Control 4

Números k-emparejados

El objetivo de este control es desarrollar sistemáticamente un algoritmo iterativo para resolver eficientemente un problema.

El problema

Dos números se llaman k-emparejados cuando el valor absoluto de su diferencia es exactamente k (es decir, u y v están k-emparejados cuando |u-v|=k). Por ejemplo, 7 y 14 están 7-emparejados. Observa que todo número está 0-emparejado consigo mismo.

Diseña un algoritmo eficiente que, dado un vector <u>estrictamente creciente</u> de enteros int a[n] ($n \ge 0$) y un número $k \ge 0$, determine el número de parejas de números en a que están k-emparejados.

Trabajo a realizar

Para realizar el control se proporciona un archivo control4.cpp que contiene un programa que lee por la entrada estándar casos de prueba que consisten en dos líneas:

- En la primera aparecen el valor de *n* y el valor de *k*, por este orden
- En la segunda aparecen, en orden, todos los componentes del vector

La entrada termina con una línea que empieza por -1. Cada vez que lee un caso de prueba, el programa invoca a una función $num_k_{emparejados}$ que determina el número de parejas de números $k_{emparejados}$, y escribe dicho número por la salida estándar.

A continuación, se muestra un ejemplo de entrada procesable por este programa, y de salida producida (suponiendo una implementación adecuada de num_k_emparejados):

Entrada	Salida
5 3	2
1 4 5 6 8	1
4 2	3
1 4 5 6	
3 0	
1 2 3	
-1	

Tu trabajo consiste en:

- Especificar formalmente el algoritmo que determina la cantidad de parejas de números *kemparejados* en *a*, rellenando los huecos correspondientes en los comentarios que rodean a num_k_emparejados
- Diseñar **sistemáticamente** una implementación C++ para dicho algoritmo. Debes describir el diseño en el comentario habilitado a tal fin en el archivo proporcionado, siguiendo las reglas de diseño presentadas en clase.
- Completar la función num k emparejados a partir del código derivado.
- Entregar control4.cpp a través del juez en línea de la asignatura.

Importante:

- Únicamente se evaluarán aquellas entregas que superen satisfactoriamente los casos de prueba del juez.
- No modificar el código proporcionado. Únicamente deben responderse a los distintos apartados, en el interior de los comentarios, e implementar la función num_k_emparejados. Para escribir las fórmulas de la especificación en texto plano, pueden utilizarse los siguientes convenios:

Símbolo	Representación en texto plano
A	PARA_TODO
3	EXISTE
Σ	SUMA
П	PROD

Por su parte, la conectivas lógicas y operadores de relación no expresables directamente en texto plano, pueden escribirse utilizando la notación de C++.

Ejemplo:

 $\forall i : 0 \leq i < n : (\exists j : 0 \leq j < n : (((\Pi k : 0 \leq k < j : a[k]) = (\Sigma r : j \leq r < i : a[r])) \lor a[j] = 0))$

Escrita en texto plano:

PARATODO i: 0<=i<n: (EXISTE j: 0<=j<n:

 $(((PROD \ k:0<=k< j:a[k]) = (SUMA \ r:j<=r< i:a[r])) \lor a[j]=0))$