4. POERDVIAI, POERDVIŲ SUMA BEI SANKIRTA

Vektorinės erdvės virš kūno K netuščias poaibis L vadinamas tos erdvės poerdviu, kai jis turi tokias savybes:

- 1) bet kokių dviejų poaibio L vektorių α ir β suma $\alpha + \beta$ priklauso tam poaibiui;
- 2) poaibio L bet kokio vektoriaus α ir kūno K bet kokio elemento c sandauga $c\alpha$ priklauso tam poaibiui.

Vektorinės erdvės virš kūno K vektorių sistemos $\alpha_1, \alpha_2, \ldots, \alpha_m$ tiesiniu apvalku $L(\alpha_1, \alpha_2, \ldots, \alpha_m)$ vadinama tiesinių kombinacijų $a_1\alpha_1 + a_2\alpha_2 + \ldots + a_m\alpha_m$ aibė, kai koeficientai a_1, a_2, \ldots, a_m nepriklausomai vienas nuo kito perbėga visus to kūno elementus.

1 teorema. Jei vektorinės erdvės vektorių sistemos $\alpha_1, \alpha_2, \ldots, \alpha_m$ rangas lygus r, tai tiesinis apvalkas $L(\alpha_1, \alpha_2, \ldots, \alpha_m)$ yra r-matis tos erdvės poerdvis.

Vektorinės erdvės poerdvių L_1, L_2, \ldots, L_m suma vadinama aibė $L = L_1 + L_2 + \ldots + L_m$ tos erdvės vektorių α , kuriuos galima užrašyti lygybe

$$\alpha = \sum_{i=1}^{m} \alpha_i \qquad (\alpha_i \in L_i, \ i = \overline{1, m}).$$

Vektorinės erdvės poerdvių L_1, L_2, \ldots, L_m sankirta vadinamas jos poaibis $L = L_1 \cap L_2 \cap \ldots \cap L_m$, sudarytas iš vektorių, priklausančių kiekvienam iš poerdvių L_i $(i = \overline{1, m})$.

- **2 teorema.** Dviejų nenulinių vektorinės erdvės virš kūno K poerdvių sumos dimensija lygi tų poerdvių bazių sąjungos rangui.
- **3 teorema.** Dviejų vektorinės erdvės virš kūno K poerdvių L_1 ir L_2 dimensijų suma lygi tų poerdvių sumos ir sankirtos dimensijų sumai:

$$\dim L_1 + \dim L_2 = \dim (L_1 + L_2) + \dim (L_1 \cap L_2).$$

Vektorinės erdvės poerdvių L_1, L_2, \ldots, L_m suma L vadinama tiesiogine suma ir žymima $L = L_1 \oplus L_2 \oplus \ldots \oplus L_m$, kai kiekvieną poerdvio L vektorių α galima vienareikšmiškai išreikšti poerdvių L_i vektorių suma:

$$\alpha = \alpha_1 + \alpha_2 + \ldots + \alpha_m \qquad (\alpha_i \in L_i, i = \overline{1, m}).$$

4 teorema. Vektorinės erdvės poerdvių L_1, L_2, \ldots, L_m suma L yra tiesioginė tada ir tik tada, kai bet kurio jos dėmens sankirta su kitų dėmenų suma lygi nuliniam poerdviui.

Išvada. Jei vektorinė erdvė yra dviejų nenulinių poerdvių tiesioginė suma, tai tų poerdvių bazių sąjunga yra tos erdvės bazė.

PAVYZDŽIAI

1. Rasime aritmetinės erdvės R^4 vektorių $\alpha_1=(1,-1,2,3),\ \alpha_2=(2,3,-1,-2),$ $\alpha_3=(-4,-11,7,12)$ tiesinio apvalko bazę ir dimensiją.

Apskaičiuojame vektorių sistemos rangą:

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 3 & -1 & -2 \\ -4 & -11 & 7 & 12 \end{pmatrix} \downarrow^{-2} \downarrow^{4} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & -5 & -8 \\ 0 & -15 & 15 & 24 \end{pmatrix} \downarrow^{3} \Rightarrow$$
$$\Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Taigi dim $L(\alpha_1, \alpha_2, \alpha_3) = 2$, o vieną iš bazių sudaro, pavyzdžiui, vektoriai α_1 ir α_2 .

