

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Metrology and Technical Measurement

Course

Field of study Year/Semester

Automatics Controlo and Robotics 3 / 5

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

First-cycle studies polish

Form of study Requirements
part-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

8 18 0

Tutorials Projects/seminars

0 0

Number of credit points

3

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

Zbigniew Krawiecki Ph.D. Eng. Michał Bołtrukiewicz Ph.D. Eng.

email: zbigniew.krawiecki@put.poznan.pl email: michal.boltrukiewicz@put.poznan.pl

tel. 61 6652546 el. 61 6652032

Faculty of Automatic, Robotics and Electrical Faculty of Automatic, Robotics and Electrical

Engineering Engineering

Piotrowo 3 Street, 60-965 Poznań Piotrowo 3 Street, 60-965 Poznań

Prerequisites

Basic knowledge in the scope of mathematics including algebra, geometry, analysis. Basic knowledge in the scope of physics, especially electricity, magnetism, physics of solid body in necessary scope to understand physical phenomena occurring in electronic circuits. Basic knowledge in the scope of the theory of electrical circuits and electrical engineering of direct and alternating current (including three-phases circuits).

Ability to acquire information from the literature, data and other sources; ability to the self-education in order to increase and update the professional competences. Ability to construct, start and test a simple electronic circuit.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Awareness of the importance of the out-of-technical aspects and effects of the engineer activity, including its influence on the environment and relating responsibility for the decisions.

Course objective

Knowledge of the measurement methodology, attributes of the modern measuring equipment, the principles of application of analog and digital devices, and the principles of the evaluation of measurement results.

Course-related learning outcomes

Knowledge

Student has a basic knowledge in the scope of metrology, knows the methods of measurement of electrical and nonelectrical quantities and knows of computational methods needed to make analysis the experiment results.

Skills

The student is able to apply correctly chosen measurement methods and devices as well as to measure the proper signals to perform the static and dynamic characteristics of elements.

Social competences

The student is aware of the need for a professional approach to technical isuess, meticulous knowledge of documentation and environment conditions making possible the operation of devices and their elements; is ready to comply with the principles of professional ethics and to require this from others, respecting the diversity of views.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures

Evaluation of the knowledge and skills shown during a written test (a test sheet includes information necessary to solve computational tasks). Passing threshold of test equals 50%. The grade from laboratory as well as attendance and activities during the lectures are taken into account.

Laboratory exercises

Evaluation of the knowledge and skills connected with realization of a given task, evaluation of the report.

Bonus knowledge necessary to implement the problems posed in a given area of laboratory tasks.

Continuous assessment in every class (rewarding activity and quality of perception).

Final test in written (passing threshold 50%).

Getting the additional points related to activity during classes such as: preparation and presentation of a lecture on the subject according to a module or task made by students, efficiency of application of the obtained knowledge during solving a given problem, the aesthetic qualities of the reports.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Programme content

Lectures

Measurement methodology: definition and basic terms. Planning and realization of a measurement task. Elements of errors theory and uncertainty of measurement results. Measuring transducer: processing characteristics, static and dynamic properties, linearity, supply. Cooperation between measuring transducers and devices - signal transmission, interaction. Measurements with oscilloscopes. Methods of measurements. Measuring bridges. Analog and digital measurements of electrical quantities. Selected examples of measurements of nonelectrical quantities. Introduction to structure and organization of measurement systems. Knowledge of safety principles during measurements. Planning and realization of measurements of the basic electrical quantities with widely available analog and digital equipment. Measurements of electrical signals with analog oscilloscopes. Preparation of the documentation based on the obtained results of measurements.

Laboratory

Planning and realization of a measurement task. Calculating of errors and uncertainty of measurement results. Investigating of static and dynamic properties of measuring transducers. Measurements of electrical signals with analog and digital oscilloscopes. Analog and digital measurements of electrical quantities. Using of measuring bridges. Selected examples of measurements of nonelectrical quantities (eg. force, preeure, distance, angle of rotary, temerature). Using of simple measurement systems. Knowledge of safety principles during measurements. Preparation of the documentation based on the obtained results of measurements.

Teaching methods

Lectures

Multimedia presentations expanded by examples shown on a board. Theoretical questions are presented in the exact reference to the practice.

Laboratory

Realization of laboratory tasks in teams, making of computatinal tasks and measurement experiments. Making of reports.

Methods of teaching are orientated to students to motivate them to participate actively in education process by discussion and reports.

