学 タ 程 z 大 タ 《物理化学》(下) 单元测试卷(四)

电解质溶液

一、 1.	选择题(每小题 1 分,共 30 分) 电解质 HCl 在溶剂中电离 HCl \longrightarrow H^++Cl 并达到平衡,则未电离电解质 HCl 的化学势 μ_{HCl}
1.	与正负离子的化学势 μ_{H} 和 μ_{CI} 之间的关系式为。
	A: $\mu_{\text{HCl}} > \mu_{\text{H}^+} + \mu_{\text{Cl}^-}$; B: $\mu_{\text{HCl}} = \mu_{\text{H}^+} + \mu_{\text{Cl}^-}$; C: $\mu_{\text{HCl}} < \mu_{\text{H}^+} + \mu_{\text{Cl}^-}$
2.	H_2SO_4 在溶剂中电离 $H_2SO_4 \Longrightarrow 2H^+ + SO_4^-$ 并达到平衡,则未电离电解质 H_2SO_4 的化学势
	$\mu_{\mathrm{H}_2\mathrm{SO}_4}$ 与正负离子的化学势 μ_{H^+} 、 $\mu_{\mathrm{SO}_4^{2-}}$ 之间的关系式为。
	A: $\mu_{\text{H}_2\text{SO}_4} = \mu_{\text{H}^+} + \mu_{\text{SO}_4^{2-}}$; B: $\mu_{\text{H}_2\text{SO}_4} = \mu_{\text{H}^+}^2 + \mu_{\text{SO}_4^{2-}}$; C: $\mu_{\text{H}_2\text{SO}_4} = 2 \mu_{\text{H}^+} + \mu_{\text{SO}_4^{2-}}$
3.	在 1-1 型、1-2 型、2-2 型、3-1 型第一类电解质溶液中, $b_{\pm}=b$ 的是。
	A. 1-1 型和 2-2 型; B. 1-2 型和 3-1 型; C. 1-1 型和 1-2 型
4.	在 1-1 型、1-2 型、2-2 型、3-1 型第一类电解质溶液中, b _± >b 是。
_	A. 1-1 型和 2-2 型; B. 1-2 型和 3-1 型; C. 1-1 型和 1-2 型
5.	电解质溶液中含 NH_4^+ 、 OH^- 和 H^+ 三种离子,它们的质量摩尔浓度分别记为 a 、 b 和 c
	(mol·kg ⁻¹),则电中性条件是。
6.	A. $a+b+c=0$; B. $a+c=b$; C. $a-c=b$ 对于第一类电解质溶液,电解质作为整体的活度 $a_{\rm B}$ 与 a_{\pm} 间的关系为。
	A. $a_{\rm B} = a_{\pm}^{\rm v}$; B. $a_{\rm B} = a_{\pm}$; C. $a_{\rm B} = a_{\pm}^{1/{\rm v}}$
7.	要使 K_2SO_4 水溶液的离子强度 I 与 $b=1.20$ mol·kg ⁻¹ 的 KCl 水溶液的离子强度相等,则 K_2SO_4
	水溶液的浓度 $b=$ mol·kg $^{-1}$ 。
8.	A. 1.20; B. 0.80; C. 0.40 CuSO ₄ 的水溶液与 LaCl ₃ 的水溶液,如它们的浓度相同,则两溶液的离子强度之比
	$I(CuSO_4)/I(LaCl_3) = $
	A. 1.667; B. 0.667; C. 0.267
9.	KCl 水溶液的浓度为 $b=1.20$ mol·kg ⁻¹ ,则 $b_{\pm}=$ mol·kg ⁻¹ 。
1.0	A. 0.80; B. 1.00; C. 1.20
10.	溶液中同时溶解有 $MgCl_2$ 和 KCl 两种盐,它们的浓度均为 $b=1.20$ $mol \cdot kg^{-1}$,则溶液的离
	子强度 $I = \underline{\qquad} \operatorname{mol} \cdot \ker^{-1} \circ$
11	A. 2.40; B. 3.60; C. 4.80 对于理想稀溶液,溶剂的渗透系数 <i>ϕ</i> 1。
11.	A. >: B. =: C. <
12.	溶液中同时溶解有 $MgCl_2$ 和 KCl 两种盐,采用 $ln\gamma_{\pm} = Az_{\pm}z_{-}\sqrt{I}$ 计算 $MgCl_2$ 的平均离子活度
	因子时,正确的做法是 。
	$A. z_{+}=2$ 、 $z_{-}=-1$ 、离子强度只需考虑 $MgCl_2$ 的贡献;
	$B. z_{+}=1$ 、 $z_{-}=1$ 、离子强度包括所有离子的贡献;
	C. z ₊ =2、z ₌ -1、离子强度包括所有离子的贡献
13.	今有浓度相同的三种电解质溶液,其价型分别为 1-1 型、2-1 型和 2-2 型,则它们的平均离子活度因子的大小排序为。

