

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 1

Durée : 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de deux exercices et d'un problème.

EXERCICE I

On note f la fonction définie sur]0,1[par :

$$f(t) = \frac{\ln t}{t^2 - 1}.$$

Q1. Soit $k \in \mathbb{N}$. Justifier l'existence puis calculer l'intégrale

$$I_k = \int_0^1 t^{2k} \ln t \, \mathrm{d}t.$$

Q2. Justifier que la fonction f est intégrable sur]0,1[, puis démontrer que :

$$\int_0^1 f(t) \mathrm{d}t = \frac{\pi^2}{8}.$$

On pourra utiliser librement que:

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

EXERCICE II

Q3. Justifier que la fonction ln est concave sur $]0, +\infty[$ et en déduire que :

$$\forall (a, b, c) \in]0, +\infty[^3, \qquad \sqrt[3]{abc} \le \frac{a+b+c}{3}.$$

On note f la fonction définie sur $]0, +\infty[^2$ par :

$$f(x;y) = x + y + \frac{1}{xy}.$$

Q4. Démontrer que f admet un unique point critique sur l'ouvert $]0, +\infty[^2,$ puis démontrer que f admet un extremum global que l'on déterminera.

PROBLÈME

Un peu d'arithmétique avec la fonction zêta de Riemann

On note ζ la fonction zêta de Riemann définie sur $]1, +\infty[$ par :

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Le problème est constitué de trois parties indépendantes dans une large mesure.

Partie I - Algorithmique : calcul de zêta aux entiers pairs

La suite des nombres de Bernoulli notée $(b_n)_{n\in\mathbb{N}}$ est définie par :

$$b_0 = 1$$
, $\forall n \ge 1$, $b_n = \frac{-1}{n+1} \sum_{k=0}^{n-1} {n+1 \choose k} b_k$.

Leonhard Euler (1707-1783) a démontré la formule suivante qui exprime les nombres $\zeta(2k)$ à l'aide des nombres de Bernoulli :

$$\forall k \in \mathbb{N}^*, \zeta(2k) = \frac{(-1)^{k-1} 2^{2k-1} \pi^{2k} b_{2k}}{(2k)!}.$$

Dans cette partie (informatique pour tous), on se propose de programmer le calcul des nombres de Bernoulli b_n afin d'obtenir des valeurs exactes de $\zeta(2k)$.

Les algorithmes demandés doivent être écrits en langage Python. On sera très attentif à la rédaction du code notamment à l'indentation.

- **Q5.** Écrire une fonction factorielle (n) qui renvoie la factorielle d'un entier $n \in \mathbb{N}$.
- **Q6.** On considère la fonction Python suivante binom(n,p) qui renvoie le coefficient binomial $\binom{n}{p}$:

```
def binom(n, p):
if not(0<= p <= n):
    return 0
return factorielle(n)//(factorielle(p)*factorielle(n-p))</pre>
```

Combien de multiplications sont effectuées lorsque l'on exécute binom (30,10)? Expliquer pourquoi il est possible de réduire ce nombre de multiplications à 20? Quel serait le type du résultat renvoyé si l'on remplaçait la dernière ligne de la fonction binom par return factorielle (n) / (factorielle (p) *factorielle (n-p))?

Q7. Démontrer que, pour $n \ge p \ge 1$, on a

$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}.$$

En déduire une fonction récursive $binom_rec(n,p)$ qui renvoie le coefficient binomial $\binom{n}{p}$.

Q8. Écrire une fonction non récursive bernoulli (n) qui renvoie une valeur approchée du nombre rationnel b_n . On pourra utiliser librement une fonction binomial (n, p) qui renvoie le coefficient binomial $\binom{n}{p}$.

Par exemple bernoulli(10) renvoie 0,075 757 575 757 575 76 qui est une valeur approchée de $b_{10} = \frac{5}{66}$.

