Matematika Szigorlat - Diszkrét Matematika

Erdélyi Áron 2018.06.26.

Tartalomjegyzék

1	Hálók	4
	I.1 Háló kétfajta definíciója	4
	1.2 Tarski hálóelméleti fixpont tétele	4
2	Struktúrák	5
	2.1 Struktúra, művelet, műveleti tulajdonságok, inverzelem, egységelem fogalma	5
	2.2 Asszociatív művelet esetén ezen elemek egyértelműsége	5
	2.3 Halmazok és ítéletkalkulus struktúrája: háló	5
	2.4 Kétfajta definíció ismertetése, ekvivalenciájuk	5
3	Néhány fontos struktúra	6
J	3.1 Fontosabb struktúrák	6
	3.1.1 Csoport	6
	3.1.2 Kommutatív csoport	6
	3.1.3 Gyűrű	6
	3.1.4 Test	6
	3.2 Komplex egységgyökök struktúrája	6
		0
4	Síkba rajzolható gráfok 4.1 Síkba rajzolható gráf fogalma, színezése	8
	4.2 Kromatikus szám	8
	4.3 Egyszerű becslések és példák (teljes gráf, páros gráf) kromatikus számra	8
	4.4 Négyszín tétel	8
	4.5 Ötszín tétel	8
5	Nagyságrend	9
	5.1 Függvények növekedése, aszimptotikus közelítések, kis ordó, nagy ordó	9
	5.1.1 Kis ordó	9
	5.2 Nagyságrend fogalma	9
	5.3 Példa egyenlő nagyságrendekre	9
	0.4 Exponencians novekedes, ennek musztraiasa perdavar	9
6	Elsőrendű logika	10
		10
		10
		10
	, · · · ·	10
	V	11
	<u>.</u>	11
	5.5 Példa rezolúciós levezetésre	11
7	Relációk	12
-		12
		12
	· · · · · · · · · · · · · · · · · · ·	12
	7.4 Ekvivalencia reláció és partíció kapcsolata	12
	7.5 Hasonló transzformációk és tulajdonságaik	12
	7.6 Példa hasonló transzformációkra	12
8	Halmagalgahya	13
O	8	ւմ 13
		13
		13
		13
	· · · · · · · · · · · · · · · · · · ·	13
		13
		13
		14

	8.6	Skatulya elv, példa a gráfelméletből	14
9	Nul	ladrendű logika	15
	9.1	Műveletek, kiértékelési szabályok, interpretációk	15
	9.2	Logikai (szemantikai) következmény fogalma, példák	15
	9.3	A rezolúciós bizonyítás alapelve, a kétklózos rezolúció következtetési sémájának helyessége	15
	9.4	Példák matematikai bizonyítási módszerekre	16
10	G ,		1 F
10			17 17
		Számosság fogalma, egyenlő, kisebb, nagyobb számosságok	17
		Cantor tétel (Halmaz és hatványhalmazának számossága közti összefüggés)	17
		A racionális számok számossága	17
		Kontinuum hipotézis	18
	10.0	Nonunaum impotezio	10
11	Fák		19
	11.1	Fa ekvivalens definíciói, éleinek száma	19
	11.2	Prüfer kód	19
	11.3	Feszítőfa fogalma	19
		Cayley télele a feszítőfák számáról	19
	11.5	Feszítőfa keresése egyszerű, összefüggő (súlyozatlan) gráfban: szélességi bejárás/keresés,	
		mélységi bejárás/keresés	19
		11.5.1 Szélességi bejárás	19
		11.5.2 Mélységi bejárás	19
10	C/1.1	an mainalhatá maífalt	20
14		ba rajzolható gráfok Euler poliéder tétele és következményei	20 20
		Síkba és gömbre rajzolhatóság összefüggése	20
		Fáry-Wagner tétel	20
		Kuratowski-tétel	20
		Euler-kör/út és létezésére vonatkozó szükséges és elégséges feltétel, egyik irány bizonyítással	
			<i>Ζ</i> υ.
		Date Rolf at the letterest volume 20 branches to the google lettered, eggin framy bright many	4 U
13	A H	Iálózati folyamok	20 21
13	A H	Iálózati folyamok Hálózat, folyam, vágás fogalma	21 21
13	A H 13.1 13.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út	21 21 21
13	A H 13.1 13.2	Iálózati folyamok Hálózat, folyam, vágás fogalma	21 21
	A H 13.1 13.2 13.3	Hálózati folyamok Hálózat, folyam, vágás fogalma	21 21 21 21
14	A H 13.1 13.2 13.3 Kon	Hálózati folyamok Hálózat, folyam, vágás fogalma	21 21 21 21 21
14	A H 13.1 13.2 13.3 Kon 14.1	Hálózati folyamok Hálózat, folyam, vágás fogalma	21 21 21 21 22 22
14	A H 13.1 13.2 13.3 Kon 14.1	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út . Javító út . Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció Permutáció	21 21 21 21 21 21 22 22
14	A H 13.1 13.2 13.3 Kon 14.1	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli	21 21 21 21 22 22 22 22
14	A H 13.1 13.2 13.3 Kon 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses	21 21 21 21 22 22 22 22 22
14	A H 13.1 13.2 13.3 Kon 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció	21 21 21 22 22 22 22 22 22
14	A H 13.1 13.2 13.3 Kon 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses	21 21 21 21 22 22 22 22 22
14	A H 13.1 13.2 13.3 Kom 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli	21 21 21 22 22 22 22 22 22 22
14	A H 13.1 13.2 13.3 Kom 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses	21 21 21 22 22 22 22 22 22 22 23
14	A H 13.1 13.2 13.3 Kom 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció	21 21 21 22 22 22 22 22 22 23 23
14	A H 13.1 13.2 13.3 Kom 14.1 14.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli	21 21 21 22 22 22 22 22 23 23 23
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3	Iálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses	21 21 21 22 22 22 22 22 23 23 23 23
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4	Hálózati folyamokHálózat, folyam, vágás fogalmaJavító útFord-Fulkerson tételmbinatorikaÖsszeg- és szorzatszabályPermutáció14.2.1 Ismétlés nélküli14.2.2 IsmétlésesVariáció14.3.1 Ismétlés nélküli14.3.2 IsmétlésesKombináció14.4.1 Ismétlés nélküli14.4.2 IsmétlésesSzita formula	21 21 21 22 22 22 22 22 23 23 23 23 24
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai	21 21 21 22 22 22 22 22 23 23 23 24 24 24
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irán	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok	21 21 21 22 22 22 22 22 23 23 23 23 24 24 24 24
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irám 15.1	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma	21 21 21 22 22 22 22 22 23 23 23 24 24 24 24 26
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irám 15.1 15.2	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma Gráfok mátrixai	21 21 21 22 22 22 22 22 22 23 23 23 24 24 24 24 26 26 26
14	A H 13.1 13.2 13.3 Kon 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irán 15.1 15.2 15.3	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma Gráfok mátrixai Élszám és fokszám összefüggése	21 21 21 22 22 22 22 22 22 23 23 23 24 24 24 26 26 26
14	A H 13.1 13.2 13.3 Kon 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irán 15.1 15.2 15.3 15.4	Iálózati folyamok Hálózat, folyam, vágás fogalma Javító út. Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma Gráfok mátrixai Élszám és fokszám összefüggése Speciális gráfok: fa, út, kör, teljes gráf, páros gráf	21 21 21 22 22 22 22 22 22 23 23 23 24 24 24 26 26 26 26
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irám 15.1 15.2 15.3 15.4 15.5	Hálózati folyamok Hálózat, folyam, vágás fogalma Javító út. Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma Gráfok mátrixai Élszám és fokszám összefüggése Speciális gráfok: fa, út, kör, teljes gráf, páros gráf N pontú összefüggő gráfok élszámára, körök létezésére vonatkozó tételek	21 21 21 22 22 22 22 22 22 22 23 23 23 24 24 24 26 26 26 26 26 26 26
14	A H 13.1 13.2 13.3 Kom 14.1 14.2 14.3 14.4 14.5 14.6 14.7 Irám 15.1 15.2 15.3 15.4 15.5 15.6	Iálózati folyamok Hálózat, folyam, vágás fogalma Javító út. Ford-Fulkerson tétel mbinatorika Összeg- és szorzatszabály Permutáció 14.2.1 Ismétlés nélküli 14.2.2 Ismétléses Variáció 14.3.1 Ismétlés nélküli 14.3.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Kombináció 14.4.1 Ismétlés nélküli 14.4.2 Ismétléses Szita formula Binomiális tétel Binomiális együtthatók tulajdonságai nyítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma Gráfok mátrixai Élszám és fokszám összefüggése Speciális gráfok: fa, út, kör, teljes gráf, páros gráf	21 21 21 22 22 22 22 22 22 23 23 23 24 24 24 26 26 26 26

16	6 Irányított és irányítatlan gráfok	2 8
	16.1 Összefüggő gráfok, összefüggő komponensek	28
	16.2 Hamilton-kör/út, és létezéséhez elégséges feltételek	28
	16.3 Euler kör/út irányított gráfokra	28
	16.4 Irányított gráfok összefüggősége	28
	16.5 Irányított gráfok fokszáma és éleinek száma közti összefüggés bizonyítással	28
	16.6 Irányított gráfok mátrixai	29
	16.7 Dijkstra algoritmus irányított gráfokra	29
17	7 Gráfok bejárása és súlyozott gráfok	30
	17.1 Bináris fák bejárási módjai	30
	17.2 Súlyozott gráf fogalma	30
	17.3 Kruskal, Prim, Dijkstra algoritmusok iránvítatlan gráfokra	30

Matematika Szigorlat 1 HÁLÓK

1 Hálók

1.1 Háló kétfajta definíciója

Definíció 1: A H részben rendezett halmaz háló, ha bármely véges részhalmazának van infimuma és supremuma. A H háló teljes, ha bármely részhalmazának van infimuma és supremuma.

