

WIFI 5GHz Template: Release April 22nd, 2016

TEST REPORT

N°: 141267-684475B Version : 01

Subject Radio spectrum matters

tests according to standards:

47 CFR Part 15.407 & RSS 247 Issue 1(DFS Master Only) №

Issued to u-blox AG

Zurcherstrasse 68 CH-8800 Thalwil, Switzerland

Apparatus under test

♥ Product Wireless Multiradio Module

☼ Trade mark☼ Manufactureru-blox AG

♦ Model under test EMMY-W163-A, EMMY-W163, EMMY-W161-A, EMMY-W161

♦ Serial number 632000011270100

Conclusion See Test Program chapter

Test date : March 24, 2016 to March 29, 2016

Test location Fontenay Aux Roses

Composition of document 90 pages

Document issued on May 12, 2016

Written by : Stéphane PHOUDIAH Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

/ N° SIRET 408 363 174 00017

PUBLICATION HISTORY

Version	Date	Author	Modification	
01	April 22, 2016	Stéphane PHOUDIAH	Creation of the document	

SUMMARY

	TTOT DD 0 D 1 1 1	
1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3. LOAI	DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL DING	. 18
4. Dete	DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL AVAILABILITY CHECK TIME & DFS ECTION THRESHOLD	. 26
5.	DYNAMIC FREQUENCY SELECTION (DFS): U-NII DETECTION BANDWIDTH	. 31
6. Dete	DYNAMIC FREQUENCY SELECTION (DFS): STATISTICAL PERFORMANCE CHECK & DFS ECTION THRESHOLD	. 36
7. CHAI	DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & NNEL MOVE TIME	. 42
8.	DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD	. 46
9.	STATISTICAL PERFORMANCE CHECK DATA RESULT	. 50
10.	U-NII DETECTION BANDWIDTH DATA RESULTS	. 56
11.	RADAR TEST SIGNAL TYPE 5 & 0	. 60
12.	UNCERTAINTIES CHART	. 90

1. TEST PROGRAM

References

- > 47 CFR Part 15.407 (DFS requirements)
- RSS 247 Issue 1 (DFS requirements)
- ➤ KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- KBD 905462 D04 Test Mode New Rules v01
- KDB 905462 D03 Client Without DFS New Rules v01r01
- > KDB 905462 D06 802.11 Channel Plans New Rules v02
- > KDB905462 D07 Overview UNII Rules v01

Radio requirement:

Clause (47CFR Part 15.407 & RSS 247 Issue 1) Test Description	Test result - Comments			
Channel Availability Check Time & DFS Detection Threshold	☑ PASS	□ FAIL	□ NA(1)(2)	□ NP(3)
U-NII Detection Bandwidth	☑ PASS	□ FAIL	□ NA(1)	□ NP(3)
Statistical Performance Check & DFS Detection Threshold 2	☑ PASS	□ FAIL	□NA	□ NP(3)
Channel Closing Transmission Time & Channel Move Time	☑ PASS	□ FAIL	□NA	□ NP(3)
Non-occupancy period №	☑ PASS	□ FAIL	□ NA(1)	□ NP(3)
This table is a summary of test report, see conclusion of each clause of this test report for detail.				

^{(1):} Client without radar detection

^{(2):} Client with radar detection

^{(3):} Limited program

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. INFORMATIONS

The **EMMY-W1 series** provides a complete short range transceiver solution that can easily be integrated into automotive and industrial applications. The modules are designed for both simultaneous and independent operation of the following technologies:

- IEEE 802.11a/b/g/n/ac payload data rates for Wi-Fi
- Dual-mode Bluetooth v4.2
- NFC

The EMMY-W1 series is a surface-mount device (SMD) component and can be used as a Wi-Fi micro-access point supporting up to 10 clients

-Tests are performed on the product "EMMY-W163-A". See Table below for difference between products.

Product type / model	Description	Product grade
EMMY-W163-A WLAN 2.4 and 5 GHz on antenna port ANT1, Bluetooth / BT LE on antenna port ANT2		Automotive-grade
EMMY-W163	WLAN 2.4 and 5 GHz on antenna port ANT1, Bluetooth / BT LE on antenna port ANT2. Product is technically identical to EMMY-W163-A.	Professional-grade
EMMY-W161-A	WLAN 2.4 and 5 GHz, Bluetooth / BT LE on antenna port ANT1. 5 GHz WLAN TX/RX chain identical to EMMY-W163(-A)	Automotive-grade
EMMY-W161	WLAN 2.4 and 5 GHz, Bluetooth / BT LE on antenna port ANT1. 5 GHz WLAN TX/RX chain identical to EMMY-W163(-A) Product is technically identical to EMMY-W161-A.	Professional-grade

2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): u-blox EMMY-W163-A

Serial Number: 632000011270100

(Model ELLA-W163-A)

(seen from an angle, soldered on carrier board)

Equipment Under Test

Inputs/outputs - Cable:

	inputs/outputs - Oubic.		
	Туре		
- 1	nput Power: 3.3 V nom. (2.97 V min, 3.63 V max)		
- 5	SDIO (for Wifi operation)		
- ل	JART (for Bluetooth operation only)		

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop	Lenovo X201	S/N R9-C2RAW 11/03	Use to set the EUT & the communication traffic
Laptop	Lenovo X201	S/N R9-C2V75 11/03	Use to set the EUT & the communication traffic
WGP DEV BOARD	Ublox	1516-0086 S: 425791	
WGP DEV BOARD	Ublox	1516-0013 S: 425791	

<u>Software identification:</u>
- Software version: Marvell firmware version (for WLAN operation): 15.68.7.p62

Equipment information:

Type:	WIFI					
Frequency band:	☑ 5150MHz-5250MHz		☑ 5250MHz-5350MHz		☑ 5470MHz-5725MHz	
	☑ 802.11a		☑ 802.11n HT20		☑ 802.11n HT40	
Standard:	☑ 802.11ac VHT20		☑ 802.11ac VHT40		☑ 802.11ac VHT80	
			□ 802.11a	ac VHT160		
Spectrum Modulation:		☑ OFDM				
Channel bandwidth:	☑ 20MHz		☑ 40MHz	☑ 80MH	Z	□ 160MHz
Antenna Type:	☐ Integra	al		rnal		□ Dedicated
Antenna connector:			\square N			Temporary for test
	☑ 1		□ 2	□ 3		□ 4
	□ 5		□ 6	□ 7		□ 8
Transmit chains:	☑ Single anter	enna	☐ Symm			☐ Asymmetrical
Transmit Chains.			Gain mir	n: 2,5dBi		
			Gain ma	x:4,6dBi		
TPC:		☐ Yes		☑ No		
Receiver chains	☑ 1		□ 2	□ 3		□ 4
Receiver chains	□ 5		□ 6	□ 7		□ 8
Type of equipment:	☐ Stand-ald	one	☑ Plu			
Ad-Hoc mode:		✓ Yes		□No		
	Tmin:	[□ -20°C	□ 0°C		☑ -40 °C
Operating temperature range:	Tnom:			20°C		
	Tmax:		□ 35°C	□ 55°C		☑ 85 °C
Type of power source:	☐ AC power supply ☑ DC power				Battery Battery Type	
	Vmin:		□ X V/60Hz		☑ 2,97 Vdc	
Operating voltage range:	Vnom:		☐ 120V/60Hz		☑ 3 Vdc	
	Vmax		☐ X V/60Hz		☑ 3,63 Vdc	
	✓ Master		☐ Slave with radar			
Mode:			detection		detection ☐ Mesh	
System architectures:	☐ Bridge		☐ Frame based			
Time require for EUT to complete	✓ IP based □ Frame based					
its power cycle on	0 s (The EUT Start CAC Time by setting the Ublox test configuration soft					
Fixed outdoor P to P/M application:		☐ Yes			✓	1 No
User access restriction:	☑ Yes (The manufacturer declares that information regarding the parameters of the detected Radar Waveforms is not available to the end user)		□ No			

	CHANNEL PLAN				
	802.11a / 802.11n HT20/ 802.11ac VHT20				
Channel	Frequency (MHz)	Available Channel			
36	5180				
40	5200	\square			
44	5220				
48	5240	Ø			
52	5260	V			
56	5280	Ø			
60	5300	Ø			
C1=64	5320	Ø			
C2=100	5500	Ø			
104	5520	Ø			
108	5540	Ø			
112	5560	Ø			
116	5580	V			
120	5600				
124	5620				
128	5640				
132	5660	Ø			
136	5680	Ø			
140	5700	Ø			
149	5745	Ø			
153	5765				
157	5785	Ø			
161	5805				
165	5825				

	CHANNEL PLAN				
	802.11n HT40/ 802.11ac VHT40				
Channel	Frequency (MHz)	Available Channel			
36+40	5190				
44+48	5230				
52+56	5270				
C3=60+64	5310				
C4=100+104	5510				
108+112	5550				
116+120	5590				
124+128	5630				
132+136	5670	Ø			
140+144	5710	Ø			
149+153	5755				
157+161	5795				

CHANNEL PLAN				
802.11ac VHT80				
Channel	Available Channel			
36+40+44+48	5210			
C5=52+56+60+64	5290			
C6=100+104+108+112	5530			
116+120+124+128	5610			
132+136+140+144	5690			
149+153+157+161	5775			

No DFS Channel	
DFS Channel	
Weather DFS Channel (Not Authorised for RSS-247)	

DATA RATE					
	802.11a				
Data Rate (Mbps)	Modulation Type	Modulation Worst Case			
6	BPSK	V			
9	BPSK				
12	QPSK				
18	QPSK				
24	16-QAM				
36	16-QAM				
48	64-QAM				
54	64-QAM				

					DATA R	ATE			
			1		802.11n	HT20			
Available for EUT	MCS Index	Spatial streams		Modul	ation		(GI = 800ns)	ate (Mbps) (GI = 400ns)	Worst Case Modulation
	0	Streams		BPS	SK		(GI = 800HS) 6.5	7.2	Wodulation
<u> </u>	1	1		QPS			13	14.4	
	2	1		QPS			19.5	21.7	
✓	3	1		16-Q			26	28.9	
Ø	4	1		16-Q			39	43.3	
✓	5	11		64-Q			52	57.8	
<u> </u>	6	1 1	+	64-Q 64-Q			58.5 65	65 72.2	
	8	2	+	BPS			13	14.4	
	9	2		QPS			26	28.9	
	10	2	1	QPS			39	43.3	
	11	2		16-Q			52	57.8	
	12	2		16-Q			78	86.7	
	13	2		64-Q			104	115.6	
	14	2		64-Q			117	130.3	
	15 16	2	 	64-Q BPS			130 19.5	144.4 21.7	
	17	3 3		QPS			39	43.3	
	18	3	+	QPS			58.5	65	
	19	3	1	16-Q			78	86.7	
	20	3		16-Q			117	130	
	21	3		64-Q	AM		156	173.3	
	22	3		64-Q			175.5	195	
	23	3		64-Q			195	216.7	
	24	4		BPS			26	28.9	
	25	4	1	QPS			52	57.8	
	26 27	4	+	QPS 16-Q			78 104	86.7 115.6	
	28	4	+	16-Q			156	173.3	
	29	4	+	64-Q			208	231.1	
	30	4		64-Q			234	260	
	31	4		64-Q			260	288.9	
	32	1	BPSK	-	-	-	-	-	
	33	2	16-QAM	QPSK	-	-	39	43.3	
	34	2	64-QAM	QPSK	-	-	52	57.8	
	35	2	64-QAM	16-QAM	-	-	65	72.2	
	36 37	2 2	16-QAM 64-QAM	QPSK QPSK	-	-	58.5 78	65 86.7	
	38	2	64-QAM	16-QAM	-	-	97.5	108.3	
	39	3	16-QAM	QPSK	QPSK	-	52	57.8	
	40	3	16-QAM	16-QAM	QPSK	-	65	72.2	
	41	3	64-QAM	QPSK	QPSK	-	65	72.2	
	42	3	64-QAM	16-QAM	QPSK	-	78	86.7	
	43	3	64-QAM	16-QAM	16-QAM	-	91	101.1	
	44	3	64-QAM	64-QAM	QPSK	-	91	101.1	
	45	3	64-QAM	64-QAM	16-QAM	-	104	115.6	
	46 47	3	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	-	78 97.5	86.7 108.3	
	48	3	64-QAM	QPSK	QPSK	-	97.5	108.3	
	49	3	64-QAM	16-QAM	QPSK	-	117	130	
	50	3	64-QAM	16-QAM	16-QAM	-	136.5	151.7	
	51	3	64-QAM	64-QAM	QPSK	-	136.5	151.7	
	52	3	64-QAM	64-QAM	16-QAM	-	156	173.3	
	53	4	16-QAM	QPSK	QPSK	QPSK	65	72.2	
	54	4	16-QAM	16-QAM	QPSK 16 OAM	QPSK	78	86.7	
	55	4	16-QAM	16-QAM	16-QAM	QPSK	91 78	101.1	
	56 57	4	64-QAM 64-QAM	QPSK 16-QAM	QPSK QPSK	QPSK QPSK	78 91	86.7 101.1	
	58	4	64-QAM	16-QAM	16-QAM	QPSK	104	115.6	
	59	4	64-QAM	16-QAM	16-QAM	16-QAM	117	130	
	60	4	64-QAM	QPSK	QPSK	QPSK	104	115.6	
	61	4	64-QAM	16-QAM	16-QAM	QPSK	117	130	
	62	4	64-QAM	16-QAM	16-QAM	16-QAM	130	144.4	
	63	4	64-QAM	64-QAM	64-QAM	QPSK	130	144.4	
	64	4	64-QAM	64-QAM	64-QAM	16-QAM	143	158.9	
	65	4	16-QAM	QPSK 16 OAM	QPSK	QPSK	97.5	108.3	
	66 67	4	16-QAM 16-QAM	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	117 136.5	130 151.7	
	68	4	64-QAM	QPSK	QPSK	QPSK	130.5	130	
	69	4	64-QAM	16-QAM	QPSK	QPSK	136.5	151.7	
	70	4	64-QAM	16-QAM	16-QAM	QPSK	156	173.3	
	71	4	64-QAM	16-QAM	16-QAM	16-QAM	175.5	195	
	72	4	64-QAM	64-QAM	QPSK	QPSK	156	173.3	
	73	4	64-QAM	64-QAM	16-QAM	QPSK	175.5	195	
	74	4	64-QAM	64-QAM	16-QAM	16-QAM	195	216.7	
	75	4	64-QAM	64-QAM	64-QAM	QPSK	195	216.7	
	76	4	64-QAM	64-QAM	64-QAM	16-QAM	214.5	238.3	

