Grover on SPEEDY

https://youtu.be/DWhlklFPenl

IT융합공학부 송경주

Grover's algorithm

Grover on SPEEDY

자원추정 및 강도평가

Grover's algorithm

• Quantum algorithm 중 하나로 N개의 정렬되지 않은 데이터에 대해서 데이터를 검 색할 복잡도를 $O(\sqrt{N})$ 로 만들어 줌. $(N = 2^n)$

정렬되지 않은 N개의 데이터가 주어지면 $\begin{cases} \text{일반컴퓨터 : } \textit{O(N)} \text{ 복잡도} \\ \text{양자컴퓨터 : } \textit{O}(\sqrt{N}) \text{ 복잡도} \end{cases}$

[Grover 진행]

- 1. |0⟩^{⊗n} 준비.
- 2. 모든 큐비트에 H-gate를 적용하여 superposition 상태로 만듦.
- 3. 오라클을 적용하여 타켓 요소의 부호를 -로 만듦.
- 4. Grover diffusion operator을 적용시켜 타겟의 확률을 증폭시킴.

Grover's algorithm

- 2021 CHES에서 소개된 a family of ultra low-latency block ciphers.
- SPEEDY-r-6l (r : 라운드 수, 6l : input), 다양한 길이의 입력 가능.
- 192 길이의 입력(l=32)에 대해서 r=7일 때 완전한 보안을 달성한다고 소개됨.
- 6x*l* array 로 동작.
- 라운드 함수는 Subbox, ShiftColumns, MixColumns, AddRoundConstant, AddRoundKey 로 구성됨

- SubBox(SB)
- 6bit S-box.
- 2-level NAND gates로 연산된다.
- $l \times 6$ array 에서 각 열 6bit 씩 입력된다.

```
y_0 = x_3 \oplus x_5 x_3 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 x_1 \oplus x_1 x_0 \oplus x_5 x_4 x_1 x_0 \oplus x_3 x_1 x_0 \oplus x_5 x_4 x_3 x_1 x_0
```

 $y_1 = x_3 \oplus x_4 x_3 \oplus x_5 x_4 x_3 \oplus x_5 x_3 x_2 \oplus x_1 \oplus x_3 x_1 \oplus x_5 x_2 x_0 \oplus x_1 x_0 \oplus x_3 x_1 x_0$

 $y_2 = 1 \oplus x_5 \oplus x_5 x_2 \oplus x_4 x_2 \oplus x_3 x_2 \oplus x_4 x_3 x_2 \oplus x_0 \oplus x_5 x_0 \oplus x_4 x_0 \oplus x_4 x_3 x_0 \oplus x_2 x_0 \oplus x_5 x_2 x_0 \oplus x_3 x_1 x_0,$

 $y_3 = x_2 \oplus x_3 x_2 \oplus x_3 x_1 \oplus x_5 x_0 \oplus x_2 x_0 \oplus x_5 x_2 x_0 \oplus x_4 x_2 x_0 \oplus x_3 x_2 x_0 \oplus x_3 x_1 x_0$

 $y_4 = x_5x_4 \oplus x_1 \oplus x_4x_1 \oplus x_2x_1 \oplus x_4x_2x_1 \oplus x_0 \oplus x_5x_4x_0 \oplus x_4x_3x_0 \oplus x_3x_2x_0 \oplus x_4x_3x_2x_0 \oplus x_1x_0 \oplus x_4x_1x_0 \oplus x_2x_1x_0 \oplus x_4x_2x_1x_0,$

 $y_5 = x_4 \oplus x_5 x_2 \oplus x_4 x_2 \oplus x_4 x_1 \oplus x_4 x_2 x_1 \oplus x_3 x_0 \oplus x_4 x_3 x_0 \oplus x_5 x_3 x_2 x_0 \oplus x_4 x_3 x_2 x_0 \oplus x_3 x_1 x_0 \oplus x_4 x_3 x_1 x_0 \oplus x_2 x_1 x_0 \oplus x_5 x_2 x_1 x_0 \oplus x_5 x_3 x_2 x_1 x_0 \oplus x_4 x_3 x_2 x_1 x_0.$

