Линейная алгебра

Бадьин А. В.

Содержание

Соде	ержание
Обо	значения
1.	Элементы теории групп (2-й семестр)
	1.1. Определение группоида
	1.2. Определение группы
2.	Комплексные числа (1-й семестр)
	2.1. Определение комплексного числа
	2.2. Модуль и аргумент комплексного числа
	2.3. Основные функции комплексной переменной
3.	Линейное пространство (2-й семестр)
	3.1. Определение линейного пространства
	3.2. Примеры линейных пространств
	3.2.1. Линейное пространство над полем $\mathbb{K}_0 \subseteq \mathbb{K}$
	3.2.2. Линейное пространство векторных функций
	3.2.3. Линейное пространство чисел
	3.2.4. Линейное пространство столбцов
	3.2.5. Линейное пространство матриц
	3.3. Подпространство линейного пространства
	3.4. Линейная зависимость векторов
	3.5. Операции над частично определёнными векторными функциями
	3.6. Экономное определение линейного пространства
4.	Базис и размерность (начало; 2-й семестр)
	4.1. Базис множества векторов
	4.2. Размерность линейного пространства
5.	Матричная алгебра (1-й семестр)
	5.1. Пространство $\mathbb{K}^{N_2 \times N_1}$
	5.2. Перемножение матриц
	5.3. Транспонирование матрицы
	5.4. След матрицы
	Определитель матрицы (1-й семестр)
	6.1. Определение определителя. Теория перестановок
	6.2. Существование и единственность определителя
	6.3. Основные свойства определителя
	6.4. Метод Гаусса—Жордана для вычисления определителя 6
7.	Базис и размерность (окончание: 2-й семестр)

2 Содержание

	7.1. Теорема о базисном миноре	64
	7.2. Базис и размерность	65
8.	Подпространства линейных пространств (2-й семестр)	67
	8.1. Операции над множествами векторов	67
	8.2. Операции над подпространствами	68
	8.3. Линейно независимые подпространства, прямая сумма подпро-	
	странств	70
	8.4. Линейное дополнение одного подпространства до другого	74
9.	Общие сведения о линейных операторах и изоморфизмах (2-й семестр)	77
•	9.1. Линейный оператор	77
	9.2. Линейный обратимый оператор	81
	9.3. Первая теорема Фредгольма	83
	9.4. Операции над частично определёнными линейными операторами	83
10	Ранг матрицы (1-й семестр)	86
	Система линейных алгебраических уравнений (СЛАУ; 1-й семестр)	90
11.	11.1. Линейное операторное уравнение	90
	11.2. Система линейных алгебраических уравнений (СЛАУ)	91
	11.3. Квадратная СЛАУ	91
	11.4. Прямоугольная СЛАУ	94
19	Тензорная алгебра (2-й семестр)	97
14.	12.1. Матрица перехода от одного базиса к другому	97
	12.1. Чатрица перехода от одного базиса к другому	98
	12.3. Геометрические объекты	99
	12.4. Тензоры	99
	12.5. Возможные обобщения	104
	12.6. Факультативный материал	104
12	Матрица линейного оператора	104
	Собственные значения и собственные векторы линейного оператора	112
14.	14.1. Инвариантные подпространства линейного оператора	112
	14.1. Инвариантные подпространства линеиного оператора	113
	•	113
	14.3. Общие сведения о полиномах	118
	14.3.1. Полином, степень полинома, коэффициенты полинома	110
	14.3.2. Кратность корня полинома	119
	14.3.3. Основная теорема алгебры	119 120
	14.3.4. Продолжение полинома	
	14.4. Характеристический полином линейного оператора	121
1 5	14.5. Факультативный материал	124
15.	Линейные, билинейные и квадратичные формы (будет переписана)	128
	15.1. Линейные и полулинейные формы	128
	15.2. Билинейные и полуторалинейные формы	130
	15.3. Квадратичные формы	132
	15.4. Обобщённые квадратичные формы	134
	15.5. Эрмитовы обобщённые квадратичные формы	136
16.	Метод Лагранжа, закон инерции, критерий Сильвестра	139
	16.1. Метод Лагранжа	139
	16.2. Закон инерции	148
	16.3. Критерий Сильвестра	149

Содержание 3

17. Линейные евклидовы и линейные псевдоевклидовы пространства	52
17.1. Линейные евклидовы пространства	52
	52
17.1.2. Ортогональное дополнение, ортогональная проекция, оператор ор-	
тогонального проектирования	55
	58
	61
	63
	65
	65
	66
	67
	69
	72
	72
18.2. Полуторалинейные формы в евклидовых пространствах	74
18.3. Сопряжённый оператор	75
18.4. Самосопряжённый оператор	78
	80
19. Самосопряжённый оператор. Спектральная теория	83
19.1. Самосопряжённый оператор	83
19.2. Эрмитовы полуторалинейные формы в евклидовом пространстве 1	87
20. Кривые и поверхности второго порядка	89
20.1. Аффинное пространство	89
	92
	02
Список литературы	05

4 Обозначения

Обозначения

Логические связки

 $\neg A$ — отрицание;

 $(A \wedge B)$ — конъюнкция; союз «и»;

 $(A \lor B)$ — дизъюнкция; союз «или»;

 $(A \Longrightarrow B)$ — импликация; оборот «если ..., то ... »;

 $(A \iff B)$ — эквивалентность.

Кванторы

 $\forall xA$ — квантор всеобщности;

 $\forall xAB$ — ограниченный квантор всеобщности; $\forall xAB \iff \forall x(A \implies B)$;

 $\exists x A$ — квантор существования;

 $\exists xAB$ — ограниченный квантор существования; $\exists xAB \iff \exists x(A \land B)$;

 $\exists !xA$ — квантор существования и единственности;

 $\exists !xAB$ — ограниченный квантор существования и единственности;

$$\exists !xAB \iff \exists !x(A \land B);$$

 εxA — квантор выбора;

 εxAB — ограниченный квантор выбора; $\varepsilon xAB = \varepsilon x(A \wedge B)$.

Оператор подстановки

 $\operatorname{Subst}(A; x_1, \dots, x_r; \varphi_1, \dots, \varphi_r)$ — оператор подстановки.

Множества

Set(A) — «A — множество»;

 $(x \in A)$ — «объект x принадлежит множеству A»;

 $\{x: A\}$ — множество всех объектов x, удовлетворяющих условию A;

 $(A \subseteq B)$ — «A — подмножество множества B»;

 $(A \subset B)$ — «A — собственное подмножество множества B»;

$$A \subset B \iff (A \subseteq B \land A \neq B);$$

 \emptyset — пустое множество;

P(A) — множество всех подмножеств множества A;

 $\{x_1,\ldots,x_r\}$ — множество, образованное объектами $x_1,\ldots,x_r;$

$$\{x_1, \dots, x_r\} = \{u \colon u = x_1 \lor \dots \lor u = x_r\};$$

 (x_1, \ldots, x_r) — упорядоченный набор длины r, образованный объектами x_1, \ldots, x_r ;

 $(A \cap B)$ — пересечение множеств A, B;

 $(A \cup B)$ — объединение множеств A, B;

 $\cup \mu$ — объединение системы множеств μ ; $\cup \mu = \{x : \exists A (A \in \mu \land x \in A)\};$

 $(A \setminus B)$ — разность множеств A, B;

 $(A_1 \times \cdots \times A_r)$ — прямое произведение множеств A_1, \ldots, A_r ;

 (A^r) — прямая степень множества A.

Функции

D(F) — область определения функции F;

D(F, A) — полный прообраз множества A под действием функции F;

Обозначения 5

- R(F) область значений функции F;
- F[A] образ множества A под действием функции F;
- $\{\varphi\}_{x:A}$ функция, область определения которой определяется утверждением A, а значения которой определяются выражением « φ »; $\{\varphi\}_{x:A} = F$, где: F функция, $D(F) = \{x:A\}$, $\forall x A(F(x) = \varphi)$.
- $F\colon A\to B$ «функция F действует из множества A в множество B»; «F— функция, $\mathrm{D}(F)\subseteq A,\,\mathrm{R}(F)\subseteq B$ »;
 - $\operatorname{fun}(A,B)$ множество всех функций F, удовлетворяющих условию $F\colon A\to B$;
- $F\colon A\implies B$ «функция F действует из всего множества A в множество B»; «F функция, $\mathrm{D}(F)=A,\,\mathrm{R}(F)\subseteq B$ »;
 - $\operatorname{Fun}(A,B)$ множество всех функций F, удовлетворяющих условию $F\colon A\implies B$;
 - $F|_A$ ограничение функции F на множество A;
 - $F_2 \circ F_1$ композиция функций F_2, F_1 ;
 - F^{-1} обратная функция к обратимой функции F.

Числа

```
\mathbb{Z} — множество всех целых чисел; \mathbb{Z}_+ = \{k \colon k \in \mathbb{Z} \land k \geqslant 0\}; \mathbb{N} = \{k \colon k \in \mathbb{Z} \land k \geqslant 1\}; \overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}; \overline{\mathbb{Z}}_+ = \{k \colon k \in \overline{\mathbb{Z}} \land k \geqslant 0\}; \overline{\mathbb{N}} = \{k \colon k \in \overline{\mathbb{Z}} \land k \geqslant 1\}; \mathbb{Q} — множество всех рациональных чисел; \mathbb{Q}_+ = \{x \colon x \in \mathbb{Q} \land x \geqslant 0\}; \overline{\mathbb{Q}} = \mathbb{Q} \cup \{-\infty, +\infty\}; \overline{\mathbb{Q}}_+ = \{x \colon x \in \overline{\mathbb{Q}} \land x \geqslant 0\}; \mathbb{R} — множество всех вещественных чисел; \mathbb{R}_+ - \{x \colon x \in \mathbb{R} \land x \geqslant 0\}; \overline{\mathbb{R}} - \mathbb{R} \cup \{-\infty, +\infty\}; \overline{\mathbb{R}}_+ - \{x \colon x \in \overline{\mathbb{R}} \land x \geqslant 0\}; \overline{\mathbb{R}}_+ - \{x \colon x \in \overline{\mathbb{R}} \land x \geqslant 0\}; \overline{\mathbb{R}}_+ - \{x \colon x \in \overline{\mathbb{R}} \land x \geqslant 0\}; \overline{\mathbb{R}}_+ - \{x \colon x \in \overline{\mathbb{R}} \land x \geqslant 0\}; \overline{\mathbb{R}}_+ - \{x \colon x \in \overline{\mathbb{R}} \land x \geqslant 0\};
```

Лекция 1. Элементы теории групп (2-й семестр)

1.1. Определение группоида

Определение (группоид). Пусть: M — множество, $F: M \times M \implies M$. Далее обычно будем писать (x * y) вместо (F(x, y)).

Будем говорить, что: (M,F) — группоид; M — носитель группоида (M,F); F — алгебраическая операция группоида (M,F). Далее обычно будем отождествлять группоид (M,F) и множество M.

Onpedenehue (основные понятия, связанные с понятием «группоид»). Пусть G — группоид. Будем говорить, что G — ассоциативный группоид, если:

$$\forall x \in G \forall y \in G \forall z \in G((x * y) * z = x * (y * z)).$$

Будем говорить, что G — коммутативный группоид, если:

$$\forall x \in G \forall y \in G(x * y = y * x).$$

Будем говорить, что u — правый нейтральный элемент группоида G, если:

$$u \in G,$$
$$\forall x \in G(x * u = x).$$

Будем говорить, что u — универсальный правый нейтральный элемент группоида G, если:

$$u \in G,$$

$$\forall x \in G(x * u = x),$$

$$\forall x \in G \exists y \in G(x * y = u).$$

Будем говорить, что u — левый нейтральный элемент группоида G, если:

$$u \in G,$$
$$\forall x \in G(u * x = x).$$

Будем говорить, что u — универсальный левый нейтральный элемент группоида G, если:

$$u \in G,$$

$$\forall x \in G(u * x = x),$$

$$\forall x \in G \exists y \in G(y * x = u).$$

Будем говорить, что u — двусторонний нейтральный элемент группоида G, если:

$$u \in G,$$

 $\forall x \in G(x * u = x),$
 $\forall x \in G(u * x = x).$

Будем говорить, что u — универсальный двусторонний нейтральный элемент группоида G, если:

$$u \in G,$$

$$\forall x \in G(x * u = x),$$

$$\forall x \in G(u * x = x),$$

$$\forall x \in G \exists y \in G(x * y = u \land y * x = u).$$

Замечание (основные формы записи алгебраической операции). Пусть (M, F) — группоид.

1. Иногда принимают решение писать xy вместо F(x,y). В этом случае говорят об использовании мультипликативной формы записи алгебраической операции.

Обычно мультипликативную форму записи алгебраической операции используют при работе с ассоциативными группоидами.

Пусть используется мультипликативная форма записи алгебраической операции. Будем применять термины: «правый единичный элемент», «универсальный правый единичный элемент», «левый единичный элемент», «универсальный левый единичный элемент», «двусторонний единичный элемент», «универсальный двусторонний единичный элемент» вместо терминов: «правый нейтральный элемент», «универсальный правый нейтральный элемент», «универсальный левый нейтральный элемент», «двусторонний нейтральный элемент», «универсальный двусторонний нейтральный элемент».

2. Иногда принимают решение писать «x + y» вместо «F(x, y)». В этом случае говорят об использовании аддитивной формы записи алгебраической операции.

Обычно аддитивную форму записи алгебраической операции используют при работе с ассоциативными коммутативными группоидами.

Пусть используется аддитивная форма записи алгебраической операции. Будем применять термины: «правый нулевой элемент», «универсальный правый нулевой элемент», «двусторонний нулевой элемент», «универсальный левый нулевой элемент», «двусторонний нулевой элемент», «универсальный двусторонний нулевой элемент» вместо терминов: «правый нейтральный элемент», «универсальный правый нейтральный элемент», «левый нейтральный элемент», «универсальный левый нейтральный элемент», «универсальный двусторонний нейтральный элемент».

3. Нужно очень ясно понимать, что речь идёт именно о двух формах записи алгебраической операции, а не о двух разновидностях группоидов. При работе с одним и тем же группоидом можно использовать как мультипликативную, так и аддитивную форму записи алгебраической операции. Более того, следует признать, что выражения xy, x + yносят жаргонный характер, ибо являются не более, чем типографскими сокращениями выражения x

1.2. Определение группы

Onpedenehue (группа). Пусть: M — множество, $F\colon M\times M\implies M$. Далее обычно будем писать «xy» вместо «F(x,y)».

Пусть:

- 1. $\forall x \in M \forall y \in M \forall z \in M((xy)z = x(yz));$
- 2. $\exists u \in M (\forall x \in M(xu = x) \land \forall x \in M \exists y \in M(xy = u)).$

Будем говорить, что: (M, F) — группа; M — носитель группы (M, F); F — алгебраическая операция группы (M, F). Далее обычно будем отождествлять группу (M, F) и множество M.

По сути дела, мы определили группу как ассоциативный группоид, имеющий хотя бы один универсальный правый единичный элемент.

Утверждение (вспомогательный результат №1). Пусть: $G - \epsilon pynna; u \in G, \forall x \in G(xu = x), \forall x \in G \exists y \in G(xy = u).$

Доказательство. Пусть: $x \in G$, $y \in G$, xy = u. Так как: $\forall x \in G \exists y \in G(xy = u)$, $y \in G$, то существует элемент z, удовлетворяющий условиям: $z \in G$, yz = u. Тогда:

$$yx = (yx)u = (yx)(yz) = ((yx)y)z = (y(xy))z = (yu)z = yz = u.$$

Утверждение (вспомогательный результат №2). Пусть: $G - \varepsilon pynna; u \in G, \forall x \in G(xu = x), \forall x \in G \exists y \in G(xy = u).$ Тогда $\forall x \in G(ux = x).$

Доказательство. Пусть $x \in G$. Так как $\forall x \in G \exists y \in G(xy = u)$, то существует элемент y, удовлетворяющий условиям: $y \in G$, xy = u. Тогда:

$$ux = (xy)x = x(yx) = xu = x$$
. \square

Утверждение («правое основное уравнение»). Пусть: $G - \epsilon pynna; a, b \in G$. Существует единственный объект x, удовлетворяющий условиям: $x \in G$, ax = b.

Доказательство. Так как G — группа, то существует элемент u, удовлетворяющий условиям: $u \in G$, $\forall x \in G(xu=x)$, $\forall x \in G \exists y \in G(xy=u)$. Так как: $\forall x \in G \exists y \in G(xy=u)$, $a \in G$, то существует элемент \tilde{a} , удовлетворяющий условиям: $\tilde{a} \in G$, $a\tilde{a} = u$.

Пусть: $x \in G$, ax = b. Тогда:

$$\tilde{a}(ax) = \tilde{a}b,$$

 $(\tilde{a}a)x = \tilde{a}b,$
 $ux = \tilde{a}b,$
 $x = \tilde{a}b.$

Пусть: $x_1 \in G$, $ax_1 = b$; $x_2 \in G$, $ax_2 = b$. Тогда: $x_1 = \tilde{a}b$, $x_2 = \tilde{a}b$. Следовательно, $x_1 = x_2$. Обозначим, $x = \tilde{a}b$. Тогда: $x \in G$,

$$ax = a(\tilde{a}b) = (a\tilde{a})b = ub = b.$$

Утверждение («левое основное уравнение»). Пусть: $G - \mathit{группa}; a, b \in G$. Существует единственный объект x, удовлетворяющий условиям: $x \in G$, xa = b.

Доказательство. Так как G — группа, то существует элемент u, удовлетворяющий условиям: $u \in G, \ \forall x \in G(xu=x), \ \forall x \in G \exists y \in G(xy=u).$ Так как: $\forall x \in G \exists y \in G(xy=u), \ a \in G$, то существует элемент \tilde{a} , удовлетворяющий условиям: $\tilde{a} \in G, \ a\tilde{a} = u$.

Пусть: $x \in G$, xa = b. Тогда:

$$(xa)\tilde{a} = b\tilde{a},$$

$$x(a\tilde{a}) = b\tilde{a},$$

$$xu = b\tilde{a},$$

$$x = b\tilde{a}.$$

Пусть: $x_1 \in G, x_1a=b; x_2 \in G, x_2a=b$. Тогда: $x_1=b\tilde{a}, x_2=b\tilde{a}$. Следовательно, $x_1=x_2$. Обозначим, $x=b\tilde{a}$. Тогда: $x\in G,$

$$xa = (b\tilde{a})a = b(\tilde{a}a) = bu = b.$$

Определение (единичный элемент). Пусть G — группа. Будем говорить, что u — единичный элемент группы G, если: $u \in G$, $\forall x \in G(xu = x)$.

По сути дела, мы определили единичный элемент группы как правый единичный элемент группы.

Утверждение (существование и единственность единичного элемента). Пусть G- группа. Существует единственный объект u, удовлетворяющий условию: u- единичный
элемент группы G.

Доказательство. Так как G — группа, то существует элемент u, удовлетворяющий условиям: $u \in G, \, \forall x \in G(xu=x), \, \forall x \in G \exists y \in G(xy=u)$. Так как: $u \in G, \, \forall x \in G(xu=x), \, \text{то} u$ — единичный элемент группы G.

Пусть: u_1 — единичный элемент группы G, u_2 — единичный элемент группы G. Тогда: $u_1 \in G, \ \forall x \in G(xu_1 = x); \ u_2 \in G, \ \forall x \in G(xu_2 = x)$. Так как: $\forall x \in G(xu_1 = x), \ u_1 \in G, \ \text{то}$ $u_1u_1 = u_1$. Так как: $\forall x \in G(xu_2 = x), \ u_1 \in G, \ \text{то}$ $u_1u_2 = u_1$. Тогда $u_1 = u_2$.

Oпределение (обозначение для единичного элемента). Пусть G — группа. Обозначим через e единичный элемент группы G.

Утверждение (основные свойства единичного элемента). Пусть $G - \mathit{группа}$. Тогда: $e \in G$, $\forall x \in G(xe = x)$, $\forall x \in G(ex = x)$.

Доказательство. Так как e — единичный элемент группы G, то: $e \in G$, $\forall x \in G(xe = x)$. Так как $e \in G$, то $\forall x \in G \exists y \in G(xy = e)$. Так как: $e \in G$, $\forall x \in G(xe = x)$, $\forall x \in G \exists y \in G(xy = e)$, то $\forall x \in G(ex = x)$.

Замечание (обратный элемент). Пусть G — группа.

Пусть $x \in G$. Будем говорить, что y — обратный элемент к элементу x, если: $y \in G$, xy = e.

Пусть $x \in G$. Так как $e \in G$, то существует единственный объект y, удовлетворяющий условиям: $y \in G$, xy = e. Тогда существует единственный объект y, удовлетворяющий условию: y — обратный элемент x.

Пусть $x \in G$. Обозначим через x^{-1} обратный элемент к элементу x.

Утверждение (основные свойства обратного элемента). Пусть: $G - \mathit{группa}; \ x \in G.$ $\mathit{Torda}: \ x^{-1} \in G, \ xx^{-1} = e, \ x^{-1}x = e.$

Доказательство. Так как: $x \in G$, x^{-1} — обратный элемент к элементу x, то: $x^{-1} \in G$, $xx^{-1} = e$. Так как e — единичный элемент группы G, то: $e \in G$, $\forall x \in G(xe = x)$. Так как $e \in G$, то $\forall x \in G \exists y \in G(xy = e)$. Так как: $e \in G$, $\forall x \in G(xe = x)$, $\forall x \in G \exists y \in G(xy = e)$; $x \in G$, $x^{-1} \in G$, $xx^{-1} = e$, то $x^{-1}x = e$.

Утверждение. Пусть: $G - \varepsilon pynna; x, y \in G$. Тогда $(xy)^{-1} = y^{-1}x^{-1}$.

Доказательство. Очевидно: $y^{-1}x^{-1} \in G$,

$$(xy)(y^{-1}x^{-1}) = ((xy)y^{-1})x^{-1} = (x(yy^{-1}))x^{-1} = (xe)x^{-1} = xx^{-1} = e.$$

Тогда
$$(xy)^{-1} = y^{-1}x^{-1}$$
.

Замечание (возведение элемента в целую степень). Пусть G — группа. Пусть:

1. α — функция;

- 2. $D(\alpha) = G \times \mathbb{Z}$;
- 3. $\forall x \in G(\alpha(x,0) = e);$
- 4. $\forall x \in G \forall k (k \in \mathbb{Z} \land k \ge 0) (\alpha(x, k+1) = \alpha(x, k)x);$
- 5. $\forall x \in G \forall k (k \in \mathbb{Z} \land k \leq 0) (\alpha(x, k-1) = \alpha(x, k)x^{-1}).$

Нетрудно доказать, что $\alpha \colon G \times \mathbb{Z} \implies G$. Пусть $x \in G$. Тогда:

$$\alpha(x,1) = \alpha(x,0+1) = \alpha(x,0)x = ex = x;$$

$$\alpha(x,-1) = \alpha(x,0-1) = \alpha(x,0)x^{-1} = ex^{-1} = x^{-1}.$$

Далее обычно будем писать « x^k » вместо « $\alpha(x,k)$ ».

Утверждение. Пусть $G - \epsilon pynna.$

- 1. Пусть: $x \in G$, $k \in \mathbb{Z}$. Тогда $x^{k+1} = x^k x$.
- 2. Пусть: $x \in G$, $k \in \mathbb{Z}$. Тогда $x^{k-1} = x^k x^{-1}$.

Доказательство.

1. Пусть $k \geqslant 0$. Тогда $x^{k+1} = x^k x$.

Пусть $k\leqslant -1$. Тогда: $k+1\in\mathbb{Z},\ k+1\leqslant 0$. Следовательно: $x^kx=x^{(k+1)-1}x=(x^{k+1}x^{-1})x=x^{k+1}$.

2. Пусть $k \leq 0$. Тогда $x^{k-1} = x^k x^{-1}$.

Пусть $k\geqslant 1$. Тогда: $k-1\in\mathbb{Z},\ k-1\geqslant 0$. Следовательно: $x^kx^{-1}=x^{(k-1)+1}x^{-1}=(x^{k-1}x)x^{-1}=x^{k-1}$.

Утверждение. Пусть G — группа. Тогда $\forall x \in G \forall k \in \mathbb{Z} \forall m \in \mathbb{Z} (x^{k+m} = x^k x^m)$.

Доказательство. Пусть: $x \in G$, $k \in \mathbb{Z}$. Докажем, что: $\forall m (m \in \mathbb{Z} \land m \geqslant 0) (x^{k+m} = x^k x^m)$, $\forall m (m \in \mathbb{Z} \land m \leqslant 0) (x^{k+m} = x^k x^m)$.

Очевидно: $x^{k+0} = x^k$, $x^k x^0 = x^k e = x^k$. Тогда $x^{k+0} = x^k x^0$.

Пусть: $m \in \mathbb{Z}, \, m \geqslant 0, \, x^{k+m} = x^k x^m.$ Тогда:

$$x^{k+(m+1)} = x^{(k+m)+1} = x^{k+m}x = (x^k x^m)x = x^k (x^m x) = x^k x^{m+1}.$$

Итак, $\forall m (m \in \mathbb{Z} \land m \geqslant 0) (x^{k+m} = x^k x^m).$

Пусть: $m \in \mathbb{Z}, \, m \leqslant 0, \, x^{k+m} = x^k x^m$. Тогда:

$$x^{k+(m-1)} = x^{(k+m)-1} = x^{k+m}x^{-1} = (x^kx^m)x^{-1} = x^k(x^mx^{-1}) = x^kx^{m-1}.$$

Итак, $\forall m (m \in \mathbb{Z} \land m \leqslant 0) (x^{k+m} = x^k x^m).$

Утверждение. Пусть: $G - \epsilon pynna; x \in G, k \in \mathbb{Z}$. Тогда $(x^k)^{-1} = x^{-k}$.

Доказательство. Очевидно: $x^{-k} \in G$, $x^k x^{-k} = x^{k+(-k)} = x^0 = e$. Тогда $(x^k)^{-1} = x^{-k}$. \square

Утверждение. Пусть G — группа. Тогда $\forall x \in G \forall k \in \mathbb{Z} \forall m \in \mathbb{Z} \left(x^{mk} = (x^k)^m\right)$.

Доказательство. Пусть: $x \in G$, $k \in \mathbb{Z}$. Докажем, что: $\forall m (m \in \mathbb{Z} \land m \geqslant 0) (x^{mk} = (x^k)^m)$, $\forall m (m \in \mathbb{Z} \land m \leqslant 0) (x^{mk} = (x^k)^m)$.

Очевидно: $x^{0k} = x^0 = e$, $(x^k)^{0'} = e$. Тогда $x^{0k} = (x^k)^0$.

Пусть: $m \in \mathbb{Z}$, $m \geqslant 0$, $x^{mk} = (x^k)^m$. Тогда:

$$x^{(m+1)k} = x^{mk+k} = x^{mk}x^k = (x^k)^m x^k = (x^k)^{m+1}$$
.

Итак, $\forall m (m \in \mathbb{Z} \land m \geqslant 0) (x^{mk} = (x^k)^m).$

Пусть: $m \in \mathbb{Z}$, $m \leqslant 0$, $x^{mk} = (x^k)^m$. Тогда:

$$x^{(m-1)k} = x^{mk+(-k)} = x^{mk}x^{-k} = (x^k)^m(x^k)^{-1} = (x^k)^{m-1}.$$

Итак, $\forall m (m \in \mathbb{Z} \land m \leqslant 0) (x^{mk} = (x^k)^m).$

Замечание. Пусть: G — группа, используется аддитивная форма записи алгебраической операции. Будем применять термины: «нулевой элемент», «противоположный элемент» вместо терминов: «единичный элемент», «обратный элемент». Будем писать: « θ », «-x», «kx» вместо: «e», « x^{-1} », « x^k ».

Лекция 2. Комплексные числа (1-й семестр)

2.1. Определение комплексного числа

Будем говорить, что z — комплексное число, если z — упорядоченная пара вещественных чисел. Точнее, будем говорить, что z — комплексное число, если $\exists x \exists y (x \in \mathbb{R} \land y \in \mathbb{R} \land z = (x,y))$.

Обозначим через С множество всех комплексных чисел. Тогда:

$$\mathbb{C} = \left\{ z \colon \exists x \exists y \big(x \in \mathbb{R} \land y \in \mathbb{R} \land z = (x, y) \big) \right\} = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2.$$

Замечание. Пусть $z \in \mathbb{C}$. Очевидно: $\exists x \exists y \big(x \in \mathbb{R} \land y \in \mathbb{R} \land z = (x,y) \big), \ \forall x_1 \forall y_1 \forall x_2 \forall y_2 \big(z = (x_1,y_1) \land z = (x_2,y_2) \implies x_1 = x_2 \land y_1 = y_2 \big).$

Пусть $z \in \mathbb{C}$. Пусть: x, y — некоторые объекты, z = (x, y). Обозначим: $\operatorname{Re}(z) = x$, $\operatorname{Im}(z) = y$. Очевидно, $\operatorname{Re}(z)$, $\operatorname{Im}(z) \in \mathbb{R}$. Будем говорить, что: $\operatorname{Re}(z)$ — вещественная часть числа z, $\operatorname{Im}(z)$ — мнимая часть числа z.

Пусть $z_1, z_2 \in \mathbb{C}$. Обозначим, $z_1 + z_2 = (\text{Re}(z_1) + \text{Re}(z_2), \text{Im}(z_1) + \text{Im}(z_2))$. Очевидно, $z_1 + z_2 \in \mathbb{C}$. Будем говорить, что $z_1 + z_2$ — сумма чисел z_1, z_2 .

Обозначим, $0_{\mathbb{C}} = (0,0)$. Очевидно, $0_{\mathbb{C}} \in \mathbb{C}$. Будем говорить, что $0_{\mathbb{C}}$ — нуль на множестве \mathbb{C} .

Пусть $z \in \mathbb{C}$. Обозначим, $-z = (-\operatorname{Re}(z), -\operatorname{Im}(z))$. Очевидно, $-z \in \mathbb{C}$. Будем говорить, что -z — противоположное число к числу z.

Пусть $z_1, z_2 \in \mathbb{C}$. Обозначим, $z_1z_2 = (\text{Re}(z_1) \, \text{Re}(z_2) - \text{Im}(z_1) \, \text{Im}(z_2), \text{Re}(z_1) \, \text{Im}(z_2) + \text{Im}(z_1) \, \text{Re}(z_2))$. Очевидно, $z_1z_2 \in \mathbb{C}$. Будем говорить, что z_1z_2 — произведение чисел z_1 , z_2 .

Обозначим, $1_{\mathbb{C}}=(1,0)$. Очевидно, $1_{\mathbb{C}}\in\mathbb{C}$. Будем говорить, что $1_{\mathbb{C}}$ — единица на множестве \mathbb{C} .

Пусть: $z \in \mathbb{C}$, $z \neq 0_{\mathbb{C}}$. Обозначим, $z^{-1} = \left(\frac{\text{Re}(z)}{(\text{Re}\,z)^2 + (\text{Im}\,z)^2}, \frac{-\text{Im}(z)}{(\text{Re}\,z)^2 + (\text{Im}\,z)^2}\right)$. Очевидно, $z^{-1} \in \mathbb{C}$. Будем говорить, что z^{-1} — обратное число к числу z.

Обозначим, i=(0,1). Очевидно, $i\in\mathbb{C}$. Будем говорить, что i — мнимая единица на множестве \mathbb{C} .

Обозначим: $\psi(x) = (x,0)$ при $x \in \mathbb{R}$. Очевидно, $\psi : \mathbb{R} \implies \mathbb{C}$. Будем говорить, что ψ — вложение множества \mathbb{R} в множество \mathbb{C} .

Прямая проверка показывает, что справедливы утверждения:

- 1. $z_1 + z_2 = z_2 + z_1$ при $z_1, z_2 \in \mathbb{C}$;
- 2. $(z_1+z_2)+z_3=z_1+(z_2+z_3)$ при $z_1, z_2, z_3 \in \mathbb{C}$;
- 3. $z + 0_{\mathbb{C}} = z$ при $z \in \mathbb{C}$;
- 4. $z + (-z) = 0_{\mathbb{C}}$ при $z \in \mathbb{C}$;
- 5. $z_1z_2 = z_2z_1$ при $z_1, z_2 \in \mathbb{C}$;
- 6. $(z_1z_2)z_3=z_1(z_2z_3)$ при $z_1, z_2, z_3\in\mathbb{C}$;
- 7. $1_{\mathbb{C}} \neq 0_{\mathbb{C}}, z1_{\mathbb{C}} = z$ при $z \in \mathbb{C}$;
- 8. $zz^{-1} = 1_{\mathbb{C}}$ при: $z \in \mathbb{C}, z \neq 0_{\mathbb{C}}$;
- 9. $z_1(z_2+z_3)=z_1z_2+z_1z_3$ при $z_1, z_2, z_3 \in \mathbb{C}$;
- 10. $ii = -1_{\mathbb{C}}$;
- 11. ψ обратимая функция, $\psi(x_1+x_2)=\psi(x_1)+\psi(x_2)$ при $x_1, x_2\in\mathbb{R}; \ \psi(x_1x_2)=\psi(x_1)\psi(x_2)$ при $x_1, x_2\in\mathbb{R};$
 - 12. $z = \psi(\operatorname{Re} z) + i\psi(\operatorname{Im} z)$ при $z \in \mathbb{C}$.

Утверждение.

- 1. Пусть $a, b \in \mathbb{C}$. Существует единственное число z, yдовлетворяющее условиям: $z \in \mathbb{C}, a + z = b$.
- 2. Пусть: $a, b \in \mathbb{C}, a \neq 0_{\mathbb{C}}$. Существует единственное число z, удовлетворяющее условиям: $z \in \mathbb{C}, az = b$.

Доказательство.

1. Пусть: $z \in \mathbb{C}$, a+z=b. Тогда:

$$a + z = b,$$

$$-a + (a + z) = -a + b,$$

$$(-a + a) + z = -a + b,$$

$$(a + (-a)) + z = -a + b,$$

$$0_{\mathbb{C}} + z = -a + b,$$

$$z + 0_{\mathbb{C}} = -a + b,$$

$$z = -a + b.$$

Пусть: $z_1 \in \mathbb{C}$, $a+z_1=b$, $z_2 \in \mathbb{C}$, $a+z_2=b$. Тогда: $z_1=-a+b$, $z_2=-a+b$. Следовательно, $z_1=z_2$.

Пусть z = -a + b. Тогда: $z \in \mathbb{C}$, $a + z = a + (-a + b) = (a + (-a)) + b = 0_{\mathbb{C}} + b = b + 0_{\mathbb{C}} = b$.

2. Пусть: $z \in \mathbb{C}$, az = b. Тогда:

$$az = b,$$

$$a^{-1}(az) = a^{-1}b,$$

$$(a^{-1}a)z = a^{-1}b,$$

$$(aa^{-1})z = a^{-1}b,$$

$$1_{\mathbb{C}}z = a^{-1}b,$$

$$z1_{\mathbb{C}} = a^{-1}b,$$

$$z = a^{-1}b.$$

Пусть: $z_1\in\mathbb{C},\ az_1=b,\ z_2\in\mathbb{C},\ az_2=b.$ Тогда: $z_1=a^{-1}b,\ z_2=a^{-1}b.$ Следовательно, $z_1=z_2.$

Пусть
$$z = a^{-1}b$$
. Тогда: $z \in \mathbb{C}$, $az = a(a^{-1}b) = (aa^{-1})b = 1_{\mathbb{C}}b = b1_{\mathbb{C}} = b$.

Пусть $z_1, z_2 \in \mathbb{C}$. Обозначим, $z_1-z_2=z_1+(-z_2)$. Очевидно: $z_1-z_2\in \mathbb{C}, z_2+(z_1-z_2)=z_1$. Будем говорить, что z_1-z_2 — разность чисел z_1, z_2 .

Пусть: $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$. Обозначим, $\frac{z_1}{z_2} = z_1 z_2^{-1}$. Очевидно: $\frac{z_1}{z_2} \in \mathbb{C}, z_2 \frac{z_1}{z_2} = z_1$. Будем говорить, что $\frac{z_1}{z_2}$ — отношение чисел z_1, z_2 (частное чисел z_1, z_2).

Утверждение.

- 1. Пусть $z \in \mathbb{C}$. Тогда $z0_{\mathbb{C}} = 0_{\mathbb{C}}$.
- 2. Пусть $z \in \mathbb{C}$. Тогда $z(-1_{\mathbb{C}}) = -z$.
- 3. Справедливо утверждение $(-1_{\mathbb{C}})(-1_{\mathbb{C}})=1_{\mathbb{C}}$.
- 4. Пусть: $z \in \mathbb{C}, z \neq 0_{\mathbb{C}}$. Тогда: $z^{-1} \neq 0_{\mathbb{C}}, (z^{-1})^{-1} = z$.
- 5. $\Pi ycmb: z_1, z_2 \in \mathbb{C}, z_1, z_2 \neq 0_{\mathbb{C}}. Torda: z_1z_2 \neq 0_{\mathbb{C}}, (z_1z_2)^{-1} = z_1^{-1}z_2^{-1}.$
- 6. Справедливо утверждение $\psi(0) = 0_{\mathbb{C}}$.
- 7. Справедливо утверждение $\psi(1) = 1_{\mathbb{C}}$.

- 8. Справедливо утверждение $\psi(-1) = -1_{\mathbb{C}}$.
- 9. Пусть: $x \in \mathbb{R}, x \neq 0$. Тогда: $\psi(x) \neq 0_{\mathbb{C}}, \psi(x^{-1}) = \psi(x)^{-1}$.
- 10. Пусть $x, y \in \mathbb{R}$. Тогда: $\operatorname{Re}(\psi(x) + i\psi(y)) = x$, $\operatorname{Im}(\psi(x) + i\psi(y)) = y$.

Доказательство.

4. Предположим, что $z^{-1} = 0_{\mathbb{C}}$. Тогда: $1_{\mathbb{C}} = zz^{-1} = z0_{\mathbb{C}} = 0_{\mathbb{C}}$ (что противоречит утверждению $1_{\mathbb{C}} \neq 0_{\mathbb{C}}$). Итак, $z^{-1} \neq 0_{\mathbb{C}}$.

Очевидно, $z^{-1}(z^{-1})^{-1}=1_{\mathbb{C}}$. С другой стороны: $z^{-1}z=zz^{-1}=1_{\mathbb{C}}$. Так как $z^{-1}\neq 0_{\mathbb{C}}$, TO $(z^{-1})^{-1} = z$.

5. Предположим, что $z_1z_2=0_\mathbb{C}$. Очевидно, $z_10_\mathbb{C}=0_\mathbb{C}$. Так как $z_1\neq 0_\mathbb{C}$, то $z_2=0_\mathbb{C}$ (что противоречит утверждению $z_2 \neq 0_{\mathbb{C}}$). Итак, $z_1 z_2 \neq 0_{\mathbb{C}}$.

Очевидно, $(z_1z_2)(z_1z_2)^{-1}=1_{\mathbb{C}}$. С другой стороны: $(z_1z_2)(z_1^{-1}z_2^{-1})=(z_1z_2)(z_2^{-1}z_1^{-1})=$ $(z_1(z_2z_2^{-1}))z_1^{-1}=(z_11_{\mathbb{C}})z_1^{-1}=z_1z_1^{-1}=1_{\mathbb{C}}$. Так как $z_1z_2\neq 0_{\mathbb{C}}$, то $(z_1z_2)^{-1}=z_1^{-1}z_2^{-1}$. 9. Так как $x\neq 0$, то: $\psi(x)\neq \psi(0)=0_{\mathbb{C}}$. Очевидно: $\psi(x)\psi(x^{-1})=\psi(xx^{-1})=\psi(1)=1_{\mathbb{C}}$.

С другой стороны, $\psi(x)\psi(x)^{-1}=1_{\mathbb{C}}$. Так как $\psi(x)\neq 0_{\mathbb{C}}$, то $\psi(x^{-1})=\psi(x)^{-1}$.

Замечание. Пусть $z \in \mathbb{R}(\psi)$. Тогда $z \in \mathbb{C}$. Очевидно, существует число x, удовлетворяющее условиям: $x \in \mathbb{R}$, $z = \psi(x)$. Тогда: $z = \psi(x) = \psi(x) + i\psi(0)$. Следовательно, $\mathrm{Im}(z) = 0$.

Пусть: $z \in \mathbb{C}$, $\operatorname{Im}(z) = 0$. Тогда: $z = \psi(\operatorname{Re} z) + i\psi(\operatorname{Im} z) = \psi(\operatorname{Re} z) + i\psi(0) = \psi(\operatorname{Re} z) \in$ $R(\psi)$.

Пусть: $x \in \mathbb{R}, z \in \mathbb{C}$. Тогда: $\psi(x)z = \psi(x)\big(\psi(\operatorname{Re} z) + i\psi(\operatorname{Im} z)\big) = \psi(x)\psi(\operatorname{Re} z) +$ $i(\psi(x)\psi(\operatorname{Im} z)) = \psi(x\operatorname{Re}(z)) + i\psi(x\operatorname{Im}(z))$. Следовательно: $\operatorname{Re}(\psi(x)z) = x\operatorname{Re}(z)$, $\operatorname{Im}(\psi(x)z) = x \operatorname{Im}(z).$

Пусть $z\in\mathbb{C}$. Обозначим, $\overline{z}=\psi(\operatorname{Re}z)-i\psi(\operatorname{Im}z)$. Очевидно, $\overline{z}\in\mathbb{C}$. Будем говорить, что \overline{z} — сопряжённое число к числу z.

Утверждение.

- 1. Пусть $z \in \mathbb{C}$. Тогда $\operatorname{Re}(z) = 0 \iff \overline{z} = -z$.
- 2. Пусть $z \in \mathbb{C}$. Тогда $\operatorname{Im}(z) = 0 \iff \overline{z} = z$.
- 3. $\Pi ycmb \ z \in \mathbb{C}$. $Tor \partial a \ \overline{\overline{z}} = z$.
- 4. Пусть $z_1, z_2 \in \mathbb{C}$. Тогда $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.
- 5. Пусть $z_1, z_2 \in \mathbb{C}$. Тогда $\overline{z_1 z_2} = (\overline{z_1})(\overline{z_2})$.
- 6. Пусть: $z \in \mathbb{C}$, $z \neq 0_{\mathbb{C}}$. Тогда: $\overline{z} \neq 0_{\mathbb{C}}$, $\overline{z^{-1}} = (\overline{z})^{-1}$.

Замечание. Далее мы будем отождествлять: числа $x, \psi(x)$, множества $\mathbb{R}, \mathrm{R}(\psi)$.

2.2. Модуль и аргумент комплексного числа

Скалярное произведение комплексных чисел

Пусть $z_1, z_2 \in \mathbb{C}$. Обозначим, $(z_1, z_2) = \text{Re}(z_1) \, \text{Re}(z_2) + \text{Im}(z_1) \, \text{Im}(z_2)$. Очевидно, $(z_1, z_2) \in \mathbb{R}$. Будем говорить, что (z_1, z_2) — скалярное произведение чисел z_1, z_2 .

Утверждение.

- 1. Пусть $z_1, z_2 \in \mathbb{C}$. Тогда $(z_1, z_2) = (z_2, z_1)$.
- 2. Пусть $z_1, z_2, z_3 \in \mathbb{C}$. Тогда $(z_1, z_2 + z_3) = (z_1, z_2) + (z_1, z_3)$.
- 3. Пусть: $z_1, z_2 \in \mathbb{C}, \lambda \in \mathbb{R}$. Тогда $(z_1, \lambda z_2) = \lambda(z_1, z_2)$.
- 4. Пусть: $z \in \mathbb{C}$, $z \neq 0$. Тогда (z, z) > 0.

Замечание. Очевидно: $(0,0) = (0,0\cdot 0) = 0\cdot (0,0) = 0$.

Утверждение (неравенство Коши—Буняковского). Пусть $z_1, z_2 \in \mathbb{C}$. Тогда $|(z_1, z_2)| \leq \sqrt{(z_1, z_1)} \sqrt{(z_2, z_2)}$.

Доказательство. Пусть $z_2=0$. Тогда: $\left|(z_1,z_2)\right|=0=\sqrt{(z_1,z_1)}\sqrt{(z_2,z_2)}$. Пусть $z_2\neq 0$. Тогда $(z_2,z_2)>0$. Пусть $\lambda\in\mathbb{R}$. Тогда:

$$(z_1 + \lambda z_2, z_1 + \lambda z_2) \ge 0,$$

$$(z_1, z_1) + (z_1, \lambda z_2) + (\lambda z_2, z_1) + (\lambda z_2, \lambda z_2) \ge 0,$$

$$(z_1, z_1) + (z_1, z_2)\lambda + (z_2, z_1)\lambda + (z_2, z_2)\lambda\lambda \ge 0,$$

$$(z_1, z_1) + 2(z_1, z_2)\lambda + (z_2, z_2)\lambda^2 \ge 0.$$

В силу произвольности выбора $\lambda \in \mathbb{R}$ получаем, что $4(z_1,z_2)^2 - 4(z_1,z_1)(z_2,z_2) \leqslant 0$. Тогда $|(z_1,z_2)| \leqslant \sqrt{(z_1,z_1)}\sqrt{(z_2,z_2)}$.

Модуль комплексного числа

Пусть $z\in\mathbb{C}$. Обозначим, $|z|_{\mathbb{C}}=\sqrt{(\operatorname{Re}z)^2+(\operatorname{Im}z)^2}$. Очевидно, $|z|_{\mathbb{C}}\in\mathbb{R}$. Будем говорить, что $|z|_{\mathbb{C}}$ — модуль числа z.

Утверждение.

- 1. Пусть $z \in \mathbb{C}$. Тогда $|z|_{\mathbb{C}} = \sqrt{(z,z)}$.
- 2. Пусть $x \in \mathbb{R}$. Тогда $|x|_{\mathbb{C}} = |x|$.
- 3. Справедливо утверждение $|0|_{\mathbb{C}} = 0$.
- 4. $\Pi ycmb: z \in \mathbb{C}, z \neq 0. Tor \partial a |z|_{\mathbb{C}} > 0.$
- 5. $\Pi ycmb \ z_1, \ z_2 \in \mathbb{C}. \ Torda \ |z_1 + z_2|_{\mathbb{C}} \leqslant |z_1|_{\mathbb{C}} + |z_2|_{\mathbb{C}}.$

Доказательство.

5. Очевидно:

$$|z_{1} + z_{2}|_{\mathbb{C}} = \sqrt{(z_{1} + z_{2}, z_{1} + z_{2})} = \sqrt{(z_{1}, z_{1}) + (z_{1}, z_{2}) + (z_{2}, z_{1}) + (z_{2}, z_{2})} =$$

$$= \sqrt{(z_{1}, z_{1}) + 2(z_{1}, z_{2}) + (z_{2}, z_{2})} \leqslant \sqrt{(z_{1}, z_{1}) + 2|(z_{1}, z_{2})| + (z_{2}, z_{2})} \leqslant$$

$$\leqslant \sqrt{(z_{1}, z_{1}) + 2\sqrt{(z_{1}, z_{1})}\sqrt{(z_{2}, z_{2})} + (z_{2}, z_{2})} = \sqrt{|z_{1}|_{\mathbb{C}}^{2} + 2|z_{1}|_{\mathbb{C}}|z_{2}|_{\mathbb{C}} + |z_{2}|_{\mathbb{C}}^{2}} =$$

$$= \sqrt{(|z_{1}|_{\mathbb{C}} + |z_{2}|_{\mathbb{C}})^{2}} = |z_{1}|_{\mathbb{C}} + |z_{2}|_{\mathbb{C}}. \quad \Box$$

«Большой аргумент»

Пусть $z \in \mathbb{C}$. Будем говорить, что φ — аргумент числа z, если: $\varphi \in \mathbb{R}$, $z = |z| (\cos(\varphi) + i\sin(\varphi))$.

Пусть $z \in \mathbb{C}$. Обозначим через $\operatorname{Arg}(z)$ множество всех аргументов числа z.

3амечание (выражение для $\mathrm{Arg}(z)$). Пусть z=0. Очевидно, $\mathrm{Arg}(z)=\mathbb{R}$.

Пусть: $z \in \mathbb{C}, z \neq 0$. Очевидно:

$$\operatorname{Arg}(z) = \left\{ \varphi \colon \varphi \in \mathbb{R} \land |z| \cos(\varphi) = \operatorname{Re}(z) \land |z| \sin(\varphi) = \operatorname{Im}(z) \right\} =$$

$$= \left\{ \varphi \colon \varphi \in \mathbb{R} \land \cos(\varphi) = \frac{\operatorname{Re}(z)}{|z|} \land \sin(\varphi) = \frac{\operatorname{Im}(z)}{|z|} \right\}.$$

Так как $\left(\frac{\text{Re}(z)}{|z|}\right)^2 + \left(\frac{\text{Im}(z)}{|z|}\right)^2 = 1$, то существует число φ_0 , удовлетворяющее условию $\varphi_0 \in \text{Arg}(z)$.

Пусть $\varphi_0 \in \operatorname{Arg}(z)$. Пусть $k \in \mathbb{Z}$. Очевидно, $\varphi_0 + 2\pi k \in \operatorname{Arg}(z)$. Пусть $\varphi \in \operatorname{Arg}(z)$. Нетрудно доказать, что существует число k, удовлетворяющее условиям: $k \in \mathbb{Z}$, $\varphi = \varphi_0 + 2\pi k$. Очевидно:

$$\operatorname{Arg}(z) = \{ \varphi_0 + 2\pi k \colon k \in \mathbb{Z} \} = \{ \varphi \colon \exists k (k \in \mathbb{Z} \land \varphi = \varphi_0 + 2\pi k) \}.$$

Замечание (тригонометрическая форма записи комплексного числа). Пусть: $z \in \mathbb{C}, \varphi \in \operatorname{Arg}(z)$. Тогда $z = |z| \left(\cos(\varphi) + i\sin(\varphi)\right)$.

Пусть: $\rho \in [0, +\infty)$, $\varphi \in \mathbb{R}$, $z = \rho(\cos(\varphi) + i\sin(\varphi))$. Тогда:

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{\left(\rho \cos(\varphi)\right)^2 + \left(\rho \sin(\varphi)\right)^2} = \sqrt{\rho^2} = \rho.$$

Следовательно, $z = |z| (\cos(\varphi) + i\sin(\varphi))$. Тогда $\varphi \in \text{Arg}(z)$.

3амечание. Пусть $\varphi_1, \, \varphi_2 \in \mathbb{R}$. Тогда:

$$(\cos(\varphi_1) + i\sin(\varphi_1))(\cos(\varphi_2) + i\sin(\varphi_2)) =$$

$$= \cos(\varphi_1)\cos(\varphi_2) + i\cos(\varphi_1)\sin(\varphi_2) + i\sin(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2) =$$

$$= (\cos(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2)) + i(\sin(\varphi_1)\cos(\varphi_2) + \cos(\varphi_1)\sin(\varphi_2)) =$$

$$= \cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2).$$

Пусть $\varphi \in \mathbb{R}$. Очевидно, $\cos(\varphi) + i\sin(\varphi) \neq 0$. Очевидно:

$$(\cos(\varphi) + i\sin(\varphi))(\cos(\varphi) + i\sin(\varphi))^{-1} = 1.$$

С другой стороны:

$$(\cos(\varphi) + i\sin(\varphi))(\cos(-\varphi) + i\sin(-\varphi)) = \cos(0) + i\sin(0) = 1.$$

Так как $\cos(\varphi) + i\sin(\varphi) \neq 0$, то $\left(\cos(\varphi) + i\sin(\varphi)\right)^{-1} = \cos(-\varphi) + i\sin(-\varphi)$.

3амечание. Пусть: $z_1,\,z_2\in\mathbb{C},\, \varphi_1\in\mathrm{Arg}(z_1),\, \varphi_2\in\mathrm{Arg}(z_2).$ Тогда:

$$z_1 z_2 = \left(|z_1| \left(\cos(\varphi_1) + i \sin(\varphi_1) \right) \right) \left(|z_2| \left(\cos(\varphi_2) + i \sin(\varphi_2) \right) \right) =$$
$$= \left(|z_1| \cdot |z_2| \right) \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right).$$

Следовательно: $|z_1z_2| = |z_1| \cdot |z_2|$, $\varphi_1 + \varphi_2 \in \text{Arg}(z_1z_2)$.

Пусть: $z \in \mathbb{C}$, $z \neq 0$, $\varphi \in \text{Arg}(z)$. Тогда:

$$z^{-1} = \left(|z| \left(\cos(\varphi) + i \sin(\varphi) \right) \right)^{-1} = |z|^{-1} \left(\cos(-\varphi) + i \sin(-\varphi) \right).$$

Следовательно: $|z^{-1}| = |z|^{-1}$, $-\varphi \in \text{Arg}(z^{-1})$.

«Малый аргумент»

Пусть: $\alpha \in \mathbb{R}$, $z \in \mathbb{C}$, $z \neq 0$. Существует единственное число φ , удовлетворяющее условиям: $\varphi \in \operatorname{Arg}(z)$, $\alpha \leqslant \varphi < \alpha + 2\pi$. Обозначим, $\operatorname{arg}_{\alpha}(z) = \varphi$.

Пусть: $\alpha \in \mathbb{R}$, z = 0. Обозначим, $\arg_{\alpha}(z) = \alpha$.

Пусть: $\alpha \in \mathbb{R}$, $z \in \mathbb{C}$, $z \neq 0$. Существует единственное число φ , удовлетворяющее условиям: $\varphi \in \operatorname{Arg}(z)$, $\alpha < \varphi \leqslant \alpha + 2\pi$. Обозначим, $\operatorname{arg}_{\alpha}^*(z) = \varphi$.

Пусть: $\alpha \in \mathbb{R}$, z = 0. Обозначим, $\arg_{\alpha}^*(z) = \alpha + 2\pi$.

Замечание (выражение для $\arg_{-\pi}^*(z)$). Пусть: $z \in \mathbb{C}, z \neq 0, x = \text{Re}(z), y = \text{Im}(z)$. Тогда $|z| = \sqrt{x^2 + y^2}$. Пусть $\varphi = \arg_{-\pi}^*(z)$. Тогда:

$$\begin{cases} \varphi \in (-\pi, \pi], \\ \cos(\varphi) = \frac{x}{\sqrt{x^2 + y^2}}, \\ \sin(\varphi) = \frac{y}{\sqrt{x^2 + y^2}}. \end{cases}$$

Пусть $x \neq 0$. Тогда: $\varphi \in \mathbb{R}$, $\cos(\varphi) \neq 0$, $\operatorname{tg}(\varphi) = \frac{y}{x}$. Следовательно, существует число k, удовлетворяющее условиям: $k \in \mathbb{Z}$, $\varphi = \operatorname{arctg}\left(\frac{y}{x}\right) + \pi k$.

- 1. Пусть x>0. Тогда: $\varphi\in(-\pi,\pi],\,\cos(\varphi)>0$. Следовательно, $\varphi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Тогда $\varphi=\arctan\left(\frac{y}{x}\right)$.
 - 2. Пусть: x=0, y>0. Тогда: $\varphi\in(-\pi,\pi], \cos(\varphi)=0, \sin(\varphi)>0$. Следовательно, $\varphi=\frac{\pi}{2}$.
- 3. Пусть: $x=0,\ y<0.$ Тогда: $\varphi\in(-\pi,\pi],\ \cos(\varphi)=0,\ \sin(\varphi)<0.$ Следовательно, $\varphi=-\frac{\pi}{2}.$
- 4. Пусть: $x<0,\ y\geqslant 0$. Тогда: $\varphi\in(-\pi,\pi],\ \cos(\varphi)<0,\ \sin(\varphi)\geqslant 0$. Следовательно, $\varphi\in\left(\frac{\pi}{2},\pi\right]$. Тогда $\varphi=\arctan\left(\frac{y}{x}\right)+\pi$.
- 5. Пусть: $x<0,\ y<0$. Тогда: $\varphi\in(-\pi,\pi],\ \cos(\varphi)<0,\ \sin(\varphi)<0$. Следовательно, $\varphi\in\left(-\pi,-\frac{\pi}{2}\right)$. Тогда $\varphi=\arctan\left(\frac{y}{x}\right)-\pi$.

Пусть z = 0. Тогда: |z| = 0, $\arg_{-\pi}^*(z) = \pi$.

2.3. Основные функции комплексной переменной

Комплексная экспонента

Пусть $z \in \mathbb{C}$. Обозначим, $\exp_{\mathbb{C}}(z) = \exp(\operatorname{Re} z) \left(\cos(\operatorname{Im} z) + i\sin(\operatorname{Im} z)\right)$. Справедливы утверждения:

- 1. $\exp_{\mathbb{C}}(z_1) \exp_{\mathbb{C}}(z_2) = \exp_{\mathbb{C}}(z_1 + z_2)$ при $z_1, z_2 \in \mathbb{C}$;
- 2. $\exp_{\mathbb{C}}(x) = \exp(x)$ при $x \in \mathbb{R}$;
- $3. \exp_{\mathbb{C}}(ix) = \cos(x) + i\sin(x)$ при $x \in \mathbb{R}$ (формула Эйлера).

3амечание (показательная форма записи комплексного числа). Пусть: $z \in \mathbb{C}, \ \varphi \in \operatorname{Arg}(z)$. Тогда: $z = |z| \left(\cos(\varphi) + i\sin(\varphi)\right) = |z| \exp_{\mathbb{C}}(i\varphi)$.

Пусть: $\rho \in [0, +\infty)$, $\varphi \in \mathbb{R}$, $z = \rho \cdot \exp_{\mathbb{C}}(i\varphi)$. Тогда: $\rho \in [0, +\infty)$, $\varphi \in \mathbb{R}$, $z = \rho(\cos(\varphi) + i\sin(\varphi))$. Следовательно: $\rho = |z|$, $\varphi \in \operatorname{Arg}(z)$.

Комплексный логарифм

Пусть: $z \in \mathbb{C}$, $z \neq 0$. Обозначим, $\operatorname{Ln}(z) = \{w : w \in \mathbb{C} \land \exp_{\mathbb{C}}(w) = z\}$.

3амечание. Пусть: $z \in \mathbb{C}, z \neq 0$. Очевидно:

$$w \in \operatorname{Ln}(z);$$

$$w \in \mathbb{C}, \ \exp_{\mathbb{C}}(w) = z;$$
[замена: $w \in \mathbb{C}, \ u = \operatorname{Re}(w), \ v = \operatorname{Im}(w); \ u, \ v \in \mathbb{R}, \ w = u + iv$]
$$u, \ v \in \mathbb{R}, \ \exp(u + iv) = z;$$

$$u, \ v \in \mathbb{R}, \ \exp(u) \exp_{\mathbb{C}}(iv) = z;$$

$$\begin{cases} u, \ v \in \mathbb{R}, \\ \exp(u) = |z|, \\ v \in \operatorname{Arg}(z); \end{cases}$$

$$\begin{cases} u = \ln(|z|), \\ v \in \operatorname{Arg}(z). \end{cases}$$

Комплексные тригонометрические и гиперболические тригонометрические функции

Пусть $x \in \mathbb{R}$. Тогда:

$$\exp_{\mathbb{C}}(ix) = \cos(x) + i\sin(x),$$

$$\exp_{\mathbb{C}}(-ix) = \cos(x) - i\sin(x).$$

Следовательно:

$$\cos(x) = \frac{1}{2} \left(\exp_{\mathbb{C}}(ix) + \exp_{\mathbb{C}}(-ix) \right),$$

$$\sin(x) = \frac{1}{2i} \left(\exp_{\mathbb{C}}(ix) - \exp_{\mathbb{C}}(-ix) \right).$$

Пусть $z \in \mathbb{C}$. Обозначим: $\cos_{\mathbb{C}}(z) = \frac{1}{2} (\exp_{\mathbb{C}}(iz) + \exp_{\mathbb{C}}(-iz)), \sin_{\mathbb{C}}(z) = \frac{1}{2i} (\exp_{\mathbb{C}}(iz) - \exp_{\mathbb{C}}(iz))$ $\exp_{\mathbb{C}}(-iz)$.

Пусть: $z \in \mathbb{C}$, $\cos_{\mathbb{C}}(z) \neq 0$. Обозначим, $\operatorname{tg}_{\mathbb{C}}(z) = \frac{\sin_{\mathbb{C}}(z)}{\cos_{\mathbb{C}}(z)}$. Пусть: $z \in \mathbb{C}$, $\sin_{\mathbb{C}}(z) \neq 0$. Обозначим, $\operatorname{ctg}_{\mathbb{C}}(z) = \frac{\cos_{\mathbb{C}}(z)}{\sin_{\mathbb{C}}(z)}$.

Пусть $z \in \mathbb{C}$. Обозначим: $\operatorname{ch}_{\mathbb{C}}(z) = \frac{1}{2} \left(\exp_{\mathbb{C}}(z) + \exp_{\mathbb{C}}(-z) \right)$, $\operatorname{sh}_{\mathbb{C}}(z) = \frac{1}{2} \left(\exp_{\mathbb{C}}(z) - \exp_{\mathbb{C}}(z) \right)$ $\exp_{\mathbb{C}}(-z)$).

Пусть: $z \in \mathbb{C}$, $\mathrm{ch}_{\mathbb{C}}(z) \neq 0$. Обозначим, $\mathrm{th}_{\mathbb{C}}(z) = \frac{\mathrm{sh}_{\mathbb{C}}(z)}{\mathrm{ch}_{\mathbb{C}}(z)}$. Пусть: $z \in \mathbb{C}$, $\mathrm{sh}_{\mathbb{C}}(z) \neq 0$. Обозначим, $\mathrm{cth}_{\mathbb{C}}(z) = \frac{\mathrm{ch}_{\mathbb{C}}(z)}{\mathrm{sh}_{\mathbb{C}}(z)}$

Возведение комплексного числа в целую степень

Пусть $z \in \mathbb{C}$. Обозначим: $z^0 = 1$, $z^1 = z$. Пусть: $z \in \mathbb{C}$, $n \in \mathbb{Z}$, $n \geqslant 2$. Обозначим: $z_1,\ldots,z_n=z,\,z^n=z_1\cdots z_n.$ Справедливы утверждения:

- 1. $z^{n+1} = z^n z$ при: $z \in \mathbb{C}, n \in \mathbb{Z}_+$;
- 2. $z^{n_1+n_2}=z^{n_1}z^{n_2}$ при: $z\in\mathbb{C}, n_1, n_2\in\mathbb{Z}_+$;
- 3. $(z_1z_2)^n = z_1^n z_2^n$ при: $z_1, z_2 \in \mathbb{C}, n \in \mathbb{Z}_+$.

Пусть: $z \in \mathbb{C}, z \neq 0, n \in \mathbb{Z}, n \leqslant -2$. Обозначим, $z^n = (z^{-1})^{-n}$. Справедливы утверждения:

- 1. $z^{n+1} = z^n z$ при: $z \in \mathbb{C}, z \neq 0, n \in \mathbb{Z}$;
- 2. $z^{n-1} = z^n z^{-1}$ при: $z \in \mathbb{C}, z \neq 0, n \in \mathbb{Z}$;
- 3. $z^{n_1+n_2}=z^{n_1}z^{n_2}$ при: $z\in\mathbb{C}, z\neq 0, n_1, n_2\in\mathbb{Z};$
- 4. $(z_1z_2)^n = z_1^n z_2^n$ при: $z_1, z_2 \in \mathbb{C}, z_1, z_2 \neq 0, n \in \mathbb{Z}$.

3амечание. Пусть: $\varphi \in \mathbb{R}$, $n \in \mathbb{Z}$. Тогда: $\cos(\varphi) + i\sin(\varphi) \neq 0$, $(\cos(\varphi) + i\sin(\varphi))^n = \cos(n\varphi) + i\sin(n\varphi)$ (формула Муавра).

Пусть: $z \in \mathbb{C}$, $n \in \mathbb{Z}$. Тогда: $\exp_{\mathbb{C}}(z) \neq 0$, $(\exp_{\mathbb{C}}(z))^n = \exp_{\mathbb{C}}(nz)$.

Возведение комплексного числа в рациональную степень

Пусть: $z \in \mathbb{C}$, $n \in \mathbb{N}$. Обозначим, $\sqrt[n]{z} = \{w : w \in \mathbb{C} \land w^n = z\}$.

Замечание. Пусть: $z \in \mathbb{C}$, $z \neq 0$, $n \in \mathbb{N}$, $\varphi_1 \in \operatorname{Arg}(z)$. Тогда:

$$w \in \sqrt[n]{z};$$

$$w \in \mathbb{C}, w^n = z;$$
[замена: $w \in \mathbb{C}, \rho_2 = |w|, \varphi_2 \in \operatorname{Arg}(w); \rho_2 \in [0, +\infty), \varphi_2 \in \mathbb{R}, w = \rho_2 \exp_{\mathbb{C}}(i\varphi_2)]$

$$\rho_2 \in [0, +\infty), \varphi_2 \in \mathbb{R}, \left(\rho_2 \exp_{\mathbb{C}}(i\varphi_2)\right)^n = z;$$

$$\rho_2 \in [0, +\infty), \varphi_2 \in \mathbb{R}, \left(\rho_2\right)^n \exp_{\mathbb{C}}(in\varphi_2) = z;$$

$$\begin{cases} \rho_2 \in [0, +\infty), \varphi_2 \in \mathbb{R}, \\ (\rho_2)^n = |z|, \\ n\varphi_2 \in \operatorname{Arg}(z); \end{cases}$$

$$\begin{cases} \rho_2 \in [0, +\infty), \varphi_2 \in \mathbb{R}, \\ (\rho_2)^n = |z|, \\ \exists k \in \mathbb{Z} \left(n\varphi_2 = \varphi_1 + 2\pi k\right); \end{cases}$$

$$\begin{cases} \rho_2 = \sqrt[n]{|z|}, \\ \exists k \in \mathbb{Z} \left(\varphi_2 = \frac{\varphi_1}{n} + \frac{2\pi k}{n}\right).$$

Пусть: z = 0, $n \in \mathbb{N}$. Тогда:

$$w \in \sqrt[n]{z};$$

$$w \in \mathbb{C}, w^n = z;$$

$$w = 0.$$

Пусть: $z \in \mathbb{C}$, $\alpha \in \mathbb{Q}$, $z \neq 0 \lor \alpha \geqslant 0$. Выберем числа m, n, удовлетворяющие условиям: $m \in \mathbb{Z}, n \in \mathbb{N}, m, n$ — взаимно простые числа, $\alpha = \frac{m}{n}$. Обозначим, $z^{\alpha} = \left(\sqrt[n]{z}\right)^m$.

Возведение комплексного числа в комплексную степень

Пусть: $z, \alpha \in \mathbb{C}, z \neq 0$. Обозначим, $z^{\alpha} = \exp_{\mathbb{C}}(\alpha \operatorname{Ln}(z))$.

Лекция 3. Линейное пространство (2-й семестр)

3.1. Определение линейного пространства

Определение (линейное пространство). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, $F_1 \colon M \times M \implies M$, $F_2 \colon \mathbb{K} \times M \implies M$. Далее обычно будем писать: «x + y» вместо « $F_1(x,y)$ »; « λx » вместо « $F_2(\lambda,x)$ ».

Пусть существует объект $u \in M$, удовлетворяющий условиям:

- 1. $\forall x \in M \forall y \in M(x + y = y + x);$
- 2. $\forall x \in M \forall y \in M \forall z \in M((x+y)+z=x+(y+z));$
- 3. $\forall x \in M(x+u=x);$
- 4. $\forall x \in M \exists y \in M(x+y=u);$
- 5. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha \beta)x = \alpha(\beta x));$
- 6. $\forall x \in M(1x = x);$
- 7. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha + \beta)x = \alpha x + \beta x);$
- 8. $\forall \lambda \in \mathbb{K} \forall x \in M \forall y \in M (\lambda(x+y) = \lambda x + \lambda y)$.

Будем говорить, что (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Замечание (факультативный материал). Приведённая выше формулировка определения линейного пространства имеет серьёзный недостаток. В этой формулировке слова «существует объект $u \in M$, удовлетворяющий условиям:» не допускают перевода на формальный язык. Дадим более аккуратную формулировку того-же определения (обратите внимание на то, что количество аксиом изменилось).

Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, $F_1 \colon M \times M \Longrightarrow M$, $F_2 \colon \mathbb{K} \times M \Longrightarrow M$. Далее обычно будем писать: (x + y) вместо $(F_1(x, y))$; (λx) вместо $(F_2(\lambda, x))$.

Пусть:

- 1. $\forall x \in M \forall y \in M(x + y = y + x);$
- 2. $\forall x \in M \forall y \in M \forall z \in M((x+y)+z=x+(y+z));$
- 3. $\exists u \in M (\forall x \in M(x+u=x) \land \forall x \in M \exists y \in M(x+y=u));$
- 4. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha \beta)x = \alpha(\beta x));$
- 5. $\forall x \in M(1x = x);$
- 6. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha + \beta)x = \alpha x + \beta x);$
- 7. $\forall \lambda \in \mathbb{K} \forall x \in M \forall y \in M(\lambda(x+y) = \lambda x + \lambda y)$.

Будем говорить, что (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Замечание (факультативный материал). Можно доказать (смотри конец настоящей лекции), что первая из приведённых в предыдущем замечании аксиом выводится из остальных. Соответственно, определение линейного пространства можно дать следующим образом.

Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, $F_1 \colon M \times M \Longrightarrow M$, $F_2 \colon \mathbb{K} \times M \Longrightarrow M$. Далее обычно будем писать: (x + y) вместо $(F_1(x, y))$; (x + y) вместо $(F_2(\lambda, x))$.

Пусть:

- 1. $\forall x \in M \forall y \in M \forall z \in M((x+y)+z=x+(y+z));$
- 2. $\exists u \in M (\forall x \in M(x+u=x) \land \forall x \in M \exists y \in M(x+y=u));$
- 3. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha \beta)x = \alpha(\beta x));$
- 4. $\forall x \in M(1x = x);$
- 5. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha + \beta)x = \alpha x + \beta x);$
- 6. $\forall \lambda \in \mathbb{K} \forall x \in M \forall y \in M (\lambda(x+y) = \lambda x + \lambda y)$.

Будем говорить, что (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Будем говорить, что: M — носитель пространства (M, F_1, F_2) ; F_1 — операция сложения пространства (M, F_1, F_2) ; F_2 — операция умножения пространства (M, F_1, F_2) ; F_1 , F_2 — линейные операции пространства (M, F_1, F_2) .

Будем говорить, что x — вектор пространства (M, F_1, F_2) , если $x \in M$.

Далее обычно будем отождествлять пространство (M, F_1, F_2) и множество M.

Определение (нулевой вектор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Будем говорить, что u — нулевой вектор пространства L, если: $u \in L$, $\forall x \in L(x+u=x)$.

Утверждение (существование и единственность нулевого вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Существует единственный объект u, удовлетворяющий условию: u — нулевой вектор пространства L.

Доказательство. Так как L — линейное пространство над полем \mathbb{K} , то существует вектор u, удовлетворяющий условиям: $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L \exists y \in L(x+y=u)$. Так как: $u \in L$, $\forall x \in L(x+u=x)$, то u — нулевой вектор пространства L.

Пусть: u_1 — нулевой вектор пространства L, u_2 — нулевой вектор пространства L. Тогда: $u_1 \in L$, $\forall x \in L(x+u_1=x)$; $u_2 \in L$, $\forall x \in L(x+u_2=x)$. Так как: $u_1 \in L$; $\forall x \in L(x+u_2=x)$, то $u_1+u_2=u_1$. Так как: $u_2 \in L$; $\forall x \in L(x+u_1=x)$, то $u_2+u_1=u_2$. Тогда: $u_1+u_2=u_2+u_1=u_2$. Следовательно, $u_1=u_2$.

Определение (обозначение для нулевого вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Обозначим через θ нулевой вектор пространства L.

Утверждение (вспомогательный результат). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Тогда $\forall x \in L \exists y \in L(x+y=\theta)$.

Доказательство. Так как L — линейное пространство над полем \mathbb{K} , то существует вектор u, удовлетворяющий условиям: $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L \exists y \in L(x+y=u)$. Так как: $u \in L$, $\forall x \in L(x+u=x)$, то u — нулевой вектор пространства L. Так как θ — нулевой вектор пространства L, то $u = \theta$. Так как $\forall x \in L \exists y \in L(x+y=u)$, то $\forall x \in L \exists y \in L(x+y=\theta)$.

Утверждение («основное уравнение»). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $a, b \in L$. Существует единственный объект x, удовлетворяющий условиям: $x \in L$, a + x = b.

Доказательство. Так как: $a \in L$; $\forall x \in L \exists y \in L(x+y=\theta)$, то существует вектор \tilde{a} , удовлетворяющий условиям: $\tilde{a} \in L$, $a+\tilde{a}=\theta$.

Пусть: $x \in L$, a + x = b. Тогда:

$$\tilde{a} + (a + x) = \tilde{a} + b,$$

$$(\tilde{a} + a) + x = \tilde{a} + b,$$

$$(a + \tilde{a}) + x = \tilde{a} + b,$$

$$\theta + x = \tilde{a} + b,$$

$$x + \theta = \tilde{a} + b,$$

$$x = \tilde{a} + b.$$

Пусть: $x_1 \in L$, $a+x_1=b$; $x_2 \in L$, $a+x_2=b$. Тогда: $x_1=\tilde{a}+b$, $x_2=\tilde{a}+b$. Следовательно, $x_1=x_2$.

Обозначим, $x = \tilde{a} + b$. Тогда: $x \in L$,

$$a + x = a + (\tilde{a} + b) = (a + \tilde{a}) + b = \theta + b = b + \theta = b.$$

Утверждение (основные свойства линейных операций). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $L - \Lambda u$ -нейное пространство над полем \mathbb{K} .

- 1. Пусть $x \in L$. Тогда $0x = \theta$.
- 2. Пусть $x \in L$. Тогда $x + (-1)x = \theta$.
- 3. Пусть $\lambda \in \mathbb{K}$. Тогда $\lambda \theta = \theta$.

Доказательство.

- 1. Очевидно: 0x + 0x = (0 + 0)x = 0x. С другой стороны, $0x + \theta = 0x$. Тогда $0x = \theta$.
- 2. Очевидно: $x + (-1)x = 1x + (-1)x = (1 + (-1))x = 0x = \theta$.
- 3. Очевидно: $\lambda \theta = \lambda(0\theta) = (\lambda 0)\theta = (0\lambda)\theta = 0(\lambda \theta) = \theta$.

Замечание (противоположный вектор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть $x \in L$. Будем говорить, что y — противоположный вектор к вектору x, если: $y \in L, x + y = \theta$.

Пусть $x \in L$. Так как $x, \theta \in L$, то существует единственный объект y, удовлетворяющий условиям: $y \in L$, $x + y = \theta$. Тогда существует единственный объект y, удовлетворяющий условию: y — противоположный вектор к вектору x.

Пусть $x \in L$. Обозначим через -x противоположный вектор к вектору x.

Пусть $x \in L$. Очевидно, -x = (-1)x.

Замечание (разность векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть $x, y \in L$. Будем говорить, что u — разность векторов x, y, если: $u \in L, y + u = x.$

Пусть $x, y \in L$. Так как $y, x \in L$, то существует единственный объект u, удовлетворяющий условиям: $u \in L$, y + u = x. Тогда существует единственный объект u, удовлетворяющий условию: u — разность векторов x, y.

Пусть $x, y \in L$. Обозначим через x - y разность векторов x, y.

Пусть $x, y \in L$. Очевидно, x - y = -y + x.

3.2. Примеры линейных пространств

3.2.1. Линейное пространство над полем $\mathbb{K}_0 \subseteq \mathbb{K}$

Утверждение (линейное пространство над полем $\mathbb{K}_0 \subseteq \mathbb{K}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} , θ — нулевой вектор пространства (M, F_1, F_2) .

Пусть: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_0 \subseteq \mathbb{K}$. Тогда: $(M, F_1, F_2|_{\mathbb{K}_0 \times M})$ — линейное пространство над полем \mathbb{K}_0 , θ — нулевой вектор пространства $(M, F_1, F_2|_{\mathbb{K}_0 \times M})$.

Доказательство. Очевидно: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, $F_1 \colon M \times M \implies M, \theta \in M$. Очевидно:

$$F_2|_{\mathbb{K}_0 \times M}$$
 — функция,

$$D(F_2|_{\mathbb{K}_0 \times M}) = (\mathbb{K}_0 \times M) \cap D(F_2) = (\mathbb{K}_0 \times M) \cap (\mathbb{K} \times M) = \mathbb{K}_0 \times M.$$

Пусть: $\lambda \in \mathbb{K}_0$, $x \in M$. Так как (M, F_1, F_2) — линейное пространство над полем \mathbb{K} , то: $F_2|_{\mathbb{K}_0 \times M}(\lambda, x) = F_2(\lambda, x) \in M$. Тогда $\mathrm{R}(F_2|_{\mathbb{K}_0 \times M}) \subseteq M$. Итак, $F_2|_{\mathbb{K}_0 \times M} : \mathbb{K}_0 \times M \Longrightarrow M$. Далее обычно будем писать « $\lambda \otimes x$ » вместо « $F_2|_{\mathbb{K}_0 \times M}(\lambda, x)$ ».

- 1. Пусть $x, y \in M$. Тогда x + y = y + x.
- 2. Пусть $x, y, z \in M$. Тогда (x + y) + z = x + (y + z).
- 3. Пусть $x \in M$. Тогда $x + \theta = x$.
- 4. Пусть $x \in M$. Тогда $x + (-x) = \theta$.
- 5. Пусть: $\alpha, \beta \in \mathbb{K}_0, x \in M$. Тогда:

$$(\alpha\beta)\otimes x = (\alpha\beta)x = \alpha(\beta x) = \alpha\otimes(\beta\otimes x).$$

6. Пусть $x \in M$. Тогда:

$$1 \otimes x = 1x = x$$
.

7. Пусть: $\alpha, \beta \in \mathbb{K}_0, x \in M$. Тогда:

$$(\alpha + \beta) \otimes x = (\alpha + \beta)x = \alpha x + \beta x = \alpha \otimes x + \beta \otimes x.$$

8. Пусть: $\lambda \in \mathbb{K}_0$, $x, y \in M$. Тогда:

$$\lambda \otimes (x+y) = \lambda(x+y) = \lambda x + \lambda y = \lambda \otimes x + \lambda \otimes y.$$

Очевидно: $(M, F_1, F_2|_{\mathbb{K}_0 \times M})$ — линейное пространство над полем \mathbb{K}_0, θ — нулевой вектор пространства $(M, F_1, F_2|_{\mathbb{K}_0 \times M})$.

3.2.2. Линейное пространство векторных функций

Определение (векторная функция). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть: φ — функция, $R(\varphi) \subseteq L$. Будем говорить, что φ — векторная функция.

Определение (ядро векторной функции). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть: φ — функция, $R(\varphi) \subseteq L$. Обозначим:

$$\ker(\varphi) = \big\{ x \colon x \in \mathrm{D}(\varphi) \land \varphi(x) = \theta \big\}.$$

Будем говорить, что $\ker(\varphi)$ — ядро функции φ (множество корней функции φ ; множество нулей функции φ). Очевидно:

$$\ker(\varphi) = \big\{x \colon x \in \mathrm{D}(\varphi) \land \varphi(x) = \theta\big\} = \big\{x \colon x \in \mathrm{D}(\varphi) \land \varphi(x) \in \{\theta\}\big\} = \mathrm{D}\big(\varphi, \{\theta\}\big).$$

Oпределение. Пусть: Q — множество, $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, L — линейное пространство над полем \mathbb{K} . Рассмотрим множество $\operatorname{Fun}(Q, L)$ (напоминание: $\operatorname{Fun}(Q, L)$ — множество всех функций φ , удовлетворяющих условию $\varphi \colon Q \Longrightarrow L$).

Пусть $\varphi_1, \varphi_2 \in \operatorname{Fun}(Q, L)$. Обозначим:

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x), \quad x \in Q.$$

Тогда $\varphi_1 + \varphi_2 \in \operatorname{Fun}(Q, L)$.

Обозначим: $F_1(\varphi_1, \varphi_2) = \varphi_1 + \varphi_2$ при $\varphi_1, \varphi_2 \in \operatorname{Fun}(Q, L)$. Тогда F_1 : $\operatorname{Fun}(Q, L) \times \operatorname{Fun}(Q, L) \Longrightarrow \operatorname{Fun}(Q, L)$. Будем говорить, что F_1 — стандартная операция сложения на множестве $\operatorname{Fun}(Q, L)$.

Пусть: $\lambda \in \mathbb{K}$, $\varphi \in \operatorname{Fun}(Q, L)$. Обозначим:

$$(\lambda \varphi)(x) = \lambda \varphi(x), \quad x \in Q.$$

Тогда $\lambda \varphi \in \operatorname{Fun}(Q, L)$.

Обозначим: $F_2(\lambda,\varphi)=\lambda\varphi$ при: $\lambda\in\mathbb{K},\ \varphi\in\operatorname{Fun}(Q,L)$. Тогда $F_2\colon\mathbb{K}\times\operatorname{Fun}(Q,L)\Longrightarrow\operatorname{Fun}(Q,L)$. Будем говорить, что F_2 — стандартная операция умножения на множестве $\operatorname{Fun}(Q,L)$.

Обозначим:

$$\Theta(x) = \theta, \quad x \in Q.$$

Тогда $\Theta \in \operatorname{Fun}(Q,L)$. Будем говорить, что Θ — стандартный нулевой элемент на множестве $\operatorname{Fun}(Q,L)$.

Утверждение (линейное пространство векторных функций). Пусть: Q — множество, $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, L — линейное пространство над полем \mathbb{K} ; F_1 — стандартная операция сложения на множестве $\operatorname{Fun}(Q, L)$, F_2 — стандартная операция умножения на множестве $\operatorname{Fun}(Q, L)$, Θ — стандартный нулевой элемент на множестве $\operatorname{Fun}(Q, L)$. Тогда: $(\operatorname{Fun}(Q, L), F_1, F_2)$ — линейное пространство над полем \mathbb{K} , Θ — нулевой вектор пространства $(\operatorname{Fun}(Q, L), F_1, F_2)$.

Доказательство. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $\operatorname{Fun}(Q, L)$ — множество, $\Theta \in \operatorname{Fun}(Q, L)$,

$$F_1 \colon \operatorname{Fun}(Q, L) \times \operatorname{Fun}(Q, L) \Longrightarrow \operatorname{Fun}(Q, L),$$

 $F_2 \colon \mathbb{K} \times \operatorname{Fun}(Q, L) \Longrightarrow \operatorname{Fun}(Q, L).$

1. Пусть $\varphi_1, \varphi_2 \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x) = \varphi_2(x) + \varphi_1(x) = (\varphi_2 + \varphi_1)(x).$$

Следовательно, $\varphi_1 + \varphi_2 = \varphi_2 + \varphi_1$.

2. Пусть $\varphi_1, \varphi_2, \varphi_3 \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$((\varphi_1 + \varphi_2) + \varphi_3)(x) = (\varphi_1(x) + \varphi_2(x)) + \varphi_3(x) = \varphi_1(x) + (\varphi_2(x) + \varphi_3(x)) =$$
$$= (\varphi_1 + (\varphi_2 + \varphi_3))(x).$$

Следовательно, $(\varphi_1 + \varphi_2) + \varphi_3 = \varphi_1 + (\varphi_2 + \varphi_3)$.

3. Пусть $\varphi \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$(\varphi + \Theta)(x) = \varphi(x) + \Theta(x) = \varphi(x) + \theta = \varphi(x).$$

Следовательно, $\varphi + \Theta = \varphi$.

4. Пусть $\varphi \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$(\varphi + (-1)\varphi)(x) = \varphi(x) + (-1)\varphi(x) = \theta = \Theta(x).$$

Следовательно, $\varphi + (-1)\varphi = \Theta$.

5. Пусть: $\alpha, \beta \in \mathbb{K}, \varphi \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$((\alpha\beta)\varphi)(x) = (\alpha\beta)\varphi(x) = \alpha(\beta\varphi(x)) = (\alpha(\beta\varphi))(x).$$

Следовательно, $(\alpha\beta)\varphi = \alpha(\beta\varphi)$.

6. Пусть $\varphi \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$(1\varphi)(x) = 1\varphi(x) = \varphi(x).$$

Следовательно, $1\varphi = \varphi$.

7. Пусть: $\alpha, \beta \in \mathbb{K}, \varphi \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$((\alpha + \beta)\varphi)(x) = (\alpha + \beta)\varphi(x) = \alpha\varphi(x) + \beta\varphi(x) = (\alpha\varphi + \beta\varphi)(x).$$

Следовательно, $(\alpha + \beta)\varphi = \alpha\varphi + \beta\varphi$.

8. Пусть: $\lambda \in \mathbb{K}$, $\varphi_1, \varphi_2 \in \operatorname{Fun}(Q, L)$. Пусть $x \in Q$. Тогда:

$$(\lambda(\varphi_1 + \varphi_2))(x) = \lambda(\varphi_1(x) + \varphi_2(x)) = \lambda\varphi_1(x) + \lambda\varphi_2(x) = (\lambda\varphi_1 + \lambda\varphi_2)(x).$$

Следовательно, $\lambda(\varphi_1 + \varphi_2) = \lambda \varphi_1 + \lambda \varphi_2$.

Очевидно: $(\operatorname{Fun}(Q,L), F_1, F_2)$ — линейное пространство над полем \mathbb{K} , Θ — нулевой вектор пространства $(\operatorname{Fun}(Q,L), F_1, F_2)$.

3.2.3. Линейное пространство чисел

Определение. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$. Рассмотрим множество \mathbb{K} .

Обозначим: $F_1(x,y) = x + y$ при $x, y \in \mathbb{K}$. Тогда $F_1 : \mathbb{K} \times \mathbb{K} \implies \mathbb{K}$. Будем говорить, что F_1 — стандартная операция сложения на множестве \mathbb{K} .

Обозначим: $F_2(\lambda, x) = \lambda x$ при: $\lambda \in \mathbb{K}$, $x \in \mathbb{K}$. Тогда $F_2 : \mathbb{K} \times \mathbb{K} \implies \mathbb{K}$. Будем говорить, что F_2 — стандартная операция умножения на множестве \mathbb{K} .

Утверждение (линейное пространство \mathbb{K}). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F_1 — стандартная операция сложения на множестве \mathbb{K} , F_2 — стандартная операция умножения на множестве \mathbb{K} . Тогда: (\mathbb{K}, F_1, F_2) — линейное пространство над полем \mathbb{K} , 0 — нулевой вектор пространства (\mathbb{K}, F_1, F_2) .

Доказательство. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; \mathbb{K} — множество, $F_1 \colon \mathbb{K} \times \mathbb{K} \implies \mathbb{K}$, $F_2 \colon \mathbb{K} \times \mathbb{K} \implies \mathbb{K}$, $0 \in \mathbb{K}$.

- 1. Пусть $x, y \in \mathbb{K}$. Тогда x + y = y + x.
- 2. Пусть $x, y, z \in \mathbb{K}$. Тогда (x + y) + z = x + (y + z).
- 3. Пусть $x \in \mathbb{K}$. Тогда x + 0 = x.
- 4. Пусть $x \in \mathbb{K}$. Тогда x + (-x) = 0.
- 5. Пусть $\alpha, \beta, x \in \mathbb{K}$. Тогда $(\alpha\beta)x = \alpha(\beta x)$.
- 6. Пусть $x \in \mathbb{K}$. Тогда 1x = x.
- 7. Пусть $\alpha, \beta, x \in \mathbb{K}$. Тогда $(\alpha + \beta)x = \alpha x + \beta x$.
- 8. Пусть $\lambda, x, y \in \mathbb{K}$. Тогда $\lambda(x+y) = \lambda x + \lambda y$.

Очевидно: (\mathbb{K}, F_1, F_2) — линейное пространство над полем $\mathbb{K}, 0$ — нулевой вектор пространства (\mathbb{K}, F_1, F_2).

Замечание (линейное пространство $\mathbb{K}(\mathbb{K}_0)$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F_1 — стандартная операция сложения на множестве \mathbb{K} , F_2 — стандартная операция умножения на множестве \mathbb{K} .

Пусть: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_0 \subseteq \mathbb{K}$. Тогда: $(\mathbb{K}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}})$ — линейное пространство над полем \mathbb{K}_0 , 0 — нулевой вектор пространства $(\mathbb{K}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}})$. Обозначим, $\mathbb{K}(\mathbb{K}_0) = (\mathbb{K}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}})$.

3.2.4. Линейное пространство столбцов

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{N}$. Рассмотрим множество \mathbb{K}^N . Пусть $x, y \in \mathbb{K}^N$. Обозначим:

$$x + y = \begin{pmatrix} x^1 + y^1 \\ \vdots \\ x^N + y^N \end{pmatrix}.$$

Тогда $x + y \in \mathbb{K}^N$.

Обозначим: $F_1(x,y)=x+y$ при $x,y\in\mathbb{K}^N$. Тогда $F_1\colon\mathbb{K}^N\times\mathbb{K}^N\implies\mathbb{K}^N$. Будем говорить, что F_1 — стандартная операция сложения на множестве \mathbb{K}^N .

Пусть: $\lambda \in \mathbb{K}$, $x \in \mathbb{K}^N$. Обозначим:

$$\lambda x = \begin{pmatrix} \lambda x^1 \\ \vdots \\ \lambda x^N \end{pmatrix}.$$

Тогда $\lambda x \in \mathbb{K}^N$.

Обозначим: $F_2(\lambda,x)=\lambda x$ при: $\lambda\in\mathbb{K},\ x\in\mathbb{K}^N.$ Тогда $F_2\colon\mathbb{K}\times\mathbb{K}^N\implies\mathbb{K}^N.$ Будем говорить, что F_2 — стандартная операция умножения на множестве \mathbb{K}^N .

Обозначим:

$$\tilde{\theta} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Тогда $\tilde{\theta} \in \mathbb{K}^N$. Будем говорить, что $\tilde{\theta}$ — стандартный нулевой элемент на множестве \mathbb{K}^N .

Утверждение (линейное пространство \mathbb{K}^N). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}; F_1 - cman$ дартная операция сложения на множестве $\mathbb{K}^N,\,F_2-c$ тандартная операция умножения на множестве \mathbb{K}^N , $\tilde{\theta}$ — стандартный нулевой элемент на множестве \mathbb{K}^N . Тогда: (\mathbb{K}^N,F_1,F_2) — линейное пространство над полем $\mathbb{K},\ \tilde{ heta}$ — нулевой вектор пространства (\mathbb{K}^N, F_1, F_2) .

Доказательство. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; \mathbb{K}^N$ — множество, $F_1 \colon \mathbb{K}^N \times \mathbb{K}^N \implies \mathbb{K}^N$, $F_2 \colon \mathbb{K} \times \mathbb{K}^N \implies \mathbb{K}^N, \ \tilde{\theta} \in \mathbb{K}^N.$ 1. Пусть $x, y \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$(x+y)^j = x^j + y^j = y^j + x^j = (y+x)^j$$
.

Следовательно, x + y = y + x.

2. Пусть $x, y, z \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$((x+y)+z)^{j} = (x^{j}+y^{j}) + z^{j} = x^{j} + (y^{j}+z^{j}) = (x+(y+z))^{j}.$$

Следовательно, (x + y) + z = x + (y + z).

3. Пусть $x \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$(x+\tilde{\theta})^j = x^j + \tilde{\theta}^j = x^j + 0 = x^j.$$

Следовательно, $x + \tilde{\theta} = x$.

4. Пусть $x \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$(x + (-1)x)^{j} = x^{j} + (-1)x^{j} = 0 = \tilde{\theta}^{j}.$$

Следовательно, $x + (-1)x = \tilde{\theta}$.

5. Пусть: $\alpha, \beta \in \mathbb{K}, x \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$((\alpha\beta)x)^{j} = (\alpha\beta)x^{j} = \alpha(\beta x^{j}) = (\alpha(\beta x))^{j}.$$

Следовательно, $(\alpha\beta)x = \alpha(\beta x)$.

6. Пусть $x \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$(1x)^j = 1x^j = x^j.$$

Следовательно, 1x = x.

7. Пусть: $\alpha, \beta \in \mathbb{K}, x \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$((\alpha + \beta)x)^{j} = (\alpha + \beta)x^{j} = \alpha x^{j} + \beta x^{j} = (\alpha x + \beta x)^{j}.$$

Следовательно, $(\alpha + \beta)x = \alpha x + \beta x$.

8. Пусть: $\lambda \in \mathbb{K}, x, y \in \mathbb{K}^N$. Пусть $j = \overline{1, N}$. Тогда:

$$(\lambda(x+y))^{j} = \lambda(x^{j} + y^{j}) = \lambda x^{j} + \lambda y^{j} = (\lambda x + \lambda y)^{j}.$$

Следовательно, $\lambda(x+y) = \lambda x + \lambda y$.

Очевидно: (\mathbb{K}^N, F_1, F_2) — линейное пространство над полем $\mathbb{K}, \ \tilde{\theta}$ — нулевой вектор пространства (\mathbb{K}^N, F_1, F_2) .

Замечание (линейное пространство $\mathbb{K}^N(\mathbb{K}_0)$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{Z}$, $N \geqslant 2$; F_1 — стандартная операция сложения на множестве \mathbb{K}^N , F_2 — стандартная операция умножения на множестве \mathbb{K}^N .

Пусть: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_0 \subseteq \mathbb{K}$. Тогда: $(\mathbb{K}^N, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^N})$ — линейное пространство над полем \mathbb{K}_0 , $\tilde{\theta}$ — нулевой вектор пространства $(\mathbb{K}^N, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^N})$. Обозначим, $\mathbb{K}^N(\mathbb{K}_0) = (\mathbb{K}^N, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^N})$.

3.2.5. Линейное пространство матриц

Определение (что такое матрица). Пусть $N_1, N_2 \in \mathbb{N}$.

1. Будем говорить, что A — матрица, имеющая N_2 строки и N_1 столбец, если:

$$A-$$
 функция, $\mathrm{D}(A)=\{1,\dots,N_2\} imes\{1,\dots,N_1\}.$

- 2. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « A_i^j » вместо «A(j,i)».
- 3. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « $A_{j,i}$ » вместо «A(j,i)».
- 4. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « $A^{j,i}$ » вместо «A(j,i)».

5. Пусть $\alpha_1^1,\dots,\alpha_{N_1}^1,\dots,\alpha_1^{N_2},\dots,\alpha_{N_1}^{N_2}$ — некоторые объекты. Обозначим через A функцию, удовлетворяющую условиям:

$$D(A) = \{1, \dots, N_2\} \times \{1, \dots, N_1\},$$

$$\forall j = \overline{1, N_2} \forall i = \overline{1, N_1} (A(j, i) = \alpha_i^j).$$

Обозначим:

$$\begin{pmatrix} \alpha_1^1 & \cdots & \alpha_{N_1}^1 \\ \vdots & \vdots & \vdots \\ \alpha_1^{N_2} & \cdots & \alpha_{N_1}^{N_2} \end{pmatrix} = A.$$

6. Пусть A — матрица, имеющая N_2 строки и N_1 столбец. Пусть $i=\overline{1,N_1}$. Обозначим:

$$A_i = \begin{pmatrix} A_i^1 \\ \vdots \\ A_i^{N_2} \end{pmatrix}.$$

Пусть $j = \overline{1, N_2}$. Обозначим:

$$A^j = \begin{pmatrix} A_1^j & \cdots & A_{N_1}^j \end{pmatrix}.$$

7. Пусть Q — множество. Будем говорить, что A — матрица с элементами из множества Q, имеющая N_2 строки и N_1 столбец, если:

$$A: \{1, \ldots, N_2\} \times \{1, \ldots, N_1\} \implies Q.$$

8. Пусть Q — множество. Обозначим через $Q^{N_2 \times N_1}$ множество всех матриц с элементами из множества Q, имеющих N_2 строки и N_1 столбец.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, N_1 , $N_2 \in \mathbb{N}$. Рассмотрим множество $\mathbb{K}^{N_2 \times N_1}$. Пусть $A, B \in \mathbb{K}^{N_2 \times N_1}$. Обозначим:

$$(A+B)_{i}^{j} = A_{i}^{j} + B_{i}^{j}, \quad i = \overline{1, N_{1}}, \ j = \overline{1, N_{2}}.$$

Тогда $A + B \in \mathbb{K}^{N_2 \times N_1}$.

Обозначим: $F_1(A,B) = A+B$ при $A, B \in \mathbb{K}^{N_2 \times N_1}$. Тогда $F_1 \colon \mathbb{K}^{N_2 \times N_1} \times \mathbb{K}^{N_2 \times N_1} \Longrightarrow \mathbb{K}^{N_2 \times N_1}$. Будем говорить, что F_1 — стандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}$. Пусть: $\lambda \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Обозначим:

$$(\lambda A)_i^j = \lambda A_i^j, \quad i = \overline{1, N_1}, \ j = \overline{1, N_2}.$$

Тогда $\lambda A \in \mathbb{K}^{N_2 \times N_1}$.

Обозначим: $F_2(\lambda,A)=\lambda A$ при: $\lambda\in\mathbb{K},\,A\in\mathbb{K}^{N_2\times N_1}$. Тогда $F_2\colon\mathbb{K}\times\mathbb{K}^{N_2\times N_1}\Longrightarrow\mathbb{K}^{N_2\times N_1}$. Будем говорить, что F_2 — стандартная операция умножения на множестве $\mathbb{K}^{N_2\times N_1}$. Обозначим:

$$\tilde{\Theta}_i^j = 0, \quad i = \overline{1, N_1}, \ j = \overline{1, N_2}.$$

Тогда $\tilde{\Theta} \in \mathbb{K}^{N_2 \times N_1}$. Будем говорить, что $\tilde{\Theta}$ — стандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$.

Утверждение (линейное пространство $\mathbb{K}^{N_2 \times N_1}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, N_1 , $N_2 \in \mathbb{N}$; F_1 — стандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}$, F_2 — стандартная операция умножения на множестве $\mathbb{K}^{N_2 \times N_1}$, $\tilde{\Theta}$ — стандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$. Тогда: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$ — линейное пространство над полем \mathbb{K} , $\tilde{\Theta}$ — нулевой вектор пространства $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$.

Доказательство. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $\mathbb{K}^{N_2 \times N_1}$ — множество, $\tilde{\Theta} \in \mathbb{K}^{N_2 \times N_1}$,

$$F_1: \mathbb{K}^{N_2 \times N_1} \times \mathbb{K}^{N_2 \times N_1} \implies \mathbb{K}^{N_2 \times N_1},$$

 $F_2: \mathbb{K} \times \mathbb{K}^{N_2 \times N_1} \implies \mathbb{K}^{N_2 \times N_1}.$

1. Пусть $A, B \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$(A+B)_i^j = A_i^j + B_i^j = B_i^j + A_i^j = (B+A)_i^j$$

Следовательно, A + B = B + A.

2. Пусть $A, B, C \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$((A+B)+C)_{i}^{j} = (A_{i}^{j}+B_{i}^{j}) + C_{i}^{j} = A_{i}^{j} + (B_{i}^{j}+C_{i}^{j}) = (A+(B+C))_{i}^{j}.$$

Следовательно, (A + B) + C = A + (B + C).

3. Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$(A + \tilde{\Theta})_i^j = A_i^j + \tilde{\Theta}_i^j = A_i^j + 0 = A_i^j.$$

Следовательно, $A + \tilde{\Theta} = A$.

4. Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$(A + (-1)A)_i^j = A_i^j + (-1)A_i^j = 0 = \tilde{\Theta}_i^j.$$

Следовательно, $A + (-1)A = \tilde{\Theta}$.

5. Пусть: $\alpha, \beta \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$((\alpha\beta)A)_i^j = (\alpha\beta)A_i^j = \alpha(\beta A_i^j) = (\alpha(\beta A))_i^j.$$

Следовательно, $(\alpha\beta)A = \alpha(\beta A)$.

6. Пусть $A\in \mathbb{K}^{N_2 imes N_1}$. Пусть: $i=\overline{1,N_1},\ j=\overline{1,N_2}$. Тогда:

$$(1A)_i^j = 1A_i^j = A_i^j.$$

Следовательно, 1A = A.

7. Пусть: $\alpha, \beta \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$((\alpha + \beta)A)_i^j = (\alpha + \beta)A_i^j = \alpha A_i^j + \beta A_i^j = (\alpha A + \beta A)_i^j.$$

Следовательно, $(\alpha + \beta)A = \alpha A + \beta A$.

8. Пусть: $\lambda \in \mathbb{K}$, $A, B \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_2}$. Тогда:

$$(\lambda(A+B))_i^j = \lambda(A_i^j + B_i^j) = \lambda A_i^j + \lambda B_i^j = (\lambda A + \lambda B)_i^j.$$

Следовательно, $\lambda(A+B) = \lambda A + \lambda B$.

Очевидно: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$ — линейное пространство над полем $\mathbb{K}, \tilde{\Theta}$ — нулевой вектор пространства $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$.

Замечание (линейное пространство $\mathbb{K}^{N_2 \times N_1}(\mathbb{K}_0)$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N_1, N_2 \in \mathbb{N}$; F_1 — стандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}$, F_2 — стандартная операция умножения на множестве $\mathbb{K}^{N_2 \times N_1}$, $\tilde{\Theta}$ — стандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$.

Пусть: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_0 \subseteq \mathbb{K}$. Тогда: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}})$ — линейное пространство над полем \mathbb{K}_0 , $\tilde{\Theta}$ — нулевой вектор пространства $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}})$. Обозначим, $\mathbb{K}^{N_2 \times N_1}(\mathbb{K}_0) = (\mathbb{K}^{N_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}})$.

3.3. Подпространство линейного пространства

Определение (подпространство линейного пространства). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Будем говорить, что Q — подпространство пространства L, если:

- 1. $Q \subseteq L$;
- $2. Q \neq \emptyset;$
- 3. $\forall x \in Q \forall y \in Q(x+y \in Q);$
- 4. $\forall \lambda \in \mathbb{K} \forall x \in Q(\lambda x \in Q)$.

Замечание (простейшие примеры). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Очевидно: $\{\theta\}$ — подпространство пространства L; L — подпространство пространства L.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — подпространство пространства L. Тогда $\theta \in Q$.

Доказательство. Так как Q — подпространство пространства L, то существует вектор x, удовлетворяющий условию $x \in Q$. Так как Q — подпространство пространства L, то: $\theta = 0x \in Q$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} , θ — нулевой вектор пространства (M, F_1, F_2) .

Пусть Q — подпространство пространства (M, F_1, F_2) . Тогда: $Q \subseteq M$, $(Q, F_1|_{Q\times Q}, F_2|_{\mathbb{K}\times Q})$ — линейное пространство над полем \mathbb{K}, θ — нулевой вектор пространства $(Q, F_1|_{Q\times Q}, F_2|_{\mathbb{K}\times Q})$.

Доказательство. Так как Q — подпространство пространства (M, F_1, F_2) , то $Q \subseteq M$. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; Q — множество, $\theta \in Q$.

Очевидно:

$$F_1|_{Q\times Q}-\text{функция},$$

$$\mathrm{D}(F_1|_{Q\times Q})=(Q\times Q)\cap\mathrm{D}(F_1)=(Q\times Q)\cap(M\times M)=Q\times Q.$$

Пусть $x,y\in Q$. Так как Q — подпространство пространства (M,F_1,F_2) , то: $F_1|_{Q\times Q}(x,y)=F_1(x,y)\in Q$. Тогда $\mathrm{R}(F_1|_{Q\times Q})\subseteq Q$. Итак, $F_1|_{Q\times Q}:Q\times Q\implies Q$. Очевидно:

$$F_2|_{\mathbb{K}\times Q}-\text{функция},$$

$$\mathrm{D}(F_2|_{\mathbb{K}\times Q})=(\mathbb{K}\times Q)\cap\mathrm{D}(F_2)=(\mathbb{K}\times Q)\cap(\mathbb{K}\times M)=\mathbb{K}\times Q.$$

Пусть: $\lambda \in \mathbb{K}, x \in Q$. Так как Q — подпространство пространства (M, F_1, F_2) , то: $F_2|_{\mathbb{K}\times Q}(\lambda, x) = F_2(\lambda, x) \in Q$. Тогда $\mathrm{R}(F_2|_{\mathbb{K}\times Q}) \subseteq Q$. Итак, $F_2|_{\mathbb{K}\times Q} : \mathbb{K}\times Q \Longrightarrow Q$.

Далее обычно будем писать: « $x\oplus y$ » вместо « $F_1|_{Q\times Q}(x,y)$ »; « $\lambda\otimes x$ » вместо « $F_2|_{\mathbb{K}\times Q}(\lambda,x)$ ».

1. Пусть $x, y \in Q$. Тогда:

$$x \oplus y = x + y = y + x = y \oplus x$$
.

2. Пусть $x, y, z \in Q$. Тогда:

$$(x \oplus y) \oplus z = (x+y) + z = x + (y+z) = x \oplus (y \oplus z).$$

3. Пусть $x \in Q$. Тогда:

$$x \oplus \theta = x + \theta = x$$
.

4. Пусть $x \in Q$. Тогда:

$$x \oplus (-1) \otimes x = x + (-1)x = \theta.$$

5. Пусть: $\alpha, \beta \in \mathbb{K}, x \in Q$. Тогда:

$$(\alpha\beta)\otimes x = (\alpha\beta)x = \alpha(\beta x) = \alpha\otimes(\beta\otimes x).$$

6. Пусть $x \in Q$. Тогда:

$$1 \otimes x = 1x = x$$
.

7. Пусть: $\alpha, \beta \in \mathbb{K}, x \in Q$. Тогда:

$$(\alpha + \beta) \otimes x = (\alpha + \beta)x = \alpha x + \beta x = \alpha \otimes x \oplus \beta \otimes x.$$

8. Пусть: $\lambda \in \mathbb{K}$, $x, y \in Q$. Тогда:

$$\lambda \otimes (x \oplus y) = \lambda(x + y) = \lambda x + \lambda y = \lambda \otimes x \oplus \lambda \otimes y.$$

Очевидно: $(Q, F_1|_{Q\times Q}, F_2|_{\mathbb{K}\times Q})$ — линейное пространство над полем \mathbb{K}, θ — нулевой вектор пространства $(Q, F_1|_{Q\times Q}, F_2|_{\mathbb{K}\times Q})$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K}

Пусть: $Q \subseteq M$, $(Q, F_1|_{Q \times Q}, F_2|_{\mathbb{K} \times Q})$ — линейное пространство над полем \mathbb{K} . Тогда Q — подпространство пространства (M, F_1, F_2) .

