BLIP

Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Arzhantsev Andrei, 202

Vision-language tasks

- Image-Text Retrieval
- Image Captioning
- Visual Question Answering
- Visual Dialog

babasteve (CC BY 2.0); Yathin S Krishnappa (CC BY-SA 3.0)

- Natural Language Visual Reasoning
- Memes explanation

How many slices of pizza are there? Is this a vegetarian pizza?

VQA

VisDial

Person A (1): where are they located

Caption: A man and woman on bicycles are looking at a map.

Person B (1): in city

Person A (2): are they on road

Person B (2): sidewalk next to 1
Person A (3): any vehicles

Person B (3): 1 in background

Person A (4): any other people

Person B (4): no

Person A (5): what color bikes

Person B (5): 1 silver and 1 yellow Person A (6): do they look old or new

Person B (6): new bikes

Person A (7): any buildings

Person B (7): yes

Person A (8): what color Person B (8): brick

Person A (9): are they tall or short

Person B (9): i can't see enough of them to tell

Person A (10): do they look like couple

Person B (10): they are

NoCaps

- 1. Two hardcover books are on the table
- 2. Two magazines are sitting on a coffee table.
- Two books and many crafting supplies are on this table.
- 4. a recipe book and sewing book on a craft table
- 5. Two hardcover books are laying on a table.

Flickr30k

A man with pierced ears is wearing glasses and an orange hat.

A man with glasses is wearing a beer can crotched hat.

A man with gauges and glasses is wearing a Blitz hat.

A man in an orange hat starring at something.

A man wears an orange hat and glasses.

NI VR2

Model perspective

Encoder-based models

- CLIP: https://arxiv.org/pdf/2103.00020.pdf
- ALBEF: https://arxiv.org/pdf/2107.07651.pdf
- not optimal for text generation tasks

Encoder-Decoder models

- VL-T5: https://arxiv.org/pdf/2102.02779.pdf
- SimVLM: https://arxiv.org/pdf/2108.10904.pdf
- not optimal for image-text retrieval tasks

ALBEF

SimVLM

Data perspective

- Pre-train on relevant image-text pairs
 - few data, noisy data is bad
- Knowledge Distillation
 - https://arxiv.org/pdf/1503.02531.pdf
 - (ALBEF) Momentum Distillation
 - performs worse than CapFILT used in BLIP
- Data Augmentation
 - well known for CV tasks
 - recently used for NLP tasks
 - no analogue for VL tasks

[MASK] and the fiancee at their engagement party

GT: person

- Top-5 pseudo-targets:
 1. husband
- 2. person
- 3. me
- actor
 bovfriend

kitten playing with a [MASK]

GT: dog Top-5 pseudo-targets:

- Top-5 pseudo-targets

 1. tov
- 2. blanket
- 3. ball
- 4. mouse
- 5. bone

[MASK] at the guesthouse or nearby

GT: animal

- Top-5 pseudo-targets:
- fish
 animal
- 3. animals
- 4. wildlife
- 5. food

[MASK] clouds in the sky

GT: red Top-5 pseudo-targets:

- 1. pink
- 2. colorful
- 3. sunset
- 4. red
- 5. dramatic

BLIP: Captioning and Filtering (CapFilt)

- Human-annotated Image-Text pairs (Ih-Th)
- Large dataset of web Image-Text pairs (Iw-Tw)
- Captioner
 - Generates captions (Ts) given web images (Iw)
 - Initialized from pre-trained MED model
 - Image-grounded text decoder
 - Finetuned with the LM objective (from Ih-Th)

Filter

- Removes noisy image-text pairs
- Initialized from pre-trained MED model
- Image-grounded text encoder
- finetuned with the ITC (contrastive) and ITM (matching)
 objectives to learn whether a text matches an image

With CapFilt we have

Ih-Th and new filtered lw-Tw or lw-Ts

 T_w : "the current castle was built in 1180, replacing a 9th century wooden castle"

 T_s : "a large building with a lot of windows on it"

T_w: "from bridge near my house"

T_s: "a flock of birds flying over a lake at sunset"

T_w: "in front of a house door in Reichenfels,
Austria"

 T_s : "a potted plant sitting on top of a pile of rocks"

Filtering from both web texts and synthetic texts

BLIP: Multimodal mixture of Encoder-Decoder (MED)

- Unimodal encoder
 - separately encodes image and text
 - Text encoder same as BERT

- Image-grounded text encoder
 - injects visual information
 - one additional CA between SA and FF

- Image-grounded text decoder
 - generates captions given images
 - uses casual SA

Pre-training model architecture

BLIP: Multimodal mixture of Encoder-Decoder (MED)