	A. $\gamma_{\pm(1-1)} > \gamma_{\pm(2-1)} > \gamma_{\pm(2-2)}$; B. $\gamma_{\pm(1-1)} < \gamma_{\pm(2-1)} < \gamma_{\pm(2-2)}$; C. $\gamma_{\pm(1-1)} = \gamma_{\pm(2-1)} = \gamma_{\pm(2-2)}$
14.	298.15K 时,浓度同为 0.002 mol·kg ⁻¹ 的 KCl、CaCl ₂ 、CaSO ₄ 三种水溶液的平均离子活度
	因子分别为 $\gamma_{\pm 1}$ 、 $\gamma_{\pm 2}$ 、 $\gamma_{\pm 3}$,则它们的关系为。
	A. $\gamma_{\pm 1} = \gamma_{\pm 2} = \gamma_{\pm 3}$; B. $\gamma_{\pm 1} < \gamma_{\pm 2} < \gamma_{\pm 3}$; C. $\gamma_{\pm 1} > \gamma_{\pm 2} > \gamma_{\pm 3}$
15	$Ni^{2+} + 2e^- \rightarrow Ni$ 的电极反应,要得到 2mol 的 Ni ,则通过的电量为。
13.	$+2e \rightarrow Ni$ 时电极及应,安特到 2moi 时 Ni,则起过时电量为。 $A. 2F; B. 3F; C. 4F$
16	如果电解质溶液的导电依赖OH-和K+的迁移和电极反应实现,已知OH-离子的迁移速度约
10.	为 K^+ 离子的 3 倍,则。
	A. $t_{K^{+}} = 1/4$, $t_{OH^{-}} = 3/4$; B. $t_{OH^{-}}/t_{K^{+}} = 3$, $($
17	在电解水(事先加入了 KOH)的过程中,电流的传导主要靠 K^{\dagger} 和 OH 离子,它们对传导
1,.	的贡献可用迁移数来表征, $t_{K^+}=1/4$, $t_{OH^-}=3/4$ 且 $t_{OH^-}+t_{K^+}=1$ 。现假设电解水时加入的
	电解质为 KOH 和 NaOH 两种,则 $t_{K^+} + t_{OH}$ 1。
	t_{NH} жон үн маон үчүүн, жу $t_{\text{K}^+} + t_{\text{OH}^-}$ ————————————————————————————————————
10	$A. >; B. =; C. <$ 如果电解质溶液的导电依赖 M^{\dagger} 和 X 的迁移和电极反应实现,已知 M^{\dagger} 和 X 的电迁移率相
18.	
	等,则。 A. $t_+ > t$; B. $t_+ = t$,但 $t_+ + t < 1$; C. $t_+ = t = 0.5$
10	有 HCl、KOH、NaCl 三种稀的电解质溶液,浓度均为 0.01 mol · dm ⁻³ ,它们的摩尔电导
1).	率 Λ_{m} 值由大到小的正确排列是。
	A. HCl>KOH>NaCl; B. KOH>HCl>NaCl; C. HCl>NaCL>KOH
20	HCl、NaAc 和 NaCl 的无限稀释摩尔电导率分别为 a , b 、和 c , 则 HAc 的无限稀释摩尔电
20.	导率等于。
	A. $a+b+c$; B. $a+b-c$; C. $a-b-c$
21.	291K 时,H ₂ SO ₄ 溶液的浓度从 0.01 mol·dm ⁻³ 增加到 0.1 mol·dm ⁻³ , 其电导率和摩尔电导
	率的变化情况为。
	A. κ 增加, $\Lambda_{ ext{m}}$ 增加; B. κ 减小, $\Lambda_{ ext{m}}$ 增加; C. κ 增加, $\Lambda_{ ext{m}}$ 减小
22.	只有强电解质的电导率随浓度的变化才出现极大值,这一说法。
	A. 错误; B. 正确; C. 不确定
23.	科尔劳施经验公式 $\Lambda_{\rm m} = \Lambda_{\rm m}^{\infty} - A\sqrt{c}$ 的适用条件为。
	A. 强电解质稀溶液; B. 弱电解质稀溶液; C. 两者均适用
24.	有 HCl 、 KOH 、 $NaCl$ 三种浓度均相同的电解质溶液,它们的电导率 κ 值由大到小的正确
	排列是。
	A. HCl>KOH>NaCl; B. KOH>HCl>NaCl; C. HCl>NaCL>KOH
25.	将电导率为 $0.141~S~m^{-1}$ 的某电解质溶液 A 装进电导池,测得电阻为 500Ω ,将电解质溶液
	B 装进同一电导池, 电阻为 1000Ω , 则电解质溶液 B 的电导率为S m ⁻¹ 。
2.	A. 0.141; B. 0.282; C. 0.0705
26.	离子独立运动定律适用于。 A. 强电解质稀溶液, B.强电解质浓溶液, C.无限稀释的电解质溶液
27	
21.	25℃时, LiCl 和 LiNO ₃ 无限稀释摩尔电导率之差 ¼ (LiCl) — ¼ (LiNO ₃)等于
	0.49×10 ⁻³ S m ² mol ⁻¹ 。下列两种盐的无限稀释摩尔电导率之差可以确认等于
	$0.49 \times 10^{-3} \text{S} \cdot \text{m}^2 \cdot \text{mol}^{-1}$ 的是。
	A: $\Lambda_{m,(NaCl)}^{\infty} - \Lambda_{m,(KNO_3)}^{\infty}$; B: $\Lambda_{m,(KCl)}^{\infty} - \Lambda_{m,(KNO_3)}^{\infty}$; C: $\Lambda_{m,(KCl)}^{\infty} - \Lambda_{m,(NaNO_3)}^{\infty}$
28.	已知弱电解质溶液的无限稀释摩尔电导率为 a, 现测得在某浓度下弱电解质溶液的摩尔电

