Exhaust gas purification device used for post-treating IC engine exhaust gases comprises post-treatment unit, unit for introducing auxiliary agent into post-treatment unit, and unit for mixing exhaust gas with agent

Publication number: DE10060808 Publication date: 2002-07-04

Inventor: RIPPER WOLFGANG (DE): POLACH WILHELM (DE); WEYER KLAUS (DE): SCHARSACK CORD (DE)

Applicant: BOSCH GMBH ROBERT (DE)

Glassification

-International: F01N3/20: F01N3/28: F01N3/20: F01N3/28: (IPC1-7):

- European:

F01N3/038 F01N3/20D; F01N3/28E

Application number: DE20001060808 20001207 Priority number(s): DE20001060808 20001207

Report a data error here

#### Abstract of DF10060808

An exhaust gas purification device comprises a post-treatment unit (50); a unit (45) for introducing an auxiliary agent into the posttreatment unit; and a unit (30) for mixing the exhaust gas with the agent. Preferred Features: The mixing unit contains a screen suitable for producing inhomogeneities in the exhaust gas stream. The screen has a deviating blade through which the exhaust gas flows and by which the gas can be deviated from its flow direction. The blade is arranged to rotate about a conical central region. The posttreatment unit contains a catalyst for the selective catalytic reduction of nitrogen oxides in the exhaust gas. The auxiliary agent is a reductant made from a urea-water solution.

Data supplied from the esp@cenet database - Worldwide



® BUNDESREPUBLIK DEUTSCHLAND

(1) Aktenzeichen:

® Offenlegungsschrift <sub>®</sub> DE 100 60 808 A 1

f Int. CI.7: F 01 N 3/038

DEUTSCHES PATENT- UND MARKENAMT ② Anmeldetag:

100 60 808.6 7. 12. 2000 (i) Offenlegungstag: 4. 7. 2002

(1) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

(2) Erfinder:

Ripper, Wolfgang, 70327 Stuttgart, DE; Polach, Wilhelm, Dr., 71696 Möglingen, DE; Weyer, Klaus, 71638 Ludwigsburg, DE; Scharsack, Cord, 70180 Stuttgart, DE

60 Entgegenhaltungen:

| DE | 197 31 865 C2 |
|----|---------------|
| DE | 199 21 971 A1 |
| DE | 198 55 338 A1 |
| DE | 35 36 315 A1  |

Die folgenden Angeben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

Abgasreinigungsanlage

Es wird eine Abgasreinigungsanlage zur Nachbehand-lung von Abgassen vorgeschlagen, bei der Mittel zur Zu-fuhr eines Hiffmittels zur Nachbehandlung stromabwärts eines Abgasmischers angeordnet sind. Diese Anlage gewährleistet ein verschleißfreien und robusten Betrieb zur katalytischen Reduktion von Stickoxiden.



#### Stand der Technik

[0001] Die Erfindung geht aus von einer Abgarenin-5 gungsanlage zur Nachbehandlung des Abgasse einer Brennkraftmaschine nach der Gattung des Hauptanspruchs, Aus der US 5200 002 ist sehon eines solche Abgaszeningungsanlage bekannt, bei der ein hinter den Mitteln zur Zuführ eines Hilfsmittels angeordneter statischer Mischer vorgesehen ist, 10

