

Deep Neural Network

LE Van Linh

van-linh.le@u-bordeaux.fr

http://www.labri.fr/perso/vle

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

Example

Example

Example

Given enough training data (**X**,**y**), neural network remarkable figuring out **a function** to map from **X** to **y**

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

Structured data

Size(m²)	Acreage	 Price (x 100 euros)
10	1	3
14	1	3.5
••••		***
50	2	7
100	3	12

Unstructured data

Bonjour, Comment ca va?

Application domains

Input (X)	Output (y)	Application
Room features	Prices	Real estate
Advertisement, user info	Click on ad? (0,1)	Online advertising
Image	Object	Photo tagging
Audio	Text transcript	Speech recognition
French	Vietnamese	Machine translation
Image, radar information	Position of other cars	Automatically driving

8

Driving of Deep Learning

Three components

- 1. Data
- 2. Computation
- 3. Algorithms

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

One node network

Binary classification problem

→ CAT (1) or NOT CAT (0)

Notations:

- A training data (x, y): $x \in R^{n_x}$, $y \in \{0,1\}$
- With m training examples: $(x^1, y^1), (x^2, y^2), ..., (x^m, y^m)$

$$X = \begin{bmatrix} x^1 & x^2 & \dots & x^m \end{bmatrix}$$

$$X \in \mathbb{R}^{n_{\chi} \times m}$$

$$X.shape = (n_x, m)$$

$$Y = [y^1, y^2, ..., y^m]$$

$$Y \in \mathbb{R}^{1 \times m}$$

$$Y.shape = (1, m)$$

Given **x**, want:

$$\hat{\mathbf{y}} = \mathbf{P}(\mathbf{y} = \mathbf{1}|\mathbf{x})$$
 where $(x \in R^{n_x})$

Parameters:

$$w \in R^{n_x}, b \in R$$

Output:

$$\widehat{y} = \sigma(w^T x + b)$$

where σ is an activation function.

Loss (error) function:

• L1 loss: $\mathcal{L}(\widehat{y}, y) = |\widehat{y} - y|$

• L2 loss:
$$\mathcal{L}(\widehat{y}, y) = \frac{1}{2}(\widehat{y} - y)^2$$

Cross-entropy loss:

$$\mathcal{L}(\widehat{y}, y) = -(y \cdot \log(\widehat{y}) + (1 - y) \cdot \log(1 - \widehat{y}))$$

Cost function: $\{(x^1, y^1), (x^2, y^2), ..., (x^m, y^m)\}$, want: $\hat{y}^{(i)} \approx y^{(i)}$

• L1 cost:
$$J(\mathbf{w}, \mathbf{b}) = \frac{1}{m} \sum_{1}^{m} \mathcal{L}(\widehat{y}, y) = \frac{1}{m} \sum_{1}^{m} |\widehat{y} - y|$$

• L2 cost:
$$J(\mathbf{w}, \mathbf{b}) = \frac{1}{m} \sum_{1}^{m} \mathcal{L}(\widehat{y}, y) = \frac{1}{m} \sum_{1}^{m} (\widehat{y} - y)^{2}$$

Cross-entropy cost:

$$J(w, b) = \frac{1}{m} \sum_{1}^{m} \mathcal{L}(\hat{y}, y) = -\frac{1}{m} \sum_{1}^{m} (y^{(i)} \cdot \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \cdot \log(1 - \hat{y}^{(i)}))$$

16

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

Objective: To find w, b that minimize J(w,b)

Repeat to update:

$$w \coloneqq w - \alpha \frac{dJ}{dw}$$

$$b \coloneqq b - \alpha \frac{dJ}{db}$$

Where: α is learning rate

Schematic of gradient descent.

$$x = 1 \rightarrow f(x) = 3$$

 $x = 1.001 \rightarrow f(x) = 3.003$

Slope of f(x) at x = 1:

$$\frac{df(x)}{dx} = \frac{0,003}{0,001} = 3$$

Which is slope of f(x) at 5?

$$x = 3 \rightarrow f(x) = 9$$

 $x = 3.001 \rightarrow f(x) = 9.006$

Slope of
$$f(x)$$
 at $x = 1$:

$$\frac{df(x)}{dx} = \frac{0,006}{0,001} = 6$$

Which is slope of f(x) at 5?