Definíció 2: A H halmaz háló, ha értelmezve van rajta két, * és o által jelölt művelet, melyekre $\forall a, b, c \in H$ esetén teljesülnek az alábbi tulajdonságok:

- kommutatívak
- asszociatívak
- elnyelési tujadonság:

$$a*(a \circ b) = a$$
, $a \circ (a*b) = a$.

Tétel: A háló két fajta definíciója ekvivalensek egymással.

1.2 Tarski hálóelméleti fixpont tétele

Definíció: Valamely H rendezett halmazon értelmezett $f: H \to H$ függvény monoton (rendezéstartó), ha minden $h_1 \le h_2$ -re $f(h_1) \le f(h_2)$. A $h \in H$ fixpontja f-nek, ha f(h) = h.

Tétel: Teljes hálón értelmezett monoton függvénynek van legynagyobb és legkisebb fixpontja.

Bizonyítás: Legyen G azon elemek halmaza, melyre $f(x) \le x$. Ennek alsó határa, vagyis g = inf(G) lesz a legkisebb fixpont.

Egyrészt $g \in G$, ugyanis $g \le f(x) \le x$, ebből $f(g) \le f(f(x)) \le f(x) \le x$, vagyis f(g) alsó korlát. Mivel g a legnagyobb alsó korlát, ezért $f(g) \le g$, tehát $g \in G$.

Másrészt g fixpont, tehát g = f(g). Mivel $f(g) \le g$, ezért $f(f(g)) \le f(g)$, vagyis $f(g) \in G$. De akkor g alsó korlát volta miatt $g \le f(g)$. A rendezési reláció antiszimetrikus tulajdonsága miatt g = f(g).

Harmadrészt g a legkisebb fixpont. Legyen G^* a fixpontok halmaza és legyen $g^* = \inf(G^*)$. Mivel $G^* \subseteq G$, ezért $g \leq g^*$. Továbbá mivel g^* infimuma G^* -nak és g is G^* -beli, ezért $g^* \leq g$. A rendezési reláció antiszimetrikus tulajdonsága miatt $g = g^*$, vagyis g valóban a legkisebb fixpont.

2018.06.26. 4. oldal Erdélyi Áron

Matematika Szigorlat 2 STRUKTÚRÁK

2 Struktúrák

2.1 Struktúra, művelet, műveleti tulajdonságok, inverzelem, egységelem fogalma

Definíció: Tekintsük a matematikai objektumok egy H halmazát. a művelet olyan függvény, mely az adott objektumok halmazából vett objektum(ok)hoz egy (másik) objektumot rendel.

Definíció: Egyváltozós (unáris) az f művelet, ha egy objektumhoz rendel egy (másik) objektumot : az f függvény értelmezési tartománya $D_f \subseteq H$, értékkészkete $R_f \subseteq H$. Másképpen $f: H \to H$.

Definíció: Kétváltozós (bináris) az f művelet, ha két objektumhoz rendel egy (másik) objektumot : az f függvény értelmezési tartománya $D_f \subseteq H \times H$, értékkészkete $R_f \subseteq H$. Másképpen $f: H \times H \to H$.

Definíció: Az n változós függvény értelmezési tartománya $D_f \subseteq H \times H \times ... \times H = H^n$ értékkészlete $R_f \subseteq H$. Másképpen $f: H^n \to H$

Definíció: Algebrai struktúra alatt olyan nemüres H halmazt értünk, melyben legalább egy * művelet van definiálva. Ezt a következőképpen jelöljük: < H|*>. Ha több műveletet is figyelembe szeretnénk venni, akkor mindegyiket felsoroljuk: $< H|*, \circ>$. Az algebrai struktúrákban a művelet(ek) mellett szerepelnek fügyeények is.

2.2 Asszociatív művelet esetén ezen elemek egyértelműsége

Definíció: Egy H-n értelmezett * bináris művelet asszociatív, ha bármely $a, b, c \in H$ -ra a * (b * c) = (a * b) * c teljesül.

Tétel: Legyen értelmezve H halmazon egy * bináris, asszociatív művelet. Ha a kétoldali inverzek léteznek, akkor $a_b^{-1} = a_j^{-1} = a^{-1}$, vagyis asszociatív műveletnél az inverz kétoldali és egyértelmű.

$$\mathbf{Bizony\acute{t}\acute{a}s:} \quad a_b^{-1} = a_b^{-1}e = a_b^{-1}(aa_j^{-1}) = (a_b^{-1}a)a_j^{-1} = ea_j^{-1} = a_j^{-1}.$$

2.3 Halmazok és ítéletkalkulus struktúrája: háló

A számítástechnikában és konkrétan a programozási nyelvekben is a hálónak nagy szerepe van. Az alábbiakban megadjuk a definíciókat, melyek szükségesek a fix-pont tétel megértéséhez.

2.4 Kétfajta definíció ismertetése, ekvivalenciájuk

Definíció 1: A H részben rendezett halmaz háló, ha bármely véges részhalmazának van infimuma és supremuma. A H háló teljes, ha bármely részhalmazának van infimuma és supremuma.

Definíció 2: A H halmaz háló, ha értelmezve van rajta két, * és \circ által jelölt művelet, melyekre $\forall a, b, c \in H$ esetén teljesülnek az alábbi tulajdonságok:

- kommutatívak
- asszociatívak
- elnyelési tujadonság:

$$a*(a \circ b) = a$$
, $a \circ (a*b) = a$.

Tétel: A háló két fajta definíciója ekvivalensek egymással.

3 Néhány fontos struktúra

3.1 Fontosabb struktúrák

3.1.1 Csoport

Definíció: Egy G nemüres halmazt csoportnak nevezünk, ha értelmezve van rajta egy * bináris művelet, amely

- 1. Associatív: $\forall a, b, c \in G$, (a * b) * c = a * (b * c).
- 2. Van egységeleme: $\exists e \in G, \forall a \in G, e * a = a$.
- 3. Van inverze: $\forall a \in G \exists a^{-1} \in G, \quad a * a^{-1} = e.$

Megjegyzés: A G nemüres halmazt félcsoportnak nevezzük, ha értelmezve van rajta egy * bináris művelet, amely asszociatív.

3.1.2 Kommutatív csoport

Definíció: Olyan csoport, amelyen a * bináris művelet kommutatív is:

$$\forall a, b \in G, \quad a * b = b * a.$$

Másik neve: Abel-csoport.

3.1.3 Gyűrű

Definíció: Egy R nemüres halmazt gyűrűnek nevezünk, ha értelmezve van R-en két művelet, *, és \circ . E műveletekre a következők teljesülnek:

- 1. A * művelet Abel-csoport.
- 2. A o művelet asszociatív.
- 3. A két műveletet disztributív szabályok kötik össze:
 - (a) $a * (b \circ c) = a * b \circ a * c$.
 - (b) $(b \circ c) * a = b * a \circ c * a$.

Amennyiben a o művelet is kommutatív, kommutatív gyűrűről beszélünk.

Példák: Az $n \times n$ -es mátrixok szokásos összeadásra nézve gyűrűt alkotnak. A páros számok a szokásos összeadásra nézve kommutatív gyűrűt alkotnak.

3.1.4 Test

Egy T legalább kételemű halmazt (kommutatív) testnek nevezzük, ha értelmezve van a T-n két művelet, melyeket összeadásnak és szorzásnak nevezünk el. Mindkét művelet kommutatív csoport, kivéve, hogy az összeadás egységelemének nincsen a szorzásra vonatkozó inverze. A szorzás disztributív az összeadásra nézve.

Ha a szorzás kommutativitását nem kötjük ki, akkor nemkommutatív, azaz ferdetestről beszélünk.

Példák: įvalós számok,+, \cdot \downarrow , įracionális számok,+, \cdot \downarrow

3.2 Komplex egységgyökök struktúrája

Tétel: Az n-edik egységgyökök csoportot alkotnak a komplex számok szokásos szorzására nézve.

Bizonyítás:

1. Zártság:

$$(\epsilon_k \epsilon_l)^n = \left(\cos \frac{(k+l)2\pi}{n} + \mathbf{i}\sin \frac{(k+l)2\pi}{n}\right)^n = \cos \frac{(k+l)n2\pi}{n} + \mathbf{i}\sin \frac{(k+l)n2\pi}{n} =$$
$$= \cos((k+l)2\pi) + \mathbf{i}\sin((k+l)2\pi) = 1.$$

- 2. Egység: Az $1 = 1(\cos \frac{0}{n} + \mathbf{i} \sin \frac{0}{n})$.
- 3. Inverz: $\epsilon_k \epsilon_j = 1(\cos \frac{0}{n} + \mathbf{i} \sin \frac{0}{n})$ alapján: $\frac{k2\pi}{n} + \frac{j2\pi}{n} = \frac{n2\pi}{n}$, ahonnan j = n k. Tehát $\epsilon_k^{-1} = \epsilon_{n-k}$.

4 Síkba rajzolható gráfok

4.1 Síkba rajzolható gráf fogalma, színezése

Definíció: Egy gráf síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ezt az így lerajzol gráfot síkgráfnak nevezzük.