导率为 b,则电解质在该浓度下的解离度等于

A. *a*+*b*; B. *a*/*b*; C. *b*/*a*

29. 在一定温度下,实测微溶盐溶液的电导率为 a,同温度下水的电导率为 b,则微溶盐的溶解度为_____。

A.
$$\frac{a-b}{\Lambda_{m}^{\infty}}$$
; B. $\frac{a}{\Lambda_{m}^{\infty}}$; C. $\frac{b}{\Lambda_{m}^{\infty}}$

30. 采用 $\alpha = \Lambda_m / \Lambda_m^{\circ}$ 计算解离度,下列正确的叙述是的______

A. 适用于所有电解质; B. 适用于弱电解质; C. 适用于强电解质

二、(每小题 5 分, 共 10 分)

- 1. 强电解质 $LaCl_3$ 溶液的质量摩尔浓度为b,平均离子活度因子 γ_\pm 。试分别写出该电解质溶液的 b_\pm 、 a_\pm 以及 a_\pm^ν 与b的关系。
- 2. 计算 $b = 2.0 \text{mol} \cdot \text{kg}^{-1}$ 的 MgCl₂ 水溶液在 25℃时的平均离子浓度、平均离子活度、电解质作为整体的活度。已知 $\gamma_+ = 1.051$ 。

三、(此题总分10分)

25 °C 时, 氯化银饱和溶液的溶度积为 $1.72 \times 10^{-10} \text{mol}^2 \cdot \text{dm}^{-6}$, 纯水的电导率为 $1.60 \times 10^{-4} \text{S} \cdot \text{m}^{-1}$, 银离子和氯离子的无限稀释摩尔电导率分别为 61.9×10^{-4} 和 $76.4 \times 10^{-4} \text{S} \cdot \text{m}^2 \cdot \text{mol}^{-1}$ 。计算氯化银饱和溶液的电导率。

四、(此题总分10分)

