BARRIEREFREIE DOKUMENTE

1. USER

Was ist eine Behinderung? Arten

Körperliche od. Gesitige Beeinträchtigung, die eine oder mehrere wichtige Lebensaktivitäten erheblich einschränkt. ZB.: mangelnde Koordination, Sprachbehinderung, Dyslexie, Sehbehinderung

Was ist Barrierefreiheit bzw. Accessibility

Umfang, in dem Produkte/Systeme/Dienstleistungen/Umgebungen/Einrichtungen durch Menschen aus einer Bevölkerungsgruppe mit den weitesten Benutzererfordernissen, Merkmalen und Fähigkeiten genutzt warden können, um identifizierte Ziele in indentifizierten Nutzungskontexten zu erreichen.

Usability als Teil der Accessibility

USABILITY (Gebrauchstauglichkeit)

- Effektivität
- Effizienz
- Zufriedenstellung

Universelles Design, Design 4all

- Breite Nutzbarkeit: viele Anforderungen
- Flexibilität: vielfältige Ein-und Ausgabeformen
- Intuitivität: ohne Hilfe nutzbar
- Sensorisch wahrnehmb. Infos: Ausgabekanäle
- Fehlertoleranz: auch unexakte Eingaben ok
- Niedriger körp. Aufwand: keine kompl. Bewegungsabläufe
- Größe u. Platz für Zugang: keine räum HeFintengaung von Studydrive

Accessibility (Barrierefreiheit)

- Wahrnehmbarkeit
- Bedienbarkeit
- Verständlichkeit
- Robustheit
- Zugang zu Infos
- Kommunikation ermöglichen
- Mobilität verbessern

Screen Reader

Konkretes Beispiel: → NVDA

Funktionsweise? (auch dann Bezug zu JavaScript)

Screenreader (Aufgaben, woher Infos fã $\sqrt{4}$ r - Hörbuch lesen durch Sprachsynthese zB Linien in EXCEL

Lesen mit & ohne Braille

- VERFOLGEN: Text/Maus Cursor (Anderungen auf Bildschirm ausmächen)
- **ERKUNDEN: Zeilenweise:** unabh. von Anwendung (Offscreen Model, Pixel abgebildet)
- ROUTING (durch Taster als Mausersatz): Sensoren bestätigen; Synch. Zw. Anwendungsfokus& Erkundung mgl.
- ADAPTIERUNG: Funktionstasten: Konfigurationsdateien; Skriptsprache (nur 2 mgl. Zur Zeit)
- PROBLEM: Nichtverfolgen!

Lesen mit Sprachausgabe

Verfolgen Cursors, Menüoptionen etc durch Sprachsynthese (für

Überschriften, Absätze, Sätze, Wörter, Buchstaben)

Geschwindigkeit bis zu 500 WpM

Erkunden mit weiterer Tastaturebene (Jaws)

Mausersatz: Kontextmenü per Tastenbefehl; Routing per Pfeiltasten und Aktivierung (4 Ebenen, 1 zusätzl. -Zu shift, Umschalt, Strg)

Adaptierung durch GUI: Einstellungen in Android; scripting per GUI in Windows (Jaws = job accesss with speech)

- Abby Filereader =

Texterkennungssoftware,

- Browser: DOM = document-object-model (ARIA Technik)
- Nicht sinnvoll wäre: vorlesen von Pixelnlevel

Merkmale

- Open Source/ frei
- Skriptfähig

Beispiel:

- Ohne Installation
- Java Script
- Mobile Geräte: Mobile Speak (Android, Symbian); Talks (Symbian); VoiceOver (iPhone)

Interaktion mit Routingtasten ROUTING = MAUSERSATZ

- Maus bewegen → klicke Braillesensor
- Mausschalter bestätigen → Klicke Braillesensor
- Modus notwendig! Quelle selektieren; Erkunden Ziels; Ziel wird erzeugt
- Halte Maustaste: 1. Doppelklick

for GUIs application cursor tracking popup windows scroll bars, ... representation syntactical leve1 speech, sounds, braille, lexical routing key, touch pad user

screen reader

Konzepte

Screenreader = multimodales System: dh visuelle Darstellung + Braille + Sprachsynthese

BOTTOM UP: OCR, Bilderkennung (Quelle der Info ist Zeichenerkennung. Iconerkennung → geringe Performanz)

TOP DOWN: Zwischensprache u. mehrfache unterschiedliche Aufbereitung (Anwendung erzeugt Braille); Webtechniken zur Profilierung (self voicing od. Selfbrailling → sollte Braille und Sprache gleich gut adressieren)

MIDDLE OUT: filter in der graf. Benutzungsoberfläche (GUI)

Heruntergeladen Zieh & loslassen: 2. Doppelklick

Usergruppe	Barrieren	Lösungen
Gehörlos	Hört ggü. Nicht Beim Telefonieren	 Videotelefonie per Gebärdensprache Redundanz: Gebärde & Sprachtranskription (Untertitel, caption vs subtitle) Avatare visher abgelehnt Bluetooth für Bridges zw Handy & SmartTV Isolierung Sprechers für Hörgeräte Tooltips: digitales Lippenlesen
Blind oder Sehbehindert	Kann nichts oder eingeschränkt sehen, zB Farbschwäche, Größe, Verzerrung	 Ausgabe: Braille, Sprachsynthese Eingabe: Tasten, Sprache, Gesten Magic Zooming Taktile Grafiken Klausur: Bereitstellung v. Tablet od. Tastatur & Maus & Lupenfkt. Od. Kamera + Extrazeit
Taubblind (bsp Helen Keller)	Geringe Sprachkompetenz, Braille ungeeignet	 Gebärdensprache → Handschreiben Alltagsgeräte mit Vibration Gestenerkenner mit Zoneneinteilung
Körperlich eingeschränkt, Bsp. Armlos?	Handysteuerung wegen fehlenden Händen, oder zittern, Rollstuhlfahrer erreicht Höhe nicht	 Sprachsteuerung Eyescrapping Bluetoothcontroller Tablet für Smarthomesteuerung –Gesten statt Maus greifen Tastaturgröße anpassen, Kopfmaus Mehrfachanschläge Scanning
Kognitiv eingeschränkt	Lernbehinderung (zB Dyslexie) bis zu schwerer geistigen Einschränkung (BSP Autismus, Schlaganfall, Parkinson, chirurgischer Eingriff, Epilepsie)	 Strategien: Sprachsynthese, Wörterbücher Videos: Bilder und Texte zur Erklärung, farbliche Unterschiede für Wortarten
Ältere Personen	Verlust von Fähigkeiten (Sehen, Hören, Hören, Motorik) bis zu Demenz	ergeladen von Breundliche Websites (Größe, Kontraste,Layout. Navigationsfreundlichkeit erhöhen, Medieneinbindung)

Neue Formen der MCI	Barrieren bei unbekannter Adaptierung - Pixelbarriere - Maus und andere Zeigeinstrumente	
Grafische Benutzungsoberflächen		
Hypertext/ Internet	- Mangel an Überblick	
Multimedia/ interactive Medien	Multimedia BarriereMangel an temporaler Steuerbarkeit	
Virtual Reality	- Nicht visuelle Immersion	
Sprachassistenten	- Sprachvermögen als Barriere	

Handy	Display, Ausgabe, Steuerbarkeit
Telefon	Behinderungsarten s. Übung zu VOIP-Oberfläche
Smart TV	
Smart Watch	Hätte Oscar Nobel ein Problem gehabt diese zu bedienen? (er hatte Epilepsie)
Taschenrechner	

2. WAI CONTENT

WCAG
Barrierearten
ARIA

Was sind Barrieren?

Reglungen Barrierefreiheit im Internet (WCAG, BITV) und welche Kriterien (Benutzbarkeit, Wahrnehmbarkeit,...); ARIA & WCAG

dynamische Inhalte (wie kenntlich machen: Stichwort ARIA. Beim

Chat: wie auf Braillezeile immer das aktuelle?)

WCAG 2.0 (USA)

- 4 Prinzipien der web content accessibility guidelines
- Wahrnehmbarkeit (perceivable)
- Bedienbarkeit (operable)
- Verstehbarkeit (understandable)
- Robustheit (robust)

BITV

- Behindertengleichstellungsgesetz: Objekt Apps, Formulare, Terminplanung, PDF bei öffentl. Stellen
- Enthält 4 Prinzipien nach WCAG
- Gebärdensprache auf Startseite
- Überwachungsstelle veröffentlicht Standards

- Konformitätsstufen: A grobe Fehler, Mantergeladen von S Studydrive Forderungen AAA ???

