

TJG
Patent
Attorney's Docket No. 030681-280

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Sung-nam LEE et al.) Group Art Unit: Unassigned
Application No.: 09/776,846) Examiner: Unassigned
Filed: February 6, 2001)
For: NITRIDE SEMICONDUCTOR LIGHT)
EMITTING DEVICE)
)
)
)
)
)

CLAIM FOR CONVENTION PRIORITY

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign Applications in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed:

Republic of Korea Patent Application No. 00-5736

Filed: February 8, 2000 and

Republic of Korea Patent Application No. 01-1550

Filed: January 11, 2000

In support of this claim, enclosed are certified copies of said prior foreign applications. Said prior foreign applications were referred to in the oath or declaration. Acknowledgment of receipt of the certified copies is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By:

Charles F. Wieland III
Registration No. 33,096

Date: May 23, 2001

P.O. Box 1404
Alexandria, Virginia 22313-1404
(703) 836-6620

**KOREAN INDUSTRIAL
PROPERTY OFFICE**

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Industrial Property
Office.

Application Number: Patent Application No. 01-1550

Date of Application: 11 January 2001

Applicant(s): Samsung Electronics Co., Ltd.

2 February 2001

COMMISSIONER

1020010001550

2001/2

[Document Name] Patent Application

[Application Type] Patent

[Receiver] Commissioner

[Reference No.] 0014

[Filing Date] 2001.01.11

[IPC] H01L

[Title] Nitride semiconductor light emitting device

[Applicant]

[Name] Samsung Electronics Co., Ltd.
[Applicant code] 1-1998-104271-3

[Attorney]

[Name] Young-pil Lee
[Attorney's code] 9-1998-000334-6
[General Power of Attorney Registration No.] 1999-009556-9

[Attorney]

[Name] Hae-young Lee
[Attorney's code] 9-1999-000227-4
[General Power of Attorney Registration No.] 2000-002816-9

[Inventor]

[Name] LEE, Sung Nam
[I.D. No.] 720228-1167828
[Zip Code] 442-400
[Address] 106-1304 Neulpuleun Byucksan Apt., 488 Mangpo-dong
Paldal-gu, Suwon-city, Kyungki-do
[Nationality] Republic of Korea

[Inventor]

[Name] PARK, Yong Jo
[I.D. No.] 620306-1470613
[Zip Code] 442-370
[Address] 7-404 Samsung 1-cha Apt., Maetan-dong
Paldal-gu, Suwon-city, Kyungki-do
[Nationality] Republic of Korea

[Inventor]

[Name] NAM, Ok Hyun
[I.D. No.] 640710-1162517
[Zip Code] 135-230
[Address] 106-504 Puleun Maeul Apt., Ilwon-dong, Gangnam-gu, Seoul
[Nationality] Republic of Korea

[Inventor]

[Name] LEE, In Hwan
[I.D. No.] 680620-1478325
[Zip Code] 442-470
[Address] 533-706 Sinan Apt., Youngtong-dong
Paldal-gu, Suwon-city, Kyungki-do
[Nationality] Republic of Korea

[Inventor]

[Name] LEE, Won Seok
[I.D. No.] 750806-1144011
[Zip Code] 122-060
[Address] 5 Floor Jun Building, 21-60 Kusan-dong, Unpyong-gu, Seoul
[Nationality] Republic of Korea

[Inventor]

[Name] CHO, Shi Yun
[I.D. No.] 680805-1110712
[Zip Code] 156-090
[Address] 402 Woojin Park Villa, 64-93 Sadang-dong, Dongjak-gu, Seoul
[Nationality] Republic of Korea

[Inventor]

[Name] SONE, Cheol Soo
[I.D. No.] 690121-1631719
[Zip Code] 431-070
[Address] 504-803 Chowon Lucky Apt., Pyungchon-dong
Dongan-gu, Anyang-city, Kyungki-do
[Nationality] Republic of Korea

[Priority Claimed]

[Application Country] Republic of Korea
[Type of Application] Patent
[Application No.] 10-2000-0005736
[Filing Date] 2000.02.08
[Priority Document] Attached

1020010001550

2001/2

[Request for Examination] Requested

[Application Order] We respectively submit an application according to Art. 42 of the Patent Law and request and examination according to Art. 60 of the Patent Law.

Attorney
Attorney

Young-pil Lee
Hae-young Lee

[Fee]

[Basic page]	20 Sheet(s)	29,000 won
[Additional page]	16 Sheet(s)	16,000 won
[Priority claiming fee]	1 Case(s)	26,000 won
[Examination fee]	20 Claim(s)	749,000 won
[Total]		820,000 won

[Enclosures]

1. Abstract and Specification (and Drawings)_1 copy
2. Certified Priority document and Translation thereof_ 1 copy

09176,846

대한민국 특허청
KOREAN INDUSTRIAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Industrial
Property Office.

출원번호 : 특허출원 2001년 제 1550 호
Application Number

출원년월일 : 2001년 01월 11일
Date of Application

출원인 : 삼성전자 주식회사
Applicant(s)

2001 02 02 일
년 월 일

특허청

COMMISSIONER

1020010001550

2001/2/

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0014
【제출일자】	2001.01.11
【국제특허분류】	H01L
【발명의 명칭】	질화물 반도체 발광 소자
【발명의 영문명칭】	Nitride semiconductor light emitting device
【출원인】	
【명칭】	삼성전자 주식회사
【출원인코드】	1-1998-104271-3
【대리인】	
【성명】	이영필
【대리인코드】	9-1998-000334-6
【포괄위임등록번호】	1999-009556-9
【대리인】	
【성명】	이해영
【대리인코드】	9-1999-000227-4
【포괄위임등록번호】	2000-002816-9
【발명자】	
【성명의 국문표기】	이성남
【성명의 영문표기】	LEE, Sung Nam
【주민등록번호】	720228-1167828
【우편번호】	442-400
【주소】	경기도 수원시 팔달구 망포동 488 늘푸른벽산아파트 106동 1304호
【국적】	KR
【발명자】	
【성명의 국문표기】	박용조
【성명의 영문표기】	PARK, Yong Jo
【주민등록번호】	620306-1470613
【우편번호】	442-370
【주소】	경기도 수원시 팔달구 매탄동 삼성1차아파트 7동 404호
【국적】	KR

