
sage: minpoly(sqrt(2) + sqrt(-1))
x^4 - 2*x^2 + 9
sage: minpoly(sqrt(2)-3^(1/3))
x^6 - 6*x^4 + 6*x^3 + 12*x^2 + 36*x + 1
```

Works with trig and exponential functions too.

```
sage: sin(pi/3).minpoly()

x^2 - 3/4 (continues on next page)
```

```
sage: sin(pi/7).minpoly()
x^6 - 7/4*x^4 + 7/8*x^2 - 7/64
sage: minpoly(exp(I*pi/17))
x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8
- x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```

Here we verify it gives the same result as the abstract number field.

```
sage: (sqrt(2) + sqrt(3) + sqrt(6)).minpoly()
x^4 - 22*x^2 - 48*x - 23
sage: K.<a,b> = NumberField([x^2-2, x^2-3])
sage: (a+b+a*b).absolute_minpoly()
x^4 - 22*x^2 - 48*x - 23
```

The *minpoly()* function is used implicitly when creating number fields:

```
sage: x = var('x')
sage: eqn = x^3 + sqrt(2)*x + 5 == 0
sage: a = solve(eqn, x)[0].rhs()
sage: QQ[a]
Number Field in a with defining polynomial x^6 + 10*x^3 - 2*x^2 + 25
with a = 0.7185272465828846? - 1.721353471724806?*I
```

Here we solve a cubic and then recover it from its complicated radical expansion.

```
sage: f = x^3 - x + 1
sage: a = f.solve(x)[0].rhs(); a
-1/2*(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)*(I*sqrt(3) + 1)
- 1/6*(-I*sqrt(3) + 1)/(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)
sage: a.minpoly()
x^3 - x + 1
```

Note that simplification may be necessary to see that the minimal polynomial is correct.

```
sage: a = sqrt(2)+sqrt(3)+sqrt(5)
sage: f = a.minpoly(); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a)
(sqrt(5) + sqrt(3) + sqrt(2))^8 - 40*(sqrt(5) + sqrt(3) + sqrt(2))^6
+ 352*(sqrt(5) + sqrt(3) + sqrt(2))^4 - 960*(sqrt(5) + sqrt(3) + sqrt(2))^2
+ 576
sage: f(a).expand()
0
```

The degree must be high enough (default tops out at 24).

```
sage: a = sqrt(3) + sqrt(2)
sage: a.minpoly(algorithm='numerical', bits=100, degree=3)
Traceback (most recent call last):
...
```

(continues on next page)

```
ValueError: Could not find minimal polynomial (100 bits, degree 3). 

sage: a.minpoly(algorithm='numerical', bits=100, degree=10) 

x^4 - 10*x^2 + 1
```

```
sage: cos(pi/33).minpoly(algorithm='algebraic')
x^10 + 1/2*x^9 - 5/2*x^8 - 5/4*x^7 + 17/8*x^6 + 17/16*x^5
- 43/64*x^4 - 43/128*x^3 + 3/64*x^2 + 3/128*x + 1/1024
sage: cos(pi/33).minpoly(algorithm='numerical')
x^10 + 1/2*x^9 - 5/2*x^8 - 5/4*x^7 + 17/8*x^6 + 17/16*x^5
- 43/64*x^4 - 43/128*x^3 + 3/64*x^2 + 3/128*x + 1/1024
```

Sometimes it fails, as it must given that some numbers aren't algebraic:

```
sage: sin(1).minpoly(algorithm='numerical')
Traceback (most recent call last):
...
ValueError: Could not find minimal polynomial (1000 bits, degree 24).
```

Note: Of course, failure to produce a minimal polynomial does not necessarily indicate that this number is transcendental.

```
sage.calculus.mma_free_limit(expression, v, a, dir=None)
```

Limit using Mathematica's online interface.

INPUT:

- expression symbolic expression
- v variable
- a value where the variable goes to
- dir '+', '-' or None (optional, default: None)

EXAMPLES:

```
sage: from sage.calculus.calculus import mma_free_limit
sage: mma_free_limit(sin(x)/x, x, a=0) # optional - internet
1
```

Another simple limit:

```
sage: mma_free_limit(e^(-x), x, a=oo) # optional - internet
0
```

Return a floating point machine precision numerical approximation to the integral of self from a to b, computed using floating point arithmetic via maxima.

INPUT:

- x variable to integrate with respect to
- a lower endpoint of integration
- b upper endpoint of integration

- desired relative error (default: 1e-8) the desired relative error
- maximum_num_subintervals (default: 200) maximal number of subintervals

OUTPUT:

- · float: approximation to the integral
- float: estimated absolute error of the approximation
- · the number of integrand evaluations
- an error code:
 - 0 no problems were encountered
 - 1 − too many subintervals were done
 - 2 excessive roundoff error
 - 3 extremely bad integrand behavior
 - 4 failed to converge
 - 5 integral is probably divergent or slowly convergent
 - 6 the input is invalid; this includes the case of desired_relative_error being too small to be achieved

ALIAS: nintegrate() is the same as nintegral()

REMARK: There is also a function <code>numerical_integral()</code> that implements numerical integration using the GSL C library. It is potentially much faster and applies to arbitrary user defined functions.

Also, there are limits to the precision to which Maxima can compute the integral due to limitations in quadpack. In the following example, remark that the last value of the returned tuple is 6, indicating that the input was invalid, in this case because of a too high desired precision.

```
sage: f = x
sage: f.nintegral(x, 0, 1, 1e-14)
(0.0, 0.0, 0, 6)
```

EXAMPLES:

```
sage: f(x) = exp(-sqrt(x))
sage: f.nintegral(x, 0, 1)
(0.5284822353142306, 4.163...e-11, 231, 0)
```

We can also use the numerical_integral () function, which calls the GSL C library.

```
sage: numerical_integral(f, 0, 1)
(0.528482232253147, 6.83928460...e-07)
```

Note that in exotic cases where floating point evaluation of the expression leads to the wrong value, then the output can be completely wrong:

```
sage: f = exp(pi*sqrt(163)) - 262537412640768744
```

Despite appearance, f is really very close to 0, but one gets a nonzero value since the definition of float (f) is that it makes all constants inside the expression floats, then evaluates each function and each arithmetic operation using float arithmetic:

```
sage: float(f)
-480.0
```

Computing to higher precision we see the truth:

Now numerically integrating, we see why the answer is wrong:

```
sage: f.nintegrate(x,0,1)
(-480.000000000000..., 5.32907051820075...e-12, 21, 0)
```

It is just because every floating point evaluation of f returns -480.0 in floating point.

Important note: using PARI/GP one can compute numerical integrals to high precision:

```
sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
'2.565728500561051474934096410 E-127'  # 32-bit
'2.5657285005610514829176211363206621657 E-127' # 64-bit
sage: old_prec = gp.set_real_precision(50)
sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
'2.5657285005610514829173563961304957417746108003917 E-127'
sage: gp.set_real_precision(old_prec)
57
```

Note that the input function above is a string in PARI syntax.

Return a floating point machine precision numerical approximation to the integral of self from a to b, computed using floating point arithmetic via maxima.

INPUT:

- x variable to integrate with respect to
- a lower endpoint of integration
- b upper endpoint of integration
- desired_relative_error (default: 1e-8) the desired relative error
- maximum_num_subintervals (default: 200) maximal number of subintervals

OUTPUT:

- float: approximation to the integral
- float: estimated absolute error of the approximation
- the number of integrand evaluations
- · an error code:
 - **−** 0 **−** no problems were encountered
 - 1 too many subintervals were done
 - 2 excessive roundoff error
 - 3 extremely bad integrand behavior
 - 4 failed to converge

- 5 integral is probably divergent or slowly convergent
- 6 the input is invalid; this includes the case of desired_relative_error being too small to be achieved

ALIAS: nintegrate() is the same as nintegral()

REMARK: There is also a function <code>numerical_integral()</code> that implements numerical integration using the GSL C library. It is potentially much faster and applies to arbitrary user defined functions.

Also, there are limits to the precision to which Maxima can compute the integral due to limitations in quadpack. In the following example, remark that the last value of the returned tuple is 6, indicating that the input was invalid, in this case because of a too high desired precision.

```
sage: f = x
sage: f.nintegral(x, 0, 1, 1e-14)
(0.0, 0.0, 0, 6)
```

EXAMPLES:

```
sage: f(x) = exp(-sqrt(x))
sage: f.nintegral(x, 0, 1)
(0.5284822353142306, 4.163...e-11, 231, 0)
```

We can also use the numerical integral () function, which calls the GSL C library.

```
sage: numerical_integral(f, 0, 1)
(0.528482232253147, 6.83928460...e-07)
```

Note that in exotic cases where floating point evaluation of the expression leads to the wrong value, then the output can be completely wrong:

```
sage: f = exp(pi*sqrt(163)) - 262537412640768744
```

Despite appearance, f is really very close to 0, but one gets a nonzero value since the definition of float (f) is that it makes all constants inside the expression floats, then evaluates each function and each arithmetic operation using float arithmetic:

```
sage: float(f)
-480.0
```

Computing to higher precision we see the truth:

Now numerically integrating, we see why the answer is wrong:

```
sage: f.nintegrate(x,0,1)
(-480.000000000000..., 5.32907051820075...e-12, 21, 0)
```

It is just because every floating point evaluation of f returns -480.0 in floating point.

Important note: using PARI/GP one can compute numerical integrals to high precision:

```
sage: qp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
'2.565728500561051474934096410 E-127'
                                                 # 32-bit
'2.5657285005610514829176211363206621657 E-127' # 64-bit
sage: old_prec = gp.set_real_precision(50)
sage: qp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
'2.5657285005610514829173563961304957417746108003917 E-127'
sage: gp.set_real_precision(old_prec)
```

Note that the input function above is a string in PARI syntax.

```
sage.calculus.calculus.symbolic_expression_from_maxima_string(x, equals_sub=False,
                                                                     maxima=Maxima_lib)
```

Given a string representation of a Maxima expression, parse it and return the corresponding Sage symbolic expres-

INPUT:

- x a string
- equals_sub (default: False) if True, replace '=' by '==' in self
- maxima (default: the calculus package's copy of Maxima) the Maxima interpreter to use.

EXAMPLES:

```
sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string_
sage: sefms('x^%e + %e^%pi + %i + sin(0)')
x^e + e^pi + I
sage: f = function('f')(x)
sage: sefms('?%at(f(x), x=2) #1')
f(2) != 1
sage: a = sage.calculus.calculus.maxima("x#0"); a
x # 0
sage: a.sage()
x != 0
```

sage.calculus.calculus.symbolic_expression_from_string(s, syms, accept_sequence=None,

Given a string, (attempt to) parse it and return the corresponding Sage symbolic expression. Normally used to return Maxima output to the user.

INPUT:

- s a string
- syms (default: {}) dictionary of strings to be regarded as symbols or functions; keys are pairs (string, number of arguments)
- accept_sequence (default: False) controls whether to allow a (possibly nested) set of lists and tuples
- parser (default: SR_parser) parser for internal use

EXAMPLES:

```
sage: from sage.calculus.calculus import symbolic_expression_from_string
sage: y = var('y')
sage: symbolic_expression_from_string('[sin(0)*x^2,3*spam+e^pi]',
                                                                         (continues on next page)
```

```
syms={('spam',0): y}, accept_sequence=True)
[0, 3*y + e^pi]
```

sage.calculus.symbolic_product (expression, v, a, b, algorithm='maxima', hold=False)

Return the symbolic product $\prod_{v=a}^{b} expression$ with respect to the variable v with endpoints a and b.

INPUT:

- expression a symbolic expression
- ∨ a variable or variable name
- a lower endpoint of the product
- b upper endpoint of the prduct
- algorithm (default: 'maxima') one of
 - 'maxima' use Maxima (the default)
 - 'giac' use Giac
 - 'sympy' use SymPy
 - 'mathematica' (optional) use Mathematica
- hold (default: False) if True, don't evaluate

EXAMPLES:

```
sage: i, k, n = var('i,k,n')
sage: from sage.calculus.calculus import symbolic_product
sage: symbolic_product(k, k, 1, n)
factorial(n)
sage: symbolic_product(x + i*(i+1)/2, i, 1, 4)
x^4 + 20*x^3 + 127*x^2 + 288*x + 180
sage: symbolic_product(i^2, i, 1, 7)
25401600
sage: f = function('f')
sage: symbolic_product(f(i), i, 1, 7)
f(7)*f(6)*f(5)*f(4)*f(3)*f(2)*f(1)
sage: symbolic_product(f(i), i, 1, n)
product(f(i), i, 1, n)
sage: assume (k>0)
sage: symbolic_product(integrate (x^k, x, 0, 1), k, 1, n)
1/factorial(n + 1)
sage: symbolic_product(f(i), i, 1, n).log().log_expand()
sum(log(f(i)), i, 1, n)
```

sage.calculus.calculus.symbolic_sum(expression, v, a, b, algorithm='maxima', hold=False)

Return the symbolic sum $\sum_{v=a}^{b} expression$ with respect to the variable v with endpoints a and b.

INPUT:

- expression a symbolic expression
- v a variable or variable name
- a lower endpoint of the sum
- b upper endpoint of the sum
- algorithm (default: 'maxima') one of

- 'maxima' use Maxima (the default)
- 'maple' (optional) use Maple
- 'mathematica' (optional) use Mathematica
- 'giac' (optional) use Giac
- 'sympy' use SymPy
- hold (default: False) if True, don't evaluate

EXAMPLES:

```
sage: k, n = var('k,n')
sage: from sage.calculus.calculus import symbolic_sum
sage: symbolic_sum(k, k, 1, n).factor()
1/2*(n + 1)*n
```

```
sage: symbolic_sum(1/k^4, k, 1, 00)
1/90*pi^4
```

```
sage: symbolic_sum(1/k^5, k, 1, 00)
zeta(5)
```

A well known binomial identity:

```
sage: symbolic_sum(binomial(n,k), k, 0, n)
2^n
```

And some truncations thereof:

```
sage: assume(n>1)
sage: symbolic_sum(binomial(n,k), k, 1, n)
2^n - 1
sage: symbolic_sum(binomial(n,k), k, 2, n)
2^n - n - 1
sage: symbolic_sum(binomial(n,k), k, 0, n-1)
2^n - 1
sage: symbolic_sum(binomial(n,k), k, 1, n-1)
2^n - 2
```

The binomial theorem:

```
sage: x, y = var('x, y')
sage: symbolic_sum(binomial(n,k) * x^k * y^(n-k), k, 0, n)
(x + y)^n
```

```
sage: symbolic_sum(k * binomial(n, k), k, 1, n)
2^(n - 1)*n
```

```
sage: symbolic_sum((-1)^k*binomial(n,k), k, 0, n)
0
```

```
sage: symbolic_sum(2^(-k)/(k*(k+1)), k, 1, 00)
-\log(2) + 1
```

Summing a hypergeometric term:

```
sage: symbolic_sum(binomial(n, k) * factorial(k) / factorial(n+1+k), k, 0, n)
1/2*sqrt(pi)/factorial(n + 1/2)
```

We check a well known identity:

```
sage: bool(symbolic_sum(k^3, k, 1, n) == symbolic_sum(k, k, 1, n)^2)
True
```

A geometric sum:

```
sage: a, q = var('a, q')
sage: symbolic_sum(a*q^k, k, 0, n)
(a*q^(n + 1) - a)/(q - 1)
```

For the geometric series, we will have to assume the right values for the sum to converge:

A divergent geometric series. Don't forget to forget your assumptions:

```
sage: forget()
sage: assume(q > 1)
sage: symbolic_sum(a*q^k, k, 0, oo)
Traceback (most recent call last):
...
ValueError: Sum is divergent.
sage: forget()
sage: assumptions() # check the assumptions were really forgotten
[]
```

A summation performed by Mathematica:

An example of this summation with Giac:

```
sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='giac').factor()
pi*(e^(2*pi) + 1)/((e^pi + 1)*(e^pi - 1))
```

The same summation is solved by SymPy:

```
sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='sympy')
pi/tanh(pi)
```

SymPy and Maxima 5.39.0 can do the following (see github issue #22005):

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='sympy')
1/64*pi^2
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity)
1/64*pi^2
```

Use Maple as a backend for summation:

If you don't want to evaluate immediately give the hold keyword:

```
sage: s = sum(n, n, 1, k, hold=True); s
sum(n, n, 1, k)
sage: s.unhold()
1/2*k^2 + 1/2*k
sage: s.subs(k == 10)
sum(n, n, 1, 10)
sage: s.subs(k == 10).unhold()
55
sage: s.subs(k == 10).n()
```

Note: Sage can currently only understand a subset of the output of Maxima, Maple and Mathematica, so even if the chosen backend can perform the summation the result might not be convertible into a Sage expression.

2.6 Units of measurement

This is the units package. It contains information about many units and conversions between them.

TUTORIAL:

To return a unit:

```
sage: units.length.meter
meter
```

This unit acts exactly like a symbolic variable:

```
sage: s = units.length.meter
sage: s^2
meter^2
sage: s + var('x')
meter + x
```

Units have additional information in their docstring:

```
sage: # You would type: units.force.dyne?
sage: print(units.force.dyne.__doc__)
CGS unit for force defined to be gram*centimeter/second^2.
Equal to 10^-5 newtons.
```

You may call the convert function with units:

```
sage: t = units.mass.gram*units.length.centimeter/units.time.second^2
sage: t.convert(units.mass.pound*units.length.foot/units.time.hour^2)
5400000000000/5760623099*(foot*pound/hour^2)
sage: t.convert(units.force.newton)
1/100000*newton
```

Calling the convert function with no target returns base SI units:

```
sage: t.convert()
1/100000*kilogram*meter/second^2
```

Giving improper units to convert to raises a ValueError:

```
sage: t.convert(units.charge.coulomb)
Traceback (most recent call last):
...
ValueError: Incompatible units
```

Converting temperatures works as well:

```
sage: s = 68*units.temperature.fahrenheit
sage: s.convert(units.temperature.celsius)
20*celsius
sage: s.convert()
293.150000000000*kelvin
```

Trying to multiply temperatures by another unit then converting raises a ValueError:

```
sage: wrong = 50*units.temperature.celsius*units.length.foot
sage: wrong.convert()
Traceback (most recent call last):
...
ValueError: cannot convert
```

AUTHORS:

- · David Ackerman
- · William Stein

class sage.symbolic.units.UnitExpression

Bases: Expression

A symbolic unit.

EXAMPLES:

```
sage: acre = units.area.acre
sage: type(acre)
<class 'sage.symbolic.units.UnitExpression'>
```

class sage.symbolic.units.Units(data, name=")

Bases: ExtraTabCompletion

A collection of units of some type.

EXAMPLES:

```
sage: units.power
Collection of units of power: cheval_vapeur horsepower watt
```

sage.symbolic.units.base_units(unit)

Converts unit to base SI units.

INPUT:

• unit - a unit

OUTPUT:

a symbolic expression

EXAMPLES:

```
sage: sage.symbolic.units.base_units(units.length.foot)
381/1250*meter
```

If unit is already a base unit, it just returns that unit:

```
sage: sage.symbolic.units.base_units(units.length.meter)
meter
```

Derived units get broken down into their base parts:

```
sage: sage.symbolic.units.base_units(units.force.newton)
kilogram*meter/second^2
sage: sage.symbolic.units.base_units(units.volume.liter)
1/1000*meter^3
```

Returns variable if 'unit' is not a unit:

```
sage: sage.symbolic.units.base_units(var('x'))
x
```

```
sage.symbolic.units.convert(expr, target)
```

Converts units between expr and target. If target is None then converts to SI base units.

INPUT:

- expr the symbolic expression converting from
- target (default None) the symbolic expression converting to

OUTPUT:

a symbolic expression

EXAMPLES:

```
sage: sage.symbolic.units.convert(units.length.foot, None)
381/1250*meter
sage: sage.symbolic.units.convert(units.mass.kilogram, units.mass.pound)
100000000/45359237*pound
```

Raises ValueError if expr and target are not convertible:

```
sage: sage.symbolic.units.convert(units.mass.kilogram, units.length.foot)
Traceback (most recent call last):
...
ValueError: Incompatible units
sage: sage.symbolic.units.convert(units.length.meter^2, units.length.foot)
Traceback (most recent call last):
...
ValueError: Incompatible units
```

Recognizes derived unit relationships to base units and other derived units:

For decimal answers multiply 1.0:

You can also convert quantities of units:

Quantities may contain variables (not for temperature conversion, though):

sage.symbolic.units.convert_temperature(expr, target)

Function for converting between temperatures.

INPUT:

- expr a unit of temperature
- target a units of temperature

OUTPUT:

• a symbolic expression

EXAMPLES:

```
sage: t = 32*units.temperature.fahrenheit
sage: t.convert(units.temperature.celsius)
0
sage: t.convert(units.temperature.kelvin)
273.150000000000*kelvin
```

If target is None then it defaults to kelvin:

```
sage: t.convert()
273.15000000000*kelvin
```

Raises ValueError when either input is not a unit of temperature:

```
sage: t.convert(units.length.foot)
Traceback (most recent call last):
...
ValueError: cannot convert
sage: wrong = units.length.meter*units.temperature.fahrenheit
sage: wrong.convert()
Traceback (most recent call last):
...
ValueError: cannot convert
```

We directly call the convert temperature function:

```
sage: sage.symbolic.units.convert_temperature(37*units.temperature.celsius, units.

→temperature.fahrenheit)
493/5*fahrenheit
sage: 493/5.0
98.6000000000000
```

```
sage.symbolic.units.evalunitdict()
```

Replace all the string values of the unitdict variable by their evaluated forms, and builds some other tables for ease of use. This function is mainly used internally, for efficiency (and flexibility) purposes, making it easier to describe the units.

EXAMPLES:

```
sage: sage.symbolic.units.evalunitdict()
```

```
sage.symbolic.units.is_unit(s)
```

Return a boolean when asked whether the input is in the list of units.

INPUT:

• s – an object

OUTPUT:

• a boolean

EXAMPLES:

```
sage: sage.symbolic.units.is_unit(1)
False
sage: sage.symbolic.units.is_unit(units.length.meter)
True
```

The square of a unit is not a unit:

```
sage: sage.symbolic.units.is_unit(units.length.meter^2)
False
```

You can also directly create units using var, though they won't have a nice docstring describing the unit:

```
sage: sage.symbolic.units.is_unit(var('meter'))
True
```

```
sage.symbolic.units.str_to_unit(name)
```

Create the symbolic unit with given name. A symbolic unit is a class that derives from symbolic expression, and has a specialized docstring.

INPUT:

• name - a string

OUTPUT:

• a UnitExpression

EXAMPLES:

```
sage: sage.symbolic.units.str_to_unit('acre')
acre
sage: type(sage.symbolic.units.str_to_unit('acre'))
<class 'sage.symbolic.units.UnitExpression'>
```

```
sage.symbolic.units.unit_derivations_expr(v)
```

Given derived units name, returns the corresponding units expression. For example, given 'acceleration' output the symbolic expression length/time^2.

INPUT:

• v – a string, name of a unit type such as 'area', 'volume', etc.

OUTPUT:

• a symbolic expression

EXAMPLES:

```
sage: sage.symbolic.units.unit_derivations_expr('volume')
length^3
sage: sage.symbolic.units.unit_derivations_expr('electric_potential')
length^2*mass/(current*time^3)
```

If the unit name is unknown, a KeyError is raised:

```
sage: sage.symbolic.units.unit_derivations_expr('invalid')
Traceback (most recent call last):
...
KeyError: 'invalid'
```

sage.symbolic.units.unitdocs(unit)

Returns docstring for the given unit.

INPUT:

• unit - a unit

OUTPUT:

· a string

EXAMPLES:

```
sage: sage.symbolic.units.unitdocs('meter')
'SI base unit of length.\nDefined to be the distance light travels in vacuum in 1/
→299792458 of a second.'
sage: sage.symbolic.units.unitdocs('amu')
'Abbreviation for atomic mass unit.\nApproximately equal to 1.660538782*10^-27_
→kilograms.'
```

Units not in the list unit docs will raise a ValueError:

```
sage: sage.symbolic.units.unitdocs('earth')
Traceback (most recent call last):
...
ValueError: no documentation exists for the unit earth
```

```
sage.symbolic.units.vars_in_str(s)
```

Given a string like 'mass/(length*time)', return the list ['mass', 'length', 'time'].

INPUT:

• s – a string

OUTPUT:

• a list of strings (unit names)

EXAMPLES:

```
sage: sage.symbolic.units.vars_in_str('mass/(length*time)')
['mass', 'length', 'time']
```

2.7 The symbolic ring

```
{\bf class} \ {\tt sage.symbolic.ring.NumpyToSRMorphism}
```

Bases: Morphism

A morphism from numpy types to the symbolic ring.

```
class sage.symbolic.ring.SymbolicRing
```

Bases: SymbolicRing

Symbolic Ring, parent object for all symbolic expressions.

I()

The imaginary unit, viewed as an element of the symbolic ring.

EXAMPLES:

```
sage: SR.I()^2
-1
sage: SR.I().parent()
Symbolic Ring
```

characteristic()

Return the characteristic of the symbolic ring, which is 0.

OUTPUT:

· a Sage integer

EXAMPLES:

```
sage: c = SR.characteristic(); c
0
sage: type(c)
<class 'sage.rings.integer.Integer'>
```

cleanup_var(symbol)

Cleans up a variable, removing assumptions about the variable and allowing for it to be garbage collected

INPUT:

• symbol – a variable or a list of variables

is_exact()

Return False, because there are approximate elements in the symbolic ring.

EXAMPLES:

```
sage: SR.is_exact()
False
```

Here is an inexact element.

```
sage: SR(1.9393)
1.9393000000000
```

is_field(proof=True)

Returns True, since the symbolic expression ring is (for the most part) a field.

EXAMPLES:

```
sage: SR.is_field()
True
```

is_finite()

Return False, since the Symbolic Ring is infinite.

EXAMPLES:

```
sage: SR.is_finite()
False
```

pi()

EXAMPLES:

```
sage: SR.pi() is pi
True
```

subring (*args, **kwds)

Create a subring of this symbolic ring.

INPUT:

Choose one of the following keywords to create a subring.

• accepting_variables (default: None) – a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in only these variables is created.

- rejecting_variables (default: None) a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in variables distinct to these variables is created.
- no_variables (default: False) a boolean. If set, then a symbolic subring of constant expressions (i.e., expressions without a variable) is created.

OUTPUT:

A ring.

EXAMPLES:

Let us create a couple of symbolic variables first:

```
sage: V = var('a, b, r, s, x, y')
```

Now we create a symbolic subring only accepting expressions in the variables a and b:

```
sage: A = SR.subring(accepting_variables=(a, b)); A
Symbolic Subring accepting the variables a, b
```

An element is

```
sage: A.an_element()
a
```

From our variables in V the following are valid in A:

```
sage: tuple(v for v in V if v in A)
(a, b)
```

Next, we create a symbolic subring rejecting expressions with given variables:

```
sage: R = SR.subring(rejecting_variables=(r, s)); R
Symbolic Subring rejecting the variables r, s
```

An element is

```
sage: R.an_element()
some_variable
```

From our variables in V the following are valid in R:

```
sage: tuple(v for v in V if v in R)
(a, b, x, y)
```

We have a third kind of subring, namely the subring of symbolic constants:

```
sage: C = SR.subring(no_variables=True); C
Symbolic Constants Subring
```

Note that this subring can be considered as a special accepting subring; one without any variables.

An element is

```
sage: C.an_element()
I*pi*e
```

None of our variables in V is valid in C:

```
sage: tuple(v for v in V if v in C)
()
```

See also:

Subrings of the Symbolic Ring

symbol (name=None, latex_name=None, domain=None)

EXAMPLES:

```
sage: t0 = SR.symbol("t0")
sage: t0.conjugate()
conjugate(t0)
sage: t1 = SR.symbol("t1", domain='real')
sage: t1.conjugate()
t1
sage: t0.abs()
abs(t0)
sage: t0_2 = SR.symbol("t0", domain='positive')
sage: t0_2.abs()
t0
sage: bool(t0_2 == t0)
True
sage: t0.conjugate()
sage: SR.symbol() # temporary variable
symbol...
```

We propagate the domain to the assumptions database:

```
sage: n = var('n', domain='integer')
sage: solve([n^2 == 3],n)
[]
```

symbols

temp_var (n=None, domain=None)

Return one or multiple new unique symbolic variables as an element of the symbolic ring. Use this instead of SR.var() if there is a possibility of name clashes occuring. Call $SR.cleanup_var()$ once the variables are no longer needed or use a $with SR.temp_var()as...$ construct.

INPUT:

- n (optional) positive integer; number of symbolic variables
- domain (optional) specify the domain of the variable(s);

EXAMPLES:

Simple definition of a functional derivative:

```
sage: def functional_derivative(expr,f,x):
    with SR.temp_var() as a:
    return expr.subs({f(x):a}).diff(a).subs({a:f(x)})
sage: f = function('f')
```

(continues on next page)

```
sage: a = var('a')
sage: functional_derivative(f(a)^2+a,f,a)
2*f(a)
```

Contrast this to a similar implementation using SR.var(), which gives a wrong result in our example:

var (name, latex_name=None, n=None, domain=None)

Return a symbolic variable as an element of the symbolic ring.

INPUT:

- name string or list of strings with the name(s) of the symbolic variable(s)
- latex_name (optional) string used when printing in latex mode, if not specified use 'name'
- n (optional) positive integer; number of symbolic variables, indexed from 0 to n-1
- domain (optional) specify the domain of the variable(s); it is None by default, and possible options are (non-exhaustive list, see note below): 'real', 'complex', 'positive', 'integer' and 'noninteger'

OUTPUT:

Symbolic expression or tuple of symbolic expressions.

See also:

This function does not inject the variable(s) into the global namespace. For that purpose see var().

Note: For a comprehensive list of acceptable features type 'maxima('features')', and see also the documentation of *Assumptions*.

EXAMPLES:

Create a variable zz:

```
sage: zz = SR.var('zz'); zz
zz
```

The return type is a symbolic expression:

```
sage: type(zz)
<class 'sage.symbolic.expression.Expression'>
```

We can specify the domain as well:

```
sage: zz = SR.var('zz', domain='real')
sage: zz.is_real()
True
```

The real domain is also set with the integer domain:

```
sage: SR.var('x', domain='integer').is_real()
True
```

The name argument does not have to match the left-hand side variable:

```
sage: t = SR.var('theta2'); t
theta2
```

Automatic indexing is available as well:

```
sage: x = SR.var('x', 4)
sage: x[0], x[3]
(x0, x3)
sage: sum(x)
x0 + x1 + x2 + x3
```

wild(n=0)

Return the n-th wild-card for pattern matching and substitution.

INPUT:

• n - a nonnegative integer

OUTPUT:

· n-th wildcard expression

EXAMPLES:

```
sage: x,y = var('x,y')
sage: w0 = SR.wild(0); w1 = SR.wild(1)
sage: pattern = sin(x)*w0*w1^2; pattern
$1^2*$0*sin(x)
sage: f = atan(sin(x)*3*x^2); f
arctan(3*x^2*sin(x))
sage: f.has(pattern)
True
sage: f.subs(pattern == x^2)
arctan(x^2)
```

class sage.symbolic.ring.TemporaryVariables(iterable=(),/)

Bases: tuple

Instances of this class can be used with Python with to automatically clean up after themselves.

class sage.symbolic.ring.UnderscoreSageMorphism

Bases: Morphism

A Morphism which constructs Expressions from an arbitrary Python object by calling the _sage_() method on the object.

EXAMPLES:

```
sage: # needs sympy
sage: import sympy
sage: from sage.symbolic.ring import UnderscoreSageMorphism
sage: b = sympy.var('b')
sage: f = UnderscoreSageMorphism(type(b), SR)
sage: f(b)
(continue on next rese)
```

(continues on next page)

```
b
sage: _.parent()
Symbolic Ring
```

sage.symbolic.ring.isidentifier(x)

Return whether x is a valid identifier.

INPUT:

• x - a string

OUTPUT:

Boolean. Whether the string x can be used as a variable name.

This function should return False for keywords, so we can not just use the isidentifier method of strings, because, for example, it returns True for "def" and for "None".

EXAMPLES:

```
sage: from sage.symbolic.ring import isidentifier
sage: isidentifier('x')
True
sage: isidentifier(' x') # can't start with space
False
sage: isidentifier('ceci_n_est_pas_une_pipe')
sage: isidentifier('1 + x')
False
sage: isidentifier('2good')
False
sage: isidentifier('good2')
sage: isidentifier('lambda s:s+1')
False
sage: isidentifier('None')
False
sage: isidentifier('lambda')
sage: isidentifier('def')
False
```

sage.symbolic.ring.the_SymbolicRing()

Return the unique symbolic ring object.

(This is mainly used for unpickling.)

EXAMPLES:

sage.symbolic.ring.var(name, **kwds)

EXAMPLES:

```
sage: from sage.symbolic.ring import var
sage: var("x y z")
(x, y, z)
sage: var("x,y,z")
(x, y, z)
sage: var("x , y , z")
(x, y, z)
sage: var("z")
z
```

2.8 Subrings of the Symbolic Ring

Subrings of the symbolic ring can be created via the <code>subring()</code> method of SR. This will call <code>SymbolicSubring</code> of this module.

The following kinds of subrings are supported:

• A symbolic subring of expressions, whose variables are contained in a given set of symbolic variables (see *SymbolicSubringAcceptingVars*). E.g.

```
sage: SR.subring(accepting_variables=('a', 'b'))
Symbolic Subring accepting the variables a, b
```

• A symbolic subring of expressions, whose variables are disjoint to a given set of symbolic variables (see *Symbol-icSubringRejectingVars*). E.g.

```
sage: SR.subring(rejecting_variables=('r', 's'))
Symbolic Subring rejecting the variables r, s
```

• The subring of symbolic constants (see SymbolicConstantsSubring). E.g.

```
sage: SR.subring(no_variables=True)
Symbolic Constants Subring
```

AUTHORS:

• Daniel Krenn (2015)

2.8.1 Classes and Methods

```
class sage.symbolic.subring.GenericSymbolicSubring(vars)
```

Bases: SymbolicRing

An abstract base class for a symbolic subring.

INPUT:

• vars – a tuple of symbolic variables.

```
has_valid_variable(variable)
```

Return whether the given variable is valid in this subring.

INPUT:

• variable – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```
sage: from sage.symbolic.subring import GenericSymbolicSubring
sage: GenericSymbolicSubring(vars=tuple()).has_valid_variable(x)
Traceback (most recent call last):
...
NotImplementedError: Not implemented in this abstract base class
```

class sage.symbolic.subring.GenericSymbolicSubringFunctor(vars)

Bases: ConstructionFunctor

A base class for the functors constructing symbolic subrings.

INPUT:

• vars – a tuple, set, or other iterable of symbolic variables.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: SymbolicSubring(no_variables=True).construction()[0] # indirect doctest
Subring<accepting no variable>
```

See also:

sage.categories.pushout.ConstructionFunctor.

coercion_reversed = True

merge (other)

Merge this functor with other if possible.

INPUT:

• other - a functor.

OUTPUT:

A functor or None.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: F = SymbolicSubring(accepting_variables=('a',)).construction()[0]
sage: F.merge(F) is F
True
```

rank = 11

class sage.symbolic.subring.SymbolicConstantsSubring(vars)

Bases: SymbolicSubringAcceptingVars

The symbolic subring consisting of symbolic constants.

has_valid_variable(variable)

Return whether the given variable is valid in this subring.

INPUT:

• variable – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: S = SymbolicSubring(no_variables=True)
sage: S.has_valid_variable('a')
False
sage: S.has_valid_variable('r')
False
sage: S.has_valid_variable('x')
False
```

class sage.symbolic.subring.SymbolicSubringAcceptingVars(vars)

Bases: GenericSymbolicSubring

The symbolic subring consisting of symbolic expressions in the given variables.

construction()

Return the functorial construction of this symbolic subring.

OUTPUT:

A tuple whose first entry is a construction functor and its second is the symbolic ring.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: SymbolicSubring(accepting_variables=('a',)).construction()
(Subring<accepting a>, Symbolic Ring)
```

has_valid_variable (variable)

Return whether the given variable is valid in this subring.

INPUT:

• variable – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: S = SymbolicSubring(accepting_variables=('a',))
sage: S.has_valid_variable('a')
True
sage: S.has_valid_variable('r')
False
sage: S.has_valid_variable('x')
False
```

class sage.symbolic.subring.SymbolicSubringAcceptingVarsFunctor(vars)

Bases: GenericSymbolicSubringFunctor

merge (other)

Merge this functor with other if possible.

INPUT:

• other - a functor.

OUTPUT:

A functor or None.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: F = SymbolicSubring(accepting_variables=('a',)).construction()[0]
sage: G = SymbolicSubring(rejecting_variables=('r',)).construction()[0]
sage: F.merge(F) is F
True
sage: F.merge(G) is G
True
```

class sage.symbolic.subring.SymbolicSubringFactory

Bases: UniqueFactory

A factory creating a symbolic subring.

INPUT:

Specify one of the following keywords to create a subring.

- accepting_variables (default: None) a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in only these variables is created.
- rejecting_variables (default: None) a tuple or other iterable of variables. If specified, then a symbolic subring of expressions in variables distinct to these variables is created.
- no_variables (default: False) a boolean. If set, then a symbolic subring of constant expressions (i.e., expressions without a variable) is created.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: V = var('a, b, c, r, s, t, x, y, z')
```

```
sage: A = SymbolicSubring(accepting_variables=(a, b, c)); A
Symbolic Subring accepting the variables a, b, c
sage: tuple((v, v in A) for v in V)
((a, True), (b, True), (c, True),
    (r, False), (s, False), (t, False),
    (x, False), (y, False), (z, False))
```

```
sage: R = SymbolicSubring(rejecting_variables=(r, s, t)); R
Symbolic Subring rejecting the variables r, s, t
sage: tuple((v, v in R) for v in V)
((a, True), (b, True), (c, True),
    (r, False), (s, False), (t, False),
    (x, True), (y, True), (z, True))
```

```
sage: C = SymbolicSubring(no_variables=True); C
Symbolic Constants Subring
sage: tuple((v, v in C) for v in V)
((a, False), (b, False), (c, False),
    (r, False), (s, False), (t, False),
    (x, False), (y, False), (z, False))
```

Given the arguments and keyword, create a key that uniquely determines this object.

See SymbolicSubringFactory for details.

```
create_object (version, key, **kwds)
```

Create an object from the given arguments.

See SymbolicSubringFactory for details.

class sage.symbolic.subring.SymbolicSubringRejectingVars(vars)

Bases: GenericSymbolicSubring

The symbolic subring consisting of symbolic expressions whose variables are none of the given variables.

construction()

Return the functorial construction of this symbolic subring.

OUTPUT:

A tuple whose first entry is a construction functor and its second is the symbolic ring.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: SymbolicSubring(rejecting_variables=('r',)).construction()
(Subring<rejecting r>, Symbolic Ring)
```

has_valid_variable(variable)

Return whether the given variable is valid in this subring.

INPUT:

• variable – a symbolic variable.

