

<u>KIIT Deemed to be University</u> Online End Semester Examination(Autumn Semester-2021)

Subject Name & Code: HPC & CS3010 Applicable to Courses: B.Tech

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

<u>Time:30 Minutes</u> (7×2=14 Marks)

Question	Questi	Question	CO	Answer
No	on	<u> </u>	<u>Mapping</u>	Key
	Type			(For MCQ
	(MCQ/			Questions
	SAT)			only)
Q.No:1		ISA serves as an interface between:	CO1	В
		A) Hardware and User		
		B) Hardware and Software		
		C) Software and User		
		D) User and Compiler		
		Multiprocessing can be achived in a SISD	CO1	В
		computer by:		
		A) Keeping multiple PEs		
		B) Using pipelining		
		C) Making it to MIMD		
		D) Never possible		
		Which of the following is not included under	CO2	D
		the dimensions of ISA:		
		A) Memory addressing		
		B) Adressing mode		
		C) Control flow instructions		
		D) Structural hazard		
		Assume a pipeline processor has shared a	CO1	A
		single memory pipeline for data and		
		instruction. Whattype of hazard it may leads		
		to:		
		A) Structural Hazard		
		B) Data Hazard		
		C) Control Hazard		
0.37		D) Instruction Hazard	G0.	
<u>Q.No:2</u>		A 4 stage pipeline has stage delays as 150,	CO2	С
		120, 160,140 ns respectively. There is a		
		latch delay of 5ns each. Assuming constant		
		clock rate, the total time taken to process		
		1000 data items on this pipeline will be		
		Α) 120.5 μs		

	Β) 160.5 μs		
	C) 165.5 µs		
	D) 190 μs		
	A 4 stage pipeline has stage delays as 300, 240, 320,280 ns respectively. There is a latch delay of 10 ns each. Assuming constant clock rate, the total time taken to process 1000 data items on this pipeline will be A)241.5 μs	CO2	В
	B)331 μs C)298 μs D)340 μs		
	A 4 stage pipeline has stage delays as 150, 120, 160,140 ns respectively. There is a latch delay of 5ns each. What is the speedup ratio? A) 3.45 B) 4.25 C) 2.8 D) 4.5	CO2	A
	A 4 stage pipeline has stage delays as 300, 240, 320,280 ns respectively. There is a latch delay of 10 ns each. What is the speedup ratio? A) 3.45 B) 4.25 C) 2.8 D) 4.5	CO2	A
Q.No:3	Suppose a program takes 1 billion instructions to execute on a processor running at 2 GHz. Suppose also that 60% of the instructions execute in 3 clock cycles, 20% execute in 4 clock cycles, and 20% execute in 5 clock cycles. What is the execution time for the program or task? A) 1.25 sec B) 1.8 sec C) 2.15 sec D) 3.25 sec	CO1	В
	Suppose a program takes 1 billion instructions to execute on a processor running at 2 GHz. Suppose also that 50% of the instructions execute in 4 clock cycles, 30% execute in 6 clock cycles, and 20% execute in 8 clock cycles. What is the execution time for the program or task? A) 2.7 sec B) 3.6 sec C) 3.8 sec	CO1	A

	D) 4.5 sec		
	<i>D)</i> 1.3 300		
	A 7 stage pipeline separated by a clock 6ns along with a latch delay of 1ns. If the non-pipeline clock is also having the same duration and the pipeline efficiency is 50% then calculate the speedup factor. A) 2 B) 4 C) 6 D) 3	CO1	D
	We have 2 designs D1 and D2 for a pipeline processor. D1 has 6 stage pipeline with execution time of 6 ns, 5 ns, 4 ns, 7 ns and 3 ns. While the design D2 has 8 pipeline stages each with 5 ns execution time. How much time can be saved using design D2 over design D1 for executing 100 instructions? A) 300 ns B) 270 na C) 200 ns D) 340 ns	CO1	С
Q.No:4	A memory system has a L1 cache, L2 cache and main memory. If the hit rate of L1 cache is 90% & the hit rate of L2 is 95%. Find out average memory access time, if it takes 10 cycles to access L1 cache, 20 cycles to access L2 cache and 100 cycles to access main memory? A) 14.5 B) 13.5 C) 12.5 D) 11.5	CO4	С
	A memory system has a L1 cache, L2 cache and main & memory. If the hit rate of L1 cache is 85% & the hit rate of L2 is 90%. Find out average memory access time, if it takes 5 cycles to access L1 cache, 15 cycles to access L2 cache and 80 cycles to access main memory? A) 8.45 B) 10.25 C) 12.5 D) 13.75	CO4	A
	The size of cache memory is 2 MB and main memory size is 512 MB X 32. Each block of cache memory contains 64 words. A 2-way set associative mapping is used. What is the address size of TAG, Block and Word Under Block.	CO4	С