# Vorteile der Erfindung

[0002] Die erfindungsgemäße Abgasreinigungsanlage mit den kennzeichnenden Merkmalen des Hauptanspruchs hat 15 demgegenüber den Vorteil, dass sich an den Mitteln zur Mischung des Abgases keine Ablagerungen beziehungsweise Rückstände des Hilfsmittels festsetzen können. Dadurch werden Auskristallisierungen bis hin zu Verstopfungen des Abgasmischers durch das Hilfsmittel vermieden. Dartiber 20 hinaus kann eine Dosierung des Hilfsmittels ohne Zeitverzögerung erfolgen, da das Hilfsmittel keine Möglichkeit hat, sich erst an einen im Strömungsquerschnitt stehenden Gegenstand abzulagern und erst anschließend wieder nach einer unvorherbestimmbaren Zeitspanne zu desorbieren, Ein 25 weiterer Vorteil besteht darin, dass die Mittel zur Mischung aus einem Stahl gefertigt werden können, der dem Stahl des Auspuffrohrs entspricht; da keine reaktiven Materialien wie beispielsweise Reduktionsmittel auf die Mittel zur Zufuhr auftreffen können, ist somit kein teurer Edelstahl erforder- 30 lich, Insbesondere bei axial in die beispielsweise als SCR-Katalysator ausgestaltete Nachbehandlungsanordnung mündenden Abgasrohren (SCR steht als Abkürzung für den englischen Ausdruck "Selective Catalytic Reduction") gewährleisten die Mittel zur Mischung eine Gleichverteilung des 35 Hilfsmittel-Abgasgemischs auf die angeströmte Oberfläche der Nachbehandlungsanordnung. Dadurch ist beispielsweise in Motorbetriebspunkten mit hoher Last und Drchzahl eine Steigerung des Stickoxidumsatzes von 100% zu erreichen und der Durchbruch von Ammoniak im SCR-Kataly- 40 sator kann vermindert werden, der bei einer punktuellen Belastung durch beispielsweise einer als Reduktionsmittel verwendeten Harnstoffwasserlösung im SCR-Katalysator enteteht

100031 Durch die in den abhängigen Ansprüchen aufgetülhrten Maßnahmen sind vorteillanfte Weiterbildungen und
Verbesserungen der im Hauptanspruch angegebenen Abgasreinigungsanlage möglich. Besonders vorteilhaft ist es, dass
die Mittel zur Mischung eine zur Erzeugung von Inhomogenitäten in der Strömung geeignete Blendenanordmung entsahalten. Dadurch wird in einfacher Weise eine derartige Zustandpräparation des Abgases erzielt, dass es sich mit nachfolgend zugedürntem Hilfsmittel effizient vermischt.

[0004] Insbesondere eine rotationssymmetrische Blendenanordnung erweist sich bei kreisförmigen Querschnitten 55 der beteiligten Abgasrohre als vorteilhaft.

[0005] Eine konische Form eines Zentralbereichs des Abgasmischers unterstützt eine nach allen Seiten gleichmäßige Zufuhr des Abgases auf eine in Form von Leitschaufeln ausgebildete Blendenanordnung.

[0006] Weitere Vorteile ergeben sich aus den weiteren in den abhängigen Ansprüchen und in der Beschreibung genannten Merkmalen.

### Zeichnung

[0007] Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung nither orläutert. Es zeigen Fig. 1a eine Abgasteinigungsanlage, Fig. 1b ein Dosierrohr, Fig. 2a eine Draufsicht auf die Vorderseite eines Abgasmischers, Fig. 2b eine Draufsicht auf die Rückseite des Abgasmischers und Fig. 2c eine schematische Querschnittsseitenansicht.

### Beschreibung der Ausführungsbeispiele

[0008] In Fig. 1a ist in schematischer Weise eine Brennkraftmaschine 10 dargestellt, die tiber ein Abgasrohr 20 mit einem Abgasmischer 30 verbunden ist. Auf der der Brennkraftmaschine 10 gegenüberliegenden Seite des Abgasmischers 30 führt ein weiteres Abgasrohr 40 zu einem SCR-Katalysator 50 ("SCR" = Abkürzung für den englischen Ausdruck "Selective Catalytic Reduction"), über dessen Endrohr 60 gereinigtes Abgas 61 ins Freie gelangen kann. Der Abgasmischer 30 ist an einem Flansch 21 des Abgasrohrs 20 befestigt; die Befestigung des weiteren Abgasrohrs 40 auf der anderen Seite des Abgasmischers 30 folgt über einen weiteren Flansch 41 des weiteren Abgasrohrs 40. Zwischen den Flanschen 21 beziehungsweise 41 und dem Abgasmischer 30 sind jeweils (nicht eingezeichnete) graphithaltige Dichtungen angeordnet, die mittels durch die Flansche hindurchgeführte Schraubverbindungen zwischen dem Abgasmischer und den Flanschen eingeklemmt sind. Ein Dosierrohr 45 ragt in das weitere Abgasrohr 40 hinein und weist ein Teilstück 48 auf, das parallel zur Hauptströmungsrichtung 22 im weiteren Abgasrohr 40 angeordnet ist. Eine Hilfsmittelzufuhr aus einem Vorratsbehälter beispielsweise mit Hilfe einer Pumpenanordnung ist in Fig. 1a schematisch mit dem Bezugszeichen 43 markiert. Der SCR-Katalysator 50 dient zur selektiven katalytischen Reduktion von in dem Abgas der Brennkraftmaschine 10 enthaltenen Stickoxiden. Zur Unterstützung der katalytischen Reduktion wird ein als Reduktionsmittel verwendbares Hilfsmittel über das Dosierrohr 45 in den Abgastrakt eingeführt. Als Reduktionsmittel wird im vorliegenden Ausführungsbeispiel eine Harnstoffwasserlösung verwendet. Der Abgasmischer 30 erzeugt von der Hauptströmungsrichtung 22 abweichende Teilströmungsrichtungen, die für eine effiziente Verwirbelung beziehungsweise Vermischung des Abgases mit dem hinter dem Abgasmischar zugeführten Reduktionsmittel sorgen. [0009] In einer alternativen Ausführungsform ist dem SCR-Katalysator 50 ein Hydrolysekatalysator vorgelagert, der die Umsetzung der Harnstoffwasserlösung in das eigentlich als Reduktionsmittel verwendete Ammoniak beschleunigt. Des Weiteren kann zusätzlich oder alternativ zwischen der Brennkraftmaschine 10 und dem Abgasmischer 30 ein Oxidationskatalysator angeordnet sein.

