Numerical Optimization Solution to exercise sheet

review on 05.02.2024 during the exercise class

1. (Projected Subgradient Method)

For nonsmooth optimization we are forced to generalize the concept of classical derivatives of a function f at a point x_0 . For this, we have introduced for convex functions f defined on a convex set the convex subdifferential ∂f , compare Definition 5.3.3.

a) Calculate the following sub-differentials.

i)
$$\partial f(0)$$
, for $f: \mathbb{R} \to \mathbb{R}$, $f(x) := \begin{cases} x^2, & x < 0, \\ x, & x \ge 0. \end{cases}$

ii)
$$\partial f(0)$$
, for $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) := ||x||_2 = \sqrt{x^T x}$.

b) The Projected Subgradient Method is a method for non-smooth optimization, where (for example) the cost function f is not differentiable in the classical sense. In contrast to the general gradient method, the Projected Subgradient Method uses on the one hand an element of the convex sub-differential instead of it's classical gradient and on the other hand a projection of $x^{(k+1)}$ onto the feasible domain \mathcal{F} (compare Algorithm 5.3.1). However, the choice of a reasonable step-size is not that trivial due to the missing smoothness of f.

Consider now the unconstrained optimization problem

$$\min_{x \in \mathbb{R}} f(x),\tag{1}$$

for f(x) = |x| with its solution $x^* = 0$. Use the Projected Subgradient Method with $P_{\mathcal{F}} = id$ (because of $\mathcal{F} = \mathbb{R}^n$) for solving the optimization problem (1).

Choose the step sizes

i)
$$\sigma^{(k)} = \frac{1}{k+1}$$
, as well as

ii)
$$\sigma^{(k)} = \frac{f(x^{(k)}) - f(x^*)}{|s^{(k)}|},$$

and the initial vector $x^{(0)} = 2$ for computing $x^{(1)}, \ldots, x^{(5)}$ (until $s^{(k)} = 0$).

Hint: You can use without a proof that the convex sub-differential of f in $x_0 = 0$ is given by $\partial f(0) = [-1, 1]$.

c) Consider the optimization problem (1) with $f(x) = (|x|+1)^2$ and its solution $x^* = 0$. Prove that for the Projected Subgradient Method with step size $\sigma^{(k)} = (f(x^{(k)}) - f(x^*))/|s^{(k)}|$, it holds

$$|x^{(k+1)} - x^*| \le \frac{1}{2}|x^{(k)} - x^*|, \qquad k = 1, 2, \dots$$

(4+4+6=14 Points)

Solution:

a) i) With $x_0 = 0$, $f(x_0) = 0$, the subgradient condition becomes

$$f(y) \ge f(x_0) + s^{\top}(y - x_0), \quad \forall y \in \mathcal{F} = \mathbb{R},$$

 $\iff f(y) \ge sy, \quad \forall y \in \mathbb{R}.$

We split the condition in

$$y^2 \ge sy, \qquad \forall y \in \{y < 0\},$$

$$\iff y \le s, \qquad \forall y \in \{y < 0\},$$

which gives $s \geq 0$. On the other hand we have

$$\begin{aligned} y \geq sy, & \forall y \in \{y \geq 0\} \\ \iff 1 \geq s, & \forall y \in \{y \geq 0\}, \end{aligned}$$

which gives $s \leq 1$. Together, we have

$$\partial f(0) = [0, 1].$$

ii) With $x_0 = 0$, $f(x_0) = 0$, the subgradient condition becomes

$$f(y) \ge f(x_0) + s^{\top}(y - x_0), \quad \forall y \in \mathcal{F} = \mathbb{R}^n,$$

 $\iff \sqrt{y^{\top}y} \ge s^{\top}y, \quad \forall y \in \mathbb{R}^n.$

This condition must also hold for the special case of y = s:

$$||s||_2 = \sqrt{s^\top s} \ge s^\top s = ||s||_2^2,$$

 $\iff 1 \ge ||s||_2.$

And indeed, with $1 \ge ||s||_2$ and with Cauchy-Schwarz, we have

$$\sqrt{y^{\top}y} = ||y||_2 = \frac{||y||_2||s||_2}{||s||_2} \ge \frac{s^{\top}y}{||s||_2} \ge s^{\top}y, \quad \forall y \in \mathbb{R}^n.$$