浓度为0.001 $\operatorname{mol} \cdot \operatorname{dm}^{-3}$ 的 $\operatorname{Na_2SO_4}$ 溶液的电导率 $\kappa = 2.6 \times 10^{-2} \operatorname{S} \cdot \operatorname{m}^{-1}$ 。若将 $\operatorname{CaSO_4}$ 溶于上述溶液中, 达饱和后测得此溶液的电导率 $\kappa' = 7.0 \times 10^{-2} \operatorname{S} \cdot \operatorname{m}^{-1}$ 。已知 $\lambda_{\mathrm{m}}^{\infty}(\operatorname{Na}^{+}) = 50.1 \times 10^{-4} \operatorname{S} \cdot \operatorname{m}^{2} \cdot \operatorname{m}$ o⁻¹, $\lambda_{\mathrm{m}}^{\infty}(\frac{1}{2}\operatorname{Ca}^{2+}) = 59.5 \times 10^{-4} \operatorname{S} \cdot \operatorname{m}^{2} \cdot \operatorname{mol}^{-1}$ 。设这两种溶液均可视为无限稀释的溶液。试求: $\operatorname{Na_2SO_4}$ 溶液的摩尔电导率 $\Lambda_{\mathrm{m}}(\operatorname{Na_2SO_4})$ 以及 $\operatorname{CaSO_4}$ 在 $\operatorname{Na_2SO_4}$ 溶液中的溶解度。

五、(此题总分10分)

电解质溶液的电导率测定实际是测量其电阻,而电导率 κ 与电阻 R 的关系可表示为: $\kappa=K_{\text{cell}}/R$ 。对于一个固定的电导池, K_{cell} 为定值,称为电导池常数,单位为 m^{-1} 。298.15K 时将电导率为 0.141 S m^{-1} 的 KCl 溶液装进电导池,测得电阻为 525 Ω ,如在该电导池中装进 0.1 mol dm^{-3} 的 NH₄OH 溶液,测得电阻为 2030 Ω ,计算 NH₄OH 的解离度和解离平衡常数。已知: $\lambda_{\text{m}}^{\infty}(\text{NH}_{4}^{+})=73.4\times10^{-4}\text{S}\cdot\text{m}^{2}\cdot\text{mol}^{-1}$, $\lambda_{\text{m}}^{\infty}(\text{OH}^{-})=198.3\times10^{-4}\text{S}\cdot\text{m}^{2}\cdot\text{mol}^{-1}$ 。

六、(此题总分10分)

25℃时,测得 SrSO₄ 饱和溶液的电导率为 1.482×10^{-2} S m⁻¹,纯水的电导率为 1.50×10^{-4} S m⁻¹。计算在该条件下 SrSO₄ 在水中的溶解度(以 mol m⁻³ 表示)。

已知:
$$\lambda_{m}^{\infty}\left(\frac{1}{2}Sr^{2+}\right) = 5.946 \times 10^{-3}S \cdot m^{2} \cdot mol^{-1}$$
, $\lambda_{m}^{\infty}\left(\frac{1}{2}SO_{4}^{2-}\right) = 7.98 \times 10^{-3}S \cdot m^{2} \cdot mol^{-1}$;

七、(此题总分10分)

298 K 时,在一溶液中,CaCl₂和 ZnSO₄ 的浓度均为 $0.002\,\mathrm{mol}\cdot\mathrm{kg}^{-1}$,试用德拜-休克尔极限公式计算 ZnSO₄ 的平均离子活度因子。已知 $A=1.1709\,\mathrm{mol}^{-1/2}\cdot\mathrm{kg}^{1/2}$ 。

八、(此题总分10分)

25℃时,TlCl 在纯水中的饱和浓度为1.607×10⁻²mol·dm⁻³,在 0.1000 mol·dm ⁻³ NaCl 溶液中的饱和浓度为3.95×10⁻³mol·dm⁻³,TlCl 的 $K_{\rm sp}^{\leftrightarrow}=2.022\times10^{-4}$ 。试求:

- 1. 在不含 NaCl 的 TICl 饱和水溶液中, TICl 的平均离子活度因子;
- 2. 在含有 0.1000 mol·dm⁻³ NaCl 的 TICl 饱和溶液中, TICl 的平均离子活度因子。