Partie II - Généralités sur la fonction zêta

Pour tout $n \in \mathbb{N}^*$, on note f_n la fonction définie sur]1, $+\infty$ [par :

$$f_n(x) = \frac{1}{n^x}.$$

- **Q9.** Pour tout a > 1 réel, démontrer que la série $\sum \frac{\ln n}{n^a}$ converge.
- **Q10.** Démontrer que la fonction ζ est de classe C^1 sur]1, $+\infty$ [, puis qu'elle est décroissante.
- Q11. La série de fonctions $\sum f_n$ converge-t-elle uniformément sur]1, + ∞ [?
- **Q12.** Déterminer la limite de ζ en $+\infty$.
- **Q13.** Soit x > 1. On pose :

$$I(x) = \int_1^{+\infty} \frac{\mathrm{d}t}{t^x} \ .$$

Démontrer que :

$$I(x) \le \zeta(x) \le I(x) + 1.$$

En déduire un équivalent de ζ au voisinage de 1.

Q14. Un premier lien avec l'arithmétique : pour tout $n \in \mathbb{N}^*$, on note d_n le nombre de diviseurs de l'entier n. On pose $A = \mathbb{N}^* \times \mathbb{N}^*$ et on prend x > 1. Justifier que la famille $\left(\frac{1}{(ab)^x}\right)_{(a,b) \in A}$ est sommable et que sa somme vaut $\zeta(x)^2$. En déduire que :

$$\zeta^2(x) = \sum_{n=1}^{+\infty} \frac{d_n}{n^x} .$$

On pourra considérer la réunion $\bigcup_{n\in\mathbb{N}^*}A_n$ où $A_n=\{(a,b)\in A,\ ab=n\}$.

Partie III - Produit eulérien

Soit s > 1 un réel fixé. On définit une variable aléatoire X à valeurs dans \mathbb{N}^* sur un espace probabilisé (Ω, \mathcal{A}, P) par :

$$\forall k \in \mathbb{N}^*, P(X = k) = \frac{1}{\zeta(s)k^s}.$$

On rappelle qu'un entier a divise un entier b s'il existe un entier c tel que b = ac. On note alors $a \mid b$.

- **Q15.** Soit $a \in \mathbb{N}^*$. Démontrer que $P(X \in a\mathbb{N}^*) = \frac{1}{a^s}$.
- **Q16.** Soient $a_1, a_2, ..., a_n$ dans \mathbb{N}^* des entiers premiers entre eux deux à deux et $N \in \mathbb{N}^*$. Démontrer par récurrence sur n que :

$$(a_1|N,a_2|N,\dots,a_n|N) \Longleftrightarrow a_1 \times a_2 \times \dots \times a_n|N.$$

Le résultat persiste-t-il si les entiers $a_1, a_2, ..., a_n$ sont seulement supposés premiers dans leur ensemble, c'est-à-dire lorsque leur PGCD vaut 1?

Q17. En déduire que si $a_1, a_2, ..., a_n$ sont des entiers de \mathbb{N}^* premiers entre eux deux à deux, alors les événements $[X \in a_1 \mathbb{N}^*], ..., [X \in a_n \mathbb{N}^*]$ sont mutuellement indépendants. On pourra noter $(b_1, ..., b_r)$ une sous-famille de la famille $(a_1, ..., a_n)$.

On note $(p_n)_{n\in\mathbb{N}^*}=(2,3,5,7,11,...)$ la suite croissante des nombres premiers. Pour tout entier $n\in\mathbb{N}^*$, on note B_n l'ensemble des $\omega\in\Omega$ tels que $X(\omega)$ n'est divisible par aucun des nombres premiers $p_1,p_2,...,p_n$.

Q18. Soit $n \in \mathbb{N}^*$. Déduire des questions précédentes que :

$$P(B_n) = \prod_{k=1}^n \left(1 - \frac{1}{p_k^s}\right).$$

Q19. Soit ω dans $\bigcap_{n \in \mathbb{N}^*} B_n$. Que vaut $X(\omega)$? En déduire que :

$$\zeta(s) = \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \frac{1}{p_k^s}}.$$

On se propose, en application, de prouver que la série $\sum \frac{1}{p_n}$ des inverses des nombres premiers diverge. On raisonne pour cela par l'absurde en supposant que la série $\sum \frac{1}{p_n}$ converge. On pose pour tout $n \in \mathbb{N}^*$,

$$u_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k}}.$$

Q20. Justifier que la suite (u_n) converge vers un réel l et que l'on a pour tout réel s > 1, $l \ge \zeta(s)$. Conclure.