Datta_Saurav_Lab3_Draft

Saurav Datta 3/24/2018

```
#install.packages("sqldf")
# Sys.setenu(JAVA_HOME='/Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/Contents/Home')
# install.packages("rJava")
# install.packages("RH2")
#install.packages("gridExtra")
library(sqldf)
## Loading required package: gsubfn
## Warning: package 'gsubfn' was built under R version 3.4.4
## Loading required package: proto
## Loading required package: RSQLite
# library(RH2)
library(ggplot2)
library(gridExtra)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.1. https://CRAN.R-project.org/package=stargazer
library(car)
getwd()
## [1] "/Users/sdatta/Documents/1. Personal/MIDS/W203/Course material/Lab3"
setwd("/Users/sdatta/Documents/1. Personal/MIDS/W203/Course material/Lab3")
#db = dbConnect(SQLite(), dbname="lab3.sqllite")
#sqldf("attach 'lab3.sqllite' as new")
#dbRemoveTable(db, "crime0")
crime0=read.csv("crime_v2.csv",
                   header = TRUE
crime1=crime0
sqldf("select * from crime1 limit 5")
##
                                       prbconv prbpris avgsen
     county year
                             prbarr
                                                                     polpc
                    crmrte
## 1
        1 87 0.0356036 0.298270 0.527595997 0.436170 6.71 0.00182786
         3 87 0.0152532 0.132029 1.481480002 0.450000 6.35 0.00074588
## 2
## 3
         5 87 0.0129603 0.444444 0.267856985 0.600000 6.76 0.00123431
## 4
         7 87 0.0267532 0.364760 0.525424004 0.435484 7.14 0.00152994
## 5
        9 87 0.0106232 0.518219 0.476563007 0.442623 8.22 0.00086018
```

```
taxpc west central urban pctmin80
       density
                                                        wcon
                                         0 20.21870 281.4259 408.7245
## 1 2.4226327 30.99368
                           0
                                  1
## 2 1.0463320 26.89208
                                   1
                                         0 7.91632 255.1020 376.2542
## 3 0.4127659 34.81605
                                   0
                                         0 3.16053 226.9470 372.2084
                           1
## 4 0.4915572 42.94759
                           0
                                   1
                                         0 47.91610 375.2345 397.6901
## 5 0.5469484 28.05474
                                         0 1.79619 292.3077 377.3126
                                   0
                           1
         wtrd
                 wfir
                                  wmfg
                                         wfed
                                                wsta
                                                       wloc
                           wser
## 1 221.2701 453.1722 274.1775 334.54 477.58 292.09 311.91 0.08016878
## 2 196.0101 258.5650 192.3077 300.38 409.83 362.96 301.47 0.03022670
## 3 229.3209 305.9441 209.6972 237.65 358.98 331.53 281.37 0.46511629
## 4 191.1720 281.0651 256.7214 281.80 412.15 328.27 299.03 0.27362204
## 5 206.8215 289.3125 215.1933 290.89 377.35 367.23 342.82 0.06008584
       pctymle
## 1 0.07787097
## 2 0.08260694
## 3 0.07211538
## 4 0.07353726
## 5 0.07069755
```

Converting prbconv from factor to numeric

crime1\$prbconv_cast=as.numeric(as.matrix(crime1\$prbconv))

theme_update(plot.title = element_text(hjust = 0.5))

We see that column proconv is factor datatype

```
## Warning: NAs introduced by coercion
crime_tmp=sqldf("SELECT * FROM crime1 WHERE NOT (prbconv_cast >1 OR prbarr >1 OR prbpris >1 OR prbconv_
crime1=crime tmp
sqldf("SELECT count(*) from crime1")
```

```
##
     count(*)
## 1
            81
```

