College Mathematics

COLLEGE MATHEMATICS A GENERAL INTRODUCTION

CHARLES H. SISAM

Professor of Mathematics, Colorado College

COPYRIGHT, 1946, BY HENRY HOLT AND COMPANY, INC.
November, 1957

Acc.m. 42685 5100 CHECKED 51816 5100 CM Si 81 C CM

27930-0916

Preface

This text presents the customary first-year course in college algebra, trigonometry, and analytic geometry, together with the notation and elementary processes and applications of the differential and integral calculus.

No attempt has been made either to "unify" or to keep separate the component subjects. What the author has tried to do is to present the entire subject matter in a single natural and orderly sequence. It is believed that the essential interdependence of the separate subjects can best be exhibited in this way.

Although this book is not intended for students with no previous training in algebra, the text begins with the elementary topics of that subject. The emphasis that will need to be placed on the early chapters will vary with the previous training and the ability of the class.

The exercises have been graded so that the instructor may select from them assignments suited to the needs of his class. Answers have been given to the odd-numbered exercises; those to the even-numbered exercises will be printed separately.

The author acknowledges with pleasure his indebtedness to Dr. Margaret Hansman for valuable suggestions and for assistance in seeing the book through the press.

C. H. S.

January 15, 1946 Colorado Springs, Colo.

Contents

\mathbf{P}_{\cdot}	AGE
1. Literal numbers — 2. Real numbers — 3. Graphical representation of real numbers. The linear scale — 4. Computations involving zero — 5. Computations involving signed numbers — 6. Symbols of grouping — 7. Positive integral exponents — 8. Multiplication of monomials — 9. Multiplication of polynomials — 10. Division of polynomials.	3
CHAPTER II. Factoring and Fractions	13
CHAPTER III. Linear Equations in One Unknown	24
CHAPTER IV. Ratio, Proportion, and Variation	29
CHAPTER V. Exponents and Radicals	34
CHAPTER VI. Functions, Coördinates, and Graphs 35. Constants and variables — 36. Functions — 37. The function notation — 38. Rectangular coördinates — 39. Plotting points — 40. The graph of a function — 41. Symmetry.	46
CHAPTER VII. Simultaneous Linear Equations 42. Linear equations in two unknowns — 43. Solution by addition or subtraction — 44. Solution by substitution — 45. Solution by	55

graphs — 46. Linear equations in three unknowns — 47. Determinants of the second order — 48. Solution of two linear equations by determinants — 49. Determinants of the third order — 50. Solution of three linear equations by determinants — 51. Problems leading to simultaneous linear equations.	PAGE
CHAPTER VIII. Quadratic Equations	67
CHAPTER IX. Simultaneous Equations Involving Quadratics . 65. Equation of second degree in two variables — 66. Graphs of type forms — 67. Graphical solution of simultaneous equations — 68. Algebraic solution of simultaneous equations — 69. Simultaneous equations of the first and second degrees — 70. Systems of the form $Ax^2 + By^2 = C - 71$. Systems of the form $Ax^2 + Bxy + Cy^2 = D - 72$. Special devices — 73. Problems involving simultaneous quadratics.	84
CHAPTER X. Logarithms	95
CHAPTER XI. Angles and Their Measurement 87. Directed angles — 88. Circular measure. The radian — 89. Degrees and radians — 90. Central angles and their intercepted arcs — 91. Linear and angular velocities.	110
92. Angles in standard position — 93. Definitions of the trigonometric functions — 94. Some properties of the trigonometric functions — 95. Determination of all the functions from one of them — 96. Values of the functions of 45°, 135°, 225°, and 315° — 97. Val-	114

ues of the functions of 60°, 120°, 240°, and 300° — 98. Values of functions of 30°, 150°, 210°, and 330° — 99. Values of the function of 0°, 90°, 180°, and 270° — 100. Tables of the values of the triponometric functions — 101. Logarithms of the trigonometric functions.	igo-
CHAPTER XIII. Solution of Right Triangles	inc- ems
CHAPTER XIV. Reduction Formulas	the phs
CHAPTER XV. Trigonometric Identities and Equations 118. The fundamental identities — 119. Identities and equat of condition — 120. Trigonometric identities — 121. Trigonometric identities — 121. Trigonometric identities — 121. Trigonometric identities — 121.	ions
CHAPTER XVI. Functions of Two Angles	any unc- e an duct
CHAPTER XVII. The Inverse Trigonometric Functions 132. Notation — 133. Multiple valuedness of the inverse functions — 134. Principal values — 135. Graphs of the inverse trigonometric functions.	tions
CHAPTER XVIII. Solution of Oblique Triangles 136. Introduction — 137. The law of sines — 138. The law tangents — 139. Given one side and two angles — 140. The biguous case. Given two sides and the angle opposite one of the 141. Given two sides and the included angle — 142. The law cosines — 143. The half-angle formulas — 144. Given the	w of am-

sides — 145. Area of a triangle — 146. Problems.

CHAPTER XIX. Definitions and Formulas	171
147. Directed line segments — 148. Segments on the coördinate axes — 149. Distance between two points — 150. Point dividing a given segment in a given ratio — 151. The inclination and slope of a line — 152. Slope of a line through two given points — 153. Parallel and perpendicular lines — 154. Angle from one line to another — 155. The equation of a locus.	
CHAPTER XX. The Line	183
156. The equation of a line — 157. Lines parallel to the axes — 158. The point-slope form — 159. The slope-intercept form — 160. The two-point form — 161. The intercept form — 162. The general form — 163. The linear function — 164. The normal form — 165. Reduction of the equation of a line to the normal form — 166. The distance from a line to a point — 167. The area of a triangle — 168. Families of lines. Parameters.	
CHAPTER XXI. The Circle	198
169. The standard form of the equation of a circle — 170. The general form of the equation of a circle — 171. Circles determined by three conditions — 172. The family of circles $S + kS' = 0$ — 173. Loci problems.	
CHAPTER XXII. Polar Coördinates	208
174. Introduction — 175. Polar coördinates — 176. Relations between polar and rectangular coördinates — 177. The polar equation of a line — 178. The polar equation of a circle.	
CHAPTER XXIII. The Conic Sections	214
179. Plane sections of a right circular cone — 180. Definitions — 181. Standard forms of the equation of the parabola — 182. Discussion of the equation — 183. The standard form of the equation of the ellipse — 184. Discussion of the equation — 185. Definitions — 186. A second definition of the ellipse — 187. The standard form of the equation of the hyperbola — 188. Discussion of the equation. Asymptotes — 189. Definitions — 190. A second definition of a hyperbola — 191. Conjugate hyperbolas — 192. The equilateral hyperbola — 193. Standard polar equation of a conic.	
CHAPTER XXIV. Transformation of Coördinates	233
194. Changing the coördinate axes — 195. Translation of axes — 196. Rotation of axes.	
CHAPTER XXV. Conics with Equations Not in Standard Form	238
197. The general equation of second degree — 198. Conics with principal axis parallel to a coördinate axis — 199. Conics satisfying	

given conditions — 200. Simplification by rotation. Removal of the xy-term — 201. Reduction of numerical equations to the standard form.	
Integration	246
CHAPTER XXVII. The Graph of an Equation	265
CHAPTER XXVIII. Parametric Equations	282
CHAPTER XXIX. Progressions	288
CHAPTER XXX. The Binomial Theorem	299
CHAPTER XXXI. Permutations and Combinations 250. Fundamental principle — 251. Permutations — 252. Permutations of n things not all different — 253. Combinations — 254. The binomial coefficients.	

CHAPTER XXXII. Probability	PAGE
255. Definitions — 256. Mathematical probability — 257. Empirical probability — 258. Mathematical expectation — 259. Mutually exclusive events — 260. Independent and dependent events — 261. Repeated trials.	
CHAPTER XXXIII. Complex Numbers	322
270. Integral rational functions — 271. Synthetic division — 272. The remainder theorem — 273. The factor theorem — 274. The factored form of a polynomial — 275. The number of roots of a polynomial equation — 276. Multiple roots — 277. Formation of an equation with given roots — 278. Equation with roots opposite in sign to those of a given equation — 279. Descartes' rule of signs — 280. Limits for the magnitudes of the real roots — 281. Equation with roots m times those of a given equation — 282. Equations in the b-form — 283. Rational roots — 284. The graph of the polynomial function — 285. Slope of the tangent; derived curve; maximum and minimum points — 286. Graphical approximation to the irrational roots — 287. Equation with roots decreased by h—288. Irrational roots by Horner's method — 289. Identical polynomials — 290. Imaginary roots.	332
CHAPTER XXXV. Partial Fractions	361
291. Partial fractions — 292. Linear factors; none repeated — 293. Linear factors; some repeated — 294. Quadratic factors; none repeated — 295. Quadratic factors; some repeated.	
CHAPTER XXXVI. Coördinates in Space	368
CHAPTER XXXVII. Planes and Lines in Space	379

	PAGE
of a plane — 311. Surfaces and curves — 312. Line through a given point having a given direction. The symmetric form — 313. The two-point form — 314. The parametric form — 315. The general form — 316. Family of planes through a line. Projecting planes.	
CHAPTER XXXVIII. Types of Surfaces	392
317. Cylinders — 318. Surfaces of revolution — 319. The sphere — 320. Quadric surfaces — 321. The ellipsoid — 322. The hyperboloid of one sheet — 323. The hyperboloid of two sheets — 324. The elliptic paraboloid — 325. The hyperbolic paraboloid — 326. The quadric cone.	
CHAPTER XXXIX. Definitions and Theorems in Spherical	407
Trigonometry	401
CHAPTER XL. The Right Spherical Triangle	407
335. Formulas for the right spherical triangle — 336. Napier's rules — 337. Derivation of the formulas — 338. Rules of species — 339. Solution of the right spherical triangles — 340. Quadrantal triangles — 341. Isosceles spherical triangles.	
CHAPTER XLI. The Oblique Spherical Triangle	415
342. The law of sines — 343. The law of cosines for sides — 344. The law of cosines for angles — 345. The half-side formulas — 346. The half-angle formulas — 347. Napier's analogies — 348. Some laws of magnitude and species — 349. The solution of spherical triangles — 350. Given three sides or three angles — 351. Given two sides and the included angle or two angles and the included side — 352. Given two sides and the angle opposite one of them or two angles and the side opposite one of them.	
Tables	425
Introduction to the Tables	
Table I. Logarithms of Numbers	
Table IIa. Tables of S and T for angles near 0° and 90° Table II. Logarithms of the Trigonometric Functions	
Table III. Natural Values of the Trigonometric Functions	
Table IV. Squares and Square Roots of Numbers	
Answers to Odd-Numbered Exercises	FOR
	527

College Mathematics

Chapter 1

Fundamental Operations

1. Literal Numbers. In algebra, it is customary to represent numbers by letters. We speak, for example, of the numbers a, b, x, y, and so on; meaning thereby certain numbers, the values of which may or may not be known to us, that appear in the problem under consideration. When a number is represented by a letter, it is spoken of as a *literal* number to distinguish it from *explicit* numbers, such as 7, 2, and -6, which are written in the Arabic symbols.

Thus, the numbers a, k, xy, $x^2 - y^2$, are literal numbers. The numbers 10, -15, 27, are explicit numbers.

- 2. Real Numbers. The numbers usually met with in elementary mathematics are called real numbers. Every real number may be classified as either positive, negative, or zero. Later, we shall introduce another type of numbers which we shall call imaginary numbers (Art. 26). Unless the contrary is indicated, the literal numbers we shall use will be real numbers.
- 3. Graphical Representation of Real Numbers. The Linear Scale. A clearer understanding of some of the properties of real numbers can be obtained by representing these numbers by the points on a straight line. The line on which this representation is made is a linear scale. We shall use linear scales very frequently as we proceed with this course.

On an unlimited straight line X'X (Fig. 1), choose any fixed point O

to represent the number zero. This point we shall call the origin.

To find the point P that represents a given number x, choose a unit of length and measure off from O a distance OP = x, to the right from O if x is a positive number and to the left if x is negative. The point P, at the end of this segment, is said to represent the number x and the number is said to be the abscissa of the point P. We have indicated on Fig. 1 the points representing the positive numbers 1, 2, 3, and 4 and the negative numbers -1, -2, -3, and -4. The point P_1 (read "P sub one"), half way between the points representing -2 and -3, represents the number $-\frac{5}{2}$ and the point P_2 represents the number * $\sqrt{7} = 2.646$, approximately.

Conversely, if we have given a point P on the line X'X and wish to find its abscissa x, we measure the distance OP and prefix a plus or minus sign according as P lies to the right or to the left of O. We find in this

^{*} A table of the squares and square roots of certain numbers will be found in Table IV at the back of the book.

way, in Fig. 1, that the abscissa of P_3 is 1.8, and of P_4 is -3.4, approximately.

$$X' \xrightarrow{P_4} \xrightarrow{P_1} \qquad O \qquad P_3 \qquad P_2 \\ -4 \qquad -3 - \frac{5}{2} - 2 \qquad -1 \qquad 0 \qquad 1 \qquad 2 \qquad \sqrt{7} \ 3 \qquad 4 \qquad X$$
Fig. 1

Of two given numbers a and b, we say that a is greater than b if the point whose abscissa is a lies to the right of the point whose abscissa is b. In the contrary case, we say that a is less than b. For positive numbers, this statement is obvious; for negative numbers, it means, for example, that -1 is greater than -3 because the point whose abscissa is -1 lies to the right of the point whose abscissa is -3. We shall customarily write the statement, "a is greater than b," in the symbolic form a > b and the statement, "a is less than b," in the form a < b.

Let P be the point representing a number a. The length of 'the segment OP, taken always as a *positive* number, is called the **absolute**, or **numerical**, value of a. We denote this absolute value by the symbol |a|. It follows that, if a is positive, then |a| = a but, if a is negative, then |a| is equal to a with its sign changed.

Thus,
$$|13| = 13$$
, $|-13| = 13$, $|7-12| = |12-7| = 5$.

Exercises

- 1. Represent on a graphical scale the numbers $4, -7, \frac{10}{3}, -\frac{5}{4}, \pi$.
- 2. Arrange the numbers in Ex. 1 in increasing order.
- 3. Choose two points at random on the graphical scale, one to the right and one to the left of O. Find, by measurement, the abscissas of these points to one decimal place.
- 4. Choose two negative numbers a and b such that a > b. Show that a b is a positive number.
- 5. If the abscissas of two points A and B on the graphical scale are 5 and -1, respectively, show that the abscissa of the midpoint of the segment AB is 2.
 - 6. In Ex. 5, show that the length of the segment AB is 6.
- 7. Read each of the following expressions and state its value: |-7|, |16|, $|-\frac{5}{8}|$, |-2|, |7-15|, |2-6|, |4-23+9|.
- 4. Computations Involving Zero. In computations in which at least one of the numbers involved is zero, the following laws hold.
- I. If zero is added to, or subtracted from, a given number, the result equals the given number.

Thus,
$$9+0=9$$
, $9-0=9$, $-3+0=-3$, $-3-0=-3$, $0+0=0$, $0-0=0$, $a+0=a$, $a-0=a$.

II. The product of two numbers equals zero if, and only if, at least one of the factors is zero; that is,

ab = 0 if, and only if, either a = 0 or b = 0.

Thus, $5 \times 0 = 0$, $0 \times \frac{4}{3} = 0$, $0 \times 0 = 0$, $0 \times (a+3) = 0$.

EXAMPLE 1. Find the values of x that make $x^2 + x - 12 = 0$.

Factor the first member: (x-3)(x+4)=0.

This product equals zero if, and only if, either

$$x-3=0$$
 or $x+4=0$,

that is, either x = 3 or x = -4.

The student should show by substitution that each of these values satisfies the given equation.

III. The quotient indicated by dividing a number by zero does not exist; that is,

the expressions $a \div 0$ and $\frac{a}{0}$ are meaningless.

Thus, none of the following expressions represents a number:

$$4 \div 0$$
, $\frac{27}{0}$, $\frac{0}{0}$, $\frac{5}{4 \times 0}$, $\frac{51}{2-2}$, $\frac{b}{a-a}$.

The expression $\frac{7}{x-3}$ represents a number for all values of x except x=3. If x=3, the denominator is zero and the expression is meaningless. Similarly, the expression $\frac{x-7}{(x+2)(x-3)}$ has no value when x=-2 or x=3.

Example 2. Solve the equation (x-1)(x-5) = 2(x-1).

If we divide both sides of this equation by x-1, we obtain x-5=2, giving the solution x=7.

The process of division by x-1 is legitimate for all values of x except x=1. It will be found by substitution that x=1 satisfies the given equation but this solution was *lost* in the process of division. The correct solutions are x=1 and x=7.

We shall frequently perform the operation of dividing one literal expression by another but it must be remembered that this operation is meaningless whenever values are assigned to the literal numbers involved that make the divisor zero.

Thus, if any value other than 2 is assigned to x, the value of the quotient $(x^2-4) \div (x-2)$ is x+2 but, if x=2, the division is impossible and no number results from the operation.

5. Computations Involving Signed Numbers. In computations involving positive and negative numbers, the following laws hold.

I. To add two numbers having like signs, add their absolute values and prefix the common sign.

Thus,
$$3 + 11 = 14$$
, $(-5) + (-7) = -(5 + 7) = -12$.

II. To add two numbers having unlike signs, take the difference of their absolute values and prefix the sign of the number having the larger absolute value.

Thus,
$$26 + (-17) = 26 - 17 = 9$$
, $14 + (-19) = -(19 - 14) = -5$, $(-32) + 15 = -(32 - 15) = -17$, $(-17) + 35 = 35 - 17 = 18$.

III. To subtract one number from another, change the sign of the number to be subtracted and proceed as in addition.

Thus,
$$38 - 11 = 38 + (-11) = 27$$
, $43 - (-29) = 43 + 29 = 72$, $(-15) - 4 = (-15) + (-4) = -19$, $(-31) - (-47) = (-31) + 47 = 16$.

IV. To multiply (or divide) one number by another, first multiply (or divide) their absolute values. Then prefix a plus sign if the given numbers have the same sign or a minus sign if they have unlike signs.

Thus,
$$(-9) \times (-7) = + (9 \times 7) = 63$$
, $(-17) \times 4 = -(17 \times 4) = -68$, $(-18) \div (-6) = + (18 \div 6) = 3$, $42 \div (-7) = -(42 \div 7) = -6$.

Exercises

In the following exercises, (a) add the two numbers, (b) subtract the second number from the first.

1. 57
 2.
$$-92$$
 3. -57
 4. 93
 5. -76

 41
 -39
 -37
 0

6.
$$5a$$
 7. $-3x$ 8. $-7m$ 9. $3y$ 10. 0 $2a$ $-2x$ $3m$ $-5y$ $3z$

Perform the indicated multiplications.

11.
$$21 \times (-8)$$
. 12. $(-15) \times (-7)$. 13. $(-4) \times (-3) \times (-2)$. 14. $6a \times 0$. 15. $(-4x) \times 3$. 16. $5z \times (-6z)$.

Perform the indicated divisions.

17.
$$28 \div (-4)$$
. 18. $(-91) \div 13$. 19. $(-136) \div (-17)$. 20. $(-6u) \div 3$. 21. $8t \div (-4t)$. 22. $(-12x) \div (-3x)$.

Perform the indicated operations.

23.
$$(-2a)(-3b)(-7c)$$
. 24. $(ab+bc) \div (a+b-a)$. 25. $(a+b+c)d$.

26. Find the value of each of the following expressions that has a value. Show that each of the others is meaningless.

$$\frac{14-8}{9-6}$$
, $\frac{3-7}{13-12}$, $\frac{5-5}{4+3}$, $\frac{(-6)-8}{9+(-2)}$, $\frac{-5+1}{4-2^2}$, $\frac{3^2-9}{2^2-4}$, $\frac{a-a}{b-b}$, $\frac{a^2-a^2}{b^2-b^2}$.

Find the value of the expression $\frac{x^2 + 2y - 3z}{xy + yz + zx}$, given:

27.
$$x = 3$$
, $y = -2$, $z = 5$.

27.
$$x = 3$$
, $y = -2$, $z = 5$. 28. $x = -2$, $y = -5$, $z = -9$.

Solve the following equations.

29.
$$5x - 8 = 27$$
.

30.
$$2x + 9 = 21$$

29.
$$5x - 8 = 27$$
. **30.** $2x + 9 = 21$. **31.** $8x + 1 = 3x - 14$.

32.
$$9(x+3) = 5(2x+4)$$
.

33.
$$\frac{4x+11}{7}=\frac{3x-6}{5}$$
.

34.
$$\frac{5x+3}{4} = \frac{10x-7}{9}$$
.

35.
$$(x-5)(x-11)=0$$
.

36.
$$(2x+9)(3x-7)=0$$
.

37.
$$x^2 - 5x + 6 = 0$$
.

- 38. Johannesburg, South Africa, is 67° south of Istanbul, Turkey, which is in latitude 41° north. Find the latitude of Johannesburg.
- 39. The top of Mt. Whitney is 14,502 feet above sea level. Find the altitude of a point in the Imperial Valley 14,670 feet lower than the top_of Mt. Whitney.
- 40. A is 61 and B is 67 miles south of a certain crossing. Both A and B are traveling north at the uniform rates of 43 and 47 miles an hour, respectively. How far, and in what direction, from the crossing will B overtake A?
- 6. Symbols of Grouping. The symbols most frequently used to indicate grouping are parentheses (), brackets [], and braces { }. When used in mathematical expressions, these symbols mean that the quantity included between them should be treated as a single number.

Thus, the expression $6 \times (27 - 14)$ means that we are first to subtract 14 from 27, then multiply the difference by 6; that is,

$$6 \times (27 - 14) = 6 \times 13 = 78.$$

Similarly, the expression $5x^2 + 9x - 7 - (3x^2 - 2x - 8)$ means that the number $3x^2 - 2x - 8$ is to be subtracted from the number $5x^2 + 9x - 7$.

A pair of symbols of grouping preceded by a plus sign may be removed (or may be inserted) without changing the sign of any term between the symbols.

A pair of symbols of grouping preceded by a minus sign may be removed (or may be inserted) provided that the sign of every term between the symbols is changed.

Thus,

$$x^{2} - 5x + 7 + (2x^{2} - 8x + 9) = x^{2} - 5x + 7 + 2x^{2} - 8x + 9 = 3x^{2} - 13x + 16.$$

$$x^{2} - 5x + 7 - (2x^{2} - 8x + 9) = x^{2} - 5x + 7 - 2x^{2} + 8x - 9 = -x^{2} + 3x - 2.$$

$$3x^{2} + 4x + 8 + 5x^{2} - 4x + 2 = 3x^{2} + 4x + 8 + (5x^{2} - 4x + 2).$$

$$3x^{2} + 4x + 8 + 5x^{2} - 4x + 2 = 3x^{2} + 4x + 8 - (-5x^{2} + 4x - 2).$$

To remove the symbols of grouping when one pair is enclosed within another pair, first remove the innermost pair, then the next innermost pair, and so on until all are removed.

Thus,

$$4a - 3 - (8a + 2 - [\{6a - 11\} - \{2a - 3\} - 5a] - 7)$$

$$= 4a - 3 - (8a + 2 - [6a - 11 - 2a + 3 - 5a] - 7)$$

$$= 4a - 3 - (8a + 2 - 6a + 11 + 2a - 3 + 5a - 7)$$

$$= 4a - 3 - 8a - 2 + 6a - 11 - 2a + 3 - 5a + 7 = -5a - 6.$$

Exercises

Remove all symbols of grouping and combine like terms.

- 1. 3x + 5 (4x + 9) + (7x 3) (2x 1).
- 2. -(4x+3y-2)-(9x+6y-11).
- 3. (6u + 2v + 9) (-5u + 11v + 6) (4u v + 6).
- 4. ab 2a + 6b 13 (5ab 11a 2b + 6) + (7ab + 4).
- 5. $(4r-9-[6r+5-\{11r+2\}-8r-3]+3r-11)-7$.
- 6. -(6x+5y-3-[2x-8y+7]+[3x-11y+2])-(5x-7y+4).
- 7. -(2s+5t-6)-([-8s+11t-4]-[3s-2t-9])-(6s-2).
- 8. $4x \{(x+3) [(2x+7) (3x+1) + 8] (7x 9) 2\}$.
- 9. Find the value of a + bc + d and (a + b)(c + d) when a = 2, b = 5, c = -3, and d = 7. Explain why the results are not equal.
- 10. Find the value of $(a \div b) \div c$ and $a \div (b \div c)$ when a = 12, b = 6, and c = 2. Explain why the results are not equal.

Write each of the following expressions with the last three terms in parentheses preceded by (a) a plus sign, (b) a minus sign.

- 11. 6x 4y + 2z 9x + 4y 5z. 12. $5r^3 + 7r^2 9r 6$.
- 13. Find (a) the sum and (b) the difference of 7x + 4y 9z and 2x 3y 5z.

Indicate the following operations, using parentheses, and find value of the result.

- 14. From $11a^2 + 3ab 7b^2$ subtract the sum of $2a^2 5ab + 3b^2$ and $5a^2 + 9ab b^2$.
- 15. From $5z^3 8z^2 + 2z + 12$ subtract $4z^3 + 2z^2 6z 3$ and add $2z^3 + 9z^2 3z 5$ to the result.
 - **16.** What must be added to $3t^2 + 7t 4$ to give $5t^2 3t + 8$?

HINT. Denote the required expression by x. Then $3t^2 + 7t - 4 + x = 5t^2 - 3t + 8$. Solve this equation for x.

- 17. What must be subtracted from $9r^3 + 4r^2 6r + 8$ to give $5r^3 2r^2 + 4r + 3$?
- 7. Positive Integral Exponents. The symbol a^2 is used to denote the product $a \cdot a$ and the symbol a^3 to denote $a \cdot a \cdot a$. Similarly, if n is any positive integer, the meaning of the symbol a^n is defined by the equation

 $a^n = a \cdot a \cdot a$ and so on to n factors.

If we wish to multiply a^4 by a^3 , we have, from the definition of the symbols,

$$a^{4} \cdot a^{3} = (a \cdot a \cdot a \cdot a)(a \cdot a \cdot a)$$
$$= a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a = a^{4+3} = a^{7}.$$

Similarly, for the product of a^2 by a^6 , we have

$$a^{2} \cdot a^{6} = (a \cdot a)(a \cdot a \cdot a \cdot a \cdot a \cdot a)$$
$$= a \cdot a = a^{2+6} = a^{8}.$$

If m and n are any two positive integers, we find, in precisely the same way, that

 $a^m \cdot a^n = a^{m+n}$

If we wish to divide a^5 by a^2 , we have from the definition,

$$\frac{a^5}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a} = a \cdot a \cdot a = a^{5-2} = a^3,$$

and if we wish to divide a^2 by a^5 , we have

$$\frac{a^2}{a^5} = \frac{a \cdot a}{a \cdot a \cdot a \cdot a \cdot a \cdot a} = \frac{1}{a \cdot a \cdot a} = \frac{1}{a^{5-2}} = \frac{1}{a^3}.$$

If m and n are any two positive integers, the same reasoning shows us that, if m > n,

$$\frac{a^m}{a^n}=a^{m-n}, \qquad m>n$$

and, if m < n,

$$\frac{a^m}{a^n} = \frac{1}{a^{n-m}}. \qquad m < n$$

8. Multiplication of Monomials. An expression of the form $15a^2b^3xy^5$ is called a monomial. The number 15 is called the numerical coefficient (or simply the coefficient) and the factors a^2 , b^3 , x, and y^5 are the literal factors.

To multiply two monomials, first find the product of the numerical coefficients, then multiply this result by the product of the literal factors of both monomials.

Thus,
$$(3a^2x^3)(4a^4y) = (3 \times 4)(a^2 \cdot a^4)x^3y = 12a^6x^3y$$
.
 $(5x^2y^3z)(4xy^2w^5) = (5 \times 4)(x^2 \cdot x)(y^3 \cdot y^2)zw^5 = 20x^3y^5zw^5$.

9. Multiplication of Polynomials. The sum of two or more monomials is a polynomial. Each of the monomials contained in a polynomial is called a term of the polynomial. In particular, a polynomial of two terms is called a binomial and one of three terms is a trinomial.

To multiply a polynomial by a monomial, multiply each term of the polynomial by the monomial and combine the results.

Thus, $(-2a^2xy^3)(4ax^3y - 7a^2xy^4 - 3x^2y^2) = -8a^3x^4y^4 + 14a^4x^2y^7 + 6a^2x^3y^5$.

To multiply two polynomials, multiply each term of one polynomial (the multiplicand) by each term of the other polynomial (the multiplier) and combine the results to form the product.

Both the multiplicand and the multiplier should be arranged, if possible, in descending or in ascending powers of a letter common to both.

A complete check on the result of the multiplication of two polynomials can be obtained by dividing the product by the multiplier (Art. 10). The quotient should be the multiplicand and the remainder should be zero. As the computations involved in checking in this way are usually long and difficult, it is customary, instead, to check (partially) by assigning to the letters numerical values, other than 0 and 1, that do not make either the multiplicand or the multiplier equal to zero. The product of the numerical values of the multiplicand and the multiplier should then equal the numerical value of the product.

Example. Multiply $2m^2 - 5mn + 3n^2$ by $3m^2 + 4mn - 7n^2$.

$$2m^2 - 5mn + 3n^2$$
 (Multiplicand)
 $\frac{3m^2 + 4mn - 7n^2}{6m^4 - 15m^3n + 9m^2n^2}$
 $8m^3n - 20m^2n^2 + 12mn^3$
 $-14m^2n^2 + 35mn^3 - 21n^4$
 $6m^4 - 7m^3n - 25m^2n^2 + 47mn^3 - 21n^4$ (Product)

CHECK. Put m = 2, n = 3. Multiplicand = 8 - 30 + 27 = 5; multiplier = 12 + 24 - 63 = -27; product = 96 - 168 - 900 + 2538 - 1701 = -135. $5 \times (-27) = -135$.

Exercises

Perform the indicated multiplications.

1. $(3m^4)(13m^5)$.	2. $(4x^3y)(-9x^3y^5)$.
3. $(7a^2bd^4)(8a^3b^2c^5)$.	4. $(6xy^2z^3)(-\frac{7}{3}x^2z^6)$.
5. $(-3ar^4z^3)(-7a^3r^2z^5)$.	6. $\left(-\frac{15}{2}a^4t^2x^3\right)\left(\frac{4}{5}ab^2st^3\right)$.
7. $(\frac{4}{3}u^5vw^2x^3)(\frac{9}{2}uv^3x^2y)$.	8. $(\frac{8}{5}ab^2c^5d^3)(\frac{5}{4}a^2b^3c^2e^4)$.
9. $3(2a-4b+c)$.	10. $7x(3x+2y-5z)$.
11. $4abc(a^2 + 7b^2 - 9c^2)$.	12. $-3p^2q(4p-9q^2+7)$.
13. $7rs^2t(2st^2-5rt^3+3r^2s^3)$.	14. $5x^2y^2z^2(2x^3-3y^2+9z^4)$.
15. $-11a^2bc^3(3ab-5a^2c-2bc)$.	16. $3ux^2yz^2(5u^3-7x^3+z^3)$.
17. $(4x+7)(2x-5)$.	18. $(3a-4)(2a-5)$.
19. $(5m-2n)(3m+8n)$.	20. $(7x-3y)(2x-5y)$.
21. $(x^2-4x-3)(3x-1)$.	22. $(a^2-3a-2)(a^2-4a+3)$.
23. $(x^2-2xy+4y^2)(x^2+2xy-y^2)$.	24. $(y^2 + 3yz + z^2)(y^2 - yz - 7z^2)$.
25. $(x^2 + y^2 + z^2)(x + y + z)$.	26. $(a+x)(a^3+3a^2x+3ax^2+x^3)$.
27. $(4x+3x^3-5x^2)(2x-7+x^2)$.	28. $(x-2x^3+4x^4-7-4x^2)(2-x^3)$.

10. Division of Polynomials.* If one quantity is divided by another, the quantity that is divided is the dividend, the quantity by which it is divided is the divisor, the result of the division is the quotient, and the quantity left over after the division is the remainder.

Thus, if 46 (the dividend) is divided by 7 (the divisor), the quotient is 6 and the remainder is 4.

To divide a monomial by a monomial, multiply the quotient of the numerical coefficients by the quotients of the literal factors.

Thus, $\frac{18x^3y^2}{6xy^5} = \frac{18}{6} \cdot \frac{x^3}{x} \cdot \frac{y^2}{y^5} = 3 \cdot x^2 \cdot \frac{1}{y^3} = \frac{3x^2}{y^3}.$ $\frac{15ab^2c^4}{9a^3bc^2d} = \frac{15}{9} \cdot \frac{a}{a^3} \cdot \frac{b^2}{b} \cdot \frac{c^4}{c^2} \cdot \frac{1}{d} = \frac{5}{3} \cdot \frac{1}{a^2} \cdot b \cdot c^2 \cdot \frac{1}{d} = \frac{5bc^2}{3a^2d}.$

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial and combine the results.

Thus,
$$\frac{21x^3y^4 - 7x^4yz - 28xy^4z^3}{14x^2y^2z} = \frac{21x^3y^4}{14x^2y^2z} - \frac{7x^4yz}{14x^2y^2z} - \frac{28xy^4z^3}{14x^2y^2z} \\
= \frac{3xy^2}{2z} - \frac{x^2}{2y} - \frac{2y^2z^2}{x}.$$

To divide one polynomial by another polynomial, we proceed in the following way:

- 1. Arrange both the dividend and the divisor in descending powers of a letter common to both.
- 2. To obtain the first term of the quotient, divide the first term of the dividend by the first term of the divisor.
- 3. Multiply the entire divisor by the first term of the quotient and subtract the result from the dividend.
- 4. Consider the result obtained from Step 3 as a new dividend and repeat the operation.
- 5. Continue in this way until a remainder is obtained that is either zero or of lower degree than the divisor.

A complete check for division may be obtained from the relation:

Dividend = Divisor × Quotient + Remainder,

that is, if we multiply the quotient by the divisor and add the remainder we should obtain the dividend.

For most purposes, it is adequate to obtain a partial check by assuming, for the letters involved, numerical values, other than 0 and 1, that do not make either the dividend or the divisor equal to zero.

^{*} Division by factoring will be discussed in Chap. II.

Divide $22x^3 + 6x^5 - 13x^4 - 21x - 15x^2 + 58$ by $2x^2 + 7 - x$. EXAMPLE.

(Divisor)
$$2x^2 - x + 7$$
 $6x^5 - 13x^4 + 22x^3 - 15x^2 - 21x + 58$ (Dividend)
$$6x^5 - 3x^4 + 21x^3 - 10x^4 + x^3 - 15x^2 - 21x + 58 - 10x^4 + 5x^3 - 35x^2 - 4x^3 + 20x^2 - 21x + 58 - 4x^3 + 2x^2 - 14x - 18x^2 - 7x + 58 - 18x^2 - 7x + 58 - 18x^2 - 7x + 58 - 18x^2 - 9x + 63 - 2x - 5$$
 (Remainder)

The quotient is $3x^3 - 5x^2 - 2x + 9$ and the remainder is 2x - 5.

CHECK. Put x = 2. Divisor = 8 - 2 + 7 = 13; dividend = 192 - 208 + 192 +176 - 60 - 42 + 58 = 116; quotient = 24 - 20 - 4 + 9 = 9; remainder = 4 - 40 - 40 + 10 = 9; remainder = 4 - 40 - 40 + 10 = 9; remainder = 4 - 405 = -1. $116 = 13 \times 9 - 1$.

Exercises

Perform the indicated divisions and check by multiplication.

1. $52x^8 \div 13x^3$.

2. $35a^3b^5 \div 14ab^2$. **3.** $57x^4yz^2 \div 76x^3y^3$.

4. $\frac{72t^4x^6y^2z^3}{96t^2x^7y^5z}$

5. $\frac{154a^3b^8c^2d^4}{66a^6b^2c^7d^3}$.

7. $(21x^4 - 33x^3 - 18x^2) \div 3x^2$. 8. $(45t^7 - 20t^5 + 9t^2) \div 15t^3$.

9. $\frac{21x^2y^3z + 16x^4y^3 + 24yz^3}{6xyz^2}$ 10. $\frac{48a^5c^3 + 60ab^5c^4 + 18a^4b}{24a^2bc^3}$

11. $(2x^2 + x - 15) \div (x + 3)$.

12. $(6m^2 + 3m - 23) \div (2m + 5)$.

13. $\frac{4x^3-16x^2-3x+17}{2x-7}$.

14. $\frac{6x^2+13xy-9y^2}{3x-4y}$.

Perform the indicated divisions and check by substituting numerical values for the letters.

15. $(15x^2 - 14x + 4) \div (3x + 2)$.

16. $(6a^2 + 21a + 17) \div (2a + 3)$.

17. $(8a^2 - 26ab + 7b^2) \div (2a - 5b)$. 18. $(4z^6 - 14z^3 + 3) \div (2z^3 - 3)$.

19. $(3a^4b^2 + 8a^2bt^3 + t^6) \div (a^2b + 4t^3)$. **20.** $(6h^3 - 13h^2 + 1) \div (2h - 7)$.

21. $\frac{10v^3 + 17v^2 - 15v - 56}{2v^2 + 7v + 9}$ 22. $\frac{x^4 + x^2y^2 + y^4}{x^2 + xy + y^2}$

23. $\frac{21r^3s^3 + 5r^2s^2t + 20rst^2}{3r^2s^2 - rst + 4t^2}$ 24. $\frac{x^6 - y^6}{x^2 - y^2}$

25. $(m^4n^4 + 2m^3n^3z - 3m^2n^2z^2 + 2mnz^3 + 9z^4) \div (mn + 3z)$.

26. $(k^3 + 9k + k^4 + 21 - 5k^2) \div (4k + 6 + k^2)$.

27. $(9y^4 + 10y^5 + 34 - 5y^3 - 10y^2 - 10y) \div (2y + 3)$.

28. $(20x^3 + 41x^2 + 3x^6 - 9x^5 - 2x - 3 - 7x^4) \div (x^3 - 3x - 4)$.

Chapter 2

Factoring and Fractions

11. Special Products. The following products occur so frequently in mathematical computations that they should be memorized. The correctness of each equation should also be verified by multiplying together the factors in the second member and showing that the result can be reduced to the expression given in the first member.

I.
$$ab + ac = a(b + c)$$
.
II. $a^2 - b^2 = (a - b)(a + b)$.
III. $a^2 + 2ab + b^2 = (a + b)^2$.
IV. $a^2 - 2ab + b^2 = (a - b)^2$.
V. $x^2 + (a + b)x + ab = (x + a)(x + b)$.
VI. $acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$.
VII. $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$.
VIII. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.

Exercises

Write out the following products.

```
2. 5st(3s-4t+2).
1. 2a(3x + 9y).
                                 4. 2x^2y^3(3x^2+7xy-4y^2).
3. (x-3)(x+3).
5. (100-3)(100+3).
                                 6. 49 \times 51.
7. (3x+4y)^2.
                                 8. (5a-3b)^2.
9. (x+7)(x+4).
                                10. (3a-2b)(2a+3b).
11. (3x-5)(3x+1).
                                12. (4y-5)(3y+7).
13. (3x + y)(9x^2 - 3xy + y^2).
                                14. (2x-5y)(4x^2+10xy+25y^2).
                                16. (xy - 5z)(xy + 3z).
15. (z^2+3)(z^2-7).
17. xy(x-y)(x+y).
                                18. ab(a-2b)(a-3b).
19. (2a^2+5b^2)(3a^2+2b^2).
                              20. (u^3-2v^3)(3u^3+5v^3).
21. (x-2)(x+2)(x^2+4). 22. (a-b)(a+b)(a^2+b^2).
23. (x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2).
24. (a+b+c)(a+b-c)(a-b+c)(a-b-c).
```

12. Factoring by Inspection. If a polynomial can be recognized as belonging to one of the types given in the first members of the formulas of the preceding article, it can be factored by inspection.

In the following discussion of factoring, we shall factor each polynomial into as many factors as possible such that, for each factor, all the coefficients and all the exponents are integers. Such a factor is called a prime factor of the given polynomial.

Example 1. Factor $18zx^2 - 32zy^2$.

By formula I of Art. 11, we have

$$18zx^2 - 32zy^2 = 2z(9x^2 - 16y^2).$$

By formula II,

$$9x^2 - 16y^2 = (3x)^2 - (4y)^2 = (3x - 4y)(3x + 4y).$$

$$18ax^2 - 32ay^2 - 2a(3x - 4y)(3x + 4y).$$

Hence,

$$18zx^2 - 32zy^2 = 2z(3x - 4y)(3x + 4y).$$

Example 2. Factor $x^2 + 8x - 84$.

We can apply formula V of Art. 11 if we can find two numbers, a and b, such that a+b=8 and ab=-84. By trial, we find that a=14 and b = -6 satisfy these conditions. Hence,

$$x^2 + 8x - 84 = (x + 14)(x - 6).$$

Example 3. Factor $6y^2 - 11y - 35$.

We first seek four numbers a, b, c, and d, such that

$$ac = 6$$
, $ad + bc = -11$, and $bd = -35$.

By trial, we find that a = 3, b = 5, c = 2, and d = -7 satisfy these conditions. $6y^2 - 11y - 35 = (3y + 5)(2y - 7).$ Hence,

Example 4. Factor $m^6 - n^6$.

By formulas II, VII, and VIII, we have

$$m^{6} - n^{6} = (m^{3})^{2} - (n^{3})^{2} = (m^{3} - n^{3})(m^{3} + n^{3})$$
$$= (m - n)(m^{2} + mn + n^{2})(m + n)(m^{2} - mn + n^{2}).$$

Exercises

Factor the following polynomials into their prime factors. Monomial factors, if there are any, should be factored out first.

- 1. $15xy + 21y^2$.
- 3. $36x^2 25y^2$.
- 5. $4p^2 + 36pq + 81q^2$.
- 7. $18ax^2 12ax + 2a$.
- 9. $a^2b^2-9c^2$.
- 11. $8u^4 + 27uv^3$.
- 13. $5z^2 18z 8$.
- 15. $20a^2 + 47ab + 21b^2$.
- 17. $x^4 2x^2y^2 + y^4$.
- 19. $x^3y^3 8c^6$.
- 21. $(x+y)^2-z^2$.
- 23. $(u+v)^2-4(u-v)^2$.
- 25. $(a+1)^3-b^3$.

- 2. 14uxy + 6uyz.
- 4. $49r^2s^2 25t^2$.
- 6. $121a^2 132ab + 36b^2$.
- 8. $4abc^2 36abd^2$.
- 10. $a^2b^2 4abcd + 4c^2d^2$.
- 12. $32rs^3 108rt^3$.
- 14. $3a^2 a 10$.
- 16. $7ax^2 56axy + 105ay^2$.
- 18. $x^4 13x^2 + 36$.
- **20.** $125z^3 + 8x^3y^3$.
- **22.** $(a+b)^2 2(a+b) 15$.
- 24. $x^2 (y z)^2$.
- 26. $(a+b)^3+1$.

13. Factoring by Grouping. Many expressions that do not come directly under one of the types given in Art. 11 can be reduced to one of these types by a suitable grouping of the terms.

Example 1. Factor 6bc - ad - 2bd + 3ac.

After rearranging the terms, we have

$$6bc - 2bd + 3ac - ad = 2b(3c - d) + a(3c - d) = (2b + a)(3c - d).$$

Example 2. Factor $x^3 + 7x^2 - 9x - 63$.

$$x^3 + 7x^2 - 9x - 63 = x^2(x+7) - 9(x+7)$$
$$= (x^2 - 9)(x+7) = (x-3)(x+3)(x+7).$$

Example 3. Factor $4a^4 - 25x^6 + 4a^2b^2 - 9 - 30x^3 + b^4$.

$$4a^4 - 25x^6 + 4a^2b^2 - 9 - 30x^3 + b^4 = (4a^4 + 4a^2b^2 + b^4) - (25x^6 + 30x^3 + 9)$$

= $(2a^2 + b^2)^2 - (5x^3 + 3)^2 = (2a^2 + b^2 - 5x^3 - 3)(2a^2 + b^2 + 5x^3 + 3).$

Sometimes it is necessary to add and subtract one or more terms, as in the following example.

Example 4. Factor $x^4 + 3x^2y^4 + 4y^8$.

$$x^{4} + 3x^{2}y^{4} + 4y^{8} = x^{4} + 4x^{2}y^{4} + 4y^{8} - x^{2}y^{4} = (x^{2} + 2y^{4})^{2} - (xy^{2})^{2}$$
$$= (x^{2} + 2y^{4} - xy^{2})(x^{2} + 2y^{4} + xy^{2}).$$

Exercises

Factor the following polynomials into their prime factors.

1.
$$6ax + 9bx + 10ay + 15by$$
.

3.
$$x^2 + 4xy - 3xz - 12yz$$
.

5.
$$2x^3 + 5x^2 - 8x - 20$$
.

7.
$$x^2 + 4xy + 4y^2 - 7x - 14y$$
.

9.
$$9a^2 - 15ac + 5bc - b^2$$
.

11.
$$u^2 + 6uv + 9v^2 + u + 3v - 6$$
.

13.
$$x^4 - 4x^2y^2 - x^2z^2 + 4y^2z^2$$
.

15.
$$x^4 + x^2y^2 + y^4$$
.

17.
$$x^2 - 4xy + 4y^2 - 5x + 10y + 6$$
.

19.
$$y^3 + 27z^3 - 15xz - 5xy$$
.

2.
$$2ux - 3vy + uy - 6vx$$
.

4.
$$10a^2 + 4ac - 15ab - 6bc$$
.

6.
$$4y^3 - y^2 - 36y + 9$$
.

8.
$$x^2 + 4xy + 4y^2 - 9$$
.

10.
$$a^2-4b^2+3a-6b$$
.

12.
$$x^2 + 4xy + 4y^2 - 4z^2 + 12z - 9$$
.

14.
$$(a-b)^2-7(a-b)+10$$
.

16.
$$x^2 - ax - bx - 3x + ab + 3a$$
.

18.
$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$
.

20.
$$x^4 - 3x^2y^2 + y^4$$
.

14. Lowest Common Multiple and Highest Common Factor. One polynomial is a multiple of another polynomial if it has that polynomial as a factor. It is a common multiple of two or more polynomials if it is a multiple of each of those polynomials. It is their lowest common multiple (L.C.M.) if it is their common multiple that has the smallest possible number of prime factors.

To find the L.C.M. of two or more polynomials, first factor each polynomial into its prime factors. Then the product of every factor occurring in any of the given polynomials, to the highest power that it occurs in any one of them, is the required L.C.M.

The L.C.M., when it has been found, should be left in the factored form.

Similarly, the highest common factor (H.C.F.) of two or more polynomials is the polynomial containing the greatest number of prime factors which is a factor of each of the given polynomials. It is the product of every factor occurring in all of the given polynomials to the lowest power to which it occurs in any one of them.

EXAMPLE 1. Find the L.C.M. and the H.C.F. of $30a^2b^3c^3e$, $12ab^4cd^2$, and $54a^3b^2f$.

We have

$$30a^{2}b^{3}c^{3}e = 2 \cdot 3 \cdot 5 \cdot a^{2} \cdot b^{3} \cdot c^{3} \cdot e,$$

$$12ab^{4}cd^{2} = 2^{2} \cdot 3 \cdot a \cdot b^{4} \cdot c \cdot d^{2},$$

$$54a^{3}b^{2}f = 2 \cdot 3^{3} \cdot a^{3} \cdot b^{2} \cdot f.$$

Hence, the L.C.M. is $2^23^35a^3b^4c^3d^2ef$ and the H.C.F. is $2 \cdot 3ab^2$.

EXAMPLE 2. Find the L.C.M. and the H.C.F. of $x^2 - 4$, $x^2 + 4x + 4$, and $3x^2 + x - 10$.

We have

$$x^{2}-4=(x-2)(x+2),$$

$$x^{2}+4x+4=(x+2)^{2},$$

$$3x^{2}+x-10=(x+2)(3x-5).$$

Hence, the L.C.M. is $(x-2)(x+2)^2(3x-5)$ and the H.C.F. is x+2.

Exercises

Find the L.C.M. of each of the following sets of polynomials.

- 1. 9a2bcd3, 36b6c2d, 24abc4.
- 2. $24w^2xy^3z$, $60v^2wx^3$, $18xyz^4$, $20x^2y^6z^2$.
- 3. $x^2 y^2$, $x^2 + 2xy + y^2$, $x^2 2xy + y^2$.
- 4. $ax^2 + axy$, $a^2xy a^2y^2$, $ax^2 ay^2$.
- 5. $x^2 x 6$, $x^2 + 7x + 10$, $x^2 + 2x 15$.
- 6. $x^2 3xy + 2y^2$, $a^2 + 2ab + b^2$, ax ay by + bx.

Find the L.C.M. and the H.C.F. of each of the following sets of polynomials.

- 7. $x^3 5x^2 + 6x$, $x^4 4x^2$, $x^3 3x^2 4x + 12$.
- 8. $(x+y)^2-z^2$, $(x+z)^2-y^2$, $x^2-(y+z)^2$.
- 9. $9x^2 6xy + y^2 4$, $(3x + 2)^2 y^2$.
- 10. $x^3 x^2y$, $x^2y^2 + xy^3 + y^4$, $x^3 y^3$.
- 15. Simplification of Fractions. The value of the fraction a/b is the number obtained by dividing the number a by the number b. We call a the numerator and b the denominator of the fraction. The denominator must be different from zero since division by zero is excluded from mathematical operations (Art. 4).

The value of a fraction is not changed if its numerator and denominator are both multiplied, or both divided, by the same number different from zero.

Thus,
$$\frac{4}{11} = \frac{4 \times 5}{11 \times 5} = \frac{20}{55}; \quad \frac{12}{-5} = \frac{-12}{5} = -\left(\frac{12}{5}\right);$$
$$\frac{65}{39} = \frac{5 \times 13}{3 \times 13} = \frac{5}{3}; \quad \frac{12x^2yz^3}{8xy^3w} = \frac{3xz^3 \cdot 4xy}{2y^2w \cdot 4xy} = \frac{3xz^3}{2y^2w}.$$

A fraction is said to be simplified, or to be reduced to its lowest terms, if all of the factors common to both its entire numerator and its entire denominator have been removed by division according to the preceding theorem.

A fraction must not be simplified by cancelling merely a single term that is common to both the numerator and the denominator.

Thus, the fraction $\frac{4x+3y}{4x-z}$ is already in its lowest terms. It cannot be simplified further by cancelling the term 4x in the numerator and the denominator.

EXAMPLE 1. Simplify:
$$\frac{(3x+2)(x-4)}{(x^2+5)(x-4)}$$
.

By dividing both the numerator and the denominator by x-4, we obtain

$$\frac{(3x+2)(x-4)}{(x^2+5)(x-4)} = \frac{3x+2}{x^2+5}.$$

EXAMPLE 2. Simplify:
$$\frac{2x^2 + 20x + 42}{6x^2 + 8x - 30}$$
.

If we factor both the numerator and the denominator and divide both of them by the common factor 2(x+3), we have

$$\frac{2x^2+20x+42}{6x^2+8x-30}=\frac{2(x+3)(x+7)}{2(x+3)(3x-5)}=\frac{x+7}{3x-5}.$$

EXAMPLE 3. Simplify:
$$\frac{2a^2b + 3ab^2c + ac}{5b^2c + 3ab^2c + a^2c}$$
.

There are no factors common to both the numerator and the denominator. The fraction, as given, is in its lowest terms.

From the definition of a fraction, it follows that the quotient of two polynomials may be written as a fraction having the dividend as its numerator and the divisor as its denominator. That is

$$a \div b = \frac{a}{b}$$
.

The resulting fraction should be simplified, as in the preceding examples.

Example 4. Divide $4a^2bx^3y$ by $6ab^4xy^5$.

The required quotient may be written in the form

$$\frac{4a^2bx^3y}{6ab^4xy^5} = \frac{2ax^2 \cdot 2abxy}{3b^3y^4 \cdot 2abxy} = \frac{2ax^2}{3b^3y^4}.$$

EXAMPLE 5. Divide $3x^2 - 2x - 1$ by $3x^2 + 13x + 4$.

The quotient equals:
$$\frac{3x^2 - 2x - 1}{3x^2 + 13x + 4} = \frac{(3x+1)(x-1)}{(3x+1)(x+4)} = \frac{x-1}{x+4}.$$

Exercises

Reduce each fraction to its lowest terms.

1.
$$\frac{91}{39}$$
 2. $\frac{108a}{24a}$

2.
$$\frac{108a}{24a}$$

3.
$$\frac{65xy^2z^4}{30x^2yz^2}$$
.

$$4. \ \frac{42a^3b^5c^2d}{28a^2bc^3e^3}.$$

5.
$$\frac{15x^2(x-2y)}{9y(x-2y)}$$
.

6.
$$\frac{(3x+2y)^2}{9x^2-4y^2}$$
.

7.
$$\frac{x^2+2xy}{3xy^2+6y^3}$$
.

8.
$$\frac{x^2-3x-10}{3x^2+7x+2}$$

9.
$$\frac{2x^2+7x+5}{4x^2+4x-15}$$
.

$$10. \ \frac{12x^2 - 5x - 2}{6x^2 - 19x + 10}.$$

11.
$$\frac{xy + ax + by + ab}{xy + ax - by - ab}$$
.

12.
$$\frac{(x+2y)^2-3x-6y}{x^2y+2xy^2-3xy}$$
.

13.
$$\frac{(a+b)^2-(c+d)^2}{(a+c)^2-(b+d)^2}$$
.

14.
$$\frac{x^3+y^3}{4x^2+xy-3y^2}$$
.

15.
$$\frac{2x^3 + 2x^2y + 2xy^2}{x^3 - y^3}$$
.

16.
$$\frac{r^2s^2-7rst^2+12t^4}{r^2s^2-rst^2-6t^4}$$

Write each of the following quotients as a fraction in its lowest terms.

17.
$$84 \div 132$$
.

18.
$$42x^3y^5z^2 \div 63xy^2w$$
.

19.
$$(n^3 - 3n^2 + 9n) \div (n^3 + 27)$$

19.
$$(n^3 - 3n^2 + 9n) \div (n^3 + 27)$$
. **20.** $(x^2 - 8x + 12) \div (x^2 + 8x - 20)$.

16. Multiplication and Division of Fractions. To multiply two fractions, form a new fraction whose numerator is the product of the numerators of the given fractions and whose denominator is the product of their denominators; that is

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \cdot$$

The resulting fraction should be simplified, as in the preceding article. For this purpose, it is usually best to factor the numerators and denominators of the given fractions before performing the multiplications so that the common factors can be found and removed.

If one of the numbers to be multiplied is integral, it may be thought of as a fraction with denominator unity, thus

$$\frac{a}{b} \cdot c = \frac{a}{b} \cdot \frac{c}{1} = \frac{ac}{b}.$$

Example 1. Multiply $\frac{21}{22}$ by $\frac{55}{14}$.

 $\frac{21}{22} \times \frac{55}{14} = \frac{3 \times 7}{2 \times 11} \times \frac{5 \times 11}{2 \times 7} = \frac{3 \times 7 \times 5 \times 11}{2 \times 11 \times 2 \times 7} = \frac{15}{4}$

Example 2. Multiply $\frac{x^3 + 8y^3}{r^2 - 9y^2}$ by $\frac{x^2 - 4xy + 3y^2}{r^2 - 2xy - 8y^2}$.

$$\frac{x^3 + 8y^3}{x^2 - 9y^2} \cdot \frac{x^2 - 4xy + 3y^2}{x^2 - 2xy - 8y^2} = \frac{(x + 2y)(x^2 - 2xy + 4y^2)}{(x - 3y)(x + 3y)} \cdot \frac{(x - 3y)(x - y)}{(x + 2y)(x - 4y)}$$
$$= \frac{(x^2 - 2xy + 4y^2)(x - y)}{(x + 3y)(x - 4y)}.$$

To divide one fraction by another, invert the divisor fraction and proceed as in multiplication; that is,

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}.$$

The reciprocal of a number is unity divided by that number.

Thus, the reciprocal of 3 is $\frac{1}{3}$; of a is $\frac{1}{a}$; of $\frac{c}{d}$ is $1 \div \frac{c}{d}$ or $\frac{d}{c}$.

With this definition of the reciprocal of a number, we may state the law of division of fractions as follows: to divide one fraction by another, multiply the dividend fraction by the reciprocal of the divisor.

Example 1. Divide 40 by 15.

$$\frac{40}{91} \div \frac{15}{14} = \frac{40}{91} \times \frac{14}{15} = \frac{8 \times 5 \times 2 \times 7}{13 \times 7 \times 3 \times 5} = \frac{16}{39}.$$

Example 2. Divide $\frac{6a^2b}{5c^2d}$ by $\frac{9ab^3}{10c^4d^5}$.

$$\frac{6a^2b}{5c^2d} \div \frac{9ab^3}{10c^4d^5} = \frac{6a^2b}{5c^2d} \cdot \frac{10c^4d^5}{9ab^3} = \frac{6a^2b \cdot 10c^4d^5}{5c^2d \cdot 9ab^3} = \frac{4ac^2d^4}{3b^2}.$$

EXAMPLE 3. Divide
$$\frac{x^2 + x - 2}{x^2 - 7x}$$
 by $\frac{x^2 + 2x}{x^2 - 13x + 42}$.
$$\frac{x^2 + x - 2}{x^2 - 7x} \div \frac{x^2 + 2x}{x^2 - 13x + 42} = \frac{x^2 + x - 2}{x^2 - 7x} \cdot \frac{x^2 - 13x + 42}{x^2 + 2x}$$

$$=\frac{(x-1)(x+2)(x-6)(x-7)}{x(x-7)x(x+2)}=\frac{(x-1)(x-6)}{x^2}.$$

Exercises

Find the reciprocals of the following expressions.

2.
$$\frac{5}{9}$$
.

3.
$$5x + 1$$
.

$$4. \ \frac{2a-b}{3a+5b}.$$

Perform the indicated operations and simplify the results.

5.
$$\frac{22}{63} \times \frac{14}{121}$$
.

6.
$$\frac{5}{51} \div \frac{1}{17}$$

7.
$$\frac{5a}{2b^2} \cdot \frac{8b^3}{15a^4}$$

$$8. \ \frac{5x^3}{7yz^2} \div \frac{10x^3}{63y^3z}.$$

9.
$$4x^4yz \cdot \frac{19ab^2}{72xy^5z^7}$$
.

10.
$$\frac{4r^4s^2t^7}{21r^7v^2w^5} \cdot \frac{35r^2v^5w^8}{6r^3s^6t^4}.$$

11.
$$\frac{a^3-5a^2}{b^2} \cdot \frac{2b}{ac-5c}$$

12.
$$\frac{x+3y}{u-2v} \cdot \frac{3u-6v}{5x+15y}$$
.

13.
$$\frac{xy+4y^2}{6x^2} \cdot \frac{y^2}{x^2+4xy}$$

$$\frac{14. \ \frac{2y-xy}{5w-yw} \cdot \frac{3y^2-15y}{2xz-4z}}{}$$

15.
$$\frac{3x-3y}{(2x+y)^2} \cdot \frac{4x^2-y^2}{2x^2-2y^2}$$

16.
$$\frac{x^2-2x-8}{x^2+3x-28} \cdot \frac{2x^2+13x-7}{2x^2+7x+6}$$
 17. $\frac{4x^2-x-14}{8x^2+18x+7} \cdot (2x+1)$.

18.
$$\frac{z^2+3z-10}{3z^2-4z-4}$$
 (3z + 2). 19. $\frac{2y^2-y-6}{6y^2+17y+12}$ $\cdot \frac{3y^2+y-4}{2y^2+7y-4}$.

20.
$$\frac{3x^2 + 11xy - 4y^2}{3x^2 + 8xy + 4y^2} \cdot \frac{x^2 + 3xy + 2y^2}{3x^2 + 5xy + 2y^2}$$

21.
$$\frac{x^2 + 4xy + 4y^2}{4x^2 + 12xy + 9y^2} \cdot \frac{2x^2 + xy - 3y^2}{x^2 - xy - 6y^2}$$

22.
$$\frac{(x-2)^2}{3x+1} \div \frac{2x-4}{9x+3}$$
. **23.** $\frac{2x+1}{3x-2} \div \frac{4x^2-1}{9x^2-4}$.

24.
$$\frac{16h^2-k^2}{h^2-4k^2} \div \frac{8h+2k}{3h-6k}$$
 25. $\frac{x^2-6x+9}{2x-3} \div \frac{5x-15}{4x^2-12x+9}$

26.
$$(3u^2 - uv - 4v^2) \div \frac{u^2 - v^2}{2uv}$$
 27. $\frac{2r^2 - rs}{3rs - s^2} \div \frac{rs^2 - 2r^2s}{2rs - 6r^2}$

28.
$$\frac{a^2 - 5ab + 4b^2}{a^2 - 9ab + 18b^2} \div \frac{2a^2 + 11ab + 5b^2}{a^2 + 7ab + 10b^2}$$

17. Addition and Subtraction of Fractions. The sum of two or more fractions having the same denominator is equal to the sum of the numerators divided by the common denominator; that is,

$$\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}, \qquad \frac{a}{d}+\frac{b}{d}+\frac{c}{d}=\frac{a+b+c}{d},$$

and so on tor any number of such fractions.

If some of the fractions are to be subtracted, instead of being added, subtract, instead of adding, the corresponding numerators; thus,

$$\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}, \qquad \frac{a}{d}+\frac{b}{d}-\frac{c}{d}=\frac{a+b-c}{d},$$

and so on.

Example 1. Perform the addition: $\frac{2x-1}{3x+2} + \frac{4-x}{3x+2}$.

$$\frac{2x-1}{3x+2} + \frac{4-x}{3x+2} = \frac{(2x-1)+(4-x)}{3x+2} = \frac{x+3}{3x+2}.$$

EXAMPLE 2. Perform the indicated operations: $\frac{3x-5}{x^2+1} - \frac{4x-9}{x^2+1} + \frac{5x+2}{x^2+1}$

$$\frac{3x-5}{x^2+1} - \frac{4x-9}{x^2+1} + \frac{5x+2}{x^2+1} = \frac{(3x-5) - (4x-9) + (5x+2)}{x^2+1} = \frac{4x+6}{x^2+1}.$$

EXAMPLE 3. Perform the indicated operations and simplify the result:

$$\frac{3x^2-2}{x-2}-\frac{x^2+3x+4}{x-2}-\frac{8-x^2}{2-x}.$$

To make the last denominator the same as the other two, we shall multiply the numerator and denominator of the last fraction by -1.

42685

Zock Register into

§ 17 ADDITION AND SUBTRACTION OF FRACTIONS

$$\frac{3x^2 - 2}{x - 2} - \frac{x^2 + 3x + 4}{x - 2} - \frac{x^2 - 8}{x - 2} = \frac{(3x^2 - 2) - (x^2 + 3x + 4) - (x^2 - 8)}{x - 2}$$
$$= \frac{x^2 - 3x + 2}{x - 2} = x - 1.$$

If the fractions to be combined do not have the same denominators, first transform all of them into fractions having the L.C.M. (Art. 14) of the denominators as their common denominator, then combine the resulting fractions having the same denominator.

EXAMPLE 4 Perform the indicated operations:

$$\frac{3x-4}{x+2} + \frac{5x-3}{x+1} - \frac{2x+7}{x}$$

The L.C.M. of the denominators is (x+2)(x+1)x.

To transform the first fraction into an equivalent fraction having this L.C.M. as its denominator, we must multiply its numerator and denominator by $(x+2)(x+1)x \div (x+2) = (x+1)x;$

that is, by the quotient obtained by dividing the L.C.M. of the denominators by the denominator of the given fraction.

Similarly, we must multiply the numerator and denominator of the second and third fractions, respectively, by

$$(x+2)(x+1)x \div (x+1) = (x+2)x$$
 and $(x+2)(x+1)x \div x = (x+2)(x+1)$.

These multiplications give us

$$\frac{3x-4}{x+2} + \frac{5x-3}{x+1} - \frac{2x+7}{x} = \frac{(3x-4)(x+1)x}{(x+2)(x+1)x} + \frac{(5x-3)(x+2)x}{(x+2)(x+1)x} - \frac{(2x+7)(x+2)(x+1)}{(x+2)(x+1)x}$$

$$= \frac{(3x-4)(x+1)x + (5x-3)(x+2)x - (2x+7)(x+2)(x+1)}{(x+2)(x+1)x}$$

$$= \frac{(3x^3-x^2-4x) + (5x^3+7x^2-6x) - (2x^3+13x^2+25x+14)}{(x+2)(x+1)x}$$

$$= \frac{6x^3-7x^2-35x-14}{x^3+3x^2+2x}.$$

A mixed expression, such as $a + \frac{b}{c}$, where a is integral, may be combined by first writing the quantity a as a fraction, in the form $\frac{a}{1}$, and adding the fractions according to the preceding rule.

Example 6. Perform the indicated operations: $x - y + \frac{3x^2 + 2xy}{x + y}$.

$$x - y + \frac{3x^2 + 2xy}{x + y} = \frac{x - y}{1} + \frac{3x^2 + 2xy}{x + y} = \frac{(x - y)(x + y)}{x + y} + \frac{3x^2 + 2xy}{x + y}$$
$$= \frac{(x^2 - y^2) + (3x^2 + 2xy)}{x + y} = \frac{4x^2 + 2xy - y^2}{x + y}.$$

Exercises

Perform the indicated operations.

1.
$$\frac{5}{7} - \frac{1}{7} + \frac{2}{7} - \frac{3}{7}$$

3.
$$\frac{6}{x} + \frac{3x-7}{x} - \frac{4-x}{x}$$
.

5.
$$\frac{7x+2}{10} - \frac{2x-9}{10}$$
.

7.
$$\frac{4}{x^3} - \frac{3}{2x^2} + \frac{5}{x} - 2$$
.

$$9. \ \frac{s}{x} - \frac{t}{y} - \frac{2s+3t}{xy}.$$

11.
$$\frac{5}{x+3} - \frac{2}{x-1}$$
.

13.
$$\frac{8x-5}{(x-1)(x+4)} - \frac{2}{x+4} + \frac{5}{x-1}$$

15.
$$3-4x-\frac{5-3x-7x^2}{x+2}$$
.

17.
$$\frac{5x-1}{x^2+2x-3}-\frac{4x+1}{x^2-x-12}$$

19.
$$\frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y}$$

21.
$$\frac{5}{x+1} - \frac{3}{x+3} - \frac{2x+7}{(x+1)^2} + \frac{3x-5}{(x+3)^2}$$

2.
$$2-\frac{4}{3}-\frac{6}{5}+\frac{13}{15}$$

4.
$$\frac{4y+7}{3y+4} - \frac{2y-8}{3y+4} - \frac{3-5y}{3y+4}$$
.

6.
$$\frac{3a-2b}{6}-\frac{5a+3b}{14}$$
.

8.
$$\frac{2a}{bc} - \frac{b}{ca} + \frac{3c}{ab}$$

10.
$$\frac{a+x}{b+y}-\frac{a}{b}$$
.

12.
$$\frac{2}{x-5} + \frac{3}{2x+1}$$

14.
$$\frac{3x-7}{(x+1)^2} - \frac{5}{x+1} - \frac{3}{x-2}$$
.

16.
$$3z^2 + 7z + 2 - \frac{z^2 - 10}{2z - 5}$$

18.
$$\frac{3t+5}{t^2-4}+\frac{6-4t}{t^2-4t+4}$$

20.
$$\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x}$$

18. Complex Fractions. A complex fraction is one in which at least one term of the numerator or of the denominator is, itself, a fraction.

To simplify a complex fraction, reduce the numerator and denominator each, separately, to a simple fraction. Then divide the numerator by the denominator.

EXAMPLE 1. Simplify:
$$\frac{\frac{a+b}{b} - \frac{b}{a+b}}{\frac{1}{b} + \frac{2}{a}}$$
.

Numerator =
$$\frac{a+b}{b} - \frac{b}{a+b} = \frac{(a+b)^2 - b^2}{b(a+b)} = \frac{a^2 + 2ab}{b(a+b)}$$
.

Denominator
$$=\frac{1}{b}+\frac{2}{a}=\frac{a+2b}{ab}$$
.

Hence,
$$\frac{\frac{a+b}{b} - \frac{b}{a+b}}{\frac{1}{b} + \frac{2}{a}} = \frac{\frac{a^2 + 2ab}{b(a+b)}}{\frac{a+2b}{ab}} = \frac{a(a+2b)}{b(a+b)} \cdot \frac{ab}{a+2b} = \frac{a^2}{a+b}.$$

Frequently the computation can be shortened considerably by multiplying both the numerator and the denominator by the L.C.M. of

the denominators of all the fractions that appear in either the numerator or the denominator of the given expression, as in the following example.

EXAMPLE 2. Simplify:
$$\frac{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}{\frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy}}$$

If we multiply every term in the numerator and the denominator by xyz, the given fraction will be transformed at once into a simple fraction.

$$\frac{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}{\frac{1}{yz} + \frac{1}{zx}} = \frac{\frac{xyz}{x} + \frac{xyz}{y} + \frac{xyz}{z}}{\frac{xyz}{yz} + \frac{xyz}{xz} + \frac{xyz}{xy}} = \frac{yz + xz + xy}{x + y + z}.$$

Exercises

Simplify the following complex fractions.

1.
$$\frac{\frac{6}{5} - \frac{3}{4}}{\frac{7}{4} - \frac{2}{5}}$$

4. $\frac{\frac{a}{c} - \frac{b}{c}}{\frac{x}{c} + \frac{y}{c}}$

7. $\frac{2 - \frac{b}{a+b}}{1 + \frac{3a}{b-a}}$

10. $\frac{a+b-\frac{a^2}{a+b}}{\frac{1}{a} - \frac{1}{a+b}}$

13. $\frac{x+h}{x+h+1} - \frac{x}{x+1}$

2.
$$\frac{\frac{7}{5} - \frac{13}{12}}{\frac{1}{3} + \frac{4}{5}}$$
3. $\frac{\frac{2}{a} - 3}{\frac{1}{a} + 5}$
5. $\frac{\frac{x}{y} - 1}{x}$
6. $\frac{\frac{x}{y} + \frac{y}{x}}{\frac{x}{y} - \frac{y}{x}}$
8. $\frac{\frac{2}{y} + \frac{3}{x}}{\frac{9}{x^2} - \frac{4}{y^2}}$
9. $\frac{\frac{a}{b} - \frac{b}{a}}{\frac{1}{b} - \frac{1}{a}}$
11. $\frac{(x - y)^2}{1 + \frac{2y}{x - y}}$
12. $\frac{\frac{1}{x + h} - \frac{1}{x}}{h}$

11.
$$\frac{1 + \frac{2y}{x - y}}{1 + \frac{1}{x + 3}}$$
14.
$$\frac{1 - \frac{1}{x + 3}}{x - \frac{12}{x + 1}}$$

15.
$$\frac{\frac{u}{u+v} - \frac{v}{v-u}}{\frac{v}{u+v} - \frac{u}{v-u}}$$

Chapter 3

Linear Equations in One Unknown

19. Equations. An equation is a statement that two expressions are equal. The expression to the left of the sign of equality is the first member (or first side) and the one to the right is the second member (or second side) of the equation.

Thus, the statement

$$2x + y = x^2 + y^2,$$

is an equation in which 2x + y is the first member and $x^2 + y^2$ is the second member.

We must distinguish between two kinds of equations: identical equations and equations of condition.

An identical equation, or identity, is one that is true for all values of the letters involved in it for which both sides of the equation have a meaning.

Thus, the equations

$$a^{2} - b^{2} = (a - b)(a + b),$$

$$\frac{x^{3} + 1}{x + 1} = x^{2} - x + 1,$$

$$\frac{m}{n} + \frac{n}{m} = \frac{m^{2} + n^{2}}{mn},$$

and

are identities. The first one is true for all values of a and b; the second, for all values of x except x = -1; and the third for all values of m and n except those for which either m = 0 or n = 0.

An identity may be **proved** by reducing one member to the form given in the other member. For example, the first identity in the preceding illustration may be proved by multiplying together the factors in the second member and simplifying the result.

An equation of condition, or conditional equation, is one that is true only for certain values, or sets of values, of the letters contained in it.

Thus, the equation $x^2 + 4x - 21 = 0$ is true only if x = -7 or if x = 3 but not for any other value of x.

The equation x + y = 5 is true for certain sets of values of x and y, such as x = 2, y = 3, or x = 7, y = -2, and so on, but it is not true for many other sets, such as x = 8, y = 3, or x = 1, y = 7, and so on.

The symbol = is used to denote equality, both in identities and in equations of condition. Occasionally, in the case of identities, the symbol \equiv (read, "is identically equal to") is used when one wishes to emphasize the fact that the given equation is an identity.

20. Linear Equations in One Unknown. An equation of the form

$$ax+b=0, a\neq *0$$

where a and b are known numbers and a is different from zero, is called a linear equation in x. It has one, and only one, root, namely

$$x = -\frac{b}{a}$$

Equations that are not given in the form stated above can frequently be reduced to that form, as is shown in the following examples.

EXAMPLE 1. Solve:

$$(2x-5)(x+3)-(x-2)(3x+1)+(4-x)(5-x)=0.$$

Multiply out each product:

$$(2x^2 + x - 15) - (3x^2 - 5x - 2) + (20 - 9x + x^2) = 0.$$

Remove the parentheses and simplify. The result is

$$-3x+7=0.$$

The root of this equation is $\frac{7}{3}$. The student should check this result.

Example 2. Solve:
$$5 + \frac{5x}{1-x} = \frac{1}{1-x} + \frac{2}{x}$$
.

Multiply through by x(1-x), which is the L.C.M. of the denominators

$$5x(1-x) + 5x^2 = x + 2(1-x),$$
$$5x = 2 - x.$$

or

The root of this equation is $x = \frac{1}{3}$, which checks in the given equation.

Exercises

State which of the following equations are identities and which are equations of condition. Prove the identities and solve the equations of condition.

1.
$$3x + 2 - (5x - 3 - [2x + 1] - 7x + 9) = 7x - 3$$
.

2.
$$4x-1-(5-2x-[3x-2]+1)=5x-1$$
.

3.
$$x^2 + 6x - 9 = (x + 7)(x - 3)$$
.

4.
$$2x^2 + 11x + 12 = (2x + 3)(x + 4)$$
.

5.
$$3a^2 + 8ab + 4b^2 = (3a + 2b)(a + 2b)$$
.

6.
$$\frac{x}{3} - \frac{3}{x} + 2 = \frac{x^2 + 2x + 3}{3x}$$

Solve the following equations of condition.

7.
$$4x + 8 = x - 7$$
.

8.
$$3x - 5 = 2(2x - 4)$$
.

9.
$$5.1x + 3.7 = 2.4x - 7.1$$
.

10.
$$0.3(4.3x - 1.8) = 0.54x + 0.27$$
.

^{*} The symbol ≠ is read, "is not equal to."

11.
$$7(3x+2) - 5(2x+3) = 5x + 7$$
. 12

13.
$$\frac{2x-5}{7} + \frac{3x+8}{2} + 1 = 0$$
.

15.
$$4 - \frac{15x + 13}{3x - 2} = 0.$$

17.
$$\frac{1}{2x-1} - \frac{2}{x+1} = \frac{15}{4x-2}$$

19.
$$\frac{3x+4}{3x+1} - \frac{3x+1}{3x-1} = \frac{1}{1-9x^2}$$
.

21.
$$\frac{4x-1.7}{2x-1.3} = \frac{2x+4.7}{x+1.2}$$
.

23.
$$x = \frac{1}{a} - a - \frac{x}{a}$$

25.
$$\left(\frac{a}{b} + \frac{b}{a}\right)x - 2x = \frac{b}{a} - \frac{a}{b}$$

Solve the following equations for x.

27.
$$y = mx + b$$
.

29.
$$A = P(1 + xn)$$
.

12.
$$2(3x+1) + 4(7-x) = 7x + 8$$

14.
$$\frac{3}{x} - \frac{9}{4} = \frac{7}{2x} - \frac{5}{3}$$

16.
$$\frac{x+10}{3x+4} + \frac{3}{4} = 0$$
.

18.
$$\frac{15}{2x+1} - \frac{5}{4x^2-1} = \frac{6}{1-2x}$$

20.
$$\frac{6x+1}{x+3} + \frac{2x-7}{1-x} = \frac{4x^2+8}{x^2+2x-3}$$
.

22.
$$\frac{6x+2.2}{2x+2.9} + \frac{1-3x}{x+2.5} = 0$$
.

24.
$$\frac{a}{x-2a} + \frac{x-a}{a} = \frac{x}{a}$$
.

26.
$$\frac{x-a}{x+a} + \frac{2(a+b)}{x} = \frac{x+b}{x-b}$$
.

28.
$$axy + bx + cy + d = 0$$
.

30.
$$pv = p_0v_0\left(1 - \frac{x}{273}\right)$$
.

21. Problems Leading to Linear Equations. In the applications of mathematics, it frequently happens that the value of the unknown must be found, not by solving an equation that is given to us, but from information that is stated in words and out of which we must ourselves set up the equation to be solved. Frequently it is more difficult to write down this equation from the verbal statement of the problem than it is to solve the equation after it has been written.

Whenever a verbal problem is given to us, we should think of it as a succession of problems, each with its own special difficulties and methods of solution. Each of these component problems should be solved, by itself, before the next one is undertaken.

The following is the usual sequence of component problems which must be solved in order to obtain the final solution of a verbal problem in algebra.

1. Read the problem, several times if necessary, until you understand exactly what is given and what is to be found. Look up the meaning of any words that you do not understand.

2. Choose one of the numbers whose values are to be found and write the statement that x equals that number.

3. If there are other unknown numbers in the problem, write out the value of each of these other unknowns in terms of x. To do this, you must either know or look up the formula expressing the value of each unknown in terms of x.

4. The problem will state that two expressions containing these unknowns are equal. Write this statement as an equation in x.

5. Solve this equation.

6. Check your results by testing whether they satisfy the conditions of the problem as stated verbally.

EXAMPLE. A man has \$20,000 invested in 4% and 5% bonds. His annual income from the 4% bonds exceeds that from the 5% bonds by \$125. Find the amount of the bonds of each kind that he owns.

Let x = the number of dollars invested in 4% bonds.

Then 20000 - x = the number of dollars invested in 5% bonds.

Hence $\frac{4x}{100}$ = the number of dollars of annual income from the 4% bonds and $\frac{5(20000-x)}{100}$ = the number of dollars of annual income from 5% bonds.

From the statement of the problem,

$$\frac{4x}{100} = \frac{5(20000 - x)}{100} + 125.$$

Clear of fractions: 4x = 100000 - 5x + 12500.

Simplify:

9x = 112500,

x = 12500,

and

or

$$20000 - x = 7500.$$

The man has \$12,500 invested in 4% bonds and \$7,500 invested in 5% bonds.

CHECK. \$12,500 + \$7,500 = \$20,000; further, the annual interest on \$12,500 at 4% is \$500 and that on \$7,500 at 5% is \$375. \$500 - \$375 = \$125.

Problems

- 1. A stone weighing 685 pounds is broken into two parts such that the smaller weighs two-thirds as much as the larger. Find the weight of each part.
- 2. The sum of $\frac{1}{4}$, $\frac{1}{5}$, and $\frac{1}{6}$ of a number exceeds $\frac{1}{2}$ the number by 105. Find the number.
- 3. The sum of the ages of three men is 70 years. In how many years will the sum of their ages be four times as great as it was ten years ago?
- 4. The circumference of each of the larger wheels of a wagon exceeds that of each of the smaller wheels by 13 inches. The smaller wheels make as many revolutions in going 184 feet as the larger ones do in going 207 feet. Find the circumference of each wheel.
- 5. A merchant bought some articles for \$3.20 each. He marked them for sale at a price such that, by selling them for 10% less than the marked price, he still made 35% over cost. Find the marked price.
- 6. The speed of a passenger plane exceeds that of a cargo plane by 52 miles an hour. They make the trip between two cities in five hours and seven hours, respectively. Find the speed of each.

- 7. A boy unpacked 12 dozen fragile articles. He was to receive three cents for each article he unpacked safely and to pay twenty-five cents for every one he broke. If the amount due him for his work was \$2.36, how many did he break?
- 8. A man bought some shares of stock for \$40 a share. Later, he bought twice as many shares for \$30 a share. He sold all these shares for \$32 a share, thereby losing \$1200. How many shares did he buy at his first purchase?
- 9. A farmer sold some corn for \$728. The following year, with the price 50% higher, he sold 400 bushels less for \$756. How many bushels did he sell the first year?
- 10. One alloy of tin and copper is composed of 3 parts tin and 5 parts copper; another is composed of 4 parts tin and 9 parts copper. How many tons of each must be taken to make 105 tons of an alloy composed of 1 part tin and 2 parts copper?
- 11. An automobile radiator contains 15 quarts of a mixture which is 25% alcohol and 75% water. How much of this mixture must be drained off and replaced by pure alcohol to produce a mixture which is 40% alcohol?
- 12. If a new set of spark plugs, costing \$5.50, will increase the mileage of a car from 16 to 18 miles per gallon of gasoline, and if gasoline costs 22 cents a gallon, how many miles must the car be driven in order that the saving in gasoline will pay the cost of the spark plugs?
- 13. A marksman heard his bullet strike the target two seconds after it was fired. If the bullet traveled 1400 feet per second and if the sound traveled 1100 feet per second, find the distance of the target.
- 14. A can paint a house in 12 hours and B can paint it in 18 hours. A and B work together on it for a certain time, then B finishes it in twice as many hours more. Find the number of hours each man worked.

Chapter 4

Ratio, Proportion, and Variation

22. Ratio. The value of the ratio of a number a to a second number b is the quotient, a divided by b. It may be expressed in any one of the following three forms

 $a:b=a\div b=\frac{a}{b}$

For purposes of mathematical computation, the last of these three forms is usually the most convenient.

When the value of the ratio is stated in the first of the above mentioned forms, the number a is called the antecedent and b, the consequent; in the second form, a is the dividend and b is the divisor; and in the last form, a is the numerator and b, the denominator. The two numbers a and b are the terms of the ratio.

When one is dealing with the ratio of two concrete numbers of the same kind, both should be expressed in the same units.

Thus, the ratio of 37 minutes to 3 hours is 37:180; the ratio of 13 quarts to 4 gallons is 13:16, and the ratio of 5 feet to 2 yards is 5:6.

23. Proportion. The statement that two ratios are equal is called a proportion. The proportion, a is to b as c is to d, may be written in any one of the following forms:

$$a:b=c:d$$
, $a \div b=c \div d$, or $\frac{a}{b}=\frac{c}{d}$.

In this proportion, a and d are the extremes and b and c are the means. The number d is called the fourth proportional to a, b, and c.

In the proportion

$$a:b=b:d,$$

in which the means are equal, b is called a mean proportional between a and d and d is called a third proportional to a and b.

Exercises

Write each ratio as a fraction and simplify.

3.
$$12x^5y^3z^7:30x^2y^4z^2$$
.

5.
$$a^2(x^2-y^2):abc(x^2+2xy-3y^2)$$
.

2.
$$\frac{51}{32}$$
 : $\frac{85}{44}$.

4.
$$a(x^2 + xy) : ab(xy + y^2)$$
.

6.
$$(x^2-3x+2):(x^2+3x-10)$$
.

8. 7 feet to 66 inches.

If a:b=c:d, show that:

9.
$$ad = bc$$
.

10.
$$a:c=b:d$$
.

11.
$$d:c=b:a$$
.

12.
$$\frac{a+b}{b} = \frac{c+d}{d}$$
. **13.** $\frac{a-b}{b} = \frac{c-d}{d}$.

$$13. \ \frac{a-b}{b} = \frac{c-d}{d}.$$

14.
$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$
.

15. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, show that $\frac{a}{b} = \frac{a+c+e}{b+d+f}$.

HINT. Let $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$. Show that a = kb, c = kd, and e = kf. Add these equations and solve for k.

Solve for x.

16.
$$x+7:x-9=9:5$$
.

17.
$$2x - 7:7x + 3 = 3:13$$
.

18.
$$9x - 8:4 = 5x + 8:3$$

18.
$$9x - 8 : 4 = 5x + 8 : 3$$
. **19.** $8 : 5x + 7 = 5 : 3x - 2$.

20.
$$x-3:x-4=x-7:x-12$$
. **21.** $x^2-7:x^2-3=1:3$.

21.
$$x^2 - 7 : x^2 - 3 = 1 : 3$$
.

- 22. Find x, given that if x is subtracted from each of the numbers 12, 8, 19, and 11, the resulting numbers form a proportion.
- 23. The dimensions of a given rectangle are 4 feet and 7 feet. Find the dimensions of a rectangle similar to the given one and having an area of 448 square feet.
- 24. The sides of a given triangle are 6, 11, and 13 inches. The perimeter (that is, the sum of the sides) of a triangle similar to the given one is ten feet. Find the lengths of the sides of the second triangle.

Find the fourth proportional to the following three numbers.

27.
$$3, \frac{1}{2}, 5$$
.

30.
$$a+1$$
, a^2-1 , $a-1$.

Find the positive number which is a mean proportional between the given numbers.

31. 18, 8.

32. 75, 27.

33. 5, 7.

34. a^2 , b^2 .

Find the third proportional to the given numbers.

35. 4, 6.

36. 5, 15.

37. 7, 2.

38. x, y.

- 24. The Language of Variation. In this article, we shall consider several forms of statement that occur frequently in the applications of mathematics. We shall show how to replace each of these statements by an equation so that we can deal mathematically with the quantities involved more conveniently than would otherwise be possible.
- (a) Direct variation. Suppose it is stated, of two variables y and x, that

y varies as x,

or

y varies directly as x, or

y is proportional to x, or y is directly proportional to x.

These four forms of statement are equivalent. They mean that y and x vary in such a way that,

$$y = kx,$$

where k is a constant. Whenever any one of these four statements occurs, therefore, the student should replace it, mentally, by the statement:

y equals some constant times x.

The constant k, that appears in the statement y = kx, is called the constant of proportionality. We can determine the value of this constant k provided we know the value of y that corresponds to some one value of x other than x = 0.

EXAMPLE 1. If an automobile is traveling at a uniform speed, then the distance s that it has traveled varies as the time t during which it has been traveling; that is,

s = kt.

The constant of proportionality, in this case, is the speed. We can determine its value if we know how far the automobile has gone at the end of some definite time t. Suppose, for example, that we are given the further information that the automobile has gone 85 miles at the end of 2.5 hours. Then we have

$$85 = k2.5$$

from which we find that k = 34.

The equation expressing the distance that the automobile has traveled, in terms of the time, now becomes

$$s = 34t.$$

EXAMPLE 2. If the base of a variable triangle is constant, then the area is proportional to the altitude, that is,

$$A = kh$$
.

Suppose, further, that we know that the area is 20 square inches when the altitude is 5 inches. Then

$$20=k5,$$

so that k = 4. The expression for the area in terms of the altitude now becomes

$$A=4h.$$

(b) Inverse variation. Either one of the statements

y varies inversely as x, or

y is inversely proportional to x,

means that y and x vary in such a way that

$$y=\frac{k}{x}$$

where k is a constant.

EXAMPLE. Boyle's law, in physics, states that, for a fixed quantity of gas at a constant temperature, the pressure p is inversely proportional to the volume v, that is

$$p = \frac{k}{v}$$

Suppose, further, that p = 76 when v = 3. Then

$$76 = \frac{k}{3}$$

Hence k = 228 and the equation connecting p and v becomes

$$p = \frac{228}{v}$$
.

(c) Joint variation. Combined variation. The statement

z varies jointly as x and y,

means that there exists a constant k such that

$$z = kxy$$
.

Thus, the area of a variable triangle varies jointly as the base and the altitude, since

$$A = \frac{1}{2}bh.$$

The preceding forms of statement may be combined. For example, the statement: y varies jointly as x and the square of z, and inversely as w and the cube of v, may be expressed as an equation of the form

$$y = \frac{kxz^2}{wv^3}.$$

Conversely, the equation

$$z = \frac{kt^2x^3}{vw^2},$$

may be stated in words as follows: z varies jointly as the square of t and the cube of x, and inversely as y and the square of w.

Exercises

Write each of the following statements as an equation, using a constant k. Then find the value of k and rewrite the equation replacing k by its value.

- 1. S is proportional to e^2 and S = 150 when e = 5.
- 2. F varies directly as m and inversely as r^2 . Also F = 15 when m = 6000 and r = 4.
- 3. P varies jointly as A and the square of v. Also, P = 30 when A = 84 and v = 15.
- **4.** L varies jointly as b and the square of d and inversely as l. When b = 4, d = 3, and l = 24, the value of L is 372.

State each of the following formulas in words, using the language of variation.

5.
$$t = 73pv$$
.
6. $v = 3.14r^2h$.
7. $F = 0.61\frac{m}{r^2}$.
8. $Q = 4.3\frac{d\sqrt{h}}{p}$.
9. $C = \frac{4\pi^2R}{t^2}$.
10. $F = 2\pi\sqrt{\frac{I}{mgh}}$.

- 11. The pressure of still air against a moving automobile varies as the square of the speed. If the pressure is 32 pounds at 20 miles an hour, what is it at 45 miles an hour?
- 12. Assuming that the value of a used car is inversely proportional to its age, if the value of a car was \$420 when it was three years old, what was its value when it was seven years old?
- 13. The time of vibration of a simple pendulum varies as the square root of its length. If a pendulum 39 inches long vibrates in one second, what is the length of a pendulum that vibrates in one-half of a second?
- 14. If a vessel with a horizontal bottom and vertical sides contains water, the pressure on the bottom varies jointly as the area of the bottom and the depth of the water. If the area of the bottom is 36 square inches and the depth is two feet, the pressure is 31.2 pounds. Find the pressure when the area of the bottom is three square feet and the depth is 18 inches.
- 15. The density of a solid is directly proportional to its mass and inversely proportional to its volume. If the density of a body occupying 6 cubic feet and weighing 1875 pounds is 5, what is the density of a body weighing 4050 pounds and occupying a cubic yard?
- 16. The load that can safely be supported by a circular column of a given material varies as the fourth power of its radius and inversely as the square of its length. If a column three inches in radius and ten feet high can support four tons, how many tons can a column one foot in diameter and 16 feet high support?
- 17. The loss of pressure of water flowing through a pipe varies as the length and inversely as the diameter of the pipe. If the loss is 75 pounds in a pipe 250 yards long and two inches in diameter, what is the loss in one 1000 yards long and three inches in diameter?
- 18. If two unequal weights are connected by a cord passing over a pulley, the distance the lighter weight is drawn up in a given time varies jointly as the difference of the weights and the square of the time and inversely as the sum of the weights. If 5 pounds raises 3 pounds 16 feet in 2 seconds, now far will 13 pounds raise 12 pounds in 10 seconds?

Chapter 5

Exponents and Radicals

25. Laws of Exponents. If n is any positive integer, the symbol a^n was defined in Art. 7 as the product

$$a^n = a \cdot a \cdot a$$
 and so on to n factors.

From this definition, one readily derives the following five laws of exponents for positive, integral values of m and n.

I.
$$a^m \cdot a^n = a^{m+n}$$
.
II. $(a^m)^n = a^{mn}$.
III. (1) $\frac{a^m}{a^n} = a^{m-n}$, if $m > n$.
(2) $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$, if $m < n$.
IV. $(ab)^n = a^n b^n$.
V. $(\frac{a}{b})^n = \frac{a^n}{b^n}$.

ILLUSTRATIONS.

$$a^{3}a^{5} = (a \cdot a \cdot a)(a \cdot a \cdot a \cdot a \cdot a) = a^{3+5} = a^{8}.$$

$$(a^{2})^{3} = a^{2} \cdot a^{2} \cdot a^{2} = (a \cdot a)(a \cdot a)(a \cdot a) = a^{2} \cdot {}^{3} = a^{6}.$$

$$\frac{a^{6}}{a^{4}} = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a \cdot a \cdot a} = a \cdot a = a^{6-4} = a^{2}.$$

$$\frac{a^{2}}{a^{5}} = \frac{a \cdot a}{a \cdot a \cdot a \cdot a \cdot a \cdot a} = \frac{1}{a \cdot a \cdot a} = \frac{1}{a^{5-2}} = \frac{1}{a^{3}}.$$

$$(ab)^{3} = (ab)(ab)(ab) = (a \cdot a \cdot a)(b \cdot b \cdot b) = a^{3}b^{3}.$$

$$(\frac{a}{b})^{4} = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b} = \frac{a^{4}}{b^{4}}.$$

Exercises

Find the value of each of the following expressions.

1. 3^4 . 2. $(-2)^4$. 3. $-(2)^4$. 4. $2^4 \cdot 3^3$. 5. $(\frac{3}{2})^3$. 6. $(0.2)^5$. 7. $(-0.03)^3$. 8. $(-0.03)^4$. 9. $\frac{2^7}{2^3}$. 10. $\frac{4^3}{2^5}$. 11. $(2^2)^5$. 12. $\frac{3^3}{3^6}$. Perform the indicated operations.

13.
$$x^{7} \cdot x^{5}$$
. 14. $(a^{3})^{2}$. 15. $z^{7} \div z^{6}$. 16. $z^{4} \div z^{7}$. 17. $(3y)^{4}$. 18. $3(y)^{4}$. 19. $h^{4n} \div h^{2n}$. 20. $a^{2n-1} \div a^{n-1}$. 21. $\left(\frac{t^{a}}{t^{b}}\right)^{a+b}$. 22. $\frac{(a^{n+1})^{n-1}}{a^{n^{2}}}$. 23. $(a^{l}b^{m}c^{n})^{p}$. 24. $\left(\frac{a^{r}}{b^{s}}\right)^{t}$. 25. $\frac{4^{n+2}+4^{3}4^{n-2}}{2^{2n}}$. 26. $\frac{(x^{m-1})^{m+1} \div x^{m}}{(x^{m+1})^{m} \div x^{2m}}$.

26. Square Roots. Imaginary Numbers. Any number x that satisfies the equation $x^2 = a$ is a square root of the number a.

Every positive number has two real square roots. These roots are equal in numerical * value but one is positive and the other is negative. The positive square root of a is called the **principal square root** of a and is denoted by the symbol \sqrt{a} . The negative square root is denoted by $-\sqrt{a}$.

The square root of a negative number cannot be either positive, negative, or zero. For, the square of either a positive or negative number is positive and the square of zero is zero. We shall, accordingly, assume the existence of another kind of numbers, which have the property that their squares are negative. The numbers are called imaginary numbers.

In particular, we assume that -1 has two imaginary square roots. We denote one of these by $\sqrt{-1}$ and the other by $-\sqrt{-1}$. For brevity, we shall usually denote the first of these roots by i and the second by -i, so that $i = \sqrt{-1}$ and $-i = -\sqrt{-1}$.

If a is any negative number, we may put a = -|a|, where |a| is the numerical value of a. Then,

and
$$\sqrt{a} = \sqrt{-|a|} = \sqrt{-1} \sqrt{|a|} = i\sqrt{|a|},$$

 $-\sqrt{a} = -\sqrt{-|a|} = -\sqrt{-1} \sqrt{|a|} = -i\sqrt{|a|}.$

These two imaginary numbers, $i\sqrt{|a|}$, and $-i\sqrt{|a|}$, are the two imaginary square roots of the negative number a.

The positive and negative numbers, and zero, are called real numbers to distinguish them from the imaginary ones. Unless otherwise indicated, the numbers considered in this book are assumed to be real numbers.

27. Roots of Any Positive, Integral Order. Principal Roots. If n is any positive integer, and x is any number, real or imaginary, such that $x^n = a$, then x is said to be an nth root, or root of order n, of the number a.

Thus,
$$-2$$
 is a cube root of -8 , since $(-2)^3 = -8$.

It will be shown, in Chapter XXXIII, that any number, except zero, has n distinct nth roots. If the given number a is real, the following statements are true concerning the reality of its nth roots.

^{*} The numerical, or absolute, value of a real number a was defined in Art. 3.

(1) If n is an odd integer, the real number a has one, and only one, real nth root. This real root is called the principal nth root of a and is denoted by $\sqrt[n]{a}$. This principal nth root of a is positive, negative, or zero according as a is positive, negative, or zero.

Thus,
$$\sqrt[5]{32} = 2$$
, $\sqrt[3]{-64} = -4$, $\sqrt[7]{0} = 0$.

(2) If n is an even integer, and if a is positive, then a has two, and only two, real nth roots. These roots are numerically equal but one is positive and the other is negative. The positive root is the principal nth root of a and is denoted by $\sqrt[n]{a}$. The negative real root is denoted by $-\sqrt[n]{a}$.

Thus, $\sqrt[4]{81} = 3$ and $-\sqrt[4]{81} = -3$ are the real fourth roots of 81. Of these, $\sqrt[4]{81} = 3$ is the principal fourth root of 81.

(3) If n is an even integer and a is negative, then a has no real root. In this case, we may choose any one of the imaginary nth roots to be denoted by the symbol $\sqrt[n]{a}$ but we shall not call the root so chosen a principal root. Moreover, since, in this case, the value of $\sqrt[n]{a}$ is not definitely fixed by its symbol, we shall exclude such roots from the following discussion of the laws obeyed by radicals. It can be shown, in fact, that these roots obey only in part the laws that hold for principal roots.

Exercises

Assuming that the numbers indicated by letters are positive, find the indicated principal root. If there is a real root that is not a principal root, indicate it by a suitable symbol and find its value.

1.
$$\sqrt{49}$$
.

2.
$$\sqrt[3]{-64}$$
.

3.
$$\sqrt{0.25}$$
.

4.
$$\sqrt[5]{-32}$$
.

5.
$$\sqrt[9]{-1}$$
.

6.
$$\sqrt[4]{\frac{x^4}{y^{20}}}$$
.

7.
$$\sqrt[3]{\frac{-27x^6}{y^9}}$$
.

8.
$$\sqrt[7]{\frac{128a^{14}}{b^{35}}}$$

Find the value of each of the following expressions.

9.
$$(\sqrt{19})^2$$
.

10.
$$(-\sqrt[4]{81})^3$$
.

11.
$$\left(\sqrt[5]{\frac{a^{15}b^{25}}{c^{35}d^5}}\right)^2$$

28. Rational Numbers. Any real number that can be expressed as a fraction whose numerator and denominator are both integers is a rational number. Zero, also, is classed as a rational number. All other real numbers are irrational.

Thus, $\frac{4}{5}$, 0.041, 7, and -5.3 are rational numbers since they can be written, respectively, as $\frac{4}{5}$, $\frac{41}{1000}$, $\frac{7}{1}$, and $\frac{-53}{10}$.

The numbers $\sqrt{2}$, $\sqrt[3]{45}$, $\sqrt{1+\sqrt{5}}$, and π are irrational numbers since none of them can be written as a fraction whose numerator and denominator are both *integers*.

Because rational numbers are, in some ways, simpler to deal with than irrational ones, it will sometimes be necessary for us, in this and subsequent chapters, to make use of this distinction between rational and irrational numbers. In the following article, for example, we shall consider the definition of a number to a power when the exponent is any rational number.

- 29. Rational Exponents. The definition of a^n given in Arts. 7 and 25 holds only if n is a positive integer. It is, indeed, quite meaningless for all other values of n. We shall now extend this definition of the symbol a^n in such a way that the exponent may be any rational number whatever. We shall choose these extended definitions in such a way that the five laws of exponents stated in Art. 25 shall continue to be true.
- (1) Fractional exponents. Let m and n be any two positive integers. We wish to define the symbol $a^{\frac{m}{n}}$.

Assuming that Law II of Art. 25 holds, we shall have

$$\left(a^{\frac{m}{n}}\right)^n = a^{\frac{mn}{n}} = a^m.$$

It follows from the definition of an *n*th root of a number (Art. 27), that $a^{\frac{m}{n}}$ must be an *n*th root of a^m . If a^m has a principal *n*th root * we shall define $a^{\frac{m}{n}}$ as this principal *n*th root. Hence, by definition,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}.$$

In particular, if m = 1, we have

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

that is, the symbols $a^{\frac{1}{n}}$ and $\sqrt[n]{a}$ are equivalent. Either may be used in place of the other.

Illustrations.
$$36^{\frac{1}{2}} = \sqrt{36} = 6$$
, $(-125)^{\frac{1}{3}} = \sqrt[3]{-125} = -5$, $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$, $(a^6)^{\frac{3}{2}} = \sqrt{a^{18}} = a^9$.

(2) Zero exponents. Let $a \neq 0$. If a^0 is to obey Law I of Art. 25, we must have

$$a^n \cdot a^0 = a^{n+0} = a^n$$
, or $a^0 = a^n \div a^n = 1$.

We accordingly make the following definition

$$a^0=1. a\neq 0$$

ILLUSTRATIONS. $5^0 = 1$, $(10,000)^0 = 1$, $(54xy^5z^3)^0 = 1$.

* If a^m is negative and n is an even integer, a^m does not have a principal nth root. In this case, we still make the definition $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

where $\sqrt[n]{a^m}$ is some one of the *n*th roots of a^m . As the value of $a^{\frac{m}{n}}$ is not definitely fixed, we shall exclude this case from the following discussion. It can, in fact, be shown that certain modifications of Laws I to V are necessary if $a^{\frac{m}{n}}$ is not a principal root of a^m .

(3) Negative exponents. Let $a \neq 0$ and let n be any positive rational number. If a^{-n} is to obey Law I of Art. 25, we must have

$$a^n \cdot a^{-n} = a^{n-n} = a^0 = 1$$
, or $a^{-n} = \frac{1}{a^n}$.

Hence, we make the following definition

$$a^{-n}=\frac{1}{a^n}$$
 $a\neq 0$

Illustrations.
$$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$$
, $27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$, $x^{-7} = \frac{1}{x^7}$.

It will be observed that, with this definition of a negative exponent, any factor of the entire numerator of a fraction may be written as a factor of the entire denominator, and conversely, provided the sign of its exponent is changed at the same time.

Example 1.
$$\frac{ab^{-2}}{c} = \frac{a}{c} \cdot \frac{1}{b^2} = \frac{a}{cb^2}$$
.

Example 2.
$$\frac{3xy^{-1}}{z^{-3}} = \frac{3x\frac{1}{y}}{\frac{1}{z^3}} = \frac{3x}{y} \cdot \frac{z^3}{1} = \frac{3xz^3}{y}$$
.

Example 3.
$$\frac{x^{-2} + y^{-2}}{x^{-3} + y^{-3}} = \frac{\frac{1}{x^2} + \frac{1}{y^2}}{\frac{1}{x^3} + \frac{1}{y^3}} = \frac{\frac{y^2 + x^2}{x^2 y^2}}{\frac{y^3 + x^3}{x^3 y^3}} = \frac{y^2 + x^2}{x^2 y^2} \cdot \frac{x^3 y^3}{y^3 + x^3}$$
$$= \frac{xy^3 + yx^3}{y^3 + x^3}.$$

It is proved in advanced mathematics that the numbers $a^{\frac{m}{n}}$, a^{0} , and $a^{-\frac{m}{n}}$, as defined in this article, obey all of the laws of exponents stated in Art. 25, provided that the symbols $a^{\frac{m}{n}}$ and $a^{-\frac{m}{n}}$ are interpreted to mean the principal nth roots of am and am, respectively. In all future computations with exponents, the operations are to be performed according to these laws.

Exercises

Find the values of the following expressions.

1.
$$169^{\frac{1}{2}}$$
. 2. $(-125)^{-\frac{1}{3}}$. 3. $(0.0016)^{-\frac{1}{4}}$. 4. $81^{\frac{3}{4}}$.

3.
$$(0.0016)^{-\frac{1}{4}}$$
.

6.
$$\left(\frac{4^0}{2^{-3}}-5^0\right)^{-2}$$

5.
$$7^{0} \cdot 2^{-5}$$
.
6. $\left(\frac{4^{0}}{2^{-3}} - 5^{0}\right)^{-2}$.
7. $\left(\frac{5^{\frac{3}{4}}}{5^{-\frac{1}{4}}}\right)^{-2} \left(\frac{5}{5^{\frac{1}{2}}}\right)^{4}$.
8. $(3^{-2} + 4^{-2})^{-\frac{1}{2}}$.

8.
$$(3^{-2}+4^{-2})^{-\frac{1}{2}}$$
.

Change to an equivalent form having only positive exponents.

9.
$$3x^2y^{-4}$$
.

10.
$$-5x^{-6}$$
.

10.
$$-5x^{-5}$$
. 11. $\frac{(-8)^{-5}b^0}{4^{-6}a^{-2}}$. 12. $\frac{3^0u^{-2}v^{-3}}{w^{-1}x^{-2}}$.

12.
$$\frac{3^0u^{-2}v^{-3}}{w^{-1}x^{-2}}$$
.

13.
$$2a^{-2} - (2a)^{-2}$$
. 14. $\frac{(x-y)^0}{(x+y)^{-2}}$. 15. $\frac{(x^2-y^2)^{-1}}{(x-y)^{-2}}$. 16. $\frac{x^{-1}+y^{-1}}{x^{-2}-y^{-2}}$.

17.
$$\frac{x^{-3}y^{-3}}{x^{-3}+y^{-3}}$$
 18. $\frac{a^{-1}-b^0}{a^{-2}-b^0}$ 19. $(x^{-1}+y^{-2})^{-1}$ 20. $(x^{-1}+y^{-1}+z^{-1})^{-1}$

Write without a denominator, using negative exponents.

21.
$$\frac{3a}{bc^2}$$
 22. $\frac{2x^{\frac{1}{2}}}{\sqrt{y^3z^3}}$ 23. $\frac{5^0x}{\sqrt{yz}}$ 24. $\frac{a^2\sqrt{x^3}}{\sqrt[3]{x^2\sqrt{x}}}$

Replace the fractional exponents by radicals and simplify, if possible.

25.
$$9a^{\frac{3}{2}}$$
. 26. $(9a)^{\frac{3}{2}}$. 27. $(4x^6y^2z^8)^{\frac{1}{4}}$. 28. $(a^2+b^2)^{\frac{1}{2}}$.

Replace the radicals by fractional exponents and simplify, if possible.

29.
$$\sqrt[3]{8a^6b^{12}}$$
. 30. $\sqrt[n]{a^{2n}a^{n^2}}$. 31. $\sqrt{a\sqrt[3]{a\sqrt[4]{a}}}$. 32. $\sqrt{x^0 - 2x^{-1} + x^{-2}}$.

Perform the indicated multiplications and divisions.

33.
$$x^{\frac{4}{3}}(x^{\frac{2}{3}} + 3x^{\frac{1}{3}} - 5x^{-\frac{1}{3}})$$
. 34. $(a^{\frac{1}{2}} + b^{\frac{1}{2}})(a^{\frac{1}{2}} - b^{\frac{1}{2}})$.

35.
$$(y^{\frac{1}{2}}+2)(y^{\frac{1}{2}}+5)$$
. 36. $(3x^{\frac{4}{3}}-2x^{\frac{1}{3}})(2x^{\frac{5}{3}}-5x^{\frac{2}{3}})$.

37.
$$(x^{\frac{8}{3}}y^{\frac{4}{5}} - 3x^{\frac{4}{3}}y^{\frac{7}{6}} + x^{\frac{4}{3}}y^{\frac{8}{6}}) \div x^{\frac{7}{3}}y^{\frac{8}{5}}$$
. 38. $(y^{-2} + 2y^{-1} - 3) \div (y^{-1} + 3)$.

30. Radicals. The expression $\sqrt[n]{a}$, which denotes the principal *n*th root of a (Art. 27), is called a radical. The number n is the index, or order, of the radical and a is the radicand. The index is customarily omitted if n = 2, that is, $\sqrt{a} = \sqrt[n]{a}$.

Thus, $\sqrt[6]{3x+2y}$ is a radical for which the index is 5 and the radicand is 3x+2y.

Since (by Art. 29) $\sqrt[n]{a} = a^{1/n}$, the process of operating with radicals must be made according to the laws of exponents (Art. 25). The laws we shall use most frequently, written in the radical form, are the following ones.

$$I. \quad (\sqrt[n]{a})^n = a,$$

$$\Pi. \quad \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a},$$

III.
$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$$
,

IV.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}},$$

where the roots involved are the principal roots, in each case.

The student should verify the correctness of each of these formulas by replacing each radical by the corresponding expression involving fractional exponents and using the laws of exponents.

31. Simplification of Radicals. (a) Removal of factors from the radicand. If the radicand contains one or more factors that are perfect nth powers, we may write these factors separately and remove them from under the radical sign.

EXAMPLE 1. Remove all fourth-degree factors from the radicand:

$$\sqrt[4]{\frac{112a^6b^2}{81x^5y^{11}}}$$

$$\sqrt[4]{\frac{112a^6b^2}{81x^5y^{11}}} = \sqrt[4]{\frac{2^4a^4 \cdot 7a^2b^2}{3^4x^4y^8 \cdot xy^3}} = \sqrt[4]{\frac{2^4a^4}{3^4x^4y^8}} \cdot \sqrt[4]{\frac{7a^2b^2}{xy^3}} = \frac{2a}{3xy^2} \sqrt[4]{\frac{7a^2b^2}{xy^3}}.$$

Sometimes we must use the converse process of introducing a coefficient under the radical sign. This process is illustrated by the following example.

EXAMPLE 2. Introduce the coefficient of $\frac{3xy^2}{z}\sqrt[3]{\frac{4axz^2}{189y^8}}$ under the radical sign.

$$\frac{3xy^2}{z} \sqrt[3]{\frac{4axz^2}{189y^8}} = \sqrt[3]{\frac{3^3x^3y^6}{z^3}} \sqrt[3]{\frac{4axz^2}{3^3 \cdot 7y^8}} = \sqrt[3]{\frac{3^3x^3y^6 \cdot 4axz^2}{z^3 \cdot 3^3 \cdot 7y^8}} = \sqrt[3]{\frac{4ax^4}{7y^2z}}.$$

(b) Rationalization of the denominator. If the radicand is a simple fraction, the radical can be transformed into an expression in which the radicand is integral by multiplying both the numerator and the denominator of the fraction by an expression that will make the denominator a perfect nth power and then removing the denominator from under the radical sign.

Example 3.
$$\sqrt[4]{\frac{5x^2y}{27a^3b^6}} = \sqrt[4]{\frac{5x^2y \cdot 3ab^2}{3^4a^4b^8}} = \frac{\sqrt[4]{15x^2yab^2}}{\sqrt[4]{3^4a^4b^8}} = \frac{\sqrt[4]{15x^2yab^2}}{3ab^2}.$$

Example 4. Write the radicand of $\sqrt{2x + \frac{y^2}{2x^2}}$ as a simple fraction and rationalize the denominator.

$$\sqrt{2x + \frac{y^2}{2x^2}} = \sqrt{\frac{4x^3 + y^2}{2x^2}} = \frac{\sqrt{8x^3 + 2y^2}}{\sqrt{4x^2}} = \frac{\sqrt{8x^3 + 2y^2}}{2x}.$$

(c) Reduction of order. Whenever the radicand can be written as a number raised to a power k where k is a factor of n, the order of the radical can be reduced. This process is illustrated by the following examples.

EXAMPLE 5.
$$\sqrt[12]{8a^3b^6} = \sqrt[12]{(2ab^2)^3} = (2ab^2)^{\frac{3}{12}} = (2ab^2)^{\frac{1}{4}} = \sqrt[4]{2ab^2}$$
.

EXAMPLE 6.
$$\sqrt[6]{4a^2 + 20ab + 25b^2} = \sqrt[6]{(2a + 5b)^2} = \sqrt[3]{2a + 5b}$$
.

A radical is defined to be in its simplest form if the following conditions are satisfied.

(1) The radicand contains no factor to a power as high as the order of the radical.

(2) The radicand contains no fractions.

(3) The index of the radical is as small as possible.

The radical should be reduced to the simplest form, as defined above, before any computations are made which involve it.

Exercises

Remove as many factors as possible from under the radical sign.

1.
$$\sqrt[3]{162x^5y^7}$$
.

2.
$$\sqrt[5]{\frac{128x^9}{y^{11}}}$$
.

3.
$$\sqrt[4]{\frac{80a^5b^7c^2}{81xy^6z^{11}}}$$
.

4.
$$\sqrt[3]{x^6y^3+x^9}$$
.

5.
$$\sqrt[n]{\frac{x^{2n+4}y^{n+1}}{z^{3n+5}}}$$
.

6.
$$\sqrt[n]{x^{n^2}y^{mn}(x-y)^{3n+2}}$$
.

Introduce the coefficient under the radical. Then simplify the radicand.

7.
$$5\sqrt[3]{2}$$
.

$$8. \ \frac{2x}{3y^2} \sqrt{\frac{15uy^3}{14vx}}.$$

8.
$$\frac{2x}{3y^2} \sqrt{\frac{15uy^3}{14vx}}$$
 9. $\frac{u+v}{u-v} \sqrt{\frac{u-v}{u+v}}$

Rationalize the denominator and remove, when possible, perfect powers from the numerator of the radicand.

10.
$$\sqrt{\frac{121}{2x^3}}$$
.

11.
$$\sqrt{\frac{a}{b}}$$
.

12.
$$\sqrt[3]{\frac{16}{a^2b}}$$
.

13.
$$\sqrt[3]{\frac{24x^5y^4}{5u^5v^2}}$$
.

14.
$$\sqrt[t]{\frac{a^{4t+3}}{2b^{t-2}c^{3t-5}}}$$
.

15.
$$\sqrt[3]{\frac{x-y}{(x+y)^2}}$$
.

Reduce to a radical of lower order.

16.
$$\sqrt[4]{25a^6b^{10}}$$
.

17.
$$\sqrt[6]{\frac{27x^9y^{15}}{125z^{21}}}$$
.

18.
$$\sqrt[4]{\frac{(x-y)^2}{x^2y^2}}$$
.

19.
$$\sqrt[10]{32(u-v)^{15}}$$
.

20.
$$\sqrt[6]{\frac{9(u-v)^2}{(u+v)^2}}$$

21.
$$\sqrt[3^n]{x^ny^{n^2}(x+y)^{2n}}$$
.

Reduce the radicals to their simplest forms.

22.
$$\sqrt{90}$$
.

23.
$$\sqrt[3]{40x^4y^{10}}$$
.

24.
$$\sqrt[14]{\frac{a^{21}b^7}{c^{35}}}$$
.

25.
$$\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$
.

26.
$$\sqrt[3]{\frac{8}{x}-\frac{3}{v^2}}$$
.

$$27. \sqrt{\frac{x-y}{y} + \frac{y-x}{x}}.$$

32. Addition and Subtraction of Radicals. Two radicals are said to be the same only if they have the same radicand and the same index. They are said to be similar if, after they have both been reduced to the simplest form, the resulting radicals are the same. In all other cases, the radicals are dissimilar.

Thus, $\sqrt{\frac{1}{2}}$ and $\sqrt{8}$ are similar, because $\sqrt{\frac{1}{2}} = \frac{1}{2}\sqrt{2}$ and $\sqrt{8} = 2\sqrt{2}$. The radicals $\sqrt{5}$ and $\sqrt[3]{5}$ are dissimilar, because they have different indices; $\sqrt{3}$ and $\sqrt{7}$ are dissimilar, because they have different radicands.

To add two or more terms having the same radical factor: combine the coefficients of the radical and multiply the result by the common radical factor.

Illustration.
$$3a\sqrt{2b} - 4b\sqrt{2b} - c\sqrt{2b} = (3a - 4b - c)\sqrt{2b}$$
.

To add two or more terms having similar radical factors: reduce each radical to the simplest form, then add according to the rule for adding terms having the same radical factor.

ILLUSTRATION.

$$\sqrt{\frac{4a^3}{b}} - 5x\sqrt[4]{81a^2b^2} - 6y\sqrt{a^3b^3} = \frac{2a}{b}\sqrt{ab} - 15x\sqrt{ab} - 6aby\sqrt{ab}$$
$$= \left(\frac{2a}{b} - 15x - 6aby\right)\sqrt{ab}.$$

The sum of two or more dissimilar radicals should only be indicated. ILLUSTRATION.

$$\sqrt{4xy^2} - \sqrt{x^5y^4} + \sqrt[3]{\frac{8x^4}{y^3}} + \sqrt[3]{\frac{xy^6}{27}} = 2y\sqrt{x} - x^2y^2\sqrt{x} + \frac{2x}{y}\sqrt[3]{x} + \frac{y^2}{3}\sqrt[3]{x}$$
$$= (2y - x^2y^2)\sqrt{x} + \left(\frac{2x}{y} + \frac{y^2}{3}\right)\sqrt[3]{x}.$$

Exercises

Simplify the following expressions and find the value of each to four significant figures, using Table IV.

1.
$$3\sqrt{7} + 5\sqrt{63}$$
.

3.
$$4\sqrt{175} + 2\sqrt{28} - 5\sqrt{63}$$
.

Simplify and collect similar terms.

5.
$$\sqrt{9a^2x} - \sqrt{b^2x} - \sqrt{36a^2b^2x^3}$$
.

7.
$$\sqrt{(a+b)^3} - 3\sqrt{a^3 + a^2b}$$
.

9.
$$\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$$
.

11.
$$\sqrt[3]{\frac{3x}{v^2}} + \sqrt[3]{\frac{24y}{x^2}} - \sqrt[3]{\frac{81a^3b^3}{x^2y^2}}$$
.

13.
$$\sqrt[4]{\frac{x^5}{8}} + \sqrt[4]{32x^{13}}$$
.

2.
$$11\sqrt{24} - 5\sqrt{54}$$
.

4.
$$\sqrt{245} - \sqrt{45} + 4\sqrt{99} - \sqrt{176}$$
.

6.
$$\sqrt{4x^3} + \sqrt{9xy^2} - \sqrt{x(x+y)^2}$$
.

8.
$$\sqrt[3]{24x^4y} - \sqrt[3]{375xy^4}$$
.

10.
$$\sqrt{3x^2+6x+3}+\sqrt{3x^2-6x+3}$$

12.
$$\sqrt{x^{-2}+y^{-2}}-\sqrt{x^2y^2+y^4}$$
.

14.
$$\sqrt[3]{t^{-1}} - \sqrt[3]{27t^5} + \sqrt[3]{8t^{-4}}$$
.

15.
$$\sqrt[n]{\frac{u^{4n^2+3n+2}}{v^{2n^2-3n-1}}} - \sqrt[2n]{\frac{u^{6n+4}}{v^{8n-2}}}$$
. 16. $\sqrt[3]{(2x-y)^5} + \sqrt{(2x-y)^3}$.

17.
$$\sqrt[3]{2x^3y} - \sqrt[3]{2xy^3} - \sqrt[3]{\frac{16y}{x^3}} + \sqrt[3]{\frac{250x}{y^3}}$$
.

18.
$$\sqrt{\frac{a-b}{a+b}} + \sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{4b^2}{a^2-b^2}}$$

Since

33. Multiplication and Division of Radicals. Two or more radicals of different orders may be transformed into radicals of the same order by taking, as the common order, the least common multiple of the orders of the given radicals.

Example 1. Write $\sqrt{3}$, $\sqrt[3]{5}$, and $\sqrt[4]{7}$ as radicals of the same order and write these three numbers in order of increasing magnitude.

Since 12 is the least common multiple of the orders of these radicals, we $\sqrt{3} = 3^{\frac{1}{2}} = (3^6)^{\frac{1}{12}} = \sqrt[12]{729}$: $\sqrt[3]{5} = 5^{\frac{1}{3}} = (5^4)^{\frac{1}{12}} = \sqrt[12]{625}$; write: $\sqrt[4]{7} = 7^{\frac{1}{4}} = (7^3)^{\frac{1}{12}} = \sqrt[12]{343}.$ $\sqrt[17]{343} < \sqrt[17]{625} < \sqrt[17]{729}$, we have $\sqrt[4]{7} < \sqrt[4]{5} < \sqrt{3}$.

Example 2. Express as radicals of the same order: $\sqrt{\frac{x}{v}}$, $\sqrt[3]{\frac{2y}{x^2}}$, and $\sqrt[9]{\frac{7x^4}{v^7}}$.

The least common multiple of the orders of the radicals is 18. We have

$$\sqrt{\frac{x}{y}} = \left(\frac{x}{y}\right)^{\frac{1}{2}} = \left[\left(\frac{x}{y}\right)^{9}\right]^{\frac{1}{18}} = \sqrt[18]{\frac{x^{9}}{y^{9}}}; \quad \sqrt[3]{\frac{2y}{x^{2}}} = \left(\frac{2y}{x^{2}}\right)^{\frac{1}{8}} = \left[\left(\frac{2y}{x^{2}}\right)^{6}\right]^{\frac{1}{18}} = \sqrt[18]{\frac{64y^{6}}{x^{12}}};$$

$$\sqrt[9]{\frac{7x^{4}}{y^{7}}} = \left[\left(\frac{7x^{4}}{y^{7}}\right)^{2}\right]^{\frac{1}{18}} = \sqrt[18]{\frac{49x^{8}}{y^{14}}}.$$

To multiply two radicals, first transform them to the same order, then apply the formula $\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$.

Similarly, to divide one radical by another, transform them to the same order, then apply the formula $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.

Example 3. Multiply $\sqrt{\frac{24x^5}{v}}$ by $\sqrt[3]{\frac{y^2}{2x}}$.

$$\sqrt{\frac{24x^5}{y}} \cdot \sqrt[3]{\frac{y^2}{2x}} = \sqrt[6]{\frac{2^93^3x^{15}}{y^3}} \sqrt[6]{\frac{y^4}{2^2x^2}} = \sqrt[6]{\frac{2^93^3x^{15}y^4}{y^32^2x^2}} = \sqrt[6]{2^73^3x^{13}y} = 2x^2\sqrt[6]{54xy}.$$

Example 4. Divide: $\sqrt[4]{18a^3b^2c^2}$ by $\sqrt[3]{3abc^4}$.

$$\frac{\sqrt[4]{18a^3b^2c^2}}{\sqrt[3]{3abc^4}} = \frac{\sqrt[12]{2^33^6a^9b^6c^6}}{\sqrt[12]{3^4a^4b^4c^{16}}} = \sqrt[12]{\frac{2^33^2a^5b^2}{c^{10}}} = \frac{1}{c}\sqrt[12]{72a^5b^2c^2}.$$

Example 5. Simplify:
$$\frac{\sqrt[3]{3a^2b} \sqrt[4]{8a^5b^3}}{\sqrt[6]{12a^3b^5}} = \frac{\sqrt[12]{3^4a^6b^4} \sqrt[12]{2^9a^{15}b^9}}{\sqrt[12]{2^43^2a^6b^{10}}} = \sqrt[12]{\frac{3^4a^8b^42^9a^{15}b^9}{2^43^2a^6b^{10}}} = \sqrt[12]{\frac{3^4a^8b^42^9a^{15}b^9}{2^43^2a^6b^{10}}}$$

Exercises

Write the expressions in each exercise as radicals of the same order. In exercises 1 to 3, arrange the numbers in order of increasing magnitude.

1.
$$\sqrt[4]{9}$$
, $\sqrt[4]{17}$.

2.
$$\sqrt{11}$$
, $\sqrt[3]{31}$.

2.
$$\sqrt{11}$$
, $\sqrt[3]{31}$. **3.** $\sqrt{6}$, $\sqrt[3]{13}$, $\sqrt[6]{143}$.

4.
$$\sqrt[4]{2u^2v^3}$$
, $\sqrt[6]{3u^5v^7}$.

5.
$$\sqrt[2n]{xy}$$
, $\sqrt[3n]{x^2y^5}$.

4.
$$\sqrt[4]{2u^2v^3}$$
, $\sqrt[6]{3u^5v^7}$. 5. $\sqrt[2n]{xy}$, $\sqrt[3n]{x^2y^5}$. 6. $\sqrt[4]{ab^2c^3}$, $\sqrt[5]{a^3bc^7}$, $\sqrt[4]{2a^5b^3c^{11}}$.

Perform the indicated operations.

7.
$$\sqrt{\frac{15}{22}} \sqrt[3]{\frac{44}{75}}$$
.

8.
$$\sqrt[3]{\frac{35}{18}} \sqrt[5]{\frac{108}{245}}$$
.

8.
$$\sqrt[3]{\frac{35}{18}} \sqrt[5]{\frac{108}{245}}$$
. 9. $\sqrt{\frac{72}{55}} \div \sqrt[3]{\frac{36}{11}}$.

10.
$$\sqrt{5y^3z} \sqrt[4]{2y^5z^3}$$
.

11.
$$\sqrt{2u^3vw^4} \sqrt[5]{uv^2w^2}$$
. 12. $\sqrt{a} \sqrt[3]{2b^2} \sqrt[4]{3a^2b}$.

12.
$$\sqrt{a} \sqrt[3]{2b^2} \sqrt[4]{3a^2b}$$

13.
$$\frac{\sqrt{6a^3b^2}}{\sqrt[4]{2ab^5}}$$
.

14.
$$\frac{\sqrt{2a^3b^2c^5}}{\sqrt[5]{a^4b^3c^7}}$$
.

14.
$$\frac{\sqrt{2a^3b^2c^5}}{\sqrt[5]{a^4b^3c^7}}$$
 15. $\frac{\sqrt{10x^2y^5}\sqrt[3]{3x^5y^4}}{\sqrt[6]{15x^5y^4}}$.

16.
$$\frac{\sqrt[4]{x^2z^2 + 3xyz^2}}{\sqrt[6]{xyz + 3y^2z}}$$
.

17.
$$\sqrt[n]{x^{m+n}y^{m-n}} \sqrt[m]{x^{m-n}y^{m+n}}$$
.

34. Binomials Involving Radicals. Rationalization of the Denominator. The following types of products and quotients involving radicals appear frequently in certain types of mathematical computations.

Example 1. Multiply $2\sqrt{a} + \sqrt{b}$ by $\sqrt{a} + 3\sqrt{b}$.

We perform this multiplication according to the customary process for multiplying two binomials, applying the rule for the multiplication of radicals.

$$2\sqrt{a} + \sqrt{b}$$

$$\frac{\sqrt{a} + 3\sqrt{b}}{2a + \sqrt{ab}}$$

$$\frac{6\sqrt{ab} + 3b}{2a + 7\sqrt{ab} + 3b}$$

$$(2\sqrt{a} + \sqrt{b})(\sqrt{a} + 3\sqrt{b}) = 2a + 7\sqrt{ab} + 3b.$$

Hence,

By actual multiplication, we find that

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b.$$

It follows from this relation that, if we have given a fraction whose denominator is either of the expressions $\sqrt{a} + \sqrt{b}$ or $\sqrt{a} - \sqrt{b}$, the denominator will be freed of radicals if we multiply both the numerator and the denominator by the denominator with the sign of the second term changed. This process is called rationalizing the denominator and is illustrated by the following example.

Example 2. Rationalize the denominator of $\frac{7\sqrt{5} + \sqrt{3}}{\sqrt{5}}$. $\frac{7\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{7\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \cdot \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{35+8\sqrt{15}+3}{5-3}$ $=\frac{38+8\sqrt{15}}{9}=19+4\sqrt{15}.$

Exercises

Perform the indicated operations and simplify the results.

1.
$$\sqrt{10}(3\sqrt{5}+7\sqrt{2})$$
. 2. $(3-\sqrt{7})(2+5\sqrt{7})$.

3.
$$(2\sqrt{6} + 11\sqrt{5})(3\sqrt{6} - 2\sqrt{5})$$
. 4. $(a\sqrt{b} + b\sqrt{a})(b\sqrt{b} - a\sqrt{a})$.

5.
$$\left(4\sqrt{\frac{2y}{z}}-3\sqrt{\frac{x}{y}}\right)\left(\sqrt{\frac{2y}{z}}+2\sqrt{\frac{x}{y}}\right)$$
.

6.
$$(a\sqrt{5v}+b\sqrt{3u})(c\sqrt{5v}+d\sqrt{3u}).$$

7.
$$\frac{7\sqrt{3}+2\sqrt{5}}{2\sqrt{3}-\sqrt{5}}$$
 8. $\frac{14}{3-\sqrt{7}}$

$$3 - \sqrt{7}$$

$$1 - a^2 \sqrt{a}$$

$$1 - \sqrt{3} + \sqrt{x + 4}$$

$$1 - \sqrt{3}x + \sqrt{x + 4}$$

10.
$$\frac{4\sqrt{x}-7\sqrt{y}}{2\sqrt{x}-3\sqrt{y}}$$
. 11. $\frac{a^2\sqrt{a}}{\sqrt{a+4}-2}$. 12. $\frac{\sqrt{3x}+\sqrt{x+y}}{\sqrt{3x}+2\sqrt{x+y}}$.

$$12. \ \frac{\sqrt{3x+\sqrt{x+y}}}{\sqrt{3x+2\sqrt{x+y}}}.$$

13.
$$\frac{x+3}{\sqrt{x^2-5}+2}$$
 14. $\frac{\sqrt{abc}}{\sqrt{ab}+\sqrt{bc}}$ 15. $(\sqrt{x-3}+\sqrt{x+5})^2$

15.
$$(\sqrt{x-3}+\sqrt{x+5})^2$$

16.
$$(\sqrt{x+1} + 5\sqrt{x-1}) \div (3\sqrt{x+1} - 2\sqrt{x-1})$$
.

17.
$$(2\sqrt{z^2+7}+6\sqrt{z^2+3})\div(\sqrt{z^2+7}-\sqrt{z^2+3})$$
.

Solve the following equations for x and simplify the result.

18.
$$\sqrt{5}x - 14 = 0$$
. 19. $(2 + \sqrt{3})x - 4 + \sqrt{2} = 0$.

20.
$$\sqrt{7}x + \sqrt{2} + \sqrt{3}x - \sqrt{11} = 0$$
.

21.
$$x\sqrt{2a} + x\sqrt{3b} + 3\sqrt{2a} - 5\sqrt{3b} = 0$$
.

22. Is
$$\frac{4+\sqrt{10}}{3}$$
 a root of $3x^2-8x+3=0$?

23. Is
$$\frac{-3+\sqrt{14}}{5}$$
 a root of $5x^2+6x-1=0$?

Chapter 6

Functions, Coördinates, and Graphs

35. Constants and Variables. A number symbol that retains a fixed value throughout a given problem is a constant. One that may assume different values during the course of the problem is a variable.

Thus, when we are dealing with freely falling bodies near the surface of the earth, we have the physical law

$$s=\tfrac{1}{2}gt^2,$$

where $\frac{1}{2}$ and g are constants and s and t, the distance the body has fallen from rest and the time, are variables.

Similarly, if we are dealing with circles, we know that

$$C=2\pi r$$

where 2 and π are constants but C and r, the circumference and the radius, are variables since they may take different values for different circles.

36. Functions. The equation

$$s=\tfrac{1}{2}gt^2,$$

which expresses the law of falling bodies, enables us to compute the value of s when the value of t is given. For, taking g = 32, approximately, we find

if
$$t = 1$$
, then $s = 16$; if $t = 3$, then $s = 144$;

and so on. We shall express this fact that s can be computed when t is given by the statement: s is a function of t.

The fact that the value of one variable can sometimes be computed when the value of another one is given is not new to the student. What probably is unfamiliar is the mathematical way of saying that such a computation is possible. As we shall, from now on, frequently use this technical mathematical form of statement, we shall ask the student to learn the following definition.

The statement, y is a function of x, means that, when a value has been assigned to x, then the value (or a set of values) of y is definitely fixed.

The variable to which a value has been assigned is called the independent variable. The one whose value is then determined is the dependent variable.

EXAMPLE 1. The area of a circle is a function of the radius. For, there exists a formula $A = \pi r^2$,

by means of which the value of A can be found when the value of r is given.

46

In this case, since we are assigning values to r and computing A, we call r the independent variable and A the dependent one.

EXAMPLE 2. The first-class postage on a letter is a function of its weight. For, this postage is fixed by law at three cents for each ounce or fraction of an ounce.

37. The Function Notation. We deal so frequently in mathematics with two variables, one of which is a function of the other, that a special mathematical symbolism has been devised to express this relationship. The statement, y is a function of x, is written symbolically in the form

$$y = f(x)$$
.

This symbol should be read either as, "y is a function of x" or as, "y equals the f-function of x."

It should be clearly understood that the symbol f(x) does not represent a product, f times x; it is a symbol standing for whatever formula is needed to compute y when x is given.

Thus, the statement, the area of a circle is a function of the radius, may be written, briefly, in the symbolic form

$$A=f(r).$$

This statement, by itself, does not tell us what the formula is that expresses the value of A in terms of r. It merely tells us that there is such a formula. It is only from a theorem proved in geometry that we learn, in this case, that $f(r) = \pi r^2$, so that

$$A = f(r) = \pi r^2.$$

Similarly, if we are dealing with a problem in which the value of y may be computed by means of the equation

$$y=x^3-2x+8,$$

then (1) y is a function of x because its value is fixed when the value of x is given and (2) in this problem, $f(x) = x^3 - 2x + 8$ because this is the particular expression we use to compute the value of y. We may therefore write

$$y = f(x) = x^3 - 2x + 8$$

the first equality stating that y is a function of x and the second defining the particular formula we are using to find the value of y.

Suppose, in this problem, we wish to find the value of y when x = 2. We merely replace x by 2 everywhere in the function. We have

$$f(2) = 2^3 - 2 \cdot 2 + 8 = 12,$$

giving y = 12 when x = 2. Similarly, by putting x = 5, we find f(5) = 123 so that y = 123 when x = 5.

Sometimes two or more functions occur in one problem. In that case, we denote them by different letters. We may, in fact, use any one of the symbols

$$f(x)$$
, $g(x)$, $F(x)$, $H(x)$, $\phi(x)$,

and so on, to denote a function of x. If, then, two different functions occur in one problem, we may denote one of them by one of the above symbols and the other by another symbol.

Exercises

In each of the following exercises, first write the given statement in symbolic form, then give the formula by means of which the value of the dependent variable may be computed.

- 1. The volume of a cube is a function of the length of its edge.
- 2. The total surface of a cube is a function of the length of its edge.
- 3. The amount due on a loan of \$100 at 4%, simple interest, is a function of the time in years.
- 4. The Fahrenheit temperature of a body is a function of its Centigrade temperature.
- 5. The length of the hypotenuse of an isosceles right triangle is a function of the length of one of its legs.
- 6. The perimeter of an equilateral triangle is a function of the length of one of its sides.
 - 7. If f(x) = 2x + 5, find f(1), f(-3), f(0), $f(\frac{1}{2})$.
 - 8. If $f(n) = 3n^2 + 2n$, find f(-2), $f(-\frac{2}{3})$, f(5), $f(\frac{1}{5})$.
 - 9. If $f(t) = \sqrt{t} + 1/t$, find f(1), f(4), f(6), f(a).
 - **10.** If $F(x) = x^2 3x + 3$, find F(0), F(-1), F(2), F(h-1).
 - 11. If $g(x) = \frac{3x+1}{x^2+1}$, find g(8), g(-2), g(1/y), $g(z^2)$.
 - 12. If $H(x) = 12x^2 + 10x 4$, find H(2x) 2H(x), $H(x/2) \frac{1}{2}H(x)$.
 - 13. If H(x) = 3x + 7, find $H(x^3)$, H(1/y), H[H(x)].
 - **14.** If $f(x) = \frac{x+1}{x-1}$ and $F(x) = 2x^2 + 3$, find f(3) + F(1) and $f(3) \cdot F(1)$.

Solve the following equations, given f(x) = 3x - 7 and g(x) = 2x + 9.

- **15.** f(x) = 5. **16.** f(x) = 2g(x). **17.** f(2x) = g(x). **18.** $f(x) \cdot g(x) = 0$. **19.** f(x/3) = 3g(x). **20.** f[g(x)] = 0. 21. Two numbers differ by 11. Express (a) their product and (b) the sum of their squares as a function of the smaller number.
- 22. Two men start from the same place at the same time in the same direction. One travels 40, and the other, 55 miles an hour. Find the distance between them as a function of the time.
- 38. Rectangular Coördinates. Let X'X and Y'Y (Fig. 2) be two given, mutually perpendicular lines, intersecting at O. These two lines are

called the coördinate axes; X'X is the x-axis and Y'Y is the y-axis. Their intersection, O, is the origin. Distances on the x-axis are positive

if they are measured from left to right and negative if they are measured in the opposite direction. Distances on the y-axis are positive if they are measured upward and negative if measured downward.

Let P be any point in the plane of the coordinate axes. From P, drop perpendiculars to the x- and y-axes and denote the feet of these perpendiculars by L and M respectively. The

length of the segment OL, measured from O to L and taken with its proper sign, is called the x-coördinate, or abscissa, of P. Similarly, the length of OM measured from O to M and taken with its proper sign, is the y-coördinate, or ordinate, of P. The two numbers, x and y, are

the coördinates of P and are written thus: (x, y). Observe that the two coördinates are enclosed by parentheses and separated by a comma.

II I X

III IV

It will be seen from the figure that, numerically, MP = OL and LP = OM. Moreover, these lengths will agree in sign if MP is considered to be positive if it is measured to the right and LP is positive if it is measured upward. We shall, accordingly, frequently find it convenient to speak of the lengths of MP and LP, rather than those of OL and OM, as

the coördinates of P.

The coördinate axes divide the plane into four parts, called quadrants, which are numbered as shown in the adjoining figure (Fig. 3).

39. Plotting Points. If we are given a pair of real numbers (x, y), we can always find a point P having x for its abscissa and y for its

ordinate. Suppose, for example, the given coördinates are (3, -2). We first determine the point L by laying off, on the x-axis, 3 units to the right from O. The point P is then located by measuring, on a parallel to the y-axis, 2 units downward from L (Fig. 4).

When a point is located in this way, by means of its coördinates, it is said to be plotted. In the adjoining figure, we have plotted the points having the coördinates (3, -2), (4, 3), (-2, 2), and (-1, -3).

Fig. 4

When it is necessary to plot points, time can be saved, and greater accuracy can be secured, by using coördinate paper, that is, paper which has been ruled with equally spaced lines parallel to the coördinate axes. The use of such paper is recommended in all work dealing with the plotting of points.

Exercises

In all exercises dealing with coördinates, throughout the entire book, drawing a suitable figure is an essential part of the exercise.

- 1. Plot the points whose coördinates are: (3, 5), (-2, 4), (-4, -3), (1, -5), (5, 0), (0, -3).
- 2. Plot the points whose coördinates are: (2, -3), (4, 1), (-6, 2), (-4, -3), (0, 4), (-2, 0).
 - 3. Draw the triangle having the following points as vertices:

(a)
$$(4, 2), (1, -1), (-3, 5);$$
 (b) $(1, 4), (5, -2), (-2, -4).$

4. Find the lengths of the sides and the hypotenuse of the right triangle whose vertices are:

(a)
$$(-1, 2)$$
, $(3, 2)$, $(3, 5)$; (b) $(-2, -5)$, $(-2, 7)$, $(3, 7)$.

5. Draw the rectangle and find its area, given that its vertices are:

(a)
$$(4,3), (-2,3), (-2,1), (4,1);$$
 (b) $(4,7), (-3,7), (-3,2), (4,2).$

- 6. Three vertices of a rectangle are (3, 5), (7, 5), and (7, -1). Find the coördinates of the fourth vertex and the length of a diagonal.
 - 7. Find the coördinates of the midpoint of the segment joining:

(a)
$$(0,0)$$
 to $(8,-6)$; (b) $(1,3)$ to $(5,9)$.

- 8. Find the coördinates of the point 2 units to the right, and 4 units above, the point (2, -1).
- 9. The center of a square is at the origin; its sides are parallel to the coördinate axes and are 12 units long. Find the coördinates of the vertices of the square.
- 10. In what quadrant does a point lie (a) if both of its coördinates are positive; (b) if both are negative?
 - 11. What is the ordinate of any point lying on the x-axis?
 - 12. What is the abscissa of any point lying on the y-axis?
 - 13. What is the locus of a point such that (a) x = 4; (b) y = -2?
- 40. The Graph of a Function. The graph of the function f(x) is the curve formed by the points whose coördinates (x, y) satisfy the equation

$$y=f(x).$$

This curve is also called the graft (or locus) of the equation y = f(x).

One outstanding advantage of the graph of a function is that it presents quickly to the eye the relationship of the values of the function to those of the independent variable. For this reason, graphs are widely used in non-mathematical, as well as in mathematical, studies of the behavior of functions.

Some methods of drawing the graph of a given function, at least

approximately, are illustrated by the following examples.

EXAMPLE 1. Draw the graph of the function f(x) = 2x + 2. We first equate the given function to y, giving

$$y=2x+2.$$

Next, we assign to x a set of values, chosen to suit our own convenience. We substitute each of these values of x in the given equation, find the corresponding values of y, and make a table of the resulting pairs of values, as follows:

x	- 2	- 1	0	1	2	3
y	- 2	0	2	4	6	8

We next plot on coördinate paper the points whose coördinates are the pairs of values of x and y given in this table (Fig. 5a). A smooth curve drawn

through these points is, at least approximately, the required graph (Fig. 5b).

It is shown in Figure 5b that the graph of the equation y = 2x + 2 is a straight line. This is an illustration of the fact, which we shall prove in Art. 162, that the graph of an equation of the form

$$ax + by + c = 0,$$

Fig. 5b

where a, b, and c are constants such that a and b are not both zero, is a straight line. Because of this interesting property of its graph, an equation of the form ax + by + c = 0 is called a linear equation.

Example 2. Draw the graph of the function $f(x) = x^2 + 2x - 3$.

Equate the given function to y: $y = x^2 + 2x - 3$.

Assign values to x, compute the corresponding values of y from the given equation, and tabulate the results.

x	-4	- 3	- 2	- 1	0	1	2
y	5	0	-3	-4	- 3	0	5

By plotting the points whose coördinates are given in this table and drawing a smooth curve through them, we obtain an approximate graph of the given function (Fig. 6). This curve is called a parabola and will be studied more fully in Chapter 23.

The graph of a given equation can be drawn more accurately by assuming also fractional values for x and thus plotting more points on the curve. Whenever the form of the curve is not clearly determined by the points already plotted, or when a more accurately drawn curve

is required, the number of values assumed for x should be increased

tion changes with respect to the independent varia-

ble, it is also often used to exhibit these changes

when the values of the function are obtained, not

in this way. Because the graph shows so clearly how the func-

Fig. 6

the data. In such cases, if nothing is known, or can reasonably be in-

ferred, about the variation of the function between the values given in the table, the plotted points should be joined, not by a smooth curve, but by segments of straight lines, as in Figure 7.

Example 3. Exhibit graphically the following table which gives the total (in millions of dollars) of new security issues in the United States, by months, during a twelve-months period, as reported to the Federal Reserve Board.

Month	0	1	2	3	4	5	6	7	8	9	10	11
Amount												

In this figure, we have used units of different lengths on the two axes. It is often necessary to do this to secure a graph that is satisfactory in appearance.

41. Symmetry. The problem of drawing the graph of an equation can often be simplified considerably by noticing certain of its properties which are obvious from its equation. One of the most useful of these properties is symmetry.

Two points, (x, y) and (-x, y), whose coördinates differ only in the signs of their abscissas, are said to be symmetric with respect to the y-axis. Similarly, the points (x, y) and (x, -y) are symmetric with respect to the x-axis.

A curve is symmetric with respect to the y-axis if the symmetric point, with respect to the y-axis, of every point on it also lies on the curve. It is symmetric with respect to the x-axis if the symmetric point, with respect to the x-axis, of every point on it lies on the curve.

If the equation of a curve is formed by equating to zero a polynomial in x and y, and if this polynomial contains no odd powers of x, the curve is symmetric with respect to the y-axis. For, if the coördinates (x, y) of a point satisfy the equation, so, also, do those of the symmetric point (-x, y). Similarly, if the polynomial contains no odd powers of y, the curve is symmetric with respect to the x-axis.

Thus, the graph of the equation $2y - x^2 = 0$ is symmetric with respect to the y-axis since its equation contains no odd powers of x (Fig. 8). The graph

of $x^2 + y^2 - 25 = 0$ is symmetric with respect to both axes since its equation does not contain odd powers of either x or y (Fig. 9).

Fig. 9

If a curve is known to be symmetric with respect to the y-axis, for example, and if the part

Fig. 8

of it to the right of the y-axis has been drawn, we can plot as many points as we please on it, to the left of the y-axis, by choosing points on the graph to the right of the y-axis and plotting their symmetric points with respect to the y-axis.

Exercises

Draw the graphs of the following functions.

1.
$$-3x$$
.

2.
$$4x - 5$$
.

3.
$$7-2x$$
.

4.
$$\frac{5}{2}x + \frac{2}{3}$$
.

Draw the graphs of the following equations.

5.
$$2x - y - 5 = 0$$
.

6.
$$4x + y - 9 = 0$$

5.
$$2x - y - 5 = 0$$
. 6. $4x + y - 9 = 0$. 7. $8x - 3y + 4 = 0$.

Draw the graphs of the following functions in the intervals indicated. State any symmetries with respect to either axis.

8.
$$x^2-4$$
, $(-4 \text{ to } 4)$.

9.
$$4-x^2$$
, $(-4 \text{ to } 4)$.

10.
$$x^2 - 2x$$
, $(-2 \text{ to } 4)$.

11.
$$x^2 - 5x + 6$$
, (0 to 6).

12.
$$2x^2 - 5x - 2$$
, $(-2 \text{ to } 5)$. 13. x^3 , $(-3 \text{ to } 3)$.

13.
$$x^3$$
, (-3 to 3).

14.
$$x^3 - 9x$$
, $(-4 \text{ to } 4)$.

15.
$$x^4 - 9x^2$$
, $(-4 \text{ to } 4)$.

Draw the graphs of the following equations in the intervals for x indicated. State any symmetries with respect to either axis.

16.
$$y^2 = x$$
, (0 to 9).

17.
$$y^2 = 3x + 3$$
, $(-1 \text{ to } 6)$.

18.
$$x^2 + y^2 = 36$$
, $(-6 \text{ to } 6)$

18.
$$x^2 + y^2 = 36$$
, (-6 to 6). 19. $y^2 - x^2 = 1$, (-5 to 5).

20.
$$y^2 = x^3$$
, (0 to 4).

21.
$$y^3 = x^2$$
, $(-8 \text{ to } 8)$.

22. According to the Table of Mortality used by many life insurance companies, out of 100,000 people living at age 10, the number (in thousands) living at certain other ages is given by the following table.

Age	10	15	20	25	30	35	40	45	50	55	60	65	70	75
No.	100	96	93	89	85	82	78	74	70	65	58	49	39	26

Draw the graph of the number living as a function of the age. Estimate from your graph the number living at age 38. At approximately what age are there 62,000 living?

23. The amount due on \$1, at 5% compound interest, varies with the time according to the following table.

Years	0	2	4	6	8	10	12	14
Amount	1.00	1.10	1.22	1.34	1.48	1.63	1.80	1.98

Draw the graph of the amount due as a function of the time.

24. The number of customers who entered a certain store during the successive hours that the store was open on a certain day is given by the following table.

Time	1	2	3	4	5	6	7	8	9	10	11
Number	31	46	69	73	57	65	71	93	97	63	52

Show graphically the number of customers as a function of the time. Draw a graph formed by line segments joining the successive points.

Chapter 7

Simultaneous Linear Equations

42. Linear Equations in Two Unknowns. An equation of the form

$$ax + by = c,$$

where a, b, and c are constants and a and b are not both zero, is called an equation of first degree or, since its graph is a line * (Art. 40), a linear equation, in x and y.

Suppose we have two such equations

$$a_1x + b_1y = c_1,$$

 $a_2x + b_2y = c_2.$

and

We shall seek a pair of values of x and y which, when substituted in these two equations, will make both equations true. Such a pair of values is a simultaneous solution of the two equations.

In the following articles, we shall discuss several of the most important ways of finding the simultaneous solution of two linear equations.

43. Solution by Addition or Subtraction. In this method, we multiply the two equations by suitable constants in such a way that the coefficients of one variable are made to be either equal, or equal but opposite in sign. By subtracting, or adding, the resulting equations, we obtain an equation in which this variable does not appear.

The variable that does not appear in the resulting equation is said to be eliminated. The method is, accordingly, sometimes called the method of elimination by addition or subtraction.

Example. Solve for
$$x$$
 and y : $6x - 4y = 17$,

$$10x + 3y = 9.$$

We can make the coefficients of x equal, in the two equations, by multiplying the first equation by 5 and the second by 3. This gives

$$30x - 20y = 85,$$

 $30x + 9y = 27.$

If we subtract the first equation from the second, member by member, we obtain an equation in which x does not appear; that is, x will be eliminated between the two equations. The result is

$$29y = -58$$
, or $y = -2$.

If we substitute this value of y in the first of the given equations, we have

$$6x + 8 = 17,$$

 $6x = 9, \text{ or } x = \frac{3}{2}.$

so that

^{*} We shall use the word "line", throughout, to mean a straight line.

As a check, we substitute $x = \frac{3}{2}$, y = -2 in the second given equation. We obtain 15 - 6 = 9, which is true. Hence, $x = \frac{3}{2}$, y = -2 is the required simultaneous solution.

As an exercise, the student should solve these two simultaneous equations by first eliminating y.

44. Solution by Substitution. In this method, we first solve one equation for one variable in terms of the other and substitute the resulting expression in the other equation.

Example. Solve for x and y:
$$2x + 5y = 19$$
,

$$7x - 3y = 5.$$

Solve the first equation for x in terms of y:

$$x=\frac{19-5y}{2}.$$

Substitute this value for x in the second equation:

$$7\left(\frac{19-5y}{2}\right)-3y=5,$$

or

$$133 - 35y - 6y = 10.$$

Hence,

$$-41y = -123$$
, or $y = 3$.

On substituting y = 3 in the first given equation, we have

$$2x + 15 = 19$$
,

from which

$$2x = 4$$
, or $x = 2$.

CHECK. Substitute x = 2, y = 3 in the second given equation. We have 14 - 9 = 5. Hence, x = 2, y = 3 is the required solution.

45. Solution by Graphs. Let it be required to solve the simultaneous equations 4x + 3y = 2,

$$2x + 5y = 2,$$
$$2x + 5y = 8.$$

and

The graph of the first equation is a line l_1 (Fig. 10) having the property that the coördinates of every point on this line satisfy the

first equation. Similarly, the coördinates of every point on the line l_2 satisfy the second given equation. Consider the point of intersection, P, of l_1 and l_2 . Since P lies on both lines, its coördinates satisfy both equations, that is, they constitute the simultaneous solutions of the two given equations.

Fig. 10 From the figure, we find by measurement that the coördinates of P are x = OL = -1 and y = LP = 2. These values check in the given equations and constitute the required simultaneous solution of the given equations.

By applying precisely the same reasoning to any two linear equations, we find that, to solve graphically two linear equations

$$a_1x + b_1y = c_1,$$

 $a_2x + b_2y = c_2,$

and

draw the graphs of the two equations and locate the point of intersection of the resulting lines. The coördinates of this point (if it exists) are the simultaneous solution of the two equations.

The graphical solution is usually only an approximate one since we cannot be sure either that the graphs have been drawn with perfect accuracy or that the coördinates of their intersection have been measured exactly. This method is, however, helpful in enabling us to visualize the work we have been doing algebraically and it also helps to clarify certain types of exercises, such as those given in the following two examples, in which the meaning of the results of the algebraic computations are rather obscure.

EXAMPLE 1. Solve:
$$3x - 4y = 5$$
, $6x - 8y = -7$.

The graphs of these two equations are parallel lines (Fig. 11). If the two equations had a simultaneous solution, this solution would be constituted

by the coördinates of the point of intersection of the lines. Since parallel lines do not intersect, there can be no simultaneous solution.

If we attempt to solve the equations algebraically by the method of addition or subtraction, we would multiply the first equation by 2 and subtract the second one from the result. This gives

$$6x - 8y = 10,$$

$$6x - 8y = -7,$$

$$0x - 0y = 17.$$

Fig. 11

The final equation means that, if there were a solution, it would have to be a pair of values of x and y such that 0x - 0y = 17. Since no such values of x and y exist, there is no simultaneous solution.

Two equations that do not have a simultaneous solution are said to be inconsistent. The equations of Ex. 1 constitute an illustration of a pair of inconsistent equations.

EXAMPLE 2. Solve:
$$2x + 5y = 4$$
, $6x + 15y = 12$.

When we draw the graphs of these equations, we find that they coincide (Fig. 12). Hence, every point that lies on one of the lines lies on the other also. It follows that every solution of one of the equations must also satisfy the other one. The second equation is, in fact, obtained from the first by multiplying it by 3.

Two linear equations are said to be dependent if one of them can be obtained from the other by multiplying by a constant. Every solution of one of two dependent equations is a solution of the other also.

Exercises

Solve by the method of addition or subtraction.

1.
$$3x + y = 15$$
, $3x - 2y = 6$.

3.
$$4x + 7y = 5$$
, $3x - 2y = 11$.

5.
$$7a - b = 3$$
, $a + 2b = 4$.

2.
$$5x + 6y = 8$$
, $x + 2y = 4$.

4.
$$4x - 7y = 11$$
, $3x - 2y = 5$.

6.
$$3r - 7s = 18$$
, $5r + 3s = 8$.

Solve by the method of substitution.

7.
$$x = 5 - 3y$$
,
 $4x + 7y = 15$.

9.
$$5x - 3y = 14$$
, $2x + y = 9$.

11.
$$7s + 2t = 11$$
, $5s + 3t = 4$.

8.
$$2y = 4x + 9$$
,
 $3x - 8y + 10 = 0$.

10.
$$2x + 7y = 13$$
, $5x + 4y = 10$.

12.
$$5u + 4v = 7$$
, $7u + 3v = 6$.

Solve graphically.

13.
$$2x + y - 7 = 0$$
, $x - 2y + 4 = 0$.

15.
$$2x + 5y = 2$$
, $4x + y = 13$.

14.
$$5x + 2y = 18$$
, $x - y = 5$.

16.
$$3x + 2y = 5$$
, $8x + 3y = 18$.

Solve by any method. If the equations are inconsistent or dependent, show that the graphs are parallel or coincident.

17.
$$12x - 16y = 24$$
, $15x - 20y = 30$.

19.
$$1.2x + 1.1y = 3.8$$
, $1.6x + 2.3y = 3.4$.

21.
$$2(4x - y) - 3(5x + y) = 7$$
, $9(2x + 5y) - 25(x + 2y) = 2$.

23.
$$ax - by = a^2 + b^2$$
,
 $bx + ay = a^2 + b^2$.

25.
$$a^2x + by = 2ab$$
,
 $abx + ay = a^2 + b^2$.

27.
$$\frac{3x + 5y - 7}{x - 3y + 1} + \frac{3}{2} = 0,$$
$$\frac{4x - y - 6}{x + 2y + 1} + \frac{2}{3} = 0.$$

18.
$$4x + 14y = 11$$
, $12x + 42y = 7$.

20.
$$3.7x - 1.2y = 5.1$$
, $0.7x + 1.3y = 8.6$.

22.
$$4(3x + y) - 2x + 11y = 15$$
, $4(x + y) + 2x + 5y = 9$.

24.
$$mx + ny = m^2 - n^2$$
,
 $mx - ny = m^2 + n^2$.

$$26. \ ax + by = c,$$
$$bx + ay = d.$$

28.
$$\frac{x - 5y - 6}{2x + y - 3} = \frac{3}{4},$$
$$\frac{3x + 8y + 1}{x + y - 1} = \frac{5}{2}.$$

Solve by first finding 1/x and 1/y.

29.
$$\frac{5}{x} + \frac{3}{y} = 4$$
, 30. $\frac{4}{x} - \frac{1}{y} = 2$, $\frac{1}{x} + \frac{6}{y} = 3$. 31. $\frac{a}{x} - \frac{b}{y} = 2$, $\frac{ab}{x} - \frac{ab}{y} = a + b$.

46. Linear Equations in Three Unknowns. To solve three simultaneous linear equations in three unknowns, we shall first eliminate one of the unknowns between each of two pairs of the given equations. We then solve the resulting two equations for the remaining two unknowns by any one of the methods of the preceding articles. When we have found the values of these two unknowns, we substitute their values in one of the given equations and solve for the third variable. As a check, we substitute the values found for the three variables in the remaining two equations to assure ourselves that these equations are also satisfied.

In special cases, the given equations may be inconsistent, and have no solution, or they may be dependent and have an unlimited number of solutions.

Example. Solve:
$$2x + y + z = 14$$
, (1)

$$3x + 2y + 6z = 54, (2)$$

$$8x + y - z = 12. (3)$$

By inspection, we find that y is the easiest variable to eliminate. Multiply equation (1) by 2 and subtract equation (2) from the result. We obtain

$$x - 4z = -26. (4)$$

Subtract equation (1) from equation (3). We have

$$6x - 2z = -2. (5)$$

On solving equations (4) and (5) for x and z, we find that x = 2 and z = 7.

Substitute these values of x and z in equation (1). We obtain

$$4 + y + 7 = 14$$
.

Hence, y = 3. Since these values of x, y, and z are found by substitution also to satisfy equations (2) and (3), the required solution is x = 2, y = 3, z = 7.

Exercises

Solve the simultaneous equations and check your results.

$$2x - 3y + 8z = 19,
3x - y + z = 6,
2x + 4y - 3z = 7.$$
2. $2x + y - z = 5,
x + 3y + 2z = 10,
3x + 5y + 4z = 14.$

3.
$$6x + y + 5z = 5$$
,
 $5x - y + 4z = 2$,
 $3x + 2y + z = 1$.

5.
$$3A - B - 2C = 1$$
,
 $4A + 3B - C = 1$,
 $2A - B + 2C = 3$.

7.
$$r-2s=7$$
,
 $3s+5t=11$,
 $5r-2t=-3$.

9.
$$ax + by + cz = d$$
,
 $bx + cy + az = d$,
 $cx + ay + bz = d$.

11.
$$\frac{4}{x} + \frac{5}{y} + \frac{3}{z} = -2$$
,
 $\frac{2}{x} - \frac{1}{y} + \frac{6}{z} = 4$,
 $\frac{6}{x} - \frac{4}{y} - \frac{9}{z} = 4$.

13.
$$2x + y + 2z + w = 10$$
,
 $2x - 3y + z + w = 18$,
 $5x + 2y + z - w = 7$,
 $4x - y - 3z + 2w = 1$.

4.
$$3x - 4y + z = 2$$
,
 $x + 3y + 2z = 7$,
 $5x + 5y + 11z = 1$.

6.
$$u + v + w = 8$$
,
 $5u - 5v + 4w = 3$,
 $u - 6v + 3w = 1$.

8.
$$l - m + 6n = 3$$
,
 $9l - 2m + 2n = 3$,
 $4l + m + n = 0$.

10.
$$x + y + z = 1$$
,
 $ax + by + cz = d$,
 $a^2x + b^2y + c^2z = d^2$.

12.
$$\frac{6}{x} - \frac{4}{y} + \frac{3}{z} = 3$$
,
 $\frac{15}{x} + \frac{8}{y} - \frac{7}{z} = 2$,
 $\frac{3}{x} + \frac{4}{y} + \frac{1}{z} = 4$.

14.
$$3x + 7y - z + 2w = 13$$
,
 $2x - 6y - 3z + w = 3$,
 $x + 2y - 4z + w = 11$,
 $4x + 3y + 4z - 2w = 5$.

47. Determinants of the Second Order. The symbol

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

is called a determinant of the second order. It is used to denote the expression $a_1b_2 - a_2b_1$; that is, by definition,

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1.$$

The expression $a_1b_2 - a_2b_1$ is called the expansion of the determinant and the four numbers a_1 , a_2 , b_1 , and b_2 are its elements.

Thus, from the definition, it follows that

$$\begin{vmatrix} 6 & -2 \\ 4 & 3 \end{vmatrix} = 6 \cdot 3 - 4(-2) = 26.$$

$$\begin{vmatrix} 6 & -2 \\ 4 & 3 \end{vmatrix} = 6 \cdot 3 - 4(-2) = 26.$$
 $\begin{vmatrix} 5 & 8 \\ 0 & -2 \end{vmatrix} = 5(-2) - 0 \cdot 8 = -10.$

Exercises

Expand the determinants.

1.
$$\begin{vmatrix} 4 & 7 \\ 1 & 3 \end{vmatrix}$$

1.
$$\begin{vmatrix} 4 & 7 \\ 1 & 3 \end{vmatrix}$$
. 2. $\begin{vmatrix} 3 & 5 \\ -2 & 9 \end{vmatrix}$. 3. $\begin{vmatrix} 7 & 3 \\ 6 & 0 \end{vmatrix}$ 4. $\begin{vmatrix} -2 & 7 \\ 0 & 6 \end{vmatrix}$.

3.
$$\begin{vmatrix} 7 & 3 \\ 6 & 0 \end{vmatrix}$$

4.
$$\begin{vmatrix} -2 & 7 \\ 0 & 6 \end{vmatrix}$$

5.
$$\begin{bmatrix} 5 & 4 \\ 6 & 7 \end{bmatrix}$$
.

$$5. \begin{vmatrix} 5 & 4 \\ 6 & 7 \end{vmatrix}. \qquad 6. \begin{vmatrix} -2 & 9 \\ 0 & -1 \\ -3 & 7 \end{vmatrix}. \qquad 7. \begin{vmatrix} x & 2 \\ y & 5 \end{vmatrix}. \qquad 8. \begin{vmatrix} r & t \\ s & u \end{vmatrix}.$$

7.
$$\begin{bmatrix} x & 2 \\ y & 5 \end{bmatrix}$$

8.
$$\begin{vmatrix} r & t \\ s & u \end{vmatrix}$$
.

48. Solution of Two Linear Equations by Determinants. With the aid of the determinant notation, we shall derive a set of formulas for the solution of two simultaneous linear equations.

If, from the equations $a_1x + b_1y = c_1$, and $a_2x + b_2y = c_2$, (6)

we eliminate first y, and then x, by the method of addition or subtraction (Art. 43), we obtain the two equations

and $(a_1b_2 - a_2b_1)x = c_1b_2 - c_2b_1,$ $(a_1b_2 - a_2b_1)y = a_1c_2 - a_2c_1.$ (7)

If the number $a_1b_2 - a_2b_1 \neq 0$, we can divide each of these equations by it. We have $x = \frac{c_1b_2 - c_2b_1}{a_1b_2 - a_2b_1} \qquad y = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}. \tag{8}$

It will be observed that the denominators in the two equations (8) are the expansions of the determinant $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$, that the numerator for the value of x differs from the denominator only in that a_1 and a_2 are replaced by c_1 and c_2 , respectively, and that the numerator for the value of y differs only in that b_1 and b_2 are replaced by c_1 and c_1 . Hence, we may write equations (8) in the form

$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}, \qquad y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}. \tag{9}$$

These formulas give us the simultaneous solution of equations (6) provided the value of the determinant $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ that appears in both denominators is different from zero.

If the determinant in the denominators is equal to zero, and if at least one of the determinants in the numerators is different from zero, then the given equations are inconsistent, that is, they have no simultaneous solution (Art. 45).

If all three of the determinants that appear in equations (4) are equal to zero, the two equations (1) are dependent, that is, every solution of one equation is a solution of the other also (Art. 45).

EXAMPLE. Solve by determinants: 5x + 8y - 6 = 0, 4y - 3x + 2 = 0.

We first write these equations in the form given in equations (6), with the x-terms first, then the y-terms, and the constant terms in the second member. We shall also multiply the second equation by -1. We then have

$$5x + 8y = 6,$$

 $3x - 4y = 2.$

From equations (9), we have, as the required solution,

$$x = \frac{\begin{vmatrix} 6 & 8 \\ 2 & -4 \end{vmatrix}}{\begin{vmatrix} 5 & 8 \\ 3 & -4 \end{vmatrix}} = \frac{6 \cdot (-4) - 2 \cdot 8}{5 \cdot (-4) - 3 \cdot 8} = \frac{-24 - 16}{-20 - 24} = \frac{-40}{-44} = \frac{10}{11}.$$

$$y = \frac{\begin{vmatrix} 5 & 6 \\ 3 & 2 \end{vmatrix}}{\begin{vmatrix} 5 & 8 \\ 3 & -4 \end{vmatrix}} = \frac{5 \cdot 2 - 3 \cdot 6}{-44} = \frac{10 - 18}{-44} = \frac{-8}{-44} = \frac{2}{11}.$$

This solution should be checked by substitution in the given equations.

Exercises

1-22. Solve exercises 1 to 22, Art. 45, by determinants or prove them dependent or inconsistent.

Solve the following pairs of simultaneous equations by determinants or prove them inconsistent or dependent.

23.
$$5x + 3y = 1$$
, $7x + 2y = 8$.

25.
$$5x - 2y = 7$$
, $6x + 7y = 9$.

27.
$$9x = 3y + 5$$
, $6x - 2y = 7$.

24.
$$3x + 2y = 18$$
, $7x - 5y = 13$.

26.
$$x + 5y = 1$$
, $11x - 7y = 9$.

28.
$$2x + 7y + 5 = 0$$
, $3y - 4x = 8$.

49. Determinants of the Third Order. The symbol

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

is called a determinant of the third order. It is used as an abbreviation for the following expression, which is its expansion

$$a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - c_1b_2a_3 - a_1c_2b_3 - b_1a_2c_3$$

The nine numbers a_1 , a_2 , a_3 , b_1 , b_2 , and so on, are the elements of the determinant.

The successive terms in the expansion of a determinant of the third order may be remembered by the aid of the following device: rewrite

the first two columns to the right of the determinant, as in the adjoining diagram, and draw the lines indicated. Multiply together each set of three numbers through which a line is drawn and prefix a plus sign to the product if the line extends downward to the

right and a minus sign if it extends downward to the left.

This device for finding the expansion holds only for determinants of the third order.

EXAMPLE. Expand the determinant: $\begin{vmatrix} 4 & -2 & 3 \\ 1 & 5 & 0 \\ 3 & 7 & 4 \end{vmatrix}$.

Exercises

Expand the determinants.

1.
$$\begin{vmatrix} 2 & 3 & 5 \\ 1 & 8 & 3 \\ 7 & 9 & 11 \end{vmatrix}$$
 2. $\begin{vmatrix} -5 & 3 & 7 \\ 3 & 0 & 4 \\ -2 & 4 & 1 \end{vmatrix}$ 3. $\begin{vmatrix} 3 & -2 & -7 \\ 9 & 5 & -4 \\ 2 & 0 & -1 \end{vmatrix}$ 4. $\begin{vmatrix} x & y & 1 \\ 2 & 3 & 6 \\ 4 & 1 & 3 \end{vmatrix}$ 5. $\begin{vmatrix} 2 & x & 6 \\ x & -1 & 1 \\ 5 & 0 & -3 \end{vmatrix}$ 6. $\begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$

50. Solution of Three Linear Equations by Determinants. Let

$$a_1x + b_1y + c_1z = d_1,$$

 $a_2x + b_2y + c_2z = d_2,$
 $a_3x + b_3y + c_3z = d_3,$
(10)

be three linear equations which it is required to solve for x, y, and z.

If we solve these equations by the method of Art. 46, we obtain (provided the denominator common to all of the fractions is not equal to zero)

$$x = \frac{d_1b_2c_3 + b_1c_2d_3 + c_1d_2b_3 - c_1b_2d_3 - d_1c_2b_3 - b_1d_2c_3}{a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - c_1b_2a_3 - a_1c_2b_3 - b_1a_2c_3},$$

$$y = \frac{a_1d_2c_3 + d_1c_2a_3 + c_1a_2d_3 - c_1d_2a_3 - a_1c_2d_3 - d_1a_2c_3}{a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - c_1b_2a_3 - a_1c_2b_3 - b_1a_2c_3},$$

$$z = \frac{a_1b_2d_3 + b_1d_2a_3 + d_1a_2b_3 - d_1b_2a_3 - a_1d_2b_3 - b_1a_2d_3}{a_1b_2c_3 + b_1c_2a_3 + c_1a_2b_3 - c_1b_2a_3 - a_1c_2b_3 - b_1a_2c_3}.$$

It will be observed in this solution, first, that the denominator common to all of the fractions in the right members is precisely the expansion of the determinant

 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$

Further, the numerator of the expression for x differs from the denominator only in that each a is replaced by the corresponding d;

the numerator for y, in that each b is replaced by the corresponding d; and the numerator for z, in that each c is replaced by the corresponding d.

It follows that we may write the simultaneous solution of equations (10) in the form

$$x = \frac{\begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}}, \quad y = \frac{\begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}}, \quad z = \frac{\begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}}, \quad (11)$$

provided that the value of the determinant in the denominators is not equal to zero.

If the determinant in the denominators is equal to zero, formulas (11) fail. It is proved in advanced mathematics that, if this determinant equals zero, the given equations are either inconsistent and have no solution, or they are dependent and have an unlimited number of solutions.

EXAMPLE. Solve by determinants:
$$2x + 9y + 3z = 7$$
, $4x + 7y + z = 5$, $3x + 4y = 2$.

By equations (11), we have

$$x = \begin{vmatrix} 7 & 9 & 3 \\ 5 & 7 & 1 \\ 2 & 4 & 0 \\ \hline \begin{vmatrix} 2 & 9 & 3 \\ 4 & 7 & 1 \\ 3 & 4 & 0 \end{vmatrix} = \frac{7 \cdot 7 \cdot 0 + 9 \cdot 1 \cdot 2 + 3 \cdot 5 \cdot 4 - 3 \cdot 7 \cdot 2 - 7 \cdot 1 \cdot 4 - 9 \cdot 5 \cdot 0}{2 \cdot 7 \cdot 0 + 9 \cdot 1 \cdot 3 + 3 \cdot 4 \cdot 4 - 3 \cdot 7 \cdot 3 - 2 \cdot 1 \cdot 4 - 9 \cdot 4 \cdot 0}$$
$$= \frac{0 + 18 + 60 - 42 - 28 - 0}{0 + 27 + 48 - 63 - 8 - 0} = \frac{78 - 70}{75 - 71} = \frac{8}{4} = 2.$$

Since we have computed the value of the denominator for x, it will not be necessary to recompute it for y and for z.

$$y = \frac{\begin{vmatrix} 2 & 7 & 3 \\ 4 & 5 & 1 \\ 3 & 2 & 0 \end{vmatrix}}{4} = \frac{2 \cdot 5 \cdot 0 + 7 \cdot 1 \cdot 3 + 3 \cdot 4 \cdot 2 - 3 \cdot 5 \cdot 3 - 2 \cdot 1 \cdot 2 - 7 \cdot 4 \cdot 0}{4}$$

$$= \frac{0 + 21 + 24 - 45 - 4 - 0}{4} = \frac{45 - 49}{4} = \frac{-4}{4} = -1.$$

$$z = \frac{\begin{vmatrix} 2 & 9 & 7 \\ 4 & 7 & 5 \\ 3 & 4 & 2 \end{vmatrix}}{4} = \frac{2 \cdot 7 \cdot 2 + 9 \cdot 5 \cdot 3 + 7 \cdot 4 \cdot 4 - 3 \cdot 7 \cdot 7 - 2 \cdot 5 \cdot 4 - 9 \cdot 4 \cdot 2}{4}$$

$$= \frac{28 + 135 + 112 - 147 - 40 - 72}{4} = \frac{16}{4} = 4.$$

The solution is x = 2, y = -1, z = 4. This result should be checked by substitution in the given equations.