OUTPUT:

A boolean.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: S = SymbolicSubring(rejecting_variables=('r',))
sage: S.has_valid_variable('a')
True
sage: S.has_valid_variable('r')
False
sage: S.has_valid_variable('x')
True
```

class sage.symbolic.subring.SymbolicSubringRejectingVarsFunctor(vars)

Bases: GenericSymbolicSubringFunctor

merge (other)

Merge this functor with other if possible.

INPUT:

• other - a functor.

OUTPUT:

A functor or None.

EXAMPLES:

```
sage: from sage.symbolic.subring import SymbolicSubring
sage: F = SymbolicSubring(accepting_variables=('a',)).construction()[0]
sage: G = SymbolicSubring(rejecting_variables=('r',)).construction()[0]
sage: G.merge(G) is G
True
sage: G.merge(F) is G
```

2.9 Classes for symbolic functions

To enable their usage as part of symbolic expressions, symbolic function classes are derived from one of the subclasses of *Function*:

- BuiltinFunction: the code of these functions is written in Python; many special functions are of this type
- GinacFunction: the code of these functions is written in C++ and part of the Pynac support library; most elementary functions are of this type
- SymbolicFunction: symbolic functions defined on the Sage command line are of this type

Sage uses BuiltinFunction and GinacFunction for its symbolic builtin functions. Users can define any other additional SymbolicFunction through the function () factory, see *Factory for symbolic functions*

Several parameters are supported by the superclass' ___init___() method. Examples follow below.

- nargs: the number of arguments
- name: the string that is printed on the CLI; the name of the member functions that are attempted for evaluation of Sage element arguments; also the name of the Pynac function that is associated with a GinacFunction
- alt_name: the second name of the member functions that are attempted for evaluation of Sage element arguments
- latex_name: what is printed when latex (f (...)) is called
- conversions: a dict containing the function's name in other CAS
- evalf_params_first: if False, when floating-point evaluating the expression do not evaluate function arguments before calling the _evalf_() member of the function
- preserved_arg: if nonzero, the index (starting with 1) of the function argument that determines the return type. Note that, e.g, atan2 () uses both arguments to determine return type, through a different mechanism

Function classes can define the following Python member functions:

- _eval_(*args): the only mandatory member function, evaluating the argument and returning the result; if None is returned the expression stays unevaluated
- \bullet _eval_numpy_(*args): evaluation of f (args) with arguments of numpy type
- _evalf_(*args, **kwds): called when the expression is floating-point evaluated; may receive a parent keyword specifying the expected parent of the result. If not defined an attempt is made to convert the result of _eval_().
- _conjugate_(*args), _real_part_(*args), _imag_part_(*args): return conjugate, real part, imaginary part of the expression f(args)

- _derivative_(*args, index): return derivative with respect to the parameter indexed by index (starting with 0) of f (args)
- _tderivative_(): same as _derivative_() but don't apply chain rule; only one of the two functions may be defined
- _power_(*args, expo): return f (args) ^expo
- _series_(*args, **kwds): return the power series at at up to order with respect to var of f (args); these three values are received in kwds. If not defined the series is attempted to be computed by differentiation.
- print (*args): return what should be printed on the CLI with f (args)
- print_latex(*args): return what should be output with latex(f(args))

The following examples are intended for Sage developers. Users can define functions interactively through the function () factory, see *Factory for symbolic functions*.

EXAMPLES:

The simplest example is a function returning nothing, it practically behaves like a symbol. Setting nargs=0 allows any number of arguments:

```
sage: from sage.symbolic.function import BuiltinFunction
sage: class Test1 (BuiltinFunction):
         def __init__(self):
. . . . :
             BuiltinFunction.__init__(self, 'test', nargs=0)
. . . . :
          def _eval_(self, *args):
              pass
sage: f = Test1()
sage: f()
→needs sage.symbolic
test()
sage: f(1,2,3)*f(1,2,3)
                                                                                        #__
→needs sage.symbolic
test(1, 2, 3)^2
```

In the following the sin function of CBF (0) is called because with floating point arguments the CBF element's my_sin () member function is attempted, and after that sin () which succeeds:

```
sage: class Test2 (BuiltinFunction):
          def __init__(self):
. . . . :
              BuiltinFunction.__init__(self, 'my_sin', alt_name='sin',
. . . . :
                                         latex_name=r'\SIN', nargs=1)
. . . . :
          def _eval_(self, x):
. . . . :
              return 5
          def _evalf_(self, x, **kwds):
. . . . :
              return 3.5
sage: f = Test2()
sage: f(0)
sage: f(0, hold=True)
→needs sage.symbolic
my_sin(0)
sage: f(0, hold=True).n()
                                                                                          #__
→needs sage.rings.real_mpfr
3.50000000000000
sage: f(CBF(0))
                                                                                          #__
→needs sage.libs.flint
0
```

class sage.symbolic.function.BuiltinFunction

Bases: Function

This is the base class for symbolic functions defined in Sage.

If a function is provided by the Sage library, we don't need to pickle the custom methods, since we can just initialize the same library function again. This allows us to use Cython for custom methods.

We assume that each subclass of this class will define one symbolic function. Make sure you use subclasses and not just call the initializer of this class.

class sage.symbolic.function.Function

Bases: SageObject

Base class for symbolic functions defined through Pynac in Sage.

This is an abstract base class, with generic code for the interfaces and a __call__() method. Subclasses should implement the _is_registered() and _register_function() methods.

This class is not intended for direct use, instead use one of the subclasses BuiltinFunction or Symbolic-Function.

default_variable()

Return a default variable.

EXAMPLES:

name()

Return the name of this function.

EXAMPLES:

number_of_arguments()

Return the number of arguments that this function takes.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: foo = function("foo", nargs=2)

(continues on next page)
```

```
sage: foo.number_of_arguments()
2
sage: foo(x, x)
foo(x, x)
sage: foo(x)
Traceback (most recent call last):
...
TypeError: Symbolic function foo takes exactly 2 arguments (1 given)
```

variables()

Return the variables (of which there are none) present in this function.

EXAMPLES:

```
sage: sin.variables()
()
```

class sage.symbolic.function.GinacFunction

Bases: BuiltinFunction

This class provides a wrapper around symbolic functions already defined in Pynac/GiNaC.

GiNaC provides custom methods for these functions defined at the C++ level. It is still possible to define new custom functionality or override those already defined.

There is also no need to register these functions.

class sage.symbolic.function.SymbolicFunction

Bases: Function

This is the basis for user defined symbolic functions. We try to pickle or hash the custom methods, so subclasses must be defined in Python not Cython.

```
sage.symbolic.function.pickle_wrapper(f)
```

Return a pickled version of the function f.

If f is None, just return None.

This is a wrapper around pickle_function().

EXAMPLES:

```
sage: from sage.symbolic.function import pickle_wrapper
sage: def f(x): return x*x
sage: isinstance(pickle_wrapper(f), bytes)
True
sage: pickle_wrapper(None) is None
True
```

sage.symbolic.function.unpickle_wrapper(p)

Return a unpickled version of the function defined by p.

If p is None, just return None.

This is a wrapper around unpickle_function().

EXAMPLES:

```
sage: from sage.symbolic.function import pickle_wrapper, unpickle_wrapper
sage: def f(x): return x*x
sage: s = pickle_wrapper(f)
sage: g = unpickle_wrapper(s)
sage: g(2)
4
sage: unpickle_wrapper(None) is None
True
```

2.10 Factory for symbolic functions

```
sage.symbolic.function_factory.function(s, **kwds)
```

Create a formal symbolic function with the name s.

INPUT:

- nargs=0 number of arguments the function accepts, defaults to variable number of arguments, or 0
- latex_name name used when printing in latex mode
- conversions a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
- eval_func method used for automatic evaluation
- evalf_func method used for numeric evaluation
- evalf_params_first bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
- conjugate_func method used for complex conjugation
- real_part_func method used when taking real parts
- imag_part_func method used when taking imaginary parts
- derivative_func method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
- tderivative_func method to be used for derivatives
- power_func method used when taking powers This method should take a keyword argument power_param specifying the exponent
- series_func method used for series expansion This method should expect keyword arguments order order for the expansion to be computed var variable to expand w.r.t. at expand at this value
- print_func method for custom printing
- print_latex_func method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

EXAMPLES:

```
sage: from sage.symbolic.function_factory import function
sage: var('a, b')
(a, b)
sage: cr = function('cr')
```

```
sage: f = cr(a)
sage: g = f.diff(a).integral(b); g
b*diff(cr(a), a)
sage: foo = function("foo", nargs=2)
sage: x,y,z = var("x y z")
sage: foo(x, y) + foo(y, z)^2
foo(y, z)^2 + foo(x, y)
```

You need to use substitute_function() to replace all occurrences of a function with another:

```
sage: g.substitute_function(cr, cos)
-b*sin(a)
sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x))
b*(cos(a) - sin(a))
```

Basic arithmetic with unevaluated functions is no longer supported:

```
sage: x = var('x')
sage: f = function('f')
sage: 2*f
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Integer Ring' and
'<class 'sage.symbolic.function_factory...NewSymbolicFunction'>'
```

You now need to evaluate the function in order to do the arithmetic:

```
sage: 2*f(x)
2*f(x)
```

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients.

```
sage: r, kappa = var('r,kappa')
sage: psi = function('psi', nargs=1)(r); psi
psi(r)
sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
(r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2
sage: g.expand()
2*diff(psi(r), r)/r + diff(psi(r), r, r)
sage: g.coefficient(psi.derivative(r,2))
1
sage: g.coefficient(psi.derivative(r,1))
2/r
```

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:

```
sage: def ev(self, x): return 2*x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
2*x
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
5
sage: def ef(self, x): pass
```

```
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)
sage: def evalf_f(self, x, parent=None, algorithm=None): return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)
sage: foo(x).n()
sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2*x
sage: def deriv(self, *args, **kwds):
         print("{} {}".format(args, kwds))
         return args[kwds['diff_param']]^2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo(x,y).derivative(y)
(x, y) { 'diff_param': 1}
v^2
sage: def pow(self, x, power_param=None):
        print("{} {}".format(x, power_param))
         return x*power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^(x+y)
v x + v
(x + y) *y
sage: def expand(self, *args, **kwds):
       print("{} {}".format(args, sorted(kwds.items())))
         return sum(args[0]^i for i in range(kwds['order']))
sage: foo = function("foo", nargs=1, series_func=expand)
sage: foo(y).series(y, 5)
(y,) [('at', 0), ('options', 0), ('order', 5), ('var', y)]
y^4 + y^3 + y^2 + y + 1
sage: def my_print(self, *args): return "my args are: " + ', '.join(map(repr,_
→args))
sage: foo = function('t', nargs=2, print_func=my_print)
sage: foo(x, y^z)
my args are: x, y^z
sage: latex(foo(x, y^z))
t \leq (x, y^{z} \leq t)
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x,y^z)
t(x, y^z)
sage: latex(foo(x,y^z))
my args are: x, y^z
sage: foo = function('t', nargs=2, latex_name='foo')
sage: latex(foo(x,y^z))
foo \left( x, y^{z} \right)
```

Chain rule:

```
sage: def print_args(self, *args, **kwds): print("args: {}".format(args)); print(
    →"kwds: {}".format(kwds)); return args[0]
sage: foo = function('t', nargs=2, tderivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': x}
x
sage: foo = function('t', nargs=2, derivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': 0}
args: (x, x)
kwds: {'diff_param': 1}
2*x
```

Create a formal symbolic function. For an explanation of the arguments see the documentation for the method function().

EXAMPLES:

```
sage: from sage.symbolic.function_factory import function_factory
sage: f = function_factory('f', 2, '\\foo', {'mathematica':'Foo'})
sage: f(2,4)
f(2, 4)
sage: latex(f(1,2))
\foo\left(1, 2\right)
sage: f._mathematica_init_()
'Foo'

sage: def evalf_f(self, x, parent=None, algorithm=None): return x*.5r
sage: g = function_factory('g',1,evalf_func=evalf_f)
sage: g(2)
g(2)
sage: g(2).n()
1.000000000000000
```

This is returned by the __reduce__ method of symbolic functions to be called during unpickling to recreate the given function.

It calls function_factory() with the supplied arguments.

EXAMPLES:

```
sage: from sage.symbolic.function_factory import unpickle_function
sage: nf = unpickle_function('f', 2, '\\foo', {'mathematica':'Foo'}, True, [])
sage: nf
(continues on next page)
```

```
sage: nf(1,2)
f(1, 2)
sage: latex(nf(x,x))
\foo\left(x, x\right)
sage: nf._mathematica_init_()
'Foo'
sage: from sage.symbolic.function import pickle_wrapper
sage: def evalf_f(self, x, parent=None, algorithm=None): return 2r*x + 5r
sage: def conjugate_f(self, x): return x/2r
sage: nf = unpickle_function('g', 1, None, None, True, [None, pickle_
→wrapper(evalf_f), pickle_wrapper(conjugate_f)] + [None] *8)
sage: nf
sage: nf(2)
g(2)
sage: nf(2).n()
9.00000000000000
sage: nf(2).conjugate()
```

2.11 Functional notation support for common calculus methods

EXAMPLES: We illustrate each of the calculus functional functions.

```
sage: simplify(x - x)
sage: a = var('a')
sage: derivative (x^a + \sin(x), x)
a*x^(a - 1) + cos(x)
sage: diff(x^a + sin(x), x)
a*x^(a - 1) + cos(x)
sage: derivative(x^a + sin(x), x)
a*x^(a - 1) + cos(x)
sage: integral(a*x*sin(x), x)
-(x*cos(x) - sin(x))*a
sage: integrate(a*x*sin(x), x)
-(x*cos(x) - sin(x))*a
sage: limit(a*sin(x)/x, x=0)
sage: taylor(a*sin(x)/x, x, 0, 4)
1/120*a*x^4 - 1/6*a*x^2 + a
sage: expand((x - a)^3)
-a^3 + 3*a^2*x - 3*a*x^2 + x^3
```

sage.calculus.functional.derivative(f, *args, **kwds)

The derivative of f.

Repeated differentiation is supported by the syntax given in the examples below.

ALIAS: diff

EXAMPLES: We differentiate a callable symbolic function:

```
sage: f(x,y) = x*y + sin(x^2) + e^(-x)
sage: f
(x, y) |--> x*y + e^(-x) + sin(x^2)
sage: derivative(f, x)
(x, y) |--> 2*x*cos(x^2) + y - e^(-x)
sage: derivative(f, y)
(x, y) |--> x
```

We differentiate a polynomial:

```
sage: t = polygen(QQ, 't')
sage: f = (1-t)^5; f
-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1
sage: derivative(f)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t, t)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, t, 2)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, 2)
-20*t^3 + 60*t^2 - 60*t + 20
```

We differentiate a symbolic expression:

```
sage: var('a x')
(a, x)
sage: f = exp(sin(a - x^2))/x
sage: derivative(f, x)
-2*cos(-x^2 + a)*e^(sin(-x^2 + a)) - e^(sin(-x^2 + a))/x^2
sage: derivative(f, a)
cos(-x^2 + a)*e^(sin(-x^2 + a))/x
```

Syntax for repeated differentiation:

```
sage: R.<u, v> = PolynomialRing(QQ)
sage: f = u^4*v^5
sage: derivative(f, u)
4*u^3*v^5
sage: f.derivative(u) # can always use method notation too
4*u^3*v^5
```

```
sage: derivative(f, u, u)
12*u^2*v^5
sage: derivative(f, u, u, u)
24*u*v^5
sage: derivative(f, u, 3)
24*u*v^5
```

```
sage: derivative(f, u, v)
20*u^3*v^4
sage: derivative(f, u, 2, v)
60*u^2*v^4
sage: derivative(f, u, v, 2)
80*u^3*v^3
```

```
sage: derivative(f, [u, v, v])
80*u^3*v^3
```

We differentiate a scalar field on a manifold:

```
sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field(x^2*y, name='f')
sage: derivative(f)
1-form df on the 2-dimensional differentiable manifold M
sage: derivative(f).display()
df = 2*x*y dx + x^2 dy
```

We differentiate a differentiable form, getting its exterior derivative:

```
sage: a = M.one_form(-y, x, name='a'); a.display()
a = -y dx + x dy
sage: derivative(a)
2-form da on the 2-dimensional differentiable manifold M
sage: derivative(a).display()
da = 2 dx^dy
```

```
sage.calculus.functional.diff(f, *args, **kwds)
```

The derivative of f.

Repeated differentiation is supported by the syntax given in the examples below.

ALIAS: diff

EXAMPLES: We differentiate a callable symbolic function:

```
sage: f(x,y) = x*y + sin(x^2) + e^(-x)
sage: f
(x, y) |--> x*y + e^(-x) + sin(x^2)
sage: derivative(f, x)
(x, y) |--> 2*x*cos(x^2) + y - e^(-x)
sage: derivative(f, y)
(x, y) |--> x
```

We differentiate a polynomial:

```
sage: t = polygen(QQ, 't')
sage: f = (1-t)^5; f
-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1
sage: derivative(f)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t)
-5*t^4 + 20*t^3 - 30*t^2 + 20*t - 5
sage: derivative(f, t, t)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, t, 2)
-20*t^3 + 60*t^2 - 60*t + 20
sage: derivative(f, 2)
-20*t^3 + 60*t^2 - 60*t + 20
```

We differentiate a symbolic expression:

```
sage: var('a x')
(a, x)
sage: f = exp(sin(a - x^2))/x
sage: derivative(f, x)
-2*cos(-x^2 + a)*e^(sin(-x^2 + a)) - e^(sin(-x^2 + a))/x^2
sage: derivative(f, a)
cos(-x^2 + a)*e^(sin(-x^2 + a))/x
```

Syntax for repeated differentiation:

```
sage: R.<u, v> = PolynomialRing(QQ)
sage: f = u^4*v^5
sage: derivative(f, u)
4*u^3*v^5
sage: f.derivative(u) # can always use method notation too
4*u^3*v^5
```

```
sage: derivative(f, u, u)
12*u^2*v^5
sage: derivative(f, u, u, u)
24*u*v^5
sage: derivative(f, u, 3)
24*u*v^5
```

```
sage: derivative(f, u, v)
20*u^3*v^4
sage: derivative(f, u, 2, v)
60*u^2*v^4
sage: derivative(f, u, v, 2)
80*u^3*v^3
sage: derivative(f, [u, v, v])
80*u^3*v^3
```

We differentiate a scalar field on a manifold:

```
sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: f = M.scalar_field(x^2*y, name='f')
sage: derivative(f)
1-form df on the 2-dimensional differentiable manifold M
sage: derivative(f).display()
df = 2*x*y dx + x^2 dy
```

We differentiate a differentiable form, getting its exterior derivative:

```
sage: a = M.one_form(-y, x, name='a'); a.display()
a = -y dx + x dy
sage: derivative(a)
2-form da on the 2-dimensional differentiable manifold M
sage: derivative(a).display()
da = 2 dx^dy
```

sage.calculus.functional.expand(x, *args, **kwds)

EXAMPLES:

```
sage: a = (x-1)*(x^2 - 1); a
(x^2 - 1)*(x - 1)
sage: expand(a)
x^3 - x^2 - x + 1
```

You can also use expand on polynomial, integer, and other factorizations:

```
sage: x = polygen(ZZ)
sage: F = factor(x^12 - 1); F
(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + 1) * (x^2 + x + 1) * (x^4 - x^2 + 1)
sage: expand(F)
x^12 - 1
sage: F.expand()
x^12 - 1
sage: F = factor(2007); F
3^2 * 223
sage: expand(F)
2007
```

Note: If you want to compute the expanded form of a polynomial arithmetic operation quickly and the coefficients of the polynomial all lie in some ring, e.g., the integers, it is vastly faster to create a polynomial ring and do the arithmetic there.

```
sage: x = polygen(ZZ)  # polynomial over a given base ring.
sage: f = sum(x^n for n in range(5))
sage: f*f  # much faster, even if the degree is huge
x^8 + 2*x^7 + 3*x^6 + 4*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
```

sage.calculus.functional.integral (f, *args, **kwds)

The integral of f.

EXAMPLES:

```
sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x)^2, x, pi, 123*pi/2)
121/4*pi
sage: integral( sin(x), x, 0, pi)
2
```

We integrate a symbolic function:

```
sage: f(x,y,z) = x*y/z + sin(z)
sage: integral(f, z)
(x, y, z) |--> x*y*log(z) - cos(z)
```

```
sage: var('a,b')
(a, b)
sage: assume(b-a>0)
sage: integral( sin(x), x, a, b)
cos(a) - cos(b)
sage: forget()
```

```
sage: integral(x/(x^3-1), x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)
```

```
sage: integral( exp(-x^2), x )
1/2*sqrt(pi)*erf(x)
```

We define the Gaussian, plot and integrate it numerically and symbolically:

```
sage: f(x) = 1/(sqrt(2*pi)) * e^(-x^2/2)
sage: P = plot(f, -4, 4, hue=0.8, thickness=2)
sage: P.show(ymin=0, ymax=0.4)
sage: numerical_integral(f, -4, 4)  # random output
(0.99993665751633376, 1.1101527003413533e-14)
sage: integrate(f, x)
x |--> 1/2*erf(1/2*sqrt(2)*x)
```

You can have Sage calculate multiple integrals. For example, consider the function $exp(y^2)$ on the region between the lines x = y, x = 1, and y = 0. We find the value of the integral on this region using the command:

```
sage: area = integral(integral(exp(y^2),x,0,y),y,0,1); area
1/2*e - 1/2
sage: float(area)
0.859140914229522...
```

We compute the line integral of sin(x) along the arc of the curve $x = y^4$ from (1, -1) to (1, 1):

```
sage: t = var('t')
sage: (x,y) = (t^4,t)
sage: (dx,dy) = (diff(x,t), diff(y,t))
sage: integral(sin(x)*dx, t,-1, 1)
0
sage: restore('x,y') # restore the symbolic variables x and y
```

Sage is now (github issue #27958) able to compute the following integral:

```
sage: integral(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)
```

and its value:

```
sage: integral( exp(-x^2)*ln(x), x, 0, oo)
-1/4*sqrt(pi)*(euler_gamma + 2*log(2))
```

This definite integral is easy:

```
sage: integral( ln(x)/x, x, 1, 2)
1/2*log(2)^2
```

Sage cannot do this elliptic integral (yet):

```
sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3)
integrate(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2)), t, 2, 3)
```

A double integral:

```
sage: y = var('y')
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5
```

This illustrates using assumptions:

```
sage: integral (abs(x), x, 0, 5)
25/2
sage: a = var("a")
sage: integral(abs(x), x, 0, a)
1/2*a*abs(a)
sage: integral (abs(x)*x, x, 0, a)
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)',
see `assume?` for more details)
Is a positive, negative or zero?
sage: assume(a>0)
sage: integral (abs(x) *x, x, 0, a)
1/3*a<sup>3</sup>
sage: forget()
                  # forget the assumptions.
```

We integrate and differentiate a huge mess:

```
sage: f = (x^2-1+3*(1+x^2)^(1/3))/(1+x^2)^(2/3)*x/(x^2+2)^2
sage: g = integral(f, x)
sage: h = f - diff(g, x)
```

```
sage: [float(h(x=i)) for i in range(5)] #random

[0.0,
    -1.1102230246251565e-16,
    -5.5511151231257827e-17,
    -5.5511151231257827e-17,
    -6.9388939039072284e-17]
sage: h.factor()
0
sage: bool(h == 0)
True
```

sage.calculus.functional.integrate(f, *args, **kwds)

The integral of f.

EXAMPLES:

```
sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x)^2, x, pi, 123*pi/2)
121/4*pi
sage: integral( sin(x), x, 0, pi)
2
```

We integrate a symbolic function:

```
sage: f(x,y,z) = x*y/z + sin(z)
sage: integral(f, z)
(x, y, z) |--> x*y*log(z) - cos(z)
```

```
sage: var('a,b')
(a, b)
```

```
sage: assume(b-a>0)
sage: integral(sin(x), x, a, b)
cos(a) - cos(b)
sage: forget()
```

```
sage: integral( exp(-x^2), x )
1/2*sqrt(pi)*erf(x)
```

We define the Gaussian, plot and integrate it numerically and symbolically:

```
sage: f(x) = 1/(sqrt(2*pi)) * e^(-x^2/2)
sage: P = plot(f, -4, 4, hue=0.8, thickness=2)
sage: P.show(ymin=0, ymax=0.4)
sage: numerical_integral(f, -4, 4)  # random output
(0.99993665751633376, 1.1101527003413533e-14)
sage: integrate(f, x)
x |--> 1/2*erf(1/2*sqrt(2)*x)
```

You can have Sage calculate multiple integrals. For example, consider the function $exp(y^2)$ on the region between the lines x = y, x = 1, and y = 0. We find the value of the integral on this region using the command:

```
sage: area = integral(integral(exp(y^2),x,0,y),y,0,1); area
1/2*e - 1/2
sage: float(area)
0.859140914229522...
```

We compute the line integral of $\sin(x)$ along the arc of the curve $x = y^4$ from (1, -1) to (1, 1):

```
sage: t = var('t')
sage: (x,y) = (t^4,t)
sage: (dx,dy) = (diff(x,t), diff(y,t))
sage: integral(sin(x)*dx, t,-1, 1)
0
sage: restore('x,y') # restore the symbolic variables x and y
```

Sage is now (github issue #27958) able to compute the following integral:

```
sage: integral(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)
```

and its value:

```
sage: integral( exp(-x^2)*ln(x), x, 0, 00)
-1/4*sqrt(pi)*(euler_gamma + 2*log(2))
```

This definite integral is easy:

```
sage: integral( \ln(x)/x, x, 1, 2) 1/2*\log(2)^2
```

Sage cannot do this elliptic integral (yet):

```
sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3)
integrate(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2)), t, 2, 3)
```

A double integral:

```
sage: y = var('y')
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5
```

This illustrates using assumptions:

```
sage: integral (abs(x), x, 0, 5)
25/2
sage: a = var("a")
sage: integral (abs(x), x, 0, a)
1/2*a*abs(a)
sage: integral (abs(x)*x, x, 0, a)
Traceback (most recent call last):
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)',
see `assume?` for more details)
Is a positive, negative or zero?
sage: assume(a>0)
sage: integral(abs(x)*x, x, 0, a)
1/3*a^3
sage: forget()
                    # forget the assumptions.
```

We integrate and differentiate a huge mess:

```
sage: f = (x^2-1+3*(1+x^2)^(1/3))/(1+x^2)^(2/3)*x/(x^2+2)^2
sage: g = integral(f, x)
sage: h = f - diff(g, x)
```

```
sage: [float(h(x=i)) for i in range(5)] #random

[0.0,
    -1.1102230246251565e-16,
    -5.5511151231257827e-17,
    -5.5511151231257827e-17,
    -6.9388939039072284e-17]
sage: h.factor()
0
sage: bool(h == 0)
True
```

sage.calculus.functional.lim (f, dir=None, taylor=False, **argv)

Return the limit as the variable \boldsymbol{v} approaches \boldsymbol{a} from the given direction.

```
limit(expr, x = a)
limit(expr, x = a, dir='above')
```

INPUT:

• dir - (default: None); dir may have the value

'plus' (or 'above') for a limit from above, 'minus' (or 'below') for a limit from below, or may be omitted (implying a two-sided limit is to be computed).

• taylor - (default: False); if True, use Taylor

series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).

• **argv - 1 named parameter

ALIAS: You can also use lim instead of limit.

EXAMPLES:

```
sage: limit(sin(x)/x, x=0)
1
sage: limit(exp(x), x=oo)
+Infinity
sage: lim(exp(x), x=-oo)
0
sage: lim(1/x, x=0)
Infinity
sage: limit(sqrt(x^2+x+1)+x, taylor=True, x=-oo)
-1/2
sage: limit((tan(sin(x)) - sin(tan(x)))/x^7, taylor=True, x=0)
1/30
```

Sage does not know how to do this limit (which is 0), so it returns it unevaluated:

```
sage: lim(exp(x^2)*(1-erf(x)), x=infinity)
-limit((erf(x) - 1)*e^(x^2), x, +Infinity)
```

sage.calculus.functional.limit(f, dir=None, taylor=False, **argv)

Return the limit as the variable v approaches a from the given direction.

```
limit(expr, x = a)
limit(expr, x = a, dir='above')
```

INPUT:

• dir - (default: None); dir may have the value

'plus' (or 'above') for a limit from above, 'minus' (or 'below') for a limit from below, or may be omitted (implying a two-sided limit is to be computed).

• taylor - (default: False); if True, use Taylor

series, which allows more limits to be computed (but may also crash in some obscure cases due to bugs in Maxima).

• **argv - 1 named parameter

ALIAS: You can also use lim instead of limit.

EXAMPLES:

```
sage: limit(sin(x)/x, x=0)
1
sage: limit(exp(x), x=oo)
+Infinity
sage: lim(exp(x), x=-oo)
0
sage: lim(1/x, x=0)
Infinity
sage: limit(sqrt(x^2+x+1)+x, taylor=True, x=-oo)
-1/2
```

```
sage: limit((tan(sin(x)) - sin(tan(x)))/x^7, taylor=True, x=0)
1/30
```

Sage does not know how to do this limit (which is 0), so it returns it unevaluated:

sage.calculus.functional.simplify(f, algorithm='maxima', **kwds)

Simplify the expression f.

See the documentation of the simplify() method of symbolic expressions for details on options.

EXAMPLES:

We simplify the expression i + x - x:

```
sage: f = I + x - x; simplify(f)
I
```

In fact, printing f yields the same thing - i.e., the simplified form.

Some simplifications are algorithm-specific:

```
sage: x, t = var("x, t")
sage: ex = 1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/2/(I*x + I*sqrt(x^2 - 1))
sage: simplify(ex)
1/2*I*x + 1/2*I*sqrt(x^2 - 1) + 1/(2*I*x + 2*I*sqrt(x^2 - 1))
sage: simplify(ex, algorithm="giac")
I*sqrt(x^2 - 1)
```

sage.calculus.functional.taylor(f, *args)

Expands self in a truncated Taylor or Laurent series in the variable v around the point a, containing terms through $(x-a)^n$. Functions in more variables are also supported.

INPUT:

- *args the following notation is supported
- x, a, n variable, point, degree
- (x, a), (y, b), ..., n variables with points, degree of polynomial

EXAMPLES:

```
sage: var('x,k,n')
(x, k, n)
(x, k, n)
sage: taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6)
-1/720*(45*k^6 - 60*k^4 + 16*k^2)*x^6 - 1/24*(3*k^4 - 4*k^2)*x^4 - 1/2*k^2*x^2 + 1
```

```
sage: taylor ((x + 1)^n, x, 0, 4)

1/24*(n^4 - 6*n^3 + 11*n^2 - 6*n)*x^4 + 1/6*(n^3 - 3*n^2 + 2*n)*x^3 + 1/2*(n^2 - 0)*x^2 + n*x + 1
```

```
sage: taylor ((x + 1)^n, x, 0, 4)

1/24*(n^4 - 6*n^3 + 11*n^2 - 6*n)*x^4 + 1/6*(n^3 - 3*n^2 + 2*n)*x^3 + 1/2*(n^2 - 0.0)*x^2 + n*x + 1
```

Taylor polynomial in two variables:

```
sage: x,y=var('x y'); taylor(x*y^3,(x,1),(y,-1),4)

(x - 1)*(y + 1)^3 - 3*(x - 1)*(y + 1)^2 + (y + 1)^3 + 3*(x - 1)*(y + 1) - 3*(y + 2)

(x - 1)^2 - x + 3*y + 3
```

2.12 Symbolic Integration

class sage.symbolic.integration.integral.DefiniteIntegral

Bases: BuiltinFunction

The symbolic function representing a definite integral.

EXAMPLES:

```
sage: from sage.symbolic.integration.integral import definite_integral
sage: definite_integral(sin(x),x,0,pi)
2
```

class sage.symbolic.integration.integral.IndefiniteIntegral

Bases: BuiltinFunction

Class to represent an indefinite integral.

EXAMPLES:

```
sage: from sage.symbolic.integration.integral import indefinite_integral
sage: indefinite_integral(log(x), x) #indirect doctest
x*log(x) - x
sage: indefinite_integral(x^2, x)
1/3*x^3
sage: indefinite_integral(4*x*log(x), x)
2*x^2*log(x) - x^2
sage: indefinite_integral(exp(x), 2*x)
```

Return the indefinite integral with respect to the variable v, ignoring the constant of integration. Or, if endpoints a and b are specified, returns the definite integral over the interval [a, b].

If self has only one variable, then it returns the integral with respect to that variable.

If definite integration fails, it could be still possible to evaluate the definite integral using indefinite integration with the Newton - Leibniz theorem (however, the user has to ensure that the indefinite integral is continuous on the compact interval [a, b] and this theorem can be applied).

INPUT:

- v a variable or variable name. This can also be a tuple of the variable (optional) and endpoints (i.e., (x, 0, 1) or (0, 1)).
- a (optional) lower endpoint of definite integral
- b (optional) upper endpoint of definite integral
- algorithm (default: 'maxima', 'libgiac' and 'sympy') one of
 - 'maxima' use maxima

- 'sympy' use sympy (also in Sage)
- 'mathematica_free' use http://integrals.wolfram.com/
- 'fricas' use FriCAS (the optional fricas spkg has to be installed)
- 'giac' use Giac
- 'libgiac' use libgiac

To prevent automatic evaluation use the hold argument.

See also:

To integrate a polynomial over a polytope, use the optional latte_int package sage.geometry.polyhedron.base.Polyhedron_base.integrate().

EXAMPLES:

```
sage: x = var('x')
sage: h = sin(x)/(cos(x))^2
sage: h.integral(x)
1/cos(x)
```

```
sage: f = x^2/(x+1)^3
sage: f.integral(x)
1/2*(4*x + 3)/(x^2 + 2*x + 1) + log(x + 1)
```

```
sage: f = x*cos(x^2)
sage: f.integral(x, 0, sqrt(pi))
0
sage: f.integral(x, a=-pi, b=pi)
0
```

```
sage: f(x) = sin(x)
sage: f.integral(x, 0, pi/2)
1
```

The variable is required, but the endpoints are optional:

```
sage: y = var('y')
sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x), y)
y*sin(x)
sage: integral(sin(x), x, pi, 2*pi)
-2
sage: integral(sin(x), y, pi, 2*pi)
pi*sin(x)
sage: integral(sin(x), (x, pi, 2*pi))
-2
sage: integral(sin(x), (y, pi, 2*pi))
pi*sin(x)
```

Using the hold parameter it is possible to prevent automatic evaluation, which can then be evaluated via simplify():

```
sage: integral (x^2, x, 0, 3) 9 (continues on next page)
```

Chapter 2. Internal functionality supporting calculus

```
sage: a = integral(x^2, x, 0, 3, hold=True); a
integrate(x^2, x, 0, 3)
sage: a.simplify()
9
```

Constraints are sometimes needed:

```
sage: var('x, n')
(x, n)
sage: integral(x^n,x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(n>0)', see `assume?`
for more details)
Is n equal to -1?
sage: assume(n > 0)
sage: integral(x^n,x)
x^(n + 1)/(n + 1)
sage: forget()
```

Usually the constraints are of sign, but others are possible:

```
sage: assume(n==-1)
sage: integral(x^n, x)
log(x)
```

Note that an exception is raised when a definite integral is divergent:

```
sage: forget() # always remember to forget assumptions you no longer need
sage: integrate(1/x^3,(x,0,1))
Traceback (most recent call last):
...
ValueError: Integral is divergent.
sage: integrate(1/x^3,x,-1,3)
Traceback (most recent call last):
...
ValueError: Integral is divergent.
```

But Sage can calculate the convergent improper integral of this function:

```
sage: integrate(1/x^3, x, 1, infinity)
1/2
```

The examples in the Maxima documentation:

```
sage: var('x, y, z, b')
(x, y, z, b)
sage: integral(sin(x)^3, x)
1/3*cos(x)^3 - cos(x)
sage: integral(x/sqrt(b^2-x^2), b)
x*log(2*b + 2*sqrt(b^2 - x^2))
sage: integral(x/sqrt(b^2-x^2), x)
-sqrt(b^2 - x^2)
sage: integral(cos(x)^2 * exp(x), x, 0, pi)
```

```
3/5*e^pi - 3/5
sage: integral(x^2 * exp(-x^2), x, -oo, oo)
1/2*sqrt(pi)
```

We integrate the same function in both Mathematica and Sage (via Maxima):

```
sage: _ = var('x, y, z')
sage: f = \sin(x^2) + y^z
sage: g = mathematica(f)
                                           # optional - mathematica
sage: print(g)
                                            # optional - mathematica
      y + Sin[x]
sage: print(g.Integrate(x))
                                            # optional - mathematica
        z Pi
       x y + Sqrt[--] FresnelS[Sqrt[--] x]
                 2
sage: print(f.integral(x))
→1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) - (I - 1)*sqrt(2)*erf(sqrt(-I)*x) + (I_
\rightarrow+ 1) *sqrt(2) *erf((-1)^(1/4) *x))
```

Alternatively, just use algorithm='mathematica_free' to integrate via Mathematica over the internet (does NOT require a Mathematica license!):

```
sage: _ = var('x, y, z') # optional - internet
sage: f = sin(x^2) + y^z # optional - internet
sage: f.integrate(x, algorithm="mathematica_free") # optional - internet
x*y^z + sqrt(1/2)*sqrt(pi)*fresnel_sin(sqrt(2)*x/sqrt(pi))
```

We can also use Sympy:

We integrate the above function in Maple now:

```
sage: g = maple(f); g.sort()  # optional - maple
y^z+sin(x^2)
sage: g.integrate(x).sort()  # optional - maple
x*y^z+1/2*2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*x)
```

We next integrate a function with no closed form integral. Notice that the answer comes back as an expression that contains an integral itself.

```
sage: A = integral(1/ ((x-4) * (x^4+x+1)), x); A
integrate(1/((x^4 + x + 1)*(x - 4)), x)
```

Sometimes, in this situation, using the algorithm "maxima" gives instead a partially integrated answer:

```
sage: integral(1/(x^*7-1),x,algorithm='maxima')
-1/7*integrate((x^5 + 2^*x^4 + 3^*x^3 + 4^*x^2 + 5^*x + 6)/(x^6 + x^5 + x^4 + x^3 + x^4 + x^5 + x^4 + x^5 + x^
```

We now show that floats are not converted to rationals automatically since we by default have keepfloat: true in maxima.

```
sage: integral(e^(-x^2),(x, 0, 0.1))
0.05623145800914245*sqrt(pi)
```

An example of an integral that fricas can integrate:

where the default integrator obtains another answer:

```
sage: integrate(f(x), x) # long time

1/8*sqrt(x)*gamma(1/4)*gamma(-1/4)^2*hypergeometric((-1/4, -1/4, 1/4), (1/2, 3/4),

\rightarrow -1/x^2)/(pi*gamma(3/4))
```

The following definite integral is not found by maxima:

```
sage: f(x) = (x^4 - 3*x^2 + 6) / (x^6 - 5*x^4 + 5*x^2 + 4)
sage: integrate(f(x), x, 1, 2, algorithm='maxima')
integrate((x^4 - 3*x^2 + 6)/(x^6 - 5*x^4 + 5*x^2 + 4), x, 1, 2)
```

but is nevertheless computed:

```
sage: integrate(f(x), x, 1, 2)
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
```

Both fricas and sympy give the correct result:

```
sage: integrate(f(x), x, 1, 2, algorithm="fricas") # optional - fricas
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
sage: integrate(f(x), x, 1, 2, algorithm="sympy") #

→ needs sympy
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
```

Using Giac to integrate the absolute value of a trigonometric expression:

```
sage: integrate(abs(cos(x)), x, 0, 2*pi, algorithm='giac')
4
sage: result = integrate(abs(cos(x)), x, 0, 2*pi)
...
sage: result
4
```

ALIASES: integral() and integrate() are the same.

EXAMPLES:

Here is an example where we have to use assume:

```
sage: a,b = var('a,b')
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)', see `assume?`
for more details)
Is a positive or negative?
```

So we just assume that a > 0 and the integral works:

```
sage: assume(a>0)
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
2/9*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3))/a^(7/3)
\rightarrow - 1/9*b^2*log((b*x + a)^(2/3) + (b*x + a)^(1/3)*a^(1/3) + a^(2/3))/a^(7/3) + 2/
\rightarrow 9*b^2*log((b*x + a)^(1/3) - a^(1/3))/a^(7/3) + 1/6*(4*(b*x + a)^(5/3)*b^2 - a^2 -
```

```
sage.symbolic.integration.integral.integrate (expression, v=None, a=None, b=None, algorithm=None, hold=False)
```

Return the indefinite integral with respect to the variable v, ignoring the constant of integration. Or, if endpoints a and b are specified, returns the definite integral over the interval [a, b].

If self has only one variable, then it returns the integral with respect to that variable.

If definite integration fails, it could be still possible to evaluate the definite integral using indefinite integration with the Newton - Leibniz theorem (however, the user has to ensure that the indefinite integral is continuous on the compact interval [a, b] and this theorem can be applied).

INPUT:

- v a variable or variable name. This can also be a tuple of the variable (optional) and endpoints (i.e., (x, 0, 1) or (0, 1)).
- a (optional) lower endpoint of definite integral
- b (optional) upper endpoint of definite integral
- algorithm (default: 'maxima', 'libgiac' and 'sympy') one of
 - 'maxima' use maxima
 - 'sympy' use sympy (also in Sage)
 - 'mathematica_free' use http://integrals.wolfram.com/
 - 'fricas' use FriCAS (the optional fricas spkg has to be installed)
 - 'giac' use Giac
 - 'libgiac' use libgiac

To prevent automatic evaluation use the hold argument.

See also:

To integrate a polynomial over a polytope, use the optional latte_int package sage.geometry.polyhedron.base.Polyhedron_base.integrate().