 \mathcal{A} оказательство. По условию, $Q\subseteq M$. Так как $(Q,\,F_1|_{Q\times Q}\,,\,F_2|_{\mathbb{K}\times Q})$ — линейное пространство над полем $\mathbb{K},$ то $Q\neq\varnothing$. Далее обычно будем писать: « $x\oplus y$ » вместо « $F_1|_{Q\times Q}\,(x,y)$ »; « $\lambda\otimes x$ » вместо « $F_2|_{\mathbb{K}\times Q}\,(\lambda,x)$ ».

Пусть $x, y \in Q$. Так как $(Q, F_1|_{Q \times Q}, F_2|_{\mathbb{K} \times Q})$ — линейное пространство над полем \mathbb{K} , то: $x+y=x\oplus y \in Q$.

Пусть: $\lambda \in \mathbb{K}, x \in Q$. Так как $(Q, F_1|_{Q \times Q}, F_2|_{\mathbb{K} \times Q})$ — линейное пространство над полем \mathbb{K} , то: $\lambda x = \lambda \otimes x \in Q$.

Итак, Q — подпространство пространства (M, F_1, F_2) .

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} ; Q_1 — подпространство пространства (M, F_1, F_2) .

Пусть Q_2 — подпространство пространства $(Q_1, F_1|_{Q_1 \times Q_1}, F_2|_{\mathbb{K} \times Q_1})$. Тогда: $Q_2 \subseteq Q_1$, Q_2 — подпространство пространства (M, F_1, F_2) .

Доказательство. Так как Q_1 — подпространство пространства (M, F_1, F_2) , то $Q_1 \subseteq M$. Так как Q_2 — подпространство пространства $(Q_1, F_1|_{Q_1 \times Q_1}, F_2|_{\mathbb{K} \times Q_1})$, то: $Q_2 \subseteq Q_1, Q_2 \neq \emptyset$. Так как: $Q_1 \subseteq M, Q_2 \subseteq Q_1$, то $Q_2 \subseteq M$. Далее обычно будем писать: « $x \oplus y$ » вместо « $F_1|_{Q_1 \times Q_1}(x,y)$ »; « $\lambda \otimes x$ » вместо « $F_2|_{\mathbb{K} \times Q_1}(\lambda,x)$ ».

Пусть $x, y \in Q_2$. Так как Q_2 — подпространство пространства $(Q_1, F_1|_{Q_1 \times Q_1}, F_2|_{\mathbb{K} \times Q_1})$, то: $x + y = x \oplus y \in Q_2$.

Пусть: $\lambda \in \mathbb{K}$, $x \in Q_2$. Так как Q_2 — подпространство пространства $(Q_1,F_1|_{Q_1\times Q_1},F_2|_{\mathbb{K}\times Q_1})$, то: $\lambda x=\lambda\otimes x\in Q_2$.

Итак: $Q_2 \subseteq Q_1, Q_2$ — подпространство пространства (M, F_1, F_2) .

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} ; Q_1 — подпространство пространства (M, F_1, F_2) .

Пусть: $Q_2 \subseteq Q_1$, Q_2 — подпространство пространства (M, F_1, F_2) . Тогда Q_2 — подпространство пространства $(Q_1, F_1|_{Q_1 \times Q_1}, F_2|_{\mathbb{K} \times Q_1})$.

Доказательство. По условию, $Q_2 \subseteq Q_1$. Так как Q_2 — подпространство пространства (M, F_1, F_2) , то $Q_2 \neq \varnothing$. Далее обычно будем писать: « $x \oplus y$ » вместо « $F_1|_{Q_1 \times Q_1}(x, y)$ »; « $\lambda \otimes x$ вместо $F_2|_{\mathbb{K} \times Q_1}(\lambda, x)$ ».

Пусть $x, y \in Q_2$. Так как Q_2 — подпространство пространства (M, F_1, F_2) , то: $x \oplus y = x + y \in Q_2$.

Пусть: $\lambda \in \mathbb{K}$, $x \in Q_2$. Так как Q_2 — подпространство пространства (M, F_1, F_2) , то: $\lambda \otimes x = \lambda x \in Q_2$.

Итак, Q_2 — подпространство пространства $(Q_1, F_1|_{Q_1 \times Q_1}, F_2|_{\mathbb{K} \times Q_1})$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L. Тогда $Q_1 \cap Q_2$ — подпространство пространства L.

Доказательство. Так как $Q_1\subseteq L$, то: $Q_1\cap Q_2\subseteq Q_1\subseteq L$. Так как: $\theta\in Q_1$; $\theta\in Q_2$, то $\theta\in Q_1\cap Q_2$. Тогда $Q_1\cap Q_2\neq\varnothing$.

Пусть: $x \in Q_1 \cap Q_2$, $y \in Q_1 \cap Q_2$. Тогда: $x \in Q_1$, $y \in Q_1$; $x \in Q_2$, $y \in Q_2$. Следовательно: $x + y \in Q_1$; $x + y \in Q_2$. Тогда $x + y \in Q_1 \cap Q_2$.

Пусть: $\lambda \in \mathbb{K}$, $x \in Q_1 \cap Q_2$. Тогда: $\lambda \in \mathbb{K}$, $x \in Q_1$; $\lambda \in \mathbb{K}$, $x \in Q_2$. Следовательно: $\lambda x \in Q_1$; $\lambda x \in Q_2$. Тогда $\lambda x \in Q_1 \cap Q_2$.

Итак, $Q_1 \cap Q_2$ — подпространство пространства L.

Утверждение (факультативный материал). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; L$ - линейное пространство над полем $\mathbb{K}; I$ - множество, $I \neq \varnothing, \forall \alpha \in I(Q_{\alpha} - noдпространство пространства <math>L$). Тогда $\bigcap_{\alpha \in I} Q_{\alpha}$ - $nodпространство пространство <math>Q_{\alpha}$ - Q_{α} - $Q_$

 \mathcal{A} оказательство. Так как $I \neq \emptyset$, то существует объект α_0 , удовлетворяющий условию $\alpha_0 \in I$. Так как $Q_{\alpha_0} \subseteq L$, то: $\bigcap_{\alpha \in I} Q_\alpha \subseteq Q_{\alpha_0} \subseteq L$. Так как $\forall \alpha \in I (\theta \in Q_\alpha)$, то $\theta \in \bigcap_{\alpha \in I} Q_\alpha$. Тогда $\bigcap_{\alpha \in I} Q_\alpha \neq \emptyset$.

Пусть: $x \in \bigcap_{\alpha \in I} Q_{\alpha}$, $y \in \bigcap_{\alpha \in I} Q_{\alpha}$. Пусть $\alpha_0 \in I$. Тогда: $x \in Q_{\alpha_0}$, $y \in Q_{\alpha_0}$. Следовательно, $x + y \in Q_{\alpha_0}$. В силу произвольности выбора элемента $\alpha_0 \in I$ получаем, что $x + y \in \bigcap_{\alpha \in I} Q_{\alpha}$.

Пусть: $\lambda \in \mathbb{K}$, $x \in \bigcap_{\alpha \in I} Q_{\alpha}$. Пусть $\alpha_0 \in I$. Тогда: $\lambda \in \mathbb{K}$, $x \in Q_{\alpha_0}$. Следовательно, $\lambda x \in Q_{\alpha_0}$.

В силу произвольности выбора элемента $\alpha_0 \in I$ получаем, что $\lambda x \in \bigcap_{\alpha \in I} Q_\alpha$.

Итак,
$$\bigcap_{\alpha \in I} Q_{\alpha}$$
 — подпространство пространства L .

3.4. Линейная зависимость векторов

Определение (линейная комбинация векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, $x_1, \ldots, x_r \in L$.

Будем говорить, что u — линейная комбинация векторов x_1,\dots,x_r с коэффициентами $\lambda^1,\dots,\lambda^r,$ если $u=\sum_{k=\overline{1,r}}\lambda^kx_k.$

Далее часто будем писать « $\lambda^k x_k$ » вместо « $\sum_{k=\overline{1,r}} \lambda^k x_k$ » (частный случай **правила сум-**

мирования Эйнштейна).

Определение (линейная оболочка векторов, линейная зависимость векторов, линейная независимость векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}, x_1, \ldots, x_r \in L$.

Обозначим:

$$L(x_1, \dots, x_r) = \{\lambda^k x_k \colon \lambda^1 \in \mathbb{K} \land \dots \land \lambda^r \in \mathbb{K}\} =$$

= $\{u \colon \exists \lambda^1 \dots \exists \lambda^r (\lambda^1 \in \mathbb{K} \land \dots \land \lambda^r \in \mathbb{K} \land u = \lambda^k x_k)\}.$

Очевидно, $L(x_1, ..., x_r) \subseteq L$. Будем говорить, что $L(x_1, ..., x_r)$ — линейная оболочка векторов $x_1, ..., x_r$.

Будем говорить, что x_1, \ldots, x_r — линейно зависимые векторы, если существуют числа $\lambda^1, \ldots, \lambda^r$, удовлетворяющие условиям: $\lambda^1, \ldots, \lambda^r \in \mathbb{K}, \ \lambda^k x_k = \theta, \ \exists k = \overline{1, r} (\lambda^k \neq 0).$

Будем говорить, что x_1, \ldots, x_r — линейно независимые векторы, если для любых чисел $\lambda^1, \ldots, \lambda^r$, удовлетворяющих условиям: $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, $\lambda^k x_k = \theta$, справедливо утверждение $\forall k = \overline{1,r}(\lambda^k = 0)$.

Будем говорить, что по любой линейной комбинации векторов x_1, \ldots, x_r однозначно восстанавливаются её коэффициенты, если для любых чисел $\alpha^1, \ldots, \alpha^r, \beta^1, \ldots, \beta^r$, удовлетворяющих условиям: $\alpha^1, \ldots, \alpha^r, \beta^1, \ldots, \beta^r \in \mathbb{K}$, $\alpha^k x_k = \beta^k x_k$, справедливо утверждение $\forall k = \overline{1, r} (\alpha^k = \beta^k)$.

Определение (символ Кронекера). Пусть $r \in \mathbb{N}$. Обозначим: $\delta_k^m = 0$ при: $k, m = \overline{1, r}, k \neq m$; $\delta_k^m = 1$ при: $k, m = \overline{1, r}, k = m$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L$. Пусть $k = \overline{1, r}$. Тогда: $x_k = \delta_k^m x_m \in L(x_1, \ldots, x_r)$.

Пусть: Q — подпространство пространства $L, r \in \mathbb{N}, x_1, \ldots, x_r \in Q$. Очевидно, $L(x_1, \ldots, x_r) \subseteq Q$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in L$. Тогда $L(x_1, \ldots, x_r)$ — подпространство пространства L.

Доказательство. Очевидно: $L(x_1, ..., x_r) \subseteq L$, $0x_1 + ... + 0x_r \in L(x_1, ..., x_r)$.

Пусть $u, v \in L(x_1, ..., x_r)$. Тогда существуют числа $\alpha^1, ..., \alpha^r, \beta^1, ..., \beta^r \in \mathbb{K}$, удовлетворяющие условиям: $u = \alpha^k x_k, v = \beta^k x_k$. Следовательно:

$$u + v = (\alpha^k x_k) + (\beta^k x_k) = (\alpha^k + \beta^k) x_k \in L(x_1, \dots, x_r).$$

Пусть: $\lambda \in \mathbb{K}$, $u \in L(x_1, \dots, x_r)$. Тогда существуют числа $\alpha^1, \dots, \alpha^r \in \mathbb{K}$, удовлетворяющие условию $u = \alpha^k x_k$. Следовательно:

$$\lambda u = \lambda(\alpha^k x_k) = (\lambda \alpha^k) x_k \in L(x_1, \dots, x_r).$$

Итак, $L(x_1,...,x_r)$ — подпространство пространства L.

Утверждение (критерий линейной зависимости векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L – линейное пространство над полем \mathbb{K} .

- 1. Пусть: $x \in L$, x линейно зависимый вектор. Тогда $x = \theta$.
- 2. Пусть $x = \theta$. Тогда: $x \in L$, x линейно зависимый вектор.
- 3. Пусть: $r \in \mathbb{Z}$, $r \geqslant 2$, $x_1, \ldots, x_r \in L$; x_1, \ldots, x_r линейно зависимие векторы. Тогда существует номер $k_0 = \overline{1,r}$, удовлетворяющий условию: $x_{k_0} \in L(x_1, \ldots, x_{k_0-1}, x_{k_0+1}, \ldots, x_r)$.
- 4. Пусть: $r \in \mathbb{Z}$, $r \geqslant 2$, $x_1, \ldots, x_r \in L$; существует номер $k_0 = \overline{1,r}$, удовлетворяющий условию: $x_{k_0} \in L(x_1, \ldots, x_{k_0-1}, x_{k_0+1}, \ldots, x_r)$. Тогда x_1, \ldots, x_r линейно зависимые векторы.

Доказательство.

- 1. Так как: $x \in L$, x линейно зависимый вектор, то существует число $\lambda \in \mathbb{K}$, удовлетворяющее условиям: $\lambda x = \theta$, $\lambda \neq 0$. Тогда $x = \theta$.
- 2. Так как $x=\theta$, то: $x\in L$, $1x=\theta$. Так как $1\neq 0$, то: $x\in L$, x линейно зависимый вектор.
- 3. Так как x_1, \ldots, x_r линейно зависимые векторы, то существуют числа $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, удовлетворяющие условиям: $\lambda^k x_k = \theta$, $\exists k = \overline{1,r} (\lambda^k \neq 0)$. Выберем номер $k_0 = \overline{1,r}$, удовлетворяющий условию $\lambda^{k_0} \neq 0$. Тогда:

$$\lambda^{1}x_{1} + \dots + \lambda^{k_{0}-1}x_{k_{0}-1} + \lambda^{k_{0}}x_{k_{0}} + \lambda^{k_{0}+1}x_{k_{0}+1} + \dots + \lambda^{r}x_{r} = \theta,$$

$$x_{k_{0}} = \frac{-\lambda^{1}}{\lambda_{k_{0}}}x_{1} + \dots + \frac{-\lambda^{k_{0}-1}}{\lambda_{k_{0}}}x_{k_{0}-1} + \frac{-\lambda^{k_{0}+1}}{\lambda_{k_{0}}}x_{k_{0}+1} + \dots + \frac{-\lambda^{r}}{\lambda_{k_{0}}}x_{r},$$

$$x_{k_{0}} \in L(x_{1}, \dots, x_{k_{0}-1}, x_{k_{0}+1}, \dots, x_{r}).$$

4. Выберем номер $k_0=\overline{1,r}$, удовлетворяющий условию $x_{k_0}\in L(x_1,\ldots,x_{k_0-1},x_{k_0+1},\ldots,x_r)$. Тогда существуют числа $\lambda^1,\ldots,\lambda^{k_0-1},\ \lambda^{k_0+1},\ldots,\lambda^r\in\mathbb{K}$, удовлетворяющие условию:

$$x_{k_0} = \lambda^1 x_1 + \dots + \lambda^{k_0 - 1} x_{k_0 - 1} + \lambda^{k_0 + 1} x_{k_0 + 1} + \dots + \lambda^r x_r.$$

Следовательно:

$$(-\lambda^1)x_1 + \dots + (-\lambda^{k_0-1})x_{k_0-1} + 1x_{k_0} + (-\lambda^{k_0+1})x_{k_0+1} + \dots + (-\lambda^r)x_r = \theta.$$

Так как $1 \neq 0$, то x_1, \ldots, x_r — линейно зависимые векторы.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in$ $\mathbb{N}, x_1, \ldots, x_{r+1} \in L, x_1, \ldots, x_r$ — линейно независимые векторы, x_1, \ldots, x_{r+1} — линейно зависимые векторы. Тогда $x_{r+1} \in L(x_1, \ldots, x_r)$.

ла $\lambda^1, \dots, \lambda^{r+1} \in \mathbb{K}$, удовлетворяющие условиям: $\sum_{k=\overline{1,r+1}} \lambda^k x_k = \theta$, $\exists k = \overline{1,r+1}(\lambda^k \neq 0)$. Предположим, что $\lambda^{r+1} = 0$. Тогда: $\sum_{k=\overline{1,r}} \lambda^k x_k = \theta$, $\exists k = \overline{1,r}(\lambda^k \neq 0)$. Следовательно,

 x_1, \ldots, x_r — линейно зависимые векторы (что противоречит утверждению: x_1, \ldots, x_r линейно независимые векторы). Итак, $\lambda^{r+1} \neq 0$. Тогда:

$$x_{r+1} = \frac{-\lambda^1}{\lambda^{r+1}} x_1 + \dots + \frac{-\lambda^r}{\lambda^{r+1}} x_r,$$

$$x_{r+1} \in L(x_1, \dots, x_r). \quad \Box$$

Утверждение (критерий линейной независимости векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; L$ линейное пространство над полем \mathbb{K} .

- 1. Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L; x_1, \ldots, x_r$ линейно независимые векторы. Тогда по любой линейной комбинации векторов x_1, \ldots, x_r однозначно восстанавливаются $e\ddot{e}$ коэффициенты.
- 2. Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L$; по любой линейной комбинации векторов x_1, \ldots, x_r однозначно восстанавливаются её коэффициенты. Тогда x_1, \ldots, x_r — линейно независимые векторы.

Доказательство.

- 1. Пусть: $\alpha^1,\ldots,\alpha^r,\ \beta^1,\ldots,\beta^r\in\mathbb{K},\ \alpha^kx_k=\beta^kx_k$. Тогда $(\alpha^k-\beta^k)x_k=\theta$. Так как x_1,\ldots,x_r — линейно независимые векторы, то $\forall k=\overline{1,r}(\alpha^k-\beta^k=0)$. Тогда $\forall k=\overline{1,r}(\alpha^k=1,r)$ β^k). Следовательно, по любой линейной комбинации векторов x_1, \ldots, x_r однозначно восстанавливаются её коэффициенты.
 - 2. Пусть: $\lambda^1, \ldots, \lambda^r \in \mathbb{K}, \lambda^k x_k = \theta$. Тогда:

$$\lambda^1 x_1 + \dots + \lambda^r x_r = 0x_1 + \dots + 0x_r.$$

Так как по любой линейной комбинации векторов x_1, \ldots, x_r однозначно восстанавливаются её коэффициенты, то $\forall k=\overline{1,r}(\lambda^k=0)$. Тогда x_1,\ldots,x_r — линейно независимые векторы.

3амечание (перестановки произвольного множества). Пусть M — множество. Будем говорить, что σ — перестановка множества M, если: σ — обратимая функция, $D(\sigma) = M$, $R(\sigma) = M$. Обозначим через S(M) множество всех перестановок множества M.

Пусть σ_1 , $\sigma_2 \in S(M)$. Обозначим, $\sigma_2 \sigma_1 = \sigma_2 \circ \sigma_1$. Очевидно, $\sigma_2 \sigma_1 \in S(M)$.

Пусть $\sigma \in S(M)$. Очевидно, $\sigma^{-1} \in S(M)$.

Обозначим: e(x) = x при $x \in M$. Очевидно, $e \in S(M)$.

- 1. Пусть $\sigma_1, \, \sigma_2, \, \sigma_3 \in S(M)$. Очевидно, $(\sigma_3 \sigma_2) \sigma_1 = \sigma_3(\sigma_2 \sigma_1)$.
- 2. Пусть $\sigma \in S(M)$. Очевидно: $\sigma e = \sigma$, $e\sigma = \sigma$.
- 3. Пусть $\sigma \in S(M)$. Очевидно: $\sigma \sigma^{-1} = e$, $\sigma^{-1} \sigma = e$.

3амечание (перестановки конечного множества). Пусть M — конечное множество.

Пусть: σ — обратимая функция, $\mathrm{D}(\sigma)=M,\ \mathrm{R}(\sigma)\subseteq M.$ Так как: $\mathrm{D}(\sigma)$ — конечное множество, σ — обратимая функция, то: $R(\sigma)$ — конечное множество, $card(R(\sigma))$ =

 $\operatorname{card}(D(\sigma))$. Тогда: $\operatorname{card}(R(\sigma)) = \operatorname{card}(D(\sigma)) = \operatorname{card}(M)$. Так как: M — конечное множество, $R(\sigma) \subseteq M$, $\operatorname{card}(R(\sigma)) = \operatorname{card}(M)$, то $R(\sigma) = M$. Тогда $\sigma \in S(M)$.

Пусть: σ — функция, $D(\sigma) = M$, $R(\sigma) = M$. Предположим, что σ — необратимая функция. Так как: $D(\sigma)$ — конечное множество, σ — необратимая функция, то: $R(\sigma)$ — конечное множество, $\operatorname{card}(R(\sigma)) < \operatorname{card}(D(\sigma))$. Тогда: $\operatorname{card}(R(\sigma)) < \operatorname{card}(D(\sigma)) = \operatorname{card}(M)$ (что противоречит утверждению $R(\sigma) = M$). Итак, σ — обратимая функция. Тогда $\sigma \in S(M)$.

Замечание (перестановки множества \varnothing). Обозначим, $S_0 = S(\varnothing)$.

Замечание (перестановки множества $\{1, ..., r\}$). Пусть $r \in \mathbb{N}$. Обозначим, $S_r = S(\{1, ..., r\})$.

Пусть x_1, \ldots, x_r — некоторые объекты. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, r\}, \ \sigma(1) = x_1, \ldots, \sigma(r) = x_r$. Тогда: σ — функция, $D(\sigma) = \{1, \ldots, r\}, \ R(\sigma) = \{x_1, \ldots, x_r\}$. Далее часто будем отождествлять упорядоченную r-ку (x_1, \ldots, x_r) и функцию σ .

Пусть: $\alpha_1, \ldots, \alpha_r \in \{1, \ldots, r\}, \ \alpha_1, \ldots, \alpha_r$ — различные числа. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, r\}, \ \sigma(1) = \alpha_1, \ldots, \sigma(r) = \alpha_r$. Тогда: σ — обратимая функция, $D(\sigma) = \{1, \ldots, r\}, \ R(\sigma) = \{\alpha_1, \ldots, \alpha_r\} \subseteq \{1, \ldots, r\}$. Следовательно, $\sigma \in S_r$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in L$. Пусть: $\sigma \in S_r$, $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ — линейно зависимые векторы. Тогда x_1, \ldots, x_r — линейно зависимые векторы.

Доказательство. Так как $x_{\sigma(1)}, \ldots, x_{\sigma(r)}$ — линейно зависимые векторы, то существуют числа $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, удовлетворяющие условиям: $\lambda^1 x_{\sigma(1)} + \cdots + \lambda^r x_{\sigma(r)} = \theta$, $\exists m = \overline{1, r} (\lambda^m \neq 0)$. Тогда:

$$\lambda^{\sigma^{-1}(1)}x_1 + \dots + \lambda^{\sigma^{-1}(r)}x_r = \theta, \quad \exists k = \overline{1, r}(\lambda^{\sigma^{-1}(k)} \neq 0).$$

Следовательно, x_1, \ldots, x_r — линейно зависимые векторы.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in L$. Пусть: $r_0 \in \mathbb{N}$, $k_1, \ldots, k_{r_0} = \overline{1, r}$, $k_1 < \cdots < k_{r_0}$, $x_{k_1}, \ldots, x_{k_{r_0}}$ — линейно зависимые векторы. Тогда x_1, \ldots, x_r — линейно зависимые векторы.

$$\beta^{k_1} x_{k_1} + \dots + \beta^{k_{r_0}} x_{k_{r_0}} = \theta, \quad \exists m = \overline{1, r_0} (\beta^{k_m} \neq 0);$$
$$\beta^1 x_1 + \dots + \beta^r x_r = \theta, \quad \exists k = \overline{1, r} (\beta^k \neq 0).$$

Следовательно, x_1, \ldots, x_r — линейно зависимые векторы.

3.5. Операции над частично определёнными векторными функциями

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; Q — множество, L — линейное пространство над полем \mathbb{K} . Рассмотрим множество $\operatorname{fun}(Q, L)$ (напоминание: $\operatorname{fun}(Q, L)$ — множество всех функций φ , удовлетворяющих условию $\varphi \colon Q \to L$).

Пусть $\varphi_1, \varphi_2 \in \text{fun}(Q, L)$. Обозначим:

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x), \quad x \in D(\varphi_1) \cap D(\varphi_2).$$

Тогда $\varphi_1 + \varphi_2 \in \text{fun}(Q, L)$.

Обозначим: $F_1(\varphi_1, \varphi_2) = \varphi_1 + \varphi_2$ при $\varphi_1, \varphi_2 \in \text{fun}(Q, L)$. Будем говорить, что F_1 — стандартная операция сложения на множестве fun(Q, L).

Пусть: $\lambda \in \mathbb{K}$, $\varphi \in \text{fun}(Q, L)$. Обозначим:

$$(\lambda \varphi)(x) = \lambda \varphi(x), \quad x \in D(\varphi).$$

Тогда $\lambda \varphi \in \text{fun}(Q, L)$.

Обозначим: $F_2(\lambda, \varphi) = \lambda \varphi$ при: $\lambda \in \mathbb{K}$, $\varphi \in \text{fun}(Q, L)$. Будем говорить, что F_2 — стандартная операция умножения на множестве fun(Q, L).

Обозначим:

$$\Theta(x) = \theta, \quad x \in Q.$$

Тогда $\Theta \in \text{fun}(Q, L)$. Будем говорить, что Θ — стандартный нулевой элемент на множестве fun(Q, L).

Утверждение. Пусть: Q — множество, $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, L — линейное пространство над полем \mathbb{K} .

- 1. Пусть $\varphi_1, \varphi_2 \colon Q \to L$. Тогда $\varphi_1 + \varphi_2 = \varphi_2 + \varphi_1$.
- 2. Пусть φ_1 , φ_2 , φ_3 : $Q \to L$. Тогда $(\varphi_1 + \varphi_2) + \varphi_3 = \varphi_1 + (\varphi_2 + \varphi_3)$.
- 3. Пусть $\varphi \colon Q \to L$. Тогда $\varphi + \Theta = \varphi$.
- 4. Пусть $\varphi \colon Q \to L$. Тогда $\varphi + (-1)\varphi = \Theta|_{\mathrm{D}(\varphi)}$.
- 5. $\Pi y cmb: \alpha, \beta \in \mathbb{K}, \varphi: Q \to L$. $Torda(\alpha\beta)\varphi = \alpha(\beta\varphi)$.
- 6. Пусть $\varphi \colon Q \to L$. Тогда $1\varphi = \varphi$.
- 7. $\Pi ycmv: \alpha, \beta \in \mathbb{K}, \varphi: Q \to L$. $Torda(\alpha + \beta)\varphi = \alpha\varphi + \beta\varphi$.
- 8. Пусть: $\lambda \in \mathbb{K}$, φ_1 , φ_2 : $Q \to L$. Тогда $\lambda(\varphi_1 + \varphi_2) = \lambda \varphi_1 + \lambda \varphi_2$.

Доказательство.

1. Очевидно:

$$D(\varphi_1 + \varphi_2) = D(\varphi_1) \cap D(\varphi_2) = D(\varphi_2) \cap D(\varphi_1) = D(\varphi_2 + \varphi_1).$$

Пусть $x \in D(\varphi_1 + \varphi_2)$. Тогда:

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x) = \varphi_2(x) + \varphi_1(x) = (\varphi_2 + \varphi_1)(x).$$

Следовательно, $\varphi_1 + \varphi_2 = \varphi_2 + \varphi_1$.

2. Очевидно:

$$D((\varphi_1 + \varphi_2) + \varphi_3) = (D(\varphi_1) \cap D(\varphi_2)) \cap D(\varphi_3) = D(\varphi_1) \cap (D(\varphi_2) \cap D(\varphi_3)) =$$
$$= D(\varphi_1 + (\varphi_2 + \varphi_3)).$$

Пусть $x \in D((\varphi_1 + \varphi_2) + \varphi_3)$. Тогда:

$$((\varphi_1 + \varphi_2) + \varphi_3)(x) = (\varphi_1(x) + \varphi_2(x)) + \varphi_3(x) = \varphi_1(x) + (\varphi_2(x) + \varphi_3(x)) =$$
$$= (\varphi_1 + (\varphi_2 + \varphi_3))(x).$$

Следовательно, $(\varphi_1 + \varphi_2) + \varphi_3 = \varphi_1 + (\varphi_2 + \varphi_3)$.

3. Очевидно:

$$D(\varphi + \Theta) = D(\varphi) \cap Q = D(\varphi).$$

Пусть $x \in D(\varphi + \Theta)$. Тогда:

$$(\varphi + \Theta)(x) = \varphi(x) + \Theta(x) = \varphi(x) + \theta = \varphi(x).$$

Следовательно, $\varphi + \Theta = \varphi$.

4. Очевидно:

$$D(\varphi + (-1)\varphi) = D(\varphi) \cap D(\varphi) = D(\varphi) = D(\varphi) \cap Q = D(\Theta|_{D(\varphi)}).$$

Пусть $x \in D(\varphi + (-1)\varphi)$. Тогда:

$$(\varphi + (-1)\varphi)(x) = \varphi(x) + (-1)\varphi(x) = \theta = \Theta(x) = \Theta|_{D(\varphi)}(x).$$

Следовательно, $\varphi + (-1)\varphi = \Theta|_{D(\varphi)}$.

5. Очевидно:

$$D((\alpha\beta)\varphi) = D(\varphi) = D(\alpha(\beta\varphi)).$$

Пусть $x \in D((\alpha\beta)\varphi)$. Тогда:

$$((\alpha\beta)\varphi)(x) = (\alpha\beta)\varphi(x) = \alpha(\beta\varphi(x)) = (\alpha(\beta\varphi))(x).$$

Следовательно, $(\alpha\beta)\varphi = \alpha(\beta\varphi)$.

6. Очевидно, $D(1\varphi) = D(\varphi)$. Пусть $x \in D(1\varphi)$. Тогда:

$$(1\varphi)(x) = 1\varphi(x) = \varphi(x).$$

Следовательно, $1\varphi = \varphi$.

7. Очевидно:

$$D((\alpha + \beta)\varphi) = D(\varphi) = D(\varphi) \cap D(\varphi) = D(\alpha\varphi + \beta\varphi).$$

Пусть $x \in D((\alpha + \beta)\varphi)$. Тогда:

$$((\alpha + \beta)\varphi)(x) = (\alpha + \beta)\varphi(x) = \alpha\varphi(x) + \beta\varphi(x) = (\alpha\varphi + \beta\varphi)(x).$$

Следовательно, $(\alpha + \beta)\varphi = \alpha\varphi + \beta\varphi$.

8. Очевидно:

$$D(\lambda(\varphi_1 + \varphi_2)) = D(\varphi_1) \cap D(\varphi_2) = D(\lambda\varphi_1 + \lambda\varphi_2).$$

Пусть $x \in D(\lambda(\varphi_1 + \varphi_2))$. Тогда:

$$(\lambda(\varphi_1 + \varphi_2))(x) = \lambda(\varphi_1(x) + \varphi_2(x)) = \lambda\varphi_1(x) + \lambda\varphi_2(x) = (\lambda\varphi_1 + \lambda\varphi_2)(x).$$

Следовательно, $\lambda(\varphi_1 + \varphi_2) = \lambda \varphi_1 + \lambda \varphi_2$.

Утверждение. Пусть: Q — множество, $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, L — линейное пространство над полем \mathbb{K} .

- 1. Пусть $\varphi \colon Q \to L$. Тогда $0\varphi = \Theta|_{\mathbf{D}(\varphi)}$.
- 2. Пусть $\lambda \in \mathbb{K}$. Тогда $\lambda \Theta = \Theta$.

Доказательство.

1. Очевидно:

$$D(0\varphi) = D(\varphi) = D(\varphi) \cap Q = D(\Theta|_{D(\varphi)}).$$

Пусть $x \in D(0\varphi)$. Тогда:

$$(0\varphi)(x) = 0\varphi(x) = \theta = \Theta(x) = \Theta|_{D(\varphi)}(x).$$

Следовательно, $0\varphi = \Theta|_{\mathrm{D}(\varphi)}$. 2. Очевидно, $\mathrm{D}(\lambda\Theta) = \mathrm{D}(\Theta)$. Пусть $x \in \mathrm{D}(\lambda\Theta)$. Тогда:

$$(\lambda\Theta)(x) = \lambda\Theta(x) = \lambda\theta = \theta = \Theta(x).$$

Следовательно, $\lambda\Theta = \Theta$.

3.6. Экономное определение линейного пространства (факультативный материал)

Определение (линейное пространство). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, $F_1: M \times M \implies M, F_2: \mathbb{K} \times M \implies M$. Далее обычно будем писать: «x + y» вместо « $F_1(x,y)$ »; « λx » вместо « $F_2(\lambda,x)$ ».

Пусть:

- 1. $\forall x \in M \forall y \in M \forall z \in M((x+y) + z = x + (y+z));$
- 2. $\exists u \in M (\forall x \in M(x + u = x) \land \forall x \in M \exists y \in M(x + y = u));$
- 3. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha \beta)x = \alpha(\beta x));$
- 4. $\forall x \in M(1x = x);$
- 5. $\forall \alpha \in \mathbb{K} \forall \beta \in \mathbb{K} \forall x \in M((\alpha + \beta)x = \alpha x + \beta x);$
- 6. $\forall \lambda \in \mathbb{K} \forall x \in M \forall y \in M (\lambda(x+y) = \lambda x + \lambda y)$.

Будем говорить, что (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; (M, F_1, F_2) — линейное пространство над полем \mathbb{K} .

Будем говорить, что: M — носитель пространства (M, F_1, F_2) ; F_1 — операция сложения пространства (M, F_1, F_2) ; F_2 — операция умножения пространства (M, F_1, F_2) ; F_1, F_2 линейные операции пространства (M, F_1, F_2) .

Будем говорить, что x — вектор пространства (M, F_1, F_2) , если $x \in M$.

Далее обычно будем отождествлять пространство (M, F_1, F_2) и множество M.

Утверждение (вспомогательный результат №1). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L \exists y \in L(x+y=u)$. Тогда $\forall x \in L \forall y \in L(x+y=u \implies y+x=u).$

Доказательство. Пусть: $x \in L$, $y \in L$, x + y = u. Так как: $y \in L$; $\forall \tilde{x} \in L \exists \tilde{y} \in L(\tilde{x} + \tilde{y} = u)$, то существует вектор z, удовлетворяющий условиям: $z \in L, y + z = u$. Тогда:

$$y + x = (y + x) + u = (y + x) + (y + z) = ((y + x) + y) + z = (y + (x + y)) + z = (y + u) + z = y + z = u.$$

Утверждение (вспомогательный результат №2). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L\exists y \in L(x+y=u)$. Тогда $\forall x \in L(u+x=x)$.

Доказательство. Пусть $x \in L$. Так как: $x \in L$; $\forall \tilde{x} \in L \exists \tilde{y} \in L(\tilde{x} + \tilde{y} = u)$, то существует вектор y, удовлетворяющий условиям: $y \in L$, x + y = u. Тогда:

$$u + x = (x + y) + x = x + (y + x) = x + u = x.$$

Утверждение («основное уравнение»). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $a, b \in L$. Существует единственный объект x, удовлетворяющий условиям: $x \in L$, a + x = b.

Доказательство. Так как L — линейное пространство над полем \mathbb{K} , то существует вектор u, удовлетворяющий условиям: $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L \exists y \in L(x+y=u)$. Так как: $a \in L$; $\forall x \in L \exists y \in L(x+y=u)$, то существует вектор \tilde{a} , удовлетворяющий условиям: $\tilde{a} \in L$, $a + \tilde{a} = u$.

Пусть: $x \in L$, a + x = b. Тогда:

$$\tilde{a} + (a + x) = \tilde{a} + b,$$

$$(\tilde{a} + a) + x = \tilde{a} + b,$$

$$u + x = \tilde{a} + b,$$

$$x = \tilde{a} + b.$$

Пусть: $x_1 \in L$, $a+x_1=b$; $x_2 \in L$, $a+x_2=b$. Тогда: $x_1=\tilde{a}+b$, $x_2=\tilde{a}+b$. Следовательно, $x_1=x_2$.

Обозначим, $x = \tilde{a} + b$. Тогда: $x \in L$,

$$a + x = a + (\tilde{a} + b) = (a + \tilde{a}) + b = u + b = b$$
. \square

Определение (нулевой вектор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Будем говорить, что u — нулевой вектор пространства L, если: $u \in L$, $\forall x \in L(x+u=x)$.

Утверждение (существование и единственность нулевого вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Существует единственный объект u, удовлетворяющий условию: u — нулевой вектор пространства L.

Доказательство. Так как L — линейное пространство над полем \mathbb{K} , то существует вектор u, удовлетворяющий условиям: $u \in L$, $\forall x \in L(x+u=x)$, $\forall x \in L \exists y \in L(x+y=u)$. Так как: $u \in L$, $\forall x \in L(x+u=x)$, то u — нулевой вектор пространства L.

Пусть: u_1 — нулевой вектор пространства L, u_2 — нулевой вектор пространства L. Тогда: $u_1 \in L$, $\forall x \in L(x+u_1=x)$; $u_2 \in L$, $\forall x \in L(x+u_2=x)$. Так как: $u_1 \in L$; $\forall x \in L(x+u_1=x)$, то $u_1+u_1=u_1$. Так как: $u_1 \in L$; $\forall x \in L(x+u_2=x)$, то $u_1+u_2=u_1$. Тогда $u_1=u_2$.

Определение (обозначение для нулевого вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Обозначим через θ нулевой вектор пространства L.

Утверждение (основные свойства линейных операций). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L - ли-нейное пространство над полем \mathbb{K} .

- 1. Пусть $x \in L$. Тогда $0x = \theta$.
- 2. Пусть $x \in L$. Тогда $(-1)x + x = \theta$.
- 3. Пусть $\lambda \in \mathbb{K}$. Тогда $\lambda \theta = \theta$.

Доказательство.

- 1. Очевидно: 0x + 0x = (0+0)x = 0x. С другой стороны, $0x + \theta = 0x$. Тогда $0x = \theta$.
- 2. Очевидно: $(-1)x + x = (-1)x + 1x = (-1+1)x = 0x = \theta$.

3. Очевидно:
$$\lambda \theta = \lambda(0\theta) = (\lambda 0)\theta = (0\lambda)\theta = 0(\lambda \theta) = \theta$$
.

Утверждение (коммутативность сложения). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Тогда $\forall x \in L \forall y \in L(x+y=y+x)$.

Доказательство. Пусть $x, y \in L$. Тогда $(-1)(x+y) + (x+y) = \theta$. С другой стороны:

$$(-1)(x+y) + (y+x) = ((-1)x + (-1)y) + (y+x) = ((-1)x + (-1)y) + y + x = (-1)x + ((-1)y + y) + x = ((-1)x + \theta) + x = (-1)x + x = \theta.$$

$$\Box$$
 Тогда $x + y = y + x$.

Замечание (противоположный вектор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть $x \in L$. Будем говорить, что y — противоположный вектор к вектору x, если: $y \in L, x + y = \theta$.

Пусть $x \in L$. Так как $x, \theta \in L$, то существует единственный объект y, удовлетворяющий условиям: $y \in L$, $x + y = \theta$. Тогда существует единственный объект y, удовлетворяющий условию: y — противоположный вектор к вектору x.

Пусть $x \in L$. Обозначим через -x противоположный вектор к вектору x.

Пусть $x \in L$. Очевидно, -x = (-1)x.

Замечание (разность векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть $x, y \in L$. Будем говорить, что u — разность векторов x, y, если: $u \in L, y + u = x$.

Пусть $x, y \in L$. Так как $y, x \in L$, то существует единственный объект u, удовлетворяющий условиям: $u \in L$, y + u = x. Тогда существует единственный объект u, удовлетворяющий условию: u — разность векторов x, y.

Пусть $x, y \in L$. Обозначим через x - y разность векторов x, y.

Пусть $x, y \in L$. Очевидно, x - y = -y + x.

Лекция 4. Базис и размерность (начало; 2-й семестр)

4.1. Базис множества векторов

Oпределение (базис множества векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть: $r \in \mathbb{N}, e_1, \dots, e_r \in Q, e_1, \dots, e_r$ — линейно независимые векторы, $Q \subseteq L(e_1, \dots, e_r)$. Будем говорить, что (e_1, \dots, e_r) — базис множества Q длины r.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Пусть: $Q_2 \subseteq L$, $Q_1 \subseteq Q_2$, e — базис множества Q_2 длины $r; e_1, \ldots, e_r \in Q_1$. Тогда e — базис множества Q_1 длины r.

Пусть: Q — подпространство пространства L, e — базис подпространства Q длины r. Тогда $Q = L(e_1, \ldots, e_r)$.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L, x_1, \ldots, x_r$ — линейно независимые векторы. Тогда (x_1, \ldots, x_r) — базис множества $\{x_1, \ldots, x_r\}$ длины r.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L, x_1, \ldots, x_r$ — линейно независимые векторы. Тогда (x_1, \ldots, x_r) — базис подпространства $L(x_1, \ldots, x_r)$ длины r.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in L$.

Пусть e- базис множества $\{x_1,\ldots,x_r\}$ длины r_0 . Тогда: e- базис подпространства $L(x_1,\ldots,x_r)$ длины r_0 ; $e_1,\ldots,e_{r_0}\in\{x_1,\ldots,x_r\}$.

Доказательство. Так как e — базис множества $\{x_1, \ldots, x_r\}$ длины r_0 , то: $r_0 \in \mathbb{N}$, $e_1, \ldots, e_{r_0} \in \{x_1, \ldots, x_r\}$, e_1, \ldots, e_{r_0} — линейно независимые векторы, $\{x_1, \ldots, x_r\} \subseteq L(e_1, \ldots, e_{r_0})$.

Очевидно: $e_1, \ldots, e_{r_0} \in \{x_1, \ldots, x_r\} \subseteq L(x_1, \ldots, x_r)$. Пусть $u \in L(x_1, \ldots, x_r)$. Тогда существуют числа $\alpha^1, \ldots, \alpha^r \in \mathbb{K}$, удовлетворяющие условию $u = \alpha^k x_k$. Пусть $k = \overline{1, r}$. Так как: $x_k \in \{x_1, \ldots, x_r\} \subseteq L(e_1, \ldots, e_{r_0})$, то существуют числа $\beta_k^1, \ldots, \beta_k^{r_0} \in \mathbb{K}$, удовлетворяющие условию $x_k = \beta_k^m e_m$. Тогда:

$$u = \alpha^k x_k = \alpha^k (\beta_k^m e_m) = (\beta_k^m \alpha^k) e_m \in L(e_1, \dots, e_r).$$

Итак: e — базис подпространства $L(x_1,\ldots,x_r)$ длины $r_0;\,e_1,\ldots,e_{r_0}\in\{x_1,\ldots,x_r\}.$

Замечание (координаты вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — подпространство пространства L, e — базис подпространства Q длины N.

Пусть $x \in Q$. Будем говорить, что \tilde{x} — столбец координат вектора x в базисе e, если: $\tilde{x} \in \mathbb{K}^N, \ x = \tilde{x}^k e_k$.

Пусть $x \in Q$. Очевидно, существует единственный столбец \tilde{x} , удовлетворяющий условию: \tilde{x} — столбец координат вектора x в базисе e.

Пусть $x \in Q$. Обозначим через [x](e) столбец координат вектора x в базисе e.

Обозначим: $h_e(x) = [x](e)$ при $x \in Q$. Очевидно: h_e — обратимая функция, $D(h_e) = Q$, $R(h_e) = \mathbb{K}^N$; $h_e^{-1}(\tilde{x}) = \tilde{x}^k e_k$ при $\tilde{x} \in \mathbb{K}^N$. Будем говорить, что h_e — линейная координатная карта (линейная система координат) в подпространстве Q, соответствующая базису e. Пусть $x \in Q$. Будем говорить, что $h_e(x)$ — столбец координат вектора x в координатной карте h_e .

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — подпространство пространства L, e — базис подпространства Q длины N.

- 1. Пусть $x, y \in Q$. Тогда [x + y](e) = [x](e) + [y](e).
- 2. Пусть: $\lambda \in \mathbb{K}$, $x \in Q$. Тогда $[\lambda x](e) = \lambda [x](e)$.
- 3. Справедливо утверждение: $[\theta](e) = \tilde{\theta}$ (здесь $\tilde{\theta}$ нулевой вектор пространства \mathbb{K}^N).
- 4. Справедливо утверждение: $[e_k]^m(e) = \delta_k^m$ при $k, m = \overline{1, N}$.
- 5. Пусть $\lambda^1, \ldots, \lambda^N \in \mathbb{K}$. Тогда: $[\lambda^k e_k]^m(e) = \lambda^m$ при $m = \overline{1, N}$.
- 6. Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in Q; x_1, \dots, x_r$ линейно зависимые векторы. Тогда $[x_1](e), \dots, [x_r](e)$ линейно зависимые столбцы.
- 7. Пусть: $r \in \mathbb{N}$, $x_1, \ldots, x_r \in Q$; $[x_1](e), \ldots, [x_r](e)$ линейно зависимые столбцы. Тогда x_1, \ldots, x_r линейно зависимые векторы.

Доказательство.

1. Очевидно: $[x](e) + [y](e) \in \mathbb{K}^N$,

$$x + y = [x]^{k}(e)e_{k} + [y]^{k}(e)e_{k} = ([x]^{k}(e) + [y]^{k}(e))e_{k} = ([x](e) + [y](e))^{k}e_{k}.$$

Тогда [x + y](e) = [x](e) + [y](e).

2. Очевидно: $\lambda[x](e) \in \mathbb{K}^N$,

$$\lambda x = \lambda ([x]^k(e)e_k) = (\lambda [x]^k(e))e_k = (\lambda [x](e))^k e_k.$$

Тогда $[\lambda x](e) = \lambda [x](e)$.

- 3. Очевидно: $\tilde{\theta} \in \mathbb{K}^N$, $\theta = \tilde{\theta}^k e_k$. Тогда $[\theta](e) = \tilde{\theta}$.
- 4. Пусть $k = \overline{1, N}$. Очевидно, $e_k = [e_k]^m(e)e_m$. С другой стороны, $e_k = \delta_k^m e_m$. Тогда: $[e_k]^m(e) = \delta_k^m$ при $m = \overline{1, N}$.
 - 5. Пусть $m = \overline{1, N}$. Тогда: $[\lambda^k e_k]^m(e) = \lambda^k [e_k]^m(e) = \lambda^k \delta_k^m = \lambda^m$.
- 6. Так как x_1, \ldots, x_r линейно зависимые векторы, то существуют числа $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, удовлетворяющие условиям: $\lambda^k x_k = \theta$, $\exists k = \overline{1,r}(\lambda^k \neq 0)$. Так как $\lambda^k x_k = \theta$, то:

$$\lambda^k[x_k](e) = [\lambda^k x_k](e) = [\theta](e) = \tilde{\theta}.$$

Так как $\exists k=\overline{1,r}(\lambda^k\neq 0),$ то $[x_1](e),\ldots,[x_r](e)$ — линейно зависимые столбцы.

7. Так как $[x_1](e), \ldots, [x_r](e)$ — линейно зависимые столбцы, то существуют числа $\lambda^1, \ldots, \lambda^r \in \mathbb{K}$, удовлетворяющие условиям: $\lambda^k[x_k](e) = \tilde{\theta}, \ \exists k = \overline{1,r}(\lambda^k \neq 0)$. Так как $\lambda^k[x_k](e) = \tilde{\theta}$, то:

$$\lambda^k x_k = ([\lambda^k x_k](e))^m e_m = (\lambda^k [x_k](e))^m e_m = \tilde{\theta}^m e_m = \theta.$$

Так как $\exists k = \overline{1,r} (\lambda^k \neq 0)$, то x_1, \ldots, x_r — линейно зависимые векторы.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{N}$, x_1, \ldots, x_N — некоторые объекты, x_1, \ldots, x_N — различные объекты, $Q = \{x_1, \ldots, x_N\}$. Фиксируем номер $k = \overline{1, N}$. Обозначим: $e_k(x) = 0$ при: $x \in Q$, $x \neq x_k$; $e_k(x) = 1$ при $x = x_k$.

- 1. Справедливо утверждение: e- базис пространства $\operatorname{Fun}(Q,\mathbb{K})$ длины N.
- 2. Пусть $\varphi \in \operatorname{Fun}(Q, \mathbb{K})$. Тогда: $[\varphi]^k(e) = \varphi(x_k)$ при $k = \overline{1, N}$.

Доказательство.

1. Очевидно: $N \in \mathbb{N}, e_1, \ldots, e_N \in \operatorname{Fun}(Q, \mathbb{K})$.

Вспомогательное утверждение. Пусть $k, m = \overline{1, N}$. Так как x_1, \dots, x_N — различные объекты, то $e_k(x_m) = \delta_k^m$.

Вспомогательное утверждение. Пусть $\lambda^1, \dots, \lambda^N \in \mathbb{K}$. Пусть $m = \overline{1, N}$. Тогда:

$$(\lambda^k e_k)(x_m) = \lambda^k e_k(x_m) = \lambda^k \delta_k^m = \lambda^m.$$

Вспомогательное утверждение. Пусть $\varphi \in \text{Fun}(Q, \mathbb{K})$. Пусть $x \in Q$. Тогда существует номер $m = \overline{1, N}$, удовлетворяющий условию $x = x_m$. Следовательно:

$$\left(\sum_{k=\overline{1,N}}\varphi(x_k)e_k\right)(x) = \left(\sum_{k=\overline{1,N}}\varphi(x_k)e_k\right)(x_m) = \varphi(x_m) = \varphi(x).$$

Тогда $\sum_{k=\overline{1.N}} \varphi(x_k) e_k = \varphi.$

Пусть: $\lambda^1,\dots,\lambda^N\in\mathbb{K},\,\lambda^ke_k=\Theta$ (здесь Θ — нулевой вектор пространства $\operatorname{Fun}(Q,\mathbb{K})$). Пусть $m=\overline{1,N}.$ Тогда:

$$(\lambda^k e_k)(x_m) = \Theta(x_m),$$
$$\lambda^m = 0$$

Следовательно, e_1, \dots, e_N — линейно независимые векторы.

Пусть $\varphi\in \operatorname{Fun}(Q,\mathbb{K})$. Тогда: $\varphi=\sum_{k=\overline{1,N}}\varphi(x_k)e_k\in L(e_1,\ldots,e_N)$. Итак, e — базис пространства $\operatorname{Fun}(Q,\mathbb{K})$ длины N.

2. Очевидно, $\varphi = [\varphi]^k(e)e_k$. С другой стороны, $\varphi = \sum_{k=\overline{1,N}} \varphi(x_k)e_k$. Тогда: $[\varphi]^k(e) = \varphi(x_k)$ при $k = \overline{1,N}$.

Замечание (простейший базис пространства $\operatorname{Fun}(Q,\mathbb{K})$). Пусть: $\mathbb{K} \in \{\mathbb{C},\mathbb{R},\mathbb{Q}\}$; $N \in \mathbb{N}$, x_1,\ldots,x_N — некоторые объекты, x_1,\ldots,x_N — различные объекты, $Q = \{x_1,\ldots,x_N\}$. Фиксируем номер $k = \overline{1,N}$. Обозначим: $e_k(x) = 0$ при: $x \in Q, x \neq x_k$; $e_k(x) = 1$ при $x = x_k$. Тогда e — базис пространства $\operatorname{Fun}(Q,\mathbb{K})$ длины N. Будем говорить, что e — простейший базис пространства $\operatorname{Fun}(Q,\mathbb{K})$.

Пусть $\varphi \in \operatorname{Fun}(Q, \mathbb{K})$. Тогда: $[\varphi]^k(e) = \varphi(x_k)$ при $k = \overline{1, N}$.

Замечание (простейший базис пространства \mathbb{K}^N). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{N}$. Обозначим: $e_1 = (1, 0, \dots, 0)^T, \dots, e_N = (0, \dots, 0, 1)^T$. Тогда e — базис пространства \mathbb{K}^N длины N. Будем говорить, что e — простейший базис пространства \mathbb{K}^N .

Пусть $x \in \mathbb{K}^N$. Тогда: $[x]^k(e) = x^k$ при $k = \overline{1, N}$. Следовательно, [x](e) = x.

Замечание (простейший базис пространства $\mathbb{K}^{N_2 \times N_1}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N_1, N_2 \in \mathbb{N}$. Обозначим:

$$e_{1} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \dots, e_{N_{1}} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}, \dots, e_{N_{2}N_{1}} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Тогда e — базис пространства $\mathbb{K}^{N_2 \times N_1}$ длины $N_2 N_1$. Будем говорить, что e — простейший базис пространства $\mathbb{K}^{N_2 \times N_1}$.

Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Тогда:

$$[A]^1(e) = A_1^1, \dots, [A]^{N_1}(e) = A_{N_1}^1, \dots, [A]^{N_2N_1 - N_1 + 1}(e) = A_1^{N_2}, \dots, [A]^{N_2N_1}(e) = A_{N_1}^{N_2}.$$

4.2. Размерность линейного пространства

Определение (ранг множества векторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$.

- 1. Обозначим через $\mu_*(Q)$ множество всех чисел k, удовлетворяющих условиям: $k \in \mathbb{N}$, существуют векторы $x_1, \ldots, x_k \in Q$, удовлетворяющие условию: x_1, \ldots, x_k линейно независимые векторы.
- 2. Пусть $\mu_*(Q) = \emptyset$. Обозначим, $\operatorname{rank}(Q) = 0$. Пусть: $\mu_*(Q) \neq \emptyset$, $\exists k \in \mathbb{N} \forall m \in \mu_*(Q) (m \leqslant k)$. Обозначим, $\operatorname{rank}(Q) = \max \left(\mu_*(Q)\right)$. Пусть: $\mu_*(Q) \neq \emptyset$, $\neg \exists k \in \mathbb{N} \forall m \in \mu_*(Q) (m \leqslant k)$ (иными словами, $\forall k \in \mathbb{N} \exists m \in \mu_*(Q) (m > k)$). Обозначим, $\operatorname{rank}(Q) = +\infty$.
 - 3. Будем говорить, что rank(Q) ранг множества Q.

Определение (размерность подпространства). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — подпространство пространства L. Обозначим, $\dim(Q)$ = $\operatorname{rank}(Q)$. Будем говорить, что $\dim(Q)$ — размерность подпространства Q.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$.

1. Пусть: $k \in \mathbb{N}$, $k \notin \mu_*(Q)$. Тогда: $k \in \mathbb{N}$, для любых векторов $x_1, \ldots, x_k \in Q$ справедливо утверждение: x_1, \ldots, x_k — линейно зависимые векторы.

Пусть: $k \in \mathbb{N}$, для любых векторов $x_1, \ldots, x_k \in Q$ справедливо утверждение: x_1, \ldots, x_k — линейно зависимые векторы. Тогда: $k \in \mathbb{N}, k \notin \mu_*(Q)$.

- 2. Пусть $k \in \mu_*(Q)$. Тогда: $k \in \mathbb{N}$, $\forall m = \overline{1, k} (m \in \mu_*(Q))$. Пусть: $k \in \mathbb{N}$, $k \notin \mu_*(Q)$. Тогда: $k \in \mathbb{N}$, $\forall m \geqslant k (m \notin \mu_*(Q))$.
- 3. Пусть: r = 0, $\operatorname{rank}(Q) = r$. Тогда $\mu_*(Q) = \varnothing$. Пусть: $r \in \mathbb{N}$, $\operatorname{rank}(Q) = r$. Тогда $\mu_*(Q) = \{1, \dots, r\}$. Пусть: $r = +\infty$, $\operatorname{rank}(Q) = r$. Тогда $\mu_*(Q) = \mathbb{N}$.
- 4. Пусть: $k \in \mathbb{N}$, $k \leq \operatorname{rank}(Q)$. Тогда существуют векторы, удовлетворяющие условиям: $x_1, \ldots, x_k \in Q, x_1, \ldots, x_k$ линейно независимые векторы.

Пусть: $k \in \mathbb{N}, x_1, \dots, x_k \in Q, k > \text{rank}(Q)$. Тогда x_1, \dots, x_k — линейно зависимые векторы.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

- 1. Пусть: $Q\subseteq L$, rank(Q)=0. Тогда: Q множество, $\forall x\in Q(x=\theta)$. Следовательно, $Q=\varnothing\vee Q=\{\theta\}$.
- Пусть $Q=\varnothing\vee Q=\{\theta\}.$ Тогда: Q множество, $\forall x\in Q(x=\theta).$ Следовательно: $Q\subseteq L,\, {\rm rank}(Q)=0.$
 - 2. Пусть: $Q \subseteq L$, Q конечное множество. Тогда $\operatorname{rank}(Q) \leqslant \operatorname{card}(Q)$.
 - 3. Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in L$. Тогда $\operatorname{rank}(\{x_1, \dots, x_r\}) \leqslant r$.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L, x_1, \ldots, x_r$ — линейно независимые векторы. Тогда $\operatorname{rank}(\{x_1, \ldots, x_r\}) = r$.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in L, x_1, \ldots, x_r$ — линейно зависимые векторы. Тогда $\operatorname{rank}(\{x_1, \ldots, x_r\}) < r$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть: $r \in \mathbb{N}$, $e_1, \ldots, e_r \in Q$, e_1, \ldots, e_r — линейно независимые векторы, $r = \operatorname{rank}(Q)$. Тогда e — базис множества Q длины r.

Доказательство. Очевидно: $r \in \mathbb{N}, e_1, \dots, e_r \in Q, e_1, \dots, e_r$ — линейно независимые векторы.

Пусть $x \in Q$. Так как: $e_1, \ldots, e_r, x \in Q, r+1 > r, r = \operatorname{rank}(Q)$, то $e_1, \ldots, e_r, x -$ линейно зависимые векторы. Так как $e_1, \ldots, e_r -$ линейно независимые векторы, то $x \in L(e_1, \ldots, e_r)$. Тогда $Q \subseteq L(e_1, \ldots, e_r)$. Итак, e -базис множества Q длины r.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть: $r \in \mathbb{N}$, $r = \operatorname{rank}(Q)$. Тогда существуют векторы e_1, \ldots, e_r , удовлетворяющие условию: e — базис множества Q длины r.

Доказательство. Так как: $r \in \mathbb{N}, r = \operatorname{rank}(Q)$, то существуют векторы e_1, \ldots, e_r , удовлетворяющие условиям: $e_1, \ldots, e_r \in Q, e_1, \ldots, e_r$ — линейно независимые векторы. Так как: $e_1, \ldots, e_r \in Q, e_1, \ldots, e_r$ — линейно независимые векторы, $r = \operatorname{rank}(Q)$, то e — базис множества Q длины r.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q_2 \subseteq L$, $Q_1 \subseteq Q_2$. Тогда $\operatorname{rank}(Q_1) \leqslant \operatorname{rank}(Q_2)$.

Доказательство. Обозначим: $r_1 = \operatorname{rank}(Q_1), \ r_2 = \operatorname{rank}(Q_2)$. Тогда: $r_1 \in \overline{\mathbb{Z}}_+, \ r_2 \in \overline{\mathbb{Z}}_+$. Предположим, что $r_2 < r_1$. Тогда: $r_1 \in \overline{\mathbb{N}}, \ r_2 \in \mathbb{Z}_+$.

Так как: $r_2+1\in\mathbb{N},\ r_2+1\leqslant r_1,\ r_1=\mathrm{rank}(Q_1),\$ то существуют векторы $x_1,\ldots,x_{r_2+1},$ удовлетворяющие условиям: $x_1,\ldots,x_{r_2+1}\in Q_1,\ x_1,\ldots,x_{r_2+1}-$ линейно независимые векторы. Так как: $x_1,\ldots,x_{r_2+1}\in Q_1,\ Q_1\subseteq Q_2,\$ то $x_1,\ldots,x_{r_2+1}\in Q_2.$ Так как: $x_1,\ldots,x_{r_2+1}\in Q_2,\$ $r_2+1>r_2,\ r_2=\mathrm{rank}(Q_2),\$ то $x_1,\ldots,x_{r_2+1}-$ линейно зависимые векторы (что противоречит утверждению: $x_1,\ldots,x_{r_2+1}-$ линейно независимые векторы). Итак, $r_1\leqslant r_2.$

Лекция 5. Матричная алгебра (1-й семестр)

5.1. Пространство $\mathbb{K}^{N_2 \times N_1}$

Определение (что такое матрица). Пусть $N_1, N_2 \in \mathbb{N}$.

1. Будем говорить, что A — матрица, имеющая N_2 строки и N_1 столбец, если:

$$A-$$
 функция,
$$\mathrm{D}(A)=\{1,\ldots,N_2\}\times\{1,\ldots,N_1\}.$$

- 2. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « A_i^j » вместо «A(j,i)».
- 3. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « $A_{i,i}$ » вместо «A(j,i)».
- 4. Пусть A матрица, имеющая N_2 строки и N_1 столбец. Далее часто будем писать « $A^{j,i}$ » вместо «A(j,i)».
- 5. Пусть $\alpha_1^1,\dots,\alpha_{N_1}^1,\dots,\alpha_1^{N_2},\dots,\alpha_{N_1}^{N_2}$ некоторые объекты. Выберем функцию A, удовлетворяющую условиям:

$$D(A) = \{1, \dots, N_2\} \times \{1, \dots, N_1\},$$

$$\forall j = \overline{1, N_2} \forall i = \overline{1, N_1} (A(j, i) = \alpha_i^j).$$

Обозначим:

$$\begin{pmatrix} \alpha_1^1 & \cdots & \alpha_{N_1}^1 \\ \vdots & \vdots & \vdots \\ \alpha_1^{N_2} & \cdots & \alpha_{N_1}^{N_2} \end{pmatrix} = A.$$

6. Пусть Q — множество. Будем говорить, что A — матрица с элементами из множества Q, имеющая N_2 строки и N_1 столбец, если:

$$A: \{1, \dots, N_2\} \times \{1, \dots, N_1\} \implies Q.$$

7. Пусть Q — множество. Обозначим через $Q^{N_2 \times N_1}$ множество всех матриц с элементами из множества Q, имеющих N_2 строки и N_1 столбец.

Определение. Пусть: N_1 , $N_2 \in \mathbb{N}$; A — матрица, имеющая N_2 строки и N_1 столбец. Пусть $i = \overline{1, N_1}$. Обозначим:

$$A_i = \begin{pmatrix} A_i^1 \\ \vdots \\ A_i^{N_2} \end{pmatrix}.$$

Пусть $j = \overline{1, N_2}$. Обозначим:

$$A^j = \begin{pmatrix} A_1^j & \cdots & A_{N_1}^j \end{pmatrix}.$$

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, N_1 , $N_2 \in \mathbb{N}$. Рассмотрим множество $\mathbb{K}^{N_2 \times N_1}$. Пусть $A, B \in \mathbb{K}^{N_2 \times N_1}$. Обозначим:

$$(A+B)_{i}^{j} = A_{i}^{j} + B_{i}^{j}, \quad i = \overline{1, N_{1}}, \ j = \overline{1, N_{2}}.$$

Тогда $A + B \in \mathbb{K}^{N_2 \times N_1}$.

Обозначим: $F_1(A,B)=A+B$ при $A,B\in\mathbb{K}^{N_2\times N_1}$. Тогда $F_1\colon\mathbb{K}^{N_2\times N_1}\times\mathbb{K}^{N_2\times N_1}\Longrightarrow$ $\mathbb{K}^{N_2 \times N_1}$. Будем говорить, что F_1 — стандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}$. Пусть: $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{N_2 \times N_1}$. Обозначим:

$$(\lambda A)_i^j = \lambda A_i^j, \quad i = \overline{1, N_1}, \ j = \overline{1, N_2}.$$

Тогда $\lambda A \in \mathbb{K}^{N_2 \times N_1}$.

Обозначим: $F_2(\lambda, A) = \lambda A$ при: $\lambda \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Тогда $F_2 \colon \mathbb{K} \times \mathbb{K}^{N_2 \times N_1} \implies \mathbb{K}^{N_2 \times N_1}$. Будем говорить, что F_2 — стандартная операция умножения на множестве $\mathbb{K}^{N_2 \times N_1}$. Обозначим:

$$\tilde{\Theta}_i^j = 0, \quad i = \overline{1, N_1}, \ j = \overline{1, N_2}.$$

Тогда $\tilde{\Theta} \in \mathbb{K}^{N_2 \times N_1}$. Будем говорить, что $\tilde{\Theta}$ — стандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$.

Утверждение (линейное пространство $\mathbb{K}^{N_2 \times N_1}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N_1, N_2 \in \mathbb{N};$ F_1-c тандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}$, F_2-c тандартная операция умножения на множестве $\mathbb{K}^{N_2 \times N_1}$, $\tilde{\Theta} - c$ тандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$. Тогда: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$ — линейное пространство над полем $\mathbb{K}, \tilde{\Theta}$ — нулевой вектор пространства ($\mathbb{K}^{N_2 \times N_1}, F_1, F_2$).

Доказательство. Очевидно: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $\mathbb{K}^{N_2 \times N_1}$ — множество, $\tilde{\Theta} \in \mathbb{K}^{N_2 \times N_1}$,

$$F_1: \mathbb{K}^{N_2 \times N_1} \times \mathbb{K}^{N_2 \times N_1} \implies \mathbb{K}^{N_2 \times N_1},$$

 $F_2: \mathbb{K} \times \mathbb{K}^{N_2 \times N_1} \implies \mathbb{K}^{N_2 \times N_1}.$

1. Пусть $A, B \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$(A+B)_i^j = A_i^j + B_i^j = B_i^j + A_i^j = (B+A)_i^j.$$

Следовательно, A + B = B + A.

2. Пусть $A,\,B,\,C\in\mathbb{K}^{N_2\times N_1}.$ Пусть: $i=\overline{1,N_1},\,j=\overline{1,N_2}.$ Тогда:

$$((A+B)+C)_{i}^{j} = (A_{i}^{j}+B_{i}^{j}) + C_{i}^{j} = A_{i}^{j} + (B_{i}^{j}+C_{i}^{j}) = (A+(B+C))_{i}^{j}.$$

Следовательно, (A+B)+C=A+(B+C). 3. Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i=\overline{1,N_1},\ j=\overline{1,N_2}$. Тогда:

$$(A + \Theta)_i^j = A_i^j + \Theta_i^j = A_i^j + 0 = A_i^j.$$

Следовательно, $A + \Theta = A$.

4. Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, \ j = \overline{1, N_2}$. Тогда:

$$(A + (-1)A)_i^j = A_i^j + (-1)A_i^j = 0 = \Theta_i^j$$
.

Следовательно, $A + (-1)A = \Theta$.

5. Пусть: $\alpha, \beta \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$((\alpha\beta)A)_{i}^{j} = (\alpha\beta)A_{i}^{j} = \alpha(\beta A_{i}^{j}) = (\alpha(\beta A))_{i}^{j}.$$

Следовательно, $(\alpha\beta)A = \alpha(\beta A)$.

6. Пусть $A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, \, j = \overline{1, N_2}$. Тогда:

$$(1A)_i^j = 1A_i^j = A_i^j$$
.

Следовательно, 1A = A.

7. Пусть: $\alpha, \beta \in \mathbb{K}, A \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$((\alpha + \beta)A)_i^j = (\alpha + \beta)A_i^j = \alpha A_i^j + \beta A_i^j = (\alpha A + \beta A)_i^j.$$

Следовательно, $(\alpha + \beta)A = \alpha A + \beta A$.

8. Пусть: $\lambda \in \mathbb{K}, A, B \in \mathbb{K}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Тогда:

$$(\lambda(A+B))_i^j = \lambda(A_i^j + B_i^j) = \lambda A_i^j + \lambda B_i^j = (\lambda A + \lambda B)_i^j.$$

Следовательно, $\lambda(A+B) = \lambda A + \lambda B$.

Очевидно: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2)$ — линейное пространство над полем $\mathbb{K}, \tilde{\Theta}$ — нулевой вектор пространства ($\mathbb{K}^{N_2 \times N_1}, F_1, F_2$).

3амечание (линейное пространство $\mathbb{K}^{N_2 \times N_1}(\mathbb{K}_0)$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N_1, N_2 \in \mathbb{N}; F_1$ стандартная операция сложения на множестве $\mathbb{K}^{N_2 \times N_1}, F_2$ — стандартная операция умножения на множестве $\mathbb{K}^{N_2 \times N_1}$, $\tilde{\Theta}$ — стандартный нулевой элемент на множестве $\mathbb{K}^{N_2 \times N_1}$.

Пусть: $\mathbb{K}_0 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, \mathbb{K}_0 \subseteq \mathbb{K}$. Тогда: $(\mathbb{K}^{N_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}})$ — линейное пространство над полем \mathbb{K}_0 , $\tilde{\Theta}$ — нулевой вектор пространства ($\mathbb{K}^{\tilde{N}_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}}$). Обозначим, $\mathbb{K}^{N_2 \times N_1}(\mathbb{K}_0) = (\mathbb{K}^{N_2 \times N_1}, F_1, F_2|_{\mathbb{K}_0 \times \mathbb{K}^{N_2 \times N_1}}).$

5.2. Перемножение матриц

Определение.

1. Пусть: $N_1, N_2, N_3 \in \mathbb{N}$; $A \in \mathbb{R}^{N_2 \times N_1}, B \in \mathbb{R}^{N_3 \times N_2}$. Обозначим:

$$(BA)_i^j = B_k^j A_i^k, \quad i = \overline{1, N_1}, \ j = \overline{1, N_3}.$$

Очевидно, $BA \in \mathbb{R}^{N_3 \times N_1}$. Будем говорить, что BA — произведение матриц B, A.

2. Пусть $N \in \mathbb{N}$. Обозначим:

$$I_i^j = \delta_i^j, \quad i = \overline{1, N}, \ j = \overline{1, N}.$$

Очевидно, $I \in \mathbb{R}^{N \times N}$. Будем говорить, что I — единичная матрица из множества $\mathbb{R}^{N \times N}$.

Утверждение.

- 1. Пусть: $N_1, N_2, N_3, N_4 \in \mathbb{N}$; $A \in \mathbb{R}^{N_2 \times N_1}, B \in \mathbb{R}^{N_3 \times N_2}, C \in \mathbb{R}^{N_4 \times N_3}$. Тогда (CB)A =

 - 2. $\Pi y cmb$: N_1 , $N_2 \in \mathbb{N}$; $A \in \mathbb{R}^{N_2 \times N_1}$. Torda: $AI_1 = A$, $I_2A = A$. 3. $\Pi y cmb$: N_1 , N_2 , $N_3 \in \mathbb{N}$; $A \in \mathbb{R}^{N_2 \times N_1}$, B_1 , $B_2 \in \mathbb{R}^{N_3 \times N_2}$. Torda $(B_1 + B_2)A = B_1A + B_2A$. 4. $\Pi y cmb$: N_1 , N_2 , $N_3 \in \mathbb{N}$; $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{N_2 \times N_1}$, $B \in \mathbb{R}^{N_3 \times N_2}$. Torda $(\lambda B)A = \lambda(BA)$. 5. $\Pi y cmb$: N_1 , N_2 , $N_3 \in \mathbb{N}$; A_1 , $A_2 \in \mathbb{R}^{N_2 \times N_1}$, $B \in \mathbb{R}^{N_3 \times N_2}$. Torda $B(A_1 + A_2) = BA_1 + BA_2$.
 - 6. Hycmb: $N_1, N_2, N_3 \in \mathbb{N}$; $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{N_2 \times N_1}$, $B \in \mathbb{R}^{N_3 \times N_2}$. Torda $B(\lambda A) = \lambda(BA)$.

Доказательство.

1. Очевидно, $(CB)A, C(BA) \in \mathbb{R}^{N_4 \times N_1}$. Пусть: $i = \overline{1, N_1}, \ j = \overline{1, N_4}$. Тогда:

$$((CB)A)_i^j = \sum_{k=1}^{N_2} (CB)_k^j A_i^k = \sum_{k=1}^{N_2} \left(\sum_{m=1}^{N_3} C_m^j B_k^m\right) A_i^k = \sum_{k=1}^{N_2} \sum_{m=1}^{N_3} (C_m^j B_k^m) A_i^k =$$

$$= \sum_{m=1}^{N_3} \sum_{k=1}^{N_2} C_m^j (B_k^m A_i^k) = \sum_{m=1}^{N_3} C_m^j \sum_{k=1}^{N_2} B_k^m A_i^k = \sum_{m=1}^{N_3} C_m^j (BA)_i^m = (C(BA))_i^j.$$

Следовательно, (CB)A = C(BA).

Проделаем аналогичные выкладки, используя правило суммирования Эйнштейна. Очевидно, (CB)A, $C(BA) \in \mathbb{R}^{N_4 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_4}$. Тогда:

$$((CB)A)_{i}^{j} = (CB)_{k}^{j}A_{i}^{k} = (C_{m}^{j}B_{k}^{m})A_{i}^{k} = C_{m}^{j}(B_{k}^{m}A_{i}^{k}) = C_{m}^{j}(BA)_{i}^{m} = (C(BA))_{i}^{j}.$$

Следовательно, (CB)A = C(BA).

2. Очевидно, AI_1 , $A \in \mathbb{R}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_2}$. Тогда:

$$(AI_1)_i^j = A_k^j (I_1)_i^k = A_k^j \delta_i^k = A_i^j.$$

Следовательно, $AI_1 = A$.

Очевидно, I_2A , $A \in \mathbb{R}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_2}$. Тогда:

$$(I_2A)_i^j = (I_2)_k^j A_i^k = \delta_k^j A_i^k = A_i^j.$$

Следовательно, $I_2A = A$.

3. Очевидно, $(B_1+B_2)A$, $B_1A+B_2A\in\mathbb{R}^{N_3\times N_1}$. Пусть: $i=\overline{1,N_1},\ j=\overline{1,N_3}$. Тогда:

$$((B_1 + B_2)A)_i^j = (B_1 + B_2)_k^j A_i^k = ((B_1)_k^j + (B_2)_k^j) A_i^k = (B_1)_k^j A_i^k + (B_2)_k^j A_i^k = (B_1A)_i^j + (B_2A)_i^j = (B_1A + B_2A)_i^j.$$

Следовательно, $(B_1+B_2)A=B_1A+B_2A$. 4. Очевидно, $(\lambda B)A,\ \lambda(BA)\in\mathbb{R}^{N_3\times N_1}.$ Пусть: $i=\overline{1,N_1},\ j=\overline{1,N_3}.$ Тогда:

$$((\lambda B)A)_i^j = (\lambda B)_k^j A_i^k = (\lambda B_k^j) A_i^k = \lambda (B_k^j A_i^k) = \lambda (BA)_i^j = (\lambda (BA))_i^j.$$

Следовательно, $(\lambda B)A = \lambda(BA)$.

5. Очевидно, $B(A_1 + A_2)$, $BA_1 + BA_2 \in \mathbb{R}^{N_3 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_3}$. Тогда:

$$(B(A_1 + A_2))_i^j = B_k^j (A_1 + A_2)_i^k = B_k^j ((A_1)_i^k + (A_2)_i^k) = B_k^j (A_1)_i^k + B_k^j (A_2)_i^k = (BA_1)_i^j + (BA_2)_i^j = (BA_1 + BA_2)_i^j.$$

Следовательно, $B(A_1 + A_2) = BA_1 + BA_2$.

6. Очевидно, $B(\lambda A), \lambda(BA) \in \mathbb{R}^{N_3 \times N_1}$. Пусть: $i = \overline{1, N_1}, \ j = \overline{1, N_3}$. Тогда:

$$(B(\lambda A))_i^j = B_k^j (\lambda A)_i^k = B_k^j (\lambda A_i^k) = \lambda (B_k^j A_i^k) = \lambda (BA)_i^j = (\lambda (BA))_i^j.$$

Следовательно, $B(\lambda A) = \lambda(BA)$.

Замечание.

1. Пусть $N_1, N_2 \in \mathbb{N}$. Пусть: $A \in \mathbb{R}^{N_2 \times N_1}, B \in \mathbb{R}^{N_1 \times N_2}$. Будем говорить, что матрицы B, A коммутируют, если BA = AB.

Пусть: $A \in \mathbb{R}^{N_2 \times N_1}$, $B \in \mathbb{R}^{N_1 \times N_2}$, матрицы B, A коммутируют. Тогда $N_2 = N_1$.

2. Пусть $N \in \mathbb{N}$. Пусть $A, B \in \mathbb{R}^{N \times N}$. Обозначим, [B,A] = BA - AB. Будем говорить, что [B,A] — коммутатор матриц B,A.

Пусть $A, B \in \mathbb{R}^{N \times N}$. Матрицы B, A коммутируют тогда и только тогда, когда $[B,A] = \Theta$.

- 3. Пусть: $N \in \mathbb{N}$; $A, B_1, B_2 \in \mathbb{R}^{N \times N}$. Тогда $[B_1 + B_2, A] = [B_1, A] + [B_2, A]$.
- 4. Пусть: $N \in \mathbb{N}$; $\lambda \in \mathbb{R}$, $A, B \in \mathbb{R}^{N \times N}$. Тогда $[\lambda B, A] = \lambda [B, A]$.
- 5. Пусть: $N \in \mathbb{N}$; $A_1, A_2, B \in \mathbb{R}^{N \times N}$. Тогда $[B, A_1 + A_2] = [B, A_1] + [B, A_2]$.
- 6. Пусть: $N \in \mathbb{N}$; $\lambda \in \mathbb{R}$, $A, B \in \mathbb{R}^{N \times N}$. Тогда $[B, \lambda A] = \lambda [B, A]$.
- 7. Пусть: $N \in \mathbb{N}$; $A, B \in \mathbb{R}^{N \times N}$. Тогда [A, B] = -[B, A].
- 8. Пусть: $N \in \mathbb{N}$; $A, B, C \in \mathbb{R}^{N \times N}$. Тогда $[C, [B, A]] + [A, [C, B]] + [B, [A, C]] = \Theta$.

5.3. Транспонирование матрицы

Определение. Пусть: $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{R}^{N_2 \times N_1}$. Обозначим:

$$(A^T)_i^j = A_i^i, \quad i = \overline{1, N_2}, \ j = \overline{1, N_1}.$$

Очевидно, $A^T \in \mathbb{R}^{N_1 \times N_2}$. Будем говорить, что A^T — результат транспонирования матрицы A.

Утверждение.

- 1. Пусть: $N_1, N_2 \in \mathbb{N}; A, B \in \mathbb{R}^{N_2 \times N_1}$. Тогда $(A + B)^T = A^T + B^T$.
- 2. Π ycmv: N_1 , $N_2 \in \mathbb{N}$; $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{N_2 \times N_1}$. $Torda\ (\lambda A)^T = \lambda A^T$.
- 3. Пусть: $N_1, N_2, N_3 \in \mathbb{N}; A \in \mathbb{R}^{N_2 \times N_1}, B \in \mathbb{R}^{N_3 \times N_2}$. Тогда $(BA)^T = A^T B^T$.
- 4. $\textit{Hycmb: } N_1, \ N_2 \in \mathbb{N}; \ A \in \mathbb{R}^{N_2 \times N_1}. \ \textit{Torda} \ (A^T)^T = A.$

Доказательство.

1. Очевидно, $(A+B)^T,\,A^T+B^T\in\mathbb{R}^{N_1\times N_2}.$ Пусть: $i=\overline{1,N_2},\,j=\overline{1,N_1}.$ Тогда:

$$((A+B)^T)_i^j = (A+B)_j^i = A_j^i + B_j^i = (A^T)_i^j + (B^T)_i^j = (A^T+B^T)_i^j.$$

Следовательно, $(A + B)^T = A^T + B^T$.

2. Очевидно, $(\lambda A)^T$, $\lambda A^T \in \mathbb{R}^{N_1 \times N_2}$. Пусть: $i = \overline{1, N_2}, \ j = \overline{1, N_1}$. Тогда:

$$\left((\lambda A)^T\right)_i^j = (\lambda A)_j^i = \lambda A_j^i = \lambda (A^T)_i^j = (\lambda A^T)_i^j.$$

Следовательно, $(\lambda A)^T = \lambda A^T$.

3. Очевидно, $(BA)^T$, $A^TB^T \in \mathbb{R}^{N_1 \times N_3}$. Пусть: $i = \overline{1, N_3}$, $j = \overline{1, N_1}$. Тогда:

$$\left((BA)^T\right)_i^j = (BA)_j^i = B_k^i A_j^k = (B^T)_i^k (A^T)_k^j = (A^T)_k^j (B^T)_i^k = (A^T B^T)_i^j.$$

Следовательно, $(BA)^T = A^T B^T$.

4. Очевидно, $(A^T)^T$, $A \in \mathbb{R}^{N_2 \times N_1}$. Пусть: $i = \overline{1, N_1}$, $j = \overline{1, N_2}$. Тогда:

$$((A^T)^T)_i^j = (A^T)_j^i = A_i^j.$$

Следовательно, $(A^T)^T = A$.

5.4. След матрицы

Onpedenenue. Пусть: $N \in \mathbb{N}; A \in \mathbb{R}^{N \times N}.$ Обозначим, $\operatorname{tr}(A) = A_k^k.$ Очевидно, $\operatorname{tr}(A) \in \mathbb{R}.$ Будем говорить, что $\operatorname{tr}(A)$ — след матрицы A.

Утверждение. Пусть $N \in \mathbb{N}$.

- 1. Пусть $A, B \in \mathbb{R}^{N \times N}$. Тогда $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
- 2. Hycmb: $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{N \times N}$. Torda $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$.
- 3. Пусть $A, B \in \mathbb{R}^{N \times N}$. Тогда $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 4. $\Pi y cm b \ A \in \mathbb{R}^{N \times N}$. $Tor \partial a \operatorname{tr}(A^T) = \operatorname{tr}(A)$.

Доказательство.

1. Очевидно:

$$\operatorname{tr}(A+B) = \sum_{k=1}^{N} (A+B)_{k}^{k} = \sum_{k=1}^{N} (A_{k}^{k} + B_{k}^{k}) = \sum_{k=1}^{N} A_{k}^{k} + \sum_{k=1}^{N} B_{k}^{k} = \operatorname{tr}(A) + \operatorname{tr}(B).$$

2. Очевидно:

$$\operatorname{tr}(\lambda A) = \sum_{k=1}^{N} (\lambda A)_{k}^{k} = \sum_{k=1}^{N} \lambda A_{k}^{k} = \lambda \sum_{k=1}^{N} A_{k}^{k} = \lambda \operatorname{tr}(A).$$

3. Очевидно:

$$\operatorname{tr}(AB) = \sum_{k=1}^{N} (AB)_{k}^{k} = \sum_{k=1}^{N} \sum_{m=1}^{N} A_{m}^{k} B_{k}^{m} = \sum_{k=1}^{N} \sum_{m=1}^{N} B_{k}^{m} A_{m}^{k} = \sum_{m=1}^{N} \sum_{k=1}^{N} B_{k}^{m} A_{m}^{k} = \sum_{m=1}^{N} (BA)_{m}^{m} = \operatorname{tr}(BA).$$

4. Очевидно:

$$\operatorname{tr}(A^T) = \sum_{k=1}^{N} (A^T)_k^k = \sum_{k=1}^{N} A_k^k = \operatorname{tr}(A). \quad \Box$$

Лекция 6. Определитель матрицы (1-й семестр)

6.1. Определение определителя. Теория перестановок

Определение (определитель в пространстве $\mathbb{K}^{N\times N}$). Пусть: $\mathbb{K}\in\{\mathbb{C},\mathbb{R},\mathbb{Q}\};\ N\in\mathbb{N};$ $F\colon\mathbb{K}^{N\times N}\Longrightarrow\mathbb{K}.$

Пусть справедливы утверждения.

1. Пусть: $k = \overline{1, N}, \, X, \, Y, \, A_1, \ldots, A_{k-1}, \, A_{k+1}, \ldots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_1, \dots, A_{k-1}, X + Y, A_{k+1}, \dots, A_N) =$$

= $F(A_1, \dots, A_{k-1}, X, A_{k+1}, \dots, A_N) + F(A_1, \dots, A_{k-1}, Y, A_{k+1}, \dots, A_N).$

2. Пусть: $k = \overline{1, N}, \lambda \in \mathbb{K}, A_1, \ldots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_1, \ldots, A_{k-1}, \lambda A_k, A_{k+1}, \ldots, A_N) = \lambda F(A_1, \ldots, A_N).$$

- 3. Пусть: $k, m = \overline{1, N}, k < m, A_1, \dots, A_N \in \mathbb{K}^N, A_k = A_m$. Тогда $F(A_1, \dots, A_N) = 0$.
- 4. F(I) = 1.

Будем говорить, что F — определитель в пространстве $\mathbb{K}^{N\times N}$.

Замечание. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}.$

Пусть $A \in \mathbb{K}^{1 \times 1}$. Обозначим, $F(A) = A_1^1$. Очевидно, F — определитель в пространстве $\mathbb{K}^{1 \times 1}$.

Пусть $A \in \mathbb{K}^{2\times 2}$. Обозначим, $F(A) = A_1^1A_2^2 - A_1^2A_2^1$. Очевидно, F — определитель в пространстве $\mathbb{K}^{2\times 2}$.

Пусть $A \in \mathbb{K}^{3\times3}$. Обозначим, $F(A) = A_1^1 A_2^2 A_3^3 + A_1^3 A_2^1 A_3^2 + A_1^2 A_3^3 + A_1^3 A_2^2 A_3^1 - A_1^3 A_2^2 A_3^1 - A_1^1 A_2^3 A_3^2 - A_1^2 A_2^3 A_3^3$. Очевидно, F — определитель в пространстве $\mathbb{K}^{3\times3}$.

Замечание (перестановки произвольного множества). Пусть M — множество. Будем говорить, что σ — перестановка множества M, если: σ — обратимая функция, $D(\sigma) = M$, $R(\sigma) = M$. Обозначим через S(M) множество всех перестановок множества M.

Пусть $\sigma_1, \sigma_2 \in S(M)$. Обозначим, $\sigma_2 \sigma_1 = \sigma_2 \circ \sigma_1$. Очевидно, $\sigma_2 \sigma_1 \in S(M)$.

Пусть $\sigma \in S(M)$. Очевидно, $\sigma^{-1} \in S(M)$.

Обозначим: e(x) = x при $x \in M$. Очевидно, $e \in S(M)$.

- 1. Пусть $\sigma_1, \, \sigma_2, \, \sigma_3 \in S(M)$. Очевидно, $(\sigma_3 \sigma_2) \sigma_1 = \sigma_3(\sigma_2 \sigma_1)$.
- 2. Пусть $\sigma \in S(M)$. Очевидно: $\sigma e = \sigma$, $e\sigma = \sigma$.
- 3. Пусть $\sigma \in S(M)$. Очевидно: $\sigma \sigma^{-1} = e, \ \sigma^{-1} \sigma = e$.

Замечание (перестановки конечного множества). Пусть M — конечное множество.

Пусть: σ — обратимая функция, $D(\sigma) = M$, $R(\sigma) \subseteq M$. Так как: $D(\sigma)$ — конечное множество, σ — обратимая функция, то: $R(\sigma)$ — конечное множество, $\operatorname{card}(R(\sigma)) = \operatorname{card}(D(\sigma))$. Тогда: $\operatorname{card}(R(\sigma)) = \operatorname{card}(D(\sigma)) = \operatorname{card}(M)$. Так как: M — конечное множество, $R(\sigma) \subseteq M$, $\operatorname{card}(R(\sigma)) = \operatorname{card}(M)$, то $R(\sigma) = M$. Тогда $\sigma \in S(M)$.

Пусть: σ — функция, $D(\sigma) = M$, $R(\sigma) = M$. Предположим, что σ — необратимая функция. Так как: $D(\sigma)$ — конечное множество, σ — необратимая функция, то: $R(\sigma)$ — конечное множество, $\operatorname{card}(R(\sigma)) < \operatorname{card}(D(\sigma))$. Тогда: $\operatorname{card}(R(\sigma)) < \operatorname{card}(D(\sigma)) = \operatorname{card}(M)$ (что противоречит утверждению $R(\sigma) = M$). Итак, σ — обратимая функция. Тогда $\sigma \in S(M)$.

Замечание (перестановки множества \varnothing). Обозначим, $S_0 = S(\varnothing)$.

Замечание (перестановки множества $\{1, ..., r\}$). Пусть $r \in \mathbb{N}$. Обозначим, $S_r = S(\{1, ..., r\})$.

Пусть x_1, \ldots, x_r — некоторые объекты. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, r\}, \ \sigma(1) = x_1, \ldots, \sigma(r) = x_r$. Тогда: σ — функция, $D(\sigma) = \{1, \ldots, r\}, \ R(\sigma) = \{x_1, \ldots, x_r\}$. Далее часто будем отождествлять упорядоченную r-ку (x_1, \ldots, x_r) и функцию σ .

Пусть: $\alpha_1, \ldots, \alpha_r \in \{1, \ldots, r\}, \ \alpha_1, \ldots, \alpha_r$ — различные числа. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, r\}, \ \sigma(1) = \alpha_1, \ldots, \sigma(r) = \alpha_r$. Тогда: σ — обратимая функция, $D(\sigma) = \{1, \ldots, r\}, \ R(\sigma) = \{\alpha_1, \ldots, \alpha_r\} \subseteq \{1, \ldots, r\}$. Следовательно, $\sigma \in S_r$.

Замечание (простые и элементарные перестановки). Пусть: $N \in \mathbb{Z}, N \geqslant 2$.

Пусть $\sigma \in S_N$. Будем говорить, что σ — простая перестановка, если существуют числа $k,\ m=\overline{1,N},\$ удовлетворяющие условиям: $k< m,\ \sigma(k)=m,\ \sigma(m)=k,\ \sigma(i)=i$ при: $i=\overline{1,N},\ i\neq k,\ i\neq m.$

Пусть $\sigma \in S_N$. Будем говорить, что σ раскладывается в произведение простых перестановок, если существует число $r \in \mathbb{N}$, существуют перестановки $\sigma_1, \ldots, \sigma_r \in S_N$, удовлетворяющие условиям: $\sigma_1, \ldots, \sigma_r$ — простые перестановки, $\sigma = \sigma_r \cdots \sigma_1$.

Пусть $\sigma \in S_N$. Будем говорить, что σ — элементарная перестановка, если существует число $k = \overline{1, N-1}$, удовлетворяющее условиям: $\sigma(k) = k+1$, $\sigma(k+1) = k$, $\sigma(i) = i$ при: $i = \overline{1, N}, i \neq k, i \neq k+1$.

Пусть $\sigma \in S_N$. Будем говорить, что σ раскладывается в произведение элементарных перестановок, если существует число $r \in \mathbb{N}$, существуют перестановки $\sigma_1, \ldots, \sigma_r \in S_N$, удовлетворяющие условиям: $\sigma_1, \ldots, \sigma_r$ — элементарные перестановки, $\sigma = \sigma_r \cdots \sigma_1$.

Очевидно, e раскладывается в произведение элементарных перестановок.

Утверждение. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$; $\sigma \in S_N$. Тогда σ раскладывается в произведение элементарных перестановок.

Доказательство. Достаточно доказать, что для любого числа $\tilde{N} = \overline{1, N}$ существует перестановка $\tilde{\sigma} \in S_N$, удовлетворяющая условиям: $\tilde{\sigma}$ раскладывается в произведение элементарных перестановок, $\tilde{\sigma}(i) = \sigma(i)$ при $i = \overline{1, \tilde{N}}$.

Так как $\sigma(1) = \overline{1,N}$, то существует число $k = \overline{1,N}$, удовлетворяющее условию $e(k) = \sigma(1)$. Пусть k = 1. Тогда: $e \in S_N$, e раскладывается в произведение элементарных перестановок, $e(1) = \sigma(1)$. Пусть $k \geqslant 2$. Тогда существует число $r \in \mathbb{N}$, существуют перестановки $\sigma_1, \ldots, \sigma_r \in S_N$, удовлетворяющие условиям: $\sigma_1, \ldots, \sigma_r = \sigma_r$ элементарные перестановки, $(e\sigma_r \cdots \sigma_1)(1) = \sigma(1)$. Следовательно: $e\sigma_r \cdots \sigma_1 \in S_N$, $e\sigma_r \cdots \sigma_1$ раскладывается в произведение элементарных перестановок, $(e\sigma_r \cdots \sigma_1)(1) = \sigma(1)$.

Пусть: $\tilde{N}=\overline{1,N-1},\ \tilde{\sigma}\in S_N,\ \tilde{\sigma}$ раскладывается в произведение элементарных перестановок, $\tilde{\sigma}(i)=\sigma(i)$ при $i=1,\tilde{N}.$ Так как $\sigma(\tilde{N}+1)=\overline{1,N},$ то существует число $k=\overline{1,N},$ удовлетворяющее условию $\tilde{\sigma}(k)=\sigma(\tilde{N}+1).$ Предположим, что $k\leqslant \tilde{N}.$ Тогда: $\sigma(\tilde{N}+1)=\tilde{\sigma}(k)=\sigma(k).$ Так как σ — обратимая функция, то $\tilde{N}+1=k$ (что противоречит утверждению: $k\leqslant \tilde{N}$). Итак, $k\geqslant \tilde{N}+1.$ Пусть $k=\tilde{N}+1.$ Тогда: $\tilde{\sigma}\in S_N,\ \tilde{\sigma}$ раскладывается в произведение элементарных перестановок, $\tilde{\sigma}(i)=\sigma(i)$ при $i=1,\tilde{N}+1.$ Пусть $k\geqslant \tilde{N}+2.$ Тогда существует число $r\in \mathbb{N},$ существуют перестановки $\sigma_1,\ldots,\sigma_r\in S_N,$ удовлетворяющие условиям: σ_1,\ldots,σ_r — элементарные перестановки, $(\tilde{\sigma}\sigma_r\cdots\sigma_1)(i)=\sigma(i)$ при $i=1,\tilde{N}+1.$ Следовательно: $\tilde{\sigma}\sigma_r\cdots\sigma_1\in S_N,\,\tilde{\sigma}\sigma_r\cdots\sigma_1$ раскладывается в произведение элементарных перестановок, $(\tilde{\sigma}\sigma_r\cdots\sigma_1)(i)=\sigma(i)$ при $i=1,\tilde{N}+1.$

Определение. Обозначим: h(x) = 0 при $x \in (-\infty, 0)$; h(x) = 1 при $x \in [0, +\infty)$. Очевидно, $h \colon \mathbb{R} \implies \mathbb{R}$. Будем говорить, что h — функция Хевисайда.

Определение. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$.

Пусть $\sigma \in S_N$. Обозначим:

$$P(\sigma) = \sum_{1 \le i < j \le N} h(\sigma(i) - \sigma(j)).$$

Очевидно, $P(\sigma) \in \mathbb{Z}_+$. Будем говорить, что $P(\sigma)$ — число беспорядков в перестановке σ .

Пусть $\sigma \in S_N$. Обозначим, $sgn(\sigma) = (-1)^{P(\sigma)}$. Очевидно, $sgn(\sigma) \in \{-1,1\}$. Будем говорить, что $sgn(\sigma)$ — знак перестановки σ .

Очевидно: P(e) = 0, sgn(e) = 1.

Определение. Пусть N=0, 1.

Пусть $\sigma \in S_N$. Обозначим, $P(\sigma) = 0$. Будем говорить, что $P(\sigma)$ — число беспорядков в перестановке σ .

Пусть $\sigma \in S_N$. Обозначим, $\mathrm{sgn}(\sigma) = 1$. Будем говорить, что $\mathrm{sgn}(\sigma)$ — знак перестановки σ .

Пусть $\sigma \in S_N$. Очевидно, $\operatorname{sgn}(\sigma) = (-1)^{P(\sigma)}$.

Замечание. Пусть: $N \in \mathbb{Z}, N \geqslant 2; \sigma \in S_N, i_0 = \overline{1, N-1}$. Тогда:

$$P(\sigma) = \sum_{1 \le i < j \le N} h(\sigma(i) - \sigma(j)) =$$

$$= \sum_{\substack{1 \le i < j \le N, \\ i, j \ne i_0, i_0 + 1}} h(\sigma(i) - \sigma(j)) + h(\sigma(i_0) - \sigma(i_0 + 1)) +$$

$$+ \sum_{j=i_0+2}^{N} h(\sigma(i_0) - \sigma(j)) + \sum_{j=i_0+2}^{N} h(\sigma(i_0 + 1) - \sigma(j)) +$$

$$+ \sum_{i=1}^{i_0-1} h(\sigma(i) - \sigma(i_0)) + \sum_{i=1}^{i_0-1} h(\sigma(i) - \sigma(i_0 + 1)).$$

Утверждение. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$; σ_1 , $\sigma_2 \in S_N$, σ_1 — элементарная перестановка. Тогда: $|P(\sigma_2\sigma_1) - P(\sigma_2)| = 1$, $\operatorname{sgn}(\sigma_2\sigma_1) = -\operatorname{sgn}(\sigma_2)$.

Доказательство. Так как σ_1 — элементарная перестановка, то существует число $\underline{i_0} = \overline{1,N-1}$, удовлетворяющее условиям: $\sigma_1(i_0) = i_0+1$, $\sigma_1(i_0+1) = i_0$, $\sigma_1(i) = i$ при: $i=\overline{1,N}$, $i \neq i_0, i \neq i_0+1$. Тогда:

$$\begin{split} P(\sigma_2) &= \sum_{\substack{1 \leqslant i < j \leqslant N, \\ i, j \neq i_0, i_0 + 1}} h \Big(\sigma_2(i) - \sigma_2(j) \Big) + h \Big(\sigma_2(i_0) - \sigma_2(i_0 + 1) \Big) + \\ &+ \sum_{j=i_0+2}^N h \Big(\sigma_2(i_0) - \sigma_2(j) \Big) + \sum_{j=i_0+2}^N h \Big(\sigma_2(i_0 + 1) - \sigma_2(j) \Big) + \\ &+ \sum_{i=1}^{i_0-1} h \Big(\sigma_2(i) - \sigma_2(i_0) \Big) + \sum_{i=1}^{i_0-1} h \Big(\sigma_2(i) - \sigma_2(i_0 + 1) \Big); \\ P(\sigma_2\sigma_1) &= \sum_{\substack{1 \leqslant i < j \leqslant N, \\ i, j \neq i_0, i_0 + 1}} h \Big((\sigma_2\sigma_1)(i) - (\sigma_2\sigma_1)(j) \Big) + h \Big((\sigma_2\sigma_1)(i_0) - (\sigma_2\sigma_1)(i_0 + 1) \Big) + \end{split}$$

$$+ \sum_{j=i_0+2}^{N} h((\sigma_2\sigma_1)(i_0) - (\sigma_2\sigma_1)(j)) + \sum_{j=i_0+2}^{N} h((\sigma_2\sigma_1)(i_0+1) - (\sigma_2\sigma_1)(j)) + \sum_{j=i_0+2}^{N} h((\sigma_2\sigma_1)(i) - (\sigma_2\sigma_1)(i_0)) + \sum_{j=i_0+2}^{N} h((\sigma_2\sigma_1)(i) - (\sigma_2\sigma_1)(i_0+1)) =$$

$$= \sum_{\substack{1 \leq i < j \leq N, \\ i, j \neq i_0, i_0+1}} h(\sigma_2(i) - \sigma_2(j)) + h(\sigma_2(i_0+1) - \sigma_2(i_0)) + \sum_{j=i_0+2}^{N} h(\sigma_2(i_0+1) - \sigma_2(j)) + \sum_{j=i_0+2}^{N} h(\sigma_2(i_0+1) - \sigma_2(j)) + \sum_{j=i_0+2}^{N} h(\sigma_2(i) - \sigma_2(i_0+1)) + \sum_{j=i_0+2}^{N} h(\sigma_2(i) - \sigma_2(i_0)).$$

Следовательно:

$$P(\sigma_2\sigma_1) - P(\sigma_2) = h(\sigma_2(i_0 + 1) - \sigma_2(i_0)) - h(\sigma_2(i_0) - \sigma_2(i_0 + 1)).$$

Так как σ_2 — обратимая функция, то $\sigma_2(i_0) \neq \sigma_2(i_0+1)$. Пусть $\sigma_2(i_0) < \sigma_2(i_0+1)$. Тогда $P(\sigma_2\sigma_1) - P(\sigma_2) = 1$. Следовательно: $\left|P(\sigma_2\sigma_1) - P(\sigma_2)\right| = 1$, $\operatorname{sgn}(\sigma_2\sigma_1) = -\operatorname{sgn}(\sigma_2)$. Пусть $\sigma_2(i_0) > \sigma_2(i_0+1)$. Тогда $P(\sigma_2\sigma_1) - P(\sigma_2) = -1$. Следовательно: $\left|P(\sigma_2\sigma_1) - P(\sigma_2)\right| = 1$, $\operatorname{sgn}(\sigma_2\sigma_1) = -\operatorname{sgn}(\sigma_2)$.

Утверждение.

- 1. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$; $r \in \mathbb{N}$, $\sigma_1, \ldots, \sigma_r \in S_N$, $\sigma_1, \ldots, \sigma_r$ элементарные перестановки. Тогда $\operatorname{sgn}(\sigma_r \cdots \sigma_1) = (-1)^r$.
 - 2. Пусть: $N \in \mathbb{N}$, $N \geqslant 2$; $\sigma \in S_N$, σ элементарная перестановка. Тогда $\operatorname{sgn}(\sigma) = -1$.
 - 3. Пусть: $N \in \mathbb{Z}_+$; σ_1 , $\sigma_2 \in S_N$. Тогда $\operatorname{sgn}(\sigma_2 \sigma_1) = \operatorname{sgn}(\sigma_2) \operatorname{sgn}(\sigma_1)$.
 - 4. Пусть: $N \in \mathbb{Z}_+$; $\sigma \in S_N$. Тогда $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.
 - 5. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$; $\sigma \in S_N$, σ простая перестановка. Тогда $\operatorname{sgn}(\sigma) = -1$.
- 6. Пусть: $N \in \mathbb{Z}$, $N \geqslant 2$; $r \in \mathbb{N}$, $\sigma_1, \ldots, \sigma_r \in S_N$, $\sigma_1, \ldots, \sigma_r npостые перестановки. Тогда <math>\operatorname{sgn}(\sigma_r \cdots \sigma_1) = (-1)^r$.

Доказательство.

1. Очевидно:

$$\operatorname{sgn}(\sigma_r \cdots \sigma_1) = \operatorname{sgn}(e\sigma_r \cdots \sigma_1) = (-1)^r \operatorname{sgn}(e) = (-1)^r.$$

- 2. Очевидно: $sgn(\sigma) = (-1)^1 = -1$.
- 3. Пусть $N \geqslant 2$. Тогда существует число $r \in \mathbb{N}$, существуют перестановки $\sigma_{1,1},\ldots,\sigma_{1,r} \in S_N$, удовлетворяющие условиям: $\sigma_{1,1},\ldots,\sigma_{1,r}$ элементарные перестановки, $\sigma_1 = \sigma_{1,r} \cdots \sigma_{1,1}$. Следовательно:

$$\operatorname{sgn}(\sigma_2\sigma_1) = \operatorname{sgn}(\sigma_2\sigma_{1,r}\cdots\sigma_{1,1}) = \operatorname{sgn}(\sigma_2)(-1)^r = \operatorname{sgn}(\sigma_2)\operatorname{sgn}(\sigma_1).$$

Пусть N=0, 1. Тогда $\sigma_1, \sigma_2=e.$ Следовательно:

$$\operatorname{sgn}(\sigma_2 \sigma_1) = \operatorname{sgn}(ee) = \operatorname{sgn}(e) = \operatorname{sgn}(e) \operatorname{sgn}(e) = \operatorname{sgn}(\sigma_2) \operatorname{sgn}(\sigma_1).$$

4. Очевидно: $\sigma\sigma^{-1} = e$, $\operatorname{sgn}(\sigma\sigma^{-1}) = \operatorname{sgn}(e)$, $\operatorname{sgn}(\sigma)\operatorname{sgn}(\sigma^{-1}) = 1$, $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.

5. Так как σ — простая перестановка, то существуют числа $k, m = \overline{1,N}$, удовлетворяющие условиям: $k < m, \sigma(k) = m, \sigma(m) = k, \sigma(i) = i$ при: $i = \overline{1,N}, i \neq k, i \neq m$. Тогда существуют перестановки $\sigma_1, \ldots, \sigma_{2(m-k)-1} \in S_N$, удовлетворяющие условиям: $\sigma_1, \ldots, \sigma_{2(m-k)-1}$ — элементарные перестановки, $\sigma = e\sigma_{2(m-k)-1} \cdots \sigma_1$. Следовательно: $\operatorname{sgn}(\sigma) = \operatorname{sgn}(e\sigma_{2(m-k)-1} \cdots \sigma_1) = (-1)^{2(m-k)-1} \operatorname{sgn}(e) = -1$.

6. Очевидно:
$$\operatorname{sgn}(\sigma_r \cdots \sigma_1) = \operatorname{sgn}(\sigma_r) \cdots \operatorname{sgn}(\sigma_1) = (-1)^r$$
.

6.2. Существование и единственность определителя

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{N}$; $F - onpedeлитель в пространстве <math>\mathbb{K}^{N \times N}$. 1. Пусть: $k, m = \overline{1, N}, k < m, A_1, \dots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_1, \ldots, A_{k-1}, A_m, A_{k+1}, \ldots, A_{m-1}, A_k, A_{m+1}, \ldots, A_N) = -F(A_1, \ldots, A_N).$$

2. Пусть: $\sigma \in S_N$, $A_1, \ldots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_{\sigma(1)},\ldots,A_{\sigma(N)}) = \operatorname{sgn}(\sigma)F(A_1,\ldots,A_N).$$

3. Пусть $\sigma \in S_N$. Тогда:

$$F(I_{\sigma(1)},\ldots,I_{\sigma(N)}) = \operatorname{sgn}(\sigma).$$

4. Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$F(A) = F(I_{k_1}, \dots, I_{k_N}) A_1^{k_1} \cdots A_N^{k_N}.$$

5. Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$F(A) = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)}.$$

Доказательство.