Einteilung nach Barrieren

1	Farbe	Farbsehschwäche → Styleswitcher, Kontraste → Unterschiede von 1:3 in Farbhelligkeit in RGB Raum; Farbwahl in Triaden
2	Textlesabrkeit	Erkennbarkeit durch Größe, kein Autorefresh!, semantische Markups für Screenreader (CSS: span & div für Abtrennung Textbereiche); keine Asciigrafiken
3	Seitenlayout	Nähe & Gruppenbildung, Anordnung in Blöcken, aber KEINE Tabellen (sondern CSS) → nutze Templates; Responsive Design: Flexibilität bei verschiedenen Displaygrößen; HTML 5: Struktur im Body aufbauen:
4	Überschriften	Html von Screenreadern gesondert behandelt, leicht per Tastatur zu besuchen, mittels CSS gestaltbar: <h1> einmal benutzen, danach zwingend <h2> (nicht zu h3 überspringen), in Formularen <legend> statt <h*></h*></legend></h2></h1>
5	Listen	MarkUp wichtig! Usability Problem; besser: Tags (zB ul, ol, dl) Problem: tief verschachtelte Listen mit >5 Ebenen, schwer zu verbalisieren
6	Sprachinhalt	Sprachwechsel : Browser Zitate: <blockquote> für längere, <q> für kürzere, <cite> für Quellen</cite></q></blockquote>

Einfache &klare Sprache nutzen, kurze Sätze (6-12 W.), AllItagsvokabular; Problem: Messbarkeit Linguistische Analyse: Morphologe (Wortstruktur bei Änderungen); Lexikologie (keine seltenen Wörter, keine Mehrdeutigkeiten. Einfache Verben); Syntax (keine Verschachtelungen, Satzlänge begrenzen, einfache Sprache = 3 Substanzive/Satz); Semantik (wenige Präpositionen oder Pronomen); Diskurs (Verbindungen zu vorherigen Sätzen wie "daraus folgt")

Tabellen Nicht furs Layout verwenden! Serialisierung durch Screenreader durch Autor zu unterstützen; <summary> für Zusmamenfassungen od. Länge der Grenze in km ; Datentabellen verwenden <captions > Problem: mehrere Ebenden in Spalten-ochrzeiden über Sprift @ D. Verbundene Zellen → Normalisierung um Verschachtelung mittels MarkUp aufzuheben, zusätzl. Überschriften nötig

8	Verweise & Navigation	Warum kein Menütag im Screenreader? → nach Selektion müsste man Reaktion vorhersehen, bräuchte Verknüpfung von html zu Javascript; aber dafür nur nicht standardisierte Events → Lösung: in html5 Nahcbereich mittels invisible Labels Klasse (inkl. Größe und Position) Navigation unsichtbar einbauen, wird verbalisiert Aufgabengerechte Tab-Folge, Angabe des tab-index; niemals "mehr" nutzen!, Trennzeichen zw. Horizontalen Gruppen; Verweise zu Inhalt unsichtbar gestalten (class hidden von Screenreader gesehen, sonst nicht) Navigation in Seite: Leisten verwenden, Gruppierungen, keine Ascii Grafiken, Bedienalternativen Benannte Anker: Sprünge zw. Abschnitten -> für Screenreader Anfang & Ende gut, Achtung verlassen der Seite Navigation zw. Seiten: zB Inhaltsverzeichnis, Sitemap – besser keine PopUps, informative Titel, Bookmarks erkennbar, Bedeutungsvolle Beschriftung Breadcrumbs trails: Weg als Struktur, fordern Fehlerrobustheit, aber ok für Screenreader Suche. Techniken in Suchmaschinen: Alternativtexte, keine unnötige Ausgabe, Suchoptionen, vermeiden weiterer naher Eingabefelder, Anpassung Trefferliste, Erläuterung, Hilfe bei erfolgloser Suche
9	Grafik	Unterlegung mit IMG, AREA, OBJECT Alternativtexte: alt="" → von Screenreader ignoriert! Alternativ: title für ausführliche Darstellung, longdesc nur teils beherrscht; Richtlinie Bildbeschreibung: 1-3 Worte, max, 150 Zeichen, kurze und lange Beschreibung bereitstellen.

Richtlinie Bildbeschreibung; 1-3 Worte, max. 150 Zeichen, kurze und lange Beschreibung bereitstellen Lange Beschreibung in <p class= "portfolio"... → bettet Bild ein **Audio** Kanaltrennung Sprache vs Geräusche vs Musik (letzteres kursiv) Einfache Satzstruktur (Subjekt-Prädikat-Objekt), max 2 Zeilen, Rhytmus & Dauer einhalten, Personentrennung mit

> Caption = Textbeschreibung, Subtitle = Übersetzung Auch Mimik, Gestik, Emotionen beschreiben; Videos ohne Audio zusammenfassen; Animationen: pausieren ermöglichen für Zusatzzeit Erkundens (zB Vergrößern); mehrfache Videos seriell darstellen

Animation

Farbe

	Multimedia WCAG	Audio: Alternative für zeitbasierte Medien bereitstellen, die äquivalente Infos für aufgezeichneten reinen Audioinhalt bietet Video: entweder Alternative für zeitbasierte Medien ODER Audiospur mit äquivalenten Infos für aufgezeichneten reinen Videoinhalt Untertitel: für alle Audioinhalte, außer diese sind bereits Medienalternativen, bei live auch Audiodeskription für Videos, Gebärdensynch. Für Audio Wenn Pausen in Vordergrundaudio für Deskription zu kurz, dann erweiterte Bereitstellung Kriterien Gebärdensprache: mind. Bildgröße Gebärdensprachfilme, nicht ruckartig, mind. Datenrate, Verständlichkeit: erkennbar, verständlich?, Gebärdenraum gesamter Oberkörper, Beleuchtung, Kontraste, beleuchteter Mundraum, keine graf. Elemente
13	Komponenten/ Plugins	→ Erweiterungen vom Browser; Problem: Html kein Zugang für selfbrailling/selfvoicing Applets warden von Jaws per accessibility Bridge beherrscht – Seite soll auch ohne Applet bedienbar sein – AWT bietet weniger Unterstützung für Screenreader als Swing – Prüfung wie für DesktopApp erforderlich (Fokusverfolgung, Tastaturunterstützung, visuelle Unterstützung) Rolle Treeitem kennen, kenne Aria polite Konzept
14	Interaktion	Tastaturbedienung durch AccessKey, Nutzer muss aber informiert warden, wleche Tasten bedienbar! Problem: verschiedene OS und Browser Ereignisbehandlung: log. Behandlung vs. geräteabhängie Behandlung PopUps vermeiden: da kein Kontext, Umgehung ermöglichen bei Einbettung Captchas: Telefon schlecht, besser Audio Captcha
15	Formulare	Problem: Verbindung zw. Beschriftung und Inhalt Dialogstruktur: Beschriftung und Bedienelemente assoziieren Vobesetzen der leeren Texteingabefelder abhängig vom Screenreader Verschiedene Arten von SuFu vorsehen Fehlerbehandlung beachten: Problem: * nicht als Pflichtfeld erkannt, dann Fehlermeldung und mit Tab-1 navigieren Fokusverfolgung über mehrere Seiten hicht in Richtlihien benandelt

Nutze Label!

12. Dynamische Inhalte

Dyn. Inhalte & Javascript

- dyn. Inhalte entstehen bei Verwendung von JavaScript (verwendet Ereignismodell)
- Abhängig von Benutzereingabe: zB nach ersten 3
 Zeichen Vorschlag
- Unabhängig: Timer, dh man ruft Ereignisse programmiert auf, keine Möglichkeit Filter
- Fast beliebige Abänderung des DOM (tags, label änderbar)
- PROBLEM: keine Fokusverfolgung mgl,
 Tastaturbedienung oft nicht vorgesehen
- Häufige Barrieren Javascript: ausklappbare Bäume
 Listen, Orientierungspunkte mit Überschriften;
 od. zB Schieberegler mit generischen Elementen erstellt

Screenreader & AJAX

- Asynchronous JavaScript and XML bezeichnet ein Konzept der <u>asynchronen</u> <u>Datenübertragung</u> zwischen einem <u>Browser</u> und dem <u>Server</u>. Dieses ermöglicht es, <u>HTTP</u>-Anfragen durchzuführen, während eine <u>HTML</u>-Seite angezeigt wird, und die Seite zu verändern, ohne sie komplett neu zu laden
- → ermöglicht Dynamik (asynchrony), indem immer andere Server/ Clients kontaktiert warden
- Screenreader: asynchrony. http xml request
- Nachteile erfordern zusätzl Programmieraufwand (keine bookmarks oder history)
- DOM in spez. Buffer verwaltet um Erkundung zu ermöglichen
- Probleme: Fokus setzen nur extrem eingeschränkt mgl; Lösungsmglk: tabindex=-1, (de)aktivierung virt.
 PC Cursor Modus

ARIA

- Bisher: Websites sollen ohne javascript bedienbar sein; Aber: MarkUp und Javascript sollen widgets zugänglich machen
- "Jedes Element oder Widget ist mit einer vollständigen und korrigierten Semantik gekennzeichnet, die sein Verhalten vollständig beschreibt (unter Verwendung von Elementnamen oder Rollen). Die Beziehungen zwischen Elementen und Gruppen sind bekannt Zustände, Eigenschaften und Beziehungen gelten für jedes Elementverhalten und sind über das DOM zugänglich. Es gibt ein Element mit dem richtigen Eingabefokus."
- Aria = accessible rich internet applications(xml Sprache)
- Landmarks: semantische Auszeichnungstechnik für Navigation: leicht ergänzbar, erreichbar über Sondertasten, Warum? Einfach, nur drüberglegt, fügt Infos über Website hinzu, ohne Präsi für Sehende zu beeinflussen
- Technik des Roaming tabindex: setze tabindex für

