PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08203998 A

(43) Date of publication of application: 09.08.96

(51) Int. CI

H01L 21/768 H01L 21/3205

(21) Application number: 07007072

(22) Date of filing: 20.01.95

(71) Applicant:

SONY CORP

(72) Inventor:

TSUKAMOTO MASANORI

GOCHO TETSUO

(54) METHOD OF FORMING MULTILAYER WIRING

(57) Abstract:

PURPOSE: To improve a method of forming a multilayer wire for use in a semiconductor memory or a gate array, and realize a flatness of a base and a reduction of intervals of an upper layer wire that could not be resolved in a conventional self-align contact method.

CONSTITUTION: When, in SRAM's of minimum process dimension $0.3 \mu m$, a substrate contact of an upper layer wire (bit line lead-out electrode) 15 is taken between two word lines 5 (wire width $0.55 \mu m$), an offset oxide film 6 is provided on the word line 5 and a side wall 7 is provided on a side wall surface to secure an insulation, and the entire base surface is coated with an etching stop layer 9 of a thin $Si_x N_y$ system. Thereafter, it is flatted with an interlayer insulation film 10 of a thick SiO_x system. A contact hole 10a (diameter $0.4 \mu m$) having a smaller opening dimension than a space between wires $(0.7 \mu m)$ is opened therein. Thus, as the opening dimension of the contact hole 10a is small, it is possible to reduce a coated area of the upper layer wire 15 and cope with an integration.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-203998

(43)公開日 平成8年(1996)8月9日

(51) Int.Cl. ⁶ H 0 1 L 21	識別記号 /768 /3205	庁内整理番号	FΙ			ŧ	技術表示箇所
			H 0 1 L	21/ 90		D	
				21/ 88		В	
				21/ 90		J	
			審査請求	未請求	請求項の数6	OL	(全 9 頁)
(21)出願番号	特顏平7-7072		(71)出願人	0000021	85		
				ソニーを	朱式会社		
(22)出顧日	平成7年(1995)1	平成7年(1995)1月20日			品川区北品川6	丁目7番	35号
			(72)発明者	塚本 邪	祖則		
				東京都區	品川区北品川 6 ° 会社内	丁目7番	35号 ソニ
			(72)発明者	牛鵬 も	纤雄		
				東京都品	品川区北品川 6 ⁻ €社内	丁目7番	35号 ソニ
			(74)代理人	弁理士	小池 晃 (外2名)	

(54) 【発明の名称】 多層配線の形成方法

(57)【要約】

【目的】 半導体メモリやゲート・アレイに用いられる 多層配線の形成方法を改善し、従来のセルフアライン・ コンタクト法では解決できなかった基体の平坦化と上層 配線間隔の縮小を実現する。

【構成】 最小加工寸法 0.35μ mのSRAMにおいて2本のワード線5(線幅 0.55μ m)の間で上層配線(ビット線引出し電極)15の基板コンタクトをとる場合に、ワード線5上にオフセット酸化膜6、側壁面上にサイドウォール7を設けて絶縁を確保し、基体全面を薄い Si_N ,系のエッチング停止層9で被覆した後に厚い Si_O 系の層間絶縁膜10で平坦化し、ここに配線間スペース(0.7μ m)よりも開口寸法の小さいコンタクト・ホール10a(直径 0.4μ m)を開口する。

【効果】 コンタクト・ホール10aの開口寸法が小さいので、上層配線15の被り面積が削減でき、高集積化に対応可能となる。

【特許請求の範囲】

【請求項1】 隣接する2本の中層配線の配線間スペース内で層間絶縁膜を開口して接続孔を形成し、該接続孔を介して下層配線と上層配線との間の導通をとる多層配線の形成方法において、

前記中層配線上にこれと共通パターンにてオフセット絶 縁膜を形成する工程と、

前記中層配線と前記オフセット絶縁膜からなるパターン の側壁面にサイドウォール絶縁膜を形成する工程と、

基体の全面を被覆して前記層間絶縁膜よりもエッチング 速度の遅いエッチング停止層を実質的にコンフォーマル に成膜する工程と、

前記エッチング停止層上に前記層間絶縁膜を略平坦に成 膜する工程と、

前記配線間スペースよりも開口寸法の小さい領域内で前記層間絶縁膜を異方性エッチングする工程と、

前記領域の底面に露出したエッチング停止層を選択的に除去することにより接続孔を完成させる工程と、

前記接続孔を導電材料で埋め込む工程とを有する多層配線の形成方法。

【請求項2】 前記層間絶縁膜をSiO,系材料を用いて構成し、前記エッチング停止層をSi.N,系材料, Si.O,N.系材料, Al.O,系材料より選ばれる 少なくとも1種類の絶縁材料を用いて形成する請求項1 記載の多層配線の形成方法。