[0010] Fig. 15 zeigt eine Detailansicht des Dosierrobm 45. Das Teilentek 48 den Dosierrobm 45 ist an seinem Brde 47 verschlossen. Austritäsfömungen 46 zur Abgabe des Reduktionsmittels in das Abgaschr 40 sind an einem Umfang amgeorchet, so dass das Mittel in radialier Richnung, d. h. senkrecht zur Längsachse des Teilstücks 48, austreiten kann. Das Dosierrocht 45 hat einen Außlendurchmenseser von ca. 4 mm. Die als Bohrungen ausgeführen Austritüsfümungen 46 han typischerwise einen Durchmesser von ca. 0,5 mm und sind gleichmäßig über dem Umfang wertellt; so sind im vorlegenden Austritüsfümungen vorgeschen. Die Harnstoffwasserlösung trifft somit senkrecht auf die Stöfmung des Abgasses.

[0011] Fig. 2a zeigt einen Abgasmischer 30 mit einem konischen Zentralbereich 71 und zwischen dem Zentralbereich in und den restlichen Tülen des Abgasmischers angeordneten Leitschaufeln 72. Die Leitschaufeln sind rotationssymmetrisch um den konischen Zentralbereich 11 herum angeordtel. In einem äußeren Randbereich des Abgasmischers 30 befinden sich Befestigungslicher 70. In Fig. 2b ist die Rückselte des Abgarnischers 30 abpellidet. Auf dieser Seite nagen die Leitschaufeln 72 teilweise aus der Zeichnungsebene heraus. In Fig. 2e ist schematisch ein Seitenquerschnitt dargestellt. Der Abgasnischer ist ein kreisrundes Bleich, das 5 sich senkrecht im Abgasrobr befindet. In das Blech sim acht gleichmäßig kreisringausschnittformige Offinmgen eingeschnitten. An der Rückseite der Öffungen sind Blechlaschen befestigt, die als Leitschaufeln 72 ausgeführt sind. Die Darstellung ist schematisch und soll im Wesentlichen 10 die relative Anordung von Leitschaufeln de konischem

Zentralbereich im Querschnitt verdeutlichen.

[0012] In der Milte ist der Abgasmischer geschlossen. Die
Leitschaufeln lenken das Abgas von der Haupströmungsrichtung ab und bewirken sonti eine effektive Vermischung 1seines resullicrenden inhomogen strömenden Gases mit der
hinter dem Abgasmischer in den Abgastrakt einesperachten
Harnstoffwasserlösung. Das mit der Harnstoffwasserlösung
gut vermische Abgas strömt axial in den SCR-Katalysator

(SCR = "Selective Catalytic Reduction") oder alternativ zu
tanichst in einen dem SCR-Katalysator vongeschatleten Hydrolysekatalysator ein. Durch eine optimierte Ausantzung
der angeströmten Katalysatorpreschnittsfäßen sind bessere

Slickoxid-Urnsatzraten und ein vermindorter Ammoniak
Durchbeuch im Katalysator geriebba.

