VECTORES

Introducción

Algunas cantidades físicas, como la longitud y la masa quedan completamente determinadas al dar su magnitud en términos de unidades específicas. Tales cantidades se llaman escalares. Otras, como la fuerza y la velocidad, de las que importa tanto la magnitud como la dirección se llaman vectores-

Para referirnos a vectores necesitamos previamente recordar algunos conceptos básicos:

Producto Cartesiano de Conjuntos: Sean A y B dos conjuntos no vacíos de elementos al conjunto de pares ordenados (a, b) donde $a \in A$ y $b \in B$, o sea A x B = $\{(a, b) / a \in A \land b \in B\}$

Análogamente si, dados A, B; C conjuntos no vacíos se define:

$$A \times B \times C = \{(a, b, c) / a \in A, b \in B, c \in C\}$$

Siguiendo así, dados n conjuntos A_1, A_2, \ldots, A_n , se define:

$$A_1x \ A_2x.....x \ A_n = \left\{ \left(a_1 \ , \ a_2 \ , \, a_n\right) \ / \ a_1 \in A_1, \ a_2 \in A_2 \ , \, \ a_n \in A_n \ \right\}$$

Observación 1: Si A = B $AxA = A^2 = \{(a, b) / a, b \in A\}$ es decir A^2 no es una potencia de A.

Y en general $\forall n \in \mathbb{N}$ A x A x Ax A = Aⁿ = $\{(a_1, a_2) / a, b \in A\}$

Observación 2:

Si en particular \forall i = 1, 2, ...n $A_i = \Re$ obtenemos sucesivamente:

 $\Re \times \Re = \Re^2 = \{(x, y) \mid x, y \in \Re \}$ Conjunto de pares ordenados de números reales.

 $\Re^3 = \Re \times \Re \times \Re = \{(x, y, z) / x, y, z \in \Re \}$ Conjunto de ternas ordenadas de números reales.

 $\mathfrak{R}^n = \mathfrak{R} \times \mathfrak{R} \times \dots \times \mathfrak{R} = \{(x_1, x_2, \dots, x_n) / \forall i, x_i \in \mathfrak{R} \}$ Conjunto de n – uplas ordenadas de números reales.

Definición de vector en Rⁿ

Un vector de \mathfrak{R}^n es una n – upla ordenada de números reales, es decir: $v=(x_1\,,\,x_2\,,\,....,\!x_n\,)$ es un vector de \mathfrak{R}^n -

Cada x_i con i = 1, 2, ...n se denomina componente del vector.

Los vectores se denominan con letras mayúsculas A, B, C, etc o con las letras u, v, w.

Ejemplos: $A = (a_1, a_2,, a_n) \in \Re^n$, $B = (0, 1, -2) \in \Re^3$ $v = (0, 1) \in \Re^2$

Definición de Norma o Módulo de un vector

Sea el vector $\mathbf{v} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, definimos norma o módulo de v y lo denotamos $|\mathbf{v}|$ o

bien $\|\mathbf{v}\|$ al número real no negativo $\|\mathbf{v}\| = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \dots + \mathbf{x}_n^2}$

Ejemplo: calcular el módulo de los siguientes vectores: a) u = (-2, 3) b) v = (-1, -2, 1)

c) w = (2, 1, 0, -1)

a)
$$|u| = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$$

b)
$$|v| = \sqrt{(-1)^2 + (-2)^2 + 1^2} = \sqrt{6}$$

c)
$$|w| = \sqrt{2^2 + 1^2 + 0^2 + (-1)^2} = \sqrt{6}$$

Igualdad de vectores en \Re^n – Definición.

Sean $u = (u_1, u_2, ..., u_n) \in \Re^n$ $y = (v_1, v_2, ..., v_n) \in \Re^n$.

Decimos que $u = v \iff u_i = v_i \quad \forall i = 1, 2, ...n$

Ejemplo

1.- Sean $A = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ $y B = \left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right)$

A = B pues $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

2.- Sean u = (-2, 3, 4, 0) y v = (-2, 3, 4, 1).

 $u \neq v \text{ pues} \begin{cases} -2 = -2\\ 3 = 3\\ 4 = 4 \end{cases}$

3.- Sean los vectores A = (2x + 3y - 1, x + y + 5) y B = (x - y, 2x - y + 3)

Encontrar los valores de x e y para los cuales se verifica que A = B.

