C11 miercuri, 24 ianuari	ie 2024 23:24									
Logicătr	ocapitularo									
Logica: re	ecapitulare									
	l logica pentru a exprima ne permite să facem <i>de</i>	and suppressed that is soon		mente.						
din a. și <i>ipo</i>	din <i>axiome</i> (totdeauna adevărate) și <i>ipoteze</i> (considerate adevărate în problema dată) folosind <i>reguli de inferență</i> (de deducție)									
1010	$\frac{p - p \rightarrow q}{a}$	modus ponens								
Modus	ponens e suficient, dar :	sunt și alte reguli c	de deducți	e valide.						
consiste	propozițională e entă: orice formulă dem tă: orice formulă validă			strată						
Complet	ta. Office formula valida	(tautologie) poate	ii demons	Scraca						
			×							
Logica pr	opozițională nu po	ate exprima to	ot							
Un exer	mplu clasic: (1) Toţi oa (2) Socrate Deci, (3) S		ri.							
1						1	1 1	1	1	

(2) Socrate e om. Deci, (3) Socrate e muritor.		
Acesta e un <i>silogism</i> (tipar de regulă de inferență) logica clasică: Aristotel, stoici		
Seamănă cu <i>modus ponens</i> dar premisa din (1) ("toți oamenii") nu e la fel cu (2) (Socrate, un anumit om)		
Am putea reformula (1): Dacă X e om, atunci X e muritor. mai precis: Pentru orice X, dacă X e om, atunci X e muritor.		
Logica modernă: <i>logica predicatelor</i> (logica de ordinul I) Gottlob Frege, Charles Peirce (sec. 19)		
Gottlob Frege, Charles Felice (sec. 15)		
	1	
Avem nevoie de formule mai expresive		
Formulele sunt formate din predicate legate prin conectori logici		
$\forall x ((folder(x) \land x \neq root) \rightarrow contains(parent(x), x))$		
În loc de <i>propoziții</i> (a, p, q) avem <i>predicate</i> : <i>file</i> (x), <i>contains</i> (x, y)		
Un <i>predicat</i> = o afirmație relativ la una sau mai multe variabile, care, dând valori variabilelor, poate lua valoarea adevărat sau fals.		
Predicatele au argumente <i>termeni</i> : <i>variabile x / funcții</i> : <i>parent(x)</i> intuitiv: reprezintă obiecte/noțiuni și funcții din univers		
Nou: apar <i>cuantificatori</i> ∀ (orice), ∃ (există)		

	 1	1	1	I	 1
Nou: apar <i>cuantificatori</i> ▼ (orice), ∃ (există)					
Definim logica predicatelor (first-order logic) numită și logica de ordinul I (întâi)					
Sintaxa logicii predicatelor: Termeni					
Definim, structural recursiv, noțiunile de <i>termen</i> și <i>formulă</i> : <i>Termeni</i>					
variabilă v					
$f(t_1, \dots, t_n)$ cu f funcție n -ară și t_1, \dots, t_n termeni Exemple: $parent(x)$, $cmmdc(x, y)$, $max(min(x, y), z)$					
constantă c: caz particular, funcție de zero argumente					
Sintaxa logicii predicatelor: Formule					
AND AND STATES AND AND THE STATES AND	1	I	1		

Sintaxa iogicii predicateior: rormule	
Formule (well-formed formulas, formule bine formate):	
$P(t_1, \dots, t_n)$ cu P predicat de n argum. și t_1, \dots, t_n termeni Exemple: $contains(empty, x)$, $divide(cmmdc(x, y), x)$	ni di
propoziție p: caz particular, predicat de zero argumente $\neg \alpha \qquad \text{unde } \alpha \text{ e o formulă}$	
$\alpha \rightarrow \beta$ cu α , β formule	
\forall ν α cu ν variabilă, α formulă: cuantificare universală Exemple: \forall x \neg contains(empty, x), \forall x \forall y divide(cmmdc(x, y), x)	
$t_1 = t_2$ cu t_1 , t_2 termeni (în logica de ordinul I cu egalitate) Exemplu: $min(x, min(y, z)) = min(min(x, y), z)$	
Despre cuantificatori. Cuantificatorul existențial ∃	
Notăm: $\exists x \phi \stackrel{def}{=} \neg \forall x (\neg \phi)$ ϕ formulă arbitrară	
Există x pentru care ϕ e adevărată \leftrightarrow nu pentru orice x ϕ e falsă. Cei doi cuantificatori sunt <i>duali</i> . Putem scrie și $\forall x \phi = \neg \exists x (\neg \phi)$	
Cuantificatorii au <i>precedență mai mare</i> decât conectorii ¬, ∧, → ⇒ dacă formula cuantificată are ∧, ∨, → folosim paranteze:	

