14.6 Stabilitet av Runge-Kutta-metoder 11.02.16 Observacion: Lokal Lorning for text-system is = my y_(tn; t) = λy_(tn; t), y_(tn; tn) = yn $\Rightarrow y_{L}(t_{n}, t_{n+1}) = e^{h\lambda}y_{n}$ h=+n+1-+n Nedfolding (aliosing) Test system. I] Test-system I $\dot{y} = \lambda y$, $\lambda = \sigma + j\omega$ y= ny y, (+n; +n+1) = e yn $y_{L}(t_{n}; t_{n+1}) = e^{h\lambda}y_{n}$ Nor er disse to de samme? $\ell = \ell = \ell \left(\cosh u + j \sinh u \right)$ hu=ho+j(hw+2kT), k=0,+1,+2,... $M = \lambda + 2k \frac{\Omega}{\Lambda}$, $k = 0, \pm 1, \pm 2, ...$

Def: Pade-approbrimacionen Pm(s) av es er den rosjonale funkcijonen pk(s) = $\frac{1+\beta_1 s + ... + \beta_K s^K}{1+\delta_1 s + ... + \delta_m s^m}$ som tilnermer es best Padé - approhimacioner com chabilitatifuntioner

1. Anha $k \le m \le k+2$, Da er $P_m^k(s) \le 1$ nor $R_c(s) \le 0$ 2. $|P_m^m(jw)| = 1$ 3. Anha m > K Da holder $|P_m^k(jw)| \to 0$ nor $w \to \infty$

En Abrilhemelode med (habilitetsfunkijon $R(s) = P_m^k(s)$ er A-dabid hvis k=m, og L-dabid hvis m=k+1 eller m=k+2