2 - Semicontinuità

Semicontinuità di funzioni a valori reali

☆ Definizione: Semicontinuità di una funzione a valori reali

Sia *X* uno spazio topologico.

Sia $f:X \to \mathbb{R}$.

Sia $x_0 \in X$.

Si dice che f è semicontinua inferiormente in x_0 quando

 $orall arepsilon > 0, \; \exists U ext{ intorno di } x_0 : orall x \in U, \; f(x) - f(x_0) > -arepsilon.$

Si dice che f è semicontinua superiormente in x_0 quando

 $orall arepsilon > 0, \; \exists U ext{ intorno di } x_0 : orall x \in U, \; f(x) - f(x_0) < arepsilon.$

Q Osservazione

f è semicontinua inferiormente (risp. superiormente) in x_0 se e solo se -f è semicontinua superiormente (risp. inferiormente).

Q Osservazione

f è continua in x_0 se e solo se è ivi simultaneamente semicontinua inferiormente e superiormente.

Le seguenti due proposizioni caratterizzano la semicontinuità inferiore e superiore:

Proposizione 2.1: Caratterizzazioni della semicontinuità inferiore

Sia X uno spazio topologico.

Sia $f:X o\mathbb{R}$.

Sono equivalenti i seguenti fatti:

- 1. f è semicontinua inferiormente su X.
- 2. $f^{-1}(\]r;+\infty[)$ è aperto per ogni $r\in\mathbb{R}$;
- 3. $f^{-1}ig(]-\infty;r]ig)$ è chiuso per ogni $r\in\mathbb{R}$.

Si osserva che $f^{-1}ig(]r; +\infty[ig) = X \smallsetminus f^{-1}ig(]-\infty; r[ig)$ per ogni $r \in \mathbb{R}.$

Allora, $f^{-1}ig(\,]r;+\infty[ig)$ è aperto per ogni $r\in\mathbb{R}$ se e solo se $f^{-1}ig(\,]-\infty;r]ig)$ è chiuso per ogni $r\in\mathbb{R}$.

ho Dimostrazione (1. \Rightarrow 2.)

Si supponga f semicontinua inferiormente su X.

Sia $r \in \mathbb{R}$.

Sia $x_0 \in f^{-1}ig(]r; +\infty[ig);$ dunque, $f(x_0) > r.$

Sia $\varepsilon = f(x_0) - r > 0$.

Per semicontinuità inferiore di f su X, dunque su x_0 , esiste un intorno U di x_0 tale che $f(x) - f(x_0) > -\varepsilon$ per ogni $x \in U$, ossia $f(x) > f(x_0) - \varepsilon = r$ per ogni $x \in U$.

Allora, $x \in f^{-1} \big(\,]r; +\infty[\big)$ per ogni $x \in U$, ossia $U \subseteq f^{-1} \big(\,]r; +\infty[\big)$.

Allora, $f^{-1}\big(\,]r;+\infty[\big)$ è intorno di ogni suo punto, per cui tale insieme è aperto.

Si supponga $f^{-1}ig(\,]r;+\infty[ig)$ aperto per ogni $r\in\mathbb{R}.$

Sia $x_0 \in X$.

Sia $\varepsilon > 0$.

Si consideri l'insieme $f^{-1}(]f(x_0) - \varepsilon; +\infty[)$.

Essendo aperto per ipotesi e $x_0 \in f^{-1}(|f(x_0) - \varepsilon; +\infty[)$, esiste un intorno U di x_0 tale che

$$U\subseteq f^{-1}ig(\,]f(x_0)-arepsilon;+\infty[ig).$$

Ciò significa che, per ogni $x\in U$, $f(x)\in]f(x_0)-arepsilon;+\infty[$, ossia $f(x)>f(x_0)-arepsilon.$

Allora, U è un intorno di x_0 tale che $f(x) - f(x_0) > -\varepsilon$ per ogni $x \in U$, per cui f è semicontinua inferiormente in x_0 e dunque, per arbitrarietà di tale punto, in tutto X.

Proposizione 2.1': Caratterizzazione della semicontinuità superiore

Sia X uno spazio topologico.

Sia $f:X o\mathbb{R}$.