Exercises

- 1-10. Solve exercises 1 to 10, Art. 46, by determinants.
- 51. Problems Leading to Simultaneous Linear Equations. In the following problems, as in those of Art. 21, the student must write out the equations to be solved, from the information given in the problem, before he can proceed to their solution. The method of attack on these problems is similar to that stated in the text of Art. 21, which should now be read again. The steps given there must be followed in solving these problems also, except that two or more of the unknown quantities are now to be indicated by letters and as many equations must be set up as there are unknown letters to be determined.

Problems

1. The sum of two numbers exceeds five times the smaller by unity. The difference between the numbers is 38 less than three times the larger number. Find the numbers.

2. A boy has \$1.25 in dimes and nickels. There are 18 coins in all. How

many are dimes and how many are nickels?

3. If 5 is added to both the numerator and denominator of a fraction, the resulting fraction equals $\frac{11}{13}$. If 3 is added to the numerator and 6 is subtracted from the denominator, the resulting fraction equals 3. Find the fraction.

4. The perimeter of a rectangle is 90 feet and its base exceeds twice its

altitude by 3 feet. Find its dimensions.

5. An airplane made a trip of 504 miles against a head wind in 2 hr., 48 min. It returned with the wind in 2 hr. 24 min. Find its speed in still air and the velocity of the wind.

6. An airplane flew with a wind of 27 miles an hour from one city to another in 1 hr. 40 min. It returned against the wind in 2 hr. 20 min. Find the

speed of the plane in still air and the distance between the cities.

7. If the larger of two numbers is divided by the smaller the quotient is 4 and the remainder 7. Five times the smaller number exceeds the larger by 12. Find the numbers.

8. A man has two investments, totaling \$6300. From one of these investments, which yields 5%, he receives \$39 more than from the other, which

yields 3%. Find the amount of each investment.

9. A man bought some 4% bonds, for which he paid 90% of their face value, and some 5% bonds, for which he paid 105% of their face value. The total cost of the bonds was \$6780 and the annual yield was \$312. Find the face value of the bonds of each kind.

- 10. At a ball game, tickets for the bleachers were priced at 55 cents and, for the grandstand, at 85 cents. Total receipts were \$586. If tickets for the bleachers had been priced at 50 cents and, for the grandstand, at 75 cents, 200 more tickets, in all, would have been sold, twice as many grandstand tickets would have been sold, and total receipts would have been \$670. How many tickets of each kind were sold?
- 11. Three rectangles are equal in area. The second is 4 feet longer and 3 feet narrower than the first and the third is 14 feet longer and 8 feet narrower than the second. Find the dimensions of the first rectangle.
- 12. Gold loses about one-nineteenth, and silver about one-tenth, of its weight when immersed in water. If an alloy of gold and silver weighs 14.5 ounces in air and 13.41 ounces in water, find the weight, in air, of the gold and silver contained in it.
- 13. In the equation y = mx + b, find m and b, given that y = 2 when x = 6 and y = 11 when x = 12.
- 14. In the equation $y = ax^2 + bx + c$, find a, b, and c, given that y = 3 when x = -1, y = -5 when x = 1, and y = 13 when x = 4.
- 15. An estate of \$8400 is divided between a mother, son, and daughter. The mother received as much more than the son as the son received more than the daughter. Three times what the son received, plus \$1100, equals twice what the mother received plus what the daughter received. Find how much each received.
- 16. A mother is now the same age as the father was when their son was born. In 16 years, the sum of the ages of the father and mother will exceed 5 times the son's age by 2 years. In 3 years, three times the difference between the ages of the mother and son will exceed twice the father's age by 10 years. Find their ages.

Chapter 8

or

Quadratic Equations

52. Quadratic Equations. An equation that can be written in the form $ax^2 + bx + c = 0$, $a \neq 0$ (1)

where a, b, and c do not contain x, is a quadratic equation in x.

When a quadratic equation is written in the form shown in equation (1), it is in the standard form. It will frequently be necessary to simplify the equation in order to write it in the standard form.

EXAMPLE. Write the equation $(2x-5)^2 + (4x+3)^2 = (3x+1)^2 + 17$ in the standard form.

By expanding the indicated squares, we obtain

$$4x^2 - 20x + 25 + 16x^2 + 24x + 9 = 9x^2 + 6x + 1 + 17,$$
$$11x^2 - 2x + 16 = 0.$$

Exercises

Reduce the quadratic equation to the standard form.

1.
$$9x^2 - 3x + 2 = 7x^2 + 5 - 6x$$
.

2.
$$(x+3)(2x-7)=0$$
.

3.
$$4(x+2)^2 + 3(x-5)^2 = 4$$
.

4.
$$5(3x+4)^2 = 61 + 3(2x-3)^2$$
.

5.
$$(2y-5)(9y+8)=3(y-2)^2$$
.

6.
$$5z(2z-1)=4(z-5)(z+2)$$
.

7.
$$(ax + b)^2 = 4(cx + d)(ex + f)$$
.

8.
$$b^2x^2 - a^2(mx + k)^2 = a^2b^2$$
.

53. Solution by Factoring. If the first member of the standard form of a quadratic equation can be factored by inspection into two linear factors, the equation can be solved by equating each of these linear factors to zero and solving the resulting equations.

Example 1. Solve the equation $x^2 + 5x = 24$.

First write the equation in the standard form: $x^2 + 5x - 24 = 0$.

Factor the first member: (x+8)(x-3)=0.

This equation states that the product of the two numbers x + 8 and x - 3 is equal to zero. By Art. 4, the product of two numbers equals zero if, and only if, at least one of the numbers is equal to zero. Hence, the equation will be true if, and only if, either

$$x + 8 = 0$$
, or $x - 3 = 0$.

The first of these equations is true only if x = -8 and the second, only if x = 3.

CHECK. $(-8)^2 + 5(-8) = 64 - 40 = 24$. $3^2 + 5 \cdot 3 = 9 + 15 = 24$.

The required roots are -8 and 3.

Example 2. Solve the equation $15x^2 = 4x + 4$.

Write the equation in the standard form $15x^2 - 4x - 4 = 0$.

Factor the first member: (3x - 2)(5x + 2) = 0.

Equate the linear factors to zero and solve: $x = \frac{2}{3}$ or $x = -\frac{2}{5}$.

CHECK. $15(\frac{2}{3})^2 = 4(\frac{2}{3}) + 4$. $15(-\frac{2}{5})^2 = 4(-\frac{2}{5}) + 4$.

The required roots are $\frac{2}{3}$ and $-\frac{2}{5}$.

Example 3. Solve the equation $9x^2 - 12x + 4 = 0$.

Factor the first member (3x-2)(3x-2)=0.

By equating the first factor to zero, and solving, we obtain $x = \frac{2}{3}$. If we equate the second member to zero and solve, we again obtain $x = \frac{2}{3}$.

CHECK. $9(\frac{2}{3})^2 - 12(\frac{2}{3}) + 4 = 0$.

This equation has two equal roots, $\frac{2}{3}$ and $\frac{2}{3}$.

Solution by factoring is the easiest method of solving a quadratic equation provided the first member of the standard form of the equation can readily be factored by inspection. When the method of solving such an equation is not prescribed, it is customary, therefore, to try this method first. If the first member cannot be factored by inspection, one of the methods discussed in the next two articles should be used.

Exercises

Solve the following equations by factoring. Check your results by substitution.

1.
$$9x^2 - 25 = 0$$
.

3.
$$x^2 - 7x + 10 = 0$$
.

5.
$$5z^2 = 8z$$
.

7.
$$6x^2 + 20 = 23x$$
.

9.
$$(3t-1)^2=(t-7)^2$$
.

11.
$$6(s-2)^2 + 11(s-2) = 10$$
.

13.
$$ax^2 + b = (ab + 1)x$$
.

15.
$$x^3 - 4x^2 + 3x = 0$$
.

2.
$$49x^2 = 81$$
.

4.
$$4x^2 + 33 = 28x$$
.

6.
$$25y^2 = 30y - 9$$
.

8.
$$15x^2 + 2x - 8 = 0$$
.

10.
$$(3z+4)^2 = (2z+5)^2 + 19$$
.

12.
$$3x^{-2} + 7x^{-1} - 6 = 0$$
.

14.
$$abx^2 + a^2x + b^2x + ab = 0$$
.

16.
$$x(x^2-4)-3(x^2-4)=0$$
.

54. Solution by Completing the Square. If the factors of the first member cannot easily be found, when the equation is in the standard form, the method of completing the square may be used.

This method depends on the fact that if, to the expression $x^2 + px$, we add the square of half the coefficient of x, that is, if we add $p^2/4$, the resulting expression is the square of $\left(x + \frac{p}{2}\right)$. For, we have

$$x^2 + px + \frac{p^2}{4} = \left(x + \frac{p}{2}\right)^2$$

as may be verified by squaring the second member.

Example 1. Solve by completing the square: $3x^2 - 8x + 4 = 0$.

Transpose the constant term: $3x^2 - 8x = -4$.

Divide by the coefficient of x^2 : $x^2 - \frac{8}{3}x = -\frac{4}{3}$.

Add to both sides the square of half the coefficient of x:

$$x^2 - \frac{8}{3}x + \frac{16}{9} = \frac{16}{9} - \frac{4}{3} = \frac{16}{9} - \frac{12}{9} = \frac{4}{9}$$

Write the first member as a square: $(x - \frac{4}{3})^2 = \frac{4}{9}$.

Extract the square roots, using both the plus and minus signs in the second member: $x - \frac{4}{3} = \pm \frac{2}{3}$.

If $x - \frac{4}{3} = \frac{2}{3}$, then x = 2; if $x - \frac{4}{3} = -\frac{2}{3}$, then $x = \frac{2}{3}$.

CHECK. $3 \cdot 2^2 - 8 \cdot 2 + 4 = 0$, $3(\frac{2}{3})^2 - 8(\frac{2}{3}) + 4 = 0$.

The roots are 2 and $\frac{2}{3}$.

§ 54

Example 2. Solve by completing the square: $2x^2 + 3x - 3 = 0$.

Transpose the constant term: $2x^2 + 3x = 3$.

Divide by the coefficient of x^2 : $x^2 + \frac{3}{2}x = \frac{3}{2}$.

Add $(\frac{3}{4})^2$ to both sides: $x^2 + \frac{3}{2}x + \frac{9}{16} = \frac{9}{16} + \frac{3}{2} = \frac{9}{16} + \frac{24}{16} = \frac{33}{16}$,

or $(x + \frac{3}{4})^2 = \frac{33}{16}.$

Extract the roots, using both signs: $x + \frac{3}{4} = \frac{\pm \sqrt{33}}{4}$.

Solve for x: $x = \frac{-3 + \sqrt{33}}{4}$, or $x = \frac{-3 - \sqrt{33}}{4}$.

CHECK, using $x = \frac{-3 + \sqrt{33}}{4}$:

$$2\left(\frac{-3+\sqrt{33}}{4}\right)^{2} + 3\left(\frac{-3+\sqrt{33}}{4}\right) - 3$$

$$= \frac{9-6\sqrt{33}+33}{8} + \frac{-9+3\sqrt{33}}{4} - 3$$

$$= \frac{9-6\sqrt{33}+33-18+6\sqrt{33}-24}{8} = 0.$$

The computation for checking the root $\frac{-3-\sqrt{33}}{4}$ is left as an exercise.

Since $\sqrt{33} = 5.745$, approximately, the approximate decimal values of the roots are 0.686 and -2.186.

Exercises

Find the number that must be added to the given expression to complete the square and state the resulting square.

1. $x^2 - 6x$.

2. $x^2 + 5x$.

3. $x^2 + \frac{4}{5}x$.

4. $x^2 - \frac{3}{7}x$.

Solve the following equations by completing the square. In Ex. 11 to 18,

express the roots using radicals then write them also, approximately, in decimal form.

5.
$$x^2 - 2x - 15 = 0$$
.

7.
$$3y^2 - 26y + 35 = 0$$
.

9.
$$6w^2 + 2 = 7w$$
.

11.
$$4x^2 + 10x + 3 = 0$$
.

13.
$$(3k+2)^2-4k^2+1=0$$
.

15.
$$x^2 = 9x - 10$$
.

17.
$$3(2k+3)^2 - 5(k+2)^2 = 2$$
.

19.
$$6x + x^2 + 13 = 0$$
.

21.
$$x^2 + x + 1 = 0$$
.

23.
$$x^2 - 4ax - 21a^2 = 0$$
.

25.
$$bx^2 + x + b = 0$$
.

6.
$$x^2 + 7x - 44 = 0$$
.

8.
$$2t^2 - 5t - 3 = 0$$
.

10.
$$10z^2 = 9z + 9$$
.

12.
$$5x^2 - 4x - 2 = 0$$
.

14.
$$x(2x-7)+4=0$$
.

16.
$$(x+5)^2 + 2(x+1)^2 = 29$$
.

18.
$$y^2 = 6y + 10$$
.

20.
$$2x^2 + 2x + 5 = 0$$
.

22.
$$3x^2 - 4x + 4 = 0$$
.

24.
$$ax^2 + ax + x + 1 = 0$$
.

26.
$$x^2 + 2px = q$$
.

55. Solution by the Quadratic Formula. If we solve the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ (2)

by the method of completing the square, the resulting expressions for the roots may be used as formulas for finding the roots of any quadratic equation whatever.

Let:

Transpose the constant term:

Divide by a:

Add
$$\left(\frac{b}{2a}\right)^2$$
 to both sides:

or

$$ax^2 + bx + c = 0.$$

$$ax^2 + bx = -c.$$

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

$$x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

Extract the square roots:

$$x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}.$$

Hence,

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$, (3)

are the roots of the equation $ax^2 + bx + c = 0$.

Formulas (3) should be memorized. To solve any given equation by means of them, we must:

- (1) Reduce the given equation to the standard form.
- (2) Find the values of a, b, and c.
- (3) Substitute these values in the formulas, and simplify.

EXAMPLE. Solve by the formulas: $2x^2 = 7x - 4$.

First, write this equation in the standard form

$$2x^2 - 7x + 4 = 0.$$

Hence, a = 2, b = -7, and c = 4. Substitute these values in formulas (3)

$$x = \frac{7 + \sqrt{49 - 32}}{4} = \frac{7 + \sqrt{17}}{4} \quad \text{and} \quad \frac{7 - \sqrt{49 - 32}}{4} = \frac{7 - \sqrt{17}}{4}.$$
Check, using $x = \frac{7 + \sqrt{17}}{4} \cdot 2\left(\frac{7 + \sqrt{17}}{4}\right)^2 = 7\left(\frac{7 + \sqrt{17}}{4}\right) - 4;$

$$\frac{49 + 14\sqrt{17} + 17}{8} = \frac{49 + 7\sqrt{17}}{4} - \frac{16}{4} \text{ or } \frac{33 + 7\sqrt{17}}{4} = \frac{49 + 7\sqrt{17} - 16}{4}.$$

Solve the following equations by the quadratic formula.

1.
$$x^2 - 8x - 33 = 0$$
.

3.
$$2x^2 = 5x + 3$$
.

5.
$$2w^2 - w - 10 = 0$$
.

7.
$$5n^2 + 3 = 11n$$
.

9.
$$3y^2 = 10y - 4$$
.

11.
$$3x^2 + 5x - 1 = 0$$
.

13.
$$7x^2 + 8x + 3 = 0$$
.

15.
$$5x^2 - 3x + 1 = 0$$
.

17.
$$x^2 + (x+1)^2 + (x+2)^2 = 0$$
.

19.
$$\sqrt{2}x^2 - \sqrt{3}x + \sqrt{2} = 0$$
.

21.
$$x^2 + b^2 = 2bx + a^2$$
.

23.
$$x^2 + kx + k = 1$$
.

2.
$$5x^2 - 9x - 2 = 0$$
.

4.
$$6x^2 = 7x + 20$$
.

6.
$$3y^2 - 16y + 20 = 0$$
.

8.
$$11t^2 - 17t + 5 = 0$$
.

10.
$$4z^2 + 13z + 7 = 0$$
.

12.
$$6x^2 = 7x + 2$$
.

14.
$$2x^2 + 5x + 7 = 0$$
.

16.
$$11x^2 - 19x + 6 = 0$$
.

18.
$$(2x+1)^2 + (x+3)^2 = 1$$
.

20.
$$2x^2 - 7ax + 3a^2 = 0$$
.

22.
$$abx^2 + 1 = ax + bx$$
.

24.
$$x^2 + c^2 = 2cx + c^2x^2$$
.

56. Equations in Fractional Form. The following equations, involving fractions in which the unknown appears in the denominator, can be solved by reducing them to quadratic equations in the standard form.

To clear of fractions, we multiply both members of the equation by the L.C.M. of the denominators. Since this operation involves multiplying by a polynomial involving x, it may introduce extraneous roots, that is, numbers which are roots of an equation obtained in the process of solution but which do not satisfy the given equation. Hence, when an equation involving the unknown in the denominators is solved by clearing the equation of fractions, the roots found must be checked in the given equation and any extraneous ones rejected.

EXAMPLE. Solve:
$$\frac{3x+8}{(x-2)(x+5)} = \frac{3x-4}{x-2} - \frac{2x+3}{x+5} + 2$$
.

Multiply both members by (x-2)(x+5), which is the L.C.M. of the denominators:

$$3x + 8 = (3x - 4)(x + 5) - (2x + 3)(x - 2) + 2(x - 2)(x + 5).$$

or
$$3x + 8 = 3x^2 + 11x - 20 - (2x^2 - x - 6) + 2x^2 + 6x - 20$$
,

which reduces to

$$x^2 + 5x - 14 = 0.$$

The roots of the last equation are -7 and 2.

The root - 7 checks in the given equation, since

$$\frac{-13}{(-9)(-2)} = \frac{-25}{-9} - \frac{-11}{-2} + 2.$$

If we substitute x = 2 in the given equation, we obtain $\frac{14}{0 \cdot 7} = \frac{2}{0} - \frac{7}{7} + 2$. This is not a true equation since neither member has a meaning.

The only root of the given equation is -7. The extraneous root 2 was introduced when we multiplied by (x-2)(x+5) to clear of fractions.

Exercises

Solve the following equations and check the solutions in the given equation.

1.
$$\frac{4x}{3} + \frac{9}{x} = 7$$
.
2. $3x - 4 = \frac{5x + 4}{x + 5}$.
3. $\frac{4x^2 - 2x + 13}{x + 3} = 2x + 1$.
4. $\frac{2x^2 - 5x + 16}{2x - 1} = 3x + 2$.
5. $\frac{x^2 + 15x - 16}{(x - 1)(x + 3)} = \frac{5x - 2}{x - 1} + \frac{4 - 3x}{x + 3}$.
6. $\frac{2x + 29}{x^2 - x - 2} = \frac{4x - 3}{x + 1} + \frac{2x + 7}{x - 2}$.
7. $\frac{2x + 3}{x + 1} + \frac{x - 3}{x + 3} = \frac{3x + 3}{x + 2}$.
8. $\frac{4x - 9}{x - 2} - \frac{6}{x} = \frac{4x - 7}{x + 2}$.
9. $\frac{2x^2 + 3x + 2}{5x^2 + 7x - 2} = 1$.
10. $\frac{5x^2 - 6x - 3}{2x^2 + 3x - 7} = \frac{6}{5}$.
11. $\frac{x + a^2}{x - a^2} + \frac{x + b^2}{x - b^2} = 0$.
12. $\frac{a}{x - a} + \frac{b}{x - b} + 2 = 0$.

57. Equations Involving Radicals. Equations in which the unknown appears under a radical sign can sometimes be rationalized. If the resulting equation can then be reduced to a quadratic equation in the standard form, it may be solved by the methods shown in the preceding articles.

To rationalize the given equation, first isolate, on one side of the equation, one radical containing the unknown, then raise both sides to a power sufficient to remove this radical. Repeat this process until the equation obtained is free from radicals containing the unknown.

The process of raising both sides of an equation to a power, in order to remove the radical, may introduce extraneous roots into the resulting equation. Hence, if this operation has been performed, it is necessary that the roots obtained be checked by substitution in the given equation and any extraneous roots rejected.

EXAMPLE 1. Solve:
$$\sqrt{2x^2 - 2x + 5} - 2x + 1 = 0$$
.

Isolate the radical: $\sqrt{2x^2 - 2x + 5} = 2x - 1$.

Square both sides: $2x^2 - 2x + 5 = 4x^2 - 4x + 1$.

Simplify: $x^2 - x - 2 = 0$.

Solve: x = 2, or x = -1.

By substituting x = 2 in the given equation, we obtain $\sqrt{9} - 4 + 1 = 0$. Hence, 2 is a root. If we substitute x = -1, we have $\sqrt{9} + 2 + 1 = 0$. Hence, -1 is not a root.

The required solution is x = 2. The extraneous root x = -1 was introduced when we squared both sides of the equation.

If the equation contains expressions involving x that are raised to fractional powers, these may be replaced by their equivalent radicals.

EXAMPLE 2. Solve: $(3x-5)^{\frac{1}{2}}-(2x+3)^{\frac{1}{2}}+1=0$.

Write the equation in radical form: $\sqrt{3x-5} - \sqrt{2x+3} + 1 = 0$.

Isolate the first radical: $\sqrt{3x-5} = \sqrt{2x+3}-1$.

Square both sides: $3x - 5 = 2x + 3 - 2\sqrt{2x + 3} + 1$.

Isolate the second radical: $x - 9 = -2\sqrt{2x + 3}$.

Square both sides: $x^2 - 18x + 81 = 8x + 12$.

Simplify: $x^2 - 26x + 69 = 0$. Hence x = 3 or x = 23.

The first of these values of x satisfies the given equation; the second does not. Hence x = 3 is a solution and x = 23 is extraneous.

Exercises

Solve the following equations and check the results.

1.
$$\sqrt{11x-8}=6$$
.

3.
$$\sqrt{6x-6}-\sqrt{4x+8}=0$$
.

5.
$$\sqrt{5x-6} = x$$
.

7.
$$\sqrt{2x+3} - \sqrt{5x+1} + 1 = 0$$
. 8. $\sqrt{4x+1} - \sqrt{2x-3} = 2$.

9.
$$2(5x+1)^{\frac{1}{2}}-(12x-11)^{\frac{1}{2}}=3$$
.

11.
$$(7+2y)^{\frac{1}{2}}=(5-y)^{\frac{1}{2}}+y^{\frac{1}{2}}$$
. 12. $(2z-14)^{\frac{1}{2}}+(z-6)^{\frac{1}{2}}=z^{\frac{1}{2}}$.

13.
$$\sqrt{x^2+7x-7}-\sqrt{x^2+3x}=1$$
.

14.
$$\sqrt{2x^2-2x+1}-\sqrt{2x^2-10x+17}=2$$
.

15.
$$\sqrt{\sqrt{1-x}-\sqrt{x+15}}=2$$
. 16. $\sqrt{x^2-4x+6}=\sqrt{3}$.

17
$$\sqrt{5x-6a^2}-\sqrt{x-2a^2}-2a$$

2.
$$\sqrt{17x+13}-8=0$$
.

4.
$$\sqrt{9x+13} = \sqrt{13x-3}$$
.

6.
$$\sqrt{x+11}+x-1=0$$
.

8.
$$\sqrt{4x+1}-\sqrt{2x-3}=2$$

10.
$$(4x-7)^{\frac{1}{2}}-(2x-7)^{\frac{1}{2}}=2$$
.

12.
$$(2z-14)^{\frac{1}{2}}+(z-6)^{\frac{1}{2}}=z^{\frac{1}{2}}$$

16.
$$\sqrt{x^2-4x+6}=\sqrt{3}$$
.

17.
$$\sqrt{5x-6a^2}-\sqrt{x-2a^2}=2a$$
. 18. $\sqrt{4x-4a^2}-\sqrt{2x-a^2}=a$.

58. Equations in Quadratic Form. The following equations are not quadratic equations in x. They can, however, be solved by the methods of quadratic equations provided a suitably chosen expression in x is denoted by a new variable.

Example 1. Solve: $4x^4 - 109x^2 + 225 = 0$.

If we put $x^2 = y$, this equation becomes a quadratic equation in y:

$$4y^2 - 109y + 225 = 0.$$

The roots of this equation in y are $y = \frac{9}{4}$ and y = 25.

If, in these equations, we replace y by its value x^2 , these equations become $x^2 = \frac{9}{4}$ and $x^2 = 25$. The roots of these equations are $x = \frac{3}{2}$, $x = -\frac{3}{2}$, x = 5, and x = -5. These four numbers are the required roots of the given equation.

Example 2. Solve:
$$(x^2 - 4x)^2 - 2x^2 + 8x - 15 = 0$$
.

We may write this equation in the form $(x^2 - 4x)^2 - 2(x^2 - 4x) - 15 = 0$.

If we now put

 $x^2-4x=y,$

the equation becomes $y^2 - 2y - 15 = 0$,

$$y^2 - 2y - 15 = 0,$$

the roots of which are y = 5 and y = -3.

$$y=5$$
 and $y=-3$

In these two solutions, replace y by its value $x^2 - 4x$. We then have the two equations in x

$$x^2 - 4x = 5$$
, and $x^2 - 4x = -3$.

The roots of the first equation are found to be 5 and -1. Those of the second are 1 and 3. By substitution, we find that all of these values of xsatisfy the given equation. Hence, the required roots are 5, -1, 1, and 3.

Example 3. Solve:
$$x^2 - 3x - \sqrt{x^2 - 3x + 6} - 6 = 0$$
.

We first write this equation in the form:

$$x^2 - 3x + 6 - \sqrt{x^2 - 3x + 6} - 12 = 0.$$

If we now put

$$y = \sqrt{x^2 - 3x + 6},$$

we have the following quadratic equation in y

$$y^2 - y - 12 = 0,$$

the roots of which are y = 4 and y = -3.

$$y = 4$$
 and $y = -3$.

Replacing y by $\sqrt{x^2 - 3x + 6}$, we have the equations in x

$$\sqrt{x^2-3x+6}=4$$
, and $\sqrt{x^2-3x+6}=-3$.

The second of these equations we may reject at once since the positive square root of a number cannot equal -3.

By squaring the members of the first equation and simplifying, we obtain

$$x^2 - 3x - 10 = 0.$$

The roots of this equation, 5 and -2, also satisfy the given equation and are the required solutions.

Exercises

Solve the following equations.

1.
$$x^4 - 13x^2 + 36 = 0$$
.

2.
$$9x^{-4} - 37x^{-2} + 4 = 0$$
.

3.
$$x-2x^{\frac{1}{2}}-35=0$$
.

$$4. \ x^{\frac{2}{3}} - 5x^{\frac{1}{3}} + 6 = 0.$$

5.
$$x + 11 + 2\sqrt{x + 11} = 8$$
.

6.
$$4x - 4\sqrt{4x + 5} = 16$$
.

7.
$$(2x+3)^2 - 4(2x+3) = 5$$
.

8.
$$(5x-1)^2 + 35x - 51 = 0$$
.
10. $(2x^2 - 3x)^2 - 6(2x^2 - 3x) + 8 = 0$.

9.
$$(x^2 - 6x)^2 - 11(x^2 - 6x) = 80$$
.
11. $2(x^2 - 5x)^2 - 7x^2 + 35x + 6 = 0$.

12.
$$4(x^2 + 3x)^2 + 8x^2 + 24x - 5 = 0$$
.

13.
$$2\left(x-\frac{3}{x}\right)^2+3\left(x-\frac{3}{x}\right)-2=0$$
. 14. $\left(x-\frac{6}{x}\right)^2+4\left(x-\frac{6}{x}\right)-5=0$.

15.
$$\left(\frac{x+3}{x-1}\right)^2 - 5\left(\frac{x+3}{x-1}\right) + 6 = 0$$
. 16. $\left(\frac{x+2}{2x-5}\right)^2 - \frac{x+2}{2x-5} - 2 = 0$.

17.
$$2x^2 - 3x - 5\sqrt{2x^2 - 3x + 2} + 6 = 0$$
.

18.
$$2x^2 - 4x - \sqrt{x^2 - 2x + 13} - 2 = 0$$
.

59. Graph of the Quadratic Function. The graph of the quadratic function

$$ax^2 + bx + c, a \neq 0 (4)$$

may be drawn by the method outlined in Art. 40. We equate the given function to y,

$$y = ax^2 + bx + c,$$

assign values to x, compute the corresponding values of y, plot the points so determined, and draw a smooth curve through them.

The graph of a quadratic function is a parabola. If a is positive, the parabola opens upward (Figs. 13 and 15); if a is negative, it opens downward (Fig. 14). The lowest point on the parabola, if a > 0, or the highest if a < 0, is called its vertex. We shall find in Art. 195 that the coördinates of the vertex of this parabola are

$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right). \tag{5}$$

Since the vertex is the lowest (or highest) point on the given parabola, we have, from this expression for the coördinates of the vertex, the following property of the quadratic function: the value of x for which $ax^2 + bx + c$ takes its least value if a > 0, or its greatest value if a < 0, is $x = -\frac{b}{2a}$. This extreme value of the function is $\frac{4ac - b^2}{4a}$. This theorem

is frequently useful when we want to find a value of one variable that makes another as large (or as small) as possible.

EXAMPLE. Draw the graph of the function: $2x^2-3x+3$. Equate the given function to y: $y = 2x^2 - 3x + 3$.

By assigning values to x and computing the corresponding values of y from the equation, we get the following table.

x	2	- 1	0	0.75	1	2	3
y	17	8	3	1.875	2	5	12

From (5), the coördinates of the vertex are (0.75, 1.875). Hence, the function $2x^2 - 3x + 3$ attains its least value when x = 0.75. This least value

of the function is 1.875. Since, in this case, the parabola opens upward and its lowest point is above the x-axis, this curve does not meet the x-axis.

60. Graphical Solution of Quadratic Equations. If the roots of the quadratic equation

$$ax^2 + bx + c = 0 \tag{6}$$

are real numbers, they can be found, at least approximately, by drawing the graph of the equation

$$y = ax^2 + bx + c, (7)$$

and measuring the abscissas of the points at which the graph crosses the x-axis. For, since these points lie on the parabola, their coördinates satisfy equation (7) and, since they also lie on the x-axis, their y-coördinates are zero. Hence, if we substitute the coördinates of such a point in equation (7), we find that its abscissa makes $ax^2 + bx + c = 0$ and is consequently a root of equation (6).

If the vertex of the parabola lies on the x-axis, that is, from (5), if $4ac - b^2 = 0$, the two intersections of the parabola with the x-axis coincide and the roots of the quadratic equation (6) are equal.

If the parabola does not meet the x-axis, the roots of equation (6) are imaginary. The parabola shown in Figure 13, for example, does not meet the x-axis. Hence the roots of $2x^2 - 3x + 3 = 0$ are imaginary.

They are, in fact, the imaginary numbers $\frac{3+\sqrt{-15}}{4}$ and $\frac{3-\sqrt{-15}}{4}$.

Example 1. Solve graphically the quadratic equation $-x^2 + x + 2 = 0$.

We put $y = -x^2 + x + 2$, compute the following table, and draw the resulting graph (Fig. 14).

x	- 2	- 1	0	0.5	1	2	3
ν	- 4	0	2	2.25	2	0	-4

Since the graph crosses the x-axis at (-1, 0) and at (2, 0), the abscissas, -1 and 2, of these points must make the quadratic function $-x^2 + x + 2$ equal to zero. These numbers are, accordingly, the roots of the equation $-x^2 + x + 2 = 0$.

Fig. 14

FIG. 15

EXAMPLE 2. Solve graphically: $x^2 + x - 1 = 0$.

Put $y = x^2 + x - 1$, tabulate pairs of values of x and y, and draw the graph (Fig. 15).

x	- 3	- 2	- 1	- 0.5	0	1	2
у	5	1	- 1	- 1.25	- 1	1	5

The abscissas of the points of intersection of the graph with the x-axis are found approximately, by measurement, to be 0.6 and -1.6. It follows that these numbers are approximately the roots of

 $x^2+x-1=0.$

If a closer approximation to either of these roots is needed, it can be found graphically by drawing the graph, on an enlarged scale, in the neighborhood of the desired root. Thus, if we wish to determine the positive root to two decimal places, we substitute x = 0.6 in

Frg. 15a

the given equation giving y = -0.04. By plotting this point on the original graph, we find that 0.6 is slightly less than the required root. Putting x equal to a slightly larger value, x = 0.7, we find y = 0.19. On an enlarged scale, draw the graph from (0.6, -0.04) to (0.6, 0.19), as in Figure 15. (In a short interval, such as this, we may draw the graph, approximately, as a straight line.) From this enlarged figure, we find that the graph crosses the x-axis at about x = 0.62. This is the required root to two decimal places.

Exercises

Draw the graphs of the first members of the following equations. Find the coördinates of the vertices of the parabolas. If the roots of the given equation are real, find them graphically to two decimal places.

1.
$$x^2 - 4 = 0$$
.
3. $6 + x - x^2 = 0$.

5.
$$x^2-2x+1=0$$
.

7.
$$2x^2 + 3x - 3 = 0$$
.
9. $x^2 + x - 5 = 0$.

11.
$$x^2 - 6x + 10 = 0$$
.

2.
$$3x^2 - 5 = 0$$
.

4.
$$2+3x-2x^2=0$$
.

6.
$$x^2 + 4x + 4 = 0$$
.

8.
$$2x^2 + 5x - 2 = 0$$
.

10.
$$x^2 - 2x - 5 = 0$$
.

12.
$$2x^2 - 7x + 7 = 0$$
.

- 13. Draw, on one set of axes, the graphs of $y = x^2 4x + c$ for c = 0, 4, and 8. What change is made in the graph when the constant term, only, is changed?
- 14. A ball is thrown from the origin with a velocity of about 57 feet per second in a direction making an angle of 45° with the x-axis which is assumed to be horizontal. Given that the equation of its path is $y = x x^2/100$, find how high it will rise and the distance from the origin at which it will cross the x-axis.

- 15. Find the largest rectangular area that can be enclosed by a fence 100 rods long.
 - 16. Solve Ex. 15 if only three sides of the rectangle are to be fenced.
- 17. The perimeter of a rectangle is 144 feet. Find its dimensions if the square of the length of a diagonal is a minimum.
- 61. Character of the Roots. We shall show, in this article and the following one, how one can determine certain useful facts about the roots of the equation

$$ax^2 + bx + c = 0, (8)$$

without actually finding the roots themselves.

We saw, in Art. 55, that the roots, r_1 and r_2 , of equation (8) are

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. (9)

Suppose that a, b, and c are real numbers and consider the quantity

$$b^2 - 4ac$$

which appears under the radical sign in the formulas (9).

If $b^2 - 4ac$ is positive, then $\sqrt{b^2 - 4ac}$ is a real number and the two roots, r_1 and r_2 , of equation (1) are *real* numbers. Moreover, $r_1 \neq r_2$, since the denominators are the same and the numerators are unequal.

If $b^2 - 4ac = 0$, it follows from equations (9) that r_1 and r_2 are both equal to -b/2a. Hence, in this case, r_1 and r_2 are real and equal.

Finally, if $b^2 - 4ac$ is negative, then $\sqrt{b^2 - 4ac}$ is imaginary and r_1 and r_2 are imaginary and unequal.

These results may be summarized as follows: If a, b, and c are real numbers, then the roots of $ax^2 + bx + c = 0$ are

real and unequal if $b^2 - 4ac$ is positive, real and equal if $b^2 - 4ac = 0$,

imaginary and unequal if $b^2 - 4ac$ is negative.

The expression $b^2 - 4ac$ is called the discriminant of the quadratic equation $ax^2 + bx + c = 0$.

Furthermore, if a, b, and c are rational * numbers, it follows from equations (9) that r_1 and r_2 are rational numbers if, and only if, $\sqrt{b^2 - 4ac}$ is rational, that is, if $b^2 - 4ac$ is a perfect square. Hence, if a, b, and c are rational numbers, the roots of the equation $ax^2 + bx + c = 0$ are

rational if $b^2 - 4ac$ is a perfect square, irrational if $b^2 - 4ac$ is not a perfect square.

* A rational number is defined, in Art. 28, as one that can be written in the form m/n, where m and n are both integers. The square root of a rational number, \sqrt{N} , is a rational number only if N is a perfect square.

Example 1. Find the character of the roots of $2x^2 - 5x + 2 = 0$.

The coefficients a=2, b=-5, and c=2 of this equation are rational numbers and $b^2 - 4ac = (-5)^2 - 4 \cdot 2 \cdot 2 = 9 = 3^2$ is a perfect square. Hence, the roots are real, rational, and unequal.

EXAMPLE 2. Find the character of the roots of $25x^2 + 30x + 9 = 0$.

The coefficients are rational and $b^2 - 4ac = 30^2 - 4 \cdot 25 \cdot 9 = 0$. The roots are real, equal, and rational.

EXAMPLE 3. Find the character of the roots of $5x^2 + 7x - 1 = 0$.

The coefficients are rational and $b^2 - 4ac = 7^2 - 4 \cdot 5 \cdot (-1) = 69$, which is positive but not a perfect square. The roots are real, unequal, and irrational.

Example 4. Find the character of the roots of $7x^2 - 2x + 1 = 0$.

Since $b^2 - 4ac = (-2)^2 - 4 \cdot 7 \cdot 1 = -24$, which is negative, the roots are imaginary and unequal.

Example 5. Find the values of k for which the quadratic equation in x, $2kx^2 + 5x^2 - 3kx + k - 1 = 0$, has equal roots.

We first write the equation in the standard form

$$(2k+5)x^2-3kx+(k-1)=0.$$

Hence, a = 2k + 5, b = -3k, and c = k - 1. The roots of the given equation are equal if $b^2 - 4ac = (-3k)^2 - 4(2k+5)(k-1) = k^2 - 12k + 20 = 0$. By solving this equation, we find that k must equal 2 or 10.

As a check, we put k=2 in the given equation. It becomes $9x^2-6x+1$ = 0, which has the equal roots $\frac{1}{3}$ and $\frac{1}{3}$. Similarly, if k = 10, the given equation becomes $25x^2 - 30x + 9 = 0$, which has the equal roots $\frac{3}{5}$ and $\frac{3}{5}$.

Exercises

Find the character of the roots of the following equations.

1.
$$x^2 - 8x + 15 = 0$$
.

$$3. \ 3x^2 + 7x - 2 = 0.$$

5.
$$9x^2 - 12x + 4 = 0$$
.
7. $5x^2 + 4x + 3 = 0$.

9.
$$8x^2 = 2x + 15$$
.

11.
$$3x^2 - \frac{5}{2}x + \frac{1}{3} = 0$$
.

2.
$$2x^2 - 11x - 21 = 0$$
.

4.
$$6x^2 - 25x + 9 = 0$$
.

6.
$$4x^2 + 20x + 25 = 0$$
.

8.
$$x^2 - 5x + 7 = 0$$
.

10.
$$5x^2 + 3x = 1$$
.

12.
$$x^2 - 1.7x - 0.84 = 0$$
.

Find the values of k for which the roots of the following quadratic equations in x are equal.

13.
$$5x^2 - 8x + k = 0$$
.

15.
$$(3k+1)x^2 + (k+3)x = 4-k$$
.

17.
$$16x^2 + (3x + k)^2 = 16$$
.

14.
$$12x^2 + 2kx + 3 = 0$$
.

15.
$$(3k+1)x^2 + (k+3)x = 4-k$$
. 16. $(2k-5)x^2 - 2(k-1)x = 3-k$.

17.
$$16x^2 + (3x + k)^2 = 16$$
. 18. $(x-2)(x+2k) + 16 = 0$.

62. The Sum and Product of the Roots. The sum of the roots, r_1 and r_2 , of the equation $ax^2 + bx + c = 0$ is found, by adding the expressions found in equations (9), to be

$$r_1 + r_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2b}{2a} = \frac{-b}{a}.$$

The product of the roots is found, similarly, by multiplying these two expressions, to be

$$r_1 \cdot r_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}.$$

Hence we have, for the sum and the product of the roots,

$$r_1 + r_2 = -\frac{b}{a}$$
, and $r_1 \cdot r_2 = \frac{c}{a}$.

Example 1. Find the sum and the product of the roots of the equation $(3x-1)^2 - 2(x-4)^2 + 35 = 0.$

Multiply out, and arrange the result in the standard form,

$$7x^2 + 10x + 4 = 0.$$

Hence,

$$r_1 + r_2 = -\frac{b}{a} = -\frac{10}{7}; \quad r_1 \cdot r_2 = \frac{c}{a} = \frac{4}{7}.$$

Example 2. Find the roots of the equation $6x^2 - 23x + c = 0$, and determine c, given that the difference between the roots is $\frac{5}{6}$.

The sum of the roots is: $r_1 + r_2 = \frac{23}{6}$.

Their difference is: $r_1 - r_2 = \frac{5}{6}$.

$$r_1-r_2=\tfrac{5}{6}.$$

By solving these equations, we find that $r_1 = \frac{7}{3}$ and $r_2 = \frac{3}{2}$.

The product of the roots is $r_1 \cdot r_2 = \frac{c}{a} = \frac{c}{6} = \frac{7}{3} \cdot \frac{3}{2} = \frac{7}{2}$. Hence, c = 21.

The equation is $6x^2 - 23x + 21 = 0$ and its roots are $\frac{7}{3}$ and $\frac{3}{2}$.

EXAMPLE 3. Find the roots of the equation $3x^2 + 7x + k = (x+1)^2$, given that one root is four times the other.

Write the equation in the standard form

$$2x^2 + 5x + k - 1 = 0,$$

and denote its roots by r_1 and r_2 . Let $r_2 = 4r_1$.

Then $r_1 + r_2 = r_1 + 4r_1 = 5r_1 = -\frac{b}{a} = -\frac{5}{2}$. Hence, $r_1 = -\frac{1}{2}$ and $r_2 = 4r_1$

= -2.The product of the roots is $r_1 \cdot r_2 = \frac{c}{a} = \frac{k-1}{2} = \left(-\frac{1}{2}\right)(-2) = 1$. Hence k=3.

The equation is $2x^2 + 5x + 2 = 0$ and its roots are $-\frac{1}{2}$ and -2.

63. The Factored Form of $ax^2 + bx + c$. If r_1 and r_2 are the roots of $ax^2 + bx + c = 0$, we have, from the formulas for the sum and the product of the roots (Art. 62),

$$b = -a(r_1 + r_2)$$
, and $c = ar_1r_2$.

Substitute these values of b and c in the expression $ax^2 + bx + c$. We have

$$ax^{2} + bx + c = ax^{2} - a(r_{1} + r_{2})x + ar_{1}r_{2}$$

$$= a[x^{2} - (r_{1} + r_{2})x + r_{1}r_{2}]$$

$$= a(x - r_{1})(x - r_{2}).$$

Hence,

$$ax^2 + bx + c = a(x - r_1)(x - r_2).$$

It follows that to factor a quadratic expression in x, equate the expression to zero and find the roots of the resulting equation. Then x minus each root is a factor of the given expression.

Example 1. Factor the expression $3x^2 - 8x + 2$.

The roots of $3x^2 - 8x + 2 = 0$ are found, by the quadratic formula, to be

$$r_1 = \frac{4 + \sqrt{10}}{3}$$
 and $r_2 = \frac{4 - \sqrt{10}}{3}$. Hence

$$3x^2 - 8x + 2 = 3\left(x - \frac{4 + \sqrt{10}}{3}\right)\left(x - \frac{4 - \sqrt{10}}{3}\right).$$

The student should verify this result by multiplying the factors together and simplifying the result.

Example 2. Form a quadratic equation whose roots are $\frac{1}{3}$ and $-\frac{5}{4}$.

The required equation is $a(x-\frac{1}{3})(x+\frac{5}{4})=0$, where a may be any non-zero constant we choose. Putting a=12, to avoid fractions, we have, as the required equation,

$$12(x-\frac{1}{3})(x+\frac{5}{4})=(3x-1)(4x+5)=12x^2+11x-5=0.$$

Exercises

Without solving the equation, find the sum and product of its roots.

1.
$$3x^2 + 8x + 17 = 0$$
.

2.
$$5x^2 - 7x - 13 = 0$$
.

3.
$$6.3x^2 + 4.9x - 3.6 = 0$$
.

4.
$$3(2x-7)^2 = 5(x-3)^2 + 25$$
.

Form a quadratic equation having the given numbers as roots.

5.
$$4, -7$$
.

6.
$$\frac{3}{5}$$
, $-\frac{2}{3}$.

8.
$$2+\sqrt{7}$$
, $2-\sqrt{7}$.

9.
$$-3+\sqrt{5}$$
, $-3-\sqrt{5}$.

10.
$$4+5i$$
, $4-5i$.

11.
$$-5 + \sqrt{2}i$$
, $-5 - \sqrt{2}i$.

12.
$$\frac{-5+\sqrt{8}}{3}$$
, $\frac{-5-\sqrt{8}}{3}$.

13.
$$\frac{-1+\sqrt{3}i}{2}$$
, $\frac{-1-\sqrt{3}i}{2}$.

14.
$$a + \sqrt{b}$$
, $a - \sqrt{b}$.

15.
$$-p + \sqrt{p^2 + q}, -p - \sqrt{p^2 + q}$$

Factor:

16.
$$6x^2 - 13x - 5$$
.

17.
$$15x^2 + 7x - 2$$
.

18.
$$2x^2 - 6x + 7$$
.

19.
$$7x^2 + 6x + 3$$
.

20.
$$x^2 - (2y + 3)x - 3y^2 - 11y - 10$$
.

21.
$$2x^2 + xy - 15y^2 + x + 14y - 3$$
.

Find the value of k, given that:

22. One root of $x^2 - (3k - 1)x + 6k = 0$ is 3.

23. The sum of the roots of $(k+4)x^2 + (7-5k)x - k + 3 = 0$ is 2.

24. The product of the roots of $(k-1)x^2 + (3k-2)x + 2k + 1 = 0$ is $\frac{5}{2}$.

Form a quadratic equation whose roots are:

25. Equal numerically, but opposite in sign, to those of $3x^2 - 7x = 6$.

26. Twice those of $2x^2 - 5x + 4 = 0$.

27. Less by 1 than those of $3x^2 - 4x - 1 = 0$.

- 64. Problems Involving Quadratic Equations. State each of the following verbal problems by means of a quadratic equation in one unknown. Solve this equation and check your result by comparison with the verbal statement.
 - 1. Find two numbers whose difference is 3 and whose product is 154.
- 2. Three times the square of a number, less 28, equals 17 times the number. Find the number.
- 3. Find three consecutive odd, positive integers such that the sum of their squares equals 251.
- 4. The length of the hypotenuse of a right triangle is 3x + 2. The lengths of its sides are 2x + 5 and x + 3. Find x.
 - 5. Find a number that exceeds its reciprocal by $\frac{21}{10}$.
 - 6. The sum of a number and its reciprocal is $\frac{25}{12}$. Find the number.
- 7. The sum of two numbers is 2 and the sum of their reciprocals is $\frac{25}{12}$. Find the numbers.
- 8. Two circles are tangent externally. The distance between their centers is 12 inches and the sum of their areas is 80π square inches. Find their radii.
- 9. A circular swimming pool is surrounded by a concrete walk 4 feet wide. The area of the walk is $\frac{11}{25}$ that of the pool. Find the radius of the pool.
- 10. A man bought some shares of stock for \$18,000. He sold all but 100 shares for the same amount, thereby gaining \$6 a share on the stock sold. How many shares did he buy?
- 11. A rectangular picture is surrounded by a rectangular frame 4 inches wide at the top and bottom and 2 inches wide at each side. The area of the

frame is twice that of the picture. Find the dimensions of the picture if the sum of its dimensions is 16 inches.

- 12. A closed cubical box is made of boards 1 inch thick. The volume of wood in the box is 1016 cubic inches. Find the length of the outside edge of the box.
- 13. A wholesaler adds a certain percentage to the manufacturer's price when he sells to the retailer. The retailer adds three times this percentage to the wholesaler's price when he sells to the consumer. If the price to the consumer is 75% more than the manufacturer's price, what percentage did the wholesaler add?
- 14. A man bought some land and sold it at a loss. With the proceeds of this sale, he bought some more land and sold it for the price he paid for the first land. His per cent gain of the second sale was 5% more than his loss on the first one. Find his per cent loss on the first sale.
- 15. An automobile, traveling east at 45 miles an hour, passed a certain intersection at noon. Another automobile, traveling north at 60 miles an hour, passed the same intersection 25 minutes later. Find, to the nearest minute, the times at which they were 40 miles apart.
- 16. In Ex. 15, denote the square of the distance between the automobiles by y and draw the graph of y as a function of the time. Find the time at which the square of the distance between them was least and find this least distance.

Chapter 9

Simultaneous Equations Involving Quadratics

65. Equation of Second Degree in Two Variables. An equation of the form

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$$
 (1)

in which A, B, and C are not all zero, is an equation of second degree in x and y and its graph is called a **conic section**. We shall study these curves in considerable detail in Chapters 23 and 25.

If we are given an equation of the type of equation (1), we can draw its graph by assigning values to one variable and computing the values of the other variable from the equation. Since this process is rather tedious, involving, usually, the solution of a quadratic equation, we shall, in Art. 66, draw the graphs of typical curves of the types defined by equation (1) so that the student may have a rather definite idea of the form of the curve he is trying to draw.

66. Graphs of Type Forms. (1) The circle.

The graph of the equation $x^2 + y^2 = a^2$ is a circle with center at the origin and of radius a.

Example 1. Draw the graph of the equation $x^2 + y^2 = 10$.

The required curve is a circle with center at the origin and radius $\sqrt{10}$ = 3.16 (Fig. 16).

Since the curve is symmetric with respect to both coördinate axes (Art. 41), we shall tabulate the values of the coördinates of points on it for the first quadrant, only. Coördinates of points on the curve in the other quadrants may be found by choosing points on it in the first quadrant and changing the signs of one or both coördinates.

x	0	1	2	3
y	3.2	3	2.4	1

If $x > \sqrt{10}$ (or $< -\sqrt{10}$), the values of y are imaginary and no corresponding points are obtained on the graph.

(2) The ellipse. The graph of the equation

$$Ax^2 + By^2 = C,$$

where A, B, and C are all positive, is an ellipse.

Example 2. Draw the ellipse: $4x^2 + 9y^2 = 36$.

The curve, also, is symmetric to both coördinate axes so we shall construct our table with respect to the first quadrant.

x	0	1	2	3
y	2	1.9	1.5	0

If x > 3 (or < -3), y is imaginary. The graph is shown in Figure 17.

(3) The hyperbola. The graph of the equation

$$Ax^2 - By^2 = C,$$

where A and B are positive and $C \neq 0$, is a hyperbola.

Example 3. Draw the hyperbola: $x^2 - 4y^2 = 4$.

The curve is symmetric with respect to both axes. In this case, if x lies in the interval from -2 to 2, y is imaginary and there are no corresponding points on the curve. The values of y are real, however, for values of x indefinitely large. We shall tabulate

values from x = 2 to x = 5.

x	2	3	4	5
ν	0	1.1	1.7	2.3

The graph is shown in Figure 18.

The graph of the equation xy = C is also a hyperbola in the position shown in Figure 19.

Example 4. Draw the graph of the hyperbola xy = 6.

By assigning values to x, we obtain the following table.

x	- 6	- 3	- 2	- 1	1	2	3	6
ν	-1	-2	- 3	- 6	6	3	2	1

There is no value of y corresponding to x = 0, since division by zero is impossible.

The curve discussed in Ex. 4 is not symmetric with respect to either axis. It should be observed, however, that, if (x, y) are the coördinates of any point on this locus then (-x, -y) are also the coordinates of a point on the locus. Since the line segment joining the points (x, y) and (-x, -y) passes through the origin and is bisected by the origin, we

say that a curve that satisfies the above condition is symmetric with respect to the origin.

(4) The parabola. It was seen in Art. 59 that the graph of the equation

$$y = ax^2 + bx + c, \qquad a \neq 0$$

that is, of a quadratic function of x, is a parabola opening upward if a is positive and downward if a is negative.

Similarly, the graph of

$$x = ay^2 + by + c \qquad a \neq 0$$

is a parabola that opens to the right if a is positive and to the left if a is negative (Fig. 20).

EXAMPLE 5. Draw the graph of the parabola $x = y^2 - 2y - 5$.

In this case, we assign values to y and compute x from the equation. We have

\boldsymbol{x}	10	3	- 2	- 5	- 6	- 5	-2	3	10
у	- 3	- 2	-1	0	1	2	3	4	5

If the given equation does not belong to one of the types illustrated in this article, the graph may be determined by plotting points on it. The form of the graph will usually be similar to one of the curves shown in the preceding examples but it will be differently placed with respect to the coördinate axes.

67. Graphical Solution of Simultaneous Equations. If the graphs of two equations are carefully drawn on the same set of axes, the real simultaneous solutions of the two equations can be found, at least approximately, as the coördinates of the points of intersection of the graphs of the two equations.

Example. Solve graphically:
$$x^2 + y^2 = 20$$
, $xy = 8$.

The graph of the first equation is a circle with center at the origin and radius $\sqrt{20}$. That of the second is a hyperbola (Fig. 21).

These graphs intersect at the points whose coördinates are (4, 2) (2, 4), (-2, -4), and (-4, -2).

(-4,-2) (-2,-4) Fig. 21

It follows that these pairs of numbers are, at least approximately, the simultaneous solutions of the two equations. By substitution, we find that each pair exactly satisfies both equations and hence is precisely a simultaneous solution of the two equations.

Exercises

Draw the graph of each equation and state the name of the curve.

1.
$$x^2 + y^2 = 36$$
.

3.
$$4x^2 + 25y^2 = 100$$
.

5.
$$y + 2x^2 - 5x + 3 = 0$$
.

7.
$$9x^2 - 16y^2 = 144$$
.

9.
$$x^2 + y^2 - 4x + 6y - 3 = 0$$
.

2.
$$x^2 + y^2 = 29$$
.

4.
$$49x^2 + 9y^2 = 441$$
.

6.
$$x - y^2 + 3y + 8 = 0$$
.

8.
$$25y^2 - 16x^2 = 400$$
.

10.
$$xy + 3x - 2y = 0$$
.

Solve the following simultaneous equations graphically to one decimal place.

11.
$$x^2 + y^2 = 25$$
, $x + y = 1$.

13.
$$x^2 - y^2 = 24$$
, $2x - y = 9$.

15.
$$x^2 + y^2 = 40$$
, $xy + 12 = 0$.

17.
$$y = 3x^2 + 2x - 7$$
, $y = -2x + 3$.

19.
$$x^2 + y^2 + 6x = 8y$$
,
 $x + 2y - 1 = 0$.

12.
$$x^2 + y^2 = 34$$
, $x + y = 8$.

14.
$$xy = 10$$
, $x + y = 7$.

16.
$$x^2 + 2y^2 = 11$$
, $x^2 - y^2 = 2$.

18.
$$3x^2 - 2y^2 = 6$$
, $xy = 7$.

20.
$$xy - x - y = 2$$
, $x^2 - xy = 4$.

68. Algebraic Solution of Simultaneous Equations. The algebraic solution of two simultaneous equations, of which one is of the first degree and the other of the second, can always be effected by quadratics (Art. 69).

If both given equations are of the second degree, the algebraic solution usually leads to an equation of the fourth degree in one of the variables which cannot, in most cases, be solved by quadratics. In Arts. 70 to 72 we shall consider a number of special cases of two such equations that can be solved by quadratics.

In all these cases, it will be found useful to draw the graphs in connection with the algebraic solution, not only as a means of checking, but also as a method of interpreting the algebraic processes and the results.

69. Simultaneous Equations of the First and Second Degrees. To find the simultaneous solutions of two equations

$$ax + by + c = 0,$$

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$$

of the first and second degrees, respectively, we solve the linear equation for one variable in terms of the other, substitute the value so found in the other given equation, and solve the resulting quadratic equation. We then substitute each root of the quadratic equation in the given

X

linear equation and find the corresponding values of the other variable. Each of the pairs of corresponding values of x and y obtained in this

O (5,5) X (1,-7)

Fig. 22

way is a simultaneous solution of the two given equations.

EXAMPLE 1. Solve the simultaneous equations $x^2 + y^2 = 50$ and y = 3x - 10.

The graph of the first equation is a circle with center at the origin and radius $5\sqrt{2}$. The graph of the second is a line (Fig. 22).

Since the coördinates of the points of intersection of the line and the circle lie on both curves, their coör-

(-6,3)

0

Fig. 23

dinates satisfy both equations and are thus the required simultaneous solutions.

Substitute the value of y from the second equation in the first. The result is

$$x^2 + (3x - 10)^2 = 50$$
, or $x^2 - 6x + 5 = 0$.

The roots of this equation, 5 and 1, are the abscissas of the points of intersection. To find the ordinates, substitute these values of x, successively, in the equation of the line. If x = 5, we find y = 5 and, if x = 1, y = -7. The required solutions are (5, 5) and (1, -7). These are also the coördinates of the intersections of the line with the circle.

EXAMPLE 2. Solve simultaneously: $x^2 + y^2 = 45$ and y = 2x + 15.

From Figure 23, we see that the line is tangent to the circle. The values of x and of y for the two solutions should therefore be respectively equal.

Substitute the value of y from the second equation in the first and simplify. We get

$$x^2 + 12x + 36 = 0.$$

Example 3. Solve simultaneously: $x^2 + y^2 = 25$ and x + 2y = 15.

Substitute the value of x from the second equation in the first and simplify. We have

$$y^2 - 12y + 40 = 0.$$

Hence y = 6 + 2i and y = 6 - 2i. The corresponding values of x are x = 3 - 4i and x = 3 + 4i, giving the simultaneous solutions (6 + 2i, 3 - 4i) and (6 - 2i, 3 + 4i).

The student should draw the graphs and show that the line and circle do not intersect.

Exercises

Solve the pairs of simultaneous equations algebraically and check graphically.

1.
$$x^2 + y^2 = 40$$
,
 $2x + y = 10$.

3.
$$y = 2x^2 - 4x - 13$$
, $y = 2x + 7$.

5.
$$4x^2 + y^2 = 68$$
, $2x + y = 10$.

7.
$$x^2 - y^2 = 24$$
, $2x - y = 9$.

9.
$$3x^2 + 2y^2 = 11$$
, $3x - 4y = 11$.

11.
$$4x^2 - 3y^2 = 5$$
, $y = 2x - 1$.

2.
$$x^2 + y^2 = 65$$
, $3x + 2y = 26$.

4.
$$xy = 12$$
, $3x - 5y = 3$.

6.
$$3x = y^2 - 5y + 3$$
,
 $x + 5y + 6 = 0$.

8.
$$7x^2 - 4y^2 = 3$$
, $3x + 2y = 1$.

10.
$$2x^2 + 6x + 5y + 1 = 0$$
,
 $2x + y + 3 = 0$.

12.
$$x^2 + 3xy + y^2 = 4$$
,
 $x - y - 7 = 0$.

Find the values of k that make the line tangent to the curve.

13.
$$4x^2 - 3y^2 = 24$$
, $2x + y + k = 0$.

14.
$$5x^2 + 2y^2 = 14$$
,
 $5x - 2y + k = 0$.

70. Systems of the Form $Ax^2 + By^2 = C$. Two simultaneous equations of this form should first be solved as linear equations in x^2 and y^2 . The values of x and y can then be found by extracting the square roots of the values of x^2 and y^2 .

Example. Solve:
$$x^2 + y^2 = 13$$
, $3x^2 + 2y^2 = 30$.

Eliminate y² by multiplying the first equation by 2 and subtracting from the second

$$2x^{2} + 2y^{2} = 26$$
$$3x^{2} + 2y^{2} = 30$$
$$x^{2} = 4.$$

Fig. 24

Hence, x = 2 or x = -2. If we substitute either of these values of x in the first equation, we obtain $y^2 = 9$, from which y = 3 or y = -3.

Since either value of x, paired with either value of y, satisfies both of the given equations, there are four solutions (2, 3), (-2, 3), (-2, -3), and (2, -3) (Fig. 24).

Exercises

Solve the simultaneous equations.

1.
$$x^2 + y^2 = 25$$
,
 $5x^2 - 2y^2 = 13$.

2.
$$4x^2 + 3y^2 = 48$$
,
 $x^2 + y^2 = 13$.

3.
$$4x^2 + y^2 = 61$$
,
 $2x^2 + 3y^2 = 93$

4.
$$x^2 - 5y^2 = 4$$
,
 $2x^2 + 3y^2 = 21$.

7.
$$7x^2 - 2y^2 = 11$$
, $2x^2 + y^2 = 11$.

10.
$$7x^2 - 3y^2 = 7$$
, $11x^2 - 5y^2 = 10$.

5.
$$2x^2 + 5y^2 = 95$$
, $x^2 + 3y^2 = 52$.

8.
$$3x^2 + 2y^2 = 23$$
, $2x^2 + 3y^2 = 27$.

11.
$$3x^2 + 4y^2 = 11$$
, $4x^2 + 7y^2 = 8$.

6.
$$7x^2 - 3y^2 = 2$$
, $3x^2 + y^2 = 42$.

9.
$$3x^2 + 2y^2 = 18$$
, $4x^2 + 5y^2 = 45$.

12.
$$4x^2 - 3y^2 = 9$$
, $5x^2 - 8y^2 = 41$.

13. Show that the circle $x^2 + y^2 = 4$ touches the ellipse $5x^2 + 2y^2 = 20$ at two points.

71. Systems of the Form $Ax^2 + Bxy + Cy^2 = D$. Two methods are available for the solution of two equations both of which are of this type. These two methods are illustrated by solutions A and B of the following example.

EXAMPLE. Solve:
$$2x^2 - xy + y^2 = 4$$
, $4x^2 - 5xy + 3y^2 = 6$.

A. Solution by eliminating the constant term.

Multiply the first equation by 3, the second by 2, and subtract the first from the second.

$$6x^{2} - 3xy + 3y^{2} = 12$$

$$8x^{2} - 10xy + 6y^{2} = 12$$

$$2x^{2} - 7xy + 3y^{2} = 0.$$

Fig. 25

Solve the resulting equation as a quadratic equation in x. We obtain

$$x = \frac{1}{2}y$$
, or $x = 3y$.

Each of these equations defines a line passing through two of the required intersections (Fig. 25).

If we substitute $x = \frac{1}{2}y$ in the first given equation, we have

$$\frac{1}{2}y^2 - \frac{1}{2}y^2 + y^2 = 4$$
, or $y^2 = 4$.

Hence, y = 2, or y = -2. Hence, $y = \frac{1}{2}$, or $y = -\frac{1}{2}$.

Since $x = \frac{1}{2}y$, we have the solutions

If we substitute x = 3y in the first ven equation, we have given equation, we have $\frac{1}{2}y^2 - \frac{1}{2}y^2 + y^2 = 4$, or $y^2 = 4$. $18y^2 - 3y^2 + y^2 = 4$, or $4y^2 = 1$.

$$18y^2 - 3y^2 + y^2 = 4$$
, or $4y^2 = 1$.

Since x = 3y, we have the solu-

$$x = 1, y = 2, \text{ and } x = -1, y = -2.$$
 $x = \frac{3}{2}, y = \frac{1}{2}, \text{ and } x = -\frac{3}{2}, y = -\frac{1}{2}.$

B. Solution by putting y = mx. If we put y = mx in the given equations, we have, respectively

$$(2-m+m^2)x^2=4$$
, and $(4-5m+3m^2)x^2=6$.

Solve these equations for x^2 .

$$x^2 = \frac{4}{2 - m + m^2}$$
, and $x^2 = \frac{6}{4 - 5m + 3m^2}$. (2)

Equate these values of x^2 and clear of fractions:

$$4(4-5m+3m^2)=6(2-m+m^2).$$

Simplify:

$$3m^2 - 7m + 2 = 0.$$

The roots of this equation are m=2 and $m=\frac{1}{3}$.

If we put m = 2 in either of equations (2), we have

$$x^2 = 1$$
.

Hence, x = 1, or x = -1.

Since y = mx, where m = 2, we have the solutions

$$x = 1, y = 2, \text{ and } x = -1, y = -2.$$

If we put $m = \frac{1}{3}$ in either of equations (2), we have

$$x^2 = \frac{9}{4}$$
.

Hence, $x = \frac{3}{2}$, or $x = -\frac{3}{2}$.

Since y = mx, where $m = \frac{1}{3}$, we have the solutions

$$x = 1, y = 2, \text{ and } x = -1, y = -2.$$
 $x = \frac{3}{2}, y = \frac{1}{2}, \text{ and } x = -\frac{3}{2}, y = -\frac{1}{2}.$

Exercises

Solve the simultaneous equations.

1.
$$4x^2 - 4xy - y^2 = 7$$
,
 $7x^2 - xy + 2y^2 = 28$.

3.
$$3x^2 - 6xy + 2y^2 = 11$$
,
 $2x^2 + xy + y^2 = 22$.

5.
$$6x^2 + 10xy - 5y^2 = 39$$
,
 $x^2 + 11xy + 26y^2 = 52$.

7.
$$2x^2 - xy = 12$$
, $xy + y^2 = 6$.

9.
$$8x^2 - 5xy + 42 = 0$$
,
 $3xy - 8y^2 = 14$.

11.
$$x^2 + 5xy + 3y^2 = 12$$
,
 $2y^2 + xy - 3x^2 = 12$.

2.
$$4x^2 - 5xy + y^2 = 10$$
,
 $3x^2 - 3xy - y^2 = 5$.

4.
$$4x^2 + xy + y^2 = 34$$
,
 $x^2 - 5xy + 3y^2 = 51$.

6.
$$x^2 + 4y^2 = 5$$
,
 $x^2 + 2xy + 4y^2 = 3$.

8.
$$2x^2 + 3xy + y^2 = 24$$
,
 $x^2 + 6xy - y^2 = 18$.

10.
$$2x^2 + xy - y^2 + 5 = 0$$
,
 $2x^2 - xy - y^2 = 7$.

12.
$$2x^2 - 3xy = 5$$
, $2xy - 3y^2 = 2$.

72. Special Devices. Many simultaneous equations, some of them of degree higher than two, can be solved by quadratics if certain devices appropriate to the problem are used. A few of these devices are suggested in the following examples and exercises.

EXAMPLE 1. Solve:
$$2x^2 + y^2 - 4y - 23 = 0$$
, $5x^2 - y^2 - 3y - 5 = 0$.

If we eliminate x^2 , the resulting equation will not contain the variable x. Multiply the first equation by 5, the second by 2, and subtract.

$$\frac{10x^2 + 5y^2 - 20y - 115 = 0}{10x^2 - 2y^2 - 6y - 10 = 0}$$
$$\frac{7y^2 - 14y - 105 = 0}{7}$$

Hence, y = 5 or y = -3. If we substitute y = 5 in the first equation, we obtain $2x^2 - 18 = 0$. Hence x = 3 or x = -3. It follows that (3, 5) and (-3, 5) are solutions. If we put y = -3 in the first equation, we have $2x^2-2=0$, giving x=1 or x=-1. Hence, (1, -3) and (-1, -3) are also solutions.

§ 72

The required solutions are, accordingly, (3, 5), (-3, 5), (1, -3), and (-1, -3).

An equation of the form

$$A(x^2 + y^2) + Bxy + C(x + y) + D = 0$$

is said to be symmetric in x and y. It has the property that it remains the same equation if x and y are interchanged throughout.

If both given equations are symmetric, the system can be solved by putting x = u + v, y = u - v and eliminating v^2 from the resulting equations.

EXAMPLE 2. Solve:
$$x^2 + y^2 - 3xy - 2x - 2y - 15 = 0$$
, $xy + 2x + 2y - 1 = 0$.

Since both of these equations are symmetric in x and y, we substitute x = u + v and y = u - v, giving

$$5v^2 - u^2 - 4u - 15 = 0,$$

$$-v^2 + u^2 + 4u - 1 = 0.$$

By eliminating v^2 , we obtain $4u^2 + 16u - 20 = 0$. Hence, u = 1 or u = -5. If we substitute these values for u in the preceding equations and solve for v, we obtain the following sets of solutions for u and v:

$$u = 1$$
, $v = 2$; $u = 1$, $v = -2$; $u = -5$, $v = 2$; $u = -5$, $v = -2$.

By substituting these pairs of values of u and v successively in the equations x = u + v, y = u - v, we obtain, as the required pairs of values of x and y, (3, -1)(-1, 3), (-3, -7), and (-7, -3).

Exercises

Solve the simultaneous equations by first eliminating x^2 or y^2 .

1.
$$y^2 - 2x^2 + 11x - 30 = 0$$
,
 $2y^2 - x^2 + 13x - 114 = 0$.

2.
$$y^2 - x^2 - 2x + 5 = 0$$
,
 $5y^2 + x^2 - x - 2 = 0$.

3.
$$3x^2 + y^2 + 4y - 24 = 0$$
,
 $x^2 - y^2 - 4y + 20 = 0$.

4.
$$3x^2 + y^2 - 2y - 2 = 0$$
,
 $4x^2 + 2y^2 - y - 11 = 0$.

Solve the simultaneous symmetric equations.

5.
$$3x^2 + 3y^2 - 2xy - x - y = 8$$
,
 $4x^2 + 4y^2 - 5x - 5y - 5 = 0$.

6.
$$x^2 + y^2 - 2x - 2y - 11 = 0$$
,
 $xy - 3x - 3y + 9 = 0$.

7.
$$2x^2 + 2y^2 - xy + x + y = 11$$
, 8. $x^2 + y^2 - 2x - 2y - 23 = 0$, $x^2 + y^2 + xy + 2x + 2y = 13$. $xy + 2x + 2y + 10 = 0$.

8.
$$x^2 + y^2 - 2x - 2y - 23 = 0$$
,
 $xy + 2x + 2y + 10 = 0$.

In Exercises 9 to 12, factor the first member of the second equation and replace one factor by its value from the first equation. Solve the resulting equation with the first given one.

9.
$$x + y = 3$$
,
 $x^3 + y^3 = 9$.

11.
$$x - 3y = 2$$
,
 $x^3 - 27y^3 = 98$.

10.
$$x^2 + xy + y^2 = 13$$
,
 $x^3 - y^3 = 26$.

12.
$$x - y = 3$$
,
 $x^3 - y^3 = 3x^2 + 15y^2$.

In Exercises 13 to 16, first find the values of 1/x and 1/y.

13.
$$\frac{6}{x} + \frac{1}{y} = 2$$
, $\frac{8}{x} + \frac{2}{y} = 1$

$$\frac{8}{x^2} + \frac{2}{y^2} = 1.$$

15.
$$\frac{1}{x^2} - \frac{1}{xy} = 3$$
, $\frac{3}{xy} + \frac{1}{y^2} = -2$.

14.
$$\frac{8}{x^2} - \frac{9}{y^2} = 1$$
, $\frac{12}{x^2} + \frac{18}{y^2} = 5$.

16.
$$\frac{1}{x^2} + \frac{1}{y^2} = 25$$
,

$$\frac{1}{xy}+12=0.$$

Solve by any method.

17.
$$3x + 5y = 17$$
, $9x^2 + 25y^2 = 169$.

19.
$$6x^2 - y^2 = 7$$
,
 $x^2 + 2y^2 = 12$.

21.
$$x + y = 2$$
,
 $2y = 2x^2 + 3x + 1$.

23.
$$y = 3x^2 - 4x + 9$$
,
 $y = 2x^2 + x + 3$.

18.
$$x + 2y = 5$$
,
 $x^2 - 2y = 7$.

20.
$$x^2 - xy + y^2 = 39$$
,
 $x^2 - 2xy = 24$.

22.
$$(3x + 2y)^2 + 2(x + y)^2 = 17$$
,
 $2(3x + 2y)^2 + (x + y)^2 = 22$.

24.
$$4\sqrt{x} - 3\sqrt{y} = 8$$
, $3\sqrt{x} - 2\sqrt{y} = 7$.

- 73. Problems Involving Simultaneous Quadratics. In each of the following problems, denote two of the unknowns by x and y. From the statement of the problem, set up two equations in these unknowns and solve them for x and y.
- 1. The perimeter of a rectangle is 22 feet and its area is 24 square feet. Find its dimensions.
- 2. The area of a rectangle is 48 square feet and the length of its diagonal is 10 feet. Find its dimensions.
- 3. The area of a rectangle is 60 square feet and the square of its longer side exceeds the square of its shorter side by 119 square feet. Find its dimensions.
 - 4. Find two numbers whose product is 432 and whose quotient is $\frac{3}{4}$.
- 5. The altitude of an isosceles triangle is 12 inches and its perimeter is 36 inches. Find the lengths of its sides.
- 6. If the numerator of a simple fraction is increased by 1 and the denominator by 10, the resulting fraction equals the reciprocal of the given fraction. If both numerator and denominator are increased by 5, the resulting fraction equals \{ \frac{1}{2}}. Find the fraction.
- 7. Find two numbers such that their sum, their product, and the difference of their squares are all equal.

- 8. A motor boat can go 45 miles upstream and return in 8 hours. If it goes 54 miles upstream and returns, it is still 24 miles from its destination at the end of 8 hours. Find its speed in still water and the rate of the current.
- 9. A pedestal 10 feet high is formed of two cubical blocks. The sum of the volumes of these blocks is 370 cubic feet. Find the lengths of the edges of the blocks.
- 10. Twenty minutes after A started on a journey, B was sent after him with a message. B traveled 35 miles an hour, delivered his message, and returned to the starting point at the instant A was 130 miles away. How fast did A travel?
- 11. The area of a rectangle is 60 square feet. If each side is increased by 3 feet, the area of the square on the diagonal is increased by 120 square feet. Find the dimensions of the original rectangle.
- 12. Two circles are tangent externally and both are tangent internally to a larger circle. The distance from the center of one small circle to the center of each of the others is 8 inches and the sum of the areas of the two small circles is two-ninths that of the large circle. Find the radii of the three circles.
- 13. A man has \$6400 invested in two securities. From one he receives annually \$162 and from the other, on which the interest rate is one per cent greater, he receives annually \$154. Find the amount of each investment and the interest rate on each.
- 14. The length of the diagonal of a rectangle is a and its area is b^2 . Find the lengths of its sides.

Chapter 10

Logarithms

74. Definition. The logarithm of a positive * number N to a base a (a > 1) is the exponent of the power to which a must be raised to equal N. We shall write the expression, "the logarithm of N to the base a" in the abbreviated form

$\log_a N$.

It should be read, however, without abbreviation.

It follows from the above definition that, if N is positive and a is greater than unity, the two statements

$$\log_a N = x$$
, and $N = a^x$, (1)

are equivalent. If either is true, the other is also true.

Thus, the following pairs of statements are equivalent.

$$5^3 = 125$$
 and $\log_5 125 = 3$; $3^{-4} = \frac{1}{81}$ and $\log_3 (\frac{1}{81}) = -4$; $2^{1.2} = \sqrt[5]{64}$ and $\log_2 \sqrt[5]{64} = 1.2$; $10^{0.30103} = 2$ and $\log_{10} 2 = 0.30103$.

It will frequently be necessary, throughout this chapter, to transform one of the equations (1) to the other form. The student should therefore familiarize himself with the equivalence of the two forms of equations (1) so that, when either equation is given, he can write the other form immediately.

We shall assume the truth of the following theorem: Given any positive number N, there exists one, and only one, positive number x such that $log_a N = x$, and conversely.

Exercises

Write the following equations in the logarithmic form.

1.
$$2^5 = 32$$
.

2.
$$13^2 = 169$$
.

3.
$$(49)^{\frac{1}{2}} = 7$$

4.
$$(121)^{0.5} = 11$$
.

2.
$$13^2 = 169$$
.
3. $(49)^{\frac{1}{2}} = 7$.
5. $(81)^{0.25} = 3$.
6. $9^{-1.5} = \frac{1}{27}$.

6.
$$9^{-1.5} = \frac{1}{27}$$

7.
$$\sqrt{25} = 5$$
.

8.
$$\sqrt[3]{8^2} = 4$$
. 9. $17^0 = 1$.

9.
$$17^0 = 1$$
.

Write the following equations in the exponential form.

10.
$$\log_3 81 = 4$$
.

11.
$$\log_{36} 6 = 0.5$$
.

12.
$$\log_9 243 = 2.5$$
.

13.
$$\log_2 0.0625 = -4$$
. 14. $\log_{1.2} 1.44 = 2$.

14.
$$\log_{1.2} 1.44 = 2$$
.

15.
$$\log_{32} 0.5 = -0.2$$
.

16.
$$\log_{625} 0.2 = -0.25$$
. 17. $\log_a a^2 = 2$.

$$17. \log_a a^2 = 2.$$

18.
$$\log_a 1 = 0$$
.

^{*} The logarithms of negative and imaginary numbers also exist but, since they are imaginary if a is positive, we shall not consider them in this book.

Find the values of the following logarithms.

19. log ₁₀ 1000.	20. log ₃ 81.	21. log ₄ 8.
22. $\log_{10} 0.001$.	23. $\log_5 0.04$.	24. log ₁₆ 0.125.
25. log ₁₀₀ 0.1.	26. $\log_a a$.	
0	Lot loga u.	27. $\log_a a^{-1}$.

Find x, given:

28.
$$\log_3 x = 4$$
.29. $\log_2 x = -3$.30. $\log_{81} x = 0.25$.31. $\log_{49} x = -0.5$.32. $\log_9 x = -2$.33. $\log_7 x = 0$.34. $\log_x 5 = 0.5$.35. $\log_x 7 = \frac{1}{3}$.36. $\log_x 0.008 = -3$.37. $\log_x 4 = 0.4$.38. $\log_x a = 1$.39. $\log_x a = 0.5$.

Show that:

40.
$$\log_a a^x = x$$
. **41.** $a^{\log_a x} = x$. **42.** $\log_a (1/a^2) = -2$.

75. Properties of Logarithms. Since logarithms have been defined as exponents, the laws of operation with them will be derived from the laws of exponents. We have seen (Art. 29) that, if m and n are rational numbers

$$a^m \cdot a^n = a^{m+n}, \quad a^m \div a^n = a^{m-n}, \quad \text{and} \quad (a^m)^n = a^{mn}.$$
 (2)

Since most of the exponents with which we shall deal are irrational, we now assume that these laws still hold if m and n are irrational numbers.

From each of the equations (2), we shall now derive a corresponding law for logarithms. It is upon these laws that the usefulness of logarithms in numerical computation depends.

I. The logarithm of the product of two numbers equals the sum of the logarithms of the numbers, that is,

For, let
$$\log_a M \cdot N = \log_a M + \log_a N$$
.
 $\log_a M = x$, and $\log_a N = y$.

By the definition of a logarithm, these equations are respectively equivalent to $M = a^x$, and $N = a^y$.

The product MN is found, by the laws of exponents, to be

$$M\cdot N=a^x\cdot a^y=a^{x+y}.$$

Write the equation $M \cdot N = a^{x+y}$ in the logarithmic form and replace x and y by their values, as stated above. We have

$$\log_a M \cdot N = x + y = \log_a M + \log_a N,$$

which is the required formula.

It can be proved in the same way that

$$\log_a M \cdot N \cdot P = \log_a M + \log_a N + \log_a P,$$

and similarly for any number of factors.

Thus, $\log_2 2048 = \log_2 128 \cdot 16 = \log_2 128 + \log_2 16 = 7 + 4 = 11$. $\log_{10} 77 = \log_{10} 7 \cdot 11 = \log_{10} 7 + \log_{10} 11$. $\log_{10} (53.12) (46.35) (9.643) = \log_{10} 53.12 + \log_{10} 46.35 + \log_{10} 9.643$.

II. The logarithm of a fraction equals the logarithm of the numerator minus the logarithm of the denominator, that is,

$$\log_a \frac{M}{N} = \log_a M - \log_a N.$$

For, let

$$\log_a M = x$$
, and $\log_a N = y$.

Write these two equations in the equivalent exponential form

$$M = a^x$$
, and $N = a^y$.

For the fraction M/N, we have, by the laws of exponents,

$$\frac{M}{N} = \frac{a^x}{a^y} = a^{x \to y}.$$

Write the equation $M/N = a^{x-y}$ in the logarithmic form and replace x and y by their values. We have

$$\log_a \frac{M}{N} = x - y = \log_a M - \log_a N.$$

Thus,

$$\log_3 \frac{243}{9} = \log_3 243 - \log_3 9 = 5 - 2 = 3.$$

$$\log_{10} \frac{586.2}{41.76} = \log_{10} 586.2 - \log_{10} 41.76.$$

III. The logarithm of the nth power of a number equals n times the logarithm of the number, that is,

$$\log_a N^n = n \log_a N.$$

Let $\log_a N = x$, from which $N = a^x$.

Raise both sides of this equation to the power n. We have

$$N^n = (a^x)^n = a^{nx}.$$

Write the equation $N^n = a^{nx}$ in the logarithmic form and replace x by its value. We have

$$\log_a N^n = nx = n \log_a N.$$

Thus,

$$\log_6 (25)^3 = 3 \log_5 25 = 3 \cdot 2 = 6$$

$$\log_{10} (716)^7 = 7 \log_{10} 716.$$

In Theorem III, n need not be an integer. In fact, since $\sqrt[m]{N} = N^{\frac{1}{m}}$, we have, on replacing n by 1/m in Theorem III, the following theorem.

IV. The logarithm of the mth root of a number equals the result obtained by dividing the logarithm of the number by m, that is,

$$\log_a \sqrt[m]{N} = \frac{1}{m} \log_a N.$$

Thus,

$$\log_2 \sqrt[4]{64} = \frac{1}{3} \log_2 64 = \frac{1}{3} \cdot 6 = 2.$$
$$\log_{10} \sqrt[4]{7.842} = \frac{1}{4} \log_{10} 7.842.$$

EXAMPLE 1. Express $\log_{10} \frac{4^3 \cdot \sqrt[3]{31}}{7^{\frac{1}{4}} \cdot (38)^5}$ as an algebraic sum of the logarithms of integers.

$$\log_{10} \frac{4^3 \cdot \sqrt[3]{31}}{7^{\frac{1}{4}} \cdot (38)^5} = \log_{10} 4^3 \cdot \sqrt[3]{31} - \log_{10} 7^{\frac{1}{4}} \cdot (38)^5
= \log_{10} 4^3 + \log_{10} \sqrt[3]{31} - (\log_{10} 7^{\frac{1}{4}} + \log_{10} 38^5)
= 3 \log_{10} 4 + \frac{1}{3} \log_{10} 31 - \frac{1}{4} \log_{10} 7 - 5 \log_{10} 38.$$

Example 2. Express 2 $\log_{10} 15 + \frac{1}{3} \log_{10} 11 + \frac{2}{5} \log_{10} 8 - 5 \log_{10} 41$ $-\frac{3}{7}\log_{10} 53$ as the logarithm of a single number.

$$2 \log_{10} 15 + \frac{1}{3} \log_{10} 11 + \frac{2}{5} \log_{10} 8 - 5 \log_{10} 41 - \frac{3}{7} \log_{10} 53$$

$$= \log_{10} (15)^{2} + \log_{10} (11)^{\frac{1}{3}} + \log_{10} 8^{\frac{2}{5}} - [\log_{10} (41)^{5} + \log_{10} (53)^{\frac{3}{7}}]$$

$$= \log_{10} 15^{2} \cdot (11)^{\frac{1}{3}} \cdot 8^{\frac{2}{5}} - \log_{10} (41)^{5} \cdot (53)^{\frac{3}{7}}$$

$$= \log_{10} \frac{(15)^{2} \cdot (11)^{\frac{1}{3}} \cdot 8^{\frac{2}{5}}}{(41)^{5} \cdot (53)^{\frac{3}{7}}}.$$

Exercises

Express as an algebraic sum of the logarithms of integers:

1.
$$\log_{11}$$
 (51) (896) (743). **2.** $\log_3 \sqrt[3]{6^7} \cdot \sqrt[4]{9685}$.

2.
$$\log_3 \sqrt[3]{6^7} \cdot \sqrt[4]{9685}$$

3.
$$\log_7 \frac{43^2 (695)^{\frac{2}{3}}}{\sqrt[3]{71} \cdot \sqrt{563}}$$
.

4.
$$\log_{10} \frac{3^5 (671)^{\frac{2}{3}} \cdot \sqrt[5]{591}}{17^2 \sqrt[3]{96} \cdot \sqrt[5]{4817}}$$

Express as the logarithm of a single quantity:

5.
$$2 \log_7 76 + 3 \log_7 48 - 5 \log_7 59$$
.

6.
$$3 \log_6 47 + \frac{1}{2} \log_5 34 - 4 \log_6 71 - \frac{3}{5} \log_6 85$$
.

7.
$$\log_{10} 16 + 2 \log_{10} t$$
.

8.
$$\log_{10} P + n \log_{10} (1+i)$$
.

9.
$$\log_{10} 4 - \log_{10} 3 + \log_{10} \pi + 3 \log_{10} r$$
.

10.
$$\log_{10} k + \log_{10} b + 2 \log_{10} d - \log_{10} l$$
.

11.
$$\frac{1}{2} [\log_{10}(s-a) + \log_{10}(s-b) + \log_{10}(s-c) - \log_{10}s].$$

Find the numerical value of each of the following expressions.

12.
$$\log_5 \frac{125 \cdot 625}{25}$$
.

13.
$$\log_9 \sqrt[3]{81}$$
.

14.
$$\log_7 \frac{49\sqrt{7}}{7^3}$$
.

15.
$$\log_2 \frac{32 (64)^{\frac{2}{5}}}{\sqrt[3]{128}}$$

16.
$$\log_8 \frac{\sqrt{2} \cdot \sqrt[3]{256}}{\sqrt[6]{32}}$$
.

15.
$$\log_2 \frac{32 (64)^{\frac{2}{3}}}{\sqrt[3]{128}}$$
. 16. $\log_8 \frac{\sqrt{2} \cdot \sqrt[3]{256}}{\sqrt[6]{32}}$. 17. $\log_{13} \frac{169 (13)^{\frac{4}{3}}}{\sqrt[3]{13^2} \cdot \sqrt{13^3}}$.

Given that $log_{10} 2 = 0.30103$ and $log_{10} 3 = 0.47712$, approximately, find:

18. log₁₀ 12.

19. log₁₀ 60.

20. $\log_{10} \frac{3}{2}$.

21. log₁₉ 5.

22. $\log_{10} \frac{1}{72}$.

23. log₁₀ 450.

24. $\log_{10} \sqrt{15}$.

25. $\log_{10} \sqrt[4]{18}$.

26. $\log_{10} \left(\frac{27}{16}\right)^{\frac{3}{5}}$.

76. Common Logarithms. In numerical computations with logarithms, it is customary to use the base 10. Logarithms to this base are called common logarithms. From now on, unless a different base is stated, the logarithms we shall use will be common logarithms and the base will not be indicated; that is, instead of $log_{10} N$, we shall write log N.

The common logarithm of a number is usually considered as consisting of two parts, the characteristic (Art. 78) and the mantissa (Art. 80). The reason for this division lies in the fact that the value of the characteristic depends only on the position of the decimal point and the value of the mantissa on the sequence of significant figures in the number.

77. Logarithms of Integral Powers of Ten. If a number is an integral power of ten,

$$N=10^k,$$

where k is an integer or zero, then, by the definition of a logarithm,

$$\log N = k.$$

In this special case, we say that the characteristic of the logarithm is k and that its mantissa is zero.

The reader should verify the correctness of the logarithms given in the following table.

N	.0001	.001	.01	.1	1	10	100	1000	10000
$\log N$	-4	- 3	- 2	-1	0	1	2	3	4

78. The Characteristic. The characteristic of the logarithm of a number not an integral power of 10 is the integer, or zero, next less than the logarithm of the number.

It is proved in advanced mathematics that

if
$$M < N$$
, then $\log M < \log N$.

It follows that the characteristic of $\log N$ is the logarithm of the integral power of ten next less than N. For,

if
$$10^k < N < 10^{k+1}$$
, then $k < \log N < k+1$.

Hence, if k is zero or an integer, then k is the characteristic of $\log N$. If the characteristic k is a negative number -k', it is customary to write it in the form (10 - k') - 10.

EXAMPLE 1. Find the characteristic of log 579.3.

Since 100 < 579.3 < 1000, it follows that $\log 100 < \log 579.3 < \log 1000$, or $2 < \log 579.3 < 3$. Hence,

 $\log 579.3 = 2 + a$ positive decimal less than 1.

It follows from this equation that the characteristic of log 579.3 is 2.

Example 2. Find the characteristic of log 0.0025438.

Since 0.001 < 0.0025438 < 0.01, we have $\log 0.001 < \log 0.0025438 < \log 0.01$, or $-3 < \log 0.0025438 < -2$. It follows that

 $\log 0.0025438 = -3 + a$ positive decimal less than 1.

Hence, the characteristic of log 0.0025438 is -3 or 7-10.

By the reasoning used in these examples, we obtain the following rule for finding the characteristic of $\log N$.

If N > 1, the characteristic is the positive integer 1 less than the number of digits to the left of the decimal point.

If 0 < N < 1, and the first non-zero figure of N is in the kth decimal place, then the characteristic is -k, or (10-k)-10.

Exercises

Write the characteristics of the logarithms of the following numbers.

1. 4863.2.

2. 76.352.

3. 5.7843.

4. 9652700.

5. 0.71643.

6. 0.00721.

7. 0.000092.

8. 0.000009.

Given the sequence of digits 46739. Place the decimal point (adding zeros if necessary), given that the characteristic of its logarithm is:

9. 3.

10. 0.

11. 4.

12. 7.

13. 9 - 10.

14. 7-10.

15. 5-10.

16. 3 - 10.

79. Significant Figures. Two numbers that differ only in the position of the decimal point (together with zeros that may be added at either end solely to fix the position of the decimal point) are said to have the same sequence of significant figures.

Thus, .0053076, 53.076, and 53076000. have the same sequence of significant figures, namely, 5, 3, 0, 7, and 6.

Since two numbers, M and N, having the same sequence of significant figures, differ at most only in the position of the decimal point, it follows that $M = 10^k N,$ (3)

where k is an integer or zero, and conversely.

The first significant figure of a number is the first digit, other than zero, of the number, reading from the left. The number of significant

figures is the number of digits, counting from the first significant figure but excluding zeros added at the right only to fix the decimal point. Zeros at the right of a number are significant if their values are affirmed to be zero; they are not significant if they are added only to fix the decimal point.

In computations involving the use of logarithmic (and other) tables, the results are usually valid, at most, to a definite number of significant figures. Thus, we shall be able to find, from Table I, the logarithms of numbers of five significant figures only. If a number arises having more than five significant figures, we shall "round it off" to the nearest five significant figures.

Thus, to five figures, 21.5837 and 503.862 are rounded off to 21.584 and 503.86, respectively; to four figures, they are rounded off to 21.58 and 503.9, respectively. To round off, to five significant figures, a number such as 0.836475, we shall, as a matter of convention, customarily make the last figure an even number. Thus, 0.836475 becomes 0.83648 but 609.745 becomes 609.74.

80. The Mantissa. The mantissa of log N is the positive or zero decimal, less than 1, that must be added to the characteristic to equal log N; that is,

$$log N = characteristic + mantissa.$$

If two numbers, M and N, have the same sequence of significant figures, their mantissas are equal, and conversely. For, if M and N have the same sequence of significant figures, then, from equation (3),

$$\log M = \log (10^k N) = \log 10^k + \log N = k + \log N.$$

Since k is an integer or zero, it does not affect the decimal part of the logarithm; that is, it does not affect the mantissa.

Conversely, if the mantissas of M and N are equal, then

$$\log M = k + \log N = \log (10^k N),$$

so that $M = 10^k N$ and M and N have the same sequence of significant figures.

Because of this theorem, tables of common logarithms give only the mantissas of sequences of significant figures. Table I, at the back of the book, gives, to five decimal places, the mantissas of all sequences of four significant figures.

81. Antilogarithms. The number N which has a given number x as its logarithm is called the antilogarithm of x; that is, if

$$\log N = x,$$

then N is the antilogarithm of x.

The processes involved in finding the logarithms and antilogarithms of numbers are explained in the Introduction to the Tables, pages 427–428.

Exercises

Find the logarithms of the following numbers.

1. 57382.	2. 21.469.	3. 0.0017365.
4. 913.74.	5. 8324.3.	6. 461290.
7. 726.94.	8. 9.1285.	9. 0.34627.
10. 62.571.	11. 152.45.	12. 0.084353.

Find the antilogarithms of the following numbers.

13. 0.36491.	14. 2.78763.	15. $9.52436 - 10$.
16. 1.56273.	17. 4.68432.	18. $7.21672 - 10$.
19. 1.45596.	20. 0.41332.	21. $8.66397 - 10$.
22. 1.97258.	23. $5.67430 - 10$.	24. $6.07052 - 10$.

82. Computation by Means of Logarithms. Computation by means of logarithms is based on the four theorems stated in Art. 75. If, for example, we wish to find the product of two or more numbers, it follows from Theorem I that we should add the logarithms of the numbers and find the antilogarithm of the sum. A form for the entire computation should always be written out in full before any logarithms are looked for.

Example 1. Find, to five significant figures:
$$N = \frac{7.1863 \times 27.374}{0.04584 \times 6491.7}$$
.

Denote the numerator of this fraction by A and the denominator by B. By Theorem I of Art. 75,

 $\log A = \log 7.1863 + \log 27.374$ and $\log B = \log 0.04584 + \log 6491.7$.

Since N = A/B, it follows from Theorem II that

 $\log N = \log A - \log B = (\log 7.1863 + \log 27.374) - (\log 0.04584 + \log 6491.7).$

Completed computation Form for the computation $\log 7.1863 = 0.85651$ $\log 7.1863 =$ $\log 27.374 = 1.43733 +$ $\log 27.374 =$ log numerator = 12.29384 - 10log numerator = $\log 0.04584 = 8.66124 - 10$ $\log 0.04584 =$ $\log 6491.7 = 3.81236 +$ log 6491.7 = ____ log denominator = 2.47360log denominator = $\log N = 9.82024 - 10$ $\log N =$ N = 0.66106N =

In this example, the logarithm of the denominator is larger than the logarithm of the numerator. To obtain the decimal part of their difference as a positive number, we have written the logarithm of the numerator, before making the subtraction, in the form 12.29384 - 10.

EXAMPLE 2. Find: $\sqrt[7]{0.0867538}$.

First round the given number off to five significant figures, 0.086754.

By Theorem IV, Art. 75, $\log \sqrt[7]{0.086754} = \frac{1}{7} \log 0.086754$.

Form for the computation

$$\log 0.086754 =$$

$$\frac{1}{7}\log =$$

N =

Completed computation

$$\log 0.086754 = 68.93829 - 70$$
 $\frac{1}{7} \log = 9.84833 - 10$ $N = 0.70523$.

$$\frac{1}{7}\log = 9.84833 - 10$$

One would ordinarily write $\log 0.086754 = 8.93829 - 10$. In this case, since we are to divide by 7, and since the negative part of the quotient should be -10, we add and subtract 60 and write the logarithm in the form 68.93829 - 70. This device should always be used when it is required to find the logarithm of a root of a number less than one.

EXAMPLE 3. Find
$$N = \sqrt[3]{\frac{(46.358)^2 \cdot \sqrt[4]{197.82}}{(2698.6)^{\frac{5}{3}} \cdot \sqrt{0.81496}}}$$

Since logarithms of powers and roots of the given numbers are to be found, we arrange the work in the following way.

$$\log 46.358 = 1.66612$$

$$\log 197.82 = 2.29627$$

$$\log 2698.6 = 3.43114$$

$$\log 0.81496 = 19.91114 - 20$$

$$\log N^3 = 3)28.23217 - 30$$

$$\log N = 9.41072 - 10$$

$$N = 0.25746.$$

Exercises

Find the values of the following expressions to five significant figures. using Table I. Write out a form for each exercise before looking up the logarithms.

- 1. 285.73×0.091362 .
- 3. 6813.2×416.93 .
- 5. $8375.2 \div 21.586$.
- 7. $29.424 \div 79.527$.
- 9. $93.872 \times 4.1645 \times 14.838$.
- 11. $432.76 \times 5.7938 \div 92.359$.
- 157.36×53.892

- 2. 486370×1.9675 .
- 4. 0.031865×0.57841 .
- 6. $0.19354 \div 43.769$.
- 8. $4.9532 \div 0.31586$.
- 10. $2.8473 \times 47.239 \times 8.5943$.
- 12. $86.931 \times 3.4765 \div 1937.4$
- $573.18 \times 3.2967 \times 884.35$ $29.521 \times 632.47 \times 2.1843$

17.
$$\sqrt{9564.3}$$
.

19.
$$(9.1574)^4 \cdot \sqrt[3]{0.71639}$$
.

21.
$$\frac{\sqrt[3]{-183.72} \cdot \sqrt{86.493}}{51.586 \ (-2.3769)^2}$$
.

18.
$$\sqrt[6]{0.000021639}$$
.

20.
$$(6.1853)^3 \cdot \sqrt{21.486}$$
.

22.
$$\frac{\sqrt{438.55} (-2.5386)^3}{-72.135 (4.8357)^2}$$
.

HINT. Compute as if all the numbers were positive; then determine the sign of the result by inspection. As a reminder to consider the signs, put a letter (n) in parentheses after each logarithm of a negative number.

23.
$$\sqrt[3]{\frac{(-413.86)^{\frac{1}{3}} \cdot (-82.748)^{\frac{1}{5}}}{\sqrt{24.689} \cdot (-3.2965)^{\frac{2}{3}}}}$$
 24. $\left[\frac{(-46.834)^{\frac{3}{5}} \cdot (18.647)^{\frac{1}{4}}}{(-4.9321)^{\frac{1}{3}} \cdot (-216.43)^{\frac{1}{5}}}\right]^{\frac{5}{3}}$

24.
$$\left[\frac{(-46.834)^{\frac{3}{5}} \cdot (18.647)^{\frac{1}{4}}}{(-4.9321)^{\frac{1}{3}} \cdot (-216.43)^{\frac{1}{5}}} \right]^{\frac{3}{5}}$$

26.
$$\log 7482.8 \div 12.593.$$

HINT. Find the value of log 4.9478. The number so found is to be multiplied by 6.3731. The final multiplication may be performed by logarithms.

29.
$$\sqrt{39.576}$$
 + $(3.852)^2$.

30.
$$(5.8162)^2 - \sqrt[3]{6832.5}$$
.

HINT. Find the value of each term and add (or subtract) the results.

Find N, given:

31.
$$N = (2.5416)^{5.39}$$
.

32.
$$N = (7.3485)^{2.4595}$$
.

HINT. If $N = (2.5416)^{5.39}$, then $\log N = 5.39 \log 2.5416 = 5.39 \times 0.40511$. Find the last result by logarithms and equate the result to $\log N$. The value of N can then be found from Table I.

33.
$$N = (4.1965)^{5.361}$$
.

34.
$$N = (425.54)^{2.1843}$$
.

35. If
$$s = \frac{1}{2}gt^2$$
, find s when $g = 32$ and $t = 13.472$.

36. If
$$V = \frac{4}{3}\pi r^3$$
, find V when $\pi = 3.1416$ and $r = 7.3845$.

37. If $w = \frac{kbd^2}{l}$, find w when k = 2.3674, b = 2.6431, d = 4.1659, and l = 58.329.

38. If
$$T = 2\pi \sqrt{\frac{I}{mgh}}$$
, find T when $\pi = 3.1416$, $I = 25,376$, $m = 431.2$,

g = 980, and h = 5.1627.

39. If $H = ki^2Rt$, find H when k = 7.1652, i = 6.3485, R = 17.658, and

$$t = 16.$$

40. If $S = \frac{kmgl}{\pi r^2}$, find S when $k = 7.8347 \times 10^{-11}$, $m = 486.47$, $g = 980$, $l = 537$, $\pi = 3.1416$, and $r = 0.2$.

83. Cologarithms. The cologarithm of a number is the logarithm of the reciprocal of the number. We denote the cologarithm of N by the symbol colog N. We have

$$\operatorname{colog} N = \log 1/N = \log 1 - \log N = -\log N.$$

Thus,
$$colog 58.732 = log 1/58.732 = -1.76887 = 8.23113 - 10$$

 $colog 0.76495 = log 1/0.76495 = -(9.88363 - 10) = 0.11637.$

It will be observed that the positive part of colog N can be found by subtracting mentally the last non-zero digit of the positive part of log N

from 10 and each of the other digits from 9.

Cologarithms are convenient to use in computation because, if we find the cologarithms of all factors that appear as divisors, all subtractions of logarithms are replaced by the additions of the corresponding cologarithms.

EXAMPLE. Find
$$N = \frac{93.465 \times 527.82}{0.86578 \times 254.74}$$

Since
$$N = 93.465 \times 527.82 \times \frac{1}{0.86578} \times \frac{1}{254.74}$$

 $\log N = \log 93.465 + \log 527.82 + \operatorname{colog} 0.86578 + \operatorname{colog} 254.74.$

The work may be arranged in the following way.

$$\log 93.465 = 1.97065$$

 $\log 527.82 = 2.72249$
 $\operatorname{colog} 0.86578 = 0.06259$
 $\operatorname{colog} 254.74 = 7.59390 - 10 + 100$
 $\log N = 2.34963$
 $N = 223.68$

Exercises

1-15. Do Ex. 5-8, 11-14, 21-24, 37-38, and 40, Art. 82, using cologarithms.

84. Exponential and Logarithmic Equations. An equation which contains the unknown in an exponent is an exponential equation; one that contains the logarithm of an unknown is a logarithmic equation.

Example 1. Find x, given: $(2.4643)^{x+5} = 59362$.

Equate the logarithms of the two members.

$$\log (2.4643)^{x+\delta} = \log 59362,$$

or

$$(x+5) \log 2.4643 = \log 59362.$$

$$x + 5 = \frac{\log 59362}{\log 2.4643} = \frac{4.77351}{0.39169} = 12.187.$$

The last division may be performed by logarithms.

We have x + 5 = 12.187. Hence x = 7.187.

Example 2. Find x, given:

$$3.21 \log (x-2) + 8.72 \log 4.9376 = 4.281 \log 573.97.$$

On substituting the values of the logarithms of the given numbers, we have:

$$3.21 \log (x-2) + 8.72 \times 0.69351 = 4.281 \times 2.75889$$

or

$$3.21 \log (x-2) + 6.0476 = 11.811,$$

$$\log (x-2) = \frac{5.763}{3.21} = 1.7953.$$

Hence,

$$x-2=62.4$$
, and $x=64.4$.

Example 3. Find x, given: $x^{7.3641} = 52857$.

Write the equation in logarithmic form: $7.3641 \log x = \log 52857$.

 $\log x = \frac{\log 52857}{73641} = \frac{4.7231}{73641} = 0.64137.$ Hence,

Since $\log x = 0.64137$, we have x = 4.3790.

Exercises

Solve the following equations for x.

1.
$$(1.05)^z = 2$$
.

3.
$$(6.7394)^{x-1} = 4368.4$$
.

5.
$$\frac{(1.06)^x-1}{0.06}=127.14.$$

7.
$$x^{4.38} = 517.92$$
.

9.
$$(2x+1)^{7.1838} = 5912.6$$
.

11. 12.537
$$\log x = \log 819.65$$
.

2. $(4.76)^x = 927.5$.

4. $3(129.48)^{x+3} = 8165.9$.

6.
$$\frac{(1.045)^x - 1}{0.045} = 2138.2.$$

8.
$$(x-2)^{13.792} = 84542$$
.

10.
$$21.7(3x)^{2.536} = 61493$$
.

12. $4.3728 \log (x-4) = \log 53761$.

13. Given $y = e^{-\frac{x^2}{2}}$, find x when y = 0.164 and e = 2.7183.

85. Graphs of the Logarithmic and Exponential Functions. The graph of the logarithmic function, $f(x) = \log x$, is shown in Figure 26.

The following table of coördinates of points on the curve $y = \log x$ was formed by assigning values to x and finding the corresponding values of y from Table I.

x	0.1	0.5	1	2	3	5	9	10
y	-1	- 0.3	0	0.3	0.5	0.7	0.9	1

Fig. 26 Since, from the definition of a logarithm, the equation $y = \log x$ is equivalent to $x = 10^y$, it follows that Figure 26 is also the graph of the exponential equation $x = 10^{\nu}$.

The graph of the equation

$$y = \log_a x$$
, or $x = a^y$,

where a is any other base greater than unity, can be determined by equating the logarithms to the base 10 of the two sides of the equation $x = a^y$. This gives

$$\log x = y \log a$$
, or $y = \frac{\log x}{\log a}$.

By assigning values to x and computing the corresponding values of y we can now determine as many points as we please on the required graph. The resulting graph will differ from the one shown in Figure 26 only in that each ordinate is divided by $\log a$.

We find from the resulting graphs that, for all values of a greater

than unity,

1. if x is negative, y is imaginary.

2. $\log_a 1 = 0$, and $\log_a a = 1$.

3. if x lies between 0 and 1, $\log_a x$ is negative and decreases without limit as x approaches zero.

4. if x is greater than unity, logax is positive and increases without

limit as x increases without limit.

Exercises

- 1. Draw the graph of $y = 10^x$ by putting $x = \log y$ and assigning values to y. Compare the result with Figure 26.
 - 2. Draw the graph of (a) $y = \log_2 x$, (b) $y = 2^x$.
 - 3. Draw the graph of $y = \log_e x$, where e = 2.7183.
 - 4. Draw the graph of $y = 10^{x-2}$.
 - 5. Draw the graph of $y = 10^{\frac{x}{2}}$.
- 86. Logarithms to Bases Other than Ten. For numerical computation, the most convenient logarithms to use, in most cases, are logarithms to the base ten. For certain other purposes, however, it is much more convenient to use other bases.

The most frequently used base, other than 10, is the base $e = 2.71828^+$. Logarithms to this base are called **natural**, or **Napierian**, logarithms. In textbooks on calculus, and in most advanced works in mathematics, the logarithms usually used are natural logarithms.

If we have a table of logarithms to one base a, we can find the logarithm (or the antilogarithm) of a number to any other base b by means of the formula

$$\log_b N = \frac{\log_a N}{\log_a b}. \tag{4}$$

To show that this formula is true, let

$$\log_a N = x$$
, and $\log_b N = y$.

By the definition of a logarithm (Art. 74), these equations are respectively equivalent to

$$N = a^x$$
, and $N = b^y$.

Hence,

$$q^x = b^y$$

because both members are equal to N. Take the logarithms to the base a of both sides of this equation. We have

$$\log_a a^x = \log_a b^y$$
, or $x = y \log_a b$.

Solve for y and substitute the values $y = \log_b N$ and $x = \log_a N$.

$$y = \frac{x}{\log_a b}$$
, or $\log_b N = \frac{\log_a N}{\log_a b}$.

This formula enables us, if we have available a table of logarithms to some one base a, to compute the logarithm of N to any other desired base b.

Suppose, for example, we have a table of common logarithms and wish to find the natural logarithm of a number N. We take, in equation (4), a = 10 and b = e = 2.71828. We find, from Table I, that

Hence,
$$\log_{10} e = \log_{10} 2.71828 = 0.43429.$$

$$\log_{e} N = \frac{\log_{10} N}{\log_{10} e} = \frac{\log_{10} N}{0.43429} = 2.3026 \log_{10} N,$$
that is,
$$\log_{e} N = 2.3026 \log_{10} N. \tag{5}$$

Similarly, if we know the natural logarithm of N and wish to find its common logarithm, we have

$$\log_e N = \frac{\log_{10} N}{\log_{10} e}$$
, or $\log_{10} N = \log_{10} e \log_e N$,

that is, since $\log_{10} e = 0.43429$,

$$\log_{10} N = 0.43429 \log_e N. \tag{6}$$

Example 1. Find log. 5.2849, using Table I.

From equation (5), we have

$$\log_{\epsilon} 5.2849 = 2.3026 \log_{10} 5.2849 = 2.3026 \times 0.72303 = 1.6649.$$

Example 2. Find N, given $\log_e N = 5.4268$.

From equation (6), we have

$$\log_{10} N = 0.43429 \log_e N = 0.43429 \times 5.4268 = 2.3568.$$

Hence, from Table I, we find that N=227.4.

Exercises

Find the natural logarithms of the following numbers.

1. 5.

2. 7.

3. 92.

4. 872.

5. 6.83.

6. 0.836.

7. 0.09342.

8. 4.1362

Find N to four significant figures, given that $\log_e N$ is:

9. 2.1643.

10. 5.3426.

11. 7.4688.

12. 0.31485.

13. 6.5384.

14. 12.738.

15. 0.24862.

16. 20.876.

Find the following logarithms.

17. log₂ 91.476.

18. log₅ 183.56.

19. log₇ 3845.1.

20. log_{1.5} 4.8372.

21. log_{3.14} 51.865.

22. $\log_{\sqrt{3}}$ 41.388.

Chapter 11

Angles and Their Measurement

87. Directed Angles. If a half-line extending from a fixed point O, (Fig. 27) rotates around O from the position OA to OB, we shall say

that it generates, by this rotation, an angle AOB having OA as its initial side and OB as its terminal side. The direction and magnitude of the rotation may be indicated by an arrow, as in the figure. If the direction of the rotation of the generating line is counterclockwise, the angle generated

is positive; if clockwise, it is negative.

There are indefinitely many angles, some positive and some negative, which have the same initial, and the same terminal, sides. Such angles are said to be **coterminal**. If, given any angle, we add to this angle, or subtract from it, any integral multiple of a complete revolution, we obtain an angle coterminal with the given one.

For example, in 15 minutes, the minute hand of a clock turns through an angle of -90° . In an hour and 15 minutes, it turns through an angle of -450° and generates an angle coterminal with -90° .

88. Circular Measure. The Radian. The student is familiar with the measurement of angles in degrees, minutes, and seconds. While we shall,

in what follows, use this system of measurement frequently, we shall also frequently use another system called circular (or radian) measure. In this system, the unit angle is called a radian and is defined as follows: A radian is an angle which, if placed with its vertex at the center of a circle, will intercept on the circumference an arc equal in length to the radius of the circle.

Thus, in Figure 28, if the arc AB is equal to the radius OA, then, by definition, the angle AOB is one radian.

Frg. 28

89. Degrees and Radians. To find the relation between the number of degrees and the number of radians in an angle, we observe that the circumference is 2π times the radius and that, every time we lay off the length of the radius on the circumference, the central angle subtended by it is one radian. It follows that, in a complete revolution, there are 2π radians; that is, $360^{\circ} = 2\pi$ radians, or

110

$$180^{\circ} = \pi \text{ radians}, \qquad (1)$$

where $\pi = 3.1416$, approximately. It follows that

$$1^{\circ} = \frac{\pi}{180}$$
 radians = .017453 radians, approximately,

1 radian =
$$\left(\frac{180}{\pi}\right)^{\circ} = 57.296^{\circ} = 57^{\circ} 17' 45''$$
, approximately.

It should be observed that, customarily, when an angle is written in radians, no unit of angular measure is given. For example, an angle $\pi/4$ means an angle of $\pi/4$ radians and an angle 3 means an angle of 3 radians.

Exercises

Express the following angles in degrees.

1.
$$\frac{\pi}{6}$$
 2. $\frac{\pi}{4}$ 3. $\frac{\pi}{2}$ 4. $-\frac{2\pi}{3}$ 5. $\frac{\pi}{12}$ 6. $\frac{3\pi}{4}$ 7. $-\frac{13\pi}{6}$ 8. $\frac{7\pi}{2}$ 9. 2. 10. 1.5.

Express the following angles in radians.

90. Central Angles and Their Intercepted Arcs. Let θ be the number of radians in an angle AOC at the center of a circle of radius r and

Fig. 29

let s be the length of its intercepted arc AC. Also, let AOB be an angle of one radian so that arc AB = r. Since, by elementary geometry, angles at the center of a circle are to each other as their intercepted arcs, we have

$$\theta: 1 = s: r$$
, or $s = \theta r$.
Hence, $s = \theta r$; (2)

that is, the length of the arc intercepted by a central angle equals the number of radians in the angle times the radius. If we are given two of the three numbers r, θ , and s, we are able, from this equation, to find the third.

In equation (2), r and s must be measured in the same units of length and θ must be measured in radians.

EXAMPLE 1. An arc of 7 feet on a circle is intercepted by a central angle of 20°. Find the radius of the circle.

Since
$$20^{\circ} = 20\pi/180 = \pi/9$$
 radians, we have, from (2), $7 = \pi r/9$, or $r = 63/\pi = 20.053$ feet.

Example 2. On a circle 10 feet in diameter, find in degrees the angle subtended by an arc of 35 inches.

We have r = 60 inches. Hence, $35 = 60\theta$, from which

$$\theta = \frac{7}{12}$$
 radians, or $\theta = \left(\frac{7}{12} \frac{180}{\pi}\right)^{\circ} = \left(\frac{105}{\pi}\right)^{\circ} = 33.42^{\circ}$.

Exercises

(In Ex. 1-18, take $\pi = 3.1416$ and compute the result to as many significant figures as are given in the statement of the exercise.)

Find s, given:

1. r = 17, $\theta = 3.1$.

3. r = 41.673, $\theta = 5.2185$.

5. r = 978.32, $\theta = 159.61^{\circ}$.

2. r = 4.83, $\theta = 2.96$.

4. r = 7.85, $\theta = 36.2^{\circ}$.

6. r = 274.86, $\theta = 321.47^{\circ}$.

Find r, given:

7. s = 483, $\theta = 2.65$.

9. s = 0.13875, $\theta = 1.1574$.

11. s = 59.368, $\theta = 289.41^{\circ}$.

8. s = 483.68, $\theta = 7.3421$.

10. $s = 63.8, \theta = 27.6^{\circ}$.

12. s = 0.046359, $\theta = 94.317$ °.

Find θ in degrees, given:

13. r = 91.64, s = 27.85.

15. r = 5.3684, s = 21.963.

17. r = 4976.9, s = 3764.8.

14. r = 71.638, s = 284.25.

16. r = 0.91616, s = 0.55765.

18. r = 51.369, s = 473.57.

19. How many radians in each angle of an equilateral triangle? in each of the equal angles of an isosceles right triangle?

20. How many radians in the angle between the hands of a clock at 2

o'clock? at 2:30 o'clock?

21. A railroad curve is laid out on an arc of a circle of radius 867 feet. Find its length, to the nearest foot, if it subtends an angle of 19° 42' at the center of the circle.

22. An automobile tire is 32 inches in diameter. Find (a) how many radians and (b) how many revolutions it turns through in going one mile.

(Take $\pi = \frac{22}{7}$)

23. A nautical mile is an arc of a great circle on the earth that subtends at the center an angle of one minute. Assuming that the earth is a sphere of radius 3959 statute miles, find, to the nearest foot, the length in feet of a nautical mile.

24. Using the data of Ex. 23, find, to four significant figures, the length in statute miles of an arc on a great circle of the earth that subtends a cen-

tral angle of one degree.

91. Linear and Angular Velocities. If a point P moves at a uniform rate, the distance it moves in one unit of time is its linear velocity which we shall denote by v. If a body, moving uniformly, goes a distance s in t units of time, then its linear velocity is

$$v = \frac{s}{t}. (3)$$

Similarly, if a half-line rotates uniformly about its end point O, then the angle through which it rotates in one unit of time is its angular velocity which we shall denote by ω . If the half-line rotates through an angle θ in t units of time, its angular velocity is

$$\omega = \frac{\theta}{t}.\tag{4}$$

Suppose a point P moves uniformly along a circle of radius r and traverses an arc of length s in t units of time. Further, let θ be the number of radians in the angle which the half-line from the center through P turns in the time t. By equation (2), $s = \theta r$, hence $s/t = r\theta/t$ or, from equations (3) and (4), $v = r\omega$.

In this equation, v is the linear velocity of P. The angular velocity ω of the half-line is also spoken of as the angular velocity of P.

EXAMPLE. A flywheel 16 inches in diameter makes 13 revolutions per second. Find the linear velocity of a point on the rim in feet per minute.

The angular velocity of a point on the rim is $2\pi 13$ radians per second, or

 $\omega = 2\pi 13 \times 60 = 1560\pi$ radians per minute.

The radius of the wheel is 8 inches, or $\frac{2}{3}$ feet. Hence, by (5),

 $v = 1560\pi_3^2 = 3267$ feet per minute.

Exercises

(In these exercises, find your answers to three significant figures.)

- 1. Find the angular velocity, in radians per second, of a point on the rim of a flywheel making 1000 revolutions per minute.
- 2. The minute hand of a clock is 5 inches long. Find the linear velocity, in inches per minute, of a point on the end of the hand.
- 3. It is required to construct a pulley that will make 15 revolutions per second when driven by a belt moving 1700 feet per minute. Find the radius of the pulley in inches.
- 4. An automobile tire is 31 inches in diameter. Find its angular velocity in radians per second if the car is going 40 miles an hour.
- 5. Taking the radius of the earth as 3959 miles, find the linear velocity, in feet per second, of a point on the equator.
- 6. Taking the radius of the earth's orbit as 92,900,000 miles, find the linear velocity of the earth in its orbit in miles per second.

Chapter 12

The Trigonometric Functions

92. Angles in Standard Position. An angle is in standard position with reference to a set of coördinate axes if its vertex is at the origin

and its initial side (Art. 87) extends in the positive direction along the x-axis (Fig. 30).

We saw (Art. 38) that the coördinate axes divide the plane into four quadrants which are numbered as in Figure 30. We say that an angle, in standard position, lies in whatever quadrant its terminal side lies in. Thus, in Figure 30, the angle θ lies in the third quadrant because its terminal

side OP lies in that quadrant.

Exercises

Draw each of the following angles in standard position with reference to a set of coördinate axes. Indicate by an arrow the amount and direction of rotation and state the quadrant in which the angle lies. Find two other angles, one positive and one negative, coterminal with the given angle.

1. 45°.	2. 120°.	3. 210°.	4. 315°.
5. -30° .	6. -60° .	7. 390°.	8. -750° .
9. $\frac{\pi}{3}$.	10. $\frac{7\pi}{6}$.	11. $-\frac{5\pi}{8}$.	12. $-\frac{8\pi}{3}$.
13. $\frac{\pi}{4}$.	14. $\frac{11\pi}{6}$.	15. $-\frac{5\pi}{4}$.	16. $\frac{7\pi}{8}$.

17. Choose four points, one in each of the four quadrants. State the signs of the coördinates of each of these points.

93. Definitions of the Trigonometric Functions. Associated with a given angle θ , there are six quantities which are the values, for the angle θ , of the six trigonometric functions of θ . In this article, we shall set up the definitions of the values of these functions.

Place the given angle θ in standard position on a set of axes and choose any convenient point P on the terminal side of θ (Fig. 31). Let x and y be the coördinates of P and denote the length of the segment OP by r. We shall call this length, r, the radius vector of P and we shall assume, whenever we are dealing with the trigonometric functions, that r is positive.

114

Fig. 31

Using the three numbers, x, y, and r, we can form six ratios. To each of these ratios, we attach a name, as follows:

$$\sin \theta = \frac{\text{ordinate}}{\text{radius vector}} = \frac{y}{r}, \qquad (\text{Read, "sine of } \theta")$$

$$\cos \theta = \frac{\text{abscissa}}{\text{radius vector}} = \frac{x}{r}, \qquad (\text{Read, "cosine of } \theta")$$

$$\tan \theta = \frac{\text{ordinate}}{\text{abscissa}} = \frac{y}{x}, \qquad (\text{Read, "tangent of } \theta")$$

$$\cot \theta = \frac{\text{abscissa}}{\text{ordinate}} = \frac{x}{y}, \qquad (\text{Read, "cotangent of } \theta")$$

$$\sec \theta = \frac{\text{radius vector}}{\text{abscissa}} = \frac{r}{x}, \qquad (\text{Read, "secant of } \theta")$$

$$\csc \theta = \frac{\text{radius vector}}{\text{ordinate}} = \frac{r}{y}, \qquad (\text{Read, "cosecant of } \theta")$$

These definitions will be used so frequently, from now on, that they should be memorized.

94. Some Properties of the Trigonometric Functions.

A. Each of these six trigonometric functions is the reciprocal of another one. We have, in fact,

$$\csc \theta = \frac{1}{\sin \theta}, \qquad \sec \theta = \frac{1}{\cos \theta}, \qquad \cot \theta = \frac{1}{\tan \theta}.$$

For, by definition,

$$\csc \theta = \frac{r}{v} = 1 / \frac{y}{r} = \frac{1}{\sin \theta}$$

and similarly for the other functions.

B. Since r is always positive, the signs of the trigonometric functions depend on the signs of x and y. The abscissa, x, is positive in the first and fourth quadrants and negative in the second and third; the ordinate, y, is positive in the first and second quadrants and negative in the third and fourth. It follows that:

In the first quadrant, all the functions are positive.

In the second quadrant, $\sin \theta$ and $\csc \theta$ are positive and the rest negative. In the third quadrant, $\tan \theta$ and $\cot \theta$ are positive and the rest negative. In the fourth quadrant, $\cos \theta$ and $\sec \theta$ are positive and the rest negative.

C. The values of the functions are independent of the position of the point P(x, y) on the terminal side of θ . For if P'(x', y') is a second point

Frg. 32

on the terminal side of θ (Fig. 32), then, since the triangles OLP and OL'P' are similar,

$$\frac{x'}{x} = \frac{y'}{y} = \frac{r'}{r}.$$

It follows that $\frac{y'}{r'} = \frac{y}{r} = \sin \theta$, and similarly for the other functions.

Exercises

Using a protractor and coördinate paper, construct the given angle and find the value of each of its functions to two significant figures.

1. 17°.

2. 53°.

3. 72°.

4. 114°.

5. 203°.

6. 329°.

7. - 34°.

8. -110° .

9. $\frac{\pi}{3}$

10. $\frac{3\pi}{4}$.

11. $\frac{7\pi}{6}$.

12. $\frac{19\pi}{10}$.

95. Determination of All the Functions from One of Them. Let there be given the value of one of the trigonometric functions of θ and, also,

the quadrant in which θ lies. It is required to construct an angle θ satisfying these conditions and to find the values of its other five functions. The process is illustrated by the following examples.

EXAMPLE 1. Construct an angle θ in the third quadrant such that $\tan \theta = \frac{3}{4}$ and write the values of all of its functions.

Frg. 33

Since, by definition, $\tan \theta = y/x$, we seek two numbers, x and y, both negative since the terminal side lies in the third quadrant such that $\frac{y}{x} = \frac{3}{4}$. The numbers x = -4, y = -3, constitute one such pair.

Plot the point P(-4, -3) and draw OP. Then the angle θ (Fig. 33) is an angle in the third quadrant such that $\tan \theta = \frac{3}{4}$.

Further, by the Pythagorean theorem,

$$OP = r = \sqrt{(-4)^2 + (-3)^2} = 5.$$

If we substitute the values x = -4, y = -3, and r = 5 in the definitions of Art. 93, we get

$$\sin \theta = \frac{y}{r} = -\frac{3}{5}, \qquad \cos \theta = \frac{x}{r} = -\frac{4}{5}, \qquad \tan \theta = \frac{y}{x} = \frac{3}{4},$$

$$\csc \theta = \frac{r}{y} = -\frac{5}{3}, \qquad \sec \theta = \frac{r}{x} = -\frac{5}{4}, \qquad \cot \theta = \frac{x}{y} = \frac{4}{3}.$$

EXAMPLE 2. Construct an angle θ in the second quadrant such that $\sin \theta = \frac{3}{7}$ and write the values of all of its functions.

Since $\sin \theta = y/r = \frac{3}{7}$, we may take y = 3 and r = 7. Since P(x, y) is in the second quadrant, x is negative and $x = -\sqrt{7^2 - 3^2} = -\sqrt{40} = -2\sqrt{10}$.

Plot the point $P(-\sqrt{40}, 3)$ and draw OP. The angle $\theta = XOP$ (Fig. 34) is an angle in the second quadrant such that $\sin \theta = 3/7$. Put $x = -\sqrt{40}$

 $=-2\sqrt{10}$, y=3, and r=7 in the definitions of the functions of θ . We have

$$\sin \theta = \frac{3}{7}$$
, $\cos \theta = \frac{-2\sqrt{10}}{7}$, $\tan \theta = \frac{3}{-2\sqrt{10}} = -\frac{3\sqrt{10}}{20}$, $\csc \theta = \frac{7}{3}$, $\sec \theta = -\frac{7\sqrt{10}}{20}$, $\cot \theta = -\frac{2\sqrt{10}}{3}$.

Exercises

Construct an angle θ satisfying the given conditions and write the values of all of its trigonometric functions.

1. $\tan \theta = \frac{5}{12}$, first quadrant.

2. $\cot \theta = -\frac{8}{15}$, second quadrant.

3. $\cos \theta = \frac{7}{25}$, fourth quadrant.

4. $\sin \theta = -\frac{9}{41}$, third quadrant.

5. $\csc \theta = -\frac{5}{2}$, third quadrant.

6. $\sec \theta = \frac{9}{7}$, first quadrant.

7. $\cot \theta = -2$, fourth quadrant.

8. $\csc \theta = 3$, second quadrant.

9. $\sin \theta = 0.2$, $\tan \theta$ negative.

10. $\tan \theta = -0.3$, $\sec \theta$ positive.

96. Values of the Functions of 45° , 135° , 225° , and 315° . There are quite a number of angles for which the values of the trigonometric functions can readily be determined by elementary geometry. In this and the following three articles, we shall consider the most important of these angles and we shall find the values of their functions. Since we shall assume, in the following chapters, that the student is able to write down the values of the functions of these angles, he should remember the figure, and the values of x, y, and r, for each of the angles discussed in these articles.

A diagonal of a square makes an angle of 45° with each of the sides of the square. Further, if the sides of the square are of length 1, the diagonal is of length $\sqrt{2}$.

Draw successively, in each quadrant, a square of side 1 with two of its sides extending along the coördinate axes (Fig. 35). Draw, also, OP, the diagonal of the square, through O.

Take OX as the initial side and OP as the terminal side of the angle under consideration and let P be the point whose coördinates and radius vector are used in defining the values of the functions of this angle.

In Fig. 35a,
$$\theta = 45^{\circ}$$
, $x = 1$, $y = 1$, $r = \sqrt{2}$;
In Fig. 35b, $\theta = 180^{\circ} - 45^{\circ} = 135^{\circ}$, $x = -1$, $y = 1$, $r = \sqrt{2}$;
In Fig. 35c, $\theta = 180^{\circ} + 45^{\circ} = 225^{\circ}$, $x = -1$, $y = -1$, $r = \sqrt{2}$;
In Fig. 35d, $\theta = 360^{\circ} - 45^{\circ} = 315^{\circ}$, $x = 1$, $y = -1$, $r = \sqrt{2}$.

If we substitute these values of the angle, and the corresponding values of x, y, and r, in the definitions of the trigonometric functions, we obtain the following table.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
45°	$\frac{\sqrt{2}}{2}^*$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	- 1	-1	$-\sqrt{2}$	$\sqrt{2}$
225°	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
315°	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1	- 1	$\sqrt{2}$	$-\sqrt{2}$

97. Values of the Functions of 60° , 120° , 240° , and 300° . The angles of an equilateral triangle OPQ (Fig. 36) are 60° . Further, the altitude PL bisects OQ and also bisects the angle at P. It follows that, if the

* Notice that
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
.

sides of the triangle are of length 2, then OL is of length 1 and LP, by the Fythagorean theorem, is of length $\sqrt{3}$.

Draw successively, in each quadrant, an equilateral triangle OPQ of side 2, with one vertex at O and one side OQ extending along the X-axis. Draw, also, PL perpendicular to OQ. Let OX be the initial side and OP the terminal side of the required angle and let P be the point used to find the values of the functions.

On substituting these values of θ , x, y, and r in the definitions, we have:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	cot θ	$\sec \theta$	$_{\rm csc} \theta$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$	- 2	$\frac{2\sqrt{3}}{3}$
240°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	- 2	$-\frac{2\sqrt{3}}{3}$
300°	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$	2	$-\frac{2\sqrt{3}}{3}$

98. Values of the Functions of 30°, 150°, 210°, and 330°. To find the values of the functions of these angles, we again use an equilateral triangle of side 2 with one vertex at O but with the altitude OL of the triangle extending along the x-axis (Fig. 37). Since the perpendicular OL bisects the opposite side and the angle of the triangle at O, we have:

In Fig. 37a,
$$\theta = 30^{\circ}$$
, $x = \sqrt{3}$, $y = 1$, $r = 2$;
In Fig. 37b, $\theta = 150^{\circ}$, $x = -\sqrt{3}$, $y = 1$, $r = 2$;
In Fig. 37c, $\theta = 210^{\circ}$, $x = -\sqrt{3}$, $y = -1$, $r = 2$;
In Fig. 37d, $\theta = 330^{\circ}$, $x = \sqrt{3}$, $y = -1$, $r = 2$.

On inserting these values in the definitions, we have:

θ	$\sin \theta$	$\cos \theta$	tan θ	$\cot \theta$	sec θ	$\csc \theta$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	2
210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$-\frac{2\sqrt{3}}{3}$	- 2
330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	- 2

99. Values of the Functions of 0°, 90°, 180°, and 270°. For each of these angles, the terminal side extends along one of the coördinate axes so that either the x or the y coördinate of P is zero (Fig. 38). If we take, along the terminal line, OP = r = 1, we have:

In Fig. 38a,
$$\theta = 0^{\circ}$$
, $x = 1$, $y = 0$, $r = 1$;
In Fig. 38b, $\theta = 90^{\circ}$, $x = 0$, $y = 1$, $r = 1$;
In Fig. 38c, $\theta = 180^{\circ}$, $x = -1$, $y = 0$, $r = 1$;
In Fig. 38d, $\theta = 270^{\circ}$, $x = 0$, $y = -1$, $r = 1$.

When we substitute these values in the definitions, some of the denominators will be zero. The values of the corresponding functions do not exist * since division by zero is excluded from our computations (Art. 4). The values of those functions of these angles that do exist are given in the following table.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
0°	0	1	0		1	
90°	1	0		0		1
180°	0	- 1	0		- 1	
270°	- 1	0		0		-1

100. Tables of the Values of the Trigonometric Functions. For most angles, the determination of the values of the functions by elementary methods is impracticable and recourse is had to a table of the values of the functions. Table III, pages 498–520, gives to four decimal places the values of the sine, cosine, tangent, and cotangent of the angle for every minute from 0° to 90°. The method of using this table is explained in the Introduction to the Tables, pages 430–31.

Exercises

Find the required number, using Table III.

1. sin 41° 16'.	2. sin 83° 11'.	3. sin 16° 32'.
4. tan 9° 42'.	5. tan 58° 15'.	6. tan 64° 7'.
7. cos 52° 34'.	8. cos 31° 56'.	9. cos 17° 44'.
10. cot 13° 29'.	11. cot 48° 23'.	12. cot 61° 37'.

Find θ to the nearest minute, using Table III.

13. $\sin \theta = 0.8052$.	14. $\sin \theta = 0.4572$.	15. $\sin \theta = 0.6778$.
16. $\tan \theta = 0.4758$.	17. $\tan \theta = 3.6269$.	18. $\tan \theta = 2.7339$.
19. $\cos \theta = 0.9742$.	20. $\cos \theta = 0.3647$.	21. $\cos \theta = 0.1121$.
22. cot $\theta = 1.6528$.	23. cot $\theta = 0.8020$.	24. cot $\theta = 0.5122$.

101. Logarithms of the Trigonometric Functions. In computations involving logarithms, instead of looking up the value of the function in Table III, then finding the logarithm of the resulting number in Table I, the required logarithm may be found directly from Table II. This table is arranged like Table III but the numbers given in the table are all 10 larger than the required logarithms. Tables of proportional parts are given to facilitate interpolation to tenths of a minute. The process of

^{*} Not infrequently, one hears the statement that, for example, cot 0° is "infinity." This statement has significance if it is interpreted to mean that, if θ is nearly, but not exactly, zero then cot θ is numerically very large.

using the table is explained in the Introduction to the Tables, pages 428-430.

Exercises

Find the following logarithms, using Table II.

1. log sin 24° 51.2′.	2. log sin 74° 18.4'.
3. log sin 41° 53.8′.	4. log tan 23° 37.1'.
5. log tan 36° 49.3′.	6. log tan 62° 14.4'.
7. log cos 55° 21.4′.	8. log cos 79° 3.8′.
9. log cos 35° 18.4′.	10. log cot 38° 51.2'.
11. log cot 65° 21.7′.	12. log cot 84° 56.5′.

Find θ to the nearest tenth of a minute, using Table II.

13. $\log \sin \theta = 9.44491 - 10.$	14. $\log \sin \theta = 9.96821 - 10$.
15. $\log \sin \theta = 9.98434 - 10$.	16. $\log \tan \theta = 0.32420$.
17. $\log \tan \theta = 8.77121 - 10.$	18. $\log \tan \theta = 9.75694 - 10.$
19. $\log \cos \theta = 9.92247 - 10.$	20. $\log \cos \theta = 9.69423 - 10$.
21. $\log \cos \theta = 8.86780 - 10.$	22. $\log \cot \theta = 9.88687 - 10.$
23. $\log \cot \theta = 1.00762$.	24. $\log \cot \theta = 0.27103$.

Chapter 13

Solution of Right Triangles

102. Notation. Throughout the following discussion of the solution of right triangles, we shall denote the hypotenuse by c, the acute angles

by α and β , and the sides opposite these acute angles by a and b, respectively (Fig. 39). These five quantities are called the parts of the right triangle.

If of these five quantities we know the values of any two (other than the two angles) we shall be able to find the values of the other three. The process of finding these three quantities when two are given, is called solving the right triangle.

$$\sin \alpha = \frac{a}{c}$$
, $\cos \alpha = \frac{b}{c}$, $\tan \alpha = \frac{a}{b}$, $\cot \alpha = \frac{b}{a}$. (1)

The formulas for $\sec \alpha$ and $\csc \alpha$ are omitted here because the values of these functions are not given in Tables II and III.

For the values of the functions of β , we find, in a similar way,

$$\sin \beta = \frac{b}{c}$$
, $\cos \beta = \frac{a}{c}$, $\tan \beta = \frac{b}{a}$, $\cot \beta = \frac{a}{b}$. (2)

Finally, we have, by elementary geometry,

$$\alpha + \beta = 90, \quad a^2 + b^2 = c^2.$$
 (3)

104. Solution by Natural Functions. To solve a right triangle, given two of its parts, we set up equations expressing each of the unknown quantities in terms of the given ones, using the formulas given in Art. 103. After solving these equations, as a check, we recompute one unknown, using a formula expressing this unknown in terms of the other two unknowns.

A figure, carefully drawn to scale, will not only frequently suggest the proper formulas to use in solving the triangle but will also reveal any gross errors that may have arisen in the solution. The work may be arranged in the form shown in the following examples.

Example 1. Solve the triangle: $\alpha = 14^{\circ} 23'$, b = 31.72.

Formulas: $\beta = 90^{\circ} - \alpha$, $a = b \tan \alpha$, $c = b/\cos \alpha$. Check, $a = c \cos \beta$.

 $\beta = 90^{\circ} - 14^{\circ} 23' = 75^{\circ} 37'.$

 $a = 31.72 \times 0.2564 = 8.133.$

 $c = 31.72 \div 0.9687 = 32.74.$

 $a = 32.74 \times 0.2484 = 8.133$ (Check).

Example 2. Solve the triangle: a = 21.47, b = 19.84.

Formulas: $c = \sqrt{a^2 + b^2}$, tan $\alpha = a/b$, $\beta = 90^\circ - \alpha$. Check, $b = c \sin \beta$.

 $c = \sqrt{460.9 + 393.6} = \sqrt{854.5} = 29.23.$

 $\tan \alpha = 21.47 \div 19.84 = 1.0822, \alpha = 47^{\circ} 16'$.

 $\beta = 90^{\circ} - 47^{\circ} \, 16' = 42^{\circ} \, 44'.$

 $b = 29.23 \times 0.6786 = 19.84$ (Check).

In this example, since the relation between the required angles does not involve the required side, we have checked by computing a given side in terms of the second computed angle and the required hypotenuse.

Exercises

Solve the following triangles, using Tables III and IV.* Find the lengths of the sides to four significant figures and the angles to the nearest minute.

1. c = 41, $\alpha = 62^{\circ}$.

3. a = 5.483, $\alpha = 62^{\circ} 24'$.

5. b = 1.362, $\alpha = 34^{\circ} 17'$.

7. c = 8.137, b = 5.241.

9. b = 743.5, $\beta = 59^{\circ} 42'$.

11. a = 31.57, b = 17.63.

13. c = 1.473, $\beta = 28^{\circ} 12'$.

2. a = 2.35, b = 3.52.

4. c = 5423, a = 3152.

6. a = 73.42, $\beta = 21^{\circ} 35'$.

8. c = 0.7643, $\beta = 68^{\circ} 11'$.

10. c = 28410, $\alpha = 35^{\circ} 51'$.

12. c = 72.15, a = 61.58.

14. a = 3.587, $\beta = 52^{\circ} 37'$.

105. Angle of Elevation or Depression. The angle HOP which the line from an observer at O to an object at P makes with the horizontal

line OH through O is called the angle of elevation of P if P lies above OH (Fig. 41a); it is the angle of depression of P if P lies below OH (Fig. 41b).

* To find the square or the square root of a number of four significant figures from Table IV, the interpolation process must be used. This process is discussed, for this table, on pages 431-432 of the Introduction to the Tables.

- 106. Problems Involving the Solution of Right Triangles. Solve the following problems, using the natural functions. Find the required angles to the nearest 10 minutes and the required lengths to three significant figures.
- 1. The grade of a cog road up a mountain is 23% (23 feet rise to every 100 feet measured horizontally). What angle does it make with the horizontal?
- 2. The pitch of a roof is $\frac{1}{2}$ (6 inches rise to every foot measured horizon-tally). What angle does it make with the horizontal?
 - 3. Solve Ex. 2 if the pitch is (a) $\frac{1}{3}$; (b) $\frac{1}{4}$.
- 4. What angle does the roof make with the horizontal if it rises 6 inches to every foot measured along the roof?
- 5. A ladder 21 feet long rests against a vertical wall. The bottom of the ladder is in the plane of the bottom of the wall and 8 feet from it. How high does the ladder reach up the wall?
- 6. A stairway is so constructed that the riser (vertical distance between the steps) is 7 inches and the tread (horizontal distance between the faces) is 11 inches. Find the angle of inclination of the hand rail.
- 7. In Ex. 6, if the vertical distance between the floors is 10.5 feet, find the length of the hand rail.
- 8. From a rowboat on a lake, the angle of elevation of the top of a cliff standing 113 feet above the water is 17° 20′. How far is the boat from the foot of the cliff?
- 9. When the angle of elevation of the sun is 34°, the shadow of a building is 217 feet long. How high is the building?
- 10. The angle of elevation of a kite is 27°. The kite string is 360 feet long. Allow 10 feet for sag in the string and find the height of the kite.
- 11. A pole 24 feet long is used to brace a vertical wall. If the foot of the pole is 13 feet from the wall, what angle does the pole make with the wall?
- 12. A moving stairway carries shoppers in a store from one floor to the next, a vertical distance of 17 feet, in 8.4 seconds. If the inclination of the stairway is 26° 30′, find its speed in feet per minute.
- 13. A building is surmounted by a flagstaff. From a point on the ground 137 feet from the building, the angle of elevation of the top of the building is 34° 20′ and, of the top of the flagstaff, is 38° 50′. Find the height of the building and of the flagstaff.
- 14. From two successive milestones on a straight, level road, a man observes the angle of elevation of the top of a hill directly ahead of him to be 6° 10' and 41° 40'. How high is the top of the hill above the road?
- 15. The hour hand of a public clock is 11.2 inches long. At 15 minutes past 4 o'clock, the line joining the ends of the hour and minute hands is perpendicular to the hour hand. How long is the minute hand?
- 16. A regular octagon is circumscribed around a circle of radius 12 inches. Find the perimeter of the octagon.
- 17. The sides of an equilateral triangle are each 12 inches long. Find the radius (a) of the inscribed and (b) of the circumscribed circle.

107. Solution by Logarithms. The solution of triangles can usually be effected more easily by using logarithms. The formulas of Art. 103 should still be used except that the computation of c from the formula $c^2 = a^2 + b^2$ is no longer practical. If b is to be found from this formula, write it in the form $b = \sqrt{(c+a)(c-a)}$, giving $\log b = \frac{1}{2} [\log (c+a) + \log (c-a)]$. Similarly, $\log a = \frac{1}{2} [\log (c+b) + \log (c-b)]$.

The solution may be arranged as shown in the following example. Write out the entire form for the computation before looking up any

logarithms.

Example. Solve the right triangle: c = 713.64, $\alpha = 37^{\circ} 28.3'$.

Given: Find:
$$c = 713.64$$
, $\beta = 52^{\circ} 31.7'$, $\alpha = 37^{\circ} 28.3'$. $a = 434.16$, $b = 566.39$.

Formulas. $\beta = 90^{\circ} - \alpha$, $a = c \sin \alpha$, $b = c \cos \alpha$. Check: $b = a \tan \beta$.

$$\log \sin \alpha = 9.78417 - 10 \qquad \log \cos \alpha = 9.89963 - 10$$

$$\log c \qquad = 2.85348 \qquad + \qquad \log c \qquad = 2.85348 \qquad +$$

$$\log a \qquad = 2.63765 \qquad \log b \qquad = 2.75311$$

$$\log a \qquad = 2.63765 +$$

$$\log b \qquad = 2.75311$$

Exercises

Solve the following triangles, using Tables I and II. Find the required sides to five significant figures and the required angles to the nearest tenth of a minute.

```
2. c = 86.32, a = 75.31.
 1. b = 91.35, \alpha = 62^{\circ} 11'.
                                                 4. b = 41.037, \alpha = 62^{\circ} 38.4'.
 3. a = 436.12, \beta = 53^{\circ} 48.6'.
                                                 6. b = 5.2839, \beta = 17^{\circ} 53.6'.
 5. c = 434.36, b = 345.81.
                                                 8. a = 13.428, b = 32.371.
 7. c = 8421.5, \alpha = 31^{\circ} 42.5'.
                                               10. c = 0.024573, \beta = 28^{\circ} 19.6'.
 9. a = 4728.9, \alpha = 54^{\circ} 23.4'.
                                               12. a = 6.8385, \beta = 41^{\circ} 52.3'.
11. c = 88.916, a = 76.584.
                                               14. c = 9312.4, b = 7184.8.
13. c = 0.72952, \beta = 14^{\circ} 26.2'.
                                               16. c = 2837.5, \alpha = 55^{\circ} 41.8'.
15. b = 8.6549, \beta = 72^{\circ} 13.6'.
                                               18. a = 853.46, \alpha = 82^{\circ} 47.3'.
17. a = 6.1394, b = 3.8762.
```

108. Area of a Right Triangle. By elementary geometry, the area, S, of a right triangle, is

 $S=\tfrac{1}{2}ab.$

With the aid of the formulas of Art. 103, this formula may be expressed in various other ways, corresponding to the ways in which the

triangle is determined. For example, since $a = c \sin \alpha$ and $b = c \cos \alpha$, we have $S = \frac{1}{2}c^2 \sin \alpha \cos \alpha.$

Since $a = b \tan \alpha$, or $b = a \tan \beta$, we have

$$S = \frac{1}{2}b^2 \tan \alpha = \frac{1}{2}a^2 \tan \beta,$$

and so on.

Exercises

1-18. Find the areas of the triangles in Ex. 1-18, Art. 107, to five significant figures.

109. Applications.

PROJECTIONS. The projection of a line segment P_1P_2 on a line l (Fig. 42) is defined to be the segment L_1L_2 joining the feet of the perpendiculars from P_1 and P_2 on the line l.

If the segments are undirected, let α be the acute angle between l and the line through P_1 and P_2 . Since angle $RP_1P_2 = \alpha$ (Fig. 42), it follows from the definition of $\cos \alpha$ that

$$L_1L_2=P_1R=P_1P_2\cos\alpha.$$

If the segments are directed, this formula still holds provided that α is taken to be the angle between the positive directions on the lines.

Vectors. A vector is a line segment having a fixed magnitude and a fixed direction. Certain physical quantities are often represented by vectors. A velocity, for example, may be represented by a vector whose length represents the speed of the body and whose direction is the direction in which the body is moving. Similarly, a force may be represented

by a vector whose length represents the magnitude of the force and whose direction is the direction in which the force acts.

The resultant of two vectors, OA and OB, extending from a point O, is the vector OC extending from O to the fourth vertex C of the parallelogram

having OA and OB as two adjacent sides. The vectors OA and OB, in turn, are components of the vector OC.

Problems

In the following problems, find the required lengths to four significant figures and the required angles to the nearest minute. Logarithms may be used.

In Ex. 1-6, d is the length of a line segment and α is the angle it makes with the horizontal. It is required to find the lengths of its horizontal and vertical projections.

1.
$$d = 573.2$$
, $\alpha = 61^{\circ} 14'$.

1.
$$d = 573.2$$
, $\alpha = 61^{\circ} 14'$.
2. $d = 21.84$, $\alpha = 21^{\circ} 42'$.
3. $d = 1736$, $\alpha = 38^{\circ} 23'$.
4. $d = 537.2$, $\alpha = 57^{\circ} 4'$.

5.
$$d = 92.85$$
, $\alpha = 40^{\circ} 34'$.

5.
$$d = 92.85$$
, $\alpha = 40^{\circ} 34'$. **6.** $d = 0.3842$, $\alpha = 16^{\circ} 24'$.

Find the length of a vector and the angle it makes with the horizontal, given that its horizontal and vertical components are, respectively:

9. 518.1, 204.8.

12. 29.34, 54.12.

Find the north or south and the east or west components of the velocity, v, of an airplane, given:

13.
$$v = 132.5$$
, $\alpha = N 21^{\circ} 13' E$. **14.** $v = 625.4$, $\alpha = S 51^{\circ} 29' E$.

Note. The expression N 21° 13' E means, "face north, turn 21° 13' toward the east." You will then be facing in the direction in which the airplane is moving.

15.
$$v = 261.3$$
, $\alpha = S 37^{\circ} 54' W$. **16.** $v = 186.5$, $\alpha = N 47^{\circ} 15' E$.

- 17. An airplane, headed north and traveling 136.4 miles an hour with reference to the air, is carried toward the east by a wind having a velocity of 34.2 miles an hour. Find the direction and speed of the plane with reference to the ground.
- 18. A surveyor, to avoid a lake, goes from A, 173 rods N 16° 12' E to B, from B 128 rods N 71° 28' E to C, and from C 213 rods S 51° 44' E to D. Find the northerly and easterly projections of AD and the distance and direction of D from A.
- 19. To avoid an obstruction, a surveyor, surveying an east and west line, goes from A 312 yards S 25° 34' W to B, from B 416 yards N 72° 31' W to C, then from C N 28° 43' W to a point D directly west of A. Find the distances AD and CD.

Chapter 14

Reduction Formulas

110. Introduction. Tables of the values of the trigonometric functions or their logarithms state the values of these functions for a limited interval only. In Tables II and III, for example, the angles for which the values of the functions are given lie in the interval 0° to 90°. It will frequently be necessary for us to find the value of a function of a negative angle or of one greater than 90°. In this chapter, we shall show how to express the value of a function of a positive or negative angle of any size in terms of the value of a function of an angle in the interval 0° to 90° and, thereby, to find its value with the aid of the tables.

111. Functions of $-\theta$. Place the angles θ and $-\theta$ in standard position (Fig. 44). Take a point P on the terminal line of θ and a point

P' on the terminal line of $-\theta$ in such a way that OP' = OP. The right triangles OLP and OL'P' are congruent since OP' = OP and the acute angle L'OP' equals the acute angle LOP (Why?). It follows by geometry that the corresponding sides of these two triangles are numerically equal. Giving due regard to the signs of the coördinates, we find, in each case, that

$$r'=r$$
, $x'=x$, and $y'=-y$.

Hence, by the definitions of the trigonometric functions,

$$\sin (-\theta) = \frac{y'}{r'} = -\frac{y}{r} = -\sin \theta, \qquad \csc (-\theta) = \frac{r'}{y'} = -\frac{r}{y} = -\csc \theta,$$

$$\cos (-\theta) = \frac{x'}{r'} = \frac{x}{r} = \cos \theta \qquad \sec (-\theta) = \frac{r'}{x'} = \frac{r}{x} = \sec \theta,$$

$$\tan (-\theta) = \frac{y'}{x'} = -\frac{y}{x} = -\tan \theta, \qquad \cot (-\theta) = \frac{x'}{y'} = -\frac{x}{y} = -\cot \theta.$$

The required relations are, therefore,

$$\sin (-\theta) = -\sin \theta$$
, $\csc (-\theta) = -\csc \theta$,
 $\cos (-\theta) = \cos \theta$, $\sec (-\theta) = \sec \theta$, (1)
 $\tan (-\theta) = -\tan \theta$, $\cot (-\theta) = -\cot \theta$.

Note particularly, since it is contrary to what one would expect, that $\cos{(-\theta)} = \cos{\theta}$, and $\sec{(-\theta)} = \sec{\theta}$.

112. Functions of $90^{\circ} + \theta$. Place the angle θ in standard position and construct the angle $POP' = 90^{\circ}$ so that the angle $XOP' = 90^{\circ} + \theta$ (Fig. 45). Further, choose the points P and P' on the terminal lines of θ and $90^{\circ} + \theta$ so that OP = OP'.

The right triangles OLP and OL'P' are congruent since OP' = OP and the corresponding sides of the two triangles are respectively perpendicular. It follows that the corresponding sides are numerically equal. Giving due regard to the signs of the coördinates, we find, in each case, that

$$r' = r, \quad x' = -y, \quad \text{and} \quad y' = x.$$
Hence,
$$\sin (90^{\circ} + \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta, \qquad \csc (90^{\circ} + \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta,$$

$$\cos (90^{\circ} + \theta) = \frac{x'}{r'} = -\frac{y}{r} = -\sin \theta, \qquad \sec (90^{\circ} + \theta) = \frac{r'}{x'} = -\frac{r}{y} = -\csc \theta,$$

$$\tan (90^{\circ} + \theta) = \frac{y'}{x'} = -\frac{x}{y} = -\cot \theta, \qquad \cot (90^{\circ} + \theta) = \frac{x'}{y'} = -\frac{y}{x} = -\tan \theta.$$

The required relations are, therefore,

$$\sin (90^{\circ} + \theta) = \cos \theta$$
, $\csc (90^{\circ} + \theta) = \sec \theta$, $\cos (90^{\circ} + \theta) = -\sin \theta$, $\sec (90^{\circ} + \theta) = -\csc \theta$, $\cot (90^{\circ} + \theta) = -\cot \theta$, $\cot (90^{\circ} + \theta) = -\tan \theta$. (2)

In Figures 44 and 45, we have, for definiteness, indicated the angles θ as positive and less than 360°. The proofs, however, and the resulting formulas, hold equally well if θ is negative, or if it is positive and greater than 360°.

113. Functions of $90^{\circ} - \theta$. Since $90^{\circ} - \theta = 90^{\circ} + (-\theta)$, the formulas for functions of $90^{\circ} - \theta$ may be derived from those of the preceding two articles in the following way.

$$\sin (90^{\circ} - \theta) = \sin [90^{\circ} + (-\theta)] = \cos (-\theta) = \cos \theta.$$

Proceeding in this way for each function, we find that

$$\sin (90^{\circ} - \theta) = \cos \theta$$
, $\csc (90^{\circ} - \theta) = \sec \theta$, $\cos (90^{\circ} - \theta) = \sin \theta$, $\sec (90^{\circ} - \theta) = \csc \theta$, $\tan (90^{\circ} - \theta) = \cot \theta$, $\cot (90^{\circ} - \theta) = \tan \theta$. (3)

114. Reduction of the Functions of a Given Angle. If θ is a positive angle greater than 90°, we can replace θ by 90° + θ_1 , where θ_1 is an angle less by 90° than θ , and express any given function of θ in terms of a function of θ_1 by means of equations (2). If θ_1 still is greater than 90°, we can replace θ_1 by 90° + θ_2 and express the function of θ_1 in terms of a function of θ_2 , and so on.

Thus,
$$\sin 349^\circ = \sin (90^\circ + 259^\circ) = \cos 259^\circ = \cos (90^\circ + 169^\circ)$$

= $-\sin 169^\circ = -\sin (90^\circ + 79^\circ) = -\cos 79^\circ$.

If θ is a negative angle, we can, by using equations (1), replace the given function of θ by a function of a positive angle, then reduce this positive angle as in the preceding case.

Thus,
$$\tan (-217^\circ) = -\tan 217^\circ = -\tan (90^\circ + 127^\circ) = \cot 127^\circ$$

= $\cot (90^\circ + 37^\circ) = -\tan 37^\circ$.

The foregoing computations can be abbreviated. Every time we decrease the angle by 90° , we replace the given function by its cofunction (sine by cosine, cosine by sine, tangent by cotangent, etc.). Hence, if we decrease the angle by 90° an even number of times, we end with the same function as that with which we started; if we decrease it by 90° an odd number of times, we end with its cofunction. Hence, we should replace the given angle by $n90^{\circ} + \theta$, where θ is an angle in the first quadrant. If n is an even number, replace the given function of $n90^{\circ} + \theta$ by plus or minus the same function of θ ; if n is odd, replace it by plus or minus the cofunction of θ .

To determine which algebraic sign to use, since all the functions of an angle in the first quadrant are positive, determine the sign of the originally given function of the given angle and place that sign in front of the final function of θ .

Example 1. Find the value of sin 247° 21'.

 $247^{\circ} 21' = 2 \cdot 90^{\circ} + 67^{\circ} 21'$. Since 2 is an even number,

 $\sin 247^{\circ} 21' = \sin (2 \cdot 90^{\circ} + 67^{\circ} 21') = \pm \sin 67^{\circ} 21'.$

Since 247° 21' is an angle in the third quadrant, its sine is negative.

 $\sin 247^{\circ} 21' = -\sin 67^{\circ} 21' = -0.9229.$

EXAMPLE 2. Find the value of tan (- 283° 34').

Since the given negative angle lies in the first quadrant, its tangent is positive.

$$\tan (-283^{\circ} 34') = -\tan 283^{\circ} 34' = -\tan (3 \cdot 90^{\circ} + 13^{\circ} 34')$$

= $\cot 13^{\circ} 34' = 4.1441$.

Sometimes it is required to express a function of an angle of the form $n \cdot 90^{\circ} \pm \theta$ in terms of a function of θ , when the value of θ is not specified. Since the required sign is independent of the value of θ , determine the sign by supposing that θ is in the first quadrant.

Example 3. Express in terms of a function of θ : sec $(540^{\circ} + \theta)$.

If θ is in the first quadrant, $540^{\circ} + \theta$ is in the third quadrant and its secant is negative.

$$\sec (540^{\circ} + \theta) = \sec (6 \cdot 90^{\circ} + \theta) = -\sec \theta.$$

Example 4. Express in terms of a function of θ : tan $(270^{\circ} - \theta)$.

If θ is in the first quadrant, $270^{\circ} - \theta$ is in the third quadrant and its tangent is positive.

$$\tan (270^{\circ} - \theta) = \tan (3 \cdot 90^{\circ} - \theta) = \cot \theta.$$

Exercises

Find the values of the following functions, using Table III.

1. sin 234° 15′.	2. cot 291° 12′.	3. tan 347° 41'.
4. cos 471° 24'.	5. cot 242° 38′.	6. sin 417° 26′.
7. cos 589° 46′.	8. sin 647° 14′.	9. tan 873° 43′.
10. $\sin (-194^{\circ} 31')$.	11. $\tan (-237^{\circ} 6')$.	12. $\cos (-483^{\circ} 51')$.

Find the logarithms of the values of the following functions. If the value of the given function is negative, write the letter (n), in parentheses, after the logarithm.

```
13. cot 251° 16.4′. 14. sin 295° 39.2′. 15. tan 508° 52.6′.
```

Express each of the following in terms of a function of θ .

16. $\cos (180^{\circ} + \theta)$.	17. $\sin (180^{\circ} - \theta)$.	18. cot $(270^{\circ} - \theta)$.
19. cot $(270^{\circ} + \theta)$.	20. csc $(450^{\circ} + \theta)$.	21. $\cos (630^{\circ} - \theta)$.
22. $\sin\left(\frac{3\pi}{2}+\theta\right)$.	23. sec $(\pi + \theta)$.	24. $\tan\left(\frac{9\pi}{2}-\theta\right)$.

115. Periodicity. Since $360^{\circ} = 4 \cdot 90^{\circ}$, we have for all values of θ ,

$$\sin (360^{\circ} + \theta) = \sin \theta$$
, $\csc (360^{\circ} + \theta) = \csc \theta$, $\cos (360^{\circ} + \theta) = \cos \theta$, $\sec (360^{\circ} + \theta) = \sec \theta$;

that is, if we add 360° to any angle, or subtract 360° from it, we do not change the value of any one of these four functions. This fact is expressed by the statement: The functions $\sin \theta$, $\cos \theta$, $\sec \theta$, and $\csc \theta$ are periodic with period 360° .

We find in a similar way that

$$\tan (180^{\circ} + \theta) = \tan \theta$$
, $\cot (180^{\circ} + \theta) = \cot \theta$;

that is, tan θ and cot θ are periodic with period 180° .

§ 116

If the angles are measured in radians, since $360^{\circ} = 2\pi$ radians and $180^{\circ} = \pi$ radians, the above equations become

$$\sin (2\pi + \theta) = \sin \theta$$
, $\csc (2\pi + \theta) = \csc \theta$, $\cos (2\pi + \theta) = \cos \theta$, $\sec (2\pi + \theta) = \sec \theta$, $\tan (\pi + \theta) = \tan \theta$, $\cot (\pi + \theta) = \cot \theta$;

that is, sin θ , cos θ , sec θ , and csc θ are periodic with period 2π , and tan θ and cot θ are periodic with period π .

116. The Graphs of the Trigonometric Functions. The graphs of the trigonometric functions can be drawn by plotting points on the graph and drawing the curve through the plotted points. We shall suppose that the angle is measured in radians; that is, we shall measure on the x-axis as many units of length as the number of radians in the angle. Since the functions are periodic, we need to compile a table of coördinates of points for a single period only. By drawing the graph for this period and repeating the part so drawn, indefinitely far, in both directions, we have the required curve.

The sine curve. To draw the sine curve,

$$y = \sin x$$
,

we first make a table of pairs of values of x and y.

x	0	$\pi/6$	$\pi/3$	$\pi/2$	$2\pi/3$	$5\pi/3$	π	$7\pi/6$	$4\pi/3$	$3\pi/2$	$5\pi/3$	$\frac{11\pi/6}{-0.5}$	2π
y	0	0.5	.87	1.0	.87	0.5	0	-0.5	87	-1.0	87	- 0.5	0

This table has been computed for intervals of $\pi/6$ on the x-axis. The values of y may be found with the aid of Table III and the reduction formulas or from the values given in Arts. 96 to 99.

By plotting the points whose coördinates are given, drawing a smooth curve through them, and repeating the part so drawn in both directions, we obtain Figure 46.

The cosine curve. The graph of the equation,

$$y = \cos x$$

is obtained in a similar way (Fig. 47).

The cosine curve is congruent to the sine curve but it is placed in a slightly different position with reference to the y-axis. It can be shown,

Fig. 47

in fact, since $\sin (\pi/2 + x) = \cos x$, that, if we draw a sine curve, then move the y-axis $\pi/2$ units to the right, we have a cosine curve.

The student should show, using the identity $\cos(-x) = \cos x$, that the cosine curve is symmetric (Art. 41) with respect to the y-axis.

The tangent curve. The graph of the equation,

$$y = \tan x$$
,

is obtained in the same way that the preceding curves were obtained. The curve is shown in Figure 48.

Fig. 48

Since the numerical value of tan x increases indefinitely as x approaches $-\pi/2$, $\pi/2$, $3\pi/2$, etc., the graph recedes indefinitely far from the x-axis in such a way that it approaches the vertical lines $x = -\pi/2$, $x = \pi/2$, etc., as shown in the figure. Because of this property, these lines are called asymptotes to the curve.

Since tan(-x) = -tan x, if the point (x, y) lies on the tangent curve, so also does the point (-x, -y). Because of this property, the tangent curve is said to be symmetric with respect to the origin.

The problem of drawing the graph of the cotangent curve, $y = \cot x$, is left as an exercise for the student.

The secant curve. The graph of the equation

$$y = \sec x$$
,

is the secant curve (Fig. 49).

What are the equations of the asymptotes to the secant curve? Are there any symmetries? According to the graph, there are no values of x for which sec x is numerically less than unity. Show from the definition that this is so. Draw the cosecant curve, $y = \csc x$.

117. The Line Values of the Functions. Draw a circle of radius unity having its center at the origin of coördinates and place the given angle θ in standard position with reference to the axes.

Let P be the point where the terminal side of angle θ meets the circle, let T be the point where the terminal line meets the tangent line to the circle at A and let S be the point where it meets the tangent at B (Fig. 50).

Let us agree, not only to measure horizontal and vertical segments as positive and negative in the customary way, but also to consider segments measured in the direction of the terminal side of θ as positive and segments measured in the direction opposite to this side as negative.

Using the definitions of the trigonometric functions, together with similar triangles when necessary, we find, in each quadrant, that

$$\sin \theta = \frac{LP}{OP},$$
 $\csc \theta = \frac{OS}{OB},$ $\cos \theta = \frac{OI}{OA},$ $\cot \theta = \frac{BS}{OB}.$

But OP = OA = OB = 1. Hence the above equations reduce to:

$$\sin \theta = LP$$
, $\csc \theta = OS$,
 $\cos \theta = OL$, $\sec \theta = OT$,
 $\tan \theta = AT$, $\cot \theta = BS$. (4)

Equations (4) express the value of each of the trigonometric functions as the length of a directed line segment. Because of these relations, the trigonometric functions are sometimes spoken of as trigonometric lines.

Chapter 15

Trigonometric Identities and Equations

118. The Fundamental Identities. The following eight equations connecting the six trigonometric functions of any angle are the fundamental identities connecting these functions.

$$csc \theta = \frac{1}{\sin \theta}, \qquad \sec \theta = \frac{1}{\cos \theta}, \qquad \cot \theta = \frac{1}{\tan \theta},$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}, \qquad (1)$$

$$\sin^2\theta + \cos^2\theta = 1$$
, $\tan^2\theta + 1 = \sec^2\theta$, $\cot^2\theta + 1 = \csc^2\theta$.

The first three of these equations were proved in Art. 94. To prove the next two, write down the definitions of $\tan \theta$ and $\cot \theta$, divide each numerator and denominator by r, and write the name of each of the resulting fractions, thus:

$$\tan \theta = \frac{y}{x} = \frac{y/r}{x/r} = \frac{\sin \theta}{\cos \theta};$$
 $\cot \theta = \frac{x}{y} = \frac{x/r}{y/r} = \frac{\cos \theta}{\sin \theta}.$

To derive the last three equations, we start from the equation $x^2 + y^2 = r^2$, which is true by the Pythagorean theorem. Divide this equation successively by r^2 , by x^2 , and by y^2 , then write down the names of the resulting fractions, thus:

$$\frac{y^2}{r^2} + \frac{x^2}{r^2} = 1, \quad \text{or} \quad \sin^2 \theta + \cos^2 \theta = 1,$$

$$\frac{y^2}{x^2} + 1 = \frac{r^2}{x^2}, \quad \text{or} \quad \tan^2 \theta + 1 = \sec^2 \theta,$$

$$1 + \frac{x^2}{y^2} = \frac{r^2}{y^2}, \quad \text{or} \quad 1 + \cot^2 \theta = \csc^2 \theta.$$

Exercises

Verify that the eight equations (1) are true for the given angle by inserting the values of the functions of the angle from Arts. 96 to 98.

1. 30°. 2. 120°. 3. 225°. 4.
$$\frac{5\pi}{6}$$
. 5. $\frac{5\pi}{3}$. 6. $\frac{7\pi}{4}$.

By inserting the numerical values, verify that each of the equations $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$, $\sec \theta = \pm \sqrt{1 + \tan^2 \theta}$, and $\csc \theta = \pm \sqrt{1 + \cot^2 \theta}$,

138 TRIGONOMETRIC IDENTITIES AND EQUATIONS § 120

is true for each given angle. In each case, insert the proper sign before the radical.

7. 45°. 8. 210°. 9. 330°. 10. $\frac{\pi}{3}$. 11. $\frac{3\pi}{4}$. 12. $\frac{4\pi}{3}$.

Using equations (1), write the values of all of the functions of α , when α is in the quadrant indicated.

13. $\sin \alpha = -\frac{4}{5}$; fourth. 14. $\tan \alpha = -\frac{12}{5}$; second.

15. sec $\alpha = -\frac{17}{8}$; third. **16.** csc $\alpha = \frac{25}{24}$; first.

17. $\cot \alpha = \frac{5}{2}$; third. 18. $\cos \alpha = \frac{4}{7}$; fourth.

19. Find the value of $\sin \beta \sec^2 \beta$, given $\csc \beta = -3$.

20. Find the value of $(2 \cos^2 \beta - 1)(1 - \cot \beta)$, given $\tan \beta = 2$.

21. Find the value of $\cos \beta (1 + \tan \beta)$, given $\sin \beta = \frac{3}{4}$, with β in the second quadrant.

22. Find the value of $\frac{\sec \beta \csc \beta}{\sec \beta + \csc \beta}$, given $\cos \beta = -\frac{1}{4}$, with β in the third quadrant.

Express all of the other functions of the angle x in terms of the given function.

23. $\sin x$. 24. $\cos x$. 25. $\tan x$. 26. $\cot x$.

119. Identities and Equations of Condition. An equation is an identity if it is true for all values of the quantities involved in it for which both of its members have a meaning.

Thus, the equations,

$$\frac{(x-y)^2 = x^2 - 2xy + y^2,}{\frac{x^2 - 7x + 10}{x - 5}} = x - 2,$$

and

are identities. The first is true for all values of x and y; the second is true for all values of x except x = 5 for which the first member has no meaning.

All of equations (1) of the preceding article are identities because they are true for all values of θ for which both members have a meaning.

An equation of condition is one that is true only for certain values of the quantities contained in it.

Thus, the equation

$$\cos \theta = \frac{1}{2}$$

is an equation of condition. It is true if $\theta = \pm 60^{\circ}$, $\pm 420^{\circ}$, and so on, but it is not true for many other values of θ .

120. Trigonometric Identities. In the applications of trigonometry, it is often necessary to transform one trigonometric expression into another one which is more convenient for the purpose for which it is to be used. The following exercises will afford practice in carrying through such transformations.

To prove an identity, one should, with the aid of equations (1), either (a) transform one member of the equation into the other or (b) transform each member, separately, into a single expression which is identically equal to each member of the given equation.

In the process of proving an identity, one should not remove factors common to the two members or otherwise modify the values of the separate members. The proof should consist in showing that each member of the given equation is identically equal to the final result. This will not be true if the values are altered during the course of the proof.

To carry through the proof of an identity, one should, in most cases, express both members in terms of sines and cosines, then simplify these results, on both sides of the equation, to the same form. In some cases, it is easier to express both members in terms of some one of the other functions and then to simplify these results.

The operations to be performed will consist largely of transformations of fractions and of factoring. The student should refer to Chapter 2 for the methods and formulas involved in these operations.

EXAMPLE 1. Prove the identity:
$$\frac{\cot \alpha + 1}{\cot \alpha - 1} = \frac{1 + \tan \alpha}{1 - \tan \alpha}$$
.

Since the second member contains only the function $\tan \alpha$, we shall try to express the first member in terms of $\tan \alpha$ and then to reduce the resulting expression to the form of the second member.

$$\frac{\cot \alpha + 1}{\cot \alpha - 1} = \frac{\frac{1}{\tan \alpha} + 1}{\frac{1}{\tan \alpha} - 1} = \frac{\frac{1 + \tan \alpha}{\tan \alpha}}{\frac{1 - \tan \alpha}{\tan \alpha}} = \frac{1 + \tan \alpha}{1 - \tan \alpha}.$$

In this example, we have proved the identity by transforming the first member into the second.

Example 2. Prove the identity: $\tan x \csc x = \tan x \sin x + \cos x$.

Replace each function by its value in terms of $\sin x$ and $\cos x$ and simplify each member separately, using the fundamental identities (1).

$$\frac{\sin x}{\cos x} \frac{1}{\sin x} = \frac{\sin^2 x}{\cos x} + \cos x$$

$$\frac{1}{\cos x} = \frac{\sin^2 x + \cos^2 x}{\cos x}$$

$$\frac{1}{\cos x} = \frac{1}{\cos x}.$$

Since each member of the given equation is identically equal to $1/\cos x$, it is identically equal to the other member.

Exercises

Prove the following identities.

1.
$$\sin \theta = \cos \theta \tan \theta$$
.

3.
$$\sin^2 \theta = (1 - \cos \theta)(1 + \cos \theta)$$
.

5.
$$\tan \theta = \frac{\sec \theta}{\csc \theta}$$
.

7.
$$\frac{1+\sin\alpha}{\cos\alpha} = \sec\alpha + \tan\alpha.$$

9.
$$(\sec \alpha - 1)(\sec \alpha + 1) = \tan^2 \alpha$$
.

10.
$$(1 - \tan^2 \alpha) \cot \alpha = \cot \alpha - \tan \alpha$$
.

11.
$$\cos^2 \alpha (1 + \cot^2 \alpha) = \cot^2 \alpha$$
.

13.
$$\frac{1+\cot^2\beta}{1+\tan^2\beta}=\cot^2\beta.$$

15.
$$(\sec \beta + \tan \beta)^2 = \frac{1 + \sin \beta}{1 - \sin \beta}$$
.

17.
$$\cos^2 \beta - \sin^2 \beta = \frac{\cot^2 \beta - 1}{\cot^2 \beta + 1}$$
.

19.
$$\tan^2 \beta - \sin^2 \beta = \tan^2 \beta \sin^2 \beta$$
.

$$21. \ \frac{1-2\cos^2 x}{\sin x \cos x} = \tan x - \cot x.$$

23.
$$\frac{\tan^2 x + 1}{\sec^2 x - 1} = \csc^2 x$$
.

25.
$$\frac{\sec^2 x + \csc^2 x}{\sec x \csc x} = \tan x + \cot x$$
. 26. $\frac{\cos^2 x}{(1 + \sin x)^2} = \frac{(1 - \sin x)^2}{\cos^2 x}$.

27.
$$\sin^4 x - \cos^4 x = 1 - 2 \cos^2 x$$
.

29.
$$1 + \cot^2 x = \frac{\sec^2 x}{\sec^2 x - 1}$$

31.
$$(2\cos^2 x - 1)^2 = 1 - 4\sin^2 x \cos^2 x$$
.
32. $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2\csc x$.

$$1 + \cos x + \sin x$$

33.
$$(\sin^2 x - \cos^2 x) \tan x \sec x \csc x = \tan^2 x - 1$$
.
34. $(\sec x + \csc x)^2 = \sec^2 x \csc^2 x + 2 \sec x \csc x$.