ANF 표현식

$x_{0}x_{1}$	$x_0x_1ig x_2x_3x_4x_5$															
**	0.	.1	.2	.3	.4	.5	.6	.7	.8	.9	.a	.b	.с	.d	.e	.f
0.	08	00	09	03	38	10	29	13	0с	0d	04	07	30	01	20	23
1.	1a	12	18	32	3е	16	2c	36	1c	1d	14	37	34	05	24	27
2.	02	06	0b	Of	33	17	21	15	0a	1b	0e	1f	31	11	25	35
3.	22	26	2a	2e	3a	1e	28	Зс	2b	3b	2f	3f	39	19	2d	3d


```
y_0 = x_3 \oplus x_5 x_3 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 x_1 \oplus x_1 x_0 \oplus x_5 x_4 x_1 x_0 \oplus x_3 x_1 x_0 \oplus x_5 x_4 x_1 x_2 \oplus x_5 x_4 x_1 x_2 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_1 \oplus x_5 x_4 x_3 x_2 \oplus x_5 x_4 x_3 \oplus x_5 \oplus 
                                                                                                                 x_5x_4x_3x_1x_0
y_1 = x_3 \oplus x_4 x_3 \oplus x_5 x_4 x_3 \oplus x_5 x_3 x_2 \oplus x_1 \oplus x_3 x_1 \oplus x_5 x_2 x_0 \oplus x_1 x_0 \oplus x_3 x_1 x_0
y_2 = 1 \oplus x_5 \oplus x_5 \oplus x_2 \oplus x_4 \oplus x_2 \oplus x_3 \oplus x_2 \oplus x_4 \oplus x_3 \oplus x_2 \oplus x_4 \oplus x_3 \oplus x_2 \oplus x_4 \oplus x_3 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_4 \oplus x_3 \oplus x_4 \oplus 
                                                                                                             x_5x_2x_0 \oplus x_3x_1x_0,
y_3 = x_2 \oplus x_3 x_2 \oplus x_3 x_1 \oplus x_5 x_0 \oplus x_2 x_0 \oplus x_5 x_2 x_0 \oplus x_4 x_2 x_0 \oplus x_3 x_2 x_0 \oplus x_3 x_1 x_0
y_4 = x_5x_4 \oplus x_1 \oplus x_4x_1 \oplus x_2x_1 \oplus x_4x_2x_1 \oplus x_0 \oplus x_5x_4x_0 \oplus x_4x_3x_0 \oplus x_3x_2x_0 \oplus x_4x_3x_2x_0 \oplus x_4x_3x_2x_1 \oplus x_4x_2x_1 \oplus x_4x_1 \oplus x_4x_2x_1 \oplus x_4x_2x_1 \oplus x_4x_2x_1 \oplus x_4x_2x_1 \oplus x_4x_2x_1 
                                                                                                             x_1x_0 \oplus x_4x_1x_0 \oplus x_2x_1x_0 \oplus x_4x_2x_1x_0,
y_5 = x_4 \oplus x_5 x_2 \oplus x_4 x_2 \oplus x_4 x_1 \oplus x_4 x_2 x_1 \oplus x_3 x_0 \oplus x_4 x_3 x_0 \oplus x_5 x_3 x_2 x_0 \oplus x_4 x_3 x_2 x_0 \oplus x_5 x_5 x_5 \oplus x_5 x_5 \oplus x_5 x_5 \oplus x_5 
                                                                                                                 x_3x_1x_0 \oplus x_4x_3x_1x_0 \oplus x_2x_1x_0 \oplus x_5x_2x_1x_0 \oplus x_5x_3x_2x_1x_0 \oplus x_4x_3x_2x_1x_0.
```

```
Input: x_0, x_1, x_2, x_3, x_4, x_5
                                                          33:
                                                                      Toffoli(x_3, x_2, y_3)
Output: y_0, y_1, y_2, y_3, y_4, y_5
                                                          34:
                                                                      Toffoli(x_3, x_1, y_3)
                                                          35:
                                                                      Toffoli(x_5, x_0, y_3)
                                                          36:
                                                                      Toffoli(x_2, x_0, y_3)
                                                          37:
                                                                      CCCX(x_5, x_2, x_0, y_3)
                                                          38:
                                                                      CCCX(x_4, x_2, x_0, y_3)
    y_0 \leftarrow \text{CNOT}(x_3, y_0)
 2:
                                                          39:
            Toffoli(x_5, x_3, y_0)
                                                                      CCCX(x_3, x_2, x_0, y_3)
 3:
                                                          40:
                                                                      CCCX(x_3, x_1, x_0, y_3)
            CCCCX(x_5, x_4, x_3, x_2, y_0)
 4:
            CCCX(x_5, x_4, x_1, y_0)
 5:
            CCCCX(x_5, x_4, x_3, x_2, x_1, y_0)
 6:
7:
                                                          41: y_4 \leftarrow \text{Toffoli}(x_5, x_4, y_4)
            Toffoli(x_1, x_0, y_0)
                                                          42:
            CCCCX(x_5, x_4, x_1, x_0, y_0)
                                                                      CNOT(x_1, y_4)
 8:
            CCCX(x_3, x_1, x_0, y_0)
                                                          43:
                                                                      Toffoli(x_4, x_1, y_4)
 9:
                                                          44:
                                                                      Toffoli(x_2, x_1, y_4)
            CCCCCX(x_5, x_4, x_3, x_1, x_0, y_0)
                                                          45:
