PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H04J 3/16, H04B 7/26, H04J 11/00

(11) International Publication Number:

WO 96/22639

(43) International Publication Date:

25 July 1996 (25.07.96)

(21) International Application Number:

PCT/US96/00673

A1

(22) International Filing Date:

17 January 1996 (17.01.96)

(30) Priority Data:

374,444

17 January 1995 (17.01.95) US

(71) Applicant: QUALCOMM INCORPORATED [US/US]; 6455 Lusk Boulevard, San Diego, CA 92121 (US).

(72) Inventors: PADOVANI, Roberto; 13593 Penfield Point, San Diego, CA 92130 (US). TIEDEMANN, Edward, G., Jr.; 4350 Bromfield Avenue, San Diego, CA 92122 (US). ODENWALDER, Joseph, P.; 14967 Rancho Real, Del Mar, CA 92014 (US). ZEHAVI, Ephraim; 15A Watson Street, 34751 Haifa (IL). WHEATLEY, Charles, E., III; 2208 Caminito Del Barco, Del Mar, CA 92014 (US).

(74) Agent: MILLER, Russell, B.; Qualcomm Incorporated, 6455 Lusk Boulevard, San Diego, CA 92121 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION

(57) Abstract

A method and apparatus for arranging various types of data, and at various rates, into a uniquely structured format for transmission. Data for transmission formatting may be speech data provided by vocoder (14) or different types of secondary traffic. The data organized into frames of a predetermined time duration for transmission by a microprocessor (18). The data frames are organized, depending on the data, to be at one of several data rates. Vocoder data is provided by vocoder (14) at one of several data rates and is organized in the frame according to a predermined format. Frames may be formatted with a sharing of vocoder data with non-vocoder data to be at a highest frame data rate. Different types of non-vocoder data may be organized so as to also be at the highest frame data rate. Additional control data may be provided within the data frames to support various aspects of the transmission and recovery upon reception.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	Ц	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzhekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION

BACKGROUND OF THE INVENTION

5

10

20

25

30

35

40

I. Field of the Invention

The present application relates to the organization of data for transmission. More particularly, the present invention relates to a novel and improved method and apparatus for formatting vocoder data, non-vocoder data and signaling data for transmission.

II. Description of the Related Art

In the field of digital communications various arrangements of digital data for transmission are used. The data bits are organized according to commonly used formats for transfer over the communication medium.

It is therefore an object of the present invention to provide a data format which facilitates the communication of various types of data, and data of various rates, to be communicated in a structured form.

SUMMARY OF THE INVENTION

The present invention is a novel and improved method and system for formatting digital data for communication over a transmission medium.

In communication systems it is important to utilize a data format which permits a full communication of data between users. In a communication system, such as a code division multiple access (CDMA) communication system, in which it is desirable to communicate various types of data, and at various rates, a data format must be selected which permits maximum flexibility within a predefined structure. Furthermore to maximize resources it is desirable to permit a sharing of the format to permit different types of data to be organized together. In such situations it is necessary to structure the data in a manner in which it may be readily extracted according to the corresponding type and rate.

In accordance with the present invention a method and apparatus is provided for arranging various types of data, and at various rate, into a uniquely structured format for transmission. Data is provided as vocoder data or different types of non-vocoder data. The data is organized into

frames of a predetermined time duration for transmission. The data frames are organized, depending on the data, to be at one of several data rates. Vocoder data is provided at one of several data rates and is organized in the frame according to a predetermined format. Frames may be formatted with a sharing of vocoder data with non-vocoder data to be at a highest frame data rate. Non-vocoder data may be organized so as to also be at a highest frame rate. Additional control data may be provided within the data frames to support various aspects of the transmission and recovery upon reception.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

30

35

40

The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

Figure 1 is a block diagram illustrating an exemplary embodiment for a transmitter portion of a transceiver;

Figures 2a - 2l are a series of diagrams illustrating frame data formats for the various data rates, types and modes of rate set 1;

Figure 3 is a diagram illustrating an exemplary circuit implementation of the CRC and Tail Bit generator of Figure 1;

Figures 4a - 4c is a flow chart of the formatting of frames of data;

Figures 5a - 5d illustrate in a series of charts the ordering of code symbols in the interleaver array for transmission data rates of 9.6, 4.8, 2.4 and 1.2 kbps, respectively;

Figures 6a-6c is a chart illustrating the Walsh symbol corresponding to each encoder symbol group;

Figure 7 is a block diagram illustrating the long code generator of Figure 1;

Figures 8a - 8c are a series of diagrams illustrating long code masks for the various channel type; and

Figures 9a - 9y are a series of diagrams illustrating frame data formats for the various data rates, types and modes of rate set 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, Figure 1 illustrates an exemplary embodiment of a transmit portion 10 of a CDMA mobile station transceiver or PCN handset. In a CDMA cellular communication system a forward CDMA channel is used to transmit information from a cell base station to

3

the mobile station. Conversely a reverse CDMA channel is used to transmit information from the mobile station to the cell base station. The communication of signals from the mobile station may be characterized in the form of an access channel or a traffic channel communication. The access channel is used for short signaling messages such as call originations, responses to pages, and registrations. The traffic channel is used to communicate (1) primary traffic, typically includes user speech, or (2) secondary traffic, typically user data, or (3) signaling traffic, such as command and control signals, or (4) a combination of primary traffic and secondary traffic or (5) a combination of primary traffic and signaling traffic.

10

15

20

25

30

Transmit portion 10 enables data to be transmitted on the reverse CDMA channel at data rates of 9.6 kbps, 4.8 kbps, 2.4 kbps or 1.2 kbps. Transmissions on the reverse traffic channel may be at any of these data rates while transmissions on the access channel are at the 4.8 kbps data rate. The transmission duty cycle on the reverse traffic channel will vary with the transmission data rate. Specifically, the transmission duty cycle for each rate is provided in Table I. As the duty cycle for transmission varies proportionately with the data rate, the actual burst transmission rate is fixed at 28,800 code symbols per second. Since six code symbols are modulated as one of 64 Walsh symbols for transmission, the Walsh symbol transmission rate shall be fixed at 4800 Walsh symbols per second which results in a fixed Walsh chip rate of 307.2 kcps.

All data that is transmitted on the reverse CDMA channel is convolutional encoded, block interleaved, modulated by 64-ary modulation, and direct-sequence PN spread prior to transmission. Table I further defines the relationships and rates for data and symbols for the various transmission rates on the reverse traffic channel. The numerology is identical for the access channel except that the transmission rate is fixed at 4.8 kbps, and the duty cycle is 100%. As described later herein each bit transmitted on the reverse CDMA channel is convolutional encoded using a rate 1/3 code. Therefore, the code symbol rate is always three times the data rate. The rate of the direct-sequence spreading functions shall be fixed at 1.2288 MHz, so that each Walsh chip is spread by precisely four PN chips.

TABLE I

Bit Rate (kbps)	9.6	4.8	2.4	1.2
PN Chip Rate (Mcps)	1.2288	1.2288	1.2288	1.2288
Code Rate (bits/code symbol)	1/3	1/3	1/3	1/3
TX Duty Cycle (%)	100.0	50.0	25.0	12.5
Code Symbol Rate (sps)	28,800	28,800	28,800	28,800
Modulation (code symbol/Walsh symbol)	6	6	6	6
Walsh Symbol Rate (sps)	4800	4800	4800	4800
Walsh Chip; Rate (kcps)	307.20	307.20	307.20	307.20
Walsh Symbol (µs)	208.33	208.33	208.33	208.33
PN Chips/Code Symbol	42.67	42.67	42.67	42.67
PN Chips/Walsh Symbol	256	256	256	256
PN Chips/Walsh Chip	4	4	4	4

Transmit portion 10, when functioning in mode in which primary traffic is present, communicates acoustical signals, such as speech and/or background noise, as digital signals over the transmission medium. To facilitate the digital communication of acoustical signals, these signals are sampled and digitized by well known techniques. For example, in Figure 1, sound is converted by microphone 12 to an analog signal which is then converted to a digital signal by codec 14. Codec 14 typically performs an analog to digital conversion process using a standard 8 bit/µlaw format. In the alternative, the analog signal may be directly converted to digital form in a uniform pulse code modulation (PCM) format. In an exemplary embodiment codec 14 uses an 8 kHz sampling and provides an output of 8 bit samples at the sampling rate so as to realize a 64 kbps data rate.

5

10

15

20

25

The 8-bit samples are output from codec 14 to vocoder 16 where a µlaw/uniform code conversion process is performed. In vocoder 16, the samples are organized into frames of input data wherein each frame is comprised of a predetermined number of samples. In a preferred implementation of vocoder 16 each frame is comprised of 160 samples or of 20 msec. of speech at the 8 kHz sampling rate. It should be understood that other sampling rates and frame sizes may be used. Each frame of speech samples is variable rate encoded by vocoder 16 with the resultant parameter data formatted into a corresponding data packet. The vocoder data packets are then output to microprocessor 18 and associated circuitry for transmission formatting. Microprocessor 18 generically includes program instructions contained with a program instruction memory, a data memory, and appropriate interface and related circuitry as is known in the art.

15

20

25

30

35

A preferred implementation of vocoder 16 utilizes a form of the Code Excited Linear Predictive (CELP) coding techniques so as to provide a variable rate in coded speech data. A Linear Predictive Coder (LPC) analysis is performed upon a constant number of samples, and the pitch and codebook searches are performed on varying numbers of samples depending upon the transmission rate. A variable rate vocoder of this type is described in further detail in copending U.S. Patent Application Serial No. 08/004,484, filed January 14, 1993, which is a continuation of U.S. Patent Application Serial No. 07/713,661 filed June 11, 1991, now abandoned, and assigned to the Assignee of the present invention and of which the disclosure is incorporated by reference. Vocoder 16 may be implemented in an application specific integrated circuit (ASIC) or in a digital signal processor.

