

32 位 MCU ES32F3696

数据手册

- □产品简介
- ☑ 数据手册
- □参考手册

上海东软载波微电子有限公司

2020-12-08

基于ARM Cortex-M3 的ES32F3696 系列MCU

内核

- ARM 32 位 Cortex-M3 CPU
 - 最高频率可达 96MHz
 - 支持 MPU

存储

- 最大 512K Byte FLASH 存储器
- 最大 96K Byte SRAM 数据存储
- EBI接口可扩展外部存储
- QSPI 接口扩展外部 FLASH

电源、复位

- 芯片工作电压范围:
 - 2.0V≤VDD≤5.5V
- POR,BOR (支持 16 个阈值选择), LVD

时钟

- 外部高速晶体振荡器: 1~24MHz
- 内部高速 RC 振荡器: 24 MHz 输出
- 外部低速晶体振荡器: 32.768KHz
- 内部低速 RC 振荡器: 32.768KHz
- 内部超低速 RC 振荡器: 10KHz
- PLL 最高可倍频至 96MHz

低功耗模式

- 支持以下低功耗模式
 - SLEEP
 - STOP1
 - STOP2
 - STANDBY

系统外设

- 调试: SWD 串口调试协议
- 调试配置控制模块(DBGC)
- DMA: 支持 12 个多路复用通道
- PIS: 支持 16 个外设互联通道
- 看门狗定时器: IWDT 和 WWDT
- 系统节拍定时器

接口资源

● 通用 I/O: 多达 84 个通用 I/O

安全及运算加速单元

CRC

- 运算加速器
- 真随机数发生器
- AES 加密(128,192,256)
- DES/TDES 加密

模拟

- 2 路 12 位 ADC: 1MSPS, 支持 16 个外部 模拟通道
- 2路 12位 DAC: 最大采样速率达 500KHz
- 3路模拟比较器
- 温度传感器

定时器

- 2 路 16 位高级定时器:支持 4 个输入捕捉和输出比较通道,支持 3 个死区可编程 PWM 互补输出通道,支持刹车功能
- 2路 16 位通用定时器:支持 4路独立的输入捕捉和输出比较通道
- 2路32位通用定时器:支持4路独立的输入捕捉和输出比较通道
- 2路基本定时器
- RTC: 支持日历,闹钟等功能

通信接口

- 2 路 I2C 接口: 支持多主模式和总线仲裁; 支持 16 级深度 FIFO
- 3 路 SPI/I2S 接口: 支持 16 级深度 FIFO, I2S 支持主机使用
- 6路 UART: 带 16级深度 FIFO, 可支持自 动波特率检测,红外调制功能;其中 UART4, 5 可支持 ISO7816
- 1 路 CAN: 支持 CAN2.0B
- USB: 支持全速主机、设备和OTG通信; 支持高速主机、设备和OTG通信

产品系列代码	产品代号				
ES32F3696	ES32F3696LX				
E332F3090	ES32F3696LT				

目 录

基于 ARM C			j ES32F3696 系列 MCU	
第1章				
第2章				
2. 1	器件	资源		10
2. 2			冠述	
2. 2	2. 1	ES32F	F3696 系列 MCU 内核	13
	2. 2.	1. 1	ARM Cortex-M3 内核	
	2. 2.	1. 2	嵌套向量中断控制器(NVIC)	
	2. 2.	1. 3	存储保护单元(MPU)	
	2. 2.		系统节拍定时器(SysTick)	
	2. 2.	_	串行线调试(SWD)	
2. 2	2. 2	存储器	<u> </u>	
	2. 2.		闪存(FLASH)	
	2. 2.		静态随机存取存储器(SRAM)	
	2. 2.	_	扩展总线接口(EBI)	
	2. 2.		四数据线串行外设接口(QSPI)	
2. 2			音理	
	2. 2.	-	电源	
	2. 2.	_	电源监视	
	2. 2.	_	稳压器	
	2. 2.	-	低功耗模式	
	2. 2.	_	时钟管理	
	2. 2.	-	直接存储器访问(DMA)	
	2. 2.	_	外设互联 (PIS)	
	2. 2.	_	看门狗定时器(WDT)	
2. 2			ξ Π	
	2. 2.		通用端口(GPIO)	
2. 2			音理及运算加速	
			循环冗余校验(CRC)	
	2. 2.	_	运算加速器(CALC)	
			加密处理(CRYPT)	
		5. 4		
2. 2				
	2. 2.	-	高级定时器(AD16C4T)	
	2. 2.	-	通用 32 位定时器(GP32C4T)	
	2. 2.	_	通用 16 位定时器(GP16C4T)	
	2. 2.	• • •	基本定时器 (BS16T)	
	2. 2.	_	实时时钟计数器(RTC)	
2. 2			L -br At . D. L 10 M AD (100)	
	2. 2.		内部集成电路总线(I2C)	
	2. 2.		串行外设接口(SPI/I2S)	
	2. 2.	7.3	通用异步收发器(UART)	20

				2. 2.	7.4 基本扩展控制器局域网络(BxCAN)	20
				2. 2.	7.5 通用串行总线(USB)	20
		2.	2.	. 8	模拟	21
				2. 2.	8.1 模数转换(ADC)	21
				2. 2.	8.2 数模转换(DAC)	21
				2. 2.	8.3 模拟比较器 (ACMP)	21
				2. 2.	8.4 温度传感器 (TSENSE)	22
第:	3章			管脚	说明	23
	3. 1			管脚	图	23
		3.	1.	. 1	LQFP100	23
		3.	1.	. 2	LQFP64	24
	3. 2	<u>-</u>		管脚	功能定义	25
第4	4章			存储	器映射图	32
第:	章			电气	特性	33
	5. 1			最小	值和最大值、典型值	33
	5. 2	<u> </u>		芯片	电源	34
	5. 3	}		电流	测量	35
	5. 4	ŀ		芯片	极限参数	36
		5.	4.	. 1	电压参数	36
		5.	4.	. 2	电流参数	36
		5.	4.	. 3	热参数	36
	5. 5	<u>, </u>		运行	条件	37
		5.	5.	. 1	运行条件	37
		5.	5.	. 2	上电和掉电参数条件	37
		5.	5.	. 3	复位和电源管理模块电气参数	37
		5.	5.	. 4	电流特性	41
		5.	5.	. 5	外部时钟源电气参数	46
		5.	5.	. 6	内部时钟源电气参数	49
		5.	5.	. 7	锁相环电气参数	50
		5.	5.	. 8	FLASH 存储电气参数	51
		5.	5.	. 9	电磁兼容性	52
				5. 5.	9. 1 电磁敏感性	52
		5.	5.	. 10	电气最大额定值	52
				5. 5.	10. 1 静电释放	52
				5. 5.	10. 2 静态闩锁	52
		5.	5.	. 11	I/O 端口电气特性	53
				5. 5.	11.1 芯片 I/O 端口输出特性(驱动 0)	55
				5. 5.	11.2 芯片 I/O 端口输出特性(驱动 1)	59
				5. 5.	11.3 芯片 I/O 端口输出特性(驱动 2)	63
				5. 5.	11.4 芯片 I/O 端口输出特性(驱动 3)	67
		5.	5.	. 12	MRST 电气特性	72
		5.	5.	. 13	定时器特性参数	73
		5.	_	. 14	通信特性参数	
				5. 5.	14. 1 内部集成电路总线(I2C)特性参数	74

	5. 5.	. 14. 2 串行外设接口(SPI)特性参数	76
	5. 5. 15	USB OTG 静态特性参数	77
	5. 5. 16	低功耗模式转换特性参数	78
	5. 5. 17	模数转换器(ADC)特性参数	79
	5. 5. 18	数模转换器(DAC)特性参数	80
	5. 5. 19	模拟比较器(ACMP)特性参数	82
	5. 5. 20	温度传感器特性参数	83
第6章	封装	信息	84
6. 1		·P100 封装尺寸图	84
6. 2	LQF	·P64 封装尺寸图	85
第7章	产品	.信息	86
第8章	修订	··· ·历史	87

图目录

图	2-1	ES32F3696 系列系统框图	. 11
图	2-2	时钟树	12
图	3-1	ES32F3696 LQFP100 顶视图	23
图	3-2	ES32F3696 LQFP64 顶视图	24
图	4-1	存储器映射	32
图	5-1	芯片电源	34
图	5-2	电流测量	35
图	5–3	外部高速振荡器连接图	47
图	5-4	外部低速振荡器连接图	48
图	5-5	MRST 应用电路 1	72
图	5-6	MRST 应用电路 2	72
图	5-7	I2C 测试电路和波形	75

表目录

表	2-1	器件资源列表	10
表	2-2	定时器功能	18
表	3-1	ES32F3696 的管脚功能定义	31
表	5-1	极限电压参数	36
表	5-2	极限电流参数	36
表	5-3	极限热参数	36
表	5-4	芯片通常运行条件	37
表	5-5	芯片在上电和掉电时的参数条件	37
表	5-6	复位和电源管理模块电气参数	40
表	5-7	程序在 FLASH 上运行时的电流特性	
表	5-8	程序在 SRAM 上运行时的电流特性	42
表	5-9	SLEEP 模式电流特性,程序在 FLASH 或 SRAM	44
表	5-10	STOP1 模式下电流特性	44
表	5-11	STOP2 模式下电流特性	44
表	5-12		
表	5-13	模块在典型应用场合下的电流特性	45
表	5-14	外部输入高速时钟特性参数	46
表	5-15	外部输入低速时钟特性参数	46
表	5-16	外部高速振荡时钟特性参数	47
表	5-17	外部低速振荡时钟特性	48
表	5-18	, , , , , , , , , , , , , , , , , , ,	
表	5-19	内部低速 RC 振荡器特性	49
表	5-20		
表	5-21	PLL 电气参数	50
表	5-22	存储器特性	51
表	5-23	EMS 参数	52
表	5-24	ESD 最大额定值	52
表	5-25	LU 最大额定值	52
表	5-26	I/O 端口电气特性 1	54
		I/O 端口电气特性 2	
		MRST 电气特性	72
表	5-29		
	5-30		
	5-31		
	5-32		
	5-33		
	5-34		
		ADC 精度特性 1	
		ADC 精度特性 2	
	5-37		
		ACMP 特性参数	
表	5-39	温度传感器特性	83

第1章 简介

该数据手册为 ES32F3696 系列 MCU 提供订单信息以及器件物理特性。阅读数据手册时请配合用户手册(ES32F36xx 用户手册)一起使用。

关于 Cortex - M3 可参考《Cortex - M3 技术参考手册》,可从 ARM 官网(http://infocenter.arm.com) 获得。

第2章 概述

ES32F3696 系列 MCU 最大支持 512KB FLASH 和 96KB SRAM, 且支持通过 EBI 接口扩展外部存储。支持 QSPI 接口,不仅可用于外部 FLASH 等存储扩展,也可支持高速数据传输。支持多达 84 个 I/O,支持 2 路 12 位 ADC, 2 路 12 位 DAC, 3 路模拟比较器,支持 RTC 日历、闹钟等功能。带丰富的定时器资源,支持 2 路高级定时器(AD16C4T),2 路通用定时器(GP16C4T),2 路基本定时器(BS16T),2路 32 位通用定时器(GP32C4T)。支持丰富的通信资源,包括 2 路 I2C,3 路 SPI/I2S,6 路 UART,另外支持全速/高速 USB 主机、设备和 OTG 接口,还支持 CAN 接口通信。

ES32F3696 系列 MCU 支持最高 96MHz 系统时钟频率。工作温度范围-40℃~85℃。

ES32F3696 系列 MCU 可应用于 POS 机,以及高速 USB OTG 应用。

2.1 器件资源

		ES32F3696LX	ES32F3696LT		
	Flash (KB)	512	512		
	SRAM(KB)	96	96		
	EBI	支持	-		
	QSPI	1	1		
	GPIO	84	50		
	12 位 ADC/ ADC 通道	2/16	2/16		
模拟	12 位 DAC	2	2		
1英1以	模拟比较器 ACMP	3	3		
	温感 TSENSE	1	1		
	高级 AD16C4T	2	2		
定时器 -	通用 16 位 GP16C4T	2	2		
足門館	通用 32 位 GP32C4T	2	2		
	基本 BS16T	2	2		
	I2C	2	2		
	SPI/I2S	3	3		
通信	UART	6	6		
四四	CAN	1	1		
	全速 USB OTG	支持	寺		
	高速 USB OTG	支持	寺		
	真随机发生器 TRNG	支持	寺		
安全	AES	支持			
[DES	支持			
内核运行频率		96MHz			
工作电压范围		2.0V5.5V			
封装		LQFP100	LQFP64		

