Array Based Betweenness Centrality

Eric Robinson
Northeastern University
MIT Lincoln Labs

Jeremy Kepner MIT Lincoln Labs

Vertex Betweenness Centrality Which Vertices are Important?

Vertex Betweenness Centrality Which Vertices are Important?

Vertex Betweenness Centrality How do we Measure Importance?

Number of Shortest Paths Through Node

Vertex Betweenness Centrality Traditional Algorithm

Traditional Algorithm Theoretical Time and Space

Storage: O(N²)

Vertex Betweenness Centrality Updating Algorithm

- For each starting node:
 - Once you know:
 - The depth of each node in the BFS,
 - The centrality updates for nodes at depth d, u
 - The shortest path counts from the root,
 - Can determine centrality of nodes at depth d-1:
 - For each node, v, at depth d-1, it's update is the sum:

$$u_{v} = \sum_{\substack{(v,w) \in E \\ w \in D(d)}} (1 + u_{d}) \times \frac{S_{v}}{S_{w}}$$

Shortest Paths:

1 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 1 1 1

Shortest Paths:

1 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 1 1 1

Shortest Paths:

1 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 1 1 1

Shortest Paths:

1 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 1 1 1

Shortest Paths:

1 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 1 1 1

Updating Algorithm Theoretical Time and Space

Time: $O(N^2+NM)$

Storage: O(N+M)

Updating Algorithm Single Processor

Algorithm 1: Betweenness centrality in unweighted graphs

```
C_B[v] \leftarrow 0, v \in V;
for s \in V do
   S ← empty stack;
   P[w] \leftarrow \text{empty list}, w \in V;
   \sigma[t] \leftarrow 0, t \in V; \quad \sigma[s] \leftarrow 1;
   d[t] \leftarrow -1, t \in V; d[s] \leftarrow 0;
   Q ← empty queue;
   enqueue s \rightarrow Q;
   while Q not empty do
                                                                Variables:
                                                                                                                              Storage:
       dequeue v \leftarrow Q;
       push v \rightarrow S;
                                                                                                                              O(M+N)
                                                                            set of vertices
       for each neighbor w of v do
                                                                            depth of vertices
                                                                                                                              O(N)
          // w found for the first time?
          if d[w] < 0 then
                                                                            BFS queue
                                                                                                                              O(N)
              enqueue w \rightarrow Q;
              d[w] \leftarrow d[v] + 1;
                                                                                                                              O(M+N)
                                                                            shortest path parents
          end
                                                                            number of paths
                                                                                                                              O(N)
          // shortest path to w via v?
                                                                \sigma:
          if d[w] = d[v] + 1 then
                                                                St
                                                                            order seen
                                                                                                                              O(N)
              \sigma[w] \leftarrow \sigma[w] + \sigma[v];
              append v \to P[w];
                                                                \delta:
                                                                            centrality update
                                                                                                                              O(N)
          end
   end
   \delta[v] \leftarrow 0, v \in V;
   // S returns vertices in order of non-increasing distance from s
                                                                                           Storage: O(M+N)
   while S not empty do
       pop w \leftarrow S;
                                                                                           Time: O(MN + N^2)
      for v \in P[w] do \delta[v] \leftarrow \delta[v] + \frac{\sigma[v]}{\sigma[w]} \cdot (1 + \delta[w]);
      if w \neq s then C_B[w] \leftarrow C_B[w] + \delta[w];
   end
```

Updating Algorithm P processors

```
Algorithm 1: Betweenness centrality in unweighted graphs
   C_B[v] \leftarrow 0, v \in V;
                                                                                        For each vertex, in parallel
   for s \in V do
      S \leftarrow \text{empty stack};
      P[w] \leftarrow \text{empty list}, w \in V;
      \sigma[t] \leftarrow 0, t \in V; \quad \sigma[s] \leftarrow 1;
      d[t] \leftarrow -1, t \in V; d[s] \leftarrow 0;
      Q ← empty queue;
      enqueue s \rightarrow Q;
      while Q not empty do
                                                                Variables:
                                                                                                                             Storage:
          dequeue v \leftarrow Q;
          push v \rightarrow S;
                                                                            set of vertices
                                                                                                                             O(PM+PN)
          foreach neighbor w of v do
                                                                            depth of vertices
                                                                                                                             O(PN)
             // w found for the first time?
             if d[w] < 0 then
                                                                            BFS queue
                                                                                                                            O(PN)
                 enqueue w \rightarrow Q;
                 d[w] \leftarrow d[v] + 1;
                                                                            shortest path parents
                                                                                                                             O(PM+PN)
             end
                                                                            number of paths
                                                                                                                             O(PN)
             // shortest path to w via v?
                                                                \sigma:
             if d[w] = d[v] + 1 then
                                                                St
                                                                            order seen
                                                                                                                             O(PN)
                \sigma[w] \leftarrow \sigma[w] + \sigma[v];
                append v \to P[w];
                                                                \delta:
                                                                            centrality update
                                                                                                                             O(PN)
             end
      end
      \delta[v] \leftarrow 0, v \in V;
      // S returns vertices in order of non-increasing distance from s
                                                                                           Storage: O(PM+PN)
      while S not empty do
          pop w \leftarrow S;
                                                                                           Time: O((MN + N^2)/P)
         for v \in P[w] do \delta[v] \leftarrow \delta[v] + \frac{\sigma[v]}{\sigma[w]} \cdot (1 + \delta[w]);
          if w \neq s then C_B[w] \leftarrow C_B[w] + \delta[w];
```

