Lecture 6 - Markov Decision Process (MDP)

Instructor: GuangBing Yang, PhD

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

1

Introduction to MDPs

- * MDPs stand for Markov decision processes formally describe an environment for reinforcement learning.
- * In MDPs, the environment is fully observable the current state completely characterizes the process.
- * The most of RL problems can be formalized as MDPs, e.g.,
 - * Bandits are MDPs with only one state;
 - * Partially observable problems can be converted into MDPs;
 - * Optimal control deals with continue MDPs.

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

2

2

Introduction to MDPs

- * MDPs frame the problem of learning from interaction to achieve a goal—namely the Agent-Environment Interface.
- * Agent is the learner and decision maker

* Environment is the thing for interesting suith

3

Introduction to MDPs

- * The MDP and agent together give rise to a sequence of trajectory: $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3$.
- * The random variables R and S have well defined discrete probability distributions dependent only on the preceding state and action.
- * The probability of those values occurring at time t given particular values of the preceding state and action:

*
$$p(s', r | s, a) = Pr\{S_t = s, R_t = r | S_{t+1} = s, A_t = a\},\$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Markov Property

- * In a Markov decision process, the probabilities given by p completely characterize the environment's dynamics.
- * This is supported by Markov Property—which defines as:
 - * A state S_t is Markov if and only if $P(S_{t+1} | S_t) = P(S_{t+1} | S_1, \dots, S_t)$.
 - * The state has all relevant information from the history
 - * Once the state is known, the history can be discarded
 - * The state is a sufficient statistic of the future
- * In other words, "the future is independent of the past given the present"

yguangbing@gmail.com, Guang.B@chula.ac.th

© GuangBing Yang, 2021. All rights reserved.

5

Feb 23 2021

5

State Transition Matrix

- * For a Markov state s and its successor state s', the state transition probability is defined by: $p_{ss'} = P(S_{t+1} = s' | S_t = s)$
- * Define the state transition matrix as the matrix of all transition probabilities from all states s to all successor states s', which is:

$$P = \begin{bmatrix} p_{11} \dots p_{1n} \\ \dots \\ p_{n1} \dots p_{nn} \end{bmatrix}, \text{ where } s \in n \times n, \text{ and } s' \in n \times n, \text{ and each row of the matrix sums to 1.}$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

6

6

Markov Process

- * A Markov process or Markov chain is defined as <S, P>
 - * S is a set of states
- * P is a state transition probability matrix with $p_{ss'} = P(S_{t+1} = s' | S_t = s)$
- * Example: Recycling Robot,

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Example: Recycling Robot

- * Sample episodes for Recycling Robot Markov Chain starting from $S_1 = \text{high}, \ S_1, S_2, \dots, S_T$.
- * h, l, h, h, l...
- * h, h, l, l, s...,

 $yguangbing@gmail.com, \ \ \underline{Guang.B@chula.ac.th}$

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

9

Markov Reward Process

- * A Markov reward process is a Markov chain with reward values
- * It is a tuple $\langle S, P, R, \gamma \rangle$
 - * S is a finite set of states
 - * P is a state transition probability matrix,
 - * R is a reward function, $R_s = \mathbb{E}[R_{t+1} | S_t = s]$
 - * γ is a discount factor, $\gamma \in [0,1]$

 $yguangbing@gmail.com, \ \ \underline{Guang.B@chula.ac.th}$

Feb 23 2021 © GuangBing Yang, 2021. All rights reserved.

1

10

9

Example: Recycling Robot MRP

11

* Don't consider the actions yet, it gives t state transition probability matrix as:

* p=

S	S'	
High	p(h h)	α
H	p(11h)	$1-\alpha$
Low	p(h 1)	$1 - \beta$
L	p(111)	β

yguangbing@gmail.com, Guang.B@chula.ac.th Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

 $\diamond\,$ The return G_{t} is the total discounted reward from time-step t.

$$_{\diamond}$$
 $G_t = R_{t+1} + rR_{t+2} + \dots, + R_T = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

* T is a final step —when the agent-environment interaction breaks naturally into subsequences, called **episodes**.

