

本章包含重要的安全信息,在机器人第一次通电前,任何个人或者机构在使用设备之前必须阅读并理解这些信息。有任何相关使用的疑问都可以联系我们support@agilex.ai必须遵守并执行本手册其他章节中的所有组装说明和指南,这一点非常重要。应特别注意与警告标志相关的文本。

△ 重要安全信息 Safety Information

本手册中的信息不包含设计、安装和操作一个完整的机器人应用,也不包含所有可能对这一完整的系统的安全造成影响的周边设备。 该完整的系统的设计和使用需符合该机器人安装所在国的标准和规范中确立的安全要求。

HUNTERSE的集成商和终端客户有责任确保遵循相关国家的切实可行的法律法规,确保完整的机器人应用实例中不存在任何重大危险。这包括但不限于以下内容:

1.有效性和责任

- ,对完整的机器人系统做一个风险评估。
- 将风险评估定义的其他机械的附加安全设备连接在一起。
- 确认整个机器人系统的外围设备包括软件和硬件系统的设计和安装准确无误。
- 本机器人不具备一个完整的自主移动机器人具备的自动防撞、防跌落、生物接近预警等相关安全功能但不局限于上述描述,
- 相关功能需要集成商和终端客户遵循相关规定和切实可行的法律法规进行安全评估,确保开发完成的机器人在实际应用中不存在任何重大危险和安全隐患。
- 收集技术文件中的所有的文档:包括风险评估和本手册。

2.环境与安全

- 首次使用,请先仔细阅读本手册,了解基本操作内容与操作 规范。严禁载人
- 遥控操作,选择相对空旷区域使用,车上本身是不带任何自动 避障传感器。HUNTER SE运动时请保持2米以上安全距离 在-10℃~45℃的环境温度中使用。
- HUNTERSE防水、防尘能力为IP22。

3. 检查

- 确保各设备的电量充足。
- 确保车辆无明显异常。
- 。检查遥控器的电池电量是否充足。
- 。使用时确保急停开关已经被释放。

4.操作

- _ 保证使用时周围区域相对空旷。
- 在视距内遥控控制。
- HUNTERSE最大的载重为50KG,在使用时,确保有效载 荷不超过50KG。
- 安装外部扩展时,确认扩展的质心位置,确保在小车中心。当设备低电量报警时请及时充电。
- 当设备出现异常时,请立即停止使用,避免造成二次伤害。
- 当设备出现异常时,请联系相关技术人员,请勿 擅 外理
- 。请根据设备的IP防护等级在满足防护等级要求的 环境中使用。
- 。充电时,确保周围环境温度大于0℃。

5.保养

- 、轮胎气压定期检查,轮胎气压保持在0.8BAR左右。
- 轮胎磨损严重或者爆胎,请及时更换。
- 如果长时间不使用电池,需要按照2到3个月对电池进行周期性充电。

目录

1 HUNTER SE简介 Introduction	1	3.3.2CAN线的连接	13
1.1产品列表	1	3.3.3 CAN指令控制的实现	13
1.2性能参数	1	3.5 HUNTERSE	
1.3开发所需	1	ROS Package使用示例	14
2 基本介绍 The Basics	2	4 注意事项 Attention	
2.1 状态指示	3	4.1 电池注意事项	16
2.2 电气接口说明	3		16
2.2.1尾部电气接口说明	3	4.2 使用环境注意事项	16
2.3 遥控说明	4	4.3 电气外部扩展注意事项	16
2.4控制指令与运动说明	5	4.4 其他注意事项	
3 使用与开发 Getting Started		5常见问题与解决 Q&A	16
3.1 使用与操作	5		
3.2 充电和电池更换	5	6 产品尺寸 Product	17
3.3 开发	6	Dimensions 6.1 产品外形尺寸说	17
3.3.1CAN接口协议	6	明图	18
		6.2 顶部扩张支架尺寸说明图	