35.
$$(\sin y - \cos y)^2 = 2 - (\sin y + \cos y)^2$$
.

36.
$$\frac{2}{\tan y} = \frac{1}{\csc y - \cot y} - \frac{1}{\csc y + \cot y}$$
.

37.
$$\frac{\sin y}{\cos y} + \frac{\tan y}{\cot y} + \frac{\sec y}{\csc y} = \frac{2 \cot y + 1}{\cot^2 y}.$$

38.
$$\sec y + \cos y + \sec y \sin^2 y = 2 \sin y \sec^2 y \cot y$$
.

$$39. \ \frac{\tan x + \cot y}{\cot x + \tan y} = \frac{\tan x}{\tan y}.$$

40.
$$\frac{\tan x + \tan y}{\cot x + \cot y} = \tan x \tan y.$$

41.
$$\frac{\tan x + \tan y}{\sec x - \sec y} = \frac{\sec x + \sec y}{\tan x - \tan y}.$$

2. $\cos \theta \csc \theta = \cot \theta$.

4.
$$(\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta$$
.

6.
$$\frac{1-\cos\theta}{1+\cos\theta} = \frac{\sec\theta-1}{\sec\theta+1}.$$

8.
$$\tan^2 \alpha = \frac{1 - \cos^2 \alpha}{\cos^2 \alpha}$$
.

12.
$$\csc \alpha - \sin \alpha = \sin \alpha \cot^2 \alpha$$
.

14.
$$\sec \beta \csc \beta = \tan \beta + \cot \beta$$
.

16.
$$\sec^2 \beta \csc^2 \beta = \sec^2 \beta + \csc^2 \beta$$
.

18.
$$\frac{\tan \beta + \sec \beta}{\tan \beta \sec \beta} = \cot \beta + \cos \beta.$$

20.
$$\frac{\tan \beta + \cot \beta}{\tan \beta - \cot \beta} = \frac{\sec^2 \beta}{\tan^2 \beta - 1}.$$

22.
$$\frac{\tan^2 x}{\sin^2 x} = 1 + \tan^2 x$$
.

$$24. \ \frac{\cot x + \csc x}{1 + \cos x} = \csc x.$$

3.
$$\frac{\cos^2 x}{(1+\sin x)^2} = \frac{(1-\sin x)^2}{\cos^2 x}$$

28.
$$\sec^4 x - \sec^2 x = \tan^4 x + \tan^2 x$$
.

30.
$$\frac{\cot x - \tan x}{\cot x + \tan x} = 1 - 2 \sin^2 x$$
.

30.
$$\frac{\cot x - \tan x}{\cot x + \tan x} = 1 - 2 \sin^2 x$$
.

42.
$$\frac{\tan x - \tan y}{1 + \tan x \tan y} = \frac{\cot y - \cot x}{1 + \cot x \cot y}$$

43.
$$(\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2 + (\cos \alpha \cos \beta - \sin \alpha \sin \beta)^2 = 1$$
.

121. Trigonometric Equations of Condition. If the given equation can readily be expressed in terms of a single function of the angle, express it in terms of that function and solve the resulting equation considering this function as the unknown. When the values of the function that satisfy the equation have been found, find all the angles (positive or zero but less than 360°) for which this function has the prescribed values. For this purpose, the values given in Arts. 96 to 99 should be used whenever possible. If these are not applicable, use Table III and the reduction formulas.

Example 1. Solve the equation: $2 \cos^2 x + \cos x - 1 = 0$.

Factor the first member: $(\cos x + 1)(2\cos x - 1) = 0$.

Equate the factors to zero and solve, first for $\cos x$, then for x.

If $\cos x = -1$, $x = 180^{\circ}$. If $\cos x = \frac{1}{2}$, $x = 60^{\circ}$ or 300° . The required values of x are 60° , 180° , and 300° .

Example 2. Solve the equation: $2 \sec^2 x - 5 \tan x + 1 = 0$.

Replace $\sec^2 x$ by $1 + \tan^2 x$ and write the equation in the form

$$2 \tan^2 x - 5 \tan x + 3 = 0.$$

Solve this quadratic equation in $\tan x$, giving either:

$$\tan x = 1$$
, $x = 45^{\circ}$ or 225° ; or $\tan x = 1.5$, $x = 56^{\circ} 19'$ or $236^{\circ} 19'$.

Sometimes the equation can be written as the product of two factors equated to zero in such a way that each factor contains only one trigonometric function.

Example 3. Solve: $2 \sin x \sec x - 4 \sin x + \sec x = 2$.

Transpose the 2 and factor: $(2 \sin x + 1)(\sec x - 2) = 0$.

Equate each factor to zero and solve. We have, either:

$$\sin x = -\frac{1}{2}$$
, $x = 210^{\circ}$ or 330° ; $\sec x = 2$, $x = 60^{\circ}$ or 300° .

Occasionally it is necessary to square both sides in order to express the equation rationally in terms of one function. When this is done, it must be remembered that extraneous solutions may be introduced and that the results must be checked in the given equation to see whether or not they satisfy it.

Example 4. Solve the equation: $\cos x + 2 \sin x = 1$.

Solve for $\cos x$: $\cos x = 1 - 2 \sin x$.

Square both sides: $\cos^2 x = (1 - 2 \sin x)^2 = 1 - 4 \sin x + 4 \sin^2 x$.

Replace $\cos^2 x$ by $1 - \sin^2 x$ and simplify. We have $5 \sin^2 x - 4 \sin x = 0$.

If $\sin x = 0$, $x = 0^{\circ}$ or 180° ; if $\sin x = \frac{4}{5} = 0.8000$, $x = 53^{\circ} 8'$ or $126^{\circ} 52'$. By checking in the given equation, we find that 180° and $53^{\circ} 8'$ are extraneous. The required solutions are x = 0 and $126^{\circ} 52'$.

Exercises

Find all the positive or zero angles less than 360° that satisfy the given equation.

1.
$$tan^2 x = 3$$
.

2.
$$2 \sin^2 x = 1$$
.

3.
$$\sec^2 x = 1$$
.

4.
$$4 \cos^2 x = 3$$
.

5.
$$\sin^2 x = 1$$
.

6.
$$\sec^2 x = 4$$
.

7.
$$5\cos x + 2 = 3(2 - \cos x)$$
.

9.
$$\sqrt{2} \tan x \sin x + \tan x = 0$$
.

11.
$$2 \sin^2 x + 3 \cos x = 0$$
.

13.
$$(\sqrt{2}\cos x - 1)(\tan x - \sqrt{3}) = 0$$
.

15.
$$\sin x + \cos x = 0$$
.

17.
$$3 \sin \theta \sec^2 \theta = 4 \sin \theta$$
.

19.
$$1 + \sin \theta = 3 \cos^2 \theta$$
.

21.
$$1 - \cos \theta = 2 \cos^2 \theta$$
.

23.
$$\tan \alpha - 1 = \sqrt{3} (\cot \alpha - 1)$$
.

25.
$$\sec \alpha = 1 + \tan \alpha$$
.

27.
$$6 \sin^2 \beta - 5 \sin \beta + 1 = 0$$
.

29.
$$3 \sec^2 \beta + \cot^2 \beta = 7$$
.

8.
$$2 \sin^2 x + 1 = 3 \sin x$$
.

10.
$$2 \csc x \cos x + \sqrt{3} \csc x = 0$$
.

12.
$$\sec x = \csc x$$
.

14.
$$(\cos x - 1)(\csc x + 2) = 0$$
.

16.
$$3 \csc^2 x + \cot^2 x = 15$$
.

18.
$$4 \cot^2 \theta = 3 \csc^2 \theta$$
.

20.
$$3 \sin \theta \tan \theta = \cos \theta$$
.

22.
$$1 + \sin \theta + \cos \theta = 0$$
.

24.
$$2 \sin \alpha - \csc \alpha = 1$$
.

26.
$$\sin \alpha - \cos \alpha = 1$$
.

28.
$$\cot^2 \beta - 3 \cot \beta = 4$$
.

30.
$$3 \sec^2 \beta - \cot^2 \beta = 5$$
.

Chapter 16

Functions of Two Angles

122. Introduction. We learned in algebra that, if a, b, and c are any three numbers, a(b+c)=ab+ac. By analogy, one would expect $\sin (\alpha + \beta)$ to equal $\sin \alpha + \sin \beta$. That this is not so can be shown by actual trial, as in the following example.

EXAMPLE. Given
$$\alpha = 30^{\circ}$$
, $\beta = 60^{\circ}$, find $\sin (\alpha + \beta)$ and $\sin \alpha + \sin \beta$. $\sin (\alpha + \beta) = \sin (30^{\circ} + 60^{\circ}) = \sin 90^{\circ} = 1$.

$$\sin \alpha + \sin \beta = \sin 30^{\circ} + \sin 60^{\circ} = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + 1.732}{2} = 1.366.$$

Since $1 \neq 1.366$, in this case, at least, $\sin (\alpha + \beta) \neq \sin \alpha + \sin \beta$.

In the next article, we shall take up the problem of finding correct expressions for $\sin (\alpha + \beta)$ and $\cos (\alpha + \beta)$ in terms of the sines and cosines of α and β .

123. The Sine and Cosine of the Sum of Two Angles. We shall denote the two angles by α and β . In the present article, we suppose both of these angles to be acute. Their sum may be acute, as in Figure 51a, or obtuse, as in Figure 51b.

Place the angle α in standard position and place β with its initial side on the terminal side of α . Let P be any point on the terminal side of β . Then the angle $XOP = \alpha + \beta$.

From P draw PA perpendicular to OX and PQ perpendicular to the terminal side of α . From Q, draw QB perpendicular to OX and QR perpendicular to AP.

Then AB = RQ and AR = BQ, since they are pairs of opposite sides of a rectangle. Also, angle $RPQ = \alpha$, since both angles are acute and their sides are respectively perpendicular.

By the definition of the sine of an angle,

$$\sin (\alpha + \beta) = \frac{AP}{OP} = \frac{AR + RP}{OP} = \frac{BQ}{OP} + \frac{RP}{OP} = \frac{BQ}{OP} \cdot \frac{OQ}{OQ} + \frac{RP}{OP} \cdot \frac{QP}{QP}$$
$$= \frac{BQ}{OQ} \cdot \frac{OQ}{OP} + \frac{RP}{QP} \cdot \frac{QP}{OP}.$$

But $\frac{BQ}{OQ} = \sin \alpha$, $\frac{OQ}{OP} = \cos \beta$, $\frac{RP}{QP} = \cos \alpha$, and $\frac{QP}{OP} = \sin \beta$. On substituting these values in the last member of the preceding series of equations, we have

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

In a similar way, starting from the definition of the cosine, we have

$$\cos (\alpha + \beta) = \frac{OA}{OP} = \frac{OB - AB}{OP} = \frac{OB}{OP} - \frac{RQ}{OP} = \frac{OB}{OP} \cdot \frac{OQ}{OQ} - \frac{RQ}{OP} \cdot \frac{QP}{QP}$$
$$= \frac{OB}{OQ} \cdot \frac{OQ}{OP} - \frac{RQ}{QP} \cdot \frac{QP}{OP}.$$

But $\frac{OB}{OQ} = \cos \alpha$, $\frac{OQ}{OP} = \cos \beta$, $\frac{RQ}{QP} = \sin \alpha$, and $\frac{QP}{OP} = \sin \beta$. On making these substitutions, we have

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
. II

Formulas I and II should be memorized in words, thus:

The sine of the sum of two angles equals the sine of the first times the cosine of the second plus the cosine of the first times the sine of the second.

The cosine of the sum of two angles equals the cosine of the first times the cosine of the second minus the sine of the first times the sine of the second.

The verification that formulas I and II hold when either α or β , or their sum, is 0° or 90° is left as an exercise for the student (see Art. 112).

Example. Find the values of sin 75° and cos 75°.

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}.$$

124. Extension of the Formulas to Angles of Any Size. We know that formulas I and II hold if α and β lie in the interval 0° to 90°. We now wish to show that they still hold if α and β are positive or negative angles of any size.

Let α and β be any two angles for which formulas I and II are known to hold. We shall first show that these formulas are still true if either α or β is increased by 90°.

Let $\alpha' = 90^{\circ} + \alpha$. By formulas (2) of Art. 112,

$$\sin \alpha' = \sin (90^\circ + \alpha) = \cos \alpha$$
; $\cos \alpha' = \cos (90^\circ + \alpha) = -\sin \alpha$.

Further,
$$\sin (\alpha' + \beta) = \sin (90^{\circ} + \alpha + \beta) = \cos (\alpha + \beta)$$

= $\cos \alpha \cos \beta - \sin \alpha \sin \beta$ (1)
= $\sin \alpha' \cos \beta + \cos \alpha' \sin \beta$.

$$\cos (\alpha' + \beta) = \cos (90^{\circ} + \alpha + \beta) = -\sin (\alpha + \beta)$$

$$= -\sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$= \cos \alpha' \cos \beta - \sin \alpha' \sin \beta.$$
(2)

It follows that, if formulas I and II hold for the angles α and β , they hold also for the angles $\alpha' = 90^{\circ} + \alpha$ and β . A precisely similar proof will hold when β is increased by 90°. We already know that these formulas hold for all angles α and β in the interval 0° to 90°. It now follows that they hold for all angles in the interval 0° to 180°. But, if they hold from 0° to 180°, they hold to 270°, and so on to any positive angle whatever.

Further, equations (1) and (2) show that, if α' and β are the angles for which formulas I and II are known to be true, then $\alpha = \alpha' - 90^{\circ}$ and β are also angles for which these formulas are true and a similar proof holds for α and $\beta = \beta' - 90^{\circ}$. Hence the formulas are true for all negative angles. It now follows that these formulas hold for all angles, positive, negative, and zero.

125. The Tangent and Cotangent of the Sum. We have

$$\tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}.$$

Divide each term of the numerator and denominator of the last member by $\cos \alpha \cos \beta$. The result is

$$\tan (\alpha + \beta) = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}},$$

or $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$. III

Similarly, we have

$$\cot (\alpha + \beta) = \frac{\cos (\alpha + \beta)}{\sin (\alpha + \beta)} = \frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \cos \beta + \cos \alpha \sin \beta}.$$

Divide each term in the numerator and denominator by $\sin \alpha \sin \beta$ and simplify. We obtain

 $\cot (\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha}.$

Example. Find the value of cot 75°.

$$\cot 75^{\circ} = \cot (45^{\circ} + 30^{\circ}) = \frac{\cot 45^{\circ} \cot 30^{\circ} - 1}{\cot 30^{\circ} + \cot 45^{\circ}}$$
$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = 2 - \sqrt{3}.$$

126. Functions of the Difference of Two Angles. Since $\alpha - \beta = \alpha + (-\beta)$, we can, by replacing β by $-\beta$ in formulas I to IV, express the sine, cosine, tangent, and cotangent of $\alpha - \beta$ in terms of functions of α and $-\beta$. Further, by using equations (1) of Art. 111, we can express the functions of $-\beta$ in terms of those of β . Thus,

$$\sin (\alpha - \beta) = \sin [\alpha + (-\beta)] = \sin \alpha \cos (-\beta) + \cos \alpha \sin (-\beta)$$

= $\sin \alpha \cos \beta - \cos \alpha \sin \beta$;

that is,

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$$
 V

In a similar way, we find that

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$
 VI

$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}.$$
 VIII

$$\cot (\alpha - \beta) = \frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}.$$
 VIIII

Exercises

- 1. Find the values of $\sin 45^{\circ} + \sin 30^{\circ}$, $\cos 45^{\circ} + \cos 30^{\circ}$, and $\cot 45^{\circ} + \cot 30^{\circ}$. Compare your results with the values of $\sin (45^{\circ} + 30^{\circ})$, $\cos (45^{\circ} + 30^{\circ})$, and $\cot (45^{\circ} + 30^{\circ})$ found in the examples of Arts. 123 and 125.
- 2. Using the equation $105^{\circ} = 60^{\circ} + 45^{\circ}$, find the values of sin 105° , cos 105° , tan 105° , and cot 105° .
- 3. Using the equation $15^{\circ} = 45^{\circ} 30^{\circ}$, find the values of sin 15° , cos 15° , tan 15° , and cot 15° .

Find the value of $\sin (\alpha + \beta)$, $\cos (\alpha + \beta)$, $\sin (\alpha - \beta)$, and $\cos (\alpha - \beta)$, given:

- 4. $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{5}{13}$; α and β in the first quadrant.
- 5. $\sin \alpha = \frac{7}{25}$, $\tan \beta = -\frac{8}{15}$; α and β in the second quadrant.
- 6. $\tan \alpha = -\frac{4}{3}$, $\tan \beta = \frac{3}{4}$; α in the fourth quadrant, β in the third.
- 7. $\tan \alpha = -\frac{5}{12}$, $\tan \beta = -\frac{15}{8}$; α in the second quadrant, β in the fourth.
- 8. $\cos \alpha = \frac{1}{4}$, $\cot \beta = \frac{1}{2}$; α in the fourth quadrant, β in the third.
- 9. $\csc \alpha = -3$, $\tan \beta = 5$; α and β in the same quadrant.
- 10. Given $\tan \alpha = 0.6959$ and $\tan \beta = 0.4108$, α and β both positive and less than 90°. Find $\tan (\alpha + \beta)$, using formula III. Verify your result, using Table III.

Express the following functions in terms of functions of θ .

11.
$$\sin (45^{\circ} + \theta)$$
.

12.
$$\cos (30^{\circ} - \theta)$$
.

13.
$$\tan (135^{\circ} + \theta)$$
.

14.
$$\cos\left(\frac{\pi}{3}-\theta\right)$$
.

15.
$$\sin\left(\frac{2\pi}{3}+\theta\right)$$
.

16.
$$\cot\left(\frac{3\pi}{4}-\theta\right)$$
.

Prove the following identities.

17.
$$\sin (60^{\circ} + x) - \cos (30 + x) = \sin x$$
.

18.
$$\tan\left(\frac{\pi}{4}+x\right)=\cot\left(\frac{\pi}{4}-x\right)=\frac{1+\tan x}{1-\tan x}$$

19.
$$\cos\left(x+\frac{\pi}{6}\right)-\cos\left(x-\frac{\pi}{6}\right)=-\sin x$$
.

20.
$$\sin (x + 60^{\circ}) + \sin (x - 60^{\circ}) = \sin x$$
.

21.
$$\sin (x + y) \sin (x - y) = \sin^2 x - \sin^2 y$$
.

22.
$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$$
.

23.
$$\sin 3\theta \cos \theta - \cos 3\theta \sin \theta = \sin 2\theta$$
.

HINT. Use formula V with $\alpha = 3\theta$ and $\beta = \theta$.

24.
$$\cos 3\theta \cos \theta + \sin 3\theta \sin \theta = \cos 2\theta$$
.

25. Express $\sin (\alpha + \beta + \gamma)$ in terms of functions of α , β , and γ .

HINT.
$$\sin (\alpha + \beta + \gamma) = \sin [(\alpha + \beta) + \gamma].$$

26. Express cos $(\alpha + \beta + \gamma)$ in terms of functions of α , β , and γ .

127. Functions of Twice an Angle. If, in formulas I to IV, we put $\beta = \alpha$, we obtain formulas for the functions of 2α . Thus, from I, we have

$$\sin (\alpha + \alpha) = \sin \alpha \cos \alpha + \cos \alpha \sin \alpha;$$

that is,

$$\sin 2\alpha = 2\sin \alpha\cos \alpha.$$

 $\mathbf{I}\mathbf{X}$

From formulas II, III, and IV, we obtain, in the same way,

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2 \cos^2 \alpha - 1$$

$$= 1 - 2 \sin^2 \alpha.$$

$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}.$$

$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha}.$$
 XII

Exercises

Using the known values of the functions of 30°, 45°, 120°, and 150° and the double angle formulas, find expressions for the sine, cosine, tangent, and cotangent of each of the following angles.

1. 60°.

2. 90°.

3. 240°.

4. 300°.

Find the values of $\sin 2x$, $\cos 2x$, $\tan 2x$, and $\cot 2x$, given that x is in the quadrant indicated and that:

5.
$$\sin x = \frac{4}{5}$$
; second.

7.
$$\cos x = -\frac{12}{13}$$
; second.

9. cot
$$x = -3$$
; fourth.

6. tan
$$x = \frac{8}{15}$$
; third.

8.
$$\sec x = \frac{25}{24}$$
; fourth.

10.
$$\csc x = 4$$
; second.

Prove the following identities.

11.
$$2 \csc 2\theta = \sec \theta \csc \theta$$
.

$$13. \ \frac{\sin 2\theta}{2} = \frac{\tan \theta}{1 + \tan^2 \theta}.$$

$$15. \ \frac{\sin 2x}{1-\cos 2x}=\cot x.$$

17.
$$\sec 2x + \tan 2x = \frac{1 + \tan x}{1 - \tan x}$$
.

19.
$$\sin 3x = 3 \sin x - 4 \sin^3 x$$
.

21.
$$\cos 4x = 1 - 8 \sin^2 x \cos^2 x$$
.

12.
$$\sin 2\theta (\tan \theta + \cot \theta) = 2$$
.

$$14. \cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}.$$

16.
$$\sec 2x = \frac{\sec^2 x}{2 - \sec^2 x}$$

18.
$$2 \cot 2x = \cot x - \tan x$$
.

20.
$$\cos 3x = 4 \cos^3 x - 3 \cos x$$
.

22.
$$(\sin x - \cos x)^2 = 1 - \sin 2x$$
.

23.
$$8 \cos^4 x = 3 + 4 \cos 2x + \cos 4x$$
.
24. $\sin 4x = 4 (\sin x \cos^3 x - \sin^3 x \cos x)$.

128. Functions of Half an Angle. From formulas X, we have the following two equations,

$$\cos 2\alpha = 1 - 2 \sin^2 \alpha$$
, $\cos 2\alpha = 2 \cos^2 \alpha - 1$.

If we solve the first of these equations for $\sin \alpha$ and the second for $\cos \alpha$, we get

$$\sin \alpha = \pm \sqrt{\frac{1 - \cos 2\alpha}{2}}$$
, and $\cos \alpha = \pm \sqrt{\frac{1 + \cos 2\alpha}{2}}$.

Let us denote the angle 2α by θ . Then $\alpha = \theta/2$ and the preceding two equations become

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}},$$
 XIII

and

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}.$$
 XIV

The sign before the radical, in each of these equations, is to be determined by the quadrant in which $\theta/2$ lies.

Since $\tan \theta/2 = \frac{\sin (\theta/2)}{\cos (\theta/2)}$, we have by substituting the values of $\sin (\theta/2)$ and $\cos (\theta/2)$ from XIII and XIV and simplifying,

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}.$$
 XV

$$\cot \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}.$$
 XVI

These equations can be written in a form free from radicals. Thus,

$$\tan \frac{\theta}{2} = \frac{\sin (\theta/2)}{\cos (\theta/2)} \frac{2\cos (\theta/2)}{2\cos (\theta/2)} = \frac{2\sin (\theta/2)\cos (\theta/2)}{2\cos^2 (\theta/2)} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$$

$$\cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 - \cos \theta}.$$

Exercises

Using the known values of the functions of 30°, 45°, 135°, and 210° and the half-angle formulas, find the values of the sine, cosine, tangent, and cotangent of each of the following angles.

1. 15°. 2. 22° 30′. 3. 67° 30′. 4. 105°.

Find the values of $\sin (x/2)$, $\cos (x/2)$, $\tan (x/2)$, and $\cot (x/2)$, given that x is positive, less than 360°, lies in the quadrant indicated, and that:

5. $\cos x = \frac{3}{5}$; first.
6. $\sin x = \frac{24}{25}$; second.
7. $\tan x = -\frac{40}{9}$; fourth.
8. $\cot x = \frac{119}{120}$; third.

9. $\sec x = -5$; third. 10. $\cos x = -\frac{2}{7}$; second.

Prove the following identities.

11. $2 \csc x = \tan \frac{x}{2} + \cot \frac{x}{2}$ 12. $\sec^2 \frac{x}{2} = \frac{2 \tan x}{\tan x + \sin x}$

13. $\csc x - \cot x = \tan \frac{x}{2}$. 14. $\tan^2 \frac{x}{2} = \frac{\sec x - 1}{\sec x + 1}$.

15. $\frac{1+\tan{(x/2)}}{1-\tan{(x/2)}} = \sec{x} + \tan{x}$. 16. $\cot{x} = \frac{\cot^2{(x/2)} - 1}{2\cot{(x/2)}}$.

17. $\cos x = \frac{1 - \tan^2(x/2)}{\sec^2(x/2)}$ 18. $\tan \left(45^\circ + \frac{x}{2}\right) = \cot \left(45^\circ - \frac{x}{2}\right)$

19. $\cot \frac{x}{2} - \tan \frac{x}{2} = 2 \cot x$. 20. $\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2 = 1 + \sin x$.

129. The Product Formulas. In Arts. 123 and 126, we derived the following four formulas.

 $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta, \tag{3}$

 $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta, \tag{4}$

 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \tag{5}$

 $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta. \tag{6}$

Let us (a) add equations (3) and (4), (b) subtract (4) from (3), (c) add (5) and (6), and (d) subtract (6) from (5). The results are:

 $\sin (\alpha + \beta) + \sin (\alpha - \beta) = 2 \sin \alpha \cos \beta, \tag{7}$

 $\sin (\alpha + \beta) - \sin (\alpha - \beta) = 2 \cos \alpha \sin \beta, \tag{8}$

 $\cos (\alpha + \beta) + \cos (\alpha - \beta) = 2 \cos \alpha \cos \beta, \tag{9}$

 $\cos (\alpha + \beta) - \cos (\alpha - \beta) = -2 \sin \alpha \sin \beta. \tag{10}$

If we divide equations (7) and (9) by 2, and (10) by -2, we have

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right],$$
 XVIII $\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right],$ XVIIII $\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right].$ XIX

Formula XVII expresses the product of a sine and a cosine; XVIII, the product of two cosines; and XIX, the product of two sines, as the sum or difference of two sines or two cosines.

130. The Sum or Difference of Sines or Cosines. It is sometimes necessary to write the sum or the difference of two sines or two cosines as a product. If we put

$$\alpha + \beta = X$$
, $\alpha - \beta = Y$,

and solve for α and β , we get

$$\alpha = \frac{X+Y}{2}, \qquad \beta = \frac{X-Y}{2}.$$

Substitute these values of $\alpha + \beta$, $\alpha - \beta$, α , and β in equations (7) to (10). The resulting equations are

$$\sin X + \sin Y = 2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2}, \qquad XX$$

$$\sin X - \sin Y = 2 \cos \frac{X+Y}{2} \sin \frac{X-Y}{2}, \qquad XXI$$

$$\cos X + \cos Y = 2 \cos \frac{X+Y}{2} \cos \frac{X-Y}{2}, \qquad XXII$$

$$\cos X - \cos Y = -2 \sin \frac{X+Y}{2} \sin \frac{X-Y}{2}. \qquad XXIII$$

Example 1. Express as a sum or difference: $2 \sin 3x \cos 4x$.

Use formula XVII, with $\alpha = 3x$ and $\beta = 4x$. We have

$$2 \sin 3x \cos 4x = \sin 7x + \sin (-x) = \sin 7x - \sin x.$$

EXAMPLE 2. Prove the identity: $\frac{\sin x - \sin y}{\cos x + \cos y} = \tan \frac{x - y}{2}.$

From formulas XXI and XXII, we have

$$\frac{\sin x - \sin y}{\cos x + \cos y} = \frac{2 \cos \frac{x + y}{2} \sin \frac{x - y}{2}}{2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}} = \frac{\sin \frac{x - y}{2}}{\cos \frac{x - y}{2}} = \tan \frac{x - y}{2}.$$

Exercises

- 1. State formulas XVII to XIX in words.
- 2. State formulas XX to XXIII in words.

Express each product as a sum or difference.

3. 2 sin 55° cos 15°.

5. 2 sin 55° sin 15°.

7. $\sin 3x \cos 2x$.

9. $\sin 3x \sin 5x$.

4. 2 sin 15° cos 55°.

6. 2 cos 55° cos 15°.

8. $\cos 5x \cos 4x$.

10. $\cos 7x \sin 2x$.

Express each sum or difference as a product.

11. $\sin 50^{\circ} + \sin 20^{\circ}$.

13. $\cos 25^{\circ} - \cos 75^{\circ}$.

15. $\sin 4x - \sin 2x$.

17. $\cos 10x - \cos 4x$.

19. sin 68° - cos 34°.

12. $\cos 40^{\circ} - \cos 30^{\circ}$.

14. $\sin 80^{\circ} + \sin 50^{\circ}$.

16. $\cos 3x + \cos 5x$.

18. $\sin 9x - \sin 7x$. 20. $\cos 53^{\circ} + \sin 21^{\circ}$.

HINT. $\sin 68^{\circ} = \cos 22^{\circ}$.

Find the values of each of the following quantities.

21. $\frac{\sin 70^{\circ} + \sin 50^{\circ}}{\cos 70^{\circ} + \cos 50^{\circ}}$

22. $\frac{\cos 65^{\circ} - \cos 25^{\circ}}{\sin 65^{\circ} - \sin 25^{\circ}}$

Prove the identities.

23. $\frac{\cos 2\theta - \cos 2\phi}{\cos 2\theta + \cos 2\phi} = \frac{\tan (\phi - \theta)}{\cot (\phi + \theta)}$ 24. $\frac{\sin 2\theta + \sin 2\phi}{\sin 2\theta - \sin 2\phi} = \frac{\cot (\theta - \phi)}{\cot (\theta + \phi)}$

 $25. \frac{\cos 3x - \cos 5x}{\sin 3x + \sin 5x} = \tan x.$

26. $\frac{\cos 3x - \cos x}{\sin 3x - \sin x} = \frac{2 \tan x}{\tan^2 x - 1}$

27. $\frac{\cos 7x - \cos 9x}{\sin 6x - \sin 4x} = \frac{\sin 8x}{\cos 5x}$.

28. $\frac{\sin 8x + \sin 4x}{\cos 5x + \cos x} = 2 \sin 3x$.

29. $\frac{\sin (2\alpha - x) + \sin x}{\cos (2\alpha - x) + \cos x} = \tan \alpha.$

30. $\frac{\cos x - \cos (x - 2\alpha)}{\sin x + \sin (x - 2\alpha)} = -\tan \alpha.$

31. $\cot x + \cot 2x = \frac{\sin 3x}{\sin x \sin 2x} = \frac{2 \sin 3x}{\cos x - \cos 3x}$

32. $1 + \tan 3x \tan 2x = \frac{\cos x}{\cos 3x \cos 2x} = \frac{2 \cos x}{\cos 5x + \cos x}$

33. $\frac{\sin 2x + \sin x}{1 + \cos 2x + \cos x} = \tan x.$

34. $\frac{1-\cos x + \sin x}{1+\cos x + \sin x} = \tan \frac{x}{2}$.

35. $\sin 2x + \sin 4x + \sin 6x = 4 \cos x \cos 2x \sin 3x$.

36. $\cos 2x + \cos 4x + \cos 6x = 4 \cos x \cos 2x \cos 3x - 1$.

37. $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \tan 2x$.

131. Equations of Condition. The process of solving an equation of condition involving two or more angles follows the methods outlined in Art. 121 with the additional restriction that we try to write the equation either in a form involving only functions of one angle or else to write it as a product of factors such that each factor contains only functions of one angle.

Example 1. Solve the equation: $\cos 2x = \sin x$.

Since, by formula X, $\cos 2x = 1 - 2\sin^2 x$, we can write this equation in the form

$$1-2\sin^2 x = \sin x$$
, or $2\sin^2 x + \sin x - 1 = 0$.

On solving this quadratic in $\sin x$, we find that either,

$$\sin x = -1$$
, giving $x = 270^\circ$, or $\sin x = \frac{1}{2}$, giving $x = 30^\circ$ or 150° .

The required solutions are 30°, 150°, and 270°.

Example 2. Solve the equation: $\sec x \cos 3x + 1 = 0$.

Multiply by $\cos x$: $\cos 3x + \cos x = 0$.

By formula XXII, this becomes: $2 \cos 2x \cos x = 0$.

If we put $\cos x = 0$, we get $x = 90^{\circ}$ or 270° but these are extraneous since they do not satisfy the given equation. They were introduced when we multiplied by $\cos x$.

If we put $\cos 2x = 0$, we get

$$2x = 90^{\circ}$$
, 270° , 450° , or 630° .

Hence

$$x = 45^{\circ}$$
, 135°, 225°, or 315°.

The required solutions are $x = 45^{\circ}$, 135°, 225°, and 315°.

Exercises

Find all the positive or zero angles less than 360° that satisfy the given equation.

- 1. $\sin 2x = \sin x$.
- 3. $\cos 2x + \cos x = 0$.
- 5. $\tan 2x + \tan x = 0$.
- 7. $\cos x/2 1 = \cos x$.
- 9. $\cos 3x \cos x = \sin 2x$.
- 11. $\cos 2x \sin 2x = 1$.
- 13. $\cos 5x + 2 \sin 2x = \cos x$.

- 2. $\sin 2x = \cos x$.
- **4.** $\cos 2x + \sin x = 0$.
- **6.** $\tan x \tan 2x = 1$.
- 8. $\sin x/2 + \cos x = 1$.
- 10. $\sin 3x + \sin 2x + \sin x = 0$.
- 12. $(\cos^2 3x 1)(2 \sin 2x + 1) = 0$.
- 14. $\sin 2x + \cos 2x + 2 \sin x = 1$.

Chapter 17

The Inverse Trigonometric Functions

132. Notation. We know that $\sin 30^{\circ} = \frac{1}{2}$. If, therefore, someone asks us to name an angle whose sine is $\frac{1}{2}$, we can answer that 30° is such an angle.

We shall need a symbol to denote an angle whose sine is a given number x. Two such symbols are in common use, namely,

$$\sin^{-1} x$$
, and arc $\sin x$.

These two symbols are equivalent and may be used interchangeably. Both symbols may be read as either: the inverse sine of x, or the arc sine of x, or an angle whose sine is x. Throughout this chapter, and until the student is thoroughly familiar with these symbols, the last form of statement is to be preferred.

Observe that, in the symbol $\sin^{-1} x$, the -1 is not an exponent. The entire symbol $\sin^{-1} x$ is merely a short way of writing the statement, "an angle whose sine is x." When we wish to use -1 as an exponent for $\sin x$, we write the required expression in the form $(\sin x)^{-1}$.

Thus, the statement, $45^\circ=\sin^{-1}\frac{\sqrt{2}}{2}$, should be read, "45° is an angle whose sine is $\frac{\sqrt{2}}{2}$." Similarly, $240^\circ=\arcsin\left(-\frac{\sqrt{3}}{2}\right)$, is read, "240° is an angle whose sine is $-\frac{\sqrt{3}}{2}$," and so on.

Because the statement

$$\sin y = x$$
 implies $y = \arcsin x$,

and conversely, we say that each of these statements is the inverse of the other. Further, because of this inverse relation, we shall say that the two functions, arc $\sin x$ and $\sin x$, are inverse functions.

A similar notation holds for each of the other five trigonometric functions. We have, in fact, the following six pairs of symbols:

$$\sin^{-1} x$$
, or $\arcsin x$; $\csc^{-1} x$, or $\arccos x$; $\csc^{-1} x$, or $\arccos x$; $\sec^{-1} x$, or $\arccos x$; $\tan^{-1} x$, or $\arctan x$; $\cot^{-1} x$, or $\arctan x$;

These symbols may be read, respectively, as, "an angle whose sine is x," "an angle whose cosine is x," "an angle whose tangent is x," and so on. As in the case of the sine and the inverse sine, the statements

$$\cos y = x$$
 and $y = \operatorname{arc} \cos x$,
 $\tan y = x$ and $y = \operatorname{arc} \tan x$,

and so on, are equivalent and the pairs of functions arc $\cos x$ and $\cos x$, arc $\tan x$ and $\tan x$ are inverse functions.

Thus, since $\cos 120^{\circ} = -\frac{1}{2}$, $120^{\circ} = \arccos (-\frac{1}{2})$; since $\tan 225^{\circ} = 1$, $225^{\circ} = \arctan 1$;

and so on.

133. Multiple Valuedness of the Inverse Functions. We saw that $30^{\circ} = \arcsin \frac{1}{2}$. But, equally, since $\sin 150^{\circ} = \frac{1}{2}$, we have also $150^{\circ} = \arcsin \frac{1}{2}$. Further, since $\sin x$ is periodic with period 360° (Art. 115), if we add to (or subtract from) either of these angles an integral multiple of 360° , we obtain an angle whose sine is $\frac{1}{2}$; that is, any one of the angles

and so on in either direction, is an angle whose sine is $\frac{1}{2}$.

More generally, if y is an angle such that

$$\sin y = x$$
, then, also, $\sin (180^{\circ} - y) = x$,

and, further, if n is zero or any integer,

$$\sin (y \pm n360^{\circ}) = x$$
, and $\sin (180^{\circ} - y \pm n360^{\circ}) = x$.

It follows that if y is one angle such that $y = arc \sin x$, then any one of the angles

$$y \pm n360^{\circ}$$
, and $180^{\circ} - y \pm n360^{\circ}$, (1)

where n is zero or any integer, is also an angle whose sine is x.

In a similar way, we find that, if y is any one angle such that

$$y = \operatorname{arc} \operatorname{csc} x,$$

then any one of the angles expressed by equations (1) is also an angle whose cosecant is x.

Again, if y is any angle such that $\cos y = x$, then, also,

$$\cos\left(\pm y \pm n360^{\circ}\right) = x.$$

Hence, if y is one such angle, then any one of the angles

$$\pm y \pm n360^{\circ}, \tag{2}$$

where n is zero or an integer, is an angle whose cosine is x.

Further, if y is any angle such that

$$y = \operatorname{arc} \sec x$$
,

then any angle defined by the expression (2) is an angle whose secant is x. Finally, in a similar way, we find that, if $\tan y = x$, then any one of

the angles
$$y \pm n180^{\circ}$$
, (3)

is an angle whose tangent is x and, if y is chosen so that $\cot y = x$, then (3) gives the angles whose cotangents are equal to x.

Example 1. Find two positive and two negative values of arc $\sin\left(-\frac{\sqrt{3}}{2}\right)$.

Since $\sin 240^\circ = -\frac{\sqrt{3}}{2}$, $y = 240^\circ$ is one such angle. Putting $y = 240^\circ$ in (1), we find that -120° , -60° , 240° , and 300° are four such angles.

Example 2. Find two positive and two negative values of arc cot 1.

Since cot $45^{\circ} = 1$, $y = 45^{\circ}$ is one such angle. From (3), we now find that -315° , -135° , 45° , and 225° are four such angles.

134. Principal Values. Among all the values an inverse trigonometric function may have for a given value of x, it has been found desirable to pick out one single value to represent the entire set. This one value, which has been chosen for its simplicity and usefulness, is called the principal value of the inverse function and is defined as follows:

The principal value of each of the functions $\sin^{-1} x$, $\csc^{-1} x$, $\tan^{-1} x$, and $\cot^{-1} x$ is the numerically smallest (positive or negative) value of the

function for the given value of x.

The principal value of each of the functions $\cos^{-1} x$ and $\sec^{-1} x$ is the smallest positive (or zero) value of the function for the given value of x.

It follows from these definitions that, if the number x is positive, the principal values of all of the functions lie in the interval 0° to 90° but, if x is negative, the principal values of $\cos^{-1} x$ and $\sec^{-1} x$ lie in the interval 90° to 180° and those of all the others lie in the interval 0° to -90° .

When we wish to indicate that we are dealing with the principal value, only, of an inverse function, we shall begin the symbol with a capital letter.

Thus, Arc
$$\sin \sqrt{2}/2 = \sin^{-1} \sqrt{2}/2 = 45^{\circ}$$
.

These expressions (beginning with capital letters) must be carefully distinguished from arc $\sin \sqrt{2}/2$ and $\sin^{-1} \sqrt{2}/2$ which may take any one of the values $45^{\circ} \pm n360^{\circ}$ or $135^{\circ} \pm n360^{\circ}$.

The student should verify, further, that

Arc tan
$$(-\sqrt{3}) = \text{Tan}^{-1}(-\sqrt{3}) = -60^{\circ}$$

Arc sec $(-2) = \text{Sec}^{-1}(-2) = 120^{\circ}$.

and

Example 1. Find the value of sin (Arc tan $\sqrt{3}/3$).

$$\sin (Arc \tan \sqrt{3}/3) = \sin 30^{\circ} = 1/2.$$

EXAMPLE 2. Find Arc sin (cos 120°).

Arc sin (cos 120°) = Arc sin
$$(-1/2) = -30°$$
.

EXAMPLE 3. Express in terms of u and v: tan $(\cos^{-1} u + \cos^{-1} v)$.

Let
$$\alpha = \cos^{-1} u$$
 and $\beta = \cos^{-1} v$. Then $\tan \alpha = \frac{\pm \sqrt{1 - u^2}}{u}$ and $\tan \beta = \frac{\pm \sqrt{1 - v^2}}{v}$

$$\tan (\cos^{-1} u + \cos^{-1} v) = \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$= \frac{\pm \frac{\sqrt{1-u^2}}{u} \pm \frac{\sqrt{1-v^2}}{v}}{1 \pm \frac{\sqrt{1-u^2}}{u} \frac{\sqrt{1-v^2}}{v}} = \frac{\pm v\sqrt{1-u^2} \pm u\sqrt{1-v^2}}{uv \pm \sqrt{1-u^2} \sqrt{1-v^2}}$$

Exercises

Write two positive and two negative values of each of the following expressions.

- 1. arc sin $(-\sqrt{2}/2)$.
- 3. arc $\cos (-1/2)$.
- 5. arc cot (-1).
- 7. $\sin^{-1} 0.9261$.
- 9. tan-1 0.1128.

- 2. arc tan $\sqrt{3}$.
- **4.** arc csc $2\sqrt{3}/3$.
- 6. arc sec (-1).
- 8. cot-1 1.5013.
- 10. $\cos^{-1}(-0.5695)$.

Write each of the following principal angles in degrees and, for Exs. 11 to 16, write the angle also in radians.

- 11. Arc sec 2.
- 13. Arc sin $(-\sqrt{3}/2)$.
- **15.** $Tan^{-1} 0$.
- 17. Cot-1 1.3270.
- **19.** Cos^{-1} (- 0.6602).

- 12. Arc cot $(-\sqrt{3})$.
- **14.** Arc cos $(-\sqrt{2}/2)$.
- **16.** Csc^{-1} (-2).
- 18. $\sin^{-1}(-0.9063)$.
- 20. $Tan^{-1}(-1.1054)$.

Find the value of each of the following expressions.

- **21.** sin (arc sin $\sqrt{3}/2$).
- 23. $\tan (Arc \cos \sqrt{2}/2)$.
- **25.** sec (Arc $\sin 1/2$).
- 27. Tan-1 (tan 225°).
- 29. Arc cos (sin 315°).31. Arc sin (sin 240°).

- 22. tan (arc cot 4).
- 24. cot (Arc sin 1).
- **26.** $\sin (Arc \sec 2)$.
- 28. Arc sin (tan 45°).
- 30. Arc cot (sin 270°).32. Arc tan (tan 117°).

Express each of the following quantities in terms of u and v.

- 33. cos (2 arc sin u).
- 35. tan (2 arc tan u).
- 37. sin (2 arc sec u).
- 39. $\sin (\sin^{-1} u + \sin^{-1} v)$.
- 41. $tan (tan^{-1} u tan^{-1} v)$.
- **34.** $\sin (\frac{1}{2} \arccos u)$.
- 36. sin (arc tan u).
- 38. tan (arc sin u).
- 40. $\cos(\cos^{-1}u + \cos^{-1}v)$.
- 42. $\cot (\sin^{-1} u + \sin^{-1} v)$.

135. Graphs of the Inverse Trigonometric Functions. Since the equations,

$$y = \arcsin x$$
 and $x = \sin y$,

are equivalent, the graph may be drawn from either form of the equation.

But the graph of $x = \sin y$ differs from that of $y = \sin x$, which was given in Figure 46, only in that its position with respect to the x- and y-axes has been interchanged; that is, this curve (Fig. 52a) is a sine curve running along the y-axis. Similarly, the graph of

$$y = \arccos x$$
 or $x = \cos y$

is a cosine curve running along the y-axis (Fig. 52b).

In these figures, we have indicated by a heavier line the portion of the curve corresponding to the principal values of the function; that is, to the portion correspond-

ing to y = Arc sin x in Figure 52a and to y = Arc cos x in Figure 52b.

Exercises

Draw the graph of each of the following equations and indicate on it the part corresponding to the principal values of the function.

1. $y = \arctan x$.

2. $y = \operatorname{arc} \cot x$.

3. $y = \operatorname{arc} \sec x$.

- 4. $y = \operatorname{arc} \operatorname{csc} x$.
- 5. Find an interval on the x-axis for which arc sec x and arc csc x do not exist.
- 6. Is there any interval on the x-axis for which arc tan x and arc cot x do not exist?

Chapter 18

Solution of Oblique Triangles

136. Introduction. We shall denote the angles of the triangle by α , β , and γ , and the sides opposite these angles by a, b, and c, respectively. The six quantities α , β , γ , a, b, and c are the parts of the triangle. The problem of solving the triangle consists in finding three of these parts when the other three (of which one, at least, must be a side) are given. There are four cases which are numbered, according to the three parts that are given, as follows:

I. One side and two angles.

II. Two sides and the angle opposite one of them.

III. Two sides and their included angle.

IV. The three sides.

In this chapter, we shall set up suitable formulas and show how to carry through the solution of each of these four cases.

137. The Law of Sines. In any triangle, the sides are proportional to the sines of the opposite angles; that is,

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$
 (1)

To prove the first of equations (1), drop a perpendicular CD from C to the opposite side (produced, if necessary) and denote this altitude by h.

From the right triangle BDC, we have $\sin \beta = h/a$, or $h = a \sin \beta$. From the right triangle ADC, we have $\sin \alpha = h/b$, or $h = b \sin \alpha$. Hence,

$$a \sin \beta = b \sin \alpha$$
,

since each of these expressions is equal to h.

If we divide this equation by $\sin \alpha \sin \beta$, we have

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

In a similar way, if we drop a perpendicular from A to the side BC and equate the two values for this altitude, we find that

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

From these two equations, we have equations (1).

138. The Law of Tangents. Denote the common value of the three fractions in the law of sines by D.* We have

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = D.$$

Solve for a and b:

$$a = D \sin \alpha$$
, $b = D \sin \beta$.

Subtract the second equation from the first; then add it to the first.

$$a-b=D\ (\sin\alpha-\sin\beta), \quad a+b=D\ (\sin\alpha+\sin\beta).$$

Divide these equations, member by member, then apply formulas XXI and XX of Art. 130.

$$\frac{a-b}{a+b} = \frac{\sin \alpha - \sin \beta}{\sin \alpha + \sin \beta} = \frac{2 \sin \frac{1}{2}(\alpha - \beta) \cos \frac{1}{2}(\alpha + \beta)}{2 \cos \frac{1}{2}(\alpha - \beta) \sin \frac{1}{2}(\alpha + \beta)},$$
or,
$$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2}(\alpha - \beta)}{\tan \frac{1}{2}(\alpha + \beta)}.$$
Similarly,
$$\frac{b-c}{b+c} = \frac{\tan \frac{1}{2}(\beta - \gamma)}{\tan \frac{1}{2}(\beta + \gamma)},$$
and
$$\frac{c-a}{c+a} = \frac{\tan \frac{1}{2}(\gamma - \alpha)}{\tan \frac{1}{2}(\gamma + \alpha)}.$$
(2)

These three formulas constitute the Law of Tangents. If b is greater than a, in the first formula, we can interchange a and b provided that we also interchange α and β . Similar statements hold for the other two formulas.

139. Case I. Given One Side and Two Angles. The third angle is found from the equation $\alpha + \beta + \gamma = 180^{\circ}$. The two required sides are then found from the law of sines. As a check, we may use that formula of the law of tangents that involves the two computed sides. A figure, drawn to scale, will not only frequently be found helpful in indicating the method of solution but will also reveal any gross errors in the values of the computed parts.

The work may be arranged as shown on the following example. The entire form for the solution should be written out before any logarithms are looked for. If one logarithm, or the logarithms of two functions of

^{*} It can be shown (Art. 146, Ex. 16) that D is the diameter of the circle circumscribed about the triangle ABC.

one angle, appears in two places in the computation, write it in both places at one opening of the table. Computations not involving logarithms may be made on scratch paper. Fill in the required parts at the top of the form as they are computed. If cologarithms are to be used, the form should be modified to correspond.

Example. Solve the triangle: a = 874.52, $\alpha = 66^{\circ} 18.4'$, $\beta = 42^{\circ} 27.8'$.

Given: Find:
$$a = 874.52, \qquad \gamma = 71^{\circ} 13.8',$$

$$\alpha = 66^{\circ} 18.4', \qquad b = 644.74,$$

$$\beta = 42^{\circ} 27.8'. \qquad c = 904.24.$$

$$\gamma = 180^{\circ} - (\alpha + \beta), \ b = \frac{a \sin \beta}{\sin \alpha}, \ c = \frac{a \sin \gamma}{\sin \alpha}, \frac{c - b}{c + b} = \frac{\tan \frac{1}{2} (\gamma - \beta)}{\tan \frac{1}{2} (\gamma + \beta)}.$$

$$\log a = 2.94177 \qquad \log \sin \beta = \frac{9.82938 - 10}{12.77115 - 10} + \frac{10g \sin \gamma}{12.91804 - 10} = \frac{9.96176 - 10}{12.91804 - 10} - \frac{10g \sin \alpha}{\log b} = \frac{9.96176 - 10}{2.80939} - \frac{10g \tan \frac{1}{2} (\gamma - \beta)}{\log \tan \frac{1}{2} (\gamma + \beta)} = \frac{9.40900 - 10}{9.22406 - 10}$$

$$\log \tan \frac{1}{2} (\gamma + \beta) = \frac{0.18494}{9.22406 - 10} - \frac{10g \tan \frac{1}{2} (\gamma + \beta)}{9.22406 - 10}$$

Exercises

Solve the following triangles.

```
1. c = 3.124, \alpha = 77^{\circ} 15', \gamma = 41^{\circ} 24'.

2. b = 92.34, \alpha = 75^{\circ} 24', \gamma = 43^{\circ} 58'.

3. a = 2.7368, \alpha = 34^{\circ} 36.2', \gamma = 67^{\circ} 13.5'.

4. b = 84.291, \beta = 57^{\circ} 15.2', \gamma = 78^{\circ} 18.3'.

5. c = 5716.3, \alpha = 26^{\circ} 19.7', \gamma = 41^{\circ} 52.6'.

6. a = 463.71, \beta = 102^{\circ} 34.1', \gamma = 21^{\circ} 32.8'.

7. b = 3.1847, \alpha = 76^{\circ} 51.4', \beta = 43^{\circ} 27.4'.

8. c = 0.51386, \alpha = 26^{\circ} 43.9', \beta = 57^{\circ} 50.3'.
```

9. In a parallelogram ABCD, the angle at A is 32° 14′. The length of the diagonal BD is 3.473 feet, and the angle ABD is 56° 41′. Find, to four significant figures, the lengths of the sides.

10. Two shore batteries at A and B, 834.2 yards apart, are firing at a target at C. The angle ABC is 73° 21' and the angle BAC is 68° 52'. Find the distances AC and BC to one decimal place.

11. A town B is 14.63 miles due north of A. The road from A to B runs N 27° 45' E to C, then N 34° 30' W to B. Find the distance by road from A to B.

140. CASE II. The Ambiguous Case. Given Two Sides and the Angle Opposite One of Them. In this case, there may be two solutions, one solution, or no solution, as may be seen from the following considerations.

Let the given parts be α , a, and b.

First, let α be acute.

Construct the angle α at A, lay off AC = b, and draw CD perpendicular to the other side of the angle α . Then $DC = b \sin \alpha$. With C as center and radius a, draw a circle.

- 1. If $a < b \sin \alpha$, the circle does not intersect the line AD and there is no solution (Fig. 54a).
- 2. If $a = b \sin \alpha$, the circle touches AD at D and there is one solution, the right triangle ADC (Fig. 54b).
- 3. If $b \sin \alpha < a < b$, the circle intersects the line AD in two points to the right of A. There are two solutions, AB_1C and AB_2C (Fig. 54c).
- 4. If b < a, the circle intersects the line AD in one point to the right and one to the left of A. There is one solution since the triangle with its vertex to the left of A does not have α as one of its angles (Fig. 54d).

Next, let α be obtuse.

5. If a < b, there is no solution (Fig. 54e).

6. If b < a, there is one solution (Fig. 54f).

In any given exercise, a figure drawn carefully to scale will usually show the number of solutions. If there still is doubt, make the computation for finding the logarithm of the sine of the first required angle, as in Example 2. If this logarithm is positive, there is no solution; if it is exactly zero; there is one solution; if it is negative (9 + mantissa - 10), there are two solutions.

A suitable form for the solution is shown in the following example.

Observe that, in finding a_1 and a_2 , we first find $\log b/\sin \beta$ then add each of the numbers $\log \sin \alpha_1$ and $\log \sin \alpha_2$ to this number.

Example 1. Solve the triangle: b = 5.3846, c = 7.3545, $\beta = 37^{\circ} 42.5'$.

Given: Find:
$$b = 5.3846, \qquad \gamma_1 = 56^{\circ} 39.4', \qquad \gamma_2 = 123^{\circ} 20.6',$$

$$c = 7.3545, \qquad \alpha_1 = 85^{\circ} 38.1', \qquad \alpha_2 = 18^{\circ} 56.9',$$

$$\beta = 37^{\circ} 42.5', \qquad a_1 = 8.7780; \qquad a_2 = 2.8587.$$

$$\sin \gamma_1 = \frac{c \sin \beta}{b}, \qquad \alpha_1 = 180^{\circ} - (\beta + \gamma_1), \qquad a_1 = \frac{b}{\sin \beta} \sin \alpha_1,$$

$$\gamma_2 = 180^{\circ} - \gamma_1, \qquad \alpha_2 = 180^{\circ} - (\beta + \gamma_2), \qquad a_2 = \frac{b}{\sin \beta} \sin \alpha_2.$$

$$\frac{a_1 - c}{a_1 + c} = \frac{\tan \frac{1}{2} (\alpha_1 - \gamma_1)}{\tan \frac{1}{2} (\alpha_1 + \gamma_1)}, \qquad \frac{c - a_2}{c + a_2} = \frac{\tan \frac{1}{2} (\gamma_2 - \alpha_2)}{\tan \frac{1}{2} (\gamma_2 + \alpha_2)}.$$

$$\log c = 0.86655 \qquad \log b = 10.73116 - 10$$

$$\log \sin \beta = \frac{9.78650 - 10}{10.65305 - 10} + \log \sin \beta = \frac{9.78650 - 10}{0.94466}$$

$$\log \sin \beta = \frac{9.78650 - 10}{9.92189 - 10} - \log \sin \alpha_1 = 9.99874 - 10 + \log \sin \alpha_2 = \frac{9.51150 - 10}{0.94340}$$

$$\log a_1 - c = 10.15336 - 10$$

$$\log a_1 - c = 10.15336 - 10$$

$$\log a_1 + c = \frac{1.20768}{8.94568 - 10} - \log \tan \frac{1}{2} (\alpha_1 - \gamma_1) = 9.41235 - 10$$

$$\log c - a_2 = 10.65281 - 10$$

$$\log \tan \frac{1}{2} (\alpha_1 + \gamma_1) = \frac{0.46665}{8.94570 - 10} - \frac{1}{9.64365 - 10}$$

$$\log \tan \frac{1}{2} (\gamma_2 - \alpha_2) = 10.11027 - 10$$

$$\log c + a_2 = \frac{1.00916}{9.64365 - 10} - \frac{0.46665}{9.64362 - 10} - \frac{0.46665}{9.64362 - 10}$$

Example 2. Solve the triangle: a = 4.1872, c = 3.7214, $\gamma = 63^{\circ} 17.4'$.

Since Figure 55 fails to show definitely the number of solutions, we shall carry through the computation of $\sin \alpha$ to determine the number of solutions.

Given:

$$a = 4.1872,$$

 $c = 3.7214,$
 $\gamma = 63^{\circ} 17.4'.$
We have $\sin \alpha = a \sin \gamma/c.$
 $\log a = 0.62192$
 $\log \sin \gamma = \frac{9.95099 - 10}{0.57291} + \frac{C}{0.57291}$
 $\log c = \frac{0.57071}{0.00220} = \log 1.0051.$

It follows that $\sin \alpha = 1.0051$ which is impossible since the sine of an angle cannot exceed unity. There is no solution.

Exercises

Solve the following triangles.

1.
$$a = 5.6385$$
, $c = 9.2143$, $\alpha = 23^{\circ} 41.2'$.
2. $a = 35.721$, $c = 43.285$, $\alpha = 41^{\circ} 16.2'$.
3. $b = 2965.1$, $c = 3796.9$, $\beta = 43^{\circ} 11.9'$.
4. $b = 24.588$, $c = 31.491$, $\gamma = 39^{\circ} 17.4'$.

5.
$$a = 135.41$$
, $b = 148.52$, $\beta = 71^{\circ} 29.6'$.

6.
$$a = 861.47$$
, $b = 579.28$, $\alpha = 117^{\circ} 53.5'$.

7.
$$b = 43.692$$
, $c = 23.659$, $\gamma = 34^{\circ} 28.6'$.

8.
$$a = 1.4437$$
, $c = 1.0342$, $\gamma = 147^{\circ} 19.6'$.

9.
$$a = 0.26532$$
, $b = 0.38416$, $\alpha = 26^{\circ} 49.2'$.

10.
$$b = 7953.8$$
, $c = 8147.6$, $\beta = 71^{\circ} 18.7'$.

- 11. The angle at A of a parallelogram ABCD is 42° 21.6′. The side AB is 63.42 inches and the diagonal BD is 52.76 inches. Find the side AD.
- 12. Two houses, A and B, are 2736 feet apart. From a third house C, 1576 feet from A, they subtend an angle of 21° 16′. Find the distance CB.
- 141. Case III. Given Two Sides and the Included Angle. If a, b, and γ are given, we first find $\frac{1}{2}(\alpha + \beta)$ from the relation

$$\frac{1}{2}(\alpha+\beta)=90^{\circ}-\frac{1}{2}\gamma,$$

which follows from the relation $\alpha + \beta + \gamma = 180^{\circ}$. We can now compute $(\alpha - \beta)/2$ from the law of tangents. We next find

$$\alpha = \frac{1}{2}(\alpha + \beta) + \frac{1}{2}(\alpha - \beta)$$
, and $\beta = \frac{1}{2}(\alpha + \beta) - \frac{1}{2}(\alpha - \beta)$.

Finally, we compute c twice, using the law of sines,

$$c = \frac{a \sin \gamma}{\sin \alpha}$$
, and $c = \frac{b \sin \gamma}{\sin \beta}$,

the second computation serving as a check on the accuracy of our results.

Example. Solve the triangle: a = 87.326, b = 49.243, $\gamma = 81^{\circ} 52.4'$.

Given: Find:

$$a = 87.326$$
, $\alpha = 66^{\circ} 53.2'$, $\beta = 49.243$, $\beta = 31^{\circ} 14.4'$, $\gamma = 81^{\circ} 52.4'$. $c = 93.994$.

$$\frac{1}{2}(\alpha + \beta) = 90^{\circ} - \frac{1}{2}\gamma, \quad \tan\frac{1}{2}(\alpha - \beta) = \frac{a-b}{a+b}\tan\frac{1}{2}(\alpha + \beta),$$

$$a \sin \gamma \quad b \sin \gamma$$

$$c = \frac{a \sin \gamma}{\sin \alpha} = \frac{b \sin \gamma}{\sin \beta}.$$

$$\log (a - b) = 1.58073$$

$$\log \tan \frac{1}{2} (\alpha + \beta) = \underbrace{0.06181}_{11.64254 - 10} + \log \sin \gamma = \underbrace{9.99562 - 10}_{11.93676 - 10} + \log (a + b) = \underbrace{2.13535}_{12.64254 - 10} - \log \sin \alpha = \underbrace{9.96366 - 10}_{1.97310} - \log \cos \alpha = \underbrace{1.97310}_{1.97310} + \log \alpha = \underbrace{1.94114}_{11.93676 - 10} + \log \alpha = \underbrace{1.94114}_{11.9416 - 10} + \log \alpha = \underbrace{1.94114}_{11.9416 - 10} + \log \alpha$$

Exercises

Solve the following triangles.

```
1. a = 48.736, b = 31.437, \gamma = 56^{\circ} 26.6'.

2. b = 3.7508, c = 4.9156, \alpha = 123^{\circ} 38.3'.

3. a = 167.81, c = 318.58, \beta = 113^{\circ} 21.8'.

4. a = 95747, b = 69473, \gamma = 71^{\circ} 55.2'.

5. b = 12.471, c = 23.417, \alpha = 38^{\circ} 19.7'.

6. a = 0.36437, c = 0.21959, \beta = 99^{\circ} 41.5'.

7. b = 34.916, c = 37.254, \alpha = 16^{\circ} 51.3'.

8. a = 0.041752, b = 0.052761, \gamma = 28^{\circ} 46.2'.
```

- **9.** Towns B and C are, respectively, $11^{\circ}53'$ and $75^{\circ}32'$ east of north of A. The distance from A to B is 41.92 miles and from A to C is 17.63 miles. Find the distance from B to C.
- 10. Two forces, of magnitudes 217.6 and 358.3, make an angle of 57° 41' with each other. Find the magnitude of the resultant force and the angle it makes with each given force.
- 142. The Law of Cosines. Place the triangle ABC so that the angle α is in standard position (Figs. 56). Let D be the foot of the perpendicular from C to the x-axis.

In either figure, using directed distances,

$$DC = b \sin \alpha$$
, $AD = b \cos \alpha$, and $DB = AB - AD = (c - b \cos \alpha)$.

In the right triangle BDC,

$$a^2 = DC^2 + DB^2 = b^2 \sin^2 \alpha + (c - b \cos \alpha)^2$$

 $= b^2 \sin^2 \alpha + c^2 - 2bc \cos \alpha + b^2 \cos^2 \alpha$,
or, since $\sin^2 \alpha + \cos^2 \alpha = 1$,
 $a^2 = b^2 + c^2 - 2bc \cos \alpha$,
Similarly, $b^2 = c^2 + a^2 - 2ca \cos \beta$, (3)
 $c^2 = a^2 + b^2 - 2ab \cos \gamma$.

These three formulas constitute the law of cosines.

These formulas are not adapted to logarithmic computation. They are, however, as we shall see in the next article, of importance in deriving other useful formulas. They may also be used, when the numbers involved are not too large, to solve the triangle using the natural functions. They are especially useful in this way if only one side, or one angle, is required.

Exercises

In the following exercises, use the natural functions and the law of cosines. Find the required sides to four significant figures and the required angles to the nearest minute.

- 1. Given b = 5, c = 8, $\alpha = 45^{\circ}$, find a.
- 2. Given a = 17, b = 12, $\gamma = 37^{\circ} 10'$, find c.
- 3. Given a = 21.3, c = 34.2, $\beta = 73^{\circ} 50'$, find b.
- 4. Given a = 9, b = 11, c = 14, find α .
- **5.** Given a = 13, b = 10, c = 17, find all the angles.
- 6. Given a = 2.43, b = 3.15, c = 2.84, find all the angles.
- 7. Two airplanes start from the same station at the same time in directions making angles of 41° 30′ with each other. At the end of an hour, one has gone 130 miles and the other 150 miles. How far are they apart?
- 8. A body is acted on by two forces, of 35 and 40 pounds, respectively, making an angle of 27° 40' with each other. Find the magnitude of the resultant force.
- 143. The Half-angle Formulas. Denote half the sum of the sides of the triangle by s; that is,

Then,
$$s = \frac{1}{2}(a+b+c).$$

$$b+c-a = a+b+c-2a = 2(s-a),$$

$$c+a-b = a+b+c-2b = 2(s-b),$$
and
$$a+b-c = a+b+c-2c = 2(s-c).$$

From formula 13, Art. 128, and the law of cosines, we have

$$\sin^{2} \frac{\alpha}{2} = \frac{1}{2} (1 - \cos \alpha) = \frac{1}{2} \left(1 - \frac{b^{2} + c^{2} - a^{2}}{2bc} \right)$$

$$= \frac{a^{2} - b^{2} + 2bc - c^{2}}{4bc} = \frac{a^{2} - (b - c)^{2}}{4bc}$$

$$= \frac{(a - b + c)(a + b - c)}{4bc} = \frac{2(s - b)2(s - c)}{4bc}.$$

$$\sin \frac{\alpha}{2} = \sqrt{\frac{(s - b)(s - c)}{bc}}.$$
 (5)

Hence,

In a similar way, we can derive the formulas

$$\sin\frac{\beta}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}, \qquad \sin\frac{\gamma}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}. \quad (5')$$

We have also,

$$\cos^{2} \frac{\alpha}{2} = \frac{1}{2}(1 + \cos \alpha) = \frac{1}{2}\left(1 + \frac{b^{2} + c^{2} - a^{2}}{2bc}\right)$$

$$= \frac{b^{2} + 2bc + c^{2} - a^{2}}{4bc} = \frac{(b + c)^{2} - a^{2}}{4bc}$$

$$= \frac{(b + c + a)(b + c - a)}{4bc} = \frac{2s \ 2(s - a)}{4bc},$$

$$\cos \frac{\alpha}{2} = \sqrt{\frac{s(s - a)}{bc}}.$$
(6)

giving

In a similar way, we derive

$$\cos\frac{\beta}{2} = \sqrt{\frac{s(s-b)}{ca}}, \text{ and } \cos\frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}.$$
 (6')

Since $\alpha/2$, $\beta/2$, and $\gamma/2$ are all acute angles, all the radicals in these formulas are to be taken as positive.

If we divide the value of $\sin \alpha/2$ from (5) by the value of $\cos \alpha/2$ from (6), we have

$$\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}} \frac{bc}{s(s-a)} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
$$= \sqrt{\frac{(s-a)(s-b)(s-c)}{s(s-a)^2}} = \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

To simplify this expression, we put *

$$\tau = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$
 (7)

^{*} It can be shown (Art. 146, Ex. 15), that the number r defined by equation (7) is the radius of the circle inscribed in the triangle ABC.

On substituting this value of r in the preceding equation, and writing the corresponding equations for tan $\beta/2$ and tan $\gamma/2$, we have

$$\tan\frac{\alpha}{2} = \frac{r}{s-a}$$
, $\tan\frac{\beta}{2} = \frac{r}{s-b}$, $\tan\frac{\gamma}{2} = \frac{r}{s-c}$ (8)

144. Case IV. Given the Three Sides. The solution by logarithms of the triangle when the three sides are given may be obtained by using formulas (4), (7), and (8) of Art 143. As a check, we observe that the sum of the half-angles is 90°.

Example. Solve the triangle: a = 73.576, b = 51.835, c = 46.821. Given: Find: $\alpha = 96^{\circ} 19.2'$ a = 73.576 $\beta = 44^{\circ} 26.8'$. b = 51.835,c = 46.821. $\gamma = 39^{\circ} 14.0'$. 2)172.232 $s = \frac{1}{2}(a+b+c), r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$ s = 86.116 $\tan\frac{\alpha}{2} = \frac{r}{s-a}$, $\tan\frac{\beta}{2} = \frac{r}{s-b}$, $\tan\frac{\gamma}{2} = \frac{r}{s-c}$. $\frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} = 90^{\circ}.$ $\log(s - a) = 1.09830$ s-a=12.540s - b = 34.281 $\log(s - b) = 1.53505$ $\log(s-c) = 1.59434 +$ s - c = 39.2954.22769 s = 86.116 $\log s = 1.93508 -$ 2)2.29261 $\log r = 1.14630$ $\alpha/2 = 48^{\circ} 9.6'$ $\log \tan \alpha / 2 = 0.04800$ $\beta/2 = 22^{\circ} 13.4'$ $\log \tan \beta/2 = 9.61125 - 10$ $\gamma/2 = 19^{\circ} 37.0'$ $\log \tan \gamma/2 = 9.55196 - 10$

Exercises

Solve the following triangles.

```
1. a = 7.4382, b = 9.3745, c = 6.8397.

2. a = 1.5637, b = 2.0182, c = 1.6921.

3. a = 2.2874, b = 1.5138, c = 3.2514.

4. a = 0.95863, b = 1.6524, c = 1.3749.

5. a = 48.632, b = 34.723, c = 45.218.

6. a = 0.061829, b = 0.053925, c = 0.039827.

7. a = 59.724, b = 32.461, c = 71.249.

8. a = 742850, b = 943280, c = 613590.
```

- 9. A city block is bounded by three streets. If the length of the sides of the block are 271.6, 325.8, and 385.4 feet, find to the nearest minute the angles the streets make with each other.
- 10. Three circles, of radii 7.241, 4.837, and 6.495 inches, are tangent to each other externally. Find to the nearest minute the angles of the triangle formed by the lines joining their centers.
- 145. Area of a Triangle. Let S be the area of the triangle ABC and let h be the altitude from C on AB.

By elementary geometry,

$$S = \frac{1}{2}ch.$$

From the definition of $\sin \alpha$,

$$h = b \sin \alpha$$
.

It follows that

$$S = \frac{1}{2}bc \sin \alpha = \frac{1}{2}ca \sin \beta = \frac{1}{2}ab \sin \gamma. \tag{9}$$

In the second, third, and fourth members of equation (9), substitute the values of the second letter in terms of the first from the law of sines. We have

$$S = \frac{1}{2}b^2 \frac{\sin \alpha \sin \gamma}{\sin \beta} = \frac{1}{2}c^2 \frac{\sin \alpha \sin \beta}{\sin \gamma} = \frac{1}{2}a^2 \frac{\sin \beta \sin \gamma}{\sin \alpha}. \quad (10)$$

From formula IX of Art. 127,

$$\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}.$$

Hence, from equation (9),

$$S = bc \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}.$$

If, in this equation, we substitute the values of $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$ from equations (5) and (6) of Art. 143, we obtain

$$S = \sqrt{s(s-a)(s-b)(s-c)}. \tag{11}$$

Exercises

Find the area of the triangle.

1. a = 925.36, c = 432.85, $\beta = 42^{\circ} 17.3'$.

2. b = 1.3526, c = 2.4193, $\alpha = 55^{\circ} 49.7'$.

3. a = 21.763, $\beta = 31^{\circ} 14.8'$, $\gamma = 67^{\circ} 29.5'$.

4. b = 4.7931, $\alpha = 83^{\circ} 42.7'$, $\gamma = 37^{\circ} 21.3'$.

5. a = 51.342, b = 29.571, c = 42.863.

6. a = 9347.6, b = 7134.2, c = 8563.2.

- 146. Problems. In the following problems, find the required numbers to four significant figures and angles to the nearest minute.
- 1. Two roads leading to a village branch off from a main road at places 3764 feet apart. They meet at the village at an angle of 63° 47' and the longer makes an angle of 29° 38' with the main road. Find the lengths of the side roads.
- 2. From a point on a mountain directly above a tunnel, the angles of depression of the ends of the tunnel are 27° 43′ and 32° 29′. The distances from the point to the ends of the tunnel are 5943 and 4976 feet. Find the length of the tunnel.
- 3. To find the distance between two points A and B, separated by an obstruction, a point C was selected. The distances AC = 3259 feet and CB = 2143 feet, and the angle $ACB = 102^{\circ} 17'$, were measured. Find AB.
- 4. Two landing places, A and B, on one side of a lake, are 2197 feet apart. C is a landing place on the opposite side of the lake such that the angle $BAC = 65^{\circ} 48'$ and $ABC = 48^{\circ} 31'$. Find AC and BC.
- 5. A balloon is directly above a straight road. Its angles of elevation from two consecutive mile posts on opposite sides of the balloon are 59° 37' and 35° 52'. Find the height, in feet, of the balloon above the road.
- 6. A tower stands at the end of a road inclined 14° 39' supwards from the horizontal. At a point on the road 153.5 feet from the foot of the tower, the angle of elevation of the top of the tower is 42° 17'. Find the height of the tower.
- 7. Two buildings of equal height are 100 feet apart. From a point on the ground between them, the angles of elevation of their tops are 63° 54′ and 41° 17′. Find the heights of the buildings and the distance of the point of observation from the nearest building.
- 8. The lengths of the diagonals of a parallelogram are 4372 and 3562 feet. They meet at an angle of 76° 52'. Find the lengths of the sides.
- 9. Two forces are of magnitudes 314.7 and 563.2 pounds. Their resultant is of magnitude 635.3 pounds. Find the angle each given force makes with the resultant.
- 10. Two forces, of magnitudes 253.7 and 382.7 pounds, make an angle of 58° 14' with each other. Find the magnitude of their resultant and the angle it makes with each given force.
- 11. A flyer wishes to go to a place 247.5 miles northeast of his present position. If his plane travels 135 miles in still air and there is a wind of 27 miles an hour blowing from 10° west of north, in what direction should he point his plane and in how many minutes will he reach his destination?
- 12. In a quadrilateral ABCD, AB = 643.7 feet, AC = 926.3 feet, angle $BAC = 68^{\circ} 14'$, $BAD = 104^{\circ} 21'$, $ABD = 57^{\circ} 53'$. Find AD and DC.
- 13. The walk leading to the bottom of a monument rises one foot vertically for every 12 feet measured horizontally. When the angle of elevation of the sun is 21° 43′, the length of the shadow of the monument, measured along the walk, is 117 feet. Find the height of the monument.

14. Prove the projection formulas:

 $a = b \cos \gamma + c \cos \beta$, $b = c \cos \alpha + a \cos \gamma$, $c = a \cos \beta + b \cos \alpha$.

15. Show that the quantity r, defined in equation (7), Art. 143, is the radius of the circle inscribed in the triangle.

HINT. If O is the center and r' the radius of the inscribed circle, show that:

area
$$ABC$$
 = area AOB + area BOC + area COA = $r's$.

Insert the value of area ABC from equation (11), Art. 145.

16. In equations (1) (the law of sines), show that the value of each of the equal fractions is 2R, where R is the radius of the circle circumscribed around the triangle ABC.

HINT. Let the perpendicular to BC at C meet the circumcircle again at D. Show that BD = 2R and that angle $BDC = \alpha$.

17. Show that R, the radius of the circumcircle, is given in terms of the sides by the formula

$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}.$$

HINT. Use the results of Ex. 16 and the values of $\sin \alpha/2$ and $\cos \alpha/2$ from equations (5) and (6), Art. 143.

18. Using the results of Ex. 15 and 17, find r and R, given a = 71.34, b = 63.47, and c = 84.54.

19. It was required to measure the distance from A to an inaccessible point B when no instruments for measuring angles were available. An accessible point C was chosen and the lines from B to A and to C were extended to D and E, respectively. The following distances were measured: AC = 91, AD = 118, DC = 131, CE = 60, AE = 134. Find AB.

Chapter 19

Definitions and Formulas

147. Directed Line Segments. When we defined the coördinates of a point in Art. 38, we brought in the concept of measuring line segments, on or parallel to the axes, from one point to another and of considering these distances as positive or negative according to the direction of measurement. From now on, we shall use this concept in dealing with segments that may, or may not, be parallel to either axis.

A directed line is one on which it has been agreed that distances measured in one direction are positive and those measured in the opposite

direction are negative. The positive direction is sometimes indicated by an arrow, as in Figure 58. A directed line segment is one for which the direction of measurement has been selected. If the direction of measurement is from A to B, we read it, "the segment

AB"; if it is measured in the opposite direction, we read it, "the segment BA." It follows from this definition that, for directed segments,

$$BA = -AB$$
, or $AB + BA = 0$.

In what follows, the segments considered will usually be directed segments. Care must be taken to read the segments correctly. The directed segment AB is not the same as the directed segment BA.

The use of directed segments frequently enables us to combine into a single formula results which, if undirected segments were used, would have to be treated as separate cases. For example, let A, B, and C be any three points, in any order, on a directed line. For all positions of these points relative to each other, the following relation holds for the directed segments connecting the points:

$$AB = AC + CB. (1)$$

For, if C lies between A and B, then AB, AC, and CB all have the same signs and AB equals the sum of the other two. If C lies outside the segment AB, then AC and CB have opposite signs but their algebraic sum equals AB in magnitude and sign.

148. Segments on the Coördinate Axes. Let $L_1(x_1, 0)$ and $L_2(x_2, 0)$ be any two points on the x-axis (Fig. 60). Then

$$OL_1 = x_1$$
, and $OL_2 = x_2$.

or

From equation (1), we have

$$L_1L_2 = L_1O + OL_2 = -OL_1 + OL_2 = -x_1 + x_2,$$

$$L_1L_2 = x_2 - x_1;$$
(2)

$$\begin{array}{c|c}
Y\\
M_1\\
M_2\\
\hline
C
\end{array}$$
Fig. 60

that is, the length of any directed segment L₁L₂ on the x-axis equals the abscissa of L2 minus the abscissa of L_1 .

By similar reasoning, ... and $M_2(0, y_2)$ are any two points on the y-axis, By similar reasoning, we find that, if $M_1(0, y_1)$

$$M_1 M_2 = y_2 - y_1; (3)$$

that is, the length of any directed segment M1M2 on the y-axis equals the ordinate of M_2 minus the ordinate of M_1 .

We shall have frequent occasion to use formulas (2) and (3) in the following articles.

Exercises

Find the length of the directed segment, by measurement, from a figure. Check your result by using equation (2).

1.
$$L_1(4, 0), L_2(7, 0)$$
.

2.
$$L_1(10, 0), L_2(6, 0).$$

3.
$$L_1(3, 0), L_2(-5, 0).$$

4.
$$L_1(-4,0), L_2(2,0).$$

5.
$$L_1(-2,0), L_2(-8,0).$$
 6. $L_1(-9,0), L_2(-1,0).$

6.
$$L_1(-9,0), L_2(-1,0).$$

Find M_1M_2 by measurement from a figure and check by using equation (3).

7.
$$M_1(0, 3), M_2(0, 8)$$
.

8.
$$M_1(0, -9), M_2(0, -5).$$

9.
$$M_1(0, -6), M_2(0, 4)$$
.

10.
$$M_1(0, 6), M_2(0, 1)$$
.

11.
$$M_1(0, 5), M_2(0, -2)$$
.

12.
$$M_1(0, -2), M_2(0, -6)$$
.

Let the feet of the perpendiculars from P_1 and P_2 on the x-axis be L_1 and L_2 , and on the y-axis be M_1 and M_2 , respectively. Find the lengths of the directed segments L_1L_2 and M_1M_2 , given:

13.
$$P_1(3, 2), P_2(7, 5)$$
.

14.
$$P_1(-4, -1), P_2(8, 4)$$
.

15.
$$P_1(-1, 5), P_2(6, 3)$$
.

16.
$$P_1(6, -1), P_2(-2, 4).$$

17.
$$P_1(2, 8), P_2(-3, -1).$$

18.
$$P_1(7, -2), P_2(-3, 5).$$

149. Distance between Two Points. Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be two given points (Fig. 61). Draw the undirected segment P_1P_2 . It is required to find $P_1(x_1,y_1)$ M_1 the length of this segment in terms of the coördinates of P_1 and P_2 .

Let the feet of the perpendiculars from P_1 on the x- and y-axes be L_1 and M_1 , respectively, and from P_2 be L_2 and M_2 , respectively. Let P_1L_1 and P_2M_2 (produced if necessary) intersect at R.

Fig. 61

Since the angle at R is a right angle, we have,

$$(P_1P_2)^2 = (RP_2)^2 + (RP_1)^2$$

= $(L_1L_2)^2 + (M_1M_2)^2$. (Why?)

But

 $(L_1L_2)^2 = (x_2 - x_1)^2$ $(M_1M_2)^2 = (y_2 - y_1)^2$.

and

Hence

 $(P_1P_2)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$ $P_1P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$ (4)

or

This formula gives the length of the undirected segment P_1P_2 . If the line through P_1 and P_2 is directed (that is, if a positive direction has been chosen on it) and if the directed length P_1P_2 is desired, the proper sign must be determined by noticing whether the direction from P_1 to P_2 is positive or negative.

Exercises

Derive the distance formula, taking the figure so that:

- 1. P_1 is in the third quadrant and P_2 in the first.
- 2. P_1 is in the fourth quadrant and P_2 in the second.

Find the distance between the following pairs of points.

3.
$$(3, 1), (7, 4)$$
. 4. $(-7, -3), (8, 5)$. 5. $(-2, 5), (3, -7)$.

6.
$$(5, 11), (-2, -13)$$
. 7. $(2, -5), (-1, 7)$. 8. $(1, 8), (-7, -3)$.

Find the lengths of the sides of the triangle whose vertices are:

9.
$$(3, 1), (7, 3), (5, 9).$$
 10. $(-1, -2), (3, 5), (-4, 7).$

11.
$$(3, -5), (1, 7), (-5, 2)$$
. 12. $(-5, 0), (1, 3), (0, 8)$.

Show that the following triangles are isosceles.

15.
$$(2, 5)$$
, $(8, 3)$, $(3, -2)$. **16.** $(2, -2)$, $(-3, -1)$, $(1, 6)$.

Show that the following triangles are right triangles.

17.
$$(-1, 3)$$
, $(2, 5)$, $(6, -1)$. 18. $(5, -1)$, $(1, -3)$, $(2, 5)$.

19.
$$(3, -1), (-1, 2), (2, 6).$$
 20. $(5, -4), (-8, -3), (4, -7).$

- 21. Find y, given that (5, y) is equidistant from (4, 3) and (1, -2).
- 22. Find the coördinates of a point which is equidistant from (-1, -3) and (5, 3) and also from (2, 4) and (8, 0).
- 23. Find two points whose ordinates are 5 that lie at a distance 13 from the point (2, -7).

24. State by an equation that the distance of the point (x, y) from the origin equals 5. Simplify the equation and draw its graph.

25. State by an equation that the point (x, y) is equidistant from (4, 1) and (2, -3). Simplify the equation and draw its graph.

150. Point Dividing a Given Segment in a Given Ratio. Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be the end points of the given segment and let P(x, y) be

$$\frac{P_1P}{PP_2}=\frac{n_1}{n_2},$$

where n_1/n_2 is the given ratio. Let L_1 , M_1 ; L, M; and L_2 , M_2 be the feet of the perpendiculars on the x- and y-axes from P_1 , P, and P_2 , respectively. Let R_1 be the intersection of the lines P_1M_1 and PL and R_2 the intersection of PM

and P_2L_2 . We have

$$P_1R_1 = L_1L = x - x_1$$
 and $PR_2 = LL_2 = x_2 - x$.

The triangles P_1R_1P and PR_2P_2 are similar since their sides are respectively parallel. It follows that (both in magnitude and sign)

$$\frac{n_1}{n_2} = \frac{P_1 P}{P P_2} = \frac{P_1 R_1}{P R_2} = \frac{L_1 L}{L L_2} = \frac{x - x_1}{x_2 - x}.$$
 (5)

Using the same similar triangles, we find in the same way, that

$$\frac{n_1}{n_2} = \frac{P_1 P}{P P_2} = \frac{R_1 P}{R_2 P_2} = \frac{M_1 M}{M M_2} = \frac{y - y_1}{y_2 - y}.$$
 (6)

If we equate the first and last members of equations (5) and (6) and solve for x and y, we get

$$x = \frac{n_2x_1 + n_1x_2}{n_1 + n_2}, \qquad y = \frac{n_2y_1 + n_1y_2}{n_1 + n_2};$$
 (7)

as the coördinates of the point P(x, y) that divides the segment P_1P_2 in the ratio n_1/n_2 .

In particular, if P is the midpoint of the segment P_1P_2 , then $n_1 = n_2$ and equations (7) become

$$x = \frac{x_1 + x_2}{2}, \qquad y = \frac{y_1 + y_2}{2};$$
 (8)

that is, the coördinates of the midpoint of the segment are the halfsums of the coördinates of the end points.

- 1. Find the coördinates of the midpoint of the segment from (a) (4, -3)to (-10, 7); (b) (-5, -2) to (9, -6).
- 2. Find the coördinates of the two points of trisection of the segment from (-5,3) to (7,-6).
- 3. Find the three points of quadrisection of the segment from (-1, 6)to (11, 22).
- 4. Find the point which divides in the ratio 3:7 the segment from (6, 8) to (16, -12).
- 5. In what ratio does the point (4, -2) divide the segment from (-1, 8)to (13, -20)?
- 6. The midpoint of a segment is (1, 6) and one end point is (9, 2). Find the other end point.
- 7. The vertices of a triangle are (2, 5), (10, 1), and (12, 9). Find on each median the point twice as far from the vertex as from the midpoint of the opposite side. State the geometric theorem which shows that these points coincide.
- 8. Solve Ex. 7 for the triangle whose vertices are (x_1, y_1) , (x_2, y_2) , and $(x_3, y_3).$
- 151. The Inclination and Slope of a Line. The inclination of a line l (not parallel to the x-axis) is defined as the smallest positive angle whose initial side extends in the positive direction along the x-axis and whose terminal side extends along l. If l is parallel to the x-axis, its inclination is defined to be zero.

We shall usually deal, not with the inclination of the line, but with its slope which is defined as the tangent of its inclination. We shall customarily denote the inclination of a line by α and its slope by m, so that

$$m = \tan \alpha.$$
 (9)

If the inclination, α , is an acute angle, then tan α , or m, is positive and the line extends upward to the right; if α is obtuse, m is negative and

the line extends upward to the left (Fig. 63). Finally, if $\alpha = 90^{\circ}$, the line is perpendicular to the x-axis and tan α does not exist; that is, lines perpendicular to the x-axis have no slope. When we speak of the slope of a line we shall suppose, accordingly, that the line is not perpendicular to the x-axis.

Fig. 63

152. Slope of a Line Through Two Given Points. Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ $(x_2 \neq x_1)$ be the two given points and let l be the line passing through them. Through P_1 draw a line parallel to the x-axis and choose any point K on this line to the right of P_1 . Denote by ϕ the smallest positive (or zero) angle having $\bar{P_1}K$ as its initial side and P_1P_2 as its terminal side.

(10)

If α is the inclination of l, we now have, either

$$\phi = \alpha$$
, or $\phi = 180^{\circ} + \alpha$,

according as $\phi < 180^{\circ}$ (Fig. 64a) or $\phi \ge 180^{\circ}$ (Fig. 64b).

In either case,

$$\tan \phi = \tan \alpha = m$$
.

From Figs. 64a and 64b and the definition of the tangent of an angle

$$\tan \phi = \frac{RP_2}{P_1R} = \frac{M_1M_2}{L_1L_2} = \frac{y_2 - y_1}{x_2 - x_1};$$

or, since $\tan \phi = m$, by (10), the slope of the line through $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is $m = \frac{y_2 - y_1}{r_2 - r_1}; \tag{11}$

that is, the slope of the line through two given points equals the ordinate of the second minus the ordinate of the first divided by the abscissa of the second minus the abscissa of the first.

We have supposed throughout this article that $x_1 \neq x_2$. If $x_1 = x_2$, the line is parallel to the y-axis and has no slope (Art. 151).

EXAMPLE. Find the slope and the inclination of the line through (2, 1) and (-2, 6).

From (11), we find, as the required slope,

$$m = \frac{6-1}{-2-2} = -\frac{5}{4} = -1.25.$$

To determine the inclination α , we substitute this value of m in (10). We obtain

 $\tan \alpha = -1.25$, $\alpha = 1128^{\circ} 40'$.

Frg. 65

Exercises

Find the slope of a line whose inclination is:

5.
$$\frac{\pi}{4}$$
.

6.
$$\frac{5\pi}{6}$$
.

7.
$$\frac{\pi}{3}$$
.

8.
$$\frac{2\pi}{3}$$
.

Find the inclination of a line whose slope is:

9.
$$\sqrt{3}/3$$
.

11.
$$-\sqrt{3}$$
.

14.
$$-1.4826$$

16.
$$-2.3825$$
.

Find the slope and the inclination of the line through the given points.

17. (2, 1), (6, 4).

18. (3, -2), (-1, 8).

19. (-1, -5), (3, 2). **20.** (1.4835, 2.9531), (3.5862, 6.1384).

21. (-2.8573, 3.1762), (1.3857, -2.9423).

Draw through the given point a line having the slope indicated.

22. (0,0), m=1. **23.** (1,-5), m=-1. **24.** (-4,-2), m=-2.

25. (-2, 5), m = 3. 26. (1, -7), $m = \frac{5}{2}$. 27. (5, 1), $m = -\frac{4}{3}$.

- 28. An equilateral triangle has one vertex at the origin, another on the y-axis, and the third in the first quadrant. Find the slopes of two of its sides and show that the third side has no slope.
 - 29. Find the slopes of the bisectors of the angles of the triangle in Ex. 28.
- 30. Three vertices of a square are (a, a), (-a, a), and (-a, -a). Find the fourth vertex and the slopes of the diagonals.
- 31. Express by an equation the condition that the slope of the line through (-2, 1) and (x, y) equals 2. What is the graph of this equation?
- 153. Parallel and Perpendicular Lines. Let l₁ and l₂ be two lines, neither of which is parallel to the y-axis.

If the lines l_1 and l_2 are parallel to each other, their inclinations, and hence their slopes, are equal. (Why?) Conversely, if

$$m_1 = m_2$$
, then $\alpha_1 = \alpha_2$,

and the lines are parallel.

Hence, the condition that l_1 and l_2 are parallel is that

$$m_1 = m_2. (12)$$

If the lines l_1 and l_2 are perpendicular, we have either

$$\alpha_2 = \alpha_1 + 90^{\circ}, \qquad (Fig. 67a)$$

$$\alpha_1 = \alpha_2 + 90^{\circ}.$$

(Fig. 67b)

Fig. 66

FIG. 67a

Frg. 676

In either case

or

$$\tan \alpha_1 = -\cot \alpha_2 = -\frac{1}{\tan \alpha_2};$$

or, since

$$\tan \alpha_1 = m_1$$
 and $\tan \alpha_2 = m_2$,

$$m_1 = -\frac{1}{m_2}$$
 or $m_1 m_2 = -1$. (13)

Conversely, if

$$m_1 = -\frac{1}{m_2}$$
, then $\tan \alpha_1 = -\frac{1}{\tan \alpha_2} = -\cot \alpha_2$,

from which it follows that $\alpha_1 = \alpha_2 \pm 90^{\circ}$ so that the given lines are perpendicular. Hence, the condition that l1 and l2 are perpendicular is that the product of their slopes equals minus one.

154. Angle from One Line to Another. In order to choose a definite one among all the angles formed by two given intersecting lines l_1 and l_2 , we make the following definition: the angle from the line l1 to the line l2 is the smallest positive angle through which l₁ must be rotated in order to coincide with l2. This angle is also frequently spoken of as the angle l2 makes with l_1 .

If ϕ is this angle and if m_1 and m_2 are the slopes of l_1 and l_2 , respectively, we shall show that

$$\tan \phi = \frac{m_2 - m_1}{1 + m_1 m_2} \tag{14}$$

We have, in fact,

Case I. If $\alpha_2 > \alpha_1$ (Fig. 68a)

$$\alpha_2 = \alpha_1 + \phi$$
.

So that

$$\phi=\alpha_2-\alpha_1.$$

Hence,

$$\tan \phi = \tan (\alpha_2 - \alpha_1)$$

$$= \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2}$$

Case II. If
$$\alpha_1 > \alpha_2$$
 (Fig. 68b)
 $\alpha_1 = \alpha_2 + (180^{\circ} - \phi)$.

So that

$$\phi = 180^{\circ} + \alpha_2 - \alpha_1.$$

Hence,

$$\tan \phi = \tan (180^{\circ} + \alpha_2 - \alpha_1)$$

$$= \tan (\alpha_2 - \alpha_1)$$

$$= \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2}.$$

Fig. 68a

Since tan $\alpha_1 = m_1$ and tan $\alpha_2 = m_2$, we have, accordingly, in either case, $\tan \phi = \frac{m_2 - m_1}{1 + m_1 m_2}$

which is the required formula (14).

EXAMPLE. Find, to the nearest minute, the angles of the triangle (Fig. 69)

whose vertices are A(-1, 2), B(4, 1), and C(7, 6).

The slopes m_1 , m_2 , and m_3 , of BC, CA, and AB, respectively, are found by (11) to be

$$m_1=\frac{5}{3}, \quad m_2=\frac{1}{2}, \quad m_3=-\frac{1}{5}.$$

To determine the interior angle of the triangle at A, for example, we notice that, if the line AB is turned around the vertex A through the required angle, it will coincide with AC. Hence

$$\tan A = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{10}} = \frac{7}{9} = 0.7778.$$
 $A = 37^{\circ} 53'$

$$\tan B = \frac{-\frac{1}{5} - \frac{5}{3}}{1 - \frac{1}{3}} = \frac{-14}{5} = -2.8000.$$
 $B = 109^{\circ} 39'$

$$\tan C = \frac{\frac{5}{3} - \frac{1}{2}}{1 + \frac{5}{6}} = \frac{7}{11} = 0.6364.$$

$$C = \underbrace{32^{\circ} \ 28'}_{180^{\circ} \ 00'}$$

Exercises

- 1. Show that (-11, 12), (6, -5), (1, -8), and (-6, 15) are the vertices of a rectangle and find its area.
- 2. Show that (2, 5), (7, 1), (11, 6), and (6, 10) are the vertices of a square and find the lengths of its diagonals.
- 3. Show that (1, 5), (5, -1) and (9, 6) are the vertices of an isosceles triangle and find its equal angles.
 - 4. Show by finding the slopes that the three points lie on a line.

(a)
$$(3, 8), (5, 4), (8, -2);$$
 (b) $(-3, -2), (12, 7), (2, 1).$

5. Express by an equation the condition that the point (x, y) lies on the line through (3, 4) and (5, 7).

HINT. The slope of the line through (x, y) and (3, 4) equals the slope of the line through (5, 7) and (3, 4).

6. Is the line through (-2, 3) and (4, 12) parallel to the line through (2, -1) and (6, 5)?

Find the angle from l1 to l2, given:

7.
$$m_1 = \frac{5}{8}$$
, $m_2 = \frac{13}{3}$.
8. $m_1 = -\frac{5}{2}$, $m_2 = \frac{7}{3}$.
9. $m_1 = \frac{2}{5}$, $m_2 = -\frac{1}{3}$.
10. $m_1 = \frac{7}{2}$, $m_2 = \frac{2}{7}$.

Find the slope of l2, given:

11.
$$m_1 = \frac{9}{5}, \, \phi = 45^{\circ}.$$
 12. $m_1 = \frac{3}{8}, \, \phi = \tan^{-1}(-\frac{3}{8}).$

Find the angles of the triangle whose vertices are:

- **13.** (-2, 5), (6, -1), (4, 9). **14.** (2, -3), (5, -7), (7, 6).
- **15.** (-3, 5), (2, 1), (5, 9). **16.** (-2, -1), (1, 6), (5, 1).
- 17. The angle from the line through (-4, 5) and (3, y) to the line through (-2, 4) and (9, 1) is 135°. Find y.

155. The Equation of a Locus. It was pointed out in Art. 40 that, if we have given an equation in x and y, then the locus (or graph) of this equation is the locus formed by the points whose coördinates satisfy this equation.

In what follows, we shall frequently meet the converse problem; that is, we shall be given a locus, defined, in the statement of the problem, as the locus of the points which satisfy a certain geometric condition. It will then be required to find the equation of this locus; that is, the equation which has this locus as its graph.

To find the equation of the locus, first take a point P(x, y) on the locus. Next, state, by an equation in the coördinates of P(x, y), the geometric condition that defines the locus. This equation, if stated so that it is satisfied by the coördinates of the points on the locus and no others, is the equation of the locus.

Frequently the equation, as obtained from the geometric definition, can be simplified. Care must be taken, in this process of simplification, that no solutions are lost and that no extraneous solutions are introduced.

EXAMPLE 1. Find the equation of the circle (Fig. 70) with center at (2, -3) and radius 5.

By geometry, this circle is the locus of a point P(x, y) whose distance from (2, -3) is equal to 5. Hence, by the distance formula

or
$$\sqrt{(x-2)^2 + (y+3)^2} = 5,$$
$$(x-2)^2 + (y+3)^2 = 25.$$

This equation may be further simplified to the form

$$x^2 + y^2 - 4x + 6y - 12 = 0.$$

The coördinates of every point on the circle satisfy any one of these equations, and conversely, any point whose coördinates satisfy any one of the equations is at a distance 5 from (2, -3) and lies on the circle. Hence, any one of these equations is an equation of the given circle.

EXAMPLE 2. Find the equation of the perpendicular bisector of the line segment (Fig. 71) joining the points (-1, 2) and (3, -4).

By geometry, this line is the locus of a point P(x, y) whose distance from (-1, 2) is equal to its distance from (3, -4). Hence,

$$\sqrt{(x+1)^2 + (y-2)^2} = \sqrt{(x-3)^2 + (y+4)^2},$$

$$x^2 + y^2 + 2x - 4y + 5 = x^2 + y^2 - 6x + 8y + 25.$$

or

This equation may be simplified to

$$2x - 3y - 5 = 0$$
.

This equation is satisfied by the coördinates of every point on the bisector and not by the coördinates of any other point. Hence it is the required equation of the bisector.

Sometimes we shall be able to draw the graph of a given equation by recognizing the equation as the equation of a known locus.

Example 3. Find the locus of the equation $(x+2)^2 + (y-7)^2 = 16$.

If we write this equation in the form

$$\sqrt{(x+2)^2 + (y-7)^2} = 4,$$

we see that its graph is the locus of a point whose distance from (-2, 7) is 4. Hence, the required graph is a circle with center at (-2, 7) and radius 4.

Exercises

Find, and simplify whenever possible, the equation of each of the following loci.

1. The x-axis.

- 2. The y-axis.
- 3. A line parallel to, and 3 units to the right of, the y-axis.
- 4. A line parallel to, and 5 units below, the x-axis.
- 5. A circle with center at the origin and radius 6.
- 6. A circle with center at (-3, 5) and radius 4.
- 7. The perpendicular bisector of the line segment joining (1, 3) and (5, 1).
- 8. The perpendicular bisector of the line segment joining (-2, -5) and (3, 4).
 - 9. The line through (-1, 7) of slope -3.

HINT. Find the slope of the line joining (x, y) to (-1, 7). Equate the result to -3.

- 10. The line through (6, 5) of slope 2.
- 11. The line through (4, 1) of inclination 45°.
- 12. The line through (0, 6) of inclination 60°.

Identify the locus of each of the following equations.

13.
$$(x-1)^2 + (y-3)^2 = 49$$
. 14. $(x+4)^2 + (y-2)^2 = 36$.

15.
$$\sqrt{(x-3)^2+(y-6)^2}=\sqrt{(x+1)^2+(y-2)^2}$$
.

16.
$$\sqrt{(x+2)^2+v^2}=\sqrt{(x-4)^2+(y-6)^2}$$
.

17.
$$\frac{y-1}{x-4}=3$$
.

17.
$$\frac{y-1}{x-4} = 3$$
. 18. $\frac{y+6}{x+3} = -2$.

19.
$$y-4=2(x+1)$$
.

Find the equation of the locus of a point that satisfies the following conditions. Identify each locus.

- 20. The sum of the squares of its distances from the axes is 36.
- 21. Its directed distances from the axes are equal.
- 22. Its directed distance from the x-axis equals -2 times its directed distance from the y-axis.
- 23. The square of its distance from the origin equals 6 times its directed distance from the y-axis.

Chapter 20

The Line

156. The Equation of a Line. In order that an equation be the equation of a line, it is necessary, first, that the coördinates of every point on the line shall satisfy the equation and, further, that every point

whose coördinates satisfy the equation shall lie on the line.

In the applications, we must be able to write the equation of a line when enough geometric conditions are given to fix its position. This information may be given to us in any one of a number of ways; for example, we may be given its direction and the position of one point on it, or the positions of two of its points, and so forth. We shall, accordingly, begin this chapter by showing how the equation of a line may be found when its position has been fixed in various ways.

157. Lines Parallel to the Axes. If a line is parallel to the y-axis, it meets the x-axis in some point (a, 0). It follows from the definition of the coördinates of a point (Art. 38) that the abscissa of any point on the line is x = a and, further, that any point whose abscissa is x = a lies on the line. Hence, the equation of any line parallel to the y-axis is

$$x = a$$
.

In a similar way, we find that the equation of the line parallel to the x-axis that intersects the y-axis at (0, b) is

$$y = b$$
.

158. The Point-Slope Form. If the line l whose equation is required passes through a given point $P(x_1, y_1)$ (Fig. 72) and has for its slope a given number m, we shall show that its equation is

$$y - y_1 = m(x - x_1).$$
 (1)

This equation is called the point-slope form of the equation of the line.

To show that (1) is the equation of the line, we first observe that the point P_1 itself lies on l

Frg. 72 and that its coördinates satisfy the equation since, if we put $x = x_1$ and $y = y_1$, both members of (1) are zero.

Next, let P(x, y) be any point on l other than P_1 . Then the slope of

the line through P_1 and P is m, that is

$$m = \frac{y - y_1}{x - x_1},$$

$$y - y_1 = m(x - x_1).$$
(2)

or

Hence, the coördinates of P satisfy (1).

or

Conversely, if the coördinates of any point P, other than P_1 , satisfy (1), then they also satisfy (2). Hence the slope of the line P_1P is m and P lies on l.

159. The Slope-Intercept Form. If the given line intersects the y-axis at B(0, b), the number b is called its y-intercept.

Since B(0, b) is a fixed point on l, we may take its coördinates as

 (x_1, y_1) in (1). This gives

$$y - b = m(x - 0),$$

$$y = mx + b.$$
 (3)

This is the slope-intercept form of the equation of the line.

Example. Find the equation of the line through (2, 1) (Fig. 73) perpendicular to the line through (-3, -1) and (-1, 2).

The slope of the line through (-3, -1) and (-1, 2) is $\frac{3}{2}$. Hence (Art. 153) the slope of the required line is $-\frac{2}{3}$ and, since it passes through (2, 1), its equation is

$$y-1=-\frac{2}{3}(x-2)$$
 or $2x+3y-7=0$.

Exercises

Find the equation of the line through the given point having the given slope.

1.
$$(4, 1), m = 3.$$

2.
$$(-2, 3), m = -2$$
. **3.** $(-2, 0), m = \frac{4}{3}$.

3.
$$(-2,0), m=\frac{4}{3}$$

4.
$$(-3, -2), m = -\frac{5}{3}$$
. **5.** $(3, 7), m = 0$. **6.** $(0, -3), m = \frac{2}{3}$.

5.
$$(3, 7), m = 0.$$

6.
$$(0, -3), m = \frac{2}{3}$$

Find the equation of the line through the given point having the given inclination.

7.
$$(1, -3), \alpha = \pi/4$$
.

8.
$$(-2, 5), \alpha = \tan^{-1}(-\frac{4}{3}).$$

9.
$$(1, 4), \alpha = \tan^{-1} \frac{2}{3}$$
.

10.
$$(7, -3), \alpha = \pi/2.$$

Find the equations of the following lines, given:

11.
$$m=\frac{3}{2}, b=4.$$

12.
$$m=-3, b=\frac{2}{5}$$

13.
$$m=-\frac{4}{5}, b=-\frac{2}{3}$$
.

14.
$$m=0, b=-5.$$

15. Find the equations of the lines through (-2, 3) parallel to the lines in Ex. 11 to 14.

16. Find the equations of the lines through (4, 2) perpendicular to the lines in Ex. 11 to 14.

17. Write the equations of two lines parallel to the y-axis and at a distance from it numerically equal to 5.

18. Write the equations of the lines through (4, 2) parallel to the x-axis and to the y-axis.

or

Find the slope and the y-intercept of each of the following lines.

19.
$$y = 2x + 9$$
.

20.
$$3y = 4x - 7$$
.

21.
$$2x + 5y = 15$$
.

22.
$$3x + 4y + 6 = 0$$
.

- 23. Find the equation of the line through (7, -3) parallel to the line through (-1, 2) and (5, 11).
- 24. Find the equation of the line through (-6, 1) perpendicular to the line through (4, 1) and (-2, 5).
- 25. Find the equation of the line through (3, -1) such that the angle from it to the line y = 2x + 6 is 45°.
- 160. The Two-Point Form. If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are two given points on a line, and if $x_1 \neq x_2$, the slope of the line through these two points is, by Art. 152,

$$m=\frac{y_2-y_1}{x_2-x_1}.$$

If we substitute this value of m in equation (1), we have

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1).$$
 (4)

Fig. 74

This is the two-point form of the equation of a line.

If $x_1 = x_2$, the line through P_1 and P_2 is parallel to the y-axis and its equation is, by Art. 157, $x = x_1$.

161. The Intercept Form. The directed distances, OA and OB (Fig. 74) from the origin to the intersections of a line with the axes are called the x- and y-intercepts, respectively, of the line. We shall denote them by a and b.

Let a and b both be different from zero. Then A(a, 0) and B(0, b)are two fixed points on the line and we find, by taking the coördinates of these points as (x_1, y_1) and (x_2, y_2) in (4), that the equation of this line is

$$y-0=\frac{b-0}{0-a}(x-a),$$

-ay = bx - ab.

If we rearrange this equation, and divide by ab which, by hypothesis, is different from zero, we obtain

$$\frac{x}{a} + \frac{y}{b} = 1, \tag{5}$$

which is the intercept form of the equation of the line.

Example 1. Find the equation of the line through the intersection of x + 2y - 4 = 0, x - 3y + 1 = 0 and also through the midpoint of the segment joining (2, 5) and (4, 3).

The point of intersection of the given lines is found, by solving their equations as simultaneous, to be (2, 1) and the midpoint of the given segment, by Art. 150, is (3, 4). The equation of the line through these two points is

$$y - 1 = \frac{4 - 1}{3 - 2} (x - 2),$$
$$y = 3x - 5.$$

or

Example 2. Find the intercepts of the line 3x - 2y - 12 = 0 and write its equation in the intercept form.

The x-intercept is found, by putting y = 0 and solving for x, to be a = 4. Similarly, by putting x = 0, we find for the y-intercept b = -6. Hence the intercept form of the equation is $\frac{x}{4} + \frac{y}{-6} = 1$.

Exercises

Find the equation of the line through the two given points.

1. (3, 5), (7, -1). **2.** (-2, -3), (4, 7). **3.** (-1, 2), (5, -4).

4. (2, 0), (7, 6).

5. (0, 3), (6, -1). 6. (-2, -4), (3, 7).

Write each of the following equations in (a) the intercept form and (b) the slope-intercept form.

7. 2x + 7y = 14.

8. 4x - 5y = 20.

9. 3x - 4y + 15 = 0.

10. 2x + 5y + 9 = 0.

Write the equations of two lines through the given point, one parallel and the other perpendicular to the given line.

11. (8, 6), 2x + 3y - 7 = 0. **12.** (4, -1), 3x - 5y + 8 = 0.

13. (-5, -2), 4x - 5y - 10 = 0. **14.** (7, -3), 2x + 3y - 9 = 0.

15. Write the equation, in the intercept form, of the line through (3, -2)parallel to the line through (5, 1) and (-1, 10).

16. Find the point on the line 2x - 3y + 13 = 0 that is equidistant from

(3, -4) and (5, 8).

17. Find the equations of the sides of the parallelogram whose vertices are (-1, 3), (1, 8), (9, 7), (7, 2).

18. Three vertices of a rectangle are (2, 3), (1, 8), (-4, 7). Find the equations of its sides and the coördinates of its fourth vertex.

19. Find the equations of the sides of the triangle whose vertices are (3, 4), (13, 8), (9, -4).

20. Find the equations of the altitudes of the triangle in Ex. 19 and find the coördinates of their common point.

21. Find the equations of the perpendicular bisectors of the sides of the

triangle in Ex. 19 and find the coördinates of their common point.

22. Find the equation of a line, given that its slope is m and its x-intercept is a.

162. The General Form. An equation of the form,

$$Ax + By + C = 0, (6)$$

where A, B, and C are constants and A and B are not both zero, is an equation of the first degree in x and y. We shall show that:

Every equation of the first degree in x and y, with real coefficients, is the equation of a line.

There are two cases, according as $B \neq 0$ or B = 0.

If $B \neq 0$, we can solve the equation for y, giving

$$y = -\frac{A}{B}x - \frac{C}{B}. (7)$$

By Art. 159, this is the equation of a line in the slope-intercept form

$$y=mx+b,$$

for which the slope, m, and the y-intercept, b, have the values

$$m = -\frac{A}{B}$$
, and $b = -\frac{C}{B}$. (8)

If B = 0, we can solve equation (6) for x, giving

$$x=-\frac{C}{A}$$
.

By Art. 157, this is the equation of a line parallel to the y-axis.

Hence, in both cases, equation (6) is the equation of a line. It is called the general form of the equation of a line.

Because of the theorem of this article, equation (6) is usually spoken of as a linear equation in x and y.

From equations (7) and (8), we have the following useful result: If the equation of a line is solved for y, the coefficient of x is the slope, and the constant term is the y-intercept, of the line.

The student should show further, by putting y = 0 and solving for x, that the x-intercept of the line (6) is

$$a = -\frac{C}{A}. (9)$$

EXAMPLE. Given the line 3x + 4y - 24 = 0. Find its slope and its intercepts and reduce its equation to the slope intercept and to the intercept form.

We first solve the equation for y, giving

$$y=-\tfrac{3}{4}x+6.$$

This is the slope-intercept form. From it we obtain at once $m = -\frac{3}{4}$ and b = 6. To find a, we put y = 0 and solve for x. We obtain x = 8 = a. Hence

$$\frac{x}{8} + \frac{y}{6} = 1$$

is the intercept form of the equation of the given line.

163. The Linear Function. An expression of the form

$$mx + b, \qquad m \neq 0$$
 (10)

is called a linear function of x.

To find the graph of a linear function, we equate it to y and plot the graph of the resulting equation. We thus find that the graph of a linear equation is a line.

In the applications of mathematics, two variable quantities are often related in such a way that a change of a given amount in one produces a proportional change in the other. Under such circumstances, the second is a linear function of the first.

Example. An automobile, traveling at a constant rate of 40 miles per

hour, has gone 100 miles by noon. Express the distance traveled as a function of the time after noon and draw the graph.

We have

d = 100 + 40t

Fig. 75 where d is the distance traveled in miles and t is the time in hours.

The graph of d, as a function of t, is given in Figure 75. In drawing this graph, we have used a unit on the t-axis 60 times as large as on the d-axis.

Exercises

Find the slopes and intercepts of the following lines.

1.
$$4x - y = 8$$
.

2.
$$5x - 3y = 30$$
.

3.
$$3x + 2y = 12$$
.

4.
$$4x + 3y = 7$$
.

5.
$$4x + 7y + 10 = 0$$
.

6.
$$2x + 5y = 0$$
.

- 7. Find the equation of a line, given that its x-intercept is -4 and its inclination is 135° .
 - 8. Find the angle from the line x + 3y = 7 to the line 2x 5y = 12.
- 9. The sides of a parallelogram are parallel to 2y = 3x 1 and 2x + 5y = 9. Two vertices are (5, 8) and (3, 1). Find the equations of the sides of the parallelogram.
- 10. Two sides of a rectangle are parallel to 3x + 5y = 7 and have x-intercepts 2 and -5, respectively. The other two sides have y-intercepts 3 and 7, respectively. Find the equations of the sides of the rectangle.
- 11. The equations of two sides of a parallelogram are 3x 2y + 5 = 0 and 3x + 5y 9 = 0. If (4, -2) is a vertex, find the equations of the other two sides.
- 12. The equations of two sides of a rectangle are x 2y = 4 and x 2y + 11 = 0. The equation of one diagonal is 8x y = 17. Find the equations of the other two sides.
 - 13. Find the slope of a line in terms of its intercepts a and b.

- 14. Find the x-intercept of a line in terms of its slope m and its y-intercept b.
- 15. Show that the condition that the lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are parallel is $A_1B_2 A_2B_1 = 0$.
- 16. Show that the condition that the lines in Ex. 15 are perpendicular is $A_1A_2 + B_1B_2 = 0$.
- 17. Show that, if $C_1 \neq C_2$, the lines $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$ are parallel.
- 18. Show that the lines $Ax + By + C_1 = 0$ and $Bx Ay + C_2 = 0$ are perpendicular.
- 164. The Normal Form. Let l (Fig. 76) be the given line. Draw through O a line ON perpendicular to l and let ω be the inclination of

this perpendicular. From Art. 151, we have, $0^{\circ} \le \omega < 180^{\circ}$. We shall consider *ON* as a directed line, its positive direction being that of the terminal half-line of ω .

Fig. 76

From the definitions of $\sin \omega$ and $\cos \omega$, we find that

$$x_1 = p \cos \omega, \quad y_1 = p \sin \omega.$$

Let m be the slope of l. Since ON is perpendicular to l, we have

$$m = -\cot \omega$$
.

If we substitute these values of x_1 , y_1 , and m in the point slope equation (1) of a line, we have

$$y - p \sin \omega = -\cot \omega (x - p \cos \omega).$$

In this equation, we replace cot ω by its value $\frac{\cos \omega}{\sin \omega}$ and multiply through by $\sin \omega$. We thus obtain

$$y \sin \omega - p \sin^2 \omega = -x \cos \omega + p \cos^2 \omega,$$
or
$$x \cos \omega + y \sin \omega - p(\sin^2 \omega + \cos^2 \omega) = 0,$$
that is
$$x \cos \omega + y \sin \omega - p = 0.$$
(11)

This is the normal form of the equation of a line. Its importance arises chiefly from the fact (which we shall prove in Art. 166) that, whenever we are required to determine the distance from a line to a point, we shall need the equation of the line in the normal form.

EXAMPLE 1. Find the normal form of the equation of the line through A(-3, -4) perpendicular to the line through A and the origin.

Draw the line ON through O and A. From the figure, ω is an acute angle and OA, or p, is negative. Hence we have

$$p = -\sqrt{(-3)^2 + (-4)^2} = -5$$
, $\sin \omega = \frac{-4}{-5} = \frac{4}{5}$, $\cos \omega = \frac{-3}{-5} = \frac{3}{5}$,

and the required equation is

$$\frac{3x}{5} + \frac{4y}{5} + 5 = 0.$$

EXAMPLE 2. Two lines of inclination 60° lie at a distance from the origin numerically equal to 10. Find their equations in the normal form.

From Figure 78 we find $\omega = 60^{\circ} + 90^{\circ} = 150^{\circ}$, so that $\sin \omega = \sin 150^{\circ} = \frac{1}{2}$ and $\cos \omega = \cos 150^{\circ} = -\frac{\sqrt{3}}{2}$. For one of the required lines, p = 10 and, for the other, p = -10. Hence the required equations are

$$-\frac{\sqrt{3}}{2}x + \frac{1}{2}y - 10 = 0 \text{ and } -\frac{\sqrt{3}}{2}x + \frac{1}{2}y + 10 = 0.$$

165. Reduction of the Equation of a Line to the Normal Form. Let

$$Ax + By + C = 0 ag{12}$$

be the equation of a line and let

$$x\cos\omega + y\sin\omega - p = 0 \tag{13}$$

be the normal form of the equation of the same line. To reduce the first equation to the second, we multiply it by a constant k

$$kAx + kBy + kC = 0, (14)$$

and determine k so that the coefficients in this equation and in (13) are equal, that is,

$$kA = \cos \omega, \qquad kB = \sin \omega, \qquad kC = -p.$$
 (15)

If we square the members of the first two of equations (15) and add, we obtain $k^2A^2 + k^2B^2 = \cos^2 \omega + \sin^2 \omega = 1.$

If we solve this equation for k, we find that

$$k = \frac{1}{\pm \sqrt{A^2 + B^2}}. (16)$$

To determine the sign of the radical, we note that, since $0^{\circ} \leq \omega < 180^{\circ}$, sin ω is always positive or zero. Hence, by the second equation of (15), if $B \neq 0$, k and B have the same signs. If, however, B = 0, then sin $\omega = 0$, so that $\omega = 0$, cos $\omega = 1$ and k agrees in sign with A.

If we substitute the value of k from (16) in (14), we obtain, as the normal form of the equation of the line defined by (12),

$$\frac{A}{\pm \sqrt{A^2 + B^2}}x + \frac{B}{\pm \sqrt{A^2 + B^2}}y + \frac{C}{\pm \sqrt{A^2 + B^2}} = 0, \quad (17)$$

where the signs before the radicals agree with that of B if $B \neq 0$, and with that of A if B = 0.

Hence, to reduce the equation of a line to the normal form, divide each term by $\pm \sqrt{A^2 + B^2}$, choosing the sign before the radical so as to make the coefficient of y positive if $B \neq 0$, and the coefficient of x positive if B = 0.

EXAMPLE. Reduce the equation x - 3y - 7 = 0 (Fig. 79) to the normal form and find the values of ω and p.

Since B = -3 < 0, divide each term by $-\sqrt{1^2 + (-3)^2} = -\sqrt{10}$. The required equation is thus found to be

$$\frac{-x}{\sqrt{10}} + \frac{3y}{\sqrt{10}} + \frac{7}{\sqrt{10}} = 0.$$

 $\begin{array}{c|c}
N & \omega \\
\hline
O & p \\
\hline
A & x-3y-7=0
\end{array}$ Fig. 79

Since this equation is in the normal form, we have, by comparing it with equation (11),

$$\cos \omega = -\frac{1}{\sqrt{10}}$$
, $\sin \omega = \frac{3}{\sqrt{10}}$, and $p = -\frac{7}{\sqrt{10}}$.

From the tables, we find $\omega = 108^{\circ} 26'$.

Exercises

Write the equations of the following lines in the normal form.

1.
$$\omega = 45^{\circ}$$
, $p = 5$.
2. $\omega = 150^{\circ}$, $p = 6$.
3. $\omega = 60^{\circ}$, $p = -4$.
4. $\omega = \pi/6$, $p = -2$.
5. $\omega = 2\pi/3$, $p = 7$.
6. $\omega = 3\pi/4$, $p = -9$.

Write the equations of the following lines in the normal form and find the values of ω and ϕ .

7.
$$5x + 5\sqrt{3}y - 6 = 0$$
.

8.
$$x + y + 11 = 0$$
.

9.
$$x-y=0$$
.

8.
$$x + y + 11 = 0$$
.
10. $\sqrt{3}x - y + 8 = 0$.

11.
$$3x - 4y - 15 = 0$$
.

12.
$$8x + 15y = 0$$
.

- 13. Find the equation of the line through (3, -7) for which $(a) \omega = 135^{\circ}$, (b) $\omega = \pi/6$.
- 14. Find the equation of the line through (-12, 5) which is perpendicular to the line joining this point to the origin.
- 15. Find the equation of a line whose y-intercept is 8 and for which $\omega = 150^{\circ}$.
- 16. Find the equations of two lines of inclination 30° each of which is tangent to the circle of radius 3 with its center at the origin.

HINT. If a line is tangent to a circle, it is perpendicular to the radius at its point of tangency and its distance from the center is equal to the radius.

- 17. Solve Ex. 16 when the inclination is 135° and the radius is 7.
- 18. Find the equations of two lines whose x-intercepts are 13 and which are tangent to the circle of radius 5 with its center at the origin.
 - 19. Solve Ex. 18 when the y-intercept is 5 and the radius is 4.
- 166. The Distance from a Line to a Point. Let $P_1(x_1, y_1)$ be the given point and let the normal form of the equation of the given line be

$$x\cos\omega+y\sin\omega-p=0,\qquad (18)$$

in which p is the directed distance OA (Fig. 80).

If l' is the line through P_1 parallel to l, we may write its equation in the normal form

$$x\cos\omega+y\sin\omega-p'=0,$$

Fig. 80 where ω has the same value as in equation (18) (Why?) and p' is the directed distance OA'. Since P_1 lies on l', its coordinates satisfy this equation; that is,

$$x_1 \cos \omega + y_1 \sin \omega - p' = 0. \tag{19}$$

Let Q_1 be the foot of the perpendicular from P_1 on l and let us choose the positive direction on the line through Q_1 and P_1 to agree with that on ON. Then we have, for the required directed distance d,

$$d = Q_1 P_1 = AA' = OA' - OA = p' - p.$$

If we substitute for p' in this equation its value from (19), we have

$$d = x_1 \cos \omega + y_1 \sin \omega - p; \qquad (20)$$

that is, to find the distance from a line to a point, substitute the coördinates of the point in the first member of the normal form of the equation of the line. The resulting number is the required distance.

The distance d, or Q_1P_1 , determined by (20), is a directed distance. It is positive if Q_1P_1 agrees in direction with the positive direction on ON and it is negative in the contrary case.

If the equation of the line is given in the general form

$$Ax + By + C = 0$$

and we wish to find the distance of the point $P_1(x_1, y_1)$ from it, we first reduce the equation of the line to the normal form, as in equation (17), and then substitute the coördinates of P_1 in it. The result is

$$d = \frac{Ax_1 + By_1 + C}{\pm \sqrt{A^2 + B^2}} \tag{21}$$

wherein the sign before the radical agrees with that of B if $B \neq 0$, and agrees with that of A if B = 0.

EXAMPLE. Find the distance from the line 2x - y - 4 = 0 to each of the points $P_1(-1, -2)$, $P_2(5, 0)$, and $P_3(3, 5)$.

We first reduce the given equation to the normal form by dividing through by $-\sqrt{2^2 + (-1)^2} = -\sqrt{5}$. The result is

$$\frac{2x-y-4}{-\sqrt{5}}=0.$$

By substituting the coördinates of the given points in the first member of this equation, we find as the required distances

$$\begin{array}{c|c}
P_3 & Q_3 \\
\hline
Q_2 & P_2 \\
\hline
Q_1 & Q_1
\end{array}$$

$$d_1 = \frac{4}{\sqrt{5}}, \qquad d_2 = -\frac{6}{\sqrt{5}}, \qquad d_3 = \frac{3}{\sqrt{5}}.$$

Since d_1 and d_3 are positive and d_2 is negative, the points P_1 and P_3 lie above the line and P_2 lies below it (Fig. 81).

Exercises

Find the distance from the given line to the given point and state whether the point lies above the line or below it.

- 1. 15x + 8y 14 = 0, (5, 3). 2. 3x 4y + 8 = 0, (-5, 2).
- 3. 5x 12y + 3 = 0, (7, 1). 4. 24x + 7y = 0, (3, -11).
- 5. 3x + 8y = 0, (-5, 4). 6. 2x - 9y - 14 = 0, (-4, -3).
- 7. Show that the points (-2, -1) and (11, 2) lie on opposite sides of the line 2x 5y 9 = 0.
- 8. Show that the point (5, -3) lies between the parallel lines 2x + 3y 9 = 0 and 6x + 9y + 13 = 0.

Find the distance between the following pairs of parallel lines.

- 9. 3x + 4y 9 = 0, 3x + 4y + 6 = 0.
- **10.** 12x 5y + 4 = 0, 36x 15y 40 = 0.
- 11. 2x + y 7 = 0, 4x + 2y + 11 = 0.
- 12. 3x 7y + 2 = 0, 6x 14y + 21 = 0.
- 13. Write the equation of the locus of a point whose directed distance from 4x + 7y - 5 = 0 is (a) 3, (b) -7.
- 14. Find two points on the line x + 7y = 22 that lie at a distance from 3x - 4y + 9 = 0 numerically equal to 5.
- 15. Find two lines parallel to 4x + 3y + 5 = 0 that lie at a distance from (3, -7) numerically equal to 8.
- 16. Show that the equations of the bisectors of the pairs of vertical angles formed by the lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are

$$\frac{A_1x + B_1y + C_1}{\sqrt{A_1^2 + B_1^2}} = \pm \frac{A_2x + B_2y + C_2}{\sqrt{A_2^2 + B_2^2}}.$$

HINT. One bisector is the locus of the points whose distances from the given lines are equal in magnitude and sign; the other is the locus of the points whose distances are equal in magnitude but opposite in sign.

- 17. Using the results of Ex. 16, find the equations of the bisectors of the angles formed by the lines 2x + 11y + 30 = 0 and x - 2y + 3 = 0 and state which bisects the angle in which (-2, 5) lies.
- 18. Find the equations of the bisectors of the interior angles of the triangle formed by the lines 7x + 6y - 11 = 0, 9x - 2y + 7 = 0, and 6x - 7y-16 = 0. Show that these lines meet in a point (the center of the inscribed circle) and find its coördinates.
- 167. The Area of a Triangle. Let $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, and $P_3(x_3, y_3)$ be the vertices of a triangle. If we consider the side P_2P_3 as the base, the length of the base is, by the distance formula,

$$b = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}.$$

To find the altitude, we first find the equation of the line through P_2 and P_3 . By equation (4), this is

$$(y_2-y_3)x-(x_2-x_3)y+x_2y_3-y_2x_3=0.$$

The altitude, h, is the distance of P_1 from this line. Hence,

h, is the distance of
$$P_1$$
 from this line. Hence,
$$h = \frac{(y_2 - y_3)x_1 - (x_2 - x_3)y_1 + x_2y_3 - y_2x_3}{\pm \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2}}.$$

For the area, we have $S = \frac{1}{2}bh$. Replace b and h by their values just given. We have

$$S = \pm \frac{1}{2}(x_1y_2 - x_1y_3 - x_2y_1 + x_3y_1 + x_2y_3 - x_3y_2).$$

This formula is more easily remembered if it is written as a determinant, as follows,

$$S = \pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} . \tag{22}$$

The sign should be chosen so as to make S positive.

Exercises

Find the areas of the triangles whose vertices are:

- 1. (2, -3), (-9, 8), (8, 4).2. (9, 5), (1, 6), (2, 1).3. (6, -1), (-7, 9), (9, 11).4. (3, 5), (8, 1), (9, 4).5. (5, 3), (-1, 7), (3, 1).6. (5, 2), (1, 3), (-6, 2).7. (-2, 3), (4, -1), (6, 2).8. (-1, 2), (2, 3), (6, -3).

Show by areas that the three points lie on a line. Check your results by finding the slopes.

9.
$$(1, 3), (4, -2), (-5, 13)$$

9.
$$(1, 3), (4, -2), (-5, 13)$$
. 10. $(-1, -5), (5, 4), (9, 10)$.

168. Families of Lines. Parameters. If, in the equation

$$3x + 5y + k = 0, (23)$$

we substitute for k any number we please, we determine a line. For example, if we put k = 10, we obtain

$$3x + 5y + 10 = 0$$

which is the equation of a line; and similarly for any other value we may assign to k (Fig. 82).

All the lines that can be determined by substituting values for k in (23) are parallel since their slopes all equal -3/5. Moreover, by substituting a suitable value for k in (23), we can obtain the equation of any given line of slope -3/5. Equation (23) is consequently called the equation

of the family of lines of slope -3/5 and k is the parameter of the family. Similarly, the equation,

$$(3x-2y+4)+k(x-5y+2)=0, (24)$$

in which k is a parameter, defines a family of lines. All the lines of this family pass through the point of intersection of the lines

$$3x - 2y + 4 = 0$$
, and $x - 5y + 2 = 0$. (25)

For, the coördinates of the point of intersection of these two lines satisfy both of equations (25) and hence, when substituted in (24), reduce that equation to 0 + k0 = 0, which is true for all values of k. Equation (24)

is called the equation of the family of lines through the point of intersection of the lines (25).

More generally, if the coefficients in the equation of a line contain a quantity k such that, by letting k run through all possible values, we obtain a whole system of lines satisfying some geometric condition, then we say that the given equation defines a **tamily** of lines and that k is the **parameter** of the family.

For our purposes, the importance of the consideration of families of lines lies in the fact that, if the required line is known to belong to a given family, we may first write the equation of this family and then find from the conditions of the problem the value of k that fixes the required line. The following examples will indicate the procedure.

EXAMPLE 1. Find the equations of the lines parallel to 8x + 15y - 10 = 0 (Fig. 83) that lie at a distance from (2, 1) numerically equal to 2.

The equation of the family of lines parallel to the given line is

$$8x + 15y + k = 0.$$

Since we have to do with the distance from this line to a point, we first reduce its equation to the normal form

$$\frac{8}{17}x + \frac{15}{17}y + \frac{k}{17} = 0.$$

The condition that the distance from this line to (2, 1) is equal to ± 2 is now found, by substituting the coördinates of (2, 1) in the first member of the above equation and equating the result to ± 2 , to be $\frac{31+k}{17}=\pm 2$. Hence k=3 or k=-65 and the required lines are

$$8x + 15y + 3 = 0$$
 and $8x + 15y - 65 = 0$.

EXAMPLE 2. Find the equation of the line of inclination 135° through the intersection of 8x - 2y - 5 = 0 and 5x + 10y + 7 = 0.

The equation of the family of lines through the intersection of the given lines is

$$8x - 2y - 5 + k(5x + 10y + 7) = 0,$$

$$(8 + 5k)x + (-2 + 10k)y + (-5 + 7k) = 0.$$

Since the slope of the required line is $m = \tan 135^{\circ} = -1$, we have, by equation (8), Art. 162,

$$-\frac{8+5k}{-2+10k}=-1.$$

Hence, k = 2. The line of the family for which k = 2 is

$$2x + 2y + 1 = 0$$
.

This is the line required.

or

EXAMPLE 3. Find the equations of the lines through (6, -1) for which the product of the intercepts equals 3.

Denote the intercepts by a and b. From the statement of the problem, ab = 3 or b = 3/a. By substituting this value of b in the intercept form, $\frac{x}{a} + \frac{y}{b} = 1$, of the equation of a line, we get

$$\frac{x}{a} + \frac{ay}{3} = 1$$
, or $3x + a^2y = 3a$.

This is the equation of the family of lines for which the product of the intercepts equals 3.

The condition that a line of this family passes through (6, -1) is that the coördinates of this point satisfy the equation of the line. On putting x = 6, y = -1 in the preceding equation, we get

$$18 - a^2 = 3a$$
.

Hence, a = 3 or a = -6. By substituting these values of a in the equation of the family, we find, as the equations of the required lines,

$$x + 3y - 3 = 0$$
, and $x + 12y + 6 = 0$.

Exercises

Write the equations of the following families of lines. Assume, in each case, four values of the parameter and draw the corresponding lines.

- 1. Of slope -3.
- 3. Having $\omega = 3\pi/4$.
- 5. Through (2, -9).
- 7. With y-intercepts 7.
- 2. Parallel to 2x 5y + 1 = 0.
- 4. Perpendicular to 3x + 5y = 0.
- 6. Having equal intercepts.
- 8. With x-intercepts -7.
- 9. Through the intersection of 3x + 5y 2 = 0 and 2x 7y + 8 = 0.
- 10. Tangent to the circle with center at (0, 0) and radius 3.

Draw four lines of each of the following families and state a geometric property common to all the lines of the family.

11.
$$\frac{x}{a} + \frac{y}{3} = 1$$
.

$$\frac{a}{a} + \frac{y}{3} = 1.$$
 12. $y = mx + 9.$

13.
$$x = a$$
.
15. $y + 3 = m(x - 2)$.

14.
$$x+y-5+k(x-3y)=0$$
.

16.
$$x \cos \omega + y \sin \omega \pm 6 = 0$$
.

- 17. Find the line of the family y = mx 3 that passes through the point (a) (2, 5), (b) (-4, 9).
- 18. Find the line through the intersection of 7x + 4y 10 = 0 and 9x + 7y - 5 = 0 that is (a) parallel, and (b) perpendicular to 2x + 3y - 6 = 0.
- 19. Find the line through (2, 5) and the intersection of the lines 2x 3y-2 = 0 and 2x + 5y - 3 = 0.
- 20. Find two lines through (10, -3) for which the x-intercept exceeds the y-intercept by 2.
- 21. Find the line through (2, 5) for which the sum of the reciprocals of the intercepts is $\frac{1}{3}$.

Chapter 21

The Circle

169. The Standard Form of the Equation of a Circle. A circle is defined as the locus of a point whose distance from a fixed point, the center,

is equal to a constant, the radius.

To find the equation of the circle from its definition, let C(h, k) be the center and let a be its radius. Let P(x, y) be any point on the circle. The distance from P to the center C is equal to a; that is, by the distance formula,

$$\sqrt{(x-h)^2 + (y-k)^2} = a.$$
 (1)

or
$$(x - h)^2 + (y - k)^2 = a^2$$
. (2)

Conversely, if the coördinates of a point satisfy (2), they also satisfy (1). It follows that the distance from P to C is a and that P lies on the circle. Equation (2) is thus the equation of a circle with center at C(h, k) and radius a.

In particular, if the center is at the origin, so that h and k are zero, the equation of the circle reduces to the simple form

$$x^2 + y^2 = a^2. (3)$$

170. The General Form of the Equation of a Circle. If we expand equation (2), we get

$$x^2 + y^2 - 2hx - 2ky + h^2 + k^2 - a^2 = 0.$$
(4)

This equation is of the form

$$x^2 + y^2 + Dx + Ey + F = 0,$$
 (5)

so that every circle has an equation of the form of equation (5).

To find whether, conversely, every equation of the form of equation (5), with real coefficients, is the equation of a circle, we first write (5) in the form

$$(x^2 + Dx) + (y^2 + Ey) = -F$$

and complete the squares of the terms in the two parentheses by adding $D^2/4$ and $E^2/4$ to both sides of the equation. The resulting equation may be written in the form

$$\left(x + \frac{D}{2}\right)^2 + \left(y + \frac{E}{2}\right)^2 = \frac{D^2 + E^2 - 4F}{4}.$$
 (6)

The first member of equation (6) is the square of the distance of the point P(x, y) on the locus from the fixed point (-D/2, -E/2) and the second member is a constant. The appearance of the graph will depend on the value of this constant, in the following way:

(a) If $D^2 + E^2 - 4F > 0$, the second member of equation (6) is positive so that the locus of (6), and hence of (5), is a circle of

Center
$$\left(-\frac{D}{2}, -\frac{E}{2}\right)$$
, and radius $\frac{1}{2}\sqrt{D^2 + E^2 - 4F}$. (7)

- (b) If $D^2 + E^2 4F = 0$, there is only one point on the locus, the center (-D/2, -E/2). In this case, we say that equation (5) defines a point circle or circle of zero radius.
- (c) If $D^2 + E^2 4F < 0$, there can be no points on the graph since neither term in the first member of equation (6) can be negative. In this case, we say that equation (5) defines an imaginary circle, with the center and radius defined by equation (7).

If the definition of a circle is extended as in (b) and (c), equation (5) defines a circle for all real values of D, E, and F. This equation is called the **general form** of the equation of a circle. It is often a more convenient form to work with than equation (2) is because the coefficients enter in it to the first power only.

EXAMPLE 1. Find the center, the radius, and the coördinates of the intersections with the axes, of the circle $x^2 + y^2 - 4x + 8y + 11 = 0$.

To complete the squares of the terms in x and of the terms in y, we first write the equation in the form

$$(x^2-4x)+(y^2+8y)=-11.$$

To complete the square in the first parentheses, we add $(-2)^2$, and, in the second, $(4)^2$. After making these additions to both sides, we may write the resulting equation in the form

 $(x-2)^2+(y+4)^2=9.$

The given equation thus defines a circle with center (2, -4) and radius 3 (Fig. 85).

To find the intersections with the x-axis, put v = 0 and solve for x.

$$x^2 - 4x + 11 = 0.$$

$$x=2\pm\sqrt{-7}$$
.

Since these values of x are imaginary, the curve does not intersect the x-axis (Fig. 85).

By putting x = 0, we obtain

$$y^2 + 8y + 11 = 0$$

so that

$$y = -4 \pm \sqrt{5}.$$

Hence the intersections with the y-axis are $(0, -4 + \sqrt{5})$ and $(0, -4 - \sqrt{5})$.

Example 2. Find the equation of the circle of radius 5 that lies in the first quadrant and is tangent to both axes.

Since the distance from the center of a circle to a tangent is numerically equal to the radius, the coördinates of the center of the required circle are (5, 5) (Fig. 86), and its equation is, from (2),

$$(x-5)^2 + (y-5)^2 = 5^2$$

or

$$x^2 + y^2 - 10x - 10y + 25 = 0.$$

To verify that the circle defined by this equation is tangent to the x-axis, we put y = 0 in the final equation, giving

$$x^2 - 10x + 25 = 0$$

 $x^2 - 10x + 25 = 0$. Since the roots of this equation are equal, the circle is tangent to the x-axis. The point of tangency is found, by solving the above equation, to be (5, 0). Similarly, by putting x = 0, we find that it touches the y-axis at (0, 5).

Exercises

Write the equation of the circle having the given point as center and satisfying the given conditions.

- **1.** (4, 7), radius 5.
- 3. (-2, 8), radius 7.
- **5.** (6, -6), radius 6.
- 7. (12, -5), through (0, 0).
- **9.** (-4, 3), tangent to x = 0.
- 2. (-3, 2), radius 4.
- 4. (4, -3), radius 3.
- 6. (-1, 2), radius $\frac{5}{2}$.
- 8. (2, 7), through (6, 4).
 - 10. (5, 7), tangent to y = 0.
- **11.** (4, -2), tangent to 4x 3y + 8 = 0.
 - 12. (4, 7), tangent to 2x + 3y 3 = 0.

Find the center and radius of each of the following circles. State whether the circle is a real circle, a point circle, or an imaginary circle.

- 13. $x^2 + y^2 10x + 24y = 0$.
- 14. $x^2 + y^2 + 6x 14y 15 = 0$.
- **15.** $x^2 + y^2 8x + 10y 17 = 0$.
- 16. $x^2 + y^2 + 12x + 8y + 52 = 0$.

20. $2x^2 + 2y^2 - 7x - 5y - 1 = 0$.

- 17. $x^2 + y^2 4x 6y + 22 = 0$. 19. $5x^2 + 5y^2 - 4x + 12y - 37 = 0$.
- 18. $x^2 + y^2 + 3x 7y + 9 = 0$.

Write the equations of the following circles.

- 21. Having (2, -7) and (8, 1) as ends of a diameter.
- 22. Passing through (2, -5) and concentric with $x^2 + y^2 6x + 4y = 0$.
- 23. Find the points of intersection of the line x 7y + 16 = 0 with the circle $x^2 + y^2 - 4x + 2y - 20 = 0$.
 - 24. Find the points of intersection of the circles

$$x^2 + y^2 - 8x + 2y - 17 = 0$$
, $x^2 + y^2 - 12x - 2y + 3 = 0$.

Write the equations of the following families of circles.

- 25. With center at (0, 0). 26. With center at (-3, 7).
- 27. With center on the y-axis and passing through the origin.
- 28. With center on the line y = x and passing through the origin.

171. Circles Determined by Three Conditions. Each of the forms of the equation of a circle,

$$(x-h)^2 + (y-k)^2 = a^2$$
 and $x^2 + y^2 + Dx + Ey + F = 0$,

contains three constants. In order to find the equation of a required circle, we must, accordingly, be given enough information about the circle so that we can set up three equations from which to determine these constants. We can, for example, determine the constants if we know that the circle passes through three given points, or that it passes through two known points and that its center lies on a given line, and so on.

In any given problem, we must first decide which of the above two

standard forms of the equation of the circle to use. If the coördinates of the center and the radius can be determined conveniently from the statement of the problem, it is usually best to find these numbers and substitute them in the first standard form. In most other cases, it is easier to use the general form of the equation of the circle, since the constants D, E, and F enter in this equation to the first power only.

Fig. 87

EXAMPLE 1. Find the equation of the circle through the points (5, 3), (6, 2), and (3, -1) (Fig. 87).

In problems of this type, we shall use the general form (5).

To find D, E, and F, we impose the condition that the coördinates of each of the given points satisfy the equation of the circle, that is,

$$25 + 9 + 5D + 3E + F = 0,$$

 $36 + 4 + 6D + 2E + F = 0,$
 $9 + 1 + 3D - E + F = 0.$

On solving these equations for D, E, and F, we find that

$$D=-8$$
, $E=-2$, $F=12$.

When these values of D, E, and F are substituted in equation (5), we have, as the required equation of the circle through the given points,

$$x^2 + y^2 - 8x - 2y + 12 = 0.$$

EXAMPLE 2. Find the equations of the circles that pass through (-1, 1), and (1, 3) and are tangent to the line x + 3y = 0 (Fig. 88).

In this case, we shall use equation (2).

or

and

Since the coördinates of each of the given points satisfy the equation of the circle, we have

$$(-1-h)^2 + (1-k)^2 = a^2$$
$$(1-h)^2 + (3-k)^2 = a^2.$$

Since the distance from the center to the given tangent line is numerically equal to the radius, we have also

$$\frac{h+3k}{\sqrt{10}} = \pm a$$

By subtracting the second equation from the first, and simplifying, we obtain

$$h + k - 2 = 0. ag{8}$$

If we substitute the value of a from the third equation in the first, and simplify, we have

$$9h^2 - 6hk + k^2 + 20h - 20k + 20 = 0. (9)$$

On solving (8) and (9) as simultaneous and substituting the resulting solutions in the first of the above equations to find a, we obtain

$$h = -2$$
, $k = 4$, $a = \sqrt{10}$ and $h = \frac{1}{2}$, $k = \frac{3}{2}$, $a = \frac{\sqrt{10}}{2}$.

By substituting these sets of values of h, k, and a in (2), we obtain, as the equations of the required circles,

$$(x+2)^2 + (y-4)^2 = 10$$
 and $(x-\frac{1}{2})^2 + (y-\frac{3}{2})^2 = \frac{5}{2}$
 $x^2 + y^2 + 4x - 8y + 10 = 0$ and $x^2 + y^2 - x - 3y = 0$.

Exercises

Find the equation of the circle through the given points.

- 1. (0, 0), (6, 0), (0, -8).
- **2.** (0, 0), (4, 2), (1, 3).
- 3. (2, 3), (4, -1), (5, 2).
- 4. (4, 5), (2, 9), (-2, -3).
- 5. (4, 3), (2, 7), (-3, -8).
- **6.** (9, 4), (3, 2), (5, 6).
- 7. (4, 9), (6, 5), (2, -3).
- 8. (3, 1), (-2, 5), (1, 4).

Find the equations of the circles that satisfy the given conditions.

- 9. Circumscribed about the triangle defined by the lines 3x + 2y = 13, x + 2y = 3, and x + y = 5.
- 10. Circumscribed about the triangle defined by x + y = 1, x + 3y + 5 = 0,
- and x + 2y + 4 = 0. 11. With center at the intersection of the lines 3x + 5y = 7 and x - 2y + 5 = 0 and passing through (2, -4).
- 12. Passing through (6, 3) and (-2, 7) and having its center on 3x 5y = 16.

- 13. Concentric with the circle $x^2 + y^2 + 10x 2y = 0$ and tangent to the line 5x 12y = 15.
- 14. Tangent to 2x 5y 18 = 0 at (4, -2) and having its center on 4x 7y + 13 = 0.
 - 15. Tangent to 3x + 2y 18 = 0 at (2, 6), and passing through (-3, 7).
 - 16. Tangent to 3x 4y = 13 at (7, 2); radius 10.
 - 17. Passing through (5, 7) and (-2, 14); radius 13.
- 18. Tangent to the lines x + y + 4 = 0 and 7x y + 4 = 0 and having its center on 4x + 3y 2 = 0.
 - 19. Passing through (2, 3) and (3, 6) and tangent to 2x + y = 2.
 - 20. Tangent to the circle $x^2 + y^2 = 25$; center at (6, 8).
 - 21. Inscribed in the triangle x = 0, y = 0, 3x + 4y = 24.
 - 22. Inscribed in the triangle 11x 2y = 0, 2x 11y = 0, x + 2y = 24.
 - 172. The Family of Circles S + kS' = 0. Let

$$S = x^{2} + y^{2} + Dx + Ey + F = 0,$$

$$S' = x^{2} + y^{2} + D'x + E'y + F' = 0,$$
(10)

and

be the equations of two circles. Consider the family of curves

$$S + kS' = x^2 + y^2 + Dx + Ey + F + k(x^2 + y^2 + D'x + E'y + F') = 0.$$
 (11)

For all values of k except k = -1, the curves of this family are circles, since, if $k \neq -1$, we may write the equation in the form

$$x^{2} + y^{2} + \frac{D + kD'}{1 + k}x + \frac{E + kE'}{1 + k}y + \frac{F + kF'}{1 + k} = 0$$
 (12)

which is the equation of a circle.

If the circles S=0 and S'=0 intersect (Fig. 89a), all the circles (12) pass through their points of intersection. For, let $P_1(x_1, y_1)$ be a

point the coördinates of which satisfy both equations (10). When we substitute the coördinates of P_1 in (11), the resulting equation reduces to $0 + k \cdot 0 = 0$, which is true for all values of k, so that P_1 lies on all of the curves (11).

If S = 0 and S' = 0 do not intersect (Fig. 89b), the family of circles (11) still exists but no two circles of the family intersect.

If the circles S = 0 and S' = 0 are not concentric, the curve of the family (11) defined by putting k = -1 is the line

$$(D - D')x + (E - E')y + F - F' = 0.$$
 (13)

This line is the radical axis of the family of circles (11).

If S = 0 and S' = 0 intersect in two points, the radical axis (13) passes through these two points and is thus the common chord of all the circles of the family (11).

Exercises

Draw four circles and the radical axis of the family S + kS' = 0, given

1.
$$S = x^2 + y^2 + 8y - 18 = 0$$
, $S' = x^2 + y^2 - 16y + 6 = 0$.

2.
$$S = x^2 + y^2 - 20x = 0$$
, $S' = x^2 + y^2 + 30x + 125 = 0$.

- 3. In Ex. 1, find the points of intersection of S=0 and S'=0. Show that every circle through these two points belongs to the family S + kS' = 0.
- 4. In Ex. 2, show that there are two point circles in the family and find their equations.
- 5. Given $S = x^2 + y^2 + 12x + 2y 16 = 0$ and $S' = x^2 + y^2 + 3x y 7$ = 0, find the circle S + kS' = 0 that passes through (-1, 4).
- 6. Find the circle of the family defined in Ex. 5 that has its center on the line 3x + 7y - 23 = 0.

Write the equation S + kS' = 0 of the family, find the equation of the radical axis and the coördinates of the points (if there are any) common to all the curves of the family, given:

7.
$$S = x^2 + y^2 - 10x - 8y + 21 = 0$$
, $S' = x^2 + y^2 + 2x - 12y + 17 = 0$.

8.
$$S = x^2 + y^2 - 6x - 4y + 5 = 0$$
, $S' = x^2 + y^2 - 14x + 2y + 21 = 0$.

9.
$$S = x^2 + y^2 - 14x - 6y + 33 = 0$$
, $S' = x^2 + y^2 + 4x + 2y - 11 = 0$.

- 10. If S=0 and S'=0 are not concentric, show that the centers of all the circles of the family S + kS' = 0 lie on the line through the centers of S=0 and S'=0. This line is the line of centers of the family.
 - 11. Show that the line of centers (Ex. 10) is perpendicular to the radical axis.

 $(x-h)^2 + (y-k)^2 - a^2 = 0$. Let T be the point of tangency of either tangent from P_1 to this circle (Fig. 90). Show that $P_1T^2 = (x_1 - h)^2 + (y_1 - k)^2 - a^2$. The undirected length P_1T is called the length of the

12. Let $P_1(x_1, y_1)$ be a point external to the circle

tangent from P_1 to the circle.

HINT. CTP1 is a right triangle.

13. If the lengths of the tangents (Ex. 12) from P_1 to two circles S=0and S' = 0 are equal, show that P_1 lies on the radical axis of S + kS' = 0, and conversely.

173. Loci Problems. In some of the following problems, no coördinate axes are indicated in the statement of the problem. In such cases, the student should choose for himself a set of axes that will make the computations as simple as possible.

To find the equation of the required locus, follow the directions for finding the equation of a locus outlined in Art. 155.

Example 1. Given two points A and B such that the length of the segment

AB = 2c. Find the locus of a point such that the sum of the squares of its distances from A and B is equal to $4c^2$.

We choose the line through A and B as x-axis and the line perpendicular to it through the midpoint of the segment AB as y-axis (Fig. 91). Then the coördinates of A are (-c, 0) and of B(c, 0).

Let P(x, y) be a point anywhere on the locus. From the statement of the problem, we have

$$AP^2 + BP^2 = 4c^2$$

and, on replacing AP^2 and BP^2 by their values from the distance formula, we obtain, as the equation of the required locus,

$$(x+c)^2 + (y-0)^2 + (x-c)^2 + (y-0)^2 = 4c^2$$
.

This equation may be simplified to

$$x^2 + y^2 = c^2.$$

The required locus is thus a circle on AB as a diameter.

If a problem imposes two geometric conditions on a point, we may find the equation of the locus of a point that satisfies each given condition separately. The points of intersection of these two loci will then be the points that satisfy both given conditions.

EXAMPLE 2. Given the base of a triangle and the lengths of the altitude and the median from the vertex to the base. Find the vertex of the triangle.

Take the midpoint of the base as origin and the line that contains the base

Fig. 92

as x-axis. Denote the length of the base, the altitude, and the median by 2c, h, and m, respectively. Then the coördinates of the ends of the base are A(-c, 0) and B(c, 0) (Fig. 92).

Let C(x, y) be the required vertex.

The statement of the problem imposes two conditions on C. We shall determine the locus of a point that satisfies each of these conditions separately. Then any point of intersection of the two loci so obtained may be

taken as the required vertex.

Since the distance of C from the midpoint (0, 0) of the base is equal to m, the length of the median, C lies on the circle

$$x^2 + y^2 = m^2. (14)$$

Since the distance of C from the x-axis is numerically equal to h, the length of the altitude, C lies on one of the lines

$$y = h$$
 or $y = -h$.

The intersections of these lines with the circle (14), that is, the points

$$(\sqrt{m^2-h^2}, h), (-\sqrt{m^2-h^2}, h), (\sqrt{m^2-h^2}, -h), (-\sqrt{m^2-h^2}, -h)$$

are the required positions of the vertex C.

The four triangles having the segment AB as base, and any one of the above four points as vertex, are congruent.

If $m^2 - h^2 < 0$, the triangle cannot be constructed.

Problems

Find the equation of the locus of a point satisfying the given conditions.

- 1. Its distance from (4, 6) equals three times its distance from (1, 3).
- 2. The sum of the squares of its distances from 2x y 7 = 0 and x + 2y + 4 = 0 equals 16.
- 3. The square of its distance from the origin equals 20 times its directed distance from 3x 4y + 11 = 0.
- 4. The sum of the squares of its distances from x + y 3 = 0 and x y + 1 = 0 equals 34 times its directed distance from 15x + 8y 21 = 0.
- 5. Find the locus of the midpoint of the segment joining the origin to any point on the circle $x^2 + y^2 10x 16y + 80 = 0$.
- 6. Find the locus of the midpoint of a segment of length 20 having its end points on the coördinate axes.

Choose a suitable set of coördinate axes and find the equation of the locus of a point satisfying the given conditions.

- 7. The sum of the squares of its distances from two adjacent sides of a rectangle equals three times the sum of the squares of its distances from the other two sides.
- 8. Its distance from a fixed point A is k times its distance from a fixed point B.
 - 9. The lines joining it to two fixed points intersect at a constant angle.
- 10. The sum of the squares of its distances from three given points equals a constant.
- 11. The feet of the perpendiculars from it to the sides of a given triangle lie on a line.

In the following problems, two vertices of a triangle are given. Find the third vertex as a point of intersection of two loci, given:

- 12. The base, the area, and the length of one side.
- 13. The base, a base angle, and the median to the base.
- 14. The base, the angle at the vertex, and the altitude.
- 15. The base, the angle at the vertex, and the length of the median to the base.
 - 16. The base, a base angle, and the radius of the circumcircle.

Polar Coördinates

174. Introduction. Instead of fixing the position of a point by its directed distances from two fixed lines, as in rectangular coördinates, it is sometimes preferable to locate it by its distance and direction from a fixed point. When its position is fixed in this way, the point is said to be located by means of polar coördinates.

In principle, the method of fixing the position of a point by its polar coördinates is not unfamiliar. We are accustomed, for example, to such statements as that Cleveland is about 300 miles northwest of Washington, or that Buffalo is about 400 miles west of Boston.

175. Polar Coördinates. Let O be a fixed point, the origin, or pole, and let OI be a fixed line through O, the initial line, or polar axis. The

line through the pole perpendicular to the polar

axis is the 90° axis.

OI for its initial side and the half-line OP for its terminal side. The quantities (r, θ) are called the polar coördinates of P; r is the radius vector and θ is the vectorial angle.

If the polar coördinates (r, θ) are given, the point P is definitely fixed; but, for a given point P, we can find as many pairs of polar co-

ordinates as we please. For, if we add to θ , or subtract from it, any number of complete revolutions, we do not change the terminal side nor the position of P. Thus, (r, θ) , $(r, \theta + 2\pi)$, $(r, \theta - 2\pi)$, etc., are all polar coördinates of the same point P.

Moreover, we can also fix the position of P by choosing, for the terminal side of the vectorial angle, the half-line extending from O in the opposite direc-

tion from P and considering the length of the radius vector as negative. Thus, $(-r, \theta - \pi)$, $(-r, \theta + \pi)$, $(-r, \theta + 3\pi)$, etc., are also polar coordinates of the point (r, θ) .

For plotting points, or drawing graphs, in polar coördinates, it will be found that both speed and accuracy are improved by the use of polar coördinate paper, as in Figure 95.

^{*} The polar coördinates of the origin O are defined by taking the radius vector, r, equal to zero and the vectorial angle, θ , to be of any magnitude we please.

45°

315°

Example. Plot the points having the polar coördinates $(3, 0^{\circ})$, $(4, -240^{\circ})$,

135

225

 π 180

(2,180

270°

Fig. 95

$$(2, 180^{\circ}), \left(3, \frac{\pi}{4}\right), \left(1, \frac{3\pi}{2}\right).$$

From OI, as initial side, we measure off the given angle θ and, on its terminal side, lay off the given length of the radius vector. The resulting points are shown in Figure 95.

Exercises

Plot the points whose polar coördinates are given. Find, for each point, one other pair of polar coördinates for which r is positive and one for which r is negative.

16. Show that the distance between the points $P_1(r_1, \theta_1)$ and $P_2(r_2, \theta_2)$ is $d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2} \cos(\theta_2 - \theta_1).$

HINT. Apply the law of cosines (Art. 142) to the triangle OP_1P_2 .

17. Show that the area of the triangle whose vertices are the origin and the points $P_1(r_1, \theta_1)$ and $P_2(r_2, \theta_2)$ is $S = \frac{1}{2}r_1r_2 \sin (\theta_2 - \theta_1)$.

Using the results of Ex. 16 and 17, find the distance P_1P_2 and the area of the triangle OP_1P_2 , given:

18.
$$P_1(5, 45^\circ)$$
, $P_2(8, 90^\circ)$.
19. $P_1(4, 60^\circ)$, $P_2(10, 150^\circ)$.
20. $P_1(12, 180^\circ)$, $P_2(9, 30^\circ)$.
21. $P_1(6, 37^\circ)$, $P_2(3, 79^\circ)$.

176. Relations between Polar and Rectangular Coördinates. If a system of polar coördinates is so related to a system of rectangular co-

Frg. 96

ordinates that they have the same origin and the directions OI on the initial line and OX on the x-axis coincide, as in Figure 96, then the relations between the polar coördinates (r, θ) and the rectangular coördinates (x, y) of a given point P may be found in the following way.

From the definitions of $\sin \theta$ and $\cos \theta$, we have

$$\cos \theta = \frac{x}{r}$$
 and $\sin \theta = \frac{y}{r}$,

so that the values of x and y in terms of r and θ are

$$x = r \cos \theta, \qquad y = r \sin \theta. \tag{1}$$

$$C = \frac{\chi}{\sqrt{\chi^2 + q^2}}$$

To find r and θ in terms of x and y, we notice (Fig. 96) that $\tan \theta = \frac{y}{x}$ and that r is the hypotenuse of a right triangle whose legs are x and y. Hence

$$r = \sqrt{x^2 + y^2}$$
; $\tan \theta = \frac{y}{x}$ or $\theta = \tan^{-1} \frac{y}{x}$. (2)

When we determine θ from the last of equations (2), we must bear in mind that there are two angles, differing by 180°, for which tan θ has the given value. Before we can determine θ from this equation we must accordingly first find out, by plotting the point on the figure, in what quadrant the given point lies.

Example 1. Find the rectangular coördinates of a point given that its polar coördinates are (4, 60°).

Since $\cos 60^{\circ} = \frac{1}{2}$ and $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$, we have, from equations (1), $x = 4 \cdot \frac{1}{2} = 2, \quad y = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}.$ Hence, the required coördinates are $(2, 2\sqrt{3})$ (Fig.

$$x = 4 \cdot \frac{1}{2} = 2$$
, $y = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$.

97).

Example 2. Find the polar coördinates for a point, given that its rectangular coördinates are (-3, 4).

From equations (2), we have

$$r = \sqrt{(-3)^2 + 4^2} = 5$$
, $\tan \theta = -\frac{4}{3} = -1.3333$.

Moreover, it is seen from Figure 97 that P_2 lies in the second quadrant. Hence we may take $\theta = 126^{\circ} 52'$ and the required coördinates are (5, 126° 52').

Example 3. Transform the equation 3x - y - 5 = 0 to polar coördinates.

By substituting for x and y their values in terms of r and θ from (1), we have

$$3r\cos\theta - r\sin\theta - 5 = 0$$
 or $r(3\cos\theta - \sin\theta) - 5 = 0$.

Example 4. Transform the polar equation $r = 2 \cos \theta + 3 \sin \theta$ to rectangular coördinates.

In this case, it will be convenient, first, to multiply the given equation by r, giving $r^2 = 2r \cos \theta + 3r \sin \theta$.

From equations (1) and (2) we now obtain

$$x^2 + y^2 = 2x + 3y.$$

The student should show that the graph of the student should show that the student should show the student should show that the student should show the st The student should show that the graph of this equation is a circle with

Exercises

Find the rectangular coordinates of the following points.

1. (6, 30°).

2. (7, 90°).

3. (8, -120°).

4. $(4, \frac{\pi}{4})$.

5. $(3, -\pi)$.

6. $\left(-10, \frac{2\pi}{2}\right)$.

Find a pair of polar coördinates for the points whose rectangular coordinates are:

7. $(2, 2\sqrt{3})$. 8. (3, -3). 9. (0, 4). 10. $(-\sqrt{3}, 1)$. 11. (-2, -2). 12. (5, -3). 10. $(-\sqrt{3}, 1)$.

13. Show that (4, 45°), (4, 135°), (4, 225°), and (4, 315°) are the vertices of a square. Find the length of a side of the square.

14. The center of a regular hexagon is at the origin. One vertex is at (5, 0°). Find the polar coördinates of the other vertices.

Write the following equations in polar coördinates and draw the graphs.

15. y = -4.

15. y = -4. 16. x = 7. 17. 2x - 3y = 6. 18. $x^2 + y^2 = 81$. 19. $x^2 + y^2 = 8x$. 20. $x^2 + y^2 + 4y = 0$.

Write the following equations in rectangular coördinates and draw the graphs.

21. r = 3.

22. $\theta = 45^{\circ}$.

23. $r \sin \theta = 2$.

24. $r=2\sin\theta$.

25. $r = 2 \sec \theta$.

26. $r^2 \sin 2\theta = 8$.

177. The Polar Equation of a Line. By substituting the values of x and y in terms of r and θ from equations (1) in the general form, Ax + By + C = 0 of the equation of a line, we obtain, as the general polar form of the equation of a line,

$$r(A\cos\theta+B\sin\theta)+C=0. \hspace{1cm} (3)$$

If we make the same substitution in the normal form, $x \cos \omega + y \sin \omega$ -p=0, we have

$$r(\cos\theta\cos\overline{\omega} + \sin\theta\sin\omega) - p = 0.$$

This simplifies to the polar normal form

$$r\cos\left(\theta-\omega\right)-p=0. \tag{4}$$

The following special cases of equation (4) arise frequently. If the given line is perpendicular to the initial line, $\omega = 0$ and equation (4) reduces to:

$$r \cos \theta = p$$
, or $r = p \sec \theta$. (5)

If the given line is parallel to the initial line, $\omega = \pi/2$ and equation (4) reduces to:

$$r \sin \theta = p$$
, or $r = p \csc \theta$. (6)

Exercises

Find the rectangular equation and draw the lines.

1.
$$r(5 \cos \theta - 3 \sin \theta) = 9$$
.

2.
$$r(4 \cos \theta + 9 \sin \theta) = 12$$
.

3.
$$r \sin \theta = 6$$
.

4.
$$r \cos (\theta - \pi/6) = 4$$
.

5.
$$r + 4 \sec (\theta - \pi/3) = 0$$
.

6. 4 tan
$$\theta + 3 = 0$$
.

Write the following equations in polar form.

7.
$$3x - 7y - 9 = 0$$
.

8.
$$x + 5y - 10 = 0$$
.

9.
$$4x - 9y + 11 = 0$$
.

10.
$$y - 2x = 0$$
.

Write the polar equation of a line:

- 11. Parallel to the initial line and passing through (a) $(2, -\pi/2)$, (b) $(6, \pi/6)$, and (c) $(4, \pi/4)$.
- 12. Perpendicular to the initial line and passing through (a) (5, 0), (b) $(2, \pi)$, (c) $(7, 2\pi/3)$.
- 13. Passing through (5, $5\pi/6$) and perpendicular to the line joining the origin to this point.
- 14. Passing through $(4, -\pi/2)$ and making an angle $\pi/6$ with the initial line.
- 15. Passing through (3, 0) and making an angle $3\pi/4$ with the initial line.
 - 16. Passing through (3, 0) and perpendicular to the line in Ex. 15.
- 17. Find polar coördinates of the point of intersection of the lines $r \cos \theta = 2$ and $r \sin \theta = 2\sqrt{3}$.
 - 18. Find the slope of the line $r \cos (\theta 2\pi/3) = 6$.
- 19. Find the length of the segment of the line $r \cos (\theta 3\pi/4) = 6$ that is included between the polar axis and the 90° axis.
- 178. The Polar Equation of a Circle. Let $C(c, \gamma)$ be the center and a the radius of the circle and let $P(r, \theta)$ be any point on the circle. If we

Fig. 98

apply the law of cosines (Art. 142) to the triangle COP, we obtain

$$r^2 - 2cr \cos(\theta - \gamma) + c^2 = a^2$$
. (7)

This is the polar equation of a circle with center at (c, γ) and radius a.

The following special cases are of importance.

(a) If the center lies on the polar axis and the circle passes through the origin, the coördinates of the center are (a, 0) or (a, π) according as the center lies to the right or left of the origin. Equation (7) now reduces to

$$r = 2a \cos \theta$$
, or $r = -2a \cos \theta$, (8)

the first equation holding if C is to the right of the origin and the second if C is to the left.

(b) If the center lies on the 90° axis and the circle passes through the origin, the coördinates of the center are $(a, \pm \pi/2)$ and equation (7) reduces to

$$r = 2a \sin \theta$$
, or $r = -2a \sin \theta$, (9)

according as the center lies above or below the origin.

(c) If the center lies at the origin, c = 0 and the equation may be simplified to

$$r = a. (10)$$

Exercises

Find the polar equation of the circle having its center at the given point and having the given radius.

0 0	
1. (0, 0), radius 7.	2. $(5, \pi/2)$, radius 5.
3. $(2, \pi)$, radius 2.	4. $(4, \pi/3)$, radius 3.
5. $(6, \pi/6)$, radius 4.	6. $(2, -4\pi/3)$, radius 5.
7. $(a, \pi/4)$, radius $2a$.	8. $(2a, 7\pi/6)$, radius a

Find the center and radius of each of the following circles.

9.
$$r = 6 \cos \theta$$
.
10. $r = -10 \sin \theta$.
11. $r = 8 \cos (\theta - \pi/6)$.
12. $r = -4 \cos (\theta - \pi/4)$.
13. $r^2 - 6r \cos \theta = 7$.
14. $r^2 - 8r \sin \theta = 9$.
15. $r^2 - 4r \cos (\theta - \pi/4) = 12$.
16. $r^2 + 12r \cos (\theta - \pi/3) = 28$.

Write the equations of the following circles in rectangular coördinates.

17.
$$r = -4 \cos \theta$$
.
18. $r = 12 \sin \theta$.
20. $r^2 - 4r \cos \theta = 5$.
21. $r^2 - 6r \cos (\theta - \pi/6) + 5 = 0$.
22. $r^2 - 10r \cos (\theta - \pi/4) = 11$.

Write the equations of the following circles in polar coördinates.

23.
$$x^2 + y^2 = 121$$
.
24. $x^2 + y^2 = 10y$.
25. $x^2 + y^2 + 6x = 0$.
26. $x^2 + y^2 - 6x - 6y = 0$.
27. $x^2 + y^2 + 10x - 10\sqrt{3}y - 44 = 0$.
28. $x^2 + y^2 - 9x - 9y + 27 = 0$.

Write each of the following equations in the form of equation (7) and state the coördinates of the center and the radius.

29.
$$r = 10 \cos \theta + 24 \sin \theta$$
. 30. $r = 30 \cos \theta - 16 \sin \theta$.

Find the points of intersection of the two loci.

31.
$$r = 12 \cos \theta$$
, $r \cos \theta = 3$. 32. $r = 4 \sin \theta$, $r \cos \theta = \sqrt{3}$.

The Conic Sections

179. Plane Sections of a Right Circular Cone. The curve of section of a right circular cone by any plane is called a conic section or, simply, a conic. If the cutting plane does not pass through the vertex of the cone, the conic belongs to one of the following three types.

(a) If the cutting plane cuts entirely across one nappe of the cone (Fig. 99a), the conic is an ellipse.

(b) If the cutting plane is parallel to one rectilinear element of the

cone (Fig. 99b), the conic is a parabola.

(c) If the plane cuts both nappes of the cone (Fig. 99c), the conic is

a hyperbola.

These three types of curves were named, and discussed very thoroughly, by the Greek mathematicians who studied them by the aid of methods similar to those we now use in elementary geometry. In the course of these studies they found properties which will serve to define these conics as loci in their planes. It is these definitions, instead of the one just given, that we shall use to derive the equations of these curves.

Moreover, in the present chapter, we shall choose the position of the coördinate axes with respect to the curve very carefully so as to get the equation of the curve in as simple a form as possible. This simplest form is called the standard form of the equation of the conic. The study of the conics when their equations are not in the standard form will be taken up in Chapter 25.

The Parabola

180. Definitions. A parabola is the locus of a point whose undirected distance from a fixed point is equal to its undirected distance from a fixed line.

214

Let F (Fig. 100) be the fixed point and D'D the fixed line. The locus of a point P such that

$$FP = RP$$
,

where R is the foot of the perpendicular from P to D'D, is a parabola. By plotting a number of these points and drawing a smooth curve through them, we obtain a suitable figure to represent the curve.

The fixed point F is the focus and the fixed line D'D is the directrix of the parabola. The line A'A, through the focus perpendicular to the directrix, is the principal axis of the curve. The point V in which the principal axis intersects the parabola

is the vertex. The chord K'K, through the focus, parallel to the directrix, and terminated by the curve, is the latus rectum.

181. Standard Forms of the Equation of the Parabola. To derive a standard form of the equation of the parabola, we take the principal

axis as the x-axis and the vertex as the origin (Figs. 101a and b). Let F be the focus and D'D the directrix. Let D'' be the intersection of the principal axis with the directrix and let the length of the directed segment D''F be p.

Since the vertex O lies on the curve, D''O = OF = p/2. Hence, the coördinates of F are (p/2, 0), those of D'' are (-p/2, 0), and the equation of the directrix is x = -p/2.

Let P(x, y) be any point on the parabola. Draw FP and RP, where R is the foot of the perpendicular from P to the directrix. From the definition of a parabola,

$$FP = RP$$
, or $FP^2 = RP^2$. (1)

From the distance formula, we have

$$FP^{2} = \left(x - \frac{p}{2}\right)^{2} + (y - 0)^{2}.$$

$$RP^{2} = \left(x + \frac{p}{2}\right)^{2}.$$
 (Why?)

By substituting these values of FP^2 and RP^2 in (1), we obtain

$$\left(x - \frac{p}{2}\right)^2 + y^2 = \left(x + \frac{p}{2}\right)^2. \tag{2}$$

On simplifying this equation, we have

$$y^2 = 2px. (3)$$

Conversely, if the coördinates of P satisfy (3), we find, by adding $\left(x-\frac{p}{2}\right)^2$ to both sides of the equation, that they satisfy equation (2). It follows that $FP^2=RP^2$ or, since FP and RP, being undirected, are both positive, that FP=RP, so that P lies on the parabola.

Equation (3) is the equation of the parabola when the axis of the parabola is the x-axis and the vertex is the origin. If p is positive, the focus is to the right of the origin (Fig. 101a) and, if p is negative, the focus is to the left (Fig. 101b).

If we take the principal axis of the parabola as the y-axis, the vertex remaining at the origin, we find in a similar way that the equation of the parabola is

$$x^2 = 2py, (4)$$

where the focus lies above the origin if p is positive and below if p is negative.

Equations (3) and (4) are the standard forms (Art. 179) of the equation of the parabola.

182. Discussion of the Equation. If we solve equation (3) for y, we obtain

$$y=\pm\sqrt{2px}.$$

If p is positive, any negative value assigned to x would make y imaginary. Hence, there are no points on the curve to the left of the origin (Fig. 101a). Similarly, if p is negative, there are no points on the curve to the right of the origin (Fig. 101b).

If x = 0, then y = 0 so that the origin, which we have taken at the vertex, lies on the curve. To each value of x that agrees in sign with p, there correspond two values of y which are numerically equal but opposite in sign; that is, the curve is symmetric (Art. 41) to the x-axis. As x increases numerically, the corresponding values of y also increase numerically and the curve extends indefinitely far from both axes.

Since the latus rectum (Art. 180) is parallel to the directrix, its length is the sum of the numerical values of ordinates of its end points. To find these ordinates, put x = p/2 (Why?) in the equation of the curve. We then have

$$y^2 = p^2$$
, or $y = \pm p$.

Hence, the length of the latus rectum is the numerical value of 2p.

EXAMPLE 1. Locate the vertex, focus, axis, and directrix and find the length of the latus rectum of the parabola $y^2 = -6x$.

Since the equation is in the standard form (3), with p = -3, the coordinates of the vertex are (0, 0) and, of the focus, are $(-\frac{3}{2}, 0)$. The equation of the axis of the parabola is y = 0 and of its directrix is $x - \frac{3}{2} = 0$. The length of the latus rectum is 6 (Fig. 102).

Example 2. Find the equation of a parabola, the coördinates of its focus, and the equation of its directrix, if the vertex is at the origin, the focus is on the x-axis to the right of the vertex, and the length of the latus rectum is 24.