1020010001550

2001/2/

【발명자】

【성명의 국문표기】

남옥현

【성명의 영문표기】

NAM, Ok Hyun

【주민등록번호】

640710-1162517

【우편번호】

135-230

【주소】

서울특별시 강남구 알원동 푸른마을아파트 106동 504호

【국적】

KR

device 【발명자】

【성명의 국문표기】

이인환

【성명의 영문표기】

LEE, In Hwan

【주민등록번호】

680620-1478325

【우편번호】

442-470

【주소】

경기도 수원시 팔달구 영통동 신안아파트 533동 706호

【국적】

KR

【발명자】

【성명의 국문표기】

이원석

【성명의 영문표기】

LEE, Won Seok

【주민등록번호】

750806-1144011

【우편번호】

122-060

【주소】

서울특별시 은평구 구산동 21-60 준빌딩 5층

【국적】

KR

【발명자】

【성명의 국문표기】

조시연

【성명의 영문표기】

CHO, Shi Yun

【주민등록번호】

680805-1110712

【우편번호】

156-090

【주소】

서울특별시 동작구 사당동 64-93 우진파크빌라 402

【국적】

KR

【발명자】

【성명의 국문표기】

손철수

【성명의 영문표기】

SONE, Cheol Soo

【주민등록번호】

690121-1631719

1020010001550

2001/2/

【우편번호】	431-070
【주소】	경기도 안양시 동안구 평촌동 초원럭키아파트 504동 803호
【국적】	KR
【우선권주장】	
【출원국명】	KR
【출원종류】	특허
【출원번호】	10-2000-0005736
【출원일자】	2000.02.08
【증명서류】	첨부
【심사청구】	청구
【취지】	특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사를 청구합니다. 대리인 이영필 (인) 대리인 이해영 (인)
【수수료】	
【기본출원료】	20 면 29,000 원
【가산출원료】	16 면 16,000 원
【우선권주장료】	1 건 26,000 원
【심사청구료】	20 항 749,000 원
【합계】	820,000 원
【첨부서류】	1. 요약서·명세서(도면)_1통 2. 우선권증명서류 및 동 번역문_1통

【요약서】

【요약】

본 발명은 GaN을 채용한 반도체 발광소자에서 많은 캐리어(carrier) 주입에 의하여 발생하는 캐리어 오버플로우(carrier overflow) 및 스트레인을 줄이기 위한 수단을 구비하는 반도체 발광소자에 관해 개시되어 있다. 본 발명은 AlGaN/GaN의 겹층에 복수회로에 적층된 다중 양자 장벽 혹은 AlGaN/InGaN의 겹층이 복수회로에 적층된 스트레인을 보상하는 다중 양자 장벽(Strain-compensating multiple quantum barrier)을 활성층에 상부 및 하부 중 어느 선택된 어느 일 측에 구비하는 것을 특징으로 하며 또한 p형 클래드층이 필요치 않는 반도체 발광소자를 제공한다.

【대표도】

도 4

【명세서】

【발명의 명칭】

여하에 명하여질화물 반도체 발광 소자{Nitride semiconductor light emitting device}(Nitride semiconductor light emitting device)

【도면의 간단한 설명】

도 1은 종래의 양자 장벽을 가진 반도체 발광소자의 개략적 수직 단면도이다.

도 2는 도 1의 양자 장벽을 가진 반도체 발광소자의 전자 차단 장벽(electron blocking barrier)을 나타내는 에너지 밴드 다이어 그램이다.

도 3은 본 발명의 제1 실시예에 의한 캐리어 오브플로우와 스트레인 감소 수단으로

써, $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{GaN}$ 다중 양자 장벽 혹은 $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{In}_y\text{Ga}_{1-y}\text{N}$ 스트레인 보상 다중 양자 장벽(Strain-Compensating Multiple Quantum Barrier)을 구비하는 반도체 발광소자의 단면도이다.

도 4는 도 3에 도시한 반도체 발광소자의 에너지 밴드 다이어 그램이다.

도 5는 본 발명의 제2 실시예에 의한 캐리어 오브플로우와 스트레인 감소 수단으로 써, $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{GaN}$ 다중 양자 장벽 혹은 $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{In}_y\text{Ga}_{1-y}\text{N}$ 스트레인 보상 다중 양자 장벽을 가진 반도체 발광소자의 단면도이다.

도 6은 도 5에 도시한 반도체 발광소자의 에너지 밴드 다이어 그램이다.

도 7은 본 발명의 제3 실시예에 의한 캐리어 오브플로우와 스트레인 감소 수단으로 써, $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{GaN}$ 다중 양자 장벽 혹은 $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{In}_y\text{Ga}_{1-y}\text{N}$ 스트레인 보상 다중 양자 장벽을 가진 반도체 발광소자의 수직 단면도이다.

도 8은 도 7에 도시한 반도체 발광소자의 에너지 밴드 다이어 그램이다.

도 9는 도 3에 도시한 반도체 발광소자가 갖는 $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{In}_y\text{Ga}_{1-y}\text{N}$ 스트레인 보상 다중 양자 장벽의 전자 반사도(electron reflectivity)를 나타낸 그래프이다.

도 10은 종래 기술에 의한 양자 장벽을 갖는 반도체 발광소자와 본 발명의 실시예에 의한 캐리어 오브플로우와 스트레인 감소 수단으로써, 다중 양자 장벽을 갖는 반도체 발광소자의 LI 특성을 나타낸 그래프이다.

도 11은 본 발명의 제4 실시예에 의한 반도체 발광소자의 단면도이다.

도 12는 도 11에 도시한 반도체 발광소자의 에너지 밴드ダイ야그램이다.

도 13은 본 발명의 실험예에 사용한 제1 레이저 다이오드군에서 선택한 레이저 파장과 이오드의 굴절률 분포의 확대도이다.

도 14는 본 발명의 실험예에 사용한 제1 내지 제3 레이저 다이오드군의 광에 따른 변화를 나타낸 그래프이다.

도 15 내지 도 17은 각각 본 발명의 실험예에 사용한 제1내지 제3레이저 다이오드 군의 광모드 변화를 나타낸 그래프이다.

<도면의 주요 부분에 대한 부호설명>

1: $\text{In}_x\text{Ga}_{1-x}\text{N}$ 층

2: $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층

3: 전자 차단 장벽(electron blocking barrier) 층 ($\text{Al}_z\text{Ga}_{1-z}\text{N}$)

4, 9: 광도파 층

5: $\text{In}_x\text{Ga}_{1-x}\text{N}$ 층(혹은 InGaN 층 혹은 GaN 층)

6: $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층(혹은 GaN 층 혹은 AlGaN 층)

7: AlGaN 층

8: GaN 층 혹은 InGaN 층

40:기판	42:n형 화합물 반도체층
44:n형 클래드층	46:n형 도파층
48:활성층	50:전자 차단층
52:p형 도파층	54:p형 화합물 반도체층
M:레이징을 위한 n형 물질층	

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<27> 본 발명은 반도체 발광소자에 관한 것으로써, 자세하게는 GaN을 채용한 반도체 발광소자에서 많은 캐리어(carrier) 주입에 의하여 발생하는 캐리어 오버플로우(carrier overflow)를 억제하면서 스트레인(strain)을 줄일 수 있는 레이저 다이오드에 관한 것이다.

<28> 도 1을 참조하면, 종래의 반도체 레이저 다이오드 혹은 광 증폭기 등을 구성하는 반도체 발광소자는 $In_yGa_{1-y}N/In_yGa_{1-y}N$ 층(1, 2)으로 이루어진 다중 양자 우물(Multi-Quantum Well, 이하 MQW이라 한다)구조의 활성층(1, 2) 및 활성층(1, 2) 상에 순차적으로 적층된 p- $Al_xGa_{1-x}N$ 캐리어 차단층(3) 및 p-, n-GaN 광도파층(4)으로 구성되어 있다.

