- **Theorem 1** (Upwards Lowenheim-Skolem). For an infinite L-structure \underline{A} and $\kappa \geqslant |A| + |L|$ there is an
- L-structure \underline{B} such that $\underline{A} \preceq \underline{B}$.
- **Theorem 2** (Downwards Lowenheim-Skolem). For B an L-structure, $S \subseteq B$, there exists A such that
- $S \subseteq A$, $|A| \leqslant \max(|S|, |L|)$ and $\underline{A} \preccurlyeq \underline{B}$.
- **Definition 3.** For a theory T, and variables \mathbf{x} , a partial type P is a set of formulas where $T \cup P$ is
- consistent.
- **Example 4.** For $T = \text{Th}(\langle \mathbb{Z}, +, -, 0, 1 \rangle)$, $P(x) = \{\exists y (y + y \ldots + y = x)\} \cup \{x \neq 0\}$, is a partial type.
- This can be proven by compactness.
- **Definition 5.** For a theory T, a type P is principal if for some $\theta(\mathbf{x})$, $T \cup \theta(\mathbf{x}) \models P$ and $T \cup \theta$ is consistent.
- **Theorem 6** (Omitting types). Let T complete and L countable. Let P a countable set of non-principal 10
- types. Then, there is a countable model of T omitting every type in P. 11
- Proof. To construct the model, expand the language with countable constants, enumerate the sentences,
- formulas and closed tuples. At T_{3n+1} add σ_n or $\neg \sigma_n$ depending on consistency, add $\neg \exists y \varphi_n(y)$ or $\varphi_n(c_k)$ 13
- 14
- add $\psi(\mathbf{x}) \in P$ such that $T_{3n+2} \cup \neg \psi(\mathbf{t}_n)$ is consistent. Such a ψ exists because adding constant doesn't un-principal a type and for $\theta = \sigma_n \wedge (x = c)$, $T \cup \theta(\mathbf{x}) \nvDash \varphi(\mathbf{x})$, so $T \cup \{\sigma, \neg \varphi(c)\}$.
- **Theorem 7.** If $A \leq B$ then for every quantifier free $\varphi(x_1, \dots x_n)$,

