What do X-Ray Observations Teach Us About The Circumgalactic Medium?

Liam Becker

Mentor: Dr. Yakov Faerman

Advisor: Prof. Matthew McQuinn

What is a Galaxy?

What is a Galaxy?

- The Circumgalactic Medium (CGM) is a non-uniform cloud of gas surrounding a galaxy
- Much larger than the central galaxy:
 - ~10–30 times the diameter

What is a Galaxy?

- The Circumgalactic Medium (CGM) is a non-uniform cloud of gas surrounding a galaxy
- Much larger than the central galaxy:
 - ~10–30 times the diameter
- Comprised of:
 - Hot-phase (~10⁶ K)
 - Cold-phase (~10⁴ K)

Why is the CGM Important?

- CGM interfaces between Interstellar Medium and Intergalactic Medium
 - Gas condenses and cools into clouds, accreted into the central galaxy to form stars
- Could possibly shed light on the transformation from star-forming to quiescence.

Why is the CGM Important?

- CGM interfaces between Interstellar Medium and Intergalactic Medium
 - Gas condenses and cools into clouds, accreted into the central galaxy to form stars
- Studying the CGM is necessary to understand how galaxies evolve over time
 - Sheds light on the transformation from star-forming to quiescence

New Observational Data

- New observational data from eROSITA has shown to conflict with cosmological simulations (<u>Chadayammuri et al. 2022</u>)
 - Implies a gap in our understanding of the formation and heating of the CGM

New Observational Data

Why Hot CGM?

The Model: Density

Power law density distribution

$$n(r) = n_0 \left(\frac{r}{r_{CGM}}\right)^{-a}$$

- r_{CGM}: outer radius of the CGM (300 kpc)
- n_0 : density at r_{CGM} (2×10⁻⁵ cm⁻³)
- a: slope of power law (1)

Constant Temperature (1.5×10⁶ K)

The Model: Density

Pow

Cons

$$M = 4\pi \overline{m} \int n(r) \, r^2 \, dr$$

$M = 4\pi \overline{m} \int n(r) r^2 dr$ The Model: Mass $n(r) = n_0 \left(\frac{1}{r_0}\right)$

$$n(r) = n_0 \left(\frac{r}{r_{CGM}}\right)^{-a}$$

- Define a plausible range for the mass of the CGM of 3×10¹⁰ 2×10¹¹ M_o
 - Estimates based on the halo baryon budget of galaxies used in Chadayammuri et al.

The Model: Emission

Emission

$$\Gamma = \Lambda(r) \, n(r)^2$$

- Λ : cooling coefficient
 - calculated using Cloudy (atomic physics code)
 - dependent on gas properties
- Γ: local emission rate
 - the amount of energy emitted per unit volume

The Model: Emission

emitted ties

and

$$L = 4\pi \int \Lambda(r) \, n(r)^2 \, r^2 \, dr$$
 The Model: Luminosity $\Gamma = \Lambda(r) \, n(r)^2$

$$\Gamma = \Lambda(r) n(r)^2$$

- Define luminosity constraints of 6×10³⁹ 3×10⁴⁰ erg s⁻¹ from soft X-ray observations by eROSITA
 - Calculated by integrating radial shells of local emission

Conclusion

- Model constrains physical properties of the CGM that can reproduce observations
 - Can guide future simulations
- Modulating the temperature affects overlapping region

Mass [M_{\odot}

- Model constrains physical properties of the CGM that can reproduce observations
 - Can guide future simulations
- Modulating the temperature affects overlapping region

Next Steps

- Radial temperature profiles
- Spatially resolved emission profiles
 - Constrain densityslope (a ~ 1.5)

