概率论与数理统计

复习

考试范围:第1章到第9章,以下不作考试要求

- 1. 所有教材及课件中Excel内容。
- 2. (P31) (四)中的三个分布密度不要求记。
- 3. (1) (P67)数学期望公式(4.1.3)~(4.1.5);
 - (2) (P73) *(四)条件数学期望;
 - (3) (P78)变异系数;
 - (4) (P85)其他数字特征;
 - (5) (P87)协方差矩阵和二元正态概率密度不作要求, 但多元正态变量的性质作为考试要求。
- 4. (P101) 李雅普诺夫中心极限定理。
- 5. (P119) (三) 贝叶斯法;
 - (P130)(7.4.8)(7.4.9)
 - (P132)7.5节
- 6. (P147)8.3节中(8.3.3)-(8.3.6);
 - (P156)8.5节(二)柯尔莫哥洛夫检验
 - (P158) (三) 正态W检验。
- 7. 第九章多因素方差分析、相关系数、多元回归分析及回归诊断。

第一章 随机事件与概率

- 1.交换律、结合律、分配律、德g摩根律
- 2.概率的性质:

$$P(B-A) = P(B) - P(AB)$$
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \mathbf{U} B \mathbf{U} C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC) + P(ABC)$$

3. 古典概型:
$$P(A) = \frac{A \text{所包含的样本点数}}{\text{基本事件总数}} = \frac{m}{n}$$

4.抽签原理——跟先后顺序无关

5. 条件概率:
$$P(B/A) = \frac{P(AB)}{P(A)}$$

6. 乘法公式:
$$P(A_1 A_2 \cdots A_n) = P(A_1)P(A_2 | A_1)P(A_3 | A_1 A_2) \cdots P(A_n | A_1 \cdots A_{n-1})$$

7. 全概率: P(A) = P(AS)

$$= P(A(B_1 \mathbf{U} B_2 \mathbf{U} \cdots \mathbf{U} B_n)) = \sum_{j=1}^{n} P(B_j) \cdot P(A \mid B_j)$$

8. 贝叶斯:
$$P(B_i | A) = \frac{P(B_i A)}{P(A)} = \frac{P(B_i)P(A | B_i)}{\sum_{j=1}^{n} P(B_j)P(A | B_j)}$$

9. 相容通过事件定义,独立通过概率定义。

设有n个人为过节日互赠礼物,每人准备一件礼物,集中在一起,然后每人随机取一件礼物,求(1)至少有一人恰好取到自己所准备的礼物的概率(2)恰好取到自己所准备的礼物的人数Y的数学期望及方差。

解:设 $A_i = \{ \hat{\mathbf{x}}_i \wedge \mathbf{h}_i \in \mathcal{B}_i \}$,则所求概率为:

$$P(A_{1} \cup A_{2} \cup \mathbf{L} \cup A_{n}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k})$$

$$+ \dots + (-1)^{n-1} P(A_{1}A_{2} \cdots A_{n})$$

$$= C_{n}^{1} P(A_{1}) - C_{n}^{2} P(A_{1}A_{2}) + C_{n}^{3} P(A_{1}A_{2}A_{3}) - \mathbf{L} + (-1)^{n-1} C_{n}^{n} P(A_{1}A_{2} \cdots A_{n})$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} - \mathbf{L} + (-1)^{n-1} \frac{1}{n!}$$

$$\not{!} : P(A_{1}) = \frac{1}{n} , P(A_{1}A_{2}) = P(A_{1}) P(A_{2}|A_{1}) = \frac{1}{n} \cdot \frac{1}{n-1}$$

$$P(A_{1}A_{2}A_{3}) = P(A_{1}) P(A_{2}|A_{1}) P(A_{3}|A_{1}A_{2}) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{1}{n-2}$$

$$\mathbf{K}$$

$$P(A_{1}A_{2} \cdots A_{n}) = 1/n!$$

设有n个人为过节日互赠礼物,每人准备一件礼物,集中在一起,然后每人随机取一件礼物,求(1)至少有一人恰好取到自己所准备的礼物的概率(2)恰好取到自己所准备的礼物的人数Y的数学期望及方差。

解(2)设
$$X_i = \begin{cases} 1, & \hat{\mathbf{x}}i \wedge \mathbf{\Lambda} & \mathbf{取} \mathbf{到} \mathbf{自} \mathbf{己} \mathbf{所} \mathbf{准} \mathbf{a} \mathbf{b} \mathbf{h} \mathbf{h} \mathbf{m} \\ 0, & \hat{\mathbf{x}}i \wedge \mathbf{\Lambda} \mathbf{\mathcal{D}} \mathbf{\mathbf{N}} \mathbf{\mathcal{D}} \mathbf{l} \mathbf{\partial} \mathbf{h} \mathbf{h} \mathbf{m} \end{cases}$$
则 $Y = X_1 + X_2 + \mathbf{L} X_n$ (同分布,不独立)
$$E(Y) = E(X_1 + X_2 + \mathbf{L} X_n) = nE(X_i) = 1$$

$$D(Y) = D(X_1 + X_2 + \mathbf{L} X_n) = \sum_{i=1}^n D(X_i) + 2 \sum_{1 \leq i < j \leq n} Cov(X_i, X_j)$$

$$= nD(X_i) + 2C_n^2 Cov(X_i, X_j) = 1$$

$$P(X_i = 1) = \frac{1}{n} \quad , \quad P(X_i X_j = 1) = \frac{1}{n} \times \frac{1}{n-1}$$

$$E(X_i) = \frac{1}{n} \quad , \quad D(X_i) = \frac{n-1}{n^2} \quad , \quad Cov(X_i, X_j) = \frac{1}{n^2(n-1)}$$

盒中有红、黑、白球数分别为2、3、5,用不放回抽样取3球,X、Y、Z 分别表示取到的红、黑、白球数,求 P(X=1,Z=1) P(X=1|Z=0)

解:
$$P(X = 1, Z = 1) = P(X = 1, Y = 1, Z = 1) = \frac{C_2^1 C_3^1 C_5^1}{C_{10}^3} = \frac{1}{4}$$

$$P(X=1|Z=0) = \frac{P(X=1,Z=0)}{P(Z=0)} = \frac{3}{5} = \frac{{}^{\cancel{C}}_{2}C_{3}^{2}}{C_{5}^{3}}$$

其中:
$$P(X=1,Z=0) = \frac{C_2^1 C_3^2 C_5^0}{C_{10}^3} = \frac{1}{20}$$

$$P(Z=0) = \frac{C_2^0 C_3^3 C_5^0 + C_2^1 C_3^2 C_5^0 + C_2^2 C_3^1 C_5^0}{C_{10}^3} = \frac{1}{12}$$

第二章 随机变量及其分布

1. 六大常用分布的分布律或密度函数需牢记, 应用重点是二项分布及正态分布。

$$P(X = k) = p^{k} (1 - p)^{1 - k}, k = 0, 1$$

$$P(X = k) = C_{n}^{k} p^{k} (1 - p)^{n - k}, k = 0, 1, \dots, n$$

$$P(X = k) = \frac{l^{k}}{k!} e^{-l}, k = 0, 1, 2, \dots, l > 0$$

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in (a,b) \\ 0 & \text{ i.e. } \end{cases} \qquad f(x) = \begin{cases} 1e^{-lx} & x > 0 \\ 0 & x \le 0 \end{cases},$$

$$f(x) = \frac{1}{\sqrt{2ps}} e^{-\frac{(x-m)^2}{2s^2}}, -\infty < x < +\infty$$

2. 分布函数 $F(x) = P(X \le x)$

$$= \begin{cases} \sum_{x_k \le x} P\{X = x_k\} = \sum_{x_k \le x} p_k, & \mathbf{A} \\ \int_{-\infty}^x f(t) dt, & \mathbf{E} \end{cases}$$

- 1) F(x)是单调不减函数
- 2) $0 \le F(x) \le 1$, $Arr F(-\infty) = 0$, $F(+\infty) = 1$
- 3) F(x)右连续,即F(x+0) = F(x).
- 4) $P(a < X \le b) = F(b) F(a)$

$$P(X = x_0) = F(x_0 + 0) - F(x_0 - 0)$$

3. 概率密度 $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$

- 1) $f(x) \ge 0$
- $2) \int_{-\infty}^{+\infty} f(x) dx = 1$
- 3) 对于任意的实数 a,b (b>a)

$$P\{a < X \le b\} = \int_a^b f(t) dt$$

连续性随机变量任一指定值的概率为0,

$$P(X=C)=0$$

4) 在f(x)的连续点x, F'(x) = f(x)

例:设随机变量X的密度函数为

$$f(x) = \begin{cases} 2x, & 0 \le x < 0.5 \\ 6 - 6x, 0.5 \le x \le 1 \end{cases}$$
, 求分布函数 $F(x)$ 。
0, 其他

解: 参考
$$f(x)$$
的分段情况 $\frac{1}{0.5.5}$ $f(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt = 0$, $x < 0$ $\int_{-\infty}^{0} 0dt + \int_{0}^{x} 2tdt = x^{2}$, $0 \le x < 0.5$ $\int_{-\infty}^{0} 0dt + \int_{0}^{0.5} 2tdt + \int_{0.5}^{x} (6-6t)dt = 6x - 3x^{2} - 2, 0.5 \le x \le 1$ 1, $x > 1$

4. 随机变量函数的分布, $Y = g(X) = X^2$

离散型
$$\frac{X \mid -1 \mid 0 \mid 1}{P_k \mid 0.2 \mid 0.4 \mid 0.4}$$
 $\Rightarrow \frac{Y \mid 0 \mid 1}{P_k \mid 0.4 \mid 0.6}$

连续变量函数的分布,可用定义法先 $F_Y(y)$ 后 $f_Y(y)$

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = ...$$

 $f_Y(y) = F_Y(y) = ...$

*若Y = g(X)在 $f_X(x)$ 非零区间上单调,则可用定理得到Y的概率密度:

$$f_{Y}(y) = \begin{cases} f_{X}(h(y)) \cdot |h'(y)|, & a < y < b \\ 0, & \text{#th} \end{cases}$$

其中x = h(y)为y = g(x)的反函数。

2010年研究生入学数学题:

设
$$X \sim F(x) = \begin{cases} 0, & x < 0 \\ 0.5, & 0 \le x < 1, \quad \text{则}P(X = 1) = ? \\ 1 - e^{-x}, & x \ge 1 \end{cases}$$