Cuantificatorii au <i>precedență mai mare</i> decât conectorii \neg , \wedge , \rightarrow \Rightarrow dacă formula cuantificată are \wedge , \vee , \rightarrow folosim paranteze: $\exists x (P(x) \rightarrow Q(x)) \forall y (Q(y) \land R(x, y))$		
Altă notație: $punct$. cuantificatorul se aplică la tot restul formulei, până la sfârșit sau paranteză închisă $P(x) \vee \forall y. Q(y) \wedge R(x, y) \qquad (R(y) \vee \exists x. P(x) \rightarrow Q(x)) \wedge S(x)$		
Distributivitatea cuantificatorilor față de ∧ și ∨		
Cuantificatorul universal e distributiv față de conjuncție: $\forall x (P(x) \land Q(x)) \leftrightarrow \forall x P(x) \land \forall x Q(x)$ dar cuantificatorul existențial NU e distributiv față de conjuncție: $\exists x (P(x) \land Q(x)) \leftrightarrow (\exists x P(x) \land \exists x Q(x))$ avem implicație \rightarrow , dar nu și invers, poate să nu fie același x !		
Dual, \exists e distributiv față de disjuncție: $\exists x P(x) \lor \exists x Q(x) \leftrightarrow \exists x.P(x) \lor Q(x)$		
\forall nu e distributiv față de disjuncție. Avem doar:		

1		 ı	1	1 1	1
	Variabile legate și libere				
	În formula ∀ νφ (sau ∃νφ) variabila v se numește <i>legată</i>				
	Variabilele care nu sunt legate se numesc libere				
	O variabilă poate fi liberă și legată în aceeași formulă.				
	În $(\exists x.P(x) \rightarrow Q(x)) \land R(x)$, $x \in legată$ în $\exists x.P(x) \rightarrow Q(x)$				
	și e <i>liberă</i> în $R(x)$ (e în afara cuantificatorului)				
	Înțelesul unei formule <i>nu depinde</i> de variabilele legate				
	înțelesul lor e " <i>legat</i> " de cuantificator ("pentru orice", "există")				
	pot fi redenumite, fără a schimba înțelesul formulei $(\exists x.P(x) \rightarrow Q(x)) \land R(x)$ la fel ca $(\exists y.P(y) \rightarrow Q(y)) \land R(x)$				
	$= \frac{(\exists x.i.(x) \rightarrow Q(x)) \land h(x) \text{ is let } \text{ca}}{(\exists y.i.(y) \rightarrow Q(y)) \land h(x)}$				-
	O formulă fără variabile libere are înțeles de sine stătător. (closed formula)				
	Formalizarea limbajului natural				
	Formulele conțin: variabile, funcții, predicate.				
	Verbele devin predicate (ca în limbajul natural):				
	cumpără(X, Y), scade(X),				$\perp \downarrow$
	Subiectul și complementele (in)directe: argumentele predicatului				
•	alternate on the region of the transport for a state of the transport of	 •	•		

