ECON 703 Fall 2007 Answer Key to Homework 1

- 1. The contrapositive statement is: if x is not a square orange, then x doesn't belong to the empty set. Because "x does not belong to empty set" is true for any x, it is certainly true when x is not a square orange. Therefore, the contrapositive statement is true, so the original statement is true.
- 2. (a) There exists (at least one) $a \in A$, such that $a^2 \notin B$
 - (b) For every $a \in A$, it is true that $a^2 \notin B$ (i.e. it is not true that $a^2 \in B$). Another way of negation: There is no $a \in A$ such that $a^2 \in B$.
 - (c) There exists (at least one) $a \in A$, such that $a^2 \in B$.
 - (d) For every $a \notin A$, it is true that $a^2 \notin B$. Another way of negation: There is no $a \notin A$ such that $a^2 \in B$.
- 3. First, note that the function f(x) is as follows: [see figure 1 below]

So the function is not injective, but it is surjective. There are many ways to restrict the domain and range to obtain a bijective function g. And for a bijective function, there exists a corresponding inverse function. For example, let $g: \left[\frac{\sqrt{3}}{3}, +\infty\right) \to \left(-\frac{2\sqrt{3}}{9}, +\infty\right)$ be the function such that $g(x) = x^3 - x$. Why is this function injective? Because for any points x and x' in $\left[\frac{\sqrt{3}}{3}, +\infty\right)$, such that $x \neq x'$, we

must have $g(x) \neq g(x')$. Why is this function surjective? Because, for any $y \in (-\frac{2\sqrt{3}}{9}, +\infty)$, we can find a point x in $[\frac{\sqrt{3}}{3}, +\infty)$ such that y is the image of that point (i.e. y = g(x)). Correspondently, the domain of g^{-1} is $(-\frac{2\sqrt{3}}{9}, +\infty)$, and the range is $[\frac{\sqrt{3}}{3}, +\infty)$.

The picture is: [see figure 2 below].

Some other choices of g

$$g: [1, +\infty) \longrightarrow \mathbb{R}_+, \ g(x) = x^3 - x$$

and

$$g: [-\infty, -1) \longrightarrow \mathbb{R}_-, \ g(x) = x^3 - x.$$

4. First, when n=1, then the unique subset is $\{1\}$, which has the largest element 1. Second, suppose the statement holds when n=k, that is, that for every nonempty subset of $\{1,2,\ldots,k\}$, where $k\in\mathbb{Z}_+$, has a largest element. Then, consider the case of n=k+1. Let S represent the nonempty subsets of $\{1,\ldots,k\}$, then $S\cup\{k+1\}$ is a nonempty subset of $\{1,\ldots,k,k+1\}$. In fact, the nonempty subsets of $\{1,\ldots,k,k+1\}$ can be represented by S or $S\cup\{k+1\}$ or $\{k+1\}$. By the "inductive hypothesis," we know that S has a largest element. Suppose the largest element of S is M. Then for $S\cup\{k+1\}$, the largest number is $\max\{M,k+1\}$, which equals k+1 (thus, it exists). For $\{k+1\}$, the largest element is just k+1. Thus, the statement holds for n=k+1.

Figure 1:

Figure 2:

5. I will only show the statement for lim sup, since the proof for the lim inf is analogous. Let $\alpha_n = \sup\{a_n, a_{n+1}, \ldots\}$, $\beta = \sup\{b_n, b_{n+1}, \ldots\}$, and $\gamma_n = \sup\{a_n + b_n, a_{n+1} + b_{n+1}, \ldots\}$. By definition, $\alpha_n \ge a_i$ and $\beta_n \ge b_i$ for all $i \ge n$, so

$$\alpha_n + \beta_n \ge a_i + b_i$$
, for all $i \ge n$.

Therefore, $\alpha_n + \beta_n$ is an upper bound of $\{a_n + b_n, a_{n+1} + b_{n+1}, ...\}$. This means that

$$\alpha_n + \beta_n \ge \gamma_n. \tag{1}$$

Since weak inequality is preserved by the operation of taking limits, the proof follows by taking limits on both sides of (1).