Veröffentlichungsnummer:

0 268 897

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 87116296.2

(5) Int. Cl.4: C09B 29/42, D06P 1/18

2 Anmeldetag: 05.11.87

Ein Antrag gemäss Regel 88 EPÜ auf Berichtigung eines Fehlers in den Beispielen nr. 66 und 155 der ursprünglich eingereichten beschreibung liegt vor. Über diesen Antrag wird im Laufe des Verfahrens vor der Prüfungsabteilung eine Entscheidung getroffen werden (Richtlinien für die Prüfung im EPA, A-V, 2.2).

- Priorität: 15.11.86 DE 3639155 24.03.87 DE 3709567
- (43) Veröffentlichungstag der Anmeldung: 01.06.88 Patentblatt 88/22
- Benannte Vertragsstaaten: CH DE FR GB IT LI

- 71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)
- 2 Erfinder: Loeffler, Hermann Haydnstrasse 23 D-6720 Speyer(DE) Erfinder: Lamm, Gunther, Dr. Heinrich-Heine-Strasse 7 D-6733 Hassloch(DE)

- Pyridonazofarbstoffe.
- S Pyridonazofarbstoffe der Formel

$$D-N = N CN$$

$$HO NO$$

$$(CH2) -O-I$$

in der D den Rest einer Diazokomponente bedeutet, die sich von der Dichlor-, Trichlor-oder Cyanoanilinreihe oder von Aminobenzoesäure-esterderivaten ableitet, und n und R die in der Beschreibung genannte Bedeutung besitzen.

EP 0 268 897 A1

Pyridonazofarbstoffe

Die vorliegende Erfindung betrifft neue Pyridonazofarbstoffe, deren Diazokomponeneten sich von der Dichlor-, Trichlor-oder Cyanoanilinreihe oder von Aminobenzoesäureesterderivaten ableiten.

Aus der DE-A-2 951 403 sind Pyridonazofarbstoffe bekannt, die als Diazokomponente Anthranilsäureester aufweisen. Die dort beschriebenen Farbstoffe zeigen jedoch Mängel in ihren anwendungstechnischen Eigenschaften.

Aufgabe der vorliegenden Erfindung war es nun, neue Pyridonazofarbstoffe bereitzustellen, die vorteilhafte färberische Eigneschaften besitzen.

Es wurden Pyridonazofarbstoffe der Formel I

0-N = N CN HO NO(1),

(CH₂)_-0-R

gefunden, in der

n für die Zahl 2 oder 3,

D für 2,3-Dichlorphenyl, 3,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,4,5-Trichlorphenyl, 4-Cyanophenyl oder einen Rest der Formel

Y COX'

25

35

40

15

in der X^1 C_1 - C_4 -Alkyl oder C_1 - C_{10} -Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, Y Wasserstoff, Chlor oder den Rest COX², in dem X^2 die Bedeutung von C_1 - C_{10} -Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, besitzt und Z Wasserstoff oder Chlor bedeuten und

für einen Rest der Formel

L-0-H, $[L-0]_2-T$, L-0H oder $L-0-COR^1$,

wobei L gegebenenfalls verzweigtes C1-C4-Alkylen, T C1-C4-Alkyl oder

und R¹ Wasserstoff oder C₁-Cr-Alkyl bedeuten und der Ring A jeweils durch Methyl oder Chlor substituiert sein kann, oder für den Fall, daß D den Rest

50

bedeutet, auch für Cyclohexyl stehen, mit der Maßgabe, daß wenn D den Rest

bedeutet und wenn dabei Y und Z gleichzeitig Wasserstoff bedeuten, der Rest COX¹ nicht in ortho-Position zur Azobrücke steht.

Alle in den obengenannten Resten auftretenden Alkylgruppen können sowohl geradkettig als auch verzwigt sein.

X1 steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl oder sec-Butyl.

X¹ steht weiterhin, wie auch X², beispielsweise für Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec-Butoxy, tert-Butoxy, Pentlyloxy, Isopentyloxy, sec-Pentyloxy, tert-Pentyloxy, Hexyloxy, Heptyloxy, Octyloxy, 2-Ethylhexyloxy, Nonyloxy, Decyloxy, 2-Methoxyethoxy, 2-Ethoxyethoxy, 2-Propoxyethoxy, 2-Butoxyethoxy, 2-oder 3-Methoxypropoxy, 2-oder 3-Ethoxypropoxy, 2-Methoxybutoxy, 4-Ethoxybutoxy, 3,6-Dioxaheptyloxy, 3, 6-Dioxyaoctyloxy, 5,8-Dioxanonyloxy, 3,6-Dioxadecyloxy oder 5,8-Dioxadecyloxy.

L steht beispielsweise für Methylen, Ethyliden, Ethylen, Trimethylen, Isopropyliden Methylethylen, Tetramethylen, 1,2-Dimethylethylen oder 2-Methyltrimethylen.

T steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl; Phenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 2-Chorphenyl, 3-Chlorphenyl oder 4-Chlorphenyl.

R¹ steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl, 2-Methylbutyl, Hexyl, 2-Methyl-hexyl oder Heptyl.

R steht beispielsweise für Benzyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Phenylbutyl, 4-Chlorbenzyl, 4-Methylbenzyl, Phenoxymethyl, 2-Phenoxy-ethyl, 3-Phenoxypropyl, 4-Phenoxybutyl, Cyclohexyloxymethyl, 2-Cyclohexyl-oxyethyl, 3-Cyclohexyloxypropyl, 4-Cyclohexyloxybutyl, 2-(2-Methoxy-ethoxy)ethyl, 2-(2-Ethoxyethoxy)ethyl, 2-(2-Butoxyethoxy)ethyl, 2-(2-Phen-oxyethoxy)ethyl, 4-(2-Methoxyethoxy)butyl, 4-(4-Ethoxybutoxy)butyl, 2-Hydroxyethyl, 3-Hydroxypropyl, Formyloxymethyl, Acetyloxymethyl, Propionyloxymethyl, 2-Formyloxyethyl, 2-Acetyloxyethyl, 2-Buturyloxyethyl, 2-Hexanoyloxyethyl, 2-Heptanoyloxyethyl, 2-Octanoyloxyethyl, 2-oder 3-Acetyloxypropyl, 2-oder 3-Isobutyryloxypropyl, 4-Formyloxybutyl, 4-Acetyloxybutyl oder 4-(2-Methylbutyryloxy)butyl.

