Course Name:Linear Algebra (MT 104)

Topic: Subspaces, Dimension, Bases (Exercise 2.8 & 2.9)

Instructor: Dr. Sara Aziz

saraazizpk@gmail.com

October 10, 2020

Subspaces of \mathbb{R}^n

One motivation for notion of subspaces of \mathbb{R}^n

algebraic generalization of geometric examples of lines and planes through the origin

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \text{ (no direction } \\ 0 \\ \text{ vectors)} \end{bmatrix} \begin{array}{c} \text{pine} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$$

$$\begin{bmatrix} 1 \\ 1 \\ \text{ one direction } \\ \text{ vector)} \end{bmatrix} \begin{array}{c} s \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 3 \\ \text{ (two direction } \\ \text{ vectors)} \\ \text{ linearly } \\ \text{ independent} \end{bmatrix}$$

$$r\begin{bmatrix} 1\\1\\0\\0\\0\\0\end{bmatrix} + s\begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix} + t\begin{bmatrix} 1\\2\\3\\4\\5\end{bmatrix} \text{ name?} \qquad p\begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix} + r\begin{bmatrix} 1\\1\\0\\0\\0\\0\end{bmatrix} + s\begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix} + t\begin{bmatrix} 1\\2\\3\\4\\5\end{bmatrix} \text{ name?}$$

Subspace

Definition A *subspace* S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such that

(1) $\vec{0} \in S$

[contains zero vector]

(2) if \vec{u} , $\vec{v} \in S$, then $\vec{u} + \vec{v} \in S$

[closed under addition]

(3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$

[closed under scalar mult.]

Subspace

Example

Is $S = \{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \}$ a subspace of \mathbb{R}^2 ? **Definition** A *subspace* S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such that

- (1) $\vec{0} \in S$
- (2) if \vec{u} , $\vec{v} \in S$, then $\vec{u} + \vec{v} \in S$
- (3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$

No!

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in S \quad \mathsf{but} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \not \in S$$

 \implies S is not closed under scalar multiplication

Subspace

Example

a subspace of \mathbb{R}^3 ?

Is $S = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$

Definition A *subspace* S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such that

- (1) $\vec{0} \in S$
- (2) if \vec{u} , $\vec{v} \in S$, then $\vec{u} + \vec{v} \in S$
- (3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$

YES!

- (1) $\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in S \Rightarrow \text{contains zero vector } \checkmark$
- (2) Let $\vec{u}, \vec{v} \in S$. Then $\vec{u} = \begin{bmatrix} a_1 \\ b_1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} a_2 \\ b_2 \\ 0 \end{bmatrix}$ for some $a_1, a_2, b_1, b_2 \in \mathbb{R}$. It follows that $\vec{u} + \vec{v} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ 0 \end{bmatrix} \in S \Rightarrow \begin{array}{l} \text{closed under } \checkmark \end{array}$
- (3) Let $\vec{u} \in S$, $c \in \mathbb{R}$. Then $\vec{u} = \begin{bmatrix} a \\ b \end{bmatrix}$ for some $a, b \in \mathbb{R}$. It follows that $c\vec{u} = c\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ca \\ cb \end{bmatrix} \in S \implies \substack{\text{closed under } \\ \text{scalar mult.}} \checkmark$

Span is a subspace!

Theorem. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \in \mathbb{R}^n$. Then $S = \text{span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k)$ is a subspace of \mathbb{R}^n .

Proof. We verify the three properties of the subspace definition.

- (1) $\vec{0} = 0\vec{v}_1 + 0\vec{v}_2 + \dots + 0\vec{v}_k$ $\Rightarrow \vec{0}$ is a linear comb. of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \Rightarrow \vec{0} \in S$
- (2) Let \vec{u} , $\vec{w} \in S$. Then $\vec{u} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$ and $\vec{w} = d_1 \vec{v}_1 + \dots + d_k \vec{v}_k$ for some scalars c_i , d_i . Thus, $\vec{u} + \vec{w} = (c_1 \vec{v}_1 + \dots + c_k \vec{v}_k) + (d_1 \vec{v}_1 + \dots + d_k \vec{v}_k)$ $= \underbrace{(c_1 + d_1) \vec{v}_1 + \dots + (c_k + d_k) \vec{v}_k}_{\text{linear comb. of } \vec{v}_1, \dots, \vec{v}_k} \Rightarrow \vec{u} + \vec{w} \in S$
- (3) Let $\vec{u} \in S$, $c \in \mathbb{R}$. You finish the proof (show that $c\vec{u} \in S$).