 $A = B \Leftrightarrow \begin{cases} 2x + 3y - 1 = x - y \\ x + y + 5 = 2x - y + 3 \end{cases} \Leftrightarrow \begin{cases} x + 4y = 1 \\ -x + 2y = -2 \end{cases} \Leftrightarrow x = \frac{5}{3} \qquad y = -\frac{1}{6}$

Suma de vectores en Rn . Definición

Sean
$$u = (u_1, u_2, ..., u_n) \in \Re^n y$$
 $v = (v_1, v_2, ..., v_n) \in \Re^n$

Se define la suma de u y v al vector $u + v = (u_1+v_1, u_2+v_2, ..., u_n+v_n) \in \Re^n$

Propiedades

- **1.- Propiedad Conmutativa:** $\forall u, v \in \Re^n : u + v = v + u$
- **2.- Propiedad Asociativa:** $\forall u, v, w \in \mathbb{R}^n : (u+v) + w = v + (u+w)$
- **3.- Existencia del elemento neutro aditivo:** $\exists \ \widetilde{0} = (0 \ , 0 \ , \ldots 0) \in \Re^n \ / \ \forall \ u \in \Re^n : u + \widetilde{0} = \widetilde{0} + u = u$
- **4.- Existencia del opuesto:** $\forall u \in \mathbb{R}^n \exists (-u) \in \mathbb{R}^n / u + (-u) = (-u) + u = \widetilde{0}$

Ejemplos

1.- Dados los vectores A = (1, -2, 4), B = (3, 5, 0)

Entonces
$$A + B = (1, -2, 4) + (3, 5, 0) = (4, 3, 4)$$

2.- Dados los vectores u = (3, 5) y v = (-3, -5). Entonces u + v = (3, 5) + (-3, -5) = (0, 0).

Se observa que v es el opuesto de u, es decir que v = -u

Diferencia de vectores en \Re^n . Definición.

Sean
$$u = (u_1, u_2, ..., u_n) \in \mathbb{R}^n$$
 $y = (v_1, v_2, ..., v_n) \in \mathbb{R}^n$

Se define la diferencia de u y v al vector

$$u - v = u + (-v) = (u_1, u_2, ..., u_n) + (-v_1, -v_2, ..., -v_n) = (u_1 - v_1, u_2 - v_2, ..., u_n - v_n) \in \Re^n$$

Representación gráfica

Un vector también se puede estudiar desde el punto de vista geométrico y en este sentido se afirma:

"Vector es un segmento de recta que une dos puntos P y Q de dicha recta y que está orientado porque se distingue cual es el punto inicial y cual es final"

Es decir que, vector es un ente matemático que posee magnitud, dirección y sentido.

La magnitud o módulo de un vector \mathbf{u} es la longitud de la flecha, medida con una cierta unidad y denotamos $|\mathbf{u}|$.

La dirección del vector está dada por la recta que lo contiene o soporta y el sentido por el extremo de la flecha.

Los vectores pueden graficarse en: 1) la recta real (\Re) , 2) en el plano (\Re^2) y 3) en el espacio (\Re^3) .

1) Si
$$n = 1$$
 $\Re^1 = \{(x) / x \in \Re\} = \Re$

En una recta r fijamos un punto O como origen de la recta, orientamos la recta y tomamos una unidad de medida determinando un segundo punto U sobre r.

Al punto O le hacemos corresponder el número real 0 y al punto U el número real 1, el segmento de recta OU es la unidad de medida sobre r. Y ahora establecemos una correspondencia 1 a 1 entre el conjunto de los números reales y los puntos de r. Esta correspondencia permite identificar al punto P de r con el número real x. Esta recta recibe el nombre de eje x o eje de las abscisas.

El vector \overrightarrow{OP} (segmento orientado o dirigido) tiene por origen al punto O y por extremo al punto P de abscisa x.

Es decir que $\overrightarrow{OP} = P = (x)$ es el vector que identificamos con su extremo P y con el número real x que es la abscisa de P.

Ejemplo. Graficar el vector P = (-3)

2) Si n = 2, entonces a $\Re^2 = \{(x, y) \mid x, y \in \Re \}$ es el conjunto de pares ordenados de números reales que se identifica con puntos del plano.