EXAMPLES:

```
sage: x = var('x')
sage: h = sin(x)/(cos(x))^2
sage: h.integral(x)
1/cos(x)
```

```
sage: f = x^2/(x+1)^3
sage: f.integral(x)
1/2*(4*x + 3)/(x^2 + 2*x + 1) + \log(x + 1)
```

```
sage: f = x*cos(x^2)
sage: f.integral(x, 0, sqrt(pi))
0
sage: f.integral(x, a=-pi, b=pi)
0
```

```
sage: f(x) = sin(x)
sage: f.integral(x, 0, pi/2)
1
```

The variable is required, but the endpoints are optional:

```
sage: y = var('y')
sage: integral(sin(x), x)
-cos(x)
sage: integral(sin(x), y)
y*sin(x)
sage: integral(sin(x), x, pi, 2*pi)
-2
sage: integral(sin(x), y, pi, 2*pi)
pi*sin(x)
sage: integral(sin(x), (x, pi, 2*pi))
-2
sage: integral(sin(x), (y, pi, 2*pi))
pi*sin(x)
```

Using the hold parameter it is possible to prevent automatic evaluation, which can then be evaluated via simplify():

```
sage: integral(x^2, x, 0, 3)
9
sage: a = integral(x^2, x, 0, 3, hold=True); a
integrate(x^2, x, 0, 3)
sage: a.simplify()
9
```

Constraints are sometimes needed:

```
sage: var('x, n')
(x, n)
sage: integral(x^n,x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(n>0)', see `assume?`
for more details)
```

```
Is n equal to -1?

sage: assume(n > 0)

sage: integral(x^n,x)

x^n(n + 1)/(n + 1)

sage: forget()
```

Usually the constraints are of sign, but others are possible:

```
sage: assume(n==-1)
sage: integral(x^n,x)
log(x)
```

Note that an exception is raised when a definite integral is divergent:

```
sage: forget() # always remember to forget assumptions you no longer need
sage: integrate(1/x^3,(x,0,1))
Traceback (most recent call last):
...
ValueError: Integral is divergent.
sage: integrate(1/x^3,x,-1,3)
Traceback (most recent call last):
...
ValueError: Integral is divergent.
```

But Sage can calculate the convergent improper integral of this function:

```
sage: integrate (1/x^3, x, 1, infinity)
1/2
```

The examples in the Maxima documentation:

```
sage: var('x, y, z, b')
(x, y, z, b)
sage: integral(sin(x)^3, x)
1/3*cos(x)^3 - cos(x)
sage: integral(x/sqrt(b^2-x^2), b)
x*log(2*b + 2*sqrt(b^2 - x^2))
sage: integral(x/sqrt(b^2-x^2), x)
-sqrt(b^2 - x^2)
sage: integral(cos(x)^2 * exp(x), x, 0, pi)
3/5*e^pi - 3/5
sage: integral(x^2 * exp(-x^2), x, -oo, oo)
1/2*sqrt(pi)
```

We integrate the same function in both Mathematica and Sage (via Maxima):

Alternatively, just use algorithm='mathematica_free' to integrate via Mathematica over the internet (does NOT require a Mathematica license!):

```
sage: _ = var('x, y, z') # optional - internet
sage: f = sin(x^2) + y^z # optional - internet
sage: f.integrate(x, algorithm="mathematica_free") # optional - internet
x*y^z + sqrt(1/2)*sqrt(pi)*fresnel_sin(sqrt(2)*x/sqrt(pi))
```

We can also use Sympy:

```
sage: integrate(x*sin(log(x)), x)
-1/5*x^2*(cos(log(x)) - 2*sin(log(x)))
sage: integrate(x*sin(log(x)), x, algorithm='sympy') #

→ needs sympy
-1/5*x^2*cos(log(x)) + 2/5*x^2*sin(log(x))
sage: _ = var('y, z')
sage: (x^y - z).integrate(y)
-y*z + x^y/log(x)
sage: (x^y - z).integrate(y, algorithm="sympy") #

→ needs sympy
-y*z + cases(((log(x) != 0, x^y/log(x)), (1, y)))
```

We integrate the above function in Maple now:

```
sage: g = maple(f); g.sort()  # optional - maple
y^z+sin(x^2)
sage: g.integrate(x).sort()  # optional - maple
x*y^z+1/2*2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*x)
```

We next integrate a function with no closed form integral. Notice that the answer comes back as an expression that contains an integral itself.

```
sage: A = integral(1/ ((x-4) * (x^4+x+1)), x); A
integrate(1/((x^4 + x + 1)*(x - 4)), x)
```

Sometimes, in this situation, using the algorithm "maxima" gives instead a partially integrated answer:

```
sage: integral(1/(x^{**7-1}),x,algorithm='maxima')
-1/7*integrate((x^5 + 2^*x^4 + 3^*x^3 + 4^*x^2 + 5^*x + 6)/(x^6 + x^5 + x^4 + x^3 + x^6
\Rightarrow 2 + x + 1), x) + 1/7*log(x - 1)
```

We now show that floats are not converted to rationals automatically since we by default have keepfloat: true in maxima.

```
sage: integral(e^(-x^2),(x, 0, 0.1))
0.05623145800914245*sqrt(pi)
```

An example of an integral that fricas can integrate:

```
sage: f(x) = sqrt(x+sqrt(1+x^2))/x
sage: integrate(f(x), x, algorithm="fricas") # optional - fricas
```

```
2*sqrt(x + sqrt(x^2 + 1)) - 2*arctan(sqrt(x + sqrt(x^2 + 1))) - log(sqrt(x + sqrt(x^2 + 1))) + 1) + log(sqrt(x + sqrt(x^2 + 1)) - 1)
```

where the default integrator obtains another answer:

```
sage: integrate(f(x), x) # long time 1/8 \times \text{sqrt}(x) \times \text{gamma}(1/4) \times \text{gamma}(-1/4)^2 \times \text{hypergeometric}((-1/4, -1/4, 1/4), (1/2, 3/4), \rightarrow -1/x^2)/(\text{pi} \times \text{gamma}(3/4))
```

The following definite integral is not found by maxima:

```
sage: f(x) = (x^4 - 3*x^2 + 6) / (x^6 - 5*x^4 + 5*x^2 + 4)
sage: integrate(f(x), x, 1, 2, algorithm='maxima')
integrate((x^4 - 3*x^2 + 6)/(x^6 - 5*x^4 + 5*x^2 + 4), x, 1, 2)
```

but is nevertheless computed:

```
sage: integrate(f(x), x, 1, 2)
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
```

Both fricas and sympy give the correct result:

```
sage: integrate(f(x), x, 1, 2, algorithm="fricas") # optional - fricas
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
sage: integrate(f(x), x, 1, 2, algorithm="sympy") #

→ needs sympy
-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2)
```

Using Giac to integrate the absolute value of a trigonometric expression:

```
sage: integrate(abs(cos(x)), x, 0, 2*pi, algorithm='giac')
4
sage: result = integrate(abs(cos(x)), x, 0, 2*pi)
...
sage: result
4
```

ALIASES: integral() and integrate() are the same.

EXAMPLES:

Here is an example where we have to use assume:

```
sage: a,b = var('a,b')
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
Traceback (most recent call last):
...
ValueError: Computation failed since Maxima requested additional
constraints; using the 'assume' command before evaluation
*may* help (example of legal syntax is 'assume(a>0)', see `assume?`
for more details)
Is a positive or negative?
```

So we just assume that a > 0 and the integral works:

```
sage: assume(a>0)
sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x)
(continues on part page)
```

2.13 TESTS::

sage.symbolic.integration.external.fricas_integrator(expression, v, a=None, b=None, noPole=True)

Integration using FriCAS

EXAMPLES:

```
sage: # optional - fricas
sage: from sage.symbolic.integration.external import fricas_integrator
sage: fricas_integrator(sin(x), x)
-cos(x)
sage: fricas_integrator(cos(x), x)
sin(x)
sage: fricas_integrator(1/(x^2-2), x, 0, 1)
-1/8*sqrt(2)*(log(2) - log(-24*sqrt(2) + 34))
sage: fricas_integrator(1/(x^2+6), x, -oo, oo)
1/6*sqrt(6)*pi
```

sage.symbolic.integration.external.giac_integrator(expression, v, a=None, b=None)

Integration using Giac

EXAMPLES:

```
sage: from sage.symbolic.integration.external import giac_integrator
sage: giac_integrator(sin(x), x)
-cos(x)
sage: giac_integrator(1/(x^2+6), x, -oo, oo)
1/6*sqrt(6)*pi
```

sage.symbolic.integration.external.libgiac_integrator(expression, v, a=None, b=None)
Integration using libgiac

EXAMPLES:

```
sage: import sage.libs.giac
...
sage: from sage.symbolic.integration.external import libgiac_integrator
sage: libgiac_integrator(sin(x), x)
-cos(x)
sage: libgiac_integrator(1/(x^2+6), x, -oo, oo)
No checks were made for singular points of antiderivative...
1/6*sqrt(6)*pi
```

sage.symbolic.integration.external.maxima_integrator(expression, v, a=None, b=None)
Integration using Maxima

EXAMPLES:

2.13. TESTS:: 245

```
sage: from sage.symbolic.integration.external import maxima_integrator
sage: maxima_integrator(sin(x), x)
-cos(x)
sage: maxima_integrator(cos(x), x)
sin(x)
sage: f(x) = function('f')(x)
sage: maxima_integrator(f(x), x)
integrate(f(x), x)
```

 $\verb|sage.symbolic.integration.external.mma_free_integrator| (expression, v, a=None, b=None)|$

Integration using Mathematica's online integrator

EXAMPLES:

```
sage: from sage.symbolic.integration.external import mma_free_integrator
sage: mma_free_integrator(sin(x), x) # optional - internet
-cos(x)
```

A definite integral:

```
sage: mma_free_integrator(e^(-x), x, a=0, b=oo) # optional - internet
1
```

sage.symbolic.integration.external.sympy_integrator(expression, v, a=None, b=None)

Integration using SymPy

EXAMPLES:

2.14 A Sample Session using SymPy

In this first part, we do all of the examples in the SymPy tutorial (https://github.com/sympy/sympy/wiki/Tutorial), but using Sage instead of SymPy.

```
sage: a = Rational((1,2))
sage: a
1/2
sage: a*2
1
sage: Rational(2)^50 / Rational(10)^50
1/88817841970012523233890533447265625
sage: 1.0/2
0.5000000000000000
sage: 1/2
1/2
sage: pi^2
```

```
sage: float(pi)
3.141592653589793
sage: RealField(200)(pi)
3.1415926535897932384626433832795028841971693993751058209749
sage: float(pi + exp(1))
5.85987448204883...
sage: oo != 2
True
```

```
sage: var('x y')
(x, y)
sage: x + y + x - y
2*x
sage: (x+y)^2
(x + y)^2
sage: ((x+y)^2).expand()
x^2 + 2*x*y + y^2
sage: ((x+y)^2).subs(x=1)
(y + 1)^2
sage: ((x+y)^2).subs(x=y)
4*y^2
```

```
sage: limit(sin(x)/x, x=0)
1
sage: limit(x, x=00)
+Infinity
sage: limit((5^x + 3^x)^(1/x), x=00)
5
```

```
sage: diff(sin(x), x)
cos(x)
sage: diff(sin(2*x), x)
2*cos(2*x)
sage: diff(tan(x), x)
tan(x)^2 + 1
sage: limit((tan(x+y) - tan(x))/y, y=0)
cos(x)^(-2)
sage: diff(sin(2*x), x, 1)
2*cos(2*x)
sage: diff(sin(2*x), x, 2)
-4*sin(2*x)
sage: diff(sin(2*x), x, 3)
-8*cos(2*x)
```

```
sage: cos(x).taylor(x,0,10)
-1/3628800*x^10 + 1/40320*x^8 - 1/720*x^6 + 1/24*x^4 - 1/2*x^2 + 1
sage: (1/cos(x)).taylor(x,0,10)
50521/3628800*x^10 + 277/8064*x^8 + 61/720*x^6 + 5/24*x^4 + 1/2*x^2 + 1
```

```
sage: matrix([[1,0], [0,1]])
[1 0]
[0 1]
sage: var('x y')
(x, y)
sage: A = matrix([[1,x], [y,1]])
```

```
sage: A
 [1 x]
 [y 1]
sage: A^2
 [x*y + 1]
                                                                    2*x]
                      2*y x*y + 1]
sage: R. < x, y > = QQ[]
sage: A = matrix([[1,x], [y,1]])
sage: A^10
 [x^5*y^5 + 45*x^4*y^4 + 210*x^3*y^3 + 210*x^2*y^2 + 45*x*y + 1 10*x^5*y^4 + 120*x^2
  4*y^3 + 252*x^3*y^2 + 120*x^2*y + 10*x
 [10*x^4*y^5 + 120*x^3*y^4 + 252*x^2*y^3 + 120*x^y^2 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^3 + 120*x^4*y^2 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^3 + 120*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^3 + 120*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^3 + 120*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^3 + 120*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^4 + 252*x^2*y^5 + 10*y x^5*y^5 + 45*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^5 + 10*y x^5*y^5 + 45*x^4*y^5 + 10*y x^5*y^5 + 10*y x^5*
  \rightarrow210*x^3*y^3 + 210*x^2*y^2 + 45*x*y + 1]
sage: var('x y')
(x, y)
```

And here are some actual tests of sympy:

And the pretty-printer. Since unicode characters are not working on some architectures, we disable it:

```
sage: from sympy.printing import pprint_use_unicode
                                                                             #. .
→needs sympy
sage: prev_use = pprint_use_unicode(False)
→needs sympy
sage: pprint(e)
                                                                             #__
→needs sympy
 1
 3
cos (x)
sage: pprint(f)
                                                                             #__
→needs sympy
                    6
         4
                             8
                        8651*x
   3*x 11*x 241*x
                                  / 10\
1 + ---- + ----- + ----- + O\x /
    2
          8
                240 13440
sage: pprint_use_unicode(prev_use)
                                                                             #__
→needs sympy
False
```

And the functionality to convert from sympy format to Sage format:

248

```
sage: e._sage_()

#_
(continues on next page)
```

Mixing SymPy with Sage:

```
sage: # needs sympy
sage: import sympy
sage: var("x")._sympy_() + var("y")._sympy_()
sage: o = var("omega")
sage: s = sympy.Symbol("x")
sage: t1 = s + o
sage: t2 = o + s
sage: type(t1)
<class 'sympy.core.add.Add'>
sage: type(t2)
<class 'sage.symbolic.expression.Expression'>
sage: t1, t2
(omega + x, omega + x)
sage: e = sympy.sin(var("y")) + sage.functions.trig.cos(sympy.Symbol("x"))
sage: type(e)
<class 'sympy.core.add.Add'>
sage: e
sin(y) + cos(x)
sage: e=e._sage_()
sage: type(e)
<class 'sage.symbolic.expression.Expression'>
sage: e
cos(x) + sin(y)
sage: e = sage.functions.trig.cos(var("y")**3)**4+var("x")**2
sage: e = e._sympy_()
sage: e
x^{**2} + cos(y^{**3})^{**4}
```

```
      sage:
      sympify (1.5)

      → needs sympy
      1.5000000000000

      sage:
      sympify (2)

      → needs sympy
      2

      sage:
      sympify (-2)

      → needs sympy
      -2
```

2.15 Calculus Tests and Examples

Compute the Christoffel symbol.

```
sage: var('r t theta phi')
(r, t, theta, phi)
sage: m = matrix(SR, [[(1-1/r), 0, 0, 0], [0, -(1-1/r)^{(-1)}, 0, 0], [0, 0, -r^2, 0], [0, 0, 0, -r^2])
\rightarrow2*(sin(theta))^2]])
sage: m
           -1/r + 1
                                         0
                                                              0
                                                                                   01
                                                              Ω
                                                                                   01
                    Ω
                             1/(1/r - 1)
                    Ω
                                                          -r^2
                                                                                   01
                                         \cap
                    0
                                         0
                                                            0 -r^2*sin(theta)^2
```

```
sage: christoffel(3,3,2, [t,r,theta,phi], m)
-cos(theta)*sin(theta)
sage: X = christoffel(1,1,1,[t,r,theta,phi],m)
sage: X
1/2/(r^2*(1/r - 1))
sage: X.rational_simplify()
-1/2/(r^2 - r)
```

Some basic things:

```
sage: f(x,y) = x^3 + sinh(1/y)
sage: f
(x, y) |--> x^3 + sinh(1/y)
sage: f^3
(x, y) |--> (x^3 + sinh(1/y))^3
sage: (f^3).expand()
(x, y) |--> x^9 + 3*x^6*sinh(1/y) + 3*x^3*sinh(1/y)^2 + sinh(1/y)^3
```

A polynomial over a symbolic base ring:

```
sage: R = SR['x']
sage: f = R([1/sqrt(2), 1/(4*sqrt(2))])
sage: f
1/8*sqrt(2)*x + 1/2*sqrt(2)
sage: -f
-1/8*sqrt(2)*x - 1/2*sqrt(2)
sage: (-f).degree()
1
```

A big product. Notice that simplifying simplifies the product further:

```
sage: A = exp(I*pi/7)
sage: b = A^14
sage: b
1
```

We check a statement made at the beginning of Friedlander and Joshi's book on Distributions:

```
sage: f(x) = sin(x^2)
sage: g(x) = cos(x) + x^3
sage: u = f(x+t) + g(x-t)
sage: u
-(t - x)^3 + cos(-t + x) + sin((t + x)^2)
sage: u.diff(t,2) - u.diff(x,2)
0
```

Restoring variables after they have been turned into functions:

```
sage: x = function('x')
sage: type(x)
<class 'sage.symbolic.function_factory...NewSymbolicFunction'>
sage: x(2/3)
x(2/3)
sage: restore('x')
sage: sin(x).variables()
(x,)
```

MATHEMATICA: Some examples of integration and differentiation taken from some Mathematica docs:

```
sage: var('x n a')
(x, n, a)
sage: diff(x^n, x)
                           # the output looks funny, but is correct
n*x^(n - 1)
sage: diff(x^2 * log(x+a), x)
2*x*log(a + x) + x^2/(a + x)
sage: derivative(arctan(x), x)
1/(x^2 + 1)
sage: derivative (x^n, x, 3)
(n - 1)*(n - 2)*n*x^{(n - 3)}
sage: derivative( function('f')(x), x)
diff(f(x), x)
sage: diff(2*x*f(x^2), x)
4*x^2*D[0](f)(x^2) + 2*f(x^2)
sage: integrate (1/(x^4 - a^4), x)
-1/2 \cdot \arctan(x/a)/a^3 - 1/4 \cdot \log(a + x)/a^3 + 1/4 \cdot \log(-a + x)/a^3
sage: expand(integrate(log(1-x^2), x))
x*log(-x^2 + 1) - 2*x + log(x + 1) - log(x - 1)
```

This is an apparent regression in Maxima 5.39.0, although the antiderivative is correct, assuming we work with (poly)logs of complex argument. More convenient form is $1/2*log(x^2)*log(-x^2 + 1) + 1/2*dilog(-x^2 + 1)$. See also https://sourceforge.net/p/maxima/bugs/3275/:

```
sage: integrate (\log(1-x^2)/x, x)
 \log(-x) * \log(x + 1) + \log(x) * \log(-x + 1) + \text{dilog}(x + 1) + \text{dilog}(-x + 1)
```

No problems here:

```
sage: integrate(exp(1-x^2),x)
1/2*sqrt(pi)*erf(x)*e
sage: integrate(sin(x^2),x)
1/16*sqrt(pi)*((I + 1)*sqrt(2)*erf((1/2*I + 1/2)*sqrt(2)*x) + (I - 1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) + (I - 1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) + (I + 1)*sqrt(2)*erf((-1)^4 + (1/4)*x))
```

```
sage: integrate((1-x^2)^n,x) # long time
x*hypergeometric((1/2, -n), (3/2,), x^2*exp_polar(2*I*pi))
sage: integrate(x^x,x)
integrate(x^x, x)
sage: integrate(1/(x^3+1),x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) - 1/6*log(x^2 - x + 1) + 1/3*log(x + 1)
sage: integrate(1/(x^3+1), x, 0, 1)
1/9*sqrt(3)*pi + 1/3*log(2)
```

```
sage: forget()
sage: c = var('c')
sage: assume(c > 0)
sage: integrate(exp(-c*x^2), x, -oo, oo)
sqrt(pi)/sqrt(c)
sage: forget()
```

Other examples that now (github issue #27958) work:

```
sage: integrate(log(x)*exp(-x^2), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)

sage: integrate(log(1+sqrt(1+4*x)/2)/x, x, 0, 1)
Traceback (most recent call last):
...
ValueError: Integral is divergent.
```

The following is an example of integral that Mathematica can do, but Sage currently cannot do:

```
sage: integrate(ceil(x^2 + floor(x)), x, 0, 5, algorithm='maxima')
integrate(ceil(x^2) + floor(x), x, 0, 5)
```

MAPLE: The basic differentiation and integration examples in the Maple documentation:

```
sage: diff(sin(x), x)
cos(x)
sage: diff(sin(x), y)
sage: diff(sin(x), x, 3)
-\cos(x)
sage: diff(x*sin(cos(x)), x)
-x*\cos(\cos(x))*\sin(x) + \sin(\cos(x))
sage: diff(tan(x), x)
tan(x)^2 + 1
sage: f = function('f'); f
sage: diff(f(x), x)
diff(f(x), x)
sage: diff(f(x,y), x, y)
diff(f(x, y), x, y)
sage: diff(f(x,y), x, y) - diff(f(x,y), y, x)
sage: g = function('g')
sage: var('x y z')
(x, y, z)
sage: diff(g(x,y,z), x,z,z)
diff(g(x, y, z), x, z, z)
```

```
sage: integrate(sin(x), x)
-cos(x)
sage: integrate(sin(x), x, 0, pi)
2
```

```
sage: var('a b')
(a, b)
sage: integrate(sin(x), x, a, b)
cos(a) - cos(b)
```

```
sage: integrate( x/(x^3-1), x)
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/6*log(x^2 + x + 1) + 1/3*log(x - 1)
sage: integrate(exp(-x^2), x)
1/2*sqrt(pi)*erf(x)
sage: integrate(exp(-x^2)*log(x), x) # long time
1/2*sqrt(pi)*erf(x)*log(x) - x*hypergeometric((1/2, 1/2), (3/2, 3/2), -x^2)
sage: f = exp(-x^2)*log(x)
sage: f.nintegral(x, 0, 999)
(-0.87005772672831..., 7.5584...e-10, 567, 0)
sage: integral(1/sqrt(2*t^4 - 3*t^2 - 2), t, 2, 3) # long time # todo: maple candot this
integrate(1/(sqrt(2*t^2 + 1)*sqrt(t^2 - 2)), t, 2, 3)
sage: integral(integral(x*y^2, x, 0, y), y, -2, 2)
32/5
```

We verify several standard differentiation rules:

```
sage: function('f, g')
(f, g)
sage: diff(f(t)*g(t),t)
g(t)*diff(f(t), t) + f(t)*diff(g(t), t)
sage: diff(f(t)/g(t), t)
diff(f(t), t)/g(t) - f(t)*diff(g(t), t)/g(t)^2
sage: diff(f(t) + g(t), t)
diff(f(t), t) + diff(g(t), t)
sage: diff(c*f(t), t)
```

2.16 Conversion of symbolic expressions to other types

This module provides routines for converting new symbolic expressions to other types. Primarily, it provides a class *Converter* which will walk the expression tree and make calls to methods overridden by subclasses.

```
class sage.symbolic.expression_conversions.Converter(use_fake_div=False)
    Bases: object
```

If use_fake_div is set to True, then the converter will try to replace expressions whose operator is operator.mul with the corresponding expression whose operator is operator.truediv.

```
sage: c.use_fake_div
```

arithmetic (ex, operator)

The input to this method is a symbolic expression and the infix operator corresponding to that expression. Typically, one will convert all of the arguments and then perform the operation afterward.

composition (ex, operator)

The input to this method is a symbolic expression and its operator. This method will get called when you have a symbolic function application.

derivative (ex, operator)

The input to this method is a symbolic expression which corresponds to a relation.

get_fake_div(ex)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import Converter
sage: c = Converter(use_fake_div=True)
sage: c.get_fake_div(sin(x)/x)
FakeExpression([sin(x), x], <built-in function truediv>)
sage: c.get_fake_div(-1*sin(x))
FakeExpression([sin(x)], <built-in function neg>)
sage: c.get_fake_div(-x)
FakeExpression([x], <built-in function neg>)
sage: c.get_fake_div((2*x^3+2*x-1)/((x-2)*(x+1)))
FakeExpression([2*x^3 + 2*x - 1, FakeExpression([x + 1, x - 2], <bul>
<br/>built-in_

→function mul>)], <built-in function truediv>)
```

Check if github issue #8056 is fixed, i.e., if numerator is 1.:

```
sage: c.get_fake_div(1/pi/x)
FakeExpression([1, FakeExpression([pi, x], <built-in function mul>)], <built-
→in function truediv>)
```

pyobject (ex, obj)

The input to this method is the result of calling pyobject () on a symbolic expression.

Note: Note that if a constant such as pi is encountered in the expression tree, its corresponding pyobject which is an instance of sage.symbolic.constants.Pi will be passed into this method. One cannot do arithmetic using such an object.

relation (ex, operator)

The input to this method is a symbolic expression which corresponds to a relation.

symbol(ex)

The input to this method is a symbolic expression which corresponds to a single variable. For example, this method could be used to return a generator for a polynomial ring.

```
class sage.symbolic.expression_conversions.DeMoivre(ex, force=False)
    Bases: ExpressionTreeWalker
```

A class that walks a symbolic expression tree and replaces occurences of complex exponentials (optionally, all exponentials) by their respective trigonometric expressions.

INPUT:

• force – boolean (default: False); replace $\exp(x)$ with $\cosh(x) + \sinh(x)$

EXAMPLES:

```
sage: a, b = SR.var("a, b")
sage: from sage.symbolic.expression_conversions import DeMoivre
sage: d = DeMoivre(e^a)
sage: d(e^(a+I*b))
(cos(b) + I*sin(b))*e^a
```

composition (ex, op)

Return the composition of self with ex by op.

EXAMPLES:

```
sage: x, a, b = SR.var('x, a, b')
sage: from sage.symbolic.expression_conversions import DeMoivre
sage: p = exp(x)
sage: s = DeMoivre(p)
sage: q = exp(a+I*b)
sage: s.composition(q, q.operator())
(cos(b) + I*sin(b))*e^a
```

class sage.symbolic.expression_conversions.**Exponentialize** (ex)

Bases: ExpressionTreeWalker

A class that walks a symbolic expression tree and replace circular and hyperbolic functions by their respective exponential expressions.

```
sage: from sage.symbolic.expression_conversions import Exponentialize
sage: d = Exponentialize(sin(x))
sage: d(sin(x))
-1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
sage: d(cosh(x))
1/2*e^(-x) + 1/2*e^x
```

```
CircDict = \{\sinh: x \mid --> -1/2*e^{-x}\} + 1/2*e^{-x}, \cosh: x \mid --> 1/2*e^{-x}\} + 1/2*e^{-x}
1/2*e^x, tanh: x \mid --> -(e^(-x) - e^x)/(e^(-x) + e^x), coth: x \mid -->
-(e^{(-x)} + e^{x})/(e^{(-x)} - e^{x}), sech: x \mid --> 2/(e^{(-x)} + e^{x}), csch: x \mid --> 2/(e^{(-x)} + e^{x})
|--> -2/(e^{-x} - e^{-x}), \sin : x |--> -1/2*I*e^{-x} + 1/2*I*e^{-x}, \cos : e^{-x}
x \mid --> 1/2*e^{(I*x)} + 1/2*e^{(-I*x)}, tan: x \mid --> (-I*e^{(I*x)} + 1/2*e^{(I*x)})
I*e^{(-I*x)}/(e^{(I*x)} + e^{(-I*x)}), cot: x \mid --> (I*e^{(I*x)} + e^{(I*x)})
I*e^{(-I*x)}/(e^{(I*x)} - e^{(-I*x)}), sec: x \mid --> 2/(e^{(I*x)} + e^{(-I*x)}), csc:
x \mid --> 2*I/(e^{(I*x)} - e^{(-I*x)})
Circs = [sin, cos, sec, csc, tan, cot, sinh, cosh, sech, csch, tanh, coth]
I = I
Integer
    alias of Integer
SR = Symbolic Ring
composition (ex, op)
    Return the composition of self with ex by op.
    EXAMPLES:
```

```
sage: x = SR.var("x")
sage: from sage.symbolic.expression_conversions import Exponentialize
sage: p = x
sage: s = Exponentialize(p)
sage: q = sin(x)
sage: s.composition(q, q.operator())
-1/2*I*e^(I*x) + 1/2*I*e^(-I*x)
```

```
cos = cos
cosh = cosh
cot = cot
coth = coth
csc = csc
csch = csch
e = e
exp = exp
function(s, **kwds)
```

Create a formal symbolic function with the name s.

INPUT:

- nargs=0 number of arguments the function accepts, defaults to variable number of arguments, or 0
- latex_name name used when printing in latex mode
- conversions a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
- eval func method used for automatic evaluation
- evalf_func method used for numeric evaluation
- evalf_params_first bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
- conjugate_func method used for complex conjugation
- real_part_func method used when taking real parts
- imag_part_func method used when taking imaginary parts
- derivative_func method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
- tderivative_func method to be used for derivatives
- power_func method used when taking powers This method should take a keyword argument power_param specifying the exponent
- series_func method used for series expansion This method should expect keyword arguments order order for the expansion to be computed var variable to expand w.r.t. at expand at this value
- print_func method for custom printing
- print_latex_func method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

Note: The new function is both returned and automatically injected into the global namespace. If you use this function in library code, it is better to use sage.symbolic.function_factory.function, since it will not touch the global namespace.

EXAMPLES:

We create a formal function called supersin

```
sage: function('supersin')
supersin
```

We can immediately use supersin in symbolic expressions:

```
sage: y, z, A = var('y z A')
sage: supersin(y+z) + A^3
A^3 + supersin(y + z)
```

We can define other functions in terms of supersin:

```
sage: g(x,y) = supersin(x)^2 + sin(y/2)
sage: g
(x, y) |--> supersin(x)^2 + sin(1/2*y)
sage: g.diff(y)
(x, y) |--> 1/2*cos(1/2*y)
sage: k = g.diff(x); k
(x, y) |--> 2*supersin(x)*diff(supersin(x), x)
```

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients:

```
sage: r, kappa = var('r,kappa')
sage: psi = function('psi', nargs=1)(r); psi
psi(r)
sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
(r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2
sage: g.expand()
2*diff(psi(r), r)/r + diff(psi(r), r, r)
sage: g.coefficient(psi.derivative(r,2))
1
sage: g.coefficient(psi.derivative(r,1))
2/r
```

Custom typesetting of symbolic functions in LaTeX, either using latex_name keyword:

```
sage: function('riemann', latex_name="\\mathcal{R}\")
riemann
sage: latex(riemann(x))
\mathcal{R}\left(x\right)
```

or passing a custom callable function that returns a latex expression:

```
→join(map(latex, args)))
sage: function('psi', print_latex_func=my_latex_print)
psi
sage: latex(psi(mu,nu))
\psi_{\mu, \nu}
```

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:

```
sage: def ev(self, x): return 2*x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
sage: def ef(self, x): pass
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)
sage: def evalf_f(self, x, parent=None, algorithm=None): return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)
sage: foo(x).n()
6
sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2*x
sage: def deriv(self, *args,**kwds): print("{} {}".format(args, kwds));_
→return args[kwds['diff_param']]^2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo (x, y) . derivative (y)
(x, y) {'diff_param': 1}
y^2
sage: def pow(self, x, power_param=None): print("{} {}".format(x, power_
→param)); return x*power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^(x+y)
y x + y
(x + y) * y
sage: from pprint import pformat
sage: def expand(self, *args, **kwds):
         print("{} {}".format(args, pformat(kwds)))
         return sum(args[0]^i for i in range(kwds['order']))
sage: foo = function("foo", nargs=1, series_func=expand)
sage: foo(y).series(y, 5)
(y,) {'at': 0, 'options': 0, 'order': 5, 'var': y}
y^4 + y^3 + y^2 + y + 1
sage: def my_print(self, *args):
        return "my args are: " + ', '.join(map(repr, args))
sage: foo = function('t', nargs=2, print_func=my_print)
                                                                  (continues on next page)
```

```
sage: foo(x,y^z)
my args are: x, y^z

sage: latex(foo(x,y^z))
t\left(x, y^{z}\right)
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x,y^z)
t(x, y^z)
sage: latex(foo(x,y^z))
my args are: x, y^z
sage: foo = function('t', nargs=2, latex_name='foo')
sage: latex(foo(x,y^z))
foo\left(x, y^{z}\right)
```

Chain rule:

Since Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:

You now need to evaluate the function in order to do the arithmetic:

```
sage: 2*f(x)
2*f(x)
```

Since Sage 4.0, you need to use substitute_function() to replace all occurrences of a function with another:

```
sage: var('a, b')
(a, b)
sage: cr = function('cr')
sage: f = cr(a)
sage: g = f.diff(a).integral(b)
sage: g
b*diff(cr(a), a)
(continue on next page)
```

```
sage: g.substitute_function(cr, cos)
-b*sin(a)
sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x))
b*(cos(a) - sin(a))
```

```
half = 1/2
sec = sec
sech = sech
sin = sin
sinh = sinh
tan = tan
tanh = tanh
two = 2
x = x
```

class sage.symbolic.expression_conversions.ExpressionTreeWalker(ex)

Bases: Converter

A class that walks the tree. Mainly for subclassing.

EXAMPLES:

```
sage: from sage.symbolic.expression conversions import ExpressionTreeWalker
sage: from sage.symbolic.random_tests import random_expr
sage: ex = sin(atan(0, hold=True) + hypergeometric((1,),(1,),x))
sage: s = ExpressionTreeWalker(ex)
sage: bool(s() == ex)
True
sage: set_random_seed(0) # random_expr is unstable
sage: foo = random_expr(20, nvars=2)
sage: s = ExpressionTreeWalker(foo)
sage: bool(s() == foo)
True
```

arithmetic (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = x*foo(x) + pi/foo(x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.arithmetic(f, f.operator()) == f)
```

composition (ex, operator)

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = foo(atan2(0, 0, hold=True))
sage: s = ExpressionTreeWalker(f)
sage: bool(s.composition(f, f.operator()) == f)
True
```

derivative (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = foo(x).diff(x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.derivative(f, f.operator()) == f)
True
```

pyobject (ex, obj)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: f = SR(2)
sage: s = ExpressionTreeWalker(f)
sage: bool(s.pyobject(f, f.pyobject()) == f.pyobject())
True
```

relation(ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: eq = foo(x) == x
sage: s = ExpressionTreeWalker(eq)
sage: s.relation(eq, eq.operator()) == eq
True
```

symbol(ex)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: s = ExpressionTreeWalker(x)
sage: bool(s.symbol(x) == x)
True
```

tuple(ex)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import ExpressionTreeWalker
sage: foo = function('foo')
sage: f = hypergeometric((1,2,3,),(x,),x)
sage: s = ExpressionTreeWalker(f)
sage: bool(s() == f)
True
```

class sage.symbolic.expression_conversions.FakeExpression(operands, operator)

Bases: object

Pynac represents x/y as xy^{-1} . Often, tree-walkers would prefer to see divisions instead of multiplications and negative exponents. To allow for this (since Pynac internally doesn't have division at all), there is a possibility to pass use_fake_div=True; this will rewrite an Expression into a mixture of Expression and FakeExpression nodes, where the FakeExpression nodes are used to represent divisions. These nodes are intended to act sufficiently like Expression nodes that tree-walkers won't care about the difference.

operands()

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.operands()
[x, y]
```

operator()

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.operator()
<built-in function truediv>
```

pyobject()

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import FakeExpression
sage: import operator; x,y = var('x,y')
sage: f = FakeExpression([x, y], operator.truediv)
sage: f.pyobject()
Traceback (most recent call last):
...
TypeError: self must be a numeric expression
```

class sage.symbolic.expression_conversions.FastCallableConverter(ex, etb)

Bases: Converter

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import FastCallableConverter
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: f = FastCallableConverter(x+2, etb)
sage: f.ex
x + 2
sage: f.etb
<sage.ext.fast_callable.ExpressionTreeBuilder object at 0x...>
sage: f.use_fake_div
True
```

arithmetic (ex, operator)

EXAMPLES:

Chapter 2. Internal functionality supporting calculus

```
sage: var('x,y')
(x, y)
sage: (x+y)._fast_callable_(etb)
add(v_0, v_1)
sage: (-x)._fast_callable_(etb)
neg(v_0)
sage: (x+y+x^2)._fast_callable_(etb)
add(add(ipow(v_0, 2), v_0), v_1)
```

composition (ex, function)

Given an ExpressionTreeBuilder, return an Expression representing this value.

EXAMPLES:

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x,y = var('x,y')
sage: sin(sqrt(x+y))._fast_callable_(etb)
sin(sqrt(add(v_0, v_1)))
sage: arctan2(x,y)._fast_callable_(etb)
{arctan2}(v_0, v_1)
```

pyobject (ex, obj)

EXAMPLES:

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: pi._fast_callable_(etb)
pi
sage: etb = ExpressionTreeBuilder(vars=['x'], domain=RDF)
sage: pi._fast_callable_(etb)
3.141592653589793
```

relation(ex, operator)

EXAMPLES:

```
sage: ff = fast_callable(x == 2, vars=['x'])
sage: ff(2)
0
sage: ff(4)
2
sage: ff = fast_callable(x < 2, vars=['x'])
Traceback (most recent call last):
...
NotImplementedError</pre>
```

symbol(ex)

Given an ExpressionTreeBuilder, return an Expression representing this value.

EXAMPLES:

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x, y, z = var('x,y,z')
sage: x._fast_callable_(etb)
v_0
```

```
sage: y._fast_callable_(etb)
v_1
sage: z._fast_callable_(etb)
Traceback (most recent call last):
...
ValueError: Variable 'z' not found...
```

tuple(ex)

Given a symbolic tuple, return its elements as a Python list.

EXAMPLES:

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x'])
sage: SR._force_pyobject((2, 3, x^2))._fast_callable_(etb)
[2, 3, x^2]
```

class sage.symbolic.expression_conversions.FriCASConverter

Bases: InterfaceInit

Converts any expression to FriCAS.

EXAMPLES:

derivative (ex, operator)

Convert the derivative of self in FriCAS.

INPUT:

- ex a symbolic expression
- operator operator

Note that ex.operator() == operator.

```
sage: var('x,y,z')
(x, y, z)
sage: f = function("F")
sage: f(x)._fricas_() #__

→ optional - fricas
F(x)
sage: diff(f(x,y,z), x, z, x)._fricas_() #__

→ optional - fricas
F (x,y,z)
,1,1,3
```

Check that github issue #25838 is fixed:

```
sage: var('x')
x
sage: F = function('F')
sage: integrate(F(x), x, algorithm="fricas") #__
→ optional - fricas
integral(F(x), x)

sage: integrate(diff(F(x), x)*sin(F(x)), x, algorithm="fricas") #__
→ optional - fricas
-cos(F(x))
```

Check that github issue #27310 is fixed:

pyobject (ex, obj)

Return a string which, when evaluated by FriCAS, returns the object as an expression.

We explicitly add the coercion to the FriCAS domains ExpressionInteger and ExpressionComplexInteger to make sure that elements of the symbolic ring are translated to these. In particular, this is needed for integration, see github issue #28641 and github issue #28647.

```
sage: 2._fricas_().domainOf()
                                                                           #__
→optional - fricas
PositiveInteger()
sage: (-1/2)._fricas_().domainOf()
                                                                           #__
→optional - fricas
Fraction(Integer())
sage: SR(2)._fricas_().domainOf()
                                                                           #__
→optional - fricas
Expression(Integer())
sage: (sqrt(2))._fricas_().domainOf()
                                                                           #__
\hookrightarrowoptional - fricas
Expression(Integer())
sage: pi._fricas_().domainOf()
                                                                           #__
→optional - fricas
Pi()
sage: asin(pi)._fricas_()
                                                                           #.
→optional - fricas
asin(%pi)
                                                                       (continues on next page)
```

```
sage: I._fricas_().domainOf()
                                                                       # optional -_
→fricas
Complex(Integer())
sage: SR(I)._fricas_().domainOf()
                                                                           #__
→optional - fricas
Expression(Complex(Integer()))
sage: ex = (I+sqrt(2)+2)
sage: ex._fricas_().domainOf()
                                                                           #. .
→optional - fricas
Expression(Complex(Integer()))
sage: ex._fricas_()^2
                                                                           #__
→optional - fricas
(4 + 2 \%i) \setminus |2 + 5 + 4 \%i
sage: (ex^2)._fricas_()
                                                                           #__
→optional - fricas
(4 + 2 \%i) \setminus |2 + 5 + 4 \%i
```

symbol(ex)

Convert the argument, which is a symbol, to FriCAS.

In this case, we do not return an *ExpressionInteger*, because FriCAS frequently requires elements of domain *Symbol* or *Variable* as arguments, for example to *integrate*. Moreover, FriCAS is able to do the conversion itself, whenever the argument should be interpreted as a symbolic expression.

EXAMPLES:

class sage.symbolic.expression_conversions.HoldRemover(ex, exclude=None)

Bases: ExpressionTreeWalker

A class that walks the tree and evaluates every operator that is not in a given list of exceptions.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import HoldRemover
sage: ex = sin(pi*cos(0, hold=True), hold=True); ex
sin(pi*cos(0))
sage: h = HoldRemover(ex)
sage: h()
```

```
sage: h = HoldRemover(ex, [sin])
sage: h()
sin(pi)
sage: h = HoldRemover(ex, [cos])
sage: h()
sin(pi*cos(0))
sage: ex = atan2(0, 0, hold=True) + hypergeometric([1,2], [3,4], 0, hold=True)
sage: h = HoldRemover(ex, [atan2])
sage: h()
arctan2(0, 0) + 1
sage: h = HoldRemover(ex, [hypergeometric])
sage: h()
NaN + hypergeometric((1, 2), (3, 4), 0)
```

composition (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import HoldRemover
sage: ex = sin(pi*cos(0, hold=True), hold=True); ex
sin(pi*cos(0))
sage: h = HoldRemover(ex)
sage: h()
```

class sage.symbolic.expression_conversions.InterfaceInit(interface)

Bases: Converter

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: a = pi + 2
sage: m(a)
'(%pi)+(2)'
sage: m(sin(a))
'sin((%pi)+(2))'
sage: m(exp(x^2) + pi + 2)
'(%pi)+(exp((_SAGE_VAR_x)^(2)))+(2)'
```

arithmetic (ex, operator)

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.arithmetic(x+2, sage.symbolic.operators.add_vararg)
'(_SAGE_VAR_x)+(2)'
```

composition (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.composition(sin(x), sin)
'sin(_SAGE_VAR_x)'
```

```
sage: m.composition(ceil(x), ceil)
'ceiling(_SAGE_VAR_x)'

sage: m = InterfaceInit(mathematica)
sage: m.composition(sin(x), sin)
'Sin[x]'
```

derivative (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: f = function('f')
sage: a = f(x).diff(x); a
diff(f(x), x)
sage: print(m.derivative(a, a.operator()))
diff('f(_SAGE_VAR_x), _SAGE_VAR_x, 1)
sage: b = f(x).diff(x, x)
sage: print(m.derivative(b, b.operator()))
diff('f(_SAGE_VAR_x), _SAGE_VAR_x, 2)
```

We can also convert expressions where the argument is not just a variable, but the result is an "at" expression using temporary variables:

pyobject (ex, obj)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: ii = InterfaceInit(gp)
sage: f = 2+SR(I)
sage: ii.pyobject(f, f.pyobject())
'I + 2'
sage: ii.pyobject(SR(2), 2)
'2'
sage: ii.pyobject(pi, pi.pyobject())
'pi'
```

relation(ex, operator)

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.relation(x==3, operator.eq)
'_SAGE_VAR_x = 3'
```

```
sage: m.relation(x==3, operator.lt)
'_SAGE_VAR_x < 3'</pre>
```

symbol(ex)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: m.symbol(x)
'_SAGE_VAR_x'
sage: f(x) = x
sage: m.symbol(f)
'_SAGE_VAR_x'
sage: ii = InterfaceInit(gp)
sage: ii.symbol(x)
'x'
sage: g = InterfaceInit(giac)
sage: g.symbol(x)
'sageVARx'
```

tuple(ex)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import InterfaceInit
sage: m = InterfaceInit(maxima)
sage: t = SR._force_pyobject((3, 4, e^x))
sage: m.tuple(t)
'[3,4,exp(_SAGE_VAR_x)]'
```

class sage.symbolic.expression_conversions.LaurentPolynomialConverter(ex,

base_ring=None, ring=None)

Bases: PolynomialConverter

A converter from symbolic expressions to Laurent polynomials.