Defining common function

```
f_check_null <- function(in_field_name ){</pre>
  sql=sprintf("SELECT COUNT(1) as COUNT_NULL_OR_NA FROM crime1 WHERE (%s IS \"NA\" or %s IS NULL)", in_
  sqldf(sql)
}
f_plot_one <- function(in_db_field_name,in_main_title ){</pre>
  title_log=paste("log of",in_main_title, sep = " ")
  par(mfrow=c(2,2))
 hist(in_db_field_name, main=in_main_title)
 hist(log(in_db_field_name), main=title_log)
  boxplot(in_db_field_name, main=in_main_title)
}
```

f_plot_two <- function(in_field_name1,in_xlabel,in_field_name2,in_y_label, in_main_title){

```
p1<-ggplot(crime1, aes_string(in_field_name1,in_field_name2)) +</pre>
         geom_point() +
         geom_smooth(na.rm = FALSE, method = loess)
 p1 + ggtitle(in_main_title) +xlab(in_xlabel) + ylab(in_y_label)
f_plot_three <- function(in_field_x,in_xlabel,in_field_y,in_y_label){</pre>
corr_val=round(cor(in_field_y, in_field_x),4)
main_title=paste(in_xlabel, 'v/s', in_y_label, sep = ' ')
plot(in_field_x, in_field_y,
     main = main title,
      sub=paste("Corr. coefficient:",corr_val),
     xlab=in_xlabel,
      ylab=in_y_label)
m = lm( in_field_y ~ in_field_x)
abline(m)
}
Analyzing regions
crime_tmp = sqldf("SELECT *, CASE WHEN west=1 THEN \'WEST\'
                                WHEN central=1 THEN \'CENTRAL\'
                                WHEN urban=1 THEN \'URBAN\'
                                ELSE \'UNKNOWN\'
                          END regionofcrime
                FROM crime1"
)
crime1=crime_tmp
sqldf("SELECT regionofcrime as regionofcrime, count(8) as countofcrimes from crime1 GROUP BY regionofcr
##
    regionofcrime countofcrimes
## 1
           CENTRAL
## 2
           UNKNOWN
                              29
## 3
             URBAN
                               2
## 4
              WEST
                              19
Analyzing crmrte
f_check_null("crmrte")
   COUNT_NULL_OR_NA
## 1
f_plot_one(crime1$crmrte,"crimes committed per person")
```

crime1\$logcrmrte=log(crime1\$crmrte)

crimes committed per person

log of crimes committed per person

crimes committed per person

Analyzing the 6 records with missing crmrte values

```
sqldf("SELECT * FROM crime1 WHERE (crmrte IS \"NA\" or crmrte IS NULL) ")
    [1] county
                       year
                                      crmrte
                                                    prbarr
                                                                   prbconv
   [6] prbpris
                                                    density
                                                                   taxpc
                      avgsen
                                     polpc
## [11] west
                       central
                                     urban
                                                    pctmin80
                                                                   wcon
## [16] wtuc
                                     wfir
                       wtrd
                                                    wser
                                                                   wmfg
## [21] wfed
                                     wloc
                                                    mix
                                                                   pctymle
## [26] prbconv_cast regionofcrime logcrmrte
## <0 rows> (or 0-length row.names)
We see that all relevant columns of these 6 records are NA. So we can safely delete them
crime_tmp=sqldf( c("DELETE FROM crime1 WHERE crmrte IS NULL",
         "SELECT * FROM crime1"
)
## Warning in rsqlite_fetch(res@ptr, n = n): Don't need to call dbFetch() for
## statements, only for queries
crime1=crime_tmp
sqldf("SELECT count(*) FROM crime1 ")
     count(*)
##
## 1
           81
```

Reanalyzing regions after deleting NAs

```
sqldf("SELECT regionofcrime as regionofcrime, count(8) as countofcrimes from crime1 GROUP BY regionofcr
)

## regionofcrime countofcrimes
## 1 CENTRAL 31
## 2 UNKNOWN 29
```

```
## 3 URBAN 2
## 4 WEST 19
```

