背景:

Heap 也是 ADT, Heap 是个性质(max heap, min heap)PQ 可以用 heap 来实现(改 priority, 按 priority 排序)Heap 可以用树来实现,也可用指针来实现

优先队列(PriorityQueue) 是一种抽象数据结构 ADT,队列内的元素都有对应的优先级,并根据其优先级出队。

Priority Queue 优先队列能解决的问题:

优先队列是一种队列,它满足优先级别最高的先出队列。它的一个重要的应用时海量数据的排序,当我们需要找出10亿数据中的Top10项,不实际的解决方案是对所有数据排序,取Top10项。使用优先队列可以在很小的辅助空间内找出Top10项。具体思路如下:

- (1) 建立大小为k的容器
- (2) 每次从大数据集中读取一个数据项
- (3) 如果容器没有满,则把当前数据项加入容器
- (4) 如果容器已经满,找出容器中最小的元素(利用优先队列特性)如果当前数据项大于最小元素,则最小元素出队,当前数据项入队
- (5) 重复(2) 到(3) 直到读取完大数据集

上述的方案可以以并行的方式运行,最后合并结果。

优先度列的五种实现方式, 分别如下

- 1. 无序数组
- 2. 有序数组
- 3. 链表
- 4. 堆
- 5. 二叉搜索树

【优先队列的数组实现】

用数组实现优先队列: (insert 已经进行有序操作。pop 操作即为 peekMax, remove 操作)

无序数组的实现

无序数组实现方式的入队操作,直接把入队元素加到数组尾部。出队需要遍历数组,找出优先级别最高的出队 ,空缺的位置由后面元素依次补上。因此,入队的时间复杂度为O(1),出队为O(N)。

有序数组的实现

由于要求数组有序,因此在插入的时候需要保存有序,插入操作需要找到适合的位置,然后在该位置插入,位置后面的元素依次往后移动,时间复杂度为O(n)。而出队,由于序列是有序,可以在O(1)内出队。

Dat	a Struc	tures for	Priority	Queue	s: Lists		
Un	sorted	List:					
	• Inse	rt(PQ, x,	p): \varTheta ((ι)			
	• Fina	Max(PQ): 🖯 (۸)			
			· · · ·	(4)			
	• Extr	actMax(I)	PQ): ⋃	(11)			
	• Incr	easeKey(PQ, x, k	· (C)	1)		
		0 (• , , ,	_			
CSC263	University of	Toronto					
		Toronto tures for	Priority				
Dat	a Struc			' Queue			
Dat	a Struc	tures for	riorities	· Queua			
Dat	a Struc	tures for	riorities	· Queua			
Dat	rted Li	tures for	riorities	Queue): (n)			
Dat	• Find	tures for t (by p) t	riorities $p): \Theta$ $): \Theta$	Queue): (n)			
Dat	• Find	tures for \mathbf{st} (by \mathbf{p}	riorities $p): \Theta$ $): \Theta$	Queue): (n)			
Dat	• Fina • Extr	tures for t (by p) t	riorities p): Θ	Queue): (ω) (ι)	s: Lists		

csc263 lecture2 ppt pg4-5

Queue(priority+value)

Priority Queue

Complete Binary Tree

Max-Heap

Min-Heap

FindMax(PQ):返回最大 pv 值的结点

HeapMaximum(A): 返回 root

IncreaseKey(A,i,k):增加堆 A 的结点 i 的 pv 值至 k (改)

HeapIncreaseKey(A,i,k):将 Array A 第 i 个的 pv 值设置成 k (改)

Insert(PQ,x,p): 在堆 PQ 里插入结点 x 伴随 pv 值 p MaxHeapInsert(A,x): 在堆 A 里插入结点伴随 pv 值 x

MaxHeapify(B,i):

ExtractMax(PQ):返回并删除最大 pv 值的结点

HeapExtractMax(H): H 是 heap 堆/array 数组,返回 root,(并删除 root),并重新修复堆/Array - H

HeapSort(A): 对数组 array A 进行 heap sort 排序

BuildMaxHeap(A)

CSC263 第三周

复习 BST Insert 和 Delete 操作