表 2-1 器件资源列表

图 2-1 ES32F3696 系列系统框图

图 2-2 时钟树

2.2 器件资源概述

2. 2. 1 ES32F3696 系列MCU内核

2. 2. 1. 1 ARM Cortex-M3 内核

ARM Cortex-M3 提供了高性能,低功耗,低成本的平台来满足 MCU 的实现要求。具备 出色的计算性能,并能够快速响应中断。

2. 2. 1. 2 嵌套向量中断控制器(NVIC)

ES32F3696 系列 MCU 的嵌套向量中断控制器可支持 16 个优先级设定。并具备以下特性:

- ◇ NVIC 与内核紧密配合支持快速中断响应时间
- ◇ 中断向量表直接传递至内核
- ◇ 支持中断嵌套, 咬尾和迟来

2.2.1.3 存储保护单元(MPU)

存储保护单元 MPU (Memory Protection Unit),用于检查访问权限和内存属性,可增强用户程序的健壮性。

2. 2. 1. 4 系统节拍定时器(SysTick)

SysTick 定时器被捆绑在 NVIC 中,用于产生 SysTick 中断(向量号: 15)

2.2.1.5 串行线调试(SWD)

支持标准 SWD 协议的调试接口。系统时钟不低于 24MHz 时,支持调试的最大通信速率 可达 5MHz。

调试通信口为 SWDIO 和 SWCLK。SWCLK 和 SWDIO 默认为上拉。

2.2.2 存储器

2. 2. 2. 1 闪存 (FLASH)

最大 512KByte FLASH 存储空间用于存放程序和数据。支持用户可通过配置读保护配置字选择相应的读保护或写保护模式。

2. 2. 2. 2 静态随机存取存储器(SRAM)

最大 96 KByte SRAM, 支持内核单周期访问。

2. 2. 2. 3 扩展总线接口(EBI)

扩展总线接口 EBI (Extended Bus Interface) 可扩展外部 SRAM, PSRAM, NOR 和 NAND FLASH 等。

2. 2. 2. 4 四数据线串行外设接口(QSPI)

QSPI(QUAD-SPI)支持单数据线、双数据线和四数据线高速通信,可用于扩展外部 FLASH。

2.2.3 系统管理

2. 2. 3. 1 电源

VDD: 2.0V~5.5V 电源,通过管脚 VDD 为 I/O 及内部稳压器供电。

VDD33_USB: 3.3V 电源,为 USB I/O 及 PHY 供电。

2. 2. 3. 2 电源监视

- ◇ 上电复位(POR): 当 VDD 低于 V_{POR} 时,器件处于复位状态。
- ◇ 欠压复位(BOR): 上电期间,欠压复位(BOR)将使器件保持复位状态,直到电源电压达到 1.8V 以上。芯片默认 BOR 为开启状态,复位完成后,可通过软件选择BOR 复位电压阈值 V_{BOR},或可将 BOR 禁止。芯片支持 16 个 V_{BOR} 阈值选择。当电源电压(VDD)降至所选 V_{BOR} 阈值以下时,将使器件复位。
- ◆ 低电压监测(LVD): LVD 可用于监视 VDD 电源,通过设置 LVDEN 使能 LVD,将 VDD 电压和 LVDS 所选择的电压阈值(V_{LVD})进行比较,可产生 LVD 中断。也可 通过 LVDS 选择为外部 LVDIN 端口与内部固定 1.2V 电压比较,此时可监视外部电 压工作情况。

2.2.3.3 稳压器

主电源域稳压器:

包括 1.2V 稳压器和 1.8V 稳压器,1.2V 稳压器用于主电源数字逻辑和存储,1.8V 稳压器专门用于 Flash 编程和擦除。注意 1.8V 稳压器作为 Flash 专用,在芯片电源框图中不再体现。

在 STANBY 模式下,主电源域稳压器被关闭。主域内部逻辑掉电,没有能量损耗。

在 STOP2 模式下,如需追求更低的功耗,可配置主电源域 1.2V 稳压器在进入 STOP2 模式后工作在维持模式。注意此时处于主电源域的 HRC,HOSC 关闭,备份域的 LOSC,LRC,RTC,TSENSE 可工作,少数主电源域的外设(ACMP,LVD,IWDT 等)可工作。其余模式下,主电源域 1.2V 稳压器处于正常工作模式。

在 SLEEP 或者 STOPx 模式下,可配置 1.8V 稳压器进入 SLEEP/STOPx 模式后工作在 普通模式、低功耗模式、维持模式或关断模式,以节省功耗。

备份电源域稳压器:

1.2V 稳压器用于备份电源域数字逻辑和存储。

在芯片所有功耗模式下可工作,并且消耗极小电流。

2. 2. 3. 4 低功耗模式

ES32F3696 系列 MCU 支持以下低功耗模式来实现低功耗,快速唤醒时间以及可支持唤醒源的组合选择。

◇ SLEEP 模式:

在 SLEEP 模式下, CPU 时钟被关闭。所有外设可以继续工作并通过中断或事件唤醒 CPU。 Flash 可以配置成空闲模式或者待机模式。主域 1.8V 稳压器可以配置成普通模式、低功

耗模式、维持模式或关断模式。用户可根据功耗和唤醒时间需求来决定如何配置。

◇ STOP1 模式:

在 STOP1 模式下,CPU 和大部分外设时钟被关闭,HOSC 和 HRC 时钟可通过软件配置为使能。DMA 可以继续动作,配合一些低功耗外设在局部小系统内完成较简单的工作。可根据不用应用场景需求,来配置主电源域 1.8V 稳压器在进入 STOP1 模式后处于何种低功耗模式。

◇ STOP2 模式

在 STOP2 模式下, CPU 和大部分外设时钟被关闭, HOSC 和 HRC 可通过软件配置为 使能。DMA 被关闭。只有一些低功耗外设还能继续工作,并通过中断唤醒芯片。可根据 需求,来配置主电源域 1.2V 和 1.8V 稳压器在进入 STOP2 模式后处于何种低功耗模式。

◇ STANDBY 模式

STANDBY 模式消费最少的功耗。主电源域稳压器被关闭,内核大部分逻辑掉电。备份域 LDO 开启,LOSC,RTC 等可工作。备份 RAM 维持保存数据。

2. 2. 3. 5 时钟管理

时钟控制器可对内核和外设分配不同的时钟源,同时管理外设总时钟门控以及低功耗模式的时钟门控。

◇ 时钟分频

通过权衡系统的运行速度和功耗,可以调整内核和外设的时钟分频比,选择合适的时钟 频率。

◇ 时钟安全控制

HOSM(HOSC Security Management)可以实时监测 HOSC 时钟的工作情况,当发生时钟停止时,可自动为其切换为 HRC 时钟。 PULM(PLL Unlock Management)可以实时监测 PLL 时钟的工作情况,当发生时钟失锁时,可自动为其切换为 HRC 时钟。

◇ 时钟门控

内核、部分外设和存储器时钟都可被单独门控,可减少功耗消耗。

◇ 时钟源

- 1~24MHz 外部高速晶体振荡器 (HOSC)
- 内部高速 RC 振荡器 (HRC)
- 32768Hz 外部低速晶体振荡器(LOSC)
- 32768Hz 内部低速 RC 振荡器 (LRC)
- 10KHz 内部超低速 RC 振荡器 (ULRC)
- 最高 96MHz 内部锁相环倍频时钟(PLL)

2. 2. 3. 6 直接存储器访问(DMA)

版权所有©上海东软载波微电子有限公司

DMA(Direct Memory Access)控制器能够独立于内核进行内存操作,以降低功耗和内核的工作负载。DMA 控制器包含 12 个 DMA 通道,每个 DMA 通道分别对应一个 DMA 多路复用器。多路复用器可选择片上所有的 DMA 请求源。DMA 控制器可支持存储到存储,存储到外设以及外设到存储之间的数据传输。

DMA 可以在 STOP1 模式下进行存储器到存储器的数据传输。

2.2.3.7 外设互联 (PIS)

PIS(Peripheral Interaction System)在微控制器中作为外设互联的桥接口使用,利用 PIS 可实现外设之间的相互触发,控制及自动化工作,提高系统的实时性和快速响应能力,可避免占用过多的内核工作负载并简化软件工作,为各种应用扩展提供便捷。送出信号的外设模块被称为生产端,PIS 把这些信号传递到被称为消费端的外设进行使用。 PIS 信号可以是电平或脉冲的形式,并支持异步触发信号。

2. 2. 3. 8 看门狗定时器(WDT)

◇ 独立看门狗定时器 (IWDT)

IWDT(Independent Watchdog), 当使用芯片配置字使能 IWDT 时, 时钟强制为 32768Hz LRC 时钟, 可用于检测软件和硬件异常, 如主时钟停振, 程序跑飞等。

在调试模式下, 定时器可被冻结。

◇ 窗口看门狗定时器(WWDT)

WWDT (Window Watchdog),使用系统时钟 PCLK 作为计数时钟,对于过早或过晚喂狗都将产生 WWDT 复位,可用于检测软件没有喂狗或过早的喂狗行为,防止程序跑至不可控状态。

在调试模式下, 定时器可被冻结。

2.2.4 外部接口

2. 2. 4. 1 通用端口(GPIO)

每组通用端口包含 16 个独立的引脚。这些引脚可单独配置为输入或输出。每个引脚有独立的开漏输出控制,驱动能力选择控制,上拉或下拉选择,CMOS/TTL 输入选择以及模拟滤波输入使能控制。大部分端口可以与模拟功能及其他数字外设功能复用。每个端口可分别支持中断,映射到 16 个中断向量中。另外每个端口还可支持触发 DMA 数据传输的功能。

2.2.5 安全管理及运算加速

2. 2. 5. 1 循环冗余校验(CRC)

CRC(Cyclic Redundancy Check)发生器可以执行带可编程多项式设定的 CRC 计算。

支持四个常用的多项式: CRC-CCITT, CRC-8, CRC-16 和 CRC-32

- \Diamond CRC-CCITT: $X^{16} + X^{12} + X^{5} + 1$
- \Diamond CRC-8: $X^8 + X^2 + X + 1$
- \Diamond CRC-16: $X^{16} + X^{15} + X^2 + 1$
- \Diamond CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

2.2.5.2 运算加速器 (CALC)

运算加速器 (CALC) 可以执行平方根的运算加速。

2. 2. 5. 3 加密处理 (CRYPT)

硬件加密模块主要用于由硬件对数据进行加密或解密操作,支持的标准有 AES、DES/TDES。

2. 2. 5. 4 真随机数发生器(TRNG)

真随机数发生器 TRNG(True Randum Number Generator)可生产 1 位串行真随机数或 8/16/32 位并行真随机数。

2.2.6 定时器

ES32F3696 系列 MCU 包含了 2 个高级定时器, 4 个通用定时器和 2 个基本定时器。功能比较如下表所示:

	定时器计数 位宽度	计数类型	预分频比	DMA 请求	输入捕捉/输 出比较通道	互补输出
高级定时器 (AD16C4T)	16 位	白 白 下 上	1~65536	支持	4	支持
通用定时器 (GP32C4T)	32 位	向上 向下 上下	1~65536	支持	4	不支持
通用定时器 (GP16C4T)	16 位	向上 向下 上下	1~65536	支持	4	不支持
基本定时器 (BS16T)	16 位	向上	1~65536	支持	0	不支持

表 2-2 定时器功能

2. 2. 6. 1 高级定时器(AD16C4T)

支持 2 路高级定时器(AD16C4T0, AD16C4T1)。高级定时器可被视为复用在 6 个通道上的 3 相 PWM。PWM 互补输出的死区时间可配。另外高级定时器兼具通用定时器的所有功能。

在调试模式下,高级定时器可被冻结,并禁止 PWM 输出。

高级定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

2. 2. 6. 2 通用 32 位定时器(GP32C4T)