					DATA R	ATE			
		1	1		802.11n	HT40			
Available for EUT	MCS Index	Spatial streams		Modul	ation		(GI = 800ns)	(GI = 400ns)	Worst Case Modulation
<u> </u>	0	1		BPS	SK		13	15	✓
\checkmark	1	1		QPS			27	30	
✓	2	1		QPS			40.5	45	
	3	1 1		16-Q			54	60	
✓	<u>4</u> 5	1 1	+	16-Q 64-Q			81 108	90 120	
✓	6	1 1	1	64-Q			121.5	135	
<u> </u>	7	1		64-Q			135	150	
	8	2		BPS			27	30	
	9	2		QPS			54	60	
	10	2	.	QPS			81	90	
	11 12	2 2	+	16-Q 16-Q			108 162	120 180	
	13	2	+	64-Q			216	240	
	14	2		64-Q			243	270	
	15	2		64-Q			270	300	
	16	3		BPS			40.5	45	
	17	3	1	QPS			81	90	
	18 19	3	1	QPS 16-Q			121.5 162	135 180	
	19 20	3	+	16-Q 16-Q			162 243	180 270	
	21	3	+	64-Q			324	360	
	22	3		64-Q			364.5	405	
	23	3		64-Q	AM	_	405	450	
	24	4		BPS			54	60	
	25	4		QPS			108	120	
	26 27	4	1	QPS 16-Q			162 216	180 240	
	28	4	+	16-Q 16-Q			324	360	
	29	4	+	64-Q			432	480	
	30	4		64-Q			486	540	
	31	4		64-Q			540	600	
	32	1	BPSK	1	-	-	6.0	6.7	
	33	2	16-QAM	QPSK	-	-	81	90.0	
	34	2	64-QAM	QPSK	-	-	108	120	
	35 36	2	64-QAM 16-QAM	16-QAM QPSK	-	-	135 121.5	150 135	
	37	2	64-QAM	QPSK	-	-	162	180	
	38	2	64-QAM	16-QAM	-	-	202.5	225	
	39	3	16-QAM	QPSK	QPSK	-	108	120	
	40	3	16-QAM	16-QAM	QPSK	-	135	150	
	41	3	64-QAM	QPSK	QPSK	-	135	150	
	42 43	3	64-QAM 64-QAM	16-QAM 16-QAM	QPSK 16 OAM	-	162 189	180 210	
	44	3	64-QAM	64-QAM	16-QAM QPSK	-	189	210	
	45	3	64-QAM	64-QAM	16-QAM	-	216	240	
	46	3	16-QAM	QPSK	QPSK	-	162	180	
	47	3	16-QAM	16-QAM	QPSK	-	202.5	225	
	48	3	64-QAM	QPSK	QPSK	-	202.5	225	
	49	3	64-QAM	16-QAM	QPSK 16 OAM	-	243	270	
	50 51	3	64-QAM 64-QAM	16-QAM 64-QAM	16-QAM QPSK	-	283.5 283.5	315 315	
	52	3	64-QAM	64-QAM	16-QAM	-	283.5 324	360	
	53	4	16-QAM	QPSK	QPSK	QPSK	135	150	
	54	4	16-QAM	16-QAM	QPSK	QPSK	162	180	
	55	4	16-QAM	16-QAM	16-QAM	QPSK	189	210	
	56	4	64-QAM	QPSK	QPSK	QPSK	162	180	
	57	4	64-QAM	16-QAM	QPSK 16 OAM	QPSK	189	210	
	58 59	4	64-QAM 64-QAM	16-QAM 16-QAM	16-QAM 16-QAM	QPSK 16-QAM	216 243	240 270	
	60	4	64-QAM	QPSK	QPSK	QPSK	216	240	
	61	4	64-QAM	16-QAM	16-QAM	QPSK	243	270	
	62	4	64-QAM	16-QAM	16-QAM	16-QAM	270	300	
	63	4	64-QAM	64-QAM	64-QAM	QPSK	270	300	
	64	4	64-QAM	64-QAM	64-QAM	16-QAM	297	330	
	65	4	16-QAM	QPSK 16 OAM	QPSK	QPSK	202.5	225	
	66 67	4	16-QAM 16-QAM	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	243 283.5	270 315	
	68	4	64-QAM	QPSK	QPSK	QPSK	263.5	270	
	69	4	64-QAM	16-QAM	QPSK	QPSK	283.5	315	
	70	4	64-QAM	16-QAM	16-QAM	QPSK	324	360	
	71	4	64-QAM	16-QAM	16-QAM	16-QAM	364.5	405	
	72	4	64-QAM	64-QAM	QPSK	QPSK	324	360	
	73	4	64-QAM	64-QAM	16-QAM	QPSK 16 OAM	364.5	405	
	74 75	4	64-QAM 64-QAM	64-QAM 64-QAM	16-QAM 64-QAM	16-QAM QPSK	405 405	450 450	
							TUU		