Since the focus is to the right of the vertex, p is positive and equal to onehalf of the length of the latus rectum, or 12. Since the coördinate axes are placed so that the equation of the parabola is in the standard form (3), the required equation of the curve is $y^2 = 24x$, the coördinates of the focus are (6, 0), and the equation of the directrix is x + 6 = 0 (Fig. 103).

Exercises

Draw each of the following parabolas. Find the coördinates of the focus, the equation of the directrix, and the length of the latus rectum.

1.
$$y^2 = 16x$$
.
2. $x^2 = -3y$.
7. $2x^2 = 9y$.

1.
$$y^2 = 16x$$
.
2. $y^2 + 2x = 0$.
3. $x^2 = 10y$.
4. $x^2 = -3y$.
5. $x^2 = 7y$.
6. $y^2 = 11x$.
7. $2x^2 = 9y$.
8. $5y^2 + 14x = 0$.
9. $3x^2 + 5y = 0$.

Find the equation of the parabola having its vertex at the origin, given that:

10. Its focus is (5, 0).

11. It directrix is x + 7 = 0.

12. Its focus is (0, 3).

13. Its directrix is y - 4 = 0.

14. It has the x-axis as its principal axis and passes through (5, 2).

15. It has the y-axis as its principal axis and passes through (-2, 7).

16. It has the x-axis as its principal axis and its directrix passes through (3, 6).

17. It has the x-axis as its principal axis and its focus lies on the line 3x - 5y = 15.

18. It has the y-axis as principal axis, opens downward, and the length of its latus rectum is 18.

Find the points of intersection of the two parabolas.

19.
$$y^2 = 3x$$
, $x^2 = 3y$.

20.
$$y^2 = 54x$$
, $x^2 = 2y$.

21.
$$y^2 = -9x$$
, $3x^2 = 8y$.

22.
$$y^2 = 8x$$
, $x^2 = y$.

- 23. Find the length of the chord of the parabola $y^2 = 12x$ that lies on the line 2x - 3y + 12 = 0.
- 24. Find the equation of the line through the points on the parabola $y^2 = 10x$ whose ordinates are 2 and 5.
- 25. Find the equation of the circle that has the latus rectum of $y^2 = 2px$ as its diameter. Show that the center of the circle is the focus and that it touches the directrix.
- 26. The focal radius of a point on a parabola is its undirected distance from the focus. If the point $P_1(x_1, y_1)$ lies on the parabola $y^2 = 2px$, show that its focal radius is numerically equal to $x_1 + p/2$.
- 27. Using the results of Ex. 26, find the focal radii of the points on the parabola $y^2 = 20x$ for which:

$$(a) x=2,$$

(b)
$$x = 5$$
,

(c)
$$y = 30$$
,

(a)
$$x = 2$$
, (b) $x = 5$, (c) $y = 30$, (d) $x + y = 0$.

- 28. Find the points on the parabola $y^2 = 4x$ whose focal radii are (a) 5, (b) 37.
- 29. Find the points on the parabola $y^2 = 2px$ for which the focal radii are equal in length to the latus rectum.
- 30. The distance between the towers of Brooklyn Bridge is about 1600 feet and the lowest point of the cables is about 140 feet below these points of support. Assuming that the form of the cables is parabolic, take the lowest point of one of them as origin, the y-axis vertical, and find the equation of the parabola.

The Ellipse

183. The Standard Form of the Equation of the Ellipse. An ellipse is the locus of a point the sum of whose undirected distances from two fixed

P(x,y)0 F(c,o)F(-c,o)Fig. 104

points equals a constant. The two fixed points are the foci, the midpoint of the segment joining them is the center, and the line through them is the principal axis of the ellipse.

To derive the equation of the ellipse in the standard form, we take the principal axis of the ellipse as x-axis and the center as the origin. Let F and F' (Fig. 104) be the foci and let 2c be the distance

between them, so that the coördinates of F are (c, 0) and of F' are (-c, 0).

Let P(x, y) be any point on the ellipse and let the sum of its distances from the foci be 2a, so that

$$F'P + FP = 2a,$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$
(5)

c, 70

or

If we transpose the second radical, square, and solve for the radical expression, we find that

$$\sqrt{(x-c)^2 + y^2} = a - \frac{c}{a}x. \tag{6}$$

By squaring again, and simplifying, we obtain

$$\frac{a^2 - c^2}{a^2}x^2 + y^2 = a^2 - c^2 \tag{7}$$

or

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1. \tag{8}$$

But a > c, since, in the triangle F'PF, the sum of the two sides F'P + FP, which equals 2a by (5), is greater than the third side F'F, which is equal to 2c. Hence $a^2 - c^2$ is positive. We shall denote this positive number by b^2 , that is

$$b^2 = a^2 - c^2. (9)$$

If we substitute this value for $a^2 - c^2$ in (8), we have

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \tag{10}$$

By reversing the steps in the foregoing discussion, it can be shown, conversely, that, if the coördinates of a point P(x, y) satisfy equation (10), then F'P + FP = 2a, so that P lies on the ellipse.

Equation (10) is the standard form of the equation of the ellipse obtained by taking the principal axis of the ellipse as x-axis and the center as origin. If we take the principal axis as y-axis, the center remaining at the origin, we obtain, in a precisely similar way,

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1 \tag{11}$$

as the standard form of the equation when the foci are at (0, c) and (0, -c).

To distinguish, in numerical problems, between the cases in which the foci are on the x-axis (equation 10) or on the y-axis (equation 11) we notice that, because of (9), the number a, for the ellipse, cannot be less than b. It is equal to b only if c = 0, in which case the ellipse becomes a circle.

184. Discussion of the Equation. If we solve equation (10) for y and for x, we obtain

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$
 and $x = \pm \frac{a}{b} \sqrt{b^2 - y^2}$ (12)

respectively.

From the first of these equations, it follows that if $x^2 > a^2$, y is imaginary and, from the second, that if $y^2 > b^2$, then x is imaginary. There are thus no points on the ellipse outside of the rectangle formed by the lines $x = \pm a$ and $y = \pm b$.

To any value of x numerically less than a, there correspond two values of y, numerically equal but opposite in sign. Hence the curve is symmetric to the x-axis. By similar reasoning, from the second of equations (12), we find that it is also symmetric to the y-axis.

If x = 0, $y = \pm b$; and, as x increases numerically, the numerical value of y decreases and becomes zero when $x = \pm a$.

185. Definitions. The ellipse defined by equation (10) intersects the x-axis at the points V(a, 0) and V'(-a, 0) (Fig. 105). These points are

called the vertices of the ellipse. The chord V'V joining the vertices is the major axis of the ellipse. Its length is 2a and it is the longest chord that can be drawn in the ellipse. The chord of the ellipse on the y-axis is of length 2b and is called the minor axis. The numbers a and b are thus the lengths of the semi-major axis and the semi-minor axis, respectively.

Latus Rectum. The chord K'K, through either focus perpendicular to the major axis, is called the latus rectum. Its length is obviously twice the ordinate of K. To find this ordinate, put $x = \pm c$ in (10) and solve for y. We find, by the aid of (9), that

$$y = \pm \frac{b}{a} \sqrt{a^2 - c^2} = \pm \frac{b^2}{a}.$$

Hence, the length of the latus rectum is $2b^2/a$.

Eccentricity. The fraction c/a is called the eccentricity and is denoted by the letter e. We have, by (9),

$$e=\frac{c}{n}=\frac{\sqrt{a^2-b^2}}{a}.$$

Since, for an ellipse, c is always less than a, it follows that the eccentricity of an ellipse is always less than unity.

The shape of the ellipse (but not its size) is determined by its eccentricity. Thus, if e = 0, then c = 0, b = a, and the ellipse is a circle with its foci coincident at the center.

As e increases from zero, the ellipse becomes more and more flattened. If we let e approach unity, holding a fixed, then c approaches a and b approaches zero so that the foci approach the vertices and the ellipse becomes very narrow.

Directrices. If $e \neq 0$, the two lines $x = \pm a/e$ (the lines

D'D in Fig. 105) are called the directrices. Their importance will appear in Art. 186.

EXAMPLE 1. The vertices of an ellipse are $(\pm 4, 0)$ and its eccentricity is $e = \sqrt{3}/2$. Find its equation, locate the foci, and find the length of the latus rectum.

Since the vertices $(\pm a, 0)$ are at $(\pm 4, 0)$, we have a = 4. Further, $c = ae = 4\sqrt{3}/2 = 2\sqrt{3}$. The coördinates of the foci are thus $(\pm 2\sqrt{3}, 0)$. Moreover, $b^2 = a^2 - c^2 = 16 - 12 = 4$; giving b = 2. The length of the latus rectum is found from its formula $2b^2/a$, to be 2.

Since the center of the ellipse is at the origin and the vertices are on the x-axis, the equation is in the standard form of equation (10). Putting a=4 and b=2 in (10), we have, as the required equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

EXAMPLE 2. The equation of an ellipse is $25x^2 + 9y^2 = 225$. Find the coördinates of the vertices and of the foci and the equations of the directrices.

If we write the given equation in the form

$$\frac{x^2}{9} + \frac{y^2}{25} = 1,$$

we find, by the last paragraph of Art. 183, that the foci are on the y-axis. We have

$$a = 5$$
, $b = 3$, $c = \sqrt{a^2 - b^2} = 4$, and $e = \frac{c}{a} = \frac{4}{5}$.

The coördinates of the vertices are $(0, \pm 5)$ and of the foci are $(0, \pm 4)$. The equations of the directrices are $y = \pm \frac{25}{4}$.

Exercises

Find the vertices, foci, eccentricity, semi-axes, length of the latus rectum, and equations of the directrices of each of the following ellipses.

1.
$$16x^2 + 25y^2 = 400$$
.

$$3. \ 4x^2 + 9y^2 = 36.$$

5.
$$16x^2 + 9y^2 = 144$$
.

7.
$$4x^2 + y^2 = 9$$
.

9.
$$3x^2 + 5y^2 = 15$$
.

$$2. \ 25x^2 + 169y^2 = 4225.$$

4.
$$4x^2 + 25y^2 = 100$$
.

6.
$$9x^2 + y^2 = 9$$
.

8.
$$25x^2 + 4y^2 = 25$$
.

10.
$$5x^2 + 7y^2 = 4$$
.

Find the equations of the following ellipses.

11. Vertices
$$(\pm 4, 0)$$
, foci $(\pm 2, 0)$.

12. Vertices
$$(0, \pm 10), e = \frac{4}{5}$$
.

13. Foci
$$(0, \pm 3)$$
, directrices $y = \pm 12$.

14. Vertices (
$$\pm 8, 0$$
), length of latus rectum $\frac{49}{4}$.

15. Foci (
$$\pm$$
 3, 0), ends of minor axes (0, \pm 3).

16. Foci
$$(0, \pm 3\sqrt{3})$$
, length of latus rectum 3.

Find the equation, in one of the standard forms, of the ellipse passing through the given points.

- 20. Find the points of intersection of the line x + 2y = 5 with the ellipse $x^2 + 16y^2 = 65$.
- 21. Find the points of intersection of the ellipse $2x^2 + 5y^2 = 22$ and the parabola $y^2 = 4x$.
- 22. The ends of the base of a triangle are $(\pm 8, 0)$. The sum of the lengths of the sides is 20. Find the locus of the vertex of the triangle.
- 23. Find the equation of the locus of the midpoints of the ordinates of the points on the circle $x^2 + y^2 = a^2$.

HINT. Let P'(x', y') be a point on the given circle. Then $x'^2 + y'^2 = a^2$. The coördinates of P(x, y), the midpoint of the ordinate of P', are x = x', y = y'/2.

- 24. Find the equation of the locus of a point that divides the ordinates of the points on the circle $x^2 + y^2 = a^2$ in the ratio b:a.
- 186. A Second Definition of the Ellipse. We shall prove the following theorem: The ellipse $b^2x^2 + a^2y^2 = a^2b^2$ is the locus of a point for which the ratio of its undirected distance from the focus F(c, 0) to its undirected distance from the directrix x a/e = 0 equals e, the eccentricity.

Let P(x, y) be any point such that $\frac{PF}{PR} = e$ (Fig. 108). We shall show that P lies on the ellipse. We have

$$FP = ePR$$
, or $FP^2 = e^2PR^2$. (13)

$$FP^2 = (x - c)^2 + y^2$$
, and $PR = \frac{a}{e} - x$. (Why?)

On substituting these values in equation (13), we get

$$(x-c)^2 + y^2 = e^2 \left(\frac{a}{e} - x\right)^2 = (a-ex)^2 = \left(a - \frac{c}{a}x\right)^2$$

If we simplify this equation and multiply by a^2 , we get

$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2).$$

Since $a^2 - c^2 = b^2$, this equation reduces to

$$b^2x^2 + a^2y^2 = a^2b^2. (14)$$

Hence, P lies on the ellipse.

Conversely, if P lies on the ellipse, its coördinates satisfy equation (14) and, by reversing the steps in the proof just given, we find that FP = ePR so that P satisfies the conditions of the theorem.

From the symmetry of the figure with respect to the y-axis, it follows at once that the theorem of this article remains true if we replace the focus F(c, 0) by F'(-c, 0) and the directrix x - a/e = 0 by the directrix x + a/e = 0.

Because of the theorem of this article, we call the focus F(c, 0) and the directrix x - a/e = 0 a corresponding focus and directrix. Similarly, F'(-c, 0) and x + a/e = 0 are a corresponding focus and directrix.

Exercises

Derive the equations of the following ellipses using the theorem of this article. The given focus and directrix are corresponding focus and directrix.

- 1. F(3, 0), $e = \frac{1}{2}$, directrix x = 12.
- 2. F(0, 3), $e = \frac{1}{3}$, directrix y = 27.
- 3. F(0, -4), $e = \frac{2}{5}$, directrix y + 25 = 0.
- 4. F(-8, 0), $e = \frac{2}{3}$, directrix x + 18 = 0.

Find the equations of the following ellipses, given that their centers are at the origin.

- 5. Vertex (4, 0), $e = \frac{1}{2}$.
- 6. Focus (0, 4), $e = \frac{2}{3}$.
- 7. Directrix y = -12, $e = \frac{1}{3}$.
- 8. Vertex (-6, 0), focus (-2, 0).

- **9.** Vertex (-10, 0), directrix $x = -\frac{25}{2}$.
- **10.** Focus (5, 0), directrix x = 10.
- 11. Directrix x = -8, ends of minor axis $(0 \pm 2\sqrt{3})$.
- 12. Find the equation of the parabola with vertex at the origin that passes through the ends of the latus rectum to the right of the origin of the ellipse $5x^2 + 9y^2 = 45$.
- 13. The arch of a bridge is a semi-ellipse with major axis horizontal. The span is 40 feet and the top of the arch is 12 feet above the major axis. The roadway is horizontal and 15 feet above the major axis. Find, at 5-foot intervals, to three significant figures, the vertical distance from the arch to the roadway.
- 14. The undirected distances of a point P on the ellipse from the foci are called the focal radii of P. Show that the focal radii of P(x, y) on the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ are a - ex and a + ex.

HINT. Find the distances of P(x, y) from the directrices and use the theorem of the present article.

Find the focal radii (Ex. 14) of the given point on the given ellipse.

15. (10, 15),
$$3x^2 + 4y^2 = 1200$$
.

15. (10, 15),
$$3x^2 + 4y^2 = 1200$$
. **16.** (4, $\sqrt{21}$), $7x^2 + 16y^2 = 448$.

17. (3,
$$2\sqrt{10}$$
), $5x^2 + 9y^2 = 405$. **18.** (-6, -4), $x^2 + 2y^2 = 68$.

18.
$$(-6, -4), x^2 + 2y^2 = 68.$$

- 19. The earth's orbit is an ellipse with the sun at one of the foci. If the major semi-axis of the ellipse is 92.9 million miles and the eccentricity is 0.0168, find, to three significant figures, the greatest and least distance of the earth from the sun.
- 20. Verify the following construction for an ellipse. Fasten thumb tacks at the foci. Form a loop of thread of length 2a + 2c, pass it around the thumb tacks, and draw it taut with the point of a pencil. Move the pencil around the foci, holding the thread constantly taut. Then the pencil point will describe an ellipse.

The Hyperbola

187. The Standard Form of the Equation of the Hyperbola. A hyperbola is the locus of a point the difference of whose undirected distances

from two fixed points equals a constant. The two fixed points are the foci, the midpoint of the segment joining them is the center, and the line through them is the principal axis of the hyperbola.

The derivation of the standard form of the equation of the hyperbola parallels that of the ellipse. We take the principal axis as the x-axis and the center as origin. Let the distance between the foci be 2c so that the coor-

dinates of F are (c, 0) and of F' are (-c, 0). Further, let the difference

of the distances of any point P(x, y) on the hyperbola from F and F' be 2a. Since the difference of two sides of the triangle F'PF is less than the third side, 2a < 2c, or a < c.

From the definition of the hyperbola, we have

$$F'P - FP = \pm 2a,\tag{15}$$

the positive sign holding for the points on the curve that lie to the right of the y-axis and the negative sign for the points to the left.

On substituting for F'P and FP their values from the distance formula, we have

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a.$$

By transposing the second radical, squaring, and simplifying, we find that

 $cx - a^2 = \pm a\sqrt{(x-c)^2 + y^2}$.

If we square again and collect terms, we obtain

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2). (16)$$

We have seen that, for the hyperbola, a < c, hence we may put

$$b^2 = c^2 - a^2. (17)$$

If we make this substitution in (16), that equation becomes

$$b^{2}x^{2} - a^{2}y^{2} = a^{2}b^{2}.$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1.$$
(18)

or

By reversing the steps in the foregoing discussion, we find that, if the coördinates of P(x, y) satisfy equation (18), then $F'P - FP = \pm 2a$, so that P lies on the hyperbola.

Equation (18) is the standard form of the equation of the hyperbola when the foci are taken at $(\pm c, 0)$ on the x-axis. When the axes are taken so that the foci are at $(0, \pm c)$ on the y-axis, we obtain similarly the equation of the curve in the standard form

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1. ag{19}$$

In the equation of a hyperbola, a may be less than, equal to, or greater than b. To determine, in a numerical problem, whether the foci are on the x-axis or on the y-axis, we first write the equation in the form (18) or (19), then notice whether the coefficient of x^2 , or of y^2 , is positive.

188. Discussion of the Equation. Asymptotes. If we solve equation (18) for y and for x, we obtain

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2}$$
 and $x = \pm \frac{a}{b} \sqrt{y^2 + b^2}$ (20)

respectively.

The curve is symmetric with respect to both coördinate axes. From the first of equations (20), we find that, if $x^2 < a^2$, y is imaginary. There

are thus no points on the curve between the lines x = -a and x = a. For every real value of y, however, there are two real values of x. These values of x are numerically smallest, and equal to $\pm a$, when y = 0. They increase indefinitely as y becomes numerically larger, so that the curve extends indefinitely far from both axes in each quadrant.

To determine how the curve approaches infinity, we may write the first of equations (20) in the form

$$y = \pm \frac{b}{a}x\sqrt{1-\frac{a^2}{x^2}}.$$

If x is numerically very large, the expression $\sqrt{1-\frac{a^2}{x^2}}$ is very nearly unity and we obtain, as an approximation to the form of the curve a long way from the origin, the lines

$$y = \frac{bx}{a}$$
 and $y = -\frac{bx}{a}$. (21)

These lines are called the asymptotes to the hyperbola (18).

It can be shown (see Art. 192, Ex. 21) that, if a point P_1 recedes along the curve indefinitely far from the origin, its distance from one of these asymptotes becomes indefinitely small.

189. Definitions. The intersections of the hyperbola $b^2x^2 - a^2y^2 = a^2b^2$ with the x-axis are found, by putting y = 0 in the equation, to be

 $(\pm a, 0)$. These points, V' and V (Fig. 111), are the vertices. The segment V'V, of length 2a, that joins the vertices is the transverse axis of the hyperbola. Although the hyperbola does not intersect the y-axis (Why?), the segment from B'(0, -b) to B(0, b), of length 2b, is called the conjugate axis.

The numbers a and b are thus the lengths of the semi-transverse and of the semi-conjugate axis, respectively.

The chord K'K of the hyperbola through either focus perpendicular to the transverse axis is the latus rectum. Its length is found, as in Art. 185, to be $2b^2/a$.

The quotient c/a is denoted by e and is called the eccentricity. From (17), we have

$$e = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}.\tag{22}$$

Since, for a hyperbola, a is always less than c, it follows that the eccentricity of a hyperbola is always greater than unity.

The lines
$$x = \frac{a}{e}$$
 and $x = -\frac{a}{e}$ are the directrices.

EXAMPLE 1. Determine the vertices, foci, eccentricity, and the equations of the asymptotes and directrices of the hyperbola $16x^2 - 9y^2 = 144$.

If we write the given equation in the standard form $\frac{x^2}{9} - \frac{y^2}{16} = 1$, we find that a = 3, b = 4, $c = \sqrt{a^2 + b^2} = 5$, and e = c/a = 5/3.

Since the transverse axis is on the x-axis, the vertices are $(\pm 3, 0)$ and the foci $(\pm 5, 0)$.

The equations of the asymptotes are $y = \frac{4}{3}x$ and $y = -\frac{4}{3}x$. The equations of the directrices are $x = \frac{9}{5}$ and $x = -\frac{9}{5}$.

If one wishes to draw a hyperbola freehand, it is usually best to draw its asymptotes first, then to plot the vertices and to locate, from the equation, a few points on the curve. The hyperbola can then be drawn to pass through these points and to approach the asymptotes.

Frc 119

Example 2. The vertices of a hyperbola are $(0, \pm 4)$ and the equations

of the directrices are $y = \pm \frac{8}{3}$. Find the eccentricity, the coördinates of the foci, the equation of the curve, and of its asymptotes.

We have a = 4. Moreover, the equations of the directrices are y = a/e = 8/3. Hence e = 3/2, c = ae = 6, and $b = \sqrt{c^2 - a^2} = \sqrt{20} = 2\sqrt{5}$.

The coördinates of the foci are, accordingly, $(0, \pm 6)$, the equations of the asymptotes are $x = \pm \frac{b}{a}y$, or $2x = \pm \sqrt{5}y$, and the equation of the curve is $\frac{y^2}{16} - \frac{x^2}{20} = 1$.

Exercises

Find the vertices, foci, eccentricity, length of the latus rectum, and equations of the asymptotes and of the directrices of the following hyperbolas.

1.
$$25x^2 - 144y^2 = 3600$$
.

3.
$$y^2 - 4x^2 = 3600$$

5.
$$81x^2 - 16y^2 = 36$$
.

7.
$$25y^2 - 9x^2 = 1$$
.

$$2. \ 4x^2 - 25y^2 = 100.$$

4.
$$x^2 - y^2 = 9$$
.

6.
$$3x^2 - 2y^2 = 6$$
.

8.
$$2x^2 - 5y^2 = 7$$
.

Find the equations of the hyperbolas that satisfy the following conditions.

9. Foci (
$$\pm 10, 0$$
), $e = \frac{5}{4}$.

10. Vertices (
$$\pm$$
 15, 0), asymptotes $15y = \pm 8x$.

11. Vertices
$$(0, \pm 3)$$
, directrices $5y = \pm 9$.

12. Latus rectum 3, vertices
$$(0, \pm 2)$$
.

13. Vertices
$$(\pm 3, 0)$$
, directrices $\sqrt{5}x = \pm 6$.

14. Asymptotes
$$3y = \pm 2x$$
, directrices $\sqrt{13}x = \pm 18$.

15. Ends of conjugate axes
$$(0, \pm 3), e = 2$$
.

16. Asymptotes
$$y = \pm x$$
, passes through (13, 5).

17. Asymptotes
$$3y = \pm 2x$$
, passes through $(6, 5)$.

18. Foci (
$$\pm$$
 12, 0), length of latus rectum 20.

19. Find the equation of the hyperbola of eccentricity $\sqrt{2}$ having the same foci as the ellipse $9x^2 + 25y^2 = 225$.

20. Find the points of intersection of the hyperbolas $y^2 - 6x^2 = 1$ and $13x^2 - 2y^2 = 2.$

21. Find the equation of the locus of the center of a circle that passes through (5, 0) and is tangent to the circle of radius 8 having its center at (-5,0).

HINT. If two circles are tangent externally (or internally), the distance between their centers equals the sum (or difference) of their radii.

22. Show that the distance from a focus of a hyperbola to an asymptote is numerically equal to b.

190. A Second Definition of a Hyperbola. The hyperbola $b^2x^2 - a^2y^2$ $=a^2b^2$ is the locus of a point for which the ratio of its undirected distance from the focus F(c, 0) to its undirected distance from the directrix x - a/e= 0 is equal to e, the eccentricity.

The proof of this theorem parallels that given in Art. 186 for the ellipse and is left as an exercise for the student. From the symmetry of the figure, the theorem remains true if we replace the focus F(c, 0) by F'(-c, 0) and the directrix x - a/e = 0 by x + a/e = 0. The focus F(c, 0) and the directrix x - a/e = 0 are called a corresponding focus and directrix as are also F'(-c, 0) and x + a/e = 0.

191. Conjugate Hyperbolas. The two hyperbolas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$, (23)

are so related that the transverse axis of each is the conjugate axis of the other. For, the ends of the transverse axis of the first are (a, 0) and

(-a, 0) and the ends of its conjugate axis are (0, b) and (0, -b). But these points are precisely the ends of the conjugate and transverse axis, respectively, of the second hyperbola.

Two hyperbolas, such as those defined by equations (23), which are so related that the transverse axis of each is

coincident with the conjugate axis of the other are said to be a pair of conjugate hyperbolas and each of them is called the conjugate hyperbola of the other.

The asymptotes of the conjugate hyperbolas defined by equations (23) coincide since, in both cases, their equations are $ay = \pm bx$.

192. The Equilateral Hyperbola. If, in equation (18), we put b=a, that equation reduces to

$$x^2 - y^2 = a^2. (24)$$

In this special case, the hyperbola is called an equilateral (or rectangular) hyperbola. It bears substantially the same relation to hyperbolas

that the circle does to ellipses.

The eccentricity of the equilateral hyperbola is found, by putting b = a in equation (22), to be $e = \sqrt{2}$. Its asymptotes are the lines y = x and y = -x which are perpendicular to each other.

If we rotate the coördinate axes through an angle of -45°, so that the asymptotes of the hyperbola becomes the coördinate axes, we shall find (Art. 196, Ex. 9), that the equation of the equilateral hyperbola becomes

$$2xy = a^2. (25)$$

In the applications, the equation of the equilateral hyperbola is often met with in this form.

Exercises

Using the second definition (Art. 190), find the equation of the hyperbola having the given point as focus, the given line as corresponding directrix, and the given eccentricity.

1.
$$(12, 0), x = 3, e = 2.$$

2.
$$(0, 5), y = 1, e = \sqrt{5}$$
.

3.
$$(-9, 0), x + 3 = 0, e = \sqrt{3}$$
.

4.
$$(0, -5)$$
, $y + 4 = 0$, $e = \sqrt{5}/2$.

5.
$$(0, -10)$$
, $5y + 32 = 0$, $e = \frac{5}{4}$.

6.
$$(6, 0)$$
, $3x = 8$, $e = \frac{3}{2}$.

Find the equation of the hyperbola conjugate to the given hyperbola. Find, for the given hyperbola and for its conjugate, the asymptotes, vertices, foci, and directrices.

7.
$$25x^2 - 144y^2 = 3600$$
.

8.
$$y^2 - 4x^2 = 20$$
.

9.
$$x^2 - 9y^2 = 4$$
.

10.
$$25x^2 - 4y^2 = 100$$
.

11.
$$11y^2 - 5x^2 = 55$$
.

12.
$$5y^2 - 11x^2 = 35$$
.

13. Show that the four foci of two conjugate hyperbolas lie on a circle.

14. If e and e' are the eccentricities of two conjugate hyperbolas, show that $e^2 + e'^2 = e^2 e'^2$.

15. The undirected distances of a point P on a hyperbola from its foci are its focal radii. Show that the focal radii of a point P(x, y) on the hyperbola $b^2x^2 - a^2y^2 = a^2b^2$ are numerically equal to ex - a and ex + a.

Find the focal radii (Ex. 15) of the given point on the given hyperbola.

16.
$$(8, 2\sqrt{3}), x^2 - 4y^2 = 16.$$

16.
$$(8, 2\sqrt{3}), x^2 - 4y^2 = 16.$$
 17. $(9, 4\sqrt{2}), 4x^2 - 9y^2 = 36.$

18.
$$(4, -\sqrt{15}), 5x^2 - 4y^2 = 20.$$

18.
$$(4, -\sqrt{15}), 5x^2 - 4y^2 = 20.$$
 19. $(2\sqrt{7}, 3\sqrt{2}), 3x^2 - 4y^2 = 12.$

20. A focus of a hyperbola is (a, a), the corresponding directrix is x + y-a=0, and its eccentricity is $\sqrt{2}$. Using the second definition of a hyperbola, show that it is an equilateral hyperbola referred to its asymptotes as coordinate axes.

21. If the point $P_1(x_1, y_1)$ lies on the hyperbola (18), so that $b^2x_1^2 - a^2y_1^2$ = a^2b^2 , show that its distance d from the asymptote bx - ay = 0 is

$$d = \frac{bx_1 - ay_1}{-\sqrt{a^2 + b^2}} = \frac{a^2b^2}{-\sqrt{a^2 + b^2}(bx_1 + ay_1)}.$$

Hence show that, if P_1 recedes along the hyperbola indefinitely far from the origin in the first or third quadrants, its distance from the asymptote bx - ay= 0 becomes indefinitely small.

22. Show that the product of the distances of any point on a hyperbola

from its asymptotes is a constant.

IT MAY BE ON TEST PERIVE

193. Standard Polar Equation of a Conic. By combining the definitions of Arts. 180, 186, and 190, we obtain the following single definition which holds equally for an ellipse, a parabola, or a hyperbola: A conic is the locus of a point for which the ratio of its undirected distance from a fixed point (a focus) to its undirected distance from a fixed line (the corresponding directrix) equals a constant e, the eccentricity. The conic is

an ellipse, if
$$e < 1$$
, a parabola, if $e = 1$, a hyperbola, if $e > 1$.

We shall derive the standard polar equations of a conic from this definition.

Take the focus as origin, the principal axis of the conic as the polar axis, and let the polar axis be directed away from the given directrix (Fig. 116). Let D'' be the foot of the perpendicular from the focus O to the directrix and denote the length of the directed segment D''O by p.

Let $P(r, \theta)$ * be any point on the conic and let R and L be the feet of the perpendiculars from P to the directrix and to the

Fig. 116

polar axis, respectively. From the definition of the conic, we have

$$OP = e \cdot RP.$$

$$OP = r$$

$$RP = D''L = D''O + OL = p + r \cos \theta.$$

and

But

Hence $r = e(p + r \cos \theta) = ep + er \cos \theta$.

If we solve the last of these equations for r, we obtain

$$r = \frac{ep}{1 - e\cos\theta}. (26)$$

Conversely, if the coördinates of a point P satisfy (26), we find, by reversing the steps in the above proof, that $OP = e \cdot RP$ so that P lies on the given conic.

In deriving (26), we supposed that the polar axis was directed away from the directrix. If it is directed toward the directrix, we find in a similar way that

$$r = \frac{ep}{1 + e\cos\theta}. (27)$$

Finally, if we take the polar axis parallel to the directrix, the origin remaining at the focus, we obtain, as the required equation of the conic, either

$$r = \frac{ep}{1 - e\sin\theta}, \quad \text{or} \quad r = \frac{ep}{1 + e\sin\theta}, \tag{28}$$

the first equation holding if the polar axis lies above the given directrix and the second, if it lies below it.

Equations (26), (27), and (28) are the standard polar equations of a conic.

^{*} The following proof supposes (1) that the polar coördinates of P have been chosen so that r is positive and (2) that P and the origin lie on the same side of the directrix. Supposition (1) can always be made but (2) fails for one branch of the hyperbola. In that case, however, we are led to the same final equation if we suppose the coördinates of P chosen so that r is negative.

EXAMPLE. Reduce the equation $r = \frac{6}{2 - \cos \theta}$ to the standard form. Locate the vertices, the center, and the ends of the latus rectum that passes through the origin. Find the values of e, a, and b.

To reduce the equation to the standard form, we must make the first term in the denominator unity by dividing each term in numerator and denominator by 2. We thus obtain $r = \frac{3}{1 - \frac{1}{2} \cos \theta}$. By comparing this equation with (26), we find that $e = \frac{1}{2}$. The curve is thus an ellipse.

The vertices of the ellipse are found, as the intersections of the principal axis with the curve, to be $(6, 0^{\circ})$ and $(2, 180^{\circ})$. Since the center lies midway between the vertices, its coördinates are (2, 0°). The distance from the center to either vertex is a. Hence a=4.

The ends of the latus rectum are the intersections of the 90°-axis with the curve. By putting $\theta = \pm 90^{\circ}$ in the equation, we

find the coördinates of these points to be $(3, 90^{\circ})$ and $(3, -90^{\circ})$. The length of the latus rectum is the distance between these points, which is 6. By Art. 185, the length of the latus rectum is $2b^2/a$. Since a=4, we have $2b^2/a=2b^2/4=6$. Hence, $b = \sqrt{12} = 2\sqrt{3}$.

Exercises

Find the eccentricity, the length of the latus rectum, the coördinates of the vertex or vertices, and draw the curve, given:

$$1. \ r = \frac{8}{4 - 3\cos\theta}.$$

$$2. \ r = \frac{5}{1 - \cos \theta}$$

$$3. \ r = \frac{12}{2 - 3\cos\theta}.$$

$$4. \ r = \frac{7}{1 + \cos \theta}.$$

$$5. \ r = \frac{9}{3 + 5 \cos \theta}$$

5.
$$r = \frac{9}{3+5\cos\theta}$$
 6. $r = \frac{10}{5+2\cos\theta}$

7.
$$r = \frac{15}{3 - \sin \theta}$$

$$8. \ r = \frac{8}{1 - 3\sin\theta}$$

8.
$$r = \frac{8}{1-3\sin\theta}$$
. 9. $r = \frac{5}{2-2\sin\theta}$.

$$\mathbf{10.} \ \mathbf{r} = \frac{6}{1 + \sin \theta}.$$

$$\mathbf{11.} \ \mathbf{r} = \frac{7}{2+5\sin\theta}.$$

$$12. \ r = \frac{11}{5+3\sin\theta}.$$

Write the polar equation of the conic with the origin at a focus, given:

- **13.** Vertex $(3, 180^{\circ}), e = 1.$
- 14. Vertices (24, 0°), (24/5, 180°).
- **15.** Vertices $(2, 90^{\circ})$, $(-14, -90^{\circ})$. **16.** Vertex $(3, 90^{\circ})$, center $(1, -90^{\circ})$.
- **17.** Center (8, 180°), a = 10.
- **18.** Directrix $r \sin \theta + 3 = 0$, e = 1.
- 19. Ends of latus rectum (5, 0°), (5, 180°), corresponding directrix $r \sin \theta$ +10 = 0.
- 20. If the conic is a parabola, show that the standard polar equations (26) and (27) may be reduced to $r \sin^2 \theta/2 = p/2$ and $r \cos^2 \theta/2 = p/2$.

Transformation of Coordinates

194. Changing the Coördinate Axes. It frequently happens that the solution of a problem in analytic geometry can be simplified by the use of a different pair of coördinate axes from the one employed in the statement of the problem. The process of changing from one pair of coördinate axes to another is called a transformation of coördinates.

If the new axes are parallel, respectively, to the old ones, and if they have the same positive directions, the transformation is called a translation of axes. If the origin remains unchanged, and the new axes are obtained by revolving the old ones about the origin through a certain angle, then the transformation is a rotation of axes.

195. Translation of Axes. Let OX and OY (Fig. 118) be the original axes and let O'X' and O'Y' be the new ones, parallel, respectively, to the

old and having the same positive directions. Let the coördinates of O', referred to OX and OY, be (h, k).

Let P be any given point in the plane and let its coördinates, referred to the old axes, be (x, y) and, referred to the new ones, be (x', y'). It is required to find the values of x and y in terms of x' and y'.

Let L and L' be the feet of the perpendiculars from P on OX and O'X', respectively, and

Frg. 118

M and M' the feet of the perpendiculars on OY and O'Y'. We have

$$x = OL = OE + EL = OE + O'L' = h + x'$$

 $y = OM = OF + FM = OF + O'M' = k + y'.$

Hence the formulas for a translation of axes are:

$$x = x' + h \qquad y = y' + k \tag{1}$$

wherein (h, k) are the old coördinates of the new origin.

Equations (1) are said to define a translation of the origin to the point (h, k).

EXAMPLE 1. Find the equation of the conic $4x^2 - y^2 + 16x - 2y + 19 = 0$ when the origin is translated to the point (-2, -1).

We have from (1), since
$$h = -2$$
 and $k = -1$,
 $x = x' - 2$, $y = y' + 1$.

If we substitute these values of x and y in the given equation, we obtain

$$4(x'-2)^2-(y'-1)^2+16(x'-2)-2(y'-1)+19=0.$$

By expanding and simplifying this equation, we find, as the equation of the given conic referred to the new axes,

Fig. 119

$$y'^2 - 4x'^2 = 4.$$

This is the standard equation of a hyperbola with its center at the new origin and its transverse axis on the y'-axis. If we draw, with reference to the new axes, the curve defined by this last equation, the resulting locus will also be the graph of the original equation referred to the old axes (Fig. 119).

EXAMPLE 2. Find a translation of axes that will transform the equation $9x^2+4y^2+18x-24y+9=0$ into one in which the coefficients of the first degree terms are zero.

First solution. If we substitute the values of x and y from (1) in the given equation and collect the coefficients of the various powers of x' and y', we have

$$9x'^2 + 4y'^2 + (18h + 18)x' + (8k - 24)y' + 9h^2 + 4k^2 + 18h - 24k + 9 = 0.$$

Equating to zero the coefficients of x' and y' gives

$$18h + 18 = 0$$
 and $8k - 24 = 0$

so that h = -1 and k = 3.

On substituting these values of h and k in the transformed equation, we obtain

$$9x'^2 + 4y'^2 - 36 = 0.$$

The curve is an ellipse which has its center at the new origin, its major axis on the y'-axis, and semi-axes a = 3 and b = 2.

Second solution. By collecting the terms in x and in y, and factoring out the coefficients of x^2 and y^2 , respectively, we

may write the given equation in the form

$$9(x^2+2x)+4(y^2-6y)=-9.$$

We can complete the square inside the first parentheses by adding 1 and, inside the second, by adding 9. Because of the coefficients outside these parentheses, by inserting these numbers we add 9 and 36, respectively, to the first member. To preserve the equality, we must add the same numbers to the second member. We then have

$$9(x^2 + 2x + 1) + 4(y^2 - 6y + 9) = -9 + 9 + 36$$
or
$$9(x + 1)^2 + 4(y - 3)^2 = 36.$$

If we now translate the origin by putting x + 1 = x', y - 3 = y', that is

$$x = x' - 1, \quad y = y' + 3,$$

we obtain as the required transformed equation

$$9x'^2 + 4y'^2 = 36.$$

This method of solving the given problem is shorter than the first one but it calls for more skill in algebraic manipulation. Also, it does not apply

when one wishes to simplify a second degree equation containing a term in xy. Such equations should be simplified by the first method.

EXAMPLE 3. By a translation of axes, reduce the equation $3x^2 + 12x - 5y + 17 = 0$ to a standard form.

Since the equation contains no term in y^2 , we cannot remove the first degree term in y. Instead, we shall look for a translation

Frg. 121

which will remove the first degree term in x and the constant term.

By completing the square of the terms in x, we may write the given equation in the form

$$3(x^2 + 4x + 4) - 5y + 17 - 12 = 0,$$
$$3(x+2)^2 = 5(y-1).$$

or

By putting x + 2 = x', y - 1 = y', we reduce this equation to the form $3x'^2 = 5y'$.

The curve is a parabola (Fig. 121) with its vertex at the new origin (-2, 1).

Exercises

- 1. Find the new coördinates of the points (4, 1), (2, 8), (-6, 9), (-3, 6), and (-1, 5) when the origin is translated to (-3, 5).
- 2. After the origin has been translated to (4, -2), the new coördinates of certain points are (5, 4), (6, -8), (-5, 2), (-3, -1), and (-2, 5). Find the old coördinates.

Transform the following equation by taking the origin at the point indicated.

3.
$$6x - 5y + 9 = 0$$
, $(-4, -3)$.

4.
$$x^2 + y^2 - 8x + 4y + 8 = 0$$
, $(4, -2)$.

5.
$$4x^2 + 25y^2 - 40x + 150y + 225 = 0$$
, $(5, -3)$.

6.
$$25x^2 - 9y^2 + 100x - 72y - 269 = 0$$
, $(-2, -4)$.

7. $2x + y^2 - 4y - 4 = 0$ (4, 2). Find, also, from the figure, the roots of $y^2 - 4y - 4 = 0$ to one decimal place.

8. $y = 3x^2 + 6x + 8$, (-1, 5). Find, also, from the figure, the least value

the function $3x^2 + 6x + 8$ can have and the value of x for which it takes this least value.

Reduce the equations of the following conics to the standard form by translation of axes.

9.
$$9x^2 + 16y^2 - 54x + 32y - 47 = 0$$
.

10.
$$4x^2 + y^2 + 24x - 4y - 24 = 0$$
.

11.
$$3x^2 - y^2 - 24x - 20y + 11 = 0$$
.

12.
$$7y^2 - 2x^2 + 20x + 42y - 1 = 0$$
.

13.
$$5x^2 + 40x - 2y + 66 = 0$$
.

14.
$$3x + 7y^2 + 28y + 19 = 0$$
.

15. $y = ax^2 + bx + c$. Show, also, that the coördinates, referred to the original axes, of the vertex are $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$.

196. Rotation of Axes. Let OX and OY be the old axes, OX' and OY', the new ones, and denote the angle XOX' by ϕ (Fig. 122).

Fig. 122

Let P be any given point in the plane. Denote its coördinates, referred to the old axes, by (x, y) and, referred to the new ones, by (x', y'). It is required to find the values of x and y in terms of x' and y'.

Draw OP and let OP = r and the angle $X'OP = \theta$. Drop perpendiculars from P to OX and OX' and denote the feet of these perpendiculars by L and L' respectively. From the definition of the sine and cosine

of an angle, we have

$$x = OL = r \cos(\theta + \phi),$$
 $y = LP = r \sin(\theta + \phi),$

and

$$x' = OL' = r \cos \theta,$$
 $y' = L'P = r \sin \theta.$

From the formulas for the cosine and the sine of the sum of two angles, we now have

$$x = r \cos (\theta + \phi) = r \cos \theta \cos \phi - r \sin \theta \sin \phi$$
$$= x' \cos \phi - y' \sin \phi$$

and

$$y = r \sin (\theta + \phi) = r \sin \theta \cos \phi + r \cos \theta \sin \phi$$
$$= x' \sin \phi + y' \cos \phi.$$

Hence the required formulas for the rotation of the axes through an angle ϕ are $\mathbf{r} = \mathbf{r}' \cos \phi - \mathbf{u}' \sin \phi$

$$x = x' \cos \phi - y' \sin \phi$$

$$y = x' \sin \phi + y' \cos \phi.$$
(2)

If we solve equations (2) for x' and y', and simplify, we obtain

$$x' = x \cos \phi + y \sin \phi$$

$$y' = -x \sin \phi + y \cos \phi.$$
 (3)

Example. Find the equation of the parabola $x^2 - 2xy + y^2 - 2ax - 2ay$ $+a^2=0$ when the axes are rotated through 45° and reduce the resulting equation by a translation of axes to the

standard form.

Since $\sin 45^\circ = \cos 45^\circ = 1/\sqrt{2}$, equations (2) become, for this rotation,

$$x = \frac{x' - y'}{\sqrt{2}}, \ y = \frac{x' + y'}{\sqrt{2}}.$$

On substituting these values of x and y in the given equation of the parabola, we obtain

$$\frac{(x'-y')^2}{2} - (x'-y')(x'+y') + \frac{(x'+y')^2}{2} - \sqrt{2}a(x'-y') - \sqrt{2}a(x'+y') + a^2 = 0.$$

On expanding and simplifying this equation, we find that it reduces to

$$2y'^2 - 2\sqrt{2}ax' + a^2 = 0.$$

If we now translate the origin to the point $(\sqrt{2a/4}, 0)$, the resulting equation may be reduced to the standard form $y''^2 = \sqrt{2}ax''$ of the equation of a parabola.

Exercises

- 1. Find the new coördinates of the following points when the axes are rotated through 45°: $(3, -5), (-4, -2), (7, 7), (0, 12), (-4, 4\sqrt{3}).$
 - 2. Solve Ex. 1 when the angle of rotation is 120°.
- 3. Find the old coordinates, given that the new coordinates, after a rotation of 60°, are: $(3+\sqrt{3},-3\sqrt{3}+1)$, (6,0), $(5,-5\sqrt{3})$, (6,4).

Find the transformed equation when the axes are rotated through the angle indicated.

4.
$$x - \sqrt{3}y = 5$$
, 30°.

5.
$$7x + 24y + 200 = 0$$
, $\tan^{-1} \frac{24}{7}$.

6.
$$3x^2 - 8xy + 3y^2 = 28,45^\circ$$

6.
$$3x^2 - 8xy + 3y^2 = 28$$
, 45°. 7. $7x^2 - 6\sqrt{3}xy + 13y^2 = 16$, 30°.

8.
$$7x^2 + 2\sqrt{3}xy + 9y^2 = 22$$
, 60°. 9. $x^2 - y^2 = a^2$, -45 °.

9.
$$x^2 - y^2 = a^2$$
, -45° .

10.
$$4x^2 + 24xy - 3y^2 = 60$$
, $\tan^{-1} \frac{3}{4}$.

11.
$$2x^2 + 4xy - y^2 = 6$$
, $\tan^{-1} \frac{1}{2}$.

11.
$$2x^2 + 4xy - y^2 = 6$$
, $\tan^{-1} \frac{1}{2}$. 12. $4x^2 - 12xy + 9y^2 = 6$, $\tan^{-1} \frac{2}{3}$.

- 13. $3x^2 24xy 4y^2 + 30x 16y + 18 = 0$. First rotate through the angle tan-1 &, then simplify further by a suitable translation.
- 14. Using the definition of Art. 183, find the equation of the ellipse whose foci are (2, 1) and (-2, -1) and for which a = 3. Then rotate the axes so that the line joining the foci is the new x-axis.
- 15. Using the definition of Art. 190, find the equation of the hyperbola of eccentricity 2 having (2, 2) as a focus and x + y - 1 = 0 as corresponding directrix. Then rotate the axes so that the directrix is perpendicular to the new x-axis.

Conics with Equations Not in Standard Form

197. The General Equation of Second Degree. In Chapter 23, we studied the parabola, ellipse, and hyperbola, taking the axes, in each case, in such a position that the equation of the curve was in the standard form. Each of the equations derived in that chapter was a special case of the general equation of second degree; that is, of the equation

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$$
 (1)

wherein A, B, and C are not all zero.

In this chapter, we shall show that the locus, if it exists, of any equation of second degree is a conic section; that is, it is a parabola, ellipse, hyperbola, or two straight lines. We shall further show how, if the curve is a parabola, ellipse, or hyperbola, the equation of the curve may be reduced to its standard form. If B = 0, we shall see that this reduction may be effected by a translation of axes but, if $B \neq 0$, a rotation of axes will be necessary.

198. Conics with Principal Axis Parallel to a Coördinate Axis. If, in equation (1), B=0, that equation takes the form

$$Ax^{2} + Cy^{2} + Dx + Ey + F = 0. (2)$$

We first simplify this equation by the methods given in Art. 195. Except in certain special cases (to be stated presently) equation (2) may first be written in one of the following forms:

$$(y-k)^2 = 2p(x-h) \qquad (x-h)^2 = 2p(y-k) \tag{3}$$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1, \qquad \frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1, \qquad (4)$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1, \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.$$
 (5)

In any one of these cases, if we translate the origin to the point (h, k) by putting

 $x = x' + h, \qquad y = y' + k,$

the equation reduces to the standard form of the equation of a parabola, ellipse, or hyperbola. It follows that: if equation (2) reduces to one of the forms (3), the curve is a parabola; if it reduces to (4), it is an ellipse; and, if it reduces to (5) it is a hyperbola. If it is a parabola, its vertex, and if it is an ellipse or a hyperbola, its center, is at the point (h, k). In every case, its principal axis is parallel to one of the coördinate axes.

In the following special cases, equation (2) cannot be reduced to one

239

of the forms (3), (4), or (5). If A = D = 0, so that x does not appear in the equation, (2) reduces to

$$Cy^2 + Ey + F = 0 ag{6}$$

and the locus, if it exists, reduces to the two lines parallel to the x-axis defined by solving equation (6) for y. Similarly, if C = E = 0, so that y does not appear, the locus, if it exists, is two lines parallel to the y-axis.

Again, equation (2) may reduce, on completing the squares, to

$$A(x-h)^2 + C(y-k)^2 = 0.$$

If A and C agree in sign, there is only one point, (h, k), on the graph and the equation is said to define a point ellipse. If A and C are opposite in sign, the graph consists of two lines intersecting at (h, k); namely,

$$\sqrt{A}(x-h) + \sqrt{-C}(y-k) = 0$$
, and $\sqrt{A}(x-h) - \sqrt{-C}(y-k) = 0$.

Finally, if equation (2) reduces to the form

$$A(x-h)^2 + C(y-k)^2 + F' = 0$$

where A, C, and F' all agree in sign, there are no points on the locus and the equation is said to define an imaginary ellipse.

Exercises

Write the equation of each of the following parabolas in one of the forms of equations (3). Find the coördinates of the vertex and focus, the equation of the directrix, and draw the curve.

1.
$$y^2 - 12x + 10y + 37 = 0$$
.

2.
$$2y^2 - 5x + 8y - 12 = 0$$
.

3.
$$x^2 + 4x - 8y - 4 = 0$$
.

§ 198

4.
$$3x^2 - 6x + 8y + 19 = 0$$
.

Write each of the following equations in one of the forms (4) or (5). Find the coördinates of the center, vertices, and foci, and draw the curve.

5.
$$9x^2 + 25y^2 - 54x - 100y - 44 = 0$$
.

6.
$$x^2 - y^2 + 4x - 6y - 21 = 0$$
.

7.
$$9x^2 - 16y^2 + 90x + 32y + 65 = 0$$
.

8.
$$2x^2 + y^2 - 8x - 6y + 8 = 0$$

8.
$$2x^2 + y^2 - 8x - 6y + 8 = 0$$
.
9. $5y^2 - 4x^2 + 32x + 50y + 41 = 0$.

10.
$$9x^2 + 5y^2 - 18x + 10y - 31 = 0$$
.

11.
$$4x^2 + 9y^2 - 12x + 18y - 18 = 0$$
.

12.
$$7x^2 - 2y^2 + 28x + 4y + 40 = 0$$
.

Describe each of the following loci and draw the graph if it exists.

13.
$$3x^2 + 5y^2 - 12x - 30y + 57 = 0$$
.

14.
$$4x^2 - 9y^2 - 16x + 18y + 7 = 0$$
.

15.
$$5x^2 + 7y^2 - 10x + 14y + 20 = 0$$
.

16.
$$6x^2 - x - 15 = 0$$
.

199. Conics Satisfying Given Conditions. It is sometimes necessary to set up the equation of a conic having its principal axis parallel to one of the coördinate axes and satisfying a sufficient number of additional conditions to fix its position. If the curve is a parabola, we must find the coördinates of the vertex, which we take as (h, k), and the value of p, which is twice the directed distance from the vertex to the focus, and substitute these values of h, k, and p in one of equations (3). Similarly, if the curve is an ellipse or a hyperbola, we locate the center, (h, k), find the values of a and b, and substitute these values in one of equations (4) or (5).

EXAMPLE 1. Find the equation of a parabola with focus (5, 2) and directrix x = 1.

Since p = D''F (Fig. 124) is the directed distance from the directrix to the focus, we have p = 4. Further, since the vertex V is the midpoint of the segment D''F, its coördinates are (3, 2). Since the principal axis is parallel to the x-axis, we substitute p = 4, h = 3, and k = 2 in the first of equations (3). The result is

$$(y-2)^2 = 8(x-3).$$

This is the required equation of the parabola.

Example 2. Find the equation of a hyper-

bola given that its vertices are (-1, -1) and (-1, 7) and that the line 2x - y + 5 = 0 is an asymptote.

The distance between the vertices is 8. Since this distance is 2a, we have a = 4. Since the center lies midway between the vertices, its coördinates are, by Art. 150, equations (8), (-1, 3).

Since the given asymptote passes through the center, its equation may be written in the form 2(x+1) = (y-3). But, in terms of aand b, the equation of the asymptotes are $a(x+1) = \pm b(y-3)$. Hence, a/b = 2/1, or, since a = 4, b = 2.

The required equation is, from equations (5), $(y-3)^2 - 4(x+1)^2 = 16$.

Exercises

Find the equations of the following conics.

- 1. Parabola, vertex (-3, -1), focus (2, -1).
- 2. Parabola, vertex (5, 1), focus (1, 1).
- 3. Parabola, vertex (3, -7), directrix y + 4 = 0.

- 4. Parabola, focus (4, 2), directrix y = 6.
- 5. Ellipse, center (3, 1), vertex (3, -2), $e = \frac{1}{3}$.
- 6. Ellipse, vertices (4, 2) and (-2, 2), b = 1.
- 7. Ellipse, foci (5, 3) and (5, -1), $e = \frac{4}{5}$.
- 8. Ellipse, center (2, 1), directrix y + 7 = 0, c = 2.
- 9. Hyperbola, foci (4, 7) and (4, -3), b = 3.
- 10. Hyperbola, center (3, 1), directrix x = 5, e = 2.
- 11. Hyperbola, foci (-3, 8) and (-3, 2), ends of conjugate axis (-5, 5) and (-1, 5).
- 12. Hyperbola, vertices (1, -1) and (-5, -1), asymptotes 2x + 3y + 7 = 0 and 2x 3y + 1 = 0.
- 200. Simplification by Rotation. Removal of the xy-term. If, in the general equation of a conic,

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$$
 (7)

the coefficient $B \neq 0$, it is always possible, by rotating the axes through a suitable angle, to reduce the equation to one in which the coefficient of the x'y'-term is equal to zero.

Let the axes be rotated through an angle ϕ ; that is, replace x and y, in equation (7), by

$$x = x' \cos \phi - y' \sin \phi$$
, $y = x' \sin \phi + y' \cos \phi$. (8)

After this substitution has been effected, equation (7) takes the form

$$A'x'^{2} + B'x'y' + C'y'^{2} + D'x' + E'y' + F' = 0,$$
 (9)

wherein

$$A' = A \cos^2 \phi + B \sin \phi \cos \phi + C \sin^2 \phi,$$

$$B' = 2(C - A) \sin \phi \cos \phi + B(\cos^2 \phi - \sin^2 \phi),$$

$$C' = A \sin^2 \phi - B \sin \phi \cos \phi + C \cos^2 \phi,$$

$$D' = D \cos \phi + E \sin \phi,$$

$$E' = E \cos \phi - D \sin \phi, \text{ and } F' = F.$$

The condition that B', the coefficient of the x'y'-term, vanishes is that the angle of rotation, ϕ , is chosen so that

$$B' = 2(C - A) \sin \phi \cos \phi + B(\cos^2 \phi - \sin^2 \phi) = 0.$$
 (10)

By the formulas for the sine and cosine of twice an angle, we have

$$2 \sin \phi \cos \phi = \sin 2\phi$$
, $\cos^2 \phi - \sin^2 \phi = \cos 2\phi$.

With the aid of these equations, we reduce equation (10) to

$$(C-A)\sin 2\phi + B\cos 2\phi = 0.$$

If $A \neq C$, we may reduce this equation further to

$$\tan 2\phi = \frac{B}{A - C}.$$

If A = C and $B \neq 0$, it reduces to

Example. Remove the xy-term from $5x^2 + 4xy + 8y^2 = 9$ by a rotation of axes.

By (11), we must rotate the axes through an angle ϕ such that

$$\tan 2\phi = \frac{4}{5-8} = -\frac{4}{3}.$$

By trigonometry, we have * cos $2\phi = -\frac{3}{5}$. Further, from the half-formulas, we have

$$\sin \phi = \sqrt{\frac{1 - \cos 2\phi}{2}} = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \frac{2}{\sqrt{5}}$$

$$\cos \phi = \sqrt{\frac{1 + \cos 2\phi}{2}} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \frac{1}{\sqrt{5}}.$$

On substituting these values of $\sin \phi$ and $\cos \phi$ in (8), we obtain, as the formulas for the required rotation of axes,

$$x = \frac{x' - 2y'}{\sqrt{5}}, \quad y = \frac{2x' + y'}{\sqrt{5}}.$$

If, in the given equation, we replace x and y by these expressions, and simplify, we find, as the required equation,

$$9x'^2 + 4y'^2 = 9.$$

This is the equation of an ellipse having the y'-axis as principal axis and with semi-axes of lengths $\frac{3}{2}$ and 1.

Exercises

Remove the xy-term by a rotation of axes. Draw both sets of axes and the curve.

* In determining 2ϕ by means of equation (11) or (11'), we shall suppose, throughout, that $0 \le 2\phi < 180^\circ$. Under this assumption, $\cos 2\phi$ will always agree in sign with $\tan 2\phi$ and, since $0 \le \phi < 90^\circ$, $\sin \phi$ and $\cos \phi$ will always be positive or zero.

1.
$$3x^2 + 24xy - 4y^2 = 48$$
.

3.
$$19x^2 + 6xy + 11y^2 = 50$$
. 4. $4x^2 - 4xy + y^2 = 45$.

$$5. \ 3x^2 + 5xy - 9y^2 = 40.$$

7.
$$5x^2 + 15xy - 3y^2 = 11$$
.

7.
$$5x^2 + 15xy - 3y^2 = 11$$
.

2.
$$3x^2 + 12xy - 2y^2 = 65$$
.

4.
$$4x^2 - 4xy + y^2 = 45$$
.

6.
$$7x^2 - 8xy + 7y^2 = 21$$
.

8.
$$50x^2 - 8xy + 35y^2 = 102$$
.

9.
$$16x^2 - 24xy + 9y^2 + 12x + 16y = 0$$
.

201. Reduction of Numerical Equations to the Standard Form. If the second degree terms in the given equation do not form a perfect square; that is, if $B^2 - 4AC \neq 0$, we shall first translate the origin to the point (h, k), then determine h and k, as in the following example 1, so that the coefficients of x' and y' are zero. We then rotate the axes so as to remove the x'y'-term.

If the second degree terms do form a perfect square; that is, if B^2 -4AC = 0, it is usually not possible to make the coefficients of x' and y' both zero by a translation of axes. In this case, accordingly, we shall first rotate the axes and then complete the reduction to the standard form by a translation, as in the following example 2.

Example 1. Simplify
$$6x^2 + 24xy - y^2 - 12x + 26y + 11 = 0$$
.

Since $B^2 - 4AC = 24^2 - 4 \cdot 6(-1) \neq 0$, we first translate the origin to the point (h, k) by putting x = x' + h, y = y' + k. We have, after collecting the coefficients,

$$6x'^{2} + 24x'y' - y'^{2} + (12h + 24k - 12)x' + (24h - 2k + 26)y' + 6h^{2} + 24hk - k^{2} - 12h + 26k + 11 = 0.$$

If we equate to zero the coefficients of x' and y' in this equation, we have

$$12h + 24k - 12 = 0$$
, $24h - 2k + 26 = 0$.

By solving these equations as simultaneous, we find h = -1, k = 1. If we now substitute these values of h and k in the above equation, we obtain

$$6x'^2 + 24x'y' - y'^2 + 30 = 0.$$

To remove the xy-term, we rotate the axes through an angle ϕ such that $\tan 2\phi = \frac{24}{7}$. Then $\cos 2\phi = \frac{7}{25}$, $\sin \phi = \frac{3}{5}$, $\cos \phi = \frac{4}{5}$, and the equations of the rotation are

$$x' = \frac{4x'' - 3y''}{5}, \quad y' = \frac{3x'' + 4y''}{5}.$$

On making these substitutions, and simplifying, we obtain, as the required equation of the conic,

$$15x''^2 - 10y''^2 + 30 = 0$$
, or $\frac{y''^2}{3} - \frac{x''^2}{2} = 1$.

The curve is a hyperbola with center at the new origin and transverse axis on the y"-axis.

Example 2. Simplify $144x^2 - 120xy + 25y^2 - 118x + 190y - 81 = 0$.

Since $B^2 - 4AC = 14400 - 14400 = 0$, we first remove the xy-term by a rotation of axes.

To determine ϕ , we put $\tan 2\phi = -\frac{120}{119}$. Hence $\cos 2\phi = -\frac{119}{169}$, $\sin \phi = \frac{12}{13}$, $\cos \phi = \frac{5}{13}$, and the equations of the required rotation are

$$x = \frac{5x' - 12y'}{13}$$
, $y = \frac{12x' + 5y'}{13}$.

If we substitute these values of x and y in the given equation, and simplify, we obtain

$$169y'^2 + 130x' + 182y' - 81 = 0.$$

We may write this equation in the form

$$169(y' + \frac{7}{13})^2 + 130(x' - 1) = 0.$$

Hence, if we put x' = x'' + 1, $y' = y'' - \frac{7}{13}$, the above equation becomes $169y''^2 + 130x'' = 0$, or $13y''^2 + 10x'' = 0$.

The curve is a parabola with vertex at the new origin and principal axis coinciding with the x''-axis.

Exercises

Simplify the following equations, draw all the axes, and draw the curve if it exists.

1.
$$9x^2 + 4xy + 6y^2 + 10x - 20y + 5 = 0$$
.

2.
$$3x^2 - 8xy - 12y^2 - 30x - 64y = 0$$
.

3.
$$2x^2 + 12xy + 7y^2 + 36x + 42y + 43 = 0$$
.

4.
$$4x^2 + 4xy + y^2 - 18x + 26y + 64 = 0$$
.

5.
$$4x^2 - 3xy + 4y^2 - 30x + 25y + 63 = 0$$
.

6.
$$31x^2 - 6xy + 39y^2 + 136x - 168y + 184 = 0$$
.

7.
$$50x^2 - 40xy + 8y^2 + 86x - 17y + 11 = 0$$
.

8.
$$5x^2 - 4xy + 2y^2 + 2x - 8y + 13 = 0$$
.

9.
$$3x^2 + 10xy + 3y^2 + 46x + 50y + 143 = 0$$
.

10.
$$13x^2 - 32xy - 47y^2 + 12x + 252y - 315 = 0$$
.

11.
$$16x^2 - 24xy + 9y^2 - 38x - 34y - 15 = 0$$
.

12.
$$26x^2 + 12xy - 9y^2 + 48x + 18y + 10 = 0$$
.

13.
$$12xy - 20x + 9y^2 - 27 + 4x^2 - 30y = 0$$
.

14.
$$18x^2 + 20x + 3y^2 - 4y + 8xy + 14 = 0$$
.

15. Using the values of A', B', and C' in terms of $\sin \phi$ and $\cos \phi$ given in Art. 200, show that, if equation (7) is transformed into (9) by a rotation of

SI C BY

§ 201

axes through any angle ϕ whatever, then A' + C' = A + C and $B'^2 - 4A'C' = B^2 - 4AC$.

NOTE. Because of these equations, the quantities A + C and $B^2 - 4AC$ are said to be invariants under rotation of axes.

16. Using the last equation of Ex. 15 with ϕ chosen so that B'=0, show that, if the first member of equation (7) does not break up into two linear factors, then the curve is

an ellipse, if
$$B^2 - 4AC < 0$$
, a parabola, if $B^2 - 4AC = 0$, a hyperbola, if $B^2 - 4AC > 0$.

Find the equation of the conic through the five given points.

- 17. (0,0), (5,0), (0,-3), (1,1), (-2,2).
- 18. (5, 1), (1, -2), (-1, 1), (1, 7), (5, 4).
- 19. (1, 1), (2, 3), (3, -1), (-3, 2), (-2, -1).
- **20.** (4, 1), (2, 2), (3, -2), (4, -1), (1, -3).
- 21. A line through the fixed point $P_1(x_1, y_1)$ intersects the coördinate axes at the points A and B. Find the equation of the locus of the midpoint of the segment AB as the line rotates around P_1 .
- 22. The ends of the base of a triangle are (0, 0) and (a, 0). Find the equation of the locus of the vertex, given that the sum of the slopes of the sides is b.
- 23. The ends of the base of a triangle are (-a, 0) and (a, 0). The vertex moves along the line y b = 0. Find the equation of the locus of the point of intersection of the altitudes.
- 24. Find the equation of the locus of a point, given that the square of its distance from the origin equals the sum of the squares of its distances from the lines ax + by ab = 0 and bx + ay ab = 0.

Tangents and Normals; Differentiation and Integration

202. Definitions. Before we attempt to find the equation of the tangent line to a curve at a point on it, we must set up a working defini-

tion of a tangent line. The following definition is the one customarily employed in calculus, and throughout advanced mathematics.

Let P_1 be a given point on a given curve C. It is required to define the tangent line to C at P_1 .

Let P_2 be another point on C and draw the secant line P_1P_2 . If we now hold P_1 fixed and let P_2 move along C and approach P_1 , the secant line P_1P_2 will turn around P_1 . The limiting position of the line P_1P_2 , as P_2 ap-

proaches P_1 as a limit, along the curve, is the tangent line to C at P_1 .

The line through P_1 perpendicular to the tangent is the normal line to C at P_1 .

In the following sections, we shall derive the equations of the tangent and normal lines to a number of curves according to the foregoing definitions. The principles we shall employ are those of differential calculus, and the discussion should be thought of as preparatory to that subject.

203. Tangent and Normal to a Parabola. Let $P_1(x_1, y_1)$ be a given point on the parabola $y^2 = 2px$. It is required to find the equations of

the tangent and normal lines to this

parabola at P_1 .

Since P_1 lies on the required tangent line P_1T , we can find the equation of this line if we can find its slope m, for we can then substitute this value of m in the pointslope form $y - y_1 = m(x - x_1)$ of the equation of a line through $P_1(x_1, y_1)$.

To find the slope m of the tangent line, we must, by the definition of Art. 202, first find the slope of the secant line P_1P_2 and then

Χ L_2 L_1 Fig. 130

find the limiting value of this slope as P_2 approaches P_1 along the curve.

246

Denote the coördinates of P_2 by $(x_1 + \Delta x, y_1 + \Delta y)$.* From the figure, the slope, m', of the secant line P_1P_2 is seen to be

$$m' = \frac{y_1 + \Delta y - y_1}{x_1 + \Delta x - x_1} = \frac{\Delta y}{\Delta x}.$$
 (1)

The limit of this value of m' as P_2 approaches P_1 along the curve; that is, as Δy and Δx approach zero, is the required slope of the tangent line.† Since $P_1(x_1, y_1)$ lies on the given parabola, we have

$$y_1^2 = 2px_1, (2)$$

and, since $P(x_1 + \Delta x, y_1 + \Delta y)$ also lies on the parabola,

$$(y_1 + \Delta y)^2 = 2p(x_1 + \Delta x),$$

$$y_1^2 + 2y_1\Delta y + (\Delta y)^2 = 2px_1 + 2p\Delta x.$$
 (3)

or

Subtracting equation (2) from (3) gives

$$2y_1\Delta y + (\Delta y)^2 = 2p\Delta x$$
, or $\Delta y(2y_1 + \Delta y) = 2p\Delta x$.

By dividing this equation through by Δx , solving for $\Delta y/\Delta x$, and substituting in equation (1), we have

$$m' = \frac{\Delta y}{\Delta x} = \frac{2p}{2y_1 + \Delta y}.$$
 (4)

Now let P_2 approach P_1 ; that is, let Δx and Δy approach zero. From (4), we see that the value of m' approaches p/y_1 . But this limit which m' approaches is m, the slope of the tangent line at P_1 . Hence, the slope of the tangent line to the parabola at P_1 is

$$m=\frac{p}{y_1}$$
.

On substituting this value of the slope m in the point-slope form, $y - y_1 = m(x - x_1)$, of the equation of a line, we obtain, as the required equation of the tangent line to the parabola at P_1 ,

$$y-y_1=\frac{p}{y_1}(x-x_1)$$
, or $y_1y-y_1^2=px-px_1$. (5)

This equation may be simplified. In the second of equations (5), replace y_1^2 by its value from (2) and simplify. We have

$$y_1y = px + px_1. (6)$$

* The symbol Δx is read "delta x." It means simply the difference between the abscissas of P_1 and P_2 ; that is, it is the directed length P_1R in Figure 130. Similarly, Δy is read "delta y." It is the difference RP_2 between the ordinates of P_1 and P_2 .

† The limiting value, as P_2 approaches P_1 along the curve, of the fraction $\frac{\Delta y}{\Delta x}$ is denoted by $\frac{dy}{dx}$ and is called "the derivative of y with respect to x." (See Art. 208.)

This is the equation of the tangent line to the parabola $y^2 = 2px$ at the point $P_1(x_1, y_1)$ on the curve.

The slope of the normal line at $P_1(x_1, y_1)$ is the negative reciprocal of the slope of the tangent at that point, or $-y_1/p$. Hence

$$y - y_1 = \frac{-y_1}{p}(x - x_1),$$

$$p(y - y_1) + y_1(x - x_1) = 0,$$
(7)

or

is the equation of the normal line to the parabola at $P_1(x_1, y_1)$.

204. Tangent and Normal to the Ellipse. To find the tangent and normal lines to the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ at a point $P_1(x_1, y_1)$ on it, we follow the same line of reasoning that we used for the parabola.

Let $P_2(x_1 + \Delta x, y_1 + \Delta y)$ be any point other than P_1 on the ellipse Figure 131. Then we have

$$b^2(x_1 + \Delta x)^2 + a^2(y_1 + \Delta y)^2 = a^2b^2$$

or

$$b^2x_1^2 + 2b^2x_1\Delta x + b^2(\Delta x)^2 + a^2y_1^2 + 2a^2y_1\Delta y + a^2(\Delta y)^2 = a^2b^2.$$

We have also, since $P_1(x_1, y_1)$ lies on the ellipse,

$$b^2x_1^2 + a^2y_1^2 = a^2b^2. (8)$$

By subtraction, we obtain from the last two equations,

$$2b^2x_1\Delta x + b^2(\Delta x)^2 + 2a^2y_1\Delta y + a^2(\Delta y)^2 = 0,$$

or

$$m' = \frac{\Delta y}{\Delta x} = -\frac{2b^2x_1 + b^2\Delta x}{2a^2y_1 + a^2\Delta y}$$

As P_2 approaches P_1 , Δx and Δy approach zero and m' approaches $-b^2x_1/a^2y_1$, which is the slope, m, of the tangent at $P_1(x_1, y_1)$. The equation of this tangent is, accordingly,

$$y-y_1=-\frac{b^2x_1}{a^2y_1}(x-x_1).$$

To simplify this equation, we multiply by a2y1, and rearrange, giving

$$b^2x_1x + a^2y_1y = b^2x_1^2 + a^2y_1^2.$$

On substituting for the second member its value from (8), we have

$$b^2x_1x + a^2y_1y = a^2b^2, (9)$$

which is the equation of the tangent line to the ellipse at $P_1(x_1, y_1)$.

Since the normal line is perpendicular to the tangent, its slope is a^2y_1/b^2x_1 , and its equation reduces to

$$b^2x_1(y-y_1)=a^2y_1(x-x_1). (10)$$

This is the equation of the normal line to the ellipse at $P_1(x_1, y_1)$.

205. Tangent and Normal to the Hyperbola. If the point $P_1(x_1, y_1)$

lies on the hyperbola
$$b^2x^2 - a^2y^2 = a^2b^2, \tag{11}$$

we find that

$$b^2x_1x^2 - a^2y_1y = a^2b^2 (12)$$

0

Frg. 132

is the equation of the tangent line and

$$b^2x_1(y-y_1)+a^2y_1(x-x_1)=0 (13)$$

is the equation of the normal line to the hyperbola at P_1 .

The derivation of these equations, which differs but little from that given in the preceding article for the ellipse, is left as an exercise for the student.

206. Tangents and Normals to Other Curves. The method we have just been using to find the equations of the tangent and normal lines to a conic at a point on it can be applied equally well to curves whose equations are not of second degree.

EXAMPLE. Find the equations of the tangent and normal lines to the semicubical parabola $ay^2 = x^3$ at a point $P_1(x_1, y_1)$ on the curve.

Let $P_2(x_1 + \Delta x, y_1 + \Delta y)$ be a second point on the curve. Then, since P_1 and P_2 both lie on the curve,

$$ay_1^2 = x_1^3$$
, and $a(y_1 + \Delta y)^2 = (x_1 + \Delta x)^3$.

By subtracting the first equation from the second and solving for $\Delta y/\Delta x$, we get

$$m' = \frac{\Delta y}{\Delta x} = \frac{3x_1^2 + 3x_1\Delta x + (\Delta x)^2}{2ay_1 + a\Delta y}.$$

As P_2 approaches P_1 , Δy and Δx approach zero and we find, as the slope of the tangent line at P_1 , $m=3x_1^2/2ay_1$. It follows that

$$2ay_1(y-y_1) = 3x_1^2(x-x_1),$$

$$3x_1^2(y-y_1) + 2ay_1(x-x_1) = 0,$$

and

are, respectively, the equations of the tangent and the normal lines to the curve at the point $P_1(x_1, y_1)$.

Exercises

Find the equations of the tangent and normal lines to the given curve at the point indicated.

1.
$$16x^2 + 25y^2 = 800$$
, $(5, -4)$.

3.
$$12x^2 - 5y^2 = 3$$
, $(2, -3)$.

5.
$$x^2 + 6y - 7 = 0$$
, $(5, -3)$.

7.
$$3y = 2x^2 + 5x - 9$$
, $(-3, -2)$.

9.
$$y = x^3$$
, (2, 8).

11.
$$y^2 = 6x^3 - 6x$$
, (2, 6).

13.
$$x^3 + y^3 = 9xy$$
, (2, 4).

2.
$$y^2 = 3x$$
, (12, 6).

4.
$$x^2 + y^2 - 6x + 4y - 12 = 0$$
, (6, 2).

6.
$$xy = 18, (-3, -6)$$
.

8.
$$2x = 4y^2 - 3y + 2$$
, (6, 2).

10.
$$5y = 2x^3 - 3x^2 - 7$$
, (3, 4).

12.
$$x^3 + y^3 = 19$$
, $(3, -2)$.

14.
$$x^2y + 4y = 40$$
, (4, 2).

15.
$$(y-k)^2 = 2p(x-h), (x_1, y_1).$$

16.
$$b^2(x-h)^2+a^2(y-k)^2=a^2b^2$$
, (x_1, y_1) .

17.
$$b^2(x-h)^2-a^2(y-k)^2=a^2b^2$$
, (x_1, y_1) .

18.
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
, (x_1, y_1) .

19. Show that the inclination of the tangent at P_1 to the parabola $y^2 = 2px$ is one-half the inclination of the line through the focus and the point P_1 .

Note. It follows from this theorem that, if the surface of a mirror is formed by revolving the parabola around its principal axis, and if a source of light is placed at the focus, then the rays striking the mirror will be reflected parallel to the principal axis.

20. A tangent to an ellipse or hyperbola bisects one pair of vertical angles formed by the lines through the foci and the point of tangency.

HINT. Let F' and F be the foci and P_1 the point of tangency. By geometry, in the triangle $F'P_1F$, the bisectors of the internal (or external) angles at P_1 divide the side opposite internally (or externally) into segments proportional to the adjacent sides. The sides $F'P_1$ and FP_1 are the focal radii of P_1 (Art. 186, Ex. 14 and Art. 192, Ex. 15).

207. Tangents Having a Given Slope. Let there be given, not the point of tangency, but the slope, m, of a tangent line to a conic. It is required to find the equations of the lines tangent to the conic having the given slope m.

(a) The parabola. To find the line of slope m that is tangent to the

parabola

$$y^2 = 2px,$$

we consider, first, a secant line

$$y = mx + k \tag{14}$$

that has the given slope m and that meets the parabola in two points P' and P'' (Fig. 133). If, by holding m constant and varying k, we move this line parallel to its original position until it becomes tangent to

the parabola, its intersections P' and P'' will move into coincidence at the point of tangency P_1 . To make the line (14) tangent to the parabola,

we must thus impose on k the condition that the two intersections of this line with the parabola coincide.

Substitute the value of y from (14) in the equation of the parabola.

The roots of the resulting equation

or
$$(mx + k)^2 = 2px,$$
or
$$m^2x^2 + 2(mk - p)x + k^2 = 0,$$
 (15)

are the abscissas of the points of intersection of the line (14) with the parabola. (Why?)

The condition that the two intersections coincide is, consequently, that the two roots of equation (15) are equal. This condition is (Art. 61)

$$4(mk-p)^2-4m^2k^2=0$$
, or $k=p/2m$.

On substituting this value of k in equation (14), we find that

$$y = mx + \frac{p}{2m} \tag{16}$$

is the equation of the line of slope m tangent to the parabola $y^2 = 2px$.

(b) The ellipse. To find the lines of slope m that are tangent to the ellipse $b^2x^2 + a^2y^2 = a^2b^2$.

we proceed as we did for the parabola.

The abscissas of the two intersections of the line y = mx + k with the given ellipse are the roots of the equation

$$b^2x^2 + a^2(mx + k)^2 = a^2b^2,$$
 or
$$(b^2 + a^2m^2)x^2 + 2a^2mkx + a^2(k^2 - b^2) = 0.$$
 (17)

If we impose the condition that the two roots of equation (17) are equal, we obtain

$$4a^4m^2k^2 - 4a^2(b^2 + a^2m^2)(k^2 - b^2) = 0,$$

$$k = \pm \sqrt{a^2m^2 + b^2}.$$

so that

If we substitute these values of k in the equation y = mx + k of the line, we have

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$
 (18)

as the equations of the lines of slope m that are tangent to the given ellipse. There are two such lines, as is shown in Figure 134.

(c) The hyperbola. For the hyperbola

$$b^2x^2 - a^2y^2 = a^2b^2,$$

we find in the same way that the equations of the tangent lines of slope m are

$$y = mx \pm \sqrt{a^2m^2 - b^2}. \tag{19}$$

The proof is left as an exercise for the student.

Exercises

- 1. Find the line of slope 3 that is tangent to the parabola $y^2 = 24x$.
- 2. Find two lines tangent to the hyperbola $x^2 5y^2 = 20$ that are (a) parallel and (b) perpendicular to the line y = 2x + 8.
- 3. Find two lines parallel to the line through (4, -1) and (-2, 1) that are tangent to the ellipse $2x^2 + 7y^2 = 14$.
- 4. Find the lines through the point (1, 3) that are tangent to the ellipse $4x^2 + 9y^2 = 36$.
 - 5. Find the normal line of slope m to the parabola $y^2 = 2px$.

Hint. Find the point of tangency of the tangent line of slope -1/m. Through this point, find the line of slope m.

- 6. Show that the product of the distances to the foci from a tangent line to an ellipse or to a hyperbola is a constant.
- 7. Show that the locus of the point of intersection of two mutually perpendicular tangents to a parabola is the directrix.
- 8. Find the locus of the point of intersection of two mutually perpendicular tangents to (a) an ellipse, (b) a hyperbola.

In the following exercises find the lines of slope m tangent to the given curve.

- 9. The parabola $x^2 = 2py$.
- 10. The rectangular hyperbola $2xy = a^2$.
- 11. The parabola $(y-k)^2 = 2p(x-h)$.
- 12. The ellipse $b^2(x-h)^2 + a^2(y-k)^2 = a^2b^2$.
- 13. The hyperbola $b^2(x-h)^2 a^2(y-k)^2 = a^2b^2$.
- 208. The Derivative. We saw in Arts. 202–206 that, if (x, y) and $(x + \Delta x, y + \Delta y)$ are two points both of which lie on a given curve, then the limit of $\frac{\Delta y}{\Delta x}$ as Δx approaches zero is the slope of the tangent to the curve at the point (x, y). This limit we denote by the symbol $\frac{dy}{dx}$, that is, we put

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}.$$
 (20)

This limit is called the derivative of y with respect to x. It is also frequently referred to, especially in the applications of mathematics, as, "the rate of change of y with respect to x." Because this limit occurs frequently in many of the applications of mathematics, we shall now take up a discussion of some of its properties.

In physics, for example, the rate of change of the position of a moving body with respect to the time is called its velocity, as is illustrated by

the following example.

Example. The distance in feet that a body falls from rest in t seconds under the attraction of gravity is given by the formula $s = \frac{1}{2}gt^2$. Find its velocity at the end of t seconds.

Let s be the distance it has fallen at the end of t seconds and $s + \Delta s$ the distance it has fallen at the end of $t + \Delta t$ seconds. Then

$$s = \frac{1}{2}gt^2$$
 and $s + \Delta s = \frac{1}{2}g(t + \Delta t)^2$,

so that

$$\Delta s = \frac{1}{2}g(t + \Delta t)^2 - \frac{1}{2}gt^2 = gt\Delta t + \frac{1}{2}g(\Delta t)^2.$$
 (21)

If we divide the distance Δs by the interval of time Δt during which it falls through this distance, we obtain an average velocity for the motion of the body across this interval. From (21), we have for this average velocity

$$\frac{\Delta s}{\Delta t} = \frac{gt\Delta t + \frac{1}{2}g(\Delta t)^2}{\Delta t} = gt + \frac{1}{2}g\Delta t.$$

To find the velocity at the time t, we take the limit of this average velocity as Δt approaches zero. We have

$$v = \frac{ds}{dt} = \lim_{\Delta t \to 0} (gt + \frac{1}{2}g\Delta t) = gt.$$

The required velocity is thus the derivative with respect to t of the distance the body has fallen at the end of t seconds.

209. Formulas. To save the labor of computing the limit every time we need to find the derivative of a function, we shall now set up some formulas which will enable us, in many cases, to write down at once the expression for the derivative without going through the steps of the limiting process.

Let u = f(x) and v = g(x) be two given functions and let c and n be constants. Then

$$\frac{dc}{dx} = 0.$$

$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\frac{d(u\cdot v)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d(c\cdot v)}{dx} = c\frac{dv}{dx}$$
III

Le continuous for X D DIFFERENTIATION AND INTEGRATION

§ 209

$$\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}} \qquad V$$

$$\frac{d\left(\frac{c}{v}\right)}{dx} = \frac{-c\frac{dv}{dx}}{v^{2}} \qquad VI$$

$$\frac{d(x^{n})}{dx} = nx^{n-1} \qquad VII$$

To prove formula I, let y = c, then $y + \Delta y = c$, so that $\Delta y = 0$. Then

$$\frac{\Delta y}{\Delta x} = \frac{0}{\Delta x} = 0.$$

Since $\frac{\Delta y}{\Delta x}$ is constantly zero, its limit is also zero.

To prove II, let y = u + v = f(x) + g(x). Then

$$y + \Delta y = f(x + \Delta x) + g(x + \Delta x) = u + \Delta u + v + \Delta v$$

where

$$u + \Delta u = f(x + \Delta x)$$
 and $v + \Delta v = g(x + \Delta x)$.

Then

$$\Delta y = u + \Delta u + v + \Delta v - (u + v) = \Delta u + \Delta v.$$

On dividing by Δx , we have

$$\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x}.$$

By taking the limit of each of these expressions as Δx approaches zero, we find that $\frac{dy}{dx} = \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, which is formula II.

To prove III, we put $y = u \cdot v = f(x) \cdot g(x)$. Then

$$\Delta y = f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x) = (u + \Delta u)(v + \Delta v) - uv$$
$$= u\Delta v + v\Delta u + \Delta u\Delta v.$$

Hence,

$$\frac{\Delta y}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}.$$

If we now let Δx , and hence Δy , Δu , and Δv , approach zero, we have formula III. To prove formula IV, we put u = c in formula III. Then, since $\frac{du}{dx} = \frac{dc}{dx} = 0$, formula III now reduces to formula IV.

To prove V, put $y = \frac{u}{v} = \frac{f(x)}{g(x)}$. Then

$$\Delta y = \frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)} = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v} = \frac{v\Delta u - u\Delta v}{v^2 + v\Delta v}.$$

Divide by Δx .

$$\frac{\Delta y}{\Delta x} = \frac{v \frac{\Delta u}{\Delta x} - u \frac{\Delta v}{\Delta x}}{v^2 + v \Delta v}.$$

If we now let Δx , Δy , Δu , and Δv approach zero, we have formula V. Formula VI follows at once by putting u = c, $\frac{du}{dx} = 0$ in formula V.

We shall prove formula VII for the case in which n is a positive integer. The proof that the formula is true when n is not a positive integer will be found in the textbooks devoted to calculus.

Let $y = x^n$, where n is a positive integer. With the aid of the binomial formula (Art. 237) which we shall derive in Chapter 30, we find that

$$y + \Delta y = (x + \Delta x)^n = x^n + nx^{n-1}\Delta x + \frac{n(n-1)}{1 \cdot 2}x^{n-2}(\Delta x)^2 \cdot \cdot \cdot + (\Delta x)^n,$$

where the dots indicate a sequence of terms each of which contains Δx to the third or a higher power. Then

$$\frac{\Delta y}{\Delta x} = nx^{n-1} + \frac{n(n-1)}{1\cdot 2}x^{n-2}\Delta x \cdot \cdot \cdot + (\Delta x)^{n-1}.$$

If we now let Δx approach zero, we obtain in the limit,

$$\frac{dy}{dx}=nx^{n-1}.$$

Example 1. Find $\frac{dy}{dx}$, given $y = 3x^4 - 5x^2 + \frac{2}{x^3}$.

We have

$$\frac{dy}{dx} = \frac{d}{dx} \left(3x^4 - 5x^2 + \frac{2}{x^3} \right) = \frac{d}{dx} \left(3x^4 \right) + \frac{d}{dx} \left(-5x^2 \right) + \frac{d}{dx} \left(\frac{2}{x^3} \right)$$
$$= 3\frac{dx^4}{dx} - 5\frac{dx^2}{dx} + 2\frac{d}{dx} \left(\frac{1}{x^3} \right) = 12x^3 - 10x - \frac{6}{x^4}.$$

Example 2. Differentiate: $y = \frac{3x^2 - x - 9}{2x + 1}$.

Use formula V.

$$\frac{dy}{dx} = \frac{(2x+1)\frac{d}{dx}(3x^2 - x - 9) - (3x^2 - x - 9)\frac{d}{dx}(2x+1)}{(2x+1)^2}$$

$$= \frac{(2x+1)(6x-1) - (3x^2 - x - 9)2}{(2x+1)^2}$$

$$= \frac{6x^2 + 6x + 17}{(2x+1)^2}.$$

In problems involving differentiation, it is usually best to replace radicals, if they appear, by fractional exponents. Formula VII may then be applied.

Example 3. Differentiate: $y = 6\sqrt[3]{x^7} + 5\sqrt{x^3} - 2\sqrt[4]{x^5}$. $\frac{dy}{dx} = \frac{d}{dx} \left(6x^{\frac{7}{3}} + 5x^{\frac{3}{3}} - 2x^{\frac{5}{3}}\right) = \frac{d}{dx} \left(6x^{\frac{7}{3}}\right) + \frac{d}{dx} \left(5x^{\frac{3}{2}}\right) - \frac{d}{dx} \left(2x^{\frac{5}{3}}\right)$ $= 6\frac{dx^{\frac{7}{3}}}{dx} + 5\frac{dx^{\frac{3}{2}}}{dx} - 2\frac{dx^{\frac{7}{4}}}{dx} = 14x^{\frac{4}{3}} + \frac{15}{2}x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{1}{4}}$ $= 14\sqrt[3]{x^4} + \frac{15}{2}\sqrt{x} - \frac{5}{2}\sqrt[4]{x}.$

Exercises

Find the derivative of y with respect to x.

1.
$$y = 3x^2 - 7x + 4$$
.

3.
$$y = 7x^3 + 2x^2 - 9$$
.

5.
$$y = 8x^2 - \frac{2}{x} + \frac{3}{x^2}$$
.

7.
$$y = x^2(2x^3 + 1)$$
.

9.
$$y = \frac{2x-3}{6x+5}$$
.

11.
$$y = \frac{x^2+2}{2x-3}$$
.

13.
$$y = 4x^{\frac{1}{2}} - 10x^{\frac{5}{2}}$$
.

15.
$$y = \frac{\sqrt{x}}{\sqrt{x+1}}$$
.

2.
$$y = 8 + 5x - 7x^2$$
.

4.
$$y = x^8 - 3x^5 - 2x$$
.

6.
$$y = 7 + \frac{3}{x^2} - \frac{5}{x^3}$$

8.
$$y = (3x+1)(2x-5)$$
.

10.
$$y = \frac{x}{x^2 - 1}$$
.

12.
$$y = \frac{4x^3 + 7x^2}{8x^2 + 5}$$
.

14.
$$y = 5\sqrt{x} + 3\sqrt[3]{x^5}$$
.

16.
$$y = \frac{1+\sqrt[3]{x}}{\sqrt{x}-5}$$
.

17.
$$y = a_0x^5 + a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5$$
.

- 18. A projectile is fired vertically upward. Its height y, in feet, is given by the formula $y = 576t 16t^2$. Find its velocity (the derivative of y with respect to t) as a function of the time. What is its velocity at the end of 10 seconds?
- 19. The projectile in Ex. 18 has reached its greatest height when its velocity is zero. How high does it go?
 - 20. Find the rate of change of the area of a square with respect to its side.
- 21. The radius of a vertical cylindrical water tank is 6 feet. Water is running in at the rate of 8 cubic feet per second. How fast is the depth of the water in the tank increasing?

HINT. Express V, the volume of water in the tank, in terms of h, the depth. The rate at which water is flowing into the tank is $\frac{dV}{dt} = 8$. Find $\frac{dh}{dt}$.

- 22. The top of a ladder 26 feet long rests against a vertical wall. If the bottom of the ladder is being pulled horizontally directly away from the wall at the rate of 4 feet per second, how fast is the top descending when the bottom is 10 feet from the wall?
- 23. An electric light is suspended 24 feet directly above a horizontal walk. A man 6 feet tall is going along the walk at the rate of 3 feet per second. How fast is the end of his shadow moving?
- 24. A stone dropped into a pool of water sends out a series of concentric ripples. If the radius of the outer ripple is increasing at the rate of 2 feet per second, how fast is the area of the outer ripple increasing when its radius is 3 feet?
- 210. Derivative of a Function of a Function. Let y = f(u) and u = g(x). It is required to find the derivative of y with respect to x. We have

§ 211 DERIVATIVES OF TRANSCENDENTAL FUNCTIONS 257

$$u + \Delta u = g(x + \Delta x)$$
 and $y + \Delta y = f(u + \Delta u)$.

If $\Delta u \neq 0$, we have

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}.$$

If Δx , Δu , and Δy all approach zero, we now have, in the limit,

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$
 (22)

Example. Find $\frac{dy}{dx}$, given $y = \sqrt{x^2 - 6x + 11}$.

Let $u = x^2 - 6x + 11$, then $y = \sqrt{u} = u^{\frac{1}{2}}$.

From formulas (22), VII, II, and I, we have

$$\frac{dy}{dx} = \frac{du^{\frac{1}{2}}}{du} \cdot \frac{d}{dx} (x^2 - 6x + 11) = \frac{1}{2\sqrt{u}} (2x - 6) = \frac{x - 3}{\sqrt{x^2 - 6x + 11}}.$$

Exercises

Find $\frac{dy}{dx}$.

1.
$$y = \sqrt{2x^3 - 5x^2 - 1}$$
.

2.
$$y = \sqrt{\frac{2x-1}{3x+4}}$$
.

3.
$$y = \sqrt{x^2 + 1} - \frac{1}{\sqrt{x^2 + 1}} + 3$$
. 4. $y = \sqrt{5x + 7} - \sqrt[3]{3 - x - 2x^2}$.

4.
$$y = \sqrt{5x+7} - \sqrt[3]{3-x-2x^2}$$

5.
$$v = \sqrt[4]{a^4 + x^4}$$
.

6.
$$y = \sqrt[3]{x^3 - 6\sqrt{x}}$$
.

211. Derivatives of Transcendental Functions. It is proved in the textbooks on calculus that, provided the angle x is measured in radians,

$$\frac{d}{dx}\sin x = \cos x \frac{dx}{dx} \text{ and } \frac{d}{dx}\cos x = -\sin x; \frac{dx}{dx}$$
 (23)

and also that, if e = 2.71828 is the base of the natural system of logarithms (Art. 86), then

$$\frac{d}{dx}e^{x} = e^{x} \quad \text{and} \quad \frac{d}{dx}\log_{e}x = \frac{1}{x}. \tag{24}$$

Exercises

Find $\frac{dy}{dx}$, using equations (23) and (24).

1.
$$y = \tan x = \frac{\sin x}{\cos x}$$
 2. $y = \sec x = \frac{1}{\cos x}$

$$2. \ y = \sec x = \frac{1}{\cos x}$$

3.
$$y = \cot x$$
.

$$4. y = \csc x$$

4.
$$y = \csc x$$
. 5. $y = \sin\left(\frac{\pi}{2} - x\right)$.

$$6. \ y = \frac{\sin 2x}{1 + \cos 2x}$$

7.
$$y = e^{kx}$$
.

8.
$$y = a^x = e^{x \log_e a}$$
. 9. $y = e^{-x^2}$.

9.
$$y = e^{-x^2}$$

10.
$$y = \log_e \sec x$$
.

10.
$$y = \log_e \sec x$$
. 11. $y = \log_e (\sec x + \tan x)$. 12. $y = e^{\sin x}$.

12.
$$y = e^{\sin x}$$
.

13.
$$y = \sin x^2$$
.

14.
$$y = \log_e \sqrt{x^2 + 2x + 5}$$
.

15.
$$y = \cos e^x$$
.

212. Successive Differentiation. Let y = f(x). Then the derivative of y with respect to x is also a function of x which we shall denote by f'(x), so that

$$\frac{dy}{dx} = f'(x).$$

We shall speak of $\frac{dy}{dx} [or f'(x)]$ as the first derivative of y with respect to x.

The derivative of the first derivative is called the second derivative of y with respect to x. We shall denote $\frac{d}{dx}\left(\frac{dy}{dx}\right)$ by $\frac{d^2y}{dx^2}$ and $\frac{d}{dx}f'(x)$ by f''(x), so that

$$\frac{d^2y}{dx^2} = f^{\prime\prime}(x).$$

If we differentiate the second derivative, we obtain, in a similar way, the third derivative, and so on.

Exercises

Find the first, second, and third derivatives of y with respect to x.

1.
$$y = 5x^2 - 2x - 3$$
.

2.
$$y = x^3 + 4x^2 - 2x - 7$$
.

3.
$$y = 2x^2 + \frac{3}{x}$$

4.
$$y = x^{\frac{1}{2}} - 2x^{\frac{1}{3}}$$
.

5.
$$y = \frac{2x+5}{x+1}$$

6.
$$y = \sqrt{x^2 + x + 1}$$
.

213. Maxima and Minima. We saw in Arts. 202-206 that, if (x_1, y_1) is a point on a curve, then the value of $\frac{dy}{dx}$ at the point (x_1, y_1) is the slope of the tangent to the curve at that point. It follows that, if the value of the derivative at the point (x_1, y_1) is positive, then the slope of the tangent at that point is positive and y is increasing as x increases; similarly, if the derivative is negative, y is decreasing as x increases. Finally, if the derivative is zero at (x_1, y_1) , the tangent at that point is horizontal. We wish now to consider in more detail this last case in which the derivative is zero at (x_1, y_1) .

Suppose first that, for points on the curve for which x is slightly less than x_1 , the derivative is positive and that, for points for which xis a little larger than x_1 , the derivative is negative. Then, as the value of x increases to x_1 , the corresponding value of y increases to y_1 ; as x increases beyond x_1 , the value of y decreases. The origin, in Figure 135, illustrates this case. Such a point is called a maximum point on the curve.

- 25X

If, now, the derivative is negative if x is slightly less than x_1 and positive if x is slightly greater, then, as x increases through the value x_1 , the value of y first decreases to y_1 , then increases again [as at the point (4, -32) in Figure 135]. Such a point is a minimum point on the curve.

It should be observed that, in the neighborhood of a maximum point, the first derivative is decreasing from positive to negative. Hence, its derivative, that is, the second derivative of the given function, is negative (or zero) at a maximum point. Similarly, in the neighborhood of a minimum point, the first derivative is increasing from negative to positive. Hence the second derivative is positive (or zero) at a minimum point.

Example. Given $y = x^3 - 6x^2$, find the maximum and minimum points.

We have

$$y = x^3 - 6x^2$$
, $\frac{dy}{dx} = 3x^2 - 12x$, $\frac{d^2y}{dx^2} = 6x - 12$.

Equate to zero the first derivative; $3x^2 - 12x = 0$, giving x = 0 or x = 4. If x = 0, $\frac{d^2y}{dx^2} = -12$ and, if x = 4, $\frac{d^2y}{dx^2} = 12$. Hence x = 0 is the abscissa of a maximum, and x = 4 of a minimum, point. By putting these values of x in the equation of the curve, we find that (0, 0) is the maximum and (4, -32) is the minimum point (Fig. 135).

It should further be observed that the first derivative may become zero without changing sign. The point determined by such a value of x is called a point of inflection and is neither a maximum nor a minimum.

Thus, if $y = x^3$, then $\frac{dy}{dx} = 3x^2$ and $\frac{d^2y}{dx^2} = 6x$. The first derivative is zero at x = 0 but it does not change sign as x increases from negative to positive values. The second derivative is also zero for this value of x. The origin is a point of inflection on this curve (Fig. 136).

Exercises

Find the maximum and minimum points on the following curves.

1.
$$y = 3x^2 - 12x + 3$$
.

3.
$$y = x^4 - 8x^2$$
.

$$5. \ y=x+\frac{1}{x}.$$

7.
$$y = \frac{a^3}{a^2 + x^2}$$

2.
$$y = x^3 - 12x$$
.

4.
$$y = 2x^3 - 15x^2 + 36x$$
.

6.
$$y = x + \frac{4}{x^2}$$

8.
$$y = \frac{a^2x}{a^2 + x^2}$$

- 9. Find the dimensions of a rectangle of minimum perimeter that has an area of 64 square feet.
- 10. A plumber wishes to make an open gutter of maximum cross-section, having a horizontal base and vertical sides, out of a strip of tin 24 inches wide. Find the width and the depth of the gutter.
- 11. A merchant estimates that he can sell 50 hats per month at a price which will net him a profit of \$1 per hat and that his monthly sales will increase by 5 hats for each decrease of one cent profit per hat. What profit per hat will net him the greatest monthly profit?
- 12. A tin can in the shape of a right circular cylinder is to have a capacity of 24 cubic inches. Find the radius of the base and the altitude if its total surface is a minimum.
- 214. The Indefinite Integral. The process of finding a function F(x) whose derivative is a given function f(x) is called integration. The function F(x) obtained as the result of the integration process is called an integral of f(x); that is, if

$$\frac{d}{dx}F(x) = f(x)$$

then F(x) is an integral of f(x).

Example. Find an integral of the function x^2 .

From formulas IV and VII of Art. 209, we have

$$\frac{d}{dx}\left(\frac{x^3}{3}\right) = \frac{1}{3}\frac{d}{dx}x^3 = \frac{3x^2}{3} = x^2.$$

Hence, $x^3/3$ is an integral of x^2 .

Further, since the derivative of a constant is zero, the function $x^3/3 + C$, where C is any constant, is an integral of x^2 . For

$$\frac{d}{dx}\left(\frac{x^3}{3}+C\right)=\frac{d}{dx}\left(\frac{x^3}{3}\right)+\frac{dC}{dx}=x^2+0=x^2.$$

We shall, accordingly, say that $x^3/3 + C$ is the required integral.

As we saw in the foregoing example, if F(x) is an integral of f(x), then F(x) + C, where C is any constant, is also an integral. For if

$$\frac{d}{dx}F(x) = f(x)$$
, then $\frac{d}{dx}[F(x) + C] = \frac{d}{dx}F(x) + \frac{dC}{dx} = f(x)$.

Because of the fact that we can add to the integral any constant we please, we say that the expression F(x) + C is the indefinite integral of f(x).

It is customary to denote the indefinite integral of the function f(x)

by the symbol

$$\int f(x)dx + C.$$

From the formulas of Arts. 209 and 211, we obtain at once the following formulas for integration.

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx + C$$

$$\int k f(x)dx = k \int f(x)dx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad \text{provided } n \neq -1$$

$$\int \frac{1}{x} dx = \log_e x + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x \, dx = -\cos x + C, \quad \text{provided } x \text{ is in radians}$$

$$\int \cos x \, dx = \sin x + C, \quad \text{provided } x \text{ is in radians}$$

To verify these formulas, differentiate the second members and show that the results are equal to the quantities to be integrated in the first members.

EXAMPLE 1. Find the integral
$$\int (x^{\frac{2}{3}} - 3x^{-\frac{1}{2}} + 10x^{4})dx$$
.

$$\int (x^{\frac{2}{3}} - 3x^{-\frac{1}{2}} + 10x^{4})dx = \int x^{\frac{2}{3}}dx - 3\int x^{-\frac{1}{2}}dx + 10\int x^{4}dx$$

$$= \frac{3}{5}x^{\frac{5}{3}} - 6x^{\frac{1}{2}} + 2x^{5} + C.$$

Example 2. Find the integral $\int e^{mx} dx$.

Let u = mx, so that $\frac{du}{dx} = m$. Then $du = \frac{du}{dx} dx = mdx$.

Then
$$\int e^{mx}dx = \frac{1}{m}\int e^{mx}mdx = \frac{1}{m}\int e^{u}du = \frac{1}{m}e^{u} + C = \frac{1}{m}e^{mx} + C$$
.

Example 3. Find the integral $\int (2x+1) \cos(x^2+x+3) dx$.

Let
$$u = x + x + 3$$
, $\frac{du}{dx} = 2x + 1$, so that $du = (2x + 1) dx$.

$$\int \cos(x^2+x+3)\cdot(2x+1)dx = \int \cos u\,du = \sin u + C = \sin(x^2+x+3) + C.$$

Exercises

Find the indicated integrals.

1.
$$\int (3x^2 + 12x + 7)dx$$
.

2.
$$\int (2x^3 + 5x^2 + 3x - 4)dx$$

$$3. \int (\sqrt{x^3} + 2) dx.$$

$$4. \int (x^2+4x^7)dx.$$

$$5. \int (2-x)^2 dx.$$

$$\textbf{6. } \int \left(\frac{1}{\sqrt{x}} + 3\sqrt{x}\right) dx.$$

7.
$$\int (\sqrt{x}+3)^2 dx.$$

8.
$$\int (x^{\frac{1}{3}} - x^{-\frac{1}{3}})^3 dx.$$

9.
$$\int \frac{2x}{(x^2+1)^2} dx$$
.

10.
$$\int \frac{2x+3}{x^2+3x+2} \, dx.$$

HINT. Let $u = x^2 + 1$. Then $\frac{du}{dx} = 2x$ and the integral becomes $\int \frac{du}{u^2}$.

11.
$$\int \cos (2x-5)dx.$$

12.
$$\int 3e^{5x}dx.$$

13.
$$\int xe^{-x^2}dx.$$

14.
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx.$$

- 15. Find the equation of the curve, given that $\frac{dy}{dx} = 6x 1$. Fix the value of the constant by imposing the condition that the curve goes through the point (2, 3).
- 215. The Definite Integral. Let F(x) be any one of the indefinite integrals of f(x). Then the expression,

$$F(b)-F(a)$$
,

is called the definite integral of f(x) from a to b.* The reason for this apparently rather arbitrary definition will appear in the following article.

It is customary to denote the definite integral by the symbol $\int_a^b f(x)dx$; that is, by definition,

$$\int_a^b f(x)dx = F(b) - F(a).$$

It should be observed that, if we add to the given indefinite integral F(x) any constant we please, we obtain the same value for the definite integral. For

$$[F(b) + C] - [F(a) + C] = F(b) - F(a).$$

Exercises

- 1-10. Find the definite integrals from 1 to 3 in each of the exercises 1-10 in Art. 214.
- 216. The Area under a Curve. Let us consider a portion of the curve y = f(x) that lies entirely above the x-axis. We shall suppose further that
- * For certain special cases in which this definition fails, the student is referred to more advanced textbooks.

every vertical line in the interval from x = a to x = b (a < b) intersects this portion of the curve in one and only one point (Fig. 137). The area

bounded by the given portion of the curve, the x-axis, and the ordinates of the points on the curve whose abscissas are a and b is called the area under the curve from a to b. We wish to find this area.

Consider, first, the area under the curve from a to some number x less than b. Since the magnitude of this area de-

Fig. 137

pends on x, we shall denote it by the function A(x). Then the area under the curve from a to $x + \Delta x$ is $A(x + \Delta x)$. It follows that the shaded area in Figure 137 is

$$\Delta A = A(x + \Delta x) - A(x).$$

From the figure, this shaded area is seen to be greater than the area of the rectangle $CDFC_1$ and less than that of the rectangle CDD_1E ; that is

area
$$CDFC_1 < \Delta A < area CDD_1E$$
.

These rectangles are both of width Δx and of altitudes f(x) and $f(x + \Delta x)$, respectively. Hence

$$f(x)\Delta x < \Delta A < f(x + \Delta x)\Delta x$$
 or $f(x) < \frac{\Delta A}{\Delta x} < f(x + \Delta x)$.

As Δx approaches zero, $f(x + \Delta x)$ approaches f(x). It follows that $\frac{\Delta A}{\Delta x}$, which lies between f(x) and $f(x + \Delta x)$, also approaches f(x). But the limit of $\frac{\Delta A}{\Delta x}$ as Δx approaches zero is $\frac{dA}{dx}$; that is,

$$\frac{dA}{dx} = f(x).$$

It follows that A(x) is an indefinite integral of f(x), so that

$$A(x) = F(x) + C.$$

To find the value of the constant, observe that A(a) = 0 since the width of the area is zero when x = a. Hence,

$$0 = F(a) + C$$
, $C = -F(a)$, and $A(x) = F(x) - F(a)$.

To find the area under the curve from a to b, we now put x = b, giving

$$A(b) = \text{required area} = F(b) - F(a) = \int_a^b f(x) dx.$$
 (25)

We have supposed that the portion of the curve under consideration lies above the x-axis. If it lies below, this formula will give, if a < b, a negative number numerically equal to the area.

EXAMPLE. Find the area under the curve $y = 3x^2 - 4x + 2$ from x = 1 to x = 4.

We have the indefinite integral $F(x) = \int (3x^2 - 4x + 2)dx = x^3 - 2x^2 + 2x$. From equation (25), the required area is now found to be

$$(64-32+8)-(1-2+2)=40-1=39.$$

Exercises

Find the area under the curve:

- 1. y = 2x 1 from 2 to 5. Verify your result by elementary geometry.
- 2. $y = 6x^2 + 1$ from -2 to 3.
- 3. $y = \sqrt{x}$ from 4 to 25.
- **4.** $y = x^3 + x + 1$ from 0 to 2.
- 5. $y = (2x + 5)^2$ from -2 to 1.
- 6. $y = 2x^{-\frac{1}{3}}$ from 1 to 8.
- 7. $y = \sin x$ from 0 to π .
- 8. $y = 6e^{2x}$ from -1 to 1.

The Graph of an Equation

217. Introduction. In this chapter, we shall consider the following problem: given an equation in the coördinates of a point, find (at least approximately) the locus (or graph) formed by the points whose co-

ordinates satisfy the equation.

The process of determining the form of the curve by plotting points on it can often be shortened by noticing certain properties of its equation that serve to indicate the general form of the curve. By observing these properties, we are frequently able to draw the curve without plotting as many points as would otherwise be necessary. We intend now to point out a number of important properties which are often found in the equations of the curves most frequently met with, which can be determined quite readily from the equation, and which are especially helpful in drawing the graph. The process of determining which of these properties hold for a given equation is called the discussion of the equation.

A plane curve is algebraic if it can be defined by equating to zero a polynomial in which x and y appear only with positive, integral exponents; otherwise, it is transcendental. Lines and conics, for example, are algebraic curves as also are the loci of such equations as $x^3 + y^3 = a^3$ and $x^2y^2 = x^2 + y^2$. The curves defined by such equations as $y = \tan x$

or $y \log x = x^2$ are transcendental.

I. Algebraic Curves

218. Discussion of the Equation.

(a) Symmetries. A curve is symmetric with respect to a given line or to a given point if, when P(x, y) is any point on the curve, then its symmetric point with respect to the given line or the given point also lies on the curve (Art. 41).

The point symmetric to P(x, y) with respect to:

- (1) the x-axis is (x, -y) (2) the y-axis is (-x, y) (3) the line y = x is (y, x) (4) the origin is (-x, -y).

Hence, an algebraic curve is symmetric to:

- (1) the x-axis if y enters its equation only to even powers;
- (2) the y-axis if x enters its equation only to even powers;
- (3) the line y = x, if its equation remains unchanged when x and y are interchanged in it;

(4) the origin, if the equation remains unchanged when x and y are replaced by -x and -y, respectively.

Fig. 138

The curve $x^4 + y^4 = a^4$ (Fig. 138), for example, exhibits all of the above-mentioned symmetries. It is therefore symmetric with respect to the x-axis, the y-axis, the line y = x, and the origin.

(b) Intercepts. The intercepts on the x-axis are found by putting y = 0 in the equation of the curve and solving for x; and, on the y-axis, by putting

x = 0 and solving for y. The graph must pass through every point determined in this way and it does not meet either axis in any other point.

Thus, the curve $x^4 + y^4 = a^4$, shown in Figure 138, meets the x-axis at $(\pm a, 0)$, and the y-axis at $(0, \pm a)$. It has no other point in common with either axis.

(c) Tangent Lines at the Origin. If the given curve passes through the origin, we may find its approximate form near that point, since x

and y are small, by considering only their lowest powers that appear in the equation, and neglecting all higher powers; that is, to find the tangent lines to the curve at the origin, equate to zero those terms in its equation for which the sum of the exponents of x and y has the lowest value.

Thus, for the curve $x^2y^2 + a^2x^2 - a^2y^2 = 0$, the sum of the exponents of x and y in the first term is 4 and in each of the remaining two terms is 2. The tangent lines at the origin are found, by equating these last two terms to zero, to be $x^2 - y^2 = 0$, or x + y = 0 and x - y = 0.

(d) Horizontal and Vertical Asymptotes. When we were studying the hyperbola, we noticed in Art. 188 that the curve recedes toward infinity, in any one of the quadrants, in such a way that it approaches a fixed line which we called an asymptote to the hyperbola.

Fig. 139

Since many other curves extend out indefinitely far in a similar way, we make the following definition: If a branch of a curve extends toward infinity in such a way that it approaches indefinitely near to a fixed line, this line is called an asymptote to the curve.

If an algebraic curve has vertical or horizontal asymptotes, these lines can be determined from the equation of the curve as in the following example.

EXAMPLE 1. Find the vertical and the horizontal asymptotes to the curve $xy^2 - a^2y - b^2x = 0$.

In this equation, if we assign to x a fixed value $x_1 \neq 0$, the resulting quadratic equation in y has two roots which are the ordinates of the two intersections of the vertical line $x = x_1$ with the curve.

If we now let x_1 approach indefinitely near to zero, one of the two corresponding values of y increases indefinitely in numerical value and the corresponding point on the curve recedes toward infinity in such a way that it approaches indefinitely near to the line x = 0, that is, to the y-axis (Fig. 140). This line is, accordingly, an asymptote.

Similarly, if we arrange the given equation in powers of x,

$$(y^2 - b^2)x - a^2y = 0,$$

Fig. 140

and assign to y any value $y_1 \neq \pm b$, the root of the resulting equation in x is the abscissa of the single intersection of the line $y = y_1$ with the curve. If y_1 is now made to approach + b or - b, the numerical value of x will increase indefinitely and the corresponding point on the curve will approach the asymptote y = b or y = -b.

By applying reasoning similar to the foregoing to any given algebraic curve, we deduce the following general rule for finding the vertical and horizontal asymptotes: To find the vertical asymptotes to an algebraic curve, equate to zero the real, linear factors of the coefficient of the highest power of y in the equation. To find the horizontal asymptotes, equate to zero the real, linear factors of the coefficient of the highest power of x in the equation.

If the coefficient of the highest power of y (or of x) in the given equation is a constant, or if its linear factors are all imaginary, there are no vertical (or no horizontal) asymptotes.

Thus, the curve $y^4 + x^2y^2 + x^2 + 1 = 0$ has no vertical asymptotes since the coefficient of the highest power of y is unity. It has no horizontal asymptotes since the factors of $y^2 + 1$, the coefficient of the highest power of x, are imaginary.

(e) Excluded Intervals. If, when the given equation is solved for y, square roots occur in the second member, the values of x throughout certain intervals may cause the quantity under the radical sign to be negative and thus make y imaginary. Since no point can be plotted if either of its coördinates is imaginary, any such interval should be excluded from consideration in drawing the graph.

In the same way, when we solve for x, certain intervals may be found

on the y-axis for which the values of x are imaginary. These intervals must also be excluded when we draw the graph.

If, for example, we solve the equation $x^2y^2 - a^2x^2 - a^2y^2 = 0$ for y, we find that $y = \frac{\pm ax}{\sqrt{x^2 - a^2}}$, which shows that, for all values of x between x = -a and x = a except x = 0 as is imaginary. There are the solution x = a and y = a except y = 0 as is imaginary.

x = a, except x = 0, y is imaginary. There are, accordingly, no points on the curve except the point (0, 0) within this interval (Fig. 141).

It we now solve the above equation for x, we obtain $x = \frac{\pm ay}{\sqrt{y^2 - a^2}}$. It follows that, for all values of y between -a and a, except y = 0, x is imaginary. This interval on the y-axis should also be excluded in drawing the graph.

A point, such as the origin in this example, that lies on the curve, but which has no other points on the curve in its neighborhood, is called

a conjugate (or isolated) point on the curve.

- (f) The Slope of the Tangent Line. Maxima and Minima. We saw in Chapter 26 that the slope of the tangent line at a point on the curve equals the value of the derivative at that point. Since the slope of the tangent line fixes the direction of that line (Art. 151) and thus the direction of the curve at the point of tangency, it follows that:
- (1) In any region in which the slope of the tangent line (the value of the derivative) is positive, y is increasing as x increases.

Moreover, when the slope is a large positive number, y is increasing rapidly compared to the rate of increase of x and, if the slope is small, y is increasing slowly compared to x.

- (2) At any point at which the slope is zero, the tangent line is parallel to the x-axis. If the slope changes from positive to negative at this point, the point is a maximum point; if it changes from negative to positive, the point is a minimum point (Art. 213).
- (3) In any region in which the slope is negative, y is decreasing as x increases and the rate of decrease is rapid or slow according as the slope is numerically large or small.

EXAMPLE 2. Find and discuss the slope of the curve $y = x^3 - 3x$ at a point P on the curve.

Since the slope at the point P equals the value of the derivative at P, we have (Art. 209)

$$m=\frac{dy}{dx}=3(x^2-1).$$

This expression is positive if x < -1 or if x > 1. It equals zero if $x = \pm 1$ and is negative if -1 < x < 1. Hence, if x < -1, y increases with x, rapidly

if x is numerically large and slowly if x is near -1. It reaches the value 2 when x = -1. It then decreases to -2 as x increases to 1. When x increases be-

yound 1, y increases, slowly at first, then more rapidly as x increases. The curve has a maximum point at (-1, 2) and a minimum point at (1, -2) (Fig. 142).

219. Drawing the Graph. When it is required to draw the graph of a given algebraic equation, we first discuss the equation, as in the preceding article. We then plot points on the curve, taking care to plot some points on each branch of the curve and to plot the points most numerously at the places where the curve

changes its direction most rapidly. We then draw a smooth curve through these points in such a way that it satisfies the conditions deduced from the preceding discussion of the equation.

EXAMPLE 1. Discuss the equation $x^2y + a^2y - a^3 = 0$ and draw the curve. (The Witch)

This curve is symmetric with respect to the y-axis which it intersects at (0, a). It has the x-axis as an asymptote and does not intersect it. If we solve the equation for x and y, we have

$$x = \pm a\sqrt{\frac{a-y}{y}}$$
, and $y = \frac{a^3}{x^2 + a^2}$.

It is seen from the first equation that x is imaginary if y > a or if y < 0.

Y A(o,a)
O
X
Fig. 143

It follows from the second equation that y has its largest value, a, when x = 0 and that it decreases continually as the numerical value of x increases.

Figure 143 can now be drawn quite accurately by plotting a number of points on the locus and draw-

ing the curve so that the conditions stated in the discussion are satisfied.

EXAMPLE 2. Discuss the equation $x^3 + xy^2 - 2ay^2 = 0$ and draw the curve. (The Cissoid)

The curve is symmetric with respect to the x-axis. It meets the axes only at the origin and its tangents at that point are defined by $y^2 = 0$. The line x - 2a = 0 is a vertical asymptote. If x < 0 or if x > 2a, the values of y are imaginary.

The slope of the tangent line at $P_1(x_1, y_1)$ is

$$m = \frac{x_1^2 (3a - x_1)}{y_1(2a - x_1)^2} = \pm \frac{(3a - x_1)}{(2a - x_1)} \sqrt{\frac{x_1}{2a - x_1}}.$$

For points on the curve other than the origin, the slope agrees in sign with y_1 . If x_1 is small, the slope is numerically small but it becomes numerically large

as x_1 approaches 2a (Fig. 144).

Fig. 144

EXAMPLE 3. Discuss the equation $y^2 = x(x-a)(x-b)$ and draw the curve.

We shall suppose that 0 < a < b. The curve is composed of two separate branches and called a bipartite cubic curve.

It is symmetric with respect to the x-axis, touches the yaxis at the origin and intersects the x-axis again at (a, 0) and (b, 0). The value of y is real only if $0 \le x \le a \text{ or if } x \ge b.$

Fig. 145

The slope of the tangent at $P_1(x_1, y_1)$ on the curve is

$$m = \frac{3x_1^2 - 2(a+b)x_1 + ab}{2y_1}.$$

The branch of the curve between x = 0 and x = a is an oval, somewhat more pointed to the right than to the left. The branch for $x \geq b$ extends to infinity in the first and fourth quadrants without approaching any asymptote.

Exercises

Discuss the given equation, plot several points on the locus, and draw the curve.

1.
$$xy + 2x + 2y = 0$$
.

3.
$$y = x^3 - 2x^2$$
.

5.
$$x^2y = 1$$
.

7.
$$y = x(x+1)(x+2)$$
.

9.
$$y = x^2(9-x^2)$$
. U 10. $y^2 = x^2(9-x^2)$.

11.
$$y = (x^2 - 4)^2$$
. $(x^2 - 1)y = 1$.
13. $(x^2 - 4)y = x$.
14. $x^2y^2 = x^2 + y^2 + 1$.

13.
$$(x^2-4)y=x$$
.

15.
$$xy^2 - x + 1 = 0$$
.

17.
$$y = \frac{1}{x^2(x+1)}$$

19.
$$x^2y^2 = x^2 + 1$$
.

2.
$$x^2 - xy - 4y = 0$$
.

4.
$$y = x(x+1)^2$$
.

6.
$$y^4 = x^3$$
.

8.
$$y^2 = x(x+1)(x+2)$$
.

10.
$$y^2 = x^2(9 - x^2)$$

12.
$$(x^2-1)y=1$$

14.
$$x^2y^2 = x^2 + y^2 + 1$$
.

16.
$$x^4 + x^2y^2 = y^2$$
.

18.
$$y = \frac{1}{x+3} + \frac{1}{x-3}$$

$$20. xy^2 = x^2 + 1.$$

- 21. The force F of gravitational attraction between two bodies is expressed as a function of the distance r between them by the equation $F = k/r^2$, where k is a constant. Show this relation graphically.
- 22. The horsepower H which a shaft can safely transmit is expressed as a function of the diameter d of the shaft by the equation $H = kd^3$, where k is a constant. Show this relation graphically.

In the following exercises, find the equation of the locus of the point P(x, y) and draw the curve.

- 23. The product of the distances of P from two fixed points (-a, 0) and (a, 0) equals a^2 .
- 24. The inclination of the line joining P to a fixed point (2a, 0) is three times the inclination of the line joining P to the origin.
- 25. A variable line through the origin intersects the circle $x^2 + y^2 ax = 0$ at the origin and at a point B and the line x a = 0 in a point A. A vertical line through B intersects a horizontal line through A at P.
- 26. The line joining P to the origin intersects the circle $x^2 + y^2 ax = 0$ at the origin and at a variable point B. The undirected distance PB equals a.
- 27. The line joining P to a fixed point (-a, 0) intersects the y-axis in a variable point B. The undirected distance PB equals the undirected distance from the origin to B.
 - 28. Solve Ex. 27 if the undirected distance PB equals a constant k.

II. Transcendental Curves

220. The Trigonometric Curves. The process of drawing the graphs of the trigonometric functions was discussed in Art. 116 and, of their inverses, in Art. 135. We shall now show how we can obtain from these curves certain modifications of them which have been found useful in the applications.

The curves defined by the equations

$$y = a \sin b(x - c)$$
, and $y = a \cos b(x - c)$ (1)

are modified forms of the sine and cosine curves. The number a is the amplitude, b is the periodicity factor, and c determines the phase angle.

To draw these curves, if $c \neq 0$, we first translate the origin to the point (c, 0), giving

$$y' = a \sin bx'$$
, and $y' = a \cos bx'$. (2)

The graphs of equations (2), referred to the new axes, will also be the graphs of (1) referred to the old axes. These graphs can readily be drawn, on the new axes, by first drawing the curves $y' = \sin x'$ and $y' = \cos x'$, as shown in Art. 116, then multiplying all the ordinates by a and then, finally, dividing all the abscissas by b.

EXAMPLE. Draw the curve $y = \frac{3}{2} \sin 2x$ from x = 0 to $x = 2\pi$.

Since c = 0, we first draw the sine curve, $y = \sin x$, for one complete period, 0 to 2π . Next, we construct the curve $y = \frac{3}{2} \sin x$ by multiplying all the ordinates for the sine curve by the amplitude $\frac{3}{2}$. The required curve is then obtained by dividing all the abscissas for this curve by the periodicity factor 2

and repeating the figure so obtained as many times as is necessary (Fig. 146).

Exercises

Draw the graphs of the following functions for two periods.

1.
$$y = \sin \pi x$$
.

3.
$$y = 3 \sin x$$
.

5.
$$y = 2 \cos 3(x+1)$$
.

7.
$$2y = 5 \tan x$$
.

9.
$$y = -2 \cot 3(x-1)$$
.

11.
$$2y = \sin^{-1} 3x$$
.

2. $y = \cos(x - 2)$.

4.
$$y = \sin 3x$$
.

6.
$$2y = 3 \sin (2x - 1)$$
.

8.
$$3y = 4 \sec 2x$$
.

10.
$$4y = -\csc 2(x+1)$$
.

12.
$$y = 2 \cos^{-1}(x-2)$$
.

HINT. Draw the curve $3x = \sin 2y$.

13.
$$y = 3 \cos^{-1} 2x$$
.

14.
$$2y + 4 = \cos^{-1} 3x$$
.

221. The Logarithmic and Exponential Curves. The graph of the logarithmic equation, $y = \log_a x$, (3)

was discussed in Art. 85. The graph of the exponential equation

$$y = a^x$$
, or $x = \log_a y$, (4)

is shown in Figure 147.

Since the second of equations (4) differs from (3) only in that x and y are interchanged, it follows that: the exponential curve differs from the logarithmic only in that it is placed on the figure so that its position with respect to the x- and y-axes is interchanged. Because of this relation between their graphs, the functions a^x and $\log_a x$ are said to be inverse functions.

In the applications, the exponential equation usually appears in the form

$$y=ae^{bx}, (5)$$

where a and b are constants and $e = 2.71828^+$ is the base of the natural system of logarithms (Art. 86). The graph of equation (5) may be found by taking the logarithms to the base 10 of both sides of the equation and writing the result in the form

$$\log_{10} y = bx \log_{10} e + \log_{10} a. \tag{6}$$

If a set of values is now assigned to y, the corresponding values of x may be computed from this equation with the aid of a table of logarithms.

Example 1. Draw the graph of the exponential equation $y = 1.84 e^{0.57x}$.

Take the logarithms to the base 10 of both sides of this equation,

$$\log_{10} y = 0.57x \log_{10} e + \log_{10} 1.84$$
.

We have $\log_{10} e = 0.4343$ and $\log_{10} 1.84 = 0.2648$. On substituting these values in the preceding equation, we get $\log_{10} y = 0.2476x + 0.2648$.

If we solve this equation for x, we have

$$x = 4.04 \log_{10} y - 1.07$$
.

By assigning values to y and computing the corresponding values of x, we obtain the following table.

Frg. 148

x	- 3.50	-2.29	- 1.57	- 1.07	0.146	0.858	1.36	1.75
у	0.25	0.5	0.75	1	2	3	4	5

If we plot these points and draw a smooth curve through them, we obtain Figure 148.

EXAMPLE 2. Draw the graph of the logarithmic equation $y = \log_{10} 2(x+1)^3$.

Write the equation in the equivalent form

$$y = 3 \log_{10} (x + 1) + \log_{10} 2$$
.

By assigning to x values greater than -1 and computing the corresponding values of y, we obtain the following table.

Frg. 149

x	- 0.9	- 0.75	- 0.5	- 0.25	0	0.5	1	2
y	- 2.70	- 1.51	- 0.602	- 0.074	0.301	0.829	1.20	1.73

Figure 149 is obtained by plotting these points and drawing a smooth curve through them.

Exercises

Draw the graphs of the following equations.

1.
$$y = \log_{10} (-x)$$
.

3.
$$y = \log_{10} 3x$$
.

5.
$$y = \log_2 (x - 5)$$
.

7.
$$y^2 = \log_{10} x$$
.

9.
$$y = e^{-x}$$
.

11.
$$3y = e^{\frac{x}{2}}$$
.

13.
$$y = (1.04)^x$$
.

15.
$$y = xe^x$$
.

2.
$$y = \log_{10} (x + 3)$$
.

4.
$$y = \log_{10} x^5$$
.

6.
$$y = \log_e (1 + x^2)$$
.

8.
$$y = \log_{10} 5\sqrt[3]{x+2}$$
.

10.
$$y = -e^x$$
.

12.
$$y = 0.23e^{1.41x}$$
.

14.
$$y = 1.35(2.51)^z$$
.

16.
$$y = e^{-x^2}$$
. The probability curve.

- 17. The amount, y, due on one dollar at the rate i (expressed as a decimal) at the end of a time x (in years), at compound interest, is $y = (1+i)^x$ and, at simple interest, is y = 1 + ix. Draw, on one set of axes, the graph expressing the amount due on one dollar at interest for x years (a) at 5% compound interest and (b) at 6% simple interest. State the meaning of the points of intersection of these curves and find their coördinates to one decimal place.
- 18. Find from a figure, to one decimal place, the number of years in which one dollar will double at 6% compound interest.
- 222. Addition of Ordinates. Let it be required to draw the graph of the equation $y = x + \sin x$.

To find the value of y corresponding to a given value x_1 , of x, the equation tells us to add together the numbers x_1 and $\sin x_1$. Instead of finding this sum by an arithmetic computation, the following geometric device for performing the addition will often be found easier and more

satisfactory.

We first draw, on one set of axis, the curves

$$y = x$$
 and $y = \sin x$.

The values of y for the points on these two curves, when $x = x_1$, are obviously $y = x_1$ and $y = \sin x_1$. Hence, the algebraic sum of the ordinates of the points on the two curves, for $x = x_1$, is the ordinate of the point on the required curve for $x = x_1$. We may locate as many points as we please on the required curve, accordingly, by adding graphi-

As a second example of the method of addition of ordinates, consider the ellipse

$$x^2 + 2xy + 2y^2 - 3x - 8y + 8 = 0.$$

If we solve this equation for y, we have

$$y = \frac{1}{2}(-x + 4 \pm \sqrt{-x^2 - 2x}).$$

To draw the graph of this equation, we first draw the line

$$y=\frac{-x+4}{2}.$$

Next, we draw the ellipse

$$y=\pm\frac{\sqrt{-x^2-2x}}{2}$$
:

that is, the ellipse $(x+1)^2 + 4y^2 = 1$.

Exercises

Draw the graphs of the following equations, using the method of addition of ordinates.

1.
$$y = x^3 - x$$
.

2.
$$y = x + \frac{1}{x}$$

3.
$$y = x - \frac{1}{x^2}$$

4.
$$y = x^2 + \frac{2}{x}$$

5.
$$y = \sin x - \cos x$$
.

6.
$$y = 2 \sin x + \sin 2x$$
.

7.
$$y = 3 \sin x - \cos 2x$$
.

8.
$$y = e^{\frac{\pi}{2}} + x^2$$
.

9.
$$y = \sin^2 x$$
.

10.
$$y = \cos^2 x$$
.

HINT. $\sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$ and $\cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x$.

11.
$$y = x - 1 \pm \sqrt{x}$$
.

12.
$$y = x \pm \sqrt{4 - x^2}$$
.

13.
$$4x^2 - 4xy + y^2 - x - 2y + 6 = 0$$
.

14.
$$3x^2 - 2xy + y^2 - 6x + 2y - 5 = 0$$
.

15.
$$y = \frac{1}{2}(e^x - e^{-x})$$
.

16.
$$y = \frac{1}{2}(e^x + e^{-x})$$
.

NOTE. The second members of Ex. 15 and 16 are called, respectively, the hyperbolic sine of x and the hyperbolic cosine of x. The first is denoted by the symbol sinh x and the second by $\cosh x$.

17.
$$y = \frac{a}{2}(e^{\frac{x}{a}} + e^{-\frac{x}{a}}) = a \cosh \frac{x}{a}$$
 (The catenary)

NOTE. A perfectly flexible, inextensible cord, suspended between two points, hangs in the form of a catenary.

Horren John Columning

III. Polar Coördinates

223. Introduction. Corresponding to any given point P there are indefinitely many pairs of polar coördinates (Art. 175). If any one of these pairs satisfies the equation of a locus, then P lies on the locus. We shall find, in fact, that sometimes only one pair, and sometimes more than one pair, of coördinates of P will satisfy the equation. The first case is illustrated by the graph of the equation $r = a\theta$ (Art. 227) and the second by the line $r \sin \theta = 1$.

Frequently, also, there are two or more equations for the same curve. For example, the equations r = 1 and r = -1 define the same circle. Two equations that define the same curve are called equivalent equations.

224. Discussion of the Equation. As in the case of rectangular coordinates, the graph can usually be drawn more easily and more accurately from its polar equation if one first observes from the equation certain outstanding properties of the curve.

(a) Symmetries. If the equation of a curve remains unchanged, or is

changed to an equivalent equation, when:

(1) θ is replaced by $-\theta$, or when (r, θ) are replaced by $(-r, \pi - \theta)$, the curve is symmetric with respect to the polar axis.

(2) θ is replaced by $\pi - \theta$, or when (r, θ) are replaced by $(-r, \theta)$

 $-\theta$), it is symmetric with respect to the 90°-axis.

(3) θ is replaced by $\pi + \dot{\theta}$, or when r is replaced by -r, the curve is symmetric with respect to the origin.

Example 1. The curve $r^2(2 - \cos^2 \theta) = 8$ exhibits all of the above symmetries. This curve is an ellipse, as may be seen by writing its equation, $x^2+2y^2=8$, in rectangular coördinates.

(b) Intercepts. To find the intercepts on the polar axis, put $\theta = 0$, $\pm \pi$, $\pm 2\pi$, etc., and solve for r. Similarly, to find the intercepts on the 90°-axis, put $\theta = \pm \pi/2$, $\pm 3 \pi/2$, etc., and solve for r. This method frequently fails to determine the intersections, if there are any, at the origin, but these intersections will be determined under (c).

EXAMPLE 1. The points of intersection of the ellipse $r^2(2 - \cos^2 \theta) = 8$ with the initial line are found in this way to be $(2\sqrt{2}, 0)$ and $(2\sqrt{2}, \pi)$ and its intersections with the 90°-axis are found to be $(2, \pm \pi/2)$.

(c) Tangents at the origin. If the curve passes through the origin, the angles made by its tangent line, or lines, with the initial line are found by putting r = 0 in the equation and solving for θ .

Example 2. If, in the equation
$$r = a \sin 3\theta$$
,

we put r=0, we have $\sin 3\theta = 0$, so that $3\theta = 0$, $\pm \pi$, $\pm 2\pi$, etc. Hence, $\theta = 0$, $\pm \pi/3$, $\pm 2\pi/3$, etc. There are thus three tangent lines to this curve at the origin, of inclinations 0, $\pi/3$, and $2\pi/3$, respectively. This curve is called a three-leaved rose curve. It belongs to a type that we shall discuss more fully in Art. 226.

(d) Directions in which the curve extends to infinity. To determine the directions in which the curve extends to infinity, we equate to zero the coefficient of the highest power of r in the given equation and solve for θ .

Example 3. To find the directions in which the curve

$$r\cos^3\theta=a\sin^2\theta$$

extends to infinity, we equate to zero the coefficient of r. This gives $\cos^3 \theta = 0$, so that $\theta = \pm \pi/2$, $\pm 3\pi/2$, etc. The curve thus extends to infinity in the $\pm 90^{\circ}$ directions.

This curve is the semi-cubical parabola $ay^2 = x^3$ (Fig. 132) which was studied in Art. 206. It has no rectilinear asymptote.

(e) Excluded intervals. It is frequently possible, by using the fact that neither $\sin \theta$ nor $\cos \theta$ is ever numerically greater than unity, to assign limits between which the numerical values of r must lie.

Thus, for the three-leaved rose (Fig. 153), the largest numerical value that r can have is a. This numerical value is attained when $\sin 3\theta = \pm 1$, that is, when $\theta = \pm \pi/6$, $\pm \pi/2$, $\pm 5\pi/6$, etc.

Similarly, for the line $r \cos \theta = 5$, the smallest numerical value that $r \cot \theta$ can have is 5. This value is reached when $\cos \theta = \pm 1$, that is, when $\theta = 0$, $\pm \pi$, $\pm 2\pi$, etc.

For the ellipse $r^2(2 - \cos^2 \theta) = 8$ (Fig. 152), we find in a similar way that the largest numerical value that r can have is $2\sqrt{2}$, and the smallest is 2.

In the case of the semi-cubical parabola, $r \cos^3 \theta = a \sin^2 \theta$, (a > 0) (Fig. 132), since $\sin^2 \theta$ cannot be negative, r and $\cos \theta$ must agree in sign. It follows that this curve cannot extend into the second or third quadrants.

(f) Transformation to rectangular coördinates. It frequently happens that the equation of the curve in rectangular coördinates is one with

which the student is already familiar, or from which it is easier to determine the properties of the equation than it is from its polar equation. We found that the locus of the equation $r^2(2-\cos^2\theta)=8$, for example, was an ellipse by finding its rectangular equation. Similarly, it is usually easier to recognize that the locus of the equation $r\cos\theta=5$ (or $r=5\sec\theta$) is a line from its rectangular equation x=5 than it is from either of the polar forms.

In any event, any information about the curve that is obtained from the discussion of its equation in rectangular coördinates, or by plotting points on it from its rectangular equation, must hold for the required graph.

Equally, if the equation is given to us in rectangular coördinates, it may be possible to simplify the problem of drawing the curve by finding its equation in polar coördinates. It is thus good practice, when the equation of a curve is given to us either in rectangular or in polar coordinates, to discuss its equation in both systems of coördinates before attempting to draw the graph.

(g) Use of the laws of variation of the trigonometric functions. If the given equation defines r as equal to a simple expression in terms of the trigonometric functions of θ , a fairly accurate preliminary sketch of the curve can often be obtained quickly by observing how these functions change as θ increases. For this purpose, the graphs of the trigonometric curves in Art. 116 will be found quite helpful. The preliminary sketch obtained in this way may then be corrected by discussing the equation and plotting points on the curve.

Example 4. Sketch the curve $r = a \tan \theta$.

From the properties of the tangent function, we find at once that r = 0

when $\theta = 0$, that it increases to a when $\theta = \pi/4$, and that it then increases indefinitely as θ increases to $\pi/2$. By following the variation of $\tan \theta$ through the four quadrants, a fairly accurate rough sketch of the curve may thus be quickly obtained. By a more careful discussion of the polar equation, and of the corresponding rectangular equation $x^4 + x^2y^2 = a^2y^2$, and by plotting a number of points on the curve, we obtain Figure 154. The lines $x = \pm a$ are asymptotes. This curve is called the kappa curve from its supposed resemblance to the Greek letter kappa.

225. Drawing the Graph. To draw the graph of a polar equation, one should first discuss the equation by the methods outlined in the preceding article, then plot a suitable number of points

on the curve, and draw a smooth curve through these points.

EXAMPLE 1. Discuss the equation $r^2 = a^2 \cos 2\theta$ and draw the curve. (The Lemniscate)

The curve is symmetric with respect to the polar axis and the 90°-axis.

It intersects the polar axis at $(\pm a, 0)$ and these are the points on the graph farthest from the origin. It passes through the origin and touches, at that point, the lines making angles $\pm \pi/4$ and $\pm 3\pi/4$ with the initial line. The radius vector r is imaginary if cos 2θ is negative; that is, if $\pi/4 < \theta < 3\pi/4$, or $5\pi/4 < \theta < 7\pi/4$, etc. By plotting

several points corresponding to values of θ in the interval 0 to $\pi/4$, and using the properties of symmetry, we obtain Figure 155.

EXAMPLE 2. Discuss the equation $r = a(1 - \cos \theta)$ and draw the curve. (The Cardioid)

This curve is symmetric with respect to the polar axis. It is tangent to the initial line at $\theta = 0$. The point on it that lies farthest from the origin is $(2a, \pi)$. It crosses the 90°-axis at $(a, \pm \pi/2)$. By plotting points corresponding to values of θ from 0 to π , and using symmetry, we obtain Figure 156.

Example 3. Discuss the equation $r = a \csc \theta \pm b$ and draw the curve. (The Conchoid)

There are three cases according as $a \le b$. In the following discussion, and in the figure, we have taken a < b. The discussion of the other two cases is left as an exercise for the student.

The curve is symmetric with respect to the 90°-axis and intersects it at the origin and at the points $r = a \pm b$. It intersects the initial line only at the origin, at which point its tangents make angles $\theta = \csc^{-1} \ (\pm b/a)$ with the initial line. It extends to infinity in such a way that each

of its two branches approaches the horizontal line $r = a \csc \theta$ as an asymptote.

This curve may be constructed by points in the following way: Draw the line $r = a \csc \theta$ and let Q be any point on it. Draw the line through O and Q and on it lay off, in opposite directions, the segments QP = QP' = b. Then the locus of the points P and P' is the conchoid.

226. The Rose Curves. The curves defined by the equations

 $r = a \cos n\theta$ and $r = a \sin n\theta$,

where n is a positive integer, are called rose curves. Each loop extending out from the origin is a "leaf" of the rose. If n is an odd integer, the

number of leaves is n but, if n is an even integer, the number of leaves is 2n.

The three-leaved rose, $r = a \sin 3\theta$, is shown in Figure 153.

EXAMPLE. Discuss the equation $r = a \cos 2\theta$ and draw the curve. (The Four-Leaved Rose)

The curve is symmetric with respect to the polar axis and the 90°-axis. It intersects these axes at (a, 0), $(-a, \pi/2)$, (a, π) and $(-a, 3\pi/2)$ and these are the

points on the curve farthest from the origin. The tangent lines at the origin are defined by $\theta = \pm \pi/4$, $\pm 3\pi/4$, etc.

227. The Spirals. If a curve, or one of its branches, winds indefinitely many times about the origin in such a way that r increases (or decreases) con-

tinuously as θ increases or decreases continuously, then the curve is called a spiral.

EXAMPLE 1. Discuss the equation $r = a\theta$ and draw the curve. (The Spiral of Archimedes)

The curve is symmetric with respect to the 90°-axis since, if (r, θ) lies on the curve, so, also, does $(-r, -\theta)$. It touches the polar axis at the origin and the rate of increase of r is proportional to that of θ . It meets the axes at (0, 0), $(a\pi/2, \pi/2)$,

 $(-a\pi/2, \pi/2)$, etc.

Fig. 160

EXAMPLE 2. Discuss the equation $r = e^{a\theta}$ (or $\log_e r = a\theta$) and draw the curve. (The Logarithmic Spiral)

For $\theta = 0$, we have r = 1. As θ increases from zero, r increases more and more rapidly and becomes very large as θ increases indefinitely. If θ decreases from zero, r decreases more and more slowly and approaches zero as θ decreases indefinitely.

To plot points on this curve, take the logarithms to the base 10 of both sides of the equation. This gives

 $\log_{10} r = a\theta \log_{10} e.$

We can now assign values to r and determine the corresponding values of θ with the aid of a table of logarithms.

Exercises

Discuss the following equations and draw the curves. If just one literal constant appears in the equation, assign to it a convenient positive value. If two constants, a and b, appear, consider the three cases a < b, a = b, and a > b. State the name of the curve if you know it.

```
2. r = a \cos \theta.
 1. r \cos \theta = a.
                                               4. r^2 = a^2 \sin 2\theta.
 3. r^2 \sin 2\theta = a^2.
 5. r^2(4-\sin^2\theta)=12.
                                               6. r^2(1-4\sin^2\theta)=12.
                                               8. r = a(1 + \sin \theta).
 7. r(1 + \sin \theta) = a.
9. r = a \cos 3\theta.
                                               10. r = a \sin 2\theta.
11. r = a \cos 4\theta.
                                               12. r = a \sin 5\theta.
13. r = a - b \sin \theta. (Limaçon)
                                               14. r = a + b \cos \theta. (Limaçon)
                                               16. r^2\theta = a^2. (Lituus)
15. r = a \sec \theta \pm b. (Conchoid)
17. r^2 \cos^3 \theta = a^2 \sin \theta. (Cubical parabola)
18. r^2 = a^2\theta. (Parabolic spiral)
19. r\theta = a. (Hyperbolic, or reciprocal, spiral)
20. r^2 = a^2 \cos \theta.
                                               21. r^2 \cos \theta = a^2.
                                               23. r = a \sin (\theta/3).
22. r = a \cos(\theta/2).
```

EVER INTECER GIVES A ROSE PEDEL 2 times

odd integer give ie rose pedel the son

Parametric Equations

228. Introduction. Instead of representing a curve by a single equation connecting x and y, it is sometimes preferable to use two equations which express the coördinates of the points on the curve in terms of a third variable. This third variable is called a parameter and the two equations which express x and y in terms of this parameter are parametric equations of the curve.

229. Parametric Equations of the Circle. Let there be given a circle with center at the origin and radius a (Fig. 161). Let P(x, y) be any

point on this circle and denote the angle XOP by ϕ . From the figure, we obtain

$$O \nearrow y$$

$$X$$

$$x = a \cos \phi, \quad y = a \sin \phi.$$
 (1)

These two equations, which express the coördinates of any point P on the circle in terms of the parameter ϕ , are parametric equations of the given circle.

Fig. 161

If the parametric equations of a curve are given, the rectangular equation may be found by eliminating the parameter between the two given equations. Thus, from (1), if we square both members of each equation, add, and simplify the result, we have

$$x^2 + y^2 = a^2, (2)$$

which is the rectangular equation of the given circle.

If the rectangular equation of the curve is given, however, various parametric equations can be found for it, depending on the choice of the parameter. For the circle (2), for example, we may choose as the parameter the slope m of the line through any point P on the circle and the fixed point (-a, 0). The equation of this line is y = m(x + a). Since P lies on this line and also on the circle, we can find the coördinates of P in terms of m by solving the equation of the line and the equation (2) of the circle as simultaneous. The result is

$$x = a \frac{1 - m^2}{1 + m^2}, \qquad y = a \frac{2m}{1 + m^2}.$$
 (3)

These two equations, also, constitute a pair of parametric equations of the circle (2).

230. Parametric Equations of the Ellipse. Any point whose coordinates satisfy the parametric equations,

$$x = a \cos \phi, y = b \sin \phi, 282$$
 (4)

 \boldsymbol{X}

wherein ϕ is the parameter, lie on an ellipse. For, if we multiply the first equation by b, the second by a, square,

add, and simplify, we get

$$b^2x^2 + a^2y^2 = a^2b^2, (5)$$

which is the equation of an ellipse.

The circle with center at the origin and radius a is the major auxiliary circle of the ellipse (5). By the preceding article, its parametric equations are

$$x = a \cos \phi$$
, $y = a \sin \phi$. (6)

The circle with center at the origin and radius b is the minor auxiliary circle of the ellipse. Its equations are, similarly,

$$x = b \cos \phi, \qquad y = b \sin \phi.$$
 (7)

From equations (4), (6), and (7), we deduce the following device for plotting points on the ellipse (5): Draw through O any half-line intersecting the minor auxiliary circle at G and the major at H. Draw through G and H lines parallel to OX and OY, respectively. The point P of intersection of these lines lies on the ellipse. For, denote the angle XOH by ϕ . Since the abscissa of P equals that of H, and the ordinate of P equals that of G, it follows that the coördinates of P are

$$x = a \cos \phi, \qquad y = b \sin \phi.$$

Hence, from (4), P lies on the ellipse.

231. Path of a Projectile. If a projectile is fired from the origin with an initial velocity v_0 , in a direction making an angle α with OX, and

if it moves subject only to the attraction of gravitation, it is shown in the textbooks on physics that its position at the end of t seconds is given by the equations

Frg. 162

$$x = tv_0 \cos \alpha$$
, $y = tv_0 \sin \alpha - \frac{1}{2}gt^2$, where g is a constant. These two equations constitute the parametric equations of the path of the

projectile in terms of the parameter t.

To find the rectangular equation of the path, we solve the first equation for t, substitute in the second equation, and simplify. The result is

$$y = x \tan \alpha - \frac{gx^2}{2v_0^2} \sec^2 \alpha.$$

This equation defines the path of the projectile but it does not tell where the body is in its path at a given time. The parametric equations not only define the path but also state the law according to which the projectile traverses its path.

Exercises

Draw the following curves by assigning values to the parameter, plotting the corresponding points, and drawing a smooth curve through them. Find also the rectangular equation by eliminating the parameter.

1.
$$x = 2t$$
, $y = 5 + t$.
2. $x = 2pt^2$, $y = 2pt$.
3. $x = a \sec \phi$, $y = b \tan \phi$.
5. $x = t^2 + 3t$, $y = t^2 + t$.
6. $x = t + 1/t$, $y = t - 1/t$.
7. $x = \frac{t+3}{t}$, $y = \frac{t-1}{t+3}$.
8. $x = \frac{t}{t^2+2}$, $y = \frac{t^2}{t^2+2}$.
9. $x = at$, $y = at^3$.
10. $x = at^2$, $y = at^3$.
11. $x = t^2$, $y = (\sqrt{a} - t)^2$.
12. $x = a \cos^3 \phi$, $y = a \sin^3 \phi$.
13. $x = \frac{3am}{1+m^3}$, $y = \frac{3am^2}{1+m^3}$.
14. $x = \frac{(2-m)m^2}{1-m}$, $y = \frac{(2-m)m^3}{1-m}$.

15. Show that x = a + bt, y = c + dt are parametric equations of a line and find its slope.

16. Find parametric equations for the cissoid (Art. 219, Ex. 2) by finding its intersections with the line y = mx through the origin.

17. A projectile is fired from the origin with an initial velocity of 3000 feet per second and at an angle of 35°. Find, to three significant figures, the abscissa of the point where it strikes the x-axis and the time when it arrives at that point. Take g = 32 feet per second.

18. A crank OA, 9 inches long, turns around the origin at the rate of 4 radians per second. A rod AB, 27 inches long, has one end attached at A while the other end slides along the x-axis. Using the time as parameter, find the equations of the path of a point on the rod 3k units from A.

232. The Cycloid. The path of a point fixed on the circumference of a circle that rolls along a fixed line is a cycloid.

We shall find the parametric equations of the cycloid when the fixed line on which the circle rolls is taken as the x-axis and any one of the positions at which the tracing point comes in contact with this line is taken as origin.

Let a be the radius of the rolling circle, P(x, y) be any position of

the tracing point, and let ϕ be the number of radians in the angle through

which the circle has rolled from its position when the tracing point was at the origin.

From the figure,

$$x = OL = OT - LT, \qquad y = LP = TR = TC - RC. \tag{8}$$

Since the circle has rolled from O to T, OT = arc TP and, since ϕ is measured in radians, arc $TP = a\phi$. Hence $OT = a\phi$. Also, LT = PR = $a\sin\phi$, $RC = a\cos\phi$, and TC = a.

On making all these substitutions in equations (8), we have, as the required parametric equations of the cycloid in terms of ϕ as parameter,

$$x = a(\phi - \sin \phi),$$

$$y = a(1 - \cos \phi).$$
(9)

To find the rectangular equation of the cycloid, first solve the second of equations (9) for $\cos \phi$, giving $\cos \phi = (a - y)/a$. From this equation, we find the values of ϕ and $\sin \phi$ and substitute in the first equation (9). The result is

$$x = a \cos^{-1} \frac{a-y}{a} \pm \sqrt{2ay-y^2}.$$

For most practical purposes, this equation is less convenient than the parametric equations (9).

Exercises

- 1. Taking values of ϕ at intervals of $\pi/4$ radians, sketch one arch of the cycloid.
- 2. Find the length of the base and the coördinates of the highest point 277 of one arch of the cycloid.
- 3. If the abscissas of two points on the cycloid differ by $2\pi a$, show that their ordinates are equal and interpret geometrically.
- 4. Find the parametric equations of the cycloid when the origin is translated to the top of an arch.
- 5. If the tracing point P lies on a fixed radius (or radius produced) of the rolling circle, at a distance $b \neq a$ from the center, show that the equations of its path are

 $x = a\phi - b\sin\phi$, $y = a - b\cos\phi$.

If b > a, this curve is a prolate cycloid; if b < a, it is a curtate cycloid. In either case, it is also called a trochoid.

- 6. Draw the graph of the curtate cycloid $x = 10\phi 5 \sin \phi$, $y = 10 5 \cos \phi$.
- 7. Draw the graph of the prolate cycloid $x = 10\phi 15 \sin \phi$, $y = 10 15 \cos \phi$.
- 8. A circle of radius a feet rolls along a line at the rate of b radians per second. At the instant a certain radius extends vertically downward, a particle

starts from the center along that radius at the rate of c feet per second. Find the path of the particle.

233. The Epicycloid. The path of a point fixed on the circumference of a circle that rolls tangent externally to a fixed circle is an epicycloid.

Denote the radius of the fixed circle by a, of the rolling circle by b, and take the coördinate axes as shown in Figure 165. Denote the angle XOC by ϕ (radians)

and the angle OCP by ω . Then

angle $DCO = \pi/2 - \phi$, and angle $DCP = \omega$ – angle $DCO = \phi + \omega - \pi/2$.

Also,
$$x = OL = OD + DL = OD + RP$$
, and $y = LP = DR = DC - RC$. (10)

Since OC = OT + TC = a + b, we have

$$OD = (a + b) \cos \phi$$
, $RP = b \sin (DCP) = -b \cos (\phi + \omega)$. $DC = (a + b) \sin \phi$, $RC = b \cos (DCP) = b \sin (\phi + \omega)$.

On making these substitutions in equations (10), we have

$$x = (a+b)\cos\phi - b\cos(\phi + \omega),$$

$$y = (a+b)\sin\phi - b\sin(\phi + \omega).$$
(11)

Since the outside circle rolls on the fixed one, arc AT = arc PT; that is, $a\phi = b\omega$, or $\omega = a\phi/b$.

On substituting this value of ω in equations (11), we have

$$x = (a + b) \cos \phi - b \cos \frac{a + b}{b} \phi,$$

$$y = (a + b) \sin \phi - b \sin \frac{a + b}{b} \phi.$$
(12)

These are the parametric equations of the epicycloid.

234. The Hypocycloid. The path of a point fixed on the circumference of a circle that rolls tangent internally to a fixed circle is an hypocycloid.

The derivation of the equations of the hypocycloid, which parallels that of the epicycloid, is left as an exercise for the student. The resulting equations are

$$x = (a - b) \cos \phi + b \cos \frac{a - b}{b} \phi,$$

$$y = (a - b) \sin \phi - b \sin \frac{a - b}{b} \phi.$$
(13)

It should be observed that these equations differ from those of the epicycloid only in that b is replaced by -b.

§ 234

In Figure 166, we have taken b = a/4. This curve is of special interest and is called the four-cusped hypocycloid.

If we put b = a/4 in equations (13) and simplify by means of the trigonometric identities

$$\cos 3\phi = 4 \cos^3 \phi - 3 \cos \phi, \qquad \sin 3\phi = 3 \sin \phi - 4 \sin^3 \phi,$$
we obtain
$$x = a \cos^3 \phi, \qquad y = a \sin^3 \phi,$$

as the parametric equations of the curve.

By eliminating ϕ between these equations, we get

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}},$$

as the rectangular equations of the four-cusped hypocycloid.

Exercises

1. Sketch the epicycloids, given:

(a)
$$a = 3b$$
; (b) $a = 2b$;

(b)
$$a = 2b$$
; (c) $a = b$; (d) $3a = 2b$.

$$(d) \ 3a = 2b.$$

2. Sketch the hypocycloids, given:

(a)
$$a = 3b$$
; (b) $a = 2b$; (c) $2a = 3b$.

3. If a thread is unwound from around a fixed circle, and is held taut in the plane of the circle, any point fixed on the thread will describe a curve called an involute of the circle. Take the center of the circle as origin, the radius as a, and let the generating point start from (a, 0). Derive the equations of the curve in the form

$$x = a(\cos \phi + \phi \sin \phi), \quad y = a(\sin \phi - \phi \cos \phi).$$

Chapter 29

Progressions

235. Sequences. The Continuation Notation. A set of numbers, arranged in a definite order, is called a sequence of numbers. The numbers themselves are the terms of the sequence and are spoken of as the first term, the second term, and so on according to their position in the sequence.

is a sequence in which each term after the first is obtained by adding 3 to the preceding term. The first term of this sequence is 2, the second is 5, the third is 8, and so on.

is a sequence in which each term after the first is formed by multiplying the preceding term by 2.

is formed by squaring the number representing the position of the term in the sequence.

It will frequently be impracticable to write out all of the terms of the sequence under consideration. In such cases, we shall write out a few of the terms at the beginning, to show the law of formation of the terms; then insert several dots to indicate that the remaining terms are to be formed according to the indicated law. The last term of the sequence may, or may not, be written after the dots. This notation for a sequence is called the **continuation notation**.

Thus, the illustrative sequences just given would be written, in the continuation notation, respectively as follows

$$2, 5, 8, \dots, 23,$$

 $3, 6, 12, \dots, 96,$
 $1, 4, 9, \dots, 49.$

and

The dots, in this notation, are read, "and so on." Thus, the first illustration should be read, "two, five, eight, and so on to twenty-three."

Frequently we shall need the sum or the product of the terms of a sequence. To indicate the sum of the terms of the first illustrative sequence in the continuation notation, we write

$$2+5+8+\cdots+23.$$

Their product is written

$$2 \cdot 5 \cdot 8 \cdot \cdot \cdot 23$$
.

Exercises

Using the continuation notation, write each of the following sequences, the sum of its terms, and the product of its terms.

1. The odd integers from 1 to 21.

2. The integers divisible by three from 12 to 69.

3. The reciprocals of the integers from 5 to 19.

- 4. The fractions whose denominators are the integers from 2 to 31 and whose numerators are the squares of the numbers one less than the denominators.
 - 5. The powers of 2 from 2 to 2^n .
 - 6. The positive square roots of the integers from 1 to n.

7. The cubes of the integers from 3 to n+2.

8. Write in full, without using dots, the sum of the terms of the sequence in Ex. 7 for (a) n = 6, (b) n = 3, and (c) n = 1.

9. Write the sum of the sequence in Ex. 5 in full, without using dots, and find its value, given (a) n = 7, (b) n = 4, (c) n = 2.

10. Find the value of the product $1 \cdot 2 \cdot 3 \cdot \cdots n$, given (a), n = 6, (b) n = 4, (c) n = 1.

I. Arithmetic Progressions

236. Definitions. A sequence of numbers is an arithmetic progression if each term after the first is obtained by adding to the preceding term a fixed number which is called the common difference.

We shall denote an arithmetic progression by the abbreviation A.P.

Thus, 1, 5, 9, 13, 17, · · ·

is an A.P. with its first term equal to 1 and its common difference equal to 4. Similarly, $11, 6, 1, -4, -9, \cdots$

is an A.P. in which the first term equals 11 and the common difference equals -5.

Since any desired number of terms may be taken in these sequences, we have not specified the last term.

237. The Elements. We shall denote the first term of an A.P. by a and the common difference by d. We may then write the first n terms of the progression in the form

$$a, a + d, a + 2d, \dots, a + (n - 1)d.$$
 (1)

Associated with these first n terms of the A.P., there are five numbers of special importance which are called its elements. They are:

a, the first term,

d, the common difference,

n, the number of terms,

1, the nth term,

s, the sum of the first n terms.

238. Equations Connecting the Elements. These five elements are connected by two equations.

From the expressions (1) of the preceding article, we notice that the coefficient of d in the second term is 1, in the third term is 2, and, in general, in any term the coefficient of d is one less than the number of the term. For the nth term, which we denote by l, we have, therefore,

$$l = a + (n-1)d. \tag{2}$$

To find s, the sum of the first n terms, we have, by definition,

$$s = a + (a + d) + (a + 2d) + \cdots + l.$$

Write the numbers in the second member of this equation in the reverse order:

$$s = l + (l - d) + (l - 2d) + \cdots + a$$
.

Add corresponding terms in these two equations:

$$2s = (a + l) + (a + l) + (a + l) + \cdots + (a + l),$$

or, since there are n terms in the second member, each equal to a + l,

$$2s = n(a+l).$$

Hence

$$s = \frac{n(a+l)}{2}. (3)$$

If, in equation (3), we replace l by its value from (2), we have

$$s = \frac{n[2a + (n-1)d]}{2}.$$
 (4)

If we know the values of any three of the five elements of an A.P., we can find the values of the other two by means of equations (2), (3), and (4). The number n, however, must always be a positive integer.

EXAMPLE 1. Find the eighth term, and the sum of the first eight terms, of the A.P.: 25, 21, 17,

We have a = 25, n = 8, d = 21 - 25 = -4.

From equation (2): l = 25 + (8 - 1)(-4) = -3.

From equation (3): $s = \frac{8(25-3)}{2} = 88$.

EXAMPLE 2. Given a = 2, l = 35, s = 222, find n and d and write the first five terms of the progression.

From equation (3): $222 = \frac{n(2+35)}{2}$, or 444 = 37n. Hence n = 12.

From equation (2): 35 = 2 + (12 - 1)d, or 33 = 11d. Hence d = 3.

Since a=2 and d=3, the first five terms of the progression are 2, 5, 8, 11, 14.

EXAMPLE 3. The fourth term of an A.P. is -1 and the sixteenth term is 3. Find the thirty-first term.

From equation (2), when n = 4, -1 = a + (4 - 1)d and, when n = 16, 3 = a + (16 - 1)d. By solving these two linear equations

$$a+3d=-1,$$

$$a+15d=3,$$

for a and d, we find that a = -2, $d = \frac{1}{3}$.

To find the thirty-first term, we put these values a and d in equation (2) and put n = 31. We have

$$l = -2 + (31 - 1)\frac{1}{3} = 8$$

which is the required thirty-first term.

239. Arithmetic Means. The terms of an A.P. that lie between two given terms are called arithmetic means between those two terms.

If we are given two numbers, a and l, and are required to insert k arithmetic means between these two numbers, we notice that, if we construct an A.P. having a as its first term and l as its (k+2)th term, then there will be precisely k terms of the progression between a and l.

Hence, to insert k arithmetic means between a and l, put n = k + 2, and the given values of a and l, in equation (2) and solve for d. As soon as we know a and d, we can write the A.P. from (1). The k terms of this progression that follow a are the required means.

EXAMPLE. Insert five arithmetic means between 4 and 13.

We have a = 4, l = 13, n = 5 + 2 = 7. Hence, from equation (2), 13 = 4 + 6d.

This gives $d = \frac{3}{2}$ and, since a = 4, the required means are

$$5\frac{1}{2}$$
, 7, $8\frac{1}{2}$, 10, $11\frac{1}{2}$,

because these five numbers, together with 4 as the first term and 13 as the seventh term, constitute an A.P. of seven terms.

If just one arithmetic mean is to be inserted between a and l, this mean is called the arithmetic mean between a and l. The student should verify that the value of the arithmetic mean between a and l is

$$\frac{a+l}{2}.$$
 (5)

Exercises

State whether the given sequence is, or is not, an A.P. If it is, state the value of d.

1. 5, 8, 10, 14.

2. 3, 7, 11, 15.

3. 25, 20, 15, 10.

4. 2.8, 3.2, 3.6, 4.0.

5. 9, 5, 1, -2.

6. $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, 0.

Find the value of k, given that the sequence is an A.P.

7.
$$6+2k$$
, $9-2k$, $5+k$.

8.
$$2k+3$$
, $12-k$, $3+5k$.

9.
$$3k-20$$
, $4k+3$, $8-k$.

10.
$$6k-1$$
, $5k-7$, $5-8k$.

Find the nth term, and the sum of n terms, of the A.P., given:

11.
$$-5, -1, 3, \dots, n = 9.$$

12. 2, 4.5,
$$7, \dots, n = 13$$
.

13. 2.7, 5.3, 7.9,
$$\cdots$$
, $n = 16$.

14. 14,
$$11\frac{1}{3}$$
, $8\frac{2}{3}$, ..., $n = 22$.

Find the other two elements, given:

15.
$$a = 17$$
, $d = -2$, $l = -3$.

16.
$$a = 5$$
, $l = 37$, $n = 9$.

17.
$$a = -1$$
, $d = \frac{1}{3}$, $n = 37$.

18.
$$a = 5$$
, $l = 37$, $s = 231$.

19.
$$d = \frac{7}{5}$$
, $l = 72$, $n = 21$.

20.
$$l = 17$$
, $n = 29$, $s = 232$.

21.
$$a = 23$$
, $n = 34$, $s = 527$.

22.
$$d = -2$$
, $l = -19$, $s = 96$.

23.
$$a = -7$$
, $d = 3$, $s = 14$.

24.
$$d = -\frac{2}{5}$$
, $n = 61$, $s = 488$.

- 25. Insert three arithmetic means between 2 and 16.
- 26. Insert five arithmetic means between -4 and 12.
- 27. Insert eleven arithmetic means between 5 and 38.
- 28. Find the arithmetic mean between 483 and 791.
- 29. The fifth term of an A.P. is 67 and the thirteenth is 31. Find the thirty-fifth term.
- 30. The third term of an A.P. is $-\frac{7}{2}$ and the eighth is $-\frac{23}{3}$. Show that -16 is a term of this A.P. and find which term it is.
 - 31. Find the sum of the first n positive odd integers.
- 32. Find the number of integers between 29 and 86 that are divisible by 4. Find also the sum of these integers.
- 33. A clock strikes the hours from 1 to 12. How many strokes does it make in 24 hours?
- 34. A freely falling body falls 16 feet the first second. During each second thereafter, it falls 32 feet farther than it did during the preceding second. How far does it fall (a) during the twelfth second and (b) during the first twelve seconds.
- 35. A carpenter wishes to make a ladder of 16 rungs which are to diminish uniformly in length from 20 inches at the bottom to 14 inches at the top. Allowing 4 inches for waste, find how long a pole he will need to make these rungs.

36. A steel spring is bent in the form of a spiral lying in a plane. There are twelve complete turns of which the shortest is 0.6 inch and the longest is 4.7 inches. How long is the spring?

37. A man owes \$6300 on which he pays, at the end of each year, \$700 on the principal, and interest at 5% on the amount outstanding during the year. In how many years will he have paid off the debt and how much will he have paid out in principal and interest?

38. A teacher received \$1700 for his first year of teaching with an increase of \$120 each year thereafter until his salary reached \$3500, after which it

remained fixed. He retired at the end of his twenty-third year. Find the total amount of salary he received.

- 39. There are a trees in line with a pump. The nearest tree is b feet from the pump and the trees are c feet apart. A man carried a bucket of water to each tree and returned the bucket to the pump after watering the last tree. How far did he travel?
- 40. The lengths of the sides of a series of squares form an A.P. Do (a) the lengths of the diagonals and (b) the areas of the squares also form an A.P.?

II. Geometric Progressions

240. Geometric Progressions. A sequence of numbers is a geometric progression if each term after the first is obtained by multiplying the preceding one by a fixed number called the common ratio.

We shall denote a geometric progression by the abbreviation G.P.

is a G.P. with its first term equal to 7 and its common ratio equal to 2.

Similarly,
$$27, -9, 3, -1, \cdots$$

is a G.P. with the first term 27 and the common ratio $-\frac{1}{3}$.

241. The Elements. If the first term of a G.P. is a and the common ratio is r, we may write its first n terms in the form

$$a, ar, ar^2, \cdots, ar^{n-1}$$
. (6)

Associated with these first n terms of the progression are the following five numbers which are its elements.

a, the first term,

r, the common ratio,

n, the number of terms,

1, the nth term,

and s, the sum of the first n terms.

242. Equations Connecting the Elements. The five elements of a G.P. are connected by two equations.

It is seen, from (6), that the exponent of r in any term is one less than the number of the term. Hence, for the nth term, which we denote by l, we have $l = ar^{n-1}.$ (7)

For the sum, s, of the first n terms, we have, by definition,

$$s = a + ar + ar^{2} + \cdots + ar^{n-1}$$
Multiply by r :
$$sr = ar + ar^{2} + \cdots + ar^{n-1} + ar^{n}$$
Subtract:
$$s - sr = a$$

$$- ar^{n}$$
,
or
$$(1 - r)s = a(1 - r^{n}).$$

We shall suppose, throughout this chapter, that $r \neq 1$. With this restriction, we can solve the preceding equation for s, giving

$$s = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}.$$
 (8)

Since, by equation (7), $l = ar^{n-1}$, we may write equations (8) in the form

$$s = \frac{a-rl}{1-r} = \frac{rl-a}{r-1}.$$
(9)

If the values of three of the elements of a G.P. are known, the values of the other two can be found by means of equations (7), (8), and (9) provided we can solve the equations resulting from substituting in them the values of the known elements. The values of these known elements must be such that $r \neq 1$ and that n is a positive integer.

EXAMPLE 1. Find the tenth term, and the sum of the first ten terms, of the G.P.: 5, 10, 20, 40,

We have a = 5, n = 10, $r = 10 \div 5 = 2$.

From equation (7), $l = 5 \cdot 512 = 2560$.

From equation (8), $s = \frac{5(2^{10} - 1)}{2 - 1} = 5 \cdot 1023 = 5115$.

Example 2. Given $r = \frac{2}{3}$, n = 6, $s = \frac{665}{144}$, find a and l.

From equation (8), $\frac{665}{144} = a \frac{1 - (\frac{2}{3})^6}{1 - \frac{2}{3}} = a \frac{1 - \frac{64}{729}}{\frac{1}{3}} = a \frac{665}{243}$. Hence, $a = \frac{27}{16}$.

From equation (7), $l = \frac{27}{16} (\frac{2}{3})^5 = \frac{27}{16} \cdot \frac{32}{243} = \frac{2}{9}$.

243. Geometric Means. The terms of a G.P. that lie between two given terms are called geometric means between those two terms.

If we are given two numbers, a and l, and are required to insert k geometric means between these two numbers, we form a geometric progression having a as its first term and l as its (k+2)th term. The k terms of this progression that lie between a and l are the required k geometric means between a and l.

To construct this progression, we substitute the given values of a and l in equation (7), put n = k + 2, and solve for r. Then the required means are

$$ar$$
, ar^2 , ar^3 , \cdots , ar^k .

Example. Insert five geometric means between 8 and 5832.

From equation (7), with a = 8, l = 5832, and n = 5 + 2 = 7, we have $5832 = 8r^6$, or $r^6 = 729$.

Hence, $r = \sqrt[6]{729} = 3*$ and the required means are 24, 72, 216, 648, and 1944.

* When we are solving an equation of the form $r^n = A$ for the common ratio r, we shall consider only the principal nth root of A (Art. 27).

If only one mean is to be inserted between a and l, this mean is called the geometric mean between a and l. Let x be this mean. Then

$$r = x/a = l/x$$
, $x^2 = al$, or $x = \pm \sqrt{al}$.

In order that x may be real, a and l must agree in sign. Of the two possible values of x, we choose the one that agrees in sign with a and l.

Exercises

State whether the given sequence is, or is not a G.P. If it is, write the next three terms.

1. 3, 6, 12, 24. **2.** 8, 4, 3, 1.

3. 400, 40, 4, 0.4.

5. 50, -10, 2, -0.4

6. $7, \frac{7}{3}, \frac{7}{6}, \frac{7}{12}$.

Find the nth term and the sum of n terms of the G.P., given:

7. 20, 4, 0.8, \cdots , n = 6.

8. 3, 6, 12, \cdots , n = 8.

9. $\frac{1}{6}$, $\frac{1}{2}$, $\frac{3}{2}$, ..., n=7.

10. $\frac{9}{16}$, $\frac{3}{8}$, $\frac{1}{4}$, ..., n = 8.

Find the remaining two elements, given:

11. a = 2, r = 3, n = 6.

12. $l=3, r=\frac{1}{5}, s=468.$

13. a = 3, n = 7, l = 24.

14. $r = \frac{3}{2}$, n = 5, s = 1055.

15. $l = \frac{2}{15}$, $r = \frac{2}{3}$, n = 5.

16. a = 3, r = 4, s = 255.

17. Find s in terms of l, r, and n.

18. Find r in terms of a, l, and s.

19. Insert two geometric means between 56 and 875.

20. Insert three geometric means between 4 and 324.

21. Insert five geometric means between 21 and 168.

22. Find x, given that 2x-7 is the geometric mean between x-5 and 2x + 11.

23. The fourth term of a G.P. is 6 and the tenth term is 24. Find the nineteenth term.

24. A man has \$2500 invested in a business. At the end of each year he receives 10% on the money invested during the year and immediately reinvests this money in the business. After he has made this reinvestment at the end of the fourth year, how much does he have invested in the business?

25. Bacteria of a certain type increase by the process of each individual splitting into two. Starting from a single individual and assuming no losses, how many bacteria will there be after twelve divisions?

26. At each stroke of an air pump, approximately one-twelfth of the air in a vessel is removed. After six strokes, what fraction of the original amount of air remains in the vessel? Express your answer as a decimal to two significant figures.

27. Given $(1.03)^{12} = 1.42576$, find, to three decimal places, the value of $1 + 1.03 + (1.03)^2 + \cdots + (1.03)^{11}$.