Bevorzugt sind Pyridonazofarbstoffe der Formel I in der X¹ und X² Cr-Ca-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und L unverzweigtes Cr-bis Ca-Alkylen bedeuten und der Ring A unsubstituiert ist.

Besonders bevorzugt sind Pyridonazofarbstoffe der Formel I, in der n für die Zahl 3,

D für einen Rest der Formel

10

25

30

40

50

$$- \bigcirc_{\text{COX}^1} \text{ oder } - \bigcirc_{\text{COX}^2}^{\text{COX}^1}$$

wobei X¹ und X² gleich oder verschieden sind und unabhängig voneinander jeweils C₁-C₄-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, bedeuten und für einen Rest der Formel

[(CH₂)₂-0]₂-T, [(CH₂)₃-0]₂-T oder L-0-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

Insbesondere sind solche Farbstoffe bevorzugt, in denen X¹ (und X²) C₁-C₄-Alkoxy, insbesondere Isobutoxy, 2-Methoxyethoxy, 2-Methoxypropoxy oder 1-Methyl-2-methoxyethoxy, n die Zahl 3 und T 2-Phenoxyethyl bedeuten.

Weiterhin sind Pyridonazofarbstoffe der Formel I besonders bevorzugt, in der n für die Zahl 3.

D für 2,3-Dichlorphenyl oder 2,5-Dichlorphenyl und R für einen Rest der Formel

L—
$$\left(\begin{array}{c} \\ \\ \end{array}\right)$$
 , $\left(\begin{array}{c} \\ \\ \end{array}\right)_{2}$ -T , $\left(\begin{array}{c} \\ \\ \end{array}\right)_{3}$ -O $\left(\begin{array}{c} \\ \\ \end{array}\right)_{2}$ -T odes

L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

Zur Herstellung der Pyridonazofarbstoffe der Formel I kann man Diazoniumverbindungen von Aminen der Formel II

DNH₂ (II),

5

15

20

in der D die oben genannte Bedeutung besitzt, mit Kupplungskomponenten der Formel III

$$\begin{array}{c} CH_3 \\ HO \\ \downarrow \\ CH_2 \\ O \\ -O-R \end{array}$$

in der n und R jeweils die oben genannte Bedeutung besitzen , nach an sich bekannten Methoden umsetzen. Einzelheiten der Herstellung können den Beispielen entnommen werden.

Die erfindungsgemäßen Farbstoffe der Formel I färben Polyester in stark grünstichig gelben Nuancen und absorbieren bei einer Wellenlänge von ≤ 427 nm. Die Färbungen zeichnen sich durch sehr gute Gebrauchsechtheiten aus. Die Baderschöpfung bei Färbevorgang ist sehr gut, und gleichzeitig ist die Farbtiefe weitgehend unabhängig von der Färbetemperatur.

Die folgenden Beispiele sollen die Erfindung weiter erläutern. Angaben über Prozente beziehen sich dabei, sofern nicht anders vermerkt, auf das Gewicht.

Beispiel 1

16, 2 g 2,3-Dichloranilin wurden in 40 ml N-Methylpyrrolidon gelöst und durch Austragen auf 200 g Eis, 100 ml Wasser, 30 ml 30 %ige Salzsäure und 3 g eines oxethylierten Oleylamins suspendiert. Dazu tropfte man bei 0 bis 5°C 30 ml einer 3,33 normalen Natriumnitritlösung und rührte eine Stunde bei Überschuß an salpetriger Säure. Dann wurde mit wenig Aminosulfonsäure dieser Überschuß entfernt und die Diazoniumsalzlösung langsam auf ein Gemisch der Kupplungskomponente ausgetragen, das wie folgt bereitet wurde:

30,4 g 1-(3-Benzyloxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on wurden mit 12 g Natriumhydrogen-carbonat in 200 ml Wasser bei Raumtemperatur gelöst und filtriert. Das Filtrat wurde mit 300 g Eis gekühlt und mit 30 g Natriumhydrogencarbonat versetzt.

Das Diazoniumsalz war unmittelbar nach der Vereinigung der Komponenten verbraucht. Der gebildete Farbstoff der Formel

C1 C1
$$H_3C$$
 CN $2max. = 423 \text{ nm}$ (Aceton HO $C_3H_6-0-CH_2$ Fp.: 164 ${}^{0}C$

wurde durch Absaugen, Waschen mit Wasser und Trocknung bei 80°C gewonnen. Er färbt Polyester nach dem HT-Verfahren bereits bei 125°C in grünstichig gelben Tönen, wobei das wäßrige Färbeband vollständig ausgezogen wird. Die Färbungen besitzen sehr gute Licht-, Wasch-und Bügelechtheiten.

45

Beispiel 2

19,65 g 2,4, 5-Trichloranilin wurden mit Wasser und 1,0 g eines oxethylierten Olylamins gemischt und mit 40 ml 30 %iger Salzsäure verrührt. Das Gemisch brachte man sodann mit Wasser auf ein Volumen von 800 ml und eine Temperatur von 10°C und ließ dazu 30 ml einer 3,33 normalen Natriumnitritlösung einfließen. Nach zweistündigem Rühren bei ca. 15°C wurde überschüssige salpetrige Säure mit wenig Aminosulfonsäure zerstört und die Diazoniumsalzlösung filtriert. Dem Filtrat ließ man dann die Lösung von 28,5 g 1-(4-Hydroxy-3-butoxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on in 200 ml Wasser zufließen und rührte wenige Minuten nach, bis das Diazoniumsalz verbraucht war. Aus dem Reaktionsgemisch wurde der Farbstoff der Formel

abgesaugt, mit Wasser gewaschen und getrocknet. Er färbt Polyester nach dem HT-Verfahren mit sehr hohen Echtheiten.