Sono equivalenti i seguenti fatti:

- 1. f è semicontinua superiormente su X.
- 2. $f^{-1}(]-\infty;r[)$ è aperto per ogni $r\in\mathbb{R}$;
- 3. $f^{-1}([r; +\infty[)$ è chiuso per ogni $r \in \mathbb{R}$.

Semicontinuità ed estremi assoluti

☐ Teorema 2.2: Teorema di Weierstrass per funzioni semicontinue inferiormente

Sia X uno spazio topologico compatto.

Sia $f: X \to \mathbb{R}$ una funzione semicontinua inferiormente.

Allora, f è dotata di minimo assoluto, ossia esiste $x_0 \in X$ tale che $f(x_0) \leq f(x)$ per ogni $x \in X$.

Dimostrazione

Si provi dapprima che f è limitata inferiormente.

In corrispondenza a $\varepsilon=1$, per semicontinuità inferiore di f esiste U_x intorno aperto di x tale che f(y)>f(x)-1 per ogni $y\in U_x$.

La famiglia $\{U_x \mid x \in X\}$ costituisce un ricoprimento di aperti per X;

Essendo X compatto per ipotesi, esistono $x_1,\dots,x_n\in X$ tali che $X=igcup\limits_{i=1}^n U_{x_i}.$

Sia
$$m=\min_{i\in\{1,\ldots,n\}}f(x_i).$$

Sia $y\in X$; essendo $X=igcup_{i=1}^n U_{x_i}$, esiste $i\in\{1,\dots,n\}$ tale che $f(y)>f(x_i)-1$; dalla definizione di m segue

$$f(x_i) \geq m$$
, per cui $f(y) > m-1$.

Ne segue che f(y) > m-1 per ogni $y \in X$.

Dunque f è limitata inferiormente.

Posto dunque $\alpha = \inf(f(X))$, si provi che $\alpha \in f(X)$.

Fissato $\varepsilon>0$, sia $X_{\varepsilon}=f^{-1}\big(\left]-\infty;\alpha+\varepsilon\big]\big).$

Esso è non vuoto; infatti, essendo $\alpha=\inf(f(X))$, per la seconda proprietà degli estremi inferiori esiste $y\in X$ tale che $f(y)<\alpha+\varepsilon$.

Inoltre, essendo f semicontinua inferiormente, dalla [Proposizione 2.1] segue che X_{ε} è chiuso.

Si consideri la famiglia $\{X_{\varepsilon} \mid \varepsilon > 0\}$, costituita da chiusi per quanto appena osservato.

Essa soddisfa la proprietà d'intersezione finita, in quanto fissati $arepsilon_1,\dots,arepsilon_n>0$ si ha che $igcap_{i=1}^n X_{arepsilon_i}=X_{\min_{i\in\{1,\dots,n\}}(arepsilon_i)}
eqarnothing$

•

Allora, per compattezza di X esiste $x^* \in \bigcap_{\varepsilon>0} X_{\varepsilon}.$

Ciò significa che $f(x^*) \le \alpha + \varepsilon$ per ogni $\varepsilon > 0$, da cui segue che $f(x^*) \le \alpha$.

Essendo $\alpha = \inf(f(X))$, si ha anche $f(x^*) \geq \alpha$, per cui $f(x^*) = \alpha$.

Teorema 2.2': Teorema di Weierstrass per funzioni semicontinue superiormente

Sia X uno spazio topologico compatto.

Sia $f:X \to \mathbb{R}$ una funzione semicontinua superiormente.

Allora, f è dotata di massimo assoluto, ossia esiste $x_0 \in X$ tale che $f(x_0) \ge f(x)$ per ogni $x \in X$.

Il teorema appena enunciato si può invertire in tutte e due le sue forme:

Teorema 2.3: Teorema di Weierstrass inverso per funzioni con minimo assoluto

Sia $X \neq \emptyset$.

Sia $f:X \to \mathbb{R}$.

Si supponga che f ammette minimo assoluto, ossia esiste $x_0 \in X$ tale che $f(x_0) \leq f(x)$ per ogni $x \in X$.

Allora, esiste una topologia τ su X dimodoché X sia compatto, e f sia semicontinua inferiormente.