ES32F3696 系列 MCU 带 2 个通用定时器(GP32C4T0,GP32C4T1),该定时器包含 4 个独立通道,具备以下功能:

- ◇ 输入捕捉
- ◇ 输出比较
- ◇ PWM 生成(边缘或中间对齐模式)
- ◇ 单脉冲输出

通用定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

在调试模式下, 定时器可被冻结。

2. 2. 6. 3 通用 16 位定时器(GP16C4T)

ES32F3696 系列 MCU 带 2 个通用定时器(GP16C4T0,GP16C4T1),该定时器包含 4 个独立通道,具备以下功能:

◇ 输入捕捉

V1.1 18/87

- ◇ 输出比较
- ◇ PWM 生成(边缘或中间对齐模式)
- ◇ 单脉冲输出

通用定时器可与其他定时器连接,一起配合使用,以达到同步或事件串联的目的。

在调试模式下, 定时器可被冻结。

2.2.6.4 基本定时器(BS16T)

支持 2 路基本定时器 (BS16T0,BS16T1)。用于 16 位时基计数器或者产生事件触发其他外设工作。

在调试模式下, 定时器可被冻结。

2. 2. 6. 5 实时时钟计数器(RTC)

RTC(Real Time Clock)备份电源域在芯片 STANBY 模式下仍可通过独立的备份电源域稳压器获取电源。支持备份域 SRAM 空间为 128Byte,可在 STANDBY 模式下保存数据。

系统复位(除备份域上电复位外)不会对 RTC 及备份域的内容或寄存器产生影响。

RTC 采用外部 32.768KHz 晶体振荡器时钟源,支持日历功能,并支持产生定时中断,闹钟中断等。

2.2.7 通信

2.2.7.1 内部集成电路总线(I2C)

支持 2 路 I2C(I2C0, I2C1)。I2C(Inter-Integrated Circuit)总线接口用作微控制器和 I2C 串行总线之间的接口。它提供多主模式功能,可以控制所有 I2C 总线特定的序列、协议、仲裁和时序。它支持标准和快速模式。它还与 SMBus 2.0 兼容。它可以用于多种用途,包括 CRC 生成和验证、SMBus (系统管理总线)以及 PMBus (电源管理总线)。

I2C 支持 DMA 对所发送和接收数据进行传输。

2. 2. 7. 2 串行外设接口(SPI/I2S)

支持 3 路 SPI 接口(SPI0,SPI1,SPI2)。SPI(Serial Peripheral Interface)可与外部器件进行半双工/全双工的同步串行通信。该接口可配置为主模式,在这种情况下,它可为外部从器件提供通信时钟(SCK)。该接口还能够在多主模式配置下工作。它可用于多种用途,包括基于双线的单工同步传输,其中一条可作为双向数据线,或使用 CRC 校验实现可靠通信。SPI 支持 DMA 对所发送和接收数据进行传输。

每路 SPI 同时支持 I2S 主机模式通信功能,可通过软件选择。

I2S 接口支持四种音频标准: I2S 飞利浦标准, MSB 对齐标准, LSB 对齐标准, PCM 标准。音频采样频率可以是 192kHz, 96kHz, 48kHz, 44.1kHz, 32kHz, 22.05kHz, 16kHz, 11.025kHz 或 8kHz (或该范围内的任何其他值)。有四个数据和通道帧可供使用。数据可以采用以下格式发送:

- ◇ 16 位数据帧装在一个 16 位通道帧
- ◇ 16 位数据帧装在一个 32 位通道帧
- ◇ 24 位数据帧装在一个 32 位通道帧
- ◇ 32 位数据帧装在一个 32 位通道帧

2. 2. 7. 3 通用异步收发器(UART)

支持 6 路 UART 接口(UART0, UART1, UART2, UART3, UART4, UART5)。UART (Universal Asynchronous Receiver Transmitter)支持与外部设备进行全双工数据通信和单线半双工通信。UART 支持波特率自动测量功能。并且提供了 16 级深度 FIFO 可提高发送或接收的效率,减少打断 CPU 的次数。UART 还支持多点通信(RS-485),LIN(局域互连网络)、红外通信协议(IrDA SIR),以及自动硬件流控制(CTS/RTS)。其中UART4 和 UART5 可支持智能卡模式。

2. 2. 7. 4 基本扩展控制器局域网络(BxCAN)

支持 1 路 BxCAN 接口(BxCAN0)。BxCAN (Basic Extended Controller Area Network) 可与 CAN 网络进行交互。该外设支持 2.0A 和 2.0B 版本的 CAN 协议,旨在以最少的 CPU 负载高效管理大量的传入消息,并可按需要的优先级实现消息发送。 在攸关安全性的应用中,CAN 控制器提供所有必要的硬件功能来支持 CAN 时间触发通信方案。

2.2.7.5 通用串行总线(USB)

USB (Universal Serial Bus) 模块作为全速/高速 USB 主机、设备控制器,可兼容 USB2.0 高速(480Mbps)通信协议,且支持 OTG。

USB 主要功能如下:

- ◇ USB 设备控制器支持高速(480Mbps)/全速(12Mbps)的数据传输模式;
- ◇ 支持点对点通信时工作于主机或设备两种模式,多点通信时工作于 USB 主机模式;
- ◆ 兼容 USB2.0 协议规范中高速数据传输(480Mbps)、全速数据传输(12Mbps)和 嵌入式设备(On-The-GO)标准;
- ◇ 支持在 OTG 模式下与一个或多个高速/全速/低速设备通信;
- 支持会话请求协议 SRP (Session Request Protocol) 和主机协商协议 HNP (Host Negotiation Protocol) 通信协议;
- ◇ 支持 4 种数据传输类型:控制传输/同步传输/中断传输/块传输;
- ◇ 支持挂起状态和恢复功能;
- ◇ USB 设备模式下支持软连接和断开功能;
- ◇ 内置 4KB SRAM 端点 FIFO,支持 11 个端点: EP0IN/OUT、EP1IN~EP5IN(Rx Endpoints)和 EP1OUT~EP5OUT(Tx Endpoints)。端点大小最大支持 1024 字节数据,其中 EP0 端点仅支持控制传输,其它端点同时支持同步传输、中断传输、批量传输三种传输方式;支持 CPU 通过 AHB 总线访问 USB 控制器的控制状态寄存器以及 SRAM 数据存储器。
- ◇ 支持内置 DMA 对 FIFO 访问

2. 2. 8 模拟

2. 2. 8. 1 模数转换(ADC)

支持 2 路模数转换器(ADC0,ADC1)。ADC(Analog to Digital Convertor)是 12 位分辨率的逐次逼近型模数转换器。它具有多达 19 个复用通道,可测量自管脚输入的 16 个外部信号、3 个内部信号。这些通道的 A/D 转换可在单次、连续、扫描或不连续 采样模式下进行。ADC 的结果存储在一个左对齐或右对齐的 16 位数据寄存器中。

ADC 模块具有模拟看门狗特性,允许应用检测输入电压是否超过了用户自定义的阈值上限或下限。

ADC 支持触发 DMA 数据传输的功能。

2.2.8.2 数模转换(DAC)

DAC(Digital to Analog Convertor)模块支持 12 位分辨率。最大采样率可支持 500ksps。参考源选择可配置。支持两路 DAC 转换通道,也可配置为差分输出。转换时钟分频可配置,分频比可选范围为 1~128。支持正弦波产生模式。支持 PIS 触发转换功能和通过 DMA 传输数字量。

2.2.8.3 模拟比较器(ACMP)

支持 3 路模拟比较器(ACMP0,ACMP1, ACMP2)。ACMP(Analog Comparator)用于比较两个模拟信号电压的大小。当正极输入大于负极输入时比较器输出逻辑 1,否则输出 0。当比较器输出值有变化时,3 个比较器都可以配置产生中断。

ACMP 带迟滞功能。

ACMP 可在 STOP 模式下工作。

2. 2. 8. 4 温度传感器 (TSENSE)

TSENSE(Temperature Sensor)可生成与温度成线性变化的电压,并将电压转换为实际温度值输出。

第3章 管脚说明

3.1 管脚图

3. 1. 1 LQFP100

图 3-1 ES32F3696 LQFP100 顶视图

3. 1. 2 LQFP64

图 3-2 ES32F3696 LQFP64 顶视图

3.2 管脚功能定义

	Pin mber									
LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	PE2	_	PE2	_	UART2_TX	ACMP0_OUT	_	TRACECLK	EBI_A23
1	2	PE3	_	PE3	_	UART2_RX	ACMP1_OUT	_	TRACED0	EBI_A19
1	3	PE4	_	PE4	_	UART2_CTS	ACMP2_OUT	_	TRACED1	EBI_A20
1	4	PE5	_	PE5	_	UART2_RTS	_	_	TRACED2	EBI_A21
1	5	PE6	_	PE6	_	UART4_CK	_	_	TRACED3	EBI_A22
1	6	VDD	_	_	_	_	_	_	_	_
2	7	PC13-TAMPE R0_RTC	-	PC13-TAMPE R0_RTC	-	_	_	-	_	-
3	8	PC14/ LOSC_IN	LOSC_IN	PC14	-	-	_	-	_	-
4	9	PC15/ LOSC_OUT	LOSC_OUT	PC15	-	-	_	_	_	-
1	10	VSS	_	_	_	_	_	_	-	_
/	11	PF4	_	PF4	-	_	_	_	_	EBI_A4
5	12	PH0/ HOSC_IN	HOSC_IN	PH0	ŀ	UART0_TX	_	I2C1_SCL	ACMP0_OUT	-
6	13	PH1/ HOSC_OUT	HOSC_OUT	PH1	-	UART0_RX	-	I2C1_SDA	ACMP1_OUT	_
7	14	MRST	MRST	_	ı	_	_	-	_	_

V1.1 25/87

	Pin mber									
LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
8	15	PC0	ADC_IN0 ACMP0_IN0	PC0	-	UART1_TX	SPI1_NSS	-	-	EBI_A0
9	16	PC1	ADC_IN1 ACMP0_IN1	PC1	-	UART1_RX	SPI1_SCK	-	RTCO	EBI_A1
10	17	PC2	ADC_IN2 ACMP0_IN2	PC2	-	UART1_CTS	SPI1_MISO	-	-	EBI_A2
11	18	PC3	ADC_IN3 ACMP0_IN3	PC3	-	UART1_RTS	SPI1_MOSI	-	-	EBI_A3
1	19	PF6	_	PF6	_	_	_	_	_	_
12	20	VREFN/PH3	VREFN	PH3	_	_	_	_	-	_
13	21	VREFP/PH4	VREFP	PH4	_	_	_	_	_	_
1	22	PF7	-	PF7		1	_	_	ı	_
14	23	PA0-WKUP	ADC_IN4 ACMP0_IN4	PA0-WKUP-TA MPER1_RTC	GP32C4T0_CH1	UART5_CTS	AD16C4T1_ET	GP16C4T1_CH1	GP32C4T0_ET	LCD_RST1
15	24	PA1	ADC_IN5 ACMP0_IN5	PA1	GP32C4T0_CH2	UART5_RTS	_	GP16C4T1_CH2	-	LCD_RST2
16	25	PA2	ADC_IN6 ACMP0_IN6	PA2	GP32C4T0_CH3	UART5_TX	_	GP16C4T1_CH3	-	LCD_RST3
17	26	PA3	ADC_IN7 ACMP0_IN7	PA3	GP32C4T0_CH4	UART5_RX	_	GP16C4T1_CH4	-	-
18	27	PF0	ı	PF0	-	-	_	_	_	_