Analyzing prbarr

f_check_null("prbarr")

f_plot_one(crime1\$prbarr,"probability of arrest")

probability of arrest

log of probability of arrest

probability of arrest

Analyzing prbconv_cast

f_check_null("prbconv_cast")

f_plot_one(crime1\$prbconv_cast,"probability of conviction")

probability of conviction

log of probability of conviction

probability of conviction

Analyzing avgsen

```
f_check_null("avgsen")
```

```
## COUNT_NULL_OR_NA
## 1 0
```

f_plot_one(crime1\$avgsen,"avg. sentence, days")
crime1\$logavgsen = log(crime1\$avgsen)

avg. sentence, days

log of avg. sentence, days

avg. sentence, days

Analyzing polpc

police per capita

0.001 0.002 0.003 0.004 in_db_field_name

log of police per capita

police per capita

Analyzing density

We see that log1p of density is closer to normal distribution than either log or exp (tried it offline).

people per sq. mile

log of people per sq. mile

people per sq. mile

Histogram of log1p(crime1\$density)

crime1\$log1pdensity=log1p(crime1\$density)

Analyzing taxpc

tax revenue per capita

log of tax revenue per capita

tax revenue per capita

Outlier of taxpc=120

Analyzing region

We see that there are 58 records for which we have the region, whereas there are 97 records in the dataset. So there are crimes with unknown region.

```
sqldf("select \'1. WEST\' as REGION, count(8) as COUNT from crime1 where west=1
    UNION
    select \'2. CENTRAL\' as REGION, count(8) as COUNT from crime1 where central=1
    UNION
    select \'3. URBAN\' as REGION, count(8) as COUNT from crime1 where urban=1
    UNION
    select \'4. TOTAL\' as REGION, count(8) as COUNT from crime1 where (west=1 or central=1 or urban select \'4. TOTAL\' as REGION, count(8) as COUNT from crime1 where (west=1 or central=1)
```

```
## REGION COUNT
## 1 1. WEST 19
## 2 2. CENTRAL 32
## 3 3. URBAN 8
## 4 4. TOTAL 52
```

Analyzing Crimes committed per person by region

```
#
f_plot_two("regionofcrime","Region of crime","logcrmrte","Crimes committed per person","Crimes per pers
```

Crimes per person by Region of crime

Analyzing Crimes committed per person by region

f_plot_two("county","County identifier","logcrmrte","Crimes committed per person","Crimes per person by

Crimes per person by County identifier


```
sqldf("SELECT county,crmrte FROM crime1 WHERE crmrte>=0.09 "]
```

```
## county crmrte
## 1 119 0.0989659
```

Analyzing percent minority

```
f_check_null("pctmin80")
## COUNT_NULL_OR_NA
```

f_plot_one(crime1\$pctmin80,"perc. minority, 1980")

perc. minority, 1980

log of perc. minority, 1980

perc. minority, 1980

Analyzing percent minority by region

f_plot_two("regionofcrime", "Region of crime", "pctmin80", "Percent minority", "Percent minority by Region

Percent minority by Region of crime

Analyzing pctymle

f_check_null("pctymle")

f_plot_one(crime1\$pctymle,"Percent young male")

Percent young male

log of Percent young male

Percent young male

Analyzing pctymle by region

f_plot_two("regionofcrime","Region of crime","pctymle","Percent young male","Percent young male by Regi

Percent young male by Region of crime

We see that the UKNOWN region has the highest percent of young male

f_plot_two("county","County identifier","pctymle","Percent young male","Percent young male by County id

Percent young male by County identifier

sqldf("SELECT county,pctymle from crime1 WHERE pctymle>=0.20")