                                                                      CCCX(x_4, x_2, x_1, y_4)
                                                          46:
                                                                      CNOT(x_0, y_4)
                                                          47:
10: y_1 \leftarrow \text{CNOT}(x_3, y_1)
                                                                      CCCX(x_5, x_4, x_0, y_4)
                                                          48:
                                                                      CCCX(x_4, x_3, x_0, y_4)
11:
            Toffoli(x_4, x_3, y_1)
12:
                                                          49:
                                                                      CCCX(x_3, x_2, x_0, y_4)
            CCCX(x_5, x_4, x_3, y_1)
13:
                                                          50:
            CCCX(x_5, x_3, x_2, y_1)
                                                                      CCCCX(x_4, x_3, x_2, x_0, y_4)
14:
                                                          51:
                                                                      Toffoli(x_1, x_0, y_4)
            CNOT(x_1, y_1)
15:
                                                          52:
            Toffoli(x_3, x_1, y_1)
                                                                      CCCX(x_4, x_1, x_0, y_4)
16:
                                                          53:
            CCCX(x_5, x_2, x_0, y_1)
                                                                      CCCX(x_2, x_1, x_0, y_4)
17:
                                                          54:
                                                                      CCCCX(x_4, x_2, x_1, x_0, y_4)
            Toffoli(x_1, x_0, y_1)
18:
            CCCX(x_3, x_1, x_0, y_1)
                                                          55: y_5 \leftarrow \text{CNOT}(x_4, y_5)
19: y_2 \leftarrow NOT(y_2)
                                                          56:
                                                                      Toffoli(x_5, x_2, y_5)
20:
                                                          57:
                                                                      Toffoli(x_4, x_2, y_5)
            CNOT(x_5, y_2)
21:
                                                          58:
            Toffoli(x_5, x_2, y_2)
                                                                      Toffoli(x_4, x_1, y_5)
22:
                                                          59:
                                                                      CCCX(x_4, x_2, x_1, y_5)
            Toffoli(x_4, x_2, y_2)
23:
            Toffoli(x_3, x_2, y_2)
                                                          60:
                                                                      Toffoli(x_3, x_0, y_5)
24:
                                                          61:
                                                                      CCCX(x_4, x_3, x_0, y_5)
            CCCX(x_4, x_3, x_2, y_2)
25:
                                                          62:
            CNOT(x_0, y_2)
                                                                      CCCCX(x_5, x_3, x_2, x_0, y_5)
26:
                                                          63:
                                                                      CCCCX(x_4, x_3, x_2, x_0, y_5)
            Toffoli(x_5, x_0, y_2)
27:
                                                          64:
            Toffoli(x_4, x_0, y_2)
                                                                      CCCX(x_3, x_1, x_0, y_5)
28:
                                                          65:
            CCCX(x_4, x_3, x_0, y_2)
                                                                      CCCCX(x_4, x_3, x_1, x_0, y_5)
29:
            Toffoli(x_2, x_0, y_2)
                                                          66:
                                                                      CCCX(x_2, x_1, x_0, y_5)
30:
                                                          67:
            CCCX(x_5, x_2, x_0, y_2)
                                                                      CCCCX(x_5, x_2, x_1, x_0, y_5)
31:
                                                          68:
                                                                      CCCCX(x_5, x_3, x_2, x_1, x_0, y_5) 7
            CCCX(x_3, x_1, x_0, y_2)
                                                          69:
                                                                      CCCCCX(x_4, x_3, x_2, x_1, x_0, y_5)
```

