МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Факультет информационных технологий Кафедра «Инфокогнитивные технологии»

ЛАБОРАТОРНАЯ РАБОТА №2

на тему: «Построение сетевого графа. Резерв времени. Pert метод»

Направление подготовки 09.03.03 «Прикладная информатика» Профиль «Корпоративные информационные системы» Дисциплина «Методы управления проектами в области информационных технологий»

Выполнил:

студентка группы 201-361 Саблина Анна Викторовна

Проверил:

Мазур Владимир Владимирович

1 Построение сетевого графа

Наименование работ	Предшествующая работа	Время
A		3
В		2
С	А, В	4
D	А, В	5
E	В	2
F	c	2
G	D	6
Н	D, F	5
	E, G, H	3

Рисунок 1 – Исходные данные

Рисунок 2 – Построенный на основе данных сетевой граф

Время возможного резерва времени равно l еd. времени, что отображено в состоянии N23.

2 Построение сетевого графа на основе неопределенного времени начала и окончания работ

Наименование работ	Оптимистическое (а)	Наиболее вероятное (m)	Пессимистическое (b)		$\delta^2 = \left(\frac{b-a}{6}\right)^2$
Α	3,00	6,00	9,00	6,00	1,00
В	2,00	5,00	7,00	4,83	0,69
С	4,00	7,00	9,00	6,83	0,69
D	7,00	9,00	10,00	8,83	0,25
E	2,00	4,00	7,00	4,17	0,69
F	2,00	3,00	4,00	3,00	0,11
G	6,00	9,00	10,00	8,67	0,44
Н	7,00	8,00	9,00	8,00	0,11
1	7,00	8,00	10,00	8,17	0,25
Порядковый номер:	14				

Рисунок 3 – Исходные данные индивидуального варианта

По условию $N=\frac{\text{Порядковый номер}[+1]}{2}$, откуда N=7. Выделенные цветом значения являются вычисленными по заданным формулам автоматически под вариант. Также были высчитаны столбцы времени и дисперсии. На основе чего был построен следующий граф:

Рисунок 4 – Построенный на основе данных сетевой граф

В получившемся сетевом графе, как показано толстыми стрелками, критический путь составляют работы *АСFHI* с ожидаемым временем критической работы *равным 32*.

Таким образом, для поиска дисперсии ожидаемых времен критического пути необходимо сложить значения ячеек соответствующих работ столбца дисперсии. Получаем: 1 + 0.69 + 0.11 + 0.11 + 0.25 = 2.16.

Стандартное время отклонения составит $\delta(T) = \sqrt{2,16} = 1,47$.

Вероятность завершения проекта на день раньше рассчитывается по формуле с использованием <u>таблицы значений</u> функции Лапласа:

$$P = 0.5 + \Phi\left(\frac{(32-1)-32}{1,47}\right) = 0.5 + \Phi(-0.68) = 0.5 + (-0.2517) = 0.2483 \approx 25\%$$

Аналогично можно рассчитать вероятность завершения проекта на день позже:

$$P = 0.5 + \Phi\left(\frac{(32+1)-32}{1.47}\right) = 0.5 + \Phi(0.68) = 0.5 + 0.2517 = 0.7517 \approx 75\%$$