# BANDPASS DEPENDENCE OF X-RAY TEMPERATURES IN GALAXY CLUSTERS

KENNETH W. CAVAGNOLO<sup>1,2</sup>, MEGAN DONAHUE<sup>1</sup>, G. MARK VOIT<sup>1</sup>, AND MING SUN<sup>1</sup> (Accepted March 26, 2008)

#### **ABSTRACT**

We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit singlecomponent thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hard-band and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sample. We compare the X-ray temperatures inferred from single-temperature fits when the energy range of the fit is 0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We find that the hard-band temperature is significantly higher, on average, than the broad-band temperature. Upon further exploration, we find this temperature ratio is enhanced preferentially for clusters which are known merging systems. In addition, cool-core clusters tend to have best-fit hardband temperatures that are in closer agreement with their best-fit broad-band temperatures. We show, using simulated spectra, that this diagnostic is sensitive to secondary cool components ( $T_X = 0.5 - 3.0$  keV) with emission measures  $\geq 10-30\%$  of the primary hot component.

Subject headings: catalogs – galaxies: clusters: general – X-rays: galaxies: clusters – cosmology: observations – methods: data analysis

#### 1. INTRODUCTION

The normalization, shape, and evolution of the cluster mass function are useful for measuring cosmological parameters (e.g. Evrard 1989; Wang & Steinhardt 1998; Haiman et al. 2001; Wang et al. 2004). In particular, the evolution of large scale structure formation provides a complementary and distinct constraint on cosmological parameters to those tests which constrain them geometrically, such as supernovae (Riess et al. 1998, 2007) and baryon acoustic oscillations (Eisenstein et al. 2005). However, clusters are a useful cosmological tool only if we can infer cluster masses from observable properties such as X-ray luminosity, X-ray temperature, lensing shear, optical luminosity, or galaxy velocity dispersion. Empirically, the correlation of mass to these observable properties is well-established (see Voit (2005) for a review). But, there is non-negligible scatter in mass-observable scaling relations which must be accounted for if clusters are to serve as high-precision mass proxies necessary for using clusters to study cosmological parameters such as the dark energy equation of state. However, if we could identify a "2nd parameter" – possibly reflecting the degree of relaxation in the cluster - we could improve the utility of clusters as cosmological probes by parameterizing and reducing the scatter in mass-observable scaling relations.

Toward this end, we desire to quantify the dynamical state of a cluster beyond simply identifying which clusters appear relaxed and those which do not. Most clusters are likely to have a dynamical state which is somewhere in between (O'Hara et al. 2006; Kravtsov et al. 2006; Ventimiglia et al. 2008). The degree to which a cluster is virialized must first

be quantified within simulations that correctly predict the observable properties of the cluster. Then, predictions for quantifying cluster virialization may be tested, and possibly calibrated, with observations of an unbiased sample of clusters (e.g. REXCESS sample of Böhringer et al. 2007).

One study that examined how relaxation might affect the observable properties of clusters was conducted by Mathiesen & Evrard 2001 (hereafter ME01) using the ensemble of simulations by Mohr & Evrard 1997. ME01 found that most clusters which had experienced a recent merger were cooler than the cluster mass-observable scaling relations predicted. They attributed this to the presence of cool, spectroscopically unresolved accreting subclusters which introduce energy into the ICM and have a long timescale for dissipation. The consequence was an under-prediction of cluster binding masses of 15-30% (Mathiesen & Evrard 2001). It is important to note that the simulations of Mohr & Evrard (1997) included only gravitational processes. The intervening years have proven that radiative cooling is tremendously important in shaping the global properties of clusters (e.g. McCarthy et al. 2004, Poole et al. 2006, or Nagai et al. 2007). Therefore, the magnitude of the effect seen by ME01 could be somewhat different if radiative processes are included.

One empirical observational method of quantifying the degree of cluster relaxation involves using ICM substructure and employs the power in ratios of X-ray surface brightness moments (Buote & Tsai 1995, 1996; Jeltema et al. 2005). Although an excellent tool, power ratios suffer from being aspect-dependent (Jeltema et al. 2007; Ventimiglia et al. 2008). The work of ME01 suggested a complementary measure of substructure which does not depend on projected perspective. In their analysis, they found hard-band (2.0-9.0 keV) temperatures were  $\sim$  20% hotter than broad-band (0.5-9.0 keV) temperatures. Their interpretation was that the cooler

<sup>&</sup>lt;sup>1</sup> Michigan State University, Department of Physics and Astronomy, BPS Building, East Lansing, MI 48824

<sup>&</sup>lt;sup>2</sup> cavagnolo@pa.msu.edu

broad-band temperature is the result of unresolved accreting cool subclusters which are contributing significant amounts of line emission to the soft band (E < 2 keV). This effect has been studied and confirmed by Mazzotta et al. (2004) and Vikhlinin (2006) using simulated *Chandra* and *XMM-Newton* spectra.

ME01 suggested that this temperature skewing, and consequently the fingerprint of mergers, could be detected utilizing the energy resolution and soft-band sensitivity of *Chandra*. They proposed selecting a large sample of clusters covering a broad dynamical range, fitting a single-component temperature to the hard-band and broad-band, and then checking for a net skew above unity in the hard-band to broad-band temperature ratio. In this paper we present the findings of just such a temperature-ratio test using Chandra archival data. We find the hard-band temperature exceeds the broad-band temperature, on average, by  $\sim 16\%$  in multiple flux-limited samples of X-ray clusters from the *Chandra* archive. This mean excess is weaker than the 20% predicted by ME01, but is significant at the  $12\sigma$  level nonetheless. Hereafter, we refer to the hardband to broad-band temperature ratio as  $T_{HBR}$ . We also find that non-cool core systems and mergers tend to have higher values of  $T_{HBR}$ . Our findings suggest that  $T_{HBR}$  is an indicator of a cluster's temporal proximity to the most recent merger

This paper proceeds in the following manner: In §2 we outline sample-selection criteria and *Chandra* observations selected under these criteria. Data reduction and handling of the X-ray background is discussed in §3. Spectral extraction is discussed in §4, while fitting and simulated spectra are discussed in §5. Results and discussion of our analysis are presented in §6. A summary of our work is presented in §7. For this work we have assumed a flat  $\Lambda$ CDM Universe with cosmology  $\Omega_M = 0.3$ ,  $\Omega_{\Lambda} = 0.7$ , and  $H_0 = 70$  km s<sup>-1</sup> Mpc<sup>-1</sup>. All quoted uncertainties are at the 1.6 $\sigma$  level (90% confidence).

# 2. SAMPLE SELECTION

Our sample was selected from observations publicly available in the *Chandra* X-ray Telescope's Data Archive (CDA). Our initial selection pass came from the ROSAT Brightest Cluster Sample (Ebeling et al. 1998), RBC Extended Sample (Ebeling et al. 2000), and ROSAT Brightest 55 Sample (Edge et al. 1990; Peres et al. 1998). The portion of our sample at  $z \gtrsim 0.4$  can also be found in a combination of the *Einstein* Extended Medium Sensitivity Survey (Gioia et al. 1990), North Ecliptic Pole Survey (Henry et al. 2006), ROSAT Deep Cluster Survey (Rosati et al. 1995), ROSAT Serendipitous Survey (Vikhlinin et al. 1998), and Massive Cluster Survey (Ebeling et al. 2001). We later extended our sample to include clusters found in the REFLEX Survey (Böhringer et al. 2004). Once we had a master list of possible targets, we cross-referenced this list with the CDA and gathered observations where a minimum of  $R_{5000}$  (defined below) is fully within the CCD field

 $R_{\Delta_c}$  is defined as the radius at which the average cluster density is  $\Delta_c$  times the critical density of the Universe,  $\rho_c = 3H(z)^2/8\pi G$ . For our calculations of  $R_{\Delta_c}$  we adopt the relation from Arnaud et al. (2002):

$$R_{\Delta_c} = 2.71 \text{ Mpc } \beta_T^{1/2} \Delta_z^{-1/2} (1+z)^{-3/2} \left(\frac{kT_X}{10 \text{ keV}}\right)^{1/2}$$
 (1)  
$$\Delta_z = \frac{\Delta_c \Omega_M}{18\pi^2 \Omega_z}$$

$$\Omega_z = \frac{\Omega_M (1+z)^3}{[\Omega_M (1+z)^3] + [(1-\Omega_M - \Omega_\Delta)(1+z)^2] + \Omega_\Delta}$$

where  $R_{\Delta_c}$  is in units of  $h_{70}^{-1}$ ,  $\Delta_c$  is the assumed density contrast of the cluster at  $R_{\Delta_c}$ , and  $\beta_T$  is a numerically determined, cosmology-independent ( $\lesssim \pm 20\%$ ) normalization for the virial relation  $GM/2R = \beta_T kT_{vir}$ . We use  $\beta_T = 1.05$  taken from Evrard et al. (1996).

The result of our CDA search was a total of 374 observations of which we used 244 for 202 clusters. The clusters making up our sample cover a redshift range of z = 0.045 - 1.24, a temperature range of  $T_X = 2.6 - 19.2$  keV, and bolometric luminosities of  $L_{bol} = 0.12 - 100.4 \times 10^{44}$  ergs s<sup>-1</sup>. The bolometric (E = 0.1 - 100 keV) luminosities for our sample clusters plotted as a function of redshift are shown in Figure 1. These  $L_{bol}$  values are calculated from our best-fit spectral models and are limited to the region of the spectral extraction (from R = 70 kpc to  $R = R_{2500}$ , or  $R_{5000}$  in the cases where no  $R_{2500}$  fit was possible). Basic properties of our sample are listed in Table 1.

For the sole purpose of defining extraction regions based on fixed overdensities as discussed in §4, fiducial temperatures (measured with ASCA) and redshifts were taken from the Ph.D. thesis of Don Horner<sup>3</sup> (all redshifts confirmed with NED<sup>4</sup>). We will show later that the ASCA temperatures are sufficiently close to the *Chandra* temperatures such that  $R_{\Delta_c}$ is reliably estimated to within 20%. Note that  $R_{\Delta_c}$  is proportional to  $T^{1/2}$ , so that a 20% error in the temperature leads to only a 10% error in  $R_{\Delta_c}$ , which in turn has no detectable effect on our final results. For clusters not listed in Horner's thesis, we used a literature search to find previously measured temperatures. If no published value could be located, we measured the global temperature by recursively extracting a spectrum in the region  $0.1 < r < 0.2R_{500}$  fitting a temperature and recalculating  $R_{500}$ . This process was repeated until three consecutive iterations produced  $R_{500}$  values which differed by  $\leq 1\sigma$ . This method of temperature determination has been employed in other studies, see Sanderson et al. (2006) and Henry et al. (2006) as examples.

# 3. CHANDRA DATA

#### 3.1. Reprocessing and Reduction

All datasets were reduced utilizing the *Chandra* Interactive Analysis of Observations package (CIAO) and accompanying Calibration Database (CALDB). Using CIAO v3.3.0.1 and CALDB v3.2.2, standard data analysis was followed for each observation to apply the most up-to-date time-dependent gain correction and when appropriate, charge transfer inefficiency correction (Townsley et al. 2000).

Point sources were identified in an exposure-corrected events file using the adaptive wavelet tool WAVDETECT (Freeman et al. 2002). A  $2\sigma$  region surrounding each point source was automatically output by WAVDETECT to define an exclusion mask. All point sources were then visually confirmed and we added regions for point sources which were missed by WAVDETECT and deleted regions for spuriously detected "sources". Spurious sources are typically faint CCD features (chip gaps and chip edges) not fully removed after dividing by the exposure map. This process resulted in an events file (at "level 2") that has been cleaned of point sources.

<sup>&</sup>lt;sup>3</sup> http://asd.gsfc.nasa.gov/Donald.Horner/thesis.html

<sup>4</sup> http://nedwww.ipac.caltech.edu/

To check for contamination from background flares or periods of excessively high background, light curve analysis was performed using Maxim Markevitch's contributed CIAO script LC\_CLEAN.SL<sup>5</sup>. Periods with count rates  $\geq 3\sigma$  and/or a factor  $\geq 1.2$  of the mean background level of the observation were removed from the good time interval file. As prescribed by Markevitch's cookbook<sup>6</sup>, ACIS front-illuminated (FI) chips were analyzed in the 0.3-12.0 keV range, and the 2.5-7.0 keV energy range for the ACIS back-illuminated (BI) chips.

When a FI and BI chip were both active during an observation, we compared light curves from both chips to detect long duration, soft-flares which can go undetected on the FI chips but show up on the BI chips. While rare, this class of flare must be filtered out of the data, as it introduces a spectral component which artificially increases the best-fit temperature via a high energy tail. We find evidence for a long duration soft flare in the observations of Abell 1758 (David & Kempner 2004), CL J2302.8+0844, and IRAS 09104+4109. These flares were handled by removing the time period of the flare from the GTI file.

Defining the cluster "center" is essential for the later purpose of excluding cool cores from our spectral analysis (see §4). To determine the cluster center, we calculated the centroid of the flare cleaned, point-source free level-2 events file filtered to include only photons in the 0.7-7.0 keV range. Before centroiding, the events file was exposure-corrected and "holes" created by excluding point sources were filled using interpolated values taken from a narrow annular region just outside the hole (holes are not filled during spectral extraction discussed in §4). Prior to centroiding, we defined the emission peak by heavily binning the image, finding the peak value within a circular region extending from the peak to the chip edge (defined by the radius  $R_{max}$ ), reducing  $R_{max}$  by 5%, reducing the binning by a factor of two, and finding the peak again. This process was repeated until the image was unbinned (binning factor of one). We then returned to an unbinned image with an aperture centered on the emission peak with a radius  $R_{max}$  and found the centroid using CIAO's DM-STAT. The centroid,  $(x_c, y_c)$ , for a distribution of N good pixels with coordinates  $(x_i, y_i)$  and values  $f(x_i, y_i)$  is defined as:

$$Q = \sum_{i,j=1}^{N} f(x_{i}, y_{i})$$

$$x_{c} = \frac{\sum_{i,j=1}^{N} x_{i} \cdot f(x_{i}, y_{i})}{Q}$$

$$y_{c} = \frac{\sum_{i,j=1}^{N} y_{i} \cdot f(x_{i}, y_{i})}{Q}.$$
(2)

If the centroid was within 70 kpc of the emission peak, the emission peak was selected as the center, otherwise the centroid was used as the center. This selection was made to ensure all "peaky" cool cores coincided with the cluster center, thus maximizing their exclusion later in our analysis. All cluster centers were additionally verified by eye.

### 3.2. X-ray Background

Because we measured a global cluster temperature, specifically looking for a temperature ratio shift in energy bands

which can be contaminated by the high-energy particle background or the soft local background, it was important to carefully analyze the background and subtract it from our source spectra. Below we outline three steps taken in handling the background: customization of blank-sky backgrounds, renormalization of these backgrounds for variation of hardparticle count rates, and fitting of soft background residuals.

We used the blank-sky observations of the X-ray background from Markevitch et al. (2001) and supplied within the CXC CALDB. First, we compared the flux from the diffuse soft X-ray background of the ROSAT All-Sky Survey (RASS) combined bands R12, R45, and R67 to the 0.7-2.0 keV flux in each extraction aperture for each observation. RASS combined bands give fluxes for energy ranges of 0.12-0.28 keV, 0.47-1.21 keV, and 0.76-2.04 keV respectively corresponding to R12, R45, and R67. For the purpose of simplifying subsequent analysis, we discarded observations with an R45 flux  $\geq 10\%$  of the total cluster X-ray flux.

The appropriate blank-sky dataset for each observation was selected from the CALDB, reprocessed exactly as the observation was, and then reprojected using the aspect solutions provided with each observation. For observations on the ACIS-I array, we reprojected blank-sky backgrounds for chips I0-I3 plus chips S2 and/or S3. For ACIS-S observations, we created blank-sky backgrounds for the target chip, plus chips I2 and/or I3. The additional off-aimpoint chips were included only if they were active during the observation and had available blank-sky data sets for the observation time period. Off-aimpoint chips were cleaned for point sources and diffuse sources using the method outlined in §3.1.

The additional off-aimpoint chips were included in data reduction since they contain data which is farther from the cluster center and are therefore more useful in analyzing the observation background. For observations which did not have a matching off-aimpoint blank-sky background, a source-free region of the active chips is located and used for background normalization. To normalize the hard particle component we measured fluxes for identical regions in the blank-sky field and target field in the 9.5-12.0 keV range. The effective area of the ACIS arrays above 9.5 keV is approximately zero, and thus the collected photons there are exclusively from the particle background.

A histogram of the ratios of the 9.5-12.0 keV count rate from an observation's off-aimpoint chip to that of the observation specific blank-sky background are presented in Figure 2. The majority of the observations are in agreement to  $\lesssim 20\%$  of the blank-sky background rate, which is small enough to not affect our analysis. Even so, we re-normalized all blank-sky backgrounds to match the observed background.

Normalization brings the observation background and blank-sky background into agreement for E>2 keV, but even after normalization, typically, there may exist a soft excess/deficit associated with the spatially varying soft Galactic background. Following the technique detailed in Vikhlinin et al. (2005), we constructed and fit soft residuals for this component. For each observation we subtracted a spectrum of the blank-sky field from a spectrum of the off-aimpoint field to create a soft residual. The residual was fit with a solar abundance, zero-redshift MEKAL model (Mewe et al. 1985, 1986; Kaastra 1992; Liedahl et al. 1995) where the normalization was allowed to be negative. The resulting best-fit temperatures for all of the soft residuals identified here were between 0.2-1.0 keV, which is in agreement with results of Vikhlinin et al. (2005). The model normalization of this background

<sup>&</sup>lt;sup>5</sup> http://cxc.harvard.edu/contrib/maxim/acisbg/

<sup>6</sup> http://cxc.harvard.edu/contrib/maxim/acisbg/COOKBOOK

component was then scaled to the cluster sky area. The rescaled component was included as a fixed background component during fitting of a cluster's spectra.

#### 4. SPECTRAL EXTRACTION

The simulated spectra calculated by ME01 were analyzed in a broad energy band of 0.5-9.0 keV and a hard energy band of  $2.0_{\rm rest}-9.0$  keV, but to make a reliable comparison with *Chandra* data we used narrower energy ranges of 0.7-7.0 keV for the broad energy band and  $2.0_{\rm rest}-7.0$  keV for the hard energy band. We excluded data below 0.7 keV to avoid the effective area and quantum efficiency variations of the ACIS detectors, and excluded energies above 7.0 keV in which diffuse source emission is dominated by the background and where *Chandra*'s effective area is small. We also accounted for cosmic redshift by shifting the lower energy boundary of the hard-band from 2.0 keV to 2.0/(1+z) keV (henceforth, the 2.0 keV cut is in the rest frame).

ME01 calculated the relation between  $T_{0.5-9.0}$  and  $T_{2.0-9.0}$  using apertures of  $R_{200}$  and  $R_{500}$  in size. While it is trivial to calculate a temperature out to  $R_{200}$  or  $R_{500}$  for a simulation, such a measurement at these scales is extremely difficult with *Chandra* observations (see Vikhlinin et al. (2005) for a detailed example). Thus, we chose to extract spectra from regions with radius  $R_{5000}$ , and  $R_{2500}$  when possible. Clusters analyzed only within  $R_{5000}$  are denoted in Table 1 by a double dagger ( $\ddagger$ ).

The cores of some clusters are dominated by gas at  $\lesssim T_{virial}/2$  which can greatly affect the global best-fit temperature; therefore, we excised the central 70 kpc of each aperture. These excised apertures are denoted by "-CORE" in the text. Recent work by Maughan (2007) has shown excising 0.15  $R_{500}$  rather than a static 70 kpc reduces scatter in mass-observable scaling relations. However, our smaller excised region seems sufficient for this investigation because for cool core clusters the average radial temperature at r > 70 kpc is approximately isothermal (Vikhlinin et al. 2005). Indeed, we find that cool core clusters have smaller than average  $T_{HBR}$  when the 70 kpc region has been excised (§6.3.1).

Although some clusters are not circular in projection, but rather are elliptical or asymmetric, we found that assuming spherical symmetry and extracting spectra from a circular annulus did not significantly change the best-fit values. For another such example see Bauer et al. (2005).

After defining annular apertures, we extracted source spectra from the target cluster and background spectra from the corresponding normalized blank-sky dataset. By standard CIAO means we created weighted effective area functions (WARFs) and redistribution matrices (WRMFs) for each cluster using a flux-weighted map (WMAP) across the entire extraction region. The WMAP was calculated over the energy range 0.3-2.0 keV to weight calibrations that vary as a function of position on the chip. The CCD characteristics which affect the analysis of extended sources, such as energy dependent vignetting, are contained within these files. Each spectrum was then binned to contain a minimum of 25 counts per channel.

#### 5. SPECTRAL ANALYSIS

#### 5.1. Fitting

Spectra were fit with XSPEC 11.3.2AG (Arnaud 1996) using a single-temperature MEKAL model in combination with the photoelectric absorption model WABS (Morrison & McCammon 1983) to account for Galactic absorption. Galactic

absorption values,  $N_{HI}$ , are taken from Dickey & Lockman (1990). The potentially free parameters of the absorbed thermal model are  $N_{HI}$ , X-ray temperature ( $T_X$ ), metal abundance normalized to solar (elemental ratios taken from Anders & Grevesse 1989), and a normalization proportional to the integrated emission measure of the cluster. Results from the fitting are presented in Tables 5 and 6. No systematic error is added during fitting, and thus all quoted errors are statistical only. The statistic used during fitting was  $\chi^2$  (XSPEC statistics package CHI). Every cluster analyzed was found to have greater than 1500 background-subtracted source counts in the spectrum.

For some clusters, more than one observation was available in the archive. We utilized the power of the combined exposure time by first extracting independent spectra, WARFs, WRMFs, normalized background spectra, and soft residuals for each observation. Then, these independent spectra were read into XSPEC simultaneously and fit with one spectral model which had all parameters, except normalization, tied among the spectra. The simultaneous fit is what is reported for these clusters, denoted by a star (\*), in Tables 5 and 6.

Additional statistical error was introduced into the fits because of uncertainty associated with the soft local background component discussed in §3.2. To estimate the sensitivity of our best-fit temperatures to this uncertainty, we used the differences between  $T_X$  for a model using the best-fit soft background normalization and  $T_X$  for models using  $\pm 1\sigma$  of the soft background normalization. The statistical uncertainty of the original fit and the additional uncertainty inferred from the range of normalizations to the soft X-ray background component were then added in quadrature to produce a final error. In all cases this additional background error on the temperature was less than 10% of the total statistical error, and therefore represents a minor inflation of the error budget.

When comparing fits with fixed Galactic column density with those where it was a free parameter, we found that neither the goodness of fit per free parameter nor the best-fit  $T_X$  were significantly different. Thus,  $N_{HI}$  was fixed at the Galactic value with the exception of three cases: Abell 399 (Sakelliou & Ponman 2004), Abell 520, and Hercules A. For these three clusters  $N_{HI}$  is a free parameter. In all fits, the metal abundance was a free parameter.

After fitting we rejected several datasets as their best-fit  $T_{2.0-7.0}$  had no upper bound in the 90% confidence interval and thus were insufficient for our analysis. All fits for the clusters Abell 781, Abell 1682, CL J1213+0253, CL J1641+4001, IRAS 09104+4109, Lynx E, MACS J1824.3+4309, MS 0302.7+1658, and RX J1053+5735 were rejected. We also removed Abell 2550 from our sample after finding it to be an anomalously cool ( $T_X \sim 2 \text{ keV}$ ) "cluster". In fact, Abell 2550 is a line-of-sight set of groups, as discussed by Martini et al. (2004). After these rejections, we are left with a final sample of 166 clusters which have  $R_{2500-\text{CORE}}$  fits and 192 clusters which have  $R_{5000-\text{CORE}}$  fits.

#### 5.2. Simulated Spectra

To quantify the effect a second, cooler gas component would have on the fit of a single-component spectral model, we created an ensemble of simulated spectra for each real spectrum in our entire sample using XSPEC. With these simulated spectra we sought to answer the question: Given the count level in each observation of our sample, how bright must a second temperature component be for it to affect the observed temperature ratio? Put another way, we asked at

what flux ratio a second gas phase produces a temperature ratio,  $T_{HBR}$ , of greater than unity with 90% confidence.

We began by adding the observation-specific background to a convolved, absorbed thermal model with two temperature components observed for a time period equal to the actual observation's exposure time and adding Poisson noise. For each realization of an observation's simulated spectrum, we defined the primary component to have the best-fit temperature and metallicity of the  $R_{2500-\text{CORE}}$  0.7-7.0 keV fit, or  $R_{5000-\text{CORE}}$  if no  $R_{2500-\text{CORE}}$  fit was performed. We then incremented the secondary component temperature over the values 0.5, 0.75, 1.0, 2.0, and 3.0 keV. The metallicity of the secondary component was fixed and set equal to the metallicity of the primary component.

We adjusted the normalization of the simulated twocomponent spectra to achieve equivalent count rates to those in the real spectra. The sum of normalizations can be expressed as  $N = N_1 + \xi \cdot N_2$ . We set the secondary component normalization to  $N_2 = \xi \cdot N_{bf}$  where  $N_{bf}$  is the best-fit normalization of the appropriate 0.7-7.0 keV fit and  $\xi$  is a preset factor taking the values 0.4, 0.3, 0.2, 0.15, 0.1, and 0.05. The primary component normalization,  $N_1$ , was determined through an iterative process to make real and simulated spectral count rates match. The parameter  $\xi$  therefore represents the fractional contribution of the cooler component to the overall count rate.

There are many systematics at work in the full ensemble of observation specific simulated spectra, such as redshift, column density, and metal abundance. Thus as a further check of spectral sensitivity to the presence of a second gas phase, we simulated additional spectra for the case of an idealized observation. We followed a similar procedure to that outlined above, but in this instance we used a finer temperature and  $\xi$  grid of  $T_2 = 0.5 \rightarrow 3.0$  in steps of 0.25 keV, and  $\xi = 0.02 \rightarrow 0.4$  in steps of 0.02. The input spectral model was  $N_{HI} = 3.0 \times 10^{20}$  cm<sup>-2</sup>,  $T_1 = 5$  keV,  $Z/Z_{\odot} = 0.3$  and z = 0.1. We also varied the exposure times such that the total number of counts in the 0.7-7.0 keV band was 15K, 30K, 60K, or 120K. For these spectra we used the on-axis sample response files provided to Cycle 10 proposers<sup>7</sup>. Poisson noise is added, but no background is considered.

We also simulated a control sample of single-temperature models. The control sample is simply a simulated version of the best-fit model. This control provides us with a statistical test of how often the actual hard-component temperature might differ from a broad-band temperature fit if calibration effects are under control. Fits for the control sample are shown in the far right panels of Figure 3.

For each observation, we have 65 total simulated spectra: 35 single-temperature control spectra and 30 two-component simulated spectra (five second temperatures, each with six different  $\xi$ ). Our resulting ensemble of simulated spectra contains 12,765 spectra. After generating all the spectra we followed the same fitting routine detailed in §5.1.

With the ensemble of simulated spectra we then asked the question: for each  $T_2$  and  $\Delta T_X$  (defined as the difference between the primary and secondary temperature components) what is the minimum value of  $\xi$ , called  $\xi_{min}$ , that produces  $T_{HBR} \geq 1.1$  at 90% confidence? From our analysis of these simulated spectra we have found these important results:

1. In the control sample, a single-temperature model

rarely ( $\sim$  2% of the time) gives a significantly different  $T_{0.7-7.0}$  and  $T_{2.0-7.0}$ . The weighted average (right panels of Fig. 3) for the control sample is  $1.002 \pm 0.001$  and the standard deviation is  $\pm 0.044$ . The  $T_{HBR}$  distribution for the control sample appears to have an intrinsic width which is likely associated with statistical noise of fitting in XSPEC (Dupke, private communication). This result indicates that our remaining set of observations is statistically sound, e.g. our finding that  $T_{HBR}$  significantly differs from 1.0 cannot result from statistical fluctuations alone.

- 2. Shown in Table 2 are the contributions a second cooler component must make in the case of the idealized spectra in order to produce  $T_{HBR} \geq 1.1$  at 90% confidence. In general, the contribution of cooler gas must be > 10% for  $T_2 < 2$  keV to produce  $T_{HBR}$  as large as 1.1. The increase in percentages at  $T_2 < 1.0$  keV is owing to the energy band we consider (0.7-7.0 keV) as gas cooler than 0.7 keV must be brighter than at 1.0 keV in order to make an equivalent contribution to the soft end of the spectrum at 0.7 keV.
- 3. In the full ensemble of observation-specific simulated spectra, we find a great deal of statistical scatter in  $\xi_{min}$ at any given  $\Delta T_X$ . This was expected as the full ensemble is a superposition of spectra with a broad range of total counts,  $N_{HI}$ , redshifts, abundance, and backgrounds. But using the idealized simulated spectra as a guide, we find for those spectra with  $N_{\text{counts}} \gtrsim 15000$ , producing  $T_{HBR} \ge 1.1$  at 90% confidence again requires the cooler gas to be contributing > 10% of the emission. These results are also summarized in Table 2. The good agreement between the idealized and observationspecific simulated spectra indicates that while many more factors are in play for the observation-specific spectra, they do not degrade our ability to reliably measure  $T_{HBR} > 1.1$ . The trend here of a common soft component sufficient to change the temperature measurement in a single-temperature model is statistical, a result that comes from an aggregate view of the sample rather than any individual fit.
- 4. As redshift increases, gas cooler than 1.0 keV is slowly redshifted out of the observable X-ray band. As expected, we find from our simulated spectra that for  $z \geq 0.6$ ,  $T_{HBR}$  is no longer statistically distinguishable from unity. In addition, the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary as z increases, and for z = 0.6, the hard-band lower limit is 1.25 keV, while at the highest redshift considered, z = 1.2, the hard-band lower limit is only 0.91 keV. For the 14 clusters with  $z \geq 0.6$  in our real sample we are most likely underestimating the actual amount of temperature inhomogeneity. We have tested the effect of excluding these clusters on our results, and find a negligible change in the overall skew of  $T_{HBR}$  to greater than unity.

### 6. RESULTS AND DISCUSSION

# 6.1. Temperature Ratios

For each cluster we have measured a ratio of the hard-band to broad-band temperature defined as  $T_{HBR} = T_{2.0-7.0}/T_{0.7-7.0}$ . We find that the mean  $T_{HBR}$  for our entire sample is greater

<sup>&</sup>lt;sup>7</sup> http://cxc.harvard.edu/caldb/prop\_plan/imaging/index.html

than unity at more than  $12\sigma$  significance. The weighted mean values for our sample are shown in Table 3. Presented in Figure 3 are the binned weighted means and raw  $T_{HBR}$  values for  $R_{2500-CORE}$ ,  $R_{5000-CORE}$ , and the simulated control sample. The peculiar points with  $T_{HBR} < 1$  are all statistically consistent with unity. The presence of clusters with  $T_{HBR} = 1$  suggests that systematic calibration uncertainties are not the sole reason for deviations of  $T_{HBR}$  from 1. We also find that the temperature ratio does not depend on the best-fit broadband temperature, and that the observed dispersion of  $T_{HBR}$  is greater than the predicted dispersion arising from systematic uncertainties.

The uncertainty associated with each value of  $T_{HBR}$  is dominated by the larger error in  $T_{2.0-7.0}$ , and on average,  $\Delta T_{2.0-7.0} \approx 2.3 \Delta T_{0.7-7.0}$ . This error interval discrepancy naturally results from excluding the bulk of a cluster's emission which occurs below 2 keV. While choosing a temperature-sensitive cut-off energy for the hard-band (other than 2.0 keV) might maintain a more consistent error budget across our sample, we do not find any systematic trend in  $T_{HBR}$  or the associated errors with cluster temperature.

# 6.2. Systematics

In this study we have found the average value of  $T_{HBR}$  is significantly greater than one and that  $\sigma_{HBR} > \sigma_{\text{control}}$ , with the latter result being robust against systematic uncertainties. As predicted by ME01, both of these results are expected to arise naturally from the hierarchical formation of clusters. But systematic uncertainty related to *Chandra* instrumentation or other sources could shift the average value of  $T_{HBR}$  one would get from "perfect" data. In this section we consider some additional sources of uncertainty.

First, the disagreement between XMM-Newton and Chandra cluster temperatures has been noted in several independent studies, i.e. Vikhlinin et al. (2005) and Snowden et al. (2007). But the source of this discrepancy is not well understood and efforts to perform cross-calibration between XMM-Newton and Chandra have thus far not been conclusive. One possible explanation is poor calibration of Chandra at soft X-ray energies which may arise from a hydrocarbon contaminant on the High Resolution Mirror Assembly (HRMA) similar in nature to the contaminant on the ACIS detectors (Marshall et al. 2004). We have assessed this possibility by looking for systematic trends in  $T_{HBR}$  with time or temperature, as such a contaminant would most likely have a temperature and/or time dependence.

