Statsign program English Sis Part 3 https://pewsodenebrixpoints Add WeChat powcoder

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Flow-sensitivity

- Type checking is (usually) flow-insensitive:
 - statements may be permuted without affecting typability
 - constraints sing maternal Pregineria Fexafront Astronomical Pregineria

- https://powcoder.com
 Other analyses must be flow-sensitive:
 - the order of statements affects two peterts
 - constraints are naturally generated from control flow graph nodes

Sign analysis

- Determine the sign (+,-,0) of all expressions
- The Sign lattice:

Assignment Project Exam Helphe terminology
"any number"

https://powcoder.com

Add WeChat powcoder
"not of type number"

(or, "unreachable code")

will be defined
later – this is just
an appetizer...

 States are modeled by the map lattice Vars → Sign where Vars is the set of variables in the program

Implementation: TIP/src/tip/analysis/SignAnalysis.scala

Generating constraints

```
var a,b;
2 a = 42;
b = a + input;
4 a = a - b;
              Assignment Project Exam Help
       \frac{\text{var a,b}}{\text{https://powcoder.com}} \text{ https://powcoder.com}_{X_1} = [a \mapsto T, b \mapsto T]
    2 a = 42 Add WeChat[powcoder
                              x_3 = x_2[b \mapsto x_2(a) + T]
  b = a + input
                              x_4 = x_3[a \mapsto x_3(a) - x_3(b)]
     a = a - b
```

Sign analysis constraints

- The variable [[v]] denotes a map that gives the sign value for all variables at the program point after node v
- For variable Assignment Project Exam Help

$$[var x_1, ..., x_h] = JO/N(y)[x_h \leftrightarrow Toder.x_o \leftrightarrow T]$$

• For assignments:

$$[x = E] = JOIN(A) dd War Charty projectoder$$

For all other nodes:

$$||v|| = JOIN(v)$$

where
$$JOIN(v) = \bigsqcup \llbracket w \rrbracket$$
 combines information from predecessors $w \in pred(v)$ (explained later...)

Evaluating signs

- The eval function is an abstract evaluation:
 - $eval(\sigma, x) = \sigma(x)$
 - eval(σ,in tessisti) meigh (Pritopest) Exam Help
 - $eval(\sigma, E_1 \text{ op } E_2) = \overline{\text{op}}(eval(\sigma, E_1), eval(\sigma, E_2))$ https://powcoder.com
- σ: Vars → SignAida WarStratcpgweeder
- The sign function gives the sign of an integer
- The op function is an abstract evaluation of the given operator

Abstract operators

(assuming the subset of TIP with only integer values)

Increasing precision

- Some loss of information:
 - -(2>0)==1 is analyzed as T
 - +/+ is a Aalyigdase Tits Proceiecg. Existand Heled down
- Use a richer lattice for better precision: https://pow.coder.com

Abstract operators are now 8×8 tables

Partial orders

- Given a set S, a partial order
 is a binary relation on S
 that satisfies:
 - reflexivasignment Project: Exam Help
 - transitivity:https://powoder.SconF y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z
 - anti-symmetry: $\forall x,y \in S: x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$ Add WeChat powcoder
- Can be illustrated by a Hasse diagram (if finite)

Upper and lower bounds

- Let $X \subseteq S$ be a subset
- We say that $y \in S$ is an *upper* bound $(X \subseteq y)$ when $\forall x \in X$: Assignment Project Exam Help
- We say that y fitis a / power brund (y ⊆ X) when ∀ x∈X: y ⊆ x
 Add WeChat powcoder
- A *least* upper bound $\coprod X$ is defined by $X \sqsubseteq \coprod X \land \forall y \in S : X \sqsubseteq y \Rightarrow \coprod X \sqsubseteq y$
- A *greatest* lower bound $\prod X$ is defined by $\prod X \sqsubseteq X \land \forall y \in S$: $y \sqsubseteq X \Rightarrow y \sqsubseteq \prod X$

Lattices

 A (complete) lattice is a partial order where $\coprod X$ and $\prod X$ exist for all $X \subseteq S$

Assignment Project Exam Help
 A lattice must have

- - a unique largesterement, com (exercise)
 - a unique smallestelementat powcoder
- If S is a finite set, then it defines a lattice iff
 - T and ⊥ exist in S
 - x \square y and x \square y exist for all x,y ∈ S (x \square y is notation for \square {x,y})

Implementation: TIP/src/tip/lattices/

These partial orders are lattices

These partial orders are not lattices

The powerset lattice

• Every finite set A defines a lattice $(2^A, \subset)$ where

$$- \perp = \emptyset$$

- T = A Assignment Project Exam Help

$$- x \square y = x \bigcirc y$$

$$- x \square y = x \cap y$$
https://powcoder.com
$$\{0,1,2,3\}$$

{0,1,2,3}

d Wechat powcoder

Lattice height

- The height of a lattice is the length of the longest path from ⊥ to T
- The lattice (Stign) the still Exam Help