En efecto, si se introduce como sistema de referencia un par de ejes $\,x\,$ e $\,y\,$ perpendiculares entre sí $\,y\,$ con el origen común O, observamos que a cada punto P le corresponde un $\,y\,$ sólo un par ordenado de números reales $\,(x\,\,,\,y)\,$. $\,Y\,$ recíprocamente a cada par ordenado de números reales $\,(x\,\,,\,y)\,$ le corresponde uno $\,y\,$ sólo un punto P del plano. Por lo tanto identificamos al punto P del plano con el par ordenado $\,(x\,\,,\,y)\,$ y escribimos: $\,P=(x\,\,,\,y)\,$

Consideremos el segmento orientado \overrightarrow{OP} , que por definición de vector de \Re^2 podemos identificar a $\overrightarrow{OP} = P = (x, y) = \mathbf{u}$ que es el segmento orientado cuyo origen es el (0, 0) y extremo (x, y). Por lo tanto, todo vector $\mathbf{u} = (x, y)$ queda unívocamente determinado por las coordenadas de su exptremo-

En \Re^2 , existen dos vectores particulares que denominamos versores o vectores canónicos, ellos

son:
$$\mathbf{i} = (1, 0)$$
 y $\mathbf{j} = (0, 1)$ tales que $|\mathbf{i}| = \sqrt{1^2 + 0^2} = 1$ $|\mathbf{j}| = \sqrt{0^2 + 1^2} = 1$

Gráficamente:

Se puede demostrar que consid

 $\mathbf{u} = (\mathbf{x}, \mathbf{y}) = \mathbf{x} (1, 0) + \mathbf{y} (0, 1) = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j} \implies \mathbf{u} = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j}$ Que es la expresión canónica o cartesiana del vector \mathbf{u}

3) Si n = 3, entonces $\Re^3 = \{(x, y, z) \mid x, y, z \in \Re \}$ es el conjunto de ternas ordenadas de números reales que se identifican con puntos del espacio en tres dimensiones.

Consideremos tres ejes perpendiculares dos a dos con el origen común. Cada terna ordenada de números reales se identifica con un punto del espacio. Más aun, identificamos al vector \overrightarrow{OP} con P y con la terna (x, y, z). Es decir $\overrightarrow{OP} = P = (x, y, z) = \mathbf{u}$

Los vectores canónicos o versores son: $\mathbf{i} = (1 \ , 0 \ , 0), \quad \mathbf{j} = (0 \ , 1 \ , 0) \quad y \quad \mathbf{k} = (0 \ , 0 \ , 1)$ sobre los tres ejes respectivamente. Tales que $|\mathbf{i}| = \sqrt{1^2 + 0^2 + 0^2} = 1$, $|\mathbf{j}| = \sqrt{0^2 + 1^2 + 0^2} = 1$ y $|\mathbf{k}| = \sqrt{0^2 + 0^2 + 1^2} = 1$

A cualquier vector \mathbf{u} lo expresamos en términos de los tres versores canónicos de la siguiente manera, $\mathbf{u} = (\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j} + \mathbf{z} \mathbf{k}$

Ejemplo Graficar: $\mathbf{v} = (2, 3, -1) = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ $\mathbf{u} = (-3, -3, 0) = -3\mathbf{i} - 3\mathbf{j}$

Observación: Es importante destacar la diferencia entre los conceptos de vector y punto en la notación. Estos es, si notamos u (u_1 , u_2 ,, u_n) es un punto del espacio \Re^n , sin embargo cuando escribimos $\mathbf{u} = (u_1, u_2,, u_n)$ estamos haciendo referencia a un vector del espacio \Re^n ,

Suma Vectorial gráfica

Geométricamente, la suma de dos vectores \mathbf{u} y \mathbf{v} se efectúa construyendo el paralelogramo de lados \mathbf{u} y \mathbf{v} . la diagonal que tiene por origen el origen de coordenadas es la suma de $\mathbf{u} + \mathbf{v}$. Consideremos los vectores \mathbf{u} , $\mathbf{v} \in \Re^2$, tales que $\mathbf{u} = (u_1, u_2)$ y $\mathbf{v} = (v_1, v_2)$

Consideremos ahora el vector de \Re^2 que tiene por origen al punto $A(a_1, a_2)$ y por extremo al punto $B(b_1, b_2)$.

Es fácil ver que: $\mathbf{A} + \mathbf{AB} = \mathbf{B}$ y de aquí $\mathbf{AB} = \mathbf{B} - \mathbf{A} = (b_1 - a_1, b_2 - a_2)$ Análogamente, dado $\mathbf{AB} \in \mathfrak{R}^n$ se expresa: $\mathbf{AB} = \mathbf{B} - \mathbf{A} = (b_1 - a_1, b_2 - a_2, \ldots, b_n - a_n)$ Y por lo tanto $|\mathbf{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \ldots + (b_n - a_n)^2}$