Available for ELT WC6 index 8	Available for EUT MCS potes More of spatial streams Modulation (Stream 127244) Coding rate GL = 80000 Cl = 40000 Cl = 400000 Cl = 40000 Cl = 400000 Cl = 400000 Cl = 40000 Cl = 400000 Cl = 400000				DATA RATE: 802.11ac VHT20				
Property	P	Available for EUT	MCS Index	Nbr of spatial streams		Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Proceedings	1			· .					
C	Second Color	V		1					
0	Section Sect	✓	2	1					
B	S	V		1		1/2			
P	R	V	4	1					
P 7	Fig. 7	\checkmark	5	1	64-QAM	2/3	52	57,8	
B	P	\checkmark	6	1	64-QAM	3/4	58,5	65	
S	2	\checkmark	7	1	64-QAM	5/6	65	72,2	
D	D	\checkmark	8	1	256-QAM	3/4	78	86,7	
C	□ 11 2 0 0PSK 112 28 28.8 □ □ □ □ 11 2 2 0PSK 14.8 □ □ □ □ 11 2 2 0PSK 14.8 □ □ □ □ 11 2 2 0PSK 14.8 □ □ □ □ 11 2 2 0PSK 14.8 □ □ □ □ 11 14 2 2 0PSK 14.8 □ □ □ 11 15 0 0 □ □ 11 15 0 0 □ □ □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 □ □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11 15 0 0 □ 11	\checkmark	9	1	256-QAM	5/6	N/A	N/A	
D	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		10	2	BPSK	1/2	13	14,4	
□ 133 2 16,0AM 314 78 88 86.6 □ □ 16,0AM 314 78.6 86.6 □ □ 16,0AM 314 78 80.6 □ □ 16,0AM 314 78 80.6 □ □ 16,0AM 314 78 80.6 □ □ 17 2 64,0AM 41 56 6 139 414,4 □ □ 18,0 □ □ 18 2 2 26,0AM 314 19,0 □ 11,0 □ 1	□ 13 2 16 GAM 172 82 97 A □ □ 144 2 16 GAM 34 78 B 8 B B □ □ □ 144 2 2 16 GAM 34 78 B B B B □ □ □ 15 2		11	2	QPSK	1/2	26	28,8	
D	□ 146		12	2	QPSK	3/4	39	43,4	
D	D		13	2	16-QAM	1/2	52	57,8	
□ 16 2 64-QAM 56 6 131 144,4 □ □ 17 130 □ □ 18 2 64-QAM 56 131 144,4 □ □ 18 12 75,4 □ □ 18 12 75,4 □ □ 18 12 75,4 □ □ 18 12 75,4 □ □ 18 12 75,4 □ □ 18 12 75,4 □ □ 19 12 75,4 □ □ 19 12 75,4 □ □ 19 12 75,4 □ □ 19 12 75,4 □ □ 19 12 75,4 □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4 □ □ □ 19 12 75,4	□ 16		14	2	16-QAM	3/4	78	86,6	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ 177		15	2	64-QAM	2/3	104	115,6	
□ 18 2 2 269 GAM 34 156 173.4 □ □ 1 19 2 269 GAM 666 NA NA NA □ □ 1 19 2 2 269 GAM 666 NA NA NA □ □ 1 19 2 19 3 3 BPSK 112 19 5 2 18 5 □ □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	□ 18 2 2 256-0AM 34 196 173.4 □ □ 18 2 256-0AM 56 NA NA NA □ □ 18 2 256-0AM 56 NA NA NA □ □ 18 2 3 3 BPSK 12 12 195.5 21.6 □ □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16	2	64-QAM	3/4	117	130	
□ 19 2 2 265-0AM 9-6 NA NA NA □ □ 12 10-6 21-8 □ □ 12 10-8 12	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		17	2	64-QAM	5/6	130	144,4	
□ 20 3 BPSK 1/2 19.5 21.6 □ 2 1.6 □ 2	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		18	2	256-QAM	3/4	156	173,4	
□ 21 3	□ 21 3 GPSK 1/2 39 43.2 □ □ □ 22 3 3 GPSK 3/4 58.5 56.1 □ □ □ 23 3 3 GPSK 3/4 58.5 56.1 □ □ 23 3 3 GPSK 3/4 58.5 56.1 □ □ 23 3 3 GPSK 3/4 1/2 77 77.3 3 □ □ 26 3 3 64-QAM 3/2 1/56 77.3 3 □ □ 26 3 3 64-QAM 3/4 175.5 195 □ □ 26 3 3 64-QAM 3/4 175.5 195 □ □ 26 3 3 256-QAM 3/4 175.5 195 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 25 27.6 □ □ 27 28 28.5		19	2	256-QAM	5/6	N/A	N/A	
□ 21 3	□ 21 3 GPSK 1/2 39 43.2 □ □ □ 22 3 3 GPSK 3/4 58.5 56.1 □ □ □ 23 3 3 GPSK 3/4 58.5 56.1 □ □ 23 3 3 GPSK 3/4 58.5 56.1 □ □ 23 3 3 GPSK 3/4 1/2 77 77.3 3 □ □ 26 3 3 64-QAM 3/2 1/56 77.3 3 □ □ 26 3 3 64-QAM 3/4 175.5 195 □ □ 26 3 3 64-QAM 3/4 175.5 195 □ □ 26 3 3 256-QAM 3/4 175.5 195 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 26 3 3 256-QAM 3/4 234 236.1 □ □ 25 27.6 □ □ 27 28 28.5		20		BPSK	1/2	19,5	21,6	
□ 22 3 □ GPSK	□ 22 3 9 0PSK 934 88.5 86.1 □ □ 24 3 9 10-QMM 112 78 86.7 □ □ □ 24 3 3 10-QMM 12 78 86.7 □ □ □ 24 3 3 10-QMM 22 3 117 117 128.5 □ □ □ 26 3 3 6-QMM 22 3 118.5 117 128.5 □ □ □ 27 3 9 6-QMM 23 3 118.5 117 128.5 □ □ □ 27 3 9 6-QMM 56 118.5 117 128.5 □ □ □ 27 3 9 6-QMM 56 118.5 117 128.5 □ □ □ 27 9 3 0 6-QMM 56 118.5 118.5 □ 118.5 □ □ □ 28 3 3 256-QMM 56 NNA NNA □ □ □ 29 9 3 256-QMM 56 NNA NNA □ □ □ 29 9 3 256-QMM 56 NNA NNA □ □ □ 30 4 0 8PSK 112 26 28.8 □ □ □ 31 4 0 QPSK 112 26 28.8 □ □ □ 31 4 0 QPSK 112 26 28.8 □ □ □ 31 4 0 QPSK 112 26 28.8 □ □ □ 118.5 □ 118.5 □		21	3	QPSK		39	43,2	
□ 23 3 16-QAM 1/2 78 86,7 □ □ 24 3 16-QAM 3/4 117 129,9 □ □ □ 25 3 64-QAM 276 156 175,4 □ □ 27 156 □ □ 27 156 □ □ 28 3 64-QAM 276 176,5 116 □ □ 28 3 28 40-QAM 3/4 176,5 116 □ □ 28 3 28 40-QAM 3/4 176,5 116 □ □ 28 3 28 40-QAM 3/4 274 276,1 □ □ 28 3 28 40-QAM 5/4 224 274 276,1 □ □ 28 3 28 40-QAM 5/4 224 276,1 □ □ 28 3 28 40-QAM 5/4 224 276,1 □ □ 28 3 28 40-QAM 5/4 274 276,1 □ □ 28 3 28 40-QAM 5/4 172 28 28 3 28 40-QAM 5/4 172 28 28 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,8 □ □ 3/4 28,9 □ 3/4 28,8 □ □ 3/4 28,9 □ 3/4 28,9 □ 3/4 28,8 □ □ 3/4 28,9 □	□ 23 3 3 16-OAM 1/2 78 88.7 □ □ 17-0-AM 3/4 117 12/29 □ □ □ 17-0-AM 3/4 117 17-0-AM 117-0-AM 117								
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□ 24 3 16-GAM 34 117 129 1 □ 26 3 3 64-QAM 223 156 173.4 □ □ 26 3 3 64-QAM 34 175.5 165 □ 173.4 □ □ 26 3 3 64-QAM 34 175.5 165 □ □ 27 173.4 □ □ 28 28 3 64-QAM 34 175.5 165 □ □ 27 173.4 □ □ 28 28 3 64-QAM 54 175.5 165 □ □ 28 28 3 64-QAM 55 183.4								
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□ 25 3								
□ 26 3 64-QAM 3/4 175,5 195 □ □ 27 3 64-QAM 5/6 195 □ □ 28 3 256-QAM 3/4 234 286,1 □ □ 28 3 256-QAM 3/4 234 286,1 □ □ 28 3 256-QAM 3/4 234 286,1 □ □ 3/4 3/4 234 286,1 □ □ 3/4 3/4 234 286,1 □ □ 3/4 3/4 3/4 234 286,1 □ □ 3/4 3/4 3/4 3/4 286,1 □ □ 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	□ 28 3		25	3		2/3	156		
	□ 27 3								
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□ □ 28 3 256-QAM 3/4 234 260,1 □ □ 3/4 284 260,1 □ □ 3/4 3/4 284 260,1 □ □ 3/4 3/4 3/4 3/4 284 260,1 □ □ 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4								
□ 29 3 286 AM 56 N/A N/A □ □ 30 4 8 PSPK 1/2 26 28.8 □ □ 31 4 0 QPSK 1/2 52 57.6 □ □ 31 4 0 QPSK 1/2 52 57.6 □ □ 32 4 0 QPSK 3/4 78 86.8 □ □ 32 4 0 QPSK 3/4 78 86.8 □ □ 33 4 1 16 CAM 1/2 10 4 115.6 □ □ 33 4 4 16 CAM 1/2 10 4 115.6 □ □ 33 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 4 4 16 CAM 1/2 10 4 115.6 □ □ 38 1 4 1 256 CAM 1/2 10 2/2 10 288.8 □ □ 37 4 1 6 CAM 1/2 10 2/2 10 288.8 □ □ 38 4 1 256 CAM 1/2 10 2/2 10 288.8 □ □ 10 40 5 1 8 PSK 1/2 25.5 36 □ □ 10 40 5 1 8 PSK 1/2 25.5 36 □ □ 10 40 15 16 CAM 1/2 10 10 25.5 36 □ □ 10 40 15 16 CAM 1/2 10 10 10 10 10 10 10 10 10 10 10 10 10	□ 29 3 256-QAM 566 N/A N/A □ □ □ 30 4 BPSK 1/2 26 28.8 □ □ 31 4 0 OPSK 1/2 52 57.6 □ □ 31 4 0 OPSK 1/2 52 57.6 □ □ 31 4 0 OPSK 1/2 52 57.6 □ □ 33 4 1 0PSK 1/2 100 115.6 □ □ 33 4 1 0PSK 1/2 100 115.6 □ □ 33 4 1 0PSK 1/2 100 115.6 □ □ 11								
□ 30	□ 30 4 BPSK 1/2 26 28.8 □ □ 31 4 OPSK 1/2 52 57.6 □ □ 32 4 OPSK 1/2 52 57.6 □ □ 32 4 OPSK 3/4 78 86.8 □ □ 33 4 16.0AM 1/2 104 115.6 □ □ 33 4 4 16.0AM 1/2 104 115.6 □ □ 33 4 4 16.0AM 3/4 150 173.2 □ □ 33 4 4 16.0AM 3/4 150 173.2 □ □ 35 4 4 0.0AM 3/4 150 173.2 □ □ 35 4 4 0.0AM 3/4 150 173.2 □ □ 35 4 4 0.0AM 3/4 150 173.2 □ □ 37 4 0.0AM 3/4 150 173.2 □ □ 38 4 1 0.0AM 3/4 150 173.2 □ □ 38 4 1 0.0AM 3/4 150 173.2 □ □ 38 4 1 0.0AM 3/4 150 173.2 □ □ 38 4 1 0.0AM 3/4 150 173.2 □ □ 38 4 1 0.0AM 3/4 173.2 □ 0.0AM 3/4 17								
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	□ 31 4								
□ 32	□ 32								
□ 33	□ 33			4					
□ 34	□ 34								
□ 356	□ 35								
□ 36	□ 36								
□ 37	□ 37								
□ 38	□ 38								
1 39									П
□ 40 5 BPSK 1/2 32.5 38 □ □ 41 5 OPSK 3/4 97.5 108.5 □ □ 42 5 OPSK 3/4 97.5 108.5 □ □ 43 5 16-OAM 3/4 195 216.5 □ □ 44 5 6-OAM 3/4 195 216.5 □ □ 45 5 6-OAM 3/4 195 216.5 □ □ 46 5 6-OAM 3/4 292.5 325 □ □ 47 5 6-OAM 3/4 390 433.5 □ □ 48 5 256.OAM 3/4 390 433.5 □ □ 49 5 256.OAM 3/4 390 433.5 □ □ 50 6 BPSK 1/2 39 43.2 □ □ 50 6 OPSK 1/2 39 43.2 □ □ 50 6 OPSK 1/2 78 86.4 □ □ 50 OFSK 1/2 1/2 1/2 □ 50 OFSK 1/2 □	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□								
□ 41 5 QPSK 112 65 72 □ □ 42 5 QPSK 314 97.5 108.5 □ □ 44 5 5 QPSK 314 97.5 108.5 □ □ 44 5 5 16-QAM 112 130 144.5 □ □ 44 5 5 16-QAM 324 195 216.5 □ □ 44 6 5 6 64-QAM 223 280 289 □ □ 46 6 5 6 64-QAM 324 292.5 325 □ □ 46 6 5 6 64-QAM 324 292.5 325 □ □ 47 5 5 64-QAM 526 325 361 □ □ 48 5 5 6 64-QAM 526 325 361 □ □ 48 6 5 5 256-QAM 326 325 361 □ □ 48 9 5 256-QAM 326 325 361 □ □ 49 9 5 256-QAM 326 326 326 326 327 □ □ 49 9 5 256-QAM 326 326 327 □ □ 49 9 5 256-QAM 326 326 327 □ □ 550 6 BPSK 172 39 43.2 □ □ 551 6 QPSK 172 78 86.4 □ □ 552 6 QPSK 324 117 130.2 □ □ 553 6 G 16-QAM 122 18 66.4 □ □ 553 6 G 16-QAM 324 225 325 □ □ 554 6 G 64-QAM 324 225 325 □ □ 555 6 G 64-QAM 324 225 325 □ □ 556 6 G 64-QAM 324 225 325 □ □ 557 6 G 64-QAM 324 225 325 □ □ 558 6 G 64-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 225 325 □ □ 559 6 G 256-QAM 324 255 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 559 6 G 256-QAM 324 265 35 □ □ 550 6 G 256-QAM 324 265 35 □ □ 550 6 G 256-QAM 324 265 35 □ □ 550 6 G 256-QAM 324 265 35 □ □ 550 6 G 256-QAM 324 265 35 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 273 303.1 □ □ 550 6 G 256-QAM 324 265 6 G 256 6 G 2	□ 41 5 0PSK 11/2 65 72 □ □ 44 1 5 0PSK 3/4 97.5 108.5 □ □ 44 3 5 16.0AM 11/2 130 144.5 □ □ 44 4 5 16.0AM 3/4 195.5 □ 16.0AM 3/4 195.5 □ □ 44 5 5 16.0AM 3/4 195.2 16.5 □ □ 44 5 5 6 84.0AM 2/3 260 289 □ □ 47 6 5 6 84.0AM 3/4 292.5 332.5 □ □ 47 7 5 84.0AM 5/6 3/2 3/2 5/2 3/2 5 □ □ 48 6 5 5 84.0AM 5/6 3/2 3/2 3/2 5 □ □ 48 6 5 5 256.0AM 3/4 3/4 390 433.5 □ □ 48 6 5 256.0AM 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4								
□									
□ 43 5 16-QAM 11/2 130 144.5 □ □ 44 5 5 16-QAM 3/4 195 216.5 □ □ 44 6 5 6 64-QAM 2/3 280 289 □ □ 45 6 5 64-QAM 2/3 280 289 □ □ 47 6 6 6 64-QAM 3/4 292.5 32.5 □ □ 47 6 64-QAM 3/4 292.5 32.5 □ □ 48 5 5 64-QAM 3/4 292.5 32.5 □ □ 48 5 5 256-QAM 3/4 3/4 390 433.5 □ □ 49 5 5 256-QAM 3/4 3/4 3/90 433.5 □ □ 49 9 5 256-QAM 5/6 N/A N/A N/A □ 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
□									
□	45								
	46 5 64-QAM 3/4 292.5 325								
	47	П							
□	□ 48 6 256-QAM 3/4 390 433.5 □ 49 55 256-QAM 5/6 N/A N/A □ 5/6 N/A N/A								
□ 49 5 5 256-QAM 5/6 N/A N/A □ □ 50 6 BPSK 1/2 39 43.2 □ □ 51 6 QPSK 1/2 78 86.4 □ □ 51 6 QPSK 3/4 117 78 86.4 □ □ 52 6 G QPSK 3/4 117 17 130,2 □ □ 53 6 G 16-QAM 1/2 156 173,4 □ □ 54 6 G 16-QAM 3/4 234 259.8 □ □ 55 6 G 6 4-QAM 3/4 231 246,8 □ □ 55 6 G 6 4-QAM 3/4 351 390 □ □ 57 6 G 6 4-QAM 3/4 351 390 □ □ 57 6 G 6 4-QAM 3/4 351 390 □ □ 58 6 G 6 4-QAM 3/4 488 520.2 □ □ 58 6 G 256-QAM 3/4 488 520.2 □ □ 59 6 G 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50.4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 62 7 QPSK 3/4 122 182 202,3 □ □ 63 7 □ 16-QAM 1/2 182 202,3 □ □ 64 4 7 □ 16-QAM 1/2 182 202,3 □ □ 66 7 □ 64-QAM 3/4 40.8 5/6 D 0.8 □ □ 66 7 □ 64-QAM 3/4 273 303,1 □ □ 64 7 □ 64-QAM 3/4 273 303,1 □ □ 64 7 □ 64-QAM 3/4 273 303,1 □ □ 66 7 □ 64-QAM 3/4 40.8 5/6 S 505,4 □ □ 66 7 □ 64-QAM 3/4 40.8 5/6 S 505,4 □ □ 66 7 □ 64-QAM 3/4 40.8 5/6 S 505,4 □ □ 66 7 □ 64-QAM 3/4 40.8 5/6 S 505,4 □ □ 67 7 □ 8 BPSK 1/2 52 57,6 □ □ 68 7 □ 256-QAM 3/4 5/6 6 60.9 □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 1/2 104 115,2 □ □ 73 8 G 4-QAM 3/4 136,6 173,6 □ □ 74 8 G 4-QAM 3/4 136,6 173,6 □ □ 75 8 G 4-QAM 3/4 136,6 173,6 □ □ 77 8 G 4-QAM 3/4 136,6 173,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/2 5/7,6 □ □ 77 8 G 4-QAM 3/4 40.8 5/6 5/2 5/	□ 49 5 256-QAM 5/6 N/A N/A □ 5/6 N/A N/A □ 5/6 BPSK 1/2 39 43.2 □ 5/6 QPSK 1/2 78 86.4 □ 5/6 QPSK 1/2 78 86.4 □ 5/6 QPSK 3/4 117 130.2 □ 5/6 QPSK 3/4 12 15/6 173.4 □ 5/6 QPSK 3/4 234 25/9.8 □ 5/6 QPSK 3/4 234 25/9.8 □ 5/6 QPSK 3/4 35/1 390 □ 5/6 QPSK 3/4 35/1 390 □ 5/6 QPSK 3/4 4/6 S/6 Z/6 QPSK 3/4 136.5 5/6 QPSK 3/4 404.6 □ 6/6 7 7 6/6 GPSK 3/4 404.6 □ 6/6 7 7 6/6 GPSK 3/4 10/6 QPSK 3/4 5/6 QPSK 3/4 15/6 QPSK 3/4 QPSK 3/4 4/6 QPSK 3/4 15/6 QPSK 3/4 4/6 QPSK 3/4 4/6 QPSK 3/4 QPSK 3/4 4/6 QPSK 3/4 QPSK 3/4 4/6 QPSK 3/4 4/6 QPSK 3/4 4/6 QPSK 3/4 4/6 QPSK 3/4 QPSK								
	□ 50 6 BPSK 1/2 39 43.2 □ 51 6 QPSK 1/2 78 86.4 □ 52 6 QPSK 1/2 78 86.4 □ 52 6 QPSK 1/2 78 86.4 □ 52 6 QPSK 3/4 117 130.2 □ 53 6 16 QPSK 3/4 117 130.2 □ 54 6 6 16-QAM 3/4 234 259.8 □ 54 6 G PSK 3/4 234 259.8 □ 55 6 6 G PSK 3/4 3/4 312 346.8 □ 55 6 6 G PSK 3/4 3/4 312 346.8 □ 55 6 6 G PSK 3/4 3/4 312 346.8 □ 57 6 6 G PSK 3/4 3/4 468 520.2 □ 57 6 6 G PSK 3/4 3/4 468 520.2 □ 58 6 G PSK 3/4 3/4 468 520.2 □ 58 6 G PSK 3/4 3/4 468 520.2 □ 58 6 G PSK 3/4 3/4 3/4 3/4 468 520.2 □ 58 6 G PSK 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4								
	□ 51 6 □ OPSK								
□ 52 6 □ GPSK 334 117 130.2 □ □ 53 6 16-QAM 172 156 173,4 □ □ 54 6 16-QAM 374 234 259.8 □ □ 55 6 6 16-QAM 374 234 259.8 □ □ 55 6 6 6 64-QAM 273 312 346.8 □ □ 56 6 6 6 64-QAM 374 373 312 346.8 □ □ 57 6 6 6 64-QAM 374 375 390 □ □ 57 6 6 6 64-QAM 374 468 520.2 □ □ 58 6 6 256-QAM 374 468 520.2 □ □ 58 6 6 256-QAM 374 468 520.2 □ □ 59 6 0 256-QAM 576 N/A N/A □ □ 60 7 7 BPSK 172 91 100.8 □ □ 60 7 7 QPSK 172 91 100.8 □ □ 60 7 7 QPSK 374 136.5 151.9 □ □ 62 7 QPSK 374 136.5 151.9 □ □ 62 7 0 QPSK 374 136.5 151.9 □ □ 63 7 7 16-QAM 172 182 202.3 □ □ 64 7 16-QAM 374 273 303.1 □ □ 65 7 64-QAM 374 409.5 455 □ 66 7 7 64-QAM 374 409.5 455 □ □ 66 7 7 64-QAM 374 409.5 455 □ □ 68 7 256-QAM 374 566 606.9 □ □ 68 7 7 256-QAM 374 566 606.9 □ □ 70 8 BPSK 172 52 57.6 □ □ 68 7 7 256-QAM 374 156.2 □ 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 70 8 BPSK 172 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52 52 57.6 □ □ 70 8 BPSK 172 52	□ 52								
□ 53	□ 53 6 16-QAM 1/2 156 173.4 □ 54 6 16-QAM 3/4 234 259.8 □ □ 55 6 6 6 6-QAM 2/3 312 346.8 □ □ 56 6 6 6 6-QAM 3/4 351 390 □ □ 56 6 6 6 6-QAM 5/6 390 433.2 □ □ 57 6 6 6 256-QAM 5/6 N/A N/A □ □ 58 6 6 256-QAM 5/6 N/A N/A □ □ 59 6 0 256-QAM 5/6 N/A N/A □ □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
	□ 54 6 16-QAM 3/4 234 259,8 □ 55 6 6 6 64-QAM 2/3 312 346,8 □ 55 6 6 6 64-QAM 3/4 351 390 □ 56 6 6 6 64-QAM 5/6 390 433,2 □ 57 6 6 6 64-QAM 5/6 390 433,2 □ 58 6 6 256-QAM 3/4 468 520,2 □ 57 6 6 6 256-QAM 5/6 N/A N/A □ 5/6 N/A N/A D/S □ 7/1 N/A □ 5/6 N/A N/A 15/6 N/A N/A 15/6 N/A N/A □ 5/6 N/A N/A 15/6 N/A N/A 15/6 N/A N/A □ 5/6 N/A N/A 15/6 N/								
□ 55 6 64-QAM 2/3 312 346,8 □ □ 56 6 64-QAM 3/4 351 390 □ □ 57 6 64-QAM 5/6 390 433,2 □ □ 58 6 256-QAM 3/4 468 520,2 □ □ 59 6 256-QAM 5/6 NIA NIA NIA □ 60 7 PFPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 134 273 303,1 □	□ 55								
□ 56 6 6 64-QAM 3/4 351 390 □ □ 57 6 6 64-QAM 5/6 390 433,2 □ 58 6 526-QAM 3/4 468 520,2 □ □ 59 6 256-QAM 5/6 N/A N/A □ 60 7 BPSK 1/2 45,5 50,4 □ 61 7 QPSK 1/2 91 100,8 □ 62 7 QPSK 3/4 136,5 151,9 □ 63 7 16-QAM 1/2 182 202,3 □ 64 7 16-QAM 3/4 273 303,1 □ 65 7 64-QAM 2/3 364 404,6 □ 66 7 64-QAM 3/4 409,5 455 □ 67 7 64-QAM 3/4 546 606,9 □ 68 7 256-QAM 3/4 546 606,9 □ 69 7 256-QAM 3/4 546 606,9 □ 69 7 8 8 QPSK 1/2 52 57,6 □ 60 72 8 QPSK 1/2 52 57,6 □ 61 72 8 QPSK 1/2 52 57,6 □ 62 7 1 64-QAM 3/4 546 606,9 □ 63 7 1 64-QAM 3/4 546 606,9 □ 64 7 1 64-QAM 3/4 546 606,9 □ 65 7 1 64-QAM 3/4 546 606,9 □ 67 7 1 64-QAM 3/4 546 606,9 □ 68 7 1 256-QAM 3/4 546 606,9 □ 69 7 1 256-QAM 3/4 546 606,9 □ 69 7 1 526-QAM 3/4 546 606,9 □ 60 7 1 8 64-QAM 3/4 1312 346,4 □ 60 72 8 8 9-256-QAM 3/4 136 624 693,6 □	□ 56 6 64-QAM 3/4 351 390 □ □ 57 6 64-QAM 5/6 390 433,2 □ □ 58 6 256-QAM 3/4 468 520,2 □ □ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45.5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ <								
□ 57 6 64-QAM 5/6 390 433.2 □ □ 58 6 256-QAM 3/4 468 520.2 □ □ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45.5 50.4 □ □ 61 7 QPSK 1/2 91 100.8 □ □ 61 7 QPSK 3/4 136.5 151.9 □ □ 62 7 QPSK 3/4 136.5 151.9 □ □ 63 7 16-QAM 1/2 182 202.3 □ □ 64 7 16-QAM 3/4 273 303.1 □ □ 65 7 64-QAM 3/4 273 303.1 □ □ 66 7 64-QAM 3/4 409.5 455 □	□ 57 6 6 64-QAM 5/6 390 433,2 □ □ 58 6 256-QAM 3/4 488 520,2 □ □ 58 6 256-QAM 3/4 488 520,2 □ □ 58 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 64 7 64-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 409,5 455 □ 66 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 5/6 N/A N/A □ 69 7 256-QAM 5/6 N/A N/A □ 70 8 BPSK 1/2 104 115,2 □ □ 70 8 QPSK 1/2 104 115,2 □ □ 71 8 QPSK 3/4 3/4 3/4 3/4 3/4 3/4 3/4 156 173,6 □ □ 72 8 QPSK 3/4 3/4 156 173,6 □ □ 72 8 QPSK 3/4 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4								
□ 58 6 256-QAM 3/4 468 520,2 □ □ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 409,5 455 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 3/4 546 606,9 □	□ 58 6 256-QAM 3/4 468 520,2 □ □ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 409,5 455 □ □ 66 7 64-QAM 3/4 409,5 455 505,4 □ □ 68 7 256-QAM 5/6 N/A N/A I/A								
□ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 3/4 409,5 455 □ □ 68 7 256-QAM 3/4 546 606,9 □	□ 59 6 256-QAM 5/6 N/A N/A □ □ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 3/4 273 303,1 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 3/4 409,5 455 □ □ □ 68 7 256-QAM 3/4 546 606,9 □								
□ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 5/6 455 505,4 □ □ 70 8 BPSK 1/2 52 57,6 □	□ 60 7 BPSK 1/2 45,5 50,4 □ □ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □								
□ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 3/4 409,5 455 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 70 8 BPSK 11/2 52 57,6 □ □ 71 8 QPSK 11/2 104 115,2 □ □ 72 8 QPSK 11/2 104 115,2 □ □ 73 8 QPSK 11/2 104 115,2 □ □ 74 8 QPSK 3/4 156 173,6 □ □ 75 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 1/2 208 231,2 □ □ 75 8 64-QAM 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	□ 61 7 QPSK 1/2 91 100,8 □ □ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 68 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □								
□ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □	□ 62 7 QPSK 3/4 136,5 151,9 □ □ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 3/4 546 606,9 □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □								
□ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 71 8 QPSK 3/4 156 173,6 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □	□ 63 7 16-QAM 1/2 182 202,3 □ □ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 71 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 3/4 468 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
□ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 71 8 QPSK 3/4 156 173,6 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □	□ 64 7 16-QAM 3/4 273 303,1 □ □ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □								
□ 655 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ <	□ 65 7 64-QAM 2/3 364 404,6 □ □ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ <								
□ 666 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □	□ 66 7 64-QAM 3/4 409,5 455 □ □ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □								
□ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ <	□ 67 7 64-QAM 5/6 455 505,4 □ □ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 226-QAM 3/4 624 693,6 □ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
□ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 68 7 256-QAM 3/4 546 606,9 □ □ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 69 7 256-QAM 5/6 N/A N/A □ □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □	□ 69 7 256-QAM 5/6 N/A N/A N/A □ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 8 256-QAM 3/4 624 693,6 □	□ 70 8 BPSK 1/2 52 57,6 □ □ 71 8 QPSK 1/2 104 115.2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 8 226-QAM 3/4 624 693,6 □								
□ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 71 8 QPSK 1/2 104 115,2 □ □ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 72 8 QPSK 3/4 156 173,6 □ □ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 73 8 16-QAM 1/2 208 231,2 □ □ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577.6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 74 8 16-QAM 3/4 312 346,4 □ □ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 75 8 64-QAM 2/3 416 462,4 □ □ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 75 8 64-QAM 2/3 416 462,4 □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
□ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 76 8 64-QAM 3/4 468 520 □ □ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □	□ 77 8 64-QAM 5/6 520 577,6 □ □ 78 8 256-QAM 3/4 624 693,6 □								
□ 78 8 256-QAM 3/4 624 693,6 □	□ 78 8 256-QAM 3/4 624 693,6 □								
	□ 18 0 200-QAWI 5/0 N/A N/A □								