Therefore it follows

$$\partial f(0) = \{ s \in \mathbb{R}^n : ||s||_2 \le 1 \}.$$

b) i) The sub-differential of f is given by

$$\partial f(x) = \begin{cases} \{-1\}, & x < 0, \\ [-1, 1], & x = 0, \\ \{1\}, & x > 0, \end{cases}$$
 (2)

and therefore for descent directions $d^{(k)} = \frac{-s^{(k)}}{||s^{(k)}||_2}$, for $x \neq 0$, it is

$$d^{(k)} = \begin{cases} 1, & x < 0, \\ -1, & x > 0. \end{cases}$$
 (3)

With these observations it follows for the Projected Subgradient Method for k = 0, 1...5 and $x^{(0)} = 2$:

..

and finally we get the iteration sequence $x^{(0)}=2,\,x^{(1)}=1,\,x^{(2)}=\frac{1}{2},\,x^{(3)}=\frac{1}{6},\,x^{(4)}=-\frac{1}{12},\,x^{(5)}=\frac{7}{60}.$

ii) Again, we have the sub-differential (2) and the descent directions (3), for the Projected Subgradient Method it follows for k = 0, 1...5 and $x^{(0)} = 2$:

$$\rightarrow s^{(0)} = -1, d^{(0)} = -1, \sigma^{(0)} = 2, x^{(1)} = 0;$$

 $\rightarrow s^{(1)} = 0;$

Therefore the problem described above converges after just one iteration with the suitable stepsize $\sigma^{(k)} = \frac{f(x^{(k)} - f(x^*))}{|s^{(k)}|}$.

c) We define

$$g(x) := 2(|x| + 1)\operatorname{sign}(x) \in \partial f(x),$$

a function that assigns each point a possible subgradient of f. Now, we can compute $d^{(k)}$:

$$d^{(k)} = \frac{-g(x^{(k)})}{|g(x^{(k)})|} = \frac{-s^{(k)}}{|s^{(k)}|} = \frac{-2(|x^{(k)}|+1)\operatorname{sign}(x^{(k)})}{2(|x^{(k)}|+1)} = -\operatorname{sign}(x^{(k)}).$$

Next, we compute $\sigma^{(k)}$:

$$\sigma^{(k)} = \frac{f(x^{(k)}) - f(x^*)}{|s^{(k)}|} = \frac{(|x^{(k)}| + 1)^2 - 1}{2(|x^{(k)}| + 1)} = \frac{|x^{(k)}|^2 + 2|x^{(k)}|}{2|x^{(k)}| + 2}$$
$$= \frac{\frac{1}{2}|x^{(k)}|(2|x^{(k)}| + 2) + |x^{(k)}|}{2|x^{(k)}| + 2} = \frac{|x^{(k)}|}{2} + \frac{|x^{(k)}|}{2|x^{(k)}| + 2}. \tag{4}$$

An iteration step is defined by

$$x^{(k+1)} = x^{(k)} + \sigma^{(k)} d^{(k)} = x^{(k)} - \operatorname{sign}(x^{(k)}) \left(\frac{|x^{(k)}|}{2} + \frac{|x^{(k)}|}{2|x^{(k)}| + 2} \right)$$

$$= x^{(k)} \underbrace{\left(1 - \frac{1}{2} - \frac{1}{2|x^{(k)}| + 2} \right)}_{\leq \frac{1}{2}} \leq \frac{1}{2} x^{(k)}.$$
(5)

Thereby it holds that $|x^{(k+1)} - x^*| = |x^{(k+1)}| \le \frac{1}{2}|x^{(k)}| = \frac{1}{2}|x^{(k)} - x^*|$.

