Arclength & Parametric Equation

Monday, 2 December 2024 5:37 pm

2 The Arc Length Formula If f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

EXAMPLE 1 Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1, 1) and (4, 8). (See Figure 5.)

EXAMPLE 4 Find the arc length function for the curve $y = x^2 - \frac{1}{8} \ln x$ taking $P_0(1, 1)$ as the starting point.

SOLUTION If $f(x) = x^2 - \frac{1}{8} \ln x$, then

$$f'(x) = 2x - \frac{1}{8x}$$

$$1 + [f'(x)]^2 = 1 + \left(2x - \frac{1}{8x}\right)^2 = 1 + 4x^2 - \frac{1}{2} + \frac{1}{64x^2}$$

$$= 4x^2 + \frac{1}{2} + \frac{1}{64x^2} = \left(2x + \frac{1}{8x}\right)^2$$

$$\sqrt{1 + [f'(x)]^2} = 2x + \frac{1}{8x}$$

Thus the arc length function is given by

$$s(x) = \int_{1}^{x} \sqrt{1 + [f'(t)]^{2}} dt$$

$$= \int_{1}^{x} \left(2t + \frac{1}{8t} \right) dt = t^{2} + \frac{1}{8} \ln t \Big]_{1}^{x}$$

$$= x^{2} + \frac{1}{8} \ln x - 1$$

For instance, the arc length along the curve from (1, 1) to (3, f(3)) is For instance, the arc length along the curve from (1, 1) to (3, f(3)) is

$$s(3) = 3^2 + \frac{1}{8} \ln 3 - 1 = 8 + \frac{\ln 3}{8} \approx 8.1373$$

Curves Defined by Parametric Equations

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

$$x = t^2 - 2t \qquad y = t + 1$$

t	X	y
-2	8	-1
-1	8 3	0
0	0	1
1	-1	2 3
2	0	3
3	3	4 5
4	8	5

$$x = y^2 - 4y + 3$$
.

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

V EXAMPLE 2 What curve is represented by the following parametric equations?

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

EXAMPLE 3 What curve is represented by the given parametric equations?

$$x = \sin 2t$$
 $y = \cos 2t$ $0 \le t \le 2\pi$

EXAMPLE 4 Find parametric equations for the circle with center (h, k) and radius r.

$$x = h + r \cos t$$
 $y = k + r \sin t$ $0 \le t \le 2\pi$

EXAMPLE 5 Sketch the curve with parametric equations $x = \sin t$, $y = \sin^2 t$.

EXAMPLE 6 Use a graphing device to graph the curve $x = y^4 - 3y^2$.

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

EXAMPLE 4 If we use the representation of the unit circle given in Example 2 in Section 10.1,

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

EXAMPLE 5 Find the length of one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.