			DATA DATE: 000 44 \/\				
Aveilable for FUT	MCC Index	Nhu of anotial atreasure	DATA RATE: 802.11ac VHT40	Cadina vata	CI = 000==	CI = 400==	Moret Cose Medulation
Available for EUT		Nbr of spatial streams	Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
✓	0	1	BPSK	1/2	13,5	15	✓
✓	1	1	QPSK	1/2	27	30	
✓	2	1	QPSK	3/4	40,5	45	
\checkmark	3	1	16-QAM	1/2	54	60	
✓	4	1	16-QAM	3/4	81	90	
\checkmark	5	1	64-QAM	2/3	108	120	
✓	6	1	64-QAM	3/4	121,5	135	
<u> </u>	7	<u> </u>	64-QAM	5/6	135	150	
✓				3/4			
	8	1	256-QAM		162	180	
✓	9	11	256-QAM	5/6	180	200	
	10	2	BPSK	1/2	27	30	
	11	2	QPSK	1/2	54	60	
	12	2	QPSK	3/4	81	90	
	13	2	16-QAM	1/2	108	120	
	14	2	16-QAM	3/4	162	180	
	15	2	64-QAM	2/3	216	240	
	16	2	64-QAM	3/4	243	270	
	17	2	64-QAM	5/6	270	300	
	18	2	256-QAM	3/4	324	360	
	19	2	256-QAM	5/6	360	400	
	20	3	BPSK	1/2	40,5	45	
	21	3	QPSK	1/2	81	90	
	22	3	QPSK	3/4	121,5	135	
	23	3	16-QAM	1/2	162	180	
	24	3	16-QAM	3/4	243	270	
	25	3	64-QAM	2/3	324	360	
	26	3	64-QAM	3/4	364,5	405	
	27	3	64-QAM	5/6	405	450	
	28	3	256-QAM	3/4	486	540	
	29	3	256-QAM	5/6	540	600	
	30	4	BPSK	1/2	54	60	
	31	4	QPSK	1/2	108	120	
	32	4	QPSK	3/4	162	180	
	33	4	16-QAM	1/2	216	240	
	34	4	16-QAM	3/4	324	360	
	35	4	64-QAM	2/3	432	480	
	36	4	64-QAM	3/4	486	540	
	37	4	64-QAM	5/6	540	600	
	38	4	256-QAM	3/4	648	720	
	39	4	256-QAM	5/6	720	800	
	40	5	BPSK	1/2	67,5	75	
	41	5	QPSK	1/2	135	150	
	42	5	QPSK	3/4	202,5	225	
	43	5	16-QAM	1/2	270	300	
	44	5	16-QAM	3/4	405	450	
	45	5	64-QAM	2/3	540	600	
	46	5	64-QAM	3/4	607,5	675	
	47	5	64-QAM	5/6	675	750	
	48	5	256-QAM	3/4	810	900	
	49	5	256-QAM	5/6	900	1000	
	50	6	BPSK	1/2	81	90	
	51	6	QPSK	1/2	162	180	
	52	6	QPSK	3/4	243	270	
	53	6	16-QAM	1/2	324	360	
	54	6	16-QAM	3/4	486	540	
	55	6	64-QAM	2/3	648	720	
	56	6	64-QAM	3/4	729	810	
	57	6	64-QAM	5/6	810	900	
	58	6	256-QAM	3/4	972	1080	
	59	6	256-QAM	5/6	1080	1200	
	60	7	BPSK	1/2	94,5	105	
	61	7	QPSK	1/2	189	210	
	62	7	QPSK	3/4	283,5	315	
	63	7	16-QAM	1/2	378	420	
	64	7	16-QAM	3/4	567	630	
	65	7	64-QAM	2/3	756	840	
	66	7	64-QAM	3/4	850,5	945	
	67	7	64-QAM	5/6	945	1050	
	68	7	256-QAM	3/4	1134	1260	
	69	7	256-QAM	5/6	1260	1400	
	70	8	BPSK	1/2	108	120	
	71	8	QPSK	1/2	216	240	
	72	8	QPSK	3/4	324	360	
	73	8	16-QAM	1/2	432	480	
	74		16-QAM	3/4	648	720	
		8					
	75	8	64-QAM	2/3	864	960	
	76	8	64-QAM	3/4	972	1080	
				E /O			
	77	8	64-QAM	5/6	1080	1200	
	77 78	<u>8</u> 8	64-QAM 256-QAM	3/4	1080 1296	1200 1440	