As noted in §6.1 and seen in Figure 3, we find no systematic trend with temperature either for the full sample or for a sub-sample of single-observation clusters with > 75% of the observed flux attributable to the source (higher signal-to-noise observations will be more affected by calibration uncertainty). Plotted in the lower-left pane of Figures 4 and 5 is  $T_{HBR}$  versus time for single observation clusters (clusters with multiple observations are fit simultaneously and any time effect would be washed out) where the spectral flux is > 75% from the source. We find no significant systematic trend in  $T_{HBR}$  with time, which suggests that if  $T_{HBR}$  is affected by any contamination of *Chandra*'s HRMA, then the contaminant is most likely not changing with time. Our conclusion on this matter is that the soft calibration uncertainty is not playing a dominant role in our results.

Aside from instrumental and calibration effects, some other possible sources of systematic error are signal-to-noise (S/N), redshift selection, Galactic absorption, and metallicity. Also

presented in Figures 4 and 5 are three of these parameters versus  $T_{HBR}$  for  $R_{2500-\text{CORE}}$  and  $R_{5000-\text{CORE}}$ , respectively. The trend in  $T_{HBR}$  with redshift is expected as the 2.0/(1+z) keV hard-band lower boundary nears convergence with the 0.7 keV broad-band lower boundary at  $z \approx 1.85$ . We find no systematic trends of  $T_{HBR}$  with S/N or Galactic absorption, which might occur if the skew in  $T_{HBR}$  were a consequence of poor count statistics, inaccurate Galactic absorption, or very poor calibration. In addition, the ratio of  $T_{HBR}$  for  $R_{2500-\text{CORE}}$  to  $R_{5000-\text{CORE}}$  for every cluster in our sample does not significanlty deviate from unity. Our results are robust to changes in aperture size.

Also shown in Figures 4 and 5 are the ratios of ASCA temperatures taken from Don Horner's thesis to Chandra temperatures derived in this work. The spurious point below 0.5 with very large error bars is MS 2053.7-0449, which has a poorly constrained ASCA temperature of  $10.03^{+8.73}_{-3.52}$ . Our value of  $\sim 3.5$  keV for this cluster is in agreement with the recent work of Maughan et al. (2007). Not all our sample clusters have an ASCA temperature, but a sufficient number (53) are available to make this comparison reliable. Apertures used in the extraction of ASCA spectra had no core region removed and were substantially larger than  $R_{2500}$ . ASCA spectra were also fit over a broader energy range (0.6-10 keV) than we use here. Nonetheless, our temperatures are in good agreement with those from ASCA, but we do note a trend of comparatively hotter *Chandra* temperatures for  $T_{Chandra} > 10$ keV. For both apertures, the clusters with  $T_{Chandra} > 10 \text{ keV}$ are Abell 1758, Abell 2163, Abell 2255, and RX J1347.5-1145. Based on this trend, we test excluding the hottest clusters ( $T_{Chandra} > 10 \text{ keV}$  where ASCA and Chandra disagree) from our sample. The mean temperature ratio for  $R_{2500-CORE}$ remains 1.16 and the error of the mean increases from  $\pm 0.014$ to  $\pm 0.015$ , while for  $R_{5000-\text{CORE}}$   $T_{HBR}$  increases by a negligible 0.9% to 1.15  $\pm$  0.014. Our results are not being influenced by the inclusion of hot clusters.

The temperature range of the clusters we've analyzed ( $T_X \sim 3-20~\text{keV}$ ) is broad enough that the effect of metal abundance on the inferred spectral temperature is clearly not negligible. In Figure 6 we have plotted  $T_{HBR}$  versus abundance in solar units. Despite covering a factor of seven in temperature and metal abundances ranging from  $Z/Z_{\odot} \approx 0$  to solar, we find no trend in  $T_{HBR}$  with metallicity. The slight trend in the  $R_{2500-\text{CORE}}$  aperture (top panel of Figure 6) is insignificant, while there is no trend at all in the control sample or  $R_{5000-\text{CORE}}$  aperture.

# 6.3. Using T<sub>HBR</sub> as a Test of Relaxation 6.3.1. Cool Core Versus Non-Cool Core

As discussed in §1, ME01 gives us reason to believe the observed skewing of  $T_{HBR}$  to greater than unity is related to the dynamical state of a cluster. It has also been suggested that the process of cluster formation and relaxation may robustly result in the formation of a cool core (Ota et al. 2006; Burns et al. 2007). Depending upon classification criteria, completeness, and possible selection biases, studies of flux-limited surveys have placed the prevalence of cool cores at 34-60% (White et al. 1997; Peres et al. 1998; Bauer et al. 2005; Chen et al. 2007). It has thus become rather common to divide up the cluster population into two distinct classes, cool core (CC) and non-cool core (NCC), for the purpose of discussing their different formation or merger histories. We thus sought to identify which clusters in our sample have cool

cores, which do not, and if the presence or absence of a cool core is correlated with  $T_{HBR}$ . It is very important to recall that we excluded the core during spectral extraction and analysis.

To classify the core of each cluster, we extracted a spectrum for the 50 kpc region surrounding the cluster center and then defined a temperature decrement,

$$T_{\rm dec} = T_{50}/T_{\rm cluster} \tag{3}$$

where  $T_{50}$  is the temperature of the inner 50 kpc and  $T_{\rm cluster}$  is either the  $R_{2500-{\rm CORE}}$  or  $R_{5000-{\rm CORE}}$  temperature. If  $T_{\rm dec}$  was  $2\sigma$  less than unity, we defined the cluster as having a CC, otherwise the cluster was defined as NCC. We find CCs in 35% of our sample and when we lessen the significance needed for CC classification from  $2\sigma$  to  $1\sigma$ , we find 46% of our sample clusters have CCs. It is important to note that the frequency of CCs in our study is consistent with other more detailed studies of CC/NCC populations.

When fitting for  $T_{50}$ , we altered the method outlined in §5.1 to use XSPEC's modified Cash statistic (Cash 1979), CSTAT, on ungrouped spectra. This choice was made because the distribution of counts per bin in low count spectra is not Gaussian but instead Poisson. As a result, the best-fit temperature using  $\chi^2$  is typically cooler (Nousek & Shue 1989; Balestra et al. 2007). We have explored this systematic in *all* of our fits and found it to be significant only in the lowest count spectra of the inner 50 kpc apertures discussed here. But, for consistency, we fit all inner 50 kpc spectra using the modified Cash statistic.

With each cluster core classified, we then took cuts in  $T_{HBR}$ and asked how many CC and NCC clusters were above these cuts. Figure 7 shows the normalized number of CC and NCC clusters as a function of cuts in  $T_{HBR}$ . If  $T_{HBR}$  were insensitive to the state of the cluster core, we expect, for normally distributed  $T_{HBR}$  values, to see the number of CC and NCC clusters decreasing in the same way. However, the number of CC clusters falls off more rapidly than the number of NCC clusters. If the presence of a CC is indicative of a cluster's advancement towards complete virialization, then the significantly steeper decline in the percent of CC clusters versus NCC as a function of increasing  $T_{HBR}$  indicates higher values of  $T_{HBR}$  are associated with a less relaxed state. This result is insensitive to our choice of significance level in the core classification, i.e. the result is the same whether using  $1\sigma$  or  $2\sigma$ significance when considering  $T_{\text{dec}}$ .

Because of the CC/NCC definition we selected, our identification of CCs and NCCs was only as robust as the errors on  $T_{50}$  allowed. One can thus ask the question, did our definition bias us towards finding more NCCs than CCs? To explore this question we simulated 20 spectra for each observation following the method outlined in §5.2 for the control sample but using the inner 50 kpc spectral best-fit values as input. For each simulated spectrum, we calculated a temperature decrement (Eqn. 3) and re-classified the cluster as having a CC or NCC. Using the new set of mock classifications we assigned a reliability factor,  $\psi$ , to each real classification, which is simply the fraction of mock classifications which agree with the real classification. A value of  $\psi = 1.0$  indicates complete agreement, and  $\psi = 0.0$  indicating no agreement. When we removed clusters with  $\psi$  < 0.9 and repeated the analysis above, we found no significant change in the trend of a steeper decrease in the relative number of CC versus NCC clusters as a function of  $T_{HBR}$ .

Recall that the coolest ICM gas is being redshifted out of the observable band as z increases and becomes a significant effect at  $z \ge 0.6$  (§5.2). Thus, we are likely not detecting "weak" CCs in the highest redshift clusters of our sample and consequently these cores are classified as NCCs and are artificially increasing the NCC population. When we excluded the 14 clusters at  $z \ge 0.6$  from this portion of our analysis and repeated the calculations, we found no significant change in the results.

#### 6.3.2. Mergers Versus Non-Mergers

Looking for a correlation between cluster relaxation and a skewing in  $T_{HBR}$  was the primary catalyst of this work. The result that increasing values of  $T_{HBR}$  are more likely to be associated with clusters harboring non-cool cores gives weight to that hypothesis. But, the simplest relation to investigate is if  $T_{HBR}$  is preferentially higher in merger systems. Thus, we now discuss clusters with the highest significant values of  $T_{HBR}$  and attempt to establish, via literature based results, the dynamic state of these systems.

The subsample of clusters on which we focus have a  $T_{HBR} > 1.1$  at 90% confidence for both their  $R_{2500-CORE}$  and  $R_{5000-CORE}$  apertures. These clusters are listed in Table 4 and are sorted by the lower limit of  $T_{HBR}$ . The clusters with only a  $R_{5000-CORE}$  analysis are listed separately at the bottom of the table. All 33 clusters listed have a core classification of  $\psi > 0.9$  (see §6.3.1). The choice of the  $T_{HBR} > 1.1$  threshold was arbitrary and intended to limit the number of clusters to which we pay individual attention, but which is still representative of mid- to high- $T_{HBR}$  values. Only two clusters – Abell 697 and MACS J2049.9-3217 – do not have a  $T_{HBR} > 1.1$  in one aperture and not the other. In both cases though, this was the result of the lower boundary narrowly missing the cut, but both clusters still have  $T_{HBR}$  significantly greater than unity.

For those clusters which have been individually studied, they are listed as mergers based on the conclusions of the literature authors (cited in Table 4). Many different techniques were used to determine if a system is a merger: bimodal galaxy velocity distributions, morphologies, highly asymmetric temperature distributions, ICM substructure correlated with subclusters, or disagreement of X-ray and lensing masses. From Table 4 we can see clusters exhibiting the highest significant values of  $T_{HBR}$  tend to be ongoing or recent mergers. At the  $2\sigma$  level, we find increasing values of  $T_{HBR}$  favor merger systems with NCCs over relaxed, CC clusters. It appears mergers have left a spectroscopic imprint on the ICM which was predicted by ME01 and which we observe in our sample.

Of the 33 clusters with  $T_{HBR}$  significantly > 1.1, only seven have CCs. Three of those - MKW3S, 3C 28.0, and RX J1720.1+2638 – have their apertures centered on the bright, dense cores in confirmed mergers. Two more clusters - Abell 2384 and RX J1525+0958 – while not confirmed mergers, have morphologies which are consistent with powerful ongoing mergers. Abell 2384 has a long gas tail extending toward a gaseous clump which we assume has recently passed through the cluster. RXJ1525 has a core shaped like a rounded arrowhead and is reminiscent of the bow shock seen in 1E0657-56. Abell 907 has no signs of being a merger system, but the highly compressed surface brightness contours to the west of the core are indicative of a prominent cold front, a tell-tale signature of a subcluster merger event (Markevitch & Vikhlinin 2007). Abell 2029 presents a very interesting and curious case because of its seemingly high state of relaxation and prominent cool core. There are no complementary indications it has experienced a merger event. Yet its core hosts a wideangle tail radio source. It has been suggested that such sources might be attributable to cluster merger activity (Sakelliou & Merrifield 2000). Moreover, the X-ray isophotes to the west of the bright, peaked core are slightly more compressed and may be an indication of past gas sloshing resulting from the merger of a small subcluster. Both of these features have been noted previously, specifically by Clarke et al. (2004, 2005). We suggest the elevated  $T_{HBR}$  value for this cluster lends more weight to the argument that A2029 has indeed experienced a merger recently, but how long ago we do not know.

The remaining systems we could not verify as mergers – RX J0439.0+0715, MACS J2243.3-0935, MACS J0547.0-3904, Zwicky 1215, MACS J2311+0338, Abell 267, and NGC 6338 – have NCCs and X-ray morphologies consistent with an ongoing or post-merger scenario. Abell 1204 shows no signs of recent or ongoing merger activity; however, it resides at the bottom of the arbitrary  $T_{HBR}$  cut, and as evidenced by Abell 401 and Abell 1689, exceptional spherical symmetry is no guarantee of relaxation. Our analysis here is partially at the mercy of morphological assessment, and only a more stringent study of a carefully selected subsample or analysis of simulated clusters can better determine how closely correlated  $T_{HBR}$  is with the timeline of merger events.

# 7. SUMMARY AND CONCLUSIONS

We have explored the band dependence of the inferred X-ray temperature of the ICM for 192 well-observed (*N<sub>counts</sub>* > 1500) clusters of galaxies selected from the *Chandra* Data Archive.

We extracted spectra from the annulus between R=70 kpc and  $R=R_{2500},\ R_{5000}$  for each cluster. We compared the X-ray temperatures inferred for single-component fits to global spectra when the energy range of the fit was 0.7-7.0 keV (broad) and when the energy range was 2.0/(1+z)-7.0 keV (hard). We found that, on average, the hard-band temperature is significantly higher than the broad-band temperature. For the  $R_{2500-\text{CORE}}$  aperture we measured a weighted average of  $T_{HBR}=1.16$  with  $\sigma=\pm0.10$  and  $\sigma_{mean}=\pm0.01$  for the  $R_{5000-\text{CORE}}$  aperture, and  $T_{HBR}=1.14$  with  $\sigma=\pm0.12$  and  $\sigma_{mean}=\pm0.01$ . We also found no systematic trends in the value of  $T_{HBR}$ , or the dispersion of  $T_{HBR}$ , with signal-to-noise, redshift, Galactic absorption, metallicity, observation date, or broad-band temperature.

In addition, we simulated an ensemble of 12,765 spectra which contained observation-specific and idealized two-temperature component models, plus a control sample of single-temperature models. From analysis of these simulations we found the statistical fluctuations for a single temperature model are inadequate to explain the significantly different  $T_{0.7-7.0}$  and  $T_{2.0-7.0}$  we measure in our sample. We also found that the observed scatter,  $\sigma_{HBR}$ , is consistent with the presence of unresolved cool ( $T_X < 2.0$  keV) gas contributing a minimum of > 10% of the total emission. The simulations also show the measured observational scatter in  $T_{HBR}$ 

is greater than the statistical scatter,  $\sigma_{control}$ . These results are consistent with the process of hierarchical cluster formation.

Upon further exploration, we found that  $T_{HBR}$  is enhanced preferentially for clusters which are known merger systems and for clusters without cool cores. Clusters with temperature decrements in their cores (known as cool-core clusters) tend to have best-fit hard-band temperatures that are consistently closer to their best-fit broad-band temperatures. The correlation of  $T_{HBR}$  with the type of cluster core is insensitive to our choice of classification scheme and is robust against redshift effects. Our results qualitatively support the finding by ME01 that the temperature ratio,  $T_{HBR}$ , might therefore be useful for statistically quantifying the degree of cluster relaxation/virialization.

An additional robust test of the ME01 finding should be made with simulations by tracking  $T_{HBR}$  during hierarchical assembly of a cluster. If  $T_{HBR}$  is tightly correlated with a cluster's degree of relaxation, then it, along with other methods of substructure measure, may provide a powerful metric for predicting (and therefore reducing) a cluster's deviation from mean mass-scaling relations. The task of reducing scatter in scaling relations will be very important if we are to reliably and accurately measure the mass of clusters.

Kenneth Cavagnolo was supported in this work by the National Aeronautics and Space Administration through Chandra X-ray Observatory Archive grants AR-6016X and AR-4017A, with additional support from a start-up grant for Megan Donahue from Michigan State University. Megan Donahue and Michigan State University acknowledge support from the NASA LTSA program NNG-05GD82G. Mark Voit thanks NASA for support through theory grant NNG-04GI89G. The Chandra X-ray Observatory Center is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. This research has made use of software provided by the *Chandra* X-ray Center (CXC) in the application packages CIAO, CHIPS, and SHERPA. We thank Alexey Vikhlinin for helpful insight and expert advice. KWC also thanks attendees of the "Eight Years of Science with Chandra Calibration Workshop" for stimulating discussion regarding XMM-Chandra cross-calibration. KWC especially thanks Keith Arnaud for personally providing support and advice for mastering XSPEC. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of NASA's Astrophysics Data System. ROSAT data and software were obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center.

#### REFERENCES

Akritas, M. G. & Bershady, M. A. 1996, ApJ, 470, 706
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Andersson, K. E., & Madejski, G. M. 2004, ApJ, 607, 190
Arnaud, K. A. 1996, in ASP Conf. Ser. 101: Astronomical Data Analysis
Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17—+
Arnaud, M., Aghanim, N., & Neumann, D. M. 2002, A&A, 389, 1
Bagchi, J., Durret, F., Neto, G. B. L., & Paul, S. 2006, Science, 314, 791
Balestra, I., Tozzi, P., Ettori, S., Rosati, P., Borgani, S., Mainieri, V., Norman,
C., & Viola, M. 2007, A&A, 462, 429
Barrena, R., Boschin, W., Girardi, M., & Spolaor, M. 2007, A&A, 467, 37

Bauer, F. E., Fabian, A. C., Sanders, J. S., Allen, S. W., & Johnstone, R. M.
2005, MNRAS, 359, 1481
Bliton, M., Rizza, E., Burns, J. O., Owen, F. N., & Ledlow, M. J. 1998,
MNRAS, 301, 609

Böhringer, H., Schuecker, P., Pratt, G. W., Arnaud, M., Ponman, T. J., Croston, J. H., Borgani, S., Bower, R. G., Briel, U. G., Collins, C. A., Donahue, M., Forman, W. R., Finoguenov, A., Geller, M. J., Guzzo, L., Henry, J. P., Kneissl, R., Mohr, J. J., Matsushita, K., Mullis, C. R., Ohashi, rieily, J. P., Kneissi, K., Monr, J. J., Matsushita, K., Mullis, C. R., Ohashi, T., Pedersen, K., Pierini, D., Quintana, H., Raychaudhury, S., Reiprich, T. H., Romer, A. K., Rosati, P., Sabirli, K., Temple, R. F., Viana, P. T. P., Vikhlinin, A., Voit, G. M., & Zhang, Y.-Y. 2007, A&A, 469, 363
Böhringer, H., Schuecker, P., Guzzo, L., Collins, C. A., Voges, W., Cruddace, R. G., Ortiz-Gil, A., Chincarini, G., De Grandi, S., Edge, A. C., MacGillivray, H. T., Neumann, D. M., Schindler, S., & Shaver, P. 2004, A&A, 425, 367
Ruote, D. A., & Tsai, J. C. 1905, ApJ, 452, 522

Buote, D. A., & Tsai, J. C. 1995, ApJ, 452, 522
—. 1996, ApJ, 458, 27
Burns, J. O., Hallman, E. J., Gantner, B., Motl, P. M., & Norman, M. L. 2007, ArXiv e-prints, 708

Burns, J. O., Roettiger, K., Pinkney, J., Perley, R. A., Owen, F. N., & Voges, W. 1995, ApJ, 446, 583 Cash, W. 1979, ApJ, 228, 939

Chen, Y., Reiprich, T. H., Böhringer, H., Ikebe, Y., & Zhang, Y.-Y. 2007, A&A, 466, 805

Clarke, T. E., Blanton, E. L., & Sarazin, C. L. 2004, ApJ, 616 178 Clarke, T. E., Blanton, E. L., & Sarazin, C. L. 2005, X-Ray and Radio Connections, ed. 7

Dahle, H., Kaiser, N., Irgens, R. J., Lilje, P. B., & Maddox, S. J. 2002, ApJS,

David, L. P., & Kempner, J. 2004, ApJ, 613, 831

Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Ebeling, H., Edge, A. C., Allen, S. W., Crawford, C. S., Fabian, A. C., &
Huchra, J. P. 2000, MNRAS, 318, 333

Ebeling, H., Edge, A. C., Bohringer, H., Allen, S. W., Crawford, C. S., Fabian, A. C., Voges, W., & Huchra, J. P. 1998, MNRAS, 301, 881
Ebeling, H., Edge, A. C., & Henry, J. P. 2001, ApJ, 553, 668
Edge, A. C., Stewart, G. C., Fabian, A. C., & Arnaud, K. A. 1990, MNRAS, 245, 559

Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R., Nichol, R. C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., Anderson, S. F., Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F. J., Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, Castander, F. J., Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, J. A., Glazebrook, K., Gunn, J. E., Hendry, J. S., Hennessy, G., Ivezić, Z., Kent, S., Knapp, G. R., Lin, H., Loh, Y.-S., Lupton, R. H., Margon, B., McKay, T. A., Meiksin, A., Munn, J. A., Pope, A., Richmond, M. W., Schlegel, D., Schneider, D. P., Shimasaku, K., Stoughton, C., Strauss, M. A., SubbaRao, M., Szalay, A. S., Szapudi, I., Tucker, D. L., Yanny, B., & York, D. G. 2005, ApJ, 633, 560

Evrard, A. E. 1989, ApJ, 341, L71 Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494 Feretti, L., Boehringer, H., Giovannini, G., & Neumann, D. 1997, A&A, 317,

Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185

Gioia, I. M., Maccacaro, T., Geller, M. J., Huchra, J. P., Stocke, J., & Steiner, J. E. 1982, ApJ, 255, L17
Gioia, I. M., Maccacaro, T., Schild, R. E., Wolter, A., Stocke, J. T., Morris, S. L., & Henry, J. P. 1990, ApJS, 72, 567
Gioia, I. M. & Luppino, G. A. 1994, ApJS, 94, 583

Girardi, M., Fadda, D., Escalera, E., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1997, ApJ, 490, 56
 Gómez, P. L., Hughes, J. P., & Birkinshaw, M. 2000, ApJ, 540, 726

Govoni, F., Taylor, G. B., Dallacasa, D., Feretti, L., & Giovannini, G. 2001, A&A, 379, 807

Gutierrez, K., & Krawczynski, H. 2005, ApJ, 619, 161 Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, ApJ, 553, 545

Hallman, E. J., & Markevitch, M. 2004, ApJ, 610, L81
Henry, J. P., Mullis, C. R., Voges, W., Böhringer, H., Briel, U. G., Gioia, I. M., & Huchra, J. P. 2006, ApJS, 162, 304

Jeltema, T. E., Canizares, C. R., Bautz, M. W., & Buote, D. A. 2005, ApJ, 624, 606

Jeltema, T. E., Hallman, E. J., Burns, J. O., & Motl, P. M. 2007, ArXiv e-

prints, 708

Juett, A. M., Sarazin, C. L., Clarke, T. E., Andernach, H., Ehle, M., Fujita, Y., Kempner, J. C., Roy, A. L., Rudnick, L., & Slee, O. B. 2008, ApJ, 672, 138

Kaastra, J. S. 1992

Kempner, J. C., Sarazin, C. L., & Markevitch, M. 2003, ApJ, 593, 291 Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128

Krempec-Krygier, J., & Krygier, B. 1999, Acta Astronomica, 49, 403 Liedahl, D. A., Osterheld, A. L., & Goldstein, W. H. 1995, ApJ, 438, L115 Markevitch, M., Forman, W. R., Sarazin, C. L., & Vikhlinin, A. 1998, ApJ,

503, 77 Markevitch, M., & Vikhlinin, A. 2007, Phys. Rep., 443, 1

Markevitch, M., & Vikhlinin, A. 2007, Phys. Rep., 443, 1
Markevitch, M., Vikhlinin, A., & Mazzotta, P. 2001, ApJ, 562, L153
Markevitch, M. L., Sarazin, C. L., & Irwin, J. A. 1996, ApJ, 472, L17+
Marshall, H. L., Tennant, A., Grant, C. E., Hitchcock, A. P., O'Dell, S. L.,
& Plucinsky, P. P. 2004, in Presented at the Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference, Vol. 5165, X-Ray and
Gamma-Ray Instrumentation for Astronomy XIII. Edited by Flanagan,
Kathryn A.; Siegmund, Oswald H. W. Proceedings of the SPIE, Volume
5165, pp. 497-508 (2004)., ed. K. A. Flanagan & O. H. W. Siegmund,
497-508

Martini, P., Kelson, D. D., Mulchaey, J. S., & Athey, A. 2004, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, & A. Oemler Mathiesen, B. F., & Evrard, A. E. 2001, ApJ, 546, 100 (ME01)

Maughan, B. J. 2007, ArXiv Astrophysics e-prints Maughan, B. J., Jones, C., Forman, W., & Van Speybroeck, L. 2007, ArXiv Astrophysics e-prints Mazzotta, P., Markevitch, M., Forman, W. R., Jones, C., Vikhlinin, A., &

VanSpeybroeck, L. 2001a, ArXiv Astrophysics e-prints

Mazzotta, P., Markevitch, M., Vikhlinin, A., Forman, W. R., David, L. P., & VanSpeybroeck, L. 2001b, ApJ, 555, 205

Mazzotta, P., Rasia, E., Moscardini, L., & Tormen, G. 2004, MNRAS, 354,

McCarthy, I. G. and Balogh, M. L. and Babul, A. and Poole, G. B. & Horner, D. J., 2004, ApJ, 613, 811
Mercurio, A., Massarotti, M., Merluzzi, P., Girardi, M., La Barbera, F., &

Busarello, G. 2003, A&A, 408, 57 Metzger, M. R., & Ma, C.-P. 2000, AJ, 120, 2879

Mewe, R., Gronenschild, E. H. B. M., & van den Oord, G. H. J. 1985, A&AS, 62, 197

Mewe, R., Lemen, J. R., & van den Oord, G. H. J. 1986, A&AS, 65, 511 Mohr, J. J., & Evrard, A. E. 1997, ApJ, 491, 38 Molendi, S., De Grandi, S., & Fusco-Femiano, R. 2000, ApJ, 534, L43

Morrison, R., & McCammon, D. 1983, ApJ, 270, 119 Nagai, D., Kravtsov, A. V., & Vikhlinin, A., 2007, ApJ, 668, 1 Nousek, J. A., & Shue, D. R. 1989, ApJ, 342, 1207

Poole, G. B., Fardal, M. A., Babul, A., McCarthy, I. G., Quinn, T., & Wadsley, J. 2006, MNRAS, 373, 881

J. 2006, MINKAS, 3/5, 881
O'Hara, T. B., Mohr, J. J., Bialek, J. J., & Evrard, A. E. 2006, ApJ, 639, 64
Ohta, Y., Kumai, Y., Watanabe, M., Furuzawa, A., Akimoto, F., Tawara, Y.,
Sato, S., Yamashita, K., Arai, K., Shiratori, Y., Miyoshi, S., & Mazure, A.
2001, in Astronomical Society of the Pacific Conference Series, Vol. 251,
New Century of X-ray Astronomy, ed. H. Inoue & H. Kunieda, 474—+
Ota, N., Kitayama, T., Masai, K., & Mitsuda, K. 2006, ApJ, 640, 673

Ota, N., Kitayama, I., Masai, K., & Mitsuda, K. 2006, ApJ, 640, 673
Peres, C. B., Fabian, A. C., Edge, A. C., Allen, S. W., Johnstone, R. M., & White, D. A. 1998, MNRAS, 298, 416
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., & Tonry, J.

Riess, A. G., Strolger, L.-G., Casertano, S., Ferguson, H. C., Mobasher, B., Gold, B., Challis, P. J., Filippenko, A. V., Jha, S., Li, W., Tonry, J., Foley, R., Kirshner, R. P., Dickinson, M., MacDonald, E., Eisenstein, D., Livio, M., Younger, J., Xu, C., Dahlén, T., & Stern, D. 2007, ApJ, 659, 98

Rosati, P., della Ceca, R., Burg, R., Norman, C., & Giacconi, R. 1995, ApJ, 445, L11

Sakelliou, I., & Ponman, T. J. 2004, MNRAS, 351, 1439

Sakelliou, I., & Merrifield, M. R. 2000, MNRAS, 311, 649
Sanderson, A. J. R., Ponman, T. J., & O'Sullivan, E. 2006, MNRAS, 1068
Smith, G. P., Kneib, J.-P., Smail, I., Mazzotta, P., Ebeling, H., & Czoske, O. 2005, MNRAS, 359, 417

Snowden, S. L., Mushotzky, R. M., Kuntz, K. D., & Davis, D. S. 2007, ArXiv e-prints, 710

Teague, P. F., Carter, D., & Gray, P. M. 1990, ApJS, 72, 715

Townsley, L. K., Broos, P. S., Garmire, G. P., & Nousek, J. A. 2000, ApJ, 534, L139

Tucker, W., Blanco, P., Rappoport, S., David, L., Fabricant, D., Falco, E. E., Forman, W., Dressler, A., & Ramella, M. 1998, ApJ, 496, L5+ Ventimiglia, D., Voit, G. M., Borgani, S., & Donahue, M. 2008, ApJ

Submitted

Vikhlinin, A. 2006, ApJ, 640, 710

Vikhlinin, A., Markevitch, M., Murray, S. S., Jones, C., Forman, W., & Van Speybroeck, L. 2005, ApJ, 628, 655
Vikhlinin, A., McNamara, B. R., Forman, W., Jones, C., Quintana, H., &

Hornstrup, A. 1998, ApJ, 502, 558 Voit, G. M. 2005, Reviews of Modern Physics, 77, 207

Wang, L., & Steinhardt, P. J. 1998, ApJ, 508, 483
Wang, S., Khoury, J., Haiman, Z., & May, M. 2004, Phys. Rev. D, 70, 123008
White, D. A., Jones, C., & Forman, W. 1997, MNRAS, 292, 419
Yang, Y., Huo, Z., Zhou, X., Xue, S., Mao, S., Ma, J., & Chen, J. 2004, ApJ, 614, 692

Yuan, Q.-R., Yan, P.-F., Yang, Y.-B., & Zhou, X. 2005, Chinese Journal of Astronomy and Astrophysics, 5, 126



FIG. 1.— Bolometric luminosity (E=0.1-100 keV) plotted as a function of redshift for the 202 clusters which make up the initial sample.  $L_{bol}$  values are limited to the region of spectral extraction,  $R=R_{2500-CORE}$ . For clusters without  $R_{2500-CORE}$  fits,  $R=R_{5000-CORE}$  fits were used and are denoted in the figure by empty stars. Dotted lines represent constant fluxes of  $3.0\times10^{-15}$ ,  $10^{-14}$ ,  $10^{-13}$ , and  $10^{-12}$  ergs  $\sec^{-1}$  cm<sup>-2</sup>.



FIG. 2.— Ratio of target field and blank-sky field count rates in the 9.5-12.0 keV band for all 244 observations in our initial sample. Vertical dashed lines represent  $\pm 20\%$  of unity. Despite the good agreement between the blank-sky background and observation count rates for most observations, all backgrounds are normalized.



FIG. 3.— Best-fit temperatures for the hard-band,  $T_{2.0-7.0}$ , divided by the broad-band,  $T_{0.7-7.0}$ , and plotted against the broad-band temperature. For binned data, each bin contains 25 clusters, with the exception of the highest temperature bins which contain 16 and 17 for  $R_{2500-CORE}$  and  $R_{5000-CORE}$ , respectively. The simulated data bins contain 1000 clusters with the last bin having 780 clusters. The line of equality is shown as a dashed line and the weighted mean for the full sample is shown as a dashed-dotted line. Error bars are omitted in the unbinned data for clarity. Note the net skewing of  $T_{HBR}$  to greater than unity for both apertures with no such trend existing in the simulated data. The dispersion of  $T_{HBR}$  for the real data is also much larger than the dispersion of the simulated data.



FIG. 4.— Plotted here are a few possible sources of systematic uncertainty versus  $T_{HBR}$  calculated for the  $R_{2500-CORE}$  apertures (166 clusters). Error bars have been omitted in several plots for clarity. The line of equality is shown as a dashed line in all panels. (Upper-left:)  $T_{HBR}$  versus redshift for the entire sample. The trend in  $T_{HBR}$  with redshift is expected as the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary at  $z \approx 1.85$ . Weighted values of  $T_{HBR}$  are consistent with unity starting at  $z \sim 0.6$ . (Upper-right:)  $T_{HBR}$  versus percentage of spectrum flux which is attributed to the source. We find no trend with signal-to-noise which suggests calibration uncertainty not is playing a major role in our results. (Middle-left:)  $T_{HBR}$  versus Galactic column density. We find no trend in absorption which would result if  $N_{HI}$  values are inaccurate or if we had improperly accounted for local soft contamination. (Middle-right:)  $T_{HBR}$  versus the deviation from unity in units of measurement uncertainty. Recall that we have used 90% confidence ( $1.6\sigma$ ) for our analysis. (Lower-left:)  $T_{HBR}$  plotted versus observation start date. The plotted points are culled from the full sample and represent only clusters which have a single observation and where the spectral flux is > 75% from the source. We note no systematic trend with time. (Lower-right:) Ratio of Chandra temperatures derived in this work to ASCA temperatures taken from Don Horner's thesis. We note a trend of comparatively hotter Chandra temperatures for clusters > 10 keV, otherwise our derived temperatures are in good agreement with those of ASCA.