Beispiel 3

15

20

30

40

45

19,65 g 2, 4, 5-Trichloranilin wurden gemäß Beispiel 2 diazotiert und filtriert. Die Diazoniumsalzlösung goß man auf ein Gemisch, das durch Austragen einer Lösung von 33,8 g 1-(4-Acetoxy-3-butoxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on in 300 ml Essigsäure auf 400 g Eis bereitet wurde. Kurz darauf war das Diazoniumsalz aufgebraucht. Man saugte ab, wusch mit Wasser neutral und trocknete bei 60°C.

Das erhaltene gelbe Pulver der Formel

C1
$$H_3C$$
 CN

C1 H_3C CN
 $C1 - N = N - 0$
 $C2 + N = N - 0$
 $C3 + N = 0 - C0CH_3$

färbt Polyester im gleichen Farbton und mit gleichen Echtheiten wie der Farbstoff des Beispiels 2 bei noch etwas besserem Badauszug und somit verbesserter Farbausbeute.

Der gleiche Farbstoff wird erhalten, wenn man den Farbstoff des Beispiels 2 in Essigsäure kocht und das reaktionswasser ausdestilliert. Isoliert wird durch Fällung mit Wasser und Absaugen.

Die in der folgenden Tabelle 1 aufgeführten Farbstoffe der Formel

$$\frac{3}{5}$$
 $\frac{2}{6}$ $\frac{CH_3}{N}$ $\frac{CH_3}{N$

werden in analoger Weise erhalten werden. Ihre Färbe-und Echtheitseigenschaften sind denen der in den Beispieen 1 bis 3 beschriebenen Farbstoffe ähnlich.

55

Tabelle 1

Beispiel Nr.:	×	R	n	λma×. nm
4	2,3-Cl ₂	(CH ₂) ₂ -0-	3	422
5	2,5-Cl ₂	(CH ₂) ₂ -0-	3	423
6	2,5-Cl ₂ .	CH2	3	423
7	2,4,5-Cl ₃	CH2	3	426
8	2,4,5-Cl ₃	(CH ₂) ₂ -0-	3	426
9	2,4,5-Cl ₃	CH2	2	426
10	2,4,5-Cl ₃	(CH ₂) ₂ -0-	2	426
1 †	2,3-Cl ₂	(CH ₂) ₂ -0-	2	422

Tabelle 1 (Forts.)

Beispiel Nr.:	×	R	n	⁄max. ∩m
12	2,5-Cl ₂	(CH ₂) ₂ -0-	2	423
13	3,4-Cl ₂	(CH ₂) ₂ -0-	3	425
14	3,4-Cl ₂	CH2-	3	425
15	4-CN	CH2	3	423
16	4-CN	(CH ₂) ₂ -0-	3	423
17	2,3-Cl ₂	(CH ₂) ₂ -0-(CH ₂) ₂ -0-	3	422
18	2,5-Cl ₂	(CH ₂) ₂ -0-(CH ₂) ₂ -0-	3	423
19	2,3-Cl2	C2H4-	3	422
20	2.5-Cl ₂	C2H4-	3	423
21	2,3-Cl ₂	(CH ₂) ₂ -0-(CH ₂) ₂ -0-C ₄ H ₉	3	422
22	2,5-Cl ₂	(CH ₂) ₂ -0-(CH ₂) ₂ -0-C ₄ H ₉	3	423
23	2,3-Cl2	(CH ₂) ₂ -0-(CH ₂) ₂ -0-C ₂ H ₅	3	422
24	2,5-Cl ₂	(CH ₂) ₂ -0-(CH ₂) ₂ -0-C ₄ H ₉	3	423
25	2,4,5-Cl3	(CH ₂) ₂ -0-(CH ₂) ₂ -0-C ₄ H ₉	3	426
26	4-CN	(CH ₂) ₂ 0-(CH ₂) ₂ -0	3	423
27	2,5-Cl ₂	(CH ₂) ₄ -0-COCH ₃	3	423
28	2,5-Cl ₂ ·	(CH ₂) ₄ -0-COC ₂ H ₅	3	423
29	2,3-Cl ₂	(CH ₂) ₄ -0-COCH(CH ₃) ₂	3	421
30	2,3-Cl ₂	(CH ₂) ₄ -0-COC ₂ H ₅	3	421
31	2,3-C1 ₂	(CH ₂) ₄ -0-COCH ₃	3	421
32	3,4-Cl ₂	(CH ₂) ₄ -0-COCH ₃	3	425
L	1	1		l

Tabelle 1 (Forts.)

5	Beispiel Nr.:	X	R	n	Æmax. nm
	33	2,4,5-Cl ₃	(CH ₂) ₂ -0-COC ₂ H ₅	2	425
10	34	2,4,5-Cl ₃	(CH ₂)4-0-COH	3	425
	35	2,3-Cl ₂	(CH ₂) ₃ -0-C0C ₂ H ₅	3	421
15	36	2,5-Cl ₂	(CH ₂) ₃ -0-COC ₂ H ₅	3	423
, ,	37	4 - CN	(CH ₂)4-0-COC ₂ H ₅	3	423

Beispiel 38

20

· 35

Eine Lösung von 19,3 g 3-Aminobenzoesäureisobutylrester in 90 ml 10 %iger Salzsäure wurde mit Eis auf -5 bis -8°C abgekühlt. Dazu gab man rasch 31 ml einer wäßrigen, 23 %igen Natriumnitritlösung und rührte das Gemisch 1 Stunde bei 0/5°C. Dann zerstörte man überschüssige salpetrige Säure wie üblich und erhöhte den pH-Wert der Reaktionsmischung mit eiskalter ca. 15 - 20 %iger natronlauge auf 2,0 bis 2,5. Danach wurde die Diazoniumsalzlösung langsam auf ein Gemisch der Kupplunskomponente ausgetragen, das wie folgt bereitet wurde: 30, 4 g 1-(3-Benzyloxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on wurden mit 12 g Natriumhydrogencarbonat in 400 ml Wasser bei Raumtemperatur gelöst und filtriert. Das Filtrat wurde mit 100 g Eis gekühlt und mit 30 g Natriumhydrogencarbonat versetzt. Das Diazoniumsalz war unmittelbar nach der Vereinigung der Komponenten verbraucht. Der gebildete Farbstoff der Formel

(i)
$$C_4H_90C0$$
 H_3C CN ax : 422,5 nm ax (Aceton) $C_3H_6-0-CH_2$ $Fp.: 122 °C$

wurde durch Absaugen, Waschen mit Wasser und Trocknung bei 80°C gewonnen.

