Autômatos finitos não determinísticos

Linguagens Formais e Autômatos

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Em DFAs, dado um estado qualquer q e um símbolo de entrada, sabemos exatamente qual será o próximo estado.
- Em outras palavras, todo passo de computação é gerado unicamente do passo anterior.
- Chamamos isso de **determinismo**.

- Em uma situação de não-determinismo, podemos derivar diferentes passos de computação a partir de um único ponto.
- Isto é, dado um estado q e um símbolo de entrada, podemos produzir como resultado, mais de um possível estado.

- O não-determinismo pode ser visto como uma generalização do determinismo, visto que, todo modelo determinístico também é um não-determinístico.
- Estudaremos a versão não-determinística dos autômatos finitos: os autômatos finitos não-determinísticos, ou simplesmente, NFAs.

Sumário

Tome o seguinte NFA:

Este autômato reconhece a linguagem $L = \{w|w \in \{0,1\}^* \text{ e } w \text{ termina com } 01\}$

Tome o seguinte NFA:

Ao se deparar com o símbolo 0 no estado q_0 , o que o autômato faz? Para qual estado ele vai?

Tome o seguinte NFA:

Ele permanece em q_0 e vai para q_1 , simultaneamente!

Tome o seguinte NFA:

Esse autômato tem a capacidade de adivinhar quando estamos nos dois últimos símbolos da entrada.

Tome o seguinte NFA:

Como ele opera quando a entrada é w=00101?

Figura: Processamento do NFA sobre a entrada $w=00101\,$

NFAs: definição formal

Definição (Definição formal de um NFA)

Um NFA é uma 5-tupla $(Q, \Sigma, \delta, q_0, F)$, em que:

- Q é um conjunto finito de estados,
- Σ é o alfabeto de entrada,
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ é a função de transição,
- $q_0 \in Q$ é o estado inicial,
- $F \subseteq Q$ é o conjunto de estados de aceitação.

NFAs: definição formal

Para o NFA de exemplo abaixo, temos a seguinte função de transição:

NFAs: noção formal de computação

Definição (Aceitação em NFAs)

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um NFA e $w=w_1w_2\dots w_n\in\Sigma^*$. Dizemos que N aceita w se existe uma sequência de estados r_0,r_1,\dots,r_n com as seguintes condições:

- $r_0 = q_0$
- $r_{i+1} \in \delta(r_i, w_{i+1}), \ 0 \le i < m$
- $r_m \in F$

Em outras palavras, basta que um ramo de computação chegue em um estado de aceitação ao final da entrada w para que N aceite w.

Sumário

3 Equivalência

trodução NFAs **Equivalência** ϵ -NFA

Equivalência de NFAs e DFAs

- Apesar de ser uma característica interessante, NFAs não resolvem mais problemas que DFAs.
- Os dois formalismos reconhecem a mesma classe de linguagem, as linguagens regulares.
- Conseguimos mostrar que todo NFA possui um DFA equivalente, isto é, que reconhece a mesma linguagem.

Ideia da prova

A ideia é, a partir de um NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$, construir um DFA $D=(Q_D,\sigma,\delta_D,q_0,F_D)$.

Ideia da prova

No caso $Q_D=\mathcal{P}(Q_N)$, ou seja, se N possui $|Q_N|$ estados, D possuirá $2^{|Q_N|}$ estados. Contudo, alguns estados poderão ser excluídos em uma etapa posterior, pois não serão acessíveis do estado inicial. Cada um desses estados é rotulado com um subconjunto de Q_N .

trodução NFAs **Equivalência** ϵ -NFA

Equivalência de NFAs e DFAs

Ideia da prova

O conjunto de estados de aceitação F_D será um subconjunto de Q_D de forma que todo $S \in F_D$, temos que se $X \in F_N$, temos que $X \in S$. Em outras palavras, os estados de aceitação em F_D serão aqueles que, tem ao menos, um estado de aceitação em F_N .