- Image-Text Contrastive Loss (ITC)
 - aligns feature space of the visual transformer and text transformer
 - learns a similarity function

$$s(I,T) = g_v(oldsymbol{v}_{ ext{cls}})^ op g_w'(oldsymbol{w}_{ ext{cls}}')$$
 and $s(T,I) = g_w(oldsymbol{w}_{ ext{cls}})^ op g_v'(oldsymbol{v}_{ ext{cls}}')$

$$p_m^{\rm i2t}(I) = \frac{\exp(s(I,T_m)/\tau)}{\sum_{m=1}^{M} \exp(s(I,T_m)/\tau)}, \quad p_m^{\rm t2i}(T) = \frac{\exp(s(T,I_m)/\tau)}{\sum_{m=1}^{M} \exp(s(T,I_m)/\tau)}$$

$$\mathcal{L}_{\text{itc}} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D} \big[H(\boldsymbol{y}^{\text{i2t}}(I), \boldsymbol{p}^{\text{i2t}}(I)) + H(\boldsymbol{y}^{\text{t2i}}(T), \boldsymbol{p}^{\text{t2i}}(T)) \big]$$

- Image-TextMatching Loss (ITM)
 - learns image-text multimodal representation
 - binary classification task

$$\mathcal{L}_{ ext{itm}} = \mathbb{E}_{(I,T) \sim D} \mathrm{H}(oldsymbol{y}^{ ext{itm}}, oldsymbol{p}^{ ext{itm}}(I,T))$$

- Language Modeling Loss (LM)
 - cross entropy loss
 - aims to generate textual descriptions given an image
 - trains the model to maximize the likelihood of the text in an autoregressive manner

BLIP: Full schema

Effect of CapFilt

The efficacy of CapFilt on downstream tasks, including image-text retrieval and image captioning

Pre-train dataset	Boot	tstrap F	Vision backbone	Retrieval-	FT (COCO) IR@1	Retrieval- TR@1	ZS (Flickr) IR@1	Caption-I	FT (COCO) CIDEr	Caption-Z	ZS (NoCaps) SPICE
COCO+VG +CC+SBU	X	X ✓ B	ViT-B/16	78.4 79.1	60.7 61.5	93.9 94.1	82.1 82.8	38.0	127.8 128.2	102.2	13.9 14.0
(14M imgs)	I_B	X ✓B	VII-B/10	79.7 80.6	62.0 63.1	94.4 94.8	83.6 84.9	38.4 38.6	128.9 129.7	103.4 105.1	14.2 14.4
COCO+VG +CC+SBU +LAION	X ✓B ✓L	X ✓ _B ✓ _L	ViT-B/16	79.6 81.9 81.2	62.0 64.3 64.1	94.3 96.0 96.0	83.6 85.0 85.5	38.8 39.4 39.7	130.1 131.4 133.3	105.4 106.3 109.6	14.2 14.3 14.7
(129M imgs)	× ✓ _L	X ✓L	ViT-L/16	80.6 82.4	64.1 65.1	95.1 96.7	85.5 86.7	40.3 40.4	135.5 136.7	112.5 113.2	14.7 14.8

Experiments

Method	Pre-train	in-domain near-domain out-domain overall							COCO Caption Karpathy test		
	#Images	C	S	C	S	C	S	C	S	B@4	C
Enc-Dec (Changpinyo et al., 2021)	15M	92.6	12.5	88.3	12.1	94.5	11.9	90.2	12.1	-	110.9
VinVL† (Zhang et al., 2021)	5.7M	103.1	14.2	96.1	13.8	88.3	12.1	95.5	13.5	38.2	129.3
LEMON _{base} † (Hu et al., 2021)	12M	104.5	14.6	100.7	14.0	96.7	12.4	100.4	13.8	-	-
LEMON $_{\mathrm{base}}$ † (Hu et al., 2021)	200M	107.7	14.7	106.2	14.3	107.9	13.1	106.8	14.1	40.3	133.3
BLIP	14M	111.3	15.1	104.5	14.4	102.4	13.7	105.1	14.4	38.6	129.7
BLIP	129M	109.1	14.8	105.8	14.4	105.7	13.7	106.3	14.3	39.4	131.4
$BLIP_{CapFilt-L}$	129M	111.8	14.9	108.6	14.8	111.5	14.2	109.6	14.7	39.7	133.3
LEMON _{large} † (Hu et al., 2021)	200M	116.9	15.8	113.3	15.1	111.3	14.0	113.4	15.0	40.6	135.7
SimVLM _{huge} (Wang et al., 2021)	1.8B	113.7	-	110.9	-	115.2	-	112.2	-	40.6	143.3
BLIP _{ViT-L}	129M	114.9	15.2	112.1	14.9	115.3	14.4	113.2	14.8	40.4	136.7

