Al-based ECG Analysis

Advances in Intelligent Systems Dozierender: Prof. Dr. Dennis Müller

Projekt von: Miriam Agrawala

Inhalt

- Klinischer Fall
- Hintergrundwissen
 - LSTM
 - CNN
- Datensatz
- Experimente
- Ausblick

Klinischer Fall

- Mann, 35 Jahre, sehr sportlich, bei Rewe plötzlich zusammen gebrochen
- Bei Eintreffen in der Notaufnahme bewusstlos

Klinischer Fall

- EKG Diagnostik
 - Verdacht auf Vergrößerung des Herzmuskels
 - Weitere Ursachenforschung
- Aber: Herzinfarkt

→ KI-basierte EKG-Auswertung

KI-basierte EKG Auswertung

- Bisherige Forschungsarbeiten:
 - RNN
 - LSTM
 - CNN
- Accuracys bis über 99%!

LSTM

- Long Short Term Memory
- Interpretation von Sequenzen

Speichern von länger zurückliegenden Informationen über Long Term

Memory

CNN

- Bilderkennung
- Faltungs- und Poolingoperationen
 - Erkennung von Details
 - Translationale Invarianz
- Zunehmender Einsatz auf physiologischen Signalen

Datensatz

- PTB-XL (2022)
- 21799 12-Kanal EKGs
- Jede Sequenz: 10 Sekunden
- 5 Diagnosen
 - Normalbefund
 - Herzinfarkt
 - ST-Hebungsinfarkt
 - Störung der elektrischen Leitfähigkeit
 - Herzmuskelvergrößerung

Datensatz

- PTB-XL (2022)
- 21799 12-Kanal EKGs
- Jede Sequenz: 10 Sekunden
- 5 Diagnosen

- Erstellung von drei Datensätzen:
 - Standarddatensatz: 10 Sekunden * 12 Kanäle
 - Kurzer Datensatz: 2 Sekunden * 12 Kanäle
 - Randomisierter Datensatz: 8 Sekunden * 12 Kanäle

Experiment: LSTM-Architekturen

• Versuche mit ein bis drei LSTM-Schichten

self.lstm = nn.LSTM(input_size=128, hidden_size=256, num_layers=2, batch_first=True)

Experiment: LSTM-Architekturen

• Versuche mit ein bis drei LSTM-Schichten

- Grün: eine Schicht → Balanced Accuracy 28,82%
- Orange: zwei Schichten → Balanced Accuracy 37,27%
- Lila: drei Schichten → Balanced Accuracy 58,26%

Experiment: CNN + LSTM

- CNN
 - Erkennen von Details in Strukturen
 - Dimensionsreduktion
- LSTM
 - Möglicherweise bessere Performance auf kürzeren Sequenzen

Experiment: CNN + LSTM

 Möglicherweise bessere Performance durch Detailerkennung und Sequenzverkürzung

- Gelb: 2 LSTM-Schichten → Balanced Accuracy 37,27%
- Orange: 3 Conv + 1 LSTM-Schichten → Balanced Accuracy 66,95%
- Grün: 3 Conv + 2 LSTM-Schichten → Balanced Accuracy 67,66%

Experiment: verschieden Datensätze

• drei Convolutional + zwei LSTM-Schichten, Dropout 0,5

- Grün: Standarddatensatz (10 Sekunden * 12 Kanäle) → Balanced Accuracy 67,66%
- Lila: Kurzer Datensatz (letzte 2 Sekunden * 12 Kanäle) → Balanced Accuracy 62,56%
- Orange: Randomisierter Datensatz (8 Sekunden * 12 Kanäle)→ Balanced Accuracy 68,69%

Experiment: verschiedene Optimizer

- drei Convolutional + zwei LSTM-Schichten, Dropout 0,5
- AdamW

Beste erreichte Accuracy: 69,51%

- Grün: Adam → Balanced Accuracy 67,66%
- Orange: AdamW, Weight Decay 0,1 → Balanced Accuracy 69,51%

What's next?

• Tiefere Netzarchitektur

- Transformer!
- Sequenzanalyse durch "Self-Attention"
 - Gewichtung der Beziehung zwischen verschiedenen Sequenzanteilen
- Betrachtung ganzer Sequenzen
 - Kein Vergessen im Long Term Memory

Vielen Dank! Fragen?

Bildquellen

- https://img2.liberoquotidiano.it/upload/1570188470033.jpg
- https://i.pinimg.com/originals/8d/67/81/8d678136075389f0f024a52679b968b4.jpg
- https://www.fokus-ekg.de/inhalt-von-a-z/leitungssst%C3%B6rungen/rechtsschenkelblock/
- https://img.fotocommunity.com/rettungskraefte-im-einsatz-e1cb02c3-cfee-4082-8832-21e2c82ec959.jpg?height=1080
- https://drarthurnasis.com.au/wp-content/uploads/2021/02/shutterstock 1507886318-1.jpg
- https://flexikon.doccheck.com/de/Sinusknoten
- https://medium.com/analytics-vidhya/introduction-to-long-short-term-memory-lstm-a8052cd0d4cd
- https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
- https://www.filmstarts.de/nachrichten/18518476.html

EKG

Messung der elektrischen Erregung des Herzens

- → Zeitaufwendig
- → Fehleranfällig