cumpara(x, y), scaqe(x), Subiectul și complementele (in)directe: argumentele predicatului	
Atributele (proprietăți) devin predicate despre valorile-argument bucuros(X), de aur (Y)	
Variabilele din formule pot lua valori de orice fel din univers nu au un tip anume	
⇒ Categoriile devin tot predicate, cu argument obiectul de acel fel copil (X), caiet(X)	
Entitățile unice devin constante: ion, emptyset, santaclaus	
Exemplu de formalizare (1)	
Fiecare investitor a cumpărat acțiuni sau obligațiuni.	
Cuantificatorii introduc variabile cu valori <i>arbitrare</i> din univers ⇒ impunem categorii prin predicate suplimentare	
\Rightarrow introducem un predicat <i>inv</i> (X) (X e investitor)	
Pentru <i>orice</i> X, <i>dacă</i> X e investitor, a făcut ceva $\forall X.inv(X) \rightarrow ce face X$	
Ce se spune despre investitor? Există ceva ce a cumpărat $\forall X.inv(X) \rightarrow \exists C.cumpără(X, C) \land ce știm despre C$	
$\forall X.inv(X) \rightarrow \exists C.cumpără(X,C) \land (acțiune(C) \lor oblig(C))$	

	1	 1	1	1	
Dacă trezoreria crește dobânda, toate obligațiunile scad.					
$crestedob \rightarrow \forall X.oblig(X) \rightarrow scade(X)$					
Dobânda e unicul lucru din problemă care crește ⇒ propoziție					
alternativ: o constantă dobânda + predicat crește					
4. Orice investitor care a cumpărat ceva care scade nu e bucuros.					
$\forall X.inv(X) \rightarrow ce stim despre X$					
$\forall X.inv(X) \rightarrow \boxed{condiție pentru X} \rightarrow \neg bucuros(X))$					
$\forall X.inv(X) \rightarrow (\exists C.cumpără(X, C) \land scade(C)) \rightarrow \neg bucuros(X)$					
\rightarrow asociază la dreapta, $p \rightarrow q \rightarrow r = p \rightarrow (q \rightarrow r) = p \land q \rightarrow r$, echivalent:					
$\forall X.inv(X) \land (\exists C.cumpără(X, C) \land scade(C)) \rightarrow \neg bucuros(X)$					
Exemplu de formalizare (4)					
5. Dacă indicele Dow Jones scade și trezoreria crește dobânda,					
toți investitorii bucuroși au cumpărat ceva acțiuni de aur.					
scade(dj) ∧ creștedob → ce se întâmplă					
scade(dj) ∧ creștedob →					
$\forall X.inv(X) \land bucuros(X) \rightarrow ce stim despre X$					
$scade(di) \land crestedob \rightarrow \forall X.inv(X) \land bucuros(X) \rightarrow$					

După traducerea în logică, putem demonstra!		
A Cod of Carlot Annual Carlot discussions Conditional		
Având o <i>infinitate de interpretări</i> (valori din univers, funcții, valori pentru relații/predicate), nu putem scrie tabele de adevăr.		
pentru relații/predicate), nu putem scrie tabele de adevar.		
Putem face însă demonstrații (deducții) după reguli de inferență (pur sintactice), ca în logica propozițională.		
Logica predicatelor e și ea consistentă și completă:		
Orice teoremă e validă (adevărată în toate interpretările/atribuirile).		
Orice formulă validă (tautologie) poate fi demonstrată (e teoremă).		
dar dacă nu e validă, încercarea de a o demonstra (sau o refuta) poate continua la nesfârșit.		
poate continua la Hesiaişic.		
Demonstrația prin metoda rezoluției		
O formulă e validă dacă și numai dacă negația ei e o contradicție.		
Putem demonstra o teoremă prin reducere la absurd		
arătând că negația ei e o contradicție (nerealizabilă).		
Fie ipotezele A_1, A_2, \ldots, A_n și concluzia C .		
Fie teorema		
$A_1 \wedge A_2 \dots \wedge A_n \rightarrow C$		