			DATA DATE: 000 44cc VIIT00				
Available for EUT	MCS Indox	Nbr of spatial streams	DATA RATE: 802.11ac VHT80 Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Available for Lot	0	1		1/2			✓
<u>V</u>	1	<u> </u>	BPSK QPSK	1/2	29.3 58.5	32.5 65	
<u>V</u>		1					
<u>V</u>	2		QPSK	3/4	87.8	97.5	
<u>V</u>	3	<u>1</u> 1	16-QAM 16-QAM	1/2 3/4	117 175.5	130 195	
<u>V</u>		<u> </u>					
	5		64-QAM	2/3	234	260	
7	6	1	64-QAM	3/4	263.3	292.5	
7	7	1	64-QAM	5/6	292.5	325	
✓	8	1	256-QAM	3/4	351	390	
V	9	11	256-QAM	5/6	390	433.3	
	10	2	BPSK	1/2	58.6	65	
	11	2	QPSK	1/2	117	130	
	12	2	QPSK	3/4	175.6	195	
	13	2	16-QAM	1/2	234	260	
	14	2	16-QAM	3/4	351	390	
	15	2	64-QAM	2/3	468	520	
	16	2	64-QAM	3/4	526.6	585	
	17	2	64-QAM	5/6	585	650	
	18	2	256-QAM	3/4	702	780	
	19	2	256-QAM	5/6	780	866.6	
	20	3	BPSK	1/2	87.9	97.5	
	21	3	QPSK	1/2	175.5	195	
	22	3	QPSK	3/4	263.4	292.5	
	23	3	16-QAM	1/2	351	390	
	24	3	16-QAM	3/4	526.5	585	
	25	3	64-QAM	2/3	702	780	
	26	<u> </u>	64-QAM	3/4	789.9	877.5	
	27	<u> </u>	64-QAM	5/6	877.5	975	
		<u> </u>	256-QAM	3/4	1053	1170	
	28		256-QAM 256-QAM			1299.9	
	29	3		5/6	1170		
	30	4	BPSK	1/2	117.2	130	
	31	4	QPSK	1/2	234	260	
	32	4	QPSK	3/4	351.2	390	
	33	4	16-QAM	1/2	468	520	
	34	4	16-QAM	3/4	702	780	
	35	4	64-QAM	2/3	936	1040	
	36	4	64-QAM	3/4	1053.2	1170	
	37	4	64-QAM	5/6	1170	1300	
	38	4	256-QAM	3/4	1404	1560	
	39	4	256-QAM	5/6	1560	1733.2	
	40	5	BPSK	1/2	146.5	162.5	
	41	5	QPSK	1/2	292.5	325	
	42	5	QPSK	3/4	439	487.5	
	43	5	16-QAM	1/2	585	650	
	44	5	16-QAM	3/4	877.5	975	
	45	5	64-QAM	2/3	1170	1300	
	46	5	64-QAM	3/4	1316.5	1462.5	
	47	5	64-QAM	5/6	1462.5	1625	
	48	5	256-QAM	3/4	1755	1950	
	49	5	256-QAM	5/6	1950	2166.5	
	50	6	BPSK	1/2	175.8	195	
	51	6	QPSK	1/2	351	390	
	52	6	QPSK	3/4	526.8	585	
	53	6	16-QAM	1/2	702	780	
	54	6	16-QAM	3/4	1053	1170	
	55	6	64-QAM	2/3	1404	1560	
	56	6	64-QAM	3/4	1579.8	1755	
		6	64-QAM	5/6	1755	1950	
	57 58	6	256-QAM	3/4	2106	2340	
	58	<u> </u>	256-QAM 256-QAM	5/6	2340	2599.8	
	60	7	BPSK	1/2	205.1	227.5	
	61	7	QPSK	1/2	409.5	455	
	62	7	QPSK	3/4	614.6	682.5	
	63	7	16-QAM	1/2	819	910	
	64	7	16-QAM	3/4	1228.5	1365	
	65	7	64-QAM	2/3	1638	1820	
	66	7	64-QAM	3/4	1843.1	2047.5	
	67	7	64-QAM	5/6	2047.5	2275	
	68	7	256-QAM	3/4	2457	2730	
	69	7	256-QAM	5/6	2730	3033.1	
	70	8	BPSK	1/2	234.4	260	
	71	8	QPSK	1/2	468	520	
	72	8	QPSK	3/4	702.4	780	
	73	8	16-QAM	1/2	936	1040	
	74	8	16-QAM	3/4	1404	1560	
	75	8	64-QAM	2/3	1872	2080	
	76	8	64-QAM	3/4	2106.4	2340	
	77	8	64-QAM	5/6	2340	2600	
	78	8	256-QAM	3/4	2808	3120	
			256-QAM	5/6	3120	3466.4	

802.11a		
Channel	C1	C2
EIRP TPC Max (dBm)	18.5	17.5
Occupied Bandwidth (MHz)	17.077	17.077

802.11n HT20/ac VHT20		
Channel	C1	C2
EIRP TPC Max (dBm)	18.6	17.3
Occupied Bandwidth (MHz)	17.873	17.945

802.11n HT40/ac VHT40		
Channel	C3	C4
EIRP TPC Max (dBm)	17.2	15.8
Occupied Bandwidth (MHz)	36.469	36.324

802.11ac VHT80		
Channel	C5	C6
EIRP TPC Max (dBm)	15.2	13.1
Occupied Bandwidth (MHz)	77.106	77.106

2.3. RUNNING MODE

The EUT is set in the following modes during tests:

- Emission-reception with a duty cycle above 17% in the data rate that produced the highest output power

The Ublox test configuration software is used to set the communication traffic & to set RF parameters

2.4. EQUIPMENT LABELLING

2.5. EQUIPMENT MODIFICATION

✓ None
✓ Modification:

3. DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL LOADING

3.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 24, 2016 to March 29, 2016

Ambient temperature : 24 °C Relative humidity : 42 %

3.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Detection Thresholds Determination, Reference Noise Level, Channel Loading

3.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079	Verified wit	h calibrated before testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

3.4. RESULTS

Channel	C2
Applicable Level (dBm)	-62
Lowest Antenna Gain (dBi)	2,5
DFS Detection Thresholds (dBm)	-59,5
Additional Level (dB)	1
Radar Level (dBm)	-58,5

4. DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL AVAILABILITY CHECK TIME & DFS DETECTION THRESHOLD

4.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 24, 2016

Ambient temperature : 24 °C Relative humidity : 42 %

4.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for Channel Availability Check & DFS Detection Threshold

4.3. LIMIT

Channel Availability Check Time shall exceed 60 seconds Radard burst must be detected at the start & the end of Channel Availability Check Time

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007		calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079	Verified wit multimeter b	
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	☐ Divergence:			

TEST REPORT
N° **141267-684475B**Version : **01**Page 28/90

4.6. RESULTS

4.7. CONCLUSION

Channel Availability Check Time & DFS Detection Threshold measurement performed on the sample of the product **u-blox EMMY-W163-A**, SN: **632000011270100**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.407 & RSS 247 ISSUE 1** limits.

5. DYNAMIC FREQUENCY SELECTION (DFS): U-NII DETECTION BANDWIDTH

5.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 29, 2016

 $\begin{array}{lll} \mbox{Ambient temperature} & : 24 \ ^{\circ}\mbox{C} \\ \mbox{Relative humidity} & : 42 \ \% \end{array}$

5.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for U-NII Detection Bandwidth

5.3. LIMIT

Minimum 100% of the U-NII 99% transmission power bandwidth

5.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	□ Divergence:

TEST REPORT
N° 141267-684475B Version : 01 Page 33/90

5.6. RESULTS

802.11a		
Channel	Channel	
FL (MHz)	5491	
FH (MHz)	5509	
U- NII Detection bandwidth (MHz)	18	
99% Occupied bandwidth (MHz)	17,077	
U- NII Detection Bandwidth (%)	105,4	

802.11n HT20			
Channel	C2		
FL (MHz)	5491		
FH (MHz)	5509		
U- NII Detection bandwidth (MHz)	18		
99% Occupied bandwidth (MHz)	17,945		
U- NII Detection Bandwidth (%)	100,3		

802.11n HT40			
Channel	C4		
FL (MHz)	5491		
FH (MHz)	5530		
U- NII Detection bandwidth (MHz)	39		
99% Occupied bandwidth (MHz)	36,324		
U- NII Detection Bandwidth (%)	107,4		

802.11ac VHT80			
Channel	Channel		
FL (MHz)	5491		
FH (MHz)	5569		
U- NII Detection bandwidth (MHz)	78		
99% Occupied bandwidth (MHz)	77,106		
U- NII Detection Bandwidth (%)	10 1,2		

5.7. CONCLUSION

U-NII Detection Bandwidth measurement performed on the sample of the product **u-blox EMMY-W163-A**, SN: **632000011270100**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 & RSS 247 ISSUE 1 limits.

