内蒙古农业大学 2020 / 2021 学年第二学期期末考试 《操作系统原理》试卷

学 院			 专业_			 班纟	及	
	姓	名		学·	号			

题号	_		Ξ	四	五	总分
分值	20	10	20	30	20	100
得分						

得分	评卷人

一、选择题(每小题 2 分, 共 20 分)

- 1. 操作系统的逻辑位置是(C)。
 - A. 位于用户与程序之间
 - B. 位于程序与计算机硬件之间
 - C. 位于用户与计算机硬件之间
 - D. 位于用户与 CPU 之间
- 2. 在分时系统中,时间片一定,(A),响应时间越长。
 - A. 用户数越多
 - B. 内存越多
 - C. 用户数越少
 - D. 后备队列越短
- 3. 已经获得除处理机之外的全部所需资源的进程是处于(B) 状态。

揪

XX

口

- A. 创建
- B. 就绪
- C. 运行
- D. 阻塞
- 4. 产生系统死锁的原因可能是由于(D)。
 - A. 一个进程进入死循环
 - B. 进程释放资源
 - C. 多个进程竞争共享型设备
 - D. 多个进程竞争,资源出现了循环等待
- 5. 在动态分区内存管理中,能使内存空间中空闲区分布较均匀的 算法是(**B**)。
 - A. 首次适应算法
 - B. 循环首次适应算法
 - C. 最佳适应算法
 - D. 最坏适应算法
- 6. 下列(D)存储管理方式能使存储碎片尽可能少,而且使内存利用率较高。
 - A. 可变分区
 - B. 固定分区
 - C. 单一连续分配
 - D. 分页管理
- 7. 段页式存储管理汲取了页式管理和段式管理的长处,其实现原理结合了页式和段式管理的基本思想,即(B)。
 - A. 用分段方法来分配和管理物理存储空间,用分页方法来管理用户地址空间
 - B. 用分段方法来分配和管理用户地址空间,用分页方法来管理物理存储空间
 - C. 用分段方法来分配和管理主存空间,用分页方法来管理辅 存空间
 - D. 用分段方法来分配和管理辅存空间,用分页方法来管理主存空间
- 8. 以下存储管理技术中,支持虚拟存储器的技术是(D)。

	B. C.	可重定位分区 动态分区法 分页存储技术 请求分页技术	法	
9.	A. B. C.	之符序列组成, 记录式文件 流式文件 有序文件 顺序文件	文件内的信息不再划分结构,是	L指(B)。
10.	80, 先磁 A. B. C.	12,76,当前 炫盘调度算法, 20,44,40, 40,44,20, 40,44,76,	盘者依次要访问的磁道为 20, 价磁头位于 40 号柱面,若用最短则访问序列为(B)。 4,80,12,76 12,4,76,80 80,20,12,4 80,4,12,20	
得	分	评卷人	二、判断题(每小题	1 分, 共 10 分)
1. 2. 3. 4. 5.	线虚并进	程是最小的拥有 拟存储器能够为 发性是指若干事程是程序的一次	对内存容量进行逻辑扩充。 事件在同一时刻发生。	(√) (×) (√) (×) (√)
7.			质上是对内存的物理分割。 5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	(X)

8. 地址变换是指将文件的逻辑地址变换成物理地址。 (✓)9. 作业控制块中标识符包含外部标识符和内部标识符。 (✓)10. 用户为每个自己的进程创建 PCB,并控制进程的执行过程。

(X)

得分	评卷人

三、填空题(每小题 2 分, 共 20 分)

- 1. 对换分为 整体对换 和页面(分段)对换。
- 2. 常用的进程通信方式有<u>管道</u>、<u>共享存储区</u>、消息机制和邮 箱机制。
- 3. 常用的内存管理方法有分区管理、<u>段式管理</u>、<u>页式管理</u>和 段页式管理。
- 4. 如果信号量的当前值为 4,则表示<u>可用的资源数目为 4</u>,如 果信号量的当前值为-4.则表示<u>系统中在该信号量上有 4 个等</u> 待进程 。
- 5. 若干个事件在同一时刻发生称为<u>并行</u>,若干个事件在同一时 间间隔发生称为 并发 。
- 6. 一次只允许一个进程访问的资源叫_临界资源。
- 7. 操作系统的基本特性有: 并发、 共享 、 虚拟 、和 异步 。
- 8. 在基本分页存储管理模式中,若页面大小为 1KB,给定逻辑地址空间的地址 3080,则该地址所在的页号 P=3,页内地址 d=8。
- 9. 处理死锁的四个基本方法是: 预防死锁、<u>避免死锁</u>、检测死 锁和 解除死锁 。
- 10. 页表寄存器中保存的是 页表的起始地址 和 页表长度 。

得分评卷人

四、简答题(每小题 5 分, 共 30 分)

1. 根据信号量描述画出前趋关系图。

```
P0(){P0;signal(a);signal(b);};
P1(){wait(a);P1;signal(c);signal(d);}
P2(){wait(b);P2;signal(e);}
P3(){wait(c);P3;signal(f);signal(g);}
P4(){wait(d);P4;signal(h);}
P5(){wait(e);wait(f);P5;signal(i);}
P6(){wait(g);wait(h);P6;signal(j);}
P7(){wait(i);wait(j);P7;}
main(){
     semaphore a,b,c,d,e,f,g,h,l,j;
     a.value=b.value=c.value=0:
     d.value=e.value=f.value=0;
     g.value=h.value=i.value=j.value=0
     cobegin
          P0();P1();P2();P3();P4();P5();P6();P7();
     coend
}
```


