On full-separating sets in graphs

Dipayan Chakraborty^{1,2} Annegret Wagler¹

¹Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

²University of Johannesburg, Department of Mathematics and Applied Mathematics, Auckland Park, 2006, South Africa

Journées Graphes et Algorithmes, 2024

Dominating set: $N[v] \cap C \neq \emptyset$

Dominating set: $N[v] \cap C \neq \emptyset$

Total-dominating set: $N(v) \cap C \neq \emptyset$

Dominating set: $N[v] \cap C \neq \emptyset$

Total-dominating set: $N(v) \cap C \neq \emptyset$

Dominating set: $N[v] \cap C \neq \emptyset$

Total-dominating set: $N(v) \cap C \neq \emptyset$

Dominating set: $N[v] \cap C \neq \emptyset$

Total-dominating set: $N(v) \cap C \neq \emptyset$

 $N(u) \cap C \neq N(v) \cap C \iff (N(u) \triangle N(v)) \cap C \neq \emptyset \text{ for all } u, v \in V \setminus C$

In summary...

Locating set: C such that $(N(u)\triangle N(v))\cap C\neq\emptyset$ for all $u,v\in V\setminus C$ No faults: Detectors can distinguish between its vertex and its neighbor

Closed-separating set: C such that $(N[u]\triangle N[v]) \cap C \neq \emptyset$ for all $u, v \in V$ Fault type 1: Detectors can distinguish between its vertex and its neighbor

Open-separating set: C such that $(N(u)\triangle N(v))\cap C\neq\emptyset$ for all $u,v\in V$ Fault type 2: Detector is completely disabled / destroyed

		LTD						
 D/TD	N[v]	N(v)	N[v]	N(v)	N[v]	N(v)	$\mathbf{N}[\mathbf{v}]$	N(v)
adj	$\triangle(u,v)$	$\triangle(u,v)$	$N[v]$ $\triangle[u,v]$	$\triangle[u,v]$	$\triangle(u,v)$	$\triangle(u,v)$	$\triangle[\mathbf{u},\mathbf{v}]$	$\triangle[\mathbf{u},\mathbf{v}]$
n-adj	$\triangle[u,v]$	$\triangle[u,v]$					$\triangle(\mathbf{u}, \mathbf{v})$	$\triangle(\mathbf{u}, \mathbf{v})$
			'		ı I	'	/	/

$$\triangle(u,v) = N(u) \bigtriangleup N(v); \quad \triangle[u,v] = N[u] \bigtriangleup N[v]$$

In summary...

Locating set: C such that $(N(u)\triangle N(v))\cap C\neq\emptyset$ for all $u,v\in V\setminus C$

No faults: Detectors can distinguish between its vertex and its neighbor Equivalently... Locating set: C such that

- $(N(u) \triangle N(v)) \cap C \neq \emptyset$, where u, v adjacent
- $(N[u] \triangle N[v]) \cap C \neq \emptyset$, where u, v non-adjacent

Closed-separating set: C such that $(N[u]\triangle N[v]) \cap C \neq \emptyset$ for all $u, v \in V$ Fault type 1: Detectors can distinguish between its vertex and its neighbor

Open-separating set: C such that $(N(u)\triangle N(v)) \cap C \neq \emptyset$ for all $u, v \in V$ Fault type 2: Detector is completely disabled / destroyed

		LTD						
D/TD	N[v]	N(v)	N[v]	N(v)	N[v]	N(v)	$\mathbf{N}[\mathbf{v}]$	$\mathbf{N}(\mathbf{v})$
adj	$\triangle(u,v)$	$\triangle(u,v)$	$N[v]$ $\triangle[u,v]$	$\triangle[u,v]$	$\triangle(u,v)$	$\triangle(u,v)$	$\triangle[\mathbf{u}, \mathbf{v}]$	$\triangle[\mathbf{u},\mathbf{v}]$
n-adj	$\triangle[u,v]$	$\triangle[u,v]$					$\triangle(\mathbf{u}, \mathbf{v})$	$\triangle(\mathbf{u}, \mathbf{v})$

 $\triangle(u,v) = N(u) \triangle N(v); \quad \triangle[u,v] = N[u] \triangle N[v]$

Definitions

Full-separating set: C such that

- $N[u] \cap C \neq N[v] \cap C$, for all $u, v \in V$
- $N(u) \cap C \neq N(v) \cap C$, for all $u, v \in V$

Takes care of Fault type 1 and Fault type 2

Full-separating dominating code (FD-code):

A set with full-separating property + dominating property

Full-separating total-dominating code (FTD-code):

A set with full-separating property + total-dominating property

Existence & Examples

Existence: twin-free = open-twin-free + closed-twin-free

$$X \in CODES = \{LD, LTD, ID, ITD, OD, OTD, FD, FTD\}$$

$$\gamma^{\mathbf{X}}(G) = \min\{|C|: C \text{ is an X-code of } G\}$$

(a)
$$\gamma^{\text{FTD}}(H_3) = 6$$

(b)
$$\gamma^{\text{FD}}(H_3) = 5$$

(a)
$$\gamma^{\text{FTD}}(H_3) = 6$$
 (b) $\gamma^{\text{FD}}(H_3) = 5$ (c) $\gamma^{\text{FTD}}(B) = \gamma^{\text{FD}}(B) = 4$

Code comparisons

Figure: $X' \longrightarrow X$ stands for $\gamma^{X'}(G) \leq \gamma^{X}(G)$

Interesting fact: $\gamma^{\text{FTD}}(G) - 1 \le \gamma^{\text{FD}}(G) \le \gamma^{\text{FTD}}(G)$

NP-hardness results related to FD- and FTD-codes

FD

Input: (G, k): A graph G and a positive integer k.

Question: Does there exist an FD-code C of G such that $|C| \leq k$?

FTD

Input: (G, k): A graph G and a positive integer k.

Question: Does there exist an FTD-code C of G such that $|C| \leq k$?

FD = FTD - 1

Input: A graph G and an integer k.

Question: Is $\gamma^{\text{FTD}}(G) = k$ and $\gamma^{\text{FD}}(G) = k - 1$?

Reduction ideas...from 3-SAT

(a) Variable gadget G^x . (b) Clause gadget P^y .

(c) Instance G^{ψ} .

Combinatorial results

Theorem

Let G be either a path P_n for $n \ge 4$ or a cycle C_n for $n \ge 5$. Moreover, let n = 6q + r for non-negative integers q and $r \in [0, 5]$. Then

$$\gamma^{\text{FD}}(G) = \gamma^{\text{FTD}}(G) = \begin{cases} 4q + r, & \text{if } r \in [0, 4]; \\ 4q + 4, & \text{if } r = 5. \end{cases}$$

Thank you!