Basic Maths for Non-mathematicians

Peleg Bar Sapir

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{N} f(x_{k}) \Delta x$$

$$(AB)^{\top} = B^{\top} A^{\top} \qquad \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$$

$$\vec{v} = \sum_{i=1}^{n} \alpha_{i} \hat{e}_{i}$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \qquad A = Q\Lambda Q^{-1}$$

$$\operatorname{Rot}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v}) \quad \langle \hat{e}_{i}, \hat{e}_{j} \rangle = \delta_{ij}$$

Chapter 3: Linear Transformations

Definition

A **linear transformation** is a function $T:A\to B$, that obeys the following two criteria:

Definition

- A **linear transformation** is a function $T:A\to B$, that obeys the following two criteria:
 - 1. **Scalability**: for each $x \in A$ and a scalar $\alpha \in \mathbb{R}$:

$$T(\alpha x) = \alpha T(x).$$

Definition

A **linear transformation** is a function $T:A\to B$, that obeys the following two criteria:

1. **Scalability**: for each $x \in A$ and a scalar $\alpha \in \mathbb{R}$:

$$T(\alpha x) = \alpha T(x).$$

2. **Additivity**: For any $x, y \in A$:

$$T(x+y) = T(x) + T(y).$$

Example

The real function f(x)=3x is linear. Proof by the above criteria:

Example

The real function f(x)=3x is linear. Proof by the above criteria:

1. **Scalability**: for any scalar $\alpha \in \mathbb{R}$,

$$f(\alpha x) = 3(\alpha x) = \alpha \cdot (3x) = \alpha f(x).$$

Example

The real function f(x) = 3x is linear. Proof by the above criteria:

1. **Scalability**: for any scalar $\alpha \in \mathbb{R}$,

$$f(\alpha x) = 3(\alpha x) = \alpha \cdot (3x) = \alpha f(x).$$

2. **Additivity**: for any two numbers $x, y \in \mathbb{R}$

$$f(x+y) = 3(x+y) = 3x + 3y = f(x) + f(y).$$

3

Example

The real function f(x) = 3x is linear. Proof by the above criteria:

1. **Scalability**: for any scalar $\alpha \in \mathbb{R}$,

$$f(\alpha x) = 3(\alpha x) = \alpha \cdot (3x) = \alpha f(x).$$

2. **Additivity**: for any two numbers $x, y \in \mathbb{R}$

$$f(x+y) = 3(x+y) = 3x + 3y = f(x) + f(y).$$

Therefore, f is linear.

Example

Is the real function g(x) = 3x + 5 linear? Let's check:

Example

Is the real function g(x) = 3x + 5 linear? Let's check:

1. Scalability:

$$g(\alpha x) = 3\alpha x + 5, \quad \alpha g(x) = 3x\alpha + 5\alpha.$$

Example

Is the real function g(x) = 3x + 5 linear? Let's check:

1. Scalability:

$$g(\alpha x) = 3\alpha x + 5, \quad \alpha g(x) = 3x\alpha + 5\alpha.$$

If we subtitute $\alpha=0, x=1$, for example, we get

$$g(\alpha x) = g(0 \cdot 1) = 3 \cdot 0 + 5 = 5,$$

Example

Is the real function g(x) = 3x + 5 linear? Let's check:

1. Scalability:

$$g(\alpha x) = 3\alpha x + 5, \quad \alpha g(x) = 3x\alpha + 5\alpha.$$

If we subtitute $\alpha=0, x=1$, for example, we get

$$g(\alpha x) = g(0 \cdot 1) = 3 \cdot 0 + 5 = 5,$$

but on the other hand

$$\alpha \cdot g(x) = 3 \cdot 1 \cdot 0 + 5 \cdot 0 = 0 \neq 5.$$

4

Example

Is the real function g(x) = 3x + 5 linear? Let's check:

1. Scalability:

$$g(\alpha x) = 3\alpha x + 5, \quad \alpha g(x) = 3x\alpha + 5\alpha.$$

If we subtitute $\alpha=0, x=1$, for example, we get

$$g(\alpha x) = g(0 \cdot 1) = 3 \cdot 0 + 5 = 5,$$

but on the other hand

$$\alpha \cdot g(x) = 3 \cdot 1 \cdot 0 + 5 \cdot 0 = 0 \neq 5.$$

Therefore, g is **NOT** linear.

4

Note

In order to prove that a function is linear, **both criteria** need to apply to **all** numbers α, x , and y.

Note

In order to prove that a function is linear, **both criteria** need to apply to **all** numbers α, x , and y.

In order to show that a function is **not** linear, it is enough to show that **just a single case** doesn't comply with **any of the criteria**.

5

Note

In order to prove that a function is linear, **both criteria** need to apply to **all** numbers α, x , and y.

In order to show that a function is **not** linear, it is enough to show that **just a single case** doesn't comply with **any of the criteria**.

Challenge

Check whether the function g from before complies with the 2nd criterion (additivity).

