DEPARTMENT OF MATHEMATICS, IIT - KHARAGPUR

End Semester Examination, Autumn 2012

Subject No.: MA61027/MA51115, Subject Name: Cryptography Number of Students: 70, Instructor: Dr. Sourav Mukhopadhyay Full Marks: 50 Time: 3 Hours

Instruction: Answer all the questions.

- 1. a) Decrypt the ciphertext 111111111111 using CBC mode. Use the permutation cipher with block length 3 and key $k = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. The initialization vector is 000.
 - b) Draw a detailed diagram of a one round DES decryption function (including the operations on the round key).
 - c) Describe Mixcolumn operation used in the AES-Rijndael encryption function. [4+3+3=10]
- 2. a) What is stream cipher? describe an *l*-bit LFSR based stream cipher.
 - b) An S-box $S: \{0,1\}^m \to \{0,1\}^n$ is said to be balanced if $|S^{-1}(y)| = 2^{m-n}$ for all $y \in \{0,1\}^n$. Consider the following DES S-box $S_5: \{0,1\}^6 \to \{0,1\}^4$:

2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	.1	5	. 0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

Table 1: DES S-box S_5

- (i) Determine the set $S_5^{-1}(1001)$.
- (ii) Prove/Dis-prove that S_5 is balanced.

[5+5]

3. a) What is message authentication code (MAC)? Explain how CBC mode of operation can be used to compute MAC.

----P.T.O.----

- b) Consider the encrypted CBC MAC built from AES. Suppose we compute the tag for a long message m comprising of n AES blocks. Let m^* be the n-block message obtained from m by flipping the last bit of m (i.e. if the last bit of m is 0 then the last bit of m^* is 1, if the last bit of m is 1 then the last bit of m^* is 0,). How many calls to AES would it take to compute the tag for m^* from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size).
- c) Draw a detailed diagram of Secure Hash Code. [3+3+4]
- 4. a) Suppose Bob has an RSA Cryptosystem with modulus N and encryption exponent e_1 and Charlie has an RSA Cryptosystem with (the same) modulus N and encryption exponent e_2 . Suppose also that $gcd(e_1,e_2)=1$. Now consider the situation that aries if Alice encrypts the same plaintext m to send to both Bob and Charlie. Thus, she computes $c_1=m^{e_1} \mod N$ and $c_2=m^{e_2} \mod N$ and then she sends c_1 to Bob and c_2 to Charlie. Suppose Oscar intercepts c_1 and c_2 , and performs the the computations indicated in the following algorithm:

Algorithm: RSA Common Modulus Decryption (N, e_1, e_2, c_1, c_2) $b_1 = e_1^{-1} \mod e_2$ $b_2 = \frac{(b_1e_1 - 1)}{e_2} \mod e_1$ $x = c_1^{b_1}(c_2^{b_2})^{-1} \mod N$ return (x)

Prove that the value x computed in the above algorithm is in fact Alice's plaintext m. Thus, Oscar can decrypt the message Alice sent, even though the cryptosystem may be "secure".

- b) Describe RSA signature scheme. [6+4]
- a) Describe ElGamal cryptosystem on Elliptic curve points over Z_p
 b) Let E be the modular elliptic curve defined by y² = x³ + 3x + 3(mod 5).
 - (i) Find all points of E (including the point at infinity)
 - (ii) Suppose Alice wants to send the plaintext x=(4,2) to Bob. Let $\alpha=(3,2)$ (the primitive element) and Bob's private key be 3, so Bob's public key is $\beta=3\alpha$. Find the ciphertext while Alice chooses the random value k=2. [4+6]

