Lærerveiledning - 7-Segment Display

Skrevet av: Martin Ertsås & Morten Minde Neergaard

Kurs: Arduino

Tema: Elektronikk, Tekstbasert Fag: Programmering, Teknologi

Klassetrinn: 5.-7. klasse, 8.-10. klasse, Videregående skole

Informasjon til veiledere

Læringsmål

Oppgaven «7-Segment Display» introduserer flere konsepter:

- · En teknikk for å utforske ukjente komponenter
- 7-Segment Display
- Funksjoner og funksjonskall
- · Switch statements

Merk

Denne oppgaven krever at elevene holder styr på en god del ledninger, og sluttresultatet vil se noe kaotisk ut.

Løsningsforslag

Display som teller opp og ned med to knapper.

Kobling:

Kode:

```
void blank() {
  for (int led = 6; led <= 13; led++) {</pre>
    digitalWrite(led, LOW);
  }
}
void tegn_0() {
  blank();
  digitalWrite(7, HIGH);
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  digitalWrite(11, HIGH);
  digitalWrite(10, HIGH);
}
void tegn_1() {
  blank();
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
}
void tegn_2() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(11, HIGH);
}
void tegn_3() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(12, HIGH);
  digitalWrite(11, HIGH);
}
void tegn 4() {
  blank();
  digitalWrite(7, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
}
```

```
void tegn_5() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(7, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(12, HIGH);
  digitalWrite(11, HIGH);
}
void tegn_6() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(11, HIGH);
  digitalWrite(12, HIGH);
  digitalWrite(6, HIGH);
}
void tegn_7() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
}
void tegn_8() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(7, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(12, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(11, HIGH);
  digitalWrite(9, HIGH);
}
void tegn_9() {
  blank();
  digitalWrite(8, HIGH);
  digitalWrite(7, HIGH);
  digitalWrite(6, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
}
int minus = 5;
int pluss = 4;
```

```
int tall = 0;
void setup() {
  for (int led = 6; led <= 13; led++) {</pre>
    pinMode(led, OUTPUT);
  }
  pinMode(pluss, INPUT_PULLUP);
  pinMode(minus, INPUT_PULLUP);
  tegn_0();
}
void oppdater() {
  switch (tall) {
    case 1:
      tegn_1();
      break;
    case 2:
      tegn_2();
      break;
    case 3:
      tegn_3();
      break;
    case 4:
      tegn_4();
      break;
    case 5:
      tegn_5();
      break;
    case 6:
      tegn_6();
      break;
    case 7:
      tegn_7();
      break;
    case 8:
      tegn_8();
      break;
    case 9:
      tegn_9();
      break;
    case 10:
      tall = 9;
      break;
    default:
      tegn_0();
      tall = 0;
      break;
  }
```

```
digitalWrite(13, HIGH);
  delay(150);
  digitalWrite(13, LOW);
  delay(150);
}

void loop() {
  if (digitalRead(pluss) == LOW) {
    tall += 1;
    oppdater();
  }
  if (digitalRead(minus) == LOW) {
    tall -= 1;
    oppdater();
  }
}
```

Lisens: CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0/deed)