	Pin mber									
LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
19	28	PF1	_	PF1	_	_	_	_	_	_
20	29	PA4	ADC_IN8 DAC_OUT0	PA4	-	UART5_CK	_	ı	SPI0_NSS	EBI_A4
21	30	PA5	ADC_IN9 DAC_OUT1	PA5	_	QSPI_NSS3	_	I2C1_SCL	SPI0_SCK	EBI_A5
22	31	PA6	ADC_IN10	PA6	AD16C4T1_BKIN	GP32C4T1_CH1	AD16C4T0_BRK	I2C1_SDA	SPI0_MISO	EBI_A6
23	32	PA7	ADC_IN11	PA7	AD16C4T1_CH1N	GP32C4T1_CH2	AD16C4T0_CH1 N	I2C1_SMBA	SPI0_MOSI	EBI_A7
24	33	PC4	ADC_IN12	PC4	_	_	UART3_TX	SPI2_NSS	_	EBI_A8
25	34	PC5	ADC_IN13	PC5	_	_	UART3_RX	SPI2_SCK	_	EBI_A9
26	35	PB0	ADC_IN14	PB0	GP32C4T1_CH3	AD16C4T1_CH2N	UART3_CTS	SPI2_MISO	AD16C4T0_CH 2N	VSYNC1
27	36	PB1	ADC_IN15	PB1	GP32C4T1_CH4	AD16C4T1_CH3N	UART3_RTS	SPI2_MOSI	AD16C4T0_CH 3N	VSYNC2
28	37	PB2	_	PB2	_	_	_	_	QSPI_NSS1	VSYNC3
1	38	PE7	_	PE7	AD16C4T0_ET	_	UART4_CK	-	ACMP2_OUT	EBI_D4
1	39	PE8	_	PE8	AD16C4T0_CH1N	_	_	_	_	EBI_D5
1	40	PE9	_	PE9	AD16C4T0_CH1	1	_	ı	_	EBI_D6
/	41	PE10	_	PE10	AD16C4T0_CH2N	-	UART4_TX	UART3_TX	PIS_CH0P	EBI_D7
1	42	PE11	_	PE11	AD16C4T0_CH2	_	UART4_RX	UART3_RX	PIS_CH1P	EBI_D8
1	43	PE12	_	PE12	AD16C4T0_CH3N	_	UART4_CTS	UART3_CTS	PIS_CH2P	EBI_D9

	Pin mber									
LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	44	PE13	_	PE13	AD16C4T0_CH3	_	UART4_RTS	UART3_RTS	PIS_CH3P	EBI_D10
1	45	PE14	_	PE14	AD16C4T0_CH4	_	_	_	_	EBI_D11
1	46	PE15	_	PE15	AD16C4T0_BRK	_	_	_	_	EBI_D12
29	47	PB10	_	PB10	GP32C4T0_CH3	UART0_TX	_	I2C1_SCL	QSPI_IO2	EBI_A10
30	48	PB11	_	PB11	GP32C4T0_CH4	UART0_RX	_	I2C1_SDA	QSPI_IO3	EBI_A11
31	49	VSS	_	_	_	_	_	_	_	_
32	50	VDD	_	_	_	_	_	_	_	_
33	51	PB12	_	PB12	AD16C4T0_BRK	_	SPI1_NSS	I2C1_SMBA	QSPI_NSS0	EBI_A12
34	52	PB13	_	PB13	AD16C4T0_CH1N	UART0_CTS	SPI1_SCK	_	QSPI_SCK	EBI_A13
35	53	PB14	_	PB14	AD16C4T0_CH2N	UART0_RTS	SPI1_MISO	_	QSPI_IO0	EBI_A14
36	54	PB15	_	PB15	AD16C4T0_CH3N	_	SPI1_MOSI	USB_DRVVBUS	QSPI_IO1	EBI_A15
1	55	PD8	_	PD8	_	_	_	UART0_TX	QSPI_IO2	EBI_D13
1	56	PD9	_	PD9	_	_	_	UART0_RX	QSPI_IO3	EBI_D14
1	57	PD10	_	PD10	_	_	_	_	_	EBI_D15
1	58	PD11	-	PD11	-	-	_	UARTO_CTS	USB_DRVVBU S	EBI_A16
1	59	PD12	_	PD12	GP16C4T0_CH1	_	_	UART0_RTS	_	EBI_A17
/	60	PD13	_	PD13	GP16C4T0_CH2		UART3_RX	_	_	EBI_A18
/	61	PD14	_	PD14	GP16C4T0_CH3		UART3_TX	_	_	EBI_D0
1	62	PD15	_	PD15	GP16C4T0_CH4	_	_	_	_	EBI_D1

	Pin mber									
LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
37	63	PC6	-	PC6	AD16C4T1_CH1	GP32C4T1_CH1	_	_	_	_
38	64	PC7	1	PC7	AD16C4T1_CH2	GP32C4T1_CH2	_	_	_	_
39	65	PC8	-	PC8	AD16C4T1_CH3	GP32C4T1_CH3	_	_	PIS_CH2P	_
40	66	USB_VBUS	USB_VBUS	_	1	_	_	_	_	_
41	67	USB_ID	USB_ID	_	_	_	_	_	_	_
42	68	USB_REXT	USB_REXT	_	_	_	_	_	_	_
43	69	VDD33_USB	VDD33_USB	_	1	_	_	_	_	_
44	70	USB_DM	USB_DM	_	_	_	_	_	_	_
45	71	USB_DP	USB_DP	_	1	_	_	_	_	_
46	72	PA13- SWDIO	SWDIO	PA13	UART1_TX	_	_	-	-	-
47	73	VRCAP	1	_	ı	_	_	_	_	_
1	74	VSS	ı	-	I	-	_	_	-	_
48	75	VDD	ı	-	I	-	_	_	-	_
49	76	PA14- SWCLK	SWCLK	PA14	UART1_RX	_	_	_	_	-
50	77	PA15	_	PA15	GP32C4T0_CH1	SPI2_NSS	SPI0_NSS	GP32C4T0_ET	HSCO	_
51	78	PC10	-	PC10	_	UART1_TX	_	UART2_RTS	_	EBI_NE2/EBI_NCE3
52	79	PC11	_	PC11	_	UART1_RX	_	UART2_CTS	_	EBI_NE3
53	80	PC12	_	PC12	_	UART1_RTS	_	UART2_TX	_	EBI_NE4

	Pin mber									
LQFP64	LQFP100	Pin Name	ALTO (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	81	PD0	1	PD0	_	_	_	_	_	EBI_D2
1	82	PD1		PD1	-	1	_	_	_	EBI_D3
54	83	PD2	LVDIN	PD2	GP32C4T1_ET	UART1_CTS	_	UART2_RX	-	DCLK
1	84	PD3		PD3	GP16C4T1_ET	1	SPI0_SCK	UART5_CTS	_	EBI_CLK
1	85	PD4	1	PD4	_	_	SPI0_MISO	UART5_RTS	_	EBI_NOE
1	86	PD5	_	PD5	_	UART1_TX	_	UART5_TX	_	EBI_NWE
1	87	PD6	_	PD6	_	UART1_RX	_	UART5_RX	_	EBI_NWAIT
1	88	PD7	_	PD7	_	_	SPI0_MOSI	UART5_CK	_	EBI_NE1/EBI_NCE2
55	89	PB3	-	PB3	GP32C4T0_CH2	SPI2_SCK	SPI0_SCK	UART2_TX	TRACESWO	_
56	90	PB4	_	PB4	GP32C4T1_CH1	SPI2_MISO	SPI0_MISO	UART2_RX	PIS_CH0P	HSYNC1
57	91	PB5	1	PB5	GP32C4T1_CH2	SPI2_MOSI	SPI0_MOSI	I2C0_SMBA	PIS_CH1P	EBI_A24
58	92	PB6	-	PB6	GP16C4T0_CH1	UART4_TX	_	I2C0_SCL	PIS_CH2P	EBI_A25
59	93	PB7	1	PB7	GP16C4T0_CH2	UART4_RX	_	I2C0_SDA	PIS_CH3P	EBI_NADV
60	94	PH2-BOOT0	-	BOOT0/ PH2	-	-	_	_	_	-
61	95	PB8	-	PB8	GP16C4T0_CH3	CAN0_RX	UART5_RX	I2C0_SCL	_	HSYNC2
62	96	PB9	_	PB9	GP16C4T0_CH4	CAN0_TX	UART5_TX	I2C0_SDA	_	HSYNC3
/	97	PE0	1	PE0	GP16C4T0_ET	UART4_CTS	UART5_CK	I2C0_SMBA	_	EBI_NBL0
/	98	PE1	1	PE1	_	UART4_RTS	_	_	_	EBI_NBL1
63	99	VSS	-	_	-	-	_	_	_	_

	Pin mber									
LQFP64	LQFP100	Pin Name	ALT0 (复位后功能)	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
64	100	VDD	_	1	-	_	_		-	_

表 3-1 ES32F3696 的管脚功能定义

第4章 存储器映射图

图 4-1 存储器映射

第5章 电气特性

5.1 最小值和最大值、典型值

最大值和最小值是在指定温度范围内测试所有元器件后,在最差条件下(包括环境温度,电源电压以及测试频率等)应能够保证的数据。

典型值为温度 25℃, 电源电压 VDD=5V(电压范围 2.0V ≤ VDD ≤ 5.5V)条件下的电气值。

5.2 芯片电源

图 5-1 芯片电源

注 1: 产品有多个 VDD 管脚, 分为 VDD (主)、 VDD (辅 1) 和 VDD (辅 2) 对应的具体电源管脚请参见相关产品的应用笔记说明。

V1.1 34/87

5.3 电流测量

图 5-2 电流测量

5.4 芯片极限参数

以下表格为芯片耐受的极限电气参数值,超过范围可能导致芯片永久性破坏。

5. 4. 1 电压参数

标号	参数	条件	最小值	最大值	单位
VDD	芯片主电源	-	- 0.3	7.5	V
VIN	端口输入电压	-	- 0.3	VDD+0.3	V
△VDDx	各 VDD 电源端口的差值	-	_	50	mV
VSSx - VSS	各 VSS 端口之间的差值	-	_	50	mV
VDD33_USB	USB 电源	_	- 0.3	3.9	V
V_{ESD}	静电释放电压	-	请参考表格 "ESI	D 最大额定值"	V

表 5-1 极限电压参数

5. 4. 2 电流参数

标号	参数	条件	最小值	最大值	单位
I_{VDD}	流经 VDD 的总电流	-	-	100	mA
I _{VSS}	流经 VSS 的总电流	-	ı	100	mA
1	拉电流(输出高)	-	-	20	mA
IIO	灌电流(输出低)	-	-	20	mA
I _{VDD33_USB}	流经 VDD33_USB 的总电流	-	-	40	mA
I _{LATCH}	I/O 闩锁电流	_	100	300	mA

表 5-2 极限电流参数

5.4.3 热参数

标号	参数	条件	最小值	最大值	単位
T_{STG}	储存温度	_	- 65	150	${\mathbb C}$
T_J	结温	_	-	125	${\mathbb C}$

表 5-3 极限热参数

5.5 运行条件

5.5.1 运行条件

标号	参数	条件	最小值	最大值	单位
f _{HCLK1}	内部 AHB1 总线时钟频率	_	-	96	MHz
f _{HCLK2}	内部 AHB2 总线时钟频率	-	-	72	MHz
f _{PCLK1}	内部 APB1 总线时钟频率	-	-	72	MHz
f _{PCLK2}	内部 APB2 总线时钟频率	-	-	24	MHz
VDD	电源电压	-	2.0	5.5	V
VDD33_USB	USB 电源	-	3.0	3.6	V
T _A	环境温度	_	-40	85	$^{\circ}\! \mathbb{C}$
T _J	结温	_	-40	125	$^{\circ}\!\mathbb{C}$

表 5-4 芯片通常运行条件

5.5.2 上电和掉电参数条件

标号	参数	条件	最小值	最大值	単位
4	VDD 上升速率	参考 5.2 章节 电源连接	100	_	us/V
₹ _{VDD}	VDD 下降速率	参考 5.2 章节 电源连接	100	_	us/V

表 5-5 芯片在上电和掉电时的参数条件

5.5.3 复位和电源管理模块电气参数

标号	参数	条件	最小 值	典型 值	最大 值	単位
V_{POR}	 	上电,T _A =25℃	-	1.85	-	V
	参数 二电复位和掉电复位的阈值 VPOR 电压迟滞 VBOR 电压档位选择	掉电,T _A =25℃	-	1.75	-	V
$V_{PORHYST}^{[1]}$	V _{POR} 电压迟滞	_	-	100	-	mV
		BORVS=0001 (上升沿)	1.97	2.01	2.02	
		BORVS=0001 (下降沿)	1.94	1.98	1.99	
V	V 由压挫份选权	BORVS=0010 (上升沿)	2.17	2.22	2.23	V
V_{BOR}	VBOR 电压匀化处纬	BORVS=0010 (下降沿)	2.14	2.19	2.2	V
		BORVS=0011 (上升沿)	2.37	2.42	2.43	
		BORVS=0011 (下降沿)	2.34	2.39	2.4	