<29> 도 2는 이와 같은 적층 구조의 에너지 밴드 다이어그램으로서, 양자 우물 구조의 캐리어가 캐리어 차단층의 에너지 장벽에 의해 빠져나갈 수 없도록 형성되어 있다.

<30> 이러한 에너지 밴드 구조는 청록색 레이저 다이오드나 광 증폭기 등의 반도체 발광

소자가 반드시 갖추어야 할 구조이며, 이러한 청록색 레이저 다이오드는 풀 컬러 디스플레이(Full color display)와 DVD 등의 고밀도 기록 매체를 구현하는데 필요한 중요한 요소 중의 하나가 되고 있다.

<31> 즉, 낮은 발진 개시 전류에서 동작하고 좋은 온도 특성을 가지는 청록색 초자를 실현하기 위해서는 활성층 내부의 전류 주입즉, 캐리어 주입이 효율적이고 활성층을 넘어 통과하는 캐리어의 수를 감소시키는 효율적인 구조로 설계할 필요가 있다. 일반적으로 이러한 캐리어 오버플로우를 막기 위하여 도 1에 도시된 바와 같은 캐리어로서의 전자를 차단하는 전자 차단층(electron blocking layer, 3)을 삽입하는 기술이 사용되고 있다.

<32> GaN 화합물 반도체를 기본으로 하여 제작되는 GaN 청록색 레이저는 GaN과 격자상수가 일치하는 기판이 존재하지 않기 때문에 결국 MOCVD 등의 방법으로 성장되는 GaN, 그리고 InGaN, AlGaN 등의 결정의 품질(quality)이 좋지 못하다. 이것은 활성층으로 사용되는 InGaN의 광 이득의 감소를 가져온다. 따라서 레이저가 발진하기 위해서는 매우 많은 주입 전류, 즉 매우 많은 수의 캐리어를 요구하게 된다. 더욱이, 전류의 주입이 증가하게 되면, 활성층 뿐만 아니라, 장벽으로 사용되는 GaN나 AlGaN층으로의 캐리어 오버 플로우도 가 증가하게 되어 효율적인 레이저의 발진이 불가능하게 된다. 이를 캐선하기 위하여, 도 1에 도시된 바와 같이, 200Å 두께로 증착된 AlGaN 단일층으로 구성된 캐리어 차단(carrier blocking)층을 삽입하는 구조가 Nichia 등 많은 연구 그룹에서 사용되고 있다.

그러나, AlGaN 단일층의 삽입은 장벽 이상의 에너지를 가지는 캐리어 오버 플로우는 거의 막을 수 없다. 높은 에너지를 가지는 캐리어를 차단(blocking)하기 위해서는 Al의 함량(mole fraction)이 큰 AlGaN층을 사용하여야 하는데, 이 것은 격자상수가 맞지 않는 GaN층과의 부가적인 스트레인(additional strain)을 발생시켜 시료의 크랙(crack)을 발

생시키는 원인이 된다. 또한, 효율적인 캐리어 차단(carrier blocking)을 위해서는 p형 불순물의 도핑이 필수적인데 알루미늄(Al)의 함량이 큰 AlGaN층에 p형 물질을 도핑하기는 매우 어려운 것으로 알려져 있다.

• **총상자【발명이 이루고자 하는 기술적 과제】**

발명○ 주제○ 기술 분야○ 제작

<33> 본 발명이 이루고자 하는 기술적 과제는 상기와 같은 종래의 문제점을 개선하기 위해 일관적으로 한 것으로써, 활성층에 주입되는 전류가 장벽(baffler)을 넘어 오버플로우되는 것을 막아 리어 스트리밍 과정으로 차단(blocking)하면서 스트레인 발생을 최소화하는 반도체 발광소자를 제공함으로써 목표를 달성하는 것이다.

<34> 본 발명이 이루고자 하는 다른 기술적 과제는 전류가 장벽(baffler)을 넘어 오버플로우되는 것을 효과적으로 차단(blocking)하면서 스트레인 발생을 최소화하고 기관 방향으로 흐르는 광학적 손실을 줄이면서 활성층의 열화를 방지하며 공정을 단순화 할 수 있는 반도체 발광소자를 제공함에 있다.

• **수인○ 주제【발명의 구성 및 작용】**

제작○ 기술 분야○

<35> 상기 기술적 과제를 달성하기 위하여, 본 발명은 $0 < x < 1$ 이라 할 때, GaN계 화합물을 형성하기 위하여 반도체로 형성된 활성층; 및 상기 활성층의 상부 및 하부에 각각 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 GaN층의 겹층을 적어도 2회 이상 반복 적층하여 에너지 밴드가 복수개의 다중 양자 장벽 구조를 갖도록 상기 활성층의 상부 및 하부 중 적어도 어느 일측에 형성된 다중 양자 장벽층들을 구비한 것을 특징으로 하는 반도체 발광소자를 제공한다. 이때, 상기 활성층 혹은 다중 양자 장벽층들의 상하부에는 각각 GaN 광도파층이 더 구비되어 있고 상기 활성층은 $\text{In}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층, $\text{In}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{Al}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층, $\text{In}_x\text{Ga}_{1-x}\text{N}$ 층과 In

$yAl_zGa_{1-y-z}N$ 층의 겹층, $In_xAs_yGa_{1-x-y}N$ 층과 $In_zGa_{1-z}N$ 층의 겹층 및 $In_xAs_yGa_{1-x-y}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들 중 어느 한 겹층이 복수회 이상 적층되어 다중 양자 우물 구조로 형성된 것이 바람직하다. 이때, $0 \leq x < 1$ 이고, $0 \leq y < 1$ 이고, $0 \leq z < 1$ 이고, $x+y < 1$ 이며, $y+z < 1$ 이다.

<36> 또, 상기 상부 및 하부의 다중 양자 우물 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 GaN 층의 겹층들마다 상기 $Al_xGa_{1-x}N$ 층들 혹은 상기 GaN 층들 외 두께를 다르게 하여 형성되는 다중 양자 우물 장벽들의 에너지 준위를 다르게 형성하거나, 혹은 상기 $Al_xGa_{1-x}N$ 층들의 Al 함량을 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한 것도 바람직하다. 또, $0 < x < 1$ 이라 하고, $0 < y \leq 1$ 이라 할 때<37>상기 다중 양자 장벽층은 $Al_xGa_{1-x}N$ 층과 $In_yGa_{1-y}N$ 층의 겹층을 적어도 2회 이상 반복 적층하여 에너지 밴드가 복수개의 파장의 양자우물을 갖도록 형성된 것도 바람직하다. 이 경우, 상기 다중 양자 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 $In_yGa_{1-y}N$ 층의 겹층들마다 상기 $Al_xGa_{1-x}N$ 층들 혹은 $In_yGa_{1-y}N$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성하거나, 혹은 상기 $Al_xGa_{1-x}N$ 층들의 Al 함량을 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한다.

