2020 A6. 気持ち: 各 m に対し $(a_{m,n})_{n=1}^{\infty}$ は $\mathbb{Z}_{\geq 1}$ 上の確率密度関数になっている。

(1) 級数 $\sum_{n=1}^{\infty} a_{m,n}$ が m に関し一様収束したと仮定すると、ある $N \in \mathbb{Z}_{\geq 1}$ が存在して、すべての $m \in \mathbb{Z}_{\geq 1}$ に対し $\sum_{n=N+1}^{\infty} a_{m,n} < \frac{1}{2}$ が成り立つ。 さらに条件 (c) より、ある $M \in \mathbb{Z}_{\geq 1}$ が存在して $\sum_{n=1}^{N} a_{M,n} < \frac{1}{2}$ が成り立つ。以上より $\sum_{n=1}^{\infty} a_{M,n} < \frac{1}{2} + \frac{1}{2} = 1$ が成り立つが、これは条件 (b) に矛盾する。

(2) Step 1: まず各 $m \in \mathbb{Z}_{\geq 1}$ に対し級数 $\sum_{n=1}^{\infty} a_{m,n} s_n$ の収束を示す。そのためには実数列 $\left(\sum_{n=1}^{k} a_{m,n} s_n\right)_{k=1}^{\infty}$ が \mathbb{R} の Cauchy 列であることを示せばよい。そこで $\varepsilon > 0$ を任意とすると、級数 $\sum_{n=1}^{\infty} a_{m,n} s_n$ が収束すること (条件 (b)) と実数列 $(s_n)_n$ が s に収束すること (小問の仮定) より、ある $N \in \mathbb{Z}_{\geq 1}$ が存在して、すべての $k,k' \geq N$, k < k' に対し $\sum_{n=k+1}^{k'} a_{m,n} < \varepsilon$ かつ $|s_k - s| < \varepsilon$ が成り立つ。したがって、すべての $k,k' \geq N$, k < k' に対し

$$\left| \sum_{n=k+1}^{k'} a_{m,n} s_n \right| \le \sum_{n=k+1}^{k'} a_{m,n} |s_n| \qquad (\because \$\$ (a))$$

$$\leq \sum_{n=k+1}^{k'} a_{m,n}(|s_n - s| + |s|) \tag{0.2}$$

$$\leq \sum_{n=k+1}^{k'} a_{m,n}(\varepsilon + |s|) \tag{0.3}$$

$$\leq \varepsilon(\varepsilon + |s|) \tag{0.4}$$

が成り立つ。よって実数列 $\left(\sum_{n=1}^k a_{m,n} s_n\right)_k$ は $\mathbb R$ の Cauchy 列である (ϵ をとり直す議論は省略)。

<u>Step 2:</u> つぎに $\lim_{m\to\infty}\sum_{n=1}^\infty a_{m,n}s_n=s$ となることを示す。そこで $\varepsilon>0$ を任意とする。いま実数列 $(s_n)_n$ が s に収束すること (小問の仮定) より、ある $N\in\mathbb{Z}_{\geq 1}$ が存在して、すべての $k\geq N$ に対し $|s_k-s|<\varepsilon$ が成り立つ。そこで実定数 c を $c:=\sup_{1\leq n\leq N}|s_n-s|+1$ とおいておく。さらに条件 (c) より、ある $M\in\mathbb{Z}_{\geq 1}$ が存在してすべての $m\geq M$ に対し $\sum_{n=1}^N a_{m,n}<\frac{\varepsilon}{c}$ が成り立つ。したがって、各 $m\geq M$ に対し

$$\leq \sum_{n=1}^{N} a_{m,n} |s_n - s| + \sum_{n=N+1}^{\infty} a_{m,n} |s_n - s| \qquad (\because \$\$ (a))$$

$$\leq \frac{\varepsilon}{c} \sup_{1 \leq n \leq N} |s_n - s| + \varepsilon \tag{:: \$\$(b)}$$

$$\leq 2\varepsilon$$
 (0.8)

が成り立つ。 よって $\lim_{m\to\infty}\sum_{n=1}^{\infty}a_{m,n}s_n=s$ が示された。

2020 A7. まず集合族 \mathcal{L} は X の被覆であって 2 元の交叉で閉じているから、X の位相の開基である。

- (1) X における $\{(0,0)\}$ の閉包 $\operatorname{Cl}_X\{(0,0)\}$ は $F:=(-\infty,0]\times(-\infty,0]$ であることを示す。まず F は $F=X\setminus (\bigcup_{n\geq 1}O(-n,0)\cup\bigcup_{n\geq 1}O(0,-n))$ というように開集合の補集合の形に表せるから、X の閉集合である。そこで背理法のために $F=\operatorname{Cl}_X\{(0,0)\}$ でなかったとすると、閉包の最小性より $F\supseteq\operatorname{Cl}_X\{(0,0)\}$ となるから、ある点 $(x,y)\in F\setminus\operatorname{Cl}_X\{(0,0)\}$ が存在する。このとき点 (x,y) は $\operatorname{Cl}_X\{(0,0)\}$ の外点だから、(x,y) のある近傍 U であって $\operatorname{Cl}_X\{(0,0)\}$ と交わらないものが存在する。一方、 $(x,y)\in F$ すなわち $x\leq 0$, $y\leq 0$ であるから、 $\mathcal L$ が開基であることより、ある実数 $a< x\leq 0$ と $b< y\leq 0$ であって $O(a,b)\subset U$ となるものが存在する。したがって U は点 (0,0) において $\operatorname{Cl}_X\{(0,0)\}$ と交わることになり、矛盾が従う。
- (2) K のいかなる開被覆も点 (0,0) を含むある開集合 U を含むが、 \mathcal{L} が開基であることより、ある実数 a < 0 と b < 0 であって $O(a,b) \subset U$ となるものが存在する。したがって $K \subset O(a,b) \subset U$ が成り立つから、 $\{U\}$ は K の有限部分被覆となる。したがって K は X のコンパクト部分集合である。
- (3) F を X の非空な閉集合として、F がコンパクトでないことを示す。 $(x_0,y_0) \in F$ をひとつ選ぶと、F が閉であることより $Cl_X\{(x_0,y_0)\} \subset F$ だから、(1) と同様の議論により $(-\infty,x_0] \times (-\infty,y_0] = Cl_X\{(x_0,y_0)\} \subset F$ が成り立つ。すると、F の開被覆 $\{O(-n,-n) \mid n \geq 1\}$ は有限個の元で $(-\infty,x_0] \times (-\infty,y_0]$ を覆うことはできず、したがって F を覆うこともできないから、有限部分被覆を持たない。よって F はコンパクトでない。 \Box