Dimostrazione

Sia $au = \{f^{-1}(|r; +\infty[) \mid r \in \mathbb{R}\} \cup \{\varnothing, X\}$; si provi che essa è una topologia su X.

Intanto, $\emptyset, X \in \tau$ per definizione.

Fissati $A_1, A_2 \in \tau$, si ha $A_1 \cap A_2 \in \tau$.

Infatti, se uno dei due insiemi è vuoto oppure pari a X, il risultato è immediato; altrimenti, esso segue dal fatto che $f^{-1}(|r_1;+\infty|) \cap f^{-1}(|r_2;+\infty|) = f^{-1}(|\max\{r_1,r_2\};+\infty|) \in \tau$.

Fissato $A \subseteq \tau$, si ha $\bigcup A \in \tau$.

Infatti, se $X \in \mathcal{A}$, si ha $\bigcup \mathcal{A} = X \in \tau$.

Altrimenti, supponendo $\varnothing \notin \mathcal{A}$ senza perdere di generalità, il risultato segue dal fatto che, fissato $S \subseteq \mathbb{R}$, si ha $\bigcup_{r \in S} f^{-1} \big(\,]r; +\infty[\big) = f^{-1} \big(\,] \sup(S); +\infty[\big) \in \tau.$

Dunque, τ è una topologia.

Chiaramente, f è semicontinua inferiormente rispetto a τ in quanto $f^{-1}(]r; +\infty[)$ è aperto per ogni $r \in \mathbb{R}$ per definizione di τ , e dunque si applica la [Proposizione 2.1].

Si provi infine che X è compatto rispetto a τ .

Sia $\{A_i\}_{i\in\mathcal{I}}$ un ricoprimento di aperti di X.

Esiste allora $i \in \mathcal{I}$ tale che $x_0 \in A_i$, dove x_0 è punto di minimo assoluto per f; si provi che $A_i = X$.

Se per assurdo fosse $A_i \neq X$, esisterebbe $\tilde{x} \in X \setminus A_i$.

Essendo $A_i \neq \varnothing$ in quanto $x_0 \in A_i$ e A_i in quanto $\tilde{x} \notin A$, si ha $A_i = f^{-1}(\]r_i; +\infty[)$.

Poiché $x_0 \in A_i$ e $\tilde{x} \notin A_i$, si ha $f(\tilde{x}) \le r_i < f(x_0)$; ne segue $f(\tilde{x}) < f(x_0)$, contraddicendo il fatto che x_0 sia di minimo assoluto.

Г

Teorema 2.3': Teorema di Weierstrass inverso per funzioni con massimo assoluto

Sia $X \neq \emptyset$.

Sia $f: X \to \mathbb{R}$.

Si supponga che f ammette massimo assoluto, ossia esiste $x_0 \in X$ tale che $f(x_0) \ge f(x)$ per ogni $x \in X$.

Allora, esiste una topologia τ su X dimodoché X sia compatto, e f sia semicontinua superiormente.

Semicontinuità sequenziale

Si ricordi che uno spazio topologico X si dice sequenzialmente compatto quando ogni successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ ammette un'estratta convergente a un certo $x^*\in X$.

☆ Definizione: Semicontinuità di una funzione a valori reali

Sia X uno spazio topologico.

Sia $f: X \to \mathbb{R}$.

Sia $x_0 \in X$.

Si dice che f è sequenzialmente semicontinua inferiormente in x_0 quando per ogni successione $\{x_n\}_{n\in\mathbb{N}}$ convergente a x_0 , si ha $f(x_0)\leq \liminf_n f(x_n)$.

Si dice che f è **sequenzialmente semicontinua superiormente** in x_0 quando per ogni successione $\{x_n\}_{n\in\mathbb{N}}$ convergente a x_0 , si ha $f(x_0)\geq \limsup_n f(x_n)$.

Osservazione: Relazione tra semicontinuità e sequenziale semicontinuità.

Sia *X* uno spazio topologico.

Sia $f:X o\mathbb{R}$ semicontinua inferiormente (risp. superiormente) in x_0

Allora, f è anche sequenzialmente semicontinua inferiormente (risp. superiormente) in x_0 .