6. DYNAMIC FREQUENCY SELECTION (DFS): STATISTICAL PERFORMANCE CHECK & DFS DETECTION THRESHOLD

6.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 24, 2016 to January 29, 2016

Ambient temperature : 24 °C Relative humidity : 42 %

6.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for Statistical Performance Check & DFS Detection Threshold

6.3. LIMIT

Short Pulse Radar Test Waveform								
Radar Type	Pulse Width (µsec)	PRI (IISAC) NIIMN		Minimum Percentage of Sucessful Detection	Minimum Number of Trials			
1	1	See pulse sequence	(1/360)*(19*10^6/3066)	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
	Aggregate Ra	80%	120					

Long Pulse Radar Test Waveform								
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses	Number of Bursts	Minimum Percentage of Sucessful Detection	Minimum Number of Trials	
5	50-100	5-20	1000-2000	1-3	8-20	80%	30	

Frequency Hopping Radar Test Waveform								
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Sucessful Detection	Minimum Number of Trials	
6	1	333	9	0.333	300	70%	30	

6.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

6.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

□ None □ Divergence:

6.6. RESULTS

80.	2.11a							
Short Po	Short Pulse Radar							
Channel	C2							
Detection Radar Type 1 (%)	100							
Detection Radar Type 2 (%)	100							
Detection Radar Type 3 (%)	100							
Detection Radar Type 4 (%)	100							
Aggregate Radar Type 1-4 (%)	100							
Long Pu	ılse Radar							
Detection Radar Type 5 (%)	Detection Radar Type 5 (%)							
Frequency H	lopping Radar							
Detection Radar Type 6 (%)	100							

802.11n HT20							
Short Puls	Short Pulse Radar						
Channel C2							
Detection Radar Type 1 (%)	100						
Detection Radar Type 2 (%)	100						
Detection Radar Type 3 (%)	100						
Detection Radar Type 4 (%)	100						
Aggregate Radar Type 1-4 (%)	100						
Long Puls	se Radar						
Detection Radar Type 5 (%)							
Frequency Hopping Radar							
Detection Radar Type 6 (%)	100						

802.11n HT40							
Short Puls	Short Pulse Radar						
Channel	C4						
Detection Radar Type 1 (%)	100						
Detection Radar Type 2 (%)	100						
Detection Radar Type 3 (%)	100						
Detection Radar Type 4 (%)	100						
Aggregate Radar Type 1-4 (%)	100						
Long Puls	se Radar						
Detection Radar Type 5 (%)							
Frequency Hopping Radar							
Detection Radar Type 6 (%)	Detection Radar Type 6 (%)						

802.11ac VHT80					
Short Pul	se Radar				
Channel Channel					
Detection Radar Type 1 (%)	96,7				
Detection Radar Type 2 (%)	100				
Detection Radar Type 3 (%)	100				
Detection Radar Type 4 (%)	96,7				
Aggregate Radar Type 1-4 (%)	98,35				
Long Puls	se Radar				
Detection Radar Type 5 (%)					
Frequency Ho	ppping Radar				
Detection Radar Type 6 (%) 96.7					

6.7. CONCLUSION

Statistical Performance Check & DFS Detection Threshold measurement performed on the sample of the product **u-blox EMMY-W163-A**, SN: **632000011270100**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 & RSS 247 ISSUE 1 limits.

7. DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & CHANNEL MOVE TIME

7.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 24, 2016

Ambient temperature : 24 °C Relative humidity : 42 %

7.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Channel Closing Transmission Time

7.3. **LIMIT**

Channel Closing Transmission Time shall not exceed 200ms + an aggregate of 60ms over remaining 10s period Channel Move Time shall not exceed 10seconds

7.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079	Verified wit	h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	□ Divergence:	

TEST REPORT
N° 141267-684475B Version : 01 Page 44/90

7.6. RESULTS

7.7. CONCLUSION

Channel Closing Transmission Time & Channel Move Time measurement performed on the sample of the product **u-blox EMMY-W163-A**, SN: **632000011270100**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 & RSS 247 ISSUE 1 limits.

8. DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD

8.1. TEST CONDITIONS

Test performed by : Stéphane PHOUDIAH

Date of test : March 24, 2016

 $\begin{array}{lll} \mbox{Ambient temperature} & : 24 \ ^{\circ}\mbox{C} \\ \mbox{Relative humidity} & : 42 \ \% \end{array}$

8.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Non-Occupancy Period

8.3. LIMIT

Non-Occupancy Period shall exceed 1800 seconds

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multi-meter	ISOTECH	IDM 91E	A1240253	2015/08	2016/08
Spectrum analyzer	ROHDE & SCHWARZ	FSL6	A4060032	2015/04	2017/04
RF cable	Télédyne	920-0202-024	A5329663	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329664	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329665	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329668	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329669	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329670	2014/04	2016/04
RF cable	Télédyne				
RF cable	Télédyne	920-0202-024	A5329672	2014/04	2016/04
RF cable	Télédyne	920-0202-024	A5329673	2014/04	2016/04
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	receiver/ Spec	calibrated EMI ctrum analyzer testing
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079		h calibrated efore testing
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2014/04	2016/04
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2014/04	2016/04
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2014/10	2016/10
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2014/10	2016/10
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2014/04	2016/04
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2014/04	2016/04
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2014/04	2016/04
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2014/04	2016/04

8.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

TEST REPORT
N° **141267-684475B**Version : **01**Page 48/90

8.6. RESULTS

8.7. CONCLUSION

Non-Occupancy period measurement performed on the sample of the product **u-blox EMMY-W163-A**, SN: **632000011270100**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 & RSS 247 ISSUE 1 limits.

9. STATISTICAL PERFORMANCE CHECK DATA RESULT

RADA	AR TYPE	1		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (µs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	102	1	518	1	1	1	1
2	99	1	538	1	1	1	1
3	95	1	558	1	1	1	1
4	92	1	577	1	1	1	0
5	89	1	598	1	1	1	1
6	86	1	618	1	1	1	1
7	83	1	638	1	1	1	1
8	81	1	658	1	1	1	1
9	78	1	678	1	1	1	1
10	74	1	718	1	1	1	1
11	72	1	738	1	1	1	1
12	70	1	758	1	1	1	1
13	68	1	778	1	1	1	1
14	67	1	797	1	1	1	1
15	65	1	818	1	1	1	1
16	88	1	600	1	1	1	1
17	76	1	700	1	1	1	1
18	66	1	800	1	1	1	1
19	53	1	1000	1	1	1	1
20	44	1	1200	1	1	1	1
21	38	1	1400	1	1	1	1
22	33	1	1600	1	1	1	1
23	30	1	1800	1	1	1	1
24	27	1	2000	1	1	1	1
25	24	1	2200	1	1	1	1
26	22	1	2400	1	1	1	1
27	21	1	2600	1	1	1	1
28	19	1	2800	1	1	1	1
29	19	1	2900	1	1	1	1
30			1	1	1	1	
Statistical Performance Check (%)				100,0	100,0	100,0	96,7

RADA	AR TYPE	2		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	27	3	206	1	1	1	1
2	25	1,9	154	1	1	1	1
3	25	1,6	171	1	1	1	1
4	27	4,6	222	1	1	1	1
5	26	3,4	150	1	1	1	1
6	23	4,1	165	1	1	1	1
7	23	3,7	194	1	1	1	1
8	26	4,1	219	1	1	1	1
9	29	3,9	212	1	1	1	1
10	24	1,6	207	1	1	1	1
11	25	2,1	194	1	1	1	1
12	28	2,3	185	1	1	1	1
13	25	1,8	221	1	1	1	1
14	28	1,5	228	1	1	1	1
15	28	1,9	183	1	1	1	1
16	28	2,2	163	1	1	1	1
17	24	4,7	178	1	1	1	1
18	27	3,3	165	1	1	1	1
19	26	3,3	153	1	1	1	1
20	26	5	169	1	1	1	1
21	24	1,1	209	1	1	1	1
22	28	3,1	154	1	1	1	1
23	27	2,7	222	1	1	1	1
24	23	2,2	211	1	1	1	1
25	28	2,6	172	1	1	1	1
26	24	1,9	152	1	1	1	1
27	28	4,2	157	1	1	1	1
28	27	1,5	227	1	1	1	1
29	27	3,3	164	1	1	1	1
30	26	1,6	170	1	1	1	1
Statistic	al Performan	ce Check (%)	100,0	100,0	100,0	100,0

RADA	AR TYPE	3		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	18	6,2	483	1	1	1	1
2	16	6,6	487	1	1	1	1
3	17	9,2	441	1	1	1	1
4	18	9	283	1	1	1	1
5	16	9,7	391	1	1	1	1
6	16	6,3	419	1	1	1	1
7	16	7,3	315	1	1	1	1
8	16	8,8	494	1	1	1	1
9	18	8,3	277	1	1	1	1
10	18	6,1	452	1	1	1	1
11	16	6,8	274	1	1	1	1
12	17	9,8	488	1	1	1	1
13	17	9,8	387	1	1	1	1
14	16	9,5	385	1	1	1	1
15	17	9,2	372	1	1	1	1
16	18	7,2	337	1	1	1	1
17	17	7,1	465	1	1	1	1
18	17	8,9	258	1	1	1	1
19	16	8	292	1	1	1	1
20	17	6,1	332	1	1	1	1
21	17	10	477	1	1	1	1
22	17	6,7	468	1	1	1	1
23	17	8,9	299	1	1	1	1
24	18	7,7	383	1	1	1	1
25	17	6,7	429	1	1	1	1
26	17	8,2	490	1	1	1	1
27	17	7,6	421	1	1	1	1
28	18	6,4	387	1	1	1	1
29	17	6,5	258	1	1	1	1
30	16	6,3	357	1	1	1	1
Statistical Performance Check (%))	100,0	100,0	100,0	100,0

RADA	AR TYPE	4		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	Number of Pulses per Burst	Pulse Width (µsec)	PRI (μs)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	16	17,4	252	1	1	1	1
2	12	14,1	229	1	1	1	1
3	15	16,5	229	1	1	1	1
4	15	17,4	270	1	1	1	1
5	15	16,9	360	1	1	1	1
6	12	17,1	362	1	1	1	1
7	14	12,1	296	1	1	1	1
8	12	12	482	1	1	1	1
9	14	17,9	220	1	1	1	1
10	15	13,1	391	1	1	1	1
11	12	13,7	396	1	1	1	1
12	13	13	355	1	1	1	1
13	15	16,9	405	1	1	1	1
14	12	16,1	241	1	1	1	1
15	13	19,8	388	1	1	1	1
16	14	17	386	1	1	1	1
17	12	12,7	497	1	1	1	1
18	15	14,2	432	1	1	1	1
19	14	11,4	320	1	1	1	1
20	12	16,9	478	1	1	1	1
21	15	13,6	314	1	1	1	1
22	12	20	467	1	1	1	1
23	16	13,8	398	1	1	1	1
24	16	19,8	459	1	1	1	1
25	15	17,4	399	1	1	1	1
26	15	16,9	226	1	1	1	1
27	13	16,9	345	1	1	1	1
28	12	13,7	404	1	1	1	1
29	15	15	295	1	1	1	1
30	15	14,5	313	1	1	1	0
Statistical Performance Check (%)		100,0	100,0	100,0	96,7		

