

PHYS 451 Special Topic CHAOS

Dr. Daugherity
Abilene Christian University

$$f(x) = \mu x(1-x), \qquad x_{i+1} = f(x_i)$$

$$x0 = 0.9, N=200$$

critical value mu=3.828427

critical value mu=3.828427

Bifurcation Diagram

Visualize dependence on μ . The algorithm is:

For each μ value:

- choose x_0
- ullet run N generations
- ullet plot only the last value x_N
- ullet repeat for many x_0 values

Systemically do this for many μ 's and you get a diagram that shows where system is periodic or chaotic.

Features to notice:

- ullet period doubling how a small change in μ causes number of outcomes to double
- onset of chaos when period doubles infinitely fast
- fractals from self-similar behavior!

0.2

0.2

0.2

critical value mu=3.828427

Things to Know

• 55555