

Tema: Espectro Electromagnético e Espectro Óptico

Objectivos Cognitivos

Ao final do estudo deste tema, o aluno deverá ser capaz de:

- Compreender os conceitos fundamentais sobre o espectro electromagnético e o espectro óptico.
- Identificar as diferentes faixas do espectro electromagnético e suas aplicações tecnológicas.
- Explicar os fenómenos da refracção, reflexão, dispersão e absorção da luz.
- Relacionar a frequência e o comprimento de onda com a energia das ondas eletromagnéticas.
- Analisar a importância das ondas electromagnéticas no dia a dia, como nas comunicações e na medicina.
- Resolver problemas relacionados à velocidade da luz, frequência e comprimento de onda.
- Interpretar gráficos e diagramas do espectro electromagnético e óptico.

Competências

Após o estudo deste tema, o aluno deverá ser capaz de:

- Aplicar os conceitos do espectro electromagnético para compreender fenómenos naturais e tecnológicos.
- Utilizar o conhecimento sobre ondas electromagnéticas para explicar o funcionamento de dispositivos ópticos e electrônicos.
- Relacionar a física da luz com outras áreas do conhecimento, como química, biologia e tecnologia.
- Demonstrar pensamento crítico ao avaliar o impacto das ondas electromagnéticas na sociedade e no meio ambiente.
- Utilizar métodos científicos para investigar fenómenos ópticos e suas aplicações.

Espectro electromagnético

O espectro electromagnético é definido como sendo o intervalo que contém todas as radiações electromagnéticas que vai desde as ondas de rádio até os raios gama. O conhecimento sobre as ondas electromagnéticas tem evoluído desde a época de Maxwell.

Essas ondas são classificadas de acordo com o valor da sua frequência ou de comprimento de onda. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação: $c = \lambda f$

onde c é a velocidade da onda, f é a frequência e λ (lambda) é o comprimento da onda. Na passagem de um meio material para o outro, a velocidade da onda muda mas a frequência permanece constante.

A figura a seguir apresenta o espectro eletromagnético.

Todas essas radiações são formas de energia que se propagam no vácuo à velocidade da luz

$$(c \approx 3 \times 10^8 \, m/s)$$
.

O espectro eletromagnético é composto por:

- 1. Ondas de Rádio: Usadas em comunicações, como rádio e televisão. Têm os maiores comprimentos de onda (de metros a quilômetros) e as menores frequências.
- 2. Micro-ondas: Utilizadas em fornos micro-ondas e comunicações via satélite. Seu comprimento de onda é menor que o das ondas de rádio.
- 3. Infravermelho: Associado ao calor, é emitido por corpos quentes. Usado em controlos remotos e câmeras de visão noturna.
 4. Luz Visível: A única parte do espectro que o olho humano
- pode detectar. Vai do vermelho (maior comprimento de onda) ao violeta (menor comprimento de onda).5. Ultravioleta (UV): Presente na luz solar, pode causar queimaduras solares. Tem comprimentos de onda
- menores que a luz visível.

 6. Raios X: Usados em medicina para imagens de ossos e estruturas internas. Têm comprimentos de onda muito curtos e alta energia.
- 7. Raios Gama: Emitidos por processos nucleares e cósmicos. São os mais energéticos e penetrantes, com os menores comprimentos de onda.

Interação com a Matéria

- Diferentes frequências do espectro electromagnético interagem de maneiras distintas com a matéria:
 - Ondas de Rádio e Micro-ondas: Podem atravessar a atmosfera e são usadas em comunicações.
 - Infravermelho: Absorvido por moléculas, causando vibrações e aumentando a energia térmica.
- Luz Visível: Interage com elétrons, permitindo a visão e a fotossíntese.
- Ultravioleta: Pode ionizar átomos e causar danos ao DNA.
- Raios X e Raios Gama: Têm energia suficiente para penetrar tecidos e materiais densos, sendo usados em medicina e radiografia.

Espectro óptico

O espectro visível é a parte do espectro electromagnético que pode ser detectada pelo olho humano. É a única faixa de radiação eletromagnética que enxergamos diretamente, sem o auxílio de instrumentos. Essa faixa corresponde a uma pequena porção do espectro eletromagnético total, com comprimentos de onda entre aproximadamente 380 nm (nanômetros) e 750 nm.