In the variable rate vocoder just mentioned, the speech analysis frames are 20 msec. in length, implying that the extracted parameters are output to microprocessor 18 in a burst 50 times per second. Furthermore the rate of data output is varied from roughly 8 kbps to 4 kbps to 2 kbps, and to 1 kbps.

At full rate, also referred to as rate 1, data transmission between the vocoder and the microprocessor is at an 8.55 kbps rate. For the full rate data the parameters are encoded for each frame and represented by 160 bits. The full rate data frame also includes a parity check of 11 bits thus resulting in a full rate frame being comprised of a total of 171 bits. In the full rate data frame, the transmission rate between the vocoder and the microprocessor absent the parity check bits would be 8 kbps.

At half rate, also referred to as rate 1/2, data transmission between the vocoder and the microprocessor is at a 4 kbps rate with the parameters encoded for each frame using 80 bits. At quarter rate, also referred to as rate 1/4, data transmission between the vocoder and the microprocessor is at a 2 kbps rate with the parameters encoded for each frame using 40 bits. At eighth rate, also referred to as rate 1/8, data transmission between the vocoder and the microprocessor is slightly less than a 1 kbps rate with the parameters encoded for each frame using 16 bits.

In addition, no information may be sent in a frame between the vocoder and the microprocessor. This frame type, referred to as a blank frame, may be used for signaling or other non-vocoder data.

The vocoder data packets are then output to microprocessor 18 and CRC and Tail Bit generator 20 for completing the transmission formatting. Microprocessor 18 receives packets of parameter data every 20 msec. along

6

with a rate indication for the rate the frame of speech samples was encoded. Microprocessor 18 also receives, if present, an input of secondary traffic data for output to generator 20. Microprocessor 18 also internally generates signaling data for output to generator 20. Data whether it is primary traffic, secondary traffic or signaling traffic matter, if present, is output from microprocessor 18 to generator 20 every 20 msec. frame.

5

10

15

20

25

30

35

Generator 20 generates and appends at the end of all full and half rate frames a set of parity check bits, frame quality indicator bits or cyclic redundancy check (CRC) bits which are used at the receiver as a frame quality indicator. For a full rate frame, regardless of whether the data is a full rate primary, secondary or signaling traffic, or a combination of half rate primary and secondary traffic, or a combination of half rate primary and signaling traffic, generator 20 preferably generates a set of frame quality indicator bits according to a first polynomial. For a half rate data frame, generator 20 also generates a set of frame quality indicator bits preferably according to a second polynomial. Generator 20 further generates for all frame rates a set of encoder tail bits which follow the frame quality indicator bits, if present, or data if frame quality indicator bits are not present, at the end of the frame. Further details of the operation on microprocessor 18 and generator 20 are provided later herein with reference to Figures 3 and 4.

Reverse traffic channel frames provided from generator 20 at the 9.6 kbps rate are 192 bits in length and span the 20 msec. frame. These frames consist of a single mixed mode bit, auxiliary format bits if present, message bits, a 12-bit frame quality indicator, and 8 tail bits as shown in Figures 2a - 2e and 2i - 2l. The mixed mode bit shall be set to '0' during any frame in which the message bits are primary traffic information only. When the mixed mode bit is '0', the frame shall consist of the mixed mode bit, 171 primary traffic bits, 12 frame quality indicator bits, and 8 tail bits.

The mixed mode bit is set to '1' for frames containing secondary or signaling traffic. If the the mixed mode bit is set to '1' the frame is of a "blank-and-burst" or a "dim-and-burst" format. A "blank-and-burst" operation is one in which the entire frame is used for secondary or signaling traffic while a "dim-and-burst" operation is one in which the primary traffic shares the frame with either secondary or signaling traffic.

The first bit following the mixed mode bit is a traffic type bit. The traffic type bit is used to specify whether the frame contains secondary or signaling traffic. If the traffic type bit is a '0', the frame contains signaling traffic, and if a '1', the frame contains secondary traffic. Figures 2b - 2e and 2i-2l illustrate the traffic type bit. The two bits following the traffic type bit

5

10

15

20

25

30

7

are traffic mode bits. The two traffic mode bits specify the combination of data within the frame.

In the preferred implementation only primary traffic is transmitted in frames at the 4.8 kbps, 2.4 kbps, and 1.2 kbps rates. Mixed mode operation is generally not be supported at rates other than the 9.6 kbps rate, although it may be readily configured to do so. The frame formats for these particular rates are shown in Figures 2f - 2h. For the 4.8 kbps rate, the frame is 96 bits in length with the bits spaced over the 20 msec. time period of the frame as described later herein. The 4.8 kbps rate frame contains 80 primary traffic bits, an 8 frame quality indicator bits, and 8 tail bits. For the 2.4 kbps rate, the frame is 48 bits in length with the bits spaced over the 20 msec. time period of the frame as also described later herein. The 2.4 kbps rate frame contains 40 primary traffic bits and 8 tail bits. For the 1.2 kbps rate, the frame is 24 bits in length with the bits spaced over the 20 msec. time period of the frame as also described later herein. The 1.2 kbps rate frame contains 16 primary traffic bits and 8 tail bits.

In a preferred embodiment the access channel data is generated by microprocessor 18 for transmission at a rate of 4.8 kbps. As such the data is prepared in a manner identical to that of 4.8 kbps frame format data, such as encoding, interleaving as Walsh encoding. In the encoding scheme implemented for the 4.8 kbps data, whether reverse traffic channel data or access channel data, redundant data is generated. Unlike the reverse traffic channel where the redundant data is eliminated in the transmission, in access channel all data including redundant data is transmitted. Details on the transmission aspects of frames of access channel data are provided later herein.

Figures 2a-2l illustrate the frame formats of frames output by generator 20 for frames of rates 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps. Figure 2a illustrates a 9.6 kbps frame for the transmission of primary traffic only. The frame consists of one mixed mode bit, which is set to 0 to indicate that the frame contains only primary traffic data, 171 bits of primary traffic data, 12 frame quality indicator bits and 8 tail bits.

Fig. 2b illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/2 primary traffic and signaling traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to zero to indicate signaling data is in the frame, two traffic mode bits set to 00 to indicate that the frame contains rate 1/2 primary traffic and signaling traffic, 80 primary traffic bits, 88 signaling traffic bits, 12 frame quality indicator bits and 8 tail bits.

8

Fig. 2c illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/4 primary traffic and signaling traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to zero to indicate signaling data is in the frame, two traffic mode bits set to 01 to indicate that the frame contains rate 1/4 primary traffic and signaling traffic, 40 primary traffic bits, 128 signaling traffic bits, 12 frame quality indicator bits and 8 tail bits.

5

10

15

20

25

30

35

Fig. 2d illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/8 primary traffic and signaling traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to zero to indicate signaling data is in the frame, two traffic mode bits set to 10 to indicate that the frame contains rate 1/8 primary traffic and signaling traffic, 16 primary traffic bits, 152 signaling traffic bits, 12 frame quality indicator bits and 8 tail bits.

Fig. 2e illustrate a 9.6 kbps blank and burst frame for the transmission of signaling traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to zero to indicate signaling data is in the frame, two traffic mode bits set to 11 to indicate that the frame contains signaling traffic only, 168 signaling traffic bits, 12 frame quality indicator bits and 8 tail bits.

Fig. 2f illustrates a 4.8 kbps frame for the transmission of rate 1/2 primary traffic only. The frame contains 80 primary traffic bits, 8 frame quality indicator bits and 8 tail bits. Fig. 2g illustrates a 2.4 kbps frame for the transmission of rate 1/4 primary traffic only. The frame contains 40 primary traffic bits and 8 tail bits. Fig. 2h illustrates a 1.2 kbps frame for the transmission of rate 1/8 primary traffic only. The frame contains 16 primary traffic bits and 8 tail bits.

Fig. 2i illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/2 primary traffic and secondary traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to 1 to indicate secondary data is in the frame, two traffic mode bits set to 00 to indicate that the frame contains rate 1/2 primary traffic and secondary traffic, 80 primary traffic bits, 88 secondary traffic bits, 12 frame quality indicator bits and 8 tail bits.

Fig. 2j illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/4 primary traffic and secondary traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to 1 to indicate secondary data is in the frame, two traffic mode bits set to 01 to indicate that the frame

9

contains rate 1/4 primary traffic and secondary traffic, 40 primary traffic bits, 128 secondary traffic bits, 12 frame quality indicator bits and 8 tail bits.

Fig. 2k illustrate a 9.6 kbps dim and burst frame for the transmission of rate 1/8 primary traffic and secondary traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to 1 to indicate secondary data is in the frame, two traffic mode bits set to 10 to indicate that the frame contains rate 1/8 primary traffic and secondary traffic, 16 primary traffic bits, 152 secondary traffic bits, 12 frame quality indicator bits and 8 tail bits.

Fig. 2l illustrate a 9.6 kbps blank and burst frame for the transmission of secondary traffic. The frame consists of one mixed mode bit, which is set to 1 to indicate the frame does not contain primary traffic only, one traffic type bit set to 1 to indicate secondary data is in the frame, two traffic mode bits set to 11 to indicate that the frame contains secondary traffic only, 168 secondary traffic bits, 12 frame quality indicator bits and 8 tail bits.

10

15

20

25

30

35

Figure 3 illustrates an exemplary implementation of the elements for formatting the data in accordance with Figures 2a - 2l. In Figure 3 data is transmitted from microprocessor 18 (Figure 1) to generator 20. Generator 20 is comprised of data buffer and control logic 60, CRC circuits 62 and 64, and tail bit circuit 66. Along with data provided from the microprocessor a rate command may optionally be provided. Data is transferred for each 20 msec frame from the microprocessor to logic 60 where temporarily stored. For each frame, logic 60 may for each frame count the number of bits transmitted from the microprocessor, or in the alternative use the rate command and a count of the clock cycles in formatting a frame of data.