$$\varphi^{\underline{B}} \cap A^k = \varphi^{\underline{A}}.$$

- If $A \leq B$ then this is true for all formulas φ . 17
- **Proposition 8** (Tarski-Vaught criterion). If $\underline{A} \leq \underline{B}$ and for $\varphi(\mathbf{x}, y)$ and $\mathbf{a} \in A^n$, $\underline{B} \models \varphi(\mathbf{a}, d)$ for $d \in B$ 18
- then $\underline{B} \models \varphi(\mathbf{a}, c)$ for $c \in A$, then $\underline{A} \preceq \underline{B}$. 19
- **Definition 9.** For \underline{A} let $L_A = L \cup \{c_a \mid a \in A\}$. $\underline{A_A}$ is an L_A -structure. The $diagram\ \mathrm{Diag}(\underline{A})$ is all q.f.
- L_A sentences true in A_A . 21
- **Theorem 10.** There is a 1-1 correspondence between models of $\text{Diag}(\underline{A}) \cup T$ and pairs $(\underline{B},\underline{A})$ where
- $\underline{B} \models T \text{ and } \underline{A} \leqslant \underline{B}.$ 23
- *Proof.* Let $\underline{C} \models \text{Diag}(A) \cup T$, $\underline{B} = \underline{C}_{|L}$, so $\underline{B} \models T$, build $f: A \to B$, $a \mapsto c_a^{\underline{C}}$. Then f is an embedding as 24
- for q.f. φ , $\underline{A} \models \varphi(\mathbf{a})$, $\varphi(\mathbf{c}_a) \in \operatorname{Diag}(\underline{A}) \Rightarrow \underline{C} \models \varphi(\mathbf{c}_a) \Rightarrow \underline{C} \models \varphi(\mathbf{c}_a^C) \Rightarrow \underline{C} \models \varphi(f(\mathbf{a})) \Rightarrow \underline{B} \models \varphi(f(\mathbf{a}))$. If $A \nvDash \varphi(\mathbf{a}) \Rightarrow A \models \neg \varphi(\mathbf{a}) \Rightarrow B \models \neg \varphi(\mathbf{a}) \Rightarrow E \vdash \varphi(\mathbf{a})$. 25
- **Theorem 11.** For a theory T, $\underline{A} \models T_{\forall}$ if and only if there exists $\underline{B} \models T$ with $\underline{A} \leqslant \underline{B}$.
- *Proof.* (\Rightarrow) There is $\underline{A} \leq \underline{B}$ iff $\underline{B} \models \text{Diag}(\underline{A}) \cup T$. iff finitely satisfiable iff $T + \varphi$ for $\varphi \in \text{Diag}(\underline{A})$ is
- satisfiable iff $T \nvDash \neg \varphi(c_1, c_2, \dots, c_n)$ iff $T \nvDash \forall \mathbf{x} \neg \varphi(\mathbf{x})$. But $A \models \exists \mathbf{x} \varphi(\mathbf{x})$ so $\forall \mathbf{x} \neg \varphi(\mathbf{x}) \notin T_{\forall}$. 29
- Corollary 12. The theory of fields is not universal as, $\underline{Z} \leq Q$ but Q is a field and \underline{Z} is not.
- **Theorem 13.** Sentence σ is universal if and only if for all $B \models \sigma$ and $A \leq B$, $A \models \sigma$. 31
- **Example 14.** For F the theory of fields, F_{\forall} is the theory of integral domains. That is because every
- integral domain can be embedded in a field. 33
- **Theorem 15.** For a chain $A_1 \leqslant A_2 \leqslant \ldots$, let \underline{A}^* be the limit of the chain. Then every AE sentence σ
- which holds for all A_i , holds for $A^{\overline{*}}$. 35
- **Definition 16.** Theory T admits quantifier elimination if for any formula $\theta(\mathbf{x})$, there exists a quantifier 36
- free formula $\theta(\mathbf{x})$ such that: 37

$$T \models \forall \mathbf{x} (\theta \leftrightarrow \tilde{\theta})$$

- **Theorem 17.** If L has no constant or function symbols and T admits Q.E. then T is complete.
- Example 18. • Th($\langle \mathbb{Q}, \langle \rangle$) admits QE and so is complete.
- ACF admits QE. But, the only thing ACF does not decide is the field characteristic. Hence, ACF_p for p prime or zero is complete. 41