Example

Is the function $h(x) = x^2$ linear? Let's check additivity first:

$$h(x+y) = (x+y)^2 = x^2 + 2xy + y^2, \quad h(x) + h(y) = x^2 + y^2.$$

Example

Is the function $h(x) = x^2$ linear? Let's check additivity first:

$$h(x+y) = (x+y)^2 = x^2 + 2xy + y^2, \quad h(x) + h(y) = x^2 + y^2.$$

Thus, for x = 1, y = -2:

$$h(x + y) = h(1 - 2) = h(-1) = (-1)^2 = 1.$$

Example

Is the function $h(x) = x^2$ linear? Let's check additivity first:

$$h(x+y) = (x+y)^2 = x^2 + 2xy + y^2, \quad h(x) + h(y) = x^2 + y^2.$$

Thus, for x = 1, y = -2:

$$h(x + y) = h(1 - 2) = h(-1) = (-1)^2 = 1.$$

On the other hand,

$$h(x) + h(y) = h(1) + h(-2) = 1^2 + (-2)^2$$

= 1 + 4 = 5 \neq 1.

Example

Is the function $h(x) = x^2$ linear? Let's check additivity first:

$$h(x+y) = (x+y)^2 = x^2 + 2xy + y^2, \quad h(x) + h(y) = x^2 + y^2.$$

Thus, for x = 1, y = -2:

$$h(x + y) = h(1 - 2) = h(-1) = (-1)^2 = 1.$$

On the other hand,

$$h(x) + h(y) = h(1) + h(-2) = 1^2 + (-2)^2$$

= 1 + 4 = 5 \neq 1.

Thus, h is also **NOT** linear.

Challenge

Check whether h fulfills the 1st criterion (scalability).

Challenge

Check whether h fulfills the 1st criterion (scalability).

We can combine both criteria to a single test for linearity of a transformation $T\colon$

Definition

A transformation $T:A\to B$ is linear, if for all $x,y\in A$ and $\alpha,\beta\in\mathbb{R}$

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

7

Vectors can also be transformed, specifically by functions of the type $T:\mathbb{R}^n\to\mathbb{R}^m$, with $n,m\in\mathbb{N}.$

Vectors can also be transformed, specifically by functions of the type $T:\mathbb{R}^n\to\mathbb{R}^m$, with $n,m\in\mathbb{N}$.

In this course we will mostly concentrate on transformations of the types

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ and
- $T: \mathbb{R}^3 \to \mathbb{R}^3$.

since they are more easy to conceptualize (and infintely easier to draw than higher dimensional transformations).

Vectors can also be transformed, specifically by functions of the type $T:\mathbb{R}^n\to\mathbb{R}^m$, with $n,m\in\mathbb{N}$.

In this course we will mostly concentrate on transformations of the types

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ and
- $T: \mathbb{R}^3 \to \mathbb{R}^3$.

since they are more easy to conceptualize (and infintely easier to draw than higher dimensional transformations).

However, everything we learn about these transformations is applicable for any linear transformation, **regardless of its dimensionality**.

Example

Applying the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$,

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ 3y \end{pmatrix}$$

to the vector $\vec{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$:

$$T\begin{pmatrix} 3\\1 \end{pmatrix} = \begin{pmatrix} -3\\3 \cdot 1 \end{pmatrix} = \begin{pmatrix} -3\\3 \end{pmatrix}.$$

9

Transforming Spaces

We can visualize the way an entire space is transformed by a transformation ${\cal T}$ by looking at how the axes and main gridlines of the space are transformed.

Transforming Spaces

This method also allows us to see how the basis vectors \hat{x} and \hat{y} are transformed by linear transformations, and also the transformations of shapes (all this will come in handy later).

Some important properties of linear transformations are:

Some important properties of linear transformations are:

• The origin is preserved, i.e.

$$T\left(\vec{0}\right) = \vec{0}.$$

Some important properties of linear transformations are:

• The origin is preserved, i.e.

$$T\left(\vec{0}\right) = \vec{0}.$$

• Parallel lines remain parallel.

Some important properties of linear transformations are:

• The origin is preserved, i.e.

$$T\left(\vec{0}\right) = \vec{0}.$$

- Parallel lines remain parallel.
- All areas are scaled by the same number.

Some important properties of linear transformations are:

• The origin is preserved, i.e.

$$T\left(\vec{0}\right) = \vec{0}.$$

- Parallel lines remain parallel.
- All areas are scaled by the same number.

Challenge

Show that these properties can be derived from the definition of linear transformations.

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Scaling in the x-axis

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Scaling in the y-axis

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Rotation around the origin

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Shear in the x-axis

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Shear in the y-axis

Many linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ can be created by composition of two or more of the following basic transformations:

Reflection by a line going through the origin

Example

The following transformation is a composition of a scaling transformation in the y-axis, followed by a rotation around the origin:

Example

The following transformation is a composition of a scaling transformation in the y-axis, followed by a rotation around the origin:

Example

The following transformation is a composition of a scaling transformation in the y-axis, followed by a rotation around the origin:

