CS 361 – Homework 2

Total possible points: 65

1. (10 points) Let M_1 be the FA defined by $Q = \{q_0, q_1, q_2\}, \Sigma = \{1, 2\}, F = \{q_0, q_2\}, \text{ and } \delta$:

δ	1	2
q_0	q_0	q_1
${q}_{1}$	q_2	q_1
$q_{2}^{}$	q_2	q_0

- a. Give the state diagram of M₁.
- b. Trace the computations of M that process the string 1211, 222122, 212121, and 22211.
- c. Which of the strings in part (b) are accepted by M₁?
- 2. (10 points) Consider the FA M₂ given below:

- a. Explain, i.e., describe, what is the language recognized by M₂
- b. Which of the strings baba, baab, abaaab, ε are accepted by M_2 ?
- 3. (15 points) Build a *deterministic FA* for the following language $L=\{x \text{ over } \{a, b\} | x \text{ contains both substrings } aa \text{ and } bb\}$
- 4. (15 points) Build a *deterministic FA* that accepts the set of strings of odd length over {a, b} that **do not** contain the substring bb.
- 5. (15 points) Build a *deterministic FA* for the following language L= $\{x \text{ over } \{a, b\} | x \text{ contains } \mathbf{an odd}$ **number** of a symbols, or **exactly two** b symbols $\}$

(Hint: in constructing each deterministic FA for problems 3, 4, and 5 make sure to consider *all the possibilities*, i.e., the different types of strings in the language of the corresponding FA.)