Ejemplo: Dados los puntos A y B, calcular en cada caso el vector \mathbf{AB} y su módulo a) A (2,1) y B (3,-2) \Rightarrow $\mathbf{AB} = \mathbf{B} - \mathbf{A} = (3,-2) - (2,1) = (1,-3) <math>\Rightarrow$ $\mathbf{AB} = (1,-3)$ $|\mathbf{AB}| = \sqrt{1^2 + (-3)^2} = \sqrt{5}$

b) A (1, 0, -3) y B (-2, -1, 1)
$$\Rightarrow$$
 AB = **B** - **A** = (-2, -1, 1) - (1, 0, -3) = (-3, -1, 4)
 \Rightarrow **AB** = (-3, -1, 4) \Rightarrow | **AB** |= $\sqrt{(-3)^2 + (-1)^2 + 4^2} = \sqrt{26}$

Distancia entre dos puntos

Definición: Sean los puntos $A, B \in \Re^n$, se define la distancia entre A y B como la norma o módulo del vector AB

$$|\mathbf{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

Producto de un número real por un vector. Definición

 $\forall \ k \in \mathfrak{R} \ , \ \forall \ \textbf{v} = (v_1, v_2,, v_n) \in \mathfrak{R}^n \ \text{ se define el producto de } k \ \text{por } v \text{ como el vector}$ $k \ \textbf{v} = (k \ v_1, k \ v_2,, k \ v_n) \in \mathfrak{R}^n$

Ejemplos: Sean los vectores $\mathbf{u} = -3 \mathbf{i} + \mathbf{j} + 5 \mathbf{k}$ y $\mathbf{v} = -\mathbf{i} + \mathbf{j} - \mathbf{k}$, calcular $2 \mathbf{u} - 3 \mathbf{v}$. $2 \mathbf{u} - 3 \mathbf{v} = 2 (-3, 1, 5) - 3 (-1, 1, -1) = (-6, 2, 10) - (-3, 3, -3) = (-3, -1, 13)$

Producto escalar o Producto interno en Rⁿ. Definición 1

Sean $u=(u_1\,,\,u_2\,,\,....,\,u_n)\in\Re^n\,\,y\,\,v=(v_1\,,\,v_2\,,\,....,\,v_n)\in\Re^n$, definimos producto escalar de u y v que denotamos u \cdot v, al escalar o número real igual a la suma de los productos de las respectivas componentes de los vectores u y v. Es decir:

$$u \mathrel{\raisebox{1pt}{\text{\circle*{1.5}}}} v = u_1 \ v_1 + u_2 \ v_2 + \ldots + u_n \ v_n = \ \sum_{i=1}^n u_i \ v_i$$

Ejemplo Calcular el producto escalar de los vectores: a) u = (-1, 3, 0, 4) y v = (0, 1, 1, -1)

$$u \cdot v = (-1) \cdot 0 + 3 \cdot 1 + 0 \cdot 1 + 4 \cdot (-1) = -1$$

b)
$$u = 2i + 3j$$
 y $v = -7i + j$

$$\mathbf{u} \cdot \mathbf{v} = (2,3) \cdot (-7,1) = 2 \cdot (-7) + 3 \cdot 1 = -11$$

Producto escalar o Producto interno en Rⁿ. Definición 2

Sean u, $v \in \Re^n$ dos vectores no nulos. Su producto escalar es el número que se obtiene como el producto de los módulos de u y v por el coseno del ángulo que forman los vectores.

Es decir: $u \cdot v = |u| |v| \cos \alpha$

Ejemplo Sean $u = (3, 0), v = (5, 5) y \alpha = 45^{\circ}$ $\left| u \right| = \sqrt{3^2 + 0^2} = 3 \quad \left| v \right| = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ $u \cdot v = 3.5\sqrt{2} \cos 45 = 15$

Propiedades. Para el producto escalar de vectores valen las siguientes propiedades:

1.-
$$\forall$$
 u, $v \in \Re^n$: u. $v = v$. u

2.-
$$\forall k \in \mathbb{R} \land \forall u, v \in \mathbb{R}^n : (k u) v = k (u, v)$$

3.- $\forall u, v, w \in \Re^n$: $u(v+w) = u \cdot v + u \cdot w$

4.- $\forall u \in \mathbb{R}^n : u \cdot u \geq 0 \quad \land \quad u \cdot u = 0 \iff u = \tilde{0}$