Er färbt Polyester nach dem HT-Verfahren bereits bei 125°C in grünstichig gelben Tönen, wobei das wäßrige Färbeband vollständig ausgezogen wird. Die Färbungen besitzen sehr gute Licht-, Wasch-und Bügelechtheiten.

Beispiel 39

22,8 g 3-Amono-4-chlor-benzoesäureisobutylester wurden mit 150 ml Wasser, 0,5 g eines oxethylierten Oleylamins und 30 ml 30 %iger Salzsäure verrührt. Das Demisch kühlte man mit Eis auf -5°C ab und ließ dazu 31 ml einer 3,33 normalen Natriumnitritlösung einfließen. Nach zweistündigem Rühren bei ca. 15°C wurde überschüssige salpetrige Säure mit wenig Aminosulfonsäure zerstört. Zur Diazoniumsalzlösung ließ man dann die Lösung von 28,5 g 1-[3-(4-Hydroxybutoxy)propyl]-2-hydroxy-3-cyano-4-methylpyrid-6-on in 400 ml Wasser zufließen und rührte wenige Minuten nach, bis das Diazoniumsalz verbraucht war. Aus dem Reaktionsgemisch wurde der Farbstoff der Formel

(i)
$$C_4H_90C0$$
 H_3C CN A : 422 nm A A : 422 nm A : 422

abgesaugt, mit Wasser gewaschen und getrocknet. Er färbt Polyester nach dem HT-Verfahren mit sehr hohen Echtheiten.

Beispiel 40

5

10

25

22,8 g 3-Amino-4-chlorbenzoesäureisobutylester wurden gemäß Beispiel 39 diazotiert. Die Diazonium-salzlösung goss man auf ein Gemisch, das durch Austragen einer Lösung von 33,8 g 1-[3-(4-Acetoxybutoxy)propyl]-2-hydroxy-3-cyano-4-methylpyrid-6-on in 300 ml Essigsäure auf 400 g Eis bereitet wurde. Kurz darauf war das Diazoniumsalz aufgebraucht. Man saugte ab, wusch mit Wasser neutral und trocknete bei 60°C. Das erhaltene gelbe Pulver der Formel

20 (i)
$$C_4H_90C0$$
 H_3C CN max : 422 nm max : 422 nm max : 422 nm

färbt Polyester im gleichen Farbton und mit gleichen Echtheiten wie der Farbstoff des Beispiels 39 bei noch etwas besserem Badauszug und somit verbesserter Farbausbeute.

Der gleiche Farbstoff wurde erhalten, als man den Farbstoff des Beispiels 39 in Essigsäure kochte und das Reaktionswasser ausdestilierte. Isoliert wurde durch Fällung mit Wasser und Absaugen.

Beispiel 41

Eine Lösung von 19,3 g 3-Aminobenzoesäureisobutylester in 90 ml 10 %iger Salzsäure wurde mit Eis auf -5 bis -8°C abgekühlt. Dann gab man rasch 31 ml einer wäßrigen, 23 %igen Natriumnitritlösung hinzu und rührte das Gemisch 1 Stunde bei 0 bis 5°C. Dann zerstörte man überschüssige salpetrige Säure wie üblich und erhöhte den pH-Wert der Reaktionsmischung durch Zugabe eiskalter, ca. 15 - 20 %iger Natronlauge auf 2,5 - 3,5.

Danach ließ man unter sehr guter Rührung eine Lösung von 29 g 1-(3-Cyclo-hexyloxypropyl)-2-hydroxy-3-cyano-4-methyl-pyrid-6-on in 460 ml Wasser und 9 g 50 %iger Natronlauge zulaufen. Anschließend stellte man den pH-Wert der Reaktionsmischung mit Natronlauge auf 5 bis 7,5, erhitzte die Farbstoffsuspension mit Dampfdruck auf 80-95°C, temperte und isolierte wie üblich. Man erhielt 49,3 g eines gelben Pulvers das bei 167°C schmilzt und sich in Aceton gelb löst. λmax: 422,5 nm, Schmp.: 167°C.

In analoger Weise werden die in den nachfolgenden Tabellen 2 und 3 aufgeführten Farbstoffe erhalten.

50

Tabelle 2

5	✓ Y ,, _	H ₃ C CN	
	WO ₂ C	$\begin{array}{c} : N \longrightarrow 0 \\ +0 & (CH_2) & 0 \longrightarrow \end{array}$	 \
		(CH2) n	

10	Bsp. Nr.	₩	Y	n	∂max [nm] in Aceton	Farbton auf Polyester
15	42 .	C ₂ H ₅	Cl	2	422	grünstichiges Gelb
	43	C ₂ H ₅	Cl	3	422,5	grûnstichiges Gelb
	4.4	C ₂ H ₅	H	3	422,2	grünstichiges Gelb
20	45	CH3	Н	3	422.2	grünstichiges Gelb
	46	СНЗ	Cl	3	422	grünstichiges Gelb
25	47	C3H7(n)	.C1	3	422	grünstichiges Gelb
	48	C ₃ H ₇ (n)	Н	3	422,5	grünstichiges Gelb
30	49	C4Hg(n)	н	3	422,5	grūnstichiges Gelb
	50	C4Hg(n)	Cl	3	422	grünstichiges Gelb
35	5 1	C4Hg(i)	Cl	3	422	grünstichiges Gelb
	52	C4Hg(n)	Cl	3	422	grūnstichiges Gelb
40	53	C4Hg(n)	H	3	422,5	grünstichiges Gelb
	54	C4Hg(i)	н	2	422	grūnstichiges Gelb
	55	C5H ₁₁ (n)	Н	3	422,5	grūnstichiges Gelb
45	56	С ₃ Н ₆ СНСН ₂ СН ₃	H	3	422,5	grūnstichiges Gelb
50	57	(CH ₃) ₂ CH(CH ₂) ₂	н	3	422,5	grūnstichiges Gelb
	58	СН₃СНСН2 ОСН₃	H [.]	3	422,5	grünstichiges Gelb
55	59	CH3OCH2CH CH3	н	3	422,5	grünstichiges Gelb