【請求項3】 隣接する2本の中層配線の配線間スペース内で層間絶縁膜を開口して接続孔を形成し、該接続孔を介して下層配線と上層配線との間の導通をとる多層配線の形成方法において、

前記中層配線上にこれと共通パターンにてオフセット絶 縁膜を形成する工程と、

前記中層配線と前記オフセット絶縁膜からなるパターン の側壁面に前記層間絶縁膜よりもエッチング速度の遅い サイドウォール絶縁膜を形成する工程と、

基体の全面を被覆して前記層間絶縁膜を略平坦に成膜する工程と、

前記配線間スペースよりも開口寸法の小さい領域内で前 記層間絶縁膜を異方性エッチングし、接続孔を形成する 工程と、

前記接続孔を導電材料で埋め込む工程とを有する多層配線の形成方法。

【請求項4】 前記層間絶縁膜をSiO.系材料を用いて形成し、前記サイドウォール絶縁膜をSi.N,系材料, Si.O,N.系材料, Al.O,系材料より選ばれる少なくとも1種類の絶縁材料を用いて形成する請求項3記載の多層配線の形成方法。

【請求項5】 前記接続孔の開口寸法を、適用される最小加工寸法の1~1.2倍とする請求項1ないし請求項4のいずれか1項に記載の多層配線の形成方法。

【請求項6】 前記中層配線および下層配線は、MOS

2

トランジスタのそれぞれゲート電極およびソース/ドレイン領域である請求項1ないし請求項5のいずれか1項に記載の多層配線の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は主としてメモリ,ゲート・アレイ等の高集積化半導体デバイスに採用される多層 配線の形成方法に関し、特に配線や接続孔に多少の寸法 変動やフォトリソグラフィ時のミスアライメントが生じ ても、配線と接続孔との間の絶縁を確保し、かつ将来の より一層の高集積化に対応可能とする方法に関する。

[0002]

【従来の技術】VLSI, ULSIといった近年の高集 積化半導体デバイスにおいては、チップ上で配線部分の 占める面積が増大しており、特にメモリ, ゲート・アレ イ等のデバイスにおいてこの傾向が顕著となっている。 このようなデバイスでは、配線間隔の縮小のみでチップ 面積の縮小化を図ることにはもはや限界があり、絶縁膜 を介しながら配線を上下方向に幾層にも積み上げる多層 配線の採用により問題の解決を図っている。

【0003】多層配線においては、配線間に接続孔を形成するケースが多々発生する。たとえば、下層配線、中層配線、上層配線の3層の配線層が存在するとき、隣接する2本の中層配線の間の配線間スペース内で層間絶縁膜を開口して下層配線に達する接続孔を形成し、この接続孔に導電材料を埋め込んで下層配線と上層配線との間の導通をとるケースがこれに該当する。ここで、中層配線と接続孔との間の距離は、下記のスケーリング・ファクターを見込んで設計される。

- 30 (a) 中層配線と接続孔とを絶縁するために必要な距離 (b) 接続孔パターンをフォトリソグラフィで形成する
 - 際のアライメント余裕 (c)接続孔の直径や配線幅の加工ばらつき
 - 上記 (a) は、実質的には中層配線と接続孔との間に存在する層間絶縁膜の誘電率と膜厚の関数である。上記
 - (b) は、中層配線を被覆する層間絶縁膜に接続孔を開口するためのフォトレジスト・マスクを形成する際に、中層配線の配線間スペース内に本来収まるべき接続孔について発生し得る位置ずれを表す。さらに上記(c)
- 40 は、エッチング条件に起因するフォトレジスト・マスク との間の寸法変換差に関連している。