Angulo entre dos vectores no nulos

 $\text{De} \quad u \,.\, v = \left| \,u \,\, \right| \,\, \left| \,\, v \,\, \right| \quad \cos \alpha \quad \text{se obtiene} \qquad \cos \alpha = \frac{u \,. v}{\left| \,\, u \,\, \right| \,\, v \,\, \right|} \,\, \text{, que es la expresión que nos permite}$

calcular el ángulo no negativo más pequeño entre los vectores u y v

Ejemplo. Sean los vectores u = 2i + 2j, v = 3j. Calcular: **a)** El producto escalar **b)** El ángulo entre los vectores

a)
$$u \cdot v = (2, 2) \cdot (0, 3) = 6$$

b)
$$|\mathbf{u}| = \sqrt{8}$$
 $|\mathbf{v}| = 3 \implies \cos \alpha = \frac{6}{\sqrt{8} \cdot 3} = 2\sqrt{2} \implies \alpha = 45^{\circ}$

Vectores paralelos

 $Sean \ u = (u_1\,,\,u_2\,,\,....,\,u_n) \in \Re^n \ y \ v = \ (v_1\,,\,v_2\,,\,....,\,v_n) \in \Re^n$

El vector u es paralelo a v y denotamos u // v $\Leftrightarrow \exists \ k \in \Re - \{\ 0\ \} \ /\ v = k\ u$

$$\Leftrightarrow \exists k \in \Re - \{0\} / v_i = k u_i \quad \forall i = 1, 2, ..., n$$

Ejemplo. Averiguar si los vectores u = (1, -2) v = (-2, 4) son paralelos.

Es necesario averiguar si $\exists k \in \Re - \{0\} / v = k u$

$$(-2 \ , \ 4) = k \ (1 \ , \ -2) \ \Rightarrow \ (-2 \ , \ 4) = (k \ , \ -2k) \ \Rightarrow \ \begin{cases} k = -2 \\ -2k = 4 \Rightarrow k = -2 \end{cases} \ \Rightarrow \ \exists \ k = -2 \in \Re \ - \ \{ \ 0 \ \} \ / \ = -2$$

 $v = -2 u \implies u // v$

Observaciones

u // v significa que los vectores tienen la misma dirección

Si además k > 0 significa que tienen igual sentido

Si k < 0 significa que tienen sentido contrario.

Vectores perpendiculares

Dos vectores $u=(u_1\,,\,u_2\,,\,....,\,u_n)\in\mathfrak{R}^n\ y\ v=(v_1\,,\,v_2\,,\,....,\,v_n)\in\mathfrak{R}^n\ \text{son perpendiculares si y}$ sólo sí u , v=0

Ejemplo 1. Si $u = (x^2 - 2x + 1, 3, -1)$ y v = (1, x + 1, 4), determinar $x \in \Re$ para que u y v sean perpendiculares.

$$\begin{array}{lll} u \perp v & \Leftrightarrow & u \; . \; v = 0 & \Leftrightarrow \; (x^2 - 2x + 1 \; , \; 3 \; , \; -1). \; (1 \; , \; x + 1 \; , \; 4) = 0 \Leftrightarrow x^2 - 2x + 1 + \; 3x \; + \; 3 - 4 = 0 \Leftrightarrow x^2 + x = 0 \; \Leftrightarrow x_1 = 0 \; , \; x_2 = -1 \end{array}$$

Ejemplo 2. Hallar
$$x \in \Re$$
 para que $u \perp v$, si $u = (2, x, -1)$ y $v = (x, -3x, x^2)$ $u \perp v \Leftrightarrow u \cdot v = 0 \Leftrightarrow (2, x, -1) \cdot (x, -3x, x^2) = 0 \Leftrightarrow 2x - 3x^2 - x^2 = 0 \Leftrightarrow -4x^2 + 2x = 0$ $\Leftrightarrow x_1 = 0$ $x_2 = 1/2$

Vectores Unitarios o Versores

Dado $u \in \Re^n$, $u \neq \widetilde{0}$ llamamos vector unitario en la dirección de u al vector de módulo 1, paralelo a u que se calcula como el cociente entre el vector u y su módulo.

Es decir: $u_u = \frac{u}{\mid u \mid}$ vector unitario en la dirección de u

Observación 1: Dado $u \in \mathfrak{R}^n$, $u \neq \widetilde{0}$, vector unitario en la dirección de u verifica que: a) $\mid u \mid = 1$ b) $u_u /\!\!/ u$

Observación 2: En \Re^n hay n versores en la dirección positiva de los ejes y se denominan e_1 , e_2 ,, e_n tales que: $e_1 = (1, 0, 0,0)$, $e_2 = (0, 1, 0, 0,0)$,, $e_n = (0, 0,1)$ denominados versores fundamentales.

