Practical Lab Cloud Systems Engineering (cloud-lab)

Chair of Decentralized Systems Engineering https://dse.in.tum.de/

Welcome to the cloud-lab!

Goals of the lab

- Learn how to build, deploy and manage cloud systems
- Gain knowledge of properties and challenges of distributed systems

Most importantly: have fun!

Your instructors

Emmanouil Giortamis

Maurice Bailleu

Dimitra Giantsidi

Jiyang Chen

Simon Ellmann

Masanori Misono

What we do

Chair of Decentralized Systems Engineering

Research topics:

- OS virtualization (VMs, containers, ...) and emulation (QEMU)
- High performance I/O (DPDK, SPDK, RDMA)
- FPGAs, smart NICs, smart SSDs
- Persistent memory
- ...

Looking for a bachelor's or master's thesis, guided research or IDP?

→ https://dse.in.tum.de/theses/

Cloud computing

- Cloud computing is powering the Internet
 - Large-scale computing resources
 - On-demand and cost effective
 - Geo-distributed data centers

Motivation: Cloud systems engineering

- Cloud systems
 - Modern cloud systems handle millions of users, TBs of data
 - Cloud software systems employ large geo-distributed data centers
- How can we build cloud systems that:
 - Scale seamlessly?
 - Are highly available?
 - Are fault tolerant?
 - Are easily configurable?
 - Are easily maintained?
- Cloud systems engineering aims to achieve all the above
 - In a cost-effective manner

Our focus: Learning goals

- Part I: Cloud systems workflow
 - Container: How to build applications using containers?
 - Cluster orchestrators: How to deploy jobs?
- Part II: Distributed systems system architecture
 - Sharding / re-configuration of servers
 - Fault tolerance / replication
 - Consistent hashing
 - Consistency
 - Transactions / data management
 - Distributed locking / synchronization
 - Concurrency and high-performance architectures
 - Fault detection
 - Configuration management

Learn by building an end-to-end system!

Technologies

Format

- A set of four programming tasks:
 - Each related to a different aspect of distributed systems
 - Built on top of each other, like a stack
- For each task, we will provide
 - Necessary background via a lecture
 - Q&As: after lecture and online via Slack
- Team effort: 1-2 students per team
 - The teams need to be finalized by the end of the first task
- The submitted tasks will be evaluated by
 - Automated grading system
 - Instructors

Layered architecture

#4: Distributed TXs: w/ and w/o replication

#3: Replicated distributed KVS

#2: Distributed KVS

#1: Single-node KVS

#o: Container and job deployment

#1: Single-node KVS

#1: Single-node KVS

Grading

Lecture	Category	Details	Grade
	Kick-off meeting	Introduction	-
#o	Container deployment	Deploying an application with containers	10%
#1	Single-node KVS setup	Build and deploy a single node KVS as a container	30%
#2	Distributed KVS	Shard the keys across multiple nodes: fault detection and server reconfiguration	30%
#3	Replicated distributed KVS	Replicate the KVS instances across these nodes for fault tolerance	30%
#4	Distributed Transactions	Support distributed transactions across keys and nodes: w/ and w/o replication	40%

Timeline

First week (kick-off meeting)

Lab organization

- Recorded lectures
 - Four recorded lectures
 - Lecture videos will be released on Slack on Mondays before the Q&A
- Q&A session
 - Four online Q&As
 - The Thursday after the video release, at 10:00 11:00 hr
 - Video for online Q&A: See the slack channel description
- Communication via Slack: https://ls1-courses-tum.slack.com/
 - Register with your TUM email address and join #ss-22-cloud-lab

Life of a task

Important dates

Q&A lectures	Task duration	Lecture video release (Mondays, 10:00h)	Q&A (Thursdays, 10:00-11:00h)	
kick-off	NA	NA	28th April	
#o	2 weeks	2nd May	5th May	
#1	3 weeks	16th May	19th May	
#2	3 weeks	6th June	9th June	
#3	3 weeks	27th June	30th June	

Grading

- Submission system: GitHub classroom
 - Template repository for each task with detailed instructions and test cases
- Automated tests
 - Tests run on our self-hosted CI runners
 - Grades determined by test scores
- Grading scheme:

Score	Grade	Score	Grade	Score	Grade
[0 20]	5.0	[0 20]	3.3	[0 20]	1.7
[21 30]	4.7	[21 30]	3.0	[21 30]	1.3
[31 40]	4.3	[31 40]	2.7	[31 40]	1.0
[4150]	4.0	[4150]	2.3		

• Exam [51 .. 60] 3.7) [51 .. 60] 2.0) ne by us – you do not have to register yourself!

Contact

- Emmanouil (Manos) Giortamis
 - <u>emmanouil.giortamis@in.tum.de</u>
- All cloud-lab info: https://github.com/TUM-DSE/cloud-lab

Workspace: http://ls1-courses-tum.slack.com/

Website: https://dse.in.tum.de/

Channel: #ss-22-cloud-lab

Join us with TUM email address (@tum.de)