CS & IT

ENGINEERING

MINIMIZATION

Lecture No. - 04

By- CHANDAN SIR

TOPICS TO BE COVERED

01 QUESTION PRACTICE

02 DISCUSSION

Q f(A,B,C,D)= Zm(1,3,6,9,10,11,13,14,15)

BCD+AC+AD+BD

Pon't (are

Question: f(A,B,C) = Zm(0,1,4) + 5d(5,7)

(0)7 (6)

NAT

Consider the Karnaugh map given below, where X represents "don't

care" and blank represents 0.

 $(\bar{a}c)$

Assume for all inputs(a, b, c, d) , the respective complements $(\bar{a}, \bar{b}, \bar{c}, \bar{d})$ are also available. The above logic is implemented using 2-input NOR gates only. The minimum number of gates required is

$$f=\bar{a}c$$

$$= \bar{a}+\bar{c}$$

$$\bar{ca} = \bar{c} + a$$

$$\frac{a}{c} = \frac{ac}{a+c} = \frac{ac}{ac}$$

BD+BD+ ABC+ ACD

BD+BD+ACD+ACD

BO+BD+ ABC+ ABC

BO+BD+ACD+ABC

Pos - Product of sum

$$\Rightarrow$$
 (A+B) (A+B)

AM

$$F = \overline{AB} + AB$$

$$F = \overline{\overline{AB}} + \overline{AB} \Rightarrow \overline{\overline{AB}} \cdot \overline{\overline{AB}}$$

$$\Rightarrow (A+B) \cdot (\overline{A+B})$$

ABO	7 (+1	(+1)	711 11	5 (+D 10	
Ats OD	0	0	X	0	-> A+B
A+B 01		0	0		
A+3 11	X	0	0	×	(A13). 5
A+B 10		X	0		ARQ
		(8)	BB		

Given $f(w, x, y, z) = \Sigma_m(0, 1, 2, 3, 7, 8, 10) + \Sigma_d(5, 6, 11, 15)$, where d represents the don't-care condition in Karnaugh maps. Which of the following is a minimum product-of-sums (POS) form of f(w, x, y, z)?

A
$$f = (\overline{w} + \overline{z})(\overline{x} + z)$$

B
$$f = (\overline{w} + z)(x + z)$$

$$f = (w + z) (\overline{x} + z)$$

f =
$$(w + \overline{z})(\overline{x} + z)$$

The number of min-terms after minimizing the following Boolean expression is _____.

$$[D' + AB' + A'C + AC'D + A'C'D]'$$

Boolean wgebra

A

B 2

C 3

D 4

Consider the following minterm expression for F: F (P,Q,R,S) = \sum 0, 2, 5, 7, 8,10,13,15 The minterms 2, 7, 8 and 13 are 'do not care' terms. The minimal sum-of-products form for F is

$$A$$
 $Q\overline{S} + \overline{Q}S$

$$\overline{QS} + QS$$

$$\overline{Q}\overline{R}\overline{S} + \overline{Q}R\overline{S} + Q\overline{R}S + QRS$$

$$\overline{PQS} + \overline{PQS} + PQS + P\overline{QS}$$

What is the minimal form of the Karnaugh map shown below? Assume that X denotes a don't care term

A bd

 $\overline{b}\overline{d} + \overline{b}\overline{c}$

 \overline{c} $\overline{b}\overline{d} + a\overline{b}\overline{c}d$

 $\overline{\mathbf{b}}\overline{\mathbf{d}} + \overline{\mathbf{b}}\overline{\mathbf{c}} + \overline{\mathbf{c}}\overline{\mathbf{d}}$

cdab				
	00	01	11	10
00	1	×	×	1
01	×			1
11				
10	1			×

The minterm expansion of $f(P, Q, R) = PQ + Q\overline{R} + P\overline{R}$ is

$$m_2 + m_4 + m_6 + m_7$$

$$m_0 + m_1 + m_3 + m_5$$

$$m_0 + m_1 + m_6 + m_7$$

$$m_2 + m_3 + m_4 + m_5$$

Pw

In the Karnaugh map shown below, X denotes a don't care term. What is the minimal form of the function represented by the Karnaugh map?

$$\overline{a}$$
. \overline{b} + \overline{b} . \overline{d} + \overline{a} . \overline{d}

HWZ

$$\overline{b}$$
. $\overline{d} + \overline{a}$. b. \overline{d}

$$\overline{a}$$
. \overline{b} + \overline{b} . \overline{d} + \overline{a} . \overline{b} . \overline{d}

$$\overline{\mathbf{b}}$$
. $\overline{\mathbf{d}}$ + $\overline{\mathbf{a}}$. $\overline{\mathbf{d}}$

colab	00	01	11	10
00	1	1		1
01	X			
11	X			
10	1	1		X

A K-map is given as below: It minimized solution will be

 \mathbf{B} $\mathbf{x} \oplus \mathbf{y}$

 $\overline{z} + \overline{x} \overline{y}$

 $\overline{z} + xy + \overline{x} \overline{y}$

	$\overline{y} \overline{z}$	\overline{y} z	y z	ý \overline{z}
$\overline{\mathbf{x}}$	1	1		X
X	X		1	1

$$F(x, y, z) = \overline{xy} + \overline{xy} + x \overline{y} z + x \overline{y} \overline{z}$$

Then the minimized solution of $F(x, y, z)$ will be

$$A x + \overline{y}$$

$$\mathbf{B}$$
 $\bar{\mathbf{x}}$ y

A K-map is as given below: Then the minimized solution of K-map is:

	$\overline{A}\overline{C} + \overline{A}D +$	CD
-	AC TAD T	UD

 \overline{B} $\overline{A}\overline{C} + CD$

 $\overline{A}B + CD + \overline{A}\overline{C}$

None of these

	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\bar{D}$
ĀΒ	1	1	1	
ĀΒ	1	1	1	X
ΑВ			1	
ΑB		X	X	

f(x, y, z) is given as : $f(x, y, z) = \overline{x} \overline{y} + \overline{x} z + xy$, The equivalent f(x, y, z) can also be

(
$$\overline{x} + y + \overline{z}$$
)($x + \overline{y} + \overline{z}$)($x + \overline{y} + z$)

B
$$(x + \overline{y} + z) (\overline{x} + \overline{y} + z) (\overline{x} + y + \overline{z})$$

None of these

-		

Thank you

Seldiers!