解:
$$P(X = 1) = P(X \le 1) - P(X < 1)$$

= $F(1+0) - F(1-0)$
= $1 - e^{-1} - 0.5$
= $0.5 - e^{-1}$

设
$$X,Y$$
独立,且 $X \sim N(0,1), P(Y=1)=1/3,$ $P(Y=2)=2/3, \quad Z=XY, \quad 求 f_Z(z)$

解:
$$F_{Z}(z) = P(XY \le z)$$

 $= P(Y = 1)P(XY \le z \mid Y = 1) + P(Y = 2)P(XY \le z \mid Y = 2)$
 $= P(Y = 1)P(X \le z) + P(Y = 2)P(X \le z/2)$
 $= \frac{1}{3} \times \Phi(z) + \frac{2}{3} \Phi\left(\frac{z}{2}\right)$
 $\therefore f_{Z}(z) = F_{Z}(z) = \frac{1}{3} \left[j(z) + j\left(\frac{z}{2}\right) \right]$
 $= \frac{1}{3\sqrt{2p}} \left[e^{-\frac{z^{2}}{2}} + e^{-\frac{z^{2}}{8}} \right]$, $-\infty < z < \infty$

第三章 二维随机变量及其概率分布

离散变量分布律 $P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j \mid X = x_i)$

离散/连续随机变量联合分布函数 $F(x,y) = P(X \le x, Y \le y)$

连续随机变量联合密度函数f(x,y)性质:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$P((X,Y) \in G) = \iint_G f(x,y) dx dy$$

离散/连续随机变量的边缘分布函数, $F_X(x) = F(x, +\infty)$

离散随机变量的边缘分布律
$$P(X = x_i) = \sum_{j=1}^{+\infty} P(X = x_i, Y = y_j)$$

连续随机变量的边缘密度函数 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$

设X与Y独立均服从U(0,2), Z = |X-Y|, 求 (1) <math>P(Z > 1) (2) $F_z(z)$

解:
$$P(|X-Y|>1) = \iint_{|x-y|>1} f(x,y) dx dy$$

$$= \iint_{\substack{x-y<-1\\0< x, y<2}} \frac{1}{2} \times \frac{1}{2} dx dy + \iint_{\substack{x-y>1\\0< x, y<2}} \frac{1}{2} \times \frac{1}{2} dx dy$$

$$= \frac{1}{4} (\frac{1}{2} + \frac{1}{2}) = \frac{1}{4}$$

设X与Y独立均服从U(0,2), Z = |X-Y|, 求 (1) <math>P(Z > 1) (2) $F_Z(z)$

$$F_{Z}(z) = P(|X - Y| \le z) = \iint_{|x - y| \le z} f(x, y) dx dy$$

$$= \iint_{\substack{|x - y| \le z \\ 0 < x, y < 2}} \frac{1}{4} dx dy = \frac{1}{4} [4 - \frac{(2 - z)^{2}}{2}]$$

$$= 0.5 + 0.5z - 0.125z^{2}$$

二维正态随机变量

$$(X,Y)\sim N(m_1, m_2; s_1^2, s_2^2; r);$$

*
$$f(x, y) = \frac{1}{2ps_1s_2\sqrt{1-r^2}}$$

$$\times \exp \left\{ \frac{-1}{2(1-r^2)} \left[\frac{(x-m_1)^2}{s_1^2} - 2r \frac{(x-m_1)(y-m_2)}{s_1 s_2} + \frac{(y-m_2)^2}{s_2^2} \right] \right\}$$

$$(X,Y)\sim N(m, m; s^2, s^2; 0)$$
,求 $E(XY^2)$ (2011研究生)

$$E(XY^2) \stackrel{\text{def}}{=} E(X)E(Y^2) = E(X)[D(Y) + E^2(Y)] = m(s^2 + m^2)$$

设
$$Z \sim N(1.5, 0.1^2), Z_i \sim N(1.5, 0.1^2), i = 1, 2, \mathbf{L}$$
 30
独立,求 $P(Z_1 + Z_2 + \mathbf{L} Z_{15} \ge 23 | Z_1 + Z_2 + \mathbf{L} Z_{30} \ge 46)$

解: 记
$$X = Z_1 + Z_2 + \mathbf{L} + Z_{15}$$
 , $Y = Z_{16} + Z_{17} + \mathbf{L} + Z_{30}$ 易知 X 与 Y 是独立同分布的,且 $X \sim N(22.5, 0.15)$ $X + Y \sim N(45, 0.3)$ $P(X \ge 23 \mid X + Y \ge 46) = \frac{P(X \ge 23, X + Y \ge 46)}{P(X + Y \ge 46)}$ $P(X + Y \ge 46) = 1 - \Phi(\frac{46 - 45}{\sqrt{0.3}}) = 0.291$ $P(X \ge 23, X + Y \ge 46) = ?$

设 $Z \sim N(1.5, 0.1^2), Z_i \sim N(1.5, 0.1^2), i = 1, 2, \mathbf{L} 30$ 独立,求 $P(Z_1 + Z_2 + \mathbf{L} Z_{15} \ge 23 | Z_1 + Z_2 + \mathbf{L} Z_{30} \ge 46)$

$$P(X \ge 23, X + Y \ge 46)$$

$$= \iint_{G} f(x, y) dxdy$$

$$= \iint_{G} f_{X}(x) f_{Y}(y) dxdy$$

$$= \int_{23}^{+\infty} dy \int_{23}^{+\infty} f_{X}(x) f_{Y}(y) dx + \int_{0}^{23} dy \int_{46-y}^{+\infty} f_{X}(x) f_{Y}(y) dx$$

$$= \mathbf{L}$$

条件分布

条件分布函数:

$$F_{X|Y}(x|y) = \begin{cases} \sum_{x_k \le x} P(X = x_k | Y = y) &, \text{离散} \\ P(X \le x | Y = y) = \begin{cases} \sum_{x_k \le x} P(X = x_k | Y = y) &, \text{离散} \\ \int_{-\infty}^x f_{X|Y}(x|y) dx = \int_{-\infty}^x \frac{f(x,y)}{f_Y(y)} dx, \text{连续} \end{cases}$$
离散型: $P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{P_{ij}}{P_{\bullet j}}$
连续型: $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

$$P(a < X \le b | Y = y) = \int_a^b f_{X|Y}(x|y) dx$$

$$P(a < X \le b) = \int_a^b f(x) dx$$

2011年研究生入学数学题:

(X,Y)在G上服从均匀分布,G由x-y=0,

$$x + y = 2$$
与 $y = 0$ 围成。 求 $f_X(x), f_{X|Y}(x|y)$

$$f(x,y) = \begin{cases} 1, (x,y) \in G \\ 0, (x,y) \notin G \end{cases}$$
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$$

$$\begin{cases}
\int_0^x 1 dy = x, & 0 < x < 1 \\
\int_0^{2-x} 1 dy = 2 - x, 1 \le x < 2 \\
0, & \stackrel{\text{‡}}{=} \end{aligned}$$

相互独立的随机变量

一 般: $F(x,y) = F_X(x)F_Y(y)$ 在平面上每一点均成立。

离散型: $P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$ 对任意 x_i, y_j 均成立。 $\forall i, j$ 均有 $P_{ij} = P_{ig} * P_{gj}$

连续型: $f(x,y) = f_X(x)f_Y(y)$ 在平面上每一点几乎处处成立。 例: 随机变量 $X \sim N(0,1)$, 令U = |X|, $V = \begin{cases} 1, X > 0 \\ 0, X \le 0 \end{cases}$. 求

(1) U的分布函数 $F_U(u)$ (2) V的分布函数 $F_V(v)$ (3) U 、V独立性

$$(1)F_{U}(u) = P(U \le u) = P(|X| \le u) = \begin{cases} 2\Phi(u) - 1, u \ge 0 \\ 0, u < 0 \end{cases}$$

$$(2)P(V = 1) = P(X > 0) = 0.5$$

$$P(V=0) = P(X \le 0) = 0.5$$

$$\Rightarrow F_{V}(v) = P(V \le v) = \begin{cases} 0, & v < 0 \\ 0.5, & 0 \le v < 1 \end{cases}$$

$$(3)F_{U}(u)F_{V}(v) = \begin{cases} 2\Phi(u) - 1, & u \ge 0, v \ge 1 \\ \Phi(u) - 0.5, & u \ge 0, 0 \le v < 1 \\ 0, & u < 0 \neq v < 0 \end{cases}$$

例: 随机变量 $X \sim N(0,1)$, 令U = |X|, $V = \begin{cases} 1, X > 0 \\ 0, X \le 0 \end{cases}$. 求

(1) U的分布函数 $F_U(u)$ (2) V的分布函数 $F_V(v)$ (3)U、V独立性

(3) 前面已得:
$$F_U(u)F_V(v) = \begin{cases} 2\Phi(u)-1 & , u \ge 0, v \ge 1 \\ \Phi(u)-0.5 & , u \ge 0, 0 \le v < 1 \\ 0 & , u < 0$$
 文文 (2)

当
$$u < 0$$
或 $v < 0$ 时, $F(u,v) = P(U \le u, V \le v)$
 $= P(|X| \le u, V \le v) = 0$
当 $u \ge 0$, $0 \le v < 1$ 时, $F(u,v) = P(|X| \le u, X \le 0)$
 $= P(-u < X \le 0) = \Phi(u) - 0.5$

当
$$u \ge 0$$
, $v \ge 1$ 时, $F(u,v) = P(|X| \le u) = 2\Phi(u) - 1$

综上所述, $F(u,v) = F_U(u)F_V(v)$,即独立

判断以下命题的真伪

- 1. 若D(X + Y) = D(X) + D(Y), 则X, Y独立
- 2. 若E(XY) = E(X)E(Y), 则X,Y独立
- $\sqrt{3}$. 若 $E(XY) \neq E(X)E(Y)$, 则X,Y不独立
- $\sqrt{4.$ 存在点 (x_0, y_0) 使 $F(x_0, y_0) \neq F_X(x_0)F_Y(y_0)$,则X,Y不独立
 - 5. 存在点 (x_0, y_0) 使 $F(x_0, y_0) = F_X(x_0)F_Y(y_0)$,则X, Y独立
- $\sqrt{6}$. 若各连续函数有 $f(x_0, y_0) \neq f_X(x_0) f_Y(y_0)$,则X, Y不独立

二元随机变量函数的分布

> 设二元离散型随机变量(X,Y)具有概率分布

$$P(X = x_i, Y = y_j) = p_{ij}, \quad i, j = 1, 2, ...$$

问 (1) 若U = g(X, Y), 则U的分布律是什么?