Aria Live Regions

- aria-live="polite" oder aria-live="assertive" Polite: soll alles oder nur eine Sache vorgelesen warden? Bei polite erst alles und DANN Neuigkeit
- aria-atomic: Das Attribut aria-atomic=BOOLEAN wird eingesetzt, um festzulegen, ob der Screenreader die Live-Regionen als Ganzes präsentieren soll, auch wenn sich nur ein Teil dieser Region ändert. Die möglichen Werte sind false oder true, wobei false der Default-Wert ist.
- aria-relevant: Mit aria-relevant=[LIST_OF_CHANGES] wird bestimmt, welche Art von Veränderungen relevant für eine Live-Region sind - die möglichen Werte sind additions/removals/text/all. Der Default-Wert ist "additions text".
- aria-labelledby: Mit aria-labelledby=[IDLIST] wird eine Region mit seinen Labels verknüpft. Die Technik ist dieselbe wie bei ariacontrols, nur dass hier Labels statt Steuerungselemente mit der Region verknüpft werden. Mehrere Bezeichner können durch Leerzeichen getrennt angegeben werden.
- aria-describedby: Das Attribut aria-describedby=[IDLIST] wird verwendet, um eine Region mit einer Beschreibung zu verknüpfen. Auch hier ist die Technik dieselbe, wie bei aria-controls, nur dass eine Beschreibung statt einer Steuerung verknüpft wird. Mehrere Bezeichner für Beschreibungen können durch Leerzeichen getrennt angegeben werden.
- alle Elemente auf -1, bis eins O hat, dann korrigiere von! Stienwird JavaScript zum Hinzufügen und Entfernen von Benutzern eingesetzt -->

- WAI-ARIA (Web Accessibility Initiative Accessible Rich Internet Applications) ist eine Initiative zur Verbesserung von Webseiten und Webanwendungen, um sie für Menschen mit Behinderungen besser zugänglich zu machen, insbesondere für blinde Anwender, die Vorleseprogramme verwenden.
- ARIA ist eine technische Spezifikation, die von Mitgliedern der <u>Web Accessibility Initiative</u> entwickelt wurde. Seit März 2014 ist ARIA ein empfohlener Webstandard des <u>World Wide Web Consortium</u> (W3C).
- Konzept und Funktionsweise
- ARIA verwendet die Techniken <u>JavaScript</u> und <u>Ajax</u>. ARIA ist eine rein <u>semantische</u> Erweiterung für <u>HTML</u>, die das Layout einer <u>Webseite</u> nicht verändert. Die <u>Barrierefreiheit</u> dynamischer Seiten wie im <u>Web 2.0</u> mit seinen <u>Rich Internet Applications</u> und die allgemeine Benutzerfreundlichkeit können so verbessert werden.
- ARIA ermöglicht es Webseiten (oder Teilen einer Seite), sich als <u>Anwendungen</u> zu bezeichnen anstatt als statische Seiten. Dazu werden in dynamischen Webanwendungen Informationen zu Rollen, Eigenschaften und Zuständen hinzugefügt. ARIA ist zur Benutzung durch Entwickler von Webanwendungen, <u>Browsern</u>, <u>assistiven Technologien</u> und Programmen zur Verifizierung von <u>Barrierefreiheit</u> vorgesehen.
- WAI-ARIA besteht aus vier Komponenten:
- Landmark Roles erlauben die semantische Zuweisung einer Rolle zu HTML-Konstrukten. Dadurch kann für Screenreader die Aufgabe eines Oberflächenelements kenntlich gemacht werden, die sich aus den HTML-Elementen selbst nicht erschließt. Beispiele sind <u>Slider</u> (Schieberegler) oder <u>Bäume</u>. Für einige dieser Rollen gibt es seit <u>HTML 5</u> auch dezidierte HTML-Elemente.
- ARIA-Attribute ARIA definiert einige zusätzliche <u>Attribute</u> wie aria-required oder aria-invalid, die sich für alle HTML-Elemente verwenden lassen. Sie lassen sich beispielsweise dafür verwenden, den Inhalt eines Eingabefeldes als ungültig zu markieren, etwa wenn in einer E-Mail-Adresse kein @-Zeichen vorkommt oder zwei Eingaben eines Kennworts (zur Bestätigung) nicht übereinstimmen. [2]
- Live Regions sind Teile einer Seite, die sich in unregelmäßigen Abständen aktualisieren. Diese Veränderungen können bei implementiertem ARIA von Screenreadern automatisch erkannt und gesprochen werden.
- States und Properties werden für richtige JavaScript-Widgets verwendet (wie beispielsweise einer aus div-Elementen bestehenden Liste von Optionen), um semantisch bedeutsame Eigenschaften des jeweils aktuellen Zustands auszuzeichnen. Beispielsweise muss die Tastaturnavigation inklusive der Hervorhebung des gerade aktiven Elements bei eigenen JavaScript-Widgets selbst implementiert werden. Damit die Information, welches Element gerade aktiv ist, nicht nur optisch durch Hervorhebung, sondern etwa auch Navigationshilfen für Sehbehinderte zur Verfügung steht, kann mit activedescendant das aktuell fokussierte Element ausgewiesen werden. ARIA stellt als semantische Erweiterung einen Standard für die Auszeichnung solcher Informationen zur Verfügung.

Genaue PrüfungsFragen

- Barrieren im Web (freie Auswahl, Dinge nennen die man auch genau erklären kann).
- Aufzählen von Behinderungen und Erklären an Beispielen, welche Probleme bei Browsern auftreten und Lösungen aufzeigen

- Genauer: Was macht man bei Bildern? Wie mit Karten umgehen?
- Was soll im Alt-Tag stehen?
- Kurz und knapp oder gar nichts bei Dekoration.
- Was würden sie bei einem Bild von einer Karte der TU Dresden machen?
- Lange Beschreibung "longdesc" bzw. Verweis auf andere Seite (Hat ihm nicht richtig ausgereicht.)
- Ausdruck als taktile Grafik (Er wollte eher digital bleiben. ;) Vllt. gibts hier noch was besseres.)

Fragen zu Medien

- Was ist bei **Videos**? Wie dort Barrieren lösen? Für wen sind Untertitel? Formate nennen?
- Untertitel im Web; Unterschied captions und subtitles
- Tabellen: Probleme, Leerfelder, Wie lösen?
- Barrierefreie Tabellen (er hat eine aufgemalt mit Leerzelle, mehrfachen Zelleninhalten und verbundenen Zellen: erklären wo Barrieren liegen und Lösungen)
- Was ist der Unterschied zwischen Hörbüchern und Audio/MP3- Dateien ?
- Unterschied mp3-Hörbücher zu Daisy-Hörbücher als Einleitung
- Erklärung Aufbau daisy. SMIL, NGX, ...
- Was macht der <spline> Tag in den ncx (navigation control) Format? (siehe Daisy Hörbücher)
- Was ist mit JavaScript? (Probleme, Wie kann man diese Barrieren lösen?)

- Inspektion für Javascript
- Firefox Accessibility Extensions (FAE)
- http://www.accessfirefox.org/Firefox_Accessibility_Extension.php
- Untersuchung der ARIA Widgets (Role, Tab Index, Wert)
- Unsichtbare Navigationsleisten werden einsehbar
- Bsp: Karteikarten auf bahn.de
- Vorsicht: tab Index wird dynamisch geändert
- Fokusverfolgung
- Benennen der Änderungen

- Evaluationsmethoden (manuell, automatisiert)
- Javascript
- Crawling
- Beschreibungssprachen
- WAQM
- Simulation

3. Prüfen von BF auf Websites

Evaluierung mit Benutzern

BARRIEREFREIHEIT EVALUIEREN

Umfang festlegen: Was gehört dazu, Ziele der Evaluation, Konformitätsstufen (A bis AAA)

Manuelle Evaluation

Automatische Evaluation

Fehlerquellen

Monitoring von Barrieren
über Zeitraum

Unterstützen skripting,
Gamification, BITV Test,
WCAG
Heruntergeladen von S Studydrive

Bsp: Mauve: erlaubt eigene Regeln anzugeben

Automat. Ev.: Beschreibungssprachen 1

Automat. Ev.: Beschreibungssprachen 2 Quantitative Metriken

SIMULATION

Display Model Perception Model Barrier Walkthrough

Evaluation

- Wie kann man Barrierefreiheit evaluieren? (manuell, automatisch, Simulation, Evaluierung, ...)
- wie sieht Simulation aus? Was kann man simulieren?
- wie lassen sich Resultate verschiedener autom. Evaluations-Tools vergleichen bzgl Barrierefreiheit von Websites ? → EARL
- -dann was bei Opal Anforderungen an eine automatisierte Evaluation (Crawling, Testdaten für Befüllen Opal-Tests notwendig)