Definíció: Egy egyszerű gráf n-színezhető, ha minden csúcsához hozzárendelhető úgy egy szín hogy két szomszédos csúcshoz rendelt szín különböző.

4.2 Kromatikus szám

Definíció: A $\chi(G)$ a G gráf kromatikus száma, vagyis az a szám, amely megmutatja, legkevesebb hány szín kell a gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédos csúcsok más színűek legyenek.

4.3 Egyszerű becslések és példák (teljes gráf, páros gráf) kromatikus számra

Állítás: Teljesül az alábbi összefüggés: $\omega(G) \leq \chi(G) < \leq \Delta(G) + 1$, ahol $\omega(G)$ a G gráfban található legnagyobb fokszámú teljes gráf, és $\Delta(G)$ a legnagyobb fokszám.

Állítás: Egy n-fokú teljes gráf n színnel színezhető.

Állítás: A páros gráfok 2 színnel színezhetők.

Állítás: A páratlan gráfok 3 színnel színezhetők.

4.4 Négyszín tétel

Tétel: Minden térkép kiszínezhető 4 színnel úgy, hogy a szomszédos területek más színűek lesznek.

4.5 Ötszín tétel

Tétel: Minden térkép kiszínezhető 5 színnel úgy, hogy a szomszédos területek más színűek lesznek.

Bizonyítás: Teljes indukcióval. Ha a G gráfnak maximum 5 csúcsa van. Ekkor nyílván teljesül. Tegyük fel, hogy n>5 csúcsú gráf színezhető 5 színnel.

(n+1)-re: Ekkor az élek száma: $e \leq 3p-6$, azaz lesz olyan csúcsa, amelynek fokszáma max 5.

- Ha x foka 4, akkor x-t elhagyva, teljesül az indukciós feltevés, tehát a kapott gráf színezhető 5 színnel. Visszarakva az x-t mivel 4 fokú, ezért biztosan van olyan szín, amit a szomszédokon még nem használtunk föl, tehát az eredeti gráf színezhető 5 színnel.
- Ha x foka 5, akkor a szomszédainak a foka nem lehet 5, mert a K_5 nem síkba rajzolható, ezért lesz legalább egy olyan szín, amit két szomszédján is használhatunk. Az előző ponthoz analóg módon bizonyítjuk, hogy 5 színnel színezhető:
- \bullet Legyen $z,\ y$ az xolyan szomszédjai, melyek nincsenek összekötve, ezeket vonjuk össze egy ponttá, hagyjuk elx-et. Az ind. feltevés miatt a maradék kiszínezhető 5 színnel. Visszavéve és szétszedve x-y-zcsúcsokat, ezek kiszínezhetők max 3 színnel, hiszen x-nek összesen 5 szomszédja van, az y és z-kívüli csúcsok 3 színt lefoglalnak, de y és z- egyszínű (nem szomszédok), marad egy szín x-nek.

Matematika Szigorlat 5 NAGYSÁGREND

5 Nagyságrend

5.1 Függvények növekedése, aszimptotikus közelítések, kis ordó, nagy ordó

Definíció: f és g két függvény, melyek a valós, vagy az egész számok halmazából képeznek a valós számok halmazába. Azt mondjuk, hogy f(x) = O(g(x)) ("nagy ordó g(x)"), ha $\exists c, x_0$ pozitív konstansok, hogy $x \ge x_0$ esetén $|f(x)| \le |c \cdot g(x)|$.

Azt mondjuk ekkor, hogy g aszimptotikus felső korlátja f-nek.

Definíció: : Legyen f, g két függvény, amelyek a valós vagy az egész számok halmazából képeznek a valós számok halmazába. Azt mondjuk, hogy $f(x) = \Omega(g(x))$ (f(x) nagy-Omega g(x)), ha $\exists c, n_0$ pozitív konstans, amelyekre: $|f(x)| \ge |c \cdot g(x)|$.

Ekkor azt mondjuk, hogy f aszimptotikus felső korlátja g-nek.

5.1.1 Kis ordó

A nagy prdóval szemben a kis ordónál (f(x) = o(g(x))), az f határozottan kisebb a g-nél.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

5.2 Nagyságrend fogalma

Definíció: : Legyen f, g két függvény, amelyek a valós vagy az egész számok halmazából képeznek a valós számok halmazába. Azt mondjuk, hogy $f(x) = \Theta(g(x))$ (f(x) nagy-Theta g(x)), ha teljesül:

$$f(x) = O(g(x)),$$

$$f(x) = \Omega(g(x)).$$

Ekkor azt mondjuk, hogy a két függvény nagyságrendje megegyezik.

5.3 Példa egyenlő nagyságrendekre

Nagy ordó rendezés:

$$f(n) = O(f(n)), \quad \forall f.$$
$$(\log(n))^k = O(n), \quad \forall k \in \mathbb{Z}.$$
$$n^k = O(2^n), \quad \forall k \in \mathbb{Z}.$$

Függvények nagyságrendje:

- 1. Konstans
- 2. Logaritmus
- 3. Elsőfokú polinom
- 4. Hatvány logaritmusok
- 5. Polinomok
- 6. Exponenciális
- 7. Faktoriális

5.4 Exponenciális növekedés, ennek illusztrálása példával

Az exponenciálisan növekvő mennyiségek minél nagyobbak, annál gyorsabban növekednek. A növekedés mértéke arányos a mennyiség nagyságával. Az exponenciálisan növekvő menynyiségek változását exponenciális függvény írja le.

Az időben lezajló exponenciális növekedés képlete: $N(t) = N_0 \cdot e^{\lambda t}$.

Példa: Egy papírlap hajtogatása során minden félbehajtásnál a papír vastagsága megduplázódik.

6 Elsőrendű logika

6.1 Szintaxis nullad-, és elsőrendben

6.1.1 Nullarendű logika

Jelkészlet:

- 1. Atomok:
 - (a) Betűk
 - (b) Igaz, Hamis (I,H)
- $2. \neg, \land, \lor$
- 3. Zárójelek

Formula: Minden atom formula. Ha α és β formulák, akkor $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \to \beta$ is formulák. A fenti szabályok véges sokszori alkalmazásával kapjuk a formulákat. Az atomokat latin, a formulákat görög betűkkel jelöljük.

6.1.2 Elsőrendű logika

Jelkészlet:

- 1. Változószimbólumok: x, y, z, ...
- 2. Konstansszimbólumok: a, b, c, ...
- 3. Prédikátumszimbólumok: P, Q, S, \dots
- 4. Függvényszimbólumok: f, g, h, ...
- 5. logikai összekötő jelek (műveleti jelek): $\neg, \land, \lor, \rightarrow$
- 6. Kvantorok: \forall , \exists
- 7. Zárójelek

Kifejezés (term): Minden idividuumváltozó és konstans kifejezés. Ha $t_1, t_2, ..., t_n$ kifejezések és f n-változós függvény szimbóluma, akkor $f(t_1, t_2, ...t_n)$ is kifejezés. A fentiek szerint a függvény argumentumaiba írhatunk áltozókat, konstansokat, de beágyazhatók más, vagy saját függvényértékek is. A kifejezések vagy prédikátumszimbólumok argumentumaiban, vagy függvények argumentumaiban fordulhatnak elő, önállóan nem.

Atomi formulák: Ha P n-argumentumú prédikátumszimbólum, és $t_1, t_2, ..., t_n$ kifejezések, akkor $P(t_1, t_2, ..., t_n)$ atomi formula.

Formula: Minden atom formula.

Ha α és β formulák, akkor $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \to \beta$ is formulák.

 $\forall x \alpha(x), \exists x \alpha(x) \text{ is formula.}$

A fenti szabályok véges sokszori alkalmazásával kapjuk a formulákat.

6.2 Szemantika: kvantorok, interpretációk elsőrendben

Kvantorok hatásköre: Megállapodás szerint a kvantor hatásköre a mögötte álló változó utáni atomi formula vagy zárójelben megadott formula. Az ezekben szereplő változó előfordulásokat kötöttnek nevezzük, a változó egyéb előfordulásait szabadnak.

Interpretáció: Az elsőrendű nyelvben is valamely formula igazságértékét csak úgy tudjuk megmondani, ha interpretáljuk a formulát. Az interpretáció több részből áll. Meg kell adni az alaphalmazt, aminek elemeire vonatkoznak a formulák. Ahogyan nulladrendben is tettük, itt is meg kell mondani az atomi formulák igazságértékét. Ezen túlmenően, a függvényeket is interpretálni kell, meg kell mondani, hogy az egyes individuumokon mi a felvett függvényérték (ami szintén az univerzum egy eleme, vagyis egy individuum).

Ezután az elsőrendben tanult kvantorok jelentése, és a műveletek nulladrendben tanult jelentése alapján kiértékelhető a formula.

Definíció: Az elsőrendű mondat kielégíthető, ha van olyan interpretáció, amelyben igaz. Ezt az interpretációt a formula modelljének nevezzük.

Definíció: Az elsőrendű mondat érvényes, ha minden interpretációjában igaz.

Definíció: Az elsőrendű mondat kontradikció, ha minden interpretációjában hamis.

Definíció: Az α és β formulák ekvivalensek, ha minden interpretációban megegyezik az igazságértékük. Jelölése: $\alpha \equiv \beta$.

6.3 Szemantikai következmény elsőrendben

Definíció: Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy a $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ formulahalmaz szemantikai következménye β , ha β minden olyan interpretációban igaz, ahol $\alpha_1, \alpha_2, ..., \alpha_n$ formulák igazak.