Map lattice

• If A is a set and L is a lattice, then we obtain the map lattice:

Assignment Project Exam Help

$$A \rightarrow L = \{ [a_{1}, x_{2}, \dots] \land x_{1}, x_{2}, \dots \in L \}$$

Add WeChat potwooderA → L where ordered pointwise

• A is the set of program

- A is the set of program variables
- L is the Sign lattice
- □ and □ can be computed pointwise
- $height(A \rightarrow L) = |A| \cdot height(L)$

Product lattice

• If L₁, L₂, ..., L_n are lattices, then so is the *product*:

https://powcoder.com where ⊑ is defined pointwise Add WeChat powcoder

- Note that □ and □ can be computed pointwise
- $height(L_1 \times L_2 \times ... \times L_n) = height(L_1) + ... + height(L_n)$

Example:

each L_i is the map lattice $A \rightarrow L$ from the previous slide, and n is the number of CFG nodes

Flat lattice

• If A is a set, then flat(A) is a lattice:

• height(flat(A)) = 2

Lift lattice

If L is a lattice, then so is lift(L), which is:

height(lift(L)) = height(L)+1

Sign analysis constraints, revisited

 The variable \[\text{v} \] denotes a map that gives the sign value for all variables at the program point after node v

- Assignment Project Exam Help
 $\llbracket v \rrbracket \in States \text{ where } States = Vars \rightarrow Sign$ https://powcoder.com
- For variable declarations:

$$[var x_1, ..., x_n] ddo We Chat-powcoder$$

For assignments:

$$\|x = E\| = JOIN(v)[x \mapsto eval(JOIN(v), E)]$$

For all other nodes:

$$||v|| = JOIN(v)$$

where
$$JOIN(v) = \coprod [w] \\ w \in pred(v)$$

combines information from predecessors

```
var a,b,c;
a = 42;
b = 87;
if (input) {
  c = a + b;
} else {
  c = a - b;
```

Generating constraints

Assignment Project Exam Help

```
[entry https://powcoder.com
                                                                                                                                                                     [var a_{A}b_{A}c] e [a \mapsto T_{A}b \mapsto T_{A}c \mapsto T_{A}c] [a \mapsto A^{\dagger}c] e [a \mapsto A^{\dagger}c
                                                                                                                                                                      [b = 87] = [a = 42][b \mapsto +]
                                                                                                                                                                      \llbracket input \rrbracket = \llbracket b = 87 \rrbracket
                                                                                                                                                                      [c = a + b] = [input][c \mapsto [input](a) + [input](b)]
                                                                                                                                                                      [c = a - b] = [input][c \mapsto [input](a) - [input](b)]
using l.u.b. \rightarrow [exit] = [c = a + b] \sqcup [c = a - b]
```

Constraints

• From the program being analyzed, we have constraint variables $x_1, ..., x_n \in L$ and a collection of constraints:

$$x_1 = f_1(x_1 Assignment Project Exam Help$$
 $x_2 = f_2(x_1, ..., x_n)$
Note that Lⁿ is a product lattice
 $x_n = f_n(x_1, ..., x_n) dd$ WeChat powcoder

- These can be collected into a single function $f: L^n \rightarrow L^n$: $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$
- How do we find the least (i.e. most precise) value of $x_1,...,x_n$ such that $x_1,...,x_n = f(x_1,...,x_n)$ (if that exists)???

Monotone functions

• A function $f: L \rightarrow L$ is monotone when

$$\forall x,y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

- A function with members and projected and the project of the pro
- Monotone functions are closed under composition
- As functions, ☐ and ☐ are both monotone (exercises)
- $x \sqsubseteq y$ can be interpreted as "x is at least as precise as y"
- When f is monotone:
 - "more precise input cannot lead to less precise output"

Monotonicity for the sign analysis

Example, constraints for assignments: $[x = E] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$

- The \square operator and map updates are spinnent Project Exam Help
- Compositions preserve we coder.com monotonicity
 Add WeChat powcoder
- Are the abstract operators monotone?
- Can be verified by a tedious inspection:
 - $\forall x,y,x' \in L: x \sqsubseteq x' \Rightarrow x \overline{op} y \sqsubseteq x' \overline{op} y$
 - $\forall x,y,y' \in L: y \sqsubseteq y' \Rightarrow x \overline{op} y \sqsubseteq x \overline{op} y'$

Kleene's fixed-point theorem

 $x \in L$ is a *fixed-point* of $f: L \to L$ iff f(x)=x

In a lattice with time Regist, every monbone function f has a typique least fixed point:

Add WeChat powcoder
$$fix(f) = \coprod_{i \ge 0} f^i(\bot)$$

Proof of existence

- Clearly, ⊥ ⊑ f(⊥)
- Since f is monotone, we also have $f(\bot) \sqsubseteq f^2(\bot)$
- By induction signment Project Exam Help
- This means thattps://powcoder.com

$$\bot \sqsubseteq f(\bot) \sqsubseteq_{Add}^{f^2} W = Chat^{f^1}() \longrightarrow_{Powcoder}^{f^1}$$
 is an increasing chain

- L has finite height, so for some k: $f^k(\bot) = f^{k+1}(\bot)$
- If $x \sqsubseteq y$ then $x \sqcup y = y$ (exercise)
- So fix(f) = $f^k(\bot)$

Proof of unique least

- Assume that x is another fixed-point: x = f(x)
- Clearly, $\bot \sqsubseteq x$
- By induction, ignment (Project Exam Help
- In particular, flx(ff) s=/ff(dy) € der.eofix(f) is least

Add WeChat powcoder

Uniqueness then follows from anti-symmetry

Computing fixed-points

The time complexity of fix(f) depends on: the height of the lattice - the cost Assignment Project Exam Help the cost of testing equality https://powcoder.com/ $X = \bot;$ Add WeChat powcoder **do** { t = x;x = f(x);} while (x≠t);

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

Summary: lattice equations

- Let L be a lattice with finite height
- A equation system of Project Exam Help

$$x_1 = f_1(x_1, ..., x_n)$$

 $x_2 = f_2(x_1, ..., x_n)$
Add WeChat powcoder
...
$$x_n = f_n(x_1, ..., x_n)$$

where x_i are variables and each f_i : $L^n \rightarrow L$ is monotone

Note that Lⁿ is a product lattice

Solving equations

 Every equation system has a unique least solution, which is the least fixed-point of the function f: Lⁿ→Lⁿ defined by Ssignment Project Exam Help

$$f(x_1,...,x_n) = (f_1(x_1,...,x_n),...,f_n(x_1,...,x_n))$$
https://powcoder.com

- A solution is always a fixed point oder (for any kind of equation)
- The least one is the most precise

Solving inequations

• A inequation system is of the form

$$x_1 \sqsubseteq f_1(x_1, ..., x_n)$$
 $x_1 \supseteq f_1(x_1, ..., x_n)$ $x_2 \sqsubseteq f_2(x_A ssign)$ ment Project Examy $\exists f_1(x_1, ..., x_n)$... $t_1 \sqsubseteq f_1(x_1, ..., x_n)$ $t_2 \sqsubseteq f_1(x_1, ..., x_n)$ $t_2 \sqsubseteq f_1(x_1, ..., x_n)$ $t_3 \sqsubseteq f_1(x_1, ..., x_n)$

• Can be solved by exploiting previous!

$$x \sqsubseteq y \iff x = x \sqcap y$$

and
 $x \sqsupseteq y \iff x = x \sqcup y$

Monotone frameworks

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

- A CFG to be analyzed, nodes Nodes = {v₁,v₂, ..., v_n}
- A finite-height lattice L of possible answers
 - fixed or passigement Project Examples
- A constraint variable/ ly leb for every CFG node v
- A dataflow construct
 - relates the value of \[v\] to the variables for other nodes
 - typically a node is related to its neighbors
 - the constraints must be monotone functions:

$$[v_i] = f_i([v_1], [v_2], ..., [v_n])$$

Monotone frameworks

- Extract all constraints for the CFG
- Solve constraints using the fixed pointed gorithm:
 - we work in the lattice describing abstract states
 - computing the least fixed-point of the combined function: $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$
- This solution gives an answer from L for each CFG node

Generating and solving constraints

Conceptually, we separate constraint generation from constraint solving, but in implementations, the two stages are typically interleaved

Lattice points as answers

Conservative approximation...

The naive algorithm

```
x = (\(\perp, \perp, \perp, \perp, \perp);
do {
    Assignment Project Exam Help
    t = x;
    x = f(x)https://powcoder.com
} while (\(\frac{1}{2}\) WeChat powcoder
```

- Correctness ensured by the fixed point theorem
- Does not exploit any special structure of Lⁿ or f
 (i.e. x∈Lⁿ and f(x₁,...,x_n) = (f₁(x₁,...,x_n), ..., f_n(x₁,...,x_n)))

Implementation: SimpleFixpointSolver

Example: sign analysis

 $[n \rightarrow I, f \rightarrow I]$

```
[n \rightarrow I, f \rightarrow L]
ite(n) {
                             var f
                      Assignment Project Exam Help
  var f;
  f = 1;
  while (n>0) {
                             https://powcoder.com
     f = f*n;
     n = n-1;
                       false
                                    WeChat poweoder
  }
  return f;
                             f=f*n
                                             [n \rightarrow I, f \rightarrow I]
}
                             n=n-1
                                             [n \rightarrow I, f \rightarrow I]
                           return f
                                             [n \rightarrow I, f \rightarrow E]
                                8
```