Tabelle 3

	•	,Y	H ₃ C CN
5		N =	= N-(O
		WOZC	HO C3H6OR

10	Bsp. Nr.	W	Y	R ·	Ama× [nm] in Aceton	Farbton auf Polyester
	60	CH ₃	н	CH2C6H5	422,7	grünstichig gelb
15	61	СН3	Cl	CH2C6H5	422	grünstichig gelb
	62	CH3	Н	CH2CH2C6H5	423	grünstichig gelb
20	63	CH3	H -	CH2CH2OC8H5	423	grűnstichig gelb
25	64	CH3	н	CH2CH2O-CH3	423	grünstichig gelb
	65	C ₂ H ₅	н	CH ₂ C ₆ H ₅	422,5	grünstichig gelb
	66	(CH ₃) ₂ C ₂ H ₄	н	CH ₂ C ₆ H ₅	422,5	grūnstichig gelb
30	67	C ₂ H ₅	Cl	CH ₂ C ₆ H ₅	422,2	grūnstichig gelb
	68	C ₂ H ₅	Н	CH2CH2OC6H5	423	grünstichig gelb
35	69	C ₃ H ₇ (n)	H	CH2CH2OC6H5	423	grünstichig gelb
	70	C ₃ H ₇ (n)	н	CH2C6H5	422,5	grünstichig gelb
40	71	C ₃ H ₇ (n)	cı	CH ₂ C ₆ H ₅	422	grünstichig gelb
	72	C ₃ H ₇ (n)	Cl	CH2CH2OC6H5	422,5	grünstichig gelb
45	73	C ₃ H ₇ (i)	Cl	CH2CH2OC6H5	422,5	grünstichig gelb
	74	C ₃ H ₇ (i)	н	CH2CH2OC6H5	423	grünstichig gelb
50	75	C ₃ H ₇ (i)	н	CH2C6H5	422	grünstichig gelb
	76	C4Hg(n)	Н	CH2C6H5	422	grünstichig gelb
	77	C4Hg(n)	н	CH2CH2OC6H5	423	grünstichig gelb
55	78	СН _. 3	н	CHCH ₂ 0C ₆ H ₅ CH ₃	423	grūnstichig gelb

Tabelle 3 (Forts.)

Y H₃C CN WO_2C H_0 C_3H_60R

	Bsp. Nr.	W	Y	R	∂max [nm] in Aceton	Farbton auf Polyester
15	79	C4H9(i)	н	(CH ₂) ₂ C ₆ H ₅	422	grünstichig gelb
	80	C ₅ H11(n)	н	CH ₂ C ₆ H ₅	422	grünstichig gelb
20	81	C ₅ H11(n)	Cl	CH ₂ C ₆ H ₅	422	grünstichig gelb
	82	C ₅ H11(n)	Н	CH2CH2OC6H5	423	grünstichig gelb
25	83	(CH ₃) ₂ CH(CH ₂) ₂	н	CH2CH2OC6H5	423	grūnstichig gelb
	84	СН ₃ СНСН ₂ ОСН ₃	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
30	85	CH ₃ CHCH ₂ OCH ₃	Cl	CH2CH2OC6H5	422,5	grünstichig gelb
35	86	CH ₃ CHCH ₂ OCH ₃	н	CH ₂ C ₆ H ₅	422	grünstichig gelb
40	87	СН ₃ ОСН ₂ СН СН ₃	Н	CH2C6H5	422	grűnstichig gelb
40	88	СН ₃ ОСН ₂ СН СН ₃	Н	C4H8OCOCH3	422	grünstichig gelb
45	89	C4Hg(i)	н	C4H8OCOCH3	422	grünstichig gelb
	90	C4Hg(n)	н	C4H80COCH3	422	grünstichig gelb
50	91	C ₆ H ₁₃	н	C4H80H	422	grünstichig gelb
	92	C4Hg(i)	H	(C ₂ H ₄ O) ₂ C ₆ H ₅	423	grünstichig gelb
55	93	C4H9(i)	н	(C ₂ H ₄ O) ₂ C ₄ H ₉	422	grünstichig gelb
•	94	CH3	Н	C ₂ H ₄ C ₆ H ₅	423	grünstichig gelb

Die in der folgenden Tabelle 4 aufgeführten Farbstoffe der Formel

$$WO_2C \longrightarrow N = N \longrightarrow N = 0$$

$$HO \qquad (CH_2) = 0$$

$$CH_2 = 0$$

werden in analoger Weise erhalten. Ihre Färbe-und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

Tabelle 4

15	Bsp. Nr.	W	R	n	Amax [nm] in Aceton	Farbton auf Polyester
20	95	CH3	(CH ₂) ₂ -0-	3	427	gelb
20	96	C4Hg(i)	(CH ₂) ₂ -0-	3	427	gelb
25	97	C4Hg(i)	CH 2	3	427	gelb
30	98	CH ₃	CH 2	.3	427	gelb
35	99	CH30C2H4	(CH ₂) ₂ -0-	3	427	gelb
33	100	CH30C2H4	CH2-	2	427	gelb
40	101	C ₂ H ₅ OC ₂ H ₄	(CH ₂) ₂ -0-	2	427	gelb
45	102	C ₂ H ₅	(CH ₂) ₂ -0-	2	427	gelb
50	103	C ₃ H ₇ (n)	(CH ₂) ₂ -0-	3 ·	432	rotstichig gelb
30	184	C ₃ H ₇ (i)	(CH ₂) ₂ -0-	3	427	gelb
55	105	C ₂ H ₅	CH2-CH-0-	3	427	gelb