Cores do Espectro Visível

As cores do espectro visível são organizadas em ordem crescente de frequência (e decrescente de comprimento de onda):

Cor da radiação	Banda de $f(10^{14} Hz)$	Banda de $^{\lambda(nm)}$
Violeta	7,9 – 6,6	380 – 455
Azul	6,6 – 6,1	455 – 492
verde	6,1 – 5,2	492 – 575
Amarela	5,2 – 5,0	575 – 597
Laranja	5,0 – 4,8	597 – 623
vermelha	4,8 – 3,8	623 - 750

Dentro do espectro visível, a cor violeta possui a maior frequência e o menor comprimento de onda. Isso ocorre porque a frequência e o comprimento de onda são inversamente proporcionais, conforme a relação:

$$f = \frac{c}{\lambda}$$

Importância do Espectro Visível

O espectro visível é fundamental para a vida na Terra, pois:

- Permite a fotossíntese nas plantas, que utilizam principalmente a luz vermelha e azul.
- É a base da visão humana, permitindo que enxerguemos cores e formas.
- Influencia processos biológicos e comportamentais, como o ciclo circadiano (relógio biológico).

Além disso, a separação das cores do espectro visível pode ser observada em fenômenos naturais, como o arco-íris, onde a luz solar é refratada e dispersa por gotículas de água na atmosfera.

Classificação dos Espectros Ópticos

Os espectros ópticos podem ser classificados em três tipos principais, dependendo da distribuição de comprimentos de onda e da origem da radiação emitida ou absorvida. Esses tipos são:

1. Espectro Contínuo

 Definição: Um espectro contínuo é aquele que apresenta todos os comprimentos de onda dentro de uma determinada faixa, sem interrupções ou falhas.

Características:

- Aparece como uma faixa de cores que se fundem suavemente, sem linhas ou bandas escuras.
- É produzido por corpos sólidos, líquidos ou gases densos em altas temperaturas, como o filamento de uma lâmpada incandescente ou a superfície do Sol.
- Exemplo: A luz branca, quando decomposta por um prisma, forma um espectro contínuo que vai do vermelho ao violeta.

2. Espectro de Riscas ou de Linhas

 Definição: Um espectro de riscas ou de linhas é constituído por linhas luminosas de cores específicas, separadas por zonas escuras.

Características:

- Cada linha corresponde a um comprimento de onda específico.
- É produzido por átomos isolados em estado gasoso, quando elétrons saltam entre níveis de energia discretos.
- Pode ser um espectro de emissão (linhas brilhantes) ou um espectro de absorção (linhas escuras sobre um fundo contínuo).

Exemplo:

- Espectro de emissão: Luz emitida por lâmpadas de vapor de sódio ou néon.
- Espectro de absorção: Linhas escuras observadas no espectro solar (linhas de Fraunhofer), causadas pela absorção de luz por elementos na atmosfera do Sol

3. Espectro de Faixas ou de Bandas

 Definição: Um espectro de faixas ou de bandas é formado por conjuntos de faixas luminosas separadas por intervalos escuros.

Características:

- Cada faixa é composta por várias linhas muito próximas, que não são resolvidas individualmente.
- É produzido por moléculas, que possuem níveis de energia mais complexos devido aos movimentos de rotação e vibração.
- As faixas correspondem a transições entre níveis de energia vibracional e rotacional das moléculas.
- Exemplo: Espectro emitido por gases moleculares, como o dióxido de carbono (CO₂) ou a água (H₂O).

Resumo das Diferenças	Diferenças	
Tipo de Espectro	Origem	Aparência
Espectro	Sólidos, líquidos ou	Faixa de cores sem interrupções, todas as cores fundem-s
Contínuo	gases densos	suavemente.
Espectro de Riscas	Átomos isolados em	Linhas luminosas ou escuras, separadas por zonas escura
Riscas	gases	
Espectro de	Moléculas	Faixas luminosas compostas por várias linhas próximas,
	INICIECTION	

Ficha de Exercício

https://drive.google.com/ file/d/1MKQaEPVst2f2v YaAUxTYj_azeazH6TjQ/ view?usp=drive_link