Más szavakkal $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ formulahalmaz következménye β , ha β legalább akkor igaz, amikor α_i -k igazak.

Jelölése: $\{\alpha_1, \alpha_2, ..., \alpha_n\} \models_1 \beta$.

Definíció: Azokat a következtetési sémákat tekintjük helyesnek, amelyekben a következmény valóban a feltételek következménye.

6.4 Rezolúció alapelve elsőrendben

Tétel: A rezolúció alap következtetési szabálya: $\{\alpha \lor \beta, \gamma \lor \neg \beta\} \models_0 \alpha \lor \gamma$.

6.5 Példa rezolúciós levezetésre

A rezolúcióhoz a formulát és a következmény tagadását Skólem normálformára alakítjuk. Nevezzük át a változókat úgy, hogy a változónevek különbözőek legyenek a klózokban. A rezolúció tehát csak akkor alkalmazható, ha az egységesítés elvégezhető. Ekkor pedig rezolúció alapelvét adó következtetési sémát alkalmazzuk, és akárcsak nulladrendben, elvégezzük a rezolúciót.

Matematika Szigorlat 7 RELÁCIÓK

7 Relációk

7.1 Reláció általános fogalma

Definíció: A $D_1 \times D_2 \times ... \times D_n$ direkt szorzat bármely részhalmazát relációnak nevezzük.

7.2 Bináris reláció, nevezetes bináris relációk és tulajdonságaik

Definíció: A \Re bináris reláció H halmazon, ha $\Re \subseteq H \times H = \{(a,b)|a,b \in H\}.$

Tulajdonságai:

- Reflexív, ha $(x, x) \in \Re$.
- Szimetrikus, ha $(x,y) \in \Re$ esetén $(y,x) \in \Re$.
- Antiszimetrikus, ha $(x,y) \in \Re$ és $(y,x) \in \Re$ csak akkor teljesül, ha x=y.
- Tranzitív, ha $(x,y) \in \Re$ és $(y,z) \in \Re$ esetén $(x,z) \in \Re$.

7.3 Példák rendezési és ekvivalencia relációkra

- \bullet A hasonlóság az $n \times n$ -es mátrixok körében ekvivalencia reláció.
- \bullet Rendezési reláció például a \leq az eredeti értelmezésében.

7.4 Ekvivalencia reláció és partíció kapcsolata

Definíció: Az \Re bináris reláció ekvivalencia reláció, ha reflexív, szimetrikus, és tranzitív.

Definíció: A partíció a H halmaz olyan részhalmazrendszere, ahol $H_i \cap H_j = \emptyset$, és

$$\bigcup_{k=1}^{n} H_k = H.$$

Tétel: Ha az \mathfrak{R} bináris reláció a H halmazon ekvivalencia reláció, akkor a H azon részhalmazai, amelyek egymással relációban álló elemeket tartalmaznak, azok a H halmaz egy partícióját adják.

7.5 Hasonló transzformációk és tulajdonságaik

Minden lineáris transzformáció megvalósítható a vektor egy alkalmas mátrixszal való szorzásával. Így a hasonlóság felfogható a négyzetes mátrixok körében bevezetett relációként: két mátrix relációban áll egymással, ha hasonlók.

Tétel: A hasonlóság az $n \times n$ -es mátrixok körében ekvivalencia reláció.

Bizonyítás:

- Reflexív: $\mathbf{A} = \mathbf{E}^{-1} \mathbf{A} \mathbf{E}$.
- Szimetrikus: Ha $\mathbf{A} \cong \mathbf{B}$, akkor $\mathbf{B} \cong \mathbf{A}$:

$$\mathbf{A} = \mathbf{C}^{-1}\mathbf{B}\mathbf{C} \to [\mathbf{C}^{-1}]^{-1}\mathbf{A}\mathbf{C}^{-1} = \mathbf{B}.$$

• Tranzitív: Ha $\mathbf{A} \cong \mathbf{B}$ és $\mathbf{B} \cong \mathbf{C}$, akkor $\mathbf{A} \cong \mathbf{C}$:

$$\mathbf{A} = \mathbf{U}^{-1}\mathbf{B}\mathbf{C}, \mathbf{B} = \mathbf{V}^{-1}\mathbf{C}\mathbf{V} \to \mathbf{A} = \mathbf{U}^{-1}(\mathbf{V}^{-1}\mathbf{C}\mathbf{V})\mathbf{U} = (\mathbf{V}\mathbf{U})^{1}\mathbf{C}(\mathbf{V}\mathbf{U}).$$

7.6 Példa hasonló transzformációkra

Olyan transzformációk, melyek mátrixai hasolók.

8 Halmazalgebra

8.1 Halmazok

Definíció: Az A és a B halmaz egyenlők, ha ugyanazok az elemeik. Jelölés A = B.

Definíció: Egy halmazt akkor hívunk üres halmaznak, ha nem tartalmaz elemet. Jele: \emptyset .

Definíció: Az A halmaz részhalmaza a B halmaznak, ha A minden eleme B eleme is. Jelölés: $A \subseteq B$. Ha $A \subseteq B$ és $A \neq B$, akkor A valódi részhalmaza B-nek. Jelölése: $A \subseteq B$.

Az A halmaz hatványhalmazán A részhalmazainak halmazát értjük.

Definíció: A halmaz számosságán a halmaz elemeinek számét értjük. Jelölése |A|. Ha A számossága véges, az A halmazt is végesnek nevezzük. Ellenkező esetben A végtelen.

8.2 Műveletek

Definíció: Az A és B halmazok egyesítése (uniója, összege) az az $A \cup B$ -vel jelölt halmaz, amelynek elemei A-nak vagy B-nek elemei.

$$A \cup B = \{x | x \in A \lor x \in B\}.$$

8.2.1 Halmazok metszete

Definíció: Az A és B halmazok közös része (metszete, szorzata) az az $A \cap B$ -vel jelölt halmaz, amelynek elemei A-nak és B-nek elemei.

$$A \cap B = \{x | x \in A \land x \in B\}.$$

8.2.2 Halmazok külömbsége

Definíció: Az A és B halmazok külömbsége, vagy a B halmaz A halmazra vonatkozó komplementere $A \setminus B$ -vel jelölt halmaz, amely A azon elemeinek halmaza amik nincsenek B-ben.

$$A \setminus B = \{x | x \in A \land x \notin B\}.$$

8.2.3 Direkt szorzat

Definíció: Legyenek $D_1, D_2, ..., D_n$ adott halmazok. E halmazok Descartes (direkt) szorzata $D_1 \times D_2 \times ... \times D_n := \{(d_1, d_2, ..., d_n) | d_k \in D_k, 1 \le k \le n\}.$

8.3 Halmaz részhalmazainak száma

Tétel: Az n elemű halmaz részhalmazainak száma 2^n .

Bizonyítás: Mivel a halmaz elemeinek száma véges, sorszámozhatjuk az elemeket 1-től n-ig. Ha az i-edik elemet kiválasztjuk a részhalmazba, akkor ehhez a sorszámhoz rendeljünk 1-et, különben 0-t. Így minden részhalmazhoz egy n hosszúságú, 0,1 számjegyekből álló számsort lehet kölcsönösen hozzárendelni. Az összes lehetőséget ismétléses variációval kapjuk meg. Így egy n elemű halmaz esetén 2^n részhalmaz van.

8.4 Szita formula

A halmazokba rendezés valamilyen közös tulajdonság alapján végzett csoportosítást jelent. A logikai szita (más néven szita formula) a halmazokkal kapcsolatos feladatoknál alkalmazható eljárás. A logikai szita kapcsolatot teremt a halmazok uniójának elemszáma és a metszetek elemszáma között.

A logikai szitát olyan feladatoknál használjuk általában, ahol unióba vont halmazokról meg kell adni azon elemek számát, amelyek egy adott tulajdonsággal nem rendelkeznek. A logikai szita elve az, hogy több halmaz uniójának elemszáma egyenlő az egyes részhalmazok elemszámának összege és a metszetek elemszámának különbségével. Erre felírható egy általános képlet:

•
$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

•
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |C \cap B| + |A \cap B \cap C|$$
.

Matematika Szigorlat 8 HALMAZALGEBRA

8.5 Halmazelméleti azonosságok és bizonyítási módszer igazolásukra

- $A \cup B = B \cup A$ és $A \cap B = B \cap A$.
- $(A \cup B) \cup C = A \cup (B \cup C)$ és $(A \cap B) \cap C = A \cap (B \cap C)$.
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ és $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ és $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

8.6 Skatulya elv, példa a gráfelméletből

A skatulya elv azt állítja, hogy ha m dolgot szétosztunk n csoportba, és m > n, akkor legalább két dolog azonos csoportba fog kerülni.

Példa: Egy osztályba 30 gyerek jár. Igazoljuk, hogy biztosan van 3 olyan tanuló, akik ugyanabban a hónapban születtek.

Megoldás: Kezdjük el "szétosztani" a tanulókat születési hónapjaik szerinti csoportokba úgy, hogy lehetőleg ne kerüljön 3 gyerek egy csoportba. Mivel 12 hónap van, ezért legfeljebb 24 tanulót lehet úgy hónapok szerint rendezni, hogy egy csoportban se legyen legalább 3 gyerek. A 25. tanulót már mindenképpen olyan csoportba kell rakni, ahol rajta kívül legalább ketten vannak, és így az állítás igazolást nyert.