Each frame of the traffic channel includes a frame quality indicator. For the 9.6 kbps and 4.8 kbps transmission rates, the frame quality indicator is the CRC. For the 2.4 kbps and 1.2 kbps transmission rates, the frame quality indicator is implied, in that no extra frame quality bits are transmitted. The frame quality indicator supports two functions at the receiver. The first function is to determine the transmission rate of the frame, while the second function is to determine whether the frame is in error. At the receiver these determinations are made by a combination of the decoder information and the CRC checks.

For the 9.6 kbps and 4.8 kbps rates, the frame quality indicator (CRC) is calculated on all bits within the frame, except the frame quality indicator (CRC) itself and the tail bits. Logic 60 provides the 9.6 kbps and 4.8 kbps rate data respectively to CRC circuits 62 and 64. Circuits 62 and 64 are typically

constructed as a sequence of shift registers, modulo-2 adders (typically exclusive-OR gates) and switches as illustrated.

The 9.6 kbps transmission rate data uses a 12-bit frame quality indicator (CRC), which is be transmitted within the 192-bit long frame as discussed with reference to Figures 2a - 2e and 2i - 2l. As illustrated in Figure 3 for CRC circuit 62, the generator polynomial for the 9.6 kbps rate is as follows:

5

10

20

25

30

35

$$g(x) = x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^4 + x + 1.$$
 (1)

The 4.8 kbps transmission rate data uses an 8-bit CRC, which is transmitted within the 96-bit long frame. As illustrated in Figure 3 for CRC circuit 64, the generator polynomial for the 4.8 kbps rate is as follows:

15
$$g(x) = x^8 + x^7 + x^4 + x^3 + x + 1.$$
 (2)

Initially, all shift register elements of circuits 62 and 64 are set to logical one ('1') by an initialization signal from logic 60. Furthermore logic 60 set the switches of circuits 62 and 64 in the up position.

For 9.6 kbps rate data, the registers of circuit 62 are then clocked 172 times for the 172 bits in the sequence of primary traffic, secondary traffic or signaling bits or a mixture thereof along with the corresponding mode/format indicator bits as input to circuit 62. After 172 bits are clocked through circuit 62, logic 60 then sets the switches of circuit 62 in the down position with the registers of circuit 62 then being clocked an additional 12 times. As a result of the 12 additional clockings of circuit 62, 12 additional output bits are generated which are the frame quality indicator bits (CRC bits). The frame quality indicator bits, in the order calculated, are appended to the end of the 172 bits as output from circuit 62. It should be noted that the 172 bits output from logic 60 which pass through circuit 62 are undisturbed by the computation of the CRC bits and are thus output from circuit 62 in the same order and at the same value at which they entered.

For 9.6 kbps rate data bits are input to circuit 64 from logic 60 in the following order. For the case of primary traffic only, the bits are input to circuit 64 from logic 60 in the order of the single mixed mode (MM) bit followed by the 171 primary traffic bits. For the case of "dim and burst" with primary and signaling traffic, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, a traffic type (TT) bit, a pair of traffic mode (TM) bits, 80 primary traffic bits, and 86 signaling traffic bits. For the case of "dim and burst" with primary and secondary traffic, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, the TT

bit, the pair of TM bits, 80 primary traffic bits and 87 signaling traffic bits. For the case of "blank and burst" data format with signaling traffic only, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, the TT bit and 168 signaling traffic bits. For the case of "blank and burst" data format with secondary traffic only, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, the TT bit and 169 signaling traffic bits.

5

10

15

20

25

30

35 ·

11

Similarly for 4.8 kbps rate data, the registers of circuit 64 are clocked 80 times for the 80 bits of primary traffic data, or for the 80 bits of access channel data, as input to circuit 64 from logic 60. After the 80 bits are clocked through circuit 64, logic 60 then sets the switches of circuit 64 in the down position with the registers of circuit 64 then being clocked an additional 8 times. As a result of the 12 additional clockings of circuit 62, 12 additional output bits are generated which are the CRC bits. The CRC bits, in the order calculated, are again appended to the end of the 80 bits as output from circuit 64. It should again be noted that the 80 bits output from logic 60 which pass through circuit 64 are undisturbed by the computation of the CRC bits and are thus output from circuit 64 in the same order and at the same value at which they entered.

The bits output from either of circuits 62 and 64 are provided to switch 66 which is under the control of logic 60. Also input to switch 66 are the 40 and 16 bits of primary traffic data output from logic 60 for 2.4 kbps and 1.2 kbps data frames. Switch 66 selects between providing an output of the input data (up position) and tail bits at a logical zero ('0') value (down position). Switch 66 is normally set in the up position to permit data from logic 60, and from circuits 62 and 64 if present, to be output from generator 20 to encoder 22 (Figure 1). For the 9.6 kbps and 4.8 kbps frame data, after the CRC bits are clocked through switch 66, logic 60 sets the switch to the down position for 8 clock cycles so as to generate 8 all zero tail bits. Thus for 9.6 kbps and 4.8 kbps data frames, the data as output to the encoder for the frame includes appended after the CRC bits, the 8 tail bits. Similarly for the 2.4 kbps and 1.2 kbps frame data, after the primary traffic bits are clocked from logic 60 through switch 66, logic 60 sets the switch to the down position for 8 clock cycles so as to again generate 8 all zero tail bits. Thus for 2.4 kbps and 1.2 kbps data frames, the data as output to the encoder for the frame includes appended after the primary traffic bits, the 8 tail bits.

Figures 4a - 4c illustrate in a series of flow charts the operation of microprocessor 18, and generator 20 in assembling the data into the disclosed frame format. It should be noted that various schemes may be

5

10

15

20

25

30

35

12

implemented for giving the various traffic types and rates priority for transmission. In an exemplary implementation, when a signaling traffic message is to be sent when there is vocoder data present a "dim and burst" format may be selected. Microprocessor 18 may generate a command to vocoder 18 for the vocoder to encode speech sample frames at the half rate, regardless of the rate at which the vocoder would normally encode the sample frame. Microprocessor 18 then assembles the half rate vocoder data with the signaling traffic into the 9.6 kbps frame. In this case, a limit may be place on the number of speech frames encoded at the half rate to avoid degradation in the speech quality. In the alternative, microprocessor 18 may wait until a half rate frame of vocoder data is received before assembling the data into the "dim and burst" format. In this case, in order to ensure timely transmission of the signaling data, a maximum limit on the number of consecutive frames at other than half rate may be imposed before a command is sent to the vocoder to encode at half rate. Secondary traffic may be transferred in the "dim and burst" format (Figure 2b-2d and Figures 2i-2k) in a similar manner.

Similar is the case for the "blank and burst" data formats as illustrated in Figures 2e and 2l. The vocoder may be commanded to not encode the frame of speech samples or the vocoder data is ignored by the microprocessor in constructing the data frame. Prioritizing between generating frame formats of primary traffic of various rate, "dim and burst" traffic, and "blank and burst" traffic is open to many possibilities.

Referring back to Figure 1, 20 msec. frames of 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps data are thus output from generator 20 to encoder 22. In the exemplary embodiment encoder 22 is a preferably a convolutional encoder, a type of encoder well known in the art. Encoder 22 preferably encodes the data using a rate 1/3, constraint length k = 9 convolutional code. As an example encoder 22 is constructed with generator functions of $g_0 =$ 557(octal), $g_1 = 663$ (octal) and $g_2 = 711$ (octal). As is well known in the art, convolutional encoding involves the modulo-2 addition of selected taps of a serially time-shifted delayed data sequence. The length of the data sequence delay is equal to k-1, where k is the code constraint length. Since in the preferred embodiment a rate 1/3 code is used, three code symbols, the code symbols (c₀), (c₁) and (c₂), are generated for each data bit input to the encoder. The code symbols (c_0) , (c_1) and (c_2) are respectively generated by the generator functions go, g1 and g2. The code symbols are output from encoder 22 to block interleaver 24. The output code symbols are provided to interleaver 24 in the order of the code symbol (c₀) being first, the code

5

10

15

20

25

30

35

13

symbol (c_1) being second and the code symbol (c_2) being last. The state of the encoder 22, upon initialization, is the all-zero state. Furthermore the use of tail bits at the end of each frame provides a resetting of encoder 22 to an all-zero state.

The symbols output from encoder 22 are provided to block interleaver 24 which under the control of microprocessor 18 provides a code symbol repetition. Using a conventional random access memory (RAM) with the symbols stored therein as addressed by microprocessor 18, code symbols may be stored in a manner to achieve a code symbol repetition rate that varies with the data channel.

Code symbols are not repeated for the 9.6 kbps data rate. Each code symbol at the 4.8 kbps data rate is repeated 1 time, i.e. each symbol occurs 2 times. Each code symbol at the 2.4 kbps data rate is repeated 3 times, i.e. each symbol occurs 4 times. Each code symbol at the 1.2 kbps data rate is repeated 7 times, i.e. each symbol occurs 8 times. For all data rates (9.6, 4.8, 2.4 and 1.2 kbps), the code repetition results in a constant code symbol rate of 28,800 code symbols per second for the data as output from interleaver 24. On the reverse traffic channel the repeated code symbols are not transmitted multiple times with all but one of the code symbol repetitions deleted prior to actual transmission due to the variable transmission duty cycle as discussed in further detail below. It should be understood that the use of code symbol repetition as an expedient method for describing the operation of the interleaver and a data burst randomizer as discussed again in further detail below. It should be further understood that implementations other than those that use code symbol repetition may be readily devised that achieve the same result and remain within the teaching of the present invention.

