Definition: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Simply, A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing Fn as some combination of Fi with i<n).

Example – Fibonacci series – $F_n=F_{n-1}+F_{n-2}$

, Tower of Hanoi $-F_n=2F_{n-1}+1$

Linear Recurrence Relations

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where $C_1, C_2, ..., C_k$ are real numbers, and $C_k \neq 0$.

These are some examples of linear recurrence equations –

Recurrence relations	Initial values	Solutions
$F_n = F_{n-1} + F_{n-2}$	$a_1 = a_2 = 1$	Fibonacci number
$F_n = F_{n-1} + F_{n-2}$	$a_1 = 1, a_2 = 3$	Lucas Number
$F_n = F_{n-2} + F_{n-3}$	$a_1 = a_2 = a_3 = 1$	Padovan sequence
$F_n = 2F_{n-1} + F_{n-2}$	$a_1 = 0, a_2 = 1$	Pell number

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

The basic approach for solving linear homogeneous recurrence relations is to look for solutions of the form $a_n = r^n$, where r is a constant. Note that $a_n = r^n$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ if and only if

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}$$

When both sides of this equation are divided by r^{n-k} and the right-hand side is subtracted from the left, we obtain the equation

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_{k-1} r - c_k = 0.$$

Consequently, the sequence $\{an\}$ with $a_n = r^n$ is a solution if and only if r is a solution of this last equation, which is called the **characteristic equation** of the recurrence relation. The solutions of this equation are called the **characteristic roots** of the recurrence relation.

How to solve linear recurrence relation

Suppose, a two ordered linear recurrence relation is $-F_n = AF_{n-1} + BF_{n-2}$ where A and B are real numbers.

The characteristic equation for the above recurrence relation is –

$$x^2-Ax-B=0$$

Three cases may occur while finding the roots –

Case 1 – If this equation factors as $(x-x_1)(x-x_1) = 0$

and it produces two distinct real roots x_1 and x_2 , then $F_n = ax_1^n + bx_2^n$ is the solution. [Here, a and b are constants]

Case 2 – If this equation factors as $(x-x_1)^2=0$

and it produces single real root x_1 , then $Fn = ax_1^n + bnx_1^n$ is the solution.

Problem 1

Solve the recurrence relation $F_{n-1}-6F_{n-2}$ Where $F_0=1$ and $F_1=4$

Solution

The characteristic equation of the recurrence relation is –

$$x^2-5x+6=0$$
,

So,
$$(x-3)(x-2)=0$$

Hence, the roots are -

$$x_1 = 3$$
 and $x_2 = 2$

The roots are real and distinct. So, this is in the form of case 1

Hence, the solution is –

$$F_n = ax_1^n + bx_2^n$$

Here, $Fn = a3^n+b2^n$ (As $x_1=3$ and $x_2=2$)

Therefore,

$$1=F_0=a3^0+b2^0=a+b$$

$$4 = F_1 = a3^1 + b2^1 = 3a + 2b$$

Solving these two equations, we get a=2 and b=-1

Hence, the final solution is -

$$F_n=2.3^n + (-1).2^n=2.3^n-2^n$$

Problem 2

Solve the recurrence relation $-F_{n-1}-25F_{n-2}$ where $F_0=3$ and $F_1=17$

Solution

The characteristic equation of the recurrence relation is –

$$x^2-10x-25=0$$

So
$$(x-5)^2=0$$

Hence, there is single real root $x_1=5$

As there is single real valued root, this is in the form of case 2

Hence, the solution is –

$$F_n = ax_1^n + bnx_1^n$$

$$3=F_0=a.5^0+b.0.5^0=a$$

$$17=F_1=a.5^1+b.1.5^1=5a+5b$$

Solving these two equations, we get a=3

and b=2/5

Hence, the final solution is $-Fn=3.5^n+(2/5).n.2^n$

Problem 3:

What is the solution of the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$

with
$$a_0 = 2$$
 and $a_1 = 7$?

Solution:

The characteristic equation of the recurrence relation is $r^2 - r - 2 = O$. Its roots are r = 2 and r = -1. Hence, the sequence $\{a_n\}$ is a solution to the recurrence relation if and only if

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n,$$

for some constants α_1 and α_2 . From the initial conditions, it follows that $a_0 = 2 = \alpha_1 + \alpha_2$,

$$a_1 = 7 = \alpha_1 \cdot 2 + \alpha_2$$
. (-1).

Solving these two equations shows that $\alpha_1 = 3$ and $\alpha_2 = -1$. Hence, the solution to the recurrence relation and initial conditions is the sequence $\{a_n\}$ with

$$a_n=3\cdot 2^n-(-1)^n.$$

Problem 4:

Find the solution to the recurrence relation $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with the initial conditions $a_0 = 2$, $a_1 = 5$, and $a_2 = 15$.