1. Очевидно:

$$F(A_{1},...,A_{k-1},A_{k}+A_{m},A_{k+1},...,A_{m-1},A_{k}+A_{m},A_{m+1},...,A_{N})=0,$$

$$F(A_{1},...,A_{k-1},A_{k},A_{k+1},...,A_{m-1},A_{k},A_{m+1},...,A_{N})+$$

$$+F(A_{1},...,A_{k-1},A_{k},A_{k+1},...,A_{m-1},A_{m},A_{m+1},...,A_{N})+$$

$$+F(A_{1},...,A_{k-1},A_{m},A_{k+1},...,A_{m-1},A_{k},A_{m+1},...,A_{N})+$$

$$+F(A_{1},...,A_{k-1},A_{m},A_{k+1},...,A_{m-1},A_{m},A_{m+1},...,A_{N})=0,$$

$$F(A_{1},...,A_{N})+F(A_{1},...,A_{k-1},A_{m},A_{k+1},...,A_{m-1},A_{k},A_{m+1},...,A_{N})=0,$$

$$F(A_{1},...,A_{k-1},A_{m},A_{k+1},...,A_{m-1},A_{k},A_{m+1},...,A_{N})=-F(A_{1},...,A_{N}).$$

2. Пусть $N \geqslant 2$. Тогда существует число $r \in \mathbb{N}$, существуют перестановки $\sigma_1, \ldots, \sigma_r \in S_N$, удовлетворяющие условиям: $\sigma_1, \ldots, \sigma_r$ — элементарные перестановки, $\sigma = \sigma_r \cdots \sigma_1$. Следовательно:

$$F(A_{\sigma(1)}, \dots, A_{\sigma(N)}) = F(A_{(\sigma_r \dots \sigma_1)(1)}, \dots, A_{(\sigma_r \dots \sigma_1)(N)}) = (-1)^r F(A_1, \dots, A_N) = \operatorname{sgn}(\sigma) F(A_1, \dots, A_N).$$

Пусть N = 1. Тогда $\sigma = e$. Следовательно:

$$F(A_{\sigma(1)}) = F(A_{e(1)}) = F(A_1) = \operatorname{sgn}(e)F(A_1) = \operatorname{sgn}(\sigma)F(A_1).$$

3. Очевидно:

$$F(I_{\sigma(1)},\ldots,I_{\sigma(N)}) = \operatorname{sgn}(\sigma)F(I_1,\ldots,I_N) = \operatorname{sgn}(\sigma)F(I) = \operatorname{sgn}(\sigma).$$

4. Очевидно:

$$F(A) = F(A_1, \dots, A_N) = F(I_{k_1} A_1^{k_1}, \dots, I_{k_N} A_N^{k_N}) = F(I_{k_1}, \dots, I_{k_N}) A_1^{k_1} \cdots A_N^{k_N}.$$

5. Очевидно:

$$F(A) = F(I_{k_1}, \dots, I_{k_N}) A_1^{k_1} \cdots A_N^{k_N} = \sum_{\substack{k_1, \dots, k_N = \overline{1, N}, \\ k_1, \dots, k_N - \text{ различные числа}}} F(I_{k_1}, \dots, I_{k_N}) A_1^{k_1} \cdots A_N^{k_N} = \sum_{\sigma \in S_N} F(I_{\sigma(1)}, \dots, I_{\sigma(N)}) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)} = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)}. \quad \Box$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{N}$; F_1 , F_2 — определители в пространстве $\mathbb{K}^{N \times N}$. Тогда $F_1 = F_2$.

Доказательство. Очевидно, $F_1, F_2 \colon \mathbb{K}^{N \times N} \implies \mathbb{K}$. Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$F_1(A) = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)} = F_2(A).$$

Следовательно, $F_1 = F_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{N}$; $F(A) = \sum_{\sigma \in S_N} \mathrm{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)}$ при $A \in \mathbb{K}^{N \times N}$. Тогда F — определитель в пространстве $\mathbb{K}^{N \times N}$.

 \mathcal{A} оказательство. Очевидно, $F \colon \mathbb{K}^{N \times N} \implies \mathbb{K}$.

1. Пусть: $k = \overline{1, N}, \, X, \, Y, \, A_1, \dots, A_{k-1}, \, A_{k+1}, \dots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_{1}, \dots, A_{k-1}, X + Y, A_{k+1}, \dots, A_{N}) =$$

$$= \sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} (X + Y)^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{N}^{\sigma(N)} =$$

$$= \sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{N}^{\sigma(N)} +$$

$$+ \sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} Y^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{N}^{\sigma(N)} =$$

$$= F(A_{1}, \dots, A_{k-1}, X, A_{k+1}, \dots, A_{N}) + F(A_{1}, \dots, A_{k-1}, Y, A_{k+1}, \dots, A_{N}).$$

2. Пусть: $k = \overline{1, N}, \ \lambda \in \mathbb{K}, \ A_1, \dots, A_N \in \mathbb{K}^N$. Тогда:

$$F(A_1, \dots, A_{k-1}, \lambda A_k, A_{k+1}, \dots, A_N) =$$

$$= \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} (\lambda A_k)^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_N^{\sigma(N)} =$$

$$= \lambda \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_N^{\sigma(N)} = \lambda F(A_1, \dots, A_N).$$

3. Пусть: $k, m = \overline{1, N}, k < m, X, A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{m-1}, A_{m+1}, \dots, A_N \in \mathbb{K}^N$. Обозначим: $\sigma_0(k) = m, \, \sigma_0(m) = k, \, \sigma_0(i) = i$ при: $i = \overline{1, N}, \, i \neq k, \, i \neq m$. Тогда: $\sigma_0 \in S_N$, σ_0 — простая перестановка. Обозначим:

$$S_{N,1} = \{ \sigma \colon \sigma \in S_N \land \sigma(k) < \sigma(m) \},$$

$$S_{N,2} = \{ \sigma \colon \sigma \in S_N \land \sigma(k) > \sigma(m) \}.$$

Тогда: $S_{N,1} \cup S_{N,2} = S_N, \ S_{N,1} \cap S_{N,2} = \varnothing, \ S_{N,1}, \ S_{N,2} \neq \varnothing$. Следовательно:

$$F(A_{1},\ldots,A_{k-1},X,A_{k+1},\ldots,A_{m-1},X,A_{m+1},\ldots,A_{N}) = \\ = \sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{m-1}^{\sigma(m-1)} X^{\sigma(m)} A_{m+1}^{\sigma(m+1)} \cdots A_{N}^{\sigma(N)} = \\ = \sum_{\sigma \in S_{N,1}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{m-1}^{\sigma(m-1)} X^{\sigma(m)} A_{m+1}^{\sigma(m+1)} \cdots A_{N}^{\sigma(N)} + \\ + \sum_{\sigma \in S_{N,2}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{m-1}^{\sigma(m-1)} X^{\sigma(m)} A_{m+1}^{\sigma(m+1)} \cdots A_{N}^{\sigma(N)} = \\ = \left[\operatorname{sameha:} \tilde{\sigma} = \sigma \sigma_{0}, \ \sigma \in S_{N,2}; \ \sigma = \tilde{\sigma} \sigma_{0}, \ \tilde{\sigma} \in S_{N,1} \right] = \\ = \sum_{\sigma \in S_{N,1}} \operatorname{sgn}(\sigma) A_{1}^{\sigma(1)} \cdots A_{k-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{m-1}^{\sigma(m-1)} X^{\sigma(m)} A_{m+1}^{\sigma(m+1)} \cdots A_{N}^{\sigma(N)} + \\ + \sum_{\tilde{\sigma} \in S_{N,1}} \operatorname{sgn}(\tilde{\sigma} \sigma_{0}) A_{1}^{(\tilde{\sigma} \sigma_{0})(1)} \cdots A_{k-1}^{(\tilde{\sigma} \sigma_{0})(k-1)} X^{(\tilde{\sigma} \sigma_{0})(k)} \times \\ \times A_{k+1}^{(\tilde{\sigma} \sigma_{0})(k+1)} \cdots A_{m-1}^{\sigma(k-1)} X^{\sigma(k)} A_{k+1}^{\sigma(k+1)} \cdots A_{m-1}^{\sigma(m-1)} X^{\sigma(m)} A_{m+1}^{\sigma(m+1)} \cdots A_{N}^{\sigma(N)} - \\ - \sum_{\tilde{\sigma} \in S_{N,1}} \operatorname{sgn}(\tilde{\sigma}) A_{1}^{\tilde{\sigma}(1)} \cdots A_{k-1}^{\tilde{\sigma}(k-1)} X^{\tilde{\sigma}(m)} A_{k+1}^{\tilde{\sigma}(k+1)} \cdots A_{m-1}^{\tilde{\sigma}(m-1)} X^{\tilde{\sigma}(k)} A_{m+1}^{\tilde{\sigma}(m+1)} \cdots A_{N}^{\tilde{\sigma}(N)} = 0. \\$$

4. Очевидно:

$$F(I) = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) I_1^{\sigma(1)} \cdots I_N^{\sigma(N)} = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) \delta_1^{\sigma(1)} \cdots \delta_N^{\sigma(N)} = \operatorname{sgn}(e) \delta_1^{e(1)} \cdots \delta_N^{e(N)} = 1. \quad \Box$$

Определение. Пусть: \mathbb{K} ∈ { \mathbb{C} , \mathbb{R} , \mathbb{Q} }; N ∈ \mathbb{N} . Обозначим через \det_N определитель в пространстве $\mathbb{K}^{N\times N}$. Далее обычно будем писать «det» вместо «det_N».

6.3. Основные свойства определителя

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; N \in \mathbb{N}$.

1. $\Pi y cm b : k = \overline{1, N}, A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_N \in \mathbb{K}^N$. $Tor \partial a : A_k = 1$

$$\det(A_1, \dots, A_{k-1}, \theta, A_{k+1}, \dots, A_N) = 0.$$

2. Пусть: $N \geqslant 2$, $k = \overline{1, N}$, $A_1, \dots, A_N \in \mathbb{K}^N$, $A_k \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_N)$. Тогда: $\det(A_1, \dots, A_N) = 0.$

- 3. Пусть: $A_1, \dots, A_N \in \mathbb{K}^N$, $A_1, \dots, A_N \in \mathbb{K}^N$ линейно зависимые столбцы. Тогда: $\det(A_1, \dots, A_N) = 0$.
- 4. Пусть: $N \geqslant 2$, $k = \overline{1, N}$, $A_1, \dots, A_N \in \mathbb{K}^N$, $X \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_N)$. Тогда: $\det(A_1, \dots, A_{k-1}, A_k + X, A_{k+1}, \dots, A_N) = \det(A_1, \dots, A_N)$.
- 5. Пусть: $A \in \mathbb{K}^{N \times N}$, $k_1, \dots, k_N = \overline{1, N}$. Тогда:

$$\det(A_{k_1},\ldots,A_{k_N})=\det(A)\det(I_{k_1},\ldots,I_{k_N}).$$

6. Пусть $A, B \in \mathbb{K}^{N \times N}$. Тогда:

$$\det(BA) = \det(B)\det(A).$$

7. Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$\det(A^T) = \det(A).$$

Доказательство.

1. Очевидно:

$$\det(A_1, \dots, A_{k-1}, \theta, A_{k+1}, \dots, A_N) = \det(A_1, \dots, A_{k-1}, 0\theta, A_{k+1}, \dots, A_N) =$$

$$= 0 \det(A_1, \dots, A_{k-1}, \theta, A_{k+1}, \dots, A_N) = 0.$$

2. Так как $A_k \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_N)$, то существуют числа $\alpha^1, \dots, \alpha^{k-1}, \alpha^{k+1}, \dots, \alpha^N$, удовлетворяющие условиям: $\alpha^1, \dots, \alpha^{k-1}, \alpha^{k+1}, \dots, \alpha^N \in \mathbb{K}$, $A_k = \sum_{m=\overline{1,N},\, m\neq k} \alpha^m A_m$. Тогда:

$$\det(A_1, \dots, A_N) = \det\left(A_1, \dots, A_{k-1}, \sum_{m=\overline{1,N}, m \neq k} \alpha^m A_m, A_{k+1}, \dots, A_N\right) =$$

$$= \sum_{m=\overline{1,N}, m \neq k} \alpha^m \det(A_1, \dots, A_{k-1}, A_m, A_{k+1}, \dots, A_N) = 0.$$

3. Пусть $N \geqslant 2$. Так как A_1, \ldots, A_N — линейно зависимые столбцы, то существует номер $k=\overline{1,N}$, удовлетворяющий условию $A_k \in L(A_1,\ldots,A_{k-1},A_{k+1},\ldots,A_N)$. Тогда $\det(A_1,\ldots,A_N)=0$.

Пусть N=1. Так как A_1 — линейно зависимый столбец, то $A_1=\theta$. Тогда: $\det(A_1)=\det(\theta)=0$.

4. Очевидно:

$$\det(A_1, \dots, A_{k-1}, A_k + X, A_{k+1}, \dots, A_N) =$$

$$= \det(A_1, \dots, A_N) + \det(A_1, \dots, A_{k-1}, X, A_{k+1}, \dots, A_N) = \det(A_1, \dots, A_N).$$

5. Пусть числа k_1, \ldots, k_N не являются различными. Тогда: $\det(A_{k_1}, \ldots, A_{k_N}) = 0$, $\det(A) \det(I_{k_1}, \ldots, I_{k_N}) = 0$. Следовательно, $\det(A_{k_1}, \ldots, A_{k_N}) = \det(A) \det(I_{k_1}, \ldots, I_{k_N})$.

Пусть k_1,\dots,k_N — различные числа. Обозначим: $\sigma(1)=k_1,\dots,\sigma(N)=k_N$. Тогда $\sigma\in S_N$. Следовательно:

$$\det(A_{k_1}, \dots, A_{k_N}) = \det(A_{\sigma(1)}, \dots, A_{\sigma(N)}) = \operatorname{sgn}(\sigma) \det(A_1, \dots, A_N) = \operatorname{sgn}(\sigma) \det(A);$$

$$\det(A) \det(I_{k_1}, \dots, I_{k_N}) = \det(A) \det(I_{\sigma(1)}, \dots, I_{\sigma(N)}) = \operatorname{sgn}(\sigma) \det(A) \det(I_1, \dots, I_N) =$$

$$= \operatorname{sgn}(\sigma) \det(A) \det(I) = \operatorname{sgn}(\sigma) \det(A).$$

Тогда $\det(A_{k_1},\ldots,A_{k_N}) = \det(A)\det(I_{k_1},\ldots,I_{k_N}).$

6. Очевидно:

$$\det(BA) = \det((BA)_1, \dots, (BA)_N) = \det(B_{k_1}A_1^{k_1}, \dots, B_{k_N}A_N^{k_N}) =$$

$$= \det(B_{k_1}, \dots, B_{k_N})A_1^{k_1} \cdots A_N^{k_N} = \det(I_{k_1}, \dots, I_{k_N}) \det(B)A_1^{k_1} \cdots A_N^{k_N} = \det(B) \det(A).$$

7. Очевидно:

$$\det(A^T) = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) (A^T)_1^{\sigma(1)} \cdots (A^T)_N^{\sigma(N)} = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_{\sigma(1)}^1 \cdots A_{\sigma(N)}^N =$$

$$= \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma^{-1}(1)} \cdots A_N^{\sigma^{-1}(N)} = [\text{замена: } \tilde{\sigma} = \sigma^{-1}, \ \sigma \in S_N; \ \sigma = \tilde{\sigma}^{-1}, \ \tilde{\sigma} \in S_N] =$$

$$= \sum_{\tilde{\sigma} \in S_N} \operatorname{sgn}(\tilde{\sigma}^{-1}) A_1^{\tilde{\sigma}(1)} \cdots A_N^{\tilde{\sigma}(N)} = \sum_{\tilde{\sigma} \in S_N} \operatorname{sgn}(\tilde{\sigma}) A_1^{\tilde{\sigma}(1)} \cdots A_N^{\tilde{\sigma}(N)} = \det(A). \quad \Box$$

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{Z}$, $N \geqslant 2$; $A \in \mathbb{K}^{N \times N}$, $i, j = \overline{1, N}$. Обозначим через $\overline{\Delta}_i^j(A)$ определитель матрицы, которая получается из матрицы A вычёркиванием столбца A_i и строки A^j . Будем говорить, что $\overline{\Delta}_i^j(A)$ — минор матрицы A, дополнительный к элементу A_i^j . Будем говорить, что $(-1)^{j+i}\overline{\Delta}_i^j(A)$ — алгебраическое дополнение элемента A_i^j в матрице A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{Z}$, $N \geqslant 2$; $A \in \mathbb{K}^{N \times N}$. Тогда:

$$\det(A_1, \dots, A_{N-1}, I_N) = \overline{\Delta}_N^N(A).$$

Доказательство. Пусть $\tilde{\sigma} \in S_{N-1}$. Обозначим: $\varphi(\tilde{\sigma})(k) = \tilde{\sigma}(k)$ при $k = \overline{1, N-1}$; $\varphi(\tilde{\sigma})(N) = N$. Тогда: $\varphi(\tilde{\sigma}) \in S_N$, $\mathrm{sgn}(\varphi(\tilde{\sigma})) = \mathrm{sgn}(\tilde{\sigma})$. Очевидно: φ — обратимая функция, $\mathrm{D}(\varphi) = S_{N-1}$, $\mathrm{R}(\varphi) = \{\sigma \colon \sigma \in S_N \land \sigma(N) = N\}$. Тогда:

$$\det(A_1,\ldots,A_{N-1},I_N) = \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_{N-1}^{\sigma(N-1)} I_N^{\sigma(N)} =$$

$$= \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_{N-1}^{\sigma(N-1)} \delta_N^{\sigma(N)} = \sum_{\sigma \in S_N, \, \sigma(N) = N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_{N-1}^{\sigma(N-1)} \delta_N^{\sigma(N)} =$$

$$= \sum_{\sigma \in S_N, \, \sigma(N) = N} \operatorname{sgn}(\sigma) A_1^{\sigma(1)} \cdots A_{N-1}^{\sigma(N-1)} = \left[\operatorname{замена:} \, \sigma = \varphi(\tilde{\sigma}), \, \tilde{\sigma} \in S_{N-1} \right] =$$

$$= \sum_{\tilde{\sigma} \in S_{N-1}} \operatorname{sgn}(\varphi(\tilde{\sigma})) A_1^{\varphi(\tilde{\sigma})(1)} \cdots A_{N-1}^{\varphi(\tilde{\sigma})(N-1)} = \sum_{\tilde{\sigma} \in S_{N-1}} \operatorname{sgn}(\tilde{\sigma}) A_1^{\tilde{\sigma}(1)} \cdots A_{N-1}^{\tilde{\sigma}(N-1)} = \overline{\Delta}_N^N(A). \quad \Box$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{Z}$, $N \geqslant 2$; $A \in \mathbb{K}^{N \times N}$, i_0 , $j_0 = \overline{1, N}$. Тогда:

$$\det(A_1, \dots, A_{i_0-1}, I_{i_0}, A_{i_0+1}, \dots, A_N) = (-1)^{j_0+i_0} \overline{\Delta}_{i_0}^{j_0}(A).$$

Доказательство. Обозначим:

$$B = (A_1, \dots, A_{i_0-1}, A_{i_0+1}, \dots, A_N, I_{j_0}),$$

$$C = \begin{pmatrix} B^1 \\ \vdots \\ B^{j_0-1} \\ B^{j_0+1} \\ \vdots \\ B^N \\ B^{j_0} \end{pmatrix}.$$

Тогда:

$$\det(A_{1}, \dots, A_{i_{0}-1}, I_{j_{0}}, A_{i_{0}+1}, \dots, A_{N}) = (-1)^{N-i_{0}} \det(A_{1}, \dots, A_{i_{0}-1}, A_{i_{0}+1}, \dots, A_{N}, I_{j_{0}}) =$$

$$= (-1)^{N-i_{0}} \det(B) = (-1)^{N-i_{0}} \det\begin{pmatrix} B^{1} \\ \vdots \\ B^{j_{0}-1} \\ B^{j_{0}} \\ B^{j_{0}+1} \\ \vdots \\ B^{N} \end{pmatrix} = (-1)^{N-i_{0}} (-1)^{N-j_{0}} \det\begin{pmatrix} B^{1} \\ \vdots \\ B^{j_{0}-1} \\ B^{j_{0}+1} \\ \vdots \\ B^{N} \\ B^{j_{0}} \end{pmatrix} =$$

$$= (-1)^{N-i_{0}} (-1)^{N-j_{0}} \det(C) = (-1)^{N-i_{0}} (-1)^{N-j_{0}} \det(C_{1}, \dots, C_{N-1}, C_{N}) =$$

$$= (-1)^{j_{0}+i_{0}} \det(C_{1}, \dots, C_{N-1}, I_{N}) = (-1)^{j_{0}+i_{0}} \overline{\Delta}_{N}^{N}(C) = (-1)^{j_{0}+i_{0}} \overline{\Delta}_{i_{0}}^{j_{0}}(A). \quad \Box$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{Z}$, $N \geqslant 2$; $A \in \mathbb{K}^{N \times N}$, $i_0 = \overline{1, N}$. Тогда:

$$\det(A) = \sum_{j=1}^{N} (-1)^{j+i_0} \overline{\Delta}_{i_0}^{j}(A) A_{i_0}^{j}.$$

Доказательство. Очевидно:

$$\det(A) = \det(A_1, \dots, A_{i_0-1}, A_{i_0}, A_{i_0+1}, \dots, A_N) = \det(A_1, \dots, A_{i_0-1}, I_j A_{i_0}^j, A_{i_0+1}, \dots, A_N) = \det(A_1, \dots, A_{i_0-1}, I_j, A_{i_0+1}, \dots, A_N) A_{i_0}^j = \sum_{i=1}^N (-1)^{j+i_0} \overline{\Delta}_{i_0}^j(A) A_{i_0}^j. \quad \Box$$

6.4. Метод Гаусса—Жордана для вычисления определителя

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; N \in \mathbb{Z}, N \geqslant 2; A \in \mathbb{K}^{N \times N}$.

Пусть: $\exists i = \overline{1, N}(A_i = \tilde{\theta})$ либо $\exists j = \overline{1, N}(A^j = \tilde{\theta})$. Тогда $\det(A) = 0$. Остановим процесс. Пусть: $\forall i = \overline{1, N}(A_i \neq \tilde{\theta}), \ \forall j = \overline{1, N}(A^j \neq \tilde{\theta}), \ N = 2$. Тогда $\det(A) = A_1^1 A_2^2 - A_1^2 A_2^1$. Остановим процесс.

Пусть: $\forall i=\overline{1,N}(A_i\neq\tilde{\theta}),\ \forall j=\overline{1,N}(A^j\neq\tilde{\theta}),\ N\geqslant 3.$ Обозначим, $N_1=N-1.$ Тогда: $N_1\in\mathbb{Z},\ N_1\geqslant 2.$ Выберем числа $i_0,\ j_0=\overline{1,N},\$ удовлетворяющие условию $A_{i_0}^{j_0}\neq 0.$ Первый вариант. Обнулим элементы, стоящие над элементом $A_{i_0}^{j_0},\$ обнулим элементы, стоящие под элементом $A_{i_0}^{j_0}.$ Разложим полученный определитель по столбцу с номером $i_0,\$ получим число $\lambda_1\in\mathbb{R},\$ получим матрицу $B_1\in\mathbb{R}^{N_1\times N_1},\$ удовлетворяющую условию $\det(A)=\lambda_1\det(B_1).$ Второй вариант. Обнулим элементы, стоящие левее элемента $A_{i_0}^{j_0},\$ обнулим элементы, стоящие правее элемента $A_{i_0}^{j_0}.$ Разложим полученный определитель по строке с номером $j_0,\$ получим число $\lambda_1\in\mathbb{R},\$ получим матрицу $B_1\in\mathbb{R}^{N_1\times N_1},\$ удовлетворяющую условию $\det(A)=\lambda_1\det(B_1).$ Перейдём к следующему шагу.

Пусть: $\exists i = \overline{1, N_1} \big((B_1)_i = \tilde{\theta} \big)$ либо $\exists j = \overline{1, N_1} \big((B_1)^j = \tilde{\theta} \big)$. Тогда: $\det(A) = \lambda_1 \det(B_1) = 0$. Остановим процесс.

Пусть: $\forall i = \overline{1, N_1}((B_1)_i \neq \tilde{\theta}), \ \forall j = \overline{1, N_1}((B_1)^j \neq \tilde{\theta}), \ N_1 = 2.$ Тогда: $\det(A) = \lambda_1 \det(B_1) = \lambda_1 ((B_1)_1^1 (B_1)_2^2 - (B_1)_1^2 (B_1)_2^1)$. Остановим процесс.

Пусть: $\forall i = \overline{1, N_1} \big((B_1)_i \neq \tilde{\theta} \big), \ \forall j = \overline{1, N_1} \big((B_1)^j \neq \tilde{\theta} \big), \ N_1 \geqslant 3.$ Обозначим, $N_2 = N_1 - 1.$ Тогда: $N_2 \in \mathbb{Z}, \ N_2 \geqslant 2.$ Выберем числа $i_0, \ j_0 = \overline{1, N_1},$ удовлетворяющие условию $(B_1)_{i_0}^{j_0} \neq 0.$

Первый вариант. Обнулим элементы, стоящие над элементом $(B_1)_{i_0}^{j_0}$, обнулим элементы, стоящие под элементом $(B_1)_{i_0}^{j_0}$. Разложим полученный определитель по столбцу с номером i_0 , получим число $\lambda_2 \in \mathbb{R}$, получим матрицу $B_2 \in \mathbb{R}^{N_2 \times N_2}$, удовлетворяющую условию $\det(A) = \lambda_2 \det(B_2)$. Второй вариант. Обнулим элементы, стоящие левее элемента $(B_1)_{i_0}^{j_0}$, обнулим элементы, стоящие правее элемента $(B_1)_{i_0}^{j_0}$. Разложим полученный определитель по строке с номером j_0 , получим число $\lambda_2 \in \mathbb{R}$, получим матрицу $B_2 \in \mathbb{R}^{N_2 \times N_2}$, удовлетворяющую условию $\det(A) = \lambda_2 \det(B_2)$. Перейдём к следующему шагу.

Продолжая рассуждения, получим $\det(A)$.

Лекция 7. Базис и размерность (окончание; 2-й семестр)

7.1. Теорема о базисном миноре

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N_1, N_2 \in \mathbb{N}; A \in \mathbb{K}^{N_2 \times N_1}.$

Пусть: $r \in \mathbb{N}, i_1, \dots, i_r = \overline{1, N_1}, i_1 < \dots < i_r, j_1, \dots, j_r = \overline{1, N_2}, j_1 < \dots < j_r$. Обозначим:

$$\Delta_{i_1,\dots,i_r}^{j_1,\dots,j_r}(A) = \begin{vmatrix} A_{i_1}^{j_1} & \cdot & A_{i_r}^{j_1} \\ \vdots & \vdots & \vdots \\ A_{i_1}^{j_r} & \cdot & A_{i_r}^{j_r} \end{vmatrix}.$$

Будем говорить, что $\Delta^{j_1,\dots,j_r}_{i_1,\dots,i_r}(A)$ — минор матрицы A порядка r.

Пусть: $r_1 \in \mathbb{N}, i_1, \ldots, i_{r_1} = \overline{1, N_1}, i_1 < \cdots < i_{r_1}, \underline{j_1, \ldots, j_{r_1}} = \overline{1, N_2}, j_1 < \cdots < j_{r_1}; r_2 \in \mathbb{N},$ $k_1, \ldots, k_{r_2} = \overline{1, N_1}, k_1 < \cdots < k_{r_2}, m_1, \ldots, m_{r_2} = \overline{1, N_2}, m_1 < \cdots < m_{r_2}.$ Будем говорить, что минор $\Delta_{k_1, \ldots, k_{r_2}}^{m_1, \ldots, m_{r_2}}(A)$ окаймляет минор $\Delta_{i_1, \ldots, i_{r_1}}^{j_1, \ldots, j_{r_1}}(A)$, если: $\{i_1, \ldots, i_{r_1}\} \subseteq \{k_1, \ldots, k_{r_2}\},$ $\{j_1, \ldots, j_{r_1}\} \subseteq \{m_1, \ldots, m_{r_2}\}.$

Пусть: $r \in \mathbb{N}, i_1, \ldots, i_r = \overline{1, N_1}, i_1 < \cdots < i_r, A_{i_1}, \ldots, A_{i_r}$ — базис множества $\{A_1, \ldots, A_{N_1}\}$ длины r. Будем говорить, что A_{i_1}, \ldots, A_{i_r} — базисные столбцы матрицы A.

Пусть: $r \in \mathbb{N}, j_1, \ldots, j_r = \overline{1, N_2}, j_1 < \cdots < j_r, A^{j_1}, \ldots, A^{j_r}$ — базис множества $\{A^1, \ldots, A^{N_2}\}$ длины r. Будем говорить, что A^{j_1}, \ldots, A^{j_r} — базисные строки матрицы A.

Пусть: $r \in \mathbb{N}, i_1, \ldots, i_r = \overline{1, N_1}, i_1 < \cdots < i_r, j_1, \ldots, j_r = \overline{1, N_2}, j_1 < \cdots < j_r, A_{i_1}, \ldots, A_{i_r}$ — базис множества $\{A_1, \ldots, A_{N_1}\}$ длины $r; A^{j_1}, \ldots, A^{j_r}$ — базис множества $\{A^1, \ldots, A^{N_2}\}$ длины r. Будем говорить, что $\Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A)$ — базисный минор матрицы A.

Теорема (о базисном миноре). $\underline{\mathit{\Piycmb}} \colon \mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, \ N_1, \ N_2 \in \mathbb{N}; \ \underline{A \in \mathbb{K}^{N_2 \times N_1}}.$

Пусть: $r \in \mathbb{N}$, $i_1, \ldots, i_r = \overline{1, N_1}$, $i_1 < \cdots < \overline{i_r}$, $j_1, \ldots, j_r = \overline{1, N_2}$, $j_1 < \cdots < j_r$, $\Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A) \neq 0$.

Пусть все миноры матрицы A порядка r+1, окаймляющие минор $\Delta^{j_1,\dots,j_r}_{i_1,\dots,i_r}(A)$, равны нулю (если они существуют).

Тогда: $(A_{i_1}, \ldots, A_{i_r})$ — базис множества $\{A_1, \ldots, A_{N_1}\}$ длины r; $(A^{j_1}, \ldots, A^{j_r})$ — базис множества $\{A^1, \ldots, A^{N_2}\}$ длины r.

Доказательство. Очевидно: $r \in \mathbb{N}, A_{i_1}, \dots, A_{i_r} \in \{A_1, \dots, A_{N_1}\}.$ Обозначим:

$$\delta = \Delta_{i_1,\dots,i_r}^{j_1,\dots,j_r}(A),$$

$$\tilde{A} = \begin{pmatrix} A_{i_1}^{j_1} & \cdot & A_{i_r}^{j_1} \\ \vdots & \vdots & \vdots \\ A_{i_1}^{j_r} & \cdot & A_{i_r}^{j_r} \end{pmatrix}.$$

Предположим, что A_{i_1},\dots,A_{i_r} — линейно зависимые столбцы. Тогда $\tilde{A}_1,\dots,\tilde{A}_r$ — линейно зависимые столбцы. Следовательно: $\delta=\det(\tilde{A})=0$ (что противоречит утверждению: $\delta\neq 0$). Итак, A_{i_1},\dots,A_{i_r} — линейно независимые столбцы.

Пусть: $i = \overline{1, N_1}, j = \overline{1, N_2}$. Обозначим:

$$B(i,j) = \begin{pmatrix} A_{i_1}^{j_1} & \cdot & A_{i_r}^{j_1} & A_i^{j_1} \\ \vdots & \vdots & \vdots & \vdots \\ A_{i_1}^{j_r} & \cdot & A_{i_r}^{j_r} & A_i^{j_r} \\ A_{i_1}^{j_1} & \cdot & A_{i_r}^{j_r} & A_i^{j} \end{pmatrix}.$$

Пусть: $i \notin \{i_1, \ldots, i_r\}$, $j \notin \{j_1, \ldots, j_r\}$. Тогда $\det(B(i,j))$ равен (с точностью до знака) одному из миноров матрицы A порядка r+1, окаймляющих минор δ . Следовательно, $\det(B(i,j)) = 0$. Пусть $i \in \{i_1, \ldots, i_r\}$. Тогда последний столбец матрицы B(i,j) равен одному из предыдущих столбцов матрицы B(i,j). Следовательно, $\det(B(i,j)) = 0$. Пусть $j \in \{j_1, \ldots, j_r\}$. Тогда последняя строка матрицы B(i,j) равна одной из предыдущих строк матрицы B(i,j). Следовательно, $\det(B(i,j)) = 0$. Итак, $\det(B(i,j)) = 0$.

Очевидно:

$$\det(B(i,j)) =$$

$$= (-1)^{(r+1)+1} \overline{\Delta}_1^{r+1} (B(i,j)) B_1^{r+1} (i,j) + \dots + (-1)^{(r+1)+r} \overline{\Delta}_r^{r+1} (B(i,j)) B_r^{r+1} (i,j) +$$

$$+ (-1)^{(r+1)+(r+1)} \overline{\Delta}_{r+1}^{r+1} (B(i,j)) B_{r+1}^{r+1} (i,j) =$$

$$= (-1)^{(r+1)+1} \overline{\Delta}_1^{r+1} (B(i,j)) A_{i_1}^j + \dots + (-1)^{(r+1)+r} \overline{\Delta}_r^{r+1} (B(i,j)) A_{i_r}^j + \delta A_i^j.$$

Так как $\det(B(i,j)) = 0$, то:

$$(-1)^{(r+1)+1}\overline{\Delta}_{1}^{r+1}(B(i,j))A_{i_{1}}^{j} + \dots + (-1)^{(r+1)+r}\overline{\Delta}_{r}^{r+1}(B(i,j))A_{i_{r}}^{j} + \delta A_{i}^{j} = 0.$$

Так как $\delta \neq 0$, то:

$$A_{i}^{j} = \frac{-(-1)^{(r+1)+1}\overline{\Delta}_{1}^{r+1}(B(i,j))}{\delta}A_{i_{1}}^{j} + \dots + \frac{-(-1)^{(r+1)+r}\overline{\Delta}_{r}^{r+1}(B(i,j))}{\delta}A_{i_{r}}^{j}.$$

Пусть $k=\overline{1,r}$. Очевидно, число $\frac{-(-1)^{(r+1)+k}\overline{\Delta}_k^{r+1}(B(i,j))}{\delta}$ не зависит от выбора номера $j=\overline{1,N_2}$. Обозначим, $C^k(i)=\frac{-(-1)^{(r+1)+k}\overline{\Delta}_k^{r+1}(B(i,j))}{\delta}$. Тогда $A_i^j=\sum_{k=1}^r C^k(i)A_{i_k}^j$. Следовательно:

$$(A_i)^j = A_i^j = \sum_{k=1}^r C^k(i) A_{i_k}^j = \sum_{k=1}^r C^k(i) (A_{i_k})^j = \left(\sum_{k=1}^r C^k(i) A_{i_k}\right)^j.$$

В силу произвольности выбора номера $j=\overline{1,N_2}$ получаем, что $A_i=\sum_{k=1}^r C^k(i)A_{i_k}$. Тогда $A_i\in L(A_{i_1},\ldots,A_{i_r})$. Итак, (A_{i_1},\ldots,A_{i_r}) — базис множества $\{A_1,\ldots,A_{N_1}\}$ длины r. Аналогично проводятся рассуждения для строк.

7.2. Базис и размерность

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in L$.

Пусть: $r_0 \in \mathbb{N}, k_1, \ldots, k_{r_0} = \overline{1, r}, k_1 < \cdots < k_{r_0}.$

 $\Pi y cm b \colon r_0 \neq r, \ x_1, \dots, x_r \in L(x_{k_1}, \dots, x_{k_{r_0}})$. Тогда x_1, \dots, x_r — линейно зависимые векторы.

Доказательство. Очевидно: $\{1, \ldots, r\}$ — конечное множество, $\operatorname{card}(\{1, \ldots, r\}) = r;$ $\{k_1, \ldots, k_{r_0}\}$ — конечное множество, $\operatorname{card}(\{k_1, \ldots, k_{r_0}\}) = r_0$. Так как $\{k_1, \ldots, k_{r_0}\} \subseteq \{1, \ldots, r\}$, то $r_0 \leqslant r$. Так как $r_0 \neq r$, то $r_0 < r$.

Так как: $k_1, \ldots, k_{r_0} \in \{1, \ldots, r\}, r_0 \neq r$, то: $k_1, \ldots, k_{r_0} \in \{1, \ldots, r\}, \{k_1, \ldots, k_{r_0}\} \neq \{1, \ldots, r\}$. Тогда: $k_1, \ldots, k_{r_0} \in \{1, \ldots, r\}$, существует число m, удовлетворяющее условиям:

 $m \in \{1, \ldots, r\}, \ m \notin \{k_1, \ldots, k_{r_0}\}$. Следовательно: $k_1, \ldots, k_{r_0} \in \{1, \ldots, r\}, \ m \in \{1, \ldots, r\}, \ m \neq k_1, \ldots, m \neq k_{r_0}$. Тогда: $m \in \{1, \ldots, r\}, \ k_1, \ldots, k_{r_0} \in \{1, \ldots, r\}, \ k_1 \neq m, \ldots, k_{r_0} \neq m$. Следовательно: $m \in \{1, \ldots, r\}, \ k_1, \ldots, k_{r_0} \in \{1, \ldots, m-1, m+1, \ldots, r\}$. Тогда: $x_m \in \{x_1, \ldots, x_r\} \subseteq L(x_{k_1}, \ldots, x_{k_{r_0}}) \subseteq L(x_1, \ldots, x_{m-1}, x_{m+1}, \ldots, x_r)$. Следовательно, x_1, \ldots, x_r линейно зависимые векторы.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, N_1 , $N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$, $A \neq \tilde{\Theta}$ (здесь $\tilde{\Theta}$ — нулевой элемент пространства $\mathbb{K}^{N_2 \times N_1}$). Тогда существует число $r = \overline{1, \min(\{N_1, N_2\})}$, существуют числа $i_1, \ldots, i_r = \overline{1, N_1}$, существуют числа $j_1, \ldots, j_r = \overline{1, N_2}$, удовлетворяющие условиям: $i_1 < \cdots < i_r, \ j_1 < \cdots < j_r, \ \Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A) \neq 0$, все миноры матрицы A порядка r+1, окаймляющие минор $\Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A)$, равны нулю (если они существуют).

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть e — базис множества Q длины r. Тогда: $r \in \mathbb{N}$, $e_1, \ldots, e_r \in Q$, e_1, \ldots, e_r — линейно независимые векторы, $\operatorname{rank}(Q) = r$.

Доказательство. Очевидно: $r \in \mathbb{N}, e_1, \dots, e_r \in Q, e_1, \dots, e_r$ — линейно независимые векторы. Тогда $r \leqslant \operatorname{rank}(Q)$.

Очевидно: $L(e_1, \ldots, e_r)$ — подпространство пространства L, e — базис множества $L(e_1, \ldots, e_r)$ длины $r, Q \subseteq L(e_1, \ldots, e_r)$.

Пусть $x_1, \ldots, x_{r+1} \in \overline{Q}$. Обозначим: $\tilde{x}_i^j = [x_i]^j(e)$ при: $i = \overline{1, r+1}, \ j = \overline{1, r}$. Очевидно: $\tilde{x} \in \mathbb{K}^{r \times (r+1)}, \ \tilde{x}_i = [x_i](e)$ при $i = \overline{1, r+1}$.

Пусть $\tilde{x} = \tilde{\Theta}$ (здесь $\tilde{\Theta}$ — нулевой элемент пространства $\mathbb{K}^{r \times (r+1)}$). Тогда $\tilde{x}_1, \dots, \tilde{x}_{r+1} = \tilde{\theta}$ (здесь $\tilde{\theta}$ — нулевой элемент пространства \mathbb{K}^r). Следовательно, $\tilde{x}_1, \dots, \tilde{x}_{r+1}$ — линейно зависимые столбцы.

Пусть $\tilde{x} \neq \tilde{\Theta}$. Тогда существует число $r_0 = \overline{1,r}$, существуют числа $i_1,\ldots,i_{r_0} = \overline{1,r+1}$, существуют числа $j_1,\ldots,j_{r_0} = \overline{1,r}$, удовлетворяющие условиям: $i_1 < \cdots < i_{r_0}, \ j_1 < \cdots < j_{r_0}, \ \Delta^{j_1,\ldots,j_{r_0}}_{i_1,\ldots,i_{r_0}}(\tilde{x}) \neq 0$, все миноры матрицы \tilde{x} порядка r_0+1 , окаймляющие минор $\Delta^{j_1,\ldots,j_{r_0}}_{i_1,\ldots,i_{r_0}}(\tilde{x})$, равны нулю (если они существуют). Согласно теореме о базисном миноре, $\{\tilde{x}_1,\ldots,\tilde{x}_{r+1}\}\subseteq L(\tilde{x}_{i_1},\ldots,\tilde{x}_{i_{r_0}})$. Так как: $r_0 \leqslant r < r+1$, то $\tilde{x}_1,\ldots,\tilde{x}_{r+1}$ — линейно зависимые столбцы.

Итак, $\tilde{x}_1, \ldots, \tilde{x}_{r+1}$ — линейно зависимые столбцы. Тогда x_1, \ldots, x_{r+1} — линейно зависимые векторы. Следовательно, $\operatorname{rank}(Q) \leqslant r$. Тогда $\operatorname{rank}(Q) = r$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $N \in \mathbb{N}$, $x_1, \ldots, x_N \in L$. Тогда $\dim(L(x_1, \ldots, x_N)) = \operatorname{rank}(\{x_1, \ldots, x_N\})$.

Доказательство. Обозначим, $r = \operatorname{rank}(\{x_1, \dots, x_N\})$. Тогда $r \in \overline{\mathbb{Z}}_+$. Так как $r \leqslant N$, то $r \in \mathbb{Z}_+$.

Пусть r=0. Так как: r=0, $\mathrm{rank}\big(\{x_1,\ldots,x_N\}\big)=r$, то $x_1,\ldots,x_N=\theta$. Тогда: $\dim\big(L(x_1,\ldots,x_N)\big)=\dim\big(\{\theta\}\big)=0=r$.

Пусть $r \neq 0$. Тогда $r \in \mathbb{N}$. Так как: $r \in \mathbb{N}$, $\operatorname{rank}(\{x_1, \ldots, x_N\}) = r$, то существуют векторы e_1, \ldots, e_r , удовлетворяющие условию: e — базис множества $\{x_1, \ldots, x_N\}$ длины r. Тогда e — базис подпространства $L(x_1, \ldots, x_N)$ длины r. Следовательно, $\dim(L(x_1, \ldots, x_N)) = r$.

Лекция 8. Подпространства линейных пространств (2-й семестр)

8.1. Операции над множествами векторов

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Рассмотрим множество P(L) (напоминание: $P(L) = \{Q : Q \subseteq L\}$).

Пусть $Q_1, Q_2 \subseteq L$. Обозначим:

$$Q_1 + Q_2 = \{x_1 + x_2 \colon x_1 \in Q_1 \land x_2 \in Q_2\} = \{u \colon \exists x_1 \exists x_2 (x_1 \in Q_1 \land x_2 \in Q_2 \land u = x_1 + x_2)\}.$$

Очевидно, $Q_1 + Q_2 \subseteq L$.

Обозначим: $F_1(Q_1,Q_2)=Q_1+Q_2$ при $Q_1,Q_2\subseteq L$. Будем говорить, что F_1 — стандартная операция сложения на множестве P(L).

Пусть: $\lambda \in \mathbb{K}$, $Q \subseteq L$. Обозначим:

$$\lambda Q = \{\lambda x \colon x \in Q\} = \{u \colon \exists x (x \in Q \land u = \lambda x)\}.$$

Очевидно, $\lambda Q \subseteq L$.

Обозначим: $F_2(\lambda, Q) = \lambda Q$ при: $\lambda \in \mathbb{K}$, $Q \subseteq L$. Будем говорить, что F_2 — стандартная операция умножения на множестве P(L).

Очевидно, $\{\theta\}\subseteq L$. Будем говорить, что $\{\theta\}$ — стандартный нулевой элемент на множестве P(L).

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

- 1. Пусть $Q_1, Q_2 \subseteq L$. Тогда $Q_1 + Q_2 = Q_2 + Q_1$.
- 2. Пусть $Q_1, Q_2, Q_3 \subseteq L$. Тогда $(Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3)$.
- 3. Пусть $Q \subseteq L$. Тогда $Q + \{\theta\} = Q$.
- 4. $\Pi ycmb: \alpha, \beta \in \mathbb{K}, Q \subseteq L. Torda(\alpha\beta)Q = \alpha(\beta Q).$
- 5. Пусть $Q \subseteq L$. Тогда 1Q = Q.
- 6. Пусть: $\lambda \in \mathbb{K}$, Q_1 , $Q_2 \subseteq L$. Тогда $\lambda(Q_1 + Q_2) = \lambda Q_1 + \lambda Q_2$.

Доказательство.

1. Пусть $u \in Q_1 + Q_2$. Тогда существуют векторы $x_1, x_2,$ удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, u = x_1 + x_2$. Следовательно:

$$u = x_1 + x_2 = x_2 + x_1 \in Q_2 + Q_1.$$

Пусть $u\in Q_2+Q_1$. Тогда существуют векторы $x_2,\ x_1,\$ удовлетворяющие условиям: $x_2\in Q_2,\ x_1\in Q_1,\ u=x_2+x_1.$ Следовательно:

$$u = x_2 + x_1 = x_1 + x_2 \in Q_1 + Q_2.$$

Итак, $Q_1 + Q_2 = Q_2 + Q_1$.

2. Пусть $u \in (Q_1 + Q_2) + Q_3$. Тогда существуют векторы x_1, x_2, x_3 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x_3 \in Q_3, u = (x_1 + x_2) + x_3$. Следовательно:

$$u = (x_1 + x_2) + x_3 = x_1 + (x_2 + x_3) \in Q_1 + (Q_2 + Q_3).$$

Пусть $u \in Q_1 + (Q_2 + Q_3)$. Тогда существуют векторы x_1, x_2, x_3 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x_3 \in Q_3, u = x_1 + (x_2 + x_3)$. Следовательно:

$$u = x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3 \in (Q_1 + Q_2) + Q_3.$$

Итак, $(Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3)$.

3. Очевидно:

$$Q + \{\theta\} = \{u \colon \exists x (x \in Q \land u = x + \theta)\} = \{u \colon \exists x (x \in Q \land u = x)\} = Q.$$

4. Пусть $u \in (\alpha\beta)Q$. Тогда существует вектор x, удовлетворяющий условиям: $x \in Q$, $u = (\alpha\beta)x$. Следовательно:

$$u = (\alpha \beta)x = \alpha(\beta x) \in \alpha(\beta Q).$$

Пусть $u \in \alpha(\beta Q)$. Тогда существует вектор x, удовлетворяющий условиям: $x \in Q$, $u = \alpha(\beta x)$. Следовательно:

$$u = \alpha(\beta x) = (\alpha \beta)x \in (\alpha \beta)Q.$$

Итак, $(\alpha\beta)Q = \alpha(\beta Q)$.

5. Очевидно:

$$1Q = \{u \colon \exists x (x \in Q \land u = 1x)\} = \{u \colon \exists x (x \in Q \land u = x)\} = Q.$$

6. Пусть $u \in \lambda(Q_1 + Q_2)$. Тогда существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, u = \lambda(x_1 + x_2)$. Следовательно:

$$u = \lambda(x_1 + x_2) = \lambda x_1 + \lambda x_2 \in \lambda Q_1 + \lambda Q_2.$$

Пусть $u \in \lambda Q_1 + \lambda Q_2$. Тогда существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q, x_2 \in Q_2, u = \lambda x_1 + \lambda x_2$. Следовательно:

$$u = \lambda x_1 + \lambda x_2 = \lambda(x_1 + x_2) \in \lambda(Q_1 + Q_2).$$

Итак,
$$\lambda(Q_1 + Q_2) = \lambda Q_1 + \lambda Q_2$$
.

8.2. Операции над подпространствами

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

- 1. Пусть Q_1 , Q_2 подпространства пространства L. Тогда $Q_1 + Q_2$ подпространство пространства L.
- 2. Пусть: $\lambda \in \mathbb{K}$, Q-noд n p o c m p a h c m b o
 - 3. Пусть: Q подпространство пространства L, $Q_0 \subseteq Q$, $Q_0 \neq \varnothing$. Тогда $Q + Q_0 = Q$.
 - 4. Пусть Q_1 , Q_2 подпространства пространства L. Тогда Q_1 , $Q_2 \subseteq Q_1 + Q_2$.
 - 5. Пусть: $r_1 \in \mathbb{N}, x_1, \dots, x_{r_1} \in L, r_2 \in \mathbb{N}, y_1, \dots, y_{r_2} \in L$. Тогда:

$$L(x_1,\ldots,x_{r_1})+L(y_1,\ldots,y_{r_2})=L(x_1,\ldots,x_{r_1},y_1,\ldots,y_{r_2}).$$

- 6. Пусть: Q_1 , Q_2 подпространства пространства L, $\dim(Q_1) = +\infty \vee \dim(Q_2) = +\infty$. Тогда $\dim(Q_1 + Q_2) = +\infty$.
- 7. Пусть Q_1 , Q_2 подпространства пространства L. Тогда $\dim(Q_1+Q_2) \leqslant \dim(Q_1) + \dim(Q_2)$.

Доказательство.

1. Очевидно, $Q_1+Q_2\subseteq L$. Так как $Q_1,\,Q_2$ — подпространства пространства L, то $Q_1,\,Q_2\neq\varnothing$. Тогда $Q_1+Q_2\neq\varnothing$.

Пусть $x, y \in Q_1 + Q_2$. Тогда существуют векторы x_1, x_2, y_1, y_2 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x = x_1 + x_2; y_1 \in Q_1, y_2 \in Q_2, y = y_1 + y_2$. Так как Q_1, Q_2 — подпространства пространства L, то:

$$x + y = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) \in Q_1 + Q_2.$$

Пусть: $\lambda \in \mathbb{K}, x \in Q_1 + Q_2$. Тогда существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x = x_1 + x_2$. Так как Q_1, Q_2 — подпространства пространства L, то:

$$\lambda x = \lambda(x_1 + x_2) = \lambda x_1 + \lambda x_2 \in Q_1 + Q_2.$$

Итак, $Q_1 + Q_2$ — подпространство пространства L.

2. Очевидно, $\lambda Q\subseteq L$. Так как Q — подпространство пространства L, то $Q\neq\varnothing$. Тогда $\lambda Q\neq\varnothing$.

Пусть $x, y \in \lambda Q$. Тогда существуют векторы x_0, y_0 , удовлетворяющие условиям: $x_0 \in Q, x = \lambda x_0; y_0 \in Q, y = \lambda y_0$. Так как Q — подпространство пространства L, то: $x + y = \lambda x_0 + \lambda y_0 = \lambda (x_0 + y_0) \in \lambda Q$.

Пусть: $\alpha \in \mathbb{K}$, $x \in \lambda Q$. Тогда: $\alpha \in \mathbb{K}$, существует вектор x_0 , удовлетворяющий условиям: $x_0 \in Q$, $x = \lambda x_0$. Так как Q — подпространство пространства L, то: $\alpha x = \alpha(\lambda x_0) = \lambda(\alpha x_0) \in \lambda Q$. Итак, λQ — подпространство пространства L.

3. Пусть $x \in Q + Q_0$. Тогда существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q, x_2 \in Q_0, x = x_1 + x_2$. Так как: $x_2 \in Q_0, Q_0 \subseteq Q$, то $x_2 \in Q$. Так как: Q — подпространство пространства $L; x_1, x_2 \in Q; x = x_1 + x_2$, то $x \in Q$.

Пусть $x \in Q$. Так как $Q_0 \neq \emptyset$, то существует вектор x_2 , удовлетворяющий условию: $x_2 \in Q_0$. Так как $Q_0 \subseteq Q$, то $x_2 \in Q$. Так как: Q — подпространство пространства L; x, $x_2 \in Q$; $x_2 \in Q_0$, то: $x = \left(x + (-1)x_2\right) + x_2 \in Q + Q_0$. Итак, $Q + Q_0 = Q$.

4. Пусть $x \in Q_1$. Так как Q_2 — подпространство пространства L, то $\theta \in Q_2$. Тогда: $x = x + \theta \in Q_1 + Q_2$. Итак, $Q_1 \subseteq Q_1 + Q_2$.

Пусть $x \in Q_2$. Так как Q_1 — подпространство пространства L, то $\theta \in Q_1$. Тогда: $x = \theta + x \in Q_1 + Q_2$. Итак, $Q_2 \subseteq Q_1 + Q_2$.

5. Пусть $u \in L(x_1, \ldots, x_{r_1}) + L(y_1, \ldots, y_{r_2})$. Тогда существуют векторы $u_1, u_2,$ удовлетворяющие условиям: $u_1 \in L(x_1, \ldots, x_{r_1}), u_2 \in L(y_1, \ldots, y_{r_2}), u = u_1 + u_2$. Так как $u_1 \in L(x_1, \ldots, x_{r_1}),$ то существуют числа $\alpha^1, \ldots, \alpha^{r_1} \in \mathbb{K},$ удовлетворяющие условию $u_1 = \alpha^1 x_1 + \cdots + \alpha^{r_1} x_{r_1}$. Так как $u_2 \in L(y_1, \ldots, y_{r_2}),$ то существуют числа $\beta^1, \ldots, \beta^{r_2} \in \mathbb{K},$ удовлетворяющие условию $u_2 = \beta^1 y_1 + \cdots + \beta^{r_2} y_{r_2}$. Тогда:

$$u = u_1 + u_2 = (\alpha^1 x_1 + \dots + \alpha^{r_1} x_{r_1}) + (\beta^1 y_1 + \dots + \beta^{r_2} y_{r_2}) =$$

= $\alpha^1 x_1 + \dots + \alpha^{r_1} x_{r_1} + \beta^1 y_1 + \dots + \beta^{r_2} y_{r_2} \in L(x_1, \dots, x_{r_1}, y_1, \dots, y_{r_2}).$

Пусть $u \in L(x_1, \dots, x_{r_1}, y_1, \dots, y_{r_2})$. Тогда существуют числа $\alpha^1, \dots, \alpha^{r_1}, \beta^1, \dots, \beta^{r_2} \in \mathbb{K}$, удовлетворяющие условию $u = \alpha^1 x_1 + \dots + \alpha^{r_1} x_{r_1} + \beta^1 y_1 + \dots + \beta^{r_2} y_{r_2}$. Следовательно:

$$u = \alpha^{1}x_{1} + \dots + \alpha^{r_{1}}x_{r_{1}} + \beta^{1}y_{1} + \dots + \beta^{r_{2}}y_{r_{2}} =$$

$$= (\alpha^{1}x_{1} + \dots + \alpha^{r_{1}}x_{r_{1}}) + (\beta^{1}y_{1} + \dots + \beta^{r_{2}}y_{r_{2}}) \in L(x_{1}, \dots, x_{r_{1}}) + L(y_{1}, \dots, y_{r_{2}}).$$

Итак,
$$L(x_1,\ldots,x_{r_1})+L(y_1,\ldots,y_{r_2})=L(x_1,\ldots,x_{r_1},y_1,\ldots,y_{r_2}).$$

- 6. Пусть $\dim(Q_1) = +\infty$. Так как Q_1, Q_2 подпространства пространства L, то $Q_1 \subseteq Q_1 + Q_2$. Тогда: $\dim(Q_1 + Q_2) \geqslant \dim(Q_1) = +\infty$. Следовательно, $\dim(Q_1 + Q_2) = +\infty$.
- Пусть $\dim(Q_2) = +\infty$. Так как Q_1, Q_2 подпространства пространства L, то $Q_2 \subseteq Q_1 + Q_2$. Тогда: $\dim(Q_1 + Q_2) \geqslant \dim(Q_2) = +\infty$. Следовательно, $\dim(Q_1 + Q_2) = +\infty$.
 - 7. Обозначим: $N_1=\dim(Q_1),\ N_2=\dim(Q_2).$ Тогда $N_1,\ N_2\in\overline{\mathbb{Z}}_+.$ Пусть $N_1=0.$ Так как: $N_1=0,\dim(Q_1)=N_1,$ то $Q_1=\{\theta\}.$ Тогда:

$$\dim(Q_1 + Q_2) = \dim(Q_2) = \dim(Q_1) + \dim(Q_2).$$

Пусть $N_2=0$. Так как: $N_2=0,\,\dim(Q_2)=N_2,\,$ то $Q_2=\{\theta\}.$ Тогда:

$$\dim(Q_1 + Q_2) = \dim(Q_1) = \dim(Q_1) + \dim(Q_2).$$

Пусть $N_1 = +\infty \lor N_2 = +\infty$. Так как: $N_1 = +\infty \lor N_2 = +\infty$, $\dim(Q_1) = N_1 \land \dim(Q_2) = N_2$, то $\dim(Q_1 + Q_2) = +\infty$. Тогда:

$$\dim(Q_1 + Q_2) = +\infty = \dim(Q_1) + \dim(Q_2).$$

Пусть: $N_1, N_2 \neq 0, N_1, N_2 \neq +\infty$. Тогда $N_1, N_2 \in \mathbb{N}$. Так как: $N_1, N_2 \in \mathbb{N}$, $\dim(Q_1) = N_1, \dim(Q_2) = N_2$, то существуют векторы $e_1, \ldots, e_{N_1}, f_1, \ldots, f_{N_2}$, удовлетворяющие условиям: (e_1, \ldots, e_{N_1}) — базис подпространства $Q_1, (f_1, \ldots, f_{N_2})$ — базис подпространства Q_2 . Тогда: $Q_1 = L(e_1, \ldots, e_{N_1}), Q_2 = L(f_1, \ldots, f_{N_2})$. Следовательно:

$$\dim(Q_1 + Q_2) = \dim(L(e_1, \dots, e_{N_1}) + L(f_1, \dots, f_{N_2})) = \dim(L(e_1, \dots, e_{N_1}, f_1, \dots, f_{N_2})) =$$

$$= \operatorname{rank}(\{e_1, \dots, e_{N_1}, f_1, \dots, f_{N_2}\}) \leq N_1 + N_2. \quad \Box$$

8.3. Линейно независимые подпространства, прямая сумма подпространств

Определение (линейно независимые подпространства). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}, Q_1, \ldots, Q_r$ — подпространства пространства L. Будем говорить, что Q_1, \ldots, Q_r — линейно независимые подпространства, если:

$$\forall x_1 \in Q_1 \cdots \forall x_r \in Q_r (x_1 + \cdots + x_r = \theta \implies x_1 = \theta \wedge \cdots \wedge x_r = \theta).$$

Определение (прямая сумма подпространств). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{Z}$, $r \geqslant 2$, Q_1, \ldots, Q_r — подпространства пространства L.

- 1. Будем говорить, что D прямая сумма подпространств Q_1, \ldots, Q_r , если: $D = Q_1 + \cdots + Q_r$; Q_1, \ldots, Q_r линейно независимые подпространства.
 - 2. Пусть Q_1, \ldots, Q_r линейно независимые подпространства. Обозначим:

$$Q_1 \oplus \cdots \oplus Q_r = Q_1 + \cdots + Q_r.$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, Q_1, \ldots, Q_r — подпространства пространства L. Подпространства Q_1, \ldots, Q_r линейно независимы тогда и только тогда, когда:

$$\forall x_1 \in Q_1 \cdots \forall x_r \in Q_r \forall y_1 \in Q_1 \cdots \forall y_r \in Q_r$$
$$(x_1 + \cdots + x_r = y_1 + \cdots + y_r \implies x_1 = y_1 \land \cdots \land x_r = y_r).$$

Доказательство. Пусть Q_1,\dots,Q_r — линейно независимые подпространства. Пусть: $x_1\in Q_1,\dots,x_r\in Q_r,\ y_1\in Q_1,\dots,y_r\in Q_r,\ x_1+\dots+x_r=y_1+\dots+y_r$. Так как Q_1,\dots,Q_r — подпространства пространства L, то: $x_1-y_1\in Q_1,\dots,x_r-y_r\in Q_r,\ (x_1-y_1)+\dots+(x_r-y_r)=\theta$. Так как Q_1,\dots,Q_r — линейно независимые подпространства, то: $x_1-y_1=\theta,\dots,x_r-y_r=\theta$. Тогда: $x_1=y_1,\dots,x_r=y_r$.

Пусть:

$$\forall x_1 \in Q_1 \cdots \forall x_r \in Q_r \forall y_1 \in Q_1 \cdots \forall y_r \in Q_r$$
$$(x_1 + \cdots + x_r = y_1 + \cdots + y_r \implies x_1 = y_1 \land \cdots \land x_r = y_r).$$

Пусть: $x_1 \in Q_1, \dots, x_r \in Q_r, \ x_1 + \dots + x_r = \theta$. Так как Q_1, \dots, Q_r — подпространства пространства L, то: $x_1 \in Q_1, \dots, x_r \in Q_r, \ \theta \in Q_1, \dots, \theta \in Q_r, \ x_1 + \dots + x_r = \theta + \dots + \theta$ (здесь выражение $\theta + \dots + \theta$ содержит r слагаемых). Тогда $x_1, \dots, x_r = \theta$. Итак, Q_1, \dots, Q_r — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L. Подпространства Q_1 , Q_2 линейно независими тогда и только тогда, когда $Q_1 \cap Q_2 = \{\theta\}$.

Доказательство. Пусть Q_1 , Q_2 — линейно независимые подпространства. Так как Q_1 , Q_2 — подпространства пространства L, то: $\theta \in Q_1$, $\theta \in Q_2$. Тогда $\theta \in Q_1 \cap Q_2$. Пусть $x \in Q_1 \cap Q_2$. Тогда: $x \in Q_1$, $x \in Q_2$. Так как Q_2 — подпространство пространства L, то: $x \in Q_1$, $(-1)x \in Q_2$, $x + (-1)x = \theta$. Так как Q_1 , Q_2 — линейно независимые подпространства, то $x = \theta$. Итак, $Q_1 \cap Q_2 = \{\theta\}$.

Пусть $Q_1 \cap Q_2 = \{\theta\}$. Пусть: $x_1 \in Q_1, x_2 \in Q_2, x_1 + x_2 = \theta$. Так как Q_1, Q_2 — подпространства пространства L, то: $x_1 \in Q_1, x_1 = (-1)x_2 \in Q_2; x_2 = (-1)x_1 \in Q_1, x_2 \in Q_2$. Тогда $x_1, x_2 \in Q_1 \cap Q_2$. Так как $Q_1 \cap Q_2 = \{\theta\}$, то $x_1, x_2 = \theta$. Итак, Q_1, Q_2 — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$. 1. Пусть: Q_1, \ldots, Q_r — линейно независимые подпространства пространства L, $\sigma \in S_r$. Тогда $Q_{\sigma(1)}, \ldots, Q_{\sigma(r)}$ — линейно независимые подпространства.

- 2. Пусть: Q_1, \ldots, Q_r линейно независимые подпространства пространства $L, r_0 \in \mathbb{N}, k_1, \ldots, k_{r_0} = \overline{1,r}, k_1 < \cdots < k_{r_0}$. Тогда $Q_{k_1}, \ldots, Q_{k_{r_0}}$ линейно независимые подпространства.
- 3. Пусть: $r_0 \in \mathbb{N}, k_1, \ldots, k_{r_0} = \overline{1,r}, k_1 < \cdots < k_{r_0}, Q_{k_1}, \ldots, Q_{k_{r_0}}$ линейно независимые подпространства пространства $L; Q_k = \{\theta\}$ при: $k = \overline{1,r}, k \notin \{k_1, \ldots, k_{r_0}\}$. Тогда Q_1, \ldots, Q_r линейно независимые подпространства.

Доказательство.

- 1. Пусть: $x_1 \in Q_{\sigma(1)}, \ldots, x_r \in Q_{\sigma(r)}, x_1 + \cdots + x_r = \theta$. Тогда: $x_{\sigma^{-1}(1)} \in Q_1, \ldots, x_{\sigma^{-1}(r)} \in Q_r$, $x_{\sigma^{-1}(1)} + \cdots + x_{\sigma^{-1}(r)} = \theta$. Так как Q_1, \ldots, Q_r линейно независимые подпространства, то $x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(r)} = \theta$. Тогда $x_1, \ldots, x_r = \theta$. Итак, $Q_{\sigma(1)}, \ldots, Q_{\sigma(r)}$ линейно независимые подпространства.
- 2. Пусть: $x_1 \in Q_{k_1}, \ldots, x_{r_0} \in Q_{k_{r_0}}, x_1 + \cdots + x_{r_0} = \theta$. Пусть: $k = \overline{1,r}, k \notin \{k_1, \ldots, k_{r_0}\}$. Так как Q_k подпространство пространства L, то $\theta \in Q_k$. Обозначим: $y_{k_1} = x_1, \ldots, y_{k_{r_0}} = x_{r_0}, y_k = \theta$ при: $k = \overline{1,r}, k \notin \{k_1, \ldots, k_{r_0}\}$. Тогда: $y_1 \in Q_1, \ldots, y_r \in Q_r, y_1 + \cdots + y_r = \theta$. Так как Q_1, \ldots, Q_r линейно независимые подпространства, то $y_{k_1}, \ldots, y_{k_{r_0}} = \theta$. Тогда $x_1, \ldots, x_{r_0} = \theta$. Итак, $Q_{k_1}, \ldots, Q_{k_{r_0}}$ линейно независимые подпространства.

3. Пусть: $x_1 \in Q_1, \dots, x_r \in Q_r, x_1 + \dots + x_r = \theta$. Пусть: $k = \overline{1,r}, k \notin \{k_1, \dots, k_{r_0}\}$. Так как: $Q_k = \{\theta\}, x_k \in Q_k$, то $x_k = \theta$. Тогда: $x_{k_1} \in Q_{k_1}, \dots, x_{k_{r_0}} \in Q_{k_{r_0}}, x_{k_1} + \dots + x_{k_{r_0}} = \theta$. Так как $Q_{k_1}, \dots, Q_{k_{r_0}}$ — линейно независимые подпространства, то $x_{k_1}, \dots, x_{k_{r_0}} = \theta$. Итак, Q_1, \dots, Q_r — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $N_1, \ldots, N_r \in \mathbb{N}$.

- 1. Пусть: Q_1, \ldots, Q_r линейно независимые подпространства пространства L; $x_{k,1}, \ldots, x_{k,N_k}$ линейно независимые векторы подпространства Q_k при $k=\overline{1,r}$. Тогда $x_{1,1}, \ldots, x_{1,N_1}, \ldots, x_{r,1}, \ldots, x_{r,N_r}$ линейно независимые векторы подпространства $Q_1+\cdots+Q_r$.
- 2. Пусть: Q_1, \ldots, Q_r линейно независимые подпространства пространства $L; (e_{k,1}, \ldots, e_{k,N_k})$ базис подпространства Q_k при $k = \overline{1,r}$. Тогда $(e_{1,1}, \ldots, e_{1,N_1}, \ldots, e_{r,1}, \ldots, e_{r,N_r})$ базис подпространства $Q_1 + \cdots + Q_r$.
- 3. Пусть: $e_{1,1}, \ldots, e_{1,N_1}, \ldots, e_{r,1}, \ldots, e_{r,N_r}$ линейно независимые векторы пространства $L;\ Q_k = L(e_{k,1}, \ldots, e_{k,N_k})$ при $k = \overline{1,r}$. Тогда Q_1, \ldots, Q_r линейно независимые подпространства.

Доказательство.

1. Пусть: $k = \overline{1,r}, \ m = \overline{1,N_k}$. Так как Q_1, \dots, Q_r — подпространства пространства L, то $Q_k \subseteq Q_1 + \dots + Q_r$. Так как $x_{k,m} \in Q_k$, то $x_{k,m} \in Q_1 + \dots + Q_r$.

Пусть:
$$\alpha^{k,m} \in \mathbb{K}$$
 при: $k = \overline{1,r}, m = \overline{1,N_k}; \sum_{\substack{k=\overline{1,r},\\m=1,N_k}} \alpha^{k,m} x_{k,m} = \theta$. Тогда $\sum_{k=1}^r \sum_{m=1}^{N_k} \alpha^{k,m} x_{k,m} = \theta$

 θ . Пусть $k = \overline{1,r}$. Так как: Q_k — подпространство пространства $L, x_{k,m} \in Q_k$ при $m = \overline{1,N_k},$ то $\sum\limits_{m=1}^{N_k} \alpha^{k,m} x_{k,m} \in Q_k$. Так как Q_1,\ldots,Q_r — линейно независимые подпространства, то: $\sum\limits_{m=1}^{N_k} \alpha^{k,m} x_{k,m} = \theta$ при $k = \overline{1,r}$. Пусть $k = \overline{1,r}$. Так как: $\sum\limits_{m=1}^{N_k} \alpha^{k,m} x_{k,m} = \theta,$ $x_{k,1},\ldots,x_{k,N_k}$ — линейно независимые векторы, то: $\alpha^{k,m} = 0$ при $m = \overline{1,N_k}$. Итак, $x_{1,1},\ldots,x_{1,N_1},\ldots,x_{r,1},\ldots,x_{r,N_r}$ — линейно независимые векторы.

2. Пусть $k=\overline{1,r}$. Так как $(e_{k,1},\ldots,e_{k,N_k})$ — базис подпространства Q_k , то $Q_k=L(e_{k,1},\ldots,e_{k,N_k})$. Тогда:

$$Q_1 + \dots + Q_r = L(e_{1,1}, \dots, e_{1,N_1}) + \dots + L(e_{r,1}, \dots, e_{r,N_r}) =$$

= $L(e_{1,1}, \dots, e_{1,N_1}, \dots, e_{r,1}, \dots, e_{r,N_r}).$

Так как: Q_1,\ldots,Q_r — линейно независимые подпространства пространства L; $e_{k,1},\ldots,e_{k,N_k}$ — линейно независимые векторы подпространства Q_k при $k=\overline{1,r},$ то $e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r}$ — линейно независимые векторы. Тогда $(e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r})$ — базис подпространства $Q_1+\cdots+Q_r$.

3. Пусть: $x_k \in Q_k$ при $k = \overline{1,r}$; $\sum\limits_{k=1}^r x_k = \theta$. Пусть $k = \overline{1,r}$. Так как: $Q_k = L(e_{k,1},\ldots,e_{k,N_k})$, $x_k \in Q_k$, то существуют числа $\alpha^{k,1},\ldots,\alpha^{k,N_k} \in \mathbb{K}$, удовлетворяющие условию $x_k = \sum\limits_{m=1}^{N_k} \alpha^{k,m} e_{k,m}$. Так как $\sum\limits_{k=1}^r x_k = \theta$, то $\sum\limits_{k=1}^r \sum\limits_{m=1}^{N_k} \alpha^{k,m} e_{k,m} = \theta$. Тогда $\sum\limits_{k=\overline{1,r},\atop m=\overline{1,N_k}} \alpha^{k,m} e_{k,m} = \theta$. Так как

 $e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r}$ — линейно независимые векторы, то: $\alpha^{k,m}=0$ при: $k=\overline{1,r},$

 $m=\overline{1,N_k}$. Тогда: $x_k=\sum\limits_{m=1}^{N_k}\alpha^{k,m}e_{k,m}=\theta$ при $k=\overline{1,r}$. Итак, Q_1,\ldots,Q_r — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, Q_1, \ldots, Q_r — подпространства пространства L, $\dim(Q_k) \in \mathbb{N}$ при $k = \overline{1, r}$.

- 1. Пусть Q_1, \ldots, Q_r линейно независимые подпространства. Тогда $\dim(Q_1 + \cdots + Q_r) = \dim(Q_1) + \cdots + \dim(Q_r)$.
- 2. Пусть $\dim(Q_1+\cdots+Q_r)=\dim(Q_1)+\cdots+\dim(Q_r)$. Тогда Q_1,\ldots,Q_r линейно независимые подпространства.

Доказательство. Пусть $k = \overline{1,r}$. Обозначим, $N_k = \dim(Q_k)$. Тогда $N_k \in \mathbb{N}$. Так как: $N_k \in \mathbb{N}$, $\dim(Q_k) = N_k$, то существуют векторы $e_{k,1}, \ldots, e_{k,N_k}$, удовлетворяющие условию: $(e_{k,1}, \ldots, e_{k,N_k})$ — базис подпространства Q_k . Тогда $Q_k = L(e_{k,1}, \ldots, e_{k,N_k})$.

- 1. Так как: Q_1, \ldots, Q_r линейно независимые подпространства, $(e_{k,1}, \ldots, e_{k,N_k})$ базис подпространства Q_k при $k=\overline{1,r}$, то $(e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r})$ базис подпространства $Q_1+\cdots+Q_r$. Тогда $\dim(Q_1+\cdots+Q_r)=N_1+\cdots+N_r$.
- 2. Предположим, что $e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r}$ линейно зависимые векторы. Тогда:

$$\dim(Q_1 + \dots + Q_r) = \dim(L(e_{1,1}, \dots, e_{1,N_1}) + \dots + L(e_{r,1}, \dots, e_{r,N_r})) =$$

$$= \dim(L(e_{1,1}, \dots, e_{1,N_1}, \dots, e_{r,1}, \dots, e_{r,N_r})) = \operatorname{rank}(\{e_{1,1}, \dots, e_{1,N_1}, \dots, e_{r,1}, \dots, e_{r,N_r}\}) <$$

$$< N_1 + \dots + N_r$$

(что противоречит утверждению $\dim(Q_1+\cdots+Q_r)=N_1+\cdots+N_r$). Итак, $e_{1,1},\ldots,e_{1,N_1},\ldots,e_{r,1},\ldots,e_{r,N_r}$ — линейно независимые векторы. Так как: $Q_k=L(e_{k,1},\ldots,e_{k,N_k})$ при $k=\overline{1,r}$, то Q_1,\ldots,Q_r — линейно независимые подпространства. \square

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, Q_1, \ldots, Q_r — подпространства пространства L.

- 1. Пусть Q_1, \ldots, Q_r линейно независимые подпространства. Тогда $\dim(Q_1 + \cdots + Q_r) = \dim(Q_1) + \cdots + \dim(Q_r)$.
- 2. Пусть: $\dim(Q_1 + \dots + Q_r) = \dim(Q_1) + \dots + \dim(Q_r)$, $\dim(Q_k) \neq +\infty$ при $k = \overline{1,r}$. Тогда Q_1, \dots, Q_r линейно независимые подпространства.

Доказательство.

1. Пусть $k = \overline{1,r}$. Обозначим, $N_k = \dim(Q_k)$. Тогда $N_k \in \overline{\mathbb{Z}}_+$. Пусть $\forall k = \overline{1,r}(N_k = 0)$. Так как: $\forall k = \overline{1,r}(N_k = 0)$, $\forall k = \overline{1,r}(\dim(Q_k) = N_k)$, то $\forall k = \overline{1,r}(Q_k = \{\theta\})$. Тогда:

$$\dim(Q_1 + \dots + Q_r) = \dim(\{\theta\}) = 0 = N_1 + \dots + N_r.$$

Пусть $\exists k=\overline{1,r}(N_k=+\infty)$. Так как: $\exists k=\overline{1,r}(N_k=+\infty), \ \forall k=\overline{1,r}\big(\dim(Q_k)=N_k\big),$ то $\dim(Q_1+\cdots+Q_r)=+\infty$. Тогда:

$$\dim(Q_1 + \dots + Q_r) = +\infty = N_1 + \dots + N_r.$$

Пусть: $\exists k = \overline{1,r}(N_k \neq 0), \ \forall k = \overline{1,r}(N_k \neq +\infty)$. Тогда существует число $r_0 = \overline{1,r}$, существуют числа $k_1,\ldots,k_{r_0} = \overline{1,r}$, удовлетворяющие условиям: $k_1 < \cdots < k_{r_0}$,

 $N_{k_1}, \ldots, N_{k_{r_0}} \neq 0, \ N_{k_1}, \ldots, N_{k_{r_0}} \neq +\infty, \ N_k = 0$ при: $k = \overline{1,r}, \ k \notin \{k_1, \ldots, k_{r_0}\}$. Следовательно: $r_0 = \overline{1,r}, \ k_1, \ldots, k_{r_0} = \overline{1,r}, \ k_1 < \cdots < k_{r_0}, \ N_{k_1}, \ldots, N_{k_{r_0}} \in \mathbb{N}, \ N_k = 0$ при: $k = \overline{1,r}, \ k \notin \{k_1, \ldots, k_{r_0}\}$.

Так как Q_1,\ldots,Q_r — линейно независимые подпространства, то $Q_{k_1},\ldots,Q_{k_{r_0}}$ — линейно независимые подпространства. Так как: $Q_{k_1},\ldots,Q_{k_{r_0}}$ — линейно независимые подпространства, $N_{k_1},\ldots,N_{k_{r_0}}\in\mathbb{N},$ $\dim(Q_{k_1})=N_{k_1},\ldots,$ $\dim(Q_{k_{r_0}})=N_{k_{r_0}},$ то $\dim(Q_{k_1}+\cdots+Q_{k_{r_0}})=N_{k_1}+\cdots+N_{k_{r_0}}.$ Так как: $N_k=0,$ $\dim(Q_k)=N_k$ при: $k=\overline{1,r},$ $k\notin\{k_1,\ldots,k_{r_0}\},$ то: $Q_k=\{\theta\}$ при: $k=\overline{1,r},$ $k\notin\{k_1,\ldots,k_{r_0}\}.$ Тогда:

$$\dim(Q_1 + \dots + Q_r) = \dim(Q_{k_1} + \dots + Q_{k_{r_0}}) = N_{k_1} + \dots + N_{k_{r_0}} = N_1 + \dots + N_r.$$

2. Пусть $k=\overline{1,r}$. Обозначим, $N_k=\dim(Q_k)$. Тогда $N_k\in\mathbb{Z}_+$.

Пусть $\forall k=\overline{1,r}(N_k=0)$. Так как: $\forall k=\overline{1,r}(N_k=0),\ \forall k=\overline{1,r}\big(\dim(Q_k)=N_k\big)$, то $\forall k=\overline{1,r}\big(Q_k=\{\theta\}\big)$. Тогда Q_1,\ldots,Q_r — линейно независимые подпространства.

Пусть $\exists k = \overline{1,r} (N_k \neq 0)$. Тогда существует число $r_0 = \overline{1,r}$, существуют числа $k_1,\ldots,k_{r_0}=\overline{1,r}$, удовлетворяющие условиям: $k_1<\cdots< k_{r_0},\ N_{k_1},\ldots,N_{k_{r_0}}\neq 0,\ N_k=0$ при: $k=\overline{1,r},\ k\notin\{k_1,\ldots,k_{r_0}\}$. Следовательно: $r_0=\overline{1,r},\ k_1,\ldots,k_{r_0}=\overline{1,r},\ k_1<\cdots< k_{r_0},\ N_{k_1},\ldots,N_{k_{r_0}}\in\mathbb{N},\ N_k=0$ при: $k=\overline{1,r},\ k\notin\{k_1,\ldots,k_{r_0}\}$.

Так как: $N_k=0$, $\dim(Q_k)=N_k$ при: $k=\overline{1,r},\ k\notin\{k_1,\ldots,k_{r_0}\}$, то: $Q_k=\{\theta\}$ при: $k=\overline{1,r},\ k\notin\{k_1,\ldots,k_{r_0}\}$. Так как $\dim(Q_1+\cdots+Q_r)=N_1+\cdots+N_r$, то:

$$\dim(Q_{k_1} + \dots + Q_{k_{r_0}}) = \dim(Q_1 + \dots + Q_r) = N_1 + \dots + N_r = N_{k_1} + \dots + N_{k_{r_0}}.$$

Так как: $\dim(Q_{k_1}+\dots+Q_{k_{r_0}})=N_{k_1}+\dots+N_{k_{r_0}},\ N_{k_1},\dots,N_{k_{r_0}}\in\mathbb{N},\ \dim(Q_{k_1})=N_{k_1},\dots,$ $\dim(Q_{k_{r_0}})=N_{k_{r_0}},$ то $Q_{k_1},\dots,Q_{k_{r_0}}$ — линейно независимые подпространства. Так как: $Q_k=\{\theta\}$ при: $k=\overline{1,r},\ k\notin\{k_1,\dots,k_{r_0}\},$ то Q_1,\dots,Q_r — линейно независимые подпространства.

8.4. Линейное дополнение одного подпространства до другого

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть: $r \in \mathbb{N}$, $x_1, \ldots, x_r \in Q$, x_1, \ldots, x_r — линейно независимые векторы; $r < \operatorname{rank}(Q)$. Тогда существует вектор $u \in Q$, удовлетворяющий условию: x_1, \ldots, x_r , u — линейно независимые векторы.

Доказательство. Предположим, что для любого вектора $u \in Q$ справедливо утверждение: x_1, \ldots, x_r, u — линейно зависимые векторы.

Пусть $u \in Q$. Тогда x_1, \ldots, x_r, u — линейно зависимые векторы. Так как x_1, \ldots, x_r — линейно независимые векторы, то $u \in L(x_1, \ldots, x_r)$. Тогда $Q \subseteq L(x_1, \ldots, x_r)$. Следовательно, (x_1, \ldots, x_r) — базис множества Q длины r. Тогда $\operatorname{rank}(Q) = r$ (что противоречит утверждению: $r < \operatorname{rank}(Q)$). Итак, существует вектор $u \in Q$, удовлетворяющий условию: x_1, \ldots, x_r, u — линейно независимые векторы.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q \subseteq L$. Пусть: $r_1 \in \mathbb{N}$, $x_1, \ldots, x_{r_1} \in Q$, x_1, \ldots, x_{r_1} — линейно независимые векторы; $r_2 \in \mathbb{N}$, $r_1 < r_2 \leqslant \operatorname{rank}(Q)$. Тогда существуют векторы $x_{r_1+1}, \ldots, x_{r_2} \in Q$, удовлетворяющие условию: x_1, \ldots, x_{r_2} — линейно независимые векторы.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $Q_2 \subseteq L$, $r_2 \in \mathbb{N}$, $\mathrm{rank}(Q_2) = r_2$; $Q_1 \subseteq Q_2$, $r_1 \in \mathbb{N}$, $\mathrm{rank}(Q_1) = r_1$.

Пусть: (e_1, \ldots, e_{r_1}) — базис множества Q_1 , $r_1 < r_2$. Тогда существуют векторы $e_{r_1+1}, \ldots, e_{r_2}$, удовлетворяющие условию: (e_1, \ldots, e_{r_2}) — базис множества Q_2 .

Доказательство. Так как (e_1,\ldots,e_{r_1}) — базис множества Q_1 , то: $e_1,\ldots,e_{r_1}\in Q_1$, e_1,\ldots,e_{r_1} — линейно независимые векторы. Так как $Q_1\subseteq Q_2$, то: $e_1,\ldots,e_{r_1}\in Q_2$, e_1,\ldots,e_{r_1} — линейно независимые векторы. Так как: $r_1,\,r_2\in\mathbb{N},\,r_1< r_2=\mathrm{rank}(Q_2)$, $e_1,\ldots,e_{r_1}\in Q_2,\,e_1,\ldots,e_{r_1}$ — линейно независимые векторы, то существуют векторы $e_{r_1+1},\ldots,e_{r_2}\in Q_2$, удовлетворяющие условию: e_1,\ldots,e_{r_2} — линейно независимые векторы. Так как: $r_2\in\mathbb{N}$, $\mathrm{rank}(Q_2)=r_2,\,e_1,\ldots,e_{r_2}\in Q_2,\,e_1,\ldots,e_{r_2}$ — линейно независимые векторы, то (e_1,\ldots,e_{r_2}) — базис множества Q_2 .

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L.

 $\Pi ycmb: \dim(Q_2) \neq +\infty, \ Q_1 \subseteq Q_2, \ \dim(Q_1) = \dim(Q_2). \ Toeda \ Q_1 = Q_2.$

Доказательство. Обозначим, $N = \dim(Q_2)$. Тогда: $N \in \mathbb{Z}_+$, $\dim(Q_1) = N$, $\dim(Q_2) = N$. Пусть N = 0. Так как: N = 0, $N = \dim(Q_1)$; N = 0, $N = \dim(Q_2)$, то: $Q_1 = \{\theta\}$, $Q_2 = \{\theta\}$. Тогда $Q_1 = Q_2$.

Пусть $N \neq 0$. Тогда $N \in \mathbb{N}$. Так как: $N \in \mathbb{N}$, $N = \dim(Q_1)$, то существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: $e_1, \ldots, e_N \in Q_1, e_1, \ldots, e_N$ — линейно независимые векторы. Так как: $e_1, \ldots, e_N \in Q_1, e_1, \ldots, e_N$ — линейно независимые векторы, $N = \dim(Q_1)$, то e — базис подпространства Q_1 длины N. Тогда $Q_1 = L(e_1, \ldots, e_N)$. Так как: $e_1, \ldots, e_N \in Q_1, Q_1 \subseteq Q_2$, то $e_1, \ldots, e_N \in Q_2$. Так как: $e_1, \ldots, e_N \in Q_2, e_1, \ldots, e_N$ — линейно независимые векторы, $N = \dim(Q_2)$, то e — базис подпространства Q_2 длины N. Тогда $Q_2 = L(e_1, \ldots, e_N)$. Следовательно, $Q_1 = Q_2$.

Определение (линейное дополнение одного подпространства до другого). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L. Будем говорить, что D — линейное дополнение подпространства Q_1 до подпространства Q_2 , если:

$$D$$
 — подпространство пространства L ;
$$Q_2 = Q_1 + D;$$

 Q_1, D — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L.

Пусть: $\dim(Q_2) \neq +\infty$, $Q_1 \subseteq Q_2$. Тогда существует линейное дополнение D подпространства Q_1 до подпространства Q_2 .

Доказательство. Обозначим: $N_1 = \dim(Q_1)$, $N_2 = \dim(Q_2)$. Тогда: N_1 , $N_2 \in \mathbb{Z}_+$, $N_1 \leqslant N_2$. Пусть $N_1 = 0$. Так как: $N_1 = 0$, $\dim(Q_1) = N_1$, то $Q_1 = \{\theta\}$. Обозначим, $D = Q_2$. Тогда: D — подпространство пространства L, $Q_1 + D = \{\theta\} + Q_2 = Q_2$. Так как: $Q_1 = \{\theta\}$, D — подпространство пространства L, то Q_1 , D — линейно независимые подпространства.

Пусть $N_1=N_2$. Так как: $Q_1,\ Q_2$ — подпространства пространства $L,\ Q_1\subseteq Q_2,\ \dim(Q_1)=N_1,\ \dim(Q_2)=N_2,\ N_1=N_2,\ N_2\neq +\infty,\ \text{то}\ Q_1=Q_2.$ Обозначим, $D=\{\theta\}.$ Тогда: D — подпространство пространства $L,\ Q_1+D=Q_2+\{\theta\}=Q_2.$ Так как: Q_1 — подпространство пространства $L,\ D=\{\theta\},\ \text{то}\ Q_1,\ D$ — линейно независимые подпространства.

Пусть: $N_1 \neq 0$, $N_1 \neq N_2$. Тогда: N_1 , $N_2 \in \mathbb{N}$, $N_1 < N_2$. Так как: $N_1 \in \mathbb{N}$, $\dim(Q_1) = N_1$, то существуют векторы e_1, \ldots, e_{N_1} , удовлетворяющие условию: (e_1, \ldots, e_{N_1}) — базис подпространства Q_1 . Тогда $Q_1 = L(e_1, \ldots, e_{N_1})$. Так как: N_1 , $N_2 \in \mathbb{N}$, $\dim(Q_1) = N_1$,

 $\dim(Q_2) = N_2, \, Q_1 \subseteq Q_2, \, (e_1, \dots, e_{N_1})$ — базис подпространства $Q_1, \, N_1 < N_2$, то существуют векторы $e_{N_1+1}, \dots, e_{N_2}$, удовлетворяющие условию: (e_1, \dots, e_{N_2}) — базис подпространства Q_2 . Тогда $Q_2 = L(e_1, \dots, e_{N_2})$. Обозначим, $D = L(e_{N_1+1}, \dots, e_{N_2})$. Тогда:

$$D$$
 — подпространство пространства L ,

$$Q_1 + D = L(e_1, \dots, e_{N_1}) + L(e_{N_1+1}, \dots, e_{N_2}) = L(e_1, \dots, e_{N_2}) = Q_2.$$

Так как: e_1, \ldots, e_{N_2} — линейно независимые векторы, $Q_1 = L(e_1, \ldots, e_{N_1}), D = L(e_{N_1+1}, \ldots, e_{N_2}),$ то Q_1, D — линейно независимые подпространства.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L.

 Π усть D — линейное дополнение подпространства $Q_1 \cap Q_2$ до подпространства Q_2 . Тогда D — линейное дополнение подпространства Q_1 до подпространства $Q_1 + Q_2$.

Доказательство. Так как Q_1 , Q_2 — подпространства пространства L, то $Q_1 \cap Q_2$ — подпространство пространства L. Тогда $Q_1 \cap Q_2 \neq \emptyset$.

Так как D — линейное дополнение подпространства $Q_1 \cap Q_2$ до подпространства Q_2 , то: D — подпространство пространства L, $Q_2 = Q_1 \cap Q_2 + D$; $Q_1 \cap Q_2$, D — линейно независимые подпространства.

Так как D — линейное дополнение подпространства $Q_1 \cap Q_2$ до подпространства Q_2 , то: $D \subseteq Q_2, (Q_1 \cap Q_2) \cap D = \{\theta\}.$

Так как: Q_1 — подпространство пространства $L,\ Q_1\cap Q_2\subseteq Q_1,\ Q_1\cap Q_2\neq\varnothing,$ то $Q_1+Q_1\cap Q_2=Q_1.$ Тогда:

$$Q_1 + Q_2 = Q_1 + (Q_1 \cap Q_2 + D) = (Q_1 + Q_1 \cap Q_2) + D = Q_1 + D.$$

Так как $D \subseteq Q_2$, то $Q_2 \cap D = D$. Тогда:

$$Q_1 \cap D = Q_1 \cap (Q_2 \cap D) = (Q_1 \cap Q_2) \cap D = \{\theta\}.$$

Следовательно, Q_1, D — линейно независимые подпространства. Итак, D — линейное дополнение подпространства Q_1 до подпространства $Q_1 + Q_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q_1 , Q_2 — подпространства пространства L, $\dim(Q_2) \neq +\infty$. Тогда $\dim(Q_1 + Q_2) = \dim(Q_1) + \dim(Q_2) - \dim(Q_1 \cap Q_2)$.

Доказательство. Так как: $Q_1 \cap Q_2$, Q_2 — подпространства пространства L, $Q_1 \cap Q_2 \subseteq Q_2$, $\dim(Q_2) \neq +\infty$, то существует линейное дополнение D подпространства $Q_1 \cap Q_2$ до подпространства Q_2 . Тогда $\dim(Q_2) = \dim(Q_1 \cap Q_2) + \dim(D)$. Следовательно, $\dim(D) = \dim(Q_2) - \dim(Q_1 \cap Q_2)$.

Так как D — линейное дополнение подпространства $Q_1 \cap Q_2$ до подпространства Q_2 , то D — линейное дополнение подпространства Q_1 до подпространства $Q_1 + Q_2$. Тогда $\dim(Q_1 + Q_2) = \dim(Q_1) + \dim(D)$. Следовательно, $\dim(Q_1 + Q_2) = \dim(Q_1) + \dim(Q_2) - \dim(Q_1 \cap Q_2)$.

Лекция 9. Общие сведения о линейных операторах и изоморфизмах (2-й семестр)

9.1. Линейный оператор

Определение (линейный оператор и изоморфизм). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} .

- 1. Пусть $A: L_1 \to L_2$. Будем говорить, что A линейный оператор, если: D(A) подпространство пространства L_1 , A(x+y) = A(x) + A(y) при $x, y \in D(A)$; $A(\lambda x) = \lambda A(x)$ при: $\lambda \in \mathbb{K}, x \in D(A)$.
- 2. Обозначим через $\lim(L_1,L_2)$ множество всех функций A, удовлетворяющих условиям: $A\colon L_1\to L_2,\ A$ линейный оператор.
- 3. Обозначим через $\operatorname{Lin}(L_1, L_2)$ множество всех функций A, удовлетворяющих условиям: $A \colon L_1 \implies L_2, A$ линейный оператор.
- 4. Будем говорить, что A изоморфизм пространства L_1 на пространство L_2 , если: A обратимая функция, $D(A) = L_1$, $R(A) = L_2$, A(x+y) = A(x) + A(y) при $x, y \in L_1$; $A(\lambda x) = \lambda A(x)$ при: $\lambda \in \mathbb{K}, x \in L_1$.
- 5. Будем писать $L_1 \stackrel{A}{\approx} L_2$, если A изоморфизм пространства L_1 на пространство L_2 . Утверждение $L_1 \stackrel{A}{\approx} L_2$ можно читать: «пространство L_1 изоморфно пространству L_2 относительно функции A».
- 6. Будем писать $L_1 \approx L_2$ если $\exists A(L_1 \stackrel{A}{\approx} L_2)$. Утверждение $L_1 \approx L_2$ читается: «пространство L_1 изоморфно пространству L_2 ».

3амечание. Пусть $\lambda \in \mathbb{C}$. Обозначим, $\overline{\lambda} = \operatorname{Re}(\lambda) - i \operatorname{Im}(\lambda)$. Очевидно, $\overline{\lambda} \in \mathbb{C}$.

Пусть $\lambda \in \mathbb{R}$. Обозначим, $\overline{\lambda} = \lambda$. Очевидно, $\overline{\lambda} \in \mathbb{R}$.

Пусть $\lambda \in \mathbb{Q}$. Обозначим, $\overline{\lambda} = \lambda$. Очевидно, $\overline{\lambda} \in \mathbb{Q}$.

Определение (полулинейный оператор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \colon L_1 \to L_2$. Будем говорить, что A — полулинейный оператор, если: D(A) — подпространство пространства $L_1, A(x+y) = A(x) + A(y)$ при $x, y \in D(A)$; $A(\lambda x) = \overline{\lambda} A(x)$ при: $\lambda \in \mathbb{K}, x \in D(A)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} . Тогда $\mathrm{Lin}(L_1, L_2)$ — подпространство пространства $\mathrm{Fun}(L_1, L_2)$.

Доказательство.

- 1. Очевидно, $Lin(L_1, L_2) \subseteq Fun(L_1, L_2)$.
- 2. Пусть Θ нулевой элемент пространства $\operatorname{Fun}(L_1,L_2)$. Докажем, что $\Theta\in\operatorname{Lin}(L_1,L_2)$. Очевидно, $\Theta\colon L_1\implies L_2$.

Пусть $x, y \in L_1$. Тогда:

$$\Theta(x+y) = \theta_2 = \theta_2 + \theta_2 = \Theta(x) + \Theta(y).$$

Пусть: $\lambda \in \mathbb{K}$, $x \in L_1$. Тогда:

$$\Theta(\lambda x) = \theta_2 = \lambda \theta_2 = \lambda \Theta(x).$$

3. Пусть $A, B \in \text{Lin}(L_1, L_2)$. Докажем, что $A+B \in \text{Lin}(L_1, L_2)$. Очевидно, $A+B \colon L_1 \implies L_2$.

Пусть $x, y \in L_1$. Тогда:

$$(A+B)(x+y) = A(x+y) + B(x+y) = (A(x) + A(y)) + (B(x) + B(y)) =$$

= $(A(x) + B(x)) + (A(y) + B(y)) = (A+B)(x) + (A+B)(y).$

Пусть: $\lambda \in \mathbb{K}$, $x \in L_1$. Тогда:

$$(A+B)(\lambda x) = A(\lambda x) + B(\lambda x) = \lambda A(x) + \lambda B(x) = \lambda (A(x) + B(x)) = \lambda (A+B)(x).$$

4. Пусть: $\alpha \in \mathbb{K}, A \in \text{Lin}(L_1, L_2)$. Докажем, что $\alpha A \in \text{Lin}(L_1, L_2)$. Очевидно, $\alpha A \colon L_1 \implies L_2$.

Пусть $x, y \in L_1$. Тогда:

$$(\alpha A)(x+y) = \alpha A(x+y) = \alpha (A(x) + A(y)) = \alpha A(x) + \alpha A(y) = (\alpha A)(x) + (\alpha A)(y).$$

Пусть: $\beta \in \mathbb{K}$, $x \in L_1$. Тогда:

$$(\alpha A)(\beta x) = \alpha A(\beta x) = \alpha (\beta A(x)) = \beta (\alpha A(x)) = \beta (\alpha A)(x). \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$. Обозначим: $\hat{A}(x) = Ax$ при $x \in \mathbb{K}^{N_1}$. Будем говорить, что \hat{A} — оператор умножения на матрицу A. Докажем, что $\hat{A} \in \operatorname{Lin}(\mathbb{K}^{N_1}, \mathbb{K}^{N_2})$. Очевидно, $\hat{A} \colon \mathbb{K}^{N_1} \Longrightarrow \mathbb{K}^{N_2}$.

Пусть $x, y \in \mathbb{K}^{N_1}$. Тогда: $\hat{A}(x+y) = A(x+y) = Ax + Ay = \hat{A}(x) + \hat{A}(y)$.

Пусть: $\lambda \in \mathbb{K}$, $x \in \mathbb{K}^{N_1}$. Тогда: $\hat{A}(\lambda x) = A(\lambda x) = \lambda(Ax) = \lambda \hat{A}(x)$.

Очевидно:

$$R(\hat{A}) = \left\{ y \colon \exists x \left(x \in \mathbb{K}^{N_1} \land y = \hat{A}(x) \right) \right\} = \left\{ y \colon \exists x \left(x \in \mathbb{K}^{N_1} \land y = Ax \right) \right\} =$$

$$= \left\{ y \colon \exists x^1 \dots \exists x^{N_1} \left(x^1 \in \mathbb{K} \land \dots \land x^{N_1} \in \mathbb{K} \land y = x^k A_k \right) \right\} = L(A_1, \dots, A_{N_1}).$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L. Обозначим: $h_e(x) = [x](e)$ при $x \in L$. Докажем, что $L \stackrel{h_e}{\approx} \mathbb{K}^N$. Очевидно: h_e — обратимая функция, $\mathrm{D}(h_e) = L$, $\mathrm{R}(h_e) = \mathbb{K}^N$.

Пусть $x, y \in L$. Тогда: $h_e(x+y) = [x+y](e) = [x](e) + [y](e) = h_e(x) + h_e(y)$.

Пусть: $\lambda \in \mathbb{K}$, $x \in L$. Тогда: $h_e(\lambda x) = [\lambda x](e) = \lambda [x](e) = \lambda h_e(x)$.

Очевидно: $h_e^{-1}(\tilde{x}) = \tilde{x}^k e_k$ при $\tilde{x} \in \mathbb{K}^N$.

3амечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} . Обозначим: I(x) = x при $x \in L$. Докажем, что $L \stackrel{I}{\approx} L$. Очевидно: I — обратимая функция, $\mathrm{D}(I) = L$, $\mathrm{R}(I) = L$.

Пусть $x, y \in L$. Тогда: I(x + y) = x + y = I(x) + I(y).

Пусть: $\lambda \in \mathbb{K}$, $x \in L$. Тогда: $I(\lambda x) = \lambda x = \lambda I(x)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 , L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2)$.

- 1. Справедливы утверждения: $\theta_1 \in D(A)$, $A(\theta_1) = \theta_2$.
- 2. Пусть Q подпространство пространства L_2 . Тогда $\mathrm{D}(A,Q)$ подпространство пространства L_1 .

Cправедливо утверждение: $\ker(A) - noд$ пространство пространства L_1 .

3. Пусть Q — подпространство пространства L_1 . Тогда A[Q] — подпространство пространства L_2 .

Cправедливо утверждение: R(A) - noдпространство пространства L_2 .

- 4. Пусть Q $nodnpocmpaнство пространства <math>L_1$. Тогда: $A|_Q \in lin(L_1, L_2)$, $ker(A|_Q) = Q \cap ker(A)$.
- 5. Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in \mathrm{D}(A), x_1, \ldots, x_r$ линейно зависимые векторы. Тогда $A(x_1), \ldots, A(x_r)$ линейно зависимые векторы.
 - 6. Пусть $Q \subseteq L_1$. Тогда $\operatorname{rank}(A[Q]) \leqslant \operatorname{rank}(Q)$. Пусть $Q = nodnpocmpaнcmso пространства <math>L_1$. Тогда $\dim(A[Q]) \leqslant \dim(Q)$. Справедливо утвержедение: $\dim(R(A)) \leqslant \dim(D(A))$.

Доказательство.

- 1. Так как D(A) подпространство пространства L_1 , то $\theta_1 \in D(A)$. Очевидно: $A(\theta_1) = A(\theta_1) = 0$ $A(\theta_1) = \theta_2$.
- 2. Пусть Q подпространство пространства L_2 . Очевидно: $D(A,Q) \subseteq D(A) \subseteq L_1$. Так как Q подпространство пространства L_2 , то: $\theta_1 \in D(A)$, $A(\theta_1) = \theta_2 \in Q$. Тогда $\theta_1 \in D(A,Q)$.

Пусть $x_1, x_2 \in D(A, Q)$. Тогда: $x_1 \in D(A), A(x_1) \in Q$; $x_2 \in D(A), A(x_2) \in Q$. Следовательно: $x_1 + x_2 \in D(A), A(x_1 + x_2) = A(x_1) + A(x_2) \in Q$. Тогда $x_1 + x_2 \in D(A, Q)$.

Пусть: $\lambda \in \mathbb{K}$, $x \in \mathrm{D}(A,Q)$. Тогда: $x \in \mathrm{D}(A)$, $A(x) \in Q$. Следовательно: $\lambda x \in \mathrm{D}(A)$, $A(\lambda x) = \lambda A(x) \in Q$. Тогда $\lambda x \in \mathrm{D}(A,Q)$. Итак, $\mathrm{D}(A,Q)$ — подпространство пространства L_1 .

Так как: $\{\theta_2\}$ — подпространство пространства L_2 , $\ker(A) = \mathrm{D}(A, \{\theta_2\})$, то $\ker(A)$ — подпространство пространства L_1 .

3. Пусть Q — подпространство пространства L_1 . Очевидно: $A[Q] \subseteq R(A) \subseteq L_2$. Так как Q — подпространство пространства L_1 , то: $\theta_1 \in Q$, $\theta_1 \in D(A)$. Тогда $A(\theta_1) \in A[Q]$.

Пусть $y_1, y_2 \in A[Q]$. Тогда существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q, x_1 \in D(A), y_1 = A(x_1); x_2 \in Q, x_2 \in D(A), y_2 = A(x_2)$. Следовательно: $x_1 + x_2 \in Q, x_1 + x_2 \in D(A), y_1 + y_2 = A(x_1) + A(x_2) = A(x_1 + x_2)$. Тогда $y_1 + y_2 \in A[Q]$.

Пусть: $\lambda \in \mathbb{K}$, $y \in A[Q]$. Тогда существует вектор x, удовлетворяющий условиям: $x \in Q$, $x \in D(A)$, y = A(x). Следовательно: $\lambda x \in Q$, $\lambda x \in D(A)$, $\lambda y = \lambda A(x) = A(\lambda x)$. Тогда $\lambda y \in A[Q]$. Итак, A[Q] — подпространство пространства L_2 .

Так как: D(A) — подпространство пространства L_1 , R(A) = A[D(A)], то R(A) — подпространство пространства L_2 .

4. Так как $A: L_1 \to L_2$, то $A|_Q: L_1 \to L_2$. Так как: Q, D(A) — подпространства пространства $L_1, D(A|_Q) = Q \cap D(A)$, то $D(A|_Q)$ — подпространство пространства L_1 .

Пусть $x, y \in D(A|_Q)$. Тогда: $A|_Q(x+y) = A(x+y) = A(x) + A(y) = A|_Q(x) + A|_Q(y)$. Пусть: $\lambda \in \mathbb{K}, x \in D(A|_Q)$. Тогда: $A|_Q(\lambda x) = A(\lambda x) = \lambda A(x) = \lambda A|_Q(x)$. Йтак, $A|_Q \in \text{lin}(L_1, L_2)$.

Очевидно:

$$\ker(A|_Q) = \left\{x\colon x\in \mathrm{D}(A|_Q) \wedge A|_Q(x) = \theta_2\right\} = \left\{x\colon x\in Q \wedge x\in \mathrm{D}(A) \wedge A(x) = \theta_2\right\} = \left\{x\colon x\in Q \wedge x\in \ker(A)\right\} = Q\cap \ker(A).$$

5. Так как $x_1, ..., x_r$ — линейно зависимые векторы, то существуют числа $\lambda^1, ..., \lambda^r \in \mathbb{K}$, удовлетворяющие условиям: $\lambda^k x_k = \theta_1$, $\exists k = \overline{1,r} (\lambda^k \neq 0)$. Так как $\lambda^k x_k = \theta_1$, то: $\lambda^k A(x_k) = A(\lambda^k x_k) = A(\theta_1) = \theta_2$. Так как $\exists k = \overline{1,r} (\lambda^k \neq 0)$, то $A(x_1), ..., A(x_r)$ — линейно зависимые векторы.

6. Пусть $Q \subseteq L_1$. Обозначим: $r_1 = \mathrm{rank}(Q), \, r_2 = \mathrm{rank}(A[Q])$. Тогда $r_1, \, r_2 \in \overline{\mathbb{Z}}_+$. Предположим, что $r_1 < r_2$. Тогда: $r_1 \in \mathbb{Z}_+, \, r_2 \in \overline{\mathbb{N}}$.