All code symbols to be transmitted on the reverse traffic channel and the access channel are interleaved prior to modulation and transmission. Block interleaver 24, constructed as is well known in the art, provides an output of the code symbols over a time period spanning 20 msec. The interleaver structure is typically a rectangular array with 32 rows and 18 columns, i.e. 576 cells. Code symbols are written into the interleaver by columns, with repetition for data at the 9.6, 4.8, 2.4 and 1.2 kbps rate, so as to completely fill the 32×18 matrix. Figures 5a - 5d illustrate the ordering of write operations of repeated code symbols into the interleaver array for transmission data rates of 9.6, 4.8, 2.4 and 1.2 kbps, respectively.

14

Reverse traffic channel code symbols are output from the interleaver by rows. Microprocessor 18 also controls the addressing of the interleaver memory for outputting the symbols in the appropriate order. The interleaver rows are preferably output in the following order:

At 9.6 kbps:

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 At 4.8 kbps:

10 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16 17 19 18 20 21 23 22 24 25 27 26 28 29 31 30 32 At 2.4 kbps:

1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 17 21 18 22 19 23 20 24 25 29 26 30 27 31 28 32

15 At 1.2 kbps:

1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17 25 18 26 19 27 20 28 21 29 22 30 23 31 24 32.

Access channel code symbols are also output from interleaver 24 by rows. Microprocessor 18 again controls the addressing of the interleaver memory for outputting the symbols in the appropriate order. The interleaver rows are output in the following order at the 4.8 kbps rate for the access channel code symbols:

1 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31 2 18 10 26 6 22 14 30 4 20 12 28 8 24 16 32.

25

30

20

It should be noted that other encoding rates, such as a rate 1/2 convolutional code used on the forward transmission channel, along with various other symbol interleaving formats may be readily devised using the basic teaching of the present invention.

Referring again to Figure 1, the interleaved code symbols are output from interleaver 24 to modulator 26. In the preferred embodiment modulation for the Reverse CDMA Channel uses 64-ary orthogonal signaling. That is, one of 64 possible modulation symbols is transmitted for each six code symbols. The 64-ary modulation symbol is one of 64 orthogonal waveforms generated preferably using Walsh functions. These modulation symbols are given in Figures 6a-6c and are numbered 0 through 63. The modulation symbols are selected according to the following formula:

40

45

35

Modulation symbol number = $c_0 + 2c_1 + 4c_2 + 8c_3 + 16c_4 + 32c_5$ (3) where c_5 shall represent the last or most recent and c_0 the first or oldest binary valued ('0' and '1') code symbol of each group of six code symbols that form a modulation symbol. The period of time required to transmit a single

10

15

20

25

30

35

40

modulation symbol is referred to as a "Walsh symbol" interval and is approximately equal to 208.333 µs. The period of time associated with one-sixty-fourth of the modulation symbol is referred to as a "Walsh chip" and is approximately equal to 3.2552083333... µs.

Each modulation or Walsh symbol is output from modulator 26 to one input of a modulo-2 adder, exclusive-OR gate 28. The Walsh symbols are output from modulator at a 4800 sps rate which corresponds to a Walsh chip rate of 307.2 kcps. The other input to gate 28 is provided from long code generator 30 which generates a masked pseudonoise (PN) code, referred to as the long code sequence, in cooperation with mask circuit 32. The long code sequence provided from generator 30 is at a chip rate four times the Walsh chip rate of modulator 26, i.e. a PN chip rate 1.2288 Mcps. Gate 28 combines the two input signals to provide an output of data at the chip rate of 1.2288 Mcps.

The long code sequence is a time shift of a sequence of length 2⁴²-1 chips and is generated by a linear generator well known in the art using the following polynomial:

$$p(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + x^{1} + 1$$
(4)

Figure 7 illustrates generator 30 in further detail. Generator 30 is comprised of a sequence generator section 70 and a masking section 72. Section 70 is comprised of a sequence of shift registers and modulo-2 adders (typically exclusive-OR gates) coupled together to generate a 42-bit code according to equation 4. The long code is then generated by masking the 42-bit state variables output from section 70 with a 42-bit wide mask provided from mask circuit 32.

Section 72 is comprised of a series of input AND gates 74₁ - 74₄₂ having one input for receiving a respective mask bit of the 42-bit wide mask. The other input of each of AND gates 74₁ - 74₄₂ receives the output from a corresponding shift register in section 70. The output of AND gates 74₁ - 74₄₂ are modulo-2 added by adder 76 to form a single bit output for each 1.2288 MHz clocking of the shift registers of section 70. Adder 76 is typically constructed as a cascaded arrangement of exclusive-OR gates as is well known in the art. Therefore, the actual output PN sequence is generated by the modulo-2 addition of all 42 masked output bits of sequence generator 70 as shown in Figure 7.

The mask used for the PN spreading shall vary depending on the channel type on which the mobile station is communicating. Referring to

5

10

15

20

25

30

35

16

Figure 1, an initialization information is provided from microprocessor 18 to generator 30 and circuit 32. Generator 30 is responsive to the initialization information for initialization of the circuitry. Mask 32 is also responsive to the initialization information, which indicates the mask type to be provided, to output a 42-bit mask. As such, mask circuit 32 may be configured as a memory which contains a mask for each communication channel type. Figures 8a - 8c provide an exemplary definition of the masking bits for each channel type.

Specifically, when communicating on the Access Channel, the mask is defined as illustrated in Figure 8a. In the Access Channel mask, mask bits M_{24} through M_{41} are set to '1'; mask bits M_{19} through M_{23} are set to the chosen Access Channel number; mask bits M_{16} through M_{18} are set to the code channel for the associated Paging Channel, i.e. the range typically being 1 through 7; mask bits M_{9} through M_{15} are set to the registration zone; for the current base station; and mask bits M_{0} through M_{8} are set to the pilot PN value for the current CDMA Channel.

When communicating on the Reverse Traffic Channel, the mask is defined as illustrated in Figure 8b. The mobile station uses one of two long codes unique to that mobile station: a public long code unique to the mobile station's electronic serial number (ESN); and a private long code unique for each mobile identification number (MIN) which is typically the telephone number of the mobile station. In the public long code the mask bits M_{32} through M_{41} are set to '0,' and the mask bits M_0 through M_{31} are set to the mobile station ESN value.

It is further envisioned that a private long code may be implemented as illustrated in Figure 8c. The private long code will provide additional security in that it will only be known to the base station and the mobile station. The private long code will not be transmitted in the clear over the transmission medium. In the private long code the mask bit M_{40} through M_{41} are set to '0' and '1' respectively; while mask bits M_0 through M_{39} may be set to according to a predetermined assignment scheme.

Referring back to Figure 1 the output of gate 28 is respectively provided as one input to each one of a pair of modulo-2 adders, exclusive-OR gates 34 and 36. The other input to each of gates 34 and 36 are second and third PN sequences are I and Q channel "short codes" respectively generated by I and Q Channel PN generators 38 and 40. The Reverse Access Channel and Reverse Traffic Channel is therefore OQPSK spread prior to actual transmission. This offset quadrature spreading on the Reverse Channel uses the same I and Q PN codes as the Forward Channel I and Q

pilot PN codes. The I and Q PN codes generated by generators 38 and 40 are of length 2¹⁵ and are preferably the zero-time offset codes with respect to the Forward Channel. For purposes of further understanding, on the Forward Channel a pilot signal is generated for each base station. Each base station pilot channel signal is spread by the I and Q PN codes as just mentioned. Base station I and Q PN codes are offset from one another, by a shifting of the code sequence, so as to provide a distinction between base station transmission. The generating functions for the I and Q short PN codes shall be as follows:

$$P_{\mathbf{I}}(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1$$
 (5)

and

10

20

25

30

35

40

$$P_Q(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1.$$
 (6)

Generators 38 and 40 may be constructed as is well known in the art so as to provide an output sequence in accordance with equations (5) and (6).

The I and Q waveforms are respectively output from gates 34 and 36 where respectively provided as inputs to finite impulse response (FIR) filters 42 and 44. FIR filters 42 and 44 are digital filters which bandlimit the resulting I and Q waveforms. These digital filters shape the I and Q waveforms such that the resulting spectrum is contained within a given spectral mask. Filters 42 and 44 may be constructed according to well known digital filter techniques and preferably provide a desired frequency response.

The binary '0' and '1' inputs to digital filters 42 and 44, generated by the PN spreading functions, are mapped into +1 and -1, respectively. The sampling frequency of the digital filter is 4.9152 MHz = 4×1.2288 MHz. An additional binary '0' and '1' input sequence synchronous with the I and Q digital waveforms shall be provided to each of digital filters 42 and 44. This particular sequence, referred to as a masking sequence, is the output generated by a data burst randomizer. The masking sequence multiplies the I and Q binary waveforms to produce a ternary (-1, 0, and +1) input to the digital filters 42 and 44.

As discussed previously the data rate for transmission on the Reverse Traffic Channel is at one of the rates of equal 9.6, 4.8, 2.4, or 1.2 kbps and varies on a frame-by-frame basis. Since the frames are of a fixed 20 ms length for both the Access Channel and the Reverse Traffic Channel, the number of information bits per frame shall be 192, 96, 48, or 24 for transmission at data rates of 9.6, 4.8, 2.4, or 1.2 kbps, respectively. As described previously, the information is encoded using a rate 1/3 convolutional encoder and then the code symbols shall be repeated by a

5

10

15

20

25

30

35

factor of 1, 2, 4, or 8 for a data rate of 9.6, 4.8, 2.4, or 1.2 kbps, respectively. The resulting repetition code symbol rate is thus fixed at 28,800 symbols per second (sps). This 28,800 sps stream is block interleaved as previously described.