FIG. 5.— Plotted here are a few possible sources of systematic uncertainty versus  $T_{HBR}$  calculated for the  $R_{5000-CORE}$  apertures (192 clusters). Error bars have been omitted in several plots for clarity. The line of equality is shown as a dashed line in all panels. (*Upper-left:*)  $T_{HBR}$  versus redshift for the entire sample. The trend in  $T_{HBR}$  with redshift is expected as the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary at  $z \approx 1.85$ . Weighted values of  $T_{HBR}$  are consistent with unity starting at  $z \sim 0.6$ . (*Upper-right:*)  $T_{HBR}$  versus percentage of spectrum flux which is attributed to the source. We find no trend with signal-to-noise which suggests calibration uncertainty is not playing a major role in our results. (*Middle-left:*)  $T_{HBR}$  versus Galactic column density. We find no trend in absorption which would result if  $N_{HI}$  values are inaccurate or if we had improperly accounted for local soft contamination. (*Middle-right:*)  $T_{HBR}$  versus the deviation from unity in units of measurement uncertainty. Recall that we have used 90% confidence  $(1.6\sigma)$  for our analysis. (*Lower-left:*)  $T_{HBR}$  plotted versus observation start date. The plotted points are culled from the full sample and represent only clusters which have a single observation and where the spectral flux is > 75% from the source. We note no systematic trend with time. (*Lower-right:*) Ratio of *Chandra* temperatures derived in this work to *ASCA* temperatures taken from Don Horner's thesis. We note a trend of comparatively hotter *Chandra* temperatures for clusters > 10 keV, otherwise our derived temperatures are in good agreement with those of *ASCA*.



FIG. 6.— Plotted here is  $T_{HBR}$  as a function of metal abundance for  $R_{2500-CORE}$ ,  $R_{5000-CORE}$ , and the Control sample (see discussion of control sample in §5.2). Error bars are omitted for clarity. The dashed-line represents the linear best-fit using the bivariate correlated error and intrinsic scatter (BCES) method of Akritas & Bershady (1996) which takes into consideration errors on both  $T_{HBR}$  and abundance when performing the fit. We note no trend in  $T_{HBR}$  with metallicity (the apparent trend in the top panel is not significant) and also note the low dispersion in the control sample relative to the observations. The striation of abundance arises from our use of two decimal places in recording the best-fit values from XSPEC.



FIG. 7.— Plotted here is the normalized number of cool core (CC) and non-cool core (NCC) clusters as a function of cuts in  $T_{HBR}$ . There are 166 clusters plotted in the top panel and 192 in the bottom panel. We have defined a cluster as having a cool core (CC) when the temperature for the 50 kpc region around the cluster center divided by the temperature for  $R_{2500-CORE}$ , or  $R_{5000-CORE}$ , was less than one at the  $2\sigma$  level. We then take cuts in  $T_{HBR}$  at the  $1\sigma$  level and ask how many CC and NCC clusters are above these cuts. The number of CC clusters falls off more rapidly than NCC clusters in this classification scheme suggesting higher values of  $T_{HBR}$  prefer less relaxed systems which do not have cool cores. This result is insensitive to our choice of significance level in both the core classification and  $T_{HBR}$  cuts.



FIG. 8.—  $T_{HBR}$  plotted against  $T_{0.7-7.0}$  for the  $R_{2500-CORE}$  and  $R_{5000-CORE}$  apertures. Note the vertical scales for both panels are not the same. The top and bottom panes contain 166 and 192 clusters respectively. Only two clusters – Abell 697 and MACS J2049.9-3217 – do not have a  $T_{HBR} > 1.1$  in one aperture and not the other. In both cases though, it was a result of narrowly missing the cut. The dashed lines are the lines of equivalence. Symbols and color coding are based on two criteria: 1) presence of a cool core (CC) and 2) value of  $T_{HBR}$ . Black stars (6 top, 7 bottom) are clusters with a CC and  $T_{HBR}$  significantly greater than 1.1. Blue down-facing triangles (49 top, 60 bottom) are NCC clusters with  $T_{HBR}$  significantly greater than 1.1. Blue down-facing triangles (49 top, 60 bottom) are NCC clusters with  $T_{HBR} > 1.1$  is arbitrary and there are more merger systems in our sample then just those highlighted in this figure. However it is rather suggestive that clusters with the highest values of  $T_{HBR}$  appear to be merging systems.

TABLE 1 SUMMARY OF SAMPLE

| Cluster                                    | Obs.ID        | R.A.                         | Dec.                         | ExpT         | Mode     | ACIS     | z              | $L_{bol}$ .                       |
|--------------------------------------------|---------------|------------------------------|------------------------------|--------------|----------|----------|----------------|-----------------------------------|
| (1)                                        | (2)           | hr:min:sec (3)               | °:':" (4)                    | ksec<br>(5)  | (6)      | (7)      | (8)            | $10^{44} \text{ ergs s}^{-1}$ (9) |
| 1E0657 56                                  | 3184          | 06:58:29.622                 | -55:56:39.79                 | 87.5         | VF       | 13       | 0.296          | 52.48                             |
| 1E0657 56<br>1E0657 56                     | 5356<br>5361  | 06:58:29.619<br>06:58:29.620 | -55:56:39.78<br>-55:56:39.80 | 97.2<br>82.6 | VF<br>VF | I2<br>I3 | 0.296<br>0.296 | 52.48<br>52.48                    |
| 1RXS J2129.4-0741                          | 3199          | 21:29:26.274                 | -07:41:29.38                 | 19.9         | VF       | I3       | 0.570          | 20.58                             |
| 1RXS J2129.4-0741                          | 3595          | 21:29:26.281                 | -07:41:29.36                 | 19.9         | VF       | I3       | 0.570          | 20.58                             |
| 2PIGG J0011.5-2850                         | 5797          | 00:11:21.623                 | -28:51:14.44                 | 19.9         | VF       | I3       | 0.075          | 2.15                              |
| 2PIGG J0311.8-2655 ‡<br>2PIGG J2227.0-3041 | 5799<br>5798  | 03:11:33.904<br>22:27:54.560 | -26:54:16.48<br>-30:34:34.84 | 39.6<br>22.3 | VF<br>VF | I3<br>I2 | 0.062<br>0.073 | 0.25<br>0.81                      |
| 3C 220.1                                   | 839           | 09:32:40.218                 | +79:06:29.46                 | 18.9         | F        | S3       | 0.610          | 3.25                              |
| 3C 28.0                                    | 3233          | 00:55:50.401                 | +26:24:36.47                 | 49.7         | VF       | I3       | 0.195          | 4.78                              |
| 3C 295                                     | 2254          | 14:11:20.280                 | +52:12:10.55                 | 90.9         | VF       | I3       | 0.464          | 6.92                              |
| 3C 388<br>4C 55.16                         | 5295<br>4940  | 18:44:02.365<br>08:34:54.923 | +45:33:29.31<br>+55:34:21.15 | 30.7<br>96.0 | VF<br>VF | I3<br>S3 | 0.092<br>0.242 | 0.52<br>5.90                      |
| ABELL 0013 ‡                               | 4945          | 00:13:37.883                 | -19:30:09.10                 | 55.3         | VF       | S3       | 0.242          | 1.41                              |
| ABELL 0068                                 | 3250          | 00:37:06.309                 | +09:09:32.28                 | 10.0         | VF       | I3       | 0.255          | 12.70                             |
| ABELL 0119 ‡                               | 4180          | 00:56:15.150                 | -01:14:59.70                 | 11.9         | VF       | I3       | 0.044          | 1.39                              |
| ABELL 0168<br>ABELL 0168                   | 3203<br>3204  | 01:14:57.909<br>01:14:57.925 | +00:24:42.55<br>+00:24:42.73 | 40.6<br>37.6 | VF<br>VF | I3<br>I3 | 0.045<br>0.045 | 0.23<br>0.23                      |
| ABELL 0209                                 | 3579          | 01:31:52.585                 | -13:36:39.29                 | 10.0         | VF       | I3       | 0.206          | 10.96                             |
| ABELL 0209                                 | 522           | 01:31:52.595                 | -13:36:39.25                 | 10.0         | VF       | I3       | 0.206          | 10.96                             |
| ABELL 0267                                 | 1448          | 01:52:29.181                 | +00:57:34.43                 | 7.9          | F        | I3       | 0.230          | 8.62                              |
| ABELL 0267<br>ABELL 0370                   | 3580<br>515   | 01:52:29.180<br>02:39:53.169 | +00:57:34.23                 | 19.9<br>88.0 | VF<br>F  | I3<br>S3 | 0.230<br>0.375 | 8.62<br>11.95                     |
| ABELL 0383                                 | 2321          | 02:48:03.364                 | -03:31:44.69                 | 19.5         | F        | S3       | 0.187          | 5.32                              |
| ABELL 0399                                 | 3230          | 02:57:54.931                 | +13:01:58.41                 | 48.6         | VF       | 10       | 0.072          | 4.37                              |
| ABELL 0401                                 | 518           | 02:58:56.896                 | +13:34:14.48                 | 18.0         | F        | I3       | 0.074          | 8.39                              |
| ABELL 0478<br>ABELL 0514                   | 6102<br>3578  | 04:13:25.347<br>04:48:19.229 | +10:27:55.62<br>-20:30:28.79 | 10.0<br>44.5 | VF<br>VF | I3<br>I3 | 0.088 $0.072$  | 16.39<br>0.66                     |
| ABELL 0520                                 | 4215          | 04:54:09.711                 | +02:55:23.69                 | 66.3         | VF       | I3       | 0.202          | 12.97                             |
| ABELL 0521                                 | 430           | 04:54:07.004                 | -10:13:26.72                 | 39.1         | VF       | S3       | 0.253          | 9.77                              |
| ABELL 0586                                 | 530           | 07:32:20.339                 | +31:37:58.59                 | 10.0         | VF       | I3       | 0.171          | 8.54                              |
| ABELL 0611<br>ABELL 0644 ‡                 | 3194<br>2211  | 08:00:56.832<br>08:17:25.225 | +36:03:24.09<br>-07:30:40.03 | 36.1<br>29.7 | VF<br>VF | S3<br>I3 | 0.288<br>0.070 | 10.78<br>6.95                     |
| ABELL 0665                                 | 3586          | 08:30:59.231                 | +65:50:37.78                 | 29.7         | VF       | I3       | 0.181          | 13.37                             |
| ABELL 0697                                 | 4217          | 08:42:57.549                 | +36:21:57.65                 | 19.5         | VF       | I3       | 0.282          | 26.10                             |
| ABELL 0773                                 | 5006<br>534   | 09:17:52.566<br>09:20:25.431 | +51:43:38.18                 | 19.8<br>9.9  | VF<br>VF | I3<br>I3 | 0.217<br>0.298 | 12.87<br>8.24                     |
| <i>ABELL 0781</i><br>ABELL 0907            | 3185          | 09:58:21.880                 | +30:30:07.56<br>-11:03:52.20 | 48.0         | VF       | I3       | 0.298          | 6.19                              |
| ABELL 0963                                 | 903           | 10:17:03.744                 | +39:02:49.17                 | 36.3         | F        | S3       | 0.206          | 10.65                             |
| ABELL 1063S                                | 4966          | 22:48:44.294                 | -44:31:48.37                 | 26.7         | VF       | I3       | 0.354          | 71.09                             |
| ABELL 1068 ‡<br>ABELL 1201 ‡               | 1652<br>4216  | 10:40:44.520<br>11:12:54.489 | +39:57:10.28<br>+13:26:08.76 | 26.8<br>39.7 | F<br>VF  | S3<br>S3 | 0.138<br>0.169 | 4.19<br>3.52                      |
| ABELL 1204                                 | 2205          | 11:13:20.419                 | +17:35:38.45                 | 23.6         | VF       | I3       | 0.103          | 3.92                              |
| ABELL 1361 ‡                               | 2200          | 11:43:39.827                 | +46:21:21.40                 | 16.7         | F        | S3       | 0.117          | 2.16                              |
| ABELL 1423                                 | 538           | 11:57:17.026                 | +33:36:37.44                 | 9.8          | VF       | I3       | 0.213          | 7.01                              |
| ABELL 1651<br>ABELL 1664 ‡                 | 4185<br>1648  | 12:59:22.830<br>13:03:42.478 | -04:11:45.86<br>-24:14:44.55 | 9.6<br>9.8   | VF<br>VF | I3<br>S3 | 0.084<br>0.128 | 6.66<br>2.59                      |
| ABELL 1682                                 | 3244          | 13:06:50.764                 | +46:33:19.86                 | 9.8          | VF       | I3       | 0.226          | 7.92                              |
| ABELL 1689                                 | 1663          | 13:11:29.612                 | -01:20:28.69                 | 10.7         | F        | I3       | 0.184          | 24.71                             |
| ABELL 1689                                 | 5004<br>540   | 13:11:29.606                 | -01:20:28.61                 | 19.9         | VF       | I3       | 0.184          | 24.71                             |
| ABELL 1689<br>ABELL 1758                   | 2213          | 13:11:29.595<br>13:32:42.978 | -01:20:28.47<br>+50:32:44.83 | 10.3<br>58.3 | F<br>VF  | I3<br>S3 | 0.184<br>0.279 | 24.71<br>21.01                    |
| ABELL 1763                                 | 3591          | 13:35:17.957                 | +40:59:55.80                 | 19.6         | VF       | I3       | 0.187          | 9.26                              |
| ABELL 1795 ‡                               | 5289          | 13:48:52.829                 | +26:35:24.01                 | 15.0         | VF       | I3       | 0.062          | 7.59                              |
| ABELL 1835<br>ABELL 1914                   | 495<br>3593   | 14:01:01.951<br>14:26:01.399 | +02:52:43.18<br>+37:49:27.83 | 19.5<br>18.9 | F<br>VF  | S3<br>I3 | 0.253<br>0.171 | 39.38<br>26.25                    |
| ABELL 1914<br>ABELL 1942                   | 3393<br>3290  | 14:28:01.399                 | +37:49:27.83 +03:40:12.97    | 18.9<br>57.6 | VF<br>VF | 13<br>12 | 0.171          | 26.25                             |
| ABELL 1995                                 | 906           | 14:52:57.758                 | +58:02:51.34                 | 0.0          | F        | S3       | 0.319          | 10.19                             |
| ABELL 2029 ‡                               | 6101          | 15:10:56.163                 | +05:44:40.89                 | 9.9          | VF       | I3       | 0.076          | 13.90                             |
| ABELL 2034<br>ABELL 2065 ‡                 | 2204<br>31821 | 15:10:11.003<br>15:22:29.220 | +33:30:46.46<br>+27:42:46.54 | 53.9<br>0.0  | VF<br>VF | I3<br>I3 | 0.113<br>0.073 | 6.45<br>2.92                      |
| ABELL 2069<br>ABELL 2069                   | 4965          | 15:24:09.181                 | +27:42:46.54 +29:53:18.05    | 55.4         | VF<br>VF | 13<br>12 | 0.073          | 3.82                              |
| ABELL 2111                                 | 544           | 15:39:41.432                 | +34:25:12.26                 | 10.3         | F        | I3       | 0.230          | 7.45                              |
| ABELL 2125                                 | 2207          | 15:41:14.154                 | +66:15:57.20                 | 81.5         | VF       | I3       | 0.246          | 0.77                              |
| ABELL 2163<br>ABELL 2204 ‡                 | 1653<br>499   | 16:15:45.705<br>16:32:45.437 | -06:09:00.62<br>+05:34:21.05 | 71.1<br>10.1 | VF<br>F  | I1<br>S3 | 0.170<br>0.152 | 49.11<br>20.77                    |
| ABELL 2204 #                               | 6104          | 16:32:45.428                 | +05:34:20.89                 | 9.6          | VF       | I3       | 0.152          | 22.03                             |
| ABELL 2218                                 | 1666          | 16:35:50.831                 | +66:12:42.31                 | 48.6         | VF       | 10       | 0.171          | 8.39                              |
| ABELL 2219 ‡                               | 896           | 16:40:21.069                 | +46:42:29.07                 | 42.3         | F        | S3       | 0.226          | 33.15                             |
| ABELL 2255<br>ABELL 2256 ‡                 | 894<br>1386   | 17:12:40.385<br>17:03:44.567 | +64:03:50.63<br>+78:38:11.51 | 39.4<br>12.4 | F<br>F   | I3<br>I3 | 0.081<br>0.058 | 3.67<br>4.65                      |
| ABELL 2259                                 | 3245          | 17:20:08.299                 | +27:40:11.53                 | 10.0         | VF       | I3       | 0.164          | 5.37                              |
| ABELL 2261                                 | 5007          | 17:22:27.254                 | +32:07:58.60                 | 24.3         | VF       | I3       | 0.224          | 17.49                             |
| ABELL 2294                                 | 3246          | 17:24:10.149                 | +85:53:09.77                 | 10.0         | VF       | I3       | 0.178          | 10.35                             |

TABLE 1 — Continued

| Cluster                                | Obs.ID        | R.A.                         | Dec.                         | ExpT           | Mode     | ACIS     | z                | $L_{bol.}$                    |
|----------------------------------------|---------------|------------------------------|------------------------------|----------------|----------|----------|------------------|-------------------------------|
|                                        |               | hr:min:sec                   | °:':"                        | ksec           |          |          |                  | $10^{44} {\rm ergs \ s^{-1}}$ |
| (1)                                    | (2)           | (3)                          | (4)                          | (5)            | (6)      | (7)      | (8)              | (9)                           |
| ABELL 2384<br>ABELL 2390 ±             | 4202<br>4193  | 21:52:21.178<br>21:53:36.825 | -19:32:51.90<br>+17:41:44.38 | 31.5<br>95.1   | VF<br>VF | I3<br>S3 | 0.095<br>0.230   | 1.95<br>31.02                 |
| ABELL 2409                             | 3247          | 22:00:52.567                 | +20:58:34.11                 | 10.2           | VF       | I3       | 0.230            | 7.01                          |
| ABELL 2537                             | 4962          | 23:08:22.313                 | -02:11:29.88                 | 36.2           | VF       | S3       | 0.295            | 10.16                         |
| ABELL 2550<br>ABELL 2554 ‡             | 2225<br>1696  | 23:11:35.806<br>23:12:19.939 | -21:44:46.70<br>-21:30:09.84 | 59.0<br>19.9   | VF<br>VF | S3<br>S3 | 0.154<br>0.110   | 0.58<br>1.57                  |
| ABELL 2556 ‡                           | 2226          | 23:13:01.413                 | -21:38:04.47                 | 19.9           | VF       | S3       | 0.086            | 1.43                          |
| ABELL 2631                             | 3248          | 23:37:38.560                 | +00:16:28.64                 | 9.2            | VF       | I3       | 0.278            | 12.59                         |
| ABELL 2667<br>ABELL 2670               | 2214<br>4959  | 23:51:39.395<br>23:54:13.687 | -26:05:02.75<br>-10:25:08.85 | 9.6<br>39.6    | VF<br>VF | S3<br>I3 | 0.230<br>0.076   | 19.91<br>1.39                 |
| ABELL 2717                             | 6974          | 00:03:11.996                 | -35:56:08.01                 | 19.8           | VF       | I3       | 0.048            | 0.26                          |
| ABELL 2744                             | 2212<br>893   | 00:14:14.396<br>03:29:50.918 | -30:22:40.04<br>-52:34:51.04 | 24.8<br>19.6   | VF<br>F  | S3<br>I3 | 0.308<br>0.062   | 29.00<br>0.35                 |
| ABELL 3128 ‡<br>ABELL 3158 ‡           | 3201          | 03:42:54.675                 | -53:37:24.36                 | 24.8           | VF       | I3       | 0.062            | 3.01                          |
| ABELL 3158 ‡                           | 3712          | 03:42:54.683                 | -53:37:24.37                 | 30.9           | VF       | I3       | 0.059            | 3.01                          |
| ABELL 3164<br>ABELL 3376               | 6955<br>3202  | 03:46:16.839<br>06:02:05.122 | -57:02:11.38<br>-39:57:42.82 | 13.5<br>44.3   | VF<br>VF | I3<br>I3 | 0.057<br>0.046   | 0.19<br>0.75                  |
| ABELL 3376                             | 3450          | 06:02:05.162                 | -39:57:42.87                 | 19.8           | VF       | I3       | 0.046            | 0.75                          |
| ABELL 3391 ‡                           | 4943          | 06:26:21.511                 | -53:41:44.81                 | 18.4           | VF       | I3       | 0.056            | 1.44                          |
| ABELL 3921<br>AC 114                   | 4973<br>1562  | 22:49:57.829<br>22:58:48.196 | -64:25:42.17<br>-34:47:56.89 | 29.4<br>72.5   | VF<br>F  | I3<br>S3 | 0.093<br>0.312   | 3.37<br>10.90                 |
| CL 0024+17                             | 929           | 00:26:35.996                 | +17:09:45.37                 | 39.8           | F        | S3       | 0.394            | 2.88                          |
| CL 1221+4918                           | 1662          | 12:21:26.709                 | +49:18:21.60                 | 79.1           | VF       | I3       | 0.700            | 8.65                          |
| CL J0030+2618<br>CL J0152-1357         | 5762<br>913   | 00:30:34.339<br>01:52:42.141 | +26:18:01.58<br>-13:57:59.71 | 17.9<br>36.5   | VF<br>F  | I3<br>I3 | 0.500<br>0.831   | 3.41<br>13.30                 |
| CL J0542.8-4100                        | 914           | 05:42:49.994                 | -40:59:58.50                 | 50.4           | F        | I3       | 0.630            | 6.18                          |
| CL J0848+4456                          | 1708          | 08:48:48.255                 | +44:56:17.11                 | 61.4           | VF       | I1       | 0.574            | 3.02                          |
| CL J0848+4456<br>CL J1113.1-2615       | 927<br>915    | 08:48:48.252<br>11:13:05.167 | +44:56:17.13<br>-26:15:40.43 | 125.1<br>104.6 | VF<br>F  | I1<br>I3 | 0.574<br>0.730   | 3.02<br>2.22                  |
| CL J1213+0253                          | 4934          | 12:13:34.948                 | +02:53:45.45                 | 18.9           | VF       | I3       | 0.409            | 1.29                          |
| CL J1226.9+3332                        | 3180          | 12:26:58.373                 | +33:32:47.36                 | 31.7<br>32.7   | VF<br>VF | I3<br>I3 | 0.890<br>0.890   | 30.76                         |
| CL J1226.9+3332<br>CL J1641+4001       | 5014<br>3575  | 12:26:58.372<br>16:41:53.704 | +33:32:47.38<br>+40:01:44.40 | 46.5           | VF<br>VF | I3       | 0.890            | 30.76<br>1.19                 |
| CL J2302.8+0844                        | 918           | 23:02:48.156                 | +08:43:52.74                 | 108.6          | F        | I3       | 0.730            | 2.93                          |
| DLS J0514-4904<br>EXO 0422-086 ‡       | 4980<br>4183  | 05:14:40.037<br>04:25:51.271 | -49:03:15.07<br>-08:33:36.42 | 19.9<br>10.0   | VF<br>VF | I3<br>I3 | 0.091<br>0.040   | 0.68<br>0.65                  |
| HERCULES A ‡                           | 1625          | 16:51:08.161                 | +04:59:32.44                 | 14.8           | VF       | S3       | 0.040            | 3.27                          |
| IRAS 09104+4109                        | 509           | 09:13:45.481                 | +40:56:27.49                 | 9.1            | F        | S3       | 0.442            | 20.15                         |
| LYNX E<br>LYNX E                       | 17081<br>9271 | 08:48:58.851<br>08:48:58.858 | +44:51:51.44<br>+44:51:51.46 | 61.4<br>125.1  | VF<br>VF | I2<br>I2 | 1.260<br>1.260   | 2.10<br>2.10                  |
| MACS J0011.7-1523                      | 3261          | 00:11:42.965                 | -15:23:20.79                 | 21.6           | VF       | I3       | 0.360            | 10.75                         |
| MACS J0011.7-1523                      | 6105          | 00:11:42.957                 | -15:23:20.76                 | 37.3           | VF       | I3       | 0.360            | 10.75                         |
| MACS J0025.4-1222<br>MACS J0025.4-1222 | 3251<br>5010  | 00:25:29.398<br>00:25:29.399 | -12:22:38.15<br>-12:22:38.10 | 19.3<br>24.8   | VF<br>VF | I3<br>I3 | 0.584<br>0.584   | 13.00<br>13.00                |
| MACS J0035.4-2015                      | 3262          | 00:35:26.573                 | -20:15:46.06                 | 21.4           | VF       | I3       | 0.364            | 19.79                         |
| MACS J0111.5+0855                      | 3256<br>3264  | 01:11:31.515                 | +08:55:39.21                 | 19.4<br>17.5   | VF<br>VF | I3<br>I3 | 0.263<br>0.341   | 0.64                          |
| MACS J0152.5-2852<br>MACS J0159.0-3412 | 5818          | 01:52:34.479<br>01:59:00.366 | -28:53:38.01<br>-34:13:00.23 | 9.4            | VF<br>VF | 13<br>13 | 0.341            | 6.33<br>18.92                 |
| MACS J0159.8-0849                      | 3265          | 01:59:49.453                 | -08:50:00.90                 | 17.9           | VF       | I3       | 0.405            | 26.31                         |
| MACS J0159.8-0849<br>MACS J0242.5-2132 | 6106<br>3266  | 01:59:49.452<br>02:42:35.906 | -08:50:00.92<br>-21:32:26.30 | 35.3<br>11.9   | VF<br>VF | I3<br>I3 | 0.405<br>0.314   | 26.31<br>12.74                |
| MACS J0242.3-2132<br>MACS J0257.1-2325 | 1654          | 02:57:09.150                 | -23:26:06.25                 | 19.8           | F        | I3       | 0.505            | 21.72                         |
| MACS J0257.1-2325                      | 3581          | 02:57:09.152                 | -23:26:06.21                 | 18.5           | VF       | I3       | 0.505            | 21.72                         |
| MACS J0257.6-2209<br>MACS J0308.9+2645 | 3267<br>3268  | 02:57:41.024<br>03:08:55.927 | -22:09:11.12<br>+26:45:38.34 | 20.5<br>24.4   | VF<br>VF | I3<br>I3 | 0.322<br>0.324   | 10.77<br>20.42                |
| MACS J0329.6-0211                      | 3257          | 03:29:41.681                 | -02:11:47.67                 | 9.9            | VF       | I3       | 0.450            | 12.82                         |
| MACS J0329.6-0211                      | 3582          | 03:29:41.688                 | -02:11:47.81                 | 19.9           | VF       | I3       | 0.450            | 12.82                         |
| MACS J0329.6-0211<br>MACS J0404.6+1109 | 6108<br>3269  | 03:29:41.681<br>04:04:32.491 | -02:11:47.57<br>+11:08:02.10 | 39.6<br>21.8   | VF<br>VF | I3<br>I3 | 0.450<br>0.355   | 12.82<br>3.90                 |
| MACS J0417.5-1154                      | 3270          | 04:17:34.686                 | -11:54:32.71                 | 12.0           | VF       | I3       | 0.440            | 37.99                         |
| MACS J0429.6-0253                      | 3271          | 04:29:36.088                 | -02:53:09.02                 | 23.2           | VF       | I3       | 0.399            | 11.58                         |
| MACS J0451.9+0006<br>MACS J0455.2+0657 | 5815<br>5812  | 04:51:54.291<br>04:55:17.426 | +00:06:20.20<br>+06:57:47.15 | 10.2<br>9.9    | VF<br>VF | I3<br>I3 | 0.430<br>0.425   | 8.20<br>9.77                  |
| MACS J0520.7-1328                      | 3272          | 05:20:42.052                 | -13:28:49.38                 | 19.2           | VF       | I3       | 0.340            | 9.63                          |
| MACS J0547.0-3904                      | 3273          | 05:47:01.582                 | -39:04:28.24                 | 21.7           | VF       | I3       | 0.210            | 1.59                          |
| MACS J0553.4-3342<br>MACS J0717.5+3745 | 5813<br>1655  | 05:53:27.200<br>07:17:31.654 | -33:42:53.02<br>+37:45:18.52 | 9.9<br>19.9    | VF<br>F  | I3<br>I3 | 0.407<br>0.548   | 32.68<br>46.58                |
| MACS J0717.5+3745                      | 4200          | 07:17:31.651                 | +37:45:18.46                 | 59.2           | VF       | I3       | 0.548            | 46.58                         |
| MACS J0744.8+3927<br>MACS J0744.8+3927 | 3197          | 07:44:52.802                 | +39:27:24.43<br>+39:27:24.41 | 20.2<br>19.9   | VF<br>VF | I3<br>I3 | 0.686            | 24.67<br>24.67                |
| MACS J0744.8+3927<br>MACS J0744.8+3927 | 3585<br>6111  | 07:44:52.809<br>07:44:52.800 | +39:27:24.41                 | 49.5           | VF<br>VF | I3       | $0.686 \\ 0.686$ | 24.67<br>24.67                |
| MACS J0911.2+1746                      | 3587          | 09:11:11.325                 | +17:46:31.02                 | 17.9           | VF       | 13       | 0.541            | 10.52                         |
| MACS J0911.2+1746<br>MACS J0949+1708   | 5012<br>3274  | 09:11:11.329<br>09:49:51.824 | +17:46:30.99<br>+17:07:05.62 | 23.8<br>14.3   | VF<br>VF | I3<br>I3 | 0.541<br>0.382   | 10.52<br>19.19                |
| MACS J1006.9+3200                      | 5819          | 10:06:54.668                 | +32:01:34.61                 | 10.9           | VF       | I3       | 0.359            | 6.06                          |
| -                                      |               |                              |                              |                |          |          |                  |                               |