Ejemplo. Sean los vectores u = (-2, 3) y v = (-1, -5), encuentre los vectores unitarios en la dirección de los vectores dados.

$$|u| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \implies u_u = \frac{u}{|u|} = \frac{1}{\sqrt{13}} (-2, 3) = \left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right) \text{ tal que } |u_u| = 1$$

Ángulos Directores

Se llama así, a los ángulos que forma un vector con los ejes coordenados

Sea $u \in \Re^n$, $u \neq \widetilde{0}$ y sean $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ los ángulos directores de u.

 $\forall i = 1, 2, ...n$, α_i es el ángulo director que forma el vector u con el je e_i y los cosenos

$$\text{directores se calculan: } \cos\alpha_{_{i}} = \frac{u.e_{_{i}}}{\mid u\mid\mid e_{_{i}}\mid} = \frac{(u_{_{1}}\,,u_{_{2}}\,,....\,u_{_{i}}\,,...,u_{_{n}}\,).(0,0,....1,....0)}{\mid u\mid} = \frac{u_{_{i}}}{\mid u\mid} \dots...$$

$$\Rightarrow \cos^2 \alpha_i = \frac{u_i^2}{|u|^2}$$

Y entonces
$$\sum_{i=1}^{n} \cos^2 \alpha_i = \sum_{i=1}^{n} \frac{u_i^2}{|u|^2} = \frac{1}{|u|^2} \sum_{i=1}^{n} u_i^2 = \frac{|u|^2}{|u|^2} = 1$$

Observación 1: Sea $u \in \Re^2$, $u \neq \widetilde{0} \implies \cos^2 \alpha_1 + \cos^2 \alpha_2 = 1$ que es la conocida relación pitagórica

Cosenos directores:

$$\cos \alpha_1 = \frac{u_1}{\mid u \mid} \qquad \qquad \cos \alpha_2 = \frac{u_2}{\mid u \mid}$$

$$\cos \alpha_2 = \frac{u_2}{|u|}$$

Observación 2: Sea $u \in \Re^3$, $u \neq \widetilde{0} \implies \cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3 = 1$

$$\cos \alpha_1 = \frac{u_1}{|u|}$$

$$\cos \alpha_2 = \frac{u_2}{|u|}$$

$$\cos \alpha_1 = \frac{u_1}{\mid u \mid}$$
 $\cos \alpha_2 = \frac{u_2}{\mid u \mid}$ $\cos \alpha_3 = \frac{u_3}{\mid u \mid}$

Proyección de un vector sobre otro

Sean $u, v \in \Re^n$ tal que $u \neq \widetilde{0}$ y $v \neq \widetilde{0}$, definimos proyección vectorial ortogonal de u sobre v al vector P_{u,v} tal que cumple las siguientes condiciones:

1)
$$v // P_{u,v}$$

2)
$$u - P_{u,v} \perp v$$

1) Vamos a determinar $P_{u\,,v}$. Como v // $P_{u\,,v}$ $\iff \exists \ k \in \mathfrak{R} - \{\ 0\ \} \ / \ P_{u\,,v} = k\ v.$ (1)

 $\text{Además como} \quad u - P_{u \text{ , } v} \perp v \quad \Rightarrow \quad (u - P_{u \text{ , } v}) \text{ . } v = 0 \quad \Leftrightarrow \quad (\text{ } u - k \text{ } v \text{ }) \text{ } v = 0 \quad \text{Por (1)} \quad \Leftrightarrow \quad (\text{ } u - k \text{ } v \text{ }) \text{ } v = 0$ $\mathbf{u}.\mathbf{v} - \mathbf{k} | \mathbf{v} |^2 = 0$

$$\Leftrightarrow \quad k = \frac{u.v}{\left| \ v \ \right|^2} \quad \in \ \Re. \ Por \ (1) \qquad P_{u \ , \ v} = k \ v \qquad \Rightarrow \quad P_{u \ , \ v} = \frac{u.v}{\left| \ v \ \right|^2} \quad v \quad \textbf{Vector proyección vectorial}$$

ortogonal de u sobre v

La proyección escalar de u sobre v es el módulo de P, o sea:

$$\left| \begin{array}{c|c} P_{u,v} \end{array} \right| = \left| \begin{array}{c|c} k \end{array} v \end{array} \right| = \left| \begin{array}{c|c} k \end{array} w \end{array} v \right| = \left| \begin{array}{c|c} u.v \\ \hline \left| \begin{array}{c|c} v \end{array} \right| = \left| \begin{array}{c|c} u.v \\ \hline \left| \begin{array}{c|c} v \end{array} \right| = \left| \begin{array}{c|c} u.v \\ \hline \end{array} \right| \right| \Rightarrow \quad \left| \begin{array}{c|c} P_{u,v} \end{array} \right| = \left| \begin{array}{c|c} u.v \\ \hline \end{array} \right|$$

