```
# World Life Expectancy Project (Exploratory Data Analysis)
# Alex says that there are two parts to exploratory data analysis, or EDA.
# The first part is in conjunction with data cleaning and the goal is to find out
# what's wrong with the dataset and should be fixed. The second part focuses on
# finding insights or trends in the data that can be used in the future.
# Look at the life expectancy table and try to find anything potentialy helpful.
SELECT *
FROM world life expectancy
# Look at how different countries did in terms of increasing (or maybe even decreasing)
# the life expectancy of their people.
SELECT Country, MIN(`Life expectancy`), MAX(`Life expectancy`)
FROM world_life_expectancy
GROUP BY Country
ORDER BY Country DESC
# In the result of the above query, there were some countries
# where the min or max life expectancy was 0, which could indicate
# a data quality issue; therefore, the query above will be run again
# with a filter to exclude rows that have these zeros.
# Note: Alex uses <> for inequality. I personally use != for inequality.
# The outcome should be the same.
SELECT Country, MIN('Life expectancy'), MAX('Life expectancy')
FROM world life expectancy
GROUP BY Country
HAVING 0 != MIN(`Life expectancy`)
        AND 0 != MAX(`Life expectancy`)
ORDER BY Country DESC
# Run the above query again but this time include the range (i.e., max - min)
# of the life expectancy values, and order those ranges from highest to lowest
# Note: I used a title for the ranges that's different from what Alex uses in the video.
# He says that these ranges are for a span of fifteen years; however, I noticed during the
# data cleaning process that the United States has sixteen years of data in the table. Since there
# could be some countries that have fewer years on record than other countries,
# I'll just keep the title a little more general
SELECT Country, MIN(`Life expectancy`), MAX(`Life expectancy`),
        ROUND((MAX(`Life expectancy`) - MIN(`Life expectancy`)), 1) AS
Life Increase Over All Years on Record
FROM world life expectancy
GROUP BY Country
HAVING 0 != MIN(`Life expectancy`)
        AND 0 != MAX(`Life expectancy`)
```

```
ORDER BY Life_Increase_Over_All_Years_on_Record DESC
# Run the above query again but sort the ranges in ascending order to see which countries
# had the smallest increase in life expectancy.
SELECT Country, MIN(`Life expectancy`), MAX(`Life expectancy`),
        ROUND((MAX(`Life expectancy`) - MIN(`Life expectancy`)), 1) AS
Life_Increase_Over_All_Years_on_Record
FROM world_life_expectancy
GROUP BY Country
HAVING 0 != MIN(`Life expectancy`)
        AND 0 != MAX(`Life expectancy`)
ORDER BY Life_Increase_Over_All_Years_on_Record ASC
# It looks like countries that have a high min value to begin with
# will have small differences from the max value
# I'm noticing that the results of the EDA so far are prompted by curiosity about the data.
# Like...first asking one question about a subset of the data, and then asking further questions
# about that subset, and so on and so forth.
# I do have a concern here, though. Alex is investigating min and max values for life expectancy.
# However, it's not clear where in the years recorded that these min and max values occur. It seems like
# Alex is assuming that the min value occurs during the first year on record while the max occurs
# during the last year on record, and that progress had been close to, if not definitely, linear.
# However, it is possible that there could've been some wild fluctuations over the course of the years
# that could cause the life expectancy to start at one value, dip for one reason, spike upwards for
another,
# and then return to the starting value. It may be worthwhile to do my own EDA with this dataset later
# for now, it might make more sense to just follow along with what Alex is doing in the video.
# Look at the average life expectancy of all countries recorded by year.
# Round the averages to two decimal places in order for the numbers to look
# cleaner. Also, filter out rows where the life expectancy for any given year is zero.
SELECT Year, ROUND(AVG(`Life expectancy`), 2)
FROM world life expectancy
WHERE 0 != `Life expectancy`
GROUP BY Year
ORDER BY Year ASC
# Overall, it looks like there's a persistent increase of average life expectancy over the years. Worth
# is that in addition to observing the central tendency, it may be worthwhile to consider spread around
# central tendancy (standard deviation in this case).
```

```
# Review the life expectancy table to see if there's anything else interesting to look at.
SELECT *
FROM world_life_expectancy
# Alex says that correlations between columns can be calculated in SQL,
# and he would like to look into any correlations between life expectancy and GDP.
SELECT Country, 'Life expectancy', GDP
FROM world life expectancy
# Look at the average life expectancy for each country.
# Round these averages to one decimal place this time because the original numbers
# are rounded to one decimal place. Look at the average GDP for each country, and
# round these averages to one decimal place. I'm using aliases for these averages
# that are different from what Alex uses in order to better describe what these valaues represent.
# Also, this time around Alex doesn't filter out rows where the life expectancy
# for any given year is zero. I'll do the same as well for the sake of trying to match his output; however,
# I've kept a WHERE statement as a comment to reflect that I think that it might be worthwile
# to filter out rows where life expectancy is zero.
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(GDP), 1) AS
Avg GDP
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
# In the output of the above query, there are some countries with an average GDP of zero.
# Moreover, the Cook Islands have zeros for both average life expectancy and average GDP.
# Repeat the above query, but now order the average life expectancy values in ascending order.
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(GDP), 1) AS
Avg GDP
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
ORDER BY Avg_Life_Expectancy ASC
# Alex notes that the countries with zeros for average life expectancy are small countries
# and may not be reporting their life expectancy figures, so their fields are filled with zeros instead.
# However, the presence of zeros could be a problem when performing EDA
# Repeat the above query, but this time filter retain only the rows that have average life expectancy
```