TABLE 1 — Continued

|                                        |              | IAD                          | LEI — Contin                 | иеи          |          |          |                |                               |
|----------------------------------------|--------------|------------------------------|------------------------------|--------------|----------|----------|----------------|-------------------------------|
| Cluster                                | Obs.ID       | R.A.                         | Dec.                         | ExpT         | Mode     | ACIS     | z              | $L_{bol.}$                    |
|                                        |              | hr:min:sec                   | °:':"                        | ksec         |          |          |                | $10^{44} {\rm ergs \ s^{-1}}$ |
| (1)                                    | (2)          | (3)                          | (4)                          | (5)          | (6)      | (7)      | (8)            | (9)                           |
| MACS J1105.7-1014                      | 5817         | 11:05:46.462                 | -10:14:37.20                 | 10.3         | VF       | 13       | 0.466          | 11.29                         |
| MACS J1108.8+0906                      | 3252         | 11:08:55.393                 | +09:05:51.16                 | 9.9          | VF       | I3       | 0.449          | 8.96                          |
| MACS J1108.8+0906<br>MACS J1115.2+5320 | 5009<br>3253 | 11:08:55.402<br>11:15:15.632 | +09:05:51.14<br>+53:20:03.71 | 24.5<br>8.8  | VF<br>VF | I3<br>I3 | 0.449<br>0.439 | 8.96<br>14.29                 |
| MACS J1115.2+5320<br>MACS J1115.2+5320 | 5008         | 11:15:15.636                 | +53:20:03.74                 | 18.0         | VF       | I3       | 0.439          | 14.29                         |
| MACS J1115.2+5320                      | 5350         | 11:15:15.632                 | +53:20:03.77                 | 6.9          | VF       | 13       | 0.439          | 14.29                         |
| MACS J1115.8+0129                      | 3275         | 11:15:52.048                 | +01:29:56.56                 | 15.9         | VF       | I3       | 0.120          | 1.47                          |
| MACS J1131.8-1955<br>MACS J1149.5+2223 | 3276<br>1656 | 11:31:56.011<br>11:49:35.856 | -19:55:55.85<br>+22:23:55.02 | 13.9<br>18.5 | VF<br>VF | I3<br>I3 | 0.307<br>0.544 | 17.45<br>21.60                |
| MACS J1149.5+2223<br>MACS J1149.5+2223 | 3589         | 11:49:35.858                 | +22:23:55.05                 | 20.0         | VF       | I3       | 0.544          | 21.60                         |
| MACS J1206.2-0847                      | 3277         | 12:06:12.276                 | -08:48:02.40                 | 23.5         | VF       | 13       | 0.440          | 37.02                         |
| MACS J1226.8+2153                      | 3590         | 12:26:51.207                 | +21:49:55.22                 | 19.0         | VF       | 13       | 0.370          | 2.63                          |
| MACS J1311.0-0310                      | 3258         | 13:11:01.685                 | -03:10:39.70                 | 14.9         | VF       | I3       | 0.494          | 10.03                         |
| MACS J1311.0-0310<br>MACS J1319+7003   | 6110<br>3278 | 13:11:01.680<br>13:20:08.370 | -03:10:39.75<br>+70:04:33.81 | 63.2<br>21.6 | VF<br>VF | I3<br>I3 | 0.494<br>0.328 | 10.03<br>7.03                 |
| MACS J1427.2+4407                      | 6112         | 14:27:16.175                 | +44:07:30.33                 | 9.4          | VF       | I3       | 0.477          | 14.18                         |
| MACS J1427.6-2521                      | 3279         | 14:27:39.389                 | -25:21:04.66                 | 16.9         | VF       | 13       | 0.220          | 1.55                          |
| MACS J1621.3+3810                      | 3254         | 16:21:25.552                 | +38:09:43.56                 | 9.8          | VF       | I3       | 0.461          | 11.49                         |
| MACS J1621.3+3810<br>MACS J1621.3+3810 | 3594<br>6109 | 16:21:25.558<br>16:21:25.555 | +38:09:43.54<br>+38:09:43.54 | 19.7<br>37.5 | VF<br>VF | I3<br>I3 | 0.461<br>0.461 | 11.49<br>11.49                |
| MACS J1621.3+3810                      | 6172         | 16:21:25.559                 | +38:09:43.53                 | 29.8         | VF       | I3       | 0.461          | 11.49                         |
| MACS J1731.6+2252                      | 3281         | 17:31:39.902                 | +22:52:00.55                 | 20.5         | VF       | 13       | 0.366          | 9.32                          |
| MACS J1824.3+4309                      | 3255         | 18:24:18.444                 | +43:09:43.39                 | 14.9         | VF       | 13       | 0.487          | 2.48                          |
| MACS J1931.8-2634                      | 3282         | 19:31:49.656                 | -26:34:33.99                 | 13.6         | VF       | I3       | 0.352          | 23.14                         |
| MACS J2046.0-3430<br>MACS J2049.9-3217 | 5816<br>3283 | 20:46:00.522<br>20:49:56.245 | -34:30:15.50<br>-32:16:52.30 | 10.0<br>23.8 | VF<br>VF | I3<br>I3 | 0.413<br>0.325 | 5.79<br>8.71                  |
| MACS J2211.7-0349                      | 3284         | 22:11:45.856                 | -03:49:37.24                 | 17.7         | VF       | I3       | 0.270          | 22.11                         |
| MACS J2214.9-1359                      | 3259         | 22:14:57.487                 | -14:00:09.35                 | 19.5         | VF       | 13       | 0.503          | 24.05                         |
| MACS J2214.9-1359                      | 5011         | 22:14:57.481                 | -14:00:09.39                 | 18.5         | VF       | I3       | 0.503          | 24.05                         |
| MACS J2228+2036<br>MACS J2229.7-2755   | 3285<br>3286 | 22:28:33.241<br>22:29:45.358 | +20:37:11.42<br>-27:55:38.41 | 19.9<br>16.4 | VF<br>VF | I3<br>I3 | 0.412<br>0.324 | 17.92<br>9.49                 |
| MACS J22243.3-0935                     | 3260         | 22:43:21.537                 | -09:35:44.30                 | 20.5         | VF       | I3       | 0.324          | 0.78                          |
| MACS J2245.0+2637                      | 3287         | 22:45:04.547                 | +26:38:07.88                 | 16.9         | VF       | 13       | 0.304          | 9.36                          |
| MACS J2311+0338                        | 3288         | 23:11:33.213                 | +03:38:06.51                 | 13.6         | VF       | 13       | 0.300          | 10.98                         |
| MKW3S                                  | 900          | 15:21:51.930                 | +07:42:31.97                 | 57.3<br>67.4 | VF<br>VF | I3       | 0.045<br>0.541 | 1.14                          |
| MS 0016.9+1609<br>MS 0302.7+1658       | 520<br>525   | 00:18:33.503<br>03:05:31.614 | +16:26:12.99<br>+17:10:02.06 | 10.0         | VF<br>VF | I3<br>I3 | 0.341          | 32.94<br>2.41                 |
| MS 0440.5+0204 ‡                       | 4196         | 04:43:09.952                 | +02:10:18.70                 | 59.4         | VF       | S3       | 0.190          | 2.17                          |
| MS 0451.6-0305                         | 902          | 04:54:11.004                 | -03:00:52.19                 | 44.2         | F        | S3       | 0.539          | 33.32                         |
| MS 0735.6+7421                         | 4197         | 07:41:44.245                 | +74:14:38.23                 | 45.5         | VF       | S3       | 0.216          | 7.57                          |
| MS 0839.8+2938<br>MS 0906.5+1110       | 2224<br>924  | 08:42:55.969<br>09:09:12.753 | +29:27:26.97<br>+10:58:32.00 | 29.8<br>29.7 | F<br>VF  | S3<br>I3 | 0.194<br>0.163 | 3.10<br>4.64                  |
| MS 1006.0+1202                         | 925          | 10:08:47.194                 | +11:47:55.99                 | 29.4         | VF       | I3       | 0.221          | 4.75                          |
| MS 1008.1-1224                         | 926          | 10:10:32.312                 | -12:39:56.80                 | 44.2         | VF       | 13       | 0.301          | 6.44                          |
| MS 1054.5-0321                         | 512          | 10:56:58.499                 | -03:37:32.76                 | 89.1         | F        | S3       | 0.830          | 27.22                         |
| MS 1455.0+2232<br>MS 1621.5+2640       | 4192<br>546  | 14:57:15.088<br>16:23:35.522 | +22:20:32.49<br>+26:34:25.67 | 91.9<br>30.1 | VF<br>F  | I3<br>I3 | 0.259<br>0.426 | 10.25<br>6.49                 |
| MS 2053.7-0449                         | 1667         | 20:56:21.295                 | -04:37:46.81                 | 44.5         | VF       | I3       | 0.583          | 2.96                          |
| MS 2053.7-0449                         | 551          | 20:56:21.297                 | -04:37:46.80                 | 44.3         | F        | 13       | 0.583          | 2.96                          |
| MS 2137.3-2353                         | 4974         | 21:40:15.178                 | -23:39:40.71                 | 57.4         | VF       | S3       | 0.313          | 11.28                         |
| MS J1157.3+5531 ‡<br>NGC 6338 ‡        | 4964<br>4194 | 11:59:52.295<br>17:15:23.036 | +55:32:05.61<br>+57:24:40.29 | 75.1<br>47.3 | VF<br>VF | S3<br>I3 | 0.081<br>0.028 | 0.12<br>0.13                  |
| PKS 0745-191                           | 6103         | 07:47:31.469                 | +57:24:40.29<br>-19:17:40.01 | 10.3         | VF<br>VF | 13<br>13 | 0.028          | 18.41                         |
| RBS 0797                               | 2202         | 09:47:12.971                 | +76:23:13.90                 | 11.7         | VF       | 13       | 0.354          | 26.07                         |
| RDCS 1252-29                           | 4198         | 12:52:54.221                 | -29:27:21.01                 | 163.4        | VF       | I3       | 1.237          | 2.28                          |
| RX J0232.2-4420                        | 4993<br>6054 | 02:32:18.771<br>03:40:44.765 | -44:20:46.68                 | 23.4         | VF<br>VF | I3       | 0.284 $0.082$  | 18.17                         |
| RX J0340-4542<br>RX J0439+0520         | 6954<br>527  | 03:40:44.765                 | -45:41:18.41<br>+05:20:43.11 | 17.9<br>9.6  | VF<br>VF | I3<br>I3 | 0.082          | 0.33<br>3.57                  |
| RX J0439-0420<br>RX J0439.0+0715       | 1449         | 04:39:00.710                 | +07:16:07.65                 | 6.3          | F        | I3       | 0.230          | 9.44                          |
| RX J0439.0+0715                        | 3583         | 04:39:00.710                 | +07:16:07.63                 | 19.2         | VF       | 13       | 0.230          | 9.44                          |
| RX J0528.9-3927                        | 4994         | 05:28:53.039                 | -39:28:15.53                 | 22.5         | VF       | I3       | 0.263          | 12.99                         |
| RX J0647.7+7015<br>RX J0647.7+7015     | 3196<br>3584 | 06:47:50.029<br>06:47:50.024 | +70:14:49.66<br>+70:14:49.69 | 19.3<br>20.0 | VF<br>VF | I3<br>I3 | 0.584<br>0.584 | 26.48<br>26.48                |
| RX J0047.7+7013<br>RX J0819.6+6336 ‡   | 2199         | 08:19:26.007                 | +63:37:26.53                 | 14.9         | F        | S3       | 0.119          | 0.98                          |
| RX J0910+5422                          | 2452         | 09:10:44.478                 | +54:22:03.77                 | 65.3         | VF       | 13       | 1.100          | 1.33                          |
| RX J1053+5735                          | 4936         | 10:53:39.844                 | +57:35:18.42                 | 92.2         | F        | S3       | 1.140          | 1.59                          |
| RX J1347.5-1145<br>RX J1347.5-1145     | 3592<br>507  | 13:47:30.593<br>13:47:30.598 | -11:45:10.25<br>-11:45:10.27 | 57.7<br>10.0 | VF<br>F  | I3<br>S3 | 0.451<br>0.451 | 100.36<br>100.36              |
| RX J1347.5-1145<br>RX J1350+6007       | 2229         | 13:50:48.038                 | +60:07:08.39                 | 58.3         | VF       | I3       | 0.451          | 2.19                          |
| RX J1423.8+2404                        | 1657         | 14:23:47.759                 | +24:04:40.65                 | 18.5         | VF       | 13       | 0.545          | 15.84                         |
| RX J1423.8+2404                        | 4195         | 14:23:47.763                 | +24:04:40.63                 | 115.6        | VF       | S3       | 0.545          | 15.84                         |
| RX J1504.1-0248                        | 5793         | 15:04:07.415                 | -02:48:15.70                 | 39.2         | VF       | I3       | 0.215          | 34.64                         |
| RX J1525+0958<br>RX J1532.9+3021       | 1664<br>1649 | 15:24:39.729<br>15:32:55.642 | +09:57:44.42<br>+30:18:57.69 | 50.9<br>9.4  | VF<br>VF | I3<br>S3 | 0.516<br>0.345 | 3.29<br>20.77                 |
| RX J1532.9+3021<br>RX J1532.9+3021     | 1665         | 15:32:55.641                 | +30:18:57.61                 | 10.0         | VF       | I3       | 0.345          | 20.77                         |
|                                        |              |                              |                              |              |          | -        |                |                               |

TABLE 1 — Continued

| Cluster          | Obs.ID | R.A.<br>hr:min:sec | Dec.         | ExpT<br>ksec | Mode | ACIS | z     | $L_{bol.}$ $10^{44} {\rm ergs \ s^{-1}}$ |
|------------------|--------|--------------------|--------------|--------------|------|------|-------|------------------------------------------|
| (1)              | (2)    | (3)                | (4)          | (5)          | (6)  | (7)  | (8)   | (9)                                      |
| RX J1716.9+6708  | 548    | 17:16:49.015       | +67:08:25.80 | 51.7         | F    | I3   | 0.810 | 8.04                                     |
| RX J1720.1+2638  | 4361   | 17:20:09.941       | +26:37:29.11 | 25.7         | VF   | I3   | 0.164 | 11.39                                    |
| RX J1720.2+3536  | 3280   | 17:20:16.953       | +35:36:23.63 | 20.8         | VF   | I3   | 0.391 | 13.02                                    |
| RX J1720.2+3536  | 6107   | 17:20:16.949       | +35:36:23.68 | 33.9         | VF   | I3   | 0.391 | 13.02                                    |
| RX J1720.2+3536  | 7225   | 17:20:16.947       | +35:36:23.69 | 2.0          | VF   | I3   | 0.391 | 13.02                                    |
| RX J2011.3-5725  | 4995   | 20:11:26.889       | -57:25:09.08 | 24.0         | VF   | I3   | 0.279 | 2.77                                     |
| RX J2129.6+0005  | 552    | 21:29:39.944       | +00:05:18.83 | 10.0         | VF   | I3   | 0.235 | 12.56                                    |
| S0463            | 6956   | 04:29:07.040       | -53:49:38.02 | 29.3         | VF   | I3   | 0.099 | 22.19                                    |
| S0463            | 7250   | 04:29:07.063       | -53:49:38.11 | 29.1         | VF   | I3   | 0.099 | 22.19                                    |
| TRIANG AUSTR ‡   | 1281   | 16:38:22.712       | -64:21:19.70 | 11.4         | F    | I3   | 0.051 | 9.41                                     |
| V 1121.0+2327    | 1660   | 11:20:57.195       | +23:26:27.60 | 71.3         | VF   | I3   | 0.560 | 3.28                                     |
| ZWCL 1215        | 4184   | 12:17:40.787       | +03:39:39.42 | 12.1         | VF   | 13   | 0.075 | 3.49                                     |
| ZWCL 1358+6245   | 516    | 13:59:50.526       | +62:31:04.57 | 54.1         | F    | S3   | 0.328 | 12.42                                    |
| ZWCL 1953        | 1659   | 08:50:06.677       | +36:04:16.16 | 24.9         | F    | I3   | 0.380 | 17.11                                    |
| ZWCL 3146        | 909    | 10:23:39.735       | +04:11:08.05 | 46.0         | F    | I3   | 0.290 | 29.59                                    |
| ZWCL 5247        | 539    | 12:34:21.928       | +09:47:02.83 | 9.3          | VF   | I3   | 0.229 | 4.87                                     |
| ZWCL 7160        | 543    | 14:57:15.158       | +22:20:33.85 | 9.9          | F    | I3   | 0.258 | 10.14                                    |
| ZWICKY 2701      | 3195   | 09:52:49.183       | +51:53:05.27 | 26.9         | VF   | S3   | 0.210 | 5.19                                     |
| ZwCL 1332.8+5043 | 5772   | 13:34:20.698       | +50:31:04.64 | 19.5         | VF   | I3   | 0.620 | 4.46                                     |
| ZwCl 0848.5+3341 | 4205   | 08:51:38.873       | +33:31:08.00 | 11.4         | VF   | S3   | 0.371 | 4.58                                     |

NOTE. — (1) Cluster name, (2) CDA observation identification number, (3) R.A. of cluster center, (4) Dec. of cluster center, (5) nominal exposure time, (6) observing mode, (7) CCD location of centroid, (8) redshift, (9) bolometric luminosity. A  $(\ddagger)$  indicates a cluster analyzed within  $R_{5000}$  only. Italicized cluster names indicate a cluster which was excluded from our analysis (discussed in §5.1). For clusters with multiple observations, the X-ray centers differ by < 0.5 kpc.

 $\begin{tabular}{l} TABLE~2\\ SUMMARY~OF~TWO-COMPONENT~SIMULATIONS \end{tabular}$ 

| T <sub>2</sub><br>keV<br>Idea        | ξ <sub>min</sub> – lized Spectra         | T <sub>2</sub><br>keV<br>Obser | $\xi_{min}$ vation-Specific Spectra                                           |
|--------------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|
| 0.50<br>0.75<br>1.00<br>1.25<br>1.50 |                                          | 0.50<br>0.75<br>1.00           | $\geq 14.5\% \pm 0.1\%$<br>$\geq 11.7\% \pm 0.1\%$<br>$\geq 11.6\% \pm 0.1\%$ |
| 1.75<br>2.00<br>3.00                 | ≥ 23% ± 3%<br>≥ 28% ± 4%<br>none<br>none | 2.00<br>3.00                   | $\geq 25.5\% \pm 0.1\%$<br>$\geq 28.9\% \pm 0.1\%$                            |

NOTE. — This table summarizes the results of the two temperature component spectra simulations for the ideal and observation-specific cases (see §5.2 for details). The parameter  $\xi_{min}$  represents the minimum fractional contribution of the cooler component,  $T_2$ , to the overall count rate in order to produce  $T_{HBR} \ge 1.1$  at 90% confidence. The results for the observation-specific spectra are for spectra with  $N_{\text{counts}} > 15,000$ .

TABLE 3
WEIGHTED AVERAGES FOR VARIOUS APERTURES

| Aperture                                                       | [0.7-7.0]<br>keV                                     | [2.0-7.0]<br>keV<br>. Without Core .                 | <i>T<sub>HBR</sub></i> | [0.7-7.0]<br>keV | [2.0-7.0]<br>keV<br>. With Core . | T <sub>HBR</sub> |
|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------|------------------|-----------------------------------|------------------|
| R <sub>2500</sub><br>R <sub>5000</sub><br>Simulated<br>Control | 4.93±0.03<br>4.75±0.02<br>3.853±0.004<br>4.208±0.003 | 6.24±0.07<br>5.97±0.07<br>4.457±0.009<br>4.468±0.006 |                        | 4.27±0.02        | 5.45±0.05<br>5.29±0.05            |                  |

Note. — Quoted errors are standard deviation of the mean calculated using an unbiased estimator for weighted samples. Simulated sample has been culled to include only  $T_2$ =0.75 keV.

 $\label{eq:table 4} {\rm TABLE}~4$  Clusters with  $T_{\it HBR} > 1.1$  with 90% confidence.

| Name            | $T_{HBR}$                                                                        | Merger? | Core Class | $T_{dec}$                                        | X-ray Morphology                                | Ref.    |
|-----------------|----------------------------------------------------------------------------------|---------|------------|--------------------------------------------------|-------------------------------------------------|---------|
| RX J1525+0958   | 1.86 <sup>+0.83</sup> <sub>-0.51</sub><br>1.59 <sup>+0.37</sup> <sub>-0.27</sub> | Y       | CC         | $0.42^{+0.14}_{-0.08}$                           | Arrowhead shape & no discernible core           | [29]    |
| MS 1008.1-1224  | $1.59^{+0.37}_{-0.27}$                                                           | Y       | NCC        | $0.42^{+0.14}_{-0.08} \ 0.93^{+0.19}_{-0.14}$    | Wide gas tail extending ≈550 kpc north          | [1]     |
| ABELL 2034      | $1.40^{+0.14}_{-0.11}$                                                           | Y       | NCC        | $1.07^{+0.17}_{-0.09}$<br>$1.13^{+0.12}_{-0.10}$ | Prominent cold front & gas tail extending south | [2]     |
| ABELL 401       | $1.37^{+0.12}_{-0.10}$                                                           | Y       | NCC        | $1.13^{+0.12}_{-0.10}$                           | Highly spherical & possible cold front to north | [3]     |
| ABELL 1689      | $1.36^{+0.14}_{-0.12}$                                                           | Y       | NCC        | $0.95^{+0.09}_{-0.07}$                           | Exceptionally spherical & bright central core   | [6],[7] |
| RX J0439.0+0715 | $1.42^{+0.24}_{-0.18}$                                                           | Unknown | NCC        | $0.98^{+0.11}_{-0.09}$                           | Bright core & possible cold front to north      | [29]    |
| ABELL 3376      | $1.33^{+0.11}_{-0.10}$                                                           | Y       | NCC        | $0.97^{+0.07}_{-0.07}$                           | Highly disturbed & broad gas tail to west       | [4],[5] |

TABLE 4 — Continued

| Name              | $T_{HBR}$                                        | Merger? | Core Class | $T_{dec}$                                                                                        | X-ray Morphology                                | Ref.      |
|-------------------|--------------------------------------------------|---------|------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|
| ABELL 2255        | $1.32^{+0.12}_{-0.10}$<br>$1.36^{+0.19}_{-0.15}$ | Y       | NCC        | $1.48^{+0.32}_{-0.23}$<br>$1.39^{+0.23}_{-0.10}$                                                 | Spherical & compressed isophotes west of core   | [8],[9]   |
| ABELL 2218        | $1.36^{+0.18}_{-0.15}$                           | Y       | NCC        | $1.39^{+0.23}_{-0.10}$                                                                           | Spherical, core of cluster elongated NW-SE      | [10]      |
| ABELL 1763        | $1.30_{-0.15}$ $1.48_{-0.26}^{+0.39}$            | Y       | NCC        | 0.83 <sup>+0.17</sup><br>-0.13<br>1.73 <sup>+0.44</sup>                                          | Elongated ENE-SSW & cold front to west of core  | [11],[12] |
| MACS J2243.3-0935 | 1 76+0.8Î                                        | Unknown | NCC        | $1.73^{+0.44}_{-0.32}$                                                                           | No core & highly flattened along WNW-ESE axis   | [29]      |
| ABELL 2069        | 1 22+0.17                                        | Y       | NCC        | $1.73_{-0.32}$ $1.00_{-0.14}^{+0.18}$ $0.59_{-0.03}^{+0.03}$                                     | No core & highly elongated NNW-SSE              | [13]      |
| ABELL 2384        | 1 31+0.16                                        | Unknown | CC         | $0.59^{+0.03}_{-0.03}$                                                                           | Gas tail extending 1.1 Mpc from core            | [29]      |
| ABELL 168         | 1.31-0.14                                        | Y       | NCC        | $1.16^{+0.14}_{-0.10}$ $1.08^{+0.22}_{-0.17}$                                                    | Highly disrupted & irregular                    | [14],[15] |
| ABELL 209         | $1.31_{-0.14}^{+0.14}$<br>$1.38_{-0.22}^{+0.28}$ | Y       | NCC        | $1.08^{+0.22}_{-0.17}$                                                                           | Asymmetric core structure & possible cold front | [16]      |
| ABELL 665         | 1.20+0.15                                        | Y       | NCC        | 1.08 <sub>-0.17</sub><br>1.14 <sup>+0.19</sup><br>1.04 <sup>+0.10</sup><br>1.04 <sup>+0.10</sup> | Wide, broad gas tail to north & cold front      | [17]      |
| 1E0657-56         | $1.29_{-0.13}^{+0.06}$<br>$1.21_{-0.05}^{+0.06}$ | Y       | NCC        | $1.04^{+0.10}_{-0.08}$                                                                           | The famous "Bullet Cluster"                     | [18]      |
| MACS J0547.0-3904 | 10.50                                            | Unknown | NCC        | $0.77^{+0.14}_{-0.18}$<br>$0.95^{+0.15}_{-0.12}$                                                 | Bright core & gas spur extending NW             | [29]      |
| ZWCL 1215         | 1 21+0 21                                        | Unknown | NCC        | $0.95^{+0.15}_{-0.12}$                                                                           | No core, flattened along NE-SW axis             | [29]      |
| ABELL 1204        | 1 2 <+() 17                                      | Unknown | NCC        | $0.95_{-0.12}^{+0.05}$<br>$0.96_{-0.05}^{+0.05}$                                                 | Highly spherical & bright centralized core      | [29]      |
| MKW3S             |                                                  | Y       | CC         | 0.07+0.02                                                                                        | High mass group, egg shaped & bright core       | [19]      |
| MACS J2311+0338 . | $1.17_{-0.05}^{+0.05}$<br>$1.53_{-0.42}^{+0.69}$ | Unknown | NCC        | $0.60 \pm 0.20$                                                                                  | Elongated N-S & disc-like core                  | [29]      |
| ABELL 267         | 1 33+0.27                                        | Unknown | NCC        | $0.09_{-0.15}^{+0.20}$<br>$1.09_{-0.16}^{+0.20}$                                                 | Elongated NNE-SSW & cold front to north         | [29]      |
| RX J1720.1+2638   | $1.22^{+0.12}_{-0.11}$                           | Y       | CC         | $0.73^{+0.04}_{-0.04}$<br>$0.76^{+0.03}_{-0.03}$                                                 | Very spherical, bright peaky core, & cold front | [20]      |
| ABELL 907         | $1.21^{+0.10}_{-0.08}$                           | Unknown | CC         | $0.76^{+0.03}_{-0.03}$                                                                           | NW-SW elongation & western cold front           | [29]      |
| ABELL 514         | $1.26^{+0.15}_{-0.15}$                           | Y       | NCC        | $1.56^{+1.07}_{-0.40}$                                                                           | Very diffuse & disrupted                        | [21]      |
| ABELL 1651        | $1.24^{+0.16}_{-0.13}$                           | Y       | NCC        | $1.07^{+0.10}_{-0.08}$                                                                           | Spherical & compressed isophotes to SW          | [22]      |
| 3C 28.0           | $1.23^{+0.14}_{-0.12}$                           | Y       | CC         | $0.54^{+0.03}_{-0.03}$                                                                           | Obvious merger & ∼1 Mpc gas tail                | [23]      |
|                   | .011                                             |         | R          | <sub>5000-CORE</sub> O                                                                           |                                                 |           |
| TRIANG AUSTR      | $1.42^{+0.14}_{-0.14}$                           | Y       | NCC        | $0.90^{+0.06}_{-0.09}$                                                                           | Highly diffuse & no bright core                 | [24]      |
| ABELL 3158        | $1.42^{+0.14}_{-0.14}$<br>$1.23^{+0.05}_{-0.05}$ | Y       | NCC        | $0.90_{-0.09}$ $1.15_{-0.05}^{+0.05}$ $1.40_{-0.12}^{+0.15}$                                     | Large centroid variation                        | [25]      |
| ABELL 2256        | $1.29^{+0.13}_{-0.12}$                           | Y       | NCC        |                                                                                                  | Spiral shaped & distinct NW edge                | [26]      |
| NGC 6338          | $1.29_{-0.12}^{+0.12}$<br>$1.22_{-0.10}^{+0.12}$ | Unknown | NCC        | $0.96^{+0.04}_{-0.03}$                                                                           | Disrupted group companion to north              | [29]      |
| ABELL 2029        | $1.22_{-0.10}^{+0.12}$ $1.21_{-0.10}^{+0.12}$    | Y       | CC         | $0.86^{+0.04}_{-0.04}$                                                                           | Possible cold front to W & WAT radio source     | [27],[28] |

NOTE. — Clusters ordered by lower limit of  $T_{HBR}$ . Listed  $T_{HBR}$  values are for the  $R_{2500-CORE}$  aperture, with the exception of the " $R_{5000-CORE}$  Only" clusters listed at the end of the table. Excluding the " $R_{5000-CORE}$  Only" clusters, all clusters listed here had  $T_{HBR}$  significantly greater than 1.1 and the same core classification for both the  $R_{2500-CORE}$  and  $R_{5000-CORE}$  apertures. [1] Gioia & Luppino (1994), [2] Kempner et al. (2003), [3] Yuan et al. (2005), [4] Markevitch et al. (1998), [5] Bagchi et al. (2006), [6] Teague et al. (1990), [7] Andersson & Madejski (2004), [8] Burns et al. (1995), [9] Feretti et al. (1997), [10] Girardi et al. (1997), [11] Dahle et al. (2002), [12] Smith et al. (2005), [13] Gioia et al. (1982), [14] Hallman & Markevitch (2004), [15] Yang et al. (2004), [16] Mercurio et al. (2003), [17] Gómez et al. (2000), [18] Tucker et al. (1998), [19] Krempec-Krygier & Krygier (1999), [20] Mazzotta et al. (2001b), [21] Govoni et al. (2001), [22] Bliton et al. (1998), [23] Gutierrez & Krawczynski (2005), [24] Markevitch et al. (1996), [25] Ohta et al. (2001), [26] Molendi et al. (2000), [27] Clarke et al. (2004), [28] Clarke et al. (2005), [29] this work.

 $\begin{array}{c} \text{TABLE 5} \\ \text{Summary of Excised } R_{2500} \text{ Spectral Fits} \end{array}$ 

| Cluster             | R <sub>CORE</sub> | R <sub>2500</sub> | N <sub>HI</sub>           | T <sub>77</sub>                                                 | T <sub>27</sub>                                                         | $T_{HBR}$                                        | Z <sub>77</sub>                                  | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|---------------------|-------------------|-------------------|---------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|-------------------|----------|
| (1)                 | kpc               | kpc               | $10^{20} \text{ cm}^{-2}$ | keV                                                             | keV                                                                     | (7)                                              | $Z_{\odot}$                                      | (0)               | (10)              | (1.1)    |
| (1)                 | (2)               | (3)               | (4)                       | (5)                                                             | (6)                                                                     | (7)                                              | (8)                                              | (9)               | (10)              | (11)     |
| 1E0657 56 *         | 69                | 688               | 6.53                      | $11.99^{+0.27}_{-0.26}$                                         | $14.54^{+0.67}_{-0.53}$                                                 | $1.21^{+0.06}_{-0.05}$                           | $0.29^{+0.03}_{-0.02}$                           | 1.24              | 1.11              | 92       |
| 1RXS J2129.4-0741 * | 71                | 526               | 4.36                      | 8 22 +1.18                                                      | 8 10 +1.47                                                              | 0.00 + 0.23                                      | $0.43^{+0.18}$                                   | 1.07              | 1.05              | 80       |
| 2PIGG J0011.5-2850  | 69                | 547               | 2.18                      | $5.15^{+0.25}_{-0.24}$                                          | $6.20^{+0.79}_{-0.65}$                                                  | $1.20^{+0.18}_{-0.14}$                           | $0.26^{+0.09}_{-0.08}$                           | 1.09              | 1.00              | 70       |
| 2PIGG J2227.0-3041  | 69                | 378               | 1.11                      | $2.80^{+0.15}_{-0.14}$                                          | $0.20_{-0.65}^{+0.34}$<br>$2.97_{-0.27}^{+0.34}$                        | $1.20_{-0.14}^{-0.14}$<br>$1.06_{-0.11}^{+0.13}$ | 0.00                                             | 1.16              | 1.15              | 69       |
| 3C 220.1            | 71                | 456               | 1.91                      | $9.26^{+14.71}_{-3.98}$                                         | $8.00^{+17.66}_{-4.03}$                                                 | $0.86^{+2.35}_{-0.57}$                           | $0.00^{+0.59}_{-0.00}$                           | 1.20              | 1.40              | 30       |
| 3C 28.0             | 70                | 420               | 5.71                      | 9.26 <sub>-3.98</sub><br>5.53 <sup>+0.29</sup> <sub>-0.27</sub> | $6.81^{+0.71}_{-0.60}$                                                  | $0.86_{-0.57}$ $1.23_{-0.12}^{+0.14}$            | $0.30^{+0.08}_{-0.07}$                           | 0.98              | 0.88              | 87       |
| 3C 295              | 69                | 465               | 1.35                      | $5.35_{-0.27}$<br>$5.16_{-0.38}^{+0.42}$                        | 5.93 <sup>+0.84</sup> <sub>-0.69</sub>                                  | 1.23 -0.12<br>1.15 +0.19                         | $0.38^{+0.12}_{-0.11}$                           | 0.91              | 0.93              | 79       |
| 3C 388              | 69                | 420               | 6.11                      | $3.10_{-0.38}$<br>$3.23_{-0.21}^{+0.23}$                        | $3.93_{-0.69}^{-0.69}$<br>$3.26_{-0.37}^{+0.49}$                        | 1.13 -0.16 1.01 +0.17                            | $0.51^{+0.16}_{-0.14}$                           | 0.95              | 0.95              | 68       |
| 4C 55.16            | 69                | 426               | 4.00                      | $4.98^{+0.17}_{-0.17}$                                          | $5.20_{-0.37}^{-0.37}$<br>$5.54_{-0.36}^{+0.40}$                        | $1.01_{-0.13}^{+0.09}$<br>$1.11_{-0.08}^{+0.09}$ | $0.49^{-0.14}_{-0.07}$                           | 0.89              | 0.80              | 58       |
| ABELL 0068          | 70                | 680               | 4.60                      | $9.01  {}^{+1.53}_{-1.14}$                                      | $9.13^{+2.60}_{-1.71}$                                                  | $1.11_{-0.08}$ $1.01_{-0.23}^{+0.34}$            | $0.46^{+0.24}_{-0.22}$                           | 1.15              | 1.13              | 79       |
| ABELL 0168 ★        | 70                | 398               | 3.27                      | $2.56^{+0.17}_{-0.08}$                                          | $9.13_{-1.71}^{-1.71}$<br>$3.36_{-0.35}^{+0.37}$                        | 1.01 -0.23                                       | 0.00±0.06                                        | 1.07              | 1.03              | 40       |
| ABELL 0209 ★        | 70                | 609               | 1.68                      | $7.30^{+0.08}_{-0.51}$                                          | $\begin{array}{c} 3.30 \\ -0.35 \\ 10.07  ^{+1.91}_{-1.41} \end{array}$ | $1.31_{-0.14}^{+0.14}$<br>$1.38_{-0.22}^{+0.28}$ | $0.29^{+0.10}_{-0.04}$<br>$0.23^{+0.10}_{-0.09}$ | 1.12              | 1.11              | 82       |
| ABELL 0267 ★        | 70                | 545               | 2.74                      | $6.70^{+0.56}_{-0.47}$                                          | $10.07_{-1.41}^{+1.51}$<br>$8.88_{-1.27}^{+1.68}$                       | $1.38_{-0.22}$ $1.33_{-0.21}^{+0.27}$            | $0.32^{+0.11}_{-0.11}$                           | 1.18              | 1.15              | 82       |
| ABELL 0370          | 69                | 516               | 3.37                      | $7.35^{+0.72}_{-0.84}$                                          |                                                                         | $1.33_{-0.21}$ $1.41_{-0.35}^{+0.29}$            | $0.45^{+0.06}_{-0.23}$                           | 1.08              | 1.04              | 39       |
| ABELL 0383          | 69                | 423               | 4.07                      | $4.91^{+0.29}_{-0.27}$                                          | $10.35^{+1.89}_{-2.27}$<br>$5.42^{+0.74}_{-0.59}$                       | $1.41^{+0.29}_{-0.35}$<br>$1.10^{+0.16}_{-0.13}$ | $0.44^{+0.11}_{-0.11}$                           | 0.97              | 0.90              | 64       |
| ABELL 0399          | 69                | 546               | $7.57^{+0.71}_{-0.71}$    | 7 05 +0.35                                                      | Q Q7 +0.55                                                              | 1 12 +0.08                                       | $0.30^{+0.05}_{-0.05}$                           | 1.12              | 0.99              | 82       |
| ABELL 0401          | 69                | 643               | 12.48                     | $6.37^{+0.19}_{-0.19}$                                          | $8.71^{+0.72}_{-0.61}$                                                  | $1.12_{-0.08}$ $1.37_{-0.10}^{+0.12}$            | $0.26^{+0.06}_{-0.06}$                           | 1.44              | 1.05              | 78       |
| ABELL 0478          | 69                | 598               | 30.90                     | $7.30^{+0.26}_{-0.24}$                                          | $8.62^{+0.58}_{-0.54}$                                                  | $1.37_{-0.10}$ $1.18_{-0.08}^{+0.09}$            | $0.45^{+0.06}_{-0.05}$                           | 1.05              | 0.95              | 91       |
| ABELL 0514          | 71                | 516               | 3.14                      | $3.33^{+0.16}_{-0.16}$                                          | $\begin{array}{c} 8.62 & -0.54 \\ 4.02 & +0.54 \\ -0.46 \end{array}$    | $1.18_{-0.08}$ $1.21_{-0.15}^{+0.17}$            | $0.25^{+0.08}_{-0.06}$                           | 1.07              | 0.97              | 53       |
| ABELL 0520          | 70                | 576               | $1.06^{+1.06}_{-1.05}$    | $9.29^{+0.67}_{-0.60}$                                          | $9.88^{+0.85}_{-0.73}$                                                  | $1.21_{-0.15}^{+0.15}$<br>$1.06_{-0.10}^{+0.12}$ | O 27±0.0/                                        | 1.11              | 1.04              | 87       |
| ABELL 0521          | 70                | 558               | 6.17                      | $7.03^{+0.59}_{-0.53}$                                          | $8.39^{+1.62}_{-1.22}$                                                  | $1.06_{-0.10}^{+0.10}$<br>$1.19_{-0.20}^{+0.25}$ | $0.37_{-0.07}^{+0.13}$<br>$0.39_{-0.12}^{+0.13}$ | 1.10              | 1.15              | 49       |
| ABELL 0586          | 70                | 635               | 4.71                      | $6.47^{+0.53}_{-0.47}$                                          | 8.06 <sup>+1.46</sup> <sub>-1.11</sub>                                  | $1.19_{-0.20}$ $1.25_{-0.19}^{+0.25}$            | $0.56^{+0.17}_{-0.16}$                           | 0.91              | 0.81              | 82       |
| ABELL 0611          | 70                | 523               | 4.99                      | $7.06^{+0.55}_{-0.48}$                                          | $7.97  ^{+1.09}_{-0.91}$                                                | $1.23_{-0.19}^{-0.19}$<br>$1.13_{-0.15}^{+0.18}$ | $0.35^{+0.11}_{-0.10}$                           | 0.97              | 0.98              | 54       |
| ABELL 0665          | 69                | 617               | 4.24                      | $7.45^{+0.38}_{-0.34}$                                          | 0.61 +1.02                                                              | 1 20 +0.15                                       | $0.31^{+0.06}_{-0.07}$                           | 1.02              | 0.93              | 87       |
| ABELL 0697          | 69                | 612               | 3.34                      | $9.52^{+0.87}_{-0.76}$                                          | $12.24^{+2.05}_{-1.63}$                                                 | $1.29_{-0.13}^{+0.13}$<br>$1.29_{-0.20}^{+0.25}$ | $0.37^{+0.12}_{-0.11}$                           | 1.08              | 1.02              | 89       |
| ABELL 0773          | 69                | 615               | 1.46                      | $7.83  \substack{+0.66 \\ -0.57}$                               | $9.75^{+1.63}_{-1.27}$                                                  | $1.29_{-0.20}^{-0.20}$<br>$1.25_{-0.19}^{+0.24}$ | $0.44^{+0.12}_{-0.12}$                           | 1.06              | 1.09              | 84       |

