Universidade Tecnológica Federal do Paraná – Toledo Engenharia da Computação – COENC

Sistemas Embarcados

Padrões de projeto Máquinas de estados

Tiago Piovesan Vendruscolo

- O que é?
 - Máquinas de estados é uma estrutura muito utilizada em sistemas embarcados
 - O softwares desenvolvidos, em muitos casos não possuem fim, eles apenas ficam alternando entre os estados e por último entram em um estado de espera, geralmente de baixo consumo de energia.
- Muitos dispositivos utilizados em sistemas embarcados são dispositivos passivos
 - Monitoram e respondem a determinadas ações do ambiente.
 - A resposta depende do seu estado atual
 - Possuem um conjunto finito de estados e de entradas

Exemplo

Máquina de lavar roupas

- 1. Início do ciclo (sem água);
- Enchendo (até atingir o sensor de nível);
- Molho (tempo estipulado);
- 4. Lavando (tempo estipulado);
- 5. Enxague outra máquina de estados;
- 6. Centrifugar;
- 7. Fim do ciclo;

Enxague:

Outros exemplos:

- Circuitos sequenciais complexos;
- Micro-ondas;
- Semáforos;
- Cafeteiras;
- Etc.

- Termos e Definições:
 - Diagrama de Estados
 - Mostra a forma e a funcionalidade de uma máquina de estados. É composto pelos estados, transições e ações.
 - **Estados**
 - de valores unicamente identificáveis. Armazenam Conjunto informações sobre o passado. Cada estado realiza suas próprias ações
 - Transição de Estados
 - A troca do estado atual para o próximo estado é baseado nas variáveis de entrada.

Fim

- Os estados podem fazer a seguintes ações:
 - Aguardar pela ocorrência de um evento
 - Reagir a um estimulo
 - Iniciar a execução de uma ação
 - Encerrar alguma ação

Apenas um estado pode ser executado por vez!

- Termos e Definições:
 - Estado Atual
 - O estado onde a máquina de estados está em determinado momento.
 - Próximo Estado
 - O estado para o qual a máquina de estados faz a próxima transição determinada pelas entradas (ou estado atual) no momento em que ocorre um sinal de clock ou mudança de variável.

Tipos de máquinas de estados

 Existem dois tipos de máquinas de estados que seguem as características básicas de uma máquina de estados, mas diferem em como as saídas são determinadas.

Máquina Moore

As saídas são independentes das entradas, isto é, as saídas são determinadas somente a partir do estado atual da máquina de estados.

Máquina Mealy

As saídas podem ser determinadas somente pelo estado atual ou pelo estado atual e as entradas atuais, isto é, as saídas são determinadas enquanto a máquina faz a transição de um estado para outro estado.

Tipos de máquinas de estados

- Existem duas formas tradicionais para implementar máquinas de estados
 - Switch / Case: Mais simples e normalmente mais usado, porém, conforme a máquina de estados vai ganhando complexidade, fica cada vez mais difícil de manter a organização e realizar mudanças.
 - Ponteiros de funções: É uma forma de dividir a máquina de estados em módulos, o que torna a manutenção mais fácil mesmo em máquina complexas. Também mantém o código mais limpo.

Máquinas de Estados - Motores de passo

Aplicação típica: Motor de passo

• Passo completo 1 (Full Step)

N^o do passo	B3	B2	B1	B0	Decimal
1	1	0	0	0	8
2	0	1	0	0	4
3	0	0	1	0	2
4	0	0	0	1	1

• Passo Completo 2 (Full Step)

- I dose complete = (I dil step)					
N^o do passo	B3	B2	B1	B0	Decimal
1	1	1	0	0	12
2	0	1	1	0	6
3	0	0	1	1	3
4	1	0	0	1	9

• Meio Passo (Half Step)

N^o do passo	В3	B2	B1	B0	Decimal
1	1	0	0	0	8
2	1	1	0	0	12
3	0	1	0	0	4
4	0	1	1	0	6
5	0	0	1	0	2
6	0	0	1	1	3
7	0	0	0	1	1
8	1	0	0	1	9

Estrutura (exemplo):