2018.06.26. 14. oldal Erdélyi Áron

9 Nulladrendű logika

9.1 Műveletek, kiértékelési szabályok, interpretációk

Definíció: Az A negáltját (tagadását) $\neg A$ -val jelöljük. A $\neg A$ azokban az interpretációkban igaz, ahol A hamis, és fordítva.

Definíció: Az A és a B konjunkciója az az $A \wedge B$ -vel jelölt formula, amely abban az interpretációban igaz, ahol A és B is igazak.

Definíció: Az A és a B diszjunkciója az az $A \vee B$ -vel jelölt formula, amely abban az interpretációban igaz, ahol A vagy B is igazak.

Definíció: Az A implikálja B-t, azaz $A \to B$, ennek az értéke azokban az interpretációkban igaz, ahol B legalább ott igaz, ahol A is.

Definíció: Az A ekvivalens a B-vel, azaz $A \leftrightarrow B$, ott, ahol $(A \to B) \land (B \to A)$.

Definíció: Az a formula, amely minden interpretációban igaz, tautológiának hívjuk.

Definíció: Az a formula, amely minden interpretációban hamis, kontradikciónak hívjuk.

Definíció: Azt az interpretációt, ahol a formula igaz, modellnek nevezzük.

Definíció: Két formula ekvivalens, ha minden interpretációban megegyezik az igazságértékük.

9.2 Logikai (szemantikai) következmény fogalma, példák

Definíció: Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy a $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ formulahalmaz szemantikai következménye β , ha β minden olyan interpretációban igaz, ahol $\alpha_1, \alpha_2, ..., \alpha_n$ formulák igazak.

Más szavakkal $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ formulahalmaz következménye β , ha β legalább akkor igaz, amikor α_i -k igazak.

Jelölése: $\{\alpha_1, \alpha_2, ..., \alpha_n\} \models_1 \beta$.

Példa: Ha elfogy a benzin, az autó leáll. Elfogyott a benzin. \models_0 Az autó leáll.

9.3 A rezolúciós bizonyítás alapelve, a kétklózos rezolúció következtetési sémájának helyessége

Tétel: Rezolúció alapelve: $\{\alpha \lor \beta, \gamma \lor \neg \beta\} \models_0 \alpha \lor \gamma$.

Bizonyítás: (igazságtáblával:)

	α	β	γ	$\neg \beta$	$\alpha \vee \beta$	٨	$\gamma \vee \neg \beta$	$\alpha \vee \gamma$
	I	I	I	Н	I	Ι	I	I
\rightarrow	I	I	Н	Н	I	Н	Н	I
	I	Н	I	I	I	I	I	I
	I	Н	Н	I	I	Ι	I	I
	Н	I	I	Н	I	Ι	I	I
\rightarrow	Н	I	Н	Н	I	Н	Н	Н
\rightarrow	Н	Н	I	I	Н	Н	I	I
\rightarrow	Н	Н	Н	I	Н	Н	I	Н

A jelölt sorokban a feltétel nem teljesül, így a következmény teljesülését nem vizsgáljuk. A jelöletlen sorokban viszony a következmény legalább ott igaz, ahol a feltétel igaz, tehát ez egy helyes következtetési séma.

9.4 Példák matematikai bizonyítási módszerekre

Direkt bizonyítás, dedukció: "Tegyük fel, hogy A igaz".

Indirekt bizonyítás: "tegyük fel, hogy A mégis igaz"; "Lehetetlen, hogy A igaz legyen, így \neg A igaz."

Matematika Szigorlat 10 SZÁMOSSÁGOK

10 Számosságok

10.1 Számosság fogalma, egyenlő, kisebb, nagyobb számosságok

Definíció: Az A és B halmazok számossága megegyezik, ha $\exists f: A \to B$ kölcsönösen egyértelmű függvény. Jelölése: |A| = |B|.

Definíció: Az A halmaz számossága legalább akkora, mint a B számossága, ha $\exists A_1 \subset A$, hogy $|A_1| = |B|$. Jelölés: $|A| \ge |B|$.

Definíció: Egy A halmaz véges számosságú, ha $\exists k \in \mathbb{N}$, hogy $|\{1, 2, ..., k\}| = |A|$.

Definíció: Egy A halmaz megszámlálhatóan végtelen számosságú, ha a természetes számok halmazával egyenlő számosságú.

Definíció: Egy A halmaz nem megszámlálhatóan végtelen számosságú, ha számossága nem is véges, és nem is megszámlálhatóan végtelen.

10.2 A (0,1) intervallumbeli számok halmazának számossága

Állítás: A (0,1) intervallumba tartozó összes szám H halmaza a megszámlálhatónál nagyobb számosságú.

Bizonyítás: Ez a |H| legalább megszámlálható, hiszen H tartalmazza például a nyílván megszámlálható $\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots\}$ részhalmazt. Tegyük fel indirekt módon, hogy H megszámlálható, vagyis elemeit valamilyen v_1,v_2,\ldots sorrenbe állíthatjuk. Minden ilyen v_i egy 0, és 1 közötti valós szám, tehát felírható végtelen tizedestörtként, $0.v_{i1}v_{i2}...$ alakban. Az indirekt feltevés szerint tehát a következő sorozat H minden elemét tartalmazza:

$$0, v_{11}v_{12}v_{13}...$$
$$0, v_{21}v_{22}v_{23}...$$
$$\vdots$$

A táblázat "átlója" mentén végighaladva készítsünk egy olyan w valós számot, melynek $w=0,w_1w_2,...$ alakjához a következő képp jutunk:

$$w_i = \begin{cases} w_i = 2, hav_{ii} = 1 \\ w_i = 1, hav_{ii} \neq 1 \end{cases}.$$

Ez a w biztosan nem szerepelt a fenti táblázatban, hiszen minden j-re $v_{jj} \neq w_j$. Mivel így nem minden 0 és 1 közötti valós szám szerepel a H halmazban, így ellentmondáshoz jutunk, tehát |H| nem lehet megszámolható.

10.3 Cantor tétel (Halmaz és hatványhalmazának számossága közti összefüggés)

Tétel: Ha H halmaz, akkor nincs olyan H-n értelmezett f függvény, mely ráképez a H hatványlahmazára, azaz $|H| < |2^H|$.

10.4 A racionális számok számossága

Állítás: A racionális számok Q halmaza megszámlálható.

Bizonyítás: Helyezzük az $\{0, 1, -1, 2, -2, ...\}$ egész számokat az A_1 halazba. Legyen $A_2 = \{\frac{1}{2}, -\frac{1}{2}\frac{3}{2}, -\frac{3}{2}, ...\}$, az összes olyan tört, aminek nevezője 2, és nem egyszerűsíthető. Legyen $A_3 = \frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}, ...$, az üsszes olyan tört, aminek nevezője 3 és nem egyszerűsíthető, és így tovább. Ezek a halmazok megszámlálhatóak, hiszen elemeiket fel tudjuk sorolni. Így megszámlálható sok diszjunkt halmazhoz jutunk, aminek tudjuk, hogy számossága megszámlálható, és egyesítve őket megkapjuk a $\mathbb Q$ halmazt.

10.5 Kontinuum hipotézis

A kontinuum hipotézis szerint nincs olyan halmaz, amelynek számossága, a természetes számok halmazának és a valós számok halmazának számossága közé esne.

Jelölje a továbbiakban a számosságokat az \aleph . A megszámlálható számosság jele legyen \aleph_0 , a rákövetkező \aleph_1 és rekurzívan minden k esetén \aleph_k -ra rákövetkező számosságot \aleph_{k+1} jelölje.

A kontinuum hipotézis szerint $\aleph_1 = 2^{\aleph_0}$.

Az általánosított kontinuum hipotézis szerint $\aleph_{k+1} = 2^{\aleph_k}$.

Matematika Szigorlat 11 FÁK

11 Fák

11.1 Fa ekvivalens definíciói, éleinek száma

Definíció: Ha egy gráf összefüggő, és nincs benne kör, akkor azt fagráfnak hívjuk.

Tétel: Az n csúcsú, n-1 élű gráfok fagráfok.

Tétel: Az n csúcsú fagráf énszáma n-1.

11.2 Prüfer kód

A Prüfer kód fák tárolására alkalmas. A fa csúcsát k=1,2,...,n számokkal tetszőlegesen címkézzük. A Prüfer kód alkalmazásához tudjuk, hogy minden legalább két csúcsú fában van legalább két csúcs, amelyek fokszáma 1.

Algoritmus: Kiindulásként meg van adva egy fa (ábrával, mátrixszal stb.) Első lépésként sorszámozzuk a csúcsokat 1-től n-ig. A következő lé- pésben megkeressük a legkisebb sorszámú csúcsot a (maradék) fán. Hagyjuk el ezt a csúcsot a rá illeszkedő éllel együtt, és fűzzük a lista végéhez az él másik végén található csúcs sorszámát. Ezt a lépést addig ismételve, míg a fából csak egy csúcs marad, kapjuk a Prüfer kódot.

11.3 Feszítőfa fogalma

Definíció: Egy gráf minden csúcsát tartalmazó fát a gráf feszítőfájának nevezzük.

Tétel: Minden (összefüggő) gráfnak van feszítőfája.

11.4 Cayley télele a feszítőfák számáról

Tétel: (Caeley tétel) Feszítőfák száma n csúcsú teljes gráfban n^{n-2} .