TABLE 5 — Continued

| Cluster                                  | R <sub>CORE</sub> | R <sub>2500</sub> | N <sub>HI</sub>               | T <sub>77</sub>                                                                                                                                                          | T <sub>27</sub>                                                                                                                                                                         | $T_{HBR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z <sub>77</sub>                                                                                                                     | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|------------------------------------------|-------------------|-------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------|
| (1)                                      | kpc (2)           | kpc (3)           | $10^{20} \text{ cm}^{-2}$ (4) | keV<br>(5)                                                                                                                                                               | keV<br>(6)                                                                                                                                                                              | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z <sub>⊙</sub><br>(8)                                                                                                               | (9)               | (10)              | (11)     |
| ABELL 0907                               | 69                | 488               | 5.69                          | 5.62 +0.18                                                                                                                                                               | 6.78 +0.49                                                                                                                                                                              | 1.21 +0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.42^{+0.06}_{-0.05}$                                                                                                              | 1.13              | 1.00              | 88       |
| ABELL 0963                               | 69                | 543               | 1.39                          | $5.62_{-0.17}^{+0.18}$<br>$6.73_{-0.30}^{+0.32}$                                                                                                                         | $\begin{array}{c} 6.78  \substack{+0.49 \\ -0.43} \\ 6.98  \substack{+0.66 \\ -0.57} \\ 13.70  \substack{+1.68 \\ -1.38} \end{array}$                                                   | $1.21^{+0.10}_{-0.08}$<br>$1.04^{+0.11}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29+0.07                                                                                                                           | 1.06              | 1.02              | 64       |
| ABELL 1063S                              | 69                | 648               | 1.77                          | $11.0 < \pm 0.88$                                                                                                                                                        | $13.70^{-0.3}_{-1.38}$                                                                                                                                                                  | 1 1 ~ ±N:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.29_{-0.08}$<br>$0.38_{-0.09}^{+0.08}$                                                                                            | 1.02              | 0.98              | 90       |
| ABELL 1204                               | 70                | 419               | 1.44                          | $3.63^{+0.18}_{-0.16}$                                                                                                                                                   | $4.58^{+0.57}_{-0.45}$                                                                                                                                                                  | $1.26^{+0.17}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.38_{-0.09}^{+0.09}$<br>$0.31_{-0.09}^{+0.09}$                                                                                    | 1.06              | 0.90              | 88       |
| ABELL 1423                               | 70                | 614               | 1.60                          | $6.01^{+0.75}_{-0.64}$                                                                                                                                                   | $7.53^{+2.35}_{-1.55}$                                                                                                                                                                  | $1.25^{+0.42}_{-0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31 <sub>-0.09</sub><br>0.30 <sup>+0.18</sup><br>-0.17                                                                             | 0.87              | 0.65              | 78       |
| ABELL 1651                               | 70                | 596               | 2.02                          | $6.26^{+0.30}_{-0.27}$<br>$9.48^{+0.38}_{-0.35}$                                                                                                                         | 7.76 -0.76                                                                                                                                                                              | $1.24^{+0.16}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.42^{+0.09}_{-0.09}$                                                                                                              | 1.19              | 1.20              | 86       |
| ABELL 1759                               | 70<br>69          | 679<br>574        | 1.87<br>1.09                  | 9.48 +0.36<br>12.14 +1.15                                                                                                                                                | $12.89  {}^{+1.23}_{-1.01}$ $11.16  {}^{+3.08}_{-3.01}$                                                                                                                                 | $1.36^{+0.14}_{-0.12}$<br>$0.92^{+0.27}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.36^{+0.06}_{-0.05}$<br>$0.56^{+0.13}_{-0.13}$                                                                                    | 1.13              | 1.02<br>1.09      | 91<br>58 |
| ABELL 1758<br>ABELL 1763                 | 69                | 561               | 0.82                          | 7 78 +0.67                                                                                                                                                               | 11.10 -2.14                                                                                                                                                                             | 1 40 +0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.36_{-0.13}^{+0.13}$<br>$0.25^{+0.11}_{-0.13}$                                                                                    | 1.21<br>1.12      | 0.92              | 38<br>84 |
| ABELL 1835                               | 70                | 570               | 2.36                          | 9.77 +0.57                                                                                                                                                               | 11.00 +1.23                                                                                                                                                                             | 1 13 +0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.23_{-0.10}$ $0.31^{+0.08}$                                                                                                       | 0.98              | 1.02              | 86       |
| ABELL 1914                               | 70                | 698               | 0.97                          | $9.62^{+0.52}_{-0.49}$                                                                                                                                                   | 11 42 +1:26                                                                                                                                                                             | $1.13_{-0.12}^{+0.13}$<br>$1.19_{-0.13}^{+0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.30^{+0.08}_{-0.07}$                                                                                                              | 1.07              | 1.03              | 92       |
| ABELL 1942                               | 69                | 473               | 2.75                          | 4 77 +0:38                                                                                                                                                               | 7 40 ±0 98                                                                                                                                                                              | 1 1 5 ±0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.33^{+0.12}_{-0.14}$                                                                                                              | 1.06              | 1.04              | 70       |
| ABELL 1995                               | 71                | 381               | 1.44                          | 8.37 <sup>+0.70</sup> <sub>-0.61</sub>                                                                                                                                   | $5.49_{-0.74}^{+0.74}$<br>$9.23_{-1.13}^{+1.44}$                                                                                                                                        | $1.15_{-0.18}^{+0.22}$<br>$1.10_{-0.16}^{+0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.39^{+0.12}_{-0.11}$                                                                                                              | 1.02              | 0.96              | 74       |
| ABELL 2034                               | 69                | 594               | 1.58                          | $7.15_{-0.22}^{+0.23}$ $6.50_{-0.29}^{+0.33}$                                                                                                                            | 9.23 -1.13<br>10.02 +0.92<br>-0.75<br>8.61 +1.02<br>-0.84                                                                                                                               | 1.40 -0.16<br>1.40 -0.11<br>1.22 +0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.32^{+0.05}_{-0.05}$                                                                                                              | 1.22              | 1.00              | 84       |
| ABELL 2069                               | 70<br>70          | 623<br>592        | 1.97<br>2.20                  | $6.50_{-0.29}^{+0.33}$<br>$7.13_{-0.25}^{+1.29}$                                                                                                                         | 8.61 +1.02<br>-0.84<br>11.10 +4.67                                                                                                                                                      | $1.32^{+0.17}_{-0.14}$<br>$1.56^{+0.71}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.26^{+0.08}_{-0.07}$<br>$0.13^{+0.19}_{-0.13}$                                                                                    | 1.04              | 0.96<br>0.88      | 71<br>76 |
| ABELL 2111<br>ABELL 2125                 | 70<br>70          | 371               | 2.75                          | $2.88^{+0.30}_{-0.27}$                                                                                                                                                   | 276 +0.98                                                                                                                                                                               | 1 21 +0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.13_{-0.13}$ $0.31^{+0.18}$                                                                                                       | 1.06<br>1.26      | 1.30              | 61       |
| ABELL 2163                               | 69                | 751               | 12.04                         | $19.20^{+0.87}_{-0.80}$                                                                                                                                                  | 21 30 +1.77                                                                                                                                                                             | 1 11 +0.II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.31_{-0.16}$<br>$0.10^{+0.06}$                                                                                                    | 1.37              | 1.26              | 90       |
| ABELL 2204                               | 70                | 575               | 5.84                          | 8.65 <sup>+0.58</sup> <sub>-0.52</sub>                                                                                                                                   | 10 57 +1:48                                                                                                                                                                             | $1.11_{-0.09}$ $1.22_{-0.16}^{+0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.37^{+0.10}_{-0.00}$                                                                                                              | 0.95              | 1.00              | 90       |
| ABELL 2218                               | 70                | 558               | 3.12                          | 7 25 +0:39                                                                                                                                                               | $10.37_{-1.23}^{-1.23}$<br>$10.03_{-0.98}^{+1.26}$                                                                                                                                      | 1 26 +0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.22^{-0.06}_{-0.06}$                                                                                                              | 1.01              | 0.90              | 87       |
| ABELL 2255                               | 71                | 596               | 2.53                          | $6.12^{+0.20}_{-0.19}$                                                                                                                                                   | 8.10 <sup>+0.66</sup><br>-0.58                                                                                                                                                          | $1.30_{-0.15}^{-0.15}$<br>$1.32_{-0.10}^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.30^{+0.06}_{-0.06}$                                                                                                              | 1.13              | 0.95              | 76       |
| ABELL 2259                               | 69                | 480               | 3.70                          | 5.18 +0.46<br>-0.39<br>7.63 +0.47<br>-0.43                                                                                                                               | 6.40 <sup>+1.33</sup><br>-0.95                                                                                                                                                          | $1.24^{+0.28}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.41^{+0.14}_{-0.14}$                                                                                                              | 1.05              | 1.01              | 85       |
| ABELL 2261                               | 69                | 576               | 3.31                          | $7.63^{+0.47}_{-0.43}$ $9.98^{+1.43}_{-1.12}$                                                                                                                            | $9.30^{+1.21}_{-0.91}$<br>$11.07^{+3.19}_{-2.11}$                                                                                                                                       | 1.22 <sup>+0.18</sup> -0.14 1.11 <sup>+0.36</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.30_{-0.08}$                                                                                                                      | 0.99              | 0.95              | 90       |
| ABELL 2294<br>ABELL 2384                 | 69<br>70          | 572<br>436        | 6.10<br>2.99                  | 4 7 5 +0 22                                                                                                                                                              | $6.22 \pm 0.72$                                                                                                                                                                         | 1.11 -0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.53^{+0.21}_{-0.21}$<br>$0.23^{+0.07}_{-0.27}$                                                                                    | 1.07<br>1.06      | 0.95<br>0.92      | 82<br>81 |
| ABELL 2409                               | 70<br>70          | 511               | 6.72                          | 4.75 -0.20<br>5.94 +0.43<br>-0.38                                                                                                                                        | 6 77 +0.99                                                                                                                                                                              | 1 1 4 +() 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.23_{-0.07}$ $0.37^{+0.13}$                                                                                                       | 1.13              | 0.92              | 88       |
| ABELL 2537                               | 69                | 497               | 4.26                          | 8.40 +0.76                                                                                                                                                               | $7.81^{+1.15}_{-0.93}$                                                                                                                                                                  | $0.93^{+0.16}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.40^{+0.13}_{-0.12}$                                                                                                              | 0.91              | 0.84              | 46       |
| ABELL 2631                               | 70                | 631               | 3.74                          | $7.06^{-0.86}_{-0.84}$                                                                                                                                                   | 7 92 +2:18                                                                                                                                                                              | 1 11 +0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.34^{+0.18}_{-0.18}$                                                                                                              | 0.97              | 0.88              | 83       |
| ABELL 2667                               | 70                | 525               | 1.64                          | $6.75^{+0.48}_{-0.43}$                                                                                                                                                   | $7.45^{-1.45}_{-0.88}$                                                                                                                                                                  | $1.11_{-0.24}^{+0.18}$<br>$1.10_{-0.15}^{+0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.36^{+0.11}_{-0.11}$                                                                                                              | 1.17              | 1.08              | 76       |
| ABELL 2670                               | 69                | 451               | 2.88                          | 3.95 <sup>+0.14</sup><br>-0.12<br>2.63 <sup>+0.17</sup>                                                                                                                  | 4.65 +0.42<br>-0.36                                                                                                                                                                     | 1.18 +0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.42^{+0.08}_{-0.06}$                                                                                                              | 1.13              | 1.07              | 70       |
| ABELL 2717                               | 70<br>71          | 298<br>647        | 1.12<br>1.82                  | $2.63^{+0.17}_{-0.16}$<br>$9.18^{+0.68}_{-0.60}$                                                                                                                         | $3.17_{-0.43}^{+0.58}$<br>$10.20_{-1.10}^{+1.38}$                                                                                                                                       | $1.21^{+0.23}_{-0.18}$<br>$1.11^{+0.17}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.48-0.10                                                                                                                           | 0.88<br>0.99      | 0.87<br>0.90      | 55<br>67 |
| ABELL 2744<br>ABELL 3164                 | 70                | 451               | 2.55                          | 2.83 +0.53                                                                                                                                                               | 2 21 +3.56                                                                                                                                                                              | 1.11 -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.24_{-0.09}$<br>$0.39^{+0.33}$                                                                                                    | 0.99              | 0.94              | 29       |
| ABELL 3376 *                             | 70                | 463               | 5.21                          | $4.48^{+0.11}_{-0.12}$                                                                                                                                                   | $5.81_{-1.42}^{-1.42}$<br>$5.95_{-0.42}^{+0.47}$                                                                                                                                        | $1.35_{-0.52}^{+0.12}$<br>$1.33_{-0.10}^{+0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.39^{+0.05}_{-0.21}$                                                                                                              | 1.16              | 1.09              | 63       |
| ABELL 3921                               | 69                | 535               | 3.07                          | $5.70^{+0.24}_{-0.23}$                                                                                                                                                   | $6.65^{+0.65}_{-0.54}$                                                                                                                                                                  | $1.17^{+0.12}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.31^{+0.08}_{-0.07}$                                                                                                              | 1.02              | 0.96              | 77       |
| AC 114                                   | 70                | 550               | 1.44                          | $7.53^{+0.49}_{-0.44}$                                                                                                                                                   | 8.30 <sup>+1.03</sup> <sub>-0.85</sub><br>7.18 <sup>+7.91</sup>                                                                                                                         | $1.10^{+0.15}_{-0.13}$ $1.19^{+0.35}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.26^{+0.08}_{-0.02}$                                                                                                              | 1.07              | 1.06              | 55       |
| CL 0024+17                               | 71                | 435               | 4.36                          | 6.03 +1.66                                                                                                                                                               | 7.10 -3.16                                                                                                                                                                              | $1.19^{+1.35}_{-0.57}$<br>$1.07^{+0.33}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.60^{+0.37}_{-0.33}$                                                                                                              | 1.00              | 1.44              | 37       |
| CL 1221+4918                             | 71<br>70          | 445<br>786        | 1.44                          | 6.62 <sup>+1.24</sup> <sub>-0.99</sub>                                                                                                                                   | 7.11 -1.31                                                                                                                                                                              | . 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.34^{+0.26}_{-0.18}$<br>$0.26^{+0.75}_{-0.26}$                                                                                    | 0.94              | 0.93<br>1.23      | 62<br>37 |
| CL J0030+2618<br>CL J0152-1357           | 70<br>70          | 391               | 4.10<br>1.45                  | $4.63^{+2.72}_{-1.32}$ $7.33^{+2.78}_{-1.77}$                                                                                                                            | $5.18^{+8.29}_{-1.96}$ $7.31^{+3.43}_{-3.23}$                                                                                                                                           | $1.12^{+1.91}_{-0.53}$<br>$1.00^{+0.60}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.20_{-0.26}$<br>$0.00^{+0.24}$                                                                                                    | 1.00<br>0.89      | 1.23              | 36       |
| CL J0542.8-4100                          | 71                | 446               | 3.59                          | 6.07 +1.47                                                                                                                                                               | $6.29^{+2.14}$                                                                                                                                                                          | 1.04 +0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.16^{+0.23}_{-0.16}$                                                                                                              | 1.04              | 0.91              | 66       |
| CL J0848+4456 *                          | 71                | 319               | 2.53                          | $4.53^{-1.03}_{-1.13}$                                                                                                                                                   | $5.52^{-1.41}_{-1.74}$                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.00^{+0.45}_{-0.00}$                                                                                                              | 0.92              | 0.93              | 58       |
| CL J1113.1-2615                          | 70                | 435               | 5.51                          |                                                                                                                                                                          | $4.10^{+2.47}_{-1.44}$                                                                                                                                                                  | $0.98^{+0.70}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.46^{+0.63}_{-0.44}$                                                                                                              | 1.01              | 1.08              | 23       |
| CL J1226.9+3332 ★                        | 69                | 450               | 1.37                          | $11.81^{+2.25}_{-1.70}$                                                                                                                                                  | $11.29^{+2.45}_{-1.77}$                                                                                                                                                                 | $0.96^{+0.28}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.21^{+0.21}_{-0.21}$                                                                                                              | 0.81              | 0.86              | 86       |
| CL J2302.8+0844                          | 70<br>70          | 514               | 5.05                          | $\begin{array}{c} 4.19  {}^{+1.01}_{-1.02} \\ 11.81  {}^{+2.25}_{-1.70} \\ 4.25  {}^{+1.17}_{-1.32} \\ 4.62  {}^{+0.53}_{-0.47} \\ 6.49  {}^{+0.48}_{-0.43} \end{array}$ | 5.52 -1.74<br>5.52 -1.74<br>4.10 +2.47<br>4.10 +2.47<br>11.29 -1.77<br>4.67 +2.00<br>6.14 +2.08<br>6.76 +0.81<br>6.76 +0.81<br>6.01 +1.05<br>6.01 +1.05<br>6.01 +1.05                   | 1.22 +0.84<br>0.98 +0.42<br>0.96 +0.20<br>1.10 +0.53<br>1.33 +0.48<br>1.33 +0.42<br>1.04 +0.15<br>0.95 +0.12<br>1.25 +0.27<br>0.91 +0.83<br>1.20 +0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.46^{+0.63}_{-0.04}$ $0.46^{+0.63}_{-0.44}$ $0.21^{+0.21}_{-0.21}$ $0.13^{+0.33}_{-0.13}$ $0.37^{+0.24}_{-0.20}$                  | 0.89              | 0.97              | 50       |
| DLS J0514-4904<br>MACS J0011.7-1523 *    | 70<br>69          | 507<br>451        | 2.52<br>2.08                  | 4.62 -0.47<br>6.40 +0.48                                                                                                                                                 | 6.14 -1.34<br>6.76 +0.81                                                                                                                                                                | 1.33 -0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37-0.20                                                                                                                           | 1.04<br>0.86      | 1.12<br>0.90      | 54<br>87 |
| MACS J0025.4-1222 *                      | 70                | 473               | 2.72                          | C 22 +11 X1                                                                                                                                                              | 6.01 +1.05                                                                                                                                                                              | $0.95^{+0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30 <sup>+0.10</sup> 0.37 <sup>+0.16</sup> 0.37 <sup>+0.16</sup> 0.33 <sup>+0.12</sup> 0.11 <sup>+0.59</sup> 0.11 <sup>-0.11</sup> | 0.90              | 0.92              | 80       |
| MACS J0035.4-2015                        | 70                | 527               | 1.55                          | $7.46^{+0.79}_{-0.66}$<br>$4.11^{+1.61}_{-1.05}$                                                                                                                         | 9.31 +1.75<br>-1.29<br>3.72 +3.08<br>-1.29                                                                                                                                              | $1.25^{+0.27}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.33^{+0.12}_{-0.12}$                                                                                                              | 0.94              | 0.93              | 90       |
| MACS J0111.5+0855                        | 70                | 435               | 4.18                          | $4.11^{+1.61}_{-1.05}$                                                                                                                                                   | $3.72^{+3.08}_{-1.29}$                                                                                                                                                                  | $0.91^{+0.83}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.11^{+0.59}_{-0.11}$                                                                                                              | 0.68              | 0.65              | 49       |
| MACS J0152.5-2852                        | 70                | 459               | 1.46                          | $5.64^{+0.89}_{-0.70}$                                                                                                                                                   | $7.24^{+2.57}_{-1.59}$                                                                                                                                                                  | 0.91 +0.83<br>1.28 +0.50<br>1.28 +0.52<br>1.34 +1.27<br>-0.58<br>1.07 +0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.11_{-0.11}^{+0.35}$ $0.22_{-0.17}^{+0.17}$ $0.26_{-0.26}^{+0.35}$ $0.30_{-0.09}^{+0.09}$                                         | 1.10              | 1.02              | 84       |
| MACS J0159.0-3412                        | 70                | 572               | 1.54                          | $10.90^{+4.77}_{-2.53}$                                                                                                                                                  | 14.65 +12.31                                                                                                                                                                            | $1.34^{+1.27}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.26^{+0.35}_{-0.26}$                                                                                                              | 0.87              | 0.92              | 81       |
| MACS J0159.8-0849 *                      | 69<br>70          | 585               | 2.01                          |                                                                                                                                                                          | 9.83 <sup>+1.13</sup><br>-0.96<br>6 26 <sup>+1.38</sup>                                                                                                                                 | 1.07 +0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30-0.09                                                                                                                           | 1.08              | 1.09              | 90<br>97 |
| MACS J0242.5-2132<br>MACS J0257.1-2325 * | 70<br>70          | 498<br>579        | 2.71<br>2.09                  | 0.38 <u>-0.52</u><br>0.25 +1.28                                                                                                                                          | 0.20 <sub>-0.99</sub><br>10.16 <sup>+1.95</sup>                                                                                                                                         | 1.12 -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.34_0.15                                                                                                                           | 1.03<br>0.99      | 0.83<br>1.08      | 87<br>84 |
| MACS J0257.1-2323 * MACS J0257.6-2209    | 69                | 540               | 2.02                          | 5.58 +0.63<br>9.25 +1.28<br>9.25 +1.28<br>8.02 +1.12<br>8.02 +1.28<br>10.54 +1.28<br>10.54 -1.07<br>6.30 +0.47<br>5.77 +1.14<br>-0.88                                    | 3.72 +3.08<br>7.24 +2.57<br>7.24 +2.57<br>14.65 +12.31<br>9.83 +1.13<br>9.83 +1.13<br>6.26 +1.38<br>10.16 +1.54<br>8.17 +1.93<br>11.38 +2.16<br>7.50 +0.83<br>6.15 +2.00<br>14.00 +5.00 | $ \begin{array}{c} 1.07  \substack{+0.13 \\ -0.13} \\ 1.12  \substack{+0.28 \\ -0.21} \\ 1.10  \substack{+0.26 \\ -0.21} \\ 1.02  \substack{+0.28 \\ -0.29} \\ 1.08  \substack{+0.24 \\ -0.19} \\ 1.08  \substack{+0.16 \\ -0.19} \\ 1.08  \substack{+0.24 \\ -0.24} \\ 1.08  +$ | $0.30_{-0.09}^{+0.09}$ $0.34_{-0.15}^{+0.16}$ $0.14_{-0.12}^{+0.12}$ $0.30_{-0.17}^{+0.16}$                                         | 1.12              | 1.08              | 84       |
| MACS J0308.9+2645                        | 69                | 539               | 11.88                         | $10.54^{+1.28}_{-1.07}$                                                                                                                                                  | $11.38^{+2.16}_{-1.66}$                                                                                                                                                                 | $1.08^{+0.24}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.28^{+0.13}$                                                                                                                      | 0.97              | 1.01              | 87       |
| MACS J0329.6-0211 *                      | 70                | 420               | 6.21                          | $6.30^{+0.47}_{-0.41}$                                                                                                                                                   | $7.50^{+0.83}_{-0.69}$                                                                                                                                                                  | $ \begin{array}{c} 1.19 \stackrel{+0.16}{+0.13} \\ 1.07 \stackrel{+0.41}{-0.28} \\ 1.35 \stackrel{+0.51}{-0.34} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.41^{+0.10}_{-0.09}$ $0.24^{+0.22}_{-0.20}$ $0.33^{+0.19}_{-0.19}$ $0.35^{+0.14}_{-0.13}$                                         | 1.10              | 1.17              | 86       |
| MACS J0404.6+1109                        | 70                | 494               | 14.96                         | $5.77^{+1.14}_{-0.88}$                                                                                                                                                   | $6.15^{+2.00}_{-1.30}$                                                                                                                                                                  | $1.07^{+0.41}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.24^{+0.22}_{-0.20}$                                                                                                              | 0.85              | 0.78              | 73       |
| MACS J0417.5-1154                        | 70                | 429               | 4.00                          | 11 O7 ±1.98                                                                                                                                                              | $6.15^{+2.00}_{-1.30}$ $14.90^{+5.03}_{-3.24}$                                                                                                                                          | 10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33+0.19                                                                                                                           | 1.07              | 0.97              | 94       |
| MACS 10429.6-0253                        | 69<br>70          | 495<br>459        | 5.70<br>7.65                  | 5.66 +0.04                                                                                                                                                               | 6. /1 -0.98<br>7.02 +3.29                                                                                                                                                               | 1.19 -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.35-0.14                                                                                                                           | 1.21              | 1.12              | 82<br>83 |
| MACS J0451.9+0006<br>MACS J0455.2+0657   | 70<br>71          | 459<br>481        | 7.65<br>10.45                 | 7 25 +2.04                                                                                                                                                               | 8.25 +3.98                                                                                                                                                                              | 1.21 -0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.51_{-0.29}$<br>$0.56^{+0.37}$                                                                                                    | 1.25<br>0.83      | 1.35<br>0.94      | 83<br>82 |
| MACS J0520.7-1328                        | 69                | 492               | 8.88                          | 6.35 <sup>+0.81</sup> <sub>-0.67</sub>                                                                                                                                   | $14.90 {}^{+5.03}_{-3.24}$ $6.71 {}^{+1.26}_{-0.98}$ $7.02 {}^{+3.29}_{-1.80}$ $8.25 {}^{+3.98}_{-2.10}$ $8.22 {}^{+2.10}_{-1.45}$                                                      | 1.19 +0.20<br>1.21 +0.64<br>1.21 +0.64<br>1.14 +0.64<br>1.29 +0.38<br>1.29 +0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.35_{-0.13}^{+0.14}$ $0.51_{-0.29}^{+0.33}$ $0.56_{-0.33}^{+0.17}$ $0.43_{-0.16}^{+0.17}$                                         | 1.23              | 1.38              | 86       |
|                                          |                   |                   |                               | -0.6/                                                                                                                                                                    | -1.45                                                                                                                                                                                   | -0.2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.16                                                                                                                                |                   |                   |          |

