Assignment 2: Part of Speech Tagging

Niranjan Balsubramanian and Jun Kang - CSE 628 Spring 2018

Name: Aishwarya Danoji SBU ID: 111493647

1) Viterbi Algorithm Implementation:

Pictorial view of each step in Viterbi algorithm-here q0-q7 are POS tags, $v_y(i)$ is same as T (i, y) that maintains the score of the best sequence from $1 \dots i$ such that $y_i = y$.

Steps:

- -First sets up a probability matrix, with N (length of the sentence) columns and m (number of tags considered) rows.
- -Let us consider following sentence for POS tagging:
- "I love to play volleyball"

POS tag - PRON ADJ DET VERB NOUN

Here N=5 and m=no. of tags in the vocabulary= 12 (in our case) We will be using following equation:

$$T(i, y) = \psi_X(y, i, x) + \max_{i} \psi_t(y', y) + T(i-1, y')$$

Here,

T(i, y) - the score of the best sequence from $1 \dots i$ such that $y_i = y$.

 $\psi_X(y, i, x)$ - emission probability or the state observation likelihood of the observation word x given the POS tag y.

 $\psi_t(y', y)$ - transition probability of moving from tag y' to y.

T (i-1, y')- the previous Viterbi path probability from the previous time step.

- We begin in the first column by setting the Viterbi value in each cell to the product of the transition probability (into it from the start state) and the observation probability (of the first word.
- -Then we move on, column by column; for every state in column 1, we compute the probability of moving into each state in column 2, and so on. For each state y at time t, we compute the value T (i, y) by taking the maximum over the extensions of all the paths that lead to the current cell.
- After the cells are filled in, backtracking from the *end* state, we should be able to reconstruct the correct POS tagged sequence for the given sentence.

2) Description of Features added

Feature code	Description	Example words	Feature name
<pre>if word.isdigit() or w2n.word_to_num(word).isdigit()</pre>	To check if the string of word or the word itself is a number. Used word2number in python	One, twenty, hundred	IS_DIGIT
<pre>if wordnet.synsets(word) v=['ed','ing','s','d','ies','es']</pre>	To check if the word is a valid word in vocabulary. Used nltk.corpus in python To check if the word	Non-valid words: Okay U Baking,	IS_VALID HAS VCONJ
if word[-2:] in v	ends with common verb endings	baked, bakes	HAS_VCONS
<pre>if word[-2:] is "er" or word[0:2] is "un"</pre>	To check if the word ends with 'er' or starts with 'un', common adjective extensions	unclean, undesirable unkind bigger smarter better	HAS_ADJCONJ
<pre>adv=['ly','ful'] if word[-2:] in adv</pre>	To check if word ends with common adverb endings like	perfectly sadly	HAS_AVCONJ

	1 1, 1		
	-ly . It's a quick way		
	to transform		
	adjective into adverb		
<pre>if word[0].isupper()</pre>	To check if the word	Emma	CAP START
	starts with Capital	Germany	_
	letter, most Noun	Morgan	
	starts with capital	Stanley	
	letter	Stanie	
if "#" in word or "@" in word	To check if the word	@vas ao in	HAC #@
21 " 21 Word Of @ 21 Word		@ves.ac.in	HAS_#@
	contains # or @ in it.	#hello	
<pre>conj=['and','if','as','but',// 'or','while','as']</pre>	To check if the word		IS CONJ
'or','while','as']	is a conjunction		
<pre>if word in conj</pre>	is a conjunction		
if "'" in word	to check if the word	's, n't	HAS '
	contains '		_
if word[-1:] is "s"	To check if the word	Words	IS PLURAL
	is singular or plural,	Girls	_
	Nouns are usually	Boys	
	plural	Boys	
<pre>if word in string.punctuation</pre>	To check if the word	!	IS PUNCT
3 1	is a punctuation.	•	15_1 01(C1
	Used function from	,	
		•	
for of in taken I footuned cont	string	;	DDDELL
<pre>for pf in token2features(sent, i-2, add_neighs = False)</pre>	To include more		PPREV_
<pre>for pf in token2features(sent,</pre>	neighboring words		NNEXT_
i+2, add_neighs = False)	to make a tag		
	decision		
<pre>if len(sent)>10</pre>	To check if the		IS_LONG
	length of the		
	sentence whose POS		
	tag is to be found is		
	greater than 10		
det=['the','a','an']	To check if the word		IS_DET
if word in det	is among the		
	common		
	determinants in		
	english		
if '-' in word	To check if the word	Un-	HAS -
	contains -	neceassary	
			l .

Other features tried that did not work:

- Browns clustering -

It is a hard <u>hierarchical agglomerative clustering</u> problem. It is typically applied to text, grouping words into clusters that are assumed to be semantically related by virtue of their having been embedded in similar contexts. Thus, it chooses the POS tag for a word based on the internal

makeup of the word. The algorithm gives you a tree and you need to truncate it at some level to get clusters.

It did not work because:

- the word itself cannot be used to form a cluster. As same word can sometimes get different tags based on the context.
- -Also, for this to works the words in our training set must be valid English words and also the vocabulary size show be large enough. Both these conditions are not satisfied in the twitter data set that we have

- Stemming:

It is the process of reducing inflected (or sometimes derived) words to their word stem, base or root form—generally a written word form. The stem need not be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. Thus, stemming usually refers to crude heuristic process that chops off the ends of the words in the hope of achieving this goal correctly most of the time and often includes the removal of derivational suffix like er, ing, ly, s etc.

Eg -run-verb/noun is the stem word for running-Verb, runs, runner-Noun etc.

This did not word because if we replace running and runner with run in the dataset the POS tags obtained for the original word will be invalid.

- Lemmatization-

It usually refers to doing things properly with the use of a vocabulary and morphological analysis of words, normally aiming to remove influential endings only and to return the base or dictionary form of a word, which is known as lemma. Even this does not work because of the same reason as mentioned above.

3) Comparison of the added features against the basic features

Feature	Feature Set	Logistic		CRF O/P		Comment
No:		Regression O/P	1			
1	Basic Features: SENT_BEGIN SENT_END IS_ALNUM IS_NUMERIC IS_UPPER IS_LOWER IS_DIGIT PREV	Token-wise accuracy 84.389782403	F1	(macro) 83.2110869964	F1	This accuracy can be further improved and is considered as minimum accuracy with basic features
	NEXT_	Sentence-wise accuracy 8.92857142857		Sentence-wise accuracy 11.6071428571		

2	Basic Features All newly added features	Token-wise accuracy 83.7748344371 Token-wise (macro) 82.7307699242 Token-wise (micro) 83.7748344371 Sentence-wise accuracy 14.2857142857	F1	Token-wise accuracy 82.4976348155 Token-wise (macro) 81.7448909809 Token-wise (micro) 82.4976348155 Sentence-wise accuracy 9.82142857143	F1	Overfitting hence less accuracy, code is very hard coded
3	Basic features +verb: HAS_VCONJ	Token-wise accuracy 84.247871334 Token-wise (macro) 83.2274347489 Token-wise (micro) 84.247871334 Sentence-wise accuracy 9.82142857143	F1	Token-wise accuracy 84.389782403 Token-wise (macro) 83.6793451427 Token-wise (micro) 84.389782403 Sentence-wise accuracy 12.5	F1	Verb tag accuracy improved a bit
4	Basic features +adjective +adverb: HAS_ADJCONJ HAS_AVCONJ	Token-wise accuracy 84.4370860927 Token-wise (macro) 83.6677104231 Token-wise (micro) 84.4370860927 Sentence-wise accuracy 10.7142857143	F1	Token-wise accuracy 84.9101229896 Token-wise (macro) 83.8945109413 Token-wise (micro) 84.9101229896 Sentence-wise accuracy 10.7142857143	F1	Adjective tag and adverb accuracy improved a bit
5	Basic features +noun: CAP_START IS_PRURAL HAS_'	Token-wise accuracy 84.4843897824 Token-wise (macro) 83.5089233591 Token-wise (micro) 84.4843897824	F1 F1	Token-wise accuracy 84.1532639546 Token-wise (macro) 83.5658128691 Token-wise (micro) 84.1532639546	F1	Noun and pronoun tag accuracy improved a bit

		Sentence-wise		Sentence-wise		
		accuracy		accuracy		
		8.92857142857		11.6071428571		
6	Basic features+	Token-wise		Token-wise		V tog and
O	Punctuation:					X tag and .
		accuracy		accuracy		accuracy
	IS_PUNCT	85.004730369	F1	84.7209082308	F1	improved
	HAS	Token-wise	ГΙ	Token-wise	ГΙ	
	HAS_'	(macro)		(macro) 83.2437786437		
	HAS_@#	83.8376818468	E1		E1	
		Token-wise	F1	Token-wise	F1	
		(micro)		(micro)		
		85.004730369		84.7209082308		
		Sentence-wise		Sentence-wise		
		accuracy		accuracy		
_	D · C ·	9.82142857143		11.6071428571		0 11
7	Basic features+	Token-wise		Token-wise		Overall
	Word validity:	accuracy		accuracy		accuracy
	IS_VALID	84.4370860927	Г1	84.5789971618	Г1	improved
		Token-wise	F1	Token-wise	F1	
		(macro)		(macro)		
		83.3281774819	Б1	83.8235480166	Б1	
		Token-wise	F1	Token-wise	F1	
		(micro)		(micro)		
		84.4370860927		84.5789971618		
		Sentence-wise		Sentence-wise		
		accuracy		accuracy		
0	D 1 0	8.03571428571		9.82142857143		
8	Basic features+	Token-wise		Token-wise		Accuracy
	More neigh	accuracy		accuracy		decreased due
	under	83.0652790918		81.8826868496		to overfitting
	consideration	Token-wise	F1	Token-wise	F1	
		(macro)		(macro)		
		81.8797155615		81.2051092685		
		Token-wise	F1	Token-wise	F1	
		(micro)		(micro)		
		83.0652790918		81.8826868496		
		Sentence-wise		Sentence-wise		
		accuracy		accuracy		
		8.92857142857		8.03571428571		
914.	Best features	Token-wise		Token-wise		Best model so
	set:	accuracy		accuracy		far. Highest
	Basic features +	85.2412488174	Б.	85.6196783349	Г1	accuracy
	IS_DIGIT,	Token-wise	F1	Token-wise	F1	
	IS_PLURAL	(macro)		(macro)		
	IS_PUNCT	84.3351365943		85.0400365421		
	IS_VALID					

HAS_VCC	NJ Token-wise	F1 7	Token-wise	F1	
HAS_ADJ	CONJ (micro)	((micro)		
HAS_AVC	CONJ 85.24124881	74 8	85.6196783349		
HAS @#	Sentence-wis	se S	Sentence-wise		
HAS_,	accuracy	8	accuracy		
CAP_STA	RT 15.17857142	286	15.1785714286		

OUTPUT FOR BEST MODEL:

LOGISTIC REGRESSION:

Dev evaluation
Token-wise accuracy 85.2412488174
Token-wise F1 (macro) 84.3351365943
Token-wise F1 (micro) 85.2412488174
Sentence-wise accuracy 15.1785714286

	precision	recall	f1-score	support
	0.96	0.99	0.97	254
ADJ	0.80	0.37	0.51	99
ADP	0.92	0.88	0.90	151
ADV	0.89	0.68	0.77	129
CONJ	1.00	0.93	0.96	42
DET	0.98	0.92	0.95	130
NOUN	0.73	0.89	0.80	479
NUM	0.82	0.68	0.74	34
PRON	0.98	0.93	0.96	194
PRT	0.88	0.88	0.88	57
VERB	0.80	0.84	0.82	362
X	0.89	0.83	0.86	183
avg / total	0.86	0.85	0.85	2114

(/Users/aishwarya/anaconda2) Aishwaryas-MacBook-Pro:Assignment2 aishwarya\$./conlleval.pl $-r -d \t < ./predictions/twitter_dev.lr.pred processed 2114 tokens with 2114 phrases; found: 2114 phrases; correct: 1802.$

```
accuracy: 85.24%; precision: 85.24%; recall: 85.24%; FB1: 85.24

.: precision: 95.82%; recall: 99.21%; FB1: 97.49 263

ADJ: precision: 80.43%; recall: 37.37%; FB1: 51.03 46

ADP: precision: 92.36%; recall: 88.08%; FB1: 90.17 144

ADV: precision: 88.89%; recall: 68.22%; FB1: 77.19 99

CONJ: precision: 100.00%; recall: 92.86%; FB1: 96.30 39

DET: precision: 98.35%; recall: 91.54%; FB1: 94.82 121

NOUN: precision: 72.95%; recall: 88.94%; FB1: 80.15 584

NUM: precision: 82.14%; recall: 67.65%; FB1: 74.19 28

PRON: precision: 97.84%; recall: 93.30%; FB1: 95.51 185

PRT: precision: 87.72%; recall: 87.72%; FB1: 87.72 57

VERB: precision: 80.16%; recall: 83.70%; FB1: 81.89 378

X: precision: 88.82%; recall: 82.51%; FB1: 85.55 170
```

CRF:

Dev evaluation
Token-wise accuracy 85.6196783349
Token-wise F1 (macro) 85.6490365421
Token-wise F1 (micro) 85.6196783349
Septence-wise accuracy 15.1785714286

sentence-wise accuracy		13.1/03/14	14200		
	precision	recall	f1-score	support	
	0.96	0.98	0.97	254	
ADJ	0.69	0.54	0.60	99	
ADP	0.88	0.89	0.88	151	
ADV	0.81	0.67	0.74	129	
CONJ	0.95	0.95	0.95	42	
DET	0.97	0.92	0.94	130	
NOUN	0.80	0.85	0.83	479	
NUM	0.77	0.79	0.78	34	
PRON	0.94	0.95	0.95	194	
PRT	0.89	0.89	0.89	57	
VERB	0.80	0.84	0.82	362	
X	0.86	0.83	0.84	183	
vq / total	0.86	0.86	0.85	2114	

(/Users/aishwarya/anaconda2) Aishwaryas-MacBook-Pro:Assignment2 aishwarya\$./conlleval.pl $-r -d \t < ./predictions/twitter_dev.crf.pred processed 2114 tokens with 2114 phrases; found: 2114 phrases; correct: 1810.$

```
accuracy: 85.62%; precision: 85.62%; recall: 85.62%; FB1: 85.62
               .: precision: 96.15%; recall: 98.43%; FB1: 97.28
             ADJ: precision: 68.83%; recall: 53.54%; FB1: 60.23
                                                                 77
             ADP: precision: 88.16%; recall: 88.74%; FB1:
                                                          88.45
                                                                 152
             ADV: precision: 81.31%; recall: 67.44%; FB1: 73.73
                                                                 107
            CONJ: precision: 95.24%; recall: 95.24%; FB1: 95.24
                                                                 42
             DET: precision: 96.75%; recall: 91.54%; FB1: 94.07
                                                                123
            NOUN: precision: 80.20%; recall: 85.39%; FB1: 82.71 510
            NUM: precision: 77.14%; recall:
                                            79.41%; FB1:
                                                          78.26
            PRON: precision: 94.39%; recall: 95.36%; FB1:
                                                          94.87
             PRT: precision: 89.47%; recall: 89.47%; FB1: 89.47
                                                                 57
            VERB: precision: 80.21%; recall: 83.98%; FB1: 82.05 379
               X: precision: 85.80%; recall: 82.51%; FB1: 84.12 176
(/Users/aishwarya/anaconda2) Aishwaryas-MacBook-Pro:Assignment2 aishwarya$
```

4) Comparison of Logistic Regression and CRFs

COMPARISON BETWEEN LR AND CRF F1 SCORE FOR EACH POS tag for best model

COMPARISON BETWEEN LR AND CRF Token wise accuracy for various feature sets

COMPARISON BETWEEN LR AND CRF Sentence wise accuracy for various feature sets

Thus we can conclude that CRF gives better overall accuracy both sentence and token-wise than logistic regression as it uses more information to find the POS tag for a given sentence.

References:

- 1. https://web.stanford.edu/~jurafsky/slp3/10.pdf for Viterbi image
- 2. https://en.wikipedia.org/wiki/Brown clustering
- 3. https://stackoverflow.com/questions/1787110/what-is-the-true-difference-between-lemmatization-vs-stemming
- 4. Plotly to draw graphs