题 (2) 若U=u(X,Y),V=v(X,Y),则U,V)的分布律是什么?

方 对于(1), 先确定U的取值 u_i , i=1,2,...

法 再找出 $(U = u_i) = \{(X, Y) \in D\}$, 从而计算出分布律.

方 对于(2),先确定(U,V)的取值 (u_i,v_j) i,j=1,2,...

法 再找出 $(U=u_i,V=v_j)=\{(X,Y)\in D\}$,从而计算出分布律;

+ 例1: 设X与Y的联合分布律为:

令
$$U = X + Y, V = \max(X, Y),$$

求 U 及 (U, V) 的分布律。

$$\begin{array}{c|cccc} X & 1 & 2 \\ \hline 1 & 0.2 & 0.1 \\ 2 & 0.3 & 0.4 \\ \hline \end{array}$$

解: U的取值范围为2,3,4

$$P(U=2)=P(X+Y=2)=P(X=1,Y=1)=0.2$$

$$P(U=3)=P(X+Y=3)=P({X=1,Y=2}|\mathbf{U}{X=2,Y=1})$$

= $P({X=1,Y=2})+P({X=2,Y=1})=0.1+0.3=0.4$

$$P(U=4)=P(X+Y=4)=P(X=2,Y=2)=0.4$$

*例1:设X与Y的联合分布律为:

令
$$U = X + Y, V = \max(X, Y),$$

求 U 及 (U, V) 的分布律。

X^{Y}	1	2
1	0.2	0.1
$_{2}$	0.3	0.4

2

3

2

 $\mathbf{0}$

0.4

0.4

0.2

 $\mathbf{0}$

 $\mathbf{0}$

解: U的取值范围为2,3,4; V的取值范围为1,2

$$P(U=2,V=1)=P(X+Y=2,\max(X,Y)=1)=P(X=1,Y=1)=0.2$$

$$P(U=3,V=1)=P(X+Y=3,\max(X,Y)=1)=0$$

$$P(U=4,V=1)=P(X+Y=4,\max(X,Y)=1)=0$$

$$P(U=2,V=2)=P(X+Y=2,\max(X,Y)=2)=0$$

$$P(U=3,V=2)=P(X+Y=3,\max(X,Y)=2)$$

= $P(X=1,Y=2)$ **U** $\{X=2,Y=1\}$)

$$=P(X=1,Y=2)+P(X=2,Y=1)=0.1+0.3=0.4$$

$$P(U=4,V=2)=P(X+Y=4,\max(X,Y)=2)$$

= $P(X=2,Y=2)=0.4$

》 设二元连续型随机变量(X,Y)具有概率分布f(x,y), Z是X,Y的函数,Z=g(X,Y).

问题 Z的概率分布或密度函数是什么?

方法 先求Z的分布函数再求导得到密度函数.

$$F_{Z}(z) = P(Z \le z) = P(g(X,Y) \le z)$$

$$= \iint_{g(x,y) \le z} f(x,y) dxdy$$

$$f_{Z}(z) = F_{Z}'(z)$$

和的分布(卷积公式)、最大、最小分布,

例3: 设
$$(X,Y)$$
的密度函数为 $f(x,y) = \begin{cases} 3x,0 < x < 1,0 < y < x \\ 0,$ 其他

求Z = X - Y的密度函数 $f_Z(z)$ 。

解:
$$F_Z(z) = P(Z \le z) = P(X - Y \le z) = \iint_{z \to z} f(x, y) dxdy$$

当 $z \le 0$ 时,画 $x-y \le z$ 区域图,可见,不与 f(x,y)非零区域相交,所以 $F_z(z) = 0$.

当0 < z < 1时,根据画 $x - y \le z$ 区域图,得:

$$F_Z(z) = \iint f(x, y) dx dy = 1 - \iint f(x, y) dx dy$$

$$=1-\int_{z}^{1}dx\int_{0}^{x-z}3xdy=\frac{3}{2}z-\frac{1}{2}z^{3}$$

当 $z \ge 1$ 时, $F_Z(z) = 1$: $f_Z(z) = F_Z(z) = \begin{cases} 3(1-z^2)/2, 0 < z < 1 \\ 0, \end{cases}$ 其他

 Ψ 例: X,Y相互独立,同时服从[0,1]上的均匀分 布,求Z=X+Y的概率密度。

解:根据卷积公式: $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$

易知仅当

$$\begin{cases} 0 \le x \le 1 \\ 0 \le z - x \le 1 \end{cases}$$

时,上述积分的被积函数不等于零。

参考图得:
$$\int_0^z dx = z \qquad 0 \le z \le 1$$

$$f_Z(z) = \begin{cases} \int_{z-1}^1 dx = 2 - z & 1 \le z \le 2 \\ 0 & \text{其他} \end{cases}$$

上例的另外解法,"先F后f" $\Gamma^{x+y=z}$

解:
$$F_Z(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \iint_{X+Y \le z} f(x, y) dxdy = \iint_{X+Y \le z} f_X(x) f_Y(y) dxdy$$

当
$$z < 0$$
时, $F_z(z) = 0$

当
$$0 \le z < 1$$
时, $F_z(z) = \iint_{\substack{x+y \le z \ 0 < x, y < 1}} 1 \times 1 dx dy = 三角形面积 = \frac{1}{2}z^2$

当
$$1 \le z < 2$$
时, $F_z(z) =$ 长方形和梯形面积= $-\frac{z^2}{2} + 2z - 1$

当
$$z \ge 2$$
时, $F_z(z) = 1$

$$\therefore F_{Z}(z) = \begin{cases}
0, & z < 1 \\
0.5z^{2}, & 0 \le z < 1 \\
-0.5z^{2} + 2z - 1, 1 \le z < 2 \\
1, & z \ge 2
\end{cases}
\qquad f_{Z}(z) = F_{Z}(z) = \begin{cases}
z, 0 \le z \le 1 \\
2 - z, 1 \le z \le 2 \\
0, \text{ i.e.}
\end{cases}$$

2008年研究生入学数学题:

设
$$X,Y$$
独立, $P(X=i)=\frac{1}{3},(i=-1,0,1).$ $f_Y(y)=\begin{cases} 1,0 \leq y \leq 1\\ 0, \quad$ 其它 记 $X+Y=Z$ 。求 $(1)P(Z\leq 0.5 \mid X=0)$ $(2)f_Z(z)$

$$(1)P(Z \le 0.5 \mid X = 0) = P(X + Y \le 0.5 \mid X = 0)$$
$$= P(Y \le 0.5) = \int_{-\infty}^{0.5} f_Y(y) dy = \int_{0}^{0.5} 1 dy = 0.5$$

(2)Z的取值范围为 $-1\rightarrow 2$

$$\therefore z \ge 2$$
时, $F(z) = P(Z \le z) = 1$, $z < -1$ 时, $F(z) = 0$

2008年研究生入学数学题:

设
$$X,Y$$
独立, $P(X=i)=\frac{1}{3},(i=-1,0,1).$ $f_Y(y)=\begin{cases} 1,0 \le y \le 1\\ 0, \quad$ 其它 记 $X+Y=Z$ 。求 $(1)P(Z \le 0.5 \mid X=0)$ $(2)f_Z(z)$

$$\stackrel{\hookrightarrow}{=} -1 \le z < 2 \stackrel{\longrightarrow}{=} f$$
, $F_Z(z) = P(Z \le z) = P(X + Y \le z)$

$$= \sum_{i=0}^{2} P(X = i - 1)P(X + Y \le z \mid X = i - 1)$$

$$= [P(Y \le z + 1) + P(Y \le z) + P(Y \le z - 1)]/3$$

已知X,Y独立且均服从均值为 **10** 的指数分布,求 $P(\max(X,Y) \ge 10), P(\max(X,Y) \ge 10, \min(X,Y) \le 10)$ $E(\max(X,Y))$

解:
$$f(x) = \begin{cases} 0.1e^{-0.1x}, x > 0 \\ 0, 其他 \end{cases}$$
, $F(x) = \begin{cases} 1 - e^{-0.1x}, x > 0 \\ 0, x \le 0 \end{cases}$

$$P(\max(X, Y) \ge 10) = 1 - P(\max(X, Y) < 10)$$

$$= 1 - P(X < 10, Y < 10) = 1 - \{P(X < 10)\}^2$$

$$= 1 - \{F(10)\}^2 = 1 - (1 - e^{-1})^2$$

$$P(\max \ge 10, \min \le 10)$$

$$= 1 - P(\{\max \le 10\} \mathbf{U} \{\min \ge 10\})$$

$$= 1 - (P(\max \le 10) + P(\min \ge 10) - 0)$$

$$= 1 - \{P(X \le 10)\}^2 - \{P(X \ge 10)\}^2$$

$$= 1 - \{F(10)\}^2 - \{1 - F(10)\}^2$$

$$= 1 - \{1 - e^{-1}\}^2 - \{e^{-1}\}^2$$

$$= 2e^{-1} - 2e^{-2}$$

$$\mathbf{Q}f(x) = \begin{cases} 0.1e^{-0.1x}, x > 0 \\ 0, 其他 \end{cases}, F(x) = \begin{cases} 1 - e^{-0.1x}, x > 0 \\ 0, x \le 0 \end{cases}$$

设
$$M = \max(X, Y)$$

or
$$F_Z(z) = [F(z)]^2 = \begin{cases} (1 - e^{-0.1z})^2, z > 0 \\ 0, z \le 0 \end{cases}$$

$$E(M) = \int_0^\infty z \mathbf{g} 0.2(1 - e^{-0.1z})e^{-0.1z}dz = 15$$

第四章 随机变量的数字特征

- 数学期望的六个计算式
- 数学期望、方差的性质, 拆分法计算期望
- 六个分布的分布、期望及方差需牢记
- 协方差及相关系数定义、计算式
- 独立性与相关性的判断
- 正态分布的有关结论

$$E(X) = \sum_{i=1}^{\infty} x_i p_i \qquad E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$E[g(X)] = \sum_{i=1}^{\infty} g(x_i) p_i \qquad E(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

$$E[h(X,Y)] = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} h(x_i, y_j) p_{ij}$$

$$E(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x, y) f(x, y) dx dy \qquad C_n^2 \uparrow Cov$$

$$E(XY) = r_{XY} \sqrt{D(X)D(Y)} + E(X)E(Y)$$

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$$

$$D(X_1 + X_2 + \mathbf{L} + X_n) = \sum_{i=1}^{n} D(X_i) + 2\sum_{1 \le i \le n} Cov(X_i, X_j)$$