greater than zero and an average GDP greater than zero.

values

```
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(GDP), 1) AS
Avg_GDP
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
HAVING 0 < Avg Life Expectancy
       AND 0 < Avg GDP
ORDER BY Avg_Life_Expectancy ASC
# Repeat the above query but this time order by average GDP in ascending order.
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg Life Expectancy, ROUND(AVG(GDP), 1) AS
Avg_GDP
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
HAVING 0 < Avg Life Expectancy
       AND 0 < Avg GDP
ORDER BY Avg_GDP ASC
# Review the average life expectancy of all countries recorded by year.
# Round the averages to two decimal places in order for the numbers to look
# cleaner. Also, filter out rows where the life expectancy for any given year is zeros.
SELECT Year, ROUND(AVG(`Life expectancy`), 2)
FROM world life expectancy
WHERE 0 != `Life expectancy`
GROUP BY Year
ORDER BY Year ASC
# Alex says it's helpful to save past queries in order to reuse them later on;
# however, I'm inclined to copy-and-paste older queries in order to retain
# proper accounting of my thought processes
# According to Alex, it looks like the average of the average life expectancies found in the above query
# is about sixty-eight years.
# Repeat the query two above, to see how countries compare to this average of averages
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(GDP), 1) AS
Avg_GDP
FROM world_life_expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
HAVING 0 < Avg_Life_Expectancy
       AND 0 < Avg GDP
ORDER BY Avg GDP ASC
```

Alex notes that countries with lower aveage GDPs appear to have lower average life expectancies, # possibly because of suboptimal healthare or social infrastructure in those countries.

I've been under the impression that Alex would use some sort of built-in function to calculate correlation,

and to be real I feel more comfortable taking that approach. Eyeballing correlations feels risky to me # becuase human error can negatively impact analysis. I did a quick Google search, and one source states that there is

a function that can calculate correlation values between two columns - CORR(Y, X) - but it's not supported by MySQL

(source = https://datacomy.com/sql/functions/aggregation/correlation/). However, after further investigation

another source points out that MySQL can be "extended" with a package of statistical functions, including

the above correlation function (source = https://sqlstat.sourceforge.net/index.html). For now, I think I'll just

do my best to follow along with what Alex is doing in the video.

It looks like countries with high average GDPs also have high average life expectancies.

Alex says that in order to confirm that there is a correlation between these two columns, # other tools like Tableau or Power BI can generate visualizations based off of this data. I suppose # that there really are limitations to what SQL (or at least MySQL) can do.

Attempt to place average life expectancies and average GDP values into bins, and then # filter countries based off of those bins. First though look at the full life expectancy table # in order to guesstimate a halfway point of the GDP values for binning purposes.

SELECT *
FROM world_life_expectancy
ORDER BY GDP
.

