Ajuster des équations de réaction – Méthode algébrique

Il faut juste créer un ensemble d'équations algébriques exprimant le nombre d'atomes de chaque élément impliqué dans la réaction puis le résoudre.

Exemple avec l'équation :
$$Na_3PO_4 + FeCl_2 \rightarrow NaCl + Fe_3P_2O_8$$

1. On introduit les coefficient inconnus : On

$$x_1 Na_3 PO_4 + x_2 FeCl_2 \rightarrow x_3 NaCl + x_4 Fe_3 P_2 O_8$$

2. On écrit les équations équilibrées pour chaque éléments présents dans la réaction. On obtient donc:

$$\begin{array}{l} \text{Pour Na}: x_1 \times 3 = 1 \times x_3 \\ \text{Pour P}: x_1 \times 1 = 2 \times x_4 \\ \text{Pour O}: x_1 \times 4 = 8 \times x_4 \\ \text{Pour Fe}: x_2 \times 1 = 3 \times x_4 \\ \text{Pour Cl}: x_2 \times 2 = 1 \times x_3 \end{array}$$

3. On obtient alors un système d'équation linéaire tels que :

$$\begin{array}{l} x_1 \times 3 = 1 \times x_3 \\ x_1 \times 1 = 2 \times x_4 \\ x_2 \times 1 = 3 \times x_4 \\ x_2 \times 2 = 1 \times x_3 \end{array}$$

Remarque : on peut enlever $x_1 \times 4 = 8 \times x_4$ car il y a déjà une formule avec les mêmes inconnues auparavant, en l'occurrence $x_1 \times 1 = 2 \times x_4$

Comme il y a une infinité de solutions, on donne une valeur comme 1 ou 2 à x_1 . Dans notre cas, on va donner à x_1 la valeur 1.

 x_1 vaut donc 1

4. On résout ensuite les équations en remplaçant les x par leur valeur et en simplifiant.

$$x_1 imes 3 = 1 imes x_3 \Rightarrow 3 = x_3$$
 x_3 vaut donc 3
 $x_1 imes 1 = 2 imes x_4 \Rightarrow 1 = 2 imes x_4 \Rightarrow \frac{1}{2} = x_4$
 x_4 vaut donc $\frac{1}{2}$

$$x_2 imes 1 = 3 imes x_4 \Rightarrow x_2 = 3 imes rac{1}{2} = rac{3}{2}$$
 x_2 vaut donc $rac{3}{2}$ La dernière équation, $x_2 imes 2 = 1 imes x_3 \Longrightarrow rac{3}{2} imes 2 = 3 \Rightarrow 3 = 3$, vient confirmer ce résultat.

5. On remplace les coefficients stœchiométriques par leurs valeurs

Notre équation ajustée est donc

obtient
$$x_1 N a_3 P O_4 + x_2 FeCl_2 \rightarrow x_3 NaCl + x_4 Fe_3 P_2 O_8$$
 1 $Na_3 P O_4 + \frac{3}{2} FeCl_2 \rightarrow 3 NaCl + \frac{1}{2} Fe_3 P_2 O_8$ 2. On écrit les équations équilibrées pour chaque ou $2 Na_3 P O_4 + 3 FeCl_2 \rightarrow 6 NaCl + 1 Fe_3 P_2 O_8$

en multipliant par 2 pour supprimer les fractions (dans ce cas)