V1.1 37/87

标号	参数	条件	最小 值	典型 <u>值</u>	最大 值	単位
		BORVS=0100 (上升沿)	2.56	2.62	2.64	
		BORVS=0100 (下降沿)	2.53	2.59	2.61	
		BORVS=0101 (上升沿)	2.76	2.81	2.85	
		BORVS=0101 (下降沿)	2.73	2.78	2.82	
		BORVS=0110 (上升沿)	2.95	3.02	3.05	
		BORVS=0110 (下降沿)	2.92	2.99	3.02	
		BORVS=0111 (上升沿)	3.15	3.21	3.26	
		BORVS=0111 (下降沿)	3.12	3.18	3.23	
		BORVS=1000 (上升沿)	3.34	3.42	3.45	
		BORVS=1000 (下降沿)	3.31	3.39	3.42	
		BORVS=1001 (上升沿)	3.53	3.62	3.66	
		BORVS=1001 (下降沿)	3.5	3.59	3.63	
		BORVS=1010 (上升沿)	3.73	3.82	3.86	-
		BORVS=1010 (下降沿)	3.7	3.79	3.83	-
		BORVS=1011 (上升沿)	3.93	4.01	4.06	_
		BORVS=1011 (下降沿)	3.9	3.98	4.03	-
		BORVS=1100 (上升沿)	4.13	4.22	4.26	
		BORVS=1100 (下降沿)	4.1	4.19	4.23	
		BORVS=1101 (上升沿)	4.33	4.42	4.46	_
		BORVS=1101 (下降沿)	4.3	4.39	4.43	_
		BORVS=1110	4.53	4.62	4.67	

标号	参数	条件	最小 值	典型值	最大 值	単位
		(上升沿) BORVS=1110				
		(下降沿) BORVS=1111	4.5	4.59	4.64	
		(上升沿)	4.73	4.82	4.87	
		BORVS=1111 (下降沿)	4.7	4.79	4.84	
V _{BORHYST} ^[1]	V _{BOR} 电压迟滞	_	-	30	-	mV
		LVDS=0000 (上升沿)	2.19	2.22	2.24	
		LVDS=0000 (下降沿)	2.14	2.18	2.2	
		LVDS=0001 (上升沿)	2.38	2.42	2.44	
		LVDS=0001 (下降沿)	2.34	2.38	2.4	
		LVDS=0010 (上升沿)	2.58	2.62	2.64	
		LVDS=0010 (下降沿)	2.53	2.59	2.61	-
		LVDS=0011 (上升沿)	2.77	2.81	2.83	
		LVDS=0011 (下降沿)	2.73	2.78	2.8	
V_{LVD}	LVD 电压阈值选择	LVDS=0100 (上升沿)	2.97	3.01	3.03	V
		LVDS=0100 (下降沿)	2.92	2.96	2.99	
		LVDS=0101 (上升沿)	3.18	3.21	3.23	
		LVDS=0101 (下降沿)	3.12	3.18	3.2	
		LVDS=0110 (上升沿)	3.37	3.41	3.43	
		LVDS=0110 (下降沿)	3.31	3.38	3.4	
		LVDS=0111 (上升沿)	3.57	3.62	3.63	
		LVDS=0111 (下降沿)	3.51	3.56	3.59	
		LVDS=1000	3.77	3.82	3.83	

标号	参数	条件	最小 值	典型 值	最大 值	単位
		(上升沿)				
		LVDS=1000	3.71	3.78	3.8	
		(下降沿)	3.71	3.70	5.0	
		LVDS=1001	3.97	4.01	4.03	
		(上升沿)	3.91	4.01	4.03	
		LVDS=1001	3.9	3.98	4	
		(下降沿)	5.9	3.90	7	
		LVDS=1010	4.17	4.22	4.24	
		(上升沿)	4.17	4.22	4.24	
		LVDS=1010	4.1	4.18	4.21	
		(下降沿)	7.1	4.10	7.21	
		LVDS=1011	4.37	4.4	4.42	
		(上升沿)	7.07	7.7	7.72	
		LVDS=1011	4.3	4.39	4.41	
		(下降沿)	4.3	4.00	7.71	
		LVDS=1100	4.57	4.61	4.63	
		(上升沿)	4.07	4.01	4.00	
		LVDS=1100	4.5	4.58	4.6	
		(下降沿)	7.5	4.50	7.0	
		LVDS=1101	4.76	4.81	4.83	
		(上升沿)	4.70	7.01	7.00	
		LVDS=1101	4.7	4.78	4.8	
		(下降沿)	7.1	4.70	7.0	
V _{LVDHYST} ^[1]	V _{LVD} 电压迟滞	-	_	30	_	mV
V _{RSTTEMPO} ^[1]	POR 复位输出迟延	-	_	200	_	us

表 5-6 复位和电源管理模块电气参数

注 1: 基于芯片设计值得到的电气参数。

注 2: 其他未注明是基于实测值得到的电气参数。

5. 5. 4 电流特性

芯片消耗的电流涉及到电源电压,环境温度,端口负载,器件软件配置,运行频率和模式等。

最大电流值在以下条件下测得:

- ◇ 所有 I/O 处于关闭状态或者输入状态 (固定电平输入), 无负载
- ◇ 无特别说明情况下所有外设关闭
- ◇ FLASH 的访问为 3 周期 (2wait)
- ◇ FLASH 预取指开启
- ◇ 当外设使能时,f_{PCLK1}=f_{HCLK}/2,f_{PCLK2}=f_{HCLK}/4

标号	参数	条件	f _{HCLK}	最大值 T _A =85℃,VDD=5V	单位
			96MHz	18.3	
			72MHz	14.0	
			48MHz	9.8	
		HOSC 时钟源	36MHz	7.7	
		所有外设使能	24MHz	5.5	
			20MHz	4.7	
			8MHz	2.5	单位 —— mA
	RUN 模式电		4MHz	1.7	
I_{VDD}	流		96MHz	7.3	IIIA
			72MHz	5.7	
			48MHz	4.1	
		HOSC 时钟源	36MHz	3.5	
		所有外设禁止	24MHz	2.7	
			20MHz	2.4	
			8MHz	1.4	
			4MHz	1.2	

表 5-7 程序在 FLASH 上运行时的电流特性

注:以上测试值基于 FLASH 访问的等待时间为 3 个时钟周期。

标号	参数	条件	f _{HCLK}	最大值 T _A =85℃,VDD=5V	単位	
		96MHz		96MHz 19.0	19.0	
			72MHz	14.4	单位 mA	
			48MHz	10.1		
		HOSC 时钟源	36MHz	8.0		
		所有外设使能	24MHz	5.6		
			20MHz	4.9		
			8MHz	2.5		
	RUN 模式		4MHz	1.8	mΛ	
I_{VDD}	电流		96MHz	7.7		
			72MHz	6.2		
			48MHz	4.4		
		HOSC 时钟源	36MHz	3.7		
		所有外设禁止	24MHz	2.9		
			20MHz	2.6		
			8MHz	1.5		
			4MHz	1.2		

表 5-8 程序在 SRAM 上运行时的电流特性

注:以上测试值基于 SRAM 访问的等待时间为 0 个时钟周期。

标号	参数	条件	f _{HCLK}	最大值 T _A =85℃,VDD=5V	単位
			96MHz	15.3	
			72MHz	11.8	
			48MHz	8.2	
			36MHz	6.4	
		HOSC 时钟源	24MHz	4.7	
		所有外设使能	12MHz	3.1	
		FLASH 为空闲模式	6MHz	2.1	
			2 MHz	1.4	
			1 MHz	1.1	
			500KHz	1.1	
			125KHz	1.1] _m ^
			96MHz	4.2	mA
			72MHz	3.4	
			48MHz	2.6	
			32MHz	2.2	
		HOSC 时钟源	24MHz	1.9	
		所有外设禁止	12MHz	1.5	
		FLASH 为空闲模式	6MHz	1.3	
			2 MHz	0.9	
I_{VDD}	SLEEP 模式		1 MHz	0.9	
	电流		500KHz	0.9	
			125KHz	0.9	
			96MHz	15.1	
			72MHz	11.6	
			48MHz	8.1	
			32MHz	6.3	
		HOSC 时钟源	24MHz	4.7	
		所有外设使能	12MHz	2.9	
		FLASH 为待机模式	6MHz	2.0	
			2 MHz	1.3	
			1 MHz	1.1	mA
			500KHz	1.0	
			125KHz	0.9	
			96MHz	4.1	
		⊔∩co ⊪₺₩	72MHz	3.3	
		HOSC 时钟源 所有外设禁止	48MHz	2.5	
		所有外权禁止 FLASH 为待机模式	32MHz	2.1	
		I LAUI / 沙汀切切以关入	24MHz	1.8	
			12MHz	1.4	

标号	参数		£	最大值	单位	
你亏	少 数	余 件	f _{HCLK}	T _A =85℃,VDD=5V	平位	
			6MHz	1.2		
			2 MHz	0.8		
			1 MHz	0.8		
			500KHz	0.8		
			125KHz	0.8		

表 5-9 SLEEP 模式电流特性,程序在 FLASH 或 SRAM

注:以上测试值基于 FLASH 访问的等待时间为 3 个时钟周期,或基于 SRAM 访问的等待时间为 0 个时钟周期

				典型值	最大值		
标号	参数	条件	VDD=2.0V	VDD=3.3V	VDD=5.0V	VDD=5.0V	单位
			T _A =25℃	T _A =25℃	T _A =25℃	T _A =85℃	
	STOP1	主域 1.2V LDO 普通模式 主域 1.8V LDO LP 模式 外设开启	123.6	133.1	142.2	261.8	uA
I _{VDD}	模式电流	主域 1.2V LDO 普通模式 主域 1.8V LDO LP 模式 外设关闭	61.8	64.8	67.3	133.7	uA

表 5-10 STOP1 模式下电流特性

				典型值		最大值	单
标号	参数	条件	VDD=2.0V	VDD=3.3V	VDD=5.0V	VDD=5.0V	位
			T _A =25°C	T _A =25°C	T _A =25°C	T _A =85℃	74
	STOP2 模 式电流	主域 1.2V LDO 普通模式 主域 1.8V LDO LP 模式	53.2	53.6	52.3	166.3	uA
I _{VDD}		主域 1.2V LDO 维持模式 主域 1.8V LDO 维持模式	31.1	30.2	30.2	76.8	uA
		主域 1.2V LDO 维持模式 主域 1.8V LDO 关断模式	26.1	25.2	25.7	69.7	uA

表 5-11 STOP2 模式下电流特性

V1.1 44/87

					最大值	单	
标号	参数	条件	VDD=2.0V	VDD=3.3V	VDD=5V	VDD=5V	位
			T _A =25℃	T _A =25℃	T _A =25℃	T _A =85℃	14.
	STANDBY	RTC,LOSC 工作	2.3	2.6	2.8	4.5	uA
I _{VDD}	模式电流	RTC,LOSC 不工作	1.3	1.4	1.6	3	uA

表 5-12 STANDBY 模式下电流特性

标号	参数	电流 T _A =25℃,VDD=5V	単位
I _{HOSC}	HOSC 电流 4MHz	190	
l	HRC 电流 24MHz	160	
I _{HRC}	HRC 电流 2MHz	28	
I _{LOSC}	LOSC 电流	2	
I_{LRC}	LRC 电流	1	
I _{PLL}	PLL(48MHz)电流	600	
I _{ADC} ^[1]	ADC 电流	80	uA
I _{DAC}	DAC 电流	100	
I _{TEMP}	TEMP 温感电流	90	
I _{LCD} ^[2]	LCD 电流	4	
I _{TRNG}	TRNG 电流	150	
I _{BOR}	BOR 电流	0.5	
I _{LVD}	LVD 电流	0.5	
I _{AD16C4T}	AD16C4T 电流	6	
I _{GP16C4T}	GP16C4T 电流	5	
I _{GP32C4T}	GP32C4T 电流	7	
I _{BS16T}	BS16T 电流	2	
I _{CRC}	CRC 电流	1	uA/MHz
I _{I2C}	I2C 电流	4	
I _{SPI}	SPI 电流	5	
I _{UART}	UART 电流	4	
I _{CAN}	CAN 电流	8	