Dimostrazione

Si supponga f semicontinua inferiormente in x_0 . Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione convergente a x_0 . Sia $\varepsilon>0$.

Per semicontinuità inferiore di f esiste un intorno U di x_0 tale che $f(x_0) < f(x) + \varepsilon$.

Poiché $\{x_n\}_{n\in\mathbb{N}}$ converge a x_0 , in corrispondenza a U esiste $\nu\in\mathbb{N}$ tale che $x_n\in U$ per ogni $n\geq \nu$.

Allora, $f(x_0) < f(x_n) + \varepsilon$ per ogni $n \ge \nu$.

Ne segue che $f(x_0) \leq \liminf_n f(x_n)$ per arbitrarietà di ε .

Il viceversa non vale generalmente; esso vale sotto le seguenti condizioni:

Proposizione 2.4: Equivalenza tra semicontinuità e sequenziale semicontinuità per funzioni su punti con sistemi fondamentali di intorni numerabili

Sia X uno spazio topologico.

Sia $f:X \to \mathbb{R}$ sequenzialmente semicontinua inferiormente (risp. superiormente) in x_0 .

Si supponga che x_0 possegga in sistema fondamentale di intorni numerabile.

Allora, f è anche semicontinua inferiormente (risp. superiormente) in x_0 .

Dimostrazione

Si supponga f sequenzialmente semicontinua inferiormente in x_0 .

Si supponga per assurdo che f non sia semicontinua inferiormente in x_0 .

Allora, esiste $\tilde{\varepsilon} > 0$ tale che, per ogni U intorno di x_0 , esiste $x_U \in U$ tale che $f(x_U) \leq f(x_0) - \tilde{\varepsilon}$.

Sia $\{U_n\}_{n\in\mathbb{N}}$ un sistema fondamentale di intorni numerabile di x_0 , che esiste per ipotesi.

Per ogni $n\in\mathbb{N}$ l'insieme $\bigcap_{i=1}^n U_i$ è un intorno di x_0 ; allora, esiste $x_n\in\bigcap_{i=1}^n U_i$ tale che $f(x_n)\leq f(x_0)- ilde{arepsilon}$ per ipotesi di assurdo.

Si consideri la successione $\{x_n\}_{n\in\mathbb{N}}$; essa converge a x_0 .

Infatti, si fissi U intorno di x_0 ; essendo $\{U_n\}_{n\in\mathbb{N}}$ un sistema fondamentale di intorni di x_0 , esiste $n_0\in\mathbb{N}$ tale che

 $U_{n_0}\subseteq U$; pertanto, per ogni $n\geq n_0$ si ha $x_n\in igcap_{i=1}^n U_i\subseteq U_{n_0}\subseteq U.$

Per ipotesi di sequenziale semicontinuità inferiore di f, si ha che $f(x_0) \leq \liminf_n f(x_n)$; tuttavia, ciò contraddice il fatto che $f(x_n) \leq f(x_0) - \tilde{\varepsilon}$ per ogni $n \in \mathbb{N}$, che implica $\limsup_n f(x_n) \leq f(x_0) - \tilde{\varepsilon} < f(x_0)$

Proposizione 2.5: Teorema di Weierstrass per funzioni sequenzialmente semicontinue inferiormente

Sia X uno spazio topologico sequenzialmente compatto.

Sia $f: X \to \mathbb{R}$ una funzione sequenzialmente semicontinua inferiormente.

Allora, f è dotata di minimo assoluto.

Q Osservazioni preliminari

Sia $A \subseteq \mathbb{R}$ non vuoto.

Allora, esiste una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq A$ tale che $\lim_n x_n=\inf(A).$

Infatti, se A non è limitato inferiormente, il risultato segue dal fatto che A non ammette minoranti. se A non è limitato inferiormente, il risultato segue dal fatto che $\inf(A)$ è un punto di accumulazione per A.

Dimostrazione

Sia $\alpha = \inf(f)$.

Per l'osservazione preliminare, esiste una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ tale che $\lim_n f(x_n)=lpha.$

Per sequenziale compattezza di X, tale successione ammette un'estratta $\{x_{n_k}\}_{k\in\mathbb{N}}$ tale che $\lim_k x_{n_k}=x^*\in X$.

