FICHE DE COURS 8

Cinématique du point

Ce que je dois être capable de faire après avoir appris mon cours

Connaître les propriétés du produit scalaire et du produit vectoriel.
Utiliser les règles de la main droite pour orienter une base directe.
Projeter tout vecteur dans une base orthonormée donnée.
Définir un référentiel à l'aide d'un observateur.
Repérer un point dans le temps grâce à une horloge et dans l'espace grâce à un repère fixe ou mobile dans le référentiel d'étude.
Définir le repère associé à chacun des trois systèmes de coordonnées usuels à l'aide d'un schéma : cartésiennes cylindriques et sphériques.
Définir les notions d'équations horaires et de trajectoire.
Décomposer les bases cylindrique et sphérique dans la base cartésienne.
Établir les relations de passage entre les coordonnées cylindriques et cartésiennes d'une part et les coordonnées sphériques et cartésiennes d'autre part.
Établir les expressions des vecteurs position, vitesse et accélération dans un repère cartésien ou cylindrique en fonction des variables d'espace associées.
Établir les expressions des dérivées temporelles des vecteur des bases cylindrique et sphérique.
Établir les expressions des vecteurs position et vitesse dans un repère sphérique en fonction des variables d'espace associées.
Définir le vecteur déplacement élémentaire pour chaque système de coordonnées en lien avec la notion générale de différentielle.
Établir les expressions du vecteur déplacement élémentaire dans chaque système de coordonnées à partir d'un schéma.
Établir et utiliser les longueurs, surfaces ou volumes élémentaires pour étudier des objets de haute symétrie.
Énoncer les propriétés des mouvements rectiligne, rectiligne uniforme et rectiligne et uniformément varié.
Énoncer les propriétés des mouvements circulaire et circulaire uniforme.
Définir la pulsation instantanée d'un mouvement circulaire et la période d'un mouvement circulaire uniforme.
Définir un solide indéformable.
Énoncer les propriétés associées aux mouvements de translation pure ou de rotation pure d'un solide indéformable.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 \square Coordonnées cartésiennes dans le repère fixe $(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$:

$$\overrightarrow{OM} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad ; \qquad \overrightarrow{v(M/\mathcal{R})} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} \qquad ; \qquad \overrightarrow{a(M/\mathcal{R})} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix}$$

où $(x,y,z)\in\mathbb{R}^3.$ Un point M quel conque est repéré par $\mathrm{M}(x,y,z).$

 \square Coordonnées cylindriques dans le repère mobile $(O, \overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$:

$$\overrightarrow{OM} = \begin{pmatrix} r \\ 0 \\ z \end{pmatrix} \qquad ; \qquad \overrightarrow{v(M/\mathcal{R})} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ \dot{z} \end{pmatrix} \qquad ; \qquad \overrightarrow{a(M/\mathcal{R})} = \begin{pmatrix} \ddot{r} - r\dot{\theta}^2 \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} \\ \ddot{z} \end{pmatrix}$$

où $r \in \mathbb{R}^+$, $\theta \in [0; 2\pi]$ et $z \in \mathbb{R}$. Un point M quelconque est repéré par $M(r, \theta, z)$.

 \square Coordonnées sphériques dans le repère mobile $(O, \overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_\varphi})$:

$$\overrightarrow{OM} = \begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix} \qquad ; \qquad \overrightarrow{v(M/\mathcal{R})} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta \ \dot{\varphi} \end{pmatrix}$$

où $r \in \mathbb{R}^+$, $\theta \in [0; \pi]$ et $\varphi \in [0; 2\pi]$. Un point M quelconque est repéré par $M(r, \theta, \varphi)$.

☐ Vecteur déplacement élémentaire :

$$\overrightarrow{dOM} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} \qquad ; \qquad \overrightarrow{dOM} = \begin{pmatrix} dr \\ rd\theta \\ dz \end{pmatrix} \qquad ; \qquad \overrightarrow{dOM} = \begin{pmatrix} dr \\ rd\theta \\ r\sin\theta d\varphi \end{pmatrix}$$

☐ Longueur d'une courbe :

$$\ell_{A \to B} = \int_{A}^{B} \|\overrightarrow{dOM}\| = \int_{t_{A}}^{t_{B}} \|\overrightarrow{v}\| dt$$

 \square Mouvement uniforme:

$$\|\overrightarrow{v(M/\mathcal{R})}\| = cste$$

 \square Mouvement rectiligne uniforme :

$$\overrightarrow{v(M/\mathcal{R})} = \overrightarrow{cste}$$

☐ Mouvement circulaire uniforme :

$$\overrightarrow{v(M/\mathcal{R})} = R\omega_0 \overrightarrow{u_\theta} \qquad ; \qquad \overline{a(M/\mathcal{R})} = -R\omega_0^2 \overrightarrow{u_r} = -\frac{\|v\|^2}{R} \overrightarrow{u_r}$$

où R est le rayon de la trajectoire circulaire et $\omega_0 = \dot{\theta} = cste$ est la vitesse angulaire.