Return of Reward

- * Terminal state the end of episode
- * The discount $\gamma \in [0,1]$ is the present value of future rewards
- * The value of receiving reward R after k+1 time-steps is $\gamma^k R$.
 - * If $\gamma = 0$, the agent is "myopic" in being concerned only with maximizing immediate rewards
 - * If $\gamma \to 1$, the return objective takes future rewards into account more strongly; the agent becomes more farsighted

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

What is the purpose of the discount

- Mathematically convenient to discount rewards
- Avoid infinite returns in cyclic Markov processes
- * Uncertainty about the future many not be fully represented at the time-step t
- * A larger immediate rewards may reduce the exploration which responses delayed rewards
- * Animal/human behaviour shows preference for immediate reward
- * If all sequences terminate, use undercounted Markov reward processes ($\gamma = 1$)

yauanabina@amail.com, Guana.B@chula.ac.th

© GuangBing Yang, 2021. All rights reserved.

Value Function

- * It gives the long-term value of state s
- * The state value function $v(s) = \mathbb{E}[G_t | S_t = s], \forall s \in S_t$ is the expected return starting from state s
- $_{\diamond}$ Sample returns for Recycling Robot MRP: given $G_t = R_{t+1} + rR_{t+2} + \dots, + R_T = \sum_{i=1}^{n} \gamma^k R_{t+k+1}$
 - * starting from S_1 = high with γ = 0.5 (assume)
- * first row: high -> high, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma \alpha = 1.5\alpha$
- * second row: high -> low, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma (1 \alpha) = 0.5 + 0.5\alpha$
- * so on so forth, low -> low, recharge, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = 0 + \gamma 0 = 0$

Feb 23 2021 yauanabina@amail.com, Guana.B@chula.ac.th

© GuangBing Yang, 2021. All rights reserved.

14

13

Value Function

- * starting from S_1 = high, if γ = 1, the highly farsighted.
- * first row: high -> high, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma \alpha = 2\alpha$
- * second row: high -> low, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma (1 - \alpha) = \alpha + 1 - \alpha = 1$
- * so on so forth, low -> low, recharge, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = 0 + \gamma 0 = 0$

yauanabina@amail.com, Guana.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Value Function

- * starting from S_1 = high, if γ = 0, no discount, "myopic".
- * first row: high -> high, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma \alpha = \alpha$
- * second row: high -> low, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = \alpha + \gamma (1 \alpha) = \alpha$
- * so on so forth, low -> low, recharge, $v_1 = R_{\text{search}} + \gamma R_{\text{search}} = 0 + \gamma 0 = 0$
- * The return values are various due to the difference of the discount value γ .

vauanabina@amail.com, Guana.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Bellman Equation for MPRs

- * The value function actually consists of two parts:
 - * immediate reward R_{t+1}
 - * discounted value of successor state $\gamma v(S_{t+1})$
- * Thus, the Bellman equation is given as:

$$v(s) = E[G_t | S_t = s]$$

$$= E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$= E[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s]$$

$$= E[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

 $= E[R_{t+1} + \gamma \nu(S_{t+1}) \mid S_t = s], \forall s \in S$

yguangbing@gmail.com, Guang.B@chula.ac.th Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

17

Bellman Equation for MPRs

- * It is really a sum over all values of the three variables, a, s, and r. For each triple, we compute its probability, $\pi(a \mid s)p(s', r \mid s, a)$, weight the quantity in brackets by that probability, then sum over all possibilities to get an expected value.
- * Thus, the Bellman equation is given as:

$$_{*} v(s) = R(s) + \gamma \sum_{s' \in S} p_{ss'} v(s')$$

 $\underline{yguangbing@gmail.com}, \ \underline{Guang.B@chula.ac.th}$

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

18

18

Bellman Equation for MPRs

- * The Bellman equation can be given as in matrices form: $v = R + \gamma P v$
- * where v is a column vector with one entry per state