Updating Algorithm Array Based Version

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})
```

```
\mathbf{b} = 0
     for 1 \le r \le N_V
                                            Variables:
                                                                                              Storage:
 3
            do
                                                                                              BS(NxN)
                                            A:
                                                      sparse adjacency matrix
                                                                                                                  O(M+N)
 4
                 d = 0
                                                                                              Z^{S(N)}
                                            f :
                                                      sparse fringe vector
                                                                                                                  O(N)
 5
                 S = 0
                                            p: shortest path vector
                                                                                              Z^{N}
                                                                                                                 O(N)
 6
                 p = 0, p_r = 1
                                                                                              B<sup>S(NxN)</sup>
                 \mathbf{f} = \mathbf{a}_{r,:}
                                            S: sparse depth matrix
                                                                                                                  O(N)
                 while f \neq 0
 8
                                            u: centrality update vector
                                                                                              R^N
                                                                                                                  O(N)
 9
                       do
10
                           d = d + 1
11
                           p = p + f
                           \mathbf{s}_{d,:} = \mathbf{f}
12
                           f = fA \times \neg p
13
                 while d \ge 2
14
15
                       do
16
                            \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}
17
                           \mathbf{w} = \mathbf{A}\mathbf{w}
                                                                            Storage: O(M+N)
18
                            \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
                                                                           Time: O(MN + N^2)
19
                           u = u + w
20
                           d = d - 1
21
                 \mathbf{b} = \mathbf{b} + \mathbf{u}
```

Updating Algorithm Array Based Version

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})
```

```
\mathbf{b} = 0
                                                                     Variables:
     for 1 \le r \le N_V
                                                                              A:
                                                                                         sparse adjacency matrix
 3
             do
                                                                                        sparse fringe vector
 4
                 d = 0
                                                                                        shortest path vector
 5
                 S = 0
 6
                 p = 0, p_r = 1
                                                                                        sparse depth matrix
                                                                               S:
                 \mathbf{f} = \mathbf{a}_{r,:}
                                                                                         centrality update vector
                                                                               u:
                 while f \neq 0
 8
 9
                        do
                            d = d + 1
10
11
                            p = p + f
                                                                         Discover Paths:
12
                            \mathbf{s}_{d.:} = \mathbf{f}
                                                                                             f = fA
                            f = fA \times \neg p
13
                                                                                             f = f \cdot \neg p
                 while d \ge 2
14
15
                       do
                                                                                             p = p + f
16
                            \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}
                                                                                             S_d = boolean(f)
17
                            w = Aw
18
                            \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
19
                            \mathbf{u} = \mathbf{u} + \mathbf{w}
20
                            d = d - 1
                 b = b + u
21
```

Updating Algorithm Array Based Version

 $b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})$

```
\mathbf{b} = 0
       for 1 \le r \le N_V
 3
                  do
 4
                        d = 0
  5
                        S = 0
 6
                       p = 0, p_r = 1
                       f = a_{r,:}
                        while f \neq 0
 8
 9
                                do
                                      d = d + 1
10
11
                                      p = p + f
12
                                      \mathbf{s}_{d,:} = \mathbf{f}
                                      f = fA \times \neg p
13
                        while d \ge 2
14
15
                                do
                                       \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}_{d}
16
17
                                      \mathbf{w} = \mathbf{A}\mathbf{w}
18
                                       \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
19
                                      \mathbf{u} = \mathbf{u} + \mathbf{w}
                                      d = d - 1
20
                        b = b + u
21
```

Variables:

A: sparse adjacency matrix
f: sparse fringe vector
p: shortest path vector
S: sparse depth matrix
u: centrality update vector

Update Centralities:

$$w = S_d^* .* (1+u) ./ p$$

 $w = Aw$
 $w = w .* S_{d-1}^* .* p$
 $u = u + w$

Array Based Version Single Processor Performance

Data Courtesy of Prof. David Bader & Kamesh Madduri (Georgia Tech)

Array Based Version Why is it Useful?