Ejemplo. Calcular el vector $P_{u,v}$ (vector proyección ortogonal de u sobre v). Siendo u = (2, -1) y = (1, 1).

$$P_{u \ , \ v} = \frac{u.v}{\left| \ v \ \right|^2} \ v \ = \frac{(2 \ , -1).(1 \ , 1)}{\left(\sqrt{1^2 + 1^2} \right)^2} \ (\ 1 \ , \ 1) \ = \frac{1}{2}(1 \ , \ 1) = \left(\frac{1}{2} \ , \frac{1}{2} \right) \ \Rightarrow \ P_{u \ , \ v} \ = \left(\frac{1}{2} \ , \frac{1}{2} \right) \ \text{Vector}$$

proyección vectorial ortogonal de u sobre v

$$\left| P_{u,v} \right| = \frac{\left| u \cdot v \right|}{\left| v \right|} = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{2}}{2}$$
 Proyección escalar de u sobre v

Gráficamente

Ejemplo. Hallar $x \in \mathbb{N}$ tal que la proyección escalar del vector u sobre el vector v sea $2\sqrt{6}$, siendo u = (1, x, -x) y v = (1, 2, -1)

Como
$$|P_{u,v}| = \frac{|u \cdot v|}{|v|}$$
, calculamos $u \cdot v = (1, x, -x)$. $(1, 2, -1) = 1 + 2x + x = 1 + 3x$

$$|v| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6} \implies |P_{u,v}| = \frac{|1 + 3x|}{\sqrt{6}} = 2\sqrt{6} \implies |1 + 3x| = 2(\sqrt{6})^2$$

$$\Rightarrow |1+3x|=12 \Rightarrow 1+3x=\pm 12 \Rightarrow 3x=\pm 12-1 \Rightarrow \begin{cases} x_1 = \frac{11}{3} \\ x_2 = -\frac{13}{3} \end{cases} \Rightarrow \exists x \in \aleph : P_{u,v} = 2\sqrt{6}$$

Producto Vectorial

Dados dos vectores
$$u = (u_1 , u_2 , u_3) \in \Re^3 \quad y \quad v = (v_1 , v_2 , v_3) \in \Re^3 \quad definimos$$
Producto
$$c = u \ x \ v = (u_2 \ v_3 - u_3 \ v_2 , u_3 \ v_1 - u_1 \ v_3 , u_1 \ v_2 - u_2 \ v_1)$$

Observación 1

El producto vectorial recibe el nombre de producto exterior o producto cruz. Existe un recurso nemotécnico para recordar la fórmula del producto vectorial que consiste en colocar las componentes de los vectores y multiplicar como lo indica la figura:

Observación 2:

El producto vectorial da como resultado un **vector** $\mathbf{c} = \mathbf{u} \times \mathbf{v}$ donde:

- **1.-** El **Módulo o magnitud** se obtiene $|u \times v| = |u| |v| \operatorname{sen} \alpha$, donde α es el ángulo que forman los vectores $u \times v$.
- 2.- La **Dirección** del vector u x v es perpendicular al plano determinado por los vectores u y v

3.- El **Sentido** del vector u x v está dado por la regla de la mano derecha. Es decir que los vectores u y v, se encuentran situados de modo tal que u tiene la dirección del **índice** de la mano derecha, el vector v la del dedo **mayor** y el **pulgar** indica la dirección positiva del vector uxv.

Observación 3 Si consideramos los vectores no nulos $u = u_1i + u_2j + u_3k$ $y v = v_1i + v_2j + v_3k$

Ejemplo

Sean u = i - 2j y v = 3k. Calcular: i) $u \times v \times y$ ii) $v \times u$

i)
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 3 (-1)^{3+3} \begin{vmatrix} \mathbf{i} & \mathbf{j} \\ 1 & -2 \end{vmatrix} = 3 (-2 \mathbf{i} - \mathbf{j}) = -6\mathbf{i} - 3 \mathbf{j} = (-6, -3, 0)$$

ii)
$$v \times u = \begin{vmatrix} i & j & k \\ 0 & 0 & 3 \\ 1 & -2 & 0 \end{vmatrix} = 3 (-1)^{2+3} \begin{vmatrix} i & j \\ 1 & -2 \end{vmatrix} = -3 (-2 i - j) = 6 i + j = (6, 1, 0)$$