See laurent polynomial() for details.

Bases: Converter

A converter from symbolic expressions to polynomials.

See polynomial () for details.

```
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x,y')
sage: p = PolynomialConverter(x+y, base_ring=QQ)
sage: p.base_ring
Rational Field
sage: p.ring
Multivariate Polynomial Ring in x, y over Rational Field
sage: p = PolynomialConverter(x, base_ring=QQ)
(continues on next page)
```

```
sage: p.base_ring
Rational Field
sage: p.ring
Univariate Polynomial Ring in x over Rational Field

sage: p = PolynomialConverter(x, ring=QQ['x,y'])
sage: p.base_ring
Rational Field
sage: p.ring
Multivariate Polynomial Ring in x, y over Rational Field

sage: p = PolynomialConverter(x+y, ring=QQ['x'])
Traceback (most recent call last):
...
TypeError: y is not a variable of Univariate Polynomial Ring in x over Rational
→Field
```

arithmetic (ex, operator)

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)
sage: p.arithmetic(pi+e, operator.add)
5.85987448204884
sage: p.arithmetic(x^2, operator.pow)
x^2
sage: p = PolynomialConverter(x+y, base_ring=RR)
sage: p.arithmetic(x*y+y^2, operator.add)
x*y + y^2
sage: p = PolynomialConverter(y^(3/2), ring=SR['x'])
sage: p.arithmetic(y^(3/2), operator.pow)
y^(3/2)
sage: _.parent()
Symbolic Ring
```

composition (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: a = sin(2)
sage: p = PolynomialConverter(a*x, base_ring=RR)
sage: p.composition(a, a.operator())
0.909297426825682
```

pyobject (ex, obj)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: p = PolynomialConverter(x, base_ring=QQ)
sage: f = SR(2)
sage: p.pyobject(f, f.pyobject())
```

```
2
sage: _.parent()
Rational Field
```

relation(ex, op)

EXAMPLES:

```
sage: import operator
sage: from sage.symbolic.expression_conversions import PolynomialConverter

sage: x, y = var('x, y')
sage: p = PolynomialConverter(x, base_ring=RR)

sage: p.relation(x==3, operator.eq)
x - 3.00000000000000
sage: p.relation(x==3, operator.lt)
Traceback (most recent call last):
...
ValueError: Unable to represent as a polynomial

sage: p = PolynomialConverter(x - y, base_ring=QQ)
sage: p.relation(x^2 - y^3 + 1 == x^3, operator.eq)
-x^3 - y^3 + x^2 + 1
```

symbol(ex)

Returns a variable in the polynomial ring.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import PolynomialConverter
sage: p = PolynomialConverter(x, base_ring=QQ)
sage: p.symbol(x)
x
sage: _.parent()
Univariate Polynomial Ring in x over Rational Field
sage: y = var('y')
sage: p = PolynomialConverter(x*y, ring=SR['x'])
sage: p.symbol(y)
y
```

class sage.symbolic.expression_conversions.RingConverter(R, subs_dict=None)

Bases: Converter

A class to convert expressions to other rings.

```
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF, subs_dict={x:2})
sage: R.ring
Real Interval Field with 53 bits of precision
sage: R.subs_dict
{x: 2}
sage: R(pi+e)
5.85987448204884?
sage: loads(dumps(R))
<sage.symbolic.expression_conversions.RingConverter object at 0x...>
```

arithmetic (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import RingConverter
sage: P.<z> = ZZ[]
sage: R = RingConverter(P, subs_dict={x:z})
sage: a = 2*x^2 + x + 3
sage: R(a)
2*z^2 + z + 3
```

composition (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF)
sage: R(cos(2))
-0.4161468365471424?
```

pyobject (ex, obj)

EXAMPLES:

symbol(ex)

All symbols appearing in the expression must either appear in *subs_dict* or be convertible by the ring's element constructor in order for the conversion to be successful.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import RingConverter
sage: R = RingConverter(RIF, subs_dict={x:2})
sage: R(x+pi)
5.141592653589794?

sage: R = RingConverter(RIF)
sage: R(x+pi)
Traceback (most recent call last):
...
TypeError: unable to simplify to a real interval approximation

sage: R = RingConverter(QQ['x'])
sage: R(x^2+x)
x^2 + x
sage: R(x^2+x).parent()
Univariate Polynomial Ring in x over Rational Field
```

class sage.symbolic.expression_conversions.SubstituteFunction (ex, *args)

Bases: ExpressionTreeWalker

A class that walks the tree and replaces occurrences of a function with another.

```
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: s(1/foo(foo(x)) + foo(2))
1/bar(bar(x)) + bar(2)
```

composition (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: f = foo(x)
sage: s.composition(f, f.operator())
bar(x)
sage: f = foo(foo(x))
sage: s.composition(f, f.operator())
bar(bar(x))
sage: f = sin(foo(x))
sage: s.composition(f, f.operator())
sin(bar(x))
sage: f = foo(sin(x))
sage: s.composition(f, f.operator())
bar(sin(x))
```

derivative (ex, operator)

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import SubstituteFunction
sage: foo = function('foo'); bar = function('bar')
sage: s = SubstituteFunction(foo(x), {foo: bar})
sage: f = foo(x).diff(x)
sage: s.derivative(f, f.operator())
diff(bar(x), x)
```

sage.symbolic.expression_conversions.fast_callable(ex, etb)

Given an ExpressionTreeBuilder etb, return an Expression representing the symbolic expression ex.

EXAMPLES:

```
sage: from sage.ext.fast_callable import ExpressionTreeBuilder
sage: etb = ExpressionTreeBuilder(vars=['x','y'])
sage: x,y = var('x,y')
sage: f = y+2*x^2
sage: f._fast_callable_(etb)
add(mul(ipow(v_0, 2), 2), v_1)

sage: f = (2*x^3+2*x-1)/((x-2)*(x+1))
sage: f._fast_callable_(etb)
div(add(add(mul(ipow(v_0, 3), 2), mul(v_0, 2)), -1), mul(add(v_0, 1), add(v_0, -2)))
```

sage.symbolic.expression_conversions.laurent_polynomial(ex, base_ring=None, ring=None)
Return a Laurent polynomial from the symbolic expression ex.

INPUT:

ex – a symbolic expression

• base_ring, ring - Either a base_ring or a Laurent polynomial ring can be specified for the parent of result. If just a base_ring is given, then the variables of the base_ring will be the variables of the expression ex.

OUTPUT:

A Laurent polynomial.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import laurent_polynomial
sage: f = x^2 + 2/x
sage: laurent_polynomial(f, base_ring=QQ)
2*x^-1 + x^2
sage: _.parent()
Univariate Laurent Polynomial Ring in x over Rational Field

sage: laurent_polynomial(f, ring=LaurentPolynomialRing(QQ, 'x, y'))
x^2 + 2*x^-1
sage: _.parent()
Multivariate Laurent Polynomial Ring in x, y over Rational Field

sage: x, y = var('x, y')
sage: laurent_polynomial(x + 1/y^2, ring=LaurentPolynomialRing(QQ, 'x, y'))
x + y^-2
sage: _.parent()
Multivariate Laurent Polynomial Ring in x, y over Rational Field
```

sage.symbolic.expression_conversions.polynomial(ex, base_ring=None, ring=None)

Return a polynomial from the symbolic expression ex.

INPUT:

- ex a symbolic expression
- base_ring, ring Either a base_ring or a polynomial ring can be specified for the parent of result. If just a base_ring is given, then the variables of the base_ring will be the variables of the expression ex.

OUTPUT:

A polynomial.

EXAMPLES:

```
sage: from sage.symbolic.expression_conversions import polynomial
sage: f = x^2 + 2
sage: polynomial(f, base_ring=QQ)
x^2 + 2
sage: _.parent()
Univariate Polynomial Ring in x over Rational Field

sage: polynomial(f, ring=QQ['x,y'])
x^2 + 2
sage: _.parent()
Multivariate Polynomial Ring in x, y over Rational Field

sage: x, y = var('x, y')
sage: polynomial(x + y^2, ring=QQ['x,y'])
y^2 + x
sage: _.parent()
```

```
Multivariate Polynomial Ring in x, y over Rational Field

sage: s,t = var('s,t')
sage: expr = t^2-2*s*t+1
sage: expr.polynomial(None,ring=SR['t'])
t^2 - 2*s*t + 1
sage: _.parent()
Univariate Polynomial Ring in t over Symbolic Ring

sage: polynomial(x*y, ring=SR['x'])
y*x

sage: polynomial(y - sqrt(x), ring=SR['y'])
y - sqrt(x)
sage: _.list()
[-sqrt(x), 1]
```

The polynomials can have arbitrary (constant) coefficients so long as they coerce into the base ring:

```
sage: polynomial(2^sin(2)*x^2 + exp(3), base_ring=RR)
1.87813065119873*x^2 + 20.0855369231877
```

2.17 Complexity Measures

Some measures of symbolic expression complexity. Each complexity measure is expected to take a symbolic expression as an argument, and return a number.

```
sage.symbolic.complexity_measures.string_length(expr)
```

Returns the length of expr after converting it to a string.

INPUT:

• expr – the expression whose complexity we want to measure.

OUTPUT:

A real number representing the complexity of expr.

RATIONALE:

If the expression is longer on-screen, then a human would probably consider it more complex.

EXAMPLES:

This expression has three characters, x, $^{\land}$, and 2:

```
sage: from sage.symbolic.complexity_measures import string_length
sage: f = x^2
sage: string_length(f)
3
```

2.18 Further examples from Wester's paper

These are all the problems at http://yacas.sourceforge.net/essaysmanual.html

They come from the 1994 paper "Review of CAS mathematical capabilities", by Michael Wester, who put forward 123 problems that a reasonable computer algebra system should be able to solve and tested the then current versions of various commercial CAS on this list. Sage can do most of the problems natively now, i.e., with no explicit calls to Maxima or other systems.

```
sage: # (YES) factorial of 50, and factor it
sage: factorial(50)
3041409320171337804361260816606476884437764156896051200000000000
sage: factor(factorial(50))
2^47 * 3^22 * 5^12 * 7^8 * 11^4 * 13^3 * 17^2 * 19^2 * 23^2 * 29 * 31 * 37 * 41 * 43
$\to \times \text{47}$
```

```
sage: # (YES) 1/2+...+1/10 = 4861/2520
sage: sum(1/n for n in range(2,10+1)) == 4861/2520
True
```

```
sage: # (YES) Evaluate the Bessel function J[2] numerically at z=1+I.
sage: bessel_J(2, 1+I).n()
0.0415798869439621 + 0.247397641513306*I
```

```
sage: # (YES) Obtain period of decimal fraction 1/7=0.(142857).
sage: a = 1/7
sage: a
1/7
sage: a.period()
6
```

```
sage: # (YES) Continued fraction of 3.1415926535
sage: a = 3.1415926535
sage: continued_fraction(a)
[3; 7, 15, 1, 292, 1, 1, 6, 2, 13, 4]
```

```
sage: # (YES) Sqrt(2*Sqrt(3)+4)=1+Sqrt(3).
sage: # The Maxima backend equality checker does this;
sage: # note the equality only holds for one choice of sign,
sage: # but Maxima always chooses the "positive" one
sage: a = sqrt(2*sqrt(3) + 4); b = 1 + sqrt(3)
sage: float(a-b)
0.0
sage: bool(a == b)
True
sage: # We can, of course, do this in a quadratic field
sage: k.<sqrt3> = QuadraticField(3)
sage: asqr = 2*sqrt3 + 4
sage: b = 1+sqrt3
```

```
sage: asqr == b^2
True
```

```
sage: # (YES) Sqrt(14+3*Sqrt(3+2*Sqrt(5-12*Sqrt(3-2*Sqrt(2)))))=3+Sqrt(2).
sage: a = sqrt(14+3*sqrt(3+2*sqrt(5-12*sqrt(3-2*sqrt(2)))))
sage: b = 3+sqrt(2)
sage: a, b
(sqrt(3*sqrt(2*sqrt(-12*sqrt(-2*sqrt(2) + 3) + 5) + 3) + 14), sqrt(2) + 3)
sage: bool(a==b)
True
sage: abs(float(a-b)) < 1e-10
True
sage: # 2*Infinity-3=Infinity.
sage: 2*infinity-3 == infinity</pre>
True
```

```
sage: # (YES) Standard deviation of the sample (1, 2, 3, 4, 5).
sage: v = vector(RDF, 5, [1,2,3,4,5])
sage: v.standard_deviation()
1.5811388300841898
```

```
sage: # (NO) Hypothesis testing with t-distribution.
sage: # (NO) Hypothesis testing with chi^2 distribution
sage: # (But both are included in Scipy and R)
```

```
sage: # (YES) (x^2-4)/(x^2+4*x+4) = (x-2)/(x+2).
sage: R.<x> = QQ[]
sage: (x^2-4)/(x^2+4*x+4) == (x-2)/(x+2)
True
sage: restore('x')
```

```
sage: # (YES -- Maxima doesn't immediately consider them
sage: # equal, but simplification shows that they are)
sage: # (Exp(x)-1)/(Exp(x/2)+1)=Exp(x/2)-1.
sage: f = (\exp(x) - 1) / (\exp(x/2) + 1)
sage: g = \exp(x/2)-1
sage: f
(e^x - 1)/(e^(1/2*x) + 1)
sage: q
e^{(1/2*x)} - 1
sage: f.canonicalize_radical()
e^{(1/2*x)} - 1
sage: g
e^{(1/2*x)} - 1
sage: f(x=10.0).n(53), g(x=10.0).n(53)
(147.413159102577, 147.413159102577)
sage: bool(f == q)
True
```

```
sage: # (YES) Expand (1+x)^20, take derivative and factorize.
sage: # first do it using algebraic polys
sage: R.<x> = QQ[]
sage: f = (1+x)^20; f
x^20 + 20*x^19 + 190*x^18 + 1140*x^17 + 4845*x^16 + 15504*x^15 + 38760*x^14 + 77520*x^
```

```
\rightarrow13 + 125970*x^12 + 167960*x^11 + 184756*x^10 + 167960*x^9 + 125970*x^8 + 77520*x^7_
 \hookrightarrow + 38760*x^6 + 15504*x^5 + 4845*x^4 + 1140*x^3 + 190*x^2 + 20*x + 1
sage: deriv = f.derivative()
sage: deriv
20*x^{19} + 380*x^{18} + 3420*x^{17} + 19380*x^{16} + 77520*x^{15} + 232560*x^{14} + 542640*x^{13}
 \hookrightarrow + 1007760*x^12 + 1511640*x^11 + 1847560*x^10 + 1847560*x^9 + 1511640*x^8 +
 \rightarrow1007760*x^7 + 542640*x^6 + 232560*x^5 + 77520*x^4 + 19380*x^3 + 3420*x^2 + 380*x +
sage: deriv.factor()
(20) * (x + 1)^19
sage: restore('x')
sage: # next do it symbolically
sage: var('y')
У
sage: f = (1+y)^20; f
(v + 1)^20
sage: g = f.expand(); g
y^20 + 20*y^19 + 190*y^18 + 1140*y^17 + 4845*y^16 + 15504*y^15 + 38760*y^14 + 77520*y^16 + 38760*y^16 + 38760*y^17 + 38760*y^18 + 387
 \hookrightarrow13 + 125970*y^12 + 167960*y^11 + 184756*y^10 + 167960*y^9 + 125970*y^8 + 77520*y^7_
 \hookrightarrow+ 38760*y^6 + 15504*y^5 + 4845*y^4 + 1140*y^3 + 190*y^2 + 20*y + 1
sage: deriv = g.derivative(); deriv
20*y^{19} + 380*y^{18} + 3420*y^{17} + 19380*y^{16} + 77520*y^{15} + 232560*y^{14} + 542640*y^{13} - 1200*y^{18} + 1200*y^{18}
 \rightarrow+ 1007760*y^12 + 1511640*y^11 + 1847560*y^10 + 1847560*y^9 + 1511640*y^8 +\rightarrow
 \rightarrow1007760*y^7 + 542640*y^6 + 232560*y^5 + 77520*y^4 + 19380*y^3 + 3420*y^2 + 380*y + \rightarrow
 \hookrightarrow 2.0
sage: deriv.factor()
20*(y + 1)^19
```

```
sage: # (YES) Factorize x^100-1.
sage: factor(x^100-1)
(x^40 - x^30 + x^20 - x^10 + 1)*(x^20 + x^15 + x^10 + x^5 + 1)*(x^20 - x^15 + x^10 - x^2)*
x^5 + 1)*(x^8 - x^6 + x^4 - x^2 + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x^2)*
x^4 + 1)*(x^4 + 1)*(
```

```
sage: # (YES) Factorize x^4-3*x^2+1 in the field of rational numbers extended by roots of roots of
```

```
sage: # (YES) Factorize x^4-3*x^2+1 mod 5.
sage: k.< x > = GF(5) [ ]
sage: f = x^4 - 3*x^2 + 1
sage: f.factor()
```

```
(x + 2)^2 * (x + 3)^2

sage: # Alternatively, from symbol x as follows:

sage: reset('x')

sage: f = x^4 - 3*x^2 + 1

sage: f.polynomial(GF(5)).factor()

(x + 2)^2 * (x + 3)^2
```

```
sage: # (YES) Partial fraction decomposition of (x^2+2*x+3)/(x^3+4*x^2+5*x+2)
sage: f = (x^2+2*x+3)/(x^3+4*x^2+5*x+2); f
(x^2 + 2*x + 3)/(x^3 + 4*x^2 + 5*x + 2)
sage: f.partial_fraction()
3/(x + 2) - 2/(x + 1) + 2/(x + 1)^2
```

```
sage: # (YES) Assuming x>=y, y>=z, z>=x, deduce x=z.
sage: forget()
sage: var('x,y,z')
(x, y, z)
sage: assume(x>=y, y>=z,z>=x)
sage: bool(x==z)
True
```

```
sage: # (YES) Assuming x>y, y>0, deduce 2*x^2>2*y^2.
sage: forget()
sage: assume(x>y, y>0)
sage: sorted(assumptions())
[x > y, y > 0]
sage: bool(2*x^2 > 2*y^2)
True
sage: forget()
sage: assumptions()
[]
```

```
sage: # (NO) Solve the inequality Abs(x-1)>2.
sage: # Maxima doesn't solve inequalities
sage: # (but some Maxima packages do):
sage: eqn = abs(x-1) > 2
sage: eqn.solve(x)
[[x < -1], [3 < x]]</pre>
```

```
sage: # (NO) Solve the inequality (x-1)*...*(x-5)<0.
sage: eqn = prod(x-i for i in range(1,5 +1)) < 0
sage: # but don't know how to solve
sage: eqn.solve(x)
[[x < 1], [x > 2, x < 3], [x > 4, x < 5]]</pre>
```

```
sage: # (YES) \cos(3*x)/\cos(x) = 2*\cos(2*x) - 1.

sage: f = \cos(3*x)/\cos(x)
```

```
sage: g = 2*cos(2*x) - 1
sage: h = f-g
sage: h.trig_simplify()
```

```
sage: # (GOOD ENOUGH) Define rewrite rules to match Cos(3*x)/Cos(x) = Cos(x)^2 - 3*Sin(x)^2.
sage: # Sage has no notion of "rewrite rules", but
sage: # it can simplify both to the same thing.
sage: (cos(3*x)/cos(x)).simplify_full()
4*cos(x)^2 - 3
sage: (cos(x)^2-3*sin(x)^2).simplify_full()
4*cos(x)^2 - 3
```

```
sage: # (YES) Sqrt(997) - (997^3)^(1/6) = 0
sage: a = sqrt(997) - (997^3)^(1/6)
sage: a.simplify()
0
sage: bool(a == 0)
True
```

```
sage: # (YES) Sqrt(99983) - 99983^3^(1/6) = 0
sage: a = sqrt(99983) - (99983^3)^(1/6)
sage: bool(a==0)
True
sage: float(a)
1.1368683772...e-13
sage: 13*7691
99983
```

Or we can do it using number fields.

```
sage: reset('x')
sage: k.<b> = NumberField(x^3-2)
sage: a = (b + b^2)^3 - 6*(b + b^2) - 6
sage: a
0
```

```
sage: # (NO, except numerically) Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0
# Sage uses the Maxima convention when comparing symbolic expressions and
# returns True only when it can prove equality. Thus, in this case, we get
# False even though the equality holds.
sage: f = log(tan(x/2 + pi/4)) - arcsinh(tan(x))
sage: bool(f == 0)
False
sage: [abs(float(f(x=i/10))) < 1e-15 for i in range(1,5)]
[True, True, True, True]</pre>
```

```
sage: # (NO) Ln((2*Sqrt(r) + 1)/Sqrt(4*r 4*Sqrt(r) 1))=0.
sage: var('r')
r
sage: f = log( (2*sqrt(r) + 1) / sqrt(4*r + 4*sqrt(r) + 1)); f
log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1))
sage: bool(f == 0)
False
sage: [abs(float(f(r=i))) < 1e-10 for i in [0.1,0.3,0.5]]
[True, True, True]</pre>
```

```
sage: # (YES) Obtain real and imaginary parts of Ln(3+4*I).
sage: a = log(3+4*I); a
log(4*I + 3)
sage: a.real()
log(5)
sage: a.imag()
arctan(4/3)
```

```
sage: # (YES) Obtain real and imaginary parts of Tan(x+I*y)
sage: z = var('z')
sage: a = tan(z); a
tan(z)
sage: a.real()
sin(2*real_part(z))/(cos(2*real_part(z)) + cosh(2*imag_part(z)))
sage: a.imag()
sinh(2*imag_part(z))/(cos(2*real_part(z)) + cosh(2*imag_part(z)))
```

```
sage: # (YES) Simplify Ln(Exp(z)) to z for -Pi<Im(z)<=Pi.
sage: # Unfortunately (?), Maxima does this even without
sage: # any assumptions.
sage: # We *would* use assume(-pi < imag(z))</pre>
(continues on part page)
```

```
sage: # and assume(imag(z) <= pi)
sage: f = log(exp(z)); f
log(e^z)
sage: f.simplify()
z
sage: forget()</pre>
```

```
sage: # (YES) Assuming Re(x)>0, Re(y)>0, deduce x^{(1/n)}*y^{(1/n)}-(x*y)^{(1/n)}=0.
sage: # Maxima 5.26 has different behaviours depending on the current
sage: # domain.
sage: # To stick with the behaviour of previous versions, the domain is set
sage: # to 'real' in the following.
sage: # See Issue #10682 for further details.
sage: n = var('n')
sage: f = x^{(1/n)} y^{(1/n)} - (x*y)^{(1/n)}
sage: assume (real (x) > 0, real (y) > 0)
sage: f.simplify()
x^{(1/n)} y^{(1/n)} - (x*y)^{(1/n)}
sage: maxima = sage.calculus.calculus.maxima
sage: maxima.set('domain', 'real') # set domain to real
sage: f.simplify()
sage: maxima.set('domain', 'complex') # set domain back to its default value
sage: forget()
```

```
sage: # (SOMEWHAT) Solve Exp(x)=1 and get all solutions.
sage: # to_poly_solve in Maxima can do this.
sage: solve(exp(x) == 1, x)
[x == 0]
```

```
sage: # (SOMEWHAT) Solve Tan(x)=1 and get all solutions.
sage: # to_poly_solve in Maxima can do this.
sage: solve(tan(x) == 1, x)
[x == 1/4*pi]
```

```
sage: # (YES) Solve a degenerate 3x3 linear system.
sage: # x+y+z==6,2*x+y+2*z==10,x+3*y+z==10
sage: # First symbolically:
sage: solve([x+y+z==6, 2*x+y+2*z==10, x+3*y+z==10], x,y,z)
[[x == -r1 + 4, y == 2, z == r1]]
```

```
sage: # (YES) Invert a 2x2 symbolic matrix.
sage: # [[a,b],[1,a*b]]
sage: # Using multivariate poly ring -- much nicer
sage: R.<a,b> = QQ[]
sage: m = matrix(2,2,[a,b, 1, a*b])
sage: zz = m^(-1)
sage: zz
```

```
 \begin{bmatrix} a/(a^2 - 1) & (-1)/(a^2 - 1) \\ [(-1)/(a^2*b - b) & a/(a^2*b - b) \end{bmatrix}
```

```
sage: # (YES) Compute and factor the determinant of the 4x4 Vandermonde matrix in a, ...
 \hookrightarrow b, c, d.
sage: # Do it instead in a multivariate ring
sage: R. \langle a, b, c, d \rangle = QQ[]
sage: m = matrix(R, 4, 4, [[z^i for i in range(4)] for z in [a,b,c,d]])
sage: m
 [ 1 a a^2 a^3]
                     b b^2 b^3]
 [ 1 c c^2 c^3]
 [ 1 d d^2 d^3]
sage: d = m.determinant()
sage: d
a^3*b^2*c - a^2*b^3*c - a^3*b*c^2 + a*b^3*c^2 + a^2*b*c^3 - a*b^2*c^3 - a^3*b^2*d + a^2*b*c^3 - a^3*b^2*d + a^2*b^2*d + a^2*d + a^2*b^2*d + a^2*d + 
 \Rightarrow2*b^3*d + a^3*c^2*d - b^3*c^2*d - a^2*c^3*d + b^2*c^3*d + a^3*b*d^2 - a*b^3*d^2 - a^
 \Rightarrow3*c*d^2 + b^3*c*d^2 + a*c^3*d^2 - b*c^3*d^2 - a^2*b*d^3 + a*b^2*d^3 + a^2*c*d^3 - b^
 \Rightarrow2*c*d^3 - a*c^2*d^3 + b*c^2*d^3
sage: d.factor()
 (-1) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)
```

```
sage: # (YES) Find the eigenvalues of a 3x3 integer matrix.
sage: m = matrix(QQ, 3, [5,-3,-7, -2,1,2, 2,-3,-4])
sage: m.eigenspaces_left()
[
(3, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1  0 -1]),
(1, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1  1 -1]),
(-2, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 0  1  1])
]
```

```
e sage: limit( (1-\cos(x))/(x^2), x = 1/2) -4 \cos(1/2) + 4
```

```
sage: # (OK-ish) D(x)Abs(x)
sage: # Verify(D(x) Abs(x), Sign(x));
sage: diff(abs(x))
1/2*(x + conjugate(x))/abs(x)
sage: _.simplify_full()
x/abs(x)
sage: _ = var('x', domain='real')
sage: diff(abs(x))
x/abs(x)
sage: forget()
```

```
sage: # (YES) (Integrate(x)Abs(x))=Abs(x)*x/2
sage: integral(abs(x), x)
1/2*x*abs(x)
```

```
sage: # (YES) Compute derivative of Abs(x), piecewise defined.
sage: # Verify(D(x)if(x<0) (-x) else x,
sage: # Simplify(if(x<0) -1 else 1))
Piecewise defined function with 2 parts, [[(-10, 0), -1], [(0, 10), 1]]
sage: # (NOT really) Integrate Abs(x), piecewise defined.
sage: # Verify(Simplify(Integrate(x))
sage: # if(x<0) (-x) else x),
sage: # Simplify(if(x<0) (-x^2/2) else x^2/2));
sage: f = piecewise([((-10,0), -x), ((0,10), x)])
sage: f.integral(definite=True)</pre>
```

```
sage: # (YES) Taylor series of 1/Sqrt(1-v^2/c^2) at v=0.
sage: var('v,c')
(v, c)
sage: taylor(1/sqrt(1-v^2/c^2), v, 0, 7)
1/2*v^2/c^2 + 3/8*v^4/c^4 + 5/16*v^6/c^6 + 1
```

```
sage: # (OK-ish) (Taylor expansion of Sin(x))/(Taylor expansion of Cos(x)) = (Taylor_
→ expansion of Tan(x)).
sage: # TestYacas(Taylor(x,0,5)(Taylor(x,0,5)Sin(x))/
sage: # (Taylor(x,0,5)Cos(x)), Taylor(x,0,5)Tan(x));
sage: f = taylor(sin(x), x, 0, 8)
sage: g = taylor(cos(x), x, 0, 8)
sage: h = taylor(tan(x), x, 0, 8)
sage: f = f.power_series(QQ)
sage: g = g.power_series(QQ)
sage: h = h.power_series(QQ)
sage: f - g*h
O(x^8)
```

```
sage: # (YES) Taylor expansion of Ln(x)^a*Exp(-b*x) at x=1.
sage: a,b = var('a,b')
sage: taylor(log(x)^a*exp(-b*x), x, 1, 3)
-1/48*(a^3*(x - 1)^a + a^2*(6*b + 5)*(x - 1)^a + 8*b^3*(x - 1)^a + 2*(6*b^2 + 5*b + 1)^a + 2*(6*b^2 + 5*b^2 + 1)^a + 2*(6*b^2 + 1)^a + 2*(6*b^2
```

```
sage: # (NO) Compute n-th term of the Taylor series of Ln(Sin(x)/x) at x=0.

sage: # need formal functions
```

```
sage: # (NO) Compute n-th term of the Taylor series of Exp(-x)*Sin(x) at x=0.
sage: # (Sort of, with some work)
sage: # Solve x=Sin(y)+Cos(y) for y as Taylor series in x at x=1.
sage: # TestYacas(InverseTaylor(y, 0, 4) Sin(y) +Cos(y),
               (y-1)+(y-1)^2/2+2*(y-1)^3/3+(y-1)^4;
sage: #
sage: #
              Note that InverseTaylor does not give the series in terms of x but in-
→terms of y which is semantically
sage: # wrong. But other CAS do the same.
sage: f = sin(y) + cos(y)
sage: g = f.taylor(y, 0, 10)
sage: h = g.power_series(QQ)
sage: k = (h - 1).reverse()
sage: k
y + \frac{1}{2}y^2 + \frac{2}{3}y^3 + \frac{y^4}{10}y^5 + \frac{37}{12}y^6 + \frac{41}{7}y^7 + \frac{23}{2}y^8 + \frac{1667}{72}y^6
\rightarrow 9 + 3803/80*y^10 + O(y^11)
```

```
sage: # (OK) Compute Legendre polynomials directly from Rodrigues's formula, P[n]=1/ \hookrightarrow (2^n*n!) * (Deriv(x,n) (x^2-1)^n).

sage: # P(n,x) := Simplify( 1/(2*n)!! *

sage: # Deriv(x,n) (x^2-1)^n);

sage: # TestYacas(P(4,x), (35*x^4)/8+(-15*x^2)/4+3/8);

sage: P = lambda n, x: simplify(diff((x^2-1)^n,x,n) / (2^n * factorial(n)))

sage: P(4,x).expand()

35/8*x^4 - 15/4*x^2 + 3/8
```

```
sage: # (YES) Define the polynomial p=Sum(i,1,5,a[i]*x^i).
sage: # symbolically
sage: ps = sum(var('a%s'%i)*x^i for i in range(1,6)); ps
a5*x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x
sage: ps.parent()
Symbolic Ring
sage: # algebraically
sage: R = PolynomialRing(QQ,5,names='a')
sage: S.<x> = PolynomialRing(R)
sage: p = S(list(R.gens()))*x; p
a4*x^5 + a3*x^4 + a2*x^3 + a1*x^2 + a0*x
sage: p.parent()
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in a0, a1, a2, a3, a4 over Rational Field
```

```
sage: # (YES) Convert the above to Horner's form.
sage: # Verify(Horner(p, x), ((((a[5]*x+a[4])*x
sage: # +a[3])*x+a[2])*x+a[1])*x);
(continues on next page)
```

```
sage: restore('x')
sage: SR(p).horner(x)
((((a4*x + a3)*x + a2)*x + a1)*x + a0)*x
```

```
sage: # (NO) Convert the result of problem 127 to Fortran syntax.
sage: # CForm(Horner(p, x));
```

```
sage: # (YES) Verify that True And False=False.
sage: (True and False) is False
True
```

```
sage: # (YES) Prove x Or Not x.
sage: for x in [True, False]:
....: print(x or (not x))
True
True
```

```
sage: # (YES) Prove x Or y Or x And y=>x Or y.
sage: for x in [True, False]:
....: for y in [True, False]:
....: if x or y or x and y:
....: if not (x or y):
....: print("failed!")
```

2.19 Solving ordinary differential equations

This file contains functions useful for solving differential equations which occur commonly in a 1st semester differential equations course. For another numerical solver see the <code>ode_solver()</code> function and the optional package Octave.

Solutions from the Maxima package can contain the three constants _C, _K1, and _K2 where the underscore is used to distinguish them from symbolic variables that the user might have used. You can substitute values for them, and make them into accessible usable symbolic variables, for example with var ("_C").

Commands:

- desolve () Compute the "general solution" to a 1st or 2nd order ODE via Maxima.
- desolve laplace() Solve an ODE using Laplace transforms via Maxima. Initial conditions are optional.
- desolve_rk4 () Solve numerically an IVP for one first order equation, return list of points or plot.
- desolve_system_rk4() Solve numerically an IVP for a system of first order equations, return list of points.
- desolve_odeint() Solve numerically a system of first-order ordinary differential equations using odeint from scipy.integrate module.
- desolve_system() Solve a system of 1st order ODEs of any size using Maxima. Initial conditions are optional.
- eulers_method() Approximate solution to a 1st order DE, presented as a table.
- eulers_method_2x2() Approximate solution to a 1st order system of DEs, presented as a table.
- eulers_method_2x2_plot() Plot the sequence of points obtained from Euler's method.

The following functions require the optional package tides:

- desolve_mintides() Numerical solution of a system of 1st order ODEs via the Taylor series integrator
 method implemented in TIDES.
- desolve_tides_mpfr() Arbitrary precision Taylor series integrator implemented in TIDES.

AUTHORS:

- David Joyner (3-2006) Initial version of functions
- Marshall Hampton (7-2007) Creation of Python module and testing
- Robert Bradshaw (10-2008) Some interface cleanup.
- Robert Marik (10-2009) Some bugfixes and enhancements
- Miguel Marco (06-2014) Tides desolvers

Solve a 1st or 2nd order linear ODE, including IVP and BVP.

INPUT:

- de an expression or equation representing the ODE
- dvar the dependent variable (hereafter called *y*)
- ics (optional) the initial or boundary conditions
 - for a first-order equation, specify the initial x and y
 - for a second-order equation, specify the initial x, y, and dy/dx, i.e. write $[x_0, y(x_0), y'(x_0)]$
 - for a second-order boundary solution, specify initial and final x and y boundary conditions, i.e. write $[x_0, y(x_0), x_1, y(x_1)]$.
 - gives an error if the solution is not Symbolic Equation (as happens for example for a Clairaut equation)
- ivar (optional) the independent variable (hereafter called *x*), which must be specified if there is more than one independent variable in the equation
- show_method (optional) if True, then Sage returns pair [solution, method], where method is the string describing the method which has been used to get a solution (Maxima uses the following order for first order equations: linear, separable, exact (including exact with integrating factor), homogeneous, bernoulli, generalized homogeneous) use carefully in class, see below the example of an equation which is separable but this property is not recognized by Maxima and the equation is solved as exact.
- contrib_ode (optional) if True, desolve allows to solve Clairaut, Lagrange, Riccati and some other equations. This may take a long time and is thus turned off by default. Initial conditions can be used only if the result is one Symbolic Equation (does not contain a singular solution, for example).
- algorithm (default: 'maxima') one of
 - 'maxima' use maxima
 - 'fricas' use FriCAS (the optional fricas spkg has to be installed)

OUTPUT:

In most cases return a Symbolic Equation which defines the solution implicitly. If the result is in the form $y(x) = \dots$ (happens for linear eqs.), return the right-hand side only. The possible constant solutions of separable ODEs are omitted.

Note: Use desolve? <tab> if the output in the Sage notebook is truncated.