Так как: $r_1 \in \mathbb{Z}_+$, $r_2 \in \overline{\mathbb{N}}$, $\operatorname{rank} \big(A[Q] \big) = r_2$, $r_1 + 1 \leqslant r_2$, то существуют векторы y_1, \ldots, y_{r_1+1} , удовлетворяющие условиям: $y_1, \ldots, y_{r_1+1} \in A[Q]$, y_1, \ldots, y_{r_1+1} — линейно независимые векторы. Пусть $k = \overline{1, r_1 + 1}$. Так как $y_k \in A[Q]$, то существует вектор x_k , удовлетворяющий условиям: $x_k \in Q$, $x_k \in D(A)$, $y_k = A(x_k)$. Так как: $r_1 \in \mathbb{Z}_+$, $\operatorname{rank}(Q) = r_1$, $x_1, \ldots, x_{r_1+1} \in Q$, $r_1 + 1 > r_1$, то x_1, \ldots, x_{r_1+1} — линейно зависимые векторы. Так как: $A \in \operatorname{lin}(L_1, L_2)$, x_1, \ldots, x_{r_1+1} — линейно зависимые векторы (что противоречит утверждению: y_1, \ldots, y_{r_1+1} — линейно независимые векторы). Итак, $r_2 \leqslant r_1$.

Пусть Q — подпространство пространства L_1 . Тогда A[Q] — подпространство пространства L_2 . Так как $Q \subseteq L_1$, то $\operatorname{rank}(A[Q]) \leqslant \operatorname{rank}(Q)$. Так как: Q — подпространство пространства L_1 , A[Q] — подпространство пространства L_2 , то $\dim(A[Q]) \leqslant \dim(Q)$.

Так как: D(A) — подпространство пространства L_1 , R(A) = A[D(A)], то $\dim(R(A)) \leq \dim(D(A))$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2)$. Обозначим, $\text{rank}(A) = \text{dim}(\mathbb{R}(A))$. Тогда:

$$\operatorname{rank}(A) = \dim(\operatorname{R}(A)) \leqslant \dim(L_2);$$

$$\operatorname{rank}(A) = \dim(\operatorname{R}(A)) \leqslant \dim(\operatorname{D}(A)) \leqslant \dim(L_1).$$

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2, L_3 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2), B \in \text{lin}(L_2, L_3)$. Обозначим, $BA = B \circ A$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2, L_3 — линейные пространства над полем \mathbb{K} .

Пусть: $A \in lin(L_1, L_2)$, $B \in lin(L_2, L_3)$. Тогда $BA \in lin(L_1, L_3)$.

Пусть: $A \in \text{Lin}(L_1, L_2)$, $B \in \text{Lin}(L_2, L_3)$. Тогда $BA \in \text{Lin}(L_1, L_3)$.

Пусть: $L_1 \stackrel{A}{\approx} L_2$, $L_2 \stackrel{B}{\approx} L_3$. Тогда $L_1 \stackrel{BA}{\approx} L_3$.

Доказательство. Пусть: $A \in \text{lin}(L_1, L_2)$, $B \in \text{lin}(L_2, L_3)$. Так как: $A : L_1 \to L_2$, $B : L_2 \to L_3$, то $BA : L_1 \to L_3$. Так как: $A \in \text{lin}(L_1, L_2)$, D(B) — подпространство пространства L_2 , D(BA) = D(A, D(B)), то D(BA) — подпространство пространства L_1 .

Пусть $x_1, x_2 \in D(BA)$. Тогда:

$$(BA)(x_1 + x_2) = B(A(x_1 + x_2)) = B(Ax_1 + Ax_2) = B(Ax_1) + B(Ax_2) = (BA)x_1 + (BA)x_2.$$

Пусть: $\lambda \in \mathbb{K}$, $x \in \mathrm{D}(A)$. Тогда:

$$(BA)(\lambda x) = B(A(\lambda x)) = B(\lambda A(x)) = \lambda B(Ax) = \lambda (BA)(x).$$

Итак, $BA \in lin(L_1, L_3)$.

Пусть: $A \in \text{Lin}(L_1, L_2)$, $B \in \text{Lin}(L_2, L_3)$. Так как: $A \in \text{lin}(L_1, L_2)$, $B \in \text{lin}(L_2, L_3)$, то $BA \in \text{lin}(L_1, L_3)$. Так как $R(A) \subseteq D(B)$, то D(BA) = D(A). Тогда: $D(BA) = D(A) = L_1$. Итак, $BA \in \text{Lin}(L_1, L_3)$.

Пусть: $L_1 \stackrel{A}{\approx} L_2$, $L_2 \stackrel{B}{\approx} L_3$. Так как: $A \in \text{Lin}(L_1, L_2)$, $B \in \text{Lin}(L_2, L_3)$, то $BA \in \text{Lin}(L_1, L_3)$. Так как $D(B) \subseteq R(A)$, то R(BA) = R(B). Тогда: $R(BA) = R(B) = L_3$. Так как A, B - обратимые операторы, то BA - обратимый оператор. Итак, $L_1 \stackrel{BA}{\approx} L_3$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2, L_3 — линейные пространства над полем \mathbb{K} .

- 1. Пусть: $A \in \text{Lin}(L_1, L_2), B_1, B_2 \in \text{Lin}(L_2, L_3)$. Тогда $(B_1 + B_2)A = B_1A + B_2A$.
- 2. $\Pi ycmb: \lambda \in \mathbb{K}, A \in \text{Lin}(L_1, L_2), B \in \text{Lin}(L_2, L_3). Torda(\lambda B)A = \lambda(BA).$
- 3. Пусть: $A_1, A_2 \in \text{Lin}(L_1, L_2), B \in \text{Lin}(L_2, L_3)$. Тогда $B(A_1 + A_2) = BA_1 + BA_2$.
- 4. $\Pi ycmb: \lambda \in \mathbb{K}, A \in \text{Lin}(L_1, L_2), B \in \text{Lin}(L_2, L_3). Torda B(\lambda A) = \lambda(BA).$

Доказательство.

1. Пусть $x \in L_1$. Тогда:

$$((B_1 + B_2)A)x = (B_1 + B_2)(Ax) = B_1(Ax) + B_2(Ax) = (B_1A)x + (B_2A)x = (B_1A + B_2A)x.$$

2. Пусть $x \in L_1$. Тогда:

$$((\lambda B)A)x = (\lambda B)(Ax) = \lambda B(Ax) = \lambda (BA)(x) = (\lambda (BA))x.$$

3. Пусть $x \in L_1$. Тогда:

$$(B(A_1 + A_2))x = B((A_1 + A_2)x) = B(A_1x + A_2x) = B(A_1x) + B(A_2x) =$$

= $(BA_1)x + (BA_2)x = (BA_1 + BA_2)x$.

4. Пусть $x \in L_1$. Тогда:

$$(B(\lambda A))x = B((\lambda A)x) = B(\lambda A(x)) = \lambda B(Ax) = \lambda (BA)(x) = (\lambda (BA))x. \quad \Box$$

9.2. Линейный обратимый оператор

Утверждение (критерий обратимости линейного оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 , L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2)$.

- 1. Пусть A обратимый оператор. Тогда $\ker(A) = \{\theta_1\}$.
- 2. Пусть $\ker(A) = \{\theta_1\}$. Тогда A обратимый оператор.

Доказательство.

- 1. Так как: $\theta_1 \in D(A)$, $A\theta_1 = \theta_2$, то $\theta_1 \in \ker(A)$. Пусть $x \in \ker(A)$. Тогда: $x \in D(A)$, $Ax = \theta_2$. С другой стороны: $\theta_1 \in D(A)$, $A\theta_1 = \theta_2$. Так как A обратимый оператор, то $x = \theta_1$. Итак, $\ker(A) = \{\theta_1\}$.
- 2. Пусть: $x_1, x_2 \in D(A), Ax_1 = Ax_2$. Тогда: $x_1 x_2 \in D(A), A(x_1 x_2) = Ax_1 Ax_2 = \theta_2$. Следовательно, $x_1 x_2 \in \ker(A)$. Так как $\ker(A) = \{\theta_1\}$, то $x_1 x_2 = \theta_1$. Тогда $x_1 = x_2$. Итак, A обратимый оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 , L_2 — линейные пространства над полем \mathbb{K} .

1. Пусть: $A \in \text{lin}(L_1, L_2)$, A -обратимый оператор. Тогда: $A^{-1} \in \text{lin}(L_2, L_1)$, $A^{-1} -$ обратимый оператор.

Пусть $L_1 \overset{A}{pprox} L_2$. Тогда $L_2 \overset{A^{-1}}{pprox} L_1$.

- 2. Пусть: $A \in \text{lin}(L_1, L_2)$, A обратимый оператор; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in D(A)$, $x_1, \ldots, x_r \text{линейно независимые векторы.}$ Тогда $Ax_1, \ldots, Ax_r \text{линейно независимые векторы.}$
- 3. Пусть: $A \in \text{lin}(L_1, L_2)$, $A oбратимый оператор; <math>Q \subseteq D(A)$. Тогда rank(A[Q]) = rank(Q).

Пусть: $A \in \text{lin}(L_1, L_2)$, $A - oбратимый оператор; <math>Q \subseteq D(A)$, $Q - noдпространство пространства <math>L_1$. Тогда $\dim(A[Q]) = \dim(Q)$.

 $\Pi y cm b$: $A \in lin(L_1, L_2), A - oбратимый оператор. Тогда <math>dim(R(A)) = dim(D(A))$.

Пусть $L_1 \stackrel{A}{\approx} L_2$. Тогда $\dim(L_1) = \dim(L_2)$.

Доказательство.

1. Пусть: $A \in \text{lin}(L_1, L_2)$, A — обратимый оператор. Так как $A \colon L_1 \to L_2$, то $A^{-1} \colon L_2 \to L_1$. Так как: R(A) — подпространство пространства L_2 , $D(A^{-1}) = R(A)$, то $D(A^{-1})$ — подпространство пространства L_2 .

Пусть $y_1, y_2 \in R(A)$. Тогда:

$$A^{-1}(y_1 + y_2) = A^{-1}(A(A^{-1}y_1) + A(A^{-1}y_2)) = A^{-1}(A(A^{-1}y_1 + A^{-1}y_2)) = A^{-1}y_1 + A^{-1}y_2.$$

Пусть: $\lambda \in \mathbb{K}$, $y \in \mathbf{R}(A)$. Тогда:

$$A^{-1}(\lambda y) = A^{-1}(\lambda A(A^{-1}y)) = A^{-1}(A(\lambda A^{-1}(y))) = \lambda A^{-1}(y).$$

Итак, $A^{-1} \in lin(L_2, L_1)$. Очевидно, A^{-1} — обратимый оператор.

Пусть $L_1 \stackrel{A}{\approx} L_2$. Так как: $A \in \text{lin}(L_1, L_2)$, $A - \text{обратимый оператор, то: } A^{-1} \in \text{lin}(L_2, L_1)$, $A^{-1} - \text{обратимый оператор. Очевидно: } D(A^{-1}) = R(A) = L_2$, $R(A^{-1}) = D(A) = L_1$. Итак, $L_2 \stackrel{A^{-1}}{\approx} L_1$.

- 2. Предположим, что Ax_1, \ldots, Ax_r линейно зависимые векторы. Пусть $k = \overline{1,r}$. Так как $x_k \in \mathrm{D}(A)$, то: $Ax_k \in \mathrm{R}(A)$, $x_k = A^{-1}(Ax_k)$. Так как: $A^{-1} \in \mathrm{lin}(L_2, L_1)$, Ax_1, \ldots, Ax_r линейно зависимые векторы, то x_1, \ldots, x_r линейно зависимые векторы (что противоречит условию). Итак, Ax_1, \ldots, Ax_r линейно независимые векторы.
- 3. Пусть: $A \in \text{lin}(L_1, L_2)$, A обратимый оператор; $Q \subseteq D(A)$. Так как: $A \in \text{lin}(L_1, L_2)$, $Q \subseteq D(A) \subseteq L_1$, то $\text{rank}\big(A[Q]\big) \leqslant \text{rank}(Q)$. Очевидно: $A[Q] \subseteq R(A) \subseteq L_2$, $A^{-1}\big[A[Q]\big] = (A^{-1}A)[Q] = I_1|_{D(A)}[Q] = Q \cap D(A)$. Так как $Q \subseteq D(A)$, то: $A[Q] \subseteq L_2$, $A^{-1}\big[A[Q]\big] = Q$. Так как $A^{-1} \in \text{lin}(L_2, L_1)$, то $\text{rank}(Q) \leqslant \text{rank}\big(A[Q]\big)$. Итак, $\text{rank}\big(A[Q]\big) = \text{rank}(Q)$.

Пусть: $A \in \text{lin}(L_1, L_2)$, A — обратимый оператор; $Q \subseteq D(A)$, Q — подпространство пространства L_1 . Так как: $A \in \text{lin}(L_1, L_2)$, Q — подпространство пространства L_1 , то A[Q] — подпространство пространства L_2 . Так как: $A \in \text{lin}(L_1, L_2)$, A — обратимый оператор, $Q \subseteq D(A)$, то rank(A[Q]) = rank(Q). Так как: Q — подпространство пространства L_1 , A[Q] — подпространство пространства L_2 , то dim(A[Q]) = dim(Q).

Пусть: $A \in \text{lin}(L_1, L_2)$, A — обратимый оператор. Так как: $D(A) \subseteq D(A)$, D(A) — подпространство пространства L_1 , R(A) = A[D(A)], то $\dim(R(A)) = \dim(D(A))$.

Пусть $L_1 \stackrel{A}{\approx} L_2$. Так как: $A \in \text{lin}(L_1, L_2)$, A — обратимый оператор, то dim(R(A)) = dim(D(A)). Тогда: $\text{dim}(L_1) = \text{dim}(D(A)) = \text{dim}(R(A)) = \text{dim}(L_2)$.

Теорема. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 , L_2 — линейные пространства над полем \mathbb{K} ; $\dim(L_1) = \dim(L_2)$, $\dim(L_2) \neq +\infty$. Тогда $L_1 \approx L_2$.

Доказательство. Обозначим, $N = \dim(L_2)$. Тогда: $N \in \mathbb{Z}_+, \dim(L_1) = N$.

Пусть N=0. Так как $\dim(L_1)$, $\dim(L_2)=N$, то: $L_1=\{\theta_1\}$, $L_2=\{\theta_2\}$. Обозначим, $A(\theta_1)=\theta_2$. Тогда $L_1\overset{A}{\approx}L_2$.

Пусть $N \neq 0$. Тогда $N \in \mathbb{N}$. Так как $\dim(L_1)$, $\dim(L_2) = N$, то существуют векторы $e_1, \ldots, e_N, \ f_1, \ldots, f_N$, удовлетворяющие условиям: (e_1, \ldots, e_N) — базис пространства L_1 , (f_1, \ldots, f_N) — базис пространства L_2 . Тогда: $L_1 \stackrel{h_e}{\approx} \mathbb{K}^N$, $L_2 \stackrel{h_f}{\approx} \mathbb{K}^N$. Следовательно: $L_1 \stackrel{h_e}{\approx} \mathbb{K}^N$, $\mathbb{K}^N \stackrel{h_f^{-1}}{\approx} L_2$. Тогда $L_1 \stackrel{h_f^{-1}h_e}{\approx} L_2$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем $\mathbb{K}, N \in \mathbb{N}$, $\dim(L_1)$, $\dim(L_2) = N$; e — базис пространства L_1 , f — базис пространства L_2 . Пусть $x \in L_1$. Тогда: $(h_f^{-1}h_e)(x) = h_f^{-1}(h_e(x)) = [x]^k(e)f_k$.

9.3. Первая теорема Фредгольма

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 , L_2 — линейные пространства над полем \mathbb{K} ; $A \in \lim(L_1, L_2)$, $\dim(\mathrm{D}(A)) \neq +\infty$. Тогда $\dim(\mathrm{R}(A)) = \dim(\mathrm{D}(A)) - \dim(\ker(A))$.

Доказательство. Так как: $\ker(A)$, $\mathrm{D}(A)$ — подпространства пространства L_1 , $\ker(A) \subseteq \mathrm{D}(A)$, $\dim(\mathrm{D}(A)) \neq +\infty$, то существует линейное дополнение Q подпространства $\ker(A)$ до подпространства $\mathrm{D}(A)$. Тогда: Q — подпространство пространства L_1 , $\mathrm{D}(A) = \ker(A) + Q$; $\ker(A)$, Q — линейно независимые подпространства. Следовательно: $Q \subseteq \mathrm{D}(A)$, $\ker(A) \cap Q = \{\theta_1\}$, $\dim(\mathrm{D}(A)) = \dim(\ker(A)) + \dim(Q)$.

Так как $Q\subseteq \mathrm{D}(A)$, то $Q\cap \mathrm{D}(A)=Q$. Тогда: $A|_Q\in \mathrm{lin}(L_1,L_2),\ \mathrm{D}(A|_Q)=Q\cap \mathrm{D}(A)=Q,$ $\mathrm{R}(A|_Q)=A[Q]\subseteq \mathrm{R}(A),\ \ker(A|_Q)=Q\cap \ker(A)=\{\theta_1\}.$

Пусть $y \in R(A)$. Тогда существует вектор x, удовлетворяющий условиям: $x \in D(A)$, y = Ax. Так как: $D(A) = \ker(A) + Q$, $x \in D(A)$, то существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in \ker(A)$, $x_2 \in Q$, $x = x_1 + x_2$. Тогда: $x_2 \in Q = D(A|_Q)$, $y = Ax = A(x_1 + x_2) = Ax_1 + Ax_2 = \theta_2 + Ax_2 = Ax_2 = A|_Q x_2$. Следовательно, $y \in R(A|_Q)$. Тогда $R(A) \subseteq R(A|_Q)$. Итак, $R(A|_Q) = R(A)$.

Так как: $A|_Q \in \text{lin}(L_1, L_2)$, $\text{ker}(A|_Q) = \{\theta_1\}$, то: $A|_Q \in \text{lin}(L_1, L_2)$, $A|_Q$ — обратимый оператор. Тогда $\dim(\mathbf{R}(A|_Q)) = \dim(\mathbf{D}(A|_Q))$. Так как $\dim(\mathbf{D}(A)) = \dim(\ker(A)) + \dim(Q)$, то $\dim(Q) = \dim(\mathbf{D}(A)) - \dim(\ker(A))$. Тогда: $\dim(\mathbf{R}(A)) = \dim(\mathbf{R}(A|_Q)) = \dim(\mathbf{D}(A)) - \dim(\ker(A))$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_1)$, $\text{dim}(D(A)) \neq +\infty$. Тогда:

$$rank(A) = \dim(R(A)) = \dim(D(A)) - \dim(\ker(A)).$$

Теорема (1-я теорема Фредгольма). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $\dim(L_1) = \dim(L_2)$, $\dim(L_2) \neq +\infty$, $A \in \operatorname{Lin}(L_1, L_2)$.

- 1. Пусть $R(A) = L_2$. Тогда $ker(A) = \{\theta_1\}$.
- 2. $\Pi ycmb \ker(A) = \{\theta_1\}$. $Torda \ R(A) = L_2$.

Доказательство.

- 1. Так как: $A \in \text{lin}(L_1, L_2)$, $\dim(D(A)) \neq +\infty$, то $\dim(R(A)) = \dim(D(A)) \dim(\ker(A))$. Тогда $\dim(\ker(A)) = \dim(D(A)) \dim(R(A))$. Так как $R(A) = L_2$, то: $\dim(R(A)) = \dim(L_2) = \dim(L_1) = \dim(D(A))$. Тогда: $\dim(\ker(A)) = \dim(D(A)) \dim(R(A)) = 0$. Следовательно, $\ker(A) = \{\theta_1\}$.
- 2. Так как: $A \in \text{lin}(L_1, L_2)$, $\text{ker}(A) = \{\theta_1\}$, то: $A \in \text{lin}(L_1, L_2)$, A обратимый оператор. Тогда $\dim(R(A)) = \dim(D(A))$. Следовательно: $\dim(R(A)) = \dim(D(A)) = \dim(L_1) = \dim(L_2)$. Так как: R(A) подпространство пространства L_2 , $\dim(L_2) \neq +\infty$, то $R(A) = L_2$.

9.4. Операции над частично определёнными линейными операторами

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} .

- 1. Справедливо утверждение $\lim(L_1, L_2) \subseteq \sup(L_1, L_2)$.
- 2. Справедливо утверждение $\Theta \in \text{Lin}(L_1, L_2)$.
- 3. $\Pi ycmb A, B \in lin(L_1, L_2)$. $Tor \partial a A + B \in lin(L_1, L_2)$.

4. Пусть: $\alpha \in \mathbb{K}$, $A \in \lim(L_1, L_2)$. Тогда $\alpha A \in \lim(L_1, L_2)$.

Доказательство.

- 1. Очевидно, $\lim(L_1, L_2) \subseteq \sup(L_1, L_2)$.
- 2. Очевидно, $\Theta: L_1 \Longrightarrow L_2$. Пусть $x, y \in L_1$. Тогда:

$$\Theta(x+y) = \theta_2 = \theta_2 + \theta_2 = \Theta(x) + \Theta(y).$$

Пусть: $\lambda \in \mathbb{K}$, $x \in L_1$. Тогда:

$$\Theta(\lambda x) = \theta_2 = \lambda \theta_2 = \lambda \Theta(x).$$

3. Очевидно: A + B: $L_1 \to L_2$, $D(A + B) = D(A) \cap D(B)$. Так как: D(A), D(B) — подпространства пространства L_1 , $D(A+B) = D(A) \cap D(B)$, то D(A+B) — подпространство пространства L_1 .

Пусть $x, y \in D(A+B)$. Тогда:

$$(A+B)(x+y) = A(x+y) + B(x+y) = (A(x) + A(y)) + (B(x) + B(y)) =$$

= $(A(x) + B(x)) + (A(y) + B(y)) = (A+B)(x) + (A+B)(y).$

Пусть: $\lambda \in \mathbb{K}$, $x \in D(A+B)$. Тогда:

$$(A+B)(\lambda x) = A(\lambda x) + B(\lambda x) = \lambda A(x) + \lambda B(x) = \lambda (A(x) + B(x)) = \lambda (A+B)(x).$$

4. Очевидно: $\alpha A \colon L_1 \to L_2$, $D(\alpha A) = D(A)$. Так как: D(A) — подпространство пространства L_1 , $D(\alpha A) = D(A)$, то $D(\alpha A)$ — подпространство пространства L_1 .

Пусть $x, y \in D(\alpha A)$. Тогда:

$$(\alpha A)(x+y) = \alpha A(x+y) = \alpha \left(A(x) + A(y)\right) = \alpha A(x) + \alpha A(y) = (\alpha A)(x) + (\alpha A)(y).$$

Пусть: $\beta \in \mathbb{K}$, $x \in D(\alpha A)$. Тогда:

$$(\alpha A)(\beta x) = \alpha A(\beta x) = \alpha (\beta A(x)) = \beta (\alpha A(x)) = \beta (\alpha A)(x).$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2, L_3 — линейные пространства над полем \mathbb{K} .

- 1. $\Pi ycmb: A \in lin(L_1, L_2), B_1, B_2 \in lin(L_2, L_3). Torda: (B_1 + B_2)A = B_1A + B_2A.$
- 2. $\Pi y cmv: \lambda \in \mathbb{K}, A \in lin(L_1, L_2), B \in lin(L_2, L_3). Torda(\lambda B)A = \lambda(BA).$
- 3. Пусть: A_1 , $A_2 \in lin(L_1, L_2)$, $B \in lin(L_2, L_3)$. Тогда $B(A_1 + A_2)|_{D(BA_1 + BA_2)} = BA_1 + BA_2$.
 - 4. $\Pi ycmb: \lambda \in \mathbb{K}, \ \lambda \neq 0, \ A \in \lim(L_1, L_2), \ B \in \lim(L_2, L_3). \ Torda \ B(\lambda A) = \lambda(BA).$

Доказательство.

1. Очевидно:

$$D((B_1 + B_2)A) = \{x \colon x \in D(A) \land Ax \in D(B_1 + B_2)\} =$$

$$= \{x \colon x \in D(A) \land (Ax \in D(B_1) \land Ax \in D(B_2))\} =$$

$$= \{x \colon (x \in D(A) \land Ax \in D(B_1)) \land (x \in D(A) \land Ax \in D(B_2))\} =$$

$$= \{x \colon x \in D(B_1A) \land x \in D(B_2A)\} = D(B_1A + B_2A).$$

Пусть $x \in D((B_1 + B_2)A)$. Тогда:

$$((B_1 + B_2)A)x = (B_1 + B_2)(Ax) = B_1(Ax) + B_2(Ax) = (B_1A)x + (B_2A)x = (B_1A + B_2A)x.$$

2. Очевидно:

$$D((\lambda B)A) = \{x \colon x \in D(A) \land Ax \in D(\lambda B)\} =$$
$$= \{x \colon x \in D(A) \land Ax \in D(B)\} = D(BA) = D(\lambda(BA)).$$

Пусть $x \in D((\lambda B)A)$. Тогда:

$$((\lambda B)A)x = (\lambda B)(Ax) = \lambda B(Ax) = \lambda (BA)(x) = (\lambda (BA))x.$$

3. Пусть $x \in D(BA_1 + BA_2)$. Тогда: $x \in D(BA_1)$, $x \in D(BA_2)$. Следовательно: $x \in D(A_1)$, $A_1x \in D(B)$, $x \in D(A_2)$, $A_2x \in D(B)$. Тогда: $x \in D(A_1)$, $x \in D(A_2)$, $A_1x + A_2x \in D(B)$. Следовательно: $x \in D(A_1 + A_2)$, $(A_1 + A_2)x \in D(B)$. Тогда $x \in D(B(A_1 + A_2))$. Следовательно, $D(BA_1 + BA_2) \subseteq D(B(A_1 + A_2))$. Тогда:

$$D(B(A_1 + A_2)|_{D(BA_1 + BA_2)}) = D(BA_1 + BA_2) \cap D(B(A_1 + A_2)) = D(BA_1 + BA_2).$$

Пусть $x \in D(BA_1 + BA_2)$. Тогда:

$$(BA_1 + BA_2)x = (BA_1)x + (BA_2)x = B(A_1x) + B(A_2x) = B(A_1x + A_2x) =$$

$$= B((A_1 + A_2)x) = (B(A_1 + A_2))x = B(A_1 + A_2)|_{D(BA_1 + BA_2)}(x).$$

4. Так как $\lambda \neq 0$, то:

$$D(B(\lambda A)) = \{x \colon x \in D(\lambda A) \land (\lambda A)x \in D(B)\} = \{x \colon x \in D(A) \land \lambda A(x) \in D(B)\} = \{x \colon x \in D(A) \land \lambda A(x) \in D(B)\} = \{x \colon x \in D(A) \land Ax \in D(B)\} = D(BA) = D(\lambda(BA)).$$

Пусть $x \in D(B(\lambda A))$. Тогда:

$$(B(\lambda A))x = B((\lambda A)x) = B(\lambda A(x)) = \lambda B(Ax) = \lambda (BA)(x) = (\lambda (BA))x. \quad \Box$$

Лекция 10. Ранг матрицы (1-й семестр)

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{N}$; $A \in \mathbb{K}^{N \times N}$, $\det(A) = 0$. Тогда A_1, \ldots, A_N – линейно зависимые столбиы.

Пусть $A \neq \Theta$. Тогда существует число $r = \overline{1,N}$, существуют числа $i_1,\ldots,i_r = \overline{1,N}$, существуют числа $j_1,\ldots,j_r = \overline{1,N}$, удовлетворяющие условиям: $i_1 < \cdots < i_r, \ j_1 < \cdots < j_r, \ \overline{\Delta}_{i_1,\ldots,i_r}^{j_1,\ldots,j_r}(A) \neq 0$, все миноры матрицы A порядка r+1, окаймляющие минор $\overline{\Delta}_{i_1,\ldots,i_r}^{j_1,\ldots,j_r}(A)$, равны нулю (если они существуют). Следовательно, A_{i_1},\ldots,A_{i_r} — базис множества $\{A_1,\ldots,A_N\}$ длины r. Так как $\det(A)=0$, то $r\neq N$. Тогда r< N. Следовательно, A_1,\ldots,A_N — линейно зависимые столбцы.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; N_1, N_2 \in \mathbb{N}; A \in \mathbb{K}^{N_2 \times N_1}$.

Пусть: $r \in \mathbb{N}$, $i_1, \ldots, i_r = \overline{1, N_1}$, $i_1 < \cdots < i_r$, $j_1, \ldots, j_r = \overline{1, N_2}$, $j_1 < \cdots < j_r$, $\Delta_{i_1, \ldots, i_r}^{j_1, \ldots, j_r}(A) \neq 0$.

Пусть все миноры матрицы A порядка r+1, окаймляющие минор $\Delta_{i_1,\dots,i_r}^{j_1,\dots,j_r}(A)$, равны нулю (если они существуют).

Тогда: A_{i_1},\ldots,A_{i_r} — базис множества $\{A_1,\ldots,A_{N_1}\}$ длины $r;A^{j_1},\ldots,A^{j_r}$ — базис множества $\{A^1,\ldots,A^{N_2}\}$ длины r.

Так как A_{i_1},\ldots,A_{i_r} — базис множества $\{A_1,\ldots,A_{N_1}\}$ длины r, то $\mathrm{rank}\big(\{A_1,\ldots,A_{N_1}\}\big)=r$. Так как A_{i_1},\ldots,A_{i_r} — базис множества $\{A_1,\ldots,A_{N_1}\}$ длины r, то A_{i_1},\ldots,A_{i_r} — базис подпространства $L(A_1,\ldots A_{N_1})$ длины r. Тогда $\dim\big(L(A_1,\ldots A_{N_1})\big)=r$.

Так как A^{j_1},\ldots,A^{j_r} — базис множества $\{A^1,\ldots,A^{N_2}\}$ длины r, то $\mathrm{rank}\big(\{A^1,\ldots,A^{N_2}\}\big)=r$. Так как A^{j_1},\ldots,A^{j_r} — базис множества $\{A^1,\ldots,A^{N_2}\}$ длины r, то A^{j_1},\ldots,A^{j_r} — базис подпространства $L(A^1,\ldots,A^{N_2})$ длины r. Тогда $\dim\big(L(A^1,\ldots,A^{N_2})\big)=r$.

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$. Обозначим, $\operatorname{rank}(A) = \operatorname{rank}(\{A_1, \ldots, A_{N_1}\})$. Будем говорить, что $\operatorname{rank}(A)$ — ранг матрицы A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$.

- 1. Справедливо утверждение: $\operatorname{rank}(A) = \dim(L(A_1, \ldots, A_{N_1}))$.
- 2. Справедливо утверждение: $\operatorname{rank}(A) = \operatorname{rank}(\{A^1, \dots, A^{N_2}\})$.
- 3. Справедливо утверждение: $\operatorname{rank}(A) = \dim(L(A^1, \dots, A^{N_2}))$.

4. Пусть: $r \in \mathbb{N}$, $i_1, \ldots, i_r = \overline{1, N_1}$, $i_1 < \cdots < i_r$, $j_1, \ldots, j_r = \overline{1, N_2}$, $j_1 < \cdots < j_r$, $\Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A) \neq 0$. Пусть все миноры матрицы A порядка r+1, окаймляющие минор $\Delta^{j_1, \ldots, j_r}_{i_1, \ldots, i_r}(A)$, равны нулю (если они существуют). Тогда $\mathrm{rank}(A) = r$.

Доказательство.

- 1. Очевидно: $\operatorname{rank}(A) = \operatorname{rank}(\{A_1, \dots, A_{N_1}\}) = \dim(L(A_1, \dots, A_{N_1})).$
- 2. Пусть $A = \Theta$ (здесь Θ нулевой элемент пространства $\mathbb{K}^{N_2 \times N_1}$). Тогда: $A_1, \ldots, A_{N_1} = \tilde{\theta}_2$ (здесь $\tilde{\theta}_2$ нулевой элемент пространства $\mathbb{K}^{N_2 \times 1}$); $A^1, \ldots, A^{N_2} = \tilde{\theta}_1$ (здесь $\tilde{\theta}_1$ нулевой элемент пространства $\mathbb{K}^{1 \times N_1}$). Следовательно:

$$\operatorname{rank}(A) = \operatorname{rank}(\{A_1, \dots, A_{N_1}\}) = \operatorname{rank}(\{\tilde{\theta}_2\}) = 0 = \operatorname{rank}(\{\tilde{\theta}_1\}) = \operatorname{rank}(\{A^1, \dots, A^{N_2}\}).$$

Пусть $A \neq \Theta$. Тогда существует число $r \in \mathbb{N}$, существуют числа $i_1, \ldots, i_r = \overline{1, N_1}$, существуют числа $j_1, \ldots, j_r = \overline{1, N_2}$, удовлетворяющие условиям: $i_1 < \cdots < i_r, \ j_1 < \cdots < j_r, \ \overline{\Delta}_{i_1, \ldots, i_r}^{j_1, \ldots, j_r}(A) \neq 0$, все миноры матрицы A порядка r+1, окаймляющие минор $\overline{\Delta}_{i_1, \ldots, i_r}^{j_1, \ldots, j_r}(A)$, равны нулю (если они существуют). Следовательно: $\operatorname{rank}(\{A_1, \ldots, A_{N_1}\}) = r$, $\operatorname{rank}(\{A^1, \ldots, A^{N_2}\}) = r$. Тогда: $\operatorname{rank}(A) = \operatorname{rank}(\{A_1, \ldots, A_{N_1}\}) = r = \operatorname{rank}(\{A^1, \ldots, A^{N_2}\})$.

3. Очевидно: $\operatorname{rank}(A) = \operatorname{rank}(\{A^1, \dots, A^{N_2}\}) = \dim(L(A^1, \dots, A^{N_2})).$

4. Очевидно, $\operatorname{rank}(\{A_1, \dots, A_{N_1}\}) = r$. Тогда: $\operatorname{rank}(A) = \operatorname{rank}(\{A_1, \dots, A_{N_1}\}) = r$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N_1, N_2 \in \mathbb{N}$.

1. Пусть: $A_1, \ldots, A_{N_1} \in \mathbb{K}^{N_2}$, $\sigma \in S_{N_1}$. Тогда:

$$rank(A_{\sigma(1)},\ldots,A_{\sigma(N_1)}) = rank(A_1,\ldots,A_{N_1}).$$

2. Пусть: $N_1\geqslant 2,\ k=\overline{1,N_1},\ A_1,\dots,A_{N_1}\in\mathbb{K}^{N_2},\ X\in L(A_1,\dots,A_{k-1},A_{k+1},\dots,A_{N_1}).$ Тогда:

$$rank(A_1, ..., A_{k-1}, A_k + X, A_{k+1}, ..., A_{N_1}) = rank(A_1, ..., A_{N_1}).$$

3. $\Pi y cmb: N_1 \geqslant 2, k = \overline{1, N_1}, A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1} \in \mathbb{K}^{N_2}$. $Tor \partial a:$ $\operatorname{rank}(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1}) = \operatorname{rank}(A_1, \dots, A_{k-1}, \tilde{\theta}_2, A_{k+1}, \dots, A_{N_1}).$

4. Пусть: $N_1 \geqslant 2$, $k = \overline{1, N_1}$, $A_1, \ldots, A_{N_1} \in \mathbb{K}^{N_2}$, $A_k \in L(A_1, \ldots, A_{k-1}, A_{k+1}, \ldots, A_{N_1})$. Тогда:

$$rank(A_1, ..., A_{k-1}, A_{k+1}, ..., A_{N_1}) = rank(A_1, ..., A_{N_1}).$$

5. Пусть: $k = \overline{1, N_1}$, $\lambda \in \mathbb{K}$, $\lambda \neq 0$, $A_1, \ldots, A_{N_1} \in \mathbb{K}^{N_2}$. Тогда:

$$rank(A_1, ..., A_{k-1}, \lambda A_k, A_{k+1}, ..., A_{N_1}) = rank(A_1, ..., A_{N_1}).$$

Доказательство.

1. Очевидно:

$$rank(A_{\sigma(1)}, \dots, A_{\sigma(N_1)}) = rank(\{A_{\sigma(1)}, \dots, A_{\sigma(N_1)}\}) = rank(\{A_1, \dots, A_{N_1}\}) = rank(A_1, \dots, A_{N_1}).$$

2. Достаточно доказать, что:

$$L(A_1,\ldots,A_{k-1},A_k+X,A_{k+1},\ldots,A_{N_1})=L(A_1,\ldots,A_{N_1}).$$

Так как $X \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1})$, то существуют числа $\alpha^1, \dots, \alpha^{k-1}, \alpha^{k+1}, \dots, \alpha^{N_1} \in \mathbb{K}$, удовлетворяющие условию $X = \sum_{m=\overline{1,N_1}, \, m \neq k} \alpha^m A_m$.

Пусть $Y \in L(A_1, \ldots, A_{k-1}, A_k + X, A_{k+1}, \ldots, A_{N_1})$. Тогда существуют числа $\beta^1, \ldots, \beta^{N_1} \in \mathbb{K}$, удовлетворяющие условию $Y = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k (A_k + X)$. Следовательно:

$$Y = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k (A_k + X) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k (A_k + X) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right)$$

$$= \sum_{m=\overline{1,N_1,m}\neq k} (\beta^m + \beta^k \alpha^m) A_m + \beta^k A_k \in L(A_1,\ldots,A_{N_1}).$$

Пусть $Y \in L(A_1, \dots, A_{N_1})$. Тогда существуют числа $\beta^1, \dots, \beta^{N_1} \in \mathbb{K}$, удовлетворяющие условию $Y = \sum_{m=\overline{1,N_1}} \beta^m A_m$. Следовательно:

$$Y = \sum_{m=\overline{1,N_1}} \beta^m A_m = \sum_{m=\overline{1,N_1}, m \neq k} \beta^m A_m + \beta^k A_k =$$

$$= \sum_{m=\overline{1,N_1}, m \neq k} (\beta^m - \beta^k \alpha^m) A_m + \beta^k \left(A_k + \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \right) =$$

$$= \sum_{m=\overline{1,N_1}, m \neq k} (\beta^m - \beta^k \alpha^m) A_m + \beta^k (A_k + X) \in L(A_1, \dots, A_{k-1}, A_k + X, A_{k+1}, \dots, A_{N_1}).$$

3. Достаточно доказать, что:

$$L(A_1,\ldots,A_{k-1},A_{k+1},\ldots,A_{N_1})=L(A_1,\ldots,A_{k-1},\tilde{\theta}_2,A_{k+1},\ldots,A_{N_1}).$$

Пусть $X \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1})$. Тогда существуют числа $\alpha^1, \dots, \alpha^{k-1}, \alpha^{k+1}, \dots, \alpha^{N_1} \in \mathbb{K}$, удовлетворяющие условию $X = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m$. Следовательно:

$$X = \sum_{m = \overline{1, N_1}, m \neq k} \alpha^m A_m = \sum_{m = \overline{1, N_1}, m \neq k} \alpha^m A_m + 1\tilde{\theta}_2 \in L(A_1, \dots, A_{k-1}, \tilde{\theta}_2, A_{k+1}, \dots, A_{N_1}).$$

Пусть $X \in L(A_1, \dots, A_{k-1}, \tilde{\theta}_2, A_{k+1}, \dots, A_{N_1})$. Тогда существуют числа $\alpha^1, \dots, \alpha^{N_1} \in \mathbb{K}$, удовлетворяющие условию $X = \sum_{m=\overline{1,N_1},\, m \neq k} \alpha^m A_m + \alpha^k \tilde{\theta}_2$. Следовательно:

$$X = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m + \alpha^k \tilde{\theta}_2 = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1}).$$

4. Так как $A_k \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1})$, то:

$$-A_k \in L(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1}).$$

Тогда:

$$\operatorname{rank}(A_1, \dots, A_{N_1}) = \operatorname{rank}(A_1, \dots, A_{k-1}, A_k + (-A_k), A_{k+1}, \dots, A_{N_1}) =$$

$$= \operatorname{rank}(A_1, \dots, A_{k-1}, \tilde{\theta}_2, A_{k+1}, \dots, A_{N_1}) = \operatorname{rank}(A_1, \dots, A_{k-1}, A_{k+1}, \dots, A_{N_1}).$$

5. Достаточно доказать, что:

$$L(A_1,\ldots,A_{k-1},\lambda A_k,A_{k+1},\ldots,A_{N_1})=L(A_1,\ldots,A_{N_1}).$$

Пусть $X \in L(A_1, \dots, A_{k-1}, \lambda A_k, A_{k+1}, \dots, A_{N_1})$. Тогда существуют числа $\alpha^1, \dots, \alpha^{N_1} \in \mathbb{K}$, удовлетворяющие условию $X = \sum_{m=\overline{1,N_1},\, m \neq k} \alpha^m A_m + \alpha^k (\lambda A_k)$. Следовательно:

$$X = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m + \alpha^k (\lambda A_k) = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m + (\alpha^k \lambda) A_k \in L(A_1, \dots, A_{N_1}).$$

Пусть $X \in L(A_1,\dots,A_{N_1})$. Тогда существуют числа $\alpha^1,\dots,\alpha^{N_1} \in \mathbb{K}$, удовлетворяющие условию $X = \sum_{m=\overline{1,N_1}} \alpha^m A_m$. Так как $\lambda \neq 0$, то:

$$X = \sum_{m=\overline{1,N_1}} \alpha^m A_m = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m + \alpha^k A_k = \sum_{m=\overline{1,N_1}, m \neq k} \alpha^m A_m + \frac{\alpha^k}{\lambda} (\lambda A_k) \in$$

$$\in L(A_1, \dots, A_{k-1}, \lambda A_k, A_{k+1}, \dots, A_{N_1}). \quad \Box$$

Лекция 11. Система линейных алгебраических уравнений (СЛАУ; 1-й семестр)

11.1. Линейное операторное уравнение

Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2), b \in L_2$. Рассмотрим уравнение:

$$\begin{cases} x \in D(A), \\ A(x) = b. \end{cases}$$
 (1)

Будем говорить, что (1) — линейное операторное уравнение. Пусть $b = \theta_2$. Будем говорить, что (1) — однородное линейное операторное уравнение. Пусть $b \neq \theta_2$. Будем говорить, что (1) — неоднородное линейное операторное уравнение.

Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2)$. Рассмотрим уравнение:

$$\begin{cases} x \in D(A), \\ A(x) = \theta_2. \end{cases}$$
 (2)

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2)$. Рассмотрим уравнение (2). Очевидно: $\ker(A)$ — множество всех решений уравнения (2), $\ker(A)$ — подпространство пространства L_1 .

- 1. Пусть $\dim(\ker(A)) = 0$. Тогда $\ker(A) = \{\theta_1\}$ (общее решение уравнения (2): $x = \theta_1$).
- 2. Пусть: $m \in \mathbb{N}$, $\dim(\ker(A)) = m$. Тогда существуют векторы e_1, \ldots, e_m , удовлетворяющие условию: (e_1, \ldots, e_m) базис подпространства $\ker(A)$. Следовательно, $\ker(A) = L(e_1, \ldots, e_m)$ (общее решение уравнения (2): $x = C^1 e_1 + \cdots + C^m e_m$).
 - 3. Пусть $\dim(\ker(A)) = +\infty$. Ничего сказать нельзя.

Будем говорить, что e — фундаментальная совокупность решений (ФСР) уравнения (2), если e — базис подпространства $\ker(A)$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1, L_2 — линейные пространства над полем \mathbb{K} ; $A \in \text{lin}(L_1, L_2), b \in L_2$. Рассмотрим уравнение (1). Обозначим через Q множество всех решений уравнения (1). Тогда $Q \subseteq L_1$.

Пусть: $x_1 \in Q, x_2 \in Q$. Тогда: $x_1 \in \mathrm{D}(A), A(x_1) = b; x_2 \in \mathrm{D}(A), A(x_2) = b$. Следовательно: $x_1 - x_2 \in \mathrm{D}(A), A(x_1 - x_2) = A(x_1) - A(x_2) = b - b = \theta_2$. Тогда $x_1 - x_2 \in \ker(A)$.

Пусть: $x_0 \in Q$, $\tilde{x} \in \ker(A)$. Тогда: $x_0 \in \mathrm{D}(A)$, $A(x_0) = b$; $\tilde{x} \in \mathrm{D}(A)$, $A(\tilde{x}) = \theta_2$. Следовательно: $x_0 + \tilde{x} \in \mathrm{D}(A)$, $A(x_0 + \tilde{x}) = A(x_0) + A(\tilde{x}) = b + \theta_2 = b$. Тогда $x_0 + \tilde{x} \in Q$.

Пусть $x_0 \in Q$. Тогда $Q = \{x_0\} + \ker(A)$.

- 1. Пусть $b \notin R(A)$. Тогда $Q = \emptyset$.
- 2. Пусть $b \in R(A)$. Тогда существует вектор x_0 , удовлетворяющий условию $x_0 \in Q$. Следовательно, $Q = \{x_0\} + \ker(A)$ (общее решение уравнения (1): $x = x_0 + \tilde{x}$).
- 2.1. Пусть $\dim(\ker(A)) = 0$. Тогда $\ker(A) = \{\theta_1\}$. Следовательно: $Q = \{x_0\} + \ker(A) = \{x_0\} + \{\theta_1\} = \{x_0\}$ (общее решение уравнения (1): $x = x_0$).
- 2.2. Пусть: $m \in \mathbb{N}$, $\dim(\ker(A)) = m$. Тогда существуют векторы e_1, \ldots, e_m , удовлетворяющие условию: (e_1, \ldots, e_m) базис подпространства $\ker(A)$. Следовательно, $\ker(A) = L(e_1, \ldots, e_m)$. Тогда: $Q = \{x_0\} + \ker(A) = \{x_0\} + L(e_1, \ldots, e_m)$ (общее решение уравнения (1): $x = x_0 + C^1 e_1 + \cdots + C^m e_m$).
 - 2.3. Пусть $\dim(\ker(A)) = +\infty$. Ничего сказать нельзя.

11.2. Система линейных алгебраических уравнений (СЛАУ)

Пусть: $\mathbb{K} \in {\mathbb{C}, \mathbb{R}, \mathbb{Q}}$, $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$, $b \in \mathbb{K}^{N_2}$. Рассмотрим уравнение:

$$\begin{cases} x \in \mathbb{K}^{N_1}, \\ Ax = b. \end{cases}$$
 (3)

Очевидно, уравнение (3) можно переписать в виде системы линейных алгебраических уравнений (СЛАУ):

Очевидно, уравнение (3) можно переписать в виде линейного операторного уравнения:

$$\begin{cases} x \in D(\hat{A}), \\ \hat{A}(x) = b. \end{cases}$$
 (5)

Здесь: $\hat{A}(x) = Ax$ при $x \in \mathbb{K}^{N_1}$.

Будем говорить, что A — основная матрица уравнения (3). Будем говорить, что (A, b) — расширенная матрица уравнения (3).

11.3. Квадратная СЛАУ

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}$.

Пусть $A \in \mathbb{K}^{N \times N}$. Будем говорить, что X — обратная матрица к матрице A, если: $X \in \mathbb{K}^{N \times N}$, AX = I.

Пусть: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Обозначим:

$$(\alpha_*(A))_i^j = \frac{(-1)^{i+j}\overline{\Delta}_j^i(A)}{\det(A)}, \quad i, j = \overline{1, N}.$$

Очевидно, $\alpha_*(A) \in \mathbb{K}^{N \times N}$.

Утверждение. $\Pi ycmb: \mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}.$

1. Пусть: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$, $b \in \mathbb{K}^N$; $x \in \mathbb{K}^N$, Ax = b. Тогда:

$$x^{j} = \frac{\det(A_{1}, \dots, A_{j-1}, b, A_{j+1}, \dots, A_{N})}{\det(A)}, \quad j = \overline{1, N}$$

(формулы Крамера).

- 2. $\Pi y cmv$: $A, B \in \mathbb{K}^{N \times N}, AB = I$. $Tor \partial a$: $\det(A) \neq 0, (\det(A))^{-1} = \det(B)$; $\det(B) \neq 0, (\det(B))^{-1} = \det(A)$.
- 3. Пусть: $A \in \mathbb{K}^{N \times N}$, существует матрица X удовлетворяющая условию: X обратная матрица κ матрице A. Тогда $\det(A) \neq 0$.
 - 4. $\Pi y cmv: A \in \mathbb{K}^{N \times N}, \det(A) \neq 0. Tor \partial a: A\alpha_*(A) = I, \alpha_*(A)A = I.$

- 5. Пусть: $N_0 \in \mathbb{N}$; $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$, $B \in \mathbb{K}^{N \times N_0}$. Существует единственная матрица X, удовлетворяющая условиям: $X \in \mathbb{K}^{N \times N_0}$, AX = B.
- 6. Пусть: $N_0 \in \mathbb{N}$; $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$, $B \in \mathbb{K}^{N_0 \times N}$. Существует единственная матрица X, удовлетворяющая условиям: $X \in \mathbb{K}^{N_0 \times N}$, XA = B.
- 7. Пусть: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Тогда существует единственная матрица X, удовлетворяющая условию: X обратная матрица κ матрице A.

Доказательство.

1. Пусть $j = \overline{1, N}$. Тогда:

$$\frac{\det(A_1, \dots, A_{j-1}, b, A_{j+1}, \dots, A_N)}{\det(A)} = \frac{\det(A_1, \dots, A_{j-1}, Ax, A_{j+1}, \dots, A_N)}{\det(A)} = \frac{\det(A_1, \dots, A_{j-1}, x^k A_k, A_{j+1}, \dots, A_N)}{\det(A)} = x^k \frac{\det(A_1, \dots, A_{j-1}, A_k, A_{j+1}, \dots, A_N)}{\det(A)} = x^k \delta_k^j = x^j.$$

- 2. Очевидно: $AB=I; \det(AB)=\det(I); \det(A)\det(B)=1.$ Тогда: $\det(A)\neq 0, \left(\det(A)\right)^{-1}=\det(B); \det(B)\neq 0, \left(\det(B)\right)^{-1}=\det(A).$
- 3. Выберем матрицу X, удовлетворяющую условию: X обратная матрица к матрице A. Тогда AX = I. Следовательно, $\det(A) \neq 0$.
 - 4. Пусть $i, j = \overline{1, N}$. Обозначим:

$$B(i,j) = \begin{pmatrix} A^1 \\ \vdots \\ A^{i-1} \\ A^j \\ A^{i+1} \\ \vdots \\ A^N \end{pmatrix}.$$

Тогда:

$$(A\alpha_*(A))_i^j = \sum_{k=1}^N A_k^j (\alpha_*(A))_i^k = \sum_{k=1}^N A_k^j \frac{(-1)^{i+k} \overline{\Delta}_k^i(A)}{\det(A)} = \frac{1}{\det(A)} \sum_{k=1}^N (-1)^{i+k} \overline{\Delta}_k^i(A) A_k^j =$$

$$= \frac{1}{\det(A)} \sum_{k=1}^N (-1)^{i+k} \overline{\Delta}_k^i (B(i,j)) (B(i,j))_k^i = \frac{1}{\det(A)} \det(B(i,j)) = \delta_i^j = I_i^j.$$

Следовательно, $A\alpha_*(A) = I$.

Пусть $i, j = \overline{1, N}$. Обозначим, $B(i, j) = (A_1, \dots, A_{j-1}, A_i, A_{j+1}, \dots, A_N)$. Тогда:

$$(\alpha_*(A)A)_i^j = \sum_{k=1}^N (\alpha_*(A))_k^j A_i^k = \sum_{k=1}^N \frac{(-1)^{k+j} \overline{\Delta}_j^k(A)}{\det(A)} A_i^k = \frac{1}{\det(A)} \sum_{k=1}^N (-1)^{k+j} \overline{\Delta}_j^k(A) A_i^k = \frac{1}{\det(A)} \sum_{k=1}^N (-1)^{k+j} \overline{\Delta}_j^k(A) A_i^k = \frac{1}{\det(A)} \sum_{k=1}^N (-1)^{k+j} \overline{\Delta}_j^k(B(i,j)) (B(i,j))_j^k = \frac{1}{\det(A)} \det(B(i,j)) = \delta_i^j = I_i^j.$$

Следовательно, $\alpha_*(A)A = I$.

5. Пусть: $X \in \mathbb{K}^{N \times N_0}$, AX = B. Тогда:

$$\alpha_*(A)(AX) = \alpha_*(A)B,$$

$$(\alpha_*(A)A)X = \alpha_*(A)B,$$

$$IX = \alpha_*(A)B,$$

$$X = \alpha_*(A)B.$$

Пусть: $X_1 \in \mathbb{K}^{N \times N_0}$, $AX_1 = B$; $X_2 \in \mathbb{K}^{N \times N_0}$, $AX_2 = B$. Тогда: $X_1 = \alpha_*(A)B$, $X_2 = \alpha_*(A)B$. Следовательно, $X_1 = X_2$.

Обозначим, $X = \alpha_*(A)B$. Тогда: $X \in \mathbb{K}^{N \times N_0}$, $AX = A(\alpha_*(A)B) = (A\alpha_*(A))B = IB = B$.

6. Пусть: $X \in \mathbb{K}^{N_0 \times N}$, XA = B. Тогда:

$$(XA)\alpha_*(A) = B\alpha_*(A),$$

$$X(A\alpha_*(A)) = B\alpha_*(A),$$

$$XI = B\alpha_*(A),$$

$$X = B\alpha_*(A).$$

Пусть: $X_1 \in \mathbb{K}^{N_0 \times N}$, $X_1A = B$; $X_2 \in \mathbb{K}^{N_0 \times N}$, $X_2A = B$. Тогда: $X_1 = B\alpha_*(A)$, $X_2 = B\alpha_*(A)$. Следовательно, $X_1 = X_2$.

Обозначим, $X=B\alpha_*(A)$. Тогда: $X\in\mathbb{K}^{N_0\times N},\ XA=\left(B\alpha_*(A)\right)A=B\left(\alpha_*(A)A\right)=BI=B.$

7. По условию: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$.

Очевидно: $\alpha_*(A) \in \mathbb{K}^{N \times N}$, $A\alpha_*(A) = I$. Тогда $\alpha_*(A)$ — обратная матрица к матрице A. Пусть $X_1, \ X_2$ — обратные матрицы к матрице A. Тогда: $X_1 \in \mathbb{K}^{N \times N}$, $AX_1 = I$; $X_2 \in \mathbb{K}^{N \times N}$, $AX_2 = I$. Так как: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$, $I \in \mathbb{K}^{N \times N}$, то $X_1 = X_2$.

Onpedenenue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{N}$; $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Обозначим через A^{-1} обратную матрицу к матрице A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}.$

- 1. $\Pi y cmv: A \in \mathbb{K}^{N \times N}, \det(A) \neq 0. Tor\partial a A^{-1} = \alpha_*(A).$
- 2. $\Pi y cm b$: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. $Tor \partial a$: $AA^{-1} = I$, $A^{-1}A = I$, $\det(A^{-1}) = (\det(A))^{-1}$,

$$(A^{-1})_i^j = \frac{(-1)^{i+j}\overline{\Delta}_j^i(A)}{\det(A)}, \quad i, \ j = \overline{1, N}.$$

- 3. Пусть: $A, B \in \mathbb{K}^{N \times N}, AB = I$. Тогда: $\det(A) \neq 0, (\det(A))^{-1} = \det(B), A^{-1} = B$; $\det(B) \neq 0, (\det(B))^{-1} = \det(A), B^{-1} = A$.
 - 4. $\Pi y cmb$: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. $Tor \partial a$: $\det(A^{-1}) \neq 0$, $(A^{-1})^{-1} = A$.
 - 5. $Hycm_b: A, B \in \mathbb{K}^{N \times N}, \det(A), \det(B) \neq 0. Torda: \det(AB) \neq 0, (AB)^{-1} = B^{-1}A^{-1}.$
 - 6. $\Pi y cmb$: $\lambda \in \mathbb{K}$, $\lambda \neq 0$, $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. $Tor \partial a$: $\det(\lambda A) \neq 0$, $(\lambda A)^{-1} = \lambda^{-1} A^{-1}$.
 - 7. Пусть: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Тогда: $\det(A^T) \neq 0$, $(A^T)^{-1} = (A^{-1})^T$.
 - 8. $\Pi y cmv: A \in \mathbb{K}^{N \times N}, \ \det(A) \neq 0. \ Tor \partial a: \det(\overline{A^T}) \neq 0, \ \left(\overline{A^T}\right)^{-1} = \overline{(A^{-1})^T}.$

Доказательство.

1. По условию: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Очевидно: $\alpha_*(A) \in \mathbb{K}^{N \times N}$, $A\alpha_*(A) = I$. Тогда $\alpha_*(A)$ — обратная матрица к матрице A. Следовательно, $A^{-1} = \alpha_*(A)$.

2. По условию: $A \in \mathbb{K}^{N \times N}$, $\det(A) \neq 0$. Так как A^{-1} — обратная матрица к матрице A, то: $A^{-1} \in \mathbb{K}^{N \times N}$, $AA^{-1} = I$. Тогда $\det(A^{-1}) = \left(\det(A)\right)^{-1}$. Очевидно: $A^{-1}A = \alpha_*(A)A = I$. Пусть $i, j = \overline{1, N}$. Тогда:

$$(A^{-1})_i^j = (\alpha_*(A))_i^j = \frac{(-1)^{i+j}\overline{\Delta}_j^i(A)}{\det(A)}.$$

3.

11.4. Прямоугольная СЛАУ

Теорема (Кронекера—Капелли). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$, $b \in \mathbb{K}^{N_2}$.

- 1. Пусть существует решение уравнения: $Ax = b, x \in \mathbb{K}^{N_1}$. Тогда $\operatorname{rank}(A, b) = \operatorname{rank}(A)$.
- 2. Пусть $\operatorname{rank}(A,b) = \operatorname{rank}(A)$. Тогда существует решение уравнения: $Ax = b, x \in \mathbb{K}^{N_1}$.

Доказательство.

1. Выберем столбец x, удовлетворяющий условиям: $x \in \mathbb{K}^{N_1}$, Ax = b. Тогда: $x^1, \ldots, x^{N_1} \in \mathbb{K}$, $b = x^1A_1 + \cdots + x^{N_1}A_{N_1}$. Следовательно, $b \in L(A_1, \ldots, A_{N_1})$. Тогда $(-1)b \in L(A_1, \ldots, A_{N_1})$. Следовательно:

$$\operatorname{rank}(A, b) = \operatorname{rank}(A, b + (-1)b) = \operatorname{rank}(A, \tilde{\theta}_2) = \operatorname{rank}(A).$$

2. Обозначим, $r = \operatorname{rank}(A)$. Тогда: $r \in \mathbb{Z}_+$, $\operatorname{rank}(A,b) = r$. Пусть r = 0. Так как: $\operatorname{rank}\left(\{A_1,\ldots,A_{N_1},b\}\right) = \operatorname{rank}(A,b) = r$, то $b = \tilde{\theta}_2$. Тогда: $\tilde{\theta}_1 \in \mathbb{K}^{N_1}$, $A\tilde{\theta}_1 = b$.

Пусть $r \neq 0$. Тогда $r \in \mathbb{N}$. Так как: $\operatorname{rank} \left(\{A_1, \ldots, A_{N_1} \} \right) = \operatorname{rank}(A) = r$, то существуют числа $i_1, \ldots, i_r = \overline{1, N_1}$, удовлетворяющие условиям: $i_1 < \cdots < i_r, \ A_{i_1}, \ldots, A_{i_r}$ — линейно независимые столбцы. Так как: $\operatorname{rank} \left(\{A_1, \ldots, A_{N_1}, b\} \right) = \operatorname{rank}(A, b) = r$, то A_{i_1}, \ldots, A_{i_r} — базис множества $\{A_1, \ldots, A_{N_1}, b\}$. Тогда существуют числа x^{i_1}, \ldots, x^{i_r} , удовлетворяющие условиям: $x^{i_1}, \ldots, x^{i_r} \in \mathbb{K}, \ b = x^{i_1}A_{i_1} + \cdots + x^{i_r}A_{i_r}$. Обозначим: $x^i = 0$ при: $i = \overline{1, N_1}, i \notin \{i_1, \ldots, i_r\}$. Тогда: $x^1, \ldots, x^{N_1} \in \mathbb{K}, \ b = x^1A_1 + \cdots + x^{N_1}A_{N_1}$. Следовательно: $x \in \mathbb{K}^{N_1}, Ax = b$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N_1, N_2 \in \mathbb{N}$; $A \in \mathbb{K}^{N_2 \times N_1}$, $b \in \mathbb{K}^{N_2}$. Рассмотрим уравнение (3). Обозначим через Q множество всех решений уравнения (3). Тогда $Q \subseteq \mathbb{K}^{N_1}$. Обозначим, $r = \operatorname{rank}(A)$. Тогда $r = \overline{0, \min(\{N_1, N_2\})}$.

- 1. Пусть $\operatorname{rank}(A,b) \neq r$. Тогда $Q = \emptyset$.
- 2. Пусть: ${\rm rank}(A,b)=r, \ r=0.$ Тогда: $A=\Theta, \ b=\theta_2.$ Следовательно, $Q=\mathbb{K}^{N_1}.$
- 3. Пусть: $rank(A, b) = r, r \neq 0, N_1 = r, N_2 = r$. Можно использовать формулы Крамера.
- 4. Пусть: $\operatorname{rank}(A,b) = r, r \neq 0, N_1 = r, N_2 > r$. Пусть $\Delta_{1,\dots,r}^{1,\dots,r}(A) \neq 0$. Тогда $(A,b)^1,\dots,(A,b)^r$ базис множества $\{(A,b)^1,\dots,(A,b)^{N_2}\}$. Следовательно, уравнение (3) эквивалентно системе:

$$\begin{cases} A_1^1 x^1 + \dots + A_r^1 x^r = b^1, \\ \dots \\ A_1^r x^1 + \dots + A_r^r x^r = b^r; \\ x^1, \dots, x^r \in \mathbb{K}. \end{cases}$$

Можно использовать формулы Крамера.

5. Пусть: ${\rm rank}(A,b)=r,\,r\neq 0,\,N_1>r,\,N_2=r.$ Пусть $\Delta^{1,\dots,r}_{1,\dots,r}(A)\neq 0.$ Пусть x — решение уравнения (3). Тогда:

$$\begin{cases} A_1^1 x^1 + \dots + A_r^1 x^r = b^1 - A_{r+1}^1 x^{r+1} - \dots - A_{N_1}^1 x^{N_1}, \\ \dots \\ A_1^r x^1 + \dots + A_r^r x^r = b^r - A_{r+1}^r x^{r+1} - \dots - A_{N_1}^r x^{N_1}; \\ x^1, \dots, x^{N_1} \in \mathbb{K}. \end{cases}$$

Обозначим: $C^1=x^{r+1},\ldots,C^{N_1-r}=x^{N_1}$. Тогда: $C^1,\ldots,C^{N_1-r}\in\mathbb{K};$

$$\begin{cases}
A_1^1 x^1 + \dots + A_r^1 x^r = b^1 - A_{r+1}^1 C^1 - \dots - A_{N_1}^1 C^{N_1 - r}, \\
\dots \\
A_1^r x^1 + \dots + A_r^r x^r = b^r - A_{r+1}^r C^1 - \dots - A_{N_1}^r C^{N_1 - r}, \\
x^{r+1} = C^1, \\
\dots \\
x^{N_1} = C^{N_1 - r}; \\
x^1, \dots, x^{N_1} \in \mathbb{K}.
\end{cases} (6)$$

Можно использовать формулы Крамера.

Пусть: $C^1, \ldots, C^{N_1-r} \in \mathbb{K}, x$ — решение системы (6). Тогда x — решение уравнения (3).

6. Пусть: $\operatorname{rank}(A,b) = r, \ r \neq 0, \ N_1 > r, \ N_2 > r$. Пусть $\Delta_{1,\dots,r}^{1,\dots,r}(A) \neq 0$. Тогда $(A,b)^1,\dots,(A,b)^r$ — базис множества $\{(A,b)^1,\dots,(A,b)^{N_2}\}$. Следовательно, уравнение (3) эквивалентно системе:

$$\begin{cases} A_1^1 x^1 + \dots + A_{N_1}^1 x^{N_1} = b^1, \\ \dots \\ A_1^r x^1 + \dots + A_{N_1}^r x^{N_1} = b^r; \\ x^1, \dots, x^{N_1} \in \mathbb{K}. \end{cases}$$

Можно использовать метод из пункта 5.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N_1, N_2 \in \mathbb{N}, A \in \mathbb{K}^{N_2 \times N_1}, b \in \mathbb{K}^{N_2}, j = \overline{1, N_2}$. Будем говорить, что $(A, b)^j$ — квазинулевая строка, если: $A_1^j, \dots, A_{N_1}^j = 0, b^j \neq 0$.

Замечание (Метод Гаусса—Жордана для решения СЛАУ). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N_1, N_2 \in \mathbb{N}, A \in \mathbb{K}^{N_2 \times N_1}, b \in \mathbb{K}^{N_2}$. Обозначим, $Q = \{x \colon x \in \mathbb{K}^{N_1} \wedge Ax = b\}$.

Пусть матрица (A,b) содержит квазинулевую строку. Тогда $Q=\varnothing$. Пусть матрица (A,b) не содержит квазинулевых строк. Пусть матрица A не содержит ненулевых строк. Тогда $Q=\mathbb{K}^{N_1}$. Пусть матрица A содержит ненулевую строку. Обозначим: $B_0=A, z_0=b$. Тогда: $B_0\in\mathbb{K}^{N_2\times N_1}, z_0\in\mathbb{K}^{N_2}, Q=\{x\colon x\in\mathbb{K}^{N_1}\wedge B_0x=z_0\}$, матрица (B_0,z_0) не содержит квазинулевых строк, матрица B_0 содержит ненулевую строку.

Выберем числа $i_1 = \overline{1, N_1}$, $j_1 = \overline{1, N_2}$, удовлетворяющие условию $(B_0)_{i_1}^{j_1} \neq 0$. Обнулим элементы, стоящие над элементом $(B_0)_{i_1}^{j_1}$, обнулим элементы, стоящие под элементом $(B_0)_{i_1}^{j_1}$. Получим матрицу $B_1 \in \mathbb{K}^{N_2 \times N_1}$, получим столбец $z_1 \in \mathbb{K}^{N_2}$, удовлетворяющий условиям: $(B_1)_{i_1}^{j_1} \neq 0$, $(B_1)_{i_1}^{j_1} = 0$ при: $j = \overline{1, N_2}$, $j \neq j_1$; $Q = \{x : x \in \mathbb{K}^{N_1} \land B_1 x = z_1\}$. Пусть матрица (B_1, z_1) содержит квазинулевую строку. Тогда $Q = \emptyset$. Остановим процесс. Пусть

матрица (B_1, z_1) не содержит квазинулевых строк. Пусть матрица B_1 содержит ровно одну ненулевую строку. Остановим процесс. Пусть матрица B_1 содержит, по крайней мере, две ненулевые строки. Перейдём к следующему шагу.

Выберем числа $i_2 = \overline{1, N_1}, \ j_2 = \overline{1, N_2}, \$ удовлетворяющие условиям: $j_2 \neq j_1, \ (B_1)_{i_2}^{j_2} \neq 0.$ Очевидно, $i_2 \neq i_1$. Тогда: $i_1, \ i_2 = \overline{1, N_1}, \ i_1, \ i_2$ — различные числа, $j_1, \ j_2 = \overline{1, N_2}, \ j_1, \ j_2$ — различные числа. Обнулим элементы, стоящие над элементом $(B_1)_{i_2}^{j_2}$, обнулим элементы, стоящие под элементом $(B_1)_{i_2}^{j_2}$. Получим матрицу $B_2 \in \mathbb{K}^{N_2 \times N_1}$, получим столбец $z_2 \in \mathbb{K}^{N_2}$, удовлетворяющий условиям: $(B_2)_{i_k}^{j_k} \neq 0, \ (B_2)_{i_k}^{j} = 0$ при: $k = 1, 2, \ j = \overline{1, N_2}, \ j \neq j_k; \ Q = \{x \colon x \in \mathbb{K}^{N_1} \land B_1 x = z_1\}$. Пусть матрица (B_2, z_2) содержит квазинулевую строку. Тогда $Q = \varnothing$. Остановим процесс. Пусть матрица B_2 содержит ровно две ненулевые строки. Остановим процесс. Пусть матрица B_2 содержит, по крайней мере, три ненулевые строки. Перейдём к следующему шагу.

Первый вариант. Продолжая рассуждения, получим, что $Q = \emptyset$.

Второй вариант. Продолжая рассуждения, получим число $r=\overline{1,\min\{N_1,N_2\}}$, получим числа $i_1,\ldots,i_r=\overline{1,N_1},j_1,\ldots,j_r=\overline{1,N_2}$, получим матрицу $B_r\in\mathbb{K}^{N_2\times N_1}$, получим столбец $z_r\in\mathbb{K}^{N_2}$, удовлетворяющий условиям: i_1,\ldots,i_r — различные числа, j_1,\ldots,j_r — различные числа, $(B_r)_{i_k}^{j_k}\neq 0$, $(B_r)_{i_k}^{j}=0$ при: $k=\overline{1,r},\ j=\overline{1,N_2},\ j\neq j_k;\ Q=\{x\colon x\in\mathbb{K}^{N_1}\wedge B_rx=z_r\}$, матрица (B_r,z_r) не содержит квазинулевых строк, матрица B_r содержит ровно r ненулевых строк. Далее можно выписывать ответ.

Лекция 12. Тензорная алгебра (2-й семестр)

12.1. Матрица перехода от одного базиса к другому

Oпределение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства $L, e'_1, \ldots, e'_N \in L$.

Обозначим: $\alpha_{i'}^i(e,e') = [e'_{i'}]^i(e)$ при $i,\ i' = \overline{1,N}$. Тогда $\alpha(e,e') \in \mathbb{K}^{N \times N}$. Будем говорить, что $\alpha(e,e')$ — матрица перехода от базиса e к набору векторов e'.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N$.

Пусть: e — базис пространства $L, e'_1, \ldots, e'_N \in L$. Пусть $i' = \overline{1, N}$. Тогда:

$$\alpha_{i'}(e, e') = \begin{pmatrix} \alpha_{i'}^1(e, e') \\ \vdots \\ \alpha_{i'}^N(e, e') \end{pmatrix} = \begin{pmatrix} [e'_{i'}]^1(e) \\ \vdots \\ [e'_{i'}]^N(e) \end{pmatrix} = [e'_{i'}](e).$$

Пусть: e — базис пространства $L, e'_1, \ldots, e'_N \in L$. Пусть $i' = \overline{1, N}$. Тогда:

$$e'_{i'} = [e'_{i'}]^i(e)e_i = \alpha^i_{i'}(e, e')e_i.$$

Пусть: e — базис пространства $L, A \in \mathbb{K}^{N \times N}, e'_{i'} = A^i_{i'} e_i$ при $i' = \overline{1, N}$. Очевидно: $e'_1, \ldots, e'_N \in L, \alpha(e, e') = A$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

- 1. Пусть e- базис пространства L. Тогда $\alpha(e,e)=\tilde{I}$ (здесь $\tilde{I}-$ единичная матрица из множества $\mathbb{K}^{N\times N}$).
- 2. Пусть: e, e' базисы пространства $L, e''_1, \ldots, e''_N \in L$. Тогда $\alpha(e, e'') = \alpha(e, e')\alpha(e', e'')$.
- 3. Пусть e, e' -базисы пространства L.Тогда: $\alpha(e, e')\alpha(e', e) = \tilde{I}; \det(\alpha(e, e')) \neq 0,$ $(\alpha(e, e'))^{-1} = \alpha(e', e).$
- 4. Пусть: e- базис пространства $L, A \in \mathbb{K}^{N \times N}, \det(A) \neq 0, e'_{i'} = A^i_{i'}e_i$ при $i' = \overline{1, N}$. Тогда: e'- базис пространства $L, \alpha(e, e') = A$.
- 5. Пусть: e, e' -базисы пространства $L, x \in L$. Тогда: $[x]^{j'}(e') = \alpha_j^{j'}(e', e)[x]^j(e)$ при $j' = \overline{1, N}; [x](e') = \alpha(e', e)[x](e)$.

Доказательство.

- 1. Пусть $i, j = \overline{1, N}$. Тогда: $\alpha_i^j(e, e) = [e_i]^j(e) = \delta_i^j = \tilde{I}_i^j$. Следовательно, $\alpha(e, e) = \tilde{I}$.
- 2. Пусть $i'' = \overline{1, N}$. Тогда $e''_{i''} = \alpha^i_{i''}(e, e'')e_i$. С другой стороны:

$$e_{i''}'' = \alpha_{i''}^{i'}(e', e'')e_{i'}' = \alpha_{i''}^{i'}(e', e'')(\alpha_{i'}^{i}(e, e')e_{i}) = (\alpha_{i'}^{i}(e, e')\alpha_{i''}^{i'}(e', e''))e_{i} = (\alpha(e, e')\alpha(e', e''))_{i''}^{i}e_{i}.$$

Тогда: $\alpha^i_{i''}(e,e'') = (\alpha(e,e')\alpha(e',e''))^i_{i''}$ при $i=\overline{1,N}$. Следовательно, $\alpha(e,e'')=\alpha(e,e')\alpha(e',e'')$.

- 3. Очевидно: $\alpha(e,e')\alpha(e',e)=\alpha(e,e)=\tilde{I}$. Тогда: $\det(\alpha(e,e'))\neq 0,\ \alpha(e,e')^{-1}=\alpha(e',e)$.
- 4. Очевидно: $e'_1, \ldots, e'_N \in L$, $\alpha(e,e') = A$. Так как $\det(A) \neq 0$, то A_1, \ldots, A_N линейно независимые столбцы. Так как: $[e'_1](e) = \alpha_1(e,e') = A_1, \ldots, [e'_N](e) = \alpha_N(e,e') = A_N$, то e'_1, \ldots, e'_N линейно независимые векторы. Так как: $e'_1, \ldots, e'_N \in L$, $\dim(L) = N$, то e' базис пространства L.

5. Очевидно, $x = [x]^{j'}(e')e'_{j'}$. С другой стороны:

$$x = [x]^{j}(e)e_{j} = [x]^{j}(e)\left(\alpha_{j}^{j'}(e', e)e'_{j'}\right) = \left(\alpha_{j}^{j'}(e', e)[x]^{j}(e)\right)e'_{j'} = \left(\alpha(e', e)[x](e)\right)^{j'}e'_{j'}.$$

Тогда:
$$[x]^{j'}(e') = (\alpha(e',e)[x](e))^{j'}$$
 при $j' = \overline{1,N}$. Следовательно, $[x](e') = \alpha(e',e)[x](e)$.

Замечание (одинаково ориентированные базисы, противоположно ориентированные базисы). Пусть: $\mathbb{K} \in \{\mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

Пусть e, e' — базисы пространства L. Будем говорить, что e, e' — одинаково ориентированные базисы, если $\det(\alpha(e,e')) > 0$. Будем говорить, что e, e' — противоположно ориентированные базисы, если $\det(\alpha(e,e')) < 0$.

Пусть e, e' — базисы пространства L. Базисы e, e' являются противоположно ориентированными тогда и только тогда, когда базисы e, e' не являются одинаково ориентированными.

Пусть e — базис пространства L. Тогда e, e — одинаково ориентированные базисы.

Пусть: e, e' — базисы пространства L; e, e' — одинаково ориентированные базисы. Тогда e', e — одинаково ориентированные базисы.

Пусть: e, e', e'' — базисы пространства L; e, e' — одинаково ориентированные базисы, e', e'' — одинаково ориентированные базисы. Тогда e, e'' — одинаково ориентированные базисы.

Пусть: e, e', e'' — базисы пространства L; e, e' — противоположно ориентированные базисы, e', e'' — противоположно ориентированные базисы. Тогда e, e'' — одинаково ориентированные базисы.

Замечание (правые и левые базисы, знак базиса). Пусть: $\mathbb{K} \in \{\mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e_0 — базис пространства L.

Пусть e — базис пространства L. Будем говорить, что e — правый базис, если e, e_0 — одинаково ориентированные базисы. Будем говорить, что e — левый базис, если e, e_0 — противоположно ориентированные базисы.

Очевидно, e_0 — правый базис.

Пусть e — базис пространства L. Базис e является левым тогда и только тогда, когда базис e не является правым.

Пусть e, e' — базисы пространства L. Пусть e, e' — правые базисы. Тогда e, e' — одинаково ориентированные базисы. Пусть e, e' — левые базисы. Тогда e, e' — одинаково ориентированные базисы. Пусть: e — правый базис, e' — левый базис. Тогда e, e' — противоположно ориентированные базисы.

Пусть e — базис пространства L. Пусть e — правый базис. Обозначим, sgn(e) = 1. Пусть e — левый базис. Обозначим, sgn(e) = -1. Будем говорить, что sgn(e) — знак базиса e.

12.2. Числовые наборы

3амечание («прямоугольные» числовые наборы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, r \in \mathbb{N}, N_1, \ldots, N_r \in \mathbb{N}.$

1. Обозначим через $\mathbb{K}^{N_1 \times \cdots \times N_r}$ множество всех функций A, удовлетворяющих условию:

$$A: \{1, \dots, N_1\} \times \dots \times \{1, \dots, N_r\} \implies \mathbb{K}.$$

2. Пусть $A \in \mathbb{K}^{N_1 \times \cdots \times N_r}$. Будем говорить, что A — числовой набор степени r. Иными словами, числовой набор степени r — это числовая функция r дискретных переменных.

- 3. Пусть $A \in \mathbb{K}^{N_1 \times \dots \times N_r}$. Далее часто будем писать « A_{i_1, \dots, i_r} » вместо « $A(i_1, \dots, i_r)$ ». 4. Пусть $A \in \mathbb{K}^{N_1 \times \dots \times N_r}$. Далее часто будем писать « A^{i_1, \dots, i_r} » вместо « $A(i_1, \dots, i_r)$ ».
- 5. Пусть: $p, q \in \mathbb{N}, r = q + p, A \in \mathbb{K}^{N_1 \times \cdots \times N_r}$. Далее часто будем писать « $A_{i_1, \dots, i_n}^{j_1, \dots, j_q}$ » вместо $A(j_1,\ldots,j_q,i_1,\ldots,i_p)$ ».
- 6. Пусть $A, B \in \mathbb{K}^{N_1 \times \cdots \times N_r}$. Тогда: $(A+B)_{i_1, \dots, i_r} = A_{i_1, \dots, i_r} + B_{i_1, \dots, i_r}$ при: $i_1 = \overline{1, N_1}, \dots, i_r = \overline{1, N_1}$
- 7. Пусть: $\lambda \in \mathbb{K}$, $A \in \mathbb{K}^{N_1 \times \cdots \times N_r}$. Тогда: $(\lambda A)_{i_1,\dots,i_r} = \lambda A_{i_1,\dots,i_r}$ при: $i_1 = \overline{1,N_1},\dots,i_r =$ $\overline{1, N_r}$.
- 8. Очевидно, $\mathbb{K}^{N_1 \times \cdots \times N_r}$ линейное пространство над полем \mathbb{K} . Обозначим через N_* количество элементов множества $\{1,\ldots,N_1\}\times\cdots\times\{1,\ldots,N_r\}$. Тогда $\dim(\mathbb{K}^{N_1\times\cdots\times N_r})=N_*$. Очевидно, $N_* = N_1 \cdots N_r$. Тогда $\dim(\mathbb{K}^{N_1 \times \cdots \times N_r}) = N_1 \cdots N_r$.

Замечание («квадратные» числовые наборы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}, r \in \mathbb{Z}_+$.

- 1. Пусть r = 0. Обозначим, $\mathbb{K}^{(N,r)} = \mathbb{K}$. Пусть $r \neq 0$. Обозначим, $\mathbb{K}^{(N,r)} = \mathbb{K}^{N \times \cdots \times N}$ (здесь выражение $N \times \cdots \times N$ содержит r сомножителей).
 - 2. Пусть $A \in \mathbb{K}^{(N,r)}$. Будем говорить, что A числовой набор степени r.
 - 3. Очевидно: $\mathbb{K}^{(N,r)}$ линейное пространство над полем \mathbb{K} , $\dim(\mathbb{K}^{(N,r)}) = N^r$.

12.3. Геометрические объекты

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N; r \in \mathbb{Z}_+.$

- 1. Будем говорить, что A геометрический объект степени r в пространстве L, если A — это отображение, которое каждому базису e пространства L ставит в соответствие числовой набор $A(e) \in \mathbb{K}^{(N,r)}$.
- 2. Обозначим через $(GL)_r$ множество всех геометрических объектов степени r в пространстве L.
 - 3. Пусть: $r \neq 0, A \in (GL)_r$. Далее часто будем писать « $A_{i_1,...,i_r}(e)$ » вместо « $(A(e))_{i_1,...,i_r}$ ».
- 4. Пусть $A, B \in (GL)_r$. Тогда: (A+B)(e) = A(e) + B(e) при: e базис пространства L. Следовательно:

$$(A+B)_{i_1,\dots,i_r}(e) = (A(e)+B(e))_{i_1,\dots,i_r} = A_{i_1,\dots,i_r}(e) + B_{i_1,\dots,i_r}(e)$$

при: e — базис пространства L, $i_1, \ldots, i_r = \overline{1, N}$.

5. Пусть: $\lambda \in \mathbb{K}$, $A \in (GL)_r$. Тогда: $(\lambda A)(e) = \lambda A(e)$ при: e — базис пространства L. Следовательно:

$$(\lambda A)_{i_1,\dots,i_r}(e) = (\lambda A(e))_{i_1,\dots,i_r} = \lambda A_{i_1,\dots,i_r}(e)$$

при: e — базис пространства L, $i_1, \ldots, i_r = \overline{1, N}$.

6. Очевидно, $(GL)_r$ — линейное пространство над полем \mathbb{K} .

12.4. Тензоры

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N; p, q \in \mathbb{Z}_+.$

1. Будем говорить, что A — тензор порядка $\binom{q}{p}$ в пространстве L, если A — это геометрический объект степени q+p в пространстве L, удовлетворяющий условию:

$$A_{i'_1,\dots,i'_p}^{j'_1,\dots,j'_q}(e') = A_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e)\alpha_{j_1}^{j'_1}(e',e)\cdots\alpha_{j_q}^{j'_q}(e',e)\alpha_{i'_1}^{i_1}(e,e')\cdots\alpha_{i'_p}^{i_p}(e,e')$$

при: $e,\,e'$ — базисы пространства $L,\,i_1',\ldots,i_p',\,j_1',\ldots,j_q'=\overline{1,N}.$

2. Обозначим через $(TL)_p^q$ множество всех тензоров порядка $\binom{q}{p}$ в пространстве L.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $p, q \in \mathbb{Z}_+$. Тогда $(TL)_p^q$ — подпространство пространства $(GL)_{q+p}$.

Доказательство.

- 1. Очевидно, $(TL)_p^q \subseteq (GL)_{q+p}$.
- 2. Пусть Θ нулевой элемент пространства $(GL)_{q+p}$. Докажем, что $\Theta \in (TL)_p^q$. Пусть: e, e' базисы пространства $L, i'_1, \ldots, i'_p, j'_1, \ldots, j'_q = \overline{1, N}$. Тогда:

$$\Theta_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e)\alpha_{j_1}^{j_1'}(e',e)\cdots\alpha_{j_q}^{j_q'}(e',e)\alpha_{i_1'}^{i_1}(e,e')\cdots\alpha_{i_p'}^{i_p}(e,e')=0=\Theta_{i_1',\dots,i_p'}^{j_1',\dots,j_q'}(e').$$

3. Пусть $A, B \in (TL)_p^q$. Докажем, что $A+B \in (TL)_p^q$. Пусть: e, e' — базисы пространства $L, i'_1, \ldots, i'_p, j'_1, \ldots, j'_q = \overline{1, N}$. Тогда:

$$(A+B)_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e)\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p}}^{i_{p}}(e,e') =$$

$$= (A_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e)+B_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e))\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p}}^{i_{p}}(e,e') =$$

$$= A_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e')+B_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e') = (A+B)_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e').$$

4. Пусть: $\lambda \in \mathbb{K}$, $A \in (TL)_p^q$. Докажем, что $\lambda A \in (TL)_p^q$. Пусть: e, e' — базисы пространства $L, i_1', \ldots, i_p', j_1', \ldots, j_q' = \overline{1, N}$. Тогда:

$$(\lambda A)_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e)\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p}}^{i_{p}}(e,e') =$$

$$= (\lambda A_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e))\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p}}^{i_{p}}(e,e') =$$

$$= \lambda A_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e') = (\lambda A)_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e'). \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

Обозначим: $\delta_i^j(e) = \delta_i^j$ при: e — базис пространства $L,\,i,\,j=\overline{1,N}$. Очевидно, $\delta\in(GL)_2$. Пусть: $e,\,e'$ — базисы пространства $L,\,i',\,j'=\overline{1,N}$. Тогда:

$$\delta_i^j(e)\alpha_i^{j'}(e',e)\alpha_{i'}^i(e,e') = \delta_i^j\alpha_i^{j'}(e',e)\alpha_{i'}^i(e,e') = \alpha_i^{j'}(e',e)\alpha_{i'}^i(e,e') = \delta_{i'}^{j'}(e').$$

Итак, $\delta \in (TL)_1^1$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N$.

Пусть $x \in L$. Очевидно, $[x] \in (TL)_0^1$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e_0 — базис пространства L, p, $q \in \mathbb{Z}_+$.

- 1. Пусть: $A, B \in (TL)_p^q, A(e_0) = B(e_0)$. Тогда A = B.
- 2. Пусть $A_0 \in \mathbb{K}^{(N,q+p)}$. Обозначим:

$$A_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e) = (A_0)_{i_1,\dots,i_p}^{j_1^0,\dots,j_q^0} \alpha_{j_1^0}^{j_1}(e,e_0) \cdots \alpha_{j_q^0}^{j_q}(e,e_0) \alpha_{i_1}^{i_1^0}(e_0,e) \cdots \alpha_{i_p}^{i_p^0}(e_0,e)$$

npu: e- базис пространства $L, i_1, \ldots, i_p, j_1, \ldots, j_q = \overline{1, N}$. Тогда: $A \in (TL)_p^q, A(e_0) = A_0$.

12.4. Тензоры 101

Доказательство.

1. Пусть: e — базис пространства $L,\,i_1,\ldots,i_p,\,j_1,\ldots,j_q=\overline{1,N}.$ Тогда:

$$A_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e) = A_{i_{1},\dots,i_{p}}^{j_{1}^{0},\dots,j_{q}^{0}}(e_{0})\alpha_{j_{1}^{0}}^{j_{1}}(e,e_{0})\cdots\alpha_{j_{q}^{0}}^{j_{q}}(e,e_{0})\alpha_{i_{1}}^{i_{1}^{0}}(e_{0},e)\cdots\alpha_{i_{p}^{0}}^{i_{p}^{0}}(e_{0},e) = B_{i_{1},\dots,i_{p}^{0}}^{j_{1}^{0},\dots,j_{q}^{0}}(e_{0})\alpha_{j_{1}^{0}}^{j_{1}}(e,e_{0})\cdots\alpha_{j_{q}^{0}}^{j_{q}}(e,e_{0})\alpha_{i_{1}}^{i_{1}^{0}}(e_{0},e)\cdots\alpha_{i_{p}^{0}}^{i_{p}^{0}}(e_{0},e) = B_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e).$$

Следовательно, A = B.

2. Очевидно, $A \in (GL)_{q+p}$. Пусть: e, e' — базисы пространства $L, i'_1, \ldots, i'_p, j'_1, \ldots, j'_q = \overline{1, N}$. Тогда:

$$\begin{split} A^{j_1,\dots,j_q}_{i_1,\dots,i_p}(e)\alpha^{j'_1}_{j_1}(e',e)\cdots\alpha^{j'_q}_{j_q}(e',e)\alpha^{i_1}_{i'_1}(e,e')\cdots\alpha^{i_p}_{i'_p}(e,e') = \\ &= \left((A_0)^{j_1^0,\dots,j_0^0}_{i_1^0,\dots,i_p^0}\alpha^{j_1}_{j_1^0}(e,e_0)\cdots\alpha^{j_q}_{j_q^0}(e,e_0)\alpha^{i_1^0}_{i_1}(e_0,e)\cdots\alpha^{i_p}_{i_p}(e_0,e) \right) \\ &\qquad \qquad \alpha^{j'_1}_{j_1}(e',e)\cdots\alpha^{j'_q}_{j_q}(e',e)\alpha^{i_1}_{i'_1}(e,e')\cdots\alpha^{i_p}_{i'_p}(e,e') = \\ &= (A_0)^{j_1^0,\dots,j_0^0}_{i_1^0,\dots,i_p^0}\alpha^{j'_1}_{j_1^0}(e',e_0)\cdots\alpha^{j'_q}_{j_q^0}(e',e_0)\alpha^{i_1^0}_{i'_1}(e_0,e')\cdots\alpha^{i_p^0}_{i'_p}(e_0,e') = A^{j'_1,\dots,j'_q}_{i'_1,\dots,i'_p}(e'). \end{split}$$

Итак, $A \in (TL)_n^q$

Пусть $i_1, \ldots, i_p, j_1, \ldots, j_q = \overline{1, N}$. Тогда:

$$A_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e_{0}) = (A_{0})_{i_{1}^{0},\dots,i_{p}^{0}}^{j_{1}^{0},\dots,j_{q}^{0}} \alpha_{j_{1}^{0}}^{j_{1}}(e_{0},e_{0}) \cdots \alpha_{j_{q}^{0}}^{j_{q}}(e_{0},e_{0}) \alpha_{i_{1}}^{i_{1}^{0}}(e_{0},e_{0}) \cdots \alpha_{i_{p}^{i_{p}^{0}}}^{i_{p}^{0}}(e_{0},e_{0}) =$$

$$= (A_{0})_{i_{1}^{0},\dots,i_{p}^{0}}^{j_{1}^{0},\dots,j_{q}^{0}} \delta_{j_{1}^{0}}^{j_{1}^{0}} \cdots \delta_{j_{q}^{0}}^{j_{q}^{0}} \delta_{i_{1}^{0}}^{i_{1}^{0}} \cdots \delta_{i_{p}^{0}}^{i_{p}^{0}} = (A_{0})_{i_{1},\dots,i_{p}^{0}}^{j_{1},\dots,j_{q}^{0}}.$$

Следовательно, $A(e_0) = A_0$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e_0 — базис пространства L, p, $q \in \mathbb{Z}_+$.

Обозначим: $\varphi(A) = A(e_0)$ при $A \in (TL)_p^q$. Тогда $(TL)_p^q \stackrel{\varphi}{\approx} \mathbb{K}^{(N,q+p)}$. Следовательно: $\dim ((TL)_p^q) = \dim (\mathbb{K}^{(N,q+p)}) = N^{q+p}$.

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

1. Пусть: $p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{p_2}^{q_2}$. Обозначим:

$$(A \otimes B)_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e) = A_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e)B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e)$$

при: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Будем говорить, что $A \otimes B$ — прямое произведение тензоров A, B.

2. Пусть: $p, q \in \mathbb{N}, A \in (TL)_p^q, k = \overline{1,p}, m = \overline{1,q}$. Обозначим:

$$(\langle A \rangle_k^m)_{i_1,\dots,i_{p-1}}^{j_1,\dots,j_{q-1}}(e) = A_{i_1,\dots,i_{k-1},i,i_k,\dots,i_{p-1}}^{j_1,\dots,j_{m-1},i,j_k,\dots,j_{q-1}}(e)$$

при: e — базис пространства $L, i_1, \ldots, i_{p-1}, j_1, \ldots, j_{q-1} = \overline{1, N}$. Будем говорить, что $\langle A \rangle_k^m$ — свёртка тензора A.

3. Пусть: $p, q \in \mathbb{Z}_+, A \in (TL)_p^q, \sigma_1 \in S_p, \sigma_2 \in S_q$. Обозначим:

$$([A]_{\sigma_1}^{\sigma_2})_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e) = A_{i_{\sigma_1(1)},\dots,i_{\sigma_1(p)}}^{j_{\sigma_2(1)},\dots,j_{\sigma_2(q)}}(e)$$

при: e — базис пространства $L, i_1, \ldots, i_p, j_1, \ldots, j_q = \overline{1, N}$. Будем говорить, что $[A]_{\sigma_1}^{\sigma_2}$ — результат транспонирования тензора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

- 1. $\Pi y cm b$: $p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{q_2}^{p_2}$. $Tor \partial a \ A \otimes B \in (TL)_{p_1+p_2}^{q_1+q_2}$. 2. $\Pi y cm b$: $p_1, q_1 \in \mathbb{Z}_+, A_1, A_2 \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{q_2}^{p_2}$. $Tor \partial a \ (A_1 + A_2) \otimes B = (TL)_{p_1+p_2}^{q_2}$ $A_1 \otimes B + A_2 \otimes B$.
- 3. Пусть: $\lambda \in \mathbb{K}$, $p_1, q_1 \in \mathbb{Z}_+$, $A \in (TL)_{p_1}^{q_1}$, $p_2, q_2 \in \mathbb{Z}_+$, $B \in (TL)_{q_2}^{p_2}$. Тогда $(\lambda A) \otimes B =$ $\lambda(A\otimes B)$.
- 4. Пусть: $p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B_1, B_2 \in (TL)_{q_2}^{p_2}$. Тогда $A \otimes (B_1 + B_2) = (TL)_{q_1}^{q_2}$ $A \otimes B_1 + A \otimes B_2$.
- 5. Пусть: $\lambda \in \mathbb{K}$, $p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{q_2}^{p_2}$. Тогда $A \otimes (\lambda B) =$ $\lambda(A\otimes B)$.
- 6. $\Pi ycm_b: p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{p_2}^{q_2}, p_3, q_3 \in \mathbb{Z}_+, C \in (TL)_{p_3}^{q_3}$ $Tor \partial a \ (A \otimes B) \otimes C = A \otimes (B \otimes C).$
 - 7. Пусть: $p, q \in \mathbb{N}, A \in (TL)_p^q, k = \overline{1,p}, m = \overline{1,q}$. Тогда $\langle A \rangle_k^m \in (TL)_{p-1}^{q-1}$.
 - 8. $\Pi y cmb$: $p, q \in \mathbb{N}, A, B \in (TL)_p^q, k = \overline{1,p}, m = \overline{1,q}$. $Tor \partial a \langle A+B \rangle_k^m = \langle A \rangle_k^m + \langle B \rangle_k^m$.
 - 9. Пусть: $\lambda \in \mathbb{K}$, $p, q \in \mathbb{N}$, $A \in (TL)_p^q$, $k = \overline{1,p}$, $m = \overline{1,q}$. Тогда $\langle \lambda A \rangle_k^m = \lambda \langle A \rangle_k^m$.
 - 10. Пусть: $p, q \in \mathbb{Z}_+, A \in (TL)_p^q, \sigma_1 \in S_p, \sigma_2 \in S_q$. Тогда $[A]_{\sigma_1}^{\sigma_2} \in (TL)_p^q$.
 - 11. $\Pi y cmb$: $p, q \in \mathbb{Z}_+, A, B \in (TL)_p^q, \sigma_1 \in S_p, \sigma_2 \in S_q$. $Tor \partial a [A+B]_{\sigma_1}^{\sigma_2} = [A]_{\sigma_1}^{\sigma_2} + [B]_{\sigma_1}^{\sigma_2}$.
 - 12. $\Pi y cm b$: $\lambda \in \mathbb{K}$, $p, q \in \mathbb{Z}_+$, $A \in (TL)_p^q$, $\sigma_1 \in S_p$, $\sigma_2 \in S_q$. $Tor \partial a \ [\lambda A]_{\sigma_1}^{\tilde{\sigma}_2} = \lambda [\hat{A}]_{\sigma_1}^{\sigma_2}$.
 - 13. $\Pi y cm b$: $p, q \in \mathbb{Z}_+, A \in (TL)_p^q, \sigma_1, \sigma_3 \in S_p, \sigma_2, \sigma_4 \in S_q$. $Tor \partial a \left[[A]_{\sigma_1}^{\sigma_2} \right]_{\sigma_3}^{\sigma_4} = [A]_{\sigma_3 \sigma_1}^{\sigma_4 \sigma_2}$.

Доказательство.

1. Пусть: e, e' — базисы пространства $L, i'_1, \ldots, i'_{p_1+p_2}, j'_1, \ldots, j'_{q_1+q_2} = \overline{1, N}$. Тогда:

$$(A \otimes B)_{i_{1},\dots,i_{p_{1}+p_{2}}}^{j_{1},\dots,j_{q_{1}+q_{2}}}(e)\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q_{1}+q_{2}}}^{j'_{q_{1}+q_{2}}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p_{1}+p_{2}}}^{i_{p_{1}+p_{2}}}(e,e') =$$

$$= (A_{i_{1},\dots,i_{p_{1}}}^{j_{1},\dots,j_{q_{1}}}(e)B_{i_{p_{1}+1},\dots,i_{p_{1}+p_{2}}}^{j_{q_{1}+q_{2}}}(e))\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q_{1}+q_{2}}}^{j'_{q_{1}+q_{2}}}(e',e)\alpha_{i'_{1}}^{i_{1}}(e,e')\cdots\alpha_{i'_{p_{1}+p_{2}}}^{i_{p_{1}+p_{2}}}(e,e') =$$

$$= A_{i'_{1},\dots,i'_{p_{1}}}^{j'_{1},\dots,j'_{q_{1}}}(e')B_{i'_{p_{1}+1},\dots,i'_{p_{1}+p_{2}}}^{j'_{q_{1}+1},\dots,j'_{q_{1}+q_{2}}}(e') = (A \otimes B)_{i'_{1},\dots,i'_{p_{1}+p_{2}}}^{j'_{1},\dots,j'_{q_{1}+q_{2}}}(e').$$

2. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Тогда:

$$\begin{split} \big((A_1+A_2)\otimes B\big)_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e) &= \big((A_1)_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e) + (A_2)_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e)\big)B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e) &= \\ &= (A_1)_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e)B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e) + (A_2)_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e)B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e) &= \\ &= (A_1\otimes B + A_2\otimes B)_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e). \end{split}$$

3. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Тогда:

$$((\lambda A) \otimes B)_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e) = (\lambda A_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e)) B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e) =$$

$$= \lambda (A_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e) B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e)) = (\lambda (A \otimes B))_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e).$$

4. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Тогда:

$$(A \otimes (B_1 + B_2))_{i_1, \dots, i_{p_1 + p_2}}^{j_1, \dots, j_{q_1 + q_2}}(e) = A_{i_1, \dots, i_{p_1}}^{j_1, \dots, j_{q_1}}(e) ((B_1)_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + 1}, \dots, j_{q_1 + q_2}}(e) + (B_2)_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + 1}, \dots, j_{q_1 + q_2}}(e)) =$$

$$= A_{i_1, \dots, i_{p_1}}^{j_1, \dots, j_{q_1}}(e) (B_1)_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + 1}, \dots, j_{q_1 + q_2}}(e) + A_{i_1, \dots, i_{p_1}}^{j_1, \dots, j_{q_1}}(e) (B_2)_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + 1}, \dots, j_{q_1 + q_2}}(e) =$$

$$= (A \otimes B_1 + A \otimes B_2)_{i_1, \dots, i_{p_1 + p_2}}^{j_1, \dots, j_{q_1 + q_2}}(e).$$

12.4. Тензоры 103

5. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Тогда:

$$(A \otimes (\lambda B))_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e) = A_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e) (\lambda B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e)) =$$

$$= \lambda (A_{i_1,\dots,i_{p_1}}^{j_1,\dots,j_{q_1}}(e) B_{i_{p_1+1},\dots,i_{p_1+p_2}}^{j_{q_1+1},\dots,j_{q_1+q_2}}(e)) = (\lambda (A \otimes B))_{i_1,\dots,i_{p_1+p_2}}^{j_1,\dots,j_{q_1+q_2}}(e).$$

6. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2+p_3}, j_1, \ldots, j_{q_1+q_2+q_3} = \overline{1, N}$. Тогда:

$$\big((A \otimes B) \otimes C \big)_{i_1, \dots, i_{p_1 + p_2 + p_3}}^{j_1, \dots, j_{q_1 + q_2 + q_3}}(e) = \big(A_{i_1, \dots, i_{p_1}}^{j_1, \dots, j_{q_1}}(e) B_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + 1}, \dots, j_{q_1 + q_2}}(e) \big) C_{i_{p_1 + p_2 + 1}, \dots, i_{p_1 + p_2 + p_3}}^{j_{q_1 + q_2 + q_3}}(e) = \\ = A_{i_1, \dots, i_{p_1}}^{j_1, \dots, j_{q_1}}(e) \big(B_{i_{p_1 + 1}, \dots, i_{p_1 + p_2}}^{j_{q_1 + q_2 + q_3}}(e) C_{i_{p_1 + p_2 + 1}, \dots, i_{p_1 + p_2 + p_3}}^{j_{q_1 + q_2 + q_3}}(e) \big) = \big(A \otimes (B \otimes C) \big)_{i_1, \dots, i_{p_1 + p_2 + p_3}}^{j_1, \dots, j_{q_1 + q_2 + q_3}}(e).$$

7. Пусть: $e,\,e'$ — базисы пространства $L,\,i_1',\ldots,i_{p-1}',\,j_1',\ldots,j_{q-1}'=\overline{1,N}.$ Тогда:

8. Пусть: e — базис пространства $L, i_1, \ldots, i_{p-1}, j_1, \ldots, j_{q-1} = \overline{1, N}$. Тогда:

$$(\langle A+B\rangle_k^m)_{i_1,\dots,i_{p-1}}^{j_1,\dots,j_{q-1}}(e) = A_{i_1,\dots,i_{k-1},i,i_k,\dots,i_{p-1}}^{j_1,\dots,j_{m-1},i,j_m,\dots,j_{q-1}}(e) + B_{i_1,\dots,i_{k-1},i,i_k,\dots,i_{p-1}}^{j_1,\dots,j_{m-1},i,j_m,\dots,j_{q-1}}(e) = = (\langle A\rangle_k^m + \langle B\rangle_k^m)_{i_1,\dots,i_{p-1}}^{j_1,\dots,j_{q-1}}(e).$$

9. Пусть: e — базис пространства $L,\,i_1,\ldots,i_{p-1},\,j_1,\ldots,j_{q-1}=\overline{1,N}.$ Тогда:

$$\left(\langle \lambda A \rangle_k^m \right)_{i_1, \dots, i_{p-1}}^{j_1, \dots, j_{q-1}}(e) = \lambda A_{i_1, \dots, i_{k-1}, i, i_k, \dots, i_{p-1}}^{j_1, \dots, j_{q-1}}(e) = \left(\lambda \langle A \rangle_k^m \right)_{i_1, \dots, i_{p-1}}^{j_1, \dots, j_{q-1}}(e).$$

10. Пусть: e, e' — базисы пространства $L, i'_1, \ldots, i'_p, j'_1, \ldots, j'_q = \overline{1, N}$. Тогда:

$$\begin{split} \left([A]_{\sigma_{1}}^{\sigma_{2}}\right)_{i_{1},\dots,i_{p}}^{j_{1},\dots,j_{q}}(e)\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i_{1}'}^{i_{1}}(e,e')\cdots\alpha_{i_{p}'}^{i_{p}}(e,e') = \\ &= A_{i_{\sigma_{1}(1)},\dots,i_{\sigma_{1}(p)}}^{j_{\sigma_{2}(1)},\dots,j_{\sigma_{2}(q)}}(e)\alpha_{j_{1}}^{j'_{1}}(e',e)\cdots\alpha_{j_{q}}^{j'_{q}}(e',e)\alpha_{i_{1}'}^{i_{1}}(e,e')\cdots\alpha_{i_{p}'}^{i_{p}}(e,e') = \\ &= A_{i'_{\sigma_{1}(1)},\dots,i'_{\sigma_{1}(p)}}^{j'_{\sigma_{2}(1)},\dots,j'_{\sigma_{2}(q)}}(e') = \left([A]_{\sigma_{1}}^{\sigma_{2}}\right)_{i'_{1},\dots,i'_{p}}^{j'_{1},\dots,j'_{q}}(e'). \end{split}$$

11. Пусть: e — базис пространства $L,\,i_1,\ldots,i_p,\,j_1,\ldots,j_q=\overline{1,N}.$ Тогда:

$$\left([A+B]_{\sigma_1}^{\sigma_2}\right)_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e) = A_{i_{\sigma_1(1)},\dots,i_{\sigma_1(p)}}^{j_{\sigma_2(1)},\dots,j_{\sigma_2(q)}}(e) + B_{i_{\sigma_1(1)},\dots,i_{\sigma_1(p)}}^{j_{\sigma_2(1)},\dots,j_{\sigma_2(q)}}(e) = \left([A]_{\sigma_1}^{\sigma_2} + [B]_{\sigma_1}^{\sigma_2}\right)_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e).$$

12. Пусть: e — базис пространства $L,\,i_1,\ldots,i_p,\,j_1,\ldots,j_q=\overline{1,N}.$ Тогда:

$$([\lambda A]_{\sigma_1}^{\sigma_2})_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e) = \lambda A_{i_{\sigma(1)},\dots,i_{\sigma(p)}}^{j_{\sigma_2(1)},\dots,j_{\sigma_2(q)}}(e) = \lambda ([A]_{\sigma_1}^{\sigma_2})_{i_1,\dots,i_p}^{j_1,\dots,j_q}(e).$$

13. Пусть: e — базис пространства $L, j_1, \ldots, j_q = \overline{1, N}, i_1, \ldots, i_p = \overline{1, N}$. Тогда:

$$\begin{split} \left(\left[[A]_{\sigma_{1}}^{\sigma_{2}} \right]_{\sigma_{3}}^{\sigma_{4}} \right)_{i_{1}, \dots, i_{p}}^{j_{1}, \dots, j_{q}}(e) &= \left([A]_{\sigma_{1}}^{\sigma_{2}} \right)_{i_{\sigma_{3}(1)}, \dots, i_{\sigma_{3}(p)}}^{j_{\sigma_{4}(1)}, \dots, j_{\sigma_{4}(q)}}(e) = A_{i_{\sigma_{3}(\sigma_{1}(1))}, \dots, i_{\sigma_{3}(\sigma_{1}(p))}}^{j_{\sigma_{4}(\sigma_{2}(1))}, \dots, j_{\sigma_{4}(\sigma_{2}(q))}}(e) = \\ A_{i_{(\sigma_{3}\sigma_{1})(1)}, \dots, i_{(\sigma_{3}\sigma_{1})(p)}}^{j_{(\sigma_{4}\sigma_{2})(1)}, \dots, j_{\sigma_{4}(\sigma_{2}(p))}}(e) &= \left([A]_{\sigma_{3}\sigma_{1}}^{\sigma_{4}\sigma_{2}} \right)_{i_{1}, \dots, i_{p}}^{j_{1}, \dots, j_{q}}(e). \end{split}$$

Следовательно, $[A]_{\sigma_1}^{\sigma_2}]_{\sigma_3}^{\sigma_4} = [A]_{\sigma_3\sigma_1}^{\sigma_4\sigma_2}$

Замечание (след и определитель тензора порядка $\binom{1}{1}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in (TL)^1_1$.

