Serial No. 10/786497 DeMont & Breyer Docket: 711-021US Lockheed Martin Docket: FE-00653

The following claims are presented for examination:

1. (Original) A method comprising:

determining an acoustic center of a transducer, wherein said transducer has a plurality of transducing elements; and

determining an offset of the determined acoustic center from a theoretical acoustic center.

- **2.** (Original) The method of claim 1 wherein determining an acoustic center comprises ensonifying each of said transducing elements, one transducing element at a time.
- **3.** (Original) The method of claim 1 wherein determining an acoustic center comprises ensonifying each of said transducing elements, wherein at least two of said transducing elements are ensonified simultaneously.
 - **4.** (Original) The method of claim 1 wherein determining an acoustic center comprises: disposing a projector near a transducing element; and ensonifying said element using said projector.
- **5.** (Original) The method of claim 4 wherein determining an acoustic center comprises driving said projector by a signal generator.
- **6.** (Original) The method of claim 1 wherein determining an acoustic center comprises obtaining an electrical response from each of said transducing elements.
- **7.** (Original) The method of claim 6 wherein determining an acoustic center comprises electronically processing said electrical response using an algorithm.
- **8.** (Original) The method of claim 6 wherein determining an acoustic center comprises generating a pictorial representation of said electrical response from each said transducing element.
- **9.** (Original) The method of claim 1 further comprising designating said transducer as being one of either acceptable or not acceptable as a function of said offset.

Serial No. 10/786497 DeMont & Breyer Docket: 711-021US Lockheed Martin Docket: FE-00653

10. (Previously Presented) A method comprising determining an acoustic center of each of a plurality of transducers, wherein each transducer has a plurality of transducing elements, and wherein the acoustic center of each of said transducers is determined by:

- (a) measuring a response characteristic of each transducing element in said transducer; and
- (b) calculating a weighted average of said response characteristic of each transducing element as a function of a location of said transducing element relative to other of said transducing elements in the transducer.

11. (Canceled)

- **12.** (Original) The method of claim 10 comprising determining an offset, for each transducer, from a theoretical or desired acoustical center.
- **13.** (Original) The method of claim 12 comprising basing formal acceptance testing of each said transducer based on said offset for each of said transducers.
- **14.** (Original) The method of claim 12 comprising predicting performance of an array of said transducers based on said offset of each of said transducers.
- **15.** (Original) The method of claim 12 comprising selectively positioning said transducers in an array based on said offset of each of said transducers.
- **16.** (Original) The method of claim 12 comprising basing signal processing calculations for an array of transducers on said offset of each of said transducers.
- 17. (Original) A method comprising: calculating an acoustic center of each of a plurality of multi-element transducers; calculating an offset for each of said plurality of multi-element transducers, wherein said offset is based on said calculated acoustic center and a theoretical acoustic center of

correcting signal processing calculations using said offsets.

each of said multi-element transducers; and

Serial No. 10/786497

18. – **28.** (Canceled)