RAD	AR TYPE 5	802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	See Annex	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)	Detection (1=yes/0=no)
1	FCC0696-T5-08-TRIAL-1	1	1	1	1
2	FCC0696-T5-09-TRIAL-2	1	1	1	1
3	FCC0696-T5-10-TRIAL-3	1	1	1	1
4	FCC0696-T5-11-TRIAL-4	1	1	1	1
5	FCC0696-T5-12-TRIAL-5	1	1	1	1
6	FCC0696-T5-13-TRIAL-6	1	1	1	1
7	FCC0696-T5-14-TRIAL-7	1	1	1	1
8	FCC0696-T5-15-TRIAL-8	1	1	1	1
9	FCC0696-T5-16-TRIAL-9	1	1	1	1
10	FCC0696-T5-17-TRIAL-10	1	1	1	1
11	FCC0696-T5-18-TRIAL-11	1	1	1	1
12	FCC0696-T5-19-TRIAL-12	1	1	1	1
13	FCC0696-T5-20-TRIAL-13	1	1	1	1
14	FCC0696-T5-08-TRIAL-14	1	1	1	1
15	FCC0696-T5-09-TRIAL-15	1	1	1	1
16	FCC0696-T5-10-TRIAL-16	1	1	1	1
17	FCC0696-T5-11-TRIAL-17	1	1	1	1
18	FCC0696-T5-12-TRIAL-18	1	1	1	1
19	FCC0696-T5-08-TRIAL-19	1	1	1	1
20	FCC0696-T5-09-TRIAL-20	1	1	1	1
21	FCC0696-T5-10-TRIAL-21	1	1	1	1
22	FCC0696-T5-11-TRIAL-22	1	1	1	1
23	FCC0696-T5-12-TRIAL-23	1	1	1	1
24	FCC0696-T5-13-TRIAL-24	1	1	1	1
25	FCC0696-T5-14-TRIAL-25	1	1	1	1
26	FCC0696-T5-15-TRIAL-26	1	1	1	1
27	FCC0696-T5-16-TRIAL-27	1	1	1	1
28	FCC0696-T5-17-TRIAL-28	1	1	1	1
29	FCC0696-T5-18-TRIAL-29	1	1	1	1
30	FCC0696-T5-19-TRIAL-30	1	1	1	1
Statist	ical Performance Check (%)	100,0	100,0	100,0	100,0

RADAR TYPE 6		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80
Trial #	http://ntiacsd.ntia.doc.gov/dfs/HopFreqInRlan BW.txt	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)	Detection (1=yes/0=n o)
1	Burst 0	1	1	1	1
2	Burst 1	1	1	1	1
3	Burst 2	1	1	1	1
4	Burst 3	1	1	1	1
5	Burst 4	1	1	1	1
6	Burst 5	1	1	1	1
7	Burst 6	1	1	1	1
8	Burst 7	1	1	1	1
9	Burst 8	1	1	1	1
10	Burst 9	1	1	1	1
11	Burst 10	1	1	1	1
12	Burst 11	1	1	1	0
13	Burst 12	1	1	1	1
14	Burst 13	1	1	1	1
15	Burst 14	1	1	1	1
16	Burst 15	1	1	1	1
17	Burst 16	1	1	1	1
18	Burst 17	1	1	1	1
19	Burst 18	1	1	1	1
20	Burst 19	1	1	1	1
21	Burst 20	1	1	1	1
22	Burst 21	1	1	1	1
23	Burst 22	1	1	1	1
24	Burst 23	1	1	1	1
25	Burst 24	1	1	1	1
26	Burst 25	1	1	1	1
27	Burst 26	1	1	1	1
28	Burst 27	1	1	1	1
29	Burst 28	1	1	1	1
30	Burst 29	1	1	1	1
Statistical Perform	mance Check (%)	100,0	100,0	100,0	96,7

10. U-NII DETECTION BANDWIDTH DATA RESULTS

	Cha	annel		5500	MHz							
802.11a		U-NII Detection Bandwidth										
				Tria	al: Detec	tion=1 &	No Dete	ection=0				
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)	
5490	0	1	1	1	1	0	0	1	0	0	50	
5491	1	1	1	1	1	1	1	1	1	1	100	
5492	1	1	1	1	1	1	1	1	1	1	100	
5493	1	1	1	1	1	1	1	1	1	1	100	
5494	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	1	1	100	
5505	1	1	1	1	1	1	1	1	1	1	100	
5506	1	1	1	1	1	1	1	1	1	1	100	
5507	1	1	1	1	1	1	1	1	1	1	100	
5508	1	1	1	1	1	1	1	1	1	1	100	
5509	1	1	1	1	1	1	1	1	1	1	100	
5510	0	0	0	0	0	0	0	0	0	0	0	

	Cha	annel		5500	MHz							
802.11n HT20		U-NII Detection Bandwidth										
	Trial: Detection=1 & No Detection=0											
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)	
5490	0	0	0	0	0	0	1	0	1	0	20	
5491	1	1	1	1	1	1	1	1	1	1	100	
5492	1	1	1	1	1	1	1	1	1	1	100	
5493	1	1	1	1	1	1	1	1	1	1	100	
5494	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	1	100	
5500	1	1	1	1	1	1	1	1	0	1	90	
5505	1	1	1	1	1	1	1	1	1	1	100	
5506	1	1	1	1	1	1	1	1	1	1	100	
5507	1	1	1	1	1	1	1	1	1	1	100	
5508	1	1	1	1	1	1	1	1	1	1	100	
5509	1	1	1	1	1	1	1	1	1	1	100	
5510	0	0	0	0	1	0	0	1	0	0	20	

	Cha	annel		5510	MHz							
802.11n HT40		U-NII Detection Bandwidth										
	Trial: Detection=1 & No Detection=0											
Radar Frequency (MHz)	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Detection (%)	
5490	0	0	0	0	0	0	0	0	0	0	0	
5491	1	1	1	1	1	1	1	1	1	1	100	
5492	1	1	1	1	1	1	1	1	1	1	100	
5493	1	1	1	1	1	1	1	1	1	1	100	
5494	1	1	1	1	1	1	1	1	1	1	100	
5495	1	1	1	1	1	1	1	1	1	0	90	
5500	1	1	1	1	1	1	1	1	1	1	100	
5505	1	1	1	1	1	1	1	1	1	1	100	
5510	1	1	1	1	1	1	1	1	1	1	100	
5515	1	1	1	1	1	1	1	1	1	1	100	
5520	1	1	1	1	1	0	1	1	1	1	90	
5525	1	1	1	1	1	0	1	1	1	1	90	
5530	1	1	1	1	1	1	1	1	1	1	100	

	Cha	annel		5530	MHz						
802.11ac HT80				U-N	II Det	ectio	n Ban	dwid	th		
				Tria	al: Detec	tion=1 &	No Dete	ection=0			
Radar Frequency (MHz)	Trial 1	Fral 2 Fral 3 Fral 4 Fral 6 Fral 6 Fral 7 Fral 8 Fral 9									Detection (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	0	1	1	1	1	1	90
5500	1	1	1	1	1	1	1	1	1	0	90
5505	1	1	0	1	1	1	1	1	1	1	90
5510	1	1	0	1	1	1	1	1	1	1	90
5515	1	1	1	0	1	1	1	1	1	1	90
5520	1	1	1	0	1	1	1	1	1	1	90
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	1	1	1	1	1	1	1	1	100
5569	1	1	1	1	0	1	1	1	1	1	90
5570	0	0	0	0	0	0	0	0	0	0	0

11. RADAR TEST SIGNAL TYPE 5 & 0

TYPE 5 PARAMETER SHEET

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 1

Bursts in	ı ırıaı: 8					
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)
1	1	83	8			1028
2	2	89,2	20	928		137
3	2	51,3	13	1091		1139
4	3	74,1	20	1114	1237	1423
5	2	81,3	15	1828		714
6	2	64,5	7	1706		1035
7	3	87	18	1045	954	1492
8	2	79,6	19	1047		577
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 2

Bursts in	Trial: 9					
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)
1	1	84,8	7			1057
2	2	69,4	8	1611		744
3	2	52,8	7	1026		294
4	2	58,4	11	1001		596
5	3	87,9	17	1130	923	432
6	1	79,1	7			812
7	1	68	20			702
8	3	66,3	15	1213	1920	301
9	2	86	8	1066		430
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 3

bursts in	Bursts in Trial: 10							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	3	98,2	9	1535	1372	264		
2	3	73,6	18	985	1379	670		
3	2	96	9	931		1069		
4	2	95,1	7	1755		457		
5	2	75,7	9	1863		543		
6	2	71,7	15	1452		84		
7	2	74,5	17	1126		525		
8	3	80,6	14	1615	1146	967		
9	2	56,5	19	1319		291		
10	3	55,2	15	993	1070	1016		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 4

Bursts in	Bursts in Trial: 11							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	91,3	7			70		
2	2	96,1	20	1397		244		
3	2	92,9	8	1222		569		
4	1	93,7	9			1024		
5	3	73,3	15	1243	1066	815		
6	3	88,1	13	1133	1652	549		
7	2	93,7	14	920		1027		
8	1	99,1	6			834		
9	3	88,6	17	1511	1909	600		
10	2	92,5	10	1050		314		
11	2	53,7	17	1624		7		
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 5

D 41010 11	Buisto III That. 12						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	1	51,8	20			641	
2	2	80,1	8	1641		875	
3	2	88,2	8	1852		33	
4	2	71,8	10	1048		476	
5	2	91,8	6	1778		910	
6	2	56,8	19	1212		570	
7	1	69,6	13			637	
8	2	94,6	13	1595		347	
9	3	52,7	18	1682	1384	483	
10	2	65,5	5	1082		39	
11	3	68,6	17	1467	1397	337	
12	1	94,1	14			378	
13							
14							
15							
16							
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 6

Duists III That. 10						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)
1	2	80,3	8	1655		381
2	2	54,5	5	1022		363
3	3	68,3	12	967	1634	209
4	3	64	18	1382	1616	337
5	3	73,2	20	1339	1044	432
6	2	77,8	20	1441		910
7	1	57,2	13			137
8	3	77,3	15	1284	1888	320
9	2	72,4	10	1040		349
10	2	83,9	5	1843		849
11	2	95	13	1021		352
12	1	63,3	10			583
13	2	60,3	11	1658		285
14						
15						
16						
17						
18						
19						
20	_					

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 7

Dursts III	Bursts in Trial: 14							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	60,8	19			487		
2	2	91	14	1147		817		
3	1	57,8	9			597		
4	1	77,6	8			20		
5	2	66,3	13	1151		92		
6	1	97,5	7			569		
7	1	90,1	10			716		
8	1	53	6			403		
9	3	50,5	17	1524	1311	397		
10	1	55,8	10			121		
11	2	73,7	12	1777		285		
12	3	55,3	12	968	1848	240		
13	2	79,8	7	1709		178		
14	3	84,3	6	1627	1577	180		
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 8

Bursts in	Bursts in Trial: 15								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	65,3	10	1635		169			
2	2	90,7	9	1682		356			
3	1	87,7	18			265			
4	1	82,7	6			216			
5	1	85,2	20			370			
6	2	67,9	6	1090		639			
7	3	61,6	11	1413	990	778			
8	2	73,1	7	1591		519			
9	3	51,6	15	1882	1340	551			
10	1	83,4	12			743			
11	2	93,1	5	1741		660			
12	2	88,6	7	1004		746			
13	3	91,9	19	1291	1892	313			
14	2	90,7	20	1628		362			
15	1	52,4	17			37			
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 9

Dui StS III	Bursts in Trial: 16								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	84,1	7	1896		659			
2	2	69,1	7	1696		266			
3	1	71,7	7			703			
4	1	83	20			631			
5	2	96,8	11	1232		567			
6	2	61,1	11	1241		647			
7	1	70,1	5			418			
8	2	62,5	19	1144		149			
9	2	78,3	13	1703		296			
10	2	97,4	15	1728		700			
11	3	88,9	17	1759	1060	246			
12	3	91	13	1606	1572	468			
13	3	76,5	11	1082	1896	231			
14	1	64,5	12			182			
15	2	60,2	18	1314		311			
16	3	90,4	14	1415	1474	705			
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 10

Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing	Pulse 2-to-3 Spacing	Start Location Within Interval (msec)
1	2	66,2	20	(µsec) 1769	(µsec)	164
2	1	83	8	1709		264
3	2	99,6	18	1270		570
					4202	
4	3	98,4	14	1283	1283	221
5	3	55,6	13	1939	1733	185
6	2	97,5	20	1492		485
7	1	55,5	17			652
8	3	77,4	5	1637	1876	182
9	1	77,6	15			610
10	2	71,9	15	1457		246
11	3	80	15	1005	1786	413
12	1	65,2	11			118
13	2	92	8	1265		519
14	3	68,6	18	1138	1708	457
15	1	94,3	8			451
16	2	70,7	18	1093		207
17	2	63,4	8	1080		132
18		,				
19						
20						

