Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q6 Solutions and solubility

[3 + 2 + 2 = 7 marks]

a) Calcium oxalate is the major source of kidney stones. If the solubility product, $K_{\rm sp}$, of calcium oxalate, CaC_2O_4 , in water at 25 °C is 2.32×10^{-9} , calculate the molar solubility of calcium oxalate and the solubility in g L⁻¹ at this temperature.

Hint: M_r for $CaC_2O_4 = 128.097$ g mol^{-1} .

[3 marks]

$$CaC_2O_4$$
 (s) \rightleftharpoons $Ca^{2+}(aq) + C_2O_4^{2-}(aq)$
and $K_{sp} = [Ca^{2+}][C_2O_4^{2-}]$

From the reaction stoichiometry, for each mole of $CaC_2O_4(s)$ that dissolves, 1 mole of Ca^{2+} and 1 mole of $C_2O_4^{2-}$ are formed.

If the molar solubility of $CaC_2O_4(s) = S M$, then $[Ca^{2+}] = S M$ and $[C_2O_4^{2-}] = S M$

 $2.32 \times 10^{-9} = [S][S]$ 1 mark

$$S = \sqrt{2.32 \times 10^{-9}}$$
$$= 4.82 \times 10^{-5}$$

Molar solubility of calcium oxalate is 4.82×10^{-5} M

1 mark

Solubility in g L⁻¹ = molar solubility × Mr
=
$$4.82 \times 10^{-5} \times 128.097$$

= $6.17 \times 10-3$ g L⁻¹

Solubility of calcium oxalate is 6.17×10^{-3} g L⁻¹

1 mark

3 significant figures required

b) Explain why the colligative properties of solutions of ionic compounds are more pronounced than the colligative properties of solutions of molecular compounds.

[2 marks]

Ionic compounds dissociate in solution which results in an increase in the number of particles in solution. For example, one NaCl 'molecule' dissociates into two ions: Na⁺ and Cl⁻. 1 mark

Colligative properties depend on the number of particles so any compound that dissociates into multiple particles has pronounced effects on the colligative properties of solutions. 1 mark

Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q6 (continued) Solutions and solubility

[3+2+2=7 marks]

c) Calculate the mass of glucose, $C_6H_{12}O_6$, (a sugar found in many foods) which would have to be dissolved in 500 g of water to give a solution of molality 0.133 mol kg⁻¹.

Data: $M_r C_6 H_{12} O_6 = 180.156 \text{ g mol}^{-1}$

 $M_r H_2 O = 18.015 \text{ g mol}^{-1}$

[2 marks]

Using molality(b) = $\frac{\text{amount of substance (number of moles)}}{\text{mass of solvent expressed in kilogram}}$

Amount of glucose = molality × mass of solvent

Amount of glucose = 0.133×0.500

= 0.0665 mol 1 mark

Mass glucose = 0.0665 × 180.1

= 11.98 g 1 mark

Must include unit, should be 3 significant figures (12.0 g)

2 marks for correct answer with no unit and 3 significant figures, otherwise partial marks for working as above.