表 5-13 模块在典型应用场合下的电流特性

- 注 1: ADC 功耗测试条件为: VDD=5V, F_{ADCCLK}=24MHz,使用内部 2V 参考。
- 注 2: LCD 功耗测试条件为: VDD=5V, F_{LCDCLK} =32KHz,1/2 偏置, 1/6 占空比,驱动电阻选为 3MΩ,若使能高驱电压驱动器(VBUFHD=1),将增加 5uA 功耗,若开启内部升压泵(VSEL=2'b01),将增加 15uA 功耗。

V1.1 45/87

5.5.5 外部时钟源电气参数

◆ 外部输入高速时钟特性如下表所示:

标号	参数	条件	最小值	典型值	最大值	単位
f _{HOSC_EXT}	外部输入高速时钟频 率	-	1	-	24	MHz
V _{HOSC} _HIGH	HOSC_IN 输入时钟的 高电平电压	-	0.7VDD	-	VDD	V
V _{HOSC_LOW}	HOSC_IN 输入时钟的 低电平电压	-	VSS	-	0.3VDD	V
twidth_hosc	HOSC_IN 的输入时钟 高电平或低电平时间	-	20	ı	ı	ns
ILEAKAGE_HOSC	HOSC_IN 输入漏电	VSS≤HOSC_IN ≤VDD	_	-	1	uA

表 5-14 外部输入高速时钟特性参数

◆ 外部输入低速时钟特性如下表所示:

标号	参数	条件	最小值	典型值	最大值	单位
f _{LOSC_EXT}	外部输入低速时钟频 率	-	-	32.768	-	KHz
V _{LOSC_HIGH}	LOSC_IN 输入的高 电平电压	-	0.7VDD	ı	VDD	V
V _{LOSC_LOW}	LOSC_IN 输入的低电平电压	_	VSS	I	0.3VDD	V
t _{width_hosc}	LOSC_IN 的高电平 或低电平时间	_	100	I	-	ns
I _{LEAKAGE_LOSC}	LOSC_IN 输入漏电	VSS≤LOSC_IN ≤VDD	-	-	1	uA

表 5-15 外部输入低速时钟特性参数

◆ 外部高速振荡时钟(晶体或陶瓷振荡)

外部高速振荡时钟可由 1MHz 到 24MHz 范围的晶体或陶瓷振荡器提供。在应用中,振荡器与负载电容的距离必须放置得尽可能近,以使输出信号失真和发振稳定时间最小。

标号	参数	条件	最小值	典型值	最大值	单位
f _{HOSC_IN}	外部高速振荡时 钟频率	-	1	-	24	MHz
C _{L1} ,C _{L2}	建议根据晶体规 格的电阻值,采用 相应的电容负载	R _S =25Ω	-	10	-	pF
I	外部高速振荡器 的驱动电流	VDD= 3.3 V, HOSC_IN= VSS 30pF 负载	-	-	500	uA
g _m ^[4]	振荡器跨导	启动	-	3.5	-	mA/V
t _{START_HOSC}	振荡器启动时间	VDD 稳定 4MHz 晶振 T _A =25℃	-	8	-	ms

表 5-16 外部高速振荡时钟特性参数

- 注 1: 在潮湿环境下使用晶体或陶瓷振荡器的注意要点,比如建议如何配置电阻等参数。
- 注 2: t_{START_OSC} 是振荡器的发振稳定时间,指的是从软件使能振荡器到稳定输出某一频率时钟这段期间。该值会因晶体或陶瓷的制造商不同而显著改变。
- 注 3: 外接振荡器参数请参考晶体或陶瓷振荡器制造商。
- 注 4: 基于芯片设计值得到的电气参数。

下图为外部高速振荡器的典型应用连接:

图 5-3 外部高速振荡器连接图

- 注 1: R_{EXT} 阻值取决于晶振规格特性。
- 注 2: 当晶振频率不低于 16MHz 时,推荐选用 ESR 不高于 30Ω 的晶振,且选用 C_{L1} , C_{L2} 容值小于 5pF;

V1.1 47/87

◆ 外部低速振荡时钟(晶体或陶瓷振荡)

外部低速振荡时钟由 32.768KHz 的晶体或陶瓷振荡器提供。在应用中,振荡器与负载电容的距离必须放置得尽可能近,以使输出信号失真和发振稳定时间最小。

标号	参数	条件	最小值	典型值	最大值	单位
f _{LOSC_IN}	外部低速振荡时 钟频率	-	ı	32.768	ı	KHz
C_{L1}, C_{L2}	电容负载	_	-	12	-	pF
I	外部低速振荡器 的驱动电流	VDD = 3.3V, LOSC_IN = VSS	ı	-	3	uA
g _m ^[3]	振荡器跨导	-	ı	5	ı	uA/V
4	振荡器启动时间	VDD 稳定,T _A =25℃	-	1	-	S
tstart_losc	1水初66/12分川 町	VDD 稳定,T _A =-40℃	-	3	-	s

表 5-17 外部低速振荡时钟特性

- 注 1: t_{START_LOSC} 是振荡器的发振稳定时间,指的是从软件使能振荡器到稳定输出某一频率时钟这段期间。该值会因晶体或陶瓷的制造商不同而显著改变。
- 注 2: 外接振荡器参数请参考晶体或陶瓷振荡器制造商。
- 注 3: 基于芯片设计值得到的电气参数。

下图为外部低速振荡器的典型应用连接:

图 5-4 外部低速振荡器连接图

5.5.6 内部时钟源电气参数

◆ 内部高速 RC 振荡器

标号	参数	条件	最小值	典型值	最大值	単位
f	频率	24MHz	-	24	ı	MHz
f _{HRC}	频率	2MHz	-	2	ı	MHz
Duty	占空比	-	45	50	55	%
۸۵۵	HRC 24MHz	T _A =–40 ~ 85 °C	-	-	2	%
ACC _{HRC24M}	精度	T _A =25°C	-	_	1	%
ACC	HRC 2MHz	T _A =-40 ~ 85 °C	-	-	3	%
ACC _{HRC2M}	精度	T _A =25°C	-	-	1	%
+ [1]	起振稳定时间	24MHz	-	20	200	us
t _{START_HRC} [1]	地派尼州門	2MHz	-	0.05	2.00	ms
I _{DD} ^[1]	HRC 电流	24MHz	_	150	-	uA
IDD.	HRC 电流	2MHz	_	25	-	uA

表 5-18 内部高速 RC 振荡器特性

注 1: 基于芯片设计值得到的电气参数。

◆ 内部低速 RC 振荡器 (32.768KHz)

标号	参数	条件	最小值	典型值	最大值	单位
f_{LRC}	频率	-	-	32.768	-	KHz
۸۵۵	LRC 精度	T _A =-40 ~ 85 °C	-	-	8	%
ACC _{LRC}	LRU 稍没	T _A =25°C	-	-	2	%
t _{START_LRC} [1]	起振稳定时间	-	-	60	-	us
I _{DD} ^[1]	LRC 电流	-	-	0.8	-	uA

表 5-19 内部低速 RC 振荡器特性

注 1: 基于芯片设计值得到的电气参数。

◆ 内部超低速 RC 振荡器(10KHz)

标号	参数	条件	最小值	典型值	最大值	单位
f _{ULRC}	频率	_	I	10	ı	KHz
^ CC	ULRC 精度	T _A =-40 ~ 85 °C	I	ı	15	%
ACC _{ULRC}	ULRU 相反	T _A =25°C	-	-	5	%
t _{START_ULRC} [1]	起振稳定时间	-	-	200	-	us
I _{DD} ^[1]	ULRC 电流	_	_	90	-	nA

表 5-20 内部超低速 RC 振荡器特性

注 1: 基于芯片设计值得到的电气参数。

V1.1 49/87

5. 5. 7 锁相环电气参数

标号	参数	条件	最小值	典型值	最大值	单位
f	PLL 输入时钟	T _A =25℃	3.6	4	4.4	MHz
t _{PLL_IN}	PLL 输入时钟占空比	T _A =25℃	45	50	55	%
f _{PLL_OUT} ^[1]	PLL 倍频输出时钟	倍频 T _A =25℃	36	_	96	MHz
t _{LOCK}	PLL 锁定时间	T _A =25℃	_	15	_	us

表 5-21 PLL 电气参数

注 1: 请基于范围内的 f_{PLL_IN} 选择合适的倍频系数,得到合理的 PLL 输出频率。

5. 5. 8 FLASH存储电气参数

标号	参数	条件	最小值	典型值	最大值	単位
t _{PROG} ^[1]	字编程时间	$T_A = -40 \sim 85^{\circ}C$	_	30	-	us
t _{ERASE} ^[1]	页擦除时间	$T_A = -40 \sim 85^{\circ}C$	_	2	_	ms
t _{ME} ^[1]	块擦除	$T_A = -40 \sim 85^{\circ}C$	_	10	-	ms
		读取模式			120	Λ/ \ Λ \ □→
		$T_A = -40 \sim 85^{\circ}C$	_	_	120	uA/MHz
		编程模式	_	_	3.8	mA
		T _A = -40 ~ 85°C	_	_		
		页擦除模式	_	_	2	mA
I _{DD} ^[1]	消耗电流	$T_A = -40 \sim 85^{\circ}C$			2	IIIA
IDD	1月代电机	块擦除模式	_	_	2	mA
		$T_A = -40 \sim 85^{\circ}C$			2	IIIA
		空闲模式	_	200	_	uA
		$T_A = -40 \sim 85^{\circ}C$	_	200	_	uA
		待机模式		2.5		
		$T_A = -40 \sim 85^{\circ}C$	_	2.5	_	uA
N _{END} ^[2]	擦除/编程次数	T _A = 25°C	100K	_	_	Cycles
t _{RET} ^[2]	数据保持时间	T _A = -40 ~ 85°C	10	-	-	Years

表 5-22 存储器特性

注 1: 基于芯片设计值得到的电气参数。

注 2: 基于特征化测试得到的电气参数。

5.5.9 电磁兼容性

5. 5. 9. 1 电磁敏感性

标号	参数	条件	等级
V _{FESD}	导致系统紊乱的 IO 施加极限电压	VDD=5V,T _A = 25 °C,f _{HCLK} =24MHz, 遵循标准 IEC 61000-4-2	2A
V _{EFT}	电快速瞬变脉冲群	VDD=5V,T _A = 25 °C,f _{HCLK} =24MHz, 遵循标准 IEC 61000-4-4	4A

表 5-23 EMS 参数

5. 5. 10 电气最大额定值

5. 5. 10. 1 静电释放

标号	参数	条件	等级	最大值	単位
V _{ESDHBM}	静电释放电压 (人体模型)	T _A =25℃遵循标准 Mil-Std-883J Method 3015.9	CLASS 2	3000	V
V _{ESDCDM}	静电释放电压 (充电器件模 型)	T _A =25℃遵循标准 ANSI/ESDA/JEDEC JS-002-2014	CLASS C3	2000	V

表 5-24 ESD 最大额定值

5. 5. 10. 2 静态闩锁

标号	参数	条件	等级
111	LU 静态闩锁等级	Ta =25 °C,遵循标准 JEDEC STANDARD	Class I A
LU		NO.78E NOVEMBER 2016	Class I A