2. Rasime poerdvių $L_1 = L(\alpha_1, \alpha_2, \alpha_3)$ ir $L_2 = (\beta_1, \beta_2, \beta_3)$ sankirtos dimensiją ir bazę, kai $\alpha_1 = (1, -1, 2), \alpha_2 = (2, 4, 1), \alpha_3 = (-1, 7, -5); \beta_1 = (1, 3, -2), \beta_2 = (0, -2, -1), \beta_3 = (2, 8, -3).$

Apskaičiuojame rangus $r(\alpha_1, \alpha_2, \alpha_3)$, $r(\beta_1, \beta_2, \beta_3)$, $r(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$: $r(\alpha_1, \alpha_2, \alpha_3) = 2$, $r(\beta_1, \beta_2, \beta_3) = 2$, $r(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = 3$. Iš dimensijų formulės gauname

$$\dim L_1 \cap L_2 = 2 + 2 - 3 = 1.$$

Kadangi poerdvio L_1 bazę sudaro vektoriai α_1 ir α_2 , o poerdvio L_2 bazę – β_1 ir β_2 , sankirtos bazei rasti sudarome lygtį

$$x_1\alpha_1 + x_2\alpha_2 = y_1\beta_1 + y_2\beta_2.$$

Ši lygtis yra ekvivalenti homogeninių lygčių sistemai

$$\begin{cases} x_1 + 2x_2 - y_1 &= 0, \\ -x_1 + 4x_2 - 3y_1 + 2y_2 &= 0, \\ 2x_1 + x_2 + 2y_1 + y_2 &= 0. \end{cases}$$

Jos fundamentalioji sprendinių sistema yra, pavyzdžiui, [1,-1,-1,1]. Vadinasi, vieną iš sankirtos bazių sudaro vektorius $\gamma = \alpha_1 - \alpha_2 = -\beta_1 + \beta_2 = (-1,-5,1)$.

UŽDAVINIAI

- 4.1. Ar sudaro vektorinės erdvės poerdvį:
 - 1) visi aritmetinės erdvės R^n vektoriai, kurių koordinatės susietos lygybe

$$x_1 + 2x_2 + 3x_3 + \ldots + nx_n = 0;$$

2) visi aritmetinės erdvės \mathbb{R}^n vektoriai, kurių koordinatės susietos lygybe

