Machine Learning

Lecture 9: Variance-Bias

Sibei Yang SIST, Shanghai Tech

Email: yangsb@shanghaitech.edu.cn

Outline

- Variance-Bias decomposition & tradeoff
- Learning curves

Approximation-generalization tradeoff

- Small E_{out} : good approximation of f out of sample
- More complex better chance of approximating f
- Less complex better chance of generalizing out of sample
- Ideal $\mathcal{H} = \{f\}$
- Bias-variance analysis: decomposing E_{out} into
 - A. How well \mathcal{H} can approximate f
 - B. How well we can zoom in on a good $h \in \mathcal{H}$
- Applies to real-valued targets and uses squared error

Decomposing E_{out}

$$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$\mathbb{E}_{\mathcal{D}} \left[E_{\text{out}}(g^{(\mathcal{D})}) \right] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{\mathbf{x}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$
$$= \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$

Now, let us focus on:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

The average hypothesis

To evaluate
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x})-f(\mathbf{x})\right)^2\right]$$

we define the 'average' hypothesis $\bar{g}(\mathbf{x})$:

$$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathbf{x})\right]$$

Imagine many data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$

$$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

+ 2
$$\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right) \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2$$

Bias and Variance

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2}\right] + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}}_{\text{bias}(\mathbf{x})}$$

Therefore,
$$\mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$

$$=$$
 bias $+$ var

Bias and Variance

The tradeoff

$$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$\mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

$$\mathcal{H}\uparrow$$

Example: sin target

$$f:[-1,1] \rightarrow \mathbb{R}$$

$$f:[-1,1] \to \mathbb{R}$$
 $f(x) = \sin(\pi x)$

Only two training examples! N=2

$$N=2$$

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

$$\mathcal{H}_1$$
: $h(x) = ax + b$

Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

Approximation: \mathcal{H}_0 versus \mathcal{H}_1

Learning: \mathcal{H}_0 versus \mathcal{H}_1

Bias and variance: \mathcal{H}_0

Bias and variance: \mathcal{H}_1

The winner is...

Conclusion:

Match the "model complexity" to the data resource, NOT to the target complexity

Expected E_{out} and E_{in}

Data set \mathcal{D} of size N

Expected out-of-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{out}}(g^{(\mathcal{D})})]$

Expected in-sample error $\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(g^{(\mathcal{D})})]$

How do they vary with N?

Learning curves

Simple Model

Complex Model