Division of APREL Inc.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 161.0 mm Height: 89.8 mm

Electrical Specification 835MHz

Tissue Type	Return Loss:	Impedance:	SWR:
Head	-32.132	48.897	1.0621U
Body	-24.800	53.311	1.1206U

System Validation Results

Tissue	Frequency	1 Gram	10 Gram	Peak
Head	835 MHz	9.590	6.003	15.013
Body	835 MHz	9.981	6.006	15.013

835MHz

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00565. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-030 130 MHz to 26 GHz E-Field Probe Serial Number 215.

References

- o IEEE Standard 1528 (2003) including Amendment 1 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1 (2006) Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2 Ed. 1.0 (2010-03)
 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- D22-012-Tissue dielectric tissue calibration procedure D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Dipole 180-00564 was a recalibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 20 °C +/- 0.5°C

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical 1.22% **Positioning Error** Electrical 1.7% Tissue 2.2% **Dipole Validation** 2.2%

TOTAL 8.32% (16.64% K=2)

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Calibration

Electrical Specification 835MHz

Tissue Type	Measured Epsilon	Measured Sigma
Head	41.09	0.89
Body	53.15	0.95

Forward Reflection

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Specification 835MHz Impedance

Tissue Type	Measured Epsilon	Measured Sigma
Head	41.09	0.89
Body	53.15	0.95

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Specification 835MHz Standing Wave Ratio

Tissue Type	Measured Epsilon	Measured Sigma
Head	41.09	0.89
Body	53.15	0.95

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

2

This page has been reviewed for content and attested to by signature within this document.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1385
Project Number: BAC-1900-dipole-cal-5627

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

> Validation Dipole 1900MHz Head & Body

Manufacturer: APREL Laboratories
Part number: ALS-D-1900-S-2
Frequency: 1900MHz
Serial No: 210-00715

Customer:Bay Area Compliance

Calibrated: 24th October 2011 Released on: 27th October 2011

This Calibration Certificate is Incomplete Unless Addompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

303 Terry Fox Drive, Suite 102 Kanata, Ontario CANADA K2K 3J1 Division of APREL TEL: (613) 435-8300 FAX: (613) 435-8306

Division of APREL Inc.

Conditions

Dipole 210-00715 was a recalibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C 21 °C +/- 0.5 °C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards

Instrument	Serial Number	Cal due date
Power meter Anritsu MA2408A	190025437	Nov.4, 2011
Power Sensor Anritsu MA2481D	103555	Nov 4, 2011
Attenuator HP 8495A (70dB)	1944A10711	Sept. 14, 2012
Network Analyzer Agilent E5071C	1334746J	Aug. 8, 2012

Secondary Measurement Standards

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2012

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 67.1 mm Height: 38.9 mm

Electrical Specification 1900MHz

Tissue Type	Return Loss:	Impedance:	SWR:
Head	-28.634	46.965	1.0813U
Body	-23.129	47.664	1.1520U

System Validation Results

	Tissue	Frequency	1 Gram	10 Gram	Peak
ľ	Head	1900 MHz	39.378	19.668	77.268
ĺ	Body	1900 MHz	39.654	19.668	77.268

1900MHz

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00716. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-030 130 MHz to 26 GHz E-Field Probe Serial Number 215.

References

- o IEEE Standard 1528 (2003) including Amendment 1 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1 (2006)

Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices

IEC 62209-2 Ed. 1.0 (2010-03)

- Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- D22-012-Tissue dielectric tissue calibration procedure D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Dipole 210-00715 was a recalibration.

22 °C +/- 0.5°C Ambient Temperature of the Laboratory: 20 °C +/- 0.5°C Temperature of the Tissue:

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical 1% 1.22% **Positioning Error Electrical** 1.7% 2.2% **Tissue** 2.2% **Dipole Validation**

8.32% (16.64% K=2) **TOTAL**

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Calibration

Electrical Specification 1900MHz Forward Reflection

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.12	1.41
Body	51.52	1.57

Head Tissue

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Specification 1900MHz Impedance

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.12	1.41
Body	51.52	1.57

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Electrical Specification 1900MHz Standing Wave Ratio

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.12	1.41
Body	51.52	1.57

Head Tissue

Body Tissue

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Inc.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

8

This page has been reviewed for content and attested to by signature within this document.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1285
Project Number: BACL-dipole-cal-5612

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

BACL Validation Dipole (Head & Body)

Manufacturer: APREL Laboratories
Part number: D-2450-S-1
Frequency: 2450 MHz
Serial No: BCL-141

Customer: Bay Area Compliance Laboratory

Calibrated: 25th July 2011 Released on: 27th July 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1

Division of APREL Lab. TEL: (613) 435-8300 FAX: (613) 432-8306

Division of APREL Laboratories.