Per sequenziale semicontinuità inferiore di f si ha $f(x^*) \leq \liminf_k f(x_{n_k})$;

essendo $\{f(x_{n_k})\}_{k\in\mathbb{N}}$ estratta della successione $\{f(x_n)\}_{n\in\mathbb{N}}$ che tende a α , ne segue che

 $\liminf_k f(x_{n_k}) = lpha$; dunque, $f(x^*) = lpha$.

Allora, segue contemporaneamente che f è limitata inferiormente e che ammette minimo assoluto.

Proposizione 2.5': Teorema di Weierstrass per funzioni sequenzialmente semicontinue superiormente

Sia X uno spazio topologico sequenzialmente compatto.

Sia $f: X \to \mathbb{R}$ una funzione sequenzialmente semicontinua superiormente.

Allora, f è dotata di massimo assoluto.

Proposizione 2.6: Teorema di Weierstrass per funzioni semicontinue inferiormente con un sottolivello compatto

Sia X uno spazio topologico.

Sia $f:X \to \mathbb{R}$ una funzione semicontinua inferiormente.

Si supponga che esiste $r>\inf(f(X))$ tale che $f^{-1}\big(\,]-\infty;r]\big)$ sia compatto.

Allora, f è dotata di minimo assoluto.

Dimostrazione

Sia $K = f^{-1}(]-\infty; r]$).

Poiché $r > \inf(f(X))$, K è non vuoto.

Si consideri la restrizione $f_{|K}$.

Tale funzione è semicontinua inferiormente su K, essendolo su X per ipotesi;

K è compatto per ipotesi.

Per il [Teorema 2.2], esiste $x^* \in K$ tale che $f(x^*) \leq f(x)$ per ogni $x \in K$.

Inoltre, per ogni $y \in X \setminus K$, essendo $x^* \in K$ si ha $f(x^*) \le r < f(y)$ per definizione di K.

Allora x^* è di minimo assoluto per f in tutto X.

Proposizione 2.6': Teorema di Weierstrass per funzioni semicontinue superiormente con un sopralivello compatto

Sia X uno spazio topologico.

Sia $f:X \to \mathbb{R}$ una funzione semicontinua superiormente.

Si supponga che esiste $r < \sup(f(X))$ tale che $f^{-1}\big(\,[r;+\infty[\big)$ sia compatto.

Allora, f è dotata di massimo assoluto.

Proposizione 2.7: Teorema di Weierstrass per funzioni seq. semicontinue inferiormente con un sopralivello seq. compatto

Sia X uno spazio topologico.

Sia $f:X \to \mathbb{R}$ una funzione sequenzialmente semicontinua inferiormente.

Si supponga che $r>\inf(f(X))$ tale che $f^{-1}\big(\,]-\infty;r]\big)$ sia sequenzialmente compatto.

Allora, f è dotata di minimo assoluto.

Dimostrazione

Sia $K = f^{-1}(]-\infty; r]$).

Poiché $r > \inf(f(X))$, K è non vuoto.

Si consideri la restrizione $f_{|K}$.

Tale funzione è sequenzialmente semicontinua inferiormente su K, essendolo su X per ipotesi;

K è sequenzialmente compatto per ipotesi.

Per il [Teorema 2.5], esiste $x^* \in K$ tale che $f(x^*) \leq f(x)$ per ogni $x \in K$.

Inoltre, per ogni $y \in X \setminus K$, essendo $x^* \in K$ si ha $f(x^*) \le r < f(y)$ per definizione di K.

Allora x^* è di minimo assoluto per f in tutto X.

Proposizione 2.7': Teorema di Weierstrass per funzioni seq. semicontinue superiormente con un sopralivello seq. compatto

Sia *X* uno spazio topologico.

Sia $f:X\to\mathbb{R}$ una funzione sequenzialmente semicontinua superiormente.

Si supponga che $\exists r>\inf_{x\in X}f(x)$ e $f^{-1}\big(\left]-\infty;r]\big)$ sia sequenzialmente compatto.

Allora, f è dotata di massimo assoluto.