EXAMPLES:

```
sage: x = var('x')
sage: y = function('y')(x)
sage: desolve(diff(y,x) + y - 1, y)
(_C + e^x)*e^(-x)
```

```
sage: f = desolve(diff(y,x) + y - 1, y, ics=[10,2]); f
(e^10 + e^x) *e^(-x)
```

```
sage: plot(f)
Graphics object consisting of 1 graphics primitive
```

We can also solve second-order differential equations:

```
sage: x = var('x')
sage: y = function('y')(x)
sage: de = diff(y,x,2) - y == x
sage: desolve(de, y)
_K2*e^(-x) + _K1*e^x - x
```

```
sage: f = desolve(de, y, [10,2,1]); f
-x + 7*e^(x - 10) + 5*e^(-x + 10)
```

```
sage: f(x=10)
2
```

```
sage: diff(f,x)(x=10)
1
```

```
sage: de = diff(y,x,2) + y == 0
sage: desolve(de, y)
_K2*cos(x) + _K1*sin(x)
```

```
sage: desolve(de, y, [0,1,pi/2,4])
cos(x) + 4*sin(x)
```

```
sage: desolve(y*diff(y,x)+sin(x)==0,y)
-1/2*y(x)^2 == _C - cos(x)
```

Clairaut equation: general and singular solutions:

```
sage: desolve(diff(y,x)^2+x*diff(y,x)-y==0,y,contrib_ode=True,show_method=True) [[y(x) == C^2 + C^*x, y(x) == -1/4*x^2], 'clairau...']
```

For equations involving more variables we specify an independent variable:

```
sage: a,b,c,n=var('a b c n')
sage: desolve(x^2*diff(y,x)==a+b*x^n+c*x^2*y^2,y,ivar=x,contrib_ode=True)
[[y(x) == 0, (b*x^n(n - 2) + a/x^2)*c^2*u == 0]]
```

```
sage: desolve(x^2*diff(y,x)==a+b*x^n+c*x^2*y^2, y, ivar=x, contrib_ode=True, show_

method=True)
[[[y(x) == 0, (b*x^n(n - 2) + a/x^2)*c^2*u == 0]], 'riccati']
```

Higher order equations, not involving independent variable:

```
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y).expand() 1/6*y(x)^3 + _K1*y(x) = _K2 + x
```

```
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,1,3]).expand() 1/6*y(x)^3 - 5/3*y(x) == x - 3/2
```

```
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,1,3],show_method=True) [1/6*y(x)^3 - 5/3*y(x) == x - 3/2, 'freeofx']
```

Separable equations - Sage returns solution in implicit form:

```
sage: desolve(diff(y,x)*sin(y) == cos(x),y)
-cos(y(x)) == C + sin(x)
```

```
sage: desolve(diff(y,x)*sin(y) == cos(x),y,[pi/2,1])
-cos(y(x)) == -cos(1) + sin(x) - 1
```

Linear equation - Sage returns the expression on the right hand side only:

```
sage: desolve(diff(y,x)+(y) == cos(x),y)
1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x)
```

```
sage: desolve(diff(y,x)+(y) == cos(x),y,show_method=True)
[1/2*((cos(x) + sin(x))*e^x + 2*_C)*e^(-x), 'linear']
```

```
sage: desolve(diff(y,x)+(y) == cos(x),y,[0,1])
1/2*(cos(x)*e^x + e^x*sin(x) + 1)*e^(-x)
```

This ODE with separated variables is solved as exact. Explanation - factor does not split e^{x-y} in Maxima into $e^x e^y$:

```
sage: desolve(diff(y,x) == exp(x-y),y, show_method=True)
[-e^x + e^y(x) == _C, 'exact']
```

You can solve Bessel equations, also using initial conditions, but you cannot put (sometimes desired) the initial condition at x = 0, since this point is a singular point of the equation. Anyway, if the solution should be bounded at x = 0, then K2=0.

```
sage: desolve(x^2*diff(y,x,x)+x*diff(y,x)+(x^2-4)*y==0,y)
_K1*bessel_J(2, x) + _K2*bessel_Y(2, x)
```

Example of difficult ODE producing an error:

```
sage: desolve(sqrt(y)*diff(y,x)+e^(y)+cos(x)-sin(x+y)==0,y) # not tested
Traceback (click to the left for traceback)
...
NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option
→contrib_ode to True."
```

Another difficult ODE with error - moreover, it takes a long time:

```
sage: desolve(sqrt(y)*diff(y,x)+e^(y)+cos(x)-sin(x+y)==0,y,contrib_ode=True) # \rightarrow not \ tested
```

Some more types of ODEs:

```
sage: desolve(x*diff(y,x)^2-(1+x*y)*diff(y,x)+y==0,y,contrib_ode=True,show_

when the contribination of the contribution of the contri
```

```
sage: desolve(diff(y,x) == (x+y)^2,y,contrib_ode=True, show_method=True)
[[[x == _C - arctan(sqrt(t)), y(x) == -x - sqrt(t)], [x == _C + arctan(sqrt(t)), \[ \to y(x) == -x + sqrt(t)]], 'lagrange']
```

These two examples produce an error (as expected, Maxima 5.18 cannot solve equations from initial conditions). Maxima 5.18 returns false answer in this case!

```
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,2]).expand() # not tested
Traceback (click to the left for traceback)
...
NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option_
\rightarrowcontrib_ode to True."
```

```
sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y,[0,1,2],show_method=True) # not \rightarrow tested Traceback (click to the left for traceback) ... NotImplementedError, "Maxima was unable to solve this ODE. Consider to set option \rightarrow contrib_ode to True."
```

Second order linear ODE:

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y)
(_K2*x + _K1)*e^(-x) + 1/2*sin(x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,show_method=True)
[(_K2*x + _K1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,1])
1/2*(7*x + 6)*e^{-(-x)} + 1/2*sin(x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,1],show_method=True)
[1/2*(7*x + 6)*e^(-x) + 1/2*sin(x), 'variationofparameters']
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == cos(x),y,[0,3,pi/2,2]) 3*(x*(e^{(1/2*pi)} - 2)/pi + 1)*e^{(-x)} + 1/2*sin(x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == \cos(x),y,[0,3,pi/2,2],show_method=True) [3*(x*(e^(1/2*pi) - 2)/pi + 1)*e^(-x) + 1/2*sin(x), 'variationofparameters']
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y)
(_K2*x + _K1)*e^(-x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,show_method=True)
[(_K2*x + _K1)*e^(-x), 'constcoeff']
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,1])
(4*x + 3)*e^(-x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,1],show_method=True)
[(4*x + 3)*e^(-x), 'constcoeff']
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,pi/2,2])
(2*x*(2*e^(1/2*pi) - 3)/pi + 3)*e^(-x)
```

```
sage: desolve(diff(y,x,2)+2*diff(y,x)+y == 0,y,[0,3,pi/2,2],show_method=True) [(2*x*(2*e^{(1/2*pi)} - 3)/pi + 3)*e^{(-x)}, 'constcoeff']
```

Using algorithm='fricas' we can invoke the differential equation solver from FriCAS. For example, it can solve higher order linear equations:

The initial conditions are then interpreted as $[x_0, y(x_0), y'(x_0), \dots, y^{(n)}(x_0)]$:

```
sage: Y = desolve(de, y, ics=[1,3,7], algorithm="fricas"); Y # optional - fricas 1/15*(x^5 + 15*x^3 + 50*x^2 - 21)/x
```

FriCAS can also solve some non-linear equations:

```
sage: de = diff(y, x) == y / (x+y*log(y))
sage: Y = desolve(de, y, algorithm="fricas"); Y # optional - fricas
1/2*(log(y(x))^2*y(x) - 2*x)/y(x)
```

AUTHORS:

- David Joyner (1-2006)
- Robert Bradshaw (10-2008)
- Robert Marik (10-2009)

sage.calculus.desolvers.desolve_laplace (de, dvar, ics=None, ivar=None)

Solve an ODE using Laplace transforms. Initial conditions are optional.

INPUT:

- de a lambda expression representing the ODE (e.g. de = diff(y, x, 2) == diff(y, x) + sin(x)
- dvar the dependent variable (e.g. y)
- ivar (optional) the independent variable (hereafter called *x*), which must be specified if there is more than one independent variable in the equation.
- ics a list of numbers representing initial conditions, (e.g. f(0)=1, f'(0)=2 corresponds to ics = [0,1,2])

OUTPUT:

Solution of the ODE as symbolic expression

EXAMPLES:

```
sage: u=function('u')(x)
sage: eq = diff(u,x) - exp(-x) - u == 0
sage: desolve_laplace(eq,u)
1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
```

We can use initial conditions:

```
sage: desolve_laplace(eq,u,ics=[0,3])
-1/2*e^(-x) + 7/2*e^x
```

The initial conditions do not persist in the system (as they persisted in previous versions):

```
sage: desolve_laplace(eq,u)
1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
```

```
sage: f=function('f')(x)
sage: eq = diff(f,x) + f == 0
sage: desolve_laplace(eq,f,[0,1])
e^(-x)
```

```
sage: x = var('x')
sage: f = function('f')(x)
sage: de = diff(f,x,x) - 2*diff(f,x) + f
sage: desolve_laplace(de,f)
-x*e^x*f(0) + x*e^x*D[0](f)(0) + e^x*f(0)
```

```
sage: desolve_laplace(de,f,ics=[0,1,2])
x*e^x + e^x
```

AUTHORS:

- David Joyner (1-2006,8-2007)
- Robert Marik (10-2009)

sage.calculus.desolvers.desolve_mintides(f, ics, initial, final, delta, tolrel=1e-16, tolabs=1e-16)

Solve numerically a system of first order differential equations using the taylor series integrator implemented in mintides.

INPUT:

- f symbolic function. Its first argument will be the independent variable. Its output should be de derivatives of the dependent variables.
- ics a list or tuple with the initial conditions.
- initial the starting value for the independent variable.
- final the final value for the independent value.
- delta the size of the steps in the output.
- tolrel the relative tolerance for the method.
- tolabs the absolute tolerance for the method.

OUTPUT:

• A list with the positions of the IVP.

EXAMPLES:

We integrate a periodic orbit of the Kepler problem along 50 periods:

```
sage: var('t,x,y,X,Y')
(t, x, y, X, Y)
sage: f(t,x,y,X,Y) = [X, Y, -x/(x^2+y^2)^3(3/2), -y/(x^2+y^2)^3(3/2)]
sage: ics = [0.8, 0, 0, 1.22474487139159]
sage: t = 100*pi
sage: sol = desolve_mintides(f, ics, 0, t, t, 1e-12, 1e-12) # optional -tides
sage: sol # optional -tides # abs tol 1e-5
[[0.00000000000000,
0.800000000000000,
0.0000000000000000,
0.0000000000000000,
1.22474487139159],
[314.159265358979,
0.800000000028622,
-5.91973525754241e-9,
7.56887091890590e-9,
1.22474487136329]]
```

ALGORITHM:

Uses TIDES.

REFERENCES:

- A. Abad, R. Barrio, F. Blesa, M. Rodriguez. Algorithm 924. ACM Transactions on Mathematical Software, 39 (1), 1-28.
- A. Abad, R. Barrio, F. Blesa, M. Rodriguez. TIDES tutorial: Integrating ODEs by using the Taylor Series Method.

```
sage.calculus.desolvers.desolve_odeint (des, ics, times, dvars, ivar=None, compute\_jac=False, args=(), rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
```

Solve numerically a system of first-order ordinary differential equations using odeint from scipy.integrate module.

INPUT:

- des right hand sides of the system
- ics initial conditions
- times a sequence of time points in which the solution must be found
- dvars dependent variables. ATTENTION: the order must be the same as in des, that means: d(dvars[i])/dt=des[i]
- ivar independent variable, optional.
- compute_jac boolean. If True, the Jacobian of des is computed and used during the integration of stiff systems. Default value is False.

Other Parameters (taken from the documentation of odeint function from scipy.integrate module.)

• rtol, atol: float The input parameters rtol and atol determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form:

```
max-norm of (e / ewt) \le 1
```

where ewt is a vector of positive error weights computed as:

```
ewt = rtol * abs(y) + atol
```

rtol and atol can be either vectors the same length as y or scalars.

- tcrit: array Vector of critical points (e.g. singularities) where integration care should be taken.
- h0: float, (0: solver-determined) The step size to be attempted on the first step.
- hmax : float, (0: solver-determined) The maximum absolute step size allowed.
- hmin: float, (0: solver-determined) The minimum absolute step size allowed.
- ixpr: boolean. Whether to generate extra printing at method switches.
- mxstep: integer, (0: solver-determined) Maximum number of (internally defined) steps allowed for each integration point in t.
- mxhnil: integer, (0: solver-determined) Maximum number of messages printed.
- mxordn: integer, (0: solver-determined) Maximum order to be allowed for the nonstiff (Adams) method.
- mxords: integer, (0: solver-determined) Maximum order to be allowed for the stiff (BDF) method.

OUTPUT:

Return a list with the solution of the system at each time in times.

EXAMPLES:

Lotka Volterra Equations:

Lorenz Equations:

One-dimensional stiff system:

Another stiff system with some optional parameters with no default value:

AUTHOR:

• Oriol Castejon (05-2010)

Solve numerically one first-order ordinary differential equation.

INPUT:

Input is similar to desolve command. The differential equation can be written in a form close to the plot_slope_field or desolve command.

- Variant 1 (function in two variables)
 - de right hand side, i.e. the function f(x, y) from ODE y' = f(x, y)
 - dvar dependent variable (symbolic variable declared by var)
- Variant 2 (symbolic equation)
 - de equation, including term with diff(y, x)
 - dvar dependent variable (declared as function of independent variable)
- · Other parameters
 - ivar should be specified, if there are more variables or if the equation is autonomous
 - ics initial conditions in the form [x0, y0]
 - end_points the end points of the interval
 - * if end_points is a or [a], we integrate between min(ics[0],a) and max(ics[0],a)
 - * if end_points is None, we use end_points=ics[0]+10

- * if end_points is [a,b] we integrate between min(ics[0], a) and max(ics[0], b)
- step (optional, default:0.1) the length of the step (positive number)
- output (optional, default: 'list') one of 'list', 'plot', 'slope_field' (graph of the solution with slope field)

OUTPUT:

Return a list of points, or plot produced by list_plot, optionally with slope field.

See also:

```
ode_solver().
```

EXAMPLES:

```
sage: from sage.calculus.desolvers import desolve_rk4
```

Variant 2 for input - more common in numerics:

```
sage: x,y = var('x,y')
sage: desolve_rk4(x*y*(2-y),y,ics=[0,1],end_points=1,step=0.5)
[[0, 1], [0.5, 1.12419127424558], [1.0, 1.46159016228882...]]
```

Variant 1 for input - we can pass ODE in the form used by desolve function In this example we integrate backwards, since end_points < ics[0]:

```
sage: y = function('y')(x)
sage: desolve_rk4(diff(y,x)+y*(y-1) == x-2,y,ics=[1,1],step=0.5, end_points=0)
[[0.0, 8.904257108962112], [0.5, 1.90932794536153...], [1, 1]]
```

Here we show how to plot simple pictures. For more advanced applications use list_plot instead. To see the resulting picture use show(P) in Sage notebook.

ALGORITHM:

4th order Runge-Kutta method. Wrapper for command rk in Maxima's dynamics package. Perhaps could be faster by using fast float instead.

AUTHORS:

• Robert Marik (10-2009)

sage.calculus.desolvers.desolve_rk4_determine_bounds (ics, end_points=None)

Used to determine bounds for numerical integration.

- If end_points is None, the interval for integration is from ics[0] to ics[0]+10
- If end_points is a or [a], the interval for integration is from min (ics[0], a) to max (ics[0], a)
- If end_points is [a,b], the interval for integration is from min (ics[0],a) to max (ics[0],b)

EXAMPLES:

```
sage: from sage.calculus.desolvers import desolve_rk4_determine_bounds
sage: desolve_rk4_determine_bounds([0,2],1)
(0, 1)
```

```
sage: desolve_rk4_determine_bounds([0,2])
(0, 10)
```

```
sage: desolve_rk4_determine_bounds([0,2],[-2])
(-2, 0)
```

```
sage: desolve_rk4_determine_bounds([0,2],[-2,4])
(-2, 4)
```

sage.calculus.desolvers.desolve_system(des, vars, ics=None, ivar=None, algorithm='maxima')

Solve a system of any size of 1st order ODEs. Initial conditions are optional.

One dimensional systems are passed to desolve_laplace().

INPUT:

- des list of ODEs
- vars list of dependent variables
- ics (optional) list of initial values for ivar and vars; if ics is defined, it should provide initial conditions for each variable, otherwise an exception would be raised
- ivar (optional) the independent variable, which must be specified if there is more than one independent variable in the equation
- algorithm (default: 'maxima') one of
 - 'maxima' use maxima
 - 'fricas' use FriCAS (the optional fricas spkg has to be installed)

EXAMPLES:

```
sage: t = var('t')
sage: x = function('x')(t)
sage: y = function('y')(t)
sage: de1 = diff(x,t) + y - 1 == 0
sage: de2 = diff(y,t) - x + 1 == 0
sage: desolve_system([de1, de2], [x,y])
[x(t) == (x(0) - 1)*cos(t) - (y(0) - 1)*sin(t) + 1,
    y(t) == (y(0) - 1)*cos(t) + (x(0) - 1)*sin(t) + 1]
```

The same system solved using FriCAS:

```
sage: desolve_system([de1, de2], [x,y], algorithm='fricas') # optional - fricas
[x(t) == _{C0*\cos(t)} + \cos(t)^2 + _{C1*\sin(t)} + \sin(t)^2,
  y(t) == _{C1*\cos(t)} + _{C0*\sin(t)} + 1]
```

Now we give some initial conditions:

```
sage: sol = desolve_system([de1, de2], [x,y], ics=[0,1,2]); sol
[x(t) == -sin(t) + 1, y(t) == cos(t) + 1]
```

```
sage: solnx, solny = sol[0].rhs(), sol[1].rhs()
sage: plot([solnx,solny],(0,1)) # not tested
sage: parametric_plot((solnx,solny),(0,1)) # not tested
```

AUTHORS:

- Robert Bradshaw (10-2008)
- Sergey Bykov (10-2014)

Solve numerically a system of first-order ordinary differential equations using the 4th order Runge-Kutta method. Wrapper for Maxima command rk.

INPUT:

input is similar to desolve_system and desolve_rk4 commands

- des right hand sides of the system
- vars dependent variables
- ivar (optional) should be specified, if there are more variables or if the equation is autonomous and the independent variable is missing
- ics initial conditions in the form [x0, y01, y02, y03,]
- end_points the end points of the interval
 - if end_points is a or [a], we integrate on between min(ics[0], a) and max(ics[0], a)
 - if end_points is None, we use end_points=ics[0]+10
 - if end_points is [a,b] we integrate on between min(ics[0], a) and max(ics[0], b)
- step (optional, default: 0.1) the length of the step

OUTPUT:

Return a list of points.

See also:

```
ode_solver().
```

EXAMPLES:

```
sage: from sage.calculus.desolvers import desolve_system_rk4
```

Lotka Volterra system:

ALGORITHM:

4th order Runge-Kutta method. Wrapper for command rk in Maxima's dynamics package. Perhaps could be faster by using fast_float instead.

AUTHOR:

Robert Marik (10-2009)

```
sage.calculus.desolvers.desolve_tides_mpfr (f, ics, initial, final, delta, tolrel=1e-16, tolabs=1e-16, digits=50)
```

Solve numerically a system of first order differential equations using the taylor series integrator in arbitrary precision implemented in tides.

INPUT:

- f symbolic function. Its first argument will be the independent variable. Its output should be de derivatives of the dependent variables.
- ics a list or tuple with the initial conditions.
- initial the starting value for the independent variable.
- final the final value for the independent value.
- delta the size of the steps in the output.
- tolrel the relative tolerance for the method.
- tolabs the absolute tolerance for the method.
- digits the digits of precision used in the computation.

OUTPUT:

• A list with the positions of the IVP.

EXAMPLES:

We integrate the Lorenz equations with Saltzman values for the parameters along 10 periodic orbits with 100 digits of precision:

```
sage: var('t,x,y,z')
(t, x, y, z)
sage: s = 10
sage: r = 28
sage: b = 8/3
sage: f(t,x,y,z) = [s*(y-x),x*(r-z)-y,x*y-b*z]
sage: x0 = -13.
sage: y0 = -19.
sage: z0 = 27
sage: T = 15.
sage: sol = desolve_tides_mpfr(f, [x0, y0, z0], 0, T, T, 1e-100, 1e-100, 100) #_
⇔optional - tides
sage: sol # optional -tides # abs tol 1e-50
-13.
-19.
\hookrightarrow
27.
```

```
[15.
  -13
   +763610682134200525014401054361653864100864854092368453537864292120282774726811585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 294023934631585 \\ 29402393463158 \\ 29402393463158 \\ 29402393463158 \\ 2940239346315 \\ 2940239467 \\ 2940239467 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 294023947 \\ 29402394 \\ 294023947 \\ 294023947 \\ 2940237 \\ 2940237 \\ 294027 \\ 29
  26
```

ALGORITHM:

Uses TIDES.

```
Warning: This requires the package tides.
```

REFERENCES:

- [ABBR2011]
- [ABBR2012]

```
sage.calculus.desolvers.eulers_method (f, x0, y0, h, x1, algorithm = 'table')
```

This implements Euler's method for finding numerically the solution of the 1st order ODE y' = f(x, y), y(a) = c. The x column of the table increments from x_0 to x_1 by h (so $(x_1 - x_0)/h$ must be an integer). In the y column, the new y-value equals the old y-value plus the corresponding entry in the last column.

Note: This function is for pedagogical purposes only.

EXAMPLES:

```
sage: from sage.calculus.desolvers import eulers_method
sage: x,y = PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5*x+y-5,0,1,1/2,1)
                                               h*f(x,y)
    Х
                           У
     0
                           1
                                               -2
  1/2
                          -1
                                              -7/4
    1
                       -11/4
                                             -11/8
```

```
sage: x,y = PolynomialRing(QQ,2,"xy").gens()
sage: eulers_method(5*x+y-5, 0, 1, 1/2, 1, algorithm="none")
[[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
```

```
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: x,y = PolynomialRing(RR,2,"xy").gens()
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm="None")
[[0, 1], [1/2, -1.0], [1, -2.7], [3/2, -4.0]]
```

```
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: x,y=PolynomialRing(RR,2,"xy").gens()
```

```
sage: eulers_method(5*x+y-5,0,1,1/2,1,algorithm="none")
[[0, 1], [1/2, -1], [1, -11/4], [3/2, -33/8]]
```

```
sage: pts = eulers_method(5*x+y-5,0,1,1/2,1,algorithm="none")
sage: P1 = list_plot(pts) #__
→ needs sage.plot
sage: P2 = line(pts) #__
→ needs sage.plot
sage: (P1 + P2).show() #__
→ needs sage.plot
```

AUTHORS:

David Joyner

sage.calculus.desolvers.eulers_method_2x2 (f, g, t0, x0, y0, h, t1, algorithm = 'table')

This implements Euler's method for finding numerically the solution of the 1st order system of two ODEs

$$x' = f(t, x, y), x(t_0) = x_0$$

 $y' = g(t, x, y), y(t_0) = y_0.$

The t column of the table increments from t_0 to t_1 by h (so $\frac{t_1-t_0}{h}$ must be an integer). In the x column, the new x-value equals the old x-value plus the corresponding entry in the next (third) column. In the y column, the new y-value equals the old y-value plus the corresponding entry in the next (last) column.

Note: This function is for pedagogical purposes only.

EXAMPLES:

```
sage: from sage.calculus.desolvers import eulers_method_2x2
sage: t, x, y = PolynomialRing(QQ,3,"txy").gens()
sage: f = x+y+t; g = x-y
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1,algorithm="none")
[[0, 0, 0], [1/3, 0, 0], [2/3, 1/9, 0], [1, 10/27, 1/27], [4/3, 68/81, 4/27]]
```

1/3		0	1/9	0	I
2/3	0	1/9	7/27	0	ĵ
	1/27	10/27	38/81	1/27]

```
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: t,x,y=PolynomialRing(RR,3,"txy").gens()
sage: f = x+y+t; g = x-y
sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)
                                           h*f(t,x,y)
   t
                        X
                                                                          У
   h*g(t,x,y)
    0
                                                  0.00
                          0
                                                                          0
          0.00
  1/3
                       0.00
                                                  0.13
                                                                       0.00
          0.00
                       0.13
  2/3
                                                  0.29
                                                                       0.00
          0.043
                       0.41
                                                 0.57
                                                                      0.043
    1
           0.15
```

To numerically approximate y(1), where $(1+t^2)y'' + y' - y = 0$, y(0) = 1, y'(0) = -1, using 4 steps of Euler's method, first convert to a system: $y_1' = y_2$, $y_1(0) = 1$; $y_2' = \frac{y_1 - y_2}{1 + t^2}$, $y_2(0) = -1$.

```
sage: RR = RealField(sci_not=0, prec=4, rnd='RNDU')
sage: t, x, y=PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = (x-y)/(1+t^2)
sage: eulers_method_2x2(f,g, 0, 1, -1, 1/4, 1)
                                          h*f(t,x,y)
                                                                           У
\rightarrow h*g(t,x,y)
                                                 -0.25
          0.50
 1/4
                      0.75
                                                -0.12
                                                                       -0.50
          0.29
1/2
                      0.63
                                                -0.054
                                                                       -0.21
          0.19
3/4
                      0.63
                                               -0.0078
                                                                      -0.031
         0.11
  1
                      0.63
                                                 0.020
                                                                       0.079
         0.071
```

To numerically approximate y(1), where y'' + ty' + y = 0, y(0) = 1, y'(0) = 0:

```
sage: t,x,y=PolynomialRing(RR,3,"txy").gens()
sage: f = y; g = -x-y*t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
   t
                                           h*f(t,x,y)
                                                                          У
   h*g(t,x,y)
                                                  0.00
          -0.25
  1/4
                                               -0.062
                                                                      -0.25
                        1.0
         -0.23
  1/2
                       0.94
                                                -0.11
                                                                      -0.46
         -0.17
  3/4
                       0.88
                                                 -0.15
                                                                      -0.62
```

```
-0.10
                    0.75
                                                                        -0.68
1
                                                -0.17
    -0.015
```

AUTHORS:

· David Joyner

```
sage.calculus.desolvers.eulers_method_2x2_plot (f, g, t0, x0, y0, h, t1)
```

Plot solution of ODE.

This plots the solution in the rectangle with sides (xrange[0], xrange[1]) and (yrange[0], yrange [1]), and plots using Euler's method the numerical solution of the 1st order ODEs x' = f(t, x, y), $x(a) = x_0, y' = g(t, x, y), y(a) = y_0.$

Note: This function is for pedagogical purposes only.

EXAMPLES:

The following example plots the solution to $\theta'' + \sin(\theta) = 0$, $\theta(0) = \frac{3}{4}$, $\theta'(0) = 0$. Type P[0]. show () to plot the solution, (P[0]+P[1]) . show () to plot $(t,\theta(t))$ and $(t,\theta'(t))$:

```
sage: from sage.calculus.desolvers import eulers_method_2x2_plot
sage: f = lambda z : z[2]; g = lambda z : -sin(z[1])
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
                                                                                  #__
→needs sage.plot
```

sage.calculus.desolvers.fricas_desolve(de, dvar, ics, ivar)

Solve an ODE using FriCAS.

EXAMPLES:

```
sage: x = var('x')
sage: y = function('y')(x)
sage: desolve(diff(y,x) + y - 1, y, algorithm="fricas")
                                                                          # optional -_
→ fricas
_{C0*e^{(-x)}} + 1
sage: desolve(diff(y, x) + y == y^3*sin(x), y, algorithm="fricas") # optional -_
\hookrightarrow fricas
-1/5*(2*\cos(x)*y(x)^2 + 4*\sin(x)*y(x)^2 - 5)*e^(-2*x)/y(x)^2
```

sage.calculus.desolvers.fricas_desolve_system(des, dvars, ics, ivar)

Solve a system of first order ODEs using FriCAS.

EXAMPLES:

```
sage: t = var('t')
sage: x = function('x')(t)
sage: y = function('y')(t)
sage: de1 = diff(x,t) + y - 1 == 0
sage: de2 = diff(y,t) - x + 1 == 0
sage: desolve_system([de1, de2], [x, y], algorithm="fricas")
                                                                         # optional -
→ fricas
[x(t) == _C0*cos(t) + cos(t)^2 + _C1*sin(t) + sin(t)^2,
y(t) == -_C1*cos(t) + _C0*sin(t) + 1
                                                                       (continues on next page)
```

2.20 Discrete Wavelet Transform

 $Wraps \, \texttt{GSL's gsl_wavelet_transform_forward(), and } \, \texttt{gsl_wavelet_transform_inverse()} \, \, \text{and } \, \texttt{creates plot methods.}$

AUTHOR:

- Josh Kantor (2006-10-07) initial version
- David Joyner (2006-10-09) minor changes to docstrings and examples.

```
sage.calculus.transforms.dwt.DWT (n, wavelet_type, wavelet_k)
```

This function initializes an GSLDoubleArray of length n which can perform a discrete wavelet transform.

INPUT:

- n a power of 2
- T the data in the GSLDoubleArray must be real
- wavelet_type the name of the type of wavelet, valid choices are:
 - 'daubechies'
 - 'daubechies centered'
 - 'haar'
 - 'haar_centered'
 - 'bspline'
 - 'bspline_centered'

For daubechies wavelets, wavelet_k specifies a daubechie wavelet with k/2 vanishing moments. k=4,6,...,20 for k even are the only ones implemented.

For Haar wavelets, wavelet_k must be 2.

For bspline wavelets, wavelet_k of 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order (i,j) where wavelet_k is 100*i+j. The wavelet transform uses $J=\log_2(n)$ levels.

OUTPUT:

An array of the form $(s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, \dots, d_{J-1,2^{J-1}-1})$ for $d_{j,k}$ the detail coefficients of level j. The centered forms align the coefficients of the sub-bands on edges.

EXAMPLES:

```
sage: a = WaveletTransform(128,'daubechies',4)
sage: for i in range(1, 11):
...: a[i] = 1
...: a[128-i] = 1
sage: a.plot().show(ymin=0) #__
```

This example gives a simple example of wavelet compression:

class sage.calculus.transforms.dwt.DiscreteWaveletTransform

Bases: GSLDoubleArray

Discrete wavelet transform class.

backward_transform()

forward_transform()

plot (xmin=None, xmax=None, **args)

sage.calculus.transforms.dwt.WaveletTransform(n, wavelet_type, wavelet_k)

This function initializes an GSLDoubleArray of length n which can perform a discrete wavelet transform.

INPUT:

- n − a power of 2
- T the data in the GSLDoubleArray must be real
- wavelet_type the name of the type of wavelet, valid choices are:
 - 'daubechies'
 - 'daubechies_centered'
 - 'haar'
 - 'haar_centered'
 - 'bspline'
 - 'bspline_centered'

For daubechies wavelets, wavelet_k specifies a daubechie wavelet with k/2 vanishing moments. k=4,6,...,20 for k even are the only ones implemented.

For Haar wavelets, wavelet k must be 2.

For bspline wavelets, wavelet_k of 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order (i,j) where wavelet_k is 100*i+j. The wavelet transform uses $J = \log_2(n)$ levels.

OUTPUT:

An array of the form $(s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, \dots, d_{J-1,2^{J-1}-1})$ for $d_{j,k}$ the detail coefficients of level j. The centered forms align the coefficients of the sub-bands on edges.

EXAMPLES:

```
sage: a = WaveletTransform(128, 'daubechies', 4)
sage: for i in range(1, 11):
. . . . :
         a[i] = 1
         a[128-i] = 1
. . . . :
sage: a.plot().show(ymin=0)
→needs sage.plot
sage: a.forward_transform()
sage: a.plot().show()
→needs sage.plot
sage: a = WaveletTransform(128, 'haar', 2)
sage: for i in range(1, 11): a[i] = 1; a[128-i] = 1
sage: a.forward_transform()
sage: a.plot().show(ymin=0)
→needs sage.plot
sage: a = WaveletTransform(128, 'bspline_centered', 103)
sage: for i in range(1, 11): a[i] = 1; a[100+i] = 1
sage: a.forward_transform()
sage: a.plot().show(ymin=0)
→needs sage.plot
```

This example gives a simple example of wavelet compression:

sage.calculus.transforms.dwt.is2pow(n)

2.21 Discrete Fourier Transforms

This file contains functions useful for computing discrete Fourier transforms and probability distribution functions for discrete random variables for sequences of elements of \mathbf{Q} or \mathbf{C} , indexed by a range (N), $\mathbf{Z}/N\mathbf{Z}$, an abelian group, the conjugacy classes of a permutation group, or the conjugacy classes of a matrix group.

This file implements:

- __eq__()
- __mul___() (for right multiplication by a scalar)
- plotting, printing IndexedSequence.plot(), IndexedSequence.plot_histogram(), _repr_(), _str_()
- dft () computes the discrete Fourier transform for the following cases:
 - a sequence (over ${f Q}$ or <code>CyclotomicField</code>) indexed by range (N) or ${f Z}/N{f Z}$
 - a sequence (as above) indexed by a finite abelian group
 - a sequence (as above) indexed by a complete set of representatives of the conjugacy classes of a finite permutation group
 - a sequence (as above) indexed by a complete set of representatives of the conjugacy classes of a finite matrix group
- idft () computes the discrete Fourier transform for the following cases:
 - a sequence (over ${f Q}$ or CyclotomicField) indexed by range (N) or ${f Z}/N{f Z}$
- dct (), dst () (for discrete Fourier/Cosine/Sine transform)
- convolution (in IndexedSequence.convolution() and IndexedSequence. convolution_periodic())
- fft(), ifft() (fast Fourier transforms) wrapping GSL's gsl_fft_complex_forward(), gsl_fft_complex_inverse(), using William Stein's FastFourierTransform()
- dwt(), idwt() (fast wavelet transforms) wrapping GSL's gsl_dwt_forward(), gsl_dwt_back-ward() using Joshua Kantor's WaveletTransform() class. Allows for wavelets of type:
 - "haar"
 - "daubechies"
 - "daubechies centered"
 - "haar_centered"
 - "bspline"
 - "bspline_centered"

Todo:

- · "filtered" DFTs
- more idfts
- more examples for probability, stats, theory of FTs

AUTHORS:

• David Joyner (2006-10)

• William Stein (2006-11) – fix many bugs

class sage.calculus.transforms.dft.IndexedSequence(L, index_object)

Bases: SageObject

An indexed sequence.

INPUT:

- L − A list
- index_object must be a Sage object with an __iter__ method containing the same number of elements as self, which is a list of elements taken from a field.

base_ring()

This just returns the common parent R of the N list elements. In some applications (say, when computing the discrete Fourier transform, dft), it is more accurate to think of the base_ring as the group ring $\mathbf{Q}(\zeta_N)[R]$.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A, J)
sage: s.base_ring()
Rational Field
```

convolution (other)

Convolves two sequences of the same length (automatically expands the shortest one by extending it by 0 if they have different lengths).

If $\{a_n\}$ and $\{b_n\}$ are sequences indexed by (n=0,1,...,N-1), extended by zero for all n in \mathbb{Z} , then the convolution is

$$c_j = \sum_{i=0}^{N-1} a_i b_{j-i}.$$

INPUT:

ullet other – a collection of elements of a ring with index set a finite abelian group (under +)

OUTPUT:

The Dirichlet convolution of self and other.

EXAMPLES:

```
sage: J = list(range(5))
sage: A = [ZZ(1) for i in J]
sage: B = [ZZ(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: t = IndexedSequence(B, J)
sage: s.convolution(t)
[1, 2, 3, 4, 5, 4, 3, 2, 1]
```

AUTHOR: David Joyner (2006-09)

convolution_periodic(other)

Convolves two collections indexed by a range (...) of the same length (automatically expands the shortest one by extending it by 0 if they have different lengths).

If $\{a_n\}$ and $\{b_n\}$ are sequences indexed by (n=0,1,...,N-1), extended periodically for all n in \mathbb{Z} , then the convolution is

$$c_j = \sum_{i=0}^{N-1} a_i b_{j-i}.$$

INPUT:

• other – a sequence of elements of C, R or F_q

OUTPUT:

The Dirichlet convolution of self and other.

EXAMPLES:

```
sage: I = list(range(5))
sage: A = [ZZ(1) for i in I]
sage: B = [ZZ(1) for i in I]
sage: s = IndexedSequence(A, I)
sage: t = IndexedSequence(B, I)
sage: s.convolution_periodic(t)
[5, 5, 5, 5, 5, 5, 5, 5]
```

AUTHOR: David Joyner (2006-09)

dct()

A discrete Cosine transform.

EXAMPLES:

dft (chi=None)

A discrete Fourier transform "over \mathbf{Q} " using exact N-th roots of unity.

EXAMPLES:

```
sage: G = SymmetricGroup(3)
sage: J = G.conjugacy_classes_representatives()
sage: s = IndexedSequence([1,2,3], J)
                                 # 1,2,3 are the values of a class fcn_
sage: s.dft()
            # the "scalar-valued Fourier transform" of this class fcn
Indexed sequence: [8, 2, 2]
indexed by [(), (1,2), (1,2,3)]
sage: J = AbelianGroup(2, [2,3], names='ab')
sage: s = IndexedSequence([1,2,3,4,5,6], J)
sage: s.dft()
            # the precision of output is somewhat random and architecture_
→dependent.
Indexed sequence: [21.000000000000,
                -2.9999999999999 + 1.73205080756888*I,
                -0.000000000000000976996261670137 - 0.
\rightarrow0000000000000159872115546022*I,
                -0.000000000000000621724893790087 - 0.
→0000000000000106581410364015*I]
indexed by Multiplicative Abelian group isomorphic to C2 x C3
sage: J = CyclicPermutationGroup(6)
sage: s = IndexedSequence([1,2,3,4,5,6], J)
sage: s.dft()
            # the precision of output is somewhat random and architecture_
→dependent.
Indexed sequence: [21.000000000000,
                -0.000000000000000976996261670137 - 0.
\rightarrow0000000000000159872115546022*I,
                -0.000000000000000621724893790087 - 0.
→0000000000000106581410364015*I1
indexed by Cyclic group of order 6 as a permutation group
sage: # needs sage.rings.number_field
sage: p = 7; J = list(range(p)); A = [kronecker_symbol(j,p) for j in J]
sage: s = IndexedSequence(A, J)
sage: Fs = s.dft()
sage: c = Fs.list()[1]; [x/c for x in Fs.list()]; s.list()
[0, 1, 1, -1, 1, -1, -1]
[0, 1, 1, -1, 1, -1, -1]
```

The DFT of the values of the quadratic residue symbol is itself, up to a constant factor (denoted c on the last line above).

Todo: Read the parent of the elements of S; if Q or C leave as is; if AbelianGroup, use abelian_group_dual; if some other implemented Group (permutation, matrix), call .characters() and test if the index list is the set of conjugacy classes.

dict()

Return a python dict of self where the keys are elements in the indexing set.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 \text{ for } j \text{ in } J]
sage: s = IndexedSequence(A, J)
sage: s.dict()
{0: 1/10, 1: 1/10, 2: 1/10, 3: 1/10, 4: 1/10, 5: 1/10, 6: 1/10, 7: 1/10, 8: 1/
\rightarrow 10, 9: 1/10
```

dst()

A discrete Sine transform.

EXAMPLES:

```
sage: J = list(range(5))
sage: I = CC.0; pi = CC.pi()
sage: A = [exp(-2*pi*i*I/5) \text{ for } i \text{ in } J]
sage: s = IndexedSequence(A, J)
sage: s.dst()
                      # discrete sine
Indexed sequence: [0.00000000000000, 1.11022302462516e-16 - 2.
→50000000000000*I, ...]
indexed by [0, 1, 2, 3, 4]
```

dwt (other='haar', wavelet_k=2)

Wraps the gsl Wavelet Transform. forward in dwt (written by Joshua Kantor). Assumes the length of the sample is a power of 2. Uses the GSL function gsl_wavelet_transform_forward().

INPUT:

- other the name of the type of wavelet; valid choices are:
 - 'daubechies'
 - 'daubechies_centered'
 - 'haar' (default)
 - 'haar_centered'
 - 'bspline'
 - 'bspline_centered'
- wavelet_k For daubechies wavelets, wavelet_k specifies a daubechie wavelet with k/2 vanishing moments. k = 4, 6, ..., 20 for k even are the only ones implemented.

For Haar wavelets, wavelet k must be 2.

For bspline wavelets, wavelet k equal to 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order (i, j) where wavelet_k equals $100 \cdot i + j$.

The wavelet transform uses $J = \log_2(n)$ levels.

EXAMPLES:

```
sage: J = list(range(8))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: t = s.dwt()
sage: t # slightly random output
Indexed sequence: [2.82842712474999, 0.0000000000000, 0.0000000000000, 0.
```

fft()

Wraps the gsl FastFourierTransform.forward() in fft.

If the length is a power of 2 then this automatically uses the radix2 method. If the number of sample points in the input is a power of 2 then the wrapper for the GSL function gsl_fft_complex_radix2_forward() is automatically called. Otherwise, gsl_fft_complex_forward() is used.

EXAMPLES:

idft()

A discrete inverse Fourier transform. Only works over **Q**.

EXAMPLES:

idwt (other='haar', wavelet_k=2)

Implements the gsl Wavelet Transform.backward() in dwt.

Assumes the length of the sample is a power of 2. Uses the GSL function gsl_wavelet_transform_backward().

INPUT:

- other Must be one of the following:
 - "haar"
 - "daubechies"
 - "daubechies_centered"
 - "haar_centered"
 - "bspline"

- "bspline centered"
- wavelet_k For daubechies wavelets, wavelet_k specifies a daubechie wavelet with k/2 vanishing moments. k = 4, 6, ..., 20 for k even are the only ones implemented.

For Haar wavelets, wavelet_k must be 2.

For bspline wavelets, wavelet_k equal to 103, 105, 202, 204, 206, 208, 301, 305, 307, 309 will give biorthogonal B-spline wavelets of order (i, j) where wavelet_k equals $100 \cdot i + j$.

EXAMPLES:

```
sage: J = list(range(8))
sage: A = [RR(1) for i in J]
sage: s = IndexedSequence(A, J)
sage: t = s.dwt()
           # random arch dependent output
sage: t
Indexed sequence: [2.82842712474999, 0.0000000000000, 0.000000000000, 0.
→00000000000000001
  indexed by [0, 1, 2, 3, 4, 5, 6, 7]
                  # random arch dependent output
sage: t.idwt()
→0000000000000001
  indexed by [0, 1, 2, 3, 4, 5, 6, 7]
sage: t.idwt() == s
True
sage: J = list(range(16))
sage: A = [RR(1) \text{ for } i \text{ in } J]
sage: s = IndexedSequence(A, J)
sage: t = s.dwt("bspline", 103)
sage: t # random arch dependent output
→00000000000000001
  indexed by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: t.idwt("bspline", 103) == s
True
```

ifft()

Implements the gsl FastFourierTransform.inverse in fft.

If the number of sample points in the input is a power of 2 then the wrapper for the GSL function gsl_fft_complex_radix2_inverse() is automatically called. Otherwise, gsl_fft_complex_inverse() is used.

EXAMPLES:

index_object()

Return the indexing object.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A, J)
sage: s.index_object()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

list()

Return the list of self.

EXAMPLES:

```
sage: J = list(range(10))
sage: A = [1/10 for j in J]
sage: s = IndexedSequence(A, J)
sage: s.list()
[1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10]
```

plot()

Plot the points of the sequence.

Elements of the sequence are assumed to be real or from a finite field, with a real indexing set I = range(len(self)).

EXAMPLES:

plot_histogram (clr=(0, 0, 1), eps=0.4)

Plot the histogram plot of the sequence.

The sequence is assumed to be real or from a finite field, with a real indexing set I coercible into R.

Options are clr, which is an RGB value, and eps, which is the spacing between the bars.

EXAMPLES:

```
sage: J = list(range(3))
sage: A = [ZZ(i^2)+1 for i in J]
sage: s = IndexedSequence(A, J)
sage: P = s.plot_histogram() #□
    →needs sage.plot
(continues on next page)
```

2.22 Fast Fourier Transforms Using GSL

AUTHORS:

- William Stein (2006-9): initial file (radix2)
- D. Joyner (2006-10): Minor modifications (from radix2 to general case and some documentation).
- M. Hansen (2013-3): Fix radix2 backwards transformation
- L.F. Tabera Alonso (2013-3): Documentation

```
sage.calculus.transforms.fft.FFT(size, base_ring=None)
```

Create an array for fast Fourier transform conversion using gsl.

INPUT:

- size The size of the array
- base_ring Unused (2013-03)

EXAMPLES:

We create an array of the desired size:

```
sage: a = FastFourierTransform(8)
sage: a
[(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)
→0), (0.0, 0.0)]
```

Now, set the values of the array:

```
sage: for i in range(8): a[i] = i + 1
sage: a
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0), (6.0, 0.0), (7.0, 0...)
\rightarrow 0), (8.0, 0.0)]
```

We can perform the forward Fourier transform on the array:

And backwards:

Other example:

sage.calculus.transforms.fft.FastFourierTransform(size, base_ring=None)

Create an array for fast Fourier transform conversion using gsl.

INPUT:

- size The size of the array
- base_ring Unused (2013-03)

EXAMPLES:

We create an array of the desired size:

Now, set the values of the array:

```
sage: for i in range(8): a[i] = i + 1
sage: a
[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0), (6.0, 0.0), (7.0, 0...)
→0), (8.0, 0.0)]
```

We can perform the forward Fourier transform on the array:

And backwards:

Other example:

```
sage: a = FastFourierTransform(128)
sage: for i in range(1, 11):
...:    a[i] = 1
...:    a[128-i] = 1
sage: a[:6:2]
[(0.0, 0.0), (1.0, 0.0), (1.0, 0.0)]
```