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} p_{11} \dots p_{1n} \\ \vdots \\ p_{n1} \dots p_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved

19

Bellman Equation for MPRs

- * The Bellman equation $v = R + \gamma P v$ is a linear equation, so we have:
- $* v = (I \gamma P)^{-1} R,$
- * The computational complexity is $O(n^3)$ for n states, and direct solution only possible for small MRPs
- * Normally, there are many methods for large MRPs, for example,
 - * Dynamic programming
 - * Monte-Carlo evaluation
 - * Temporal-Difference learning (TD)

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Markov Decision Process

- A Markov decision process (MDP) actually is a Markov reward process with decision.
 Its all states satisfy Markov property.
- * Definition: A Markov Decision Process is a tuple <S, A, P, R, γ>
 - * S is a finite set of states
 - * A is a finite set of actions
 - * P is a state transition probability matrix, $P(s, s'|a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$
 - * R is a reward function, $R(s, a) = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$
 - * γ is a discount factor $\gamma \in [0,1]$ yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

21

Policy

- * A policy *π* is a probability distribution over actions given states, it is a kind of mapping of probabilities of selecting each possible action.
- * Definition: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$
 - * a policy fully defines the behaviour of an agent
 - * MDP policies depend on the current state not the history why
 - * Policies are stationary (time-independent) $A_t \sim \pi(.|S_t), \ \forall t > 0$
 - * Given an MDP <S, A, P, R, γ > and a policy π
 - * The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, P(\pi) \rangle$
 - * The state and reward sequence S_1,R_1,S_2,R_2,\ldots is a Markov reward process < S, $P(\pi)$, $R(\pi)$, $\gamma>$ yguangbing@gmail.com, Guang.B@chula.ac.th Feb 23 2021 @ GuangBing Yang, 2021. All rights reserved.

22

21

Policy

* Definition: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$

$$P_{\pi}(s,s') = \sum_{a \in A} \pi(a \mid s) P(s' \mid s,a)$$

$$_{\scriptscriptstyle{+}} R_{\pi}(s) = \sum_{a \in A} \pi(a \mid s) R(s, a)$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

23

Value Function of MDP

* The Bellman expression of the state-value function is given as immediate reward plus discounted value of successor state:

*
$$v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$$

* Definition: the action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$* q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

24

23

Bellman Expectation Equation

* Definition: the state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

*
$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

* The action-value function $q_{\pi}(s, a)$ can be expressed as:

*
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

yauanabina@amail.com, Guana.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved

25

Bellman Expectation Equation for v_{π} , Q_{π}

$$_{\scriptscriptstyle{+}} v_{\pi}(s) = \sum_{a \in A} \pi(a \,|\, s) q_{\pi}(s,a)$$

$$_{+} q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p_{ss'}(a) v_{\pi}(s')$$

* substitute $q_{\pi}(s, a)$ with above equation, we have:

$$_{\downarrow}$$
 $v_{\pi}(s) = \sum_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} p_{ss}(a) v_{\pi}(s') \right)$, and the same as

$$q_{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} p_{ss'}(a) \sum_{a' \in A} \pi(a' \mid s') q_{\pi}(s',a')$$
 yguangbing@gmail.com, Guang.B@chula.ac.th Feb 23 2021 © G

Feb 23 2021 © GuangBing Yang, 2021. All rights reserved.