Fie teorema			
$A_1 \wedge A_2 \dots \wedge A_n \rightarrow C$			
adică: ipotezele A ₁ , A ₂ , A _n implică împreună concluzia C			
Negația implicației: $\neg(H \rightarrow C) = \neg(\neg H \lor C) = H \land \neg C$			
Deci arătăm că $A_1 \wedge A_2 \dots \wedge A_n \wedge \neg C$ e o contradicție (reducere			
la absurd: ipoteze adevărate+concluzia falsă e imposibil)			
Arătăm că o formulă e o contradicție prin metoda rezoluției.			
Aratam ca o formula e o contradicție prin metoda rezoluției.			
	1		
Rezoluția în calculul propozițional			
Rezoluția e o regulă de inferență care produce o nouă clauză			
din două clauze cu <i>literali complementari</i> (p și ¬p).			
$ \begin{array}{c cccc} p \lor A & \neg p \lor B \\ \hline A \lor B & rezolutie \end{array} $			
AVB			
"Din clauzele $p \lor A$ și $\neg p \lor B$ deducem/derivăm clauza $A \lor B$ "			
Reamintim: <i>clauză</i> = <i>disjuncție</i> ∨ de <i>literali</i> (propoziții sau negații)			
Clauza obtinută = rezolventul celor două clauze în raport cu p			
Exemplu: $rez_p(p \lor q \lor \neg r, \neg p \lor s) = q \lor \neg r \lor s$			
Modus ponens poate fi privit ca un caz particular de rezoluție:			
$p \lor false \neg p \lor q$			
false ∨ q			

Rezoluția e o regulă validă				
<u>p∨A ¬p∨B</u> A∨B	rezolutie			
Rezoluția e o regulă de inferență <i>validă</i> : $\{p \lor A, \neg p \lor B\} \models A$	I ∨ B			
THE CONTRACT OF STREET	orice atribuire care face premisele adevărate face și concluzia adevărată pentru $p = T$, trebuie să arătăm $B \models A \lor B$: dacă $B = T$, atunci și $A \lor B = T$			
Corolar: dacă A V B e contradicție, la fel ș dacă ajungem la contradicție, și formula ir				
Exemplu de rezoluție (1)				
$(a \lor \neg b \lor \neg d) \qquad b \text{ negat}$ $\land (\neg a \lor \neg b) \qquad b \text{ negat}$ $\land (\neg a \lor c \lor \neg d)$	_			
$\wedge (\neg a \lor b \lor c)$ b pozitiv				

$\wedge (\neg a \lor b \lor c) \qquad b \text{ pozitiv}$		
Luăm o propoziție cu ambele polarități (b) și construim rezolvenții rez_b ($a \lor \neg b \lor \neg d$, $\neg a \lor b \lor c$) = $a \lor \neg d \lor \neg a \lor c$ = T rez_b ($\neg a \lor \neg b$, $\neg a \lor b \lor c$) = $\neg a \lor \neg a \lor c$ = $\neg a \lor c$		
Adăugăm noii rezolvenți (ignorăm T); eliminăm vechile clauze cu b $(\neg a \lor c \lor \neg d)$ $\land (\neg a \lor c)$		
Nu mai putem crea rezolvenţi. Nu avem clauza vidă. \Rightarrow formula e realizabilă, de exemplu cu $a = F$. Sau cu $c = T$.		
Pentru o atribuire suficientă ca să facă formula realizabilă, revenim la formula inițială, și dăm valori și lui b și/sau d .		
Exemplu de rezoluție (2)		
a ∧ (¬a ∨ b) ∧ (¬b ∨ c) c pozitiv		
$\wedge (\neg a \lor \neg b \lor \neg c)$ c negat		
Aplicăm rezoluția după c , avem o singură pereche de clauze: $rez_c(\neg b \lor c, \neg a \lor \neg b \lor \neg c) = \neg b \lor \neg a \lor \neg b = \neg a \lor \neg b$		
Eliminăm cele două clauze cu c și adăugăm clauza nouă:		
a ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b)		
Aplicăm rezoluția după b : $rez_b(\neg a \lor b, \neg a \lor \neg b) = \neg a \lor \neg a = \neg a$		
Fliminăm cele două clauze cu b. adăugăm clauza nouă:		