一盒中有5个球,其中有3个编不同号的红球,现有放回一个一个取球,直到三红球都取到,用X表示以上试验取球总次数,求E(X)

解:设 X_1 表示其中一只红球被取到时的取球次数

 X_2 : 前1只红球取到后,为得第2只不同号红球的取球次数

 X_3 : 前2只不同号红球取到后,为得第3只红球的取球次数

则 $X=X_1+X_2+X_3$

一盒中有5个球,其中有3个编不同号的红球,现有放回一个一个取球,直到三红球都取到,用X表示以上试验取球总次数,求E(X)

$$E(X) = E(X_1) + E(X_2) + E(X_3) = \frac{55}{6}$$

设 $X: N(m,s^2), (X_1, X_2 \mathbf{L}, X_n)$ 是一样本,求 $E(X_1 \overline{X}), r_{X_1 \overline{X}}$

解:
$$E(X_1\overline{X}) = \frac{1}{n}E(X_1^2 + X_1X_2 + \mathbf{L} + X_1X_n)$$

 $= \frac{1}{n}[E(X_1^2) + E(X_1X_2) + \mathbf{L} + E(X_1X_n)]$
 $= \frac{1}{n}[D(X_1) + E^2(X_1) + E(X_1)E(X_2) + \mathbf{L} + E(X_1)E(X_n)]$
 $= \frac{1}{n}[\mathbf{s}^2 + \mathbf{m}^2 + (n-1)\mathbf{m}^2] = \frac{\mathbf{s}^2}{n} + \mathbf{m}^2$
 $Cov(X_1, \overline{X}) = E(X_1\overline{X}) - E(X_1)E(\overline{X}) = \frac{\mathbf{s}^2}{n}$
 $r_{X_1\overline{X}} = \frac{Cov(X_1, \overline{X})}{\sqrt{D(X_1)D(\overline{X})}} = \frac{\mathbf{s}^2/n}{\sqrt{\mathbf{s}^2\mathbf{s}^2/n}} = \frac{\sqrt{n}}{n}$

$$Cov(X_1, \overline{X}) = Cov(X_1, \frac{X_1 + X_2 + \mathbf{L} + X_n}{n})$$

$$= \frac{1}{n}Cov(X_1, X_1 + X_2 + \mathbf{L} + X_n)$$

$$= \frac{1}{n}\left\{Cov(X_1, X_1) + Cov(X_1, X_2) + \mathbf{L} + Cov(X_1, X_n)\right\}$$

$$= \frac{1}{n}\left\{Cov(X_1, X_1) + Cov(X_1, X_2) + \mathbf{L} + Cov(X_1, X_n)\right\}$$

$$= \frac{1}{n}\left\{Cov(X_1, X_1) + 0 + \mathbf{L} + 0\right\}$$

$$= \frac{1}{n}D(X_1) = \frac{S^2}{n}$$

设
$$X \sim F(x) = 0.3\Phi(x) + 0.7\Phi\left(\frac{x-1}{2}\right)$$
,则 $E(X) = ?$

解:
$$f(x) = 0.3j(x) + 0.35j(\frac{x-1}{2})$$

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{-\infty}^{+\infty} \left(0.3xj(x) + 0.35xj(\frac{x-1}{2})\right)dx$$

$$= \int_{-\infty}^{+\infty} 0.35xj(\frac{x-1}{2})dx \xrightarrow{u=(x-1)/2} \int_{-\infty}^{+\infty} 0.35(2u+1)j(u) \cdot 2du$$

$$= \int_{-\infty}^{+\infty} (1.4uj(u) + 0.7j(u)) du = \int_{-\infty}^{+\infty} 0.7j(u) du$$

$$=0.7\int_{-\infty}^{+\infty} j(u)du = 0.7$$
 注意:
$$\int_{-\infty}^{+\infty} xj(x)dx = 0$$

设随机变量
$$X$$
与 Y 的概率分布分别为: $X \mid 0 \mid 1$ $Y \mid -1 \mid 0 \mid 1$ $P \mid \frac{1}{3} \mid \frac{2}{3} \mid P \mid \frac{1}{3} \mid \frac{1}{3} \mid \frac{1}{3}$

- (1)求二维随机变量(X,Y)的概率分布;
- (2)求Z = XY的概率分布;
- (3)求X与Y的相关系数 r_{xy} (2011年硕士研究生入学题)

$$E(XY) = -1*1/3 + 0*1/3 + 1*1/3 = 0$$

$$E(X) = 2/3, \quad E(Y) = 0$$

$$COV(X,Y) = E(XY) - E(X)E(Y) = 0, \quad r_{XY} = \frac{COV(X,Y)}{\sqrt{D(X)D(Y)}} = 0$$

第五章 大数定律和中心极限定理

- 1、契比雪夫不等式 $P\{|X-E(X)| \ge e\} \le \frac{S^2}{e^2}$
- 2、随机变量序列 $\{X_i, i \geq 1\}$,若满足以下任一条件:
 - (1) $\lim_{n\to+\infty} D(\overline{X}) = \lim_{n\to+\infty} D(\frac{1}{n}\sum_{i=1}^n X_i) = 0$, 独立不作要求;
 - (2) X_1, X_2, L, X_n, L 独立, 方差存在;
 - (3) X_1, X_2, L, X_n, L 独立同分布, 方差不作要求;

即有
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = \overline{X} \xrightarrow{P} E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

第五章 大数定律和中心极限定理

3、变量若由大量的相互独立的变量的综合影响形成的,而其中每个个别的因素作用都很小,这种随机变量往往服从或近似服从正态分布。

•当
$$n$$
足够大时,各 X_i 独立, $\sum_{i=1}^n X_i$ $\sim N(\sum_{i=1}^n E(X_i), \sum_{i=1}^n D(X_i))$

•当n足够大时, 若 $n_A \sim B(n, p)$, 则 $n_A \sim N(np, np(1-p))$

如果样本容量足够大,则各种估计量往往近似正态分布。若总体 $X \sim U(0,q)$ 中的q矩估计:

$$\hat{q} = 2\overline{X}$$
 近似 $\sim N(q, \frac{q^2}{3n})$

某种型号的器件的寿命X(以小时计)具有以下的概率密度:

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000 \\ 0, & x \neq 0 \end{cases}$$
,现有一大批此种器件(设备器件损

坏与否相互独立),任取n只, Y_n 表示n只中寿命大于3000小

时的器件个数,则当
$$n \to \infty$$
时, $\frac{Y_n}{n} \stackrel{P}{\to} ?$,及 $P(Y_{50} \le 20) = ?$

解:
$$p = P(X > 3000) = \int_{3000}^{\infty} \frac{1000}{x^2} dx = \frac{1}{3}$$

$$Y_n \sim B(n, 1/3) \qquad Y_n / n \rightarrow p = 1/3$$
近似
$$Y_{50} \sim N(50*(1/3), 50*(1/3)*(2/3))$$

$$P(Y_{50} \le 20) = \Phi(\frac{20 - 50*(1/3)}{\sqrt{50*(1/3)*(2/3)}}) \approx \Phi(1)$$

设总体
$$X$$
的概率密度 $f(x;q) = \begin{cases} \frac{\sqrt[q]{x}}{qx}, 0 < x < 1, & q > 0$ 未知, X_1 , L , X_n 为来自

X的简单随机样本,求q的矩估计量 \hat{q} ,并判断 \hat{q} 是否为q的相合估计量.

解:
$$\mathbf{m}_{1} = E(X) = \int_{0}^{1} x \cdot \frac{\sqrt[q]{x}}{qx} dx = \frac{1}{q+1}$$
 , $q = \frac{1-\mathbf{m}_{1}}{\mathbf{m}_{1}}$, $\hat{q} = \frac{1-\overline{X}}{\overline{X}}$ 若用切比雪夫不等式判断 $\lim_{n \to \infty} P(|\hat{q}_{1} - q| < e) = 1$ 是否成立就复杂了! 性质: 若当 $n \to \infty$ 时, $X_{n} \xrightarrow{P} a$, $Y_{n} \xrightarrow{P} b$, 且函数 $g(x, y)$ 在点 (a,b) 连续,则 $g(X_{n},Y_{n}) \xrightarrow{P} g(a,b)$

由辛钦大数定律,
$$\overline{X} \xrightarrow{P} E(X) = \frac{1}{q+1}$$
则 \overline{X} 的连续函数: $\hat{q} = \frac{1-\overline{X}}{\overline{X}} \xrightarrow{P} \frac{1-\frac{1}{q+1}}{\frac{1}{q+1}} = q$
 $\therefore \hat{q}_1$ 是 q 的相合性估计。

$$\frac{2}{n}\sum_{i=1}^{n}(3X_{i}^{2}-X_{i})$$
依概率收敛到:

$$E(2(3X_i^2 - X_i)) = 2(3E(X_i^2) - E(X_i))$$

$$= 2(3(D(X_i) + E^2(X_i)) - E(X_i))$$

$$= 2(3(\frac{1}{12} + \frac{1}{4}) - \frac{1}{2}) = 1$$

第六章 数理统计的基本概念

• 统计量
$$\overline{X}$$
, S^2 , A_k , B_k

- 三大分布 c^2 , t, F
 - 构成
 - 性质
- 抽样分布定理

$$\frac{\overline{X} - m}{s / \sqrt{n}} \sim N(0,1) \qquad \frac{(\overline{X} - m)}{s / \sqrt{n}} \sim t(n-1) \qquad \frac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{s / \sqrt{n}} \\
\frac{(n-1)S^2}{s^2} \sim c^2(n-1) \qquad \frac{S_1^2}{S_2^2} / \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1) \qquad \sim t(n_1 + n_2 - 2)$$

$$E(\overline{X}) = E(X), \qquad D(\overline{X}) = \frac{D(X)}{$$
样本容量

$$E(S^2) = D(X)$$
, 总体为正态时, $D(S^2) = \frac{2[D(X)]^2}{$ 样本容量 -1

设
$$c^2 \sim c^2(n)$$
, 则有 $E(c^2) = n$, $D(c^2) = 2n$

例: 设 $X \sim N(0,1), (X_1, X_2, \mathbf{L} X_n)$ 是样本,求 $D(\overline{X}^2)$

解:
$$\overline{X} \sim N(0, \frac{1}{n})$$
 $\frac{\overline{X} - 0}{1/\sqrt{n}} = \sqrt{n} \ \overline{X} \sim N(0, 1)$

$$n\overline{X}^2 \sim c^2(1)$$
 $D(n\overline{X}^2) = 2$ $D(\overline{X}^2) = \frac{2}{n^2}$

