Numerical Mathematics for Engineering II Assignment 3

Theoretical exercises: submit to exercise class on November 15th or 16th, 2017. Programming exercises: upload to ISIS until Friday 18:00, November 17th, 2017.

1. Exercise: Difference stencils and Taylor expansions

4 points

Let $u: [0,1] \to \mathbb{R}$ be a sufficiently smooth mapping.

- a) Consider the difference quotients $D^0u(x)$, $D^+u(x)$, $D^-u(x)$, $D^+D^-u(x)$ with a given step size $h \in (0, \frac{1}{2})$. For each quotient determine all $x \in [0, 1]$ such that the quotient is defined.
- **b)** Show that the equality $D^0u(x) = \frac{1}{2}(D^+u(x) + D^-u(x))$ holds for all $x \in [0, 1]$, for which both sides of the equation are defined.
- c) Show that the equality $D^+D^-u(x) = D^-D^+u(x)$ holds for all $x \in [0,1]$, for which both sides of the equation are defined.
- d) Apply the Taylor theorem to show that

$$D^{0}u(x) = u'(x) + h^{2}R_{0},$$

with $|R_0| \le \frac{1}{6} \max_{\xi \in [x-h,x+h]} |u'''(\xi)|$, and

$$D^+D^-u(x) = u''(x) + h^2R_1,$$

with $|R_1| \leq \frac{1}{12} \max_{\xi \in [x-h,x+h]} |u^{(4)}(\xi)|$. Explain why $D^-D^0u(x)$ is not a suitable approximation of the second derivative.

2. Exercise: Difference formulas for non-uniform grids

3 points

Consider a domain $\bar{\Omega} = [0,1]$ and a grid $\bar{\Omega}_h = \{x_0, \dots, x_{N+1}\}$, where the grid points satisfy $0 = x_0 < x_1 < \dots < x_{N+1} = 1$ with step sizes $h_i := x_i - x_{i-1}$ and maximal step size $h := \max_{i \in \{1,\dots,N+1\}} h_i$. If $h_i = h_j$ for all $i, j \in \{1,\dots,N+1\}$ we say that $\bar{\Omega}_h$

is a uniform grid, otherwise a non-uniform grid. For $i \in \{1, ..., N\}$ and $u \in C^4(\bar{\Omega})$ we define the adapted differences

$$(D^{-}u)_{i} := \frac{u(x_{i}) - u(x_{i-1})}{x_{i} - x_{i-1}} = \frac{u(x_{i}) - u(x_{i-1})}{h_{i}},$$

$$(D^{+}u)_{i} := \frac{u(x_{i+1}) - u(x_{i})}{x_{i+1} - x_{i}} = \frac{u(x_{i+1}) - u(x_{i})}{h_{i+1}},$$

$$(D^{0}u)_{i} := \frac{u(x_{i+1}) - u(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{u(x_{i+1}) - u(x_{i-1})}{h_{i} + h_{i+1}}.$$

a) Determine $\alpha_i, \beta_i, \gamma_i, R_i \in \mathbb{R}$ depending on h_i, h_{i+1} such that

$$u''(x_i) = \alpha_i u(x_{i-1}) + \beta_i u(x_i) + \gamma_i u(x_{i+1}) + R_i,$$

with $\lim_{h\to 0} R_i = 0$. Hint: Use u'' = au'' + bu'' with a + b = 1 and use suitable Taylor expansions to express the two terms. Choose a and b properly.

- **b)** Determine the order of the remainder R_i for general h_i, h_{i+1} , i.e., find the largest p > 0 such that $|R_i| = \mathcal{O}(h^p)$. Is $u \in C^4(\bar{\Omega})$ necessary to obtain this rate?
- c) Under which special conditions on h_i, h_{i+1} does the order of R_i improve? Is it necessary that $u \in C^4(\bar{\Omega})$ to obtain the improved rate?

3. Programming exercise: 1D wave equation

6 points

Consider the wave equation on the real line:

$$\begin{cases} u_{tt} - u_{xx} = 0, & t \in (0, \infty), x \in \mathbb{R}, \\ u(0, x) = \varphi(x), & x \in \mathbb{R}, \\ u_t(0, x) = \psi(x), & x \in \mathbb{R}, \end{cases}$$

where $\varphi(x) = \frac{a}{(x-4)^2+1} + \frac{a}{(x+4)^2+1}$ and $\psi = bx \exp(-\frac{1}{2}x^2)$.

- a) Write a function u = a03e03WaveEq(t,x,a,b) which computes the exact solution for given $t \in (0,\infty)$, $x,a,b \in \mathbb{R}$. Hint: D'Alembert's formula.
- b) Write a function a03e03Surf() which generates three surface plots of the exact solution u with $t \in [0,10]$ and $x \in [-15,15]$. For the plots use the following three sets of parameter values $(a,b) \in \{(0,1),(1,0),(1,1)\}$. Hint: The functions numpy.meshgrid and plot_surface (see mplot3d) might be useful.
- c) Learn how to create an animation in Python by studying FuncAnimation provided by matplotlib.animation. Write a function a03e03Mov(a,b) which generates for given parameter values $a, b \in \mathbb{R}$ an animation of the exact solution. Each frame should display a line plot of the exact solution for a fixed t and for $x \in [-15, 15]$. Your animation should show the evolution of the exact solution over $t \in [0, 10]$ with at least 100 frames.

Consider the following boundary value problem (BVP):

$$\begin{cases} -u''(x) - 4u'(x) + u(x) = f(x), & \text{for all } x \in \Omega = (0, 1), \\ u(0) = 1, \ u(1) = 3. \end{cases}$$

The exact solution is given by $u(x)=1+3x^2-x^3$. For some integer p>1, discretize this boundary value problem with finite differences on $\bar{\Omega}_h=\{ih\in\mathbb{R}:i=0,\ldots,N+1\}$, mesh size $h=\frac{1}{N+1}$, and $N=2^p-1$. Use the standard scheme

$$u_h(0) = 1, u_h(1) = 3,$$

 $(-D^-D^+ - 4D^0 + I)u_h(ih) = f(ih),$ $i = 1, ..., N,$

so that you get a discrete equation $L_h u_h = f_h$ with $L_h \in \mathbb{R}^{N \times N}$.

- a) Determine the right hand side of the BVP analytically.
- b) Write a function [xh,Lh,fh] = a03e04getBVP(p) that sets up the grid xh, the sparse matrix Lh, and the right hand side fh of the corresponding linear system for the refinement level n=2^p-1. Hint: Useful functions are numpy.linspace, scipy.sparse.diags, etc.
- c) Write a function error = a03e04solve() that solves the discretized problem for every $p \in \{2, ..., 15\}$ and returns an array error. For each p determine the error between the approximation and the restricted exact solution in the maximum norm, i.e. error(p) = $\max_i |u_h(ih) u(ih)|$. Plot the errors versus the grid size using pyplot.loglog(h,error). How fast does error(p) $\rightarrow 0$ as $h \rightarrow 0$?

total sum: 19 points