<38> 한편, 상기 다른 기술적 과제를 달성하기 위하여, 본 발명은 활성층을 중심으로 대향하는 레이징을 위한 p형 및 n형 물질층 중에서 p형 클래드층을 제거하는 대신 n형 클래드층의 에너지 밴드 폭을 종래에 비해 훨씬 넓게 하고, 상기 p형 물질층과 상기 활성층 사이에 구비되는 캐리어 장벽층의 캐리어 차단 효율을 높인 것을 특징으로 하는 반도체 발광소자를 제공한다.

<39> 또한, 상기 다른 기술적 과제를 달성하기 위하여, 본 발명은 기판; 상기 기판 위에

형성된 광 방출이 일어나는 활성층; 상기 기판과 상기 활성층 사이에 구비되어 있되, 상기 기판 방향으로의 광손실을 방지하도록 구비된 n형 클래드층을 포함하는 레이징을 위한 n형 물질층; 상기 활성층 상에 순차적으로 구비된 캐리어 장벽층, p형 도파층 및 p형 화합물 반도체층; 및 상기 활성층으로의 캐리어 확산을 위한 전위차를 형성하는 n형 물질층 및 p형 전극을 구비하는 것을 특징으로 하는 레이저 다이오드를 제공한다. 이 때, 상기 n형 물질층은, 상기 n형 클래드층과 상기 활성층 사이에 구비된 n형 도파층 및 상기 n형 물질층과 상기 기판 사이에 구비되어 있고 상기 p형 전극과 연결되는 n형 화합물 반도체층으로 구성되어 있다. 또한, 상기 n형 물질층은 상기 n형 클래드층과 상기 활성층 사이에 구비된 n형 도파층과 상기 n형 클래드층과 상기 기판 사이에 구비된 n형 화합물 반도체층을 구비한다. 상기 활성층은 다중 양자 우물(MQW) 구조를 갖는 III-V족 질화물 화합물 반도체층이다.

이하, 본 발명의 실시예에 의한 반도체 발광소자, 곧, 레이저 다이오드를 첨부된 도면들을 참조하여 상세하게 설명한다.

본 발명은 GaN을 채용한 반도체 발광소자에서 주로 다중-양자 우물 구조로 형성되는 활성층에 많은 캐리어를 주입함으로써 발생하는 캐리어 오버플로우를 억제하기 위한 구조로서, 도 3 내지 도 8에 도시된 바와 같이, 다중 양자 장벽(multiple quantum barrier; MQB)을 활성층의 상부 및 하부 중 적어도 어느 일측에 형성한 것을 특징으로 한다. 즉, 도 3에 도시된 바와 같이, 다중 양자 장벽층들(7,8)을 활성층(5, 6) 상부에만 형성하거나, 도 5에 도시된 바와 같이, 다중 양자 장벽층들(7,8)을 활성층(5, 6) 하부에만 형성하거나, 도 7에 도시된 바와 같이, 다중 양자 장벽층들(7,8)을 활성층(5, 6) 상하부 양측에 형성한다. 도 4, 도 6 및 도 8은 각각 도 3, 도 5 및 도 7의 실시예의 에너

지 밴드 다이어그램이다.

<42> <제1 및 제2 실시예>

<43> 도 3 및 도 5를 참조하면, 본 발명에 따른 다중 양자 장벽을 갖는 반도체 발광소자

는 GaN계 화합물 반도체로 형성된 단일 활성층(미도시) 혹은 $In_xGa_{1-x}N$ 층과 $In_yGa_{1-y}N$ 층

의 겹층, $In_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층, $In_xGa_{1-x}N$ 층과 $In_yAl_zGa_{1-y-z}N$ 층의 겹층,

$In_xAs_yGa_{1-x-y}N$ 층과 $In_zGa_{1-z}N$ 층의 겹층 및 $In_xAs_yGa_{1-x-y}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들 중 이

느느한 겹층이 복수회 이상 적층되어 다중 양자 우물 구조로 형성된 활성층(5, 6)을 구비

한다. 이때, $0 \leq x < 1$ 이고, $0 \leq y < 1$ 이고, $0 \leq z < 1$ 이고, $x+y < 1$ 이며, $y+z < 1$ 이다. 그리고 활성

층(5, 6)에 주입된 장벽 이상의 에너지를 가지는 캐리어의 오버플로우를 차단(blocking)

차단층을 삽입하여 막되, 차단 효과를 극대화하는 통신에 차단층에 의한 스트레인 파동

의 영향을 최소화하기 위하여, 차단층으로 $Al_xGa_{1-x}N$ 층과 GaN층의 겹층 혹은 $Al_xGa_{1-x}N$ 층

과 GaN층의 겹층(이때, $0 < x < 1$, $0 < y \leq 1$)을 적어도 2회 이상 반복 적층하여 에너지

밴드가 복수개의 다중 양자 장벽 구조를 갖는 스트레인 보상 다중 양자 장벽

(Strain-compensating MQB)층(7, 8)을 활성층(5, 6) 상부에 구비하거나(제1 실시 예), 활

성층(5, 6) 하부에 구비(제2 실시 예)한다.

<44> <제3 실시예>

<45> 특히, 도 7에 도시한 바와 같이, 상부 및 하부의 스트레인 보상 다중 양자 우물 장

벽층(7, 8)이 $Al_xGa_{1-x}N$ 층(7) 및 GaN층(8)의 겹층들로 형성되는 경우에는 이를 겹층들 마

다 $Al_xGa_{1-x}N$ 층(7) 혹은 GaN층(8)들의 두께를 다르게 하여 형성하여 다중 양자 장벽들

의 에너지 준위를 다르게 형성하거나, 혹은 $Al_xGa_{1-x}N$ 층(7)들마다 Al 함량을 다르게 하

여각 층마다 장벽들의 에너지 준위를 다르게 한다.

<46> 또한, 상부 및 하부의 스트레인 보상 다중 양자 우물 장벽층이 $Al_xGa_{1-x}N$ 층과 $In_yGa_{1-y}N$ 층의 겹층을 적어도 2회 이상 반복 적층하여 형성되는 경우에도, 이 스트레인 보상

상 다중 양자 장벽층은 겹층들마다 $Al_xGa_{1-x}N$ 층 혹은 $In_yGa_{1-y}N$ 층들을 두께를 다르게 하거나,

여 다중 양자 장벽들의 에너지 준위를 다르게하거나, 혹은 겹층들마다 $Al_xGa_{1-x}N$ 층들의 다른

Al 함량을 다르게 하여 다중 양자 장벽들의 에너지 준위를 다르게 한다. 그림 9가 장벽층을 제

수다. <47> 이와 같이 형성된 스트레인 보상 다중 양자 장벽 겹층(7, 8)의 타중 양자 우물 구

조(5, 6)의 활성층에 주입된 캐리어를 차단(carrier blocking)하는 원리는 다음과 같다. ‘다

른 차단(blocking)’

<48> 캐리어의 파동적 성격에 의하여 다중 양자 장벽 내부의 양자 우물에 주속되는 양자

우물의 효과에 의하여 단일 격벽의 캐리어 장벽(carrier blocking)보다 캐리어 오버플로우를

제거하여 애너憬소시키는 것이다.