MATHEMATIK

Entwurfskriterium	Allgemeine GUI Kriterien	
Kohärenz	LayoutStruktur u. präsentierte Zeichen	
Erkundung	 räuml. Od. Hierarchische Navigation je nach Art Interaktionsobjekts 	
Graf. Symbole	- Durch Namen verbalisieren	
Lernbarkeit	 Erfahrung mit text-basierter Benutzungsoberflächen anwenden 	
Adaptierbarkeit	- Individualisierbarkeit	

Mathematik Interaktion

- Ausgabe-und Eingabemodalität sollen sich entsprechen
- ZB Braille& Braille oder Sprache&Sprache
- räuml. Od. Hierarchische Naviagtion je nach math. Konstrukt
- Verbalisieren durch Namen od. Nicht verbalisierbare Klänge
- Einsatz existierender Braille-Notation od. Natürl. Sprache
- Einsatz der Braille-Notation/ Sprechweise je nach Kenntnissen Lesers

HTML & Mathe	 HTML nicht für Mathe vorbereitet; Image Anweisung + render schlecht, besser: Bild nur zusätzlich anbieten, aber Formel in Alt Tag
Braille & Computer	 Auf Papier: keine Korrektur, keine Struktur, mech. Handhabung Kohärente Verarbeitung erfordert Brailletastatur → Folge: Textverarbeitung auch mittels Brailletastatur Math. Ausbildung macht kaum Gebrauch von Computern Math. Braille für Sehende unzugänglich; Spezialschulen: Latex, Integrierend: AMS, SMSB
Math. Editoren	 Problem für Blinde: Mathe als Grafik behandelt Schreiben u. editieren? Ziel: Einsatz von Standards und Zugang für Blinde
Braille, Sprache, Klänge	 Dyn. Braille: Terme ersetzen durch Termbegriffe Sprachausgabe: mit korrekter Prosodie, dhzB links und rechts vom Gleichheitszeichen Pausen angeben; auch bei Brüchen; 16 Tonhöhenstufen Klangausgabe zum Überblick, begleitend zur Kontrolle
Beispielausdruck	- Baumstruktur ausbilden: Mathe \rightarrow x und \rightarrow rechter Bruch; diesen in \rightarrow oben und \rightarrow unten
Lambda Projekt	- Zwischensprache zw Braille und MathML, Echtzeit und graf. Transformierbar
OCR Analyse	 Analysieren von Bildschirminhalten durch Schrifterkennung; erzeugt aus Pixeln Ausgangspunkt: Papier oder PP Folien mit Formeln → Scrennshot → Latex generieren

6-8 Pkt, unterschiedliche Berücksichtigung von Klammern;

Grenze: Operatoren ständig neu definierbar

Problem Überführung Marburger Notation in andere zB AMS;

Braille & MarkUp

MATH ML

Layout steuern

Browser

Matnematicai	-	Math. Doks haben vielfaltige Strukturen da sowoni menschi. Als auch maschin. Erstellung
MarkUp Language	-	Presentation MarkUp: etwa 30 Elemente u. 50 Attribute, sowie Katalog math. Symbole (Token Elemente; mi für
		Identitäten/Variablen, mo für Operatoren, mn für Zahlen)
	-	Content MarkUp: 100 Elemente und 10 Attribute, beschreibt Funktionen; zB sin, plus, set, vector; ideal für Sprachsynthese
Presentation vs		msunhat zwei Argumente: Basis und Exponent: mfencedbeschreibt die Klammerung

msuphat zwei Argumente. Dasis und Exponent, intendeubeschreibt die Klammerung applyhat zwei Argumente: eine Funktion und deren Argument Conten Msup → apply nicht umwandelbar wegen Klammern; je nach Stärke der Bindung umgekehrt gut mgl., a & b sind Identitäten oder Argumente, mi ungleich ci!

Box Model Ähnlich Baumstruktur: Ziel: visuelle Zusammenhänge in Boxes abbilden Aber: was ist "integral x d x von x= null bis unendlich"?

Indizes: hochgestellt msup; tiefgestellt msub Balken und Pfeile unten: munder, oben mover Allg. Algebra: mmultiscripts

Content MarkUp Apply = Funktion anwenden;

Token Elemente ci. cn – Conatiner bzw Konstruktoren Mengen= sets mit conditions, Intervalle mit Attribut closure, Vektoren; Matritzen Grenzen erweitern Presentation MarkUp: visuelle Darstellung – gemischt PM und CM erläutert jeweils eine Darstellung

MathML im

Schwierig: maschinelle Lesbarkeit; besser Menschen einsetzen Neue Operatoren nicht prozedural beschrieben; aber es gibt Erweiterungsmechanismen W3C Browser Amaya unterstützt Belitingergeladen von S Studydrive Alternative: XSLT

■ Mögliche Wahl zwischen MathML und Web (ich wählte Web, obwohl Prof. Weber dann trotzdem kurz auf MathML einging, aber nur erzählte und nicht viel wissen wollte)

Mathematische Formeln als Bild -> Wie funktioniert MathML?

- 4.2. Wie sieht es bei mathematischen Formeln aus?
 - Einfach: Latex in alt-Tag
 - Erweitert: MathML (Content & Presentation Markup)
- 4.3. Hier wollte er nochmal wissen, wie man Gleichungen umsetzt.
 - Funktion-Tags + ci / cn

MULTIMEDIA BARRIERE

Personalisierung

- Problem: Bedienelemente (buttons) größer in Videoabspieler; Screenreader versagt, keine Untertitel oder Gebärdensprache
- → Multireader
- Benutzer haben verschiedene Anforderungen, zB Blinde (Geschwindigkeit, Pausen steuern; Bildbeschreibungen, Audiodeskriptionen); Gehörlose (textbasierte Beschreibungen; Bilder & Filme statt Text; Gebärdensprachlexikon;kurze Texte, dyn. Hervorhebungen synch. Mit Sprache, var. Zeichensätze Farben Abstände); Dyslexiker (var. und dyn); Sehbehinderte (var, Vergrößerungen, Sprache)
- Zugang zu Büchern: Anreicherung mit PDF, Großdruck, Braille, Sprachsynthese, Druck,
 HTML & CSS
- Bsp Gehörlose: Erst Video, dann Video mit Gebärden, und parallel Texthervorhebungen in Zsmfassung

Multireader Dokumente

- Ein MR Dokument ermöglicht die Betrachtung eines personalisierten Transformationsergebnisses des Inhalts durch
 - Auswählen des Inhalts (Video mit Gebärdensprache, Zusammenfassung) basierend auf einem Editor für die gewünschten Eigenschaften,
 - adaptierbaren Sichten (Schriftgröße, Farbe, temporale Adaptierungen) des angereicherten Inhalts, und
 - Navigationstechniken basierend auf semantisch modellierten Interaktionsobjekten
- Für den Einsatz ist zu unterscheiden
 - Server-basierte Anpassung (transaktions-basierte Verarbeitung der Profildaten)
 - Client-basierte Anpassung (lokale Anwendung der Profildaten)

MarkUp für MRDocs

- Ein "Container" identifiziert redundante Medienobjekte
 → dh man benutzt Klassen aus Javascript für semantische Typisierung
- Meta-widgets für Navigationstechnik
 - nächtes/voritges/Start
 - Inhaltsverzeichnis
 - Index

Inhalte so zsmstellen, dass barrierefreises Buch ergibt. Problem: Versuchsleiter macht Einstellungen, nicht Nutzer

Layout

 Starke Trennung von Inhalt und Präsentation, Layout per CSS (außer temporales Layout)

Personalisierung

- MS Windows Profile
- Hilfsmittelprofile
- Stereotypen
- individuelle Einstellungen
- (Identitätsmanagement)

Heruntergeladen von S Studydrive

Benutzerprofile

- Dienen der Erstellung adaptierbarer und adaptiver Systeme
 - symbolische Merkmale
 - statistische Merkmale
 - Kategorienbildung und verdichtung nach Bayes
 - Kollaborative Systeme verdichten Benutzerprofile
- hier: Benutzerprofil mit behinderungsspezifischen Merkmalen
- Problem des Systems: Datensicherheit erhalten vs. Barrierefreiheit
- Problem der Benutzer: Verknüpfung von Usability und Accessibility (Needs and Preferences)

EN 1332-4 (2000)

- ISO Standard legt Benutzerprofile für Identifikationskarten fest
- In sicheren Umgebungen einsetzbar
- Benutzer-Merkmale sind Anforderungen
 - Buchstabenhöhe (2 BCD Stellen)
 - Bildschirmfarbe (1 Byte für Text und Hintergrundfarbe)
 - Farbvermeidung (1 Byte für spezifische Farben z.B. rot, rot/grün, grün/gelb
 - Ca. 20 Merkmale zur Bildschirmtastatur, Tonhöhen, Spracheingabe, einfacher Sprache
- Heruntergeladen von Studydrive Nachteil: Zu Wenig Profilinfos

Infrastruktur für Inklusion

Global Public Inclusive Infrastructure GPII

Man bietet auf Server im Web User Agent an = Browser zum Runterladen → hat Erweiterungen die es erlauben Inhalte runterzuladen und anzupassen