Ideia da prova

Por fim, para qualquer $S \in Q_D$ e um símbolo $a \in \Sigma$, temos que:

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

.

Tomando o NFA de exemplo:

O DFA equivalente teria os seguintes estados:

$$(q_0,q_1)$$

$$(q_0,q_2)$$

$$\{q_1,q_2\}$$

$$\left\{q_0,q_1,q_2\right\}$$

Adicionando as transições, teríamos:

Sumário

ϵ-NFA

- ϵ -NFAs estendem a noção de NFAs ao possibilitar uma **transição livre**, isto é, aquela que não consome um símbolo da entrada.
- Apesar dessa nova capacidade, esse formalismo não computa mais problemas que os NFAs ou DFAs. Mas pode ser utilizado convenientemente.
- Esses formalismos também tem uma proximidade muito grande com as expressões regulares.

ϵ -NFAs: um exemplo

- Suponha que o objetivo seja reconhecer um número.
- Números:
 - ① Opcionalmente começam com um sinal (-ou +).
 - São compostos de uma sequência de dígitos.
 - Um ponto decimal.
 - Outra sequência de dígitos.
- 2 e 4 são opcionais, mas pelo menos você deve ter um deles. Por exemplo .50 e 50. são ambos válidos, assim como 50.50, ou +50.50 e -50.50.

ϵ -NFAs:um exemplo

ϵ -NFAs: um exemplo

• Como modificar o ϵ -NFA anterior para aceitar números cujo uso do ponto decimal também seja opcional?

rodução NFAs Equivalência ϵ -NFA

ϵ -NFAs: definição formal

Definição (Definição formal de um ϵ -NFA)

Um ϵ -NFA é uma 5-tupla $(Q, \Sigma, \delta, q_0, F)$, em que:

- Q é um conjunto finito de estados,
- Σ é o alfabeto de entrada,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$ é a função de transição,
- $q_0 \in Q$ é o estado inicial,
- $F \subseteq Q$ é o conjunto de estados de aceitação.

Em relação aos NFAs, apenas a função δ muda, que passa a aceitar o símbolo ϵ .

ϵ -NFAs: conversão de ϵ -NFA para NFA

- Usar transições do tipo ϵ não adiciona poder computacional em relação aos DFAs ou NFAs.
- De fato, qualquer ϵ -NFA pode ser convertido em um NFA equivalente.
- Para mostrar isso, precisamos de algumas noções.

ϵ -NFAs: conversão de ϵ -NFA para NFA

Definição (ECLOSE)

O fecho- ϵ , chamado de ECLOSE, pode ser definido recursivamente da seguinte forma:

- $q \in ECLOSE(q)$.
- Se $p \in \text{ECLOSE}(q)$ e $r \in \delta(p, \epsilon)$, então, $r \in \text{ECLOSE}(q)$.

Em outras palavras, $\mathrm{ECLOSE}(q)$ contém todos os estados atingíveis por q usando apenas transições ϵ

ϵ -NFAs: conversão de ϵ -NFA para NFA

Algoritmo para computar NFA equivalente ao ϵ -NFA

Seja $E=(Q,\Sigma_E,\delta_E,q_0,F_E)$ um ϵ -NFA. Construiremos um NFA $N=(Q,\Sigma_N,\delta_N,q_0,F_N)$ da seguinte forma.

• Se $q \in F_E$ e $q \in ECLOSE(p)$, então $q \in F_N$.

$$F_N = \{ s \in Q | \text{ECLOSE}(s) \cap F_E \neq \emptyset \}$$

lacksquare Se $s' \in \mathrm{ECLOSE}(s)$ e $t \in \delta_E(s',a)$, então $t \in \delta_N(s,a)$.

$$\delta_N(s, a) = \bigcup_{s' \in \text{ECLOSE}(s)} \delta(s', a)$$