【0004】しかし、これらのスケーリング・ファクターは必ずしもデザイン・ルールの縮小と同一歩調にて容易にスケール・ダウンできるものではなく、このことが配線間スペースの縮小、ひいてはメモリ・セルやゲート・アレイの占有面積の縮小を阻む原因となっている。特に(b)のフォトリソグラフィにおけるアライメント余裕については他の項目に比べてスケール・ダウンが困難であり、ミスアライメントが大きくなると中層配線と接50 続孔と間の短絡が生じたり、あるいは下層配線がMOS

-FETのソース/ドレイン領域である場合に、そのL DD領域に接続孔が達して動作特性を劣化させてしまう 等の不都合が生ずる。

【0005】そこで、上述の問題を解決する手法とし て、配線間スペースを縮小してもここに自己整合的に接 続孔を開口できる、いわゆるセルフアライン・コンタク ト(SAC)法が提案されている。本手法を適用したS RAMのメモリ・セルの一部を、図11に示す。ここで は、タングステン (W) ・ポリサイド膜からなる2本の ワード線5 (MOS-FETのゲート電極)の間でビッ ト線引出し電極22をLDD構造を有するソース/ドレ イン領域8にコンタクトさせる工程にSAC法が適用さ れている。上記ソース/ドレイン領域8,ワード線5, ビット線引出し電極22は、それぞれ前述の下層配線, 中層配線、上層配線に該当する。

【0006】上記ワード線5の上面にはこれと同一パタ ーンにてSiO.からなるオフセット酸化膜6が形成さ れ、また該ワード線5とオフセット酸化膜6の側壁面に は同じくSiO.からなるサイドウォール7が形成され ている。ここでは、2本のワード線5の配線間スペース 全体がコンタクト・ホールとして機能しており、上記オ フセット酸化膜6とサイドウォール7とが、ワード線5 とビット線引出し電極22との間の絶縁に寄与してい る。

【0007】ところで、上記オフセット酸化膜6はSA C法に用いられる特有の構造部であるが、ある程度大き な膜厚を要するため、基体の表面段差を増大させてコン タクト・ホールやビット線引出し電極22のパターニン グを困難化する原因となっている。オフセット酸化膜6 の膜厚は、絶縁耐圧の確保に加え、下記のスケーリング ・ファクターを見込んで設計される。

【0008】(d) CVDによる成膜時の膜厚ばらつき (e) エッチバックによりサイドウォール7を形成する 際の膜減り

- (f) 層間絶縁膜21にコンタクト・ホールを開口する 際のオーバーエッチングによる膜減り
- (g) 上層配線22を被着させる直前の希フッ酸処理 (自然酸化膜の除去) 時の膜減り

これらのスケーリング・ファクターを見込んで設計され るオフセット酸化膜6の膜厚は、通常はワード線5の膜 厚を大幅に上回ってしまう。また、コンタクト・ホール 23の合わせズレを考慮してその開口エッジ位置21e をワード線5のエッジ位置よりも後退させているため、 開口エッチングの途中ではオフセット酸化膜6が露出す る。しかし、層間絶縁膜21とオフセット酸化膜6は通 常いずれもSiO.膜にて構成され、両者の間でエッチ ング選択比をとることができないため、上記開口エッチ ングとしてはコントロール・エッチングを行わざるを得 ない。このコントロール・エッチングとは、下地選択比 が確保できず過剰なオーバーエッチングが許容されない

場合に、エッチング量を被エッチング層の膜厚と同程度 に設定する方法である。したがって、通常のSAC法で は、大きな段差を有するワード線5の近傍で層間絶縁膜 21を平坦化することができず、これをコンフォーマル に形成せざるを得ない。この結果、コンタクト・ホール 23の内部には複雑な表面段差が残ることとなり、該コ ンタクト・ホール23を埋め込む上層配線のパターニン グに支障を来す。それは、近年のフォトリソグラフィで は露光波長の短波長化に伴って焦点深度が減少している 10 ために、表面段差が解像度を大きく低下させる原因とな るからである。また、近年のドライエッチングでは異方 性加工を実現するためにエッチング種の垂直入射成分を 強めているので、表面段差が過剰なオーバーエッチング による膜減りやダメージ増大の原因ともなるからであ