Пусть e — базис пространства L. Тогда: $\operatorname{tr}(A(e)) = A_i^i(e) = \langle A \rangle_1^1(e)$.

Пусть e, e' — базисы пространства L. Так как $\langle A \rangle_1^1 \in (TL)_0^0$, то: $\operatorname{tr}(A(e')) = \langle A \rangle_1^1(e') = \langle A \rangle_1^1(e) = \operatorname{tr}(A(e))$.

Выберем некоторый базис e пространства L. Обозначим, $\operatorname{tr}(A) = \operatorname{tr}(A(e))$.

Пусть: e, e' — базисы пространства $L, i', j' = \overline{1, N}$. Тогда:

$$A_{i'}^{j'}(e') = A_{i}^{j}(e)\alpha_{i'}^{j'}(e',e)\alpha_{i'}^{i}(e,e') = \alpha_{i'}^{j'}(e',e)A_{i}^{j}(e)\alpha_{i'}^{i}(e,e') = \left(\alpha(e',e)A(e)\alpha(e,e')\right)_{i'}^{j'}.$$

Следовательно, $A(e') = \alpha(e', e)A(e)\alpha(e, e')$.

Пусть e, e' — базисы пространства L. Тогда:

$$\det(A(e')) = \det(\alpha(e', e)A(e)\alpha(e, e')) = \det(\alpha(e', e)) \det(A(e)) \det(\alpha(e, e')) = \det(A(e)) \det(\alpha(e, e')) \det(\alpha(e', e)) = \det(A(e)) \det(\alpha(e, e')\alpha(e', e)) = \det(A(e)) \det(\tilde{I}) = \det(A(e)) 1 = \det(A(e)).$$

Выберем некоторый базис e пространства L. Обозначим, $\det(A) = \det(A(e))$.

12.5. Возможные обобщения

- 1. Можно рассматривать не наборы чисел из поля \mathbb{K} , а наборы объектов более сложной природы. Например, базис e линейного пространства L можно интерпретировать как тензор порядка $\binom{0}{1}$.
- 2. Можно рассматривать тензоры, у которых по крайней мере часть индексов преобразуется с помощью матриц $\{\overline{\alpha_{i'}^i(e,e')}\}_{i'=\overline{1,N}}^{i=\overline{1,N}}, \{\overline{\alpha_{i'}^{i'}(e',e)}\}_{i=\overline{1,N}}^{i'=\overline{1,N}}$ (здесь: $\overline{z}=\mathrm{Re}(z)-i\mathrm{Im}(z)$ при $z\in\mathbb{C}$). Например, матрица полуторалинейной формы преобразуется по закону: $A_{i'j'}(e')=A_{ij}(e)\overline{\alpha_{i'}^i(e,e')}\alpha_{i'}^j(e,e')$ при $i',j'=\overline{1,N}$.
- 3. Можно рассматривать геометрические объекты, определённые не для всех базисов линейного пространства.
- 4. Можно рассматривать геометрические объекты, у которых разные индексы относятся к разным пространствам. Например, матрицу линейного оператора $A\colon L_1 \implies L_2$ можно интерпретировать как тензор порядка $\binom{0}{1}$ в пространстве L_1 и тензор порядка $\binom{1}{0}$ в пространстве L_2 .

12.6. Факультативный материал

Замечание. Пусть $p_1, p_2 \in \mathbb{Z}_+$. Обозначим: $\sigma(k) = p_2 + k$ при $k = \overline{1, p_1}; \ \sigma(k) = -p_1 + k$ при $k = \overline{p_1 + 1, p_1 + p_2}$. Очевидно, $\sigma \in S_{p_1 + p_2}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

Пусть: $p_1, q_1 \in \mathbb{Z}_+, A \in (TL)_{p_1}^{q_1}, p_2, q_2 \in \mathbb{Z}_+, B \in (TL)_{p_2}^{q_2}$. Обозначим: $\sigma_1(k) = p_2 + k$ при $k = \overline{1, p_1}$; $\sigma_1(k) = -p_1 + k$ при $k = \overline{p_1 + 1, p_1 + p_2}$; $\sigma_2(k) = q_2 + k$ при $k = \overline{1, q_1}$; $\sigma_2(k) = -q_1 + k$ при $k = \overline{q_1 + 1, q_1 + q_2}$. Тогда $B \otimes A = [A \otimes B]_{\sigma_1}^{\sigma_2}$.

Доказательство. Пусть: e — базис пространства $L, i_1, \ldots, i_{p_1+p_2}, j_1, \ldots, j_{q_1+q_2} = \overline{1, N}$. Тогда:

$$(B \otimes A)_{i_{1},\dots,i_{p_{1}+p_{2}}}^{j_{1},\dots,j_{q_{1}+q_{2}}}(e) = B_{i_{1},\dots,i_{p_{2}}}^{j_{1},\dots,j_{q_{2}}}(e) A_{i_{p_{2}+1},\dots,i_{p_{2}+p_{1}}}^{j_{q_{2}+1},\dots,j_{q_{2}+q_{1}}}(e) = A_{i_{p_{2}+1},\dots,i_{p_{2}+p_{1}}}^{j_{q_{2}+1},\dots,j_{q_{2}+q_{1}}}(e) B_{i_{1},\dots,i_{p_{2}}}^{j_{1},\dots,j_{q_{2}}}(e) = A_{i_{\sigma_{1}(1)},\dots,i_{\sigma_{1}(p_{1})}}^{j_{\sigma_{2}(1)},\dots,j_{\sigma_{2}(q_{1}+q_{2})}}(e) = ([A \otimes B]_{\sigma_{1}}^{\sigma_{2}})_{i_{1},\dots,i_{p_{1}+p_{2}}}^{j_{1},\dots,j_{q_{1}+q_{2}}}(e). \quad \Box$$

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $r \in \mathbb{Z}$, $r \geqslant 3$, p_k , $q_k \in \mathbb{Z}_+$, $A_k \in (TL)_{p_k}^{q_k}$ при $k = \overline{1,r}$. Обозначим: $\tilde{p}_k = \sum_{m=1}^k p_m$, $\tilde{q}_k = \sum_{m=1}^k q_m$ при $k = \overline{1,r}$. Обозначим:

$$(A_1 \otimes \cdots \otimes A_r)_{i_1,\dots,i_{\bar{p}_r}}^{j_1,\dots,j_{\bar{q}_r}}(e) = (A_1)_{i_1,\dots,i_{\bar{p}_1}}^{j_1,\dots,j_{\bar{q}_1}}(e)(A_2)_{i_{\bar{p}_1}+1,\dots,i_{\bar{p}_2}}^{j_{\bar{q}_1}+1,\dots,j_{\bar{q}_2}}(e) \cdots (A_r)_{i_{\bar{p}_r-1}+1,\dots,i_{\bar{p}_r}}^{j_{\bar{q}_r-1}+1,\dots,j_{\bar{q}_r}}(e)$$

при: e — базис пространства L, $i_1, \ldots, i_{\tilde{p}_r}, j_1, \ldots, j_{\tilde{q}_r} = \overline{1, N}$. Вудем говорить, что $A_1 \otimes \cdots \otimes A_r$ — прямое произведение тензоров A_1, \ldots, A_r .

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $r \in \mathbb{Z}$, $r \geqslant 3$, p_k , $q_k \in \mathbb{Z}_+$, $A_k \in (TL)_{p_k}^{q_k}$ при $k = \overline{1, r}$. Тогда: $A_1 \otimes \cdots \otimes A_r = (A_1 \otimes \cdots \otimes A_{r-1}) \otimes A_r$, $A_1 \otimes \cdots \otimes A_r = A_1 \otimes (A_2 \otimes \cdots \otimes A_r)$.

Доказательство. Обозначим: $\tilde{p}_k = \sum\limits_{m=1}^k p_m, \ \tilde{q}_k = \sum\limits_{m=1}^k q_m \ \text{при } k = \overline{1,r}.$

1. Пусть: e — базис пространства $L,\,i_1,\ldots,i_{\tilde p_r},\,j_1,\ldots,j_{\tilde q_r}=\overline{1,N}$. Тогда:

$$((A_{1} \otimes \cdots \otimes A_{r-1}) \otimes A_{r})_{i_{1},\dots,i_{\tilde{p}_{r}}}^{j_{1},\dots,j_{\tilde{q}_{r}}}(e) =$$

$$= ((A_{1})_{i_{1},\dots,i_{\tilde{p}_{1}}}^{j_{1},\dots,j_{\tilde{q}_{1}}}(e) \cdots (A_{r-1})_{i_{\tilde{p}_{r-2}+1},\dots,i_{\tilde{p}_{r-1}}}^{j_{\tilde{q}_{r-2}+1},\dots,j_{\tilde{q}_{r-1}}}(e))(A_{r})_{i_{\tilde{p}_{r-1}+1},\dots,i_{\tilde{p}_{r}}}^{j_{\tilde{q}_{r-1}+1},\dots,j_{\tilde{q}_{r}}}(e) =$$

$$= (A_{1})_{i_{1},\dots,i_{\tilde{p}_{1}}}^{j_{1},\dots,j_{\tilde{q}_{1}}}(e) \cdots (A_{r})_{i_{\tilde{p}_{r-1}+1},\dots,i_{\tilde{p}_{r}}}^{j_{\tilde{q}_{r-1}+1},\dots,j_{\tilde{q}_{r}}}(e) = (A_{1} \otimes \cdots \otimes A_{r})_{i_{1},\dots,i_{\tilde{p}_{r}}}^{j_{1},\dots,j_{\tilde{q}_{r}}}(e).$$

2. Пусть: e — базис пространства $L,\,i_1,\ldots,i_{\tilde{p}_r},\,j_1,\ldots,j_{\tilde{q}_r}=\overline{1,N}.$ Тогда:

$$(A_{1} \otimes (A_{2} \otimes \cdots \otimes A_{r}))_{i_{1},\dots,i_{\tilde{p}_{r}}}^{j_{1},\dots,j_{\tilde{q}_{r}}}(e) = (A_{1})_{i_{1},\dots,i_{\tilde{p}_{1}}}^{j_{1},\dots,j_{\tilde{q}_{1}}}(e)((A_{2})_{i_{\tilde{p}_{1}+1},\dots,i_{\tilde{p}_{2}}}^{j_{\tilde{q}_{1}+1},\dots,j_{\tilde{q}_{2}}}(e) \cdots (A_{r})_{i_{\tilde{p}_{r-1}+1},\dots,i_{\tilde{p}_{r}}}^{j_{\tilde{q}_{r-1}+1},\dots,j_{\tilde{q}_{r}}}(e)) = (A_{1} \otimes \cdots \otimes A_{r})_{i_{1},\dots,i_{\tilde{p}_{r}}}^{j_{1},\dots,j_{\tilde{q}_{r}}}(e). \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $p, q \in \mathbb{Z}_+$.

- 1. Обозначим через $(\Omega L)_p^q$ множество всех тензоров A, удовлетворяющих условиям: $A \in (TL)_p^q$; $[A]_{\sigma_1}^{\sigma_2} = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) A$ при: $\sigma_1 \in S_p$, $\sigma_2 \in S_q$.
 - 2. Пусть $A \in (\Omega L)_p^q$. Будем говорить, что A антисимметричный тензор порядка $\binom{q}{p}$.
 - 3. Очевидно, $(\Omega L)_p^q$ подпространство пространства $(TL)_p^q$.

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $p, q \in \mathbb{Z}_+$, $A \in (TL)^q_p$. Обозначим:

$$[A] = \sum_{\substack{\sigma_1 \in S_p \\ \sigma_2 \in S_q}} \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) [A]_{\sigma_1}^{\sigma_2}.$$

Геометрический объект [A] называют результатом альтернирования тензора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $p, q \in \mathbb{Z}_+$, $A \in (TL)^q_p$. Тогда $[A] \in (\Omega L)^q_p$.

Доказательство. Пусть: $\sigma_1 \in S_p, \, \sigma_2 \in S_q$. Тогда:

$$\begin{split} \left[[A] \right]_{\sigma_1}^{\sigma_2} &= \left[\sum_{\substack{\sigma_3 \in S_p \\ \sigma_4 \in S_q}} \operatorname{sgn}(\sigma_3) \operatorname{sgn}(\sigma_4) [A]_{\sigma_3}^{\sigma_4} \right]_{\sigma_1}^{\sigma_2} = \sum_{\substack{\sigma_3 \in S_p \\ \sigma_4 \in S_q}} \operatorname{sgn}(\sigma_3) \operatorname{sgn}(\sigma_4) [A]_{\sigma_1 \sigma_3}^{\sigma_2 \sigma_4} = \\ & \left[\sigma_5 = \sigma_1 \sigma_3, \ \sigma_6 = \sigma_2 \sigma_4 \right] = \\ & \sum_{\substack{\sigma_5 \in S_p \\ \sigma_6 \in S_q}} \operatorname{sgn}(\sigma_1^{-1} \sigma_5) \operatorname{sgn}(\sigma_2^{-1} \sigma_6) [A]_{\sigma_5}^{\sigma_6} = \\ \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) \sum_{\substack{\sigma_5 \in S_p \\ \sigma_6 \in S_q}} \operatorname{sgn}(\sigma_5) \operatorname{sgn}(\sigma_6) [A]_{\sigma_5}^{\sigma_6} = \operatorname{sgn}(\sigma_1) \operatorname{sgn}(\sigma_2) [A]. \end{split}$$

Лекция 13. Матрица линейного оператора

Oпределение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e — базис пространства L_1 , f — базис пространства L_2 , A: $L_1 \Longrightarrow L_2$.

Обозначим: $[A]_i^j(f,e) = [A(e_i)]^j(f)$ при: $i = \overline{1,N_1}, j = \overline{1,N_2}$. Тогда $[A](f,e) \in \mathbb{K}^{N_2 \times N_1}$. Будем говорить, что [A](f,e) — матрица оператора A в базисах f, e.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e — базис пространства L_1 , f — базис пространства L_2 , $A: L_1 \Longrightarrow L_2$.

Пусть $i = 1, N_1$. Тогда:

$$[A]_{i}(f,e) = \begin{pmatrix} [A]_{i}^{1}(f,e) \\ \vdots \\ [A]_{i}^{N_{2}}(f,e) \end{pmatrix} = \begin{pmatrix} [A(e_{i})]^{1}(f) \\ \vdots \\ [A(e_{i})]^{N_{2}}(f) \end{pmatrix} = [A(e_{i})](f).$$

Пусть $i = \overline{1, N_1}$. Тогда:

$$A(e_i) = [A(e_i)]^j(f)f_j = [A]_i^j(f,e)f_j.$$

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, A: $L \implies L$.

Обозначим: $[A]_i^j(e) = [A(e_i)]^j(e)$ при $i, j = \overline{1, N}$. Тогда $[A](e) \in \mathbb{K}^{N \times N}$. Будем говорить, что [A](e) — матрица оператора A в базисе e.

3амечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства $L, A \colon L \implies L$.

Пусть $i = \overline{1, N}$. Тогда:

$$[A]_{i}(e) = \begin{pmatrix} [A]_{i}^{1}(e) \\ \vdots \\ [A]_{i}^{N}(e) \end{pmatrix} = \begin{pmatrix} [A(e_{i})]^{1}(e) \\ \vdots \\ [A(e_{i})]^{N}(f) \end{pmatrix} = [A(e_{i})](e).$$

Пусть $i = \overline{1, N}$. Тогда:

$$A(e_i) = \left[A(e_i) \right]^j (e) e_j = \left[A \right]^j_i (e) e_j.$$

Очевидно, [A](e) = [A](e, e).

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e — базис пространства L_1 , f — базис пространства L_2 .

Пусть: $i = \overline{1, N_1}, \ j = \overline{1, N_2}$. Тогда: $[\Theta]_i^j(f,e) = [\Theta e_i]^j(f) = [\theta_2]^j(f) = 0 = \tilde{\Theta}_i^j$. Следовательно, $[\Theta](f,e) = \tilde{\Theta}$ (здесь $\tilde{\Theta}$ — нулевая матрица из множества $\mathbb{K}^{N_2 \times N_1}$).

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N$.

Пусть e, f — базисы пространства L. Пусть $i, j = \overline{1, N}$. Тогда: $[I]_i^j(f, e) = [Ie_i]^j(f) = [e_i]^j(f) = \alpha_i^j(f, e)$. Следовательно, $[I](f, e) = \alpha(f, e)$.

Пусть e — базис пространства L. Тогда: $[I](e) = [I](e,e) = \alpha(e,e) = \tilde{I}$ (здесь \tilde{I} — единичная матрица из множества $\mathbb{K}^{N\times N}$).

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in$ \mathbb{N} , $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e базис пространства L_1 , f — базис пространства L_2 .

- 1. Пусть $A \in \text{Lin}(L_1, L_2)$. Тогда: $Ax = [A]_i^{\mathfrak{I}}(f, e)[x]^i(e)f_j$ при $x \in L_1$.
- 2. $\Pi y cmb$: $Q \in \mathbb{K}^{N_2 \times N_1}$, $Ax = Q_i^j[x]^i(e)f_i$ $npu \ x \in L_1$. $Tor \partial a$: $A \in \text{Lin}(L_1, L_2)$, [A](f, e) =
- 3. Пусть: $A: L_1 \implies L_2, A$ полулинейный оператор. Тогда: $Ax = [A]_i^j(f,e)[x]^i(e)f_i$ $npu \ x \in L_1.$
- 4. Пусть: $Q \in \mathbb{K}^{N_2 \times N_1}$, $Ax = Q_i^j \overline{[x]^i(e)} f_j$ при $x \in L_1$. Тогда: $A \colon L_1 \implies L_2$, A полулинейный оператор, [A](f,e) = Q.

Доказательство.

1. Очевидно, $[A](f,e) \in \mathbb{K}^{N_2 \times N_1}$. Пусть $x \in L_1$. Тогда:

$$Ax = A([x]^{i}(e)e_{i}) = [x]^{i}(e)A(e_{i}) = [x]^{i}(e)([A]^{j}_{i}(f,e)f_{j}) = [A]^{j}_{i}(f,e)[x]^{i}(e)f_{j}.$$

2. Очевидно, $A: L_1 \implies L_2$. Пусть $x, y \in L_1$. Тогда:

$$A(x+y) = Q_i^j [x+y]^i(e) f_j = Q_i^j ([x](e) + [y](e))^i f_j = Q_i^j ([x]^i(e) + [y]^i(e)) f_j =$$

$$= Q_i^j [x]^i(e) f_j + Q_i^j [y]^i(e) f_j = Ax + Ay.$$

Пусть: $\lambda \in \mathbb{K}$, $x \in L_1$. Тогда:

$$A(\lambda x) = Q_i^j[\lambda x]^i(e)f_j = Q_i^j(\lambda[x](e))^i f_j = Q_i^j(\lambda[x]^i(e))f_j = \lambda(Q_i^j[x]^i(e)f_j) = \lambda A(x).$$

Итак, $A \in Lin(L_1, L_2)$.

Пусть $i = \overline{1, N_1}$. Тогда $Ae_i = [A]_i^j(f, e)f_i$. С другой стороны:

$$Ae_i = Q_k^j [e_i]^k (e) f_j = Q_k^j \delta_i^k f_j = Q_i^j f_j.$$

Тогда: $[A]_i^j(f,e)=Q_i^j$ при $j=\overline{1,N_2}$. Следовательно, [A](f,e)=Q. 3. Очевидно, $[A](f,e)\in\mathbb{K}^{N_2\times N_1}$. Пусть $x\in L_1$. Тогда:

$$Ax = A([x]^i(e)e_i) = \overline{[x]^i(e)}A(e_i) = \overline{[x]^i(e)}([A]^j_i(f,e)f_j) = [A]^j_i(f,e)\overline{[x]^i(e)}f_j.$$

4. Очевидно, $A: L_1 \implies L_2$. Пусть $x, y \in L_1$. Тогда:

$$A(x+y) = Q_i^j \overline{[x+y]^i(e)} f_j = Q_i^j \overline{([x](e)+[y](e))^i} f_j = Q_i^j \overline{([x]^i(e)+[y]^i(e))} f_j = Q_i^j \overline{([x]^i(e)+[y]^i(e))} f_j = Q_i^j \overline{([x]^i(e)+[y]^i(e))} f_j = Q_i^j \overline{[x]^i(e)} f_j + Q_i^j \overline{[y]^i(e)} f_j = Ax + Ay.$$

Пусть: $\lambda \in \mathbb{K}$, $x \in L_1$. Тогда:

$$A(\lambda x) = Q_i^j \overline{[\lambda x]^i(e)} f_j = Q_i^j \overline{(\lambda[x](e))^i} f_j = Q_i^j \overline{(\lambda[x]^i(e))} f_j = Q_i^j \overline{(\overline{\lambda} \cdot \overline{[x]^i(e)})} f_j = \overline{\lambda} A(x).$$

Итак: $A: L_1 \implies L_2, A$ — полулинейный оператор.

Пусть $i = \overline{1, N_1}$. Очевидно, $Ae_i = [A]_i^{\jmath}(f, e)f_i$. С другой стороны:

$$Ae_i = Q_k^j \overline{[e_i]^k(e)} f_j = Q_k^j \overline{\delta_i^k} f_j = Q_k^j \delta_i^k f_j = Q_i^j f_j.$$

Тогда: $[A]_i^j(f,e) = Q_i^j$ при $j = \overline{1, N_2}$. Следовательно, [A](f,e) = Q.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e — базис пространства L_1 , f — базис пространства L_2 , $A \in \operatorname{Lin}(L_1, L_2)$, Q = [A](f, e).

Пусть $x \in L_1$. Тогда $A(x) = [A(x)]^j(f)f_j$. С другой стороны:

$$A(x) = Q_i^j[x]^i(e)f_j = (Q_i^j[x]^i(e))f_j = (Q[x](e))^j f_j.$$

Тогда: $[A(x)]^j(f) = (Q[x](e))^j$ при $j = \overline{1, N_2}$. Следовательно, [A(x)](f) = Q[x](e). Пусть $x \in L_1$. Тогда:

$$A(x) = Q_i^j[x]^i(e)f_j = (Q_i^j[x]^i(e))f_j = (Q[x](e))^j f_j = (Qh_e(x))^j f_j = (\hat{Q}(h_ex))^j f_j = h_f^{-1}(\hat{Q}(h_ex)) = (h_f^{-1}\hat{Q}h_e)x.$$

Следовательно:

$$A = h_f^{-1} \hat{Q} h_e.$$

Очевидно:

$$R(A) = A[L_1] = (h_f^{-1}\hat{Q}h_e)[L_1] = h_f^{-1}\Big[\hat{Q}\big[h_e[L_1]\big]\Big] = h_f^{-1}\Big[\hat{Q}\big[\mathbb{K}^{N_1}\big]\Big] = h_f^{-1}\big[L(Q_1,\dots,Q_{N_1})\big] = L(h_f^{-1}Q_1,\dots,h_f^{-1}Q_{N_1}).$$

Так как $\mathbb{K}^{N_2} \stackrel{h_f^{-1}}{\approx} L_2$, то:

$$\operatorname{rank}(A) = \dim(R(A)) = \dim(h_f^{-1}[L(Q_1, \dots, Q_{N_1})]) = \dim(L(Q_1, \dots, Q_{N_1})) = \operatorname{rank}(Q).$$

Пусть $x \in \ker(A)$. Тогда:

$$x \in L_1, Ax = \theta_2;$$

 $x \in L_1, (h_f^{-1}\hat{Q}h_e)x = \theta_2;$
 $x \in L_1, h_f^{-1}(\hat{Q}(h_ex)) = \theta_2;$
 $x \in L_1, \hat{Q}(h_ex) = \tilde{\theta}_2.$

Обозначим, $\tilde{x} = h_e x$. Тогда:

$$x \in L_1, \ \tilde{x} = h_e x, \ \hat{Q}\tilde{x} = \tilde{\theta}_2;$$
$$\tilde{x} \in \mathbb{K}^{N_1}, \ x = h_e^{-1}\tilde{x}, \ \hat{Q}\tilde{x} = \tilde{\theta}_2;$$
$$\tilde{x} \in \ker(\hat{Q}), \ x = h_e^{-1}\tilde{x};$$
$$x \in h_e^{-1} [\ker(\hat{Q})].$$

Пусть $x \in h_e^{-1}[\ker(\hat{Q})]$. Тогда существует столбец \tilde{x} , удовлетворяющий условиям: $\tilde{x} \in \ker(\hat{Q}), x = h_e^{-1}\tilde{x}$. Следовательно:

$$\tilde{x} \in \mathbb{K}^{N_1}, \ x = h_e^{-1} \tilde{x}, \ \hat{Q} \tilde{x} = \tilde{\theta}_2;$$

 $x \in L_1, \ \tilde{x} = h_e x, \ \hat{Q} \tilde{x} = \tilde{\theta}_2;$

$$x \in L_1, \, \hat{Q}(h_e x) = \tilde{\theta}_2;$$

$$x \in L_1, \, h_f^{-1}(\hat{Q}(h_e x)) = \theta_2;$$

$$x \in L_1, \, (h_f^{-1}\hat{Q}h_e)x = \theta_2;$$

$$x \in L_1, \, Ax = \theta_2;$$

$$x \in \ker(A).$$

Итак, $\ker(A) = h_e^{-1} [\ker(\hat{Q})].$

Так как $\mathbb{K}^{N_1} \overset{h_e^{-1}}{\approx} L_1$, то:

$$\dim(\ker(A)) = \dim(h_e^{-1}[\ker(\hat{Q})]) = \dim(\ker(\hat{Q})).$$

Пусть $N_1 = N_2$. Пусть $\ker(A) = \{\theta_1\}$. Тогда $\ker(\hat{Q}) = \{\tilde{\theta}_1\}$. Следовательно, $\det(Q) \neq 0$. Пусть $\det(Q) \neq 0$. Тогда $\ker(\hat{Q}) = \{\tilde{\theta}_1\}$. Следовательно, $\ker(A) = \{\theta_1\}$. Итак, $\ker(A) = \{\theta_1\} \iff \det(Q) \neq 0$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e — базис пространства L_1 , f — базис пространства L_2 .

- 1. Пусть $A, B \in \text{Lin}(L_1, L_2)$. Тогда [A + B](f, e) = [A](f, e) + [B](f, e).
- 2. Пусть: $\lambda \in \mathbb{K}$, $A \in \text{Lin}(L_1, L_2)$. Тогда $[\lambda A](f, e) = \lambda [A](f, e)$.

Доказательство.

1. Пусть $i = \overline{1, N_1}$. Очевидно, $(A + B)e_i = [A + B]_i^j(f, e)f_j$. С другой стороны:

$$(A+B)e_i = Ae_i + Be_i = [A]_i^j(f,e)f_j + [B]_i^j(f,e)f_j = ([A]_i^j(f,e) + [B]_i^j(f,e))f_j.$$

Тогда: $[A+B]_i^j(f,e)=[A]_i^j(f,e)+[B]_i^j(f,e)$ при $j=\overline{1,N_2}$. Следовательно: $[A+B]_i^j(f,e)=([A](f,e)+[B](f,e))_i^j$ при $j=\overline{1,N_2}$. Тогда [A+B](f,e)=[A](f,e)+[B](f,e).

2. Пусть $i = \overline{1, N_1}$. Очевидно, $(\lambda A)e_i = [\lambda A]_i^j(f, e)f_j$. С другой стороны:

$$(\lambda A)e_i = \lambda A(e_i) = \lambda ([A]_i^j(f, e)f_j) = (\lambda [A]_i^j(f, e))f_j.$$

Тогда: $[\lambda A]_i^j(f,e) = \lambda [A]_i^j(f,e)$ при $j = \overline{1,N_2}$. Следовательно: $[\lambda A]_i^j(f,e) = (\lambda [A](f,e))_i^j$ при $j = \overline{1,N_2}$. Тогда $[\lambda A](f,e) = \lambda [A](f,e)$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e_0 — базис пространства L_1 , f_0 — базис пространства L_2 .

Обозначим: $\varphi(A) = [A](f_0, e_0)$ при $A \in \text{Lin}(L_1, L_2)$. Тогда $\text{Lin}(L_1, L_2) \stackrel{\varphi}{\approx} \mathbb{K}^{N_2 \times N_1}$. Следовательно: $\dim(\text{Lin}(L_1, L_2)) = \dim(\mathbb{K}^{N_2 \times N_1}) = N_1 N_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; L_3 — линейное пространство над полем \mathbb{K} , $N_3 \in \mathbb{N}$, $\dim(L_3) = N_3$; e — базис пространства L_1 , f — базис пространства L_2 , g — базис пространства L_3 , $A \in \text{Lin}(L_1, L_2)$, $B \in \text{Lin}(L_2, L_3)$. Тогда [BA](g,e) = [B](g,f)[A](f,e).

Доказательство. Пусть $i = \overline{1, N_1}$. Тогда $(BA)e_i = [BA]_i^k(g, e)g_k$. С другой стороны:

$$(BA)e_i = B(Ae_i) = B([A]_i^j(f,e)f_j) = [A]_i^j(f,e)B(f_j) = [A]_i^j(f,e)([B]_j^k(g,f)g_k) =$$

$$= ([B]_j^k(g,f)[A]_i^j(f,e))g_k = ([B](g,f)[A](f,e))_i^kg_k.$$

Тогда: $[BA]_i^k(g,e) = ([B](g,f)[A](f,e))_i^k$ при $k = \overline{1,N_3}$. Следовательно [BA](g,e) = [B](g,f)[A](f,e).

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; e, e' — базисы пространства L_1 , f, f' — базисы пространства L_2 .

- 1. $\Pi y cmb \ A \in \text{Lin}(L_1, L_2)$. $Torda: [A]_{i'}^{j'}(f', e') = \alpha_j^{j'}(f', f)[A]_i^j(f, e)\alpha_{i'}^i(e, e') \ npu: i' = \overline{1, N_1},$ $j' = \overline{1, N_2}; [A](f', e') = \alpha(f', f)[A](f, e)\alpha(e, e').$
- 2. Пусть: $A: L_1 \Longrightarrow L_2, A$ полулинейный оператор. Тогда: $[A]_{i'}^{j'}(f',e') = \alpha_j^{j'}(f',f)[A]_i^j(f,e)\overline{\alpha_{i'}^i(e,e')}$ при: $i' = \overline{1,N_1}, \ j' = \overline{1,N_2}; \ [A](f',e') = \alpha(f',f)[A](f,e)\overline{\alpha(e,e')}.$

Доказательство.

1. Пусть: $i' = \overline{1, N_1}, j' = \overline{1, N_2}$. Тогда:

$$[A]_{i'}^{j'}(f',e') = [Ae'_{i'}]^{j'}(f') = \left[A\left(\alpha_{i'}^{i}(e,e')e_{i}\right)\right]^{j'}(f') = \alpha_{i'}^{i}(e,e')[Ae_{i}]^{j'}(f') =$$

$$= \alpha_{i'}^{i}(e,e')\left(\alpha_{j}^{j'}(f',f)[Ae_{i}]^{j}(f)\right) = \alpha_{j'}^{j'}(f',f)[A]_{i}^{j}(f,e)\alpha_{i'}^{i}(e,e') = \left(\alpha(f',f)[A](f,e)\alpha(e,e')\right)_{i'}^{j'}.$$

Следовательно, $[\underline{A}](\underline{f'},e') = \underline{\alpha(f',f)}[A](f,e)\alpha(e,e').$

2. Пусть: $i' = \overline{1, N_1}, j' = \overline{1, N_2}$. Тогда:

$$[A]_{i'}^{j'}(f',e') = [Ae'_{i'}]^{j'}(f') = \left[A\left(\alpha_{i'}^{i}(e,e')e_{i}\right)\right]^{j'}(f') = \overline{\alpha_{i'}^{i}(e,e')}[Ae_{i}]^{j'}(f') = \overline{\alpha_{i'}^{i}(e,e')}\left(\alpha_{j}^{j'}(f',f)[Ae_{i}]^{j}(f)\right) = \alpha_{j}^{j'}(f',f)[A]_{i}^{j}(f,e)\overline{\alpha_{i'}^{i}(e,e')} = \left(\alpha(f',f)[A](f,e)\overline{\alpha(e,e')}\right)_{i'}^{j'}.$$

Следовательно,
$$[A](f',e') = \alpha(f',f)[A](f,e)\overline{\alpha(e,e')}$$
.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L_1 — линейное пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(L_1) = N_1$; L_2 — линейное пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(L_2) = N_2$; $A \in \operatorname{Lin}(L_1, L_2)$.

Пусть: e — базис пространства $L_1, i = \overline{1, N_1}$. Очевидно, $\{[A]_i(f, e)\}_f \in (TL_2)_0^1$.

Пусть: f — базис пространства $L_2, j = \overline{1, N_2}$. Очевидно, $\{[A]^j (f, e)\}_e \in (TL_1)_1^0$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \text{Lin}(L, L)$.

Очевидно, $\{[A](e)\}_e \in (TL)_1^1$.

Так как $\{[A](e)\}_e \in (TL)_1^1$, то: $\operatorname{tr}([A](e')) = \operatorname{tr}([A](e))$, $\det([A](e')) = \det([A](e))$ при: e, e' — базисы пространства L.

Выберем некоторый базис e пространства L. Обозначим: $\operatorname{tr}(A) = \operatorname{tr}([A](e))$, $\det(A) = \det([A](e))$.

Лекция 14. Собственные значения и собственные векторы линейного оператора

14.1. Инвариантные подпространства линейного оператора

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L— линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$. Будем говорить, что Q — инвариантное подпространство оператора A, если: Q — подпространство пространства $L, Q \subseteq D(A), A[Q] \subseteq Q$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in$ lin(L, L).

Пусть Q — инвариантное подпространство оператора A. Тогда $A|_Q \in \text{Lin}(Q,Q)$.

Доказательство. Так как Q — инвариантное подпространство оператора A, то: Q — подпространство пространства $L, Q \subseteq D(A), A[Q] \subseteq Q$.

Так как: $A \in lin(L, L), Q$ — подпространство пространства L, то $A|_Q \in lin(L, L)$. Так как $Q\subseteq \mathrm{D}(A),$ то: $\mathrm{D}(A|_Q)=Q\cap \mathrm{D}(A)=Q.$ Так как $A[Q]\subseteq Q,$ то: $\mathrm{R}(\mathring{A}|_Q)=A[Q]\subseteq Q.$ Итак, $A|_Q \in \text{Lin}(Q,Q)$.

Утверждение (вспомогательный результат). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; L$ — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $e - \mathit{basuc пространства } L$, $r \in \mathbb{N}$,

 $i_1,\ldots,i_r=\overline{1,N},\ i_1<\cdots< i_r.$ 1. $\Pi ycmv:\ \alpha^1,\ldots,\alpha^r\in\mathbb{K},\ x=\sum_{k=\overline{1,r}}\alpha^ke_{i_k}.\ Tor\partial a:\ x\in L,\ [x]^{i_k}(e)=\alpha^k\ npu\ k=\overline{1,r};$

 $[x]^{j}(e) = 0 \text{ npu: } j = \overline{1, N}, j \notin \{i_{1}, \dots, i_{r}\}.$

2. $\Pi y cm_b$: $x \in L$, $[x]^{i_k}(e) = \alpha^k \ npu \ k = \overline{1,r}$; $[x]^j(e) = 0 \ npu$: $j = \overline{1,N}$, $j \notin \{i_1,\ldots,i_r\}$. Тогда: $\alpha^1, \ldots, \alpha^r \in \mathbb{K}$, $x = \sum_{k=\overline{1},r} \alpha^k e_{i_k}$.

Доказательство.

1. Очевидно, $x\in L$. Обозначим: $\tilde{x}^{i_k}=\alpha^k$ при $k=\overline{1,r};~\tilde{x}^j=0$ при: $j=\overline{1,N},~j\notin$ $\{i_1,\ldots,i_r\}$. Тогда: $\tilde{x}\in\mathbb{K}^N,\,x=\sum_{j=\overline{1,N}}\tilde{x}^je_j$. Следовательно, $[x](e)=\tilde{x}$. Тогда: $[x]^{i_k}(e)=\tilde{x}^{i_k}=$

 α^k при $k = \overline{1,r}; [x]^j(e) = \tilde{x}^j = 0$ при: $j = \overline{1,N}, j \notin \{i_1,\ldots,i_r\}.$ 2. Очевидно: $\alpha^1,\ldots,\alpha^r \in \mathbb{K}, \ x = \sum_{j=\overline{1,N}} [x]^j(e)e_j = \sum_{k=\overline{1,r}} \alpha^k e_{i_k}.$

Утверждение (вспомогательный результат). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $e - \mathit{basuc пространства } L$, $r \in \mathbb{N}$, $i_1, \ldots, i_r = 1, N, i_1 < \cdots < i_r, Q = L(e_{i_1}, \ldots, e_{i_r}).$

- 1. Пусть $x \in Q$. Тогда: $x \in L$, $[x]^j(e) = 0$ при: $j = \overline{1, N}$, $j \notin \{i_1, \ldots, i_r\}$.
- 2. Пусть: $x \in L$, $[x]^j(e) = 0$ при: $j = \overline{1, N}$, $j \notin \{i_1, \ldots, i_r\}$. Тогда $x \in Q$.

Доказательство.

- 1. Так как $x \in Q$, то существуют числа $\alpha^1, \dots, \alpha^r$, удовлетворяющие условиям: $\alpha^1, \dots, \alpha^r \in \mathbb{K}, x = \sum_{k=\overline{1,r}} \alpha^k e_{i_k}$. Тогда: $x \in L$, $[x]^j(e) = 0$ при: $j = \overline{1, N}, j \notin \{i_1, \dots, i_r\}$.
 - 2. Очевидно:

$$x = \sum_{j=\overline{1,N}} [x]^j(e)e_j = \sum_{k=\overline{1,r}} [x]^{i_k}(e)e_{i_k} \in Q.$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, $r \in \mathbb{N}$, $i_1, \ldots, i_r = \overline{1, N}$, $i_1 < \cdots < i_r$, $Q = L(e_{i_1}, \ldots, e_{i_r})$, $A \in \operatorname{Lin}(L, L)$.

- 1. Пусть Q инвариантное подпространство оператора A. Тогда: $[A]_{i_k}^j(e) = 0$ при: $k = \overline{1, r}, j = \overline{1, N}, j \notin \{i_1, \ldots, i_r\}.$
- 2. Пусть: $[A]_{i_k}^j(e)=0$ при: $k=\overline{1,r},\ j=\overline{1,N},\ j\notin\{i_1,\ldots,i_r\}$. Тогда Q инвариантное подпространство оператора A.
- 3. Пусть Q инвариантное подпространство оператора A. Тогда: $[A|_Q]_k^m(e_{i_1},\ldots,e_{i_r})=[A]_{i_k}^{i_m}(e)$ при $k,\ m=\overline{1,r}.$

Доказательство.

Тогда:

- 1. Пусть $k = \overline{1,r}$. Тогда $e_{i_k} \in Q$. Так как Q инвариантное подпространство оператора A, то $Ae_{i_k} \in Q$. Тогда: $[Ae_{i_k}]^j(e) = 0$ при: $j = \overline{1,N}, \ j \notin \{i_1,\ldots,i_r\}$. Следовательно: $[A]_{i_k}^j(e) = [Ae_{i_k}]^j(e) = 0$ при: $j = \overline{1,N}, \ j \notin \{i_1,\ldots,i_r\}$.
- 2. Очевидно, Q подпространство пространства L. Пусть $x \in Q$. Тогда: $[x]^j(e) = 0$ при: $j = \overline{1, N}, j \notin \{i_1, \ldots, i_r\}$. Следовательно:

$$Ax = \sum_{i,j=\overline{1,N}} [A]_i^j(e)[x]^i(e)e_j = \sum_{\substack{k=\overline{1,r},\\j=\overline{1,N}}} [A]_{i_k}^j(e)[x]^{i_k}(e)e_j = \sum_{k,m=\overline{1,r}} [A]_{i_k}^{i_m}(e)[x]^{i_k}(e)e_{i_m} \in Q.$$

Итак, Q — инвариантное подпространство пространства L.

3. Пусть $k=\overline{1,r}$. Очевидно, $A|_Q\,e_{i_k}=\sum_{m=\overline{1,r}}[A|_Q]_k^m(e_{i_1},\ldots,e_{i_r})e_{i_m}$. Так как Q — инвариантное подпространство оператора A, то: $[A]_{i_k}^j(e)=0$ при: $j=\overline{1,N},\ j\notin\{i_1,\ldots,i_r\}$.

$$A|_{Q} e_{i_{k}} = A e_{i_{k}} = \sum_{j=\overline{1},\overline{N}} [A]_{i_{k}}^{j}(e) e_{j} = \sum_{m=\overline{1},\overline{r}} [A]_{i_{k}}^{i_{m}}(e) e_{i_{m}}.$$

Следовательно: $[A|_Q]_k^m(e_{i_1},\ldots,e_{i_r})=[A]_{i_k}^{i_m}(e)$ при $m=\overline{1,r}$. Итак: $[A|_Q]_k^m(e_{i_1},\ldots,e_{i_r})=[A]_{i_k}^{i_m}(e)$ при $k,\,m=\overline{1,r}$.

14.2. Собственные значения и собственные векторы линейного оператора

3амечание (оператор $A-\lambda I$). Пусть: $\mathbb{K}\in\{\mathbb{C},\mathbb{R},\mathbb{Q}\};\ L$ — линейное пространство над полем $\mathbb{K};\ A\in \mathrm{lin}(L,L).$

Пусть $\lambda \in \mathbb{K}$. Очевидно:

$$D(A - \lambda I) = D(A + (-1)(\lambda I)) = D(A) \cap D((-1)(\lambda I)) = D(A) \cap D(I) = D(A) \cap L = D(A).$$

Пусть $x \in D(A - \lambda I)$. Тогда:

$$(A - \lambda I)(x) = (A + (-1)(\lambda I))(x) = A(x) + ((-1)(\lambda I))(x) = A(x) + (-1)(\lambda I(x)) = A(x) + (-1)(\lambda I(x)) = A(x) - \lambda x.$$

Очевидно:

$$\ker(A - \lambda I) = \left\{ x \colon x \in \mathrm{D}(A - \lambda I) \land (A - \lambda I)x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta \right\} = \left\{ x \colon x \in \mathrm{D}(A) \land Ax - \lambda x = \theta$$

$$= \{x \colon x \in \mathrm{D}(A) \land Ax = \lambda x\}.$$

Пусть $\lambda_1, \lambda_2 \in \mathbb{K}$. Пусть $x \in \ker(A - \lambda_2 I)$. Тогда: $x \in D(A), Ax = \lambda_2 x$. Следовательно:

$$x \in D(A) = D(A - \lambda_1 I),$$

$$(A - \lambda_1 I)x = Ax - \lambda_1 x = \lambda_2 x - \lambda_1 x = (\lambda_2 - \lambda_1)x.$$

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$.

- 1. Будем говорить, что λ регулярная точка оператора A, если: $\lambda \in \mathbb{K}$, $\ker(A \lambda I) = \{\theta\}$, $\Re(A \lambda I) = L$.
- 2. Будем говорить, что λ точка непрерывного спектра оператора A, если: $\lambda \in \mathbb{K}$, $\ker(A \lambda I) = \{\theta\}$, $\Re(A \lambda I) \neq L$.

Обозначим через SC(A) множество всех точек непрерывного спектра оператора A.

3. Будем говорить, что λ — собственное значение оператора A (λ — точка дискретного спектра оператора A), если: $\lambda \in \mathbb{K}$, $\ker(A - \lambda I) \neq \{\theta\}$.

Обозначим через SD(A) множество всех собственных значений оператора A.

- 4. Пусть λ собственное значение оператора A. Будем говорить, что x собственный вектор оператора A, соответствующий собственному значению λ , если: $x \in \ker(A \lambda I)$, $x \neq \theta$.
- 5. Пусть λ собственное значение оператора A. Будем говорить, что $\ker(A \lambda I)$ собственное подпространство оператора A, соответствующее собственному значению λ .

Пусть $\lambda \in \mathbb{K}$. Обозначим, $H_A(\lambda) = \ker(A - \lambda I)$.

6. Пусть λ — собственное значение оператора A. Будем говорить, что dim(ker(A- λI)) — геометрическая кратность собственного значения λ .

Пусть $\lambda \in \mathbb{K}$. Обозначим, $g_A(\lambda) = \dim(\ker(A - \lambda I))$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$.

Пусть: $r \in \mathbb{N}, \ \lambda_1, \ldots, \lambda_r$ — различные собственные значения оператора A. Тогда $H_A(\lambda_1), \ldots, H_A(\lambda_r)$ — линейно независимые подпространства.

Доказательство. Докажем, что утверждение справедливо при r=1. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$, λ_1 — собственное значение оператора A. Очевидно, $H_A(\lambda_1)$ — линейно независимое подпространство.

Пусть: $r_0 \in \mathbb{N}$, утверждение справедливо при $r = r_0$. Докажем, что утверждение справедливо при $r = r_0 + 1$. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L), \lambda_1, \ldots, \lambda_{r_0+1}$ — различные собственные значения оператора A. Пусть: $x_1 \in H_A(\lambda_1), \ldots, x_{r_0+1} \in H_A(\lambda_{r_0+1}), \sum_{k=1, r_0+1} x_k = \theta$. Тогда:

$$(A - \lambda_{r_0+1}I) \sum_{k=\overline{1,r_0+1}} x_k = (A - \lambda_{r_0+1}I)\theta,$$

$$\sum_{k=\overline{1,r_0+1}} (A - \lambda_{r_0+1}I)x_k = (A - \lambda_{r_0+1}I)\theta,$$

$$\sum_{k=\overline{1,r_0}} (\lambda_k - \lambda_{r_0+1})x_k = \theta.$$

Так как $\lambda_1, \ldots, \lambda_{r_0}$ — различные собственные значения оператора A, то $H_A(\lambda_1), \ldots, H_A(\lambda_{r_0})$ — линейно независимые подпространства. Так как: $(\lambda_k - \lambda_{r_0+1})x_k \in$

 $H_A(\lambda_k)$ при $k = \overline{1, r_0}$, то: $(\lambda_k - \lambda_{r_0+1})x_k = \theta$ при $k = \overline{1, r_0}$. Так как: $\lambda_k \neq \lambda_{r_0+1}$ при $k = \overline{1, r_0}$, то: $x_k = \theta$ при $k = \overline{1, r_0}$. Так как $\sum_{k=\overline{1, r_0+1}} x_k = \theta$, то $x_{r_0+1} = \theta$.

Итак, для любого $r_0 \in \mathbb{N}$ утверждение справедливо при $r=r_0$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$.

Пусть $\dim(L) \neq +\infty$. Тогда: SD(A) — конечное множество, $card(SD(A)) \leq \dim(L)$.

Доказательство. Обозначим, $N = \dim(L)$. Тогда $N \in \mathbb{Z}_+$.

Предположим, что SD(A) — бесконечное множество. Тогда существуют числа $\lambda_1, \ldots, \lambda_{N+1}$, удовлетворяющие условию: $\lambda_1, \ldots, \lambda_{N+1}$ — различные собственные значения оператора A. Следовательно, $H_A(\lambda_1), \ldots, H_A(\lambda_{N+1})$ — линейно независимые подпространства. Тогда:

$$\dim\left(\sum_{k=\overline{1,N+1}} H_A(\lambda_k)\right) = \sum_{k=\overline{1,N+1}} \dim\left(H_A(\lambda_k)\right) \geqslant \sum_{k=\overline{1,N+1}} 1 = N+1.$$

Так как: $\sum_{k=\overline{1,N+1}} H_A(\lambda_k)$ — подпространство пространства $L,\ N=\dim(L),$ то

$$\dim\left(\sum_{k=\overline{1,N+1}}H_A(\lambda_k)\right)\leqslant N$$
 (что противоречит утверждению $\dim\left(\sum_{k=\overline{1,N+1}}H_A(\lambda_k)\right)\geqslant N+1).$

Итак, SD(A) — конечное множество.

Предположим, что $\operatorname{card}(\operatorname{SD}(A)) > N$. Тогда существуют числа $\lambda_1, \ldots, \lambda_{N+1}$, удовлетворяющие условию: $\lambda_1, \ldots, \lambda_{N+1}$ — различные собственные значения оператора A. Следовательно, $H_A(\lambda_1), \ldots, H_A(\lambda_{N+1})$ — линейно независимые подпространства. Тогда:

$$\dim\left(\sum_{k=\overline{1,N+1}} H_A(\lambda_k)\right) = \sum_{k=\overline{1,N+1}} \dim\left(H_A(\lambda_k)\right) \geqslant \sum_{k=\overline{1,N+1}} 1 = N+1.$$

Так как: $\sum_{k=\overline{1,N+1}} H_A(\lambda_k)$ — подпространство пространства $L,\ N=\dim(L),\$ то

$$\dim\Bigl(\sum_{k=\overline{1,N+1}}H_A(\lambda_k)\Bigr)\leqslant N \text{ (что противоречит утверждению }\dim\Bigl(\sum_{k=\overline{1,N+1}}H_A(\lambda_k)\Bigr)\geqslant N+1).$$

Итак,
$$\operatorname{card}(\operatorname{SD}(A)) \leqslant N$$
.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, $i = \overline{1, N}$, $A \in \operatorname{Lin}(L, L)$.

- 1. Пусть: λ собственное значение оператора A, e_i собственный вектор оператора A, соответствующий собственному значению λ . Тогда: $[A]_i^j(e) = \lambda \delta_i^j$ при $j = \overline{1, N}$.
- 2. Пусть: $[A]_i^j(e) = 0$ при: $j = \overline{1,N}, j \neq 0$. Тогда: $[A]_i^i(e)$ собственное значение оператора A, e_i собственный вектор оператора A, соответствующий собственному значению $[A]_i^i(e)$.

Доказательство.

- 1. Очевидно: $\lambda \in \mathbb{K}$, $e_i \in L$, $e_i \neq \theta$, $Ae_i = \lambda e_i$. Пусть $j = \overline{1, N}$. Тогда: $[A]_i^j(e) = [Ae_i]^j(e) = [\lambda e_i]^j(e) = \lambda [e_i]^j(e) = \lambda \delta_i^j$.
 - 2. Очевидно: $[A]_i^i(e) \in \mathbb{K}, e_i \in L, e_i \neq \theta, Ae_i = \sum_{j=\overline{1,N}} [A]_i^j(e)e_j = [A]_i^i(e)e_i$. Тогда: $[A]_i^i(e) [A]_i^i(e)e_i$.

собственное значение оператора A, e_i — собственный вектор оператора A, соответствующий собственному значению $[A]_i^i(e)$.

Утверждение (существование базиса из собственных векторов №01). $\Pi ycmb$: $\mathbb{K} \in$ $\{\mathbb{C},\mathbb{R},\mathbb{Q}\}; L$ — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N; A \in \operatorname{Lin}(L,L)$.

- 1. Пусть: e- базис пространства L, e_1, \ldots, e_N- собственные векторы оператора A.Tогда: $e - \delta a suc пространства <math>L$, $[A](e) - \delta u$ агональная матрица.
- 2. Пусть: e- базис пространства L, [A](e)- диагональная матрица. Тогда: e- базис пространства L, e_1, \ldots, e_N — собственные векторы оператора A.

Утверждение (существование базиса из собственных векторов №02). Пусть: $\mathbb{K} \in$ $\{\mathbb{C},\mathbb{R},\mathbb{Q}\}; L$ — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N; A \in \operatorname{Lin}(L,L)$.

- 1. Пусть существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e basucпространства L, e_1, \ldots, e_N — собственные векторы оператора A. Тогда: $SD(A) \neq \emptyset$, $\sum_{\lambda \in SD(A)} H_A(\lambda) = L.$
- 2. Пусть: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda) = L$. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e- базис пространства $L,\,e_1,\ldots,e_N-$ собственные векторы onepamopa A.

Доказательство.

1. Так как e_1, \ldots, e_N — собственные векторы оператора A, то существуют числа $\lambda_1,\ldots,\lambda_N$, удовлетворяющие условиям: $\lambda_1,\ldots,\lambda_N$ — собственные значения оператора A, e_1, \ldots, e_N — соответствующие собственные векторы.

Так как λ_1 — собственное значение оператора A, то $\mathrm{SD}(A) \neq \emptyset$. Пусть $k = \overline{1,N}$. Тогда: $e_k \in H_A(\lambda_k) \subseteq \sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda)$. Так как $\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda)$ — подпространство пространства L, то $L(e_1,\ldots,e_N) \subseteq \sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda)$. Так как e — базис пространства L — Lства L, то $L(e_1,\ldots,e_N)=L$. Тогда $L\subseteq\sum_{\lambda\in\mathrm{SD}(A)}^{\lambda\in\mathrm{SD}(A)}H_A(\lambda)$. Так как $\sum_{\lambda\in\mathrm{SD}(A)}H_A(\lambda)$ — подпространство пространства L, то $\sum_{\lambda\in\mathrm{SD}(A)}H_A(\lambda)\subseteq L$. Тогда $\sum_{\lambda\in\mathrm{SD}(A)}H_A(\lambda)=L$.

2. Так как: SD(A) — конечное множество, $SD(A) \neq \emptyset$, то существует число $r \in \mathbb{N}$, существуют числа $\lambda_1,\ldots,\lambda_r$, удовлетворяющие условию: $\lambda_1,\ldots,\lambda_r$ — все различные собственные значения оператора A.

Пусть $k=\overline{1,r}$. Обозначим: $H_k=H_A(\lambda_k),\ g_k=g_A(\lambda_k)$. Тогда $g_k=\overline{1,N}$. Так как: $g_k \in \mathbb{N}, g_k = \dim(H_k)$, то существуют векторы $e_{k,1}, \ldots, e_{k,g_k}$, удовлетворяющие условию: $(e_{k,1},\ldots,e_{k,q_k})$ — базис подпространства H_k . Так как $\lambda_1,\ldots,\lambda_r$ — различные собственные значения оператора A, то H_1,\ldots,H_r — линейно независимые подпространства. Тогда $(e_{1,1},\ldots,e_{1,g_1},\ldots,e_{r,1},\ldots,e_{r,g_r})$ — базис $\sum\limits_{k=\overline{1,r}}H_k$. Так как $\sum\limits_{k=\overline{1,r}}H_k=L$, то $(e_{1,1},\ldots,e_{1,g_1},\ldots,\underline{e_{r,1}},\ldots,e_{r,g_r})$ — базис пространства L.

Пусть $k=\overline{1,r}$. Так как: $e_{k,1},\dots,e_{k,g_k}\in H_k,\ e_{k,1},\dots,e_{k,g_k}\neq \theta,$ то $e_{k,1},\dots,e_{k,g_k}$ собственные векторы оператора A.

Утверждение (существование базиса из собственных векторов №03). Пусть: К ∈ $\{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; L$ — линейное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(L) = N; A \in \operatorname{Lin}(L, L)$.

1. Пусть существуют векторы e_1, \dots, e_N , удовлетворяющие условиям: e — базис пространства L, e_1, \ldots, e_N — собственные векторы оператора A. Тогда: $SD(A) \neq \emptyset$, $\sum_{\lambda \in SD(A)} g_A(\lambda) = N.$

2. Пусть: $SD(A) \neq \emptyset$, $\sum_{\lambda \in SD(A)} g_A(\lambda) = N$. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e -базис пространства $L, e_1, \ldots, e_N -$ собственные векторы оператора A.

Доказательство.

1. Так как существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства L, e_1, \ldots, e_N — собственные векторы оператора A, то: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda) = L$. Так как $\left\{ H_A(\lambda) \right\}_{\lambda \in \mathrm{SD}(A)}$ — линейно независимые подпространства, то:

$$\sum_{\lambda \in \mathrm{SD}(A)} g_A(\lambda) = \sum_{\lambda \in \mathrm{SD}(A)} \dim (g_A(\lambda)) = \dim \left(\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda)\right) = \dim(L) = N.$$

2. Так как: SD(A) — конечное множество, $SD(A) \neq \emptyset$, то существует число $r \in \mathbb{N}$, существуют числа $\lambda_1, \ldots, \lambda_r$, удовлетворяющие условию: $\lambda_1, \ldots, \lambda_r$ — все различные собственные значения оператора A.

Пусть $k=\overline{1,r}$. Обозначим: $H_k=H_A(\lambda_k),\ g_k=g_A(\lambda_k)$. Тогда $g_k=\overline{1,N}$. Так как: $g_k\in\mathbb{N},\ g_k=\dim(H_k),$ то существуют векторы $e_{k,1},\ldots,e_{k,g_k},$ удовлетворяющие условию: $(e_{k,1},\ldots,e_{k,g_k})$ — базис подпространства H_k . Так как $\lambda_1,\ldots,\lambda_r$ — различные собственные значения оператора A, то H_1,\ldots,H_r — линейно независимые подпространства. Тогда: $e_{1,1},\ldots,e_{1,g_1},\ldots,e_{r,1},\ldots,e_{r,g_r}\in L,\ e_{1,1},\ldots,e_{1,g_1},\ldots,e_{r,1},\ldots,e_{r,g_r}$ — линейно независимые векторы. Так как: $\sum_{k=\overline{1,r}}g_k\in\mathbb{N},\ \sum_{k=\overline{1,r}}g_k=N=\dim(L),$ то $(e_{1,1},\ldots,e_{1,g_1},\ldots,e_{r,1},\ldots,e_{r,g_r})$ — базис пространства L.

Пусть $k=\overline{1,r}$. Так как: $e_{k,1},\dots,e_{k,g_k}\in H_k,\ e_{k,1},\dots,e_{k,g_k}\neq \theta,$ то $e_{k,1},\dots,e_{k,g_k}-$ собственные векторы оператора A.

Утверждение (обоснование одного семинарского приёма). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L – линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

Пусть: $r \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_r$ — различные собственные значения оператора $A, N_k \in \mathbb{N}$, $\dim(H_A(\lambda_k)) \geqslant N_k$ при $k = \overline{1,r}$; $\sum_{k=\overline{1,r}} N_k = N$.

 $Tor\partial a: \lambda_1, \ldots, \lambda_r$ — BCE различные собственные значения оператора $A, \dim(H_A(\lambda_k)) = N_k$ при $k = \overline{1,r}$.

Доказательство. Предположим, что существует число λ_{r+1} , удовлетворяющее условиям: λ_{r+1} — собственное значение оператора $A, \lambda_{r+1} \notin \{\lambda_1, \dots, \lambda_r\}$. Тогда $\lambda_1, \dots, \lambda_{r+1}$ — различные собственные значения оператора A. Следовательно, $H_A(\lambda_1), \dots, H_A(\lambda_{r+1})$ — линейно независимые подпространства. Так как λ_{r+1} — собственное значение оператора A, то $\dim(H_A(\lambda_{k+1})) \geqslant 1$. Очевидно:

$$\dim\left(\sum_{k=\overline{1,r+1}} H_A(\lambda_k)\right) = \sum_{k=\overline{1,r+1}} \dim\left(H_A(\lambda_k)\right) \geqslant \left(\sum_{k=\overline{1,r}} N_k\right) + 1 = N+1.$$

Так как $\sum_{k=\overline{1,r+1}} H_A(\lambda_k)$ — подпространство пространства L, то $\dim\left(\sum_{k=\overline{1,r+1}} H_A(\lambda_k)\right) \leqslant N$. Итак, $\lambda_1,\ldots,\lambda_r$ — все различные собственные значения оператора A.

Предположим, что существует число $k_0 = \overline{1,r}$, удовлетворяющее условию: $\dim(H_A(\lambda_{k_0})) \neq N_{k_0}$. Тогда $\dim(H_A(\lambda_{k_0})) \geqslant N_{k_0} + 1$. Так как $\lambda_1, \ldots, \lambda_r$ — различные

собственные значения оператора A, то $H_A(\lambda_1), \ldots, H_A(\lambda_r)$ — линейно независимые подпространства. Очевидно:

$$\dim\left(\sum_{k=\overline{1,r}} H_A(\lambda_k)\right) = \sum_{k=\overline{1,r}} \dim\left(H_A(\lambda_k)\right) \geqslant \left(\sum_{k=\overline{1,r}} N_k\right) + 1 = N+1.$$

Так как $\sum_{k=\overline{1,r}} H_A(\lambda_k)$ — подпространство пространства L, то $\dim\left(\sum_{k=\overline{1,r}} H_A(\lambda_k)\right) \leqslant N$. Итак: $\dim\left(H_A(\lambda_k)\right) = N_k$ при $k=\overline{1,r}$.

Утверждение (обоснование одного семинарского приёма). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L – линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

Пусть: $r \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_r$ — различные собственные значения оператора A, $N_k \in \mathbb{N}$, $f_{k,1}, \ldots, f_{k,N_k}$ — линейно независимые векторы подпространства $H_A(\lambda_k)$ при $k = \overline{1,r}$; $\sum_{k=\overline{1,r}} N_k = N$.

Тогда: $\lambda_1, \ldots, \lambda_r$ — ВСЕ различные собственные значения оператора $A, (f_{k,1}, \ldots, f_{k,N_k})$ — базис подпространства $H_A(\lambda_k)$ при $k = \overline{1,r}$.

14.3. Общие сведения о полиномах

14.3.1. Полином, степень полинома, коэффициенты полинома

Oпределение. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$. Будем говорить, что F — полином на множестве \mathbb{K} , если:

- 1. F функция;
- 2. $D(F) = \mathbb{K};$
- 3. существует число $N \in \mathbb{Z}_+$, существуют числа $a_0, \dots, a_N \in \mathbb{K}$, удовлетворяющие условию: $F(x) = \sum_{k=\overline{0.N}} a_k x^k$ при $x \in \mathbb{K}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N \in \mathbb{Z}_+$, $a_0, \ldots, a_N \in \mathbb{K}$, $b_0, \ldots, b_N \in \mathbb{K}$, $Q \subseteq \mathbb{K}$, $Q = \mathbb{K}$, Q

Пусть:
$$\sum_{k=\overline{0,N}} a_k x^k = \sum_{k=\overline{0,N}} b_k x^k$$
 при $x \in Q$. Тогда $\forall k = \overline{0,N}(a_k = b_k)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $N_1 \in \mathbb{Z}_+$, $a_0, \dots, a_{N_1} \in \mathbb{K}$, $N_1 \neq 0 \implies a_{N_1} \neq 0$, $N_2 \in \mathbb{Z}_+$, $b_0, \dots, b_{N_2} \in \mathbb{K}$, $N_2 \neq 0 \implies b_{N_2} \neq 0$, $Q \subseteq \mathbb{K}$, Q - бесконечное множество. Пусть: $\sum_{k=\overline{0},\overline{N_1}} a_k x^k = \sum_{k=\overline{0},\overline{N_2}} b_k x^k$ при $x \in Q$. Тогда: $N_1 = N_2$, $\forall k = \overline{1, N_1} (a_k = b_k)$.

Onpedenetue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} .

Пусть: $N \in \mathbb{Z}_+$, $a_0, \dots, a_N \in \mathbb{K}$, $N \neq 0 \implies a_N \neq 0$, $F(x) = \sum_{k=\overline{0,N}} a_k x^k$ при $x \in \mathbb{K}$. Будем

говорить, что: N — степень полинома F, a_0, \ldots, a_N — коэффициенты полинома F.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} . Пусть N — степень полинома F. Обозначим, $\deg(F) = N$.

Утверждение. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$.

1. Пусть: F_1 , F_2 — полиномы на множестве \mathbb{K} , $\deg(F_1) \leqslant \deg(F_2)$. Тогда $\deg(F_1 + F_2) \leqslant \deg(F_2)$.

- 2. Пусть: F_1 , F_2 полиномы на множестве \mathbb{K} , $\deg(F_1) < \deg(F_2)$. Тогда $\deg(F_1 + F_2) = \deg(F_2)$.
 - 3. Пусть: $\lambda \in \mathbb{K}$, $\lambda \neq 0$, F полином на множестве \mathbb{K} . Тогда $\deg(\lambda F) = \deg(F)$.
- 4. Пусть: F_1 , F_2 полиномы на множестве \mathbb{K} , F_1 , $F_2 \neq \Theta$. Тогда $\deg(F_1F_2) = \deg(F_1) + \deg(F_2)$.

14.3.2. Кратность корня полинома

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F_1 , F_2 — полиномы на множестве \mathbb{K} , $\deg(F_2) \neq 0$, $\deg(F_2) \leq \deg(F_1)$.

- 1. Существуют функции α , β , удовлетворяющие условиям: α , β полиномы на множестве \mathbb{K} , $\deg(\beta) < \deg(F_2)$, $F_1 = F_2 \alpha + \beta$.
- 2. Пусть: α_1 , β_1 полиномы на множестве \mathbb{K} , $\deg(\beta_1) < \deg(F_2)$, $F_1 = F_2\alpha_1 + \beta_1$; α_2 , β_2 полиномы на множестве \mathbb{K} , $\deg(\beta_2) < \deg(F_2)$, $F_1 = F_2\alpha_2 + \beta_2$. Тогда: $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$, x_0 — корень полинома F.

- 1. Существует функция φ , удовлетворяющая условиям: φ полином на множестве \mathbb{K} , $F(x) = (x x_0)\varphi(x)$ при $x \in \mathbb{K}$.
- 2. Пусть: φ_1 полином на множестве \mathbb{K} , $F(x) = (x x_0)\varphi_1(x)$ при $x \in \mathbb{K}$; φ_2 полином на множестве \mathbb{K} , $F(x) = (x x_0)\varphi_2(x)$ при $x \in \mathbb{K}$. Тогда $\varphi_1 = \varphi_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$, x_0 — корень полинома F.

- 1. Существует число $m \in \mathbb{N}$, существует функция φ , удовлетворяющая условиям: $\varphi nолином$ на множестве \mathbb{K} , $\varphi(x_0) \neq 0$, $F(x) = (x x_0)^m \varphi(x)$ при $x \in \mathbb{K}$.
- 2. Пусть: $m_1 \in \mathbb{N}$, $\varphi_1 n$ олином на множестве \mathbb{K} , $\varphi_1(x_0) \neq 0$, $F(x) = (x x_0)^{m_1} \varphi_1(x)$ при $x \in \mathbb{K}$; $m_2 \in \mathbb{N}$, $\varphi_2 n$ олином на множестве \mathbb{K} , $\varphi_2(x_0) \neq 0$, $F(x) = (x x_0)^{m_2} \varphi_2(x)$ при $x \in \mathbb{K}$. Тогда: $m_1 = m_2$, $\varphi_1 = \varphi_2$.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$, x_0 — корень полинома F. Будем говорить, что m — кратность числа x_0 как корня полинома F, если:

- 1. $m \in \mathbb{N}$;
- 2. существует функция φ , удовлетворяющая условиям: φ полином на множестве \mathbb{K} , $\varphi(x_0) \neq 0, \ F(x) = (x x_0)^m \varphi(x)$ при $x \in \mathbb{K}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$. Пусть: $r \in \mathbb{N}$, x_1, \ldots, x_r — различные корни полинома F, m_1, \ldots, m_r — соответствующие кратности. Тогда $m_1 + \cdots + m_r \leq \deg(F)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$. Тогда: $\ker(F)$ — конечное множество, $\operatorname{card}(\ker(F)) \leqslant \deg(F)$.

14.3.3. Основная теорема алгебры

Определение. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$. Будем говорить, что \mathbb{K} — алгебраически замкнутое поле, если для любой функции F, удовлетворяющей условиям: F — полином на множестве \mathbb{K} , $\deg(F) \neq 0$, справедливо утверждение: $\ker(F) \neq \emptyset$.

Замечание. Очевидно, Q не является алгебраически замкнутым полем.

Очевидно, \mathbb{R} не является алгебраически замкнутым полем.

Теорема (основная теорема алгебры; будет доказана в 3-ем семестре). Справедливо утверждение: \mathbb{C} — алгебраически замкнутое поле.

Утверждение. Пусть: \mathbb{C} — алгебраически замкнутое поле, F — полином на мноэкестве \mathbb{C} , $\deg(F) \neq 0$.

Пусть: $r \in \mathbb{N}$, z_1, \ldots, z_r — все различные корни полинома F, m_1, \ldots, m_r — соответствующие кратности. Тогда $m_1 + \cdots + m_r = \deg(F)$.

14.3.4. Продолжение полинома

Определение. Пусть: \mathbb{K}_1 , $\mathbb{K}_2 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_1 \subseteq \mathbb{K}_2$; F — полином на множестве \mathbb{K}_1 .

Пусть: N — степень полинома F, a_0, \ldots, a_N — коэффициенты полинома F. Обозначим: $\tilde{F}(x) = \sum_{k=0}^N a_k x^k$ при $x \in \mathbb{K}_2$. Тогда: \tilde{F} — полином на множестве \mathbb{K}_2 , N — степень полинома \tilde{F} , a_0, \ldots, a_N — коэффициенты полинома \tilde{F} . Будем говорить, что \tilde{F} — продолжение полинома F на множество \mathbb{K}_2 .

Замечание. Пусть: \mathbb{K}_1 , $\mathbb{K}_2 \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $\mathbb{K}_1 \subseteq \mathbb{K}_2$.

1. Пусть F — полином на множестве \mathbb{K}_1 . Пусть \tilde{F} — продолжение полинома F на множество \mathbb{K}_2 . Тогда: \tilde{F} — полином на множестве \mathbb{K}_2 , $\tilde{F}(x) = F(x)$ при $x \in \mathbb{K}_1$.

Пусть F — полином на множестве \mathbb{K}_1 . Пусть: \tilde{F} — полином на множестве \mathbb{K}_2 , $\tilde{F}(x) = F(x)$ при $x \in \mathbb{K}_1$. Тогда \tilde{F} — продолжение полинома F на множество \mathbb{K}_2 .

- 2. Пусть: F_1 полином на множестве \mathbb{K}_1 , \tilde{F}_1 продолжение полинома F_1 на множество \mathbb{K}_2 , F_2 полином на множестве \mathbb{K}_1 , \tilde{F}_2 продолжение полинома F_2 на множество \mathbb{K}_2 . Тогда $\tilde{F}_1 + \tilde{F}_2$ продолжение полинома $F_1 + F_2$ на множество \mathbb{K}_2 .
- 3. Пусть: $\lambda \in \mathbb{K}_1$, F полином на множестве \mathbb{K}_1 , \tilde{F} продолжение полинома F на множество \mathbb{K}_2 . Тогда $\lambda \tilde{F}$ продолжение полинома λF на множество \mathbb{K}_2 .
- 4. Пусть: F_1 полином на множестве \mathbb{K}_1 , \tilde{F}_1 продолжение полинома F_1 на множество \mathbb{K}_2 , F_2 полином на множестве \mathbb{K}_1 , \tilde{F}_2 продолжение полинома F_2 на множество \mathbb{K}_2 . Тогда $\tilde{F}_1\tilde{F}_2$ продолжение полинома F_1F_2 на множество \mathbb{K}_2 .
- 5. Пусть: F полином на множестве \mathbb{K}_1 , \tilde{F} продолжение полинома F на множество \mathbb{K}_2 . Тогда:

$$\ker(F) = \left\{ x \colon x \in \mathbb{K}_1 \land F(x) = 0 \right\} = \left\{ x \colon x \in \mathbb{K}_1 \land x \in \mathbb{K}_2 \land F(x) = 0 \right\} =$$

$$= \left\{ x \colon x \in \mathbb{K}_1 \land x \in \mathbb{K}_2 \land \tilde{F}(x) = 0 \right\} = \left\{ x \colon x \in \mathbb{K}_1 \land x \in \ker(\tilde{F}) \right\} = \ker(\tilde{F}) \cap \mathbb{K}_1.$$

- 6. Пусть: F полином на множестве \mathbb{K}_1 , \tilde{F} продолжение полинома F на множество \mathbb{K}_2 . Пусть: $x_0 \in \ker(F)$, m кратность числа x_0 как корня полинома F. Тогда: $x_0 \in \ker(\tilde{F})$, m кратность числа x_0 как корня полинома \tilde{F} .
- 7. Пусть: F полином на множестве \mathbb{K}_1 , \tilde{F} продолжение полинома F на множество \mathbb{K}_2 .

Пусть $\ker(\tilde{F}) \subseteq \mathbb{K}_1$. Тогда: $\ker(F) = \ker(\tilde{F}) \cap \mathbb{K}_1 = \ker(\tilde{F})$. Пусть $\ker(F) = \ker(\tilde{F})$. Тогда: $\ker(\tilde{F}) = \ker(F) \subseteq \mathbb{K}_1$.

14.4. Характеристический полином линейного оператора

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}; \tilde{A} \in \mathbb{K}^{N \times N}$.

Пусть: $m = \overline{1, N}, j = 0$. Обозначим, $X_{m,j}(\tilde{A}) = \tilde{A}_m$.

Пусть: $m = \overline{1, N}, j = 1$. Обозначим, $X_{m,j}(\tilde{A}) = \tilde{I}_m$ (здесь \tilde{I} — единичная матрица из множества $\mathbb{K}^{N \times N}$).

Обозначим через μ_N множество всех функций σ , удовлетворяющих условию: $\sigma\colon\{1,\ldots,N\}\implies\{0,1\}.$

Пусть $k = \overline{0, N}$. Обозначим через $\mu_{N,k}$ множество всех функций σ , удовлетворяющих условиям: $\sigma \in \mu_N$, $\sigma(1) + \cdots + \sigma(N) = k$.

Пусть $k = \overline{0, N}$. Обозначим:

$$\alpha_k(\tilde{A}) = (-1)^k \sum_{\sigma \in \mu_{N,k}} \det(X_{1,\sigma(1)}(\tilde{A}), \dots, X_{N,\sigma(N)}(\tilde{A})).$$

Очевидно:

$$\alpha_{0}(\tilde{A}) = (-1)^{0} \det(\tilde{A}_{1}, \dots, \tilde{A}_{N}) = \det(\tilde{A});$$

$$\alpha_{N-1}(\tilde{A}) = (-1)^{N-1} \sum_{m=\overline{1,N}} \det(\tilde{I}_{1}, \dots, \tilde{I}_{m-1}, \tilde{A}_{m}, \tilde{I}_{m+1}, \dots, \tilde{I}_{N}) = (-1)^{N-1} \sum_{m=\overline{1,N}} \tilde{A}_{m}^{m} =$$

$$= (-1)^{N-1} \operatorname{tr}(\tilde{A});$$

$$\alpha_{N}(\tilde{A}) = (-1)^{N} \det(\tilde{I}_{1}, \dots, \tilde{I}_{N}) = (-1)^{N} \det(\tilde{I}) = (-1)^{N}.$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$, $N \in \mathbb{N}$; $\tilde{A} \in \mathbb{K}^{N \times N}$, $\lambda \in \mathbb{K}$. Тогда $\det(\tilde{A} - \lambda \tilde{I}) = \sum_{k=\overline{0,N}} \alpha_k(\tilde{A}) \lambda^k$.

Доказательство. Очевидно:

$$\det(\tilde{A} - \lambda \tilde{I}) = \det((\tilde{A} - \lambda \tilde{I})_{1}, \dots, (\tilde{A} - \lambda \tilde{I})_{N}) = \det(\tilde{A}_{1} + (-\lambda)\tilde{I}_{1}, \dots, \tilde{A}_{N} + (-\lambda)\tilde{I}_{N}) =$$

$$= \sum_{\sigma \in \mu_{N}} \det(X_{1,\sigma(1)}(\tilde{A}), \dots, X_{N,\sigma(N)}(\tilde{A}))(-\lambda)^{\sigma(1)+\dots+\sigma(N)} =$$

$$= \sum_{k=\overline{0,N}} \sum_{\sigma \in \mu_{N,k}} \det(X_{1,\sigma(1)}(\tilde{A}), \dots, X_{N,\sigma(N)}(\tilde{A}))(-\lambda)^{k} =$$

$$= \sum_{k=\overline{0,N}} \left((-1)^{k} \sum_{\sigma \in \mu_{N,k}} \det(X_{1,\sigma(1)}(\tilde{A}), \dots, X_{N,\sigma(N)}(\tilde{A})) \right) \lambda^{k} = \sum_{k=\overline{0,N}} \alpha_{k}(\tilde{A}) \lambda^{k}. \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}; \tilde{A} \in \mathbb{K}^{N \times N}.$

Пусть: $F(\lambda) = \det(\tilde{A} - \lambda \tilde{I})$ при $\lambda \in \mathbb{K}$. Тогда: F — полином на множестве \mathbb{K} , N — степень полинома F, $\alpha_0(\tilde{A}), \ldots, \alpha_N(\tilde{A})$ — коэффициенты полинома F.

Пусть \tilde{F} — продолжение полинома F на множество \mathbb{C} . Пусть $\lambda \in \mathbb{C}$. Тогда:

$$\tilde{F}(\lambda) = \sum_{k=\overline{0.N}} \alpha_k(\tilde{A}) \lambda^k = \det(\tilde{A} - \lambda \tilde{I}).$$

Замечание (определение характеристического полинома). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

Обозначим: $F_A(\lambda) = \det(A - \lambda I)$ при $\lambda \in \mathbb{K}$. Пусть e — базис пространства L. Пусть $\lambda \in \mathbb{K}$. Тогда:

$$F_A(\lambda) = \det(A - \lambda I) = \det([A - \lambda I](e)) = \det([A](e) - \lambda [I](e)) = \det([A](e) - \lambda \tilde{I}).$$

Следовательно: F_A — полином на множестве \mathbb{K} , N — степень полинома F_A , $\alpha_0([A](e)), \ldots, \alpha_N([A](e))$ — коэффициенты полинома F_A . Будем говорить, что F_A — характеристический полином оператора A.

Пусть e, e' — базисы пространства L. Так как: N — степень полинома F_A , $\alpha_0\bigl([A](e')\bigr),\ldots,\alpha_N\bigl([A](e')\bigr)$ — коэффициенты полинома F_A ; N — степень полинома F_A , $\alpha_0\bigl([A](e)\bigr),\ldots,\alpha_N\bigl([A](e)\bigr)$ — коэффициенты полинома F_A , то: $\alpha_k\bigl([A](e')\bigr)=\alpha_k\bigl([A](e)\bigr)$ при $k=\overline{0,N}$.

Обозначим через \tilde{F}_A продолжение полинома F_A на множество \mathbb{C} . Пусть e — базис пространства L. Пусть $\lambda \in \mathbb{C}$. Тогда $\tilde{F}_A(\lambda) = \det([A](e) - \lambda \tilde{I})$.

Утверждение (основное свойство характеристического полинома). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$. Тогда $\operatorname{SD}(A) = \ker(F_A)$.

$$SD(A) = \{\lambda \colon \lambda \in \mathbb{K} \land \ker(A - \lambda I) \neq \{\theta\}\} = \{\lambda \colon \lambda \in \mathbb{K} \land \det([A - \lambda I](e)) = 0\} = \{\lambda \colon \lambda \in \mathbb{K} \land F_A(\lambda) = 0\} = \ker(F_A). \quad \Box$$

Замечание (алгебраическая кратность собственного значения). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

Пусть: $\lambda \in \mathbb{C}$, $\tilde{F}_A(\lambda) \neq 0$. Обозначим, $m_A(\lambda) = 0$.

Пусть: $\lambda \in \mathbb{C}$, $\tilde{F}_A(\lambda) = 0$. Обозначим через $m_A(\lambda)$ кратность числа λ как корня полинома \tilde{F}_A .

Пусть $\lambda \in \mathrm{SD}(A)$. Будем говорить, что $m_A(\lambda)$ — алгебраическая кратность собственного значения λ .

Так как: $N \neq 0$, $N = \deg(F_A)$, то: $\ker(F_A)$ — конечное множество, $\operatorname{card} \left(\ker(F_A) \right) \leqslant N$. Пусть $\ker(F_A) \neq \emptyset$. Так как: $N \neq 0$, $N = \deg(F_A)$, то $\sum_{\lambda \in \ker(F_A)} m_A(\lambda) \leqslant N$.

Так как: $N \neq 0$, $N = \deg(\tilde{F}_A)$, то: $\ker(\tilde{F}_A)$ — конечное множество, $\operatorname{card}(\ker(\tilde{F}_A)) \leqslant N$. Пусть $\ker(\tilde{F}_A) \neq \emptyset$. Так как: $N \neq 0$, $N = \deg(F_A)$, то $\sum_{\lambda \in \ker(\tilde{F}_A)} m_A(\lambda) \leqslant N$.

Пусть $\mathbb C$ — алгебраически замкнутое поле. Так как: $N \neq 0, \ N = \deg(\tilde F_A),$ то: $\ker(\tilde F_A) \neq \varnothing, \ \sum_{\lambda \in \ker(\tilde F_A)} m_A(\lambda) = N.$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \text{Lin}(L, L)$, λ_0 — собственное значение оператора A. Тогда $g_A(\lambda_0) \leqslant m_A(\lambda_0)$.

Доказательство. Обозначим: $H = H_A(\lambda_0), \ g = g_A(\lambda_0), \ m = m_A(\lambda_0).$ Очевидно, $g = \overline{1,N}.$ Так как: $g \in \mathbb{N}, \ g = \dim(H),$ то существуют векторы $e_1, \ldots, e_g,$ удовлетворяющие условиям: $e_1, \ldots, e_g \in H, \ e_1, \ldots, e_g$ — линейно независимые векторы.

Пусть g=N. Так как: $e_1,\dots,e_g\in L,\,e_1,\dots,e_g$ — линейно независимые векторы, $g=N=\dim(L)$, то (e_1,\dots,e_g) — базис пространства L. Обозначим, $\tilde{A}=[A](e)$. Так как $e_1,\dots,e_g\in H$, то: $\tilde{A}_i^j=\lambda_0\delta_i^j$ при $i,\,j=\overline{1,g}$. Пусть $\lambda\in\mathbb{K}$. Тогда:

$$F_A(\lambda) = \det(\tilde{A} - \lambda \tilde{I}) = (\lambda_0 - \lambda)^g.$$

Следовательно, m = g.

Пусть $g \neq N$. Тогда $g = \overline{1, N-1}$. Так как: $e_1, \ldots, e_g \in L$, e_1, \ldots, e_g — линейно независимые векторы; $N \in \mathbb{N}, g < N = \dim(L)$, то существуют векторы e_{g+1}, \ldots, e_N , удовлетворяющие условиям: $e_{g+1}, \ldots, e_N \in L$, e_1, \ldots, e_N — линейно независимые векторы. Так как: $e_1, \ldots, e_N \in L$, e_1, \ldots, e_N — линейно независимые векторы, $N = \dim(L)$, то (e_1, \ldots, e_N) — базис пространства L. Обозначим, $\tilde{A} = [A](e)$. Так как $e_1, \ldots, e_g \in H$, то: $\tilde{A}_i^j = \lambda_0 \delta_i^j$ при: $i = \overline{1, g}, j = \overline{1, N}$. Пусть $\lambda \in \mathbb{K}$. Тогда:

$$F_A(\lambda) = \det(\tilde{A} - \lambda \tilde{I}) = (\lambda_0 - \lambda)^g \det\left(\{\tilde{A}_{g+i}^{g+j} - \lambda \delta_{g+i}^{g+j}\}_{i=1,N-g}^{j=\overline{1,N-g}}\right).$$

Следовательно, $m \geqslant g$.

Утверждение (существование собственного значения). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $L - \Lambda u$ -нейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

 $\mathit{Пусть}\colon \mathbb{C}$ — алгебраически замкнутое поле, $\ker(\tilde{F}_A)\subseteq \mathbb{K}$. $\mathit{Torda}\colon \mathrm{SD}(A)\neq\varnothing$, $\sum_{\lambda\in\mathrm{SD}(A)}m_A(\lambda)=N$.

 \mathcal{A} оказательство. Так как \mathbb{C} — алгебраически замкнутое поле, то: $\ker(\tilde{F}_A) \neq \emptyset$, $\sum_{\lambda \in \ker(\tilde{F}_A)} m_A(\lambda) = N$. Так как $\ker(\tilde{F}_A) \subseteq \mathbb{K}$, то $\ker(F_A) = \ker(\tilde{F}_A)$. Тогда:

$$\mathrm{SD}(A) = \ker(F_A) = \ker(\tilde{F}_A) \neq \varnothing;$$

$$\sum_{\lambda \in \mathrm{SD}(A)} m_A(\lambda) = \sum_{\lambda \in \ker(F_A)} m_A(\lambda) = \sum_{\lambda \in \ker(\tilde{F}_A)} m_A(\lambda) = N. \quad \Box$$

Утверждение (существование собственного значения). Пусть: L — линейное пространство над полем \mathbb{C} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$.

Пусть \mathbb{C} — алгебраически замкнутое поле. Тогда: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} m_A(\lambda) = N$.

Утверждение (существование базиса из собственных векторов №04). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \text{Lin}(L, L)$.

- 1. Пусть: \mathbb{C} алгебраически замкнутое поле, $\ker(\dot{F}_A) \subseteq \mathbb{K}$, $\forall \lambda \in \mathrm{SD}(A) \big(g_A(\lambda) = m_A(\lambda) \big)$. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e базис пространства L, e_1, \ldots, e_N собственные векторы оператора A.
- 2. Пусть существуют векторы $e_1, ..., e_N$, удовлетворяющие условиям: e базис пространства $L, e_1, ..., e_N$ собственные векторы оператора A. Тогда: $\ker(\tilde{F}_A) \subseteq \mathbb{K}$, $\forall \lambda \in \mathrm{SD}(A) \big(g_A(\lambda) = m_A(\lambda) \big)$.

Доказательство.

1. Так как: \mathbb{C} — алгебраически замкнутое поле, $\ker(\tilde{F}_A) \subseteq \mathbb{K}$, то: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} m_A(\lambda) = N$. Так как $\forall \lambda \in \mathrm{SD}(A) \big(g_A(\lambda) = m_A(\lambda) \big)$, то: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} g_A(\lambda) = N$. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства L, e_1, \ldots, e_N — собственные векторы оператора A.

2. Так как существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства L, e_1, \ldots, e_N — собственные векторы оператора A, то: $\mathrm{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \mathrm{SD}(A)} g_A(\lambda) = N$.

Предположим, что существует число λ_0 , удовлетворяющее условиям: $\lambda_0 \in \ker(\tilde{F}_A)$, $\lambda_0 \notin \mathbb{K}$. Тогда: $\lambda_0 \in \ker(\tilde{F}_A)$, $\lambda_0 \notin \mathrm{SD}(A)$. Следовательно:

$$\sum_{\lambda \in \mathrm{SD}(A)} g_A(\lambda) \leqslant \sum_{\lambda \in \mathrm{SD}(A)} m_A(\lambda) < \sum_{\lambda \in \ker(\tilde{F}_A)} m_A(\lambda) \leqslant N$$

(что противоречит утверждению $\sum_{\lambda \in \mathrm{SD}(A)} g_A(\lambda) = N$). Итак, $\ker(\tilde{F}_A) \subseteq \mathbb{K}$.

Предположим, что существует число λ_0 , удовлетворяющее условиям: $\lambda_0 \in SD(A)$, $g_A(\lambda_0) \neq m_A(\lambda_0)$. Тогда: $\lambda_0 \in SD(A)$, $g_A(\lambda_0) < m_A(\lambda_0)$. Следовательно:

$$\sum_{\lambda \in SD(A)} g_A(\lambda) < \sum_{\lambda \in SD(A)} m_A(\lambda) \leqslant N$$

(что противоречит утверждению $\sum_{\lambda \in SD(A)} g_A(\lambda) = N$). Итак, $\forall \lambda \in SD(A) (g_A(\lambda) = m_A(\lambda))$.

14.5. Факультативный материал

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$, $r \in \mathbb{N}$, Q_1, \ldots, Q_r — инвариантные подпространства оператора A. Тогда $Q_1 + \cdots + Q_r$ — инвариантное подпространство оператора A.

Доказательство. Так как Q_1, \ldots, Q_r — подпространства пространства L, то $Q_1 + \cdots + Q_r$ — подпространство пространства L.

Пусть $u \in Q_1 + \dots + Q_r$. Тогда существуют векторы x_1, \dots, x_r , удовлетворяющие условиям: $x_1 \in Q_1, \dots, x_r \in Q_r$, $u = x_1 + \dots + x_r$. Следовательно: $x_1 \in Q_1 \subseteq D(A), \dots, x_r \in Q_r \subseteq D(A), u = x_1 + \dots + x_r$. Тогда: $u \in D(A), Au = A(x_1 + \dots + x_r) = Ax_1 + \dots + Ax_r \in Q_1 + \dots + Q_r$. Итак, $Q_1 + \dots + Q_r$ — инвариантное подпространство оператора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; A, $B \in \text{Lin}(L, L)$, A, B — коммутирующие операторы. Тогда: $\ker(B)$ — инвариантное подпространство оператора A; $\mathbb{R}(B)$ — инвариантное подпространство оператора A.

Доказательство. Так как $B \in \text{lin}(L,L)$, то ker(B) — подпространство пространства L.

Пусть $x \in \ker(B)$. Тогда: $x \in L$, $Bx = \theta$. Следовательно: $Ax \in L$, $B(Ax) = (BA)x = (AB)x = A(Bx) = A\theta = \theta$. Тогда $Ax \in \ker(B)$. Итак, $\ker(B)$ — инвариантное подпространство оператора A.

Так как $B \in lin(L, L)$, то R(B) — подпространство пространства L.

Пусть $x \in R(B)$. Тогда существует вектор u, удовлетворяющий условиям: $u \in L$, x = Bu. Следовательно: $Au \in L$, Ax = A(Bu) = (AB)u = (BA)u = B(Au). Тогда $Ax \in R(B)$. Итак, R(B) — инвариантное подпространство оператора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; $A \in \text{lin}(L, L)$, λ_1 , $\lambda_2 \in \mathbb{K}$. Тогда $\ker(A - \lambda_2 I)$ — инвариантное подпространство оператора $A - \lambda_1 I$.

Доказательство. Очевидно, $\ker(A - \lambda_2 I)$ — подпространство пространства L. Пусть $x \in \ker(A - \lambda_2 I)$. Тогда: $x \in \mathrm{D}(A - \lambda_1 I)$, $(A - \lambda_1 I)x = (\lambda_2 - \lambda_1)x \in \ker(A - \lambda_2 I)$. Итак, $\ker(A - \lambda_2 I)$ — инвариантное подпространство оператора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq +\infty$; $A \in \operatorname{Lin}(L, L)$. Тогда $\operatorname{SC}(A) = \emptyset$.

Доказательство. Предположим, что $SC(A) \neq \emptyset$. Тогда существует число λ , удовлетворяющее условию $\lambda \in SC(A)$. Следовательно: $\lambda \in \mathbb{K}$, $\ker(A - \lambda I) = \{\theta\}$, $\Re(A - \lambda I) \neq L$. Согласно 1-й теореме Фредгольма, так как: $\dim(L) \neq +\infty$, $A - \lambda I \in \operatorname{Lin}(L,L)$, $\ker(A - \lambda I) = \{\theta\}$, то $\Re(A - \lambda I) = L$ (что противоречит утверждению $\Re(A - \lambda I) \neq L$). Итак, $\Re(A - \lambda I) = \emptyset$. \square

Oпределение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$. Пусть: $N \in \mathbb{Z}_+, a_0, \ldots, a_N \in \mathbb{K}, N \neq 0 \implies a_N \neq 0, F(A) = \sum_{k=\overline{0,N}} a_k A^k$ при $A \in \mathbb{C}$

 $\operatorname{Lin}(L,L)$. Очевидно, $F \colon \operatorname{Lin}(L,L) \Longrightarrow \operatorname{Lin}(L,L)$. Будем говорить, что: F — полином на множестве $\operatorname{Lin}(L,L)$, N — степень полинома F, a_0,\ldots,a_N — коэффициенты полинома F.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$. Пусть: $N \in \mathbb{Z}_+, a_0, \dots, a_N \in \mathbb{K}, F(A) = \sum_{k=\overline{0,N}} a_k A^k$ при $A \in \operatorname{Lin}(L,L)$. Тогда F —

полином на множестве $\operatorname{Lin}(L,L)$.

Пусть:
$$N \in \mathbb{Z}_+, a_0, \dots, a_N \in \mathbb{K}, x \in \mathbb{K}$$
. Тогда $\sum_{k=\overline{0,N}} a_k(xI)^k = \left(\sum_{k=\overline{0,N}} a_k x^k\right) I$.

Пусть: $y_1, y_2 \in \mathbb{K}, y_1 I = y_2 I$. Тогда $y_1 = y_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$; $N \in \mathbb{Z}_+$, $a_0, \ldots, a_N \in \mathbb{K}$, $b_0, \ldots, b_N \in \mathbb{K}$, $\sum_{k=\overline{0},N} a_k A^k = \sum_{k=\overline{0},N} b_k A^k$ при $A \in \operatorname{Lin}(L, L)$. Тогда: $a_k = b_k$ при $k = \overline{0, N}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$; $N_1 \in \mathbb{Z}_+$, $a_0, \ldots, a_{N_1} \in \mathbb{K}$, $N_1 \neq 0 \implies a_{N_1} \neq 0$, $N_2 \in \mathbb{Z}_+$, $b_0, \ldots, b_{N_2} \in \mathbb{K}$, $N_2 \neq 0 \implies b_{N_2} \neq 0$, $\sum_{k=1}^{N_1} a_k A^k = \sum_{k=0}^{N_2} b_k A^k$ при $A \in \text{Lin}(L, L)$. Тогда: $N_1 = N_2$, $a_k = b_k$ при $k = \overline{0, N_1}$.

Oпределение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$; F — полином на множестве $\mathrm{Lin}(L, L)$. Выберем число N, удовлетворяющее условию: N — степень полинома F. Обозначим, $\deg(F) = N$.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$; F — полином на множестве \mathbb{K} . Выберем число N, выберем числа a_0, \ldots, a_N , удовлетворяющие условиям: N — степень полинома F, a_0, \ldots, a_N — коэффициенты полинома F. Будем говорить, что \hat{F} — продолжение полинома F на множество $\mathrm{Lin}(L,L)$, если: $\hat{F}(A) = \sum_{k=0}^{\infty} a_k A^k$ при $A \in \mathrm{Lin}(L,L)$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $\dim(L) \neq 0$. Пусть: F — полином на множестве \mathbb{K} , N — степень полинома F, a_0, \ldots, a_N — коэффициенты полинома F. Пусть \hat{F} — продолжение полинома F на множество $\mathrm{Lin}(L, L)$. Тогда: \hat{F} — полином на множестве $\mathrm{Lin}(L, L)$, N — степень полинома \hat{F} , a_0, \ldots, a_N — коэффициенты полинома \hat{F} .

Пусть: F — полином на множестве \mathbb{K} , N — степень полинома F, a_0, \ldots, a_N — коэффициенты полинома F. Пусть: \hat{F} — полином на множестве $\mathrm{Lin}(L,L)$, N — степень полинома \hat{F} , a_0, \ldots, a_N — коэффициенты полинома \hat{F} . Тогда \hat{F} — продолжение полинома F на множество $\mathrm{Lin}(L,L)$.

Пусть F — полином на множестве \mathbb{K} . Пусть \hat{F} — продолжение полинома F на множество Lin(L,L). Тогда: \hat{F} — полином на множестве Lin(L,L), $\hat{F}(xI) = F(x)I$ при $x \in \mathbb{K}$.

Пусть F — полином на множестве \mathbb{K} . Пусть: \hat{F} — полином на множестве $\mathrm{Lin}(L,L)$, $\hat{F}(xI) = F(x)I$ при $x \in \mathbb{K}$. Тогда \hat{F} — продолжение полинома F на множество $\mathrm{Lin}(L,L)$.

Пусть: $N \in \mathbb{Z}_+, a_0, \dots, a_N \in \mathbb{K}, F(x) = \sum_{k=\overline{0,N}} a_k x^k$ при $x \in \mathbb{K}$; $\hat{F}(A) = \sum_{k=\overline{0,N}} a_k A^k$ при

 $A \in \operatorname{Lin}(L,L)$. Тогда \hat{F} — продолжение полинома F на множество $\operatorname{Lin}(L,L)$.

Пусть: F_1 — полином на множестве \mathbb{K} , \hat{F}_1 — продолжение полинома F_1 на множество $\operatorname{Lin}(L,L)$, F_2 — полином на множестве \mathbb{K} , \hat{F}_2 — продолжение полинома F_2 на множество $\operatorname{Lin}(L,L)$. Тогда $\hat{F}_1+\hat{F}_2$ — продолжение полинома F_1+F_2 на множество $\operatorname{Lin}(L,L)$.

Пусть: $\lambda \in \mathbb{K}$, F — полином на множестве \mathbb{K}_1 , \hat{F} — продолжение полинома F на множество $\mathrm{Lin}(L,L)$. Тогда $\lambda \hat{F}$ — продолжение полинома λF на множество $\mathrm{Lin}(L,L)$.

Пусть: F_1 — полином на множестве \mathbb{K} , \hat{F}_1 — продолжение полинома F_1 на множество Lin(L,L), F_2 — полином на множестве \mathbb{K} , \hat{F}_2 — продолжение полинома F_2 на множество Lin(L,L). Тогда $\hat{F}_1\hat{F}_2$ — продолжение полинома F_1F_2 на множество Lin(L,L).

3амечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$. Обозначим через \hat{F}_A продолжение полинома F_A на множество $\operatorname{Lin}(L, L)$.

Теорема (теорема Гамильтона—Кэли). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; $A \in \operatorname{Lin}(L, L)$. Тогда $\hat{F}_A(A) = \Theta$.

Доказательство. Пусть e — базис пространства L. Обозначим, $\tilde{A}=[A](e)$. Пусть k, $i=\overline{1,N}$. Обозначим: $M_i^k(\lambda)=(-1)^{k+i}\overline{\Delta}_i^k(\tilde{A}-\lambda\tilde{I})$ при $\lambda\in\mathbb{K}$. Тогда M_i^k — полином на множестве \mathbb{K} . Обозначим через \hat{M}_i^k продолжение полинома M_i^k на множество $\mathrm{Lin}(L,L)$. Пусть $i,j=\overline{1,N}$. Обозначим: $\varphi_i^j(\lambda)=\tilde{A}_i^j-\lambda\delta_i^j$ при $\lambda\in\mathbb{K}$. Тогда: $\varphi_i^j(\lambda)=\tilde{A}_i^j\lambda^0+(-\delta_i^j)\lambda^1$ при $\lambda\in\mathbb{K}$. Следовательно, φ_i^j — полином на множестве \mathbb{K} . Обозначим через $\hat{\varphi}_i^j$ продолжение полинома φ_i^j на множество $\mathrm{Lin}(L,L)$. Тогда: $\hat{\varphi}_i^j(B)=\tilde{A}_i^jB^0+(-\delta_i^j)B^1$ при $B\in\mathrm{Lin}(L,L)$. Следовательно: $\hat{\varphi}_i^j(B)=\tilde{A}_i^jI-\delta_i^jB$ при $B\in\mathrm{Lin}(L,L)$.

Пусть: $k, j = \overline{1, N}, \lambda \in \mathbb{K}$. Обозначим:

$$Q = \begin{pmatrix} (\tilde{A} - \lambda \tilde{I})^1 \\ \vdots \\ (\tilde{A} - \lambda \tilde{I})^{k-1} \\ (\tilde{A} - \lambda \tilde{I})^j \\ (\tilde{A} - \lambda \tilde{I})^{k+1} \\ \vdots \\ (\tilde{A} - \lambda \tilde{I})^N \end{pmatrix}.$$

Тогда: $\det(Q)=\delta_k^j\det(\tilde{A}-\lambda\tilde{I}),\ \overline{\Delta}_i^k(Q)=\overline{\Delta}_i^k(\tilde{A}-\lambda\tilde{I}),\ Q_i^k=(\tilde{A}-\lambda\tilde{I})_i^j$ при $i=\overline{1,N}.$ Следовательно:

$$(\delta_k^j F_A)(\lambda) = \delta_k^j F_A(\lambda) = \delta_k^j \det(\tilde{A} - \lambda \tilde{I}) = \det(Q) = \sum_{i=1}^N (-1)^{k+i} \overline{\Delta}_i^k(Q) Q_i^k =$$

$$\begin{split} &= \sum_{i=1}^N (-1)^{k+i} \overline{\Delta}_i^k (\tilde{A} - \lambda \tilde{I}) (\tilde{A} - \lambda \tilde{I})_i^j = \sum_{i=1}^N M_i^k (\lambda) (\tilde{A}_i^j - \lambda \delta_i^j) = \sum_{i=1}^N M_i^k (\lambda) \varphi_i^j (\lambda) = \\ &= \Big(\sum_{i=1}^N M_i^k \varphi_i^j \Big) (\lambda). \end{split}$$

Тогда $\delta_k^j F_A = \sum_{i=1}^N \underline{M_i^k \varphi_i^j}$. Следовательно, $\delta_k^j \hat{F}_A = \sum_{i=1}^N \hat{M}_i^k \hat{\varphi}_i^j$.

Пусть: $k, j = \overline{1, N}, B \in \text{Lin}(L, L)$. Тогда:

$$\delta_k^j \hat{F}_A(B) = (\delta_k^j \hat{F}_A)(B) = \left(\sum_{i=1}^N \hat{M}_i^k \hat{\varphi}_i^j\right)(B) = \sum_{i=1}^N \hat{M}_i^k(B) \hat{\varphi}_i^j(B) = \sum_{i=1}^N \hat{M}_i^k(B) (\tilde{A}_i^j I - \delta_i^j B).$$

Пусть $i = \overline{1, N}$. Тогда:

$$(\tilde{A}_i^j I - \delta_i^j A)(e_i) = \tilde{A}_i^j I(e_i) - \delta_i^j A(e_i) = \tilde{A}_i^j e_i - A(e_i) = \theta.$$

Пусть $k = \overline{1, N}$. Тогда:

$$\hat{F}_{A}(A)(e_{k}) = \left(\delta_{k}^{j}\hat{F}_{A}(A)\right)(e_{j}) = \left(\sum_{i=1}^{N}\hat{M}_{i}^{k}(A)(\tilde{A}_{i}^{j}I - \delta_{i}^{j}A)\right)(e_{j}) = \sum_{i=1}^{N}\left(\hat{M}_{i}^{k}(A)(\tilde{A}_{i}^{j}I - \delta_{i}^{j}A)\right)(e_{j}) = \sum_{i=1}^{N}\hat{M}_{i}^{k}(A)\left((\tilde{A}_{i}^{j}I - \delta_{i}^{j}A)(e_{j})\right) = \sum_{i=1}^{N}\hat{M}_{i}^{k}(A)(\theta) = \theta.$$

Пусть $x \in L$. Тогда:

$$\hat{F}_A(A)(x) = \hat{F}_A(A)([x]^k(e)e_k) = [x]^k(e)\hat{F}_A(A)(e_k) = \theta.$$

Следовательно, $\hat{F}_A(A) = \Theta$.

Лекция 15. Линейные, билинейные и квадратичные формы (будет переписана)

15.1. Линейные и полулинейные формы

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

- 1. Будем говорить, что A линейная форма в пространстве L, если $A \in \text{Lin}(L, \mathbb{K})$.
- 2. Будем говорить, что A полулинейная форма в пространстве L, если: $A\colon L\implies \mathbb{K},$ A полулинейный оператор.

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, A: $L \implies \mathbb{K}$.

Пусть: $[A](e) \in \mathbb{K}^{1 \times N}$, $[A]_k(e) = A(e_k)$ при $k = \overline{1, N}$. Будем говорить, что [A](e) — набор компонент функции A в базисе e.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть A линейная форма в пространстве L. Тогда: $A(x) = [A]_k(e)[x]^k(e)$ при $x \in L$.
- 2. Пусть: $\tilde{A} \in \mathbb{K}^{1 \times N}$, $A(x) = \tilde{A}_k[x]^k(e)$ при $x \in L$. Тогда: A линейная форма в пространстве L, $[A](e) = \tilde{A}$.
- 3. Пусть A- полулинейная форма в пространстве L. Тогда: $A(x)=[A]_k(e)\overline{[x]^k(e)}$ при $x\in L$.
- 4. Пусть: $\tilde{A} \in \mathbb{K}^{1 \times N}$, $A(x) = \tilde{A}_k \overline{[x]^k(e)}$ при $x \in L$. Тогда: A полулинейная форма в пространстве L, $[A](e) = \tilde{A}$.

Доказательство.

1. Очевидно, $[A](e) \in \mathbb{K}^{1 \times N}$. Пусть $x \in L$. Тогда:

$$A(x) = A([x]^k(e)e_k) = [x]^k(e)A(e_k) = [A]_k(e)[x]^k(e).$$

2. Очевидно, $A: L \Longrightarrow \mathbb{K}$.

Пусть $x, y \in L$. Тогда:

$$A(x+y) = \tilde{A}_k[x+y]^k(e) = \tilde{A}_k([x](e) + [y](e))^k = \tilde{A}_k([x]^k(e) + [y]^k(e)) =$$

= $\tilde{A}_k[x]^k(e) + \tilde{A}_k[y]^k(e) = A(x) + A(y).$

Пусть: $\lambda \in \mathbb{K}$, $x \in L$. Тогда:

$$A(\lambda x) = \tilde{A}_k[\lambda x]^k(e) = \tilde{A}_k(\lambda [x](e))^k = \tilde{A}_k(\lambda [x]^k(e)) = \lambda (\tilde{A}_k[x]^k(e)) = \lambda A(x).$$

Итак, A — линейная форма в пространстве L.

Пусть $k = \overline{1, N}$. Тогда:

$$[A]_k(e) = A(e_k) = \tilde{A}_m[e_k]^m(e) = \tilde{A}_m \delta_k^m = \tilde{A}_k.$$

Следовательно, $[A](e) = \tilde{A}$.