Bibliography

Basic

- 1. J. Zakrzewski, M. Kampik, Sensory i przetworniki pomiarowe, Wyd. PŚ, Gliwice, 2013.
- 2. B. Więcek, G. De Mey, Termowizja w podczerwieni: podstawy i zastosowania, Wyd. PAK, 2011.
- 3. W. Gawędzki, Pomiary elektryczne wielkości nieelektrycznych, Wyd. AGH, Kraków, 2010.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 4. A. Cysewska-Sobusiak, Podstawy metrologii i inżynierii pomiarowej, Wyd. PP, Poznań, 2010.
- 5. R. Jóźwicki, Technika laserowa i jej zastosowania, Wyd. PW, Warszawa 2009.
- 6. S. Bolkowski, Elektrotechnika, WSiP, Warszawa, 2009.
- 7. M. Miłek, Metrologia elektryczna wielkości nieelektrycznych, Wyd. UZ, Zielona góra, 2006.
- 8. Z. Kaczmarek, Światłowodowe czujniki i przetworniki pomiarowe, Wyd. PAK, Warszawa, 2006.
- 9. M. Rząsa, B. Kiczma, Elektryczne i elektroniczne czujniki temperatury, WKiŁ, Warszawa, 2005.
- 10. D. Zmarzły, Pomiary elektrycznych wielkości medycznych, Wyd. PO, Opole, 2005.
- 11. G. Pawlicki i inni, Fizyka medyczna, AOW EXIT, Warszawa, 2002.
- 12. K. Booth, Optoelektronika, WKiŁ, Warszawa, 2001.
- 13. J. Zakrzewski, Czujniki i przetworniki pomiarowe: podręcznik problemowy, Wyd. PŚ, Gliwice, 2004.
- 14. P. Sydenham (red.), tłum. ang. red. J. Dudziewicz, Podręcznik metrologii, t.1: Podstawy teoretyczne, t. 2: Podstawy praktyczne, WKiŁ, Warszawa, 1988-1990.
- 15. E. Romer, Miernictwo przemysłowe, PWN, Warszawa, 1978.

Additional

- 16. Bibliography found by the student from paper and internet sources
- 17. K. Suchocki, Sensory i przetworniki pomiarowe. [3], Przetworniki indukcyjne, przetworniki pojemnościowe, Wyd. PG, Gdańsk, 2015.
- 18. W. Jakubiec, J. Malinowski, Metrologia wielkości geometrycznych, PWN, Warszawa, 2018.
- 19. L. Wołłk-Łaniewski, J. Wittek, Niepewność pomiaru w zadaniach rachunkowych z metrologii elektrycznej. Wyd. UTP, Bydgoszcz, 2008.
- 20. J. Dusza, G. Gortat, A. Leśniewski, Podstawy miernictwa, Wyd. PW, Warszawa, 2007.
- 21. J. Piotrowski, Podstawy miernictwa, WNT, Warszawa, 2002.
- 22. A. Kowalczyk, Miernictwo elektryczne wielkości nieelektrycznych, Wyd. PRz, Rzeszów, 1997.
- 23. A. Michalski, S. Tumański, B. Żyła, Laboratorium miernictwa wielkości nieelektrycznych, Wyd. PW, Warszawa, 1996.
- 24. R. Janiczek, Elektryczne miernictwo przemysłowe, Wyd. PCz, Częstochowa, 1994.
- 25. K. Suchocki, Sensory i przetworniki pomiarowe. [3], Przetworniki indukcyjne, przetworniki pojemnościowe, Wyd. PG, Gdańsk, 2015.
- 26. J. Zakrzewski, M. Kampik, Sensory i przetworniki pomiarowe, Wyd. PŚ, Gliwice, 2013.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 27. W. Nawrocki, Sensory i systemy pomiarowe, Wyd. PP, Poznań, 2006.
- 28. T. Sidor, Elektroniczne przetworniki pomiarowe, Wyd. AGH, Kraków, 2006.
- 29. J. Zakrzewski, Czujniki i przetworniki pomiarowe: podręcznik problemowy, Wyd. PŚ, Gliwice, 2004.
- 30. W. Jakubiec, J. Malinowski, Metrologia wielkości geometrycznych, PWN, Warszawa, 2018.
- 31. W. Kester, Przetworniki A/C i C/A: teoria i praktyka, BTC, 2012.
- 32. W.E. Ciążyński, Rzeczywiste wzmacniacze operacyjne w zastosowaniach, Wyd. PŚ, Gliwice, 2012.
- 33. B. Carter, R. Mancini, Wzmacniacze operacyjne: teoria i praktyka, BTC, 2011.
- 34. W.E. Ciążyński, Idealne wzmacniacze operacyjne w zastosowaniach nieliniowych, Wyd. PŚ, Gliwice, 2010.
- 35. W.E. Ciążyński, Idealne wzmacniacze operacyjne w zastosowaniach liniowych, Wyd. PŚ, Gliwice, 2010.
- 36. Ch. Kitchin, L. Counts, Wzmacniacze operacyjne i pomiarowe: przewodnik projektanta, BTC, 2009.
- 37. Z. Nawrocki, Wzmacniacze operacyjne i przetworniki pomiarowe, Wyd. PWr, Wrocław, 2008.
- 38. P. Górecki, Wzmacniacze operacyjne: podstawy, aplikacje, zastosowania, BTC, 2004.
- 39. R.A. Pease, Projektowanie układów analogowych: poradnik praktyczny, BTC, Warszawa, 2005.
- 40. L. Hasse, Zakłócenia w aparaturze elektronicznej, Radioelektronik, Warszawa, 1995.
- 41. J. Pluciński, Optyka nieuporządkowanych ośrodków silnie rozpraszających, Wyd. PG, Gdańsk, 2010.
- 42. Z. Kaczmarek, Światłowodowe czujniki i przetworniki pomiarowe, Wyd. PAK, Warszawa, 2006.
- 43. K. Booth, Optoelektronika, WKiŁ, Warszawa, 2001.
- 44. J. Godlewski, Generacja i detekcja promieniowania optycznego, PWN, Warszawa, 1997.
- 45. W. Dybczyński, Miernictwo promieniowania optycznego, Wyd. PB, Białystok, 1996.
- 46. S. Smith, Cyfrowe przetwarzanie sygnałów: praktyczny poradnik dla inżynierów i naukowców, BTC, 2007.
- 47. J. Szabatin, Podstawy teorii sygnałów, WKiŁ, Warszawa 2003.
- 48. T. Bartlett, Nawigacja elektroniczna, Oficyna Wydawnicza "Alma-Press", 2013.
- 49. M. Rząsa, B. Kiczma, Elektryczne i elektroniczne czujniki temperatury, WKiŁ, Warszawa, 2005.
- 50. L. Michalski, K. Eckersdorf, Pomiary temperatury, WNT, Warszawa, 1986.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 51. Z. Roliński, Tensometria oporowa: podstawy teoretyczne i przykłady zastosowań, WNT, Warszawa, 1981.
- 52. B. Schmidt, E. Kuźma, Termistory, WNT, Warszawa, 1972.
- 53. D. Zmarzły, Pomiary elektrycznych wielkości medycznych, Wyd. PO, Opole, 2005.
- 54. L. Chmielewski, J.L. Kulikowski, A. Nowakowski, Obrazowanie biomedyczne, AOW Exit, 2003.
- 55. G. Pawlicki i inni, Fizyka medyczna, AOW Exit, Warszawa, 2002.
- 56. W. Torbicz, Biopomiary, AOW Exit, 2001.
- 57. Z.W. Kowalski, Wybrane zagadnienia informatyki i elektroniki medycznej, Wyd. PWr, Wrocław, 2000.
- 58. A. Cysewska-Sobusiak, Problemy metrologiczne identyfikacji cech obiektu żywego poddanego nieinwazyjnej transiluminacji, Wyd. PP, Poznań, 1995.
- 59. Z. Kowalski, Jakość energii elektrycznej, Wyd. Pł., Łódź, 2007.
- 60. W. Pietraszewicz, Manometry, PWT, Warszawa, 1957.
- 61. PN-EN 837-1, Ciśnieniomierze Ciśnieniomierze z rurką Bourdona Wymagania i badania, Wyd. PKN, Warszawa, 2000.
- 62. Normy dotyczące kompatybilności elektromagnetycznej: PN-EN 50160, PN-EN 61000-4-30, PN-EN 61000-4-7.
- 63. Rozporządzenie Ministra Gospodarki z 4 maja 2007 r. w sprawie szczegółowych warunków funkcjonowania systemu elektroenergetycznego. (Dz.U. Nr 93, poz. 623, z dnia 29 maja 2007 r.).
- 64. Międzynarodowy Słownik Podstawowych i Ogólnych Terminów Metrologii, Główny Urząd Miar, Warszawa 1996
- 65. www.bipm.org
- 66. www.electropedia.org

Breakdown of average student's workload

	Hours	ECTS
Total workload	80	3,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for laboratory	50	2,0
classes, preparation of report, preparation for tests/exam) 1		

¹ delete or add other activities as appropriate