Common Derivatives

Name	Function	Derivative
Constant	c	0
Linear	x	1
	ax	a
Square	x^2	2x
Square Root	\sqrt{x}	$\frac{1}{2} \cdot x^{\frac{1}{2}}$
Exponential	e^x	e^x
	a^x	$\ln(a) a^x$
Logarithms	ln(x)	$\frac{1}{x}$
	$\log_a(x)$	$\frac{1}{x\ln(a)}$
Trigonometry	sin(x) cos(x) tan(x) cot(x)	cos(x) - sin(x) sec2(x) - csc2(x)
	sec(x)	$\sec(x)\tan(x)$

Special Derivative Rules

Derivative	Function	Rule
cf'	cf	Multiply by Constant
nx^{n-1}	x^n	Power Rule
f'+g'	f + g	Sum Rule
fg' + gf'	fg	Product Rule
$\frac{gf' - fg'}{g^2}$	$\frac{f}{g}$	Quotient Rule
$-\frac{f}{f^2}$	$\frac{1}{f}$	Reciprocal Rule
$(f'\circ g)\cdot g'$	$f \circ g$	Chain Rule (Notation 1)
$f'(g(x)) \cdot g'(x)$	f(g(x))	Chain Rule (Notation 2)

Blah

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(f+g) = f' + g'$$

$$\frac{d}{dx}(fg) = fg' + gf'$$