$rez_b(\neg a \lor b, \neg a \lor \neg b) = \neg a \lor \neg a = \neg a$			
Eliminăm cele două clauze cu b, adăugăm clauza nouă: a			
Aplicăm rezoluția după $a: rez_a(a, \neg a) = F$ (clauza vidă) Deci			
formula inițială e o contradicție (e nerealizabilă).			
	4		
Aplicarea rezoluției în calculul propozițional			
Pornind de la o formulă în formă normală conjunctivă (CNF),			
adăugăm rezolvenți, încercând să obținem clauza vidă:			
Alegem o propoziție p și adăugăm toți rezolvenții în raport cu p:			
din m clauze cu p și n clauze cu $\neg p$, creăm $m \cdot n$ rezolvenți			
am eliminat $p \Rightarrow$ ștergem cele $m+n$ clauze inițiale			
Dacă vreun rezolvent e clauza vidă, formula e nerealizabilă			
Dacă nu mai putem crea rezolvenți (literalii au polaritate unică),			
formula e <i>realizabilă</i> (facem T toți literalii rămași)			
Numărul de clauze poate crește exponențial (problematic!)			
Numarur de ciadze poate crește exponențiai (problematic.)			
Rezoluția: de la propoziții la predicate			
În logica predicatelor, un <i>literal</i> nu e o propoziție, ci un <i>predicat</i> nu doar p și $\neg p$. ci $P(arg 1)$ și $\neg P(arg 2)$ (argumente diferite)	8		

1		1 1	1 1		1	
	În logica predicatelor, un <i>literal</i> nu e o propoziție, ci un <i>predicat</i> nu doar p și $\neg p$, ci $P(arg\ 1)$ și $\neg P(arg\ 2)$ (argumente diferite)					
	Pentru a deriva o nouă clauză din $A \lor P(arg 1)$ și $B \lor \neg P(arg 2)$ trebuie să încercăm să aducem argumentele la o expresie comună.					
	Vom avea clauze cu variabile implicit cuantificate universal pot lua orice valoare ⇒ le putem <i>substitui</i> cu <i>termeni</i>					
	Există o substituție care aduce predicatele la o formă comună? ex. 1: $P(x, g(y))$ și $P(a, z)$					
	ex. 2: $P(x, g(y))$ și $P(z, a)$ În exemplul 1, substituind $x \rightarrow a$, $z \rightarrow g(y)$ obținem $P(a, g(y))$ și					
	$P(a, g(y)) \Rightarrow \text{am găsit o formă comună}$					
	În ex. 2 nu putem substitui <i>constanta a</i> cu <i>g</i> (<i>y</i>) (<i>a</i> nu e variabilă)					!
	g e funcție arbitrară, nu știm dacă există un y cu $g(y) = a$					
	Substituții și unificări de termeni					
	O substituție e o funcție care asociază unor variabile niște termeni: $\{x_1 \rightarrow t_1, \dots, x_n \rightarrow t_n\}$					
	Doi termeni se pot <i>unifica</i> dacă există o substituție care îi face egali $f(x, g(y, z), t)\{x \rightarrow h(z), y \rightarrow h(b), t \rightarrow u\} = f(h(z), g(h(b), z), u)$					
	Reguli de unificare					
	O variabilă x poate fi unificată cu orice termen t (substituție) dacă x nu apare în t (altfel, substituind obținem un termen infinit) deci nu: x cu f (h(v), q (x, z))					
ı	decind. X cu / (///V). U (X. Z))	I I	1 1	I I	I	1.1

nu apare în t (altfel, substituind obținem un termen infinit) deci nu: x cu f (h(y), g (x, z)) Doi termeni f () pot fi unificați doar dacă au aceeași funcție, și argumentele (termeni) pot fi unificate (poziție cu poziție) Două constante (funcții cu 0 arg.) ⇒ unificate dacă sunt identice			
Rezoluția în calculul predicatelor			\perp
Fie clauzele: A cu $P()$ pozitiv și B, cu $\neg P()$ (negat) Exemplu:			
A: $P(x, g(y)) \lor P(h(a), z) \lor Q(z)$ B: $\neg P(h(z), t) \lor R(t, z)$			
Alegem nişte (≥ 1) $P()$ din A și nişte $\neg P()$ din B . aici: toți			+
Redenumim variabilele comune (nu au legătură între A și B) A: $P(x, g(y)) \lor P(h(a), z) \lor Q(z)$ B: $\neg P(h(z_2), t) \lor R(t, z_2)$			
Unificăm (toți odată) doar acei $P()$ din A și $\neg P()$ din B aleși			
$\{P(x, g(y)), P(h(a), z), P(h(z_2), t)\}\ x \rightarrow h(a); z_2 \rightarrow a; z, t \rightarrow g(y)$			
Eliminăm pe $P()$ și $\neg P()$ aleși din $A \lor B$. Aplicăm substituția rezultată din unificare și adăugăm noua clauză la lista clauzelor. $Q(g(y)) \lor R(g(y), a)$			
100 miles 100 mi			

