

Mecânica do Voo

Movimento Longitudinal

Referências Bibliográficas

- ITENS 1.1, 1.2, 1.3, 1.4, apendice F: Paglione, P.; Zanardi, M. C., Estabilidade e Controle de Aeronaves, ITA, 1990.
- Bernard Etkin, Lloyd Duff Reid, Dynamics of Flight Stability and Control, John Wiley & Sons, 3ª Ed, 1996.
- STEVENS, Brian L.; LEWIS, Frank L. Aircraft control and simulation. 2nd ed. Hoboken: John Wiley & Sons, 2003

Faculdade UnB Gama 🌇

1. COMENTÁRIOS INICIAIS

 O movimento não estacionário de aviões pode ser separado em duas partes:

1. Movimento Longitudinal:

- > Movimento simétrico.
- > Asas niveladas.
- Movimento do CG no plano vertical.

1. Movimento Látero-Direcional:

- → Movimento assimétrico.
- Rolamento, guinada e derrapagem, mantendo ângulo de ataque, velocidade e ângulo de arfagem constantes.

Estudaremos dois aspectos do estado de equilíbrio:

1. ESTABILIDADE

Momento de arfagem que atua na aeronave quando o ângulo de ataque sofre uma variação, a partir se seu valor de equilíbrio, devido, por exemplo a uma rajada de vento.

RESPOSTA DA AERONAVE A PERTURBAÇÕES EXTERNAS.

2. CONTROLE

Uso de controle longitudinal (profundor) para variação do valor de equilíbrio do ângulo de ataque.

RESPOSTA DA AERONAVE À VARIAÇÃO DA POSIÇÃO DO PROFUNDOR

ESTUDO DO MOVIMENTO LONGITUDINAL

SUPÕE SE QUE O PILOTO AGE SOBRE O LEME PARA MANTER A DERRAPAGEM CONSTANTEMENTE NULA, NÃO EXISTINDO GUINADA, FAZENDO COM QUE O VETOR VELOCIDADE PERMANEÇA CONTIDO NO PLANO DE SIMETRIA DA AERONAVE.

CONSIDERA-SE TAMBÉM, QUE O ESPAÇO DE TEMPO CONSIDERADO É PEQUENO E DURANTE ESTE INTERVALO DE TEMPO A MASSA DO AVIÃO PODE SER SUPOSTA CONSTANTE, ISTO É, O AVIÃO SE COMPORTA COMO UM CORPO RÍGIDO, COM APENAS AS PEQUENAS SUPERFÍCIES DE CONTROLE SE MOVIMENTANDO. OS INTERVALOS DE TEMPO SÃO DA ORDEM DE SEGUNDOS OU ALGUNS MINUTOS.

2. FORÇAS LONGITUDINAIS

A condição de voo básica para a maioria das aeronaves é o voo simétrico estacionário. Nessa condição, a velocidade e as forças são mostrados como na figura abaixo.

Steady symmetric flight.

Principais parâmetros aerodinâmicos: Velocidade V e ângulo de ataque α .

Movimento de arfagem positivo Avião cabra, deslocamento do profundor para cima.

Movimento de arfagem negativo Avião pica, deslocamento do profundor para baixo

Quando não existe guinada, β = 0 , eixo $y_0 \approx eixo y$, o ângulo de arfagem θ (ângulo entre o eixo x0 e eixo x:

Voo simétrico estacionário

3. EQUAÇÕES DO MOVIMENTO

Equação do arrasto

$$m\frac{dV}{dt} = -m g \operatorname{sen} \gamma + X_a + F \cos(\alpha + \alpha_F)$$

1.1

Equação da sustentação

$$m V \frac{d\gamma}{dt} = m g \cos \gamma + Z_a - F sen(\alpha + \alpha_F)$$

1.2

Equação do momento em torno do CG

$$I_{\mathcal{Y}}\frac{d^2\theta}{dt^2} = M + M_F$$

1.3

Relação geométrica

$$\theta = \alpha + \gamma$$

1.4

Relação cinemática

$$\frac{dH}{dt} = V \operatorname{sen} \gamma$$

1.5

4. ANÁLISE DA EQUAÇÃO DO MOMENTO

$$I_{y} \frac{d^{2}\theta}{dt^{2}} = I_{y} \frac{dq}{dt} = M + M_{F}$$

Determina, para condições de Voo dadas, a resposta da aeronave a ação do profundor δ_p

Variação no profundor, altera a empenagem horizontal e altera a força aerodinâmica.

