EE4011: RF IC Design

2-port Network Parameters

Two-Port Network Descriptions

In many cases the transistor or other system that is being measured or simulated can be thought of as a "two-port system" i.e. a system with two connections for RF purposes – usually an input and an output. There are several standard network relationships for relating the quantities in such a system.

Most of the 2-port parameters give relationships between the currents and voltages at the input and output terminals. Every two-port has 4 variables $-v_1$, i_1 , v_2 , i_2 – two of which are considered *independent* variables with the other two being considered *dependent* variables. Different parameter sets are defined depending on the choice of independent and dependent variables.

Two-ports can also be defined by making a relationship between the incident and reflected waves at the terminals – this gives rise to scattering-parameters.

h-parameters (hybrid parameters)

Setting v_2 to 0: (output short-circuit)

$$h_{11} = \frac{v_1}{i_1} \bigg|_{v_2 = 0}$$
 $h_{21} = \frac{i_2}{i_1} \bigg|_{v_2 = 0}$

Setting i_1 to 0: (input open circuit)

$$h_{12} = \frac{v_1}{v_2}\Big|_{i_1=0}$$
 $h_{22} = \frac{i_2}{v_2}\Big|_{i_1=0}$

These are called hybrid parameters because they have different units. h_{12} and h_{21} are unitless. h_{11} has units of resistance (Ω). h_{22} has units of conductance (S).

h-parameters are not widely used nowadays except for h_{21} (which is commonly called h_{fe}) which has become standard to define the cut-off frequency of a transistor.

y-parameters (admittance parameters)

y-parameters treat the terminal voltages as the independent variables and give currents as a function of the voltages. They have units of conductance (S). They are widely used for RF component analysis:

Setting
$$v_2$$
 to 0: $y_{11} = \frac{i_1}{v_1}\Big|_{v_2=0}$ $y_{21} = \frac{i_2}{v_1}\Big|_{v_2=0}$ (output short-circuit) $y_{12} = \frac{i_1}{v_2}\Big|_{v_1=0}$ $y_{22} = \frac{i_2}{v_2}\Big|_{v_1=0}$ (input short-circuit)

Note:
$$h_{21} = \frac{i_2}{i_1} \Big|_{v_2 = 0} = \frac{y_{21}}{y_{11}}$$

y-parameters – note on subscripts

The first subscript refers to the current flowing in a particular terminal.

The "y" parameter establishes how sensitive this current is w.r.t. a particular voltage. The second subscript is the voltage. The other voltage is set to 0.

z-parameters (impedance parameters)

z-parameters (impedance parameters) treat the terminal currents as independent and specify the voltages as a function of currents. They have units of impedance (Ω) .

$$v_1 = z_{11}i_1 + z_{12}i_2$$
$$v_2 = z_{21}i_1 + z_{22}i_2$$

Setting
$$i_2$$
 to 0: $z_{11} = \frac{v_1}{i_1}\Big|_{i_2=0}$ $z_{21} = \frac{v_2}{i_1}\Big|_{i_2=0}$
Setting i_1 to 0: $z_{12} = \frac{v_1}{i_2}\Big|_{i_1=0}$ $z_{22} = \frac{v_2}{i_2}\Big|_{i_1=0}$

y-parameters for unilateral MESFET (1)

$$v_1 = 0 \Rightarrow i_1 = 0 \Rightarrow v_c = 0 \Rightarrow g_m v_c = 0$$

$$y_{12} = \frac{i_1}{v_2} \bigg|_{v_1=0} = \frac{0}{v_2} = 0 \qquad \text{(unilateral property)}$$

$$y_{22} = \frac{i_2}{v_2}\Big|_{v_1=0} = \frac{v_2(1/R_{DS} + j\omega C_{DS})}{v_2} = \frac{1}{R_{DS}} + j\omega C_{DS}$$

y-parameters for unilateral MESFET (2)

Because v_2 is zero the current in R_{DS} and C_{DS} is zero.

$$y_{11} = \frac{i_1}{v_1} \bigg|_{v_2 = 0} = v_1 \frac{j\omega C_{GS}}{1 + j\omega R_G C_{GS}} \frac{1}{v_1} = \frac{j\omega C_{GS}}{1 + j\omega R_G C_{GS}}$$

$$y_{21} = \frac{i_2}{v_1} \bigg|_{v_2 = 0} = v_1 \frac{g_m}{1 + j\omega R_G C_{GS}} \frac{1}{v_1} = \frac{g_m}{1 + j\omega R_G C_{GS}}$$