如何求
$$D(\overline{X} + \sum_{i=1}^{n} (X_i - \overline{X})^2)$$

= $D(\overline{X} + (n-1)S^2) = D(\overline{X}) + D((n-1)S^2)$

*设总体 $X: N(0, \mathbf{s}^2), (X_1, X_2)$ 是其样本,求 $P\left(\left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2 < 4\right)$

解: $\mathbf{Q}(X_1, X_2)$ 是样本,由P88, (X_1, X_2) 是二维正态随机变量

 $\therefore (X_1 + X_2, X_1 - X_2)$ 也是二维正态随机变量

 $\mathbf{Q} Cov(X_1 + X_2, X_1 - X_2) = D(X_1) - D(X_2) = 0$

 $:: X_1 + X_2 = X_1 - X_2$ 是不相关的,所以它们也是相互独立的

$$Y = \left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2 = \left(\frac{X_1 + X_2 - 0}{\sqrt{2}s} / \frac{X_1 - X_2 - 0}{\sqrt{2}s}\right)^2 \sim F(1, 1)$$

曲
$$P108$$
, 当 $n_1 = 1$, $n_2 = 1$ 时, $f_Y(y) = \begin{cases} \frac{1}{p(1+y)\sqrt{y}}, y > 0\\ 0, y \le 0 \end{cases}$

$$P(Y < 4) = \int_0^4 \frac{1}{p(1+y)\sqrt{y}} dy = 2\int_0^4 \frac{1}{p(1+y)} d\sqrt{y} = \frac{2}{p} \arctan 2 = 0.70$$

2008年研究生入学数学题:

设 X_1 , L X_n 是总体 $N(m, s^2)$ 的样本,统计量 $T = \overline{X}^2 - \frac{S^2}{n}$

(1)证明T是 m^2 的无偏估计 (2)当m=0, $s^2=1$ 时,求D(T)

(1) 证明:
$$E(T) = E(\overline{X}^2 - \frac{S^2}{n}) = E(\overline{X}^2) - E(\frac{S^2}{n})$$

 $= D(\overline{X}) + E^2(\overline{X}) - \frac{1}{n}E(S^2) = \frac{S^2}{n} + m^2 - \frac{1}{n}S^2 = m^2$
(2) $n\overline{X}^2 \sim c^2(1)$, $D(\overline{X}^2) = \frac{2}{n^2}$, $D(S^2) = \frac{2S^2}{n-1}$
 $D(T) = D(\overline{X}^2 - \frac{S^2}{n}) = D(\overline{X}^2) + \frac{1}{n^2}D(S^2)$
 $= \frac{2}{n^2} + \frac{1}{n^2}\frac{2}{n-1} = \frac{2}{n(n-1)}$

2010年研究生入学数学1&数学3题:

设 X_1 , L X_n 是总体 $N(m, s^2)$ 的样本,统计量 $T = \frac{1}{n} \sum_{i=1}^n X_i^2$, 则E(T) = ?

解:
$$E(T) = \frac{1}{n} \sum_{i=1}^{n} E(X_i^2)$$

 $= \frac{1}{n} \sum_{i=1}^{n} (D(X_i) + E^2(X_i))$
 $= \frac{1}{n} \sum_{i=1}^{n} (s^2 + m^2)$
 $= s^2 + m^2$

设 $X \sim N(\mathbf{m}, \mathbf{s}^2), (X_1, \mathbf{L}, X_n)$ 是样本, \overline{X} 、 S^2 是样本均值及方差,若再取 X_{n+1} ,证明统计量:

$$\sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X}}{S} \sim t(n-1) \qquad Page 113, 11$$

证: X_{n+1} 与 \overline{X} 独立,且 X_{n+1} - \overline{X} ~ $N(0, \frac{n+1}{n}s^2)$

$$U = \frac{X_{n+1} - \overline{X}}{\sqrt{\frac{n+1}{n} S^2}} \sim N(0,1) \qquad V = \frac{(n-1)S^2}{S^2} \sim C^2(n-1) \qquad \text{in }$$

$$\frac{U}{\sqrt{V/(n-1)}} = \sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X}}{S} \sim t(n-1)$$

若
$$X \sim t(n)$$
,则(1) $X^2 \sim F(1,n)$,(2) $t_{a/2}^2(n) = F_a(1,n)$

$$(2)P(X > t_{a/2}(n)) = \frac{a}{2}$$

$$P(|X| > t_{a/2}(n)) = a$$

$$P(X^2 > t_{a/2}^2(n)) = a$$

$$QX^2 \sim F(1, n)$$

$$P(X^2 > F_a(1, n)) = a$$

:. $t_{3/2}^2(n) = F_3(1,n)$

第七章 参数估计

矩估计法 极大似然估计法 估计量的评选标准 区间估计

(一) 矩估计法:

设总体X的分布函数为 $F(x;q_1,q_2,\mathbf{L},q_k),(q_1,q_2,\mathbf{L},q_k)$ 是待估计的未知参数, 假定总体X的k阶原点矩 $E(X^k)$ 存在且有未知数(否则用下一阶矩),则:

$$\begin{cases}
 m_{1} = E(X^{1}) = m_{1}(q_{1}, q_{2}, \mathbf{L} q_{k}) \\
 m_{2} = E(X^{2}) = m_{2}(q_{1}, q_{2}, \mathbf{L} q_{k}) \\
 \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \\
 m_{k} = E(X^{k}) = m_{k}(q_{1}, q_{2}, \mathbf{L} q_{k})
\end{cases}
\Rightarrow
\begin{cases}
 q_{1} = q_{1}(m_{1}, m_{2}, \mathbf{L}, m_{k}) \\
 q_{2} = q_{2}(m_{1}, m_{2}, \mathbf{L}, m_{k}) \\
 \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \\
 q_{k} = q_{k}(m_{1}, m_{2}, \mathbf{L}, m_{k})
\end{cases}$$

(二) 极(最)大似然估计法:

样本 $(X_1, X_2, \mathbf{L}, X_n)$ 的观察值 $(x_1, x_2, \mathbf{L}, x_n)$, 似然函数:

连续:
$$L(q) = \prod_{i=1}^{n} f(x_i)$$

离散:
$$L(q) = \prod_{i=1}^{n} P(X_1 = x_i)$$

$$Ln(L(q)) =$$
 $\frac{dLn(L(q))}{dq} = 0$,若不为零,则从定义出发求得。
 $\hat{q} = 0$

常用分布中参数的矩估计和最大似然估计

分布名称	分布	未知 参数	矩估计量	极大似然 估计量
0-1分布	$X \sim B(1, p)$	p	\overline{X}	\overline{X}
二项分布	$X \sim B(m, p)$	p	\overline{X} / m	\overline{X} / m
泊松分布	$X \sim p(1)$	1	\overline{X}	\overline{X}
均匀分布	$X \sim U[a,b]$	a,b	$\begin{cases} \mathbf{\delta} = \overline{X} - \sqrt{3B_2} \\ \mathbf{\delta} = \overline{X} + \sqrt{3B_2} \end{cases}$	$\begin{cases} \mathbf{\hat{A}} = min(X_1, \mathbf{L}, X_n) \\ \mathbf{\hat{B}} = max(X_1, \mathbf{L}, X_n) \end{cases}$
指数分布	$X \sim E(1)$	1	$1/\overline{X}$	$1/\overline{X}$
正态分布	$X \sim N(m, s^2)$	m,s^2	$\begin{cases} \mathbf{H} = \overline{X} \\ \mathbf{S}^2 = B_2 \end{cases}$	$\begin{cases} \mathbf{H} = \overline{X} \\ \mathbf{S}^2 = B_2 \end{cases}$

估计量的评价准则

- 1. 满足 $E(\hat{q}) = q$,则称 \hat{q} 是q的一个无偏估计量。
- 2. 设 \hat{q}_1, \hat{q}_2 是q的两个无偏估计,如果 $D(\hat{q}_1) \leq D(\hat{q}_2), 则称<math>\hat{q}_1$ 比 \hat{q}_2 有效。
- 3. 设 \hat{q} 是参数q的点估计,方差存在,则称 $E(\hat{q}-q)^2$ 是估计量的均方误差,记为 $Mse(\hat{q})$.
- $4.\lim_{n\to+\infty} P\{|\mathbf{q}-\mathbf{q}|< e\}=1$ 即当 $n\to+\infty$ 时,**依**概率收敛于 \mathbf{q} ,则称**为** \mathbf{q} 的相合估计量或一致估计量.

设
$$X$$
的分布为: X 1 2 3 P_k 1- q q - q^2 q^2

其中 $q \in (0,1)$ 未知,以 N_i 来表示来自总体X的样本(容量为n)

中等于i的个数(i = 1,2,3)。 求常数 a_1, a_2, a_3 使 $T = \sum_{i=1}^{3} a_i N_i$ 为q的

无偏估计量,并求D(T).

