Tobias Hille Robin Schmidt tobias.a.hille@web.de rob.schmidt@student.uni-tuebingen.de 39055097 4255055

Modellierung & Simulation I

Serie 01

1.1.1

Empirische Wahrscheinlichkeit für einen Gewinn:

$$h(A) = \frac{n_i}{n} = \frac{283789}{2300000} \approx 0.12339$$

Wahrscheinlichkeit unter der Laplace-Annahme:

$$p(A) = \frac{m_i}{m} = \frac{3^3}{6^3} = \frac{27}{216} = 0.125$$

1.1.2

Wertebereiche der Zufallsvariablen:

$$X_{sum} \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

$$X_{min} \in \{1, 2, 3, 4, 5, 6\}$$

$$X_{max} \in \{1, 2, 3, 4, 5, 6\}$$

$$X_{diff1} \in \{0, 1, 2, 3, 4, 5\}$$

$$X_{diff2} \in \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$$

Verteilung und Verteilungsfunktionen der Zufallsvariablen:

x_i	2	3	4	5	6	7	8	9	10	11	12
$P(X_{sum} = x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$A(x_i)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{15}{36}$	$\frac{21}{26}$	$\frac{36}{36}$	$\frac{30}{36}$	$\frac{33}{36}$	$\frac{35}{36}$	$\frac{36}{36}$

x_i	1	2	3	4	5	6
$P(X_{min} = x_i)$	$\frac{11}{36}$	$\frac{9}{36}$	$\frac{7}{36}$	$\frac{5}{36}$	$\frac{3}{36}$	$\frac{1}{36}$
$A(x_i)$	$\frac{11}{36}$	$\frac{20}{36}$	$\frac{27}{36}$	$\frac{32}{36}$	$\frac{35}{36}$	$\frac{36}{36}$

x_i	1	2	3	4	5	6
$P(X_{max} = x_i)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$
$A(x_i)$	$\frac{1}{36}$	$\frac{4}{36}$	$\frac{9}{36}$	$\frac{16}{36}$	$\frac{25}{36}$	$\frac{36}{36}$

x_i	0	1	2	3	4	5
$P(X_{diff1} = x_i)$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$
$A(x_i)$	$\frac{6}{36}$	$\frac{16}{36}$	$\frac{24}{36}$	$\frac{30}{36}$	$\frac{34}{36}$	$\frac{36}{36}$

x_i	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P(X_{diff2} = x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$A(x_i)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{15}{36}$	$\frac{21}{26}$	$\frac{26}{36}$	$\frac{30}{36}$	$\frac{33}{36}$	$\frac{35}{36}$	$\frac{36}{36}$

Kenngrößen der Zufallsvariablen:

Zufallsgröße	Erwartungswert	Varianz
X_{sum}	7	5.833333333333333
X_{min}	2.5277777777777777	1.9714506172839503
X_{max}	4.4722222222222	1.9714506172839508
X_{diff1}	1.944444444444446	2.052469135802469
X_{diff2}	0	5.8333333333333334

1.1.3

Wertebereich der Zufallsvariable:

$$X \in \{i | i \in \mathbb{N}, 1 \le i < \infty\}$$

Diese Zufallsvariabe folgt der geometrischen Verteilung. Die Verteilungsfunktion ist

$$x(i) = (1-p)^{i-1} \cdot p$$

mit $p=\frac{1}{6}$. Für die Wahrscheinlichkeit, höchstens vier Würfe bis zum ersten Auftreten der Augenzahl 6, ergibt sich:

$$P(i \le 4) = \sum_{k=1}^{4} \frac{5^{k-1}}{6} \cdot \frac{1}{6} = 0.5177$$

1.2.1

Geometrische Verteilung $P_{geo}(X=n)=p(1-p)^n$ mit p=0.5:

Exponentielle Verteilung $f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$ mit $\lambda = 2$ (grün), $\lambda = 1$ (blau) und $\lambda = 0.75$ (rot):

 ${\bf 1.2.2}$ Verteilungsdichte
funktion der geometrischen Verteilung für p=0.5:

Verteilungsdichtefunktion F_{λ} der exponentiellen Verteilung mit $\lambda = 2$ (grün), $\lambda = 1$ (blau) und $\lambda = 0.75$ (rot):

$$F_{\lambda}(x) = \int_0^x f_{\lambda}(x) dx = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Unterschied: Die geometrische Verteilung ist diskret und die exponentielle Verteilung ist kontinuierlich. Dies liegt daran, dass die exponentielle Verteilung als Grenzfall aus der geometrischen Verteilung für X herausgeht, wenn p=1/n und $\frac{X}{n}$ für $n\to\infty$ betrachtet wird.

1.2.3

Wahrscheinlichkeit für $P(X \leq 1)$ für die geometrische und exponentielle Verteilung:

$$P_{geo}(X \le 1) = 1 - (1 - p)^1 = p$$

 $P_{exp}(X \le 1) = 1 - e^{-\lambda \cdot 1} = 1 - e^{-\lambda}$