11.5 Feszítőfa keresése egyszerű, összefüggő (súlyozatlan) gráfban: szélességi bejárás/keresés, mélységi bejárás/keresés

Adott gráfban keresünk szisztematikusan adott tulajdonságú (pl. címkéjű) csúcsot. A sziszté- ma sokféle lehet, a két alap a szélességi és a mélységi keresés.

11.5.1 Szélességi bejárás

Algoritmus: Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán e szomszédok összes olyan szomszédját, ahol még nem jártunk, és így tovább. Berakjuk az épp meglátogatott csúcsot, hogy majd a megfelelő időben a szomszédjaira is sort keríthessünk.

Általános lépés: vesszük a sor elején levő x csúcsot, töröljük a sorból, meglátogatjuk azokat az y szomszédait, amelyeket eddig még nem láttunk, majd ezeket az y csúcsokat a sor végére tesszük.

11.5.2 Mélységi bejárás

Algoritmus: Tetszés szerinti csúcstól elindulva egy úton addig megyünk "mélyre", ameddig lehet: vagy nincsen további szomszédos csúcs, vagy már jártunk ott. Ha így megakadunk, akkor visszalépünk (backtrack) az előző csúcshoz, ha onnan tudunk továbbmenni, akkor megint elindulunk, és a lehető legmélyebbre együnk, ha nem, akkor visszalépünk.

12 Síkba rajzolható gráfok

12.1 Euler poliéder tétele és következményei

Tétel: A G összefüggő, egyszerű síkgráf esetén, ahol p a csúcsok, e az élek, és t a G gráf által létrehozott területek száma, a végtelen területet is számítva, akkor p - e + t = 2.

Bizonyítás: Rajzoljuk le lépésenként az adott gráfot:

- 1. 1 csúcsra igaz az állítás: 1 0 + 1 = 2.
- 2. 2 csúcsra és egy élre igaz az állítás: 2-1+1=2.

Tegyük fel, hogy (n-1) esetre igazoltuk a formulát. A következő lépés két féle lehet:

- Egy új csúcs és egy új él hozzáadása.
 Ekkor mivel az egyenlethez hozzáadnék és levonnánk egyet, ezért a formula teljesül.
- 2. Két csúcs között egy új élet húzunk. Ekkor az új éllel létrehozok egy új területet is, tehát hasonlóan az előzőhöz, az egyenlethez hozzáadva, majd levonva egyet, az eredeti értéket kapjuk vissza

Következmény: Ha G összefüggő, egyszerű síkgráf csúcsainak száma legalább 3, akkor $e \leq 3p - 6$.

Következmény: Ha G összefüggő, síkba rajzolható, egyszerű gráf, akkor a minimális fokszáma legfeljebb 5.

Következmény: Ha G összefüggő, síkba rajzolható, egyszerő gráf csúcsainak száma legalább 3, és nincs 3 hosszú köre, akkor $e \le 2p - 4$.

12.2 Síkba és gömbre rajzolhatóság összefüggése

Tétel: A G gráf akkor és csak akkor síkba rajzolható, ha gömbre rajzolható. (Sztereografikus projekció)

12.3 Fáry-Wagner tétel

Tétel: Ha G síkba rajzolható gráf, akkor lerajzolható a síkba úgy is, hogy minden éle egyenes szakasz.

12.4 Kuratowski-tétel

Tétel: A G gráf síkba rajzolható, ha nem tartalmaz K_5 -el, illetve $K_{3,3}$ -al izomorf, vagy homeomorf részgráfot.

12.5 Euler-kör/út és létezésére vonatkozó szükséges és elégséges feltétel, egyik irány bizonyítással

Definíció: A G gráf Euler-köre egy olyan zárt élsorozat, mely G összes élét pontosan egyszer érinti. Euler-útról akkor beszélünk, ha az élsorozat nem feltétlenül zárt.

Tétel: Egy összefüggő G gráfban akkor és csak akkor létezik Euler-kör, ha minden csúcsának fokszáma páros.

Bizonyítás: Azt látjuk be, hogy ha a gráf tartalmaz Euler-kört, akkor minden csúcsának fokszáma páros.

Ha a gráfot az Euler-köre mentén járjuk be, akkor minden csúcsba pontosan annyiszor haladunk be, mint ahányszor kihaladunk belőle. Ezért nyilvánvalóan a bemenések és kijövetelek csúcsonkénti száma páros, mely éppen a csúcsok fokszámát adja.

13 A Hálózati folyamok

13.1 Hálózat, folyam, vágás fogalma

Definíció: Adott G=(N,E) irányított gráf, és ennek kettő külömböző pontja s és t, melyeket forrásnak és nyelőnek nevezünk (a forrásból csak kifelé, a nyelőbe csak befelé jönnek élek). Adott továbbá az éleken értelmezett $c:E\to\mathbb{R}^+$, nemnegatív értékű kapacitásfüggvény.

Ekkor a G = (N, E) gráfot a c függvénnyel együtt (G, c) hálózatnak nevezzük.

Definíció: Az $f: E \to \mathbb{R}$ függvényt folyamnak nevezzük, ha teljesülnek rá:

$$f(n_1, n_2) = -f(n_2, n_1), \quad \forall (n_1, n_2) \in E, n_1, n_2 \in N.$$
$$f(n_1, n_2) \le c(n_1, n_2), \quad \forall (n_1, n_2) \in E.$$

Definíció: Legyen H=(G,c) hálózat, s forrás és t nyelő és legyen adott N_1,N_2 az N partíciója. Legyen továbbá $s\in N_1,\,t\in N_2$. Ekkor az N_1,N_2 halmazt s,t vágásanak hívjuk. Az N_1,N_2 kapacitásán a

$$c(N_1, N_2) \sum_{n_i \in N_1, n_j \in N_2} c(n_i, n_j)$$

számot értjük.

13.2 Javító út

Definíció: Adott H=(G,c) háló s forrással, és t nyelővel. Jelölje $r:E\to\mathbb{R}$ a maradék-kapacitás függvény, amely $\forall n_1,n_2\in N$ esetén $r(n_1,n_2)=c(n_1,n_2)-f(n_1,n_2)$. Az f folyamhoz tartozó javító gráf a $G_f=(N,E_f)$, az élein értelmezett maradék-kapacitás függvénnyel, ahol $E_f=\{(n_1,n_2)|n_1,n_2\in N, r(n_1,n_2)>0\}$.

A G_f beli irányított s,t utakat javító utaknak nevezzük.

13.3 Ford-Fulkerson tétel

Tétel: Legyen H = (G, c) hálózat. Ekkor a maximális folyamérték egyenlő a minimális vágással.

14 Kombinatorika

14.1 Összeg- és szorzatszabály

14.2 Permutáció

14.2.1 Ismétlés nélküli

Definíció: Adott n külömböző elem. Az elemek egy meghatározott sorrendjét az adott n elem egy ismétlés nélküli permutációjának nevezzük. Jele: P_n .

Tétel: Az n külömböző elem permutációjáinak száma $P_n = n!$, ahol n! = n(n-1)(n-2)...1, és 0! = 1.

Bizonyítás: Az első helyen az 1, 2, ..., n elem bármelyike állhat, utána a maradék (n-1) elem összes lehetséges sorrendje követi. És így tovább az utolsó elemig. Az összefüggéseket visszafelé felírva adódik az állítás:

$$P_n = n \cdot P_{n-1}$$

$$P_{n-1} = (n-1) \cdot P_{n-2}$$

$$\vdots$$

$$P_1 = 1$$

$$\downarrow \downarrow$$

$$P_n = n(n-1)(n-2)...1 = n!$$

14.2.2 Ismétléses

Definíció: Adott n elem, melyek között k_1 darab egyenlő, másik k_2 egyenlő, ... k_s darab egyenlő, ahol $k_v \geq 2$, ha v=1,2,...,s, és $k_1+k_2+...+k_s \leq n$. Az adott n elem egy meghatározott sorrendjét ezen elemek ismétléses permutációjának nevezzük. Jele: $P_n^{(k_1,k_2,...,k_s)}$.

Tétel: Adott n, és $k_1, k_2, ..., k_s$ esetén az ismétléses permutációk száma:

$$P_n^{(k_1, k_2, \dots, k_s)} = \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_s!}.$$

Bizonyítás: Tekintsük az n elem egy tetszőleges permutációját. Ekkor k_1 azonos elemekhez k_1 ! külömböző indexet rendelhetünk.

 k_2 azonos elemekhez $k_2!$ külömböző indexet rendelhetünk.

. . .

 k_s azonos elemekhez $k_s!$ külömböző indexet rendelhetünk.

Ekkor fennáll a következő összefüggés, amiből következik a bizonyítandó:

$$k_1! \cdot k_2! \cdot \dots \cdot k_s! \cdot P_n^{(k_1, k_2, \dots, k_s)} = P_n = n!$$

14.3 Variáció

14.3.1 Ismétlés nélküli

Definíció: Adott n külömböző elem. Ha n elem közü k elemet $(0 < k \le n)$ úgy választunk ki, hogy mindegyik elem csak egyszer szerepel, és a kiválasztás sorrendje is számít, akkor az n elem k-ad osztályú ismétlés nélküli variációját kapjuk. Jele: V_n^k .

Tétel: Az n külömböző elem k-ad osztályú ismétlés nélküli variációinak száma:

$$\frac{n!}{(n-k)!} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1).$$

Bizonyítás: Rögzített n mellett, k szerinti teljes indukcióval bizonyítjuk.

k=1 esetén az állítás igaz, mivel n elemből 1-et pontosan n féle képpen lehet kiválasztani.