Prior to transmission, the Reverse Traffic Channel interleaver output stream is gated with a time filter that allows transmission of certain interleaver output symbols and deletion of others. The duty cycle of the transmission gate thus varies with the transmit data rate. When the transmit data rate is 9.6 kbps, the transmission gate allows all interleaver output symbols to be transmitted. When the transmit data rate is 4.8 kbps, the transmission gate allows one-half of the interleaver output symbols to be transmitted, and so forth. The gating process operates by dividing the 20 msec frame into 16 equal length (i.e., 1.25 ms) periods, called power control groups. Certain power control groups are gated on (i.e., transmitted), while other groups are gated off (i.e., not transmitted).

The assignment of gated-on and gated-off groups is referred to as a data burst randomizer function. The gated-on power control groups are pseudo-randomized in their positions within the frame so that the actual traffic load on the Reverse CDMA Channel is averaged, assuming a random distribution of the frames for each duty cycle. The gated-on power control groups are such that every code symbol input to the repetition process shall be transmitted once without repetition. During the gated-off periods, the mobile station does not transmit energy, thus reducing the interference to other mobile stations operating on the same Reverse CDMA Channel. This symbol gating occurs prior to transmission filtering.

The transmission gating process is not used when the mobile station transmits on the Access Channel. When transmitting on the Access Channel, the code symbols are repeated once (each symbol occurs twice) prior to transmission.

In the implementation of the data burst randomizer function, data burst randomizer logic 46 generates a masking stream of 0's and 1's that randomly mask out the redundant data generated by the code repetition. The masking stream pattern is determined by the frame data rate and by a block of 14 bits taken from the long code sequence generated by generator 30. These mask bits are synchronized with the data flow and the data is selectively masked by these bits through the operation of the digital filters 42 and 44. Within logic 46 the 1.2288 MHz long code sequence output from generator 30 is input to a 14-bit shift register, which is shifted at a 1.2288 MHz rate. The contents of this shift register are loaded into a

14-bit latch exactly one power control group (1.25 ms) before each Reverse Traffic Channel frame boundary. Logic 46 uses this data along with the rate input from microprocessor 18, to determine, according to a predetermined algorithm, the particular power control group(s) in which the data is to be allowed to pass through filters 42 and 46 for transmission. Logic 46 thus outputs for each power control group a '1' or '0' for the entire power control group depending on whether the data is to be filtered out ('0') or passed through ('1'). At the corresponding receiver, which also uses the same long code sequence and a corresponding rate determined for the frame, determines the appropriate power control group(s) in which the data is present.

The I channel data output from filter 42 is provided directly to a digital to analog (D/A) converter and anti-aliasing filter circuit 50. The Q channel data however is output from filter 44 to a delay element 48 which a one-half PN chip time delay (406.9 nsec) in the Q channel data. The Q channel data is output from delay element 48 to digital to analog (D/A) converter and anti-aliasing filter circuit 52. Circuits 50 and 52 convert the digital data to analog form and filter the analog signal. The signals output from circuits 50 and 52 are provided to Offset Quadrature Phase Shift Key (OQPSK) modulator 54 where modulated and output to RF transmitter circuit 56. Circuit 56 amplifies, filters and frequency upconverts the signal for transmission. The signal is output from circuitry 56 to antenna 58 for communication to the base station.

It should be understood that the exemplary embodiment of the present invention discusses the formatting of data for modulation and transmission with respect to a mobile station. It should be understood that the data formatting is the same for a cell base station, however the modulation may be different.

In an improved embodiment, the present invention may be designed to operate with two alternative sets of data rates. In the first exemplary embodiment, primary traffic is transmitted in frames at the 9.6 kbps, 4.8 kbps, 2.4 kbps and 1.2 kbps rates. These rates comprise a set of data rates referred to herein as rate set 1. In an improved embodiment of the present invention, primary traffic can also be transmitted in frames at the rates of 14.4 kbps, 7.2 kbps, 3.6 kbps and 1.8 kbps thus permitting higher rate vocoders and other data. These rates comprise a set of data rates referred to herein as rate set 2. Transmission of data provided at rates within rates set 1 proceeds as described previously. Transmission of rate set 2 frames of data proceeds in a similar manner with slight differences in the generation of

WO 96/22639

5

10

15

20

30

35

40

frame quality indicator (CRC) bits, the allocation of bits in a frame, and the convolutional encoding of the frames. The differences are described in detail below.

20

PCT/US96/00673

In the exemplary embodiment of the present invention, the frames of rate set 1 are convolutionally encoded at a different rate than frames of rate set 2. Rate set 1 frames are convolutionally encoded at rate 1/3, while rate set 2 frames are convolutionally encoded at rate 1/2. In the exemplary embodiment two separate convolutional encoders are provided. Convolutional encoder 22 is a rate 1/3 convolutional encoder for the encoding of rates set 1 frames and convolutional encoder 23 is a rate 1/2 convolutional encoder for the encoding of rate set 2 frames. Switch 21 receives a RATE SET signal from microprocessor 18 and accordingly directs the frame to the correct convolutional encoder.

It should be noted that the encoded symbol rates from convolutional encoder 23 are 28.8 ksps, 14.4 ksps, 7.2 ksps and 3.6 ksps are the same rates provided from convolutional encoder 22. This allows the transmission of rate set 2 frames following the convolutional encoding of the frames to proceed identically as described previously for rate set 1 frames.

In the exemplary embodiment, the generator polynomials for the frame quality indicator used in generator 20 rate set 2 frames are as follows:

$$g(x) = x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^4 + x + 1,$$
 (7)

for the 12-bit frame quality indicator;

25
$$g(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 + 1$$
 (8)

for the 10-bit frame quality indicator;

$$g(x) = x^8 + x^7 + x^{1/4} + x^3 + x + 1 \tag{9}$$

for the 8-bit frame quality indicator; and

$$g(x) = x^6 + x^2 + x + 1 \tag{10}$$

for the 6-bit frame quality indicator.

The design and implementation of encoders to generate frame quality indicator bits using these polynomials is the same as those described with respect to rate set 1.

A final distinction between rate set 2 frames and rate set 1 frames is the inclusion of an erasure indicator bit. An erasure indicator bit is a feedback signal from the receiving system of the communications device to a remote transmitting device to indicate that a frame erasure has occurred. In the exemplary embodiment this bit is set when the personal station is unable to decide upon the data rate of the received frame or errors are detected. This bit may be based upon other forms of received signal quality metrics such as received signal strength. In response the remote transmitting device can respond to strengthen its signal by increasing its transmission energy or by decreasing its data rate. The erasure bit may be set by either microprocessor 18 or by an additional element, erasure indicator element 19, both of which would operate in conjunction with a FRAME ERASURE SIGNAL from the receiving system of the communications device (not shown).

Table II shown below illustrates the contents of the exemplary frames of both data rate sets. As described previously, for rate set 1 frames, 9600 bps frames comprise 172 information bits, 12 frame quality indicator bits and 8 tail bits, 4800 bps frames comprise 80 information bits, 8 frame quality indicator bits and 8 tail bits, 2400 bps frames comprise 40 information bits and 8 tail bits, and 1200 bps frames comprise 16 information bits and 8 tail bits. For rate set 2 frames, 14,400 bps frames comprise 267 information bits, 1 erasure indicator bit, 12 frame quality indicator bits and 8 tail bits, 7200 bps frames comprise 125 information bits, 1 erasure indicator bit, 10 frame quality indicator bits and 8 tail bits, 3600 bps frames comprise 55 information bits, 1 erasure indicator bit, 8 frame quality indicator bits and 8 tail bits, and 1800 bps frames comprise 21 information bits, 1 erasure indicator bit, 6 frame quality indicator bits and 8 tail bits.

25

30

20

5

10

15

TABLE II

		Number of Bits per Frame				
Rate Set	Transmission Rate (bps)	Total	Erasure Indicator	Information	Frame Quality Indicator	Encoder Tail
1	9600	192	0	172	12	8
ł	4800	96	0	80	8	8
1	2400	48	0	40	0	8
	1200	24	0	16	0	8
2	14400	288	1	267	12	8
	7200	144	1	125	10	8
	3600	72	1	55	8	8
	1800	36	1	21	6	8

Figures 9a-9y illustrate the frame format for frames generated within rate set 2. Figures 9a-9y the contain the following notation for bits included within the frames: erasure indicator bit (E); reserved bit (R); mixed mode bits (MM); frame mode bits (FM); frame quality indicator or CRC bits (F); and encoder tail bits (B).

15

20

25

30

35

In Figure 9a, a 14.4 kbps frame is illustrated for transmission of full rate primary traffic. One bit is provided for the erasure indicator bit described above and one reserved bit is provided. A mixed mode bit is set to zero to indicate that the frame consists only of primary traffic data. 265 primary traffic bits are then provided, followed by 12 frame quality indicator bits and 8 tail bits.

In Figure 9b, a 14.4 kbps dim and burst frame is illustrated for transmission of half rate primary traffic and signaling traffic. One bit is provided for the erasure indicator bit and one reserved bit is provided. The mixed mode bit is set to 1 to indicated that the packet consists of data other than primary traffic only. Four frame mode bits are provided to indicate the types of data in the packet. The frame mode bits are set to 0000 to indicate that the data present in the packet is half rate primary traffic and signaling traffic. There are 124 bits of primary traffic and 137 bits of signaling traffic. The frame is accompanied by 12 frame quality indicator bits and 8 tail bits.

transmission of quarter rate primary traffic and signaling traffic. One bit is provided for the erasure indicator bit and one reserved bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 0001 to indicate that the data present in the packet is quarter rate primary traffic and signaling traffic. There are 54 bits of primary traffic and 207 bits of signaling traffic. The frame is accompanied by 12 frame quality indicator bits and 8 tail bits.