- **28.** Given $(1.045)^{-25} = 0.332731$, find, to three decimal places, the value of $(1.045)^{-1} + (1.045)^{-2} + \cdots + (1.045)^{-25}$.
 - 29. Find an expression for the sum $1 + (1+i) + (1+i)^2 + \cdots + (1+i)^{n-1}$.
 - 30. Find an expression for the sum $(1+i)^{-1} + (1+i)^{-2} + \cdots + (1+i)^{-n}$.
- 31. Show that the reciprocals of the terms of a G.P. also constitute a G.P. and find its common ratio.
- 32. Show that the logarithms of the terms of a G.P. form an A.P. and find its common difference.
- 244. Geometric Progressions with Infinitely Many Terms. Let there be given a G.P. in which the numerical value of r is less than unity. We shall now denote the sum of the first n terms of this G.P. by s_n . From equation (8), we have

 $s_n = \frac{a}{1 - r} - \frac{a}{1 - r} r^n. \tag{10}$

We wish now to consider what can be said of the sum of the terms of this G.P. if, instead of stopping at some fixed term, the terms are thought of as going on without any end. That is, what is the sum, s, of the G.P. with infinitely many terms

$$s = a + ar + ar^2 + \cdots + ar^{n-1} + \cdots,$$

where the final dots mean that the terms go on unendingly?

We approach this problem by considering what happens to the sum of the first n terms as n increases, so that we keep on adding more and more terms. If, when n increases indefinitely, the sum of the first n terms tends to settle down on some fixed number, we shall call that number the sum of the geometric progression of infinitely many terms.

In the second member of equation (10), n occurs only in the expression $ar^n/(1-r)$. Since, by hypothesis, r is numerically less than unity, we can make r^n , and hence $ar^n/(1-r)$, numerically just as small as we please by taking n sufficiently large.

For example, if r = 0.9, which is quite close to unity, so that r^n becomes small rather slowly, we find, to two significant figures, the following table of pairs of values of n and $(0.9)^n$.

n	10	100	200
$(0.9)^n$	0.35	0.000027	0.00000000071

Since we can make the value of $ar^n/(1-r)$ numerically just as small as we please by taking n large enough, it follows from equation (10) that we can make the value of s_n be just as near to a/(1-r) as we please by taking n sufficiently large. We state this fact symbolically in the form

 $\lim_{n\to\infty} s_n = \frac{a}{1-r},\tag{11}$

which is read, "the limit of s_n , as n increases without limit, is a/(1-r)."

We define the sum of the geometric progression of infinitely many terms as this number which s_n approaches as n increases without limit. Hence, from equation (11),

 $s = \frac{a}{1 - r},\tag{12}$

is the sum of this geometric progression of infinitely many terms when r is numerically less than unity.

EXAMPLE 1. Find the sum of the G.P. with infinitely many terms, 98, 70, $50, \frac{250}{7}, \cdots$.

We have a = 98 and $r = \frac{5}{7}$, which is numerically less than unity. Hence,

$$s = \frac{98}{1 - \frac{5}{7}} = 343.$$

EXAMPLE 2. Express as an ordinary fraction the unending repeating decimal 1.7363636 · · · · .

We may write this decimal fraction in the form

$$1.7 + 0.036 + 0.00036 + 0.0000036 + \cdots$$

$$= 1.7 + 0.036[1 + (0.01) + (0.01)^{2} + (0.01)^{3} + \cdots].$$

The expression in the brackets is a G.P. of infinitely many terms for which a = 1 and r = 0.01. Hence, by equation (12), its value is $\frac{1}{1 - 0.01} = \frac{1}{0.99}$. The value of the given decimal is, accordingly,

$$1.7 + \frac{0.036}{0.99} = \frac{17}{10} + \frac{36}{990} = \frac{187}{110} + \frac{4}{110} = \frac{191}{110}$$

This result should be checked by expressing $\frac{191}{110}$ as a decimal fraction by division.

Exercises

Find the sum of the given G.P. of infinitely many terms.

1.
$$3, \frac{9}{4}, \frac{27}{16}, \cdots$$

2.
$$5, -\frac{5\sqrt{3}}{2}, \frac{15}{4}, \dots$$

6.
$$-\sqrt{12}$$
, $-\sqrt{6}$, $-\sqrt{3}$,

Express each of the following repeating decimals as a common fraction. Check by writing the fraction in decimal form.

9. 2.97297297 · · · .

10. 25.9259259 . . .

11. 5.242424

12. 3.1543564356 . . .

13. An automobile, coasting to rest, travels 19 feet the first second and, during each second thereafter, three-fourths as far as during the preceding second. How far will it coast in coming to rest?

- 14. The first swing of a pendulum is 12 inches and each swing thereafter is nine-tenths as long as the preceding one. How far will it travel in coming to rest?
- 15. In an unending series of equilateral triangles, the vertices of each triangle after the first are the midpoints of the sides of the preceding triangle. The sides of the first triangle are each one foot long. Find the sum of the perimeters of all the triangles.
- 16. Find the sum of the areas of all the triangles in Ex. 15, given that the area of an equilateral triangle of side a is $a^2\sqrt{3}/4$.

Chapter 30

The Binomial Theorem

245. The Factorial Notation. The product of all the integers from 1 to n^* occurs so frequently in mathematics that a special symbol has been devised to represent it. This symbol is written n! and is read, "n factorial." By definition,

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$
.

To this definition, which holds for all positive integral values of n, we add the special definition 0! = 1.

Thus, 1! = 1, $2! = 1 \cdot 2 = 2$, $3! = 1 \cdot 2 \cdot 3 = 6$, and so on.

Exercises

Find the value of each of the following expressions.

1. 8!. 2.
$$\frac{7!}{4!}$$
 3. $\frac{9!}{5!4!}$ 4. $\frac{11!}{0!8!3!}$ 5. $\frac{12!}{10!}$ 6. $\frac{(n+1)!}{n!}$ 7. $\frac{(n+1)!}{(n-1)!}$ 8. $\frac{n!}{(n-4)!4!}$

Prove the following identities.

9.
$$4\frac{9!}{5!4!} = 9\frac{8!}{5!3!}$$
10. $r\frac{n!}{(n-r)!r!} = n\frac{(n-1)!}{(n-r)!(r-1)!}$
11. $\frac{9!}{6!3!} + \frac{9!}{7!2!} = \frac{10!}{7!3!}$
12. $\frac{13!}{8!5!} + \frac{13!}{9!4!} = \frac{14!}{9!5!}$

13.
$$\frac{n!}{(n-r)!r!} + \frac{n!}{(n-r+1)!(r-1)!} = \frac{(n+1)!}{(n-r+1)!r!}$$

246. The Binomial Formula. By actual multiplication, we find that

$$(a + x)^1 = a + x,$$

 $(a + x)^2 = a^2 + 2ax + x^2,$
 $(a + x)^3 = a^3 + 3a^2x + 3ax^2 + x^3,$
 $(a + x)^4 = a^4 + 4a^3x + 6a^2x^2 + 4ax^3 + x^4.$

In these expressions for $(a + x)^n$, with n = 1, 2, 3, and 4, respectively, we observe the following common properties:

- 1. The first term is always a^n .
- 2. The second term is always $na^{n-1}x$.
- 3. If we know any term, we can get the next following one from it by (a) multiplying its coefficient by the exponent of a and dividing the

^{*} Throughout this chapter, n and r are assumed to be positive integers.

result by the exponent of x increased by unity, (b) decreasing the exponent of a by unity, and (c) increasing the exponent of x by unity.

4. The last term is always x^n .

With the aid of these observed facts, we can write down immediately any one of the given equations.

For example, let us write down the expansion of $(a + x)^4$.

From statements 1 and 2, we can write at once the first two terms, $a^4 + 4a^3x$.

To find the third term, we start from the second term, $4a^3x$. According to statement 3, we must multiply this second term by 3, divide it by 2, decrease the exponent of a by unity and increase the exponent of x by unity. The result is $\frac{4 \cdot 3}{2} a^{3-1}x^{1+1} = 6a^2x^2$.

To find the fourth term, we start from the third term, $6a^2x^2$, and find, by means of statement 3, $\frac{6\cdot 2}{3}a^{2-1}x^{2+1}=4ax^3$. For the fifth term, we find, in a similar way, $\frac{4\cdot 1}{4}a^{1-1}x^{3+1}=x^4$.

Since, by statement 4, the last term is x^4 , the result is

$$(a+x)^4 = a^4 + 4a^3x + 6a^2x^2 + 4ax^3 + x^4,$$

which agrees with the result already found by multiplication.

We shall prove, in Art. 249, that the properties stated in Nos. 1 to 4 hold for the expansion of $(a + x)^n$ for all positive integral values of n. This statement is called the binomial theorem.

From the binomial theorem, we obtain at once the binomial formula for the expansion of $(a + x)^n$, where n is any positive integer. This binomial formula is

$$(a + x)^{n} = a^{n} + na^{n-1}x + \frac{n(n-1)}{2!}a^{n-2}x^{2} + \cdots + \frac{n(n-1)\cdots(n-r+2)}{(r-1)!}a^{n-r+1}x^{r-1} + \cdots + x^{n}.$$
 (1)

In the second member of this equation, we have written explicitly the first three terms. The fourth term may be obtained by putting r = 4 in the first term on the second line, the fifth by putting r = 5, and so on.

The expansion of $(a + x)^n$ may be obtained, either by using properties Nos. 1 to 4, as stated near the beginning of this article, or by using the binomial formula. The student should familiarize himself with both methods and should use one of them as a check on the other.

Example 1. Expand $(a^2 + 2b)^6$ by the binomial formula, and simplify.

From equation (1), we have

$$(a^{2} + 2b)^{6} = (a^{2})^{6} + 6(a^{2})^{5}(2b) + \frac{6 \cdot 5}{1 \cdot 2} (a^{2})^{4}(2b)^{2} + \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} (a^{2})^{3}(2b)^{3}$$

$$+ \frac{6 \cdot 5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4} (a^{2})^{2}(2b)^{4} + \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} a^{2}(2b)^{5}$$

$$+ \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} (2b)^{6}$$

$$= a^{12} + 12a^{10}b + 60a^{8}b^{2} + 160a^{6}b^{3} + 240a^{4}b^{4} + 192a^{2}b^{5} + 64b^{6}.$$

EXAMPLE 2. Expand $(\sqrt[3]{x} - \sqrt{y})^4$ by the binomial formula, and simplify.

It is usually best to replace the radicals by fractional exponents before writing out the expansion.

$$(x^{\frac{1}{3}} - y^{\frac{1}{2}})^4 = (x^{\frac{1}{3}})^4 + 4(x^{\frac{1}{3}})^3(-y^{\frac{1}{2}}) + \frac{4 \cdot 3}{1 \cdot 2} (x^{\frac{1}{3}})^2(-y^{\frac{1}{2}})^2$$

$$+ \frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3} (x^{\frac{1}{3}})(-y^{\frac{1}{2}})^3 + \frac{4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4} (-y^{\frac{1}{2}})^4$$

$$= x^{\frac{4}{3}} - 4xy^{\frac{1}{2}} + 6x^{\frac{2}{3}}y - 4x^{\frac{1}{3}}y^{\frac{3}{2}} + y^2$$

$$= \sqrt[3]{x^4} - 4x\sqrt{y} + 6\sqrt[3]{x^2}y - 4\sqrt[3]{x}\sqrt{y^3} + y^2.$$

Example 3. Expand (1.04)5 by the binomial formula and find its value to five decimal places.

$$(1.04)^5 = (1+0.04)^5 = 1+5(0.04) + 10(0.04)^2 + 10(0.04)^3 + 5(0.04)^4 + (0.04)^5$$

= $1+0.2+0.016+0.00064+0.0000128+0.0000001024$
= 1.21665, to five decimal places.

Exercises

Expand by the binomial formula and simplify.

1.
$$(a+2)^4$$
.

$$2. \left(2x+\frac{y}{2}\right)^5.$$

3.
$$\left(x^3 - \frac{3}{x}\right)^4$$

4.
$$(s+t)^7$$
.

5.
$$(x^2-y^2)^5$$
.

6.
$$(2\sqrt{a}-b)^6$$
.

7.
$$(\sqrt[4]{x} + \sqrt[3]{y^2})^4$$
.

8.
$$(\sqrt[5]{y} + 2x^2)^5$$
.

9.
$$\left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)^6$$
.

10.
$$(x^{-1} + y^{-2})^7$$
.

11.
$$(3a^{\frac{1}{3}}-2b^{-\frac{2}{3}})^3$$
.

12.
$$(\sqrt{2x} + \sqrt[3]{2y})^5$$
.

$$13. \left(\frac{a^{-2}}{\sqrt{3}} + \frac{b}{\sqrt{2}}\right)^4$$

14.
$$(e^{\frac{x}{a}} - e^{-\frac{x}{a}})^5$$
.

15.
$$(a^{\frac{1}{2}}b^{-2}+c^{-\frac{1}{2}}d)^4$$
.

16.
$$29^3 = (30 - 1)^3$$
.

19. By first putting b+c=x, expand $(a+b+c)^2$ by the binomial formula.

20. Expand $(a + b + c)^3$ by the binomial formula.

Find the first four terms, only, of the expansion of:

21.
$$(x^2-3t)^9$$
.

22.
$$(r^3+4\sqrt[3]{t})^{10}$$
.

23.
$$(\sqrt{3u} - v^2)^8$$
.

24.
$$(a^2-2b^3)^{12}$$
.

25.
$$\left(\frac{1}{x} - \frac{2}{v}\right)^{14}$$
.

26.
$$(a^{-2}+b^2)^{15}$$
.

27.
$$(x^3 + \sqrt{5y^3})^{14}$$
.

28.
$$\left(t^5+\frac{2}{t^2}\right)^{16}$$
.

29.
$$\left(a^{\frac{1}{4}}-\frac{1}{2}b^{\frac{1}{2}}\right)^{16}$$
.

The amount due on P dollars, at the end of n years, at the rate i (expressed as a decimal), is $P(1+i)^n$. Find, to the nearest cent, the amount due, given:

30.
$$P = $100, i = 0.03, n = 4.$$
 31. $P = $150, i = 0.05, n = 6.$

31.
$$P = $150, i = 0.05, n = 6$$

32.
$$P = $400$$
, $i = 0.06$, $n = 12$. 33. $P = 700 , $i = 0.04$, $n = 16$.

33.
$$P = $700, i = 0.04, n = 16.$$

247. The General Term of $(a + x)^n$. It is sometimes required to write a specified term of the expansion of $(a + x)^n$ without finding the preceding terms. We can do this with the aid of the expression given in the binomial formula (equation 1) for the rth term of this expansion, namely,

the rth term = $\frac{n(n-1)\cdots(n-r+2)}{(r-1)!}a^{n-r+1}x^{r-1}.$ (2)

Example 1. Find the ninth term of the expansion of $\left(2z - \frac{1}{y}\right)^{13}$.

We have, in formula (2), a = 2z, $x = -\frac{1}{y}$, n = 13, and r = 9. If we substitute these values in equation (2), we find, as the required ninth term,

$$\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} (2z)^{13-9+1} \left(-\frac{1}{y}\right)^8 = 41184 \frac{z^5}{y^8} \cdot$$

We shall sometimes need, not the rth term, but the term of the expansion that involves x^r . It will be seen from equation (2) that this term is the (r+1)th term of the expansion. The expression for it is found, by replacing r by r+1 in equation (2), to be

the term involving
$$x^r = \frac{n(n-1)\cdots(n-r+1)}{r!}a^{n-r}x^r$$
. (3)

Whether we should use equation (2) or equation (3), in determining a required term of the expansion, depends on whether we wish to find the rth term or the term involving x^r .

EXAMPLE 2. Find the term of the expansion of $(u^2 - v^3/2)^{17}$ that contains v^{15} .

We have $a = u^2$, $x = -v^3/2$, and n = 17. To find, in formula (3), the value of r that gives the required term, we neglect, for the moment, numerical coefficients and put $x = v^3$, giving $x^r = (v^3)^r = v^{3r}$. Since v^{3r} must equal v^{15} , we must have 3r = 15, or r = 5. Putting $a = u^2$, $x = -v^3/2$, n = 17, and r = 5 in formula (3), we now have, as the required term,

$$\frac{17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} (u^2)^{12} \left(-\frac{v^3}{2}\right)^5 = -\frac{1547}{8} u^{24} v^{15}.$$

Example 3. Find the term of the expansion of $(\frac{1}{t} - 3t^4)^{13}$ that contains t^2 .

We have a = 1/t, $x = -3t^4$, and n = 13. To find the required value of r in formula (3), we ignore, momentarily, numerical coefficients and put a = 1/t. $x = t^4$ Then

 $a^{13-r}x^r = \left(\frac{1}{t}\right)^{13-r}(t^4)^r = t^{-13+r+4r} = t^{5r-13}.$

Since this must equal t^2 , we have 5r - 13 = 2, or r = 3. Formula (3) now gives

$$\frac{13 \cdot 12 \cdot 11}{1 \cdot 2 \cdot 3} \left(\frac{1}{t}\right)^{10} (-3t^4)^3 = -7722t^2.$$

Exercises

Find the required term without finding the preceding ones.

1. Seventh term of
$$(a+b)^{10}$$
.

3. Twelfth term of
$$(x - y)^{15}$$
.

5. Sixth term of
$$\left(t^2 - \frac{1}{t}\right)^{18}$$
.

7. Fifth term of
$$\left(\sqrt[4]{2x^2} + \sqrt{\frac{y}{3}}\right)^{10}$$
.

9. Middle term of
$$(2x^2 - y^3)^6$$
.
HINT. $(a + x)^n$ contains $n + 1$ terms.

11. Two middle terms of
$$\left(\frac{r}{2} + s^2\right)^5$$
.

13. Term involving
$$w^{14}$$
 in $(u-w^2)^{10}$.

15. Term involving
$$a^{10}$$
 in $(a^2 + \sqrt{2b})^9$.

17. Term involving
$$x^9$$
 in $\left(x^3 + \frac{1}{x}\right)^7$.

2. Sixth term of $\left(u - \frac{1}{v}\right)^9$.

4. Fifth term of $(a^2 + 2b)^{11}$.

6. Tenth term of
$$(2h^5 - \frac{1}{2h^3})^{16}$$
.

8. Fourth term of
$$(x^r + y^s)^7$$
.

10. Middle term of
$$\left(5x^4 + \frac{1}{5x^3}\right)^{12}$$
.

12. Two middle terms of
$$(x^3 - y^2)^7$$
.

14. Term involving
$$k^{12}$$
 in $(k^3+t)^6$.

16. Term involving
$$w^9$$
 in $(v^2 + 2w^3)^{10}$.

18. Term involving
$$u^7$$
 in $(u^{\frac{1}{2}} + 2u^{\frac{3}{2}})^8$.

248. Mathematical Induction. Mathematical induction is a form of reasoning that enables us to prove that certain theorems are true for all integral values of n that are greater than some definitely fixed integer.

The method of reasoning used in the proof of a theorem by mathematical induction is illustrated by the following example.

EXAMPLE 1. Prove by mathematical induction that the sum of the first n odd integers equals n^2 , that is,

$$1+3+5+\cdots+(2n-1)=n^2$$
.

We observe, first, that the theorem is true for n = 1, since the equation then reduces to $1 = 1^2$.

We next prove that, if k is any positive integral value of n for which the theorem is true, then it must also be true for n = k + 1.

By hypothesis,

$$1+3+5+\cdots+(2k-1)=k^2$$

is a true equation since we have limited k to values for which the theorem is true.

Add 2k + 1 to both sides of this equation. Then

$$1+3+5+\cdots+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$$

is also a true equation since it was obtained by adding 2k + 1 to both sides of the preceding one. Since 2k + 1 = 2(k + 1) - 1, the last equation may be written in the form

$$1+3+5+\cdots+[2(k+1)-1]=(k+1)^2$$

which is precisely the formula we are to prove for n = k + 1. Hence, if the formula is true when n = k, it must also be true for n = k + 1.

Suppose, now, that we wish to know whether the theorem is true for some given positive integral value of n, say n = 17. We reason as follows: we know, by actual computation, that the theorem is true for n = 1. It follows from the proof just given that it is true for n = 2. If it is true for n = 2, it must be true for n = 3. Continuing in this way, we find that it is true for n = 17. Hence,

$$1 + 3 + 5 + \cdots + 33 = 17^2 = 289$$

is a true equation. In the same way, we can show that the theorem is true for any other positive, integral value of n.

The proof of a theorem by mathematical induction always consists of the following two parts:

- 1. A verification that the theorem is true for some one integral value of n.
- 2. A proof that, if k is any integral value of n for which the theorem is true, then k+1 is also a value for which it is true.

A proof by mathematical induction has not been completed until both parts of the proof have been given. If both parts have been proved, then the theorem is true for all integral values of n greater than, or equal to, the value used in the proof of Part 1.

Exercises

Prove the following formulas for all positive, integral values of n by mathematical induction.

1.
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

2.
$$2+2^2+2^3+\cdots+2^n=2(2^n-1)$$
.

3.
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

4.
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

5.
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

6.
$$1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

7.
$$1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$$

8.
$$1^4 + 2^4 + 3^4 + \cdots + n^4 = \frac{n(n+1)(6n^3 + 9n^2 + n - 1)}{30}$$

9. Show that $1+3+5+\cdots+(2n-1)=n^2+1$ satisfies Part 2 of the proof by mathematical induction but not Part 1.

- 10. Show that $1+3+5+\cdots+(2n-1)=n^2+(n-1)(n-2)(n-3)$ satisfies Part 1 of the proof by mathematical induction (for n=1, 2, or 3) but not Part 2.
- 249. The Binomial Theorem. We shall prove by mathematical induction that the binomial formula (Equation 1, Art. 246) is true for all positive, integral values of n. This statement is the binomial theorem.

Part 1. For n = 1, the binomial formula gives the result

$$(a+x)^1=a+x.$$

Since this equation is true, the formula is true for n = 1.

Part 2. Let k be any positive, integral value of n for which the formula is true. Then, by hypothesis, the equation

$$(a+x)^{k} = a^{k} + ka^{k-1}x + \dots + \frac{k(k-1)\cdots(k-r+2)}{(r-1)!} a^{k-r+1}x^{r-1} + \frac{k(k-1)\cdots(k-r+1)}{r!} a^{k-r}x^{r} + \dots + x^{k}$$

$$(4)$$

is a true equation. In this equation we have written both the rth and the (r+1)th terms explicitly.

We shall multiply both members of this equation by a + x.

The product of the first member by a + x is

$$(a+x)^k(a+x) = (a+x)^{k+1}$$
.

To multiply the second member by a + x, we must multiply each of its terms by a and by x and add the results.

Multiply the second member of equation (4) by a. We obtain

$$a^{k+1} + ka^kx + \cdots + \frac{k(k-1)\cdots(k-r+1)}{r!}a^{k-r+1}x^r + \cdots + ax^k$$
. (5)

Multiply the same expression by x. We have

$$a^{k}x + \cdots + \frac{k(k-1)\cdots(k-r+2)}{(r-1)!}a^{k-r+1}x^{r} + \cdots + kax^{k} + x^{k+1}.$$
 (6)

Add expressions (5) and (6) and combine the terms involving a and x to the same powers. In combining the coefficients of these corresponding terms, notice that

$$\frac{k(k-1)\cdots(k-r+1)}{r!} + \frac{k(k-1)\cdots(k-r+2)}{(r-1)!}$$

$$= \frac{k(k-1)\cdots(k-r+2)}{(r-1)!} \left(\frac{k-r+1}{r} + 1\right)$$

$$= \frac{(k+1)k\cdots(k-r+2)}{r!}.$$

By the aid of this expression for the sum of the coefficients, we obtain, as the sum of expressions (5) and (6),

$$a^{k+1} + (k+1)a^{k}x + \dots + \frac{(k+1)k\cdots(k-r+2)}{r!}a^{k-r+1}x^{r} + \dots + x^{k+1}.$$
 (7)

The expression (7) is precisely the expansion of $(a + x)^{k+1}$ by the binomial formula. Hence, if the formula is true for n = k, it is also true if n = k + 1.

We have proved (Part 1) that the binomial formula is true for n = 1 and also (Part 2) that, if it is true for n = k, it must be true for n = k + 1. It follows that the formula is true for all positive, integral values of n.

Chapter 31

Permutations and Combinations

250. Fundamental Principle. If one act can be done in any one of m different ways, and if, after it has been done in any one of these ways, a second act can be done in any one of n different ways, then both acts can be performed, in the order stated, in mn different ways.

The reasoning on which this theorem is based is illustrated by the

following example.

EXAMPLE 1. In an election, there are three candidates for senator and four for governor. In how many ways can a ballot be marked for both of these offices?

The ballot can be marked for senator in any one of three ways. With any one of these three ways, we can associate any one of the four ways in which it can be marked for governor. The total number of ways in which it can be marked for both offices is thus $3 \times 4 = 12$ different ways.

We have indicated these twelve possible ways of marking the ballot in the adjoining diagram, in which Aa and Ba Bb Bc Bd means a vote for A for senator and a for governor, and so on.

In the problems discussed in this chapter, we shall break up the entire action to be performed into a succession of component acts, as was done in Example 1, and determine the number of ways in which each of these component acts can be performed. It will then follow from the fundamental principle that the number of ways in which the entire action can be carried out is the product of the number of ways of doing, in succession, its component acts.

It will frequently be found helpful to draw a diagram to Fig. 167 indicate the successive steps in the problem and to mark on the figure the number of ways in which the successive steps can be carried out, as in Figure 167. Such a diagram should always be drawn whenever the problem is difficult or whenever the method of solving it is found to be uncertain.

EXAMPLE 2. A signal officer has eight flags of different colors. How many different signals can he form by placing three flags, one above the other, on a flagpole?

He can place any one of the 8 flags at the top, then any one of the remaining 7 flags just below it, then any one of the 6 flags still remaining at the bottom (Fig. 167).

The total number of ways in which he can perform these three acts in succession is, by the fundamental principle, $8 \times 7 \times 6 = 336$. It follows that the total number of such signals is 336.

Exercises

- 1. A man can leave one building by any one of four doors and enter another by any one of seven doors. In how many ways can he leave the first building and enter the second?
- 2. A club consists of 12 seniors and 8 juniors. In how many ways can a senior be chosen as president and a junior as vice-president?

3. In how many ways can 4 people arrange themselves in the 4 positions at a bridge table? What is the number if A and C must be partners?

- 4. A railroad has 24 stations. How many tickets must be printed if there is to be a ticket from each station to each of the other stations? How many if each ticket may be used in either direction between the stations named on it?
- 5. There are 4 roads from A to B, 6 from B to C, and 2 from C to D. In how many ways can one go from A to D by going first to B, then to C. and then to D?
- 6. In how many ways can 3 men choose a hotel in a town that has 6 hotels? What is the number if A and B refuse to stay at the same hotel?
- 7. A real estate company, in building houses in a subdivision, decided on 4 types of houses, 3 styles of fronts, and 6 colors of paint. How many houses, differing in appearance, can they build?
- 8. A man has 12 books of fiction, 7 biographies, and 4 books of essays. In how many ways can he choose one book of each type to take on a trip?
- 9. From among 7 boys and 4 girls, in how many ways can a game of tennis doubles be arranged if each side consists of a boy and a girl?
- 10. A signal officer has 2 flags of different colors, each of which can occupy any one of 6 positions. How many signals can he form, using one or both flags, if both flags cannot occupy the same position at the same time?
- 11. In how many ways can 4 people seat themselves in a seven-passenger car if the driver's seat must always be occupied?
- 12. There are 7 chairs in a row. In how many ways can A and B seat themselves in consecutive chairs?
- 251. Permutations. Suppose we have n different things. We are to choose r from among these n things and to arrange the r things so chosen in a specified order. Each arrangement that can be formed in this way is called a permutation of the n things taken r at a time.

Thus, the permutations of the three letters, a, b, and c, taken two at a time, are ab, ba, ac, ca, bc, and cb.

It is required to determine the number of permutations that can be formed from n things, taken r at a time. We shall denote this number by

West a a mountation?

the symbol P(n, r), which is read, "the number of permutations of n things taken r at a time."

EXAMPLE 1. From a society of 10 members, in how many ways can a president, a vice-president, and a secretary be chosen?

We can choose for president any one of the 10 members; for vice-president, any one of the remaining 9 members; and, for secretary, any one of the other 8 members. By the fundamental principle, the required number of choices is $10 \cdot 9 \cdot 8 = 720$.

This number is equal to P(10, 3), since it is the number of ways in which 3 can be selected from among the given 10 people and arranged in the stated offices. Hence, $P(10, 3) = 10 \cdot 9 \cdot 8 = 720$.

The value of P(n, r) can be found by the reasoning used in the preceding example. The first of the r places can be filled in any one of n ways, then the second can be filled in any one of n-1 ways, and so on. To fill the rth place, we have n-(r-1)=n-r+1 things to choose from. Hence,

$$P(n, r) = n(n-1)(n-2)\cdots(n-r+1).$$
 (1)

In particular, if r = n, we have P(n, n), which is the number of ways in which all of n things can be arranged among themselves.

Since, in this case, the last factor in equation (1) is n - n + 1 = 1, we have

$$P(n, n) = n(n-1)(n-2)\cdots 1 = n!,$$
 (2)

that is, the number of ways in which all of n things can be arranged among themselves is n factorial.

EXAMPLE 2. In how many ways can 4 from among 8 books be arranged on a shelf?

This number is $P(8, 4) = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$.

Exercises

- 1. Find the value of P(6, 2), P(4, 3), P(8, 5), P(16, 3), and P(32, 2).
- 2. How many radio broadcasting stations can be named with three different letters? How many if the first letter must be K? If one of the letters must be K?
 - 3. Find n, given that P(n, 4) = 56P(n, 2).
- 4. How many numbers, each consisting of 5 different digits, can be formed from the ten digits? (The first digit must not be zero).
 - 5. Solve Ex. 4 if repetition of the digits is allowed.
- 6. In Ex. 4, how many of these numbers are (a) even numbers, (b) how many are less than 60,000, and (c) how many are less than 60,000 and divisible by 5?

- 7. In how many batting orders can a baseball team be arranged if the fielders must be the first three to bat and the pitcher must bat last?
- 8. In how many ways can 8 men stand in a row if A and B cannot stand side by side and C must stand beside B?
- 9. In how many ways can 11 men stand in a row if A must stand in the middle and B and C must stand at the ends?
- 10. In how many relative positions can 6 people be seated at a circular table?

HINT. Choose one person and let him sit in a specified seat. Permutations such as this, in which only the relative positions are considered, are called circular permutations.

- 11. In how many relative positions can 5 men and 5 women sit at a circular table if men and women alternate?
- 12. In how many ways can 5 men and 5 women be seated in a row if men and women alternate?
- 13. In how many ways can 5 women and 3 men be seated in a row if no two men sit together and each woman sits beside one, and only one, man?
- 14. A man and his wife invite four couples to dinner. After the host and hostess have been placed at the ends of the table, in how many ways can the guests be arranged if men and women sit alternately and no man sits beside his wife?
 - 15. Show that P(n, r) = n!/(n-r)!.
- 252. Permutations of n Things Not All Different. Let it be required to find the number P of distinct permutations, seven at a time, of the seven letters of the word receive. Among these letters, e occurs three times and any two arrangements which differ only by an interchange of the letters e among themselves would be indistinguishable and should count as only a single one among the required arrangements.

To find the value of P, take any one of these permutations and, to distinguish the letters e in it, assign subscripts to them, e_1 , e_2 , e_3 . We can now permute these three distinct letters among themselves, leaving the other four letters fixed, in 3! ways. If we do this for each of the P permutations of the letters r, e, c, e, i, v, e, we obtain $P \cdot 3!$ permutations of the seven distinct letters r, e_1 , c, e_2 , i, v, e_3 . But these seven distinct letters, taken seven at a time, have 7! permutations. Hence,

$$P \cdot 3! = 7!$$
, or $P = \frac{7!}{3!}$.

Using precisely the same reasoning, we find, if we have n things, of which n_1 are alike, n_2 others are alike, n_3 others are alike, and so on, that the number P of distinct permutations of these n things, taken n at a time, is

 $P = \frac{n!}{n_1! \, n_2! \, n_3! \cdots}$ (3)

Exercises

- 1. Find the number of distinct permutations of the letters of the word sees, taken all at a time, and write these permutations out in full.
- 2. Find the number of distinct permutations of the letters of the word addresses, taken all at a time.
- 3. Find the number of distinct permutations, taken all at a time, of the letters of the word carelessness if the vowels must occupy the second, fourth, sixth, and tenth places.
- 4. How many integers of ten digits each can be formed of the digits 1, 2, 3, and 4 if 2 occurs twice, 3, three times, and 4, four times.
 - 5. Solve Ex. 4 if the first four digits are 1, 2, 3, and 4, in some order.
- 6. A signal man has 4 flags of each of 3 colors. How many signals can he form by displaying all of them at once, one above another, on a flagpole?
- 253. Combinations. Suppose that, from among n things, we select r things without regard to the order of arrangement. Any such selection is a combination of the n things taken r at a time.

Thus, the combinations of the letters a, b, c, taken two at a time, are ab, ac, bc.

The essential difference between a permutation and a combination of n things taken r at a time lies in the fact that, in the permutation, the r things chosen are arranged in a definite order among themselves whereas, in the combination, the order of arrangement of the things chosen is disregarded.

Thus, there are just 10 combinations of the 5 letters a, b, c, d, and e, 3 at a time, namely, abc, abd, abe, acd, ace, ade, bcd, bce, bde, and cde. There are, however, P(5, 3) = 60 permutations of these 5 letters taken 3 at a time. These 60 permutations can be formed by taking each of the combinations already listed and arranging the three letters in it in the P(3, 3) = 3! = 6 possible orders. For example, the first combination, abc, yields the 6 permutations abc, acb, bac, bca, cab, and cba, and similarly for each of the others.

It is required to find the number of combinations of n things taken r at a time. We shall denote this number by C(n, r), which is read, "the number of combinations of n things r at a time."

To find C(n, r), we notice that, as in the illustration just given, we can form the P(n, r) permutations by taking each of the C(n, r) combinations and arranging the r things in this combination in all of the P(r, r) = r! possible ways. It follows that

$$C(n, r) \cdot r! = P(n, r),$$

$$C(n, r) = \frac{P(n, r)}{r!}.$$
(4)

EXAMPLE 1. How many triangles are determined by nine points, no three of which lie on a line?

Any three of the points, taken without regard to their order of arrangement, determine a triangle. The required number of triangles is, accordingly,

$$C(9, 3) = \frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3} = 84.$$

If, in equation (4), we replace P(n, r) by its value from equation (1), we have

$$C(n, r) = \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}.$$
 (5)

Further, if we multiply the numerator and the denominator of the second member of equation (5) by (n-r)!, the new numerator is

$$n(n-1)(n-2)\cdots(n-r+1)\cdot(n-r)!$$

= $n(n-1)(n-2)\cdots(n-r+1)\cdot(n-r)(n-r-1)\cdots1$
= $n!$.

Equation (5) now takes the easily remembered form

$$C(n, r) = \frac{n!}{r!(n-r)!}$$
 (6)

In equation (6), if we everywhere replace r by n-r, we have, since n-(n-r)=r, $C(n, n-r)=\frac{n!}{(n-r)! \ r!}$

By comparing this result with equation (6), we find that

$$C(n, r) = C(n, n - r).$$
 (7)

Equation (7) merely expresses the fact that the number of ways in which we can choose r from among n things equals the number of ways in which we can leave the remaining n-r things unchosen.

Equation (7) is useful in computing C(n, r) when n - r is less than r, as in the following example.

EXAMPLE 2. In how many ways can 50 cards be chosen from among 52 playing cards?

We have, from equation (7), $C(52, 50) = C(52, 2) = \frac{52 \cdot 51}{2 \cdot 1} = 1326.$

254. The Binomial Coefficients. By comparing formula (5) of the preceding article with equation (3) of Art. 247, we find that the numerical coefficient of $a^{n-r}x^{r}$ in the expansion of $(a+x)^n$ is precisely C(n, r). It follows that the binomial formula [Art. 246, equation (1)] can be written in the form

$$(a + x)^{n} = a^{n} + C(n, 1)a^{n-1}x + C(n, 2)a^{n-2}x^{2} + \cdots + C(n, r-1)a^{n-r+1}x^{r-1} + \cdots + C(n, n)x^{n}.$$
(8)

As a particular consequence of this theorem, we find, by putting a = x = 1, that

$$(1+1)^n = 1 + C(n, 1) + C(n, 2) + \cdots + C(n, r-1) + \cdots + C(n, n),$$
or
$$C(n, 1) + C(n, 2) + \cdots + C(n, r-1) + \cdots + C(n, n) = 2^n - 1. \quad (9)$$

Equation (9) states that: the total number of combinations of n things taken 1 at a time, 2 at a time, and so on to n at a time is $2^n - 1$.

Exercises

- 1. Find the value of C(8, 3), C(12, 6), C(16, 4), C(19, 15), and C(38, 35).
- 2. Express by a symbol and compute: the number of combinations of 9 things 5 at a time.
- 3. In a league of 12 teams, each team played each of the other teams. How many games were played? How many games did each team play?
- 4. A contractor employs 15 men. In how many ways can he choose 5 of them to do a certain job?
 - 5. Find n, given C(n, 2) = 78.
 - 6. Find n, given P(n, 5) = 120C(n, 3).
- 7. Given 18 points in a plane no 3 of which lie on a line. How many lines can be drawn each of which passes through 2 of the points?
- 8. Given 10 points in space no 4 of which lie in a plane. How many planes are there each of which passes through 3 of the points? How many of these planes contain the line through 2 specified points of the set?
- 9. In how many ways can a committee of 5 boys and 4 girls be chosen from a club of 10 boys and 7 girls?
- 10. In how many ways can 52 playing cards be dealt equally to 4 players if the order of the hands but not of the cards in the hands is considered? Write the result using the factorial notation.
- 11. How many triangles are formed by 12 lines if each line meets each of the other lines but no three of the lines meet in a point? How many of these triangles have a given line as a side?
- 12. How many rectangles are formed when 8 vertical lines are intersected by 5 horizontal lines?
- 13. In Ex. 12, if the intervals between successive parallel lines is one inch, how many of the rectangles are squares?
- 14. Two men and their wives, 3 single men, and 3 single women form a club. How many committees of 5 can be formed if no man and his wife are on the same committee?
 - 15. Find the total number of combinations of 8 things.
- 16. A merchant has a 1-, 2-, 4-, 8-, and 16- ounce weight. How many different weights can he form?
- 17. How many different sums of money can be formed from a cent, a nickel, a dime, a quarter, a half-dollar, and a dollar?

Probability

255. Definitions. A trial of an event is an occasion on which the event may occur or fail to occur. If, on a trial, the event occurs, it is said to succeed on that trial; if it does not occur, it is said to fail.

Suppose, for example, we are considering the probability that a coin, if tossed, will come up heads. The act of tossing the coin is a trial. On any given trial, the event of coming up heads succeeds if the coin comes up heads; otherwise, it fails.

We desire to set up a numerical measure of the probability that a certain event will succeed on a future trial. There are two ways in which, under certain assumptions, we can sometimes set up such a measure. One of these ways leads to a measure which is called mathematical probability; the other to empirical probability. In both cases, it must always be remembered that the measures are valid only if the assumptions on which they are based are correct assumptions.

256. Mathematical Probability. If an event can succeed in any one of s ways and can fail in any one of f ways, if any one of these s + f ways is equally likely to occur and if one and only one of them must occur, then the probability, p, that the event will succeed, and the probability, q, that it will fail, on a given trial are, respectively,

$$p = \frac{s}{s+f}$$
, and $q = \frac{f}{s+f}$ (1)

From the foregoing definitions, it follows that, if f = 0 and s > 0, then p = 1. Hence, certainty of success is expressed by a probability p = 1. Similarly, if s = 0 and f > 0, then p = 0; that is, certainty of failure is expressed by a probability p = 0. In any case, if all of the possibilities have been considered,

$$p+q=1.$$

This equation constitutes a useful check on the accuracy with which p and q have been computed.

EXAMPLE 1. From a bag containing 12 white balls and 18 red ones, one ball is drawn at random. What is the probability that the ball so drawn is white?

Here s = 12, f = 18, and s + f = 30. Hence, $p = \frac{12}{30} = \frac{2}{5}$.

As a (partial) check, we compute $q = \frac{18}{30} = \frac{3}{5}$ and observe that $p + q = \frac{2}{5} + \frac{3}{5} = 1$.

EXAMPLE 2. A committee of 5 is to be chosen by lot from 7 men and 5 women. What is the probability that the committee will consist of 3 men and 2 women?

The committee can be chosen in any one of C(12, 5) = 792 ways. Three men can be chosen in C(7, 3) = 35 ways and two women in C(5, 2) = 10 ways. Hence, $s = 35 \cdot 10 = 350$, s + f = 792, and $p = \frac{350}{792} = \frac{175}{396}$.

257. Empirical Probability. In many cases of considerable practical importance, such as life or fire insurance or business forecasting, it is not possible to determine the mathematical probability of the success of an event. It is sometimes possible, in such cases, to determine p approximately by observing a large number of cases and recording the relative frequency of successes. The probability, determined experimentally in this way, is called empirical, or a posteriori, probability.

If n (a large number) is the total number of observed trials made under a certain set of conditions, and if s is the observed number of successes, we define, provisionally,

$$p=\frac{s}{n}$$

as the empirical probability of success in one trial under the given conditions. This result is, of course, an approximate one and is subject to revision as the experimental data accumulate.

In practice, it is always necessary to remember that the required probability may be greatly modified by special conditions pertaining to the particular event under consideration. It would be obviously inaccurate, for example, to apply the life insurance tables of life expectation to a man in an advanced stage of tuberculosis or to compute the probability that it will rain here tomorrow from data compiled at another time or place. With questions of this sort, we shall not concern ourselves. We shall assume, throughout, that the observed probability is valid for the individuals, or the groups, to which we intend to apply it.

258. Mathematical Expectation. If a person is to receive M dollars in case a certain event occurs, and if the probability that the event will occur is p, then the value of his expectation is Mp dollars.

EXAMPLE. A man may take any one of four envelopes of which one contains \$10 and the other three are empty. What is the value of his expectation?

The probability that he will receive \$10 is $p = \frac{1}{4}$. Hence, the value of his expectation is \$10 $\times \frac{1}{4} = 2.50 .

Exercises

1. A ball is drawn at random from a bag containing 7 red and 9 white balls. What is the probability that the ball drawn is red?

ni

- 2. One card is drawn from a pack of 52 playing cards. What is the probability that it is (a) a club, (b) an ace?
- 3. Four coins are tossed. Find the probability that they will turn up (a) four heads, (b) two heads and two tails.
- 4. In a certain registration district, 24 boys and 30 girls were born in a certain month. Find the probability that the first child born that month was a boy.
- 5. A committee of 5 was chosen by lot from among 9 men. Find the probability that A was and B was not a member of this committee.
- 6. Nine students are seated at random at a round table. What is the probability that A and B sit side by side?
 - 7. Solve Ex. 6 if they are seated in a row.
- 8. Six boys and 2 girls are seated at random at two bridge tables. Find the probability that the two girls are (a) partners, (b) seated at different tables.
- 9. Two dice were thrown. Find the probability that the sum of the numbers that turned up was (a) exactly eight, (b) greater than eight.
- 10. In Ex. 9, find the probability that, of the two numbers that turned up, (a) precisely one was a six, (b) neither was a six.
- 11. Five red and 4 green books are placed at random on a shelf. Find the probability that the middle and end positions are occupied by (a) red books, (b) green books.
- 12. From a pack of playing cards, 3 cards are drawn. Find the probability that they are an ace, a king, and a queen, all of different suits.
- 13. A man wrote 3 letters and addressed the corresponding envelopes. A servant put the letters at random in the envelopes. What is the probability (a) that every letter was put in its right envelope, (b) that no letter was put in its right envelope?
- 14. In a certain year, there were 5861 automobiles registered in a certain district and 238 accidents were reported. Ten years later, there were 9528 automobiles and 357 accidents. Was the probability of an accident to a given automobile greater or less during the latter year, and how much?
- 15. Each of 4 boys called at random on one of 3 girls. Find the probability (a) that at least one of the girls was not called on, (b) that a certain girl was not called on.
- 16. The prize in a lottery is \$150. If there are 500 tickets, what is the value of the expectation of one of them?
- 17. A man is to receive \$12 if, when 4 coins are tossed, 3 heads and 1 tail turn up. What is the value of his expectation?
- 18. A man is to receive \$270 if, when 3 dice are thrown, the sum of the numbers that turn up is exactly 15. Find the value of his expectation.
- 19. A man insured his car against theft for one year for \$650. Of 24,731 cars registered in his district, 94 were stolen during the year. What was the value of his expectation?
- 20. A man, 40 years old, takes out a \$1000 endowment insurance policy which is to be paid to him if he is alive at the end of 20 years and to his estate

if he dies before that time. Using the data of Ex. 22, Art. 41, find to two significant figures his expectation and that of his estate.

21. In Ex. 20, find the probability that the man will be alive at age 55 and dead at age 60.

259. Mutually Exclusive Events. A set of events, any one of which may occur on a given trial, are mutually exclusive if the happening of any one of them on a trial excludes the possibility that any other one will happen on that trial.

Thus, if one ball is drawn from a bag containing red, white, and blue balls, the events that the ball drawn is red, or white, or blue are mutually exclusive since, if the ball drawn is of one of these colors, it cannot be either of the other colors.

Let E_1, E_2, \dots, E_k be a set of mutually exclusive events, let p_1, p_2, \dots, p_k be their respective probabilities, and let p be the probability that some one of these events will happen on a given trial. Then

$$p = p_1 + p_2 + \cdots + p_k, \tag{2}$$

that is, the probability that some one of a set of mutually exclusive events will happen on a single trial is the sum of the probabilities for the separate events.

For, suppose that a trial can result in any one of n equally probable ways and suppose that, of these ways, E_1 can succeed in s_1 ways, E_2 in s_2 ways, and so on. Then

$$p_1=\frac{s_1}{n}, \quad p_2=\frac{s_2}{n}, \cdots, \quad p_k=\frac{s_k}{n}.$$

Also, s, the number of ways in which some one event of the given set can succeed is

$$s = s_1 + s_2 + \cdots + s_k,$$

and

$$p = \frac{s}{n} = \frac{s_1}{n} + \frac{s_2}{n} + \cdots + \frac{s_k}{n} = p_1 + p_2 + \cdots + p_k.$$

EXAMPLE. From a pack of playing cards, two hearts, nine clubs, and six diamonds have already been drawn. What is the probability that the next card drawn will belong to one of these suits?

The probability of drawing a heart is $p_1 = \frac{11}{35}$; a club, is $p_2 = \frac{4}{35}$; and a diamond, is $p_3 = \frac{7}{35}$. The probability of drawing a card of one of these suits is

$$p = \frac{22}{35} = \frac{11}{35} + \frac{4}{35} + \frac{7}{35} = p_1 + p_2 + p_3.$$

260. Independent and Dependent Events. If E_1, E_2, \dots, E_k is a set of events such that the occurrence of any one of them does not affect the probability that any one of the others will also occur, then the events

of this set are said to be independent; if the occurrence of one of them does affect the probability that the others will also occur, they are dependent.

Thus, the event of drawing a white ball out of a bag containing white and black balls, and of throwing a six with a single die, are independent events. The event of passing an examination in a course in mathematics, and of passing the course, are dependent events.

If the events E_1, E_2, \dots, E_k are independent, and if their respective probabilities are p_1, p_2, \dots, p_k , then the probability that all of them will succeed on a single trial is

$$p = p_1 \cdot p_2 \cdot \cdot \cdot p_k. \tag{3}$$

For simplicity, let k = 2. Suppose that E_1 can result in any one of n_1 ways, all equally likely to occur, and let s_1 of these ways be successes. Suppose further, that E_2 can result in n_2 ways, all equally likely, and let s_2 of these be successes. Then

$$p_1 = \frac{s_1}{n_1}$$
, and $p_2 = \frac{s_2}{n_2}$.

By the fundamental principle of Art. 250, both events can occur in n_1n_2 ways of which s_1s_2 are successes. Hence,

$$p = \frac{s_1 s_2}{n_1 n_2} = \frac{s_1}{n_1} \cdot \frac{s_2}{n_2} = p_1 \cdot p_2,$$

and similarly for k = 3 or more.

If E_1, E_2, \dots, E_k are dependent events, if the probability that E_1 will succeed before any of the others have been tried is p_1 , if the probability that E_2 will succeed after E_1 has succeeded but before any one of the remaining events has been tried is p_2 , that E_3 will succeed after E_1 and E_2 has succeeded and none of the others have been tried is p_3 , and so on, then it follows, by the reasoning given in the preceding case, that the probability that all of the events will succeed in the order E_1, E_2, \dots, E_k is

$$p = p_1 \cdot p_2 \cdot \cdot \cdot p_k, \tag{4}$$

that is, the probability is the same as though the events were independent provided the order of trial is the same as the order for which the successive probabilities have been determined.

EXAMPLE 1. A and B are running in different races. The probability that A will win his race is $\frac{1}{2}$ and that B will win his is $\frac{1}{5}$. What is the probability that both will win?

The events are independent and

$$p = \frac{1}{2} \cdot \frac{1}{5} = \frac{1}{10}.$$

EXAMPLE 2. The probability that, at the time of a race, the track will be muddy is $\frac{1}{30}$. The probability that, in case the track is muddy, A will win the race is $\frac{2}{3}$. What is the probability that the track will be muddy and that A will win the race?

The probability that both events will occur in the order named is

$$p = \frac{1}{30} \cdot \frac{2}{3} = \frac{1}{45}.$$

261. Repeated Trials. Let p be the probability of success, and q = 1 - p the probability of failure, of an event on a single trial. Further, we shall suppose that this probability remains unchanged throughout the entire series of trials under consideration. Then, the probability P of precisely r successes among n trials is

$$P = C(n, r)p^{r}q^{n-r}. (5)$$

For, by Art. 253, we can choose r specified ones among these n trials to succeed, and the rest to fail, in any one of C(n, r) ways. By equation (4), the probability that the r specified trials will succeed, and that the rest will fail, is p^rq^{n-r} . Further, if any one of these C(n, r) choices of r successes does occur, then no other one of them can occur; that is, the choices of orders of successes and failures are mutually exclusive events. It now follows from equation (2) that the probability that some one of these choices will actually occur is $C(n, r) p^r q^{n-r}$, as stated in equation (5).

By the aid of equation (5), together with the identity C(n, r) = C(n, n - r), we can show that the probability of at least r successes in n trials is

$$p^n + C(n, 1)p^{n-1}q + C(n, 2)p^{n-2}q^2 + \cdots + C(n, n-r)p^rq^{n-r}$$
. (6)

For, from (5), the probability of success in all the trials is p^n , in all but one is $C(n, n-1)p^{n-1}q = C(n, 1)p^{n-1}q$, and so on. Since these events are mutually exclusive, it follows from equation (2) that the probability that some one of them will succeed is given by (6).

EXAMPLE 1. A die is cast five times. What is the probability that it will turn up a six precisely three times?

The probability that it will turn up a six on any one trial is $\frac{1}{6}$. Hence, from equation (4), the probability that it will turn up a six on precisely three out of five trials is

 $p = C(5, 3) \cdot \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^2 = 10 \cdot \frac{5^2}{6^5} = \frac{125}{3888}$

EXAMPLE 2. A man bets five times on a gambling device on which his chances of winning on a single trial are $\frac{1}{3}$. Find the probability that he will win at least two of the five times.

$$p = (\frac{1}{3})^5 + 5(\frac{1}{3})^4(\frac{2}{3}) + 10(\frac{1}{3})^3(\frac{2}{3})^2 + 10(\frac{1}{3})^2(\frac{2}{3})^3 = \frac{131}{243}.$$

EXAMPLE 3. An automobile driver habitually engages in a practice in which the probability of an accident is 0.01. What is the probability that he can take this chance 100 times without an accident? In how many trials will the probability of an accident be 0.5?

The probability of avoiding an accident in every one of 100 trials is $p = (0.99)^{100} = 0.37$, approximately.

In *n* trials, the probability of avoiding an accident is $(0.99)^n$. If we equate this number to 0.5 and solve for *n* by logarithms, we find n = 69, approximately.

Exercises

- 1. A bag contains 9 red, 5 white, and 4 blue balls. Three balls are drawn at random and each is replaced before the next one is drawn. Find the probability that the first ball drawn is white, the second red, and the third blue.
 - 2. Solve Ex. 1 if the balls drawn are not replaced.
- 3. In Ex. 1, find the probability that one of the balls drawn is white, another red, and another blue.
- 4. The probability that A will win a certain prize is $\frac{2}{7}$ and that B will win it is $\frac{1}{3}$. Find the probability that one of them will win it.
- 5. In Ex. 4, if A and B are competing for different prizes, what is the probability that at least one of them will win?
- 6. One bag contains 3 white and 5 black balls; another 4 white and 7 black balls. A man chooses one bag at random and draws one ball. Find the probability that the ball drawn is white.
- 7. A and B take turns in tossing a coin. The first to toss a head is to receive \$15. If A tosses first, find the value of his expectation.
- 8. The probability that A will win a prize of \$120 if B does not compete is $\frac{3}{4}$ and, if B does compete, is $\frac{1}{6}$. The probability that B will compete is $\frac{5}{8}$. Find the value of A's expectation.
- 9. A, B, and C, having tied for first place in a tournament, agree that each shall play one game against each of the others. If anyone wins two games, he wins the tournament. If no one wins two games, the winner is not decided. If each man's probability of winning a game is $\frac{1}{2}$, find the probability that A will win the tournament.
- 10. In a lottery, there are three prizes, one of \$300, one of \$200, and one of \$100. If there are 2000 tickets, what is the expectation of one of them?
- 11. A plays a set of 9 games against B. If A's probability of winning a game is $\frac{3}{5}$, and if B has already won the first two games, what is the probability that A will win at least five games?
- 12. Six students were assigned a problem. If that probability that any one student can solve this problem is $\frac{2}{3}$, what is the probability that at least three of them will solve it?
- 13. A coin is tossed 8 times. What is the most probable number of times that heads will come up and what is this probability?

- 14. Two dice are thrown until either a 7 or an 11 comes up. What is the probability that a 7 will come up first?
- 15. A man pays \$1 for the right to play a game in which his chances of winning are \frac{1}{5}. If he wins, he receives \$3; if he loses he receives nothing. If he starts playing with \$3, what is the probability that he can play at least 9 games?
- 16. In a football game, each contestant made 3 touchdowns. The probability that either contestant would kick goal after a touchdown is $\frac{2}{3}$. Find the probability that the score was a tie.
- 17. A club of 60 members meets 52 times a year. At each meeting, one member, chosen by lot, receives a prize. Find, to two significant figures, the probability that Mr. A will receive the prize (a) at least once and (b) at least twice, during the year.

Chapter 33

Complex Numbers

262. Definitions. A complex number is one that can be written in the form

a + bi,

where a and b are real numbers and $i = \sqrt{-1}$.*

The number a is the real part and bi is the imaginary part of the complex number. If b = 0, the complex number is a real number; if a = 0 and $b \neq 0$, it is a pure imaginary number.

Thus, 5-4i is a complex number whose real part is 5 and whose imaginary part is -4i; 4=4+0i is a real complex number; and 8i=0+8i is a pure imaginary number.

Two complex numbers, a + bi and a - bi, which differ only in the sign of the imaginary part, are conjugate complex numbers and either of them is said to be the conjugate of the other.

Thus, -7 + 3i and -7 - 3i are conjugate complex numbers. The number conjugate to 5 - 2i is 5 + 2i.

Two complex numbers, a + bi and c + di, are equal if, and only if, a = c and b = d. In particular, if a + bi = 0, then a = 0 and b = 0.

263. Operations with Complex Numbers. The operations of addition, subtraction, multiplication, and division of complex numbers are performed according to the ordinary rules of algebra. The results should be simplified, whenever possible, by putting $i^2 = -1$.

Thus,

$$3+i+(-2+6i)=3-2+(1+6)i=1+7i.$$

 $5-2i-(-3+7i)=5+3+(-2-7)i=8-9i.$
 $7(5+2i)=7\cdot 5+7\cdot 2i=35+14i.$
 $(-3+2i)(4+7i)=-12-21i+8i+14i^2=-26-13i.$
 $(a+bi)(c+di)=ac-bd+(ad+bc)i.$

To express the quotient of two complex numbers, we write the required quotient as a fraction, then multiply both the numerator and the denominator by the complex number conjugate to the denominator; we have a + bi a

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i.$$

* Throughout this chapter, the letter *i* denotes $\sqrt{-1}$. All other literal numbers are assumed to be real.

Thus,
$$\frac{2+7i}{4-3i} = \frac{2+7i}{4-3i} \cdot \frac{4+3i}{4+3i} = \frac{8+28i+6i+21i^2}{16+9} = \frac{-13}{25} + \frac{34}{25}i$$
.

If a number is given in a form involving radicals, or fractional or negative exponents, it should be written in the form a + bi before any operations are performed with it. In particular, if b is positive, the expression $a + \sqrt{-b}$, or $a + (-b)^{\frac{1}{2}}$, should be replaced by $a + \sqrt{bi}$. Failure to do this may lead to incorrect results.

Thus, to multiply $\sqrt{-2}$ by $\sqrt{-3}$ correctly, we proceed as follows:

$$\sqrt{-2}\,\sqrt{-3} = \sqrt{2}i\cdot\sqrt{3}i = \sqrt{6}i^2 = -\sqrt{6}.$$

The following computation is erroneous:

$$\sqrt{-2}\sqrt{-3} = \sqrt{(-2)(-3)} = \sqrt{6}$$
.

Exercises

Simplify the following numbers and write them in a form involving i.

1.
$$\sqrt{-4}$$
.

2.
$$-\sqrt{-12}$$

3.
$$7\sqrt{-36}$$
.

4.
$$-15\sqrt{-0.16}$$
.

5.
$$\sqrt{-9x^2}$$
.

6.
$$3 + \sqrt{-5}$$

7.
$$8-2\sqrt{-18}$$
.

1.
$$\sqrt{-4}$$
. 2. $-\sqrt{-12}$. 3. $7\sqrt{-36}$. 4. $-15\sqrt{-0.16}$. 5. $\sqrt{-9x^2}$. 6. $3+\sqrt{-5}$. 7. $8-2\sqrt{-18}$. 8. $\frac{\sqrt{45}-\sqrt{-27}}{3}$.

9. Simplify i^3 , i^4 , i^9 , i^{67} , i^{-1} .

Write the conjugate of each given complex number.

11.
$$-5-3i$$
.

10.
$$2+7i$$
. 11. $-5-3i$. 12. $9-\sqrt{-5}$. 13. $3x+4yi$.

13.
$$3x + 4yi$$

Perform the indicated operations and write each expression in the form a + bi.

14.
$$(8+6i)+(-3+2i)$$
.

16.
$$(11-5i)-(6+3i)$$
.

18.
$$(5-2i)+(3+4i)-(1-3i)$$
.

20.
$$(3+\sqrt{-4})+(5-\sqrt{-36})$$
.

22.
$$\sqrt{-4}\sqrt{-25}$$
.

24.
$$(3-2i)(2+5i)$$
.

26.
$$(2+7i)^2$$
.

28.
$$(3+\sqrt{-8})(5-\sqrt{-2})$$
.

30.
$$(4-5i)^3$$
.

32.
$$\frac{4-5i}{3+4i}$$
.

34.
$$(-8+3i) \div (1+3i)$$
.

36.
$$\frac{5-\sqrt{-6}}{3+\sqrt{-2}}$$
.

38.
$$(1-4i)^{-1}$$

15.
$$(-7+3i)+(4-5i)$$
.

17.
$$(-1+8i)-(-6+9i)$$
.

19.
$$(-5+7i)-(3+4i)-(-11+9i)$$
.

21.
$$-\sqrt{2}+\sqrt{-20}-(\sqrt{18}-\sqrt{-80})$$
.

23.
$$\sqrt{-12}$$
 ($\sqrt{3} - \sqrt{-45}$).

25.
$$(2+3i)(-5+7i)$$
.

27.
$$(x + yi)^2$$
.

29.
$$(5-\sqrt{-3})(2+\sqrt{-7})$$
.

31.
$$(2+i)^4$$
.

33.
$$\frac{-6-5i}{2-i}$$
.

35.
$$(11+5i)\div(4-i)$$
.

37.
$$\frac{\sqrt{2}+\sqrt{-5}}{\sqrt{3}-\sqrt{-7}}$$
.

39.
$$(2-\sqrt{-3})^{-2}$$

Find the real numbers x and y, given:

40.
$$x + yi = 5 - \sqrt{-9}$$
.

41.
$$(x+1) - (3y-6)i = 0$$
.

42.
$$(2x-1) + (3y+1)i = 3-8i$$
.

42.
$$(2x-1) + (3y+1)i = 3-8i$$
. 43. $(7x+4y) + (2x+5y)i = 10-i$.

44.
$$(xy-1)+(2x+y-9)i=5-2i$$
.

45.
$$(2x^2 + y^2 - 1) + (x^2 - 2y^2)i = 8 + 2i$$
.

Perform the indicated multiplications.

46.
$$[x-(1+2i)][x-(1-2i)]$$
. **47.** $[x-(3+2i)][x-(3-2i)]$.

47.
$$[x-(3+2i)][x-(3-2i)]$$

48.
$$\left(x - \frac{1 + \sqrt{3}i}{2}\right)\left(x - \frac{1 - \sqrt{3}i}{2}\right)$$
. 49. $[x - (a + bi)][x - (a - bi)]$.

49.
$$[x - (a + bi)][x - (a - bi)]$$

Form a quadratic equation whose roots are the given numbers.

50.
$$3+i$$
, $3-i$.

51.
$$-5+2i$$
, $-5-2i$

50.
$$3+i$$
, $3-i$. **51.** $-5+2i$, $-5-2i$. **52.** $-2+\sqrt{-7}$, $-2-\sqrt{-7}$.

Write each expression as the product of two factors, each linear in x.

53.
$$x^2 - 4x + 13$$
.

54.
$$x^2 + 8x + 17$$
.

HINT. Equate each expression to zero and solve for x. Then x minus each root is a factor of the given expression.

264. Graphical Representation of Complex Numbers. In dealing with complex numbers, it has been found helpful to represent them graphically

by points in a plane. We first set up a pair of coordinate axes in the usual way (Fig. 168). Then, the point having the coördinates (a, b) is the graphical representation of the complex number a + bi.

In Figure 168, we have plotted the points representing the complex numbers 4 + 2i, -2 + 3i, -3 - 3i, and 3 - i.

Fig. 168

The points representing the real numbers, a + 0i, have their y-coördinates equal to zero

and lie on the x-axis. This line is, accordingly, called the axis of reals. Similarly, the points representing the pure imaginary numbers, 0 + bi, lie on the y-axis, which is now called the axis of imaginaries. The plane on which the complex numbers are plotted is called the complex plane.

Exercises

Represent the following complex numbers graphically.

1.
$$2 + 3i$$

2.
$$-1+3i$$
.

3.
$$-4 - 9i$$
.

4.
$$5 - 2i$$
.

6.
$$0-2i$$

7.
$$4-\sqrt{-3}$$

1.
$$2+3i$$
.
2. $-1+3i$.
3. $-4-9i$.
4. $5-2i$.
5. $8+0i$.
6. $0-2i$.
7. $4-\sqrt{-3}$.
8. $5+\sqrt{-7}$.

Plot the following points and write the complex number that each represents. Write, also, the conjugate complex number in each case and plot the point that represents it.

10.
$$(-8, -5)$$

12.
$$(3. - 7)$$

9.
$$(4, 3)$$
. 10. $(-8, -5)$. 11. $(0, 3)$. 12. $(3, -7)$. 13. $(9, 0)$. 14. $(-4, 9)$. 15. $(8, 3)$. 16. $(1 + \sqrt{5}, -4)$.

17. Let the points A and B represent the complex numbers a+bi and c+di, respectively. Draw OA and OB and complete the parallelogram OACB

having OA and OB as adjacent sides. Show that C represents the sum of the given complex numbers a + bi and c + di.

265. The Trigonometric Form of a Complex Number. Let P (Fig. 169) represent the complex number a + bi. In a system of polar coördinates having O as origin and OX as initial side, let r and θ be the polar coördinates of P, these coördinates being chosen

so that r is positive, or zero. From the formulas for changing from rectangular to polar coördinates, and conversely (Art. 176), we have,

$$r = \sqrt{a^2 + b^2}$$
, and $\tan \theta = \frac{b}{a}$; (1)

and

$$a = r \cos \theta$$
, and $b = r \sin \theta$. (2)

By substituting the values of a and b from equations (2) in the expression a + bi we obtain

$$a + bi = r(\cos \theta + i \sin \theta). \tag{3}$$

The expression $r(\cos \theta + i \sin \theta)$ is called the trigonometric, or polar, form of the complex number and a + bi is its rectangular form. The angle θ is the angle, amplitude, or argument of the complex number and the positive (or zero) number r is its modulus, or absolute value.

For the angle θ , of the complex number, we may take any angle having OX as its initial side and OP as its terminal side. Since these angles differ by integral multiples of 360° , we may write, in place of equation (3),

$$a + bi = r[\cos(\theta + k360^\circ) + i\sin(\theta + k360^\circ)],$$
 (4)

where k is any positive or negative integer, or zero.

There are thus an unlimited number of values for the angle of a complex number. These values differ by integral multiples of 360°. Moreover, two complex numbers are equal if their absolute values are equal and their angles differ by an integral multiple of 360°.

To find the trigonometric form of a complex number given in the rectangular form, we first plot the point representing the complex number and determine the quadrant in which it lies. We then find r and θ with the aid of a table of square roots and a table of natural tangents, choosing θ so that its terminal side lies in the required quadrant. These values of r and θ , when substituted in the expression $r(\cos \theta + i \sin \theta)$, define the given number in the trigonometric form.

EXAMPLE 1. Write the number $-1 + \sqrt{3}i$ in the trigonometric form Plot the point $-1 + \sqrt{3}i$ (Fig. 170).

From equation (1), $r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$ and $\tan \theta = -\sqrt{3}$. Since the point representing $-1 + \sqrt{3}i$ lies in the second quadrant, we take $\theta = 120^\circ$. Then $-1 + \sqrt{3}i = 2(\cos 120^\circ + i \sin 120^\circ)$. The second member of this equation is the required trigonometric form of the given number.

Example 2. Write the number 12 - 5i in the trigonometric form.

The point 12 - 5i lies in the fourth quadrant (Fig. 171). We have $r = \sqrt{(12)^2 + (-5)^2} = 13$ and $\tan \theta = -\frac{5}{12} = -0.4167$. With the aid of Table III, we find $\theta = 337^{\circ} 23'$, approximately. Hence,

$$12 - 5i = 13(\cos 337^{\circ} 23' + i \sin 337^{\circ} 23').$$

To represent the number $r(\cos \theta + i \sin \theta)$ graphically, construct (geometrically or with the aid of a protractor) the angle θ having O

as its vertex and OX as its initial side. On the terminal side of the angle, lay off OP = r. Then P is the point representing the given complex number.

Example 3. Represent the complex number $3(\cos 40^{\circ} + i \sin 40^{\circ})$ graphically and write it in the rectangular form.

Plot the point whose polar coördinates are (3, 40°) (Fig. 172).

To write this number in the rectangular form, we replace cos 40° and sin 40° by their values from Table III. We have

$$3(\cos 40^{\circ} + i \sin 40^{\circ}) = 3(0.7660 + i 0.6428) = 2.298 + i 1.928.$$

Exercises

Represent each of the following numbers graphically and write it in the trigonometric form.

1.
$$5+5i$$
. 2. $-3+3i$. 3. $1-\sqrt{3}i$. 4. $-\sqrt{2}-\sqrt{2}i$.

5. 7i. 6.
$$-\sqrt{12} + 2i$$
. 7. $-\sqrt{-9}$. 8. $\sqrt{6} - \sqrt{-2}$.

9.
$$-5$$
. 10. $\sqrt{8} - \sqrt{-8}$. 11. $5 - 2i$. 12. $-\sqrt{5} - \sqrt{-11}$.

Represent each of the following numbers graphically and write it in the rectangular form.

```
13. 4(\cos 30^{\circ} + i \sin 30^{\circ}).

14. 2(\cos 120^{\circ} + i \sin 120^{\circ}).

15. 6(\cos 225^{\circ} + i \sin 255^{\circ}).

16. 8(\cos 300^{\circ} + i \sin 300^{\circ}).

17. 7(\cos 180^{\circ} + i \sin 180^{\circ}).

18. 5(\cos 0^{\circ} + i \sin 0^{\circ}).

19. 3(\cos 90^{\circ} + i \sin 90^{\circ}).

20. 9(\cos 270^{\circ} + i \sin 270^{\circ}).

21. 10(\cos 34^{\circ} + i \sin 34^{\circ}).

22. 5(\cos 141^{\circ} + i \sin 141^{\circ}).

23. 6(\cos 217^{\circ} 12' + i \sin 217^{\circ} 12').

24. 7(\cos 348^{\circ} 34' + i \sin 348^{\circ} 34').
```

266. Product of Two Complex Numbers. The absolute value of the product of two complex numbers is the product of their absolute values and its angle is the sum of their angles.

For, by actual multiplication by the method shown in Art. 263, we find

$$r_1(\cos \theta_1 + i \sin \theta_1) \cdot r_2(\cos \theta_2 + i \sin \theta_2)$$

$$= r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \right].$$
(5)

On replacing the quantities in parentheses by their values from formulas I and II of Art. 123, we have as the formula for the product of two complex numbers:

$$r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_1 + i\sin\theta_2) = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]. \quad (6)$$

This process of multiplication may be extended to any number of factors. If there are three factors, for example, we have

$$r_{1}(\cos \theta_{1} + i \sin \theta_{1}) \cdot r_{2}(\cos \theta_{2} + i \sin \theta_{2}) \cdot r_{3}(\cos \theta_{3} + i \sin \theta_{3})$$

$$= r_{1}r_{2}[\cos (\theta_{1} + \theta_{2}) + i \sin (\theta_{1} + \theta_{2})] \cdot r_{3}(\cos \theta_{3} + i \sin \theta_{3})$$

$$= r_{1}r_{2}r_{3}[\cos (\theta_{1} + \theta_{2} + \theta_{3}) + i \sin (\theta_{1} + \theta_{2} + \theta_{3})].$$

Example. Multiply $2(\cos 60^{\circ} + i \sin 60^{\circ})$ by $10(\cos 150^{\circ} + i \sin 150^{\circ})$.

By equation (6), we have

$$2(\cos 60^{\circ} + i \sin 60^{\circ}) \cdot 10(\cos 150^{\circ} + i \sin 150^{\circ}) = 20(\cos 210^{\circ} + i \sin 210^{\circ}).$$

This multiplication is equivalent to the following one in the rectangular form

$$(1+\sqrt{3}i)(-5\sqrt{3}+5i)=-10\sqrt{3}-10i$$

which is the product obtained by the method of Art. 263.

267. Quotient of Two Complex Numbers. The quotient of two complex numbers is given by the equation

$$\frac{r_1(\cos\theta_1+i\sin\theta_1)}{r_2(\cos\theta_2+i\sin\theta_2)}=\frac{r_1}{r_2}[\cos(\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)]. \quad (7)$$

For, if we multiply both the numerator and the denominator of the first member of equation (7) by $\cos(-\theta_2) + i \sin(-\theta_2)$, and apply to each the rule for multiplication given in the preceding article, we obtain, since $\cos 0^\circ = 1$ and $\sin 0^\circ = 0$,

$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1(\cos\theta_1 + i\sin\theta_1) \cdot [\cos(-\theta_2) + i\sin(-\theta_2)]}{r_2(\cos\theta_2 + i\sin\theta_2) \cdot [\cos(-\theta_2) + i\sin(-\theta_2)]}$$
$$= \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)],$$

which is the result stated in equation (7).

Exercises

Perform the indicated operations. In Ex. 1, 2, 3, 4, 9, and 10, check your results by performing the operations in the rectangular form.

- 1. $4(\cos 30^{\circ} + i \sin 30^{\circ})3(\cos 120^{\circ} + i \sin 120^{\circ})$.
- 2. $6(\cos 60^{\circ} + i \sin 60^{\circ})5(\cos 150^{\circ} + i \sin 150^{\circ})$.
- 3. $11(\cos 45^{\circ} + i \sin 45^{\circ})4(\cos 90^{\circ} + i \sin 90^{\circ})$.
- 4. $9(\cos 225^{\circ} + i \sin 225^{\circ})7(\cos 315^{\circ} + i \sin 315^{\circ})$.
- 5. $6(\cos 45^{\circ} + i \sin 45^{\circ})8(\cos 75^{\circ} + i \sin 75^{\circ})$.
- 6. $10(\cos 60^{\circ} + i \sin 60^{\circ})6(\cos 50^{\circ} + i \sin 50^{\circ})$.
- 7. $13(\cos 38^{\circ} + i \sin 38^{\circ})5(\cos 73^{\circ} + i \sin 73^{\circ})$.
- 8. $15(\cos 84^{\circ} + i \sin 84^{\circ})11(\cos 147^{\circ} + i \sin 147^{\circ}).$
- 9. $\frac{18(\cos 150^{\circ} + i \sin 150^{\circ})}{6(\cos 30^{\circ} + i \sin 30^{\circ})}$ 10. $\frac{35(\cos 300^{\circ} + i \sin 300^{\circ})}{7(\cos 240^{\circ} + i \sin 240^{\circ})}$
- 11. $\frac{28(\cos 123^{\circ} + i \sin 123^{\circ})}{4(\cos 47^{\circ} + i \sin 47^{\circ})}$. 12. $\frac{6(\cos 74^{\circ} + i \sin 74^{\circ})}{15(\cos 41^{\circ} + i \sin 41^{\circ})}$.
- 13. Show that $\frac{1}{r(\cos\theta+i\sin\theta)} = \frac{1}{r} \left[\cos\left(-\theta\right) + i\sin\left(-\theta\right)\right].$
- 268. Integral Powers of a Complex Number. De Moivre's Theorem. If, in equation (6), the two given complex numbers to be multiplied are equal, we have

$$[r(\cos \theta + i \sin \theta)]^2 = r^2(\cos 2\theta + i \sin 2\theta).$$

If we multiply both sides of this equation by $r(\cos \theta + i \sin \theta)$ and simplify the second member by equation (6), we have

$$[r(\cos \theta + i \sin \theta)]^3 = r^3(\cos 3\theta + i \sin 3\theta).$$

If we continue this process of multiplying by $r(\cos \theta + i \sin \theta)$ and simplifying the second member by means of equation (6), we obtain, for all positive, integral values of n,

$$\lceil r(\cos\theta + i\sin\theta) \rceil^n = r^n(\cos n\theta + i\sin n\theta). \tag{8}$$

In particular, if r = 1, this equation becomes

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta. \tag{9}$$

The identity (9) is called De Moivre's Theorem.

Example 1. Find the cube of $2(\cos 45^{\circ} + i \sin 45^{\circ})$.

By equation (8),

$$[2(\cos 45^{\circ} + i \sin 45^{\circ})]^{3} = 8(\cos 135^{\circ} + i \sin 135^{\circ}).$$

This equation is equivalent to the following one in the rectangular form

$$(\sqrt{2} + \sqrt{2}i)^3 = -4\sqrt{2} + 4\sqrt{2}i$$

which may be verified by direct multiplication.

EXAMPLE 2. Find the value of $\left(\frac{3\sqrt{3}}{2} + \frac{3i}{2}\right)^5$.

$$\left(\frac{3\sqrt{3}}{2} + \frac{3i}{2}\right)^5 = \left[3(\cos 30^\circ + i \sin 30^\circ)\right]^5$$
$$= 3^5(\cos 150^\circ + i \sin 150^\circ) = \frac{-243\sqrt{3}}{2} + \frac{243}{2}i.$$

Exercises

Write each of the following powers in the trigonometric form. Express the result also in the rectangular form.

1.
$$(1+i)^3$$
.

2.
$$(\sqrt{3}+i)^4$$
.

3.
$$(0+2i)^5$$
.

$$4. \left(\frac{-3}{2} - \frac{\sqrt{3}i}{2}\right)^5.$$

5.
$$(\sqrt{2} + \sqrt{-6})^4$$
.

6.
$$(3+0i)^6$$
.

7.
$$[2(\cos 60^{\circ} + i \sin 60^{\circ})]^3$$
.

7.
$$[2(\cos 60^{\circ} + i \sin 60^{\circ})]^3$$
. 8. $[\sqrt{3}(\cos 135^{\circ} + i \sin 135^{\circ})]^4$.

9.
$$[\sqrt[5]{5}(\cos 15^{\circ} + i \sin 15^{\circ})]^{10}$$
. 10. $(\cos 1^{\circ} + i \sin 1^{\circ})^{45}$.

10.
$$(\cos 1^{\circ} + i \sin 1^{\circ})^{45}$$
.

269. Roots of Complex Numbers. To find the nth roots of a complex number a + bi, we first write the number in the form given in equation (4)

$$a + bi = r[\cos(\theta + k360^{\circ}) + i\sin(\theta + k360^{\circ})],$$
 (10)

where k is any positive or negative integer, or zero. Let

$$R(\cos\phi + i\sin\phi) \tag{11}$$

be any nth root of the given number. From the definition of an nth root of a number, we have

$$[R(\cos\phi + i\sin\phi)]^n = r[\cos(\theta + k360^\circ) + i\sin(\theta + k360^\circ)].$$

From equation (8), we have

$$[R(\cos\phi+i\sin\phi)]^n=R^n(\cos n\phi+i\sin n\phi).$$

It follows that

$$R^{n}(\cos n\phi + i\sin n\phi) = r[\cos (\theta + k360^{\circ}) + i\sin (\theta + k360^{\circ})].$$

If we equate the absolute values and the angles of the two members of this equation, we have

and

$$R^n = r$$
, or $R = \sqrt[n]{r}$, $n\phi = \theta + k360^\circ$, or $\phi = \frac{\theta + k360^\circ}{n}$.

Substitute these values of R and ϕ in the expression (11). We obtain, as the expression for the nth roots of the complex number (10),

$$\sqrt[n]{r} \left[\cos \left(\frac{\theta}{n} + \frac{k360^{\circ}}{n} \right) + i \sin \left(\frac{\theta}{n} + \frac{k360^{\circ}}{n} \right) \right],$$
 (12)

where k is any positive or negative integer, or zero.

If $r \neq 0$, the expression (12) assumes n distinct values when we assign to k the n values $0, 1, 2, \dots, n-1$. Hence, any complex number, except zero, has n distinct nth roots. These n roots may be found by assigning to k, in the expression (12), the n values $0, 1, 2, \dots, n-1$.

Example 1. Find the square roots of $9i = 9(\cos 90^{\circ} + i \sin 90^{\circ})$.

From (12), by putting k = 0 and k = 1, we obtain, as the required roots, $3(\cos 45^{\circ} + i \sin 45^{\circ})$, and $3(\cos 225^{\circ} + i \sin 225^{\circ})$,

or

$$\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$$
, and $\frac{-3\sqrt{2}}{2} + \frac{-3\sqrt{2}}{2}i$.

Example 2. Find the three cube roots of $4\sqrt{2} - 4\sqrt{2}i$.

Write the given number in the trigonometric form

$$4\sqrt{2} - 4\sqrt{2}i = 8(\cos 315^{\circ} + i \sin 315^{\circ}).$$

By putting k = 0, 1, and 2, in (12), we obtain the required cube roots:

 $2(\cos 105^{\circ} + i \sin 105^{\circ})$, $2(\cos 225^{\circ} + i \sin 225^{\circ})$, and $2(\cos 345^{\circ} + i \sin 345^{\circ})$ or

$$\frac{\sqrt{2}-\sqrt{6}}{2}+\frac{\sqrt{6}+\sqrt{2}}{2}i$$
, $-\sqrt{2}-\sqrt{2}i$, and $\frac{\sqrt{6}+\sqrt{2}}{2}+\frac{\sqrt{2}-\sqrt{6}}{2}i$.

Exercises

Find all the required roots in the trigonometric form. When you can without using the tables, write them also in the rectangular form.

- 1. The square roots of $2 + 2\sqrt{3}i$.
- 2. The square roots of -16i.
- 3. The cube roots of unity.
- **4.** The cube roots of $-4 + 4\sqrt{3}i$.
- 5. The fourth roots of 625.
- 6. The fourth roots of $-8 8\sqrt{3}i$.
- 7. The cube roots of $\frac{-27\sqrt{2}}{2} + \frac{27\sqrt{2}}{2}i$. 8. The fourth roots of -16i.

9. The fifth roots of
$$16 + 16\sqrt{3}i$$
.

9. The fifth roots of
$$16 + 16\sqrt{3}i$$
. 10. The sixth roots of $-4\sqrt{3} + 4i$.

Solve the following equations by writing the second members in the trigonometric form and finding the required roots.

11.
$$x^3 = -27$$
. 12. $x^3 = i$.

12.
$$x^3 = i$$

13.
$$x^4 = -50 + 50\sqrt{3}i$$
.

14.
$$x^5 = 32$$
.

15.
$$x^4 = -81$$
.

16.
$$x^9 = 1$$
.

Chapter 34

Theory of Equations

270. Integral Rational Functions. An expression of the form

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n, \quad a_0 \neq 0$$

in which n is a positive integer and the coefficients $a_0, a_1, \dots a_n$ are constants, is a polynomial, or an integral rational function, of degree n, in x. The equation formed by equating such a polynomial to zero is a polynomial equation, or an integral rational equation in x.

An integral rational function is in the standard form if it is arranged in decreasing powers of x from a_0x^n to a_n , inclusive. Any missing terms must be supplied with zero coefficients.

Thus,
$$8x^3 - 7x^5 + 2x^2 + 3x^6 - 8x,$$

is a polynomial, or integral rational function. If we write this function in the standard form, we have

$$3x^6 - 7x^5 + 0x^4 + 8x^3 + 2x^2 - 8x + 0$$
.

From this standard form, we see that the degree of this polynomial is n = 6and that $a_0 = 3$, $a_1 = -7$, $a_2 = 0$, $a_3 = 8$, $a_4 = 2$, $a_5 = -8$, and $a_6 = 0$.

We shall assume throughout this chapter, unless the contrary is stated, that the coefficients a_0 , a_1 , and so on, are real numbers and that the polynomial is written in the standard form.

Since the purpose of this chapter is to study the properties of integral rational functions and equations, we shall, throughout this chapter, use the symbols f(x), F(x), q(x), etc., only to indicate functions of this particular type.

Exercises

Write each of the following integral rational functions in the standard form.

1.
$$3x^2 - 2x + 5x^3 - 8$$
.

2.
$$5x^3 - 3x^2 - 9 + 7x^4 - x$$
.

3.
$$4x - 9x^4 + 2x^2 + 3$$
.

4.
$$6x^4 - 8x^5 + 2x - 1$$
.

5.
$$(2x-1)(x^2-3)+5x^2-1$$
. 6. $(x-2)^3+(x+1)^3+6x^2$.

6.
$$(x-2)^3 + (x+1)^3 + 6x^2$$
.

7.
$$(x-1)(x-2)(x-3)$$
.

8.
$$(x^2 - 5x + 3)(x^2 + 8x + 1)$$
.

9. Given
$$f(x) = x^3 - 5x^2 + 3x - 1$$
, find $f(3)$, $f(-2)$, $f(-x)$, $f(\frac{x}{2})$, $f(3y)$.

10. Divide $f(x) = x^3 - 4x^2 + 2x + 1$ by x - 3 and state the quotient and the remainder. Find, also, f(3).

332

271. Synthetic Division. In the work that follows, it will be necessary, so many times, to carry through the computation of dividing a polynomial by the special binomial x - r that it will be worth while to shorten the division process as much as possible. The shortened process which we shall arrive at is called synthetic division.

In the following example 1, we shall first carry out the division in full, then we shall show, in successive steps, how the computation can

be shortened.

Example 1. Divide
$$2x^3 - 9x^2 + 4x + 8$$
 by $x - 3$.

The computation is written out in full in diagram I. Notice that the divisor has been written to the right of the dividend and the quotient above it.

To obtain II, we have rewritten I, leaving out the terms that are always the same as those directly above them.

To obtain III, we have made the work more compact by bringing up the terms that were scattered downward and writing everything on four lines.

III
$$2x^{2} - 3x - 5$$

$$2x^{3} - 9x^{2} + 4x + 8 x - 3$$

$$-6x^{2} + 9x + 15$$

$$-3x^{2} - 5x - 7$$

$$2 - 3 - 5$$

$$2 - 9 + 4 + 8 - 3$$

$$-6 + 9 + 15$$

$$2 - 3 - 5 - 7$$

To obtain IV, we make the following changes:

- (a) In the divisor, omit the first term, which is always x.
- (b) In the rest of the computation, omit x and all its powers, since each of these is indicated by the position of its coefficient.
 - (c) Copy the first coefficient from the second line on the fourth line

To obtain V, which is the final form, we:

- (a) Omit the coefficients of the quotient, since these appear, in their proper order, on the last line.
 - (b) Change the sign of the term that appears in the divisor.
 - (c) Change all the signs in the second line.

$$\begin{array}{r}
V \\
2-9+4+8 & 3 \\
6-9-15 \\
2-3-5 & (-7)
\end{array}$$

It will be observed, in the final form V, that:

- (1) Each number in the second line is the product of the preceding number in the third line by the number that appears in the divisor.
- (2) Each number in the third line is the sum of the two numbers directly above it.
- (3) The last number in the third line is the remainder on the division; that is, the remainder on this division is -7.
- (4) The remaining numbers in the third line, in order, are the coefficients of the terms of the quotient; that is, the quotient is $2x^2 - 3x - 5$.

In examples 2 and 3, we shall show how one actually uses this shortened method to perform a division.

Example 2. Divide $31x + 2x^4 + 74 - 12x^3$ by x - 5.

Write the dividend in the standard form: $2x^4 - 12x^3 + 0x^2 + 31x + 74$.

On the first line, write the coefficients of the 2-12+0+31+74|5dividend, in order, and the constant term of the $\frac{+10-10-50-95}{2-2-10-19(-21)}$ divisor with its sign changed.

Copy the first coefficient of the dividend on the third line. Multiply it by 5 and write the result under -12. Write the sum of - 12 and 10 on the third line. Continue in this way until the computation is completed.

The quotient is $2x^3 - 2x^2 - 10x - 19$ and the remainder is -21.

Example 3. Divide $5x^4 + 11x + 2x^5 - 12$ by x + 2.

The dividend, in the standard form, is $2x^5 + 5x^4 + 0x^3 + 0x^2 + 11x - 12$. Further, x + 2 = x - (-2). The synthetic division is performed as follows:

The quotient is $2x^4 + x^3 - 2x^2 + 4x + 3$ and the remainder is -18.

Exercises

Divide (a) by long division, (b) by synthetic division.

1.
$$x^3 - 3x^2 + 5$$
 by $x - 4$.

2.
$$2x^3 - 2 + x^4 - x^2$$
 by $x + 3$.

Find the quotient and remainder by synthetic division.

3.
$$(2x^3 - 7x^2 - x + 5) \div (x - 2)$$
. 4. $(5x^3 + 16x^2 + 17x + 35) \div (x + 3)$.

5.
$$(2x^3 - 7x^2 - x + 3) \div (x + 2)$$
.
6. $(3x^3 + 17x^2 + 23x - 4) \div (x + 4)$.

7.
$$(19 - 9x^3 + 5x^4 + 13x) \div (x + 1)$$
.

8.
$$(11x^2 + x^4 - 9x^3 + 16x) \div (x - 7)$$
.

9.
$$(x^5 - 16x^2 + 9 - 22x^3) \div (x - 5)$$
.

10.
$$(x^6 - 6x^4 + 5x^2 + 13) \div (x + 2)$$
.

10.
$$(x^6 - 6x^4 + 5x^2 + 13) \div (x + 2)$$
.
11. $(x^3 + 7x^2 - 3x + 5) \div (x - a)$. 12. $(x^3 + 3yx^2 + 4y^2x + 2y^3) \div (x + y)$.

272. The Remainder Theorem. If a polynomial f(x) is divided by x - r until a remainder independent of x is obtained, then this remainder equals f(r).

As an illustration of the meaning of this theorem, and of its proof, consider the following example.

EXAMPLE 1. Show that, if $f(x) = x^3 + 4x^2 - 7x - 3$ is divided by x - 2, the remainder equals f(2).

In this case, we have $f(2) = 2^3 + 4 \cdot 2^2 - 7 \cdot 2 - 3 = 7$.

If we divide f(x) by x-2, we obtain the quotient x^2+6x+5 and the remainder 7.

Hence, in this case at least, the remainder on dividing by x-2 equals f(2) since each of these quantities equals 7.

To show why this is so, suppose we had checked the above division by the complete check formula for division (Art. 10). We would have, identically,

$$f(x) = x^3 + 4x^2 - 7x - 3 = (x - 2)(x^2 + 6x + 5) + 7.$$

This equation, being true for all values of x, is true for x = 2. On putting x = 2, we have

$$f(2) = 2^3 + 4 \cdot 2^2 - 7 \cdot 2 - 3 = (2 - 2)(2^2 + 6 \cdot 2 + 5) + 7 = 0 \cdot 21 + 7 = 7;$$

that is, $f(2) = 7 =$ the remainder when $f(x)$ is divided by $x - 2$.

The proof in the general case parallels that given in the example. Let

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n.$$

$$f(r) = a_0r^n + a_1r^{n-1} + a_2r^{n-2} + \cdots + a_n.$$

Then

Divide f(x) by x - r. Denote the quotient by q(x) and the remainder by R. From the complete check formula for division (Art. 10),

$$f(x) = (x - r)q(x) + R.$$

In this identity, put x = r. We have

$$f(r) = (r - r)q(r) + R = 0 \cdot q(r) + R = R;$$

that is,

$$f(r)=R.$$

EXAMPLE 2. Without dividing, find the remainder when $f(x) = x^3 + 5x^4 - 3x^2 + 9$ is divided by x + 2.

We have x + 2 = x - (-2). Hence r = -2.

$$f(-2) = (-2)^7 + 5(-2)^4 - 3(-2)^2 + 9 = -128 + 80 - 12 + 9 = -51$$

It follows by the remainder theorem that, if f(x) is divided by x+2, the remainder will be -51.

The student should check this result by performing the synthetic division.

EXAMPLE 3. Given $f(x) = x^3 - 4x^2 + x - 9$. Find, by synthetic division, the value of f(5).

When we divide f(x) by x-5, we obtain the remainder R=21. Hence, by the remainder theorem, $\frac{1-4+1-9}{+5+5+30}$ f(5)=21.

The student should check this result by substitution.

273. The Factor Theorem. If r is a root of the equation f(x) = 0, then x - r is a factor of the polynomial f(x), and conversely.

The statement: r is a root of f(x) = 0, means that f(r) = 0. Since, by the remainder theorem, f(r) = R, it follows that R also is equal to zero. By the complete check formula for division, we now have

$$f(x) = (x - r)q(x),$$

that is, x - r is a factor of f(x).

Conversely, the statement that x-r is a factor of f(x) means that the remainder R, obtained by dividing f(x) by x-r, is zero. Hence, by the remainder theorem, f(r) = 0 and r is a root of f(x) = 0.

Thus, 5 is a root of $f(x) = x^3 - 7x^2 + 8x + 10 = 0$, because $5^3 - 7 \cdot 5^2 + 8 \cdot 5 + 10 = 0$. By the factor theorem, it follows that x - 5 must be a factor of f(x). By division, we find that

$$f(x) = x^3 - 7x^2 + 8x + 10 = (x - 5)(x^2 - 2x - 2).$$

Similarly, we find by division that x + 3 is a factor of $f(x) = 2x^3 + x^2 - 13x + 6$, since

$$f(x) = 2x^3 + x^2 - 13x + 6 = (x+3)(2x^2 - 5x + 2).$$

Hence, x = -3 must be a root of f(x) = 0. By substitution, we find

$$f(-3) = 2(-3)^3 + (-3)^2 - 13(-3) + 6 = -54 + 9 + 39 + 6 = 0.$$

Exercises

Find f(r), using synthetic division and the remainder theorem, given

1.
$$f(x) = 2x^3 - 9x^2 + 3x + 9$$
, $r = 4$.

2.
$$f(x) = 3x^3 + 19x^2 + 23x - 5$$
, $r = -5$.

3.
$$f(x) = x^3 - 8x^2 + 9x + 5$$
, $r = 6$.

4.
$$f(x) = x^4 - x^3 - 9x + 6$$
, $r = 2$.

5.
$$f(x) = 5x^4 + 7x^3 + 8x + 6$$
, $r = -2$.

6.
$$f(x) = x^5 - 19x^2 - 17x + 7$$
, $r = 3$.

Without dividing, find the remainder on the following indicated divisions.

7.
$$(x^3 - 4x^2 + 2x + 9) \div (x - 3)$$
. 8. $(2x^3 + 5x^2 + 7x + 1) \div (x + 4)$.

9.
$$(x^6 - 7x^4 + 14x^2 + 11x) \div (x - 2)$$
.

10.
$$(8x^{14} - 9x^8 + 3x^5 - 7) \div (x + 1)$$
.

11.
$$(x^3 + 2ax^2 - 5a^2x - a^3) \div (x - a)$$
.

12.
$$\lceil (x-3)^5 - 2(x+1)^2 + 4 \rceil \div (x-4)$$
.

13.
$$[(x^2+3x-8)^6-(2x^2-5x-2)^2+6x^2-4x-9]\div(x-2)$$
.

Answer the following questions, using the factor theorem.

14. Is
$$x + 2$$
 a factor of $x^4 + x^3 - 5x^2 - 2x + 8$?

15. Is
$$x-3$$
 a factor of $x^5-11x^3+11x^2-24$?

16. Is
$$x + y$$
 a factor of $x^9 + y^9$?

17. Is 4 a root of
$$2x^3 - 5x^2 - 8x - 20 = 0$$
?

18. Is
$$-3$$
 a root of $x^3 - 2x^2 - 13x + 6 = 0$?

19. Is
$$-2$$
 a root of $x^4 - x^3 - 8x - 4 = 0$?

In the following exercises, first find f(r), then use the remainder theorem to set up the required equation in k.

Find the value of k, given that:

20. If
$$x^3 + kx^2 + 3x - 2$$
 is divided by $x - 3$, the remainder is 7.

21. If
$$kx^5 + 9x^2 - 3x - 7$$
 is divided by $x + 1$, the remainder is -4 .

22. If
$$(x^2 + 4x + 7)^2 - k(x^2 - 5)$$
 is divided by $x + 3$, the remainder is 8.

274. The Factored Form of a Polynomial. Let

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n, \quad a_0 \neq 0 \quad (1)$$

be a polynomial of degree n. We shall show that f(x) can be written in the form

$$f(x) = a_0(x - r_1)(x - r_2)(x - r_3) \cdot \cdot \cdot (x - r_n), \quad a_0 \neq 0$$
 (2)

where $r_1, r_2, r_3, \dots, r_n$ are constants, real or imaginary. The second member of this equation is called the factored form of f(x).

In proving that f(x) can be factored into linear factors in this way, we shall assume the truth of the following theorem, which is called the fundamental theorem of algebra:

Every polynomial equation has at least one root, real or imaginary. The proof of this fundamental theorem is beyond the scope of this book. A proof will be found in any standard textbook on the theory of equations.

Let r_1 be a root of f(x) = 0. By the factor theorem (Art. 273), it follows that

$$f(x) = (x - r_1)q_1(x),$$

where $q_1(x)$, the quotient obtained by dividing f(x) by $x - r_1$, is a polynomial of degree n - 1 in x, having a_0 as the coefficient of x^{n-1} .

If n > 1, it follows from the fundamental theorem of algebra that $q_1(x) = 0$ has a root, r_2 . Hence, by the factor theorem,

$$q_1(x) = (x - r_2)q_2(x),$$

and

$$f(x) = (x - r_1)(x - r_2)q_2(x).$$

Continuing in this way through n successive steps, we finally arrive at a quotient which is the constant a_0 . Then

$$f(x) = a_0(x - r_1)(x - r_2)(x - r_3) \cdot \cdot \cdot (x - r_n),$$

which is the required factored form of f(x).

EXAMPLE. Factor into linear factors: $f(x) = 2x^3 - 13x^2 + 26x - 15$.

By inspection, we find that 1 is a root of f(x) = 0. It follows by the factor theorem that x - 1 must be a factor of f(x). Using synthetic division, we find that

$$2x^3 - 13x^2 + 26x - 15 = (x - 1)(2x^2 - 11x + 15).$$

The equation $2x^2 - 11x + 15 = 0$ has a root 3. We find by division that

$$2x^2-11x+15=(x-3)(2x-5)=2(x-3)(x-\frac{5}{2}).$$

Hence,
$$2x^3 - 13x^2 + 26x - 15 = 2(x - 1)(x - 3)(x - \frac{5}{2})$$
.

This is the required factored form of f(x).

275. The Number of Roots of a Polynomial Equation. Let

$$f(x) = a_0(x - r_1)(x - r_2)(x - r_3) \cdot \cdot \cdot (x - r_n) = 0, \quad a_0 \neq 0$$

be a polynomial equation in the factored form.

Each of the numbers $r_1, r_2, r_3, \dots, r_n$ is a root of f(x) = 0. For, if we replace x by any one of these numbers, one of the factors, and hence their product, is equal to zero.

The equation has no other roots. For, let r be any number different from $r_1, r_2, r_3, \dots, r_n$. If we substitute r for x in the given equation, we have $f(r) = a_0(r - r_1)(r - r_2)(r - r_3) \cdots (r - r_n). \quad a_0 \neq 0$

This product does not equal zero since no one of its factors is equal to zero (Art. 4). Hence $f(r) \neq 0$ and r is not a root of f(x) = 0.

It follows that the *n* numbers $r_1, r_2, r_3, \dots, r_n$, and no others, are the

roots of the polynomial equation of degree n, f(x) = 0.

276. Multiple Roots. The *n* roots of f(x) = 0 may not all be distinct numbers. If $r_1 = r_2 = \cdots = r_k$, but none of the other roots is equal to r_1 , we say that r_1 is a *k*-fold root, or root of multiplicity *k*, of f(x) = 0.

From equation (2), if r_1 is a k-fold root of f(x) = 0, then

$$f(x) = a_0(x-r_1)^k(x-r_{k+1})\cdot \cdot \cdot (x-r_n).$$

It follows that the condition that a number r is a k-fold root of f(x) = 0 is that $(x - r)^k [but not (x - r)^{k+1}]$ is a factor of f(x).

Thus, the equation $x^4 + 3x^3 - 3x^2 - 7x + 6 = (x - 1)^2(x + 2)(x + 3) = 0$ has 1 as a double root and -2 and -3 as simple roots. The four roots of this equation are 1, 1, -2, and -3.

The equation $x^5 - 4x^4 + 4x^2 = (x-2)^2x^3 = 0$ has 2 as a double root and

0 as a threefold root. The five roots are 2, 2, 0, 0, 0.

With the aid of this definition of a k-fold root and the theorems of Arts. 274 and 275, we can now state the theorem concerning the number of roots of a polynomial equation more precisely in the following form: a polynomial equation of degree n has precisely n roots provided each root of multiplicity k is counted as k roots.

Thus, the equation of degree eight,

$$x^{8} - 16x^{7} + 77x^{6} - 98x^{5} = (x - 2)(x - 7)^{2}x^{5} = 0,$$

has precisely eight roots, namely 2, 7, 7, 0, 0, 0, 0, 0. It has 2 as a simple root, 7 as a double root, and 0 as a fivefold root.

Exercises

State the degree of each of the following equations, find all the roots, and state their multiplicities.

1.
$$x^3(x-3+\sqrt{5})(x-3-\sqrt{5})=0$$
.

2.
$$(x+2+i)^2(x+2-i)^2(2x+5)^4=0$$
.

3.
$$(x^2-9)(x-6)^2(x+1)^3=0$$
. 4. $(x^2+1)(x^2-3x+2)=0$.

5.
$$(3x-2)^3(x^2+4)^2=0$$
.
6. $(x^2+2x-3)^2(x^3-6x+13)=0$.

7.
$$x^6 + 2x^5 - 8x^4 = 0$$
.
8. $(x^3 + 4x^2 - 3x)(x^2 + 7x + 10) = 0$.

Write f(x) in the factored form, given that:

9. The roots of $f(x) = x^3 - 6x^2 + 11x - 6 = 0$ are 1, 2, and 3.

10. The roots of $f(x) = 2x^3 - 5x^2 + 2x + 21 = 0$ are $-\frac{3}{2}$, $2 + \sqrt{3}i$, $2 - \sqrt{3}i$.

11. The roots of $f(x) = x^4 + 2x^3 - 14x^2 + 2x - 15 = 0$ are 3, -5, i, and -i.

12. One root of $f(x) = 6x^3 + x^2 - 31x + 10 = 0$ is 2.

13. 1 is a double root of $f(x) = x^4 + 2x^3 - 8x^2 + 6x - 1 = 0$.

14. 3 is a double root of $f(x) = x^4 - 4x^3 + 2x^2 - 12x + 45 = 0$.

15. - 1 is a triple root of $f(x) = x^5 + 3x^4 + 4x^3 + 4x^2 + 3x + 1 = 0$.

16. - 1 is a root of $f(x) = 5x^4 + x^3 - 2x^2 + 2x = 0$.

17. $x^2 - 4$ is a factor of $f(x) = 2x^4 + x^3 - 4x - 32$.

18. $f(x) = x^4 - 10x^3 + 37x^2 - 60x + 36 = 0$ has two pairs of equal roots.

277. Formation of an Equation with Given Roots. Let r_1, r_2, \dots, r_n be any n given numbers. It is required to write a polynomial equation of degrees n having these n numbers as roots.

The equation

$$f(x) = a_0(x - r_1)(x - r_2) \cdot \cdot \cdot (x - r_n) = 0,$$

where a_0 is any constant different from zero, clearly has the given numbers as roots since, if x is replaced by any of the numbers, one factor of the product in the second number, and hence the entire product, is equal to zero.

If we multiply together the factors in this product, we obtain a polynomial equation in which the term of highest degree in x is a_0x^n . It follows that this equation is the required polynomial equation.

EXAMPLE. Write an equation of degree four, having -1, 3, $\frac{5}{2}$, and $-\frac{2}{3}$ as its roots.

We form the equation

11. -7, -2, 1, 3, 5.

$$a_0(x+1)(x-3)(x-\frac{5}{2})(x+\frac{2}{3})=0,$$

which is clearly satisfied if we substitute for x any one of the given values.

If we put $a_0 = 6$, to avoid fractional coefficients, and multiply out, we obtain

$$6(x+1)(x-3)(x-\frac{5}{2})(x+\frac{2}{3}) = 6x^4 - 23x^3 - 6x^2 + 53x + 30 = 0.$$

As a check, the student should verify that each of the given numbers satisfies the final equation.

Exercises

Write a polynomial equation with integral coefficients having the given roots and no others.

1.
$$-2$$
, 1, 3.
2. -5 , -3 , 7.
3. 3 , $1 + \sqrt{5}$, $1 - \sqrt{5}$.
4. 2 , $-1 + \sqrt{3}i$, $-1 - \sqrt{3}i$.
5. 2 , -2 , $3 + i$, $3 - i$.
6. 1 , -1 , i , $-i$.
7. $1 + i$, $1 + i$, $1 - i$, $1 - i$.
8. 2 , 2 , $-\frac{5}{2}$, $-\frac{5}{2}$.
9. 0 , 0 , 1 , 1 , -3 , -3 .
10. 0 , 0 , 0 , -3 , -3 , -5 .

278. Equation with Roots Opposite in Sign to Those of a Given Equation. Let the roots of

12. 1, 1, 1, 1, 2, -2, i, -i.

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n = 0, \quad a_0 \neq 0$$

be

$$r_1, r_2, r_3, \cdots, r_n$$

It is required to find an equation whose roots are

$$-r_1, -r_2, -r_3, \cdots, -r_n;$$

that is, are opposite in sign to those of f(x) = 0.

Write f(x) in the factored form

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n$$

= $a_0(x - r_1)(x - r_2)(x - r_3) \cdots (x - r_n) = 0.$

Replace x by -x throughout these expressions:

$$f(-x) = a_0(-x)^n + a_1(-x)^{n-1} + a_2(-x)^{n-2} + \cdots + a_n$$

$$= a_0(-x - r_1)(-x - r_2)(-x - r_3) \cdot \cdots \cdot (-x - r_n)$$

$$= (-1)^n a_0(x + r_1)(x + r_2)(x + r_3) \cdot \cdots \cdot (x + r_n)$$

$$= 0$$

or

The roots of this equation are $-r_1, -r_2, -r_3, \dots, -r_n$; that is, they are opposite in sign to the roots of f(x) = 0.

Hence, to find an equation whose roots are opposite in sign to those of a

given equation, replace x by -x throughout the equation.

EXAMPLE. The roots of $x^3 + x^2 - 10x + 8 = 0$ are 1, 2, and -4. Find an equation whose roots are -1, -2, 4.

The equation formed by replacing x by -x in the given equation,

$$(-x)^3 + (-x)^2 - 10(-x) + 8 = 0,$$

- $x^3 + x^2 + 10x + 8 = 0,$

is satisfied by -x = 1, -x = 2, and -x = -4, or x = -1, x = -2, and x = 4. It is therefore the required equation.

The student should check the roots of both equations.

Exercises

Write an equation whose roots are opposite in sign to those of the given equation. In Ex. 1 to 4, check by finding all the roots of the given, and of the transformed, equation.

1.
$$x^3 - 7x^2 + 7x + 15 = 0$$
. One root is -1 .

2.
$$x^3 - 5x^2 - 17x + 21 = 0$$
. One root is 7.

3.
$$x^4 - 5x^2 + 10x - 6 = 0$$
. Two roots are -3 and 1.

4.
$$x^4 - 8x^3 + 8x^2 + 41x - 30 = 0$$
. Two roots are -2 and 5.

5.
$$x^4 + 3x^3 + 5x - 3 = 0$$
.

6.
$$2x^4 + 7x^3 - 8x^2 + 2x - 5 = 0$$
.

7.
$$x^4 - 13x^2 + 36 = 0$$
.

8.
$$3x^7 - 4x^4 - 9x^3 + 2x - 8 = 0$$
.

9.
$$2x^3 - 5x^4 - 3x - x^5 = 0$$
.

10.
$$5x^3 - 2x^2 + 8x^5 - 11 = 0$$
.

279. Descartes' Rule of Signs. If a polynomial is arranged in decreasing powers of x, but with the terms having zero coefficients omitted, there is said to be a variation in signs whenever two successive terms of the polynomial are opposite in sign.

Thus, in the polynomial $2x^7 + 3x^5 - 6x^4 - 2x^3 + x - 8$, there are three variations in sign: one from $3x^5$ to $-6x^4$, another from $-2x^3$ to x, and the third from x to -8.

The following theorem is proved in advanced mathematics.*

DESCARTES' RULE OF SIGNS. The number of positive roots of f(x) = 0 is either equal to the number of variations of sign in f(x) or is less than that number by a positive, even integer.

In particular, if there are no variations of sign in f(x), there are no positive roots of f(x) = 0 and, if there is just one variation, then f(x) = 0 has just one positive root. In the remaining cases, the rule does not

^{*} See Dickson, First Course in the Theory of Equations, Art. 67.

determine the precise number of positive roots but only a number that cannot be exceeded by the number of positive roots.

A corresponding limitation on the number of negative roots of f(x)= 0 can be obtained by transforming f(x) = 0 into an equation whose roots are opposite in sign to those of f(x) = 0, as shown in the preceding article. Since every negative root of f(x) = 0 is transformed into a positive root of f(-x) = 0, and conversely, it follows that the number of negative roots of f(x) = 0 is either equal to the number of variations in sign in f(-x) = 0 or is less than that number by a positive, even integer.

A real root of f(x) = 0 that is neither positive nor negative must be equal to zero. If $a_n \neq 0$, zero is not a root of f(x) = 0. If $a_n = 0$, and if x^k is the highest power of x that is a factor of f(x), then, by Art. 267, zero is a k-fold root of f(x) = 0.

If the sum of the number of positive, negative, and zero roots of f(x) = 0 is less than n, the remaining roots must be imaginary. We shall show in Art. 281 that, if the coefficients of f(x) = 0 are real numbers, then the number of imaginary roots is an even number.

Example. Discuss the number of positive, negative, zero, and imaginary roots of $f(x) = 3x^8 + 2x^6 - x^5 + x^4 + x^3 - 6x^2 = 0$.

Since there are three variations in sign, f(x) = 0 has either three positive roots, or just one.

The transformed equation, $f(-x) = 3x^8 + 2x^6 + x^5 + x^4 - x^3 - 6x^2 = 0$, has just one variation in sign. Hence, f(x) = 0 has just one negative root.

Since x^2 (but not x^3) is a factor of f(x), zero is a double root of f(x) = 0.

There are 8 roots in all. Hence, there are either 3 positive, 1 negative, 2 zero, and 2 imaginary roots or 1 positive, 1 negative, 2 zero, and 4 imaginary roots.

Exercises

Using Descartes' Rule of Signs, tell what you can about the number of positive, negative, zero, and imaginary roots of the following equations. In Ex. 1 to 6, find the roots and compare your results with the roots found.

1.
$$x^2 + 4x + 8 = 0$$
.

2.
$$x^5 - 3x^4 - 5x^3 = 0$$
.

3.
$$x^3 - 27 = 0$$
.

4.
$$x^6 + 8x^3 = 0$$
.

5.
$$x^4 - 13x^2 + 36 = 0$$
.

6.
$$x^4 + 17x^2 + 16 = 0$$
.
8. $2x^6 + 4x^5 - x^2 = 0$.

7.
$$x^3 - 5x^2 - 9 = 0$$
.

10.
$$x^{10} - 4x^6 + 7x^3 - 3 = 0$$

- 9. $x^6 + 4x^4 + 3x^2 7 = 0$.
- 10. $x^{10} 4x^6 + 7x^3 3 = 0$.

280. Limits for the Magnitudes of the Real Roots. Descartes' Rule gives a limit for the *number* of positive roots of f(x) = 0. The following rule states a limit for the size of the largest positive root.

The advantage of knowing this limit will be that, when we are searching for the roots of an equation, we need not look for any root larger

than this limit.

§ 280 LIMITS FOR MAGNITUDES OF THE REAL ROOTS 343

If R is a positive number such that, when f(x) is divided by x - R by synthetic division, all the numbers on the third line are either positive or zero (or all either negative or zero) then no real root of f(x) = 0 is greater than R.

The proof of this theorem, in any given numerical equation, may be arrived at by the reasoning used in the following example.

EXAMPLE 1. Show that 4 is greater than any real root of $x^4 - 3x^3 - 4x^2 + 3x - 7 = 0$.

By synthetic division, we have

$$\begin{array}{r}
 1 - 3 - 4 + 3 - 7 \boxed{4} \\
 + 4 + 4 + 0 + 12 \\
 \hline
 1 + 1 + 0 + 3 (+ 5)
 \end{array}$$

Hence, identically, by the complete check formula for division,

$$f(x) = x^4 - 3x^3 - 4x^2 + 3x - 7 = (x - 4)(x^3 + x^2 + 3) + 5.$$

Obviously, 4 is not a root since f(4) = 5.

Let x be any number greater than 4. Then x - 4 is positive and $x^3 + x^2 + 3$ is positive because each of its terms is positive. It follows that, for the chosen value of x, f(x) is greater than 5 and x is not a root of f(x) = 0.

To find a lower limit for the real roots of f(x) = 0, transform the equation into one whose roots are opposite in sign to those of f(x) = 0. Then, if r is a positive number such that no real root of f(-x) = 0 is greater than r, it follows that no root of f(x) = 0 is less than -r.

EXAMPLE 2. Show that -2 is less than any real root of $x^4 - 3x^3 - 4x^2 + 3x - 7 = 0$.

The transformed equation is $x^4 + 3x^3 - 4x^2 - 3x - 7 = 0$. By synthetic division, we have

$$\begin{array}{r} 1+3-4-3-7 & 2 \\ +2+10+12+18 \\ \hline 1+5+6+9 & (+11) \end{array}$$

Hence 2 is greater than any real root of f(-x) = 0 and -2 is less than any real root of f(x) = 0.

Exercises

Find integral upper and lower limits for the magnitudes of the real roots of the following equations.

1.
$$x^3 + 4x^2 - 4x + 3 = 0$$
.

3.
$$2x^3 - 9x^2 - 8x - 14 = 0$$
.

5.
$$x^4 - 7x^3 + 3x - 15 = 0$$
.

7.
$$x^4 - 13x^2 - 35 = 0$$
.

2.
$$3x^3 + 6x^2 - 43 = 0$$

4.
$$x^3 - 6x^2 - 14x + 6 = 0$$
.

6.
$$2x^4 + 9x^3 - 3x^2 - 2x - 14 = 0$$

8.
$$x^5 - 4x^2 + 6x - 14 = 0$$
.

be

281. Equation with Roots m Times Those of a Given Equation. Let m be a given constant and let the roots of the equation

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n = 0, \quad a_0 \neq 0$$

$$r_1, r_2, r_3, \cdots, r_n.$$
(3)

It is required to find an equation whose roots are

$$mr_1, mr_2, mr_3, \cdots, mr_n,$$

that is, are equal to those of f(x) = 0 each multiplied by m. Write f(x) in the factored form

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

= $a_0 (x - r_1)(x - r_2)(x - r_2) \dots (x - r_n) = 0.$ (4)

Replace x by $\frac{x}{m}$ throughout equations (4).

$$f\left(\frac{x}{m}\right) = a_0 \left(\frac{x}{m}\right)^n + a_1 \left(\frac{x}{m}\right)^{n-1} + a_2 \left(\frac{x}{m}\right)^{n-2} + \dots + a_n$$

$$= a_0 \left(\frac{x}{m} - r_1\right) \left(\frac{x}{m} - r_2\right) \left(\frac{x}{m} - r_3\right) \cdot \dots \cdot \left(\frac{x}{m} - r_n\right)$$

$$= a_0 m^{-n} (x - mr_1) (x - mr_2) (x - mr_3) \cdot \dots \cdot (x - mr_n) = 0.$$
 (5)

It follows that the roots of

$$a_0 \left(\frac{x}{m}\right)^n + a_1 \left(\frac{x}{m}\right)^{n-1} + a_2 \left(\frac{x}{m}\right)^{n-2} + \dots + a_n = 0$$
 (6)

are

$$mr_1, mr_2, mr_3, \cdots, mr_n,$$

that is, they are equal to those of f(x) = 0 each multiplied by m. If we multiply equation (6) by m^n , and simplify, we have

$$a_0x^n + ma_1x^{n-1} + m^2a_2x^{n-2} + \cdots + m^na_n = 0.$$
 (7)

Hence, to form an equation each of whose roots is m times the corresponding root of a given equation, write the equation in the standard form and multiply the coefficients, beginning with the second, by m, m^2 , m^3 , \cdots , m^n , respectively.

EXAMPLE. The roots of the equation $11x + x^3 + 21 = 9x^2$ are -1, 3, and 7. Write an equation whose roots are -2, 6, and 14.

Write the given equation in the standard form

$$x^3 - 9x^2 + 11x + 21 = 0,$$

and multiply the coefficients, in order, beginning with the second, by 2, 4, and 8. We obtain, as the required equation,

$$x^3 - 18x^2 + 44x + 168 = 0.$$

The student should verify that the roots of this equation are -2, 6, and 14.

282. Equations in the b-form. A polynomial equation is in the b-form if the first coefficient is unity and all of the other coefficients are integers or zeros.

If all the coefficients of a polynomial equation are rational numbers, the equation can be transformed into the b-form by the method shown in the following example.

Example. Transform the equation $9x^4 - 15x^3 + \frac{x}{2} - \frac{7}{12} = 0$ into the *b*-form.

Divide by the coefficient of the highest power of x and write the resulting equation in the standard form

$$x^4 - \frac{5}{3}x^3 + 0x^2 + \frac{x}{18} - \frac{7}{108} = 0.$$

Write the equation whose roots are m times the roots of this equation

$$x^4 - \frac{5m}{3}x^3 + 0m^2x^2 + \frac{m^3}{18}x - \frac{7m^4}{108} = 0.$$

Choose for m the smallest positive integer that will make all of the coefficients integers. In this case, m=6 and the required equation in the b-form is

$$x^4 - 10x^3 + 0x^2 + 12x - 84 = 0$$
, or $x^4 - 10x^3 + 12x - 84 = 0$.

Exercises

Find an equation whose roots are equal to those of the given equation multiplied by the number in parentheses. In Ex. 1 and 2, check your results by finding the roots of the transformed equation.

- 1. $x^3 4x^2 11x + 30 = 0$, (2). The roots of the given equation are 2, 5, -3.
- 2. $9x^3 12x^2 + x + 2 = 0$, (-3). The roots of the given equation are $-\frac{1}{3}$, $1, \frac{2}{3}$.
 - 3. $8x^3 6x^2 + 5x + 11 = 0$, (-2). 4. $27x^3 + 36x^2 6x + 7 = 0$, (-3).

5. $3x^2 + 20x^3 = 11$, (5).

6. $6x^3 - 2x^2 + 8x^6 - 9 = 0$, (2).

Write each of the following equations in the b-form, using the smallest possible positive, integral value of m.

7. $25x^3 + 10x^2 + 3x - 2 = 0$.

8. $36x^3 - 18x^2 - 7x + 23 = 0$.

9. $9x^3 + 6x^2 + \frac{2}{5}x - \frac{4}{3} = 0$. 10. $15x^3 - 6x^2 + 5x + 2 = 0$.

11. $18x^4 - 5x^2 + 3x - \frac{7}{4} = 0$. 12. $12x^4 - 10x^3 - \frac{1}{3}x + \frac{1}{2} = 0$.

283. Rational Roots. Let all the coefficients in the equation

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n = 0$$

be rational numbers,* or zeros, and let $a_0 \neq 0$ and $a_n \neq 0$. It is required to find the roots of f(x) = 0 that are rational numbers.

* A rational number (Art. 28) is one that can be written in the form a/b, where a and b are integers. In the following discussion, we shall suppose that this rational number is in its lowest terms; that is, that a and b have no common factor. A rational number in its lowest terms is an integer if, and only if, $b = \pm 1$.

If the given equation is not already in the b-form, we first transform it into that form

$$x^{n} + b_{1}x^{n-1} + b_{2}x^{n-2} + \cdots + b_{n} = 0, \tag{8}$$

where all the coefficients are integers and $b_n \neq 0$. Let m be the integer by which it was necessary to multiply the roots of f(x) = 0 to obtain equation (8).

We next form the rational roots of equation (8) with the aid of the following theorem:

Every rational root of an equation in the b-form is an integer and a factor of the constant term.

Having found the rational roots of (8), we divide each of them by m to find the required rational roots of f(x) = 0.

To prove the theorem just stated, let a/b be a rational root (in its lowest terms) of equation (8). Then

$$\left(\frac{a}{b}\right)^n + b_1 \left(\frac{a}{b}\right)^{n-1} + b_2 \left(\frac{a}{b}\right)^{n-2} + \dots + b_n = 0.$$
 (9)

Multiply this equation by b^{n-1} and write the resulting equation in the form $\frac{a^n}{b} = -(b_1 a^{n-1} + b_2 a^{n-2} b + \cdots + b_n b^{n-1}).$

Since all the letters in the second member represent either integers or zeros, the second member is an integer. Hence, the first member is an integer and, since a and b (and hence a^n and b) have no common factor, $b = \pm 1$. It follows that the required root, a/b is an integer.

Next, in (9), put b = 1 and write this equation in the form

$$a(a^{n-1}+b_1a^{n-2}+b_2a^{n-3}+\cdots+b_{n-1})=-b_n.$$

Since a is a factor of the first member of this equation, it is a factor of the second; that is, b_n is divisible by a.

In searching for the rational roots of an equation in the b-form, the number of trials can often be considerably decreased by using the theorems of Arts. 279 and 280. If, for example, there are no variations in sign, there is no need to look for positive roots; neither is it necessary to look for rational roots outside the limits within which the real roots must lie.

EXAMPLE 1. Find the rational roots of $x^4 - 2x^3 - 13x^2 + 14x + 24 = 0$.

By Art. 280, an upper limit for the real roots is 5 and a lower limit is -4. Since the equation is in the *b*-form, its rational roots are integers and divisors of 24. The only numbers that satisfy these conditions are ± 1 , ± 2 , ± 3 , and 4.

By trial, we find that 2 is a root and that

$$x^4 - 2x^3 - 13x^2 + 14x + 24 = (x - 2)(x^3 - 13x - 12) = 0.$$

We search for the remaining rational roots, not in the given equation, but in the depressed equation,

$$x^3 - 13x - 12 = 0,$$

formed by removing the factor x-2 from the given equation.

By further trial, we find that 4 is a root of this equation, and that

$$x^3 - 13x - 12 = (x - 4)(x^2 + 4x + 3) = 0.$$

The roots of $x^2 + 4x + 3 = 0$ are -3 and -1. Hence the required roots are -3, -1, 2, and 4.

Example 2. The equation $18x^4 - 51x^3 + 47x^2 - 17x + 2 = 0$ has two rational roots. Find all the roots.

We first transform the equation into the b-form by multiplying its roots by 6. We have

$$x^4 - 17x^3 + 94x^2 - 204x + 144 = 0.$$

This equation has no negative roots and an upper limit for the roots is 17. The rational roots, if there are any, must thus be included among the numbers 1, 2, 3, 4, 6, 8, 9, 12, and 16.

By trial, we find that 3 is a root and that

$$x^4 - 17x^3 + 94x^2 - 204x + 144 = (x - 3)(x^3 - 14x^2 + 52x - 48) = 0$$

One root of $x^3 - 14x^2 + 52x - 18 = 0$ is 4 and

$$x^3 - 14x^2 + 52x - 48 = (x - 4)(x^2 - 10x + 12) = 0.$$

The roots of $x^2 - 10x + 12 = 0$ are the irrational numbers $5 + \sqrt{13}$ and $5 - \sqrt{13}$. The roots of the transformed equation are thus 3, 4, $5 + \sqrt{13}$, and $5 - \sqrt{13}$.

The roots of the given equation are 1/6 of these, or 1/2, 2/3, $\frac{5+\sqrt{13}}{6}$ and

Exercises

Find the rational roots of the following equations. If the final reduced equation is a quadratic, find all the roots.

1.
$$x^3 + x^2 - 17x + 15 = 0$$
.

2.
$$x^3 - 3x^2 - 7x + 6 = 0$$
.

3.
$$3x^3 + 14x^2 + 2x - 4 = 0$$
.
4. $3x^3 + 11x^2 + 8x - 4 = 0$.

4.
$$3x^3 + 11x^2 + 8x - 4 = 0$$
.

7.
$$x^4 + 9x^3 + 20x^2 - 8x - 40 = 0$$

5.
$$2x^3 - 15x^2 + 10x + 12 = 0$$
.
6. $5x^3 - 13x^2 + 31x - 15 = 0$.
7. $x^4 + 9x^3 + 20x^2 - 8x - 40 = 0$.
8. $8x^4 - 36x^3 + 18x^2 + 5x - 3 = 0$.

9.
$$4x^4 + 28x^3 + 41x^2 + 22x + 4 = 0$$
.

10.
$$4x^4 - 28x^3 + 61x^2 - 42x + 9 = 0$$
.

11.
$$4x^5 - 13x^3 - 6x^2 = 0$$
.

12.
$$9x^6 + 9x^5 - 16x^4 + 4x^3 = 0$$
.

HINT. First find the zero roots; then remove the corresponding factor xt.

13.
$$x^6 - 12x^4 + 23x^2 + 36 = 0$$
. 14. $8x^4 - 16x^2 - 7x - 15 = 0$.

284. The Graph of the Polynomial Function. The graph of the equation

$$y = f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 (10)

may be found by the methods outlined in Chapters 6 and 27. It presents, however, some special features which should be noticed here.

Since to each value of x there corresponds just one value of y, every vertical line meets the curve in just one point. To find the value of y

corresponding to any given value of x except x = 0, we use synthetic division and the remainder theorem. A horizontal line meets the curve in, at most, n points where n is the degree of f(x). In particular, the abscissas of the points where the curve meets the x-axis are the real roots of f(x) = 0 since these are the real values of x which, when substituted in equation (10), make y = 0.

EXAMPLE 1. Draw the graph of $y = x^3 + x^2 - 9x - 1$.

By synthetic division and the remainder theorem, we compute the following table of pairs of values of x and y. We next plot the corresponding points and draw a smooth curve through them. In Figure 173, the unit on the y-axis is one third as long as the unit on the x-axis.

x	- 4	- 3	- 2	- 1	0	1	2	3	4
y	- 13	8	13	8	- 1	- 8	- 7	8	43

If a more accurately drawn graph is needed, fractional values, also, should be assigned to x.

EXAMPLE 2. Estimate, from the figure, to one decimal place, the real roots of $x^3 + x^2 - 9x - 1 = 0$.

The required roots are the abscissas of the points of intersection of the graph with the x-axis (Fig. 173). To one decimal place, they are -3.5, -0.1, and 2.6.

EXAMPLE 3. Draw the graph of $y = x^4 - 6x^3 + 3x^2 + 12x + 9$.

We compute the following table, plot the corresponding points, and draw a smooth curve through them (Fig. 174). The unit on the y-axis has been taken one tenth as long as on the x-axis.

x	- 2	- 1	0	1	2	3	4	5
y	61	7	9	19	13	- 9	- 23	19

The equation $x^4 - 6x^3 + 3x^2 + 12x + 9 = 0$ has only two real roots. From the figure, these are found to be approximately 2.6 and 4.8.

285. Slope of the Tangent; Derived Curve; Maximum and Minimum Points. The slope of the tangent to the curve defined by equation (10) can be found by the methods shown in Chapter 26. We find in this way that the slope m of the tangent to the curve (10) at the point on it whose abscissa is x is

$$m^* = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \dots + a_{n-1}. \quad (11)$$

In any interval in which m is positive, y increases as x increases and, in any interval in which m is negative, y decreases as x increases. Whenever m = 0, the tangent to the curve is horizontal.

If, in equation (11), we replace m by y, we obtain the equation of a curve

$$y = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \dots + a_{n-1}.$$
 (12)

This curve is called the derived curve of the curve defined by equation (10). It has the property that the ordinate of any point (x_1, y_1) on the derived curve equals the slope of the tangent to the curve

(10) at the point on it whose abscissa is x_1 .

In particular, the abscissa of any point where the derived curve crosses the x-axis from above to below (as x increases) is the abscissa of a maximum point on the original curve (H in Fig. 175); that is, of a point which is higher than any near-by point on the curve (10). Similarly, the abscissa of any point where the derived curve crosses the x-axis from below to above is the abscissa of a minimum point on the original curve (L in Fig. 175) which is lower than any near-by point on the curve.

Since the second member of equation (12) is of degree n-1, the curve (10) has, at most, n-1 maximum and minimum points.

Fig. 175

EXAMPLE 1. Find the equation of the derived curve and the coördinates of the maximum and minimum points of the curve $y = x^3 + x^2 - 9x - 1$ (Ex. 1, Art. 284).

From (12), the equation of the derived curve is

$$y = 3x^2 + 2x - 9.$$

This curve is a parabola (the dotted curve in Fig. 175) which crosses the x-axis at $x = \frac{1}{3}(-1 - 2\sqrt{7}) = -2.1$ and $x = \frac{1}{3}(-1 + 2\sqrt{7}) = 1.4$ (approximately). The ordinates of the corresponding points on the original curve are found, by substituting these values of x in the equation of the given curve, to be 13 and -8.9 approximately. Hence, the coördinates of the maximum point H are (-2.1, 13) and, of the minimum point L are (1.4, -8.6).

^{*} If, as in Figures 173 to 176, a smaller unit is taken on the y-axis than on the x-axis, the slope m, as found from this equation, must be decreased in the same ratio. Thus, in Figure 173, the value of m must be divided by 3 and in Figure 174 it must be divided by 10.

In the figure, to conform with the original curve, the ordinates of all points on the derived curve are divided by three.

EXAMPLE 2. Find the equation of the derived curve and the abscissas of the maximum and minimum points on the curve $y = x^4 - 6x^3 + 3x^2 + 12x + 9$ (Art. 284, Ex. 3).

Fig. 176

The equation of the derived curve is

$$y = 4x^3 - 18x^2 + 6x + 12.$$

Its graph is the dotted curve in Figure 176.

This curve crosses the x-axis at x = -0.6, x = 1.2, and x = 3.9, approximately. The first and last of these numbers are the abscissas of minimum points on the original curve; the second is the abscissa of a maximum point.

To conform with the original curve, the ordinates of all points on the derived curve are divided by ten.

Exercises

Draw the graphs of the following equations.

1.
$$y = x^3 - 9x + 5$$
.

3.
$$y = 2x^3 + x^2 - 4x + 9$$
.

5.
$$y = x^4 + 2x^3 - 5x^2 - 4$$
.

7.
$$y = x^3$$
.

9.
$$y = (x-2)^2(x+2)^2$$
.

2.
$$y = x^3 - 2x^2 + 4x + 1$$
.

4.
$$y = 3x^3 - 5x^2 - 19x$$
.

6.
$$y = x^4 - 7x^2 + 10$$
.

8.
$$y = x^4$$
.

10.
$$y = x^3(x-2)^2$$
.

Draw the graph of the given function and find the real roots of f(x) = 0 to one decimal place.

11.
$$f(x) = x^3 - 7x$$
.

13.
$$f(x) = x^3 + 6x^2 - 8$$
.

15.
$$f(x) = x^3 - 3x^2 + 3x - 18$$
.

17.
$$f(x) = x^4 - 59$$
.

12.
$$f(x) = x^3 + 52$$
.

14.
$$f(x) = x^3 - 3x^2 - 9x + 5$$
.

16.
$$f(x) = 2x^3 + x^2 + x - 9$$
.

18.
$$f(x) = x^4 - 13x^2 + 18x - 5$$
.

286. Graphical Approximation to the Irrational Roots.* When it is re-

quired to find the real roots of f(x) = 0, one should first find the rational roots, if there are any, by the method shown in Art. 283 and remove from f(x) the linear factors corresponding to these rational roots. The irrational roots can then be found graphically from the depressed equation, to any desired number of decimal places, by successively enlarging the graph in the neighborhood of each desired root until a sufficiently accurate approximation has been obtained. This process of graphical approximation to the value of a root is illustrated by the following example.

Fig. 177

^{*} This article may be omitted if Horner's Method (Art. 288) is to be presented.

EXAMPLE. Find the smaller positive root of $f(x) = x^3 - x^2 - 11x + 14 = 0$ to three decimal places.

This equation does not have a rational root.

Since a rather small positive root is to be found, we shall draw the graph from x = -1 to a value well beyond the required root (Fig. 177).

x	- 1	0	1	2	2.5	3	4
v	23	14	3	-4	- 4.1	-1	18

From the graph, the required root is found to be 1.3, to one decimal place. We compute by synthetic division, to two significant figures, the value of f(1.3) = 0.21. Since this value of y is positive, it is seen from Figure 177 that x = 1.3 is slightly less than the required root. (Why?) We, accordingly, next assume x = 1.4 which, if our estimate has been made correctly, should be slightly larger than the root. We find f(1.4) = -0.62. Since this result is negative, x = 1.4 is slightly larger than the root. On an enlarged scale (Fig. 178), plot the points (1.3, 0.21) and (1.4, -0.62) which, we have found, lie on the curve. Since we have, in this figure, only two plotted points and since we are drawing only a very small segment of the graph, we shall represent this segment of the curve, in this figure, by the segment of a straight line joining the two plotted points.

From Figure 178, the root is found to lie between x = 1.32 and x = 1.33. We, accordingly, compute, to two significant figures, f(1.32) = 0.038 and f(1.33) = -0.046.

On a still further enlarged scale (Fig. 179), plot the points (1.32, 0.038) and (1.33, 0.046) and represent the graph by a straight-line segment joining these points.

From Figure 179, the root is found to be approximately x = 1.324. The last digit is in doubt. It may be determined definitely, and the next digit approximately, by carrying the computations, and the enlargement of the graph, one step further. We can, in fact, determine the root to any desired number of decimal places by continuing, step by step, the process of successive enlargements.

The other two roots can be found approximately in a similar way. Their values, to three decimal places, are 3.093 and -3.417.

Exercises

Find the required root graphically, to three decimal places.

1.
$$x^3 + 3x^2 - 9x - 8 = 0$$
. The positive root.

2.
$$x^3 - 4x^2 - 2x + 6 = 0$$
. The negative root.

3.
$$x^3 - 2x^2 + 2x - 3 = 0$$
. The real root.

4.
$$x^3 - 3x^2 - 6x + 13 = 0$$
. The larger positive root.

5.
$$x^3 - 11x - 2 = 0$$
. The numerically larger negative root.

6.
$$x^4 + 2x^3 - 10x^2 - 20x - 8 = 0$$
. The positive root.

Find all the roots to three decimal places.

7.
$$x^3 - 3x^2 - 5x + 8 = 0$$
.

8.
$$x^3 - x^2 - 6x + 4 = 0$$
.

9.
$$x^3 + x^2 - 3x + 5 = 0$$
.

10.
$$x^3 + 3x^2 + 3x - 14 = 0$$
.

11.
$$2x^3 - 5x^2 - 3 = 0$$
.

12.
$$3x^3 - 19x - 6 = 0$$
.

13.
$$x^3 - 3x + 1 = 0$$
.

14.
$$x^3 - 3x^2 - 5x + 9 = 0$$
.

15.
$$x^4 + 2x^3 - 11x^2 - 4x + 3 = 0$$
.

15.
$$x^4 + 2x^3 - 11x^2 - 4x + 3 = 0$$
. **16.** $3x^4 - 4x^3 - 7x^2 + 32x - 16 = 0$.

287. Equation with Roots Decreased by h. Let h be a given constant and let the roots of the equation

$$f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n, \quad a_0 \neq 0$$

= $a_0(x - r_1)(x - r_2)(x - r_3) \cdot \dots \cdot (x - r_n) = 0,$ (13)

be

$$r_1, r_2, r_3, \cdots, r_n$$

We wish to write an equation whose roots are

$$r_1 - h, r_2 - h, r_3 - h, \dots, r_n - h,$$
 (14)

that is, are less by h than the roots of f(x) = 0.

In equation (13), replace x by x + h:

$$f(x+h)$$

$$= a_0(x+h)^n + a_1(x+h)^{n-1} + a_2(x+h)^{n-2} + \cdots + a_n$$

$$= a_0 [(x+h) - r_1] [(x+h) - r_2] [(x+h) - r_3] \cdots [(x+h) - r_n]$$

= $a_0 [x - (r_1 - h)] [x - (r_2 - h)] [x - (r_3 - h)] \cdots [x - (r_n - h)]$

$$= a_0 [x - (r_1 - n)] [x - (r_2 - n)] [x - (r_3 - n)] \cdots [x - (r_n - n)]$$

$$= 0.$$
(15)

The roots of this equation are the required numbers

$$r_1 - h, r_2 - h, r_3 - h, \dots, r_n - h.$$

Hence, the required equation is obtained from the given one by replacing x by x + h.

Before we make this transformation, we shall first write the given equation (13) in powers of x - h. After we have done this, if we replace x by x + h, we shall have the required equation in powers of x.

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

= $a_0 (x - h)^n + A_1 (x - h)^{n-1} + \dots + A_n$, (16)

where A_1, A_2, \dots, A_n are constants to be determined.

If both members of the identity (16) are divided by x - h, the quotients and remainders must be equal. Denote the quotient and remainder in the first member by $q_{n-1}(x)$ and R_n , respectively. The quotient and remainder in the second member are, by inspection,

$$a_0(x-h)^{n-1} + A_1(x-h)^{n-2} + A_2(x-h)^{n-3} + \cdots + A_{n-1}$$
, and A_n .

Since the remainders and quotients are respectively equal,

$$R_n = A_n$$

and

$$q_{n-1}(x) \equiv a_0(x-h)^{n-1} + A_1(x-h)^{n-2} + \cdots + A_{n-1}. \tag{17}$$

Divide both members of the identity (17) by x - h and equate the quotients and remainders. If we denote the quotient and remainder from the first member by $q_{n-2}(x)$ and R_{n-1} , respectively, we have

$$R_{n-1}=A_{n-1},$$

and

$$q_{n-2}(x) = a_0(x-h)^{n-2} + A_1(x-h)^{n-3} + \cdots + A_{n-2}$$

Continuing in this way, we find that the required coefficients A_n , A_{n-1} , A_{n-2} , and so on to A_1 are the successive remainders when f(x), $q_{n-1}(x)$, $q_{n-2}(x)$, and so on to $q_1(x)$ are divided by x - h.

If we substitute these values of A_n , A_{n-1} , A_{n-2} , \cdots , A_1 in equation (16), replace x by x + h, and equate the result to zero, we have the required equation with roots less by h than the roots of f(x) = 0.

The successive quotients and remainders should be found by synthetic division. The computation should be arranged according to the form shown in the following examples.

EXAMPLE 1. Form the equation whose roots are less by 2 than the roots of $f(x) = 2x^3 - 9x^2 + 4x + 15 = 0$.

We first express f(x) in powers of x-2. Let $f(x)=2x^3-9x^2+4x+15\equiv 2(x-2)^3+A_1(x-2)^2+A_2(x-2)+A_3$, where A_3 , A_2 , and A_1 are to be determined.

 $\begin{array}{r}
2 - 9 + 4 + 15 & 2 \\
+ 4 - 10 - 12 \\
\hline
2 - 5 - 6 + 3) \\
+ 4 - 2 \\
\hline
2 - 1 (-8)
\end{array}$

 $\frac{+4}{2(+3)}$

The first three lines of the computation show the division of f(x) by x-2. From the third line, we find that the quotient is $q_2(x) = 2x^2 - 5x - 6$ and the remainder is $R_3 = A_3 = 3$.

Lines 3 to 5 in the computation show the division of $q_2(x) = 2x^2 - 5x - 6$ by x - 2. Observe that we do not recopy either the dividend or the divisor which already appear in the computation. Line 5 shows that, on this division, the quotient is $q_1(x) = 2x - 1$ and the remainder is $R_2 = A_2 = -8$.

The last division, in lines 5 to 7, gives a quotient $2 = a_0$ and a remainder $R_1 = A_1 = 3$.

Substitute the values just found for A_1 , A_2 , and A_3 in the expression for f(x) in powers of x-2. We have

$$f(x) = 2x^3 - 9x^2 + 4x + 15 \equiv 2(x-2)^3 + 3(x-2)^2 - 8(x-2) + 3.$$

In the last member, replace x - 2 by x. We have

$$2x^3 + 3x^2 - 8x + 3 = 0.$$

This is the required equation with roots less by 2 than the roots of the given equation.

The student should verify that $-1, \frac{5}{2}$, and 3 are the roots of the given equation and $-3, \frac{1}{2}$, and 1 the roots of the transformed one.

Example 2. Find an equation whose roots are greater by 3 than the roots of $4x^3 + 16x^2 + 17x + 5 = 0$.

To increase the roots by 3, we decrease them by -3.

The successive divisions are shown in the adjoining computation for the reduction of the roots. We have $A_3 = -10$, $A_2 = 29$, and $A_1 = -20$. The transformed equation is, accordingly,

$$4x^3 - 20x^2 + 29x - 10 = 0. \qquad \frac{-12 + 24}{4 - 8 (+29)}$$

The roots of the given equation are $-\frac{5}{2}$, $-\frac{1}{2}$, and -1. Add 3 to each of these numbers and show that the results are roots of the transformed equation.

Exercises

Find an equation whose roots are less than those of the given equation by the number stated in parentheses. In Ex. 1 and 2, the roots are rational. Find them and show that the transformed equation has the required roots.

1.
$$x^3 - 4x^2 + x + 6 = 0$$
, (1).

2.
$$2x^3 + 9x^2 + 10x + 3 = 0$$
, (-2) .

4 + 16 + 17 + 5 - 3

 $\frac{-12 - 12 - 15}{4 + 4 + 5 (-10)}$

3.
$$x^3 - 7x^2 + 10x + 8 = 0$$
, (3).

3.
$$x^3 - 7x^2 + 10x + 8 = 0$$
, (3). 4. $2x^3 - 11x^2 + 14x - 33 = 0$, (5).

7.
$$\frac{1}{2}$$
 - 2.1 $\frac{1}{2}$ - 1.2 $\frac{1}{2}$ - 0.420 - 0.401

5.
$$3x^3 + 17x^2 + 29x + 31 = 0$$
, (-3) . 6. $x^4 - 7x^3 + 9x^2 + 6 = 0$, (4) .

7.
$$x^3 - 2.1x^2 + 1.35x - 0.429 = 0$$
, (0.4).

8.
$$2x^5 - 5x^4 - 3x^3 + 7x^2 - 6x - 3 = 0$$
, (2).

example.

288. Irrational Roots by Horner's Method. This method of finding

Fig. 180

by successive steps until the root we are trying to determine has been reduced as near to zero as we please. The total amount by which we have reduced the roots to effect this result is approximately the value of the required root. The process of effecting the successive reductions is illustrated by the following

the approximate values of the irrational roots of a

polynomial equation consists in reducing the roots

Example. Find the real root of $f(x) = x^3 - 4x^2 + 2x - 4 = 0$ to three decimal places.

We first locate the required root, and estimate its value to one decimal place, by means of the graph (Fig. 180). The real root is approximately 3.7.

x	0	1	2	3	4
у	- 4	- 5	-8	- 7	4

We reduce the roots of the equation by the integer part of the required root; in this case, by 3. The computations for effecting Ι this reduction are shown in computation I, at the right. 1 - 4 + 2 - 4 | 3The transformed equation is $\frac{+3 -3 -3}{1 -1 -1 (-7)}$

$$f_1(x) = x^3 + 5x^2 + 5x - 7 = 0.$$

 $\frac{+3+6}{1+2+(5)}$ Since the required root of the given equation is about 3.7, the corresponding root of the transformed equation $\frac{+3}{1(+5)}$ is about 0.7. Our estimate of the value of the root may, however, have been inaccurate, so we find the value of

 $f_1(x)$, for a few tenths near 0.7, until a change of sign of $f_1(x)$ has been located. We find $f_1(0.7) = -0.707$, and $f_1(0.8)$ \mathbf{II} =+0.712.

Hence the root lies between 0.7 and 0.8 and we reduce the roots of $f_1(x) = 0$ by 0.7. The transformed equation is, by II,

$$f_2(x) = x^3 + 7.1x^2 + 13.47x - 0.707 = 0.$$
 $1 + 6.4 (+ 13.47)$

+0.7To estimate the first significant digit of 1(+7.1)the root of $f_2(x) = 0$, we notice that, since the

required root is a small number, when we substitute this root into $f_2(x)$ the value of $x^3 + 7.1x^2$ will be small compared with the value of the remaining terms. Neglecting these two terms,

we estimate the first digit of the root, by solving 13.47x - 0.707 = 0, to be 0.05.

We now reduce the roots of $f_2(x)$ = 0 by 0.05. From III, the resulting equation is

$$f_3(x) = x^3 + 7.25x^2 + 14.1875x - 0.015625 = 0.$$

III

 $1 + 5.0 + 5.00 - 7.000 \mid 0.7$

+0.7 + 3.99 + 6.293

1 + 5.7 + 8.99 (-0.707)

+0.7 + 4.48

$$\begin{array}{c} 1 & +7.10 & +13.4700 & -0.707000 & 0.05 \\ +0.05 & +0.3575 & +0.691375 \\ \hline 1 & +7.15 & +13.8275 & (-0.015625) \\ +0.05 & +0.3600 \\ \hline 1 & +7.20 & (+14.1875) \\ +0.05 \\ \hline 1 & (+7.25) \end{array}$$

To determine the next digit, we neglect the first two terms of $f_3(x) = 0$ and solve 14.1875x - 0.015625 = 0 for x. This gives, for the next digit, 0.001. Since this is the last digit to be determined, we do not effect the reduction.

We have reduced the roots of the original equation f(x) = 0, in all, by 3.75. We then found that the required root of the last transformed equation was about 0.001. It follows that the required root of f(x) = 0 is about 3.751. The error in the final result should not exceed 5 in the fourth decimal place.

The entire computation should be arranged in the following form:

$$\begin{array}{c} 1-4+2-4 \ \, | \ \, 3 \\ +3-3-3 \ \, 3 \\ \hline 1-1-1-1 \ \, (-7) \\ +3+6 \\ \hline 1+2 \ \, (+5) \\ \hline +3 \\ \hline 1+5.0+5.00-7.000 \ \, [0.7 \\ +0.7+3.99+6.293 \\ \hline 1+5.7+8.99 \ \, (-0.707) \\ +0.7+4.48 \\ \hline 1+6.4 \ \, (+13.47) \\ \hline 1+7.10+13.4700-0.707000 \ \, [0.05 \\ +0.05+0.3575+0.691375 \\ \hline 1+7.15+13.8275 \ \, (-0.015625) \\ \hline +0.05+0.3600 \\ \hline 1+7.20 \ \, (+14.1875) \\ \hline +0.05 \\ \hline 1+7.25+14.1875-0.015625 \\ \hline x=3.751^+, \ \, \text{to three decimal places.} \end{array}$$

When it is required to find a negative root of f(x) = 0, one should transform the equation into one whose roots are opposite in sign to those of f(x) = 0, find the corresponding positive root of the transformed equation, and change its sign.

Exercises

1-16. Solve Exs. 1 to 16, Art. 286 by Horner's Method.

Find all the real roots of the following equations by Horner's Method.

17.
$$x^3 - 5x^2 + x + 8 = 0$$
. 18. $x^3 - 4x^2 - 6x + 8 = 0$.

18.
$$x^3 - 4x^2 - 6x + 8 = 0$$
.

19.
$$2x^3 - 5x^2 - x + 9 = 0$$
.

20.
$$2x^4 - x^3 - 17x^2 - 14x + 14 = 0$$
.

21. The equation $x^3 + x^2 - 10x + 9 = 0$ has two roots between 1 and 2. Find them to three decimal places by first transforming the equation into one with roots ten times those of the given equation.

22. By applying Horner's Method to the equation $x^3 - 43 = 0$, find the

real cube root of 43 to three decimal places.

Find the positive real roots to three decimal places by Horner's Method.

23.
$$\sqrt[3]{843}$$
.

24.
$$\sqrt[4]{57}$$
. 25. $\sqrt[4]{1725}$.

25.
$$\sqrt[4]{1725}$$
.

27. A sphere of ice of radius one foot, floating in water, will sink to a depth given by the smaller positive root of the equation $x^3 - 3x^2 + 3.644 = 0$. Find this root to three decimal places.

28. An open top box of 320 cubic inches capacity is to be made by cutting

a square of side x from each corner of a rectangular piece of tin of dimensions 15 by 20 inches and turning up the sides. Find x.

29. Solve the simultaneous equations $y^2 - 4xy - 8y + 18x + 20 = 0$, $y = x^2$.

30. Find the real simultaneous solutions of $7x^2 + xy - 10x - 7y + 3 = 0$, $y = 2x^3 - x^2$.

289. Identical Polynomials. If two polynomials

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n$$

and

$$b_0x^n + b_1x^{n-1} + b_2x^{n-2} + \cdots + b_n$$

neither of which is of degree greater than n, are equal in value for n+1 distinct values of x, then

$$a_0 = b_0, \ a_1 = b_1, \ a_2 = b_2, \ \cdots, \ a_n = b_n,$$

and the two polynomials are identical.

For, any value of x that makes the two polynomials equal, that is, for which

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n = b_0x^n + b_1x^{n-1} + b_2x^{n-2} + \dots + b_n,$$
 (18)

is a root of the equation

$$(a_0-b_0)x^n+(a_1-b_1)x^{n-1}+(a_2-b_2)x^{n-2}+\cdots+(a_n-b_n)=0. \quad (19)$$

If any of the coefficients in equation (19) are different from zero, then equation (19) is an equation of degree equal to or less than n, in which the coefficient of the highest power of x is not zero, and which has, by hypothesis, n+1 distinct roots. Since, by the theorem of Art. 275, this is impossible, all of the coefficients in equation (19) are equal to zero, that is,

$$a_0-b_0=0$$
, $a_1-b_1=0$, $a_2-b_2=0$, ..., $a_n-b_n=0$,

OL

$$a_0 = b_0, \ a_1 = b_1, \ a_2 = b_2, \ \cdots, \ a_n = b_n.$$

Hence, the given polynomials are identical.

EXAMPLE 1. Without expanding, show that, identically,

$$(x+2)^3-2(x+1)^3=(x-2)^3-2(x-1)^3+12.$$

Each member of this identity represents a polynomial of degree not greater than three. If we put, successively, x = -2, -1, 1, and 2, we have 0+2 = -64+54+12, 1+0=-27+16+12, 27-16=-1+0+12, and 64-54=0-2+12.

Since n = 3, and the polynomials are equal for four distinct values of x, they are identical.

This result may be checked by expanding the two members of the equation.

EXAMPLE 2. Find values of A, B, and C such that, identically,

$$x^2 + 15x - 30 = A(x+2)(x-5) + Bx(x-5) + Cx(x+2).$$

Since n = 2, these expressions are identical if they are equal for three values of x. Put x = 0, -2, and 5. We have

$$-30 = -10A$$
, $-56 = 14B$, $70 = 35C$.

Hence, A=3, B=-4, C=2, and we have, identically, $x^2+15x-30=3(x+2)(x-5)-4x(x-5)+2x(x+2)$.

Exercises

Without expanding, show that the following expressions are identical.

1.
$$5(x+1)^2 - 2(x+3)^2 = 8(x-2)^2 - 5(x-3)^2$$
.

2.
$$(x-1)^2 + 8(x-4)^2 = 6(x-3)^2 + 3(x-5)^2$$
.

3.
$$(x-1)(x-3)(x-5) = (1-x)^3 + 2(x-2)^3 + 2x$$
.

4.
$$5x + 11 = 3(x + 5) + 2(x - 2)$$
.

5.
$$x^2 + 4x + 19 = 3(x+1)(x+3) - 4(x-1)(x+3) + 2(x+1)(x-1)$$
.

6.
$$4x^2 - x - 39 = 3(x+2)(x-5) - (x-1)(x-5) + 2(x-1)(x+2)$$
.

Find the values of the capital letters, given that, identically:

7.
$$3(3x-4)^2+2(2x-1)^2=A(x-2)^2+B(x-1)^2$$
.

8.
$$7x - 12 = A(4x + 1) + B(x + 3)$$
.

9.
$$x^2 + 12x - 4 = A(x-1)(x+2) + Bx(x+2) + Cx(x-1)$$
.

10.
$$3x^2 + 32x + 42$$

$$= A(x-3)(2x+5) + B(2x+5)(x+2) + C(x-3)(x+2).$$

290. Imaginary Roots. If the coefficients of f(x) = 0 are real numbers, and if a + bi ($b \neq 0$) is a complex root of f(x) = 0, then the conjugate complex number a - bi is also a root of f(x) = 0.

To prove this theorem we first form the quadratic expression

$$D(x) = (x - a - bi)(x - a + bi) = x^2 - 2ax + a^2 + b^2,$$

such that the roots of D(x) = 0 are a + bi and a - bi.

Divide f(x) by D(x). Let the quotient be q(x) and let the remainder be rx + s, where r and s are constants. Since the coefficients of f(x) and of D(x) are real numbers, r, s, and the coefficients of q(x) are real numbers.

By the complete check formula for division (Art. 10),

$$f(x) = D(x) \cdot q(x) + rx + s. \tag{20}$$

Since a + bi is a root of f(x) = 0 and also of D(x) = 0, if we substitute a + bi for x in equation (20), we have

$$0 = 0 \cdot q(a+bi) + r \cdot (a+bi) + s,$$

$$ra + s + rbi = 0.$$

If a complex number is equal to zero, its real part equals zero and the coefficient of i is also equal to zero (Art. 262). Hence,

$$ra + s = 0$$
, and $rb = 0$.

By hypothesis, $b \neq 0$. Hence, r = 0. It now follows that s = 0. Equation (20) now reduces to

$$f(x) = D(x) \cdot q(x) = (x - a - bi)(x - a + bi)q(x).$$

Since x - (a - bi) is a factor of f(x), it follows that a - bi is a root of f(x) = 0.

It can now be shown that if the coefficients of f(x) are real numbers, the polynomial f(x) can be factored into a product of linear and quadratic factors, with real coefficients, such that the linear factors of each quadratic are imaginary.

For, we have seen that, if a + bi is an imaginary root of f(x) = 0, then $f(x) = D(x) \cdot q(x)$, where

$$D(x) = x^2 - 2ax + a^2 + b^2$$

is quadratic and the coefficients of D(x) and of q(x) are real. Similarly, if q(x) = 0 has an imaginary root, then $q(x) = D_1(x) \cdot q_1(x)$, where $D_1(x)$ is quadratic and the coefficients of $D_1(x)$ and $q_1(x)$ are real. Continuing in this way, we obtain, ultimately, a quotient $q_j(x)$ that is either a real constant or has only real roots. If all of the roots of $q_j(x) = 0$ are real, it follows from Art. 274 that $q_j(x)$ can be factored into linear factors in such a way that all of the coefficients of the factors are real numbers.

If the coefficients of f(x) are real numbers, the imaginary roots of f(x) = 0 (if there are any) enter in pairs of conjugate imaginary numbers. For, the roots of each of the quadratic equations D(x) = 0, $D_1(x) = 0$, and so on, are pairs of conjugate imaginary numbers which are roots of f(x) = 0.

As a particular consequence of the preceding theorem we have: if the coefficients of f(x) are real numbers, the number of imaginary roots of f(x) = 0 is zero or an even integer. For, if f(x) = 0 has any imaginary roots, these roots are roots of the equations D(x) = 0, $D_1(x) = 0$, and so on. Each of these quadratic equations has precisely two roots.

Exercises

Write an equation of the given degree, with real coefficients, having the given roots.

1.
$$n = 2$$
, $r_1 = 3 - 4i$.
2. $n = 3$, $r_1 = -6$, $r_2 = -2 + 3i$.

3.
$$n=4$$
, $r_1=-5-3i$, $r_2=-1+i$.

4.
$$n=4$$
, $r_1=r_2=-1$, $r_3=-1+\sqrt{3}i$.

5.
$$n=4$$
, $r_1=r_2=4-i$.

6.
$$n = 7$$
, $r_1 = -3$, $r_2 = r_3 = r_4 = 1 - i$.

In the following equations, certain roots are given. Find all the roots.

7.
$$x^4 - 3x^3 - 2x^2 + 2x + 12 = 0$$
, $r_1 = -1 + i$.

8.
$$2x^4 - 11x^3 + 35x^2 - 47x + 45 = 0$$
, $r_1 = 2 - \sqrt{5}i$.

9.
$$x^4 - 4x^3 + 12x^2 - 16x + 16 = 0$$
, $r_1 = r_2 = 1 + \sqrt{3}i$.

10.
$$3x^6 - 32x^5 + 105x^4 - 124x^3 + 206x^2 - 92x + 104 = 0$$
, $r_1 = 5 - i$, $r_2 = i$.

Factor f(x) into linear and quadratic factors with real coefficients, given that:

11.
$$f(x) = 2x^3 + 5x^2 - 2x - 15 = 0$$
 has a root $-2 + i$.

12.
$$f(x) = x^4 - 20x^2 - 36x + 55 = 0$$
 has a root $-3 + \sqrt{2}i$.

13.
$$f(x) = 2x^7 - x^6 + 31x^5 + 88x^4 + 36x^3 + 864x^2 + 432x = 0$$
 has $1 + \sqrt{11}i$ as a double root.

14.
$$f(x) = x^8 + x^6 - 21x^4 - 41x^2 - 20 = 0$$
, has i, i, 2i as roots.

15. By a method similar to that used in the text, show that, if the coefficients of f(x) are rational numbers, and if $a + \sqrt{b}$, where a is rational and \sqrt{b} is irrational, is a root of f(x) = 0, then $a - \sqrt{b}$ is also a root of f(x) = 0.

HINT. If $u + v\sqrt{b} = 0$, where u and v are rational numbers and \sqrt{b} is irrational then u = 0 and v = 0.

Chapter 35

Partial Fractions

291. Partial Fractions. We learned in elementary algebra how to add two or more fractions by reducing them to a common denominator and adding the numerators.

Thus, $\frac{5}{x+7} + \frac{2}{x-4} = \frac{7x-6}{x^2+3x-28};$ $\frac{2}{x+1} + \frac{3}{(x+1)^2} + \frac{4}{x-3} = \frac{6x^2+7x-11}{(x+1)^2(x-3)}.$

In certain types of mathematical problems, it is necessary to perform the operation inverse to this one; that is, we have given the second members of equations such as those shown in the illustration and we are required to find the first members. The process of doing this is called the operation of resolving a given fraction into partial fractions.

We say that the fraction formed by dividing one polynomial by another polynomial is a proper fraction if the numerator is of lower degree than the denominator; otherwise, it is an improper fraction. If the fraction we wish to resolve into partial fractions is an improper fraction, we must first reduce the fraction to a mixed expression by dividing the numerator by the denominator until a remainder is obtained which is of lower degree than the denominator.

Thus, if we wish to resolve the improper fraction $\frac{2x^3 + 7x^2 - 20x - 38}{x^2 + 2x - 15}$ into partial fractions, we must first divide the numerator by the denominator and write the fraction as a mixed expression in the form $2x + 3 + \frac{4x + 7}{x^2 + 2x - 15}$. The fractional part, $\frac{4x + 7}{x^2 + 2x - 15}$, can then be resolved by the methods which will be explained in the following articles.

After we have reduced the fraction to be resolved to a proper fraction, we must next factor the denominator. As we shall deal only with fractions in which the coefficients are real numbers, we shall use the theorem, proved in Art. 290, that the denominator can be factored into a product of linear and quadratic factors, with real coefficients, such that the linear factors of each quadratic are imaginary. In what follows, we shall suppose that the denominator has been factored in this way.

After the denominator has been factored, the fraction must be put identically equal to a sum of fractions, the forms of which are stated in

the following theorem which we shall give without proof.

It is essential that this form for putting down the partial fractions be learned correctly as, otherwise, the result obtained will almost certainly be erroneous.

Theorem. A proper fraction, in its lowest terms, can be expressed as a sum of partial fractions, as follows:

1. To a linear factor, ax + b, that occurs just once as a factor of the denominator, there corresponds a partial fraction of the form

$$\frac{A}{ax+b}$$
,

where A is a constant, the value of which is to be determined.

2. To a linear factor that occurs k times as a factor of the denominator, $(ax + b)^k$, there corresponds the following sum of k partial fractions

$$\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_k}{(ax+b)^k},$$

where A_1, A_2, \dots, A_k are constants, the values of which are to be determined.

3. To a quadratic factor, $ax^2 + bx + c$, that occurs just once as a factor of the denominator, there corresponds a partial fraction of the form

$$\frac{Ax+B}{ax^2+bx+c},$$

where A and B are constants to be determined.

4. To a quadratic factor that occurs k times as a factor of the denominator, $(ax^2 + bx + c)^k$, there corresponds the following sum of k partial fractions

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k},$$

where $A_1, B_1, A_2, B_2, \dots, A_k, B_k$ are constants to be determined.

Thus, we can write, identically,

$$\frac{3x^3 - 9x^2 + 2}{(x - 5)(2x + 1)^8(x^2 + x + 1)(x^2 + 1)^2}$$

$$= \frac{A}{x - 5} + \frac{B}{2x + 1} + \frac{C}{(2x + 1)^2} + \frac{D}{(2x + 1)^3} + \frac{Ex + F}{x^2 + x + 1} + \frac{Gx + H}{x^2 + 1} + \frac{Ix + J}{(x^2 + 1)^2},$$

where A, B, C, \ldots, J are constants to be determined.

The process of determining the numerical values of the constants appearing in the numerators of the various partial fractions will constitute the subject matter of the remaining articles of this chapter. The solution will depend on the theorem proved in Art. 289, that, if two polynomials are identical, then the coefficients of like powers of x in the two polynomials are equal. By equating like coefficients, we shall set up a system of linear equations from which the required values of the constants may be determined.

Exercises

Write each of the following fractions as a sum of partial fractions without determining the values of the constants.

1.
$$\frac{3x^2 - 2x + 5}{(x - 4)(x + 7)(3x + 1)}$$
2.
$$\frac{6x + 9}{(x^2 - 4)(x^2 + 2x - 4)}$$
3.
$$\frac{x^4 + 5x^3 - 9x}{x^3 + 3x^2 - x - 3}$$
4.
$$\frac{x^4 + 11}{(x + 1)^2(x^2 - 5x + 7)}$$
5.
$$\frac{x^3 - 2x + 5}{(x + 3)^2(x^2 + 1)}$$
6.
$$\frac{2x^3 + 8x + 17}{x^3 + 1}$$
7.
$$\frac{3x^4 - 8x^2 + 2}{x^3(x - 1)^2(x^2 + 2)^2}$$
8.
$$\frac{4x^4 - x^3 + 1}{x(x + 1)^2(x^2 - x + 1)(x^2 + 9)^3}$$

292. Linear Factors; None Repeated. If the factors of the denominator are all linear and distinct, the values of the unknown constants appearing in the numerators of the second member can be found by either of the methods shown in the following example.

EXAMPLE. Resolve into partial fractions:
$$\frac{6x^2 - 25x + 1}{(x-1)(x-3)(x+2)}$$
.

By the theorem of the preceding article, there exist three constants, A, B, and C, such that we have, identically,

$$\frac{6x^2 - 25x + 1}{(x - 1)(x - 3)(x + 2)} = \frac{A}{x - 1} + \frac{B}{x - 3} + \frac{C}{x + 2}.$$
 (1)

Clear of fractions by multiplying by the denominator of the fraction appearing in the first member. We then have, identically,

$$6x^2 - 25x + 1 = A(x-3)(x+2) + B(x-1)(x+2) + C(x-1)(x-3).$$
 (2)

First method. Collect the coefficients of the various powers of x in the second member of equation (2). We have, identically,

$$6x^2 - 25x + 1 = (A + B + C)x^2 + (-A + B - 4C)x + (-6A - 2B + 3C).$$

Since the second member is just another way of writing the first member, the coefficients of the various powers of x on the two sides of the identity must be equal. Hence,

$$A + B + C = 6,$$

 $-A + B - 4C = -25,$
 $-6A - 2B + 3C = 1.$

By solving these three equations for A, B, and C, we obtain A=3, B=-2, and C=5. On substituting these values of A, B, and C in equation (1), we have, as the required expression for the given fraction as a sum of partial fractions,

$$\frac{6x^2 - 25x + 1}{(x - 1)(x - 3)(x + 2)} = \frac{3}{x - 1} - \frac{2}{x - 3} + \frac{5}{x + 2}.$$
 (3)

Second method. Since equation (1) is, by hypothesis, an identity, it is true for all values of x except the values x = 1, x = 3, and x = -2 which make the denominators zero and thus make the equation meaningless. It follows that equation (2) is also true except, possibly, for these same values of x. But it now follows, by Art. 289, that equation (2) is true for these values of x, also. By putting, successively, x = 1, x = 3, and x = -2 in equation (2), we obtain

$$-18 = -6A$$
, $-20 = 10B$, $75 = 15C$.

Hence, A=3, B=-2, and C=5. If we substitute these values of A, B, and C in equation (1), we obtain equation (3) which is the required result.

Exercises

Resolve the following fractions into partial fractions. Check by adding the resulting fractions.

1.
$$\frac{x+26}{(x+4)(2x-3)}$$
.
2. $\frac{5x-13}{(3x+2)(2x-1)}$.
3. $\frac{10x+35}{2x^2+5x}$.
4. $\frac{8x+23}{x^2+3x-28}$.
5. $\frac{2x^2+9x-18}{x^2-3x-10}$.
6. $\frac{6x^4-13x^3+34x-120}{6x^3-x^2-40x}$.
7. $\frac{2x+14}{(x-1)(x-3)(x-5)}$.
8. $\frac{83-88x-3x^2}{(x-2)(3x-1)(x+5)}$.
9. $\frac{2x+2}{x^2+2x-4}$.
10. $\frac{11x^2-24}{x^4-13x^2+36}$.

293. Linear Factors; Some Repeated. If the denominator contains linear factors, some of which appear to powers higher than the first, care must be taken to put down all of the partial fractions that are called for by such a repeated factor. The values of the constants are then found by a process similar to that used in Art. 292.

Example. Resolve into partial fractions: $\frac{7x^2 + 25x + 24}{(x+1)^3(x+2)}$.

By the theorem of Art. 282,

$$\frac{7x^2 + 25x + 24}{(x+1)^3(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3} + \frac{D}{x+2}.$$
 (4)

Clear of fractions by multiplying by the denominator of the first member:

$$7x^2 + 25x + 24 = A(x+1)^2(x+2) + B(x+1)(x+2) + C(x+2) + D(x+1)^3.$$
 (5)

In the second member of equation (5), collect the coefficients of the various powers of x.

$$7x^{2} + 25x + 24 = (A + D)x^{3} + (4A + B + 3D)x^{2} + (5A + 3B + C + 3D)x + 2A + 2B + 2C + D.$$

Equate the coefficients of like powers of x in this identity:

$$A + D = 0,$$

 $4A + B + 3D = 7,$
 $5A + 3B + C + 3D = 25,$
 $2A + 2B + 2C + D = 24.$
(6)

By solving these four linear equations, we obtain A=2, B=5, C=6, and D=-2. On substituting these four values of A, B, C, and D in equation (1), we have

$$\frac{7x^2 + 25x + 24}{(x+1)^3(x+2)} = \frac{2}{x+1} + \frac{5}{(x+1)^2} + \frac{6}{(x+1)^3} - \frac{2}{x+2},\tag{7}$$

which is the required resolution of the given fraction into partial fractions.

The problem of solving equations (6) can be simplified by the reasoning used in the second method of Art. 292.

If, in equation (5), we put x = -1, we obtain at once C = 6 and, if we put x = -2, we get D = -2. On substituting the value of D in the first two of equations (6), we find that A = 2 and B = 5. The remaining two of equations (6) may be used to check these results.

Exercises

Resolve the following fractions into partial fractions.

1.
$$\frac{7x+9}{(x+3)^2}$$
.
2. $\frac{3x^2-10x+3}{(x-2)^2}$.
3. $\frac{x^3-8x^2+17x+1}{(x-3)^3}$.
4. $\frac{4x^2+5x+4}{x(x+2)^2}$.
5. $\frac{7x^2-4x-6}{(x+1)^3(2x+7)}$.
6. $\frac{x^3-18x^2+4x+8}{(x^2-4)^2}$.
7. $\frac{5+10x-3x^3}{(x^2+x)^2}$.
8. $\frac{4x^2+7x+20}{x^3(2x-5)}$.
9. $\frac{8+60x-14x^2+4x^3-2x^4}{(x^2-1)^3}$.
10. $\frac{x^4+14x^3-4x^2+2x-1}{x^2(x+1)^2(x-1)^2}$.

294. Quadratic Factors; None Repeated. According to the theorem of Art. 291, to a quadratic factor of the denominator of the given fraction corresponds a partial fraction having a linear expression in its numerator.

EXAMPLE. Resolve into partial fractions: $\frac{x^3 + 8x^2 + 9x - 1}{(x+1)(x^2 + 2x + 2)}$.

Since this is an improper fraction, we must first divide the numerator by the denominator and write the fraction in the form

$$\frac{x^3 + 8x^2 + 9x - 1}{(x+1)(x^2 + 2x + 2)} = 1 + \frac{5x^2 + 5x - 3}{(x+1)(x^2 + 2x + 2)}.$$
 (8)

We now put, identically,

$$\frac{5x^2 + 5x - 3}{(x+1)(x^2 + 2x + 2)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 2x + 2}.$$
 (9)

Clear of fractions:

$$5x^2 + 5x - 3 = A(x^2 + 2x + 2) + Bx(x+1) + C(x+1).$$
 (10)

Collect the coefficients in the second member:

$$5x^2 + 5x - 3 = (A + B)x^2 + (2A + B + C)x + 2A + C.$$

Equate the coefficients of like powers of x:

$$A + B = 5,$$

 $2A + B + C = 5,$
 $2A + C = -3.$
(11)

Hence A = -3, B = 8, and C = 3. Substitute these values in equation (9):

$$\frac{5x^2 + 5x - 3}{(x+1)(x^2 + 2x + 2)} = \frac{-3}{x+1} + \frac{8x+3}{x^2 + 2x + 2},$$

or, from equation (8),

$$\frac{x^3 + 8x^2 + 9x - 1}{(x+1)(x^2 + 2x + 2)} = 1 - \frac{3}{x+1} + \frac{8x+3}{x^2 + 2x + 2}.$$
 (12)

If, in equation (10), we put x = -1, we find at once that A = -3. From the first and third of equations (11), we now have B = 8 and C = 3. The second equation may be used as a check.

Exercises

Resolve the following fractions into partial fractions.

1.
$$\frac{2x^4-9x^3-4x+4}{x^3+x}$$
.

2.
$$\frac{8x^2-11x+6}{x^3+8}$$
.

3.
$$\frac{x^2-2x+9}{x^4-1}$$
.

4.
$$\frac{4x^2+17x}{(x-1)(2x^2+5)}$$
.

5.
$$\frac{2x^2+12x-9}{x(x^2-x+3)}$$

6.
$$\frac{3x^3 + 3x^2 - 12x + 2}{(x-1)^2(2x^2 + x + 1)}$$

7.
$$\frac{x^3 + 7x^2 + 25x}{(x^2 + 4)(2x^2 + 1)}$$

8.
$$\frac{3x^3-2x^2-5x+2}{(x^2+5)(x^2+1)}$$

9.
$$\frac{7x^3+4x^2+2x-4}{x^3(x^2+2x+2)}$$
.

10.
$$\frac{6x^4 + 22x^3 + 33x^2 + 11x}{(x+1)(x+2)^2(x^2+3x+5)}$$

295. Quadratic Factors; Some Repeated.

EXAMPLE. Resolve into partial fractions: $\frac{49}{(x-2)(x^2+3)^2}$

By the theorem of Art. 291, we have, identically,

$$\frac{49}{(x-2)(x^2+3)^2} = \frac{A}{x-2} + \frac{Bx+C}{x^2+3} + \frac{Dx+E}{(x^2+3)^2}.$$
 (13)

Clear of fractions:

$$49 = A(x^2+3)^2 + (Bx+C)(x-2)(x^2+3) + (Dx+E)(x-2).$$
 (14)

Collect the coefficients in the second member:

$$49 = (A + B)x^{4} + (C - 2B)x^{3} + (6A + 3B - 2C + D)x^{2} + (-6B + 3C - 2D + E)x + (9A - 6C - 2E).$$

Equate coefficients of like powers of x:

$$A + B = 0,$$
 $6A + 3B - 2C + D = 0,$ $C - 2B = 0,$ $6B - 3C + 2D - E = 0,$ $9A - 6C - 2E = 49.$ (15)

Moreover, by putting x = 2 in (14), we find that A = 1. Hence we have A = 1, B = -1, C = -2, D = -7, and E = -14. The required equation is, accordingly,

$$\frac{49}{(x-2)(x^2+3)^2} = \frac{1}{x-2} - \frac{x+2}{x^2+3} - \frac{7x+14}{(x^2+3)^2}.$$
 (16)

Exercises

Resolve the following fractions into partial fractions.