<49> 도 9는 종래의 $AlGaN$ 단일층 캐리어 차단 장벽(10)과 $Al_xGa_{1-x}N/GaN$ 다중 양자 장벽

(11)과 $Al_xGa_{1-x}N/In_yGa_{1-y}N$ 스트레인 보상 다중 양자 장벽(12)에 의한 캐리어 반사율

(carrier reflectivity)를 계산한 그래프이다.

<50> 도 9를 참조하면, 다중 양자 장벽의 양자 효과에 의하여 실제 에너지 준위 차이에

의한 에너지 장벽들이, 주입되는 캐리어의 입장에서는 매우 높아진 것을 알 수 있다. 특히

$Al_xGa_{1-x}N/In_yGa_{1-y}N$ 스트레인 보상 다중 양자 장벽의 경우, 더 높은 에너지의 캐리어

까지 반사율이 높아 더욱 효과적인 에너지 장벽으로 사용될 수 있다. 더욱이, Al_xGa_{1-x}

$N/In_yGa_{1-y}N$ 스트레인 보상 다중 양자 장벽의 경우에는 $AlGaN$ 이 GaN 와 인장 스트레인

(tensile strain)을 가지고, 반대로 InGaN은 GaN와 압축 스트레인(compressive strain)

을 가지므로 서로 스트레인 보상(strain compensating)이 이루어져 성장사 크랙(crack)

이 존재하지 않으면서도 두꺼운 층의 양자 장벽을 성장시킬 수 있어 더욱 효율적이다.

<51> 설명된 바와 같이, 본 발명에 따른 반도체 발광소자는 활성층에서 비활성층으로의

캐리어 오버플로우를 억제하기 위해 활성층 영역에 AlGaN/GaN 겹층 혹은

$\text{AlGaN}/\text{InGaN}$ 겹층을 반복적으로 성장시킨 다중 양자장벽구조를 갖는다. 이는 다중 양자

장벽은 활성층에 많은 수의 캐리어를 주입하는 경우에 발생하는 캐리어 오버플로우를 억제

하는 효과는 동일한 레이저 구조에서 종래의 전자차단(electron blocking)층을 삽입 한 구조와 본 발명에서 제안된 $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{GaN}$ 다중 양자 장벽을 채용한 구조의 레이저 발광

특성을 비교함으로써 그 특성을 살펴볼 수 있다. 그림 10은 위의 두 구조의 LI 특성을 그

래프(13)에서 발진 개시 전류는 550mA정도이고, 본 발명에 따라 제안된 레이저 구조에서

GaN 다중 양자의 LI 특성 그래프(14)에서 발진 개시 전류는 270mA 정도의 값으로 절반 정도 감소하였

음을 볼 수 있다. 사용된 시료가 동일한 활성층 구조를 가지므로 캐리어에 의한 광 이득

값이 동일하다고 가정할 수 있으므로 발진 개시 전류의 감소는 동일한 전류 주입시도 효

율적인 캐리어 오버플로우가 가능하여 활성층에 존재하는 캐리어 수가 증가하여 광이득

이 증가한 것을 의미한다.

<53> <제4 실시예>

<54> 다중 양자 장벽층 대신 이를 대신할 수 있는 효율적인 전자 차단 장벽층을 구비하

고 광 모드 손실을 줄일 수 있는 구조로 n형 클래드층을 구비하되, p형 클래드층은 제거

한 레이저 다이오드에 대한 것이다.

<55> 도 11을 참조하면, 참조번호 40은 기판이다. 기판(40)은 사파이어 기판인 것이 바람직하나, 실리콘 카본(SiC), 실리콘(Si), 갈륨비소(GaAs), 갈륨나이트라이드(GaN) 및 아연 산화물(ZnO)로 이루어진 군중 선택된 어느 하나라도 무방하다. 기판(40)을 구성하는 물질에 따라 전극은 기판(40)의 저면에 구성되거나 기판(40) 위쪽에 구성될 수 있다. 예를 들면, 기판(40)이 사파이어 기판인 경우, 기판의 고저향성으로 인해 기판(40) 위쪽에서 필요한 물질층과 접촉되도록 전극이 구성될 수 있고, 기판(40)이 실리콘카본인 경우, 기판(40)의 저면과 접촉되게 전극이 구성될 수 있다. 또한, p형 전극을 리지 스의 레이스(ridge) 형태로 구비하는 경우 n형 전극은 하기 n형 화합물 반도체층과 접촉되게 구성될 수 있다. 그 방법은 여러 가지가 있을 수 있다.

<56> 계속해서, 기판(40) 상에 레이징을 위한 n형 물질층(M)이 형성되어 있다. n형 물질층(M)은 기판(40) 상에 순차적으로 형성된 n형 화합물 반도체층(42), n형 클래드층(44) 및 n형 도파층(wave guide layer, 46)으로 구성되어 있다. n형 화합물 반도체층(42)은 III-V족 질화물 화합물 반도체층으로써, n-GaN층인 것이 바람직하다. 그리고 n형 클래드층(44)은 소정의 비율로 알루미늄(A1)을 함유하는 n-Al_xGa_{1-x}N층(이 때, 0 < x ≤ 0.2) 단층인 확장하여 것이 바람직하나, 복층일 수 있는데, 예를 들면 AlGaN층과 GaN층으로 구성된 초격자(superlattice)층일 수 있다. 어느 경우에서나 n형 클래드층(44)은 기판(40) 방향으로의 광 모드 손실을 최소화할 수 있는 두께인 것이 바람직하다. 예를 들면, n형 클래드층(44)의 두께는 0.5μm~1.7μm 정도이다. 이때, 고려해야 할 것이 반도체 발광소자 전체의 스트레인이다. 따라서, n형 클래드

총(44)은 상기 광 모드를 최소화할 수 있는 두께인 것이 바람직하나 두께를 이 값보다 다소 작은 값으로 하여 반도체 발광소자 전체의 스트레인을 줄일 수 있게 하는 것-또한 바람직하다. n형 클래드총(44)의 두께는 종래의 레이저다이오드에 구비된 그것보다 훨씬 두꺼운 것이다. 이와 같이 n형 클래드총(44)의 두께를 두껍게 함으로써 기판(40)으로의 광모드 손실을 최소화할 수 있게 된다. n형 도파총(46)은 III-V족 질화물 화합물 반도체총(47)로 채총으로써, n-GaN층인 것이 바람직하다. 레이저장을 위한 p형 물질총(50) 상에는 전자차단층(51)이 형성되어 있는데, 활성층(48)은 다중 양자우물 구조를 갖는 물질층인 것(48)이 바람직하고, III-V족 질화물 화합물 반도체총이 되, 그 중에서도 인듐(In)을 소정의 비율로 함유하는 InGaN층인 것이 더욱 바람직하다. 또한, 활성층(48)은 바와 같이 단층으로 일 수도 있으나, 제1 내지 제3 실시예에서 설명한 바와 같은 복층일 수도 있다. 전자차단층(50) 및 p형 도파총(52)이 순차적으로 형성되어 있다. 이때, 전자 차단층(50)은 전자 차단 효율을 높이기 위해 소정의 비율로 알루미늄을 함유하는 AlGaN층인 것이 바람직하나, 제1 내지 제3 실시예에서 설명한 바와 같은 다중 양자 장벽총(5, 6)일 수도 있다. p형 도파총(52)은 도핑 물질이 p형인 것을 제외하고는 n형 도파총(46)과 동일한 물질총이다. 다만, 그 두께는 광 모드와 광이득이 최대가 될 수 있는 두께인 것이 바람직한데, 예를 들면 $0.15\mu\text{m} \sim 0.2\mu\text{m}$ 정도가 바람직하다. p형 도파총(52) 상에 p형 화합물 반도체총(54)이 형성되어 있다. p형 화합물 반도체총(54)은 도핑 물질이 p형인 것을 제외하고 n형 화합물 반도체총(42)과 동일한 물질총인 것이 바람직하다. 다만, p형 화합물 반도체총(54)은 그 위에 p형 전극(미도시)이 구비되므로 p형 도파총(52)보다 도핑 농도를 높게 하여 전기 저항을 낮게 한 것이 바람직하다.

