Computer Organization and Design

Transistors & Logic - II

Henry Fuchs

Slides adapted from Montek Singh, who adapted them from Leonard McMillan and from Gary Bishop Back to McMillan & Chris Terman, MIT 6.004 1999

Thursday, March 19, 2015

Lecture 10

Today's Topics

- * Synthesis using standard gates
 - Truth tables
 - Universal gates: NAND and NOR
 - Gates with more than 2 inputs
 - Sum-of-Products
 - DeMorgan's Law

Now We're Ready to Design Stuff!

* We need to start somewhere

usually it's the functional specification

If you are like most engineers you'd rather see a table, or formula than parse a logic puzzle. The fact is, any combinational function can be expressed as a table.

These "truth tables" are a concise description of the combinational system's function. Conversely, any computation performed by a combinational system can expressed as a truth table.

Truth Table

C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

We Can Make Most Gates Out of Others

* How many different gates do we really need?

One Will Do!

* NANDs and NORs are universal

one can make any circuit out of just NANDs, or just NORs!

* Ah! But what if we want more than 2-inputs?

Gate Trees

Suppose we have some 2-input XOR gates: (same idea holds for AND and OR gates)

$$A \longrightarrow C$$

_ A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

And we want an N-input XOR:

 t_{pd} (latency)= O(N)) -- WORST CASE.

Can we compute N-input XOR faster?

output = 1 iff number of 1s in input is ODD ("ODD PARITY")

Gate Trees

N-input TREE has $O(\frac{\log N}{\log N})$ levels... Signal propagation takes $O(\frac{\log N}{\log N})$ gate delays.

Design Approach: Sum-of-Products

Three steps:

- 1. Write functional spec as a truth table
- Write down a Boolean expression for every '1' in the output

$$Y = \overline{C}\overline{B}A + \overline{C}BA + CB\overline{A} + CBA$$

- 3. Wire up the gates!
- * This approach will always give us logic expressions in a particular form:
 - SUM-OF-PRODUCTS ("SOP")
 - "SUM" actually means OR
 - "PRODUCT" actually means AND

Truth Table

C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Straightforward Synthesis

- * We can implement SUM-OF-PRODUCTS...
 - ...with just three levels of logic:
 - > INVERTERS/AND/OR

$$Y = \overline{C}\overline{B}A + \overline{C}BA + CB\overline{A} + CBA$$

Notations

* Symbols and Boolean operators:

```
x \cdot y, xy, x \wedge y, AND(x, y), x AND y
x + y, x \vee y, OR(x, y), x \circ OR(y)
\overline{x}, x', \neg x, NOT(x), INV(x)
x \cdot y, x \wedge y, xy, NAND(x, y), x NAND y
x + y, x \vee y, NOR(x, y), x NORy
x \oplus y, XOR(x,y), x XOR y
x \oplus y, x \oplus y, XNOR(x, y), x XNOR y
```

DeMorgan's Laws

* Change ANDs into ORs and vice-versa

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Useful Gate Structures

An Interesting 3-Input Gate: Multiplexer

* Based on C, select the A or B input to be copied to the output Y.

2-input Multiplexer

"schematic" diagram

Truth Table

C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer (MUX) Shortcuts

A 4-input Mux (implemented as a tree)

A 4-bit wide 2-input Mux

Next Class

* Arithmetic circuits