表 5-25 LU 最大额定值

5. 5. 11 I/O端口电气特性

标号	参数	条件	最小值	典型值	最大值	単位
V _{IL}	I/O 输入低电平	T _A = -40 ~ +85 °C	-	_	0.3*VDD	V
	电压 (CMOS)	VDD=5V			0.5 VDD	V
	I/O 输入低电平	T _A =-40 ~ +85 °C	_	0.8	1.0	V
	电压(TTL)	VDD=5V				
	I/O 输入高电平	T _A =-40 ~ +85 °C	0.7*VDD	-	_	V
V_{IH}	电压 (CMOS)	VDD=5V				
	I/O 输入高电平	T _A =-40 ~ +85 °C	2.0	-	_	V
	电压(TTL)	VDD=5V				
		VDD=2.5V VOL=0.2 V	0.0	0.1	0.2	mA
	I/O 输出低电平	驱动 0				
	(驱动模式 0)	VDD=5V VOL=0.4V	0.8	1.0	1.2	mA
		驱动 0				
	10 松山佐山亚	VDD=2.5V VOL=0.2 V	2.4	3.3	3.8	mA mA mA
	I/O 输出低电平 (驱动模式 1)	驱动 1				
	(VDD=5V VOL=0.4V	7.2	10.1	11.1	
I_{OL}		驱动 1 VDD=2.5V VOL=0.2 V				
	I/O 输出低电平 (驱动模式 2)	W	7.0	9.9	13.8	
		الكِمَارِكِ VDD=5V VOL=0.4V	21.4	30.2	44.0	
		驱动 2				mA
	I/O 输出低电平 (驱动模式 3)	VDD=2.5V VOL=0.2 V	18.2	25.6	30.9	mA
		驱动 3				
		VDD=5V VOL=0.4V		53.2	86.0	_
		驱动 3	38.2			mA
	I/O 输出高电平 (驱动模式 0)	VDD=2.5V VOH=2.3 V		0.1	0.2	
		驱动 0	0.0			mA
		VDD=5V VOH=4.6 V	0.0	0.3	0.4	mA
		驱动 0	0.2			
	I/O 输出高电平 (驱动模式 1)	VDD=2.5V VOH=2.3 V	0.7	1.0	1.5	mA
		驱动 1				
		VDD=5V VOH=4.6 V	2.0	4.0	5.5	A
l ,		驱动 1	3.0			mA
Іон		VDD=2.5V VOH=2.3 V	2.5	3.5	5.2	mΛ
	I/O 输出高电平 (驱动模式 2)	驱动 2	2.5			mA
		VDD=5V VOH=4.6 V	6.7	.7 12.9	19.5	mA
		驱动 2	0.7			ША
	I/O 输出高电平 (驱动模式 3)	VDD=2.5V VOH=2.3 V	4.9	8.6	10.5	mA
		驱动 3	7.0			IIIA
		VDD=5V VOH=4.6 V	11.6	23.8	36.4	mA
		驱动 3	11.0		00.7	11,7
I _{IOLEAK}	端口漏电流	I/O 处于高阻态,接 VDD	-	10	_	nA

标号	参数	条件	最小值	典型值	最大值	单位
		或 VSS				
R_{PU}	I/O 上拉电阻	-	36	37	38	kΩ
R_{PD}	I/O 下拉电阻	-	36	36	36	kΩ
t _{IOGLITCH} [1]	I/O 滤波脉宽	-	_	20	_	ns

表 5-26 I/O 端口电气特性 1

注 1: 基于芯片设计值得到的电气参数。

5. 5. 11. 1 芯片I/O端口输出特性(驱动 0)

◇ I_{OL} vs V_{OL} @VDD=2.5V(驱动 0)

◇ I_{OH} vs V_{OH} @VDD=2.5V(驱动 0)

 \Diamond I_{OL} vs V_{OL} @VDD=3.5V(驱动 0)

◇ I_{OH} vs V_{OH} @VDD=3.5V(驱动 0)

 \Diamond I_{OL} vs V_{OL} @VDD=5.0V(驱动 0)

◇ I_{OH} vs V_{OH} **@**VDD=5.0V(驱动 0)

 \Diamond I_{OL} vs V_{OL} @VDD=5.5V(驱动 0)

◇ I_{OH} vs V_{OH} @VDD=5.5V(驱动 0)

5. 5. 11. 2 芯片I/O端口输出特性(驱动 1)

◇ I_{OL} vs V_{OL} @VDD=2.5V(普通端口驱动 1)

◇ I_{OH} vs V_{OH} @VDD=2.5V (普通端口驱动 1)

◇ I_{OL} vs V_{OL} @VDD=3.5V(普通端口驱动 1)

◇ I_{OH} vs V_{OH} @VDD=3.5V (普通端口驱动 1)

◇ I_{OL} vs V_{OL} @VDD=5.0V(普通端口驱动 1)

◇ I_{OH} vs V_{OH} @VDD=5.0V (普通端口驱动 1)

◇ I_{OL} vs V_{OL} @VDD=5.5V(普通端口驱动 1)

◇ I_{OH} vs V_{OH} @VDD=5.5V (普通端口驱动 1)

5. 5. 11. 3 芯片I/O端口输出特性(驱动 2)

 \diamondsuit I_{OL} vs V_{OL} @VDD=2.5V(驱动 2)

◇ I_{OH} vs V_{OH} @VDD=2.5V(驱动 2)

 \Diamond I_{OL} vs V_{OL} @VDD=3.5V (驱动 2)

◇ I_{OH} vs V_{OH} @VDD=3.5V(驱动 2)

 \Diamond I_{OL} vs V_{OL} @VDD=5.0V(驱动 2)

◇ I_{OH} vs V_{OH} @VDD=5.0V(驱动 2)

 \Diamond I_{OL} vs V_{OL} @VDD=5.5V(驱动 2)

◇ I_{OH} vs V_{OH} @VDD=5.5V(驱动 2)

5. 5. 11. 4 芯片I/O端口输出特性(驱动 3)

 \diamondsuit I_{OL} vs V_{OL} @VDD=2.5V(驱动 3)

◇ I_{OH} vs V_{OH} @VDD=2.5V (驱动 3)

版权所有©上海东软载波微电子有限公司

 \Diamond I_{OL} vs V_{OL} @VDD=3.5V (驱动 3)

◇ I_{OH} vs V_{OH} @VDD=3.5V(驱动 3)

 \Diamond I_{OL} vs V_{OL} @VDD=5.0V (驱动 3)

◇ I_{OH} vs V_{OH} @VDD=5.0V (驱动 3)

 \Diamond I_{OL} vs V_{OL} @VDD=5.5V (驱动 3)

◇ I_{OH} vs V_{OH} @VDD=5.5V(驱动 3)

标号	参数	条件	最小值	典型值	最大值	单位
f _{IOOUT_MAX}	最大输出频率	驱动 0 (0.1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	4	MHz
t _{IOFALL}	输出电平 从高变低的 下降时间	驱动 0 (0.1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	110	ns
t _{IORISE}	输出电平 从低变高的 上升时间	驱动 0 (0.1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	170	ns
f _{IOOUT_MAX}	最大输出频率	驱动 1 (1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	_	-	36	MHz
t _{IOFALL}	输出电平 从高变低的 下降时间	驱动 1 (1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	14	ns
t _{iorise}	输出电平 从低变高 的上升时间	驱动 1 (1mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	14	ns
f _{IOOUT_MAX}	最大输出频率	驱动 2 (6mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	36	MHz
t _{IOFALL}	输出电平 从高变低的 下降时间	驱动 2 (6mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	15	ns
t _{iorise}	输出电平 从低变高的 上升时间	驱动 2 (6mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	14	ns
f _{IOOUT_MAX}	最大输出频率	驱动 3 (20mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	_	-	36	MHz
t _{IOFALL}	输出电平 从高变低的 下降时间	驱动 3 (20mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	15	ns
t _{IORISE}	输出电平 从低变高 的上升时间	驱动 3 (20mA), C= 50 pF, VDD = 2.0 V ~ 5.5 V	-	-	14	ns
t _{IOPULSE} [1]	I/O 输入检测 脉宽	_	-	20	_	ns
t _{EXTI} ^[1]	GPIO 中断检 测宽度	-	-	210	-	us

表 5-27 I/O 端口电气特性 2

注 1: 基于芯片设计值得到的电气参数。

5. 5. 12 MRST电气特性

标号	参数	条件	最小值	典型值	最大值	单位
V_{ILMRST}	MRST 输入低电平电压,T _A =25℃	-	0	-	0.3VDD	V
V_{IHMRST}	MRST 输入高电平电压,T _A =25℃	-	0.7VDD	-	VDD	V
$V_{HSTMRST}$	MRST 迟滞电压	-	-	200	-	mV
t _{PULSEMRST}	MRST 有效宽度	-	-	1	-	ms

表 5-28 MRST 电气特性

注:基于电路设计值得到的电气参数。

以下为 MRST 参考应用电路:

图 5-5 MRST 应用电路 1

注: 采用 RC 复位,其中 10KΩ≤R1≤100KΩ,电容 C1= (0.1μF),R2 为限流电阻,0.1KΩ≤R2≤1KΩ。

图 5-6 MRST应用电路 2

注: 采用 PNP 三极管复位,通过 R1(2K Ω)和 R2(10K Ω)分压作为基极输入,发射极接 VDD,集电极一路通过 R3(20K Ω)接地,另一路通过 R4(1K Ω)和 C1(0.1 μ F)接地,C1 另一端作为 MRST 输入。

5. 5. 13 定时器特性参数

标号	参数	条件	最小值	典型值	最大值	单位
f	定时器外部输	$ m f_{TIMER_CLK} < 72~MHz$	0	-	f _{TIMER_CLK} /2	MHz
f _{EXT}	入时钟频率	$f_{TIMER_CLK} \geqslant 72 \text{ MHz}$	0	_	36	MHz
4	定时器时间精	$ m f_{TIMER_CLK} < 72~MHz$	1	-	-	t _{TIMER_CLK}
^L res	度	f _{TIMER_CLK} = 72 MHz	13.9	_	_	ns

表 5-29 定时器特性参数

5. 5. 14 通信特性参数

5. 5. 14. 1 内部集成电路总线(I2C)特性参数

标号	参数	条件	标准模式 最小值		快速模式		单位
t _{WSCLL}	SCL 时钟 低电平时间	-	4.7	最大值 -	最小值 1.2	最大值	us
t _{wsclh}	SCL 时钟 高电平时间	-	4.5	_	1.0	_	us
t _{SUSDA}	SDA 建立时间	_	250	-	100	-	ns
t _{HSDA}	SDA 保持时间	_	-	3.5	-	0.9	us
t _{RSDA} t _{RSCL}	SDA 和 SCL 上升时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	-	5.5	-	3	us
t _{FSDA} t _{FSCL}	SDA 和 SCL 的下降时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	-	0.2	-	0.1	us
t _{HSTA}	START 条件 的保持时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	4	-	0.54	-	us
t _{SUSTA}	重复 START 条件的建立时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	6.3	-	2.4	-	us
t _{susто}	STOP 条件 的建立时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	5.3	-	1.7	-	us
twstosta	STOP 至 START 条件的 总线空闲时间	VDD=5V,主模式 4.7k 上拉电阻, 400pf 电容 T _A =25℃	4	-	3.5	-	us
C _{BUS}	总线电容负载 (注意: SCL 和 SDA 电容负载应 尽量保持一致)	外接电容 400pf T _A =25℃	-	400	_	400	pF

表 5-30 内部集成电路总线(I2C)特性参数

图 5-7 I2C 测试电路和波形

5. 5. 14. 2 串行外设接口(SPI)特性参数

标号	参数	条件	最小值	最大 值	单位
f	SPI 时钟频率	主模式, f _{PCLK} =48MHz	-	6	MHz
f _{SCK}	OFI 时 th/则华	从模式, f _{PCLK} =48MHz	_	3	MHz
t _{RSCK} t _{FSCK}	SPI 时钟 上升和下降时间	电容负载 33pF	_	37	ns
DUTY _{SCK}	SPI 输入 时钟占空比	从模式	30	70	%
t _{sunss}	NSS 建立时间	从模式	28t _{PCLK1}	_	ns
t _{HNSS}	NSS 保持时间	从模式	32t _{PCLK1}	_	ns
t _{wsckh}	SCK 高电平和 低电平时间	主模式,f _{PCLK} =24MHz,4 分 频	83.5	85	ns
t _{SUMI}	输入数据建立时间	主模式	45	_	ns
t _{susi}	输入数据建立时间	从模式	140	_	ns
t _{HMI}	输入数据保持时间	主模式	68	_	ns
t _{HSI}	输入数据保持时间	从模式	132	_	ns
t _{ASO}	输出数据访问时间	从模式	4.5t _{PCLK1}	_	ns
t _{DISSO}	输出数据禁止时间	从模式	0	_	ns
t _{VSO}	输出数据有效时间	从模式	-	80	ns
t _{VMO}	输出数据有效时间	主模式	-	50	ns
t _{HSO}	输出数据保持时间	从模式	100	-	ns
t _{HMO}	输出数据保持时间	主模式	2	-	ns