【0009】コンタクト・ホールやビット線引出し電極 22のパターニング精度を向上させるためには、ワード 線を被覆する層間絶縁膜で基体表面を平坦化することが 有効である。ただしその場合には、局部的な膜厚変動の 大きいこの層間絶縁膜にコンタクト・ホールを開口する ために、該層間絶縁膜の下地としてこれとエッチング選 択比のとれる薄いエッチング停止層を用いる。このよう な手法を適用したSRAMのメモリ・セルの一部を、図 12に示す。ここでは、オフセットSiO,膜6とサイ ドウォールSiO.膜7が共に薄いエッチング停止層3 1で被覆され、この上に層間絶縁膜32を成膜して基体 表面を一旦、略平坦化している。上記エッチング停止層 31としてはたとえばSiN膜、上記層間絶縁膜32と してはたとえば平坦化特性に優れるBPSG(ホウ素リ 30 ン・シリケート・ガラス) を用いることができる。この 後、フォトリソグラフィによりレジスト・マスク33を 形成し、その開口34を通じて層間絶縁膜32をエッチ ングする。ただし、この時のエッチングは、一般にHF 溶液を用いたウェット・エッチングか、あるいは選択性 を重視して等方性モードのドライ・エッチングで行われ るため、層間絶縁膜32の開口端にはアンダカット32 uが発生し、その開口寸法はレジスト・マスク33の開 口寸法(開口34の直径)より大きくなる。しかる後、 図13に示されるように、底面に露出したエッチング停 止層31をたとえば熱リン酸溶液処理により除去し、コ ンタクト・ホールを完成している。

[0010]

40

【発明が解決しようとする課題】ところで、従来のDR AMやSRAM等のメモリ・セルにおいては、たとえば 前出の図13に示されるように、レジスト・マスク33 の開口34の寸法は元来かなり大きく、したがって等方 性エッチングによるアンダカット32uの発生、すなわ ちコンタクト・ホールの開口径の拡大も許容されてい た。

50 【0011】しかしながら、このような等方性形状を有

するコンタクト・ホールを被覆するためには、ビット線 引出し電極を幅広く形成しなければならず、このことは 将来的にメモリ・セルのデザイン・ルールの縮小が一層 進んだ場合に髙集積化の大きな妨げとなる。特に、個々 のゲート電極に最小加工寸法が適用されるゲート・アレ イにおいては、上述のような等方性形状を有するコンタ クト・ホールは適用不可能である。また、かかるコンタ クト・ホールを被覆するビット線引出し電極は複雑な表 面段差を反映したものとなり、しかも一般に光反射率の 髙い材料で構成されるため、フォトリソグラフィ時にハ レーションや定在波効果を発生させ易く、正確な解像を 困難とする。

【0012】したがって今後は、中層配線の配線間スペ ース内に形成される接続孔についてもその断面形状を異 方性形状とし、これにより上層配線の被り面積を削減 し、かつ上層配線に基体の表面段差を反映させないよう にすることが、高集積化および高精度化に対応する上で 不可欠となる。

【0013】そこで本発明は、デザイン・ルールが縮小 しても中層配線と接続孔との間の絶縁を確保することが 可能で、しかも高集積化に対応できる多層配線の形成方 法を提供することを目的とする。

[0014]

【課題を解決するための手段】本発明の多層配線の形成 方法は、上述の目的を達するために提案されるものであ って、隣接する2本の中層配線の配線間スペース内で層 間絶縁膜を開口して接続孔を形成し、該接続孔を介して 下層配線と上層配線との間の導通をとる際に、前記中層 配線上にこれと共通パターンにてオフセット絶縁膜を形 成する工程と、前記中層配線と前記オフセット絶縁膜か らなるパターンの側壁面にサイドウォール絶縁膜を形成 する工程と、基体の全面を被覆して前記層間絶縁膜より もエッチング速度の遅いエッチング停止層を実質的にコ ンフォーマルに成膜する工程と、前記エッチング停止層 上に前記層間絶縁膜を略平坦に成膜する工程と、前記配 線間スペースよりも開口寸法の小さい領域内で前記層間 絶縁膜を異方性エッチングする工程と、前記領域の底面 に露出したエッチング停止層を選択的に除去することに より接続孔を完成させる工程と、前記接続孔を導電材料 で埋め込む工程とを経るものである。