$$x_1 - x_2 + x_3 - x_4 + \ldots + (-1)^{n-1}x_n = 1;$$

- 3) visi aritmetinės erdvės \mathbb{R}^n vektoriai, kurių pirmosios koordinatės yra nenulinės ir sutampa;
- 4) ne aukštesnio kaip n-ojo laipsnio erdvės $R_n[t]$ polinomai f(t), kuriems teisinga lygybė f(1) = 0;
- 5) visi polinomų erdvės $R_n[t]$ polinomai, kuriems teisinga lygybė f(1) = 1;
- 6) visi polinomų erdvės R[t] polinomai, kuriems teisinga lygybė $f(at+b)=af(t)+b \quad (\forall a,b\in R)?$
- 4.2. Raskite vektorių $\alpha_1, \alpha_2, \ldots, \alpha_m$ tiesinio apvalko $L(\alpha_1, \alpha_2, \ldots, \alpha_m)$ bazę ir dimensiją, kai:
 - 1) $\alpha_1 = (2, 1, 0, 3),$ 2) $\alpha_1 = (1, 4, -7, 3),$ $\alpha_2 = (-1, 1, 1, -2),$ $\alpha_3 = (-1, 4, 3, -3);$ $\alpha_3 = (2, -3, 1, 5),$ $\alpha_4 = (0, 11, -15, 1);$
 - 3) $\alpha_1 = (5,7,3,2),$ 4) $\alpha_1 = (1,-1,2,1),$ $\alpha_2 = (-2,4,-1,3),$ $\alpha_3 = (5,2,3,-4),$ $\alpha_4 = (2,1,1,3);$ 4) $\alpha_1 = (1,-1,2,1),$ $\alpha_2 = (-3,3,-6,-3),$ $\alpha_3 = (2,1,3,-2),$ $\alpha_4 = (2,4,2,-6);$
 - 5) $\alpha_1 = (1, -1, 2, 1),$ 6) $\alpha_1 = (2, 3, 5, 7),$ $\alpha_2 = (1, 0, 7, -5),$ $\alpha_3 = (2, 1, -1, 3),$ $\alpha_4 = (6, 7, -3, 4),$ $\alpha_5 = (1, 3, 2, -4);$ 6) $\alpha_1 = (2, 3, 5, 7),$ $\alpha_2 = (1, 0, 13, 5),$ $\alpha_3 = (2, 1, 19, 9),$ $\alpha_4 = (-1, -2, 1, -3),$ $\alpha_5 = (1, 1, 6, 4).$
- 4.3. Raskite poerdvių $L(\alpha_1, \alpha_2, \dots, \alpha_k)$ ir $L_2 = L(\beta_1, \beta_2, \dots, \beta_m)$ sumos bei sankirtos dimensijas, kai:
 - 1) $\alpha_1 = (1, -1, 0, 2),$ $\beta_1 = (2, 8, 2, 4),$ $\alpha_2 = (2, 3, 1, 4),$ $\beta_2 = (5, 5, 2, 10),$ $\alpha_3 = (0, 5, 1, 0),$ $\beta_3 = (3, -3, 0, 6);$
 - 2) $\alpha_1 = (3, 4, -1, 5),$ $\beta_1 = (4, 6, -2, 4),$ $\alpha_2 = (2, 1, 2, -1),$ $\beta_2 = (4, -1, 8, -1),$ $\alpha_3 = (-1, 1, -3, 0),$ $\beta_3 = (-4, -13, 12, -9);$
 - 3) $\alpha_1 = (-1, 0, 1, 3),$ $\beta_1 = (4, 3, -1, 2),$ $\alpha_2 = (4, 1, 2, 3),$ $\beta_2 = (2, -2, 3, -1),$ $\alpha_3 = (-2, -3, 0, 5),$ $\beta_3 = (1, -1, -1, -1);$
 - 4) $\alpha_1 = (5, 2, 3, -1),$ $\beta_1 = (2, 3, 1, 7),$ $\alpha_2 = (-1, -2, -3, 1),$ $\beta_2 = (-4, 0, 2, 3);$ $\alpha_3 = (2, 0, 5, 3),$
 - 5) $\alpha_1 = (1, -1, 2, 1),$ $\beta_1 = (3, 1, 2, 7),$ $\alpha_2 = (2, 1, 1, 3),$ $\beta_2 = (-1, 2, 1, 4);$ $\alpha_3 = (-1, 2, 3, -4),$ $\alpha_4 = (3, 1, 2, 5),$

6)
$$\alpha_1 = (1, -2, 3, 4),$$
 $\beta_1 = (0, -6, 5, 5),$ $\alpha_2 = (2, 2, 1, 3),$ $\beta_2 = (5, 10, 2, 7),$ $\alpha_3 = (-1, 4, -1, -2),$ $\beta_3 = (2, 4, 3, 5),$ $\beta_4 = (-2, 2, 3, 1).$

4.4. Raskite poerdvių $L_1 = L(\alpha_1, \alpha_2, \dots, \alpha_k)$ ir $L_2 = L(\beta_1, \beta_2, \dots, \beta_m)$ sankirtos bazę, kai:

1)
$$\alpha_1 = (1,0,1),$$
 $\beta_1 = (2,-1,1),$ $\alpha_2 = (2,-1,3),$ $\beta_2 = (-3,0,4);$ $\alpha_3 = (3,4,1),$

2)
$$\alpha_1 = (-1, -2, 2),$$
 $\beta_1 = (2, 1, 1),$ $\alpha_2 = (3, 2, 1),$ $\beta_2 = (0, 3, 2),$ $\beta_3 = (-2, 1, 4);$

3)
$$\alpha_1 = (1, 2, 1),$$
 $\beta_1 = (1, 5, -2),$ $\alpha_2 = (3, 5, 3),$ $\beta_2 = (-2, -3, 4);$