1 HUNTER SE 简介 Introduction

HUNTERSE是一款阿克曼模型可编程UGV(UNMANNED GROUND VEHICLE),它是一款采用阿克曼转向设计的底盘,具有和汽车类似的特征,在普通水泥、柏油路上优势明显。相对于四轮差速底盘,HUNTERSE具有更高的载重能力,能达到更高的运动速度,同时对结构和轮胎的磨损更小,适合长时间的工作。HUNTERSE虽不是为全地形设计,但是装了摇摆臂悬挂,能够通过减速带等常见障碍物。立体相机、激光雷达、GPS、IMU、机械手等设备可选择加装至HUNTERSE作为扩展应用。HUNTERSE可被应用到无人巡检、安防、科研、勘探、物流等领域。

1.1 产品列表

HUNTER SE 机器人本体	x1
电池充电器(AC 220V)	x1
航空話公头 (4Pin)	x1
FS遥控器(选配)	x1
USB转CAN通讯模块	x1

1.2性能参数

	长x宽x高(mm)	820X 640 X 310
	轴距 (mm	550
	前/后径 (mm)	520
	车体重量 (Kg)	42
	电池类型	锂电池24V 30Ah/60Ah
机械参数	动力驱动电机	直流无刷 2 X 350W
	转向驱动电机	直流无刷150W
	减速箱	1:4
	转向	前轮阿克曼
	编码器	磁编1000
	最大内轮转向角度	22°
	安全装备	防撞梁
	转向精度	0.5°
	空载最高车速 (m/s)	4.8
	最小转弯半径 (m)	1.9
性能参数	最大爬坡能力	20°
	最小离地间隙 (mm)	120 (通过角45°)
	工作温度	-10~45C°
	载重	50kg遥控
控制参数	控制模式	遥控控制 指令控制模式
7年7月多数	遥控器	2.4G / 极限距离200m
	通讯接口	CAN

1

1.3 开发所需

HUNTERSE出厂时可选配FS遥控器,用户可以通过遥控器控制HUNTERSE移动机器人底盘,完成移动和转向控制操作;HUNTER SE配备了CAN,用户可以通过CAN接口进行二次开发。

2 基本介绍 The Basics

本部分内容将会对HUNTERSE移动机器人底盘作一个基本的介绍,便于用户和开发者对于HUNTERSE底盘有一个基本的认识。如下图2.1与2.2所示,为整个移动机器人底盘的概览视图。

1.型材支架 2.顶部舱室面板

- 3.急停按钮
- 4.转向机构

图 2.1前部概览视图

1.急停开关 2.尾部电气面板 3.电池更换面板

图 2.2 尾部概览视图

HUNTERSE整体上采用了模块化和智能化的设计理念,在动力模块上采用真空胶轮加上动力强劲的直流无刷伺服电机,使得HUNTERSE机器人底盘开发平台具有很强的通过性,搭配上前轮桥式悬挂,使得HUNTERSE也能轻松越过障碍物。车体两侧安装了急停开关,使得在发生紧急情况时可快速进行紧急停车操作,避免发生安全事故,降低或避免不必要的损失。在HUNTERSE的尾部配置了开放的电气接口和通讯接口,方便客户进行二次开发,电气接口在设计选型上采用了航空防水接插件,一方面利于用户的扩展和使用,另外一方面使得机器人平台可以在一些严苛的环境中使用。

2.1 状态指示

用户可以通过安装在HUNTERSE上的电压表、蜂鸣器以及灯光来确定车体的状态。具体可以参考

7.57 3.7.10-10-71-71-71	
当前电压	当前电池电压可通过尾部电气面板中的电压表查看
低电压报警	当电池电压低于24.5V,车体会发出"滴-滴-滴"刺耳的声音进行提示。当检测到电池电压低于24.5V,HUNTERSE为了防止电池损坏,会主动切断外部扩展供电和驱动器供电,此时底盘将无法进行运动控制和接受外部指令控制。

上电显示

尾部电压表亮起

表格 2.1 车体状态说明表

2.2电气接口说明

2.2.1尾部电气接口说明

尾部的扩展接口如图2.6所示,其中Q1为充电接口;Q2为电源开关;Q3电源显示交互;Q4为CAN和24V电源扩展接口

关于Q4的具体引脚定义如图2.7所示

1	电源	VCC	电源正,电压范围24.5~26.8v, 最大电流10A,
2	电源	GND	电源负
3	CAN	CAN_H	CAN总线高
4	CAN	CAN_L	CAN总线低