- Th($\langle \mathbb{R}, +, -, \times, 0, 1 \rangle$) does not admit Q.E. Atomic sentences with one variable define only, finite and cofinite sets. But $\varphi(x) = \exists y(y^2 = x)$ defines the positive numbers.
- Th($\langle \mathbb{R}, +, -, \times, 0, 1, < \rangle$) admits Q.E. by Tarski. It is complete because the order is complete and so determines equality.
- **Remark.** If T admits Q.E. and $A_1, A_2 \models T$ and $A_1 \leqslant A_2$ then $A_1 \preccurlyeq A_2$.
- ⁶ Theorem 19. If it exists, there is only one way to extend a universal theory to a Q.E. theory. Prove by
- taking $\underline{A_1} \models S$ and $\underline{A_1} \leqslant \underline{B_1} \models T$ and build chains. The limits are equal and $\underline{A_1} \preccurlyeq A_2 \preccurlyeq C$.
- 8 **Theorem 20** (Equivalence). 1. T has Q.E.
- 2. Any partial isomorphism between models of *T* is elementary. It is enough to consider isomorphisms on finitely generated subsets.
- 3. For any $\mathcal{M} \models T$ and any $\mathbf{a} \in \mathcal{M}^n$, $T \cup \operatorname{diag}(\mathbf{a})$ is complete.
- Definition 21. A theory T for a cardinal κ is κ -categorical if there exist models $\underline{A}, \underline{B} \models T$ with $|A| = |B| = \kappa$ and this implies $A \cong B$.
- Proposition 22 (Los-Vaught Test). If T has no finite models, and for $\kappa \geqslant |L| + \aleph_0$, T is κ -categorical, then T is complete.
- Proof. Take $\mathcal{M} \models T$, $|\mathcal{M}| = \kappa$. Then, for any sentence σ , $\mathcal{M} \models \sigma$ or $\mathcal{M} \models \neg \sigma$, wlog let it be σ . Then, $T \cup \{\neg \sigma\}$ has no model of cardinality κ , by the Lowenheim-Skolems $T \cup \{\neg \sigma\}$ has no infinite models. \square
- Example 23. 1. Theory of equality $T_{=}$ is categorical for every cardinal. So T_{∞} is complete.
- 2. Vect_K is categorical for every $\kappa > |K|$, so Vect_K $\cup T_{\infty}$ is complete. But, Vect₀ is not \aleph_0 -categorical.
- 3. DLO is \aleph_0 -categorical and has no finite models. Proof by back and forth lemma. It is not \aleph_1 categorical, take $\mathbb{R} \sqcup \mathbb{Q} \ncong \mathbb{R}$.
- Definition 24 (Atomic Model). \underline{A} is an atomic model of a complete theory T if for any $\mathbf{a} \in A^n$ there is $\varphi(\mathbf{x})$ such that $\underline{A} \models \varphi(\mathbf{a})$ and for any $\psi(\mathbf{x})$: $T \models \forall x(\varphi \to \psi)$ or $T \models \forall x(\varphi \to \neg \psi)$
- Definition 25. A model $\underline{A} \models T$ is homogeneous if for any $\mathbf{a}, \mathbf{b} \in A^n$ that satisfy the same formulas, there is an automorphism $\alpha \colon A \longrightarrow A$ such that $\alpha(a_i) = b_i$.
- Definition 26. A model $A \models T$ is *prime* if for any model $B \models T$, A embeds elementarily to B.
- Proposition 27. Countable atomic models are isomorphic. In fact, every finite partial isomorphism can be extended to an isomorphism. They are also prime and homogeneous.
- Definition 28 (Type). The *n*-type of an *n*-tuple $\mathbf{a} \in A^n$ is the set of formulas satisfied by \mathbf{a} , denoted by $\mathbf{tp}_A(\mathbf{a})$. $\mathbf{tp}_A(\mathbf{a})$ is a partial type for the $\mathrm{Th}(\underline{A})$. It is complete as $\varphi(\mathbf{x}) \in \mathrm{tp}_A(\mathbf{a})$ or $\neg \varphi(\mathbf{x}) \in \mathrm{tp}_A(\mathbf{a})$.
- Proposition 29. For a complete theory T the atomic models realise the fewest types.
- Proposition 30. For a countable language L, Prime \iff Countable and Atomic.
- ³³ Corollary 31. The prime models of T are isomorphic, by uniqueness of countable & atomic.
- Proposition 32. If for each n the set of n-types is countable, then T has a prime model.
- Definition 33. A countable model $\mathcal{M} \models T$ is *universal*, if every countable model embeds elementarily into \mathcal{M} .
- 37 Theorem 34 (Ryll-Nardzewski). Let T complete and L-countable. Then, T is \aleph_0 -categorical \iff
- $_{38}$ every countable model is prime \iff every countable model is atomic \iff every type is principal \iff
- there are only finitely many n-types \iff n-formulas $\varphi(\mathbf{x})$ up to T equivalence is finite \iff
- 40 every countable model is universal \iff a countable model is prime and universal \iff
- every countable model is universal and homogeneous.
- Definition 35. A saturated model is a model that realises all n-types and is homogeneous. Equivalently:
- 43 If \mathcal{M} is saturated, for all $B \subseteq \mathcal{M}$ and $|B| < |\mathcal{M}|$, \mathcal{M}_B realises all 1-types of Th(\mathcal{M}_B).
- Proposition 36. If \mathcal{M} is saturated and countable, it is universal and unique up to isomorphism.
- 45 **Definition 37.** A group G applied to a G-set is oligomorphic if there are finitely many orbits of G.
- Proposition 38. T is \aleph_0 -categorical if and only if for a countable \mathcal{M} , $\operatorname{Aut}(\mathcal{M})$ is oligomorphic.