TBC-103

B. C. A. (H) (FIRST SEMESTER) MID SEMESTER EXAMINATION, Jan., 2023

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Time: 11/2 Hours

Maximum Marks: 50

- **Note:** (i) Answer all the questions by choosing any *one* of the sub-questions.
 - (ii) Each sub-question carries 10 marks.
- 1. (a) Define the following: (CO1)
 - (i) Composition of relation
 - (ii) Equivalence relation
 - (iii) Indegree and outdegree of a graph
 - (iv) Antisymmetric relation

OR

- (b) If R is an equivalence relation then show that R^{-1} is also an equivalence relation. (CO1)
- (a) If R is a relation defined on the set of natural numbers such that: (CO1)
 R = {(a, b) : a is divisible by b}
 then show that R is a partial order relation.

 OR
 - (b) Define the inverse of a relation. (CO1)
 A relation R is defined from a set A to B such that a > b where a ∈ A and b ∈ B and A = {2, 4, 6}, B = {1, 2, 3}
 Find the relation R and find R⁻¹.
- 3. (a) Define poset and draw the Hasse diagram of $(P(x), \subseteq)$ for $X = \{a, b, c\}$. (CO1)
 - (b) Define function and any two types of function with proper example. (CO1)

4. (a) Let $f: Z \rightarrow Z$ be function defined as f(x) = x + 5. Determine whether the function is invertible or not. If it is invertible, then find its inverse. (CO2)

OR

- (b) Let f(x) = x + 3, g(x) = x 4, h(x) = 2xthen find $f \circ x$ (x), $h \circ f$ (x) and $g \circ f \circ h(x)$. (CO2)
- 5. (a) What are recursively defined functions? Write the recursive definition of the function $f(x) = 2^x$ defined from the set of natural numbers (including 0) to the set of natural numbers. (CO2)

OR

(b) If R is the set of all real numbers, then discuss the type of function defined by $f: R \to R$ such that $f(x) = x^2 \ \forall x \in R$.

(CO2)