Домашнее задание 2

По курсу "Машинное обучение"

Аннотация

В этом задании вам нужно решить несколько задач по производным, линейной алгебре, градиентному спуску и линейной регрессии.

Задача 1 (2 балла)

Рассмотрим алгоритм KNN для решения задачи регрессии. На лекциях мы говорили, что для нового объекта u прогноз делается по формуле:

$$\hat{y}(u) = \arg\min_{c \in \mathcal{R}} \sum_{j=1}^{k} w_j (y_u^{(j)} - c)^2$$
(1)

где c - 'усредненное' значение целевой переменной по соседям; $y_u^{(j)}$ - значение целевой переменной j-го соседа объекта u; w_j - некоторый вес соседа; $\hat{y}(u)$ - прогноз для объекта u. Покажите, что в явном виде прогноз можно записать так:

$$\hat{y}(u) = \frac{1}{\sum_{j=1}^{k} w_j} \sum_{j=1}^{k} w_j y_u^{(j)}.$$
(2)

Задача 2 (2 балла)

Рассмотрим функцию сигмоиды $\sigma(x)$:

$$\sigma(x) = \frac{1}{1 + e^{-x}}.\tag{3}$$

Покажите, что производная сигмоиды $\sigma(x)'$ равна:

$$\sigma(x)' = \sigma(x)(1 - \sigma(x)). \tag{4}$$

Задача 3 (2 балла)

Пусть даны наблюдения:

x_1	y
0	0.1
0.5	0.9
1	2.1
1.5	2.9

Рассмотрим линейную регрессию:

$$\hat{y} = w_0 + w_1 x_1. (5)$$

Сделайте 3 итерации градиентного спуска, чтобы найти значения весов w_0, w_1 . Длину шага возьмите $\eta = 0.5$, а начальные значения $w_0 = w_1 = 1$.

Задача 4 (2 балла)

Найдите веса линейной регрессии из предыдущей задачи с помощью аналитической формулы.

Задача 5 (2 балла)

Рассмотрим линейную регрессию с L_2 регуляризацией. Докажите, что аналитическое решение задается формулой:

$$w = (X^T X + \alpha I)^{-1} X^T y, \tag{6}$$

где α - коэффициент регуляризации; I - единичная матрица.