1.
$$\frac{6x^{3} + x^{2} - 8}{(2x^{2} + x + 3)^{2}}$$
2.
$$\frac{3x^{4} + 5x^{2} + 7}{x^{4} + 2x^{2} + 1}$$
3.
$$\frac{2x^{3} - 17x^{2} + 28x - 61}{(x - 1)(x^{2} - 2x + 5)^{2}}$$
4.
$$\frac{6x^{4} + 4x + 1}{x^{2}(x^{2} + x + 1)^{2}}$$
5.
$$\frac{x^{4} - 3x^{3} - 7x^{2} + 2x - 4}{(x^{2} + 1)^{3}}$$
6.
$$\frac{3x^{4} - x^{3} + 19x^{2} - x + 23}{(2x^{2} + 3)(x^{2} + 2)^{2}}$$
7.
$$\frac{4x^{4} - 7x^{3} + 6x^{2} + 9}{x^{3}(x^{2} + 3)^{2}}$$
8.
$$\frac{9}{(x^{3} - 1)^{2}}$$

Chapter 36

Coördinates in Space

296. Rectangular Coördinates. Through a fixed point O, the origin, in space, let there be given three directed lines, the x-axis, the y-axis,

and the z-axis, each perpendicular to both of the others. The three planes, each of which contains two of the axes, are the coördinate planes. They are named, from the two axes that they contain, the xy-plane, the yz-plane, and the zx-plane, respectively.

Let P be any given point in space. To define the coördinates of P, we pass planes through P parallel to the three coördinate planes and denote the points of intersection of these planes with the x-, y-, and z-axes by L, M, and N, respectively. Then the directed lengths

$$x = OL, \quad y = OM, \quad z = ON, \tag{1}$$

are the coördinates of the point P.

Conversely, if the coördinates (x, y, z) of the point P are given, we can locate this point P in the following way: measure off from the origin, on the x-axis, the directed distance OL = x; from L measure off, on a line through L parallel to the y-axis, a distance LK = y; and finally, from K, on a line parallel to the z-axis, lay off KP = z. The point P so determined is the point whose coördinates are (x, y, z).

The three coördinate planes divide space into eight parts, called octants, which may be distinguished by the signs of the coördinates of the points in them. In particular, the octant in which all the coördinates

of a point are positive is known as the first octant.

297. Figures. To represent a figure in space on a plane, we shall use what is known as a parallel projection. We represent the x- and z-axes by two mutually perpendicular lines and the y-axis by a line that bisects one pair of vertical angles formed by the other two (Fig. 181). Distances parallel to the x-axis and to the z-axis will be represented correctly to scale but distances parallel to the y-axis will be shortened by dividing them by $\sqrt{2}$. As in plane analytic geometry, the first step in the solution of an exercise should consist in drawing an accurate figure.

One serious difficulty the student will encounter throughout the study

of analytic geometry of space will be the visualization of the figure as it actually is in space. The representation of this figure on a plane will usually be necessarily somewhat distorted and the student must be certain that he understands clearly the properties of the figure as it actually is in space. For this purpose, he will often find it convenient to visualize this figure with reference to the floor and two adjacent walls of the room in which he is sitting, as coördinate planes.

Exercises

Plot the following points.

- 1. (-3, 0, 0), (5, 4, 0), (0, 3, -2), (3, 1, 4), (-2, -7, -5).
- **2.** (0,0,-5), (3,-4,0), (4,0,-3), (-8,2,3), (2,-6,1), (-6,-4,5).
- 3. Find the coördinates of the feet of the perpendiculars from the point (x, y, z) to (a) the coördinate planes and (b) the coördinate axes.
- 4. Show that the figure O-LJIM-P (Fig. 181) is a rectangular parallelepiped (that is, a box-shaped figure) and find the lengths of all of its edges.
 - 5. Find the lengths of the segments LP, MP, and NP (Fig. 181).
 - 6. Find the length of the segment OP (Fig. 181).
 - 7. What is the locus of a point for which (a) z = 0, (b) z = 5?
 - 8. What is the locus of a point for which y = 0, z = 0?
 - 9. What is the locus of a point for which x = 5, y = 3?
- 10. A cube of side a has one vertex at the origin and three of its edges extending in the positive directions along the axes. Find the coördinates of its vertices.
- 11. Solve Ex. 10 if the center of the cube is at the origin and its edges are parallel to the coördinate axes.
- 12. Describe the position in space of the octant for which the signs of the coördinates are (-, -, +).
- 13. Two points are *symmetric* with respect to a plane if the line segment joining them is perpendicular to the plane and is bisected by the plane. Find the coördinates of the point symmetric to P(x, y, z) with respect to each of the coördinate planes.
- 14. Find the coördinates of the point symmetric to P(x, y, z) with respect to (a) each of the coördinate axes and (b) with respect to the origin.
- 298. Distance between Two Points. To find the distance between two given points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, we construct a box-shaped figure by passing planes through P_1 and P_2 parallel to the coördinate planes (Fig. 182). The required distance $d = P_1P_2$ is the length of the diagonal of this box and the lengths of the sides of the box are given by the numerical values of P_1U , P_1V , and P_1W .

From Figure 182, we have, using directed segments

$$P_1U = L_1L_2 = OL_2 - OL_1 = x_2 - x_1.$$

$$P_1V = y_2 - y_1 \quad \text{and} \quad P_1W = z_2 - z_1.$$
(2)

Similarly

By elementary geometry, since the triangles P_1TP_2 and P_1UT are right triangles,

$$P_1P_2^2 = P_1T^2 + TP_2^2 = P_1U^2 + UT^2 + TP_2^2 = P_1U^2 + P_1V^2 + P_1W^2.$$

If we put $P_1P_2=d$, we have, from (2),

$$d^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}.$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}}.$$
(3)

Hence

Exercises

Find the distance between the two given points.

1. (0, 0, 0), (2, -11, 10).

2. (0, 0, 0), (-4, -1, 8).

3. (3, 2, -7), (-6, 4, -1). 4. (-5, 7, -1), (-9, -13, 4).

5. (5, -8, 2), (-5, 7, 8).

6. (11, 3, 1), (4, 7, -3).

7. (-1, 6, 3), (8, 5, 7).

8. (-5, 3, 8), (2, 5, 4).

9. Show that (1, 4, -2), (7, 2, 3), and (4, 3, -6) are the vertices of a right triangle and find the lengths of its three sides.

10. Show that (7, 3, -2), (3, 5, 4), and (4, -1, 2) are the vertices of an isosceles triangle and find the lengths of its three sides.

11. Show that (6, 1, 3), (4, 5, 5), and (2, 3, 1) are the vertices of an equilateral triangle and find the lengths of its sides.

12. Show that (2, 1, 8), (1, 2, 4), (2, -2, 5), and (5, 1, 5) are the vertices of a regular tetrahedron (or triangular pyramid); that is, of a tetrahedron whose edges are all equal in length.

13. Find the equation of the locus of a point whose distance from (-7,3, -2) equals 5. What locus is defined by this equation?

14. What locus is defined by the equation $(x-3)^2 + (y+5)^2 + (z-2)^2 = 9$?

15. What locus is defined by the equation $x^2 + y^2 + z^2 = 36$?

16. Find the equation of the locus of a point whose distances from (8, -3, 5) and (4, 1, 3) are equal. What locus is defined by this equation?

299. Direction Cosines of a Line. Let $P_1(x_1, y_1, z_1)$ be any point on a given directed line l in space. Through P_1 draw the lines P_1A , P_1B , and P_1C , having the same directions as the x-, y-, and z-axes, respectively. Then the angles α , β , and γ , which the positive direction on l makes

with the positive direction on P_1A , P_1B , and P_1C , respectively, are called the direction angles of l.

We shall usually deal, not with the direction angles α , β , and γ themselves, but with their cosines. These three cosines, cos α , cos β , and cos γ , are the direction cosines of the line l.

Let $P_2(x_2, y_2, z_2)$ be any point on l in the positive direction from P_1 and let U, V, and W be the points in which the planes through P_2 perpendicular to the x-, y-, and z-axes intersect P_1A , P_1B , and P_1C , respectively. Since the triangles P_1UP_2 , P_1VP_2 , and $P_1W.P_2$ are right triangles, we now have, from the definition of the cosine of an angle,

$$\cos \alpha = \frac{P_1 U}{P_1 P_2}$$
, $\cos \beta = \frac{P_1 V}{P_1 P_2}$, and $\cos \gamma = \frac{P_1 W}{P_1 P_2}$.

If we now put $P_1P_2 = d$, and substitute for P_1U , P_1V , and P_1W their values from (2), we have

$$\cos \alpha = \frac{x_2 - x_1}{d}, \quad \cos \beta = \frac{y_2 - y_1}{d}, \quad \text{and} \quad \cos \gamma = \frac{z_2 - z_1}{d}, \quad (4)$$
wherein
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

If we square the members of equations (4), add, and substitute for d its value, we find that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 \tag{5}$$

that is, the sum of the squares of the direction cosines of any line is equal to unity. This relation will be found to be of importance whenever we shall deal with the direction cosines of a line.

If, in (4), we let P_1 be the origin and let P_2 be any other point P(x, y, z) in space, and if we further denote the distance OP by ρ , we find that

$$\cos \alpha = \frac{x}{\rho}, \qquad \cos \beta = \frac{y}{\rho}, \qquad \cos \gamma = \frac{z}{\rho},$$
 (6)

are the direction cosines of the line through the origin and the point P and directed from O toward P.

300. Direction Numbers of a Line. Any three real numbers a, b, and c, not all zero, are called the direction numbers of a line l if they are proportional to the direction cosines of l, that is, if

$$\frac{a}{\cos\alpha} = \frac{b}{\cos\beta} = \frac{c}{\cos\gamma},\tag{7}$$

wherein $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of l.

To find the direction cosines of a line when its direction numbers a, b, and c are given, we set each of the above fractions equal to k and solve for a, b, and c. The resulting equations are

$$a = k \cos \alpha$$
, $b = k \cos \beta$, and $c = k \cos \gamma$. (8)

By squaring the members of these equations, adding, and simplifying by means of equation (5), we obtain

$$a^{2} + b^{2} + c^{2} = k^{2}(\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma) = k^{2}.$$

$$k = \pm \sqrt{a^{2} + b^{2} + c^{2}}.$$

Hence,

If we substitute this expression for k in equations (8), and solve, we obtain, as the direction cosines of a line whose direction numbers are a, b, and c,

$$\cos \alpha = \frac{a}{\pm \sqrt{a^2 + b^2 + c^2}}, \quad \cos \beta = \frac{b}{\pm \sqrt{a^2 + b^2 + c^2}}, \quad (9)$$

$$\cos \gamma = \frac{c}{\pm \sqrt{a^2 + b^2 + c^2}}.$$

The sign in the denominator is to be taken as positive throughout, or as negative throughout, according as one direction on the line, or the other, is to be taken as the positive direction on the line (see example 2).

EXAMPLE 1. Find the direction cosines of the line through $P_1(1, 3, 5)$ and $P_2(3, 5, 4)$ and directed from P_1 toward P_2 .

The distance between these points is

$$d = \sqrt{(3-1)^2 + (5-3)^2 + (4-5)^2} = 3.$$

Hence, from (4), the required direction cosines of this line are

$$\cos \alpha = \frac{2}{3}$$
, $\cos \beta = \frac{2}{3}$, $\cos \gamma = -\frac{1}{3}$.

EXAMPLE 2. The direction numbers of a line are 6, 2, -3 and the positive direction is chosen on the line so that the angle γ is acute. Find the direction cosines of the line.

On substituting these values of a, b, and c in equations (9), we have

$$\cos \alpha = \frac{6}{\pm \sqrt{36+4+9}} = \frac{6}{\pm 7}, \quad \cos \beta = \frac{2}{\pm 7}, \quad \cos \gamma = \frac{-3}{\pm 7}.$$

Since the angle γ is acute, its cosine is positive. Hence, from the last of the above equations, the sign in the denominator is negative and we have

$$\cos \alpha = -\frac{6}{7}$$
, $\cos \beta = -\frac{2}{7}$, $\cos \gamma = \frac{3}{7}$.

These are the required direction cosines of the line.

Exercises

Find the direction cosines of the line through the two given points and directed from the first point toward the second.

1.
$$(0, 0, 0), (3, -4, 12).$$

2.
$$(7, 4, -8), (-1, 5, -4)$$
.

3.
$$(-6, -4, 7), (4, 7, 9)$$
.

4.
$$(6, 1, -3), (2, 5, -1).$$

5.
$$(3, -7, 2), (5, 1, -6).$$

6.
$$(4, 6, 1), (5, 3, -4)$$
.

Find the direction cosines of a line, given that γ is acute and that its direction numbers are:

7.
$$4, -7, 4$$
.

8.
$$-9, 2, -6$$
.

9.
$$23, -2, -14$$
.

10.
$$-15$$
, -6 , 10 .

8.
$$-9$$
, 2, -6 .
11. -3 , -5 , -2 .

12.
$$4, 6, -7$$
.

Find, with the aid of equation (5), the direction cosines of the following lines, given that the angles not specified are acute.

13.
$$\alpha = 60^{\circ}$$
, $\beta = 120^{\circ}$.

14.
$$\beta = 60^{\circ}$$
, $\gamma = 135^{\circ}$.

15.
$$\alpha = 2\pi/3, \ \gamma = \pi/4.$$

16.
$$\alpha = \pi/6, \beta = \pi/2$$
.

17. Find the direction cosines of each of the coördinate axes.

18. Find the coördinates of P_2 , given that the coördinates of P_1 are (-2, 6, -5), the direction cosines of the line directed from P_1 toward P_2 are $\frac{3}{7}$, $-\frac{2}{7}$, and $\frac{6}{7}$, and that the length of the segment P_1P_2 is 14.

19. Show, using direction cosines, that the points (-6, 7, -9), (1, 3, -5), and (15, -5, 3) lie on a line.

20. Show, using direction cosines and the distance formula, that $\left[\frac{1}{2}(x_1+x_2)\right]$, $\frac{1}{2}(y_1+y_2)$, $\frac{1}{2}(z_1+z_2)$] are the coördinates of the mid-point of the segment joining $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$.

21. Show that any three real numbers a, b, and c (not all zero) are the direction numbers of the line through the origin and the point (a, b, c).

301. The Angle between Two Directed Lines. Two lines drawn at random in space, will usually not intersect. In order that we may speak

of the angle between two such lines, we make the following definition: The angle between two directed lines in space that do not meet is equal to the angle between the positive directions of two intersecting lines having the same directions as the given lines.

In particular, if the given lines are parallel, the angle between them is zero or π according as their positive directions are the same or opposite.

Frc. 185

Let l_1 and l_2 (Fig. 185) be two given directed lines and let ϕ be the angle between them. It is required to express $\cos \phi$ in terms of the direction cosines of h and h.

Through the origin O, draw the lines OP_1 and OP_2 , having the same directions as l_1 , and l_2 , respectively. Then, from the above definition of the angle between two directed lines, we have

angle
$$P_1OP_2 = \phi$$
.

Let the coördinates of P_1 be (x_1, y_1, z_1) and of P_2 be (x_2, y_2, z_2) . Let the length of the segment $OP_1 = \rho_1$ and of $OP_2 = \rho_2$. Draw P_1P_2 and apply the law of cosines to the triangle P_1OP_2 . We have

$$P_1 P_2^2 = \rho_1^2 + \rho_2^2 - 2\rho_1 \rho_2 \cos \phi$$
or
$$\cos \phi = \frac{\rho_1^2 + \rho_2^2 - P_1 P_2^2}{2\rho_1 \rho_2}.$$
(10)
But
$$\rho_1^2 = x_1^2 + y_1^2 + z_1^2 \text{ and } \rho_2^2 = x_2^2 + y_2^2 + z_2^2$$

and $P_1P_2^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2.$

On making these substitutions in the numerator of (10), and simplifying, we obtain

$$\cos \phi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\rho_1 \rho_2}.$$
 (11)

From (6), we have

$$\cos \alpha_1 = \frac{x_1}{\rho_1}, \qquad \cos \beta_1 = \frac{y_1}{\rho_1}, \qquad \cos \gamma_1 = \frac{z_1}{\rho_1},$$

$$\cos \alpha_2 = \frac{x_2}{\rho_2}, \qquad \cos \beta_2 = \frac{y_2}{\rho_2}, \qquad \cos \gamma_2 = \frac{z_2}{\rho_2}.$$

and

On making these substitutions in (11), we have the equation,

$$\cos \phi = \cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2, \quad (12)$$

which expresses the cosine of ϕ , the angle between l_1 and l_2 , in terms of the direction cosines of l_1 and l_2 .

In particular, the condition that l_1 and l_2 are perpendicular to each other is that $\phi = \pi/2$ so that $\cos \phi = 0$. On substituting this value of $\cos \phi$ in (12), we obtain

$$\cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2 = 0 \qquad (13)$$

as the condition that the lines l_1 and l_2 are perpendicular.

If, instead of the direction cosines of l_1 and l_2 , we have their direction numbers a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , respectively, we first find the direction cosines of l_1 and l_2 from (9), then substitute these values in (12). This gives

 $\cos \phi = \pm \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$ (14)

as the value of $\cos \phi$ in terms of the direction numbers of h and h.

Since l_1 and l_2 are perpendicular if, and only if, $\cos \phi = 0$, it follows that

$$a_1a_2 + b_1b_2 + c_1c_2 = 0 (15)$$

is the condition that l_1 and l_2 are perpendicular.

Example 1. Find the angle between the line through $P_1(1, -2, 4)$ and $P_2(3, 8, -7)$ and the line through $P_1'(1, 5, -2)$ and $P_2'(7, -2, 4)$.

From (4), the direction cosines of the first of these lines are $\frac{2}{15}$, $\frac{10}{15}$, and $-\frac{11}{13}$; and those of the second are $\frac{6}{11}$, $-\frac{7}{11}$, and $\frac{6}{11}$.

On substituting these values of the direction cosines of the given lines in (12), we have

$$\cos \phi = \frac{2 \cdot 6 + 10 \cdot (-7) - 11 \cdot 6}{15 \cdot 11} = \frac{-124}{165} = -0.7515.$$

Hence $\phi = 138^{\circ} 43'$.

Example 2. Find direction numbers of a line that is perpendicular to each of two lines for which the direction numbers are 4, 1, 3 and 6, 3, 5, respectively.

Denote the required direction numbers by a, b, c. We have, from (15),

$$4a+b+3c=0$$

and

$$6a + 3b + 5c = 0$$
.

If we solve these equations for a and b in terms of c, we have a = -2c/3and b = -c/3. Since only the ratios of these numbers are significant, we may give c any value, except zero, that we please. If we put c = -3, we obtain 2, 1, -3 as the required direction numbers.

Exercises

Find the angle between two lines whose direction cosines are:

1.
$$\frac{6}{11}$$
, $\frac{-2}{11}$, $\frac{9}{11}$; $\frac{7}{9}$, $\frac{-4}{9}$, $\frac{-4}{9}$.

1.
$$\frac{6}{11}$$
, $\frac{-2}{11}$, $\frac{9}{11}$; $\frac{7}{9}$, $\frac{-4}{9}$, $\frac{-4}{9}$. 2. $\frac{-14}{15}$, $\frac{-5}{15}$, $\frac{2}{15}$; $\frac{10}{15}$, $\frac{-2}{15}$, $\frac{11}{15}$.

3.
$$\frac{2}{3}$$
, $\frac{-2}{3}$, $\frac{1}{3}$; $\frac{-3}{7}$, $\frac{6}{7}$, $\frac{-2}{7}$

3.
$$\frac{2}{3}$$
, $\frac{-2}{3}$, $\frac{1}{3}$; $\frac{-3}{7}$, $\frac{6}{7}$, $\frac{-2}{7}$.

4. $\frac{5}{\sqrt{35}}$, $\frac{3}{\sqrt{35}}$, $\frac{-1}{\sqrt{35}}$; $\frac{3}{\sqrt{29}}$, $\frac{2}{\sqrt{29}}$, $\frac{-4}{\sqrt{29}}$.

Find the acute angle between two lines whose direction numbers are:

5. 12, 3,
$$-4$$
; 6, -6 , 7.

6.
$$4, 20, 5; 7, -4, -4$$

7.
$$4, -8, 1; 2, -1, -2$$
.

Using direction cosines, show that the three given points are vertices of a right triangle. Find also, for each triangle, the direction numbers of a line perpendicular to the sides of the triangle.

9.
$$(5, 6, 4), (3, 2, 6), (2, 3, -5)$$
. 10. $(7, 3, 5), (1, 4, 1), (4, 1, 9)$.

11. Show that the points (3, 7, -5), (2, 2, 4), (-2, 4, -3), and (7, 5, 2)are vertices of a rectangle.

12. Show that the points (7, -5, 4), (3, -1, 2), (5, 3, 6), and (9, -1, 8) are vertices of a square and find its area.

13. Show that the points (2, 2, 4), (3, 4, 5), (5, 1, 2), and (6, 3, 3) are the vertices of a parallelogram and find its acute angle.

14. Show that the points (3, -1, 4), (9, -4, 2), (1, 5, 1), and (7, 2, -1) are the vertices of a parallelogram and find the lengths of its diagonals.

15. Show that the three pairs of opposite edges of the tetrahedron (2, 3, -1), (3, 2, 1), (5, 3, 2), and (-2, 4, 6) are respectively perpendicular to each other.

302. Cylindrical Coördinates. In this article and the following one, we shall describe two systems of coördinates in space, each of which

bears some resemblance to polar coördinates in the plane. Both of these systems are useful in the applications of analytic geometry.

Let P be any point in space with rectangular coördinates (x, y, z) and let K(x, y, 0) be the foot of the perpendicular from P on the xy-plane. Let (r, θ) be the polar coördinates in the xy-plane of the point K when O is taken as the origin and

OX is the initial line. Then the three numbers (r, θ, z) are called the cylindrical coördinates of P.

From Art. 176, we have at once for the values of x, y, and z in terms of the cylindrical coördinates

$$x = r \cos \theta, \qquad y = r \sin \theta, \qquad z = z.$$
 (16)

Similarly, for the values of r, θ , and z in terms of the rectangular coördinates of P, we have

$$r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1} \frac{y}{x}, \quad z = z,$$
 (17)

wherein the quadrant in which the angle θ lies is to be determined by plotting the given point on the figure, as in

Art. 176.

303. Spherical Coördinates. If the distance ρ of a point P from the origin is known, then P lies on a sphere with center at the origin and radius ρ . We have learned from the study of geography that the position of a point on the surface of a sphere can be determined by two angles (its longitude and latitude). The spherical coördinates of a point consist, accordingly, of a distance and two angles, which we shall define in the following way.

Let P(x, y, z) be any point in space and let K(x, y, 0) be the foot of the perpendicular from P on the xy-plane. Draw OP, OK, and KP. Let

$$OP = \rho$$
 angle $XOK = \theta$ and angle $ZOP = \phi$.

Then (ρ, θ, ϕ) are the spherical coördinates of P. We call ρ the radius vector, θ , the longitude, and ϕ , the co-latitude, of P.

To find the values of (x, y, z) in terms of (ρ, θ, ϕ) , we note that angle $KOP = 90^{\circ} - \phi$, so that

$$OK = \rho \cos KOP = \rho \sin \phi$$
.

From the right triangles OLK, OKP, and ONP, we now have

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, (18)

as the equations expressing x, y, and z in terms of ρ , θ , and ϕ .

If we solve these equations for ρ , θ , and ϕ , we obtain

$$\rho = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \tan^{-1}\frac{y}{x}, \quad \phi = \cos^{-1}\frac{z}{\sqrt{x^2 + y^2 + z^2}} \quad (19)$$

as the equations expressing ρ , θ , and ϕ in terms of x, y, and z.

Exercises

Plot the point and find its rectangular coördinates, given that its cylindrical coördinates are:

1.
$$(6, 60^{\circ}, 2)$$
. 2. $(4, 150^{\circ}, -2)$. 3. $(8, \pi/6, -3)$. 4. $(2, 3\pi/4, 7)$.

Plot the point and find its cylindrical coördinates, given that its rectangular coördinates are:

5.
$$(-3, 3, 5)$$
. 6. $(2, 2\sqrt{3}, -1)$. 7. $(5, 0, 2)$. 8. $(3, -\sqrt{3}, -4)$.

Plot the point and find its rectangular coördinates, given that its spherical coördinates are:

9.
$$(8, 30^{\circ}, 45^{\circ})$$
.
10. $(6, 90^{\circ}, 60^{\circ})$.
11. $(4, -\pi/4, \pi/6)$.
12. $(12, \pi/3, 2\pi/3)$.

Plot the point and find its spherical coördinates, given that its rectangular coördinates are:

13.
$$(0, 5, 0)$$
. **14.** $(0, 1, -\sqrt{3})$. **15.** $(2, -2, -1)$. **16.** $(1, 1, 1)$.

Sketch the surfaces defined by the following equations in cylindrical coordinates and find their equations in rectangular coördinates.

17.
$$r = 6$$
. 18. $\theta = 120^{\circ}$. 19. $r = 3 \sin \theta$. 20. $r = 2z$.

Sketch the surfaces defined by the following equations in spherical coordinates and find their equations in rectangular coördinates.

21.
$$\rho = 3$$
. 22. $\phi = 45^{\circ}$. 23. $\rho \sin \theta \sin \phi = 2$. 24. $\rho = 2 \cos \phi$.

Write each of the following equations in cylindrical and in spherical coördinates.

25.
$$x^2 + y^2 + z^2 = 25$$
. **26.** $x^2 + y^2 = 9$.

27.
$$9(x^2 + y^2) + 25z^2 = 225$$
. **28.** $x = 7$.

- 29. Find the equations expressing the cylindrical coördinates of a point in terms of the spherical coördinates.
- 30. Find the direction cosines of the line from the origin to the point whose spherical coördinates are (ρ, θ, ϕ) .

Planes and Lines in Space

304. Normal Form of the Equation of a Plane. Let ABC (Fig. 188) be the given plane. It is required to find an equation which is satisfied

by the coördinates of those points (and no

others) that lie in the plane.

Let N be the foot of the perpendicular from the origin to the plane. Draw the directed line segment ON, denote its length by p and its direction cosines by $\cos \alpha$, $\cos \beta$, and $\cos \gamma$. Let P(x, y, z) be any point in the plane. Draw the directed segment OP, denote its length by p and its direction cosines by $\cos \alpha'$, $\cos \beta'$, and $\cos \gamma'$. Denote also the angle NOP by ϕ .

$$p = \rho \cos \phi. \tag{1}$$

Replace $\cos \phi$ by its value from equation 12, Art. 301. We have

$$p = \rho \cos \alpha' \cos \alpha + \rho \cos \beta' \cos \beta + \rho \cos \gamma' \cos \gamma. \tag{2}$$

From equations (6), Art. 299, we have

$$\rho \cos \alpha' = x$$
, $\rho \cos \beta' = y$, $\rho \cos \gamma' = z$.

On making these substitutions in (2), we have

$$p = x \cos \alpha + y \cos \beta + z \cos \gamma. \tag{3}$$

Equation (3) is satisfied by the coördinates of every point P in the plane. It is not satisfied by the coördinates of any point P not lying in the plane. For, if P does not lie in the plane, the foot of the perpendicular from P to the line ON is a point N' distinct from N so that $ON' = p' \neq p$ and equation (3) is not satisfied.

Equation (3) is the normal form of the equation of a plane. In this equation, the coefficients of x, y, and z are the direction cosines of the normal to the plane and p is the directed distance from the origin to the plane.

305. General Form of the Equation of a Plane. The normal form (3) of the equation of a plane is of the first degree in x, y, and z with real

coefficients. We shall now show, conversely, that the locus of any equation of the first degree in x, y, and z with real coefficients

$$Ax + By + Cz + D = 0, (4)$$

wherein A, B, and C are not all zero, is a plane.

The locus of equation (4) is not changed if we divide each of its terms by the non-zero constant $\pm \sqrt{A^2 + B^2 + C^2}$. We thus obtain

$$\frac{A}{\pm \sqrt{A^2 + B^2 + C^2}} x + \frac{B}{\pm \sqrt{A^2 + B^2 + C^2}} y + \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}} z + \frac{D}{\pm \sqrt{A^2 + B^2 + C^2}} = 0.$$
 (5)

By Art. 299, the coefficients of x, y, and z in (5) are the direction cosines of a line, so that we may put

$$\frac{A}{\pm \sqrt{A^2 + B^2 + C^2}} = \cos \alpha$$

$$\frac{B}{\pm \sqrt{A^2 + B^2 + C^2}} = \cos \beta$$

$$\frac{C}{\pm \sqrt{A^2 + B^2 + C^2}} = \cos \gamma$$
(6)

If we substitute these values of the coefficients of x, y, and z in (5), and compare the result with equation (3), we find that equation (5), and hence equation (4) which has the same locus, is the equation of a plane. It follows, moreover, from the comparison with (3), that this plane is perpendicular to the line whose direction cosines are given by (6) and that it lies at a distance from the origin equal to

$$p = \frac{-D}{\pm \sqrt{A^2 + B^2 + C^2}}. (7)$$

Equation (4) is called the **general form** of the equation of a plane. To reduce it to the normal form (5), we divide each of its terms by $\pm \sqrt{A^2 + B^2 + C^2}$. In order to fix the sign of the radical by which we divide each term of (4) to get (5), we shall take the sign to agree with that of C if $C \neq 0$, to agree with that of B if C = 0, and to agree with that of A if B = 0 and C = 0.

Of frequent importance in the applications is the following theorem which follows at once from the foregoing discussion: the coefficients of x, y, and z in the equation of a plane are the direction numbers of a line perpendicular to the plane.

306. The Traces of a Plane. The lines in which a given plane intersects the coördinate planes are called its traces on those planes. A plane

is usually represented on the figure by means of its traces on the coordinate planes, as in Figure 188. If, however, it passes through (or very

near to) the origin, or if it is parallel to one of the coördinate axes, it should be represented, instead, by a parallelogram having two of its sides extending along two of its traces on the coördinate planes.

EXAMPLE. Reduce the equation of the plane x - 2y + 2z - 6 = 0 to the normal form. Find the direction cosines of the normal and the distance of the plane from the origin. Determine its traces on the coördinate planes.

Frg. 189

To reduce the equation of the plane to the normal form, we divide through by $\sqrt{1^2 + (-2)^2 + 2^2} = 3$. The result is $\frac{1}{3}x - \frac{2}{3}y + \frac{2}{3}z - 2 = 0$.

The direction cosines of the normal to the plane are found, by comparing this equation with (3), to be $\frac{1}{3}$, $-\frac{2}{3}$, $\frac{2}{3}$ and the distance of the plane from the origin is similarly found to be 2.

The equations of the traces of the given plane on the coördinate planes are:

On the xy-plane
$$x-2y-6=0$$
, $z=0$;
On the xz-plane $x+2z-6=0$, $y=0$;
On the yz-plane $-2y+2z-6=0$, $x=0$.

Exercises

Find the normal form of the equation of a plane, given:

1.
$$\alpha = 120^{\circ}$$
, $\beta = 135^{\circ}$, $\gamma = 60^{\circ}$, $p = 3$.
2. $\alpha = 135^{\circ}$, $\beta = 120^{\circ}$, $\gamma = 60^{\circ}$, $p = 5$.

3.
$$\alpha = 90^{\circ}$$
, $\beta = 135^{\circ}$, $\gamma = 45^{\circ}$, $p = -7$.

4.
$$\alpha = 120^{\circ}$$
, $\beta = 30^{\circ}$, $\gamma = 90^{\circ}$, $p = -4$.

Find the equation of a plane, given that the direction numbers of its normal and its distance from the origin are:

5.
$$2, -2, 1; p = 7.$$

6. $8, 4, -1; p = 3.$
7. $2, -10, -11; p = 4.$
8. $3, -6, 2; p = 5.$
9. $5, 3, 7; p = -6.$
10. $-2, -7, 3; p = -4.$

Find the equation of a plane, given that the coördinates of the foot of the perpendicular from the origin to the plane are:

11.
$$(2, -3, 6)$$
. 12. $(-4, 4, 2)$. 13. $(-7, 6, 6)$. 14. $(3, 1, 4)$.

HINT. The direction numbers of the line joining the origin to the point (a, b, c) are a, b, and c.

Write the equations of the following planes in the normal form. Find the direction cosines of the normal and the distance from the origin to the plane.

Write two equations which are satisfied by the coördinates of the points on each trace of the plane on the coördinate planes.

15.
$$4x - 7y + 4z - 18 = 0$$
. 16. $x - 2y - 2z + 12 = 0$.

17.
$$3x + 12y - 4z - 39 = 0$$
. 18. $6x - 2y + 9z - 30 = 0$.

19.
$$5x + 12y - 26 = 0$$
. **20.** $x + 7 = 0$.

21. Find two values of k such that the distance of the plane 8x - 9y + 12z - k = 0 from the origin is numerically equal to 4.

22. Show analytically that the locus of a point whose distances from (3, 7, -2) and (5, -2, 4) are equal is a plane. Show also that this plane is perpendicular to the line joining the given points.

23. Write the equation of the plane through (-2, 3, 1) perpendicular to a line whose direction numbers are (a) 9, -2, 6, (b) 3, 1, 4.

24. Write the equation of the plane through (-5, -2, 7) perpendicular to the line through (8, 1, 5) and (3, 7, 2).

25. Find the coördinates of the point of intersection of the planes 2x - 3y - z = 4, x + 2y + 6z = 1, 3x - 2y + 3z = 3.

307. Distance from a Plane to a Point. Let $P_1(x_1, y_1, z_1)$ be the given point and let the equation of the given plane be

$$Ax + By + Cz + D = 0. ag{8}$$

The plane

$$Ax + By + Cz - (Ax_1 + By_1 + Cz_1) = 0$$

passes through P_1 since the coördinates of P_1 satisfy the equation. It is parallel to the plane (8) because the direction numbers of the normals to the two planes are equal.

The directed distances from the origin to the two planes are, by equation (7),

$$p_1 = \frac{-D}{\pm \sqrt{A^2 + B^2 + C^2}}$$
 and $p_2 = \frac{Ax_1 + By_1 + Cz_1}{\pm \sqrt{A^2 + B^2 + C^2}}$.

The difference

$$d=p_2-p_1$$

between these distances is equal to the required distance from the plane (8) to the given point P_1 , that is,

$$d = \frac{Ax_1 + By_1 + Cz_1 + D}{\pm \sqrt{A^2 + B^2 + C^2}},$$
 (9)

wherein the sign in the denominator is fixed by the rule given in Art. 305.

The value of d, as found from this equation, is a directed distance. It is positive or negative according as the segment of the perpendicular, measured from the plane to the point P_1 , is in the positive or the negative direction along the normal.

308. Angle between Two Planes. It is proved in elementary geometry that the magnitudes of the four dihedral angles formed by two inter-

secting planes are numerically equal, respectively, to the four correspond-

ing angles formed by the two lines that can be drawn through any point in space perpendicular to the given planes (Fig. 190).

If positive directions are assigned to the two perpendiculars, we shall choose, as the angle between the planes, a dihedral angle formed by them that is equal in magnitude to the angle between the positive directions of these perpendiculars.

Thus, if the equations of the planes are given in the normal form

Frg. 190

$$x\cos\alpha_1+y\cos\beta_1+z\cos\gamma_1-p_1=0,$$

and
$$x \cos \alpha_2 + y \cos \beta_2 + z \cos \gamma_2 - p_2 = 0$$
,

then, by Art. 304, the direction cosines of the normals to the planes are $\cos \alpha_1$, $\cos \beta_1$, $\cos \gamma_1$, and $\cos \alpha_2$, $\cos \beta_2$, $\cos \gamma_2$, respectively, and the angle between the planes, being equal in magnitude to the angle between the positive directions of the normals, is found, from equation (12), Art. 301, to be

$$\cos \phi = \cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2, \quad (10)$$

wherein ϕ is the angle between the planes and α_1 , β_1 , γ_1 and α_2 , β_2 , γ_2 are the direction angles of the normals to the planes.

Similarly, if the equations of the planes are given in the general form

$$A_1x + B_1y + C_1z + D_1 = 0$$

and

$$A_2x + B_2y + C_2z + D_2 = 0,$$

then A_1 , B_1 , C_1 and A_2 , B_2 , C_2 are the direction numbers of the normals to the planes and the angle between the planes is found, from equation (14), Art. 301, to be

$$\cos \phi = \pm \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$
(11)

In particular, the condition that the planes are perpendicular is that $\cos \phi = 0$, so that

$$A_1A_2 + B_1B_2 + C_1C_2 = 0. (12)$$

If the given planes are parallel, they are both perpendicular to the same line, and we have

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}. (13)$$

Exercises

Find the angle between the two planes.

1.
$$6x - 2y + 3z - 12 = 0$$
,
 $4x + 7y + 4z + 9 = 0$.

2.
$$5x + 4y - 20z - 40 = 0$$
,
 $2x + 2y - z - 7 = 0$.

3.
$$x - 2y + 3z + 6 = 0$$
,
 $2x + y - z + 9 = 0$.

4.
$$3x + 4y - 9 = 0$$
,
 $5x - 12y + 8 = 0$.

- 5. Write the equations of the planes through (3, -2, -1) parallel to the planes in Ex. 1.
 - 6. Find the distance from each of the planes in Ex. 1 to the point (2, 3, -5).
- 7. Which of the points (6, -3, 2) and (-1, 3, 3) lies on the same side of the plane 2x - y + 3z - 8 = 0 as the point (4, -1, -3).

Find the distance between the parallel planes:

8.
$$4x - 2y + 4z + 3 = 0$$
, $2x - y + 2z + 5 = 0$.
9. $8x - 4y - z - 8 = 0$, $8x - 4y - z + 10 = 0$

9.
$$8x - 4y - z - 8 = 0$$
, $8x - 4y - z + 10 = 0$.

- 10. Show that the equation 6x 9y 2z + k = 0, in which k is a parameter, defines a family of parallel planes. Find the direction cosines of a normal to this family of planes.
- 11. Find two planes parallel to 6x + 2y 3z + 5 = 0 whose distances from (2, -5, 7) are numerically equal to 3.
- **12.** Find k, given that the plane (k+3)x + (1-k)y + 7z 6 = 0 is perpendicular to the plane x - 2y + 2z + 2 = 0.
- 13. Show that the condition that the plane Ax + By + Cz + D = 0 is perpendicular to the plane z=0 is C=0. Find the condition that it is perpendicular to (a) y = 0, (b) x = 0.
- 309. Planes Satisfying Three Conditions. The position of a plane is usually fixed by assigning three conditions that it must satisfy. For example, we may require it to pass through three given points, or to pass through a given point and be perpendicular to each of two given planes, and so forth.

The method of determining the equation of a plane that satisfies three such conditions is illustrated by the following examples.

EXAMPLE 1. Find the equation of the plane that passes through the points (3, 2, -3), (-1, 3, 5),and (5, 4, -2).

The condition that any one of these points lies in the plane

$$Ax + By + Cz + D = 0$$

is that its coördinates satisfy the equation of the plane. If we substitute the coördinates of the given points successively in the equation of the plane, we obtain the three equations

$$3A + 2B - 3C + D = 0$$

 $-A + 3B + 5C + D = 0$
 $5A + 4B - 2C + D = 0$.

If we solve these three equations for B, C, and D in terms of A, we obtain $B = -\frac{4}{3}A$, $C = \frac{2}{3}A$, $D = \frac{5}{3}A$.

We may now assign to A any value we please except zero. To avoid fractions, we put A=3; then B=-4, C=2, and D=5. The required equation of the plane is, accordingly,

$$3x - 4y + 2z + 5 = 0.$$

As a check, the student should verify that the coördinates of each of the given points satisfy this equation.

EXAMPLE 2. Find the equation of the plane that passes through the points (6, 1, 2) and (3, 4, 4) and is perpendicular to the plane x + 3y + 2z - 7 = 0.

The conditions that the plane Ax + By + Cz + D = 0 passes through the given points are found, by substituting the coördinates of the points in the equation of the plane, to be

$$6A + B + 2C + D = 0$$

 $3A + 4B + 4C + D = 0$

The condition that it is perpendicular to the given plane is

$$A + 3B + 2C = 0.$$

We cannot solve these equations for B, C, and D in terms of A since the resulting equations are inconsistent. We can, however, solve for A, C, and D in terms of B. The results are A = 0, $C = -\frac{3}{2}B$, D = 2B.

If we put B=2 we have C=-3 and D=4. The required equation is, accordingly, 2y-3z+4=0.

Let a, b, and c (which, we shall here suppose, are all different from zero) be the intercepts of the plane

$$Ax + By + Cz + D = 0 \qquad (14)$$

on the x-, y-, and z-axis, respectively.

Since the plane (14) passes through the points (a, 0, 0), (0, b, 0), and (0, 0, c), we have

$$Aa + D = 0$$
, $Bb + D = 0$, and $Cc + D = 0$.

Put D = -1, solve for A, B, and C, and substitute in (14). We have

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

This is the intercept form of the equation of a plane.

Exercises

Write the equations of the given planes in the intercept form.

1.
$$x + 2y + 5z = 10$$
.

2.
$$3x - 4y + 2z = 12$$
.

3.
$$6x - 2y - 3z + 18 = 0$$
.

4.
$$5x + 3y - 8z + 9 = 0$$
.

- 5. Write the equation of the plane that passes through the points (-2, 4, -1) and (3, 5, 4) and has its y-intercept equal to 3.
- 6. Write the equation of the plane that passes through (3, 2, 1) and (8, 2, 3) and has its y- and z-intercepts equal.

Find the equation of the plane that passes through the given points.

7.
$$(3, 0, 0), (0, -2, 0), (0, 0, 6)$$
. 8. $(0, 0, 0), (1, 4, 2), (-3, 2, 4)$.

8.
$$(0, 0, 0), (1, 4, 2), (-3, 2, 4).$$

9.
$$(2, -4, -1), (3, -8, -2), (4, 4, 2).$$

10.
$$(4, 2, 3), (-2, 4, 1), (1, -2, -3).$$

Find the equation of the plane that passes through the given points and is perpendicular to the given plane.

11.
$$(5, 1, 3), (1, 7, -2), 2x - y + 2z + 7 = 0.$$

12.
$$(-1, 2, 4)$$
, $(5, -1, 3)$, $2x + y + 3z - 6 = 0$.

13.
$$(2, 1, 5), (4, -2, 3), 4x + y + 3z - 4 = 0.$$

Find the equation of the plane that passes through the given point and is perpendicular to each of the given planes.

14.
$$(1, -5, -2), 3x + 2y + 5z - 8 = 0, 2x - y + 3z = 0.$$

15.
$$(3, -2, 4), 7x - 3y + z - 5 = 0, 4x - y - z + 9 = 0.$$

16.
$$(5, 4, 2), 3x + 4y + z + 1 = 0, x + 3y + z - 7 = 0.$$

17. Find the equation of the plane that passes through (2, 5, 9), is perpendicular to the plane x + 4y + 6z - 3 = 0, and has its x-intercept equal to 1.

18. Find the equations of two planes through (2, -1, 3) and (7, 4, -2)each of which makes an angle of 60° with the plane x - 3y - 2z + 1 = 0.

The Line in Space

311. Surfaces and Curves. We have seen, in Art. 305, that a single linear equation in x, y, and z, with real coefficients,

$$Ax + By + Cz + D = 0,$$

defines a plane. When we wish to fix the position of a line in space, we ' shall take simultaneously the two equations

$$A_1x + B_1y + C_1z + D_1 = 0$$
 $A_2x + B_2y + C_2z + D_2 = 0$

of two planes that have this line as their line of intersection. The condition that a point lies on this line is, then, that its coördinates satisfy both of these equations.

The discussion in the preceding paragraph is of importance in that it constitutes an elementary illustration of a very general and fundamental principle in the analytic geometry of space. When we wish to study analytically a *surface* in space, we shall think of its position as fixed by a single equation,

$$f(x, y, z) = 0,$$

just as, when we studied the plane, we fixed the position of our plane in space by a single linear equation. When, on the other hand, we wish to fix the position of a curve in space, we shall use two equations

$$f(x, y, z) = 0, F(x, y, z) = 0,$$

such that each of these equations, taken by itself, is the equation of a surface that contains the curve under consideration. The points that lie on this curve will then possess the property that their coördinates will satisfy the equations of both of these surfaces.

In the articles that follow, we shall deal with the two equations of a line. We shall write these equations in several forms depending on the

information that is given us about the line or on the uses to which we intend to put these equations.

312. Line through a Given Point Having a Given Direction. The Symmetric Form. Let $P_1(x_1, y_1, z_1)$ be a given point on the given line l and let $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ be the direction cosines of l. Let P(x, y, z) be any point on l and let d be the length of the directed line segment P_1P (Fig. 192). From equations (4), Art. 299, we have

$$P(x,y,z)$$

$$d$$

$$P_1(x_1,y_1,z_1)$$

$$X$$

Fro. 192

 $x - x_1 = d \cos \alpha$, $y - y_1 = d \cos \beta$, $z - z_1 = d \cos \gamma$. (15)

If l is not perpendicular to any one of the coördinate axes, so that none of its direction cosines is zero, we can solve each of these equations for d. If we equate the three values of d so obtained, we have, as the equations of the line

$$\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\cos\beta} = \frac{z-z_1}{\cos\gamma}.$$
 (16)

These equations constitute the symmetric form of the equations of a line in space.

If, in equations (16), we multiply all the denominators by any non-zero constant we please, the resulting equations will still be equal. The new denominators are direction numbers of l. If we denote them by a, b, and c, we may write the resulting equations in the form

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}.$$
 (17)

and

These equations are frequently more convenient to use than equations (16).

If the given line l is perpendicular to any one of the coördinate axes, equations (16) fail. If, for example, l is perpendicular to the x-axis but not to the y- or z-axis, $\cos \alpha = 0$ and equations (15) may be reduced to

$$x - x_1 = 0, \qquad \frac{y - y_1}{\cos \beta} = \frac{z - z_1}{\cos \gamma}, \tag{18}$$

and if l is perpendicular to both the x- and the y-axis, then $\cos \alpha = 0$ and $\cos \beta = 0$ and we have, from (15), as the equations of l,

$$x - x_1 = 0, y - y_1 = 0.$$
 (19)

313. The Two-Point Form. Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be any two fixed points on the line l. Since, by equations (4), Art. 299, the numbers $x_2 - x_1$, $y_2 - y_1$, and $z_2 - z_1$ are proportional to the direction cosines of l, we may use them as the direction numbers a, b, and c in equations (17). The resulting equations are

$$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}.$$
 (20)

These equations constitute the two-point form of the equations of the line.

314. The Parametric Form. If, in equations (17), we equate each of the equal fractions to k and solve for x, y, and z, we obtain

$$x = x_1 + ak$$
 $y = y_1 + bk$ $z = z_1 + ck$. (21)

These are parametric equations of the line in terms of the parameter k. The point determined by assigning to k any value we please lies on the line.

315. The General Form. As the equations of a line, we may take simultaneously the equations,

$$A_1x + B_1y + C_1z + D_1 = 0$$

$$A_2x + B_2y + C_2z + D_2 = 0,$$
 (22)

of any two planes whatever that have this line as their line of intersection. Any point whose coördinates satisfy both of these equations lies in both planes and thus lies on the given line.

To reduce the general form (22) of the equations of a line to the twopoint form and to the symmetric form, we may proceed as in the following example.

EXAMPLE. Write the equations of the line of intersection of the planes 3x + 3y - 4z + 7 = 0 and x + 6y + 2z - 6 = 0 in the two-point form and in the symmetric form and find its direction cosines.

To fix a point on the line, we may assume for one of its coördinates any value we please and determine its other two coördinates by means of the given

equations. For example, if we put z = 1, the equations to determine x and y are

$$3x + 3y + 3 = 0$$
, $x + 6y - 4 = 0$.

On solving these equations, we find that x = -2, y = 1. Hence, (-2, 1, 1) is a point that lies on the line. Similarly, by putting z = 4, we find that (4, -1, 4) is a second point on the line.

Since we now know the coördinates of two points on the line, we may substitute these in equation (20) and obtain

$$\frac{x+2}{4-(-2)} = \frac{y-1}{-1-1} = \frac{z-1}{4-1}$$

as the two-point form of the equation of this line.

It was pointed out in Art. 313 that the values 6, -2, and 3 of the denominators in these equations are the direction numbers of the line. We may, accordingly, write at once equations (17) for this line. The results are

$$\frac{x+2}{6} = \frac{y-1}{-2} = \frac{z-1}{3}.$$

To reduce these equations to the symmetric form (16), we first determine the direction cosines of the line by dividing each of the direction numbers by $\pm \sqrt{6^2 + (-2)^2 + 3^2} = \pm 7$, the sign being chosen according as one direction on the line, or the other, is taken as the positive direction. The symmetric equations of the line are, accordingly,

$$\frac{x+2}{\pm \frac{6}{7}} = \frac{y-1}{\mp \frac{2}{7}} = \frac{z-1}{\pm \frac{3}{7}}.$$

From the denominators of these expressions, it is seen at once that the direction cosines of the line are $\pm \frac{6}{7}$, $\mp \frac{2}{7}$, and $\pm \frac{3}{7}$.

316. Family of Planes through a Line. Projecting Planes. All of the planes of the family

$$A_1x + B_1y + C_1z + D_1 + k(A_2x + B_2y + C_2z + D_2) = 0, \quad (23)$$

wherein k is the parameter, contain the line defined by equations (22). For, if $P_1(x_1, y_1, z_1)$ is any point on this line, its coördinates satisfy both equations (22) and thus, when substituted in (23), reduce this equation to 0 + k(0) = 0, which is true for all values of k.

By assigning a suitable value to k in equation (23), we can determine a plane that passes through the line (22) and satisfies one additional condition; for example, we can make it pass through a given point not on the line or we can make it be perpendicular to a given plane.

The planes through a line that are perpendicular to the xy-, yz-, and zx-planes, respectively, are called the **projecting planes** of the line on these coördinate planes. The equations of the projecting planes of a given line may be found as in the following Example 1.

EXAMPLE 1. Find the projecting planes of the line 3x + y + z - 11 = 0, x + 3y - z - 9 = 0 on the coördinate planes.

The equation of the family of planes through this line is, by (23),

$$3x + y + z - 11 + k(x + 3y - z - 9) = 0. (24)$$

Collect the coefficients of x, y, and z in this equation:

$$(3+k)x + (1+3k)y + (1-k)z - (11+9k) = 0. (25)$$

The condition that this plane is perpendicular to the xy-plane (that is, to the plane z = 0) is, by equation (12), 1 - k = 0, or k = 1. If we put k = 1 in equation (25) and divide by 4, we have x + y - 5 = 0 which is the required equation of the projection plane of the given line on the xy-plane.

The projecting planes of this line on the xz-plane and the yz-plane are found, in a similar way, by equating to zero successively the coefficients of y and of x in equation (25), solving for k, and substituting in equation (25), to be 2x + z - 6 = 0 and 2y - z - 4 = 0, respectively.

EXAMPLE 2. Find the plane through the line in Ex. 1 and the point (3, -1, -5).

Since the required plane must pass through the given point, the value of k must be chosen so that the coördinates of this point satisfy equation (24). On substituting the coördinates (3, -1, -5) in (24), we find k = -2. Substitute this value of k in (25) and simplify. The result is x - 5y + 3z + 7 = 0 which is the equation of the required plane.

EXAMPLE 3. Find the points in which the line in Ex. 1 pierces the coordinate planes.

The z-coördinate of the point in which the line intersects the xy-plane is zero. Put z = 0 in the equations of the line and solve for x and y. The results are x = 3, y = 2. Hence, the required point is (3, 2, 0).

Similarly, by putting y = 0 we locate (5, 0, -4), and by putting x = 0 we locate (0, 5, 6), as the intersection of the line with the xz-plane and with the yz-plane, respectively.

Exercises

Write the equations of the following lines and find their direction cosines, given that γ is acute.

- 1. Through (2, 1, -5); direction numbers 6, -2, 9.
- 2. Through (-3, 4, -9); direction numbers 9, 11, 1.
- 3. Through (4, -1, -7) and (10, 2, -1).
- 4. Through (1, -5, 3) and (4, 8, -1).
- 5. Through (2, 5, -8), perpendicular to the plane 3x + 4y + 12z 6 = 0.
- 6. Through (-4, -2, 8), parallel to the line through (-1, 2, 4) and (4, -8, -6).

- 7. Through (-5, 1, -3), perpendicular to the lines whose direction numbers are 4, 10, 3 and 4, 2, -5.
- 8. Through (1, 4, -2), parallel to the line of intersection of the planes 6x + 2y + 2z + 3 = 0 and 3x 5y 2z 1 = 0.

Write the equations of the projecting planes of each of the following lines on the coördinate planes. Find the points in which each line intersects each of the coördinate planes. Find the direction cosines of each line, given that γ is acute.

9.
$$2x + 2y + z - 8 = 0$$
,
 $x + 6y - 2z - 9 = 0$.

10.
$$6x - 5y - 2z + 11 = 0$$
,
 $6x - 4y - 3z + 6 = 0$.

11.
$$3x + 3y - 2z - 3 = 0$$
,
 $5x + 6y - 3z - 9 = 0$.

12.
$$5x + 2y - 3z + 26 = 0$$
,
 $4x + y - 2z + 16 = 0$.

- 13. Find the acute angle between the lines in Ex. 9 and 10.
- 14. Find the equation of the plane through (7, -3, -2) perpendicular to the line in Ex. 11.
- 15. Find the equation of the plane through the line in Ex. 11 and the point (-1, 2, 6).
- 16. Find the equation of the plane through the line in Ex. 12 that is perpendicular to the plane 3x 5y + 2z + 6 = 0.
- 17. Show that the points (1, 3, 5), (5, 1, 9), and (-5, 6, -1) lie on a line and find the equations of this line.
- 18. Show that the line $\frac{x+5}{3} = \frac{y+4}{-2} = \frac{z-2}{5}$ lies in the plane x-6y-3z-13=0.

HINT. A line lies in a plane if two points on it lie in the plane.

19. If the planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ intersect in a line, show that $B_1C_2 - C_1B_2$, $C_1A_2 - A_1C_2$, and $A_1B_2 - B_1A_2$ are direction numbers of this line.

Types of Surfaces

317. Cylinders. A surface generated by a line which moves so that it is always parallel to a fixed line and always intersects a fixed curve is called a cylinder. Any position of the generating line is an element of the cylinder and the fixed curve which all of these elements intersect is the directrix curve.

In elementary solid geometry, special attention is given to the circular cylinders; that is, to cylinders that have circles as directrix curves. Although the circular cylinders are included among the surfaces we shall study, most of the cylinders that will be considered in this course are not circular cylinders.

Consider, for example, the surface in space defined by the equation

$$y^2 = 2px. (1)$$

The section of this surface by the xy-plane is the parabola

$$y^2 = 2px, \qquad z = 0. \tag{2}$$

Let P'(x, y, 0) be any point on this parabola. Draw the line through P' parallel to the z-axis and let P(x, y, z) be any point on this line. Then

the x- and y-coördinates of P are equal, respectively, to those of P'. By hypothesis, the coördinates of P' satisfy equations (2) and, since the first of these equations does not contain z, it follows that the coördinates of P will satisfy (1); that is, every point P on the line through P' parallel to the z-axis lies on the surface (1).

If we now let P' describe the parabola (2), the line P'P will describe a cylinder having the parabola (2) as directrix curve and having its elements parallel to the z-axis. The co-

ordinates of every point on this cylinder (and no others) satisfy equation (1). Hence this cylinder is the required locus of equation (1). It is called a parabolic cylinder.

By extending the reasoning used in the foregoing discussion, we are led to the following theorem: If the equation of a surface does not contain the variable z, then the surface is a cylinder with elements parallel to the

392

z-axis and having the curve of section by the plane z = 0 as directrix curve. Similarly, if y, or x, is absent from the equation, then the surface is a cylinder with elements parallel to the y-axis, or the x-axis, respectively.

Exercises

Sketch the cylindrical surfaces defined by the following equations.

1.
$$x^2 + y^2 = 25$$
.

2.
$$4x^2 + 9y^2 = 36$$
.

3.
$$3y + 5z = 15$$
.

4.
$$y^2 = 18z$$
.

5.
$$yz = 12$$
.

6.
$$9x^2 - 4z^2 = 36$$
.

7.
$$z = x^3$$
.

8.
$$y = x^3 - 8x$$
.

9.
$$x^2 + 2x - 15 = 0$$
.

10.
$$z^2 = x^3$$
.

11.
$$z = \cos x$$
.

12.
$$z = e^x$$
.

Sketch the surfaces whose equations in cylindrical coördinates (Art. 302) are.

13.
$$r = a \sin \theta$$
.

14.
$$r^2 \cos 2\theta = a^2$$
.

15.
$$r=a\theta$$
.

16.
$$r = a \sin 2\theta$$
.

17.
$$r = a(1 - \sin \theta)$$
. 18. $r = e^{a\theta}$.

18.
$$r=e^{a\theta}$$

318. Surfaces of Revolution. The surface generated by revolving a plane curve about a line in its plane is a surface of revolution. The line about which this curve revolves is the axis of revolution and any position of the revolving curve is a meridian section.

Let us find, for example, the equation of the right circular cone generated by revolving the line defined by the equations

$$x=cz, \qquad y=0, \qquad (3)$$

around the z-axis.

Let $P_1(x_1, 0, z_1)$ be any point on the given line and let $N_1(0, 0, z_1)$ be the foot of the perpendicular from P_1 to the z-axis. As the given line revolves around the z-axis, P_1 describes a circle with center at N_1 , radius N_1P_1 , and lying in a plane perpendicular to the z-axis (Fig. 194).

Let P(x, y, z) be any point on this circle. Since it lies in a plane through P_1 parallel to the xy-plane, we have

Frg. 194

$$z=z_1.$$

Since it also lies on a circle with center at N_1 and radius $N_1P = N_1P_1$ $= x_1$, we have further

$$\sqrt{x^2+y^2}=x_1.$$

Since P_1 lies on the line (3), it follows that

$$x_1 = cz_1$$

and, on substituting in this equation the values already found for x_1 and z_1 , we obtain

$$\sqrt{x^2 + y^2} = cz$$
, or $x^2 + y^2 = c^2z^2$,

which is the required equation of the right circular cone.

By the same reasoning, we find that, if

$$f(x, z) = 0, \qquad y = 0,$$

are the equations of any curve in the xz-plane, the equation of the surface formed by revolving this curve around the z-axis is

$$f(\sqrt{x^2+y^2},\,z)=0,$$

and the equation of the surface formed by revolving it around the x-axis is

$$f(x, \sqrt{y^2+z^2})=0.$$

Similarly, if we have given a curve in the xy-plane,

$$f(x, y) = 0, \qquad z = 0,$$

the equations of the surfaces formed by revolving it around the y-axis and around the x-axis, respectively, are

$$f(\sqrt{x^2 + z^2}, y) = 0$$
 and $f(x, \sqrt{y^2 + z^2}) = 0$.

If the given curve lies in the yz-plane, so that its equations are:

$$f(y,z)=0, \qquad x=0,$$

the equations of the surfaces formed by revolving it around the z-axis and around the y-axis are, respectively,

$$f(\sqrt{x^2 + y^2}, z) = 0$$
 and $f(y, \sqrt{x^2 + z^2}) = 0$.

Exercises

Find the equation of the surface of revolution formed by revolving the given curve around the axis indicated.

1.
$$x^2 + z^2 = a^2$$
, $y = 0$; z-axis.

3.
$$x^2 = az$$
, $y = 0$; z-axis.

5.
$$x^2 = az$$
, $y = 0$; x-axis.

7.
$$y = x^3$$
, $z = 0$; x-axis.

9.
$$x^2 = z^3 + z$$
, $y = 0$; z-axis.

11.
$$z = e^y$$
, $x = 0$; y-axis.

2.
$$bx + ay = ab$$
, $z = 0$; x-axis.

4.
$$b^2x^2 + a^2z^2 = a^2b^2$$
, $y = 0$; x-axis.

6.
$$b^2x^2 + a^2z^2 = a^2b^2$$
, $y = 0$; z-axis.

8.
$$b^2x^2 - a^2z^2 = a^2b^2$$
, $y = 0$; x-axis.

10.
$$y^2 = x^3$$
, $z = 0$; x-axis.

12.
$$z = \cos y$$
, $x = 0$; y-axis.

13. $(x-b)^2 + z^2 = a^2$, y = 0; z-axis.

319. The Sphere. A sphere is the locus of a point in space whose distance from a fixed point, the center, is equal to a constant, the radius.

It follows from this definition that the equation of a sphere with center at the point (h, k, l) and radius a is

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = a^2$$
. (4)

For, the first member of this equation is the square of the distance of the point (x, y, z) on the locus from the center (h, k, l) and this is equal to the square of the radius.

In particular, if the center of the sphere is at the origin, equation (4) reduces to the simple form

Fig. 195

$$x^2 + y^2 + z^2 = a^2. ag{5}$$

The equation

$$x^2 + y^2 + z^2 + Gx + Hy + Iz + K = 0 (6)$$

is called the general form of the equation of the sphere.

To determine the center and radius of the sphere defined by equation (6), we complete the square of the terms in x, y, and z, separately, and write the equation in the form

$$\left(x + \frac{G}{2}\right)^2 + \left(y + \frac{H}{2}\right)^2 + \left(z + \frac{I}{2}\right)^2 = \frac{G^2 + H^2 + I^2 - 4K}{4}$$

By comparing this equation with (4), we find that its locus is a sphere with

center

$$\left(-\frac{G}{2}, -\frac{H}{2}, -\frac{I}{2}\right)$$

and radius

$$a = \frac{1}{2}\sqrt{G^2 + H^2 + I^2 - 4K}.$$

The sphere defined by equation (6) is thus a real sphere, a point sphere, or an imaginary sphere, according as

$$G^2 + H^2 + I^2 - 4K \ge 0$$
.

Exercises

Find the equations of the following spheres.

- 1. Center (6, -2, -9), a = 11. 2. Center (-1, 8, -4), a = 9.

- 3. Center (5, 4, -3), a = 8. 4. Center (-4, 7, 6), a = 7.

Find the center and the radius and draw the sphere if it exists, given:

5.
$$x^2 + y^2 + z^2 + 6x - 2y - 10z + 19 = 0$$
.

6.
$$x^2 + y^2 + z^2 - 7x - 8y + 5z + 10 = 0$$
.

7.
$$x^2 + y^2 + z^2 + 6x - 4y + 8z + 29 = 0$$
.

8.
$$x^2 + y^2 + z^2 - 11x - 7y + 3z + 51 = 0$$
.

Find the equation of the sphere:

- 9. Lying in the first octant, tangent to all the coördinate planes, radius 3.
- 10. Lying in the first octant, tangent to all the coördinate planes, center in the plane x 5y + 7z 12 = 0.
 - **11.** Center at (-6, 1, 3), tangent to the plane 2x 2y z 10 = 0.
- 12. Passing through the points (7, 9, 1), (-2, -3, 2), (1, 5, 5), and (-6, 2, 5).
- 13. Passing through the origin, center on the line through (0, 0, 0) and (-8, -4, 1), radius 18.
 - **14.** Tangent to the plane 2x 2y z 8 = 0 at (3, 1, -4), radius 6.
 - 15. Show that, for all values of θ and ϕ , the point

$$x = a \sin \phi \cos \theta$$
, $y = a \sin \phi \sin \theta$, $z = a \cos \phi$,

lies on the sphere $x^2 + y^2 + z^2 = a^2$.

Note. The above three equations are parametric equations of the sphere in terms of the parameters θ and ϕ .

320. Quadric Surfaces. The locus of an equation of the second degree in x, y, and z, that is, an equation of the form

$$Ax^{2} + By^{2} + Cz^{2} + Dyz + Ezx + Fxy + Gx + Hy + Iz + K = 0,$$

wherein A, B, C, D, E, and F are not all zero, is called a quadric surface.

It is seen at once from equation (4) that a sphere is a quadric surface. In the following articles, we shall state the standard forms of the equations of the most important quadric surfaces other than the sphere, and point out a few of the outstanding properties of these surfaces.

321. The Ellipsoid. The locus of the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is an ellipsoid.

This surface is symmetric with respect to each of the coördinate planes since, if we change the sign of any one of the coördinates, we do

not change the equation. These planes are called the *principal* planes of the ellipsoid and their point of intersection, the origin, is its center.

The segments of the coordinate axes that lie inside the surface are the axes of the ellipsoid. By solving the equations of the axes as simultaneous with that of the surface, we find that the intercepts on the

x-, y-, and z-axis are, respectively, $\pm a$, $\pm b$, and $\pm c$. If a > b > c > 0,

these numbers are called the lengths of the semi-major, the semi-mean, and the semi-minor axis, respectively, of the ellipsoid.

The usual way to determine the form of a surface from its equation is to study the curves of section of the surface by a family of parallel planes. For the ellipsoid, we shall use the sections by planes perpendicular to the z-axis.

The equations of the section of the given ellipsoid by a plane z = k are found, by putting z = k in the equation and simplifying, to be

or, if
$$k \neq \pm c$$
,
$$\frac{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{k^2}{c^2}}{\frac{x^2}{c^2}(c^2 - k^2)} + \frac{y^2}{\frac{b^2}{c^2}(c^2 - k^2)} = 1, \quad z = k.$$

If $k^2 < c^2$, these are the equations of an ellipse of semi-axes $\frac{a}{c}\sqrt{c^2 - k^2}$ and $\frac{b}{c}\sqrt{c^2 - k^2}$. The largest ellipse of section is thus in the plane z = 0. As k increases in numerical value, the ellipse of section becomes smaller and shrinks to a point when $k^2 = c^2$. If $k^2 > c^2$, the ellipse is imaginary; that is, there are no points on the surface in any

plane defined by such a value of k. If a = b > c, the ellipsoid is called an oblate spheroid and, if a > b = c, it is a prolate spheroid.

322. The Hyperboloid of One Sheet. The surface defined by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

is a hyperboloid of one sheet.

This surface also has the coördinate planes as planes of symmetry, or *principal planes*, and the origin as *center*. It intersects the x-axis at $(\pm a, 0, 0)$ and the y-axis at $(0, \pm b, 0)$ but it has no point in common with the z-axis.

Frg. 197

The section of this hyperboloid by the plane z = k is the ellipse defined by the equations

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{k^2}{c^2}, \quad z = k.$$

This ellipse is smallest for k = 0 and increases indefinitely in size as the numerical value of k increases. The surface thus extends indefinitely far from the origin.

323. The Hyperboloid of Two Sheets. This name is given to the locus

of the equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

This surface has the coördinate planes as principal planes and the origin as center. Its x-intercepts are $\pm a$ but it does not meet either of the other coördinate axes.

Frg. 198

The equation of its curve of section by the plane x = k are

$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = \frac{k^2}{a^2} - 1, \quad x = k.$$

If $k^2 < a^2$, this curve is an imaginary ellipse and has no points on it.

If $k^2 = a^2$, the curve is a point ellipse and, if $k^2 > a^2$, the curve is a real ellipse which increases indefinitely in size as k^2 increases indefinitely. The surface thus consists of two distinct parts which extend

indefinitely far away from the yz-plane. 324. The Elliptic Paraboloid. The locus of the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$

is an elliptic paraboloid.

The surface is symmetric with respect to the xz- and yz-planes but not with respect to the xy-plane. It has no center. It touches the xy-plane at the origin but does not extend below it.

The section of this surface by the plane z = k, when k > 0, is an ellipse whose semi-

Fig. 199

axes are $a\sqrt{k}$ and $b\sqrt{k}$. This ellipse thus increases indefinitely in size as k increases. The sections of the surface by planes perpendicular to

Frg. 200

the x-axis, or to the y-axis, are parabolas.

325. The Hyperbolic Paraboloid. The surface

$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$$

X is a hyperbolic paraboloid.

It has the xz- and yzplanes as principal planes, passes through the origin, and has no other points in common with any of the coördinate axes. It has no center.

Its section by the xy-plane is composed of the two lines $y = \pm bx/a$,

X

z = 0. The planes z = k parallel to the xy-plane intersect it in hyperbolas that have their transverse axes parallel to the x-axis if k > 0 and parallel to the y-axis if k < 0. The planes y = k intersect the surface in parabolas which are concave upward; the planes x = k, in parabolas which are concave downward.

If a = b, the surface is said to be a rectangular hyperbolic paraboloid. In this special case, the equation of the surface may be written in the form

$$x^2 - y^2 = a^2 z. (7)$$

If we now rotate the x- and y-axes, in their own plane, through an angle of -45° by means of the equations for a rotation of axes (Art. 196); that is, if we apply to x and y the transformation

$$x = \frac{x'}{\sqrt{2}} + \frac{y'}{\sqrt{2}}, \qquad y = \frac{-x'}{\sqrt{2}} + \frac{y'}{\sqrt{2}}$$

equation (7) reduces to

$$2x'y'=a^2z'. (8)$$

In the applications, the equation of the rectangular hyperbolic paraboloid is frequently encountered in this form.

326. The Quadric Cone. The surface defined by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

is symmetric with respect to each of the coördinate planes. Its trace in the yz-plane consists of the two lines $y = \pm bz/c$, x = 0 and, in the xz-plane, of the two lines $x = \pm az/c$, y = 0. Its intersection with the xy-plane is a single point, the origin. The section of the surface by any plane z = k, parallel to the xy-plane is an ellipse the lengths of whose semi-axes, ak/c and bk/c, are proportional to the distance of the plane from the xy-plane. This surface is a cone with vertex at the origin and axis coinciding with the z-axis. It is called a quadric cone.

Exercises

Sketch the following surfaces and state the name of each surface.

1.
$$\frac{x^2}{49} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$
.
3. $9y^2 - 16x^2 + 36z^2 = 144$.

2.
$$\frac{x^2}{81} - \frac{y^2}{25} - \frac{z^2}{16} = 1$$
.

4.
$$9x^2 + 25y^2 = 225x^2$$
.

$$5. 9x^2 + 9y^2 = 25z^2.$$

7.
$$3y^2 - 8x^2 = 24z$$
.

9.
$$2x^2 + 5y^2 - 3z^2 + 30 = 0$$
.

11.
$$x^2 = 4y - 9z^2$$
.

13.
$$4x^2 + 4y^2 + 9z^2 = 36$$
.

6.
$$xy = 5z$$
.

8.
$$3x^2 + 5y^2 + z^2 = 15$$
.

10.
$$x^2 - 5y^2 = 7z^2$$
.

12.
$$5x^2 - 9y^2 - 9z^2 + 15 = 0$$
.

14.
$$3y^2 + 7z^2 = 84x$$
.

Definitions and Theorems in Spherical Trigonometry

327. Circles on a Sphere. If a plane intersects a sphere, the curve of section is a circle. If the cutting plane passes through the center of the sphere, its circle of section is a great circle and its radius equals the radius of the sphere; otherwise, it is a small circle. Except as otherwise indicated, we shall suppose in what follows that all the circles under consideration are great circles.

Every circle, great or small, has two poles; the points where the diameter of the sphere perpendicular to the plane of the circle intersects the sphere.

Thus, the equator of the earth is a great circle, having its radius equal to the radius of the earth. The parallels of latitude, lying in planes parallel to the equator, are small circles. All of these circles have, as poles, the north and south poles of the earth.

328. Spherical Distances. Through any two points A and B, on the sphere but not at the ends of a diameter, there passes just one great circle, since A and B, together with O, the center of the sphere, determine a plane in which this great circle must lie. The points A and B divide this great circle into two unequal arcs. The shorter of these arcs is the shortest path connecting A and B that can be drawn on the surface of the sphere. We define the length of this shortest arc as the spherical distance from A to B. We shall usually express this spherical distance as an angle; namely, as the angle AOB formed by the radii joining the center O to A and B.

Thus, the spherical distance from Jacksonville, Fla. (30° 20′ N, 81° 40′ W) to Cleveland, O., (41° 30′ N, 81° 40′ W) is measured along the meridian of 81° 40′ W. This spherical distance is equal to 11° 10′ which is the difference in latitude of the two places. If we consider the earth to be a sphere of radius 3959 miles, we find from formula (2) of Art. 90 that this distance is about 772 statute miles.

The spherical distance from any point on a great circle to either of its poles is 90°. Conversely, if the spherical distance between two points is 90°, then each of these points lies on a great circle having the other point as its pole.

Thus, the spherical distance, measured along a meridian, from any point on the earth's equator to either the north or south pole is 90°. Conversely, if the spherical distance of any point from either pole is 90°, then the point lies on the equator.

329. Spherical Angles. The arcs of two great circles extending from a

0

Fig. 202

402

point A on a sphere form a spherical angle at A. To measure this angle, draw the tangents AT and AT' to these circles at A (Fig. 202). Since the lines AT and AT' are perpendicular to OA, the line of intersection of the planes of the circles, the measure of the spherical angle at A is also the measure of the dihedral angle formed by the planes of the circles.

Extend the circular arcs until they intersect, at L and L', the great circle having A as its pole and draw the radii OL and OL'. Since OLand OL' are parallel to AT and AT', respectively, the spherical angle at A is also measured by the arc L'L on the great circle having A as its pole.

For example, Quito, Ecuador, and Macapa (a small town at the mouth of the Amazon) both lie nearly on the equator in longitude 78° 30' W and 50° 55′ W, respectively. The meridians through these places make, at either pole, an angle of $78^{\circ} 30' - 50^{\circ} 55' = 27^{\circ} 35'$. But this angle is also the spherical distance, measured along the equator, between the two towns.

330. Spherical Triangles. If three points A, B, and C, lying on a sphere but not all lying on one great circle, are joined, in pairs, by arcs of

great circles, the resulting figure is a spherical triangle. We shall denote the spherical angles at A, B, and C by α , β , and γ , and the sides opposite these angles by a, b, and c, respectively. The six quantities α , β , γ , a, b, and care the six parts of the spherical triangle.

It should be observed that the sides of a spherical triangle must be arcs of great circles. On the surface of the earth, for example, an arc of a parallel of latitude (not coincident with the equator) cannot be a side of a spherical triangle because it is not an arc of a great circle.

Spherical triangles exist that have one or more parts greater than 180° but we shall consider only those triangles for which each part is less than 180°. For such triangles, it is proved in solid geometry that

$$a + b + c < 360^{\circ}$$
, and $180^{\circ} < \alpha + \beta + \gamma < 540^{\circ}$.

331. The Spherical Excess. The amount by which $\alpha + \beta + \gamma$ exceeds 180° is called the spherical excess of the triangle; that is, if E is the spherical excess, then

$$\alpha + \beta + \gamma - 180^{\circ} = E$$

It is proved in geometry that the area of a spherical triangle on a sphere of radius R is

area = $R^2 E \frac{\pi}{180}$ (E in degrees)

If E' is the spherical excess in radians, then, since $E' = E\pi/180$, this formula may be written as

area =
$$R^2E'$$
. (E' in radians)

EXAMPLE. Assuming the earth to be a sphere of radius 3959 miles, find the area of a spherical triangle on it for which $\alpha = 103^{\circ} 21.6'$, $\beta = 82^{\circ} 47.7'$ and $\gamma = 73^{\circ} 42.4'$.

We have

$$E = 103^{\circ} 21.6' + 82^{\circ} 47.7' + 73^{\circ} 42.4' - 180^{\circ} = 79^{\circ} 51.7' = 79.862^{\circ}.$$

$$\log \pi/180 = 8.24188 - 10$$

$$\log E = 1.90234$$

$$2 \log R = 7.19518$$

$$\log \text{area} = 7.33940$$

$$\text{area} = 21,848,000 \text{ sq. mi.}$$

332. Polar Triangles. Let ABC be a spherical triangle. Of the two poles of the side BC (Art. 327), let A' be the one that lies on the same

side of BC that A does; that is, such that the spherical distance AA' is less than 90°. Similarly, let B' and C' be the poles of AC and AB, respectively, such that BB' and CC' are each less than 90°. Draw the great circle arcs A'B', B'C', and C'A'. Then the spherical triangle A'B'C' is the polar triangle of ABC. We shall denote its angles by α' , β' , and γ' and its sides by a', b' and c'.

It is proved in solid geometry that ABC is the polar triangle of A'B'C' and, further, that

$$\alpha' = 180^{\circ} - a,$$
 $\beta' = 180^{\circ} - b,$ $\gamma' = 180^{\circ} - c,$ $\alpha' = 180^{\circ} - \alpha,$ $\beta' = 180^{\circ} - \beta,$ $\alpha' = 180^{\circ} - \alpha,$ $\alpha' =$

We shall find these six equations useful in deriving several formulas which we shall need in solving spherical triangles.

Exercises

1. On a sphere of radius 30 inches, the sides of a spherical triangle are 78°, 107°, and 124°. Find the lengths of these sides in inches.

- 2. Find the angles of the polar triangle of the triangle in Ex. 1.
- 3. The angles of a spherical triangle are 112°, 129°, and 86°. Find the sides of the polar triangle.
- 4. If the radius of the sphere in Ex. 3 is 185 feet, find the area of the given triangle.
- 5. Assuming that the earth is a sphere of radius 3959 miles, find the distance, in statute miles, from Greenwich (Lat. 51° 29' N) to the north pole.
- 6. If all the sides of a spherical triangle are 90°, show (a) that the triangle is self-polar and (b) that all its angles are 90°.
- 333. The Terrestrial Sphere. In applying spherical trigonometry to the earth's surface, we shall consider the earth to be a sphere of radius

3959 miles. A nautical mile is an arc of 1' on a great circle of the earth. Since the earth is, in fact, not precisely a sphere, different determinations of the length of a nautical mile are possible. The U.S. nautical mile is taken as 6080.27 feet while the British nautical mile is taken to be 6080 feet.

The terrestrial spherical triangle we shall most often use has one vertex at the north pole P and its other two vertices at two points A and B on the surface of the earth. The sides AP and BP are arcs

of meridians such that

 $AP = \text{co-latitude of } A = 90^{\circ} - \text{latitude of } A$.

 $BP = \text{co-latitude of } B = 90^{\circ} - \text{latitude of } B$.

AB = the spherical distance between A and B.

In the first two of these equations, we count north latitudes as positive and south latitudes as negative.

For the angles of this triangle, we have

P= either difference of longitudes of A and B or 360° – this difference (whichever is less than 180°).

A =bearing of B from A. B =bearing of A from B.

In the first of these three equations, we count west longitudes as positive and east longitudes as negative. In the next to the last equation, we read

the bearing as N A° E (or W); and similarly at B.

334. The Celestial Sphere. We shall think of the heavenly bodies as lying on a sphere of indefinitely large radius having the center of the earth as its center. Since the earth is very small compared to this sphere,

we shall consider the lines joining any two points of the earth to any one point of this sphere as parallel.

The points where the line of the earth's axis intersects the celestial sphere are the celestial poles P and P'. The circle E'E in which the

plane of the earth's equator intersects the celestial sphere is the celestial equator. The great circles passing through the celestial poles (corresponding to the earth's meridians) are called hour circles. Since the earth turns through 360° in 24 hours (or 15° an hour) the angles between the hour circles may be measured in degrees or in hours (15° = 1 hour).

The point Z of the celestial sphere directly above the observer (at any instant) is his zenith and the point directly below him is his nadir. The

Fig. 206

great circle H'H having the zenith and nadir as its poles is his horizon. The great circles passing through the zenith and nadir are called vertical circles. In particular, the vertical circle ZP passing through the celestial poles (or, in other words, the hour circle passing through the zenith and nadir) is the observer's meridian circle.

The position of a point S on the celestial sphere may be fixed by two angles in either of the following two systems.

I. The equatorial system. The declination of S is the spherical distance DS, measured along an hour circle, from the equator to S. It is positive for points north of the equator and negative for points south. The hour angle of S is the angle at P that the observer's meridian makes with the hour circle through S. We shall measure it eastward or westward from the meridian.

II. The horizon system. The altitude of S is its spherical distance AS, measured along a vertical circle, from the horizon. It is positive for points above the horizon and negative for points below. The azimuth of S is the angle at Z that the vertical circle through S makes with the meridian circle. We shall measure it from the northerly direction at Z either to the east or west.

The spherical triangle whose vertices are the celestial pole P, the zenith Z, and a point S on the celestial sphere is the astronomical triangle. Five of the parts of this triangle are:

SZ = co-altitude of S.

SP = co-declination of S.

ZP = co-latitude of observer.

Z = azimuth of S.

P = hour angle of S.

Exercises

- 1. Find the distance, in statute miles, from Washington, D.C. (38° 55' N, 77° 4' W) to Lima, Peru (12° 3' S, 77° 4' W).
- 2. Show that the length, in statute miles, of 1°, measured along the parallel of latitude ϕ , is $\frac{\pi}{180}$ 3959 cos ϕ .
- 3. An airplane flew directly west from Chicago, Ill. (41° 50′ N, 87° 37′ W) until it reached the meridian of 96° W. How far did it fly? Is this the shortest distance it could have flown between the starting and landing points?
- 4. A man traveled 400 miles directly east from Kansas City, Mo. (39° 5' N, 94° 35' W). Find the latitude and longitude of the place at which he arrived.
- 5. The declination of the sun on June 22 is 23° 27'. Find its altitude at noon, solar time, as seen from Seattle (47° 40' N).

The Right Spherical Triangle

335. Formulas for the Right Spherical Triangle. A spherical triangle is a right spherical triangle if at least one of its angles is a right angle. A right spherical triangle may have two, or all three of its angles right angles. If, however, at least two of its angles are right angles, the sides opposite these right angles are both 90° and the third side has the same measure as its opposite angle. In this chapter we shall, accordingly, suppose that only one angle, which we shall take to be the angle γ , is a right angle.

For the solution of such a right spherical triangle, we have the fol-

lowing formulas.

I. $\sin a = \tan b \cot \beta$, II. $\sin a = \sin \alpha \sin c$, III. $\sin b = \tan a \cot \alpha$, IV. $\sin b = \sin \beta \sin c$, V. $\cos c = \cot \alpha \cot \beta$, VI. $\cos c = \cos a \cos b$, VII. $\cos \alpha = \tan b \cot c$, VIII. $\cos \alpha = \cos a \sin \beta$, IX. $\cos \beta = \tan a \cot c$, X. $\cos \beta = \cos b \sin \alpha$.

Proofs of these formulas will be given in Art. 337.

336. Napier's Rules. The preceding ten formulas may be summarized in the following two statements which are called Napier's Rules.

In the right spherical triangle ABC, omit the right angle γ and replace the parts α , c, and β , by $\cos \alpha = 90^{\circ} - \alpha$, $\cos c = 90^{\circ} - c$, and $\cos \beta = 90^{\circ} - \beta$, respectively. Arrange the five parts $\cos \alpha$, $\cos c - c$, $\cos \beta$, a, and b in a circle, as shown in Figure 208b. Then any one of these five

Frg. 208a

Frg. 208b

parts has two adjacent parts and two opposite parts. Napier's Rules state that:

- I. The sine of any part equals the product of the tangents of its adjacent parts.
- II. The sine of any part equals the product of the cosines of its opposite parts.

The vowel relationships between tangent and adjacent and between cosine and opposite may be helpful in remembering these rules.

The formulas in the first column in Art. 335 are summarized in Rule I and those in the second column in Rule II.

Thus, by Rule I,

```
\sin(\cos c) = \tan(\cos \alpha) \tan(\cos \beta), or \cos c = \cot \alpha \cot \beta.

\sin(\cos \beta) = \tan a \tan(\cos c), or \cos \beta = \tan a \cot c.
```

By Rule II,

$$\sin a = \cos(\cos \alpha) \cos(\cos c)$$
, or $\sin a = \sin \alpha \sin c$.
 $\sin(\cos \alpha) = \cos a \cos(\cos \beta)$, or $\cos \alpha = \cos a \sin \beta$.

337. Derivation of the Formulas. In the right spherical triangle ABC,

let $a < 90^{\circ}$ and $b < 90^{\circ}$. Let O be the center of the sphere and draw the radii OA, OB, and OC. Choose any point D on OB and draw through it a plane perpendicular to OA. Let this plane intersect the planes AOB, BOC and AOC in the lines DE, DF, and EF, respectively. Then the angle $FED = \alpha$ (Fig. 209) since both of these angles measure

the dihedral angle formed by the planes COA and BOA. Further, by Art. 328,

$$COB = a$$
, $COA = b$, and $AOB = c$.

Finally, the triangles OED, OEF, OFD, and EFD are right triangles, the right angle being at the point indicated by the middle letter.

From the figure, we now have the following relations. (The corresponding formulas of Art. 335 are indicated by the Roman numerals.)

$$\sin \alpha = \frac{FD}{ED} = \frac{OD \sin a}{OD \sin c} = \frac{\sin a}{\sin c}.$$

$$\cos \alpha = \frac{EF}{ED} = \frac{OE \tan b}{OE \tan c} = \frac{\tan b}{\tan c}.$$
VII
$$\tan \alpha = \frac{FD}{EF} = \frac{OF \tan a}{OF \sin b} = \frac{\tan a}{\sin b}.$$
III
$$\cos c = \frac{OE}{OD} = \frac{OF \cos b}{OF \sec a} = \cos a \cos b.$$
VII

If, instead of the plane DEF perpendicular to the line OA, we had taken a plane perpendicular to OB, we would have obtained formulas similar to the foregoing but with a and α interchanged with b and β ; that is,

$$\sin \beta = \frac{\sin b}{\sin c}$$
 IV, $\cos \beta = \frac{\tan a}{\tan c}$ IX, and $\tan \beta = \frac{\tan b}{\sin a}$ I.

The remaining three formulas can be obtained by combining the ones just derived. From III, I, and VI, we have

$$\cot \alpha \cot \beta = \frac{\sin b}{\tan a} \frac{\sin a}{\tan b} = \cos b \cos a = \cos c.$$
 V

From VII, IV, and VI, we have

$$\frac{\cos \alpha}{\sin \beta} = \frac{\tan b}{\tan c} \frac{\sin c}{\sin b} = \frac{\cos c}{\cos b} = \cos a.$$
 VIII

From IX, II, and VI, we obtain, similarly,

$$\frac{\cos \beta}{\sin \alpha} = \frac{\tan a}{\tan c} \frac{\sin c}{\sin a} = \frac{\cos c}{\cos a} = \cos b.$$
 X

In deriving these formulas, we have supposed that $a < 90^{\circ}$ and $b < 90^{\circ}$ but, with slight modifications, the proofs may be extended to

the cases where either, or both, of these quantities exceeds 90°.

338. Rules of Species. Two parts of a spherical triangle are of the same species if they are both less, or both greater, than 90°; otherwise, they are of opposite species. The following two rules are sometimes useful in deciding whether there exists a triangle defined by a given set of data and, if one does exist, in determining in what quadrant a specified computed part must lie.

I. Each side of a right spherical triangle is of the same species as its

opposite angle.

II. If the hypotenuse is less than 90°, the two sides are of the same species; if the hypotenuse is greater than 90°, the sides are of opposite species.

To prove Rule I, we use formula VIII.

$$\cos \alpha = \cos a \sin \beta$$
.

Since $0 < \beta < 180^{\circ}$, $\sin \beta$ is positive so that $\cos \alpha$ and $\cos a$ must agree in sign. If $\alpha < 90^{\circ}$, $\cos \alpha$, and hence $\cos a$, is positive. Hence $a < 90^{\circ}$. If $\alpha > 90^{\circ}$, $\cos \alpha$ and $\cos a$ are negative so that $a > 90^{\circ}$. In a similar way, using formula X, we find that β and b are both less, or both greater, than 90° .

To prove Rule II, we use formula VI

$$\cos c = \cos a \cos b$$
.

If $c < 90^{\circ}$, cos c is positive, cos a and cos b agree in sign, so that a and b are both less, or both are greater, than 90° . If $c > 90^{\circ}$, cos c is negative, cos a and cos b are opposite in sign, so that one of the angles is less, and the other is greater, than 90° .

339. Solution of Right Spherical Triangles. When any two of the five parts (other than the right angle) of a right spherical triangle are given, we can set up, by Napier's Rules or the equivalent formulas of Art. 335, equations expressing each of the other three parts in terms of the given ones. When we have solved these three equations, we shall have solved the triangle. As a (partial) check, we shall also solve the equation connecting the three required parts.

There may be no solution; as, for example, when the sine or cosine of a computed part exceeds unity or when a rule of species is violated. There may be just one solution or (in the ambiguous case where a and α or

b and β are given) there may be two solutions.

If a required part is found from its sine, we use the rules of species to determine in what quadrant the required angle lies. In the other cases, the sign of the result will determine the required quadrant but the result should be checked by the rules of species.

Example 1. Solve the triangle: $a = 51^{\circ} 35.2'$, $c = 114^{\circ} 32.6'$. Given: Find: $a = 51^{\circ} 35.2'$ $b = 131^{\circ} 57.3'$ $c = 114^{\circ} 32.6'$. $\alpha = 59^{\circ} 28.4'$ $\beta = 125^{\circ} 9.6'$. $\cos b = \frac{\cos c}{\cos a}$ $\sin \alpha = \frac{\sin a}{\sin c}$ $\cos \beta = \tan a \cot c$. $\cos \beta = \sin \alpha \cos b$. $\log \cos c = 19.61845 - 20 \text{ (n)} *$ $\log \sin a = 19.89407 - 20$ $\log \cos a = 9.79332 - 10$ $\log \sin c = 9.95887 - 10 \log \cos b = 9.82513 - 10 \text{ (n)}$ $\log \sin \alpha = 9.93520 - 10$ $\log \tan a = 0.10074$ $\log \sin \alpha = 9.93520 - 10 (n) \dagger$ $\log \cot c = 9.65957 - 10 (n) +$ $\log \cos b = 9.82513 - 10$

Example 2. Solve the triangle: $\alpha = 129^{\circ} 41.2'$, $\beta = 27^{\circ} 58.5'$.

 $\log \cos \beta = 9.76031 - 10$ (n)

In this case, the triangle does not exist. For, if we compute $\cos c$ from the formula $\cos c = \cot \alpha \cot \beta$, we have

 $\log \cos \beta = 9.76033 - 10$ (n)

$$\log \cot \alpha = 9.91898 - 10 \text{ (n)}$$

$$\log \cot \beta = 0.27478 + 10 \text{ (n)}$$

$$\log \cos c = 0.19376 + 10 \text{ (n)}$$

This gives $\cos c = -1.5623$ which is impossible since the numerical value of the cosine of an angle cannot exceed unity.

Example 3. Solve the triangle: $b = 137^{\circ} 25.2'$, $\beta = 113^{\circ} 41.6'$.

This is the ambiguous case. Each required part is computed from its sine. Since $\sin(180^{\circ} - \theta) = \sin \theta$, we shall find for each required part (provided the logarithm of its sine is negative) two values, one less, and one greater, than 90°. Choose one of the values of c and call it c_1 . To find which of the two values of a, and of a, belong with it, use the rules of species. The other values of a and of a must, similarly, go with c_2 .

* The notation (n), placed after a logarithm, means that the number whose logarithm is given is a negative number. Observe (a) that the cosine, tangent, and cotangent of an angle in the second quadrant are negative (b) that a product, or quotient, involving an odd number of negative factors is negative and one involving an even number of negative factors is positive.

† This check shows only that the computed logarithms are consistent. A more convincing, but also more laborious, check may be obtained by making the check computation using the

natural functions.

Find: Given: $c_1 = 47^{\circ} 38.2', \qquad c_2 = 132^{\circ} 21.8',$ $b = 137^{\circ} 25.2'$ $a_1 = 156^{\circ} 13.2', \qquad a_2 = 23^{\circ} 46.8',$ $\beta = 113^{\circ} 41.6'$. $\alpha_1 = 146^{\circ} 55.5'.$ $\alpha_2 = 33^{\circ} 4.5'.$ $\sin c_1 = \frac{\sin b}{\sin \beta},$ $\sin a_1 = \tan b \cot \beta,$ $a_2 = 180^{\circ} - a_1$ $c_2 = 180^{\circ} - c_1$ $\sin \alpha_1 = \frac{\cos \beta}{\cos b}$ $\sin a_1 = \sin c_1 \sin \alpha_1$. $\alpha_2 = 180^{\circ} - \alpha_1,$ $\log \tan b = 9.96327 - 10 \text{ (n)}$ $\log \sin b = 19.83034 - 20$ $\log \sin \beta = 9.96176 - 10 - \log \sin c_1 = 9.86858 - 10$ $\log \cot \beta = 9.64229 - 10 (n) +$ $\log \sin a_1 = 9.60556 - 10$ $\log \sin c_1 = 9.86858 - 10$ $\log \cos \beta = 19.60405 - 20 \text{ (n)}$ $\log \sin \alpha_1 = 9.73698 - 10 +$ $\log \cos b = 9.86707 - 10 (n) \log \sin \alpha_1 = 9.73698 - 10$ $\log \sin a_1 = 9.60556 - 10$

Denote the computed acute angle c by c_1 and the obtuse angle by c_2 . By the laws of species, it follows that a_1 is obtuse and a_2 is acute. It now follows that α_1 is obtuse and α_2 is acute.

Exercises

Solve the following right spherical triangles.

- 5. $a = 132^{\circ} 27.4'$, $b = 78^{\circ} 19.2'$.
- 7. $\alpha = 74^{\circ} 51.3'$, $c = 61^{\circ} 48.7'$.
- 9. $a = 41^{\circ} 39.3'$, $\alpha = 66^{\circ} 13.4'$.
- **11.** $b = 125^{\circ} 28.6', c = 104^{\circ} 16.9'.$
- 13. $b = 43^{\circ} 28.4'$, $\alpha = 67^{\circ} 47.2'$. **15.** $\beta = 118^{\circ} 25.4'$, $c = 143^{\circ} 19.8'$.
- 17. $\alpha = 64^{\circ} 43.9', \beta = 55^{\circ} 29.2'$.
- **19.** $b = 118^{\circ} 54.3'$, $\beta = 107^{\circ} 24.2'$.

- 1. $a = 56^{\circ} 34.0'$, $c = 75^{\circ} 17.0'$. 2. $b = 143^{\circ} 52.0'$, $c = 98^{\circ} 54.0'$.
- 3. $a = 65^{\circ} 34.5'$, $\beta = 113^{\circ} 21.4'$. 4. $b = 127^{\circ} 49.4'$, $\alpha = 116^{\circ} 38.5'$.
 - 6. $\beta = 118^{\circ} 20.6'$, $c = 81^{\circ} 7.6'$.
 - 8. $\alpha = 103^{\circ} 41.3'$, $\beta = 117^{\circ} 11.4'$.
 - 10. $b = 61^{\circ} 43.4'$, $\beta = 54^{\circ} 19.8'$.
 - 12. $a = 63^{\circ} 54.1'$, $c = 74^{\circ} 14.9'$.
 - 14. $a = 29^{\circ} 38.6'$, $\beta = 41^{\circ} 47.3'$.
 - 16. $a = 72^{\circ} 16.8'$, $b = 26^{\circ} 39.2'$.
 - 18. $\alpha = 98^{\circ} 52.8'$, $c = 119^{\circ} 21.5'$.
 - **20.** $a = 77^{\circ} 34.2'$, $\alpha = 80^{\circ} 9.5'$.
- 21. Find the distance, in nautical miles, and the bearing of Greenwich, Eng. (51° 29' N, 0°) from New Orleans, La. (29° 57' N, 90° W).

HINT. Take the third vertex of the triangle at the north pole.

- 22. Two ships, traveling on great circles, pass at an angle of 90°. If one is going 21 knots (i.e., 21 nautical miles an hour) and the other 17 knots, how far are they apart at the end of 12 hours?
- 23. A ship is approaching Boston, Mass. (42° 21' N, 71° 4' W) along a great circle which is perpendicular to the meridian at Boston. When it crosses

the meridian of 58° W, find its latitude, the bearing of Boston from the ship, and its distance, in nautical miles, from Boston.

- 24. On a sphere one foot in diameter, the length of the hypotenuse of a right spherical triangle is 11 inches and, of one side, is 7 inches. Find the length of the other side and the area of the triangle.
- 25. For an observer in latitude 33° 15' N, the altitude of a star is 17° 30' and its azimuth is N 90° W. Find its hour angle and declination.
- 26. The hour angle of a star is 90°, its declination is 57° 16′, and its altitude is 25° 33′. Find its azimuth and the latitude of the observer.
- 340. Quadrantal Triangles. A spherical triangle in which one side is 90° is a quadrantal triangle. From the formulas of Art. 332, it follows that the polar triangle of a quadrantal triangle is a right triangle. Hence, if we are given two parts of a quadrantal triangle, in addition to the 90° side, we can solve its polar triangle and, from these results, we can find the required parts of the given triangle.

Example. Solve the quadrantal triangle: $c = 90^{\circ}$, $a = 67^{\circ} 24'$, $b = 124^{\circ} 47'$.

For the polar triangle, we have

Given: Find:
$$\alpha' = 112^{\circ} 36', \qquad a' = 117^{\circ} 53.9', \\ \beta' = 55^{\circ} 13'. \qquad b' = 51^{\circ} 50.1', \\ c' = 106^{\circ} 48.3'. \end{cases}$$

$$\cos c' = \cot \alpha' \cot \beta', \qquad \cos a' = \frac{\cos \alpha'}{\sin \beta'}, \\ \cos b' = \frac{\cos \beta'}{\sin \alpha'}, \qquad \cos c' = \cos a' \cos b'. \end{cases}$$

$$\log \cot \alpha' = 9.61936 - 10 \text{ (n)}$$

$$\log \cot \beta' = 9.84173 - 10 \\ \log \cot \beta' = 9.46109 - 10 \text{ (n)}$$

$$\log \cos \alpha' = 19.58467 - 20 \text{ (n)}$$

$$\log \cos \alpha' = 9.91451 - 10 \\ \log \cos \alpha' = 9.67016 - 10 \text{ (n)}$$

$$\log \cos \beta' = 19.75624 - 20 \\ \log \cos \alpha' = 9.67016 - 10 \text{ (n)}$$

$$\log \cos \beta' = 19.75624 - 20 \\ \log \cos \alpha' = 9.67016 - 10 \text{ (n)}$$

$$\log \cos \beta' = 9.96530 - 10 \\ \log \cos \beta' = 9.79094 - 10 \\ \log \cos \beta' = 9.79094 - 10 \text{ (n)}$$

For the given quadrantal triangle, we now have

$$\alpha = 180^{\circ} - a' = 62^{\circ} \, 6.1', \ \beta = 180^{\circ} - b' = 128^{\circ} \, 9.9', \ \gamma = 180^{\circ} - c' = 73^{\circ} \, 11.7'.$$

Exercises

Solve the quadrantal triangle, with $c = 90^{\circ}$, given:

1.
$$\alpha = 112^{\circ} 43'$$
, $b = 46^{\circ} 52'$.
2. $a = 117^{\circ} 31'$, $b = 129^{\circ} 11'$.
3. $\gamma = 154^{\circ} 19'$, $b = 70^{\circ} 44'$.
4. $\alpha = 57^{\circ} 13'$, $\beta = 68^{\circ} 51'$.

5. Using a triangle having the north pole as one vertex, find the distance and bearing of Gibraltar (36° 6′ N, 5° 21′ W) from Entebbe, Uganda, (0°, 32° 20′ E).

6. Find the local solar time of sunset at San Francisco, Calif., latitude 37° 47' N, on June 22, given that the declination of the sun is 23° 27'.

HINT. At sunset, the altitude of the sun is zero.

7. On Dec. 22 (sun's declination $-23^{\circ} 27'$), at a certain place in the northern hemisphere, the sun sets exactly in the southwest. Find the latitude of the place and the local solar time of sunset.

341. Isosceles Spherical Triangles. A spherical triangle is isosceles if

two of its sides are equal. Let the triangle ABC (Fig. 210) be isosceles with a = b. Then the angles α and β , opposite these sides, are also equal. Further, if a great circle CD is passed through C perpendicular to AB, then this circle bisects the angle γ at C and forms two right spherical triangles ADC and BDC whose parts are respectively equal. By solving one of these right triangles, we can, accordingly, solve the given isosceles triangle.

Fig. 210

EXAMPLE. Solve the isosceles spherical triangle, and find its altitude h, given $a = b = 74^{\circ} 32.6'$, $\gamma = 126^{\circ} 39'$.

We draw the perpendicular CD = h and solve the right triangle ADC. We have AD = c/2 and angle $ACD = \gamma/2$.

Find: Given: $\alpha = 62^{\circ} 3.3'$. $b = 74^{\circ} 32.6'$ $\gamma/2 = 63^{\circ} 19.5'$. $c/2 = 59^{\circ} 27.4'$ $h = 58^{\circ} 22.2'$. $\tan h = \tan b \cos \gamma/2,$ $\cot \alpha = \cos b \tan \gamma/2$, $\sin c/2 = \sin b \sin \gamma/2,$ $\sin c/2 = \cot \alpha \tan h$. $\log \cos b = 9.42571 - 10$ $\log \tan b = 0.55829$ $\log \cos \gamma/2 = 9.65218 - 10 +$ $\log \tan \gamma / 2 = 0.29895$ $\log \cot \alpha = 9.72466 - 10$ $\log \tan h = 0.21047$ $\log \cot \alpha = 9.72466 - 10$ $\log \sin b = 9.98400 - 10$ $\log \sin \gamma/2 = 9.95113 - 10 +$ $\log \tan h = 0.21047$ $\log \sin c/2 = 9.93513 - 10$ $\log \sin c/2 = 9.93513 - 10$

For the given isosceles triangle, we have, accordingly, $\alpha = \beta = 62^{\circ} 3.3'$; $c = 118^{\circ} 54.8'$ and $h = 58^{\circ} 22.2'$.

Exercises

Solve the isosceles triangles.

- 1. $b = c = 153^{\circ} 32.0'$, $\alpha = 147^{\circ} 22.0'$.
- 2. $a = c = 37^{\circ} 48.0'$, $\beta = 80^{\circ} 56.0'$.
- 3. $\alpha = \beta = 28^{\circ} 19.0'$, $c = 73^{\circ} 28.0'$.

- **4.** $\beta = \gamma = 115^{\circ} 43.0'$, $\alpha = 125^{\circ} 38.0'$.
- 5. An airplane was flown along a great circle from Quebec (46° 48' N, 71° 13' W) to a point near Olympia, Wash. (46° 48' N, 122° 52' W). Find (a) the bearing of the destination from Quebec, (b) the latitude of the most northerly point on the path (i.e., of the foot of the perpendicular from the pole to the path) and, in statute miles, (c) the distance flown and (d) how much the distance would have been increased if it had been flown directly west.
- 6. A star passed through the zenith of an observer in Los Angeles (34° 3′ N) at 7:43 P.M. Find its altitude and azimuth at 11:21 P.M.

Chapter 41

The Oblique Spherical Triangle

342. The Law of Sines. In a spherical triangle, the sines of the sides are proportional to the sines of the opposite angles; that is

$$\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.$$
 (1)

Through the vertex C, draw an arc of a great circle perpendicular to AB and intersecting AB (produced if necessary) at D. This construction yields two right triangles, ADC and BDC. Denote CD by h.

From Napier's Rules, (Art. 327) we have from the triangles DBC and DAC,

 $\sin h = \sin a \sin DBC$, and $\sin h = \sin b \sin DAC$.

Since $DBC = \beta$ or $180^{\circ} - \beta$, and $DAC = \alpha$ or $180^{\circ} - \alpha$, these two equations reduce to

 $\sin h = \sin a \sin \beta$, and $\sin h = \sin b \sin \alpha$.

Equate these two values of sin h and divide by sin α sin β . We have

$$\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta}.$$

Similarly, if we draw the perpendicular from A to BC, we find that

$$\frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.$$

These two equations, taken together, give equations (1).

343. The Law of Cosines for Sides. This law states that, in a spherical triangle,

$$\cos a = \cos b \cos c + \sin b \sin c \cos \alpha$$
,
 $\cos b = \cos c \cos a + \sin c \sin a \cos \beta$,
 $\cos c = \cos a \cos b + \sin a \sin b \cos \gamma$. (2)

The following proof is for Figure 211a. With a few slight changes, it can be modified to apply to either of the other two cases.

Since DB = c - AD, we have, on applying Napier's Rules to the right triangles BDC and ADC,

 $\cos a = \cos h \cos(c - AD)$, and $\cos b = \cos h \cos AD$.

Hence

$$\frac{\cos a}{\cos b} = \frac{\cos h \cos(c - AD)}{\cos h \cos AD} = \frac{\cos c \cos AD + \sin c \sin AD}{\cos AD}$$

Multiply by $\cos b$ and simplify. We have

$$\cos a = \cos b \cos c + \sin c \cos b \tan AD. \tag{3}$$

From the triangle ADC, we have further, by Napier's Rules,

$$\cos \alpha = \cot b \tan AD$$
, or $\sin b \cos \alpha = \cos b \tan AD$.

On substituting this value for $\cos b \tan AD$ in (3), we get

$$\cos a = \cos b \cos c + \sin b \sin c \cos \alpha$$
.

This is the first of equations (2). The other two may be derived in a similar way.

344. The Law of Cosines for Angles. If we apply the first of equations (2) to A'B'C', the polar triangle of ABC, we have

$$\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos \alpha'$$
.

If, in this equation, we replace a', b', c', and α' by their values from Art. 332, apply the trigonometric formulas

$$cos(180^{\circ} - \theta) = -cos \theta$$
, and $sin(180^{\circ} - \theta) = sin \theta$,

and multiply the resulting equation by -1, we obtain

Similarly,
$$\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cos \alpha.$$

$$\cos \beta = -\cos \gamma \cos \alpha + \sin \gamma \sin \alpha \cos b.$$

$$\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cos c.$$
(4)

Equations (4) constitute the Law of Cosines for Angles.

The six laws of cosines, equations (2) and (4), are not adapted to logarithmic computation but they can sometimes be used to advantage for computations with the natural functions.

345. The Half-Side Formulas. If we let

$$s = \frac{1}{2}(a+b+c),$$
 (5)

it follows by a simple algebraic computation that

$$s-a=\frac{1}{2}(b+c-a), \quad s-b=\frac{1}{2}(a+c-b), \text{ and } s-c=\frac{1}{2}(a+b-c).$$

Further let

$$r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}.$$
 (6)

We shall show that

$$\tan\frac{\alpha}{2} = \frac{r}{\sin(s-a)}, \quad \tan\frac{\beta}{2} = \frac{r}{\sin(s-b)}, \quad \tan\frac{\gamma}{2} = \frac{r}{\sin(s-c)}. \quad (7)$$

From the formulas of Chapter XVI and the law of cosines for sides, we have

$$2 \sin^2 \frac{\alpha}{2} = 1 - \cos \alpha = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$= \frac{\sin b \sin c + \cos b \cos c - \cos a}{\sin b \sin c}$$

$$= \frac{\cos(b - c) - \cos a}{\sin b \sin c} = \frac{2 \sin(s - c) \sin(s - b)}{\sin b \sin c}$$

$$\sin^2 \frac{\alpha}{2} = \frac{\sin(s - c) \sin(s - b)}{\sin b \sin c}$$
(8)

Hence,

In a similar way, we find that

$$2\cos^{2}\frac{\alpha}{2} = 1 + \cos\alpha = 1 + \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$= \frac{\cos a - \cos(b+c)}{\sin b \sin c} = \frac{2\sin s \sin(s-a)}{\sin b \sin c}.$$

$$\cos^{2}\frac{\alpha}{2} = \frac{\sin s \sin(s-a)}{\sin b \sin c}.$$
(9)

Hence,

If we divide (8) by (9), multiply numerator and denominator by $\sin (s - a)$, and take the square root of both sides, we have

$$\tan\frac{\alpha}{2} = \frac{1}{\sin(s-a)}\sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}} = \frac{r}{\sin(s-a)}.$$

The radical is taken as positive because $\alpha/2 < 90^{\circ}$ and $s - a < 180^{\circ}$. The other two formulas (7) are obtained in a similar way. 346. The Half-Angle Formulas. Let

$$S = \frac{1}{2}(\alpha + \beta + \gamma), \quad R = \sqrt{\frac{-\cos S}{\cos(S - \alpha)\cos(S - \beta)\cos(S - \gamma)}}$$
(10)

We shall show that

$$\tan\frac{a}{2} = R\cos(S-\alpha), \, \tan\frac{b}{2} = R\cos(S-\beta), \, \tan\frac{c}{2} = R\cos(S-\gamma)$$
 (11)

If we form equations (5), (6), and (7) for the polar triangle, then replace a' by $180^{\circ} - \alpha$, α' by $180^{\circ} - a$, and so on, we find that

$$s' = \frac{1}{2}(a' + b' + c') = 270^{\circ} - S$$
, $s' - a' = 90^{\circ} - (S - \alpha)$, etc.

It follows that

$$r' = \sqrt{\frac{\sin(s' - a') \sin(s' - b') \sin(s' - c')}{\sin s'}}$$

$$= \sqrt{\frac{\cos(S - \alpha) \cos(S - \beta) \cos(S - \gamma)}{-\cos S}} = \frac{1}{R}.$$

It now follows further that

$$\tan \frac{\alpha'}{2} = \frac{r'}{\sin(s'-a')} = \cot \frac{a}{2} = \frac{1}{R \cos(S-\alpha)};$$
$$\tan \frac{a}{2} = R \cos(S-\alpha),$$

that is,

and similarly for the other two formulas.

347. Napier's Analogies. The following four equations, together with eight others which may be obtained from them by interchanging corresponding letters, are called Napier's analogies, the word "analogy" being used in an obsolete sense with the meaning of "proportion." These formulas may be derived from those of the preceding two articles but are given here without proof.

$$\tan \frac{1}{2}(\alpha + \beta) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cot \frac{\gamma}{2}$$
 (12)

$$\tan \frac{1}{2}(\alpha - \beta) = \frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)} \cot \frac{\gamma}{2}$$
 (13)

$$\tan \frac{1}{2}(a+b) = \frac{\cos \frac{1}{2}(\alpha-\beta)}{\cos \frac{1}{2}(\alpha+\beta)} \tan \frac{c}{2}$$
 (14)

$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2}(\alpha+\beta)} \tan \frac{c}{2}$$
 (15)

348. Some Laws of Magnitude and Species. The following theorems are sometimes helpful in determining whether or not a required triangle exists and, if it does exist, in what quadrant a required part must lie.

I. If two sides of a spherical triangle are unequal, the angles opposite

are unequal and the greater angle is opposite the greater side.

II. The half-sum of two sides is of the same species as the half-sum of the opposite angles.

III. If any side differs from 90° more than either of the other sides does,

it is of the same species as its opposite angle.

IV. If any angle differs from 90° more than either of the other angles

does, it is of the same species as its opposite side.

To prove I, we observe, from (13), since $\cot \gamma/2$ and $\sin(a+b)/2$ are both positive, that $\tan(\alpha-\beta)/2$ and $\sin(a-b)/2$ agree in sign. It follows that $\alpha > \beta$ if, and only if, a > b.

To prove II, we observe from (12), since cot $\gamma/2$ and cos (a-b)/2

are both positive, that $\tan (\alpha + \beta)/2$ and $\cos (a + b)/2$ agree in sign. It follows that $(\alpha + \beta)/2$ and (a + b)/2 are both less, or both greater, than 90°.

Theorem III follows from equations (2). We may write the first of equations (2) in the following form

$$\cos\alpha = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

If a differs from 90° more than b (or more than c) does, then $\cos a$ is numerically larger than $\cos b$ (or $\cos c$) and, consequently, is larger than the product $\cos b \cos c$. It follows that the sign of the entire second member of the above equation agrees with that of $\cos a$. For, since neither b nor c exceeds 180°, the denominator is positive and, since $\cos a$ is numerically larger than $\cos b \cos c$, the sign of the numerator (and hence of the fraction) agrees with that of $\cos a$. It now follows from the above equation that $\cos a$ and $\cos a$ agree in sign, so that both are less, or both are greater, than 90°. Theorem IV follows in the same way from equations (3).

The laws stated in this article will be found important when we come to the solution of the ambiguous cases (Art. 352). If, for example, a, b, and α are given we first solve for β by the first equation of the law of sines. If there is one solution, β_1 , then, equally, $\beta_2 = 180^{\circ} - \beta_1$ is also a solution but each of these must be checked by the laws of this article to see if the corresponding triangle actually exists.

349. The Solution of Spherical Triangles. If we have given any three parts of a spherical triangle, the other three parts can be found by using the formulas of Arts. 342 and 345 to 347. We shall use the law of sines [equations (1)] throughout, as check formulas.

There are six cases, according as we have given:

I. The three sides.

II. The three angles.

III. Two sides and the included angle.

IV. Two angles and the included side.

V. Two sides and the angle opposite one of them.

VI. Two angles and the side opposite one of them.

We shall group these six cases into three pairs in such a way that the processes of solution of the two cases of each pair are closely similar.

350. Cases I and II. Given Three Sides or Three Angles. If the three sides are given, the three angles may be found by using formulas (5), (6), and (7) of Art. 345. If the three angles are given, we find the sides from formulas (10) and (11) of Art. 346. In either case, the results may be checked by the law of sines. The work may be arranged as shown in the following example.

Example. Solve the triangle: $a = 102^{\circ} 38.3'$, $b = 61^{\circ} 17.3'$, $c = 74^{\circ} 31.8'$.

Given: Find:

$$a = 102^{\circ} 38.3', \quad \alpha = 114^{\circ} 14.0',$$

 $b = 61^{\circ} 17.3', \quad \beta = 55^{\circ} 3.0',$
 $c = 74^{\circ} 31.8', \quad \gamma = 64^{\circ} 14.8',$
 $2)\overline{238} \ 27.4$
 $s = 119^{\circ} 13.7'$

$$s = \frac{1}{2}(a+b+c), r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}$$

$$\tan \frac{\alpha}{2} = \frac{r}{\sin(s-a)}, \tan \frac{\beta}{2} = \frac{r}{\sin(s-b)}, \tan \frac{\gamma}{2} = \frac{r}{\sin(s-c)}$$

$$\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.$$

$$s - a = 16^{\circ} 35.4' \qquad \log \sin(s-a) = 9.45564 - 10$$

$$s - b = 57^{\circ} 56.4' \qquad \log \sin(s-b) = 9.92813 - 10$$

$$s - c = 44^{\circ} 41.9' \qquad \log \sin(s-c) = \frac{9.84719 - 10}{29.23096 - 30} + \frac{29.23096 - 30}{29.23096 - 30}$$

$$\log \sin s = \frac{9.94085 - 10}{9.64506 - 10} - \frac{2)19.29011 - 20}{29.23096 - 30}$$

$$\log r = \frac{9.64506 - 10}{9.64506 - 10}$$

$$\alpha/2 = 57^{\circ} 7.0' \qquad \log \tan \alpha/2 = 0.18942$$

$$\beta/2 = 27^{\circ} 31.5' \qquad \log \tan \beta/2 = 9.71693 - 10$$

$$\gamma/2 = 32^{\circ} 7.4' \qquad \log \tan \gamma/2 = 9.79787 - 10$$

$$\log \sin a = 9.98935 - 10 \qquad \log \sin b = 9.94302 - 10$$

$$\log \sin \alpha = \frac{9.95994 - 10}{0.02941} - \frac{\log \sin \beta}{0.02939} = \frac{9.91363 - 10}{0.02939}$$

$$\log \sin c = 9.98397 - 10$$

$$\log \sin \gamma = 9.95457 - 10$$

Exercises

0.02940

Solve the following spherical triangles.

1.
$$a = 76^{\circ} 14.7'$$
, $b = 85^{\circ} 21.4'$, $c = 53^{\circ} 41.7'$.

2.
$$a = 110^{\circ} 51.7'$$
, $b = 73^{\circ} 14.9'$, $c = 55^{\circ} 19.2'$.

3.
$$a = 125^{\circ} 18.4'$$
, $b = 117^{\circ} 15.7'$, $c = 84^{\circ} 22.7'$.

4.
$$a = 69^{\circ} 11.4'$$
, $b = 76^{\circ} 39.5'$, $c = 81^{\circ} 19.6'$.

5.
$$\alpha = 72^{\circ} 43.0'$$
, $\beta = 79^{\circ} 5.6'$, $\gamma = 67^{\circ} 33.4'$.

6.
$$\alpha = 119^{\circ} 23.4'$$
, $\beta = 74^{\circ} 43.8'$, $\gamma = 51^{\circ} 49.3'$.

7.
$$\alpha = 127^{\circ} 44.2'$$
, $\beta = 118^{\circ} 4.2'$, $\gamma = 82^{\circ} 28.4'$.

8.
$$\alpha = 77^{\circ} 28.4'$$
, $\beta = 71^{\circ} 47.6'$, $\gamma = 123^{\circ} 51.6'$.

9. Using the formula of Art. 331, find the areas of the triangles of Ex. 5 to 8, assuming that they lie on the surface of the earth. Take R = 3959 miles.

- 10. The bearing of Paris (2° 22' E) from New York (73° 58' W) is N 53° 44' E. The bearing of New York from Paris is N 68° 12' W. Find the latitude of both places and the distance, in nautical miles, between them.
- 11. On a sphere of radius one foot, the angles of a triangle are 123° 41', 81° 14', and 73° 46'. Find the lengths of the sides in inches.
- 12. Find the morning solar time of an observer in Annapolis, Md. (38° 59' N) given that the sun's altitude is 28° 16' and its declination is -12° 54'.
- 351. Cases III and IV. Given Two Sides and the Included Angle or Two Angles and the Included Side. If a, b, and γ are given, we can find $(\alpha + \beta)/2$ and $(\alpha \beta)/2$ from formulas (12) and (13) of Art. 347. The side c can then be found from formula 15. Similarly, if α , β , and c are given, we can find a and b from formulas (14) and (15) and then find γ from (13). The results may be checked by the law of sines.

If a and b are given, with b > a, or α and β with $\beta > \alpha$, interchange a and b and also α and β in formulas (12) to (15).

Example. Solve the triangle: $b = 118^{\circ} 45.2'$, $c = 81^{\circ} 45.2'$, $\alpha = 94^{\circ} 36.4'$.

Given:
$$b = 118^{\circ} 21.4'$$
, $c = 81^{\circ} 45.2'$, $c = 94^{\circ} 36.4'$. $c = 94^{\circ} 36.4'$. $c = 94^{\circ} 36.4'$. $c = 97^{\circ} 56.2'$. $c = 94^{\circ} 36.4'$. $c = 97^{\circ} 56.2'$. $c = 94^{\circ} 36.4'$. $c = 97^{\circ} 56.2'$

Exercises

Solve the triangles.

```
1. a = 59^{\circ} 31.0', b = 23^{\circ} 17.0', \gamma = 114^{\circ} 42.0'.

2. a = 97^{\circ} 16.4', b = 48^{\circ} 11.8', \gamma = 76^{\circ} 21.8'.

3. b = 124^{\circ} 31.7', c = 81^{\circ} 49.5', \alpha = 111^{\circ} 52.6'.

4. b = 103^{\circ} 41.5', c = 129^{\circ} 16.1', \alpha = 69^{\circ} 24.8'.

5. a = 121^{\circ} 50.9', c = 80^{\circ} 47.3', \beta = 64^{\circ} 37.4'.

6. a = 56^{\circ} 19.1', c = 108^{\circ} 21.6', \beta = 74^{\circ} 49.5'.

7. \alpha = 71^{\circ} 42.0', \beta = 54^{\circ} 36.0', c = 128^{\circ} 32.0'.

8. \alpha = 76^{\circ} 41.2', \beta = 147^{\circ} 25.6', c = 72^{\circ} 54.2'.

9. \beta = 116^{\circ} 37.6', \gamma = 41^{\circ} 35.2', \alpha = 39^{\circ} 27.6'.

10. \beta = 75^{\circ} 8.9', \gamma = 57^{\circ} 54.3', \alpha = 70^{\circ} 51.4'.

11. \alpha = 131^{\circ} 23.7', \gamma = 114^{\circ} 11.7', \beta = 42^{\circ} 35.8'.

12. \alpha = 114^{\circ} 41.3', \gamma = 32^{\circ} 47.5', \beta = 126^{\circ} 54.2'.
```

Find the distance, in nautical miles, and the bearing of each of the following cities from the other.

- 13. San Diego (32° 43′ N, 117° 10′ W) and Colon. Panama, (9° 23′ N, 79° 55′ W).
 - 14. Washington (38° 55' N, 77° 4' W) and Moscow (55° 45' N, 37° 34' E).
- 15. Rio de Janeiro (22° 54′ S, 43° 10′ W) and Liverpool (53° 24′ N, 3° 4′ W).
 - 16. Honolulu (21° 18' N, 157° 52' W) and Tokyo (35° 39' N, 139° 45' E).
- 17. An observer in latitude 28° 15′ finds the altitude of a star to be 41° 42′ and its azimuth to be N 116° 38′ E. Find the declination and hour angle of the star.
- 18. An observer in latitude 24° 10′ S finds that the azimuth of a star is 72° 37′ and that its hour angle is N 116° 43′ W. Find the altitude and declination of the star and the angle between the hour circle and the vertical circle of the star.
- 352. Cases V and VI. Given Two Sides and the Angle Opposite One of Them or Two Angles and the Side Opposite One of Them. These two cases are the ambiguous cases. There may be two, one, or no solutions.

If, for example, a, b, and α are given, we first compute β from the law of sines. If $\log \sin \beta$ is positive, there is no solution. If $\log \sin \beta$ is negative, we find an acute angle β_1 and an obtuse angle β_2 . Each of these angles must be tested by the theorems of Art. 348. If solutions exist, the values of c and γ may be found by formulas (13) and (15). The values of c and γ should be checked by the law of sines.

A suitable form for writing down the solution is illustrated by the fol-

lowing example.

Example. Solve the triangle: $b = 53^{\circ} 21.3'$, $c = 102^{\circ} 47.5'$, $\beta = 47^{\circ} 36.4'$.

Given: Find:
$$b = 53^{\circ} 21.3'$$
, $\alpha_1 = 143^{\circ} 5.0'$, $\alpha_2 = 64^{\circ} 11.2'$, $c = 102^{\circ} 47.5'$, $\gamma_1 = 63^{\circ} 50.7'$, $\gamma_2 = 116^{\circ} 9.3'$, $\beta = 47^{\circ} 36.4'$. $a_1 = 139^{\circ} 15.8'$, $a_2 = 77^{\circ} 57.6'$. $\sin \gamma = \frac{\sin \beta \sin c}{\sin b}$, $\cot \frac{1}{2}\alpha = \frac{\sin \frac{1}{2}(\gamma + \beta)}{\sin \frac{1}{2}(\gamma - \beta)} \tan \frac{1}{2}(c - b)$, $\frac{\sin \alpha}{\sin a} = \frac{\sin \beta}{\sin b}$.
$$\log \sin \beta = 19.86837 - 20$$
$$\log \sin b = \frac{9.90437 - 10}{9.96400 - 10}$$
$$\log \sin c = \frac{9.98908 - 10}{9.96400 - 10}$$
$$\log \sin \gamma = \frac{9.98908 - 10}{9.95308 - 10}$$
$$(c + b)/2 = 78^{\circ} 4.4'$$
, $(\gamma_1 + \beta)/2 = 55^{\circ} 43.55'$, $(\gamma_2 + \beta)/2 = 81^{\circ} 52.85'$, $(c - b)/2 = 24^{\circ} 43.1'$, $(\gamma_1 - \beta)/2 = 8^{\circ} 7.15'$, $(\gamma_2 - \beta)/2 = 34^{\circ} 16.45'$.
$$\log \sin(c + b)/2 = \frac{9.15431 - 10}{19.14483 - 20}$$
$$\log \sin(c - b)/2 = \frac{9.62134 - 10}{9.52349 - 10}$$
$$\log \sin(c + b)/2 = \frac{9.62134 - 10}{9.52349 - 10}$$
$$\log \sin(c + b)/2 = \frac{9.83346 - 10}{9.83386 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.6337 - 10}{9.6307 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.83346 - 10}{9.83398 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.6337 - 10}{9.6307 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.6334 - 10}{9.52349 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.6337 - 10}{9.6307 - 10}$$
$$\log \sin(c - b)/2 = \frac{9.6337 - 10}{9.63898 - 10}$$
$$\log \sin \alpha_1 = 19.77862 - 20$$
$$\log \sin \alpha_1 = 19.77862 - 20$$
$$\log \sin \alpha_2 = 19.95435 - 20$$
$$\log \sin \alpha_2 = 19.95435 - 20$$
$$\log \sin \alpha_2 = 19.95435 - 20$$
$$\log \sin \alpha_2 = \frac{9.99034 - 10}{9.96401 - 10}$$

The last two results should be compared with the value of $\log \sin \beta$ – $\log \sin b$ which was found at the beginning of the computation.

Exercises

Solve the triangles.

1.
$$a = 81^{\circ} 36.4'$$
, $b = 44^{\circ} 51.8'$, $\alpha = 40^{\circ} 12.4'$.
2. $a = 98^{\circ} 43.7'$, $c = 68^{\circ} 15.4'$, $\alpha = 80^{\circ} 38.4'$.
3. $b = 71^{\circ} 49.3'$, $c = 47^{\circ} 42.5'$, $\gamma = 44^{\circ} 41.6'$.
4. $a = 82^{\circ} 21.1'$, $b = 61^{\circ} 14.5'$, $\beta = 53^{\circ} 5.7'$.

```
5. b = 24^{\circ} 31.5'
                                   c = 76^{\circ} 53.1'
                                                                \beta = 72^{\circ} 21.3'.
 6. a = 69^{\circ} 41.8'
                                   c = 50^{\circ} 45.3'
                                                                \gamma = 45^{\circ} 57.2'.
 7. \alpha = 36^{\circ} 43.9'
                                   \beta = 109^{\circ} 24.3', \quad a = 20^{\circ} 15.8'.
 8. \beta = 72^{\circ} 31.8'
                            \gamma = 117^{\circ} 14.2', \quad c = 79^{\circ} 42.6'.
 9. \alpha = 121^{\circ} 16.2'
                                \gamma = 43^{\circ} 24.3', \qquad a = 74^{\circ} 50.8'.
10. \alpha = 76^{\circ} 52.2'
                                \beta = 147^{\circ} 27.4', \quad b = 148^{\circ} 31.5'.
11. \beta = 138^{\circ} 27.4', \gamma = 91^{\circ} 50.3', b = 52^{\circ} 35.4'.
12. \alpha = 162^{\circ} 19.5'
                                \gamma = 116^{\circ} 21.8', \quad c = 135^{\circ} 41.5'.
```

- 13. A ship sails from Honolulu (21° 18′ N, 157° 52′ W) bearing S 40° W. After traveling for 200 hours along a great circle, it crosses the parallel of 16° south latitude. Find the longitude of the point of crossing, the ship's bearing at that point, and its average speed in knots (nautical miles per hour).
- 14. An airplane, flying on a great circle from New York (40° 49′ N, 73° 58′ W) to Europe, crosses the meridian of 45° W bearing N 77° 30′ E. Find the latitude of the point of crossing, and its distance, in nautical miles, from New York.
- 15. At 20 minutes past 10 A.M., solar time, an observer in the north temperate zone found the altitude of the sun to be 41° 17′. If the sun's declination on that day was 9° 34′, find the latitude of the observer and the azimuth of the sun.
- 16. It is known that the declination of a certain star is 31° 46′ and that, on a certain day, it is over the meridian of Greenwich at 8:13 P.M. At 9:48 P.M. Greenwich time, on that day, an observer found the altitude of the star to be 56° 19′ and its azimuth to be N 107° 8′ E. Find the latitude and longitude of the observer.

Tables

- I. LOGARITHMS OF NUMBERS
- IIa. TABLES OF S AND T FOR ANGLES NEAR 0° AND 90° .
- II. LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS
- III. NATURAL VALUES OF THE TRIGONOMETRIC FUNCTIONS

IV. SQUARES AND SQUARE ROOTS OF NUMBERS

Introduction to the Tables

Table I

Table I gives to five decimal places the mantissas of the logarithms of numbers of four significant figures.

1. To Find the Logarithm of a Number. First find the characteristic of the given number by the rules given in Art. 78. The mantissa is then found from Table I, as shown in the following examples.

EXAMPLE 1. Find log 48.35.

The characteristic is 1. To find the mantissa, look, first, in the column headed N, in Table I, for the first three significant figures, 483, of the given number. The first two figures, 68, of the required mantissa are immediately to the right of 483. To find the next three numbers, follow the line of 483 to the column headed 5 (the fourth significant figure of the given number). We find 440. The required mantissa is .68440 and the required logarithm is 1.68440.

EXAMPLE 2. Find log 0.06763.

The characteristic is 8-10. Look in the column headed N for 676. Directly to the right is 82 but, when we follow the line across to the column headed 3, we find an asterisk which means that 82 must be increased by unity to 83. The three numbers in the column headed 3 are 014. The required logarithm is 8.83014-10.

2. Interpolation. If the given number contains five significant figures, its logarithm may be found, usually accurately, to five decimal places by the method of interpolation which is illustrated by the following example.

If the given number contains more than five significant figures, it should be rounded off to the nearest fifth figure, as shown in Art. 79.

Example. Find log 329.76.

The characteristic is 2. To find its mantissa, we assume (with a small error which we neglect) since 329.76 is 0.6 of the way from 329.70 to 329.80,

that log 329.76 is 0.6 of the way from log 329.70 to log 329.80.

The mantissa of the logarithm of 3297 is .51812 and that of 3298 is .51825. The difference between these two mantissas is .00013. To avoid the labor of computing 0.6 of this difference, we look in the column headed Prop. Parts (proportional parts) for the table headed 13 (the significant figures of the difference). In this table, just to the left of the light line, we look down until we come to 6. Just to the right of 6 we find 7.8 which is 0.6 of 13. Round off 7.8 to 8 and add .00008 to the mantissa of 3297, giving .51820. Hence log 329.76 = 2.51820.

Exercises

Verify the following logarithms.

1. $\log 6.7348 = 0.82833$.

2. $\log 0.0022953 = 7.36084 - 10$.

3. $\log 7458.9 = 3.87267$.

4. $\log 0.30475 = 9.48394 - 10$.

3. Antilogarithms. To find the number N that has a given logarithm, we first look in the body of the table for the mantissa of the given logarithm and thereby determine the sequence of significant digits of N. The position of the decimal point is then fixed by the given characteristic.

Example 1. Find N, given $\log N = 8.91882 - 10$.

We first look in the column headed 0 for the first two figures, 91, of the given mantissa. Below, and to the right, we find the next three figures 882. These three numbers are in the row of 829 and in the column headed 5. The required significant figures are 8295. Since the characteristic is 8-10, N=0.08295.

Example 2. Find N, given $\log N = 1.78847$.

This mantissa lies between .78845 and .78852. The smaller of these corresponds to 6144. These are the first four required digits. Subtract .78845 from .78852, giving .00007, and also from the given mantissa .78847, giving .00002. In the table of proportional parts headed 7, look directly under the 7 for 2. The nearest number is 2.1 which corresponds to 3 (at the left of the light line) which is the required fifth digit. N = 61.443.

Exercises

Verify the following antilogarithms.

1. $9.63889 - 10 = \log 0.4354$.

2. $3.24879 = \log 1773.3$.

3. 8.83627 - 10 = 0.068592.

4. $1.52067 = \log 33.164$.

Table II

4. Logarithms of the Trigonometric Functions. Table II gives, to five decimal places, the logarithms of the sine, cosine, tangent, and cotangent of the angle for every minute from 0° to 90°. The numbers given in the table are, in every case, 10 greater than the required logarithm. If the angle under consideration is less than 45°, the number of degrees will be found at the top of the page, the number of minutes down the left-hand side and the logarithm in the column having the name of the function at the top of the page. If the angle is greater than 45°, the number of degrees and the name of the function are found at the bottom of the page and the number of minutes on the right-hand side.

For problems involving interpolation, the tables of proportional parts are computed for tenths of a minute. The differences between successive numbers in the table are indicated in the columns headed d and cd. For the sine and the tangent, the interpolation correction should be added to the mantissa of the next smaller minute as found in the table; for the cosine and the cotangent, it should be subtracted from the mantissa of the next smaller minute.

5. To Find the Logarithm of a Given Function of a Given Angle.

EXAMPLE 1. Find log sin 21° 43'.

From Table II, we find 21° at the top of the page and 43' down the left-hand side. In the column having L Sin at the top of the page, we find, after subtracting 10 from the number given in the table, $\log \sin 21^{\circ} 43' = 9.56822 - 10$.

EXAMPLE 2. Find log cot 78° 16'.

We find 78° at the bottom of the page and 16' on the right-hand side. Subtract 10 from the number in the column having L Cot at the bottom of the page, giving $\log \cot 78^{\circ} 16' = 9.31743 - 10$.

Example 3. Find log sin 57° 21.5'.

We find $\log \sin 57^{\circ} 21' = 9.92530$. The difference for 1', from the column headed d, is 8. From the table headed 8 in the column of proportional parts, we find that the correction for 0.5' is 4. Hence, $\log \sin 57^{\circ} 21.5' = 9.92534 - 10$.

EXAMPLE 4. Find log cot 41° 52.6'.

We have log cot $41^{\circ}52' = 0.04760$. From the column headed cd, the difference for 1' is 26. From the table under proportional parts, the correction for 0.6' is 16. Since this correction must be subtracted, log cot $41^{\circ}52.6' = 0.04744$.

Exercises

Verify the following logarithms.

- 1. $\log \sin 73^{\circ} 21.8' = 9.98143 10$. 2. $\log \tan 18^{\circ} 49.2' = 9.53252 10$.
- 3. $\log \cos 79^{\circ} 36.8' = 9.25597 10$. 4. $\log \cot 53^{\circ} 18.4' = 9.87227 10$.

6. To Find the Angle, Given the Logarithm of a Given Function.

Example 1. Find θ , given log sin $\theta = 9.74170 - 10$.

Look for 9.74170 in a column having L Sin either at the top or bottom of the page. Since we find it in a column having L Sin at the top of the page, we take the number of degrees from the top of the page and the number of minutes at the left. 9.74170 = log sin 33° 29'.

Example 2. Find θ , given log tan $\theta = 9.70132 - 10$.

We locate the given logarithm between $9.70121 - 10 = \log \tan 26^{\circ} 41'$ and the next greater entry in the table. The difference for 1' is 31. The difference

between .70121 and the given mantissa gives 11. From the table of proportional parts, the nearest tenth of a minute is 0.4. Hence $\theta = 26^{\circ}$ 41.4'.

Example 3. Find θ , given log cos $\theta = 9.47917 - 10$.

We find $9.47934 - 10 = \log \cos 72^{\circ} 27'$. The difference for 1' is 40. By subtracting the given mantissa from .47934, we get 17. From the table of proportional parts, the corresponding angle is 0.4. Hence $\theta = 72^{\circ} 27.4'$. Notice that, for the cosine and the cotangent, we work from the mantissa in the table next larger than the given mantissa.

Exercises

Verify the following angles.

- **1.** $9.91091 10 = \log \sin 54^{\circ} 32.4'$. **2.** $9.81624 10 = \log \tan 33^{\circ} 13.5'$.
- 3. $9.82119 10 = \log \cos 48^{\circ} 30.5'$. 4. $0.25515 = \log \cot 29^{\circ} 3.7'$.

Table III

7. Natural Values of the Trigonometric Functions. Table III gives, to four decimal places, the actual values of the sine, cosine, tangent, and cotangent of the angle for every minute from 0° to 90°. The arrangement of the table and the method of using it parallels that of Table II except that, since no tables of proportional parts is given, interpolations, if desired, must be computed out by the student. In this course, however, this table will customarily be used only to the nearest minute.

EXAMPLE 1. Find the value of sin 29° 43'.

We find the number of degrees in the angle at the top of the page and the number of minutes at the left-hand side. From the column having Sin at the top of the page, we find $\sin 29^{\circ} 43' = 0.4957$.

EXAMPLE 2. Find tan 82° 18'.

We find the number of degrees at the bottom of the page and the minutes at the right-hand side. From the column having Tan at the bottom of the page, we find tan 82° 18' = 7.3962.

Example 3. Find θ , given $\cos \theta = 0.2156$.

We find the given number in a column having Cos at the bottom of the page. Hence $\theta = 77^{\circ} 33'$.

EXAMPLE 4. Find θ to the nearest minute, given cot $\theta = 0.5382$.

This number lies between 0.5381 and 0.5384. Since the given number is nearer to 0.5381, we have, to the nearest minute, $\theta = 61^{\circ} 43'$.

Exercises

Verify the following values of the given functions.

1. $\sin 67^{\circ} 35' = 0.9244$.

2. $\tan 41^{\circ} 34' = 0.8868$.

3. $\cos 78^{\circ} 17' = 0.2031$.

4. $\cot 29^{\circ} 22' = 1.7771$.

Verify the following angles to the nearest minute.

5. $0.7946 = \sin 52^{\circ} 37'$.

6. $4.1335 = \tan 76^{\circ} 24'$.

7. $0.3956 = \cos 66^{\circ} 42'$.

8. $1.7109 = \cot 30^{\circ} 18'$.

Table IV

8. Squares and Square Roots of Numbers. Table IV gives, to four significant figures, the squares and square roots of numbers from 1.00 to 10.00.

To find the square of a number given in the column headed N, look, on the line of the given number, for the number in the column headed N². To find the square of 10 times a number in the column headed N, look for the square of N and multiply this result by 100. To find the square of 100N, first find the square of N, then multiply this by 10⁴, and so on.

To find the square root of a number in the column headed N, take the number on the same line in the column headed \sqrt{N} . To find the square root of 10 times a number N, take the number on the same line in the column headed $\sqrt{10N}$. To find the square root of 100N, find \sqrt{N} and multiply it by 10, and so on.

Squares and square roots of numbers having four significant figures may be found by the method of interpolation explained in Art. 2 for Table I and illustrated in the following examples 3, 5, and 6.

Example 1. Find to four significant figures the value of 5.372.

Look down the column headed N for 5.37. Immediately to the right, in the column headed N^2 is 28.84. Hence $5.37^2 = 28.84$ to four significant figures.

EXAMPLE 2. Find the value of 2732.

 $273 = 100 \times 2.73$. From the table, $2.73^2 = 7.453$. Hence, to four significant figures, $273^2 = 74530$.

EXAMPLE 3. Find the value of 71.382.

 $71.38 = 10 \times 7.138$. From the table, $7.13^2 = 50.84$ and $7.14^2 = 50.98$. The difference between these results is .14 and 0.8 of this difference is .112 which we round off to .11. Add this to $7.13^2 = 50.84$ giving $7.138^2 = 50.95$. Hence $71.38^2 = 5095$.

Example 4. Find $\sqrt{7.58}$, $\sqrt{75.8}$, and $\sqrt{758}$.

Let N = 7.58, then 10N = 75.8 and 100N = 758. Look for 7.58 in the column headed N. From the columns headed \sqrt{N} and $\sqrt{10N}$, we find $\sqrt{7.58} = 2.753$ and $\sqrt{75.8} = 8.706$. Further $\sqrt{758} = 10\sqrt{7.58} = 27.53$.

Example 5. Find $\sqrt{5.837}$.

From the table, $\sqrt{5.83} = 2.415$ and $\sqrt{5.84} = 2.417$. The difference is .002 and 0.7 of this difference is .0014 which we round off to .001. Add this to $\sqrt{5.83} = 2.415$, giving $\sqrt{5.837} = 2.416$.

Example 6. Find $\sqrt{193500}$.

 $193500 = 10^4 \times 19.35$. Hence $\sqrt{193500} = 100\sqrt{19.35}$. From the table, $\sqrt{19.3} = \sqrt{10 \times 1.93} = 4.393$ and $\sqrt{19.4} = 4.405$. Five tenths of the difference is .006. Add this to $\sqrt{19.3}$, giving $\sqrt{19.35} = 4.399$. Hence $\sqrt{193500} = 439.9$.

Exercises

Verify the following squares and square roots to four significant figures using Table IV.

1.
$$51.3^2 = 2632$$
.

3.
$$\sqrt{817} = 28.58$$
.

5.
$$\sqrt{346.3} = 18.61$$
.

2.
$$327.4^2 = 107200$$
.

4.
$$\sqrt{6340} = 79.62$$
.

6.
$$\sqrt{17.48} = 4.181$$
.

TABLE I

COMMON LOGARITHMS OF NUMBERS

FROM 1 TO 10000

TO FIVE DECIMAL PLACES

1-100

N	Log	N	Log	N	Log	N	Log	N	Log
0	_	20	1.30 103	40	1.60 206	60	1.77 815	80	1.90 309
1	0.00 000	21	1.32 222	41	1.61 278	61	1.78 533	81	1.90 849
2	0.30 103	22	1.34 242	42	1.62 325	62	1.79 239	82	1.91 381
3	0.47 712	23	1.36 173	43	1.63 347	63	1.79 934	83	1.91 908
4	0.60 206	24	1.38 021	44	1.64 345	64	1.80 618	84	1.92 428
5	0.69 897	25	1.39 794	45	1.65 321	65	1.81 291	85	1.92 942
6	0.77 815	26	1.41 497	46	1.66 276	66	1.81 954	86	1.93 450
7	0.84 510	27	1.43 136	47	1.67 210	67	1.82 607	87	1.93 952
8	0.90 309	28	1.44 716	48	1.68 124	68	1.83 251	88	1.94 448
9	0.95 424	29	1.46 240	49	1.69 020	69	1.83 885	89	1.94 939
10	1.00 000	30	1.47 712	50	1.69 897	70	1.84 510	90	1.95 424
11	1.04 139	31	1.49 136	51	1.70 757	71	1.85 126	91	1.95 904
12	1.07 918	32	1.50 515	52	1.71 600	72	1.85 733	92	1.96 379
13	1.11 394	33	1.51 851	53	1.72 428	73	1.86 332	93	1.96 848
14	1.14 613	34	1.53 148	54	1.73 239	74	1.86 923	94	1.97 313
15	1.17 609	35	1.54 407	55	1.74 036	75	1.87 506	95	1.97 772
16	1.20 412	36	1.55 630	56	1.74 819	76	1.88 081	96	1.98 227
17	1.23 045	37	1.56 820	57	1.75 587	77	1.88 649	97	1.98 677
18	1.25 527	38	1.57 978	58	1.76 343	78	1.89 209	98	1.99 123
19	1.27 875	39	1.59 106	59	1.77 085	79	1.89 763	99	1.99 564
20	1.30 103	40	1.60 206	60	1.77 815	80	1.90 309	100	2.00 000

BY	Ι ο	1 .			1			-	UNIL		,	100		LFIVE
N	0	1	2	3	4	5	6	7	8	9		Pro	p. Pa	rts
100		10		130		217	260		346	389	1			
101	00 432			-	604				775	817				
102	00 860	1 0		988	*030				*199			44	43	42
				410		494	536	578	620	662	1	4.4	4.3	4.2
104	, ,		7.7	828	870	912	953		*036	*078	2	8.8	8.6	8.4
105	02 119	100000		243	284	325	366		449	490	3 4	13.2	12.9	12.6
106	00			-	694	735	776	816	857	898	5	22.0	21.5	21.0
107	02 938		*019		*100	*141	*181	*222	*262	*302	6 7	30.8	25.8	25.2
108	03 342		423	463	503	543	583	623	663	703		35.2	30.1	29.4 33.6
109	03 743		822	862	902	941	981	*021	*060	*100	9	39.6	38.7	37.8
110	- 07		218	258	297	336			454	493				
111	04 532		610	650	689	727	766			883				
112	04 922		999	*038	*077	*115	*154		*231	*269		41	40	39
113	05 308		385	423	461	500	538	576	614	652		4.1	4.0	3.9
114	05 690		767	805	843	881	918	956	994	*032	3	8.2 12.3	8.0	7.8
115	06 070		145	183		258	296	333	371	408	4	16.4	16.0	15.6
116	06 446	483	521	558	595	633	670	707	744	781	6	20.5	20.0	19.5
117	06 819	856	893	930	967	*004	*041	*078	*115	*151	7	28.7	24.0	23.4
118	07 188	225	262	298	335	372	408		482	518	8	32.8	32.0	31.2
119	07 555	591	628	664		737	773	809	846	882	9	36.9	36.0	35.1
120	07 918	954	990	*027	*063	*099	*135	*171	*207	*243				
121	08 279		350	386	422	458		529	565	600				. 4.2
122	08 636		707	743	778	814	849		920	955		38	37	36
123	08 991	*026	*061	*096	*132	*167	*202	*237	*272	*307	2	3.8 7.6	3.7	3.6 7.2
124	09 342	377	412	447	482	517	552	587	621	656	3	11.4	II.I	10.8
125	09 691	726	760	795	830	864	899	934	968	*003	4	15.2	14.8	14.4
126	10 037	072	106	140	175	209	243	278	312	346	6	22.8	22.2	21.6
127	10 380	415	449	483	517	551	585	619	653	687	7	26.6	25.9	25.2
128	10 721	755	789	823	857	890	924	958	992	*025		30.4	29.6 33.3	28.8 32.4
129	11 059	093	126	160	193	227	261	294	327	361	'	04	1 00.0	34
130	11 394	428	461	494	528	561	594	628	661	694	ı			
131	11 727	760	793	826	860	893	926	959	992	*024	١,	35	34	33
132	12 057	090	123	156	189	222	254	287	320	352	1	3.5	3.4	3.3
133	12 385	418	450	483	516	548	581	613	646	678	2	7.0	6.8	6.6
134	12710	743	775	808	840	872	905	937	969	*001	3	10.5	10.2	9.9 13.2
135	13 033	066	098	130	162	194	226	258	290	322	5	14.0	17.0	16.5
136	13 354	386	418	450	481	513	545	577	609	640	6	21.0	20.4	19.8
137	13 672	704	735	767	799	830	862	893	925	956	8	24.5 28.0	23.8	23.I 26.4
138	13 988	*019	*051	*082	*114	*145	*176	*208	*239	*270	9	31.5	30.6	29.7
139	14 301	333	364	395	426	457	489	520	551	582				
140	14 613	644	675	706	737	768	799	829	860	891				
141	14 922	953	983	*014	*045	*076	*106	*137	*168	*198	1	32	31	30
142	15 229	259	290	320	351	381	412	442	473	503	1	3.2	3.1	3.0
143	15 534	564	594	625	655	685	715	746	776	806	2	6.4 9.6	9.3	6.0 9.0
		866	897			987	*017	*047	*077	*107	4	12.8	12.4	12.0
144 145	15 836 16 137	167		927	957 256	286	316	346	376	406	5	16.0	15.5	15.0
146	16 435	465	197 495	524	554	584	613	643	673	702	6	19.2	18.6	18.0
		100		-13/			909	938	967	997	8	25.6	24.8	24.0
147	16 732	761	791	820	850	879 173	202	231	200	289	9	28.8	27.9	27.0
148	17 026	056	085	114	143	464	493	522	551	580				1
149	17 319	348	377	406 606	435	754	782	811	840	869				
150	17 609	638	667	696	725			7	8	9		Prop	. Part	s
N	0	1	2	3	4	5	6							
					TTU		OB	BITTE	1 REI	96_	150	10	_ 4	34 —

1000-LOGARITHMS OF NUMBERS-1509 -434-

PLACE] I. 1500-LOGARITHMS OF NUMBERS-2009

Pro	p. Parts	N	0	1	2	3	4	5	6	7	8	9
		150			667						840	
		151	17 898		955	984	*013	*041	*070	*099	*127	*15
1 2	29 28	152	18 184	_	241	270	298	327	355	384	412	44
	2.9 2.8	153	18 469	498	526	554	583	611	639	667	696	72
	5.8 5.6	154	18 752	780	808	837	865	893	921		977	*00
_	8.7 8.4	155	19 033		089	117	145	173	201	229	257	28
	4.5 14.0	156	19 312	340	368	396			479	1	535	56
-	7.4 16.8	157	19 590		645	673				100		
	0.3 19.6	158	19 866	893	921	948	976	728	756		811	83
- - '	3.2 22.4 5.1 25.2	159	20 140	167	194	222					*085	*11
, , -		160	20 412		466		249		303		358	_ 38
		161	20 683	439		493	520					
1.0	7 00	162			737	763	790	817	844		898	92
1.0	7 26	163	20 952	978	*005	*032	The state of the state of				*165	*19
A 1	2.7 2.6		21 219	245	272	299	325	352	378	405	431	4.5
	3.1 7.8	164	21 484	511	537	564	590	617	643	669	696	72
	0.8 10.4	165	21 748	775	801	827	854	880	906		958	98
	13.0	166	22 011	037	063	089	115	141	167		220	24
	19 18.2	167	22 272	298	324	350	376	401	427	453	479	50
8 21	.6 20.8	168	22 531	557	583	608	634	66ŭ	686	712	737	76
9 24	.3 23.4	169	22 789	814	840	866	891	917	943	968	994	*01
		170	23 045	070	096	121	147	172	198		2.00	
		171	23 300	325	350	376		_			249	27
- 1	25	172	23 553	578	603	629	401	426	452	477	502	52
1	2.5	173	23 805	830	855	880	654	679	704	729	754	77
2	5.0			0.00			905	930	955	980	*005	*03
3 4	7.5	174	24 055	080	105	130	155	180	204	229	254	27
5	12.5	175	24 304	329	353	378	403	428	452	477	502	52
6	15.0	176	24 551	576	601	625	650	674	699	724	748	77
8	17.5	177	24 797	822	846	871	805	920	944	969	993	*01
9	22.5	178	25 042	066	091	115	139	164	188	212	237	26
	4000	179	25 285	310	334	358	382	406	431	455	479	50
		180	25 527	551	575	600	624	648	672	696	720	74
24	4 23	181	25 768	792	816	840	864	888	912	935	959	98
- 1	4 2.3	182	26 007	031	055	079	102	126	150	174	198	22
	8 4.6	183	26 245	269	293	316	340	364	387	411		
3 7.	2 6.9	184	26 482								435	45
	6 9.2	185	26 717	505	529	553	576	600	623	647	670	69
6 14.		186	26 951	741	764	788	811	834	858	188	905	92
7 16.	8 16.1			975	998	*021	*045	*068	*091	*114	*138	*16
8 19.		187	27 184	207	231	254	277	300	323	346	370	39
9 21.	0 20.7	188	27 416	439	462	485	508	531	554	577	600	62
		189	27 646	669	692	715	738	761	784	807	830	85
		190	27 875	898	921	944	967	989	*012	*035	*058	*08
22	21	191	28 103	126	149	171	194	217	240	262	285	30
1 2.		192	28 330	353	375	398	421	443	466	488	511	533
3 6.		193	28 556	578	601	623	646	668	691	713	735	75
4 8.		194	28 780	803	825	847	870					
5 11.	0 10.5	195	29 003	026	048	070		892	914	937	959	98
6 13.		196	29 226	248	270	292	092	115	137	159	181	20
8 17.							314	336	358	380	403	42
9 19.		197	29 447	469	491	513	535	557	579	601	623	64
		198	29 667	688	710	732	754	776	798	820	842	86
	•	199	29 885	907	929	951	973	994	*016	*038	*060	*08
	Parts	200	30 103	125	146	168	190	211	233	255	276	298
-		N				1					-	

-435- 1500-LOGARITHMS OF NUMBERS-2009

N	0	1	2	3	4	5	6	_			-2509	
200	30 103		146	168				7	8	9	Pro	p. Parts
201	30 320	_	363	384	-		233		276	298		
202	30 535		578		406 621				492	514		
203	30 750	771	792	814		643 856			707	728	1 2	22 21
204	30 963					4		1000	920	942		2.2 2.1
205	31 175		218		*048	*069						4.4 4.2
206	31 387	408	429	239	260	281	302		345	366		6.6 6.3 8.8 8.4
207				450	471	492	513	100000	555	576	5 1	1.0 10.5
208	31 597	618	639	660	681	702	723		765	785		3.2 12.6 5.4 14.7
209	31 806	827	848	869	890	911	931	952	973	994	8 1	7.6 16.8
210	32 222	035	056	077	098	118	139	160	181	201	9 19	9.8 18.9
211		243	263	284	305	325	346		387	408		
212	32 428 32 634		469	490	510	531	552	572	593	613		
213	32 838	654 858	675	695	715	736			797	818		20
			879	899		940	960	980	*001	*021	1 2	4.0
214	33 041	062	082	102	122	143	163		203	224	3	6.0
215 216	33 244	264	284	304	325	345	365	385	405	425	4	8.0
	00 110	465	486	506		546	566	586	606	626	5	10.0
217	33 646	666	686	706	726	746			806	826	7	14.0
218	33 846	866	885	905	925	945	965		*005	*025	8	16.0
219	34 044	064		104	124	143	163		203	223	9	10.0
220	34 242	262	282	301	321	341	361	380	400	420		
221	34 439	459	479	498	518	537	557	577	596	616		19
222	34 635	655	674	694	713	733	753	772	792	811	1	1.9
223	34 830	850	869	889	908	928	947	967	986	*005	2	3.8
224	35 025	044	064	083	102	122	141	160	180	199	3	5.7
225	35 218	238	257	276	295	315	334	353	372	392	4 5	7.6 9.5
226	35 411	430	449	468	488	507	526	545	564	583	6	11.4
227	35 603	622	641	660	679	698	717	736	755	774	7 8	13.3
228	35 793	813	832	851	870	889	908	927	946	965	9	17.1
229	35 984	*003	*021	*040	*059	*078	*097	*116	*135	*154		
230	36 173	192	211	229	248	267	286	305	324	342		
231	36 361	380	399	418	436	455	474	493	511	530		18
232	36 549	568	586	605	624	642	661	680	698	717	1	1.8
233	36 736	754	773	791	810	829	847	866	884	903	2	3.6
234	36 922	940	959	977	996	*014	*033	*051	*070	*088	3 4	5.4 7.2
235	37 107	125	144	162	181	199	218	236	254	273	5	9.0
236	37 291	310	328	346	365	383	401	420	438	457	6	10.8
237	37 475	493	511	530	548	566	585	603	621	639	8	14.4
238	37 658	676	694	712	731	749	767	785	803	822	9	16.2
239	37 840	858	876	894	912	931	949	967	985	*003		
240	38 021	039	057	075	093	112	130	148	166	184		477
241	38 202	220	238	256	274	292	310	328	346	364		17
242	38 382	399	417	435	453	471	489	507	525	543	1 2	3.4
243	38 561	578	596	614	632	650	668	686	703	721	3	5.1
244	38 739	757	775	792	810	828	846	863	881	899	4	6.8 8.5
245	38 917	934	952	970	987	*005	*023	*041	*058	*076	5	10.2
246	39 094	111	129	146	164	182	199	217	235	252	7	11.9
						358	375	393	410	428	8 9	13.6 15.3
247	39 270	287	305 480	322 498	340 515	533	550	568	585	602	91	
248 249	39 445 39 620	463	655	672	690	707	724	742	759	777		
250		811	829	846	863	188	898	915	933	950		
_	39 794							7	8	9	Pron	. Parts
N	0	1	2	3	4	5	6		0	-	Trop	

2000-LOGARITHMS OF NUMBERS-2509 -436-

PLACE] I. 2500-LOGARITHMS OF NUMBERS-3009

Prop	. Parts	N	0	1	2	3	4	5	6	7	8	•
		250										9,
		251		985	*002	*019	*037	*054	*071	*088		
1	18	252		157		192				261	278	2
1	1.8	253	40 312	329	346	364	381	398	415	432	449	4
2	3.6	254	40 483	500	518	535	552	569	586	603	620	6
3	5.4	255				705					790	8
5	9.0	256				875			-		960	9
6	10.8	257					1					
7	12.6	258		•		212					*128	*1
8	16.2	259			363	380					296	3
,,		260		1		_					464	4
				514		547			597	614		_6
	40	261		681	697	714			764		797	8
	17	262		847	863	880	-		929		963	9
2	3.4	263	41 996	*012	*029	*045	*062	*078	*095	*111	*127	*1
3	5.1	264		177	193	210	226	243	259	275	292	3
4	6.8	265	, , ,	341	357	374	390	-		439	455	4
6	8.5	266	42 488	504	521	537		570	586		619	6
	10.2	267	42 651	667	684					1 -	781	
	13.6	268			846	862			749 911			7
9	15.3	269	42 975	991	*008	*024					943 *104	**
		270	43 136		169	185						*1
		271						217	233	249	265	2
- 1	16	272	43 297	313	329	345		377	393	409	425	4
1	1.6		43 457	473	489	505		537	553	569	584	6
2	3.2	273	43 616	632	648	664	1	696	712	727	743	7
3 4	4.8 6.4	274	43 775	791	807	823	838	854	870	886	902	9
5	8.0	275	43 933	949	965	981	996	*012	*028	*044	*059	*0
6	9.6	276	44 09 I	107	122	138	154	170	185	201	217	2
-	11.2	277	44 248	264	279	295	311	326		1000		
	12.8 14.4	278	44 404	420	436	451	467	483	342 498	358	373	3
-,		279	44 560	576	592	607		638		514 669	529	5
		280	44 716	731		762			654		685	79
11	15	281	44 871	886	747		778		809	824	840	8
1		282		1.3070-110	902	917	932	948	963	979	994	*0
2	3.0	283	45 025	040	056	071	086	102	117	133	148	10
3	4-5	100000	45 179	194	209	225	240	255	271	286	301	3
4	6.0	284	45 332	347	362	378	393	408	423	439	454	46
5	7.5 9.0	285	45 484	500	515	530	545	561	576	591	606	6:
7 1	0.5	286	45 637	652	667	682	697	712	728	743	758	77
8 1	2.0	287	45 788	803	818	834	849	864	879	894		
9 1	3.5	288	45 939	954	969	984	*000	*015	*030	*045	909 *060	*0
		289	46 090	105	120	135	150	165	180			*07
		290	46 240	255	270	285	300	315		195	210	22
100	4	291	46 389	404					330	345	359	37
I	1.4	292	46 538		568	434	449	464	479	494	509	52
	2.8 4.2	293	46 687	553 702	716	583	598	613	627	642	657	67
4	5.6	100000				731	746	761	776	790	805	82
5	7.0	294	46 835	850	864	879	894	909	923	938	953	96
	8.4	295	46 982	997		*026	*041	*056	*070	*085		*11
- 1	9.8 1.2	296	47 129	144	159	173	188	202	217	232	246	26
7.7	2.6	297	47 276	290	305	319	334	349	363			
	1779	298	47 422	436	451	465	480			378	392	40
		299	47 567	582	596	611	625	494	509	524	538	55
		300	47 712	727				640	654	669	683	69
- T	Parts	1!	1	-	741	756	770	784	799	813	828	84
WILL B	MILE	N	0	1	2	3	4	5	6	7	8	9

-437 - 2500-LOGARITHMS OF NUMBERS-3009

N	0	1	2	3	4	5	6	7	8	9	Prop	. Parts
300	47 712	727	741	756	770	784	799	813	828	842		
301	47 857	871	885		914	929	943	958	972	986		
302	48 001	015	029	044	058	073	087	101	116	130		
303	48 144	159	173	187		216	230	244	259	273		
304	48 287	302	316		12.53%			170.2				
305	48 430	444	458	330 473	344	359 501	373	387	401	416		15
306	48 572	586	601	615		643	515 657	530 671	544 686	558	1 2	3.0
										700	3	4.5
307	48 714	728	742	756	770	785	799	813	827	841	. 4	6.0
308	48 855	869	883	897	911	926	940	954	968	982	5 6	7.5 9.0
309	48 996	*010	*024	*038	*052	*066	*080	*094	*108	*122	7	10.5
310	49 136	150	164	178	192	206	220	234	248	262	8	12.0
311	49 276	290	304	318	332	346	360	374	388	402	91	13.5
312	49 415	429	443	457	471	485	499	513	527	541		
313	49 554	568	582	596	610	624	638	651	665	679		
314	49 693	707	721	734	748	762	776	790	803	817		
315	49 831	845	859	872	886	900	914	927	941	955		
316	49 969	982	996	*010	*024	*037	*051	*065	*079	*092	1	14
317					161		188				1	1.4
318	50 106	120	133	147 284		174		202	215	229 365	2	2.8
	50 243	256	270		297	311	325 461	338	352 488		3 4	5.6
319	50 379	393	406	420	433	447		474		501	5	7.0
320	50 515	529	542	556	569	583	596	610	623	637	6	8.4
321	50 651	664	678	691	705	718	732	745	759	772	7 8	9.8
322	50 786	799	813	826	840	853	866	880	893	907		12.6
323	50 920	934	947	961	974	987	*001	*014	*028	*041		
324	51 055	068	081	095	108	121	135	148	162	175		
325	51 188	202	215	228	242	255	268	282	295	308		
326	51 322	335	348	362	375	388	402	415	428	441		
327	51 455	468	481	495	508	521	534	548	561	574		40
328	51 587	601	614	627	640	654	667	680	693	706		13
329	51 720	733	746	759	772	786	799	812	825	838	1 2	2.6
		865	878	891	904	917	930	943	957	970	3	3.9
330	51 851						*061	*075	*088	*101	4	5.2
331	51 983	996	*009	*022	*035	*048	7.5 1.33	N 43 3 3 5 5 5 5	218	231	5 6	6.5 7.8
332	52 114	127	140	153	166	179	192	205		362	7	9.1
333	52 244	257	270	284	297	310	323	336	349	72	8	10.4
334	52 375	388	401	414	427	440	453	466	479	492	. 91	11.7
335	52 504	517	530	543	556	569	582	595	608	621		
336	52 634	647	660	673	686	699	711	724	737	750		
337	52 763	776	789	802	815	827	840	853	866	879		
338	52 892	905	917	930	943	956	969	982	994	*007		
339	53 020	033	046	058	071	084	097	110	122	135	1	12
340	53 148	161	173	186	199	212	224	237	250	263	1	1.2
		288	301	314	326	339	352	364	377	390	2	2.4
341	53 275		428	441	453	466	479	491	504	517	3 4	3.6 4.8
342	53 403	415		567	580	593	605	618	631	643	5	6.0
343	53 529	542	555	27.0						769	6	7.2
344	53 656	668	681	694	706	719	732	744	757 882	895	7 8	8.4 9.6
345	53 782	794	807	820	832	845	857	870	*008	*020		10.8
346	53 908	920	933	945	958	970	983	995				444
347	54 033	045	058	070	083	095	108	120	133	145		
348	54 158	170	183	195	208	220	233	245	258	270		
349	54 283	295	307	320	332	345	357	370	382	394		
350			432	444	456	469	481	494	506	518		
300	54 407	419	2	3	4	5	6	7	8	9	Prop.	Parts
		1		•••						_	F	

3000-LOGARITHMS OF NUMBERS-3509 - 438-

PLACE I. 3500-LOGARITHMS OF NUMBERS-4009

Prop. Parts	N	0	1	2	3	4	5	6	7	8	
	350	54 407	419	432	444	456	469	481	494	506	51
0.0	351	54 531	543						617		62
	352	0. 0.	1	_			716	728	741	753	70
	353	54 777	790	802	814	827	839	851	864	876	88
13	354	10.0		925	937			974	986	998	*0
1 1.3	355	55 023		-	060		084	096	108	121	I,
3 3.9	356	55 145	157	169	182	194	206	218	230	242	2
4 5.2	357	55 267	279	291	303	315	328	340	352	364	3
5 6.5 6 7.8	358	55 388	400	413	425	437	449	461	473	485	4
7 9.1	359	55 509	522		546			582	594	606	6
9 11.7	360	55 630	642	654	666				715		7.
31	361	55 751	763	775	787	799	811	823	835	847	8
	362	55 871	883		907	919	931	943	955	967	9
	363	55 991	*003	*015	*027	*038	*050	*062	*074	*086	*0
	364	56 110	122	134	146		170	182	194	205	2
12	365	56 229	241	253	265		289	301	312	324	3.
1 1.2	366	56 348	360	372	384	396	407	419	431	443	4
2 2.4	367	56 467	478	490	502	514	526	538	549	561	5
3 3.6	368	56 585	597	608	620	632	644	656	667	679	6
4 4.8 5 6.0	369	56 703	714	726	738	750	761	773	785	797	8
6 7.2	370	56 820	832	844	855	867	879	891	902	914	9:
7 8.4 8 9.6	371	56 937	949	961	972	984	996	*008	*019		*0.
9 10.8	372	57 054	066	078	089	101	113	124	136	148	1
7.5	373	57 171	183	194	206	217	229	241	252	264	2
	374	57 287	299	310	322	334	345	357	368	380	39
	375	57 403	415	426	438	449	461	473	484	496	50
	376	57 519	530	542	553	565	576	588	600	611	62
111	377	57 634	646	657	669	680	692	703	715	726	73
1 1.1	378	57 749	761	772	784	795	807	818	830	841	8
2 2.2	379	57 864	875	887	898	910	921	933	944	955	96
3 3.3	380	57 978	990	*001	*013	*024		*047	*058	*070	*08
4 4.4 5 5.5	381	58 092	104	115	127	138	149	161	172	184	IÇ
6 6.6	382	58 206	218	229	240	252	263	274	286	297	30
7 7.7 8 8.8	383	58 320	331	343	354	365	377	388	399	410	4:
9 9.9	384	58 433	444	456	467	478	490	501	512	524	
	385	58 546	557	569	580	591	602	614	625	636	53 64
	386	58 659	670	681	692	704	715	726	737	749	76
	387	58 771	782	794	805	816	827	838	850	861	
	388	58 883	894	906	917	928	939	950	961		98
10	389	58 995	*006	*017	*028	*040	*051	*062	*073	973 *084	*09
1 1.0	390	59 106	118	129	140	151	162	173	184		
2 2.0	391	59 218	229	240	251	262	273	284	295	195	20
3 3.0	392	59 329	340	351	362	373	384	395	406	306	31
5 5.0	393	59 439	450	461	472	483	494	506	517	417 528	42
6 6.0	394	59 550	561	572	583	594	605	616	7.7		53
8 8.0	395	59 660	671	682	693	704	715	726	627	638	64
9 9.0	396	59 770	780	791	802	813	824	835	737 846	748 857	75 86
	397	59 879	890	901	912			100000			
	398	59 988	999		*021	923 *032	934	945	956	966	97
	399	60 097	108	119	130	141	*043 152	*054	*065	*076	*08
	400	60 206	217	228	239	249	260	163	282	184	19
rop. Parts	N	0	1	2	3	4	5	271	202	293	30
TOP. PATTR						_		6	7	8	