<57> 이와 같이, 본 발명의 제4 실시예에 의한 레이저 다이오드는 p형 물질층에 p형 클래드층을 구비하지 않는 대신, 캐리어 장벽층, 곧 전자 차단층의 차단 효율을 훨씬 높이고 종래의 n형 클래드층보다 두께를 훨씬 두껍게 한 n형 클래드층을 구비한다.

<58> p형 클래드층(p-AlGaN)의 형성 과정은 다른 물질층에 비해 상대적으로 고온 형성 주파수 합성을 과정이고, 도핑 과정을 수반한다. 그런데, p형 클래드층을 구비하지 않음으로써 고온 공정과 도핑 주입 공정 등의 생략이 가능하여 제조 공정을 단순화 할 수 있고, 활성층(48)의 특성 변화를 방지할 수 있다. 또, 활성층(48)과 열적, 결정학적 부정합(mismatch)이 적은 p형 클래드층을 구비하지 않음으로써, 레이저 다이오드 전체의 스트레인을 줄여 소자의 크랙을 방지할 수 있고, 소자의 저항 및 동작 전압을 낮춰서 소자의 전류성을 높일 수 있다. 또, p형 클래드층을 구비하지 않음으로써 생기는 스트레인 페인팅만큼 n형 클래드층을 두껍게 할 수 있어 기판 방향으로의 광 모드 손실을 줄일 수 있어 안정된 광모드와 향상된 광이득을 얻을 수 있다.

<59> 종래에 비해 기판 방향으로의 광 손실을 줄일 수 있는 것은 n형 클래드층의 두께가 종래에 비해 훨씬 두꺼워서 그 만큼 에너지 밴드 폭도 넓어지기 때문인데, 이러한 사실은 도 12를 참조함으로써 더욱 명백해진다.

<60> 구체적으로, 도 12의 (a) 및 (b)도는 각각 종래 및 본 발명의 제4 실시예에 의한 레이저 다이오드를 구성하는 물질층의 에너지 밴드 다이어그램으로써, 종래의 n형 클래드층의 에너지 밴드(E_{nc})보다 본 발명의 n형 클래드층의 에너지 밴드(E_{nc}') 폭이 훨씬 넓은 것을 알 수 있다. 아울러, 종래의 전자 차단층의 에너지 밴드(E_{eb})에 대응되는 본 발명의 전자 차단층의 에너지 밴드(E_{eb}') 다음에 종래의 p형 클래드층의 에너지 밴드(E_{pc})에 대응될 수 있는 에너지 밴드가 나타나지 않음을 알 수 있다. 참조부호 E

m_{qW} 및 $E_{m_{qW}}$ 은 각각 종래 및 본 발명에 의한 다중 양자 우물 구조를 갖는 활성층의 에너지 밴드들을 나타낸다.

<61> <실험 예>

한편

<62> 한편, 상기한 본 발명의 제4 실시예에 의한 레이저 다이오드의 특성을 확인하기

위해 다음과 같은 실험을 실시하였다. 이 실험은 3개의 레이저 다이오드군을 대상으로
각각 3개의 레이저 다이오드군의 광도파로 광학적 특성을 통하여 광이득과 광모드를 살펴보기
위하여, 복소(complex) TMM(Transfer Matrix Method)을 이용하여 광도파로의 구속
되는 광모드와 광이득을 동시에 계산하였다.

<63> 본 실험에 사용한 3개의 레이저 다이오드군 중에서 제1레이저 다이오드군은 각 두

면마다 양 쪽에 $0.5\mu m$ 인 n 및 p형 클래드층 모두를 구비하되, p형 도파층의 두께는 다르게 한 것과 구비
하고, 제2 레이저 다이오드군은 클래드층 중에서 $0.5\mu m$ 두께의 n형 클래드층만을 구비하되,
p형 도파층의 두께는 다르게 한 것이며, 제3레이저 다이오드군은 제2 레이저

클래드층의 다이오드군과 동일한 것이되, n형 클래드층의 두께를 $1.0\mu m$ 로 한 것이다.

<64> 도 13은 상기 제1 레이저 다이오드군을 구성하는 각 물질층들의 굴절률 분포를 나타낸 것으로써, 활성층을 중심으로한 n형 및 p형 측의 일부 물질층에 대한 굴절률 분포를 확대하여 도시한 것이다.

<65> 도 13에서 참조부호 R1은 활성층에 대응되는 굴절률을 나타내고, Rn1 및 Rp1은 각각 n형 및 p형 도파층에 대응되는 굴절률을 나타내며, Re는 전자 차단층에 대응되는 굴절률을 나타낸다. 또, 참조부호 Rn2 및 Rp2는 각각 n형 및 p형 클래드층에 대응되는 굴절률을 나타내고, Rn3 및 Rp3는 각각 n형 및 p형 화합물 반도체층에 대응되는 굴절률을

나타낸다.

<66> 도 13을 통해 활성층 부근의 굴절률 분포는 활성층으로부터 n형 및 p형 화합물 반도체층까지 순차적으로 낮아지는 분포를 보이고 있음을 알 수 있다: 다만, 예외인 것은 전자 차단층의 굴절률(Re)인데, 이 굴절률은 n형 및 p형 클래드층의 굴절률($Rn2$, $Rp2$)보다 작다.

한편, 본 실험에서 최적화된 레이저 다이오드 구조를 설계하기 위하여, 상기 제1 내지 제3 레이저 다이오드군의 광이득과 광모드를 계산하였다.