Tegyük fel, hogy igaz k-ra, és igazoljuk (k+1)-re. Bármelyik $(h_1,h_2,...h_k)$ k-ad osztályú variációhoz (n-k) elem közül választhatunk, egy h_{k+1} -ediket, hogy egy $(h_1,h_2,...,h_{k+1})$ (k+1)-es osztályú variációt kapjunk. Azaz igaz a következő összefüggés: $V_n^k \cdot (n-1) = V_n^{k+1}$.

14.3.2 Ismétléses

Definíció: Adott n külömböző elem. Ha az n elem közül úgy választunk ki k elemet, hogy egy elem többször is szerepelhet, és a sorrend számít, akkor n k-ad osztályű ismétléses variációját kapjuk. Jele: $V_n^{k,i}$.

Tétel: Az n külömböző elem k-ad osztályú ismétléses variációjainak száma $V_n^{k,i} = n^k$.

Bizonyítás: Írjuk föl a kiválasztott elemeket, sorrenben. Az első helyre az adott n elemek bármelyikét választhatjuk, így $V_n^{1,i}=n$. Mivel az kiválasztott elemeknek nem kell feltétlenül külömbözni egymástól, így a következő helyre is az adott n elemek bármelyikét választhatjuk, ekkor ezeknek a száma $V_n^{2,i}=n^2$ lesz, és így tovább:

$$V_n^{k,i} = n^k$$
.

14.4 Kombináció

14.4.1 Ismétlés nélküli

Definíció: Adott n külömböző elem. Ha n elem közül k $(0 < k \le n)$ elemet úgy választunk ki, hogy mindegyik csak egyszer szerepelhet, és a sorrend nem számít, akkor az n elem k-ad osztályú ismétlés nélküli kombinációját kapjuk.

Tétel: Az n külömböző elem ismétléses kombinációinak száma

$$C_n^k = \frac{n!}{k! \cdot (n-k)!} = \binom{a}{b}.$$

Bizonyítás: Az n elem k-ad osztályú ismétlés nélküli kombinációinak száma annyiban külömbözik az ismétlés nélküli variációtól, hogy a kombinációnál nem vesszük figyelembe a sorrendet, azaz osszuk le az ismétlés nélküli variációk számát a kiválasztott elemek ismétlés nélküli permutációjának számával:

$$C_n^k = \frac{V_n^k}{P_n} = \frac{n!}{(n-k)!} \frac{1}{k!} = \frac{n!}{k!(n-k)!}.$$

14.4.2 Ismétléses

Definíció: Adott n külömböző elem. Ha n elem közül k elemet úgy választunk ki, hogy egy elem töbször is sorra kerülhet, és a kiválasztás sorrendje nem számít, akkor az n elem k-ad osztályú ismétléses kombinációját kapjuk. Jele: $C_n^{k,i}$

Tétel: Az n külömböző elem k-ad osztályú ismétléses kombinációinak száma:

$$C_n^{k,i} = \binom{n+k-1}{k}.$$

Bizonyítás: Írjuk fel az n elemet egy tetszőleges, de a továbbiakban rögzített sorrendben. Menjünk végig az elemeken és egy elem alá írjunk fel annyi "l"-t, amennyiszer kiválasztjuk. majd mikor lépünk a következő elemre, rajzoljunk a két elem "l"-jei közé egy * jelet.

Ekkor lesz k darab "l", és n-1 darab *. Mivel a sorrend nem számít, ezért ezt megfeleltethetjük egy ismétléses permutációnak:

$$C_n^{k,i} = P_n^{k,n-1} = \frac{(k+n-1)!}{k!(n-1)!}.$$

2018.06.26. 23. oldal Erdélyi Áron

14.5 Szita formula

A halmazokba rendezés valamilyen közös tulajdonság alapján végzett csoportosítást jelent. A logikai szita (más néven szita formula) a halmazokkal kapcsolatos feladatoknál alkalmazható eljárás. A logikai szita kapcsolatot teremt a halmazok uniójának elemszáma és a metszetek elemszáma között.

A logikai szitát olyan feladatoknál használjuk általában, ahol unióba vont halmazokról meg kell adni azon elemek számát, amelyek egy adott tulajdonsággal nem rendelkeznek. A logikai szita elve az, hogy több halmaz uniójának elemszáma egyenlő az egyes részhalmazok elemszámának összege és a metszetek elemszámának különbségével. Erre felírható egy általános képlet:

- $|A \cup B| = |A| + |B| |A \cap B|$.
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |C \cap B| + |A \cap B \cap C|$.

14.6 Binomiális tétel

Definíció: Az $\binom{n}{k}$ kifejezést binomiális együtthatónak nevezzük. Megállapodás szerint:

$$\binom{n}{0} = 1, \quad \binom{0}{0} = 1.$$

A binomiális együttható fogalma általánosítható tetszőleges valós számra:

$$\binom{\alpha}{k} = \frac{\alpha!}{k! \cdot (\alpha - k)!}, \quad \alpha \in \mathbb{R}, k \in \mathbb{N}.$$

Tétel: Kéttagú kifejezés (binom) bármely nemnegatív egész kitevőjű hatványa polinommá alakítható a következőképp:

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \dots + \binom{n}{n}a^0b^n = \sum_k = 0^n \binom{n}{k}a^{n-k}b^k,$$

ahol $n \in \mathbb{Z}$, és $a, b \in \mathbb{R}$.

Bizonyítás: Tudjuk, hogy kommutatív gyűrűben a több tag szorzását több taggal úgy végezzük, hogy minden tagot szorzunk minden taggal. Írjuk fel az n tényezős (a+b)(a+b)...(a+b) szorzatot. Ha mindegyik tényezőből az a-kat szorozzuk össze, a^n -t kapjuk. Ha (n-1) tagból az a-t, és egy tényezőből a b-t választjuk, ezt éppen n féle képpen tehetjük meg, így $na^{n-1}b$ -t kapunk. Ha (n-2) tényezőből az a-kat és 2 tényezőből a b-ket választjuk, ezt $\binom{n}{2}$ féle képpen tehetjük meg, akkor $\binom{n}{2}a^{n-2}b^2$ lesz az eredmény. Ezt folytatva kapjuk a polinomot.

14.7 Binomiális együtthatók tulajdonságai

Legyen n nemnegatív egész szám és legyen k $(0 < k \le n)$ szintén egész. Ekkor fennálnak a következő összefüggések:

1. Szimetria:

$$\binom{n}{k} = \binom{n}{n-k}.$$

2. Összegzés:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

3. Kettőhatvány:

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n.$$

4.

$$\binom{n}{0}-\binom{n}{1}+\ldots+(-1)^n\binom{n}{n}=\begin{vmatrix}0,han>0\\1,han=0\end{vmatrix}$$

Bizonyítás:

2.
$$\frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!(k+1)}{(k+1)!(n-k)!} + \frac{n!(n-k)}{(k+1)!(n-k)!} = \frac{n!(k+1+n-k)}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}.$$

- 3. Helyettesítsük be a binomiális tételbe a=1 és b=1-et!
- 4. Helyettesítsük be a binomiális tételbe a = 1 és b = -1-et!

15 Irányítatlan és súlyozott Gráfok

15.1 Irányítatlan és súlyozott gráf fogalma

Definíció: Ha egy gráf minden éle irányított, akkor a gráfot irányított gráfnak, különben ha minden éle irányítatlan, akkor irányítatlan gráfnak nevezzük.

Definíció: Az ún. súlyozott gráfban (ami lehet irányított gráf is), minden élhez hozzárendelünk egy értéket, ami az él költsége, súlya vagy hossza az alkalmazástól függően.

15.2 Gráfok mátrixai

15.3 Élszám és fokszám összefüggése

Tétel: (Handshake tétel): Minden gráf fokszáma az élszám kétszeresével egyenlő.

Bizonyítás: Tegyük fel, hogy az e él az u és v csúcsokhoz illeszkedik, azaz u és v az él két végpontja. Ekkor ha

- Ha $u \neq v$, akkor az e élt $\Phi(u)$ -nál, és $\Phi(V)$ -nél is számoltuk.
- Ha pedig u=v, akkor az e él hurokél, és így $\Phi(u)$ -nál számoltuk kétszer.

Tehát, ha a pontok fokszámát összeadjuk, kapjuk az élek számának kétszeresét.

15.4 Speciális gráfok: fa, út, kör, teljes gráf, páros gráf

Definíció: Ha egy gráf összefüggő, és nincs benne kör, akkor azt fagráfnak hívjuk.

Definíció: Élek olyan egymáshoz csatlakozó sorozata, melyben sem él, sem pont nem fordulhat elő egynél többször.

Definíció: A kör élek olyan egymáshoz csatlakozó sorozata, amelyben az élek és pontok egynél többször nem szerepelhetnek, és a kiindulási pont megegyezik a végponttal.

Definíció: Teljes gráfnak nevezzük azokat a gráfokat, amelyeknek minden pontjából a gráf összes többi pontjához vezet egy-egy él.

Definíció: Egy gráf páros akkor és csak akkor, ha nem tartalmaz páratlan kört

15.5 N pontú összefüggő gráfok élszámára, körök létezésére vonatkozó tételek

Tétel: Az n csúcsú összefüggő, egyszerű gráf éleinek száma legalább n-1.