county pctymle
1 133 0.2487116

scatterplotMatrix(crime1[,c("logcrmrte","prbarr", "prbconv_cast", "logavgsen")], diagonal = "histogram"


```
sub=paste("Corr. coefficient:",corr_val),
         xlab=in_xlabel,
#
         ylab=in_y_label)
\# m = lm(in\_field\_x \sim in\_field\_y)
# abline(m)
par(mfrow = c(4, 2))
f_plot_three(crime1$prbarr, "Probability of arrest",crime1$logcrmrte,"Crimes committed per person" )
f_plot_three(crime1$pctymle, "% of young males",crime1$logcrmrte,"Crimes committed per person" )
f plot three(crime1$prbconv cast, "Prob of conviction", crime1$logcrmrte, "Crimes committed per person")
f_plot_three(crime1$logavgsen, "Log of avg sentence",crime1$logcrmrte,"Crimes committed per person" )
bility of arrest v/s Crimes committed pyoung males v/s Crimes committed pe
Crimes committed per
                                        Crimes committed per
                    0.4 0.5 0.6
                                                           0.15
                                                                  0.20
                 0.3
                                                     0.10
                                                                         0.25
              Probability of arrest
                                                       % of young males
            Corr. coefficient: -0.5278
                                                     Corr. coefficient: 0.2846
conviction v/s Crimes committed pr gyg sentence v/s Crimes committed μ
Crimes committed per
                                        Crimes committed per
                       0.6
                            0.8
                                                       2.0
                                                           2.2
            0.2
                 0.4
                                                               2.4
                                                                   2.6
               Prob of conviction
                                                      Log of avg sentence
            Corr. coefficient: -0.265
                                                     Corr. coefficient: 0.1438
par(mfrow = c(3, 2))
f_plot_three(crime1$prbpris, "Prob of imprisonment",crime1$logcrmrte,"Crimes committed per person" )
f_plot_three(crime1$logavgsen, "Average sentence",crime1$logcrmrte, "Crimes committed per person")
```

f_plot_three(crime1\$logpolpc, "Police per capita",crime1\$logcrmrte,"Crimes committed per person")


```
par(mfrow = c(3, 2))

f_plot_three(crime1$pctmin80, "Perc. minority",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$log1pdensity, "People per sq. mile",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wcon, "Weekly wage, construction",crime1$logcrmrte,"Crimes committed per person" )
```

c. minority v/s Crimes committed per e per sq. mile v/s Crimes committed p

age, construction v/s Crimes committe

Weekly wage, construction Corr. coefficient: 0.3436

```
par(mfrow = c(3, 2))

f_plot_three(crime1$wtuc, "Wkly wge, trns, util, commun",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wfir, "Wkly wge, fin, ins, real est",crime1$logcrmrte,"Crimes committed per person"

f_plot_three(crime1$wser, "Wkly wge, service industry",crime1$logcrmrte,"Crimes committed per person")
```

trns, util, commun v/s Crimes committ, fin, ins, real est v/s Crimes committe

, service industry v/s Crimes committe

Wkly wge, service industry Corr. coefficient: 0.336

```
par(mfrow = c(3, 2))

f_plot_three(crime1$wmfg, "Wkly wge, manufacturing",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wfed, "Wkly wge, fed employees",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wsta, "Wkly wge, state employees",crime1$logcrmrte,"Crimes committed per person" )

f_plot_three(crime1$wloc, "Wkly wge, local gov emps",crime1$logcrmrte,"Crimes committed per person" )
```

e, manufacturing v/s Crimes committee, fed employees v/s Crimes committe

, state employees v/s Crimes committe, local gov emps v/s Crimes committe

Strong positive correlation:

crmrte v/s polpc crmrte v/s density crmrte v/s w
con crmrte v/s wser crmrte v/s wmfg crmrte v/s wfed crmrte v/s wloc

Weak positive correlation:

crmrte v/s pctymle crmrte v/s percent of minority crmrte v/s wkly wge, fin, ins, real est crmrte v/s wtuc

Strong negative correlation:

crmrte v/s prbarr

Weak negative correlation:

crmrte v/s prbconv

Model 1: Crime related variables

```
\label{logcrmrte} $\log(\text{crime rate}) = \log(\text{beta0} + \text{beta1}polpc + beta2\text{density})$$ $\log(\text{crime rate}) = lm(\log(\text{crime rate}) + \log(\text{crime rate})) + log(\text{crime rate}) + log(\text{
```

```
##
## Call:
## lm(formula = logcrmrte ~ logpolpc + log1pdensity + prbarr, data = crime1)
##
## Coefficients:
## (Intercept) logpolpc log1pdensity prbarr
## 0.2349 0.5674 0.4545 -1.3148

plot(logcrmrte.lm1, which =1)
```