Column and row spaces of a matrix

```
Definition For an m \times n matrix A with column vectors v_1, v_2, \ldots, v_n \in \mathbb{R}^m, the column space of A is span(v_1, v_2, \ldots, v_n).
```

col(A) is a subspace of \mathbb{R}^m since it is the span of a set of vectors in \mathbb{R}^m

Definition For an $m \times n$ matrix A with row vectors $r_1, r_2, \ldots, r_m \in \mathbb{R}^n$, the *row space* of A is $span(r_1, r_2, \ldots, r_m)$.

row(A) is a subspace of \mathbb{R}^n since it is the span of a set of vectors in \mathbb{R}^n

Characterizing column and row spaces

Important relationships:

• Column space \exists scalars x_1, x_2, \ldots, x_n such that $\vec{b} \in \operatorname{col}(A) \iff \operatorname{span of} \iff x_1 \begin{bmatrix} 1 \\ \vec{v}_1 \\ 1 \end{bmatrix} + \cdots \times_n \begin{bmatrix} 1 \\ \vec{v}_n \\ 1 \end{bmatrix} = \vec{b} \iff \operatorname{is consistent} \text{ (has a sol'n)}$

Row space

$$\vec{b} \in \text{row}(A) \iff \vec{b}^T \in \text{col}(A^T) \iff A^T \vec{x} = \vec{b}^T \text{ has a solution}$$
since columns of A^T
are the rows of A

Null space of a matrix

Definition For an $m \times n$ matrix A, the <u>null space</u> of A is the set of all solutions to $A\vec{x} = \vec{0}$, i.e.,

$$null(A) = {\vec{x} : A\vec{x} = \vec{0}}.$$

 $\operatorname{null}(A)$ is a set of vectors in \mathbb{R}^n

Basis

Definition A set of vectors $B = \{\vec{v}_1, \dots, \vec{v}_k\}$ is a *basis* for a subspace S of \mathbb{R}^n if

- $\operatorname{span}(B) = S$,
- and B is a linearly independent set.

Example Standard basis for
$$\mathbb{R}^3$$
 is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ but another basis for \mathbb{R}^3 is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

More on basis

Definition A set of vectors $B = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ is a *basis* for a subspace S of \mathbb{R}^n if

- span(B) = S,
- and B is a linearly independent set.

Standard basis for \mathbb{R}^3 is $\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$

but another basis for \mathbb{R}^3 is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

Do you believe such bases

Consider

exist for
$$\mathbb{R}^3$$
?

$$B_1 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right\}$$

$$B_2 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \right\}$$

No!

Why not?

- span $(B_1) \neq \mathbb{R}^3$
- B₂ not linearly indep.

Definition The number of vectors in a basis of a subspace S is called the *dimension* of S.

Example
$$\dim(\mathbb{R}^n) = n$$
 $\begin{cases} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, \end{cases}$ is a basis for \mathbb{R}^n

Side-note The trivial subspace $\{\vec{0}\}$ has no basis since any set containing the zero vector is linearly dependent, so $\dim(\{\vec{0}\}) = 0$.

H

Theorem. The vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ form a basis of \mathbb{R}^n if and only if rank(A) = n, where A is the matrix with columns $\vec{v}_1, \ldots, \vec{v}_n$.

Fundamental Theorem of Invertible Matrices (extended)

Theorem. Let A be an $n \times n$ matrix. The following statements are equivalent:

- A is invertible.
- $A\vec{x} = \vec{b}$ has a unique solution for all $\vec{b} \in \mathbb{R}^n$.
- $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
- The RRFF of A is I.
- A is the product of elementary matrices.
- rank(A) = n.
- Columns of A form a basis for \mathbb{R}^n .

Finding bases for fundamental subspaces of a matrix

Given matrix
$$A$$
, how do we find bases for subspaces
$$\begin{cases} \operatorname{row}(A) \\ \operatorname{col}(A) \end{cases}$$
?
$$\operatorname{null}(A)$$
?

First, get RREF of A. $A \xrightarrow{\text{EROs}} R$

$$A \xrightarrow{\mathsf{EROs}} R$$

Finding bases for fundamental subspaces of a matrix

EROs do not change row space of a matrix.

basis for row(A) = basis for row(R)
$$\Longrightarrow$$
 nonzero rows of R

Columns of A have the same dependence relationship as columns of R.