<68> 도 14는 이에 대한 결과를 제1 내지 제3 레이저 다이오드군 별로 나타낸 그래프로써, 참조 도형 ■, ● 및 ◆는 각각 제1 내지 제3 레이저 다이오드군에 대응하는 광이득과 광모드를 나타낸 그래프들이다. 도 14를 통해서 광이득을 가장 크게 얻을 수 있는 p형 클래드층의 두께는 각 레이저 다이오드군의 광도파로 구조에 따라 달라짐을 알 수 있다: 예를 들어, 제1 내지 제3 레이저 다이오드군의 경우, p형 도파층의 두께가 $0.12\mu m$ 정도일 때 광이득이 최대이고, p형 클래드층을 포함하지 않는 제2 및 제3 레이저 다이오드군의 경우, p형 도파층의 두께가 $0.05\mu m \sim 0.22\mu m$, 바람직하게는 $0.2\mu m$ 정도에서 광이득이 최대임을 알 수 있다.

<70> 도 15 내지 도 17은 각각 p형 도파층의 두께 변화에 따른 상기 제1 내지 제3 레이저 다이오드군의 광모드 변화를 나타낸 그래프로써, 모두 비슷한 경향을 나타내고 있으나, p형 도파층의 두께가 광모드가 최대가 되는 두께보다 낮은 두께인 경우에 광모드는 n형 도파층으로 치우치고, 그 반대인 경우에 광모드는 p형 도파층으로 치우치는 것을 볼 수 있다. 각 도면에서 참조부호 G_{1max}, G_{2max} 및 G_{3max}는 각각 광이득이 최대인 그

래프들을 나타낸다.

<71> 즉, 도 15를 참조하면, 제1 레이저 다이오드군의 경우, 광모드는 p형 도파총의 두께가 $0.1\mu m$ 일 때 최대인데, p형 도파총의 두께가 $0.1\mu m$ 보다 얇은 두께일 때 광모드는 n형 도파총(도면상 좌측방향)으로 치우치는 것을 볼 수 있고, p형 도파총의 두께가 $0.1\mu m$ 보다 두꺼운 $0.2\mu m$ 또는 $0.4\mu m$ 인 경우에 광모드는 p형 도파총(도면상 우측방향)으로 치우친 것을 볼 수 있다.

<72> 또, 도 16 및 도 17을 참조하면, 제2 및 제3 레이저 다이오드군의 경우, 광모드는 p형 도파총의 두께가 $0.2\mu m$ 일 때 최대인데, p형 도파총의 두께가 이보다 얇은 경우나 이보다 두꺼운 경우에는 정도의 차이는 있지만 제1 레이저 다이오드군의 경우와 동일한 특성을 나타낸다는 것을 알 수 있다.

<73> 이와 같이, p형 도파총의 두께가 최대의 광이득을 얻을 수 있는 두께보다 얇은 경우, 광모드가 n형 도파총으로 치우치게 되는데, 이것은 광모드의 손실을 의미하고 결국 광이득이 감소된다는 것을 의미한다. 따라서, 이때는 광이득 감소를 보상하기 위해 보다 더 많은 캐리어(전자)를 공급하여야 하므로, 결국 레이징을 위한 임계 전류값이 높아지게 된다.

<74> 한편, 그 반대인 경우, p형 도파총에서의 광이득 감소가 발생되는데, 이러한 결과는 p형 도파총을 포함한 공진영역(n형 도파총+활성층+p형 도파총)에 구속되는 광모드가 넓어(broad)져서 활성층에 구속되는 양의 감소되기 때문일 것으로 예측된다.

<75> 결론적으로, 본 실험을 수행하면서 광모드의 손실을 최소화하면서 단일 횡모드를 갖는 레이저 발진이 가능한 광도파로 구조를 갖는 레이저 다이오드가 가능하다는 것을

알 수 있었고, 그것은 바로 p형 클래드층을 제거하는 대신 n형 클래드층을 상대적으로

두껍게 한 본 발명에 의한 레이저 다이오드임을 알 수 있었다. 또, p형 클래드층을 제거

함으로써, 레이저 다이오드의 전체 스트레인도 차아짐을 알 수 있었다.

<76> 상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를

한정하는 것이라기보다, 바람직한 실시예의 예시로져해석되어야 한다. 예들 들어 본 발명

이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 기술적 사상을 III-V

화합물 반도체층이 아닌 다른 화합물 반도체층을 이용한 레이저 다이오드 구조에 적용

할 수도 있을 것이고, 상술한 구조와 다른 구조를 갖는 레이저 다이오드, 예컨대 라지

웨이브 가이드를 구비하는 레이저 다이오드에도 적용할 수 있을 것이다. 이와 같은 본 발명

의 기술 사상을 포함하는 변형된 레이저 다이오드를 구현하는 것이 가능하기 때문에 본

발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허청 규정에 기재된

기술적 사상에 의해 정하여져야 한다.

【발명의 효과】

<77> 상술한 바와 같이, 본 발명은 AlGaN/GaN의 겹층이 복수회 적층된 다중 양자장벽과 같은 혹은 AlGaN/InGaN의 겹층이 복수회 적층된 스트레인 보상 다중 양자장벽을 활성층의 상부 및 하부 중 적어도 선택된 어느 일측에 구비하거나 동일한 구조에서 p형 클래드층을 제거한, 그러나 n형 클래드층의 두께는 상대적으로 두껍게 한 레이저 다이오드 또는 이들의 조합으로써 후자에서 상기 다중 양자장벽 대신 전자 차단의 효율을 높인 전자 차단층을 구비하는 레이저 다이오드를 제공한다. 따라서, 본 발명에 의한 레이저 다이오드를 이용하는 경우에 다음과 같은 효과를 얻을 수 있다.

<78> 1. 다중 양자 장벽층 또는 차단 효율을 높인 전자 차단층으로 인해 활성층으로부터 오버플로우되는 캐리어 양을 줄일 수 있다.

<79> 2. 이와 함께, AlGaN/InGaN 스트레인 보상 다중 양자 장벽의 경우에 스트레인 보상 (strain compensating)에 의해 레이저 다이오드 내의 스트레인을 줄일 수 있는데, 활성 층과 열적, 결정학적으로 부정합이 큰 p형 클래드층을 구비하지 않음으로써 레이저 다이오드 전체 스트레인을 더욱 감소시킬 수 있고, 그 결과 디바이스를 구성하는 각 물질층 모두 구조의 크랙을 방지할 수 있다.

<80> 3. p형 클래드층의 제거됨으로써, p형 불순물의 도핑을 높여 저향을 낮춤과 함께 광모드 손실이 줄고 광이득이 증가되므로, 레이저 다이오드의 레이저 발진을 위한 임계기와 광도 전류가 감소된다.

<81> 4. p형 클래드층이 구비되지 않음으로써, p형 클래드층의 형성에 수반되는 고온 노광도 정에 의한 활성층의 열적 열화를 방지할 수 있고, 따라서 레이저 다이오드의 흐름도 특성화 이 향상된다.

<82> 5. 반도체 발광소자의 수명(lifetime)이 늘어나고 p형 클래드층의 형성과 관련된 제조 공정이 생략됨으로써 레이저 다이오드의 제조 공정이 단순화된다.