Solution:

The characteristic polynomial of this recurrence relation is $r^3 - 6r^2 + 11r - 6$.

The characteristic roots are r = 1, r = 2, and r = 3, because $r^3 - 6r^2 + 11r - 6 = (r - 1)(r - 2)(r - 3)$. Hence, the solutions to this recurrence relation are of the form

$$a_n = \alpha_1 \, 1^n \, + \alpha_2 \, 2^n \, + \alpha_3 \, 3^n$$

To find the constants α_1 , α_2 , and α_3 , use the initial conditions. This gives $a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3$,

$$a_1 = 5 = \alpha_1 + \alpha_2$$
. 2 + α_3 . 3,

$$a_2 = 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9$$
.

When these three simultaneous equations are solved for α_1 , α_2 , and α_3 , we find that α_1 = 1, α_2 = -1, and α_3 = 2. Hence, the unique solution to this recurrence relation and the given initial conditions is the sequence $\{a_n\}$ with

$$a_n = 1 - 2^n + 2 \cdot 3^n$$
.

Non-Homogeneous Recurrence Relation and Particular Solutions

A recurrence relation is called non-homogeneous if it is in the form

$$F_n = AF_{n-1} + BF_{n-2} + f(n)$$
 where $f(n) \neq 0$

Its associated homogeneous recurrence relation is $F_n = AF_{n-1} + BF_{n-2}$

The solution (a_n) of a non-homogeneous recurrence relation has two parts.

First part is the solution (a_h) of the associated homogeneous recurrence relation and the second part is the particular solution (a_t)

.

$$a_n = a_h + a_t$$

Solution to the first part is done using the procedures discussed in the previous section.

To find the particular solution, we find an appropriate trial solution.

Let $f(n)=cx^n$; let $x^2=Ax+B$ be the characteristic equation of the associated homogeneous recurrence relation and let x_1 and x_2 be its roots.

- If $x \neq x_1$ and $x \neq x_2$, then $a_t = Ax^n$
- If $x=x_1$, $x\neq x_2$, then $a_t = Anx^n$
- If $x = x_1 = x_2$, then $at = An^2x^n$

Example

Let a non-homogeneous recurrence relation be $F_n=AF_{n-1}+BF_{n-2}+f(n)$ with characteristic roots $x_1 = 2$ and $x_2=5$. Trial solutions for different possible values of f(n) are as follows –

f(n)	Trial	
	solutions	
4	A	
5.2 ⁿ	An2 ⁿ	
8.5 ⁿ	An5 ⁿ	
4 ⁿ	A4 ⁿ	
$2n^2 + 3n + 1$	An ² +Bn+C	

Problem 5:

Solve the recurrence relation $Fn=3Fn-1+10Fn-2+7*5^n$ where F0=4 and F1=3

Solution

This is a linear non-homogeneous relation, where the associated homogeneous equation is Fn=3Fn-1+10Fn-2 and $f(n)=7*5^n$

The characteristic equation of its associated homogeneous relation is –

$$x^2-3x-10=0$$

Or,
$$(x-5)(x+2)=0$$

Or,
$$x_1 = 5$$
 and $x_2 = -2$

Hence $a_h=a.5^n+b.(-2)^n$, where a and b are constants.

Since $f(n)=7.5^n$, i.e. of the form $c.x^n$, a reasonable trial solution of at will be Anx^n

$$a_t = Anx^n = An5^n$$

After putting the solution in the recurrence relation, we get –

$$An5^n = 3A(n-1)5^{n-1} + 10A(n-2)5^{n-2} + 7.5^n$$

Dividing both sides by 5ⁿ⁻², we get

$$An5^2=3A(n-1)5+10A(n-2)5^0+7.5^2$$

Or,
$$35A = 175$$

Or,
$$A=5$$

So,
$$Fn = An5^n = 5n5^n = n5^{n+1}$$

The solution of the recurrence relation can be written as –

$$Fn=a_h+at$$

$$=a.5^n+b.(-2)^n+n5^{n+1}$$

Putting values of F_0 =4 and F_1 =3, in the above equation, we get a=-2 and b=6

Hence, the solution is -

$$F_n = n5^{n+1} + 6.(-2)^n - 2.5^n$$

For reference:

- https://www.tutorialspoint.com/discrete_mathematics/discrete_mathematics_recurrence_relation.htm
- https://brilliant.org/wiki/recurrence-relations/
- https://brilliant.org/wiki/linear-recurrence-relations/
- Discrete Mathematics and Its Applications