Residuals vs Fitted

Fitted values
Im(logcrmrte ~ logpolpc + log1pdensity + prbarr)

The regression lines is close to 0 residual. This indicates there is a linear relationship among logcrmrte with logpolpc + log1pdensity.

```
plot(logcrmrte.lm1, which =2)
```


The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution

of the points have Cook's distance greater than 1. However, Points 5, 23 and 72 have higher leverage than all other points. Let us observe the points:

```
crime1[5,]
                             prbarr
                                        prbconv prbpris avgsen
     county year
                    crmrte
                                                             13 0.00288203
## 5
             87 0.0146067 0.524664 0.068376102
                                                     0.5
         11
##
                  taxpc west central urban pctmin80
       density
                                                         wcon
                                          0
                                              1.5407 250.4006 401.3378
## 5 0.6113361 35.22974
                           1
                                   0
##
         wtrd
                 wfir
                          wser wmfg
                                        wfed
                                               wsta
                                                      wloc
                                                                       pctymle
## 5 187.8255 258.565 237.1507 258.6 391.48 325.71 275.22 0.3195266 0.0989192
    prbconv_cast regionofcrime logcrmrte logavgsen logpolpc log1pdensity
                           WEST -4.226275 2.564949 -5.84926
        0.0683761
## 5
                                                                 0.4770637
crime1[23,]
                                          prbconv prbpris avgsen
##
      county year
                     crmrte
                              prbarr
                                                                        polpc
## 23
               87 0.0790163 0.224628 0.207830995 0.304348 13.57 0.00400962
                   taxpc west central urban pctmin80
        density
                                                          wcon
## 23 0.5115089 119.7615
                                    0
                                           0 6.49622 309.5238 445.2762
                            0
          wtrd
                   wfir
                                   wmfg
                                           wfed
                                                  wsta
                                                         wloc
                            wser
## 23 189.7436 284.5933 221.3903 319.21 338.91 361.68 326.08 0.08437271
         pctymle prbconv_cast regionofcrime logcrmrte logavgsen logpolpc
## 23 0.07613807
                     0.207831
                                    UNKNOWN -2.538101 2.607861 -5.519059
##
      log1pdensity
         0.4131085
## 23
crime1[72,]
                                          prbconv prbpris avgsen
      county year
                     crmrte
                              prbarr
                                                                       polpc
               87 0.0139937 0.530435 0.327868998
## 72
         173
                                                     0.15
                                                            6.64 0.00316379
##
          density
                     taxpc west central urban pctmin80
                                                           wcon
## 72 2.03422e-05 37.72702
                              1
                                       0
                                             0 25.3914 231.696 213.6752
                  wfir
                                         wfed wsta
          wt.rd
                           wser
                                  wmfg
                                                        wloc
## 72 175.1604 267.094 204.3792 193.01 334.44 414.68 304.32 0.4197531
         pctymle prbconv_cast regionofcrime logcrmrte logavgsen logpolpc
##
## 72 0.07462687
                     0.327869
                                       WEST -4.269148 1.893112 -5.755985
##
      log1pdensity
## 72 2.034199e-05
Checking for multicollinearity
## Reference: https://www.r-bloggers.com/collinearity-and-stepwise-vif-selection/
## https://datascienceplus.com/multicollinearity-in-r/
vif(logcrmrte.lm1)
##
       logpolpc log1pdensity
                                    prbarr
##
       1.249780
                    1.518756
                                  1.256574
Since vif output for both th variable sis less than 10, there does not exist a multicollinearity between the
variables.
```

```
Model 2: Wage variable wcon
```

```
log(crime rate) = log(beta0 + beta1*wcon + error)
logcrmrte.lm2 = lm( logcrmrte ~ wcon, data=crime1)
logcrmrte.lm2
```

```
##
## Call:
## lm(formula = logcrmrte ~ wcon, data = crime1)
##
## Coefficients:
## (Intercept) wcon
## -4.510458 0.003617

par(mfrow =c(2,2))
plot(logcrmrte.lm2,which=c(1,2,4))
par(mfrow =c(1,1))
```


Theoretical Quantiles

The regression lines is close to 0 residual. This indicates there is a linear relationship among logcrmrte with wcon. The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution None of the points have Cook's distance greater than 1.