图 2.7 尾部航空接口引脚说明图

2.3 谣控说明

富斯遥控器为HUNTERSE产品选配配件,客户可根据实际需求选配,使用遥控器可以轻松控制HUNTERSE通用机器人底盘,在本产品中我们采用左手油门的设计。其定义及其功能可参考图2.8。

按键的功能定义为: SWC、SWD、SWA 暂时未被启用,其中SWB为控制模式选择拨杆,拨至最上方为指令控制模式,拨至中间为遥控控制模式; S1为油门按钮,控制HUNTER 2.0前进和后退; S2控制前轮的转向, POWER为电源按钮,同时按住即可开机。

SWE SHE SECOND

Bunker: 车型 Vol: 电池电压 Car: 底盘状态 Batt: 底盘电量百分比 P: 驻车 Remoter: 遥控器电量 Fault Code: 错误信息 (参考故障信息说明表)

2.4控制指令与运动说明

我们将地面移动车辆根据ISO 8855标准建立如图2.9的坐标参考系。

图2.9车身参考系示意图

图2.8 富斯谣控器按键示意图

正如2.9所展示的,HUNTERSE 车体与建立的参考坐标系X轴为平行状态。在遥控器控制模式下,遥控器摇杆S1往前推动则为往X正方向运动,S1往后推动则往X负方向运动,S1推动至最大值时,往X正方向运动速度最大,S1推动至最小值时,往X方向负方向运动速度最大;遥控器摇杆S2左右控制车体前轮的转向,S2往左推,小车往左转向,推至最大,此时转向角度最大。S2往右推,小车往右转,推至最大,此时右转向角度最大。在控制指令模式下,线速度的正值表示往X轴正方向运动,线速度的负值表示往X轴负方向运动;转向角度为内轮转向角度。

3 使用与开发 Getting Started

本部分主要介绍HUNTERSE平台的基本操作与使用,介绍如何通过外部CAN口,通过CAN总线协议来对HUNTERSE进行二次开发。

3.1 使用与操作

启动操作基本操作流程如下:

- ◆检查HUNTERSE状态。检查HUNTERSE是否有明显异常;如有,请联系售后支持;
- 检查急停开关状态。确认急停按钮处于释放状态;
- ●初次使用时确保尾部电气面板中Q2(旋钮开关)竖直状态, 此时HUNTERSE处于断电状态,
- ●把旋钮开关旋到水平状态(Q2),正常情况下,电压表正常显示电池电压;
- ◆检查电池电压,正常电压范围为24.5~26.8V,如有"滴-滴-滴-." / 连续蜂鸣器声音,表示电池电压过低,请及时充电。

把旋钮开关旋到竖直即可切断电源。

• 按下HUNTERSE车体侧方的急停开关即可。

●正常启动HUNTERSE移动机器人底盘后,启动遥控器,将SWB为遥控控制模式,即可通过遥控器控制HUNTERSE平台运动。

3.2 充电和电池更换

HUNTERSE产品默认随车配备一个10A的充电器,可满足客户的充电需求。正常充电时,底盘没有指示灯说明。具体说明请看充电器指示灯说明。

 确保HUNTER SE底盘处于停机断电状态。充电前请确认尾部电气 控制台中电源开关处于关闭状态; 注意: 当前电池从24.5V充满电状态大约需要3

小时; 电池充满电压约为26.8V

- 将充电器的插头插入车尾电气控制面板Q1充电界面中;
- 将充电器连接电源,将充电器上开关打开,即可进入充电状态。
- 关闭HUNTERSE底盘的电源开关
- 按下电池更换面板上的按钮锁, 打开电池面板
- 将当前连接的电池接口拔开,分别为(XT60电源接头)
- 取出电池,注意此过程电池禁止撞击和碰撞把
- 将要使用的电池装上, 然后把接口插回关闭
- 电源更换面板,按下锁扣

3.3开发

HUNTER SE产品针对用户的开发提供了CAN接口对车体进行指令控制。

3.3.1CAN接口协议

HUNTER SE产品中CAN通信标准采用的是CAN2.0B标准,通讯波特率为500K,报文格式采用MOTOROLA格式。通过外部CAN总线接口可以控制底盘的移动的线速度以及转向角度;HUNTER SE会实时反馈当前的运动状态信息以及HUNTER底盘的状态信息等。系统状态回馈指令包含了当前车体状态回馈、控制模式状态回馈、电池电压回馈以及故障回馈,协议内容如表3.1所示。