-439 - 3500-LOGARITHMS OF NUMBERS-4009

400	N	0	1	2	3	4	5	6	7	8	9	Pro	
402	400	60 206	217	228	239	240			+	_			. Parts
400										,,,			
404 60 638 649 660 670 681 692 703 713 724 735 736 736 736 736 736 736 737 737 737 738 739 808 818 818 842 840 861 606 60 853 863 874 885 895 906 917 927 938 949 940 940 940 940 961 972 838 911 902 903 911 913 914 914 914 914 914 914 914 914 914 914 914 915 916 917 918 918 918 918 918 918 919			433				112000					7.1	
405	403	60 531	541								-		
405		0		660	670	681		100					
400	11 10 10 12	60 746	756		778	788		_					
408	406	60 853	863	874	885		-						
409				981	991	*002	*013			4			111
410 61 172 183 194 204 215 225 236 247 257 268 313 334 410 61 184 412 61 490 500 511 521 532 542 553 563 574 584 555 565 616 627 637 648 658 669 679 690 78 8.8 814 61 700 711 721 731 742 752 763 773 784 794 794 415 61 805 815 826 836 847 857 868 878 888 899 808 418 62 211 232 242 252 263 273 284 294 304 315 315 326 327 328 329 300 341 349				087									
411 61 278 289 300 310 321 331 342 352 363 374 411 61 700 500 511 521 532 542 553 554 554 554 554 546 479 481 415 61 805 815 826 836 847 857 868 878 888 899 999 910 920 930 941 941 941 942 948 949 949 949 949 949 949 949 949 949 949 949 949 944 948 949 949 949 949 949 949 949 944 949 9				194	204	215	225			_		2	100000
411				300	310	321	331	342				1120	
413				405	416	426	437					5	
414 61 700 711 721 731 742 752 763 773 784 794 416 61 909 920 930 941 951 962 972 982 993 *003 417 62 118 128 138 149 159 170 180 190 201 211 419 62 221 232 242 252 263 273 284 294 304 315 422 62 531 542 552 562 572 583 593 603 613 624 424 62 56 62 66 676 685 696 706 716 726 726 726 727 747 757 767 778 788 798 808 818 829 33 3.0 425 62 941 951 961 972 982 992 *002 *011 *021 *100 *100 *100 *100 *10					-				563	574		6	The state of the s
415				616	627	637	648	658	669	679	690		
416				-			752			784	794		100000000000000000000000000000000000000
11							857	868	878		899		
418				930	941	951	962	972	982	993	*003		
419 62 118 128 138 149 159 170 180 190 201 211 232 242 252 263 273 284 294 304 315 395 306 377 387 3					045	055	066	076	086	097	107		
420						159	170	180				1	
421 62 428 439 449 459 469 480 490 630 611 521 422 62 531 542 552 562 572 583 593 603 613 624 424 62 737 747 757 767 778 788 798 808 818 829 425 62 839 849 859 870 880 890 900 910 921 931 4 4.0 426 62 941 951 961 972 982 992 *002 *012 *022 *033 5 5.50 6.0 6.0 70 778 788 788 808 818 829 3 3.0 442 626 289 890 900 901 921 931 4 4.0 4.0 40 40 40 40 40 40 40 40 40 40 40 40						_	273		294	304	315		
422 62 531 542 552 562 572 583 593 603 613 624 423 62 634 644 655 665 675 685 696 706 716 726 1 1.0 424 62 737 747 757 767 778 788 788 808 818 829 3.3.3 3.3.3 425 62 839 849 859 870 880 890 900 910 921 931 4 4.0 426 62 941 951 961 972 982 992 *002 *012 *022 *033 6 6.0								387	397	408	418		
423 62 634 644 655 665 675 685 696 706 716 726 1									_	-			142
424 62 737 747 757 767 778 788 798 808 818 829 3 3.30 425 62 839 849 859 870 880 890 900 910 921 931 4 4.0 426 62 941 951 961 972 982 992 *002 *012 *022 *033 5 5.0 427 63 043 053 063 073 083 094 104 114 124 134 7 7.0 428 63 144 155 165 175 185 195 205 215 225 236 8 8.0 429 63 246 256 266 276 286 296 306 317 327 337 430 63 448 458 468 478 488 488 488 558 588 588 599 599 609 619 629 639 433 63 649 659 669 679 689 6		62 634	542	-	562		583						
425 62 737 747 757 707 778 788 798 808 818 829 3 3.0 4.0 425 62 839 849 859 870 880 890 900 910 921 931 4 4.0 426 62 941 951 961 972 982 992 *002 *012 *022 *033 5 5 5.0 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 <											726		
426 62 941 951 961 972 982 992 *002 *012 *022 *033 5 5.0 6.0 427 63 043 053 063 073 083 094 104 114 124 134 7 7.0 428 63 144 155 165 175 185 195 205 215 225 236 8 8 8 9.0 430 63 246 256 266 276 286 296 306 317 327 337 431 63 448 458 468 478 488 498 508 518 528 538 433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 899 809 819 829 839 437 64 048 058 868 879 889 898 898 808 898 808 80		62 737							808	818	829		
427 63 043 053 063 073 185 195 205 215 225 236 8 8.0 9 9.0 63 246 256 266 276 286 296 306 317 327 337 337 433 63 649 659 669 679 689 699 709 719 729 739 434 63 349 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *018 *028 *038 434 63 448 64 147 157 167 177 187 197 207 217 227 237 439 64 246 256 266 276 286 296 306 316 326 335 440 64 345 355 365 375 385 395 404 414 424 434 454 464 473 483 493 503 513 523 532 444 64 738 748 758 768 777 787 797 807 816 826 444 64 738 748 758 768 777 787 797 807 816 826 446 64 933 943 953 963 972 982 992 **002 *011 *021 448 65 128 137 147 157 167 176 186 196 205 215 249 444 64 738 748 758 768 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 **002 *011 *021 448 65 128 137 147 157 167 176 186 196 205 215 244 244 254 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312			W - 1 10 20	-						-		4	
428 63 144 155 165 175 185 195 205 215 225 236 8 8.0 9.0 430 63 246 256 266 276 286 296 306 317 327 337 431 63 448 458 468 478 488 498 508 518 528 538 432 63 548 558 568 579 589 599 609 619 629 639 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *18 828 *389 437 64 048 058 068 078 088 098 108 118 128 137 1 0.9 438 64 147 157 167	41.54		15.57		1.00		992	⁺ 002	*012	*022	*033		
429 63 246 256 266 276 286 296 306 317 327 337 430 63 347 357 367 377 387 397 407 417 428 438 431 63 448 458 468 478 488 498 508 518 528 538 432 63 548 558 568 579 589 599 609 619 629 639 433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *18 *18 128 137 1 0.9 437 64 048 058 068 078 088													
430 63 347 357 367 377 387 397 407 417 428 438 431 63 448 458 468 478 488 498 508 518 528 538 432 63 548 558 568 579 689 599 609 619 629 639 433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 898 898 998 909 919 929 939 436 63 949 959 969 979 988 998 *008 *18 18 128 137 1 437 64 048 058 068 078 088 098 108 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
431 63 448 458 468 478 488 498 508 518 528 538 432 63 548 558 568 579 589 599 609 619 629 639 433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *018 *028 *038 437 64 048 058 068 078 088 098 108 118 128 137 1 438 64 147 157 167 177 187 197 207 217 227 237 32 1.8 439 64 246 256 266 276 286													
432 63 548 558 568 579 589 599 609 619 629 639 433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *118 *128 137 1 0.9 437 64 048 058 068 078 088 098 108 118 128 137 1 0.9 438 64 147 157 167 177 187 197 207 217 227 237 3 21.8 439 64 246 256 266 276 286 296 306 316 326 335 45 441 64 444													
433 63 649 659 669 679 689 699 709 719 729 739 434 63 749 759 769 779 789 799 809 819 829 839 435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *118 128 137 437 64 048 058 068 078 088 098 108 118 128 137 439 64 246 256 266 276 286 296 306 316 326 335 440 64 345 355 365 375 385 395 404 414 424 434 441 64 444 454 464 473 483 493 503 513 523 532 442 64 542 552 562 572 582 591 601 611 621 631 8 722 443 64 640 650 660 670 680 689 699 709 719 729 444 64 738 748 758 768 777 787 797 807 816 826 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312 449 65 225 234 244 254 263 273 283 292 302 312				-				-		-			
434				_					2. 2. 3. 3.3	7.1.5			
435 63 849 859 869 879 889 899 909 919 929 939 436 63 949 959 969 979 988 998 *008 *018 *028 *038 437 64 048 058 068 078 088 098 108 118 128 137 1 0.9 438 64 147 157 167 177 187 197 207 217 227 237 32 1.8 439 64 246 256 266 276 286 296 306 316 326 335 3 2.7 3.6 440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 6 5.4 442 64 552 562 572									1000				
436 63 949 959 969 979 988 998 *008 *018 *028 *038 437 64 048 058 068 078 088 098 108 118 128 137 438 64 147 157 167 177 187 197 207 217 227 237 32 1.8 439 64 246 256 266 276 286 296 306 316 326 335 4 3.6 440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 6 5.4 442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 8		63 849											
437 64 048 058 068 078 088 098 108 118 128 137 1 0.9 438 64 147 157 167 177 187 197 207 217 227 237 3 2 1.8 439 64 246 256 266 276 286 296 306 316 326 335 4 3.6 440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 6 5.4 442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 8.1 444 64 738 748 758 768 777 787 797										-		1	•
438 64 147 157 167 177 187 197 207 217 227 237 439 64 246 256 266 276 286 296 306 316 326 335 440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 6 5.4 442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 9 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 447 65 0					100			100		100			
439 64 246 256 266 276 286 296 306 316 326 335 4 3.6 440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 6 5.4 442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 4								3.30				2	
440 64 345 355 365 375 385 395 404 414 424 434 5 4.5 441 64 444 454 464 473 483 493 503 513 523 532 631 7 6.3 7 6.3 7 6.3 7.2 64 64 64 64 64 64 65 660 670 680 689 699 709 719 729 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186													
441 64 444 454 464 473 483 493 503 513 523 532 63 7 6.3 442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 9 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 <												5	
442 64 542 552 562 572 582 591 601 611 621 631 8 7.2 443 64 640 650 660 670 680 689 699 709 719 729 9 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312												6	
443 64 640 650 660 670 680 689 699 709 719 729 9 8.1 444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312	2 / 1 / 1										-		
444 64 738 748 758 768 777 787 797 807 816 826 445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312						_		699	709	719			
445 64 836 846 856 865 875 885 895 904 914 924 446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312	444	64 738		758	768	777	787	797	807	816	826		
446 64 933 943 953 963 972 982 992 *002 *011 *021 447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312		64 836				875			904				
447 65 031 040 050 060 070 079 089 099 108 118 448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312									*002	*011	*02I		
448 65 128 137 147 157 167 176 186 196 205 215 449 65 225 234 244 254 263 273 283 292 302 312	4 10 1						079		099	108	118		
449 65 225 234 244 254 263 273 283 292 302 312						-		186			215		
170								283					
		65 321	331	341	350	360			389	398	408		
N 0 1 2 3 4 5 6 7 8 9 Prop. Parts	-						5	6	7	8	9	Prop.	Parts

PLACE] I. 4500-LOGARITHMS OF NUMBERS-5009

r rop	arts N	0	1	2	3	4	5	6	7	8	9
	45	0 65 321	331	341	350	360	369	379	389	398	40
	45		427	437	447	456	466	475	485	495	50.
	45		523	533	543	552	562	571	581	591	60
	45	3 65 610	619	629	639	648	658	667	677	686	69
	45			725	734	744	753	763	772	782	79
	45			820	830	839	849	858	868	877	88
	45	6 65 896	906	916	925	935	944	954	963	973	98
110	45	7 65 992	*001	*011	*020	*030	*039	*049	*058	*068	*07
1 1.	45			106	115	124	134	143	153	162	17
2 2.	143	9 66 181		200	210	219	229	238	247	257	26
3 3.	I AC	0 66 276		295	304	314	323	332	342	351	36
5 5.	46			389	398	408	417	427	436	445	45
7 7.	1 40	2 66 464	474	483	492	502	511	521	530	539	54
8 8.	1 4 /			577	586	596	605	614	624		64
9 9.	46			671	680	689	699	708	717	727	73
	46		755	764	773	783	792	801	811	820	82
	46	6 66 839	848	857	867	876	885	894	904	913	92
	46			950	960	969	978	987		*006	
	46		034	043	052	062	071	080	997 089	099	*01
	46			136	145	154	164	173	182	191	20
	47		219	228	237	247	256	265	274	284	29
	47	_		321	330	339	348	357	367	376	38
9	47			413	422	431	440	449	459	468	
I 0.9	47			504	514	523	532	541	550	560	47 56
3 2.	1 4 80		587	596	605	1 1 2 / 1 1 2					
4 3.0	C	, 0,		688	697	614	624	633	642	651	66
5 4.5	47			779	788	706	715 806	724 815	733	742	75
7 6.3						797			825		84
8 7.	1 17			870	879	888	897	906	916	925	.93
9 8.1	47		952	961	970	979	988	997	*006	*015	*02
	48		-	052	061	070	079	088	097	106	11
	48			142	151	160	169	178	187	196	20
	48		1 .	233	242	251	260	269	278	287	29
	48		314	323	332	341	350	359	368	377	38
			100000000000000000000000000000000000000	413	422	431	440	449	458	467	47
	48		494	502	511	520	529	538	547	556	56
1.0	48			592	601	610	619	628	637	646	65
8			673	681	690	699	708	717	726	735	74
2 1.6	1.0			771	780	789	797	806	815	824	83
3 2.4	400		851	860	869	878	886	895	904	913	92
4 3.2			940	949	958	966	975	984	993	*002	*01
5 4.0			028	037	046	055	064	073	082	090	09
7 5.6	49		117	126	135	144	152	161	170	179	18
8 6.4		1 / //	205	214	223	232	241	249	258	267	27
9 7.2	1 77	1	294	302	311	320	329	338	346	355	36
	494	7010	381	390	399	408	417	425	434	443	45
	49		469	478	487	496	504	513	522	531	53
	490	69 548	557	566	574	583	592	601	609	618	62
	49	69 636	644	653	662	671	679	688	697		
	498	69 723	732	740	749	758	767	775	784	705	71 80
	499	69 810	819	827	836	845	854	862	871	793 880	88
	500	69 897	906	914	923	932	940	949	958	966	97
						/	7-4-		~ ~ ~ ~ ~ ~	ULHA	

-441 - 4500-LOGARITHMS OF NUMBERS-5009

N	0	1	2	3	4	5	6	7	8	9	Prop. Pa	rte
500	69 897	906	914	923	932	940					1 100.10	
501	69 984	992		*010								
502	70 070	079	088	096		114	122		140	148		
503	70 157	165	174	183	191	200	209		226			
504			260							٠.		
505	70 243	252		269	278	286	295		312	321		
506	70 329	338		355	364	372	381		398			
	70 415	424	432	441	449	458	467	475	484	492		
507	70 501	509	518	526	535	544	552	561	569	578	9	
508	70 586	595	603	612	621	629	638	646	655	663	1 0.9	
509	70 672	680	689	697	706	714	723	731	740	749	2 1.8 3 2.7	
510	70 757	766	774	783	791	800	808	817	825		3 2.7 4 3.6	
511	70 842	851	859	868	876	885	893		910	919	5 4.5	
512	70 927	935	944	952	961	969	978	986	995	*003	6 5.4	
513	71 012	020	029	037	046	054	063		079	088	7 6.3 8 7.2	
514	71 096	105	113	122	130				164		9 8.1	
515	71 181	189	198	206		139	231	155		172		
516		273	282	290	214	223	231	240	248	257		
		100000			1 1 1 1 1 1 1	307	315	324	332	341		
517	71 349	357	366	374	383	391	399	408	416	425		
518	71 433	441	450	458	466	475	483	492	500	508	(a) 1	
519	71 517	525	533	542	550	559	567	575	584	592		
520	71 600	609	617	625	634	642	650	659	667	675		
521	71 684	692	700	709	717	725	734	742	750	759	1.0	
522	71 767	775	784	792	800	809	817	825	834	842	8	
523	71 850	858	867	875	883	892	900	908	917	925	1 0.8 2 1.6	
524	71 933	941	950	958	966	975	983	991	999	*008	3 2.4	
525	72 016	024	032	041	049	057	066	074	082	090	4 3.2	
526	72 099	107	115	123	132	140	148	156	165	173	5 4.0 6 4.8	
	100	100								- 200	7 5.6	
527	72 181	189	198	206	214	222	230	239	247	255	8 6.4	
528	72 263	272	280	288	296	304	313	321	329	337	9 7.2	
529	72 346	354	362	370	378	387	395	403	411	419		
530	72 428	436	444	452	460	469	477	485	493	501		
531	72 509	518	526	534	542	550	558	567	575	583		
532	72 591	599	607	616	624	632	640	648	656	665		
533	72 673	681	689	697	705	713	722	730	738	746		
534	72 754	762	770	779	787	795	803	811	819	827		
	72 835	843	852	860	868	876	884	892	900	908		
536	72 916	925	933	941	949	957	965	973	981	989	7	
537	72 997	*006	*014	*022	*030	*038	*046	*054	*062	*070	1 0.7	
	73 078	086	094	102	111	119	127	135	143	151	2 1.4	
539	73 159	167	175	183	191	199	207	215	223	231	3 2.1	
				263		280	288	296	304	312	4 2.8 5 3.5	
	73 239	247	255		272		368	376	384	392	6 4.2	
	73 320	328	336	344	352	360	_		464	472	7 4.9 8 5.6	
	73 400	408	416	424	432	440	448 528	456		552	9 6.3	
	73 480	488	496	504	512	520	7794.54.19	536	544		-1	
	73 560	568	576	584	592	600	608	616	624	632		
	73 640	648	656	664	672	679	687	695	703	711		
	73 719	727	735	743	751	759	767	775	783	791		
547	73 799	807	815	823	830	838	846	854	862	870		
	73 799	886	894	902	910	918	926	933	941	949		
549		965	973	981	989	997	*005	*013	*020	*028		
	73 957 74 036	044		060	068	076	084		099	107		
(60)		044	052	000	000	0,0		- /-	//			

5000-LOGARITHMS OF NUMBERS-5509 -442-

PLACE) 1. 5500-LOGARITHMS OF NUMBERS-6009

Prop. Parts	N	0	1	2	3	4	5	6	7	8	9
	550	74 036	044	052	060	068	076	084	092	099	10
	551	74 115	123	131	139	147	155	162	170	178	18
	552	74 194	202	210	218	225	233	241	249	257	26
	553	74 273	280	288	296	304	312	320	327	335	34
	554	74 351	359	367	374	382	390	398	406	414	42
	555	74 429	437	445	453	461	468	476	484	492	50
	556	74 507	515	523	531	539	547	554	562	570	57
	557	74 586	593	601	609	617	624	632	640	648	65
	558	74 663	671	679	687	695	702	710	718	726	73
	559	74 741	749	757	764	772	780	788	796	803	81
	560	74 819	827	834	842	850	858	865	873	88 I	88
	561	74 896	904	912	920	927	935	943	950	958	96
8	562	74 974	981	989	997	*005	*012	*020	*028	*035	*04
1 0.8	563	75 051	059	066	074	082	089	097	105	113	12
2 1.6	564	75 128	136	143	151	159	166	174	182	189	19
4 3.2	565	75 205	213	220	228	236	243	251	259	266	27
5 4.0	566	75 282	289	297	305	312	320	328	335	343	35
6 4.8 7 5.6	567	75 358	366	374	381	389	397	404		420	42
8 6.4	568	75 435	442	450	458	465	473	481	488	496	50
9 (7.2	569	75 511	519	526	534	542	549	557	565	572	58
	570	75 587	595	603	610	618	626	633	641	648	65
	571	75 664	671	679	686	694	702	709	717	724	73
	572	75 740	747	755	762	770	778	785	793	800	80
	573	75 815	823	831	838	846	853	861	868	876	88
	574	75 891	899	906	914	921	929				
	575	75 967	974	982	989	997		937 *012	944 *020	952 *027	95
	576	76 042	050	057	065	072	080	087	095	103	*03
	577	76 118	1 2.9.35					200	10.00		
	578	76 193	200	208	140 215	148	155	163	170	178	18
	579	76 268	275	283	290	223 298	230 305	238	245	253	26
	580	76 343	350	358	365	373	380	313	320	328	33
1 -	581	76 418	425	433	440	448		462	395	403	41
7	582	76 492	500	507	515	522	455 530		470	477	48
2 1.4	583	76 567	574	582	589	597	604	537 612	545 619	552 626	55
3 2.1	584	76 641			664						63
4 2.8	585	76 716	649 723	656	738	671	678	686	693	701	70
5 3.5 6 4.2	586	76 790	797	730 805	812	745 819	753 827	760	768	775	78
7 4.9	587							834	842	849	85
8 5.6 9 6.3	588	76 864 76 938	871	879	886	893	901	908	916	923	93
2,00	589	77 012	945	953 026	960	967	975	982	989	997	*00
	590	77 085			034	041	048	056	063	070	07
	591		166	100	107	115	122	129	137	144	15
	592	77 159 77 232		173	181	188	195	203	210	217	22
	593	77 305	240 313	247	254	262	269	276	283	291	29
				320	327	335	342	349	357	364	37
	594 595	77 379	386	393	401	408	415	422	430	437	44
	596	77 452	459	466	474	481	488	495	503	510	51
		77 525	532	539	546	554	561	568	576	583	59
	597	77 597	605	612	619	627	634	641	648	656	66
	598	77 670	677	685	692	699	706	714	721	728	73
	599	77 743	750	757	764	772	779	786	793	801	80
	600	77 815	822	830	837	844	851	859	866	873	88
rop. Parts	N										

-443- 5500-LOGARITHMS OF NUMBERS-6009

N	0	1	2	3	4	5	6	7	8	9	Prop. Parts
600	77 815	822	830	837	844	851	859	866			
601	77 887	895		909	916	924	931	938	- 10		-1
602	77 960	967	974	981	988	996	*003	*010	*017		
603	78 032	039	046	053	061	068	075		089		1
604	78 104	III	118	125	132	140	147	154	161	168	1
605	78 176	183	190	197	204	211	219		233	240	1
606	78 247	254	262	269	276	283	290	297	305	312	1
607	78 319	326	333	340	347	355	362	369	376	383	8
800	78 390	398	405	412	419	426	433		447	455	
609	78 462	469	476	483	490	497	504	512	519	526	2 1.6
310	78 533	540	547	554	561	569	576	583	590	597	3 2.4 4 3.2
511	78 604	611	618	625	633	640	647	654	661	668	5 4.0
512	78 675	682	689	696	704	711	718	725	732	739	, , , , , ,
513	78 746	753	760	767	774	781	789	796	803	810	8 6.4
514	78 817	824	831	838	845	852	859	866	873	880	9 7.2
515	78 888	895	902	909	916	923	930	937	944	951	
	78 958		972	979	986	993	*000	*007	*014	*021	
517	79 029	036	043	050	057	064	071	078	085	092	
18	79 099	106	113	120	127	134	141	148	155	162	
19	79 169	176	183	190	197	204	211	218	225	232	
20	79 239	246	253	260	267	274	281	288	295	302	
21	79 309	316	323	330	337	344	351	358	365	372	17
22	79 379	386	393	400	407	414	421	428	435	442	1 0.7
23	79 449	456	463	470	477	484	491	498	505	511	2 1.4
24	79 518	525	532	539	546	553	560	567	574	581	3 2.I 4 2.8
	79 588	595	602	609	616	623	630	637	644	650	5 3.5
26	79 657	664	671	678	685	692	699	706	713	720	6 4.2
27	79 727	734	741	748	754	761	768	775	782	789	7 4.9 8 5.6
	79 796	803	810	817	824	831	837	844	851	858	9 6.3
29	79 865	872	879	886	893	900	906	913	920	927	
30	79 934	941	948	955	962	969	975	982	989	996	
	80 003	010	017	024	030	037	044	051	058	065	
32	80 072	079	085	092	099	106	113	188	127	202	h A
	80 140	147	154	161	168	175			195	3337	
	80 209	216	223	229	236	243	250	257	264	271	
35	80 277	284	291	298 366	305	312	318	325	332 400	339 407	16
	80 346	353	359		373	15000		393	15		1 0.6
37	80 414	421	428	434	441	448	455	462	468	475	2 1.2
- 200	80 482	489	496	502	509	516 584	523 501	530 598	536 604	543 611	3 1.8
	80 550 80 618	557	564	570 638	577	652	591 659	665	672	679	4 2.4 5 3.0
	80 686	625	632	706	645	720	726	733	740	747	6 3.6
	80 754	693 760	699 767	774	713 781	787	794	801	808	814	7 4.2 8 4.8
43	80 821	828	835	841	848	855	862	868	875	882	9 5.4
					916	922	929	936	943	949	
1000	80 889 80 956	895 963	902 969	909	983	990	996	*003		*017	
	81 023	030	037	043	050	057	064	070	077	084	
						124	131	137	144	151	
	81 090	097	104	111	117	191	198	204	211	218	1 × 1
	81 158 81 224	164	171 238	245	251	258	265	271	278	285	
	81 291	231	305	311	318	325	331	338	345	351	
UU	01 291	290	303	1,7 1	0-0	0.0	017		8		Prop. Parts

6000-LOGARITHMS OF NUMBERS-6509 -444-

PLACEJ I. 6500-LOGARITHMS OF NUMBERS-7009

Prop	. Parts	N	0	1	2	3	4	5	6	7	8	9
		650	81 291	298	305	311	318	325	331	338	345	35
		651	81 358	365	371	378	385	391	398		411	41
		652	81 425		438	445		458	465	471	478	48
		653	81 491		505	511	518		531	538	544	55
		654	81 558	564	571	578	584	591	598	604	611	61
		655	81 624		637	644		657	664	671	677	68
		656	81 690	697	704	710		723	730	737	743	75
		657	81 757	763	770	776	1	790	796	803	809	81
		658	81 823	829	836	842			862	869	875	88
		659	81 889	895	902	908		921	928		941	94
		660	81 954	-	968	974	981	987	994	*000	*007	*01
		661	82 020	027	033	040	046		060	066	073	07
	7	662	82 086	092	099	105	112	119	125	132	138	14
1	0.7	663	82 151	158	164	171	178	184		197	204	21
2	1.4	664	82 217	223	230	236				263		
3	2.1	665	82 282	289	295	302	308	249 315	256 321	328	269	27
5	3.5	666	82 347	354	360	367	373	380	387	393	334	34 40
6	4.2	667		1 1 1 1 1 1								
8	4.9 5.6	668	82 413		426	432	439	445	452	458	465	47
9		669	82 478 82 543	484	491	497 562	504	510	517	523	530	53
		670	82 607	549 614	556 620		569	575	582	588	595	60
		671				627	633	640	646	653	659	66
		672	82 672 82 737	679	685	692	698	705	711	718	724	73
		673	82 802	743 808	750 814	756 821	763 827	769	776	782	789	79
				1000				834	840	847	853	86
		674	82 866	872	879	885		898	905	911	918	92
		676	82 930	937	943	950	956	963	969	975	982	98
			82 995	*001	*008	*014		*027	*033	*040	*046	*05
		677	83 059	065	072	078	085	091	097	104	110	II
		678	83 123	129	136	142	149	155	161	168	174	18
		679	83 187	193	200	206	213	219	225	232	238	24
		680	83 251	257	264	270	276	283	289	296	302	_30
-	6	681	83 315	321	327	3.34	340	347	353	359	366	37
1	0.6	682	83 378	385	391	398	404	410	417	423	429	43
2	1.2	683	83 442	448	455	461	467	474	480	487	493	49
3	1.8 2.4	684	83 506	512	518	525	531	537	.544	550	556	56
5	3.0	685	83 569	575	582	588	594	60 I	607	613	620	62
	3.6	686	83 632	639	645	651	658	664	670	677	683	68
7 8	4.2 4.8	687	83 696	702	708	715	721	727	734	740	746	75
	5-4	688	83 759	765	771	778	784	790	797	803	809	816
		689	83 822	828	835	841	847	853	860.	866	872	879
		690	83 885	891	897	904	910	916	923	929	935	942
		691	83 948	954	960	967	973	979	985	992		*00
		692	84 011	017	023	029	036	042	048	055	061	06
		693	84 073	080	086	092	098	105	III	117	123	130
		694	84 136	142	148	155	161	167	173	180	186	192
		695	84 198	205	211	217	223	230	236	242	248	25
		696	84 261	267	273	280	286	292	298	305	311	31
		697	84 323	330	336	342	348		361			
		698	84 386	392	398	404	410	354 417	423	367	373	379
		699	84 448	454	460	466	473	479	485	429	435	442
		700	84 510	516	522	528	535	541	547	491	497	504
	Danto	-	1						34/	553	559	566
TOP.	Patto	N	0	1	2	3	4	5	6	7	8	9

-445- 6500-LOGARITHMS OF NUMBERS-7009

N	0	1	2	3	4	5	6	7	8	9	Prop. Parts
700	84 510	516	522	528	535	541	547	553	559	566	
701	84 572	578		590		603		_			
702	84 634	640	646	652							
703	84 696		708	714		_					
704	84 757	763	770	776				1 1			
705	84 819	825	831	837		850					31
706	84 880	887	893	899		911					
707					1		917	1100			William Control
708	84 942	948	954	960	1 .	973	979		991	997	
709	85 003 85 065	009	016	022	028	034	200 300 000		052	058	
710		071	077	083		095	101		114		- 2 2 7
	85 126	132	138	144	150	156	163	169	175	181	4 2.8
711	85 187	193	199	205	211	217	224	_	236	242	
712	85 248	254	260	266	272	278	285	291	297	303	6 4.2 7 4.9
713	85 309	315	321	327	333	339	345	352	358	364	8 5.6
714	85 370	376	382	388	394	400	406	412	418	425	0 6 0
715	85 431	437	443	449	455	461	467		479	485	
716	85 491	497	503	509	516		528		540	546	
717	85 552	558	564	570	576		588	100000000000000000000000000000000000000	600	606	
718	85 612	618	625	631	637	643	649		661	667	
719	85 673	679	685	691	697	703	709		721		
720	85 733					763				727	
721	85 794	739 800	745 806	75I 812	757		769		781	788	•
722	85 854	860	866		818	824	830		842	848	
23			_	872	878	884	890		902	908	
	85 914	920	926	932	938	944	950	1000	962	968	2 1.2
724	85 974	980	986	992	998	*004	*010		*022		39.5% 11.02.1.54
725	86 034	040	046	052	058	064	070	076	082	088	4 2.4 5 3.0
726	86 094	100	106	112	118	124	130	136	141	147	6 3.6
727	86 153	159	165	171	177	183	189	195	201	207	7 4.2
728	86 213	219	225	231	237	243	249	255	261	267	8 4.8 9 5.4
729	86 273	279	285	291	297	303	308	314	320	326	913.4
	86 332	338	344	350	356	362	368	374	380	386	
	86 392	398	404	410	415	421	427	433	439	445	
	86 451	457	463	469	475	481	487	493	499	504	
	86 510	516	522	528	534	540	546	552	558	564	
								611	617	623	
	86 570 86 629	576	581	587	593	599	605	670	676	682	
	86 688	635	641	646	652	658		729		741	
		694	700	705	711	717	723		735	100000	5
	86 747	753	759	764	770	776	782	788	794	800	1 0.5
5.150	86 806	812	817	823	829	835	841	847	853	859	3 1.5
	86 864	870	876	882	888	894	900	906	911	917	4 2.0
	86 923	929	935	941	947	953	958	964	970	976	5 2.5 6 3.0
	86 982	988	994		_		*017			*035	7 3.5
	87 040	046	052	058	064	070	075	081	087	093	8 4.0
43	87 099	105	III	116	122	128	134	140	146	151	9 4.5
44	87 157	163	169	175	181	186	192	198	204	210	
	87 216	221	227	233	239	245	251	256	262	268	
	87 274	280	286	291	297	303	309	315	320	326	
						361	367	373	379	384	11
	87 332	338	344	349	355			431	437	442	
	87 390	396	402	408	413	419	425 483	489	495	500	
	87 448	454	460	466	471	477		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		558	
50	87 506	512	518	523	529	535 5	541	547	552 8	9	Prop. Parts
							6	7	_		

7000-LOGARITHMS OF NUMBERS-7509 -446-

PLACE] I. 7500-LOGARITHMS OF NUMBERS-8009

Prop.	Parts	N	0	1	2	3	4	5	6	7	8	9
		750	87 506	512	518	523	529	535	541	547	552	558
		751	87 564	570	576	581	587	593	599	604	610	616
		752	87 622	628	633	639	645		656	662	668	674
	•	753	87 679	685	691	697	703	708	714	720	726	731
		754	87 737		749	754	760		772	777	783	789
		755	87 795	800	806	812	818	823	829		841	846
		756	87 852	858	864	869	875	881	887	892	898	904
		757	87 910	915	921	927	933	938	944	950	955	961
		758	87 967	973	978	984	990	996		*007	*013	*018
		759	88 024	030	036	041	047	053	058	064	070	076
		760	88 081	087	093	098	104		116	121	127	133
		761	88 138	144	150	156	161	167	173	178	184	190
	6 0.6	762 763	88 195	201	207	213	218	224	230	235	241	247
2	1.2		88 252	258	264	270	275	281	287	292	298	304
3	1.8	764	88 309	315	321	326	332	338		349	355	360
5	3.0	765	88 366	372	377	383	389	395	400	406	412	417
6	3.6		88 423	429	434	440	446	451	457	463	468	
8	4.2	767	88 480	485	491	497	502	508	513	519	525	530
9	5.4	768 769	88 536	542	547	553	559	564	570	576	581	587
		770	88 593 88 649	598	660	666	615		627	632	638	643
		771	88 705	655	660		672	677	683	689	694	700
		772	88 762	711	717	722	728 784		739	745 801	750 807	756 812
		773	88 818	824	773 829	779 835	840	790 846	795 852	857	863	868
		774	88 874	880	885	891	897	902	908	913	919	925
		775	88 930	936	941	947	953	958	964	969	975	981
		776	88 986	992	997	*003	*009	*014		*025	*031	*037
		777	89 042	048	053	059	064	070	076	081	087	092
		778	89 098	104	109	115	120	126	131	137	143	148
		779	89 154	159	165	170	176	182	187	193	198	204
		780	89 209	215	221	226	232	237	243	248	254	260
1	5	781	89 265	271	276	282	287	293	298	304	310	315
	0.5	782	89 321	326	332	337	343	348	354	360	365	371
	1.0	783	89 376	382	387	393	398	404	409	415	421	426
4	2.0	784	89 432	437	443	448	454	459	465	470	476	481
- 1	2.5 3.0	785	89 487	492	498	504	509	515	520	526	531	537
7	3.5	786	89 542	548	553	559	564	570	575	581	586	592
	4.0	787	89 597	603	609	614	620	625	631	636	642	647
PI	4-5	788	89 653	658	664	669	675	680	686	691	697	702
		789	89 708	713	719	724	730	735	741	746	752	757
		790	89 763	768	774	779	785	790	796	108	807	812
		792	89 818 89 873	823	829	834	840	845	851	856	862	867
		793	89 927	878	883 938	889	894	900	905	911	916	922
		794		933		944	949	955	960	966	971	977
		795	89 982	988	993	998	*004	*009	*015	*020	*026	*031
		796	90 037	042	048	053	059	064	069	075	080	086
		797	90 146			162	168			129	135	140
9		798	90 200	206	157	217	222	173	179	184	189	195
		799	90 255	260	266	271	276	227 282	233 287	238	244	249
		800	90 309	314	320	325	331	336	342	293	298	304
Prop.	Parts	N	0	1	2	3	4	5		347	352	358
					4	9	*	0	6	7	8	9

-447 - 7500-LOGARITHMS OF NUMBERS-8009

N	0	1	2	3	4	5	6	7	8		-8509	
800	90 309	!						1		9		p. Parts
801	90 363		320	325 380		336			352	358		
802	90 417	423	374 428		385	390	396		407	412		
803	90 472	477	482	434 488	439	445	450		461	466		
804		100			493	499	504	4.00	515	520		
805	90 526	531	536	542	547	553	558		569	574		
806	90 634	585	590	596	601	667	612	617	623	628		
		639	644	650	655	660	666	671	677	682		
807	90 687	693	698	703	709	714	720	725	730	736		
808 809	90 741	747	752	757	763	768	773	779	784	789		
	90 795	800	806	811	816	822	827	832	838	843		
810	90 849	854	859	865	870	875	881	886	891	897		
811	90 902	907	913	918	924	929	934	940	945	950		
812 813	90 956	961	966	972	977	982	988	993	998	*004		6
	91 009	014	020	025	030	036	041	046	052	057	1	0.6
814	91 062	068	073	078	084	089	094	100	105	110	3	1.2
815	91 116	121	126	132	137	142	148	153	158	164	4	2.4
	91 169	174	180	185	190	196	201	206	212	217	5 6	3.0
817	91 222	228	233	238	243	249	254	259	265	270	7	3.6
818	91 275	281	286	291	297	302	307	312	318	323	8	4.8
819	91 328	334	339	344	350	355	360	365	371	376	9	1 5.4
820	91 381	387	392	397	403	408	413	418	424	429		
821	91 434	440	445	450	455	461	466	471	477	482		
822	91 487	492	498	503	508	514	519	524	529	535		
823	91 540	545	551	556	561	566	572	577	582	587		
824	91 593	598	603	609	614	619	624	630	635	640		
825	91 645	651	656	661	666	672	677	682	687	693		
826	91 698	703	709	714	719	724	730	735	740	745		
827	91 751	756	761	766	772	777	782	787	793	798		
828	91 803	808	814	819	824	829	834	840	845	850		
829	91 855	861	866	871	876	882	887	892	897	903		
830	91 908	913	918	924	929	934	939	944	950	955		
831	91 960	965	971	976	· 981	986	991	997	*002	*007		
832	92 012	018	023	028	033	038	044	049	054	059		8
833	92 065	070	075	080	085	091	096	101	106	III	2	0.5
834	92 117	122	127	132	137	143	148	153	158	163	3	1.5
835	92 169	174	179	184	189	195	200	205	210	215	5	2.0
836	92 221	226	231	236	241	247	252	257	262	267	6	3.0
837				288		298	304	309	314	319	7 8	3.5
838	92 273	278	283		293	350	355	361	366	371	9	4.0
839	92 324	330 381	335 387	340	345 397	402	407	412	418	423		
340	92 376				449	454	459	464	469	474		
	92 428	433	438	443		505	511	516	521	526		
	92 480	485	490	495	500 552	557	562	567	572	578		
842 843	92 531	536 588	542	547 598	603	609	614	619	624	629		
	92 583		593	1000			665	670	675	681		
844	92 634	639	645	650	655	660	716	722	727	732		
845	92 686	691	696	701	706	711 763	768	773	778	783		
846	92 737	742	747	752	758							
	92 788	793	799	804	809	814	819	824	829 881	834 886		
	92 840	845	850	855	860	865	870	875				
849	92 891	896	901	906	911	916	921	927	932	937 988		
350	92 942	947	952	957	962	967	973	978	983		Dean	Parts
N	0	1	2	3	4	5	6	7	8	9	Prop.	Laits

8000-LOGARITHMS OF NUMBERS-8509 -448 -

PLACE] I. 8500-LOGARITHMS OF NUMBERS-9009

Prop. Parts	N	0	1	2	3	4	5	6	7	8	9
	850	92 942	947	952	957	962	967	973	978	983	988
	851	92 993	998	*003	*008	*013	*018	*024	*029	*034	*039
	852	93 044	049	054	059	064	069	075	080	085	090
	853	93 095	100	105	110	115	120	125	131	136	141
	854	93 146	151	156	161	166	171	176	181	186	192
	855	93 197	202	207	212	217	222	227	232	237	242
	856	93 247	252	258	263	268	273	278	283	288	293
6	857	93 298	303	308	313	318	323	328	334	339	34
1 0.6	858	93 349	354	359	364	369	374	379	384	389	39
2 I.2 3 I.8	859	93 399	404	409	414	420	425	430	435	440	44.
4 2.4	860	93 450	455	460	465	470	475	480	485	490	49
5 3.0	861	93 500	505	510	515	520	526	531	536	541	54
7 4.2	862	93 551	556	561	566	571	576	581	586	591	59
8 4.8 9 5.4	863	93 601	606	611	616	621	626	631	636	641	64
913.4	864	93 651	656	661	666	671	676	682	687	692	69
	865	93 702	707	712	717	722	727	732 782	737	742	74
	866	93 752	757	762	767	772	777		787	792	79
	867	93 802	807	812	817	822	827	832	837	842	84
	868	93 852	857	862	867	872	877	882	887	892	89
	869 870	93 902	907	912	917	922	927	932	937	942	94
	871	93 952	957	962	967	972	977	032		992	99
6	872	94 002 94 052	007	012	017	072	027	082	037 086	042	09
1 0.5	873	94 101	106	III	116	121	126	131	136	141	14
3 1.5	874		16.00	161	166	171	176	181	186	191	19
4 2.0	875	94 151 94 201	156 206	211	216	221	226	231	236	240	24
5 2.5 6 3.0	876	94 250	255	260	265	270	275	280	285	290	29
6 3.0 7 3.5	877			310	315	320	325	330	335	340	34
8 4.0	878	94 300	305 354	359	364	369	374	379	384	389	39
9 4.5	879	94 349	404	409	414	419	424	429	433	438	44
	880	94 448	453	458	463	468	473	478	483	488	49
	881	94 498	503	507	512	517	522	527	532	537	54
	882	94 547	552	557	562	567	571	576	581	586	59
	883	94 596	601	606	611	616	621	626	630	635	64
	884	94 645	650	655	660	665	670	675	680	685	68
	885	94 694	699	704	709	714	719	724	729	734	73
14	886	94 743	748	753	758	763	768	773	778	783	78
1 0.4	887	94 792	797	802	807	812	817	822	827	832	83
2 0.8	888	94 841	846	851	856	861	866	871	876	880	88
3 I.2 4 I.6	889	94 890	895	900	905	910	915	919	924	929	93
5 2.0	890	94 939	944	949	954	959	963	968	973	978	98
6 2.4	891	94 988	993	998	*002	*007	*012	*017	*022	*027	*03
8 3.2	892	95 036	041	046	051	056	061	066	071	075	08
9 3.6	893	95 085	090	095	100	105	109	114	119	124	12
	894	95 134	139	143	148	153	158	163	168	173	17
	895	95 182	187	192	197	202	207	211	216	221	22
	896	95 231	236	240	245	250	255	260	265	270	27
	897	95 279	284	289	294	299	303	308	313	318	32
	898	95 328	332	337	342	347	352	357	361	366	37
	899	95 376	381	386	390	395	400	405	410	415	41
	900	95 424	429	434	439	444	448	453	458	463	46

NT.	1 0		•	•							-9309	LFI
N	0	1	2	3	4	5	6	7	8	9	Prop	. Parts
900	95 424	429	434	439	444	448	453	458	463	468		
901	95 472	477	482	487	492	497	501	506	511	516		
902	95 521	525	530	535	540	545	550	554	559	564		
903	95 569	574	578	583	588	593	598	602	607	612		
904	95 617	622	626	631	636	641	646	650	655	660		
905	95 665	670	674	679		689	694	698	703	708		
906	95 713	718	722	727	732	737	742	746	751	756		
907	95 761	766			780							
908	95 809	813	770 818	775 823	828	785	789	794	799	804		
909	95 856	861	866	871	12.	832 880	837 885	842	847	852		
910		_			875				895	899		
	95 904	909	914	018	923	928	933	938	942	947		
211	95 952	957	961	966	971	976	980	985	990	995		
912	95 999	*004	*009	*014	*019	*023	*028	*033	*038	*042		5
913	96 047	052	057	061	066	071	076	080	085	090	1	0.5
914	96 095	099	104	109	114	118	123	128	133	137	3	1.0
915	96 142	147	152	156	161	166	171	175	180	185	4	2.0
16		194	199	204	209	213	218	223	227	232	5	2.5
17	96 237	242	246	251	256	261	265	270	275	280	6 7	3.0
18	96 284	289	294	298	303	308	313		322	327	8	4.0
19	96 332	336	341	346			360	317 365	369		9	4.5
20					350	355				374		
	96 379	384	388	393	398	402	407	412	417	421		
21	96 426	431	435	440	445	450	454	459	464	468		
22	96 473	478	483	487	492	497	501	506	511	515		
23	96 520	525	530	534	539	544	548	553	558	562		
24	96 567	572	577	581	586	591	595	600	605	609		
925	96 614	619	624	628	633	638	642	647	652	656		
26	96 661	666	670	675	680	685	689	.694	699	703		
27	96 708	713	717	722	727	731	736	741	745	750		
28	96 755	759	764	769	774	778	783	788	792	797		
29	96 802	806	811	816	820	825	830	834	839	844		
30	96 848		858	862	867	872	876	881	886	890		
		853			_	918		928	932	937		
31	96 895	900	904	909	914		923		979	984		4
32	96 942	946	951	956	960	965	970 *016	974 *021	*025	*030	1	0.4
33	96 988	993	997	*002	*007	*011		1000			3	0.8
34		039	044	049	053	058	063	067	072	077	4	1.6
35	97 081	086	090	095	100	104	109	114	118	123	5	2.0
36	97 128	132	137	142	146	151	155	160	165	169	6	2.4
37	97 174	179	183	188	192	197	202	206	211	216	7 8	3.2
38	97 220	225	230	234	239	243	248	253	257	262	9	3.6
39	97 267	271	276	280	285	290	294	299	304	308		
40		317	322	327	331	336	340	345	350	354		
	97 313		368	373	377	382	387	391	396	400		
141	97 359	364			11 11 11 11 11 11	428	433	437	442	447		
042	97 405	410	414	419	424		479	483	488	493		
943	97 451	456	460	465	470	474						
944	97 497	502	506	511	516	520	525	529	534	539		
945	97 543	548	552	557	562	566	571	575	580	585		
946	97 589	594	598	603	607	612	617	621	626	630		
947	97 635	640	644	649	653	658	663	667	672	676		
948	97 681	685	690	695	699	704	708	713	717	722		
2.00			736	740	745	749	754	759	763	768		
949	97 727	731	782	786	791	795	800	804	809	813		
950	97 772	777	102	700	177			7	8	9	Dron	. Parts
		1	2	3	4	5	6	.,,	-	34	FILLI	. I ares

9000-LOGARITHMS OF NUMBERS-9509 -450-

PLACE] I. 9500-LOGARITHMS OF NUMBERS-10009

Prop.	Parts	N	0	1	2	3	4	5	6	7	8	9
		950	97 772	777	782	786	791	795	800	804	809	813
		951	97 818	823	827	832	836	841	845	850	855	859
		952	97 864	868	873	877	882	886	891	896	900	905
		953	97 909	914	918	923	928	932	937	941	946	950
		954	97 955	959	964	968	973	978	982	987	991	996
		955	98 000	005	009	014	019	023	028	032	037	041
		956	98 046	050	055	059	064	068	073	078	082	087
		957	98 091	096	100	105	109	114	118	123	127	132
			98 137	141	146	150	155	159	164	168	173	177
			98 182	186	191	195	200	204	209	214	218	223
			98 227	232	236	241	245	250	254	259	263	268
			98 272	277	281	286	290	295	299	304	308	313
- 1	5		98 318	322	327	331	336	340	345	349	354	358
	0.5	963	98 363	367	372	376	381	385	390	394	399	403
0.000	1.0		98 408	412	417	421	426	430	435	439	444	448
_	2.0		98 453	457	462	466	471	475	480	484	489	493
	2.5	966	98 498	502	507	511	516	520	525	529	534	538
7 3	3.0 3.5	967	98 543	547	552	556	561	565	570	574	579	583
8 4	4.0	968	98 588	592	597	601	605	610	614	619	623	628
9 4	4.5	969	98 632	637	641	646	650	655	659	664	668	673
		970	98 677	682	686	691	695	700	704	709	713	717
		971	98 722	726	731	735	740	744	749	753	758	76:
		972	98 767	771	776	780	784	789	793	798	802	80
		973	98 811	816	820	825	829	834	838	843	847	85
		974	98 856	860	865	869	874	878	883	887	892	896
		975	98 900	905	909	914	918	923	927	932	936	94
		976	98 945	949	954	958	963	967	972	976	981	98
		977	98 989	994	998	*003	*007	*012	*016			*029
		978	99 034	038	043	047	052	056	061	065	069	07
		979	99 078	083	087	092	096	100	105	109	114	16
		980	99 123	127	131	136	140	145	149	154	158	
1	4	981	99 167	171	176	180	185	189	193	198	202	20 25
1	0.4	982	99 211	216	220	224	229	233	238 282	242 286	247 291	29
2	0.8	983	99 255	260	264	269	273	277				
	1.6	984	99 300	304	308	313	317	322	326	330	335	33
5	2.0	985	99 344	348	352	357	361	366	370	374	379 423	38 42
6	2.4	986	99 388	392	396	401	405	410	414	419		
-	3.2	987	99 432	436	441	445	449	454	458	463	467	47
91	3.6	988	99 476	480	484	489		498		506	511	51
		989	99 520	524	528	533	537	542	546	550	555	55 60
		990	99 564		572	577	581	585	590	594 638	599 642	64
		991	99 607	612	616	621 664	625	-	634	682	686	69
		992	99 651	656	660	708		673 717	721	726	730	73
			99 695	699	704							
		994	99 739	743	747	752		-		769	774 817	77
		995	99 782		791	795		- :	_			86
		996	99 826		835	839	100000					
		997	99 870	The second		883			896			-
		998	99 913	-	922			_				
		999	99 957		965				-		991	99
_		1000	00 000	1			1	1-15		1		
1	. Parts	N	0	1 1	2	3	4	5	6	7	8	9

^{-451- 9500-}LOGARITHMS OF NUMBERS-10009

IIa. TABLES OF S AND T FOR ANGLES NEAR 0° AND 90°

Interpolation by the ordinary method leads to inaccurate results if the differences are large.

For angles less than 3°, the values of $\log \sin \theta$, $\log \tan \theta$, and $\log \cot \theta$ should be found by the following formulas.

$$\log \sin \theta = S + \log \theta' - 10,$$

$$\log \tan \theta = T + \log \theta' - 10 = -\log \cot \theta,$$

where θ' is the number of minutes in the angle θ and S and T are found from the tables given below.

Similary, if $87^{\circ} < \theta < 90^{\circ}$, the values of log cos θ , log cot θ , and log tan θ are found from the following formulas.

$$\log \cos \theta = S + \log (90^{\circ} - \theta)' - 10, \\ \log \cot \theta = T + \log (90^{\circ} - \theta)' - 10 = -\log \tan \theta,$$

where $(90^{\circ} - \theta)'$ is the number of minutes in the angle $90^{\circ} - \theta$.

$(90^{\circ} - \theta)'$	\boldsymbol{S}
0'- 13'	6.46 373
14'- 42'	72
43'- 58'	71
59'- 71'	6.46 370
72'- 81'	69
82'- 91'	68
92'- 99'	6.46 367
100'-107'	66
108'-115'	65
116'-121'	6.46 364
122'-128'	63
129'-134'	62
135'-140'	6.46 361
141'-146'	60
147'-151'	59
152'-157'	6.46 358
158'-162'	57
163'-167'	56
168'-171'	6.46 355
172'-176'	54
177'-181'	53

$(90^{\circ} - \theta)'$	T	$(90^{\circ} - \theta)'$	T
0'- 26'	6.46 373	131'-133'	6.46 394
27'- 39'	74	134'-136'	95
40'- 48'	75	137'-139'	96
49'- 56'	6.46 376	140'-142'	6.46 397
57'- 63'	77	143'-145'	98
64'- 69'	78	146'-148'	99
70'- 74'	6.46 379	149'-150'	6.46 400
75'- 80'	80	151'-153'	01
81'- 85'	81	154'-156'	02
86'- 89'	6.46 382	157'-158'	6.46 403
90'- 94'	83	159'-161'	04
95'- 98'	84	162'-163'	05
99'-102'	6.46 385	164'-166'	6.46 406
103'-106'	86	167'-168'	07
107'-110'	87	169'-171'	08
111'-113'	6.46 388	172'-173'	6.46 409
114'-117'	89	174'-175'	10
118'-120'	90	176'-178'	11
121'-124'	6.46 391	179'-180'	6.46 412
125'-127'	92	181'-182'	13
128'-130'	93	183'-184'	14

H.	0°	Log	garithms	of Funct	ions	
Prop. Pts.		L Sin	L Tan	L Cot	L Cos	
	0				10.00 000	6
	1 1	6.46 373	6.46 373	13.53 627	10.00 000	5
	3	6.76 476	6.76 476 6.94 085	13.23 524	10.00 000	5
	4	6.94 085 7.06 579	7.06 579	13.05 915	10.00 000	5
	5			12.93 421		5.
	6	7.16 270 7.24 188	7.16 270 7.24 188	12.83 730	10.00 000	5
	l ž	7.30 882	7.30 882	12.69 118	10.00 000	5.
	8	7.36 682	7.36 682	12.63 318	10.00 000	5
	9	7.41 797	7.41 797	12.58 203	10.00 000	5
	10	7.46 373	7.46 373	12.53 627	10.00 000	5
	11	7.50 512	7.50 512	12.49 488	10.00 000	4
	12	7.54 291	7.54 291	12.45 709	10.00 000	4
	13	7.57 767	7.57 767	12.42 233	10.00 000	4
	14	7.60 985	7.60 986	12.39 014	10.00 000	4
	15	7.63 982	7.63 982	12.36 018	10.00 000	4
	16	7.66 784	7.66 785	12.33 215	10.00 000	4
	17	7.69 417	7.69 418	12.30 582	9.99 999	4
	18	7.71 900	7.71 900	12.28 100	9.99 999	4
	19	7.74 248	7.74 248	12.25 752	9.99 999	4
	20	7.76 475	7.76 476	12.23 524	9.99 999	4
2.13	21	7.78 594	7.78 595	12.21 405	9.99 999	3
II a.	22 23	7.80 615	7.80 615	12.19 385	9.99 999	3
	24	7.82 545 7.84 393	7.82 546 7.84 394	12.17 454	9.99 999	3
Table	25	7.86 166		12.15 606	9.99 999	3
'a	26	7.87 870	7.86 167 7.87 871	12.13 833	9.99 999	3
	27	7.89 509	7.89 510	12.12 129	9.99 999 9.99 999	3
use	28	7.91 088	7.91 089	12.08 911	9.99 999	3
e o	29	7.92 612	7.92 613	12.07 387	9.99 998	3
interpolation	30	7.94 084	7.94 086	12.05 914	9.99 998	3
10 10	31	7.95 508	7.95 510	12.04 490	9.99 998	2
Li.	32	7.96 887	7.96 889	12.03 111	9.99 998	2
ž	33	7.98 223	7.98 225	12.01 775	9.99 998	2
=	34	7.99 520	7.99 522	12.00 478	9.99 998	_2
avoid	35	8.00 779	8.00 781	11.99 219	9.99 998	2
Se Se	36	8.02 002	8.02 004	11.97 996	9.99 998	2
LS.	37	8.03 192	8.03 194	11.96 806	9.99 997	2
	38 39	8.04 350	8.04 353	11.95 647	9.99 997	2
	40	8.05 478	8.05 481	11.94 519	9.99 997	2
	41	8.06 578 8.07 650	8.06 581	11.93 419	9.99 997	2
	42	8.08 696	8.07 653 8.08 700	11.92 347	9.99 997	1
	43	8.09 718	8.09 722	11.91 300	9.99 997	1
	44	8.10 717	8.10 720	11.89 280	9.99 997 9.99 996	1
	45	8.11 693	8.11 696	11.88 304		1.
	46	8.12 647	8.12 651	11.87 349	9.99 996	1
	47	8.13 581	8.13 585	11.86 415	9.99 996 9.99 996	1
	48	8.14 495	8.14 500	11.85 500	9.99 996	1
	49	8.15 391	8.15 395	11.84 605	9.99 996	î
	50	8.16 268	8.16 273	11.83 727	9.99 995	10
	51	8.17 128	8.17 133	11.82 867	9.99 995	1
	52	8.17 971	8.17 976	11.82 024	9.99 995	3
	53	8.18 798	8.18 804	11.81 196	9.99 995	1
	54	8.19 610	8.19 616	11.80 384	9.99 995	(
	-55	8.20 407	8.20 413	11.79 587	9.99 994	-
	56	8.21 189	8.21 195	11.78 805	9.99 994	1
	57	8.21 958	8.21 964	11.78 036	9.99 994	4
	58 59	8.22 713	8.22 720	11.77 280	9.99 994	1
		8.23 456	8.23 462	11.76 538	9.99 994	_ :
	60	8.24 186	8.24 192	11.75 808	9.99 993	(
Prop. Pts.		L Cos	L Cot			

0 1 2 3 4	8.24 186 8.24 903 8.25 609 8.26 304	8.24 192 8.24 910	L Cot 11.75 808	L Cos 9.99 993	60	Prop. I ts.
1 2 3 4	8.24 903 8.25 609		11.75 808	9.99 993	60	
3 4	8.25 609	8.24 910				
3 4			11.75 090	9.99 993	59	
4	8.26 304	8.25 616	11.74 384	9.99 993	58	
		8.26 312	11.73 688	9.99 993	57	
5	8.26 988	8.26 996	11.73 004	9.99 992	56	
	8.27 661	8.27 669	11.72 331	9.99 992	55	
6	8.28 324	8.28 332	11.71 668	9.99 992	54	
7	8.28 977	8.28 986	11.71 014	9.99 992	53	
8	8.29 621	8.29 629	11.70 371	9.99 992	52	
9	8.30 255	8.30 263	11.69 737	9.99 991	51	
10	8.30 879	8.30 888	11.69 112	9.99 991	50	
11	8.31 495	8.31 505	11.68 495	9.99 991	49	
12	8.32 103	8.32 112	11.67 888	9.99 990	48	
13	8.32 702	8.32 711	11.67 289	9.99 990	47	
14	8.33 292	8.33 302	11.66 698	9.99 990	46	
15	8.33 875	8 33 886	11.66 114	9.99 990	45	
16	8.34 450	8.34 461	11.65 539	9.99 989	44	
17	8.35 018	8.35 029	11.64 971	9.99 989	43	
18	8.35 578	8.35 590	11.64 410	9.99 989	42	
19	8.36 131	8.36 143	11.63 857	9.99 989		
20	8.36 678	8.36 689	11 63 311	9.99 988	40	
21	8.37 217	8.37 229	11.62 771	9.99 988	39	ri .
22	8.37 750	8.37 762	11.62 238	9.99 988	38 37	IIa
23	8.38 276	8.38 289	11.61 711	9.99 987	36	
24	8.38 796	8.38 809	11.61 191	9.99 987		Table
25	8.39 310	8.39 323	11.60 677	9.99 987	35	(
26	8.39 818	8.39 832	11.60 168	9.99 986	34	nse
27	8.40 320	8.40 334	11.59 666	9.99 986	32	
28	8.40 816	8.40 830	11.59 170	9.99 986 9.99 985	31	0
29	8.41 307	8.41 321			30	interpolation
30	8.41 792	8.41 807	11.58 193	9.99 985	29	70
31	8.42 272	8.42 287	11.57 713	9.99 985 9.99 984	28	1
32	8.42 746	8.42 762	11.57 238	9.99 984	27	ž
33 34	8.43 216 8.43 680	8.43 232 8.43 696	11.56 304	9.99 984	26	
			11.55 844	9.99 983	25	avoid
35	8.44 139	8.44 156 8.44 611	11.55 389	9.99 983	24	à
36 37	8.44 594	8.45 061	11.54 939	9.99 983	23	J ₂
38	8.45 044 8.45 489	8.45 507	11.54 493	9.99 982	22	F
39	8.45 930	8.45 948	11.54 052	9.99 982	21	
		8.46 385	11.53 615	9.99 982	20	
40 41	8.46 366 8.46 799	8.46 817	11.53 183	9.99 981	19	
42		8.47 245	11.52 755	9.99 981	18	
43	8.47 226 8.47 650	8.47 669	11.52 331	9.99 981	17	
44	8.48 069	8.48 089	11.51 911	9.99 980	16	
45	8.48 485	8.48 505	11.51 495	9.99 980	15	
46	8.48 896	8.48 917	11.51 083	9.99 979	14	
47	8.49 304	8.49 325	11.50 675	9.99 979	13	
48	8.49 708	8.49 729	11.50 271	9.99 979	12	
49	8.50 108	8.50 130	11.49 870	9.99 978	11_	
50	8.50 504	8.50 527	11.49 473	9.99 978	10	
51	8.50 897	8.50 920	11.49 080	9.99 977	9	
52	8.51 287	8.51 310	11.48 690	9.99 977	8	
53	8.51 673	8.51 696	11.48 304	9.99 977	7	
54	8.52 055	8.52 079	11.47 921	9.99 976	6	
55	8.52 434	8.52 459	11.47 541	9.99 976	5	
56	8.52 810	8.52 835	11.47 165	9.99 975	3	
57	8.53 183	8.53 208	11.46 792	9.99 975	3	
58	8.53 552	8.53 578	11.46 422	9.99 974	2	
59	8.53 919	8.53 945	11.46 055	9.99 974	1	
60	8.54 282	8.54 308	11.45 692	9.99 974	0	
	L Cos	L Cot	L Tan	L Sin	'	Prop. Prs.
	L COS	2 000			88°	— 454 —

PLACE]	II.	2°	Log	arithms	of Function	ons	
	Prop. Pts.		L Sin	L Tan	L Cot	L Cos_	
		0 1 2 3 4	8.54 282 8.54 642 8.54 999 8.55 354 8.55 705	8.54 308 8.54 669 8.55 027 8.55 382 8.55 734	11.45 692 11.45 331 11.44 973 11.44 618 11.44 266	9.99 974 9.99 973 9.99 973 9.99 972 9.99 972	59 58 57 56
		5 6 7 8	8.56 054 8.56 400 8.56 743 8.57 084	8.56 083 8.56 429 8.56 773 8.57 114	11.43 917 11.43 571 11.43 227 11.42 886	9.99 971 9.99 971 9.99 970 9.99 970	55 54 53 52
		9 10 11 12 13	8.57 421 8.57 757 8.58 089 8.58 419 8.58 747	8.57 452 8.57 788 8.58 121 8.58 451 8.58 779	11.42 548 11.42 212 11.41 879 11.41 549 11.41 221	9.99 969 9.99 968 9.99 968 9.99 967	51 50 49 48 47
		14 15 16 17 18	8.59 072 8.59 395 8.59 715 8.60 033 8.60 349	8.59 105 8.59 428 8.59 749 8.60 068 8.60 384	11.40 895 11.40 572 11.40 251 11.39 932 11.39 616	9.99 967 9.99 967 9.99 966 9.99 965	46 45 44 43 42
	IIa.	20 21 22 23	8.60 662 8.60 973 8.61 282 8.61 589 8.61 894	8.60 698 8.61 009 8.61 319 8.61 626 8.61 931	11.39 302 11.38 991 11.38 681 11.38 374 11.38 069	9.99 964 9.99 963 9.99 963 9.99 962	41 40 39 38 37
	use Table 1	24 25 26 27 28	8.62 196 8.62 497 8.62 795 8.63 091 8.63 385	8.62 234 8.62 535 8.62 834 8.63 131 8.63 426	11.37 766 11.37 465 11.37 166 11.36 869 11.36 574	9.99 962 9.99 961 9.99 960 9.99 960 9.99 960	36 35 34 33 32
	interpolation	30 31 32 33	8.63 678 8.63 968 8.64 256 8.64 543 8.64 827	8.63 718 8.64 009 8.64 298 8.64 585 8.64 870	11.36 282 11.35 991 11.35 702 11.35 415 11.35 130	9.99 959 9.99 958 9.99 958 9.99 957	31 30 29 28 27
	To avoid ii	34 35 36 37 38	8.65 110 8.65 391 8.65 670 8.65 947 8.66 223	8.65 154 8.65 435 8.65 715 8.65 993 8.66 269	11.34 846 11.34 565 11.34 285 11.34 007 11.33 731	9.99 956 9.99 956 9.99 955 9.99 955 9.99 954	25 24 23 22
		39 40 41 42 43	8.66 497 8.66 769 8.67 039 8.67 308 8.67 575	8.66 543 8.66 816 8.67 087 8.67 356 8.67 624	11.33 457 11.33 184 11.32 913 11.32 644 11.32 376	9.99 954 9.99 953 9.99 952 9.99 951	20 19 18 17
		44 45 46 47 48	8.67 841 8.68 104 8.68 367 8.68 627 8.68 886	8.67 890 8.68 154 8.68 417 8.68 678 8.68 938	11.32 110 11.31 846 11.31 583 11.31 322 11.31 062	9.99 951 9.99 950 9.99 949 9.99 948 9.99 948	15 14 13 12
		50 51 52 53	8.69 144 8.69 400 8.69 654 8.69 907 8.70 159	8.69 196 8.69 453 8.69 708 8.69 962 8.70 214	11.30 804 11.30 547 11.30 292 11.30 038 11.29 786	9.99 948 9.99 947 9.99 946 9.99 946 9.99 945	11 10 9 8 7
		55 56 57 58	8.70 409 8.70 658 8.70 905 8.71 151 8.71 395	8.70 465 8.70 714 8.70 962 8.71 208 8.71 453	11.29 535 11.29 286 11.29 038 11.28 792 11.28 547	9.99 944 9.99 943 9.99 942 9.99 942	5 4 3 2
 455	Prop. Pts.	59 60	8.71 638 8.71 880 L Cos	8.71 697 8.71 940 L Cot	11.28 303 11.28 060 L Tan	9.99 941 9.99 940 L Sin	0

_		oge	arrennis	OI	runction	ns			11	II. (FIVI		FIVE-
	L Sin	d	L Tan	c d	L Cot	L Cos			I	rop. P	ts.	
0	8.71 880	240	8.71 940	1 244	11.28 060	9.99 940	60		241	239	237	235
1	8.72 120	220	8.72 181	241	11.27 819	9.99 940	59	.I	24.1	23.9	23.7	23.5
2	8.72 359	238	0.72 420	239	11.27 580	9.99 939	58	.2	48.2 72.3	47.8	47.4	47.0
3	8.72 597	237	8.72 659	239	11.27 341	9.99 938	57	.4	96.4	71.7 95.6	94.8	70.5
_4	8.72 834		8.72 896	100	11.27 104	9.99 938	56	.5	120.5	119.5	118.5	117.5
5	8.73 069	235	8.73 132	236	11.26 868	9.99 937	55	.6	168.7	143.4	142.2	141.0
6	8.73 303	234	8.73 366	234	11.26 634	9.99 936	54	.8	192.8	191.2	189.6	188.0
7	8.73 535	232	8.73 600	234	11.26 400	9.99 936	53	.9	216.9	215.1	213.3	211.5
8	8.73 767	230	8.73 832	232	11.26 168	9.99 935	52		234	232	230	228
9	8.73 997	229	8.74 063		11.25 937	9.99 934	51	.1	23.4 46.8	23.2 46.4	23.0 46.0	22.8
10	8.74 226	220	8.74 292	229	11.25 708	9.99 934	50	-3	70.2	69.6	69.0	45.6 68.4
11	8.74 454	226	8.74 521	229	11.25 479	9.99 933	49	-4	93.6	92.8	92.0	91.2
12	8.74 680	226	8.74 748	227	11.25 252	9.99 932	48	.5 .6	117.0	116.0	115.0	114.0
13	8.74 906	224	8.74 974	226	11.25 026	9.99 932	47	.7	163.8	162.4	161.0	159.6
14	8.75 130		8.75 199	225	11.24 801	9.99 931	46	.8	187.2	185.6	184.0	182.4
15	8.75 353	223	8.75 423	224	11.24 577	9.99 930	45	٠,٧				205.2
16	8.75 575	222	8.75 645	222	11.24 355	9.99 929	44	.ı	227	225	223	,221 22.1
17	8.75 795	220	8.75 867	222	11.24 133	9.99 929	43	.2	45.4	45.0	44.6	44.2
18	8.76 015	219	8.76 087	220	11.23 913	9.99 928	42	.3	68.1	67.5	66.9	66.3 88.4
19	8.76 234	1000	8.76 306	219	11.23 694	9.99 927	41	·4 ·5	113.5	90.0	89.2	110.5
20	8.76 451	21/	8.76 525	219	11.23 475	9.99 926	40	.6	136.2	135.0	133.8	132.6
21	8.76 667	216	8.76 742	217	11.23 258	9.99 926	39	.7 .8	158.9	157.5	156.1	154.7
22	8.76 883	216	8.76 958	216	11.23 042	9.99 925	38	.9	204.3	202.5	200.7	198.9
23	8.77 097	214	8.77 173	215	11.22 827	9.99 924	37		220	218	216	214
24	8.77 310	213	8.77 387	214	11.22 613	9.99 923	36	.I	22.0	21.8	21.6	21.4
25	8.77 522	212	8.77 600	213	11.22 400	9.99 923	35	.2	66.0	43.6 65.4	43.2 64.8	42.8 64.2
26	8.77 733	211	8.77 811	211	11.22 189	9.99 922	34	.4	88.0	87.2	86.4	85.6
27	8.77 943	210	8.78 022	211	11.21 978	9.99 921	33	.5	110.0	109.0	108.0	107.0
28	8.78 152	209	8.78 232	210	11.21 768	9.99 920	32	.7	132.0	152.6	129.6	149.8
29	8.78 360	208	8.78 441	209	11.21 559	9.99 920	31	.8	176.0	174.4	172.8	171.2
30	8.78 568	208	8.78 649	208	11.21 351	9.99 919	30	.9	198.0	196.2	194.4	192.6
31	8.78 774	206	8.78 855	206	11.21 145	9.99 918	29		213	211 21.1	209	207
32	8.78 979	205	8.79 061	206	11.20 939	9.99 917	28	.I	42.6	42.2	41.8	41.4
33	8.79 183	204	8.79 266	205	11.20 734	9.99 917	27	.3	63.9	63.3	62.7	62.1
34	8.79 386	203	8.79 470	204	11.20 530	9.99 916	26	-4	85.2 106.5	84.4	83.6	82.8
35	8.79 588	202	8.79 673	203	11.20 327	9.99 915	25	.6	127.8	126.6	125.4	124.2
36	8.79 789	201	8.79 875	202	11.20 125	9.99 914	24	.7	149.1	147.7	146.3	144.9
37	8.79 990	201	8.80 076	201	11.19 924	9.99 913	23	.9	191.7	189.9	188.1	186.3
38	8.80 189	199	8.80 277	199	11.19 723	9.99 913	22	1	206	204	202	200
39	8.80 388	199	8.80 476	100	11.19 524	9.99 912	21	.I	20.6	20.4	20.2	20.0
40	8.80 585	197	8.80 674	198	11.19 326	9.99 911	20	.3	61.8	40.8	40.4 60.6	40.0 60.0
41	8.80 782	197	8.80 872	198	11.19 128	9.99 910	19	.4	82.4	81.6	80.8	80.0
42	8.80 978	196	8.81 068	196	11.18 932	9.99 909	18	.5 .6	103.0	102.0	101.0	100.0
43	8.81 173	195	8.81 264	195	11.18 736	9.99 909	17		123.6	142.8	141.4	140.0
44	8.81 367	194	8.81 459	194	11.18 541	9.99 908	16	.8	164.8	163.2	161.6	160.0
45	8.81 560	193	8.81 653	1 3 0	11.18 347	9.99 907	15	.9 1	185.4	183.6		
46	8.81 752	192	8.81 846	193	11.18 154	9.99 906	14	. 1	199	197	195 19.5	193
47	8.81 944	192	8.82 038	192	11.17 962	9.99 905	13	.I	19.9 39.8	39.4	39.0	38.6
48	8.82 134	190	8.82 230	190	11.17 770	9.99 904	12	.3	59.7	59.1	58.5	57.9
49	8.82 324	190	8.82 420	190	11.17 580	9.99 904	11	.4	79.6 99.5	78.8 98.5	78.0 97.5	77.2 96.5
50	8.82 513	189	8.82 610	189	11.17 390	9.99 903	10	.6	119.4	118.2	117.0	115.8
51	8.82 701	188	8.82 799	188	11.17 201	9.99 902	9	.7	139.3	137.9	136.5 156.0	135.1
52	8.82 888	187	8.82 987	188	11.17 013	9.99 901	8	.0	179.1	177.3	175.5	173.7
53	8.83 075	186	8.83 175	186	11.16 825	9.99 900	6	1	192	190	188	186
54	8.83 261		8.83 361	186	11.16 639	9.99 899	6	.I	19.2	19.0	18.8	18.6
55	8.83 446	185	8.83 547	185	11.16 453	9.99 898	5	.3	38.4 57.6	38.0 57.0	37.6 56.4	37.2 55.8
56	8.83 630	184	8.83 732	184	11.16 268	9.99 898	4	.4	76.8	76.0	75.2	74.4
57	8.83 813	183	8.83 916	184	11.16 084	9.99 897	3	.5	96.0	95.0 114.0	94.0	93.0
58	8.83 996	183	8.84 100	182	11.15 900	9.99 896	2	.7	115.2	133.0	131.6	130.2
59	8.84 177		8.84 282	182	11.15 718	9.99 895	-	.8	153.6	152.0	150.4	148.8
60	8.84 358	181	8.84 464	.02	11.15 536	9.99 894	0	ا و.	172.8	171.0		
	L Cos	d	L Cot	c d	L Tan	L Sin	'		P	rop. Pt		
	27 000	-					96°				- 45	56 —

PL	ACE]		II.		4°	L	oga	rithms	of l	Function	ıs	
_		Prop.	Pts.		1	L Sin	d	L Tan	c d	L Cot	L Cos	
_	185	183	181	179	0	8.84 358	181	8.84 464	182	11.15 536	9.99 894	60
I.	18.5	18.3 36.6	18.1 36.2	17.9 35.8	1	8.84 530	179	8.84 646	180	11.15 354	9.99 893	59
.3	37.0 55.5	54.9	54.3	53.7	2	8.84 718	179	8.84 826	180	11.15 174	9.99 892	58 57
.4	74.0	73.2	90.5	71.6 89.5	3	8.84 897	178	8.85 006	179	11.14 994	9.99 891	56
.5	92.5	91.5	108.6	107.4	4	8.85 075	177	8.85 185	178	11.14 815	9.99 891	
.7	129.5	128.1	126.7	125.3	5	8.85 252	177	8.85 363	177	11.14 637	9.99 890	55
.8	148.0	146.4	162.9	143.2	6	8.85 429	176	8.85 540	177	11.14 460	9.99 889	54
٠,٧		176	174	172	7	8.85 605	175	8.85 717	176	11.14 283	9.99 888	53 52
.ı	178	17.6	17.4	17.2	8	8.85 780	175	8.85 893	176	11.14 107	9.99 887	51
.2	35.6	35.2	34.8	34.4	_	8.85 955	173	8.86 069	174	11.13 931	9.99 886	
.3	53.4 71.2	52.8 70.4	52.2 69.6	51.6 68.8	10	8.86 128	173	8.86 243	174	11.13 757	9.99 885	50
.5	89.0	88.0	87.0	86.0	11 12	8.86 301	173	8.86 417	174	11.13 583	9.99 884	49 48
.6	106.8	105.6	104.4	103.2	13	8.86 474 8.86 645	171	8.86 591 8.86 763	172	11.13 409	9.99 883 9.99 882	47
.7	142.4	140.8	139.2	137.6	14	8.86 816	171	8.86 935	172	11.13 237	9.99 881	46
.9	160.2	158.4	156.6	154.8	_		171		171			45
	171	169	167	165	15	8.86 987	169	8.87 106	171	11.12 894	9.99 880	
.1	17.1	16.9	16.7	16.5	16 17	8.87 156	169	8.87 277	170	11.12 723	9.99 879	44
.2	34.2 51.3	33.8	33-4 50.1	33.0 49.5	18	8.87 325	169	8.87 447 8.87 616	169	11.12 553	9.99 879	43
.4	68.4	67.6	66.8	66.0	19	8.87 494 8.87 661	167	8.87 785	169	11.12 384	9.99 878 9.99 877	41
.6	85.5	84.5	83.5	82.5 99.0			168		168			40
.7	119.7	118.3	116.9	115.5	20 21	8.87 829	166	8.87 953 8.88 120	167	11.12 047	9.99 876	39
.9	136.8	135.2 152.1	133.6	132.0	22	8.87 995 8.88 161	166	8.88 287	167		9.99 875 9.99 874	38
٠,٧					23	8.88 326	165	8.88 453	166	11.11 713	9.99 873	37
ı.	16.4	163	162	161 16.1	24	8.88 490	164	8.88 618	165	11.11 382	9.99 872	36
.2	32.8	32.6	32.4	32.2	25		164		165			35
.3	49.2 65.6	48.9 65.2	48.6 64.8	48.3 64.4	26	8.88 654 8.88 817	163	8.88 783 8.88 948	165	11.11 217	9.99 871	34
.5	82.0	81.5	81.0	80.5	27	8.88 980	163	8.89 111	163	11.11 052	9.99 870 9.99 869	33
.6	98.4	97.8	97.2	96.6	28	8.89 142	162	8.89 274	163	11.10 726	9.99 868	32
.7	114.8	114.1	113.4	112.7	29	8.89 304	162	8.89 437	163	11.10 563	9.99 867	31
.9	147.6	146.7	145.8	144.9	30	8.89 464	160	8.89 598	161			30
1	160	159	158	157	31	8.89 625	161	8.89 760	162	11.10 402	9.99 866 9.99 865	29
I.	16.0	15.9	15.8	15.7	32	8.89 784	159	8.89 920	160	11.10 080	9.99 864	28
.3	32.0 48.0	31.8 47.7	31.6	31.4 47.1	33	8.89 943	159	8.90 080	160	11.09 920	9.99 863	27
-4	64.0	63.6	63.2	62.8	34	8.90 102	159	8.90 240	160	11.09 760	9.99 862	26
.6	80.0	79.5	79.0 94.8	78.5 94.2	35	8.90 260	158	8.90 399	159	11.09 601	9.99 861	25
.7	112.0	111.3	110.6	109.9	36	8.90 417	157	8.90 557	158	11.09 443	9.99 860	24
.8	128.0	127.2	126.4	125.6	37	8.90 574	157	8.90 715	158	11.09 285		23
		143.1		141.3	38	8.90 730	156	8.90 872	157	11.09 128	9.99 858	22
I.	156 15.6	15.5	15.4	153 15.3	39	8.90 885	155	8.91 029	157	11.08 971	9.99 857	21
.2	31.2	31.0	30.8	30.6	40	8.91 040	155	8.91 185	156	11.08 815	9.99 856	20
.4	46.8	46.5	46.2 61.6	45.9 61.2	41	8.91 195	155	8.91 340	155	11.08 660		19
.5	78.0	77.5	77.0	76.5	42	8.91 349	154	8.91 495	155	11.08 505	9.99 854	18
1	93.6	93.0	92.4	91.8	43	8.91 502	153	8.91 650	155	11.08 350	9.99 853	17
.7 .8	109.2	124.0	107.8	107.1	44	8.91 655	153	8.91 803	153	11.08 197	0.99 852	16
.0	140.4	139.5	138.6	137.7	45	8.91 807	152	8.91 957	154	11.08 043	9.99 851	15
. 1	152	151	150	149	46	8.91 959	152	8.92 110	153	11.07 890	9.99 850	14
.I	30.4	15.1 30.2	15.0 30.0	14.9 29.8	47	8.92 110	151	8.92 262	152	11.07 738	9.99 848	13
.3	45.6	45.3	35.0	44.7	48	8.92 261	151	8.92 414	152	11.07 586	9.99 847	12
4	76.0	60.4	60.0	59.6	49	8.92 411	150	8.92 565	151	11.07 435	9.99 846	11
.6	91.2	75.5 90.6	75.0	74.5 89.4	50	8.92 561	150	8.92 716	151	11.07 284	9.99 845	10
.7	106.4	105.7	105.0	104.3	51	8.92 710	149	8.92 866	150	11.07 134	9.99 844	Ď
9	136.8	120.8	135.0	119.2	52	8.92 859	149	8.93 016	150	11.06 984		8
	148	147	146	134.1	53	8.93 007	148	8.93 165	149	11.06 835	9.99 842	7
ı.	14.8	14.7	14.6	14.5	54	8.93 154	147	8.93 313	148	11.06 687	9.99 841	6
2	29.6	29.4	29.2	29.0	55	8.93 301	147	8.93 462	149	11.06 538	9.99 840	5
3	44.4 59.2	58.8	43.8 58.4	43.5 58.0	56	8.93 448	147	8.93 609	147	11.06 391	9.99 839	4
5.6	74.0	73.5	73.0	72.5	57	8.93 594	146	8.93 756	147	11,06 244	9.99 838	1 3
	88.8	88.2	87.6	87.0	58	8.93 740	146	8.93 903	147	11.06 097	9.99 837	
.7	118.4	117.6	116.8	101.5	59	8.93 885	145	8.94 049	146	11.05 951	9.99 836	1
9	133.2	132.3	131.4	130.5	60	8.94 030	145	8.94 195	146	11.05 805		0
		Prop.	Pts.			L Cos	d	L Cot	ed		L Sin	Ť
	457	-			·			,	1 - 4	- want	L Jin	

		Loga	iritnms	01	runction	18			II.		[FIVE
_	L Sin	d	L Tan	c d	L Cot	L Cos			Pro	p. Pts.	
0	8.94 030	144	8.94 195	145	11.05 805	9.99 834	60				
2	8.94 174	143	8.94 340	145	11.05 660	9.99 833	59				
3	8.94 317 8.94 461	144	8.94 485	145	11.05 515	9.99 832	58				
4	8.94 603	142	8.94 630	143	11.05 370	9.99 831	57				
5		143	8.94 773	144	11.05 227	9.99 830	56		145	143	141
	8.94 746 8.94 887	141	8.94 917 8.95 060	143	11.05 083	9.99 829	55	.I	14.5	14.3 28.6	28.2
ı	8.95 029	142	8.95 202	142	11.04 940	9.99 828	54	-3	43.5	42.9	42.3
ı	8.95 170	141	8.95 344	142	11.04 798 11.04 656	9.99 827 9.99 825	53 52	.4	58.0 72.5	57.2 71.5	56.4 70.5
1	8.95 310	140	8.95 486	142	11.04 514	9.99 824	51	.6	87.0	85.8	84.6
1	8.95 450	140	8.95 627	141	11.04 373	9.99 823	50	·7 .8	101.5	100.1	98.7 112.8
ı	8.95 589	139	8.95 767	140	11.04 233	9.99 822	49	.9	130.5	128.7	126.9
ı	8.95 728	139	8.95 908	141	11.04 092	9.99 821	48				
ı	8.95 867	139	8.96 047	139	11.03 953	9.99 820	47		140	120	1 100
ı	8.96 005	138	8.96 187	140	11.03 813	9.99 819	46	.1	14.0	138 13.8	136 13.6
1	8.96 143	138	8.96 325	138	11.03 675	9.99 817	45	.2	28.0	27.6	27.2
ı	8.96 280	137	8.96 464	139	11.03 536	9.99 816	44	.3	42.0 56.0	41.4 55.2	40.8 54.4
ı	8.96 417	137	8.96 602	138	11.03 398	9.99 815	43	.5	70.0	69.0	68.0
ı	8.96 553	136 136	8.96 739	137 138	11.03 261	9.99 814	42	.6	84.0 98.0	82.8 96.6	81.6 95.2
ı	8.96 689	136	8.96 877	136	11.03 123	9.99 813	41	.8	112.0	110.4	108.8
ı	8.96 825		8.97 013	10000	11.02 987	9.99 812	40	.9	126.0	124.2	122.4
ı	8.96 960	135	8.97 150	137	11.02 850	9.99 810	39				
ı	8.97 095	134	8.97 285	136	11.02 715	9.99 809	38		135	133	131
ı	8.97 229	134	8.97 421	135	11.02 579	9.99 808	37	.I	13.5	13.3 26.6	13.1 26.2
ł	8.97 363	133	8.97 556	135	11.02 444	9.99 807	36	.3	27.0 40.5	39.9	39.3
ı	8.97 496	133	8.97 691	134	11.02 309	9.99 806	35	.4	54.0	53.2	52.4
ı	8.97 629	133	8.97 825	134	11.02 175	9.99 804	34	.5 .6	67.5 81.0	66.5 79.8	65.5 78.6
ı	8.97 762 8.97 894	132	8.97 959 8.98 092	133	11.02 041	9.99 803 9.99 802	32	·7 .8	94.5	93.1	91.7
١	8.98 026	132	8.98 225	133	11.01 775	9.99 801	31	.9	108.0	106.4	104.8
	8.98 157	131	8.98 358	133	11.01 642	9.99 800	30				
ı	8.98 288	131	8.98 490	132	11.01 510	9.99 798	29			400	
ı	8.98 419	131	8.98 622	132	11.01 378	9.99 797	28	т.	130 13.0	128 12.8	126
ı	8.98 549	130	8.98 753	131	11.01 247	9.99 796	27	.2	26.0	25.6	25.2
ı	8.98 679	130	8.98 884	131	11.01 116	9.99 795	26	.3	39.0 52.0	38.4 51.2	37.8 50.4
-	8.98 808	129	8.99 015	131	11.00 985	9.99 793	25	-5	65.0	64.0	63.0
5	8.98 937	129	8.99 145	130	11.00 855	9.99 792	24	.6	78.0 91.0	76.8 89.6	75.6 88.2
7	8.99 066	129	8.99 275	130	11.00 725	9.99 791	23	.8	104.0	102.4	100.8
3	8.99 194	128	8.99 405	130	11.00 595	9.99 790	22	.9	117.0	115.2	113.4
	8.99 322	128	8.99 534	128	11.00 466	9.99 788	21				
ı	8.99 450	127	8.99 662	129	11.00 338	9.99 787	20		125	124	123
	8.99 577	127	0.99 /91	128	11.00 209	9.99 786	19	.I	12.5	12.4	12.3 24.6
	8.99 704	126	8.99 919	127	11.00 081	9.99 785 9.99 783	18 17	.3	25.0 37.5	37.2	36.9
	8.99 830	126	9.00 046	128	10.99 954	9.99 783 9.99 782	16	.4	50.0 62.5	49.6 62.0	49.2 61.5
-	8.99 956	126	9.00 174	127		9.99 781	15	.5 .6	75.0	74.4 86.8	73.8
	9.00 082	125	9.00 301	126	10.99 699	9.99 780	14	.7 .8	87.5 100.0	86.8 99.2	86.1 98.4
,	9.00 207	125	9.00 427	126	10.99 5/3	9.99 778	13	.9	112.5	111.6	110.7
	9.00 332 9.00 456	124	9.00 553 9.00 679	126	10.99 321	9.99 777	12				
	9.00 430	125	9.00 805	126	10.99 195	9.99 776	11		100	101	120
7		123	9.00 930	125	10.99 070	9.99 775	10	.1	122	121 12.1	12.0
ı	9.00 704 9.00 828	124	9.01 055	125	10.98 945	9.99 773	9	.2	24.4	24.2	24.0
	9.00 951	123	9.01 179	124	10.98 821	9.99 772	8	.3	36.6 48.8	36.3 48.4	36.0 48.0
	9.01 074	123	9.01 303	124	10.98 697	9.99 771	7	-5	61.0	60.5	60.0
į	9.01 196	122	9.01 427	124	10.98 573	9.99 769	6	.6	73.2 85.4	72.6 84.7	72.0 84.0
5	9.01 318	122	9.01 550	123	10.98 450	9.99 768	5	.8	97.6	96.8	96.0
ś	9.01 440	122	9.01 673	123	10.98 327	9.99 767	4	.9	109.8	108.9	108.0
	9.01 561	121	9.01 796	123	10.98 204	9.99 765	3				
3	9.01 682	121	9.01 918	122	10.98 082	9.99 764	2				
		121	10		10 07 060	9.99 763	1				
	9.01 803		9.02 040	122	10.97 960		_				
)	9.01 803	120	9.02 040	122	10.97 838	9.99 761 L Sin	0			p. Pts.	

2 24-0 23-8 23-6 23-6 6 9.02 639 119 9.03 688 119 10.97 115 9.99 753 36 640 450 450 450 450 450 450 450 450 450 4	PLA	CE	11.		U		oga	rithms	01 .	runction	15	_
1 9.02 043 1 1 10,07 717 9.99 760 9.99 750 1 10,07 576 9.99 757 1 10,07 175 9.99 750 1 10,07 175 9.99 757 1 1 10,07 175 9.99 757 1 1 10,07 175 9.99 757 1 1 1 1 1 1 1 1 1		Pr	op. Pts.		1	L Sin	d	-	c d			L
1 100 119 118 118 118 118 118 118 118 118 118 118 118 118 118 119 118 118 118 118 119 118					10		120		121		9.99 761	
110					1 7				1 727			
120							10000	9.02 404	1			ı
11							119	9.02 525	1			ı
11 1.0		120	119					9.02 045	121	10.97 355	9.99 750	
116	I.						1				9.99 755	
4 48.0 47.6 47.2 7 9.02 757 117 9.03 005 119 10.96 976 9.99 752 6 60.0 59.5 50.0 8 9.02 992 741 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 9.99 751 119 10.96 876 119 119 119 119 119 119 119 119 119 11	,2					9.02 639		9.02 885		10.97 115	9.99 753	ı
11	4					9.02 757		9.03 005		10.96 995	9.99 752	ı
11	.5			59.0								ı
117	.0			82.6	-	9.02 992	1	9.03 242			9.99 749	_
114	8	96.0	95.2	94.4				9.03 361		10.96 639	9.99 748	ŀ
117	9	108.0	1 107.1	1 100.2				9.03 479		10.96 521		ı
11-7		***	1 440					9.03 597	1 1 1 1 1		9.99 745	ı
23. 23.4 23.2 23.0 149 9.03 690 160 9.03 690 160 9.03 690 160 9.03 690 160 9.03 690 160 9.03 690 170 9.03 690 170 9.03 690 170 9.03 920 170 9.04 181 110 9.04 181 170 9.04 181 170 9.04 181 181 182 182 19.04 9.04 970 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 181 9.04 927 170 9.05 703 9.99 736 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.04 758 170 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 738 170 9.05 127 9.99 728 170 9.05 127 9.99 128 170 9.05 127 9.99 128 170 9.05 127 9.99 128 170 9.05 128 170 9.90 128 170 9.						9.03 458	1	9.03 714			9.99 744	ŀ
114	2		23.2		_	9.03 574		9.03 832	1	10.96 168	9.99 742	
114	3	35.1		34-5		9.03 690		9.03 948		10.96 052	9.99 741	1
114	2					9.03 805						ŀ
114	ŏ	70.2	69.6	69.0		9.03 920		0.04 181		10.95 819		
105.3 104.4 103.5 109.04 149 113 113 113 113 112 114 113 112 112 22 9.04 490 113 9.04 643 115 10.95 357 9.99 733 114 11.3 112 22 9.04 490 113 9.04 673 115 10.95 357 9.99 733 114 10.95 133 9.04 603 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 734 115 10.95 127 9.99 735 116 10.95 127 9.99 728 117 9.05 224 117 10.94 129 9.05 224 117 10.94 129 9.05 224 117 10.94 129 9.99 728 117 9.05 124 117 11.04 10.93 9.05 328 117 9.05 533 118 10.94 539 9.99 728 117 9.05 533 118 10.94 539 9.99 728 118 9.05 534 118 9.05 535 118 9.05 534	7 8					9.04 034				10.95 703		ŀ
114	اۋ					9.04 149				10.95 587		ŀ
114 113 112 22 9.04 490 113 9.04 673 115 10.95 137 9.99 733 10.95 127 9.99 733 10.95 127 9.99 733 114 10.95 123 9.04 873 115 10.95 123 9.99 733 116 10.95 10.95 127 9.99 733 117 10.95 10.95 127 9.99 733 117 10.95 10.95 127 9.99 733 117 10.95 10.95 127 9.99 733 118 10.95 10.95 127 9.99 733 119 10.95 10.95 127 9.99 733 114 10.95 10.3 9.99 728 115 10.95 10.3 9.99 728 117 10.95 10.3 9.99 728 118 10.95 10.3 9.99 728 119 9.05 214 111 10.95 10.3 9.99 728 112 9.05 214 111 10.94 679 9.99 728 112 9.05 214 111 10.94 679 9.99 728 112 9.05 214 111 10.94 679 9.99 728 112 9.05 214 111 10.94 679 9.99 728 111 10.94 679 9.99 728 111 10.94 679 9.99 728 112 9.05 214 111 10.94 679 9.99 728 112 9.05 214 111 10.94 679 9.99 728 112 9.05 214 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 111 10.94 579 9.99 728 112 9.05 214 111 10.94 579 9.99 728 111 10.94 5					20							
114				200	21			9.04 643				ı
111	, 1					9.04 490		9.04 758				ı
33.4.2	2					9.04 603		9.04 873				L
110	3 I	34.2	33.9	33.6	24	9.04 715	1	9.04 987	1	10.95 013		
111	4		45.2	56.0	25	9.04 828				10.94 899	9.99 727	1
111	8	68.4								10.94 786		
102.6 101.7 100.8 29 9.05 1054 111 110 109 30 9.05 386 111 9.05 563 112 10.94 447 9.99 721 10.94 322 9.99 718 112 10.94 334 9.99 720 112 10.94 334 9.99 720 10.94 444 9.99 718 10	8						1					L
111				100.8		9.05 164						L
111 110 109 31 9.05 386 111 9.05 666 112 10.94 334 9.99 720 111 11.0 11.0 10.9 31 9.05 497 110 9.05 778 112 10.94 212 9.99 718 10.94 214 9.99 717 110 9.05 890 112 10.94 110 9.99 717 110 9.06 606 60.6			444.		29	9.05 275	1					L
11.1 11.0 10.9 31 9.05 497 110 9.05 778 112 10.94 222 9.99 718 10.93 49 9.05 827 110 9.06 5002 111 10.93 887 9.99 714 10.94 222 9.99 718 10.93 49 9.05 825 10.90 335 111 10.93 887 9.99 714 10.94 222 9.99 718 10.93 49 9.05 825 10.90 6002 111 10.93 98 9.99 716 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 716 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 714 10.94 222 9.99 718 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 716 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 714 10.94 222 9.99 716 10.93 887 9.99 716 10.93 887 9.99 718 10.					30	9.05 386	100		1			Ī
108 107 106 40 9.06 41 108 107 106 41 21.2 21.4 32.4 32.1 31.8 42.4 43.2	.						1000	9.05 778	100		9.99 718	_
33.3 33.0 42.7 43.6 34 9.05 827 110 9.06 002 111 10.93 998 9.99 716 444.4 44.0 44.0 43.6 34 9.05 827 110 9.06 113 111 10.93 887 9.99 716 9.06 113 111 10.93 887 9.99 716 9.06 113 111 10.93 887 9.99 716 9.06 113 111 10.93 887 9.99 718 88.8 88.0 87.2 99.0 98.1 38 9.06 264 108 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.06 335 110 9.09 3.06 9.99 710 10.93 334 9.99 707 10.93 3	2					9.05 607		9.05 890				L
108	3		33.0	32.7		9.05 717		9.06 002	1	10.93 998		L
108	\$					9.05 827		9.06 113		10.93 887	9.99 714	L
108	5	66.6		65.4		9.05 937		9.06 224			9.99 713	
99.9 99.0 98.1 38 9.06 264 38 9.06 264 99.06 556 90.06 656 90.06 656 109 90.06 656 100.06 656 100.06 656 100.06 656 100.06 656 100.06 656	3	77.7	77.0					9.06 335				L
108 107 106 40 9.06 372 108 10.93 334 9.99 707 10.8 10.7 10.6 41 9.06 589 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 707 10.93 334 9.99 708 10.93 334 9.99 708 10.93 334 9.99 708 10.93 334 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 306 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 708 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 9.99 709 10.93 308 10.99 28 9.99 699 10.93 308 10.99 28 9.99 699 10.93 308 10.93 308 10.93 308 10.99 308 10.93 308 10.93 308 10.93 308 10.93 308 10.93 308 10.99 308 10.93 308 10.99 709 10.93 308 10.99 709 10.93 308 10.99 308 10.9	5 1			98.1				9.06 445				L
108				, , , , ,				9.06 556				Ŀ
108 107 106 10.6 21.6 21.4 21.2 2 1.6 21.4 21.2 31.8 42.4 43 9.06 696 108 9.06 885 109 9.07 868 109 9.07 828 108 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 9.99 699 10.92 887 10.92 887 9.99 699 10.92 887 10.92 887 9.99 695 10.92 887 10.92 887 9.99 695 10.92 887 10						9.06 372		9.06 666	1			L
21.6 21.4 21.2 21.2 31.8 42.4 43 9.06 696 107 9.06 994 109 10.93 115 9.99 704 42.5 42.8 42.8 42.8 42.8 43.9.06 804 107 9.07 103 108 10.92 897 9.99 701 10.92 897 9.99 701 10.92 897 9.99 701 10.92 897 9.99 701 10.92 897 9.99 699 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 10.92 897 9.99 689 10.92 897 10.92 897 9.99 689 10.92 897 10.92 89	. 1				40	9.06 481		9.06 775	1			1
32.4 32.1 31.8 42 9.06 696 107 9.06 994 109 10.93 006 9.99 702 10.92 897 9.99 701 10.92 897 9.99 701 10.92 897 9.99 701 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 897 9.99 699 10.92 889 10.92 9.99 688 10.92 9.99 688 10.92 9.99 688 10.92 9.99 689 10.92 10.91 823 9.99 688 10.91 717 9.99						9.06 589	1000	9.06 885				Г
105		32.4	32.I	31.8		9.06 696		9.06 994		10.93 006		ı
75.6 74.9 85.6 84.8 46 9.07 018 107 9.07 320 108 10.92 680 9.99 698 97.2 96.3 95.4 47 9.07 231 107 9.07 536 108 10.92 464 9.99 695 48 9.07 337 106 9.07 643 107 10.92 357 9.99 695 10.5 10.4 10.3 10.3 20.8 20.6 31.5 31.2 30.9 42.0 41.6 41.2 52 9.07 653 105 9.07 964 107 10.92 249 9.99 692 10.9 2357 9.99 690 10.92 249 9.99 690 10.92 249 9.99 690 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 142 9						9.06 804		9.07 103		10.92 897		L
75.6 74.9 85.6 84.8 46 9.07 018 107 9.07 320 108 10.92 680 9.99 698 97.2 96.3 95.4 47 9.07 231 107 9.07 536 108 10.92 464 9.99 695 48 9.07 337 106 9.07 643 107 10.92 357 9.99 695 10.5 10.4 10.3 10.3 20.8 20.6 31.5 31.2 30.9 42.0 41.6 41.2 52 9.07 653 105 9.07 964 107 10.92 249 9.99 692 10.9 2357 9.99 690 10.92 249 9.99 690 10.92 249 9.99 690 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 249 9.99 689 10.92 142 9	1	64.8		63.6				9.07 211		10.92 789	9.99 699	L
105 104 103 49 9.07 442 105 105 9.07 643 108 10.92 357 9.99 693 105 9.07 643 108 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 689 10.92 249		75.6	74.9	74.2		9.07 018		9.07 320		10.92 680		Г
105 104 103 49 9.07 442 105 105 9.07 643 108 10.92 357 9.99 693 105 9.07 643 108 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 693 10.92 249 9.99 689 10.92 249			96.3			9.07 124		9.07 428	1		9.99 696	ı
105			20.0	33.4				9.07 536				L
105						9.07 337		9.07 643		10.92 357		L
10.5 10.4 10.3 20.6 20.6 31.5 31.2 30.9 42.0 41.6 41.2 52.5 52.0 51.5 53 9.07 968 105 9.08 971 106 10.92 036 9.99 689 9.08 177 9.08 187 106 10.91 929 9.99 686 107 10.91 929 9.99 687 108 109	1							9.07 751		10.92 249		ľ
31.5 31.2 30.9 51 9.07 653 105 9.07 964 107 10.91 929 9.99 687 9.08 9.08 9.08 9.09 9.99 687 9.08 9.08 9.08 9.09 9.99 687 9.08 9.08 9.08 9.08 9.09						9.07 548		9.07 858				1
A2.0		31.5	31.2	30.9		9.07 653		9.07 964		10.92 036	9.99 689	
Solution				41.2		9.07 758		9.08 071		10.91 929	9.99 687	
Solution		63.0	62.4	61.8		9.07 863		9.08 177			9.99 686	
Solution		73.5	72.8	72.I	*****************					10.91 717		
S6 9.08 176 104 9.08 495 105 10.91 505 9.99 681 9.08 600 103 9.08 600 105 10.91 400 9.99 680 103 9.08 810 103 9.08 810 104 10.91 190 9.99 678 10.91 190 9.99 675 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.91 086 10.						9.08 072		9.08 389		10.91 611		Г
S7 9.08 280 103 9.08 600 105 10.91 400 9.99 680 9.08 383 103 9.08 810 104 10.91 190 9.99 678 9.08 589 103 9.08 914 10.91 086 9.99 675 10.91 086				.57		9.08 176		9.08 495		10.91 505		
S8 9.08 383 103 9.08 705 105 10.91 295 9.99 678 9.08 589 103 9.08 914 10.91 190 9.99 677 9.99 675 10.91 086 10.91 086								9.08 600		10.91 400		
Sy 9.08 486 103 9.08 810 104 10.91 190 9.99 677						9.08 383	2000	9.08 705		10.91 295		
Prop. Pts. 60 9.08 589 9.08 914 10.91 086 9.99 675 L Cos d L Cot c d L Tan L Sin									40.25			
Prop. Pts. L Cos d L Cot cd L Tan L Sin	_				60	9.08 589	.03	9.08 914	104	10.91 086		r
450_		Pro	p. Pts.			L Cos	d		c d	L Tan		1
	4.	59 —										8

		Logo	arithms	01 1	unctions				II.	[1	FIVE-
_	L Sin	d	L Tan	c d	L Cot	L Cos			Prop	Pts.	
0	9.08 589	103	9.08 914	105	10.91 086	9.99 675	60				
1	9.08 692	103	9.09 019	104	10.90 981	9.99 674	59				
2 3	9.08 795 9.08 897	102	9.09 123	104	10.90 877	9.99 672	58				
4	9.08 999	102	9.09 227	103	10.90 773	9.99 670	57		105	104	103
$\frac{4}{5}$		102	9.09 330	104	10.90 670	9.99 669	56	.I	10.5	10.4	10.3
6	9.09 101	101	9.09 434	103	10.90 566	9.99 667	55	.3	31.5	20.8 31.2	20.6 30.9
7	9.09 304	102	9.09 537 9.09 640	103	10.90 463	9.99 666 9.99 664	54 53	.4	42.0	41.6	41.2
8	9.09 405	101	9.09 742	102	10.90 258	9.99 663	52	.5 .6	52.5 63.0	52.0 62.4	51.5
9	9.09 506	101	9.09 845	103	10.90 155	9.99 661	51	·7 .8	73.5	72.8	72.1
10	9.09 606	100	9.09 947	102	10.90 053	9.99 659	50	.9	94.5	83.2 93.6	82.4
11	9.09 707	101	9.10 049	102	10.89 951	9.99 658	49				
12	9.09 807	100	9.10 150	101	10.89 850	9.99 656	48		. 2010	. Salah S	
13	9.09 907	99	9.10 252	102	10.89 748	9.99 655	47		102	101 10.1	100
14	9.10 006	100	9.10 353	101	10.89 647	9.99 653	46	.I .2	20.4	20.2	10.0
15	9.10 106	99	9.10 454	101	10.89 546	9.99 651	45	.3	30.6	30.3	30.0
16	9.10 205	99	9.10 555	101	10.89 445	9.99 650	44	·4 ·5	51.0	50.5	40.0 50.0
17	9.10 304	98	9.10 656	100	10.89 344	9.99 648	43	.6 .7	71.4	60.6 70.7	60.0
18 19	9.10 402	99	9.10 756 9.10 856	100	10.89 244	9.99 647	42 41	.8	81.6	80.8	70.0 80.0
_	9.10 501	98		100	10.89 144	9.99 645	40	.9	8.10	90.9	90.0
20 21	9.10 599 9.10 697	98	9.10 956 9.11 056	100	10.89 044	9.99 643 9.99 642	39				
22	9.10 795	98	9.11 155	99	10.88 845	9.99 640	38		99	98	97
23	9.10 893	98	9.11 254	99	10.88 746	9.99 638	37	.I	9.9	9.8	9.7
24	9.10 990	97	9.11 353	99	10.88 647	9.99 637	36	.2	19.8	19.6	19.4
25	9.11 087	97	9.11 452	99	10.88 548	9.99 635	35	-4	39.6	39.2	38.8
26	9.11 184	97	9.11 551	99	10.88 449	9.99 633	34	.5	49.5 59.4	49.0 58.8	48.5 58.2
27	9.11 281	97	9.11 649	98 98	10.88 351	9.99 632	33	.7	69.3	68.6	67.9
28	9.11 377	96 97	9.11 747	98	10.88 253	9.99 630	32	.8	79.2 89.1	78.4 88.2	77.6 87.3
29	9.11 474	96	9.11 845	98	10.88 155	9.99 629	31	.,			,.,
30	9.11 570	96	9.11 943	97	10.88 057	9.99 627	30				
31	9.11 666	95	9.12 040	98	10.87 960	9.99 625	29 28		96	95	94
32	9.11 761	96	9.12 138	97	10.87 862	9.99 624 9.99 622	27	.I .2	9.6	9.5	18.8
33 34	9.11 857	95	9.12 235 9.12 332	97	10.87 668	9.99 620	26	.3	28.8	28.5	28.2
_	9.11 952	95		96	10.87 572	9.99 618	25	.4	38.4 48.0	38.0 47.5	37.6 47.0
35 36	9.12 047 9.12 142	95	9.12 428 9.12 525	97	10.87 475	9.99 617	24	.6	57.6	57.0 66.5	56.4 65.8
37	9.12 236	94	9.12 621	96	10.87 379	9.99 615	23	.7	67.2 76.8	76.0	75.2
38	9.12 331	95	9.12 717	96	10.87 283	9.99 613	22	.9	86.4	85.5	84.6
39	9.12 425	94	9.12 813	96	10.87 187	9.99 612	21				
40	9.12 519	94	9.12 909	96	10.87 091	9.99 610	20		93	92	91
41	9.12 612	93	9.13 004	95 95	10.86 996	9.99 608	19	.I	9.3	9.2	9.1
42	9.12 706	94	9.13 099	95	10.86 901	9.99 607	18 17	.2	18.6	18.4	18.2
43	9.12 799	93	9.13 194	95	10.86 806	9.99 605 9.99 603	16	.4	37.2	36.8	36.4
44	9.12 892	93	9.13 289	95			15	.6	46.5 55.8	46.0 55.2	45.5 54.6
45	9.12 985	93	9.13 384	94	10.86 616	9.99 601 9.99 600	14	.7 .8	65.1	64.4	63.7
46	9.13 078	93	9.13 478	95	10.86 427	9.99 598	13	.8	74.4 83.7	73.6 82.8	72.8
47 48	9.13 171 9.13 263	92	9.13 573 9.13 667	94	10.86 333	9.99 596	12			V. 400-3	
48	9.13 203	92	9.13 761	94	10.86 239	9.99 595	11				
50		92	9.13 854	93	10.86 146	9.99 593	10		90	0.2	0.1
51	9.13 447	92	9.13 948	94	10.86 052	9.99 591	9	.1	9.0	0.4	0.2
52	9.13 539 9.13 630	91	9.14 041	93	10.85 959	9.99 589	8	.3	27.0	0.6	0.3
53	9.13 722	92	9.14 134	93	10.85 866	9.99 588	7	·4 ·5	36.0 45.0	1.0	0.5
54	9.13 813	91	9.14 227	93	10.85 773	9.99 586	6	.6	54.0	1.2	0.6
55	9.13 904	91	9.14 320	93	10.85 680	9.99 584	5	·7 .8	63.0 72.0	1.6	0.7
56	9.13 994	90	9.14 412	92	10.85 588	9.99 582	3	.9	81.0	1.8	0.9
57	9.14 085	90	9.14 504	93	10.85 496	9.99 581 9.99 579	2				
58	9.14 175	91	9.14 597	91	10.85 403	9.99 577	1				
59	9.14 266	90	9.14 688	92	10.85 220	9.99 575	0				
60	9.14 356		9.14 780			L Sin	÷		Prop	Pts.	
	L Cos	d	L Cot	c d	L Tan	L SIII	000			- 46	<u>in</u>
							82°				,,,

80 L Cot L Cos L Sin d L Tan c d Prop. Pts. 10.85 220 0 60 9.14 780 9.14 356 9.99 575 89 92 59 9.14 872 1 10.85 128 9.99 574 9.14 445 90 91 2 10.85 037 58 9.14 963 9.99 572 9.14 535 89 91 3 57 10.84 946 9.15 054 9.99 570 9.14 624 90 10 10.84 855 4 9.99 568 56 9.14 714 9.15 145 89 91 5 55 10.84 764 9.14 803 9.15 236 9.99 566 88 91 6 9.14 891 10.84 673 9.99 565 54 9.15 327 89 90 7 10.84 583 53 9.14 980 9.15 417 9.99 563 89 91 8 52 9.15 069 10.84 492 9.15 508 9.99 561 88 90 10.84 402 51 9 9.15 157 9.15 598 9.99 559 90 92 91 88 90 10 9.2 9.1 9.0 9.15 688 10.84 312 I, 50 9.15 245 9.99 557 18.4 18.2 18.0 88 .2 89 11 10.84 223 9.15 333 49 9.15 777 9.99 556 .3 27.0 27.6 27.3 88 90 10.84 133 12 48 .5 9.15 421 9.15 867 36.0 36.8 30.4 9.99 554 87 89 46.0 45.5 45.0 13 10.84 044 47 9.15 508 9.15 956 9.99 552 88 55.2 54.6 54.0 90 10.83 954 14 46 9.15 596 9.16 046 9.99 550 .7 64.4 63.7 63.0 87 89 73.6 72.8 15 10.83 865 72.0 45 9.15 683 9.16 135 9.99 548 82.8 81.9 81.0 87 89 16 10.83 776 9.15 770 9.16 224 44 9.99 546 87 88 17 9.15 857 43 9.16 312 10.83 688 9.99 545 87 89 18 10.83 599 9.15 944 9.16 401 42 9.99 543 87 88 89 86 88 19 10.83 511 9.16 489 41 9.16 030 9.99 541 8.8 8.7 8.9 ı. 86 88 17.8 .2 17.6 20 10.83 423 17.4 9.16 116 40 9.16 577 9.99 539 .3 26.7 26.4 26.I 87 88 21 10.83 335 9.16 203 9.16 665 9.99 537 39 4.5.6.7.8 35.6 35.2 34.8 86 88 22 9.16 753 10.83 247 38 9.16 289 9.99 535 44.5 44.0 43.5 85 88 52.8 23 52.2 53.4 9.16 841 10.83 159 9.16 374 37 9.99 533 61.6 62.3 60.9 86 87 24 10.83 072 9.16 460 9.16 928 36 9.99 532 69.6 71.2 80.1 70.4 88 85 25 79.2 78.3 9.16 545 35 10.82 984 9.17 016 9.99 530 86 87 26 9.16 631 10.82 897 9.17 103 34 9.99 528 85 87 27 9.16 716 10.82 810 33 9.17 190 9.99 526 85 87 84 86 85 28 10.82 723 9.16 801 9.17 277 32 9.99 524 8.5 8.4 8.6 .I 85 86 29 9.16 886 10.82 637 31 9.17 363 9.99 522 16.8 .2 17.2 17.0 84 87 .34.56 30 9.16 970 25.8 25.2 25.5 9.17 450 10.82 550 30 9.99 520 85 34.4 33.6 86 34.0 31 9.17 055 10.82 464 9.17 536 29 9.99 518 43.0 42.0 42.5 84 86 32 9.17 139 9.17 622 10.82 378 50.4 28 51.6 51.0 9.99 517 .7 84 86 58.8 33 60.2 59.5 10.82 292 9.17 708 9.17 223 27 9.99 515 68.0 68.8 67.2 86 84 34 10.82 206 9.17 307 9.17 794 26 9.99 513 77.4 70.5 75.6 84 86 35 9.17 391 9.17 880 25 10.82 120 9.99 511 83 85 36 10.82 035 9.17 474 9.17 965 24 9.99 509 84 86 37 9.17 558 9.18 051 10.81 949 82 81 23 9.99 507 8.3 83 85 8.2 8.1 38 ı. 9.17 641 9.18 136 10.81 864 22 9.99 505 83 .2 16.6 16.4 24.6 85 39 9.17 724 9.18 221 10.81 779 21 .3 9.99 503 24.9 24.3 83 85 40 456789 9.18 306 33.2 32.8 32.4 9.17 807 10.81 694 20 9.99 501 41.5 49.8 58.1 40.5 83 41.0 85 9.17 890 41 9.18 391 10.81 609 19 9.99 499 49.2 83 84 42 9.18 475 9.17 973 10.81 525 57.4 65.6 56.7 9.99 497 18 82 85 43 66.4 9.18 055 64.8 9.18 560 10.81 440 9.99 495 17 74.7 82 73.8 84 72.9 44 9.18 137 9.18 644 10.81 356 16 9.99 494 83 84 45 9.18 220 9.18 728 10.81 272 15 9.99 492 82 84 46 9.18 302 9.18 812 10.81 188 9.99 490 14 80 2 1 81 84 9.18 383 47 8.0 .I 9.18 896 10.81 104 0.2 0.1 13 9.99 488 82 .2 83 16.0 48 9.18 465 0.4 0.2 9.18 979 10.81 021 12 9.99 486 .3 4 5 6 24.0 0.6 82 0.3 84 49 9.18 547 10.80 937 9.19 063 11 9.99 484 32.0 0.8 0.4 81 83 50 40.0 9.18 628 1.0 0.5 10.80 854 9.19 146 10 9.99 482 48.0 81 1.2 83 0.6 51 9.18 709 9.19 229 10.80 771 .7 .8 98 9.99 480 56.0 1.6 0.7 81 83 52 9.18 790 9.19 312 10.80 688 64.0 0.8 9.99 478 81 83 53 72.0 1.8 9.18 871 0.9 10.80 605 9.19 395 7 9.99 476 81 83 54 9.18 952 10.80 522 9.19 478 9.99 474 65432 81 83 55 9.19 033 9.19 561 10.80 439 9.99 472 80 82 56 9.19 113 10.80 357 9.19 643 9.99 470 80 82 57 9.19 193 10.80 275 9.19 725 9.99 468 80 82 58 9.19 273 9.19 807 10.80 193 9.99 466 80 82 59 9.19 353 9.19 889 10.80 111 1 9.99 464 80 82 60 9.19 433 10.80 029 9.19 971 ō 9.99 462 Prop. Pts. L Cos d I. Cot e d L Tan L Sin -461 -

_		205	artining	01	unctions	•			11.	Ĺı	FIVE
'	L Sin	d	L Tan	c d	L Cot	L Cos			Prop	Pts.	
0	9.19 433	0.	9.19 971		10.80 029	9.99 462	60		•		
1	9.19 513	80	9.20 053	82	10.79 947	9.99 460	59				
2	9.19 592	79 80	9.20 134	81	10.79 866	9.99 458	58				
3	9.19 672	79	9.20 216	82 81	10.79 784	9.99 456	57				
$\frac{4}{5}$	9.19 751		9.20 297	81	10.79 703	9.99 454	56				
5	9.19 830	79	9.20 378	81	10.79 622	9.99 452	55				
6	9.19 909	79 79	9.20 459	81	10.79 541	9.99 450	54				
7	9.19 988	79	9.20 540	81	10.79 460	9.99 448	53		82	81	
8	9.20 067	78	9.20 621	80	10.79 379	9.99 446	52		8.2	8.1	T .
9	9.20 145	78	9.20 701	81	10.79 299	9.99 444	51		16.4		
10	9.20 223	79	9.20 782	80	10.79 218	9.99 442	50		32.8		
11	9.20 302	78	9.20 862	80	10.79 138	9.99 440	49		41.0		
12	9.20 380	78	9.20 942	80	10.79 058	9.99 438	48 47		57.4	56.7	
13 14	9.20 458	77	9.21 022	80	10.78 978	9.99 436	46		65.6	64.8	
	9.20 535	78	9.21 102	80	10.78 898	9.99 434			73.8	72.9	,
15	9.20 613	78	9.21 182	79	10.78 818	9.99 432	45				
16 17	9.20 691	77	9.21 261	80	10.78 739	9.99 429	44		80	79	78
18	9.20 768 9.20 845	77	9.21 341	79	10.78 659 10.78 580	9.99 427 9.99 425	42	.I	8.0	7.9	7.8
19	9.20 045	77	9.21 420 9.21 499	79	10.78 501	9.99 423	41	.2	16.0	15.8	15.6
20		77		79			40	·3	24.0 32.0	23.7 31.6	31.2
21	9.20 999	77	9.21 578	79	10.78 422 10.78 343	9.99 421	39	.5	40.0	39.5	39.0
22	9.21 076	77	9.21 657 9.21 736	79	10.78 264	9.99 419	38	.7	48.0 56.0	47·4 55·3	46.8 54.6
23	9.21 153 9.21 229	76	9.21 814	78	10.78 186	9.99 415	37	.8	64.0	63.2	62.4
24	9.21 306	77	9.21 893	79	10.78 107	9.99 413	36	.9	72.0	71.1	70.2
$\frac{21}{25}$	9.21 382	76	9.21 971	78	10.78 029	9.99 411	35				
26	9.21 458	76	9.22 049	78	10.77 951	9.99 409	34				
27	9.21 534	76	9.22 127	78	10.77 873	9.99 407	33	.I	77	76	7.5
28	9.21 610	76	9.22 205	78	10.77 795	9.99 404	32	.2	15.4	15.2	15.0
29	9.21 685	75	9.22 283	78	10.77 717	9.99 402	31	.3	23.I 30.8	22.8 30.4	30.0
30	9.21 761	76	9.22 361	78	10.77 639	9.99 400	30	.4 .5 .6	38.5	38.0	37.5
31	9.21 836	75	9.22 438	77	10.77 562	9.99 398	29	.6	46.2	45.6	45.0 52.5
32	9.21 912	76	9.22 516	78	10.77 484	9.99 396	28	.8	53.9 61.6	53.2 60.8	60.0
33	9.21 987	75	9.22 593	77	10.77 407	9.99 394	27	.9	69.3	68.4	67.5
34	9.22 062	75	9.22 670	77	10.77 330	9.99 392	26				
35	9.22 137	75	9.22 747	77	10.77 253	9.99 390	25				
36	9.22 211	74	9.22 824	77	10.77 176	9.99 388	24		74	73	7.2
37	9.22 286	75	9.22 901	77 76	10.77 099	9.99 385	23	.I	7.4	7.3	14.4
38	9.22 361	75	9.22 977	77	10.77 023	9.99 383	22 21	.3	22.2	21.9	21.6
39	9.22 435	74	9.23 054	76	10.76 946	9.99 381		.4	29.6 37.0	29.2 36.5	36.0
40	9.22 509	74	9.23 130	76	10.76 870	9.99 379	20 19	.6	44.4	43.8	43.2
41	9.22 583	74	9.23 206	77	10.76 794	9.99 377	18	.7 .8	51.8 59.2	51.1	57.6
42	9.22 657	74 74	9.23 283	76	10.76 717	9.99 375	17	.9	66.6	65.7	64.8
43	9.22 731	74	9.23 359	76	10.76 641 10.76 565	9.99 372 9.99 370	16				
44	9.22 805	73	9.23 435	75		0.00.268	15				
45	9.22 878	74	9.23 510	76	10.76 490	9.99 368 9.99 366	14		71	3	0.2
46	9.22 952	73	9.23 586	75	10.76 339	9.99 364	13	.I	7.I 14.2	0.3	0.4
47	9.23 025	73	9.23 661	76	10.76 263	9.99 362	12	.3	21.3	0.9	0.6
48	9.23 098	73	9.23 737 9.23 812	75	10.76 188	9.99 359	11	-4	28.4 35.5	1.2	1.0
49	9.23 171	73	9.23 012	75	10.76 113	9.99 357	10	.6	42.6	1.8	1.2
50	9.23 244	73	9.23 887	75	10.76 038	9.99 355	9	.7 .8	49.7 56.8	2.1	1.4
51	9.23 317	73	9.23 962 9.24 037	75	10.75 963	9.99 353	8	.9	63.9	2.7	1.0
52	9.23 390	72	9.24 112	75	10.75 888	9.99 351	7				
53 54	9.23 462	73	9.24 186	74	10.75 814	9.99 348	_6_				
54	9.23 535	72	9.24 261	75	10.75 739	9.99 346	5				
55	9.23 607 9.23 679	72	9.24 335	74	10.75 665	9.99 344	4				
56 57		73	9.24 410	75	10.75 590	9.99 342	3	Ma			
58	9.23 752 9.23 823	71	9.24 484	74	10.75 516	9.99 340	2				
59	9.23 895	72	9.24 558	74	10.75 442	9.99 337	1				
60	9.23 967	72	9.24 632	74	10.75 368	9.99 335	0			D:	_
-		d	L Cot	cd	L Tan	L Sin	'		Prop	Pts.	
	L Cos	a	L COL				80°			- 46	2 —

Logarithms of Functions

PLACE]	II.
ILMCD	

											-
Prop. Pts.				-	L Sin	d	L Tan	c d		L Cos	-
				0	9.23 967	72	9.24 632	74	10.75 368	9.99 335	60
				1 1	9.24 039	71	9.24 706	73	10.75 294	9.99 333	59
				2	9.24 110	71	9.24 779	74	10.75 221	9.99 331	58
				3	9.24 181	72	9.24 853	73	10.75 147	9.99 328	57 56
				4	9.24 253	71	9.24 926	74	10.75 074	9.99 326	
				5	9.24 324	71	9.25 000	73	10.75 000	9.99 324	55 54
				6 7	9.24 395	71	9.25 073	73	10.74 927	9.99 322	53
				8	9.24 466 9.24 536	70	9.25 146 9.25 219	73	10.74 781	9.99 319	52
				l ŏ	9.24 607	71	9.25 292	73	10.74 708	9.99 315	51
				10	9.24 677	70	9.25 365	73	10.74 635	9.99 313	50
				111	9.24 748	71	9.25 437	72	10.74 563	9.99 310	49
	74	73	72	12	9.24 818	70	9.25 510	73	10.74 490	9.99 308	48
ı.	7.4	7.3	7.2	13	9.24 888	70	9.25 582	72	10.74 418	9.99 306	47
.3	14.8	14.6	21.6	14	9.24 958	70	9.25 655	73	10.74 345	9.99 304	46
4	29.6	29.2	28.8	15	9.25 028	70	9.25 727	72	10.74 273	9.99 301	45
.5	37.0	36.5 43.8	36.0 43.2	16	9.25 098	70	9.25 799	72	10.74 201	9.99 299	44
.7	51.8	51.1	50.4	17	9.25 168	60	9.25 871	72	10.74 129	9.99 297	43
.8	59.2 66.6	58.4	57.6	18	9.25 237	70	9.25 943	72	10.74 057	9.99 294	42
·y	00.0	1 03.7	. 04.0	19	9.25 307	69	9.26 015	71	10.73 985	9.99 292	41
				20	9.25 376	69	9.26 086	72	10.73 914	9.99 290	40
	71	1 70	69	21 22	9.25 445	69	9.26 158	71	10.73 842	9.99 288	39
ı.	7.1	7.0	6.9	23	9.25 514	69	9.26 229 9.26 301	72	10.73 771	9.99 285	38 37
.3	21.3	14.0	13.8	24	9.25 583 9.25 652	69	9.26 372	71	10.73 699	9.99 283 9.99 281	36
.4	28.4	28.0	27.6	25		69	9.26 443	71			35
.6	35.5 42.6	35.0 42.0	34.5 41.4	26	9.25 721 9.25 790	69	9.26 514	71	10.73 557	9.99 278 9.99 276	34
.7	49.7	49.0	48.3	27	9.25 858	68	9.26 585	71	10.73 415	9.99 274	33
.8	56.8	56.0	55.2 62.1	28	9.25 927	69	9.26 655	70	10.73 345	9.99 271	32
.,	03.9	. 03.0	. 02.2	29	9.25 995	68	9.26 726	71	10.73 274	9.99 269	31
				30	9.26 063	68	9.26 797	71	10.73 203	9.99 267	30
	68	67	66	31	9.26 131	68	9.26 867	70	10.73 133	9.99 264	29
I.	6.8	6.7	6.6	32	9.26 199	68	9.26 937	71	10.73 063	9.99 262	28
.3	13.6	13.4 20.1	13.2	33	9.26 267	68	9.27 008	70	10.72 992	9.99 260	27
.4	27.2	26.8	26.4	34	9.26 335	68	9.27 078	70	10.72 922	9.99 257	26
.6	34.0 40.8	33.5 40.2	33.0 39.6	35	9.26 403	67	9.27 148	70	10.72 852	9.99 255	25
.7	47.6	46.9	46.2	36 37	9.26 470	68	9.27 218	70	10.72 782	9.99 252	24
.0	54.4	53.6	52.8	38	9.26 538 9.26 605	67	9.27 288	69	10.72 712	9.99 250	23
				39	9.26 672	67	9.27 357 9.27 427	70	10.72 643	9.99 248	22 21
				40	9.26 739	67		69		9.99 245	20
-	65	3	2	41	9.26 806	67	9.27 496 9.27 566	70	10.72 504	9.99 243	19
.I	6.5	0.3	0.2	42	9.26 873	67	9.27 635	69	10.72 365	9.99 241 9.99 238	18
.3	19.5	0.0	0.4	43	9.26 940	67	9.27 704	69	10.72 296	9.99 236	17
4	26.0 32.5	1.2	0.8	44	9.27 007	67	9.27 773	69	10.72 227	9.99 233	16
.6	39.0	1.5	1.0	45	9.27 073	66	9.27 842	69	10.72 158	9.99 231	15
7 8	45-5 52.0	2.1	1.4	46	9.27 140	66	9.27 911	69	10.72 089	9.99 229	14
9	58.5	2.4	1.8	47	9.27 206	67	9.27 980	69	10.72 020	9.99 226	13
				48	9.27 273	66	9.28 049	68	10.71 951	9.99 224	12
				49	9.27 339	66	9.28 117	69	10.71 883	9.99 221	11
				50	9.27 405	66	9.28 186	68	10.71 814	9.99 219	10
				51 52	9.27 471	66	9.28 254	69	10.71 746	9.99 217	9
				53	9.27 537 9.27 602	65	9.28 323	68	10.71 677	9.99 214	8
				54	9.27 668	66	9.28 391 9.28 459	68	10.71 609	9.99 212	7
				55		66	9.20 439	68	10.71 541	9.99 209	_6
				56	9.27 734 9.27 799	65	9.28 527	68	10.71 473	9.99 207	5
				57	9.27 864	65	9.28 595 9.28 662	67	10.71 405	9.99 204	4
				58	9.27 930	66	9.28 730	68	10.71 338	9.99 202	3
				59	9.27 995	65	9.28 798	68	10.71 202	9.99 200 9.99 197	2
				60	9.28.060	65	9.28 865	67	10.71 135		-
_	Pro	p. Pts.			L Cos	d	L Cot	od	L Tan	9.99 195	÷
	463 —		100					34	~ ran	L Sin	

		LUS.	arithms	01 1	unctions	,			11.	L	TIVE-
'	L Sin	d	L Tan	c d	L Cot	L Cos			Prop	. Pts.	
0	9.28 060	4-	9.28 865	60	10.71 135	9.99 195	60				-
1	9.28 125	65	9.28 933	68	10.71 067	9.99 192	59				
2	9.28 190	64	9.29 000	67	10.71 000	9.99 190	58				
3	9.28 254	65	9.29 067	67	10.70 933	9.99 187	57				
4	9.28 319	65	9.29 134	67	10.70 866	9.99 185	_56				
5	9.28 384	64	9.29 201	67	10.70 799	9.99 182	55				
6	9.28 448	64	9.29 268	67	10.70 732	9.99 180	54				
7 8	9.28 512	65	9.29 335	67	10.70 665	9.99 177	53 52				
9	9.28 577 9.28 641	64	9.29 402 9.29 468	66	10.70 598 10.70 532	9.99 175 9.99 172	51				
10	9.28 705	64		67			50				
11	9.28 769	64	9.29 535 9.29 601	66	10.70 465	9.99 170 9.99 167	49				
12	9.28 833	64	9.29 668	67	10.70 332	9.99 165	48				
13	9.28 896	63	9.29 734	66	10.70 266	9.99 162	47	.I	6.8	6.7	6.6
14	9.28 960	64	9.29 800	66	10.70 200	9.99 160	46	.2	13.6	13.4	13.2
15	9.29 024	64	9.29 866	66	10.70 134	9.99 157	45	.3	20.4	20.1	19.8
16	9.29 087	63	9.29 932	66	10.70 068	9.99 155	44	.5	34.0	33.5	33.0
17	9.29 150	63	9.29 998	66	10.70 002	9.99 152	43	.6	40.8	46.9	39.6 46.2
18	9.29 214	64	9.30 064	66	10.69 936	9.99 150	42	.8	54.4	53.6	52.8
19	9.29 277	63	9.30 130	65	10.69 870	9.99 147	41	.9	61.2	60.3	59.4
20	9.29 340	63	9.30 195	66	10.69 805	9.99 145	40				
21	9.29 403	63	9.30 261	65	10.69 739	9.99 142	39		65	64	63
22	9.29 466	63	9.30 326	65	10.69 674	9.99 140	38 37	.I	6.5	6.4	6.3
23	9.29 529	62	9.30 391	66	10.69 609	9.99 137	36	.2	13.0	12.8	12.6
24	9.29 591	63	9.30 457	65		9.99 135	35	·3	19.5 26.0	19.2 25.6	25.2
25	9.29 654	62	9.30 522	65	10.69 478	9.99 I32 9.99 I30	34	.5	32.5	32.0 38.4	31.5
26 27	9.29 716	63	9.30 587 9.30 652	65	10.69 348	9.99 127	33		39.0 45.5	44.8	37.8 44.1
28	9.29 779 9.29 841	62	9.30 717	65	10.69 283	9.99 124	32	.8	52.0	51.2	50.4
29	9.29 903	62	9.30 782	65	10.69 218	9.99 122	31	.9	58.5	57.6	30.7
30	9.29 966	63	9.30 846	64	10.69 154	9.99 119	30				
31	9.30 028	62	9.30 911	65	10.69 089	9.99 117	29		62	61	60
32	9.30 090	62	9.30 975	64	10.69 025	9.99 114	28	.I	6.2	6.1	6.0
33	9.30 151	61	9.31 040	65	10.68 960	9.99 112	27	.2	12.4	12.2	12.0
34	9.30 213	62	9.31 104	64	10.68 896	9.99 109	26	.4	24.8	24.4	24.0
35	9.30 275	61	9.31 168	65	10.68 832	9.99 106	25	·5	31.0	30.5 36.6	30.0
36	9.30 336	62	9.31 233	64	10.68 767	9.99 104	24 23	.7	43.4	42.7	42.0
37	9.30 398	61	9.31 297	64	10.68 703	9.99 101	22	.9	49.6 55.8	48.8	48.0
38	9.30 459	62	9.31 361	64	10.68 575	9.99 096	21				
39	9.30 521	61	9.31 425	64	10.68 511	9.99 093	20				
40	9.30 582	61	9.31 489 9.31 552	63	10.68 448	9.99 091	19		59	3	2
41 42	9.30 643	61	9.31 616	64	10.68 384	9.99 088	18	.I	5.9	0.3	0.2
43	9.30 704 9.30 765	61	9.31 679	63	10.68 321	9.99 086	17	.3	17.7	0.9	0.6
44	9.30 826	61	9.31 743	64	10.68 257	9.99 083	16	.4	23.6	1.5	0.8
$\frac{44}{45}$	9.30 887	61	9.31 806	63	10.68 194	9.99 080	15	.5	35.4	1.8	1.2
46	9.30 947	60	9.31 870	64	10.68 130	9.99 078	14	.7 .8	41.3	2.1	1.4 1.6 1.8
47	9.31 008	61	9.31 933	63	10.68 067	9.99 075	13 12	.9	53.1	2.7	1.8
48	9.31 068	60	9.31 996	63	10.68 004	9.99 072	11				
49	9.31 129	60	9.32 059	63	10.67 941	9.99 070	10				
50	9.31 189	61	9.32 122	63	10.67 878	9.99 067 9.99 064	9				
51	9.31 250	60	9.32 185	63	10.67 815	9.99 062	8				
52	9.31 310	60	9.32 248	63	10.67 752 10.67 689	9.99 059	7				
53	9.31 370	60	9.32 311	62	10.67 627	9.99 056	6				
54	9.31 430	60	9.32 373	63	10.67 564	9.99 054	5				
55	9.31 490	59	9.32 436	62	10.67 502	9.99 051	4				
56	9.31 549	60	9.32 498 9.32 561	63	10.67 439	9.99 048	3				
57	9.31 609 9.31 669	60	9.32 623	62	10.67 377	9.99 046	2				
58 59	9.31 728	59	9.32 685	62	10.67 315	9.99 043	1				
60	9.31 788	60	9.32 747	62	10.67 253	9.99 040	0	_		D.	
00		d	L Cot	cd	L Tan	L Sin	'	_	Prop	. Pts.	
	L Cos	l u					78°			- 40	54 -

Logarithms of Functions

* 4 007	21	12°
LACE]	11.	14

_	Pr	op. Pts		1	L Sin	d	L Tan	cd	L Cot	L Cos	
				0	9.31 788	59	9.32 747	63	10.67 253	9.99 040	60
				1 2	9.31 847	60	9.32 810	62	10.67 190	9.99 038	59
				3	9.31 907 9.31 966	59	9.32 872	61	10.67 128	9.99 035	58 57
				4	9.32 025	59	9.32 933 9.32 995	62	10.67 005	9.99 032 9.99 030	56
				5	9.32 084	59	9.33 057	62	10.66 943		55
				6	9.32 143	59	9.33 119	62	10.66 881	9.99 024	54
				7	9.32 202	59	9.33 180	61	10.66 820	9.99 022	53
				8	9.32 261	59	9.33 242	02	10.66 758	9.99 019	52
				9	9.32 319	58	9.33 303	6r	10.66 697	9.99 016	51
				10	9.32 378	59	9.33 365	62	10.66 635	9.99 013	50
				11	9.32 437	59	9.33 426	6r	10.66 574	9.99 011	49
	63	62	61	12	9.32 495	58	9.33 487	61	10.66 513	9.99 008	48
.I	6.3	6.2	6.1	13	9.32 553	59	9.33 548	6r	10.66 452	9.99 005	47
.3	18.9	18.6	18.3		9.32 612	58	9.33 609	- 6I	10.66 391	9.99 002	46
.5	25.2 31.5	31.0	30.5	15 16	9.32 670	58	9.33 670	61	10.66 330	9.99 000	45
.6	37.8	37.2	36.6	17	9.32 728 9.32 786	58	9.33 731	61	10.66 269	9.98 997	44 43
.7	44.I 50.4	43.4	42.7	18	9.32 844	58	9.33 792 9.33 853	61	10.66 147	9.98 994 9.98 991	42
.9	56.7	55.8	54.9	19	9.32 902	58	9.33 913	60	10.66 087	9.98 989	41
				20	9.32 960	58	9.33 974	61	10.66 026	9.98 986	40
		20.22		21	9.33 018	58	9.34 034	60	10.65 966	9.98 983	39
	6.0	59	58	22	9.33 075	57	9.34 095	61	10.65 905	9.98 980	38
.I	12.0	11.8	5.8	23	9.33 133	57	9.34 155	60	10.65 845	9.98 978	37
.3	18.0	17.7	17.4	24	9.33 190	58	9.34 215	61	10.65 785	9.98 975	36
.5	30.0	23.6	23.2	25	9.33 248	57	9.34 276	60	10.65 724	9.98 972	35
	36.0	35.4	34.8	26	9.33 305	57	9.34 336	60	10.65 664	9.98 969	34
8	42.0 48.0	41.3	46.4	27 28	9.33 362	58	9.34 396	60	10.65 604	9.98 967	33
9	54.0	53.1	52.2	29	9.33 420	57	9.34 456	60	10.65 544	9.98 964	32
				30	9.33 477	57	9.34 516	60	10.65 484	9.98 961	31
				31	9-33 534 9-33 591	57	9.34 576 9.34 635	59	10.65 424	9.98 958	30
ı	5.7	56 5.6	5.5	32	9.33 647	56	9.34 695	60	10.65 365	9.98 955 9.98 953	29 28
2	11.4	11.2	II.O	33	9.33 704	57	9.34 755	60	10.65 245	9.98 950	27
3 4	17.1	16.8	16.5	34	9.33 761	57	9.34 814	59	10.65 186	9.98 947	26
5	28.5	28.0	27.5	35	9.33 818	57	9.34 874	60	10.65 126	9.98 944	25
7 8	34.2	33.6 39.2	33.0 38.5	36	9.33 874	56	9.34 933	59	10.65 067	9.98 941	24
	45.6	44.8	44.0	37	9.33 931	57 56	9.34 992	59 59	10.65 008	9.98 938	23
9	51.3	50.4	49.5	38	9.33 987	56	9.35 051	60	10.64 949	9.98 936	22
					9.34 043	57	9.35 111	59	10.64 889	9.98 933	21
	1	3 2		40 41	9.34 100	56	9.35 170	59	10.64 830	9.98 930	20
	.t	0.3 0	.2	42	9.34 156 9.34 212	56	9.35 229	59	10.64 771	9.98 927	19
		and the second second	.8	43	9.34 268	56	9.35 288 9.35 347	59	10.64 712 10.64 653	9.98 924	18
	.4	1.2 0	.8	44	9.34 324	56	9.35 405	58	10.64 595	9.98 921 9.98 919	17 16
	.5 .6 .7 .8		.0	45	9.34 380	56	9.35 464	59	10.64 536	9.98 916	15
	.7	2.1 1	-4	46	9.34 436	56	9.35 523	59	10.64 477	9.98 913	14
		2.4 I 2.7 I	.6 .8	47	9.34 491	55	9.35 581	58	10.64 419	9.98 910	13
				48	9.34 547	56 55	9.35 640	59 58	10.64 360	9.98 907	12
				49	9.34 602	56	9.35 698		10.64 302	9.98 904	11
			- 4	50	9.34 658	55	9.35 757	59	10.64 243	9.98 901	10
			. 0	51 52	9.34 713	56	9.35 815	58	10.64 185	9.98 898	9
				53	9.34 769 9.34 824	55	9.35 873	58	10.64 127	9.98 896	8 7
				54	9.34 879	55	9.35 931 9.35 989	58	10.64 069	9.98 893	
				55	9.34 934	55	9.36 047	58	10.64 011	9.98 890	6
			7 [1]	56	9.34 989	55	9.36 105	58	10.63 953	9.98 887	5 4 3 2
				57	9.35 044	55	9.36 163	58	10.63 895	9.98 884	4
				58	9.35 099	55	9.36 221	58	10.63 779	9.98 881 9.98 878	3
				59	9.35 154	55	9.36 279	58	10.63 721	9.98 875	1
				60	9.35 209	55	9.36 336	57	10,63 664	9.98 872	0
	Prop. Pts.					-		-	V	2.70 0/4	U
_	Pro				L Cos	d	L Cot	ed	L Tan	L Sin	,

779

-	-	~
	•)	O

FIVE

10		Log		10	Function	S			I	[.	C	FIVE-
÷	L Sin	d	L Tan	c d		L Cos			P	rop.	Pts.	
0	9.35 209	54	9.36 336	58	10.63 664	9.98 872	60					
	9.35 263 9.35 318	55	9.36 394 9.36 452	58	10.63 606	9.98 869	59	1				
2	9.35 373	55	9.36 509	57	10.63 548	9.98 867 9.98 864	58 57					
4	9.35 427	54	9.36 566	57	10.63 434	9.98 861	56					
5	9.35 481	54	9.36 624	58	10.63 376	9.98 858	55					
6	9.35 536	55	9.36 681	57	10.63 319	9.98 855	54					
	9.35 590	54 54	9.36 738	57	10.63 262	9.98 852	53					
8	9.35 644	54	9.36 795	57	10.63 205	9.98 849	52					
10	9.35 698	54	9.36 852	57	10.63 148	9.98 846	51					
11	9.35 752 9.35 806	54	9.36 909 9.36 966	57	10.63 091	9.98 843	50					
12	9.35 860	54	9.37 023	57	10.63 034	9.98 840 9.98 837	49 48					
13	9.35 914	54	9.37 080	57	10.62 920	9.98 834	47		5		57	56
14	9.35 968	54	9.37 137	57	10.62 863	9.98 831	46	.I	11	.8	5.7	5.6
15	9.36 022	54	9.37 193	56	10.62 807	9.98 828	45	-3	17	.4	17.1	16.8
6	9.36 075	53	9.37 250	57	10.62 750	9.98 825	44	·4 ·5	23		22.8	22.4
7	9.36 129	54	9.37 306	56 57	10.62 694	9.98 822	43	.6	34	.8	34.2	33.6
8	9.36 182	54	9.37 363	56	10.62 637	9.98 819	42	.7 .8	40		39.9 45.6	39.2 44.8
9	9.36 236	53	9.37 419	57	10.62 581	9.98 816	41	4.5				50.4
0	9.36 289	53	9.37 476	56	10.62 524	9.98 813	40					
1 2	9.36 342	53	9.37 532	56	10.62 468	9.98 810	39					
3	9.36 395 9.36 449	54	9.37 588 9.37 644	56	10.62 412 10.62 356	9.98 807 9.98 804	38 37		5		54	53
4	9.36 502	53	9.37 700	56	10.62 300	9.98 801	36	.I .2	11		5.4	5.3 10.6
5	9.36 555	53	9.37 756	56	10.62 244	9.98 798	35	.3 .4	16	_	16.2	15.9
6	9.36 608	53	9.37 812	56	10.62 188	9.98 795	34	.5	27	.5	27.0	26.5
7	9.36 660	52	9.37 868	56	10.62 132	9.98 792	33	.6	33		32.4 37.8	31.8 37.1
8	9.36 713	53	9.37 924	56	10.62 076	9.98 789	32	.8	44	.0	43.2	42.4
9	9.36 766	53	9.37 980	56	10.62 020	9.98 786	31	.9	1 49	.5 1	48.6	47.7
0	9.36 819	53 52	9.38 035	55 56	10.61 965	9.98 783	30					
1	9.36 871	53	9.38 091	56	10.61 909	9.98 780	29		52	2 1	51	4
2	9.36 924	52	9.38 147	55	10.61 853	9.98 777	28 27	.I	5	.2	5.1	0.4
3	9.36 976	52	9.38 202 9.38 257	55	10.61 798	9.98 774 9.98 771	26	.2	10.		10.2	0.8
5	9.37 028	53		56	10.61 687	9.98 768	25	.4	20.	.8	20.4	1.6
6	9.37 081 9.37 133	52	9.38 313 9.38 368	55	10.61 632	9.98 765	24	.6	26. 31.		25.5 30.6	2.0
7	9.37 185	52	9.38 423	55	10.61 577	9.98 762	23	.7	36.	4	35.7	2.4
8	9.37 237	52	9.38 479	56	10.61 521	9.98 759	22	.8	41.		40.8	3.2
9	9.37 289	52	9.38 534	55	10.61 466	9.98 756	_21					
0	9.37 341	52	9.38 589	55	10.61 411	9.98 753	20					
1	9.37 393	52 52	9.38 644	55 55	10.61 356	9.98 750	19		- 1	3	2	
2	9.37 445	52	9.38 699	55	10.61 301	9.98 746	18 17		.I .2	0.3		
3	9.37 497	52	9.38 754 9.38 808	54	10.61 246	9.98°743 9.98 740	16		-3	0.9	0.6	
4	9.37 549	51		55		9.98 737	15		.4 .5 .6	1.5		
5	9.37 600	52	9.38 863 9.38 918	55	10.61 137	9.98 734	14		.6	1.8	1.2	
6	9.37 652 9.37 703	51	9.38 972	54	10.61 028	9.98 731	13		.7	2.1	1.6	
8	9.37 755	52	9.39 027	55	10.60 973	9.98 728	12		ا و.	2.7	1 1.8	
9	9.37 806	51	9.39 082	55	10.60 918	9.98 725	11					
0	9.37 858	52	9.39 136	54	10.60 864	9.98 722	10					
1	9.37 909	51	9.39 190	54	10.60 810	9.98 719	9					
2	9.37 960	51	9.39 245	55 54	10.60 755	9.98 715	8 7					
3	9.38 011	51 51	9.39 299	54	10.60 701	9.98 712 9.98 709	6					
4	9.38 062	51	9.39 353	54		9.98 706	5					
5	9.38 113	51	9.39 407	54	10.60 593	9.98 700	4					
6	9.38 164	51	9.39 461	54	10.60 539 10.60 485	9.98 700	3					
7	9.38 215 9.38 266	51	9.39 515 9.39 569	54	10.60 431	9.98 697	2					
		51	9.39 623	54	10.60 377	9.98 694	1					
° l	0.28 217		9.14 02 1									
8 9 0	9.38 317	51	9.39 677	54	10.60 323	9.98 690	0				Pts.	

14° Logarithms of Functions

II.

PLACE]

LACI		Pa		1,	L Sin	a	L Tan	cd	L Cot	L Cos	-
	Prop.	rte		0	9.38 368	a	9.39 677	ea	10.60 323	9.98 690	60
				1	9.38 418	50	9.39 77	54	10.60 323	9.98 687	59
				2	9.38 469	51	9.39 785	54	10.60 215	9.98 684	58
				3	9.38 519	50	9.39 838	53	10.60 162	9.98 681	57
				4	9.38 570	51	9.39 892	54	10.60 108	9.98 678	56
				5	9.38 620	50	9.39 945	53	10.60 055	9.98 675	55
				6	9.38 670	50	9.39 999	54	10.60 001	9.98 671	54
				7	9.38 721	51	9.40 052	53	10.59 948	9.98 668	53
				8	9.38 771	50	9.40 106	54	10.59 894	9.98 665	52
				9	9.38 821	50	9.40 159	53	10.59 841	9.98 662	51
				10	9.38 871	50	9.40 212	53	10.59 788	9.98 659	50
				11	9.38 921	50	9.40 266	54	10.59 734	9.98 656	49
1 5	4 1 1	53	52	12	9.38 971	50	9.40 319	53 53	10.59 681	9.98 652	48
5	.4	5.3	5.2	13	9.39 021	50	9.40 372	53	10.59 628	9.98 649	47
		0.6	15.6	14	9.39 071	50	9.40 425		10.59 575	9.98 646	46
	.6 2	5.9 1.2	20.8	15	9.39 121	49	9.40 478	53	10.59 522	9.98 643	45
27	.0 2	6.5	26.0	16	9.39 170	50	9.40 531	53 53	10.59 469	9.98 640	44
32		1.8 7.1	31.2	17	9.39 220	50	9.40 584	52	10.59 416	9.98 636	43
43	.2 4	2.4	41.6	18	9.39 270	49	9.40 636	53	10.59 364	9.98 633	42
1 48	.0 1 4	7.7	46.8	19	9.39 319	50	9.40 689	53	10.59 311	9.98 630	41
				20	9.39 369	49	9.40 742	53	10.59 258	9.98 627	40
				21	9.39 418	49	9.40 795	52	10.59 205	9.98 623	39
		50 5.0	49	22	9.39 467	50	9.40 847	53	10.59 153	9.98 620	38
		0.0	9.8	23 24	9.39 517	49	9.40 900	52	10.59 100	9.98 617	37
		5.0	14.7		9.39 566	49	9.40 952	53	10.59 048	9.98 614	36
		5.0	19.6	25	9.39 615	49	9.41 005	52	10.58 995	9.98 610	35
30.	6 30	0.0	29.4	26	9.39 664	49	9.41 057	52	10.58 943	9.98 607	34
		5.0	34.3	27 28	9.39 713	49	9.41 109	52	10.58 891	9.98 604	33
.8 .9		5.0	44.1	29	9.39 762	49	9.41 161	53	10.58 839	9.98 601	32
			1337		9.39 811	49	9.41 214	52	10.58 786	9.98 597	31
				30 31	9.39 860	49	9.41 266	52	10.58 734	9.98 594	30
	48	1 4	17	32	9.39 909	49	9.41 318	52	10.58 682	9.98 591	29
	4.8 9.6		4.7	33	9.39 958 9.40 006	48	9.41 370 9.41 422	52	10.58 630 10.58 578	9.98 588	28 27
-3	14.4	1	9.4 4.1	34	9.40 055	49	9.41 474	52	10.58 526	9.98 584 9.98 581	26
-4	19.2	1	8.8	35		48		52			
.6	24.0		23.5 18.2	36	9.40 103 9.40 152	49	9.41 526	52	10.58 474	9.98 578	25
.7	33.6	3	32.9	37	9.40 200	48	9.41 578 9.41 629	51	10.58 422	9.98 574 9.98 571	24 23
.0	38.4		37.6 12.3	38	9.40 249	49	9.41 681	52	10.58 371	9.98 568	22
-	10.2		,	39	9.40 297	48	9.41 733	52	10.58 267	9.98 565	21
				40	9.40 346	49	9.41 784	51	10.58 216		20
	1 4	1	3	41	9.40 394	48	9.41 836	52	10.58 164	9.98 561 9.98 558	19
.I	0.4		0.3	42	9.40 442	48	9.41 887	51	10.58 113	9.98 555	18
.2	0.8		0.6	43	9.40 490	48	9.41 939	52	10.58 061	9.98 551	17
	1.6		0.9 1.2	44	9.40 538	48	9.41 990	51	10.58 010	9.98 548	16
.5	2.0	1.	1.5	45	9.40 586	48	9.42 041	51	10.57 959	9.98 545	15
.7	2.4		1.8 2.1	46	9.40 634	48	9.42 093	52	10.57 959	9.98 541	14
.8	3.2		2.4	47	9.40 682	48	9.42 144	51	10.57 856	9.98 538	13
.9	3.6	l :	2.7	48	9.40 730	48	9.42 195	51	10.57 805	9.98 535	12
				49	9.40 778	48	9.42 246	51	10.57 754	9.98 531	11
				50	9.40 825	47	9.42 297	51	10.57 703	9.98 528	10
				51	9.40 873	48	9.42 348	51	10.57 652	9.98 525	
				52	9.40 921	48	9.42 399	51	10.57 601	9.98 521	8 7
				53	9.40 968	47	9.42 450	51	10.57 550	9.98 518	7
				54	9.41 016	48	9.42 501	51	10.57 499	9.98 515	6
				55	9.41 063	47	9.42 552	51	10.57 448	9.98 511	
				56	9.41 111	48	9.42 603	51	10.57 397	9.98 508	1
				57	9.41 158	47	9.42 653	50	10.57 347	9.98 505	3
				58	9.41 205	47	9.42 704	51	10.57 296	9.98 501	2
				59	9.41 252	47	9.42 755	51	10.57 245	9.98 498	5 4 3 2
				-		48		50			
				60	9.41 300		9.42 805		10.57 195	9.98 494	0

-					uncti	0115				11.	Ĺı	FIVE-
	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop.	Pts.	
0	9.41 300	47	9.42 805	51	10.57 195	9.98 494	1.	60				_
1 2	9.41 347	47	9.42 856	50	10.57 144	9.98 491	3	59				
3	9.41 394	47	9.42 906	51	10.57 094	9.98 488	4	58				
4	9.41 441 9.41 488	47	9.42 957	50	10.57 043	9.98 484	3	57				
5 6		47	9.43 007	50	10.56 993	9.98 481	4	56				
6	9.41 535	47	9.43 057	51	10.56 943	9.98 477	3	55				
7	9.41 582 9.41 628	46	9.43 108	50	10.56 892	9.98 474	3	54				
8	9.41 675	47	9.43 158 9.43 208	50	10.56 842	9.98 471 9.98 467	4	53 52				
9	9.41 722	47	9.43 258	50	10.56 742	9.98 464	3	51				
10	9.41 768	46	9.43 308	50	10.56 692		4	50				
11	9.41 815	47	9.43 358	50	10.56 642	9.98 460 9.98 457	3	49				
12	9.41 861	46	9.43 408	50	10.56 592	9.98 453	4	48		15 1		
13	9.41 908	47	9.43 458	50	10.56 542	9.98 450	3	47	. 1	51	50	49
14	9.41 954	46	9.43 508	50	10.56 492	9.98 447	3	46	.I .2	5.I IO.2	5.0	4.9 9.8
15	9.42 001	47	9.43 558	50	10.56 442	9.98 443	4	45	-3	15.3	15.0	14.7
16	9.42 047	46	9.43 607	49	10.56 393	9.98 440	3	44	.4	20.4	20.0	19.6
17	9.42 093	46	9.43 657	50	10.56 343	9.98 436	4	43	.6	30.6	30.0	29.4
18	9.42 140	47	9.43 707	50	10.56 293	9.98 433	3	42	.7	35.7 40.8	35.0 40.0	34.3 39.2
19	9.42 186	46	9.43 756	49	10.56 244	9.98 429	4	41	.9	45.9	45.0	44.1
20	9.42 232	46	9.43 806	50	10.56 194	9.98 426	3	40				
21	9.42 278	46	9.43 855	49 50	10.56 145	9.98 422	3	39				
22	9.42 324	46	9.43 905	49	10.56 095	9.98 419	4	38	- 1	48	47	46
23	9.42 370	46	9.43 954	50	10.56 046	9.98 415	3	37	.I .2	4.8 9.6	9.4	4.6 9.2
24	9.42 416	45	9.44 004	49	10.55 996	9.98 412	3	36	.3	14.4	14.1	13.8
25	9.42 461	46	9.44 053	49	10.55 947	9.98 409	4	35	·4 ·5	19.2	18.8	18.4
26 27	9.42 507	46	9.44 102	49	10.55 898	9.98 405	3	34	.6	28.8	28.2	27.6
28	9.42 553	46	9.44 151	50	10.55 849	9.98 402 9.98 398	4	33 32	·7 .8	33.6	32.9 37.6	32.2 36.8
29	9.42 599 9.42 644	45	9.44 201 9.44 250	49	10.55 799	9.98 395	3	31	.9	43.2	42.3	41.4
30		46		49		9.98 391	4	30				
31	9.42 690	45	9.44 299	49	10.55 701	9.98 388	3	29				
32	9.42 735 9.42 781	46	9.44 348 9.44 397	49	10.55 603	9.98 384	4	28		45	44	
33	9.42 826	45	9.44 446	49	10.55 554	9.98 381	3	27	.I	9.0		
34	9.42 872	46	9.44 495	49	10.55 505	9.98 377	4	26	.3	13.5	13.2	
35	9.42 917	45	9.44 544	49	10.55 456	9.98 373	4	25	.4	18.0	22.0	
36	9.42 962	45	9.44 592	48	10.55 408	9.98 370	3	24	.6	27.0		
37	9.43 008	46	9.44 641	49	10.55 359	9.98 366	4	23	.8	31.5	30.8	
38	9.43 053	45	9.44 690	49 48	10.55 310	9.98 363	3 4	22	.9	40.5	39.6	
39	9.43 098	45	9.44 738		10.55 262	9.98 359	3	21				
40	9.43 143	45	9.44 787	49	10.55 213	9.98 356	4	20				
41	9.43 188	45	9.44 836	49 48	10.55 164	9.98 352	3	19		0.4	0.3	
42	9.43 233	45 45	9.44 884	49	10.55 116	9.98 349	4	18 17	.I	0.8	0.6	
43	9.43 278	45	9.44 933	48	10.55 067	9.98 345	3	16	-3	1.6	1.2	
44	9.43 323	44	9.44 981	48	10.55 019	9.98 342	4	15	.4 .5 .6	2.0	1.5	
45	9.43 367	45	9.45 029	49	10.54 971	9.98 338	4	14	.6	2.4	1.8	
46	9.43 412	45	9.45 078	48	10.54 922	9.98 334 9.98 331	3	13	·7 .8	3.2	2.4	
47	9.43 457	45	9.45 126	48	10.54 874 10.54 826	9.98 327	4	12	.9	3.6	1 2.7	
48 49	9.43 502	44	9.45 174 9.45 222	48	10.54 778	9.98 324	3	11				
50	9.43 546	45		49	10.54 729	9.98 320	4	10				
	9.43 591	44	9.45 271	48	10.54 681	9.98 317	3	9				
51 52	9.43 635 9.43 680	45	9.45 319 9.45 367	48	10.54 633	9.98 313	4	8				
53	9.43 724	44	9.45 415	48	10.54 585	9.98 309	4	7				
54	9.43 769	45	9.45 463	48	10.54 537	9.98 306	3	6				
55	9.43 813	44	9.45 511	48	10.54 489	9.98 302	4	5				
56	9.43 857	44	9.45 559	48	10.54 441	9.98 299	3	4				
57	9.43 901	44	9.45 606	47	10.54 394	9.98 295	4	3				
58	9.43 946	45	9.45 654	48	10.54 346	9.98 291	3	2				
59	9.43 990	44	9.45 702	48	10.54 298	9.98 288	4	1				
59 60	9.44 034	44	9.45 750	48	10.54 250	9.98 284		0			DA	_
_	L Cos	d	L Cot	c d	L Tan	L Sin	d	'		Prop.		
	L 008	-						74°			-46	8 —

II.

