

General Multilayer Ceramic Capacitors

MLCC is an electronic part that temporarily stores an electrical charge and the most prevalent type of capacitor today. New technologies have enabled the MLCC manufacturers to follow the trend dictated by smaller and smaller electronic devices such as Cellular telephones, Computers, DSC, DVC

General Features

- Miniature Size
- Wide Capacitance and Voltage Range
- Tape & Reel for Surface Mount Assembly
- Low ESR

Applications

- General Electronic Circuit

Part Numbering

CL	<u>10</u>	<u>B</u>	<u> 104</u>	K	<u>B</u>	<u>8</u>	N	N	N	<u>C</u>
Û	2	6	4	6	6	Ū	8	9	1	(

- Samsung Multilayer Ceramic Capacitor
- 2 Size(mm)
- 3 Capacitance Temperature Characteristic
- 4 Nominal Capacitance
- **5** Capacitance Tolerance
- 6 Rated Voltage

- Thickness Option
- Product & Plating Method
- Samsung Control Code
- Reserved For Future Use
- Packaging Type

1 Samsung Multilayer Ceramic Capacitor

2 SIZE(mm)

Code	EIA CODE	Size(mm)
03	0201	0.6 × 0.3
05	0402	1.0 × 0.5
10	0603	1.6 × 0.8
21	0805	2.0 × 1.25
31	1206	3.2 × 1.6
32	1210	3.2 × 2.5
43	1812	4.5 × 3.2
55	2220	5.7 × 5.0

3 CAPACITANCE TEMPERATURE CHARACTERISTIC

Code		istics	Temperature Range		
С		COG	C△	0 ± 30 (ppm/ °C)	
Р		P2H	P△	-150±60	
R		R2H	R△	-220±60	
S	Class	S2H	S△	-330±60	-55 ~ +125℃
Т		T2H	T△	-470±60	
U		U2J	U△	-750±60	
L		S2L	S△	+350 ~ -1000	
Α		X5R	X5R	±15%	-55 ~ +85℃
В	Class II	X7R	X7R	±15%	-55 ~ +125℃
X	Class II	X6S	X6S	±22%	-55 ~ +105℃
F		Y5V	Y5V	+22 ~ -82%	-30 ~ +85℃

*** Temperature Characteristic**

Temperature Characteristics	Below 2.0pF	2.2 ~ 3.9pF	Above 4.0pF	Above 10pF
СФ	COG	COG	C0G	C0G
Р∆	-	P2J	P2H	P2H
R∆	-	R2J	R2H	R2H
SΔ	-	S2J	S2H	S2H
TΔ	-	T2J	T2H	T2H
UΔ	-	U2J	U2J	U2J

 $J:\pm 120$ PPM/°C, $H:\pm 60$ PPM/°C, $G:\pm 30$ PPM/°C

4 NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance.

The third digit identifies the multiplier. 'R' identifies a decimal point.

Example

Code	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 μF
104	100,000pF, 100nF, 0.1 μ F

CAPACITANCE TOLERANCE

Code	Tolerance	Nominal Capacitance
Α	±0.05pF	
В	±0.1pF	
С	±0.25pF	Less than 10pF (Including 10pF)
D	± 0.5pF	(moldaling Topi)
F	±1pF	
F	±1%	
G	±2%	
J	±5%	Mara than 1075
K	±10%	More than 10pF
М	±20%	
Z	+80, -20%	

RATED VOLTAGE

Code	Rated Voltage	Code	Rated Voltage
R	4.0V	D	200 V
Q	6.3V	E	250V
Р	10V	G	500 V
O	16V	Н	630 V
Α	25V	I	1,000V
L	35V	J	2,000V
В	50V	К	3,000V
С	100V		

THICKNESS OPTION

Size	Code	Thickness(T)	Size	Code	Thickness(T)
0201(0603)	3	0.30±0.03		F	1.25±0.20
0402(1005)	5	0.50±0.05		н	1.6±0.20
0603(1608)	8	0.80±0.10	1812(4532)	ı	2.0±0.20
	Α	0.65±0.10		J	2.5±0.20
	С	0.85±0.10		L	3.2±0.30
0805(2012)	F	1.25±0.10		F	1.25±0.20
	Q	1.25±0.15		н	1.6±0.20
	Y	1.25±0.20	2220(5750)	ı	2.0±0.20
	С	0.85±0.15		J	2.5±0.20
1206(3216)	F	1.25±0.15		L	3.2±0.30
	Н	1.6±0.20			
	F	1.25±0.20			
1210(3225)	Н	1.6±0.20			
	I	2.0±0.20			
	J	2.5±0.20			
	V	2.5±0.30			

PRODUCT & PLATING METHOD

Code	Electrode	Termination	Plating Type
Α	Pd	Ag	Sn_100%
N	Ni	Cu	Sn_100%
G	Cu	Cu	Sn_100%

SAMSUNG CONTROL CODE

Code	Description of the code	Code	Description of the code
Α	Array (2-element)	N	Normal
В	Array (4-element)	Р	Automotive
С	High - Q	L	LICC

TRESERVED FOR FUTURE USE

Code	Description of the code
N	Reserved for future use

1 PACKAGING TYPE

Code	Packaging Type	Code	Packaging Type
В	Bulk	F	Embossing 13" (10,000EA)
Р	Bulk Case	L	Paper 13" (15,000EA)
С	Paper 7"	0	Paper 10"
D	Paper 13" (10,000EA)	S	Embossing 10"
Е	Embossing 7"		

APPEARANCE AND DIMENSION

CODE	EIA CODE		DIMENSIC	ON (mm)	
CODE		L	w	T (MAX)	BW
03	0201	0.6 ± 0.03	0.3 ± 0.03	0.33	0.15 ± 0.05
05	0402 1.0 ± 0.05		0.5 ± 0.05	0.55	0.2 +0.15/-0.1
10	0603 1.6 ±		0.8 ± 0.1	0.9	0.3 ± 0.2
21	0805	2.0 ± 0.1	1.25 ± 0.1	1.35	0.5 +0.2/-0.3
24	4000	3.2 ± 0.15	1.6 ± 0.15	1.40	0.5 +0.2/-0.3
31	1206	3.2 ± 0.2	1.6 ± 0.2	1.8	0.5 +0.3/-0.3
20	1210	3.2 ± 0.3	2.5 ± 0.2	2.7	0.6 + 0.2
32	1210	3.2 ± 0.4	2.5 ± 0.3	2.8	0.6 ± 0.3
43	3 1812 4.5 ± 0.4		3.2 ± 0.3	3.5	0.8 ± 0.3
55	2220 5.7 ± 0.4		5.0 ± 0.4	3.5	1.0 ± 0.3

NO	ITE	М	PER	FORMANCE	TEST	CONDITION			
1	Appea	rance	No Abnormal Exterior	Appearance	Through Microscope(×10)			
2	Insula Resist		10,000MΩ or 500 MΩ·μF N Rated Voltage is below 10,000MΩ or 100 MΩ·μF N	v 16V ;	Apply the Rated Voltage	For 60 ~ 120	Sec.		
3	Withsta	Ü	No Dielectric Breakdov Mechanical Breakdown		Class I : 300% of the Rated Voltage for 1-5 sec. Class II :250% of the Rated Voltage for 1-5 sec. is applied with less than $50\text{m}\Lambda$ current				
					Capacitance	Frequency	Voltage		
		Class	Within the specifie	d tolerance	≤ 1,000 pF	1Mb ±1 0%	0.5 5 1/		
	Capacita	1			>1,000 pF	1kHz ±10%			
4	nce				Capacitance	Frequency	Voltage		
		Class II	Within the specifi	ed tolerance	≤ 10 μF	1kHz ±1 0%	1.0±0.2Vrms		
		111			>10 µF	120 Hz ±20 %	0.5±0.1 Vrms		
			Capacitance ≥ 30pF :	Q ≥ 1,000	Capacitance	Frequency	Voltage		
5	Q	Class	< 30pF	: Q ≥ 400 +20C	≤ 1,000 pF	1Mb ±10%			
		I	(C	: Capacitance)	>1,000 pF	1kHz ±1 0%	0.5 ~ 5 Vrms		
			1. Characteristic : A()	(5R), B(X7R), X(X6S)	Capacitance	Frequency	Voltage		
			Rated Voltage	Spec	≤ 10 <i>μ</i> F	1 kHz ±1 0%	1.0±0.2Vrms		
			≥ 25V	0.025 max	>10 µF	120 Hz ± 20%	0.5±0.1 V rms		
			16V	0.035 max					
			10V	0.05 max	-				
			6.3V	0.05 max/ 0.10max*1	*1. 0201 C≥0.022uF, 0				
			2. Characteristic : F(/5V)	0805 C≥4.7uF, 1206 1812 C≥47uF, 2220 All Low Profile Capa	C≥100uF, acitors (P.16).) C≥22uF,		
6	Tan δ	Class	Rated Voltage	Spec	*2 0603 C≥0.47uF, 08 *3. 0402 C≥0.033uF, 06				
		П	50V	0.05 max, 0.07max*2	All 0805, 1206 size		_		
			35V	0.07 max	*4 1210 C>6.8uF	, 1210 C → 0.8u	r		
			25V	0.05 max/ 0.07 max* ³ / 0.09max* ⁴	*5 0402 C≥0.22uF *6 All 1812 size				
			16V	0.09 max/ 0.125max*5	J. 711 1012 3120				
			10V	0.125 max/ 0.16max*6					
			6.3V	0.16max					

NO	ITE	M		PERFOR	MANCE		TEST CONDITION			
NO	IIE	M		PERFOR	MANCE		TEST CONDITION			
						· '	shall be measured by the steps			
			Characte	riotico	Temp. Coefficient	shown in the	following table.			
			Characte	HISTICS	(PPW°C)	Step	Temp.(℃)			
			C00	3	0 ± 30	1	25 ± 2			
		Class	PH	1	-150 ± 60	2	Min. operating temp. ± 2			
		I	RH	ı	-220 ± 60	3	25 ± 2			
		1	SH	I	-330 ± 60	4	Max. operating temp \pm 2			
			ТН		-470 ± 60					
			UL		-750 ± 120	5 (4) Class I	25 ± 2			
			SL		+350 ~ -1000	(1) Class I	Coefficient shall be calculated from			
	Temperature						Coefficient shall be calculated from			
7	Characteristics					the formula a				
•	of Capacitance					Temp, Coefficie	$nt = \frac{C2 - C1}{C1 \times \triangle T} \times 10^6 \text{ [ppm/°C]}$			
							ance at step 3			
			Charact	a rieties	Capacitance Change	C2: Capacita				
			Characte	ensucs	with No Bias	△T: 60°C(=8	35 ℃- 25 ℃)			
		Class	A(X5 B(X7		± 15%	(2) CLASS II				
			X(Xe	SS)	± 22%	Capacitance (Change shall be calculated from the			
			F(Y5	5V)	+22% ~ -82%	formula as be	elow.			
			ļ			△C = <u>C2 -</u>	<u>C1</u> × 100(%)			
						C.	1			
						C1; Capacita	ance at step 3			
						C2: Capacita	ance at step 2 or 4			
						Apply 500g.f	* Pressure for 10 \pm 1 sec.			
							* 200g.f for 0201 case size.			
	Adhesive	Strenath	No Indication Of Peeling Shall Occur On The Terminal Electrode.							
8	of Term	· ·								
							500g.f			
		I								
		Apperance	No mecha	anical dam	nage shall occur.	Bending limit				
		,,,			1	Test speed;				
			Charac	teristics	Capacitance Change	1	board at the limit point in 5 sec.,			
						Then measur	e capacitance.			
					Within \pm 5% or \pm 0.					
			Clas	ss I	5 pF whichever is		20			
	B F				larger		R=230			
9	Bending Strength			A/VEDV		50				
	Strength	Capacitance		A(X5R)/	NACCE - 40 500	_ /*!	<u> </u>			
				B(X7R)/	Within ± 12.5%		_			
				X(X6S)		│	Pos din a limit			
			Class II			45±1	Bending limit 45±1			
				FOVENO	\\/\dishin + 200/					
				F(Y5V)	Within ± 30%					
					1					

NO	II.	EM		PERF	ORMANCE		TEST CON	NDITION			
			More Than	75% of th	ne terminal surface is to	Solder	Sn-3Ag-0.5	Cu 63Sn-37Pb	$\overline{1}$		
			be soldere	d newly, So	metal part does not	Solder			┪		
			come out	or dissolve		Temp.	245±5℃	245±5 ℃ 235±5 ℃			
10	Solde	erability		/ / _		Flux	R	MA Type			
			├				e 3±0.3 sec	5±0.5 sec.			
						Pre-heatin	Pre-heating at 80~120 °C for 10~30 sec.				
		Apperance	No mecha	anical dam	age shall occur.	Solder Te	mperature: 270	±5℃			
			Charac	teristics	Capacitance Change		: 10±1 sec.				
					Within ±2.5% or			fully immersed an	ıd		
			Clas	ss I	±0.25 pF whichever is	preheated as below :					
		Capacitance			larger	STEP	TEMP.(℃)	TIME(SEC.)			
				A(X5R)/ B(X7R)	Within ±7.5%	1	80~100	60			
			Class II	X(X6S)	Within ±15%	2	150~180	60			
	Resistance to			F	Within ±20%	Loove the	consoiter in or	nhiant condition for	_		
11	Soldering heat		Capacitan	nce ≥ 30pF	: Q≥ 1000	1	ime* before me	nbient condition for asurement			
		Q	Capacital	- <30 pF : Q≥ 400+20×C			* 24 ± 2 hours (Class I)				
		(Class I)			(C: Capacitance)	24 ± 2	hours (Class ${\mathbb I}$)			
		Tan δ	\\(\frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \ri	::::	initial color						
		(Class Ⅱ)	vvitnin tne	e specified	initial value						
		Insulation	Within the	e specified	initial value						
		Resistance									
		Withstanding Voltage	Within the specified initial value								
		vollage									
		Appearance	No mecha	anical dam	age shall occur.						
			Charact	teristics	Capacitance Change	-					
					Within ±2.5% or		citor shall be su	•			
			Clas	ss I	±0.25 pF whichever is	Harmonic Motion having a total amplitude of					
		Capacitance			larger		anging frequenc to 10Hz In 1 m	cy from 10Hz to 55)HZ		
		Capacitario		A(X5R)/	Within ±5%	and back	10 10112 111 1 11				
12	Vibration		Class	B(X7R)	NACCE AND A	Repeat th	s for 2hours ea	ach in 3 mutually			
12	Test		П	X(X6S)	Within ±10% Within ±20%	perpendicu	ılar directions				
		0		F(Y5V)	Within ±20%						
		(Class I)	Within the	e specified	initial value						
		Tan δ									
		(Class Ⅱ)	Within the	e specified	initial value						
		Insulation									
		Resistance	Within the	e specified	initial value						
		Tan δ (Class Ⅱ)	Within the	e specified	initial value						

NO	ITE	M		PERFO	RMANCE	TEST CONDITION
		Appearance	No mechanic	cal damage sha	Il occur.	Temperature : 40±2 ℃
			Chara	cteristics	Capacitance Change	Relative humidity: 90~95 %RH
			Cla	ss I	Within ±5.0% or ±0.5pF whichever is larger	Duration time : 500 +12/-0 hr.
		Capacitance	Class	A(X5R)/ B(X7R)/ X(X6S)	Within ±12.5%	Leave the capacitor in ambient condition for specified time* before measurement.
				F(Y5V)	Within ±30%	CLASSI : 24±2 Hr CLASSII : 24±2 Hr.
13	Humidity (Steady	Q CLASS I	10≤ Capacit		350 Q≥ 275 + 2.5×C 200 + 10×C (C: Capacitance)	OLASSII . 24±2 M.
	State)		1. Characteri	stic : A(X5R), B(X7R)	2. Characteristic : F(Y5V) 0.075max (25V and over)	
		Tan δ CLASS Ⅱ	0.075mov		0.1max (16V, C<1.0μF) 0.125max(16V, C≥ 1.0μF) 0.15max (10V) 0.195max (6.3V)	
		Insulation Resistance	1,000 MΩ or	50MΩ·μF whichev	/er is smaller.	
		Appearance	No mechanic	al damage sha	Il occur.	Applied Voltage : rated voltage
				cteristics ss I	Capacitance Change Within ±5.0% or ±0.5pF whichever is larger	Temperature: 40±2 °C Humidity:::90~95%RH Duration Time: 500 +12/-0 Hr.
		Capacitance		A(X5R)/ B(X7R)/ X(X6S)	Within ±12.5% Within ±12.5% Within ±30%	Charge/Discharge Current : 50mA max. Perform the initial measurement according to Note1.
			Class II		Within ±30%	-
				F(Y5V)	Within ±30%	Perform the final measurement according to Note2.
14	Moisture Resistance	Q (Class I)	l .	≥30pF : Q≥ 2 <30pF : Q≥ 10	200 200 + 10/3xC (C: Capacitance)	
		Tan ∂ (Class Ⅱ)	0.05max (16) 0.075max (10) 0.075max (6.3V excep 0.125max* (refer to Tal	ot Table 1)	2. Characteristic : F(Y5V) 0.075max (25V and over) 0.1max (16V, C<1.0 0.125max(16V, C≥ 1.0 0.15max (10V) 0.195max (6.3V)	
		Insulation Resistance	500 MΩ or 25	$5 ext{M}\Omega \cdot \mu ext{F}$ whicheve	r is smaller.	

NO	ITE	M		PERI	FORMANCE		TEST CONDIT	ION		
		Appearance	No mechanio	cal damage	shall occur.	1	oltage: 200%* of the	-		
			Charact	eristics	Capacitance Change		ime: 1000 +48/-0 H			
			QI	т	Within ±3% or ±0.3pF,	Charge/Dis	Charge/Discharge Current : 50mA max.			
			Class	5 1	Whichever is larger	- * refer to table(3): 150%/100% of the rated				
		Capacitance		A(X5R)/ B(X7R)	Within ±12.5%	voltage				
			Class II	X(X6S)	Within ±25%	Perform th	e initial measuremen	t according to		
				E/VE//\	Within ±30%	Note1 for	Class II			
			F(Y5V)		Within ±30%					
		Q	Capacitance	≥30pF : C	Q ≥ 350	Perform th	e final measurement	according to		
		(Class I)	'	-	$F : Q \ge 275 + 2.5 \times C$	Note2.				
	High	,			≥ 200 +10xC (C: Capacitance)					
15	Temperature		Characteri							
	Resistance		0.05may	B(X7R)	0.075max					
			0.05max							
			(16V and o	,	(25V and over)					
			0.075max (10 0.075max	UV)	0.1max(16V, C<1.0µF)					
		Tan ∂		t Toble 1)	0.125max(16V, C≥1.0μF)					
		(Class Ⅱ)	(6.3V exception 0.125max*	ot rable i)	0.15max (10V)					
				blo 1)	0.195max (6.3V)					
			(refer to Ta	ble 1)						
			X(X6S) 0.11	max (6.3V a	and below)					
		Insulation Resistance	1,000 MΩ or	50MΩ•μF whic	chever is smaller.					
		Appearance	No mechanio	cal damage	shall occur.	Capacitor	shall be subjecte	d to 5 cycles.		
			Charact	eristics	Capacitance Change	Condition	for 1 cycle :			
			Class	s I	Within ±2.5% or ±0.25 pF	Step	Temp.(℃)	Time(min.)		
				I	Whichever is larger	1	Min. operating	30		
		Capacitance	Olasa	A(X5R)/ B(X7R)/	Within ±7.5%	2	temp.+0/-3 25	2~3		
	Temperature		Class Ⅱ	X(X6S)	Within ±15%	1	Max. operating			
16	Cycle			F(Y5V)	Within ±20%	3	temp.+3/-0	30		
		Q	Within the or		al value	4	25	2~3		
		(Class I)	Within the s	pediled IIIIII	ai valu u	Leave the	e capacitor in amb	ient condition		
		Tan δ	\\ \(\frac{1}{14} \rightarrow \text{iii.} \text{iii.}	n a aiflia el destri		for specif	ied time* before n	neasurement		
		(Class Ⅱ)	Within the sp	pecified initia	ai vaiue	* 24 ± 2	hours (Class I)			
		Insulation				24 ± 2	hours (Class ${\mathbb I}$)			
		Resistance	Within the sp	pecified initia	al value					

		Reco	ommended Sold	ering Method		
		Size	Temperature		Cond	lition
		inch (mm)	Characteristic	Capacitance	Flow	Reflow
		0201 (0603)	-	-	-	0
		0402 (1005)				
			Class I	-	0	0
		0603 (1608)	Class II	$C < 1\mu F$	0	0
			Class II	$C \geq 1\mu$ F	-	0
	Recommended	0805 (2012)	Class I	-	0	0
18	Soldering Method		Class II	C < 4.7μF	0	0
	By Size & Capacitance		Olass II	$C \geq 4.7 \mu F$	-	0
	2, 0.20 a capacitance		Array	-	-	0
			Class I	-	0	0
		1206 (3216)	Class II	C < 10μF	0	0
		1200 (3210)	Class II	C ≥ 10 <i>µ</i> F	-	0
			Array	-	-	0
		1210 (3225)				0
		1808 (4520)		_	_	0
		1812 (4532)	-	-	-	0
		2220 (5750)				0

Note1. Initial Measurement For Class $\ensuremath{\mathbb{I}}$

Perform the heat treatment at 150%+0/-10% for 1 hour. Then Leave the capacitor in ambient condition for 48 ± 4 hours before measurement. Then perform the measurement.

Note2. Latter Measurement

1. CLASS I

Leave the capacitor in ambient condition for 24±2 hours before measurement

Then perform the measurement.

2. Class ${\mathbb I}$

Perform the heat treatment at $150\,^{\circ}\text{C} + 0/-10\,^{\circ}\text{C}$ for 1 hour. Then Leave the capacitor in ambient condition for 48 ± 4 hours before measurement. Then perform the measurement.

*Table1.

0201 C ≥ 0.022 <i>μ</i> F		an δ	Та
$\begin{array}{c} 0201 \ \ C = 0.022 \mu \ \\ 0402 \ \ C \ge 0.22 \mu \ \\ 0603 \ \ C \ge 2.2 \mu \ \\ 0805 \ \ C \ge 4.7 \mu \ \\ 1206 \ \ C \ge 10.0 \mu \ \\ 1210 \ \ C \ge 22.0 \mu \ \\ 1812 \ \ C \ge 47.0 \mu \ \\ 2220 \ \ C \ge 100.0 \mu \ \\ All \ \ Low \ \ Profile \\ Capacitors \ \ (P.16). \end{array}$	040 060 080 120 121 182 222 All I	ass Ⅱ (X5R),	Clas A(X

*Table2.

	High Tem	perature Resistance test
	⊿C (Y5V)	± 30%
	Class Ⅱ F(Y5V)	0402 C ≥ 0.47 μF
		0603 C ≥ 2.2μF
		0805 C ≥ 4.7μ F
		1206 C ≥ 10.0 μ F
		1210 C ≥ 22.0 μ F
		1812 C \geq 47.0 μ F
		2220 C $\geq 100.0 \mu \text{F}$
•		

*Table3.

	High Temperature Resi	stance test		
Applied Voltage	100% of the rated voltage	150% of the rated voltage		
Class II A(X5R), B(X7R), X(X6S), F(Y5V)	0201 C $\geq 0.1 \mu \text{F}$ 0402 C $\geq 1.0 \mu \text{F}$ 0603 C $\geq 4.7 \mu \text{F}$ 0805 C $\geq 22.0 \mu \text{F}$ 1206 C $\geq 47.0 \mu \text{F}$ 1210 C $\geq 100.0 \mu \text{F}$ All Low Profile Capacitors (P.16).	0201 C $\geq 0.022\mu$ F 0402 C $\geq 0.47\mu$ F 0603 C $\geq 2.2\mu$ F 0805 C $\geq 4.7\mu$ F 1206 C $\geq 10.0\mu$ F 1210 C $\geq 22.0\mu$ F 1812 C $\geq 47.0\mu$ F 2220 C $\geq 100.0\mu$ F		

PACKAGING

● CARDBOARD PAPER TAPE (4mm)

unit : mm

	mbol ype	Α	В	w	F	E	P1	P2	P0	D	t
D i m	0603 (1608)	1.1 ±0.2	1.9 ±0.2								
e n s	0805 (2012)	1.6 ±0.2	2.4 ±0.2	8.0 ±0.3	3.5 ±0.05	1.75 ±0.1	4.0 ±0.1	2.0 ±0.05	4.0 ±0.1	Ф1.5 +0.1/-0	1.1 Below
i o n	1206 (3216)	2.0 ±0.2	3.6 ±0.2								

● CARDBOARD PAPER TAPE (2mm)

unit: mm

	ymbol	Α	В	w	F	Е	P1	P2	P0	D	t
	Туре										
D i m e	0201 (0603)	0.38 ±0.03	0.68 ±0.03	8.0	3.5	1.75	2.0	2.0	4.0	Ф1.5	0.37 ±0.03
n s i o n	0402 (1005)	0.62 ±0.04	1.12 ±0.04	±0.3	±0.05	±0.1	±0.05	±0.05	±0.1	+0.1/-0.03	0.6 ±0.05

PACKAGING

● EMBOSSED PLASTIC TAPE

unit: mm

Sy	m bol	Α	В	w	F	Е	P1	P2	P0	D	t1	t0
Т	уре	,,			·	_			. •			
	0805 (2012)	1.45 ±0.2	2.3 ±0.2									
P	1206 (3216)	1.9 ±0.2	3.5 ±0.2	8.0 ±0.3	3.5 ±0.05		4.0 ±0.1				2.5 max	
m e	1210 (3225)	2.9 ±0.2	3.7 ±0.2			1.75		2.0	4.0	Ф1.5 +0.1/-0		0.6
n s i	1808 (4520)	2.3 ±0.2	4.9 ±0.2			±0.1		±0.05	±0.1	+0.17-0		Below
o n	1812 (4532)	3.6 ±0.2	4.9 ±0.2	12.0 ±0.3	5.60 ±0.05		8.0 ±0.1				3.8 max	
	2220 (5750)	5.5 ±0.2	6.2 ±0.2									

TAPING SIZE

Type	Symbol	Size	Cardboard Paper Tape	Symbol	Size	Embossed Plastic Tape
		0201(0603)	10,000		All Size ≤3216 1210(3225),1808(4520) (t≤1.6mm)	2,000
7" Reel	С	0402(1005)	10,000	E	1210(3225)(t≥2.0mm)	1,000
		OTHERS	4,000	-	1808(4520)(t≥2.0mm)	1,000
10" Reel	0	-	10,000	-	-	-
	D	0402(1005)	50,000		All Size ≤3216 1210(3225),1808(4520) (t<1.6mm)	10,000
		OTHERS	RS 10,000		$1210(3225)(1.6 \le t < 2.0 \text{ m m}) \\ 1206(3216)(1.6 \le t)$	8,000
13" Reel	0603(1608) 10,000 or 15,000 0805(2012) 15,000 or	0603(1608)	10,000 or 15,000	F	1210(3225),1808(4520) (t≥2.0mm)	4,000
		1812(4532)(t≤2.0 m m)	4,000			
		1206(3216) (t≤0.85mm)	10,000		1812(4532)(t>2.0mm) 5750(2220)	2,000

PACKAGING

• REEL DIMENSION

unit: mm

Symbol	Α	В	С	D	E	W	t	R
7" Reel	ф180+0/ -3	ф60+1/ -3	442 0.2	25 2.5	20105	0.14.5	1.2±0.2	4.0
13" Reel	ф330±2.0	φ80+1/ -3	φ13±0.3	25±0.5	2.0±0.5	9±1.5	2.2±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

unit: mm

Symbol	Α	В	Т	С	D	E
Dimension	6.8±0.1	8.8±0.1	12±0.1	1.5+0.1/-0	2+0/-0.1	3.0+0.2/-0

Symbol	F	W	G	Н	L	I
Dimension	31.5+0.2/-0	36+0/-0.2	19±0.35	7±0.35	110±0.7	5±0.35

QUANTITY OF BULK CASE PACKAGING

unit : pcs

C:	0402(4005)	06.02/46.09\	0805(2012)
Size	0402(1005)	0603(1608)	T=0.65mm	T=0.85mm
Quantity	50,000	10,000 or 15,000	10,000	5,000 or 10,000

APPLICATION MANUAL

ELECTRICAL CHARACTERISTICS

► CAPACITANCE - TEMPERATURE CHARACTERISTICS

► CAPACITANCE - DC VOLTAGE CHARACTERISTICS ► CAPACITANCE CHANGE - AGING

► IMPEDANCE - FREQUENCY CHARACTERISTICS

STORAGE CONDITION

▶ Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40°C and 70%, respectively.

Guaranteed storage period is within 6 months from the outgoing date of delivery.

▶ Corrosive Gases

Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCs must be avoid from these gases.

▶ Temperature Fluctuations

Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

DESIGN OF LAND PATTERN

When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor.

The amount of solder at the end terminations has a direct effect on the crack.

The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently.

Use the following illustrations as guidelines for proper land design.

Recommendation of Land Shape and Size.

ADHESIVES

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

▶ Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.

They should not spread or run when applied to the circuit board.

They should harden quickly. They should not corrode the circuit board or chip material.

They should be a good insulator. They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

▶ Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

		unit : mm
Туре	21	31
а	0.2 min	0.2 min
b	70~100 µm	70~100 µm
С	> 0	> 0

Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160 ℃ or less, within 2 minutes or less.

MOUNTING

Mounting Head Pressure

Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.

▶ Bending Stress

When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side,

it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.

Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors.

The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor.

Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

Amount of Solder

▶ Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference($\triangle T$) must be less than 100 $^{\circ}$ C

▶ Cleaning

If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

▶ Notes for Separating Multiple, Shared PC Boards.

A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending often circuit board.

▶ Recommended Soldering Profile

Soldering Iron

Variation of Temp.	Soldering	Pre-heating	Soldering	Cooling
	Temp (°C)	Time (Sec)	Time(Sec)	Time(Sec)
△T≤130	300±10℃max	≥ 60	≤ 4	-

Condition of Iron facilities					
Wattage	Tip Diameter	Soldering Time			
20W Max	3mm Max	4 Sec Max			

^{*} Caution - Iron Tip Should Not Contact With Ceramic Body Directly.