Conditions

Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards Instrument

Power meter Anritsu MA2408A Power Sensor Anritsu MA2481D Attenuator HP 8495A (70dB) 1 Network Analyzer Anritsu MT8801C Secondary Measurement Standards

Signal Generator Agilent E4438C

 Serial Number
 Cal due date

 245025437
 Nov.4, 2011

 103555
 Nov 4, 2011

 944A10711
 Sept. 14, 2011

 MB11855
 Feb. 8, 2012

-506 MY55182336 June 7, 2012

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: Height: 51.5 mm

30.4 mm

Electrical Specification 2450MHz

Tissue Type	Return Loss:	SWR:	Impedance:
Head	-29.565	1.076u	52.887
Body	-25.834	1.111u	55.110

System Validation Results

	Tissue	Frequency	1 Gram	10 Gram	Peak
ſ	Head	2450MHz	54.075	24.19	113.98
	Body	2450MHz	53.115	24.011	109.960

3

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole BCL-141. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 20 °C +/- 0.5 °C

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

 Mechanical
 1%

 Positioning Error
 1.22%

 Electrical
 1.7%

 Tissue
 2.2%

 Dipole Validation
 2.2%

TOTAL 8.32% (16.64% K=2)

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.06	1.86
Body	50.22	2.03

Electrical Calibration

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

Head Tissue

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.06	1.86
Body	50.22	2.03

SWR

Head Tissue

6

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Tissue Type	Measured Epsilon	Measured Sigma
Head	38.06	1.86
Body	50.22	2.03

Smith Chart Dipole Impedance

Head Tissue

Body Tissue

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List

14 APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Performance Test (835MHz Body)

DUT: Dipole 835 MHz; Type: ALS-D-835-S-2; Serial: 180-00564

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV2 - SN3019; ConvF(6.19, 6.19, 6.19); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =15 mm, Pin = 0.5W 2/Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.05 mW/g

d =15 mm, Pin = 0.5W 2/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 73.2 V/m; Power Drift = -0.133 dB Peak SAR (extrapolated) = 7.03 W/kg SAR(1 g) = 4.82 mW/g; SAR(10 g) = 3.13 mW/g

Maximum value of SAR (measured) = 5.19 mW/g

835 MHz Body System Validation

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Performance Test (835MHz Head)

DUT: Dipole 835 MHz; Type: ALS-D-835-S-2; Serial: 180-00564

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.22, 6.22, 6.22); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =15 mm, Pin = 0.5W/Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.15 mW/g

d =15 mm, Pin = 0.5W/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 76.5 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 7.21 W/kg

SAR(1 g) = 4.91 mW/g; SAR(10 g) = 3.28 mW/gMaximum value of SAR (measured) = 5.28 mW/g

835 MHz Head System Validation

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) System Performance Test (1900MHz Body)

DUT: Dipole 1900 MHz; Type: ALS-D-1900-S-2; Serial: 210-00715

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.38, 4.38, 4.38); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.5W /Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 21.2 mW/g

d =10 mm, Pin = 0.5W /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 138.9 V/m; Power Drift = -0.281 dB Peak SAR (extrapolated) = 42.1 W/kg

SAR(1 g) = 19.6 mW/g; SAR(10 g) = 9.43 mW/gMaximum value of SAR (measured) = 22.0 mW/g

-3.60
-7.20
-10.8
-14.4
-18.0

0 dB = 22.0mW/g

1900 MHz Body System Validation

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) System Performance Test (1900MHz Head)

DUT: Dipole 1900 MHz; Type: ALS-D-1900-S-2; Serial: 210-00715

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.87, 4.87, 4.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.5W /Area Scan (81x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 22.5 mW/g

d =10 mm, Pin = 0.5W /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 130.9 V/m; Power Drift = -0.257 dB

Peak SAR (extrapolated) = 46.9 W/kg

SAR(1 g) = 20.5 mW/g; SAR(10 g) = 9.72 mW/gMaximum value of SAR (measured) = 23.7 mW/g

1900 MHz Head System Validation

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Performance Test (2450 MHz, Body Tissue)

Dipole 2450 MHz; Type: D-2450-S-1; Serial: SN: BCL-141

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV2 - SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

• Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.5W /Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 33.4 mW/g

d =10 mm, Pin = 0.5W /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.9 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 57.5 W/kg

SAR(1 g) = 26.9 mW/g; SAR(10 g) = 12.3 mW/g

Maximum value of SAR (measured) = 30.9 mW/g

2450 MHz Body System Validation

15 APPENDIX E – EUT SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

EUT 1.5cm Separation to the Flat Phantom (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: GSM 850 2 Slot; Frequency: 824.2 MHz; Duty Cycle: 1:4.15

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.19, 6.19, 6.19); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

EUT 1.5cm Separation to the Flat Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.741 mW/g

