

Выполнил Лужанский Н.В. Научный руководитель Ганченкова М.Г.

Цель работы

изучение особенностей Раздел 1 Теоретическое взаимодействия кислорода с поверхностью ферритно-мартенситной стали, на начальных стадиях образования оксидной пленки на чистой поверхности металла и возможные эффекты воздействия облучения на этот процесс.

Раздел 2

Раздел 3

Постановка задачи

Реактор БН

Реакторы по распространенности

- BB3P
- BWR
- ГГР
- PHWR
- РБМК
- БH

Реактор БН

Особенности:

- 1. Возможно замкнуть цикл использования ядерного топлива;
- 2. В качестве теплоносителя используется высококипящий, радиационно стойкий свинцовый теплоноситель;
- 3. Отсутствие высокого давления в активной зоне.

Проблемы:

- 1. Каков оптимальный уровень кислородного потенциала в свинце?
- 2. Как будут вести себя оболочки ТВЭЛ-ов под облучением и в окружении расплавленного свинца?

ЭП-823

Требования к материалу

- 1. Коррозионная стойкость;
- 2. Радиационная стойкость;
- 3. Жаропрочность.

Марка стали	Содержание основных легирующих элементов, мас.%							
16Х12МВСБФР (ЭП-823)	С	Cr	Мо	V	V	Nb	В	Другие
	0,14-0,18	10,0-12,0	0,6-0,9	0,2-0,4	0,7	0,2-0,4	0,0- 0,6	0,5-0,8Ni; 1,1-1,3Si

Теория и эксперимент

Соединение железо-кислород

Оксиды железа на решетке с плотной упаковкой O_2 аниона с катионами металлов в октаэдрических и тетраэдрических координационных междоузлиях

Диаграмма состояния Fe-O

Кислород в свинце

Если содержание кислорода ниже равновесного, то окисления не происходит и элемент взаимодействует со свинцом, в соответствии с диаграммой состояния для данного элемента, а если же содержание кислорода в свинце выше равновесного то элемент будет взаимодействовать со свинцом, создавая оксид.

Коррозионное поведение стали в расплаве свинца после 3000 часов при температуре 550 °C.

Окисление ЭП-823

На поверхности стали ЭП823 формируется двухслойный оксид.

- 1. Зона III состоит в основном из железа и кислорода.
- 2. Зона II обогащена хромом.
- 3. Расплав проникает на границу раздела «оксид/матрица», и в матрице фиксируется двойной пик хрома (зона I)

Снимок оксидной пленки на стали ЭП823 через 1100 часов и 2000 часов нахождения в жидком свинце

Окисление стали под облучением

Схематическая иллюстрация экспериментальной установки

Отслоение оксидного слоя от поверхности образца

а б а – сторона пучка; б – сторона теплоносителя Изображение образца после испытаний

а – не облученная зона; б – облученная Сечение SEM-изображения многослойной оксидной структуры в образце

Методология

Молекулярная динамика и статика

Особенности молекулярной динамики:

- Решаются уравнения
 Ньютона;
- Используются многочастичные потенциалы;
- 3. Моделирование эволюционных процессов.

$$\vec{R}(t+\Delta t) = 2\vec{R}(t) - \vec{R}(t-\Delta t) + \vec{a}(t)\Delta t^2 + O(\Delta t^4)$$
$$\vec{v}(t) = \frac{1}{2}\Delta t(\vec{R}(t+\Delta t) - \vec{R}(t-\Delta t) + O(\Delta t^2))$$
$$\vec{a}(t) = -\frac{\nabla U(\vec{r})}{m}$$

Особенности молекулярной статики:

- Используются алгоритмы минимизации;
- 2. Используются многочастичные потенциалы;
- Моделируется конфигурация атомов при абсолютном нуле.

Последовательные приближения к точке экстремума в направлении наискорейшего спуска в случае дробного шага.

Компьютерный эксперимент

Молекулярная статика

Зависимость энергии системы от расстояния смещаемого атома кислорода до первого слоя атомов железа для диагональной, горизонтальной и вертикальной начальной ориентации молекулы кислорода.

Молекулярная динамика. Окисление

Конфигурация атомов в расчетной ячейке при моделировании взаимодействия молекулярного кислорода с поверхностью.

Функция радиального распределения типа Fe-Fe для атомов в приповерхностны х слоях моделируемого кристаллита при различных временах моделирования

Сравнение данных структурного анализа приповерхностных слоев с референсными структурами

Молекулярная динамика. Окисление

Сравнение аппроксимаций толщины оксидной пленки для систем железа без хрома, с хромом и с хромом и алюминием

Концентрация кислорода в приповерхностной зоне в различные моменты времени

Молекулярная динамика. Каскады

Спектр энергии нейтронов при делении 235U

$$T = \frac{4M_1M_2}{(M_1 + M_2)^2} E_0 \sin^2 \frac{\theta}{2}$$
 $T_{\text{MAKC}} = \frac{4M_1M_2}{(M_1 + M_2)^2} E_0 = 0.069 E_0$
 $E_0 = 0.1 \div 1 \text{ M} \Rightarrow \text{B}$
 $T_{\text{MAKC}} = 6.9 \div 69 \text{ K} \Rightarrow \text{B}$

Молекулярная динамика. Каскады

Развитие каскада от первично выбитого атома железа с энергией 10 кэВ

Область каскада после 3 пс и 100 пс после начала каскада.

Структурный анализ железа после прохождения каскада

Выводы

Выводы

- При рассмотрении коррозии в свинце можно не рассматривать свинец, так как он не влияет на коррозию, влияет только наличие кислорода в нем;
- Молекулярный кислород, растворенный в свинце, при приближении к поверхности железа или стали диссоциирует на атомарный кислород. После диссоциации кислород перемещается по кристаллической решетке по октаэдрическим межузельным положениям. При переходе из одного межузельного положения в соседнее происходит резкое уменьшение энергии;
- Системе, при нуле температур, в которой находится кристаллит железа, атом кислорода и хрома/алюминия на поверхности, выгодней находиться в состоянии, когда кислород создает связь с атомом хрома/алюминия;

Выводы

- На начальных этапах окисления железа или стали кислородом, рост оксидной пленки идет очень интенсивно. В дальнейшем рост оксида замедляется. Характер роста оксида у различных систем с разными концентрациями хрома/алюминия не меняется, меняется, только, скорость роста;
- На начальных этапах окисления на поверхности стали идет перестройка структуры железа в структуру вюстита;
- Облучение частицами не влияет на рост пленки на начальных этапах. Большая часть дефектов отжигается.