表格 3.1 HUNTERSE底盘系统状态回馈帧

发送节点	接收节点	ID	周期 (ms)	接收超时(ms)	
线控底盘	决策控制单元	0x211	100ms	无	
数据长度	0x08				
位置	功能	数据类型	说明		
byte [0]	byte [0] 当前车体状态		0x00 系统 0x01 紧急停 0x02 系统	车模式	
byte [1]	模式控制	unsigned int8	0x00 待机 0x01 CAN指 0x02遥控	令控制模式	
byte [2] byte [3]	电池电压高八位 电池电压低八位	unsigned int16	实际电压X 10 (精确到0.1V)	
byte [4] byte [5]	故障信息高八位 故障信息低八位	unsigned int16	详见备注[故障	信息说明]	
byte [6]	保留	-	0x00)	
byte [7]	计数校验 (count)	unsigned int8	0~255循环计数,每发送—条指令计数加一次		
字节	位		含义		
	bit [0]		预留,默认0		
	bit [1]	预留,默认0			
	bit [2]	遥控器失联保护 (0: 无故障 1: 故障)			
byte [4]	bit [3]	预留,默认0			
Dyte [1]	bit [4]	上层通讯连接 (0: 无故障 1: 故障)			
	bit [5]	预留,默认0			
	bit [6]	驱动器	大态错误 (O: 无故障 1:故障)		
	bit [7]		预留,默认0		
	bit [0]	电池欠	玉故障 (0:无故障 1: 故障)		
	bit [1]	转向零点说	设置错误 (0: 无故障 1: 故障)		
	bit [2]		预留,默认0		
byte [5]	bit [3]	转向电机驱动	1器通讯故障 (0:无故障 1: 故障)		
Dyte [J]	bit [4]	后右电机驱动	」器通讯故障 (0:无故障 1: 故障)		
	bit [5]	后左电机驱动			
	bit [6]	电机过温	故障 (0: 无故障 1: 故障)		
	bit [7]	驱动器过流	故障 (0: 无故障1: 故障)		

运动控制回馈帧指令包含了当前车体的运动线速度、转向角度回馈,协议具体内容如表3.2所示。

表格 3.2 运动控制回馈帧

指令名称		运动控制回	馈指令		
发送节点	接收节点	ID	周期 (ms)	接收超时(ms)	
线控底盘	决策控制单元	0x221	20ms	无	
数据长度	0x08				
位置	功能	数据类型	说	明	
byte [0]	移动速度高八位	-:			
byte [1]	移动速度低八位	signed int16	头际速度X 1000 ((精确到0.001m/s)	
byte [2]	保留		0x	00	
byte [3]	保留	-	0x00		
byte [4]	保留	-	0x00		
byte [5]	保留	-	0x	00	
byte [6]	转角高八位	signed int16	实际内转角X100	0 (単位0.001rad)	
byte [7]	转角低八位	-	>454 51 (Vis. 1000 (#FE0.001100)		

运动控制帧包含了线速度控制指令、前轮内转角控制指令,其具体协议内容如表3.3所示。

表格 3.3 运动控制指令控制帧

发送节点	接收节点	ID	周期 (ms)	接收超时(ms)
决策控制单元	底盘节点	0x111	20ms	500ms
数据长度	0x08			
位置	功能	数据类型	ì	兑明
byte [0]	线速度高八位	signed int16	左体行进速度 · 单位	立mm/s(有效值+ -4800)
byte [1]	线速度低八位		一种门近还皮, 一位	Z/5(F)XIE . 1000)
byte [2]	保留	_	0x00	
byte [3]	保留	_	0x00	
byte [4]	保留	_	()x00
byte [5]	保留	_	()x00
byte [6] byte [7]	转角高八位 转角低八位	signed int16	转向内转角角度单立 0.001rad (有效值+-	

PS: 在CAN指令模式下,需要保证OX111指令帧以小于500MS的周期(建议周期20MS)发送,否则HUNTER SE会判定为控制信号心跳丢失而进入报错(0X211反馈上层通讯失联),系统报错后会进入待机模式,若此时0X111控制帧恢复正常发送周期,上层通讯失联错误可自动清除,同时控制模式恢复为CAN控制模式。