With
$$f(x) = x^3 \rightarrow \frac{df(x)}{dx} = 3x^2$$

With $f(x) = \log(x) \rightarrow \frac{df(x)}{dx} = \frac{1}{x}$

Consider a function: J(a, b, c) = 3(a + bc)

Assign: u = bc, $v = (a + bc) = (a + u) \Rightarrow J = 3v$

Consider a function: J(a, b, c) = 3(a + bc)

Assign: u = bc, $v = (a + bc) = (a + u) \Rightarrow J = 3v$

$$J = 3v: v = 19 \rightarrow 19,001$$

$$J = 57 \rightarrow 57,003 \Rightarrow \frac{dJ}{dv} = \frac{0,003}{0,001} = 3$$

$$v = a + u: a = 7 \rightarrow 7,001$$

$$v = 19 \rightarrow 19,001$$

$$J = 57 \rightarrow 57,003 \Rightarrow \frac{dJ}{da} = \frac{0,003}{0,001} = 3, \frac{dv}{da} = \frac{0,001}{0,001} = 1$$

24

$$v = a + u: u = 12 \to 12,001$$

$$v = 19 \to 19,001$$

$$J = 57 \to 57,003 \Rightarrow \frac{dJ}{du} = \frac{0,003}{0,001} = 3, \frac{dv}{du} = \frac{0,001}{0,001} = 1$$

$$u = bc: b = 4 \to 4,001$$

$$u = 12 \to 12,003 \Rightarrow \frac{du}{db} = \frac{0,003}{0,001} = 3 \Rightarrow \frac{dJ}{db} = \frac{dJ}{du} \frac{du}{db} = 3 \times 3 = 9$$

25

$$u = bc$$
: $c = 3 \rightarrow 3,001$

$$u = 12 \rightarrow 12,004 \Rightarrow \frac{du}{db} = \frac{0,004}{0,001} = 4 \Rightarrow \frac{dJ}{dc} = \frac{dJ}{du}\frac{du}{dc} = 3 \times 4 = 12$$

Derivatives in Logistic Regression

$$z = w^T x + b$$
 and $a = \hat{y} = \sigma(z)$

$$\Rightarrow \mathcal{L}(a, y) = \mathcal{L}(\widehat{y}, y) = -(y \cdot \log(\widehat{y}) + (1 - y) \cdot \log(1 - \widehat{y}))$$

Derivatives in Logistic Regression

$$\bullet \frac{d\mathcal{L}}{da} = \left(\frac{-y}{a} + \frac{1-y}{1-a}\right)$$

•
$$\frac{d\mathcal{L}}{dz} = (a - y), \frac{da}{dz} = a(1 - a)$$

•
$$dw_1 = \frac{d\mathcal{L}}{dw_1} = x_1 \frac{d\mathcal{L}}{dz}$$

•
$$dw_2 = \frac{d\mathcal{L}}{dw_2} = x_2 \frac{d\mathcal{L}}{dz}$$

•
$$db = \frac{d\mathcal{L}}{db} = dz$$

•
$$w_1 := w_1 - \alpha . dw_1$$

•
$$w_2 := w_2 - \alpha . dw_2$$

•
$$b := b - \alpha db$$

Gradient descent on m training data

Given
$$m$$
 training examples: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$
 $\Rightarrow J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a^{(i)}, y^{(i)})$ where $a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$

$$\frac{dJ(w,b)}{dw_1} = \frac{1}{m} \sum_{i=1}^{m} \frac{d\mathcal{L}(a^{(i)}, y^{(i)})}{dw_1}
\cdot \frac{dJ(w,b)}{dw_2} = \frac{1}{m} \sum_{i=1}^{m} \frac{d\mathcal{L}(a^{(i)}, y^{(i)})}{dw_2}
\cdot \frac{dJ(w,b)}{db} = \frac{1}{m} \sum_{i=1}^{m} \frac{d\mathcal{L}(a^{(i)}, y^{(i)})}{db}$$

Gradient descent on m training data


```
Initialize: I = 0, dw_1 = 0, dw_2 = 0, db = 0
For i = 1 to m:
         z^{(i)} = w^T x^{(i)} + h
         a^{(i)} = \sigma(z^{(i)})
         J += -[y^{(i)}.\log(a^{(i)}) + (1-y^{(i)}).\log(1-a^{(i)})]
         dz^{(i)} = a^{(i)} - v^{(i)}
         dw_1 += x_1^{(i)} dz^{(i)}
         dw_2 += x_2^{(i)} dz^{(i)}
         db += dz^{(i)}
J = \frac{J}{m}, dw_1 = \frac{dw_1}{m}, dw_2 = \frac{dw_2}{m}, db = \frac{db}{m}
w_1 := w_1 - \alpha . dw_1; w_2 := w_2 - \alpha . dw_2; b := b - \alpha . db
```