Bizonyítás: Teljes indukcióval. Az n=1 esetre nyílván igaz. Tegyük fel, hogy valamely n>1-re teljesül. Belátjuk, hogy ekkor minden n+1 csúcsú összefüggő gráfnak legalább n éle van. Legyen G egy n+1 csúcsú gráf, és legyen n éle. Ekkor létezik egy elsőfokú csúcs, úgyanis mivel G összefüggő, ezért izolált csúcsa nincs. Vegyük ezt az elsőfokú csúcsot, és a hozzátartozó éllel együtt töröljük a gráfból. Ekkor n csúcsú összefüggő gráfot kapunk, aminek minimum n-1 éle van. Ekkor teljesül az indukciós feltevés. A törölt élt újra hozzáadva G egy n+1 csúcsú, n élű gráf lesz.

Tétel: Ha egy gráfban minden csúcs fokszáma legalább 2, akkor a gráfban van kör.

Bizonyítás: Alkalmazzuk a leghosszabb út módszerét. Legyen 1 hosszúságú L út a G gráf egy leghosszabb útja, és ennek egy végpontja v. Tekintsük G v-hez illeszkedő éleit. Ezek közül bármelyiknek a végpontja L-hez tartozik, külömben L hossza 1-nél nagyobb lenne, ami ellentmond azzal, hogy L a leghosszabb út. Ha G minden pontjának fokszáma legalább kettő, akkor illeszkedik a v-hez egy e él is. Ha e hurokél, akkor ez G egy körét kijelöli. Ha nem hurokél, akkor u-nak v-től külömböző w végpontja L-ben van, tehát L-nek v és w pontokat összekötő e éllel együtt G körét adják.

Tétel: Ha egy n csúcsú gráfnak legalább n éle van, akkor van benne kör.

15.6 Részgráfok

Definíció: R részgráfja G-nek, ha R előállítható a G-ből csúcsok és élek elhagyásával.

15.7 Izomorf gráfok

Definíció: Két gráf izomorf, ha egyik csúcsai és élei kölcsönösen egyértelmű és illeszkedéstartó módon megfeleltethetők a másik pontjainak és éleinek.

Definíció: Legyenek G = (V, E), és G' = (V', E') homeomorf gráfok, ha $\exists f : V \to V'$ függvény, melyre $\{u, v\} \in E$ esetén $\{f(u), f(v)\} \in E'$, mindezt úgy, hogy ha két csúcs szomszédos a G-ben, akkor G'-ben is szomszédos.

16 Irányított és irányítatlan gráfok

16.1 Összefüggő gráfok, összefüggő komponensek

Definíció: Ha egy gráfban bármely két csúcs úttal elérhető, akkor a gráfot összefüggőnek nevezzük

Definíció: Egy irányítatlan gráf összefüggő komponense olyan részgráf, mely összefüggő, azaz bármely két csúcsát út köti össze, de az eredeti gráf többi csúcsához nem csatlakozik.

16.2 Hamilton-kör/út, és létezéséhez elégséges feltételek

Definíció: Egy P kör egy G = (V, E) gráfban Hamilton-kör, ha P a V összes elemét pontosan egyszer tartalmazza. Hamilton-útról akkor beszélünk, ha P kör helyett út.

Tétel: (Szükséges feltétel Hamilton-kör létezésére) Ha egy gráfban k pontot elhagyva k-nál több komponens keletkezik, akkor nem tartalmazhat Hamilton-kört.

Tétel: (Ore tétel) Ha G gráfra teljesül, hogy két nem szomszédos u, v csúcsok fokszámának összege nagyobb a G gráf csúcsainak számánál, akkor G-nek Hamilton-köre van.

Tétel: (Dirac tétele) Ha az n=2k csúcsszámú gráfnak van olyan csúcsa, amely legalább k fokú, akkor van G-nek Hamilton köre.

16.3 Euler kör/út irányított gráfokra

Tétel: Egy összefüggő, irányított gráfban pontosan akkor van Euler-kör, ha minden csúcsnál a bemenő és kimenő élek száma megegyezik.

Egy összefüggő, irányított gráfban pontosan akkor van Euler-út, ha van benne Euler-kör, vagy ha két csúcs kivételével a bemenő és kimenő élek száma minden csúcsban megegyezik, a kivételeknél pedig az egyik (kiindulási) csúcsban a kimenő élek száma eggyel több, a másik (érkezési) csúcsban pedig a bemenő élek száma több eggyel.

16.4 Irányított gráfok összefüggősége

Definíció: Egy irányított gráf gyengén összefüggő vagy összefüggő, ha az alapul szolgáló irányítatlan gráf, tehát az irányított éleinek irányítatlanra való cseréjével kapott irányítatlan gráf összefüggő.

Definíció: Egy irányított gráf erősen összefüggő vagy erős, ha bármely u, v csúcspár esetén létezik irányított út u-ból v-be és v-ből u-ba is. Az erős komponensek a maximális erősen összefüggő részgráfok.

16.5 Irányított gráfok fokszáma és éleinek száma közti összefüggés bizonyítással

Tétel: Irányított gráfban a befokok és a kifokok összege is egyenlő az élek számával.

Tegyük fel, hogy az e irányított él az u és v csúcsokhoz illeszkedik, azaz u a kezdőpontja és v az él végpontja. Ekkor ha

- Ha $u \neq v$, akkor az e élt u-nál kifoknak, és v-nél befoknak számoltuk.
- Ha pedig u = v, akkor az e él hurokél, és így u-nál számoltuk befoknak és kifoknak.

Mivel minden irányított élnek egy kezdőpontja és egy végpontja van, ezért ebből kapjuk az állítást.

16.6 Irányított gráfok mátrixai

16.7 Dijkstra algoritmus irányított gráfokra

Algoritmus: Választunk egy kiindulási csúcsot. Mindegyik csúcshoz rendeljük hozzá azt, hogy mekkora volt az élsúlyok összege, amik mentén a csúcsba eljutottunk. Kezdetben mindegyik végtelen. Válasszuk a kiindulási csúcsunkhoz illeszkedő ki-éleket, és az élek másik végén lévő csúcsokhoz rendeljük hozzá az élsúlyok összegét, amin eljutunk a csúcsba. Ezt követően minden lépésben a legkisebb összegű csúcsból indulunk ki, és nézzük meg a többi csúcsba vezető ki-élek súlyösszegét. Ha ez kevesebb, mint az adott csúcshoz hozzárendelt érték, akkor erre módosítjuk, ha nagyobb, akkor változatlanul hagyjuk. Végül, ha már nem találunk semelyik csúcshoz sem kisebb összeget, végeztünk.

17 Gráfok bejárása és súlyozott gráfok

17.1 Bináris fák bejárási módjai

Megkülönböztetünk egy csúcsot, ezt gyökérnek nevezzük. A gyökér őse (szülője) a szomszédos csúcsainak, és ezek a csúcsok az ősök (szülők) utódai (gyerekei). Az az utód, aki nem szülő, a fa levele. A fában egy út nevezhető "ág"-nak is.

Definíció: Ha egy fában minden csúcsnak legfeljebb két gyereke van, akkor a fát bináris fának nevezzük.

Algoritmus: Preorder bejárás: azaz a gyökér elem majd a bal oldali részfa preorder bejárása, végül a jobboldali részfa preorder bejárása.

Algoritmus: Inorder bejárás: azaz először a bal részfa inorder bejárása, majd a gyökérelem, végül a jobboldali részfa inorder bejárása.

Algoritmus: Postorder bejárás: azaz először a bal részfa posztorder bejárása, majd a jobboldali részfa posztorder bejárása, végül a gyökérelem feldolgozása.

17.2 Súlyozott gráf fogalma

Definíció: Az ún. súlyozott gráfban (ami lehet irányított gráf is), minden élhez hozzárendelünk egy értéket, ami az él költsége, súlya vagy hossza az alkalmazástól függően.

17.3 Kruskal, Prim, Dijkstra algoritmusok irányítatlan gráfokra

Definíció: Egy gráf minden csúcsát tartalmazó fát a gráf feszítőfájának nevezzük.

Tétel: Minden (összefüggő) gráfnak van feszítőfája.

Algoritmus: (Prim algoritmus) Választunk egy kiindulási csúcsot úgy, hogy ez a csúcs a legkisebb súlyú él végpontja legyen. Az ebből kiinduló élek közül a legkisebb súlyú mentén választjuk a következő csúcsot. A legkisebb súlyú élhez fűzzük a rá illeszkedő legkisebb súlyú élet, ha az nem alkot kört az eddig vizsgált élekkel. Ha már van n-1 él, akkor készen vagyunk.

Algoritmus: (Kruskal algoritmus) Az éleket súlyuk szerint növekvő sorrendbe rendezzük. A legkisebbtől kezdve vesszük őket (nem feltétlenül illeszkedően) úgy, hogy ne képezzenek kört. Ha már van n-1 él, akkor készen vagyunk.

Algoritmus: (Dijkstra algoritmus) Választunk egy kiindulási csúcsot. Mindegyik csúcshoz rendeljük hozzá azt, hogy mekkora volt az élsúlyok összege, amik mentén a csúcsba eljutottunk. Kezdetben mindegyik végtelen. Válasszuk a kiindulási csúcsunkhoz illeszkedő éleket, és az élek másik végén lévő csúcsokhoz rendeljük hozzá az élsúlyok összegét, amin eljutunk a csúcsba. Ezt követően minden lépésben a legkisebb összegű csúcsból indulunk ki, és nézzük meg a többi csúcsba vezető élek súlyösszegét. Ha ez kevesebb, mint az adott csúcshoz hozzárendelt érték, akkor erre módosítjuk, ha nagyobb, akkor változatlanul hagyjuk. Végül, ha már nem találunk semelyik csúcshoz sem kisebb összeget, végeztünk.