3. Очевидно, $[A](e) \in \mathbb{K}^{1 \times N}$. Пусть $x \in L$. Тогда:

$$A(x) = A([x]^k(e)e_k) = \overline{[x]^k(e)}A(e_k) = [A]_k(e)\overline{[x]^k(e)}.$$

4. Очевидно, $A: L \Longrightarrow \mathbb{K}$. Пусть $x, y \in L$. Тогда:

$$A(x+y) = \tilde{A}_k \overline{[x+y]^k(e)} = \tilde{A}_k \overline{\left([x](e) + [y](e)\right)^k} = \tilde{A}_k \overline{\left([x]^k(e) + [y]^k(e)\right)} =$$

$$= \tilde{A}_k \left(\overline{[x]^k(e)} + \overline{[y]^k(e)}\right) = \tilde{A}_k \overline{[x]^k(e)} + \tilde{A}_k \overline{[y]^k(e)} = A(x) + A(y).$$

Пусть: $\lambda \in \mathbb{K}$, $x \in L$. Тогда:

$$A(\lambda x) = \tilde{A}_k \overline{[\lambda x]^k(e)} = \tilde{A}_k \overline{(\lambda [x](e))^k} = \tilde{A}_k \overline{(\lambda [x]^k(e))} = \tilde{A}_k (\overline{\lambda} \cdot \overline{[x]^k(e)}) = \overline{\lambda} (\tilde{A}_k \overline{[x]^k(e)}) = \overline{\lambda} A(x).$$

Итак, A — полулинейная форма.

Пусть $k = \overline{1, N}$. Тогда:

$$[A]_k(e) = A(e_k) = \tilde{A}_m \overline{[e_k]^m(e)} = \tilde{A}_m \overline{\delta_k^m} = \tilde{A}_m \delta_k^m = \tilde{A}_k. \quad \Box$$

Следовательно, $[A](e) = \tilde{A}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e, e' — базисы пространства L.

- 1. Пусть A линейная форма в пространстве L. Тогда: $[A]_{k'}(e') = [A]_k(e)\alpha_{k'}^k(e,e')$ при $k' = \overline{1,N}$; $[A](e') = [A](e)\alpha(e,e')$.
- 2. Пусть A полулинейная форма в пространстве L. Тогда: $[A]_{k'}(e') = [A]_k(e)\overline{\alpha_{k'}^k(e,e')}$ при $k' = \overline{1,N}$; $[A](e') = [A](e)\overline{\alpha(e,e')}$.

Доказательство.

1. Пусть $k' = \overline{1, N}$. Тогда:

$$[A]_{k'}(e') = A(e'_{k'}) = A(\alpha_{k'}^k(e, e')e_k) = \alpha_{k'}^k(e, e')A(e_k) = [A]_k(e)\alpha_{k'}^k(e, e') = ([A](e)\alpha(e, e'))_{k'}.$$

Следовательно, $[A](e') = [A](e)\alpha(e, e')$.

2. Пусть $k' = \overline{1, N}$. Тогда:

$$[A]_{k'}(e') = A(e'_{k'}) = A(\alpha_{k'}^k(e, e')e_k) = \overline{\alpha_{k'}^k(e, e')} \\ A(e_k) = [A]_k(e)\overline{\alpha_{k'}^k(e, e')} = ([A](e)\overline{\alpha(e, e')})_{k'}.$$

Следовательно,
$$[A](e') = [A](e)\overline{\alpha(e,e')}$$
.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$. Обозначим через L^* множество всех линейных форм в пространстве L. Очевидно, L^* — линейное пространство над полем \mathbb{K} . Будем говорить, что L^* — сопряжённое пространство к пространству L.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть: $\omega^m \in L^*$, $[\omega^m]_k(e) = \delta^m_k$ при $k, m = \overline{1, N}$. Тогда: $\omega^m \in L^*$, $\omega^m(e_k) = \delta^m_k$ при $k, m = \overline{1, N}$.
- Пусть: $\omega^m \in L^*$, $\omega^m(e_k) = \delta_k^m$ при k, $m = \overline{1, N}$. Тогда: $\omega^m \in L^*$, $[\omega^m]_k(e) = \delta_k^m$ при k, $m = \overline{1, N}$.
- 2. Очевидно, существует единственный набор функций $\omega^1, \dots, \omega^N$, удовлетворяющий условию: $\omega^m \in L^*$, $[\omega^m]_k(e) = \delta^m_k$ при $k, m = \overline{1, N}$. Тогда существует единственный набор функций $\omega^1, \dots, \omega^N$, удовлетворяющий условию: $\omega^m \in L^*$, $\omega^m(e_k) = \delta^m_k$ при $k, m = \overline{1, N}$.

- 3. Обозначим: $\varphi(A) = [A](e)$ при $A \in L^*$. Тогда $L^* \stackrel{\varphi}{\approx} \mathbb{K}^{1 \times N}$. Следовательно: $\dim(L^*) = \dim(\mathbb{K}^{1 \times N}) = N$.
- 4. Пусть: $\omega^m \in L^*$, $\omega^m(e_k) = \delta_k^m$ при k, $m = \overline{1,N}$. Тогда: $\omega^m \in L^*$, $[\omega^m]_k(e) = \delta_k^m$ при k, $m = \overline{1,N}$. Следовательно: $\omega^m \in L^*$, $[\omega^m](e) = \tilde{I}^m$ при $m = \overline{1,N}$. Тогда: $\omega^m \in L^*$, $\varphi(\omega^m) = \tilde{I}^m$ при $m = \overline{1,N}$. Следовательно: $\omega^m = \varphi^{-1}(\tilde{I}^m)$ при $m = \overline{1,N}$. Так как: $(\tilde{I}^1,\ldots,\tilde{I}^N)$ базис пространства $\mathbb{K}^{1\times N}$, $\mathbb{K}^{1\times N} \stackrel{\varphi^{-1}}{\approx} L^*$, то $(\omega^1,\ldots,\omega^N)$ базис пространства L^* . Будем говорить, что $(\omega^1,\ldots,\omega^N)$ базис пространства L.
 - 5. Пусть $m = \overline{1, N}$. Пусть $x \in L$. Тогда:

$$\omega^m(x) = [\omega^m]_k(e)[x]^k(e) = \delta_k^m[x]^k(e) = [x]^m(e).$$

6. Пусть $A \in L^*$. Пусть $x \in L$. Тогда:

$$A(x) = [A]_k(e)[x]^k(e) = [A]_k(e)\omega^k(x) = ([A]_k(e)\omega^k)(x).$$

Следовательно, $A = [A]_k(e)\omega^k$. Тогда $[A]_1(e),\dots,[A]_N(e)$ — координаты элемента A в базисе $(\omega^1,\dots,\omega^N)$.

15.2. Билинейные и полуторалинейные формы

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

- 1. Будем говорить, что A билинейная форма в пространстве L, если: $A \colon L^2 \Longrightarrow \mathbb{K}$, $A(x_1+x_2,y) = A(x_1,y) + A(x_2,y)$ при $x_1, x_2, y \in L$; $A(\lambda x,y) = \lambda A(x,y)$ при: $\lambda \in \mathbb{K}, x, y \in L$; $A(x,y_1+y_2) = A(x,y_1) + A(x,y_2)$ при $x, y_1, y_2 \in L$; $A(x,\lambda y) = \lambda A(x,y)$ при: $\lambda \in \mathbb{K}, x, y \in L$.
- 2. Пусть A билинейная форма в пространстве L. Будем говорить, что A симметричная (антисимметричная) форма, если: $A(y,x) = A(x,y) \; (A(y,x) = -A(x,y))$ при $x,y \in L$.
- 3. Пусть: $\mathbb{K} \in \{\mathbb{R}, \mathbb{Q}\}$, A билинейная форма в пространстве L. Будем писать A>0 $(A\geqslant 0,\ A<0,\ A\leqslant 0,\ A=0)$, если: A(x,x)>0 $(A(x,x)\geqslant 0,\ A(x,x)<0,\ A(x,x)\leqslant 0,\ A(x,x)=0)$ при: $x\in L,\ x\neq \theta$. Будем говорить, что A знакопеременная билинейная форма, если: $\exists x\in L\big(A(x,x)>0\big),\ \exists x\in L\big(A(x,x)<0\big).$
- 4. Будем говорить, что A полуторалинейная форма в пространстве L, если: $A\colon L^2 \Longrightarrow \mathbb{K}, \, A(x_1+x_2,y) = A(x_1,y) + A(x_2,y)$ при $x_1,\, x_2,\, y\in L; \, A(\lambda x,y) = \overline{\lambda}A(x,y)$ при: $\lambda\in\mathbb{K},\, x,\, y\in L; \, A(x,y_1+y_2) = A(x,y_1) + A(x,y_2)$ при $x,\, y_1,\, y_2\in L; \, A(x,\lambda y) = \lambda A(x,y)$ при: $\lambda\in\mathbb{K},\, x,\, y\in L$.
- 5. Пусть A полуторалинейная форма в пространстве L. Будем говорить, что A эрмитова (антиэрмитова) форма, если: $\overline{A(y,x)} = A(x,y)$ ($\overline{A(y,x)} = -A(x,y)$) при $x,y \in L$. Пусть A эрмитова полуторалинейная форма в пространстве L. Пусть $x \in L$. Тогда

A(x,x) = A(x,x). Следовательно, $A(x,x) \in \mathbb{R}$.

6. Пусть: A — полуторалинейная форма в пространстве L, $A(x,x) \in \mathbb{R}$ при $x \in L$. Будем писать A>0 ($A\geqslant 0$, A<0, $A\leqslant 0$, A=0), если: A(x,x)>0 ($A(x,x)\geqslant 0$, A(x,x)<0, $A(x,x)\leqslant 0$, A(x,x)=0) при: $x\in L$, $x\neq \theta$. Будем говорить, что A — знакопеременная полуторалинейная форма, если: $\exists x\in L\big(A(x,x)>0\big),\,\exists x\in L\big(A(x,x)<0\big).$

Onpedenenue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, A: $L^2 \Longrightarrow \mathbb{K}$.

Обозначим: $[A]_{k,m}(e) = A(e_k, e_m)$ при $k, m = \overline{1, N}$. Тогда $[A](e) \in \mathbb{K}^{N \times N}$. Будем говорить, что [A](e) — матрица функции A в базисе e.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}; \tilde{A} \in \mathbb{K}^{N \times N}$.

1. Обозначим, $\Delta_0(\tilde{A}) = 1$.

Обозначим: $\Delta_k(\tilde{A}) = \det(\{\tilde{A}_{i,j}\}_{i,j=\overline{1,k}})$ при $k=\overline{1,N}$. Будем говорить, что $\Delta_1(\tilde{A}),\ldots,\Delta_N(\tilde{A})$ — угловые миноры матрицы \tilde{A} .

- 2. Будем говорить, что \tilde{A} симметричная (антисимметричная) матрица, если $\tilde{A}^T = \tilde{A}$ ($\tilde{A}^T = -\tilde{A}$).
 - 3. Будем говорить, что \tilde{A} эрмитова (антиэрмитова) матрица, если $\overline{\tilde{A}^T} = \tilde{A}$ ($\overline{\tilde{A}^T} = -\tilde{A}$). Пусть \tilde{A} эрмитова матрица. Пусть $k = \overline{1, N}$. Тогда:

$$\begin{split} \tilde{A}_{k,k} &= \left(\overline{\tilde{A}^T} \right)_{k,k} = \overline{(\tilde{A}^T)_{k,k}} = \overline{\tilde{A}_{k,k}}; \\ \Delta_k(\tilde{A}) &= \Delta_k \Big(\overline{\tilde{A}^T} \Big) = \overline{\Delta(\tilde{A}^T)} = \overline{\Delta_k(\tilde{A})}. \end{split}$$

Следовательно, $\tilde{A}_{k,k}$, $\Delta_k(\tilde{A}) \in \mathbb{R}$.

- 4. Будем говорить, что \tilde{A} ортогональная матрица, если $\tilde{A}\tilde{A}^T=\tilde{I}$. Пусть \tilde{A} ортогональная матрица. Тогда: $\det(\tilde{A}) \neq 0$, $\tilde{A}^{-1}=\tilde{A}^T$. Пусть: $\det(\tilde{A}) \neq 0$, $\tilde{A}^{-1}=\tilde{A}^T$. Тогда \tilde{A} ортогональная матрица.
- 5. Будем говорить, что \tilde{A} унитарная матрица, если $\tilde{A} \overline{\tilde{A}^T} = \tilde{I}$. Пусть \tilde{A} унитарная матрица. Тогда: $\det(\tilde{A}) \neq 0$, $\tilde{A}^{-1} = \overline{\tilde{A}^T}$. Пусть: $\det(\tilde{A}) \neq 0$, $\tilde{A}^{-1} = \overline{\tilde{A}^T}$. Тогда \tilde{A} унитарная матрица.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть A билинейная форма в пространстве L. Тогда: $A(x,y) = [A]_{k,m}(e)[x]^k(e)[y]^m(e)$ при $x, y \in L$.
- 2. Пусть: $\tilde{A} \in \mathbb{K}^{\tilde{N} \times \tilde{N}}$, $A(x,y) = \tilde{A}_{k,m}[x]^k(e)[y]^m(e)$ при $x, y \in L$. Тогда: A билинейная форма в пространстве L, $[A](e) = \tilde{A}$.
- 3. Пусть A полуторалинейная форма в пространстве L. Тогда: $A(x,y) = [A]_{k,m}(e)\overline{[x]^k(e)}[y]^m(e)$ при $x,\ y\in L$.
- 4. Пусть: $\tilde{A} \in \mathbb{K}^{N \times N}$, $A(x,y) = \tilde{A}_{k,m} \overline{[x]^k(e)} [y]^m(e)$ при $x, y \in L$. Тогда: A полуторалинейная форма в пространстве L, $[A](e) = \tilde{A}$.

Доказательство.

1. Очевидно, $[A](e) \in \mathbb{K}^{N \times N}$. Пусть $x, y \in L$. Тогда:

$$A(x,y) = A([x]^k(e)e_k, [y]^m(e)e_m) = [x]^k(e)[y]^m(e)A(e_k, e_m) = [A]_{k,m}(e)[x]^k(e)[y]^m(e).$$

2. Очевидно, A — билинейная форма в пространстве L. Пусть $k, m = \overline{1, N}$. Тогда:

$$[A]_{k,m}(e) = A(e_k, e_m) = \tilde{A}_{i,j}[e_k]^i(e)[e_m]^j(e) = \tilde{A}_{i,j}\delta_k^i\delta_m^j = \tilde{A}_{k,m}.$$

Следовательно, $[A](e) = \tilde{A}$.

3. Очевидно, $[A](e) \in \mathbb{K}^{N \times N}$. Пусть $x, y \in L$. Тогда:

$$A(x,y) = A([x]^k(e)e_k, [y]^m(e)e_m) = \overline{[x]^k(e)}[y]^m(e)A(e_k, e_m) = [A]_{k,m}(e)\overline{[x]^k(e)}[y]^m(e).$$

4. Очевидно, A — полуторалинейная форма в пространстве L. Пусть $k, m = \overline{1, N}$. Тогда:

$$[A]_{k,m}(e) = A(e_k, e_m) = \tilde{A}_{i,j} \overline{[e_k]^i(e)} [e_m]^j(e) = \tilde{A}_{i,j} \overline{\delta_k^i} \delta_m^j = \tilde{A}_{i,j} \delta_k^i \delta_m^j = \tilde{A}_{k,m}.$$

Следовательно, $[A](e) = \tilde{A}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e, e' — базисы пространства L.

- 1. Пусть A билинейная форма в пространстве L. Тогда: $[A]_{k',m'}(e') = [A]_{k,m}(e)\alpha_{k'}^k(e,e')\alpha_{m'}^m(e,e')$ при k', $m' = \overline{1,N}$; $[A](e') = \alpha(e,e')^T[A](e)\alpha(e,e')$.
- 2. Пусть A полуторалинейная форма в пространстве L. Тогда: $[A]_{k',m'}(e') = [A]_{k,m}(e)\overline{\alpha_{k'}^k(e,e')}\alpha_{m'}^m(e,e')$ при $k',m'=\overline{1,N};$ $[A](e')=\overline{\alpha(e,e')^T}[A](e)\alpha(e,e').$

Доказательство.

1. Пусть k', $m' = \overline{1, N}$. Тогда:

$$[A]_{k',m'}(e') = A(e'_{k'}, e'_{m'}) = A(\alpha^k_{k'}(e, e')e_k, \alpha^m_{m'}(e, e')e_m) = \alpha^k_{k'}(e, e')\alpha^m_{m'}(e, e')A(e_k, e_m) = [A]_{k,m}(e)\alpha^k_{k'}(e, e')\alpha^m_{m'}(e, e') = (\alpha(e, e')^T[A](e)\alpha(e, e'))_{k',m'}.$$

Следовательно, $[A](e') = \alpha(e, e')^T [A](e)\alpha(e, e')$.

2. Пусть k', $m' = \overline{1, N}$. Тогда:

$$[A]_{k',m'}(e') = A(e'_{k'}, e'_{m'}) = A(\alpha^k_{k'}(e, e')e_k, \alpha^m_{m'}(e, e')e_m) = \overline{\alpha^k_{k'}(e, e')}\alpha^m_{m'}(e, e')A(e_k, e_m) = [A]_{k,m}(e)\overline{\alpha^k_{k'}(e, e')}\alpha^m_{m'}(e, e') = (\overline{\alpha(e, e')^T}[A](e)\alpha(e, e'))_{k',m'}.$$

Следовательно,
$$[A](e') = \overline{\alpha(e,e')^T}[A](e)\alpha(e,e')$$
.

15.3. Квадратичные формы

Onpedenetue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

1. Будем говорить, что Q — квадратичная форма в пространстве L, если: Q — функция, $\mathrm{D}(Q) = L$, существует функция A, удовлетворяющая условиям: A — билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Пусть Q — квадратичная форма в пространстве L. Тогда $Q:L \implies \mathbb{K}$.

2. Пусть: $\mathbb{K} \in \{\mathbb{R}, \mathbb{Q}\}$, Q — квадратичная форма в пространстве L. Будем писать Q > 0 ($Q \geqslant 0, \ Q < 0, \ Q \leqslant 0, \ Q = 0$), если: Q(x) > 0 ($Q(x) \geqslant 0, \ Q(x) < 0, \ Q(x) \leqslant 0, \ Q(x) = 0$) при: $x \in L, \ x \neq \theta$. Будем говорить, что Q — знакопеременная квадратичная форма, если: $\exists x \in L(Q(x) < 0), \ \exists x \in L(Q(x) > 0)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — квадратичная форма в пространстве L. Тогда существует функция A, удовлетворяющая условиям: A — симметричная билинейная форма в пространстве L, Q(x) = A(x, x) при $x \in L$.

Доказательство. По определению квадратичной формы, существует функция A_0 , удовлетворяющая условиям: A_0 — билинейная форма в пространстве L, $Q(x) = A_0(x,x)$ при $x \in L$. Обозначим: $A(x,y) = \frac{1}{2} \big(A_0(x,y) + A_0(y,x) \big)$ при $x,y \in L$. Очевидно, A — билинейная форма в пространстве L. Пусть $x,y \in L$. Тогда:

$$A(y,x) = \frac{1}{2} (A_0(y,x) + A_0(x,y)) = \frac{1}{2} (A_0(x,y) + A_0(y,x)) = A(x,y).$$

Следовательно, A — симметричная билинейная форма. Пусть $x \in L$. Тогда:

$$A(x,x) = \frac{1}{2} (A_0(x,x) + A_0(x,x)) = A_0(x,x) = Q(x).$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$. Тогда: $A(x,y) = \frac{1}{2} \big(Q(x+y) - Q(x) - Q(y) \big)$ при $x, y \in L$.

Доказательство. Пусть $x, y \in L$. Тогда:

$$Q(x+y) = A(x+y, x+y) = A(x,x) + A(x,y) + A(y,x) + A(y,y) = Q(x) + 2A(x,y) + Q(y);$$
$$A(x,y) = \frac{1}{2} (Q(x+y) - Q(x) - Q(y)). \quad \Box$$

Oпределение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L, Q — квадратичная форма в пространстве L.

Так как Q — квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$. Так как A — билинейная форма в пространстве L, то $[A](e) \in \mathbb{K}^{N \times N}$.

Обозначим, [Q](e) = [A](e). Тогда $[Q](e) \in \mathbb{K}^{N \times N}$. Будем говорить, что [Q](e) — матрица квадратичной формы Q в базисе e.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть Q- квадратичная форма в пространстве L. Тогда: [Q](e)- симметричная матрица, $Q(x)=[Q]_{k,m}(e)[x]^k(e)[x]^m(e)$ при $x\in L.$
- 2. Пусть: $\tilde{Q} \in \mathbb{K}^{N \times N}$, \tilde{Q} симметричная матрица, $Q(x) = \tilde{Q}_{k,m}[x]^k(e)[x]^m(e)$ при $x \in L$. Тогда: Q квадратичная форма в пространстве L, $[Q](e) = \tilde{Q}$.
- 3. Пусть: $\tilde{Q} \in \mathbb{K}^{N \times N}$, $Q(x) = \tilde{Q}_{k,m}[x]^k(e)[x]^m(e)$ при $x \in L$. Тогда: $Q \kappa$ вадратичная форма в пространстве L, $[Q](e) = \frac{1}{2}(\tilde{Q} + \tilde{Q}^T)$.

Доказательство.

1. Так как Q — квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$. Так как A — симметричная билинейная форма в пространстве L, то [A](e) — симметричная матрица.

Так как: Q — квадратичная форма в пространстве L, A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Так как: [A](e) — симметричная матрица, [Q](e) = [A](e), то [Q](e) — симметричная матрица.

Пусть $x \in L$. Тогда:

$$Q(x) = A(x,x) = [A]_{k,m}(e)[x]^k(e)[x]^m(e) = [Q]_{k,m}(e)[x]^k(e)[x]^m(e).$$

2. Обозначим: $A(x,y) = \tilde{Q}_{k,m}[x]^k(e)[y]^m(e)$ при $x,y \in L$. Так как \tilde{Q} — симметричная матрица, то: A — симметричная билинейная форма в пространстве L, $[A](e) = \tilde{Q}$. Пусть $x \in L$. Тогда:

$$Q(x) = \tilde{Q}_{k,m}[x]^k(e)[x]^m(e) = A(x,x).$$

Так как: A — билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то Q — квадратичная форма в пространстве L.

Так как: Q — квадратичная форма в пространстве L, A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Очевидно: $[Q](e) = [A](e) = \tilde{Q}$.

3. Обозначим, $\tilde{\tilde{Q}}=\frac{1}{2}(\tilde{Q}+\tilde{Q}^T)$. Тогда: $\tilde{\tilde{Q}}\in\mathbb{K}^{N\times N},\ \tilde{\tilde{Q}}$ — симметричная матрица. Пусть $x\in L$. Тогда:

$$\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) = \frac{1}{2}(\tilde{Q}_{k,m} + \tilde{Q}_{m,k})[x]^k(e)[x]^m(e) =$$

$$= \frac{1}{2}\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) + \frac{1}{2}\tilde{Q}_{m,k}[x]^k(e)[x]^m(e) = \frac{1}{2}\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) + \frac{1}{2}\tilde{Q}_{m,k}[x]^m(e)[x]^k(e) =$$

$$= \frac{1}{2}\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) + \frac{1}{2}\tilde{Q}_{j,i}[x]^j(e)[x]^i(e) = \frac{1}{2}\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) + \frac{1}{2}\tilde{Q}_{k,m}[x]^k(e)[x]^m(e) =$$

$$= \tilde{Q}_{k,m}[x]^k(e)[x]^m(e) = Q(x).$$

Следовательно: Q — квадратичная форма в пространстве $L, [Q](e) = \tilde{\tilde{Q}}.$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; e, e' — базисы пространства L, Q — квадратичная форма в пространстве L. Тогда: $[Q]_{k',m'}(e') = [Q]_{k,m}(e)\alpha_{k'}^k(e,e')\alpha_{m'}^m(e,e')$ при k', $m' = \overline{1,N}$; $[Q](e') = \alpha(e,e')^T[Q](e)\alpha(e,e')$.

Доказательство. Так как Q — квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Так как: Q — квадратичная форма в пространстве L, A — симметричная билинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то: [Q](e) = [A](e), [Q](e') = [A](e'). Пусть k', $m' = \overline{1,N}$. Тогда:

$$[Q]_{k',m'}(e') = [A]_{k',m'}(e') = [A]_{k,m}(e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e') = [Q]_{k,m}(e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e') = (\alpha(e,e')^{T}[Q](e)\alpha(e,e'))_{k',m'}.$$

Следовательно, $[Q](e') = \alpha(e, e')^T[Q](e)\alpha(e, e')$.

15.4. Обобщённые квадратичные формы

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

1. Будем говорить, что Q — обобщённая квадратичная форма в пространстве L, если: Q — функция, D(Q) = L, существует функция A, удовлетворяющая условиям: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Пусть Q — обобщённая квадратичная форма в пространстве L. Тогда $Q\colon L\implies \mathbb{K}$.

2. Пусть: Q — обобщённая квадратичная форма в пространстве L, $R(Q) \subseteq \mathbb{R}$. Будем писать Q > 0 ($Q \geqslant 0$, Q < 0, $Q \leqslant 0$, Q = 0), если: Q(x) > 0 ($Q(x) \geqslant 0$, Q(x) < 0, $Q(x) \leqslant 0$, Q(x) = 0) при: $x \in L$, $x \neq \theta$. Будем говорить, что Q — знакопеременная обобщённая квадратичная форма, если: $\exists x \in L(Q(x) < 0)$, $\exists x \in L(Q(x) > 0)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — обобщённая квадратичная форма в пространстве L, $R(Q) \subseteq \mathbb{R}$. Тогда существует функция A, удовлетворяющая условиям: A — эрмитова полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Доказательство. По определению обобщённой квадратичной формы, существует функция A_0 , удовлетворяющая условиям: A_0 — полуторалинейная форма в пространстве L,

 $Q(x)=A_0(x,x)$ при $x\in L$. Обозначим: $A(x,y)=\frac{1}{2}\big(A_0(x,y)+\overline{A_0(y,x)}\big)$ при $x,y\in L$. Очевидно, A — полуторалинейная форма в пространстве L.

Пусть $x, y \in L$. Тогда:

$$\overline{A(y,x)} = \overline{\frac{1}{2}(A_0(y,x) + \overline{A_0(x,y)})} = \frac{1}{2}(\overline{A_0(y,x)} + A_0(x,y)) = \frac{1}{2}(A_0(x,y) + \overline{A_0(y,x)}) = A(x,y).$$

Следовательно, A — эрмитова форма.

Пусть $x \in L$. Тогда:

$$A(x,x) = \frac{1}{2} \left(A_0(x,x) + \overline{A_0(x,x)} \right) = \frac{1}{2} \left(Q(x) + \overline{Q(x)} \right) = \frac{1}{2} \left(Q(x) + Q(x) \right) = Q(x). \quad \Box$$

Утверждение. Пусть: L — линейное пространство над полем \mathbb{C} ; A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$. Тогда:

$$A(x,y) = \frac{1}{2} \Big(Q(x+y) - Q(x) - Q(y) - i \Big(Q(x+iy) - Q(x) - Q(y) \Big) \Big), \quad x, y \in L.$$

Доказательство. Пусть: $x, y \in L, \lambda \in \mathbb{C}$. Тогда:

$$Q(x + \lambda y) = A(x + \lambda y, x + \lambda y) = A(x, x) + A(x, \lambda y) + A(\lambda y, x) + A(\lambda y, \lambda y) =$$

$$= A(x, x) + \lambda A(x, y) + \overline{\lambda} A(y, x) + \overline{\lambda} \lambda A(y, y) = Q(x) + \lambda A(x, y) + \overline{\lambda} A(y, x) + |\lambda|^2 Q(y);$$

$$\lambda A(x, y) + \overline{\lambda} A(y, x) = Q(x + \lambda y) - Q(x) - |\lambda|^2 Q(y);$$

$$A(x, y) + A(y, x) = Q(x + y) - Q(x) - Q(y),$$

$$iA(x, y) - iA(y, x) = Q(x + iy) - Q(x) - Q(y);$$

$$A(x, y) = \frac{1}{2} \Big(Q(x + y) - Q(x) - Q(y) - i \Big(Q(x + iy) - Q(x) - Q(y) \Big) \Big). \quad \Box$$

Определение. Пусть: L — линейное пространство над полем $\mathbb{C}, N \in \mathbb{N}, \dim(L) = N; e$ — базис пространства L, Q — обобщённая квадратичная форма в пространстве L.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$. Так как A — полуторалинейная форма в пространстве L, то $[A](e) \in \mathbb{C}^{N \times N}$.

Обозначим, [Q](e) = [A](e). Тогда $[Q](e) \in \mathbb{C}^{N \times N}$. Будем говорить, что [Q](e) — матрица обобщённой квадратичной формы Q в базисе e.

Утверждение. Пусть: L — линейное пространство над полем \mathbb{C} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть Q обобщённая квадратичная форма в пространстве L. Тогда: $Q(x) = [Q]_{k,m}(e)[x]^k(e)[x]^m(e)$ при $x \in L$.
- 2. Пусть: $\tilde{Q} \in \mathbb{C}^{N \times N}$, $Q(x) = \tilde{Q}_{k,m}[\overline{x}]^k(e)[x]^m(e)$ при $x \in L$. Тогда: Q обобщённая квадратичная форма в пространстве L, $[Q](e) = \tilde{Q}$.

Доказательство.

1. Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Пусть $x \in L$. Тогда:

$$Q(x) = A(x,x) = [A]_{k,m}(e) \overline{[x]^k(e)} [x]^m(e) = [Q]_{k,m}(e) \overline{[x]^k(e)} [x]^m(e).$$

2. Обозначим: $A(x,y) = \tilde{Q}_{k,m} \overline{[x]^k(e)} [y]^m(e)$ при $x, y \in L$. Тогда: A — полуторалинейная форма в пространстве L, $[A](e) = \tilde{Q}$. Пусть $x \in L$. Тогда:

$$A(x,x) = \tilde{Q}_{k,m} \overline{[x]^k(e)} [x]^m(e) = Q(x).$$

Так как: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то Q — обобщённая квадратичная форма в пространстве L.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Очевидно:
$$[Q](e) = [A](e) = \tilde{Q}$$
.

Утверждение. Пусть: L — линейное пространство над полем \mathbb{C} , $N \in \mathbb{N}$, $\dim(L) = N$; e, e' — базисы пространства L, Q — обобщённая квадратичная форма в пространстве L. Тогда: $[Q]_{k',m'}(e') = [Q]_{k,m}(e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e')$ при k', $m' = \overline{1,N}$; $[Q](e') = \overline{\alpha(e,e')^{T}}[Q](e)\alpha(e,e')$.

Доказательство. Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то: [Q](e) = [A](e), [Q](e') = [A](e').

Пусть k', $m' = \overline{1, N}$. Тогда:

$$[Q]_{k',m'}(e') = [A]_{k',m'}(e') = [A]_{k,m}(e)\overline{\alpha_{k'}^{k}(e,e')}\alpha_{m'}^{m}(e,e') = [Q]_{k,m}(e)\overline{\alpha_{k'}^{k}(e,e')}\alpha_{m'}^{m}(e,e') = (\overline{\alpha(e,e')^{T}}[Q](e)\alpha(e,e'))_{k',m'}.$$

Следовательно, $\overline{\alpha(e,e')^T}[Q](e)\alpha(e,e')$.

15.5. Эрмитовы обобщённые квадратичные формы

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} .

Будем говорить, что Q — эрмитова обобщённая квадратичная форма в пространстве L, если: Q — функция, D(Q) = L, существует функция A, удовлетворяющая условиям: A — эрмитова полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Пусть Q — эрмитова обобщённая квадратичная форма в пространстве L. Очевидно: Q — обобщённая квадратичная форма в пространстве L, $\mathrm{R}(Q)\subseteq\mathbb{R}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; Q — обобщённая квадратичная форма в пространстве L, $R(Q) \subseteq \mathbb{R}$. Тогда Q — эрмитова обобщённая квадратичная форма в пространстве L.

Замечание. Пусть: L — линейное пространство над полем \mathbb{C} ; Q — эрмитова обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Так как Q — эрмитова обобщённая квадратичная форма в пространстве L, то существует функция A_0 , удовлетворяющая условиям: A_0 — эрмитова полуторалинейная форма в пространстве L, $Q(x) = A_0(x)$ при $x \in L$.

Так как: L — линейное пространство над полем \mathbb{C} ; A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$; A_0 — полуторалинейная форма в пространстве L, $Q(x) = A_0(x,x)$ при $x \in L$, то $A = A_0$. Тогда A — эрмитова форма.

Утверждение. Пусть: L — линейное пространство над полем \mathbb{C} ; A — полуторалинейная форма в пространстве L, $A(x,x) \in \mathbb{R}$ при $x \in L$. Тогда A — эрмитова форма.

Доказательство. Обозначим: Q(x) = A(x,x) при $x \in L$. Так как: A — полуторалинейная форма в пространстве L, $A(x,x) \in \mathbb{R}$ при $x \in L$, то: Q — обобщённая квадратичная форма в пространстве L, $R(Q) \subseteq \mathbb{R}$. Тогда Q — эрмитова обобщённая квадратичная форма в пространстве L.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — эрмитова обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то A — эрмитова форма.

Утверждение. Пусть: L — линейное пространство над полем \mathbb{C} , $N \in \mathbb{N}$, $\dim(L) = N$; e — базис пространства L.

- 1. Пусть Q эрмитова обобщённая квадратичная форма в пространстве L. Тогда: [Q](e) эрмитова матрица, $Q(x) = [Q]_{k,m}(e)\overline{[x]^k(e)}[x]^m(e)$ при $x \in L$.
- 2. Пусть: $\tilde{Q} \in \mathbb{C}^{N \times N}$, \tilde{Q} эрмитова матрица, $Q(x) = \tilde{Q}_{k,m} \overline{[x]^k(e)} [x]^m(e)$ при $x \in L$. Тогда: Q -эрмитова обобщённая квадратичная форма в пространстве L, $[Q](e) = \tilde{Q}$.

Доказательство.

1. Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, то существует единственная функция A, удовлетворяющая условиям: A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — эрмитова обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то A — эрмитова форма. Так как A — эрмитова полуторалинейная форма в пространстве L, то [A](e) — эрмитова матрица.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Так как: [A](e) — эрмитова матрица, [Q](e) = [A](e), то [Q](e) — эрмитова матрица. Пусть $x \in L$. Тогда:

$$Q(x) = A(x, x) = [A]_{k,m}(e) \overline{[x]^k(e)} [x]^m(e) = [Q]_{k,m}(e) \overline{[x]^k(e)} [x]^m(e).$$

2. Обозначим: $A(x,y) = \tilde{Q}_{k,m} \overline{[x]^k(e)} [y]^m(e)$ при $x,y \in L$. Так как \tilde{Q} — эрмитова матрица, то: A — эрмитова полуторалинейная форма в пространстве L, $[A](e) = \tilde{Q}$. Пусть $x \in L$. Тогда:

$$A(x,x) = \tilde{Q}_{k,m} \overline{[x]^k(e)} [x]^m(e) = Q(x).$$

Так как: A — эрмитова полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то Q — эрмитова обобщённая квадратичная форма в пространстве L.

Так как: L — линейное пространство над полем \mathbb{C} ; Q — обобщённая квадратичная форма в пространстве L, A — полуторалинейная форма в пространстве L, Q(x) = A(x,x) при $x \in L$, то [Q](e) = [A](e).

Очевидно: $[Q](e) = [A](e) = \tilde{Q}$.

Лекция 16. Метод Лагранжа, закон инерции, критерий Сильвестра

16.1. Метод Лагранжа

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}; \tilde{A} \in \mathbb{K}^{N \times N}$.

1. Обозначим:

$$\mu_*(\tilde{A}) = \left\{ k_0 \colon k_0 = \overline{1, N} \land \forall k = \overline{1, N} (k \neq k_0 \implies \tilde{A}_{k_0, k} = 0 \land \tilde{A}_{k, k_0} = 0) \right\}.$$

Пусть \tilde{A} — симметричная (эрмитова) матрица. Тогда:

$$\mu_*(\tilde{A}) = \left\{ k_0 \colon k_0 = \overline{1, N} \land \forall k = \overline{1, N} (k \neq k_0 \implies \tilde{A}_{k_0, k} = 0) \right\},$$

$$\mu_*(\tilde{A}) = \left\{ k_0 \colon k_0 = \overline{1, N} \land \forall k = \overline{1, N} (k \neq k_0 \implies \tilde{A}_{k, k_0} = 0) \right\}.$$

2. Пусть \tilde{A} — диагональная матрица. Тогда $\mu_*(\tilde{A})=\{1,\ldots,N\}$. Пусть $\mu_*(\tilde{A})=\{1,\ldots,N\}$. Тогда \tilde{A} — диагональная матрица.

Утверждение (один шаг метода Лагранжа для симметричной билинейной формы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — симметричная билинейная форма в пространстве L.

- 1. Пусть: e -базис пространства L, $k_0 = \overline{1, N}$, $[A]_{k_0,k_0}(e) \neq 0$. Тогда существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.
- 2. Пусть: e 6азис пространства L, k_0 , $m_0 = \overline{1,N}$, $[A]_{k_0,k_0}(e)$, $[A]_{m_0,m_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' 6азис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $[A]_{k_0,k_0}(e') \neq 0$.
- 3. Пусть: e 6азис пространства L, k_0 , $m_0 = \overline{1,N}$, $[A]_{k_0,k_0}(e)$, $[A]_{m_0,m_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' 6азис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.
- 4. Пусть: e -базис пространства L, $\mu_*([A](e)) \neq \{1, ..., N\}$. Тогда существуют векторы $e'_1, ..., e'_N$, удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Доказательство.

1. Обозначим, $\tilde{A} = [A](e)$. Тогда: $\tilde{A} \in \mathbb{K}^{N \times N}$, \tilde{A} симметричная матрица. Пусть $x \in L$. Обозначим, $\tilde{x} = [x](e)$. Тогда $\tilde{x} \in \mathbb{K}^N$. Очевидно:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m =$$

$$= \tilde{A}_{k_0,k_0} \tilde{x}^{k_0} \tilde{x}^{k_0} + \sum_{\substack{m=\overline{1,N},\\m\neq k_0}} \tilde{A}_{k_0,m} \tilde{x}^{k_0} \tilde{x}^m + \sum_{\substack{k=\overline{1,N},\\k\neq k_0}} \tilde{A}_{k,k_0} \tilde{x}^k \tilde{x}^{k_0} + \sum_{\substack{k,m=\overline{1,N},\\k\neq k_0}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m =$$

$$= \tilde{A}_{k_0,k_0} \left(\tilde{x}^{k_0} \tilde{x}^{k_0} + \sum_{\substack{m=\overline{1,N},\\m\neq k_0}} \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}} \tilde{x}^{k_0} \tilde{x}^m + \sum_{\substack{k=\overline{1,N},\\k\neq k_0}} \frac{\tilde{A}_{k,k_0}}{\tilde{A}_{k_0,k_0}} \tilde{x}^k \tilde{x}^{k_0} \right) + \sum_{\substack{k,m=\overline{1,N},\\k\neq k_0}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m =$$

$$= \tilde{A}_{k_0,k_0} \left(\left(\tilde{x}^{k_0} + \sum_{\substack{k=\overline{1,N},\\k\neq k_0}} \frac{\tilde{A}_{k_0,k}}{\tilde{A}_{k_0,k_0}} \tilde{x}^k \right) \left(\tilde{x}^{k_0} + \sum_{\substack{m=\overline{1,N},\\m\neq k_0}} \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}} \tilde{x}^m \right) - \sum_{\substack{k,m=\overline{1,N},\\k\neq k_0}} \frac{\tilde{A}_{k,k_0} \tilde{A}_{k_0,k_0}}{\tilde{A}_{k_0,k_0} \tilde{A}_{k_0,k_0}} \tilde{x}^k \tilde{x}^m \right) +$$

$$+ \sum_{\substack{k,m = \overline{1,N}, \\ k,m \neq k_0}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m =$$

$$= \tilde{A}_{k_0,k_0} \Big(\tilde{x}^{k_0} + \sum_{\substack{k = \overline{1,N}, \\ k \neq k_0}} \frac{\tilde{A}_{k_0,k}}{\tilde{A}_{k_0,k_0}} \tilde{x}^k \Big) \Big(\tilde{x}^{k_0} + \sum_{\substack{m = \overline{1,N}, \\ m \neq k_0}} \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}} \tilde{x}^m \Big) + \sum_{\substack{k,m = \overline{1,N}, \\ k,m \neq k_0}} \Big(\tilde{A}_{k,m} - \frac{\tilde{A}_{k,k_0} \tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}} \Big) \tilde{x}^k \tilde{x}^m.$$

Обозначим:

$$\begin{split} \tilde{A}_{k_0,k_0} &= \tilde{A}_{k_0,k_0}, \\ \tilde{\tilde{A}}_{k_0,m} &= 0, \quad m = \overline{1,N}, \, m \neq k_0; \\ \tilde{\tilde{A}}_{k,k_0} &= 0, \quad k = \overline{1,N}, \, k \neq k_0; \\ \tilde{\tilde{A}}_{k,m} &= \tilde{A}_{k,m} - \frac{\tilde{A}_{k,k_0}\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}}, \quad k, \, m = \overline{1,N}, \, k, \, m \neq k_0. \end{split}$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{K}^{N \times N}$, $\tilde{\tilde{A}}$ — симметричная матрица, $\mu_*(\tilde{A}) \subseteq \mu_*(\tilde{\tilde{A}})$, $k_0 \in \mu_*(\tilde{\tilde{A}})$. Обозначим:

$$\tilde{\tilde{x}}^{k_0} = \tilde{x}^{k_0} + \sum_{\substack{m = \overline{1}, \overline{N}, \\ m \neq k_0}} \frac{\tilde{A}_{k_0, m}}{\tilde{A}_{k_0, k_0}} \tilde{x}^m,$$

$$\tilde{\tilde{x}}^j = \tilde{x}^j, \quad j = \overline{1, N}, \ j \neq k_0.$$

Тогда $\tilde{\tilde{x}} \in \mathbb{K}^N$. Очевидно:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{\tilde{A}}_{k,m} \tilde{\tilde{x}}^k \tilde{\tilde{x}}^m.$$

Обозначим:

$$\beta_{k_0}^{k_0} = 1,$$

$$\beta_m^{k_0} = \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}}, \quad m = \overline{1, N}, \ m \neq k_0;$$

$$\beta_m^j = \delta_m^j, \quad j = \overline{1, N}, \ j \neq k_0, \ m = \overline{1, N}.$$

Тогда: $\beta \in \mathbb{K}^{N \times N}$, $\det(\beta) = 1$, $\tilde{\tilde{x}} = \beta \tilde{x}$. Так как $\det(\beta) \neq 0$, то существует единственный объект e', удовлетворяющий условиям: e' — базис пространства L, $\alpha(e',e) = \beta$. Тогда: $[x](e') = \alpha(e',e)[x](e) = \beta \tilde{x} = \tilde{\tilde{x}}$. Следовательно:

$$A(x,x) = \tilde{\tilde{A}}_{k,m}[x]^k(e')[x]^m(e').$$

В силу произвольности выбора вектора $x \in L$ получаем, что:

$$\forall x \in L(A(x,x) = \tilde{\tilde{A}}_{k,m}[x]^k(e')[x]^m(e')).$$

Так как \tilde{A} — симметричная матрица, то $[A](e') = \tilde{A}$. Тогда: $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.

2. Обозначим, $\tilde{A} = [A](e)$. Тогда: $\tilde{A} \in \mathbb{K}^{N \times N}$, \tilde{A} — симметричная матрица. Так как: $\tilde{A}_{k_0,k_0} = 0$, $\tilde{A}_{k_0,m_0} \neq 0$, то $k_0 \neq m_0$. Пусть $x \in L$. Обозначим, $\tilde{x} = [x](e)$. Тогда $\tilde{x} \in \mathbb{K}^N$. Очевидно:

$$A(x,x) = \sum_{\substack{k,m = \overline{1,N}, \\ m \neq k_0,m_0}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m = \tilde{A}_{k_0,m_0} \tilde{x}^{k_0} \tilde{x}^{m_0} + \tilde{A}_{m_0,k_0} \tilde{x}^{m_0} \tilde{x}^{k_0} + \\ + \sum_{\substack{m = \overline{1,N}, \\ m \neq k_0,m_0}} \tilde{A}_{k_0,m} \tilde{x}^{k_0} \tilde{x}^m + \sum_{\substack{m = \overline{1,N}, \\ m \neq k_0,m_0}} \tilde{A}_{m_0,m} \tilde{x}^{m_0} \tilde{x}^m + \sum_{\substack{k = \overline{1,N}, \\ k \neq k_0,m_0}} \tilde{A}_{k,k_0} \tilde{x}^k \tilde{x}^{k_0} + \sum_{\substack{k = \overline{1,N}, \\ k \neq k_0,m_0}} \tilde{A}_{k,m_0} \tilde{x}^k \tilde{x}^m + \\ + \sum_{\substack{k,m = \overline{1,N}, \\ k,m \neq k_0,m_0}} \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m.$$

Обозначим:

$$I_{1}(x) = \tilde{A}_{k_{0},m_{0}} \tilde{x}^{k_{0}} \tilde{x}^{m_{0}} + \tilde{A}_{m_{0},k_{0}} \tilde{x}^{m_{0}} \tilde{x}^{k_{0}},$$

$$I_{2}(x) = \sum_{\substack{m=\overline{1,N},\\m\neq k_{0},m_{0}}} \tilde{A}_{k_{0},m} \tilde{x}^{k_{0}} \tilde{x}^{m} + \sum_{\substack{m=\overline{1,N},\\m\neq k_{0},m_{0}}} \tilde{A}_{m_{0},m} \tilde{x}^{m_{0}} \tilde{x}^{m},$$

$$I_{3}(x) = \sum_{\substack{k=\overline{1,N},\\k\neq k_{0},m_{0}}} \tilde{A}_{k,k_{0}} \tilde{x}^{k} \tilde{x}^{k_{0}} + \sum_{\substack{k=\overline{1,N},\\k\neq k_{0},m_{0}}} \tilde{A}_{k,m_{0}} \tilde{x}^{k} \tilde{x}^{m_{0}},$$

$$I_{4}(x) = \sum_{\substack{k,m=\overline{1,N},\\k,m\neq k_{0},m_{0}}} \tilde{A}_{k,m} \tilde{x}^{k} \tilde{x}^{m}.$$

Очевидно, существует единственный столбец $\tilde{\tilde{x}}$, удовлетворяющий условиям:

$$\tilde{x} \in \mathbb{K}^{N},$$

$$\tilde{x}^{k_0} = \tilde{x}^{k_0} - \tilde{x}^{m_0},$$

$$\tilde{x}^{m_0} = \tilde{x}^{k_0} + \tilde{x}^{m_0},$$

$$\tilde{x}^{j} = \tilde{x}^{j}, \quad j = \overline{1, N}, j \notin \{k_0, m_0\}.$$

Очевидно:

$$\begin{split} I_{1}(x) &= \tilde{A}_{k_{0},m_{0}} \Big(\tilde{\tilde{x}}^{k_{0}} - \tilde{\tilde{x}}^{m_{0}} \Big) \Big(\tilde{\tilde{x}}^{k_{0}} + \tilde{\tilde{x}}^{m_{0}} \Big) + \tilde{A}_{k_{0},m_{0}} \Big(\tilde{\tilde{x}}^{k_{0}} + \tilde{\tilde{x}}^{m_{0}} \Big) \Big(\tilde{\tilde{x}}^{k_{0}} - \tilde{\tilde{x}}^{m_{0}} \Big) = \\ &= 2\tilde{A}_{k_{0},m_{0}} \tilde{\tilde{x}}^{k_{0}} \tilde{\tilde{x}}^{k_{0}} - 2\tilde{A}_{k_{0},m_{0}} \tilde{\tilde{x}}^{m_{0}} \tilde{\tilde{x}}^{m_{0}} ; \\ I_{2}(x) &= \sum_{\substack{m=\overline{1},\overline{N},\\m\neq k_{0},m_{0}}} \tilde{A}_{k_{0},m} \Big(\tilde{\tilde{x}}^{k_{0}} - \tilde{\tilde{x}}^{m_{0}} \Big) \tilde{\tilde{x}}^{m} + \sum_{\substack{m=\overline{1},\overline{N},\\m\neq k_{0},m_{0}}} \tilde{A}_{m_{0},m} \Big(\tilde{\tilde{x}}^{k_{0}} + \tilde{\tilde{x}}^{m_{0}} \Big) \tilde{\tilde{x}}^{m} = \\ &= \sum_{\substack{m=\overline{1},\overline{N},\\m\neq k_{0},m_{0}}} \Big(\tilde{A}_{m_{0},m} + \tilde{A}_{k_{0},m} \Big) \tilde{\tilde{x}}^{k_{0}} \tilde{\tilde{x}}^{m} + \sum_{\substack{m=\overline{1},\overline{N},\\m\neq k_{0},m_{0}}} \Big(\tilde{A}_{m_{0},m} - \tilde{A}_{k_{0},m} \Big) \tilde{\tilde{x}}^{m_{0}} \tilde{\tilde{x}}^{m} ; \\ &I_{3}(x) = \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \tilde{A}_{k,k_{0}} \tilde{\tilde{x}}^{k} \Big(\tilde{\tilde{x}}^{k_{0}} - \tilde{\tilde{x}}^{m_{0}} \Big) + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \tilde{A}_{k,m_{0}} \tilde{\tilde{x}}^{k} \Big(\tilde{\tilde{x}}^{k_{0}} + \tilde{\tilde{x}}^{m_{0}} \Big) = \\ &= \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} + \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{k_{0}} + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} - \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{m_{0}} ; \\ &= \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} + \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{k_{0}} + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} - \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{m_{0}} ; \\ &= \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} + \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{k_{0}} + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} - \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{m_{0}} ; \\ &= \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} + \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{k_{0}} + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} - \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{m_{0}} ; \\ &= \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} + \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k} \tilde{\tilde{x}}^{k_{0}} + \sum_{\substack{k=\overline{1},\overline{N},\\k\neq k_{0},m_{0}}} \Big(\tilde{A}_{k,m_{0}} - \tilde{A}_{k,k_{0}} \Big) \tilde{\tilde{x}}^{k_{0}} \hat{\tilde{x}}^{m_{0}} \Big)$$

$$I_4(x) = \sum_{\substack{k,m = \overline{1,N},\\k,m \neq k_0,m_0}} \tilde{A}_{k,m} \tilde{\tilde{x}}^k \tilde{\tilde{x}}^m.$$

Обозначим:

$$\tilde{A}_{k_0,k_0} = 2 \left| \tilde{A}_{k_0,m_0} \right|,
\tilde{A}_{k_0,m_0} = 0,
\tilde{A}_{m_0,k_0} = 0,
\tilde{A}_{m_0,m_0} = -2 \left| \tilde{A}_{k_0,m_0} \right|,
\tilde{A}_{k_0,m} = \tilde{A}_{m_0,m} + \tilde{A}_{k_0,m}, \quad m = \overline{1,N}, \, m \notin \{k_0, m_0\};
\tilde{A}_{m_0,m} = \tilde{A}_{m_0,m} - \tilde{A}_{k_0,m}, \quad m = \overline{1,N}, \, m \notin \{k_0, m_0\};
\tilde{A}_{k,k_0} = \tilde{A}_{k,m_0} + \tilde{A}_{k,k_0}, \quad k = \overline{1,N}, \, k \notin \{k_0, m_0\};
\tilde{A}_{k,m_0} = \tilde{A}_{k,m_0} - \tilde{A}_{k,k_0}, \quad k = \overline{1,N}, \, k \notin \{k_0, m_0\};
\tilde{A}_{k,m} = \tilde{A}_{k,m}, \quad k, \, m = \overline{1,N}, \, k, \, m \notin \{k_0, m_0\}.$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{K}^{N \times N}$, $\tilde{\tilde{A}}$ — симметричная матрица, $\mu_*(\tilde{A}) \subseteq \mu_*(\tilde{\tilde{A}})$, $\tilde{\tilde{A}}_{k_0,k_0} = 2 \left| \tilde{A}_{k_0,m_0} \right| \neq 0$. Очевидно:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{\tilde{A}}_{k,m} \overline{\tilde{\tilde{x}}^k} \tilde{\tilde{x}}^m.$$

Обозначим:

$$\begin{split} \beta_{k_0}^{k_0} &= 1, \\ \beta_{m_0}^{k_0} &= -1, \\ \beta_m^{k_0} &= 0, \quad m = \overline{1, N}, \, m \notin \{k_0, m_0\}; \\ \beta_{k_0}^{m_0} &= 1, \\ \beta_{m_0}^{m_0} &= 1, \\ \beta_m^{m_0} &= 0, \quad m = \overline{1, N}, \, m \notin \{k_0, m_0\}; \\ \beta_m^j &= \delta_m^j, \quad j = \overline{1, N}, \, j \notin \{k_0, m_0\}, \, m = \overline{1, N}. \end{split}$$

Тогда: $\beta \in \mathbb{K}^{N \times N}$, $\det(\beta) = 2 \operatorname{sgn}(m_0 - k_0) \neq 0$, $\tilde{x} = \beta \tilde{\tilde{x}}$. Следовательно, $\tilde{\tilde{x}} = \beta^{-1} \tilde{x}$. Так как $\det(\beta^{-1}) \neq 0$, то существует единственный объект e', удовлетворяющий условиям: e' — базис пространства L, $\alpha(e',e) = \beta^{-1}$. Тогда: $[x](e') = \alpha(e',e)[x](e) = \beta^{-1} \tilde{x} = \tilde{\tilde{x}}$. Следовательно:

$$A(x,x) = \sum_{k,m=1,N} \tilde{\tilde{A}}_{k,m}[x]^k(e')[x]^m(e').$$

В силу произвольности выбора вектора $x \in L$ получаем, что:

$$\forall x \in L(A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{A}_{k,m}[x]^k(e')[x]^m(e')).$$

Так как $\tilde{\tilde{A}}$ — симметричная матрица, то $[A](e')=\tilde{\tilde{A}}$. Тогда: $\mu_*\big([A](e)\big)\subseteq \mu_*\big([A](e')\big),$ $[A]_{k_0,k_0}(e')\neq 0.$

- 3. Очевидно, существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $[A]_{k_0,k_0}(e') \neq 0$. Так как $[A]_{k_0,k_0}(e') \neq 0$, то существуют векторы e''_1, \ldots, e''_N , удовлетворяющие условиям: e'' базис пространства L, $\mu_*([A](e')) \subseteq \mu_*([A](e''))$, $k_0 \in \mu_*([A](e''))$. Так как $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, то: e'' базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e''))$, $k_0 \in \mu_*([A](e''))$.
 - 4. Так как $\mu_*([A](e)) \neq \{1, \dots, N\}$, то:

$$\exists k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \Big).$$

Пусть:

$$\exists k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \wedge [A]_{k_0, k_0}(e) \neq 0 \Big).$$

Выберем число k_0 , удовлетворяющее условиям: $k_0 = \overline{1,N}$, $k_0 \notin \mu_*([A](e))$, $[A]_{k_0,k_0}(e) \neq 0$. Так как $[A]_{k_0,k_0}(e) \neq 0$, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$. Так как $k_0 \notin \mu_*([A](e))$, то: e' — базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Пусть:

$$\forall k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \implies [A]_{k_0, k_0}(e) = 0 \Big).$$

Выберем число k_0 , удовлетворяющее условиям: $k_0 = \overline{1,N}$, $k_0 \notin \mu_*([A](e))$. Тогда $[A]_{k_0,k_0}(e) = 0$. Так как: [A](e) — симметричная матрица, $k_0 \notin \mu_*([A](e))$, то существует число m_0 , удовлетворяющее условиям: $m_0 = \overline{1,N}$, $m_0 \neq k_0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда $m_0 \notin \mu_*([A](e))$. Следовательно, $[A]_{m_0,m_0}(e) = 0$. Так как: $[A]_{k_0,k_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$. Так как $k_0 \notin \mu_*([A](e))$, то: e' — базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Теорема (метод Лагранжа для симметричной билинейной формы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — симметричная билинейная форма в пространстве L. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства L, [A](e) — диагональная матрица.

Утверждение (один шаг метода Лагранжа для эрмитовой полуторалинейной формы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L.

- 1. Пусть: e -базис пространства L, $k_0 = \overline{1, N}$, $[A]_{k_0,k_0}(e) \neq 0$. Тогда существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.
- 2. Пусть: e -базис пространства L, k_0 , $m_0 = \overline{1,N}$, $[A]_{k_0,k_0}(e)$, $[A]_{m_0,m_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $[A]_{k_0,k_0}(e') \neq 0$.
- 3. Пусть: e -базис пространства L, k_0 , $m_0 = \overline{1,N}$, $[A]_{k_0,k_0}(e)$, $[A]_{m_0,m_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.
- 4. Пусть: e -базис пространства \dot{L} , $\mu_*([\dot{A}](e)) \neq \{\dot{1}, \ldots, \dot{N}\}$. Тогда существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' -базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Доказательство.

1. Обозначим, $\tilde{A} = [A](e)$. Пусть: $x \in L$, $\tilde{x} = [x](e)$. Тогда:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{A}_{k,m} \overline{x}^{k} \tilde{x}^{m} = \\ = \tilde{A}_{k_{0},k_{0}} \overline{x}^{k_{0}} \tilde{x}^{k_{0}} + \sum_{\substack{m=\overline{1,N},\\m\neq k_{0}}} \tilde{A}_{k_{0},m} \overline{x}^{k_{0}} \tilde{x}^{m} + \sum_{\substack{k=\overline{1,N},\\k\neq k_{0}}} \tilde{A}_{k_{k,0}} \overline{x}^{k} \tilde{x}^{k_{0}} + \sum_{\substack{k,m=\overline{1,N},\\k\neq k_{0}}} \tilde{A}_{k_{m},m\neq k_{0}}} \tilde{A}_{k_{m},m\neq k_{0}} = \\ = \tilde{A}_{k_{0},k_{0}} \left(\overline{x}^{k_{0}} \tilde{x}^{k_{0}} + \sum_{\substack{m=\overline{1,N},\\m\neq k_{0}}} \frac{\tilde{A}_{k_{0},m}}{\tilde{A}_{k_{0},k_{0}}} \tilde{x}^{k_{0}} \tilde{x}^{m} + \sum_{\substack{k=\overline{1,N},\\k\neq k_{0}}} \frac{\tilde{A}_{k,k_{0}}}{\tilde{A}_{k_{0},k_{0}}} \overline{x}^{k_{0}} \tilde{x}^{k} \right) + \sum_{\substack{k,m=\overline{1,N},\\k\neq k_{0}}} \tilde{A}_{k_{m},m\neq k_{0}} \tilde{A}_{k_{m},m\neq k_{0}} \tilde{x}^{m} \right) \\ = \tilde{A}_{k_{0},k_{0}} \left(\left(\tilde{x}^{k_{0}} + \sum_{\substack{k=\overline{1,N},\\k\neq k_{0}}} \frac{\tilde{A}_{k_{0},k_{0}}}{\tilde{A}_{k_{0},k_{0}}} \tilde{x}^{k} \right) \left(\tilde{x}^{k_{0}} + \sum_{\substack{m=\overline{1,N},\\k,m\neq k_{0}}} \frac{\tilde{A}_{k_{0},m}}{\tilde{A}_{k_{0},k_{0}}} \tilde{x}^{m} \right) - \sum_{\substack{k,m=\overline{1,N},\\k,m\neq k_{0}}} \frac{\tilde{A}_{k_{0},k_{0}}}{\tilde{A}_{k_{0},k_{0}}} \overline{x}^{k} \tilde{x}^{m} \right) \\ + \sum_{\substack{k,m=\overline{1,N},\\k,m\neq k_{0}}} \tilde{A}_{k_{0},k_{0}} \tilde{x}^{k} \tilde{x}^{m} = \\ = \tilde{A}_{k_{0},k_{0}} \left(\tilde{x}^{k_{0}} + \sum_{\substack{k=\overline{1,N},\\k\neq k_{0}}} \frac{\tilde{A}_{k_{0},k}}{\tilde{A}_{k_{0},k_{0}}} \tilde{x}^{k} \right) \left(\tilde{x}^{k_{0}} + \sum_{\substack{m=\overline{1,N},\\k,m\neq k_{0}}} \frac{\tilde{A}_{k_{0},m}}{\tilde{A}_{k_{0},k_{0}}} \tilde{x}^{m} \right) + \sum_{\substack{k,m=\overline{1,N},\\k,m\neq k_{0}}} \left(\tilde{A}_{k,m} - \frac{\tilde{A}_{k,k_{0}}\tilde{A}_{k_{0},m}}{\tilde{A}_{k_{0},k_{0}}} \right) \tilde{x}^{k} \tilde{x}^{m}.$$

Обозначим:

$$\begin{split} \tilde{A}_{k_0,k_0} &= \tilde{A}_{k_0,k_0}, \\ \tilde{A}_{k_0,m} &= 0, \quad m = \overline{1,N}, \, m \neq k_0; \\ \tilde{A}_{k,k_0} &= 0, \quad k = \overline{1,N}, \, k \neq k_0; \\ \tilde{A}_{k,m} &= \tilde{A}_{k,m} - \frac{\tilde{A}_{k,k_0} \tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}}, \quad k, \, m = \overline{1,N}, \, k, \, m \neq k_0. \end{split}$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{K}^{N \times N}$, $\tilde{\tilde{A}}$ — эрмитова матрица, $\mu_*(\tilde{A}) \subseteq \mu_*(\tilde{\tilde{A}})$, $k_0 \in \mu_*(\tilde{\tilde{A}})$. Обозначим:

$$\tilde{\tilde{x}}^{k_0} = \tilde{x}^{k_0} + \sum_{\substack{m=\overline{1},\overline{N},\\m\neq k_0}} \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}} \tilde{x}^m,$$

$$\tilde{\tilde{x}}^j = \tilde{x}^j, \quad i = \overline{1,\overline{N}}, \quad i \neq k_0.$$

Тогда $\tilde{\tilde{x}} \in \mathbb{K}^N$. Очевидно:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{\tilde{A}}_{k,m} \overline{\tilde{\tilde{x}}^k} \tilde{\tilde{x}}^m.$$

Обозначим:

$$\beta_{k_0}^{k_0} = 1,$$

$$\beta_m^{k_0} = \frac{\tilde{A}_{k_0,m}}{\tilde{A}_{k_0,k_0}}, \quad m = \overline{1,N}, \, m \neq k_0;$$

$$\beta_m^j = \delta_m^j, \quad j = \overline{1, N}, \ j \neq k_0, \ m = \overline{1, N}.$$

Тогда: $\beta \in \mathbb{K}^{N \times N}$, $\det(\beta) = 1$, $\tilde{\tilde{x}} = \beta \tilde{x}$. Так как $\det(\beta) \neq 0$, то существует единственный объект e', удовлетворяющий условиям: e' — базис пространства L, $\alpha(e',e) = \beta$. Тогда: $[x](e') = \alpha(e',e)[x](e) = \beta \tilde{x} = \tilde{\tilde{x}}$. Следовательно:

$$A(x,x) = \tilde{\tilde{A}}_{k,m} \overline{[x]^k(e')} [x]^m (e').$$

В силу произвольности выбора вектора $x \in L$ получаем, что:

$$A(x,x) = \tilde{\tilde{A}}_{k,m} \overline{[x]^k(e')} [x]^m(e'), \quad x \in L.$$

Так как \tilde{A} — эрмитова матрица, то $[A](e') = \tilde{A}$. Тогда: $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$.

2. Обозначим, $\tilde{A} = [A](e)$. Так как: $\tilde{A}_{k_0,k_0} = 0$, $\tilde{A}_{k_0,m_0} \neq 0$, то $k_0 \neq m_0$. Так как $\tilde{A}_{k_0,m_0} \neq 0$, то k_0 , $m_0 \notin \mu_*(\tilde{A})$. Пусть: $x \in L$, $\tilde{x} = [x](e)$. Тогда:

$$A(x,x) = \sum_{\substack{k,m=\overline{1,N},\\m\neq k_0,m_0}} \tilde{A}_{k,m} \overline{\tilde{x}^k} \tilde{x}^m = \tilde{A}_{k_0,m_0} \overline{\tilde{x}^{k_0}} \tilde{x}^{m_0} + \tilde{A}_{m_0,k_0} \overline{\tilde{x}^{m_0}} \tilde{x}^{k_0} +$$

$$+ \sum_{\substack{m=\overline{1,N},\\m\neq k_0,m_0}} \tilde{A}_{k_0,m} \overline{\tilde{x}^{k_0}} \tilde{x}^m + \sum_{\substack{m=\overline{1,N},\\m\neq k_0,m_0}} \tilde{A}_{m_0,m} \overline{\tilde{x}^{m_0}} \tilde{x}^m + \sum_{\substack{k=\overline{1,N},\\k\neq k_0,m_0}} \tilde{A}_{k,k_0} \overline{\tilde{x}^k} \tilde{x}^{k_0} + \sum_{\substack{k=\overline{1,N},\\k\neq k_0,m_0}} \tilde{A}_{k,m_0} \overline{\tilde{x}^k} \tilde{x}^m + \sum_{\substack{k=\overline{1,N},\\k\neq k_0,m_0}} \tilde{A}_{k,m_0} \overline{\tilde{x}^k} \tilde{x}^m.$$

Обозначим:

$$I_{1}(x) = \tilde{A}_{k_{0},m_{0}} \overline{\tilde{x}^{k_{0}}} \tilde{x}^{m_{0}} + \tilde{A}_{m_{0},k_{0}} \overline{\tilde{x}^{m_{0}}} \tilde{x}^{k_{0}},$$

$$I_{2}(x) = \sum_{\substack{m = \overline{1,N}, \\ m \neq k_{0},m_{0}}} \tilde{A}_{k_{0},m} \overline{\tilde{x}^{k_{0}}} \tilde{x}^{m} + \sum_{\substack{m = \overline{1,N}, \\ m \neq k_{0},m_{0}}} \tilde{A}_{m_{0},m} \overline{\tilde{x}^{m_{0}}} \tilde{x}^{m},$$

$$I_{3}(x) = \sum_{\substack{k = \overline{1,N}, \\ k \neq k_{0},m_{0}}} \tilde{A}_{k,k_{0}} \overline{\tilde{x}^{k}} \tilde{x}^{k_{0}} + \sum_{\substack{k = \overline{1,N}, \\ k \neq k_{0},m_{0}}} \tilde{A}_{k,m_{0}} \overline{\tilde{x}^{k}} \tilde{x}^{m_{0}},$$

$$I_{4}(x) = \sum_{\substack{k,m = \overline{1,N}, \\ k,m \neq k_{0},m_{0}}} \tilde{A}_{k,m} \overline{\tilde{x}^{k}} \tilde{x}^{m}.$$

Обозначим, $\lambda = \frac{\tilde{A}_{k_0,m_0}}{\left|\tilde{A}_{k_0,m_0}\right|}$. Тогда: $\tilde{A}_{k_0,m_0}\bar{\lambda} = \left|\tilde{A}_{k_0,m_0}\right|$, $\tilde{A}_{m_0,k_0}\lambda = \left|\tilde{A}_{k_0,m_0}\right|$. Так как $\lambda \neq 0$, то существует единственный столбец $\tilde{\tilde{x}}$, удовлетворяющий условиям:

$$\tilde{x} \in \mathbb{K}^{N},$$

$$\tilde{x}^{k_0} = \lambda \left(\tilde{x}^{k_0} - \tilde{x}^{m_0} \right),$$

$$\tilde{x}^{m_0} = \tilde{x}^{k_0} + \tilde{x}^{m_0},$$

$$\tilde{x}^{j} = \tilde{x}^{j}, \quad j = \overline{1, N}, j \notin \{k_0, m_0\}.$$

Очевидно:

$$I_{1}(x) = \left| \tilde{A}_{k_{0},m_{0}} \right| \left(\overline{\tilde{x}}^{k_{0}} - \overline{\tilde{x}}^{m_{0}} \right) \left(\tilde{x}^{k_{0}} + \tilde{x}^{m_{0}} \right) + \left| \tilde{A}_{k_{0},m_{0}} \right| \left(\overline{\tilde{x}}^{k_{0}} + \overline{\tilde{x}}^{m_{0}} \right) \left(\tilde{x}^{k_{0}} - \tilde{x}^{m_{0}} \right) =$$

$$= 2 \left| \tilde{A}_{k_{0},m_{0}} \right| \overline{\tilde{x}}^{k_{0}} \tilde{x}^{k_{0}} - 2 \left| \tilde{A}_{k_{0},m_{0}} \right| \overline{\tilde{x}}^{m_{0}} \tilde{x}^{m_{0}};$$

$$I_{2}(x) = \sum_{\substack{m=1,N,\\m\neq k_{0},m_{0}}} \overline{\lambda} \tilde{A}_{k_{0},m} \left(\overline{\tilde{x}}^{k_{0}} - \overline{\tilde{x}}^{m_{0}} \right) \tilde{x}^{m} + \sum_{\substack{m=1,N,\\m\neq k_{0},m_{0}}} \tilde{A}_{m_{0},m} \left(\overline{\tilde{x}}^{k_{0}} + \overline{\tilde{x}}^{m_{0}} \right) \tilde{x}^{m} =$$

$$= \sum_{\substack{m=1,N,\\m\neq k_{0},m_{0}}} \left(\tilde{A}_{m_{0},m} + \overline{\lambda} \tilde{A}_{k_{0},m} \right) \overline{\tilde{x}}^{k_{0}} \tilde{x}^{m} + \sum_{\substack{m=1,N,\\m\neq k_{0},m_{0}}} \left(\tilde{A}_{m_{0},m} - \overline{\lambda} \tilde{A}_{k_{0},m} \right) \overline{\tilde{x}}^{m_{0}} \tilde{x}^{m};$$

$$I_{3}(x) = \sum_{\substack{k=1,N,\\k\neq k_{0},m_{0}}} \lambda \tilde{A}_{k,k_{0}} \overline{\tilde{x}}^{k} \left(\tilde{x}^{k_{0}} - \tilde{x}^{m_{0}} \right) + \sum_{\substack{k=1,N,\\k\neq k_{0},m_{0}}} \tilde{A}_{k,m_{0}} \overline{\tilde{x}}^{k} \left(\tilde{x}^{k_{0}} + \tilde{x}^{m_{0}} \right) =$$

$$= \sum_{\substack{k=1,N,\\k\neq k_{0},m_{0}}} \left(\tilde{A}_{k,m_{0}} + \lambda \tilde{A}_{k,k_{0}} \right) \overline{\tilde{x}}^{k} \tilde{x}^{k_{0}} + \sum_{\substack{k=1,N,\\k\neq k_{0},m_{0}}} \left(\tilde{A}_{k,m_{0}} - \lambda \tilde{A}_{k,k_{0}} \right) \overline{\tilde{x}}^{k} \tilde{x}^{m_{0}};$$

$$I_{4}(x) = \sum_{\substack{k,m=1,N,\\k\neq k_{0},m_{0}}} \tilde{A}_{k,m} \overline{\tilde{x}}^{k} \tilde{x}^{m}.$$

Обозначим:

$$\begin{split} \tilde{A}_{k_{0},k_{0}} &= 2 \left| \tilde{A}_{k_{0},m_{0}} \right|, \\ \tilde{A}_{k_{0},m_{0}} &= 0, \\ \tilde{A}_{m_{0},k_{0}} &= 0, \\ \tilde{A}_{m_{0},k_{0}} &= -2 \left| \tilde{A}_{k_{0},m_{0}} \right|, \\ \tilde{A}_{k_{0},m} &= \tilde{A}_{m_{0},m} + \overline{\lambda} \tilde{A}_{k_{0},m}, \quad m = \overline{1,N}, \ m \notin \{k_{0},m_{0}\}; \\ \tilde{A}_{m_{0},m} &= \tilde{A}_{m_{0},m} - \overline{\lambda} \tilde{A}_{k_{0},m}, \quad m = \overline{1,N}, \ m \notin \{k_{0},m_{0}\}; \\ \tilde{A}_{k,k_{0}} &= \tilde{A}_{k,m_{0}} + \lambda \tilde{A}_{k,k_{0}}, \quad k = \overline{1,N}, \ k \notin \{k_{0},m_{0}\}; \\ \tilde{A}_{k,m_{0}} &= \tilde{A}_{k,m_{0}} - \lambda \tilde{A}_{k,k_{0}}, \quad k = \overline{1,N}, \ k \notin \{k_{0},m_{0}\}; \\ \tilde{A}_{k,m} &= \tilde{A}_{k,m}, \quad k, \ m = \overline{1,N}, \ k, \ m \notin \{k_{0},m_{0}\}. \end{split}$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{K}^{N \times N}$, $\tilde{\tilde{A}}$ — эрмитова матрица, $\mu_*(\tilde{A}) \subseteq \mu_*(\tilde{\tilde{A}})$, $\tilde{\tilde{A}}_{k_0,k_0} = 2 \left| \tilde{A}_{k_0,m_0} \right| \neq 0$. Очевидно:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{\tilde{A}}_{k,m} \overline{\tilde{\tilde{x}}^k} \tilde{\tilde{x}}^m.$$

Обозначим:

$$\beta_{k_0}^{k_0} = \lambda, \\ \beta_{m_0}^{k_0} = -\lambda, \\ \beta_m^{k_0} = 0, \quad m = \overline{1, N}, \ m \notin \{k_0, m_0\};$$

$$\beta_{k_0}^{m_0} = 1,$$

$$\beta_{m_0}^{m_0} = 1,$$

$$\beta_m^{m_0} = 0, \quad m = \overline{1, N}, \ m \notin \{k_0, m_0\};$$

$$\beta_m^j = \delta_m^j, \quad j = \overline{1, N}, \ j \notin \{k_0, m_0\}, \ m = \overline{1, N}.$$

Тогда: $\beta \in \mathbb{K}^{N \times N}$, $\det(\beta) = 2\lambda \operatorname{sgn}(m_0 - k_0) \neq 0$, $\tilde{x} = \beta \tilde{\tilde{x}}$. Следовательно, $\tilde{\tilde{x}} = \beta^{-1}\tilde{x}$. Так как $\det(\beta^{-1}) \neq 0$, то существует единственный объект e', удовлетворяющий условиям: e' — базис пространства L, $\alpha(e',e) = \beta^{-1}$. Тогда: $[x](e') = \alpha(e',e)[x](e) = \beta^{-1}\tilde{x} = \tilde{\tilde{x}}$. Следовательно:

$$A(x,x) = \sum_{k,m=\overline{1.N}} \tilde{\tilde{A}}_{k,m} [x]^k(e') [x]^m(e').$$

В силу произвольности выбора вектора $x \in L$ получаем, что:

$$A(x,x) = \sum_{k,m=\overline{1,N}} \tilde{\tilde{A}}_{k,m} \overline{[x]^k(e')} [x]^m(e'), \quad x \in L.$$

Так как $\tilde{\tilde{A}}$ — эрмитова матрица, то $[A](e')=\tilde{\tilde{A}}$. Тогда: $\mu_*\bigl([A](e)\bigr)\subseteq\mu_*\bigl([A](e')\bigr),\,[A]_{k_0,k_0}(e')\neq 0.$

- 3. Очевидно, существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $[A]_{k_0,k_0}(e') \neq 0$. Так как $[A]_{k_0,k_0}(e') \neq 0$, то существуют векторы e''_1, \ldots, e''_N , удовлетворяющие условиям: e'' базис пространства L, $\mu_*([A](e')) \subseteq \mu_*([A](e''))$, $k_0 \in \mu_*([A](e''))$. Так как $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, то: e'' базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e''))$, $k_0 \in \mu_*([A](e''))$.
 - 4. Так как $\mu_*([A](e)) \neq \{1, ..., N\}$, то:

$$\exists k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \Big).$$

Пусть:

$$\exists k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \wedge [A]_{k_0, k_0}(e) \neq 0 \Big).$$

Выберем число k_0 , удовлетворяющее условиям: $k_0 = \overline{1,N}$, $k_0 \notin \mu_*([A](e))$, $[A]_{k_0,k_0}(e) \neq 0$. Так как $[A]_{k_0,k_0}(e) \neq 0$, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$. Так как $k_0 \notin \mu_*([A](e))$, то: e' — базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Пусть:

$$\forall k_0 = \overline{1, N} \Big(k_0 \notin \mu_* \big([A](e) \big) \implies [A]_{k_0, k_0}(e) = 0 \Big).$$

Выберем число k_0 , удовлетворяющее условиям: $k_0 = \overline{1,N}$, $k_0 \notin \mu_*([A](e))$. Тогда $[A]_{k_0,k_0}(e) = 0$. Так как: [A](e) — эрмитова матрица, $k_0 \notin \mu_*([A](e))$, то существует число m_0 , удовлетворяющее условиям: $m_0 = \overline{1,N}$, $m_0 \neq k_0$, $[A]_{k_0,m_0}(e) \neq 0$. Тогда $m_0 \notin \mu_*([A](e))$. Следовательно, $[A]_{m_0,m_0}(e) = 0$. Так как: $[A]_{k_0,k_0}(e) = 0$, $[A]_{k_0,m_0}(e) \neq 0$, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — базис пространства L, $\mu_*([A](e)) \subseteq \mu_*([A](e'))$, $k_0 \in \mu_*([A](e'))$. Так как $k_0 \notin \mu_*([A](e))$, то: e' — базис пространства L, $\mu_*([A](e)) \subset \mu_*([A](e'))$.

Теорема (метод Лагранжа для эрмитовой полуторалинейной формы). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства L, [A](e) — диагональная матрица.

16.2. Закон инерции

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; A — полуторалинейная форма в пространстве L, Q — подпространство пространства L, $N_1 \in \mathbb{N}$, $\dim(Q) = N_1$, e — базис подпространства Q. Пусть: $x \in L$, $\forall k = \overline{1, N_1} \big(A(e_k, x) = 0 \big)$. Докажем, что $\forall u \in Q \big(A(u, x) = 0 \big)$.

Пусть $u \in Q$. Обозначим, $\tilde{u} = [u](e)$. Тогда:

$$A(u,x) = A(\tilde{u}^k e_k, x) = \overline{\tilde{u}^k} A(e_k, x) = 0.$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} ; A — полуторалинейная форма в пространстве L, Q_1 , Q_2 — подпространства пространства L, $\dim(Q_1) < \dim(Q_2)$, $\dim(Q_2) \neq +\infty$. Тогда существует вектор x, удовлетворяющий условиям: $x \in Q_2$, $x \neq \theta$, $\forall u \in Q_1 \big(A(u, x) = 0 \big)$.

Доказательство. Обозначим: $N_1 = \dim(Q_1)$, $N_2 = \dim(Q_2)$. Тогда: N_1 , $N_2 \in \overline{\mathbb{Z}}_+$, $N_1 < N_2$, $N_2 \neq +\infty$. Следовательно: $N_1 \in \mathbb{Z}_+$, $N_2 \in \mathbb{N}$. Так как $N_2 \in \mathbb{N}$, то существуют векторы e'_1, \ldots, e'_{N_2} , удовлетворяющие условию: e' — базис подпространства Q_2 .

Пусть $N_1=0$. Тогда $Q_1=\{\theta\}$. Очевидно: $e_1'\in Q_2,\,e_1'\neq \theta,\,A(u,e_1')=A(\theta,e_1')=0$ при $u\in Q_1.$

Пусть $N_1 \neq 0$. Тогда $N_1 \in \mathbb{N}$. Следовательно, существуют векторы e_1, \ldots, e_{N_1} , удовлетворяющие условию: e — базис подпространства Q_1 . Так как $N_1 < N_2$, то существует столбец \tilde{x} , удовлетворяющий условиям: $\tilde{x} \in \mathbb{K}^{N_2}$, $\tilde{x} \neq \tilde{\theta}_2$, $\forall k = \overline{1, N_1} \big(A(e_k, e'_{k'}) \tilde{x}^{k'} = 0 \big)$. Обозначим, $x = \tilde{x}^{k'} e'_{k'}$. Так как: $\tilde{x} \in \mathbb{K}^{N_2}$, $\tilde{x} \neq \tilde{\theta}_2$, то: $x \in Q_2$, $x \neq \theta$. Так как $\forall k = \overline{1, N_1} \big(A(e_k, e'_{k'}) \tilde{x}^{k'} = 0 \big)$, то:

$$A(e_k, \tilde{x}^{k'}e'_{k'}) = 0, \quad k = \overline{1, N_1};$$

 $A(e_k, x) = 0, \quad k = \overline{1, N_1};$
 $A(u, x) = 0, \quad u \in Q_1. \quad \Box$

Теорема (закон инерции для эрмитовых полуторалинейных форм). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L.

 Π усть: e- базис пространства L, [A](e)- диагональная матрица, p_1- количество положительных элементов на главной диагонали матрицы [A](e), n_1- количество отрицательных элементов на главной диагонали матрицы [A](e).

Пусть: e' — базис пространства L, [A](e') — диагональная матрица, p_2 — количество положительных элементов на главной диагонали матрицы [A](e'), n_2 — количество отрицательных элементов на главной диагонали матрицы [A](e'). Тогда: $p_1 = p_2$, p_2 , p_3 — p_4 — $p_$

Доказательство. Очевидно, p_1 , n_1 , p_2 , $n_2 = \overline{0,N}$. Без ограничения общности можно считать, что: $[A]_{k,k}(e) > 0$ при $k = \overline{1,p_1}$; $[A]_{k,k}(e) < 0$ при $k = \overline{p_1 + 1,p_1 + n_1}$; $[A]_{\underline{k'},k'}(e') > 0$ при $k' = \overline{1,p_2}$; $[A]_{k',k'}(e') < 0$ при $k' = \overline{p_2 + 1,p_2 + n_2}$. Тогда: $[A]_{k,k}(e) = 0$ при $k = \overline{p_1 + n_1 + 1,N}$;

 $[A]_{k',k'}(e')=0$ при $k'=\overline{p_2+n_2+1,N}$. Обозначим: $\tilde{A}=[A](e),\ \tilde{\tilde{A}}=[A](e')$. Предположим, что $p_1< p_2$. Тогда: $p_1=\overline{0,N-1},\ p_2=\overline{1,N}$.

Предположим, что $p_1 = 0$. Обозначим, $\tilde{x} = [e'_1](e)$. Тогда:

$$A(e'_1, e'_1) = \sum_{k, m = \overline{1, N}} \tilde{A}_{k, m} \overline{\tilde{x}^k} \tilde{x}^m = \sum_{k = \overline{1, N}} \tilde{A}_{k, k} \left| \tilde{x}^k \right|^2 \leqslant 0.$$

Очевидно: $A(e_1',e_1')=\tilde{\tilde{A}}_{1,1}>0$ (что противоречит утверждению: $A(e_1',e_1')\leqslant 0$). Итак, $p_1\neq 0$. Тогда $p_1=1,N-1$.

Очевидно: $\dim(L(e_1,\ldots,e_{p_1}))=p_1,\ \dim(L(e'_1,\ldots,e'_{p_2}))=p_2.$ Так как $p_1< p_2,$ то существует вектор x, удовлетворяющий условиям: $x\in L(e'_1,\ldots,e'_{p_2}),\ x\neq \theta,\ \forall u\in L(e_1,\ldots,e_{p_1})\big(A(u,x)=0\big).$ Обозначим, $\tilde{x}=[x](e).$ Тогда:

$$A(x,x) = A\left(\sum_{k=\overline{1,N}} \tilde{x}^k e_k, x\right) = \sum_{k=\overline{1,N}} A(e_k, x) \overline{\tilde{x}^k} = \sum_{k=\overline{p_1+1,N}} A(e_k, x) \overline{\tilde{x}^k} = \sum_{k=\overline{p_1+1,N}} A(e_k, x) \overline{\tilde{x}^k} = \sum_{k=\overline{p_1+1,N}} A(e_k, x) \overline{\tilde{x}^k} x^m = \sum_{k=\overline{p_1+1,N}} \sum_{m=\overline{1,N}} \tilde{A}_{k,m} \overline{\tilde{x}^k} x^m = \sum_{k=\overline{p_1+1,N}} \sum_{m=\overline{1,N}} \tilde{A}_{k,m} \overline{\tilde{x}^k} x^m = \sum_{k=\overline{p_1+1,N}} \tilde{A}_{k,m} \overline{\tilde{x}^k} x^m = \sum_{k=\overline{p_1+1,N}} \tilde{A}_{k,m} \overline{\tilde{x}^k} x^m = \sum_{k=\overline{p_1+1,N}} \tilde{A}_{k,k} \left| \tilde{x}^k \right|^2 \leqslant 0.$$

Обозначим, $\tilde{\tilde{x}}=[x](e'_1,\ldots,e'_{p_2})$. Так как: $x\in L(e'_1,\ldots,e'_{p_2}),\,x\neq\theta$, то: $\tilde{\tilde{x}}\in\mathbb{K}^{p_2},\,\tilde{\tilde{x}}\neq\tilde{\theta}_2$. Тогда:

$$\begin{split} A(x,x) &= A\Big(\sum_{k'=\overline{1,p_2}} \tilde{\tilde{x}}^{k'}e'_{k'}, \sum_{m'=\overline{1,p_2}} \tilde{\tilde{x}}^{m'}e'_{m'}\Big) = \sum_{k',m'=\overline{1,p_2}} A(e'_{k'},e'_{m'}) \overline{\tilde{\tilde{x}}^{k'}}\tilde{\tilde{x}}^{m'} = \sum_{k',m'=\overline{1,p_2}} \tilde{\tilde{A}}_{k',m'} \overline{\tilde{\tilde{x}}^{k'}}\tilde{\tilde{x}}^{m'} = \\ &= \sum_{k'=\overline{1,p_2}} \tilde{\tilde{A}}_{k',k'} \left|\tilde{\tilde{x}}^{k'}\right|^2 > 0 \end{split}$$

(что противоречит утверждению: $A(x,x) \leq 0$). Итак, $p_2 \leq p_1$.

Аналогично получаем, что $p_1\leqslant p_2$. Тогда $p_1=p_2$. Аналогично получаем, что $n_1=n_2$.

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L. Пусть: e — базис пространства L, [A](e) — диагональная матрица, p — количество положительных элементов на главной диагонали матрицы [A](e), n — количество отрицательных элементов на главной диагонали матрицы [A](e). Будем говорить, что (p,n) — сигнатура формы A.

16.3. Критерий Сильвестра

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L.

Пусть: A>0, e — базис пространства L. Пусть $k=\overline{1,N}$. Так как $e_k\neq \theta$, то: $[A]_{k,k}(e)=A(e_k,e_k)>0$.

Пусть e, e' — базисы пространства L. Тогда:

$$\det \left([A](e') \right) = \det \left(\overline{\alpha(e,e')^T} [A](e) \alpha(e,e') \right) = \left| \det \left(\alpha(e,e') \right) \right|^2 \det \left([A](e) \right).$$

Следовательно, $\operatorname{sgn}\left(\det\left([A](e')\right)\right) = \operatorname{sgn}\left(\det\left([A](e)\right)\right)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{Z}$, $N \geqslant 2$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L, e — базис пространства L, A(x,x) > 0 при: $x \in L(e_1, \ldots, e_{N-1})$, $x \neq \theta$. Тогда существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' — базис пространства L, $e'_k = e_k$ при $k = \overline{1, N-1}$; $N \in \mu_*([A](e'))$.

Доказательство. Очевидно: $\dim (L(e_1,\ldots,e_{N-1}))=N-1, \dim(L)=N.$ Так как N-1< N, то существует вектор x, удовлетворяющий условиям: $x\in L,$ $x\neq \theta,$ $\forall u\in L(e_1,\ldots,e_{N-1})\big(A(u,x)=0\big).$ Предположим, что $e_1,\ldots,e_{N-1},$ x- линейно зависимые векторы. Так как $e_1,\ldots,e_{N-1}-$ линейно независимые векторы, то $x\in L(e_1,\ldots,e_{N-1}).$ Тогда A(x,x)=0. Так как: $x\in L(e_1,\ldots,e_{N-1}),$ $x\neq \theta,$ то A(x,x)>0 (что противоречит утверждению: A(x,x)=0). Итак, $e_1,\ldots,e_{N-1},$ x- линейно независимые векторы.

Обозначим: $e'_k = e_k$ при $k = \overline{1, N-1}$; $e'_N = x$. Тогда: e'_1, \dots, e'_N — линейно независимые векторы пространства L, $e'_k = e_k$ при $k = \overline{1, N-1}$; $A(e'_k, e'_N) = 0$ при $k = \overline{1, N-1}$. Так как: e'_1, \dots, e'_N — линейно независимые векторы пространства L, $\dim(L) = N$, то e' — базис пространства L. Пусть $k = \overline{1, N-1}$. Тогда: $[A]_{k,N}(e') = A(e'_k, e'_N) = 0$. Так как [A](e') — эрмитова матрица, то $N \in \mu_*([A](e'))$.

Теорема (критерий Сильвестра). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; A — эрмитова полуторалинейная форма в пространстве L, e — базис пространства L, $\tilde{A} = [A](e)$.

- 1. Справедливо утверждение: A>0 тогда и только тогда, когда $\forall k=\overline{1,N}\big(\Delta_k(\tilde{A})>0\big)$.
- 2. Справедливо утверждение: A<0 тогда и только тогда, когда $\forall k=\overline{1,N}\Big(\mathrm{sgn}\big(\Delta_k(\tilde{A})\big)=(-1)^k\Big).$
 - 3. Пусть: $\det(\tilde{A}) \neq 0$, $\neg(A>0)$, $\neg(A<0)$. Тогда A- знакопеременная форма.

Доказательство.

1. Пусть A>0. Докажем, что: $\Delta_k(\tilde{A})>0$ при $k=\overline{1,N}$. Пусть N=1. Так как: $A>0,\ e_1\neq\theta,\ \text{то:}\ \tilde{A}_{1,1}=A(e_1,e_1)>0.$ Тогда:

$$\Delta_1(\tilde{A}) = \det(\tilde{A}) = \tilde{A}_{1,1} > 0.$$

Пусть: $N_0 \in \mathbb{N}$, утверждение справедливо при $N=N_0$. Пусть $N=N_0+1$. Так как A>0, то: A(x,x)>0 при: $x\in L(e_1,\ldots,e_{N_0}),\,x\neq \theta$. Так как утверждение справедливо при $N=N_0$, то: $\Delta_k(\tilde{A})>0$ при $k=\overline{1,N_0}$. Так как A — эрмитова полуторалинейная форма в пространстве L, то существуют векторы e'_1,\ldots,e'_{N_0+1} , удовлетворяющие условиям: e' — базис пространства $L,\ [A](e')$ — диагональная матрица. Обозначим, $\tilde{A}=[A](e')$. Пусть $k=\overline{1,N_0+1}$. Так как: $A>0,\,e'_k\neq \theta$, то: $\tilde{A}_{k,k}=A(e'_k,e'_k)>0$. Так как \tilde{A} — диагональная матрица, то: $\det(\tilde{A})=\tilde{A}_{1,1}\cdots\tilde{A}_{N_0+1,N_0+1}>0$. Тогда $\det(\tilde{A})>0$. Следовательно: $\Delta_{N_0+1}(\tilde{A})=\det(\tilde{A})>0$.

Пусть: $\Delta_k(\tilde{A}) > 0$ при $k = \overline{1, N}$. Докажем, что A > 0.

Пусть N=1. Пусть: $x\in L,\ x\neq \theta$. Обозначим, $\tilde{x}=[x](e)$. Тогда: $\tilde{x}\in \mathbb{K}^1,\ \tilde{x}\neq \tilde{\theta}$. Так как $\Delta_1(\tilde{A})>0$, то:

$$A(x,x) = \tilde{A}_{1,1} |\tilde{x}^1|^2 = \det(\tilde{A}) |\tilde{x}^1|^2 = \Delta_1(\tilde{A}) |\tilde{x}^1|^2 > 0.$$

Пусть: $N_0 \in \mathbb{N}$, утверждение справедливо при $N=N_0$. Пусть $N=N_0+1$. Так как: $\Delta_k(\tilde{A})>0$ при $k=\overline{1,N_0}$; утверждение справедливо при $N=N_0$, то: A(x,x)>0

при: $x\in L(e_1,\ldots,e_{N_0}),\ x\neq \theta$. Тогда существуют векторы $e'_1,\ldots,e'_{N_0+1},$ удовлетворяющие условиям: e' — базис пространства $L,\,e'_k=e_k$ при $k=\overline{1,N_0};\,N_0+1\in\mu_*\bigl([A](e')\bigr)$. Обозначим, $\tilde{A}=[A](e')$. Так как: $e'_k=e_k$ при $k=\overline{1,N_0},$ то: $\tilde{A}_{k,m}=\tilde{A}_{k,m}$ при $k,\ m=\overline{1,N_0}.$ Так как $\Delta_{N_0}(\tilde{A})>0$, то: $\Delta_{N_0}(\tilde{A})>0$. Так как $\Delta_{N_0+1}(\tilde{A})>0$, то: $\det(\tilde{A})=\Delta_{N_0+1}(\tilde{A})>0$. Тогда $\det(\tilde{A})>0$. Так как: $\tilde{A}_{k,N_0+1}=0$ при $k=\overline{1,N_0},$ то $\det(\tilde{A})=\tilde{A}_{N_0+1,N_0+1}\Delta_{N_0}(\tilde{A})$. Тогда:

$$\tilde{\tilde{A}}_{N_0+1,N_0+1} = \frac{\det(\tilde{\tilde{A}})}{\Delta_{N_0}(\tilde{\tilde{A}})} > 0.$$

Пусть: $x \in L$, $x \neq \theta$. Обозначим, $\tilde{x} = [x](e')$. Тогда: $\tilde{x} \in \mathbb{K}^{N_0+1}$, $\tilde{x} \neq \tilde{\theta}$. Следовательно:

$$\begin{split} A(x,x) &= A \bigg(\sum_{k=\overline{1,N_0+1}} \tilde{x}^k e_k', \sum_{m=\overline{1,N_0+1}} \tilde{x}^m e_m' \bigg) = \\ &= A \bigg(\sum_{k=\overline{1,N_0}} \tilde{x}^k e_k' + \tilde{x}^{N_0+1} e_{N_0+1}', \sum_{m=\overline{1,N_0}} \tilde{x}^m e_m' + \tilde{x}^{N_0+1} e_{N_0+1}' \bigg) = \\ &= A \bigg(\sum_{k=\overline{1,N_0}} \tilde{x}^k e_k', \sum_{m=\overline{1,N_0}} \tilde{x}^m e_m' \bigg) + \tilde{\tilde{A}}_{N_0+1,N_0+1} \left| \tilde{x}^{N_0+1} \right|^2 > 0. \end{split}$$

2. Обозначим: B(x,y) = -A(x,y) при $x, y \in L$. Тогда B — эрмитова полуторалинейная форма в пространстве L. Обозначим, $\tilde{B} = [B](e)$. Тогда $\tilde{B} = -\tilde{A}$.

Пусть A<0. Тогда B>0. Следовательно $\forall k=\overline{1,N}\big(\Delta_k(\tilde{B})>0\big)$. Тогда: $\mathrm{sgn}\big(\Delta_k(\tilde{A})\big)=\mathrm{sgn}\big(\Delta_k(-\tilde{B})\big)=\mathrm{sgn}\big((-1)^k\Delta_k(\tilde{B})\big)=(-1)^k$ при $k=\overline{1,N}$.

Пусть $\forall k = \overline{1,N} \Big(\mathrm{sgn} \big(\Delta_k(\tilde{A}) \big) = (-1)^k \Big)$. Тогда: $\Delta_k(\tilde{B}) = \Delta_k(-\tilde{A}) = (-1)^k \Delta_k(\tilde{A}) > 0$ при $k = \overline{1,N}$. Следовательно, B > 0. Тогда A < 0.

3. Так как A — эрмитова полуторалинейная форма в пространстве L, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — базис пространства L, [A](e') — диагональная матрица. Обозначим, $\tilde{\tilde{A}}=[A](e')$. Так как $\det(\tilde{A})\neq 0$, то $\det(\tilde{\tilde{A}})\neq 0$. Так как $\tilde{\tilde{A}}$ — диагональная матрица, то: $\tilde{\tilde{A}}_{1,1}\cdots\tilde{\tilde{A}}_{N,N}=\det(\tilde{\tilde{A}})\neq 0$. Тогда $\forall k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}\neq 0)$.

Предположим, что $\forall k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}>0)$. Так как $\tilde{\tilde{A}}$ — диагональная матрица, то A>0 (что противоречит утверждению: $\neg(A>0)$). Итак, $\exists k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}\leqslant0)$. Так как $\forall k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}\neq0)$, то $\exists k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}<0)$.

Предположим, что $\forall k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}<0)$. Так как $\tilde{\tilde{A}}$ — диагональная матрица, то A<0 (что противоречит утверждению: $\neg(A<0)$). Итак, $\exists k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}\geqslant0)$. Так как $\forall k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}\neq0)$, то $\exists k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}>0)$. Так как: $\exists k=\overline{1,N}(\tilde{\tilde{A}}_{k,k}<0)$, $\tilde{\tilde{A}}$ — диагональная матрица, то A — знакопеременная форма.

Лекция 17. Линейные евклидовы и линейные псевдоевклидовы пространства

17.1. Линейные евклидовы пространства

17.1.1. Основные определения

Определение (линейное евклидово пространство). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; L — линейное пространство над полем \mathbb{K} , $F \colon L \times L \implies \mathbb{K}$. Далее обычно будем писать «(x, y)» вместо «F(x, y)».

Пусть:

- 1. $(x,y) = \overline{(y,x)}$ при $x, y \in L$;
- 2. $(x, y_1 + y_2) = (x, y_1) + (x, y_2)$ при $x, y_1, y_2 \in L$;
- 3. $(x, \lambda y) = \lambda(x, y)$ при: $\lambda \in \mathbb{K}, x, y \in L$;
- 4. (x, x) > 0 при: $x \in L, x \neq \theta$.

Будем говорить, что: (L, F) — линейное евклидово пространство над полем \mathbb{K} ; F — скалярное произведение пространства (L, F).

Замечание. Пусть $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$.

Пусть (L,F) — линейное евклидово пространство над полем \mathbb{K} . Тогда: L — линейное пространство над полем \mathbb{K} , F — положительная эрмитова полуторалинейная форма в пространстве L.

Пусть: L — линейное пространство над полем \mathbb{K} , F — положительная эрмитова полуторалинейная форма в пространстве L. Тогда (L,F) — линейное евклидово пространство над полем \mathbb{K} .

Утверждение (неравенство Коши–Буняковского). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

1. Пусть: $x, y \in H, x, y - линейно зависимые векторы. Тогда:$

$$|(x,y)| = \sqrt{(x,x)}\sqrt{(y,y)}.$$

2. Пусть: $x, y \in H$, x, y - линейно независимые векторы. Тогда:

$$\left| (x,y) \right| < \sqrt{(x,x)} \sqrt{(y,y)}.$$

Доказательство.

1. Пусть $x = \theta$. Тогда: (x,y) = 0, (x,x) = 0. Следовательно: |(x,y)| = 0, $\sqrt{(x,x)}\sqrt{(y,y)} = 0$. Тогда $|(x,y)| = \sqrt{(x,x)}\sqrt{(y,y)}$.

Пусть $x \neq \theta$. Тогда x — линейно независимый вектор. Так как x, y — линейно зависимые векторы, то существует число λ , удовлетворяющее условиям: $\lambda \in \mathbb{K}, y = \lambda x$. Тогда:

$$\begin{aligned} \left| (x,y) \right| &= \left| (x,\lambda x) \right| = \left| \lambda(x,x) \right| = \left| \lambda \right| (x,x); \\ \sqrt{(x,x)} \sqrt{(y,y)} &= \sqrt{(x,x)} \sqrt{(\lambda x,\lambda x)} = \sqrt{(x,x)} \sqrt{\overline{\lambda} \lambda(x,x)} = \sqrt{(x,x)} \sqrt{\left| \lambda \right|^2 (x,x)} = \\ &= \sqrt{(x,x)} \sqrt{\left| \lambda \right|^2} \sqrt{(x,x)} = \left| \lambda \right| (x,x). \end{aligned}$$

Следовательно, $|(x,y)| = \sqrt{(x,x)}\sqrt{(y,y)}$.

2. Так как x, y — линейно независимые векторы, то $x, y \neq \theta$. Тогда (x, x), (y, y) > 0. Пусть (x, y) = 0. Тогда: |(x, y)| = 0, $\sqrt{(x, x)} \sqrt{(y, y)} > 0$. Следовательно, $|(x, y)| < \sqrt{(x, x)} \sqrt{(y, y)}$.

Пусть $(x,y) \neq 0$. Пусть $t \in \mathbb{R}$. Обозначим, $\lambda = \frac{\overline{(x,y)}}{|(x,y)|}t$. Так как: x,y — линейно независимые векторы, $1 \neq 0$, то: $x + \lambda y = 1x + \lambda y \neq \theta$. Тогда:

$$(x + \lambda y, x + \lambda y) > 0,$$

$$(x, x) + (x, \lambda y) + (\lambda y, x) + (\lambda y, \lambda y) > 0,$$

$$(x, x) + \lambda(x, y) + \overline{\lambda}(y, x) + \overline{\lambda}\lambda(y, y) > 0,$$

$$(x, x) + \lambda(x, y) + \overline{\lambda} \cdot \overline{(x, y)} + \overline{\lambda}\lambda(y, y) > 0,$$

$$(x, x) + 2|(x, y)|t + (y, y)t^{2} > 0.$$

Следовательно:

$$\forall t \in \mathbb{R}\Big((x,x) + 2\big|(x,y)\big|t + (y,y)t^2 > 0\Big).$$

Так как (y, y) > 0, то:

$$\left(2\left|(x,y)\right|\right)^2 - 4(y,y)(x,x) < 0,$$
$$\left|(x,y)\right| < \sqrt{(x,x)}\sqrt{(y,y)}. \quad \Box$$

Замечание (норма вектора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть $x \in H$. Обозначим, $||x|| = \sqrt{(x,x)}$. Тогда $||x|| \in \mathbb{R}$. Будем говорить, что ||x|| — норма вектора x.

Пусть
$$x \in H$$
. Очевидно: $||x|| = \sqrt{(x,x)} \geqslant 0$, $||x||^2 = \left(\sqrt{(x,x)}\right)^2 = (x,x)$.

Докажем утверждения.

- 1. Пусть $x, y \in H$. Тогда $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).
- 2. Пусть: $\lambda \in \mathbb{K}$, $x \in H$. Тогда $\|\lambda x\| = |\lambda| \cdot \|x\|$.
- 3. Пусть: $x \in H$, $x \neq \theta$. Тогда ||x|| > 0.
- 1. Очевидно:

$$||x + y|| = \sqrt{(x + y, x + y)} = \sqrt{(x, x) + (x, y) + (y, x) + (y, y)} =$$

$$= \sqrt{(x, x) + (x, y) + \overline{(x, y)} + (y, y)} = \sqrt{(x, x) + 2\operatorname{Re}((x, y)) + (y, y)} \le$$

$$\le \sqrt{(x, x) + 2|(x, y)| + (y, y)} \le \sqrt{(x, x) + 2\sqrt{(x, x)}\sqrt{(y, y)} + (y, y)} =$$

$$= \sqrt{||x||^2 + 2||x|| \cdot ||y|| + ||y||^2} = \sqrt{(||x|| + ||y||)^2} = ||x|| + ||y||.$$

2. Очевидно:

$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\overline{\lambda}\lambda(x, x)} = \sqrt{|\lambda|^2(x, x)} = \sqrt{|\lambda|^2}\sqrt{(x, x)} = |\lambda| \cdot \|x\|.$$

3. Очевидно:

$$||x|| = \sqrt{(x,x)} > 0.$$

Замечание (метрика пространства H). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть $x, y \in H$. Обозначим, $\rho(x,y) = ||x-y||$. Тогда $\rho(x,y) \in \mathbb{R}$. Будем говорить, что ρ — метрика пространства H.

Справедливы утверждения.

- 1. Пусть $x, y \in H$. Тогда $\rho(x, y) = \rho(y, x)$.
- 2. Пусть $x, y, z \in H$. Тогда $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$ (неравенство треугольника).
- 3. Пусть $x, y \in H$. Тогда $\rho(x, y) = 0 \iff x = y$.

Замечание (топология пространства H). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть: $x_0 \in H$, $\delta \in (0, +\infty)$. Обозначим, $B_{\delta}(x_0) = \{x : x \in H \land \rho(x, x_0) < \delta\}$. Тогда $B_{\delta}(x_0) \subseteq H$.

Будем говорить, что A — открытое множество в пространстве H, если: $A \subseteq H$, $\forall x_0 \in A \exists \delta \in (0, +\infty) (B_\delta(x_0) \subseteq A)$.

Обозначим через τ_H множество всех открытых множеств в пространстве H. Тогда $\tau_H \subseteq P(H)$ (здесь $P(H) = \{A \colon A \subseteq H\}$). Будем говорить, что τ_H — топология пространства H. Справедливы утверждения.

- 1. Справедливы утверждения: $\emptyset \in \tau_H$, $H \in \tau_H$ (\emptyset открытое множество, H открытое множество).
- 2. Пусть $A, B \in \tau_H$. Тогда $A \cap B \in \tau_H$ (пересечение двух открытых множеств есть открытое множество).
- 3. Пусть $\mu \subseteq \tau_H$. Тогда $\cup \mu \in \tau_H$ (объединение любого количества открытых множеств есть открытое множество; здесь $\cup \mu = \{x \colon \exists A (A \in \mu \land x \in A)\}$).

3амечание (угол между векторами). Пусть H — линейное евклидово пространство над полем \mathbb{R} .

Пусть: $x, y \in H$, $x = \theta \lor y = \theta$. Обозначим, $\varphi(x,y) = 0$. Тогда $\varphi(x,y) \in \mathbb{R}$. Будем говорить, что $\varphi(x,y)$ — угол между векторами x,y.

Пусть: $x, y \in H, x \neq \theta \land y \neq \theta$. Обозначим, $\varphi(x,y) = \arccos\left(\frac{(x,y)}{\|x\| \cdot \|y\|}\right)$. Тогда $\varphi(x,y) \in \mathbb{R}$. Будем говорить, что $\varphi(x,y)$ — угол между векторами x,y.