Model 2: Wage variable wmfg

```
log(crime rate) = log(beta0 + beta1*wmfg + error)
logcrmrte.lm3 = lm( logcrmrte ~ wmfg, data=crime1)
logcrmrte.lm3

##
## Call:
## lm(formula = logcrmrte ~ wmfg, data = crime1)
##
## Coefficients:
```

```
## (Intercept) wmfg
## -4.198123  0.002172

par(mfrow =c(2,2))
plot(logcrmrte.lm3,which=c(1,2,4))
par(mfrow =c(1,1))
```


Theoretical Quantiles

The regression lines is varying from residual 0. This indicates there is no linear relationship between logcrmrte and wmfg. The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution None of the points have Cook's distance greater than 1.

Model 3: All variables with strong positive or negative correlation

```
logcrmrte.lm3 = lm( logcrmrte ~ logpolpc + log1pdensity +prbarr + wcon + wser + wfed + wloc, data=crim
logcrmrte.lm3

##
## Call:
## lm(formula = logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon +
## wser + wfed + wloc, data = crime1)
```

wcon

0.0003637

```
## (Intercept) logpolpc log1pdensity prbarr

## 0.1163312 0.5837347 0.4703757 -1.4184433

## wser wfed wloc
```

-0.0036034 0.0013687 0.0014368

##

Coefficients:

plot(logcrmrte.lm3, which =1)

Residuals vs Fitted

Fitted values
Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

The regression lines is close to 0 residual. This indicates there is a linear relationship between logcrmrte and (logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc)

plot(logcrmrte.lm3, which =2)

Theoretical Quantiles
Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

The Normal QQ plot is roughly on a straight line. This indicates that our data has been sourced from a normal distribution

```
plot(logcrmrte.lm3, which =4)
```


Im(logcrmrte ~ logpolpc + log1pdensity + prbarr + wcon + wser + wfed + wloc ...

None of the points have Cook's distance greater than 1. However, Points 5, 23 and 72 have higher leverage than all other points.

```
vif(logcrmrte.lm3)
##
                                      prbarr
       logpolpc log1pdensity
                                                      wcon
                                                                    wser
       1.264598
                                   1.277392
##
                     2.420224
                                                  1.769968
                                                                2.189740
##
           wfed
                          wloc
       2.108466
                     1.989238
##
```

There is no multicollinearity since none of the vif values are more than 10.

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models AIC(logcrmrte.lm1, logcrmrte.lm2, logcrmrte.lm3)

```
## df AIC
## logcrmrte.lm1 5 49.47324
## logcrmrte.lm2 3 114.18145
## logcrmrte.lm3 9 45.44501
```

Based on the AIC output logcrmrte.lm1 or logcrmrte.lm3 is preferred.

```
stargazer(logcrmrte.lm1, logcrmrte.lm2,logcrmrte.lm3, type = "latex",
    report = "vc", # Don't report errors, since we haven't covered them
    title = "Linear Models Predicting Crime rate per persone",
    keep.stat = c("rsq", "n"),
    omit.table.layout = "n") # Omit more output related to errors
```

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

% Date and time: Wed, Mar 28, 2018 - 18:39:36

Table 1: Linear Models Predicting Crime rate per persone

	Dependent variable:		
	(1)	(2)	(3)
logpolpc	0.567		0.584
log1pdensity	0.455		0.470
prbarr	-1.315		-1.418
wcon		0.004	0.0004
wser			-0.004
wfed			0.001
wloc			0.001
Constant	0.235	-4.510	0.116
Observations R ²	81 0.622	81 0.118	81 0.674