解: N_i 是随机变量,并且 N_i 服从 $B(n, p_i)$,其中 $p_i = P(X = i)$

$$E(T) = \sum_{i=1}^{3} a_i E(N_i) = a_1 n(1-q) + a_2 nq(1-q) + a_3 q^2$$

$$= na_1 + (na_2 - na_1)q + (na_3 - na_2)q^2 \equiv q$$

$$\Rightarrow a_1 = 0, a_2 = a_3 = 1/n$$

$$D(T) = \sum_{i=1}^{3} a_i^2 D(N_i) = \mathbf{L} = \frac{q(1-q)}{n}$$

设 $X_1, X_2, \mathbf{L}, X_n$ 为来自正态总体 $N(\mathbf{m}_0, \mathbf{s}^2)$ 的简单随机样本,其中 \mathbf{m}_0 已知, $\mathbf{s}^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本均值和样本方差。

- (1)求参数 s^2 的最大似然估计 \hat{s}^2 ;
- (2)计算 $E(\hat{s}^2)$, $D(\hat{s}^2)$.

$$(1)L(s^{2}) = \prod_{i=1}^{n} f(x_{i}) = (2ps^{2})^{-\frac{n}{2}} e^{-\frac{1}{2s^{2}} \sum_{i=1}^{n} (x_{i} - \mathbf{m}_{0})^{2}}$$

$$\ln L(s^{2}) = -\frac{n}{2} \ln(2ps^{2}) - \frac{1}{2s^{2}} \sum_{i=1}^{n} (x_{i} - \mathbf{m}_{0})^{2}$$

$$\frac{\ln L(s^{2})}{ds^{2}} = -\frac{n}{2s^{2}} + \frac{1}{2s^{4}} \sum_{i=1}^{n} (x_{i} - \mathbf{m}_{0})^{2} \stackrel{\Leftrightarrow}{=} 0$$

$$\hat{s}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mathbf{m}_{0})^{2}$$

设 $X_1, X_2, \mathbf{L}, X_n$ 为来自正态总体 $N(\mathbf{m}_0, \mathbf{s}^2)$ 的简单随机样本,其中 \mathbf{m}_0 已知, $\mathbf{s}^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本均值和样本方差。

- (1)求参数 s^2 的最大似然估计 \hat{s}^2 ;
- (2)计算 $E(\hat{s}^2)$, $D(\hat{s}^2)$.

$$(2)E(\hat{S}^{2}) = E(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mathbf{m}_{0})^{2}) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i} - \mathbf{m}_{0})^{2}$$

$$= \frac{1}{n}\sum_{i=1}^{n}D(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}S^{2} = S^{2} \quad \text{Pi}:$$

$$\frac{n\hat{S}^{2}}{S^{2}} = \sum_{i=1}^{n}\left(\frac{X_{i} - \mathbf{m}_{0}}{S}\right)^{2} \sim C^{2}(n), \quad E(\frac{n\hat{S}^{2}}{S^{2}}) = n$$

设 $X_1, X_2, \mathbf{L}, X_n$ 为来自正态总体 $N(\mathbf{m}_0, \mathbf{s}^2)$ 的简单随机样本,其中 \mathbf{m}_0 已知, $\mathbf{s}^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本均值和样本方差。

- (1)求参数 s^2 的最大似然估计 \hat{s}^2 ;
- (2)计算 $E(\hat{s}^2)$, $D(\hat{s}^2)$.

$$\frac{n\hat{\boldsymbol{S}}^{2}}{\boldsymbol{S}^{2}} = \sum_{i=1}^{n} \left(\frac{X_{i} - \boldsymbol{m}_{0}}{\boldsymbol{S}}\right)^{2} \sim c^{2}(n)$$

$$D(\frac{n\hat{S}^2}{S^2}) = 2n$$

$$D(\hat{\mathbf{S}}^2) = \frac{2\mathbf{S}^4}{n}$$

六. (12分) 设总体 $X \sim N(0, \sigma^2)$, $X_1, \dots, X_n(n>1)$ 是来自总体的简单随机样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$; 下面给出 σ^2 的三个估计量, $\hat{\sigma}_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $\hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$, $\hat{\sigma}_3^2 = n\bar{X}^2$; (1)求这些估计量的均值,并判断其中哪些是 σ^2 的无偏估计量; (2)求这三个估计量的方差,并在无偏估计中判断哪个是有效估计。

(1),
$$E(\hat{S}_{1}^{2}) = E(\hat{S}_{2}^{2}) = \sigma^{2}$$
, $\hat{S}_{1}^{2} = E(\hat{S}_{1}^{2}) = E(\hat{S}_{2}^{2}) = \sigma^{2}$, $\hat{S}_{2}^{2} = E(\hat{S}_{2}^{2}) = D(\hat{S}_{2}^{2}) = \sigma^{2}$, $\hat{S}_{3}^{2} = E(\hat{S}_{3}^{2}) = D(\hat{S}_{2}^{2}) = \sigma^{2}$, $\hat{S}_{3}^{2} = \sigma^{2}$

六. (12 分)设总体 $X \sim N(0, \sigma^2)$, $X_1, \dots, X_n(n>1)$ 是来自总体的简单随机样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$; 下面给出 σ^2 的三个估计量, $\hat{\sigma}_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, $\hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$, $\hat{\sigma}_3^2 = n \bar{X}^2$; (1)求这些估计量的均值,并判断其中哪些是 σ^2 的无偏估计量; (2)求这三个估计量的方差,并在无偏估计中判断哪个是有效估计。

区间估计

引言:点估计是由样本求出未知参数q的一个估计值 \hat{q} ,由于其随机性, \hat{q} 总是不会恰好等于q,它仅仅是q的参考值,没有反映这个近似值的误差范围。

而区间估计则要由样本给出参数q的一个估计范围,并指出该区间包含q的可靠程度。假设 (X_1, \mathbf{L}, X_n) 是总体X的一个样本,区间估计的方法是给出两个统计量

求未知参数q的置信区间(置信限)方法:

- 1. 根据得到的样本构造函数(枢轴量) $G(X_1, \mathbf{K}, X_n; q)$,要求 (1)包含待估计q; (2)包含q的点估计(如无偏估计等); (3)包含 总体已知的信息; (4)不含除q外的其它未知参数; (5)分布已知.
- 2.对于给定的置信度1-a,确定尽可能大的a,尽可能小的b,使得 $P\{a < G(q) < b\} \ge 1-a$;
- 3. 若能从 a < G(q) < b 得到等价的不等式 $\P_1(X_1, \mathbf{L}, X_n) < q < \P_2(X_1, \mathbf{L}, X_n)$ 那么 (\P_1, \P_2) 就是q的置信度为1-a的双侧置信区间。
- 注:若要求单侧置信限,只要将"2."中的 $P\{a < G(q) < b\} \ge 1-a$ 改为 $P\{a < G(q)\} \ge 1-a$ 或 $P\{G(q) < b\} \ge 1-a$ 即可。

正态总体下常见的枢轴量

(1)单个正态总体 $N(m,s^2)$ 情形

$$s^2$$
已知,求**m**的区间估计: $\frac{\overline{X}-m}{s/\sqrt{n}} \sim N(0,1)$

$$s^2$$
未知,求**m**的区间估计: $\frac{\overline{X}-\mathbf{m}}{S/\sqrt{n}} \sim t(n-1)$

m未知, 求
$$s^2$$
的区间估计: $\frac{(n-1)S^2}{S^2} \sim c^2(n-1)$

m已知,求
$$s^2$$
的区间估计:
$$\sum_{i=1}^n \left(\frac{X_i - m}{s}\right)^2 \sim c^2(n)$$

正态总体下常见的枢轴量

(2)二个正态总体 $N(\mathbf{m}_1, \mathbf{s}_1^2), N(\mathbf{m}_2, \mathbf{s}_2^2)$ 情形

$$s_1^2$$
, s_2^2 已知,求 $m_1 - m_2$ 的区间估计:
$$\frac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0,1)$$

$$S_1^2 = S_2^2$$
未知,求 $m_1 - m_2$ 的区间估计: $\frac{(\bar{X} - \bar{Y}) - (m_1 - m_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$

$$m_1, m_2$$
未知,求 $\frac{S_1^2}{S_2^2}$ 的区间估计: $\frac{S_1^2}{S_2^2}\frac{S_2^2}{S_1^2} \sim F(n_1-1, n_2-1)$

$$m_1, m_2$$
已知,求 $\frac{S_1^2}{S_2^2}$ 的区间估计:
$$\frac{\sum_{i=1}^{n_1} (X_i - m_1)^2 / n_1}{\sum_{i=1}^{n_2} (Y_i - m_2)^2 / n_2} \frac{S_2^2}{S_1^2} \sim F(n_1, n_2)$$

单个正态总体 $X \sim N(m, s^2)$ 中, s^2 已知时, 求均值m的置信度1-a的单侧置信下限

同样取
$$G = \frac{\bar{X} - m}{S/\sqrt{n}} \sim N(0.1)$$
 为求形如 $P(m>?)=1-a$ 中的"?" Z_a

设
$$P(\frac{\overline{X} - m}{s/\sqrt{n}} < ?) = 1 - a$$

$$\Rightarrow P(\frac{\overline{X} - m}{S / \sqrt{n}} < z_a) = 1 - a$$

即
$$P\left\{m > \overline{X} - \frac{S}{\sqrt{n}}z_a\right\} = 1 - a$$

置信区间为:
$$\left(\bar{X} - \frac{S}{\sqrt{n}} z_a , +\infty\right)$$

思考题:

均值n的置信度 1-a的 置信上限是什么呢?

答案:
$$\bar{X} + \frac{S}{\sqrt{n}} z_a$$

例:两个独立总体 $X \sim N(m,1), Y \sim N(m,4), m,m,$ 未知, 分别从总体X、Y中抽取简单随机样本 $X_1, X_2, L X_3$ 和 Y_1, Y_2, L, Y_{16} , 求 $2m_1 - m_2$ 的95%的置信区间。

 $\mathbf{M}: 2X - Y \neq 2\mathbf{M} - \mathbf{M}$, 的无偏估计,

$$D(2\overline{X} - \overline{Y}) = 4D(\overline{X}) + D(\overline{Y}) = 4 * \frac{1}{9} + \frac{4}{16} = \frac{25}{36}$$

$$\therefore 2\overline{X} - \overline{Y} \sim N(2m_1 - m_2, \frac{25}{36})$$

$$\therefore 2\overline{X} - \overline{Y} \sim N(2m_1 - m_2, \frac{25}{36})$$

取
$$G = \frac{(2\overline{X} - \overline{Y}) - (2m - m_2)}{5/6} \sim N(0,1)$$

95%

设
$$P(-z_{0.025} < G < z_{0.025}) = 95\%$$
 , $z_{0.025} = 1.96$

得 2m - m, 的 95% 的置信区间为:

$$2\overline{X} - \overline{Y} \pm \frac{5}{6} z_{0.025} = 2\overline{X} - \overline{Y} \pm 1.633$$

(三) 成对数据情形

例:为考察某种降压药的降压效果,测试了n个高血压病人在服药前后的血压(收缩压)分别为 $(X_1,Y_1), (X_2,Y_2), \mathbf{L}, (X_n,Y_n).$

由于个人体质的差异, X_1 , L, X_n 不能看成来自同一个正态总体的样本,即 X_1 , L, X_n 是相互独立但不同分布的样本, Y_1 , L, Y_n 也是.