2. (Projected Subgradient Method)

a) Apply the routine projected_subgradient_method.m to the Wolfe function

$$f^{\text{Wolfe}}(x,y) := \begin{cases} 5\sqrt{9x^2 + 16y^2}, & x \ge |y|, \\ 9x + 16|y|, & 0 < x < |y|, \\ 9x + 16|y| - x^9, & x \le 0 \end{cases}$$

using different step sizes $\sigma^{(k)} = n/(k+1)$, e.g. n = 1, 2, 3. Plot the iteration path together with the solution $x^* = (1, 0)^T$ and the contour lines of f^{Wolfe} .

b) Write a MATLAB routine

which performs a projection on the convex set

$$\mathcal{F} = \{(x,y)^{\top} \in \mathbb{R}^2 : y \ge (x-a)^2 + b\},\$$

where $a, b \in \mathbb{R}$ are two parameters. Solve the constrained optimization problem

$$\min_{(x,y)^T \in \mathcal{F}} f^{\text{Wolfe}}(x,y)$$

for different parameter a and b by using the Projected Subgradient Method. Plot again the iteration path together with the set \mathcal{F} and the contour lines of f^{Wolfe} .

(6 + 6 = 12 Points)

Solution:

a) The script could look like

```
clear, close all
clc
xmax = [-2, 6];
ymax = [-2, 4];
a = 0;
b = -0.5;
f = 0(x) \text{ wolfe}(x);
x0 = [5; 4];
sigma = 0(k) 3/(k+1);
subgrad_f =@(x) Subgrad_Wolfe(x);
proj =@(x) x; %Exercise 2b
% proj =@(x) Projection_Parabel(x, a, b); %Exercise 2c
tol = 1e-2;
maxIt = 1000;
x_sol = [-1; 0];
outflag = 0;
[x, f_val, X, iter] = projected_subgradient_method(f, subgrad_f, proj, x0, ...
                                 maxIt, sigma, tol,...
                                  outflag);
```

```
[XX, YY] = meshgrid(linspace(xmax(1), xmax(2), 200), linspace(ymax(1), ymax(2), 200));
ZZ = zeros(size(XX));
for i = 1:size(XX, 1)
    for j = 1:size(XX, 2)
       ZZ(i,j) = wolfe([XX(i,j); YY(i,j)]);
    end
end
figure();
[\sim, c] = contour(XX, YY, ZZ, 150);
hold on;
nb = plot(XX(1,:), (XX(1,:) - a).^2 + b, 'linewidth', 3, 'color', [0.8500, 0.3250, 0.0980]);
p = plot(X(1,:), X(2,:), '-*', 'linewidth', 3, 'color', [0, 0.4470, 0.7410]);
so = plot(x_sol(1), x_sol(2), 'ko', 'linewidth', 2, MarkerSize=10);
sg = plot(X(1,end), X(2,end), 'rx', 'linewidth', 2, MarkerSize=10);
xlim(xmax);
ylim(ymax);
tit = '\textbf{Iterations of the Projected Subgradient Method}';
xlab = '$x$';
ylab = '$y$';
'\, sol x^*, '\, x^{(k)};
title(tit, 'Interpreter','latex')
xlabel(xlab, 'Interpreter', 'latex')
ylabel(ylab,'Interpreter','latex')
           'Interpreter', 'latex', 'Location', 'north', 'FontSize', 20);
set(lea,
set(gca,'TickLabelInterpreter', 'latex', 'FontSize',20)
set(qcf,'units','normalized','outerposition',[0 0.05 1 0.9]); % Maximize figure window
% wolfe-function
function fx = wolfe(x)
   if x(1) >= abs(x(2))
       fx = 5*sqrt(9*x(1)^2 + 16*x(2)^2);
   elseif x(1) \ll 0
       fx = 9*x(1) + 16*abs(x(2)) - x(1)^9;
   else
       fx = 9*x(1) + 16*abs(x(2));
   end
end
```

b) The function Projection_Parabel.m could look like

```
function [x] = Projection_Parabel(x, a, b)

if (x(1) - a)^2 + b <= x(2)
    return
end

p = zeros(4,1);
p(1) = -2;
p(2) = 6*a;
p(3) = 2*x(2) - 1 - 2*b - 6*a^3;
p(4) = x(1) + 2*a*b - 2*x(2)*a + 2*a^3;

r = roots(p);
r = r(imag(r) == 0);</pre>
```

```
yr = (r - a).^2 + b;
if length(r) ~= 1
    error('something went wrong');
end
x = [r; yr];
end
```