K. W. Cavagnolo et al.

TABLE 5 — Continued

| Cluster                                  | R <sub>CORE</sub><br>kpc | R <sub>2500</sub><br>kpc | $N_{HI}$ $10^{20} \text{ cm}^{-2}$ | T <sub>77</sub><br>keV                                                           | T <sub>27</sub><br>keV                                                              | $T_{HBR}$                                                            | Z <sub>77</sub>                                                                             | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|------------------------------------------|--------------------------|--------------------------|------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|-------------------|----------|
| (1)                                      | (2)                      | (3)                      | (4)                                | (5)                                                                              | (6)                                                                                 | (7)                                                                  | Z <sub>⊙</sub> (8)                                                                          | (9)               | (10)              | (11)     |
| MACS J0547.0-3904                        | 69                       | 364                      | 4.08                               | $3.58^{+0.44}_{-0.37}$                                                           | $5.41^{+1.67}_{-1.18}$                                                              | $1.51^{+0.50}_{-0.36}$                                               | $0.09^{+0.15}_{-0.09}$                                                                      | 1.16              | 1.42              | 75       |
| MACS J0553.4-3342                        | 70                       | 692                      | 2.88                               | $13.14^{+3.82}_{-2.50}$                                                          | $13.86^{+6.45}_{-3.44}$                                                             | $1.05^{+0.36}_{-0.33}$ $1.05^{+0.58}_{-0.33}$                        | $0.57^{+0.35}_{-0.33}$                                                                      | 0.80              | 0.76              | 87       |
| MACS J0717.5+3745 *                      | 70                       | 563                      | 6.75                               | $12.77^{+1.16}_{-1.00}$                                                          | -1.29                                                                               | 1.03 -0.33<br>1.03 +0.16<br>-0.13<br>1.08 +0.16                      | $0.30^{+0.10}_{-0.11}$                                                                      | 0.93              | 0.90              | 88       |
| MACS J0744.8+3927 *                      | 70                       | 537                      | 4.66                               | $8.09^{+0.77}_{-0.66}$                                                           | 0.77 -0.87                                                                          | -0.14                                                                | $0.32^{+0.10}_{-0.10}$                                                                      | 1.14              | 1.18              | 82       |
| MACS J0911.2+1746 *                      | 70                       | 541                      | 3.55                               | $7.51^{+1.27}_{-0.99}$                                                           | '.1' -1.20                                                                          | $0.95^{+0.27}_{-0.20}$<br>$0.99^{+0.30}_{-0.21}$                     | $0.21^{+0.17}_{-0.16}$                                                                      | 0.93              | 0.84              | 78       |
| MACS J0949+1708                          | 70                       | 580                      | 3.17                               | -1.18                                                                            | 9.11 <sup>+2.27</sup><br>-1.55<br>8.05 +5.70                                        |                                                                      | $0.37^{+0.20}_{-0.20}$                                                                      | 0.89              | 0.84              | 89       |
| MACS J1006.9+3200                        | 70<br>71                 | 512<br>502               | 1.83<br>4.58                       | -1.74                                                                            | $8.05 \stackrel{+5.70}{-2.45} $ $7.78 \stackrel{+3.93}{+3.93}$                      | $1.02^{+0.81}_{-0.38}$<br>$1.03^{+0.61}_{-0.32}$                     | $0.15^{+0.35}_{-0.15}$<br>$0.22^{+0.29}_{-0.22}$                                            | 1.84<br>1.17      | 1.15              | 76<br>81 |
| MACS J1105.7-1014<br>MACS J1108.8+0906 * | 70                       | 302<br>491               | 2.52                               | $7.54^{+2.29}_{-1.51}$<br>$6.52^{+0.94}_{-0.82}$                                 | 7.78 -1.97                                                                          | $1.03_{-0.33}^{+0.33}$<br>$1.12_{-0.24}^{+0.33}$                     | $0.22_{-0.22}^{+0.18}$<br>$0.29_{-0.17}^{+0.18}$                                            | 0.95              | 1.27<br>0.80      | 80       |
| MACS J1108.8+0900 * MACS J1115.2+5320 *  | 70                       | 527                      | 0.98                               | $8.91^{+1.42}_{-1.12}$                                                           | $9.58^{+2.36}_{-1.62}$                                                              | $1.12_{-0.24}$ $1.08_{-0.22}^{+0.32}$                                | $0.29_{-0.17}$ $0.37^{+0.20}$                                                               | 0.93              | 0.88              | 75       |
| MACS J1115.8+0129                        | 70                       | 448                      | 4.36                               | 6.78 +1.17                                                                       | 8.27 <sup>+3.27</sup>                                                               | 1 22 +0.53                                                           | $0.07^{+0.18}_{-0.18}$                                                                      | 1.00              | 0.97              | 65       |
| MACS J1131.8-1955                        | 69                       | 576                      | 4.49                               | $8.64^{+1.23}_{-0.97}$                                                           | $11.01^{+3.61}_{-2.10}$                                                             | $1.22_{-0.36}$ $1.27_{-0.36}^{+0.46}$                                | $0.42^{+0.17}_{-0.17}$                                                                      | 1.00              | 1.00              | 87       |
| MACS J1149.5+2223 *                      | 69                       | 504                      | 2.32                               | $7.65  ^{+0.89}_{-0.75}$                                                         | $8.13^{+1.36}_{-1.04}$                                                              | $1.06^{-0.28}_{-0.17}$                                               | $0.20^{+0.12}_{-0.11}$                                                                      | 1.00              | 1.09              | 87       |
| MACS J1206.2-0847                        | 70                       | 522                      | 4.15                               | $10.21^{+1.19}_{-0.97}$                                                          | $12.51_{-1.87}^{-1.04}$                                                             | $1.23^{+0.28}_{-0.22}$                                               | $0.33^{+0.13}_{-0.13}$                                                                      | 0.96              | 1.05              | 93       |
| MACS J1226.8+2153                        | 71                       | 489                      | 1.82                               | $4.21^{+1.07}_{-0.80}$                                                           | $5.02^{+3.29}_{-1.52}$                                                              | $1.23_{-0.22}^{+0.84}$<br>$1.19_{-0.43}^{+0.84}$                     | $0.23^{+0.38}_{-0.23}$                                                                      | 1.02              | 0.81              | 67       |
| MACS J1311.0-0310 *                      | 69                       | 425                      | 2.18                               | $5.76^{+0.48}_{-0.42}$                                                           | $5.91^{+0.73}_{-0.62}$                                                              | $1.03^{+0.15}_{-0.13}$                                               | $0.39^{+0.13}_{-0.11}$                                                                      | 0.96              | 0.98              | 72       |
| MACS J1319+7003                          | 70                       | 496                      | 1.53                               | $7.99^{+2.08}_{-1.43}$                                                           | $10.62^{+7.35}_{-3.22}$                                                             | $1.33^{+0.98}_{-0.47}$                                               | $0.30^{+0.29}_{-0.28}$                                                                      | 1.25              | 1.24              | 74       |
| MACS J1427.2+4407                        | 71                       | 488                      | 1.41                               | -2.53                                                                            | $10.35^{+6.30}_{-3.26}$                                                             | 1.06 +0.77                                                           | $0.00^{+0.34}_{-0.00}$                                                                      | 0.67              | 0.50              | 84       |
| MACS J1427.6-2521                        | 71                       | 426                      | 6.11                               | $4.65^{+0.92}_{-0.72}$                                                           | 8.11 +3.04                                                                          | $1.74^{+1.14}_{-0.65}$                                               | $0.18^{+0.26}_{-0.18}$                                                                      | 1.19              | 1.40              | 68       |
| MACS J1621.3+3810 *                      | 69<br>71                 | 504                      | 1.07                               | 7.12 -0.55                                                                       | 7.09 <sup>+0.92</sup><br>-0.75<br>10.99 <sup>+4.67</sup>                            | -0.13                                                                | $0.34^{+0.11}_{-0.11}$<br>0.35 <sup>+0.19</sup>                                             | 0.93              | 0.86              | 73       |
| MACS J1731.6+2252<br>MACS J1931.8-2634   | 71<br>70                 | 521<br>535               | 6.48<br>9.13                       | $7.45^{+1.32}_{-0.99}$<br>$6.97^{+0.72}_{-0.61}$                                 | $10.99^{+4.67}_{-2.46}$ $7.72^{+1.31}_{-0.00}$                                      | $1.48^{+0.68}_{-0.38}$<br>$1.11^{+0.22}_{-0.17}$                     | $0.35^{+0.19}_{-0.17}$<br>$0.27^{+0.11}$                                                    | 1.20<br>0.95      | 1.07<br>0.86      | 84<br>90 |
| MACS J2046.0-3430                        | 70                       | 386                      | 4.98                               | $4.64^{+1.18}_{-0.61}$                                                           | $5.49^{+2.29}_{-1.47}$                                                              | $1.11_{-0.17}^{-0.17}$<br>$1.18_{-0.38}^{+0.58}$                     | $0.27_{-0.12}$<br>$0.20^{+0.32}$                                                            | 0.93              | 1.11              | 82       |
| MACS J2049.9-3217                        | 69                       | 524                      | 5.99                               | $6.83^{+0.84}_{-0.82}$                                                           | $8.94^{+2.08}_{-1.47}$                                                              | 1.31 +0.34                                                           | $0.20_{-0.20}$ $0.43^{+0.17}$                                                               | 0.89              | 0.92              | 83       |
| MACS J2211.7-0349                        | 69                       | 663                      | 5.86                               | 11 30 +1.46                                                                      | $13.82^{+3.54}_{-2.41}$                                                             | 1 22 +0:35                                                           | $0.15^{+0.13}_{-0.14}$                                                                      | 1.24              | 1.26              | 88       |
| MACS J2214.9-1359 *                      | 70                       | 529                      | 3.32                               | $9.78^{+1.38}_{-1.09}$                                                           | $10.45^{+2.19}_{-1.56}$                                                             | $1.07^{+0.27}_{-0.20}$                                               | $0.23^{+0.14}_{-0.14}$                                                                      | 0.99              | 1.06              | 87       |
| MACS J2228+2036                          | 70                       | 545                      | 4.52                               | $7.86^{+1.08}_{-0.85}$                                                           | $9.17^{+2.05}_{-1.46}$                                                              | $1.17^{+0.31}_{-0.22}$                                               | $0.39^{+0.16}_{-0.15}$                                                                      | 0.99              | 1.00              | 88       |
| MACS J2229.7-2755                        | 69                       | 465                      | 1.34                               | 5.01 <sup>+0.50</sup> <sub>-0.43</sub>                                           | $5.77^{-1.46}_{-0.86}$                                                              | 1.16 +0.25<br>-0.20<br>1.76 +0.81                                    | $0.55^{+0.19}_{-0.18}$                                                                      | 1.05              | 1.08              | 85       |
| MACS J2243.3-0935                        | 71                       | 574                      | 4.31                               | $4.09^{-0.43}_{-0.45}$                                                           | $7.20^{+3.17}_{-2.12}$                                                              | -0.55                                                                | $0.03^{+0.15}_{-0.03}$                                                                      | 1.17              | 0.92              | 51       |
| MACS J2245.0+2637                        | 69                       | 454                      | 5.50                               | 6.06 <sup>+0.63</sup><br>-0.54<br>8 12 <sup>+1.44</sup>                          | $6.76^{+1.24}_{-0.93}$                                                              | 1.12 <sup>+0.24</sup><br>-0.18<br>1.53 <sup>+0.69</sup>              | $0.60^{+0.20}_{-0.18}$                                                                      | 0.94              | 1.09              | 88       |
| MACS J2311+0338                          | 70                       | 363                      | 5.23                               | -1.16                                                                            | -2,88                                                                               | -0.42                                                                | $0.46^{+0.22}_{-0.20}$                                                                      | 1.07              | 1.15              | 88       |
| MKW3S<br>MS 0016.9+1609                  | 70<br>69                 | 339<br>550               | 3.05<br>4.06                       | 3.91 <sup>+0.06</sup> <sub>-0.06</sub><br>8.94 <sup>+0.71</sup> <sub>-0.62</sub> | $4.58^{+0.18}_{-0.18}$<br>$9.78^{+1.09}_{-0.00}$                                    | $1.17^{+0.05}_{-0.05}$<br>$1.09^{+0.15}_{-0.12}$                     | $0.34^{+0.03}_{-0.04}$<br>$0.29^{+0.09}_{-0.09}$                                            | 1.38<br>0.91      | 0.97<br>0.88      | 86<br>83 |
| MS 0451.6-0305                           | 70                       | 536                      | 5.68                               | $8.94_{-0.62}$ $8.90_{-0.72}^{+0.85}$                                            | $10.43^{+1.59}_{-1.26}$                                                             | $1.09_{-0.13}^{+0.21}$                                               | 0.29_0.08                                                                                   | 1.00              | 0.88              | 60       |
| MS 0735.6+7421                           | 69                       | 491                      | 3.40                               | 5.55 +0.24                                                                       | $6.34^{+0.57}$                                                                      | 1.14 +8:11                                                           | $0.37_{-0.11}^{+0.07}$                                                                      | 1.05              | 1.05              | 62       |
| MS 0839.8+2938                           | 70                       | 415                      | 3.92                               | $4.68^{+0.32}_{-0.20}$                                                           | $5.05^{+0.82}_{-0.50}$                                                              | 1.08 +0.19                                                           | $0.46^{+0.13}_{-0.12}$                                                                      | 0.90              | 0.87              | 60       |
| MS 0906.5+1110                           | 70                       | 616                      | 3.60                               | $5.38 \begin{array}{l} -0.23 \\ -0.29 \end{array}$                               | $6.76^{+0.92}_{-0.77}$                                                              | $1.26^{+0.16}_{-0.16}$                                               | $0.27^{+0.09}_{-0.09}$                                                                      | 1.21              | 1.08              | 75       |
| MS 1006.0+1202                           | 70                       | 556                      | 3.63                               | $5.61 \begin{array}{l} +0.51 \\ -0.43 \end{array}$                               | $7.48^{+1.66}_{-1.22}$                                                              | $1.33^{+0.32}_{-0.24}$                                               | $0.24^{+0.11}_{-0.12}$                                                                      | 1.30              | 1.34              | 75       |
| MS 1008.1-1224                           | 70                       | 548                      | 6.71                               | $5.65^{+0.49}_{-0.43}$                                                           | $9.01^{+1.95}_{-1.38}$                                                              | $1.59^{-0.24}_{-0.27}$ $1.59^{+0.37}_{-0.27}$                        | $0.26^{+0.11}_{-0.10}$                                                                      | 1.21              | 0.98              | 78       |
| MS 1054.5-0321                           | 70                       | 558                      | 3.69                               | $9.38^{+1.72}_{-1.34}$                                                           | 9.91 <sup>+2.66</sup><br>-1.77<br>5.27 +0.36                                        | $1.06^{+0.34}_{-0.24}$                                               | $0.13^{+0.17}_{-0.13}$                                                                      | 1.02              | 1.03              | 41       |
| MS 1455.0+2232                           | 69                       | 436                      | 3.35                               | $4.77^{+0.13}_{-0.13}$ $6.11^{+0.95}_{-0.76}$                                    | 3.37 -0.22                                                                          | $1.13^{+0.08}_{-0.06}$<br>$1.02^{+0.30}_{-0.22}$                     | $0.44^{+0.05}_{-0.05}$                                                                      | 1.29              | 1.10              | 90       |
| MS 1621.5+2640                           | 70<br>70                 | 537                      | 3.59                               |                                                                                  | $\begin{array}{c} 6.22  {}^{+1.56}_{-1.10} \\ 4.07  {}^{+1.23}_{-0.83} \end{array}$ |                                                                      | 0.40-0.21                                                                                   | 1.02              | 1.21              | 68       |
| MS 2053.7-0449 *<br>MS 2137.3-2353       | 70<br>70                 | 561<br>502               | 5.16<br>3.40                       |                                                                                  |                                                                                     | -0.29                                                                | $0.40^{+0.23}_{-0.21}$ $0.39^{+0.38}_{-0.33}$ $0.45^{+0.13}_{-0.14}$                        | 0.97<br>1.12      | 1.07<br>1.25      | 58<br>55 |
| PKS 0745-191                             | 69                       | 651                      | 40.80                              |                                                                                  | 9.68 +0.83                                                                          |                                                                      | 0.43_0.14                                                                                   | 1.12              | 0.98              | 89       |
| RBS 0797                                 | 69                       | 493                      | 2.22                               |                                                                                  | 7.48 -1.09<br>9.68 +0.83<br>-0.72<br>9.05 +1.80<br>-1.33                            | $1.19_{-0.10}^{+0.12}$ $1.18_{-0.21}^{+0.27}$ $1.05_{-0.41}^{+0.68}$ | $0.45_{-0.14}^{+0.13}$ $0.38_{-0.06}^{+0.06}$ $0.32_{-0.13}^{+0.14}$ $0.79_{-0.62}^{+1.01}$ | 1.07              | 1.06              | 89       |
| RDCS 1252-29                             | 71                       | 276                      | 6.06                               |                                                                                  | 4 4- 12 16                                                                          | $1.05^{+0.68}_{-0.41}$                                               | $0.79^{+1.01}$                                                                              | 1.07              | 1.17              | 50       |
| RX J0232.2-4420                          | 69                       | 568                      | 2.53                               | 7 00 40 77                                                                       | 0 02 +2.11                                                                          | 1 24 70.30                                                           | 0.26+0.12                                                                                   | 1.13              | 1.09              | 85       |
| RX J0340-4542                            | 70                       | 412                      | 1.63                               |                                                                                  |                                                                                     | a a = 10.27                                                          | $0.36_{-0.13}^{+0.13}$<br>$0.62_{-0.25}^{+0.31}$<br>$0.44_{-0.24}^{+0.29}$                  | 1.27              | 1.22              | 43       |
| RX J0439+0520                            | 70                       | 474                      | 10.02                              | 4 (0 +0) 64                                                                      |                                                                                     | 1 0 0 10.33                                                          | $0.44^{+0.29}_{-0.24}$                                                                      | 1.03              | 1.14              | 77       |
| RX J0439.0+0715 *                        | 70                       | 532                      | 11.16                              | 5.63 +0.36                                                                       |                                                                                     | $1.42^{+0.24}_{-0.18}$                                               | $0.44^{+0.29}_{-0.24}$<br>$0.32^{+0.10}_{-0.08}$<br>$0.27^{+0.14}_{-0.14}$                  | 1.28              | 1.16              | 82       |
| RX J0528.9-3927                          | 70                       | 640                      | 2.36                               | 7.89 +0.96                                                                       | 8.91 +2.30                                                                          | $1.13^{+0.32}_{-0.21}$                                               | 0.07+0.14                                                                                   | 0.92              | 0.93              | 83       |
| RX J0647.7+7015 *                        | 69<br>71                 | 512                      | 5.18                               | $7.89_{-0.76}^{+0.90}$ $11.28_{-1.45}^{+1.85}$ $4.53_{-1.70}^{+3.02}$            | 5 00 ±5 30                                                                          |                                                                      | $0.27_{-0.14}^{+0.14}$ $0.20_{-0.17}^{+0.17}$ $0.00_{-0.00}^{+0.73}$                        | 1.02              | 1.00              | 80       |
| RX J0910+5422 *                          | 71                       | 246                      | 2.07                               | $4.53^{+3.02}_{-1.70}$                                                           | 5.98 <sup>+3.30</sup> -2.49 16.62 <sup>+1.54</sup> -3.24                            |                                                                      |                                                                                             | 0.90              | 0.71              | 31       |
| RX J1347.5-1145 *<br>RX J1350+6007       | 70<br>71                 | 607<br>334               | 4.89<br>1.77                       | $14.62^{+0.97}_{-0.79}$ $4.48^{+2.32}_{-1.49}$                                   |                                                                                     |                                                                      |                                                                                             | 1.12<br>0.82      | 1.12<br>0.72      | 93<br>57 |
| RX J1423.8+2404 *                        | 71                       | 441                      | 2.65                               |                                                                                  |                                                                                     |                                                                      | $0.13_{-0.13}^{+0.07}$<br>$0.37_{-0.07}^{+0.07}$<br>$0.40_{-0.05}^{+0.04}$                  | 1.02              | 0.72              | 86       |
| RX J1504.1-0248                          | 70                       | 628                      | 6.27                               | 0.00 +0.27                                                                       |                                                                                     |                                                                      | $0.37_{-0.07}$<br>$0.40^{+0.04}$                                                            | 1.02              | 1.25              | 91       |
| RX J1504.1 0240<br>RX J1525+0958         | 70                       | 416                      | 2.96                               |                                                                                  | 6.06 +2.88                                                                          | 1.0< +0.83                                                           |                                                                                             | 1.29              | 0.93              | 79       |
| RX J1532.9+3021 *                        | 70                       | 458                      | 2.21                               | $(0.02 \pm 0.42)$                                                                | 6 95 +0.88                                                                          |                                                                      |                                                                                             | 0.94              | 1.05              | 73       |
| RX J1716.9+6708                          | 71                       | 486                      | 3.71                               | 5 71 +1.47                                                                       | 5 77 +1.88                                                                          | 4 04 10 42                                                           |                                                                                             | 0.79              | 0.74              | 55       |
| RX J1720.1+2638                          | 69                       | 510                      | 4.02                               | $6.37_{-0.26}^{+0.28}$                                                           | $7.78^{+0.69}_{-0.61}$                                                              |                                                                      | $0.35^{+0.07}_{-0.06}$                                                                      | 1.10              | 1.02              | 90       |
| RX J1720.2+3536 *                        | 71                       | 455                      | 3.35                               | $7.21^{+0.53}_{-0.46}$<br>$3.94^{+0.45}_{-0.37}$                                 | $7.78_{-0.61}^{+0.09}$ $6.97_{-0.59}^{+0.76}$ $4.40_{-1.20}^{+1.20}$                | $1.22_{-0.11}^{+0.12}$ $0.97_{-0.10}^{+0.13}$ $1.12_{-0.23}^{+0.33}$ | $0.35_{-0.06}^{+0.07} \\ 0.41_{-0.10}^{+0.10} \\ 0.34_{-0.18}^{+0.21}$                      | 1.12              | 1.09              | 85       |
| RX J2011.3-5725                          | 71                       | 416                      | 4.76                               | $3.94^{+0.45}_{-0.37}$                                                           | $4.40^{+1.20}_{-0.81}$                                                              | $1.12^{+0.33}_{-0.23}$                                               | $0.34^{+0.21}_{-0.18}$                                                                      | 0.94              | 1.09              | 76       |

TABLE 5 — Continued

| Cluster          | $R_{CORE}$ | R <sub>2500</sub> | $N_{HI}$                      | T <sub>77</sub>                          | T <sub>27</sub>                                   | $T_{HBR}$                                        | $Z_{77}$                                          | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|------------------|------------|-------------------|-------------------------------|------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------|-------------------|----------|
| (1)              | kpc (2)    | kpc (3)           | $10^{20} \text{ cm}^{-2}$ (4) | keV<br>(5)                               | keV<br>(6)                                        | (7)                                              | Z <sub>⊙</sub> (8)                                | (9)               | (10)              | (11)     |
| RX J2129.6+0005  | 70         | 690               | 4.30                          | 5.91 <sup>+0.54</sup> <sub>-0.47</sub>   | $7.02^{+1.30}_{-0.99}$                            | 1.19 +0.25                                       | $0.45^{+0.15}_{-0.15}$                            | 1.21              | 1.07              | 80       |
| S0463 *          | 70         | 433               | 1.06                          | $3.10^{+0.29}_{-0.25}$                   | $2.10 \pm 0.66$                                   | $1.19_{-0.19}^{-0.19}$<br>$1.00_{-0.19}^{+0.23}$ | $0.24^{+0.14}_{-0.11}$                            | 1.10              | 1.07              | 47       |
| V 1121.0+2327    | 70         | 444               | 1.30                          | $3.10_{-0.25}$<br>$3.60_{-0.46}^{+0.62}$ | $4.08^{+1.09}_{-0.80}$                            | $1.00_{-0.19}^{+0.36}$<br>$1.13_{-0.27}^{+0.36}$ | $0.36^{+0.29}_{-0.24}$                            | 1.21              | 1.19              | 66       |
| ZWCL 1215        | 70         | 392               | 1.76                          | 6.64 +0.40 -0.35                         | $8.72^{+1.30}_{-1.07}$                            | $1.13_{-0.27}^{+0.27}$<br>$1.31_{-0.18}^{+0.21}$ | $0.30_{-0.24}^{+0.09}$<br>$0.29_{-0.09}^{+0.09}$  | 1.17              | 1.04              | 88       |
| ZWCL 1358+6245   | 70         | 553               | 1.94                          | $10.66^{+1.48}_{-1.13}$                  | $8.72_{-1.07}^{+1.07}$<br>$10.19_{-2.24}^{+4.83}$ | $0.96^{+0.47}_{-0.23}$                           | $0.29_{-0.09}$<br>$0.47_{-0.19}^{+0.19}$          | 1.08              | 1.04              | 55       |
| ZWCL 1953        | 69         | 730               | 3.10                          | 7 37 +1.00                               | 10 44 +3.25                                       | 1 12 +0.48                                       | $0.10 \pm 0.13$                                   | 0.84              | 0.78              | 74       |
| ZWCL 3146        | 70         | 723               | 2.70                          | $7.48^{+0.78}_{-0.30}$                   | $8.61^{+0.66}_{-0.58}$                            | $1.15^{+0.10}_{-0.09}$                           | $0.19_{-0.13}^{+0.05}$<br>$0.31_{-0.06}^{+0.05}$  | 1.03              | 0.98              | 86       |
| ZWCL 5247        | 70         | 635               | 1.70                          | 5.06 +0.85                               | 5 01 +2.09                                        | 1 17 +0.46                                       | $0.22 \pm 0.21$                                   | 0.02              | 0.72              | 74       |
| ZWCL 7160        | 69         | 637               | 3.10                          | $4.53^{+0.40}_{-0.35}$                   | $5.16^{+1.30}_{-0.77}$                            | 1.14 +0.24                                       | $0.22_{-0.19}^{+0.19}$<br>$0.40_{-0.14}^{+0.15}$  | 0.94              | 0.92              | 80       |
| ZWICKY 2701      | 69         | 445               | 0.83                          | $5.21^{+0.35}_{-0.35}$                   | 5.68 +0.85                                        | 1.00 +0.18                                       | 0.42+0.13                                         | 0.00              | 0.94              | 57       |
| ZwCL 1332.8+5043 | 70         | 642               | 1.10                          | $3.62^{+0.30}_{-1.20}$                   | $3.84^{+5.93}_{-1.48}$                            | 1 0c +1.93                                       | 0 = -+12.75                                       | 0.01              | 0.29              | 48       |
| ZwCl 0848.5+3341 | 71         | 518               | 1.12                          | $6.83^{+2.18}_{-1.33}$                   | $7.24^{+5.11}_{-2.26}$                            | $1.06_{-0.54}^{+0.82}$<br>$1.06_{-0.39}^{+0.82}$ | $0.76_{-0.76}^{+12.43}$<br>$0.56_{-0.45}^{+0.54}$ | 0.82              | 0.93              | 37       |

NOTE. — Note: "77" refers to 0.7-7.0 keV band and "27" refers to 2.0-7.0 keV band. (1) Cluster name, (2) size of excluded core region in kpc, (3)  $R_{2500}$  in kpc, (4) absorbing Galactic neutral hydrogen column density, (5,6) best-fit MEKAL temperatures, (7)  $T_{0.7-7.0}/T_{2.0-7.0}$  also called  $T_{HBR}$ , (8) best-fit 77 MEKAL abundance, (9,10) respective reduced  $\chi^2$  statistics, and (11) percent of emission attributable to source. A star (\*) indicates a cluster which has multiple observations. Each observation has an independent spectrum extracted along with an associated WARF, WRMF, normalized background spectrum, and soft residual. Each independent spectrum is then fit simultaneously with the same spectral model to produce the final fit.

| Cluster             | R <sub>CORE</sub> | R <sub>5000</sub> | $N_{HI}$                | T <sub>77</sub>                                    | T <sub>27</sub>                                                    | $T_{HBR}$                                        | Z <sub>77</sub>                                  | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|---------------------|-------------------|-------------------|-------------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|-------------------|----------|
|                     | kpc               | kpc               | $10^{20}~{\rm cm}^{-2}$ | keV                                                | keV                                                                |                                                  | ${ m Z}_{\odot}$                                 |                   |                   |          |
| (1)                 | (2)               | (3)               | (4)                     | (5)                                                | (6)                                                                | (7)                                              | (8)                                              | (9)               | (10)              | (11)     |
| 1E0657 56 *         | 69                | 487               | 6.53                    | $11.81^{+0.29}_{-0.27}$                            | $14.13^{+0.58}_{-0.53}$                                            | $1.20^{+0.06}_{-0.05}$                           | $0.29^{+0.03}_{-0.03}$                           | 1.22              | 1.10              | 95       |
| 1RXS J2129.4-0741 * | 71                | 373               | 4.36                    | $8.47^{+1.31}_{-1.04}$                             | $8.57^{+1.73}_{-0.53}$<br>$8.57^{+1.73}_{-1.27}$<br>$6.21^{+0.83}$ | $1.20_{-0.05}^{+0.26}$<br>$1.01_{-0.19}^{+0.26}$ | $0.29_{-0.03}^{+0.03}$<br>$0.51_{-0.19}^{+0.20}$ | 1.16              | 1.27              | 87       |
| 2PIGG J0011.5-2850  | 69                | 387               | 2.18                    | $5.25 \begin{array}{l} +0.29 \\ -0.27 \end{array}$ | $6.21_{-0.68}^{+0.83}$                                             | $1.18^{+0.17}_{-0.14}$                           | $0.23^{+0.09}_{-0.08}$                           | 1.08              | 1.01              | 78       |
| 2PIGG J0311.8-2655  | 69                | 321               | 1.46                    | $3.35 \begin{array}{l} +0.25 \\ -0.22 \end{array}$ | $3.67^{+0.71}_{-0.54}$                                             | $1.10^{+0.23}_{-0.18}$                           | $0.33^{+0.13}_{-0.11}$                           | 1.03              | 1.10              | 51       |
| 2PIGG J2227.0-3041  | 69                | 267               | 1.11                    | $2.81_{-0.15}^{+0.16}$                             | $2.99 \begin{array}{l} +0.36 \\ -0.28 \end{array}$                 | $1.06^{+0.14}_{-0.11}$                           | $0.35^{+0.11}_{-0.08}$                           | 1.14              | 1.10              | 77       |
| 3C 220.1            | 71                | 322               | 1.91                    | $7.81^{+7.50}_{-2.99}$                             | $7.49^{+11.53}_{-3.51}$                                            | $0.96^{+1.74}_{-0.58}$                           | $0.00^{+0.55}_{-0.00}$                           | 0.60              | 0.78              | 36       |
| 3C 28.0             | 70                | 297               | 5.71                    | 5.18 + 0.28                                        | $7.49_{-3.51}$ $7.11_{-0.90}^{+1.15}$                              | $1.37^{+0.23}_{-0.19}$                           | $0.00_{-0.00}$ $0.30_{-0.07}^{+0.09}$            | 0.96              | 0.77              | 90       |
| 3C 295              | 69                | 329               | 1.35                    | $5.47^{+0.49}_{-0.42}$                             | $6.51^{+0.92}_{-0.78}$                                             | $1.19 \pm 0.20$                                  | $0.29^{+0.11}_{-0.11}$                           | 1.02              | 1.04              | 87       |
| 3C 388              | 69                | 297               | 6.11                    | $3.27 \pm 0.24$                                    | $3.44^{+0.73}_{-0.51}$                                             | $1.05^{+0.24}_{-0.17}$                           | $0.43^{+0.16}_{-0.13}$                           | 1.09              | 1.04              | 76       |
| 4C 55.16            | 69                | 302               | 4.00                    | $4.88^{+0.16}_{-0.16}$                             | $5.44_{-0.51}$ $5.11_{-0.30}^{+0.44}$                              | $1.05 \pm 0.10$                                  | $0.52^{+0.07}_{-0.07}$                           | 0.93              | 0.85              | 71       |
| ABELL 0013          | 69                | 404               | 2.03                    | $5.39  \substack{+0.28 \\ -0.25}$                  | $6.41^{+0.84}_{-0.72}$                                             | $1.19^{+0.17}_{-0.14}$                           | $0.37^{+0.09}_{-0.09}$                           | 0.96              | 0.95              | 44       |
| ABELL 0068          | 70                | 480               | 4.60                    | $9.72^{+1.82}_{-1.36}$                             | $0.41_{-0.72}^{+0.72}$<br>$10.89_{-2.85}^{+5.21}$                  | $1.12^{+0.58}_{-0.33}$                           | $0.41^{+0.24}_{-0.23}$                           | 1.08              | 1.03              | 87       |
| ABELL 0119          | 69                | 399               | 3.30                    | $5.86^{+0.28}_{-0.27}$                             | $6.20^{+0.74}_{-0.59}$                                             | $1.06^{+0.14}_{-0.11}$                           | $0.44^{+0.10}_{-0.10}$                           | 0.98              | 0.89              | 75       |
| ABELL 0168 ★        | 70                | 281               | 3.27                    | $2.56^{+0.13}_{-0.10}$                             | $3.37^{+0.48}_{-0.41}$                                             | $1.32^{+0.20}_{-0.17}$                           | $0.32^{+0.07}_{-0.05}$                           | 1.03              | 0.97              | 44       |
| ABELL 0209 ★        | 70                | 430               | 1.68                    | $7.32^{+0.65}_{-0.56}$                             | $10.05^{+2.33}_{-1.58}$                                            | $1.37 \pm 0.34$                                  | $0.21^{+0.11}_{-0.10}$                           | 1.07              | 1.15              | 88       |
| ABELL 0267 ★        | 70                | 385               | 2.74                    | $6.46^{+0.51}_{-0.45}$                             | $8.46^{+0.52}_{-0.01}$                                             | $1.31^{+0.13}_{-0.17}$                           | $0.37^{+0.12}_{-0.11}$                           | 1.18              | 1.29              | 88       |
| ABELL 0370          | 69                | 365               | 3.37                    | $8.74^{ -0.93}_{ -0.93}$                           | $10.15^{+0.91}_{-0.91}$                                            | $1.16^{+0.28}_{-0.21}$                           | $0.37^{+0.14}_{-0.12}$                           | 1.05              | 1.02              | 50       |
| ABELL 0383          | 69                | 300               | 4.07                    | $4.95  ^{+0.30}_{-0.38}$                           | $5.92^{+1.05}_{-0.85}$                                             | $1.20^{+0.22}_{-0.18}$                           | $0.43^{+0.12}_{-0.11}$                           | 1.12              | 1.10              | 75       |
| ABELL 0399          | 69                | 386               | $8.33^{+0.82}_{-0.80}$  | $7.93^{+0.38}_{-0.35}$                             | $8.86^{+0.67}_{-0.50}$                                             | $1.12^{+0.18}_{-0.00}$                           | $0.32^{+0.06}_{-0.05}$                           | 1.06              | 0.96              | 87       |
| ABELL 0401          | 69                | 454               | 12.48                   | $6.54^{+0.22}_{-0.20}$                             | $9.37^{+0.91}_{-0.74}$                                             | $1.43^{+0.15}_{-0.12}$                           | $0.32_{-0.05}^{+0.07}$<br>$0.29_{-0.06}^{+0.07}$ | 1.53              | 1.10              | 85       |
| ABELL 0478          | 69                | 423               | 30.90                   | 7.27 + 0.26                                        | 0 10 +0.56                                                         | $1.13^{+0.09}_{-0.08}$                           | $0.47^{+0.06}_{-0.06}$                           | 1.02              | 0.93              | 95       |
| ABELL 0514          | 71                | 365               | 3.14                    | 3.57 + 0.24                                        | $4.30^{+0.84}_{-0.66}$                                             | 1.20 +0.25                                       | $0.25^{+0.11}_{-0.10}$                           | 0.99              | 1.01              | 55       |
| ABELL 0520          | 70                | 407               | $1.14^{+1.14}_{-1.16}$  | $9.15^{+0.73}_{-0.63}$                             | $10.43^{+1.41}_{-1.06}$                                            | 1.14 +0:18                                       | $0.36^{+0.07}_{-0.07}$                           | 1.12              | 1.01              | 91       |
| ABELL 0521          | 70                | 394               | 6.17                    | $7.31^{+0.79}_{-0.64}$                             | 0.01 + 3.73                                                        | $1.23^{+0.53}_{-0.28}$                           | $0.48^{+0.17}_{-0.16}$                           | 1.11              | 0.95              | 55       |
| ABELL 0586          | 70                | 450               | 4.71                    | 6.43 +0.55                                         | 8.06 <sup>+1.51</sup>                                              | $1.25_{-0.28}^{+0.26}$ $1.25_{-0.20}^{+0.26}$    | $0.40_{-0.16}^{+0.16}$<br>$0.50_{-0.15}^{+0.15}$ | 0.88              | 0.81              | 87       |
| ABELL 0611          | 70                | 370               | 4.99                    | $6.79_{-0.46}^{-0.37}$                             | $6.88^{+1.23}_{-0.95}$                                             | $1.01 \pm 0.20$                                  | $0.32^{+0.10}_{-0.10}$                           | 1.04              | 1.07              | 67       |
| ABELL 0644          | 70                | 412               | 6.31                    | $7.81  \substack{+0.20 \\ -0.10}$                  | 8.08 +0.44                                                         | $1.03^{+0.06}_{-0.06}$                           | $0.42^{+0.05}_{-0.04}$                           | 1.15              | 1.05              | 92       |
| ABELL 0665          | 69                | 436               | 4.24                    | $7.35^{+0.40}_{-0.19}$                             | 10 43 +1.76                                                        | $1.42^{+0.25}_{-0.19}$                           | $0.29^{+0.07}_{-0.07}$                           | 1.07              | 0.94              | 91       |
| ABELL 0697          | 69                | 432               | 3.34                    | 9.80 +0.99                                         | $13.50^{+2.90}_{-2.04}$                                            | $1.38^{+0.33}_{-0.24}$                           | $0.48^{+0.13}_{-0.13}$                           | 1.06              | 0.96              | 93       |
| ABELL 0773          | 69                | 434               | 1.46                    | 8.09 <sup>+0.75</sup> <sub>-0.65</sub>             | $10.52^{+1.92}_{-1.53}$                                            | $1.30^{+0.27}_{-0.22}$                           | $0.37^{+0.12}_{-0.12}$                           | 1.03              | 1.04              | 89       |
| ABELL 0907          | 69                | 345               | 5.69                    | $5.62^{+0.19}_{-0.18}$                             | $6.82^{+0.27}_{-0.22}$                                             | 1.21 + 0.06                                      | $0.46^{+0.06}_{-0.06}$                           | 1.18              | 1.05              | 92       |
| ABELL 0963          | 69                | 384               | 1.39                    | $6.97  {}^{+0.35}_{-0.32}$                         | $7.65^{+1.00}_{-0.82}$                                             | $1.10^{+0.15}_{-0.13}$                           | $0.29^{+0.08}_{-0.07}$                           | 1.13              | 1.12              | 74       |
| ABELL 1063S         | 69                | 458               | 1.77                    | $11.94^{+0.91}_{-0.80}$                            | $14.04^{+1.83}_{-1.47}$                                            | 1.18 + 0.18                                      | $0.38^{+0.10}_{-0.09}$                           | 1.01              | 0.98              | 94       |
| ABELL 1068          | 69                | 305               | 0.71                    | $4.67 \pm 0.18$                                    | 5.49 + 0.71                                                        | $1.18^{+0.16}_{-0.13}$                           | 0.37+0.06                                        | 0.92              | 0.91              | 77       |
| ABELL 1201          | 69                | 401               | 1.85                    | $5.74^{+0.44}_{-0.40}$                             | $5.49_{-0.58}^{-0.58}$<br>$5.99_{-0.95}^{+1.39}$                   | $1.04^{+0.26}_{-0.18}$                           | $0.37_{-0.07}$<br>$0.35_{-0.11}^{+0.13}$         | 1.06              | 1.10              | 50       |
| ABELL 1204          | 70                | 297               | 1.44                    | $3.67^{-0.40}_{-0.16}$                             | $4.72^{-0.53}_{-0.57}$                                             | $1.29^{+0.21}_{-0.17}$                           | $0.32^{+0.09}_{-0.09}$                           | 1.11              | 0.92              | 92       |
| ABELL 1361          | 71                | 330               | 2.18                    | $5.14^{+1.00}_{-0.74}$                             | $7.24^{-0.37}_{-2.78}$                                             | $1.41^{+1.62}_{-0.58}$                           | $0.29^{+0.31}_{-0.27}$                           | 1.10              | 0.82              | 61       |
| ABELL 1423          | 70                | 435               | 1.60                    | $6.04^{+0.82}_{-0.68}$                             | $7.24_{-2.78}$ $7.93_{-2.20}^{+4.09}$                              | $1.31^{+0.70}_{-0.39}$                           | $0.33^{+0.20}_{-0.17}$                           | 0.95              | 0.91              | 84       |
| ABELL 1651          | 70                | 421               | 2.02                    | $6.30^{-0.08}_{-0.28}$                             | $7.93_{-2.20}$ $7.72_{-0.65}^{+0.71}$                              | $1.23^{+0.13}_{-0.12}$                           | $0.44^{+0.09}_{-0.00}$                           | 1.13              | 1.19              | 91       |
| ABELL 1664          | 69                | 291               | 8.47                    | $4.26^{+0.30}_{-0.36}$                             | $4.91^{-0.03}_{-0.00}$                                             | $1.15  {}^{+0.12}_{-0.20}$                       | $0.31^{+0.12}_{-0.11}$                           | 1.07              | 1.08              | 70       |