表 5-31 SPI 特性参数

5. 5. 15 USB OTG静态特性参数

标号	参数	条件	最小值	典型值	最大值	単位		
V _{DD33_USB}	USB OTG 工作电压范围	-	3.0	3.3	3.6	V		
高速模式	高速模式							
1	USB PHY	发送	-	8	-	mA		
I _{DD33_USB}	3.3V 域动态电流	接收	-	5	-	mA		
I _{DD12_USB}	USB PHY 1.2V 域动态电流	发送或接收	-	26.5	-	mA		
全速/低速模	式							
	USB PHY	发送	-	14	-	mA		
I _{DD33_USB}	3.3V 域动态电流	接收	-	8	-	mA		
I _{DD12_USB}	USB PHY 1.2V 域动态电流	发送或接收	-	8	-	mA		
挂起模式	挂起模式							
I _{LEAK_USB}	USB PHY 漏电	USB PHY 不工作, 处于低功耗模式	-	-	500	uA		

表 5-32 USB OTG 静态特性参数

注 1: USB OTG 的动态特性参数请参考 USB2.0 协议的第7章。

注 2: USB 各模式下的外围应用电路请参考应用笔记中 USB 模块描述。

5. 5. 16 低功耗模式转换特性参数

◆ 从低功耗模式恢复的时间

标号	参数	条件	最小值	典型值	最大值	单位
t _{WUSLEEP1}	SLEEP 模式 唤醒时间	f _{HCLK} =24MHz,T _A =25℃ FLASH 为空闲状态	_	1	-	us
t _{WUSLEEP2}	SLEEP 模式 唤醒时间	f _{HCLK} =24MHz,T _A =25℃ FLASH 为待机状态且 1.8V LDO 为低功耗模式	-	180	-	us
twustop1	STOP1 模式 唤醒时间	f _{HCLK} =24MHz,T _A =25℃	-	450	-	us
t _{WUSTOP2}	STOP2 模式 唤醒时间	f _{HCLK} =24MHz,T _A =25℃	-	780	ı	us
t _{WUSTANDBY}	STANDBY 模式 唤醒时间	f _{HCLK} =24MHz,T _A =25℃	_	2.5	-	ms

表 5-33 低功耗模式唤醒特性

注:基于芯片设计值得到的电气参数。

5. 5. 17 模数转换器 (ADC) 特性参数

标号	参数	条件	最小值	典型值	最大值	単位
VDD	模拟电源	-	2.5	5	5.5	V
V _{REFP_EXT}	外部正端参考 电压	-	2	-	VDD	V
V _{REFN_EXT}	外部负端参考 电压	-		0		V
I _{VREF_EXT}	V _{REF_EXP} 端口 电流	-	_	6	-	uA
	内部正端参考	VDD=5V,T _A =25℃	1.992	2	2.008	V
V_{REFP_INT}	电压	VDD=3.3V~5V, T _A =-40℃~85℃	1.970	2	2.170	V
r	ADC 时钟频	VDD 作为参考源	-	16	24	MHz
f _{ADC}	率	内部参考作为参考源	-	8	12	MHz
f _{SAMPLING} ^[3]	采样率	-	-	1	-	MSPS
f _{TRIG} ^[3]	外部触发频率	-	-	-	1	MHz
V _{AIN} ^[3]	转换电压范围	-	V_{REFN}	-	V_{REFP}	V
		t _{SAMPLING} =1us	-	-	10	
R _{AIN} ^[3]	H 3016) 100 th	t _{SAMPLING} =2us	-	-	15	kΩ
K _{AIN} .	外部输入阻抗	t _{SAMPLING} =4us	-	-	30	K12
		t _{SAMPLING} =15us	-	-	100	
R _{ADC} ^[3]	采样开关电阻	-	-	0.7	-	kΩ
C _{ADC} ^[3]	内部采样 保持电容	-	-	13.7	-	pF
t _{SAMPLING} ^[3]	采样时间	_	1	_	15	ADC 时钟 周期数
t _{PWRUP} [3]	ADC 上电 稳定时间	参考电压稳定时间	_	18	-	us
t _{CONV} ^[3]	总体转换时间 (包括采样时 间)	_	-	t _{SAMPLING} +	_	ADC 时钟 周期数

表 5-34 ADC 特性

注 1: R_{AIN}的计算公式: R_{AIN} < t_{SAMPLING} / (C_{ADC} × In (2^{N+2})) - R_{ADC}

注 2: 上述公式用于计算外部输入阻抗的最大值使误差低于 1/4 LSB, 其中 N=12。

注 3: 基于电路设计值得到的电气参数。

标号	参数	条件	典型值	最大值	単位
ERR _{OFFSET}	失调误差	f =16MU= D <10k0	1	3	LSB
ERR _{GAIN}	增益误差	f_{ADC} =16MHz, R_{AIN} <10k Ω	1	5	LSB
ERR _{DNL}	差分线性误差	T _A =25℃ VREF=VDD=5V	1	5	LSB
ERR _{INL}	积分线性误差	VICE -VDD-3V	3	7	LSB

表 5-35 ADC 精度特性 1

- 注 1: 建议对可能有负电流注入的模拟端口增加对地的肖特基二极管。因为负电流注入模拟端口会明显降低 ADC 的转换精度。
- 注 2: 上述 DC 参数是基于 ADC 实测值。

标号	参数	条件	典型值	最大值	単位
ERR _{OFFSET}	失调误差	f _10MU_D 410k0	1	3	LSB
ERR _{GAIN}	增益误差	f_{ADC} =16MHz, R_{AIN} <10k Ω	1	5	LSB
ERR _{DNL}	差分线性误差	T _A =25℃ VREF= VREF EXT	1	5	LSB
ERR _{INL}	积分线性误差	VICE - VICE_EXT	3	7	LSB

表 5-36 ADC 精度特性 2

- 注 1: 建议对可能有负电流注入的模拟端口增加对地的肖特基二极管。因为负电流注入模拟端口会明显降低 ADC 的转换精度。
- 注 2: 上述 DC 参数是基于 ADC 实测值。

5. 5. 18 数模转换器 (DAC) 特性参数

标号	参数	条件	最小值	典	最大值	单位
				型		
				值		
V_{DD}	模拟电源	T _A =25℃	2.5	5	5.5	V
\/	外部参考		2		VDD	V
V_{REFP_EXT}	电压源	_	2	_	VDD	V
V	输出电压	单端	0	-	V_{REFP}	V
V_{DACO}	湘山电压	差分	0	-	V_{REFP}	V
		500K				
I _{DAC}	动态电流	Samples/s	_	90	-	uA
		f _{DAC_CLK} =1MHz				
SR _{DAC} ^[2]	采样速率	_	_	0.5	1	М
SKDAC	木件坯华	_		0.5	I	Samples/s
	DAC 时	单端	0.32	16	24	MHz
f_DAC	钟频率	差分	0.32	16	24	MHz
t _{CONV} ^[2]	转换时间	T _A =25℃	-	1	-	us
t _{DACSETTLE} ^[2]	DAC 稳	T _A =25℃	2	-	10	us

V1.1 80/87

	定时间					
V _{DACOFFSET} ^[2]	DAC 失	单端	_	1	-	LSB
V DACOFFSET ¹⁻³	调电压	差分	_	1	-	LSB
ERR _{DNL}	差分非线 性误差	T _A =25℃	-	2.5	5.0	LSB
ERR _{INL}	积分非线 性误差	T _A =25℃	-	8	16	LSB

表 5-37 DAC 特性

注 1: DAC 可与 ADC 共用内部参考电压。

注 2: 基于芯片设计值得到的电气参数。

5. 5. 19 模拟比较器 (ACMP) 特性参数

标号	参数	条件	最小值	典型值	最大值	单位
V_{ACMP}	工作电压范围	-	2.5	5.0	5.5	V
V_{ACMPIN}	输入电压范围	_	0	-	VDD	V
		超低功耗模式 (ACMP_CON的 MODSEL=0)	0.8	1	2	uA
		低功耗模式 (ACMP_CON的 MODSEL=1)	1	3	5	uA
I _{ACMP}	动态电流	普通模式 (ACMP_CON 的 MODSEL=2)	8	11	14	uA
		高速模式 (ACMP_CON 的 MODSEL=3)	14	25	26	uA
V _{ACMPOFFSET}	失调电压	-	1	2.0	30	mV
V _{ACMPHYST}	迟滞	内部可调	-	20	69	mV
		超低功耗模式 (ACMP_CON 的 MODSEL=0) T _A =25℃	7.6	12.3	32.0	us
. [1]	模拟比较器的启动时间(初始化)	低功耗模式 (ACMP_CON的 MODSEL=1) T _A =25℃	2.6	3.7	12.0	us
tacmpstart ^[1]		普通模式 (ACMP_CON的 MODSEL=2) T _A =25℃	2.0	3.0	9.0	us
		高速模式 (ACMP_CON 的 MODSEL=3) T _A =25℃	1.7	2.0	3.5	us
		超低功耗模式 (ACMP_CON的 MODSEL=0) T _A =25℃	4.0	7.7	14.0	us
t _{DELAY} [1]	比较转换时间	低功耗模式 (ACMP_CON的 MODSEL=1) T _A =25℃	1.6	2.7	5.5	us
		普通模式	0.7	0.8	1.8	us

标号	参数	条件	最小值	典型值	最大值	单位
		(ACMP_CON的				
		MODSEL=2)				
		T _A =25℃				
		高速模式				
		(ACMP_CON的	0.4	0.6	4.0	
		MODSEL=3)		0.6	1.2	us
		T _A =25℃				

表 5-38 ACMP 特性参数

注 1: 基于芯片设计值得到的电气参数。

5.5.20 温度传感器特性参数

标号	参数	条件	最小值	典型值	最大值	单位
ACC _{TSENSE}	温度精度	T _A =-40°C~85°C	-	1	2	$^{\circ}$
I _{TSENSE}	动态电流	-	-	95	-	uA

表 5-39 温度传感器特性

第6章 封装信息

6.1 LQFP100 封装尺寸图

标号	公制(mm)			英制(inch)			
你亏	MIN	NOM	MAX	MIN	NOM	MAX	
Α	_	_	1.6	_	_	0.063	
A1	0.05		0.15	0.002		0.006	
A2	1.35	1.4	1.45	0.053	0.06	0.057	
A3	0.59	0.64	0.69	0.023	0.03	0.027	
b	0.18	_	0.26	0.007	_	0.010	
С	0.13	_	0.17	0.005	_	0.007	
D	15.8	16	16.2	0.622	0.63	0.638	
D1	13.9	14	14.1	0.547	0.55	0.555	
Е	15.8	16	16.2	0.622	0.63	0.638	
E1	13.9	14	14.1	0.547	0.55	0.555	
е	0.50BSC			0.020BSC			
L	0.45		0.75	0.018	-	0.030	
L1	1.00REF			0.039REF			
θ	0	_	7 °	0	_	7°	

6. 2 LQFP64 封装尺寸图

标号	公制(mm)			英制(inch)			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	_	_	1.60	_		0.063	
A1	0.05	_	0.20	0.002		0.008	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
A3	0.59	0.64	0.69	0.023	0.025	0.027	
b	0.19	_	0.27	0.007	_	0.011	
С	0.13	_	0.18	0.005	_	0.007	
D	11.80	12.00	12.20	0.465	0.472	0.480	
D1	9.90	10.00	10.10	0.390	0.394	0.398	
Е	11.80	12.00	12.20	0.465	0.472	0.480	
E1	9.90	10.00	10.10	0.390	0.394	0.398	
е	0.50BSC			0.020BSC			
L	0.45		0.75	0.018		0.030	
L1	1.00BSC			0.039BSC			
θ	0	_	7°	0	_	7°	

第7章 产品信息

第8章 修订历史

版本	修订日期	修订内容
V1.0	2020.03.30	初版发布
V1.1	2020.12.08	根据测试结果更新电气特性部分