4)
$$\alpha_1 = (2, 1, 3, 1),$$
 $\beta_1 = (1, -1, 2, 1),$ $\alpha_2 = (-1, 2, -4, 2),$ $\beta_2 = (2, 0, 1, -3);$ $\alpha_3 = (2, 3, -1, 0),$ $\beta_3 = (-1, 0, 2, -2);$

5)
$$\alpha_1 = (1, 1, -1, 2),$$
 $\beta_1 = (2, 1, -1, 3),$ $\alpha_2 = (-2, 3, 1, 4),$ $\beta_2 = (4, 7, 1, 2),$ $\alpha_3 = (-4, 1, 3, 0),$ $\beta_3 = (-1, 2, 0, -4);$

6)
$$\alpha_1 = (1, -1, 2, 3),$$
 $\beta_1 = (1, -2, 1, 3),$ $\alpha_2 = (2, 3, 1, -3),$ $\beta_2 = (3, 2, 4, -1).$

ATSAKYMAI

- 4.1. 1) Taip; 2) ne; 3) ne;
 - 4) taip; 5) ne; 6) taip.
- 4.2. 1) dim L = 2, baze sudaro, pvz., α_1 , α_2 ;
 - 2) dim L = 2, baze sudaro, pvz., α_1 , α_2 ;
 - 3) dim L = 3, baze sudaro, pvz., α_1 , α_2 , α_4 ;
 - 4) dim L = 2, baze sudaro, pvz., α_1 , α_3 ;
 - 5) dim L = 3, baze sudaro, pvz., α_1 , α_2 , α_5 ;
 - 6) dim L = 2, baze sudaro, pvz., α_1 , α_4 .

- 4.3. 1) dim $(L_1 + L_2) = 2$, dim $(L_1 \cap L_2) = 2$;
 - 2) dim $(L_1 + L_2) = 3$, dim $(L_1 \cap L_2) = 2$;
 - 3) dim $(L_1 + L_2) = 4$, dim $(L_1 \cap L_2) = 2$;
 - 4) dim $(L_1 + L_2) = 4$, dim $(L_1 \cap L_2) = 1$;
 - 5) dim $(L_1 + L_2) = 4$, dim $(L_1 \cap L_2) = 2$;
 - 6) dim $(L_1 + L_2) = 3$, dim $(L_1 \cap L_2) = 3$.
- 4.4. 1) dim $(L_1 \cap L_2) = 2$, bazę sudaro, pvz., $\gamma_1 = -83\alpha_1 + 28\alpha_2 + 7\alpha_3 = 2\beta_2 = (-6, 0, 8),$ $\gamma_2 = 11\alpha_1 - 3\alpha_2 - \alpha_3 = \beta_1 = (2, -1, 1);$
 - 2) dim $(L_1 \cap L_2) = 2$, bazę sudaro, pvz., $\gamma_1 = 5\alpha_1 + 21\alpha_2 = 29\beta_1 + \beta_2 = (58, 32, 31),$ $\gamma_2 = 7\alpha_1 + 25\alpha_2 = 35\beta_1 + \beta_3 = (68, 36, 39);$
 - 3) dim $(L_1 \cap L_2) = 1$, bazę sudaro, pvz., $\gamma = 21\alpha_1 7\alpha_2 = 2\beta_1 + \beta_2 = (0, 7, 0)$;
 - 4) dim $(L_1 \cap L_2) = 2$, bazę sudaro, pvz., $\gamma_1 = -68\alpha_1 - 101\alpha_2 + 90\alpha_3 = 80\beta_2 + 15\beta_3 = (145, 0, 110, -270),$ $\gamma_2 = 38\alpha_1 + 41\alpha_2 - 45\alpha_3 = 15\beta_1 - 35\beta_3 = (-55, -15, -5, 120);$
 - 5) dim $(L_1 \cap L_2) = 1$, bazę sudaro, pvz., $\gamma = 108\alpha_1 - 11\alpha_2 = 106\beta_1 - 13\beta_2 + 30\beta_3 = (130, 75, -119, 172);$
 - 6) dim $(L_1 \cap L_2) = 0$.