

NOVEMBER 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

		1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations - November 2002	9709, 8719	7

And American

_	de.			
	$512 \pm 2.576 \times \sqrt{\frac{37.4}{120}}$	MI		$\overline{x} \pm z \frac{s}{\sqrt{n}}$
	1	B1		Calculation of coffect form
	$49.8 < \mu < 52.6$	Al	3	Using $z = 2.576$ Or equivalent statement
	2 (i) 0.015n = 2.55	MI		For equation linking n , p and mean
	2 (1) 0.013n - 2.33 $n = 170$	Al	2	For correct answer
	(ii) mean = 210×0.015 (=3.15)			-
	$e^{-3.15}\left(1+3.15+\frac{3.15^2}{2}\right)$	Bl		For new mean
	P(0) + P(1) + P(2) = = 0.390 or 0.391	M1		For evaluating Poisson $P(0) + P(1) + P(2) + [P(3)]$
	SR use of Binomial scores B1 for final correct answer 0.389	Al	3	For correct answer
ŀ		Ml		For standardising equation = ± 1.807 with n or \sqrt{n}
	$z = \frac{64.3 - 65}{4.9/\sqrt{n}} = -1.807$	Ml		Solving for n
	n = 160	Al	3	For correct answer CWO.
	(:) H = 65 H 65	B1		Parti and H
	(ii) H_0 : $\mu = 65$ H_1 : $\mu < 65$ Critical Value +/-1.645	Bl		For H ₀ and H ₁ For +/-1.645 (or ft +/- 1.96 for two tail test)
	Significant growth decrease	M ₁		Comparing given statistic with their CV
		A1	4	Correct conclusion
	4 (i) H_0 : $\lambda = 4.8$ H_1 : $\lambda < 4.8$	BI		For both H ₀ and H ₁
	Under H_0 $P(0) = e^{-4.8}$ (=0.00823)	M 1		For evaluating P(0) and P(1) and P(2)
	P(1) = 0.0395	N # 1		For stating/showing that $P(0) + P(1) + P(2) > 10\%$
	P(2) = 0.0948 Critical region is $X = 0$ or 1	M1 A1		For critical region.
	Not enough evidence to say road sign has	2 8 2		Ç
	decreased accidents	A1	5	Correct conclusion
	SR If M0, M0 allow M1 for stating / showing			
	P(0) + P(1) < 10%	M1		For identifying correct outcome
	(ii) P(Type I error) = $P(0) + P(1)$ = 0.0477	Al	2	For correct answer
	5 (i) new mean = 5.6	Bl		For new mean
	$P(X+Y>3)=1-\{P(0)+P(1)+P(2)+P(3)\}$	Ml		For evaluating 1 – some Poisson probabilities
	$= 1 - \frac{e^{-5.6}(1+5.6 + \frac{5.6^2}{2!} + \frac{5.6^3}{3!})}{3!}$	Al		For correct expression
	- 1 "	Al	4	For correct answer
	= 0.809	-	-	
	$\overline{X} \sim N(2.5, \frac{2.5}{80})$			
	(ii) or equiv. memou using	M1		For using normal distribution with mean 2.5 / 200
	totals N(200, 200)	A1		For correct variance
	$P(X<2.4) = \Phi\left(\frac{2.4-2.5}{\sqrt{(2.5/80)}}\right) \text{ or } \Phi\left(\frac{192-200}{\sqrt{200}}\right)$	Ml		For standardising and using normal tables
	$P(X<2.4) = (\sqrt{(2.3/80)})$ or			
	ф (192-200)			
	$\sqrt{200}$			
	$=\Phi(-0.566)$	Al	4	For correct answer
	= 1 - 0.7143 = 0.286		-	

Page 2	Mark Scheme	Syllabus	Paper	ĺ
	A & AS Level Examinations – November 2002	9709, 8719	7	ĺ

$\int_{k}^{28} \frac{1}{1-dx} dx = 1$	M1		For equating to 1 and attempt to integrate
6 (i) $\frac{1}{20}x^2$	A 1		Correct integration
$k \int_{20}^{20} \frac{1}{x^2} dx = 1$ $k \left[\frac{-1}{x} \right]_{=1}$			
$k \left[\frac{1}{20} - \frac{1}{28} \right] = 1 \qquad \Rightarrow k = 70$	A 1	3	For given answer correctly obtained (no decimals seen).
$k \int_{-20}^{28} \frac{1}{x} dx$ (ii) $E(X) = {}^{20} = k[\ln x]$,	$\int_{-\infty}^{28} \frac{70}{x} dx$
(ii) $E(X) = {}^{20} = k[\ln x]$ = 23.6, 23.5, 70ln 1.4, 70ln (7/5)	M1 A1		For attempt to evaluate 20
= 25.0, 25.5, /Um 1.4, /Um (//5)		3	For correct integration For correct answer
(iii) $P(X < E(X)) = \int_{20}^{23.55} \frac{70}{x^2} dx$	A1 M1	3	For attempt to evaluate $\int_{x^2}^{70} dx$ between their
= 0.528 (accept 0.534 from 23.6)			
(0.521 23.5)	Al	2	limits (<28) For correct answer
(iv) Greater Prob in (iii) is > 0.5	B1ft B1ft	2	For correct statement For correct reason. Follow through from (iii) or calculating med. = 23.3
7 (i) W~N(17.6, 0.133(2))	Bl		For correct mean
$\Phi\left(\frac{18-17.6}{\sqrt{0.1332}}\right) \ (= 0.8633)$	B1 M1		For correct variance For standardising and using tables
$\Phi\left(\frac{17-17.6}{\sqrt{0.1332}}\right) = 1 - 0.9499 \ (= 0.0501)$	Ml		For standardising and using tables
$\sqrt{0.1332}$ = 1 - 0.9499 (= 0.0501) 0.8633 - 0.0501 = 0.813	Al	5	For correct answer
(ii) Wt diff $D \sim N(0, 0.0072)$	B1		For correct mean and variance
$P(D > 0.05) = 1 - \Phi\left(\frac{0.05}{\sqrt{0.0072}}\right) = 1 - \Phi(0.589)$	M1		For standardising and using tables
$P(D>0.05) = \frac{\sqrt{0.00725}}{0.278} = 1 - \Phi(0.589)$	Al		For 0.278 (could be implied)
P(D < 0.05) = 0.278	M1		For finding the other probability For correct answer
0.278 + 0.278 = 0.556	Al	5	r or correct answer