[9013] Der Abgasmischer kann auch abweichende Ausführungsformen ausweisen, inbesondere nicht rotationssymmetrische Blendenanordnungen. Wesentlich ist, dass durch den Abgasmischer die Erzegung inhomogener Strömungen im Abgas gewährleistet wird, so dass nachfolgend 30 beispielsweise durch entstehende Verwirbelungen sich ein eingebrachtes Hilfsmittel gut mit dem Abgas vermischen vern

[0014] Alternativ kann der Abgasmischer auch unmittelbar hinter der Eindosierstelle, d. h. hinter dem Dosierrohr, 35 plaziert werden.

[0015] Alternativ kann der Abgasmischer auch vor einer Zufuhreinrichtung angeordnet werden, die dazu dient, beispielsweise mittels der Zufuhr von Reduktionsmitteln die Regeneration eines nachgeordneten Speicherkatalysators zu 40 unterstiltzen.

## Patentansprüche

- 1. Abgasteinigungsanlage zur Nachbehandlung des 48 Abgases einer Bronnkraftmaschine mit einer Nachbehandlungsanordnung, mit Mitteln zur Zufahr eines Hilfsmittels in die Nachbehandlungsanordnung und Mitteln zur Mischung des Abgases mit dem Hilfsmittel, dadurch gekennzeichnet, dass die Mittel (45) zur Zufuhr zwischen den Mitteln zur Mischung (30) und der Nachbehandlungsanordnung (30) angeordnet sind. 2. Abgasteinigungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel zur Mischung (30) eine zur Brzeugung von inhomogenitiken in der Strömung 50 des Abgases geeignete Blendenanordnung (71, 72) ent-halten.
- 3. Abgasreinigungsanlage nach Anspruch 2, dadurch gekennzeichnet, dass die Blendennordnung (71, 72) mindestens eine Leitschaufel (72) aufweist, durch die das Abgas hindurchströmen und mittels der das Abgas von seiner ursprünglichen Strömungsrichtung abgelenkt werden kann.
- 4. Abgasreinigungsanlage nach Anspruch 3, dadurch gekennzeichnet, dass mindestens zwei Leitschaufeln 65 um einen für das Abgas unpassierbaren Zentralbereich (71) der Blendenanordnung herum angeordnet sind.
- 5. Abgasreinigungsanlage nach Anspruch 4, dadurch

- gekennzeichnet, dass die Leitschaufeln rotationssymmetrisch um den Zentralbereich (71) herum angeordnet rind
- Abgasreinigungsanlage nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Zentralbereich (71) konisch geformt ist.
- 7. Abgastreinigungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zur Zufuhr ein in ein die Mittel zur Mischung mit der Nachbehandlungsanordnung verbindendes Ab-
- gasrohr tinienragendes Dosierrohr (45) aufweisen.

  8. Abgasreinigungsanlage nach Anspruch 7, dadurch gekennzeichnet, dass am Dosierrohr mindestens eine Öffmung (46) zum Einbringen des Fillfsmittels derart angeordnet ist, dass das Hilfsmittel in einer Richtung senkrecht zu einer Hauptströmungsrichtung (22) im Abgasrohr einerbracht werden kann.
- Abgasreinigungsanlage mach Anspruch 7 oder 8, datum feglemzeichnet, dass das Dosierrohr ein parallel zum Abgasrohr verfaufendes Teilstück (48) aufweist.
   10. Abgasreinigungsanlage nach Anspruch 9, datum eigenzunzeichnet, dass das Teilstück (48) auf seinem Umfang mindestens eine Öffnung (46) aufweist, so dass Hilfsmittel in radialer Richtung austreten kann.
- Abgasreinigungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hilfsmittel eine Flüssigkeit ist.
- 12. Abgasreinigungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nachbehandlungsanordnung einen Katalystator zur selektiven katalytischen Reduktion von in dem Abgas enthaltenen Stickoxiden umfaßt und dass das Hilfsmittel ein Reduktionsmittel 18.
- Abgasreinigungsanlage nach Anspruch 12, dadurch gekennzeichnet, dass das Reduktionsmittel eine Harnstoff-Wasser-Lösung ist.
- Abgasreinigungsanlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Nachbehandlungsanordnung einen dem Katalysator vorgelagerten Hydrolysekatalysator sufweist.
- Abgasreinigungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nachbehandlungsanordnung einen Speicherkatalysator umfasst.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -