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 11

Dui StS II	Bursts in Trial: 18								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	79,7	5	1563		647			
2	2	59,3	19	1693		423			
3	2	52,1	13	1625		110			
4	1	93,8	19			194			
5	2	93	6	1550		97			
6	2	87,6	14	1233		448			
7	3	62	7	1063	1503	144			
8	3	95,4	19	1430	1577	282			
9	1	82,8	7			514			
10	3	51,2	15	1404	1885	187			
11	2	81	8	1554		392			
12	3	81,6	5	1254	1055	387			
13	2	62,1	14	1006		291			
14	2	82	13	1003		435			
15	2	60,9	18	1027		508			
16	1	58,2	10			230			
17	2	80,6	6	1027		468			
18	2	65,7	15	1878		279			
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 12

bursts ii	Bursts in Trial: 19								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	78,6	10	1208		558			
2	3	93,2	11	1743	1155	475			
3	2	86	13	1719		70			
4	1	76,4	13			529			
5	1	84,4	10			144			
6	1	68,4	5			422			
7	2	65,1	11	1250		524			
8	2	58,6	13	1372		384			
9	3	68,6	15	1499	1321	476			
10	3	91,8	13	1201	1475	19			
11	3	88,4	7	1274	1510	451			
12	2	91,2	20	1331		469			
13	3	87,7	11	1356	1716	214			
14	3	61,1	13	1718	957	29			
15	3	77,1	11	1257	1093	477			
16	2	81,7	7	1792		256			
17	3	53,6	13	1304	1449	246			
18	1	68,2	19			237			
19	1	93,8	20			57			
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 13

Bursts in Trial: 20								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	67,2	11	1581		422		
2	2	64,9	13	1929		404		
3	2	88,1	10	1131		298		
4	2	75,5	18	1884		18		
5	3	69,9	9	1348	1175	523		
6	2	80,4	9	1074		12		
7	2	55	9	1831		4		
8	2	70,1	11	988		320		
9	3	98,8	17	1502	1211	35		
10	3	58,8	12	1019	1687	83		
11	2	67,9	8	1268		285		
12	1	85,6	7			410		
13	2	93,5	19	1574		134		
14	3	58,4	10	968	1893	168		
15	1	73,8	17			266		
16	3	95	19	922	1739	183		
17	3	63,6	5	1267	1251	146		
18	2	74,8	10	1175		336		
19	2	62,9	5	1110		131		
20	1	72,8	15			496		

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 14

Bursts in Trial: 8								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	3	64,2	19	1609	1360	1089		
2	2	88,4	17	1751		1357		
3	1	51,1	14			1003		
4	3	63,6	15	963	962	1376		
5	1	84,3	11			937		
6	3	90,7	5	1098	986	1068		
7	2	93	20	1130		1124		
8	2	67,4	12	1308		574		
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 15

Bursts in Trial: 9								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	62,3	5			128		
2	3	76,5	8	1019	1323	486		
3	2	82,5	5	1183		911		
4	2	54	10	1805		972		
5	3	94,7	18	1565	1079	46		
6	3	53,9	19	1625	1139	570		
7	3	55,6	13	1623	1927	1143		
8	2	68,3	13	1890		1163		
9	3	99,8	8	1857	1735	249		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 16

Dai oto II	i i i i i i i i i i i i i i i i i i i					
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)
1	2	54,1	5	1152		389
2	2	78,9	13	1150		881
3	1	77,6	13			980
4	1	85,8	14			40
5	3	74,8	15	1596	976	418
6	1	99,2	5			129
7	3	71,5	6	1454	1858	947
8	1	67,5	5			413
9	2	68,7	9	1840		1060
10	3	81,2	13	1604	1132	803
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 17

Bursts in Trial: 11								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	78,5	8			441		
2	1	60,8	9			62		
3	1	96,8	11			942		
4	2	65,9	17	1306		1079		
5	3	95,3	6	1571	1562	269		
6	2	67	17	962		44		
7	2	92,9	19	1635		503		
8	3	74,3	14	1463	1896	264		
9	3	77,7	10	1875	1453	115		
10	2	75,1	6	1036		465		
11	1	94,8	19			676		
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 18

Dui StS II	Bursts in Trial: 12								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	53,1	8	1042		583			
2	2	59,6	13	989		824			
3	3	72,4	5	1686	1217	658			
4	2	66,6	17	1726		663			
5	3	57,3	6	1791	1191	602			
6	1	51,9	18			955			
7	1	56,1	13			900			
8	2	96,1	6	1368		599			
9	1	93,4	18			634			
10	1	97,3	11			534			
11	3	50,5	7	1103	1061	599			
12	2	67,1	18	1036		489			
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 19

Bursts in	Bursts in Trial: 8								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	61,4	18	1761		1229			
2	3	69,1	7	1759	1639	1136			
3	3	56,5	8	961	1228	508			
4	1	87,2	19			993			
5	2	96	7	1852		1374			
6	3	51,8	15	1295	1517	522			
7	3	71,8	17	1651	1422	1394			
8	2	54,3	20	1296		952			
9									
10									
11									
12									
13									
14									
15									
16									
17									
18	_								
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 20

Bursts in Trial: 9								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	84,5	6			890		
2	2	89,4	8	1712		681		
3	2	86,5	13	1634		839		
4	2	57,4	18	1601		1217		
5	2	95,7	5	1062		798		
6	3	94,5	5	1745	1189	216		
7	2	70,5	12	1385		548		
8	2	69,9	11	1924		134		
9	2	96	13	1778		692		
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 21

Bursts in	Bursts in Trial: 10							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	2	61,1	18	1731		841		
2	1	69,6	17			421		
3	2	80,5	7	1015		29		
4	2	51,3	14	1021		657		
5	2	52,7	14	1046		790		
6	2	63,3	20	1279		230		
7	1	63,9	12			310		
8	3	52,2	9	1109	1579	593		
9	2	63,6	14	1519		807		
10	3	56	17	1375	1076	205		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 22

Bursts in Trial: 11								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	1	85,3	9			517		
2	1	60,9	19			1056		
3	3	65,2	7	1138	1571	1076		
4	3	53,5	8	1862	1214	174		
5	2	55,8	13	1101		639		
6	2	64,9	7	1630		809		
7	2	84,3	19	1556		686		
8	2	60,8	13	981		363		
9	3	86,7	14	1450	1851	531		
10	3	82,4	17	1139	1862	239		
11	3	58,1	18	1102	1299	307		
12								
13								
14								
15								
16								
17								
18								
19								
20								

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 23

Bursts in	Bursts in Trial: 12								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	1	65,7	8			549			
2	1	81,7	6			6			
3	2	61,8	5	1257		610			
4	2	99,5	7	1559		681			
5	2	75,5	20	1196		923			
6	2	77,7	15	1495		99			
7	2	56	7	1268		285			
8	2	78,5	9	1892		142			
9	2	96,7	17	1834		977			
10	2	85,6	13	1022		478			
11	1	88,1	19			212			
12	2	86,8	17	1007		483			
13									
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 24

Bursts in	Bursts in Trial: 13								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	1	79,5	20			383			
2	3	88,7	20	1519	1294	340			
3	2	64,6	5	1619		597			
4	2	65,1	17	1365		367			
5	2	56,2	20	1095		229			
6	3	50,7	11	1637	1159	633			
7	3	87,7	14	944	1559	719			
8	3	65,6	9	1644	1834	745			
9	2	81,4	13	1455		898			
10	1	90,7	15			382			
11	2	85,6	9	1419		461			
12	2	88,3	17	1801		103			
13	2	59	14	1701		698			
14									
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 25

Dui StS II	Bursts in Trial: 14								
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)			
1	2	90,3	20	1361		325			
2	2	63,8	10	1434		802			
3	1	68,6	5			129			
4	1	69,6	13			410			
5	3	75,2	13	1208	1604	189			
6	2	82,1	18	1766		131			
7	2	92,5	18	1688		91			
8	2	65,1	17	1648		822			
9	3	99,6	18	1235	1393	742			
10	2	81,9	18	1280		705			
11	2	82,3	12	1255		849			
12	1	94,3	5			19			
13	2	55,9	15	1784		741			
14	3	83,1	15	1226	1329	205			
15									
16									
17									
18									
19									
20									

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 26

bursts ii	Bursts In Trial: 15						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	3	87,6	9	1547	1025	642	
2	2	82,5	10	1377		607	
3	3	56,5	9	1437	994	231	
4	2	99	6	1240		478	
5	1	79,6	5			695	
6	2	87,7	18	1830		633	
7	3	60,5	18	1504	1118	258	
8	3	97,1	18	1587	1144	394	
9	3	79,3	14	1071	1272	450	
10	1	56,6	7			322	
11	2	93,2	19	967		6	
12	2	85,7	5	1861		603	
13	2	90	8	1177		109	
14	2	67	20	1690		441	
15	2	90,9	9	1469		138	
16							
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 27

bursts in	Bursts in Trial: 16						
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	2	80,7	5	1043		405	
2	3	61,7	9	1412	1823	24	
3	1	63,1	9			261	
4	2	67	5	1819		532	
5	1	58,3	13			172	
6	1	71,3	12			40	
7	2	94,2	10	1776		347	
8	2	75,3	12	1395		397	
9	2	91,3	11	1908		163	
10	3	66,5	14	1133	1814	711	
11	2	68	13	1780		518	
12	3	72,4	6	1796	1266	180	
13	3	98,4	14	955	1835	64	
14	2	81	6	1065		635	
15	2	57,2	18	1274		676	
16	2	99,1	18	1873		740	
17							
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 28

Bursts in Trial: 17							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)	
1	3	78,2	15	1832	1762	213	
2	2	66,4	8	1589		177	
3	2	79,5	5	1417		52	
4	3	71	13	1906	1049	75	
5	1	85,5	9			515	
6	2	56,2	14	1332		209	
7	2	82,3	12	1444		296	
8	2	55,9	18	1519		49	
9	2	73,5	6	1892		371	
10	1	94,9	10			184	
11	3	59,7	13	974	1059	240	
12	1	84	20			593	
13	2	87,4	9	1647		77	
14	1	97,5	13			567	
15	2	74,8	7	1235		518	
16	2	90	19	1543		266	
17	2	53,9	9	1207		557	
18							
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number: 29

	Number of	Pulse Width	Chirp Width	Pulse 1-to-2	Pulse 2-to-3	Start Location Within	
Burst	Pulses	(µsec)	(MHz)	Spacing (µsec)	Spacing (µsec)	Interval (msec)	
1	2	68,2	13	1691		590	
2	3	84,7	6	1099	1764	138	
3	3	52,7	13	1147	1362	205	
4	2	52,5	15	1254		96	
5	2	87,6	8	1432		346	
6	3	99,6	17	1038	1096	435	
7	1	55,1	12			471	
8	1	91,7	10			315	
9	2	86,6	9	1755		225	
10	2	76,2	13	1067		200	
11	3	70,3	20	1773	1044	612	
12	2	79,5	11	1328		6	
13	2	73,8	5	1213		61	
14	1	93,8	10			657	
15	3	98,9	20	1284	1416	297	
16	3	85,5	8	1732	1580	54	
17	2	65,2	19	1483		368	
18	1	74	20			297	
19							
20							

Rohde & Schwarz K6 Pulse Sequencer

Trial Number : 30

Bursts in	Bursts in Trial: 19							
Burst	Number of Pulses	Pulse Width (µsec)	Chirp Width (MHz)	Pulse 1-to-2 Spacing (µsec)	Pulse 2-to-3 Spacing (µsec)	Start Location Within Interval (msec)		
1	3	92,9	13	1390	1002	447		
2	2	89,7	11	979		5		
3	3	59,1	13	1015	1601	394		
4	2	66,4	17	1571		415		
5	1	81,2	18			172		
6	3	52,3	17	1727	1599	460		
7	2	95,1	19	1074		366		
8	3	55,3	7	975	1524	92		
9	2	70,2	14	1322		193		
10	3	78,9	13	1252	1503	235		
11	1	54	7			171		
12	2	81,3	20	1439		67		
13	2	77,2	13	1747		520		
14	3	78,3	20	1714	1589	317		
15	2	75,6	15	1838		199		
16	2	87,3	7	1050		319		
17	1	97,8	17			377		
18	3	76,3	17	1183	952	557		
19	3	66,4	9	1031	1586	608		
20								

TYPE 0						
Pulses per Burst	PRI (μs)					
18	1	1428				

12. UNCERTAINTIES CHART

47 CFR Part 15.407 & RSS 247 Kind of test	Wide uncertainty laboratory (k=2) ±x(dB) / (Hz)/ ms	Uncertainty limit
RF power, conducted	±0.6 dB	± 1.5dB
RF power, radiated	±3.1 dB	± 1.5dB
Temperature	±0.5°C	± 1°C

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report