Пусть $x, y \in H$. Очевидно, $\varphi(x, y) \in [0, \pi]$.

Пусть $x, y \in H$. Очевидно, $(x, y) = ||x|| \cdot ||y|| \cos(\varphi(x, y))$.

Замечание (ортогональность). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

1. Пусть $x, y \in H$. Будем писать $x \perp y$, если (x, y) = 0.

Пусть: $x, y \in H$; $x \perp y$. Тогда $y \perp x$.

Пусть: $x, y_1, y_2 \in H$; $x \perp y_1, x \perp y_2$. Тогда $x \perp y_1 + y_2$.

Пусть: $\lambda \in \mathbb{K}$, $x, y \in H$; $x \perp y$. Тогда $x \perp \lambda y$.

2. Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in H$. Будем говорить, что x_1, \ldots, x_r — ортогональная последовательность векторов, если: $x_k \perp x_m$ при: $k, m = \overline{1,r}, k \neq m$.

Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in H$. Будем говорить, что x_1, \dots, x_r — нормированная последовательность векторов, если: $||x_k|| = 1$ при $k = \overline{1, r}$.

Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in H$. Будем говорить, что x_1, \dots, x_r — ортонормированная последовательность векторов, если: $x_k \perp x_m$ при: $k, m = \overline{1, r}, k \neq m$; $||x_k|| = 1$ при $k = \overline{1, r}$.

Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in H, x_1, \dots, x_r$ — ортогональные векторы, $x_1, \dots, x_r \neq \theta$. Докажем, что x_1, \dots, x_r — линейно независимые векторы.

Пусть: $C^1, \ldots, C^r \in \mathbb{K}$, $\sum_{m=\overline{1,r}} C^m x_m = \theta$. Пусть $k = \overline{1,r}$. Так как $x_k \neq \theta$, то $(x_k, x_k) \neq 0$.

Тогда:

$$\left(x_k, \sum_{m=\overline{1,r}} C^m x_m\right) = (x_k, \theta),$$

$$\sum_{m=\overline{1,r}} C^m (x_k, x_m) = 0,$$

$$C^k (x_k, x_k) = 0,$$

$$C^k = 0.$$

Следовательно, x_1, \ldots, x_r — линейно независимые векторы.

- 3. Пусть: $x \in H$, $Q \subseteq H$. Будем писать $x \perp Q$, если $\forall u \in Q(x \perp u)$.
- 4. Пусть $Q_1, Q_2 \subseteq H$. Будем писать $Q_1 \perp Q_2$, если $\forall x_1 \in Q_1 \forall x_2 \in Q_2(x_1 \perp x_2)$. Пусть: $Q_1, Q_2 \subseteq H$; $Q_1 \perp Q_2$. Тогда $Q_2 \perp Q_1$.
- 5. Пусть: $r \in \mathbb{N}, Q_1, \dots, Q_r \subseteq H$. Будем говорить, что Q_1, \dots, Q_r ортогональная последовательность множеств, если: $Q_k \perp Q_m$ при: $k, m = \overline{1,r}, k \neq m$.

Пусть: $r \in \mathbb{N}, Q_1, \dots, Q_r$ — подпространства пространства H, Q_1, \dots, Q_r — ортогональные подпространства. Докажем, что Q_1, \dots, Q_r — линейно независимые подпространства.

Пусть:
$$x_1 \in Q_1, \dots, x_r \in Q_r, \sum_{m=\overline{1,r}} x_m = \theta$$
. Пусть $k=\overline{1,r}$. Тогда:
$$\left(x_k, \sum_{m=\overline{1,r}} x_m\right) = (x_k, \theta),$$

$$\sum_{m=\overline{1,r}} (x_k, x_m) = 0,$$

$$(x_k, x_k) = 0,$$

$$x_k = \theta.$$

Следовательно, Q_1, \ldots, Q_r — линейно независимые подпространства.

17.1.2. Ортогональное дополнение, ортогональная проекция, оператор ортогонального проектирования

Определение (ортогональное дополнение). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть $Q \subseteq H$. Обозначим, $Q^{\perp} = \{x \colon x \in H \land x \perp Q\}$. Тогда $Q^{\perp} \subseteq H$. Будем говорить, что Q^{\perp} — ортогональное дополнение к множеству Q.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

- 1. Пусть: $Q_2 \subseteq H$, $Q_1 \subseteq Q_2$. Тогда $Q_2^{\perp} \subseteq Q_1^{\perp}$.
- 2. Пусть: $Q_1, Q_2 \subseteq H, Q_1 \perp Q_2$. Тогда $Q_1 \subseteq Q_2^{\perp}$.
- 3. Пусть: $Q_2 \subseteq H$, $Q_1 \subseteq Q_2^{\perp}$. Тогда $Q_1 \perp Q_2$.
- 4. Пусть $Q \subseteq H$. Тогда $Q \subseteq (Q^{\perp})^{\perp}$.

Доказательство.

1. Пусть $x \in Q_2^{\perp}$. Тогда: $x \in H, x \perp Q_2$.

Пусть $u \in Q_1$. Так как $Q_1 \subseteq Q_2$, то $u \in Q_2$. Так как $x \perp Q_2$, то $x \perp u$. Тогда $x \perp Q_1$. Следовательно, $x \in Q_1^{\perp}$. Тогда $Q_2^{\perp} \subseteq Q_1^{\perp}$.

- 2. Пусть $x\in Q_1$. Так как: $Q_1\subseteq H,\ Q_1\perp Q_2,\ {\rm To:}\ x\in H,\ x\perp Q_2.$ Тогда $x\in Q_2^\perp.$ Следовательно, $Q_1\subseteq Q_2^\perp.$
- 3. Пусть: $x_1 \in Q_1, x_2 \in Q_2$. Так как: $x_1 \in Q_1, Q_1 \subseteq Q_2^{\perp}$, то $x_1 \in Q_2^{\perp}$. Тогда $x_1 \perp Q_2$. Так как $x_2 \in Q_2$, то $x_1 \perp x_2$. Тогда $Q_1 \perp Q_2$.
- 4. Очевидно: $Q\subseteq H,\ Q^\perp\subseteq Q^\perp$. Тогда: $Q\subseteq H,\ Q^\perp\perp Q$. Следовательно: $Q\subseteq H,\ Q\perp Q^\perp$. Тогда $Q\subseteq (Q^\perp)^\perp$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

- 1. Пусть $Q \subseteq H$. Тогда Q^{\perp} подпространство пространства H.
- 2. Пусть: $Q_1, Q_2 \subseteq H, Q_1 \perp Q_2, Q_1 + Q_2 = H$. Тогда $Q_1 = Q_2^{\perp}$.
- 3. Пусть: $Q \subseteq H$, $Q + Q^{\perp} = H$. Тогда $Q = (Q^{\perp})^{\perp}$.

Доказательство.

1. Очевидно: $Q^{\perp} \subseteq H$, $\theta \in Q^{\perp}$.

Пусть: $x_1 \in Q^{\perp}$, $x_2 \in Q^{\perp}$. Тогда: $x_1 \in H$, $x_1 \perp Q$; $x_2 \in H$, $x_2 \perp Q$. Пусть $u \in Q$. Тогда: $x_1 \in H$, $x_1 \perp u$; $x_2 \in H$, $x_2 \perp u$. Следовательно: $x_1 + x_2 \in H$, $x_1 + x_2 \perp u$. Тогда: $x_1 + x_2 \in H$, $x_1 + x_2 \perp Q$. Следовательно, $x_1 + x_2 \in Q^{\perp}$.

Пусть: $\lambda \in \mathbb{K}$, $x \in Q^{\perp}$. Тогда: $\lambda \in \mathbb{K}$, $x \in H$, $x \perp Q$. Пусть $u \in Q$. Тогда: $\lambda \in \mathbb{K}$, $x \in H$, $x \perp u$. Следовательно: $\lambda x \in H$, $\lambda x \perp u$. Тогда: $\lambda x \in H$, $\lambda x \perp Q$. Следовательно, $\lambda x \in Q^{\perp}$. Итак, Q^{\perp} — подпространство пространства H.

2. Так как: $Q_1, Q_2 \subseteq H, Q_1 \perp Q_2$, то $Q_1 \subseteq Q_2^{\perp}$.

Пусть $x \in Q_2^{\perp}$. Тогда: $x \in H$, $x \perp Q_2$. Так как: $x \in H$, $H = Q_1 + Q_2$, то существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x = x_1 + x_2$. Так как: $x \perp Q_2$, $x_2 \in Q_2$, то $x \perp x_2$. Так как: $x_1 \in Q_1, x_2 \in Q_2, Q_1 \perp Q_2$, то $x_1 \perp x_2$. Тогда:

$$(x, x_2) = 0,$$

$$(x_1 + x_2, x_2) = 0,$$

$$(x_1, x_2) + (x_2, x_2) = 0,$$

$$(x_2, x_2) = 0,$$

$$x_2 = \theta.$$

Следовательно: $x=x_1+x_2=x_1\in Q_1$. Тогда $Q_2^\perp\subseteq Q_1$. Следовательно, $Q_1=Q_2^\perp$.

3. Очевидно: $Q \subseteq H, \ Q^{\perp} \subseteq Q^{\perp}, \ Q + Q^{\perp} = H.$ Тогда: $Q \subseteq H, \ Q^{\perp} \perp Q, \ Q + Q^{\perp} = H.$ Следовательно: $Q \subseteq H, \ Q \perp Q^{\perp}, \ Q + Q^{\perp} = H.$ Тогда $Q = (Q^{\perp})^{\perp}.$

Определение (ортогональная проекция). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; Q — подпространство пространства H, $x \in H$.

- 1. Будем говорить, что x' ортогональная проекция вектора x на подпространство Q, если: $x' \in Q, \ x x' \perp Q$.
- 2. Будем говорить, что x'' перпендикуляр вектора x к подпространству Q, если: $x'' \in H, \, x'' \perp Q, \, x x'' \in Q.$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; Q — подпространство пространства H.

- 1. Пусть: $x \in H$, x' ортогональная проекция вектора x на подпространство Q, x'' ортогональная проекция вектора x на подпространство Q. Тогда x' = x''.
- 2. Пусть: $x_1 \in H$, x_1' ортогональная проекция вектора x_1 на подпространство Q, $x_2 \in H$, x_2' ортогональная проекция вектора x_2 на подпространство Q. Тогда $x_1' + x_2'$ ортогональная проекция вектора $x_1 + x_2$ на подпространство Q.

- 3. Пусть: $\lambda \in \mathbb{K}$, $x \in H$, x' ортогональная проекция вектора x на подпространство Q. Тогда $\lambda x'$ ортогональная проекция вектора λx на подпространство Q.
- 4. Пусть: $x \in H$, x' opmoгoнальная проекция вектора <math>x на подпространство Q. Тогда x x' opmoroнальная проекция вектора <math>x на подпространство Q^{\perp} .

Доказательство.

1. Так как x' — ортогональная проекция вектора x на подпространство Q, то: $x' \in Q$, $x-x' \in Q^{\perp}$. Так как x'' — ортогональная проекция вектора x на подпространство Q, то: $x'' \in Q$, $x-x'' \in Q^{\perp}$. Тогда:

$$(x'-x'',x'-x'') = ((x-x'')-(x-x'),x'-x'') = 0.$$

Следовательно, $x' - x'' = \theta$. Тогда x' = x''.

- 2. Так как x_1' ортогональная проекция вектора x_1 на подпространство Q, то: $x_1' \in Q$, $x_1 x_1' \in Q^{\perp}$. Так как x_2' ортогональная проекция вектора x_2 на подпространство Q, то: $x_2' \in Q$, $x_2 x_2' \in Q^{\perp}$. Тогда: $x_1' + x_2' \in Q$, $(x_1 + x_2) (x_1' + x_2') = (x_1 x_1') + (x_2 x_2') \in Q^{\perp}$. Следовательно, $x_1' + x_2'$ ортогональная проекция вектора $x_1 + x_2$ на подпространство Q.
- 3. Так как x' ортогональная проекция вектора x на подпространство Q, то: $x' \in Q$, $x-x' \in Q^{\perp}$. Тогда: $\lambda x' \in Q$, $\lambda x \lambda x' = \lambda (x-x') \in Q^{\perp}$. Следовательно, $\lambda x'$ ортогональная проекция вектора λx на подпространство Q.
- 4. Так как x' ортогональная проекция вектора x на подпространство Q, то: $x' \in Q$, $x x' \in Q^{\perp}$. Тогда: $x x' \in Q^{\perp}$, $x (x x') = x' \in Q \subseteq (Q^{\perp})^{\perp}$. Следовательно, x x' = Q ортогональная проекция вектора x на подпространство Q^{\perp} .

Определение (оператор ортогонального проектирования). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; Q — подпространство пространства H.

- 1. Будем говорить, что подпространство Q допускает ортогональное проектирование, если для любого вектора $x \in H$ существует вектор x', удовлетворяющий условию: x' ортогональная проекция вектора x на подпространство Q.
 - 2. Пусть подпространство Q допускает ортогональное проектирование.

Пусть $x \in H$. Пусть x' — ортогональная проекция вектора x на подпространство Q. Обозначим, $P_Q(x) = x'$. Тогда $P_Q \colon H \implies H$. Будем говорить, что P_Q — оператор ортогонального проектирования на подпространство Q.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; Q — подпространство пространства H, Q — допускает ортогональное проектирование.

Очевидно: $P_Q\in {\rm Lin}(H,H),\ {\rm R}(P_Q)\subseteq Q,\ P_Q(x)=x$ при $x\in Q.$ Тогда: $P_Q\in {\rm Lin}(H,H),\ {\rm R}(P_Q)=Q,\ P_QP_Q=P_Q.$

Очевидно, $\ker(P_Q) = Q^{\perp}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $r \in \mathbb{N}, Q_1, \ldots, Q_r$ — ортогональные подпространства пространства H.

- 1. Пусть $Q_1 + \cdots + Q_r = H$. Тогда: Q_1, \ldots, Q_r допускают ортогональное проектирование, $P_{Q_1} + \cdots + P_{Q_r} = I$.
- 2. Пусть: Q_1, \ldots, Q_r допускают ортогональное проектирование, $P_{Q_1} + \cdots + P_{Q_r} = I$. Тогда $Q_1 + \cdots + Q_r = H$.

Доказательство.

1. Пусть $k = \overline{1,r}$. Пусть $x \in H$. Так как $H = Q_1 + \cdots + Q_r$, то существуют векторы x_1, \ldots, x_r , удовлетворяющие условиям: $x_1 \in Q_1, \ldots, x_r \in Q_r$, $x = x_1 + \cdots + x_r$. Тогда x_k

ортогональная проекция вектора x на подпространство Q_k . Следовательно, подпространство Q_k допускает ортогональное проектирование.

Пусть $x \in H$. Так как $H = Q_1 + \dots + Q_r$, то существуют векторы x_1, \dots, x_r , удовлетворяющие условиям: $x_1 \in Q_1, \dots, x_r \in Q_r$, $x = x_1 + \dots + x_r$. Пусть $k = \overline{1,r}$. Тогда x_k ортогональная проекция вектора x на подпространство Q_k . Следовательно, $P_{Q_k}(x) = x_k$. Тогда:

$$\left(\sum_{k=\overline{1,r}} P_{Q_k}\right)(x) = \sum_{k=\overline{1,r}} P_{Q_k}(x) = \sum_{k=\overline{1,r}} x_k = x = I(x).$$

Следовательно, $P_{Q_1} + \cdots + P_{Q_r} = I$.

2. Пусть $x \in H$. Тогда:

$$x = I(x) = \left(\sum_{k = \overline{1,r}} P_{Q_k}\right)(x) = \sum_{k = \overline{1,r}} P_{Q_k}(x) \in \sum_{k = \overline{1,r}} Q_k.$$

Следовательно, $H\subseteq Q_1+\cdots+Q_r$. Очевидно, $Q_1+\cdots+Q_r\subseteq H$. Тогда $Q_1+\cdots+Q_r=H$. \square

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} . Пусть: Q — подпространство пространства H, Q допускает ортогональное проектирование. Тогда: Q^{\perp} допускает ортогональное проектирование, $P_Q + P_{Q^{\perp}} = I$, $Q + Q^{\perp} = H$, $Q = (Q^{\perp})^{\perp}$.

Доказательство. Пусть $x \in H$. Тогда $P_Q(x)$ — ортогональная проекция вектора x на подпространство Q. Следовательно, $x - P_Q(x)$ — ортогональная проекция вектора x на подпространство Q^{\perp} . Тогда подпространство Q^{\perp} допускает ортогональное проектирование.

Пусть $x\in H$. Тогда $P_Q(x)$ — ортогональная проекция вектора x на подпространство Q. Следовательно, $x-P_Q(x)$ — ортогональная проекция вектора x на подпространство Q^\perp . Тогда $P_{Q^\perp}(x)=x-P_Q(x)$. Следовательно: $(P_Q+P_{Q^\perp})(x)=P_Q(x)+P_{Q^\perp}(x)=x=I(x)$. Тогда $P_Q+P_{Q^\perp}=I$.

Так как: Q, Q^{\perp} — ортогональные подпространства пространства $H; Q, Q^{\perp}$ допускают ортогональное проектирование, $P_Q + P_{Q^{\perp}} = I$, то $Q + Q^{\perp} = H$.

Так как:
$$Q \subseteq H$$
, $Q + Q^{\perp} = H$, то $Q = (Q^{\perp})^{\perp}$.

17.1.3. Метрический тензор

Замечание (ковариантный метрический тензор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; (L, F) — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim((L, F)) = N$. Очевидно, F — положительная эрмитова полуторалинейная форма в пространстве (L, F).

- 1. Пусть e базис пространства (L,F). Обозначим: $g_{k,m}(e)=(e_k,e_m)$ при $k, m=\overline{1,N}$. Тогда: $g_{k,m}(e)=F(e_k,e_m)=[F]_{k,m}(e)$ при $k, m=\overline{1,N}$. Следовательно, g(e)=[F](e). Так как F положительная эрмитова полуторалинейная форма в пространстве (L,F), то: $g(e)\in\mathbb{K}^{N\times N},\ g(e)$ эрмитова матрица, $g_{k,k}(e)>0$ при $k=\overline{1,N};\ \Delta_k\big(g(e)\big)>0$ при $k=\overline{1,N}$.
- 2. Пусть e базис пространства (L,F). Пусть e ортогональный базис. Тогда g(e) диагональная матрица.

Пусть g(e) — диагональная матрица. Тогда e — ортогональный базис.

Пусть e — ортонормированный базис. Тогда $g(e) = \tilde{I}$.

Пусть g(e) = I. Тогда e — ортонормированный базис.

- 3. Так как F эрмитова полуторалинейная форма в пространстве (L,F), то, согласно теореме Лагранжа, существуют векторы e_1,\ldots,e_N , удовлетворяющие условиям: e базис пространства $(L,F),\ g(e)$ диагональная матрица. Тогда e ортогональный базис пространства (L,F). Обозначим: $e'_k=\frac{1}{\|e_k\|}e_k$ при $k=\overline{1,N}$. Тогда e' ортонормированный базис пространства (L,F).
 - 4. Пусть e базис пространства (L, F). Пусть $x, y \in L$. Тогда:

$$(x,y) = g_{k,m}(e)\overline{[x]^k(e)}[y]^m(e).$$

Пусть e — ортогональный базис. Пусть $x, y \in L$. Тогда:

$$(x,y) = \sum_{k,m=\overline{1,N}} g_{k,m}(e) \overline{[x]^k(e)} [y]^m(e) = \sum_{k=\overline{1,N}} g_{k,k}(e) \overline{[x]^k(e)} [y]^k(e) = \sum_{k=\overline{1,N}} (e_k, e_k) \overline{[x]^k(e)} [y]^k(e) = \sum_{k=\overline{1,N}} \|e_k\|^2 \overline{[x]^k(e)} [y]^k(e).$$

Пусть e — ортонормированный базис. Пусть $x, y \in L$. Тогда:

$$(x,y) = \sum_{k,m=\overline{1,N}} g_{k,m}(e) \overline{[x]^k(e)} [y]^m(e) = \sum_{k,m=\overline{1,N}} \delta_m^k \overline{[x]^k(e)} [y]^m(e) = \sum_{k=\overline{1,N}} \overline{[x]^k(e)} [y]^k(e).$$

- 5. Пусть e, e' базисы пространства (L,F). Так как F полуторалинейная форма в пространстве (L,F), то: $g_{k',m'}(e')=g_{k,m}(e)\overline{\alpha_{k'}^k(e,e')}\alpha_{m'}^m(e,e')$ при $k', m'=\overline{1,N};$ $g(e')=\overline{\alpha(e,e')^T}g(e)\alpha(e,e')$. Будем говорить, что g ковариантный метрический тензор пространства (L,F).
 - 6. Пусть e, e' ортонормированные базисы пространства (L, F). Тогда:

$$g(e') = \overline{\alpha(e, e')^T} g(e) \alpha(e, e'),$$

$$\tilde{I} = \overline{\alpha(e, e')^T} \tilde{I} \alpha(e, e'),$$

$$\tilde{I} = \overline{\alpha(e, e')^T} \alpha(e, e').$$

Следовательно: $\det(\alpha(e,e')) \neq 0$, $\alpha(e,e')^{-1} = \overline{\alpha(e,e')^T}$. Тогда $\alpha(e,e')\overline{\alpha(e,e')^T} = \tilde{I}$. Следовательно, $\alpha(e,e')$ — унитарная матрица.

7. Пусть: e — ортонормированный базис пространства $(L,F), e'_1, \ldots, e'_N \in L, \alpha(e,e')$ — унитарная матрица. Так как $\alpha(e,e')$ — унитарная матрица, то $\alpha(e,e')\alpha(e,e')^T = \tilde{I}$. Тогда: $\det(\alpha(e,e')) \neq 0, \ \alpha(e,e')^{-1} = \overline{\alpha(e,e')^T}$. Следовательно, $\overline{\alpha(e,e')^T}\alpha(e,e') = \tilde{I}$. Очевидно: e' — базис пространства (L,F),

$$g(e') = \overline{\alpha(e,e')^T} g(e) \alpha(e,e') = \overline{\alpha(e,e')^T} \widetilde{I} \alpha(e,e') = \overline{\alpha(e,e')^T} \alpha(e,e') = \widetilde{I}.$$

Тогда e' — ортонормированный базис пространства (L, F).

Замечание (контравариантный метрический тензор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; (L, F) — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim((L, F)) = N$. Очевидно, F — положительная эрмитова полуторалинейная форма в пространстве (L, F).

1. Пусть e — базис пространства (L,F). Обозначим: $g^{k,m}(e) = (g(e)^{-1})^{k,m}$ при $k, m = \overline{1,N}$. Так как: $g(e) \in \mathbb{K}^{N \times N}, \ g(e)$ — эрмитова матрица, $\det(g(e)) > 0$, то: $g(e)^{-1} \in \mathbb{K}^{N \times N}, \ g(e)^{-1}$ — эрмитова матрица, $\det(g(e)^{-1}) > 0$.

2. Пусть e — базис пространства (L,F). Пусть e — ортогональный базис. Тогда: $g(e)^{-1}$ — диагональная матрица, $g^{k,k}(e)=\frac{1}{g_{k,k}(e)}$ при $k=\overline{1,N}$.

Пусть $g(e)^{-1}$ — диагональная матрица. Тогда e — ортогональный базис.

Пусть e — ортонормированный базис. Тогда $g(e)^{-1} = \tilde{I}$.

Пусть: $g(e)^{-1} = \tilde{I}$. Тогда e — ортонормированный базис.

3. Пусть e — базис пространства (L, F). Пусть: $x \in L, k, m = \overline{1, N}$. Тогда:

$$(e_{m}, x) = (e_{m}, [x]^{n}(e)e_{n}) = [x]^{n}(e)(e_{m}, e_{n}) = g_{m,n}(e)[x]^{n}(e);$$

$$g_{m,n}(e)[x]^{n}(e) = (e_{m}, x),$$

$$g^{k,m}(e)g_{m,n}(e)[x]^{n}(e) = g^{k,m}(e)(e_{m}, x),$$

$$\delta_{n}^{k}[x]^{n}(e) = g^{k,m}(e)(e_{m}, x),$$

$$[x]^{k}(e) = g^{k,m}(e)(e_{m}, x);$$

$$x = [x]^{k}(e)e_{k} = g^{k,m}(e)(e_{m}, x)e_{k}.$$

Пусть $x \in L$. Тогда:

$$[x]^k(e) = g^{k,m}(e)(e_m, x), \quad k = \overline{1, N};$$

 $x = g^{k,m}(e)(e_m, x)e_k.$

Пусть e — ортогональный базис. Пусть $x \in L$. Тогда:

$$[x]^{k}(e) = \sum_{m=\overline{1,N}} g^{k,m}(e)(e_{m}, x) = \frac{(e_{k}, x)}{g_{k,k}(e)} = \frac{(e_{k}, x)}{(e_{k}, e_{k})} = \frac{(e_{k}, x)}{\|e_{k}\|^{2}}, \quad k = \overline{1, N};$$

$$x = \sum_{k,m=\overline{1,N}} g^{k,m}(e)(e_{m}, x)e_{k} = \sum_{k=\overline{1,N}} \frac{(e_{k}, x)}{g_{k,k}(e)}e_{k} = \sum_{k=\overline{1,N}} \frac{(e_{k}, x)}{(e_{k}, e_{k})}e_{k} = \sum_{k=\overline{1,N}} \frac{(e_{k}, x)}{\|e_{k}\|^{2}}e_{k}.$$

Пусть e — ортонормированный базис. Пусть $x \in L$. Тогда:

$$[x]^{k}(e) = \sum_{m=\overline{1,N}} g^{k,m}(e)(e_{m}, x) = \sum_{m=\overline{1,N}} \delta_{m}^{k}(e_{m}, x) = (e_{k}, x), \quad k = \overline{1, N};$$

$$x = \sum_{k,m=\overline{1,N}} g^{k,m}(e)(e_{m}, x)e_{k} = \sum_{k,m=\overline{1,N}} \delta_{m}^{k}(e_{m}, x)e_{k} = \sum_{k=\overline{1,N}} (e_{k}, x)e_{k}.$$

4. Пусть e, e' — базисы пространства (L, F). Тогда:

$$g(e')^{-1} = \left(\overline{\alpha(e,e')^T}g(e)\alpha(e,e')\right)^{-1} = \alpha(e,e')^{-1}g(e)^{-1}\left(\overline{\alpha(e,e')^T}\right)^{-1} = \alpha(e,e')^{-1}g(e)^{-1}\left(\overline{\alpha(e,e')^{-1}}\right)^{-1} = \alpha(e',e)g(e)^{-1}\overline{\alpha(e',e)^T}.$$

Следовательно: $g^{k',m'}(e') = g^{k,m}(e)\alpha_k^{k'}(e',e)\overline{\alpha_m^{m'}(e',e)}$ при $k', m' = \overline{1,N}$. Будем говорить, что $\left\{g(e)^{-1}\right\}_e$ — контравариантный метрический тензор пространства (L,F).

Замечание (оператор ортогонального проектирования на простейшие подпространства). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Очевидно: $\{\theta\}$ — допускает ортогональное проектирование, $P_{\{\theta\}} = \Theta$.

Очевидно: H — допускает ортогональное проектирование, $P_H = I$.

Утверждение (оператор ортогонального проектирования на подпространство натуральной размерности). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть: Q — подпространство пространства H, $N_1 \in \mathbb{N}$, $\dim(Q) = N_1$; G — ковариантный метрический тензор подпространства Q, e — базис подпространства Q. Тогда: Q допускает ортогональное проектирование, $P_Q x = G^{\alpha,\beta}(e_\beta,x)e_\alpha$ при $x \in H$.

Доказательство. Пусть $x \in H$. Обозначим, $x_1 = G^{\alpha,\beta}(e_\beta,x)e_\alpha$. Тогда $x_1 \in Q$. Пусть $\gamma = \overline{1,N_1}$. Тогда:

$$(e_{\gamma}, x - x_{1}) = (e_{\gamma}, x) - (e_{\gamma}, x_{1}) = (e_{\gamma}, x) - (e_{\gamma}, G^{\alpha, \beta}(e_{\beta}, x)e_{\alpha}) = (e_{\gamma}, x) - G^{\alpha, \beta}(e_{\beta}, x)(e_{\gamma}, e_{\alpha}) = (e_{\gamma}, x) - G_{\gamma, \alpha}G^{\alpha, \beta}(e_{\beta}, x) = (e_{\gamma}, x) - \delta_{\gamma}^{\beta}(e_{\beta}, x) = (e_{\gamma}, x) - (e_{\gamma}, x) = 0.$$

Следовательно: $x-x_1 \perp L(e_1,\ldots,e_{N_1}) = Q$. Итак, x_1 — ортогональная проекция вектора x на подпространство Q.

Пусть $x \in H$. Тогда $G^{\alpha,\beta}(e_{\beta},x)e_{\alpha}$ — ортогональная проекция вектора x на подпространство Q. Следовательно, подпространство Q допускает ортогональное проектирование.

Пусть $x \in H$. Тогда $G^{\alpha,\beta}(e_{\beta},x)e_{\alpha}$ — ортогональная проекция вектора x на подпространство Q. Следовательно, $P_{Q}x = G^{\alpha,\beta}(e_{\beta},x)e_{\alpha}$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть: Q — подпространство пространства $H, N_1 \in \mathbb{N}, \dim(Q) = N_1; G$ — ковариантный метрический тензор подпространства Q, e — базис подпространства Q. Тогда подпространство Q допускает ортогональное проектирование.

Пусть e — ортогональный базис. Пусть $x \in H$. Тогда:

$$P_{Q}x = \sum_{\alpha,\beta = \overline{1,N_{1}}} G^{\alpha,\beta}(e_{\beta},x)e_{\alpha} = \sum_{\alpha = \overline{1,N_{1}}} \frac{(e_{\alpha},x)}{G_{\alpha,\alpha}}e_{\alpha} = \sum_{\alpha = \overline{1,N_{1}}} \frac{(e_{\alpha},x)}{(e_{\alpha},e_{\alpha})}e_{\alpha} = \sum_{\alpha = \overline{1,N_{1}}} \frac{(e_{\alpha},x)}{\|e_{\alpha}\|^{2}}e_{\alpha}.$$

Пусть e — ортонормированный базис. Пусть $x \in H$. Тогда:

$$P_Q x = \sum_{\alpha,\beta = \overline{1,N_1}} G^{\alpha,\beta}(e_\beta,x) e_\alpha = \sum_{\alpha,\beta = \overline{1,N_1}} \delta^{\alpha}_{\beta}(e_\beta,x) e_\alpha = \sum_{\alpha = \overline{1,N_1}} (e_\alpha,x) e_\alpha.$$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} . Пусть: Q — подпространство пространства H, $\dim(Q) \neq +\infty$. Тогда: подпространства Q, Q^{\perp} допускают ортогональное проектирование, $P_Q + P_{Q^{\perp}} = I$, $Q + Q^{\perp} = H$, $Q = (Q^{\perp})^{\perp}$.

17.1.4. Процесс Грама-Шмидта

Теорема (процесс ортогонализации Грама–Шмидта). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in H$, x_1, \ldots, x_r — линейно независимые векторы, $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$, $\lambda_1, \ldots, \lambda_r \neq 0$.

Существуют векторы y_1, \ldots, y_r , удовлетворяющие условиям: (y_1, \ldots, y_k) — ортогональный базис подпространства $L(x_1, \ldots, x_k)$ при $k = \overline{1, r}; \ y_1 = \lambda_1 x_1, \ y_k = \lambda_k \Big(x_k - \overline{x_1} \Big)$

$$\sum_{m=1,k-1} \frac{(y_m, x_k)}{(y_m, y_m)} y_m \right) npu \ k = \overline{2, r}.$$

Доказательство. Докажем, что утверждение справедливо при r=1. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $x_1 \in H$, x_1 — линейно независимый вектор, $\lambda_1 \in \mathbb{K}$, $\lambda_1 \neq 0$. Обозначим, $y_1 = \lambda_1 x_1$. Очевидно, y_1 — искомая последовательность векторов.

Пусть: $r_0 \in \mathbb{N}$, утверждение справедливо при $r = r_0$. Докажем, что утверждение справедливо при $r = r_0 + 1$. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $x_1, \ldots, x_{r_0+1} \in H$, x_1, \ldots, x_{r_0+1} — линейно независимые векторы, $\lambda_1, \ldots, \lambda_{r_0+1} \in \mathbb{K}$, $\lambda_1, \ldots, \lambda_{r_0+1} \neq 0$. Так как утверждение справедливо при $r = r_0$, то существуют векторы y_1, \ldots, y_{r_0} , удовлетворяющие условиям: (y_1, \ldots, y_k) — ортогональный базис подпространства $L(x_1, \ldots, x_k)$ при $k = \overline{1, r_0}$; $y_1 = \lambda_1 x_1$, $y_k = \lambda_k \left(x_k - \sum_{m=1,k-1} \frac{(y_m, x_k)}{(y_m, y_m)} y_m\right)$ при

 $k=\overline{2,r_0}$. Так как (y_1,\ldots,y_{r_0}) — ортогональный базис подпространства $L(x_1,\ldots,x_{r_0})$, то: $y_1,\ldots,y_{r_0}\in L(x_1,\ldots,x_{r_0}),\,y_1,\ldots,y_{r_0}$ — ортогональные векторы, $y_1,\ldots,y_{r_0}\neq \theta$. Обозначим, $y_{r_0+1}=\lambda_{r_0+1}\Big(x_{r_0+1}-\sum_{m=\overline{1,r_0}}\frac{(y_m,x_{r_0+1})}{(y_m,y_m)}y_m\Big)$.

Докажем, что: $y_{r_0+1} \in L(x_1,\ldots,x_{r_0+1}), \ y_1,\ldots,y_{r_0} \perp y_{r_0+1}, \ y_{r_0+1} \neq \theta$. Очевидно: $y_1,\ldots,y_{r_0} \in L(x_1,\ldots,x_{r_0}) \subseteq L(x_1,\ldots,x_{r_0+1})$. Так как $x_{r_0+1} \in L(x_1,\ldots,x_{r_0+1})$, то $y_{r_0+1} \in L(x_1,\ldots,x_{r_0+1})$.

Пусть $k = \overline{1, r_0}$. Так как y_1, \dots, y_{r_0} — ортогональные векторы, то:

$$(y_k, y_{r_0+1}) = \left(y_k, \lambda_{r_0+1} \left(x_{r_0+1} - \sum_{m=\overline{1,r_0}} \frac{(y_m, x_{r_0+1})}{(y_m, y_m)} y_m\right)\right) =$$

$$= \lambda_{r_0+1} \left((y_k, x_{r_0+1}) - \sum_{m=\overline{1,r_0}} \frac{(y_m, x_{r_0+1})}{(y_m, y_m)} (y_k, y_m)\right) = \lambda_{r_0+1} \left((y_k, x_{r_0+1}) - (y_k, x_{r_0+1})\right) = 0.$$

Тогда $y_k \perp y_{r_0+1}$.

Предположим, что $y_{r_0+1}=\theta$. Так как: $\lambda_{r_0+1}\neq 0,\ y_1,\ldots,y_{r_0}\in L(x_1,\ldots,x_{r_0}),$ то:

$$\lambda_{r_0+1} \left(x_{r_0+1} - \sum_{m=\overline{1,r_0}} \frac{(y_m, x_{r_0+1})}{(y_m, y_m)} y_m \right) = \theta,$$

$$x_{r_0+1} - \sum_{m=\overline{1,r_0}} \frac{(y_m, x_{r_0+1})}{(y_m, y_m)} y_m = \theta,$$

$$x_{r_0+1} = \sum_{m=\overline{1,r_0}} \frac{(y_m, x_{r_0+1})}{(y_m, y_m)} y_m,$$

$$x_{r_0+1} \in L(x_1, \dots, x_{r_0}).$$

Тогда x_1, \ldots, x_{r_0+1} — линейно зависимые векторы (что противоречит условию). Итак, $y_{r_0+1} \neq \theta$.

Итак: $y_{r_0+1} \in L(x_1, \dots, x_{r_0+1}), y_1, \dots, y_{r_0} \perp y_{r_0+1}, y_{r_0+1} \neq \theta$. Очевидно: $y_1, \dots, y_{r_0+1} \in L(x_1, \dots, x_{r_0+1}), y_1, \dots, y_{r_0+1} = 0$ Так как $x_1, \dots, x_{r_0+1} = 0$ линейно независимые векторы, то $\dim(L(x_1, \dots, x_{r_0+1})) = r_0 + 1$. Тогда (y_1, \dots, y_{r_0+1}) ортогональный базис подпространства $L(x_1, \dots, x_{r_0+1})$. Очевидно, $y_1, \dots, y_{r_0+1} = 0$ искомая последовательность векторов.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, $x_1, \ldots, x_r \in H$, x_1, \ldots, x_r — линейно независимые векторы, $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$, $\lambda_1, \ldots, \lambda_r \neq 0$.

Пусть:
$$y_1, \ldots, y_r \in H$$
, $y_1, \ldots, y_r \neq \theta$, $y_1 = \lambda_1 x_1$, $y_k = \lambda_k \left(x_k - \sum_{m=\overline{1,k-1}} \frac{(y_m, x_k)}{(y_m, y_m)} y_m \right)$ при $k = \overline{2, r}$.

Пусть: $z_1, \ldots, z_r \in H$, $z_1, \ldots, z_r \neq \theta$, $z_1 = \lambda_1 x_1$, $z_k = \lambda_k \left(x_k - \sum_{m=\overline{1,k-1}} \frac{(z_m, x_k)}{(z_m, z_m)} z_m \right)$ при $k = \overline{2, r}$. Тогда: $y_1 = z_1, \ldots, y_r = z_r$.

17.1.5. Смешанное и векторное произведения

Замечание (вспомогательный числовой набор $\tilde{\varepsilon}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}$.

Обозначим: $\tilde{\varepsilon}_{k_1,\dots,k_N}=\det(\tilde{I}_{k_1},\dots,\tilde{I}_{k_N})$ при $k_1,\dots,k_N=\overline{1,N}$. Тогда: $\tilde{\varepsilon}\in\mathbb{K}^{(N,N)},\ \tilde{\varepsilon}$ — антисимметричный числовой набор, $\tilde{\varepsilon}_{1,\dots,N}=1$.

Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$\det(A) = \det(A_1, \dots, A_N) = \det(A_1^{k_1} \tilde{I}_{k_1}, \dots, A_N^{k_N} \tilde{I}_{k_N}) = A_1^{k_1} \cdots A_N^{k_N} \det(\tilde{I}_{k_1}, \dots, \tilde{I}_{k_N}) =$$

$$= \tilde{\varepsilon}_{k_1, \dots, k_N} A_1^{k_1} \cdots A_N^{k_N}.$$

Пусть: $A \in \mathbb{K}^{N \times N}$, $k_1, \ldots, k_N = \overline{1, N}$. Докажем, что $\det(A_{k_1}, \ldots, A_{k_N}) = \tilde{\varepsilon}_{k_1, \ldots, k_N} \det(A)$. Пусть k_1, \ldots, k_N — различные числа. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, N\}$, $\sigma(1) = k_1, \ldots, \sigma(N) = k_N$. Тогда $\sigma \in S_N$. Следовательно:

$$\det(A_{k_1}, \dots, A_{k_N}) = \det(A_{\sigma(1)}, \dots, A_{\sigma(N)}) = \operatorname{sgn}(\sigma) \det(A_1, \dots, A_N) = \operatorname{sgn}(\sigma) \det(A);$$
$$\tilde{\varepsilon}_{k_1, \dots, k_N} \det(A) = \tilde{\varepsilon}_{\sigma(1), \dots, \sigma(N)} \det(A) = \operatorname{sgn}(\sigma) \tilde{\varepsilon}_{1, \dots, N} \det(A) = \operatorname{sgn}(\sigma) \det(A).$$

Тогда $\det(A_{k_1},\ldots,A_{k_N})=\tilde{\varepsilon}_{k_1,\ldots,k_N}\det(A).$

Пусть k_1,\dots,k_N — не являются различными числами. Тогда: $\det(A_{k_1},\dots,A_{k_N})=0$, $\tilde{\varepsilon}_{k_1,\dots,k_N}\det(A)=0$. Следовательно, $\det(A_{k_1},\dots,A_{k_N})=\tilde{\varepsilon}_{k_1,\dots,k_N}\det(A)$.

Определение (дискриминантный тензор (тензор Леви-Чивита)). Пусть: H — линейное евклидово пространство над полем $\mathbb{R}, N \in \mathbb{N}, \dim(H) = N, H$ — ориентированное пространство.

Обозначим: $\varepsilon_{k_1,\dots,k_N}(e) = \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \tilde{\varepsilon}_{k_1,\dots,k_N}$ при: e — базис пространства H, $k_1,\dots,k_N = \overline{1,N}$.

Утверждение. Пусть: H — линейное евклидово пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(H) = N$, H — ориентированное пространство. Тогда: $\varepsilon \in (TH)_N^0$, ε — антисимметричный тензор, $\varepsilon_{1,\dots,N}(e) = \operatorname{sgn}(e) \sqrt{\det(g(e))}$ при: e — базис пространства H.

Доказательство. Очевидно, $\varepsilon \in (GH)_N$. Пусть: e, e' — базисы пространства $H, k'_1, \ldots, k'_N = \overline{1, N}$. Тогда:

$$\varepsilon_{k_1,\dots,k_N}(e)\alpha_{k'_1}^{k_1}(e,e')\cdots\alpha_{k'_N}^{k_N}(e,e') = \operatorname{sgn}(e)\sqrt{\det(g(e))}\cdot\tilde{\varepsilon}_{k_1,\dots,k_N}\alpha_{k'_1}^{k_1}(e,e')\cdots\alpha_{k'_N}^{k_N}(e,e') = \\
= \operatorname{sgn}(e)\sqrt{\det(g(e))}\cdot\det(\alpha_{k'_1}(e,e'),\dots,\alpha_{k'_N}(e,e')) = \\
= \operatorname{sgn}(e)\sqrt{\det(g(e))}\cdot\tilde{\varepsilon}_{k'_1,\dots,k'_N}\det(\alpha(e,e')) = \\
= \operatorname{sgn}(e)\sqrt{\det(g(e))}\cdot\tilde{\varepsilon}_{k'_1,\dots,k'_N}\det(\alpha(e,e'))\Big|\cdot\operatorname{sgn}\left(\det(\alpha(e,e'))\right) = \\
= \operatorname{sgn}(e)\operatorname{sgn}\left(\det(\alpha(e,e'))\right)\sqrt{\det(\alpha(e,e')^Tg(e)\alpha(e,e'))}\cdot\tilde{\varepsilon}_{k'_1,\dots,k'_N} = \\$$

$$= \operatorname{sgn}(e') \sqrt{\det(g(e'))} \cdot \tilde{\varepsilon}_{k'_1,\dots,k'_N} = \varepsilon_{k'_1,\dots,k'_N}(e').$$

Итак, $\varepsilon \in (TH)_N^0$.

Очевидно: ε — антисимметричный тензор, $\varepsilon_{1,\dots,N}(e)=\mathrm{sgn}(e)\sqrt{\det(g(e))}$ при: e — базис пространства H.

Замечание (смешанное произведение). Пусть: H — линейное евклидово пространство над полем \mathbb{R} , $N \in \mathbb{Z}$, $N \geqslant 3$, $\dim(H) = N$, H — ориентированное пространство.

Пусть $x_1, \ldots, x_N \in H$. Обозначим:

$$(x_1,\ldots,x_N)=\varepsilon_{k_1,\ldots,k_N}(e)[x_1]^{k_1}(e)\cdots[x_N]^{k_N}(e), \quad e$$
 — базис пространства H .

Пусть: e — базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \dots, x_N \in H, \tilde{x}_N = [x_N](e)$. Тогда:

$$(x_1, \dots, x_N) = \varepsilon_{k_1, \dots, k_N}(e) \tilde{x}_1^{k_1} \cdots \tilde{x}_N^{k_N} = \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \tilde{\varepsilon}_{k_1, \dots, k_N} \tilde{x}_1^{k_1} \cdots \tilde{x}_N^{k_N} = \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \begin{vmatrix} \tilde{x}_1^1 & \cdot & \tilde{x}_N^1 \\ \vdots & \vdots & \vdots \\ \tilde{x}_1^N & \cdot & \tilde{x}_N^N \end{vmatrix}.$$

Пусть: e — ортонормированный базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \ldots, x_N \in H, \tilde{x}_N = [x_N](e)$. Тогда:

$$(x_1, \ldots, x_N) = \operatorname{sgn}(e) \begin{vmatrix} \tilde{x}_1^1 & \cdot & \tilde{x}_N^1 \\ \vdots & \vdots & \vdots \\ \tilde{x}_1^N & \cdot & \tilde{x}_N^N \end{vmatrix}.$$

3амечание (векторное произведение). Пусть: H — линейное евклидово пространство над полем $\mathbb{R}, N \in \mathbb{Z}, N \geqslant 3$, $\dim(H) = N, H$ — ориентированное пространство.

Пусть $x_1, \ldots, x_{N-1} \in H$. Обозначим:

$$[x_1,\ldots,x_{N-1}]=arepsilon_{k_1,\ldots,k_{N-1}}{}^j(e)[x_1]^{k_1}(e)\cdots[x_{N-1}]^{k_{N-1}}(e)e_j,\quad e$$
 — базис пространства H .

Пусть: e — базис пространства $H,\,x_1\in H,\,\tilde{x}_1=[x_1](e),\,\dots\,,\,x_{N-1}\in H,\,\tilde{x}_{N-1}=[x_{N-1}](e).$ Тогда:

$$[x_{1}, \dots, x_{N-1}] = \varepsilon_{k_{1}, \dots, k_{N-1}} \overset{j}{.}(e) \tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}} e_{j} =$$

$$= \varepsilon_{k_{1}, \dots, k_{N-1}, k_{N}}(e) g^{k_{N}, j}(e) \tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}} e_{j} =$$

$$= \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \tilde{\varepsilon}_{k_{1}, \dots, k_{N-1}, k_{N}} g^{k_{N}, j}(e) \tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}} e_{j} =$$

$$= \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \tilde{\varepsilon}_{k_{1}, \dots, k_{N-1}, k_{N}} \tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}} \left(g^{k_{N}, j}(e) e_{j} \right) =$$

$$= \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \begin{vmatrix} \tilde{x}_{1}^{1} & \tilde{x}_{N-1}^{1} & g^{1, j}(e) e_{j} \\ \vdots & \vdots & \vdots \\ \tilde{x}_{1}^{N} & \tilde{x}_{N-1}^{N} & g^{N, j}(e) e_{j} \end{vmatrix} =$$

$$= (-1)^{N-1} \operatorname{sgn}(e) \sqrt{\det(g(e))} \cdot \begin{vmatrix} g^{1, j}(e) e_{j} & \tilde{x}_{1}^{1} & \tilde{x}_{N-1}^{1} \\ \vdots & \vdots & \vdots \\ g^{N, j}(e) e_{j} & \tilde{x}_{1}^{N} & \tilde{x}_{N-1}^{N} \end{vmatrix}.$$

Пусть: e — ортонормированный базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \ldots, x_{N-1} \in H, \tilde{x}_{N-1} = [x_{N-1}](e)$. Тогда:

$$[x_1, \dots, x_{N-1}] = (-1)^{N-1} \operatorname{sgn}(e) \begin{vmatrix} e_1 & \tilde{x}_1^1 & \cdots & \tilde{x}_{N-1}^1 \\ \vdots & \vdots & \vdots & \vdots \\ e_N & \tilde{x}_1^N & \cdots & \tilde{x}_{N-1}^N \end{vmatrix}.$$

17.2. Линейные псевдоевклидовы пространства

17.2.1. Основные определения

Определение (линейное псевдоевклидово пространство). Пусть: $\mathbb{K} \in \{\mathbb{R}, \mathbb{Q}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$.

Пусть: F — эрмитова полуторалинейная форма в пространстве L, для любого базиса e пространства L справедливо утверждение: $\det([F](e)) \neq 0$.

Будем говорить, что: (L, F) — линейное псевдоевклидово пространство над полем \mathbb{K} ; F — псевдоскалярное произведение пространства (L, F). Далее обычно будем писать (x, y)» вместо (x, y)».

Замечание (псевдоортогональность). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

- 1. Пусть $x \in H$. Будем говорить, что x изотропный вектор, если (x,x) = 0. Будем говорить, что x неизотропный вектор, если $(x,x) \neq 0$.
- 2. Пусть $Q \subseteq H$. Будем говорить, что Q изотропное множество, если $\forall x (x \in Q \land x \neq \theta \implies (x,x)=0)$. Будем говорить, что Q неизотропное множество, если $\forall x (x \in Q \land x \neq \theta \implies (x,x) \neq 0)$.
 - 3. Пусть $x, y \in H$. Будем писать $x \perp y$, если (x, y) = 0.

Пусть: $x, y \in H$; $x \perp y$. Тогда $y \perp x$.

Пусть: $x, y_1, y_2 \in H$; $x \perp y_1, x \perp y_2$. Тогда $x \perp y_1 + y_2$.

Пусть: $\lambda \in \mathbb{K}$, $x, y \in H$; $x \perp y$. Тогда $x \perp \lambda y$.

4. Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in H$. Будем говорить, что x_1, \ldots, x_r — псевдоортогональная последовательность векторов, если: $x_k \perp x_m$ при: $k, m = \overline{1, r}, k \neq m$.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in H$. Будем говорить, что x_1, \ldots, x_r — нормированная последовательность векторов, если: $(x_k, x_k) = \pm 1$ при $k = \overline{1, r}$.

Пусть: $r \in \mathbb{N}, x_1, \dots, x_r \in H$. Будем говорить, что x_1, \dots, x_r — псевдоортонормированная последовательность векторов, если: $x_k \perp x_m$ при: $k, m = \overline{1,r}, k \neq m$; $(x_k, x_k) = \pm 1$ при $k = \overline{1,r}$.

Пусть: $r \in \mathbb{N}, x_1, \ldots, x_r \in H, x_1, \ldots, x_r$ — псевдоортогональные векторы, x_1, \ldots, x_r — неизотропные векторы. Докажем, что x_1, \ldots, x_r — линейно независимые векторы.

Пусть:
$$C^1, \ldots, C^r \in \mathbb{K}, \sum_{m=\overline{1,r}} C^m x_m = \theta$$
. Пусть $k=\overline{1,r}$. Тогда:

$$\left(x_k, \sum_{m=\overline{1,r}} C^m x_m\right) = (x_k, \theta),$$

$$\sum_{m=\overline{1,r}} C^m (x_k, x_m) = 0,$$

$$C^k (x_k, x_k) = 0.$$

Так как x_k — неизотропный вектор, то $(x_k, x_k) \neq 0$. Тогда $C^k = 0$. Итак, x_1, \ldots, x_r — линейно независимые векторы.

- 5. Пусть: $x \in H$, $Q \subseteq H$. Будем писать $x \perp Q$, если $\forall u \in Q(x \perp u)$.
- 6. Пусть $Q_1, Q_2 \subseteq H$. Будем писать $Q_1 \perp Q_2$, если $\forall x_1 \in Q_1 \forall x_2 \in Q_2(x_1 \perp x_2)$. Пусть: $Q_1, Q_2 \subseteq H$; $Q_1 \perp Q_2$. Тогда $Q_2 \perp Q_1$.
- 7. Пусть: $r \in \mathbb{N}, Q_1, \ldots, Q_r \subseteq H$. Будем говорить, что Q_1, \ldots, Q_r псевдоортогональная последовательность множеств, если: $Q_k \perp Q_m$ при: $k, m = \overline{1,r}, k \neq m$.

Пусть: $r \in \mathbb{N}, Q_1, \ldots, Q_r$ — подпространства пространства H, Q_1, \ldots, Q_r — псевдоортогональные подпространства, Q_1, \ldots, Q_r — неизотропные подпространства. Докажем, что Q_1, \ldots, Q_r — линейно независимые подпространства.

Пусть: $x_1 \in Q_1, \dots, x_r \in Q_r$, $\sum_{m=\overline{1,r}} x_m = \theta$. Пусть $k=\overline{1,r}$. Тогда:

$$\left(x_k, \sum_{m=\overline{1,r}} x_m\right) = (x_k, \theta),$$

$$\sum_{m=\overline{1,r}} (x_k, x_m) = 0,$$

$$(x_k, x_k) = 0,$$

$$x_k = \theta.$$

Итак, Q_1, \ldots, Q_r — линейно независимые подпространства.

17.2.2. Псевдоортогональное дополнение

Определение (псевдоортогональное дополнение). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

Пусть $Q \subseteq H$. Обозначим, $Q^{\perp} = \{x \colon x \in H \land x \perp Q\}$. Тогда $Q^{\perp} \subseteq H$. Будем говорить, что Q^{\perp} — псевдоортогональное дополнение к множеству Q.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

- 1. Пусть: $Q_2 \subseteq H$, $Q_1 \subseteq Q_2$. Тогда $Q_2^{\perp} \subseteq Q_1^{\perp}$.
- 2. Пусть: $Q_1, Q_2 \subseteq H, Q_1 \perp Q_2$. Тогда $Q_1 \subseteq Q_2^{\perp}$.
- 3. Пусть: $Q_2 \subseteq H$, $Q_1 \subseteq Q_2^{\perp}$. Тогда $Q_1 \perp Q_2$.
- 4. Пусть $Q \subseteq H$. Тогда $Q \subseteq (Q^{\perp})^{\perp}$.

Доказательство.

- 1. Пусть $x \in Q_2^{\perp}$. Тогда: $x \in H$, $x \perp Q_2$.
- Пусть $u \in Q_1$. Так как $Q_1 \subseteq Q_2$, то $u \in Q_2$. Так как $x \perp Q_2$, то $x \perp u$. Тогда $x \perp Q_1$. Следовательно, $x \in Q_1^{\perp}$. Тогда $Q_2^{\perp} \subseteq Q_1^{\perp}$.
- 2. Пусть $x \in Q_1$. Так как: $Q_1 \subseteq H$, $Q_1 \perp Q_2$, то: $x \in H$, $x \perp Q_2$. Тогда $x \in Q_2^{\perp}$. Следовательно, $Q_1 \subseteq Q_2^{\perp}$.
- 3. Пусть: $x_1 \in Q_1, \ x_2 \in Q_2$. Так как: $x_1 \in Q_1, \ Q_1 \subseteq Q_2^{\perp}$, то $x_1 \in Q_2^{\perp}$. Тогда $x_1 \perp Q_2$. Так как $x_2 \in Q_2$, то $x_1 \perp x_2$. Тогда $Q_1 \perp Q_2$.
- 4. Очевидно: $Q \subseteq H$, $Q^{\perp} \subseteq Q^{\perp}$. Тогда: $Q \subseteq H$, $Q^{\perp} \perp Q$. Следовательно: $Q \subseteq H$, $Q \perp Q^{\perp}$. Тогда $Q \subseteq (Q^{\perp})^{\perp}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

1. Пусть $Q \subseteq H$. Тогда Q^{\perp} — подпространство пространства H.

- 2. Пусть: $Q_1,\ Q_2\subseteq H,\ Q_1\perp Q_2,\ Q_1+Q_2=H,\ Q_2$ неизотропное множество. Тогда $Q_1=Q_2^\perp$.
 - 3. Πycm_b : $Q\subseteq H,\ Q+Q^\perp=H,\ Q^\perp$ неизотропное множество. Тогда $Q=(Q^\perp)^\perp$.

Доказательство.

1. Очевидно: $Q^{\perp} \subseteq H$, $\theta \in Q^{\perp}$.

Пусть: $x_1 \in Q^{\perp}$, $x_2 \in Q^{\perp}$. Тогда: $x_1 \in H$, $x_1 \perp Q$; $x_2 \in H$, $x_2 \perp Q$. Пусть $u \in Q$. Тогда: $x_1 \in H$, $x_1 \perp u$; $x_2 \in H$, $x_2 \perp u$. Следовательно: $x_1 + x_2 \in H$, $x_1 + x_2 \perp u$. Тогда: $x_1 + x_2 \in H$, $x_1 + x_2 \perp Q$. Следовательно, $x_1 + x_2 \in Q^{\perp}$.

Пусть: $\lambda \in \mathbb{K}$, $x \in Q^{\perp}$. Тогда: $\lambda \in \mathbb{K}$, $x \in H$, $x \perp Q$. Пусть $u \in Q$. Тогда: $\lambda \in \mathbb{K}$, $x \in H$, $x \perp u$. Следовательно: $\lambda x \in H$, $\lambda x \perp u$. Тогда: $\lambda x \in H$, $\lambda x \perp Q$. Следовательно, $\lambda x \in Q^{\perp}$. Итак, Q^{\perp} — подпространство пространства H.

2. Tak kak: $Q_1, Q_2 \subseteq H, Q_1 \perp Q_2$, to $Q_1 \subseteq Q_2^{\perp}$.

Пусть $x \in Q_2^{\perp}$. Тогда: $x \in H$, $x \perp Q_2$. Так как: $x \in H$, $H = Q_1 + Q_2$, то существуют векторы x_1, x_2 , удовлетворяющие условиям: $x_1 \in Q_1, x_2 \in Q_2, x = x_1 + x_2$. Так как: $x \perp Q_2$, $x_2 \in Q_2$, то $x \perp x_2$. Так как: $x_1 \in Q_1, x_2 \in Q_2, Q_1 \perp Q_2$, то $x_1 \perp x_2$. Тогда:

$$(x, x_2) = 0,$$

$$(x_1 + x_2, x_2) = 0,$$

$$(x_1, x_2) + (x_2, x_2) = 0,$$

$$(x_2, x_2) = 0,$$

$$x_2 = \theta.$$

Следовательно: $x = x_1 + x_2 = x_1 \in Q_1$. Тогда $Q_2^{\perp} \subseteq Q_1$. Следовательно, $Q_1 = Q_2^{\perp}$.

3. Очевидно: $Q \subseteq H, \ Q^{\perp} \subseteq Q^{\perp}, \ Q + Q^{\perp} = H, \ Q^{\perp}$ — неизотропное множество. Тогда: $Q \subseteq H, \ Q^{\perp} \perp Q, \ Q + Q^{\perp} = H, \ Q^{\perp}$ — неизотропное множество. Следовательно: $Q \subseteq H, \ Q \perp Q^{\perp}, \ Q + Q^{\perp} = H, \ Q^{\perp}$ — неизотропное множество. Тогда $Q = (Q^{\perp})^{\perp}$.

17.2.3. Метрический тензор

Замечание (ковариантный метрический тензор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; (L, F) — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim((L, F)) = N$. Очевидно: F — эрмитова полуторалинейная форма в пространстве (L, F), для любого базиса e пространства (L, F) справедливо утверждение: $\det([F](e)) \neq 0$.

- 1. Пусть e базис пространства (L,F). Обозначим: $g_{k,m}(e)=(e_k,e_m)$ при $k,m=\overline{1,N}$. Тогда: $g_{k,m}(e)=F(e_k,e_m)=[F]_{k,m}(e)$ при $k,m=\overline{1,N}$. Следовательно, g(e)=[F](e). Тогда: $g(e)\in\mathbb{K}^{N\times N},\ g(e)$ эрмитова матрица, $\det(g(e))\neq 0$.
- 2. Пусть e базис пространства (L,F). Пусть e псевдоортогональный базис. Тогда g(e) диагональная матрица. Так как $\det(g(e)) \neq 0$, то $g_{1,1}(e), \ldots, g_{N,N}(e) \neq 0$. Тогда $(e_1,e_1),\ldots,(e_N,e_N) \neq 0$. Следовательно, e_1,\ldots,e_N неизотропные векторы.

Пусть g(e) — диагональная матрица. Тогда e — псевдоортогональный базис.

Пусть e — псевдоортонормированный базис. Тогда: g(e) — диагональная матрица, $g_{k,k}(e)=\pm 1$ при $k=\overline{1,N}.$

Пусть: g(e) — диагональная матрица, $g_{k,k}(e)=\pm 1$ при $k=\overline{1,N}$. Тогда e — псевдоортонормированный базис.

3. Так как F — эрмитова полуторалинейная форма в пространстве (L, F), то, согласно теореме Лагранжа, существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — базис пространства (L, F), g(e) — диагональная матрица. Тогда e — псевдоортогональный базис

пространства (L, F). Обозначим: $e'_k = \frac{1}{\sqrt{|(e_k, e_k)|}} e_k$ при $k = \overline{1, N}$. Тогда e' — псевдоортонормированный базис пространства (L, F).

4. Пусть e — базис пространства (L, F). Пусть $x, y \in L$. Тогда:

$$(x,y) = g_{k,m}(e)\overline{[x]^k(e)}[y]^m(e).$$

Пусть e — псевдоортогональный базис. Пусть $x, y \in L$. Тогда:

$$(x,y) = \sum_{k,m = \overline{1,N}} g_{k,m}(e) \overline{[x]^k(e)} [y]^m(e) = \sum_{k = \overline{1,N}} g_{k,k}(e) \overline{[x]^k(e)} [y]^k(e) = \sum_{k = \overline{1,N}} (e_k, e_k) \overline{[x]^k(e)} [y]^k(e).$$

5. Пусть e, e' — базисы пространства (L,F). Так как F — полуторалинейная форма в пространстве (L,F), то: $g_{k',m'}(e')=g_{k,m}(e)\overline{\alpha_{k'}^k(e,e')}\alpha_{m'}^m(e,e')$ при $k', m'=\overline{1,N};$ $g(e')=\overline{\alpha(e,e')^T}g(e)\alpha(e,e')$. Будем говорить, что g — ковариантный метрический тензор пространства (L,F).

Замечание (контравариантный метрический тензор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; (L, F) — линейное псевдоевклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim((L, F)) = N$. Очевидно: F — эрмитова полуторалинейная форма в пространстве (L, F), для любого базиса e пространства (L, F) справедливо утверждение: $\det([F](e)) \neq 0$.

- 1. Пусть e базис пространства (L,F). Обозначим: $g^{k,m}(e) = \left(g(e)^{-1}\right)^{k,m}$ при $k, m = \overline{1,N}$. Так как: $g(e) \in \mathbb{K}^{N \times N}, \ g(e)$ эрмитова матрица, $\det \left(g(e)\right) \neq 0$, то: $g(e)^{-1} \in \mathbb{K}^{N \times N}, \ g(e)^{-1}$ эрмитова матрица, $\det \left(g(e)^{-1}\right) \neq 0$.
- 2. Пусть e базис пространства (L,F). Пусть e псевдоортогональный базис. Тогда: $g(e)^{-1}$ диагональная матрица, $g^{k,k}(e) = \frac{1}{g_{k,k}(e)}$ при $k = \overline{1,N}$.

Пусть $g(e)^{-1}$ — диагональная матрица. Тогда e — псевдоортогональный базис.

Пусть e — псевдоортонормированный базис. Тогда: g(e) — диагональная матрица, $g_{k,k}(e)=\pm 1$ при $k=\overline{1,N}$.

Пусть: g(e) — диагональная матрица, $g_{k,k}(e)=\pm 1$ при $k=\overline{1,N}$. Тогда e — псевдоортонормированный базис.

3. Пусть e — базис пространства (L,F). Пусть: $x\in L,\,k,\,m=\overline{1,N}$. Тогда:

$$(e_{m}, x) = (e_{m}, [x]^{n}(e)e_{n}) = [x]^{n}(e)(e_{m}, e_{n}) = g_{m,n}(e)[x]^{n}(e);$$

$$g_{m,n}(e)[x]^{n}(e) = (e_{m}, x),$$

$$g^{k,m}(e)g_{m,n}(e)[x]^{n}(e) = g^{k,m}(e)(e_{m}, x),$$

$$\delta_{n}^{k}[x]^{n}(e) = g^{k,m}(e)(e_{m}, x),$$

$$[x]^{k}(e) = g^{k,m}(e)(e_{m}, x);$$

$$x = [x]^{k}(e)e_{k} = g^{k,m}(e)(e_{m}, x)e_{k}.$$

Пусть $x \in L$. Тогда:

$$[x]^k(e) = g^{k,m}(e)(e_m, x), \quad k = \overline{1, N};$$

 $x = g^{k,m}(e)(e_m, x)e_k.$

Пусть $x \in L$. Тогда:

$$[x]^k(e) = g^{k,m}(e)(e_m, x), \quad k = \overline{1, N};$$

$$x = g^{k,m}(e)(e_m, x)e_k.$$

Пусть e — псевдоортогональный базис. Пусть $x \in L$. Тогда:

$$[x]^{k}(e) = \sum_{m=\overline{1,N}} g^{k,m}(e)(e_{m}, x) = \frac{(e_{k}, x)}{g_{k,k}(e)} = \frac{(e_{k}, x)}{(e_{k}, e_{k})}, \quad k = \overline{1, N};$$

$$x = \sum_{k,m=\overline{1,N}} g^{k,m}(e)(e_m, x)e_k = \sum_{k=\overline{1,N}} \frac{(e_k, x)}{g_{k,k}(e)}e_k = \sum_{k=\overline{1,N}} \frac{(e_k, x)}{(e_k, e_k)}e_k.$$

4. Пусть e, e' — базисы пространства (L, F). Тогда:

$$g(e')^{-1} = \left(\overline{\alpha(e,e')^T}g(e)\alpha(e,e')\right)^{-1} = \alpha(e,e')^{-1}g(e)^{-1}\left(\overline{\alpha(e,e')^T}\right)^{-1} = \alpha(e,e')^{-1}g(e)^{-1}\overline{(\alpha(e,e')^{-1})^T} = \alpha(e',e)g(e)^{-1}\overline{\alpha(e',e)^T}.$$

Следовательно: $g^{k',m'}(e')=g^{k,m}(e)\alpha_k^{k'}(e',e)\overline{\alpha_m^{m'}(e',e)}$ при $k',\,m'=\overline{1,N}$. Будем говорить, что $\left\{g(e)^{-1}\right\}_e$ — контравариантный метрический тензор пространства (L,F).

17.2.4. Смешанное и векторное произведения

Замечание (вспомогательный числовой набор $\tilde{\varepsilon}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}, N \in \mathbb{N}$.

Обозначим: $\tilde{\varepsilon}_{k_1,\dots,k_N}=\det(\tilde{I}_{k_1},\dots,\tilde{I}_{k_N})$ при $k_1,\dots,k_N=\overline{1,N}$. Тогда: $\tilde{\varepsilon}\in\mathbb{K}^{(N,N)},\ \tilde{\varepsilon}$ — антисимметричный числовой набор, $\tilde{\varepsilon}_{1,\dots,N}=1$.

Пусть $A \in \mathbb{K}^{N \times N}$. Тогда:

$$\det(A) = \det(A_1, \dots, A_N) = \det(A_1^{k_1} \tilde{I}_{k_1}, \dots, A_N^{k_N} \tilde{I}_{k_N}) = A_1^{k_1} \cdots A_N^{k_N} \det(\tilde{I}_{k_1}, \dots, \tilde{I}_{k_N}) =$$

$$= \tilde{\varepsilon}_{k_1, \dots, k_N} A_1^{k_1} \cdots A_N^{k_N}.$$

Пусть: $A \in \mathbb{K}^{N \times N}$, $k_1, \ldots, k_N = \overline{1, N}$. Докажем, что $\det(A_{k_1}, \ldots, A_{k_N}) = \tilde{\varepsilon}_{k_1, \ldots, k_N} \det(A)$. Пусть k_1, \ldots, k_N — различные числа. Обозначим через σ функцию, удовлетворяющую условиям: $D(\sigma) = \{1, \ldots, N\}$, $\sigma(1) = k_1, \ldots, \sigma(N) = k_N$. Тогда $\sigma \in S_N$. Следовательно:

$$\det(A_{k_1}, \dots, A_{k_N}) = \det(A_{\sigma(1)}, \dots, A_{\sigma(N)}) = \operatorname{sgn}(\sigma) \det(A_1, \dots, A_N) = \operatorname{sgn}(\sigma) \det(A);$$
$$\tilde{\varepsilon}_{k_1, \dots, k_N} \det(A) = \tilde{\varepsilon}_{\sigma(1), \dots, \sigma(N)} \det(A) = \operatorname{sgn}(\sigma) \tilde{\varepsilon}_{1, \dots, N} \det(A) = \operatorname{sgn}(\sigma) \det(A).$$

Тогда $\det(A_{k_1},\ldots,A_{k_N}) = \tilde{\varepsilon}_{k_1,\ldots,k_N} \det(A)$.

Пусть k_1,\dots,k_N — не являются различными числами. Тогда: $\det(A_{k_1},\dots,A_{k_N})=0,$ $\tilde{\varepsilon}_{k_1,\dots,k_N}\det(A)=0.$ Следовательно, $\det(A_{k_1},\dots,A_{k_N})=\tilde{\varepsilon}_{k_1,\dots,k_N}\det(A).$

Определение (дискриминантный тензор (тензор Леви-Чивита)). Пусть: H — линейное псевдоевклидово пространство над полем $\mathbb{R},\ N\in\mathbb{N},\ \dim(H)=N,\ H$ — ориентированное пространство.

Обозначим: $\varepsilon_{k_1,\dots,k_N}(e) = \operatorname{sgn}(e) \sqrt{\left|\operatorname{det}(g(e))\right|} \cdot \tilde{\varepsilon}_{k_1,\dots,k_N}$ при: e — базис пространства H, $k_1,\dots,k_N=\overline{1,N}$.

Утверждение. Пусть: H — линейное псевдоевклидово пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(H) = N$, H — ориентированное пространство. Тогда: $\varepsilon \in (TH)_N^0$, ε — антисимметричный тензор, $\varepsilon_{1,\dots,N}(e) = \operatorname{sgn}(e) \sqrt{\left|\det(g(e))\right|}$ при: e — базис пространства H.

 \mathcal{A} оказательство. Очевидно, $\varepsilon \in (GH)_N$. Пусть: e, e' — базисы пространства $H, k'_1, \ldots, k'_N = \overline{1, N}$. Тогда:

$$\begin{split} \varepsilon_{k_1,\dots,k_N}(e)\alpha_{k_1'}^{k_1}(e,e') & \cdots \alpha_{k_N'}^{k_N}(e,e') = \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}\left(g(e)\right)\right|} \cdot \tilde{\varepsilon}_{k_1,\dots,k_N}\alpha_{k_1'}^{k_1}(e,e') \cdots \alpha_{k_N'}^{k_N}(e,e') = \\ & = \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}\left(g(e)\right)\right|} \cdot \operatorname{det}\left(\alpha_{k_1'}(e,e'),\dots,\alpha_{k_N'}(e,e')\right) = \\ & = \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}\left(g(e)\right)\right|} \cdot \tilde{\varepsilon}_{k_1',\dots,k_N'} \operatorname{det}\left(\alpha(e,e')\right) = \\ & = \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}\left(g(e)\right)\right|} \cdot \tilde{\varepsilon}_{k_1',\dots,k_N'} \left|\operatorname{det}\left(\alpha(e,e')\right)\right| \cdot \operatorname{sgn}\left(\operatorname{det}\left(\alpha(e,e')\right)\right) = \\ & = \operatorname{sgn}(e)\operatorname{sgn}\left(\operatorname{det}\left(\alpha(e,e')\right)\right)\sqrt{\left|\operatorname{det}\left(\alpha(e,e')^Tg(e)\alpha(e,e')\right)\right|} \cdot \tilde{\varepsilon}_{k_1',\dots,k_N'} = \\ & = \operatorname{sgn}(e')\sqrt{\left|\operatorname{det}\left(g(e')\right)\right|} \cdot \tilde{\varepsilon}_{k_1',\dots,k_N'} = \varepsilon_{k_1',\dots,k_N'}(e'). \end{split}$$

Итак, $\varepsilon \in (TH)_N^0$.

Очевидно: ε — антисимметричный тензор, $\varepsilon_{1,\dots,N}(e)=\mathrm{sgn}(e)\sqrt{\left|\det\left(g(e)\right)\right|}$ при: e — базис пространства H.

Замечание (смешанное произведение). Пусть: H — линейное псевдоевклидово пространство над полем $\mathbb{R}, N \in \mathbb{Z}, N \geqslant 3$, $\dim(H) = N, H$ — ориентированное пространство.

Пусть $x_1, \ldots, x_N \in H$. Обозначим:

$$(x_1,\ldots,x_N)=arepsilon_{k_1,\ldots,k_N}(e)[x_1]^{k_1}(e)\cdots[x_N]^{k_N}(e), \quad e$$
 — базис пространства $H.$

Пусть: e — базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \dots, x_N \in H, \tilde{x}_N = [x_N](e)$. Тогда:

$$(x_1, \dots, x_N) = \varepsilon_{k_1, \dots, k_N}(e) \tilde{x}_1^{k_1} \cdots \tilde{x}_N^{k_N} = \operatorname{sgn}(e) \sqrt{\left| \det \left(g(e) \right) \right|} \cdot \tilde{\varepsilon}_{k_1, \dots, k_N} \tilde{x}_1^{k_1} \cdots \tilde{x}_N^{k_N} = \operatorname{sgn}(e) \sqrt{\left| \det \left(g(e) \right) \right|} \cdot \begin{vmatrix} \tilde{x}_1^1 & \cdot & \tilde{x}_N^1 \\ \vdots & \vdots & \vdots \\ \tilde{x}_1^N & \cdot & \tilde{x}_N^N \end{vmatrix}.$$

Пусть: e — псевдоортонормированный базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \ldots, x_N \in H, \tilde{x}_N = [x_N](e)$. Тогда:

$$(x_1, \dots, x_N) = \operatorname{sgn}(e) \begin{vmatrix} \tilde{x}_1^1 & \cdot & \tilde{x}_N^1 \\ \vdots & \vdots & \vdots \\ \tilde{x}_1^N & \cdot & \tilde{x}_N^N \end{vmatrix}.$$

Замечание (векторное произведение). Пусть: H — линейное псевдоевклидово пространство над полем \mathbb{R} , $N \in \mathbb{Z}$, $N \geqslant 3$, $\dim(H) = N$, H — ориентированное пространство.

Пусть $x_1, \ldots, x_{N-1} \in H$. Обозначим:

$$[x_1,\dots,x_{N-1}]=\varepsilon_{k_1,\dots,k_{N-1}}{}^{j}(e)[x_1]^{k_1}(e)\cdots[x_{N-1}]^{k_{N-1}}(e)e_j,\quad e-\text{ базис пространства }H.$$

Пусть: e — базис пространства $H, x_1 \in H, \tilde{x}_1 = [x_1](e), \dots, x_{N-1} \in H, \tilde{x}_{N-1} = [x_{N-1}](e)$. Тогда:

$$[x_{1}, \dots, x_{N-1}] = \varepsilon_{k_{1}, \dots, k_{N-1}}!(e)\tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}}e_{j} =$$

$$= \varepsilon_{k_{1}, \dots, k_{N-1}, k_{N}}(e)g^{k_{N}, j}(e)\tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}}e_{j} =$$

$$= \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}(g(e))\right|} \cdot \tilde{\varepsilon}_{k_{1}, \dots, k_{N-1}, k_{N}}g^{k_{N}, j}(e)\tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}}e_{j} =$$

$$= \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}(g(e))\right|} \cdot \tilde{\varepsilon}_{k_{1}, \dots, k_{N-1}, k_{N}}\tilde{x}_{1}^{k_{1}} \cdots \tilde{x}_{N-1}^{k_{N-1}}\left(g^{k_{N}, j}(e)e_{j}\right) =$$

$$= \operatorname{sgn}(e)\sqrt{\left|\operatorname{det}(g(e))\right|} \cdot \begin{vmatrix} \tilde{x}_{1}^{1} & \tilde{x}_{N-1}^{1} & g^{1, j}(e)e_{j} \\ \vdots & \vdots & \vdots \\ \tilde{x}_{1}^{N} & \tilde{x}_{N-1}^{N} & g^{N, j}(e)e_{j} \end{vmatrix} =$$

$$= (-1)^{N-1}\operatorname{sgn}(e)\sqrt{\left|\operatorname{det}(g(e))\right|} \cdot \begin{vmatrix} g^{1, j}(e)e_{j} & \tilde{x}_{1}^{1} & \tilde{x}_{N-1}^{1} \\ \vdots & \vdots & \vdots \\ g^{N, j}(e)e_{j} & \tilde{x}_{1}^{N} & \tilde{x}_{N-1}^{N} \end{vmatrix}.$$

Лекция 18. Сопряжённый оператор

18.1. Построение линейной формы по вектору в евклидовом пространстве

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} . Пусть: $x_1, x_2 \in H$, $\forall u \in H((x_1, u) = (x_2, u))$. Тогда $x_1 = x_2$.

Доказательство. Очевидно: $(x_1-x_2,x_1-x_2)=(x_1,x_1-x_2)-(x_2,x_1-x_2)=0$. Тогда $x_1-x_2=\theta$. Следовательно, $x_1=x_2$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть: $x_1, x_2 \in H$, $\forall u \in H((u, x_1) = (u, x_2))$. Тогда: $x_1, x_2 \in H$, $\forall u \in H((x_1, u) = (x_2, u))$. Следовательно, $x_1 = x_2$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

1. Пусть $x \in H$. Обозначим: $F_x(u) = (x, u)$ при $u \in H$. Очевидно, F_x — линейная форма в пространстве H.

Пусть: $x_1, x_2 \in H$, $F_{x_1} = F_{x_2}$. Пусть $u \in H$. Тогда: $(x_1, u) = F_{x_1}(u) = F_{x_2}(u) = (x_2, u)$. Следовательно, $x_1 = x_2$.

Пусть $x_1, x_2 \in H$. Пусть $u \in H$. Тогда: $F_{x_1+x_2}(u) = (x_1 + x_2, u) = (x_1, u) + (x_2, u) = F_{x_1}(u) + F_{x_2}(u) = (F_{x_1} + F_{x_2})(u)$. Следовательно, $F_{x_1+x_2} = F_{x_1} + F_{x_2}$.

Пусть: $\lambda \in \mathbb{K}$, $x \in H$. Пусть $u \in H$. Тогда: $F_{\lambda x}(u) = (\lambda x, u) = \overline{\lambda}(x, u) = \overline{\lambda}F_x(u) = (\overline{\lambda}F_x)(u)$. Следовательно, $F_{\lambda x} = \overline{\lambda}F_x$.

2. Пусть $x \in H$. Обозначим: $F_x(u) = (u, x)$ при $u \in H$. Очевидно, F_x — полулинейная форма в пространстве H.

Пусть: $x_1, x_2 \in H$, $F_{x_1} = F_{x_2}$. Пусть $u \in H$. Тогда: $(u, x_1) = F_{x_1}(u) = F_{x_2}(u) = (u, x_2)$. Следовательно, $x_1 = x_2$.

Пусть $x_1, x_2 \in H$. Пусть $u \in H$. Тогда: $F_{x_1+x_2}(u) = (u, x_1 + x_2) = (u, x_1) + (u, x_2) = F_{x_1}(u) + F_{x_2}(u) = (F_{x_1} + F_{x_2})(u)$. Следовательно, $F_{x_1+x_2} = F_{x_1} + F_{x_2}$.

Пусть: $\lambda \in \mathbb{K}$, $x \in H$. Пусть $u \in H$. Тогда: $F_{\lambda x}(u) = (u, \lambda x) = \lambda(u, x) = \lambda F_x(u) = (\lambda F_x)(u)$. Следовательно, $F_{\lambda x} = \lambda F_x$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; e — базис пространства H, $x \in H$.

- 1. Пусть: F(u) = (x, u) при $u \in H$. Тогда: F линейная форма в пространстве H, $[F]_k(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}$ при $k = \overline{1,N}$.
- 2. Пусть: F линейная форма в пространстве H, $[F]_k(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}$ при $k = \overline{1,N}$. Тогда: F(u) = (x,u) при $u \in H$.
- 3. Пусть: F(u) = (u, x) при $u \in H$. Тогда: F полулинейная форма в пространстве H, $[F]_{\overline{k}}(e) = g_{\overline{k},m}(e)[x]^m(e)$ при $k = \overline{1, N}$.
- 4. Пусть: F полулинейная форма в пространстве H, $[F]_{\overline{k}}(e) = g_{\overline{k},m}(e)[x]^m(e)$ при $k = \overline{1, N}$. Тогда: F(u) = (u, x) при $u \in H$.

Доказательство.

1. Очевидно, F — линейная форма в пространстве H. Пусть $k = \overline{1, N}$. Тогда:

$$[F]_k(e) = F(e_k) = (x, e_k) = ([x]^m(e)e_m, e_k) = \overline{[x]^m(e)}(e_m, e_k) = \overline{[x]^m(e)}g_{\overline{m},k}(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}.$$

2. Пусть $u \in H$. Тогда:

$$F(u) = [F]_k(e)[u]^k(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}[u]^k(e) = g_{\overline{m},k}(e)[x]^m(e)[u]^k(e) = (x,u).$$

3. Очевидно, F — полулинейная форма в пространстве H. Пусть $k = \overline{1, N}$. Тогда:

$$[F]_{\overline{k}}(e) = F(e_k) = (e_k, x) = (e_k, [x]^m(e)e_m) = [x]^m(e)(e_k, e_m) = [x]^m(e)g_{\overline{k}, m}(e) = g_{\overline{k}, m}(e)[x]^m(e).$$

4. Пусть $u \in H$. Тогда:

$$F(u) = [F]_{\overline{k}}(e) \overline{[u]^k(e)} = g_{\overline{k},m}(e) [x]^m(e) \overline{[u]^k(e)} = g_{\overline{k},m}(e) \overline{[u]^k(e)} [x]^m(e) = (u,x). \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

- 1. Пусть: e базис пространства H, $x \in H$, F линейная форма в пространстве H. Пусть: $[F]_k(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}$ при $k = \overline{1,N}$. Тогда $[F](e) = \overline{\left(g(e)[x](e)\right)^T}$.
- Пусть $[F](e) = \overline{\left(g(e)[x](e)\right)^T}$. Тогда: $[F]_k(e) = \overline{g_{\overline{k},m}(e)[x]^m(e)}$ при $k = \overline{1,N}$. 2. Пусть: e — базис пространства $H, x \in H, F$ — полулинейная форма в пространстве H. Пусть: $[F]_{\overline{k}}(e) = g_{\overline{k},m}(e)[x]^m(e)$ при $k = \overline{1,N}$. Тогда $[F](e) = \left(g(e)[x](e)\right)^T$. Пусть $[F](e) = \left(g(e)[x](e)\right)^T$. Тогда: $[F]_{\overline{k}}(e) = g_{\overline{k},m}(e)[x]^m(e)$ при $k = \overline{1,N}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

- 1. Пусть F- линейная форма в пространстве H. Пусть: e- базис пространства H, $x \in H$, $[x]^m(e) = \overline{[F]_k(e)g^{k,\overline{m}}(e)}$ при $m=\overline{1,N}$. Тогда: $x \in H$, F(u)=(x,u) при $u \in H$.
- 2. Пусть F полулинейная форма в пространстве H. Пусть: e базис пространства H, $x \in H$, $[x]^m(e) = g^{m,\overline{k}}(e)[F]_{\overline{k}}(e)$ при $m = \overline{1,N}$. Тогда: $x \in H$, F(u) = (u,x) при $u \in H$.

Доказательство.

1. Очевидно, $x \in H$. Пусть $k = \overline{1, N}$. Тогда:

$$\overline{g_{\overline{k} \ m}(e)[x]^m(e)} = \overline{g_{\overline{k} \ m}(e)[F]_{k'}(e)g^{k',\overline{m}}(e)} = g_{\overline{m},k}(e)[F]_{k'}(e)g^{k',\overline{m}}(e) = [F]_{k'}(e)\delta_k^{k'} = [F]_k(e).$$

Следовательно: F(u) = (x, u) при $u \in H$.

2. Очевидно, $x \in H$. Пусть $k = \overline{1, N}$. Тогда:

$$g_{\overline{k},m}(e)[x]^m(e) = g_{\overline{k},m}(e)g^{m,\overline{k'}}(e)[F]_{\overline{k'}}(e) = \delta_k^{k'}[F]_{\overline{k'}}(e) = [F]_{\overline{k}}(e).$$

Следовательно: F(u) = (u, x) при $u \in H$.

3амечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

- 1. Пусть: e базис пространства $H, x \in H, F$ линейная форма в пространстве H. Пусть: $[x]^m(e) = \overline{[F]_k(e)g^{k,\overline{m}}(e)}$ при $m = \overline{1,N}$. Тогда $[x](e) = \left(\overline{[F](e)g(e)^{-1}}\right)^T$. Пусть $[x](e) = \overline{([F](e)g(e)^{-1})}^T$. Тогда: $[x]^m(e) = \overline{[F]_k(e)g^{k,\overline{m}}(e)}$ при $m = \overline{1,N}$.
- 2. Пусть: e базис пространства $H, x \in H, F$ полулинейная форма в пространстве H. Пусть: $[x]^m(e) = g^{m,\overline{k}}(e)[F]_{\overline{k}}(e)$ при $m = \overline{1,N}$. Тогда $[x](e) = g(e)^{-1}[F](e)^T$. Пусть $[x](e) = g(e)^{-1}[F](e)^T$. Тогда: $[x]^m(e) = g^{m,\overline{k}}(e)[F]_{\overline{k}}(e)$ при $m = \overline{1,N}$.

Замечание (дираковский формализм). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

1. Пусть $x \in H$. Обозначим: $\langle x | (u) = (x, u)$ при $u \in H$. Тогда $\langle x |$ — линейная форма в пространстве H. Далее обычно будем писать « $\langle x | u \rangle$ » вместо « $\langle x | (u) \rangle$ ».

Пусть: $x_1, x_2 \in H, \langle x_1 | = \langle x_2 |$. Тогда $x_1 = x_2$.

Пусть $x_1, x_2 \in H$. Тогда $\langle x_1 + x_2 | = \langle x_1 | + \langle x_2 |$.

Пусть: $\lambda \in \mathbb{K}$, $x \in H$. Тогда $\langle \lambda x | = \overline{\lambda} \langle x |$.

2. Пусть $x \in H$. Обозначим, $|x\rangle = x$. Тогда $|x\rangle \in H$.

Пусть: $x_1, x_2 \in H, |x_1\rangle = |x_2\rangle$. Тогда $x_1 = x_2$.

Пусть $x_1, x_2 \in H$. Тогда $|x_1 + x_2| = |x_1| + |x_2|$.

Пусть: $\lambda \in \mathbb{K}$, $x \in H$. Тогда $|\lambda x\rangle = \lambda |x\rangle$.

3. Пусть $x, y \in H$. Тогда: $\langle x | y \rangle = \langle x | y = (x, y)$.

18.2. Построение полуторалинейной формы по линейному оператору в евклидовом пространстве

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} .

Пусть:
$$A_1, A_2: H_1 \implies H_2, \forall x \in H_2 \forall y \in H_1 \Big((x, A_1(y)) = (x, A_2(y)) \Big)$$
. Тогда $A_1 = A_2$.

Доказательство. Пусть: $x \in H_2$, $y \in H_1$. Тогда $(x, A_1(y)) = (x, A_2(y))$. В силу произвольности выбора $x \in H_2$ получаем, что $A_1(y) = A_2(y)$. В силу произвольности выбора $y \in H_1$ получаем, что $A_1 = A_2$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1, H_2 — линейные евклидовы пространства над полем \mathbb{K} .

Пусть:
$$A_1, A_2: H_1 \implies H_2, \forall x \in H_1 \forall y \in H_2\Big(\big(A_1(x),y\big) = \big(A_2(x),y\big)\Big)$$
. Тогда: $A_1, A_2: H_1 \implies H_2, \forall y \in H_2 \forall x \in H_1\Big(\big(y,A_1(x)\big) = \big(y,A_2(x)\big)\Big)$. Следовательно, $A_1 = A_2$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

Пусть $A \in \text{Lin}(H,H)$. Обозначим: $F_A(x,y) = (x,Ay)$ при $x,y \in H$. Очевидно, F — полуторалинейная форма в пространстве H.

Пусть: $A_1, A_2 \in \text{Lin}(H, H), F_{A_1} = F_{A_2}$. Пусть $x, y \in H$. Тогда: $(x, A_1 y) = F_{A_1}(x, y) = F_{A_2}(x, y) = (x, A_2 y)$. Следовательно, $A_1 = A_2$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; e — базис пространства H, $A \in \text{Lin}(H, H)$.

- 1. Пусть: F(x,y) = (x,Ay) при $x, y \in H$. Тогда: F полуторалинейная форма в пространстве H, $[F]_{\overline{k},m}(e) = g_{\overline{k},n}(e)[A]_m^n(e)$ при $k, m = \overline{1,N}$.
- 2. Пусть: F полуторалинейная форма в пространстве H, $[F]_{\overline{k},m}(e) = g_{\overline{k},n}(e)[A]_m^n(e)$ при $k, m = \overline{1, N}$. Тогда: F(x,y) = (x,Ay) при $x, y \in H$.

Доказательство.

1. Очевидно, F — полуторалинейная форма в пространстве H. Пусть $k,\ m=\overline{1,N}.$ Тогда:

$$[F]_{\overline{k},m}(e) = F(e_k, e_m) = (e_k, Ae_m) = (e_k, [A]_m^n(e)e_n) = [A]_m^n(e)(e_k, e_n) = [A]_m^n(e)g_{\overline{k},n}(e) = g_{\overline{k},n}(e)[A]_m^n(e).$$

2. Пусть $x, y \in H$. Тогда:

$$F(x,y) = [F]_{\overline{k},m}(e)\overline{[x]^k(e)}[y]^m(e) = g_{\overline{k},n}(e)[A]_m^n(e)\overline{[x]^k(e)}[y]^m(e) =$$

$$= g_{\overline{k},n}(e)\overline{[x]^k(e)}[A]_m^n(e)[y]^m(e) = g_{\overline{k},n}(e)\overline{[x]^k(e)}[Ay]^n(e) = (x,Ay). \quad \Box$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; e — базис пространства H, $A \in \text{Lin}(H, H)$, F — полуторалинейная форма в пространстве H.

Пусть:
$$[F]_{\overline{k},m}(e) = g_{\overline{k},n}(e)[A]_m^n(e)$$
 при $k, m = \overline{1,N}$. Тогда $[F](e) = g(e)[A](e)$. Пусть $[F](e) = g(e)[A](e)$. Тогда: $[F]_{\overline{k},m}(e) = g_{\overline{k},n}(e)[A]_m^n(e)$ при $k, m = \overline{1,N}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$.

Пусть F — полуторалинейная форма в пространстве H. Пусть: e — базис пространства H, $A \in \text{Lin}(H,H)$, $[A]_m^n(e) = g^{n,\overline{k}}(e)[F]_{\overline{k},m}(e)$ при m, $n = \overline{1,N}$. Тогда: $A \in \text{Lin}(H,H)$, F(x,y) = (x,Ay) при $x,y \in H$.

Доказательство. Очевидно, $A \in \text{Lin}(H, H)$. Пусть $k, m = \overline{1, N}$. Тогда:

$$g_{\overline{k},n}(e)[A]_m^n(e) = g_{\overline{k},n}(e)g^{n,\overline{k'}}(e)[F]_{\overline{k'},m}(e) = \delta_k^{k'}[F]_{\overline{k'},m}(e) = [F]_{\overline{k},m}(e).$$

Следовательно: F(x,y) = (x,Ay) при $x, y \in H$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; e — базис пространства H, $A \in \text{Lin}(H, H)$, F — полуторалинейная форма в пространстве H.

Пусть:
$$[A]_m^n(e) = g^{n,\overline{k}}(e)[F]_{\overline{k},m}(e)$$
 при $m, n = \overline{1,N}$. Тогда $[A](e) = g(e)^{-1}[F](e)$. Пусть $[A](e) = g(e)^{-1}[F](e)$. Тогда: $[A]_m^n(e) = g^{n,\overline{k}}(e)[F]_{\overline{k},m}(e)$ при $m, n = \overline{1,N}$.

18.3. Сопряжённый оператор

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $A: H_1 \to H_2$.

Будем говорить, что B — формально сопряжённый оператор к оператору A, если: $B: H_2 \to H_1, (x, Ay) = (Bx, y)$ при: $x \in D(B), y \in D(A)$.

Onpedenenue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $A \colon H_1 \Longrightarrow H_2$.

Будем говорить, что B — сопряжённый оператор к оператору A, если: $B\colon H_2 \Longrightarrow H_1$, (x,Ay)=(Bx,y) при: $x\in H_2,\,y\in H_1$.

Определение (факультативный материал; правильное определение сопряжённого оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $A \colon H_1 \to H_2$.

Обозначим:

$$D^*(A) = \Big\{ x \colon x \in H_2 \land \exists u \in H_1 \forall y \in D(A) \big((u, y) = (x, Ay) \big) \Big\}.$$

Будем говорить, что B — сопряжённый оператор к оператору A, если: $B: H_2 \to H_1$, (x, Ay) = (Bx, y) при: $x \in D(B), y \in D(A); D(B) = D^*(A)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} .

- 1. Пусть: $A\colon H_1\implies H_2,\ B_1,\ B_2-$ сопряжённые операторы κ оператору A. Тогда $B_1=B_2.$
- 2. Пусть: $A_1: H_1 \Longrightarrow H_2$, B_1 сопряжённый оператор κ оператору A_1 , $A_2: H_1 \Longrightarrow H_2$, B_2 сопряжённый оператор κ оператору A_2 . Тогда B_1+B_2 сопряжённый оператор κ оператору A_1+A_2 .
- 3. Пусть: $\lambda \in \mathbb{K}$, $A \in H_1 \Longrightarrow H_2$, $B conряжённый оператор <math>\kappa$ оператору A. Тогда $\overline{\lambda}B conряжённый оператор <math>\kappa$ оператору λA .
- 4. Пусть: $A: H_1 \implies H_2$, B conряжённый оператор к оператору <math>A. Тогда: $B: H_2 \implies H_1$, (Ax, y) = (x, By) при: $x \in H_1$, $y \in H_2$.
- 5. Пусть: $A: H_1 \implies H_2, B conряжённый оператор к оператору <math>A$. Тогда A conряжённый оператор к оператору <math>B.

Доказательство.

1. Пусть: $x \in H_2, y \in H_1$. Тогда:

$$(B_1x, y) = (x, Ay) = (B_2x, y).$$

Следовательно, $B_1 = B_2$.

2. Очевидно, $B_1 + B_2 \colon H_2 \implies H_1$. Пусть: $x \in H_2, y \in H_1$. Тогда:

$$(x, (A_1 + A_2)y) = (x, A_1y + A_2y) = (x, A_1y) + (x, A_2y) = (B_1x, y) + (B_2x, y) =$$
$$= (B_1x + B_2x, y) = ((B_1 + B_2)x, y).$$

Итак, $B_1 + B_2$ — сопряжённый оператор к оператору $A_1 + A_2$.

3. Очевидно, $\lambda B : H_2 \implies H_1$. Пусть: $x \in H_2, y \in H_1$. Тогда:

$$(x,(\lambda A)y) = (x,\lambda A(y)) = \lambda(x,Ay) = \lambda(Bx,y) = (\overline{\lambda}B(x),y) = ((\overline{\lambda}B)x,y).$$

Итак, $\overline{\lambda}B$ — сопряжённый оператор к оператору λA .

- 4. Очевидно, $B: H_2 \implies H_1$. Пусть: $x \in H_1$, $y \in H_2$. Тогда (y, Ax) = (By, x). Следовательно, (Ax, y) = (x, By).
- 5. Очевидно: $A\colon H_1 \implies H_2, \ (x,By) = (Ax,y)$ при: $x\in H_1, \ y\in H_2$. Тогда A сопряжённый оператор к оператору B.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 , H_3 — линейные евклидовы пространства над полем \mathbb{K} .

 Π усть: $A_1: H_1 \implies H_2, B_1 -$ сопряжённый оператор κ оператору $A_1, A_2: H_2 \implies H_3, B_2 -$ сопряжённый оператор κ оператору A_2 . Тогда $B_1B_2 -$ сопряжённый оператор κ оператору A_2A_1 .

Доказательство. Очевидно, B_1B_2 : $H_3 \implies H_1$. Пусть: $x \in H_3, y \in H_1$. Тогда:

$$(x, (A_2A_1)y) = (x, A_2(A_1y)) = (B_2x, A_1y) = (B_1(B_2x), y) = ((B_1B_2)x, y).$$

Итак, B_1B_2 — сопряжённый оператор к оператору A_2A_1 .

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} .

Пусть: $A: H_1 \implies H_2$, $\exists B(B-\text{сопряжённый оператор к оператору } A)$. Обозначим через A^* оператор, удовлетворяющий условию: $A^*-\text{сопряжённый оператор к оператору } A$.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $\Theta_{2,1}$ — нулевой элемент пространства $\operatorname{Fun}(H_1, H_2)$, $\Theta_{1,2}$ — нулевой элемент пространства $\operatorname{Fun}(H_2, H_1)$.

Очевидно, $\Theta_{1,2}$ — сопряжённый оператор к оператору $\Theta_{2,1}$.

Пусть: $\dim(H_1) = 0$, $A \in \text{Lin}(H_1, H_2)$. Очевидно, $A = \Theta_{2,1}$. Тогда $\Theta_{1,2}$ — сопряжённый оператор к оператору A.

Пусть: $\dim(H_2) = 0$, $A \in \text{Lin}(H_1, H_2)$. Очевидно, $A = \Theta_{2,1}$. Тогда $\Theta_{1,2}$ — сопряжённый оператору A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 — линейное евклидово пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(H_1) = N_1$; H_2 — линейное евклидово пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(H_2) = N_2$.

Пусть $A \in \text{Lin}(H_1, H_2)$. Пусть: $e - \underline{\text{базис пространства}} \ H_1, f - \underline{\text{базис пространства}} \ H_2, B \in \text{Lin}(H_2, H_1), [B]_k^{\alpha}(e, f) = \overline{g_{\overline{k}, m}(f)[A]_{\beta}^m(f, e)g^{\beta, \overline{\alpha}}(e)} \ \text{при: } \alpha = \overline{1, N_1}, k = \overline{1, N_2}.$ Тогда B - cопряжённый оператор κ оператору A.

Доказательство. Очевидно, $B: H_2 \implies H_1$. Пусть: $x \in H_2, y \in H_1$. Тогда:

$$(Bx,y) = g_{\overline{\alpha},\beta}(e) \overline{[Bx]^{\alpha}(e)} [y]^{\beta}(e) = g_{\overline{\alpha},\beta}(e) \overline{[B]_{k}^{\alpha}(e,f)} [x]^{k}(f) [y]^{\beta}(e) =$$

$$g_{\overline{\alpha},\beta}(e) \overline{g_{\overline{k},m}(f)} \overline{[A]_{\beta'}^{m}(f,e)} g^{\beta',\overline{\alpha}}(e) \overline{[x]^{k}(f)} [y]^{\beta}(e) =$$

$$= g_{\overline{\alpha},\beta}(e) g_{\overline{k},m}(f) \overline{[A]_{\beta'}^{m}(f,e)} g^{\beta',\overline{\alpha}}(e) \overline{[x]^{k}(f)} [y]^{\beta}(e) =$$

$$g_{\overline{k},m}(f) \overline{[A]_{\beta'}^{m}(f,e)} \delta_{\beta}^{\beta'} \overline{[x]^{k}(f)} \overline{[y]^{\beta}(e)} = g_{\overline{k},m}(f) \overline{[x]^{k}(f)} \overline{[A]_{\beta}^{m}(f,e)} y]^{\beta}(e) =$$

$$= g_{\overline{k},m}(f) \overline{[x]^{k}(f)} \overline{[Ay]^{m}(f)} = (x,Ay).$$

Итак, B — сопряжённый оператор к оператору A.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 — линейное евклидово пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(H_1) = N_1$; H_2 — линейное евклидово пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(H_2) = N_2$; e — базис пространства H_1 , f — базис пространства H_2 , $A \in \text{Lin}(H_1, H_2)$, $B \in \text{Lin}(H_2, H_1)$.

Пусть: $[B]_k^{\alpha}(e,f)=\overline{g_{\overline{k},m}(f)[A]_{\beta}^m(f,e)g^{\beta,\overline{\alpha}}(e)}$ при: $\alpha=\overline{1,N_1},\ k=\overline{1,N_2}.$ Тогда $[B](e,f)=\overline{(g(f)[A](f,e)g(e)^{-1})^T}.$

Пусть $[B](e,f)=\overline{\left(g(f)[A](f,e)g(e)^{-1}\right)^T}$. Тогда: $[B]_k^{\alpha}(e,f)=\overline{g_{\overline{k},m}(f)[A]_{\beta}^m(f,e)g^{\beta,\overline{\alpha}}(e)}$ при: $\alpha=\overline{1,N_1},\ k=\overline{1,N_2}.$

Теорема (2-я теорема Фредгольма). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} , $\dim(H_1)$, $\dim(H_2) \neq +\infty$; $A \in \operatorname{Lin}(H_1, H_2)$. Тогда $\operatorname{R}(A) = \ker(A^*)^{\perp}$.

Доказательство. Докажем, что $\ker(A^*) = \mathrm{R}(A)^{\perp}$. Пусть $x \in \ker(A^*)$. Тогда: $x \in H_2$, $A^*x = \theta_1$. Пусть $v \in \mathrm{R}(A)$. Тогда существует вектор u, удовлетворяющий условиям: $u \in H_1$, v = Au. Следовательно:

$$(x, v) = (x, Au) = (A^*x, u) = (\theta_1, u) = 0.$$

Тогда $x \perp R(A)$. Следовательно, $x \in R(A)^{\perp}$.

Пусть $x \in \mathbf{R}(A)^{\perp}$. Тогда: $x \in H_2, x \perp \mathbf{R}(A)$. Следовательно:

$$(A^*x, A^*x) = (x, A(A^*x)) = 0;$$

$$A^*x = \theta_1,$$

$$x \in \ker(A^*).$$

Итак, $\ker(A^*) = \mathrm{R}(A)^{\perp}$.

Так как $\dim(\mathbf{R}(A)) \neq +\infty$, то $(\mathbf{R}(A)^{\perp})^{\perp} = \mathbf{R}(A)$. Тогда: $\mathbf{R}(A) = (\mathbf{R}(A)^{\perp})^{\perp} = \ker(A^*)^{\perp}$.

18.4. Самосопряжённый оператор

Определение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \colon H \to H$.

Будем говорить, что A — формально самосопряжённый оператор, если: (x,Ay) = (Ax,y) при $x,y \in \mathrm{D}(A)$.

Onpedenehue. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \colon H \implies H.$

Будем говорить, что A — самосопряжённый оператор, если: (x,Ay)=(Ax,y) при $x,y\in H.$

Определение (факультативный материал; правильное определение самосопряжённого оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \colon H \to H$.

Обозначим:

$$D^*(A) = \Big\{ x \colon x \in H \land \exists u \in H \forall y \in D(A) \big((u, y) = (x, Ay) \big) \Big\}.$$

Будем говорить, что A — самосопряжённый оператор, если: (x,Ay)=(Ax,y) при $x,y\in \mathrm{D}(A);\ \mathrm{D}(A)=\mathrm{D}^*(A).$

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

- 1. Пусть: $A: H \implies H, A- самосопряжеённый оператор. Тогда: <math>A: H \implies H, A-$ сопряжеённый оператор κ оператору A.
- 2. Пусть: $A\colon H\Longrightarrow H,\,A-$ сопряжённый оператор κ оператору A. Тогда: $A\colon H\Longrightarrow H,\,A-$ самосопряжённый оператор.
- 3. Пусть: $A_1: H \implies H, A_1 самосопряжённый оператор, <math>A_2: H \implies H, A_2$ самосопряжённый оператор. Тогда $A_1 + A_2$ самосопряжённый оператор.
- 4. Пусть: $\lambda \in \mathbb{R}$, $A \colon H \Longrightarrow H$, A- самосопряжеённый оператор. Тогда $\lambda A-$ самосопряжеённый оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \in \text{Lin}(H, H)$, F(x, y) = (x, Ay) при $x, y \in H$.

- 1. Пусть A самосопряжённый оператор. Тогда F эрмитова форма.
- 2. Пусть F эрмитова форма. Тогда A самосопряжённый оператор.

Доказательство.

1. Пусть $x, y \in H$. Тогда:

$$F(x,y) = (x,Ay) = (Ax,y) = \overline{(y,Ax)} = \overline{F(y,x)}.$$

Следовательно, F — эрмитова форма.

2. Пусть $x, y \in H$. Тогда:

$$(x, Ay) = F(x, y) = \overline{F(y, x)} = \overline{(y, Ax)} = (Ax, y).$$

Следовательно, A — самосопряжённый оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; e — базис пространства H, $A \in \text{Lin}(H, H)$.

- 1. Пусть A самосопряженный оператор. Тогда g(e)[A](e) эрмитова матрица.
- 2. Пусть g(e)[A](e) эрмитова матрица. Тогда A самосопряжённый оператор.

Доказательство. Обозначим: F(x,y) = (x,Ay) при $x,y \in H$. Тогда: F — полуторалинейная форма в пространстве H, [F](e) = g(e)[A](e).

- 1. Так как A самосопряжённый оператор, то F эрмитова форма. Тогда [F](e) эрмитова матрица. Следовательно, g(e)[A](e) эрмитова матрица.
- 2. Так как g(e)[A](e) эрмитова матрица, то [F](e) эрмитова матрица. Тогда F эрмитова форма. Следовательно, A самосопряжённый оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} .

- 1. Пусть: Q подпространство пространства H, Q допускает ортогональное проектирование. Тогда: $P_Q \in \text{Lin}(H,H)$, $P_Q P_Q = P_Q$, P_Q самосопряжённый оператор, $Q = \mathcal{R}(P_Q)$.
- 2. Пусть: $P \in \text{Lin}(H,H)$, PP = P, P -самосопряжённый оператор. Тогда: R(P) -подпространство пространства H, R(P) -допускает ортогональное проектирование, $P = P_{R(P)}$.

Доказательство.