【0015】あるいは、上記のエッチング停止膜を用い る代わりに、層間絶縁膜よりもエッチング速度の遅い材 料を用いてサイドウォール絶縁膜を構成しても良い。こ の場合には、前記層間絶縁膜の異方性エッチングを行う のみで接続孔が完成し、エッチング停止膜を除去する工 程は不要となる。仮にフォトリソグラフィ時のミスアラ イメントにより接続孔がサイドウォールとオーパーラッ プしても、このサイドウォールがエッチング停止膜と同 じ機能を果たすのでサイドウォールは浸触されず、中層 配線と接続孔との間の絶縁耐圧が確保される。

【0016】いずれの方法をとるにしても、前記層間絶 縁膜の最も一般的な構成材料はSiOx系材料である。 層間絶縁膜にSiO.系材料を用いる場合、エッチング 停止層あるいはサイドウォール絶縁膜としては、該Si O. 系材料と選択比のとれる絶縁材料を選択する必要が あり、好適な候補としてSi.N,系材料、Si.O, N,系材料、Al,O,系材料のいずれかを挙げること ができる。

【0017】前記接続孔を埋め込む導電材料は、上層配 線と共通であっても、あるいは別の材料であっても良 い。本発明で形成される接続孔は異方性形状を有し、し かも略平坦な層間絶縁膜に開口されるため、必然的にア スペクト比の高いものとなる。したがって、上層配線そ のものを用いてこれを埋め込む場合には、たとえば高温 スパッタリング法や高圧リフロー法により成膜されるA 1系配線膜を用いるとよい。一方、上層配線とは別の材 料を接続孔内の導電材料として用いる場合には、たとえ ばブランケットCVDとエッチバックの組み合わせで接 統孔内にWプラグを形成すると良い。 もちろんいずれの 場合においても、密着層あるいはバリヤメタルとしてた とえばCVDによりカバレージの良いT i 系材料膜を予 め接続孔内に成膜して構わない。

【0018】本発明では、前記接続孔の開口寸法を、適 用される最小加工寸法の1~1. 2倍の範囲とする。本 発明に限らず、一般にフォトリソグラフィによる接続孔 パターンの形成は技術的困難を伴うため、接続孔の開口 寸法はその世代の最小加工寸法よりやや大きく設定する のが普通である。本発明では、その上限を特に最小加工 寸法の1.2倍と規定することにより、ゲート・アレイ の髙集積化への対応を図っている。

【0019】なお、前記中層配線および下層配線は、典 型的にはMOSトランジスタのそれぞれゲート電極およ びソース/ドレイン領域とすることができる。ゲート電 極の代表的な構成材料としては、不純物含有ポリシリコ ン膜、髙融点金属ポリサイド膜、髙融点金属シリサイド 膜がある。

[0020]

40

【作用】本発明では、多少のフォトリソグラフィのミス アライメントや加工寸法ばらつきが生じても、オフセッ ト絶縁膜とサイドウォール絶縁膜の存在により中層配線 と接続孔との間の絶縁が確保できるという従来のSAC 法のメリットはそのままに、従来のSAC法では解決す ることのできなかった層間絶縁膜の平坦化と接続孔の異 方性形状化を実現している。すなわち、層間絶縁膜の下 にエッチング停止層を設けるか、あるいは該層間絶縁膜 とエッチング選択比のとれる材料でサイドウォールを構 成することで局部的な膜厚差の大きい層間絶縁膜の異方 性エッチングを可能とし、このことにより中層配線の配 線間スペースにこれよりも開口寸法の小さい接続孔を開 50 口することを可能とする。接続孔の開口が縮小すると、

これを被覆する上層配線の被り面積を縮小することができ、メモリ素子のセル面積やゲート・アレイの占有面積を縮小して一層の高集積化を図ることができる。また、層間絶縁膜が略平坦化されることにより、この上に塗布されるフォトレジスト膜も平坦かつ均一な膜厚となるため、フォトリソグラフィにおける接続孔パターンあるいは上層配線パターンの解像特性が飛躍的に向上する。また、上層配線の表面段差が最小限に抑えられることにより、エッチングによる上層配線そのものの加工精度も向上する。

[0021]

【実施例】以下、本発明の具体的な実施例について説明 する。

【0022】実施例1

本実施例は、2本のワード線の間でSRAMのビット線引出し電極を基板にコンタクトさせるSRAMの多層配線の形成プロセスに本発明を適用した例であり、Si、N, 膜をエッチング停止層として用いた。本形成プロセスを、図1ないし図6を参照しながら説明する。