• Passo completo 1 (Full Step)

					- /
N^o do passo	B3	B2	B1	B0	Decimal
1	1	0	0	0	8
2	0	1	0	0	4
3	0	0	1	0	2
4	0	0	0	1	1

```
typedef enum
            ESTADO 1 = 0,
            ESTADO 2,
        } maquina ESTADO;
        maquina ESTADO ESTADO = ESTADO 1;
void maquina ()
    switch (ESTADO)
        case ESTADO 1:
                if(input)
                  state = ESTADO 3;
                else
                  state = ESTADO 1;
            break;
        case ESTADO 2:
```


Exemplo 1: Faça o controle de um motor de passo utilizando passo completo de acordo com a tabela abaixo, utilizando os LED1 a 4. Quando enviar o comando '1' pela serial, o motor deve girar no sentido LED1 – LED4, caso contrário, no sentido inverso.

• Passo completo 1 (Full Step)

	_		•		- /
N^o do passo	B3	B2	B1	B0	Decimal
1	1	0	0	0	8
2	0	1	0	0	4
3	0	0	1	0	2
4	0	0	0	1	1

GPIO Pin	Dispositivo
4	LED1
5	LED2
6	LED3
7	LED4

Utilizando o Arduino – Serial

- Funções para a leitura da serial:
 - Utilizado para verificar se possui uma nova informação na serial:

```
Serial.available()
if (Serial.available() > 0)
```

■ Função para ler a serial:

```
Serial. read()
```

Função para ler um integer/.

```
Serial.parseInt();
x = Serial.parseInt();
```

Função para ler uma String

```
x = Serial.readString();
```

Cuidado ao utilizar esses tipos de funções, pois ele ocupa o processador até ser concluído ou estourar o timeout.

Por padrão, tem o timeout de 1 segundo para empacotar a String (isso gera um atraso de 1 segundo no código). Pode ser alterado com Serial.setTimeout(ms) no setup. Na velocidade padrão de 9600, sendo 1 caractere = 8bit, pode receber até 1200 caracteres por segundo. Para receber mais, precisa aumentar o timeout, ou aumenta a velocidade de transmissão.


```
#define LED1
#define LED2
                     Código genérico
#define LED3 6
#define LED4 7
void setup() {
  Serial.begin (9600);
  Serial.setTimeout(50);
  pinMode (LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode (LED3, OUTPUT);
  pinMode (LED4, OUTPUT);
int x;
void loop()
        typedef enum
            ESTADO 1,
            ESTADO 2,
            ESTADO 3,
            ESTADO 4
        } maquina ESTADO;
```

Se rodar esse software no motor de passo, tem algum problema?

if (Serial.available()>0) {

x = Serial.parseInt();

case ESTADO 2:

Serial.println(x);}

```
delay(300);
Relembrando: a função delay
está sendo utilizada apenas
para fins didáticos, não é
recomendado utilizar
                       em
```

while (1)

```
switch (ESTADO)
    case ESTADO 1:
        digitalWrite(LED1, HIGH);
        digitalWrite(LED2, LOW);
        digitalWrite(LED3, LOW);
        digitalWrite(LED4, LOW);
        if(x==1){
            ESTADO = ESTADO 2;}
        else{
            ESTADO = ESTADO 4;}
        break;
```

Código no moodle - complete o código

maquina ESTADO ESTADO = ESTADO 1;

situações reais.

■ Uma forma mais fácil é incrementar o estado (estado++), porém não é possível incrementar (typedef enum) diretamente em C++, apenas em C.