模式设定帧用于设定HUNTERSE的控制接口,协议具体内容如表3.4所示

表格3.4控制模式设定指令。

发送节点	接收节点	ID	周期(ms)	接收超时(ms)
决策控制单元	底盘节点	0x421	无	无
数据长度	0x01			
位置	功能	数据类型	说	明
			0x00 待	机模式
byte [0]	控制模式	unsigned int8	0x01 CAN	指令模式上
			电默认进入	〈待机模式

控制模式说明:HUNTERSE在开机上电,遥控器未迫接的情况下,控制模式默认是待机模式,此时底盘只接收控制模式指令,其他指令不做响应,要使用CAN进行控制需要先切换到CAN指令模式。若打开遥控器,遥控器具有最高权限,可以屏蔽指令的控制,切换控制模式。

状态置位帧用于清除系统错误,协议内容如表3.5所示,

表格3.5状态置位帧

发送节点	接收节点	ID	周期(ms)	接收超时(ms)
决策控制单元	底盘节点	0x441	无	无
数据长度	0x01			
位置	功能	数据类型	说	明
byte [0]	错误清除指令	unsigned int8	0x04 清除转向e 0x05 清除后右e	全部非严重故障 电机驱动器通讯故障 电机驱动器通讯故障 电机驱动器通讯故障

[注]示例数据,以下数据仅供测试使用

1.小车以0.15m/S的速度前进

	byte [0]	byte [1]	byte [2]	byte [3]	byte [4]	byte [5]	byte [6]	byte [7]	
	0x00	0x96	0x00	0x00	0x00	0x00	0x00	0x00	
2	2. 小车转向0.2iad								
	byte [0]	byte [1]	byte [2]	byte [3]	byte [4]	byte [5]	byte [6]	byte [7]	
	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0xC8	

除了底盘的状态信息会进行反馈以外,底盘反馈的信息还包括电机的电流信息、编码器以及温度信息。下面的帧反馈是电机 的电流信息、编码器信息以及电机温度信息:

在底盘中三个电机电机编号对应为:转向1号,右后轮2号,左后轮3号

电机转速电流位置信息反馈如表3.6、3.7所示。

表格3.6电机驱动器高速信息反馈帧

发送节点	接收节点	ID	周期 (ms)	接收超时(ms)	
线控底盘	决策控制单元	0x251~0x253	20ms	无	
数据长度	0x08				
位置	功能	数据类型	说明	月	
byte [0]	电机转速高八位	signed int16	电机当前转速 单位RPM		
byte [1]	电机转速低八位	signed meto	ANIMHAY + IAM M		
byte [2]	电机电流高八位	i li ue	电机当前电流	京 单位0.1A	
byte [3]	电机电流低八位	signed int16	.000=189-00	10 	
byte [4]					
byte [5]					
byte [6]	保留		0×00		
byte [7]					

表格3.7电机驱动器低速信息反馈帧

发送节点	接收节点	ID	周期 (ms) 接收超时(ms)	
线控底盘	决策控制单元	0x261~0x263	100ms	无
数据长度	0x08			
位置	功能	数据类型	说明	
byte [0]	驱动器电压高八位	unsigned int16	当前驱动器电压 单位0.1V	
byte [1]	驱动器电压低八位	J .		
byte [2]	驱动器温度高八位		单位1℃	
byte [3]	驱动器温度低八位	signed int16		
byte [4]	电机温度	signed int8	单位1℃	
byte [5]	驱动器状态	unsigned int8	详见[驱动器控制状态]	
byte [6]	保留	_	0x00	
byte [7]	保留	_	0x00	

驱动器状态信息具体内容如表3.8所示。

表格3.8驱动器状态说明

字节	位	说明
	bit [0]	电源电压是否过低 (0: 正常1: 过低)
	bit [1]	电机是否过温 (0: 正常1: 过温)
	bit [2]	驱动器是否过流 (0:正常1:过流)
	bit [3]	驱动器是否过温 (0: 正常1: 过温)
byte [5]	bit [4]	传感器状态 (0:正常1:异常)
	bit [5]	驱动器错误状态 (0:正常1:错误
	bit [6]	驱动器使能状态 (0: 使能1: 失能)
	bit [7]	保留