EUT 1.5cm Separation to the Flat Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.6 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.699 mW/g; SAR(10 g) = 0.494 mW/g

Maximum value of SAR (measured) = 0.743 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Right Head Touch (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.22, 6.22, 6.22); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Head Touch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.453 mW/g

Right Head Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.5 V/m; Power Drift = -0.337 dB Peak SAR (extrapolated) = 0.656 W/kg

SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.282 mW/gMaximum value of SAR (measured) = 0.458 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Right Head Tilt (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.22, 6.22, 6.22); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Head Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.306 mW/g

Right Head Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = 0.145 dB Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.173 mW/gMaximum value of SAR (measured) = 0.307 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Left Head Touch (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.22, 6.22, 6.22); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Head Touch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.433 mW/g

Left Head Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.6 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 0.543 W/kg

SAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.294 mW/gMaximum value of SAR (measured) = 0.430 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Left Head Tilt (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(6.22, 6.22, 6.22); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Head Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.252 mW/g

Left Head Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = 0.138 dB Peak SAR (extrapolated) = 0.346 W/kg

SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.154 mW/gMaximum value of SAR (measured) = 0.249 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) EUT 1.5cm Separation to the Flat Phantom (Low Channel) DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: PCS 1900 2 Slots; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.38, 4.38, 4.38); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

EUT 1.5cm Separation to the Flat Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.219 mW/g

EUT 1.5cm Separation to the Flat Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.91 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.409 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.214 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Right Head Touch (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (extrapolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.87, 4.87, 4.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Head Touch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.226 mW/g

Right Head Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.2 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 0.495 W/kg

SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.099 mW/gMaximum value of SAR (measured) = 0.230 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Right Head Tilt (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (extrapolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.87, 4.87, 4.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Head Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.241 mW/g

Right Head Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = 0.127 dB Peak SAR (extrapolated) = 0.456 W/kg SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.230 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Left Head Touch (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (extrapolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(4.87, 4.87, 4.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Head Touch/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.133 mW/g

Left Head Touch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.82 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 0.221 W/kg

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.061 mW/gMaximum value of SAR (measured) = 0.125 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Left Head Tilt (Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium parameters used (extrapolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV2 SN3019; ConvF(4.87, 4.87, 4.87); Calibrated: 8/25/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 3/16/2012
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Head Tilt/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.168 mW/g

Left Head Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.0 V/m; Power Drift = 0.104 dB Peak SAR (extrapolated) = 0.271 W/kg **SAR(1 g) = 0.143 mW/g; SAR(10 g) = 0.074 mW/g**

Maximum value of SAR (measured) = 0.174 mW/g

Test Laboratory: Bay Area Compliance Lab Corp.(BACL)

Back Touch to the Phantom – 802.11b(Low Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: 802.11B/G; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 50.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Back Touch to the Phantom/Area Scan (51x61x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.243 mW/g

Back Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.85 V/m; Power Drift = -0.145 dB Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.196 mW/g; SAR(10 g) = 0.098 mW/gMaximum value of SAR (measured) = 0.218 mW/g

#11

Test Laboratory: Bay Area Compliance Lab Corp.(BACL)
Back Touch to the Phantom – 802.11b (Middle Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: 802.11B/G; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 50.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Back Touch to the Phantom/Area Scan (51x61x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.327 mW/g

Back Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.45 V/m; Power Drift = -0.312 dB Peak SAR (extrapolated) = 0.547 W/kg

SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.123 mW/gMaximum value of SAR (measured) = 0.274 mW/g

#12

Test Laboratory: Bay Area Compliance Lab Corp.(BACL)
Back Touch to the Phantom -802.11b (High Channel)

DUT: Italcom Group; Type: Mobile Phone; Serial: R1205114-1

Communication System: 802.11B/G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.07$ mho/m; $\varepsilon_r = 50.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 3/16/2012

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Back Touch to the Phantom/Area Scan (51x61x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.318 mW/g

Back Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.12 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.756 W/kg SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.419 mW/g

#13

16 APPENDIX F – TEST SETUP PHOTOS

16.1 Right Head-Touch Setup Photo

16.2 Right Head-Tilt Setup Photo

16.3 Left Head-Touch Setup Photo

16.4 Left Head-Tilt Setup Photo

16.5 1.5 cm Body Worn to the flat phantom with Headset Setup Photo

16.6 Back Touch to the flat phantom

17 APPENDIX H – EUT PHOTOS

17.1 EUT – Front View

17.2 EUT – Bottom View

17.3 EUT – Battery Compartment View

17.4 EUT – Battery View

17.5 EUT – Accessory Headset

18 APPENDIX H - INFORMATIVE REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.
- [16] FCC KDB 447498, Mobile and portable Device RF Exposure Procedures and Equipment Authorization Policies.
- [19] SPEAG DASY4 System Handbook.

--- END OF REPORT ---