Note: some of the constraints are mutually recursive in this example

The naive algorithm

	$f^0(\bot,\bot,,\bot)$ $f^1(\bot,\bot,,$	工)	$f^k(\perp,\perp,,\perp)$
1	Assignment Project	#Exam Help	$f_1^k(\perp,\perp,,\perp)$
2	$\begin{array}{c c} \bot & f_2^1(\bot, \bot,, \\https://pow.coc$		$f_2^k(\perp,\perp,,\perp)$
	https://pow.coo	ler.com	
n		1)	$f_n^k(\perp, \perp,, \perp)$

Computing each new entry is done using the previous column

- Without using the entries in the current column that have already been computed!
- And many entries are likely unchanged from one column to the next!

Chaotic iteration

Recall that $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$

```
\begin{array}{lll} x_1 = \bot; & \dots & x_n = \bot; \\ \textbf{Assignment Project Exam Help} \\ \textbf{while } & ((x_1,\dots,x_n) \neq f(x_1,\dots,x_n)) \end{array} \\ & \text{pick i no} & \textbf{hdtepst/mposvicoddesuchm} \\ & \text{that } & x_i \neq f_i(x_1,\dots,x_n) \\ & x_i = f_i & \textbf{Add} & \textbf{WeChat powcoder} \\ \end{array} \\ \}
```

We now exploit the special structure of Lⁿ

may require a higher number of iterations,
 but less work in each iteration

Correctness of chaotic iteration

- Let x^{j} be the value of $x=(x_{1}, ..., x_{n})$ in the j'th iteration of the naive algorithm
- Let <u>x^j</u> be the signment <u>x</u> P(x)ect, <u>x</u> x)aim the lipth iteration of the chaotic iteration algorithm https://powcoder.com
- By induction in j, show $\forall j : \underline{x^j} \sqsubseteq x^j$
- Chaotic iteration eventually terminates at a fixed point
- It must be identical to the result of the naive algorithm since that is the least fixed point

Towards a practical algorithm

- Computing ∃i:... in chaotic iteration is not practical
- Idea: predicts ightenthe analysis and the structure of the program typs://powcoder.com

Add WeChat powcoder

Example:

 In sign analysis, when we have processed
 a CFG node v, process succ(v) next

The worklist algorithm (1/2)

 Essentially a specialization of chaotic iteration that exploits the special structure of f

Assignment Project Exam Help

- Most right-hand sides of f_i are quite sparse:
 https://powcoder.com
 constraints on CFG nodes do not involve all others

Add WeChat powcoder

Use a map:

 $dep: Nodes \rightarrow 2^{Nodes}$

that for v∈Nodes gives the variables w where v occurs on the right-hand side of the constraint for w

The worklist algorithm (2/2)

```
X_1 = \bot; \ldots X_n = \bot;
W = \{V_1, \ldots, V_n\};
while (W \neq \emptyset) {
  V<sub>i</sub> = Assignment Project Exam Help
   y = f_i(x_{https://poweoder.com})
   if (y\neq x_i) {
      for (vi Add We Chat powcoder (vi);
     X_i = y;
```

Implementation: SimpleWorklistFixpointSolver

Further improvements

- Represent the worklist as a priority queue
 - find clever heuristics for priorities

Assignment Project Exam Help

- Look at the graph of dependency edges:
 - build strongly-connected components
 - solve constraints bottom in the restring DAG

Transfer functions

 The constraint functions in dataflow analysis usually have this structure:

Assignment Project Exam Help where t_v : States \rightarrow States is called the **transfer function** for volume to the transfer function for vol

Add WeChat powcoder

Example:

$$[[x = E]] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$$
$$= t_v(JOIN(v))$$

where

$$t_v(s) = s[x \mapsto eval(s, E)]$$

Sign Analysis, continued...

- Another improvement of the worklist algorithm:
 - only add the entry node to the worklist initially
 - then let dataflow propagate through the program according to the constraints...
 Assignment Project Exam Help
- Now, what if the topstraint webetervering le declarations was:

```
[var x_1, ..., x_n] = JOIN(v)[x_1 \mapsto \bot, ..., x_n \mapsto \bot]

(would make sense if we treat "uninitialized" as "no value" instead of "any value")
```

- Problem: iteration would stop before the fixpoint!
- Solution: replace Vars → Sign by lift(Vars → Sign)
 (allows us to distinguish between "unreachable" and "all variables are non-integers")
- This trick is also useful for context-sensitive analysis! (later...)