I		1	I I	1 1	1	1 1
	Rezoluția: în concluzie					
	Generăm repetat clauze noi (rezolvenți) prin rezoluție cu unificare					
	Dacă repetând obținem <i>clauza vidă</i> , formula inițială e <i>nerealizabilă</i> .					
	Dacă nu mai găsim rezolvenți noi, formula inițială e realizabilă.					
	Reamintim: am pornit încercând să demonstrăm $A_1 \wedge A_2 \wedge \wedge A_n \rightarrow C$ prin <i>reducere la absurd</i> , negând concluzia și arătând că					
	$A_1 \wedge A_2 \wedge \wedge A_n \wedge \neg C$ e contradicție Metoda rezoluției e completă relativ la refutație					
	pentru orice formulă nerealizabilă, va ajunge la clauza vidă dar nu poate determina realizabilitatea oricărei formule (există formule pentru care rulează la infinit)					
	(exista formule peritru care ruleaza la lillillit)					
	Exemplu de aplicare a rezoluției					
	Reluăm exercițiul formalizat anterior. Folosim () și nu . pentru a evita greșeli la aplicarea cuantificării.					
	$A_1: \forall X (inv(X) \rightarrow \exists C (cump(X, C) \land (act(C) \lor oblig(C))))$ $A_2: scadedj \rightarrow \forall X (act(X) \land \neg aur(X) \rightarrow scade(X))$					

A ₂ : A ₃ : A ₄ : C: ∀ Neg	$\forall X (inv (X) \rightarrow \exists \ C (cump(X, C) \land (act(C) \lor oblig \ (C))))$ $scadedj \rightarrow \forall \ X (act(X) \land \neg aur \ (X) \rightarrow scade(X))$ $crestedob \rightarrow \forall \ X (oblig \ (X) \rightarrow scade(X))$ $\forall X (inv \ (X) \rightarrow (\exists \ C \ (cump(X, C) \land scade(C)) \rightarrow \neg bucur \ (X)))$ $scadedj \land crestedob \rightarrow X (inv \ (X) \land bucur \ (X) \rightarrow \exists \ C \ (cump(X, C) \land act(C) \land aur \ (C)))$ $domination \ de \ a \ transforma \ cuantificatorii!$ $: \neg (scadedj \land crestedob \rightarrow X \ (inv \ (X) \land bucur \ (X) \rightarrow \exists \ C \ (cump(X, C) \land act(C) \land aur \ (C))))$ $(inv \ (X) \land bucur \ (X) \rightarrow \exists \ C \ (cump(X, C) \land act(C) \land aur \ (C))))$			
Elin	ninăm implicația, ducem negația până la predicate			
1.000	Eliminăm implicația: $A \rightarrow B = \neg A \lor B$, $\neg (A \rightarrow B) = A \land \neg B$ rice transformare <i>într-o formulă</i> NU afectează ce e în afara ei!			
	$\forall x A$, transformând oricum $pe A (\rightarrow, \neg,)$ NU se schimbă $\forall x$			
	Ducem \neg \widehat{in} \underbrace{auntru} : $\neg \forall x P(x) = \exists x \neg P(x) \neg \exists x P(x) = \forall x \neg P(x)$: $\forall X (inv(X) \rightarrow \exists C (cump(X, C) \land (act(C) \lor oblig(C))))$ $\forall X (\neg inv(X) \lor \exists C (cump(X, C) \land (act(C) \lor oblig(C))))$			
A2	: $scadedj \rightarrow \forall X (act(X) \land \neg aur(X) \rightarrow scade(X))$ $\neg scadedj \lor \forall X (\neg act(X) \lor aur(X) \lor scade(X))$			
A ₃	: $creștedob → ∀ X (oblig (X) → scade(X))$ $\neg creștedob ∨ ∀ X (\neg oblig (X) ∨ scade(X))$			
A ₄	: ∀X (inv (X) → (∃ C (cump(X, C) ∧ scade(C)) → ¬bucur (X)))			