Considera-se inicialmente que M_F é nulo, ou seja tração passa pelo CG.

Equação do momento não depende da posição da manete.

Força aerodinâmica na asa e empenagem.

Força aerodinâmica da asa e empenagem

Considera se:

- que o centro aerodinâmico da asa e empenagem estão sobre o eixo longitudinal
- Z e Z' são as forças normais ao eixo longitudinal
- X e X' são forças tangenciais ao eixo longitudinal

Força normal na asa na direção z:

$$Z = L \cos \alpha + D \sin \alpha$$

Força normal na empenagem horizontal na direção z:

$$Z' = L' \cos \alpha' + D' \sin \alpha'$$

$$M = M_o + M_o' - Z x_{CA} - Z' l_t$$

Força aerodinâmica na asa

Sustentação e arrasto dependem do ângulo de ataque mas o momento constante M_0 não.

Centro aerodinâmico - CA - é escolhido de modo que isso ocorra.

$$L = \frac{1}{2} \rho V^2 S C_L$$

$$D = \frac{1}{2} \rho V^2 S C_D$$

 C_L , C_D dependem do N_M

$$N_M = \frac{V}{velocidade\ do\ som}$$

$$C_L = C_{L_{\alpha}} \alpha$$

$$C_D = C_{D_{\min}} + K C_L^2$$

Lift and drag for subsonic and supersonic speeds.

L, D dependem de V, H, S, N_M , α , q.

Força aerodinâmica na empenagem: L', D', M'

O ângulo de ataque α' difere de α pelo ângulo de downwash ε, que é a deflexão da corrente de ar provocada pela asa:

$$\alpha' = \alpha - \varepsilon$$

$$\varepsilon = \varepsilon_0 + \varepsilon_\alpha \alpha$$

$$\varepsilon_{\alpha} = \frac{d\varepsilon}{d\alpha}$$

L', D' dependem de V', H, S', N_M , α , q, ε , δ_p

INFLUÊNCIA DE $\frac{d\alpha}{dt}$ NA SUSTENTAÇÃO E ARRASTO SÃO DESPREZÍVEIS, MAS NÃO PODE SER DESPREZADA NO MOMENTO AERODINÂMICO.

Equação do momento

- Z e Z' são as forças normais ao eixo longitudinal:

$$Z = Z(V, H, S, \alpha, \dot{\alpha}, q, N_m)$$

$$Z' = Z'(V, H, S', \alpha, \dot{\alpha}, q, N_m, \delta_p)$$

$$M = M_o + M'_o - Z x_{CA} - Z' x'_{CA}$$

$$M = \frac{1}{2} \rho V^2 S C_m l$$

$$M = M_0 + M_0' + m(V, H, S, \alpha, \dot{\alpha}, q) + m'(V, H, S', \alpha, \dot{\alpha}, q, \delta_p)$$

EQUAÇÕES SÃO LINEARIZADAS EM TORNO DA CONDIÇÃO DE EQUILÍBRIO, QUE É O VOO HORIZONTAL RETILÍNEO.

VER APÊNDICE F

Condições de equilíbrio

VOO HORIZONTAL RETILÍNEO:

 \dot{V} $\dot{\gamma}$, \dot{q} , \dot{H} , $\dot{\alpha}$ SÃO NULOS.

Ou seja: $\alpha_e = constante$

 M_e , M'_e , $\delta_{pe} = constante$

 $q_e = 0$

 V_e , H_{e} , $\gamma_e = constante$

O intervalo de tempo é pequeno, então no processo de linearização despreza – se as variações da velocidade e altitude em relação aos demais termos.