- 2. 简述进程同步机制应遵循的原则,写出至少四种常用的信号量 机制。
 - (1) 进程同步机制应遵循的原则:空闲让进、忙则等待、有限等待、让权等待。
 - (2) 四种常用的信号量机制:整形信号量、记录型信号量、 AND 型信号量、信号量集。

3. 画出进程的五种基本状态及关系转换图。

- 4. 简述虚拟存储器的定义及特征。
 - (1) 虚拟存储器的定义:具有请求调入功能和置换功能,能 从逻辑上对内存容量加以扩充的一种存储器系统。
 - (2) 虚拟存储器的特征: 多次性、对换性、虚拟性。
- 5. 简述首次适应算法和循环首次适应算法的优缺点。
 - (1) 首次适应算法的优点:优先利用内存低址部分的空闲分区,保留了高地址的大空闲区,为以后到达的大作业分配大的内存空间提供了条件。 首次适应算法的缺点:低址部分被不断划分,会留下许
 - 首次适应算法的缺点:低址部分被不断划分,会留下许 多难以利用的、很小的空闲分区,称为碎片。而每次查 找又都从头开始,增加了查找可用空闲分区的开销。
 - (2) 循环首次适应算法的优点:可以避免低址部分留下很多 很小的空闲分区,使空闲分区分布更均匀,从而减少查 找可用空闲分区的开销。
 - 循环首次适应算法的缺点: 缺乏大的空闲分区。

- 6. 简述分页存储管理方式和分段存储管理方式区别。
 - (1) 分页的作业地址空间是一维的,分段的地址空间是二维的。
 - (2) 页的大小固定,由系统确定,将逻辑地址划分为页号和 页内地址。而段的长度却不固定,决定于用户所编写的 程序,通常由编译程序在对源程序进行编译时根据信息 的性质来划分。
 - (3) 页是信息的物理单位,分页是为了实现非连续的分配,以便解决内存碎片问题,或者说分页是由于系统管理的需要,段是信息的逻辑单位,它含有一组意义相对完整的信息,分段的目的是为了更好的实现共享,满足用户的需要。

得分	评卷人

五、计算题(每小题 5 分, 共 20 分)

假定系统为某进程分配了三个物理块,给出页面访问轨迹为:
 7,2,1,4,1,4,2,3,4,8,2,7,3,1,3,6,2,3,2,7,1,3,4,6。

页面置换算法分别采用 FIFO 和 LRU 算法,求缺页率。

7 2 1 4 1 4 2	2 3 4	8	2	7	3	1	3	6	2	3	2	7	1	3	4	6
7 7 7 4	4	4	2	2	2	1		1	1	3		3	3		4	4
2 2 2	3	3	3	7	7	7		6	6	6		7	7		7	6
1 1	1	8	8	8	3	3		3	2	2		2	1		1	1

$$FIFO 缺页率 = \frac{17}{24}$$

7	2	1	4	1	4	2	3	4	8	2	7	3	1	3	6	2	3	2	7	1	3	4	6
7	7	7	4				4		4	4	7	7	7		6	6			7	7	7	4	4
	2	2	2				2		8	8	8	3	3		3	3			3	1	1	1	6
		1	1				3		3	2	2	2	1		1	2			2	2	3	3	3

$$LRU缺页率 = \frac{17}{24}$$

2. 分别用 FCFS 和 SJF 算法求下面一组作业的平均周转时间和平均带权周转时间。

进程	到达时间	服务时间
Α	0	4
В	1	18
С	4	12
D	8	40
Ε	10	10

	进程名	Α	В	С	D	Е	平均
	到达时间	0	1	4	8	10	
	服务时间	4	18	12	40	10	
	完成时间	4	22	34	74	84	
FCFS	周转时间	4	21	30	66	74	39
	带权周转时间	1	1.17	2.5	1.65	7.4	2.74
	完成时间	4	44	26	84	14	
SJF	周转时间	4	43	22	76	4	29.8
	带权周转时间	1	2.39	1.83	1.9	0.4	7.52

3. 在基本页式存储中,假设页面大小为 2k, 页表如下,求逻辑地址 7262 的物理地址。

0	2F
1	A5
2	E9
3	C4
4	FE

查页表得到块号为:

$$C4_{(16)} = 16 \times 12 + 4 = 196_{(10)}$$

页内地址 = 逻辑地址 MOD 页面大小 = 7262 MOD 2048
= 1118
物理地址 = 块号 × 页面大小 + 页内地址
= 196 × 2048 + 1118 = 402526

4. 一组进程的资源占用与需求情况如下,用银行家算法判断该状态是否安全,并写出判断过程。

		Max		Al	locati	on		Need	ł	Available			
	Α	В	С	А	В	С	Α	В	С	Α	В	С	
P0	7	5	4	0	1	1	7	4	3	3	3	2	
P1	3	3	2	2	0	0	1	3	2				
P2	12	0	4	3	0	2	9	0	2				
РЗ	6	2	2	2	1	1	4	1	1				
P4	9	3	6	2	0	2	7	3	4				

其中 Max 表示进程最大需求的资源数; Allocation 表示已经分配给进程的资源数; Need 表示进程要顺利运行还需要的资源数, Available 表示当前可分配 (自由)的资源数。

	Work			Need			Allocation			Work+Allocation			Finish
	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
P1	3	3	2	1	3	2	2	0	0	5	3	2	true
P3	5	3	2	4	1	1	2	1	1	7	4	3	true
P0	7	4	3	7	4	3	0	1	1	7	5	4	true
P4	7	5	4	7	3	4	2	0	2	9	5	6	true
P2	9	5	6	9	0	2	3	0	2	12	5	8	true

得到一个安全序列{P1,P3,P0,P4,P2},故系统是安全的。