東大数学理科後期 1998 年度

1 問題1

xy 平面上の点 $P_1=(0,10)$ を中心とし半径が 1 の円 C_1 と, $P_2=(0,0)$ を中心とし半径が 2 の円 C_2 を与える. xy 平面上の 3 点 Q,R,S を頂点とし、角 $\angle QRS$ が直角になるような直角二等辺三角形 $\triangle QRS$ に関して次の問いに答えよ.

- (1) 点 Q が円 C_1 上を動き、点 R が円 C_2 上を動くとき、第 3 の頂点 S が動いた軌跡を求めよ.
- (2) さらに、直線 x+2y=10 の上にある点 P_3 を中心とする半径 $\sqrt{2}$ の円 C_3 を与える. 点 P_3 を適当にとったところ、頂点 Q,R,S がそれぞれ円 C_1,C_2,C_3 上にあり、角 $\angle QRS$ が直角になるような直角二等辺三角形 $\triangle QRS$ がただ一つだけ定まったという. このときの P_3 の座標を求めよ.

2 問題 2

2 パラメータ r, θ $(r > 0, 0 \le \theta \le \frac{\pi}{4})$ に対して x の関数

$$f(x) = r\sin(x + \theta)$$

を考える.

(1) r, θ が等式

$$\int_0^{2\pi} (\sin x - f(x))^2 dx = \int_0^{2\pi} \sin^2 x dx \quad \dots (E)$$

を満たしているとき, r を θ の関数として表せ.

- (2) 式 (E) を満たしながら r,θ を動かしたとき, $0 \le x \le \pi$ における y = f(x) のグラフは xy 平面上を動く. これらのグラフが動く範囲 D を求め, 図示せよ.
 - (3) 図形 D の面積を求めよ.

3 問題3

グラフ G=(V,W) とは有限個の頂点の集合 $V=\{P_1,\ldots,P_n\}$ とそれらの間を結ぶ 辺の集合 $W=\{E_1,\ldots,E_m\}$ からなる図形を指す.各辺 E_i は丁度 2 つの頂点 P_{i_1},P_{i_2} $(i_1\neq i_2)$ を持つ.頂点以外の辺の交わりは考えない.さらに,頂点には白か黒の色がついていると仮定する.

例えば,図 1 のグラフは頂点が n=5 個,辺が m=4 個あり,辺 E_i $(i=1,\ldots,4)$ の頂点は P_i と P_5 である. P_1 , P_2 は白頂点であり, P_3 , P_4 , P_5 は黒頂点である.

出発点とするグラフ G_1 (図 2) は、n=1, m=0 であり、ただ 1 つの頂点は白頂点であるとする.

与えられたグラフ G = (V, W) から新しいグラフ G' = (V', W') を作る 2 種類の操作を以下で定義する. これらの操作では頂点と辺の数がそれぞれ 1 だけ増加する.

(操作 1) この操作は G の頂点 P_0 を 1 つ選ぶと定まる. V' は V に新しい頂点 P_{n+1} を加えたものとする. W' は W に新しい辺 E_{m+1} を加えたものとする. E_{m+1} の頂点は P_0 と P_{n+1} とし,G' のそれ以外の辺の頂点は G での対応する辺の頂点と同じとする. G において頂点 P_{i_0} の色が白又は黒ならば,G' における色はそれぞれ黒又は白に変化させる. また, P_{n+1} は白頂点とする(図 3).

(操作 2) この操作は G の辺 E_{j_0} を 1 つ選ぶと定まる. V' は V に新しい頂点 P_{n+1} を加えたものとする. W' は W から E_{j_0} を取り去り,新しい辺 E_{m+1} , E_{m+2} を加えたものとする. E_{j_0} の頂点が P_{i_1} と P_{i_2} であるとき, E_{m+1} の頂点は P_{i_1} と P_{n+1} であり, E_{m+2} の頂点は P_{i_2} と P_{n+1} であるとする. G' のそれ以外の辺の頂点は G での対応する辺の頂点と同じとする. G において頂点 P_{i_1} の色が白又は黒ならば,G' における色はそれぞれ黒又は白に変化させる. P_{i_2} についても同様に変化させる. それ以外の頂点の色は変化させない. また, P_{n+1} は白頂点とする (図 4).

出発点のグラフ G_0 にこれら 2 種類の操作を有限回繰り返して得られるグラフを**可能グラフ**と呼ぶことにする。次の問いに答えよ。

- (1) 図 5 の 3 つのグラフはすべて可能グラフであることを示せ、ここで、すべての頂点の色は白である。
- (2) n を自然数とするとき,n 個の頂点を持つ図 6 のような棒状グラフが可能グラフになるための n を満たす必要十分条件を求めよ.ここで,すべての頂点の色は白である.

(a) 図1

(b) 図2

(d) 図 4

(c) 図3

(e) 図 5

(f) 図 6