TABLE 6 — Continued

| Cluster                                | R <sub>CORE</sub> | R <sub>5000</sub> | N <sub>HI</sub><br>10 <sup>20</sup> cm <sup>-2</sup> | T <sub>77</sub>                                                                                                 | T <sub>27</sub>                                                                                                       | $T_{HBR}$                                                                                                                                                                  | Z <sub>77</sub>                                                                             | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|----------------------------------------|-------------------|-------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|-------------------|----------|
| (1)                                    | kpc<br>(2)        | kpc (3)           | $10^{20} \text{ cm}^{-2}$ (4)                        | keV<br>(5)                                                                                                      | keV<br>(6)                                                                                                            | (7)                                                                                                                                                                        | Z <sub>⊙</sub> (8)                                                                          | (9)               | (10)              | (11)     |
| ABELL 1689 ★                           | 70                | 481               | 1.87                                                 | $9.76^{+0.40}_{-0.38}$                                                                                          | $12.97^{+1.25}_{-1.05}$                                                                                               | $1.33^{+0.14}_{-0.12}$                                                                                                                                                     | $0.35^{+0.06}_{-0.05}$<br>$0.48^{+0.11}_{-0.11}$                                            | 1.14              | 1.04              | 94       |
| ABELL 1758                             | 69                | 404               | 1.09                                                 | $9.76^{+0.40}_{-0.38}$ $9.66^{+0.75}_{-0.64}$ $7.74^{+0.73}$                                                    | 12.97 +1.25<br>9.90 +1.22<br>-1.89<br>12.56 +6.70                                                                     | $1.33^{+0.14}_{-0.12}$<br>$1.02^{+0.15}_{-0.21}$                                                                                                                           | _X + 1 +                                                                                    | 1.03              | 0.96              | 68       |
| ABELL 1763                             | 69                | 396               | 0.82                                                 | /·/¬ -0.64                                                                                                      | -3.12                                                                                                                 | 1.62 ±0.21<br>1.62 ±0.88<br>1.12 ±0.07                                                                                                                                     | $0.22^{+0.11}_{-0.12}$                                                                      | 1.16              | 1.02              | 89       |
| ABELL 1795                             | 69                | 449               | 1.22                                                 | $0.03_{-0.15}$                                                                                                  | $6.85^{+0.42}_{-0.38}$<br>$11.99^{+1.96}_{-1.44}$                                                                     | 1.13 -0.07                                                                                                                                                                 | $0.33_{-0.05}$                                                                              | 1.19              | 1.03              | 93       |
| ABELL 1835                             | 70                | 404               | 2.36                                                 | 9.55 <sup>+0.55</sup> <sub>-0.51</sub><br>9.73 <sup>+0.58</sup>                                                 | 11 07 +1 90                                                                                                           | $1.26^{+0.22}_{-0.17}$ $1.23^{+0.21}_{-0.16}$                                                                                                                              | $0.35^{+0.07}_{-0.08}$                                                                      | 0.91              | 0.88              | 91       |
| ABELL 1914<br>ABELL 1942               | 70<br>69          | 493<br>334        | 0.97<br>2.75                                         | 4.96 +0.45                                                                                                      | $11.97^{+1.90}_{-1.40}$ $5.94^{+2.24}_{-0.00}$                                                                        | $1.23_{-0.16}^{+0.16}$ $1.20_{-0.22}^{+0.46}$                                                                                                                              | $0.32^{+0.08}_{-0.07}$                                                                      | 1.11<br>1.04      | 1.03<br>0.87      | 95<br>77 |
| ABELL 1995                             | 71                | 271               | 1.44                                                 | 8.50 <sup>+0.83</sup>                                                                                           | 0.41 +1.87                                                                                                            | 1.11 +0.25                                                                                                                                                                 | 0.37-0.14                                                                                   | 1.05              | 1.02              | 81       |
| ABELL 2029                             | 70                | 434               | 3.26                                                 | 8.22 +0.31                                                                                                      | 0 02 +0.91                                                                                                            | 1 21 +0:12                                                                                                                                                                 | $0.40^{+0.06}$                                                                              | 1.08              | 1.04              | 94       |
| ABELL 2034                             | 69                | 420               | 1.58                                                 | $7.35^{+0.26}_{-0.34}$                                                                                          | 0.06 +1.09                                                                                                            | 1.36 +0.16                                                                                                                                                                 | $0.34^{+0.05}_{-0.05}$                                                                      | 1.17              | 1.02              | 90       |
| ABELL 2065                             | 69                | 370               | 2.96                                                 | 5.75 +0.17                                                                                                      | $6.39^{+0.46}_{-0.41}$                                                                                                | $1.11^{+0.09}_{-0.08}$                                                                                                                                                     | $0.28^{+0.05}_{-0.05}$                                                                      | 1.11              | 1.01              | 89       |
| ABELL 2069                             | 70                | 440               | 1.97                                                 | $6.33^{+0.36}_{-0.32}$                                                                                          | 8.29 <sup>+1.36</sup> -1.02 7.18 <sup>+6.73</sup>                                                                     | $1.31^{+0.23}_{-0.17}$                                                                                                                                                     | $0.24^{+0.08}_{-0.08}$                                                                      | 1.14              | 1.15              | 78       |
| ABELL 2111                             | 70                | 417               | 2.20                                                 | $5.74^{+1.43}_{-0.97}$                                                                                          |                                                                                                                       | $1.25^{+1.21}_{-0.49}$                                                                                                                                                     | $0.16^{+0.30}_{-0.16}$                                                                      | 1.06              | 0.97              | 74       |
| ABELL 2125                             | 70                | 262               | 2.75                                                 | $3.09^{+0.37}_{-0.31}$                                                                                          | $3.69^{+1.99}_{-0.81}$                                                                                                | $1.19^{+0.66}_{-0.29}$<br>$1.04^{+0.12}_{-0.11}$                                                                                                                           | $0.36^{+0.25}_{-0.20}$                                                                      | 1.25              | 1.22              | 68       |
| ABELL 2163                             | 69<br><b>5</b> 0  | 531               | 12.04                                                | 18.78 +0.89                                                                                                     | -1.86                                                                                                                 | $1.04^{+0.12}_{-0.11}$<br>$1.09^{+0.11}_{-0.10}$                                                                                                                           | 0.09+0.06                                                                                   | 1.33              | 1.25              | 93       |
| ABELL 2204 *                           | 70                | 406               | 5.84                                                 | 9.35 <sup>+0.43</sup> <sub>-0.41</sub>                                                                          | 10.18 +0.95                                                                                                           | 1.09 -0.10                                                                                                                                                                 | $0.37^{+0.07}_{-0.07}$                                                                      | 0.95              | 0.97              | 86       |
| ABELL 2218<br>ABELL 2219               | 70<br>69          | 394<br>463        | 3.12<br>1.76                                         | $7.37^{+0.40}_{-0.37}$<br>$12.60^{+0.65}_{-0.61}$                                                               | $9.36^{+1.42}_{-1.07}$<br>$12.54^{+1.52}_{-1.21}$                                                                     | 1.27 -0.16                                                                                                                                                                 | 0.22_0.06                                                                                   | 1.00<br>1.02      | 0.91<br>0.98      | 91<br>81 |
| ABELL 2219<br>ABELL 2255               | 71                | 422               | 2.53                                                 | $6.37^{+0.24}_{-0.22}$                                                                                          | $7.70^{+0.79}$                                                                                                        | $1.00_{-0.11}^{+0.13}$                                                                                                                                                     | 0.31_0.07                                                                                   | 0.93              | 0.98              | 81       |
| ABELL 2256                             | 70                | 441               | 4.05                                                 | 5.66 +0.19                                                                                                      | 7 30 +0.69                                                                                                            | 4 ac ±0.13                                                                                                                                                                 | $0.34_{-0.07}^{+0.07}$<br>$0.31_{-0.07}^{+0.07}$                                            | 1.61              | 1.44              | 79       |
| ABELL 2259                             | 69                | 340               | 3.70                                                 | 5.07 +0.46                                                                                                      | 5 40 +1.29                                                                                                            | 1 00 +0.27                                                                                                                                                                 | $0.40^{+0.16}$                                                                              | 0.92              | 0.92              | 90       |
| ABELL 2261                             | 69                | 407               | 3.31                                                 | $7.86^{-0.40}_{-0.47}$                                                                                          | $9.84^{+1.94}_{-1.30}$                                                                                                | 1.08 _0.20<br>1.25 +0.26<br>-0.18                                                                                                                                          | $0.40^{+0.09}_{-0.09}$                                                                      | 0.98              | 0.95              | 94       |
| ABELL 2294                             | 69                | 405               | 6.10                                                 | $10.49^{+1.75}_{-1.30}$                                                                                         | $12.33^{+5.72}_{-3.05}$                                                                                               | $1.18^{+0.58}_{-0.33}$                                                                                                                                                     | $0.57^{+0.25}_{-0.24}$                                                                      | 1.16              | 1.08              | 88       |
| ABELL 2384                             | 70                | 308               | 2.99                                                 | $4.53^{+0.22}_{-0.21}$                                                                                          | $6.78^{+1.13}_{-0.89}$                                                                                                | $1.50^{+0.26}_{-0.21}$                                                                                                                                                     | $0.15^{+0.07}_{-0.06}$                                                                      | 0.99              | 0.88              | 86       |
| ABELL 2390                             | 70                | 447               | 6.71                                                 | $10.85^{+0.34}_{-0.31}$                                                                                         | 10.53 <sup>+0.62</sup> <sub>-0.53</sub><br>5 87 <sup>+0.95</sup>                                                      | $0.97^{+0.06}_{-0.06}$                                                                                                                                                     | $0.35^{+0.05}_{-0.04}$                                                                      | 1.15              | 1.03              | 81       |
| ABELL 2409                             | 70                | 362               | 6.72                                                 | 5.93 +0.45                                                                                                      | J.67 -0.76                                                                                                            | $0.97_{-0.06}^{+0.06}$<br>$0.99_{-0.14}^{+0.18}$                                                                                                                           | $0.55_{-0.11}$                                                                              | 1.05              | 0.76              | 92       |
| ABELL 2537                             | 69                | 351               | 4.26                                                 | 8.83 <sup>+0.87</sup> <sub>-0.74</sub>                                                                          | $7.83^{+1.54}_{-1.16} \ 6.46^{+1.93}_{-1.24}$                                                                         | $0.99_{-0.14}^{+0.20}$ $0.89_{-0.15}^{+0.20}$                                                                                                                              | 0.39 <sup>+0.14</sup><br>0.35 <sup>+0.15</sup>                                              | 0.93              | 0.83              | 59       |
| ABELL 2554<br>ABELL 2556               | 71<br>70          | 415<br>323        | 2.04<br>2.02                                         | 5.35 <sup>+0.45</sup><br>-0.40<br>3.57 <sup>+0.16</sup>                                                         | $4.07^{+0.56}_{-0.46}$                                                                                                | $1.21^{+0.37}_{-0.25}$ $1.14^{+0.16}_{-0.16}$                                                                                                                              | $0.35^{+0.15}_{-0.13}$                                                                      | 0.93<br>0.99      | 0.79<br>0.95      | 40<br>58 |
| ABELL 2631                             | 70<br>70          | 323<br>445        | 3.74                                                 | 7.18 <sup>+1.18</sup>                                                                                           | 0.18 +3:77                                                                                                            | 1.14 -0.14 1.28 +0.49                                                                                                                                                      | $0.30_{-0.07}^{+0.20}$<br>$0.34^{+0.20}$                                                    | 1.03              | 0.93              | 38<br>89 |
| ABELL 2667                             | 70                | 370               | 1.64                                                 | 6.68 +0.48                                                                                                      | 7 35 +1:27                                                                                                            | 1 10 +0:21                                                                                                                                                                 | 0.34_0.19                                                                                   | 1.05              | 0.95              | 84       |
| ABELL 2670                             | 69                | 319               | 2.88                                                 | 3.96 +0.13                                                                                                      | $4.75^{+0.50}_{-1.05}$                                                                                                | 1.20 +0.13                                                                                                                                                                 | $0.45^{+0.08}_{-0.07}$                                                                      | 1.16              | 1.09              | 80       |
| ABELL 2717                             | 70                | 211               | 1.12                                                 | 2 50 +0:17                                                                                                      | $3.18^{-0.41}_{-0.44}$                                                                                                | $1.23^{+0.24}_{-0.19}$                                                                                                                                                     | $0.53^{+0.14}_{-0.12}$                                                                      | 0.90              | 0.95              | 67       |
| ABELL 2744                             | 71                | 458               | 1.82                                                 | $9.82^{+0.89}_{-0.77}$                                                                                          | $3.18_{-0.44}^{+0.34}$<br>$11.21_{-1.81}^{+2.76}$                                                                     | $1.14^{+0.30}_{-0.20}$                                                                                                                                                     | $0.30^{+0.12}_{-0.12}$                                                                      | 0.88              | 0.73              | 74       |
| ABELL 3128                             | 70                | 318               | 1.59                                                 | $3.04^{+0.23}_{-0.21}$                                                                                          | $3.48^{+0.73}_{-0.54}$                                                                                                | $1.14^{+0.26}_{-0.19}$                                                                                                                                                     | $0.33^{+0.13}_{-0.10}$                                                                      | 1.05              | 1.13              | 64       |
| ABELL 3158 ★                           | 70                | 382               | 1.60                                                 | $5.08^{+0.08}_{-0.08}$                                                                                          | 6.26 <sup>+0.26</sup> <sub>-0.24</sub><br>3.10 <sup>+5.68</sup>                                                       | $1.23^{+0.05}_{-0.05}$                                                                                                                                                     | $0.40^{+0.03}_{-0.03}$                                                                      | 1.15              | 0.97              | 89       |
| ABELL 3164                             | 70<br>70          | 319               | 2.55                                                 | $2.40^{+0.65}_{-0.48}$                                                                                          | 3.19 <sup>+5.68</sup> -1.41 5.94 <sup>+0.55</sup> -0.47                                                               | 1.33 +2.39                                                                                                                                                                 | 0.23+0.32                                                                                   | 1.29              | 1.59              | 30       |
| ABELL 3376 *                           | 70                | 327               | 5.21                                                 | 4.44 <sup>+0.14</sup><br>-0.13                                                                                  |                                                                                                                       | 1.34 +0.13                                                                                                                                                                 | $0.36^{+0.06}_{-0.06}$                                                                      | 1.18              | 1.13              | 65       |
| ABELL 3391<br>ABELL 3921               | 70<br>69          | 397<br>378        | 5.46<br>3.07                                         | 5.72 <sup>+0.31</sup><br>-0.28<br>5.69 <sup>+0.25</sup>                                                         | $6.44^{+0.80}_{-0.66}$<br>$6.74^{+0.71}_{-0.50}$                                                                      | $1.13^{+0.15}_{-0.13}$ $1.18^{+0.14}_{-0.14}$                                                                                                                              | 0.11-0.07                                                                                   | 1.00<br>0.93      | 0.97<br>0.85      | 67<br>84 |
| AC 114                                 | 70                | 389               | 1.44                                                 | 7 75 +0.56                                                                                                      | 0.74 -0.58<br>0.76 +2.28                                                                                              | 1 26 +0:31                                                                                                                                                                 | $0.34_{-0.07}^{+0.07}$<br>$0.36^{+0.11}$                                                    | 1.01              | 0.83              | 63       |
| CL 0024+17                             | 71                | 309               | 4.36                                                 | $4.75_{-0.50}^{+1.07}$                                                                                          | 7.14 +5:42                                                                                                            | 1 50 11.10                                                                                                                                                                 | 0.70-0.10                                                                                   | 1.07              | 0.97              | 44       |
| CL 1221+4918                           | 71                | 313               | 1.44                                                 | 4.75 +1.07<br>4.75 +1.07<br>6.73 +1.29<br>4.75 +1.29                                                            | $7.60^{+4.33}$                                                                                                        | 1.13 +0.68                                                                                                                                                                 | $0.32^{+0.20}_{-0.30}$                                                                      | 0.92              | 0.69              | 73       |
| CL J0030+2618                          | 70                | 555               | 4.10                                                 | $6.73^{+1.29}_{-1.02}$ $4.48^{+2.43}_{-1.40}$                                                                   | $3.77 ^{+9.73}_{-1.06}$                                                                                               | $0.84^{+2.22}_{-0.51}$                                                                                                                                                     | $0.00^{+0.37}_{-0.00}$                                                                      | 1.01              | 0.85              | 51       |
| CL J0152-1357                          | 70                | 277               | 1.45                                                 | $4.48^{+2.43}_{-1.40}$ $7.20^{+7.14}_{-2.48}$                                                                   | 7.14 +5.42<br>7.14 +5.43<br>7.60 +4.33<br>7.60 +2.01<br>3.77 +9.73<br>6.07 +6.16<br>-2.51<br>5.93 +3.52<br>5.93 +3.52 | 1.50 +0.64<br>1.13 +0.68<br>1.084 +2.22<br>-0.51<br>0.84 +1.20<br>0.84 +1.20                                                                                               | $0.58_{-0.30}^{+0.33}$ $0.32_{-0.19}^{+0.20}$ $0.00_{-0.00}^{+0.63}$ $0.00_{-0.00}^{+0.63}$ | 2.97              | 3.26              | 49       |
| CL J0542.8-4100                        | 71                | 313               | 3.59                                                 | $5.65^{+1.21}_{-0.00}$                                                                                          | $5.93  \substack{+3.52 \\ -1.76}$                                                                                     |                                                                                                                                                                            | 0.25+0.24                                                                                   | 0.67              | 0.58              | 72       |
| CL J0848+4456 *                        | 71                | 224               | 2.53                                                 | $3.73^{+1.47}_{-0.85}$ $4.74^{+1.52}_{-0.98}$                                                                   | 5.93 <sup>+3.32</sup> <sub>-1.76</sub><br>4.96 <sup>+2.82</sup> <sub>-1.81</sub>                                      | $1.05^{+0.66}_{-0.35}$<br>$1.33^{+0.92}_{-0.57}$                                                                                                                           | $0.25_{-0.22}^{+0.22}$<br>$0.17_{-0.17}^{+0.98}$<br>$0.53_{-0.37}^{+0.52}$                  | 0.87              | 0.82              | 64       |
| CL J1113.1-2615                        | 70                | 308               | 5.51                                                 | $4.74^{+1.52}_{-0.98}$                                                                                          | $4.96^{+2.82}_{-1.81}$ $4.79^{+1.15}_{-1.26}$                                                                         | 1.01 +0.40                                                                                                                                                                 |                                                                                             | 1.02              | 1.01              | 32       |
| CL J1226.9+3332 *                      | 69<br><b>5</b> 0  | 318               | 1.37                                                 | $ \begin{array}{c} -0.98 \\ 13.02 + 2.69 \\ -2.00 \\ 5.94 + 1.73 \\ -1.86 \\ 4.94 + 0.61 \\ -0.55 \end{array} $ | 4.79 +1.13<br>-1.26<br>12.33 +2.78<br>-2.13<br>6.58 +8.08<br>-2.67                                                    |                                                                                                                                                                            | $0.18^{+0.23}_{-0.18}$<br>$0.10^{+0.29}_{-0.10}$                                            | 0.75              | 0.80              | 91       |
| CL J2302.8+0844                        | 70                | 362               | 5.05                                                 | 5.94 +1.73                                                                                                      | 6.58 +8.08                                                                                                            | $1.11^{+1.40}_{-0.57}$ $1.27^{+0.50}_{-0.30}$                                                                                                                              |                                                                                             | 0.94              | 1.01              | 56       |
| DLS J0514-4904                         | 70<br>70          | 359               | 2.52                                                 |                                                                                                                 | 6.58 -2.67<br>6.26 +2.33<br>-1.30<br>3.44 +0.37<br>-0.31                                                              | $1.27_{-0.30}^{+0.50}$<br>$1.01_{-0.10}^{+0.12}$                                                                                                                           | 0.35 -0.23                                                                                  | 0.86              | 1.03              | 63<br>80 |
| EXO 0422-086<br>HERCULES A             | 70<br>69          | 294<br>312        | $6.22 \\ 1.49^{+2.01}_{-1.49}$                       |                                                                                                                 |                                                                                                                       |                                                                                                                                                                            | $0.35_{-0.23}^{+0.08}$<br>$0.37_{-0.08}^{+0.15}$<br>$0.42_{-0.14}^{+0.15}$                  | 0.96<br>0.98      | 0.93<br>0.98      | 70       |
| MACS J0011.7-1523 *                    | 69                | 312               | $\frac{1.49}{2.08}$                                  | 5.28 -0.50<br>6.73 -0.55<br>6.73 -0.47<br>6.65 +1.07<br>-0.85<br>7.72 +0.88<br>7.72 -0.74                       | $4.50_{-0.65}^{+0.88}$ $7.27_{-0.74}^{+0.99}$                                                                         | 0.85 -0.15<br>1.08 +0.17<br>-0.13<br>0.95 +0.26<br>-0.20<br>1.22 +0.28<br>-0.21                                                                                            | $0.42^{+0.13}_{-0.14}$ $0.27^{+0.10}_{-0.09}$ $0.39^{+0.22}_{-0.19}$ $0.39^{+0.14}_{-0.13}$ | 0.98              | 0.98              | 92       |
| MACS J0025.4-1222 *                    | 70                | 335               | 2.72                                                 | $6.65^{+0.47}_{-0.45}$                                                                                          |                                                                                                                       | $0.95^{+0.26}_{-0.26}$                                                                                                                                                     | $0.39^{+0.22}$                                                                              | 0.66              | 0.75              | 86       |
| MACS J0035.4-2015                      | 70                | 372               | 1.55                                                 | $7.72^{-0.83}_{-0.74}$                                                                                          |                                                                                                                       | $1.22^{-0.20}_{-0.21}$                                                                                                                                                     | $0.39^{+0.14}_{-0.12}$                                                                      | 1.02              | 1.05              | 94       |
| MACS J0111.5+0855                      | 70                | 306               | 4.18                                                 |                                                                                                                 |                                                                                                                       |                                                                                                                                                                            | 0.00+0.43                                                                                   | 0.79              | 1.23              | 62       |
| MACS J0152.5-2852                      | 70                | 324               | 1.46                                                 | - 1.XZ                                                                                                          | $4.16^{+2.96}_{-1.44}$ $7.70^{+3.21}_{-1.89}$                                                                         |                                                                                                                                                                            | $0.00_{-0.00}^{+0.00}$ $0.28_{-0.21}^{+0.22}$ $0.50_{-0.50}^{+0.52}$                        | 0.84              | 0.58              | 90       |
| MACS J0159.0-3412                      | 70                | 404               | 1.54                                                 | 5.75 +1.03<br>-0.78<br>10.99 +5.87<br>-2.95<br>9.36 +0.77<br>-0.67<br>5.48 +0.62<br>-0.51                       | $7.70_{-1.89}^{+3.21}$ $12.74_{-4.72}^{+12.45}$ $10.37_{-1.04}^{+1.29}$                                               | $1.34 \begin{array}{r} +0.01 \\ -0.38 \\ 1.16 \begin{array}{r} +1.29 \\ -0.53 \\ 1.11 \begin{array}{r} +0.17 \\ -0.14 \\ 1.09 \begin{array}{r} +0.39 \\ -0.24 \end{array}$ | $0.50^{+0.52}_{-0.50}$                                                                      | 1.35              | 1.34              | 85       |
| MACS J0159.8-0849 *                    | 69                | 413               | 2.01                                                 | $9.36^{+0.77}_{-0.67}$                                                                                          | $10.37^{+1.29}_{-1.04}$                                                                                               | $1.11^{+0.17}_{-0.14}$                                                                                                                                                     | $0.50_{-0.50}^{+0.52}$ $0.29_{-0.09}^{+0.09}$ $0.32_{-0.15}^{+0.16}$                        | 1.05              | 1.01              | 94       |
| MACS J0242.5-2132                      | 70                | 352               | 2.71                                                 | $5.48^{+0.62}_{-0.51}$<br>$9.42^{+1.37}_{-1.05}$                                                                | 5.99 +2.04                                                                                                            | $1.09^{+0.39}_{-0.24}$                                                                                                                                                     | $0.32^{+0.16}_{-0.15}$                                                                      | 1.08              | 1.06              | 92       |
| MACS J0257.1-2325 *                    | 70                | 409               | 2.09                                                 | $9.42_{-1.05}^{+1.37}$ $8.09_{-0.88}^{+1.10}$ $10.64_{-1.14}^{+1.38}$                                           | $10./6_{-1.69}^{+2.03}$                                                                                               | $1.09_{-0.24}^{+0.27}$ $1.14_{-0.22}^{+0.27}$ $0.98_{-0.18}^{+0.24}$                                                                                                       | ~ 11±X.49                                                                                   | 1.03              | 1.13              | 90       |
| MACS J0257.6-2209<br>MACS J0308.9+2645 | 69<br>69          | 382<br>381        | 2.02<br>11.88                                        | 8.09 -0.88<br>10.64 +1.38                                                                                       | $10.76_{-1.69}^{+1.69}$ $7.90_{-1.20}^{+1.64}$ $11.12_{-1.68}^{+2.23}$                                                | $0.98^{+0.24}_{-0.18}$<br>$1.05^{+0.25}_{-0.19}$                                                                                                                           | $0.41_{-0.18}^{+0.15} \\ 0.37_{-0.15}^{+0.15}$                                              | 1.13<br>0.96      | 1.24<br>0.97      | 90<br>92 |
| 1v1AC3 JU3U0.7+2043                    | UF                | 301               | 11.00                                                | 10.04 -1.14                                                                                                     | -1.12 -1.68                                                                                                           | -0.19                                                                                                                                                                      | 0.57-0.15                                                                                   | 0.70              | 0.77              | 74       |

