METODY NUMERYCZNE: INSTRUKCJA 1

Na tych laboratoriach skupimy się na rozwiązaniu układu:

$$Ax = b$$

Naszym celem będzie więc napisanie funkcji Solve zastępującej funkcję Gauss. Nie będziemy jednak tego układu rozwiązywać metodą bezpośrednią, taką jak eliminacja Gaussa, ale metodą iteracyjną. Tzn: będziemy konstruować kolejne przybliżenia $x^{(n)}$ dokładnego x, takie że $b-Ax^{(n)}$ będzie coraz bliższe zeru. $r=b-Ax^{(n)}$ nazywamy **residual'em**.

Zadanie 1 Policz residual. Następnie policz i wyświetl jego normę: $||r|| = \sqrt{r^T r}$ (napisz funkcję liczącą normę wektora norm(double *,int)). Ile wynosi ta norma przed i po rozwiązaniu układu metodą eliminacji Gaussa?

1 Na głupa

Pierwszym pomysłem na iteracyjne rozwiązywanie byłoby postawienie:

$$x^{(n+1)} = x^{(n)} + p$$

Gdzie p jest "poprawką" w iteracji. Łatwo sprawdzić, że idealne p byłoby równe:

$$p = A^{-1}r$$

Jednak nie mamy A^{-1} (w tym rzecz). Zamiast niej użyjemy M^{-1} , gdzie M będzie przybliżeniem A. Macierz M^{-1} nazywamy **preconditioner'em**. Na początek zamiast rozwiązywać pełen układ, pominiemy większość jego elementów:

Co daje nam prosty wzór na p:

$$p_i = \frac{1}{A_{ii}} r_i$$

Jest to równoważne z wzięciem za M diagonalnej części A. Ten prosty schemat iteracji, z powyższą poprawką nazywamy **metodą Jacobiego**.

Zadanie 2 Zaczynając od x = 0 powtarzaj tą prostą iterację (np. 1000 razy). W każdej iteracji wyświetlaj normę residualu, a także wywołaj funkcję draw_residual(double) by wykonać wykres zbieżności.

Tak wykonana iteracja się nie zbiega. Wprowadźmy współczynnik, który "przytłumi" wykonywane iteracje:

$$x^{(n+1)} = x^{(n)} + \alpha p$$

Zadanie 3 Sprawdź zbieżność tego schematu przy różnych α. Sprawdź 0.5, 0.9, 1.1 i 2.

Zadanie 4 Wydziel z funkcji Solve część odpowiedzialną za mnożenie przez A: Mult(double** A, double*x, double* r) i preconditioner: Precond(double** A, double*x, double* p)

Spróbujmy poprawić nasz schemat biorąc lepszy preconditioner. Zauważmy, że licząc p_2 mamy już obliczone p_1 i możemy go użyć. Tak więc nie musimy pomijać elementów układu "pod diagonalą":

Co daje nam prosty wzór na p:

$$p_i = \frac{1}{A_{ii}} (r_i - \sum_{j=1}^{i-1} A_{ij} p_j)$$

Gdy $\alpha=1$ schemat taki nazywamy **Metodą Gaussa-Seidla**.

Zadanie 5 Wypróbuj nowy wzór na p, znów sprawdzając różne α .

Schematy z $\alpha > 1$ nazywamy metodami **Successive Over-Relaxation** (SOR).

2 Dobieramy α

Widać wyraźnie, że zbieżność bardzo zależy od α i jasnym jest, że najlepiej byłoby dobierać ten współczynnik w każdej iteracji. Zauważmy że residual po iteracji wynosi:

$$\hat{r} = r - \alpha A p$$

Spróbujmy zminimalizować kwadrat normy tego residualu:

$$\hat{r}^T \hat{r} = (r - \alpha A p)^T (r - \alpha A p) = r^T r - 2\alpha r^T A p + \alpha^2 (A p)^T A p$$

Licząc pochodną po α mamy:

$$-r^T A p + 2\alpha (A p)^T A p = 0$$

Ostatecznie:

$$\alpha = \frac{r^T A p}{(A p)^T A p}$$

Schemat z takim α nazywamy metodą **MINRES**

Zadanie 6 Oblicz wektor Ap. Zauważ, że wyrażenie a^Tb to iloczyn skalarny dwóch wektorów $a^Tb=a\cdot b$. Napisz funkcję liczącą iloczyn skalarny skal (double*, double*, int) i oblicz α z powyższego wzoru. Sprawdź zbieżność przy takim α .

3 Wycinamy nadmiary

Przez q oznaczmy poprawkę z poprzedniej iteracji. Można powiedzieć, że w następnej iteracji nie chcemy "stracić" tego co "zyskaliśmy" w poprzedniej. Dlatego za nową poprawkę weźmiemy $p-\beta q$. Teraz wzór na nowy residual bedzie:

$$\hat{r} = r - \alpha A(p - \beta q)$$

Zadanie 7 Wypisz wzór na $\hat{r}^T\hat{r}$ i zróżniczkuj go po β . Wylicz β przyjmując, że $r^TAq = 0$ (to wynika z poprzedniej iteracji).

Zadanie 8 Zmodyfikuj iterację wg. schematu:

- oblicz residual
- $oblicz p = M^{-1}r$
- jeżeli to nie pierwsza iteracja: oblicz β i nową poprawkę: $p = p \beta q$
- $oblicz \alpha$
- wylicz nowe rozwiązanie $x = x + \alpha p$
- zachowaj poprawkę q = p (opłaca się też zachować Ap)

4 A jeśli A jest symetryczna i dodatnio określona ...

W naszym przypadku możemy wykorzystać fakt, że macierz A jest symetryczna i dodatnio określona. Wtedy zamiast minimalizować r^Tr możemy minimalizować pewien specjalny funkcjonał:

$$\frac{1}{2}x^T A x - b^T x$$

Pytanie: Jakie fizyczne wyjaśnienie mają następujące rzeczy w naszym przypadku:

- Czym jest powyższy funkcjonał?
- Dlaczego A jest symetryczna?
- Dlaczego A jest dodatnio określona?

Zadanie 9 Podstaw w powyższym wzorze $x = x^{(n)} + \alpha p$, zróżniczkuj i wylicz α . Zauważ, że $\frac{1}{2}x^TAx - b^Tx = const + \frac{1}{2}(\alpha p)^TA(\alpha p) - r^T(\alpha p)$.

Zadanie 10 Analogicznie jak poprzednio, podstaw $x = x^{(n)} + \alpha(p - \beta q)$, zróżniczkuj i wylicz β . (tym razem $q^T r = 0$)

Zadanie 11 Zastosuj dokładnie identyczną iterację zamieniając jedynie α i β i zbadaj zbieżność.

Schemat taki nazywamy metodą **gradientu sprzężonego** — Conjugate Gradient Method (\mathbf{CG}).

Uwaga: Aktualnie zbieżność jest bardzo słaba. Wynika to z faktu, że choć A jest symetryczna to preconditioner z metody Gaussa-Seidla M^{-1} już nie jest.

Zadanie 12 Zbadaj zbieżność z preconditionerem diagonalnym, lub wyrażeniem p = r (brakiem preconditionera).

Uwaga: Metodę Conjugate Gradient można zaimplementować w bardziej "zwartej" formie. Taki schemat można znaleść na wikipedii, bądz w notatkach z wykładu.