Sensibilisation à la programmation multimedia

Christophe Vestri

Plan du cours

- 12 septembre: Intro, github, Capteur/Geoloc en HTML5
- 19 septembre: carto/geo, leaflet/mapBox, rest Api
- Vendredi 6 octobre: 2D/3D: Canvas, WebGL et Three.js
- 10 octobre: Projet d'évaluation

Objectifs du cours

- Bases de geolocalisation et de la cartographie
- Expérimenter quelques méthodes et outils web geo/3D
- Réaliser un petit projet (combinera ce qu'on a vu)

https://github.com/vestri/CoursGeo

- Evaluation:
 - Exos des cours (50%)
 - Projet d'évaluation (50%)

Plan Cours 2

- Debugging
- Référentiels
- Exercices

- TD1
- Repères Géographiques et Cartographiques
- Exercices en Html5/javascript
 - Leaflet, openStreetmap
 - MapBox, mapQuest
 - REST API

Debugging

- Référentiels
- Exercices

Outils de debug

- En local:
 - python3 -m http.server
 - http://localhost:8000/ firefox ou chrome
- Smartphone android -> Chrome
- https://developers.google.com/web/tools/chrom e-devtools/javascript
 - Simulation de smartphone (F12)
 - Connecté à un smartphone: <u>chrome://inspect/</u>
- IPhone: Localisation ok, pas le reste

Systèmes Géographiques et : Cartographiques

- Debugging
- Référentiels
- Exercices

Construction d'un référentiel géographique

Choix d'un ellipsoïde

Choix d'une projection

Système cartésien x,y,z

Système géographique φ,λ

Système cartographique X,Y

Systèmes Géographiques et Cartographiques

- Un point de la surface terrestre est repéré en fonction d'un ellipsoïde par :
 - sa longitude : λ (Lambda)
 - sa latitude : φ (Phi)

- Géolocalisation
- Référentiels
- Git
- Capteurs
- Exos

- Différents systèmes:
 - GPS (WGS84),
 - Europe (ETRS89)
 - France (NTF, RGF 93)

Systèmes Géographiques et : Cartographiques

- Debugging
- Référentiels
- Exercices

• Choix d'une projection cartographique

Systèmes Géographiques et : Cartographiques

- Debugging
 Référentiels
- Exercices

- GPS: UTM (Universal Transverse Mercator)
 - Système mondial de 122 projections
 - 60 fuseaux de 6° (entre 80°Sud et 80°Nord) + 2 poles

La France: fuseaux UTM Nord 30, 31 et 32

Systèmes géographique Français

- Debugging
- Référentiels
- Exercices

- RGF93
 - Ellipsoïde GRS80

Projection lambert 93

Systèmes géographique Français

- Debugging
- Référentiels
- Exercices

Système géographique Français Lambert CC42...

Projection	φ0	Ψ1	φ2	X ₀	Y ₀	EPSG
CC42	42°	41.25°	42.75°	1 700 000 m	1 200 000 m	3942
CC43	43°	42.25°	43.75°	1 700 000 m	2 200 000 m	3943
CC44	44°	43.25°	44.75°	1 700 000 m	3 200 000 m	3944
CC45	45°	44.25°	45.75°	1 700 000 m	4 200 000 m	3945
CC46	46°	45.25°	46.75°	1 700 000 m	5 200 000 m	3946
CC47	47°	46.25°	47.75°	1 700 000 m	6 200 000 m	3947
CC48	48°	47.25°	48.75°	1 700 000 m	7 200 000 m	3948
CC49	49°	48.25°	49.75°	1 700 000 m	8 200 000 m	3949
CC50	50°	49.25°	50.75°	1 700 000 m	9 200 000 m	3950

• 9 projections appelées coniques conformes 9 zones

Systèmes Géographiques et : Cartographiques

Debugging

Exercices

- Coordonnées GPS: Lat/Lon
 - La salle 202:

43.616513, 7.072094 = 43°36'59.5"N+7°04'19.5"E

- Plus d'infos:
 - Wikipédia
 - IGN: http://geodesie.ign.fr/index.php et
 http://education.ign.fr/dossiers/mesurer-la-terre
 - http://seig.ensg.eu/
 - http://sgcaf.free.fr/pages/techniques/ign_coordonnees.
 htm

Leafletjs

- <u>leafletjs</u> est une librairie Opensource pour afficher des cartes interactives utiles à la navigation (comme google maps)
- Seulement 33Ko, Tous les browsers
 - Map controls
 - Layers
 - Interaction Features
 - Custom maps

