

Project Practice for Deep Learning

Yujiao Shi SIST, ShanghaiTech Spring, 2024

- Course Logistics
 - □ Overall Objective
 - □ Syllabus/ Projects
- Introduction to Deep Learning

Course Objectives

- Understanding deep networks
 - ☐ Key concepts and principles
 - □ Selection for hyper-parameters, loss function, etc.
 - Deep network design and fine-tuning
- Applying standard networks to solve real problems
 - Data collection and processing
 - Model evaluation
 - □ Application to downstream tasks

Syllabus & Schedule

- Part I: Basics
 - □ Basic neural networks (MLP, CNN, RNN and Transformer, Week 1-3)
- Part II: Projects
 - 1) Image super-resolution (2D, Week 4)
 - 2) Camera localization (2D &/ 3D, Week 5)
 - 3) Self-selected Project (as a group, with 2~3 members, Week 6)
 - 4) Hand pose estimation (2D to 3D, Week 7)
 - 5) 3D reconstruction and novel view synthesis (2D to/from 3D, Week 8)
 - 6) Generative models (Multi-modality, Week 9)
- Part III: Practice Weeks (Week 10 11)
- Final presentation of self-selected project (Week 12)

Course Overview

Projects

Class
Participation:
10%

Projects: 15% x 6

	八	月	九月					(1)	(12/1)	(3)	(4)	4) (5) (6) 月					+=	月	一月			
星期一	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13
星期二	20	27	3	10	17 中秋节	24	1 国庆节	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14
星期三	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	4	11	18	25	1 元旦	8	15
星期四	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16
星期五	23	30	6	13	20	27	4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17
星期六	24	31	7	14	21	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18
星期日	25	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19
周数	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
学期		暑	假	Dee	p L	earı	ning Projects practice ^期 Final Presentation															

Introductions

Course Overview

Class
Participation:
10%

Projects: 15% x 6

	八	月		九	月		(2)月(3)				(4)	(5)	(6)	一月			+=	月	一月			
星期一	19	26	2	9		23	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13
星期二	20	27	3	10	17 中秋节	24	1 国庆节	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14
星期三	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	4	11	18	25	1 元旦	8	15
星期四	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16
星期五	23	30	6	13	20	27		11	18	25	1	8	15	22	29	6	13	20	27	3	10	17
星期六	24	31	7	14	21	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18
星期日	25	1	8	15	22	29	6	(<u>1</u>)	20	27	3	10	17	24	1	8	15	22	29	5	12	19
周数	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
学期		暑	假	Dee	p L	p Learning Projects practice Final Presentation																

Projects

Introductions

Course Overview

Class
Participation:
10%

Projects: 15% x 6

Frojects																						
	八	月	九月				(2) ^A (3				(4)	(5)	5) (6) ^{一月}			十二月				一月		
星期一	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13
星期二	20	27	3	10	17 中秋节	24	1 国庆节	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14
星期三	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	4	11	18	25	1 元旦	8	15
星期四	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16
星期五	23	30	6	13	20	27	4	11	18	25	1	8	15	22	29	(O)	13	20	27	3	10	17
星期六	24	31	7	14	21	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18
星期日	25	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19
周数	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
学期		暑	假		p L		ning Projects prac批定 Final Presentation															

Projects

Introductions

Reference books and materials

- Deep learning:
 - □ http://www.deeplearningbook.org/
 - □ https://d2l.ai/
- Online deep learning courses:
 - □ Stanford: CS230, CS231n
 - □ CMU: 11-785
 - □ MIT: 6.S191
- Additional reading materials on Piazza
 - □ Survey papers, tutorials, etc.

Instructor and TAs

- Instructor: Prof Yujiao Shi
 - □ shiyj2@shanghaitech.edu.cn
 - □ SIST 1C-303C
- TAs:
 - □ Shaoxun Wu; Jiawei Yang; Jiaqi Yang
- Office hours: To be announced on Piazza
- We will use Piazza as the main communication platform

Grading policy

- Class Participation: 10%
- Five Projects with Pre-determined Topics: 15% x 5
 - □ Work independently
 - □ 12% basic + 3% advanced
- One Self-determined Project: 15%
 - ☐ May work as a group, 2~3 students
 - Project proposal
 - □ Final presentation + demo

Administrative Stuff

Plagiarism

- ☐ All assignments must be done individually
 - You may not look at solutions from any other source
 - You may not share solutions with any other students
 - Plagiarism detection software will be used on all the programming assignments
 - You may discuss together or help another student but you cannot give the exact solution

Plagiarism punishment

- □ When one student copies from another student, both students are responsible
- Zero point on the assignment
- □ Repeated violation will result in an F grade for this course as well as further discipline at the school/university level

Pre-requisite

- Proficiency in Python
 - □ All class assignments will be in Python (and use numpy)
- Calculus, Linear Algebra, Probability and Statistics
 - Undergrad course level
- Equivalent knowledge of Andrew Ng's CS229 (Machine Learning)
 - □ Formulating cost functions
 - Taking derivatives
 - Performing optimization with gradient descent

- Course Logistics
 - □ Overall Objective
 - □ Syllabus/ Projects
- Introduction to Deep Learning

Introduction

- Our goal: Build intelligent algorithms to make sense of data
 - □ Example: Recognizing objects in images

red panda (Ailurus fulgens)

Example: Predicting what would happen next

Vondrick et al. CVPR2016

Introduction

- Our goal: Build intelligent algorithms to make sense of data
 - □ Example: Recognizing objects in images
 - Example: Predicting what would happen next

Given an initial still frame,

Introduction

- A broad range of real-world applications
 - ☐ Speech recognition
 - Input: sound wave → Output: transcript
 - □ Language translation
 - Input: text in language A (Eng) → Output: text in language B (Chs)
 - □ Image classification
 - Input: images → Output: image category (cat, dog, car, house, etc.)
 - □ Autonomous driving
 - Input: sensory inputs → Output: actions (straight, left, right, stop, etc.)
- Main challenges: difficult to manually design the algorithms

A data-driven approach

Each task as a mapping function (or a model)

Building such mapping functions from data

red panda (Ailurus fulgens)

A data-driven approach

Building a mapping function (model)

$$y = f(x; \theta)$$

- □ x: input data
- □ y: expected output
- $\square \theta$: parameters to be estimated
- Learning the model from data
 - ☐ Given a dataset

$$\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$$

 \square Find the 'best' parameter , such that $\hat{ heta}$

$$y_n \simeq f(x_n; \hat{\theta}) \quad \forall n$$

☐ And it can be generalized to unseen input data

What is deep learning?

- Using deep neural networks as the mapping function
- Model: Deep neural networks
 - □ A family of parametric models
 - ☐ Consisting of many 'simple' computational units
 - □ Constructing a multi-layer representation of input

Image from Jeff Clune's Deep Learning Overview

What is deep learning?

- Using deep neural networks as the mapping function
- Learning: Parameter estimation from data
 - □ Parameters: connection weights between units
 - □ Formulated as an optimization problem
 - □ Efficient algorithms for handling large-scale models & datasets

Why deep networks?

Inspiration from visual cortex

Why deep networks?

- A deep architecture can represent certain functions (exponentially) more compactly
- Learning a rich representation of input data