> In Figure 9d, a 14.4 kbps dim and burst frame is illustrated for transmission of eighth rate primary traffic and signaling traffic. One bit is provided for the erasure indicator bit and one reserved bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 0010 to indicate that the data present in the packet is eighth rate primary traffic and signaling traffic. The frame has 20 bits of primary traffic and 241 bits of signaling traffic and contains 12 frame quality indicator bits and 8 tail bits.

> In Figure 9e, a 14.4 kbps blank and burst frame is illustrated for transmission of signaling traffic. One bit is provided for the erasure indicator bit and one reserved bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 0011 to indicate that the data present in the packet is signaling traffic. There are 261 bits of signaling traffic, 12 frame quality indicator bits and 8 tail bits.

> In Figure 9f, a 7.2 kbps frame is illustrated for transmission of half rate primary traffic only. An erasure indicator bit is provided. The mixed

10

15

20

25

30

35

and the same of

23

mode bit is set to 0. There are 124 bits of primary traffic provided, 10 frame quality indicator bits and 8 tail bits.

In Figure 9g, a 7.2 kbps dim and burst frame is illustrated for transmission of quarter rate primary traffic with signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. Three frame mode bits are set to 000. There are 54 bits of primary traffic, 67 bits of signaling traffic, 10 frame quality indicator bits and 8 tail bits.

In Figure 9h, a 7.2 kbps dim and burst frame is illustrated for transmission of eighth rate primary traffic with signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. Three frame mode bits are set to 001. There are 20 bits of primary traffic, 101 bits of signaling traffic, 10 frame quality indicator bits and 8 tail bits.

In Figure 9i, a 7.2 kbps blank and burst frame is illustrated for transmission of signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. Three frame mode bits are set to 010. There are 121 bits of signaling traffic, 10 frame quality indicator bits and 8 tail bits: name 18 of bits are set to 100 bits are set to

In Figure 9j, a 3.6 kbps frame is illustrated for transmission of quarter rate primary traffic only. An erasure indicator bit is provided. The mixed mode bit is set to 0. No frame mode bits are provided. There are 54 bits of primary traffic, 8 frame quality indicator bits and 8 tail bits.

In Figure 9k, a 3.6 kbps dim and burst frame is illustrated for transmission of eighth rate primary traffic with signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. Two frame mode bits are set to 00. There are 20 bits of primary traffic, 32 bits of signaling traffic, 8 frame quality indicator bits and 8 tail bits.

In Figure 9l, a 3.6 kbps blank and burst frame is illustrated for transmission of signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. Two frame mode bits are set to 01. There are 52 bits of signaling traffic, 8 frame quality indicator bits and 8 tail bits.

In Figure 9m, a 1.8 kbps frame is illustrated for transmission of eighth rate primary traffic only. An erasure indicator bit is provided. The mixed mode bit is set to 0. No frame mode bits are provided. There are 20 bits of primary traffic, 6 frame quality indicator bits and 8 tail bits.

In Figure 9n, a 14.4 dim and burst frame is illustrated for transmission of half rate primary traffic and secondary traffic. An erasure indicator bit is provided with a reserved bit. The mixed mode bit is set to 1. The frame mode bits are set to 0100 to indicate that the data present in the packet is half rate primary traffic and signaling traffic. There are

124 bits of primary traffic, 137 bits of secondary traffic, 12 frame quality indicator bits and 8 tail bits.

In Figure 90, a 14.4 kbps dim and burst frame is illustrated for transmission of quarter rate primary traffic and secondary traffic. An erasure indicator bit is provided along with a reserved bit. The mixed mode bit is set to 1. The four frame mode bits are set to 0101 to indicate that the data present in the packet is quarter rate primary traffic plus secondary traffic. There are 54 bits of primary traffic, 207 bits of secondary traffic, 12 frame quality indicator bits and 8 tail bits.

In Figure 9p, a 14.4 kbps dim and burst frame is illustrated for transmission of a frame consisting of eighth rate primary traffic and secondary traffic. An erasure indicator bit is provided with a reserved bit. The mixed mode bit is set to 1. The frame mode bits are set to 0110 to indicate that the data present in the packet is eighth rate primary traffic plus secondary traffic. There are 20 bits of primary traffic, 241 bits of secondary traffic., 12 frame quality indicator bits and 8 tail bits.

10

15

20

25

30

35

In Figure 9q, a 14.4 kbps blank and burst frame is illustrated for transmission of secondary traffic. An erasure indicator bit is provided along with a reserved bit. The mixed mode bit is set to 1. The four frame mode bits are set to 0111. There are 261 bits of secondary traffic, 12 frame quality indicator bits and 8 tail bits.

Figure 9r illustrates a 14.4 kbps dim and burst frame for the transmission of eighth rate primary data, secondary and signaling traffic. An erasure indicator bit is provided with a reserved bit. The mixed mode bit is set to 1. The frame mode bits are set to 1000 to indicate that the data present in the packet is eighth rate primary data, secondary and signaling traffic. There are 20 bits of primary traffic, 221 bits of signaling traffic, 20 bits of secondary traffic, 12 frame quality indicator bits and 8 tail bits.

Figure 9s illustrates a 7.2 kbps dim and burst frame with quarter rate primary and secondary traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 011. There are 54 bits of primary traffic, 67 bits of secondary traffic, 12 frame quality indicator bits and 8 tail bits.

Figure 9t illustrates a 7.2 kbps dim and burst frame with eighth rate primary and secondary traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 100. There are 20 bits of primary traffic, 101 bits of secondary traffic, 10 frame quality indicator bits and 8 tail bits.

25

Figure 9u illustrates a 7.2 kbps blank and burst frame with secondary traffic only. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 101. There are 121 bits of secondary traffic, 10 frame quality indicator bits and 8 tail bits.

Figure 9v illustrates a 7.2 kbps dim and burst frame with eighth rate primary traffic, secondary and signaling traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 110. There are 20 bits of primary traffic, 81 bits of signaling traffic, 20 bits of secondary traffic, 10 frame quality indicator bits and 8 tail bits.

Figure 9w illustrates a 3.6 kbps dim and burst frame with eighth rate primary traffic and secondary traffic. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 10. There are 20 bits of primary traffic, 32 bits of secondary traffic, 8 frame quality indicator bits and 8 tail bits.

Figure 9x illustrates a 3.6 kbps blank and burst frame with secondary traffic only. An erasure indicator bit is provided. The mixed mode bit is set to 1. The frame mode bits are set to 11. There are 52 bits of secondary traffic, 8 frame quality indicator bits and 8 tail bits.

Figure 9y illustrates a 1.8 kbps blank and burst frame with secondary traffic only. An erasure indicator bit is provided. The mixed mode bit is set to 1. There are 20 bits of secondary traffic, 6 frame quality indicator bits and 8 tail bits.

The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

WE CLAIM:

5

10

15

20

25

30

26 CLAIMS

- 1. In a communication system, a method for transmitting a frame of data at a data rate of a predetermined data rate set of a set of rate sets, comprising the steps of:
- 4 receiving said data frame;
 - generating a set of parity check bits and tail bits in accordance with
- 6 said data rate set of said data frame;
- encoding said data frame where in the encoding rate of said encoding is determined in accordance with said data rate set of said data frame; and transmitting said encoded data frame.
- 2. The method of Claim 1 wherein there is a multiplicative factor 2 between rates of rate set 1 and rates of rates set 2.
- 3. The method of Claim 1 wherein said encoding rate for rate set
 2 is inversely proportional to said multiplicative factor.

3/22

SUBSTITUTE SHEET (RULE 26)


```
225
                    161 193
                                  257 289
                                          321
                                               353 385 417 449 481 513 545
    34
             98 130 162 194 226
                                  258 290
                                          322
                                                   386 418 450 482 514 546
                                               354
    35
         67
             99 131 163 195
                             227
                                  259 291
                                          323
                                               355
                                                   387 419 451 483 515
                                                                         547
                             228 260 292
229 261 293
    36
         68
            100 132
                    164
                         196
                                          324
                                                   388 420 452 484
                                              356
                                                                    516 548
    37
            101 133
         69
                    165
                        197
                                          325
                                              357
                                                   389 421 453 485
                                                                         549
 6
    38
            102 134
                             230
                    166 198
                                  262 294 326
                                              358
                                                   390 422 454 486 518 550
 7
    39
            103 135 167 199 231 263 295 327
                                              359 391 423 455 487 519
    40
            104 136 168
                         200 232 264 296 328
                                              360 392 424
                                                           456 488
                                                                    520
                                                                         552
 9
    41
         73
            105 137
                             233 265 297
234 266 298
                    169
                         201
                                          329
                                              361
                                                   393 425
                                                           457
                                                                489
                                                                         553
10
    42
         74
            106 138
                    170 202
                                                   394 426 458
                                          330
                                              362
                                                                490
                                                                         554
    43
11
         75
            107 139
                         203 235 267 299
                                          331
                                              363
                                                   395 427
                                                           459
                                                               491
                                                                         555
12
    44
            108 140 172
                         204 236 268 300 332
                                                   396 428
                                              364
                                                           460 492 524
13
    45
         77
            109 141
                    173 205 237 269 301 333
                                              365
                                                   397 429 461 493 525
14
    46
         78
            110 142
                         206 238
                    174
                                  270 302 334
                                              366 398 430 462 494
                             239 271 303 335
15
    47
            111 143
                    175
                         207
                                              367
                                                   399 431 463 495
                                                                    527
16
    48
                    176 208 240 272 304 336
         80
           112 144
                                              368 400 432 464 496
                                                                         560
17
    49
         81
            113 145
                         209 241 273 305 337
                    177
                                              369 401 433 465 497
                                                                    529 561
18
    50
        82
           114 146
                        210 242
                    178
                                 274 306
                                          338
                                              370
                                                   402 434 466 498 530 562
19
    51
            115 147
        83
                    179
                         211 243 275
                                     307
                                          339
                                              371
                                                   403 435 467 499 531 563
20
                             244
                    180 212
                                 276
                                     308
                                          340
                                              372
                                                   404 436 468 500 532
            117 149 181 213 245 277 309 341 373 405 437 469 501 533 565
21
    53
        85
22
    54
            118 150 182 214 246 278 310 342
        86
                                              374
                                                  406 438 470 502 534
                                                                        566
23
    55
            119 151 183 215 247 279 311
        87
                                          343
                                                  407 439
                                              375
                                                           471
                                                                503 535
                                                                         567
24
    56
            120 152
                    184 216 248 280 312
                                          344
                                              376 408 440 472
                                                                504 536
                                                                         568
25
    57
           121 153
                    185 217 249
                                 281 313 345
                                              377
                                                  409 441 473
                                                                505
                                                                    537
                                                                         569
26
    58
        90 122 154
                    186 218 250 282 314 346
                                              378 410 442
                                                                506 538
                                                           474
27
    59
            123 155
                    187 219
                             251
                                 283 315
                                          347
                                              379 411 443
                                                           475
                                                                507
28
    60
        92
            124 156
                    188
                        220
                             252
                                 284 316
                                         348
                                              380 412 444
                                                           476
                                                               508
                                                                    540 572
29
    61
        93
            125 157
                             253 285 317
254 286 318
                    189
                         221
                                          349
                                              381
                                                  413 445
                                                          477
                                                                509 541 573
30
                    190
    62
        94
            126
               158
                        222
                                         350
                                              382 414 446 478
                                                                510 542 574
31
    63
        95
           127 159 191 223
                             255 287 319 351 383 415 447 479
                                                                511 543 575
        96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576
    64
```

