Assignment 7

Chuan Lu, 13300180056, chuanlu13@fudan.edu.cn

Problem 1. Derive A-B, A-M and Gear Formula with Newton Interpolation.

Solution. With Newton Interpolation on $t_{n+1}, t_n, \cdots, t_{n+1-k}, f(t,u) = f_{n+1-k} + f_{n+1-k,n+2-k}(t-t_{n+1-k}) + \cdots + f_{n+1-k,n+2-k,\cdots,n+1} \prod_{i=1}^k (t-t_{n-k+i}) + f_{n+1-k,n+2-k,\cdots,n+1,t} \prod_{i=1}^{k+1} (t-t_{n-k+i}).$ Let $p_{n,k}(t) = f(t,u) - f_{n+1-k,n+2-k,\cdots,n+1,t} \prod_{i=1}^{k+1} (t-t_{n-k+i})$, Integrate within $[t_n, t_{n+1}], u_{n+1} - u_n = \Delta t \sum_{i=0}^k b_{k,i} f_i$.

Adams-Bashforth Formula

Like Adams-Moulton formula, with Newton interpolation on $t_n, t_{n-1}, \cdots, t_{n-k}, f(t, u) = f_{n-k} + f_{n-k,n+1-k}(t-t_{n-k}) + \cdots + f_{n-k,n+1-k,\cdots,n} \Pi_{i=0}^{k-1}(t-t_{n-k+i}) + f_{n-k,n+1-k,\cdots,n,t} \Pi_{i=0}^{k}(t-t_{n-k+i}).$ Let $p_{n,k}(t) = f(t,u) - f_{n-k,n+1-k,\cdots,n,t} \Pi_{i=0}^{k}(t-t_{n-k+i})$, Integrate within $[t_n, t_{n+1}]$, $u_{n+1} - u_n = \Delta t \Sigma_{i=0}^k b_{k,i} f_i$.

Gear Formula

Let $I_k u = u_{n-k+1} + u_{n-k+1,n-k+2}(t - t_{n-k+1}) + \cdots + u_{n-k+1,n-k+2,\cdots,n+1}\prod_{i=n-k+1}^n (t - t_i)$. Use derivative of $I_n u(t)$ to take the place of the derivative of u(t) when $t = t_{n+1}$, there exists

$$f(t,u)|_{t=t_{n+1}} = \frac{du}{dt}|_{t=t_{n+1}} = \frac{dI_k u}{dt}|_{t=t_{n+1}}$$

In consequence, $\Delta t f_{n+1} = (\Delta t)^2 (u_{n-k+1} + u_{n-k+1,n-k+2}(t - t_{n-k+1}) + \dots + u_{n-k+1,n-k+2,\dots,n+1} \prod_{i=n-k+1}^n (t - t_i)).$

Problem 2. Consider the equation

$$\frac{du}{dt} = \lambda(-u + \cos(t))$$

Solution.

The exact solution of the equation.

The exact solution is $u(t) = c_0 e^{-\lambda t} + \int_0^t e^{-\lambda(t-s)} \lambda \cos(s) ds$.

Figure 1: lambda = 1

For $\lambda=1,10,100,1000,$ use explicit and implicit Euler iteration to solve. Use Adams and Gear iteration to solve the equation when $\lambda=1000$.

.

Figure 2: lambda = 10

Figure 3: lambda = 100

Figure 4: lambda = 1000

Figure 5: Adams and Gear