【특허청구범위】

【청구항 1】

0 < x < 1 이라 할 때,

GaN 계 화합물 반도체로 형성된 활성층; 및

상기 활성층의 상부 및 하부에 각각 $Al_xGa_{1-x}N$ 층과 GaN 층의 겹층을 적어도 2회 이

상 반복 적층하여 에너지 밴드가 복수개의 다중 양자 장벽 구조를 갖도록 상기 활성층의

상부 및 하부 중 적어도 어느 일측에 형성된 다중 양자 장벽층들;

구비한 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 2】

제 1 항에 있어서,

상기 활성층 혹은 다중 양자 장벽층들의 상하부에는 각각 GaN 광도파층이 더 구비

된 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 3】

제 1 항에 있어서,

상기 활성층은 $In_xGa_{1-x}N$ 층과 $In_yGa_{1-y}N$ 층의 겹층, $In_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층, $In_xGa_{1-x}N$ 층과 $In_yAl_zGa_{1-y-z}N$ 층의 겹층, $In_xAs_yGa_{1-x-y}N$ 층과 $In_zGa_{1-z}N$ 층의 겹층 및 $In_xAs_yGa_{1-x-y}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들 중 어느 한 겹층이 복수회 이상 적층되어 다중 양자 우물 구조로 형성된 것이고, $0 \leq x < 1$ 이고, $0 \leq y < 1$ 이고, $0 \leq z < 1$ 이고, $x+y < 1$ 이며, $y+z < 1$ 인 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 4】

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

$0 < x < 1$ 이고, $0 \leq y < 1$ 이며, $x > y$ 라 할 때, 상기 다중 양자 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들마다 상기 $Al_xGa_{1-x}N$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

$0 < x < 1$ 이고, $0 \leq y < 1$ 이며, $x > y$ 라 할 때, 상기 다중 양자 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들마다 상기 $Al_xGa_{1-x}N$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 5】

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

$0 < x < 1$ 이고, $0 \leq y < 1$ 이며, $x > y$ 라 할 때,

상기 다중 양자 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들마다 상기 GaN 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 6】

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

$0 < x < 1$ 이고, $0 \leq y < 1$ 이며, $x > y$ 라 할 때,

상기 다중 양자 장벽층은 상기 $Al_xGa_{1-x}N$ 층과 $Al_yGa_{1-y}N$ 층의 겹층들마다 상기 $Al_xGa_{1-x}N$ 층들의 Al 함량을 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광소자.

【청구항 7】

제 1 항 내지 제 3 항 중 어느 한 항에 있어서,

$0 < x < 1$ 이라 하고, $0 < y \leq 1$ 이라 할 때,

상기 다중 양자 장벽층은 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층을 적어도 2회 이상 반

복 적층하여 에너지 밴드가 복수개의 다중 양자 장벽구조를 갖도록 형성된 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광조차. 다른 양자 장벽을 가진 질화물 반도체 장벽을 가진다. 【청구항 8】

제 7 항에 있어서,

상기 다중 양자 장벽층은 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층들마다 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 하는 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광조차. 다른 양자 장벽을

가진다. 【청구항 9】

제 7 항에 있어서,

상기 다중 양자 장벽층은 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층들마다 상기 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 하는 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광조차. 다른 양자 장벽을

가진다. 【청구항 10】

제 7 항에 있어서,

상기 다중 양자 장벽층은 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층의 겹층들마다 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층들의 Al 함량을 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한 것을 특징으로 하는 다중 양자 장벽을 가진 질화물 반도체 발광조차.

【청구항 11】

기판;

상기 기판 위에 형성된 광 방출이 일어나는 활성층;

상기 기판과 상기 활성층 사이에 구비되어 있어, 상기 기판 방향으로의 광손실을

방지하도록 구비된 n형 클래드층을 포함하는 레이저를 위한 n형 물질층;

상기 활성층 상에 순차적으로 구비된 캐리어 장벽층, p형 도파층 및 p형 화합물

반도체층; 및

상기 활성층으로의 캐리어 확산을 위한 전위차를 형성하는 n형 및 p형 전극;

“비하는 것을 특징으로 하는 질화물 반도체 발광소자는 겨울, 봄, 여름, 가을에 구비되는 전자

【청구항 12】

제 11 항에 있어서,

상기 n형 물질층은,

상기 n형 클래드층과 상기 활성층 사이에 구비된 n형 도파층; 및

상기 n형 클래드층과 상기 기판 사이에 구비되어 있고 상기 n형 전극과 연결되는 n형

화합물 반도체층으로 구성된 것을 특징으로 하는 질화물 반도체 발광소자.”

【청구항 13】

제 11 항 또는 제 12 항에 있어서,

상기 활성층은 다중 양자 우물(MQW) 구조를 갖는 III-V족 질화물 화합물 반도체층

인 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 14】

제 11 항 또는 제 12 항에 있어서, 상기 n형 클래드층의 두께는 $0.5\mu\text{m}\sim1.7\mu\text{m}$ 인 것
을 특징으로 하는 질화물 반도체 발광소자.

【청구항 15】

제 11 항에 있어서,
상기 p형 도파층의 두께는 광모드와 광이득이 최대가 되는 $0.15\mu\text{m}\sim0.22\mu\text{m}$ 인 것을
특징으로 하는 질화물 반도체 발광소자.

【청구항 16】

제 11 항에 있어서,
상기 캐리어 장벽층은 단일층 또는 다중 양자 장벽층인 것을 특징으로 하는 질화물
반도체 발광소자.

【청구항 17】

제 16 항에 있어서, 상기 다중 양자 장벽층은 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층 ($0 < x < 1$, $0 < y \leq 1$)의 겹층들 마다 상기 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층들의 두께를 다르게 하여 형성되는 다중 양자 장벽들의 에너지 준위를 다르게 형성한 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 18】

제 16 항에 있어서,
상기 다중 양자 장벽층은 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층과 $\text{In}_y\text{Ga}_{1-y}\text{N}$ 층 ($0 < x < 1$, $0 < y \leq 1$)의 겹층들
마다 상기 $\text{Al}_x\text{Ga}_{1-x}\text{N}$ 층들의 Al함량을 다르게 하여 형성되는 다중 양자 장벽들의 에너지
준위를 다르게 형성한 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 19】

제 11 항에 있어서, 상기 p형 도파충 및 상기 p형 화합물 반도체층은 동일 물질층이되, p형 화합물 반도체층의 토펑농도가 상기 p형도파충보다 높은 것을 특징으로 하는 질화물 반도체 발광소자.

【청구항 20】

제 11 항에 있어서, 상기 기관은 ~~선파이어~~ 기관, 질리콘 캐본(SiC), 실리콘(Si), 갈륨비소(GaAs), 갈륨 나이트라이드(GaN) 및 아연 산화물(ZnO)로 이루어진 ~~전~~ 중 ~~온~~ 선택된 어느 하나인 것을 특징으로 하는 질화물 반도체 발광소자.

【도면】

【도 1】

Al_xGa_{1-x}N

GaN

【도 2】

【도 3】

【도 4】

【도 5】

【도 6】

【도 7】

【도 8】

【도 9】

1020010001550

2001/2/

【도 10】

【도 11】

【도 12】

【도 13】

【도 14】

【도 15】

1020010001550

2001/2/

【도 16】

【도 17】

