Mathematical Formulation: V-Gene–Specific Beta–Binomial Model (Direct α/β Parameterization)

We model sequencing **error counts** y_i out of n_i trials (coverage) in the 260 bp FR1–3 region, grouped by V-gene.

1. Data and indexing

- $oldsymbol{\cdot}\ i=1,\ldots,N$: index of an observation (e.g., position or small window)
- $g_i \in \{1,\ldots,G\}$: V-gene group index for observation i
- $y_i \in \{0,1,\ldots,n_i\}$: observed error count
- $n_i>0$: total coverage/trials

2. Likelihood

For each observation i belonging to V-gene group g_i :

$$y_i \mid g_i \sim \text{Beta-Binomial}\left(n_i, \alpha_{g_i}, \beta_{g_i}\right)$$

The Beta-Binomial probability mass function is:

$$P(y_i \mid n_i, lpha, eta) = egin{pmatrix} n_i \ y_i \end{pmatrix} rac{B(y_i + lpha, \; n_i - y_i + eta)}{B(lpha, eta)}$$

where $B(\cdot,\cdot)$ is the Beta function.

3. Parameter definitions

For each V-gene group g : - $lpha_g>0$: first Beta shape parameter - $eta_g>0$: second Beta shape parameter

The **mean error rate** and **concentration** for group g are:

$$\mu_g = rac{lpha_g}{lpha_g + eta_g},$$

$$\phi_q = \alpha_q + \beta_q$$
.

The overdispersion metric is:

$$ho_g=rac{1}{1+\phi_g}\in (0,1).$$

4. Priors

We assign Gamma priors directly to $lpha_q$ and eta_g :

$$lpha_g \stackrel{i.i.d.}{\sim} \mathrm{Gamma}(a_lpha,b_lpha),$$

$$eta_g \overset{i.i.d.}{\sim} \operatorname{Gamma}(a_eta,b_eta).$$

Here $a_{\alpha}, b_{\alpha}, a_{\beta}, b_{\beta} > 0$ are shape and rate hyperparameters (can be set to weakly informative values, e.g., 1).

5. Joint model

The joint distribution of all parameters and data is:

$$P(\mathbf{y},oldsymbol{lpha},oldsymbol{eta}) = \left[\prod_{g=1}^G P(lpha_g)P(eta_g)
ight] imes \prod_{i=1}^N P(y_i\mid n_i,lpha_{g_i},eta_{g_i}).$$

6. Posterior inference

The posterior distribution is:

$$P(oldsymbol{lpha}, oldsymbol{eta} \mid \mathbf{y}, \mathbf{n}, \mathbf{g}) \propto \left[\prod_{g=1}^G P(lpha_g) P(eta_g)
ight] imes \prod_{i=1}^N P(y_i \mid n_i, lpha_{g_i}, eta_{g_i}).$$

We use MCMC (e.g., Stan's NUTS sampler) to draw samples from this posterior, yielding estimates and uncertainty intervals for: - μ_g (mean error rate) - ϕ_g (concentration) - ρ_g (overdispersion)

7. Summary of model properties

- Interpretability: Parameters μ_q and ϕ_q have clear meanings.
- Numerical stability: Avoids logit transforms; works directly with positive $lpha_q,eta_q$.
- Flexibility: Gamma priors can encode domain knowledge about likely error rates.