Small-signal elements from y-parameters (1)

$$y_{22} = \frac{1}{R_{DS}} + j\omega C_{DS}$$

$$\Re\{y_{22}\} = \frac{1}{R} \Rightarrow R$$

Unilateral case

$$\Re\{y_{22}\} = \frac{1}{R_{DS}} \Rightarrow R_{DS} = \frac{1}{\Re\{y_{22}\}}$$

$$\mathcal{I}m\{y_{22}\} = \omega C_{DS} \Rightarrow C_{DS} = \frac{\mathcal{I}m\{y_{22}\}}{\omega}$$

$$y_{11} = \frac{j\omega C_{GS}}{1 + j\omega R_G C_{GS}} \Rightarrow \frac{1}{y_{11}} = \frac{1 + j\omega R_G C_{GS}}{j\omega C_{GS}} = R_G - \frac{j}{\omega C_{GS}}$$

$$\Rightarrow R_G = \Re \left\{ \frac{1}{y_{11}} \right\}$$

$$\mathcal{I}m\left\{\frac{1}{y_{11}}\right\} = -\frac{1}{\omega C_{GS}} \Rightarrow C_{GS} = -\frac{1}{\omega \mathcal{I}m\left\{\frac{1}{y_{11}}\right\}}$$

Small-signal elements from y-parameters (2)

Unilateral case

$$y_{21} = \frac{g_m}{1 + j\omega R_G C_{GS}} \Rightarrow \frac{1}{y_{21}} = \frac{1 + j\omega R_G C_{GS}}{g_m} = \frac{1}{g_m} + j\frac{\omega R_G C_{GS}}{g_m}$$

$$\Re \left\{\frac{1}{y_{21}}\right\} = \frac{1}{g_m} \Rightarrow g_m = \frac{1}{\Re \left\{\frac{1}{y_{21}}\right\}}$$

This shows how measurements of y-parameters can be used to work backwards and determine the small-signal equivalent circuit values for an RF device. Usually s-parameters are measured and these are converted to y-parameters before using these equations.

The formulas here were simplified by the assumption that the gate-drain coupling capacitance was zero (the unilateral device).

Matrix Relationships

When manipulating the 2-port parameters, it is very convenient to rewrite the equations in matrix format where the terminal voltages and currents are grouped into column matrices and the 2-port parameters are grouped into a 2x2 square matrix.

e.g. for the y-parameters:

$$\begin{vmatrix} i_1 = y_{11}v_1 + y_{12}v_2 \\ i_2 = y_{21}v_1 + y_{22}v_2 \end{vmatrix} \Rightarrow \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \mathbf{I} = \mathbf{YV} \quad \mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

and the z-parameters:

$$\begin{vmatrix} v_1 = z_{11}i_1 + z_{12}i_2 \\ v_2 = z_{21}i_1 + z_{22}i_2 \end{vmatrix} \Rightarrow \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \Rightarrow \mathbf{V} = \mathbf{ZI} \qquad \mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$$

Comments on matrix notation

y-parameters: I = YV

z-parameters: V = ZI

Note: The "**I**" in these equations refer to the column vector for current. When dealing with matrix notation the symbol "**I**" is usually used to denote the identity matrix – but for these equations with the 2-port parameters we'll assume that "**I**" refers to the current matrix unless told otherwise.

When manipulating matrices remember that matrix multiplication is not commutative i.e. given two matrices A and B with non-zero elements:

$$AB \neq BA$$
 , $A \neq B$

Relationship between admittance and impedance matrices for a 2-port:

$$I = YV \Rightarrow Y^{-1}I = Y^{-1}YV \Rightarrow Y^{-1}I = V$$

 $\Rightarrow Y^{-1}I = ZI \Rightarrow Y^{-1} = Z \quad i.e. \quad Z = Y^{-1} \quad also \quad Y = Z^{-1}$

Parallel combinations of 2-ports/ Y-parameters

The overall y-parameter matrix of a group of two-ports in parallel can be calculated as the sum of the y-parameter matrices of the individual networks i.e.

$$\mathbf{Y}_{\text{TOTAL}} = \mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3$$

Y to Z conversion and vice versa

The inverse of a 2x2 matrix is given by:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad \Delta = ad - bc$$

This relationship can be used to convert between y and z parameters:

$$\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \quad \mathbf{Z} = \mathbf{Y}^{-1} = \frac{1}{y_{11}y_{22} - y_{12}y_{21}} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \quad \mathbf{Y} = \mathbf{Z}^{-1} = \frac{1}{z_{11}z_{22} - z_{12}z_{21}} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

These conversions can be useful when trying to determine the performance of a large network consisting of several interconnected smaller networks.

ABCD-parameters (transmission parameters)

The transmission parameters (the ABCD parameters) specify the relationship between the voltage and current at port 1 and the voltage and current at port 2. By convention, the 2-port parameters treat current as flowing *into* the terminal. The ABCD parameters are written in terms of the current flowing out of port 2 so the equations use a minus sign for i_2 i.e. $-i_2$ is the current flowing *out of* port 2.

Cascading ABCD parameters

For cascaded ABCD networks the overall ABCD parameters can be found by multiplying the individual ABCD matrices in the correct order. This is very useful for developing a relationship between the input and the load in multi-stage networks. Note the load current here is shown as flowing into the load so it is the negative of the current flowing into port 2 of network 3.