```
class sage.calculus.transforms.fft.FastFourierTransform_base
```

Bases: object

```
class sage.calculus.transforms.fft.FastFourierTransform_complex
```

Bases: FastFourierTransform_base

Wrapper class for GSL's fast Fourier transform.

backward_transform()

Compute the in-place backwards Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:

• None, the transformation is done in-place.

This is the same as $inverse_transform()$ but lacks normalization so that f. forward_transform().backward_transform() == n*f. Where n is the size of the array.

EXAMPLES:

```
sage: a = FastFourierTransform(125)
sage: b = FastFourierTransform(125)
sage: for i in range(1, 60): a[i]=1
sage: for i in range(1, 60): b[i]=1
sage: a.forward_transform()
sage: a.backward_transform()
sage: (a.plot() + b.plot()).show(ymin=0) # long time (2s on sage.math, 2)
-> 2011), needs sage.plot
sage: abs(sum([CDF(a[i])/125-CDF(b[i]) for i in range(125)])) < 2**-16
True</pre>
```

Here we check it with a power of two:

forward_transform()

Compute the in-place forward Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:

• None, the transformation is done in-place.

If the number of sample points in the input is a power of 2 then the gsl function gsl_fft_complex_radix2_forward is automatically called. Otherwise, gsl_fft_complex_forward is called.

EXAMPLES:

```
sage: a = FastFourierTransform(4)
sage: for i in range(4): a[i] = i
sage: a.forward_transform()
sage: a #abs tol 1e-2
[(6.0, 0.0), (-2.0, 2.0), (-2.0, 0.0), (-2.0, -2.0)]
```

inverse_transform()

Compute the in-place inverse Fourier transform of this data using the Cooley-Tukey algorithm.

OUTPUT:

• None, the transformation is done in-place.

If the number of sample points in the input is a power of 2 then the function gsl_fft_complex_radix2_inverse is automatically called. Otherwise, gsl_fft_complex_inverse is called.

This transform is normalized so f.forward_transform().inverse_transform() == f modulo round-off errors. See also backward_transform().

EXAMPLES:

Here we check it with a power of two:

plot (style='rect', xmin=None, xmax=None, **args)

Plot a slice of the array.

- style Style of the plot, options are "rect" or "polar"
 - rect height represents real part, color represents imaginary part.
 - polar height represents absolute value, color represents argument.
- xmin The lower bound of the slice to plot. 0 by default.
- xmax The upper bound of the slice to plot. len(self) by default.
- **args passed on to the line plotting function.

OUTPUT:

• A plot of the array.

EXAMPLES:

```
sage: a = FastFourierTransform(16)
sage: for i in range(16): a[i] = (random(), random())
sage: A = plot(a)
→needs sage.plot
sage: B = plot(a, style='polar')
⇔needs sage.plot
sage: type(A)
→needs sage.plot
<class 'sage.plot.graphics.Graphics'>
sage: type(B)
→needs sage.plot
<class 'sage.plot.graphics.Graphics'>
sage: a = FastFourierTransform(125)
sage: b = FastFourierTransform(125)
sage: for i in range(1, 60): a[i]=1
sage: for i in range(1, 60): b[i]=1
sage: a.forward_transform()
sage: a.inverse_transform()
sage: a.plot() + b.plot()
→needs sage.plot
Graphics object consisting of 250 graphics primitives
```

```
class sage.calculus.transforms.fft.FourierTransform_complex
    Bases: object
class sage.calculus.transforms.fft.FourierTransform_real
    Bases: object
```

2.23 Solving ODE numerically by GSL

AUTHORS:

- Joshua Kantor (2004-2006)
- Robert Marik (2010 fixed docstrings)

```
class sage.calculus.ode.PyFunctionWrapper
```

Bases: object

Bases: object

ode_solver() is a class that wraps the GSL library's ode solver routines.

To use it, instantiate the class:

```
sage: T = ode_solver()
```

To solve a system of the form $dy_i/dt = f_i(t,y)$, you must supply a vector or tuple/list valued function f representing f_i . The functions f and the jacobian should have the form foo(t,y) or foo(t,y,params). params

which is optional allows for your function to depend on one or a tuple of parameters. Note if you use it, params must be a tuple even if it only has one component. For example if you wanted to solve y'' + y = 0, you would need to write it as a first order system:

```
\begin{cases}
y_0' = y_1 \\
y_1' = -y_0
\end{cases}
```

In code:

```
sage: f = lambda t, y: [y[1], -y[0]]
sage: T.function = f
```

For some algorithms, the jacobian must be supplied as well, the form of this should be a function returning a list of lists of the form [$[df_1/dy_1, ..., df_1/dy_n]$, ..., $[df_n/dy_1, ..., df_n/dt]$].

There are examples below, if your jacobian was the function my_jacobian you would do:

```
sage: T.jacobian = my_jacobian # not tested, since it doesn't make sense to→
test this
```

There are a variety of algorithms available for different types of systems. Possible algorithms are

- 'rkf45' Runge-Kutta-Fehlberg (4,5)
- 'rk2' embedded Runge-Kutta (2,3)
- 'rk4' 4th order classical Runge-Kutta
- 'rk8pd' Runge-Kutta Prince-Dormand (8,9)
- 'rk2imp' implicit 2nd order Runge-Kutta at gaussian points
- 'rk4imp' implicit 4th order Runge-Kutta at gaussian points
- 'bsimp' implicit Burlisch-Stoer (requires jacobian)
- 'gear1' M=1 implicit gear
- 'gear2' M=2 implicit gear

The default algorithm is 'rkf45'. If you instead wanted to use 'bsimp' you would do:

```
sage: T.algorithm = "bsimp"
```

The user should supply initial conditions in y_0. For example if your initial conditions are $y_0 = 1, y_1 = 1$, do:

```
sage: T.y_0 = [1,1]
```

The actual solver is invoked by the method <code>ode_solve()</code>. It has arguments <code>t_span</code>, <code>y_0</code>, <code>num_points</code>, <code>params</code>. <code>y_0</code> must be supplied either as an argument or above by assignment. Params which are optional and only necessary if your system uses <code>params</code> can be supplied to <code>ode_solve</code> or by assignment.

t_span is the time interval on which to solve the ode. There are two ways to specify t_span:

- If num_points is not specified, then the sequence t_span is used as the time points for the solution. Note that the first element t_span[0] is the initial time, where the initial condition y_0 is the specified solution, and subsequent elements are the ones where the solution is computed.
- If num_points is specified and t_span is a sequence with just 2 elements, then these are the starting and ending times, and the solution will be computed at num_points equally spaced points between t_span[0] and t_span[1]. The initial condition is also included in the output so that num_points + 1 total points are returned. E.g. if t_span = [0.0, 1.0] and num_points = 10, then solution

is returned at the 11 time points [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

(Note that if num_points is specified and t_span is not length 2 then t_span are used as the time points and num_points is ignored.)

Error is estimated via the expression $D_i = error_abs*s_i+error_rel*(a|y_i|+a_dydt*h*|y_i'|)$. The user can specify

- error abs (1e-10 by default),
- error_rel (1e-10 by default),
- a (1 by default),
- \bullet a_dydt (0 by default) and
- s_i (as scaling_abs which should be a tuple and is 1 in all components by default).

If you specify one of a or a_dydt you must specify the other. You may specify a and a_dydt without scaling_abs (which will be taken =1 be default). h is the initial step size, which is 1e-2 by default.

```
ode_solve solves the solution as a list of tuples of the form, [ (t_0, [y_1, ..., y_n]), (t_1, [y_1, ..., y_n])].
```

This data is stored in the variable solutions:

```
sage: T.solution # not tested
```

EXAMPLES:

Consider solving the Van der Pol oscillator $x''(t) + ux'(t)(x(t)^2 - 1) + x(t) = 0$ between t = 0 and t = 100. As a first order system it is x' = y, $y' = -x + uy(1 - x^2)$. Let us take u = 10 and use initial conditions (x, y) = (1, 0) and use the Runge-Kutta Prince-Dormand algorithm.

```
sage: def f_1(t, y, params):
         return [y[1], -y[0] - params[0]*y[1]*(y[0]**2-1.0)]
. . . . :
sage: def j_1(t, y, params):
        return [[0.0, 1.0],
. . . . :
                 [-2.0*params[0]*y[0]*y[1] - 1.0, -params[0]*(y[0]*y[0]-1.0)],
                 [0.0, 0.0]]
sage: T = ode_solver()
sage: T.algorithm = "rk8pd"
sage: T.function = f_1
sage: T.jacobian = j_1
sage: T.ode_solve(y_0=[1,0], t_span=[0,100], params=[10.0], num_points=1000)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
                                                                                   #__
→needs sage.plot
          T.plot_solution(filename=f.name)
```

The solver line is equivalent to:

```
sage: T.ode_solve(y_0=[1,0], t_span=[x/10.0 for x in range(1000)], params=[10.0])
```

Let's try a system:

```
y_0'=y_1*y_2
y_1'=-y_0*y_2
y_2'=-.51*y_0*y_1
```

We will not use the jacobian this time and will change the error tolerances.

```
sage: g_1 = lambda t,y: [y[1]*y[2], -y[0]*y[2], -0.51*y[0]*y[1]]
sage: T.function = g_1
sage: T.y_0 = [0,1,1]
sage: T.scale_abs = [1e-4, 1e-4, 1e-5]
sage: T.error_rel = 1e-4
sage: T.ode_solve(t_span=[0,12], num_points=100)
```

By default T. plot solution () plots the y_0 ; to plot general y_i , use:

The method interpolate_solution will return a spline interpolation through the points found by the solver. By default, y_0 is interpolated. You can interpolate y_i through the keyword argument i.

The solver attributes may also be set up using arguments to ode_solver. The previous example can be rewritten as:

Unfortunately because Python functions are used, this solver is slow on systems that require many function evaluations. It is possible to pass a compiled function by deriving from the class ode_system and overloading c_f and c_j with C functions that specify the system. The following will work in the notebook:

```
%cython
cimport sage.calculus.ode
import sage.calculus.ode
from sage.libs.gsl.all cimport *

cdef class van_der_pol(sage.calculus.ode.ode_system):
    cdef int c_f(self,double t, double *y,double *dydt):
        dydt[0]=y[1]
        dydt[1]=-y[0]-1000*y[1]*(y[0]*y[0]-1)
        return GSL_SUCCESS
    cdef int c_j(self, double t,double *y,double *dfdy,double *dfdt):
```

(continues on next page)

```
dfdy[0]=0
dfdy[1]=1.0
dfdy[2]=-2.0*1000*y[0]*y[1]-1.0
dfdy[3]=-1000*(y[0]*y[0]-1.0)
dfdt[0]=0
dfdt[1]=0
return GSL_SUCCESS
```

After executing the above block of code you can do the following (WARNING: the following is *not* automatically doctested):

interpolate solution (i=0)

```
ode_solve (t_span=False, y_0=False, num_points=False, params=[])
```

plot_solution (i=0, filename=None, interpolate=False, **kwds)

Plot a one dimensional projection of the solution.

INPUT:

- i (non-negative integer) composant of the projection
- filename (string or None) whether to plot the picture or save it in a file
- interpolate whether to interpolate between the points of the discretized solution
- additional keywords are passed to the graphics primitive

EXAMPLES:

And with some options:

class sage.calculus.ode.ode_system

Bases: object

2.24 Numerical Integration

AUTHORS:

- Josh Kantor (2007-02): first version
- William Stein (2007-02): rewrite of docs, conventions, etc.
- Robert Bradshaw (2008-08): fast float integration
- Jeroen Demeyer (2011-11-23): github issue #12047: return 0 when the integration interval is a point; reformat documentation and add to the reference manual.

```
class sage.calculus.integration.PyFunctionWrapper
    Bases: object

class sage.calculus.integration.compiled_integrand
    Bases: object

sage.calculus.integration.monte_carlo_integral (func, xl, xu, calls, algorithm='plain', params=None)
```

Integrate func by Monte-Carlo method.

Integrate func over the dim-dimensional hypercubic region defined by the lower and upper limits in the arrays x1 and xu, each of size dim.

The integration uses a fixed number of function calls and obtains random sampling points using the default gsl's random number generator.

ALGORITHM: Uses calls to the GSL (GNU Scientific Library) C library. Documentation can be found in [GSL] chapter "Monte Carlo Integration".

INPUT:

- func the function to integrate
- params used to pass parameters to your function
- x1 list of lower limits
- xu list of upper limits
- calls number of functions calls used
- algorithm valid choices are:
 - 'plain' The plain Monte Carlo algorithm samples points randomly from the integration region to estimate the integral and its error.
 - 'miser' The MISER algorithm of Press and Farrar is based on recursive stratified sampling
 - 'vegas' The VEGAS algorithm of Lepage is based on importance sampling.

OUTPUT:

A tuple whose first component is the approximated integral and whose second component is an error estimate.

EXAMPLES:

```
sage: x, y = SR.var('x,y')
sage: monte_carlo_integral(x*y, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: integral(integral(x*y, (x,0,2)), (y,0,2))
4
```

An example with a parameter:

```
sage: x, y, z = SR.var('x,y,z')
sage: monte_carlo_integral(x*y*z, [0,0], [2,2], 10000, params=[1.2]) # abs tol

→ 0.1
(4.8, 0.0)
```

Integral of a constant:

```
sage: monte_carlo_integral(3, [0,0], [2,2], 10000) # abs tol 0.1
(12, 0.0)
```

Test different algorithms:

```
sage: x, y, z = SR.var('x,y,z')
sage: f(x,y,z) = exp(z) * cos(x + sin(y))
sage: for algo in ['plain', 'miser', 'vegas']: # abs tol 0.01
...: monte_carlo_integral(f, [0,0,-1], [2,2,1], 10^6, algorithm=algo)
(-1.06, 0.01)
(-1.06, 0.01)
(-1.06, 0.01)
```

Tests with Python functions:

```
sage: def f(u, v): return u * v
sage: monte_carlo_integral(f, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: monte_carlo_integral(lambda u,v: u*v, [0,0], [2,2], 10000) # abs tol 0.1
(4.0, 0.0)
sage: def f(x1,x2,x3,x4): return x1*x2*x3*x4
sage: monte_carlo_integral(f, [0,0], [2,2], 1000, params=[0.6,2]) # abs tol 0.2
(4.8, 0.0)
```

AUTHORS:

- · Vincent Delecroix
- Vincent Klein

Return the numerical integral of the function on the interval from a to b and an error bound.

INPUT:

- a, b The interval of integration, specified as two numbers or as a tuple/list with the first element the lower bound and the second element the upper bound. Use +Infinity and -Infinity for plus or minus infinity.
- algorithm valid choices are:
 - 'qag' for an adaptive integration
 - 'qags' for an adaptive integration with (integrable) singularities
 - 'qng' for a non-adaptive Gauss-Kronrod (samples at a maximum of 87pts)
- max_points sets the maximum number of sample points
- params used to pass parameters to your function

- eps_abs, eps_rel sets the absolute and relative error tolerances which satisfies the relation | RESULT
 I <= max(eps_abs, eps_rel * |I|), where I = \int_a^b f(x) d x.
- rule This controls the Gauss-Kronrod rule used in the adaptive integration:
 - rule=1 15 point rule
 - rule=2 21 point rule
 - rule=3 31 point rule
 - rule=4 41 point rule
 - rule=5 51 point rule
 - rule=6 61 point rule

Higher key values are more accurate for smooth functions but lower key values deal better with discontinuities.

OUTPUT:

A tuple whose first component is the answer and whose second component is an error estimate.

REMARK.

There is also a method nintegral on symbolic expressions that implements numerical integration using Maxima. It is potentially very useful for symbolic expressions.

EXAMPLES:

To integrate the function x^2 from 0 to 1, we do

```
sage: numerical_integral(x^2, 0, 1, max_points=100)
(0.33333333333333, 3.700743415417188e-15)
```

To integrate the function $\sin(x)^3 + \sin(x)$ we do

```
sage: numerical_integral(sin(x)^3 + sin(x), 0, pi)
(3.3333333333333, 3.700743415417188e-14)
```

The input can be any callable:

```
sage: numerical_integral(lambda x: sin(x)^3 + sin(x), 0, pi)
(3.33333333333333, 3.700743415417188e-14)
```

We check this with a symbolic integration:

```
sage: (sin(x)^3+sin(x)).integral(x,0,pi)
10/3
```

If we want to change the error tolerances and Gauss rule used:

For a Python function with parameters:

(continues on next page)

```
(0.32175055439664557, 3.5721487367706477e-15),
(0.24030098317249229, 2.6678768435816325e-15),
(0.19253082576711697, 2.1375215571674764e-15),
(0.16087527719832367, 1.7860743683853337e-15),
(0.13827545676349412, 1.5351659583939151e-15),
(0.12129975935702741, 1.3466978571966261e-15),
(0.10806674191683065, 1.1997818507228991e-15),
(0.09745444625548845, 1.0819617008493815e-15),
(0.088750683050217577, 9.8533051773561173e-16)]

sage: y = var('y')
sage: numerical_integral(x*y, 0, 1)
Traceback (most recent call last):
...

ValueError: The function to be integrated depends on 2 variables (x, y), and so cannot be integrated in one dimension. Please fix additional variables with the 'params' argument
```

Note the parameters are always a tuple even if they have one component.

It is possible to integrate on infinite intervals as well by using +Infinity or -Infinity in the interval argument. For example:

```
sage: f = exp(-x)
sage: numerical_integral(f, 0, +Infinity) # random output
(0.99999999997279, 1.8429811298996553e-07)
```

Note the coercion to the real field RR, which prevents underflow:

```
sage: f = exp(-x**2)
sage: numerical_integral(f, -Infinity, +Infinity) # random output
(1.7724538509060035, 3.4295192165889879e-08)
```

One can integrate any real-valued callable function:

```
sage: numerical_integral(lambda x: abs(zeta(x)), [1.1,1.5]) # random output
(1.8488570602160455, 2.052643677492633e-14)
```

We can also numerically integrate symbolic expressions using either this function (which uses GSL) or the native integration (which uses Maxima):

```
sage: exp(-1/x).nintegral(x, 1, 2) # via maxima
(0.50479221787318..., 5.60431942934407...e-15, 21, 0)
sage: numerical_integral(exp(-1/x), 1, 2)
(0.50479221787318..., 5.60431942934407...e-15)
```

We can also integrate constant expressions:

```
sage: numerical_integral(2, 1, 7)
(12.0, 0.0)
```

If the interval of integration is a point, then the result is always zero (this makes sense within the Lebesgue theory of integration), see github issue #12047:

```
sage: numerical_integral(log, 0, 0)
(0.0, 0.0)
sage: numerical_integral(lambda x: sqrt(x), (-2.0, -2.0))
(0.0, 0.0)
```

In the presence of integrable singularity, the default adaptive method might fail and it is advised to use 'qaqs':

```
sage: b = 1.81759643554688
sage: F(x) = sqrt((-x + b)/((x - 1.0)*x))
sage: numerical_integral(F, 1, b)
(inf, nan)
sage: numerical_integral(F, 1, b, algorithm='qags') # abs tol 1e-10
(1.1817104238446596, 3.387268288079781e-07)
```

AUTHORS:

- Josh Kantor
- · William Stein
- · Robert Bradshaw
- · Jeroen Demeyer

ALGORITHM: Uses calls to the GSL (GNU Scientific Library) C library. Documentation can be found in [GSL] chapter "Numerical Integration".

2.25 Riemann Mapping

AUTHORS:

- Ethan Van Andel (2009-2011): initial version and upgrades
- Robert Bradshaw (2009): his "complex_plot" was adapted for plot_colored

Development supported by NSF award No. 0702939.

```
class sage.calculus.riemann.Riemann_Map
    Bases: object
```

The Riemann_Map class computes an interior or exterior Riemann map, or an Ahlfors map of a region given by the supplied boundary curve(s) and center point. The class also provides various methods to evaluate, visualize, or extract data from the map.

A Riemann map conformally maps a simply connected region in the complex plane to the unit disc. The Ahlfors map does the same thing for multiply connected regions.

Note that all the methods are numerical. As a result all answers have some imprecision. Moreover, maps computed with small number of collocation points, or for unusually shaped regions, may be very inaccurate. Error computations for the ellipse can be found in the documentation for <code>analytic_boundary()</code> and <code>analytic_inte-rior()</code>.

[BSV2010] provides an overview of the Riemann map and discusses the research that lead to the creation of this module.

INPUT:

- fs A list of the boundaries of the region, given as complex-valued functions with domain 0 to 2*pi. Note that the outer boundary must be parameterized counter clockwise (i.e. $e^(I*t)$) while the inner boundaries must be clockwise (i.e. $e^(I*t)$).
- fprimes A list of the derivatives of the boundary functions. Must be in the same order as fs.
- a Complex, the center of the Riemann map. Will be mapped to the origin of the unit disc. Note that a
 MUST be within the region in order for the results to be mathematically valid.

The following inputs may be passed in as named parameters:

- N integer (default: 500), the number of collocation points used to compute the map. More points will give more accurate results, especially near the boundaries, but will take longer to compute.
- exterior boolean (default: False), if set to True, the exterior map will be computed, mapping the exterior of the region to the exterior of the unit circle.

The following inputs may be passed as named parameters in unusual circumstances:

- ncorners integer (default: 4), if mapping a figure with (equally t-spaced) corners corners that make a significant change in the direction of the boundary better results may be sometimes obtained by accurately giving this parameter. Used to add the proper constant to the theta correspondence function.
- opp boolean (default: False), set to True in very rare cases where the theta correspondence function is off by pi, that is, if red is mapped left of the origin in the color plot.

EXAMPLES:

The unit circle identity map:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: m = Riemann_Map([f], [fprime], 0) # long time (4 sec)
sage: m.plot_colored() + m.plot_spiderweb() # long time
Graphics object consisting of 22 graphics primitives
```

The exterior map for the unit circle:

```
sage: m = Riemann_Map([f], [fprime], 0, exterior=True) # long time (4 sec)
sage: #spiderwebs are not supported for exterior maps
sage: m.plot_colored() # long time
Graphics object consisting of 1 graphics primitive
```

The unit circle with a small hole:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: hf(t) = 0.5*e^(-I*t)
sage: hfprime(t) = 0.5*-I*e^(-I*t)
sage: m = Riemann_Map([f, hf], [fprime, hfprime], 0.5 + 0.5*I)
sage: #spiderweb and color plots cannot be added for multiply
sage: #connected regions. Instead we do this.
sage: m.plot_spiderweb(withcolor = True) # long time
Graphics object consisting of 3 graphics primitives
```

A square:

```
sage: ps = polygon_spline([(-1, -1), (1, -1), (1, 1), (-1, 1)])
sage: f = lambda t: ps.value(real(t))
sage: fprime = lambda t: ps.derivative(real(t))
sage: m = Riemann_Map([f], [fprime], 0.25, ncorners=4)
sage: m.plot_colored() + m.plot_spiderweb() # long time
Graphics object consisting of 22 graphics primitives
```

Compute rough error for this map:

```
sage: x = 0.75 # long time
sage: print("error = {}".format(m.inverse_riemann_map(m.riemann_map(x)) - x)) #

→long time
error = (-0.000...+0.0016...j)
```

A fun, complex region for demonstration purposes:

```
sage: f(t) = e^(I*t)
sage: fp(t) = I*e^(I*t)
sage: ef1(t) = .2*e^(-I*t) + .4+.4*I
sage: ef1p(t) = -I*.2*e^(-I*t)
sage: ef2(t) = .2*e^(-I*t) - .4+.4*I
sage: ef2p(t) = -I*.2*e^(-I*t)
sage: pts = [(-.5, -.15-20/1000), (-.6, -.27-10/1000), (-.45, -.45), (0, -.65+10/1000), (...45, -.45), (.6, -.27-10/1000), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45), (...45, -.45
```

ALGORITHM:

This class computes the Riemann Map via the Szego kernel using an adaptation of the method described by [KT1986].

```
compute_on_grid (plot_range, x_points)
```

Compute the Riemann map on a grid of points.

Note that these points are complex of the form z = x + y*i.

INPUT:

- plot_range a tuple of the form [xmin, xmax, ymin, ymax]. If the value is [], the default plotting window of the map will be used.
- x_points int, the size of the grid in the x direction The number of points in the y_direction is scaled accordingly

OUTPUT:

• a tuple containing [z_values, xmin, xmax, ymin, ymax] where z_values is the evaluation of the map on the specified grid.

EXAMPLES:

General usage:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: data = m.compute_on_grid([],5)
sage: data[0][8,1]
(-0.0879...+0.9709...j)
```

get szego (boundary=-1, absolute value=False)

Return a discretized version of the Szego kernel for each boundary function.

INPUT:

The following inputs may be passed in as named parameters:

- boundary integer (default: -1) if < 0, get_theta_points() will return the points for all boundaries. If >= 0, get_theta_points() will return only the points for the boundary specified.
- absolute_value boolean (default: False) if True, will return the absolute value of the (complex valued) Szego kernel instead of the kernel itself. Useful for plotting.

OUTPUT:

A list of points of the form [t value, value of the Szego kernel at that t].

EXAMPLES:

Generic use:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: sz = m.get_szego(boundary=0)
sage: points = m.get_szego(absolute_value=True)
sage: list_plot(points)
Graphics object consisting of 1 graphics primitive
```

Extending the points by a spline:

```
sage: s = spline(points)
sage: s(3*pi / 4)
0.0012158...
sage: plot(s,0,2*pi) # plot the kernel
Graphics object consisting of 1 graphics primitive
```

The unit circle with a small hole:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: hf(t) = 0.5*e^(-I*t)
sage: hfprime(t) = 0.5*-I*e^(-I*t)
sage: m = Riemann_Map([f, hf], [fprime, hfprime], 0.5 + 0.5*I)
```

Getting the szego for a specific boundary:

```
sage: sz0 = m.get_szego(boundary=0)
sage: sz1 = m.get_szego(boundary=1)
```

```
get_theta_points(boundary=-1)
```

Return an array of points of the form [t value, theta in $e^(I*theta)$], that is, a discretized version of the theta/boundary correspondence function. In other words, a point in this array [t1, t2] represents that the boundary point given by f(t1) is mapped to a point on the boundary of the unit circle given by $e^(I*t2)$.

For multiply connected domains, get_theta_points will list the points for each boundary in the order that they were supplied.

INPUT:

The following input must all be passed in as named parameters:

• boundary - integer (default: -1) if < 0, get_theta_points() will return the points for all boundaries. If >= 0, get_theta_points() will return only the points for the boundary specified.

OUTPUT:

A list of points of the form [t value, theta in e^(I*theta)].

EXAMPLES:

Getting the list of points, extending it via a spline, getting the points for only the outside of a multiply connected domain:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: points = m.get_theta_points()
sage: list_plot(points)
Graphics object consisting of 1 graphics primitive
```

Extending the points by a spline:

```
sage: s = spline(points)
sage: s(3*pi / 4)
1.627660...
```

The unit circle with a small hole:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: hf(t) = 0.5*e^(-I*t)
sage: hfprime(t) = 0.5*-I*e^(-I*t)
sage: m = Riemann_Map([f, hf], [hf, hfprime], 0.5 + 0.5*I)
```

Getting the boundary correspondence for a specific boundary:

```
sage: tp0 = m.get_theta_points(boundary=0)
sage: tp1 = m.get_theta_points(boundary=1)
```

$inverse_riemann_map(pt)$

Return the inverse Riemann mapping of a point.

That is, given pt on the interior of the unit disc, inverse_riemann_map() will return the point on the original region that would be Riemann mapped to pt. Note that this method does not work for multiply connected domains.

INPUT:

• pt – A complex number (usually with absolute value <= 1) representing the point to be inverse mapped.

OUTPUT:

The point on the region that Riemann maps to the input point.

EXAMPLES:

Can work for different types of complex numbers:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.inverse_riemann_map(0.5 + sqrt(-0.5))
(0.406880...+0.3614702...j)
sage: m.inverse_riemann_map(0.95)
(0.486319...-4.90019052...j)
sage: m.inverse_riemann_map(0.25 - 0.3*I)
(0.1653244...-0.180936...j)
sage: m.inverse_riemann_map(complex(-0.2, 0.5))
(-0.156280...+0.321819...j)
```

plot_boundaries (plotjoined=True, rgbcolor=[0, 0, 0], thickness=1)

Plots the boundaries of the region for the Riemann map. Note that this method DOES work for multiply connected domains.

INPUT:

The following inputs may be passed in as named parameters:

- plotjoined boolean (default: True) If False, discrete points will be drawn; otherwise they will be connected by lines. In this case, if plotjoined=False, the points shown will be the original collocation points used to generate the Riemann map.
- rgbcolor float array (default: [0,0,0]) the red-green-blue color of the boundary.
- thickness positive float (default: 1) the thickness of the lines or points in the boundary.

EXAMPLES:

General usage:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
```

Default plot:

```
sage: m.plot_boundaries()
Graphics object consisting of 1 graphics primitive
```

Big blue collocation points:

```
sage: m.plot_boundaries(plotjoined=False, rgbcolor=[0,0,1], thickness=6)
Graphics object consisting of 1 graphics primitive
```

plot_colored (plot_range=[], plot_points=100, interpolation='catrom', **options)

Generates a colored plot of the Riemann map. A red point on the colored plot corresponds to a red point on the unit disc.

INPUT:

The following inputs may be passed in as named parameters:

- plot_range (default: []) list of 4 values (xmin, xmax, ymin, ymax). Declare if you do not want the plot to use the default range for the figure.
- plot_points integer (default: 100), number of points to plot in the x direction. Points in the y direction are scaled accordingly. Note that very large values can cause this function to run slowly.

EXAMPLES:

Given a Riemann map m, general usage:

```
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.plot_colored()
Graphics object consisting of 1 graphics primitive
```

Plot zoomed in on a specific spot:

```
sage: m.plot_colored(plot_range=[0,1,.25,.75])
Graphics object consisting of 1 graphics primitive
```

High resolution plot:

```
sage: m.plot_colored(plot_points=1000) # long time (29s on sage.math, 2012)
Graphics object consisting of 1 graphics primitive
```

To generate the unit circle map, it's helpful to see what the colors correspond to:

```
sage: f(t) = e^(I*t)
sage: fprime(t) = I*e^(I*t)
sage: m = Riemann_Map([f], [fprime], 0, 1000)
sage: m.plot_colored()
Graphics object consisting of 1 graphics primitive
```

Generate a traditional "spiderweb plot" of the Riemann map.

This shows what concentric circles and radial lines map to. The radial lines may exhibit erratic behavior near the boundary; if this occurs, decreasing linescale may mitigate the problem.

For multiply connected domains the spiderweb is by necessity generated using the forward mapping. This method is more computationally intensive. In addition, these spiderwebs cannot be added to color plots. Instead the withcolor option must be used.

In addition, spiderweb plots are not currently supported for exterior maps.

INPUT:

The following inputs may be passed in as named parameters:

- spokes integer (default: 16) the number of equally spaced radial lines to plot.
- circles integer (default: 4) the number of equally spaced circles about the center to plot.
- pts integer (default: 32) the number of points to plot. Each radial line is made by 1*pts points, each circle has 2*pts points. Note that high values may cause erratic behavior of the radial lines near the boundaries.
- linescale float between 0 and 1. Shrinks the radial lines away from the boundary to reduce erratic behavior. only for simply connected domains
- rqbcolor float array (default: [0,0,0]) the red-green-blue color of the spiderweb.
- thickness positive float (default: 1) the thickness of the lines or points in the spiderweb.
- plotjoined boolean (default: True) If False, discrete points will be drawn; otherwise they will be connected by lines. only for simply connected domains
- withcolor boolean (default: False) If True, The spiderweb will be overlaid on the basic color plot.
- plot_points integer (default: 200) the size of the grid in the x direction The number of points in the y_direction is scaled accordingly. Note that very large values can cause this function to run slowly. only for multiply connected domains
- min_mag float (default: 0.001) The magnitude cutoff below which spiderweb points are not drawn. This only applies to multiply connected domains and is designed to prevent "fuzz" at the edge of the domain. Some complicated multiply connected domains (particularly those with corners) may require a larger value to look clean outside.

EXAMPLES:

General usage:

```
sage: f(t) = e^{(I*t)} - 0.5*e^{(-I*t)}
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
```

Default plot:

```
sage: m.plot_spiderweb()
Graphics object consisting of 21 graphics primitives
```

Simplified plot with many discrete points:

```
sage: m.plot_spiderweb(spokes=4, circles=1, pts=400, linescale=0.95,_
→plotjoined=False)
Graphics object consisting of 6 graphics primitives
```

Plot with thick, red lines:

```
sage: m.plot_spiderweb(rgbcolor=[1,0,0], thickness=3)
Graphics object consisting of 21 graphics primitives
```

To generate the unit circle map, it's helpful to see what the original spiderweb looks like:

```
sage: f(t) = e^{(1*t)}
sage: fprime(t) = I*e^(I*t)
sage: m = Riemann_Map([f], [fprime], 0, 1000)
sage: m.plot_spiderweb()
Graphics object consisting of 21 graphics primitives
```

A multiply connected region with corners. We set min_mag higher to remove "fuzz" outside the domain:

```
sage: ps = polygon_spline([(-4,-2), (4,-2), (4,2), (-4,2)])
sage: z1 = lambda t: ps.value(t); z1p = lambda t: ps.derivative(t)
sage: z2(t) = -2 + exp(-I*t); z2p(t) = -I*exp(-I*t)
sage: z3(t) = 2 + exp(-I*t); z3p(t) = -I*exp(-I*t)
sage: p = m.plot_spiderweb(withcolor=True, plot_points=500, thickness = 2.0, _
→min_mag=0.1) # long time
```

$riemann_map(pt)$

Return the Riemann mapping of a point.

That is, given pt on the interior of the mapped region, riemann_map will return the point on the unit disk that pt maps to. Note that this method only works for interior points; accuracy breaks down very close to the boundary. To get boundary correspondence, use get_theta_points().

INPUT:

• pt – A complex number representing the point to be inverse mapped.

OUTPUT:

A complex number representing the point on the unit circle that the input point maps to.

EXAMPLES:

Can work for different types of complex numbers:

```
sage: f(t) = e^{(1*t)} - 0.5*e^{(-1*t)}
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
```

(continues on next page)

```
sage: m = Riemann_Map([f], [fprime], 0)
sage: m.riemann_map(0.25 + sqrt(-0.5))
(0.137514...+0.876696...j)
sage: I = CDF.gen()
sage: m.riemann_map(1.3*I)
(-1.56...e-05+0.989694...j)
sage: m.riemann_map(0.4)
(0.73324...+3.2...e-06j)
sage: m.riemann_map(complex(-3, 0.0001))
(1.405757...e-05+8.06...e-10j)
```

sage.calculus.riemann.analytic_boundary(t, n, epsilon)

Provides an exact (for n = infinity) Riemann boundary correspondence for the ellipse with axes 1 + epsilon and 1 - epsilon. The boundary is therefore given by $e^{(I*t)}$ +epsilon* $e^{(-I*t)}$. It is primarily useful for testing the accuracy of the numerical $Riemann_Map$.

INPUT:

- t The boundary parameter, from 0 to 2*pi
- n integer the number of terms to include. 10 is fairly accurate, 20 is very accurate.
- epsilon float the skew of the ellipse (0 is circular)

OUTPUT:

A theta value from 0 to 2*pi, corresponding to the point on the circle e^(I*theta)

```
sage.calculus.riemann.analytic_interior(z, n, epsilon)
```

Provides a nearly exact computation of the Riemann Map of an interior point of the ellipse with axes 1 + epsilon and 1 - epsilon. It is primarily useful for testing the accuracy of the numerical Riemann Map.

INPUT:

- z complex the point to be mapped.
- n integer the number of terms to include. 10 is fairly accurate, 20 is very accurate.

```
sage.calculus.riemann.cauchy_kernel(t, args)
```

Intermediate function for the integration in analytic_interior().

INPUT:

- t The boundary parameter, meant to be integrated over
- args a tuple containing:
 - epsilon float the skew of the ellipse (0 is circular)
 - -z complex the point to be mapped.
 - n integer the number of terms to include. 10 is fairly accurate, 20 is very accurate.
 - part will return the real ('r'), imaginary ('i') or complex ('c') value of the kernel

```
sage.calculus.riemann.complex_to_rgb (z_values)
```

Convert from a (Numpy) array of complex numbers to its corresponding matrix of RGB values. For internal use of plot_colored() only.

INPUT:

• z_values - A Numpy array of complex numbers.

OUTPUT:

An $N \times M \times 3$ floating point Numpy array X, where X [i, j] is an (r,g,b) tuple.

EXAMPLES:

Converts a grid of complex numbers into a matrix containing rgb data for the Riemann spiderweb plot.

INPUT:

- z values A grid of complex numbers, as a list of lists.
- dr grid of floats, the r derivative of z_values. Used to determine precision.
- dtheta grid of floats, the theta derivative of z_values. Used to determine precision.
- spokes integer the number of equally spaced radial lines to plot.
- circles integer the number of equally spaced circles about the center to plot.
- rgbcolor float array the red-green-blue color of the lines of the spiderweb.
- thickness positive float the thickness of the lines or points in the spiderweb.
- withcolor boolean If True the spiderweb will be overlaid on the basic color plot.
- min_mag float The magnitude cutoff below which spiderweb points are not drawn. This only applies to multiply connected domains and is designed to prevent "fuzz" at the edge of the domain. Some complicated multiply connected domains (particularly those with corners) may require a larger value to look clean outside.

OUTPUT:

An NxMx3 floating point Numpy array X, where X [i, j] is an (r,g,b) tuple.

EXAMPLES:

(continues on next page)

```
[[1., 1., 1.],
      [1., 1., 1.],
      [1., 1., 1.]])
sage: complex_to_spiderweb(zval, deriv, deriv, 4, 4, [0,0,0], 1, True, 0.001)
array([[[1. , 1. , 1. ],
               , 0.05558355, 0.05558355],
       [0.17301243, 0. , 0. ]],
      [[1. , 0.96804683, 0.48044583],
                , 0. , 0. ],
      [0.77351965, 0.5470393 , 1.
                                     ]],
                , 1.
                          , 1.
                                     1,
                , 1.
                          , 1.
      [1.
                                     ],
                , 1.
                           , 1.
       「1.
                                     111)
```

sage.calculus.riemann.get_derivatives (z_values, xstep, ystep)

Computes the r*e^(I*theta) form of derivatives from the grid of points. The derivatives are computed using quick-and-dirty taylor expansion and assuming analyticity. As such get_derivatives is primarily intended to be used for comparisons in plot_spiderweb and not for applications that require great precision.

INPUT:

- z_values The values for a complex function evaluated on a grid in the complex plane, usually from compute_on_grid.
- xstep float, the spacing of the grid points in the real direction

OUTPUT:

- A tuple of arrays, [dr, dtheta], with each array 2 less in both dimensions than z_values
 - dr the abs of the derivative of the function in the +r direction
 - dtheta the rate of accumulation of angle in the +theta direction

EXAMPLES:

Standard usage with compute_on_grid:

```
sage: from sage.calculus.riemann import get_derivatives
sage: f(t) = e^(I*t) - 0.5*e^(-I*t)
sage: fprime(t) = I*e^(I*t) + 0.5*I*e^(-I*t)
sage: m = Riemann_Map([f], [fprime], 0)
sage: data = m.compute_on_grid([],19)
sage: xstep = (data[2]-data[1])/19
sage: ystep = (data[4]-data[3])/19
sage: dr, dtheta = get_derivatives(data[0],xstep,ystep)
sage: dr[8,8]
0.241...
sage: dtheta[5,5]
5.907...
```

2.26 Real Interpolation using GSL

class sage.calculus.interpolation.Spline

Bases: object

Create a spline interpolation object.

Given a list v of pairs, s = spline(v) is an object s such that s(x) is the value of the spline interpolation through the points in v at the point x.

The values in v do not have to be sorted. Moreover, one can append values to v, delete values from v, or change values in v, and the spline is recomputed.

EXAMPLES:

```
sage: S = spline([(0, 1), (1, 2), (4, 5), (5, 3)]); S
[(0, 1), (1, 2), (4, 5), (5, 3)]
sage: S(1.5)
2.76136363636...
```

Changing the points of the spline causes the spline to be recomputed:

```
sage: S[0] = (0, 2); S
[(0, 2), (1, 2), (4, 5), (5, 3)]
sage: S(1.5)
2.50757575755...
```

We may delete interpolation points of the spline:

```
sage: del S[2]; S
[(0, 2), (1, 2), (5, 3)]
sage: S(1.5)
2.04296875
```

We may append to the list of interpolation points:

```
sage: S.append((4, 5)); S
[(0, 2), (1, 2), (5, 3), (4, 5)]
sage: S(1.5)
2.5075757575...
```

If we set the n-th interpolation point, where n is larger than len(S), then points (0,0) will be inserted between the interpolation points and the point to be added:

```
sage: S[6] = (6, 3); S
[(0, 2), (1, 2), (5, 3), (4, 5), (0, 0), (0, 0), (6, 3)]
```

This example is in the GSL documentation:

```
sage: v = [(i + RDF(i).sin()/2, i + RDF(i^2).cos()) for i in range(10)]
sage: s = spline(v)
sage: show(point(v) + plot(s,0,9, hue=.8))
\rightarrowneeds sage.plot
#=
```

We compute the area underneath the spline:

```
sage: s.definite_integral(0, 9)
41.196516041067...
```

The definite integral is additive:

```
sage: s.definite_integral(0, 4) + s.definite_integral(4, 9)
41.196516041067...
```

Switching the order of the bounds changes the sign of the integral:

```
sage: s.definite_integral(9, 0)
-41.196516041067...
```

We compute the first and second-order derivatives at a few points:

```
sage: s.derivative(5)
-0.1623008526180...
sage: s.derivative(6)
0.2099798628571...
sage: s.derivative(5, order=2)
-3.0874707456138...
sage: s.derivative(6, order=2)
2.6187684827485...
```

Only the first two derivatives are supported:

```
sage: s.derivative(4, order=3)
Traceback (most recent call last):
...
ValueError: Order of derivative must be 1 or 2.
```

append(xy)

EXAMPLES:

```
sage: S = spline([(1,1), (2,3), (4,5)]); S.append((5,7)); S
[(1, 1), (2, 3), (4, 5), (5, 7)]
```

The spline is recomputed when points are appended (github issue #13519):

```
sage: S = spline([(1,1), (2,3), (4,5)]); S
[(1, 1), (2, 3), (4, 5)]
sage: S(3)
4.25
sage: S.append((5, 5)); S
[(1, 1), (2, 3), (4, 5), (5, 5)]
sage: S(3)
4.375
```

definite_integral (a, b)

Value of the definite integral between a and b.