Die in der folgenden Tabelle 5 aufgeführten Farbstoffe der Formel

$$C1 \longrightarrow N = N \longrightarrow N = 0$$

$$(CH_2)_{n} - 0 - R$$

werden in analoger Weise erhalten. Ihre Färbe-und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

			. G. DOLONO MINIMEN.			
15	Tabelle Bsp. Nr.	5 w	R	n	∂max [nm] in Aceton	Farbton auf Polyester
,,	106	СНЭ	(CH ₂) ₂ -0-	3	427	gelb
20	107	C4H9(i)	(CH ₂) ₂ -0-	3	427	gelb
	108	СНз	CH2-	3	426	gelb
25	109	C4H ₉ (1)	CH2-	3	426	gelb
	110	CH30C2H4	(CH ₂) ₂ -0-	3	427	gelb
30	111	CH30C2H4	CH 2-	2	426	gelb
35	112	C ₂ H ₅	(CH ₂) ₂ -0-	2	427	gelb
	113	C ₂ H ₅	CHCH2-0- CH3	3	427	gelb
40	114	C ₃ H ₇ (i)	(CH ₂) ₂ -0-	2	427	gelb
45	115	C4Hg(n)	(CH ₂) ₂ -0-	3	427	gelb
	116	СН ₃ ОСН ₂ СН ОСН ₃	CH2-	3	426	gelb
50	117	СН3	─ (H)	3	426	gelb
55	118	C4Hg(i)	—(H)	3	426	gelb
	119	CH30C2H4	─ H	3	426	gelb

Die in der folgenden Tabelle 6 aufgeführten Farbstoffe der Formel

$$C1 \longrightarrow \begin{array}{c} C0_2W & H_3C & CN \\ \hline -N & = & N \\ \hline \\ C1 & H0 & (CH_2) & -O-R \end{array}$$

werden in analoger Weise erhalten. Ihre Färbe-und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

	Tabell	e 5				
15	Bsp. Nr.	W	R	n	∂max [nm] in Aceton	Farbton auf Polyester
	120	CH ₃	(CH ₂) ₂ -0-	3	413	stark grūn- stichiges gelb
20	121	CH30C2H4	(CH ₂) ₂ -0-	3	413	stark grün- stichiges gelb
	122	CH30C2H4	CH 2-	3	413	stark grūn- stichiges gelb
25	. 123	СН3ОСН2СН СН3	CH 2-	3	413	stark grün- stichiges gelb
30	124	CH3OCH2CH CH3	(CH ₂) ₂ —0—()	3	413	stark grün- stichiges gelb
35	125	C ₂ H ₅	CH 2—	2	413	stark grün- stichiges gelb
	126	C2H50C2H4	(CH ₂) ₂ —0—()	2	413	stark grün- stichiges gelb
40	127	CH ₃	— н	3	413	stark grün- stichiges gelb
45	128	CH30C2H4	—(H)	3	413	stark grūn- stichiges gelb
	129	CH ₃	C ₂ H ₄ OC ₂ H ₄ OC ₄ H ₉	3 .	413	stark grün- stichiges gelb
50	130	CH ₃	C ₂ H ₄ OC ₂ H ₄ OC ₂ H ₅	3	413	stark grün- stichiges gelb
55	131	CH3	C4H8OCOCH3	3	413	stark grün- stichiges gelb

Die in den folgenden Tabellen 7 bis 10 aufgeführten Farbstoffe werden in analoger Weise erhalten. Ihre Färbe-und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe

ähnlich. Die Farbstoffe der Tabellen 8 bis 10 sind insbesondere für den Ätzdruck geeignet.

⁵ Tabelle 7

$$Y \longrightarrow CO_2W \longrightarrow H_3C \longrightarrow CN$$

$$Z \longrightarrow H_0 \longrightarrow N$$

	Bsp. Nr.	W	Y	Z	R	Amax [nm] in Aceton	Farbton auf Polyester
15	132	CH3	Cl	н	CH ₂ C ₆ H ₅	423	grünstichig gelb
	133	CH3	Cl	н	C ₂ H ₄ OC ₆ H ₅	423	grünstichig gelb
20	134	CH3	Cl	H	H	423	grünstichig gelb
	135	C ₄ H ₉ (i)	Cl	н	— H	423	grünstichig gelb
	136	C4Hg(i)	Cl	н	CH ₂ C ₆ H ₅	423	grünstichig gelb
25	137	C ₆ H ₉ (i)	Cl	H	C ₂ H ₄ OC ₆ H ₅	423	grünstichig gelb
30	138	СН ₃ 0СН ₂ СН СН ₃	Cl	Н	C2H40C6H5	423	grūnstichig gelb
	139	CH30CH2CH- CH3	Cl	H .	CH ₂ C ₆ H ₅ .	423	grûnstichig gelb
35	140	СН ₃ ОСН ₂ СН СН ₃	H	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
	141	CH3	н	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
40	142	СН3 .	н	Cl	CH ₂ CH ₂ OC ₆ H ₅	421	grünstichig gelb
	143	CH3	н	Cl	—(H)	421	grünstichig gelb
<i>4</i> 5	144	C4Hg(i)	н	Cl	— H	421	grūnstichig gelb
	145	C4H9(i)	н	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
	146	C4Hg(i)	н	Cl	C2H4OC6H5	421	grünstichig gelb
50	147	CH3OCH2CH CH3	н	Cl	C2H40C6H5	421	grünstichig gelb
55	148	CH3OCH2CH CH3	Н	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb

Tabelle 8

,CO ₂ W	H ₃ C CN
N	= N
WO2C	HO C3H60R
	N N

70			•		
	Bsp. Nr.	W	R	∂max [nm] in Aceton	Farbton auf Polyester
15	149	CH ₃	CH ₂ C ₆ H ₅	422	grūnstichig gelb
	150	CH3	CH2C6H5	422	grünstichig gelb
20	151	CH3	CH2CH2C6H5	422	grünstichig gelb
	152	CH3	CH2CH2OC6H5	423	grünstichig gelb
25	153	СНЗ	CH2CH2O-CH3	423	grünstichig gelb
	154	C ₂ H ₅	CH ₂ C ₆ H ₅	422	grünstichig gelb
30	155	(CH ₃) ₂ C ₂ H ₄	CH ₂ C ₆ H ₅	422	grünstichig gelb
	156	C ₂ H ₅	CH ₂ C ₆ H ₅	422	grünstichig gelb
35	157	C ₂ H ₅	CH2CH2OC6H5	423	grünstichig gelb
	158	C3H7(n)	CH2CH2OC6H5	423	grünstichig gelb
40	159	C ₃ H ₇ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
	160	C3H7(n)	CH2C6H5	422	grünstichig gelb
	161	C ₃ H ₇ (n) .	CH2CH20C6H5	423	grünstichig gelb
45	162	C ₃ H ₇ (i)	CH2CH2OC6H5	423	grünstichig gelb
	163	C ₃ H ₇ (i)	CH2CH2OC6H5	423	grünstichig gelb
50	164	C ₃ H ₇ (i)	CH2C6H5	422	grünstichig gelb
	165	C4Hg(n)	CH2C6H5	422	grünstichig gelb
55	166	C4Hg(n)	CH2CH20C6H5	423	grünstichig gelb
	167	C4Hg(i)	CH2CH2OC6H5	423	grünstichig gelb

Tabelle 8 (Forts.)

5

C3H60R 10

10					
	Bsp. Nr.	พ	R	∂max [nm] in Aceton	Farbton auf Polyester
15	168	C4Hg(i)	(CH ₂) ₂ C ₆ H ₅	422	grünstichig gelb
	169	C ₅ H11(n)	CH2C6H5	422	grünstichig gelb
20	170	C ₅ H11(n)	CH2C6H5	422	grūnstichig gelb
	171	C ₅ H11(n)	CH2CH2OC6H5	423	grūnstichig gelb
25	172	(CH ₃) ₂ CH(CH ₂) ₂	CH2CH2OC6H5	423	grūnstichig gelb
	173	CH3CHCH2 OCH3	CH2CH2OC6H5	423	grūnstichig gelb
30	174	CH3CHCH2 QCH3	CH2CH2OC6H5	422,5	grūnstichig gelb
35	175	CH ₃ CHCH ₂ OCH ₃	CH ₂ C ₆ H ₅	422	grünstichig gelb
40	176	СН ₃ ОСН ₂ СН . СН ₃	CH ₂ C ₆ H ₅ .	422	grünstichig gelb
	177	СН₃ОСН2СН СН₃	C4H8OCOCH3	422	grūnstichig gelb
45	178	C4Hg(i)	C4H80C0CH3	422	grünstichig gelb
	179	C4Hg(n)	С4H80C0CH3	422	grünstichig gelb
50	180	C ₆ H ₁₃	C4H8OH	423	grünstichig gelb
	181	C4Hg(i)	(C ₂ H ₄ O) ₂ C ₆ H ₅	423	grünstichig gelb
55	182	C4Hg(i)	(C ₂ H ₄ O) ₂ C ₄ H ₉	422	grūnstichig gelb

423

grünstichig gelb

C2H4C6H5

183

CH3

Tabelle 9

.	,CO2₩ H3C ,CN .
5	N = N - 0
	WO ₂ C HO
	W02C H0 (CH2) 0-H

				• •	
10	Bsp. Nr.	W	n	∕max [nm] in Aceton	Farbton auf Polyester
15	184	C ₂ H ₅	2	422	grūnstichiges Gelb
75	185	C ₂ H ₅	3	423	grünstichiges Gelb
	186	C ₂ H ₅	3	423	grünstichiges Gelb
20	187	СН3	3	423	grünstichiges Gelb
	188	СНЗ	3	423	grünstichiges Gelb
25	189	C ₃ H ₇ (n)	3	423	grünstichiges Gelb
	190	C ₃ H ₇ (n)	3	423	grünstichiges Gelb
30	191	C4Hg(n)	3	423	grünstichiges Gelb
	192	C4Hg(n)	3	423	grünstichiges Gelb
35	193	C4Hg(i)	3	423	grūnstichiges Gelb
	194	C4Hg(n)	3	423	grünstichiges Gelb
	195	C4Hg(n)	3	423	grûnstichiges Gelb
40	196	C4Hg(i)	2	422	grünstichiges Gelb
	197	C5H11(n)	3	423	grûnstichiges Gelb
45	198	С ₃ Н ₆ СНСН ₂ СН ₃	3	423	grūnstichiges Gelb
50	199	(CH ₃) ₂ CH(CH ₂) ₂	3	423	grünstichiges Gelb
	200	СН3СНСН2 ОСН3	3	423	grūnstichiges Gelb
55	201	CH3OCH2CH CH3	3	423	grünstichiges Gelb

Tabelle 10

Q	V H ₃ C	CN
	>− n = n − €	0 N
WO ₂ C	но	C3H6OR

10				•			
	Bsp. Nr.	v	Q	W	R	∤max [nm] in Aceton	Farbton auf Polyester
15	202	CO ₂ CH ₃	Н	C3H7(i)	CH ₂ C ₆ H ₅	422	grünstichiges gelb
	203	CO ₂ CH ₃	н	C4H9(n)	CH ₂ C ₆ H ₅	422	grünstichiges gelb
20	20%-	CO ₂ CH ₃	н	C4Hg(n)	C2H4OC6H5	422	grünstichiges gelb
2 5	205	CO ₂ CH ₃	Н	C4Hg(n)	$\overline{\mathbf{H}}$	422	grünstichiges gelb
	206	CO ₂ CH ₃	н	C4H9(i)	<u> </u>	422	grünstichiges gelb
30	207	CO ₂ CH ₃	н	C4H9(i)	CH ₂ C ₆ H ₅	422	grūnstichiges gelb
	208	CO2CH3	н	C4H9(i)	C ₂ H ₄ OC ₆ H ₅	423	grūnstichiges gelb
35	209	CO2CH3	Н	C4Hg(i)	C4H8OCOCH3	423	grūnstichiges gelb
40	210	CO ₂ CH ₃	H	C2H40C2H5	CH ₂ C ₆ H ₅	422	grünstichiges gelb
	211	CO ₂ CH ₃	н	C ₂ H ₄ OC ₄ H ₉	CH ₂ C ₆ H ₅	422	grünstichiges gelb
45	212	CO ₂ CH ₃	Н	C ₂ H ₄ OC ₄ H ₉	C ₂ H ₄ OC ₆ H ₅	423	grünstichiges gelb
70	213	н	CO ₂ C ₃ H ₇ (i)	C3H7(i)	C2H40C6H5	419	stark grün- stichig gelb
	214	Н	C0 ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	CH ₂ C ₆ H ₅	420	stark grün- stichig gelb
50	215	Н	C0 ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	C4H8OCOCH3	420	stark grün- stichig gelb
	216	н	C0 ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	<u>−⟨</u> H⟩	419	stark grūn- stichig gelb
55	217	CO2CH3	Н	C ₆ H ₁₃ (n)	C2H40C6H5	422	grünstichiges gelb