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

Vectorization

Consider the computing: $z = w^T x + b$

Where w and x are large vectors features. $(w, x \in \mathcal{R}^{n_x})$

Non-vectorize

$$z = 0$$

for i in range (n_x) :
$$z += w[i] * x[i]$$
$$z += b$$

Vectorize

$$z = np.dot(w, x) + b$$

- > Avoid the loops
- Make program more faster

Vectorization

Consider the computing: u = A.v, where A is a matrix and v is a vector and $u_i = \sum_j A_{ij} v_j$

```
u = np.zeros((n, 1))
for i in rows(A):
for j in cols(A):
u[i] += A[i][j] * v[j]
```

The for loops are equal to u = np. dost(A, v)

Vectorization in logistic regression


```
Initialize: J = 0, dw_1 = 0, dw_2 = 0, db = 0

For i = 1 to m:
z^{(i)} = w^T x^{(i)} + b
a^{(i)} = \sigma(z^{(i)})
J += -[y^{(i)}.\log(a^{(i)}) + (1-y^{(i)}).\log(1-a^{(i)})]
dz^{(i)} = a^{(i)} - y^{(i)}
dw_1 += x_1^{(i)} dz^{(i)}
dw_2 += x_2^{(i)} dz^{(i)}
db += dz^{(i)}
J = \frac{J}{m}, dw_1 = \frac{dw_1}{m}, dw_2 = \frac{dw_2}{m}, db = \frac{db}{m}
```

How to change the derivatives into the form of vectorization?

Vectorization

Consider 3 training examples:

$$z^{(1)} = w^T x^{(1)} + b z^{(2)} = w^T x^{(2)} + b z^{(3)} = w^T x^{(3)} + b$$

$$a^{(1)} = \sigma(z^{(1)}) a^{(2)} = \sigma(z^{(2)}) a^{(3)} = \sigma(z^{(3)})$$

Vectorizing:

$$\mathbf{X} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ x^{(1)} & x^{(2)} & \dots & x^{(m)} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

$$Z = \begin{bmatrix} z^{(1)} & z^{(2)} & \dots & z^{(m)} \end{bmatrix} = w^T X + \begin{bmatrix} b & b & \dots & b \end{bmatrix} \\
= \begin{bmatrix} w^T x^{(1)} + b & w^T x^{(2)} + b & \dots & w^T x^m + b \end{bmatrix}$$

$$\mathbf{A} = [a^{(1)} \quad a^{(2)} \quad \dots \quad a^{(m)}] = \sigma(Z)$$

Vectorization in gradient descent

$$dz^{(1)} = a^{(1)} - y^{(1)}$$
 $dz^{(2)} = a^{(2)} - y^{(2)}$ $dz^{(3)} = a^{(3)} - y^{(3)}$
 $dZ = [dz^{(1)} \ dz^{(2)} \ ... \ dz^{(m)}] (dZ.shape = (1 \times m))$

$$A = [a^{(1)} \ a^{(2)} \ \dots \ a^{(m)}] \ Y = [y^{(1)} \ y^{(2)} \ \dots \ y^{(m)}]$$
$$\rightarrow dZ = A - Y = [a^{(1)} - y^{(1)} \ a^{(2)} - y^{(2)} \ \dots \ a^{(m)} - y^{(m)}]$$

In numpy: $d\mathbf{b} = \frac{1}{m} n\mathbf{p}. sum(d\mathbf{Z}), d\mathbf{w} = \frac{1}{m} X d\mathbf{Z}^T$

Vectorization in logistic regression

The for loop in slide 31 is equal to:

$$Z = w^T X + b = np. dot(w.T,X) + b$$

$$A = \sigma(Z)$$

$$dZ = A - Y$$

$$dw = \frac{1}{m} X. dZ^T$$

$$db = \frac{1}{m}np.sum(dZ)$$

$$w \coloneqq w - \alpha dw$$

$$b = b - \alpha . db$$

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

This is a:

- 2 layers neural network
- The hidden layers and output layer (sometime) will have the parameters (W, b)

The computing at one node of NN.

$$z = w^T x + b$$

$$a = \sigma(z)$$

Lets us consider a simple NN.

