A REMARK ON THE ADDITIVITY OF TRACES IN TRIANGULATED CATEGORIES

SHAHRAM BIGLARI

§1. Introduction and statements

In what follows a tensor category is understood to be an ACU \otimes -category in the sense of Saavedra Rivano [5, Ch. I, 2.4.1]. We denote the unit object by $\mathbb{1}$, the commutativity constraint by ψ , and the tensor structure by \otimes . There is also an associativity constraint that we omit and all these constraints are subject to natural compatibility conditions (*loc. cit.* I, 2.4). Recall (Deligne [2, 2.1.2]) that an object X of a tensor category is said to be dualizable if there is an object X^{\vee} and morphisms $\delta_X \colon \mathbb{1} \to X \otimes X^{\vee}$ and $\operatorname{ev}_X \colon X^{\vee} \otimes X \to \mathbb{1}$ such that the diagrams

are commutative. For example for the tensor category of modules over a commutative ring, dualizability is (e.g. loc. cit. 2.6) the same as being finitely generated and projective. With an appropriate interpretation, the morphism ev_X gives the trace. More concretely, let X be a dualizable object and $f\colon X\to X$ an endomorphism. The trace of f, here denoted by $\operatorname{tr}(f;X)$, is defined to be the composite

$$\mathbb{1} \xrightarrow{\delta_X} X \otimes X^{\vee} \xrightarrow{f \otimes \mathrm{id}_{X^{\vee}}} X \otimes X^{\vee} \xrightarrow{\psi_{X,X^{\vee}}} X^{\vee} \otimes X \xrightarrow{\mathrm{ev}_X} \mathbb{1}.$$

This is an element of $\operatorname{End}(\mathbb{1})$. The resulting map $\operatorname{tr} : \operatorname{End}(X) \to \operatorname{End}(\mathbb{1})$ is linear. Moreover, when defined, the trace $\operatorname{tr}(f \otimes g; X \otimes Y)$ is the product of $\operatorname{tr}(f; X)$ and $\operatorname{tr}(g; Y)$. For the proofs of these and other properties see any of the references cited above.

We clarify some terminologies. A tensor category as above is (Mac Lane [3]) also called an (additive) symmetric monoidal category. A symmetric monoidal category in which each functor $Z \mapsto Z \otimes X$ has a right adjoint is (Eilenberg-Kelly [1]) said to be closed. Recall the following result.

Theorem 1.1 (May [4, 0.1]).— For any distinguished triangle $\Delta: X \to Z \to Y \to X$ [1] of dualizable objects in a closed symmetric monoidal category with a compatible triangulation we have

$$\operatorname{tr}(\operatorname{id}; Z) = \operatorname{tr}(\operatorname{id}; X) + \operatorname{tr}(\operatorname{id}; Y).$$

Date: 2010.

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 18E30 - Secondary 20C99.

Key words and phrases. additivity of trace, tensor triangulated category.

In what follows we let D be a k-linear Karoubian (i.e. pseudo-abelian) rigid tensor triangulated category where $k = \bar{k}$ is an algebraically closed field of characteristic zero. Note that linearity means ([5, Ch. I, 0.1.2]) that $\operatorname{End}(\mathbbm{1})$ is a k-algebra. Here the term rigid tensor $\operatorname{triangulated}$ means a closed symmetric monoidal category with a compatible triangulation in the sense of [4] and in which every object is dualizable.

An endomorphism $f=(f_X,f_Z,f_Y)$ of a distinguished triangle Δ in D is a commutative diagram

(1)
$$X \longrightarrow Z \longrightarrow Y \longrightarrow X[1]$$

$$\downarrow f_X \qquad \downarrow f_Z \qquad \downarrow f_Y \qquad \downarrow f_{X[1]}$$

$$X \longrightarrow Z \longrightarrow Y \longrightarrow X[1]$$

with both rows being the given triangle Δ . For example $\mathrm{id} = (\mathrm{id}_X, \mathrm{id}_Z, \mathrm{id}_Y)$ is an endomorphism of Δ . The compositions of endomorphisms of triangles are defined in an obvious manner and is associative. We prove the following result.

Proposition 1.2.— Let f be an endomorphism of a distinguished triangle $X \to Z \to Y \to X[1]$ in D with $f^n = \operatorname{id}$ for an integer n > 0. Then

$$\operatorname{tr}(f_Z; Z) = \operatorname{tr}(f_X; X) + \operatorname{tr}(f_Y; Y).$$

Let D and k be as above. We prove a more general result than 1.2. Let G be a group. A G-object in D is a pair (X, ρ) consisting of an object X of D and a k-algebra homomorphism $\rho: kG \to \operatorname{End}_{\mathfrak{A}}(X)$ where kG is the group algebra of G. We may denote $\rho(a)$ by a_X or simply a. Let Y be another G-object. An G-morphism or G-equivariant morphism from X to Y is a morphisms $f: X \to Y$ with $a_Y f = fa_X$ for all $a \in kG$. If X is an G-object define the central function

$$\chi_X \colon G \to \operatorname{End}_D(\mathbb{1}), \quad g \mapsto \operatorname{tr}(g; X).$$

We say that the distinguished triangle Δ is G-equivariant, if X, Y, and Z are equipped with actions $\rho_X \colon G \to \operatorname{Aut}_D(Z)$ (similarly for X and Y) and such that all morphisms (including the differential) are G-equivariant.

