Programme de colle n°19

Analyse asymptotique

- 1) Définition de $f(x) = o(g(x)), \ f(x) \underset{a}{\sim} g(x)$ et f(x) = O(g(x)).
- 2) Règles de calcul avec les o(), les équivalents et les O(). Application au calcul de limites.
- 3) Développements limités : définition et unicité. Cas des fonctions paires et impaires.
- 4) Intégration d'un DL.
- 5) Formule de Taylor-Young pour les fonctions de classe C^n .
- 6) DL des fonctions usuelles en 0 : exp, ch, sh, $x\mapsto (1+x)^a, \ x\mapsto \frac{1}{1-x}$, cos, sin, $x\mapsto \ln(1-x)$, arctan et tan (à l'ordre 3 pour tan).
- 7) Addition, produit, quotient de développements limités.
- 8) Applications : calcul de limite, détermination d'une tangente ou d'une asymptote avec position relative de la courbe.

Dénombrement

- 1) Cardinal d'un ensemble fini E. Notations : Card(E) ou |E|.
- 2) Formules usuelles: $\operatorname{Card}(A \cup B)$, $\operatorname{Card}(\overline{A})$, $\operatorname{Card}(A \setminus B)$, $\operatorname{Card}(E \times F)$, $\operatorname{Card}(F^E)$ et $\operatorname{Card}(\mathcal{P}(E))$.
- 3) p-listes de $E:(x_1,\ldots,x_p)\in E^p$.
- 4) p-arrangements de $E:(x_1,\ldots,x_p)\in E^p$ tel que $x_i\neq x_j$ pour tous $i\neq j$. Permutations de E.
- 5) p-combinaisons de $E: \{x_1, \ldots, x_p\} \subset E$ tel que $x_i \neq x_j$ pour tous $i \neq j$.

Questions de cours

- 1) Énoncer la formule de Taylor-Young. En déduire le $DL_n(0)$ de $\exp(x)$, $\cos(x)$ et $\sin(x)$.
- 2) Déterminer un équivalent en $+\infty$ des fonctions suivantes :

$$f(x) = \frac{x^2 + e^x - \ln x}{x^3 + \sqrt{x}},$$
 $g(x) = \sqrt{x^2 + 1} - x.$

3) Calculer les limites suivantes :

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}, \qquad \lim_{x\to 0}\frac{e^x-x-\cos x}{x^2}, \qquad \lim_{x\to +\infty}x-x^2\ln\left(1+\frac{1}{x}\right).$$

- 4) On considère la fonction $f(x) = \frac{\ln(1+x)}{x}$ définie sur \mathbb{R}_+^* .
 - (a) Montrer que la fonction est prolongeable par continuité sur \mathbb{R}_+ .
 - (b) Montrer que f ainsi prolongée est de classe \mathcal{C}^1 sur \mathbb{R}_+ .
- 5) Déterminer l'équation de la tangente ainsi que la position relative de la courbe et de sa tangente au voisinage de 0 de $f(x) = \frac{1}{1+x} + 2\sin x$.
- 6) Nombre d'applications injectives de E dans F (avec E et F des ensembles finis).
- 7) Nombre d'anagrammes du mot : ANAGRAMME.