另外对同一个个体, X_i 和 Y_i 也是不独立的。

$$P136:18(1)$$
 $\exists Y = X_{(1)} = \min(X_1, X_2, \mathbf{L}, X_n)$

$$F_{X}(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} \int_{m}^{x} e^{-(t-m)} dt = 1 - e^{m-x}, x \ge m \\ 0, x < m \end{cases}$$

$$F_{Y}(y) = P(Y \le y) = 1 - P(Y > y) = 1 - [P(X > y)]^{n} = 1 - [1 - F_{X}(y)]^{n}$$

$$= \begin{cases} 0, & y < m \\ 1 - e^{nm - ny}, & y \ge m \end{cases}$$

$$f_{Y}(y) = F_{Y}(y) = \begin{cases} 0, y < m \\ ne^{nm-ny}, y \ge m \end{cases}$$

设
$$Z = X_{(1)} - m = Y - m$$

z = y - m, z' = 1 > 0单调增函数,反函数: y = z + m,反函数导数:1

$$f_Z(z) = f_Y(z + \mathbf{m}) * 1 = f_Y(z + \mathbf{m}) = \begin{cases} ne^{-nz}, z \ge 0 \\ 0, z < 0 \end{cases}$$

由Z的密度函数可知,Z服从指数分布。

Z包含唯一未知数m, 分布已知, 所以可作为区间估计的枢轴量。

第八章 假设检验

假设检验

正态总体参数的假设检验

拟合优度检验

> 参数的假设检验问题处理步骤

- 1. 根据实际问题的要求,提出原假设H₀ 和备择假设H₁; 特别注意H₀与H₁的不平等性。
- 2. 根据已知条件选取检验统计量(选取方法同区间估计中的枢轴量), 画出统计量密度函数草图;
- 3. 按照"在原假设H₀成立时,拒绝原假设的概率不大于显著性水平a"这一原则,画出统计量分布的分位数图, (左边检验左边留a,右边检验右边留a,两边检验两边各留a/2) 确定H₀拒绝域;
- 4. 查分位数表、用样本观测值数据代入公式进行计算;根据 样本数据是否落在H₀拒绝域内,作出拒绝原假设还是接受原 假设的决策。
 - (3') 按 "3" 确定拒绝域,计算检验统计量的观测值与 P_{-} 值;
 - (4) 根据给定的显著水平a,作出判断.

正态总体下常见的检验统计量

(1)单个正态总体 $N(m,s^2)$ 情形

$$s^2$$
已知,对**m**的检验: $\frac{\overline{X} - m_0}{s/\sqrt{n}} \sim N(0,1)$

$$s^2$$
未知,对m的检验: $\frac{\overline{X} - m_0}{S/\sqrt{n}} \sim t(n-1)$

m未知,对
$$s^2$$
的检验: $\frac{(n-1)S^2}{S_0^2} \sim c^2(n-1)$

m已知,对
$$s^2$$
的检验:
$$\sum_{i=1}^n \left(\frac{X_i - m}{S_0} \right)^2 \sim c^2(n)$$

正态总体下常见的检验统计量

(2)二个正态总体 $N(\mathbf{m}_1, \mathbf{s}_1^2), N(\mathbf{m}_2, \mathbf{s}_2^2)$ 情形

$$s_1^2$$
, s_2^2 已知,对 $m_1 - m_2$ 的检验:
$$\frac{(\overline{X} - \overline{Y}) - d}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0,1)$$

$$S_1^2 = S_2^2$$
未知,对 $m_1 - m_2$ 的检验:
$$\frac{(\overline{X} - \overline{Y}) - d}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

 m_1, m_2 未知, 对 s_1^2 与 s_2^2 是否相同的检验: $\frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$

 m_1, m_2 已知, 对 s_1^2 与 s_2^2 是否相同的检验: $\frac{\sum_{i=1}^{n_1} (X_i - m_1)^2 / n_1}{\sum_{i=1}^{n_2} (Y_i - m_2)^2 / n_2} \sim F(n_1, n_2)$

例:自两个独立总体 $N(\mathbf{m}_1, \mathbf{s}_1^2)$ 与 $N(\mathbf{m}_2, \mathbf{s}_2^2)$ 中抽取了 n_1 、 n_2 个数据,并已计算得:x, s_1 ; y, s_2 , 在水平a下,检验 $H:\mathbf{s}=2\mathbf{s}$ $H:\mathbf{s}\neq 2\mathbf{s}$

检验
$$H_0: \mathbf{S}_1 = 2\mathbf{S}_2$$
 $H_1: \mathbf{S}_1 \neq 2\mathbf{S}_2$

$$\frac{\frac{(n_{1}-1)S_{1}^{2}}{S_{1}^{2}}/(n_{1}-1)}{\frac{(n_{2}-1)S_{2}^{2}}{S_{2}^{2}}/(n_{1}-1)} = \frac{\frac{(n_{1}-1)S_{1}^{2}}{S_{1}^{2}}/(n_{1}-1)}{\frac{(n_{2}-1)(2S_{2})^{2}}{S_{2}^{2}}/(n_{1}-1)} = \frac{S_{1}^{2}}{(2S_{2})^{2}} \frac{(2S_{2})^{2}}{S_{1}^{2}} \sim F(n_{1}-1,n_{2}-1)$$

∴取检验统计量:
$$F = \frac{S_1^2}{4S_2^2}$$

$$F_{1,0,0}(n_1-1,n_2-1)$$
 $F_{2,0}(n_1-1,n_2-1)$

$$H_0$$
拒绝域为 $F = \frac{S_1^2}{4S_2^2} \le F_{1-a/2}(n_1-1,n_2-1)$
 $F_{1-a/2}(n_1-1,n_2-1)$

或
$$F = \frac{S_1^2}{4S_2^2} \ge F_{a/2}(n_1 - 1, n_2 - 1)$$

正态总体中均值、方差的双侧置信区间估计与双边假设检验比较

	待估 参数	原假设 H ₀	枢轴量 G	检验 统计量	分布	置信区间	拒绝域
一个正态总体	m (s ² 己知)	$m = m_0$ (s^2 已知)	$\frac{\overline{X} - m}{s/\sqrt{n}}$	$\frac{\overline{X} - \mathbf{m}_0}{\mathbf{s}/\sqrt{n}}$	N(0,1)	$\frac{\left \overline{X} - \mathbf{m} \right }{\mathbf{S} / \sqrt{n}} < z_{a/2}$	$\frac{\left \overline{X} - \mathbf{m}_0\right }{\mathbf{S}/\sqrt{n}} \ge z_{a/2}$
	m (s ² 未知)	$m = m_0$ (s^2 未知)	\overline{X} – m	$\frac{\overline{X} - \mathbf{m}_0}{S/\sqrt{n}}$	t(n-1)		$\left \frac{\left \overline{X} - \mathbf{m}_0 \right }{S / \sqrt{n}} \ge t_{a/2} (n - 1) \right $
	s ² (m 未知)	$s^2 = s_0^2$ (m未知)	$\frac{(n-1)S^2}{S^2}$	$\frac{(n-1)S^2}{S_0^2}$	$c^2(n-1)$	$c_{1-a/2}^{2}(n-1)$ $<(n-1)S^{2}/S^{2}$ $< c_{a/2}^{2}(n-1)$	$\frac{(n-1)S^{2}}{S_{0}^{2}} \le C_{1-a/2}^{2}(n-1)$ 或 $\frac{(n-1)S^{2}}{S_{0}^{2}} \ge C_{a/2}^{2}(n-1)$
一 两个正态总体	$m_1 - m_2$ $(s_1^2 = s_2^2 = s^2)$	$m_1 = m_2$ $\frac{1}{2}$ $(s_1^2 = s_2^2 = s_2^2)$	\overline{X} $-\overline{Y}$) $-(m_1-m_2)$ $S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$	$\frac{1}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t(n_1+n_2-2)$	$\frac{\left (\bar{X} - \bar{Y}) - (m_1 - m_2)\right }{S_{w}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $< t_{a/2}(n_1 + n_2 - 2)$	$ \frac{\left \overline{X} - \overline{Y}\right }{S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} $ $ \geq t_{a/2}(n_{1} + n_{2} - 2) $
	$egin{array}{c} oldsymbol{S}_1^2 \ oldsymbol{S}_2^2 \end{array}$	$\mathbf{S}_1^2 = \mathbf{S}_2^2$	$\left rac{S_1^2}{S_2^2} ight/\!rac{{oldsymbol s}_1^2}{{oldsymbol s}_2^2}$	$\frac{S_1^2}{S_2^2}$	F(n ₁ -1,n ₂ -1)	$F_{1-a/2}(n_1 - 1, n_2 - 1)$ $< \frac{S_1^2}{S_2^2} / \frac{S_1^2}{S_2^2} <$ $F_{a/2}(n_1 - 1, n_2 - 1)$	$\frac{S_1^2}{S_2^2} \le F_{1-a/2}(n_1 - 1, n_2 - 1)$ $\overline{\text{PX}} \frac{S_1^2}{S_2^2} \ge F_{a/2}(n_1 - 1, n_2 - 1)$

犯2类错误概率计算

设总体 $X \sim N(m,4)$,从中取容量25的样本,求

- (1) a = 0.05下检验 $H_0: m \le 1$, $H_1: m > 1$ 的拒绝域
- (2) 当m=0.86时,犯第一类错误的概率
- (3) 当m=2时,犯第二类错误的概率

(1)
$$H_0$$
拒绝域为: $\frac{X - m_0}{s / \sqrt{n}} = \frac{X - 1}{2 / 5} \ge z_{0.05}$, 即 $\overline{X} \ge 1.66$

(2)第一类错误的概率= $P(拒绝H_0|H_0为真)$

$$=P_{m=0.86}(\overline{X} \ge 1.66) = 1 - \Phi\left(\frac{1.66 - 0.86}{0.4}\right) = 1 - \Phi(2) = 0.0228$$

$$\overline{X} \sim N(0.86, 4/25)$$

犯2类错误概率计算

设总体 $X \sim N(m,4)$,从中取容量25的样本,求

- (1) a = 0.05下检验 $H_0: m \le 1$, $H_1: m > 1$ 的拒绝域
- (2) 当m=0.86时,犯第一类错误的概率
- (3) 当m=2时,犯第二类错误的概率
 - (3)第二类错误的概率= $P(接受H_0|H_0)$ 为假)

$$= P_{m=2}(\overline{X} < 1.66) \qquad \overline{X} \sim N(2, 4/25)$$

$$=\Phi\left(\frac{1.66-2}{0.4}\right)=1-\Phi(0.85)=0.1977$$

$P_{\rm L}$ 值与统计显著性

P_值: 当原假设成立时,检验统计量取比观察到的结果 更为极端的数值的概率.