How about computing at each node?

The computing at one node of NN.

$$z = w^T x + b$$

$$a = \sigma(z)$$

$$z_1^{[1]} = w_1^{[1]T} x + b_1^{[1]}$$
$$a_1^{[1]} = \sigma(z_1^{[1]})$$

Note: $a_i^{[l]}$ denotes node a_i at layer l

$$z_2^{[1]} = w_2^{[1]T} x + b_2^{[1]}$$
$$a_2^{[1]} = \sigma(z_2^{[1]})$$

$$z_3^{[1]} = w_3^{[1]T} x + b_3^{[1]}$$
$$a_3^{[1]} = \sigma(z_3^{[1]})$$

$$z_1^{[1]} = w_1^{[1]T}x + b_1^{[1]}, a_1^{[1]} = \sigma(z_1^{[1]})$$

$$z_2^{[1]} = w_2^{[1]T} x + b_2^{[1]}, a_2^{[1]} = \sigma(z_2^{[1]})$$

$$z_3^{[1]} = w_3^{[1]T}x + b_3^{[1]}, a_3^{[1]} = \sigma(z_3^{[1]})$$

Vectorize:

$$W^{[1]} = \begin{bmatrix} \dots & w_1^{[1]T} & \dots \\ \dots & w_2^{[1]T} & \dots \\ \dots & w_3^{[1]T} & \dots \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \text{ and } b^{[1]} = \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \end{bmatrix}$$

$$\Rightarrow z^{[1]} = \begin{bmatrix} z_1^{[1]} \\ z_2^{[1]} \\ z_3^{[1]} \end{bmatrix} = \begin{bmatrix} w_1^{[1]T}x + b_1^{[1]} \\ w_2^{[1]T}x + b_2^{[1]} \\ w_3^{[1]T}x + b_3^{[1]} \end{bmatrix} \Rightarrow a^{[1]} = \sigma(z^1) = \begin{bmatrix} \sigma(z_1^{[1]}) \\ \sigma(z_2^{[1]}) \\ \sigma(z_3^{[1]}) \end{bmatrix}$$

Computing for an input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Computing for *m* input examples:

For
$$i = 1$$
 to m :
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

Computing for *m* input examples: Vectorization

For
$$i = 1$$
 to m :

$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

Vectorization

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

$$X = \begin{bmatrix} \vdots & \vdots & & \vdots \\ x^{(1)} & x^{(2)} & \dots & x^{(m)} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

$$Z^{[1]} = \begin{bmatrix} \vdots & \vdots & \vdots \\ z^{1} & z^{[1](2)} & \dots & z^{[1](m)} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

$$A^{[1]} = \begin{bmatrix} \vdots & \vdots & \vdots \\ a^{1} & a^{[1](2)} & \dots & a^{[1](m)} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

Activation functions and their derivatives université

- For hidden units: use tanh, ReLU should be better than sigmoid
- For output layer $(0 \le \hat{y} \le 1)$, we can use **sigmoid**

Activation functions and their derivatives université

Sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d\sigma(z)}{dz} = slope \ of \ \sigma(z)at \ z$$

$$= \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}} \right) = \sigma(z) (1 - \sigma(z))$$

Activation functions and their derivatives Université BORDEAUX

TanH function

$$\tanh(z) = \sigma(z) = \frac{e^x - e^{-x}}{e^x + e^{-z}}$$

$$\frac{d\sigma(z)}{dz} = \mathbf{1} - (\sigma(z))^2$$

Activation functions and their derivatives Université BORDEAUX

$$ReLU(z) = \sigma(z) = max(0, z)$$

$$\frac{d\sigma(z)}{dz} = \begin{cases} \mathbf{0} & \text{if } \mathbf{z} < \mathbf{0} \\ \mathbf{1} & \text{if } \mathbf{z} \ge \mathbf{0} \end{cases}$$

Activation functions and their derivatives université

LeakyReLU function

LeakyReLU(
$$z$$
) = $\sigma(z)$ = max(0.01 z , z)

$$\frac{d\sigma(z)}{dz} = \begin{cases} \mathbf{0.01} & \text{if } z < \mathbf{0} \\ \mathbf{1} & \text{if } z \ge \mathbf{0} \end{cases}$$