Client wie Browser, Screenreader, andere assistive Technologien

Regelbasierter Ansatz für Bedarfe

- Präferenzen P1 ... P8 des Benutzers werden anhand existierender Regeln als Bedarfe B1 ... B3 bestimmt (Eingabe & Schlussfolgerung)
- mit den Merkmalen der verfügbaren assistiven Technologien (solutions) S1 ... S5 verglichen. (Konfliktdetektion)
- Dabei können K1...K2 Konflikte entstehen und daraus Konfliktlösungsarten KS1 ... KS4 abgeleitet werden. (Konfliktreduktion)

Konflikte in Profilen

- Konflikte entstehen durch
 - andere Präferenzen des selben Bedarfs (z.B. 12 pt vs. 18pt Font)
 - semantisch relevante Bedarfe anderer Benutzer

KS1: Benutzer wählen aus Empfehlungen

- Wichtige Impulse zur Akzeptanz von Empfehlungen sind
 - Bewusstsein,
 - Kennenlernen und
 - soziale Einflüsse
- Bewusstsein und Kennenlernen erfordern barrierefreie Präsentation und Interaktion mit der Anwendung

Kollaborative Barrierefreiheit

Crowdsourcing

- Nach Surowiecki, 2004 entsteht C.S. wenn
 - Vielfalt der Meinungen,
 - Unabhängigkeit,
 - Dezentralisierung und
 - Aggregation möglich werden
- Kollaborative Barrierefreiheit wurde von Takagi, et.al. 2008 für die Beseitigung von Barrieren in Webauftritten entwickelt (Proxy-Server)
- in einem Feldtest sind 2009 innerhalb weniger Tage ca. 2000 Reparaturen durchgeführt worden

Karten

- Kollaborative Bf.: Barrierefreiheit wird durch Beteiligung anderer Menschen hergestellt
- Ziel hier: bessere Karten für Rollstuhlfahrer
- Mehrstufige Bewertung:
- zugänglich (grün), teilweise zugänglich (gelb), unzugänglich (rot), unbekannt(grau)

Zukünftige Probleme

KollaborativeBarrierefreiheit ist ein noch junges Gebiet in dem es viele Probleme zu lösen gibt:

- Kosten
 - Systemkosten
 - Kosten für Benutzer (z.B. iPhone ist notwendig)
 - Kosten für Entwicklung und Nachhaltigkeit
- · Aufbau eines Pools von Bearbeitern
- · Einbeziehung von Menschen mit einer Behinderung
 - mehr zu kollaborativenErstellung taktiler Grafiken (Projekt Tangram) später in dieser Vorlesung
- Messung der Qualität eines Service
- Hybride Systeme mit besserer Automatisierung

PDF

Page Objects

- 10.1.2008: PDF 1.7 wird ISO Standard
- Dokumente enthalten Dictionaries, Page Objekte und Aktionen
- Strukturen vererben Attribute
- meist hierarchisch

Seiten enthalten Elemente; Seiten sind Grundelemente, darin Objekte

- Pfadobjekte: Beliebige Kombination aus Geraden, Rechtecken und kubischen Bezierkurven. Kann als Clippingpfad benutzt werden
- Textobjekte: Kombinationen aus mehreren Buchstaben. Textobjekte können gezeichnet, gefüllt oder als Clippingpfad benutzt werden.
- Externe Objekte (XObjects): Externe Objekte werden außerhalb des Content-Streams definiert und können anschließend innerhalb eines Content-Streams verwendet werden. XObjects werden hauptsächlich dazu benutzt, Grafiken in PDF einzubinden.
 - Bilder zusammen mit einer Tranformationsmatrix zur Anpassung des Koordinatensystems bzgl. des graphic states . Binärdaten transcodieren die ASCII-Filter ASCIIHexDecode und ASCII85Decode bzw. verwenden die Dekompressionsfilter LZWDecode , FlateDecode , RunLengtDecode , CCITTFaxDecode und DCTDecode
 - Forms sind aus Postscript übernommene Datenstrukturen zur Wiederverwendung
- Inline-Images: Eine Möglichkeit um kleine Grafiken innerhalb von PDF einzubinden.
- Shading Objekte: Shading Objekte bestehen aus einem beliebigen Umriss, wobei die Farbe abhängig von der Position innerhalb dieses Umrisses bestimmt wird. Ein Shading Object könnte z.B. verwendet werden, um Farbverläufe darzustellentergeladen von Studydrive

- Interaktive Elemente wie z.B. ein hypermediales Inhaltsverzeichnis
- Annotationen
 - Text Annotation: Die Annotation wird im geschlossenen Zustand als Icon dargestellt (Kategorien Comment, Help oder Note)
 - Free Text Annotation: ständig auf der Seite angezeigt
 - Line Annotation: eine einfache gerade Linie
 - Square und Circle
 Annotation: Im
 geschlossenen Zustand wird
 diese Annotation durch ein
 Rechteck bzw. eine Ellipse
 dargestellt, die den der
 Annotation zugewiesenen
 Bereich einnimmt.
- Verweise (Hyperlinks)
 - Go-To-Action
 - Remote-Go-To-Action
- File-Attachment-Annotation
- Audio-Annotation und die
- Video-Annotation

PDF/A= archivierbar

- Portable Document Format(PDF) 1.4 zur Langzeitarchivierung von elektronischenDokumenten
- geräteunabhängig
 - Kann verlässlich präsentiert werden, ohne von der HW/SW abhängig zu sein
- abgeschlossen
 - Enthält alle Resourcen die für den Renderer notwendig sind
- selbstdokumentierend
 - Enthält seine eigenen Beschreibungen/Metadaten (XMP)
- transparent
 - Zugänglich für unmittelbare Auswertungen mittels einfachen Werkzeugen
- keine technischen Schutzmassnahmen
 - keine Verschlüsselung, Passwörter, usw.
- offen
 - autorisierte Spezifikation ist öffentlich verfügbar
- eingesetzt
 - verbreiteter Einsatz dürfte der beste Schutz vor Verlust sein
- Grenzen von PDF/A
 - kann nicht allein die Langzeitarchivierung ermöglichen
 - ist noch nirgends gerichtsfest
 - dt. Projekte: ArchiSig, TransiDoc

PDF/UA= nur Aufbau, nicht API, nicht unbedingt archivierbar

- ISO/DIS 14289-1 Dokumentenverwaltungsanwendungen Erweiterung des elektronischen Dokumentendateiformats für Barrierefreiheit Teil 1: Verwendung von ISO 32000-1 (PDF/UA-1), 2009 und 2014
- Bf. wird durch Prüfprotokoll (Matterhorn) abgesichert (2015)
- Ca 130 Prüfpunkte, 31 Gruppen spez. Inhaltsarten
 - · mathematische Formeln
 - · laufende Seitenüberschriften und -unterschriften
 - Verweise
 - Festlegungen der Lesereihenfolge (article threads)

Wie erfolgt der Test Mensch oder Maschine

- digitale Unterschriften: analog zu Formularen
- · Non-Interactive Forms
- XML Form Architecture (XFA)
- Sicherheit
- Navigation
- Annotationen

 Aktionen 		<u> </u>
 Aktionen XObjects Fonts	Checkpoint	Kurzbeschreibung
	Index	Numerisches Kennzeichen
	Fehler	Voraussetzungen für einen Fehler
	Section	Bezug zum Abschnitt im PDF/UA Standard
H	_{Typ} eruntergeladen	Elemente von PDF: <i>Doc, Page, Object, JS</i> (eingebettete Vons 6) Shtd Wdrive

PDF/IIA vs WCAG

- PDF/UA definiert technische Merkmale und bietet einen technischen Rahmen
- PDF/UA enthält keine Anforderungen an die Auszeichnung des Inhalts (z.B. Akronyme)
- PDF/UA legt kein Mindestkontrastverhältnis fest
- PDF/UA beschriebt keine zeitlichen Anforderungen
- PDF/UA erweitert WCAG teilweise (Encoding, aktive Inhalte)
- PDF/UA nicht für Endanwender gedacht (teil von "Speichern unter")
- PDF/UA betrifft auch das Leseprogramm
- PDF/UA kennt (außer bei Bildern) keine alternative Darstellungen (z.B. Redetext)

Checkliste Schnellprüfung

- PDF mit Tags versehen
- Dokumententitel vorhanden
- Sprache festgelegt
- Semantik korrekt
 - Überschriften
 - Listen
 - Tabellen (Kopf vs. Zellen)
 - Bilder
- Lesereihenfolge sinnvoll
- Bilder enthalten keinen Text

Bilder beschriftet

Formularfelder beschriftet

Schriftart korrekt verwendet (Encoding)

Schmuckelemente ausgeblendet

ü Sicherheitseinstellungen lassen Zugriff mittel

AT zu

PDF und Barrierefreiheit

- Version 4: Extrahierung des Textes (außer bei Scannerergebnissen)
- Version 5: plugin unterstützt
 Screenreader
- Adobe Version 6: tagging wirdeingeführt:
 - Automatisches undmanuelles Erstellen
 - Automatisches Prüfen
- PDF/A (ISO 19005-1) berücksichtigt
- Def.: Tags sind eine hierarchische
 Struktur des Dokuments. Das erste
 Element dieser Struktur ist der TagStamm. Alle anderen Elemente sind
 Tags; sie sind dem Tag-Stamm
 untergeordnet. Tags nutzen kodierte
 Elementtypen, die in spitzen
 Klammern (< >) angezeigt werden.