•
$$H_0$$
的拒绝域 $|Z| = \left| \frac{\bar{X} - m_0}{S / \sqrt{n}} \right| \ge z_{a/2}$,

$$P_{-} = P_{H_0} \left\{ |Z| \ge |z_0| \right\} = 2P_{H_0} \left\{ Z \ge |z_0| \right\} = 2(1 - \Phi(|z_0|))$$

•
$$H_0$$
的拒绝域为: $t = \frac{\overline{X} - m_0}{S/\sqrt{n}} \ge t_a(n-1),$

$$P_{-} = \sup_{m \le m_0} \{ t \ge t_0 \} = P \{ t(n-1) \ge t_0 \}.$$

•
$$H_0$$
的拒绝域为: $c^2 = \frac{(n-1)S^2}{S_0^2} \le c_{1-a}^2 (n-1)$,
$$P_- = P(c^2(n-1) \le c_0^2)$$

(二)成对数据的t检验

成对数据在7.4节中(区间估计)已作过介绍. 成对样本设为 (X_1,Y_1) , L, (X_n,Y_n) , 差值为 $D_i = X_i - Y_i$, i = 1, L, n. 可以看成来自正态总体 $N(\mathbf{m}_d,\mathbf{s}_d^2)$ 的样本。 为比较两总体均值是否有显著差异,可考虑假设问题

$$H_0: m_d = 0, \qquad H_1: m_d \neq 0$$

转化为单个正态总体的均值的假设检验。

分布拟合检验

定理. 若n充分大($n \ge 50$),则当 H_0 为真时,统计量

$$c^{2} = \sum_{i=1}^{k} \frac{n}{p_{i}} \left(\frac{n_{i}}{n} - p_{i}\right)^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}} = \sum_{i=1}^{k} \frac{n_{i}^{2}}{np_{i}} - n$$

近似服从 $c^2(k-1)$ 分布。因此检验拒绝域为

$$c^2 \ge c_a^2(k-r-1).$$

注: c^2 拟合检验使用时必须注意n要足够大, $np_i(\vec{\mathbf{y}} n\hat{p}_i)$ 不能太小。根据实践,要求 $n \geq 50$, $np_i(\vec{\mathbf{y}} n\hat{p}_i) \geq 5$,否则应适当合并 A_i ,以满足要求。

A_{i}	n_{i}	\hat{p}_i 或 $\hat{m{p}}_i$	np_i 或 $n\hat{p}_i$
A_1			
A_2			
A_3			
A_k			

计算
$$c^2 = \sum_{i=1}^k \frac{n_i^2}{np_i} - n =$$

查表
$$c_a^2(k-r-1)=$$

若
$$c^2 \ge c_a^2 (k-r-1)$$
则拒绝 H_0

第九章 方差分析及回归分析

单因素方差分析 一元线性回归

$$\begin{split} S_T &= \sum_{i=1}^r \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X} \right)^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}_{i\bullet} + \overline{X}_{i\bullet} - \overline{X} \right)^2 \\ &= \sum_{i=1}^r \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}_{i\bullet} \right)^2 + \sum_{i=1}^r \sum_{j=1}^{n_i} \left(\overline{X}_{i\bullet} - \overline{X} \right)^2 \\ &= S_E + S_A \end{split}$$

(1)
$$S_A$$
与 S_E 相互独立; (2) $\frac{S_E}{s^2} \sim c^2(n-r)$;

(3)当
$$H_0$$
为真时, $\frac{S_A}{S^2} \sim c^2(r-1)$ 。

(4) 当
$$H_0$$
为真时, $F = \frac{S_A/(r-1)}{S_E/(n-r)} = \frac{MS_A}{MS_E} \sim F(r-1, n-r)$

单因素试验方差分析表

方差来源	平方和	自由度	均方	F _比
因素A	S_{A}	r-1	$MS_A = \frac{S_A}{r-1}$	MS_A
误差	S_E	n-r	$MS_E = \frac{S_E}{n-r}$	MS_E
总和	S_T	<i>n</i> -1		

$$H_0: m_1 = m_2 = L = m_r = 0, H_1: m_1, m_2, L, m_r$$
不全相等

或,
$$H_0: a_1 = a_2 = \mathbf{L} = a_r = 0, H_1: a_1, a_2, \mathbf{L}, a_r$$
不全为零。

$$H_0$$
的检验统计量及
a水平的拒绝域为:
$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \ge F_a(r-1, n-r)$$

$$s^2$$
的估计 $\hat{s}^2 = \frac{S_E}{n-r} = MS_E$

当拒绝 H_0 时,求 $m_i - m_i$ 的置信水平为1 - a的置信区间

$$\mathbb{R} G = \frac{(\overline{X}_{i\bullet} - \overline{X}_{j\bullet}) - (\mathbf{m}_i - \mathbf{m}_j)}{\mathbf{s}\sqrt{(1/n_i + 1/n_j)}} / \sqrt{\frac{S_E}{\mathbf{s}^2}/(n-r)}$$

$$= \frac{(\overline{X}_{i\bullet} - \overline{X}_{j\bullet}) - (\mathbf{m}_i - \mathbf{m}_j)}{\mathbf{s}^2} \sim t(n-r)$$

$$=\frac{(\overline{X}_{i\bullet}-\overline{X}_{j\bullet})-(m_i-m_j)}{\sqrt{MS_E}\sqrt{\frac{1}{n_i}+\frac{1}{n_j}}} \sim t(n-r)$$

当拒绝 H_0 时,求m的置信水平为1-a的置信区间

取函数
$$G = \frac{\overline{X}_{ig} - m_i}{\sqrt{\frac{S_E}{S^2}/(n-r)}} = \frac{\overline{X}_{ig} - m_i}{\sqrt{MS_E}/\sqrt{n_i}} \sim t(n-r)$$

当拒绝 "
$$H_0: m_1 = m_2 = L = m_r = 0$$
"时,作假设:

$$H_0: \mathbf{m}_i = \mathbf{m}_j$$
 , $H_1: \mathbf{m}_i \neq \mathbf{m}_j$

取
$$t_{ij} = \frac{\overline{X}_{i\bullet} - \overline{X}_{j\bullet}}{\sqrt{MS_E} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}} \sim t(n-r)$$

$$H_0: m_i = m_0, H_1: m_i \neq m_0$$

$$\mathbb{R} t_i = \frac{\frac{\overline{X}_{ig} - m_0}{S / \sqrt{n_i}}}{\sqrt{\frac{S_E}{S^2} / (n - r)}} = \frac{\overline{X}_{ig} - m_0}{\sqrt{MS_E / \sqrt{n_i}}} \sim t(n - r)$$

一元线性回归

$$Y \sim N(a + bx, s^2)$$
 $Y = a + bx + e$ $e \sim N(0, s^2)$ $Y_i \sim N(a + bx_i, s^2)$ $Y_i = a + bx_i + e_i$ $e_i \sim N(0, s^2)$ 其中未知参数 a, b, s^2 都不依赖于 x 的常数!

$$S_{xy} = \sum_{i} (x_i - \overline{x})(y_i - \overline{y}), S_{xx} = \sum_{i} (x_i - \overline{x})^2, S_{yy} = \sum_{i} (y_i - \overline{y})^2.$$

$$a, b$$
的最小二乘估计:
$$\begin{cases} \mathbf{B} = S_{xy}/S_{xx} \\ \mathbf{H} = \overline{y} - \overline{x}\hat{b} \end{cases}$$

Y关于x的(经验)回归方程: $\hat{y} = \hat{a} + \hat{b}x$

平方和分解:
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \overline{y})^2$$
$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$
$$S_{yy} = SST = SSE + SSR$$

$$SSE = S_{yy} - \hat{b}S_{xy}$$
 $\frac{SSE}{s^2} \sim c^2(n-2)$

$$s^2 的估计用 \hat{s}^2 = \frac{SSE}{n-2} \stackrel{\text{定义}}{=} S^2$$

$$\hat{b} \sim N(b, \frac{s^2}{S_{xx}})$$

线性假设的显著性检验

检验假设 $H_0: b = 0, H_1: b \neq 0$,

当 H_0 为真即b=0时,取检验统计量

$$t = \frac{\hat{b} - b}{\sqrt{S^2/S_{xx}}} / \sqrt{\frac{SSE}{S^2}/(n-2)} = \frac{\hat{b}}{S/\sqrt{S_{xx}}} \sim t(n-2),$$

回归系数b的置信区间

取函数
$$G = \frac{\hat{b} - b}{S / \sqrt{S_{xx}}} \sim t(n-2)$$

可化为一元线性回归

考试注意事项

1. 考试时间、地点 时间: 2015年1月26日 10:30~12:30

地点: 西2-303*,313,315,415,417

2. 考前答疑时间、地点:

1月25日 8:30~11:30,13:30~16:30

东1A-207

3. 考试时按座位号就坐,并要签名,请同时把"作业本编号"抄到试卷的左上角。

考场: 紫金港西2-205

座位号	学号	姓名	性别	类(专业)	NO	作业本号	签名
2	3120100335	葛佳俊	男	应用生物科学类	1	P097	
4	3120000121	康路夷	男	混合班	2	A097	
6	3120100630	王博雅	男	工科试验班(工学)	3	P011	
8	3120100510	李峥	男	工科试验班 (工学)	4	P009	
9	3120101969	石丹妮	女	工科试验班(信息)	5	A043	
11	3110103106	陈云龙	男	机械工程及其自动化	6	P064	
13	3120102020	王一川	男	工科试验班 (信息)	7	A050	
15	3120101910	郑来文	女	工科试验班(信息)	8	A042	
18	3110100307	王震宇	男	动物科学	9	P007	
20	3120100462	袁焕杰	男	理科试验班类	10	A111	
22	3120101038	谢欣成	女	工科试验班 (工学)	11	P012	
24	3110101254	杜峰百	男	信息工程(光电系)	12	P087	

考试注意事项

- 可带计算器,之前要学会计算器的使用
- 统一阅卷、统一评分标准(注意必要过程)
- 考题类型:一般为填空与计算题
- 平时成绩一般20%~30%