¬creșteaop ∨ ▼ x (¬opiig (x) ∨ scaae(x))	
$A_4: \forall X (inv (X) \rightarrow (\exists C (cump(X, C) \land scade(C)) \rightarrow \neg bucur (X)))$ $\forall X (\neg inv (X) \lor \neg \exists C (cump(X, C) \land scade(C)) \lor \neg bucur (X))$	
$\forall X (\neg inv (X) \lor \forall C (\neg cump(X, C) \lor \neg scade(C)) \lor \neg bucur (X))$	
Eliminăm implicația, ducem negația înăuntru (cont.)	
$\neg C : \neg (scadedj \land creștedob \rightarrow \\ \forall X (inv(X) \land bucur(X) \rightarrow \exists C (cump(X, C) \land act(C) \land aur(C))))$	
\neg C: scadedj \land creștedob \land \neg ¥ X (inv(X) \land bucur(X) \rightarrow ∃C (cump(X, C) \land act(C) \land aur(C)))	
scadedj \land creştedob \land $\exists X (inv(X) \land bucur(X) \land \neg \exists C (cump(X, C) \land act(C) \land aur(C)))$	
scadedj \land creştedob \land $\exists X (inv(X) \land bucur(X) \land \forall C (\neg cump(X, C) \lor \neg act(C) \lor \neg aur(C)))$	
Redenumim: nume unice la variabile cuantificate	
3. Dăm <i>nume unice</i> variabilelor cuantificate în fiecare formulă,	

3. Dăm <i>nume unice</i> variabilelor cuantificate în fiecare formulă, pentru a putea elimina ulterior cuantificatorii. De exemplu: ∀x P(x) ∨ ∀x ∃y Q(x, y) devine ∀x P(x) ∨ ∀z ∃y Q(z, y)			
Nu e nevoie în exemplul nostru:			
$A_1: \forall X (\neg inv(X) \lor \exists C (cump(X, C) \land (act(C) \lor oblig(C))))$			
A_2 : $\neg scadedj \lor \forall X (\neg act(X) \lor aur(X) \lor scade(X))$			
A ₃ : $\neg creștedob \lor \forall X (\neg oblig (X) \lor scade(X))$			
A4: $\forall X (\neg inv(X) \lor \forall C (\neg cump(X, C) \lor \neg scade(C)) \lor \neg bucur(X))$			
¬C : scadedj ∧ creştedob ∧			
$\exists X (inv(X) \land bucur(X) \land \forall C (\neg cump(X, C) \lor \neg act(C) \lor \neg aur(C)))$			
Skolemizare: eliminăm cuantificatorii existențiali			
4. Skolemizare: În $\forall x_1 \forall x_n \exists y$, alegerea lui y depinde de $x_1,, x_n$; introducem o nouă funcție Skolem $y = g(x_1,, x_n)$, $\exists y$ dispare			
$A_1: \forall X (\neg inv(X) \lor \exists C (cump(X, C) \land (act(C) \lor oblig(C))))$			
C din \exists depinde de $X \Rightarrow C$ devine o nouă funcție $f(X)$, $\exists C$ dispare			
$\forall X (\neg inv (X) \lor (cump(X, f(X)) \land (act(f(X)) \lor oblig (f(X)))))$			
Atenție! fiecare cuantificator ∃ primește o nouă funcție Skolem!			
Pentru ∃y în exteriorul oricărui ∀, alegem o nouă constantă Skolem			
$\neg C$: scadedj \land creștedob $\land \exists X (inv(X) \land bucur(X)$			