A) 8, 10, 11		
The size of cache memory is 4 MB and main memory size is 2 GB X 32. Each block of cache memory contains 256 words. A 2-way	CO4	D
set associative mapping is used. What is the address size of TAG, Block and Word Under Block. A) 14, 9, 8 B) 12, 10, 9 C) 9, 10, 12 D) 9, 14, 8		
	002	
parallelism? A) Super scalar B) Super pipeline C) VLIW	CO3	С
	CO2	D
of: A) Complex logic circuit	COS	D
In which stage of the Tomasulo approach,	CO3	A
A) Issue Stage		
B) Read operand Stage		
C) Execution Stage		
D) Write result stage		
The instuction execution sequence ,that	CO3	C
'		
1 '		
D) ordered buffer		
If the MAR size is 31 bits and the MDR size is 32 bits, what is the size of RAM?	CO6	A
A) 2GB X 32 B) 4GB X 64 C) 8GB X 64 D) 4GB X 32		
If the MAR size is 32 bits and the MDR size is 64 bits, what is the size of RAM?	CO6	В
A) 2GB X 32 B) 4GB X 64 C) 8GB X 64		
	B) 6, 12, 11 C) 8, 15, 6 D) 15, 6, 8 The size of cache memory is 4 MB and main memory size is 2 GB X 32. Each block of cache memory contains 256 words. A 2-way set associative mapping is used. What is the address size of TAG, Block and Word Under Block. A) 14, 9, 8 B) 12, 10, 9 C) 9, 10, 12 D) 9, 14, 8 In which architecture compiler finds parallelism? A) Super scalar B) Super pipeline C) VLIW D) CISC A simpler VLIW processor does not require of: A) Complex logic circuit B) SSD slot C) Computational register D) Scheduling hardware In which stage of the Tomasulo approach, the output dependency has been resolved. A) Issue Stage B) Read operand Stage C) Execution Stage D) Write result stage The instruction execution sequence, that holds the instruction result known as A) Data buffer B) control buffer C) reorder buffer D) ordered buffer If the MAR size is 31 bits and the MDR size is 32 bits, what is the size of RAM? A) 2GB X 32 B) 4GB X 64 C) 8GB X 32 If the MAR size is 32 bits and the MDR size is 64 bits, what is the size of RAM? A) 2GB X 32 If the MAR size is 32 bits and the MDR size is 64 bits, what is the size of RAM?	B) 6, 12, 11 C) 8, 15, 6 D) 15, 6, 8 The size of cache memory is 4 MB and main memory size is 2 GB X 32. Each block of cache memory contains 256 words. A 2-way set associative mapping is used. What is the address size of TAG, Block and Word Under Block. A) 14, 9, 8 B) 12, 10, 9 C) 9, 10, 12 D) 9, 14, 8 In which architecture compiler finds parallelism? A) Super scalar B) Super pipeline C) VLIW D) CISC A simpler VLIW processor does not require of: A) Complex logic circuit B) SSD slot C) Computational register D) Scheduling hardware In which stage of the Tomasulo approach, the output dependency has been resolved. A) Issue Stage B) Read operand Stage C) Execution Stage D) Write result stage The instruction execution sequence ,that holds the instruction result known as A) Data buffer B) control buffer C) reorder buffer D) ordered buffer If the MAR size is 31 bits and the MDR size is 32 bits, what is the size of RAM? A) 2GB X 32 B) 4GB X 64 C) 8GB X 64 C) 8GB X 64 D) 4GB X 32 If the MAR size is 32 bits and the MDR size is 64 bits, what is the size of RAM? A) 2GB X 32

	D) 4GB X 32		
	If the MAR size is 33 bits and the MDR size is 64 bits, what is the size of RAM?	CO6	С
	A) 2GB X 32		
	B) 4GB X 64		
	C) 8GB X 64		
	D) 4GB X 32 If the MAR size is 34 bits and the MDR size	CO(Λ
		CO6	A
	is 64 bits, what is the size of RAM?		
	A) 16GB X 64		
	B) 8 GB X 32		
	C) 8 GB X 64		
O No.	D) 16GB X 32 UMA and NUMA are two different	CO5	В
Q.No:7	architecture on the basis of:	COS	D
	A) The Control Unit is used D) The Primary Moment is shared		
	B) The Primary Memory is shared		
	C) The Connection Network D) The ISA		
	Which of the following statement is true	CO5	В
	about distributed shared memory	003	В
	architecture		
	A) DSM multiprocessor are UMA		
	B) DSM Multiprocessor are NUMA		
	C) The communication between PEs happen		
	through memory.		
	D) The communication cost is low in case		
	of DSM		
	New topology that could reduce the no of	CO5	В
	switches through which packets must travel,		
	referred to as		
	A) Crossbar Switch		
	B) Hope Coint		
	C) Multi layer Switch		
	D) Network		
	A linear array is formed in each dimension	CO5	C
	by all the nodes, in the		
	A) Bus Topology		
	B) Ring Topology		
	C) Mesh topology		
	D) Torus Topology		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes

(3×12=36 Marks)

Question No	Question	CO
		<u>Map</u>
		<u>ping</u> (Eac
		<u>h</u>
		<u>ques</u> tion
		shou
		ld be
		from the
		same
		(CO(s))
Q.No:8	I)State and explain Amdahl's law and discusses its various aspects?	CO1
	II)Suppose in a graphics processor, the 'Floating Point Square Root' (FPSQR) is responsible for 40% of the total execution time. One proposal to enhance the FPSQR hardware & speed up this operation by a factor of 30. The other alternative is to make all floating point instructions in the graphics processor run faster by a factor of 2.4; floating point operations are responsible for 50% of the execution time for the application. Compare the speed up for both the design alternatives.	CO1
	What is Instruction Set Architecture?	CO1
	II) What is its significance in designing a computer system?	CO1
	III) What are the different classes of ISA?	CO1
	I) Derive the overall speed up gained by Amdahl's law.	CO1
	II) Assume that we make an enhancement to a computer that improves some mode of execution by a factor of 30. Enhanced mode is used 70% of the time. Measured as a percentage of the execution time when the enhanced mode is in use. Recall that Amdahl's law depends on the fraction of the original unenhanced execution time that could make use of enhanced mode. What is the speed up we have obtained from the fast mode? What percentage of original the original execution timehas been converted to fast mode?	CO1
Q.No:9	I) Discuss Flynn's classification of multiprocessor architecture.	CO5
	II) Consider the following sequence of instructions:	
	Add R1, R2, R3	

	with proper diagrammatic representation. II) Find out the total no of clock cycles required to execute the following instructions without and with operand forwarding? LD R ₁ , 10(R ₂) ID R ₁ , 10(R ₂) DSUB R ₃ ,R ₁ ,#20 SD R ₅ , 0(R ₂) DADDIU R ₂ ,R ₃ ,#4 DSUB R ₅ ,R ₃ ,R ₂ I) What are the different types of hazards that occur in a pipeline? Explain how the data forwarding techniques is useful in reducing the data hazard. II) A five stage linear pipeline processor has IF, ID, EXE, MEM, WB. The IF, ID, WB stages takes 1 clock cycles each for any instruction. The execution of different instructions takes more than ideal time as given: 2 clock cycle for an ADD instruction, 2 clock cycles for SUB instruction, 4 clock cycles for MUL instructions, 6 clock cycles for DIV instructions and 2 clock cycles for LOAD and STORE instruction respectively. Consider the following instructions:-ADD R ₄ , R ₁ , R ₂ STORE R ₃ , (04)R ₂ SB R ₅ , R ₃ , R ₂ LOAD R ₈ , (02)R ₅ DIV R ₈ , R ₇ , R ₄ MUL R ₃ , R ₈ , R ₂ Draw the space time diagram for the above sequence of instructions and find out total number of clock cycles required to complete their execution .	CO2 CO2
Q.No:10	I) Discuss MIPS architecture. Explain Data Path in MIPS architecture in general and represent the data path for branch instruction with proper diagram in perticular?	CO5

	II) Explain loop unrolling and perform loop unrolling for the following code fragment represented in high level language- For (i=0;I<=100; i++) {	CO3 CO4
	I) Draw and explain different operational steps execute instructions with tomasulo approach to achieve higher ILP. II) Compare the AMAT of the following two multi level cache architecture. Split cache: 16 KB instructions and 16 KB data with miss rate of 2.5% and 8.6% respectively. Unified cache: 32 KB (instructions + data)with miss rate of 3.8%. The miss penalty is 50 cycles. The hit time is 1 cycle in case of split cache and 2 in case of unified cache because of LOAD and Store instructions. Where as 80% of the total memory accesses for instructions and 20% of the total memory accesses are for data.	CO3
Q.No:11	I) What is the necessity of cache memory in a computer system? Discuss multilevel cache with proper	CO4

architectural diagram. Find out the average memory access time. II)What are the different cache optimization techniques, discuss in details?	CO6
I) Differentiate between message passing models and distributed shared memory architecture? Explain cache coherence in symmetric shared memory multiprocessor with an example. II)Draw and explain both static and dynamic CUBE Interconnection Network by taking 8 nodes in to	CO5
account? I) Explain the architecture of VLIW processors with proper diagram and discuss the advantages and disadvantages? II) What is perfect shuffle and invert perfect shuffle? Draw and explain a 8×8 Omega Network in details?	CO5