NICA Stochastic Cooling System: Designing and Modeling

I. Gorelyshev on behalf of the team: V.Filimonov, K.Osipov, A.Sidorin

Introduction

Stochastic cooling

Physically: reduction of the beam phase space by feeding to the beam particles their own noisy signal

Technically: broadband feedback system

Bandwidth W Gain
$$g = g(P_{in}, P_{out})$$

Mixing
$$M = M(W, Pu \leftrightarrow Kk)$$
 $U = \frac{noise}{signal}$

$$\frac{1}{\tau_{Cool}} = \frac{W}{N} (2g[1 - \tilde{M}^{-2}] - g^{2}[M + U])$$

Nuclotron as test facility for NICA

Circumference, m	251.52
Ions	p, d, C
Energy, GeV	3.0(d) 2.5(C)
Rev.frequency, MHz	1.15
Vacuum, Torr	10-9
Intensity	$10^{10}(d)-10^{9}(C)$
Ring slip-factor	0.0322
dp/p	10-4

Band 2 – 4 GHz Output power up to 60 W

Goals: Investigation of different cooling methods Equipment tests for the collider

Nuclotron as test facility for NICA

Tasks for NICA

- Beam accumulation(at low intensities)
- Longitudinal emittance reduction during the bunching
- Luminosity preservation (counteration to intrabeam scattering (IBS))

Start-up mode	Project mode	
RMS bunch length σ_s =1,2 m	RMS bunch length σ_s =0,6 m	
RF Voltage U _{RF} = 50 kV	RF Voltage U _{RF} < 1000 kV	
Harmonic number h = 22	Harmonic number h = 66	
Ions ¹⁷⁹ Au ₉₇₊		
ε _{⊥rms.max} = 1,1 π mm.mrad.		
$\Delta p/p_{max}=1\%$		
Energy range 3-4,5 GeV/u		
Only longitudinal cooling	3-D cooling	

Start-up mode: Phase Volume

IBS calculations: BETACOOL

Longitudinal cooling only

IBS simulation condition

$$\tau_{IBS}^{x} \cong \tau_{IBS}^{y} \longrightarrow \infty$$

Project Mode: Phase Volume

3-D cooling

IBS simulation condition

$$\tau_{IBS}^{x} = \tau_{IBS}^{y} = \tau_{IBS}^{s}$$

Project Mode: IntraBeam Scattering

$$L_{max} = 10^{27} \text{cm}^{-2} \text{s}^{-1}$$
 $N_{max} = 2.75 \times 10^8$

Conceptual Design Steps

- Choose cooling method
- Define main parameters
 - Pickup, Kicker locations
 - Bandwidth
 - Sensitivity
 - Thermal noises (Pickup inside cryo?)
 - Preamplifier Noise Figure
 - Pickup/Kicker Impedance
 - Output power

Choice of cooling method

Uncoupled motion

- Momentum cooling
 - Transit Time method $(\eta_{p\leftrightarrow k} \uparrow)$
 - Filter method $(\eta_{p\leftrightarrow k} \rightarrow 0, \eta_{p,k,k} \uparrow)$
- Transverse cooling
 - Betatron method $(\phi_{p\leftrightarrow k} \rightarrow (2k-1)\cdot \pi/4)$

Coupled motion

- Palmer method $(D_p \uparrow, \beta_p \downarrow, D_k \rightarrow 0)$
- Palmer-Hereward method $(D_p \uparrow, \beta \downarrow, D_k \rightarrow 0)$
- ...

Design on the basis of simulation

Fokker-Planck approach

$$\frac{\partial \Psi(E,t)}{\partial t} + \frac{\partial}{\partial E} \left(F(E)\Psi(E,t) - D(E,t) \frac{\partial \Psi(E,t)}{\partial E} \right) = 0$$

Drift term

Diffusion term

$$F(E) = f_0 \Delta E_c \sim \prod_j TF_j \qquad D(E, t) = \frac{1}{2} f_0 \langle \Delta E_{ic}^2 \rangle \sim \prod_j TF_j^2$$

Bandwidth and Cooling Rate vs Acceptance

Cooling rate

$$\frac{1}{\sigma^2} \frac{d\sigma^2}{dt} = \frac{4}{N\sigma} \int E\left[F(E)\psi(E,t) - D(E,t) \frac{\partial \psi(E,t)}{\partial E} \right] dE$$

Rate ~ Bandwidth W Acceptance ~ 1/Band Center (1/W_c)

Pickup/Kicker Locations

- Uncoupled motion
 - Momentum cooling

 - Transit Time method $(\eta_{p\leftrightarrow k} \uparrow)$ Filter method $(\eta_{p\leftrightarrow k} \rightarrow 0, \eta_{p,k,k} \uparrow)$
 - Transverse cooling
- Betatron method $(\phi_{p\leftrightarrow k} \rightarrow (2k-1)\cdot \pi/2)$

- Coupled motion
 - Palmer method $(D_p \uparrow , \beta_n \downarrow , D_k \rightarrow 0)$
 - Palmer-Hereward method $(D_p \uparrow, \beta \downarrow, D_{\downarrow} \rightarrow 0)$

Ring-Slot Coupler Pickup/Kicker

Proposed by L.Thorndahl Developed by R.Stassen

Pickup ring

16 rings stack

Advantages:

High Coupling Impedance (sensitivity)
Applicable for both long./trans. cooling

Problem:

Extremely hard to achieve ultra-high vacuum

Pickup/Kicker Modification

Separated structure with ceramic vacuum chamber inside rings

G.Zhu et al., HIAF, IMP, Lanzhou, China

Poster by Konstantin Osipov for details

Sensitivity

Nuclotron measurements: original structure

Comparison with modifications

Pickups do not need to be inside cryostat due to higher sensitivity and heavy ions

Single Band (2-4 GHz) -> -> Distributed Bands (1-3 GHz)

Power Amplifiers

R&S®BBA150-D200, 200 W power class

Frequency response at 1 dB compression

Band shift from 2 - 4 GHz to 1 - 3 GHz

Cooling acceptance with 1 - 3 GHz filter covers both separatrixes (sine and barrier) for energies over 3 Gev/u

Cooling rate with 1 - 3 GHz filter decreases at most 15% (at higher energies)

Filter method with band 1-3GHz can provide necessary momentum acceptance for energies above 3 GeV/u

Conclusion

Longitudinal cooling method	Filter	
Passband, GHz	0,7-3,2	
Beam distance from pickup to kicker, m	179,8	
Ion Energy 197Au79+, GeV/u	3,0	4,5
Slip-factor from pickup to kicker	0.0294	0.0027
Collider slip-factor	0.0362	0.0095
Pickup/kicker coupling impedance, Ω	200/800	
Gain, dB	75 – 79	
Peak power at kicker, W	3×200	
Pickup/noise temperature, K	Pickup/noise temperature, K 300/40	

Main parameters for NICA Stochastic cooling system has been defined

Conclusion

- Filter method is chosen for longitudinal cooling, betatron method for transverse cooling. Main parameters are defined.
- For the project mode the stochastic cooling system provides the required cooling rates.

Thank you for attention