Pentru $\exists y$ in extenorul oricarul \forall , alegem o noua constanta skolem $\neg C$: $scadedj \land creștedob \land \exists X (inv(X) \land bucur(X) \land \forall C (\neg cump(X, C) \lor \neg act(C) \lor \neg aur(C)))$ X devine o nouă constantă b (nu depinde de nimic), $\exists X$ dispare $scadedj \land creștedob \land inv(b) \land bucur(b) \land \forall C (\neg cump(b, C) \lor \neg act(C) \lor \neg aur(C))$		
5.Ducem cuantificatorii universali în față: forma normală prenex		
$A_4: \forall X (\neg inv(X) \lor \forall C (\neg cump(X, C) \lor \neg scade(C)) \lor \neg bucur(X))$		
$\forall X \ \forall C \ (\neg inv \ (X) \lor \neg cump(X, C) \lor \neg scade(C) \lor \neg bucur \ (X))$		
6. Eliminăm cuantificatorii universali (devin impliciți, o variabilă poate fi înlocuită cu orice termen).		
$A_1: (\neg inv(X) \lor (cump(X, f(X)) \land (act(f(X)) \lor oblig(f(X))))$		
A_2 : $\neg scadedj \lor \neg act(X) \lor aur(X) \lor scade(X)$		
A ₃ : ¬creștedob ∨ ¬oblig (X) ∨ scade(X)		
A4: $\neg inv(X) \lor \neg cump(X, C) \lor \neg scade(C) \lor \neg bucur(X)$		
$\neg C$: scadedj \land creștedob \land inv (b) \land bucur (b) $\land (\neg cump(b, C) \lor \neg act(C) \lor \neg aur(C))$		
Forma clauzală		
7. Ducem conjuncția în exteriorul disjuncției (distributivitate) și scriem fiecare clauză separat (formă clauzală, CNF)		

scriem fiecare clauză separat ($formă$ $clauzală$, CNF) (1) $\neg inv(X) \lor cump(X, f(X))$ (2) $\neg inv(X) \lor act(f(X)) \lor oblig(f(X))$) (3) $\neg scadedj \lor \neg act(X) \lor aur(X) \lor scade(X)$ (4) $\neg creștedob \lor \neg oblig(X) \lor scade(X)$ (5) $\neg inv(X) \lor \neg cump(X, C) \lor \neg scade(C) \lor \neg bucur(X)$ (6) $scadedj$ (7) $creștedob$ (8) $inv(b)$ (9) $bucur(b)$ (10) $\neg cump(b, C) \lor \neg act(C) \lor \neg aur(C)$			
Generăm rezolvenți până la clauza vidă			
Căutăm predicate P() și ¬P() și unificăm, obținând rezolvenții:			
$(11) \neg act(X) \lor aur(X) \lor scade(X) $ (3, 6)			
$(12) \neg cump(b, C) \lor \neg act(C) \lor scade(C) \qquad (10, 11, X = C)$ $(13) \neg oblig(X) \lor scade(X) \qquad (4, 7)$			
Când unificăm, redenumim clauzele să nu aibă variabile comune: (13) ¬oblig (Y) ∨ scade(Y) vom unifica cu (2), redenumim X			
$(14) \neg inv(X) \lor act(f(X)) \lor scade(f(X)) \qquad (2, 13, Y = X)$ $(15) \neg cump(h, f(X)) \lor \neg inv(X) \lor scade(f(X)) \qquad (12, 14, C = f(X))$			
(15) $\neg cump(b, f(X)) \lor \neg inv(X) \lor scade(f(X))$ (12, 14, $C = f(X)$) (16) $\neg cump(b, C) \lor \neg scade(C) \lor \neg bucur(b)$ (5, 8, $X = b$)			
$(17) \neg cump(b, C) \lor \neg scade(C) $ (9, 16)			

$(16) \neg cump(b, C) \lor \neg scade(C) \lor \neg bucur(b) \qquad (5, 8, X = b)$ $(17) \neg cump(b, C) \lor \neg scade(C) \qquad (9, 16)$ $(18) \neg cump(b, f(X)) \lor \neg inv(X) \qquad (15, 17, C = f(X))$ $(19) \neg inv(b) \qquad (1, 18, X = b)$ $(20) \oslash (contradicție = succes în reducerea la absurd) \qquad (8, 19)$
Putem traduce (formaliza) din limbaj natural în logica predicatelor Putem demonstra teoreme prin reducere la absurd: negăm concluzia transformăm în formă clauzală (conjuncție ∧ de disjuncții ∨) prin metoda rezoluției găsim o contradicție (clauza vidă)