Se concluye que u x $v \neq v$ x u

Observación Importante

El producto vectorial es anticonmutativo, es decir: $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$. Estos vectores $\mathbf{u} \times \mathbf{v} \times \mathbf{v} \times \mathbf{u}$ tienen igual longitud y son colineales. Los sentidos de estos vectores son contrarios, ya que desde el extremo del vector $\mathbf{u} \times \mathbf{v}$ se ve que el giro más breve de \mathbf{u} a \mathbf{v} pasa en sentido contrario a las agujas del reloj y desde el extremo del vector $\mathbf{v} \times \mathbf{u}$ en sentido de las agujas del reloj.

Propiedades

1.- El producto vectorial no es conmutativo

$$\forall u, v \in \mathbb{R}^3$$
: $u \times v \neq v \times u$

2.- El producto vectorial no es asociativo

$$\forall u, v, w \in \mathbb{R}^3 \quad (u \times v) \times w \neq u \times (v \times w)$$

Ejemplo: $(i \times j) \times j = k \times j = -i \quad y \quad i \times (j, j) = i \times \widetilde{0} = \widetilde{0}$

- **3.-** \forall k \in \Re \land \forall u, v \in \Re ³: (k u) x v = k (u x v)
- **4.-** El producto vectorial es distributivo respecto de la suma de vectores

$$\forall u, v, w \in \Re^3$$
: **i)** $u \times (v + w) = (u \times v) + (u \times w)$ **ii)** $(v + w) \times u = (v \times u) + (w \times u)$

5.-
$$u \times v = \tilde{0} \Leftrightarrow u // v$$

6.-
$$\forall$$
 u, v $\in \mathbb{R}^3$: (u x v) \perp u \wedge (u x v) \perp v

7.-
$$\forall$$
 u, v $\in \Re^3$: $|$ u x v $|$ = área del paralelogramo de lados u y v

Demostración de la propiedad 7

Esta propiedad afirma que la interpretación geométrica del producto vectorial de dos vectores u y v es el área del paralelogramo formado por los vectores mencionados.

$$sen \ \alpha = \frac{h}{\mid v \mid} \ \ \, \Rightarrow \ \, h = \mid v \mid \ \ \, sen \ \alpha$$

Reemplazando en (1) Área del paralelogramo = |u| |v| sen $\alpha = |u \times v|$

Por lo tanto se verifica que: $|u \times v| = |u| |v| \sin \alpha$

Triple producto escalar o doble producto mixto

Sean los vectores A, B, $C \in \Re^3$ definimos triple producto escalar o doble producto mixto (ABC) al escalar o número real que resulta de multiplicar escalarmente el vector AxB y el vector C

Es decir:
$$(ABC) = (A \times B) \cdot C$$

Se puede demostrar que si $A = (a_1, a_2, a_3)$ $B = (b_1, b_2, b_3)$ $C = (c_1, c_2, c_3)$

(ABC) = (A x B). C =
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Propiedades

1.-
$$\forall$$
 A, B, C $\in \Re^3$: (ABC) = (BCA) = (CAB)

2.-
$$\forall$$
 A, B, C $\in \Re^3$: (BCA) = (ACB) = (CBA) = -(ABC)

3.-
$$\forall$$
 A. B. C $\in \mathbb{R}^3$: A x B . C = A . B x C

4.- | (ABC) | = Volumen del paralelepípedo de aristas (A, B, C)

5.- (ABC) = $0 \Leftrightarrow A$, B, C son coplanares.

Demostración de la propiedad 4

Esta propiedad afirma que el producto mixto de los tres vectores A, B y C, se interpreta geométricamente como el volumen del paralelepípedo construido sobre los mismos una vez llevados a un origen común.

V = Superficie de la base por altura = volumen del paralelepipedo

Como Superficie de la base es $|A \times B| \Rightarrow V = |A \times B| h$ siendo h la altura

 $h = P_{B\,,\,(AxB)} \text{ (proyección del vector } B \text{ sobre el vector } (A\;x\;B) \Rightarrow \; cos\;\alpha = \frac{h}{\mid C \mid} \Rightarrow h = \mid C \mid cos\;\alpha$

$$V = |A \times B| |C| \cos \alpha = (A \times B) \cdot C = (ABC)$$

Demostración de la propiedad 5

Si (ABC) = $0 \Leftrightarrow Vol del paralelepípedo (ABC) = 0 \Leftrightarrow h = 0 \Leftrightarrow A$, B, C son coplanares