Theorem 2.1.— If G is torsion and $X \to Z \to Y \to X[1]$ is G-equivariant, then as functions $G \to \operatorname{End}_D(1)$ we have

$$\chi_Z = \chi_X + \chi_Y$$
.

PROOF. We may assume that G is finite. Let $\operatorname{Irr} kG$ be the set of isomorphism classes of irreducible k—representations of G. In D we have a natural G-equivariant isomorphism

(2)
$$X \simeq \coprod_{V \in \operatorname{Irr} kG} V \otimes_k S_V(X)$$

where $S_V(X) = \underline{\text{Hom}}_{kG}(V, X)$ are certain objects and on which G acts trivially. To see this, consider the contravariant functor $D \to (k - \text{mod})$ given by

$$Obi(D) \ni Y \mapsto Hom_{kG}(V, Hom_D(Y, X)).$$

This is representable. Indeed if in the above definition we replace V by any finitely generated free kG-module M and consider the corresponding functor, we see immediately that the functor is representable by an object $S_M(X) =$ a finite direct sum of X. The general case follows from this and the fact that V is a finitely generated projective kG-module and hence the kernel (i.e. image) of a projector π on a free kG-module M. Since D is Karoubian, we can define $S_V(X) = \operatorname{coker}(\pi^*)$ where $\pi^* \colon S_M(X) \to S_M(X)$ is induced by π . This is easily seen to represent $S_V(X)$. Once we have these objects, the decomposition of X follows from the corresponding one for kG. It follows that the sequence

$$S_V(X) \to S_V(Z) \to S_V(Y) \to S_V(X[1])$$

being a direct summand of the original distinguished triangle is distinguished in D. Finally we note that by the above decomposition and k-linearity of trace we have

(3)
$$\operatorname{tr}(g, X) = \sum \chi_V(g)\operatorname{tr}(\operatorname{id}; S_V(X))$$

where $\chi_V : G \to k$ is the usual character of V. Similarly for Z and Y. The result follows from this and 1.1.

PROOF OF 1.2. Apply the result 2.1 with $G = \mathbb{Z}/n\mathbb{Z}$ and the action $m \mapsto f_Z^m$ (resp. $m \mapsto f_X^m, m \mapsto f_Y^m$) on Z (resp. X, Y).

§3. Remark

We conclude this short note by indicating a corollary of the proof of 2.1. We let \mathfrak{A} a Karoubian tensor category with $k \subseteq \operatorname{End}_{\mathfrak{A}}(\mathbb{1})$ where k is an algebraic closure of \mathbb{Q} . Define $\mathbb{Z}_{\mathfrak{A}}$ to be the subring (=subgroup) of $\operatorname{End}_{\mathfrak{A}}(\mathbb{1})$ generated by all $\operatorname{tr}(\operatorname{id};X)$ with X being dualizable in \mathfrak{A} .

Corollary 3.1.— Let $f: X \to X$ be an endomorphism of a dualizable object in \mathfrak{A} with $f^n = \operatorname{id}$ for an integer n > 0. Then $\operatorname{tr}(f; X) \in \operatorname{End}_{\mathfrak{A}}(\mathbb{1})$ is integral over $\mathbb{Z}_{\mathfrak{A}}$.

PROOF. Similar to the proof of 1.2 consider X with an action of $G = \mathbb{Z}/n\mathbb{Z}$. Note that in the category \mathfrak{A} the decomposition (2) and the formula (3) hold with exactly the same proof. Since the element $\chi_V(g) \in k$ is integral over \mathbb{Z} , the result follows from (3).

References

- [1] S. Eilenberg and G. M. Kelly, *Closed categories*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 1966, pp. 421–562.
- $[2]\ \ \text{P. Deligne},\ \textit{Catégories tannakiennes},\ \text{The Grothendieck Festschrift},\ \text{Vol.\ II},\ 1990,\ \text{pp.\ }111-195.$
- [3] S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28–46.
- [4] J. P. May, The additivity of traces in triangulated categories, Adv. Math. 163 (2001), no. 1, 34–73.
- [5] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin, 1972.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, D-33615, BIELEFELD, GERMANY E-mail address: biglari@mathematik.uni-bielefeld.de