Image captioning

Method	Pre-train # Images		TR	COCO (5	K test s	et) IR			Fli TR	ckr30K (1K test	set) IR	
	# Images	l	110			110		l	110			110	
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER (Chen et al., 2020)	4M	65.7	88.6	93.8	52.9	79.9	88.0	87.3	98.0	99.2	75.6	94.1	96.8
VILLA (Gan et al., 2020)	4M	-	-	-	-	-	-	87.9	97.5	98.8	76.3	94.2	96.8
OSCAR (Li et al., 2020)	4M	70.0	91.1	95.5	54.0	80.8	88.5	-	-	-	-	-	-
UNIMO (Li et al., 2021b)	5.7M	-	-	-	-	-	-	89.4	98.9	99.8	78.0	94.2	97.1
ALIGN (Jia et al., 2021)	1.8B	77.0	93.5	96.9	59.9	83.3	89.8	95.3	99.8	100.0	84.9	97.4	98.6
ALBEF (Li et al., 2021a)	14M	77.6	94.3	97.2	60.7	84.3	90.5	95.9	99.8	100.0	85.6	97.5	98.9
BLIP	14M	80.6	95.2	97.6	63.1	85.3	91.1	96.6	99.8	100.0	87.2	97.5	98.8
BLIP	129M	81.9	95.4	97.8	64.3	85.7	91.5	97.3	99.9	100.0	87.3	97.6	98.9
BLIP _{CapFilt-L}	129M	81.2	95.7	97.9	64.1	85.8	91.6	97.2	99.9	100.0	87.5	97.7	98.9
BLIP _{ViT-L}	129M	82.4	95.4	97.9	65.1	86.3	91.8	97.4	99.8	99.9	87.6	97.7	99.0

Image-text retrieval

Method	Pre-train #Images	V()A test-std	NL' dev	VR ² test-P
LXMERT	180K	72.42	72.54	74.90	74.50
UNITER	4M	72.70	72.34	77.18	77.85
VL-T5/BART	180K		71.3	-	73.6
OSCAR	4M	73.16	73.44	78.07	78.36
SOHO	219K	73.25	73.47	76.37	77.32
VILLA	4M	73.59	73.67	78.39	79.30
UNIMO	5.6M	75.06	75.27	-	-
ALBEF	14M	75.84	76.04	82.55	83.14
$SimVLM_{\rm base}\dagger$	1.8B	77.87	78.14	81.72	81.77
BLIP	14M	77.54	77.62	82.67	82.30
BLIP	129M	78.24	78.17	82.48	83.08
$BLIP_{CapFilt-L}$	129M	78.25	78.32	82.15	82.24

VQA and NLVR

Method	MRR↑	R@1↑	R@5↑	R@10↑	MR↓
VD-BERT	67.44	54.02	83.96	92.33	3.53
VD-ViLBERT†	69.10	55.88	85.50	93.29	3.25
BLIP	69.41	56.44	85.90	93.30	3.20

Visual Dialog

and even more

BLIP: potential directions for future

- 1. Multiple rounds of dataset bootstrapping
- Generate multiple synthetic captions per image to further enlarge the pre-training corpus
- Model ensemble by training multiple different captioners and filters and combining their forces in CapFilt

BLIP-2 (June 2023)

 Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

https://arxiv.org/pdf/2301.12597.pdf

- Novelties:
 - Q-Former trainable module to connect a frozen image encoder and a frozen LLM
 - new objective in model pretraining: Image-grounded Text Generation
 - 0 ...

BLIP-2's second-stage vision-to-language generative pre-training

That's all

T_w: "a week spent at our rented beach house in Sandbridge"

 T_s : "an outdoor walkway on a grass covered hill"

 T_w : "that's what a sign says over the door"

 T_s : "the car is driving past a small old building"

 T_w : "hand held through the glass in my front bedroom window"

 T_s : "a moon against the night sky with a black background"

T_w: "stunning sky over walney island, lake district, july 2009"

T_s: "an outdoor walkway on a grass covered hill"

T_w: "living in my little white house"

 T_s : "a tiny white flower with a bee in it"

T_w: "the pink rock from below"

T_s: "some colorful trees that are on a hill in the mountains"

Method	R1↑	R5↑	R10↑	MdR↓
zero-shot				
ActBERT (Zhu & Yang, 2020)	8.6	23.4	33.1	36
SupportSet (Patrick et al., 2021)	8.7	23.0	31.1	31
MIL-NCE (Miech et al., 2020)	9.9	24.0	32.4	29.5
VideoCLIP (Xu et al., 2021)	10.4	22.2	30.0	-
FiT (Bain et al., 2021)	18.7	39.5	51.6	10
BLIP	43.3	65.6	74.7	2
finetuning				
ClipBERT (Lei et al., 2021)	22.0	46.8	59.9	6
VideoCLIP (Xu et al., 2021)	30.9	55.4	66.8	-

Table 10. Comparisons with state-of-the-art methods for text-tovideo retrieval on the 1k test split of the MSRVTT dataset.

Method	MSRVTT-QA	MSVD-QA
zero-shot		
VQA-T (Yang et al., 2021)	2.9	7.5
BLIP	19.2	35.2
finetuning		
HME (Fan et al., 2019)	33.0	33.7
HCRN (Le et al., 2020)	35.6	36.1
VQA-T (Yang et al., 2021)	41.5	46.3

Table 11. Comparisons with state-of-the-art methods for **video** question answering. We report top-1 test accuracy on two datasets.

Not contained examples and experiment tables