INPUT:

- a Lower bound for the integral.
- b Upper bound for the integral.

EXAMPLES:

We draw a cubic spline through three points and compute the area underneath the curve:

```
sage: s = spline([(0, 0), (1, 3), (2, 0)])
sage: s.definite_integral(0, 2)
3.75
sage: s.definite_integral(0, 1)
1.875
sage: s.definite_integral(0, 1) + s.definite_integral(1, 2)
3.75
sage: s.definite_integral(2, 0)
-3.75
```

derivative(x, order=1)

Value of the first or second derivative of the spline at x.

INPUT:

- x value at which to evaluate the derivative.
- order (default: 1) order of the derivative. Must be 1 or 2.

EXAMPLES:

We draw a cubic spline through three points and compute the derivatives:

```
sage: s = spline([(0, 0), (2, 3), (4, 0)])
sage: s.derivative(0)
2.25
sage: s.derivative(2)
0.0
sage: s.derivative(4)
-2.25
sage: s.derivative(1, order=2)
-1.125
sage: s.derivative(3, order=2)
-1.125
```

list()

Underlying list of points that this spline goes through.

EXAMPLES:

```
sage: S = spline([(1,1), (2,3), (4,5)]); S.list()
[(1, 1), (2, 3), (4, 5)]
```

This is a copy of the list, not a reference (github issue #13530):

```
sage: S = spline([(1,1), (2,3), (4,5)])
sage: L = S.list(); L
[(1, 1), (2, 3), (4, 5)]
sage: L[2] = (3, 2)
sage: L
[(1, 1), (2, 3), (3, 2)]
sage: S.list()
[(1, 1), (2, 3), (4, 5)]
```

```
sage.calculus.interpolation.spline
```

alias of Spline

2.27 Complex Interpolation

AUTHORS:

• Ethan Van Andel (2009): initial version

Development supported by NSF award No. 0702939.

```
class sage.calculus.interpolators.CCSpline
```

Bases: object

A CCSpline object contains a cubic interpolation of a figure in the complex plane.

EXAMPLES:

A simple square:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.value(0)
(-1-1j)
sage: cs.derivative(0)
(0.9549296...-0.9549296...j)
```

derivative(t)

Return the derivative (speed and direction of the curve) of a given point from the parameter t.

INPUT:

• t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the derivative at the point on the figure corresponding to the input t.

EXAMPLES:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.derivative(3 / 5)
(1.40578892327...-0.225417136326...j)
sage: from math import pi
sage: cs.derivative(0) - cs.derivative(2 * pi)
0j
sage: cs.derivative(-6)
(2.52047692949...-1.89392588310...j)
```

value(t)

Return the location of a given point from the parameter t.

INPUT:

• t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the point on the figure corresponding to the input t.

EXAMPLES:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: cs = complex_cubic_spline(pts)
sage: cs.value(4 / 7)
(-0.303961332787...-1.34716728183...j)
sage: from math import pi
sage: cs.value(0) - cs.value(2*pi)
0j
sage: cs.value(-2.73452)
(0.934561222231...+0.881366116402...j)
```

class sage.calculus.interpolators.PSpline

Bases: object

A CCSpline object contains a polygon interpolation of a figure in the complex plane.

EXAMPLES:

A simple square:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.value(0)
(-1-1j)
sage: ps.derivative(0)
(1.27323954...+0j)
```

derivative(t)

Return the derivative (speed and direction of the curve) of a given point from the parameter t.

INPUT:

• t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the derivative at the point on the polygon corresponding to the input t.

EXAMPLES:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.derivative(1 / 3)
(1.27323954473...+0j)
sage: from math import pi
sage: ps.derivative(0) - ps.derivative(2*pi)
0j
sage: ps.derivative(10)
(-1.27323954473...+0j)
```

value(t)

Return the derivative (speed and direction of the curve) of a given point from the parameter t.

INPUT:

• t – double, the parameter value for the parameterized curve, between 0 and 2*pi.

OUTPUT:

A complex number representing the point on the polygon corresponding to the input t.

EXAMPLES:

```
sage: pts = [(-1, -1), (1, -1), (1, 1), (-1, 1)]
sage: ps = polygon_spline(pts)
sage: ps.value(.5)
(-0.363380227632...-1j)
sage: ps.value(0) - ps.value(2*RDF.pi())
0j
sage: ps.value(10)
(0.26760455264...+1j)
```

sage.calculus.interpolators.complex_cubic_spline (pts)

Creates a cubic spline interpolated figure from a set of complex or (x, y) points. The figure will be a parametric curve from 0 to 2*pi. The returned values will be complex, not (x, y).

INPUT:

• pts – A list or array of complex numbers, or tuples of the form (x, y).

EXAMPLES:

A simple square:

Polygon approximation of a circle:

```
sage: from cmath import exp
sage: pts = [exp(1j * t / 25) for t in range(25)]
sage: cs = complex_cubic_spline(pts)
sage: cs.derivative(2)
(-0.0497765406583...+0.151095006434...j)
```

sage.calculus.interpolators.polygon_spline(pts)

Creates a polygon from a set of complex or (x, y) points. The polygon will be a parametric curve from 0 to 2*pi. The returned values will be complex, not (x, y).

INPUT:

• pts – A list or array of complex numbers of tuples of the form (x, y).

EXAMPLES:

A simple square:

(continues on next page)

Polygon approximation of a circle:

```
sage: pts = [e^(I*t / 25) for t in range(25)]
sage: ps = polygon_spline(pts)
sage: ps.derivative(2)
(-0.0470303661...+0.1520363883...j)
```

2.28 Calculus functions

sage.calculus.functions.jacobian (functions, variables)

Return the Jacobian matrix, which is the matrix of partial derivatives in which the i,j entry of the Jacobian matrix is the partial derivative diff(functions[i], variables[j]).

EXAMPLES:

The Jacobian of the Jacobian should give us the "second derivative", which is the Hessian matrix:

sage.calculus.functions.wronskian(*args)

Return the Wronskian of the provided functions, differentiating with respect to the given variable.

If no variable is provided, diff(f) is called for each function f.

wronskian(f1,...,fn, x) returns the Wronskian of f1,...,fn, with derivatives taken with respect to x.

wronskian(f1,...,fn) returns the Wronskian of f1,...,fn where k'th derivatives are computed by doing . derivative (k) on each function.

The Wronskian of a list of functions is a determinant of derivatives. The nth row (starting from 0) is a list of the nth derivatives of the given functions.

For two functions:

EXAMPLES:

```
sage: wronskian(e^x, x^2)
-x^2*e^x + 2*x*e^x

sage: x,y = var('x, y')
sage: wronskian(x*y, log(x), x)
-y*log(x) + y
```

If your functions are in a list, you can use *'toturnthemintoargumentsto: func: `wronskian:

```
sage: wronskian(*[x^k for k in range(1, 5)])
12*x^4
```

If you want to use 'x' as one of the functions in the Wronskian, you can't put it last or it will be interpreted as the variable with respect to which we differentiate. There are several ways to get around this.

Two-by-two Wronskian of sin(x) and e^x :

```
sage: wronskian(sin(x), e^x, x)
-cos(x)*e^x + e^x*sin(x)
```

Or don't put x last:

```
sage: wronskian(x, sin(x), e^x)
(cos(x)*e^x + e^x*sin(x))*x - 2*e^x*sin(x)
```

Example where one of the functions is constant:

REFERENCES:

- Wikipedia article Wronskian
- http://planetmath.org/encyclopedia/WronskianDeterminant.html

AUTHORS:

• Dan Drake (2008-03-12)

2.29 Symbolic variables

```
sage.calculus.var.clear_vars()
```

Delete all 1-letter symbolic variables that are predefined at startup of Sage.

Any one-letter global variables that are not symbolic variables are not cleared.

EXAMPLES:

```
sage: var('x y z')
(x, y, z)
sage: (x+y)^z
(x + y)^z
sage: k = 15
sage: clear_vars()
sage: (x+y)^z
Traceback (most recent call last):
...
NameError: name 'x' is not defined
sage: expand((e + i)^2)
e^2 + 2*I*e - 1
sage: k
```

sage.calculus.var.function(s, **kwds)

Create a formal symbolic function with the name *s*.

INPUT:

- nargs=0 number of arguments the function accepts, defaults to variable number of arguments, or 0
- latex_name name used when printing in latex mode
- conversions a dictionary specifying names of this function in other systems, this is used by the interfaces internally during conversion
- eval func method used for automatic evaluation
- evalf func method used for numeric evaluation
- evalf_params_first bool to indicate if parameters should be evaluated numerically before calling the custom evalf function
- conjugate_func method used for complex conjugation
- real_part_func method used when taking real parts
- imag_part_func method used when taking imaginary parts
- derivative_func method to be used for (partial) derivation This method should take a keyword argument deriv_param specifying the index of the argument to differentiate w.r.t
- tderivative_func method to be used for derivatives
- power_func method used when taking powers This method should take a keyword argument power_param specifying the exponent
- series_func method used for series expansion This method should expect keyword arguments order order for the expansion to be computed var variable to expand w.r.t. at expand at this value
- print_func method for custom printing
- print latex func method for custom printing in latex mode

Note that custom methods must be instance methods, i.e., expect the instance of the symbolic function as the first argument.

Note: The new function is both returned and automatically injected into the global namespace. If you use this function in library code, it is better to use sage.symbolic.function_factory.function, since it will not touch the global namespace.

EXAMPLES:

We create a formal function called supersin

```
sage: function('supersin')
supersin
```

We can immediately use supersin in symbolic expressions:

```
sage: y, z, A = var('y z A')
sage: supersin(y+z) + A^3
A^3 + supersin(y + z)
```

We can define other functions in terms of supersin:

```
sage: g(x,y) = supersin(x)^2 + sin(y/2)
sage: g
(x, y) |--> supersin(x)^2 + sin(1/2*y)
sage: g.diff(y)
(x, y) |--> 1/2*cos(1/2*y)
sage: k = g.diff(x); k
(x, y) |--> 2*supersin(x)*diff(supersin(x), x)
```

We create a formal function of one variable, write down an expression that involves first and second derivatives, and extract off coefficients:

```
sage: r, kappa = var('r,kappa')
sage: psi = function('psi', nargs=1)(r); psi
psi(r)
sage: g = 1/r^2*(2*r*psi.derivative(r,1) + r^2*psi.derivative(r,2)); g
(r^2*diff(psi(r), r, r) + 2*r*diff(psi(r), r))/r^2
sage: g.expand()
2*diff(psi(r), r)/r + diff(psi(r), r, r)
sage: g.coefficient(psi.derivative(r,2))
1
sage: g.coefficient(psi.derivative(r,1))
2/r
```

Custom typesetting of symbolic functions in LaTeX, either using latex_name keyword:

```
sage: function('riemann', latex_name="\\mathcal{R}")
riemann
sage: latex(riemann(x))
\mathcal{R}\left(x\right)
```

or passing a custom callable function that returns a latex expression:

Defining custom methods for automatic or numeric evaluation, derivation, conjugation, etc. is supported:

```
sage: def ev(self, x): return 2*x
sage: foo = function("foo", nargs=1, eval_func=ev)
sage: foo(x)
2*x
sage: foo = function("foo", nargs=1, eval_func=lambda self, x: 5)
sage: foo(x)
sage: def ef(self, x): pass
sage: bar = function("bar", nargs=1, eval_func=ef)
sage: bar(x)
bar(x)
sage: def evalf_f(self, x, parent=None, algorithm=None): return 6
sage: foo = function("foo", nargs=1, evalf_func=evalf_f)
sage: foo(x)
foo(x)
sage: foo(x).n()
sage: foo = function("foo", nargs=1, conjugate_func=ev)
sage: foo(x).conjugate()
2*x
sage: def deriv(self, *args,**kwds): print("{} {}".format(args, kwds)); return_
→args[kwds['diff_param']]^2
sage: foo = function("foo", nargs=2, derivative_func=deriv)
sage: foo(x,y).derivative(y)
(x, y) {'diff_param': 1}
y^2
sage: def pow(self, x, power_param=None): print("{} {}".format(x, power_param));
→return x*power_param
sage: foo = function("foo", nargs=1, power_func=pow)
sage: foo(y)^(x+y)
y x + y
(x + y) * y
sage: from pprint import pformat
sage: def expand(self, *args, **kwds):
        print("{} {}".format(args, pformat(kwds)))
          return sum(args[0]^i for i in range(kwds['order']))
sage: foo = function("foo", nargs=1, series_func=expand)
sage: foo(y).series(y, 5)
(y,) {'at': 0, 'options': 0, 'order': 5, 'var': y}
y^4 + y^3 + y^2 + y + 1
sage: def my_print(self, *args):
         return "my args are: " + ', '.join(map(repr, args))
sage: foo = function('t', nargs=2, print_func=my_print)
sage: foo(x, y^z)
my args are: x, y^z
sage: latex(foo(x,y^z))
t \leq (x, y^{z} \right)
sage: foo = function('t', nargs=2, print_latex_func=my_print)
sage: foo(x, y^z)
t(x, y^z)
                                                                      (continues on next page)
```

```
sage: latex(foo(x,y^z))
my args are: x, y^z
sage: foo = function('t', nargs=2, latex_name='foo')
sage: latex(foo(x,y^z))
foo\left(x, y^{z}\right)
```

Chain rule:

```
sage: def print_args(self, *args, **kwds): print("args: {}".format(args)); print(
    →"kwds: {}".format(kwds)); return args[0]
sage: foo = function('t', nargs=2, tderivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': x}
x
sage: foo = function('t', nargs=2, derivative_func=print_args)
sage: foo(x,x).derivative(x)
args: (x, x)
kwds: {'diff_param': 0}
args: (x, x)
kwds: {'diff_param': 1}
2*x
```

Since Sage 4.0, basic arithmetic with unevaluated functions is no longer supported:

You now need to evaluate the function in order to do the arithmetic:

```
sage: 2*f(x)
2*f(x)
```

Since Sage 4.0, you need to use substitute_function() to replace all occurrences of a function with another:

```
sage: var('a, b')
(a, b)
sage: cr = function('cr')
sage: f = cr(a)
sage: g = f.diff(a).integral(b)
sage: g
b*diff(cr(a), a)
sage: g.substitute_function(cr, cos)
-b*sin(a)

sage: g.substitute_function(cr, (sin(x) + cos(x)).function(x))
b*(cos(a) - sin(a))
```

sage.calculus.var.var(*args, **kwds)

Create a symbolic variable with the name s.

INPUT:

- args A single string var ('x y'), a list of strings var (['x', 'y']), or multiple strings var ('x', 'y'). A single string can be either a single variable name, or a space or comma separated list of variable names. In a list or tuple of strings, each entry is one variable. If multiple arguments are specified, each argument is taken to be one variable. Spaces before or after variable names are ignored.
- kwds keyword arguments can be given to specify domain and custom latex_name for variables. See EX-AMPLES for usage.

Note: The new variable is both returned and automatically injected into the global namespace. If you need a symbolic variable in library code, you must use either SR.var() or SR.symbol().

OUTPUT:

If a single symbolic variable was created, the variable itself. Otherwise, a tuple of symbolic variables. The variable names are checked to be valid Python identifiers and a ValueError is raised otherwise.

EXAMPLES:

Here are the different ways to define three variables x, y, and z in a single line:

```
sage: var('x y z')
(x, y, z)
sage: var('x, y, z')
(x, y, z)
sage: var(['x', 'y', 'z'])
(x, y, z)
sage: var('x', 'y', 'z')
(x, y, z)
sage: var('x', 'y', var(z))
(x, y, z)
```

We define some symbolic variables:

```
sage: var('n xx yy zz')
(n, xx, yy, zz)
```

Then we make an algebraic expression out of them:

```
sage: f = xx^n + yy^n + zz^n; f
xx^n + yy^n + zz^n
```

By default, var returns a complex variable. To define real or positive variables we can specify the domain as:

```
sage: x = var('x', domain=RR); x; x.conjugate()
x
x
sage: y = var('y', domain='real'); y.conjugate()
y
sage: y = var('y', domain='positive'); y.abs()
y
```

Custom latex expression can be assigned to variable:

```
sage: x = var('sui', latex_name="s_{u,i}"); x._latex_()
'{s_{u,i}}'
```

In notebook, we can also colorize latex expression:

```
sage: x = var('sui', latex_name="\\color{red}{s_{u,i}}"); x._latex_()
'{\\color{red}{s_{u,i}}}'
```

We can substitute a new variable name for n:

```
sage: f(n = var('sigma'))
xx^sigma + yy^sigma + zz^sigma
```

If you make an important built-in variable into a symbolic variable, you can get back the original value using restore:

```
sage: var('QQ RR')
(QQ, RR)
sage: QQ
QQ
sage: restore('QQ')
sage: QQ
Rational Field
```

We make two new variables separated by commas:

```
sage: var('theta, gamma')
(theta, gamma)
sage: theta^2 + gamma^3
gamma^3 + theta^2
```

The new variables are of type Expression, and belong to the symbolic expression ring:

```
sage: type(theta)
<class 'sage.symbolic.expression.Expression'>
sage: parent(theta)
Symbolic Ring
```

2.30 Access to Maxima methods

```
class sage.symbolic.maxima_wrapper.MaximaFunctionElementWrapper(obj, name)
    Bases: InterfaceFunctionElement

class sage.symbolic.maxima_wrapper.MaximaWrapper(exp)
    Bases: SageObject
```

Wrapper around Sage expressions to give access to Maxima methods.

We convert the given expression to Maxima and convert the return value back to a Sage expression. Tab completion and help strings of Maxima methods also work as expected.

EXAMPLES:

```
sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
log(sqrt(2) + 1) + log(sqrt(2) - 1)
sage: u = t.maxima_methods(); u
MaximaWrapper(log(sqrt(2) + 1) + log(sqrt(2) - 1))
sage: type(u)
<class 'sage.symbolic.maxima_wrapper.MaximaWrapper'>
sage: u.logcontract()
```

(continues on next page)

```
log((sqrt(2) + 1)*(sqrt(2) - 1))
sage: u.logcontract().parent()
Symbolic Ring
```

sage()

Return the Sage expression this wrapper corresponds to.

EXAMPLES:

```
sage: t = log(sqrt(2) - 1) + log(sqrt(2) + 1); t
log(sqrt(2) + 1) + log(sqrt(2) - 1)
sage: u = t.maxima_methods().sage()
sage: u is t
True
```

2.31 Operators

```
class sage.symbolic.operators.DerivativeOperator
```

Bases: object

Derivative operator.

Acting with this operator onto a function gives a new operator (of type FDerivativeOperator) representing the function differentiated with respect to one or multiple of its arguments.

This operator takes a list of indices specifying the position of the arguments to differentiate. For example, D[0, 0, 1] is an operator that differentiates a function twice with respect to its first argument and once with respect to its second argument.

EXAMPLES:

```
sage: x, y = var('x,y'); f = function('f')
sage: D[0](f)(x)
diff(f(x), x)
sage: D[0](f)(x, y)
diff(f(x, y), x)
sage: D[0, 1](f)(x, y)
diff(f(x, y), x, y)
sage: D[0, 1](f)(x, x^2)
D[0, 1](f)(x, x^2)
```

class DerivativeOperatorWithParameters (parameter_set)

Bases: object

```
class sage.symbolic.operators.FDerivativeOperator(function, parameter_set)
```

Bases: object

Function derivative operators.

A function derivative operator represents a partial derivative of a function with respect to some variables.

The underlying data are the function, and the parameter set, a list recording the indices of the variables with respect to which the partial derivative is taken.

2.31. Operators 353

change_function (new)

Return a new function derivative operator with the same parameter set but for a new function.

EXAMPLES:

```
sage: from sage.symbolic.operators import FDerivativeOperator
sage: f = function('foo')
sage: b = function('bar')
sage: op = FDerivativeOperator(f, [0, 1])
sage: op.change_function(bar)
D[0, 1](bar)
```

function()

Return the function associated to this function derivative operator.

EXAMPLES:

```
sage: from sage.symbolic.operators import FDerivativeOperator
sage: f = function('foo')
sage: op = FDerivativeOperator(f, [0, 1])
sage: op.function()
foo
```

parameter_set()

Return the parameter set of this function derivative operator.

This is the list of indices of variables with respect to which the derivative is taken.

EXAMPLES:

```
sage: from sage.symbolic.operators import FDerivativeOperator
sage: f = function('foo')
sage: op = FDerivativeOperator(f, [0, 1])
sage: op.parameter_set()
[0, 1]
```

sage.symbolic.operators.add_vararg(first, *rest)

Return the sum of all the arguments.

INPUT:

• first, *rest - arguments to add

OUTPUT: sum of the arguments

EXAMPLES:

```
sage: from sage.symbolic.operators import add_vararg
sage: add_vararg(1, 2, 3, 4, 5, 6, 7)
28
sage: x = SR.var('x')
sage: s = 1 + x + x^2 # symbolic sum
sage: bool(s.operator()(*s.operands()) == s)
True
```

sage.symbolic.operators.mul_vararg(first, *rest)

Return the product of all the arguments.

INPUT:

• first, *rest – arguments to multiply

OUTPUT: product of the arguments

EXAMPLES:

```
sage: from sage.symbolic.operators import mul_vararg
sage: mul_vararg(9, 8, 7, 6, 5, 4)
60480
sage: x = SR.var('x')
sage: p = x * cos(x) * sin(x) # symbolic product
sage: bool(p.operator()(*p.operands()) == p)
True
```

2.32 Benchmarks

Tests that will take a long time if something is wrong, but be very quick otherwise. See https://wiki.sagemath.org/symbench. The parameters chosen below are such that with pynac most of these take well less than a second, but would not even be feasible using Sage's Maxima-based symbolics.

Problem R1

Important note. Below we do s.expand().real() because s.real() takes forever (TODO?).

Problem R2:

Problem R3:

```
sage: f = sum(var('x,y,z')); a = [bool(f==f) for _ in range(100000)]
```

Problem R4:

```
sage: u = [e,pi,sqrt(2)]; Tuples(u,3).cardinality()
27
```

Problem R5:

```
sage: def blowup(L,n):
....:     for i in [0..n]:
....:         L.append( (L[i] + L[i+1]) * L[i+2] )
sage: L = list(var('x,y,z'))
sage: blowup(L,15)
```

(continues on next page)

2.32. Benchmarks 355

```
sage: len(set(L))
19
```

Problem R6:

```
sage: sum(((x+sin(i))/x+(x-sin(i))/x) for i in range(100)).expand() 200
```

Problem R7:

```
sage: f = x^24+34*x^12+45*x^3+9*x^18+34*x^10+32*x^21
sage: a = [f(x=random()) for _ in range(10^4)]
```

Problem R10:

```
sage: v = [float(z) for z in [-pi,-pi+1/100..,pi]]
```

Problem R11:

```
sage: a = [random() + random()*I for w in [0..100]]
sage: a.sort()
```

Problem W3:

```
sage: acos(cos(x))
arccos(cos(x))
```

PROBLEM S1:

```
sage: _ = var('x,y,z')
sage: f = (x+y+z+1)^10
sage: g = expand(f*(f+1))
```

PROBLEM S2:

```
sage: _ = var('x,y')
sage: a = expand((x^sin(x) + y^cos(y) - z^(x+y))^100)
```

PROBLEM S3:

```
sage: _ = var('x,y,z')
sage: f = expand((x^y + y^z + z^x)^50)
sage: g = f.diff(x)
```

PROBLEM S4:

```
sage: w = (sin(x)*cos(x)).series(x,400)
```

2.33 Randomized tests of GiNaC / PyNaC

sage.symbolic.random_tests.assert_strict_weak_order(a, b, c, cmp_func)

Check that cmp_func is a strict weak order on the elements a,b,c.

A strict weak order is a binary relation < such that

- For all x, it is not the case that x < x (irreflexivity).
- For all $x \neq y$, if x < y then it is not the case that y < x (asymmetry).
- For all x, y, and z, if x < y and y < z then x < z (transitivity).
- For all x, y, and z, if x is incomparable with y, and y is incomparable with z, then x is incomparable with z (transitivity of incomparability).

INPUT:

- a, b, c anything that can be compared by cmp_func.
- cmp_func function of two arguments that returns their comparison (i.e. either True or False).

OUTPUT:

Does not return anything. Raises a ValueError if cmp_func is not a strict weak order on the three given elements.

REFERENCES:

Wikipedia article Strict weak ordering

EXAMPLES:

The usual ordering of integers is a strict weak order:

```
sage: from sage.symbolic.random_tests import assert_strict_weak_order
sage: a, b, c = [randint(-10, 10)] for i in range(3)]
sage: assert_strict_weak_order(a, b, c, lambda x, y: x < y)</pre>
sage: x = [-SR(oo), SR(0), SR(oo)]
sage: cmp_M = matrix(3, 3, 0)
sage: for i in range(3):
....: for j in range(3):
              if x[i] < x[j]:
                  cmp_M[i, j] = -1
              elif x[i] > x[j]:
                  cmp_M[i, j] = 1
. . . . :
sage: cmp_M
[ 0 -1 -1 ]
[ 1 0 -1]
[ 1 1 0]
```

sage.symbolic.random_tests.choose_from_prob_list(lst)

INPUT:

• 1st - A list of tuples, where the first element of each tuple is a nonnegative float (a probability), and the probabilities sum to one.

OUTPUT:

A tuple randomly selected from the list according to the given probabilities.

EXAMPLES:

```
sage: from sage.symbolic.random tests import *
sage: v = [(0.1, False), (0.9, True)]
sage: choose_from_prob_list(v) # random
(0.90000000000000, True)
sage: true_count = 0
sage: total_count = 0
sage: def more_samples():
      global true_count, total_count
. . . . :
        for _ in range(10000):
. . . . :
             total_count += 1.0
              if choose_from_prob_list(v)[1]:
                  true_count += 1.0
sage: more_samples()
sage: while abs(true_count/total_count - 0.9) > 0.01:
         more_samples()
```

sage.symbolic.random_tests.normalize_prob_list(pl, extra=())

INPUT:

- pl A list of tuples, where the first element of each tuple is a floating-point number (representing a relative probability). The second element of each tuple may be a list or any other kind of object.
- extra A tuple which is to be appended to every tuple in pl.

This function takes such a list of tuples (a "probability list") and normalizes the probabilities so that they sum to one. If any of the values are lists, then those lists are first normalized; then the probabilities in the list are multiplied by the main probability and the sublist is merged with the main list.

For example, suppose we want to select between group A and group B with 50% probability each. Then within group A, we select A1 or A2 with 50% probability each (so the overall probability of selecting A1 is 25%); and within group B, we select B1, B2, or B3 with probabilities in a 1:2:2 ratio.

EXAMPLES:

sage.symbolic.random tests.random expr(size, nvars=1, ncoeffs=None, var frac=0.5, internal=[(0.6, [(0.3, <built-in function add>), (0.1, <built-in function sub>), (0.3, <built-in function mul>), (0.2, <built-in function truediv>), (0.1, <built-in function pow>)], 2), (0.2, [(0.8, <built-in function neg>), (0.2, <built-in function inv>)], 1), (0.2, [(1.0, Ei, 1), (1.0, Order, 1), (1.0, swap harmonic, 2), (1.0, abs, 1), (1.0, airy ai, 1), (1.0, airy ai prime, 1), (1.0, airy_bi, 1), (1.0, airy_bi_prime, 1), (1.0, arccos, 1), (1.0, arccosh, 1), (1.0, arccot, 1), (1.0, arccoth, 1), (1.0, arccsc, 1), (1.0, arccsch, 1), (1.0, arcsec, 1), (1.0, arcsech, 1), (1.0, arcsin, 1), (1.0, arcsinh, 1), (1.0, arctan, 1), (1.0, arctan2, 2), (1.0, arctanh, 1), (1.0, arg, 1), (1.0, bessel_I, 2), (1.0, bessel_J, 2), (1.0, bessel_K, 2), (1.0, bessel_Y, 2), (1.0, beta, 2), (1.0, binomial, 2), (1.0, ceil, 1), (1.0, chebyshev_T, 2), (1.0, chebyshev_U, 2), (1.0, complex_root_of, 2), (1.0, conjugate, 1), (1.0, cos, 1), (1.0, cos_integral, 1), (1.0, cosh, 1), (1.0, cosh_integral, 1), (1.0, cot, 1), (1.0, coth, 1), (1.0, csc, 1), (1.0, csch, 1), (1.0, dickman rho, 1), (1.0, dilog, 1), (1.0, dirac_delta, 1), (1.0, elliptic_e, 2), (1.0, elliptic_ec, 1), (1.0, elliptic_eu, 2), (1.0, elliptic_f, 2), (1.0, elliptic_kc, 1), (1.0, elliptic_pi, 3), (1.0, erf, 1), (1.0, erfc, 1), (1.0, erfi, 1), (1.0, erfinv, 1), (1.0, exp, 1), (1.0, exp_integral_e, 2), (1.0, exp_integral_e1, 1), (1.0, exp_polar, 1), (1.0, factorial, 1), (1.0, floor, 1), (1.0, frac, 1), (1.0, fresnel cos, 1), (1.0, fresnel_sin, 1), (1.0, gamma_inc_lower, 2), (1.0, gegenbauer, 3), (1.0, gen_laguerre, 3), (1.0, gen_legendre_P, 3), (1.0, gen_legendre_Q, 3), (1.0, hahn, 5), (1.0, hankel1, 2), (1.0, hankel2, 2), (1.0, harmonic_number, 1), (1.0, heaviside, 1), (1.0, hermite, 2), (1.0, hurwitz_zeta, 2), (1.0, hypergeometric_M, 3), (1.0, hypergeometric_U, 3), (1.0, imag_part, 1), (1.0, integrate, 4), (1.0, inverse_jacobi_cd, 2), (1.0, inverse_jacobi_cn, 2), (1.0, inverse_jacobi_cs, 2), (1.0, inverse_jacobi_dc, 2), (1.0, inverse_jacobi_dn, 2), (1.0, inverse_jacobi_ds, 2), (1.0, inverse_jacobi_nc, 2), (1.0, inverse jacobi nd, 2), (1.0, inverse jacobi ns, 2), (1.0, inverse_jacobi_sc, 2), (1.0, inverse_jacobi_sd, 2), (1.0, inverse jacobi sn, 2), (1.0, jacobi P, 4), (1.0, jacobi am, 2), (1.0, jacobi_cd, 2), (1.0, jacobi_cn, 2), (1.0, jacobi_cs, 2), (1.0, jacobi_dc, 2), (1.0, jacobi_dn, 2), (1.0, jacobi_ds, 2), (1.0, jacobi_nc, 2), (1.0, jacobi_nd, 2), (1.0, jacobi_ns, 2), (1.0, jacobi sc, 2), (1.0, jacobi sd, 2), (1.0, jacobi sn, 2), (1.0, krawtchouk, 4), (1.0, kronecker delta, 2), (1.0, laguerre, 2), (1.0, lambert w, 2), (1.0, legendre P, 2), (1.0, legendre_Q, 2), (1.0, log, 2), (1.0, log_gamma, 1), (1.0, log_integral, 1), (1.0, log_integral_offset, 1), (1.0, meixner, 4), (1.0, polylog, 2), (1.0, prime_pi, 1), (1.0, product, 4), (1.0, real_nth_root, 2), (1.0, real_part, 1), (1.0, sec, 1), (1.0, sech, 1), (1.0, sgn, 1), (1.0, sin, 1), (1.0, sin_integral, 1), (1.0, sinh, 1), (1.0, sinh_integral, 1), (1.0, spherical_bessel_J, 2), (1.0, spherical_bessel_Y, 2), (1.0, spherical_hankel1, 2), (1.0, spherical_hankel2, 2), (1.0, spherical_harmonic, 4), (1.0, stieltjes, 1), (1.0, struve_H, 2), (1.0, struve_L, 2), (1.0, sum, 4), (1.0, tan, 1), (1.0, tanh, 1), (1.0, unit step, 1), (1.0, zeta, 1), (1.0, zetaderiv, 2)])], nullary=[(1.0, pi), (1.0, e), (0.05, golden_ratio), (0.05, log2), (0.05, euler_gamma), (0.05, catalan), (0.05,

Produce a random symbolic expression of the given size. By default, the expression involves (at most) one variable, an arbitrary number of coefficients, and all of the symbolic functions and constants (from the probability lists full_internal and full_nullary). It is possible to adjust the ratio of leaves between symbolic constants, variables, and coefficients (var_frac gives the fraction of variables, and nullary_frac the fraction of symbolic constants; the remaining leaves are coefficients).

The actual mix of symbolic constants and internal nodes can be modified by specifying different probability lists.

To use a different type for coefficients, you can specify coeff_generator, which should be a function that will return a random coefficient every time it is called.

This function will often raise an error because it tries to create an erroneous expression (such as a division by zero).

EXAMPLES:

```
sage: from sage.symbolic.random_tests import *
sage: some_functions = [arcsinh, arctan, arctan2, arctanh,
....: arg, beta, binomial, ceil, conjugate, cos, cosh, cot, coth,
....: elliptic_pi, erf, exp, factorial, floor, heaviside, imag_part,
....: sech, sgn, sin, sinh, tan, tanh, unit_step, zeta, zetaderiv]
sage: my_internal = [(0.6, full_binary, 2), (0.2, full_unary, 1),
....: (0.2, [(1.0,f,f.number_of_arguments()) for f in some_functions])]
sage: set_random_seed(1)
sage: random_expr(50, nvars=3, internal=my_internal,
                                                        # not tested # known bug
                  coeff_generator=CDF.random_element)
(v1^{(0.9713408427702117 + 0.195868299334218*I)/cot(-pi + v1^2 + v3) + v
\rightarrowtan(arctan(v2 + arctan2(-0.35859061674557324 + 0.9407509502498164*I, v3) - 0.
→8419115504372718 + 0.30375717982404615*I) + arctan2((0.2275357305882964 - 0.
\Rightarrow8258002386106038*I)/factorial(v2), -v3 - 0.7604559947718565 - 0.
\hookrightarrow5543672548552057*I) + ceil(1/arctan2(v1, v1))))/v2
sage: random_expr(5, verbose=True) # not tested # known bug
About to apply <built-in function inv> to [31]
About to apply sgn to [v1]
About to apply <built-in function add> to [1/31, sgn(v1)]
sgn(v1) + 1/31
```

sage.symbolic.random tests.random expr helper(n nodes, internal, leaves, verbose)

Produce a random symbolic expression of size n_nodes (or slightly larger). Internal nodes are selected from the *internal* probability list; leaves are selected from *leaves*. If *verbose* is True, then a message is printed before creating an internal node.

EXAMPLES:

```
sage: from sage.symbolic.random_tests import *
sage: a = random_expr_helper(9, [(0.5, operator.add, 2),
....: (0.5, operator.neg, 1)], [(0.5, 1), (0.5, x)], True)
About to apply <built-in function ...</pre>
```

In small cases we will see all cases quickly:

(continues on next page)

(continued from previous page)

```
continue
all_exprs.add(a*x + b)
sage: our_exprs = set()
sage: while our_exprs != all_exprs:
our_exprs.add(next_expr())
```

sage.symbolic.random_tests.random_integer_vector(n, length)

Give a random list of length length, consisting of nonnegative integers that sum to n.

This is an approximation to IntegerVectors(n, length).random_element(). That gives values uniformly at random, but might be slow; this routine is not uniform, but should always be fast.

(This routine is uniform if length is 1 or 2; for longer vectors, we prefer approximately balanced vectors, where all the values are around n/length.)

EXAMPLES:

```
sage: from sage.symbolic.random_tests import *
sage: a = random_integer_vector(100, 2); a # random
[11, 89]
sage: len(a)
2
sage: sum(a)
100

sage: b = random_integer_vector(10000, 20)
sage: len(b)
20
sage: sum(b)
10000
```

The routine is uniform if length is 2:

sage.symbolic.random_tests.test_symbolic_expression_order(repetitions=100)

Tests whether the comparison of random symbolic expressions satisfies the strict weak order axioms.

This is important because the C++ extension class uses std::sort() which requires a strict weak order. See also github issue #9880.

EXAMPLES:

```
sage: from sage.symbolic.random_tests import test_symbolic_expression_order
sage: test_symbolic_expression_order(200)
sage: test_symbolic_expression_order(10000) # long time
```

CHAPTER

THREE

INDICES AND TABLES

- Index
- Module Index
- Search Page

PYTHON MODULE INDEX

