

# Klotski: DNN Model Orchestration Framework for

Dataflow Architecture Accelerators

Xuechao Wei<sup>3</sup> Youwei Zhuo<sup>3</sup> Yi Cai<sup>3</sup> Hongzhong Zheng<sup>3</sup> Bei Yu<sup>1</sup> Yuan Xie<sup>2,3</sup>

ALIBABA DAMO ACADEMY 🛣

<sup>1</sup>The Chinese University of Hong Kong <sup>2</sup>Hong Kong University of Science and Technology <sup>3</sup>DAMO Academy, Alibaba Group

#### Introduction

Chen Bai<sup>1,3</sup>

#### Al accelerators scaling trends:

- "Brawny" scaling: Scale on-chip hardware resources.
- Scalable scaling: Scale DNN accelerators via an network-on-chip (NoC).

#### What is dataflow architecture acclerators?

- Dataflow architecture accelerators are a new kind of scalable scaling-driven Al accelerators.
- Distinct execution model compared to traditional scalable DNN accelerators.

## **Dataflow Execution Model**

The executability and execution of instructions is solely determined based on the availability of input operands to the instructions.

#### What is **DNN model orchestration**?



Figure 1. A pipeline overview of DNN model orchestration for scalable DNN accelerators.

# **Previous Methodologies & Limitations**

- CNN-Partition.
- Tangram.
- Atomic dataflow.

They are proposed for traditional scalable DNN accelerators rather than dataflow architecture accelerators.



Figure 2. Comparison between traditional scalable DNN accelerators and dataflow architecture accelerators.

## Algorithms

#### Overview of Klotski



Figure 3. An overview of Klotski framework.

#### Bayesian Ontimization-based Entropy-guided Partition

| Requ           | <b>ire:</b> $G$ : a DNN model. $\mathbb D$ : the design space for $oldsymbol{s}.$ $T$ : optin                            | nization budget. |
|----------------|--------------------------------------------------------------------------------------------------------------------------|------------------|
| 1: 5           | $S=\emptyset$ ; Sample $oldsymbol{s}\in\mathbb{D}$ ;                                                                     |                  |
| 2: <b>f</b>    | or $i=1 \rightarrow T$ do                                                                                                |                  |
| 3:             | Partition $G$ with $s$ ;                                                                                                 |                  |
| 4:             | Schedule, map, and execute $\mu$ ops;                                                                                    |                  |
| 5:             | Evaluate $E(s)$ ;                                                                                                        | ⊳ Equation ??    |
| 6:             | $S = S \cup \{(\boldsymbol{s}, E(\boldsymbol{s}))\};$                                                                    |                  |
| 7:             | Construct a Gaussian process model with $S$ ;                                                                            |                  |
| 8:             | $oldsymbol{s}^* = \operatorname{argmax}_{oldsymbol{s} \in \mathbb{D}} UCB(oldsymbol{s});  oldsymbol{s} = oldsymbol{s}^*$ |                  |
| 9: <b>e</b>    | end for                                                                                                                  |                  |
| 10: <b>r</b> e | <b>eturn</b> Optimal $oldsymbol{s}^*$ from $S$ .                                                                         |                  |

$$E(\boldsymbol{s}) = -\left(\sum_{u \in V} \frac{l(u_i)}{l(V)} \ln \frac{l(u_i)}{l(V)}\right) / (\alpha \cdot \text{makespan}), \tag{1}$$



Figure 4. An example shows a partition with s(2, 2, 2, 3).

# Unified Formulation for $\mu$ Ops Scheduling & Mapping

- 1. Acquire the upper bound of the makespan by list scheduling.
- 2. Acquire the scheduling flexibility by ASAP & ALAP.
- 3. Define the solution with a binary tensor  $\boldsymbol{\mathcal{X}}$ .
- 4. Construct constraints for the scheduling & mapping.
- 5. Construct optimization objectives.
- 6. Solve the model with off-the-shelf solvers.

$$\boldsymbol{\mathcal{X}}_{ijk} = egin{cases} 1, \ \mu \text{op } u_i \text{ is scheduled to the } k\text{-th accelerator} \\ \text{at the } j\text{-th time slot.} \\ 0, \text{ otherwise.} \end{cases}$$

# Limitations of the unified formulation:

- It costs high runtime to construct constraints.
- Non-linearity in NoC communication formulations.

# Two-Stage Scheduling & Mapping Decoupling

 $m{X}_{ij} = egin{cases} 1, \ \mu \text{op } u_i \text{ is scheduled to the } j\text{-th time slot.} \\ 0, \text{ otherwise.} \end{cases}$ 

## Results

- We build an in-house simulator for the dataflow architecture accelerators.
- We use MAESTRO as performance model for individual accelerators.
- We use nn\_dataflow as the front end of DNN models, and we implement the partition based on the framework.
- We use Gurobi v10.0 as the off-the-shelf solver.

