Streamline Model Development - Demo

Lizzy Huang 2018-11-08

Contents

1	Intr	roduction	5
2	Dat	ca can be a second of the seco	7
	2.1	Variables Summary	7
	2.2	Training Data and Testing Data	8
3	Model		
	3.1	Methodology	11
	3.2	Case 1: Manchester United	11
	3.3	Case 2: Liverpool	12

4 CONTENTS

Chapter 1

Introduction

This is a demo about how to streamline model development process with synchronized documentation using **R Markdown**. Here we only show a sample process where we have a general logistic regression model that will apply to 2 different subgroups of the data, corresponding to 2 different "products". The ability of **bookdown** using separate .Rmd files for different sections of the documentation provides more flexibility for collaboration.

Chapter 2

Data

Assuming that part of the data extraction part has been completed, we start directly with the data analysis part.

In this example, we use the data sets from the **Kaggle European Soccer Database** to estimate the likelihood of winning, losing and getting a draw of soccer games in the Premier League based on several related variables. There are in total 608 games in 8 seasons, with 304 home games and 304 away games. The data set has been pre-processed for this demo.

2.1 Variables Summary

In this model, we use the following variables extracted from the match events

Variables	Definitions	
match id	unique ID for every match	
team_long_name	the name of the team	
season	match season, from 2008/2009 to 2015/2016	
team_goal	the number of goals the team scored in the match	
opponent_goal	the number of goals the opponent team scored in the match	
<pre>game_type</pre>	identify whether it's a home game or an away game	
result	match results, either win, loss, or draw	
<pre>team_foul, opponent foul</pre>	the number of fouls the team / opponent team committed in the match	
<pre>team_rcard, team_ycard, opponent_rcard,</pre>	the numbers of red/yellow cards that the	
opponent_ycard	team/opponent team received	
team_cross, opponent_cross	the number of crosses of the team / opponent team made	
<pre>team_corner, opponent_corner</pre>	the number of corners the team / opponent team received	
team_shotoff, opponent_shotoff	the number of shot-offs the team $/$ opponent team made	
team_shoton, opponent_shoton	the number of shot-ons the team $/$ opponent team made	
team_pos, opponent_pos	the percentage of possession the team $/$ opponent team had. The two adds up to be 100	

8 CHAPTER 2. DATA

2.2 Training Data and Testing Data

We select seasons 2008/2009 - 2014/2015 as the training data, and the last season 2015/2016 as the testing data. We exclude observations which have missing values in one or more columns. This leaves us 514 games in the training set and 72 games in the testing set.

2.2.1 Input Variable Analysis

Here, we summarise the distributions of some of the input variables from the training data set, say, the distribution of team_shoton based on the results.

Distribution of Shot-ons

2.2.2 Output Variable - result

We show the counts of the 3 results: draw, loss, win.

Numbers of game results

10 CHAPTER 2. DATA

Chapter 3

Model

3.1 Methodology

We use the multinomial logistic regression model for estimation. The response variable result has 3 levels: win, loss, and draw. We use

- game_type,
- team_shoton, opponent_shoton, team_shotoff, opponent_shotoff,
- team_corner, opponent_corner,
- team_cross, opponent_cross,
- team_pos, opponent_pos

as the explanatory variables to predict the results.

To avoid overfitting, we apply the penalized LASSO model with hyperparameter lambda (λ) .

3.2 Case 1: Manchester United

In this section, we focus on building the estimation model for Manchester United.

3.2.1 Model Result

The 10-fold cross validation from LASSO algorithm shows that

$$score(draw) = 0.0086* away game$$

$$score(loss) = 0.0052* team \ crosses - 0.0090* opponent \ crosses$$

score(win) = -0.040 * team fouls - 0.0046 * team crosses + 0.036 * team possession - 0.5123 * away game

Using penalized hyperparameter $\lambda = 0.07$, we get the that the model is 51.4% correct.

12 CHAPTER 3. MODEL

3.3 Case 2: Liverpool

In this section, we focus on building the estimation model for Liverpool.

3.3.1 Model Result

The 10-fold cross validation from LASSO algorithm shows that

$$score(draw) = 0$$

$$score(loss) = -0.001 * team cross + 0.254 * away game$$

$$score(win) = -0.017 * team cross + 0.018 * team possession$$

Using penalized hyperparameter $\lambda = 0.0967407$, we get the that the model is 51.4% correct.