The Cyclical Behavior of Labor Markets

Robert Shimer
University of Chicago

May 21, 2005

Outline

- Develop six facts to guide theoretical models.
- Discuss the quantitative failures of existing models.
- Highlight recent research that promises to overcome these failures.

Relevant Papers

- "The Consequences of Rigid Wages in Search Models," Journal of the European Economic Association, 2004.
- "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," *American Economic Review*, 2005.
- "Reassessing the Ins and Outs of Unemployment," 2005.
- Work by Robert Hall and many others.

Relevant Papers

- "The Consequences of Rigid Wages in Search Models," Journal of the European Economic Association, 2004.
- "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," *American Economic Review*, 2005.
- "Reassessing the Ins and Outs of Unemployment," 2005.
- Work by Robert Hall and many others.
- Data are available at http://home.uchicago.edu/~shimer/data/

The Job Finding Rate

- Goal: Measure the job finding rate using readily available data.
- U_t is the number of unemployed workers in month t.
- E_t is the number of employed workers in month t.
- U_t^s is the number unemployed for less than one month in month t.

The Job Finding Rate

- Goal: Measure the job finding rate using readily available data.
- U_t is the number of unemployed workers in month t.
- E_t is the number of employed workers in month t.
- U_t^s is the number unemployed for less than one month in month t.
- I use these to construct two variables:
 - \diamond The unemployment rate in month t is $\frac{U_t}{U_t + E_t}$.
 - \diamond The job finding rate is f_t solving $\exp(-f_t) = \frac{U_{t+1} U_{t+1}^s}{U_t}$.

The correlation between the cyclical components of the job finding and unemployment rates is -0.97.

The Separation Rate

- Goal: Construct an analogous measure of the separation rate.
- Suppose we know U_t , E_t , and f_t .
- Then the separation rate must solve $U_{t+1} U_t = E_t s_t U_t f_t$.

The correlation between the cyclical components of the separation and unemployment rates is 0.65.

Labor Market Flows and Labor Market Stocks

In Steady State $E_t s_t = U_t f_t$.

Compare
$$u_t \equiv \frac{U_t}{U_t + E_t}$$
 with $\frac{s_t}{s_t + f_t}$.

Unemployment is Always in Steady State.

The Effect of f_t and s_t on Unemployment

Compare
$$\frac{s_t}{s_t + f_t}$$
 with $\frac{s_t}{s_t + \bar{f}}$ and $\frac{\bar{s}}{\bar{s} + f_t}$.

The Job Finding Rate Accounts for 79% of Unemployment Fluctuations.

Fact 4'

The Job Finding Rate Accounts for 95% of Unemployment Fluctuations since 1985.

What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function m(u, v).

What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function m(u, v).

$$f_t = \frac{m(u_t, v_t)}{u_t} = m(1, \theta_t)$$
, where $\theta_t = \frac{v_t}{u_t}$.

What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function m(u, v).

$$f_t = \frac{m(u_t, v_t)}{u_t} = m(1, \theta_t)$$
, where $\theta_t = \frac{v_t}{u_t}$.

Measure v_t as the Conference Board Help-Wanted Advertising Index.

The correlation between the cyclical components of the job finding rate and v-u ratio is 0.96.

Vacancies Drive the Unemployment Rate

Construct
$$\tilde{u}_{t+1} = \tilde{u}_t + (1 - \tilde{u}_t)\bar{s} - m(\tilde{u}_t, v_t)$$
.

Vacancies Drive the Unemployment Rate

Construct
$$\tilde{u}_{t+1} = \tilde{u}_t + (1 - \tilde{u}_t)\bar{s} - m(\tilde{u}_t, v_t).$$

$$m(\tilde{u}_t, v_t) = 0.017 \, \tilde{u}_t^{0.5} v_t^{0.5}.$$

Fact 6

To explain fluctuations in unemployment, we need to explain fluctuations in vacancies.

- Pissarides (1985) with productivity (p) shocks.
- Risk neutral workers supply labor inelastically.
- Profit maximizing firms use a technology that is linear in labor.
- If profitable, they create vacancies to recruit workers.
- The firm keeps a fraction 1β of the value of match surplus.
- There are shocks to the productivity of all jobs.

• Recursive equation for the value of match surplus:

$$rV(p) = p - (z + f(\theta(p))\beta V(p)) - sV(p) + \lambda (\mathbb{E}(V(p')|p) - V(p)).$$

• Recursive equation for the value of match surplus:

$$rV(p) = p - (z + f(\theta(p))\beta V(p)) - sV(p) + \lambda (\mathbb{E}(V(p')|p) - V(p)).$$

• Free entry condition for vacancies:

$$c = \frac{f(\theta(p))}{\theta(p)} (1 - \beta) V(p).$$

Standard Deviations

U.S. Data Model

Log Productivity 0.020 0.020

Log V-U Ratio 0.382 0.035

Critical assumption: $z = 0.4\bar{p}$.

- Make wages more rigid
 - ♦ Hall, American Economic Review 2005.
 - ♦ This definitely makes the v-u ratio more volatile.

- Make wages more rigid
 - ♦ Hall, American Economic Review 2005.
 - ♦ This definitely makes the v-u ratio more volatile.
- But are wages too flexible in the benchmark model?
 - ♦ Look at data on real output and compensation per worker.

Standard Deviations

	U.S. Data	Model*
Log Productivity	0.020	0.020
Log V-U Ratio	0.382	0.035
Log Compensation	0.016	0.020

^{*}Assumes wages are continually renegotiated.

Standard Deviations

	U.S. Data	Model*	Model^{\dagger}
Log Productivity	0.020	0.020	0.020
Log V-U Ratio	0.382	0.035	0.035
Log Compensation	0.016	0.020	0.005

^{*}Assumes wages are continually renegotiated.

[†]Assumes wages are bargained only in new matches.

- Introduce realistic features into the model:
 - ♦ Risk-aversion and intertemporal substitution.
 - ▶ Wage smoothing restricted by limited commitment.

- Introduce realistic features into the model:
 - ♦ Risk-aversion and intertemporal substitution.
 - ▶ Wage smoothing restricted by limited commitment.
 - ♦ Curvature in the production function.

- Introduce realistic features into the model:
 - ♦ Risk-aversion and intertemporal substitution.
 - ▶ Wage smoothing restricted by limited commitment.
 - ♦ Curvature in the production function.
 - ♦ Shocks to the productivity of new jobs only.

- Introduce realistic features into the model:
 - ♦ Risk-aversion and intertemporal substitution.
 - ▶ Wage smoothing restricted by limited commitment.
 - ♦ Curvature in the production function.
 - ♦ Shocks to the productivity of new jobs only.
 - ♦ On-the-job search.

- Introduce realistic features into the model:
 - ♦ Risk-aversion and intertemporal substitution.
 - ▶ Wage smoothing restricted by limited commitment.
 - ♦ Curvature in the production function.
 - ♦ Shocks to the productivity of new jobs only.
 - ♦ On-the-job search.
 - ♦ Asymmetric Information.

The Cyclical Behavior of Labor Markets

Robert Shimer
University of Chicago

May 21, 2005