Tags in Pdf

- Seitenstruktur muss linearisiert werden
- Tags werden hierarchisch durch AP angelegt,
- nur wenige Screenreader unterstützen PDF
 - WindowEyes ab 4.5
 - Jaws ab 4.51 (auch verschlüsselt)
 - Blindows
- Noch unvollständige Implementierung auch in Jaws 7
- ++ Überschriften
- ++ Listen
- -- Zitate (<blockquote>
- ++ Sprache
- -- Sprachwechsel (evt. anlegen eines Span und Text tags)
- Links
- + Bilder
- ++ Tabellen
- ++ Lesezeichen

Liste der vordefinierten Tags

- Article < Art>, Annotation
 < Annot, > Bibliography Entry < BibEntry>,
 Block Quote < BlockQuote>, Caption
 < Caption>, Code < Code>, Division
 < Div>, Document < Document>, Figure
 < Figure>, Form < Form>, Formula
 < Formula>,
- Heading <H>, <H1>, <H2>, <H3>, <H4>, <H5>, <H6>
- Index <Index>, Label <Lbl>, Link <Link>, List <L>, List Item , List Item Body <Lbody>, Note <Note>, Paragraph <P>, Part <Part>, Quote <Quote>, Reference <Reference>, Section <Sect>, Span ,
- Table <Table>, Table Data Cell <TD>, Table Header Cell <TH>, Table Row <TR>
- Table of Contents <TOC>, Table of Contents Item <TOCI>

Spezielle Textelemente

- Block quote element <BlockQuote>: Zitat
- Caption element <Caption>:
 Beschreibung einer Tabelle oder
 eines Bildes (<lbl> ist für den
 Namen)
- Index element <Index>: Liste von Text in <Reference> Tags die zum AUftreten von Text verweisen
- Table of contents element <TOC>: Liste von strukturierten items und labels (kann verschachtelt sein)
- Table of contents item element <TOCI>: ein item

Überschriften und Paragraphen

- , <H> für verschachtelte <sections>
- <h1>-<h6> für lineare <sect>

Label und Listenelemente Heruntergeladen von Studydrive

<L> enthält . enthält <I Nodv>

Aufbau Tags

Block-level Elemente: Container

- Division element <Div>
 - Ein generischer Block oder eine Gruppe von Block-level Elemente
- Section element <Sect>
 - Ein generischer Block, vergleicbar zu Division (DIV Class="Sect") in HTML, üblicherweise ein Teil von <part> oder <Art>
- Article element <Art>
 - Ein abgeschlossener Textabschnitt
- Part element < Part>
 - Für größere Abschnitte, fasst ander tags zusammen wie article elements, division elements, oder section elements
- Document element < Document>
 - Die Wurzel eines Dokuments

Tabellen

 <Table>, <TR>, <TD> und <TH> entsprechen HTML

Inline Tags

- <BibEntry> für Quellenangaben, kann label enthalten
- <Quote> für Zitate innerhalb von Text
- begrenzt stilistische Eigenschaften von Text
- <Code> für Quellcode

Spezielle Tags

- <Figure> zeichnet Bilder im Text aus
- <Form> für Formularelemente
- <Link> für Veweise
- <Note> für Annotationen
- <Reference> für Daten innerhalb des Dokuments

BF herstellen Step 1 Webpages PDF File in Scan-based Multiple files document to combine authoring document Start from paper, image inot a scan). in PDF application the document file, or PDF) you have Create PDF Convertiscan Create Create to PDF. a single PDF tagged PDF document (see Section 4) apply OCR document document (see Section 5) (see Section 6) (see Section 7) Step 2 Add fillable, accessible Process PDF document form fields (see Section 8) as form (if needed) Step 3 Tag PDF document Tag PDF document if not already tagged) (if not already tagged) (see Section 9) Step 4 Check a ccessibility Evaluate accessibility, (see Section 10) fix common problems Stop. ile is iraccessible Fix reading order & basic tagging (see Section 11) Step 5 Treate bookmarks, set Basicworkflow Add other language, etc. accessibility features

Ausgabehilfeprüfung und Bericht

- Vorhandensein alternativerBeschreibungen für Bilder
- Festlegung einer (!)
 Sprache eines Texts
- Zeichenkodierung bekannt
- Beschriftung der Formularelemente
- Listen- und Tabellenstruktur
- Tabulatorreihenfolge entspricht Ordnungsstruktur Heruntergeladen von S Studydrive

- Technische Prüfung ("Start"): alle maschinenprüfbaren Checks durchlaufen eine Kurzbericht ("Results") erstellen.
- Detailbericht ("Report"): Mit Hilfe des Detailberichts die einzelnen Fehler im Dokument analysieren.
- Vorschau-Ansicht ("Screenreader Preview"): vereinfachte Strukturansicht für die Qualität ("Tags") und der logischen Reihenfolge ("Lese-Reihenfolge").
- Dokumentstatistik ("Document Statistics"): Übersicht der Anzahl der verwendeten Struktur-Elemente.

PAC 2.0

Logische Struktur ("Logical Structure"):
Expertenansicht des kompletten Tag-Baums,
um sich korrespondierende Elemente zu
einem Tag im Dokument anzeigen lassen
oder die Rollenzuweisungen zu kontrollieren.

Freies Werkzeug fürtagged PDF, prüft u.a.

- Titel des Docs verfügbar
- Doc Spache defininiert
- Sicherheitseinstellung
- Tab folgt Tag-Struktur
- konsistente Heading Struktur
- Bookmarks verfügbar
- Font Encoding zugänglich
- Tags vollständig
- Logische Lesereihenfolge
- Alternativer Text
- korrekte Syntax der Tags/Roles
- ausreichender Kontrast
- Leerzeichen vorhanden

Verweise

- Verweise werden vor den allgemeinen Tags erstellt
- Automatische Erkennung aus OCR Ergebnis möglich (Menü: Erweitert/Verknüpfungen/alle URL erstellen)
- Verweise müssen explizit beschriftet werden (Optionen/Tag aus Auswahl erstellen/Typ "Verweis"
- Verweise aus MS
 Office/OpenOffice bleiben
 erhalten

Word: Exportieren als PDF

- Voraussetzung: vollständig mit Stilvorlagen arbeiten
- Eigene Stilvorlagen durch ableiten von vorhandenen Stilvorlagen bilden
- Lesezeichen erhalten durch Festlegen beim Transcodieren

MS PowerPoint: Exportieren als PDF

- Bilder müssen mit Alternativ beschrieben werden (Grafik formatieren/Web)
- Masterfolienlayout für Schmuckgrafiken nutzen
- Texte werden nicht als Überschriften strukturiert, evt. manuelle Überarbeitung Notwendig
- Im PDF werdentrotzdem einige Fehler möglich:
 - Inhalt ohne Zuorndung (OLE)
 - Tabellen falsch erkannt bei zu enger Spaltenwahl
 - Tabreihenfolge fehlerhaft (?)
 - unzulässige Zeichen (Bullets) und
 - Alternativtext der Inhalte verdeckt (!)

GRAFIKEN

taktile Graphiken: was gibt es da so? (taktil plus Audio: wie realisieren?

berührungsempfin dliche Displays = hörbare Rückmeldung möglich)

Grafiken = Barriere v.a. für Menschen mit Blindheit und Sehbeeinträchtigung

Zugang zu Grafiken unausweichlich für gleichberechtigte, gesellschaftliche Teilhabe, z.B. für Bildung, soziale Bereiche, SocialMedia, Kultur & Kunst...

gleichwertigen Zugang durch alternative Darstellungsweise des Inhalts gewähren

Bildbeschreibung

- Prinzipiell: Alle Nicht-Text-Inhalte
- Ausnahme: Reine Schmuckgrafiken
- Sonst: Mindestens Alternativtext unterstützen

WAS beschreiben?

- Grafiktyp
- Absicht/ Zweck des Bildes
- Ort, Objekte, Gebäude, Menschen
- Farben (wenn relevant)
- Atmosphäre
- Handlungen
- Kontext (keine redundanten Informationen geben, Fundort, Autor:innen...)

WIE beschreiben?

