Banco de dados

03 - Projeto Lógico de Banco de Dados

Marcos Roberto Ribeiro

Restrições de Chave

- Antes de abordarmos o Projeto Lógico de Banco de Dados é importante tomarmos conhecimento de alguns conceitos a respeito de restrições de chave sobre tabelas;
- Uma chave é um subconjunto mínimo de colunas de uma tabela que identifica unicamente cada tupla da tabela;
- Por exemplo na tabela Alunos(matrícula, cpf, nome, média), podemos considerar uma chave sobre a coluna cpf. Desta maneira, cada aluno possui um CPF único e não é possível inserir um novo aluno com o mesmo CPF de outro já existente na tabela;
- Uma tabela pode ter mais de uma chave, no caso da tabela anterior podemos ter como chaves: cpf e matrícula. Entretanto uma das chaves deve ser eleita a chave primária (normalmente a chave primária é definida de acordo com a análise de requisitos);
- Cada tabela deve possuir uma única chave primária, mas podemos fazer uso de outras chaves se for necessário, por exemplo, para impor uma restrição de unicidade¹;
- Considerando novamente a tabela Alunos, podemos considerar como chave primária o campo matricula e como chave o campo cpf para impedir erros de inserção de CPF duplicados;

¹Veremos em mais detalhes as restrições de unicidade quando estudarmos SQL

Chaves Estrangeiras

- Em determinadas situações os dados de uma tabela dependem dos dados de outra tabela. Neste caso, a alteração dos dados não pode ser feita sem verificar possíveis inconsistências;
- Por exemplo, considerando as tabelas:
 Alunos(id_aluno: integer, nome: string, idade: integer, media: float)
 Matriculados(*id_disciplina: integer, *id_aluno: integer, nota: float)
 *Matriculados.id_aluno: Alunos.id_aluno
 Uma tupla na tabela Matriculados não pode conter um valor em id aluno que não exista na tabela Alunos;
- Este tipo de restrição é chamado de chave estrangeira, ou seja, os valores dos colunas que compõem a chave estrangeira devem corresponder a valores existentes na chave primária referenciada.
- No nosso exemplo a chave estrangeira é o campo id_aluno da tabela Matriculados que referencia a chave primária da tabela Alunos;
- Note que as colunas que compõem alguma chave estrangeira são precedidos de *;

Conversão do DER para o Esquema Relacional

- O DER é conveniente para representar um projeto de banco de dados em alto nível;
- Porém para uma implementação prática de um banco de dados precisamos de um esquema lógico do mesmo;
- É possível obter um esquema lógico aproximado de um banco de dados a partir de seu DER.

Entidades para Tabelas

- Uma entidade é mapeada em uma tabela de maneira direta;
- Cada atributo da entidade torna-se uma coluna na tabela seguida por seu respectivo tipo;
- Exemplo, considerando a seguinte entidade:

temos a seguinte tabela mapeada:

Funcionários(cpf: string, nome_funcionario: string, salario: float)

Mapeamento de Relacionamentos

• O mapeamento de relacionamentos deve considerar a cardinalidade. Como visto anteriormente as cardinalidades são as seguintes:

1:N Um para muitos;

1:1 Um para um;

N:N Muitos para muitos.

Mapeamento de Relacionamentos com Cardinalidade 1:N

- Quando um relacionamento possui a cardinalidade 1:N
 (um-para-muitos), a chave primária da entidade com cardinalidade 1 e os
 atributos descritivos são mapeados para a entidade com cardinalidade N;
- A chave primária da tabela mapeada com cardinalidade 1 torna-se uma chave estrangeira na tabela mapeada com cardinalidade N;
- Exemplo, considerando o DER:

temos as seguintes tabelas mapeadas:

Funcionários(cpf: string, nome_funcionario: string, salario: float)

Departamentos(id departamento: integer, nome departamento: string,

*cpf_gerente: string, desde: date)

^{*}Departamentos.cpf_gerente : Funcionários.cpf

Mapeamento de Relacionamentos com Cardinalidade 1:1

- Quando temos um relacionamento com cardinalidade 1:1, podemos fazer seu mapeamento considerando a cardinalidade 1:N;
- Como exemplo vamos considerar o relacionamento do DER a seguir com cardinalidade 1:1;

• Tal relacionamento pode ser mapeado de duas maneiras:

 A cardinalidade 1:1 pode ser mantida através de uma restrição de unicidade que veremos nas próximas aulas.

Mapeamento de Relacionamentos com Cardinalidade N:N

- O mapeamento de um relacionamento com cardinalidade N:N gera uma tabela. Tal mapeamento deve ser realizado considerando as chaves primárias das entidades participantes e os atributos descritivos;
- A chave primária da tabela resultante será formada pelas chaves primárias das entidades participantes;
- Além disto, a chave primária de cada entidade participante se tornará chave estrangeira na tabela;
- Exemplo, considerando o DER:

temos as seguintes tabelas mapeadas:

Funcionários(cpf: string, nome_funcionario: string, salario: float)

Departamentos (id_departamento: integer, nome_departamento: strings)

Trabalha em(*cpf: string, *id departamento: string, desde: date)

*trabalha_em.cpf : Funcionários.cpf

*trabalha_em.id_departamento : Departamentos.id_departamento

Mapeamento de Auto-Relacionamentos

- No caso de auto-relacionamentos utilizamos os papéis associados ao relacionamento para compor os nomes das colunas da tabela;
- Exemplo, considerando o DER:

temos as seguintes tabelas mapeadas:

Funcionários(cpf: string, nome_funcionario: string, salario: float)
Supervisiona(*supervisor_cpf: string, *supervisionado_cpf: string)
*Supervisiona supervisor_cpf: Funcionários and

 $*Supervisiona.supervisor_cpf$: Funcionários.cpf

 $*Supervisiona.supervisionado_cpf: Funcion\'{a}rios.cpf$

Referências I

Elmasri, R. and Navathe, S. B. (2011). Sistemas de banco de dados.

Pearson Addison Wesley, São Paulo, 6 edition.

Ramakrishnan, R. and Gehrke, J. (2008). Sistemas de gerenciamento de banco de dados. McGrawHill, São Paulo, 3 edition.

Takahashi, M. (2009). *Guia Mangá de Banco de Dados*.

Novatec, São Paulo.