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})
```

```
\mathbf{b} = 0
       for 1 \le r \le N_V
 3
                do
 4
                      d = 0
 5
                     S = 0
 6
                     p = 0, p_r = 1
                     \mathbf{f} = \mathbf{a}_{r,:}
                      while f \neq 0
 8
 9
                             do
                                   d = d + 1
10
                                   p = p + f
11
12
                                   \mathbf{s}_{d.:} = \mathbf{f}
                                   f = fA \times \neg p
13
                     while d \ge 2
14
15
                             do
                                   \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}
16
                                   w = Aw
17
18
                                   \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
19
                                   u = u + w
                                   d = d - 1
20
21
                      b = b + u
```

- Linear Performance within:
 Factor of 2 of C code
- Fewer Lines of Code (More work behind-the-scenes)
- Natural Implementation in:
 - Matlab
 - Maple
 - ...
- Processes full depth at a time:
 - Low-level parallelism

Array Based Version P Processors

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})
     \mathbf{b} = 0
     for 1 \le r \le N_V
 3
             do
                                                                           Storage: O(M+N)
 4
                  d = 0
                                                                           Time: O((MN + N^2)/P)
                  S = 0
 5
 6
                  p = 0, p_r = 1
                  \mathbf{f} = \mathbf{a}_{r,:}
                  while f \neq 0
 8
 9
                         do
                             d = d + 1
                                                                          Discover Paths in Parallel
10
11
                             p = p + f
12
                             \mathbf{s}_{d.:} = \mathbf{f}
                             f = fA \times \neg p
13
                  while d \ge 2
14
15
                         do
                              \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}
16
                             w = Aw
17
                                                                          Update Centralities in Parallel
18
                             \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
19
                             \mathbf{u} = \mathbf{u} + \mathbf{w}
                             d = d - 1
20
21
                  b = b + u
```

Array Based P Processor Version Why is it Useful?

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N_V \times N_V})

1  \mathbf{b} = 0

2  for 1 < r < N_V
```

```
for 1 < r < N_V
 3
                 do
 4
                      d = 0
                      S = 0
 6
                      p = 0, p_r = 1
                      \mathbf{f} = \mathbf{a}_{r,:}
                       while f \neq 0
 8
 9
                               do
                                    d = d + 1
10
                                    p = p + f
11
                                     \mathbf{s}_{d,:} = \mathbf{f}
12
13
                                    f = fA \times \neg p
                      while d \ge 2
14
                               do
15
                                     \mathbf{w} = \mathbf{s}_{d,:} \times (1 + \mathbf{u}) \div \mathbf{p}
16
17
                                     w = Aw
18
                                     \mathbf{w} = \mathbf{w} \times \mathbf{s}_{d-1,:} \times \mathbf{p}
```

b = b + u

 $\mathbf{u} = \mathbf{u} + \mathbf{w}$ d = d - 1

19

20

21

- Performance Currently Untested
- Memory per machine Scales as Expected
- Fewer Lines of Code (More work behind-the-scenes)
- Natural Implementation in:
 - PMatlab
 - StarP
 - ...

Matrix Based Version How does it work?

Choose a vertex block size V (Optimal Size in tests, V = 16)

Variables:		Storage:	
A :	sparse adjacency matrix	B ^{S(NxN)}	O(M+N)
f:	sparse fringe vector	$Z^{S(VxN)}$	O(VN)
p :	shortest path vector	$Z^{(VxN)}$	O(VN)
S:	sparse depth matrix	$B^{S(VxNxN)}$	O(VN)
u:	centrality update vector	$R^{(VxN)}$	O(VN)

Time: O(N²+MN)
Storage: O(VN+M)

Acknowledgements

Original Updating Algorithm: Ulrik Brandes

Parallel Updating Algorithm: David Bader

Kamesh Madduri

Collaboration at Lincoln Labs: Jeremy Kepner

• LA Graph Algorithms: Jeremy Fineman

Crystal Kahn