32: $y_3 \leftarrow \text{CNOT}(x_2, y_3)$

• ShiftColumns (SC) $y_{[i,j]} = x_{[i+j,j]}, \forall i, j$.

	`		•							
[0][0]	[0]	[1]	[0]	[2]	[0]	[3]	[0]	[4]	[0]	[5]
[1][0]	[1]	[1]	[1]	[2]	[1]	[3]	[1]	[4]	[1]	[5]
[2][0]	[2]	[1]	[2]	[2]	[2]	[3]	[2]	[4]	[2]	[5]
[3][0]	[3]	[1]	[3]	[2]	[3]	[3]	[3]	[4]	[3]	[5]
:	:		:				:			
[31][0]	[31][1] [31		[31]	[2]	[31][3]	[31][4]	[31]][5]

Column shift 2

Column shift 3

Column shift 4

Column shift 5

• ShiftColumns (SC) $y_{[i,j]} = x_{[i+j,j]}$, $\forall i, j$.

Logical SWAP을 사용하여 별도의 게이트 비용 X

```
Input: array = [x_0, x_1, \dots, x_{192}]
Output: array = [x_0, x_7, x_{14}, \dots, x_{29}]
1: for i = 0 to 31 do
2: for j = 0 to 5 do
3: array[] \leftarrow array.append(x_{(6*(i+j)+j)})
4: end for
5: end for
```

MixColumns (MC)

각 위치에 맞는 행들의 XOR연산을 수행한다. (이때 α 는 정해진 상수)

$$y_{[i,j]} = x_{i,j} \oplus x_{[i+\alpha_1,j]} \oplus x_{[i+\alpha_2,j]} \oplus x_{[i+\alpha_3,j]} \oplus x_{[i+\alpha_4,j]} \oplus x_{[i+\alpha_5,j]} \oplus x_{[i+\alpha_6,j]}, \quad \forall i,j.$$

• AddRoundKey (A_{k_r})

$$y_{[i,j]} = x_{[i,j]} \oplus k_{r[i,j]}, \quad \forall i, j.$$

• AddRoundConstant (A_{c_r})

$$y_{[i,j]} = x_{[i,j]} \oplus c_{r[i,j]}, \quad \forall i, j.$$

• Round Function (R_n) : 0~(r-1)라운드

0 ~ (r-2)라운드는 A_{k_n} , SB, SC, MC, A_{c_n} 순서로 동작, 마지막 라운드(r-1)만 A_{k_n} , SB, SC, SB, $A_{k_{n+1}}$ 순서로 동작.

$$R_n = \begin{cases} A_{c_n} \circ MC \circ SC \circ SB \circ A_{k_n} & (0 < n < r - 2) \\ A_{k_{n+1}} \circ SB \circ SC \circ SB \circ A_{k_n} & (n = r - 1) \end{cases}$$

Grover 자원추정

SPEEDY 암호화 리소스 측정값

Gates									
NOT	CNOT	Toffoli	CCCX	CCCCX	CCCCCX				
1.56×2 ¹⁰⁶	1.30×2 ¹¹⁰	1.97×2 ¹⁰⁹	1.03×2 ¹¹⁰	1.37×2 ¹⁰⁸	1.37×2 ¹⁰⁷				

NIST 기준 강도평가

Gates									
NOT	CNOT	Toffoli	CCCX	CCCCX	CCCCCX				
1.56×2 ¹⁰⁶	1.30×2 ¹¹⁰	1.97×2 ¹⁰⁹	1.03×2 ¹¹⁰	1.37×2 ¹⁰⁸	1.37×2 ¹⁰⁷				

Non-Clifford gate를 T+Clifford gate로 분해 [

m	Ga	tes	Total gates	Total depth	Cost	
7	Т	Clifford	Total gates	Total depth		
1	$1.48 \cdot 2^{115}$	$1.16\cdot 2^{113}$	$1.77 \cdot 2^{115}$	$1.56 \cdot 2^{106}$	$\boxed{1.38 \cdot 2^{222}}$	

Total gates \times Total depth = Cost

	Any attack that breaks the relevant security definition must require compu-
Level 1	tational resources comparable to or greater than those required for key search
	on a block cipher with a 128-bit key (e.g. AES 128)
	Any attack that breaks the relevant security definition must require compu-
Level 3	tational resources comparable to or greater than those required for key search
	on a block cipher with a 192-bit key (e.g. AES 192)
	Any attack that breaks the relevant security definition must require compu-
Level 5	tational resources comparable to or greater than those required for key search
	on a block cipher with a 256-bit key (e.g. AES 256)

Cipher		SPEEDY		
Cipilei	128	192	256	7-192
Cost	2^{170}	2^{233}	2^{298}	2 ²²²
Level	Level 1	Level 3	Level 5	Level 1

Q&A