Assign numerical bin tags based off of that guesstimated halfway point and then add up the number of items per bin

to determine how many high GDP rows there are SELECT

```
SUM(CASE
       WHEN 1500 <= GDP THEN 1
  ELSE 0
END) AS High GDP Count
FROM world_life_expectancy
ORDER BY GDP
# Run another query that's similar to the one above but with an extra column
# similar to the High GDP Count column.
# The NULL value in the CASE statement inside of the AVG() function is important
# for not bringing down the avarage of the life expectancies for the high GDP countries.
# I used a column name for the average that's different from the column name used by Alex
# in order for me to better understand what's going on.
# Reminder: The average value in the ouput of the query below is the average for the
# rows labeled as high GDP, not for all of the countries.
SELECT
SUM(CASE WHEN 1500 <= GDP THEN 1 ELSE 0 END) AS High GDP Count,
AVG(CASE WHEN 1500 <= GDP THEN `Life expectancy` ELSE NULL END) AS
Avg_High_GDP_Life_expectancy
FROM world life expectancy
ORDER BY GDP
# Repeat the above query but now also take into consideration the low GDP countires.
SUM(CASE WHEN 1500 <= GDP THEN 1 ELSE 0 END) AS High GDP Count,
AVG(CASE WHEN 1500 <= GDP THEN `Life expectancy` ELSE NULL END) AS
Avg High GDP Life expectancy,
SUM(CASE WHEN GDP <= 1500 THEN 1 ELSE 0 END) AS High GDP Count,
AVG(CASE WHEN GDP <= 1500 THEN `Life expectancy` ELSE NULL END) AS
Avg_Low_GDP_Life_expectancy
FROM world life expectancy
ORDER BY GDP
# Alex is using his understanding of the data derived from previous queries to look around
# and find anything interesting. He also says that the work done here with life expectancy and GDP
# can be applied to just about any column.
# I do have a conern about the output of the above query. It is my understanding that some countries
# have 0 as their GDP value, so they'd be considered low GDP countries by one of the CASE statements.
# Consider the following query
SELECT Country, 'Status', AVG('Life expectancy')
FROM world_life_expectancy
WHERE GDP = 0
GROUP BY Country, 'Status'
ORDER BY 'Status' ASC, Country ASC
```

; # Based on the output of the above query, the collection of countries with GDP values of zero includes both developed countries # (e.g., the UK and the US) and developing countires (e.g., Iraq and Iran). Interestingly, the Republic of Korea # (i.e., South Korea) is classified as developing. SELECT Country, 'Year', 'Status' FROM world life expectancy WHERE Country = 'Republic of Korea' # Based off of the above query, the Republic of Korea had been a developing country for several years even though now # I'd consider this country to be an economic and cultural powerhouse. # Alas, my own curiosity and growing understanding of this data is taking me along my own EDA, # so I might as well for now continue following along with Alex. # Alex would like to investigate average life expectancy for the different country statuses. Currently there # are only two statuses, developing and developed. SELECT `Status`, ROUND(AVG(`Life expectancy`), 1) FROM world life expectancy **GROUP BY 'Status'** # Alex would like to investigate the number of countries classified as either # developing or developed SELECT 'Status', COUNT(DISTINCT Country) FROM world life expectancy **GROUP BY 'Status'**

Based off of the result of the above query, Alex figures that the average life expectancy # can be skewed in favor of the developed countries because they have so few countries to bring their value down.

I have an understanding of what he's trying to argue, but at the same time I also have a gut feeling # that there might be a flaw in the logical progression of his argument, either explicity mentioned or implied.

Maybe I'll be able to better articulate the rationale of my gut instinct later on, but perhaps the development status

has more of an impact on average life expectancy rather than number of members in each status, and perhaps

the number members in status has more of an impact on the distribution around that mean (i.e., the standard deviation)

than on the average itself.

```
# Alex would like to combine the two queries above into one.
SELECT `Status`, COUNT(DISTINCT Country), ROUND(AVG(`Life expectancy`), 1)
FROM world life expectancy
GROUP BY 'Status'
# Alex would now like to look into the BMI.
# First look at the table once more to determine what to compare the BMI to.
SELECT *
FROM world life expectancy
# Alex has decided to look at average life expetancy and average BMI over the recorded years
# and group those values by country. I've opted to use column headers that better help me
# keep track of what's happening.
# Alex points out that while it can be worthwhile to rewrite code from scratch for learning purposes,
# in the real world he's more inclined to just reuse code that's been written already in order
# to save some time.
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(BMI), 1) AS
Avg BMI
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
HAVING 0 < Avg_Life_Expectancy
       AND 0 < Avg_BMI
ORDER BY Avg BMI DESC
# Alex is initially shocked by these BMI numbers because 60+ just seems so high.
# At the same time, I'm thinking that there are no units displayed in the column names,
# and as far as I can recall Alex hasn't mentioned a data dictionary, and if such a
# dictionary exists, then maybe some of the BMI values can make sense.
# Next, Alex tries to find any correlation between average live expectancy and
# average, and based off of the output from the above query it looks like countries
# with above-average life expectancy values have high BMI values. Alex admits that he's not a doctor,
# but as far as he understands, high BMI values relates to higher likelihoods of heart attacks
# occurring. Again, it's not clear what the units of BMI are here, especially since not every country
# will use the same units of measurement. A quick Google search on units used for BMI shows that
# according to Wikipedia, BMI can be expressed in kg/meter-squared, and that when converting to
pounds and feet,
# a convesion factor of 4.88 needs to be used (source =
https://en.wikipedia.org/wiki/Body_mass_index).
# So yeah...a data dictionary with details about the data here can be really helpful, ya know?
# Alex reasons something to the effect that countries that are developed and have high GDP values are
```