## Comparison to Baselines:

Table 1. The experimental results for the  $3 \times 3$  topology

| Workload                     | Method     | Cycles       | Ratio  | Overall Runtime | Ratio  | HUR <sup>1</sup> |
|------------------------------|------------|--------------|--------|-----------------|--------|------------------|
|                              | Baseline 1 | 1.2283E + 08 | 1.0000 | 2               |        | 1.0000           |
| VGG16                        | Baseline 2 | 5.5633E + 07 | 0.4529 | 477.6634        | 1.0000 | 2.5617           |
|                              | Klotski    | 4.0659E + 07 | 0.3310 | 878.8832        | 1.8399 | 3.0602           |
|                              | Baseline 1 | 1.5523E + 08 | 1.0000 |                 |        | 1.0000           |
| VGG19                        | Baseline 2 | 7.4207E + 07 | 0.4781 | 576.3081        | 1.0000 | 2.5229           |
|                              | Klotski    | 5.5381E + 07 | 0.3568 | 887.5790        | 1.5401 | 2.9857           |
|                              | Baseline 1 | 7.7422E + 07 | 1.0000 |                 |        | 1.0000           |
| ResNet50                     | Baseline 2 | 5.7060E + 07 | 0.7370 | 583.6488        | 1.0000 | 0.9762           |
|                              | Klotski    | 4.8174E + 07 | 0.8443 | 1779.0426       | 3.0481 | 1.3050           |
|                              | Baseline 1 | 1.8984E + 08 | 1.0000 |                 |        | 1.0000           |
| ResNet152                    | Baseline 2 | 1.7102E + 08 | 0.9009 | 867.0853        | 1.0000 | 1.2523           |
|                              | Klotski    | 1.5947E + 08 | 0.8400 | 2800.9154       | 3.2302 | 1.3605           |
|                              | Baseline 1 | 2.5122E + 07 | 1.0000 |                 |        | 1.0000           |
| Inception                    | Baseline 2 | 1.6345E + 07 | 0.6506 | 470.3763        | 1.0000 | 2.5103           |
|                              | Klotski    | 1.3348E + 07 | 0.5313 | 1397.9008       | 2.9719 | 3.2996           |
| 1 Hardware utilization ratio |            |              |        |                 |        |                  |

Hardware utilization ratio

<sup>2</sup> Not applicable

Table 2. The experimental results for the  $4 \times 4$  topology

| Workload  | Method     | Cycles       | Ratio  | Overall Runtime | Ratio  | HUR    |
|-----------|------------|--------------|--------|-----------------|--------|--------|
|           | Baseline 1 | 1.2283E + 08 | 1.0000 |                 |        | 1.0000 |
| VGG16     | Baseline 2 | 4.5869E + 07 | 0.3734 | 317.5903        | 1.0000 | 2.1196 |
|           | Klotski    | 3.0670E + 07 | 0.2497 | 881.6310        | 2.7760 | 2.4547 |
|           | Baseline 1 | 1.5523E + 08 | 1.0000 |                 |        | 1.0000 |
| VGG19     | Baseline 2 | 5.8049E + 07 | 0.3740 | 388.8627        | 1.0000 | 1.9895 |
|           | Klotski    | 3.9934E + 07 | 0.2573 | 1130.6444       | 2.9076 | 2.2964 |
|           | Baseline 1 | 7.7422E + 07 | 1.0000 |                 |        | 1.0000 |
| ResNet50  | Baseline 2 | 5.3365E + 07 | 0.6893 | 541.8091        | 1.0000 | 2.8954 |
|           | Klotski    | 4.6260E + 07 | 0.5975 | 1019.2198       | 1.8811 | 3.1953 |
|           | Baseline 1 | 1.8984E + 08 | 1.0000 |                 |        | 1.0000 |
| ResNet152 | Baseline 2 | 1.6578E + 08 | 0.8733 | 793.7304        | 1.0000 | 1.2264 |
|           | Klotski    | 1.5754E + 08 | 0.8299 | 2327.4657       | 2.9323 | 1.3438 |
|           | Baseline 1 | 2.5188E + 07 | 1.0000 |                 |        | 1.0000 |
| Inception | Baseline 2 | 1.5183E + 07 | 0.6028 | 419.3479        | 1.0000 | 2.2822 |
|           | Klotski    | 1.0781E + 07 | 0.4280 | 1432.0112       | 3.4148 | 2.8579 |

Ablation study:



Figure 5. Results of the  $3 \times 3$  topology.



Figure 6. Results of the  $4 \times 4$  topology.

# Summary of results:

(3)

- Across all different scales of topologies, compared to baseline 1 and baseline 2, the solution given by Klotski outperforms by an average of 48.65% and 9.55% in cycles.
- Klotski costs higher runtime than baselines due to that Klotski leverages much time to solve the scheduling and mapping in the two-stage methodology.