- vom Allgemeinen zum Speziellen
- zielgruppenangepasst (Vokabular, Expertise...)
- objektiv (keine Interpretationen, Meinungen, Auslassungen oder Emotionen)
- kurz, prägnant und verständlich →inhaltstragende Wörter, Aufzählungen/ Listen
- Ton und Sprache (Terminologie, beschreibend, aktive Verben)

Heruntergeladen von S Studydrive

Detailgrad

Drill-Down Organisation:

Alternativtext:Kurzer Überblick max. 1-2 Sätze

→ Sollte immer vorhanden sein (außer bei Schmuckgrafiken)

> Bildunterschrift:Kurze Beschreibung mit zusätzlichen Informationen, die nicht auf visuelle Elemente fokussiert sein muss (für alle Menschen sichtbar)

Bildbeschreibung:Detaillierte Beschreibung der Bildinhalte, was den Zugang zu visuellen Konzepten unterstützt

Bereitstellung HTML

HTML

ALT-Attribut

Pflichtattribut für Grafiken

Zweck: KurzeInhaltsbeschreibung, Verweis auf Kontext bzw. Langbeschreibung

Leeres Alt-Attribut wird von Screenreadernignoriert (z.B. für Schmuckgrafiken)

Title-Attribut ist keine Alternative!

Hinweis zum Ort der detaillierten Beschreibung geben

Longdesc-Attribut

Link zu externen (ausführlichen) Beschreibungen auf der gleichen oder einer anderen Seite

für alle HTML-Elemente möglich

Nachteile: nicht mit allen Screenreadernkompatibel

nur für Screenreaderzugänglich (nicht visuell ersichtlich)

Link zur Beschreibung

Sprungmarke zur langen Beschreibung direkt neben dem Bild

Vorteile:

sichtbar für alle Nutzende

kompatibel mit allen Browsern und assistivenTechnologien

Nachteile:

keine semantische Verbindung zwischen Bild underuntergeladen von S Studydrive

ARIA "aria-describedby" =semantische Auszeichnungssprache für html

Referenzieren von (langen) Beschreibungen auf der gleichen Seite versteckte Beschreibungen möglich (Offscreendiv)

> **Vorteile:** keine Nutzerinteraktion nötig (wird nach alt-Attribut vorgelesen) gute Screenreaderkompatibilität für alle sichtbar

Nachteile: Beschreibung ist reiner String (keine semantische Gliederung) muss auf gleicher Seite sein

Sonderfall: Bild im Linktext

wird häufig u.a. für Logos ("Home-Button") verwendet

Bild im Linktext eingebettet

Alt-Text sollte die Funktion und Ziel des Links enthalten

SVG

- Erhöht Verständnis von Grafiken für alle Betrachtenden
- Lesbarkeit ohne Grafikprogramm möglich
- alle Elemente semantisch kennzeichnen:
 - wenn möglich Basistypen statt pathverwenden (z.B. circle, rect, line, polygonetc.)
 - Textalternativen und beschreibungen: title, desc, meta
 - Gruppierungen von Elementen mit g
 - sinnvolle Wiederverwendung gleichbedeutender, separat definierter Elemente mit use
 - Objekttransformationen vermeiden (Linienstile, Schriftgrößen etc. werden mitskaliert)

Editoren

Bildbeschreibung hinzufügen

unterstützt von diversen Programmen (z.B. Word, Powerpoint, Acrobat Reader DC)

Beschreibungen gegebenenfalls in separater Datei mitliefern (mit entsprechendem Verweis darauf)

Herausforderungen

Oft nur eine *mögliche*Interpretation → subjektiv,
abhängig von Wissen und
Fähigkeiten des Erstellenden
Notationscharakteristik
schwer verbalisierbar

Detaillierungsgrad (Farben? Hintergrundwissen?) Erstellung sehr aufwändig, bspw. AGSBS → meist manuelle Erstellung von Personen mit Fachexpertise eingeschränkte selbstständige Erfassung und Deutung des Inhalts von Personen mit Blindheit Verstehen komplexer Beschreibungen ist anstrengend und benötigt viel Zeit

Taktile Grafiken

Definition

fühlbare Grafiken, die mit dem Tastsinn wahrgenommen werden können

bestehen aus erhabenen
Punktsymbolen, Linien und Texturen →
Unterscheidung (Farbersatz)

häufig in Kombination mit Braille-Beschriftungen

verschiedene Erstellungsverfahren und Techniken verfügbar

Kollagen

Prägedruck

Folienreliefs

Digitale Stiftplatte

Verfahren	Erstellung (Institutionen) *	Verwendung (Nutzer:innen) **
Schwellpapier	80 %	90 %
Brailledrucker	55 %	72 %
Kollage	20 %	62 %
Tiefziehfolie	55 %	87 %
3D-Model	20 %	63 %

Distribution

- Schwellpapier (Helligkeit = Höhe, spez. Papier erhitzt +jeder Drucker schlecht Braille
 braucht Fuser Kosten)
- Braille Drucker (optimiert für Braille, änderbarer Punktabstand + tiefe Prägung +var Auflösung, + aus Text generierbar, geringe Auflösung nur eine Reliefhöhe)
- Taktile Drucker: gut für Grafikdruck (+ scharfe Kanten und Linien, + großes Papier, + Kombi Schwarzschrift mgl; Auflösung, Kosten Hardware, unüblich)
- Kollagen: Komposition verschiedene Materialien (+ Details, + realitätsnah, + Strukturen, hoher Aufwand, Vervielfältigung)
- Punktreliefs punzieren = Metallprägung, mit Platte auf Papier (+ Vervielfältigung, -keine Korrektur mgl, Zinkverbrauch)
- 3D Modelle (+ realitätsnah haptisch, belibiege Höhen und Details, Braille mgl, Farben mgl, unterschiedl Materialien; zeitintensive Erstellung, lange Druckzeit, Expertise nötig)

Erkundung

Erkundung taktiler Grafiken muss erlernt werden

Kognitiver Prozess: Zusammensetzen eines Bildes aus vielen Einzelbildern unterschiedliche Strategien zum Bildverständnis

wird meist in Schule unterrichtet Minimalverständnis des Grafiktyps wichtig (v.a. bei komplexen Grafiken)

meist Braillekenntnisse erforderlich

Wahrung der ursprünglichen Aussage

Reduzierung der Komplexität

Texturen, Linienstile und Punktsymbole sparsam verwenden

Perspektive vermeiden

Aufteilen komplexer Objekte

Unterscheidbarkeit

Verwendung von Braille-Schrift

Linienverfolgung

MINDESTMABE

TEXTUREN

- Linienlänge
- Versenkungen
- Kreuzende Linien

Heruntergeladen Wood (S) Studydrive

- Verwechslungen ausschließen
- Wiedererkennung ermöglichen (konsistente Nutzung)
- Ausgabemedium einbeziehen
- Flächengröße beachten
- Verwendung evaluierter Texturen-Sets empfohlen

Erstellung

Digital

häufig aufwendiger, manueller Prozess

Richtlinien für taktile Grafiken müssen eingehalten werden

häufig als Transkription von visuellen Grafiken

Optimalfall: Autor:inerstellt taktile und visuelle Grafik

Teilautomatisiert

Häufigster Ansatz: Anpassung einer bestehenden visuellen Grafik für die taktile Ausgabe (Transkription)

Beispiel: TGA(TactileGraphics Assistant)

Algorithmus zur automatischen Vereinfachung und Optimierung herkömmlicher Grafiken in taktile Grafiken:manuelles Eingruppieren der Bilder in Klassen sowie Training

Separieren und Entfernen von Text innerhalb einer Grafik

Oferuntengeladien war instrumenta Braille

Vollautomatisch

geeignet für wohldefinierte Grafiktypen (z.B. Diagramme)

wenige Anwendungen mit gutem Ergebnis vorhanden

Qualitätskontrolle sollte dennoch sichergestellt sein

Ermöglicht selbstständige Erstellung durch Menschen mit Blindheit oder Sehbeeinträchtigung

Kontrolle des Ergebnisses ohne Ausdruck schwierig

Beispiele beim Thema "Diagramme"

Taktile Interaktion

Audio-haptische Systeme

Nachteile taktiler Grafiken

- begrenzte Auflösung →geringe Informationsdichte
- Unterscheidbarkeit der Elemente (max. 5 Texturen/ Symbole/Linienstile)
- Muss erlernt werden →hoher kognitiver Aufwand Nutzende

Ansatz

- Multimodale Systeme → Kombination verschiedener Ein-und Ausgabemöglichkeiten, z.B. haptischer und auditiver Elemente
- Ansprechen verschiedener Sinne

Technologien

Zahlreiche Ansätze, um Interaktion zu ermöglichen, z.B. Videobasiertes Tracken des Fingers bei der Exploration der Grafik

Verwendung digitaler Stifte, die Position erkennen

Einbetten von RFID Tags

3D-Druck mit leitfähigen Filamenten

Kopf

- Fähigkeiten
- Vorkenntnisse

Anwendungskontext

- Mobilität
- · Limitierungen der Umwelt

Interaktion

- Konzept (Führung, Exploration, Überblick)
- unterstützte Modalität (Touch, Sprache, Tastatur...)

Limitierungen der Grafik

- Reproduzierbarkeit
- · Auflösung und Größe der Anzeigefläche
- DarstellbHeruntergeladen von S Studydrive
- Mobilität

HyperBraille-Fenstersystem

Konzept zur taktilen Darstellung und Interaktion mit Anwendungen (Fenstersystemen) -Evaluation mit der Zielgruppe innerhalb von empirischen Studien

-Unterstützung thematischer Ansichten für verschiedene Anwendungsfälle

-äquidistantes Braille erfordert Änderungen der Lesegewohnheiten

Zeichensysteme

Zeichnen und visualisieren von Gedanken wichtig für Kommunikation, persönliche Ausdruckskraft, künstlerische Darstellungen etc.