to have well-fed populations which can contribute to high BMI values.

likely

```
# Run the same query as above but this time sort the average BMI values in ascending order
# to look at countries with low BMI values.
SELECT Country, ROUND(AVG(`Life expectancy`), 1) AS Avg_Life_Expectancy, ROUND(AVG(BMI), 1) AS
Avg BMI
FROM world life expectancy
# WHERE 0 != `Life expectancy`
GROUP BY Country
HAVING 0 < Avg_Life_Expectancy
        AND 0 < Avg BMI
ORDER BY Avg BMI ASC
# So with the exception of Viet Nam, some countries with low average BMI values
# also have lower than average life expectancy values. This could be a result of
# limited access to food or maybe an inclination to just eat less.
# At any rate, any findings here can be expanded upon with visualiation tools
# in future data analyses.
# Look at the the whole life expectancy table again
SELECT *
FROM world_life_expectancy
# Alex would like to look at adult mortality to see how many people are dying each year
# in a country and how that count relates to life expectancy.
# I'm already thinking about the criteria for adulthood because
# the age of majority can vary from country to country, and some teens might
# be excluded from the caluclation for adult mortality on a country-by-country basis.
# Also, even if an age is established as a universal threshold for adulthood for all countries,
# neither infant deaths nor child deaths will necessarily be included in adult mortality
# calculations. Morever, it is my understanding that average life expectancy can be brought down
# by infant or child deaths, so the exclusion of some data in one calculation and inclusion
# of that same data in another calculation can make comparing those colculations
# questionable.
# At any rate, Alex mentions a rolling total for his next analysis,
# which will showcase a sum of the current value and the sum of all the
# values above that current value. It will involve a window function,
# which will include a partition over a subset of the overall table.
# Here is a source of information that I found with a Google search on rolling sums
# in SQL: https://medium.com/@mattdamberg/calculating-running-total-in-sql-850c5b072513
SELECT Country,
Year,
`Life expectancy`,
`Adult Mortality`,
```

```
SUM(`Adult Mortality`) OVER(PARTITION BY Country ORDER BY 'Year') AS Rolling Total
FROM world_life_expectancy
# Alex suspects that the fact that only three adults died in Afghanistan in 2009
# is a data quality issue.
# Repeat the above query once more, but try to focus on the data associated with
# the United States of America.
# Note: With the guery that Alex will end up using,
# some other countries with the word 'United' in their name can show up.
SELECT Country.
Year.
`Life expectancy`,
`Adult Mortality`,
SUM('Adult Mortality') OVER(PARTITION BY Country ORDER BY 'Year') AS Rolling_Total
FROM world life expectancy
WHERE Country LIKE '%United%'
# Out of curiosity, I looked up the definition of adult mortality,
# and it looks like it is a count per 1,000 persons.
# (Source = https://datahelpdesk.worldbank.org/knowledgebase/articles/114956-what-is-the-definition-
of-adult-mortality)
# With that said, I'm not sure if applying the rolling total over adult mortality
# really makes sense. Nevertheless, I'll follow along with Alex over the course
# of this video.
# Review the whole life expectancy table to see if there's a column for total population for each country.
```

```
SELECT *
FROM world_life_expectancy
;
```

No such column exists in the table, but Alex says that that data might be something that would have to be

acquired from online and then joined to the world life expectancy table. If country population could be # factored in, Alex says that he'd like to see country population, life expectancy, and adult mortality together.

By the end of the video, a lot of different things had been observed. Alex recounts all of the work that had been done,

and he points out that even more work can be done with what's present in the table. I'd imagine even more

work can be done of extra data is merged with the life expectancy table.

Worth noting here is that somewhere along the way, I've developed a habit of putting a grave accent (`) around

column name if they happen to be the same as SQL keywords. That way, I make it explicitly clear # that I want to work with a column name and not a SQL keyword, ya know?