```
C
sage.calculus.calculus, 172
sage.calculus.desolvers, 286
sage.calculus.functional, 224
sage.calculus.functions, 345
sage.calculus.integration, 324
sage.calculus.interpolation, 339
sage.calculus.interpolators, 342
sage.calculus.ode, 319
sage.calculus.riemann, 328
sage.calculus.test_sympy, 246
sage.calculus.tests, 250
sage.calculus.transforms.dft, 307
sage.calculus.transforms.dwt, 304
sage.calculus.transforms.fft,315
sage.calculus.var, 346
sage.calculus.wester, 276
S
sage.symbolic.assumptions, 146
sage.symbolic.benchmark, 355
sage.symbolic.callable, 143
sage.symbolic.complexity measures, 275
sage.symbolic.expression, 5
sage.symbolic.expression_conversions,
sage.symbolic.function, 216
sage.symbolic.function factory, 220
sage.symbolic.integration.external, 245
sage.symbolic.integration.integral, 235
sage.symbolic.maxima_wrapper, 352
sage.symbolic.operators, 353
sage.symbolic.random_tests,357
sage.symbolic.relation, 155
sage.symbolic.ring, 204
sage.symbolic.subring, 211
sage.symbolic.units, 198
```

366 Python Module Index

INDEX

A	arithmetic() (sage.symbolic.expression_conver-
abs () (sage.symbolic.expression.Expression method), 9 add () (sage.symbolic.expression.Expression method), 9	sions.FastCallableConverter method), 262 arithmetic() (sage.symbolic.expression_conver-
<pre>add_to_both_sides() (sage.symbolic.expression.Ex- pression method), 9</pre>	sions.InterfaceInit method), 267 arithmetic() (sage.symbolic.expression_conver-
add_vararg() (in module sage.symbolic.operators), 354	sions.PolynomialConverter method), 270 arithmetic() (sage.symbolic.expression_conver-
analytic_boundary() (in module sage.calculus.rie- mann), 336	<pre>sions.RingConverter method), 271 assert_strict_weak_order() (in module sage.symbolic.random_tests), 357</pre>
analytic_interior() (in module sage.calculus.rie- mann), 336	assume() (in module sage.symbolic.assumptions), 149 assume() (sage.symbolic.assumptions.GenericDeclara-
append() (sage.calculus.interpolation.Spline method), 340	tion method), 148
apply_to() (sage.symbolic.expression.SubstitutionMap method), 124	assume() (sage.symbolic.expression.Expression method), 14
arccos() (sage.symbolic.expression.Expression method), 10	assuming (class in sage.symbolic.assumptions), 151 assumptions() (in module sage.symbolic.assump-
arccosh() (sage.symbolic.expression.Expression method), 10	tions), 153 at () (in module sage.calculus.calculus), 176
arcsin() (sage.symbolic.expression.Expression method),	В
arcsinh() (sage.symbolic.expression.Expression method), 11 arctan() (sage.symbolic.expression.Expression method),	backward_transform() (sage.calculus.trans- forms.dwt.DiscreteWaveletTransform method), 305
12 arctan2() (sage.symbolic.expression.Expression	backward_transform() (sage.calculus.trans- forms.fft.FastFourierTransform_complex method), 317
<pre>method), 13 arctanh() (sage.symbolic.expression.Expression</pre>	base_ring() (sage.calculus.transforms.dft.IndexedSequence method), 308
args() (sage.symbolic.callable.CallableSymbolicExpressionRing_class method), 145	base_units() (in module sage.symbolic.units), 199 binomial() (sage.symbolic.expression.Expression
args() (sage.symbolic.expression.Expression method), 14 arguments() (sage.symbolic.callable.CallableSymbolic- ExpressionFunctor method), 144	method), 15 BuiltinFunction (class in sage.symbolic.function), 218
arguments () (sage.symbolic.callable.CallableSymbolic- ExpressionRing_class method), 145	C
arguments() (sage.symbolic.expression.Expression method), 14	call_registered_function() (in module sage.symbolic.expression), 126
arithmetic() (sage.symbolic.expression_conversions.Converter method), 254	CallableSymbolicExpressionFunctor (class in sage.symbolic.callable), 143
arithmetic() (sage.symbolic.expression_conversions.ExpressionTreeWalker method), 260	CallableSymbolicExpressionRing_class (class in sage.symbolic.callable), 145

- CallableSymbolicExpressionRingFactory (class in sage.symbolic.callable), 145
- canonicalize_radical() (sage.symbolic.expression.Expression method), 15
- CCSpline (class in sage.calculus.interpolators), 342
- change_function() (sage.symbolic.operators.FDerivativeOperator method), 353
- characteristic() (sage.symbolic.ring.SymbolicRing method), 204
- choose_from_prob_list() (in module sage.symbolic.random_tests), 357
- CircDict (sage.symbolic.expression_conversions.Exponentialize attribute), 255
- Circs (sage.symbolic.expression_conversions.Exponentialize attribute), 255
- clear_vars() (in module sage.calculus.var), 346
- coefficients() (sage.symbolic.expression.Expression
 method), 18
- coefficients() (sage.symbolic.expression.Symbolic-Series method), 125
- coercion_reversed (sage.symbolic.subring.Generic-SymbolicSubringFunctor attribute), 212
- collect() (sage.symbolic.expression.Expression
 method), 19
- collect_common_factors() (sage.symbolic.expression.Expression method), 20
- combine() (sage.symbolic.expression.Expression method), 20
- compiled_integrand (class in sage.calculus.integration), 324
- complex_cubic_spline() (in module sage.calculus.interpolators), 344
- complex_to_rgb() (in module sage.calculus.riemann), 336
- complex_to_spiderweb() (in module sage.calculus.riemann), 337
- composition() (sage.symbolic.expression_conversions.Converter method), 254
- composition() (sage.symbolic.expression_conversions.DeMoivre method), 255
- composition() (sage.symbolic.expression_conversions.Exponentialize method), 255
- composition() (sage.symbolic.expression_conversions.ExpressionTreeWalker method), 260
- composition() (sage.symbolic.expression_conversions.FastCallableConverter method), 263
- composition() (sage.symbolic.expression_conversions.HoldRemover method), 267

- composition() (sage.symbolic.expression_conversions.InterfaceInit method), 267
- composition() (sage.symbolic.expression_conversions.PolynomialConverter method), 270
- composition() (sage.symbolic.expression_conversions.RingConverter method), 272
- composition() (sage.symbolic.expression_conversions.SubstituteFunction method), 273
- compute_on_grid() (sage.calculus.riemann.Riemann_Map method), 330
- construction() (sage.symbolic.callable.CallableSymbolicExpressionRing_class method), 146
- construction() (sage.symbolic.subring.SymbolicSubringAcceptingVars method), 213
- construction() (sage.symbolic.subring.SymbolicSubringRejecting Vars method), 215
- content() (sage.symbolic.expression.Expression
 method), 21
- contradicts() (sage.symbolic.assumptions.Gener-icDeclaration method), 148
- contradicts () (sage.symbolic.expression.Expression method), 22
- convert () (in module sage.symbolic.units), 200
- convert() (sage.symbolic.expression.Expression method), 22
- convert_temperature() (in module sage.symbolic.units), 201
- Converter (class in sage.symbolic.expression_conversions), 253
- convolution() (sage.calculus.transforms.dft.Indexed-Sequence method), 308
- convolution_periodic() (sage.calculus.transforms.dft.IndexedSequence method), 308
- cos (sage.symbolic.expression_conversions.Exponentialize attribute), 256
- cos () (sage.symbolic.expression.Expression method), 23
- cosh (sage.symbolic.expression_conversions.Exponentialize attribute), 256
- cosh() (sage.symbolic.expression.Expression method), 24 cot (sage.symbolic.expression_conversions.Exponentialize attribute), 256
- coth (sage.symbolic.expression_conversions.Exponentialize attribute), 256
- create_key() (sage.symbolic.callable.CallableSymbolicExpressionRingFactory method), 145
- create_key_and_extra_args() (sage.symbolic.subring.SymbolicSubringFactory method), 214
- create_object() (sage.symbolic.subring.Symbolic-

SubringFactory method), 215 DerivativeOperator.DerivativeOperatorcsc (sage.symbolic.expression_conversions.Exponentialize WithParameters (class in sage.symbolic.opattribute), 256 erators), 353 csch (sage.symbolic.expression_conversions.Exponentialdesolve() (in module sage.calculus.desolvers), 287 ize attribute), 256 desolve_laplace() (in module sage.calculus.descsgn () (sage.symbolic.expression.Expression method), 25 olvers), 291 desolve mintides() (in module sage.calculus.des-D olvers), 292 desolve_odeint() (in module sage.calculus.desdct() (sage.calculus.transforms.dft.IndexedSequence olvers), 293 *method*), 309 desolve_rk4() (in module sage.calculus.desolvers), (sage.symbolic.expression.Expression decl assume() 295 method), 25 desolve_rk4_determine_bounds() (in module decl_forget() (sage.symbolic.expression.Expression sage.calculus.desolvers), 296 method), 25 desolve_system() (in module sage.calculus.desdefault_variable() (sage.symbolic.expression.Exolvers), 297 pression method), 26 desolve_system_rk4() (in module sage.calculus.dedefault_variable()(sage.symbolic.expression.Symsolvers), 298 bolicSeries method), 125 desolve_tides_mpfr() (in module sage.calculus.dedefault_variable() (sage.symbolic.function.Funcsolvers), 299 tion method), 218 dft() (sage.calculus.transforms.dft.IndexedSequence definite_integral() (sage.calculus.interpolamethod), 309 tion. Spline method), 340 (sage.calculus.transforms.dft.IndexedSequence dict() DefiniteIntegral (class in sage.symbolic.integra*method*), 310 tion.integral), 235 diff() (in module sage.calculus.functional), 226 degree() (sage.symbolic.expression.Expression method), diff() (sage.symbolic.expression.Expression method), 29 differentiate() (sage.symbolic.expression.Expres-DeMoivre (class in sage.symbolic.expression conversion method), 31 sions), 254 DiscreteWaveletTransform (class in sage.calcu-(sage.symbolic.expression.Expression demoivre() lus.transforms.dwt), 305 method), 26 distribute() (sage.symbolic.expression.Expression (sage.symbolic.expression.Expression denominator() method), 32 method), 27 divide_both_sides() (sage.symbolic.expression.Exderivative() (in module sage.calculus.functional), pression method), 33 224 doublefactorial() (in module sage.symbolic.expresderivative() (sage.calculus.interpolation.Spline sion), 127 method), 341 dst() (sage.calculus.transforms.dft.IndexedSequence derivative() (sage.calculus.interpolators.CCSpline method), 311 method), 342 dummy_diff() (in module sage.calculus.calculus), 177 derivative() (sage.calculus.interpolators.PSpline dummy_integrate() (in module sage.calculus.calcumethod), 343 lus), 177 (sage.symbolic.expression converderivative() dummy_inverse_laplace() (in module sage.calcusions.Converter method), 254 lus.calculus), 177 (sage.symbolic.expression_converderivative() dummy_laplace() (in module sage.calculus.calculus), sions. Expression Tree Walker method), 261 177 derivative() (sage.symbolic.expression converdummy_pochhammer() (in module sage.calculus.calcusions.FriCASConverter method), 264 lus), 178 derivative() (sage.symbolic.expression_conver-DWT () (in module sage.calculus.transforms.dwt), 304 sions.InterfaceInit method), 268 dwt() (sage.calculus.transforms.dft.IndexedSequence derivative() (sage.symbolic.expression_convermethod), 311 sions.SubstituteFunction method), 273 (sage.symbolic.expression.Expression derivative() Е method), 27 E (class in sage.symbolic.expression), 6

Index 369

DerivativeOperator (class in sage.symbolic.opera-

tors), 353

- e (sage.symbolic.expression conversions.Exponentialize at- FastFourierTransform complex tribute), 256
- eulers method() (in module sage.calculus.desolvers),
- eulers_method_2x2() (in module sage.calculus.desolvers), 301
- eulers_method_2x2_plot() (in module sage.calculus.desolvers), 303
- evalunitdict() (in module sage.symbolic.units), 202 exp (sage.symbolic.expression_conversions.Exponentialize attribute), 256
- exp() (sage.symbolic.expression.Expression method), 33 expand() (in module sage.calculus.functional), 227
- expand() (sage.symbolic.expression.Expression method), 33
- expand_log() (sage.symbolic.expression.Expression method), 34
- expand_rational() (sage.symbolic.expression.Expression method), 35
- expand sum() (sage.symbolic.expression.Expression method), 36
- expand_trig() (sage.symbolic.expression.Expression method), 37
- Exponentialize (class in sage.symbolic.expression conversions), 255
- exponentialize() (sage.symbolic.expression.Expression method), 38
- Expression (class in sage.symbolic.expression), 8
- (sage.symbolic.expression.Pynacexpression() Constant method), 124
- ExpressionIterator (class in sage.symbolic.expression), 123
- ExpressionTreeWalker (class in sage.symbolic.expression_conversions), 260

F

- factor() (sage.symbolic.expression.Expression method),
- factor list() (sage.symbolic.expression.Expression method), 39
- factorial() (sage.symbolic.expression.Expression method), 40
- factorial_simplify() (sage.symbolic.expression. Expression method), 40
- FakeExpression (class in sage.symbolic.expression_conversions), 261
- fast_callable() (in module sage.symbolic.expression_conversions), 273
- FastCallableConverter (class in sage.symbolic.expression_conversions), 262
- FastFourierTransform() (in module sage.calculus.transforms.fft), 316
- FastFourierTransform_base (class in sage.calculus.transforms.fft), 317

- in sage.calculus.transforms.fft), 317
- FDerivativeOperator (class in sage.symbolic.operators), 353
- FFT () (in module sage.calculus.transforms.fft), 315
- (sage.calculus.transforms.dft.IndexedSequence fft() *method*), 312
- find() (sage.symbolic.expression.Expression method), 41
- find_local_maximum() (sage.symbolic.expression.Expression method), 41
- find_local_minimum() (sage.symbolic.expression. Expression method), 42
- find_registered_function() (in module sage.symbolic.expression), 127
- (sage.symbolic.expression.Expression find_root() method), 43
- forget () (in module sage.symbolic.assumptions), 154
- forget() (sage.symbolic.assumptions.GenericDeclaration method), 149
- forget () (sage.symbolic.expression.Expression method), 44
- forward transform() (sage.calculus.transforms.dwt.DiscreteWaveletTransform method),
- forward_transform() (sage.calculus.transforms.fft.FastFourierTransform complex *method*), 317
- FourierTransform_complex (class in sage.calculus.transforms.fft), 319
- FourierTransform_real (class in sage.calculus.transforms.fft), 319
- fraction() (sage.symbolic.expression.Expression method), 45
- free_variables() (sage.symbolic.expression.Expression method), 45
- fricas_desolve() (in module sage.calculus.des*olvers*), 303
- fricas_desolve_system() (in module sage.calculus.desolvers), 303
- fricas_integrator() (in module sage.symbolic.integration.external), 245
- FriCASConverter (class in sage.symbolic.expression_conversions), 264
- full_simplify() (sage.symbolic.expression.Expression method), 45
- Function (class in sage.symbolic.function), 218
- function() (in module sage.calculus.var), 347
- function() (in module sage.symbolic.function_factory), 220
- function() (sage.symbolic.expression_conversions.Exponentialize method), 256
- (sage.symbolic.expression.Expression function() method), 46
- function() (sage.symbolic.operators.FDerivativeOper-

ator method), 354	213
function_factory() (in module sage.symbolic.func-	has_valid_variable() (sage.symbolic.sub-
tion_factory), 223	ring.SymbolicSubringRejectingVars method), 215
G	has_wild() (sage.symbolic.expression.Expression
gamma() (sage.symbolic.expression.Expression method),	method), 51
47	hessian() (sage.symbolic.expression.Expression
<pre>gamma_normalize() (sage.symbolic.expression.Ex-</pre>	method), 51
pression method), 47	hold_class (class in sage.symbolic.expression), 128
gcd() (sage.symbolic.expression.Expression method), 48	HoldRemover (class in sage.symbolic.expression_conversions), 266
GenericDeclaration (class in sage.symbolic.assump-	horner() (sage.symbolic.expression.Expression method),
tions), 147 GenericSymbolicSubring (class in sage.sym-	51
bolic.subring), 211	hypergeometric_simplify() (sage.symbolic.ex-
GenericSymbolicSubringFunctor (class in	pression. Expression method), 52
sage.symbolic.subring), 212	1
<pre>get_derivatives() (in module sage.calculus.rie-</pre>	ı
mann), 338	I (sage.symbolic.expression_conversions.Exponentialize at-
<pre>get_fake_div() (sage.symbolic.expression_conver- sions.Converter method), 254</pre>	tribute), 255
get_fn_serial() (in module sage.symbolic.expres-	I () (sage.symbolic.ring.SymbolicRing method), 204 idft() (sage.calculus.transforms.dft.IndexedSequence
sion), 128	method), 312
<pre>get_ginac_serial() (in module sage.symbolic.ex- pression), 128</pre>	idwt() (sage.calculus.transforms.dft.IndexedSequence method), 312
<pre>get_sfunction_from_hash() (in module</pre>	ifft() (sage.calculus.transforms.dft.IndexedSequence method), 313
<pre>get_sfunction_from_serial() (in module</pre>	imag() (sage.symbolic.expression.Expression method), 52
sage.symbolic.expression), 128	<pre>imag_part() (sage.symbolic.expression.Expression</pre>
get_szego() (sage.calculus.riemann.Riemann_Map	method), 53
method), 330	<pre>implicit_derivative() (sage.symbolic.expres-</pre>
<pre>get_theta_points() (sage.calculus.riemann.Rie- mann_Map method), 331</pre>	sion.Expression method), 54 IndefiniteIntegral (class in sage.symbolic.integra-
giac_integrator() (in module sage.symbolic.inte-	tion.integral), 235
gration.external), 245	index_object() (sage.calculus.transforms.dft.In-
GinacFunction (class in sage.symbolic.function), 219	dexedSequence method), 314
<pre>gosper_sum() (sage.symbolic.expression.Expression</pre>	IndexedSequence (class in sage.calculus.trans-
method), 49	forms.dft), 308
gosper_term() (sage.symbolic.expression.Expression	init_function_table() (in module sage.sym-
method), 49 gradient() (sage.symbolic.expression.Expression	<pre>bolic.expression), 129 init_pynac_I() (in module sage.symbolic.expression),</pre>
method), 50	129
Н	Integer (sage.symbolic.expression_conversions.Exponentialize attribute), 255
half (sage.symbolic.expression_conversions.Exponential-	integral() (in module sage.calculus.functional), 228
ize attribute), 260	<pre>integral() (in module sage.symbolic.integration.inte-</pre>
has () (sage.symbolic.assumptions.GenericDeclaration	gral), 235
method), 149	integral() (sage.symbolic.expression.Expression
has () (sage.symbolic.expression.Expression method), 50	<pre>method), 54 integrate() (in module sage.calculus.functional), 230</pre>
has_valid_variable() (sage.symbolic.sub- ring.GenericSymbolicSubring method), 211	integrate() (in module sage.symbolic.integration.inte-
has_valid_variable() (sage.symbolic.sub-	gral), 240
ring.SymbolicConstantsSubring method), 212	<pre>integrate() (sage.symbolic.expression.Expression</pre>
has_valid_variable() (sage.symbolic.sub-	method), 55
ring Cymbolic Cybring Accepting Vars method)	

method),

ring. Symbolic Subring Accepting Vars

versions), 267 (sage.calcuinterpolate_solution() lus.ode.ode_solver method), 323 inverse_laplace() (in module sage.calculus.calculus), 178 inverse laplace() (sage.symbolic.expression.Expression method), 55 inverse_riemann_map() (sage.calculus.riemann.Riemann_Map method), 332 inverse_transform() (sage.calculus.transforms.fft.FastFourierTransform_complex *method*), 318 is2pow() (in module sage.calculus.transforms.dwt), 306 is_algebraic() (sage.symbolic.expression.Expression method), 55 is_callable() (sage.symbolic.expression.Expression method), 55 is_constant() (sage.symbolic.expression.Expression method), 56 is_exact() (sage.symbolic.expression.Expression method), 56 is_exact() (sage.symbolic.ring.SymbolicRing method), is_field() (sage.symbolic.ring.SymbolicRing method), 205 is_finite() (sage.symbolic.ring.SymbolicRing method), 205 (sage.symbolic.expression.Expression is_infinity() method), 56 is_integer() (sage.symbolic.expression.Expression method), 56 (sage.symbolic.expression.Expression is_negative() method), 57 is negative infinity() (sage.symbolic.expression. Expression method), 57 is_numeric() (sage.symbolic.expression.Expression method), 57 is_polynomial() (sage.symbolic.expression.Expression method), 58 (sage.symbolic.expression.Expression is positive() method), 58 is_positive_infinity() (sage.symbolic.expression.Expression method), 59 is_rational_expression() (sage.symbolic.expression. Expression method), 59 is_real() (sage.symbolic.expression.Expression method), 59 is_relational() (sage.symbolic.expression.Expression method), 60 is_square() (sage.symbolic.expression.Expression method), 61 is_symbol() (sage.symbolic.expression.Expression

method), 61

InterfaceInit(class in sage.symbolic.expression_con- is_SymbolicEquation() (in module sage.symbolic.expression), 130 is_terminating_series() (sage.symbolic.expression.Expression method), 61 is_terminating_series() (sage.symbolic.expression.SymbolicSeries method), 126 (sage.symbolic.expression.Exis trivial zero() pression method), 62 is_trivially_equal() (sage.symbolic.expression. Expression method), 62 is_unit() (in module sage.symbolic.units), 202 (sage.symbolic.expression.Expression is unit() method), 63 isidentifier() (in module sage.symbolic.ring), 210 (sage.symbolic.expression.Expression iterator() method), 63 J jacobian () (in module sage.calculus.functions), 345 laplace() (in module sage.calculus.calculus), 179 laplace() (sage.symbolic.expression.Expression method), 64 laurent_polynomial() (in module sage.symbolic.expression_conversions), 273 laurent_polynomial() (sage.symbolic.expression. Expression method), 64 LaurentPolynomialConverter (class in sage.symbolic.expression_conversions), 269 lcm() (sage.symbolic.expression.Expression method), 64 leading_coeff() (sage.symbolic.expression.Expression method), 65 leading_coefficient() (sage.symbolic.expression.Expression method), 65 left() (sage.symbolic.expression.Expression method), 65 left hand side() (sage.symbolic.expression.Expression method), 66 1hs () (sage.symbolic.expression.Expression method), 66 libgiac_integrator() (in module sage.symbolic.integration.external), 245 lim() (in module sage.calculus.calculus), 182 lim() (in module sage.calculus.functional), 232 limit () (in module sage.calculus.calculus), 184 limit () (in module sage.calculus.functional), 233 limit() (sage.symbolic.expression.Expression method), list() (sage.calculus.interpolation.Spline method), 341 list() (sage.calculus.transforms.dft.IndexedSequence *method*), 314

list() (sage.symbolic.expression.Expression method), 66

(sage.symbolic.expression.Expression

log() (sage.symbolic.expression.Expression method), 67

372 Index

log_expand()

method), 68

log_gamma() (sage.symbolic.expression.Expression	sage.calculus.tests,250
method), 69	sage.calculus.transforms.dft,307
<pre>log_simplify() (sage.symbolic.expression.Expression</pre>	sage.calculus.transforms.dwt,304
method), 69	sage.calculus.transforms.fft,315
<pre>low_degree() (sage.symbolic.expression.Expression</pre>	sage.calculus.var,346
method), 71	sage.calculus.wester,276
N //	sage.symbolic.assumptions, 146
M	sage.symbolic.benchmark,355
<pre>make_map() (in module sage.symbolic.expression), 131</pre>	sage.symbolic.callable,143
<pre>mapped_opts() (in module sage.calculus.calculus), 187</pre>	sage.symbolic.complexity_measures,
<pre>match() (sage.symbolic.expression.Expression method),</pre>	275
71	sage.symbolic.expression,5
<pre>math_sorted() (in module sage.symbolic.expression),</pre>	<pre>sage.symbolic.expression_conver- sions, 253</pre>
<pre>maxima_integrator() (in module sage.symbolic.in-</pre>	sage.symbolic.function, 216
tegration.external), 245	sage.symbolic.function_factory,220
<pre>maxima_methods() (sage.symbolic.expression.Expres- sion method), 73</pre>	<pre>sage.symbolic.integration.external, 245</pre>
maxima_options() (in module sage.calculus.calculus), 187	<pre>sage.symbolic.integration.integral, 235</pre>
MaximaFunctionElementWrapper (class in	sage.symbolic.maxima_wrapper,352
sage.symbolic.maxima_wrapper), 352	sage.symbolic.operators,353
MaximaWrapper (class in sage.symbolic.maxima_wrap-	sage.symbolic.random_tests,357
per), 352	sage.symbolic.relation, 155
merge() (sage.symbolic.callable.CallableSymbolicEx-	sage.symbolic.ring,204
pressionFunctor method), 144	sage.symbolic.subring,211
merge() (sage.symbolic.subring.GenericSymbolicSub-	sage.symbolic.units, 198
ringFunctor method), 212	monte_carlo_integral() (in module sage.calcu-
merge() (sage.symbolic.subring.SymbolicSubringAccept-	lus.integration), 324
ing VarsFunctor method), 213	mul () (sage.symbolic.expression.Expression method), 73
merge() (sage.symbolic.subring.SymbolicSubringReject- ingVarsFunctor method), 215	mul_vararg() (in module sage.symbolic.operators), 354
minpoly() (in module sage.calculus.calculus), 188	multiply_both_sides() (sage.symbolic.expres-
minpoly() (sage.symbolic.expression.Expression	sion.Expression method), 73
method), 73	N
<pre>mixed_order() (in module sage.symbolic.expression),</pre>	
131	name() (sage.symbolic.expression.PynacConstant
<pre>mixed_sorted() (in module sage.symbolic.expression),</pre>	method), 124
132	name () (sage.symbolic.function.Function method), 218
mma_free_integrator() (in module sage.symbolic.integration.external), 246	negation() (sage.symbolic.expression.Expression method), 74
mma_free_limit() (in module sage.calculus.calculus), 190	new_Expression() (in module sage.symbolic.expression), 132
module	<pre>new_Expression_from_pyobject() (in module</pre>
sage.calculus.calculus,172	sage.symbolic.expression), 133
sage.calculus.desolvers,286	<pre>new_Expression_symbol() (in module sage.sym-</pre>
sage.calculus.functional,224	bolic.expression), 134
sage.calculus.functions,345	new_Expression_wild() (in module sage.sym-
sage.calculus.integration, 324	bolic.expression), 134
sage.calculus.interpolation, 339	nintegral () (in module sage.calculus.calculus), 190
sage.calculus.interpolators, 342	nintegral() (sage.symbolic.expression.Expression
sage.calculus.ode, 319	method), 74
sage.calculus.riemann, 328	nintegrate() (in module sage.calculus.calculus), 192
<pre>sage.calculus.test_sympy, 246</pre>	

- nintegrate() (sage.symbolic.expression.Expression method), 74 nops () (sage.symbolic.expression.Expression method), 75 norm() (sage.symbolic.expression.Expression method), 75 (sage.symbolic.expression.Expression normalize() method), 75 normalize_index_for_doctests() (in module sage.symbolic.expression), 134 normalize_prob_list() (in module sage.symbolic.random_tests), 358 number_of_arguments() (sage.symbolic.expression. Expression method), 76 number_of_arguments() (sage.symbolic.function.Function method), 218 number_of_operands() (sage.symbolic.expression.Expression method), 76 numerator() (sage.symbolic.expression.Expression method), 76 numerator_denominator() (sage.symbolic.expression. Expression method), 77 numerical_approx() (sage.symbolic.expression.Expression method), 78 numerical_integral() (in module sage.calculus.integration), 325 NumpyToSRMorphism(class in sage.symbolic.ring), 204 \mathbf{O} ode_solve() (sage.calculus.ode.ode_solver method), 323 ode_solver (class in sage.calculus.ode), 319 ode_system (class in sage.calculus.ode), 323 op (sage.symbolic.expression.Expression attribute), 78 operands () (sage.symbolic.expression_conversions.FakeExpression method), 262 operands() (sage.symbolic.expression.Expression method), 79 OperandsWrapper (class in sage.symbolic.expression), operator() (sage.symbolic.expression conversions.FakeExpression method), 262 (sage.symbolic.expression.Expression operator() method), 79 Order () (sage.symbolic.expression.Expression method), 8 Р parameter_set() (sage.symbolic.operators.FDerivativeOperator method), 354 paramset_from_Expression() (in module sage.symbolic.expression), 135 py_eval_infinity_for_doctests() (in module partial_fraction() (sage.symbolic.expression.Expression method), 80 py_eval_neg_infinity_for_doctests() partial_fraction_decomposition() (sage.symbolic.expression.Expression method), py_eval_unsigned_infin-80
- pi() (sage.symbolic.ring.SymbolicRing method), 205 pickle_wrapper() (in module sage.symbolic.func-(sage.calculus.transforms.dft.IndexedSequence plot() *method*), 314 (sage.calculus.transforms.dwt.DiscreteWaveletplot() Transform method), 305 (sage.calculus.transforms.fft.FastFourierTransplot() form complex method), 318 plot() (sage.symbolic.expression.Expression method), 81 plot_boundaries() (sage.calculus.riemann.Riemann_Map method), 332 (sage.calculus.riemann.Rieplot_colored() mann_Map method), 333 plot_histogram() (sage.calculus.transforms.dft.IndexedSequence method), 314 plot_solution() (sage.calculus.ode.ode_solver method), 323 (sage.calculus.riemann.Rieplot_spiderweb() mann Map method), 334 poly () (sage.symbolic.expression.Expression method), 82 polygon_spline() (in module sage.calculus.interpolators), 344 (in module sage.symbolic.exprespolynomial() sion_conversions), 274 polynomial() (sage.symbolic.expression.Expression method), 82 PolynomialConverter (class in sage.symbolic.expression_conversions), 269 power() (sage.symbolic.expression.Expression method), power_series() (sage.symbolic.expression.Expression method), 84 power_series() (sage.symbolic.expression.Symbolic-Series method), 126 preprocess_assumptions() (in module sage.symbolic.assumptions), 154 primitive_part() (sage.symbolic.expression.Expression method), 85 print_order() (in module sage.symbolic.expression), print_sorted() (in module sage.symbolic.expression), prod() (sage.symbolic.expression.Expression method), 85 PSpline (class in sage.calculus.interpolators), 343 py_atan2_for_doctests() (in module sage.symbolic.expression), 135 py_denom_for_doctests() (in module sage.symbolic.expression), 135

sage.symbolic.expression), 136

module sage.symbolic.expression), 136

(sage.symbolic.expression_conver-

ity_for_doctests() (in module sage.symbolic.expression), 136 py_exp_for_doctests() (in module sage.symbolic.expression), 136 py_factorial_py() (in module sage.symbolic.expression), 136 py_float_for_doctests() (in module sage.symbolic.expression), 136 py_imag_for_doctests() (in module sage.symbolic.expression), 136 py_is_cinteger_for_doctest() module sage.symbolic.expression), 136 py_is_crational_for_doctest() module (in sage.symbolic.expression), 136 py_is_integer_for_doctests() (in module sage.symbolic.expression), 136 py_latex_fderivative_for_doctests() module sage.symbolic.expression), 136 py_latex_function_pystring() module sage.symbolic.expression), 137 py_latex_variable_for_doctests() (in module sage.symbolic.expression), 138 py_lgamma_for_doctests() (in module sage.symbolic.expression), 138 py_li2_for_doctests() (in module sage.symbolic.expression), 138 py_li_for_doctests() (in module sage.symbolic.expression), 139 py_log_for_doctests() (in module sage.symbolic.expression), 139 py_mod_for_doctests() (in module sage.symbolic.expression), 139

PynacConstant (class in sage.symbolic.expression), 124

sions.Converter method), 254 pyobject() (sage.symbolic.expression conversions.ExpressionTreeWalker method), 261 pyobject() (sage.symbolic.expression_conversions.FakeExpression method), 262 (sage.symbolic.expression converpyobject() sions.FastCallableConverter method), 263 pyobject() (sage.symbolic.expression conversions.FriCASConverter method), 265 pyobject() (sage.symbolic.expression_conversions.InterfaceInit method), 268 (sage.symbolic.expression_converpyobject() sions.PolynomialConverter method), 270 (sage.symbolic.expression_converpyobject() sions.RingConverter method), 272 (sage.symbolic.expression.Expression pyobject() method), 85 R random_expr() (in module sage.symbolic.random tests), 358 random_expr_helper() (in module sage.symbolic.random_tests), 360 random_integer_vector() (in module sage.symbolic.random_tests), 361 (sage.symbolic.subring.GenericSymbolicSubringrank Functor attribute), 212 rational_expand() (sage.symbolic.expression.Expression method), 86 rational_simplify()(sage.symbolic.expression.Expression method), 87 py_numer_for_doctests() (in module sage.symreal() (sage.symbolic.expression.Expression method), 88 bolic.expression), 139 (sage.symbolic.expression.Expression real part() py_print_fderivative_for_doctests() method), 88 module sage.symbolic.expression), 139 rectform() (sage.symbolic.expression.Expression py_print_function_pystring() module method), 89 sage.symbolic.expression), 140 (sage.symbolic.expression.Expression reduce_trig() py_psi2_for_doctests() (in module sage.symmethod), 90 bolic.expression), 140 register_or_update_function() (in module py_psi_for_doctests() (in module sage.symsage.symbolic.expression), 141 bolic.expression), 140 (sage.symbolic.expression_converrelation() py_real_for_doctests() (in module sage.symsions. Converter method), 254 bolic.expression), 141 relation() (sage.symbolic.expression_conversions.Expy_stieltjes_for_doctests() (in module pressionTreeWalker method), 261 sage.symbolic.expression), 141 relation() (sage.symbolic.expression_converpy_tgamma_for_doctests() (in module sage.symsions.FastCallableConverter method), 263 bolic.expression), 141 relation() (sage.symbolic.expression_conversions.Inpy_zeta_for_doctests() (in module sage.symterfaceInit method), 268 bolic.expression), 141 relation() (sage.symbolic.expression conver-PyFunctionWrapper (class in sage.calculus.integrasions.PolynomialConverter method), 271 residue() (sage.symbolic.expression.Expression PyFunctionWrapper (class in sage.calculus.ode), 319 method), 90

pyobject()

restore_op_wrapper() (in module sage.symbolic.expression), 141	<pre>sage.symbolic.assumptions module, 146</pre>
resultant() (sage.symbolic.expression.Expression method), 91	<pre>sage.symbolic.benchmark module, 355</pre>
rhs () (sage.symbolic.expression.Expression method), 91 Riemann_Map (class in sage.calculus.riemann), 328	sage.symbolic.callable module, 143
riemann_map() (sage.calculus.riemann.Riemann_Map method), 335	<pre>sage.symbolic.complexity_measures module, 275</pre>
right() (sage.symbolic.expression.Expression method), 92	<pre>sage.symbolic.expression module,5</pre>
right_hand_side() (sage.symbolic.expression.Ex- pression method), 92	<pre>sage.symbolic.expression_conversions module, 253</pre>
RingConverter (class in sage.symbolic.expression_conversions), 271	<pre>sage.symbolic.function module, 216</pre>
roots() (sage.symbolic.expression.Expression method), 92	<pre>sage.symbolic.function_factory module, 220</pre>
round() (sage.symbolic.expression.Expression method), 94	<pre>sage.symbolic.integration.external module, 245</pre>
S	<pre>sage.symbolic.integration.integral module, 235</pre>
sage() (sage.symbolic.maxima_wrapper.MaximaWrapper method), 353	<pre>sage.symbolic.maxima_wrapper module, 352</pre>
sage.calculus.calculus module,172	<pre>sage.symbolic.operators module, 353</pre>
sage.calculus.desolvers module,286	<pre>sage.symbolic.random_tests module, 357</pre>
sage.calculus.functional module,224	<pre>sage.symbolic.relation module, 155</pre>
sage.calculus.functions module,345	<pre>sage.symbolic.ring module, 204</pre>
sage.calculus.integration module,324	<pre>sage.symbolic.subring module,211</pre>
sage.calculus.interpolation module,339	<pre>sage.symbolic.units module, 198</pre>
sage.calculus.interpolators module,342	sec (sage.symbolic.expression_conversions.Exponentialize attribute), 260
sage.calculus.ode module,319	sech (sage.symbolic.expression_conversions.Exponential- ize attribute), 260
sage.calculus.riemann module,328	serial() (sage.symbolic.expression.PynacConstant method), 124
<pre>sage.calculus.test_sympy module,246</pre>	series() (sage.symbolic.expression.Expression method), 95
sage.calculus.tests module,250	show() (sage.symbolic.expression.Expression method), 96 simplify() (in module sage.calculus.functional), 234
sage.calculus.transforms.dft module,307	simplify() (sage.symbolic.expression.Expression method), 96
sage.calculus.transforms.dwt module,304	<pre>simplify_factorial() (sage.symbolic.expres- sion.Expression method), 97</pre>
sage.calculus.transforms.fft module, 315	simplify_full() (sage.symbolic.expression.Expression method), 98
sage.calculus.var module,346	simplify_hypergeometric() (sage.symbolic.ex- pression.Expression method), 98
sage.calculus.wester module.276	simplify_log() (sage.symbolic.expression.Expression method), 99

- simplify_rational() (sage.symbolic.expression.Expression method), 100
- simplify_real() (sage.symbolic.expression.Expression method), 101
- simplify_rectform() (sage.symbolic.expression.Expression method), 102
- simplify_trig() (sage.symbolic.expression.Expression method), 102
- sin (sage.symbolic.expression_conversions.Exponentialize attribute), 260
- sin() (sage.symbolic.expression.Expression method), 103 sinh (sage.symbolic.expression_conversions.Exponentialize attribute), 260
- sinh() (sage.symbolic.expression.Expression method), 104
- solve() (in module sage.symbolic.relation), 161
- solve() (sage.symbolic.expression.Expression method),
- solve_diophantine() (in module sage.symbolic.expression), 141
- solve_diophantine() (sage.symbolic.expression.Expression method), 105
- solve_ineq() (in module sage.symbolic.relation), 167
- solve_ineq_fourier() (in module sage.symbolic.relation), 168
- solve_ineq_univar() (in module sage.symbolic.relation), 168
- $\verb"solve_mod"()" \textit{ (in module sage.symbolic.relation)}, 169$
- Spline (class in sage.calculus.interpolation), 339 spline (in module sage.calculus.interpolation), 341
- sqrt() (sage.symbolic.expression.Expression method), 106
- SR (sage.symbolic.expression_conversions.Exponentialize attribute), 255
- start() (sage.symbolic.expression.hold_class method),
 129
- step() (sage.symbolic.expression.Expression method),
 107
- stop() (sage.symbolic.expression.hold_class method), 129
- str_to_unit() (in module sage.symbolic.units), 203
 string_length() (in module sage.symbolic.complexity measures), 275
- subring() (sage.symbolic.ring.SymbolicRing method), 205
- subs () (sage.symbolic.expression.Expression method), 108
- substitute_function() (sage.symbolic.expression.Expression method), 110
- SubstituteFunction (class in sage.symbolic.expression_conversions), 272
- substitution_delayed() (sage.symbolic.expres-

- sion.Expression method), 111
- SubstitutionMap (class in sage.symbolic.expression), 124
- subtract_from_both_sides() (sage.symbolic.expression.Expression method), 112
- $\verb"sum" () (sage.symbolic.expression. Expression method), 112$
- symbol () (sage.symbolic.expression_conversions.Converter method), 254
- symbol() (sage.symbolic.expression_conversions.ExpressionTreeWalker method), 261
- symbol() (sage.symbolic.expression_conversions.Fast-CallableConverter method), 263
- symbol () (sage.symbolic.expression_conversions.FriC-ASConverter method), 266
- symbol() (sage.symbolic.expression_conversions.InterfaceInit method), 269
- symbol () (sage.symbolic.expression_conversions.PolynomialConverter method), 271
- symbol() (sage.symbolic.expression_conversions.Ring-Converter method), 272
- symbol() (sage.symbolic.ring.SymbolicRing method),
 207
- symbolic_expression_from_max ima_string() (in module sage.calculus.calculus), 194
- symbolic_product() (in module sage.calculus.calculus), 195
- symbolic_sum() (in module sage.calculus.calculus),
 195
- SymbolicConstantsSubring (class in sage.symbolic.subring), 212
- SymbolicFunction (class in sage.symbolic.function), 219
- SymbolicRing (class in sage.symbolic.ring), 204
- SymbolicSeries (class in sage.symbolic.expression), 125
- SymbolicSubringAcceptingVars (class in sage.symbolic.subring), 213
- SymbolicSubringAcceptingVarsFunctor (class in sage.symbolic.subring), 213
- SymbolicSubringFactory (class in sage.symbolic.subring), 214
- SymbolicSubringRejectingVars (class in sage.symbolic.subring), 215
- SymbolicSubringRejectingVarsFunctor (class in sage.symbolic.subring), 215
- symbols (sage.symbolic.ring.SymbolicRing attribute), 207
 sympy_integrator() (in module sage.symbolic.integration.external), 246

Т

tan (sage.symbolic.expression_conversions.Exponentialize

bolic.ring), 209

```
attribute), 260
                                                       unhold() (sage.symbolic.expression.Expression method),
tan () (sage.symbolic.expression.Expression method), 114
                                                                120
tanh (sage.symbolic.expression conversions.Exponential-
                                                       unify arguments()
                                                                                                  (sage.sym-
                                                                bolic.callable.CallableSymbolicExpression-
         ize attribute), 260
tanh()
         (sage.symbolic.expression.Expression method),
                                                                Functor method), 144
                                                                (sage.symbolic.expression.Expression method),
                                                       unit()
taylor() (in module sage.calculus.functional), 234
taylor() (sage.symbolic.expression.Expression method),
                                                       unit_content_primitive()
                                                                                           (sage.symbolic.ex-
         116
                                                                pression. Expression method), 122
temp_var() (sage.symbolic.ring.SymbolicRing method),
                                                       unit_derivations_expr() (in module sage.sym-
                                                                bolic.units), 203
Temporary Variables (class in sage.symbolic.ring),
                                                       unitdocs () (in module sage.symbolic.units), 203
                                                       UnitExpression (class in sage.symbolic.units), 199
test_binomial() (in module sage.symbolic.expres-
                                                       Units (class in sage.symbolic.units), 199
                                                       unpack_operands() (in module sage.symbolic.expres-
         sion), 142
test_relation() (sage.symbolic.expression.Expres-
                                                                sion), 142
         sion method), 116
                                                       unpickle_function()
                                                                                    (in module
test_relation_maxima() (in module sage.sym-
                                                                bolic.function factory), 223
                                                       unpickle_wrapper() (in module sage.symbolic.func-
         bolic.relation), 170
test symbolic expression order() (in mod-
                                                                tion), 219
         ule sage.symbolic.random_tests), 361
the_SymbolicRing() (in module sage.symbolic.ring),
         210
                                                       value() (sage.calculus.interpolators.CCSpline method),
                    (sage.symbolic.expression.Expression
to_gamma()
         method), 117
                                                       value()
                                                                  (sage.calculus.interpolators.PSpline method),
tolerant_is_symbol()
                              (in module sage.sym-
         bolic.expression), 142
                                                       var () (in module sage.calculus.var), 350
trailing_coeff() (sage.symbolic.expression.Expres-
                                                       var () (in module sage.symbolic.ring), 210
         sion method), 117
                                                       var () (sage.symbolic.ring.SymbolicRing method), 208
trailing_coefficient()
                                (sage.symbolic.expres-
                                                                           (sage.symbolic.expression.Expression
                                                       variables()
         sion. Expression method), 118
                                                                method), 122
trig_expand() (sage.symbolic.expression.Expression
                                                                               (sage.symbolic.function.Function
                                                       variables()
         method), 118
                                                                method), 219
trig_reduce() (sage.symbolic.expression.Expression
                                                       vars_in_str() (in module sage.symbolic.units), 204
         method), 119
trig_simplify() (sage.symbolic.expression.Expres-
                                                       W
         sion method), 119
                                                       WaveletTransform() (in module sage.calculus.trans-
                    (sage.symbolic.expression.Expression
truncate()
                                                                forms.dwt), 305
         method), 120
                                                       wild() (sage.symbolic.ring.SymbolicRing method), 209
                (sage.symbolic.expression.SymbolicSeries
truncate()
                                                       wronskian () (in module sage.calculus.functions), 345
         method), 126
                                                       WZ_certificate() (sage.symbolic.expression.Expres-
           (sage.symbolic.expression_conversions.Expres-
tuple()
                                                                sion method), 8
         sionTreeWalker method), 261
              (sage.symbolic.expression_conversions.Fast-
                                                       X
tuple()
         CallableConverter method), 264
                                                       x (sage.symbolic.expression_conversions.Exponentialize at-
             (sage.symbolic.expression_conversions.Inter-
tuple()
                                                                tribute), 260
         faceInit method), 269
two (sage.symbolic.expression_conversions.Exponentialize
                                                       7
         attribute), 260
                                                                 (sage.symbolic.expression.Expression method),
                                                       zeta()
U
                                                                122
UnderscoreSageMorphism (class in sage.sym-
```