【0023】まず、図1に示されるように、予めウェル 形成や素子分離を行ったSi基板1の表面を熱酸化し、 厚さ約8nmのゲート酸化膜2を形成した。この熱酸化 は、たとえばH1/O1混合ガスを用い、850℃でパ イロジェニック酸化を行うことにより形成することがで きる。続いて、膜厚約70mmの不純物含有ポリシリコ ン膜3と膜厚約70nmのWSi.膜4の積層体である Wポリサイド膜を形成し、さらにこの上に減圧CVDに より膜厚約170nmのオフセット酸化膜6を堆積させ た。ここで、上記WS i.膜4は、WF₆/S i C l₂ H. 混合ガスを用い、680℃で減圧CVDを行うこと により成膜した。また、上記不純物含有ポリシリコン膜 3は、SiH./PH。混合ガスを用い、550℃で減 圧CVDを行って成膜したn^{*}型アモルファスSi膜 を、上述のWSi,膜4のCVD時の熱負荷により結晶 粒成長させることにより形成した。

【0024】次に、上記オフセット酸化膜6上に図示されないレジスト・マスクを形成し、該オフセット酸化膜6,上記WSi.膜4,上記不純物含有ポリシリコン膜3を異方性エッチングした。この異方性エッチングは、たとえば有磁場マイクロ波プラズマ・エッチング装置とC1,/O.混合ガスを用い、これら3種類の膜すべてについて共通条件で一括して行うことも可能であるが、それぞれの膜に最適なエッチング条件を順次切り換えながら行っても良い。このエッチングにより、図示されるように、オフセット酸化膜6が同一パターンで積層されたワード線5を形成した。このワード線5の線幅は約0.55 μ m、配線間スペースは約0.7 μ mである。【0025】次に、上記オフセット酸化膜6をマスクとしてSi基板1にLDD領域形成用のAs'の低濃度イオン注入を行った。このときのイオン注入条件は、たと

えばイオン加速エネルギー20keV,ドース量6×10 13 /cm 12 とした。続いて、基体の全面に減圧CVD 法により膜厚約150nmのSiO.膜を形成した後、これを異方的にエッチバックした。これにより、上記ワード線5およびオフセット酸化膜6の側壁面上に、図2に示されるようなサイドウォール7を形成した。次に、これらサイドウォール7とオフセット酸化膜6とをマスクとしてAs 12 の高濃度イオン注入(イオン加速エネルギー20keV,ドース量5×10 15 /cm 12)を行い、さらに1050 12 、10秒間のRTA(ラピッド・サーマル・アニール)を行って不純物(As)を活性化させ、LDD構造を有するソース/ドレイン領域8を形成した。

【0026】次に、図3に示されるように、基体の全面に薄くコンフォーマルなエッチング停止層9を形成した後、基体の全面を略平坦化するごとく厚い層間絶縁膜10を堆積させた。ここで、上記エッチング停止層9は、SiC1,H,/NH。混合ガスを用い、760℃で減圧CVDを行うことにより20~50nmの厚さに堆積されたSi.N,膜である。なお、このエッチング停止層9はプラズマCVDで形成しても良い。また、上記層間絶縁膜10は、SiH,/B,H。/PH,混合ガスを用い、400℃で常圧CVDを行うことにより500~1000nmの厚さに堆積されたBPSG(ホウ素リン・シリケート・ガラス)膜を、850℃、30分間の条件でリフローさせたものである。

【0027】次に、図4に示されるように、フォトリソグラフィを行ってコンタクト・ホール・パターンに倣った開口12を有するレジスト・マスク11を層間絶縁膜10上に形成した。このときの開口12の開口寸法は、配線間スペースよりも狭い 0.4μ mとした。なお、本実施例のSRAMの最小加工寸法は 0.35μ mであり、上記の開口寸法はその1.14倍に相当する。上記フォトリソグラフィは、一例として化学増幅系ポジ型フォトレジスト材料とKrFエキシマ・レーザ・ステッパを用いて行ったが、予め層間絶縁膜10の表面が略平坦化されていることによりレジスト強膜の膜厚を基板面内にわたってほぼ均一かつ比較的薄くすることができたため、解像特性は極めて良好であった。