FIG. 5A

1	17	33	49	65	81	97	113	129	145	161	177	193	209 225	241	257	273
1	17	33	49	65	81	97	113	129	145	161	177	193	209 225	241	257	273
2	18	34	50	66	82	98	114	130	146	162	178	194	210 226	242	258	274
2	18	34	50	66	82	98	114	130	146	162	178	194	210 226	242	258	274
3	19	35 35	51	67	83	99	115	131	147	163	179	195	211 227	243	259	275
3	19	35	51	67	83	99	115	131	147	163	179	195	211 227	243	259	275
4 4	20 20	36	52	68	84	100	116	132	148	164	180	196	212 228	244	260	276
5	21	36 37	52 53	68	84	100	116	132	148	164	180	196	212 228		260	276
5	21	37 37	53	69 69	85	101	117	133	149	165	181	197	213 229	245	261	277
6	27	38	53 54	70	85 86	101 102	117 118	133 134	149	165	181	197	213 229	245	261	277
6	22	38	54	70	86	102	118	134	150	166	182	198	214 230		262	278
7	$\overline{23}$	39	55	71	87	103	119	135	150 151	166 167	182 183	198 199	214 230 215 231	246 247	262 263	278 279
7	23	39	55	71	87	103	119	135	151	167	183	199	215 231	247	263	279
8	24	40	56	72	88	104	120	136	152	168	184	200	216 232		264	280
8	24	40	56	72	88	104	12ŏ	136	152	168	184	200	216 232		264	280
9	25	41	57	73	89	105	121	137	153	169	185	201	217 233	249	265	281
9	25	41	57	73	89	105	121	137	153	169	185	201	217 233	249	265	281
10	26	42	58	74	90	106	122	138	154	170	186	202	218 234		266	282
10	26	42	58	74	90	106	122	138	154	170	186	202	218 234		266	282
11	27 27	43	59	75 75	91	107	123		155	171	187	203	219 235		267	283
11	_	43	59	75	91	107	123	139	155	171	187	203	219 235	251	267	283
12 12	28 28	44 44	60 60	76 76	92 92	108 108	124	140	156	172	188	204	220 236		268	284
13	29	45	61	77	93	100	124 125	140 141	156	172	188	204	220 236		268	284
13	29	45	61	77	93	109	125	141	157 157	173	189	205	221 237		269	285
14	<u>3</u> 0	46	62	78	94	110	126		158	173 174	189 190	205 206	221 237 222 238		269 270	285 286
14	30	46	62	78	94	110	126		158	174	190	206	222 238		270	286
15	31	47	63	79	95	iii	i27	143	159	173	191	207	223 239		$\frac{270}{271}$	287
15	31	47	63	79	95	111	127		159	175	191	207	223 239		271	287
16	32	48	64	80	96	112	128	144	160	176	192	208	224 240		272	288
16	32	48	64	80	96	112	128	144	160			208	224 240	256		288

FIG. 5B

1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129 137
l	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129 137
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129 137
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129 137
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130 138
3	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130 138
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114		130 138
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130 138
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115		131 139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131 139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115		131 139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131 139
4	12	20	28	36	44	52	60	68	76	84	92		108	116	124	132 140
4	12	20	28	36	44	52	60	68	76	84	92		108	116	124	132 140
4	12	20	28	36	44	52	60	68	76	84	92		108			132 140
4	12	20	28	36	44	52	60	68	76	84	92		108			
5	13	21	29	37	45	53	61	69	<u>77</u>	85	93	101	109	117		133 141
5 5	13 13	21	29	37	45	53	61	69	77	85	93		109	117		133 141
		21	29	37	45	53	61	69	77	85	93		109			133 141
5	13	21	29	37	45	53	61	69	77	85	93	101	109			133 141
6	14	22	30	38	46	54	62	70	78	86	94		110		-	134 142
6	14 14	22	30 30	38	46	54	62	70	78	86	94	102				134 142
6	14			38	46	54	62	70	78	86	94	102				134 142
6 7	15	22 23	30 31	38 39	46	54	62	70	78	86	94	102				134 142
ź	15	23	31	39	47 47	55 55	63	71	79	87	95		111			135 143
7	15	23	31	39	47	55	63	71	79	87	95		111			135 143
7	15	23	31	39	47	55	63	71	79	87	95		111	119		135 143
8	16	24	32	40	48		63	71	79	87	95		111	119		135 143
8	16	24	32 32	40	48 48	56 56	64 64	72	80	88	96		112	120		136 144
8	16	24	32	40	48	56	64	72 72	80	88	96		112	120		136 144
8	16	24	32	40	48	56	64	72	80 80	88 88	96		112			136 144
O	10	27	J ==	70	40	20	U *1	1 4	δU	Ōδ	96	104	112	120	128	136 144

FIG. 5C

PCT/US96/00673

	61 65 69
	61 65 69
	61 65 69
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 65 69
·	61 65 69
	61 65 69 61 65 69
	61 65 69
יול פל לד בר בר בר מס מו או	62 66 70
	62 66 70
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 6	62 66 70
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 6	62 66 70
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 6	62 66 70
	62 66 70
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 6	62 66 70
	62 66 70
	63 67 71
	63 67 71
	63 67 71 63 67 71
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	63 67 71
	63 67 71
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 6	63 67 71
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 6	63 67 71
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 6	64 68 72
	64 68 72
	64 68 72
10 11 10 52 50 00 0	64 68 72
	64 68 72
	64 68 72 64 68 72
1 0 10 10 00 00 00	64 68 72 64 68 72