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = (\mathbf{ABCD})_1 (\mathbf{ABCD})_2 (\mathbf{ABCD})_3 \begin{bmatrix} v_L \\ i_L \end{bmatrix} = (\mathbf{ABCD})_{\mathbf{Total}} \begin{bmatrix} v_L \\ i_L \end{bmatrix}$$

$$(\mathbf{ABCD})_{\mathbf{Total}} = (\mathbf{ABCD})_{1}(\mathbf{ABCD})_{2}(\mathbf{ABCD})_{3}$$

A note on complex numbers

Manipulations of 2-port parameters generally involve complex numbers when frequency dependent behaviour is being considered.

If x is a complex number with real part a and imaginary part b, 1/x is given by:

$$x = a + jb$$

$$\frac{1}{x} = \frac{1}{a+jb} = \frac{1}{a+jb} \frac{a-jb}{a-jb} = \frac{a-jb}{a^2+b^2}$$

The final result of a complex number calculation is best expressed as an amplitude and a phase in degrees

$$x = a + jb \Rightarrow |x| = \sqrt{a^2 + b^2}$$
 and $\angle x = \tan^{-1}\left(\frac{b}{a}\right)$
e.g. $x = 1 + j = \sqrt{2} \angle 45^{\circ}$

angle in degrees = $\frac{180}{\pi}$ × angle in radians

Practice: Evaluate the y, z and ABCD parameters of:

Y, Y₁, Y₂ and Y₃ are admittances

Z, Z_1 , Z_2 and Z_3 are impedances

Q1, EE4011, Summer 2004

(a) Show a small-signal model of a bipolar junction transistor (BJT) suitable for first-order analysis and from this derive an expression for the cut-off frequency of the transistor in a common-emitter configuration. Assume the transistor is biased in the forward active region with currents given by

$$I_C = I_S e^{\frac{qV_{BE}}{kT}} \left(1 + \frac{V_{CE}}{V_A} \right) , \quad I_B = \frac{I_C}{\beta}$$

where the symbols have their usual meaning. Only consider capacitances associated with the base-emitter circuit.

[10 *marks*]

- (b) A BJT is configured as a common-emitter two-port amplifier with the input applied to the base (port 1) and the output taken from the collector (port 2). Determine:
 - (I) The cut-off frequency

[2 *marks*]

(ii) The 4 two-port y-parameters at 1GHz

[8 *marks*]

Use the following bias conditions and parameters: V_{BE} =0.75 V, V_{CE} =3.0 V, T=300 K I_{S} =10⁻¹⁵ A,

$$\beta$$
=100, V_A =10V, C_{JE} =10⁻¹² F, V_{JE} =1 V, M_{JE} =0.5, τ_F =10⁻¹⁰ s

Q1, EE4011, Summer 2005

(a) Show a small-signal model of a bipolar junction transistor (BJT) suitable for first-order analysis and from this derive an expression for the cut-off frequency of the transistor in a common-emitter configuration. Assume the transistor is biased in the forward active region with currents given by

$$I_C = I_S e^{\frac{qV_{BE}}{kT}} \left(1 + \frac{V_{CE}}{V_A} \right) \quad , \quad I_B = \frac{I_C}{\beta}$$
 [8 marks]

(b) A BJT is configured as a common-emitter two-port amplifier with the input applied to the base (port 1) and the output taken from the collector (port 2). The cut-off frequency has been measured at a temperature of 300K for two values of collector current as follows:

For
$$I_C = 1$$
mA, $f_T = 1.26$ GHz
For $I_C = 5$ mA, $f_T = 1.51$ GHz

(c) For this device, estimate (i) the forward base transit time and (ii) the base-emitter junction capacitance (the bias dependence of the base-emitter junction capacitance may be ignored for this calculation)

[8 marks]

For a typical BJT illustrate the variation of (i) the current gain and (ii) the cut-off frequency, as a function of collector current.

[4 marks]

EE4005, Autumn 2002

Question 5

- (a) Define y-parameters which can be used to represent the small-signal behaviour of a two-port network.
- (b) Draw a small-signal circuit for a GaAs MESFET which illustrates the most important elements and determine expressions for the four y-parameters of the network considering the input to be at the gate side and the output to be at the drain side.
- (c) Determine values for the 4 y-parameters for the equivalent circuit of part (b) at a frequency of 2GHz if the small-signal circuit elements have the following values: R_G =4.5 Ω , C_{GS} =0.75pF, R_{DS} =200 Ω , C_{DS} =0.07pF and g_m =100mS. Also determine the cut-off frequency of the device for these values.

EE4011, Summer 2005, Q2

(a) Show a small-signal model of a GaAs MESFET suitable for small-signal analysis and derive expressions for the four y-parameters of the device, assuming that port 1 of the network is at the gate/source and port 2 is at the drain/source. The gate-to-drain capacitance may be ignored.

[10 marks]

(b) The y-parameters of a GaAs MESFET in a common-source amplifier configuration have been measured at 3GHz with the following results:

$$y_{11} = 0.018 \angle 85.7^{\circ}$$

 $y_{12} = 0$
 $y_{21} = 0.249 \angle -4.31^{\circ}$
 $y_{22} = 0.020 \angle 8.05^{\circ}$

From these measurements, determine the values of the elements of the small-signal equivalent circuit for the device at 3GHz and also the cut-off frequency of the device.

[10 marks]