40 【0028】次に、図5に示されるように、上記開口12内に表出する層間絶縁膜10を異方性エッチングし、コンタクト・ホール10aを途中まで形成した。この異方性エッチングは、たとえばマグネトロンRIE装置とCHF。/CO混合ガスを用いて行った。このガス系は、SiO.系材料に対してはCOガスによる膜中からのO原子引き抜きによりエッチング速度を上昇させる効果を示すが、O原子が供給されないSi.N,系の露出面上ではCOガスがF*(フッ素ラジカル)を捕捉するためにエッチング速度を低下させる効果を示す。つまり、エッチング停止層9に対する選択比が高いために、

層間絶縁膜10の最大膜厚相当分をエッチングしても、エッチング停止層9が露出するとそれ以上はエッチングが進行しない。図5では、若干のミスアライメントが生じ、コンタクト・ホール10aの一端がサイドウォール7とオーバーラップした例を示しているが、エッチング停止層9が存在するためにサイドウォール7の浸触が防止されている。このことにより、ワード線5はこのコンタクト・ホール10aの内部に埋め込まれる後述の上層配線15から十分な耐圧をもって絶縁される。

【0029】さらに、図6に示されるように、コンタクト・ホール10aの底面に露出したエッチング停止層9をドライエッチングにより除去し、コンタクト・ホール10を完成した。このドライエッチングは、たとえばマグネトロンRIE装置とCHF、/O、混合ガスとを用いて行った。このガス系では、O、の添加量が増えるとCHF、ガスの解離が促進されて大量のF・が生成する一方で、CF、・イオンの生成量が低下するため、SiO、系材料に対して高い選択比を達成することができる。また、Si基板1(正確にはソース/ドレイン領域8)に対しても、その露出面がO、の酸化作用により薄いSiO、膜に変化されるため、やはり高い選択比が達成される。

【0030】この後は、常法にしたがって上層配線15 の形成を行った。この上層配線15は、たとえば膜厚約 30nmのTi膜と膜厚約70nmのTiN膜とをスパ ッタリング法で順次積層したTi系パリヤメタル13の 上に、さらに膜厚約4000nmのAl-1%Si膜1 4を高温スパッタリング法で積層したものである。な お、この上層配線15は、図6では基体の全面に被着さ れた様に描かれているが、実際にはワード線5と直交す る方向にパターニングされており、その線幅は約0.5 5μmである。上層配線15においてかかる狭い線幅が 実現できたのは、本発明で形成されるコンタクト・ホー ル10aの開口寸法が小さく、開口端における上層配線 15の被り面積が少なくて済むからである。また、上層 配線15は略平坦化された層間絶縁膜10上に形成され ているため、該上層配線15をパターニングするための フォトリソグラフィやドライエッチングの精度も、いず れも優れたものであった。

【0031】実施例2

本実施例では、実施例1のようなエッチング停止層6を用いる替わりに、Si.N, 膜からなるサイドォールを用いた。本実施例のプロセスについて図7ないし図10を参照しながら説明するが、実施例1と共通する部分については詳しい説明を省略する。

【0032】本実施例では、図7に示されるように、Si.N,膜からなるサイドウォール16を形成した。このサイドウォール16は、LDDイオン注入までの工程を実施例1と同様に行った後、たとえばSiCl,H,/NH,混合ガスを用いて760℃で減圧CVDを行う

10

ことにより膜厚約80nmのSi,N,膜を基体の全面 に堆積させ、しかる後に異方性エッチバックを行って形 成した。

【0033】高濃度イオン注入および活性化アニールを 行ってソース/ドレイン領域8を形成した後、図8に示 されるようにBPSG膜よりなる層間絶縁膜10を形成 して基体の表面をほぼ平坦化し、さらに図9に示される ように該層間絶縁膜10上にレジスト・マスク11を形 成した。続いて、この状態で層間絶縁膜10の異方性エ ッチングを行い、図10に示されるようなコンタクト・ ホール10aを形成した。図10では、若干のミスアラ イメントが生じ、コンタクト・ホール10aの一端がサ イドウォール16とオーバーラップした例を示している が、このサイドウォール16はSi,N膜で形成されて いるために実施例1のエッチング停止層9と同じ効果を 発揮し、エッチングの進行を妨げた。つまり、サイドウ オール16の浸触が防止されたので、図10に示される ようにコンタクト・ホール10aを上層配線15で埋め 込んだ後でも、ワード線5とコンタクト・ホール10a 内の該上層配線15との絶縁は良好であった。