 Exemplo 2: Uma forma mais fácil é incrementar o estado (estado++), porém não é possível incrementar (typedef enum) diretamente em C++, apenas em C.

```
void loop()
        typedef enum
            ESTADO 1,
            ESTADO 2,
            ESTADO 3,
            ESTADO 4
        } maquina ESTADO;
       maquina ESTADO ESTADO = ESTADO 1;
        while (1)
            if (Serial.available()>0) {
            x = Serial.parseInt();
            Serial.println(x);}
            delay(300);
            if(x==1){
                estado_anterior++;
                if(estado anterior>=4) {estado anterior=0;};
                ESTADO = (maquina ESTADO) estado anterior;
                estado anterior = (uint8 t) ESTADO;}
            else{
                 estado anterior--;
                if (estado anterior<0) {estado anterior=3;};</pre>
                 ESTADO = (maquina ESTADO) estado anterior;
                 estado anterior = (uint8 t) ESTADO;}
```

Código no moodle - complete o código


```
if(x==1){
    estado anterior++;
    if(estado anterior>=4) {estado anterior=0;};
    ESTADO = (maquina ESTADO) estado anterior;
    estado anterior = (uint8 t) ESTADO;}
else{
    estado anterior--;
    if(estado anterior<0) {estado anterior=3;};</pre>
    ESTADO = (maquina ESTADO) estado anterior;
    estado anterior = (uint8 t) ESTADO;}
switch (ESTADO)
    case ESTADO 1:
        digitalWrite(LED1, HIGH);
        digitalWrite(LED2, LOW);
        digitalWrite(LED3, LOW);
        digitalWrite(LED4, LOW);
        break;
    case ESTADO 2:
        digitalWrite(LED1, LOW);
        digitalWrite(LED2, HIGH);
        digitalWrite(LED3, LOW);
        digitalWrite(LED4, LOW);
        break;
```


Exercício 1: Faça o controle de um motor de passo utilizando passo completo utilizando os LED1 a 4. Quando a entrada serial tiver o valor "1", o motor deve girar no sentido LED1 – LED4, caso contrário, no sentido inverso. O controle também deve ter um botão de emergência (pino 2 – PULL-UP com interrupção) de forma que quando o botão for pressionado o motor deve parar imediatamente (todas as saídas em 0). Quando o botão for solto, o motor deve continuar de onde parou (analisar pelos LEDs).


```
void setup() {
  Serial.begin (9600);
  Serial.setTimeout (50);
 pinMode (LED1, OUTPUT);
 pinMode (LED2, OUTPUT);
 pinMode (LED3, OUTPUT);
 pinMode (LED4, OUTPUT);
 pinMode(BOTAO, INPUT PULLUP);
  attachInterrupt(digitalPinToInterrupt(BOTAO), Botao ISR, CHANGE);
                                                          while (1)
int x;
int y = 1;
                                                              if (Serial.available()>0) {
int temp;
                                                              x = Serial.parseInt();
int estado anterior;
                                                              Serial.println(x);}
void Botao ISR() {
                                                              delay(300);
 if (digitalRead(BOTAO)) {
                                                              if(y==0){
    y=1;}
                                                                ESTADO = ESTADO 5;}
    else{y=0;}
                                                              else if (x==1) {
                                                                  estado anterior++;
                                                                  if (estado anterior>=4) {estado anterior=0;};
                                                                  ESTADO = (maquina ESTADO) estado anterior;
                                                                   estado anterior = (uint8 t) ESTADO;}
                                                              else {
                                                                   estado anterior--;
                                                                   if(estado anterior<0) {estado anterior=3;};</pre>
                                                                   ESTADO = (maquina ESTADO) estado anterior;
                                                                   estado anterior = (uint8 t) ESTADO;}
```


 Exercício 2: Continuando o exercício 1, altere o código de forma que, caso o botão de emergência fique pressionado por mais de 1 segundo, o Arduino seja resetado (WDT).

```
if(y==0){
  ESTADO = ESTADO 5;}
else if (x==1) {
   wdt reset();
    estado anterior++;
    if (estado anterior>=4) {estado anterior=0;};
    ESTADO = (maquina ESTADO) estado anterior;
    estado anterior = (uint8 t) ESTADO;}
else {
    wdt reset();
    estado anterior--;
    if (estado anterior<0) {estado anterior=3;};</pre>
    ESTADO = (maquina ESTADO) estado anterior;
    estado anterior = (uint8 t) ESTADO;}
```


Próxima aula

Máquinas de estados – Ponteiros de funções

Referências

- https://sergioprado.org/maquina-de-estados-em-c/
- https://www.embarcados.com.br/maquina-de-estado/