Zeichnen ist schwierig, erfordert handwerkliches Können

Problem: kein Feedback des Gezeichneten

Ansatz:

Entwicklung von Werkzeugen zur Unterstützung des

Zeichenprozesses

Analog

- Steckbrett
- Formkasten
- Kopierrädchen
- Quickdrawpaper
- Wollfaden auf Klett
- 3D Painting
- Zeichenfolie

Digital

Zeichnen durch Programmieren

Braille-Buchstaben werden zu Bildpunkten

BPLOT

- Erzeugung von Ausdrucken für Brailledruckermittels plottercontrollanguage→keine Überprüfung während des Zeichnens möglich
- Abpausen von taktilen Objekten über Touchpad

IC2D(Integrated Communication 2 Draw)

- Navigation und Malen auf dem Bildschirm mit Hilfe von Sprachausgabe und Musik
- Punktauswahl durch rekursives Schema basierend auf 3 x 3 Gitter (Telefontasten)
 →Bedienung durch Tasten 1-9 bzw.
 Pfeilnavigation

Kontr

Zeichensysteme | Kollaboration

Analog

- schnell und einfach
- günstig
- · detaillierte und naturgetreue Darstellung möglich

Digital

- gute Fehlerkorrektur
- hohe Veränderbarkeit
- hohe Reproduzierbarkeit
- leichte Distribution

Analog

- schwierige/ keine Fehlerkorrektur
- · schwer reproduzierbar
- wenig Unterstützung beim Zeichnen

Digital

- · Erfordert oft hohe kognitive Ressourcen
- oft begrenztes Anwendungsgebiet
- Spezialequipment/ -hardware notwendig (Kosten)

TangramWorkstation

Einbezug der Zielgruppe in Grafikerstellung → Kollaborative Grafikerstellung mit blinden und sehenden Lektor:innen

Zeichensysteme | Haptische Systeme (Phantom)

Zeichensysteme | Anforderungen

Bewertung der Anforderungen von Menschen mit Blindheit (Top 8):

- Taktiles Feedback
- 2. Elemente löschen können
- Export visuelles Bild
- 4. Editieren von Elementen Bewegen, Größe ändern, Transformieren, Anpassen grafischer Eigenschaften
- 5. Methoden zur Fehlerbehebung (undo/redo)
- 6. Export taktiles Bild
- Selbständiges Erstellen
- 8. Kompatibel mit anderer assistiver Technologie (z.B. Screenreader)

AHEAD (Audio-Haptic drawing Editor and **Explorer for Education)**

- Force-Feedback-System → Feedback durch Kraftrückkopplung
- Führung durch Mausbewegung (Abzugskraft bringt) Phantom-Stift zum Mauscursor)
- Erkundungsmodus (haptisches Bild als positives oder negatives Relief, Berührung zur Auswahl und Audioausgabe)
- Heruntergeladen von 🗿 รูโนต์ พูฟเร่งชื่นร zum Zeichnen und zur Manipulation vorhandener Objekte

Diagramme

Kriterien: Titel, Achsen, Legende, Raster, Beschriftungen

Beschreibung

1. Überblick: Diagrammtyp (Bezeichnung),

Besonderheiten (z.B. horizontal vs. vertikal),

Titel

Achsen: Anordnung/Lage,

Beschriftung,

Einheit,

Skala (Wertebereich, Intervalle)

Daten: je nach Diagrammtyp, z.B.

Anzahl der Datenreihen,

Name und Anordnung Daten,

konkrete Datenwerte (wenn möglich tabellarisch)

Hilfsstriche auf den

Achsen (Tick Marks)

Sonifikation

- Synthetisieren der Datenwerte in Töne
- ein Tongraph je Datenwertgruppe
- keine direkte Beeinflussung der Sonifikation möglich
- bei Liniendiagrammen Sonifikation der vertikalen Werte
- Abspielen des Tongraphen per Tastendruck

Ziel: Menschen mit Blindheit oder Sehbeeinträchtigung die Erstellung zugänglicher, taktiler Diagramme ermöglichen

Anforderungen

- Software zur automatischen Erzeugung zugänglicher Diagramme, z.B. in SVG
- versch. Eingabeformate denkbar: z.B. Datentabellen, grafisches Diagramm, Mark Up
- barrierefreie Bedienung
- geeignete Formate für zugängliche Grafiken: SVG, HTML
- verschiedene Diagrammtypen und Designs bereitstellen
- zugängliche Bildschirmdarstellung für sehbehinderte Menschen integrieren
- Erzeugung auf Grundlage von Gestaltungsrichtlinien (css)

Anforderungen und Ziele der automatischen Erstellung

blinden und sehbehinderten Menschen selbständigen Zugang zu Diagrammen ermöglichen zur Kontrolle eines selbst erstellten Diagramms

um Zugang zu einem visuellen Diagramm zu bekommen

Automatisierte Erstellung von Diagrammbeschreibungen für • verschiedene Anwendungsfälle

Integration in bestehenden WoHerfintergeladen von Studydrive

Auditive Zugängliche Diagramme in SVG

- Idee: Erstellung interaktiver Diagramme in SVG zur nicht-visuellen Exploration
- Erreichbarkeit aller Informationen ermöglichen
- Zugänglichkeit der Informationen für den Screenreader
- Navigierbarkeit per Tastatur
- Gruppierung von Inhalten zur effizienten Navigation
- Sonifikation der Daten, um generellen Trend darzustellen

Taktile Diagramme

- Verwendung vor allem im Bildungskontext üblich
- vorrangig klassische Diagramme wie Balken-, Linien-, Punkt-oder Kreisdiagramme taktil umgesetzt
- meist mit Schwellpapier, Brailledruckoder als Prägedruck erzeugt
- keine speziellen Richtlinien zur Gestaltung taktiler Diagramme, ABER
- die Gestaltung der Diagramme muss an den taktilen Sinn angepasst sein
- → keine reine "Übersetzung" von grafischen in taktile Diagramme sinnvoll

Barrierefreie Karten

Anforderungen

Datenbasis

- Allgemeine Informationen (z. B. Adresse, Routen, Objekte, POIs)
- Erreichbarkeitsmerkmale (z. B. taktile Beläge, Rampen)
- Aktualität der Daten

Anwendung

- (Grafische)
 Benutzungsoberfläche
- Interaktionsmodalitäten
- Adaptivität und Benutzungsfreundlichkeit
- Funktionale
 Anforderungen (z. B. Filter,
 Zoomen, Editieren,
 Navigation)

Karte

- Typ (z. B. innen, außen, öffentliche Verkehrsmittel)
- Barrierefreie Darstellung (z. B. taktile Karten, audiotaktile Karten)
- Mobilitätsgrad
- Interaktion

starke Vereinfachung notwendig

Erfahrungen fast ausschließlich für Outdoor (Straßen, Kreuzungen, Wege, Gebäude etc.)

selten bis keine Verfügbarkeit von Gebäudekarten (Räume, Stockwerke, Hindernisse, Einrichtung, Türen etc.)

Probleme

geringe Auflösung

kleiner Bildausschnitt

viele Kartenelemente

Position und Ausrichtung des Nutzenden

unterschiedliche Sichtweisen auf die Karten

Taktile Karten ZSMFassung

Taktile Karten

- **Taktile Stadtpläne (Outdoor)**
- Abbildung von Straßen, Gebäuden, Kreuzungen
- Beispiel: YAH Maps
- Mögliche Datengrundlage: OpenStreetMap Data
- **Taktile Gebäudepläne (Indoor)**
- Abbildung von Räumen, Wänden, Treppen, Fahrstühlen usw.
- verschiedene Datenformate, z.B. OSM, IndoorGML
- Mögliche Datengrundlage: Gebäudepläne, Bilderkennungsverfahren usw.
- Taktile Karten können die Sicherheit und Mobilität von blinden und sehbehinderten Menschen erhöhen bzw. verbessern
- Müssen an die Bedürfnisse der Zielgruppe angepasst werden (insbesondere in Bezug auf Kontext der Nutzung (zu Hause vs. vor Ort), Heruntergéladen von Studydrive Sonifikation Informationsbedarf und Ausgabeformat

Zugängliche Grafiken

- Mindestanforderung: Bildbeschreibung
- besseralsdie nachträglicheAnpassung, istdie barrierefreieErzeugungvon Grafiken
- Methodestark abhängigvomGrafiktypund Anwendungsfall
- BarrierefreieErstellungsprozessevon Grafikenermöglichen(z.B. durchAutomatisierung)
- Einbezugder Nutzendenunabdinglich
- verschiedeneMedien, um Grafikenzugänglichzugestalten, z.B.
 - Bildbeschreibungen
 - barrierefreiesSVG
 - taktileGrafiken
 - audio-taktileGrafiken

Force-Feedback...