1. Очевидно: $P_Q \in \text{Lin}(H, H), P_Q P_Q = P_Q, Q = \mathbb{R}(P_Q)$. Пусть $x, y \in H$. Тогда:

$$(x, P_Q y) = (P_Q x + (x - P_Q x), P_Q y) = (P_Q x, P_Q y) + (x - P_Q x, P_Q y) = (P_Q x, P_Q y) = (P_Q x, P_Q y) + (P_Q x, y - P_Q y) = (P_Q x, P_Q y + (y - P_Q y)) = (P_Q x, y).$$

Следовательно, P_Q — самосопряжённый оператор.

2. Очевидно, R(P) — подпространство пространства H. Пусть $x \in H$. Тогда $Px \in R(P)$. Пусть $v \in R(P)$. Тогда существует вектор u, удовлетворяющий условиям: $u \in H$, v = Pu. Следовательно:

$$(x - Px, v) = (x - Px, Pu) = (P(x - Px), u) = (Px - P(Px), u) = (Px - (PP)x, u) = (Px - Px, u) = (\theta, u) = 0.$$

Тогда $x - Px \perp R(P)$. Так как: $Px \in R(P)$, $x - Px \perp R(P)$, то Px — ортогональная проекция вектора x на подпространство R(P).

Пусть $x \in H$. Тогда Px — ортогональная проекция вектора x на подпространство R(P). Следовательно, подпространство R(P) допускает ортогональное проектирование.

Пусть $x \in H$. Тогда Px — ортогональная проекция вектора x на подпространство R(P). Следовательно, $P = P_{R(P)}$.

18.5. Унитарный оператор

Определение (унитарный оператор). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1, H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $A \in \text{Lin}(H_1, H_2)$.

Будем говорить, что A — унитарный оператор, если: (Ax, Ay) = (x, y) при $x, y \in H_1$.

Onpedenenue (ортогональный оператор). Пусть: H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{R} ; $A \in \text{Lin}(H_1, H_2)$.

Будем говорить, что A — ортогональный оператор, если: (Ax, Ay) = (x, y) при $x, y \in H_1$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} .

- 1. Пусть: $A \in \text{Lin}(H_1, H_2)$, A yнитарный оператор. Тогда: $A \in \text{Lin}(H_1, H_2)$, $\ker(A) = \{\theta_1\}$.
- 2. Пусть: $\lambda \in \mathbb{K}$, $|\lambda| = 1$, $A \in \text{Lin}(H_1, H_2)$, A -унитарный оператор. Тогда λA унитарный оператор.

Доказательство.

1. Очевидно, $A \in \text{Lin}(H_1, H_2)$. Тогда $\theta_1 \in \text{ker}(A)$. Пусть $x \in \text{ker}(A)$. Тогда: $x \in H_1$, $Ax = \theta_2$. Следовательно:

$$(x, x) = (Ax, Ax) = (\theta_2, \theta_2) = 0;$$

 $x = \theta_1.$

Итак, $\ker(A) = \{\theta_1\}.$

2. Пусть $x, y \in H_1$. Тогда:

$$((\lambda A)x, (\lambda A)y) = (\lambda A(x), \lambda A(y)) = |\lambda|^2 (Ax, Ay) = (x, y).$$

Следовательно, λA — унитарный оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 , H_3 — линейные евклидовы пространства над полем \mathbb{K} .

Пусть: $A_1 \in \text{Lin}(H_1, H_2)$, $A_1 - y$ нитарный оператор, $A_2 \in \text{Lin}(H_2, H_3)$, $A_2 - y$ нитарный оператор. Тогда $A_2A_1 - y$ нитарный оператор.

Доказательство. Пусть $x, y \in H_1$. Тогда:

$$((A_2A_1)x, (A_2A_1)y) = (A_2(A_1x), A_2(A_1y)) = (A_1x, A_1y) = (x, y).$$

Следовательно, A_2A_1 — унитарный оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} ; $A \in \text{Lin}(H_1, H_2)$.

- 1. Пусть A унитарный оператор. Тогда: ||Ax|| = ||x|| при $x \in H_1$.
- 2. Пусть: ||Ax|| = ||x|| при $x \in H_1$. Тогда A унитарный оператор.

Доказательство.

1. Пусть $x \in H_1$. Тогда: $||Ax|| = \sqrt{(Ax, Ax)} = \sqrt{(x, x)} = ||x||$.

2. Пусть $x \in H_1$. Тогда: $(Ax,Ax) = \|Ax\|^2 = \|x\|^2 = (x,x)$. Обозначим: $F_1(x,y) = (x,y)$ при $x, y \in H_1$; $Q_1(x) = (x,x)$ при $x \in H_1$; $F_2(x,y) = (Ax,Ay)$ при $x,y \in H_1$; $Q_2(x) = (Ax,Ax)$ при $x \in H_1$.

Пусть $\mathbb{K} = \mathbb{C}$. Очевидно: F_1 — полуторалинейная форма в пространстве H_1 , $Q_1(x) = F_1(x,x)$ при $x \in H_1$; F_2 — полуторалинейная форма в пространстве H_1 , $Q_2(x) = F_2(x,x)$ при $x \in H_1$; $Q_2(x) = Q_1(x)$ при $x \in H_1$. Пусть $x, y \in H_1$. Тогда:

$$(Ax, Ay) = F_2(x, y) = \frac{1}{2} \Big(Q_2(x+y) - Q_2(x) - Q_2(y) - i \Big(Q_2(x+iy) - Q_2(x) - Q_2(y) \Big) \Big) =$$

$$= \frac{1}{2} \Big(Q_1(x+y) - Q_1(x) - Q_1(y) - i \Big(Q_1(x+iy) - Q_1(x) - Q_1(y) \Big) \Big) = F_1(x, y) = (x, y).$$

Следовательно, A — унитарный оператор.

Пусть $\mathbb{K}=\mathbb{R}$. Очевидно: F_1 — симметричная билинейная форма в пространстве H_1 , $Q_1(x)=F_1(x,x)$ при $x\in H_1$; F_2 — симметричная билинейная форма в пространстве H_1 , $Q_2(x)=F_2(x,x)$ при $x\in H_1$; $Q_2(x)=Q_1(x)$ при $x\in H_1$. Пусть $x,y\in H_1$. Тогда:

$$(Ax, Ay) = F_2(x, y) = \frac{1}{2} (Q_2(x+y) - Q_2(x) - Q_2(y)) = \frac{1}{2} (Q_1(x+y) - Q_1(x) - Q_1(y)) =$$
$$= F_1(x, y) = (x, y).$$

Следовательно, A — унитарный оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} , $\dim(H_1)$, $\dim(H_2) \neq +\infty$; $A \in \operatorname{Lin}(H_1, H_2)$.

- 1. Пусть A унитарный оператор. Тогда $A^*A = I_1$.
- 2. Пусть $A^*A = I_1$. Тогда A унитарный оператор.

Доказательство.

1. Пусть $x, y \in H_1$. Тогда:

$$((A^*A)x,y) = (A^*(Ax),y) = (Ax,Ay) = (x,y) = (I_1x,y).$$

Следовательно, $A^*A = I_1$.

2. Пусть $x, y \in H_1$. Тогда:

$$(Ax, Ay) = (A^*(Ax), y) = ((A^*A)x, y) = (I_1x, y) = (x, y).$$

Следовательно, A — унитарный оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 — линейное евклидово пространство над полем \mathbb{K} , $N_1 \in \mathbb{N}$, $\dim(H_1) = N_1$; H_2 — линейное евклидово пространство над полем \mathbb{K} , $N_2 \in \mathbb{N}$, $\dim(H_2) = N_2$; e — базис пространства H_1 , f — базис пространства H_2 , $A \in \operatorname{Lin}(H_1, H_2)$.

- 1. Пусть A унитарный оператор. Тогда $\overline{\left(g(f)[A](f,e)g(e)^{-1}\right)^T}[A](f,e)=\tilde{I}_1.$
- 2. Пусть $\overline{\left(g(f)[A](f,e)g(e)^{-1}\right)^T}[A](f,e)=\tilde{I}_1$. Тогда A унитарный оператор.

Доказательство.

1. Так как A — унитарный оператор, то $A^*A = I_1$. Тогда:

$$[A^*A](e,e) = [I_1](e,e),$$

$$[A^*](e,f)[A](f,e) = [I_1](e,e),$$

$$\overline{(g(f)[A](f,e)G(e)^{-1})^T}[A](f,e) = \tilde{I}_1.$$

2. Так как
$$\overline{\left(g(f)[A](f,e)G(e)^{-1}\right)^T}[A](f,e)=\tilde{I}_1$$
, то $[A^*](e,f)[A](f,e)=[I_1](e,e)$. Тогда:
$$[A^*A](e,e)=[I_1](e,e),$$

$$A^*A=I_1.$$

Следовательно, A — унитарный оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H_1 , H_2 — линейные евклидовы пространства над полем \mathbb{K} , $\dim(H_1) = \dim(H_2)$, $\dim(H_2) \neq +\infty$; $A \in \operatorname{Lin}(H_1, H_2)$.

- 1. Пусть A унитарный оператор. Тогда: A обратимый оператор, $A^* = A^{-1}$.
- 2. Пусть: A обратимый оператор, $A^* = A^{-1}$. Тогда A унитарный оператор.

Доказательство.

- 1. Так как: $A \in \text{Lin}(H_1, H_2)$, A унитарный оператор, то: $A \in \text{Lin}(H_1, H_2)$, $\ker(A) = \{\theta_1\}$. Согласно 1-й теореме Фредгольма, так как: $\dim(H_1) = \dim(H_2)$, $\dim(H_2) \neq +\infty$, то $R(A) = H_2$. Так как $D(A^*) = H_2$, то $D(A^*) = R(A)$. Так как A унитарный оператор, то $A^*A = I_1$. Так как: $D(A^*) = R(A)$, $A^*A = I_1$, то: A обратимый оператор, $A^* = A^{-1}$.
- 2. Так как: A обратимый оператор, $A^* = A^{-1}$, то $A^*A = I_1$. Тогда A унитарный оператор.

Лекция 19. Самосопряжённый оператор. Спектральная теория

19.1. Самосопряжённый оператор

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \in \text{lin}(H, H)$, A — формально самосопряжённый оператор.

Пусть Q — инвариантное подпространство оператора A. Тогда: $A|_Q \in \mathrm{Lin}(Q,Q),$ $A|_Q$ — самосопряжённый оператор.

Доказательство. Так как: $A \in \text{lin}(H,H), Q$ — инвариантное подпространство оператора A, то $A|_Q \in \text{Lin}(Q,Q)$.

Пусть $x,y\in Q$. Тогда: $(x,A|_Qy)=(x,Ay)=(Ax,y)=(A|_Qx,y)$. Следовательно, $A|_Q$ — самосопряжённый оператор.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \in \text{Lin}(H, H)$, A — самосопряжённый оператор.

 $\varPi y cm \ Q$ — инвариантное подпространство оператора A. Тогда Q^{\perp} — инвариантное подпространство оператора A.

Доказательство. Так как Q — инвариантное подпространство оператора A, то: Q — подпространство пространства H, $A[Q] \subseteq Q$.

Очевидно, Q^{\perp} — подпространство пространства H. Пусть $x \in Q^{\perp}$. Тогда: $x \in H$, $x \perp Q$. Очевидно, $Ax \in H$. Пусть $u \in Q$. Тогда: (Ax,u) = (x,Au) = 0. Следовательно, $Ax \perp Q$. Тогда $Ax \in Q^{\perp}$. Следовательно, $A[Q^{\perp}] \subseteq Q^{\perp}$. Итак, Q^{\perp} — инвариантное подпространство оператора A.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \in \text{lin}(H, H)$, A — формально самосопряжённый оператор. Тогда $SD(A) \subseteq \mathbb{R}$.

Доказательство. Пусть $\mathbb{K}=\mathbb{C}$. Пусть $\lambda\in\mathrm{SD}(A)$. Тогда: $\lambda\in\mathbb{K}$, существует вектор x, удовлетворяющий условиям: $x\in\mathrm{D}(A),\,Ax=\lambda x,\,x\neq\theta$. Следовательно:

$$(x, Ax) = (x, \lambda x) = \lambda(x, x);$$

$$(x, Ax) = (Ax, x) = (\lambda x, x) = \overline{\lambda}(x, x);$$

$$\lambda(x, x) = \overline{\lambda}(x, x),$$

$$\lambda = \overline{\lambda},$$

$$\lambda \in \mathbb{R}.$$

Тогда $SD(A) \subseteq \mathbb{R}$.

Пусть $\mathbb{K} = \mathbb{R}$. Тогда: $SD(A) \subseteq \mathbb{K} = \mathbb{R}$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $A \in \text{lin}(H, H)$, A — формально самосопряжённый оператор.

Пусть: $\lambda_1, \ \lambda_2 \in SD(A), \ \lambda_1 \neq \lambda_2.$ Тогда $H_A(\lambda_1) \perp H_A(\lambda_2).$

Доказательство. Пусть: $x_1 \in H_A(\lambda_1), x_2 \in H_A(\lambda_2)$. Тогда: $x_1 \in D(A), Ax_1 = \lambda_1 x_1; x_2 \in D(A), Ax_2 = \lambda_2 x_2$. Следовательно:

$$(x_1, Ax_2) = (x_1, \lambda_2 x_2) = \lambda_2(x_1, x_2);$$

$$(x_1, Ax_2) = (Ax_1, x_2) = (\lambda_1 x_1, x_2) = \overline{\lambda_1}(x_1, x_2) = \lambda_1(x_1, x_2);$$

 $(\lambda_2 - \lambda_1)(x_1, x_2) = 0.$

Так как $\lambda_1 \neq \lambda_2$, то $(x_1, x_2) = 0$. Тогда $H_A(\lambda_1) \perp H_A(\lambda_2)$.

Утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; $A \in \operatorname{Lin}(H, H)$, A — самосопряжённый оператор. Тогда $\ker(\tilde{F}_A) \subseteq \mathbb{R}$.

 \mathcal{A} оказательство. Пусть $\mathbb{K} = \mathbb{C}$. Тогда $\tilde{F}_A = F_A$. Так как A — самосопряжённый оператор, то $\mathrm{SD}(A) \subseteq \mathbb{R}$. Тогда: $\ker(\tilde{F}_A) = \ker(F_A) = \mathrm{SD}(A) \subseteq \mathbb{R}$.

Пусть $\mathbb{K} = \mathbb{R}$. Очевидно, существуют объекты: $e, H_{\mathbb{C}}, f, A_{\mathbb{C}}$, удовлетворяющие условиям: e — ортонормированный базис пространства H; $H_{\mathbb{C}}$ — линейное евклидово пространство над полем \mathbb{C} , $\dim(H_{\mathbb{C}}) = N$; f — ортонормированный базис пространства $H_{\mathbb{C}}$; $A_{\mathbb{C}} \in \operatorname{Lin}(H_{\mathbb{C}}, H_{\mathbb{C}}), [A_{\mathbb{C}}](f) = [A](e)$. Так как: $\operatorname{D}(\tilde{F}_A) = \mathbb{C}, \operatorname{D}(F_{A_{\mathbb{C}}}) = \mathbb{C}, [A](e) = [A_{\mathbb{C}}](f)$, то $\tilde{F}_A = F_{A_{\mathbb{C}}}$.

Так как: e — ортонормированный базис пространства H, A — самосопряжённый оператор, то [A](e) — эрмитова матрица. Так как: $[A_{\mathbb{C}}](f) = [A](e)$, [A](e) — эрмитова матрица, то $[A_{\mathbb{C}}](f)$ — эрмитова матрица. Так как: f — ортонормированный базис пространства $H_{\mathbb{C}}$, $[A_{\mathbb{C}}](f)$ — эрмитова матрица, то $A_{\mathbb{C}}$ — самосопряжённый оператор. Тогда $\mathrm{SD}(A_{\mathbb{C}}) \subseteq \mathbb{R}$. Следовательно: $\ker(\tilde{F}_A) = \ker(F_{A_{\mathbb{C}}}) = \mathrm{SD}(A_{\mathbb{C}}) \subseteq \mathbb{R}$.

Утверждение (существование собственного значения у линейного самосопряжённого оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, $A \in \operatorname{Lin}(H, H)$, A — самосопряжённый оператор. Тогда: $\operatorname{SD}(A) \neq \varnothing$, $\sum_{\lambda \in \operatorname{SD}(A)} m_A(\lambda) = N$.

 \mathcal{A} оказательство. Так как: \mathbb{C} — алгебраически замкнутое поле, $\ker(\tilde{F}_A)\subseteq\mathbb{R}\subseteq\mathbb{K}$, то: $\mathrm{SD}(A)\neq\varnothing$, $\sum_{\lambda\in\mathrm{SD}(A)}m_A(\lambda)=N$.

Утверждение (спектральная теорема для линейных самосопряжённых операторов). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, $A \in \text{Lin}(H, H)$, A — самосопряжённый оператор. Тогда существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: e — ортогональный базис пространства H, e_1, \ldots, e_N — собственные векторы оператора A.

Доказательство. Очевидно, достаточно доказать следующее утверждение. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, $A \in \text{Lin}(H, H)$, A — самосопряжённый оператор. Тогда существуют числа $\lambda_1, \ldots, \lambda_N$, существуют векторы e_1, \ldots, e_N , удовлетворяющие условиям: $\lambda_1, \ldots, \lambda_N \in \mathbb{K}, e_1, \ldots, e_N \in H, e_1, \ldots, e_N$ — ортогональные векторы, $e_1, \ldots, e_N \neq \theta$, $Ae_k = \lambda_k e_k$ при $k = \overline{1, N}$.

Докажем, что утверждение справедливо при N=1. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $\dim(H)=1$; \mathbb{C} — алгебраически замкнутое поле, $A \in \mathrm{Lin}(H,H)$, A — самосопряжённый оператор. Тогда существует число λ_1 , удовлетворяющее условию: $\lambda_1 \in \mathrm{SD}(A)$. Следовательно: $\lambda_1 \in \mathbb{K}$, существует вектор e_1 , удовлетворяющий условиям: $e_1 \in H$, $Ae_1 = \lambda_1 e_1$, $e_1 \neq \theta$. Очевидно, (λ_1) , (e_1) — искомые последовательности.

Пусть: $N_0 \in \mathbb{N}$, утверждение справедливо при $N = N_0$. Докажем, что утверждение справедливо при $N = N_0 + 1$. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство

над полем \mathbb{K} , $\dim(H) = N_0 + 1$; \mathbb{C} — алгебраически замкнутое поле, $A \in \text{Lin}(H, H)$, A — самосопряжённый оператор. Тогда существует число λ_1 , удовлетворяющее условию: $\lambda_1 \in \text{SD}(A)$. Следовательно: $\lambda_1 \in \mathbb{K}$, существует вектор e_1 , удовлетворяющий условиям: $e_1 \in H$, $Ae_1 = \lambda_1 e_1$, $e_1 \neq \theta$.

Обозначим, $Q_1 = L(e_1)$. Так как: $e_1 \in H$, $e_1 \neq \theta$, то: Q_1 — подпространство пространства H, $\dim(Q_1) = 1$. Так как: $A \in \operatorname{Lin}(H,H)$, $Ae_1 = \lambda_1 e_1$, то Q_1 — инвариантное подпространство оператора A.

Обозначим, $Q_2 = Q_1^{\perp}$. Тогда: Q_2 — подпространство пространства H, $Q_1 \perp Q_2$, $Q_1 + Q_2 = H$. Следовательно: $\dim(Q_2) = \dim(H) - \dim(Q_1) = (N_0 + 1) - 1 = N_0$. Так как: $A \in \operatorname{Lin}(H, H)$, A — самосопряжённый оператор, Q_1 — инвариантное подпространство оператора A, то Q_2 — инвариантное подпространство оператора A. Так как: $A \in \operatorname{Lin}(H, H)$, A — самосопряжённый оператор, Q_2 — инвариантное подпространство оператора A, то: $A|_{Q_2} \in \operatorname{Lin}(Q_2, Q_2)$, $A|_{Q_2}$ — самосопряжённый оператор.

Так как: $\dim(Q_2) = N_0$, \mathbb{C} — алгебраически замкнутое поле, $A|_{Q_2}$ — самосопряжённый оператор, то существуют числа $\lambda_2,\ldots,\lambda_{N_0+1}$, существуют векторы e_2,\ldots,e_{N_0+1} , удовлетворяющие условиям: $\lambda_2,\ldots,\lambda_{N_0+1}\in\mathbb{K},\,e_2,\ldots,e_{N_0+1}\in Q_2,\,e_2,\ldots,e_{N_0+1}$ — ортогональные векторы, $e_2,\ldots,e_{N_0+1}\neq\theta,\,A|_{Q_2}\,e_k=\lambda_k e_k$ при $k=\overline{2,N_0+1}$. Тогда: $\lambda_2,\ldots,\lambda_{N_0+1}\in\mathbb{K},\,e_2,\ldots,e_{N_0+1}\in Q_2,\,e_2,\ldots,e_{N_0+1}$ — ортогональные векторы, $e_2,\ldots,e_{N_0+1}\neq\theta,\,Ae_k=\lambda_k e_k$ при $k=\overline{2,N_0+1}$. Очевидно, $(\lambda_1,\ldots,\lambda_{N_0+1}),\,(e_1,\ldots,e_{N_0+1})$ — искомые последовательности.

Замечание (спектральное разложение линейного самосопряжённого оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, $A \in \mathrm{Lin}(H,H)$, A — самосопряжённый оператор. Тогда: $\mathrm{SD}(A) \neq \emptyset$, $\mathrm{SD}(A) \subseteq \mathbb{R}$, $\left\{H_A(\lambda)\right\}_{\lambda \in \mathrm{SD}(A)}$ — ортогональные подпространства, $\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda) = H$. Следовательно: $\left\{H_A(\lambda)\right\}_{\lambda \in \mathrm{SD}(A)}$ — допускают ортогональное проектирование, $\sum_{\lambda \in \mathrm{SD}(A)} P_{H_A(\lambda)} = I$.

Очевидно, существует число $r = \overline{1,N}$, существуют числа $\lambda_1,\ldots,\lambda_r$, удовлетворяющие условию: $\lambda_1,\ldots,\lambda_r$ — все различные собственные значения оператора A. Обозначим: $H_k = H_A(\lambda_k)$, $P_k = P_{H_A(\lambda_k)}$ при $k = \overline{1,r}$.

Пусть $x \in H$. Тогда:

$$Ax = A(Ix) = A\left(\left(\sum_{k=\overline{1,r}} P_k\right)x\right) = A\left(\sum_{k=\overline{1,r}} P_k x\right) = \sum_{k=\overline{1,r}} A(P_k x) = \sum_{k=\overline{1,r}} \lambda_k P_k(x) = \left(\sum_{k=\overline{1,r}} \lambda_k P_k\right)x.$$

Следовательно, $A = \sum_{k=\overline{1,r}} \lambda_k P_k$.

3амечание (факультативный материал; спектральная функция линейного самосопряжённого оператора). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, $A \in \mathrm{Lin}(H,H)$, A — самосопряжённый оператор. Тогда: $\mathrm{SD}(A) \neq \varnothing$, $\mathrm{SD}(A) \subseteq \mathbb{R}$, $\big\{H_A(\lambda)\big\}_{\lambda \in \mathrm{SD}(A)}$ — ортогональные подпространства, $\sum_{\lambda \in \mathrm{SD}(A)} H_A(\lambda) = H$. Следовательно: $\big\{H_A(\lambda)\big\}_{\lambda \in \mathrm{SD}(A)}$ — допускают ортогональное проектирование, $\sum_{\lambda \in \mathrm{SD}(A)} P_{H_A(\lambda)} = I$.

Очевидно, существует число $r = \overline{1,N}$, существуют числа $\lambda_1,\ldots,\lambda_r$, удовлетворяющие условиям: $\lambda_1,\ldots,\lambda_r$ — все различные собственные значения оператора $A,\ \lambda_1<\cdots<\lambda_r$. Обозначим: $H_k=H_A(\lambda_k),\ P_k=P_{H_A(\lambda_k)}$ при $k=\overline{1,r}$.

Обозначим:

$$P_A(\lambda) = \begin{cases} \Theta & \text{при } \lambda \in (-\infty, \lambda_1), \\ \sum\limits_{m=\overline{1,k}} P_m & \text{при: } k=\overline{1,r-1}, \, \lambda \in [\lambda_k, \lambda_{k+1}), \\ I & \text{при } \lambda \in [\lambda_r, +\infty). \end{cases}$$

Будем говорить, что P_A — спектральная функция оператора A.

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $r \in \mathbb{N}, H_1, \dots, H_r$ — ортогональные подпространства пространства $H, \sum_{k=\overline{1,r}} H_k = H$. Тогда:

 H_1,\ldots,H_r допускают ортогональное проектирование, $\sum_{k=\overline{1,r}} P_{H_k} = I$. Обозначим: $P_k = P_{H_k}$

Пусть: $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$, $A = \sum_{k=\overline{1,r}} \lambda_k P_k$. Тогда $A \in \text{Lin}(H,H)$.

Пусть n=0. Тогда:

$$A^n = I = \sum_{k=\overline{1,r}} P_k = \sum_{k=\overline{1,r}} (\lambda_k)^n P_k.$$

Пусть n=1. Тогда:

$$A^{n} = A = \sum_{k=\overline{1.r}} \lambda_{k} P_{k} = \sum_{k=\overline{1.r}} (\lambda_{k})^{n} P_{k}.$$

Пусть: $n \in \mathbb{Z}$, $n \geqslant 2$. Тогда:

$$A^n = \left(\sum_{k=\overline{1,r}} \lambda_k P_k\right)^n = \sum_{k_1,\dots,k_n=\overline{1,r}} \lambda_{k_1} \cdots \lambda_{k_n} P_{k_1} \cdots P_{k_n} = \sum_{k=\overline{1,r}} (\lambda_k)^n P_k.$$

Пусть: $n \in \mathbb{Z}_+, a_0, \dots, a_n \in \mathbb{K}, F(x) = \sum_{j=\overline{0,n}} a_j x^j$ при $x \in \mathbb{K}; \hat{F}(B) = \sum_{j=\overline{0,n}} a_j B^j$ при $B \in \text{Lin}(H,H)$. Тогда:

$$\hat{F}(A) = \sum_{j=\overline{0,n}} a_j A^j = \sum_{j=\overline{0,n}} a_j \sum_{k=\overline{1,r}} (\lambda_k)^j P_k = \sum_{k=\overline{1,r}} \left(\sum_{j=\overline{0,n}} a_j (\lambda_k)^j \right) P_k = \sum_{k=\overline{1,r}} F(\lambda_k) P_k.$$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} ; $r \in \mathbb{N}$, H_1, \ldots, H_r — ортогональные подпространства пространства H, $\sum_{k=\overline{1,r}} H_k = H$. Тогда: H_1, \ldots, H_r допускают ортогональное проектирование, $\sum_{k=\overline{1,r}} P_{H_k} = I$. Обозначим: $P_k = P_{H_k}$

при $k = \overline{1,r}$.

Пусть:
$$F: \mathbb{K} \to \mathbb{K}, \lambda_1, \dots, \lambda_r \in D(F), A = \sum_{k=\overline{1,r}} \lambda_k P_k$$
. Обозначим, $\hat{F}(A) = \sum_{k=\overline{1,r}} F(\lambda_k) P_k$.

19.2. Эрмитовы полуторалинейные формы в евклидовом пространстве

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; H — линейное евклидово пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(H) = N$; \mathbb{C} — алгебраически замкнутое поле, A — эрмитова полуторалинейная форма в пространстве H. Докажем, что существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' — ортонормированный базис пространства H, [A](e') — диагональная матрица.

Очевидно, существует единственный оператор \hat{A} , удовлетворяющий условиям: $\hat{A} \in \text{Lin}(H,H), \ A(x,y) = (x,\hat{A}y)$ при $x,\ y \in H.$ Так как A — эрмитова форма, то \hat{A} — самосопряжённый оператор.

Так как: \mathbb{C} — алгебраически замкнутое поле, \hat{A} — самосопряжённый оператор, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — ортонормированный базис пространства $H,\ e'_1,\ldots,e'_N$ — собственные векторы оператора \hat{A} . Так как e'_1,\ldots,e'_N — собственные векторы оператора \hat{A} , то $[\hat{A}](e')$ — диагональная матрица. Так как e' — ортонормированный базис, то $g(e')=\tilde{I}$. Тогда $[A](e')=[\hat{A}](e')$. Следовательно, [A](e') — диагональная матрица.

• Пусть e — базис пространства H. Пусть $\lambda \in \mathbb{C}$. Тогда:

$$\tilde{F}_{\hat{A}}(\lambda) = \det([\hat{A}](e) - \lambda \tilde{I}) = \det(g(e)^{-1}([A](e) - \lambda g(e))) = \frac{\det([A](e) - \lambda g(e))}{\det(g(e))}.$$

• Пусть e — базис пространства H. Пусть $\lambda \in \mathbb{K}$. Обозначим, $Q_1 = [\hat{A}](e) - \lambda \tilde{I}$. Тогда $\ker(\hat{A} - \lambda I) = h_e^{-1} [\ker(\hat{Q}_1)]$. Обозначим, $Q_2 = [A](e) - \lambda g(e)$. Докажем, что $\ker(\hat{Q}_1) = \ker(\hat{Q}_2)$. Пусть $\tilde{x} \in \ker(\hat{Q}_1)$. Тогда:

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ \left([\hat{A}](e) - \lambda \tilde{I} \right) \tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \mathbb{K}^{N}, \\ g(e) \left(\left([\hat{A}](e) - \lambda \tilde{I} \right) \tilde{x} \right) = g(e) \tilde{\theta}; \\ \begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ \left([A](e) - \lambda g(e) \right) \tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \ker(\hat{Q}_{2}). \end{cases} \end{cases}$$

Пусть $\tilde{x} \in \ker(\hat{Q}_2)$. Тогда:

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ ([A](e) - \lambda g(e))\tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \mathbb{K}^{N}, \\ g(e)^{-1} \Big(\big([A](e) - \lambda g(e) \big) \tilde{x} \Big) = g(e)^{-1} \tilde{\theta}; \\ \tilde{x} \in \mathbb{K}^{N}, \\ \big([\hat{A}](e) - \lambda \tilde{I} \big) \tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \ker(\hat{Q}_{1}). \quad \Box \end{cases}$$

Итак, $\ker(A - \lambda I) = h_e^{-1} [\ker(\hat{Q}_2)].$

Замечание. Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$; L — линейное пространство над полем \mathbb{K} , $N \in \mathbb{N}$, $\dim(L) = N$; \mathbb{C} — алгебраически замкнутое поле, A, B — эрмитовы полуторалинейные формы в пространстве L, B > 0. Докажем, что существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' — базис пространства L, [A](e') — диагональная матрица, $[B](e') = \tilde{I}$.

Обозначим, H=(L,B). Тогда H — линейное евклидово пространство над полем \mathbb{K} . Следовательно: g(e)=[B](e) при: e — базис пространства H.

Очевидно, существует единственный оператор \hat{A} , удовлетворяющий условиям: $\hat{A} \in \text{Lin}(H,H), \ A(x,y) = (x,\hat{A}y)$ при $x,\ y \in H.$ Так как A — эрмитова форма, то \hat{A} — самосопряжённый оператор.

Так как: \mathbb{C} — алгебраически замкнутое поле, \hat{A} — самосопряжённый оператор, то существуют векторы e'_1,\ldots,e'_N , удовлетворяющие условиям: e' — ортонормированный базис пространства $H,\ e'_1,\ldots,e'_N$ — собственные векторы оператора \hat{A} . Так как e'_1,\ldots,e'_N — собственные векторы оператора \hat{A} , то $[\hat{A}](e')$ — диагональная матрица. Так как e' — ортонормированный базис, то $[B](e')=\tilde{I}$. Тогда $[A](e')=[\hat{A}](e')$. Следовательно, [A](e') — диагональная матрица.

• Пусть e — базис пространства H. Пусть $\lambda \in \mathbb{C}$. Тогда:

$$\tilde{F}_{\hat{A}}(\lambda) = \det\left([\hat{A}](e) - \lambda \tilde{I}\right) = \det\left([B](e)^{-1}\left([A](e) - \lambda [B](e)\right)\right) = \frac{\det\left([A](e) - \lambda [B](e)\right)}{\det\left([B](e)\right)}.$$

• Пусть e — базис пространства H. Пусть $\lambda \in \mathbb{K}$. Обозначим, $Q_1 = [\hat{A}](e) - \lambda \tilde{I}$. Тогда $\ker(\hat{A} - \lambda I) = h_e^{-1} [\ker(\hat{Q}_1)]$. Обозначим, $Q_2 = [A](e) - \lambda [B](e)$. Докажем, что $\ker(\hat{Q}_1) = \ker(\hat{Q}_2)$. Пусть $\tilde{x} \in \ker(\hat{Q}_1)$. Тогда:

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ \left([\hat{A}](e) - \lambda \tilde{I} \right) \tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \mathbb{K}^{N}, \\ [B](e) \left(\left([\hat{A}](e) - \lambda \tilde{I} \right) \tilde{x} \right) = [B](e) \tilde{\theta}; \\ \tilde{x} \in \mathbb{K}^{N}, \\ \left([A](e) - \lambda [B](e) \right) \tilde{x} = \tilde{\theta}; \\ \tilde{x} \in \ker(\hat{Q}_{2}). \end{cases}$$

Пусть $\tilde{x} \in \ker(\hat{Q}_2)$. Тогда:

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ ([A](e) - \lambda[B](e))\tilde{x} = \tilde{\theta}; \end{cases}$$

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ [B](e)^{-1} \Big(([A](e) - \lambda[B](e))\tilde{x} \Big) = [B](e)^{-1}\tilde{\theta}; \end{cases}$$

$$\begin{cases} \tilde{x} \in \mathbb{K}^{N}, \\ ([\hat{A}](e) - \lambda\tilde{I})\tilde{x} = \tilde{\theta}; \end{cases}$$

$$\tilde{x} \in \ker(\hat{Q}_{1}). \quad \Box$$

Итак, $\ker(A - \lambda I) = h_e^{-1} [\ker(\hat{Q}_2)].$

Лекция 20. Кривые и поверхности второго порядка

20.1. Аффинное пространство

Onpedenehue (аффинное пространство). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; M — множество, L — линейное пространство над полем \mathbb{K} , $F: M^2 \implies L$. Далее обычно будем писать « $\overrightarrow{p_1p_2}$ » вместо « $F(p_1, p_2)$ ».

Пусть:

- 1. $\exists p(p \in M);$
- 2. $\overrightarrow{p_1p_2} + \overrightarrow{p_2p_3} = \overrightarrow{p_1p_3}$ при $p_1, p_2, p_3 \in M$;
- 3. $\forall p_1 \in M \forall x \in L \exists ! p_2 \in M(\overrightarrow{p_1 p_2} = x).$

Будем говорить, что: (M, L, F) — аффинное пространство над полем \mathbb{K} ; M — носитель пространства (M, L, F); L — линейное пространство, ассоциированное с аффинным пространством (M, L, F); F — операция векторизации пространства (M, L, F). Будем говорить, что p — точка пространства (M, L, F), если $p \in M$. Будем говорить, что x — вектор пространства (M, L, F), если $x \in L$. Далее обычно будем отождествлять пространство (M, L, F) и множество M.

Пусть Q = (M, L, F). Обозначим, $\vec{Q} = L$.

Утверждение (простейшие свойства операции векторизации). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; $Q-a\phi\phi$ инное пространство над полем \mathbb{K} .

- 1. Пусть $p \in Q$. Тогда $\overrightarrow{pp} = \theta$.
- 2. $\overrightarrow{\Pi y cmb}$: p_1 , $p_2 \in Q$, $\overrightarrow{p_1p_2} = \theta$. $\overrightarrow{Tor\partial a}$ $p_1 = p_2$. 3. $\overrightarrow{\Pi y cmb}$ p_1 , $p_2 \in Q$. $\overrightarrow{Tor\partial a} \overrightarrow{p_1p_2} = \overrightarrow{p_2p_1}$.

Доказательство.

- 1. Очевидно, $\overrightarrow{pp} + \overrightarrow{pp} = \overrightarrow{pp}$. С другой стороны, $\overrightarrow{pp} + \theta = \overrightarrow{pp}$. Тогда $\overrightarrow{pp} = \theta$.
- 2. Очевидно, $\overrightarrow{p_1p_1} = \theta$. С другой стороны, $\overrightarrow{p_1p_2} = \theta$. Тогда $p_1 = p_2$. 3. Очевидно, $\overrightarrow{p_1p_2} + (-\overrightarrow{p_1p_2}) = \theta$. С другой стороны: $\overrightarrow{p_1p_2} + \overrightarrow{p_2p_1} = \overrightarrow{p_1p_1} = \theta$. Тогда $-\overrightarrow{p_1}\overrightarrow{p_2} = \overrightarrow{p_2}\overrightarrow{p_1}.$

Определение (операция откладывания вектора от точки). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; Q — аффинное пространство над полем К.

Пусть: $p_1 \in Q$, $x \in Q$. Выберем точку p_2 , удовлетворяющую условиям: $p_2 \in Q$, $\overrightarrow{p_1p_2} = x$. Обозначим, $p_1 \oplus x = p_2$. Далее обычно будем писать $(p_1 + x)$ вместо $(p_1 \oplus x)$. Пусть: $p_1 \in Q$, $x \in \vec{Q}$. Очевидно: $p_1 \oplus x \in Q$, $p_1(p_1 \oplus x) = x$.

Утверждение (простейшие свойства операции откладывания вектора от точки). *Пусть*: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; Q - a\phi\phi$ инное пространство над полем \mathbb{K} .

- 1. Пусть $p_1, p_2 \in Q$. Тогда $p_1 \oplus \overrightarrow{p_1 p_2} = p_2$.
- 2. Пусть: $p_1 \in Q$, $x, y \in Q$. Тогда $(p_1 \oplus x) \oplus y = p_1 \oplus (x+y)$.
- 3. Пусть $p \in Q$. Тогда $p \oplus \theta = p$.

Доказательство.

- 1. Очевидно, $\overrightarrow{p_1(p_1 \oplus \overrightarrow{p_1p_2})} = \overrightarrow{p_1p_2}$. Тогда $p_1 \oplus \overrightarrow{p_1p_2} = p_2$. 2. Обозначим, $p_2 = p_1 \oplus x$. Тогда: $x = \overrightarrow{p_1(p_1 \oplus x)} = \overrightarrow{p_1p_2}$. Обозначим, $p_3 = p_2 \oplus y$. Тогда: $y = \overrightarrow{p_2(p_2 \oplus y)} = \overrightarrow{p_2p_3}$. Очевидно:

$$p_1 \oplus (x+y) = p_1 \oplus (\overrightarrow{p_1p_2} + \overrightarrow{p_2p_3}) = p_1 \oplus \overrightarrow{p_1p_3} = p_3 = p_2 \oplus y = (p_1 \oplus x) \oplus y.$$

3. Очевидно: $p \oplus \theta = p \oplus \overrightarrow{pp} = p$.

Замечание (аффинная система координат в аффинном пространстве). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}; Q$ — аффинное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(Q) = N$.

• Пусть: $O \in Q$, e — базис пространства Q. Обозначим: $h_{O,e}(p) = [\overrightarrow{Op}](e)$ при $p \in Q$. Очевидно: $h_{O,e}$ — обратимая функция, $D(h_{O,e}) = Q$, $R(h_{O,e}) = \mathbb{K}^N$; $h_{O,e}^{-1}(x) = O + x^k e_k$ при $x \in \mathbb{K}^N$. Будем говорить, что: $h_{O,e}$ — аффинная координатная карта (аффинная система координат) в пространстве Q, соответствующая точке O и базису e; O — начало отсчёта координатной карты $h_{O,e}$; e — базис координатной карты $h_{O,e}$. Пусть $p \in Q$. Будем говорить, что $h_{O,e}(p)$ — столбец координат точки p в координатной карте $h_{O,e}$.

Очевидно:

$$h_{O,e}(O) = [\overrightarrow{OO}](e) = [\theta](e) = \tilde{\theta};$$

$$h_{O,e}(O + e_k) = [\overrightarrow{O(O + e_k)}](e) = [e_k](e) = \tilde{I}_k, \quad k = \overline{1, N}.$$

Тогда:

$$O = h_{O,e}^{-1}(\tilde{\theta});$$

$$e_k = \overrightarrow{O(O + e_k)} = \overrightarrow{h_{O,e}^{-1}(\tilde{\theta})h_{O,e}^{-1}(\tilde{I}_k)}, \quad k = \overline{1, N}.$$

• Пусть: $O, O' \in Q, e, e'$ — базисы пространства Q. Пусть $p \in Q$. Тогда:

$$h_{O,e}(p) = [\overrightarrow{OO'}](e) = [\overrightarrow{OO'} + \overrightarrow{O'p}](e) = [\overrightarrow{OO'}](e) + [\overrightarrow{O'p}](e) = [\overrightarrow{OO'}](e) + \alpha(e,e')[\overrightarrow{O'p}](e') = h_{O,e}(O') + \alpha(e,e')h_{O',e'}(p).$$

Очевидно:

$$h_{O',e'}(O) = [\overrightarrow{OO'}](e') = [-\overrightarrow{OO'}](e') = -[\overrightarrow{OO'}](e') = -\alpha(e',e)[\overrightarrow{OO'}](e) = -\alpha(e',e)h_{O,e}(O').$$

Пусть: $O, O' \in Q, e$ — базис пространства Q. Пусть $p \in Q$. Тогда:

$$h_{O,e}(p) = h_{O,e}(O') + h_{O',e}(p).$$

Очевидно:

$$h_{O',e}(O) = -h_{O,e}(O').$$

Пусть: $O \in Q, \, e, \, e'$ — базисы пространства Q. Пусть $p \in Q$. Тогда:

$$h_{O,e}(p) = \alpha(e, e')h_{O,e'}(p).$$

Замечание (матрица $\beta(O,e;O',e')$). Пусть: $\mathbb{K} \in \{\mathbb{C},\mathbb{R},\mathbb{Q}\};\ Q$ — аффинное пространство над полем $\mathbb{K},\ N \in \mathbb{N},\ \dim(Q) = N$.

Пусть: $O, O' \in Q, e, e'$ — базисы пространства Q. Обозначим:

$$\beta(O, e; O', e') = \begin{pmatrix} \alpha(e, e') & h_{O, e}(O') \\ 0 \cdots 0 & 1 \end{pmatrix}.$$

Очевидно: $\beta(O, e; O', e') \in \mathbb{K}^{(N+1)\times(N+1)}$, $\det(\beta(O, e; O', e')) = \det(\alpha(e, e')) \neq 0$.

- Пусть: $O \in Q, e$ базис пространства Q. Очевидно, $\beta(O,e;O,e) = \tilde{I}_{N+1}$ (здесь \tilde{I}_{N+1} единичная матрица из множества $\mathbb{K}^{(N+1)\times (N+1)}$).
- Пусть: $O, O', O'' \in Q, e, e', e''$ базисы пространства Q. Докажем, что $\beta(O,e;O',e')\beta(O',e';O'',e'')=\beta(O,e;O'',e'')$.

Пусть $k, k'' = \overline{1, N}$. Тогда:

$$\begin{split} \left(\beta(O,e;O',e')\beta(O',e';O'',e'')\right)_{k''}^k &= \sum_{k'=\overline{1,N+1}} \beta_{k'}^k(O,e;O',e')\beta_{k''}^{k'}(O',e';O'',e'') = \\ &= \sum_{k'=\overline{1,N}} \beta_{k'}^k(O,e;O',e')\beta_{k''}^{k'}(O',e';O'',e'') + \beta_{N+1}^k(O,e;O',e')\beta_{k''}^{N+1}(O',e';O'',e'') = \\ &= \alpha_{k'}^k(e,e')\alpha_{k''}^{k'}(e',e'') = \alpha_{k''}^k(e,e'') = \beta_{k''}^k(O,e;O'',e''). \end{split}$$

Пусть $k'' = \overline{1, N}$. Тогда:

$$(\beta(O, e; O', e')\beta(O', e'; O'', e''))_{k''}^{N+1} = \sum_{k'=\overline{1,N+1}} \beta_{k'}^{N+1}(O, e; O', e')\beta_{k''}^{k'}(O', e'; O'', e'') =$$

$$= \sum_{k'=\overline{1,N}} \beta_{k'}^{N+1}(O, e; O', e')\beta_{k''}^{k'}(O', e'; O'', e'') + \beta_{N+1}^{N+1}(O, e; O', e')\beta_{k''}^{N+1}(O', e'; O'', e'') = 0 =$$

$$= \beta_{k''}^{N+1}(O, e; O'', e'').$$

Пусть $k = \overline{1, N}$. Тогда:

$$(\beta(O, e; O', e')\beta(O', e'; O'', e''))_{N+1}^{k} = \sum_{k'=\overline{1,N+1}} \beta_{k'}^{k}(O, e; O', e')\beta_{N+1}^{k'}(O', e'; O'', e'') =$$

$$= \sum_{k'=\overline{1,N}} \beta_{k'}^{k}(O, e; O', e')\beta_{N+1}^{k'}(O', e'; O'', e'') + \beta_{N+1}^{k}(O, e; O', e')\beta_{N+1}^{N+1}(O', e'; O'', e'') =$$

$$= \alpha_{k'}^{k}(e, e')h_{O', e'}^{k'}(O'') + h_{O, e}^{k}(O') = h_{O, e}^{k}(O'') = \beta_{N+1}^{k}(O, e; O'', e'').$$

Очевидно:

$$\begin{split} \left(\beta(O,e;O',e')\beta(O',e';O'',e'')\right)_{N+1}^{N+1} &= \sum_{k'=\overline{1,N+1}} \beta_{k'}^{N+1}(O,e;O',e')\beta_{N+1}^{k'}(O',e';O'',e'') = \\ &= \sum_{k'=\overline{1,N}} \beta_{k'}^{N+1}(O,e;O',e')\beta_{N+1}^{k'}(O',e';O'',e'') + \beta_{N+1}^{N+1}(O,e;O',e')\beta_{N+1}^{N+1}(O',e';O'',e'') = 1 = \\ &= \beta_{N+1}^{N+1}(O,e;O'',e''). \end{split}$$

• Пусть: $O, O' \in Q, e, e'$ — базисы пространства Q. Тогда: $\beta(O, e; O', e')\beta(O', e'; O, e) = \beta(O, e; O, e) = \tilde{I}_{N+1}$. Следовательно, $\beta(O, e; O', e')^{-1} = \beta(O', e'; O, e)$.

Замечание (функция $\psi_{O,e}$). Пусть: $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}, \mathbb{Q}\}$; Q — аффинное пространство над полем $\mathbb{K}, N \in \mathbb{N}, \dim(Q) = N$.

Пусть: $O \in Q$, e — базис пространства Q. Обозначим:

$$\psi_{O,e}(p) = \begin{pmatrix} h_{O,e}(p) \\ 1 \end{pmatrix}, \quad p \in Q.$$

Очевидно: $\psi_{O,e}$ — обратимая функция, $\mathrm{D}(\psi_{O,e})=Q,\ \mathrm{R}(\psi_{O,e})=\{x\colon x\in\mathbb{K}^{N+1}\wedge x^{N+1}=1\};$ $\psi_{O,e}^{-1}(x)=O+\sum_{k=\overline{1,N}}x^ke_k$ при: $x\in\mathbb{K}^{N+1},\ x^{N+1}=1.$

• Пусть: $O, O' \in Q, e, e'$ — базисы пространства Q. Пусть $p \in Q$. Докажем, что $\psi_{O,e}(p) = \beta(O,e;O',e')\psi_{O',e'}(p)$.

Пусть $k = \overline{1, N}$. Тогда:

$$(\beta(O, e; O', e')\psi_{O',e'}(p))^{k} = \sum_{k'=\overline{1,N+1}} \beta_{k'}^{k}(O, e; O', e')\psi_{O',e'}^{k'}(p) =$$

$$= \sum_{k'=\overline{1,N}} \beta_{k'}^{k}(O, e; O', e')\psi_{O',e'}^{k'}(p) + \beta_{N+1}^{k}(O, e; O', e')\psi_{O',e'}^{N+1}(p) =$$

$$= \alpha_{k'}^{k}(e, e')h_{O',e'}^{k'}(p) + h_{O,e}^{k}(O') = h_{O,e}^{k}(p) = \psi_{O,e}^{k}(p).$$

Очевидно:

$$(\beta(O, e; O', e')\psi_{O', e'}(p))^{N+1} = \sum_{k'=\overline{1,N+1}} \beta_{k'}^{N+1}(O, e; O', e')\psi_{O', e'}^{k'}(p) =$$

$$= \sum_{k'=\overline{1,N}} \beta_{k'}^{N+1}(O, e; O', e')\psi_{O', e'}^{k'}(p) + \beta_{N+1}^{N+1}(O, e; O', e')\psi_{O', e'}^{N+1}(p) = 1 = \psi_{O, e}^{N+1}(p).$$

20.2. Полином степени не выше 2 в аффинном пространстве

Определение. Пусть: Q — аффинное пространство над полем $\mathbb{R}, N \in \mathbb{N}, \dim(Q) = N$. Будем говорить, что F — полином степени не выше 2 в пространстве Q, если: F — функция, D(F) = Q, существуют объекты O, e, A, B, C, удовлетворяющие условиям: $O \in Q$, e — базис пространства Q, $A \in \mathbb{R}^{N \times N}$, A — симметричная матрица, $B \in \mathbb{R}^{1 \times N}$, $C \in \mathbb{R}$,

$$F(p) = A_{k,m} h_{O,e}^{k}(p) h_{O,e}^{m}(p) + 2B_{m} h_{O,e}^{m}(p) + C, \quad p \in Q.$$

Определение. Пусть: Q — аффинное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F — полином степени не выше 2 в пространстве Q.

1. Пусть: $O \in Q$, e — базис пространства Q. Будем говорить, что A, B, C — коэффициенты первого рода полинома F в координатной карте $h_{O,e}$, если: $A \in \mathbb{R}^{N \times N}$, A — симметричная матрица, $B \in \mathbb{R}^{1 \times N}$, $C \in \mathbb{R}$,

$$F(p) = A_{k,m} h_{Q,e}^{k}(p) h_{Q,e}^{m}(p) + 2B_{m} h_{Q,e}^{m}(p) + C, \quad p \in Q.$$

- 2. Будем говорить, что $\{A(O,e)\}_{O,e}$, $\{B(O,e)\}_{O,e}$, $\{C(O,e)\}_{O,e}$ семейства коэффициентов первого рода полинома F, если для любой точки $O \in Q$ и для любого базиса e пространства Q справедливо утверждение: A(O,e), B(O,e), C(O,e) коэффициенты первого рода полинома F в координатной карте $h_{O,e}$.
- 3. Пусть: $O \in Q$, e базис пространства Q. Будем говорить, что D коэффициенты второго рода полинома F в координатной карте $h_{O,e}$, если: $D \in \mathbb{R}^{(N+1)\times (N+1)}$, D симметричная матрица,

$$F(p) = \sum_{k, m = \overline{1, N+1}} D_{k,m} \psi_{O,e}^{k}(p) \psi_{O,e}^{m}(p), \quad p \in Q.$$

4. Будем говорить, что $\{D(O,e)\}_{O,e}$ — семейство коэффициентов второго рода полинома F, если для любой точки $O \in Q$ и для любого базиса e пространства Q, справедливо утверждение: D(O,e) — коэффициенты второго рода полинома F в координатной карте $h_{O,e}$.

5. Пусть $O \in Q$. Будем говорить, что A, B, C — коэффициенты третьего рода полинома F относительно точки O, если: A — симметричная билинейная форма в пространстве \vec{Q} , B — линейная форма в пространстве $\vec{Q}, C \in \mathbb{R}$,

$$F(p) = A(\overrightarrow{Op}, \overrightarrow{Op}) + 2B(\overrightarrow{Op}) + C, \quad p \in Q.$$

6. Будем говорить, что $\{A_O\}_{O\in Q}, \{B_O\}_{O\in Q}, \{C_O\}_{O\in Q}$ — семейства коэффициентов третьего рода полинома F, если для любой точки $O\in Q$ справедливо утверждение: A_O, B_O, C_O — коэффициенты третьего рода полинома F относительно точки O.

Утверждение. Пусть: L — линейное пространство над полем \mathbb{R} ; A_1 , A_2 — симметричные билинейные формы в пространстве L, B_1 , B_2 — линейные формы в пространстве L, C_1 , $C_2 \in \mathbb{R}$,

$$A_1(x,x) + 2B_1(x) + C_1 = A_2(x,x) + 2B_2(x) + C_2, \quad x \in L.$$

Тогда: $A_1 = A_2$, $B_1 = B_2$, $C_1 = C_2$.

Доказательство. Пусть: $t \in \mathbb{R}, x \in L$. Тогда:

$$A_1(tx,tx) + 2B_1(tx) + C_1 = A_2(tx,tx) + 2B_2(tx) + C_2,$$

$$A_1(x,x)t^2 + 2B_1(x)t + C_1 = A_2(x,x)t^2 + 2B_2(x)t + C_2.$$

В силу произвольности выбора числа $t \in \mathbb{R}$ получаем, что: $A_1(x,x) = A_2(x,x)$, $B_1(x) = B_2(x)$, $C_1 = C_2$. В силу произвольности выбора вектора $x \in L$ получаем, что: $A_1(x,x) = A_2(x,x)$ при $x \in L$; $B_1(x) = B_2(x)$ при $x \in L$; $C_1 = C_2$.

Так как: $A_1(x,x)=A_2(x,x)$ при $x\in L$; $A_1,\ A_2$ — симметричные билинейные формы, то: $A_1(x,y)=A_2(x,y)$ при $x,\ y\in L$. Тогда $A_1=A_2$.

Так как:
$$B_1(x) = B_2(x)$$
 при $x \in L$, то $B_1 = B_2$.

Утверждение. Пусть: Q — аффинное пространство над полем \mathbb{R} ; $O \in Q$, A_1 , A_2 — симметричные билинейные формы в пространстве \vec{Q} , B_1 , B_2 — линейные формы в пространстве \vec{Q} , C_1 , $C_2 \in \mathbb{R}$,

$$A_1(\overrightarrow{Op}, \overrightarrow{Op}) + 2B_1(\overrightarrow{Op}) + C_1 = A_2(\overrightarrow{Op}, \overrightarrow{Op}) + 2B_2(\overrightarrow{Op}) + C_2, \quad p \in Q.$$

Тогда: $A_1 = A_2$, $B_1 = B_2$, $C_1 = C_2$.

Замечание (выражение $A(\overrightarrow{Op}, \overrightarrow{Op}) + 2B(\overrightarrow{Op}) + C$). Пусть: Q — аффинное пространство над полем $\mathbb{R}, N \in \mathbb{N}, \dim(Q) = N; O \in Q, e$ — базис пространства Q.

• Пусть: $\tilde{A} \in \mathbb{R}^{\tilde{N} \times N}$, \tilde{A} — симметричная матрица, $\tilde{B} \in \mathbb{R}^{1 \times N}$, $\tilde{C} \in \mathbb{R}$, $A(x,y) = \tilde{A}_{k,m}[x]^k(e)[y]^m(e)$ при $x, y \in \vec{Q}$; $B(x) = \tilde{B}_m[x]^m(e)$ при $x \in \vec{Q}$; $C = \tilde{C}$. Очевидно: A — симметричная билинейная форма в пространстве \vec{Q} , B — линейная форма в пространстве \vec{Q} , $C \in \mathbb{R}$, $\tilde{A} = [A](e)$, $\tilde{B} = [B](e)$, $\tilde{C} = C$. Пусть $p \in Q$. Тогда:

$$\begin{split} A(\overrightarrow{Op}, \overrightarrow{Op}) + 2B(\overrightarrow{Op}) + C &= \tilde{A}_{k,m} [\overrightarrow{Op}]^k(e) [\overrightarrow{Op}]^m(e) + 2\tilde{B}_m [\overrightarrow{Op}]^m(e) + \tilde{C} &= \\ &= \tilde{A}_{k,m} h_{O,e}^k(p) h_{O,e}^m(p) + 2\tilde{B}_m h_{O,e}^m(p) + \tilde{C}. \end{split}$$

• Пусть: A — симметричная билинейная форма в пространстве \vec{Q}, B — линейная форма в пространстве $\vec{Q}, C \in \mathbb{R}, \ \tilde{A} = [A](e), \ \tilde{B} = [B](e), \ \tilde{C} = C.$ Очевидно: $\tilde{A} \in \mathbb{R}^{N \times N}, \ \tilde{A}$ — симметричная матрица, $\tilde{B} \in \mathbb{R}^{1 \times N}, \ \tilde{C} \in \mathbb{R}, \ A(x,y) = \tilde{A}_{k,m}[x]^k(e)[y]^m(e)$ при $x, y \in \vec{Q}; B(x) = \tilde{B}_m[x]^m(e)$ при $x \in \vec{Q}; C = \tilde{C}$.

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; $O \in Q$, e - basic пространства <math>Q, A_1 , $A_2 \in \mathbb{R}^{N \times N}$, A_1 , $A_2 - c$ имметричные матрицы, B_1 , $B_2 \in \mathbb{R}^{1 \times N}$, C_1 , $C_2 \in \mathbb{R}$,

$$(A_1)_{k,m}h_{O,e}^k(p)h_{O,e}^m(p) + 2(B_1)_m h_{O,e}^m(p) + C_1 = (A_2)_{k,m}h_{O,e}^k(p)h_{O,e}^m(p) + 2(B_2)_m h_{O,e}^m(p) + C_2,$$

$$p \in Q.$$

Тогда: $A_1 = A_2$, $B_1 = B_2$, $C_1 = C_2$.

3амечание (выражение $\sum_{k,m=\overline{1,N+1}} D_{k,m} \psi_{O,e}^k(p) \psi_{O,e}^m(p)$). Пусть: Q — аффинное пространство

над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; $O \in Q$, e — базис пространства Q.

• Пусть: $A \in \mathbb{R}^{N \times N}$, A — симметричная матрица, $B \in \mathbb{R}^{1 \times N}$, $C \in \mathbb{R}$,

$$D = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}.$$

Очевидно: $D \in \mathbb{R}^{(N+1)\times(N+1)}$, D — симметричная матрица,

$$A = \begin{pmatrix} D_{1,1} & \cdot & D_{1,N} \\ \vdots & \vdots & \vdots \\ D_{N,1} & \cdot & D_{N,N} \end{pmatrix},$$
$$B = (D_{N+1,1} \cdots D_{N+1,N}),$$
$$C = D_{N+1,N+1}.$$

Пусть $p \in Q$. Тогда:

$$\sum_{k,m=\overline{1,N+1}} D_{k,m} \psi_{O,e}^{k}(p) \psi_{O,e}^{m}(p) = \sum_{k,m=\overline{1,N}} D_{k,m} \psi_{O,e}^{k}(p) \psi_{O,e}^{m}(p) + \sum_{m=\overline{1,N}} D_{N+1,m} \psi_{O,e}^{N+1}(p) \psi_{O,e}^{m}(p) + \sum_{k=\overline{1,N}} D_{k,N+1} \psi_{O,e}^{k}(p) \psi_{O,e}^{N+1}(p) + D_{N+1,N+1} \psi_{O,e}^{N+1}(p) \psi_{O,e}^{N+1}(p) = \\ = A_{k,m} h_{O,e}^{k}(p) h_{O,e}^{m}(p) + 2B_{m} h_{O,e}^{m}(p) + C.$$

• Пусть: $D \in \mathbb{R}^{(N+1) \times (N+1)}, D$ — симметричная матрица,

$$A = \begin{pmatrix} D_{1,1} & \cdot & D_{1,N} \\ \vdots & \vdots & \vdots \\ D_{N,1} & \cdot & D_{N,N} \end{pmatrix},$$
$$B = (D_{N+1,1} \cdots D_{N+1,N}),$$
$$C = D_{N+1,N+1}.$$

Очевидно: $A \in \mathbb{R}^{N \times N}$, A — симметричная матрица, $B \in \mathbb{R}^{1 \times N}$, $C \in \mathbb{R}$,

$$D = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}.$$

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; $O \in Q$, e - basuc пространства Q, D_1 , $D_2 \in \mathbb{R}^{(N+1)\times(N+1)}$, D_1 , $D_2 - c$ имметричные матрицы,

$$(D_1)_{k,m}\psi_{O,e}^k(p)\psi_{O,e}^m(p) = (D_2)_{k,m}\psi_{O,e}^k(p)\psi_{O,e}^m(p), \quad p \in Q.$$

Tогда $D_1 = D_2$.

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q.

 $\Pi y cm_b : O \in Q, \ e-b$ азис пространства $Q, \ D_1-\kappa o$ эффициенты второго рода полинома F в координатной карте $h_{O,e}.$

 $\Pi ycmb: O' \in Q, e' - basuc пространства Q,$

$$(D_2)_{k',m'} = (D_1)_{k,m} \beta_{k'}^k(O, e; O', e') \beta_{m'}^m(O, e; O', e'), \quad k', m' = \overline{1, N+1}.$$

Tогда $D_2 - \kappa$ оэффициенты второго рода полинома F в координатной карте $h_{O',e'}$.

Доказательство. Очевидно: $D_2 \in \mathbb{R}^{(N+1)\times (N+1)}, D_2$ — симметричная матрица. Пусть $p \in Q$. Тогда:

$$F(p) = (D_1)_{k,m} \psi_{O,e}^k(p) \psi_{O,e}^m(p) = (D_1)_{k,m} \left(\beta_{k'}^k(O,e;O',e') \psi_{O',e'}^{k'}(p) \right) \left(\beta_{m'}^m(O,e;O',e') \psi_{O',e'}^{m'}(p) \right) = \\ = \left((D_1)_{k,m} \beta_{k'}^k(O,e;O',e') \beta_{m'}^m(O,e;O',e') \right) \psi_{O',e'}^{k'}(p) \psi_{O',e'}^{m'}(p) = (D_2)_{k',m'} \psi_{O',e'}^{k'}(p) \psi_{O',e'}^{m'}(p).$$

Итак, D_2 — коэффициенты второго рода полинома F в координатной карте $h_{O',e'}$.

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q.

- 1. Пусть: $O \in Q$, e- базис пространства Q. Существует объект D, удовлетворяющий условию: D- коэффициенты второго рода полинома F в координатной карте $h_{O,e}$.
- 2. Пусть: $O \in Q$, e -базис пространства Q. Существуют объекты A, B, C, удовлетворяющие условию: A, B, C -коэффициенты первого рода полинома F в координатной карте $h_{O,e}$.
- 3. Пусть $O \in Q$. Существуют объекты A, B, C, удовлетворяющие условию: A, B, C коэффициенты третьего рода полинома F относительно точки O.

Утверждение. Пусть: $Q-a\phi$ финное пространство над полем \mathbb{R} , $N\in\mathbb{N}$, $\dim(Q)=N$; F-nолином степени не выше 2 в пространстве Q, $\left\{A(O,e)\right\}_{O,e}$, $\left\{B(O,e)\right\}_{O,e}$, $\left\{C(O,e)\right\}_{O,e}-c$ емейства коэффициентов первого рода полинома F, $O\in Q$, e-bазис пространства Q.

1. Справедливо утверждение:

$$D(O, e) = \begin{pmatrix} A(O, e) & B(O, e)^T \\ B(O, e) & C(O, e) \end{pmatrix}.$$

2. Справедливы утверждения: $A(O,e) = [A_O](e), B(O,e) = [B_O](e), C(O,e) = C_O.$

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q, $\left\{A(O,e)\right\}_{O,e}$, $\left\{B(O,e)\right\}_{O,e}$, $\left\{C(O,e)\right\}_{O,e} - c$ емейства коэффициентов первого рода полинома F.

 Π усть: $O, O' \in Q, e, e' - базисы пространства <math>Q$. Тогда:

$$D_{k',m'}(O',e') = D_{k,m}(O,e)\beta_{k'}^{k}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e'), \quad k', m' = \overline{1,N+1}.$$

Утверждение. Пусть: $Q - a\phi\phi$ инное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q, $\{A(O,e)\}_{O,e}$, $\{B(O,e)\}_{O,e}$, $\{C(O,e)\}_{O,e} - c$ емейства коэффициентов первого рода полинома F.

Пусть: $O, O' \in Q, e, e' -$ базисы пространства Q. Тогда:

$$A_{k',m'}(O',e') = A_{k,m}(O,e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e'), \quad k', m' = \overline{1,N};$$

$$B_{m'}(O',e') = (A_{k,m}(O,e)h_{O,e}^{k}(O') + B_{m}(O,e))\alpha_{m'}^{m}(e,e'), \quad m' = \overline{1,N};$$

$$C(O',e') = A_{k,m}(O,e)h_{O,e}^{k}(O')h_{O,e}^{m}(O') + 2B_{m}(O,e)h_{O,e}^{m}(O') + C(O,e).$$

Доказательство. Пусть k', $m' = \overline{1, N}$. Тогда:

$$A_{k',m'}(O',e') = D_{k',m'}(O',e') =$$

$$= \sum_{k,m=\overline{1,N+1}} D_{k,m}(O,e)\beta_{k'}^{k}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') =$$

$$= \sum_{k,m=\overline{1,N}} D_{k,m}(O,e)\beta_{k'}^{k}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') +$$

$$+ \sum_{m=\overline{1,N}} D_{N+1,m}(O,e)\beta_{k'}^{N+1}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') +$$

$$+ \sum_{k=\overline{1,N}} D_{k,N+1}(O,e)\beta_{k'}^{k}(O,e;O',e')\beta_{m'}^{N+1}(O,e;O',e') +$$

$$+ D_{N+1,N+1}(O,e)\beta_{k'}^{N+1}(O,e;O',e')\beta_{m'}^{N+1}(O,e;O',e') =$$

$$= A_{k,m}(O,e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e').$$

Пусть $m' = \overline{1,N}$. Тогда:

$$B_{m'}(O', e') = D_{N+1,m'}(O', e') =$$

$$= \sum_{k,m=\overline{1,N+1}} D_{k,m}(O,e)\beta_{N+1}^{k}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') =$$

$$= \sum_{k,m=\overline{1,N}} D_{k,m}(O,e)\beta_{N+1}^{k}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') +$$

$$+ \sum_{m=\overline{1,N}} D_{N+1,m}(O,e)\beta_{N+1}^{N+1}(O,e;O',e')\beta_{m'}^{m}(O,e;O',e') +$$

$$+ \sum_{k=\overline{1,N}} D_{k,N+1}(O,e)\beta_{N+1}^{k}(O,e;O',e')\beta_{m'}^{N+1}(O,e;O',e') +$$

$$+ D_{N+1,N+1}(O,e)\beta_{N+1}^{N+1}(O,e;O',e')\beta_{m'}^{N+1}(O,e;O',e') =$$

$$= (A_{k,m}(O,e)h_{O,e}^{k}(O') + B_{m}(O,e))\alpha_{m'}^{m}(e,e').$$

Очевидно:

$$C(O', e') = D_{N+1,N+1}(O', e') =$$

$$= \sum_{k,m=\overline{1,N+1}} D_{k,m}(O, e) \beta_{N+1}^{k}(O, e; O', e') \beta_{N+1}^{m}(O, e; O', e') =$$

$$= \sum_{k,m=\overline{1,N}} D_{k,m}(O, e) \beta_{N+1}^{k}(O, e; O', e') \beta_{N+1}^{m}(O, e; O', e') +$$

$$+ \sum_{m=\overline{1,N}} D_{N+1,m}(O, e) \beta_{N+1}^{N+1}(O, e; O', e') \beta_{N+1}^{m}(O, e; O', e') +$$

$$+ \sum_{k=\overline{1,N}} D_{k,N+1}(O,e)\beta_{N+1}^{k}(O,e;O',e')\beta_{N+1}^{N+1}(O,e;O',e') +$$

$$+ D_{N+1,N+1}(O,e)\beta_{N+1}^{N+1}(O,e;O',e')\beta_{N+1}^{N+1}(O,e;O',e') =$$

$$= A_{k,m}(O,e)h_{O,e}^{k}(O')h_{O,e}^{m}(O') + 2B_{m}(O,e)h_{O,e}^{m}(O') + C(O,e). \quad \Box$$

Замечание. Пусть: Q — аффинное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F — полином степени не выше 2 в пространстве Q, $\big\{A(O,e)\big\}_{O,e}$, $\big\{B(O,e)\big\}_{O,e}$, $\big\{C(O,e)\big\}_{O,e}$ — семейства коэффициентов первого рода полинома F.

Пусть: $O, O' \in Q, e$ — базис пространства Q. Тогда:

$$A(O', e) = A(O, e);$$

$$B_m(O', e) = A_{k,m}(O, e)h_{O,e}^k(O') + B_m(O, e), \quad m = \overline{1, N};$$

$$C(O', e) = A_{k,m}(O, e)h_{O,e}^k(O')h_{O,e}^m(O') + 2B_m(O, e)h_{O,e}^m(O') + C(O, e).$$

Пусть: $O \in Q$, e, e' — базисы пространства Q. Тогда:

$$A_{k',m'}(O,e') = A_{k,m}(O,e)\alpha_{k'}^{k}(e,e')\alpha_{m'}^{m}(e,e'), \quad k', m' = \overline{1,N};$$

$$B_{m'}(O,e') = B_{m}(O,e)\alpha_{m'}^{m}(e,e'), \quad m' = \overline{1,N};$$

$$C(O,e') = C(O,e).$$

Утверждение. Пусть: $Q - a\phi$ финное пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q, $\left\{A(O,e)\right\}_{O,e}$, $\left\{B(O,e)\right\}_{O,e}$, $\left\{C(O,e)\right\}_{O,e} - c$ емейства коэффициентов первого рода полинома F.

Пусть $O, O' \in Q$. Тогда:

$$A_{O'} = A_O;$$

$$B_{O'}(x) = A_O(\overrightarrow{OO'}, x) + B_O(x), \quad x \in \vec{Q};$$

$$C_{O'} = A_O(\overrightarrow{OO'}, \overrightarrow{OO'}) + 2B_O(\overrightarrow{OO'}) + C_O.$$

$$\label{eq:continuous} \begin{split} &Onpedenehue \ (\text{классификация полиномов}). \ \Pi \text{усть: } Q \ -\ \text{аффинное пространство над по-} \\ &\text{лем } \mathbb{R}, N \in \mathbb{N}, \dim(Q) = N; F \ -\ \text{полином степени не выше 2 в пространстве } Q, \left\{A(O,e)\right\}_{O,e}, \\ &\left\{B(O,e)\right\}_{O,e}, \left\{C(O,e)\right\}_{O,e} \ -\ \text{семейства коэффициентов первого рода полинома } F. \end{split}$$

- 1. Будем говорить, что F полином степени 2, если: $A(O,e) \neq \tilde{\Theta}$ при: $O \in Q, e$ базис пространства Q.
- 2. Будем говорить, что F эллиптический полином, если: $\det \big(A(O,e)\big) > 0$ при: $O \in Q$, e базис пространства Q.
- 3. Будем говорить, что F гиперболический полином, если: $\det \big(A(O,e) \big) < 0$ при: $O \in Q, \, e$ базис пространства Q.
- 4. Будем говорить, что F параболический полином, если: $A(O,e) \neq \tilde{\Theta}, \det(A(O,e)) = 0$ при: $O \in Q, e$ базис пространства Q.

Замечание. Пусть: Q — аффинное евклидово пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F — полином степени не выше 2 в пространстве Q, $\big\{A(O,e)\big\}_{O,e}$, $\big\{B(O,e)\big\}_{O,e}$, $\big\{C(O,e)\big\}_{O,e}$ — семейства коэффициентов первого рода полинома F, $O \in Q$.

Очевидно, существует единственный оператор \hat{A}_O , удовлетворяющий условиям: $\hat{A}_O \in \text{Lin}(\vec{Q},\vec{Q}), \ A_O(x,y) = (x,\hat{A}_Oy)$ при $x,\ y \in \vec{Q}$. Так как A_O — симметричная билинейная форма, то \hat{A}_O — самосопряжённый оператор.

Очевидно, существует единственный вектор \vec{B}_O , удовлетворяющий условиям: $\vec{B}_O \in \vec{Q}$, $B_O(x) = (\vec{B}_O, x)$ при $x \in \vec{Q}$.

Пусть $p \in Q$. Тогда:

$$F(p) = A_O(\overrightarrow{Op}, \overrightarrow{Op}) + 2B_O(\overrightarrow{Op}) + C_O = (\overrightarrow{Op}, \hat{A}_O \overrightarrow{Op}) + 2(\overrightarrow{B}_O, \overrightarrow{Op}) + C_O.$$

Замечание. Пусть: Q — аффинное евклидово пространство над полем $\mathbb{R}, N \in \mathbb{N}, \dim(Q) = N; F$ — полином степени не выше 2 в пространстве $Q, \{A(O,e)\}_{O,e}, \{B(O,e)\}_{O,e}, \{C(O,e)\}_{O,e}$ — семейства коэффициентов первого рода полинома $F, O \in Q, e$ — базис пространства Q.

Очевидно:

$$A(O, e) = [A_O](e) = g(e)[\hat{A}_O](e);$$
$$[\hat{A}_O](e) = g(e)^{-1}[A_O](e) = g(e)^{-1}A(O, e).$$

Пусть e — ортонормированный базис. Тогда $g(e) = \tilde{I}$. Следовательно:

$$A(O, e) = [A_O](e) = [\hat{A}_O](e).$$

Очевидно:

$$B(O, e) = [B_O](e) = (g(e)[\vec{B}_O](e))^T;$$
$$[\vec{B}_O](e) = ([B_O](e)g(e)^{-1})^T = (B(O, e)g(e)^{-1})^T.$$

Пусть e — ортонормированный базис. Тогда $g(e)=\tilde{I}$. Следовательно:

$$B(O, e) = [B_O](e) = [\vec{B}_O](e)^T;$$

 $[\vec{B}_O](e) = [B_O](e)^T = B(O, e)^T.$

Замечание. Пусть: Q — аффинное евклидово пространство над полем $\mathbb{R}, N \in \mathbb{N}, \dim(Q) = N; F$ — полином степени не выше 2 в пространстве $Q, \left\{A(O,e)\right\}_{O,e}, \left\{B(O,e)\right\}_{O,e}, \left\{C(O,e)\right\}_{O,e}$ — семейства коэффициентов первого рода полинома F.

Пусть $O, O' \in Q$. Тогда:

$$\hat{A}_{O'} = \hat{A}_{O};$$

$$\vec{B}_{O'} = \hat{A}_{O} \overrightarrow{OO'} + \vec{B}_{O};$$

$$C_{O'} = (\overrightarrow{OO'}, \hat{A}_{O} \overrightarrow{OO'}) + 2(\vec{B}_{O}, \overrightarrow{OO'}) + C_{O}.$$

Утверждение. Пусть: $Q-a\phi\phi$ инное пространство над полем $\mathbb{R},\ N\in\mathbb{N},\ \dim(Q)=N;\ F-$ полином степени не выше 2 в пространстве $Q,\ \left\{A(O,e)\right\}_{O,e},\ \left\{B(O,e)\right\}_{O,e},\ \left\{C(O,e)\right\}_{O,e}-$ семейства коэффициентов первого рода полинома F.

Пусть: $O \in Q$, e -базис пространства Q, $\xi \in \mathbb{R}^N$, $\gamma \in \mathbb{R}^{N \times N}$, $\det(\gamma) \neq 0$. Существует единственный набор объектов O', e', удовлетворяющий условиям: $O' \in Q$, e' -базис пространства Q, $h_{O',e'}(O) = \xi$, $\alpha(e',e) = \gamma$.

Доказательство. Пусть: $O' \in Q$, e' — базис пространства Q, $h_{O',e'}(O) = \xi$, $\alpha(e',e) = \gamma$. Очевидно: $\alpha(e,e') = \alpha(e',e)^{-1} = \gamma^{-1}$. Тогда: $e'_{k'} = (\gamma^{-1})^k_{k'}e_k$ при $k' = \overline{1,N}$. Очевидно: $h_{O,e}(O') = -\alpha(e,e')h_{O',e'}(O) = -\gamma^{-1}\xi$. Тогда $O' = O + (-\gamma^{-1}\xi)^k e_k$.

Пусть: $O' \in Q$, e' — базис пространства Q, $h_{O',e'}(O) = \xi$, $\alpha(e',e) = \gamma$, $O'' \in Q$, e'' — базис пространства Q, $h_{O'',e''}(O) = \xi$, $\alpha(e'',e) = \gamma$. Тогда: $O' = O + (-\gamma^{-1}\xi)^k e_k$, $e'_{k'} = (\gamma^{-1})^k_{k'} e_k$ при $k' = \overline{1,N}$; $O'' = O + (-\gamma^{-1}\xi)^k e_k$, $e''_{k''} = (\gamma^{-1})^k_{k''} e_k$ при $k'' = \overline{1,N}$. Следовательно: O' = O'', e' = e''.

Пусть: $O' = O + (-\gamma^{-1}\xi)^k e_k$, $e'_{k'} = (\gamma^{-1})^k_{k'} e_k$ при $k' = \overline{1,N}$. Так как $\det(\gamma^{-1}) \neq 0$, то: e' - 6азис пространства Q, $\alpha(e,e') = \gamma^{-1}$. Тогда: $\alpha(e',e) = \alpha(e,e')^{-1} = (\gamma^{-1})^{-1} = \gamma$. Очевидно: $O' \in Q$, $h_{O,e}(O') = -\gamma^{-1}\xi$. Тогда:

$$h_{O',e'}(O) = -\alpha(e',e)h_{O,e}(O') = -\gamma(-\gamma^{-1}\xi) = \xi.$$

Замечание (приведение коэффициентов первого рода к каноническому виду). Пусть: Q — аффинное евклидово пространство над полем $\mathbb{R},\ N\in\mathbb{N},\ \dim(Q)=N;\ \mathbb{C}$ — алгебраически замкнутое поле, F — полином степени не выше 2 в пространстве $Q,\ \big\{A(O,e)\big\}_{O,e},\ \big\{B(O,e)\big\}_{O,e},\ \big\{C(O,e)\big\}_{O,e}$ — семейства коэффициентов первого рода полинома F.

- Пусть $O' \in Q$. Так как: \mathbb{C} алгебраически замкнутое поле, $\hat{A}_{O'}$ самосопряжённый оператор, то существуют векторы e'_1, \ldots, e'_N , удовлетворяющие условиям: e' ортонормированный базис пространства Q, e'_1, \ldots, e'_N собственные векторы оператора $\hat{A}_{O'}$. Так как e'_1, \ldots, e'_N собственные векторы оператора $\hat{A}_{O'}$, то $[\hat{A}_{O'}](e')$ диагональная матрица. Так как e' ортонормированный базис, то $A(O', e') = [\hat{A}_{O'}](e')$. Тогда A(O', e') диагональная матрица.
- Пусть F полином степени 2 в пространстве Q. Тогда $A(O',e') \neq \tilde{\Theta}$. Так как A(O',e') симметричная матрица, то $\exists k=\overline{1,N}\big(A_{k,k}(O',e')\neq 0\big)$. Без ограничения общности можно считать, что существует число r, удовлетворяющее условиям: $r=\overline{1,N},$ $A_{k,k}(O',e')\neq 0$ при $k=\overline{1,r};$ $A_{k,k}(O',e')=0$ при $k=\overline{r+1,N}.$

Пусть $\forall k = \overline{r+1, N}(B_k(O', e') = 0)$. Пусть: $\tilde{A} = A(O', e'), \ \tilde{B} = B(O', e'), \ \tilde{C} = C(O', e')$. Пусть: $p \in Q, \ \tilde{x} = h_{O',e'}(p)$. Тогда:

$$F(p) = \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m + 2\tilde{B}_m \tilde{x}^m + C = \sum_{k=1}^r \tilde{A}_{k,k} (\tilde{x}^k)^2 + \sum_{k=1}^r 2\tilde{B}_k \tilde{x}^k + \tilde{C} =$$

$$= \sum_{k=1}^r \tilde{A}_{k,k} \left(\tilde{x}^k + \frac{\tilde{B}_k}{\tilde{A}_{k,k}} \right)^2 + \tilde{C} - \sum_{k=1}^r \frac{\tilde{B}_k^2}{\tilde{A}_{k,k}}.$$

Обозначим:

$$\begin{split} \tilde{A} &= \tilde{A}; \\ \tilde{B}_k &= 0, \quad k = \overline{1, r}; \\ \tilde{\tilde{B}}_k &= \tilde{B}_k, \quad k = \overline{r + 1, N}; \\ \tilde{\tilde{C}} &= \tilde{C} - \sum_{k=1}^r \frac{\tilde{B}_k^2}{\tilde{A}_{k,k}}. \end{split}$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{R}^{N \times N}$, $\tilde{\tilde{A}}$ — диагональная матрица, $\tilde{\tilde{A}}_{k,k} \neq 0$ при $k = \overline{1,r}$; $\tilde{\tilde{A}}_{k,k} = 0$ при $k = \overline{1,N}$; $\tilde{\tilde{E}} \in \mathbb{R}^{1 \times N}$, $\tilde{\tilde{B}}_k = 0$ при $k = \overline{1,N}$; $\tilde{\tilde{C}} \in \mathbb{R}$. Обозначим:

$$\xi^k = \frac{\tilde{B}_k}{\tilde{A}_{k,k}}, \quad k = \overline{1,r};$$

$$\xi^k = 0, \quad k = \overline{r+1, N}$$

Тогда $\xi \in \mathbb{R}^N$. Обозначим, $\tilde{\tilde{x}} = \tilde{x} + \xi$. Тогда $\tilde{\tilde{x}} \in \mathbb{R}^N$. Очевидно:

$$F(p) = \tilde{\tilde{A}}_{k,m}\tilde{\tilde{x}}^k\tilde{\tilde{x}}^m + 2\tilde{\tilde{B}}_k\tilde{\tilde{x}}^k + \tilde{\tilde{C}}.$$

Так как $\det(\tilde{I}) = 1 \neq 0$, то существует единственный набор объектов O'', e'', удовлетворяющий условиям: $O'' \in Q$, e'' - базис пространства Q, $h_{O'',e''}(O') = \xi$, $\alpha(e'',e') = \tilde{I}$. Тогда: $h_{O'',e''}(p) = h_{O'',e''}(O') + \alpha(e'',e')h_{O',e'}(p) = \xi + \tilde{x} = \tilde{x}$. Следовательно:

$$F(p) = \tilde{\tilde{A}}_{k,m} h_{O'',e''}^{k}(p) h_{O'',e''}^{m}(p) + 2\tilde{\tilde{B}}_{k} h_{O'',e''}^{k}(p) + \tilde{\tilde{C}}.$$

В силу произвольности выбора точки $p \in Q$ получаем, что:

$$F(p) = \tilde{\tilde{A}}_{k,m} h_{O'',e''}^{k}(p) h_{O'',e''}^{m}(p) + 2\tilde{\tilde{B}}_{k} h_{O'',e''}^{k}(p) + \tilde{\tilde{C}}, \quad p \in Q.$$

Так как $\tilde{\tilde{A}}$ — симметричная матрица, то: $A(O'',e'')=\tilde{\tilde{A}},\ B(O'',e'')=\tilde{\tilde{B}},\ C(O'',e'')=\tilde{\tilde{C}}.$ Тогда: $r=\overline{1,N},\ A(O'',e'')$ — диагональная матрица, $A_{k,k}(O'',e'')\neq 0$ при $k=\overline{1,r};$ $A_{k,k}(O'',e'')=0$ при $k=\overline{1,N}.$

Пусть $\exists k = \overline{r+1,N} \big(B_k(O',e') \neq 0 \big)$. Тогда: $r = \overline{1,N-1}, \ \exists k = \overline{r+1,N} \big(B_k(O',e') \neq 0 \big)$. Без ограничения общности можно считать, что: $r = \overline{1,N-1}, \ B_{r+1}(O',e') \neq 0$. Пусть: $\tilde{A} = A(O',e'), \ \tilde{B} = B(O',e'), \ \tilde{C} = C(O',e')$. Пусть: $p \in Q, \ \tilde{x} = h_{O',e'}(p)$. Тогда:

$$F(p) = \tilde{A}_{k,m} \tilde{x}^k \tilde{x}^m + 2\tilde{B}_m \tilde{x}^m + C = \sum_{k=1}^r \tilde{A}_{k,k} (\tilde{x}^k)^2 + \sum_{k=1}^N 2\tilde{B}_k \tilde{x}^k + \tilde{C} =$$

$$= \sum_{k=1}^r \tilde{A}_{k,k} \left(\tilde{x}^k + \frac{\tilde{B}_k}{\tilde{A}_{k,k}} \right)^2 + \sum_{k=r+1}^N 2\tilde{B}_k \tilde{x}^k + \tilde{C} - \sum_{k=1}^r \frac{\tilde{B}_k^2}{\tilde{A}_{k,k}} =$$

$$= \sum_{k=1}^r \tilde{A}_{k,k} \left(\tilde{x}^k + \frac{\tilde{B}_k}{\tilde{A}_{k,k}} \right)^2 + 2\tilde{B}_{r+1} \left(\tilde{x}^{r+1} + \frac{1}{2\tilde{B}_{r+1}} \left(\tilde{C} - \sum_{k=1}^r \frac{\tilde{B}_k^2}{\tilde{A}_{k,k}} \right) \right) + \sum_{k=r+2}^N 2\tilde{B}_k \tilde{x}^k.$$

Обозначим:

$$\begin{split} \tilde{\tilde{A}} &= \tilde{A}; \\ \tilde{\tilde{B}}_k &= 0, \quad k = \overline{1, r}; \\ \tilde{\tilde{B}}_k &= \tilde{B}_k, \quad k = \overline{r + 1, N}; \\ \tilde{\tilde{C}} &= 0. \end{split}$$

Тогда: $\tilde{\tilde{A}} \in \mathbb{R}^{N \times N}$, $\tilde{\tilde{A}}$ — диагональная матрица, $\tilde{\tilde{A}}_{k,k} \neq 0$ при $k = \overline{1,r}$; $\tilde{\tilde{A}}_{k,k} = 0$ при $k = \overline{1,r}$; $\tilde{\tilde{B}}_{k} \in \mathbb{R}^{1 \times N}$, $\tilde{\tilde{B}}_{k} = 0$ при $k = \overline{1,r}$; $\tilde{\tilde{B}}_{r+1} \neq 0$, $\tilde{\tilde{C}} \in \mathbb{R}$, $\tilde{\tilde{C}} = 0$. Обозначим:

$$\xi^k = \frac{\tilde{B}_k}{\tilde{A}_{k,k}}, \quad k = \overline{1,r};$$

$$\xi^{r+1} = \frac{1}{2\tilde{B}_{r+1}} \Big(\tilde{C} - \sum_{k=1}^r \frac{\tilde{B}_k^2}{\tilde{A}_{k,k}} \Big),$$

$$\xi^k = 0, \quad k = \overline{r+2, N}.$$

Тогда $\xi \in \mathbb{R}^N$. Обозначим, $\tilde{\tilde{x}} = \tilde{x} + \xi$. Тогда $\tilde{\tilde{x}} \in \mathbb{R}^N$. Очевидно:

$$F(p) = \tilde{\tilde{A}}_{k,m}\tilde{\tilde{x}}^k\tilde{\tilde{x}}^m + 2\tilde{\tilde{B}}_k\tilde{\tilde{x}}^k + \tilde{\tilde{C}}.$$

Так как $\det(\tilde{I})=1\neq 0$, то существует единственный набор объектов $O'',\,e'',\,$ удовлетворяющий условиям: $O''\in Q,\,e''-$ базис пространства $Q,\,h_{O'',e''}(O')=\xi,\,\alpha(e'',e')=\tilde{I}.$ Тогда: $h_{O'',e''}(p)=h_{O'',e''}(O')+\alpha(e'',e')h_{O',e'}(p)=\xi+\tilde{x}=\tilde{x}.$ Следовательно:

$$F(p) = \tilde{\tilde{A}}_{k,m} h_{O'',e''}^{k}(p) h_{O'',e''}^{m}(p) + 2\tilde{\tilde{B}}_{k} h_{O'',e''}^{k}(p) + \tilde{\tilde{C}}.$$

В силу произвольности выбора точки $p \in Q$ получаем, что:

$$F(p) = \tilde{\tilde{A}}_{k,m} h_{O'',e''}^{k}(p) h_{O'',e''}^{m}(p) + 2\tilde{\tilde{B}}_{k} h_{O'',e''}^{k}(p) + \tilde{\tilde{C}}, \quad p \in Q.$$

Так как \tilde{A} — симметричная матрица, то: $A(O'',e'')=\tilde{A}$, $B(O'',e'')=\tilde{B}$, $C(O'',e'')=\tilde{C}$. Тогда: $r=\overline{1,N-1}$, A(O'',e'') — диагональная матрица, $A_{k,k}(O'',e'')\neq 0$ при $k=\overline{1,r}$; $A_{k,k}(O'',e'')=0$ при $k=\overline{1,r}$; $B_{r+1}(O'',e'')\neq 0$, C(O'',e'')=0.

Замечание (инварианты полинома). Пусть: Q — аффинное евклидово пространство над полем $\mathbb{R},\ N\in\mathbb{N},\ \dim(Q)=N;\ F$ — полином степени не выше 2 в пространстве Q, $\left\{A(O,e)\right\}_{O,e},\ \left\{B(O,e)\right\}_{O,e},\ \left\{C(O,e)\right\}_{O,e}$ — семейства коэффициентов первого рода полинома $F,\ O\in Q,\ e$ — ортонормированный базис пространства Q.

Обозначим:

$$I_k(O, e) = (-1)^{N-k} \alpha_{N-k} (A(O, e)), \quad k = \overline{1, N};$$

 $I_{N+1}(O, e) = \det(D(O, e)).$

Очевидно:

$$I_1(O,e) = (-1)^{N-1} \alpha_{N-1} (A(O,e)) = (-1)^{N-1} (-1)^{N-1} \operatorname{tr} (A(O,e)) = \operatorname{tr} (A(O,e)),$$

$$I_N(O,e) = (-1)^0 \alpha_0 (A(O,e)) = \det (A(O,e)).$$

Утверждение. Пусть: $Q - a\phi\phi$ инное евклидово пространство над полем \mathbb{R} , $N \in \mathbb{N}$, $\dim(Q) = N$; F - nолином степени не выше 2 в пространстве Q, $\big\{A(O,e)\big\}_{O,e}$, $\big\{B(O,e)\big\}_{O,e}$, $\big\{C(O,e)\big\}_{O,e} - c$ емейства коэффициентов первого рода полинома F.

Пусть: $O, O' \in Q, e, e' - opmoнopмированные базисы пространства <math>Q$. Тогда: $I_k(O',e') = I_k(O,e)$ при $k = \overline{1,N+1}$.

Доказательство. Пусть $k=\overline{1,N}$. Так как $e,\ e'$ — ортонормированные базисы, то: $A(O,e)=[\hat{A}_O](e),\ A(O',e')=[\hat{A}_{O'}](e').$ Тогда:

$$I_k(O',e') = (-1)^{N-k} \alpha_{N-k} (A(O',e')) = (-1)^{N-k} \alpha_{N-k} ([\hat{A}_{O'}](e')) = (-1)^{N-k} \alpha_{N-k} ([\hat{A}_O](e')) = (-1)^{N-k} \alpha_{N-k} ([\hat{A}_O](e)) = (-1)^{N-k} \alpha_{N-k} (A(O,e)) = I_k(O,e).$$

Так как e, e' — ортонормированные базисы, то $\alpha(e, e')$ — ортогональная матрица. Тогда: $\det(\alpha(e, e')) \neq 0, \ \alpha(e, e')^{-1} = \alpha(e, e')^T$. Следовательно:

$$I_{N+1}(O', e') = \det(D(O', e')) = \det(\beta(O, e; O', e')^T D(O, e)\beta(O, e; O', e')) =$$

$$= \det(\beta(O, e; O', e')^T) \det(D(O, e)) \det(\beta(O, e; O', e')) =$$

$$= \det(\alpha(e, e')^T) I_{N+1}(O, e) \det(\alpha(e, e')) = \det(\alpha(e, e')^T) \det(\alpha(e, e')) I_{N+1}(O, e) =$$

$$= \det(\alpha(e, e')^T \alpha(e, e')) I_{N+1}(O, e) = \det(\tilde{I}) I_{N+1}(O, e) = I_{N+1}(O, e). \quad \Box$$

20.3. Кривые и поверхности второго порядка

Определение (кривая второго порядка). Пусть: Q — аффинное пространство над полем \mathbb{R} , $\dim(Q)=2$. Будем говорить, что l — кривая второго порядка в пространстве Q, если существует функция F, удовлетворяющая условиям: F — полином степени 2 в пространстве Q, $l=\ker(F)$.

Определение (поверхность второго порядка). Пусть: Q — аффинное пространство над полем \mathbb{R} , $N \in \mathbb{Z}$, $N \geqslant 3$, $\dim(Q) = N$. Будем говорить, что σ — поверхность второго порядка в пространстве Q, если существует функция F, удовлетворяющая условиям: F — полином степени 2 в пространстве Q, $\sigma = \ker(F)$.

Замечание. Пусть: $x, y \in \mathbb{R}, xy < 0$. Тогда $(x < 0 \land y > 0) \lor (x > 0 \land y < 0)$.

Пусть: $x, y \in \mathbb{R}, xy > 0$. Тогда $(x < 0 \land y < 0) \lor (x > 0 \land y > 0)$.

Замечание. Пусть: Q — аффинное евклидово пространство над полем \mathbb{R} , $\dim(Q)=2$, Q — ориентированное пространство; \mathbb{C} — алгебраически замкнутое поле, l — кривая второго порядка в пространстве Q.

Так как l — кривая второго порядка в пространстве Q, то существует функция F, удовлетворяющая условиям: F — полином степени 2 в пространстве Q, $l = \ker(F)$. Пусть $\left\{A(O,e)\right\}_{O,e}, \ \left\{B(O,e)\right\}_{O,e}, \ \left\{C(O,e)\right\}_{O,e}$ — семейства коэффициентов первого рода полинома F.

Так как \mathbb{C} — алгебраически замкнутое поле, то существуют объекты O, e, удовлетворяющие одному из следующих наборов условий:

- 1. $O \in Q$, e правый ортонормированный базис пространства Q, $A_{1,1} \neq 0$, $A_{2,2} \neq 0$, $B_1 = 0$, $B_2 = 0$;
- 2. $O \in Q$, e правый ортонормированный базис пространства Q, $A_{1,1} \neq 0$, $A_{2,2} = 0$, $B_1 = 0$, $B_2 = 0$;
- 3. $O \in Q,\ e$ правый ортонормированный базис пространства $Q,\ A_{1,1} \neq 0,\ A_{2,2} = 0,$ $B_1 = 0,\ B_2 \neq 0,\ C = 0.$ Тогда:

$$F(p) = \sum_{k=1}^{2} A_{k,k} (h_{O,e}^{k}(p))^{2} + \sum_{k=1}^{2} 2B_{k} h_{O,e}^{k}(p) + C, \quad p \in Q.$$

Следовательно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$\sum_{k=1}^{2} A_{k,k}(x^k)^2 + \sum_{k=1}^{2} 2B_k x^k + C = 0.$$

1. Пусть реализуется 1-й вариант. Пусть $A_{1,1}A_{2,2} < 0$. Пусть $C \neq 0$. Так как: $A_{1,1}A_{2,2} < 0$, $C \neq 0$, то: $A_{1,1}C < 0$, $A_{2,2}C > 0$ либо $A_{1,1}C > 0$, $A_{2,2}C < 0$. Без ограничения общности можно считать, что: $A_{1,1}C < 0$, $A_{2,2}C > 0$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^{1})^{2} + A_{2,2}(x^{2})^{2} + C = 0;$$

$$A_{1,1}(x^{1})^{2} + A_{2,2}(x^{2})^{2} = -C;$$

$$\frac{A_{1,1}}{-C}(x^{1})^{2} + \frac{A_{2,2}}{-C}(x^{2})^{2} = 1;$$

$$\frac{(x^{1})^{2}}{\frac{-C}{A_{1,1}}} - \frac{(x^{2})^{2}}{\frac{C}{A_{2,2}}} = 1;$$

$$\frac{(x^1)^2}{\left(\sqrt{\frac{-C}{A_{1,1}}}\right)^2} - \frac{(x^2)^2}{\left(\sqrt{\frac{C}{A_{2,2}}}\right)^2} = 1.$$

Следовательно, l — гипербола.

2. Пусть реализуется 1-й вариант. Пусть $A_{1,1}A_{2,2} < 0$. Пусть C = 0. Так как $A_{1,1}A_{2,2} < 0$, то: $\mathrm{sgn}(A_{1,1}) \neq 0$, $\mathrm{sgn}(A_{1,1}) = -\mathrm{sgn}(A_{2,2})$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^{1})^{2} + A_{2,2}(x^{2})^{2} = 0;$$

$$|A_{1,1}|(x^{1})^{2} - |A_{2,2}|(x^{2})^{2} = 0;$$

$$\left(\sqrt{|A_{1,1}|} \cdot x^{1} - \sqrt{|A_{2,2}|} \cdot x^{2}\right) \left(\sqrt{|A_{1,1}|} \cdot x^{1} + \sqrt{|A_{2,2}|} \cdot x^{2}\right) = 0.$$

Так как $\sqrt{|A_{1,1}|}$, $\sqrt{|A_{2,2}|} \neq 0$, то l — объединение двух прямых, имеющих одну общую точку.

3. Пусть реализуется 1-й вариант. Пусть $A_{1,1}A_{2,2}>0$. Пусть $A_{1,1}C<0$. Так как: $A_{1,1}A_{2,2}>0$, $A_{1,1}C<0$, то $A_{2,2}C<0$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^{1})^{2} + A_{2,2}(x^{2})^{2} + C = 0;$$

$$A_{1,1}(x^{1})^{2} + A_{2,2}(x^{2})^{2} = -C;$$

$$\frac{A_{1,1}}{-C}(x^{1})^{2} + \frac{A_{2,2}}{-C}(x^{2})^{2} = 1;$$

$$\frac{(x^{1})^{2}}{\frac{-C}{A_{1,1}}} + \frac{(x^{2})^{2}}{\frac{-C}{A_{2,2}}} = 1;$$

$$\frac{(x^{1})^{2}}{\left(\sqrt{\frac{-C}{A_{1,1}}}\right)^{2}} + \frac{(x^{2})^{2}}{\left(\sqrt{\frac{-C}{A_{2,2}}}\right)^{2}} = 1.$$

Без ограничения общности можно считать, что $\sqrt{\frac{-C}{A_{2,2}}}\leqslant \sqrt{\frac{-C}{A_{1,1}}}$. Тогда l — эллипс.

4. Пусть реализуется 1-й вариант. Пусть $A_{1,1}\dot{A}_{2,2}>0$. Пусть $A_{1,1}C=0$. Так как: $A_{1,1}\neq 0$, $A_{1,1}C=0$, то C=0. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^1)^2 + A_{2,2}(x^2)^2 = 0.$$

Так как: $A_{1,1}, A_{2,2} < 0$ либо $A_{1,1}, A_{2,2} > 0$, то l — множество, состоящее из одной точки.

5. Пусть реализуется 1-й вариант. Пусть $A_{1,1}A_{2,2}>0$. Пусть $A_{1,1}C>0$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^1)^2 + A_{2,2}(x^2)^2 + C = 0.$$

Так как: $A_{1,1},\,A_{2,2},\,C<0$ либо $A_{1,1},\,A_{2,2},\,C>0,$ то $l=\varnothing.$

6. Пусть реализуется 2-й вариант. Пусть $A_{1,1}C < 0$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^1)^2 + C = 0;$$

 $(x^1)^2 + \frac{C}{A_{1,1}} = 0;$

$$(x^{1})^{2} - \frac{-C}{A_{1,1}} = 0;$$

$$\left(x^{1} - \sqrt{\frac{-C}{A_{1,1}}}\right) \left(x^{1} + \sqrt{\frac{-C}{A_{1,1}}}\right) = 0.$$

Так как $\sqrt{\frac{-C}{A_{1,1}}} \neq 0$, то l — объединение двух прямых, не имеющих общих точек.

7. Пусть реализуется второй вариант. Пусть $A_{1,1}C=0$. Так как: $A_{1,1}\neq 0,\ A_{1,1}C=0,$ то C=0. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^1)^2 = 0;$$

 $(x^1)^2 = 0;$
 $x^1 = 0.$

Тогда l — прямая.

8. Пусть реализуется второй вариант. Пусть $A_{1,1}C > 0$. Очевидно, $h_{O,e}[l]$ — множество всех решений уравнения:

$$A_{1,1}(x^1)^2 + C = 0.$$

Так как: $A_{1,1}$, C < 0 либо $A_{1,1}$, C > 0, то $l = \emptyset$.

9. Пусть реализуется третий вариант. Пусть: $p \in Q, x = h_{O,e}(p)$. Обозначим, $\lambda = \operatorname{sgn}(A_{1,1}B_2)$. Тогда: $\lambda = \pm 1, \lambda \frac{B_2}{A_{1,1}} = \left|\frac{B_2}{A_{1,1}}\right|$. Очевидно:

$$F(p) = A_{1,1}(x^1)^2 + 2B_2x^2 = A_{1,1}(\lambda x^1)^2 - 2(\lambda B_2)(-\lambda x^2).$$

Обозначим:

$$\gamma = \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix}.$$

Тогда: $\gamma \in \mathbb{R}^{2 \times 2}$, γ — ортогональная матрица, $\det(\gamma) = 1$. Обозначим, $\tilde{x} = \gamma x$. Тогда $\tilde{x} \in \mathbb{R}^2$. Очевидно:

$$F(p) = A_{1,1}(\tilde{x}^2)^2 - 2(\lambda B_2)\tilde{x}^1.$$

Так как $\det(\gamma) = 1 \neq 0$, то существует единственный набор объектов O', e', удовлетворяющий условиям: $O' \in Q$, e' — базис пространства Q, $h_{O',e'}(O) = \tilde{\theta}$, $\alpha(e',e) = \gamma$. Так как: e — правый ортонормированный базис пространства Q, $\alpha(e,e')$ — ортогональная матрица, $\det(\alpha(e,e')) = 1 > 0$, то e' — правый ортонормированный базис пространства Q. Очевидно: $h_{O',e'}(p) = h_{O',e'}(O) + \alpha(e',e)h_{O,e}(p) = \gamma x = \tilde{x}$. Тогда:

$$F(p) = A_{1,1} (h_{O',e'}^2(p))^2 - 2(\lambda B_2) h_{O',e'}^1(p).$$

В силу произвольности выбора точки $p \in Q$ получаем:

$$F(p) = A_{1,1} (h_{O',e'}^2(p))^2 - 2(\lambda B_2) h_{O',e'}^1(p), \quad p \in Q.$$

Тогда $h_{O',e'}[l]$ — множество всех решений уравнения:

$$A_{1,1}(\tilde{x}^2)^2 - 2(\lambda B_2)\tilde{x}^1 = 0;$$

$$A_{1,1}(\tilde{x}^2)^2 = 2(\lambda B_2)\tilde{x}^1;$$

$$(\tilde{x}^2)^2 = 2\lambda \frac{B_2}{A_{1,1}}\tilde{x}^1;$$

$$(\tilde{x}^2)^2 = 2\left|\frac{B_2}{A_{1,1}}\right|\tilde{x}^1.$$

Так как $\left| \frac{B_2}{A_{1,1}} \right| > 0$, то l — парабола.

Теорема. Пусть: $Q - a\phi\phi$ инное евклидово пространство над полем \mathbb{R} , $\dim(Q) = 2$, $Q - opueнтированное пространство; <math>l - \kappa pu$ вая второго порядка в пространстве Q. Тогда l является одним из следующих множеств.

- 1. Эллипс.
- 2. Множество, состоящее из одной точки.
- 3. Пустое множество.
- 4. Гипербола.
- 5. Объединение двух прямых, имеющих одну общую точку.
- 6. Парабола.
- 7. Объединение двух прямых, не имеющих общих точек.
- 8. Прямая.

Теорема (БЕЗ ДОКАЗАТЕЛЬСТВА). Пусть: $Q - a\phi\phi$ инное евклидово пространство над полем \mathbb{R} , $\dim(Q) = 2$, $Q - opueнтированное пространство; <math>l - \kappa$ ривая второго порядка в пространстве Q, $\exists p_1 \exists p_2 (p_1 \in l \land p_2 \in l \land p_1 \neq p_2)$.

Пусть: F_1 — полином степени 2 в пространстве Q, $l = \ker(F_1)$, F_2 — полином степени 2 в пространстве Q, $l = \ker(F_2)$. Тогда существует число λ , удовлетворяющее условиям: $\lambda \in \mathbb{R}$, $\lambda \neq 0$, $F_2 = \lambda F_1$.

Теорема (БЕЗ ДОКАЗАТЕЛЬСТВА). Пусть: $Q - a\phi\phi$ инное евклидово пространство над полем \mathbb{R} , $\dim(Q) = 3$, $Q - opueнтированное пространство; <math>\sigma - noверхность$ второго порядка в пространстве Q. Тогда σ является одним из следующих множеств.

- *1.* Эллипсоид.
- 2. Множество, состоящее из одной точки.
- 3. Пустое множество.
- 4. Однополостный гиперболоид.
- 5. Конус второго порядка.
- 6. Двуполостный гиперболоид.
- 7. Эллиптический параболоид.
- 8. Гиперболический параболоид.
- 9. Эллиптический цилиндр.
- 10. Прямая.
- 11. Гиперболический цилиндр.
- 12. Объединение двух плоскостей, пересекающихся по прямой.
- 13. Параболический цилиндр.
- 14. Объединение двух плоскостей, не имеющих общих точек.
- *15.* Плоскость.

Список литературы

[1] Кадомцев С. Б. Аналитическая геометрия и линейная алгебра.

- [2] Ильин В. А., Позняк Э. Г. Линейная алгебра.
- [3] Винберг Э. Б. Курс алгебры.
- [4] Ефимов Н. В., Розендорн Э. Р. Линейная алгебра и многомерная геометрия.
- [5] Бутузов В. Ф., Крутицкая Н. Ч., Шишкин А. А. Линейная алгебра в вопросах и задачах.
- [6] $\mathit{Kum}\ \Gamma$. Д., $\mathit{Kpuukoe}\ \mathcal{I}$. В. Алгебра и аналитическая геометрия: Теоремы и задачи. Том II, часть 1, 2.