【0034】以上、本発明を2例の実施例にもとづいて 説明したが、本発明はこれらの実施例に何ら限定される ものではない。たとえば、上述の各実施例ではエッチン グ停止層9およびサイドウォール16の構成材料を共に Si.N,としたが、本発明において規定されるSiO 、N,系材料、Al.O,系材料を用いても基本的には 同様の結果が得られる。この他、本発明の適用されるデ バイス、CVD、スパッタリング、イオン注入、ドライ エッチング等の各プロセスの条件、デバイスの構成材料 30 については、適宜変更が可能である。

[0035]

【発明の効果】以上の説明からも明らかなように、本発明を適用すれば配線間スペースの縮小を図りながらも中層配線と接続孔との絶縁耐圧を十分に確保し、しかも従来のSAC法では困難であった層間絶縁膜の平坦化と接続孔の断面形状の異方性化、およびこれに伴う上層配線の被り面積の縮小をも実現している。したがって、メモリ素子のセル面積やゲート・アレイの占有面積を縮小し、これらの半導体デバイスの一層の高集積化、高信頼化を図ることができる。

【図面の簡単な説明】

40

【図1】本発明を2本のワード線の間でビット線引出し 電極の基板コンタクトをとるSRAMの多層配線の形成 プロセスに適用した例において、Si基板上にゲート酸 化膜を介してワード線とオフセット酸化膜とを同一パタ ーンで形成した状態を示す模式的断面図である。

【図2】図1のワード線とオフセット酸化膜の側壁面に サイドウォールを形成した状態を示す模式的断面図である。

50 【図3】図2の基体の全面に薄くコンフォーマルなエッ

チング停止層を形成し、さらにその基体の表面を厚い層間絶縁膜で略平坦化した状態を示す模式的断面図である。

【図4】図3の層間絶縁膜上にレジスト・マスクを形成した状態を示す模式的断面図である。

【図5】図4の層間絶縁膜を異方性エッチングしてコンタクト・ホールを途中まで形成した状態を示す模式的断面図である。

【図6】図5のコンタクト・ホール底面のエッチング停止層を除去し、コンタクト・ホールを上層配線で埋め込んだ状態を示す模式的断面図である。

【図7】本発明を2本のワード線の間でビット線引出し 電極の基板コンタクトをとるSRAMの多層配線の形成 プロセスに適用した他の例において、後述の層間絶縁膜 に比べてエッチング速度の遅いサイドウォールを形成し た状態を示す模式的断面図である。

【図8】図7の基体の全面を厚い層間絶縁膜で略平坦化 した状態を示す模式的断面図である。

【図9】図8の層間絶縁膜上にレジスト・マスクを形成した状態を示す模式的断面図である。

【図10】図9の層間絶縁膜を異方性エッチングしてコンタクト・ホールを形成した状態を示す模式的断面図で *

*ある。

【図11】従来のSAC法を適用したSRAMのメモリ・セルの一部において、2本のワード線の配線間スペース全体を使ってビット線引出し電極が基板にコンタクトされている状態を示す模式的断面図である。

12

【図12】エッチング停止層を用いることにより層間絶縁膜の平坦化を図った従来のSAC法を適用したSRA Mのメモリ・セルの一部において、接続孔の断面形状が 等方化し開口寸法が拡大している状態を示す模式的断面 10 図である。

【図13】図12のエッチング停止層を選択的に除去した状態を示す模式的断面図である。

【符号の説明】

- 1 S i 基板
- 5 ワード線
- 6 オフセット酸化膜(SiO₁)
- 7 サイドウォール (SiO₂)
- 9 エッチング停止層 (Si, N,)
- 10 層間絶縁膜 (BPSG)
- 20 10a コンタクト・ホール
 - 15 上層配線 (Tiバリヤメタル/Al-1%Si)
 - 16 サイドウォール (Si, N,)

【図1】

【図2】

【図3】

【図4】

【図6】

【図8】

【図10】

【図11】

【図12】

【図13】