Ansprüche

5

1. Pyridonazofarbstoffe der Formel I

$$D-N = N CN (I),$$

$$HO NO (CH2) -O-R$$

15 in der

20

45

55

n für die Zahl 2 oder 3,

D für 2,3-Dichlorphenyl, 3,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,4,5-Trichlorphenyl, 4-Cyanophenyl oder einen Rest der Formel

in der X¹ C+C4-Alkyl oder C₁-C10-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, Y Wasserstoff, Chlor oder den Rest COX², in dem X² die Bedeutung von C₁-C10-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, besitzt und Z Wasserstoff oder Chlor bedeuten und

für einen Rest der Formel

35 [L-0]₂-T, L-OH oder L-O-COR¹, wobei L gegebenenfalls verzweigtes C₁-C₄-Alkylen, T C₁-C₄-Alkyl oder

und R¹ Wasserstoff oder Cr-Cr-Alkyl bedeuten und der Ring A jeweils durch Methyl oder Chlor substituiert sein kann, oder für den Fall, daß D den Rest

bedeutet, auch für Cyclohexyl stehen, mit der Maßgabe, daß wenn D den Rest

bedeutet und wenn dabei Y und Z gleichzeitig Wasserstoff bedeuten, der Rest COX1 nicht in ortho-Position

zur Azobrücke steht.

5

10

15

25

35

40

45

50

2. Pyridonazofarbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, daß n für die Zahl 3,

D für einen Rest der Formel

wobei X¹ und X² gleich oder verschieden sind und unabhängig voneinander jeweils C₁-C₄-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, bedeuten und für einen Rest der Formel

[(CH₂)-O]₂T, [(CH₂)₃-O]₂-T oder L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

3. Pyridonazofarbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, daß n für die Zahl 3,

D für 2,3-Dichlorphenyl oder 2,5-Dichlorphenyl und R für einen Rest der Formel

[(CH₂)₂-0]₂-T, [(CH₂)₃-0]₂-T oder L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

87 11 6296

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Dokume der maßgeblic	ents mit Angabe, soweit erford er lich ehen Teile	, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Х	EP-A-0 061 667 (BA * Anspruch 1; Seite *	SF) 15, Beispiele 28,30	1	C 09 B 29/42 D 06 P 1/18
D,A	DE-A-2 951 403 (BA * Anspruch 1 *	SF)	1	
A	CH-A- 644 621 (CI * Anspruch 1 *	BA-GEIGY)	1	
A [:] .	FR-A-2 024 762 (SA * Anspruch 1; Beisp		1	
A :	FR-A-2 038 227 (BA * Anspruch 1; Beisp	SF) iele 28,29,81 *	1	
				·
:				RECHERCHIERTE SACHGEBIETE (Int. CI.4)
	·			C 09 B
Der ve	orliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
Di	Recherchenort EN HAAG	Abschlußdatum der Recherche 24-03-1988	GII	Prefer NESTET M.E.J.

EPO PORM 1503 03.82 (P0403)

X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer
anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur

i : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist
 D : in der Anmeldung angeführtes Dokument
 L : aus andern Gründen angeführtes Dokument

. & : Mitglied der gleichen Patentfamille, übereinstimmendes Dokument

BASF Aktiengesellschaft · D-6700 Ludwigshalen

Europäisches Patentamt Erhardtstraße 27

D-8000 München 2

BRD

EPA-EPO-OEB MÜNCHEN Empfang bestätigt Receipt acknowledged Accuse reception SD

4. März 1988

Patentabteilung-C6 ZSP/D - gg5252 Dr. Karg Tel. 0621/60 43895 Telex 17 62 157 170 Ttx 62 157 170-BASF Tfx 0621/60 43123

EP-Anmeldung Nr. 87116296.2 - 0.Z. 0050/38783 Pyridonazofarbstoffe

Wie wir leider erst jetzt feststellten, befindet sich auf den Seiten 12 und 18 der obengenannten Anmeldung jeweils ein Fehler.

In den Beispielen Nr. 66 und 155 sollte der Rest W jeweils "(CH3)2CHC2H4" lauten.

Wir bitten diese Fehler zu entschuldigen und fügen als Anlage die entsprechend korrigierten Seiten 12 und 18 bei.

BASF Aktiengesellschaft

i. A. Karq AV.-Nr. 3224

Anlage 3fach

Telefon (0621) 60-0 (Vermittlung) Telefax (0621) 60-42525 (Zentrale) Telex 46499-0 bas d (Vermittlung) Teletex 62157 = BASF (Vermittlung) Telegramme: BASF Ludwigshafenrhein

Bankverbindung: Landeszentralbank 6700 Ludwigshafen, Girokonto 54507300 (BLZ 54500000)

Sitz der Gesellschaft: D-6700 Ludwigshafen Aufsichtsratsvorsitzender: Matthias Seefeider Vorstand: Hans Albers, Vorsitzender; Hans Detzer, stelly. Vorsitzender:

Detlef Dibbern; Helmut Dörfel; Wolfgang Jentzsch; Ingo Paetzke; Ronaldo Schmitz; Dieter Stein; Jürgen Strube; Dietmar Werner: Herbert Willersinn; Hans Joachim Witt Registergericht: Amtsgericht Ludwigshafen, Eintragungsnummer: HRB 2000