TABLE 6 — Continued

| Cluster                                  | R <sub>CORE</sub> | R <sub>5000</sub> | N <sub>HI</sub>               | T <sub>77</sub>                                                       | T <sub>27</sub>                                                                      | $T_{HBR}$                                                                                                                                                                                                                               | Z <sub>77</sub>                                                                             | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|------------------------------------------|-------------------|-------------------|-------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|-------------------|----------|
| (1)                                      | kpc<br>(2)        | kpc<br>(3)        | $10^{20} \text{ cm}^{-2}$ (4) | keV<br>(5)                                                            | keV<br>(6)                                                                           | (7)                                                                                                                                                                                                                                     | Z <sub>⊙</sub> (8)                                                                          | (9)               | (10)              | (11)     |
| MACS J0329.6-0211 *                      | 70                | 297               | 6.21                          | $6.44^{+0.50}_{-0.45}$                                                | $7.55^{+0.88}_{-0.73}$                                                               | $1.17^{+0.16}_{-0.14}$                                                                                                                                                                                                                  | $0.40^{+0.10}_{-0.09}$                                                                      | 1.12              | 1.16              | 91       |
| MACS J0404.6+1109                        | 70                | 348               | 14.96                         | $6.90^{-0.43}_{-1.29}$                                                | $7.55_{-0.73}^{+0.73}$<br>$7.40_{-1.93}^{+3.63}$                                     | 1 07 +0.61                                                                                                                                                                                                                              | 0.22+0.27                                                                                   | 0.96              | 0.92              | 80       |
| MACS J0417.5-1154                        | 70                | 304               | 4.00                          | $10.44^{+2.08}_{-1.56}$                                               | $14.46^{+5.92}_{-3.41}$                                                              | $1.39^{+0.63}_{-0.39}$                                                                                                                                                                                                                  | $0.22_{-0.22}$<br>$0.41_{-0.21}^{+0.23}$                                                    | 1.10              | 1.17              | 96       |
| MACS J0429.6-0253                        | 69                | 348               | 5.70                          | $5.96^{+0.72}_{-0.60}$                                                | $7.48^{+2.65}_{-1.64}$                                                               | $1.26^{+0.47}_{-0.30}$                                                                                                                                                                                                                  | $0.34^{+0.15}_{-0.14}$                                                                      | 1.02              | 0.78              | 89       |
| MACS J0451.9+0006                        | 70                | 325               | 7.65                          | $5.76^{+1.77}_{-1.11}$                                                | $6.68^{+4.50}_{-1.94}$                                                               | $1.16^{+0.86}_{-0.40}$                                                                                                                                                                                                                  | $0.47^{+0.46}_{-0.38}$                                                                      | 1.03              | 1.33              | 89       |
| MACS J0455.2+0657                        | 71                | 340               | 10.45                         | $6.99^{+2.27}_{-1.44}$                                                | $8.35^{+5.66}_{-2.49}$                                                               | 1.10 -0.40<br>1.19 +0.90<br>-0.43                                                                                                                                                                                                       | $0.48^{+0.35}_{-0.31}$                                                                      | 1.04              | 1.24              | 88       |
| MACS J0520.7-1328                        | 69                | 348               | 8.88                          | $6.77^{+1.01}_{-0.79}$                                                | $9.41^{+3.38}_{-1.91}$                                                               | $1.39^{+0.54}_{-0.33}$                                                                                                                                                                                                                  | $0.33^{+0.16}_{-0.16}$                                                                      | 1.22              | 1.33              | 91       |
| MACS J0547.0-3904                        | 69                | 257               | 4.08                          | $3.70^{+0.44}_{-0.37}$                                                | 5.82 <sup>+2.97</sup><br>-1.36<br>14 59 <sup>+11.16</sup>                            | $1.57^{+0.82}_{-0.40}$                                                                                                                                                                                                                  | $0.24^{+0.21}_{-0.17}$                                                                      | 1.14              | 1.21              | 83       |
| MACS J0553.4-3342                        | 70                | 490               | 2.88                          | 13.90 +5.89                                                           | -4.72                                                                                | 1.05 +0.92                                                                                                                                                                                                                              | $0.38^{+0.39}_{-0.38}$                                                                      | 1.22              | 1.10              | 91       |
| MACS J0717.5+3745 *                      | 70                | 398               | 6.75                          | 13.30 <sup>+1.44</sup> 9.58 <sup>+0.85</sup>                          | $12.82^{+1.70}_{-1.39}$                                                              | $0.96^{+0.17}_{-0.14}$<br>$1.09^{+0.18}_{-0.15}$                                                                                                                                                                                        | $0.32^{+0.12}_{-0.13}$                                                                      | 0.91              | 0.87              | 91       |
| MACS J0744.8+3927 *                      | 70                | 381               | 4.66                          | -0.73                                                                 | -0.96                                                                                |                                                                                                                                                                                                                                         | $0.30^{+0.11}_{-0.11}$                                                                      | 1.14              | 1.19              | 89       |
| MACS 10040+1709                          | 70<br>70          | 382               | 3.55                          | / · / · 1 -1 · 16                                                     | 7.00 -1.44                                                                           | 1.02 <sup>+0.34</sup> <sub>-0.24</sub><br>1.15 <sup>+0.66</sup>                                                                                                                                                                         | 0.22-0.20                                                                                   | 0.77              | 0.77              | 85       |
| MACS 11006 0 12200                       | 70<br>70          | 411<br>363        | 3.17<br>1.83                  | $8.94^{+1.57}_{-1.20}$ $7.03^{+2.66}_{-1.64}$                         | $10.29^{+3.60}_{-2.41}$<br>$6.53^{+4.61}_{-2.11}$                                    | $1.15^{+0.66}_{-0.31}$<br>$0.93^{+0.74}_{-0.27}$                                                                                                                                                                                        | $0.48^{+0.23}_{-0.22}$                                                                      | 0.74              | 0.58<br>1.53      | 93<br>81 |
| MACS J1006.9+3200<br>MACS J1105.7-1014   | 70<br>71          | 356               | 4.58                          | $7.03_{-1.64}$ $7.73_{+2.85}^{+2.85}$                                 | $6.61^{+3.02}_{-1.70}$                                                               | $0.93_{-0.37}$<br>$0.86_{-0.30}^{+0.50}$                                                                                                                                                                                                | $0.18_{-0.18}$<br>$0.20^{+0.32}$                                                            | 1.64<br>1.27      | 1.08              | 87       |
| MACS J1103.7-1014<br>MACS J1108.8+0906 * | 70                | 345               | 2.52                          | $6.80^{+1.73}_{-1.73}$                                                | $7.52^{+2.39}_{-1.52}$                                                               | $0.80_{-0.30}^{+0.40}$ $1.11_{-0.27}^{+0.40}$                                                                                                                                                                                           | 0.20_0.20                                                                                   | 1.08              | 1.03              | 86       |
| MACS J1105.0+6360 ×                      | 70                | 372               | 0.98                          | 9.58 <sup>+1.85</sup>                                                 | 0.80 +2.74                                                                           | 1.02 +0.35                                                                                                                                                                                                                              | $0.24_{-0.19}$<br>$0.37^{+0.22}$                                                            | 0.94              | 0.91              | 82       |
| MACS J1115.8+0129                        | 70                | 316               | 4.36                          | $6.82^{+1.15}_{-1.37}$                                                | $9.39^{+4.77}$                                                                       | 1.38 +0.74                                                                                                                                                                                                                              | $0.07^{+0.19}_{-0.27}$                                                                      | 0.94              | 0.85              | 77       |
| MACS J1131.8-1955                        | 69                | 407               | 4.49                          | $8.64^{-0.88}_{+1.32}$                                                | $9.45^{+2.52}_{+2.52}$                                                               | 1 09 +0:34                                                                                                                                                                                                                              | $0.49^{+0.19}_{-0.19}$                                                                      | 1.07              | 1.02              | 91       |
| MACS J1149.5+2223 *                      | 69                | 358               | 2.32                          | $7.72^{+0.94}_{-0.70}$                                                | $8.36^{ -1.08}_{ -1.51}$                                                             | 1.08 +0.24                                                                                                                                                                                                                              | $0.25^{+0.12}_{-0.13}$                                                                      | 0.87              | 0.94              | 75       |
| MACS J1206.2-0847                        | 70                | 367               | 4.15                          | $9.98^{+1.27}_{-1.01}$                                                | $11.93^{+2.56}_{-1.88}$                                                              | $1.20^{+0.30}_{-0.22}$                                                                                                                                                                                                                  | $0.32^{+0.13}_{-0.14}$                                                                      | 1.02              | 1.15              | 95       |
| MACS J1226.8+2153                        | 71                | 347               | 1.82                          | $4.86^{+1.58}_{-1.08}$                                                | 5.84 <sup>+3.45</sup><br>5.84 <sup>+3.45</sup>                                       | $1.20^{+0.81}_{-0.51}$                                                                                                                                                                                                                  | $0.00^{+0.28}_{-0.00}$                                                                      | 1.32              | 1.36              | 78       |
| MACS J1311.0-0310 *                      | 69                | 301               | 2.18                          | $5.73^{+0.46}_{-0.40}$                                                | $5.92^{+0.70}_{-0.60}$                                                               | $1.03^{+0.15}_{-0.13}$                                                                                                                                                                                                                  | $0.44^{+0.12}_{-0.12}$                                                                      | 0.93              | 1.00              | 83       |
| MACS J1319+7003                          | 70                | 351               | 1.53                          | $8.08^{+2.14}_{-1.56}$                                                | $10.12^{+5.50}_{-2.78}$                                                              | 1.25 <sup>+0.76</sup> <sub>-0.42</sub><br>1.03 <sup>+0.80</sup>                                                                                                                                                                         | $0.10^{+0.25}_{-0.10}$                                                                      | 1.00              | 1.07              | 82       |
| MACS J1427.2+4407                        | 71                | 346               | 1.41                          | $8.61^{+4.04}_{-2.23}$                                                | $8.83^{+5.55}_{-2.81}$                                                               | -0.42                                                                                                                                                                                                                                   | $0.14^{+0.36}_{-0.14}$                                                                      | 0.68              | 0.58              | 90       |
| MACS J1427.6-2521                        | 71                | 302               | 6.11                          | $4.44^{+0.86}_{-0.64}$                                                | $6.17^{+3.18}_{-1.71}$                                                               | -0.43                                                                                                                                                                                                                                   | $0.21^{+0.26}_{-0.21}$                                                                      | 1.07              | 1.39              | 79       |
| MACS J1621.3+3810 *                      | 69                | 358               | 1.07                          | 7.49 <sup>+0.73</sup><br>-0.63<br>8.10 <sup>+1.88</sup>               | $7.75^{+1.12}_{-0.89}$                                                               | 1.03 +0.18 -0.15                                                                                                                                                                                                                        | $0.35^{+0.13}_{-0.12}$                                                                      | 0.98              | 0.92              | 82       |
| MACS J1731.6+2252                        | 71                | 368               | 6.48                          | 0.19 _1 31                                                            | -2.46                                                                                | -0.36                                                                                                                                                                                                                                   | 0.49-0.25                                                                                   | 1.16              | 0.98              | 87       |
| MACS J1931.8-2634                        | 70                | 378               | 9.13                          | $6.85_{-0.61}^{+0.73}$<br>$5.02_{-0.61}^{+1.95}$                      | $6.86^{+1.58}_{-1.15}$                                                               | 1.00 +0.25                                                                                                                                                                                                                              | $0.23^{+0.12}_{-0.11}$                                                                      | 1.02              | 1.07              | 94<br>89 |
| MACS J2046.0-3430<br>MACS J2049.9-3217   | 71<br>69          | 274<br>370        | 4.98<br>5.99                  | $7.88^{+1.22}_{-0.98}$                                                | $6.23^{+2.57}_{-2.30}$<br>$11.48^{+4.02}_{-2.42}$                                    | $1.24^{+0.70}_{-0.53}$<br>$1.46^{+0.56}_{-0.26}$                                                                                                                                                                                        | $0.23^{+0.55}_{-0.23}$<br>$0.37^{+0.18}_{-0.18}$                                            | 1.10<br>0.94      | 1.14<br>0.90      | 89<br>89 |
| MACS J2049.9-3217<br>MACS J2211.7-0349   | 69                | 468               | 5.86                          | 11.13 <sup>+1.45</sup>                                                | 13.77 +3.49                                                                          | 1.24 +0.35                                                                                                                                                                                                                              | $0.37_{-0.16}$ $0.18^{+0.14}$                                                               | 1.33              | 1.34              | 93       |
| MACS J2214.9-1359 *                      | 70                | 374               | 3.32                          | 9.87 +1.54                                                            | 9.97 + 2.17                                                                          | 1.01 +0.25                                                                                                                                                                                                                              | 0.31+0.17                                                                                   | 1.03              | 1.01              | 92       |
| MACS J2228+2036                          | 70                | 385               | 4.52                          | 7.79 +1:17                                                            | $10.04^{+3.96}_{+3.26}$                                                              | 1.29 +0.54                                                                                                                                                                                                                              | $0.41^{+0.17}_{-0.18}$                                                                      | 0.84              | 0.96              | 92       |
| MACS J2229.7-2755                        | 69                | 327               | 1.34                          | $5.25^{+0.54}_{-0.46}$                                                | 6.07 +1.76                                                                           | 1 16 +0.36                                                                                                                                                                                                                              | $0.59^{+0.20}_{-0.10}$                                                                      | 0.98              | 1.02              | 91       |
| MACS J2243.3-0935                        | 71                | 406               | 4.31                          | $5.15^{+0.65}_{-0.54}$                                                | $8.81^{+4.31}_{-2.67}$                                                               | 1.71 +0.86                                                                                                                                                                                                                              | $0.05^{+0.17}_{-0.05}$                                                                      | 1.38              | 1.27              | 66       |
| MACS J2245.0+2637                        | 69                | 320               | 5.50                          | $6.05^{+0.66}_{-0.56}$                                                | $7.05  {}^{+1.31}_{-1.08}$                                                           | $1.17^{+0.25}_{-0.21}$                                                                                                                                                                                                                  | $0.64^{+0.21}_{-0.20}$                                                                      | 0.78              | 0.95              | 92       |
| MACS J2311+0338                          | 70                | 257               | 5.23                          | $7.66^{+1.63}_{-1.20}$                                                | $12.19^{+6.04}_{-3.14}$                                                              | $1.59^{+0.86}_{-0.48}$                                                                                                                                                                                                                  | $0.44^{+0.24}_{-0.23}$                                                                      | 1.22              | 1.10              | 92       |
| MKW3S                                    | 70                | 239               | 3.05                          | $3.93^{+0.06}_{-0.06}$                                                | $4.58^{+0.19}_{-0.17}$                                                               | $1.17^{+0.05}_{-0.05}$                                                                                                                                                                                                                  | $0.35^{+0.02}_{-0.03}$                                                                      | 1.28              | 0.93              | 88       |
| MS 0016.9+1609                           | 69                | 389               | 4.06                          | $9.11^{+0.79}_{-0.68}$                                                | $11.73^{+2.98}_{-1.84}$                                                              | $1.29^{+0.35}_{-0.22}$                                                                                                                                                                                                                  | $0.32^{+0.10}_{-0.02}$                                                                      | 0.91              | 0.92              | 88       |
| MS 0440.5+0204                           | 71                | 497               | 9.10                          | 5.99 +0.91                                                            | $4.45^{+1.61}_{-1.37}$                                                               | 0.74 -0.25                                                                                                                                                                                                                              | $0.66^{+0.32}_{-0.29}$                                                                      | 0.89              | 0.74              | 28       |
| MS 0451.6-0305                           | 70                | 378               | 5.68                          | 9.25 +0.89<br>-0.77<br>5.54 +0.24<br>-0.23                            | $11.55^{+2.88}_{-1.91}$ $6.47^{+0.75}_{-0.65}$ $4.64^{+0.94}_{-0.71}$                | $1.25^{+0.33}_{-0.23}$                                                                                                                                                                                                                  | $0.42^{+0.12}_{-0.11}$ $0.35^{+0.07}_{-0.07}$ $0.49^{+0.13}_{-0.13}$                        | 0.95              | 0.94              | 71       |
| MS 0735.6+7421                           | 69                | 348               | 3.40                          | 5.54 +0.24<br>-0.23<br>4.63 +0.30<br>-0.28                            | 6.47 +0.73                                                                           | $1.25_{-0.23}^{+0.33}$<br>$1.17_{-0.13}^{+0.14}$<br>$1.00_{-0.16}^{+0.21}$                                                                                                                                                              | 0.35-0.07                                                                                   | 1.09              | 1.08              | 74       |
| MS 0839.8+2938                           | 70<br>70          | 294               | 3.92                          |                                                                       | 4.64 -0.71                                                                           |                                                                                                                                                                                                                                         | 0.49 0.13                                                                                   | 0.97              | 0.91              | 69       |
| MS 0906.5+1110<br>MS 1006.0+1202         | 70<br>70          | 435<br>393        | 3.60<br>3.63                  | 5.56 +0.34<br>-0.31<br>5.79 +0.54<br>-0.46                            | $4.64_{-0.71}^{+0.71}$ $6.94_{-0.92}^{+1.23}$ $7.76_{-1.56}^{+2.25}$                 | $1.25^{+0.23}_{-0.18}$ $1.34^{+0.41}_{-0.29}$                                                                                                                                                                                           | $0.49_{-0.13}^{+0.13}$ $0.34_{-0.10}^{+0.12}$ $0.28_{-0.12}^{+0.12}$                        | 1.20<br>1.22      | 0.97<br>1.24      | 82<br>82 |
| MS 1008.1-1224                           | 70                | 389               | 6.71                          |                                                                       | $7.76^{+2.25}_{-1.56}$ $9.88^{+2.54}_{-1.70}$ $14.17^{+12.06}_{-4.93}$               | 1 77 ±0.47                                                                                                                                                                                                                              | 0.0410.11                                                                                   | 1.22              | 1.08              | 83       |
| MS 1054.5-0321                           | 70                | 395               | 3.69                          |                                                                       | 14 17 +12.06                                                                         | 1.72 <sub>-0.33</sub><br>1.45 <sup>+1.26</sup> <sub>-0.54</sub><br>1.13 <sup>+0.07</sup> <sub>-0.06</sub>                                                                                                                               | - X-17                                                                                      | 1.05              | 0.85              | 51       |
| MS 1455.0+2232                           | 69                | 309               | 3.35                          |                                                                       | 5 A7 +0.29                                                                           | 1.13 -0.54                                                                                                                                                                                                                              |                                                                                             | 1.34              | 1.17              | 94       |
| MS 1621.5+2640                           | 70                | 379               | 3.59                          |                                                                       | = 40 ±2 04                                                                           | 0.00 ±0.38                                                                                                                                                                                                                              | $0.27\pm0.23$                                                                               | 1.00              | 0.98              | 74       |
| MS 2053.7-0449 *                         | 70                | 397               | 5.16                          | $5.72^{+0.90}_{-0.72}$<br>$4.68^{+1.04}_{-0.75}$                      | -1-47                                                                                | $0.89_{-0.25}^{+0.38}$ $1.15_{-0.31}^{+0.48}$ $1.26_{-0.26}^{+0.48}$                                                                                                                                                                    | $0.37_{-0.21}^{+0.26}$<br>$0.26_{-0.24}^{+0.26}$<br>$0.35_{-0.12}^{+0.13}$                  | 0.99              | 0.94              | 65       |
| MS 2137.3-2353                           | 70                | 354               | 3.40                          |                                                                       | 7 5 6 + 2 / 19                                                                       | $1.26^{+0.48}_{-0.26}$                                                                                                                                                                                                                  | $0.35^{+0.13}_{-0.12}$                                                                      | 1.08              | 1.28              | 69       |
| MS J1157.3+5531                          | 69                | 272               | 1.22                          | $3.28^{+0.36}_{-0.32}$                                                |                                                                                      |                                                                                                                                                                                                                                         | $0.76^{+0.30}_{-0.10}$                                                                      | 1.22              | 1.15              | 37       |
| NGC 6338                                 | 71                | 265               | 2.60                          |                                                                       | 6.57 + 0.32<br>2.68 + 0.24<br>-0.20<br>9.69 + 0.84<br>-0.73                          | $2.00^{+1.97}_{-1.03}$<br>$1.22^{+0.12}_{-0.10}$                                                                                                                                                                                        | $0.22^{+0.03}_{-0.04} \ 0.42^{+0.06}_{-0.07}$                                               | 1.04              | 1.01              | 51       |
| PKS 0745-191                             | 69                | 460               | 40.80                         | 2.20 +0.07<br>-0.06<br>8.30 +0.39<br>-0.36                            | $9.69^{+0.84}_{-0.73}$                                                               | $1.22^{+0.12}_{-0.10}$ $1.17^{+0.12}_{-0.10}$                                                                                                                                                                                           | $0.42^{+0.06}_{-0.07}$                                                                      | 1.01              | 0.97              | 93       |
| RBS 0797                                 | 69                | 350               | 2.22                          |                                                                       | 9.69 <sup>+0.84</sup> <sub>-0.73</sub><br>8.62 <sup>+2.60</sup> <sub>-1.69</sub>     | $1.17^{+0.12}_{-0.10}$ $1.13^{+0.37}_{-0.25}$                                                                                                                                                                                           | $0.42^{+0.06}_{-0.07}$<br>$0.25^{+0.13}_{-0.13}$                                            | 1.06              | 0.83              | 93       |
| RDCS 1252-29                             | 71                | 196               | 6.06                          |                                                                       | 8.62 12.69<br>4.94 +9.84<br>-2.82                                                    | $1.07^{+2.20}_{-0.69}$                                                                                                                                                                                                                  | 1 1 1 1 1 1 1 1 1                                                                           | 1.36              | 0.28              | 60       |
| RX J0232.2-4420                          | 69                | 402               | 2.53                          | 7.92 +0.83                                                            | 4.94 <sup>+9.84</sup> -2.82 10.54 <sup>+2.53</sup> -1.74 2.75 <sup>+1.15</sup> -0.67 | $1.33^{+0.35}_{-0.25}$                                                                                                                                                                                                                  | $0.38^{+0.13}_{-0.13}$<br>$0.63^{+0.39}_{-0.28}$                                            | 1.05              | 0.98              | 91       |
| RX J0340-4542                            | 70<br>70          | 291               | 1.63                          | $3.10_{-0.38}^{+0.43}$ $4.67_{-0.47}^{+0.58}$                         | $2.75_{-0.67}^{+1.15}$ $5.37_{-1.24}^{+2.03}$                                        | $1.13 \begin{array}{c} +0.37 \\ -0.27 \\ -0.27 \\ 1.07 \begin{array}{c} +2.20 \\ -0.69 \\ 1.33 \begin{array}{c} +0.35 \\ -0.25 \\ 0.89 \begin{array}{c} +0.39 \\ -0.24 \\ 1.15 \begin{array}{c} +0.46 \\ -0.29 \end{array} \end{array}$ |                                                                                             | 1.22              | 1.30              | 48       |
| RX J0439+0520                            | 70<br>70          | 336<br>376        | 10.02                         |                                                                       |                                                                                      |                                                                                                                                                                                                                                         |                                                                                             | 0.91              | 0.81              | 85<br>87 |
| RX J0439.0+0715 *<br>RX J0528.9-3927     | 70<br>70          | 376<br>454        | 11.16<br>2.36                 | 7 96 +1.01                                                            |                                                                                      |                                                                                                                                                                                                                                         | 0.34_0.09                                                                                   | 1.32<br>0.96      | 1.14<br>1.04      | 87<br>88 |
| RX J0528.9-3927<br>RX J0647.7+7015 *     | 69                | 361               | 5.18                          | $5.65_{-0.34}^{+0.36}$ $7.96_{-0.81}^{+1.01}$ $11.46_{-1.58}^{+2.05}$ | $9.84^{+2.92}_{-1.81}$ $11.18^{+2.46}_{-1.77}$ $3.24^{+1.26}_{-0.66}$                | $0.98^{+0.28}_{-0.20}$<br>$0.83^{+0.34}_{-0.19}$                                                                                                                                                                                        | $0.34_{-0.09}^{+0.09}$ $0.26_{-0.15}^{+0.14}$ $0.24_{-0.20}^{+0.18}$ $0.16_{-0.14}^{+0.17}$ | 1.00              | 0.92              | 88       |
| RX J0819.6+6336                          | 71                | 322               | 4.11                          | $11.46^{+2.05}_{-1.58}$ $3.92^{+0.46}_{-0.40}$                        | $3.24^{+1.26}$                                                                       | 0.83 +0.34                                                                                                                                                                                                                              | $0.16^{+0.17}$                                                                              | 1.00              | 1.00              | 50       |
| KA JU819.0+0556                          | /1                | 522               | 4.11                          | 3.92 -0.40                                                            | 3.24 -0.66                                                                           | 0.83 -0.19                                                                                                                                                                                                                              | $0.16_{-0.14}^{+0.17}$                                                                      | 1.00              | 1.00              | 50       |

TABLE 6 — Continued

| Cluster           | R <sub>CORE</sub> | R <sub>5000</sub> | $N_{HI}$ $10^{20} \text{ cm}^{-2}$ | T <sub>77</sub>                                                 | T <sub>27</sub>                                                | $T_{HBR}$                                                                        | Z <sub>77</sub>                                  | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|-------------------|-------------------|-------------------|------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-------------------|-------------------|----------|
| (1)               | kpc (2)           | kpc (3)           | (4)                                | keV<br>(5)                                                      | keV<br>(6)                                                     | (7)                                                                              | Z <sub>⊙</sub> (8)                               | (9)               | (10)              | (11)     |
| RX J0910+5422 *   | 71                | 172               | 2.07                               | 4.08 +3.11 -1.34                                                | $5.00^{+5.09}_{-2.03}$<br>$17.32^{+1.73}_{-1.40}$              | 1.23 <sup>+1.56</sup> <sub>-0.64</sub><br>1.15 <sup>+0.14</sup> <sub>-0.11</sub> | $0.43^{+1.89}_{-0.43}$                           | 0.64              | 0.56              | 42       |
| RX J1347.5-1145 * | 70                | 429               | 4.89                               |                                                                 | $17.32^{+1.73}_{-1.40}$                                        | $1.15^{+0.14}_{-0.11}$                                                           |                                                  | 1.12              | 1.11              | 96       |
| RX J1350+6007     | 71                | 236               | 1.77                               | $15.12^{+1.03}_{-0.86}$ $4.22^{+3.13}_{-1.53}$                  | 2 20 +10.32                                                    | $1.15_{-0.11}^{+0.14}$ $0.78_{-0.54}^{+2.56}$                                    | $0.33^{+0.07}_{-0.08}$<br>$0.63^{+5.75}_{-0.63}$ | 1.00              | 0.14              | 66       |
| RX J1423.8+2404 * | 71                | 314               | 2.65                               | $6.00 \pm 0.39$                                                 | $7.19^{+0.59}_{-0.52}$                                         |                                                                                  |                                                  | 0.94              | 0.90              | 90       |
| RX J1504.1-0248   | 70                | 445               | 6.27                               | $8.02^{+0.37}_{-0.25}$                                          | $8.52^{+0.58}_{-0.50}$                                         | $1.04^{+0.10}_{-0.09}$<br>$1.06^{+0.08}_{-0.07}$                                 |                                                  | 1.25              | 1.17              | 95       |
| RX J1525+0958     | 70                | 296               | 2.96                               | $2.02 \pm 0.84$                                                 | $9.10^{+7.62}_{-3.25}$                                         |                                                                                  | $0.69^{+0.47}$                                   | 1.96              | 0.08              | 83       |
| RX J1532.9+3021 * | 70                | 322               | 2.21                               | 5.83 <sub>-0.53</sub><br>6.06 <sup>+0.43</sup> <sub>-0.39</sub> | $7.20^{+0.94}_{-0.77}$                                         | $2.38^{+2.06}_{-0.91}$ $1.19^{+0.18}_{-0.15}$                                    | $0.46^{+0.10}$                                   | 0.92              | 1.02              | 83       |
| RX J1716.9+6708   | 71                | 342               | 3.71                               | $6.51^{+1.79}_{-1.24}$                                          | $6.21  {}^{+4.03}_{-2.26}$                                     | $0.95^{+0.67}_{-0.39}$                                                           | $0.56^{+0.39}_{-0.32}$                           | 0.84              | 0.92              | 63       |
| RX J1720.1+2638   | 69                | 359               | 4.02                               | $6.33^{+0.29}_{-0.25}$                                          | 7 71 +0.84                                                     | 1 22 +0.14                                                                       | $0.37^{+0.07}_{-0.07}$                           | 1.04              | 0.96              | 94       |
| RX J1720.2+3536 * | 71                | 320               | 3.35                               | $6.33_{-0.25}^{+0.29}$ $7.34_{-0.50}^{+0.59}$                   | $7.71_{-0.65}^{+0.86}$<br>$7.40_{-0.71}^{+0.86}$               | 1.01 +0.14                                                                       | $0.43^{+0.11}_{-0.11}$                           | 1.03              | 0.94              | 91       |
| RX J2011.3-5725   | 71                | 295               | 4.76                               | 4 10 +0.47                                                      | $3.93^{+0.98}_{-0.70}$                                         | $0.96^{+0.12}_{-0.19}$                                                           | $0.41^{+0.24}_{-0.20}$                           | 0.95              | 1.08              | 84       |
| RX J2129.6+0005   | 70                | 489               | 4.30                               | $6.01^{+0.39}_{-0.46}$                                          | $3.93_{-0.70}^{+0.70}$<br>$7.19_{-1.21}^{+1.68}$               | $0.96_{-0.19}^{+0.20}$ $1.20_{-0.22}^{+0.30}$                                    | 0.51+0.16                                        | 1.29              | 1.34              | 87       |
| S0463 *           | 70                | 307               | 1.06                               | $3.26^{+0.33}_{-0.38}$                                          | $3.92^{+1.16}_{-0.94}$                                         | 1 20 ±0.38                                                                       | $0.23^{+0.18}$                                   | 1.08              | 1.08              | 54       |
| TRIANG AUSTR      | 71                | 539               | 13.27                              | 3.26 +0.33<br>8.50 +0.29<br>-0.25                               | $3.92^{+1.16}_{-0.94}$ $12.08^{+1.13}_{-1.13}$                 | $1.20_{-0.32}^{+0.32}$<br>$1.42_{-0.14}^{+0.14}$                                 | ~ ~ + 10.04                                      | 0.01              | 1.93              | 83       |
| V 1121.0+2327     | 70                | 315               | 1.30                               | $4.17^{+0.78}_{-0.60}$                                          | $4.70^{+3.00}_{-1.17}$                                         | $1.13^{+0.75}_{-0.32}$                                                           | $0.46^{+0.36}_{-0.28}$                           | 1.09              | 0.87              | 74       |
| ZWCL 1215         | 70                | 277               | 1.76                               | $6.64^{+0.46}_{-0.38}$                                          | $8.69_{-0.80}^{+0.74}$                                         | $1.31^{+0.14}_{-0.14}$                                                           | $0.37^{+0.11}_{-0.11}$                           | 1.10              | 1.03              | 91       |
| ZWCL 1358+6245    | 70                | 391               | 1.94                               | $9.70^{+1.16}_{-0.94}$                                          | $9.04^{+2.09}_{-1.46}$                                         | $0.93^{+0.24}_{-0.18}$                                                           | $0.57^{+0.19}_{-0.19}$                           | 1.03              | 0.90              | 65       |
| ZWCL 1953         | 69                | 516               | 3.10                               | $8.28^{+1.22}_{-0.96}$                                          | $\begin{array}{c} 9.04 \\ -1.46 \\ 11.83 \\ -2.55 \end{array}$ | $0.93_{-0.18}^{-0.18}$<br>$1.43_{-0.35}^{+0.53}$                                 | $0.21^{+0.14}_{-0.15}$                           | 0.87              | 0.77              | 82       |
| ZWCL 3146         | 70                | 512               | 2.70                               | $7.46^{+0.32}_{-0.30}$                                          | 8.99 <sup>+0.94</sup><br>8.97 <sup>+0.94</sup>                 | $1.43_{-0.35}$ $1.21_{-0.12}^{+0.14}$                                            | $0.21_{-0.15}$<br>$0.31_{-0.05}^{+0.06}$         | 1.06              | 0.97              | 91       |
| ZWCL 5247         | 70                | 449               | 1.70                               | $4.89^{+0.86}_{-0.65}$                                          | $4.39^{+2.30}_{-1.21}$                                         | $1.21_{-0.12}^{+0.14}$<br>$0.90_{-0.27}^{+0.50}$                                 | $0.31_{-0.05}$<br>$0.37_{-0.25}^{+0.30}$         | 1.09              | 0.93              | 78       |
| ZWCL 7160         | 69                | 451               | 3.10                               | $4.89_{-0.65}^{+0.65}$<br>$4.63_{-0.36}^{+0.42}$                | $5.41^{+1.06}_{-0.80}$                                         | 4 4 <del>-</del> 40 25                                                           | $0.36 \pm 0.14$                                  | 0.94              | 0.95              | 87       |
| ZWICKY 2701       | 69                | 315               | 0.83                               | = no +0 32                                                      | $4.96^{+0.87}_{-0.69}$                                         | 0.00 ±0.18                                                                       | $0.30_{-0.14}$<br>$0.45_{-0.11}^{+0.13}$         | 0.95              | 0.76              | 70       |
| ZwCL 1332.8+5043  | 70                | 453               | 1.10                               | $3.08_{-0.30}^{+0.30}$<br>$3.82_{-1.42}^{+3.34}$                | $2.86^{+3.96}_{-1.21}$                                         |                                                                                  | - X'42                                           | 0.71              | 0.95              | 60       |
| ZwCl 0848.5+3341  | 71                | 365               | 1.12                               | 6.54 <sup>+2.04</sup> <sub>-1.27</sub>                          | $6.41^{+3.79}_{-1.88}$                                         | $0.75^{+1.23}_{-0.42}$ $0.98^{+0.66}_{-0.34}$                                    | $0.16^{+4.73}_{-0.16} \ 0.59^{+0.59}_{-0.48}$    | 0.89              | 1.01              | 47       |

NOTE. — Note: "77" refers to 0.7-7.0 keV band and "27" refers to 2.0-7.0 keV band. (1) Cluster name, (2) size of excluded core region in kpc, (3)  $R_{5000}$  in kpc, (4) absorbing Galactic neutral hydrogen column density, (5,6) best-fit MEKAL temperatures, (7)  $T_{0.7-7.0}/T_{2.0-7.0}$  also called  $T_{HBR}$ , (8) best-fit 77 MEKAL abundance, (9,10) respective reduced  $\chi^2$  statistics, and (11) percent of emission attributable to source. A star (\*) indicates a cluster which has multiple observations. Each observation has an independent spectrum extracted along with an associated WARF, WRMF, normalized background spectrum, and soft residual. Each independent spectrum is then fit simultaneously with the same spectral model to produce the final fit.