Gradient descent for NN

Parameters: $W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}$

 $n_x = n^{[0]}$ is input, $n^{[1]}$ is number of hidden unit, $n^{[2]} = 1$ is output

Size of parameters: $(n^{[1]}, n^{[0]}), (n^{[1]}, 1), (n^{[2]}, n^{[1]}), (n^{[2]}, 1)$

Cost function: $\mathcal{J}(W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a, y)$

Gradient descent for NN

Gradient descent:

Repeat {

Compute predict: $a^{(i)} = \hat{y}^{(i)}$ (i = 1..m)

$$dW^{[1]} = \frac{dJ}{dW^{[1]}}, db^{[1]} = \frac{dJ}{db^{[1]}}, \dots$$

$$W^{[1]} = W^{[1]} - \alpha . dW^{[1]}$$

$$b^{[1]} = b^{[1]} - \alpha db^{[1]}$$

$$W^{[2]} = W^{[2]} - \alpha dW^{[2]}$$

$$b^{[2]} = b^{[2]} - \alpha . db^{[2]}$$

57

Gradient descent for -N

Forward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

Where $g^{[1]}$, $g^{[2]}$ are activation function at layer 1 and 2.

Backward propagation

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]T}$$

$$db^{[2]} = \frac{1}{m} np. sum(dZ^{[2]}, axis = 1, keepdims = True)$$

$$dZ^{[1]} = W^{[2]T} . dZ^{[2]} * g^{[1]'}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} X^{T}$$

$$db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$$

Where:

- $g^{[1]'}$ is derivative of activation function that we used in the first layer.
- *: is element-wise product

Backward propagation intuition

What are values of da, dz, dw and db?

Backward propagation intuition

What are values of $da^{[2]}$, $dz^{[2]}$, $dw^{[2]}$, $db^{[2]}$, $da^{[1]}$, $dz^{[1]}$, $dw^{[1]}$ and $db^{[1]}$?

Contents

- 1. What is a neural network?
- 2. Logistic Regression
- 3. Derivatives and Gradient Descent
- 4. Vectorization
- 5. Neural Network Representation
- 6. Activation functions and their derivatives
- 7. Deep N-layers Neural Network

Logistic Regression

x1 x2 x3

1 hidden layer

4 hidden layers

Consider a 5-layers Neural Network

- L = 5 (number of layers)
- $lacksquare n^{[l]}$ = number hidden unit at layer l
- $a^{[l]}$ = activation at layer l
- $W^{[l]}$ = weights for $Z^{[l]}$
- $b^{[l]}$ = bias for $Z^{[l]}$

Forward propagation at layer *l*

• Input: $a^{[l-1]}$

• Ouput: $a^{[l]}$

• Parameters of $z^{[l]}$: $(W^{[l]}, b^{[l]})$

Calculating:

$$z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}$$

 $a^{[l]} = g^{[l]}(z^{[l]})$

Vectorize:

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$
$$A^{[l]} = g^{[l]}(Z^{[l]})$$

Backward propagation at layer *l*

• Input: $da^{[l]}$

• Ouput: $da^{[l-1]}, dW^{[l]}, db^{[l]}$

• Parameters of $z^{[l]}$: $(W^{[l]}, b^{[l]})$

Calculating:

$$dz^{[l]} = da^{[l]} * g^{[l]'}(z^{[l]})$$

$$dW^{[l]} = dz^{[l]}. a^{[l-1]}$$

$$db^{[l]} = dz^{[l]}$$

$$da^{[l-1]} = W^{[l]T}. dz^{[l]}$$

Vectorize:

$$dZ^{[l]} = da^{[l]} * g^{[l]'}(Z^{[l]})$$

$$dW^{[l]} = \frac{1}{m} dZ^{[l]} . A^{[l-1]}$$

$$db^{[l]} = \frac{1}{m} np. sum(dZ^{[l]})$$

$$dA^{[l-1]} = W^{[l]T} . dZ^{[l]}$$

Forward and backward propagation

Forward and backward propagation

Feature Learning/Representation Learning (Ex. Face Detection)

Parameters:

- W of the layers
- b of the layers

Hyper-parameters:

- Learning rate α
- Number of iteration
- Number of hidden layers and its number units
- Activation functions

Summary

- Neural networks
- Logistic Regression problem
- Derivative and gradient descent
- Vectorization
- Deep N-layers neural network
- Forward and backward propagation

université de BORDEAUX