转向零点设定和反馈指令用于校准零位,协议具体内容如表3.10、3.11所示。

表格3.10转向零点设定指令

发送节点	接收节点	ID	周期(ms)	接收超时(ms)	
决策控制单元	底盘节点	0x432	无	无	
数据长度	0x01				
位置	功能	数据类型	说明		
byte [0]	零点偏移值高八位	signed int16	零点偏移值脉冲数参		
byte [1]	零点偏移值低八位	Jighted lifeto	考值22000+-10000		

表格3.11转向零点设定反馈指令

发送节点	接收节点	ID	周期 (ms)	接收超时(ms)
底盘节点	决策控制单元	0x43B	无	无
数据长度	0x01			
位置	功能	数据类型	说明	
byte [0]	零点偏移值高八位	signed int16	超出可设置范围底盘 会使用默认值22000	
byte [1]	零点偏移值低八位	sig.i.ea iii.eio		

表格3.12转向零点查询指令

指令名称		转向零点查询指令		
发送节点	接收节点	ID	周期 (ms)	接收超时(ms)
决策控制单元	底盘节点	0x433	无	无
数据长度	0x01			
位置	功能	数据类型	说明	
byte [0]	查询当前零点偏移值	unsigned int8	固定值: 0×AA 查询成功返回0×43B	

3.3.2 CAN线的连接

HUNTER SE随车发货提供了一个航空插头公头如图3.2,线的定义可参考表3.2。

3.3.3 CAN指令控制的实现

正常启动HUNTERSE 移动机器人底盘,打开遥控器,然后将控制模式切换至指令控制,即将遥控器SWB模式选择拨至最上方,此时HUNTER SE底盘会接受来自CAN接口的指令,同时主机也可以通过CAN总线回馈的实时数据,解析当前底盘的状态,具体协议内容参考CAN通讯协议。

图 3.2 航空插头公头示意图

3.5 HUNTER2.0 ROS Package 使用示例

ROS提供一些标准操作系统服务,例如硬件抽象,底层设备控制,常用功能实现,进程间消息以及数据包管理。ROS是基于一种图状架构,从而不同节点的进程能接受,发布,聚合各种信息(例如传感,控制,状态,规划等等)。目前ROS主要支持UBUNTU。

开发准备

硬件准备

- CANlight can通讯模块 X1
- Thinkpad E470 笔记本电脑 X1
- AGILEX HUNTER SE 移动机器人底盘 X1
- AGILEX HUNTER SE配套遥控器FS-i6s X1
- ▲ AGILEX HUNTER SE 尾部航空插座 X1

使用示例环境说明

- Ubuntu 16.04 LTS (此为测试版本,在Ubuntu 18.04 LTS测试过)
- ROS Kinetic (后续版本亦测试过)
- Git

硬件连接与准备

- 将HUNTER SE 尾部插头CAN线引出,将CAN线中的CAN_H和CAN_L分别与CAN_TO_USB适配器相连;
- 打开HUNTER SE移动机器人底盘旋钮开关,检查来两侧的急停开关是否释放;
- 将CAN TO USB连接至笔记本的usb口。连接示意如图3.4所示。

图3.4CAN线连接示意图

ROS 安装和环境设置

安装具体可以参考http://wiki.ros.org/kinetic/Installation/Ubuntu

测试CANABLE硬件与CAN 通讯

设置CAN-TO-USB适配器

- 使能 gs_usb 内核模块\$ sudo modprobe gs usb
- 设置500k波特率和使能can-to-usb适配器 \$ sudo ip link set can0 up type can bitrate 500000
- 如果在前面的步骤中没有发生错误,您应该可以使用命令立即查看can设备
 - \$ ifconpg -a
- 安装并使用can-utils来测试硬件
- \$ sudo apt install can-utils
- 若此次can-to-usb已经和HUNTER SE机器人相连,且 小车已经开启的情况下,使用下列指令可以监听来自 HUNTERSE底盘的数据了
 - \$ candump can0
- 参考来源:

[1] https://github.com/agilexrobotics/agx_sdk [2]https://wiki.rdu.im/_pages/Notes/Embed- ded-System/Linux/can-bus-in-linux.html

AGILEX HUNTER SE ROS PACKAGE 下载与编译

- 下载ros 依赖包
 - \$ sudo apt install libasio-dev \$ sudo apt install ros-\$ROS_DISTRO-teleop-twistkeyboard
- 克隆编译hunter 2 ros源码
 - \$ cd ~/catkin ws/src
 - \$ git clone --recursive https://github.com/
 - agilexrobotics/ugv sdk.git
 - \$ git clone https://github.com/agilexrobotics/ hunter ros.git
 - \$ cd ..
 - \$ catkin make
 - 参考来源: https://github.com/agilexrobotics/hunter ros

启动ROS 节点

- 启动基础节点
- \$ roslaunch hunter_bringup hunter_robot_base.launch
- 启动键盘远程操作节点
- \$ roslaunch hunter_bringup hunter_teleop_key-board.launch

4 注意事项 Attention

本部分包含一些使用和开发HUNTER SE 应该注意的一些事项。

4.1电池注意事项

- HUNTERS E 产品出厂时电池并不是满电状态的,具体电池 电量可以通过HUNTER S E 底盘尾部电压显示表显示或者 CAN总线通信接口读取得到,充电时间以充电器亮绿色 指示 灯表示充电完毕,但是绿灯亮起后电池依然会以0.1A 的电流 缓慢充电,可以再充30分钟左右;
- 请不要在电池使用殆尽以后再进行充电,在HUNTER SE提示电量低的情况下请及时充电;
- 静态存放条件:存储的最佳温度为-10℃~45℃,电池在不使用的情况下存放,必须是2个月左右充放电一次,然后使电池处于满电压状态进行存放,请勿将电池放入火中,或对电池加热,请勿在高温下存储电池;
- 充电:必须使用配套的锂电池专用充电器进行充电,请勿在0℃以下给电池充电,请勿使用非原厂栖酒的电池、电源、充电器。
- HUNTER SE 仅支持我们提供的电池进行更换和使用,电池可单独充电。

4.2使用环境注意事项

- HUNTER SE工作温度为-10°C~45°C,请勿在温度低于-10°C、高于45°C环境中使用;
- HUNTER SE的使用环境的相对湿度要求是:最大80%, 最小30%;
- 请勿在存在腐蚀性、易燃性气体的环境或者靠近可燃性物质的环境中使用;
- 不要存在在加热器或者大型卷线电阻等发热体周围; 除
- HUNTER SE不具有防水功能,请勿在有雨、雪、积水的环境更用;
- 建议使用环境海拔高度不超过1000M;
- 。建议使用环境昼夜温差不超过25℃;

4.4其他注意事项

- 搬运以及设置作业时,请勿落下或者倒置;
- 非专业人员, 请不要私自拆卸。

4.3电气外部扩展注意事项

- 尾部扩展电源电流,插口不可大于24V10A,总功率不超过240W
- 当系统检测到电池电压低于安全电压以后,外部扩展设备会被主动切断,所以如果外部扩展设别涉及到重要数据的存储且无掉电保护,建议用户注意。

5 常见问题与解决 Q&A

- Q: HUNTERSE启动正常,使用遥控器控制车体不移动?
- A: 首先确定小车供电是否正常, 急停开关是否被释放; 然后确认遥控器的左侧上方模式选择开关选择的控制模式是否正确。

Q: HUNTERSE遥控控制正常,底盘状态、运动信息反馈正常,下发控制帧协议,车体控制模式无法切换,底盘不响应控制帧协议? A:正常情况下, HUNTERSE若可以通过遥控器控制正常情况下,说明底盘运动控制正常,可以接收到底盘的反馈帧,说明CAN扩展链路正常。请检查发送的CAN控制帧,看数据校验是否正确,控制模式中是否置为指令控制模式,可以通过底盘反馈的状态帧中错误位中校验错误标志的状态情况。

Q:HUNTERSE在运行中发出"滴-滴-滴..."的声音,该如何处理?

A: 若HUNTER SE发出连续的 "滴-滴-滴-滴..." 表明电池已经处于警报电压状态,请及时充电。

6 产品尺寸 Product Dimensions

6.1产品外形尺寸说明图

6.2顶部扩张支架尺寸说明图

松灵机器人 (东莞)有限公司 WWW.AGILEX.AI TEL:+86-769-22892150 MOBILE:+86-19925374409