26

Bellman Expectation Equation for v_{π} , Q_{π}

- * The Bellman equation can be given as in matrices form: $v_{\pi} = R(\pi) + \gamma P(\pi)v_{\pi}$
- * where v is a column vector with one entry per state

$$\begin{bmatrix}
v_{\pi}(1) \\ \vdots \\ v_{\pi}(n)
\end{bmatrix} = \begin{bmatrix}
R_{1}(\pi) \\ \vdots \\ R_{n}(\pi)
\end{bmatrix} + \gamma \begin{bmatrix}
p_{11}(\pi) \dots p_{1n}(\pi) \\ \vdots \\ p_{n1}(\pi) \dots p_{nn}(\pi)
\end{bmatrix} \begin{bmatrix}
v_{\pi}(1) \\ \vdots \\ v_{\pi}(n)
\end{bmatrix}$$

 $v_{\pi} = (I - \gamma P(\pi))^{-1} R(\pi)$

yauanabina@amail.com, Guana.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved

Optimal Value Function

* The optimal state-value function is the maximum value function over all policies:

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

* The optimal action-value function is the maximum action-value function over all policies:

$$* q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

* An MDP is solved when knowing the optimal value function.

yauanabina@amail.com, Guana.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

Optimal Policy

- * Define a partial ordering over policies: $\pi \ge \pi'$ if $v_{\pi}(s) \ge v_{\pi}(s)$, $\forall s$
- * Behind theorem:
- * There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
- * All optimal policies achieve the optimal value function: $v_{\pi_*}(s) = v_*(s)$
- * All optimal policies achieve the optimal action-value function: $q_{\pi_*}(s,a) = q_*(s,a)$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021 © GuangBing Yang, 2021. All rights reserved.

29

29

Search for an Optimal Policy

* An optimal policy can be found by maximizing over $q_*(s, a)$

*
$$\pi_*(a | s) = 1$$
 if $a = \operatorname{argmax} q_*(s, a)$, or

- * $\pi_*(a \mid s) = 0$ otherwise
- * Thus, there is always a deterministic optimal policy for any MDP, and if knowing $q_*(s, a)$, we immediately have the optimal policy.

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

30

Bellman Optimality Equation for v_* and q_*

$$v_{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in S} P_{ss'}(a) v_{*}(s')$$

$$q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p_{ss'}(a) v_{*}(s')$$

$$q_{*}(s, a) = R(s, a) + \gamma \sum_{s' \in S} p_{ss'}(a) \max_{a' \in A} q_{*}(s', a')$$

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved

31

Solving Bellman Optimality Equation

- * Bellman optimality equation is non-linear
- * No closed form
- * use Value Iteration,
- * policy iteration
- Q-learning
- * SARSA

yguangbing@gmail.com, Guang.B@chula.ac.th

Feb 23 2021

© GuangBing Yang, 2021. All rights reserved.

³²

Recap

- Reinforcement learning is about learning from interaction how to behave in order to achieve a goal.
- * Agent and its environment interact over a sequence of discrete time steps.
- $\ensuremath{^{\circ}}$ A policy is a stochastic rule by which the agent selects actions as a function of states.
- * MDPs stand for Markov decision processes formally describe an environment for reinforcement learning.
- * Defined transition probabilities constitute a Markov decision process (MDP)
- * A finite MDP is an MDP with finite state, action, and (as we formulate it here) reward sets.

Feb 23 2021

* The return is the function of future rewards that the agent seeks to maximize.

yguangbing@gmail.com, Guang.B@chula.ac.th

© GuangBing Yang, 2021. All rights reserved.

33

33

Questions and Lab

35

Recap

- The undiscounted formulation is appropriate for episodic tasks, in which the agentenvironment interaction breaks naturally into episodes;
- * the discounted formulation is appropriate for continuing tasks.
- * A policy's value functions assign to each state, or state–action pair.
- * Optimal policy has the maximum expected returns from the optimal value functions.
- Any policy that is greedy with respect to the optimal value functions must be an optimal policy.
- * The Bellman optimality equations are special consistency conditions that the optimal value functions must satisfy.

Feb 23 2021

yguangbing@gmail.com, Guang.B@chula.ac.th

© GuangBing Yang, 2021. All rights reserved.

3/1