Exercices 1

https://github.com/vestri/CoursGeo

- Avec Leafletjs
 - Récupérez votre position GPS, afficher votre position
 - Afficher une carte locale (utilisez openStreetmap)
 - Affichez un marqueur sur Nice

Testez en local puis publiez sur Github

- Debugging
- Référentiels
- Exercices

Exercices 2

- Avec Leafletjs
 - Tracez le triangle des Bermudes (en rouge)
 - Changer de carte (stamen: http://maps.stamen.com/)
 - Dessiner un cercle autour de votre position avec une rayon représentant la précision estimée
 - Calculez la distance à Marseille, l'afficher
 (https://fr.wikipedia.org/wiki/Distance du grandcercle)

REST API

- REST (representational state transfer)
- Acces simple à des webservices
- https://ensweb.users.info.unicaen.fr/pres/ws/
- https://www.uptrends.fr/qu-est-ce-que/rest-api

Contraintes

- Client-serveur
- Sans état
- Avec/sans cache
- En couche
- Interface uniforme
- (code à la demande)

REST API

Exemple de hierarchie: https://api.gouv.fr/api/api-geo.html

https://blog.octo.com/designer-une-api-rest/

A DI	D : /C .	5 I WID
API	Domaines / Sous domaines	Exemples d'URI
Google	https://accounts.google.com https://www.googleapis.com https://developers.google.com	https://accounts.google.com/o/oauth2/auth https://www.googleapis.com/oauth2/v1/tokeninfo https://www.googleapis.com/calendar/v3/ https://www.googleapis.com/drive/v2 https://maps.googleapis.com/maps/api/js?v=3.exp https://www.googleapis.com/plus/v1/ https://www.googleapis.com/youtube/v3/ https://developers.google.com
Facebook	https://www.facebook.com https://graph.facebook.com https://developers.facebook.com	https://www.facebook.com/dialog/oauth https://graph.facebook.com/me https://graph.facebook.com/v2.0/{achievement-id} https://graph.facebook.com/v2.0/{comment-id} https://graph.facebook.com/act_{ad_account_id}/adgroups https://developers.facebook.com
Twitter	https://api.twitter.com https://stream.twitter.com https://dev.twitter.com	https://api.twitter.com/oauth/authorize https://api.twitter.com/1.1/statuses/show.json https://stream.twitter.com/1.1/statuses/sample.json https://dev.twitter.com
GitHub	https://github.com https://api.github.com https://developer.github.com	https://github.com/login/oauth/authorize https://api.github.com/repos/octocat/Hello-World/git/commits /7638417db6d59f3c431d3e1f261cc637155684cd https://developer.github.com

Exemple

- Requete HTML
 - https://developer.mozilla.org/fr/docs/Web/API/XMLHttpRequest/Using XML HttpRequest
 - https://leafletjs.com/examples/geojson/
- Exemple avec API Geo
 - https://api.gouv.fr/documentation/api-geo

 https://geo.api.gouv.fr/communes?codePostal=06330&fields=nom,code, codesPostaux,codeDepartement,codeRe Response body

geometry=centre

```
"type": "Feature",
   "geometry": {
      "type": "Point",
      "coordinates": [125.6, 10.1]
   },
   "properties": {
      "name": "Dinagat Islands"
   }
}
```

With Leaflet

```
let xhr = new XMLHttpRequest();
xhr.open('GET', 'uk_outline.geojson');
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.responseType = 'json';
xhr.onload = function() { if (xhr.status !== 200) return
L.geoJSON(xhr.response).addTo(map); };
xhr.send();
```

- Debugging
- Référentiels
- Exercices

Exercices 3

- Avec Leafletjs ou autre, récupérer des données géoréférencées et les afficher sur la carte
 - Geojson sur http://opendata.nicecotedazur.org
 - ou par une RestApi :

https://www.data.gouv.fr/fr/

https://api.gouv.fr/api/api-geo.html

https://www.insee.fr/fr/metadonnees/cog/de

partement/DEP06-alpes-maritimes

https://adresse.data.gouv.fr/api

- Bonus:
 - afficher un trajet/route (google/mapbox/mapQuest)
 - Testez d'autres outils
 - mapQuest (Token: tR2C6osuQcc3RoWnxDMXF6FACtNAzMl8) ou mapbox
 - mapBox, google maps api