Projekt

STEROWNIKI ROBOTÓW

Założenia projektowe

Manipulator trójprzegubowy M3

Skład grupy: Tomasz Bednarski, 241495 Kamil Drewnowski, 241178

Termin: ptTP11

Prowadzący: dr inż. Wojciech DOMSKI

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów	2 4
3	Konfiguracja peryferiów	4
	3.1 USART	4
	3.2 RCC	4
	3.3 TIM4	4
	3.4 I2C2	5
	3.5 ADC1	5
4	Harmonogram pracy	5
	4.1 Diagram Gantta	5
	4.2 Ścieżka krytyczna	5
	4.3 Podział pracy	5
5	Podsumowanie	6
Bi	ibilografia	7

1 Opis projektu

Celem projektu jest zaprojektowanie oraz wykonanie manipulatora o trzech stopniach swobody oraz efektora typu dwupalcowy chwytak siłowy. Ponadto manipulator sterowany będzie z użyciem mikrokontrolera. Zostanie on wykorzystany do wyliczania odwrotnego zadania kinematyki dla zadanych przez operatora współrzędnych końcowych. Współrzędne będą wprowadzane za pomocą joysticka, przycisku oraz wyświetlacza ciekłokrystalicznego. Budowa opierać się będzie na wykonaniu projektu przestrzennego w programie SketchUP oraz jego wydruku przy pomocy drukarki 3D. Materiał jaki zostanie wykorzystany do budowy modelu to PLA, ze względu na jego stosunkowo niską cenę oraz dobrą wytrzymałość i możliwość modyfikacji po wydruku.

2 Konfiguracja mikrokontrolera

Konfiguracja portów MCU wygenerowana w programie STM32 Cube
MX widoczna jest na rysunku 1. Konfiguracja zegarów przedstawiona jest na rysunku 2.

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
62	PD15	GPIO_Output	Sterowanie diodą informacyjna
70	PA11	GPIO_EXIT10	Przycisk zmiany trybu
93	PB7	TIM4_CH2	Servo piwnica
92	PB6	TIM4_CH1	Servo 1
73	PF6	TIM4_CH3	Servo 2
61	PD14	TIM4_CH4	Servo zacisk
23	PA0	ADC1 IN1	Oś X Joysticka
24	PA1	ADC1 IN2	Oś Y Joysticka
68	PA9	I2C2 SCL	Linia SCL wyświetlacza LCD
69	PA10	I2C2 SDA	Linia SDA wyświetlacza LCD

Tabela 1: Konfiguracja pinów mikrokontrolera

3 Konfiguracja peryferiów

Poniższe tabele przedstawiają konfigurację wszystkich wykorzystywanych w projekcie peryferiów

3.1 USART

Ustawienia interfejsu w programie CubeMX przedstawione zostały w tabeli 2.

Badu Rate	115200
Word Lenght	8 Bits
Parity	None
Stop Bits	1

Tabela 2: Konfiguracja USART

3.2 RCC

RCC - High Speed Clock (HSE): Crystal/Ceramic Resonator

3.3 TIM4

TIM4 - wykorzystywany do sterowania serwomechanizmami - korzysta z DMA

1. Channel1: PWM Generation CH1

2. Channel2: PWM Generation CH2

3. Channel3: PWM Generation CH3

4. Channel4: PWM Generation CH4

Channel 1 - mode	PWM mode 1
Channel 2 - mode	PWM mode 1
Channel 3 - mode	PWM mode 1
Channel 4 - mode	PWM mode 1

Tabela 3: TIM4 - uproszczona konfiguracja

3.4 I2C2

I2C2- komunikacja z ekranem LCD

I2C Speed Mode	Standard mode
I2C Speed Frequency	100 kHz

Tabela 4: I2C2 - uproszczona konfiguracja

3.5 ADC1

Kanały 1 i 2 wykorzystywane są do obsługi joysticka. Skonfigurowano je w trybie Single-ended.

4 Harmonogram pracy

4.1 Diagram Gantta

Rysunek 3: Diagram Gantta

4.2 Ścieżka krytyczna

Zaprojektowanie manipulatora \rightarrow Sterowanie Manipulatorem \rightarrow Odwrotne zadanie kinematyki \rightarrow Integracja i testy (2.5 miesięca)

4.3 Podział pracy

Kamil Drewnowski	%	Tomasz Bednarski	%
Wykonanie projektu 3D manipulatora		Sterowanie manipulatorem	
Wydruk, montaż manipulatora oraz podzespołów		Komunikacja z mikrokontrolerem	

Tabela 5: Podział pracy – Etap II

Kamil Drewnowski	%	Tomasz Bednarski	%
Konfiguracja peryferii		Sterowanie manipulatorem	
Algorytm odwrotnego zadania kinematyki		Implementacja algorytmu odwrotnego zadania kinematyki	
Przeprowadzenie testów		Integracja	

Tabela 6: Podział pracy – Etap III

5 Podsumowanie

Projekt jest złożeniem części mechanicznej – manipulator, efektor – oraz programistycznej – sterowanie, algorytm odwrotnego zadania kinematyki.

Jego wykonanie będzie wymagało wykorzystania w praktyce zdobytej wiedzy z zakresu programowania mikrokontrolerów jak i mechaniki analitycznej. Ponadto konieczne będzie poszerzenie swojej wiedzy o dziedziny dotychczas niepoznane.

Manipulatory wykorzystywane są w rozlicznych gałęziach przemysłu, z pewnością umiejętności zdobyte w trakcie realizacji projektu przydadza się w przyszłych pracach. Dzięki wszystkim tym cechom projekt jest wymagający i ciekawy.

Literatura

[1] Oficialna strona z której pobrany został program https://www.st.com/en/development-tools/stm32cubemx.html

[2] Tomasz Jabłoński. Podstawowa konfiguracja https://stm32.eu/2016/02/10/stm32cube-w-kilku-krokach-1-jak-zaczac/

[3] Bartek Kurosz, Damian Szymański. Opis bibliotek HAL dla STM32 https://forbot.pl/blog/kurs-stm32-f4-2-niezbedne-narzedzia-hal-cube-id12080

[4] Aleksander Kurczyk. Przykład projektu, USART https://stm32.eu/2017/11/28/3-stm32cube-przykladach-usart/