FIG. 5D

WALSH CHIP WITHIN SYMBOL

8901 2.545 6789 012.5 4567 8901 2.545 6789 012.3 0000 0000 0000 0000 0000 0000 0000 0
0000 0000 0000 0000 0000 0000 0000 0000 0000
0101 0101 0101 0101 0101 0101 0101 010
0011 0011 0011 0011 0011 0011 0011 001
0110 0110 0110 0110 0110 0110 0110 011
0000 1111 0000 1111 0000 1111 0000 0101 0101 00101 0011 1010 0101 1010 0101 1010 0111 1100 0011 1100 0011 1100 0011 0110 0110 1010 0110 0101 0101 0101 0101 0101 1010 0011 0011 1100 0110 0110 1010 0110 1010 1010 1010 1010 1010 1010 1010 1010 0110 0101 1010 0110 1010 0101 0101
0101 1010 0101 1010 0101 1010 0101 0011 1100 0011 1100 0011 1100 0011 0110 1001 0110 1001 0110 1001 0110 0101 0101 1010 1010 0101 0101 1010 0011 0011 1100 1100 0101 0110 1010 0010 1010 1010 0101 1010 1010 1010 0011 1100 1100 0101 0110 1010 1010 0010 0101 1001 0101 1010 1010 1010 0010 0101 0101 0101 1010 1010 1010 0011 0011 0011 0011 1100 1100 0110 0110 0110 0110 1011 1010 0101 1010 0110 1101 1010 1101 0101 1010 0110 1101 1011 1011
0011 1100 0011 1100 0011 1100 0011
0110 1001 0110 1001 0110 1001 0110 1000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1110 0011 0101 1010 0011 0011 1100 0110 0110 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1001 1010 1010 1010 1010 1010 1010 0010 0010 0100 1001 1010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 1010 1
0000 0000 1111 1111 0000 0000 1111 1000 0010 0101 1010 0101 0101 1010 0011 1010 0110 0110 1010 0110 0110 1010 0110 1010 1010 0110 1010 1010 1010 1010 1010 1010 1010 1010 1010 1001 1001 1001 1001 1001 0010 0000 0000 0000 1111 1111 1111 0101 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 1010 0110 0110 0110 0110 0110 0110 1010 0101 0101 0
0101 0101 1010 1010 0101 0101 1010 0011 0011 1010 0011 0011 1100 0110 0110 0110 1100 0110 0110 1010 0110 0101 1010 0101 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0110 1010 1010 0110 1010 0100 1010 1010 0101 1010 1010 0101 0101 0
0011 0011 1100 1100 0011 0011 1100 0110 0110 0110 1001 0010 0110 0110 1001 1001 0000 0000 1111 1111 1111 0000 1101 1010 1010 0011 1100 1100 1100 0100 0000 0000 0000 1111 1111 1111 0101 0101 0101 0101 0011 0011 0011 0011 0011 0011 0011 0011 0011 0010 1001 1001 0100 1100 0110 0110 0110 0101 1010 0101 0
0110 0110 1001 1001 0110 0110 1001 0000 0000 1111 1111 0000 0000 1111 1111 0110 0101 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0011 0011 0011 0011 0011 1010 1001 1001 0010 1010 0110 0110 0110 1010 1
0000 1111 1111 0000 0000 1111 1111 0110 0101 0101 1010 1010 0011 1010 1010 1010 0011 1100 1100 1100 0110 1010 1010 0110 1010 1010 0101 0101 0101 1010 1010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 1010 0101 0101 0
0101 1010 1010 0101 1010 1010 1010 0011 1100 1010 0011 1100 1100 1100 1100 1100 1100 1100 1100 1100 1001 0010 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111
0011 1100 1100 0011 0011 1100 1100 0010 0010 1001 1001 1001 1001 1001 1001 1001 1001 1010 1010 1010 1010 1010 1010 1010 1010 1010 0011 0011 0011 1001 1001 1001 1001 1010 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 1010 1
0110 1001 1001 0110 0110 1001 1001 0000 0000 0000 0111 1111 1111 1111 0111 0101 0101 0101 1010 1010 1010 0110 0110 0110 0110 0110 0110 0110 0110 1011 0000 1111 0000 1111 0000 1111 0101 0101 1010 0101 0
0101 0101 0101 0101 1010 1010 1010 0010 0011 0011 1010 1010 1010 1010 1010 0011 0011 0011 1100 1100 1100 1100 0110 0110 0110 1011 1011 1010 1011 1010 1011 1010 1
010 0101 0101 0101 1010 1010 1010 1010
0011 0011 10011 1000 1100 1100 0110 0110 0110 0110 0110 0110 1001 1001 1001 1001 1001 1010 0101 0101
0110 0110 0110 0110 1001 1001 1001 100
0000 1111 0000 1111 1111 0000 1111 0000 1111 010 101
0101 1010 0101 1010 1011 1010 0101 1010
0011 1100 0011 0011 1100 0011 1100
0110 1001 0110 1001 1001 0110 1001

> < ¬ S ± S ≻ ≥ m O ¬ − Z ∩ m × SUBSTITUTE SHEET (RULE 26)

FIG. 6A

WALSH CHIP WITHIN SYMBOL

11 1111 2222	1111	_	2222		2222	2233	3333	3333	4444	4444	4455	5555	5555	9999
8901 5343 6789 0123	0/89 0123	6710			- 1		2542	68/9	5710	456/		2345	68/9	0123
				= =										0000
0011 0011	0011 0011	001		\sim		<u> </u>	100	100	2 0 0 0	200	900			
1001 1001 1001 1001	1001 1001	1001		_		0110	0110	0110	<u> </u>	<u> </u>	00	1001	0110	0110
1111 0000 1111 0000	1111 0000	0000				Ξ	0000	Ξ	==	0000	Ξ	000	0000	=
1010 0101 1010 0101	1010 0101	010				0101	1010	1010	1010	010	1010	010	1010	0101
1100 0011 1100	100		011			90	100	100	0011	100	100	100	100	100
1001 0011 1001 0110	1001 0110	0110				1001	0110	1001	1001	0110	<u>100</u>	0110	0110	1001
0000 0000 0000 0000	0000 0000	0000				0000	=	Ξ	=	=	=	Ξ	=	===
0101 0101 0101 0101	0101 0101	1010				1010	0101	0101	0101	1010	1010	0101	0101	1010
0011 0011 0011 0011	0011 0011	1100				100	100	1100	1100	1100	901	001	100	0011
0110 0110 0110 0110	0110 0110	0110				0110	<u> </u>	<u>1001</u>	1001	<u> </u>	<u>100</u>	100	1001	1001
0000 1111 0000 1111	0000	=				=		0000	==	0000	=	0000	<u> </u>	0000
0101 1010 0101	1010		010			0101	0101	0101	0101	0101	1010	010	0101	1010
1100 0011 1100	<u> </u>		<u>e</u>	_		8	100	100	001	1100	100	100	901	1100
0110 1001 0110	0110		<u>=</u>	_		100	<u> </u>	0110	1001	0110	<u>=</u>	00	1001	0110
1111 1111 0000 0000	0000 0000	0000				=	Ξ	==	0000	0000	=	===	0000	0000
1010 1010 0101 0101	1010 1010	1010				1010	0101	0101	1010	1010	0101	0101	1010	1010
1100 1100 0011 0011	0011 0011	100				9	001	100	100	1100	901	100	100	1100
1001 1001 0110 0110	0110 0110	0110				<u>18</u>	1001	<u>100</u>	0110	0110	<u>100</u>	1001	0110	0110
1111 0000 0000 1111	0000	=			_	0000	=	0000	0000	=======================================	Ξ	0000	0000	==
1010 0101 0101 1010	0101 1010	0101				1010	0101	1010	1010	0101	0101	1010	1010	1010
1100 0011 0011	<u> </u>		<u> </u>		_	100	8	100	100	1100	001	<u> </u>	1100	100
0110 0110	0110		2	_	_	0110	1001	0110	0110	1001	1001	0110	0110	1001

> < ¬ o ± o > ≥ m o ¬ − z o ⊞ × SUBSTITUTE SHEET (RULE 26)

FIG. 6B

WALSH CHIP WITHIN SYMBOL

FIG. 6C

				=	=		2222	2222	2233	3333	3333		4444	4455	5555	5555	9999
		0123		- 1		68/9	0123	4567	8901	2345	6849		4567	8901	2345	6289	0123
	48	0000				1111	1111	==	=	=		ı	Ξ	0000	0000	0000	000
	49	010				0101	1010	1010	1010	0101	1010		1010	1010	1010	010	1010
	20	100		_		1100	100	100	1100	100	0011		100	1100	100	100	100
	21	0110		_		1001	1001	1001	1001	1001	1001		<u>80</u>	0110	0110	0110	0110
_	52	0000		_			0000	=======================================	0000	===	0000		0000	0000	=======================================	0000	
	53	1010				1010	0101	0101	0101	1010	0101		1010	0101	1010	1010	1010
	54	00				100	0011	1100	1100	001	1100		1100	100	001	100	00
	55	0110		_		1001	0110	1001	0110	1001	0110		0110	0110	1001	0110	1001
	96	0000	_			==	Ξ	0000	0000	==	=		0000	0000	0000	=	
	57	0101				1010	1010	1010	1010	1010	0101		1010	1010	1010	1010	0101
	28	<u>=</u> 00	_	_		100	001	100	100	100	901		1100	100	1100	90	001
	29	0110	_	_		1001	100	0110	0110	1001	1001		0110	0110	0110	001	1001
	9	0000		_	_	Ξ	0000	0000	===	=	0000			0000			1000
_	19	1010	1010	1010	0101	1010	0101	0101	0101	1010	1010	1010	0101	010	0101	0	0101
	62	100		_	_	1100	0011	1100	001	100	1100		0011	1100	0011	001	: E 00
لَـــ	63	0110			0110	1001	0110	0110	1001	1001	0110		1001	0110	1001	001	0110

 \geq \prec \sqcup \sim \succ \succeq \bowtie \supset \simeq \bowtie \simeq SUBSTITUTE SHEET (RULE 26)

FIG. 7

17/22

18/22

19/22

20/22

21/22

INTERNATIONAL SEARCH REPORT

Internationa plication No PCT/US 96/00673

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 H04J3/16 H04B7/26 H04J11/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 H04J H04B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category * Relevant to claim No. Y US,A,5 381 443 (BORTH DAVID E ET AL) 10 1-3 January 1995 see column 3, line 7 - line 37 see column 3, line 5 - column 4, line 65 see column 6, line 44 - line 56 see figures 2-5 Y WO,A,93 14588 (QUALCOMM INC) 22 July 1993 1-3 see page 3, line 22 - line 28 see page 4; table 1 see page 5, line 22 - page 6, line 6 see page 6, line 18 - line 30 see figures 1,2A-2H,4A -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 4 June 1996 1 3, 06, 96 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Pieper, T Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Internations plication No
PCT/US 96/00673

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages A	3 90/000/3
A EP,A,O 327 101 (NIPPON ELECTRIC CO) 9	Relevant to claim No.
/ August 1000	
	1-3

INTERNATIONAL SEARCH REPORT

Internation plication No PCT/US 96/00673

Patent document cited in search report	Publication date		family ber(s)	Publication date
US-A-5381443	10-01-95	FI-A-	934361	03-04-94
,		FR-A-	2696602	08-04-94
		SE-A-	9303204	03-04-94
WO-A-9314588	22-07-93	AU-B-	3476793	03-08-93
		AU-B-	4791196	16-05-96
		CA-A-	2128327	22-07-93
		EP-A-	0621998	02-11-94
		FI-A-	943410	16-09-94
		JP-T-	7506469	13-07-95
		NO-A-	942670	16-09-94
		US-A-	5511073	23-04-96
		US-A-	5504773	02-04-96
		ZA-A-	9300290	22-11-93
EP-A-0327101	09-08-89	JP-A-	1200730	11-08-89
	·	JP-B-	6048796	22-06-94
		AU-B-	2966089	10-08-89