 $\begin{array}{c} \mathsf{basis}\;\mathsf{for}\\ \mathsf{col}(A) \end{array} \Longrightarrow \begin{array}{c} \mathsf{columns}\;\mathsf{of}\;A\;\mathsf{that}\\ \mathsf{correspond}\;\mathsf{to}\;\mathsf{columns}\\ \mathsf{of}\;R\;\mathsf{w/leading}\;1\text{'s} \end{array}$

- solve $A\vec{x} = \vec{0}$, i.e. solve $R\vec{x} = \vec{0}$
- express sol'ns in terms of free variables, e.g.,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} \\ \\ \\ \end{bmatrix} + x_3 \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 basis vectors for null(A)

Bases of Row Space & Column Space: Example

Example of matrix subspaces' bases

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} \quad A \xrightarrow{\mathsf{EROs}} R = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

basis for
$$row(A) = \{ \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix} \}$$

basis for
$$col(A) = \left\{ \begin{bmatrix} 1\\6\\11 \end{bmatrix}, \begin{bmatrix} 2\\7\\12 \end{bmatrix} \right\}$$

Example of matrix subspaces' bases

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} \quad A \xrightarrow{\mathsf{EROs}} R = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_1$$
 - $x_3 - 2x_4 - 3x_5 = 0$
 $x_2 + 2x_3 + 3x_4 + 4x_5 = 0$
 x_3, x_4, x_5 free

$$2x_4 - 3x_5 = 0 3x_4 + 4x_5 = 0 x_3, x_4, x_5 \text{ free}$$
 basis for null(A) =
$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_3 + 2x_4 + 3x_5 \\ -2x_3 - 3x_4 - 4x_5 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Example related to column space

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \qquad \vec{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{ls } b \in \text{col}(A)?$$

Determine if $A\vec{x} = \vec{b}$ has a solution.

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(has infinite # of sol'ns)

$$\begin{bmatrix} \mathbf{Yes}, & \text{it is in column} \\ \text{space of } A. \end{bmatrix}$$

system is consistent

A solution to the system gives scalar coefficients for linear combination.

$$\begin{aligned} x_1 &= 2 - x_3 \\ x_2 &= 1 + x_3 \end{aligned} \quad \text{one sol'n} \quad \vec{x} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \qquad \vec{b} = 2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Example related to column space

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \qquad \vec{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{ls } \vec{b} \in \text{col}(A)?$$

Any vector in the column space of *A* has 0 in its third component.

Thus, the vector \vec{c} is not in the column space of A.

Example related to row space

$$A = \begin{bmatrix} -6 & 3\\ 1 & -\frac{1}{2} \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 2 & 1 \end{bmatrix} \qquad \text{Is } \vec{b} \in \text{row}(A)$$
?

Approach 1:

Is
$$\vec{b}^T \in \text{col}(A^T)$$
?

Determine if $A^T \vec{x} = \vec{b}^T$ has a solution.

$$\begin{bmatrix} -6 & 1 & 2 \\ 3 & -\frac{1}{2} & 1 \end{bmatrix} \xrightarrow{R_2 + \frac{1}{2}R_1} \begin{bmatrix} -6 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

inconsistent system

No,
$$\vec{b} \not\in \text{row}(A)$$
.

Approach 2:

$$\vec{b} \in \text{row}(A) \Longleftrightarrow$$

$$\left[\begin{array}{c} A \\ \overrightarrow{b} \end{array}\right] \xrightarrow[\text{for } i>j]{R_i + kR_j} \left[\begin{array}{c} A' \\ \mathbf{0} \end{array}\right]$$

$$\begin{bmatrix} -6 & 3\\ \frac{1}{2} & -\frac{1}{2} \\ \hline 2 & 1 \end{bmatrix} \xrightarrow[R_2 + \frac{1}{6}R_1]{R_2 + \frac{1}{6}R_1} \begin{bmatrix} -6 & 3\\ 0 & 0\\ \hline 0 & 2 \end{bmatrix}$$

No,
$$\vec{b} \not\in \text{row}(A)$$
.

Example related to null space

$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 2 & -2 & 1 & 1 \\ 4 & -4 & 3 & -1 \end{bmatrix}$$
 Find null(A).

 x_2, x_4 free vars

We need to

solve $A\vec{x} = \vec{0}$.

We have
$$\begin{bmatrix} 1 & -1 & 0 & 2 & | & 0 \\ 2 & -2 & 1 & 1 & | & 0 \\ 4 & -4 & 3 & -1 & | & 0 \end{bmatrix} \xrightarrow{\mathsf{EROs}} \begin{bmatrix} 1 & -1 & 0 & 2 & | & 0 \\ 0 & 0 & 1 & -3 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Convert to
$$x_1 - x_2 + 2x_4 = 0$$
 Solve for equations. $x_3 - 3x_4 = 0$ x_1 and x_3 .

$$\vec{X} = \begin{bmatrix} x_2 - 2x_4 \\ x_2 \\ 3x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ 3 \\ 1 \end{bmatrix} \quad \text{null}(A) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

$$for x_2, x_4 \in \mathbb{R}$$