Course #3:

Auto-encoders and Recurrent Neural Networks

Roadmap

• Recap from course #2

Auto-encoders

Recurrents Neural Networks

Lecture. #2 Things to know

- Convolution layers
- Pooling layers
- Activation layers
- Dropout layers
- Padding and stride
- Fine-tuning
- Over-fitting
- Data augmentation

Auto-encoders

Auto-encoders

Output with the same shape as the input

Application?

Dense auto-encoders

PCA/EOF

PCA as a linear auto-encoder architecture.

Which additional constraint?

Convolutional auto-encoders

Convolutional AE Zoo

Many applications do not require a low-dimensional representation (e.g., densoising, interpolation, super-resolution,....)

Convolutional AE Zoo

Often used to address vanishing gradients ("very" deep networks)

Auto-encoders for image denoising and image generation

Pytorch version

https://github.com/CIA-Oceanix/DLOA2023/blob/main/lectures/notebooks/corrections/notebook_MNIST_AutoEncoder_with_correction.ipynb

Lightning version

https://github.com/CIA-Oceanix/DLOA2023/blob/main/lectures/notebooks/notebook PytorchLightning MNIST AutoEncoder students.ipynb

Question 1. Fill in the architecture of the dense encoder module to train a dense auto-encoder

Question 2. Add dropout layers in the convolutional encoder and decoder

Question 3. Modify the code to test a linear auto-encoder (cf. AE and PCA)

PyTorch Lightning

ConvAE & Ocean Dynamics

Normal methods, $\hat{N}_{i} = \Lambda(\hat{V}_{i}, \mathbf{w}_{i})$, trained to minimize how $\hat{L} \propto (\hat{V}_{i} - \hat{V}_{i})$

https:// agupubs.onlinelibrary.wiley.co m/doi/epdf/ 10.1029/2018MS001472

JAMES Journal of Advances in Modelina Earth Systems A Deep Learning Approach to Spatiotemporal Sea Surface RESEARCH ARTICLE 10.1029/2019MS001965 Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence The efficacy of Deep Learning in exploiting spurse sea surface height Georgy E. Manucharyan¹ O. Lia Siegelman² O. and Patrice Klein^{2,5,4} O (SSH) data is demonstrated in a quasiasostrophic model School of Ossanography, University of Washington, Seattle, WA, USA, ³let Propulsion Laboratory, California Institute Residual Neural Networks are of Technology, Pasadena, CA, USA, ³Laboratoire de Métiomôgrie Dynamique, Easle Normale Supérieure, CNRS, Paris, superior to linear and dynamical France, *Laboratoire d'Oceanographie Physique et Spatiale, IFREMER, CNRS, Brest, France Interpolation techniques for SSE https://agupubs.onlinelibrary.wiley.com/

doi/epdf/10.1029/2019MS001965

DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations

Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
GHEF, University of Libge, Libge, Belgium

Correspondence: Alexander Barth (a.barth@uliege.be)

Received: 18 Oct 2021 - Discussion started: 15 Nov 2021 - Revised: 10 Feb 2022 - Accepted: 17 Feb 2022 - Published: 15 Mar 2022

https://gmd.copernicus.org/articles/15/2183/2022/

ConvAE & Ocean Dynamics Literature review

Considered papers:

Topic#1 https://gmd.copernicus.org/articles/15/2183/2022/

Topic#2 https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018MS001472

Topic#3 https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2019MS001965

Topic#4 https://arxiv.org/abs/2010.04663

Questions:

- Which problem?
- Which convolutional architecture ?
- Comments ?

ConvAE architectures for Ocean Dynamics?

Lecture. #3 Things to know (AE)

- Auto-encoder
- Latent variable
- UNet
- ResNet