Para o resultado ser adimensional utilizam-se: as grandezas $\frac{ql}{v}$ e $\frac{\dot{\alpha} l}{v}$ no lugar de

 $q e \dot{\alpha}$

Faculdade UnB **Gama**

Após o processo de linearização, como $M=\frac{1}{2}\rho V^2S \ l \ C_m$

$$M = \frac{1}{2} \rho V^2 S l C_m$$

$$C_m = \frac{M}{\frac{1}{2} \rho V^2 S l}$$

Asa + empenagem:

$$C_{m\alpha} = \frac{\partial C_m}{\partial \alpha}$$

$$C_{m\dot{\alpha}}=\frac{\partial C_m}{\partial \hat{\alpha}}$$

$$C_{mq} = \frac{\partial C_m}{\partial \widehat{q}}$$

Só empenagem:

$$C_{m\delta} = \frac{\partial C_m}{\partial \delta_p}$$

$$\hat{\alpha} = \frac{\dot{\alpha} l}{V_e}$$

$$\widehat{q} = \frac{q'l}{V_e}$$

Faculdade UnB Gama

$$C_{m} = C_{m0} + C_{m\alpha} \alpha + C_{m\delta} \delta_{p} + C_{m\dot{\alpha}} \frac{\dot{\alpha}}{V_{e}} l + C_{mq} \frac{q}{V_{e}} l$$

 C_{m0} - proveniente de M_0 e M'_0

 $C_{m\alpha}$ - Proveniente da influencia de α sobre Z e Z'

 $C_{m\delta}$ - proveniente da influencia de δ_p sobre Z'

 C_{ma} - proveniente da influencia de q sobre Z e Z'

 $C_{m\dot{\alpha}}$ - proveniente da influencia de $\dot{\alpha}$ sobre Z e Z'

EQUAÇÃO DO MOMENTO:
$$I_y \frac{d^2\theta}{dt^2} = I_y \frac{dq}{dt} = M = \frac{1}{2} \rho V^2 S \ l \ C_m$$

$$\frac{I_y}{0.5 \rho V^2 S l} \frac{dq}{dt} = C_{m0} + C_{m\alpha} \alpha + C_{m\delta} \delta_p + C_{m\dot{\alpha}} \frac{\dot{\alpha}}{V_e} l + C_{mq} \frac{q}{V_e} l$$

3. EQUAÇÕES DO MOVIMENTO LONGITUDINAL

Equação do arrasto

$$m\frac{dV}{dt} = -m g \operatorname{sen} \gamma + X_a + F \cos(\alpha + \alpha_F)$$

1.1

Equação da sustentação

$$m V \frac{d\gamma}{dt} = m g \cos \gamma + Z_a - F sen(\alpha + \alpha_F)$$

1.2

Equação do momento em torno do CG

$$I_{\mathcal{Y}}\frac{d^2\theta}{dt^2} = M + M_F$$

1.3

Relação geométrica

$$\theta = \alpha + \gamma$$

1.4

Relação cinemática

$$\frac{dH}{dt} = V \operatorname{sen} \gamma$$

1.5

EQUAÇÕES DO MOVIMENTO LONGITUDINAL

Equação do arrasto

$$m\frac{dV}{dt} = -m g \operatorname{sen} \gamma - \frac{1}{2}\rho S V^2 C_D + F \cos(\alpha + \alpha_F)$$

1.1*a*

Equação da sustentação

$$mV \frac{d\gamma}{dt} = \frac{1}{2}\rho S V^2 C_L + F sen(\alpha + \alpha_F) - m g \cos \gamma$$

1.2a

Equação do momento em torno do CG

$$I_{\mathcal{Y}}\frac{dq}{dt} = \frac{1}{2}\rho \, S \, V^2 l \, \left(C_{m_o} + C_{m_\alpha} \, \alpha + C_{m_{\delta_P}} \, \delta_P + C_{m_q} \, \frac{ql}{V} + C_{m_{\dot{\alpha}}} \, \frac{\dot{\alpha} \, l}{V}\right)$$

Relação geométrica

$$\theta = \alpha + \gamma$$

1.4

1.3*a*

Relação cinemática

$$\frac{dH}{dt} = V \operatorname{sen} \gamma$$

1.5