Prop. Pts.		1'	L Sin	d	L Tan	cd	L Cot	L Cos	d			
	_			0	9.44 034		9.45 750	47	10.54 250	9.98 284	3	60
				1	9.44 078	44	9.45 797	48	10.54 203	9.98 281	4	59
				2	9.44 122	44	9.45 845	47	10.54 155	9.98 277	4	58
				3	9.44 166	44	9.45 892	48	10.54 108	9.98 273	3	57 56
				4	9.44 210	43	9.45 940	47	10.54 060	9.98 270	4	
				5	9.44 253	44	9.45 987	48	10.54 013	9.98 266	4	55
				6	9.44 297	44	9.46 035	47	10.53 965	9.98 262	3	54 53
				7	9.44 341	44	9.46 082	48	10.53 918	9.98 259 9.98 255	4	52
				8 9	9.44 385	43	9.46 130	47	10.53 870 10.53 823	9.98 251	4	51
					9.44 428	44	9.46 177	47			3	50
				10	9.44 472	44	9.46 224 9.46 271	47	10.53 776	9.98 248 9.98 244	4	49
				11	9.44 516	43	9.46 319	48	10.53 729	9.98 240	4	48
- 1	48	47	46	13	9.44 559 9.44 602	43	9.46 366	47	10.53 634	9.98 237	3	47
.1	9.6			14	9.44 646	44	9.46 413	47	10.53 587	9.98 233	4	46
.3 1	14.4	14.1	13.8	15	9.44 689	43	9.46 460	47		9.98 229	4	45
	19.2			16		44	9.46 507	47	10.53 540	9.98 226	3	44
.6 2	28.8	28.2	27.6	17	9.44 733 9.44 776	43	9.46 554	47	10.53 446	9.98 222	4	43
	33.6			18	9.44 819	43	9.46 601	47	10.53 399	9.98 218	4	42
	38.4 43.2			19	9.44 862	43	9.46 648	47	10.53 352	9.98 215	3	41
				20	9.44 905	43	9.46 694	46	10.53 306	9.98 211	4	40
				21	9.44 948	43	9.46 741	47	10.53 259	9.98 207	4	39
	45	44	43	22	9.44 992	44	9.46 788	47	10.53 212	9.98 204	3	38
T.	4.5		4.3 8.6	23	9.45 035	43	9.46 835	47	10.53 165	9.98 200	4	37
3 1	9.0			24	9.45 077	42	9.46 881	46	10.53 119	9.98 196	4	36
4 1	18.0	17.6	17.2	25	9.45 120	43	9.46 928	47	10.53 072	9.98 192	4	35
	22.5 27.0			26	9.45 163	43	9.46 975	47	10.53 025	9.98 189	3	34
	31.5			27	9.45 206	43	9.47 021	46	10.52 979	9.98 185	4	33
	36.0			28	9.45 249	43	9.47 068	47	10.52 932	9.98 181	4	32
9 1 4	40.5	1 39.6	38.7	29	9.45 292	43	9.47 114	46	10.52 886	9.98 177	4	31
				30	9.45 344	42	9.47 160	46	10.52 840	9.98 174	3	30
		42	41	31	9.45 377	43	9.47 207	47	10.52 793	9.98 170	4	29
.:	1	4.2	4.1	32	9.45 419	42	9.47 253	46	10.52 747	9.98 166	4	28
.:	2	8.4	8.2	33	9.45 462	43	9.47 299	46	10.52 701	9.98 162	4	27
:	3	16.8	12.3	34	9.45 504	42	9.47 346	47	10.52 654	9.98 159	3	20
	5 6	21.0	20.5	35	9.45 547	43	9.47 392	46	10.52 608	9.98 155	4	2.
	9	25.2	24.6	36	9.45 589	42	9.47 438	46	10.52 562	9.98 151	4	24
	8	33.6	32.8	37	9.45 632	43	9.47 484	46	10.52 516	9.98 147	4	23
.9	9 1	37.8	36.9	38	9.45 674	42	9.47 530	46	10.52 470	9.98 144	3	2:
				39	9.45 716		9.47 576	100	10.52 424	9.98 140	4	2:
		0.00		40	9.45 758	42	9.47 622	46	10.52 378	9.98 136	4	20
	- 1	4	3	41	9.45 801	43 42	9.47 668	46	10.52 332	9.98 132	4	19
.1	2	0.4	0.6	42	9.45 843	42	9.47 714	46	10.52 286	9.98 129	3	18
.3	3	1.2	0.9	43	9.45 885	42	9.47 760	46	10.52 240	9.98 125	4	1
	5	1.6	1.5	44	9.45 927	42	9.47 806	46	10.52 194	9.98 121	4	10
.0	6	2.4	1.5	45	9.45 969	42	9.47 852	1	10.52 148	9.98 117	4	1.
-7	8	2.8	2.1	46	9.46 011	42	9.47 897	45 46	10.52 103	9.98 113	4	14
.8	او	3.6	2.4	47	9.46 053	42	9.47 943	46	10.52 057	9.98 110	3	1.
				48	9.46 095	41	9.47 989	46	10.52 011	9.98 106	4	1:
				49	9.46 136	42	9.48 035	45	10.51 965	9.98 102	4	1
				50	9.46 178	42	9.48 080	46	10.51 920	9.98 098	4	1
				51	9.46 220	42	9.48 126	45	10.51 874	9.98 094	4	9
				52 53	9.46 262	41	9.48 171	46	10.51 829	9.98 090	4	
				54	9.46 303	42	9.48 217	45	10.51 783	9.98 087	3	
					9.46 345	41	9.48 262	45	10.51 738	9.98 083	4	
				55	9.46 386	42	9.48 307	46	10.51 693	9.98 079	4	
				56 57	9.46 428	41	9.48 353	45	10.51 647	9.98 075	4	
				58	9.46 469	42	9.48 398	45	10.51 602	9.98 071	4	
				59	9.46 511	41	9.48 443	46	10.51 557	9.98 067	4	
				60	9.46 552 9.46 594	42	9.48 489	45	10.51 511	9.98 063	4	
				I OU	9.40 504		0.48 524	10	10.51 466	0 00 060	3	1
	D	rop. Pt			L Cos	d	9.48 534 L Cot		10.01 400	9.98 060		

		- 10	garithm	is of	Function	ons				II.		[FIVE
	L Sin	d	L Tan	c d	L Cot	L Cos	d			Pro	o. Pts	
0	9.46 594	41	9.48 534	45	10.51 466	9.98 060	1	60				
1 2	9.46 635	41	9.48 579	45	10.51 421	9.98 056	4	59				
3	9.46 676	41	9.48 624	45	10.51 376	9.98 052	4	58				
4	9.46 717 9.46 758	41	9.48 669	45	10.51 331	9.98 048	4	57				
5		42	9.48 714	45	10.51 286	9.98 044		_56				
6	9.46 800 9.46 841	41	9.48 759	45	10.51 241	9.98 040	4	55				
7	9.46 882	41	9.48 804 9.48 849	45	10.51 196	9.98 036	4	54				
8	9.46 923	41	9.48 894	45	10.51 151	9.98 032 9.98 029	3	53				
9	9.46 964	41	9.48 939	45	10.51 061	9.98 025	4	52 51				
10	9.47 005	41	9.48 984	45	10.51 016		4					
11	9.47 045	40	9.49 029	45	10.50 971	9.98 021	4	50 49				
12	9.47 086	41	9.49 073	44	10.50 927	9.98 013	4	48				
13	9.47 127	41	9.49 118	45	10.50 882	9.98 009	4	47	.I	45 4.5	44	
14	9.47 168	41	9.49 163	45	10.50 837	9.98 005	4	46	.2	9.0	8.8	
15	9.47 209	41	9.49 207	44	10.50 793	9.98 001	4	45	·3	13.5	17.0	
16	9.47 249	40	9.49 252	45	10.50 748	9.97 997	4	44	.5	22.5	22.0	21.5
17	9.47 290	41	9.49 296	44	10.50 704	9.97 993	4	43	.6	27.0 31.5	30.8	25.8
18	9.47 330	41	9.49 341	45 44	10.50 659	9.97 989	4	42	.8	36.0	35.2	34.4
19	9.47 371	40	9.49 385	45	10.50 615	9.97 986	3	41	.9	40.5	39.6	38.7
20	9.47 411	41	9.49 430		10.50 570	9.97 982	4	40				
21	9.47 452	40	9.49 474	44	10.50 526	9.97 978	4	39				
22	9.47 492	41	9.49 519	44	10.50 481	9.97 974	4	38	.1	4		41 4.1
23	9.47 533	40	9.49 563	44	10.50 437	9.97 970	4	37	.:	2 8.	4	8.2
$\frac{24}{25}$	9.47 573	40	9.49 607	45	10.50 393	9.97 966	4	36	.3			6.4
25	9.47 613	41	9.49 652	44	10.50 348	9.97 962	4	35	.5			0.5
26 27	9.47 654	40	9.49 696	44	10.50 304	9.97 958	4	34 33		25.		4.6 8.7
28	9.47 694 9.47 734	40	9.49 740 9.49 784	44	10.50 260	9.97 954 9.97 950	4	32	.8	33.	6 3	2.8
29	9.47 774	40	9.49 828	44	10.50 172	9.97 936	4	31	.9	1 37		6.9
29 30	9.47 814	40	9.49 872	44	10.50 128		4	30				
31	9.47 854	40	9.49 916	44	10.50 084	9.97 942 9.97 938	4	29				
32	9.47 894	40	9.49 960	44	10.50 040	9.97 934	4	28	.1	4.		39 3.9
33	9.47 934	40	9.50 004	44	10.49 996	9.97 930	4	27	.2	8.	0	7.8
$\frac{34}{35}$	9.47 974	40	9.50 048	44	10.49 952	9.97 926	4	26	.3			1.7 5.6
35	9.48 014	40	9.50 092	44	10.49 908	9.97 922	4	25	.5	20.	0 1	9.5
36	9.48 054	40	9.50 136	44	10.49 864	9.97 918	4	24	.6	24.		3.4 7.3
37	9.48 094	40	9.50 180	44	10.49 820	9.97 914	4	23	.8	32.	0 3	1.2
38	9.48 133	39 40	9.50 223	44	10.49 777	9.97 910	4	22	.9	36.	0 1 3	5.1
39 40	9.48 173	40	9.50 267	44	10.49 733	9.97 906	4	21				
	9.48 213	39	9.50 311	44	10.49 689	9.97 902	4	20		5		1 3
41	9.48 252	40	9.50 355	43	10.49 645	9.97 898	4	19 18	.1	0.5	0.4	0.3
42	9.48 292	40	9.50 398	44	10.49 602	9.97 894 9.97 890	4	17	.2	1.0	0.8	0.6
43 44	9.48 332	39	9.50 442 9.50 485	43	10.49 558	9.97 886	4	16	.3	2.0	1.6	1.2
	9.48 371	40		44		9.97 882	4	15	.4 .5 .6	2.5	2.0	1.5
45 46	9.48 411	39	9.50 529	43	10.49 471	9.97 878	4	14	.7	3.0	2.4	2.1
47	9.48 450 9.48 490	40	9.50 572 9.50 616	44	10.49 384	9.97 874	4	13	.7 .8	4.0	3.2	2.4
48	9.48 529	39	9.50 659	43	10.49 341	9.97 870	4	12	.9	4.5	3.6	2.7
49	9.48 568	39	9.50 703	44	10.49 297	9.97 866	4	11				
50	9.48 607	39	9.50 746	43	10.49 254	9.97 861	5	10				
51	9.48 647	40	9.50 789	43	10.49 211	9.97 857	4	9				
52	9.48 686	39	9.50 833	44	10.49 167	9.97 853	4	8				
53	9.48 725	39 .	9.50 876	43	10.49 124	9.97 849	4	7				
54	9.48 764	39	9.50 919	43	10.49 081	9.97 845	4	6				
55	9.48 803	39	9.50 962	43	10.49 038	9.97 841	4	5				
56	9.48 842	39	9.51 005	43	10.48 995	9.97 837	4	4				
57	9.48 881	39	9.51 048	43	10.48 952	9.97 833	4	3 2				
58	9.48 920	39 39	9.51 092	43	10.48 908	9.97 829 9.97 825	4	1				
59 60	9.48 959	39	9.51 135	43	10.48 865	9.97 825	4	0				
60	9.48 998	39	9.51 178		10.48 822	9.97 821	<u>ب</u> ا			Prop.	Pts	
	L Cos	d	L Cot	c d	L Tan	L Sin	d			Тюр	-4	70
								72°			_ 4	-/0-

PLA	Prop. Pts.			18		105	arithms	-	- 41100101			_
_	Pro	p. Pts.		/	L Sin	d	L Tan	e d		L Cos	d	-
				0	9.48 998	39	9.51 178	43	10.48 822 10.48 779	9.97 821 9.97 817	4	5
				2	9.49 037 9.49 076	39	9.51 221 9.51 264	43	10.48 736	9.97 812	5	5
				3	9.49 115	39	9.51 306	42	10.48 694	9.97 808	4	5
				4	9.49 153	38	9.51 349	43	10.48 651	9.97 804	4	5
				5	9.49 192	39	9.51 392	43	10.48 608	9.97 800	4	5
				6	9.49 231	39	9.51 435	43	10.48 565	9.97 796	4	5
				7	9.49 269	38	9.51 478	43	10.48 522	9.97 792	4	5
				8	9.49 308	39	9.51 520	42	10.48 480	9.97 788	4	5
				9	9.49 347	39	9.51 563	43	10.48 437	9.97 784	4	5
				10	9.49 385	38	9.51 606	43	10.48 394	9.97 779	5	Б
				11	9.49 424	39	9.51 648	42	10.48 352	9.97 775	4	4
1	43	42	41	12	9.49 462	38	9.51 691	43 43	10.48 309	9.97 771	4	4
л	4.3	4.2	4.I	13	9.49 500	39	9.51 734	42	10.48 266	9.97 767	4	4
.2	8.6	8.4	8.2 12.3	14	9.49 539	38	9.51 776	43	10.48 224	9.97 763	4	4
.3	12.9	16.8	16.4	15	9.49 577	38	9.51 819	42	10.48 181	9.97 759	5	4
.5	21.5	21.0	20.5	16	9.49 615	39	9.51 861	42	10.48 139	9.97 754	4	4
.7	25.8 30.1	25.2 29.4	24.6 28.7	17 18	9.49 654 9.49 692	38	9.51 903	43	10.48 097	9.97 750	4	4
.8	34.4	33.6	32.8	19	9.49 730	38	9.51 946 9.51 988	42	10.48 012	9.97 746 9.97 742	4	4
ا و.	38.7	37.8	36.9	20		38		43			4	4
				21	9.49 768 9.49 806	38	9.52 031 9.52 073	42	10.47 969	9.97 738	4	3
				22	9.49 844	38	9.52 115	42	10.47 885	9.97 734 9.97 729	5	3
- 1	39	38	37	23	9.49 882	38	9.52 157	42	10.47 843	9.97 725	4	3
.I	3.9 7.8	3.8 7.6	3.7 7.4	24	9.49 920	38	9.52 200	43	10.47 800	9.97 721	4	3
.3	11.7	11.4	II.I	25	9.49 958	38	9.52 242	42	10.47 758	9.97 717	4	3.
4	15.6	15.2	14.8	26	9.49 996	38	9.52 284	42	10.47 716	9.97 713	4	3
.6	23.4	22.8	22.2	27	9.50 034	38 38	9.52 326	42	10.47 674	9.97 708	5	3
.7	27.3 31.2	26.6 30.4	25.9	28	9.50 072	38	9.52 368	42	10.47 632	9.97 704	4	3
.0	35.1	34.2	33.3	29	9.50 110	38	9.52 410	42	10.47 590	9.97 700	4	3
				30	9.50 148	37	9.52 452	42	10.47 548	9.97 696	4	3
				31	9.50 185	38	9.52 494	42	10.47 506	9.97 691	5	2
- 1	36	1 5	4	32	9.50 223	38	9.52 536	42	10.47 464	9.97 687	4	2
ı.	3.6	0.5	0.4	33 34	9.50 261	37	9.52 578	42	10.47 422	9.97 683	4	2
.3	7.2 10.8	1.0	0.8		9.50 298	38	9.52 620	41	10.47 380	9.97 679	5	2
.4	14.4	2.0	1.6	35 36	9.50 336	38	9.52 661	42	10.47 339	9.97 674	4	2
.5	18.0	3.0	2.0	37	9.50 374 9.50 411	37	9.52 703	42	10.47 297	9.97 670	4	2 2
.7	25.2	3.5	2.8	38	9.50 449	38	9.52 745 9.52 787	42	10.47 255	9.97 666 9.97 662	4	2
.0	28.8 32.4	4.0	3.2	39	9.50 486	37	9.52 829	42	10.47 171	9.97 657	5	2
		4.5	0.0	40	9.50 523	37	9.52 870	41	10.47 130	9.97 653	4	2
				41	9.50 561	38	9.52 912	42	10.47 088	9.97 649	4	1
				42	9.50 598	37	9.52 953	41	10.47 047	9.97 645	4	î
				43	9.50 635	37	9.52 995	42	10.47 005	9.97 640	5	1 1
				44	9.50 673	38	9-53 937	42	10.46 963	9.97 636	4	1
				45	9.50 710	37	9.53 078	41	10.46 922	9.97 632	4	1
				46	9.50 747	37	9.53 120	42	10.46 880	9.97 628	4	1
				47	9.50 784	37	9.53 161	41	10.46 839	9.97 623	5	1
				48	9.50 821	37	9.53 202	42	10.46 798	9.97 619	4	1
				49	9.50 858	38	9.53 244	41	10.46 756	9.97 615	5	1
				50	9.50 896	37	9.53 285	42	10.46 715	9.97 610		1
				51 52	9.50 933	37	9.53 327	41	10.46 673	9.97 606	4	
				53	9.50 970	37	9.53 368	41	10.46 632	9.97 602	5	
				54	9.51 043	26	9.53 409	41	10.46 591	9.97 597	4	
				55			9.53 450	42	10.46 550	9.97 593	4	-
				56	9.51 080 9.51 117	37	9.53 492	41	10.46 508	9.97 589	5	
				57	9.51 154	1 200	9.53 533	41	10.46 467	9.97 584	4	1
				58	9.51 191	37	9.53 574 9.53 615	41	10.46 426	9.97 580	4	
				59	9.51 227	36	9.53 656	41	10.46 344	9.97 576	5	1
				60	9.51 264	37	9.53 697	41	10.46 303	9.97 571	4	1-
					The second secon	1 -		-		9.97 567		
	Pr	op. Pts	•		L Cos	d	L Cot	od	L Tan	L Sin	d	7

		20,	Sarrennia	, 01				,	_	_		
	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop.	Pts.	
0	9.51 264		9.53 697	4.	10.46 303	9.97 567	,	60				
1	9.51 301	37	9.53 738	41	10.46 262	9.97 563	5	59				
2	9.51 338	37	9.53 779	41	10.46 221	9.97 558	4	58				
3	9.51 374	36 37	9.53 820	41	10.46 180	9.97 554	4	57				
5	9.51 411		9.53 861	41	10.46 139	9.97 550	5	56				
5	9.51 447	36	9.53 902		10.46 098	9.97 545	4	55				
6	9.51 484	37	9.53 943	41	10.46 057	9.97 541	5	54				
7	9.51 520	36	9.53 984	41	10.46 016	9.97 536	4	53				
8	9.51 557	37 36	9.54 025	40	10.45 975	9.97 532	4	52				
9	9.51 593	36	9.54 065	41	10.45 935	9.97 528	5	51				
10	9.51 629	37	9.54 106	41	10.45 894	9.97 523	4	50				
11	9.51 666	36	9.54 147	40	10.45 853	9.97 519	4	49				
12	9.51 702	36	9.54 187	41	10.45 813	9.97 515	5	48 47				
13	9.51 738	36	9.54 228	41	10.45 772	9.97 510	4	46	.1	41	4.0	39
14	9.51 774	37	9.54 269	40	10.45 731	9.97 506	5	45	.2	8.2	8.0	3.9 7.8
15	9.51 811	36	9.54 309	41	10.45 691	9.97 501	4	44	.3	12.3	12.0	11.7
16	9.51 847	36	9.54 350	40	10.45 650	9.97 497	5	43	.4	16.4	16.0	15.6
17	9.51 883	36	9.54 390	41	10.45 610	9.97 492	4	42	.5 .6	24.6	24.0	23.4
18	9.51 919	36	9.54 431	40	10.45 569	9.97 488 9.97 484	4	41	.7 .8	28.7 32.8	28.0 32.0	27.3 31.2
19	9.51 955	36	9.54 471	41	10.45 529		5	40	.9	36.9		35.1
20	9.51 991	36	9.54 512	40	10.45 488	9.97 479	4	39				
21	9.52 027	36	9.54 552	41	10.45 448	9.97 475 9.97 470	5	38				
22	9.52 063	36	9.54 593	40	10.45 407	9.97 470 9.97 466	4	37				
23	9.52 099	36	9.54 633	40	10.45 367 10.45 327	9.97 461	5	36				
24	9.52 135	36	9.54 673	41			4	35				
25	9.52 171	36	9.54 714	40	10.45 286	9.97 457 9.97 453	4	34		37	36	35
26	9.52 207	35	9.54 754	40	10.45 246	9.97 433	5	33	.I	3.7	3.6	3.5
27	9.52 242	36	9.54 794 9.54 835	41	10.45 165	9.97 444	4	32	.2	7.4	7.2	7.0
28	9.52 278	36	9.54 875	40	10.45 125	9.97 439	5	31	.3	11.1	14.4	14.0
29	9.52 314	36		40	10.45 085	9.97 435	4	30	.5	18.5	18.0	17.5
30	9.52 350	35	9.54 915	40	10.45 045	9.97 430	5	29	.6	22.2	21.6	21.0
31	9.52 385	36	9.54 955	40	10.45 005	9.97 426	4	28	.8	29.6	28.8	28.0
32 33	9.52 421	35	9.54 995 9.55 035	40	10.44 965	9.97 421	5	27	.9	33.3	32.4	31.5
34	9.52 456 9.52 492	36	9.55 075	40	10.44 925	9.97 417	4	26				
35		35		40	10.44 885	9.97 412	5	25				
36	9.52 527	36	9.55 115 9.55 155	40	10.44 845	9.97 408	4	24				
37	9.52 563 9.52 598	35	9.55 195	40	10.44 805	9.97 403	1 3	23				
38	9.52 634	36	9.55 235	40	10.44 765	9.97 399	4	22				
39	9.52 669	35	9.55 275	40	10.44 725	9.97 394	5	21		34	5	4
40	9.52 705	36	9.55 315	40	10.44 685		4	20	.I	6.8	1.0	0.4
41	9.52 740	35	9.55 355	40	10.44 645	9.97 385	1 3	19	.3	10.2	1.5	1.2
42	9.52 775	35	9.55 395	40	10.44 605	9.97 381	1 7	18	.4	13.6	2.0	1.6
43	9.52 811	36	9.55 434	39	10.44 566	9.97 376	1 .	17	.5 .6	20.4	3.0	2.4
44	9.52 846	35	9.55 474	40	10.44 526	9.97 372	1 "	16	.7	23.8	3.5	3.2
45	9.52 881	35	9.55 514	40	10.44 486	9.97 367	5	15	.8	30.6	4.0	3.6
46	9.52 916	35	9.55 554	40	10.44 446	9.97 363	1 7	14	.,			
47	9.52 951	35	9.55 593	39	10.44 407	9.97 358	5	13				
48	9.52 986	35	9.55 633	40	10.44 367	9.97 353	4	12				
49	9.53 021	1 33	9.55 673	40	10.44 327	9.97 349	- 5	11	l			
50	9.53 056	35	9.55 712	39	10.44 288	9.97 344		10	1			
51	9.53 092	1 0	9.55 752	40	10.44 248	9.97 340	1 4	9				
52	9.53 126	34	9.55 791	39	10.44 209	9.97 335	1	8 7	1			
53	9.53 161	35	9.55 831	39	10.44 169		-					
54	9.53 196	1 00	9.55 870		10.44 130		- A	6	-			
55	9.53 231	33	9.55 910	1 40	10.44 090			3	1			
56	9.53 266	35	9.55 949	39	10.44 051	9.97 317	1 5	-	1			
57	9.53 301	35	9.55 989	39	10.44 011	9.97 312		3				
58	9.53 336	35	9.56 028	30	10.43 972		٠١ -	4				
59	9.53 370	35	9.50 007	- 40	10.43 933		- 4	1	-			
60	9.53 405	33	9.56 107	1	10.43 893)	-	·		. De-	
- 7	L Cos	d	L Cot	c d	L Tan	L Sin	[d	1 '	1	Pro	p. Pts.	72 —
1												.,,_

20° II. L Cos L Cot d Prop. Pts. L Tan L Sin c d ď 60 9.56 107 10.43 893 0 9.97 299 9.53 405 5 35 39 59 9.56 146 10.43 854 9.97 294 1 9.53 440 5 35 39 58 9.97 289 9.56 185 10.43 815 2 9.53 475 4 39 34 57 9.97 285 9.56 224 10.43 776 3 9.53 509 5 40 35 56 9.97 280 9.56 264 10.43 736 4 9.53 544 4 34 39 55 5 9.56 303 10.43 697 9.53 578 9.97 276 5 35 39 54 9.97 271 6 9.53 613 10.43 658 9.56 342 5 39 34 53 9.97 266 9.56 381 10.43 619 9.53 647 39 35 52 9.97 262 8 9.53 682 9.56 420 10.43 580 5 34 39 51 9 9.53 716 9.56 459 9.97 257 10.43 541 5 35 39 39 40 50 10 9.56 498 10.43 502 9.97 252 9.53 751 3.9 4.0 .I 34 39 49 7.8 9.56 537 9.97 248 11 9.53 785 10.43 463 8.0 .2 5 34 39 48 9.53 819 11.7 ٠3 12.0 12 9.56 576 10.43 424 9.97 243 5 .5 16.0 15.6 35 39 47 9.56 615 13 10.43 385 9.97 238 9.53 854 20.0 19.5 34 39 9.53 888 46 14 9.56 654 9.97 234 10.43 346 24.0 23.4 5 34 39 ·7 28.0 27.3 45 15 9.97 229 9.56 693 9.53 922 10.43 307 32.0 31.2 5 35 39 44 9.53 957 9.56 732 10.43 268 9.97 224 16 36.0 i 35.1 4 34 39 43 17 9.56 771 9.97 220 9.53 991 10.43 229 5 39 34 9.56 810 42 18 10.43 190 9.54 025 9.97 215 34 39 41 19 9.56 849 10.43 151 9.97 210 9.54 059 34 38 4 9.56 887 40 20 9.97 206 9.54 093 10.43 113 34 5 39 39 9.56 926 21 9.97 201 9.54 127 10.43 074 37 38 34 39 3.8 38 22 9.97 196 9.54 161 9.56 965 .I 3.7 10.43 035 34 39 4 .2 7.6 7.4 37 23 9.57 004 9.97 192 9.54 195 10.42 996 .34.56 II.I 11.4 34 38 5 24 36 9.97 187 9.57 042 10.42 958 9.54 229 14.8 15.2 34 5 39 19.0 18.5 35 25 9.57 081 9.54 263 9.97 182 10.42 919 22.8 22.2 34 39 4 10.42 880 9.57 120 26 9.97 178 34 9.54 297 26.6 25.9 34 38 5 27 9.57 158 33 10.42 842 29.6 9.97 173 30.4 9.54 331 34 5 39 34.2 33.3 28 9.57 197 10.42 803 32 9.97 168 9.54 365 38 34 5 29 9.97 163 31 9.54 399 9.57 235 10.42 765 34 39 4 30 30 9.57 274 10.42 726 9.54 433 9.97 159 38 33 5 31 29 9.54 466 10.42 688 9.57 312 9.97 154 34 39 5 32 28 9.54 500 10.42 649 9.57 351 9.97 149 35 34 34 38 33 9.57 389 27 9.54 534 10.42 611 9.97 145 3.4 .I 3.5 33 39 5 34 9.54 567 9.57 428 26 10.42 572 9.97 140 .2 7.0 34 38 5 .4.5.6 10.5 10.2 35 9.54 601 9.57 466 25 10.42 534 9.97 135 14.0 13.6 34 38 5 9.54 635 36 9.57 504 10.42 496 24 9.97 130 17.5 17.0 33 39 4 9.54 668 20.4 37 21.0 10.42 457 23 9.57 543 9.97 126 .7 24.5 28.0 38 23.8 34 38 9.54 702 9.57 581 22 10.42 419 9.97 121 27.2 38 33 5 39 9.54 735 9.57 619 9.97 116 21 10.42 381 31.5 30.6 34 9.54 769 39 5 40 9.57 658 20 10.42 342 9.97 111 33 38 9.54 802 41 4 9.57 696 10.42 304 19 9.97 107 34 38 42 9.54 836 5 9.57 734 18 10.42 266 9.97 102 33 38 43 5 9.54 869 9.57 772 9.57 810 17 10.42 228 9.97 097 34 38 44 5 9.54 903 16 10.42 190 9.97 092 3.3 6.6 33 ı. 0.5 0.4 39 5 45 9.57 849 15 9.54 936 10.42 151 9.97 087 .2 I.O 33 38 46 9.57 887 4 9.54 969 14 13 3456789 10.42 113 9.97 083 9.9 1.5 1.2 34 38 47 5 1.6 13.2 2.0 9.55 003 9.57 925 10.42 075 9.97 078 16.5 33 38 2.5 2.0 48 5 9.57 963 9.55 036 10.42 037 12 9.97 073 19.8 3.0 2.4 33 38 49 5 9.58 001 9.55 069 10.41 999 11 23.I 9.97 068 3.5 33 38 26.4 5 4.0 50 3.2 9.58 039 10 9.55 102 10.41 961 9.97 063 29.7 4.5 3.6 34 38 51 9.55 136 9.58 077 4 10.41 923 987654321 9.97 059 33 38 52 9.55 169 5 9.58 115 10.41 885 9.97 054 33 38 53 9.55 202 5 9.58 153 10.41 847 9.97 049 33 38 54 9.55 235 5 9.58 191 10.41 809 9.97 044 33 38 55 9.55 268 5 9.58 229 10.41 771 9.97 039 33 38 56 9.55 301 9.58 267 4 10.41 733 9.97 035 33 57 37 9.55 334 5 9.58 304 10.41 696 9.97 030 33 38 58 5 9.55 367 9.58 342 10.41 658 9.97 025 33 38 59 9.55 400 5 9.58 380 10.41 620 9.97 020 33 38 60 9.55 433 9.58 418 5 0 10.41 582 9.97.015 Prop. Pts. L Cos L Cot d e d L Tan L Sin d

7		LOE	arithms	01	Functio	ns				II.		[FIVE
<u>_</u>	L Sin	d	L Tan	c d	L Cot	L Cos	d	T	1	Pro	p. Pts.	
0	- 00 100		9.58 418	37	10.41 582		1.	60			p. 1 co.	
1 2 3	9.55 466 9.55 499	22	19.50 455	38	10.41 545			59				
3	9.55 532		9.58 493 9.58 531	38	10.41 507			58				
4	9.55 564		9.58 569	38	10.41 469		I -	57	1			
5	9.55 597	-1 22	9.58 606	37	10.41 431			56				
6	9.55 630		9.58 644	38	10.41 394		1 -	55				
6	9.55 663	33	9.58 681	37	10.41 356		5	54				
8	9.55 695	32	9.58 719	38	10.41 281		-	53 52	1			
	9.55 728	33	9.58 757	38	10.41 243	9.96 971		51				
10	9.55 761	33	9.58 794	37	10.41 206		- 1 -	50				
11	9.55 793	32	9.58 832	38	10.41 168	9.96 962		49				
12	9.55 826	33	9.58 869	37 38	10.41 131	9.96 957	5	48				
13	9.55 858	33	9.58 907	37	10.41 093	9.96 952	5	47				
$\frac{14}{15}$	9.55 891	32	9.58 944	37	10.41 056		5	46		38	37	36
15	9.55 923	33	9.58 981	38	10.41 019	9.96 942	5	45	.I	3.8 7.6	3.7	
16 17	9.55 956	32	9.59 019	37	10.40 981	9.96 937	5	44	-3	11.4	7.4	10.8
18	9.55 988 9.56 021	33	9.59 056	38	10.40 944	9.96 932	5	43	·4 ·5	15.2	14.8	14.4
19	9.56 053	32	9.59 094 9.59 131	37	10.40 906	9.96 927 9.96 922	5	42	.6	22.8	22.2	21.6
20	9.56 o53 9.56 o85	32	9.59 168	37	10.40 832		5	41	.7 .8	26.6 30.4	25.9	
21	9.56 118	33	9.59 205	37	10.40 795	9.96 917	5	40 39	.9	34.2	33.3	32.4
22	9.56 150	32	9.59 243	38	10.40 757	9.96 907	5	38				
23	9.56 182	32	9.59 280	37	10.40 720	9.96 903	4	37				
24	9.56 215	33	9.59 317	37	10.40 683	9.96 898	5	36				
25	9.56 247	32	9.59 354	37	10.40 646	9.96 893	5	35				
26	9.56 279	32	9.59 391	37 38	10.40 609	9.96 888	5	34				
27	9.56 311	32	9.59 429	37	10.40 571	9.96 883	5	33		83	32	31
28 29	9.56 343	32	9.59 466	37	10.40 534	9.96 878	5	32	.I .2	3.3 6.6	6.4	3.I 6.2
30	9.56 375	33	9.59 503	37	10.40 497	9.96 873	5	31	-3	9.9	9.6	9.3
31	9.56 408 9.56 440	32	9.59 540	37	10.40 460	9.96 868 9.96 863	5	30 29	.4 .5 .6	16.5	16.0	12.4
32	9.56 472	32	9.59 577 9.59 614	37	10.40 423	9.96 858	5	28	.6	19.8 23.1	19.2	18.6
33	9.56 504	32	9.59 651	37	10.40 349	9.96 853	5	27	.8	26.4	25.6	24.8
34	9.56 536	32	9.59 688	37	10.40 312	9.96 848	5	26	.9	29.7	28.8	27.9
35	9.56 568	32	9.59 725	37	10.40 275	9.96 843	5	25				
36	9.56 599	31	9.59 762	37	10.40 238	9.96 838	5	24				
37	9.56 631	32	9.59 799	36	10.40 201	9.96 833	5	23				
38	9.56 663	32	9.59 835	37	10.40 165	9.96 828	5	22				
39	9.56 695	32	9.59 872	37	10.40 128	9.96 823	5	21		6 1	5 1	4
40 41	9.56 727	32	9.59 909	37	10.40 091	9.96 818 9.96 813	5	20 19	.I	0.6	0.5	0.4
42	9.56 759 9.56 790	31	9.59 946 9.59 983	37	10.40 054	9.96 808	5	18	.3	1.2	1.0	0.8
43	9.56 822	32	9.60 019	36	10.39 981	9.96 803	5	17	.4	2.4	2.0	1.6
44	9.56 854	32	9.60 056	37	10.39 944	9.96 798	5	16	.6	3.6	3.0	2.0
45	9.56 886	32	9.60 093	37	10.39 907	9.96 793	5	15	.7	4.2	3.5	2.8
46	9.56 917	31	9.60 130	37	10.39 870	9.96 788	5	14	.8	5.4	4.0	3.2
47	9.56 949	32	9.60 166	36	10.39 834	9.96 783	5	13		-		
48	9.56 980	31	9.60 203	37	10.39 797	9.96 778	5	12				
49	9.57 012	32	9.60 240	36	10.39 760	9.96 772	5	11				
50	9.57 044	31	9.60 276	37	10.39 724	9.96 767	5	10				
51	9.57 075	32	9.60 313	36	10.39 687	9.96 762	5	8				
52	9.57 107	31	9.60 349 9.60 386	37	10.39 651	9.96 757 9.96 752	5	7				
53 54	9.57 138 9.57 169	31	9.60 422	36	10.39 578	9.96 747	5	6				
55		32	9.60 459	37	10.39 541	9.96 742	5	5				
56	9.57 201 9.57 232	31	9.60 495	36	10.39 505	9.96 737	5	4				
57	9.57 264	32	9.60 532	37	10.39 468	9.96 732	6 5	3				
58	9.57 295	31	9.60 568	36	10.39 432	9.96 727	5	2				
59	9.57 326	31	9.60 605	37 36 -	10.39 395	9.96 722	5	1				
60	9.57 358	32	9.60 641	"	10.39 359	9.96 717	_	0		-	Da	_
	L Cos	d	L Cot	e d	L Tan	L Sin	d I	11		Prop.		-
								600			- 47	4-

PLACE] II. 22° Logarithms of Functions

PL	VCE		l.	- 44		-	arithms	-				_
_	Pr	op. Pts		- _	L Sin	d	L Tan	ed		L Cos	d	_
				0	9.57 358 9.57 389	31	9.60 641	36	10.39 359	9.96 717	6	5
				2	9.57 420	31	9.60 714	37	10.39 323		5	5
				3	9.57 451	31	9.60 750	36	10.39 250	9.96 701	5	5
				4	9.57 482	31	9.60 786	36	10.39 214	9.96 696	5	5
				5	9.57 514	32	9.60 823	37	10.39 177	9.96 691	5	5
				6	9.57 545	31	9.60 859	36 36	10.39 141	9.96 686	5	5
				7	9.57 576	31	9.60 895	36	10.39 105	9.96 681	5	5
				8 9	9.57 607	31	9.60 931	36	10.39 069	9.96 676	6	5
					9.57 638	31	9.60 967	37	10.39 033	9.96 670	5	5
				10 11	9.57 669	31	9.61 004	36	10.38 996	9.96 665	5	4
				12	9.57 700	31	9.61 076	36	10.38 960	9.96 660 9.96 655	5	4
				13	9.57 762	31	9.61 112	36	10.38 888	9.96 650	5	4
	37	36	35	14	9.57 793	31	9.61 148	36	10.38 852	9.96 645	5	4
.I	3.7 7.4	3.6 7.2	7.0	15	9.57 824	31	9.61 184	36	10.38 816	9.96 640	5	4
.3	II.I	10.8	10.5	16	9.57 855	31	9.61 220	36	10.38 780	9.96 634	6	4
5	14.8	14.4	17.5	17	9.57 885	30	9.61 256	36 36	10.38 744	9.96 629	5	4
6	22.2	21.6	21.0	18	9.57 916	31	9.61 292	36	10.38 708	9.96 624	5	4
7 8	25.9 29.6	25.2 28.8	24.5	19	9.57 947	31	9.61 328	36	10.38 672	9.96 619	5	4
9	33.3	32.4		20 21	9.57 978	30	9.61 364	36	10.38 636	9.96 614	6	4
				22	9.58 008 9.58 039	31	9.61 400	36	10.38 600	9.96 608	5	3
				23	9.58 070	31	9.61 436 9.61 472	36	10.38 564	9.96 603 9.96 598	5	3 3
				24	9.58 101	31	9.61 508	36	10.38 492	9.96 593	5	3
				25	9.58 131	30	9.61 544	36	10.38 456	9.96 588	5	3
	22			26	9.58 162	31	9.61 579	35	10.38 421	9.96 582	6	3
1	32	31 3.1	30	27	9.58 192	30	9.61 615	36	10.38 385	9.96 577	5	3
2	6.4	6.2	3.0 6.0	28	9.58 223	31	9.61 651	36 36	10.38 349	9.96 572	5	3
3	9.6	9.3	9.0 12.0	29	9.58 253	31	9.61 687		10.38 313	9.96 567	5	3
5 6	16.0	15.5	15.0	30	9.58 284	30	9.61 722	35 36	10.38 278	9.96 562	6	3
7	19.2	18.6	18.0	31 32	9.58 314 9.58 345	31	9.61 758	36	10.38 242	9.96 556	5	2
8	25.6	24.8	24.0	33	9.58 375	30	9.61 794 9.61 830	36	10.38 206	9.96 551	5	2
9	28.8	27.9	27.0	34	9.58 406	31	9.61 865	35	10.38 135	9.96 546 9.96 541	5	2 2
				35	9.58 436	30	9.61 901	36	10.38 099	9.96 535	6	$\frac{2}{2}$
				36	9.58 467	31	9.61 936	35	10.38 064	9.96 530	5	2
				37	9.58 497	30	9.61 972	36	10.38 028	9.96 525	5	$\tilde{2}$
				38	9.58 527	30	9.62 008	36	10.37 992	9.96 520	5	2
1	29	6	1 5	39	9.58 557	31	9.62 043	35	10.37 957	9.96 514	6	2
1	2.9	0.6	0.5	40	9.58 588	30	9.62 079	36	10.37 921	9.96 509	5	2
3	5.8 8.7	1.2	1.0	41 42	9.58 618 9.58 648	30	9.62 114	35 36	10.37 886	9.96 504	5	1
4	11.6	2.4	2.0	43	9.58 678	30	9.62 150 9.62 185	35	10.37 850	9.96 498	5	1
5	14.5	3.6	3.0	44	9.58 709	31	9.62 221	36	10.37 815	9.96 493	5	1
	20.3	4.2	3-5	45	9.58 739	30	9.62 256	35	10.37 779	9.96 488	5	1
3 1	23.2 26.1	4.8 5.4	4.0	46	9.58 769	30	9.62 292	36	10.37 744	9.96 483	6	1
	0.33	0.4	4.3	47	9.58 799	30	9.62 327	35	10.37 708	9.96 477 9.96 472	5	1 1
				48	9.58 829	30	9.62 362	35	10.37 638	9.96 467	5	i
				49	9.58 859	30	9.62 398	36	10.37 602	9.96 461	6	î
				50	9.58 889	30	9.62 433	35	10.37 567	9.96 456	5	1
				51	9.58 919	30	9.62 468	35	10.37 532	9.96 451	5	~
				52 53	9.58 949	30	9.62 504	36	10.37 496	9.96 445	6	
				54	9.58 979	30	9.62 539	35	10.37 461	9.96 440	5	
				55	9.59 009	30	9.62 574	35	10.37 426	9.96 435	5	
				56	9.59 039 9.59 069	30	9.62 609 9.62 645	36	10.37 391	9.96 429		
	*			57	9.59 098	29	9.62 680	35	10.37 355	9.96 424	5	
				58	9.59 128	30	9.62 715	35	10.37 320	9.96 419	6	
				59	9.59 158	30	9.62 750	35	10.37 250	9.96 413 9.96 408	5	
				60	9.59 188	30	9.62 785	35	10.37 215	9.96 403	5	-
							/· · · · · · · · · · · · · · · · · · ·	_	LV. 1 / /	CLOD AMA		_

-4/3-

20		L	ogarithn	is o	f Functi	ons				II.		[F	IVE-
<u>_</u>	L Sin	d	L Tan	c d	L Cot	L Cos	d			Pro	p. P	ts.	_
0	9.59 188	30	9.62 785	35	10.37 215		6	60					
1 2 3	9.59 218 9.59 247	29	9.62 820 9.62 855	35	10.37 180		1	59					
3	9.59 277	30	9.62 890	35	10.37 145		-	58					
4	9.59 307	30	9.62 926	36	10.37 110		6	57 56					
$\frac{4}{5}$	9.59 336	29	9.62 961	35	10.37 039		- 5	55					
6	9.59 366	30	9.62 996	35	10.37 004		6	54					
7	9.59 396	30	9.63 031	35	10.36 960	9.96 365	5	53					
8	9.59 425	30	9.63 066	35	10.36 934	9.96 360	5	52					
9	9.59 455	29	9.63 101	35	10.36 899	9.96 354	6	51					
10	9.59 484	30	9.63 135	34	10.36 865		6	50					
11 12	9.59 514	29	9.63 170	35	10.36 830		5	49					
13	9.59 543	30	9.63 205	35	10.36 795	9.96 338	5	48	17.7				
14	9.59 573 9.59 602	29	9.63 240 9.63 275	35	10.36 760		6	47					
15	9.59 632	30	9.63 310	35	10.36 690		5	46					
16	9.59 661	29	9.63 345	35	10.36 655		6	45 44		36		5	34
17	9.59 690	29	9.63 379	34	10.36 621	9.96 311	5	43	.I .2	3.6 7.2		.5	3.4 6.8
18	9.59 720	30	9.63 414	35	10.36 586	9.96 305	6	42	-3	10.8		.5	10.2
19	9.59 749	29	9.63 449	35	10.36 551	9.96 300	5	41	.5	18.0	17	.5	17.0
20	9.59 778	29	9.63 484	35	10.36 516	9.96 294	6	40	.6	21.6		.0	20.4
21	9.59 808	30	9.63 519	35	10.36 481	9.96 289	5	39	.8	28.8		.0	27.2
22	9.59 837	29	9.63 553	34	10.36 447	9.96 284	6	38	ا و.	32.4	31	.5	30.6
23	9.59 866	29	9.63 588	35	10.46 412	9.96 278	5	37					
24	9.59 895	29	9.63 623	34	10.36 377	9.96 273	6	36					
25	9.59 924	30	9.63 657	35	10.36 343	9.96 267	5	35					
26	9.59 954	29	9.63 692	34	10.36 308	9.96 262	6	34	1	30	1 2	9 1	28
27 28	9.59 983	29	9.63 726	35	10.36 274	9.96 256	5	33 32	.r	3.0	2	.9	2.8
29	9.60 012	29	9.63 761 9.63 796	35	10.36 239	9.96 251 9.96 245	6	31	.2	6.0	5	.8	5.6 8.4
30		29		34			5	30	.3	9.0	11		11.2
31	9.60 070	29	9.63 830 9.63 865	35	10.36 170	9.96 240 9.96 234	6	29	.5	15.0	14		14.0
32	9.60 128	29	9.63 899	34	10.36 101	9.96 229	5	28	.7	21.0	20	.3	19.6
33	9.60 157	29	9.63 934	35	10.36 066	9.96 223	6	27	.8	24.0	23		22.4 25.2
34	9.60 186	29	9.63 968	34	10.36 032	9.96 218	5	26	.,	-,	-		-5
35	9.60 215	29	9.64 003	35	10.35 997	9.96 212	6	25					
36	9.60 244	29	9.64 037	34	10.35 963	9.96 207	5	24					
37	9.60 273	29	9.64 072	35 34	10.35 928	9.96 201	5	23					
38	9.60 302	29	9.64 106	34	10.35 894	9.96 196	6	22 21		- 6		5	
39	9.60 331	28	9.64 140	35	10.35 860	9.96 190	5			I 0.		0.5	
40	9.60 359	29	9.64 175	34	10.35 825	9.96 185	6	20 19		3 1.		1.5	
41	9.60 388	29	9.64 209	34	10.35 791	9.96 179	5	18	:	4 2.		2.5	
42 43	9.60 417	29	9.64 243 9.64 278	35	10.35 757	9.96 168	6	17		6 3.	6	3.0	
44	9.60 446 9.60 474	28	9.64 312	34	10.35 688	9.96 162	6	16		7 4.		3.5 4.0	
45		29	9.64 346	34	10.35 654	9.96 157	5	15		9 5.		4.5	
46	9.60 503 9.60 532	29	9.64 381	35	10.35 619	9.96 151	6	14					
47	9.60 561	29	9.64 415	34	10.35 585	9.96 146	5	13					
48	9.60 589	28	9.64 449	34	10.35 551	9.96 140	5	12					
49	9.60 618	29	9.64 483	34	10.35 517	9.96 135	6	11					
50	9.60 646	28	9.64 517	34	10.35 483	9.96 129	6	10					
51	9.60 675	29	9.64 552	35	10.35 448	9.96 123	5	9					
52	9.60 704	29 28	9.64 586	34	10.35 414	9.96 118	6	8 7					
53	9.60 732	29	9.64 620	34	10.35 380	9.96 112 9.96 107	5	6					
54	9.60 761	28	9.64 654	34	10.35 346		6	$\frac{6}{5}$					
55	9.60 789	29	9.64 688	34	10.35 312	9.96 101 9.96 095	6	4					
56	9.60 818	28	9.64 722	34	10.35 278	9.96 095	5	3					
57	9.60 846	29	9.64 756	34	10.35 244	9.96 084	6	2					
58	9.60 875	28	9.64 790 9.64 824	34	10.35 176	9.96 079	5	1					
59	9.60 903	28	9.64 858	34	10.35 142	9.96 073	6	0					_
60	9.60 931	,		e d		L Sin	d	,		Prop.	Pts		
	L Cos	d	L Cot	e a	L I all			66°					<u></u>

. 24°

1 9,66,966 29 9,64,892 34 10,33 049 9,96 052 6 5 9,64 926 34 10,33 049 9,96 055 6 5 9,64 969 34 10,33 049 9,96 055 6 5 9,64 969 34 10,33 049 9,96 055 6 5 9,64 969 34 10,33 049 9,96 055 6 5 9,64 969 34 10,33 049 9,96 055 6 5 9,64 969 34 10,33 049 9,96 055 6 5 9,64 969 34 10,34 904 9,96 034 6 5 8 9,61 158 28 9,65 966 34 10,34 904 9,96 034 6 5 8 9,61 158 28 9,65 164 38 9,65 164 38 9,65 164 38 9,65 164 31 10,96 1242 88 9,05 231 34 10,34 836 9,96 037 6 5 8 9,61 169 9,61 186 28 9,05 257 34 10,34 759 9,96 001 6 9,61 130 9,61 270 28 9,05 265 34 10,34 769 9,96 001 6 9,61 169 9,61 382 28 9,05 295 34 10,34 769 9,96 000 6 1 1 0 9,61 382 28 9,05 205 34 10,34 769 9,96 000 6 1 1 0 9,61 382 28 9,05 205 34 10,34 769 9,95 904 6 4 4 3 3 1 0 9,61 438 27 9,05 467 33 10,34 634 9,95 9,98 8 6 4 3 1 0 3,4 600 9,95 988 6 4 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 6 3 1 0 3,4 600 9,95 982 6 1	P	rop. Pt	9.	1	L Sin	d	L Tan	cd		L Cos	d	
1				0	9.60 931	20	9.64 858	34	10.35 142		6	60
2 9,00 086 28 9,04 996 34 10,35 046 9,96 056 6 5 6 34 10,35 046 9,96 056 6 5 6 34 10,35 046 9,96 056 6 5 6 34 10,35 046 9,96 056 6 5 6 34 10,34 972 9,96 056 6 5 6 34 10,34 973 9,96 034 6 9,61 158 29 9,65 104 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 973 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,96 034 6 34 10,34 876 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 988 6 34 10,34 674 9,95 987 7 34 34 34 34 34 34 34				1 1								59
34				1 2		1		1				58
Section Sect						29	9.04 900				6	56
1				_		28					5	5.
3					9.61 073	28	9.05 028	1				
S						28					5	5
9 9.61 186 28 9.65 164 33 10.34 876 9.96 021 5 1 1 1 9.61 242 28 9.65 295 34 10.34 735 9.96 025 5 1 1 1 3 9.61 242 28 9.65 303 34 10.34 667 9.95 994 6 1 1 1 9.61 326 28 9.65 303 34 10.34 667 9.95 994 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						29			10.34 904	9.96 034		
10					0.61 186	28	0.65 164		10.34 876	0.06.023	6	
11						28		33			5	
12 9.61 270 28 9.65 265 34 10.34 735 9.96 005 5 4 4 9.61 326 28 9.65 333 34 10.34 667 9.95 994 6 4 4 4 9.61 326 28 9.65 333 34 10.34 667 9.95 988 6 4 4 3.3 17 9.61 411 27 9.61 466 28 9.65 407 31 10.34 566 9.95 987 5 4 4 3.3 10.2 9.61 466 28 9.65 501 34 10.34 566 9.95 997 5 4 4 3.3						28	9.05 197	34	10.34 003		6	
13 9.61 298 28 9.65 336 33 10.34 607 9.95 986 6 4 4 9.61 326 28 9.65 336 33 10.34 607 9.95 988 6 4 4 3.5						1	0.65 265	34	•		6	
14 9.61 326 28 9.65 333 34 10.34 667 9.95 994 6 4 3.6 3.							9.65 290	34	•			4
15						1		34	10.34 667		6	4
S4								33			6	4
1.					9.61 382		9.65 400	34	10.34 600	0.05 082	6	4
1.2 6.8 3 6.8 4 8 9.61 438 8 27 19 9.61 466 8 8 9.65 501 34 10.34 499 9.95 965 6 4 4 10.34 31 9.95 971 6 6 4 4 10.34 10.	- 1						9.65 434		10.34 566		5	4.
10.2	.1	6.8	6.6				9.65 467					4
.4 13.0 13.2 20 9.61 494 28 9.65 535 34 10.34 495 9.95 960 6 3 3 3 3 3 3 3 3 3	-3	10.2	9.9	19	9.61 466		9.65 501	34			6	4
.6 20.4 19.8 21 9.61 522 28 9.65 68 33 10.34 432 9.95 948 6 3 3 3 3 3 3 3 3 3	-4		13.2	20							5	4
29 28 27 27 9.61 634 28 9.65 703 34 10.34 364 9.95 948 6 28 9.65 669 33 10.34 364 9.95 948 6 33 10.34 364 9.95 948 6 33 10.34 364 9.95 948 6 33 10.34 364 9.95 948 6 33 10.34 364 9.95 948 6 38 9.65 669 37 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 736 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 925 6 38 9.65 837 34 10.34 264 9.95 995 925 6 38 9.65 837 34 10.34 264 9.95 995 925 6 38 9.65 837 34 10.34 264 9.95 995 925 6 38 9.65 837 34 10.34 264 9.95 995 885 6 28 9.65 837 34 10.34 264 9.95 9.95 887 6 28 9.65 937 34 10.34 269 9.95 887 6 28 9.65 937 34 10.34 269 9.95 887 6 28 9.65 937 34 10.34 269 9.95 885 6 28 9.65 937 34 10.34 269 9.95 885 6 28 9.65 937 34 10.34 269 9.95 885 6 28 9.65 937 34 10.34 269 9.95 885 6 28 9.65 937 34 10.34 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 937 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 34 10.33 269 9.95 885 6 28 9.65 274 38 9.66 274 33 10.33 269 9.95 885 6 28 9.65 274 38 9.66 274 33 10.33 269 9.95 885 6 28 9.65 274 38 9.66 274 33 10.33 269 9.95 885 6 28 9.65 274 38 9.66 274 33 10.33 269 9.95 885 6 28 9.65 274 275 28 28 28 28 28 28 28 28 28 28 28 28 28	.6	20.4	19.8		9.61 522		9.65 568	33			6	3
9 30.6 29.7 24 9.61 606 25 9.61 606 25 9.61 606 25 9.61 606 28 9.65 669 33 10.34 237 9.95 9.37 6 38 9.65 7.70 34 10.34 230 9.95 9.95 9.05 508 33 10.34 230 9.95 9.05 508 33 10.34 10.34 230 9.95 9.05 508 33 10.34 10.34 230 9.95 9.05 508 33 10.34 10	-7		23.1		9.61 550		9.65 602		10.34 398	9.95 948		3
24 9.61 606 28 9.65 669 34 10.34 231 9.95 937 6 3 3 10.34 230 9.95 937 6 3 3 10.34 230 9.95 937 6 3 3 10.34 230 9.95 937 6 3 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 230 9.95 930 6 3 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 837 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 837 8 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163 9.95 838 6 1 10.34 163	.0				9.61 578		9.65 636		10.34 364	9.95 942		3
29				24					10.34 331		0.75	3
29 28 27 27 9.61 689 28 9.65 736 34 10.34 264 9.95 925 6 3 3 10.34 197 9.95 912 6 3 3 10.34 197 9.95 818 6 2 10.34 197 9.95 818 6 1 10.3					9.61 634							3
2.0 2.8 2.7 7 2.8 9.61 717 28 9.65 870 34 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 197 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 3 10.34 130 9.95 908 6 1 10.34 130 9.95 908 6 1 10.34 130 9.95 908 1 10.34 130 9.95 908 1 10.34 130 9.95 908 1 10.34 130 9.95 807 5 1 10.34 130 9.95 808 5 1 10.33 10.33 10.33 10.93	-								10.34 264		1	3
5.8 8.7 8.7 8.4 8.1 11.6 28 9.61 717 717 28 9.65 803 33 10.34 197 9.95 914 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 7 9.65 803 34 10.34 163 9.95 908 6 33 10.34 163 9.95 908 6 33 6 34 10.34 163 9.95 908 6 33 7 9.95 914 9.65 904 34 10.34 163 9.95 807 5 20 9.95 807 5 20 9.95 807 5 20 9.65 907 33 10.34 063 9.95 807 5 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 6 20 9.95 807 8 9.95		2.8					9.65 770					3
8.7 8.4 8.1 1.2 10.8 30 9.61 7745 28 9.65 837 34 10.34 163 9.95 908 6 3 11.6 11.2 10.8 16.2 31 9.61 802 27 9.65 904 34 10.34 096 9.95 807 6 2 2 2 2 2 2 2 2 2 2 2 3 3 9.61 828 28 9.65 937 33 10.34 063 9.95 807 6 2 2 2 2 2 2 2 3 3 9.61 856 27 9.66 004 34 10.34 096 9.95 867 6 2 2 2 2 2 2 2 3 3 9.61 828 28 9.65 937 34 10.34 096 9.95 867 6 2 2 2 2 2 2 3 3 9.61 856 27 9.66 004 34 10.34 092 9.95 885 6 2 2 2 2 2 2 2 3 3 9.61 828 28 9.66 038 34 10.33 962 9.95 879 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.8	5.6	5.4		9.61 717		9.65 803				1.0	3
14.5			8.1				9.65 837		10.34 163			3
17.4	14.5	14.0	13.5		9.61 773	100			10.34 130	9.95 902	17.77	3
23.2 22.4 21.6 22.3 3 9.61 856 27 9.65 971 34 10.34 029 9.95 885 6 2 9.95 873 6 2 9.66 038 34 10.33 962 9.95 868 5 2 9.66 038 34 10.33 962 9.95 868 5 2 9.66 038 34 10.33 962 9.95 868 5 2 9.66 038 34 10.33 962 9.95 868 5 2 9.95 869 6 2 9.95		16.8	16.2				9.65 904			9.95 897		2
26.1 25.2 24.3 34 9.61 883 34 9.66 0.66 0.65 37 9.61 966 28 9.66 0.75 38 9.61 994 27 9.66 0.64 33 10.33 896 9.95 862 6 28 9.66 1.71 33 10.33 896 9.95 862 6 28 9.66 1.71 33 10.33 896 9.95 862 6 28 9.66 1.71 33 10.33 829 9.95 856 6 28 9.66 1.71 33 10.33 829 9.95 856 6 28 9.66 1.71 33 10.33 829 9.95 856 6 28 9.66 1.71 33 10.33 829 9.95 856 6 28 9.66 1.71 33 10.33 829 9.95 850 6 28 9.66 1.71 33 10.33 796 9.95 839 5 1 10.33 796 9.95 839 6 1 10.33 796 9.95 798 6 1 10.33 796 9.95 798			21.6		9.61 828		9.65 937		10.34 063	9.95 891		2
35 9.61 911 28 9.66 038 34 10.33 962 9.95 868 5 2 37 9.61 966 104 33 10.33 896 9.95 866 6 2 38 34 10.33 862 9.95 850 6 2 38 3.0 2.5 40 9.62 049 27 9.66 171 3 10.33 829 9.95 844 6 2 3 10.33 829 9.95 844 6 2 3 10.33 729 9.95 844 6 2 3 10.33 829 9.95 850 6 2 3 10.33 829 9.95 850 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					9.61 856	100	9.65 971			9.95 885		2
8				-						9.95 879		2
30 9.61 939 27 9.66 071 33 10.33 896 9.95 868 6 2 28 9.66 104 33 10.33 896 9.95 856 6 2 28 9.66 104 33 10.33 896 9.95 856 6 2 28 9.66 104 33 10.33 896 9.95 856 6 2 28 9.66 104 33 10.33 896 9.95 856 6 2 28 9.66 104 33 10.33 896 9.95 856 6 2 28 9.66 104 33 10.33 896 9.95 850 6 2 28 9.66 204 33 10.33 796 9.95 844 5 1 10.33 796 9.95 839 6 1 10.33 799 9.95 839 6 1 10.33 799 9.95 839 6 1 10.33 799 9.95 839 6 1 10.33 799 9.95 839 6 1 10.33 799 9.95 798 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					9.61 911		9.66 038	;	10.33 962	9.95 873		2
1 0.6 0.5 1.2 1.2 1.2 1.3 1.5 1.5 39 9.61 994 28 9.66 138 34 10.33 896 9.95 856 6 2 9.95 8.56 6 2 9.	- 1	6 1	K		9.61 939				10.33 929	9.95 868		2
39 9.62 021 27 9.66 171 33 10.33 829 9.95 850 6 2 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 5 1 10.33 762 9.95 839 6 1 10.33 762 9.95 763 6 1 10.33 762 9.95 763					9.61 966		9.66 104		10.33 896	9.95 862		2
4 2.4 2.6 3.0 2.5 41 9.62 049 41 9.62 076 28 42 9.62 104 43 9.62 159 44 9.62 241 47 9.62 241 48 9.62 268 49 9.62 296 50 9.62 296 50 52 9.62 377 53 9.62 405 54 9.62 432 27 9.66 630 33 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 804 61 10.33 596 9.95 798 61 10.33 407 9.95 798 61 10.33 397 9.95 798 61 10.33 397 9.95 798 61 10.33 397 9.95 798 61 10.33 397 9.95 795 795 795 795 795 795 795 795 795 7					9.61 994	27	9.66 138	1	10.33 862	9.95 856		2
5 3.6 3.7					-	28		1 1 1 1		9.95 850	77.	2
42 9.62 104 43 9.62 131 44 9.62 159 45 9.62 186 46 9.62 214 47 9.62 241 48 9.62 268 49 9.62 296 50 9.62 350 51 9.62 350 52 9.62 377 53 9.62 405 54 9.62 432 55 9.62 432 57 9.62 432 57 9.62 513 58 9.62 568 59 9.62 568 60 9.62 595 60 9.62 595	.5	3.0	2.5		9.62 049	27	9.66 204		10.33 796	9.95 844	1921	2
9 5.4 4.5 4.5 9.62 159 28 9.66 337 33 10.33 663 9.95 827 6 1 1 1 1 1 1 1 1 1	.7				9.02 076		9.66 238			9.95 839	1000	1
44 9.62 159 28 9.66 337 34 10.33 663 9.95 821 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.8	4.0		9.02 104	27	9.00 271			9.95 833	3.7	1
45	.9 1	5.4 1	4.5	44	0.62 150	28	9.00 304		10.33 696	9.95 827		
46 9.62 214 47 9.62 241 48 9.62 268 49 9.62 296 28 9.66 470 33 10.33 563 9.95 804 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						27	9.00 337	2.3				1
47 9.62 241 27 9.66 437 33 10.33 563 9.95 804 6 1 1 48 9.62 268 28 9.66 503 33 10.33 530 9.95 798 6 1 1 50 9.62 323 27 9.66 537 34 10.33 430 9.95 780 6 1 1 51 9.62 350 27 9.66 570 33 10.33 430 9.95 780 6 1 1 52 9.62 377 28 9.66 603 33 10.33 397 9.95 785 5 53 9.62 405 27 9.66 669 33 10.33 364 9.95 769 6 54 9.62 432 27 9.66 669 33 10.33 331 9.95 763 6 55 9.62 459 27 9.66 702 33 10.33 298 9.95 763 6 57 9.62 513 28 9.66 702 33 10.33 298 9.95 757 6 57 9.62 513 28 9.66 768 33 10.33 298 9.95 757 6 58 9.62 541 28 9.66 801 33 10.33 199 9.95 739 6 59 9.62 568 27 9.66 881 33 10.33 199 9.95 739 6 59 9.62 568 27 9.66 884 33 10.33 199 9.95 739 6 9.62 568 27 9.66 884 33 10.33 166 9.95 739 6 9.62 568 27 9.66 884 33 10.33 166 9.95 739 6 9.62 573 9.66 884 33 10.33 166 9.95 733 6 9.95 733 5 9.66 884 33 10.33 166 9.95 733 6 9.95 733 5 9.66 884 33 10.33 166 9.95 733 6 9.95 733 5 9.66 884 33 10.33 133 9.95 738 5 9.66 884 33 10.33 133 9.95 738 5 9.66 884 33 10.33 133 9.95 738 5 9.66 884 33 10.33 133 9.95 738 5 9.66 884 33 10.33 133 9.95 738 5						28	9.66 371			9.95 815	_	1.
48 9.62 268 49 9.62 296 28 9.66 503 33 10.33 530 9.95 798 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				47	0.62 241	27	9.00 404			9.95 810		1
49 9.62 296 28 9.66 503 33 10.33 497 9.95 792 6 1 50 9.62 323 27 9.66 537 34 10.33 463 9.95 786 6 1 51 9.62 350 27 9.66 570 33 10.33 430 9.95 786 6 1 52 9.62 377 28 9.66 603 33 10.33 397 9.95 775 6 54 9.62 432 27 9.66 636 33 10.33 364 9.95 769 6 55 9.62 432 27 9.66 702 33 10.33 298 9.95 763 6 57 9.62 513 27 9.66 768 33 10.33 298 9.95 757 6 58 9.62 541 27 9.66 768 33 10.33 298 9.95 751 6 59 9.62 568 27 9.66 861 33 10.33 199 9.95 733 6 59 9.62 568 27 9.66 867 33 10.33 133 9.95 738 6 60 9.62 595 27 9.66 867 33					0.62 268	27	9.00 437		10.33 563			1.
50 9.62 323 9.66 537 9.66 570 33 10.33 430 9.95 786 6 702 37 9.62 432 27 9.66 669 3 10.33 298 9.95 769 6 9.62 486 57 9.62 513 58 9.62 541 59 9.62 568 60 9.62 573 9.66 768 33 10.33 232 9.95 745 60 9.95 739 60 9.					9.62 206	28	0.66 502		10.33 530		100	1:
51						27	9.66 503				- 1	1
52 9.62 377 28 9.66 603 33 10.33 397 9.95 775 5 9.66 636 33 10.33 364 9.95 769 6 9.66 669 5 10.33 331 9.95 769 6 10.33 331 9.95 769 6 10.33 331 9.95 769 6 10.33 331 9.95 757 6 10.33 265 9.95 757 6 10.33 265 9.95 757 6 10.33 265 9.95 751 6 1					0.62 323	27	9.66 537		10.33 463	9.95 786	7.4	1
53 9.62 405 28 9.66 636 33 10.33 364 9.95 769 6 9.66 669 33 10.33 331 9.95 763 6 9.66 702 33 10.33 298 9.95 757 6 9.62 513 27 9.66 768 33 10.33 298 9.95 757 6 9.62 541 28 9.66 801 33 10.33 232 9.95 745 6 9.66 801 9.66 801 9.66 801 9.66 801 9.66 801 9.95 739 6 9.95 739 9.95 739 9.95 739 9.95 739 9.95 739 9.95 739 9.95 73					0.62 377	27	9.66 602		10.33 430			
54 9.62 432 27 9.66 669 33 10.33 331 9.95 763 6 9.95 757 6 9.62 486 57 9.62 513 58 9.62 541 59 9.62 568 9.62 568 27 9.66 834 33 10.33 166 9.95 739 6 9.95 739 6 9.66 834 9.66 867 8 9.66 867 8 9.66 867 8 9.66 867 8 9.66 834 9.66 867 8 9.66 867 8 9.66 867 8 9.66 867 8 9.66 834 9.95 733 6 9.95 733 6 9.66 867 8 9.66 867 8 9.66 867 8 9.95 733 6 9.95 733 6 9.95 733 8 9.66 867 8 9.66 867 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 738 8 9.66 867 8 9.66 867 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 733 8 9.95 738 8 9.66 867 8 9.95 733 8 9.95 733 8 9.95 738 8 9.66 867 8 9.95 733 8 9.95 738 8 9.66 867 8 9.95 733 8 9.95 738 8 9.66 867 8 9.95 733 8 9.95 738 8 9.95 738 8 9.95 738 8 9.66 867 8 9.95 738 8					9.62 405	28	0.66 626		10.33 397			
55 9.62 459 9.62 486 27 9.66 702 33 10.33 298 9.95 757 6 6 757 9.62 513 28 9.66 768 33 10.33 232 9.95 745 6 759 9.62 568 27 9.66 801 9.66 801 9.95 739 9.66 834 9.66 867 9.95 733 6 759 9.66 867 9.95 733 6 759 9.66 867 9.95 733 759 9.95 733 759 9.66 867 9.95 733 759					9.62 432	27	9.66 660		10.33 304		100	
56 9.62 486 27 9.66 735 33 10.33 265 9.95 751 6 6 75 9.62 513 28 9.66 768 33 10.33 232 9.95 745 6 6 75 9.66 801 9.62 568 27 9.66 834 33 10.33 166 9.95 739 6 75 75 75 75 75 75 75 75 75 75 75 75 75						27			The second secon		1.25	
57 9.62 513 27 9.66 768 33 10.33 232 9.95 751 6 10.33 232 9.95 745 6 10.33 199 9.95 739 6 10.33 166 9.95 733 6 10.33 166 9.95 733 6 10.33 166 9.95 733 6 10.33 166 9.95 733 6 10.33 133 9.95 728 5					0.62 486	27	0.66 702					
58 9.62 541 28 9.66 801 33 10.33 199 9.95 745 6 9.66 834 33 10.33 166 9.95 739 6 9.95 733 6 9.66 867 8 10.33 133 9.95 738 5					9.62 512		0.66 768		10.33 205			
Prop. Pts. 59 9.62 568 27 9.66 834 33 10.33 166 9.95 733 6 5 5 5 5 5 5 5 5 5				58	9.62 541	2.55			10.33 232	9.95 745		
60 9.62 595 27 9.66 867 33 10.33 133 9.95 728 5				59	9.62 568	27			10.33 199	9.95 739		16
Prop. Pts.						27						_
					7.00 093		J.00 00/		10.33 133	0.05 728	3	

0 1 2 3 4 5 6 7 8 9 <th>L Sin 0.62 595 0.62 622 0.62 649 0.62 676 0.62 730 0.62 757 0.62 784 0.62 838 0.62 865 0.62 892 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213 0.63 213</th> <th>27 27 27 27 27 27 27 27 27 27 27 27 27 2</th> <th>9.66 867 9.66 900 9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 163 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 556 9.67 589 9.67 589 9.67 622</th> <th>33 33 33 33 33 33 33 33 33 33 33 33 33</th> <th>10.33 133 10.33 100 10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 902 10.32 869 10.32 869 10.32 87 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673</th> <th>9.95 728 9.95 722 9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633 9.95 633 9.95 633</th> <th>6 6 6 6 6 6 6 6 6 6 6</th> <th>60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45</th> <th>.1</th> <th>Prop</th> <th></th> <th>32</th>	L Sin 0.62 595 0.62 622 0.62 649 0.62 676 0.62 730 0.62 757 0.62 784 0.62 838 0.62 865 0.62 892 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213 0.63 213	27 27 27 27 27 27 27 27 27 27 27 27 27 2	9.66 867 9.66 900 9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 163 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 556 9.67 589 9.67 589 9.67 622	33 33 33 33 33 33 33 33 33 33 33 33 33	10.33 133 10.33 100 10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 902 10.32 869 10.32 869 10.32 87 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673	9.95 728 9.95 722 9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633 9.95 633 9.95 633	6 6 6 6 6 6 6 6 6 6 6	60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45	.1	Prop		32
1 2 3 4 5 6 7 8 9 <th>9.62 622 9.62 649 9.62 676 9.62 730 9.62 757 9.62 784 9.62 811 9.62 838 9.62 865 9.62 892 9.62 945 9.62 945 9.62 972 9.63 026 9.63 052 9.63 052 9.63 106 9.63 186 9.63 186</th> <th>27 27 27 27 27 27 27 27 27 27 27 27 27 2</th> <th>9.66 900 9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622</th> <th>33 33 33 33 33 33 33 33 33 33 33 33 33</th> <th>10.33 100 10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 902 10.32 869 10.32 869 10.32 87 10.32 771 10.32 738 10.32 738 10.32 705 10.32 673 10.32 673</th> <th>9.95 722 9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 639 9.95 639 9.95 633</th> <th>6 6 6 6 6 6 6 6 6 6</th> <th>59 58 57 56 55 54 53 52 51 50 49 48 47 46</th> <th>.1</th> <th></th> <th>1</th> <th>20</th>	9.62 622 9.62 649 9.62 676 9.62 730 9.62 757 9.62 784 9.62 811 9.62 838 9.62 865 9.62 892 9.62 945 9.62 945 9.62 972 9.63 026 9.63 052 9.63 052 9.63 106 9.63 186 9.63 186	27 27 27 27 27 27 27 27 27 27 27 27 27 2	9.66 900 9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 33 33 33 33 33 33 33 33 33 33 33	10.33 100 10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 902 10.32 869 10.32 869 10.32 87 10.32 771 10.32 738 10.32 738 10.32 705 10.32 673 10.32 673	9.95 722 9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 639 9.95 639 9.95 633	6 6 6 6 6 6 6 6 6 6	59 58 57 56 55 54 53 52 51 50 49 48 47 46	.1		1	20
2 3 4 5 6 7 8 9 <td>0.62 649 0.62 676 0.62 730 0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213</td> <td>27 27 27 27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27</td> <td>9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 589 9.67 622</td> <td>33 33 33 33 33 33 33 33 33 33 33 33 33</td> <td>10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 869 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 574 10.32 574 10.32 542</td> <td>9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 639 9.95 633</td> <td>6 6 6 6 6 6 6 6 6 6</td> <td>58 57 56 55 54 53 52 51 50 49 48 47 46</td> <td>.1</td> <td></td> <td>1</td> <td>20</td>	0.62 649 0.62 676 0.62 730 0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.66 933 9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 589 9.67 622	33 33 33 33 33 33 33 33 33 33 33 33 33	10.33 067 10.33 034 10.33 001 10.32 968 10.32 935 10.32 869 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 574 10.32 574 10.32 542	9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 639 9.95 633	6 6 6 6 6 6 6 6 6 6	58 57 56 55 54 53 52 51 50 49 48 47 46	.1		1	20
34 56789 90	0.62 676 0.62 730 0.62 757 0.62 784 0.62 838 0.62 865 0.62 865 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.66 966 9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 33 33 33 33 33 33 33 33 33 33 33	10.33 034 10.33 001 10.32 968 10.32 935 10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 607 10.32 574 10.32 574	9.95 710 9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 657 9.95 651 9.95 639 9.95 633	6 6 6 6 6 6 6 6 6	57 56 55 54 53 52 51 50 49 48 47 46	.1		1	20
4 5 6 7 8 9 <t< td=""><td>9.62 703 9.62 730 9.62 757 9.62 784 9.62 811 9.62 838 9.62 865 9.62 945 9.62 945 9.62 972 9.63 026 9.63 026 9.63 052 9.63 052 9.63 106 9.63 133 9.63 159 9.63 186 9.63 213</td><td>27 27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27</td><td>9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 589 9.67 622</td><td>33 33 33 33 32 33 33 33 33 33 33 33 33 3</td><td>10.33 001 10.32 968 10.32 935 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 607 10.32 574 10.32 574</td><td>9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 651 9.95 645 9.95 639 9.95 633</td><td>6 6 6 6 6 6 6 6</td><td>56 55 54 53 52 51 50 49 48 47 46</td><td>.1</td><td></td><td>1</td><td>20</td></t<>	9.62 703 9.62 730 9.62 757 9.62 784 9.62 811 9.62 838 9.62 865 9.62 945 9.62 945 9.62 972 9.63 026 9.63 026 9.63 052 9.63 052 9.63 106 9.63 133 9.63 159 9.63 186 9.63 213	27 27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.66 999 9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 589 9.67 622	33 33 33 33 32 33 33 33 33 33 33 33 33 3	10.33 001 10.32 968 10.32 935 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 607 10.32 574 10.32 574	9.95 704 9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6 6 6 6 6	56 55 54 53 52 51 50 49 48 47 46	.1		1	20
6 7 8 9 <td>0.62 730 0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213</td> <td>27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27</td> <td>9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622</td> <td>33 33 32 33 33 33 33 33 33 33 33 33 33 3</td> <td>10.32 968 10.32 935 10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 674 10.32 574 10.32 574</td> <td>9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 651 9.95 645 9.95 639 9.95 633</td> <td>6 6 6 6 6 6</td> <td>55 54 53 52 51 50 49 48 47 46</td> <td>.1</td> <td></td> <td>1</td> <td>20</td>	0.62 730 0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 945 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.67 032 9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 32 33 33 33 33 33 33 33 33 33 33 3	10.32 968 10.32 935 10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 673 10.32 640 10.32 674 10.32 574 10.32 574	9.95 698 9.95 692 9.95 686 9.95 680 9.95 674 9.95 663 9.95 663 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6 6 6	55 54 53 52 51 50 49 48 47 46	.1		1	20
6 7 8 9 <td>0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 892 0.62 918 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213</td> <td>27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27</td> <td>9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622</td> <td>33 32 33 33 33 33 32 33 33 33 33 33 33</td> <td>10.32 935 10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542</td> <td>9.95 692 9.95 686 9.95 680 9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633</td> <td>6 6 6 6 6 6</td> <td>54 53 52 51 50 49 48 47 46</td> <td>.1</td> <td></td> <td>1</td> <td>20</td>	0.62 757 0.62 784 0.62 811 0.62 838 0.62 865 0.62 892 0.62 918 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.67 065 9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 32 33 33 33 33 32 33 33 33 33 33 33	10.32 935 10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 692 9.95 686 9.95 680 9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6 6 6	54 53 52 51 50 49 48 47 46	.1		1	20
7 8 9 <td>0.62 784 0.62 811 0.62 838 0.62 865 0.62 892 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213</td> <td>27 27 27 26 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27</td> <td>9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622</td> <td>33 32 33 33 33 32 33 33 32 33 33</td> <td>10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542</td> <td>9.95 686 9.95 680 9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633</td> <td>6 6 6 6 6</td> <td>53 52 51 50 49 48 47 46</td> <td>.1</td> <td></td> <td>1</td> <td>20</td>	0.62 784 0.62 811 0.62 838 0.62 865 0.62 892 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 26 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.67 098 9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 32 33 33 33 32 33 33 32 33 33	10.32 902 10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 686 9.95 680 9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6 6	53 52 51 50 49 48 47 46	.1		1	20
8 9 10 11 12 13 14 15 16 17 18 19 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.62 811 0.62 838 0.62 865 0.62 892 0.62 918 0.62 945 0.62 972 0.63 026 0.63 052 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 26 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	9.67 131 9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	32 33 33 33 32 33 33 32 33 33	10.32 869 10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 680 9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6	52 51 50 49 48 47 46	.1		1	20
9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0.62 838 0.62 865 0.62 892 0.62 918 0.62 945 0.62 972 0.63 026 0.63 052 0.63 079 0.63 133 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 27 27 26 27 27 26 27 27 26 27 27 26	9.67 163 9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 33 32 33 33 32 33 33	10.32 837 10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 674 9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6 6	51 50 49 48 47 46	.1		1	20
10 9.6 11 9.6 12 13 14 9.6 15 16 17 18 19 9.6 20 9.6 21 23 24 25 26 27 28 9.6 31 32 33 34 35 36 37 38 39 9.6 41 42 43 44 45 46 45 46	0.62 865 0.62 892 0.62 918 0.62 945 0.62 972 0.63 026 0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26	9.67 196 9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 32 33 33 33 32 33 33	10.32 804 10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	5 6 6 6	49 48 47 46	.1		1	20
11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	0.62 892 0.62 918 0.62 945 0.62 972 0.62 999 0.63 026 0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 27 26 27 27 26 27 26 27 26 27 26 27 26	9.67 229 9.67 262 9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 32 33 33 33 32 33 33	10.32 771 10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6 6	49 48 47 46	.1		1	20
13 9.6 14 9.6 15 9.6 16 17 18 19 20 9.6 21 23 24 25 26 27 28 9.6 31 32 33 34 35 36 37 38 39 9.6 41 42 43 44 45 46 45 46	0.62 945 0.62 972 0.62 999 0.63 026 0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 27 27 26 27 27 26 27 27 26 27 26	9.67 295 9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 32 33 33 33 32 33 33	10.32 738 10.32 705 10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 657 9.95 651 9.95 645 9.95 639 9.95 633	6 6	47 46	.1		1	20
14 9.6 15 9.6 16 9.6 17 18 19 9.6 20 9.6 21 23 24 25 26 27 28 9.6 31 32 33 9.6 35 36 37 38 39 9.6 41 42 43 44 45 46 45 46	0.62 972 0.62 999 0.63 026 0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 26 27 27 27 26 27 27 26 27 26	9.67 327 9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	32 33 33 33 32 33 33	10.32 673 10.32 640 10.32 607 10.32 574 10.32 542	9.95 645 9.95 639 9.95 633	6	46	.1		1	22
15 9.6 16 9.6 17 18 9.6 17 18 9.6 20 9.6 21 22 23 24 25 26 27 28 29 9.6 27 28 29 9.6 31 32 33 9.6 35 36 37 38 9.6 37 38 39 9.6 41 42 43 44 45 46 9.6	0.62 999 0.63 026 0.63 052 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 27 26 27 26 27 26	9.67 360 9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 32 33 33	10.32 640 10.32 607 10.32 574 10.32 542	9.95 639 9.95 633	6		.1		1	30
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	0.63 026 0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 27 26 27 27 26	9.67 393 9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 33 32 33 33	10.32 607 10.32 574 10.32 542	9.95 633	1929	45				
17 18 9.6 19 9.6 20 9.6 21 9.6 23 24 25 26 27 28 29 9.6 31 32 33 34 35 9.6 37 38 9.6 41 42 43 44 45 46 45 46 9.6	0.63 052 0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	26 27 27 27 26 27 27 26	9.67 426 9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33 32 33 33	10.32 574 10.32 542	9.95 633			.2	6.	6	3.2 6.4
18 9.6 19 9.6 20 9.6 21 9.6 23 9.6 24 9.6 25 9.6 27 28 29 9.6 31 32 33 9.6 35 9.6 37 9.6 37 9.6 41 9.6 42 43 44 9.6 45 9.6 46 9.6	0.63 079 0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 27 26 27 27 27 26	9.67 458 9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	32 33 33	10.32 542	0.05 027	6	44	.3	13.		9.6 12.8
19 9.6 20 9.6 21 9.6 22 9.6 23 9.6 24 9.6 25 9.6 27 9.6 29 9.6 31 9.6 32 9.6 35 9.6 37 9.6 37 9.6 37 9.6 41 9.6 42 43 45 9.6 46 9.6	0.63 106 0.63 133 0.63 159 0.63 186 0.63 213	27 26 27 27 26	9.67 491 9.67 524 9.67 556 9.67 589 9.67 622	33	10.32 542	9.95 621	6	43 42	.5	16.	5	16.0
20 9.6 21 9.6 22 9.6 23 9.6 24 9.6 25 9.6 27 9.6 29 9.6 31 9.6 32 9.6 33 9.6 36 9.6 37 9.6 37 9.6 37 9.6 41 9.6 42 43 45 9.6 46 9.6	0.63 133 0.63 159 0.63 186 0.63 213	26 27 27 26	9.67 524 9.67 556 9.67 589 9.67 622		10.32 500	9.95 615	6	41	.6	19.		19.2
21 9.6 22 9.6 23 9.6 24 9.6 25 9.6 26 9.6 27 9.6 28 9.6 31 9.6 35 9.6 37 9.6 37 9.6 37 9.6 37 9.6 41 9.6 42 43 45 9.6 46 9.6	0.63 159 0.63 186 0.63 213	27 27 26	9.67 556 9.67 589 9.67 622	32	10.32 509	9.95 609	6	40	.8	26.	4	25.6
22 9.6 23 9.6 24 9.6 25 9.6 26 9.6 27 9.6 28 9.6 31 9.6 32 9.6 35 9.6 37 9.6 37 9.6 37 9.6 41 9.6 42 43 45 9.6 45 9.6 46 9.6	.63 186 .63 213	27 26	9.67 589 9.67 622	-	10.32 444	9.95 603	6	39	.9	1 29.	7 1	28.8
23 9.6 24 9.6 25 9.6 26 9.6 27 9.6 28 9.6 29 9.6 31 9.6 32 9.6 33 9.6 35 9.6 37 9.6 37 9.6 38 9.6 37 9.6 41 9.6 42 43 44 9.6 45 46 9.6	.63 213	26	9.67 622	33	10.32 411	9.95 597	6	38				
24 9.6 25 9.6 26 9.6 27 9.6 29 9.6 31 9.6 32 9.6 35 9.6 37 9.6 37 9.6 37 9.6 40 9.6 41 9.6 42 9.6 43 9.6 45 9.6 46 9.6		0.00		33	10.32 378	9.95 591	6	37				
26 9.6 27 9.6 28 9.6 29 9.6 30 9.6 31 9.6 33 9.6 35 9.6 37 9.6 37 9.6 38 9.6 37 9.6 41 9.6 42 43 9.6 43 9.6 44 9.6 45 9.6	.63 239		9.67 654	32	10.32 346	9.95 585	6	36				
26 9.6 27 9.6 28 9.6 29 9.6 30 9.6 31 9.6 33 9.6 35 9.6 37 9.6 38 9.6 37 9.6 38 9.6 41 9.6 42 43 9.6 43 9.6 44 9.6 45 9.6	.63 266	27	9.67 687	33	10.32 313	9.95 579	6	35				
28 9.6 29 9.6 30 9.6 31 9.6 32 9.6 33 9.6 35 9.6 37 9.6 38 9.6 39 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	.63 292	20	9.67 719	33	10.32 281	9.95 573	6	34			, ,	06
29 9.6 30 9.6 31 9.6 32 9.6 33 9.6 35 9.6 36 9.6 37 9.6 39 9.6 41 9.6 42 9.6 43 9.6 45 9.6 46 9.6	.63 319	26	9.67 752	33	10.32 248	9.95 567	6	33	.1	27		26 2.6
30 9.6 31 9.6 32 9.6 33 9.6 35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6	.63 345	27	9.67 785	32	10.32 215	9.95 561	6	32 31	.2	8.	4	5.2 7.8
31 9.6 32 9.6 33 9.6 34 9.6 35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	63 372	- 26	9.67 817	33	10.32 183	9.95 555	6	30	.3	10.	_	10.4
32 9.6 33 9.6 34 9.6 35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	.63 398	27	9.67 850	32	10.32 150	9.95 549	6	29	.4 .5 .6	13.		13.0 15.6
33 9.6 34 9.6 35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	0.63 425	26	9.67 882 9.67 915	33	10.32 118	9.95 543 9.95 537	6	28	.7 .8	18.	9	18.2
34 9.6 35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 40 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	0.63 451 0.63 478	27	9.67 947	32	10.32 053	9.95 531	6	27	.8	21.		20.8
35 9.6 36 9.6 37 9.6 38 9.6 39 9.6 40 9.6 41 9.6 42 9.6 43 9.6 45 9.6 46 9.6	.63 504		9.67 980	33	10.32 020	9.95 525	6	26	.,	4	3 .	-3.4
36 9.6 37 9.6 38 9.6 39 9.6 40 9.6 41 9.6 42 9.6 43 9.6 45 9.6 46 9.6	0.63 531	27	9.68 012	32	10.31 988	9.95 519	6	25				
37 9.6 38 9.6 39 9.6 40 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	.63 557	26	9.68 044	32	10.31 956	9.95 513	6	24				
38 9.6 39 9.6 40 9.6 41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	.63 583	26	9.68 077	33	10.31 923	9.95 507	7	23				
40 9.0 41 9.0 42 9.0 43 9.0 44 9.0 45 9.0 46 9.0	.63 610	26	9.68 109	33	10.31 891	9.95 500	6	22 21				
41 9.6 42 9.6 43 9.6 44 9.6 45 9.6 46 9.6	.63 636	- 26	9.68 142	32	10.31 858	9.95 494	6		1	7	6	1 6
42 9.0 43 9.0 44 9.0 45 9.0 46 9.0	.63 662		9.68 174	32	10.31 826	9.95 488	6	20 19	.I	0.7	0.6	0.5
43 9.6 44 9.6 45 9.6 46 9.6	.63 689	26	9.68 206	33	10.31 794	9.95 476	6	18	.2	1.4 2.1	1.8	1.5
44 9.0 45 9.0 46 9.0	0.63 715	26	9.68 239 9.68 271	32	10.31 761	9.95 470	6	17	-4	2.8	3.0	
45 9.0 46 9.0).63 741).63 767	26	9.68 303	32	10.31 697	9.95 464	6	16	.4 .5 .6	3.5 4.2	3.6	3.0
46 9.0		27	9.68 336	33	10.31 664	9.95 458	6	15	.7 .8	4.9 5.6	4.2	
10 9.).63 794).63 820	26	9.68 368	32	10.31 632	9.95 452	6	14	.9	6.3	5.4	
47 9.0	0.63 846	20	9.68 400	32	10.31 600	9.95 446	6	13				
48 9.	.63 872	20	9.68 432	32	10.31 568	9.95 440	6	12				
49 9.	6.0-0	20	9.68 465	32	10.31 535	9.95 434	7	11				
	0.63 898	20	9.68 497	32	10.31 503	9.95 427	6	10 9				
51 9.	0.63 898	26	9.68 529	32	10.31 471	9.95 421	6					
52 9.	0.63 924 0.63 950	26	9.68 561	32	10.31 439	9.95 415 9.95 409	6	8 7				
).63 924).63 950).63 976	26	9.68 593 9.68 626	33	10.31 407	9.95 403	6	6				
	0.63 924 0.63 950 0.63 976 0.64 002	- 26		32		9.95 397	6	5				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028	20	9.68 658	32	10.31 342	9.95 391	6	4				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028	26	9.68 690	32	10.31 278	9.95 384	7 6	3				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.64 080	26	9.68 754	32	10.31 246	9.95 378	6	2				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.64 080 9.64 106	26 26	1 14.1111 / 7/1	32	10.31 214	9.95 372	6	1				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.64 080 9.64 106 9.64 132	26 26 26		32	10.31 182	9.95 366		0				
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.64 080 9.64 132 9.64 158	26 26 26 26 26	9.68 786					_		Den	o. Pí	ts.
	9.63 924 9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.64 080 9.64 106 9.64 132	26 26 26 26 26		cd	L Tan	L Sin	d	′		rio		- 478 -

LACE)	1	u.	26°		Log	arithms	of	Function	as		
P	rop. Pt	5.	1	L Sin	d	L Tan	c d	A CHARLESTON OF THE PARTY OF TH	L Cos	d	
			0	9.64 184	26	9.68 818 9.68 850	32	10.31 182	9.95 366 9.95 360	6	60 59
			2	9.64 210	26	9.68 882	32	10.31 130	9.95 354	6	58
			3	9.64 262	26 26	9.68 914	32	10.31 086	9.95 348	6	57
			4	9.64 288	25	9.68 946	32	10.31 054	9.95 341	6	56
			5	9.64 313	26	9.68 978	32	10.31 022	9.95 335	6	55
			7	9.64 339	26	9.69 010	32	10.30 990	9.95 329 9.95 323	6	54 53
			8	9.64 365 9.64 391	26	9.69 074	32	10.30 926	9.95 317	6	52
			9	9.64 417	26	9.69 106	32	10.30 894	9.95 310	6	5
			10	9.64 442	25 26	9.69 138	32	10.30 862	9.95 304	6	50
			11	9.64 468	26	9.69 170	32	10.30 830	9.95 298	6	4
			12	9.64 494	25	9.69 202	32	10.30 798	9.95 292 9.95 286	6	4
1	32	31	14	9.64 519 9.64 545	26	9.69 266	32	10.30 734	9.95 279	7	4
ı.	3.2	3.1	15	9.64 571	26	9.69 298	32	10.30 702	9.95 273	6	4.
.3	9.6	9.3	16	9.64 596	25 26	9.69 329	31	10.30 671	9.95 267	6	4
-4	12.8	12.4	17	9.64 622	25	9.69 361	32	10.30 639	9.95 261	7	4.
.5	19.2	18.6	18 19	9.64 647	26	9.69 393	32	10.30 607	9.95 254	6	4
.8	22.4	21.7	20	9.64 673	25	9.69 425	32	10.30 575	9.95 248	6	4
ا و.	28.8	27.9	21	9.64 724	26	9.69 457 9.69 488	31	10.30 543	9.95 242 9.95 236	6	3
			22	9.64 749	25	9.69 520	32	10.30 480	9.95 229	7 6	3
			23	9.64 775	26 25	9.69 552	32	10.30 448	9.95 223	6	3
			24	9.64 800	26	9.69 584	31	10.30 416	9.95 217	6	3
			25	9.64 826	25	9.69 615	32	10.30 385	9.95 211	7	3
, 26	25	24	26 27	9.64 851 9.64 877	26	9.69 647 9.69 679	32	10.30 353	9.95 204 9.95 198	6	3
2.6	2.5	2.4	28	9.64 902	25	9.69 710	31	10.30 290	9.95 192	6	ž
7.8	7.5	7.2	29	9.64 927	25	9.69 742	32	10.30 258	9.95 185	7	3
13.0			30	9.64 953	26	9.69 774	32	10.30 226	9.95 179	6	3
15.6	15.0	14.4	31	9.64 978	25	9.69 805	31	10.30 195	9.95 173	6	2
18.2		19.2	32 33	9.65 003 9.65 029	26	9.69 837 9.69 868	31	10.30 163	9.95 167 9.95 160	7	2
23.4	22.5	1 21.6	34	9.65 054	25	9.69 900	32	10.30 132	9.95 160 9.95 154	6	2
			35	9.65 079	25	9.69 932	32	10.30 068	9.95 148	6	2
			36	9.65 104	25 26	9.69 963	31	10.30 037	9.95 141	7 6	2
			37	9.65 130	25	9.69 995	32 31	10.30 005	9.95 135	6	2
			38 39	9.65 155 9.65 180	25	9.70 026 9.70 058	32	10.29 974	9.95 129	7	2 2
	7 1	6	40	9.65 205	25	9.70 089	31	10.29 942	9.95 122	6	2
.I	0.7	0.6	41	9.65 230	25	9.70 121	32	10.29 911	9.95 116 9.95 110	6	1
.3	2.1	1.8	42	9.65 255	25 26	9.70 152	31	10.29 848	9.95 103	7	î
.4 .5 .6	3.5	3.0	43	9.65 281	25	9.70 184	32 31	10.29 816	9.95 097	7	1
.6	4.2	3.6	44	9.65 306	25	9.70 215	32	10.29 785	9.95 090	6	1
.7	5.6	4.2	45 46	9.65 331 9.65 356	25	9.70 247	31	10.29 753	9.95 084	6	1
٠9	6.3	5.4	47	9.65 381	25	9.70 278 9.70 309	31	10.29 722	9.95 078 9.95 071	7	1 1
			48	9.65 406	25	9.70 341	32	10.29 659	9.95 065	6	î
			49	9.65 431	25	9.70 372	31	10.29 628	9.95 059	6	1
			50	9.65 456	25 25	9.70 404	32 31	10.29 596	9.95 052	6	1
			51 52	9.65 481	25	9.70 435	31	10.29 565	9.95 046	7	
			53	9.65 506 9.65 531	25	9.70 466 9.70 498	32	10.29 534	9.95 039	6	
			54	9.65 556	25	9.70 529	31	10.29 471	9.95 033 9.95 027	6	
			55	9.65 580	24	9.70 560	31	10.29 440	9.95 020	7	H
			56	9.65 605	25 25	9.70 592	32	10.29 408	9.95 014	6	
			57 58	9.65 630	25	9.70 623	31	10.29 377	9.95 007	6	
			59	9.65 655 9.65 680	25	9.70 654 9.70 685	31	10.29 346	9.95 001	6	
			60	9.65 705	25	9.70 717	32	10.29 315	9.94 995 9.94 988	7	-
				7.0.1 / 0.7				111 711 787		-	

		1			1 I diffetti	0113				11.	Ĺ	FIVE_
	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop	. Pts.	
0	9.65 705	24	9.70 717		10.29 283	9.94 988	1	60				_
1	9.65 729	25	9.70 748	31	10.29 252	9.94 982	6	59				
2	9.65 754	25	9.70 779	31	10.29 221	9.94 975	6	58				
3	9.65 779	25	9.70 810	31	10.29 190	9.94 969		57				
3 4 5	9.65 804	24	9.70 841	32	10.29 159	9.94 962	7	56				
5	9.65 828	25	9.70 873		10.29 127	9.94 956	6	55				
6	9.65 853	25	9.70 904	31	10.29 096	9.94 949	7	54				
7	9.65 878	24	9.70 935	31	10.29 065	9.94 943	6	53				
8	9.65 902	25	9.70 966	31	10.29 034	9.94 936	6	52				
9	9.65 927	25	9.70 997	31	10.29 003	9.94 930		51				
10	9.65 952	24	9.71 028		10.28 972	9.94 923	7	50				
11	9.65 976	25	9.71 059	31	10.28 941	9.94 917	6	49				
12	9.66 001	24	9.71 090	31	10.28 910	9.94 911	7	48				
13	9.66 025	25	9.71 121	32	10.28 879	9.94 904	6	47				
14	9.66 050	25	9.71 153	31	10.28 847	9.94 898	7	46	. 1	32	31	30
15	9.66 075		9.71 184	100	10.28 816	9.94 891	6	45	.1	3.2 6.4	3.I 6.2	3.0 6.0
16	9.66 099	24	9.71 215	31	10.28 785	9.94 885		44	.3	9.6	9.3	9.0
17	9.66 124	24	9.71 246	31	10.28 754	9.94 878	7	43	.4	12.8	12.4	12.0
18	9.66 148	25	9.71 277	31	10.28 723	9.94 871	6	42	.6	19.2	18.6	18.0
19	9.66 173	24	9.71 308	31	10.28 692	9.94 865	7	41	.7	22.4	21.7	21.0
20	9.66 197	24	9.71 339	31	10.28 661	9.94 858	6	40	ا و.	25.6 28.8	27.9	24.0
21	9.66 221	25	9.71 370	31	10.28 630	9.94 852	7	39				
22	9.66 246	24	9.71 401	30	10.28 599	9.94 845	6	38				
23	9.66 270	25	9.71 431	31	10.28 569	9.94 839	7	37				
$\frac{24}{25}$	9.66 295	24	9.71 462	31	10.28 538	9.94 832	6	36				
	9.66 319	24	9.71 493	31	10.28 507	9.94 826	7	35				
26	9.66 343	25	9.71 524	31	10.28 476	9.94 819	6	34		05	04	
27	9.66 368	24	9.71 555	31	10.28 445	9.94 813	7	33	.ı	2.5	2.4	23
28	9.66 392	24	9.71 586	31	10.28 414	9.94 806	7	32	.2	5.0	4.8	4.6
29 30	9.66 416	25	9.71 617	31	10.28 383	9.94 799	6	31	.3	7.5 10.0	7.2 9.6	6.9 9.2
	9.66 441	24	9.71 648	31	10.28 352	9.94 793	7	30	.5	12.5	12.0	11.5
31	9.66 465	24	9.71 679	30	10.28 321	9.94 786	6	29		17.0	14.4	13.8
32	9.66 489	24	9.71 709	31	10.28 291	9.94 780	7	28 27	.7	17.5	19.2	18.4
33	9.66 513	24	9.71 740	31	10.28 260	9.94 773	6	26	ا و.	22.5	21.6	20.7
34	9.66 537	25	9.71 771	31	10.28 229	9.94 767	7					
35	9.66 562	24	9.71 802	31	10.28 198	9.94 760	7	25				
36	9.66 586	24	9.71 833	30	10.28 167	9.94 753	6	24 23				
37	9.66 610	24	9.71 863	31	10.28 137	9.94 747	7	22				
38	9.66 634	24	9.71 894	31	10.28 106	9.94 740	6	21				
39	9.66 658	24	9.71 925	30		9.94 734	7	20		7	6	
40	9.66 682	24	9.71 955	31	10.28 045	9.94 727	7	19		I 0.7		
41	9.66 706	25	9.71 986	31	10.28 014		6	18		3 2.1		
42	9.66 731	24	9.72 017	31	10.27 983	9.94 714 9.94 707	7	17		4 2.8	3 2.4	
43	9.66 755	24	9.72 048	30	10.27 952 10.27 922	9.94 700	7	16		5 3.5		
44	9.66 779	24	9.72 078	31		9.94 694	_6	15		7 4.9	4.2	
45	9.66 803	24	9.72 109	31	10.27 891	9.94 687	7	14		8 5.0	5 4.8	
46	9.66 827	24	9.72 140	30	10.27 860	9.94 680	7	13		9 1 0.	, , 3.4	
47	9.66 851	24	9.72 170	31	10.27 799	9.94 674	6	12				
48	9.66 875	24	9.72 201	30	10.27 769	9.94 667	7	11				
49 50	9.66 899	23	9.72 231	31		9.94 660	7	10				
50	9.66 922	24	9.72 262	31	10.27 738	9.94 654	6	9				
51	9.66 946	24	9.72 293	30	10.27 677	9.94 647	7	8				
52	9.66 970	24	9.72 323	31	10.27 646	9.94 640	7	7				
53	9.66 994	24	9.72 354	30	10.27 616	9.94 634	6	6				
54	9.67 018	24	9.72 384	31	10.27 585	9.94 627	7	5				
55	9.67 042	24	9.72 415	30	10.27 555	9.94 620	7	4				
56	9.67 066	24	9.72 445	31	10.27 524	9.94 614	6	3				
57	9.67 090	23	9.72 476	30	10.27 494	9.94 607	7	2				
58	9.67 113	24	9.72 506 9.72 537	31	10.27 463	9.94 600	7	1				
59	9.67 137	24		30	10.27 433	9.94 593	7	0				
60	9.67 161		9.72 567	. ,		L Sin	d	,		Prop.	Pts.	
	L Cos	d	L Cot	c d	LIAN	2 3.2		62°			— 48	0-
								04			10	-

PLAC			1.	28				l c d	L Cot	L Cos	d	_
	Pr	op. Pt	.5.	0	9.67 161	d	L Tan	ea		9.94 593		6
				1	9.67 185	24	9.72 567 9.72 598	31	10.27 433	9.94 587	6	3
				2	9.67 208	23	9.72 628	30	10.27 372	9.94 580	7	5
				3	9.67 232	24	9.72 659	31	10.27 341	9-94 573	7	5
				4	9.67 256	24	9.72 689	30	10.27 311	9.94 567	6	5
				5	9.67 280	24	9.72 720	31	10.27 280	9.94 560	7	5
				6	9.67 303	23	9.72 750	30	10.27 250	9.94 553	7	5
				7	9.67 327	24	9.72 780	30	10.27 220	9.94 546	7	5
				8	9.67 350	23	9.72 811	31	10.27 189	9.94 540	6	ŀ
				9	9.67 374	24	9.72 841	30	10.27 159	9.94 533	7	
				10	9.67 398	24	9.72 872	31	10.27 128	9.94 526	7	1
				11	9.67 421	23	9.72 902	30	10.27 098	9.94 519	7	1
				12	9.67 445	24	9.72 932	30	10.27 068	9.94 513	6	ŀ
	91	30	1 29	13	9.67 468	23	9.72 963	31	10.27 037	9.94 506	7	ŀ
	31 3.1	3.0		14	9.67 492	24	9.72 993	30	10.27 007	9.94 499	-	L
	6.2	6.0	5.8	15	9.67 515	23	9.73 023	30	10.26 977	9.94 492	7	
١,	9.3	12.0		16	9.67 539	24	9.73 054	31	10.26 946	9.94 485	6	ı
1	15-5	15.0	14.5	17	9.67 562	23	9.73 084	30	10.26 916	9.94 479	13301	ı
	18.6	18.0		18	9.67 586	24	9.73 114	30	10.26 886	9.94 472	7 7	ı
	21.7	24.0		19	9.67 609	23	9.73 144		10.26 856	9.94 465		L
	27.9	27.0		20	9.67 633	24	9.73 175	31	10.26 825	9.94 458	7	Ī
				21	9.67 633 9.67 656	23	9.73 205	30	10.26 795	9.94 451	6	L
				22	9.67 680	24	9.73 235	30	10.26 765	9.94 445	1000	ı
				23	9.67 703	23	9.73 265	30	10.26 735	9.94 438	7	ı
				24	9.67 726		9.73 295		10.26 705	9.94 431	1.0	L
				25	9.67 750	24	9.73 326	31	10.26 674	9.94 424	7	ľ
				26	9.67 773	23	9.73 356	30	10.26 644	9.94 417	7	ı
1	24	23	22	27	9.67 796	23	9.73 386	30	10.26 614	9.94 410	7	ı
	4.8	4.6		28	9.67 820	24	9.73 416	30	10.26 584	9.94 404	7	ı
	7.2	6.9	6.6	29	9.67 843	1000	9.73 446		10.26 554	9.94 397		L
١,	9.6	9.2		30	9.67 866	23	9.73 476	30	10.26 524	9.94 390	7	
1	14.4	13.8	13.2	31	9.67 890	24	9.73 507	30	10.26 493	9.94 383	7	ı
	16.8	16.1		32	9.67 913	23	9.73 537	30	10.26 463	9.94 376	7	ı
	21.6	20.7		33	9.67 936	23	9.73 567	30	10.26 433	9.94 369	7	ı
				34	9.67 959	23	9.73 597	30	10.26 403	9.94 362		L
				35	9.67 982	24	9.73 627	30	10.26 373	9.94 355	7	Γ
				36	9.68 006	23	9.73 657	30	10.26 343	9.94 349	6	ı
				37	9.68 029	23	9.73 687	30	10.26 313	9.94 342	7 7	١
				38	9.68 052	23	9.73 717	30	10.26 283	9.94 335	7	ı
				39	9.68 075	23	9.73 747	30	10.26 253	9.94 328		L
	_ [7	6	40	9.68 098	23	9.73 777	30	10.26 223	9.94 321	7	
	.I	0.7	0.6	41	9.68 121	23	9.73 807	30	10.26 193	9.94 314	7	
	.3	2.I	1.8	42	9.68 144	23	9.73 837	30	10.26 163	9.94 307	7	
	.4	2.8	2.4	43	9.68 167	23	9.73 867	30	10.26 133	9.94 300	7	
	.5 .6 .7 .8	3.5	3.0 3.6	44	9.68 190	23	9.73 897	30	10.26 103	9.94 293	_	1
	.7	4.9	4.2	45	9.68 213	24	9.73 927	30	10.26 073	9.94 286	7	
	.8	5.6	4.8 5.4	46	9.68 237	23	9.73 957	30	10.26 043	9.94 279	6	
			5.4	48	9.68 260	23	9.73 987	30	10.26 013		7	ı
				49	9.68 283	22	9.74 017	30	10.25 983	9.94 266	7	ı
					9.68 305	23	9.74 047	30	10.25 953	9.94 259		L
				50	9.68 328	23	9.74 077	30	10.25 923	9.94 252	7	
				51 52	9.68 351	23	9.74 107	30	10.25 893	9.94 245	7 7	
				53	9.68 374	23	9.74 137	29	10.25 863	9.94 238	7	
				54	9.68 397 9.68 420	23	9.74 166	30	10.25 834	9.94 231	7	
						23	9.74 196	30	10.25 804	9.94 224		1.
				55	9.68 443	23	9.74 226	30	10.25 774	9.94 217	7	
				56	9.68 466	23	9.74 256	30	10.25 744	9.94 210	7	
				58	9.68 489	23	9.74 286	30	10.25 714	9.94 203	7	
				59	9.68 512 9.68 534	22	9.74 316	29	10.25 684	9.94 196	7	
					9.00 534	23	9.74 345	30	10.25 655	9.94 189	1:	L
		op. P		60	9.68 557		9.74 375		10.25 625	9.94 182	1'	
	10				L Cos	d	L Cot	od	L Tan			-

29		LO	garithm	is o	Function	ons			1	II.	[FIVE-
<u>_</u>	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop. I	ts.
0	9.68 557	23	9.74 375	30	10.25 625	9.94 182	7	60			
1 2	9.68 580 9.68 603	23	9.74 405	30	10.25 595	9.94 175	7	59			
3	9.68 625	22	9.74 435 9.74 465	30	10.25 565	9.94 168	7	58			
4	9.68 648	23	9.74 494	29	10.25 535	9.94 161 9.94 154	7	57 56			
5	9.68 671	23	9.74 524	30	10.25 476		7	55			
6	9.68 694	23	9.74 554	30	10.25 446	9.94 I47 9.94 I40	7	54			
7	9.68 716	22	9.74 583	29	10.25 417	9.94 133	7	53			
8	9.68 739	23	9.74 613	30	10.25 387	9.94 126	7	52			
9	9.68 762	22	9.74 643	30	10.25 357	9.94 119	7	51			
10	9.68 784	23	9.74 673	29	10.25 327	9.94 112	7	50			
11 12	9.68 807 9.68 829	22	9.74 702	30	10.25 298	9.94 105	7 7	49			
13	9.68 852	23	9.74 732	30	10.25 268	9.94 098	8	48			
14	9.68 875	23	9.74 762 9.74 791	29	10.25 238	9.94 090 9.94 083	7	47 46			
15	9.68 897	22	9.74 821	30			7	45	ı.	30 3.0	2.9
16	9.68 920	23	9.74 851	30	10.25 179	9.94 076	7	44	.2	6.0	5.8
17	9.68 942	22	9.74 880	29	10.25 120	9.94 062	7	43	.3	9.0	8.7
18	9.68 965	23	9.74 910	30	10.25 090	9.94 055	7	42	.5	15.0	14.5
19	9.68 987	22	9.74 939	29	10.25 061	9.94 048	7	41		18.0	17.4
20	9.69 010	23	9.74 969	30	10.25 031	9.94 041	7	40	.8	24.0	23.2
21	9.69 032	23	9.74 998	29 30	10.25 002	9.94 034	7	39	.9	27.0	26.1
22	9.69 055	22	9.75 028	30	10.24 972	9.94 027	7	38			
23 24	9.69 077	23	9.75 058	29	10.24 942	9.94 020	8	37			
$\frac{24}{25}$	9.69 100	22	9.75 087	30	10.24 913	9.94 012	7	36			
26	9.69 122 9.69 144	22	9.75 117	29	10.24 883	9.94 005	7	35 34			
27	9.69 167	23	9.75 146 9.75 176	30	10.24 834	9.93 998 9.93 991	7	33	1	23	22
28	9.69 189	22	9.75 205	29	10.24 795	9.93 984	7	32	.I	2.3	2.2
29	9.69 212	23	9.75 235	30	10.24 765	9.93 977	7	31	.2	6.9	6.6
30	9.69 234	22	9.75 264	29	10.24 736	9.93 970	7	30	.4	9.2	8.8
31	9.69 256	22	9.75 294	30	10.24 706	9.93 963	7 8	29	.5 .6	11.5	11.0
32	9.69 279	23	9.75 323	29 30	10.24 677	9.93 955	7	28	.7 .8	16.1	15.4
33	9.69 301	22	9.75 353	29	10.24 647	9.93 948	7	27	.0	18.4	17.6
34	9.69 323	22	9.75 382	29	10.24 618	9.93 941	7	26			
35	9.69 345	23	9.75 411	30	10.24 589	9.93 934	7	25 24			
36 37	9.69 368	22	9.75 441	29	10.24 559	9.93 927 9.93 920	7	23			
38	9.69 390 9.69 412	22	9.75 470 9.75 500	30	10.24 500	9.93 912	8	22			
39	9.69 434	22	9.75 529	29	10.24 471	9.93 905	7	21			
39 40	9.69 456	22	9.75 558	29	10.24 442	9.93 898	7	20		8	7
41	9.69 479	23	9.75 588	30	10.24 412	9.93 891	7	19	.I	0.8	0.7 1.4
42	9.69 501	22	9.75 617	30	10.24 383	9.93 884	7 8	18	.3	2.4	2.I 2.8
43	9.69 523	22	9.75 647	29	10.24 353	9.93 876	7	17 16	.4	3.2 4.0	3.5
44	9.69 545	22	9.75 676	29	10.24 324	9.93 869	7	15	.6	4.8 5.6	4.2
45	9.69 567	22	9.75 705	30	10.24 295	9.93 862	7	14	.7 .8	6.4	5.6
46	9.69 589	22	9.75 735	29	10.24 265	9.93 855 9.93 847	8	13	.9	7.2	6.3
47 48	9.69 611 9.69 633	22	9.75 764 9.75 793	29	10.24 207	9.93 840	7	12			
49	9.69 655	22	9.75 822	29	10.24 178	9.93 833	7	11			
50	9.69 677	22	9.75 852	30	10.24 148	9.93 826	7	10			
51	9.69 699	22	9.75 881	29	10.24 119	9.93 819	7 8	9			
52	9.69 721	22	9.75 910	29	10.24 090	9.93 811	7	8			
53	9.69 743	22	9.75 939	30	10.24 061	9.93 804	7	7			
54	9.69 765	22	9.75 969	29	10.24 031	9.93 797	8	6			
55	9.69 787	22	9.75 998	29	10.24 002	9.93 789	7	5 4			
56	9.69 809	22	9.76 027	29	10.23 973	9.93 782	7	3			
57	9.69 831	22	9.76 056	30	10.23 944	9.93 775 9.93 768	7	2			
58	9.69 853	22	9.76 086 9.76 115	29	10.23 914 10.23 885	9.93 760	8	1			
59 60	9.69 875	22		29	10.23 856	9.93 753	7	0			
60	9.69 897	,	9.76 144	c d	L Tan	L Sin	d	1	I	Prop. P	ts.
	L Cos	d	L Cot	eu	Lian			60°			- 482

LACE)	11	τ.	30°	•	Log	arithms	of	Function	ns		
	Prop. Pts		1	L Sin	d	L Tan	c d	L Cot	L Cos	d	L
			0	9.69 897	22	9.76 144 9.76 173	29	10.23 856	9.93 753	7	5
			2	9.69 919	22	9.76 202	29	10.23 798	9.93 746 9.93 738	8	5
			3	9.69 963	22	9.76 231	29	10.23 769	9.93 731	7	5
			4	9.69 984	21	9.76 261	30	10.23 739	9.93 724	7	5
			5	9.70 006	22	9.76 290	29	10.23 710	9.93 717	8	5
			6 7	9.70 028	22	9.76 319	29	10.23 681	9.93 709	7	5
			8	9.70 050 9.70 072	22	9.76 348 9.76 377	29	10.23 652	9.93 702	7	5
			ŏ	9.70 093	21	9.76 406	29	10.23 594	9.93 687	8	5
			10	9.70 115	22	9.76 435	29	10.23 565	9.93 680	7	5
			11	9.70 137	22	9.76 464	29	10.23 536	9.93 673	8	4
			12	9.70 159	21	9.76 493	29	10.23 507	9.93 665	7	4
	1 00	28	13	9.70 180	22	9.76 522 9.76 551	29	10.23 478	9.93 658	8	4
3.	0 2.9	2.8	15	9.70 202	22	9.76 580	29	10.23 449	9.93 650	7	4
6.	~	5.6 8.4	16	9.70 245	21	9.76 609	29	10.23 420	9.93 643	7	4
12.	0 11.6	11.2	17	9.70 267	22	9.76 639	30	10.23 361	9.93 628	8	4
15.		16.8	18	9.70 288	21	9.76 668	29	10.23 332	9.93 621	7	4
21.	0 20.3	19.6	19	9.70 310	22	9.76 697	28	10.23 303	9.93 614	8	4
24.		25.2	20	9.70 332	21	9.76 725	29	10.23 275	9.93 606	7	4
			21 22	9.70 353	22	9.76 754	29	10.23 246	9.93 599	8	3
			23	9.70 375 9.70 396	21	9.76 783 9.76 812	29	10.23 217	9.93 591 9.93 584	7	3
			24	9.70 418	22	9.76 841	29	10.23 159	9.93 577	7	3
			25	9.70 439	21	9.76 870	29	10.23 130	9.93 569	8	7
			26	9.70 461	22	9.76 899	29	10.23 101	9.93 562	8	
.ı	2.2	21	27	9.70 482	22	9.76 928	29	10.23 072	9.93 554	100	3
.2	4.4	4.2	28 29	9.70 504	21	9.76 957	29	10.23 043	9.93 547	8	3
-3	8.8	6.3 8.4	30	9.70 525	22	9.76 986	29	10.23 014	9.93 539	7	3
.5 .5	11.0	10.5	31	9.70 547 9.70 568	21	9.77 015	29	10.22 985	9.93 532	7	200
.7	15.4	12.6 14.7	32	9.70 590	22	9.77 073	29	10.22 930	9.93 525 9.93 517	8	2
.8		16.8 18.9	33	9.70 611	21	9.77 101	28	10.22 899	9.93 510	7	1
	-,	-0.9	34	9.70 633	21	9.77 130	29	10.22 870	9.93 502	8	1
			35	9.70 654	21	9.77 159	29	10.22 841	9.93 495	8	7
			36	9.70 675	22	9.77 188	29	10.22 812	9.93 487	7	Ŀ
			38	9.70 697 9.70 718	21	9.77 217 9.77 246	29	10.22 783	9.93 480	8	1
			39	9.70 739	21	9.77 274	28	10.22 754	9.93 472 9.93 465	7	1
	8	7	40	9.70 761	22	9.77 303	29	10.22 697	9.93 457	8	1
.I		0.7 I.4	41	9.70 782	21	9.77 332	29	10.22 668	9.93 450	7	3
-3	2.4	2.1 2.8	42	9.70 803	21	9.77 361	29	10.22 639	9.93 442	8	1
.5	4.0	3.5	43	9.70 824	22	9.77 390	28	10.22 610	9.93 435	8	1
.7		4.2 4.9	45	9.70 846	21	9.77 418	29	10.22 582	9.93 427	7	_1
.8	6.4	5.6	46	9.70 867 9.70 888	21	9.77 447	29	10.22 553	9.93 420	8	1
٠9	7.2	6.3	47	9.70 909	21	9.77 476 9.77 505	29	10.22 524	9.93 412	7	1
			48	9.70 931	22	9.77 533	28	10.22 467	9.93 405 9.93 397	8	li
			49	9.70 952	21	9.77 562	29	10.22 438	9.93 390	7	i
			50	9.70 973	21	9.77 591	29	10.22 409	9.93 382	8	1
			51 52	9.70 994	21	9.77 619	29	10.22 381	9.93 375	8	
			53	9.71 015 9.71 036	21	9.77 648 9.77 677	29	10.22 352	9.93 367	7	
			54	9.71 058	22	9.77 706	29	10.22 323	9.93 360	8	
			55	9.71 079	21	9.77 734	28	10.22 266	9.93 352	8	-
			56	9.71 100	21	9.77 763	29	10.22 237	9.93 344 9.93 337	7	
			57	9.71 121	21	9.77 791	28	10.22 209	9.93 329	8	
			58 59	9.71 142	21	9.77 820	29	10.22 180	9.93 322	7 8	
			60	9.71 163	21	9.77 849	28	10.22 151	9.93 314	-	
I	rop. Pts		-00	9.71 184	-	9.77 877		10.22 123	9.93 307	7	
		-		L Cos	d	L Cot	od	L Tan	I. Sin	4	

L Cot

od

L Tan

L Sin

			Surrenn	3 01	runette	щэ				11.	[FIVE_
<u>_</u>	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop. P	ts.
0	9.71 184	21	9.77 877	29	10.22 123	9.93 307	8	60			
1	9.71 205	21	9.77 906	29	10.22 094	9.93 299	8	59			
2	9.71 226	21	9 77 935	28	10.22 065	9.93 291	7	58			
3	9.71 247	21	9.77 963	29	10.22 037	9.93 284	8	57			
$\frac{4}{5}$	9.71 268	21	9.77 992	28	10.22 008	9.93 276	7	56			
5	9.71 289	21	9.78 020	29	10.21 980	9.93 269	8	55			
6	9.71 310	21	9.78 049	28	10.21 951	9.93 261	8	54			
8	9.71 331	21	9.78 077 9.78 106	29	10.21 923	9.93 253	7	53			
9	9.71 352	21	9.78 135	29	10.21 894	9.93 246	8	52 51			
10	9.71 373	20		28		9.93 238	8				
11	9.71 393	21	9.78 163 9.78 192	29	10.21 837	9.93 230	7	50			
12	9.71 414 9.71 435	21	9.78 220	28	10.21 780	9.93 223 9.93 215	8	49 48			
13	9.71 456	21	9.78 249	29	10.21 751	9.93 207	8	47			
14	9.71 477	21	9.78 277	28	10.21 723	9.93 200	7	46		29	28
15	9.71 498	21	9.78 306	29	10.21 694	9.93 192	8	45	.I	2.9	2.8
16	9.71 519	21	9.78 334	28	10.21 666	9.93 184	8	44	.2	5.8 8.7	5.6
17	9.71 539	20	9.78 363	29	10.21 637	9.93 177	7	43	·3	11.6	8.4 11.2
18	9.71 560	21	9.78 391	28	10.21 609	9.93 169	8	42	.5	14.5	14.0
19	9.71 581	21	9.78 419	28	10.21 581	9.93 161	8	41	.5 .6 .7 .8	17.4	16.8
20	9.71 602	21	9.78 448	29	10.21 552	9.93 154	7	40	.8	23.2	22.4
21	9.71 622	20	9.78 476	28	10.21 524	9.93 146	8	39	.9	26.1	25.2
22	9.71 643	21	9.78 505	29 28	10.21 495	9.93 138	8	38			
23	9.71 664	2I 2I	9.78 533	29	10.21 467	9.93 131	7 8	37			
$\frac{24}{25}$	9.71 685	20	9.78 562	28	10.21 438	9.93 123	8	36			
25	9.71 705	21	9.78 590	28	10.21 410	9.93 115		35			
26	9.71 726	21	9.78 618	29	10.21 382	9.93 108	8	34			
27	9.71 747	20	9.78 647	28	10.21 353	9.93 100	8	33		21 2.I	2.0
28	9.71 767	21	9.78 675	29	10.21 325	9.93 092	8	32	.1	4.2	4.0
29 30	9.71 788	21	9.78 704	28	10.21 296	9.93 084	7	31	-3	6.3 8.4	6.0 8.0
30	9.71 809	20	9.78 732	28	10.21 268	9.93 077	8	30	.4 .5 .6	10.5	10.0
31	9.71 829	21	9.78 760	29	10.21 240	9.93 069	8	29 28	.6	12.6	12.0
32	9.71 850	20	9.78 789	28	10.21 211	9.93 061	8	27	.7 .8	14.7	16.0
33	9.71 870	21	9.78 817	28	10.21 155	9.93 053 9.93 046	7	26	.9	18.9	18.0
$\frac{34}{35}$	9.71 891	20	9.78 845	29			8	25			
35	9.71 911	21	9.78 874	28	10.21 126	9.93 038 9.93 030	8	24			
36 37	9.71 932	20	9.78 902 9.78 930	28	10.21 098	9.93 022	8	23			
38	9.71 952 9.71 973	21	9.78 959	29	10.21 041	9.93 014	8	22			
39	9.71 973	21	9.78 987	28	10.21 013	9.93 007	7	21			
40		20	9.79 015	28	10.20 985	9.92 999	8	20		8	7
41	9.72 014 9.72 034	20	9.79 043	28	10.20 957	9.92 991	8	19	.1	1.6	0.7 I.4
42	9.72 055	21	9.79 072	29	10.20 928	9.92 983	8	18	-3	2.4	2.I
43	9.72 075	20	9.79 100	28	10.20 900	9.92 976	7 8	17	.4	3.2 4.0	2.8 3.5
44	9.72 096	21	9.79 128	28	10.20 872	9.92 968	8	16	.6	4.8	4.2
45	9.72 116	20	9.79 156	28	10.20 844	9.92 960	8	15	·7	5.6	4.9 5.6
46	9.72 137	21	9.79 185	29	10.20 815	9.92 952	8	14	.9	7.2	6.3
47	9.72 157	20	9.79 213	28	10.20 787	9.92 944	8	13			
48	9.72 177	20	9.79 241	28	10.20 759	9.92 936	7	12			
49	9.72 198	21	9.79 269	28	10.20 731	9.92 929	8	11			
50	9.72 218	20	9.79 297	29	10.20 703	9.92 921	8	10			
51	9.72 238	20 21	9.79 326	28	10.20 674	9.92 913	8	8			
52	9.72 259	20	9.79 354	28	10.20 646	9.92 905	8	7			
53	9.72 279	20	9.79 382	28	10.20 618	9.92 897 9.92 889	8	6			
54	9.72 299	21	9.79 410	28	10.20 590	9.92 009	8	5			
55	9.72 320	20	9.79 438	28	10.20 562	9.92 881 9.92 874	7				
56	9.72 340	20	9.79 400	29	10.20 534	9.92 866	8	3			
57	9.72 360	21	9.79 495	28	10.20 505	9.92 858	8	2			
58	9.72 381	20	9.79 523	28	10.20 477	9.92 850	8	1			
59	9.72 401	20	9.79 551	28		9.92 842	8	0			
60	9.72 421		9.79 579	-	10.20 421	L Sin	d	-		Prop. P	ts.
	L Cos	d	L Cot	c d	L Tan	Lan	u	F 00			- 484
								58°		_	101

_	ACE]		ί.	32		-	garithms				1	<u>. </u>
_	Pro	p. Pts	•	0	L Sin	d	L Tan	ed		L Cos	d	L
				1	9.72 421 9.72 441	20	9.79 579 9.79 607	20	10.20 421	9.92 842 9.92 834	8	5
				2	9.72 461	20	9.79 635	28	10.20 365	9.92 826	8	13
				3	9.72 482	21	9.79 663	28	10.20 337	9.92 818	8	1.5
				4	9.72 502	20	9.79 691	28	10.20 309	9.92 810	7	1.5
				5	9.72 522	20	9.79 719	28	10.20 281	9.92 803	8	1
				6 7	9.72 542 9.72 562		9.79 747	29	10.20 253	9.92 795	8	1,00
				8	9.72 582	20	9.79 776 9.79 804	28	10.20 224	9.92 787	8	1
				9	9.72 602	1 -	9.79 832	28	10.20 168	9.92 771	8	
				10	9.72 622		9.79 860	28	10.20 140	9.92 763	8	T
				111	9.72 643	20	9.79 888	28	10.20 112	9.92 755	8	4
				12	9.72 663 9.72 683	20	9.79 916	28	10.20 084	9.92 747	8	1
-	29	28	27	14	9.72 703	20	9.79 944 9.79 972	28	10.20 056	9.92 739 9.92 731	8	1
.I	2.9	2.8	2.7	15	9.72 723	20	9.80 000	28	10.20 000		8	1
.3	5.8 8.7	5.6 8.4	5.4 8.1	16	9.72 743	20	9.80 028	28	10.19 972	9.92 723 9.92 715	8	4
.4	11.6	11.2	10.8	17	9.72 763	20	9.80 056	28	10.19 944	9.92 707	8	4
.5	14.5	16.8	13.5	18	9.72 783	20	9.80 084	28	10.19 916	9.92 699	8	4
.7	20.3	19.6	18.9	19 20	9.72 803	20	9.80 112	28	10.19 888		8	4
ا و	26.1	25.2	24.3	21	9.72 823 9.72 843	20	9.80 140 9.80 168	28	10.19 860	9.92 683	8	4
				22	9.72 863	20	9.80 195	27	10.19 805	9.92 675 9.92 667	8	3
				23	9.72 883	19	9.80 223	28	10.19 777	9.92 659	8	3
				24	9.72 902	20	9.80 251	28	10.19 749	9.92 651	8	3
				25	9.72 922	20	9.80 279	28	10.19 721	9.92 643	8	3
- 1	21	20	19	26 27	9.72 942 9.72 962	20	9.80 307	28	10.19 693	9.92 635	8	3
t	2.1	2.0	1.9	28	9.72 982	20	9.80 335 9.80 363	28	10.19 665	9.92 627 9.92 619	8	3
3	6.3	6.0	3.8	29	9.73 002	20	9.80 391	28	10.19 609	9.92 611	8	3
3 4 5 6	8.4	8.0	5.7 7.6	30	9.73 022	20	9.80 419	28	10.19 581	9.92 603	8	3
6	12.6	12.0	9.5	31	9.73 041	20	9.80 447	28	10.19 553	9.92 595	8	2
7 8	16.8	14.0	13.3 15.2	32	9.73 061	20	9.80 474	28	10.19 526	9.92 587	8	2
ا و	18.9	18.0	17.1	34	9.73 081 9.73 101	20	9.80 502	28	10.19 498	9.92 579	8	2
				35	9.73 121	20	9.80 530 9.80 558	28	10.19 470	9.92 571	8	2
				36	9.73 140	19	9.80 586	28	10.19 442	9.92 563	8	2
				37	9.73 160	20	9.80 614	28	10.19 386	9.92 555 9.92 546	9	2
				38	9.73 180	20	9.80 642	28 27	10.19 358	9.92 538	8	2
	1 9	1 8	1 7	39	9.73 200	19	9.80 669	28	10.19 331	9.92 530	8	2
1.1	0.9	0.8	0.7	40 41	9.73 219	20	9.80 697	28	10.19 303	9.92 522	8	2
.3	2.7	1.6	I.4. 2.I	42	9.73 239 9.73 259	20	9.80 725 9.80 753	28	10.19 275	9.92 514	8	1
.4	3.6	3.2	2.8	43	9.73 278	19	9.80 781	28	10.19 247	9.92 506 9.92 498	8	1 1
.5	5.4	4.8	3.5	44	9.73 298	20	9.80 808	27	10.19 192	9.92 498 9.92 490	8	i
.7	7.2	5.6	4.9 5.6	45	9.73 318	20	9.80 836	28	10.19 164	9.92 482	8	1
.9	8.1	7.2	6.3	46 47	9.73 337	20	9.80 864	28 28	10.19 136	9.92 473	9	i
				48	9.73 357	20	9.80 892	27	10.19 108	9.92 465	8	1
				49	9.73 377 9.73 396	19	9.80 919 9.80 947	28	10.19 081	9.92 457	8	1
				50	9.73 416	20	9.80 975	28	10.19 053	9.92 449	8	1
				51	9.73 435	19	9.81 003	28	10.19 025	9.92 441	8	1
				52	9.73 455	20 19	9.81 030	27	10.18 970	9.92 433 9.92 425	8	
				53 54	9.73 474	20	9.81 058	28	10.18 942	9.92 416	9	
				55	9.73 494	19	9.81 086	27	10.18 914	9.92 408	8	
				56	9.73 513 9.73 533	20	9.81 113 9.81 141	28	10.18 887	9.92 400	8	Г
				57	9.73 552	19	9.81 169	28	10.18 859	9.92 392	8	
				58	9.73 572	20	9.81 196	27	10.18 804	9.92 384	8	
				59	9.73 591	19	9.81 224	28	10.18 776	9.92 376 9.92 367	9	
				60	9.73 611	20	9.81 252	28	10.18 748		8	_
		. Pte.			L Cos		9.01 232		10.10 748 1	9.92 359	-	

-			garithh	115	n Functi	ons				II.	1	FIVE-
_	L Sin	d	L Tan	c d		L Cos	d			Prop	. Pts.	
0	9.73 611	19	9.81 252	27	10.18 748	9.92 359	8	60				
1	9.73 630	20	9.81 279	28	10.18 721	9.92 351	8	59				
2	9.73 650 9.73 669	19	9.81 307	28	10.18 693	9.92 343	8	58				
4	9.73 689	20	9.81 335 9.81 362	27	10.18 665	9.92 335	9	57				
$\frac{4}{5}$	9.73 708	19	9.81 390	28	10.18 610	9.92 326	8	56				
6	9.73 727	19	9.81 418	28	10.18 582	9.92 318 9.92 310	8	55 54				
6	9.73 747	20	9.81 445	27	10.18 555	9.92 302	8	53				
8	9.73 766	19	9.81 473	28	10.18 527	9.92 293	9	52				
9	9.73 785	19	9.81 500	27	10.18 500	9.92 285	8	51				
10	9.73 805	20	9.81 528	28	10.18 472	9.92 277	8	50				
11	9.73 824	19	9.81 556	27	10.18 444	9.92 269	8	49				
12	9.73 843	20	9.81 583	28	10.18 417	9.92 260	8	48				
13 14	9.73 863 9.73 882	19	9.81 611 9.81 638	27	10.18 389	9.92 252	8	47				
15		19	9.81 666	28		9.92 244	9	46	.ı	28 2.8	2.7	2.0
16	9.73 901 9.73 921	20	9.81 693	27	10.18 334	9.92 235	8	45 44	.2	5.6	5.4	4.0
17	9.73 940	19	9.81 721	28	10.18 279	9.92 227 9.92 219	8	43	·3 ·4	8.4	8.1	6.0 8.0
18	9.73 959	19	9.81 748	27	10.18 252	9.92 211	8	42	.5	14.0	13.5	10.0
19	9.73 978	19	9.81 776	28	10.18 224	9.92 202	9	41	.7	19.6	16.2	12.0
20	9.73 997	19	9.81 803	27	10.18 197	9.92 194	8	40	.8	22.4	21.6	16.0
21	9.74 017	19	9.81 831	28	10.18 169	9.92 186	8	39	.,	-3	4.3	1 10.0
22	9.74 036	19	9.81 858	28	10.18 142	9.92 177	8	38				
23	9.74 055	19	9.81 886	27	10.18 114	9.92 169	8	37				
$\frac{24}{25}$	9.74 074	19	9.81 913	28	10.18 087	9.92 161	9	36				
26	9.74 093	20	9.81 941 9.81 968	27	10.18 059 10.18 032	9.92 152	8	35 34				
27	9.74 II3 9.74 I32	19	9.81 996	28	10.18 032	9.92 I44 9.92 I36	8	33		19	1	8
28	9.74 151	19	9.82 023	27	10.17 977	9.92 127	9	32	.1			.8 .6
29	9.74 170	19	9.82 051	28	10.17 949	9.92 119	8	31	.3	5.	7 5	.4
30	9.74 189	19	9.82 078	27	10.17 922	9.92 111	8	30	.4	7.		.0
31	9.74 208	19	9.82 106	28 27	10.17 894	9.92 102	8	29	.6	11.	4 10	.8
32	9.74 227	19	9.82 133	28	10.17 867	9.92 094	8	28	.7	13.		
33	9.74 246	19	9.82 161	27	10.17 839	9.92 086	9	27 26	.9			
34	9.74 265	19	9.82 188	27	10.17 812	9.92 077	8	25				
35 36	9.74 284	19	9.82 215 9.82 243	28	10.17 785	9.92 069 9.92 060	9	24				
37	9.74 303 9.74 322	19	9.82 270	27	10.17 730	9.92 052	8	23				
38	9.74 341	19	9.82 298	28	10.17 702	9.92 044	8	22				
39	9.74 360	19	9.82 325	27	10.17 675	9.92 035	9	21				
40	9.74 379	19	9.82 352	27	10.17 648	9.92 027	100	20		I 0.	0.8	3
41	9.74 398	19	9.82 380	28 27	10.17 620	9.92 018	8	19		2 1.	3 1.0	5
42	9.74 417	19	9.82 407	28	10.17 593	9.92 010	8	18 17		3 2.		-
43	9.74 436	19	9.82.435	27	10.17 565	9.92 002 9.91 993	9	16		4 3.0 5 4.5 6 5.4	5 4.9	2
44	9.74 455	19	9.82 462	27	10.17 538		8	15		7 6.3	3 5.6	•
45	9.74 474	19	9.82 489	28	10.17 511	9.91 985 9.91 976	9	14		8 7.3		
46 47	9.74 493	19	9.82 517 9.82 544	27	10.17 456	9.91 968	8	13		, ,		
48	9.74 512 9.74 531	19	9.82 571	27	10.17 429	9.91 959	9	12				
49	9.74 549	18	9.82 599	28	10.17 401	9.91 951	9	11				
49 50	9.74 568	19	9.82 626	27	10.17 374	9.91 942	8	10				
51	9.74 587	19	9.82 653	27 28	10.17 347	9.91 934	9	9				
52	9.74 606	19	9.82 681	27	10.17 319	9.91 925	8	8 7				
53	9.74 625	19	9.82 708	27	10.17 292	9.91 917	9	6				
54	9.74 644	18	9.82 735	27	10.17 265	9.91 900	8	5				
55	9.74 662	19	9.82 762	28	10.17 238 10.17 210	9.91 900	9	4				
56	9.74 681	19	9.82 790 9.82 817	27	10.17 183	9.91 883	8	3				
57 58	9.74 700	19	9.82 844	27	10.17 156	9.91 874	9	2				
59	9.74 719 9.74 737	18	9.82 871	27	10.17 129	9.91 866	9	1				
60	9.74 756	19	9.82 899	28	10.17 101	9.91 857	,	0			D:	_
-	L Cos	d	L Cot	c d		L Sin	d	'		Prop.		
	L COB		1 - 1 - 1 - 1 - 1 - 1					56°			-48	36 —
								1919				

PLACE		11.		34		TO	garithms		runctio	ns .		_
	Prop.	Pts.			L Sin	d	L Tan	c d		L Cos	d	. I au
				0	9.74 756	19	9.82 899 9.82 926	27	10.17 101	9.91 857	8	
				2	9.74 775 9.74 794	19	9.82 953	27	10.17 047	9.91 840	9	
				3	9.74 812	18	9.82 980	27	10.17 020	9.91 832	8	1
				4	9.74 831	19	9.83 008	27	10.16 992	9.91 823	8	Ŀ
				5	9.74 850	18	9.83 035	27	10.16 965	9.91 815	9	
				7	9.74 868	19	9.83 062	27	10.16 938	9.91 806	8	
				8	9.74 887 9.74 906	19	9.83 089	28	10.16 911	9.91 798	9	
				ı ğ	9.74 924	18	9.83 144	27	10.16 856	9.91 781	8	
				10	9.74 943	19	9.83 171	27	10.16 829	9.91 772	9	
				11	9.74 961	18	9.83 198	27	10.16 802	9.91 763	8	ŀ
*				12	9.74 980	19	9.83 225	27	10.16 775	9.91 755	9	ı
		, ,	26	13 14	9.74 999	18	9.83 252 9.83 280	28	10.16 748	9.91 746	8	١
28	8 2	.7	2.6	15	9.75 017	19		27		9.91 738	9	H
8.	6 5	4	7.8	16	9.75 036 9.75 054	18	9.83 307 9.83 334	27	10.16 693	9.91 729	9	ı
II.	2 10	.8	10.4	17	9.75 073	19	9.83 361	27	10.16 639	9.91 712	8	L
16.8	8 16	.5	13.0	18	9.75 091	18	9.83 388	27	10.16 612	9.91 703	8	ı
19.0	6 18	9	18.2	19	9.75 110	18	9.83 415	27	10.16 585	9.91 695		L
25.	21 24		20.8	20	9.75 128	19	9.83 442	28	10.16 558	9.91 686	9	Г
				21	9.75 147	18	9.83 470	27	10.16 530	9.91 677	8	L
				22 23	9.75 165 9.75 184	19	9.83 497 9.83 524	27	10.16 503	9.91 669 9.91 660	9	ı
				24	9.75 202	18	9.83 551	27	10.16 449	9.91 651	9	ı
				25	9.75 221	19	9.83 578	27	10.16 422	9.91 643	8	ŀ
			_	26	9.75 239	18	9.83 605	27	10.16 395	9.91 634	9	ı
	1.9	11	8 .8	27	9.75 258	19	9.83 632	27	10.16 368	9.91 625	8	ı
.1	3.8	3	.6	28 29	9.75 276	18	9.83 659	27	10.16 341	9.91 617	9	ı
.3	5.7 7.6		.4	30	9.75 294	19	9.83 686	27	10.16 314	9.91 608	9	ŀ
-5	9.5		.0	31	9.75 313 9.75 331	18	9.83 713 9.83 740	27	10.16 287	9.91 599	8	ľ
.7	13.3	12	.6	32	9.75 350	19	9.83 768	28	10.16 232	9.91 591 9.91 582	9	١
.8	15.2	14	.4	33	9.75 368	18	9.83 795	27	10.16 205	9.91 573	9	
		1 22	122	34	9.75 386	19	9.83 822	27	10.16 178	9.91 565	8	ı
				35	9.75 405	18	9.83 849	27	10.16 151	9.91 556	9	Г
				36 37	9.75 423	18	9.83 876	27	10.16 124	9.91 547	9	ı
				38	9.75 441 9.75 459	18	9.83 903 9.83 930	27	10.16 097	9.91 538	8	ı
				39	9.75 478	19	9.83 957	27	10.16 043	9.91 530 9.91 521	9	
	9	0.8		40	9.75 496	18	9.83 984	27	10.16 016	9.91 512	9	H
.1	1.8	1.6		41	9.75 514	18	9.84 011	27	10.15 989	9.91 504	8	ı
.3 .4 .5	3.6	3.2		42	9.75 533	19	9.84 038	27	10.15 962	9.91 495	9	ı
.5	4.5	4.0	•	43 44	9.75 551	18	9.84 065	27	10.15 935	9.91 486	9	ı
.7 .8	6.3	4.8		45	9.75 569	18	9.84 092	27	10.15 908	9.91 477	8	L
.8	7.2 8.1	6.4	1	46	9.75 587 9.75 605	18	9.84 119 9.84 146	27	10.15 881	9.91 469	9	Γ
.,	. 0.1	7.2		47	9.75 624	19	9.84 173	27	10.15 854	9.91 460	9	I
				48	9.75 642	18	9.84 200	27	10.15 800	9.91 451	9	
				49	9.75 660	18	9.84 227	27	10.15 773	9.91 433	9	
				50	9.75 678	18	9.84 254	27 26	10.15 746	9.91 425	8	I
				51 52	9.75 696	18	9.84 280	27	10.15 720	9.91 416	9	
				53	9.75 714 9.75 733	19	9.84 307 9.84 334	27	10.15 693	9.91 407	9	
				54	9.75 751	18	9.84 361	27	10.15 666	9.91 398	9	
				55	9.75 769	18	9.84 388	27	10.15 612	9.91 389	8	-
				56	9.75 787	18	9.84 415	27	10.15 585	9.91 381 9.91 372	9	
				57	9.75 805	18 18	9.84 442	27	10.15 558	9.91 363	9	
				58 59	9.75 823	18	9.84 469	27	10.15 531	9.91 354	9	1
				60	9.75 841	18	9.84 496	27	10.15 504	9.91 345	9	L
				-00	9.75 859		9.84 523		10.15 477	9.91 336	,	
P	rop. P	**			L Cos	d	L Cot	c d	L Tan	The state of the s		_

					ance					11.		Ĺr	IVE-
_	L Sin	d	L Tan	c d	L Cot	L Cos	d			Pre	op. P	ts.	_
0	9.75 859	18	9.84 523	-	10.15 477	9.91 336		60			•		
1	9.75 877	18	9.84 550	27 26	10.15 450	9.91 328	8	59					
2	9.75 895	18	9.84 576		10.15 424	9.91 319	9	58					
3	9.75 913	18	9.84 603	27	10.15 397	9.91 310	9	57					
$\frac{4}{5}$	9.75 931		9.84 630	27	10.15 370	9.91 301	9	56					
5	9.75 949	18	9.84 657	27	10.15 343	9.91 292	9	55					
6	9.75 967	18	9.84 684	27	10.15 316	9.91 283	9	54					
6	9.75 985	18	9.84 711	27	10.15 289	9.91 274	9	53					
8	9.76 003	18	9.84 738	27	10.15 262	9.91 266	8	52					
9	9.76 021	18	9.84 764	26	10.15 236	9.91 257	9	51					
10	9.76 039	18	9.84 791	27			9	50					
11	9.76 057	18	9.84 818	27	10.15 209	9.91 248	9	49					
12	9.76 075	18	9.84 845	27		9.91 239	9						
13	9.76 093	18	9.84 872	27	10.15 155	9.91 230	9	48 47					
14	9.76 111	18	9.84 899	27	10.15 128	9.91 221	9						
15		18		26	10.15 101	9.91 212	9	46		27		26	18
15	9.76 129	17	9.84 925	27	10.15 075	9.91 203	9	45	.I .2	5.4		5.2	3.6
16	9.76 146	18	9.84 952	27	10.15 048	9.91 194	9	44	.3	8.1		7.8	5.4
17	9.76 164	18	9.84 979	27	10.15 021	9.91 185	9	43	.4	10.8		0.4	7.2
18	9.76 182	18	9.85 006	27	10.14 994	9.91 176	9	42	.5 .6	16.2		3.0 5.6	9.0
19	9.76 200	18	9.85 033	26	10.14 967	9.91 167	9	41	.7	18.9) 1	8.2	12.6
20	9.76 218	18	9.85 059	27	10.14 941	9.91 158		40	.8 .9	21.0		0.8	14.4
21	9.76 236	17	9.85 086	27	10.14 914	9.91 149	8	39	.9 1	24.3	, , ,	3.4	16.2
22	9.76 253	18	9.85 113	27	10.14 887	9.91 141	9	38					
23	9.76 271	18	9.85 140	26	10.14 860	9.91 132	9	37					
24	9.76 289		9.85 166		10.14 834	9.91 123	1.0	36					
25	9.76 307	18	9.85 193	27	10.14 807	9.91 114	9	35					
26	9.76 324	17	9.85 220	27	10.14 780	9.91 105	9	34					
27	9.76 342	18	9.85 247	27	10.14 753	9.91 096	9	33		- 1	17	10	
28	9.76 360	18	9.85 273	26	10.14 727	9.91 087	9	32		I	1.7	1.0	
29	9.76 378	18	9.85 300	27	10.14 700	9.91 078	9	31		3	3.4 5.1	3.0	
30	9.76 395	17	9.85 327	27	10.14 673	9.91 069	9	30		4	6.8	4.0	
31	9.76 413	18	9.85 354	27	10.14 646	9.91 060	9	29		5	8.5	5.0	
32	9.76 431	18	9.85 380	26	10.14 620	9.91 051	9	28			10.2	7.0	
33	9.76 448	17	9.85 407	27	10.14 593	9.91 042	9	27		8 1	13.6	8.0	
34	9.76 466	18	9.85 434	27	10.14 566	9.91 033	9	26		9 1	5.3	9.0	
35		18		26			10	25					
	9.76 484	17	9.85 460	27	10.14 540	9.91 023	9	24					
36	9.76 501	18	9.85 487	27	10.14 513	9.91 014	9	23					
37	9.76 519	18	9.85 514	26	10.14 486	9.90 996	9	22					
38	9.76 537	17	9.85 540	27	10.14 460	9.90 987	9	21					
39	9.76 554	18	9.85 567	27	10.14 433		9	20		- 1	9 1	8	
40	9.76 572	18	9.85 594	26	10.14 406	9.90 978	9	19		I	0.9	0.8	
41	9.76 590	17	9.85 620	27	10.14 380	9.90 969	9	18			1.8	1.6	
42	9.76 607	18	9.85 647	27	10.14 353	9.90 960	9	17			3.6	3.2	
43	9.76 625	17	9.85 674	26	10.14 326	9.90 951	9	16		5	4.5	4.0	
44	9.76 642	18	9.85 700	27	10.14 300	9.90 942	9			0	5.4	5.6	
45	9.76 660		9.85 727	27	10.14 273	9.90 933	9	15		8	7.2	6.4	
46	9.76 677	17	9.85 754	26	10.14 246	9.90 924	9	14		ا و	8.1 l	7.2	
47	9.76 695	18	9.85 780	27	10.14 220	9.90 915	9	13 12					
48	9.76 712	17	9.85 807	27	10.14 193	9.90 906	10						
49	9.76 730	18	9.85 834		10.14 166	9.90 896	9	11					
50	9.76 747	17	9.85 860	26	10.14 140	9.90 887	9	10					
51	9.76 765	18	9.85 887	27	10.14 113	9.90 878	9	9					
52	9.76 782	17	9.85 913	26	10.14 087	9.90 869	9	8					
53	9.76 800	18	9.85 940	27	10.14 060	9.90 860	9	7					
54	9.76 817	17	9.85 967	27	10.14 033	9.90 851		6					
55		18	9.85 993	26	10.14 007	9.90 842	9	5					
	9.76 835	17	9.86 020	27	10.13 980	9.90 832	10	4					
56	9.76 852	18	9.86 046	26	10.13 954	9.90 823	9	3					
57	9.76 870	17	9.86 073	27	10.13 927	9.90 814	9	2					
58	9.76 887	17	9.86 100	27	10.13 900	9.90 805	9	1					
59	9.76 904	18		26	10.13 874		9	0					
60	9.76 922		9.86 126	-		L Sin	d			Pro	p. P	ts.	
	L Cos	d	L Cot	c d	L Tan	LSIII	<u> </u>					10	2
								54°			_	- 40	0

	PLACE] II. Prop. Pts.			36		_	-	_	Function		1 ;	_	
_		rop.	PE8.		0	L Sin 9.76 922	d	9.86 126	c d		L Cos	d	60
					li	9.76 939	17	0 86 152	27	10.13 874	9.90 796	9	59
					2	9.76 957	10	0.86 170	26	10.13 821	9.90 777	10	58
					3	9.76 974	17	9.86 206	27	10.13 794		9	57
					4	9.76 991	17	9.00 232	27	10.13 768		9	56
					5		1	9.86 259	26	10.13 741	9.90 750	2	55
					6	9.77 026	17	9.86 285	27	10.13 715	9.90 741	10	54
					8	9.77 043	18	9.86 312	26	10.13 688	9.90 731	9	53
					1 9	9.77 061 9.77 078	17	9.86 338 9.86 365	27	10.13 662		9	52 51
					10	9.77 095	17	9.86 392	27	10.13 608		9	50
					11	9.77 112	17	9.86 418	26	10.13 582	9.90 704	10	49
					12	9.77 130	18	9.86 445	27	10.13 555	9.90 685	9	48
	07			1 10	13	9.77 147	17	9.86 471	26	10.13 529	9.90 676	9	47
.x	27	20	.6	1.8	14	9.77 164	17	9.86 498	26	10.13 502	9.90 667	10	46
.2	5.4 8.1		.2	3.6	15	9.77 181	18	9.86 524	27	10.13 476	9.90 657	9	45
.4	10.8	10.	4	7.2	16	9.77 199	17	9.86 551	26	10.13 449	9.90 648	9	44
.5	13.5		6	9.0	18	9.77 216 9.77 233	17	9.86 577 9.86 603	26	10.13 423	9.90 639	9	43 42
.7	18.9	18.	.2	12.6	19	9.77 250	17	9.86 630	27	10.13 397	9.90 630 9.90 620	10	41
.8	21.6			14.4	20	9.77 268	18	9.86 656	26	10.13 344	9.90 611	9	40
					21	9.77 285	17	9.86 683	27	10.13 317	9.90 602	9	39
					22	9.77 302	17	9.86 709	26	10.13 291	9.90 592	10	38
					23	9.77 319	17	9.86 736	27	10.13 264	9.90 583	9	37
					24	9.77 336	17	9.86 762	27	10.13 238	9.90 574	9	36
	,				25	9.77 353	17	9.86 789	26	10.13 211	9.90 565	10	35
	17 16			26 27	9.77 370	17	9.86 815	27	10.13 185		9	34	
	.I	3.4		1.6 3.2	28	9.77 387 9.77 405	18	9.86 842 9.86 868	26	10.13 158	9.90 546	9	33
	.I .2 .3	5.1	4	4.8	29	9.77 422	17	9.86 894	26	10.13 132	9.90 537 9.90 527	10	32 31
	.5	6.8 8.5		5.4 3.0	30	9.77 439	17	9.86 921	27	10.13 079		9	30
	.6	10.2	5	0.6	31	9.77 456	17	9.86 947	26	10.13 053	9.90 518	9	29
	.7	11.9		2.8	32	9.77 473	17	9.86 974	27	10.13 026	9.90 499	10	28
	.9 1	15.3		1-4	33	9.77 490	17	9.87 000	26 27	10.13 000	9.90 490	9	27
					34	9.77 507	17	9.87 027	26	10.12 973	9.90 480	10	26
					35 36	9.77 524	17	9.87 053	26	10.12 947	9.90 471	9	25
					37	9.77 541 9.77 558	17	9.87 079 9.87 106	27	10.12 921	9.90 462	10	24
					38	9.77 575	17	9.87 132	26	10.12 894	9.90 452	9	23
		10			39	9.77 592	17	9.87 158	26	10.12 842	9.90 443 9.90 434	9	22 21
	r.	1.0	0.		40	9.77 609	17	9.87 185	27	10.12 815	9.90 424	10	20
	.1	2.0	1.1	8	41	9.77 626	17	9.87 211	26	10.12 789	9.90 415	9	19
	.3	3.0 4.0	3.0		42	9.77 643	17	9.87 238	27 26	10.12 762	9.90 405	10	18
	.4 .5	5.0 6.0	5.4		43 44	9.77 660	17	9.87 264	26	10.12 736	9.90 396	9	17
	.7	7.0	6.	3	45	9.77 677	17	9.87 290	27	10.12 710	9.90 386	10	16
	.0	9.0	7.2 8.1	2	46	9.77 694 9.77 711	17	9.87 317	26	10.12 683	9.90 377	9	15
					47	9.77 728	17	9.87 343 9.87 369	26	10.12 657	9.90 368	10	14
					48	9.77 744	16	9.87 396	27	10.12 604	9.90 358 9.90 349	9	13
					49	9.77 761	17	9.87 422	26	10.12 578	9.90 349	10	12 11
					50	9.77 778	17	9.87 448	26	10.12 552	9.90 330	9	10
					51	9.77 795	17	9.87 475	27 26	10.12 525	9.90 320	10	9
					52 53	9.77 812	17	9.87 501	26	10.12 499	9.90 311	9	8
					54	9.77 829 9.77 846	17	9.87 527	27	10.12 473	9.90 301	10	8
					55		16	9.87 554	26	10.12 446	9.90 292	10	_ 6
					56	9.77 862 9.77 879	17	9.87 580 9.87 606	26	10.12 420	9.90 282	9	5
					57	9.77 896	17	9.87 633	27	10.12 394	9.90 273	10	4
					58	9.77 913	17	9.87 659	26	10.12 341	9.90 263 9.90 254	9	3
					59	9.77 930	17	9.87 685	26	10.12 315	9.90 244	10	2
_					60	9.77 946	10	9.87 711	26	10.12 289	9.90 235	9	-

L Cot

o d

L Cos

d

Prop. Pts.

— 489 —

10.12 289

L Tan

9.90 235

L Sin

d

		77272	Barrenin	0	uncu	JANS				11.	L	FIVE-
_	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop	Pts.	
0	9.77 946		9.87 711		10.12 289	9.90 235		60		•		
1	9.77 963	17	9.87 738	27 26	10.12 262	9.90 225	10	59				
2 3	9.77 980	17	9.87 764	26	10.12 236	9.90 216	9	58				
3	9.77 997	16	9.87 790	27	10.12 210	9.90 206	10	57				
4	9.78 013	17	9.87 817	26	10.12 183	9.90 197	9	56				
5	9.78 030	12.55	9.87 843	26	10.12 157	9.90 187	10	55				
6	9.78 047	17	9.87 869	26	10.12 131	9.90 178	9	54				
7	9.78 063	17	9.87 895	27	10.12 105	9.90 168	10	53				
8	9.78 080	17	9.87 922	26	10.12 078	9.90 159	9	52				
9	9.78 097	16	9.87 948	26	10.12 052	9.90 149	10	51				
10	9.78 113	17	9.87 974	26	10.12 026	9.90 139		50				
11	9.78 130	17	9.88 000	27	10.12 000	9.90 130	9	49				
12	9.78 147	16	9.88 027	26	10.11 973	9.90 120	9	48				
13	9.78 163	17	9.88 053	26	10.11 947	9.90 111	10	47				
14	9.78 180	17	9.88 079	26	10.11 921	9.90 101	10	46				
15	9.78 197	16	9.88 105	26	10.11 895	9.90 091	1000	45				
16	9.78 213	17	9.88 131	27	10.11 869	9.90 082	9	44		27	26	17
17	9.78 230	16	9.88 158	26	10.11 842	9.90 072	9	43	.I	2.7 5.4	2.6 5.2	3.4
18	9.78 246	17	9.88 184	26	10.11 816	9.90 063	10	42	.3	8.1	7.8	5.I
19	9.78 263	17	9.88 210	26	10.11 790	9.90 053	10	41	.4	10.8	10.4	6.8 8.5
20	9.78 280	16	9.88 236	26	10.11 764	9.90 043	9	40	.5	13.5	13.0	10.2
21	9.78 296	17	9.88 262	27	10.11 738	9.90 034	10	39	.7	18.9	18.2	11.9
22	9.78 313	16	9.88 289	26	10.11 711	9.90 024	10	38	.8	21.6	20.8	13.6
23	9.78 329	17	9.88 315	26	10.11 685	9.90 014	9	37		-4.5	5.4	5.5
24	9.78 346	16	9.88 341	26	10.11 659	9.90 005	10	36				
25	9.78 362	17	9.88 367	26	10.11 633	9.89 995	10	35				
26	9.78 379	16	9.88 393	27	10.11 607	9.89 985	9	34				
27	9.78 395	17	9.88 420	26	10.11 580	9.89 976	10	33 32				
28	9.78 412	16	9.88 446	26	10.11 554	9.89 966	10	31				
29	9.78 428	17	9.88 472	26	10.11 528	9.89 956	9					
30	9.78 445	16	9.88 498	26	10.11 502	9.89 947	10	30 29				
31	9.78 461	17	9.88 524	26	10.11 476	9.89 937 9.89 927	10	28				
32 33	9.78 478	16	9.88 550 9.88 577	27	10.11 450	9.89 918	9	27				
34	9.78 494 9.78 510	16	9.88 603	26	10.11 423	9.89 908	10	26				
35		17		26		9.89 898	10	25				
	9.78 527	16	9.88 629 9.88 655	26	10.11 371	9.89 888	10	24				
36 37	9.78 543 9.78 560	17	9.88 681	26	10.11 319	9.89 879	9	23				
38	9.78 576	16	9.88 707	26	10.11 293	9.89 869	10	22		16 1.6	1.0	0.9
39	9.78 592	16	9.88 733	26	10.11 267	9.89 859	10	21	.I	3.2	2.0	1.8
40	9.78 609	17	9.88 759	26	10.11 241	9.89 849	10	20	.3	4.8	3.2	3.6
41	9.78 625	16	9.88 786	27	10.11 214		9	19	.4	8.0	4.0 5.0	4.5
42	9.78 642	17	9.88 812	26	10.11 188	9.89 830	10	18	.6	9.6	5.0 6.0	5.4
43	9.78 658	16	9.88 838	26	10.11 162	9.89 820	10	17	.7 .8	11.2	7.0 8.0	7.2
44	9.78 674	16	9.88 864	26	10.11 136	9.89 810	10	16	.9	14.4	9.0	7.2 8.1
45	9.78 691	17	9.88 890	26	10.11 110	9.89 801	9	15				
46	9.78 707	16	9.88 916	26	10.11 084	9.89 791	10	14				
47	9.78 723	16	9.88 942	26	10.11 058	9.89 781	10	13				
48	9.78 739	16	9.88 968	26	10.11 032	9.89 771	10	12				
49	9.78 756	17	9.88 994	26	10.11 006	9.89 761		11				
50	9.78 772	16	9.89 020	26	10.10 980	9.89 752	9	10				
51	9.78 788	16	9.89 046	26	10.10 954	9.89 742	10	9				
52	9.78 805	17	9.89 073	27	10.10 927	9.89 732	10	8				
53	9.78 821	16	9.89 099	26	10.10 901	9.89 722	10	7				
54	9.78 837	16	9.89 125	26	10.10 875	9.89 712	10	6				
55	9.78 853	16	9.89 151	26	10.10 849	9.89 702	9	5				
56	9.78 869	16	9.89 177	26	10.10 823	9.89 693	10	4				
57	9.78 886	17	9.89 203	26	10.10 797	9.89 683	10	3				
58	9.78 902	16	9.89 229	26	10.10 771	9.89 673	10	2				
59	9.78 918	16	9.89 255	26	10.10 745	9.89 663	10	1				
60	9.78 934	16	9.89 281	26	10.10 719	9.89 653		0			P:	
	L Cos	d	L Cot	cd	L Tan	L Sin	d	'		Prop	. Pts.	
	L Cos	u	2 000	100				52°			_4	90 —

Logarithms	of	Functions
------------	----	-----------

PLACE]	H.

38°

	Prop. I	Pts.	1,	L Sin	d	L Tan	cd	L Cot	L Cos	d	T
			0	9.78 934	-	9.89 281	1 06	10.10 719	9.89 653	10	7
			1	9.78 950	17	9.89 307	-6	10.10 693	9.89 643	10	
			2	9.78 967	16	9.89 333	26	10.10 667	9.89 633	9	
			3 4	9.78 983 9.78 999	16	9.89 359 9.89 385	1 26	10.10 641	9.89 624 9.89 614	10	
			5		16	9.89 411	26	10.10 589		10	H
			6	9.79 015	16	9.89 437	26	10.10 563		10	
			7	9.79 047	16	9.89 463	26	10.10 537	9.89 584	10	
			8	9.79 063	16	9.89 489	20	10.10 511	9.89 574	10	1
			9	9.79 079	16	9.89 515	20	10.10 485	9.89 564	10	
			10	9.79 095	16	9.89 541	26	10.10 459	9.89 554	10	Г
	26	1 05	111	9.79 111	17	9.89 567	26	10.10 433	9.89 544	10	ı
ı.	2.6	2.5	12	9.79 128	16	9.89 593	46	10.10 407	9.89 534	10	ı
.3	7.8	7.5	14	9.79 144 9.79 160	16	9.89 619 9.89 645	26	10.10 381	9.89 524	10	
.4	10.4	10.0	15		16	9.89 671	26	10.10 355	9.89 514	10	H
.5	13.0	12.5	16	9.79 176 9.79 192	16	9.89 697	26	10.10 329	9.89 504 9.89 495	9	ı
.7	18.2	17.5	17	9.79 208	16	9.89 723	26	10.10 277	9.89 485	10	ı
.8	20.8	20.0	18	9.79 224	16	9.89 749	26	10.10 251	9.89 475	10	ı
.,	-5.4		19	9.79 240	16	9.89 775	26	10.10 225	9.89 465	10	L
			20	9.79 256	16	9.89 801	26	10.10 199	9.89 455	10	Г
	477		21	9.79 272	16	9.89 827	26	10.10 173	9.89 445	10	ı
.r	17	1.6	22 23	9.79 288	16	9.89 853	26	10.10 147	9.89 435	10	ı
.2	3.4	3.2	24	9.79 304	15	9.89 879 9.89 905	26	10.10 121	9.89 425	10	ı
3 4 5 6	6.8	6.4	25	9.79 319	16		26	10.10 095	9.89 415	10	ŀ
.5	8.5	8.0 9.6	26	9.79 335 9.79 351	16	9.89 931 9.89 957	26	10.10 069	9.89 405 9.89 395	10	ı
.7	11.9	11.2	27	9.79 367	16	9.89 983	26	10.10 017	9.89 385	10	ı
.8	13.6	12.8	28	9.79 383	16	9.90 009	26	10.09 991	9.89 375	10	l
	- 5.0	4.4	29	9.79 399	16	9.90 035	26	10.09 965	9.89 364	11	l
			30	9.79 415	16	9.90 061	25	10.09 939	9.89 354	10	
	15		31	9.79 431	16	9.90 086	26	10.09 914	9.89 344	10	L
τ.	1.5	11	32	9.79 447	16	9.90 112	26	10.09 888	9.89 334	10	
3	3.0 4.5	3.3	34	9.79 463 9.79 478	15	9.90 138 9.90 164	26	10.09 862	9.89 324	10	
4	6.0	4.4	35	9.79 494	16	9.90 190	26	10.09 810	9.89 314	IO	ŀ
4 56	7.5	5.5	36	9.79 510	16	9.90 216	26	10.09 784	9.89 304 9.89 294	10	۱
7 8	10.5	7.7 8.8	37	9.79 526	16	9.90 242	26	10.09 758	9.89 284	10	ı
9	13.5	9.9	38	9.79 542	16	9.90 268	26	10.09 732	9.89 274	10	ı
			39	9.79 558	15	9.90 294	26	10.09 706	9.89 264	10	ľ
			40	9.79 573	16	9.90 320	26	10.09 680	9.89 254	10	Г
	1 10	9	41 42	9.79 589	16	9.90 346	25	10.09 654	9.89 244	10	ı
.I	1.0	0.9	43	9.79 605 9.79 621	16	9.90 371	26	10.09 629	9.89 233	11	ı
.3	3.0	1.8	44	9.79 636	15	9.90 397	26	10.09 603	9.89 223 9.89 213	10	
.4	4.0	3.6	45	9.79 652	16	9.90 449	26			10	ŀ
.6	5.0 6.0	4.5 5.4	46	9.79 668	16	9.90 475	26	10.09 551	9.89 203 9.89 193	10	
.7	7.0	5.4	47	9.79 684	16	9.90 501	26	10.09 499	9.89 183	IO	
.9	9.0	7.2 8.1	48	9.79 699	15	9.90 527	26	10.09 473	9.89 173	10	
			49	9.79 715	16	9.90 553	25	10.09 447	9.89 162	11	
			50 51	9.79 731	15	9.90 578	26	10.09 422	9.89 152	16	1
			52	9.79 746 9.79 762	16	9.90 604	26	10.09 396	9.89 142	10	
			53	9.79 778	16	9.90 630 9.90 656	26	10.09 370	9.89 132	10	
			54	9.79 793	15	9.90 682	26	10.09 344	9.89 122 9.89 112	10	
			55	9.79 809	16	9.90 708	26	10.09 292	9.89 101	11	-
			56	9.79 825	16	9.90 734	26	10.09 266	9.89 091	10	
			57	9.79 840	15	9.90 759	25	10.09 241	9.89 091	10	
			58	9.79 856	16	9.90 785	26 26	10.09 215	9.89 071	10	
			59	9.79 872	15	9.90 811	26	10.09 189	9.89 060	11	
_			60	9.79 887		9.90 837		10.09 163	9.89 050	10	Г
T	rop. P		_	L Coa	d	L Cot					-

					n runet	0115				11.	[FIVE-
<u>_</u>	L Sin	d	L Tan	c d	L Cot	L Cos				Prop. 1	Pts.
0	9.79 887	16	9.90 837	26	10.09 163	9.89 050	170	60			
1	9.79 903	15	9.90 863	26	10.09 137	9.89 040	10	59			
2 3	9.79 918	16	9.90 889	25	10.09 111	9.89 030	10	58			
1	9.79 934	16	9.90 914	26	10.09 086	9.89 020	II	57			
$\frac{4}{5}$	9.79 950	15	9.90 940	26	10.09 060	9.89 009	10	56			
5	9.79 965	16	9.90 966	26	10.09 034	9.88 999	10	55			
6	9.79 981	15	9.90 992	26	10.09 008	9.88 989	II	54			
8	9.79 996 9.80 012	16	9.91 018	25	10.08 982	9.88 978	10	53			
9	9.80 012	15	9.91 043 9.91 069	26	10.08 957 10.08 931	9.88 968 9.88 958	10	52 51			
10		16		26			10				
11	9.80 043 9.80 058	15	9.91 095	26	10.08 905	9.88 948	11	50 49			
12	9.80 038	16	9.91 121	26	10.08 853	9.88 937 9.88 927	10	48			
13	9.80 089	15	9.91 172	25	10.08 828	9.88 917	10	47			
14	9.80 105	16	9.91 198	26	10.08 802	9.88 906	II	46		0.0	
15	9.80 120	15	9.91 224	26	10.08 776	9.88 896	10	45	.I	26 2.6	2.5
16	9.80 136	16	9.91 250	26	10.08 750	9.88 886	10	44	.2	5.2	5.0
17	9.80 151	15	9.91 276	26	10.08 724	9.88 875	11	43	.3	7.8	7.5
18	9.80 166	15	9.91 301	25	10.08 699	0.88 865	10	42	.5	13.0	12.5
19	9.80 182	16	9.91 327	26	10.08 673	9.88 855	10	41	.6	15.6	15.0
20	9.80 197	15	9.91 353	26	10.08 647	9.88 844	II	40	.8	20.8	20.0
21	9.80 213	16	9.91 379	26	10.08 621	9.88 834	10	39	.9	23.4	22.5
22	9.80 228	15	9.91 404	25	10.08 596	9.88 824	10	38			
23	9.80 244	16	9.91 430	26 26	10.08 570	9.88 813	11	37			
24	9.80 259	15	9.91 456		10.08 544	9.88 803	1020	36			
25	9.80 274	15	9.91 482	26	10.08 518	9.88 793	10	35			
26	9.80 290	16	9.91 507	25 26	10.08 493	9.88 782	11	34			
27	9.80 305	15	9.91 533	26	10.08 467	9.88 772	11	33	. 1	16	15
28	9.80 320	16	9.91 559	26	10.08 441	9.88 761	10	32	.I .2	3.2	3.0
$\frac{29}{30}$	9.80 336	15	9.91 585	25	10.08 415		10	31	-3	4.8	4.5
30	9.80 351	15	9.91 610	26	10.08 390	9.88 741	11	30	·4 ·5	6.4 8.0	6.0 7.5
31	9.80 366	16	9.91 636	26	10.08 364	9.88 730	10	29 28	.5 .6	9.6	9.0
32	9.80 382	15	9.91 662	26	10.08 338	9.88 720 9.88 709	11	27	·7 .8	11.2	10.5
33	9.80 397	15	9.91 688	25	10.08 312	9.88 699	10	26	.9	14.4	13.5
34	9.80 412	16	9.91 713	26	10.08 261	9.88 688	11	25			
35	9.80 428	15	9.91 739	26	10.08 235	9.88 678	10	24			
36 37	9.80 443	15	9.91 765 9.91 791	26	10.08 209	9.88 668	10	23			
38	9.80 458 9.80 473	15	9.91 816	25	10.08 184	9.88 657	11	22			
39	9.80 489	16	9.91 842	26	10.08 158	9.88 647	10	21			
40	9.80 504	15	9.91 868	26	10.08 132	9.88 636	11	20		11	10
41	9.80 519	15	9.91 893	25	10.08 107	9.88 626	10	19	.I	1.I 2.2	1.0
42	9.80 534	15	9.91 919	26	10.08 081	9.88 615	10	18	.3	3.3	3.0
43	9.80 550	16	9.91 945	26	10.08 055	9.88 605	11	17	.4 .5 .6	5.5	4.0 5.0
44	9.80 565	15	9.91 971	26	10.08 029	9.88 594	10	16	.6	6.6	6.0
45	9.80 580	15	9.91 996	25	10.08 004	9.88 584	11	15	.7 .8	7.7 8.8	7.0 8.0
46	9.80 595	15	9.92 022	26	10.07 978	9.88 573	10	14	.9	9.9	9.0
47	9.80 610	15	9.92 048	26 25	10.07 952	9.88 563	11	13 12			
48	9.80 625	15 16	9.92 073	26	10.07 927	9.88 552	10	11			
49	9.80 641	100	9.92 099	26	10.07 901	9.88 542	11	10			
50	9.80 656	15	9.92 125	25	10.07 875	9.88 531	10	9			
51	9.80 671	15	9.92 150	26	10.07 850	9.88 521 9.88 510	11	8			
52	9.80 686	15	9.92 176	26	10.07 824	9.88 499	11	7			
53	9.80 701	15	9.92 202	25	10.07 798	9.88 489	10	6			
54	9.80 716	15	9.92 227	26		9.88 478	11	5			
55	9.80 731	15	9.92 253	26	10.07 747	9.88 468	10	4			
56	9.80 746	16	9.92 279	25	10.07 696	9.88 457	11	3			
57	9.80 762	15	9.92 304	26	10.07 670	9.88 447	10	2			
58	9.80 777	15	9.92 330 9.92 356	26	10.07 644	9.88 436	11	1			
59	9.80 792	15	0.02.281	25	10.07 619	9.88 425	11	0			
60	9.80 807	-	9.92 38I	ed		L Sin	d	1		Prop. 1	Pts.
	L Cos	d	L Cot	ou	2			50°		_	-492 -
								90			

ACE]	II.	40	0	Lo	garithm	s o	f Functi	ons		
	Prop.	Pts.		L Sin	d	L Tan	cd	L Cot	L Cos	d	
			0			9.92 381	1 20	10.07 619	9.88 425	10	60
			2	9.80 822 9.80 837		9.92 407		10.07 593	9.88 415 9.88 404	1	5
			3	9.80 852	1 15	0.02 458	25	10.07 542		10	5
			4	9.80 867	- 15	9.92 484	26	10.07 516		1 **	5
			5			9.92 510	25	10.07 490		10	5.
			6	9.80 897 9.80 912	1	1 9.92 535	-6	10.07 465		11	5
			1 8	9.80 927	15	1 4.42 507	26	10.07 439	9.88 351 9.88 340	II	5.5
			9	9.80 942	15	9.92 612	23	10.07 388		10	5
			10	9.80 957	15	9.92 638	26	10.07 362	9.88 319	111	5
			11	9.80 972	15	9.92 003	1 20	10.07 337	9.88 308	10	4
			12	9.80 987 9.81 002	15	9.92 689	26	10.07 311		11	4
1	26	1 25	14	9.81 017	15	9.92 715 9.92 740	1 7 6	10.07 285		11	4
r.	2.6	2.5	15	9.81 032	15	9.92 766	20	10.07 234	9.88 266	10	4
.3	5.2 7.8	7.5	16	9.81 047	15	9.92 792	20	10.07 208		11	4
.4	10.4	10.0	17	9.81 061	14	9.92 817	25	10.07 183	9.88 244	10	4.
.6	15.6	15.0	18 19	9.81 076 9.81 091	15	9.92 843 9.92 868		10.07 157	9.88 234	11	42
.8	18.2 20.8	17.5	20	9.81 106	15	9.92 894	26	10.07 132	9.88 223	II	40
.9	23.4	22.5	21	9.81 121	15	9.92 920	26	10.07 106	9.88 212 9.88 201	11	39
			22	9.81 136	15	9.92 945	25	10.07 055	9.88 191	10	38
			23	9.81 151	15	9.92 971	25	10.07 029	9.88 180	11	3
			25	9.81 166	14	9.92 996	26	10.07 004	9.88 169	11	36
			26	9.81 180 9.81 195	15	9.93 022 9.93 048	26	10.06 978	9.88 158	10	35
1	15	14	27	9.81 210	15	9.93 043	25	10.06 952	9.88 148 9.88 137	11	34
.I	3.0	2.8	28	9.81 225	15	9.93 099	26	10.06 901	9.88 126	II.	32
	4.5	4.2	29	9.81 240	15	9.93 124	25 26	10.06 876	9.88 115	II	31
.3 .4 .5 .6 .7 .8	6.0 7.5	5.6 7.0	30	9.81 254	15	9.93 150	25	10.06 850	9.88 105	10	30
.6	9.0	8.4 9.8	31	9.81 269 9.81 284	15	9.93 175	26	10.06 825	9.88 094	11	29
.8	12.0	11.2	33	9.81 299	15	9.93 201	26	10.06 799	9.88 083 9.88 072	11	28 27
ا و.	13.5	12.6	34	9.81 314	15	9.93 252	25	10.06 748	9.88 061	11	26
			35	9.81 328	14	9.93 278	26	10.06 722	9.88 051	10	25
			36 37	9.81 343	15	9.93 303	25	10.06 697	9.88 040	II	24
			38	9.81 358 9.81 372	14	9.93 329	25	10.06 671	9.88 029	II	23
			39	9.81 387	15	9.93 354 9.93 380	26	10.06 620	9.88 018 9.88 007	11	22 21
. 1	11	10	40	9.81 402	15	9.93 406	26	10.06 594	9.87 996	II	20
.I	1.I 2.2	2.0	41	9.81 417	15	9.93 431	25 26	10.06 569	9.87 985	II	19
-3	3.3	3.0 4.0	42 43	9.81 431	15	9.93 457	25	10.06 543	9.87 975	10	18
.5	5.5	5.0	44	9.81 446 9.81 461	15	9.93 482	26	10.06 518	9.87 964	II	17
.4 .5 .6 .7 .8	6.6	7.0	45	9.81 475	14	9.93 508	25	10.06 492	9.87 953	11	16
.8	9.9	8.0 9.0	46	9.81 490	15	9.93 533 9.93 559	26	10.06 467	9.87 942 9.87 931	11	15
			47	9.81 505	15	9.93 584	25	10.06 416	9.87 920	11	14 13
			48 49	9.81 519	14	9.93 610	26	10.06 390	9.87 909	11	12
			50	9.81 534	15	9.93 636	25	10.06 364	9.87 898	II	11
			51	9.81 549 9.81 563	14	9.93 661 9.93 687	26	10.06 339	9.87 887	10	10
			52	9.81 578	15	9.93 712	25	10.06 313	9.87 877 9.87 866	II	9
			53	9.81 592	14	9.93 738	26	10.06 262	9.87 855	11	8
			54	9.81 607	15	9.93 763	25	10.06 237	9.87 844	11	6
			55	9.81 622	14	9.93 789	25	10.06 211	9.87 833	11	5
			56 57	9.81 636 9.81 651	15	9.93 814	26	10.06 186	9.87 822	II	4 3
			58	9.81 665	14	9.93 840 9.93 865	25	10.06 160	9.87 811	II	3
			59	9.81 680	15	9.93 891	26	10.06 109	9.87 800 9.87 789	11	2
			60	9.81 694	14	9.93 916	25	10.06 084	9.87 778	11	-0
Pro	op. Pt			L Cos	d	L Cot	cd	L Tan	L Sin	d	÷
93 -										u	

41			garithn	is o	1 runcti	ons				II.	[FIVE-
_	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop. I	ts.
0	9.81 694	15	9.93 916	26	10.06 084	9.87 778		60			
1	9.81 709	14	9.93 942	25	10.06 058	9.87 767	II	59			
2	9.81 723	15	9.93 967	26	10.06 033	9.87 756	11	58			
4	9.81 738	14	9.93 993	25	10.06 007	9.87 745	II	57			
$\frac{4}{5}$	9.81 752	15	9.94 018	26	10.05 982	9.87 734	11	56			
6	9.81 767 9.81 781	14	9.94 044	25	10.05 956	9.87 723	11	55			
6	9.81 796	15	9.94 069	26	10.05 931	9.87 712	11	54			
8	9.81 810	14	9.94 095 9.94 120	25	10.05 905	9.87 701 9.87 690	11	53 52			
9	9.81 825	15	9.94 146	26	10.05 854	9.87 679	II	51			
10	9.81 839	14	9.94 171	25	10.05 829	9.87 668	II	50) I		
11	9.81 854	15	9.94 197	26	10.05 803	9.87 657	II	49			
12	9.81 868	14	9.94 222	25	10.05 778	9.87 646	11	48			
13	9.81 882	14	9.94 248	26	10.05 752	9.87 635	II	47			
14	9.81 897	15	9.94 273	25	10.05 727	9.87 624	11	46		26	25
15	9.81 911	14	9.94 299	26	10.05 701	9.87 613	II	45	.I .2	5.2	2.5 5.0
16	9.81 926	15	9.94 324	25	10.05 676	9.87 601	I2 II	44	-3	7.8	7.5
17	9.81 940	14	9.94 350	25	10.05 650	9.87 590	11	43	-4	13.0	10.0
18	9.81 955	14	9.94 375	26	10.05 625	9.87 579	II	42	.5 .6 .7	15.6	15.0
19	9.81 969	14	9.94 401	25	10.05 599		11	41	.8	18.2	17.5
20	9.81 983	15	9.94 426	26	10.05 574	9.87 557	11	40	.9	23.4	22.5
21	9.81 998	14	9.94 452	25	10.05 548	9.87 546	11	39			
22 23	9.82 012	14	9.94 477	26	10.05 523	9.87 535 9.87 524	11	38 37			
24	9.82 026 9.82 041	15	9.94 503	25	10.05 497	9.87 513	11	36			
25		14	9.94 528	26		9.87 501	12	35			
26	9.82 055 9.82 069	14	9.94 554 9.94 579	25	10.05 446	9.87 490	11	34			
27	9.82 084	15	9.94 604	25	10.05 396		11	33		15	14
28	9.82 098	14	9.94 630	26	10.05 370	9.87 468	11	32	.I .2	3.0	2.8
	9.82 112	14	9.94 655	25	10.05 345	9.87 457	11	31	.3	4.5	4.2
29 30	9.82 126	14	9.94 681	26	10.05 319	9.87 446	11	30	.4	6.0 7.5	5.6 7.0
31	9.82 141	15	9.94 706	25	10.05 294	9.87 434	12	29	.5 .6	9.0	8.4
32	9.82 155	14	9.94 732	26 25	10.05 268	9.87 423	11	28	.7 .8	10.5	9.8 11.2
33	9.82 169	14	9.94 757	26	10.05 243	9.87 412	11	27	.9	13.5	12.6
34	9.82 184	14	9.94 783	25	10.05 217	9.87 401	11	26			
35	9.82 198	14	9.94 808	26	10.05 192	9.87 390	12	25			
36	9.82 212	14	9.94 834	25	10.05 166	9.87 378	11	24 23			
37	9.82 226	14	9.94 859	25	10.05 141	9.87 367 9.87 356	11	22			
38	9.82 240	15	9.94 884 9.94 910	26	10.05 090	9.87 345	11	21			
$\frac{39}{40}$	9.82 255	14		25	10.05 065	9.87 334	II	20		12	11 1.1
	9.82 269 9.82 283	14	9.94 935 9.94 961	26	10.05 039	9.87 322	12	19	.I	2.4	2.2
41 42	9.82 297	14	9.94 986	25	10.05 014	9.87 311	II	18	.3	3.6	3.3
43	9.82 311	14	9.95 012	26	10.04 988	9.87 300	11	17	.4 .5 .6	4.8 6.0	4.4 5.5 6.6
44	9.82 326	15	9.95 037	25	10.04 963	9.87 288	11	16	.6	7.2 8.4	
45	9.82 340	14	9.95 062	25	10.04 938	9.87 277	11	15	·7 .8	9.6	7.7 8.8
46	9.82 354	14	9.95 088	26	10.04 912	9.87 266	II	14	.9	10.8	9.9
47	9.82 368	14	9.95 113	25 26	10.04 887	9.87 255	12	13 12			
48	9.82 382	14	9.95 139	25	10.04 861	9.87 243	11	11			
49	9.82 396	14	9.95 164	26	10.04 836	9.87 232	11	10			
50	9.82 410	14	9.95 190	25	10.04 810	9.87 221 9.87 209	12	9			
51	9.82 424	15	9.95 215	25	10.04 785	9.87 198	11	8			
52	9.82 439	14	9.95 240	26	10.04 760	9.87 187	II	7			
53	9.82 453	14	9.95 266	25	10.04 709	9.87 175	12	6			
54	9.82 467	14	9.95 291	26	10.04 683	9.87 164	II	5			
55	9.82 481	14	9.95 317	25	10.04 658	9.87 153	II	4			
56	9.82 495	14	9.95 342 9.95 368	26	10.04 632	9.87 141	12	3			
57 58	9.82 509 9.82 523	14	9.95 393	25	10.04 607	9.87 130	11	2			
59	9.82 537	14	9.95 418	25	10.04 582	9.87 119	12	1			
60	9.82 551	14	9.95 444	26	10.04 556	9.87 107		0			
<u></u>	L Cos	d	L Cot	c d		L Sin	d	1		Prop. P	
_	2 000							48°		_	- 494 —

LACE]		II.	420	,	Log	garithms	of	Functio	ns		
F	rop. P	ts.		L Sin	d	LTan	c d		L Cos	d	Ī
			0	9.82 551	14	9.95 444	25	10.04 556	9.87 107	11	
			2	9.82 565 9.82 579	14	9.95 469	26	10.04 531	9.87 096	11	ı
			3	9.82 593	14	9.95 495 9.95 520	25	10.04 480	9.87 073	12	ı
			4	9.82 607	14	9.95 545	25	10.04 455	9.87 062	II	ı
			5	9.82 621	14	9.95 571	26	10.04 429	9.87 050	12	r
			6	9.82 635	14	9.95 596	25	10.04 404	9.87 039	II	ı
			7	9.82 649	14	9.95 622	26 25	10.04 378	9.87 028	11	ı
			8	9.82 663	14	9.95 647	25	10.04 353	9.87 016	II	ı
			9	9.82 677	14	9.95 672	26	10.04 328	9.87 005	12	L
			10	9.82 691	14	9.95 698	25	10.04 302	9.86 993	11	ı
			11	9.82 705 9.82 719	14	9.95 723	25	10.04 277	9.86 982	12	ı
			13	9.82 733	14	9.95 748 9.95 774	26	10.04 252	9.86 970 9.86 959	11	ì
- 1	26	25	14	9.82 747	14	9.95 799	25	10.04 201	9.86 947	12	ı
.I	2.6	2.5	15	9.82 761	14	9.95 825	26	10.04 175	9.86 936	11	ŀ
.3	7.8	5.0 7.5	16	9.82 775	14	9.95 850	25	10.04 150	9.86 924	12	ı
-4	10.4	10.0	17	9.82 788	13	9.95 875	25 26	10.04 125	9.86 913	11	ı
.8	15.6	15.0	18	9.82 802	14	9.95 901	25	10.04 099	9.86 902	11	ı
.5 .6 .7 .8	18.2	17.5	19	9.82 816	14	9.95 926	26	10.04 074	9.86 890	II	L
.9	23.4	22.5	20	9.82 830	14	9.95 952	25	10.04 048	9.86 879	12	ı
			21 22	9.82 844 9.82 858	14	9.95 977	25	10.04 023	9.86 867	12	ı
			23	9.82 872	14	9.96 002 9.96 028	26	10.03 998	9.86 855 9.86 844	11	ı
			24	9.82 885	13	9.96 053	25	10.03 9/2	9.86 832	12	ı
			25	9.82 899	14	9.96 078	25	10.03 922	9.86 821	11	ŀ
			26	9.82 913	14	9.96 104	26	10.03 896	9.86 809	12	ı
.1	1.4	13	27	9.82 927	14	9.96 129	25 26	10.03 871	9.86 798	11	ı
.2	2.8	2.6	28	9.82 941	14	9.96 155	25	10.03 845	9.86 786	12	ı
-3	5.6	3.9 5.2	29	9.82 955	13	9.96 180	25	10.03 820	9.86 775	12	L
.5	7.0	6.5	30	9.82 968	14	9.96 205	26	10.03 795	9.86 763	11	Γ
.4 .5 .6 .7 .8	9.8	7.8 9.1	31 32	9.82 982 9.82 996	14	9.96 231	25	10.03 769	9.86 752	12	ı
	11.2	10.4	33	9.83 010	14	9.96 256 9.96 281	25	10.03 744	9.86 740 9.86 728	12	ı
.9 1	12.6	111.7	34	9.83 023	13	9.96 307	26	10.03 693	9.86 717	11	ı
			35	9.83 037	14	9.96 332	25	10.03 668	9.86 705	13	ŀ
			36	9.83 051	14	9.96 357	25	10.03 643	9.86 694	II	ı
			37	9.83 065	14	9.96 383	26	10.03 617	9.86 682	12	l
			38	9.83 078	14	9.96 408	25 25	10.03 592	9.86 670	12	ı
	12	11	39	9.83 092	14	9.96 433	26	10.03 567	9.86 659	11	L
ı.	1.2	T.T	40	9.83 106	14	9.96 459	25	10.03 541	9.86 647	12	Г
.2	3.6	3.3	41 42	9.83 120 9.83 133	13	9.96 484	26	10.03 516	9.86 635	11	
-3	4.8	4.4	43	9.83 147	14	9.96 510 9.96 535	25	10.03 490	9.86 624 9.86 612	12	
6.	7.2	4.4 5.5 6.6	44	9.83 161	14	9.96 560	25	10.03 440	9.86 600	13	
.5 .6 .7 .8	9.6	7.7 8.8	45	9.83 174	13	9.96 586	26	10.03 414	9.86 589	11	ŀ
.0	10.8	9.9	46	9.83 188	14	9.96 611	25	10.03 389	9.86 577	12	
			47	9.83 202	14	9.96 636	25 26	10.03 364	9.86 565	12	
			48 49	9.83 215	14	9.96 662	25	10.03 338	9.86 554	11	
			50	9.83 229	13	9.96 687	25	10.03 313	9.86 542	12	L
			51	9.83 242 9.83 256	14	9.96 712	26	10.03 288	9.86 530	12	Г
			52	9.83 270	14	9.96 738 9.96 763	25	10.03 262	9.86 518	II	1
			53	9.83 283	13	9.96 788	25	10.03 237	9.86 507 9.86 495	12	1
			54	9.83 297	14	9.96 814	26	10.03 186	9.86 483	12	
			55	9.83 310	13	9.96 839	25	10.03 161	9.86 472	II	۲
			56	9.83 324	14	9.96 864	25	10.03 136	9.86 460	12	
			57	9.83 338	14	9.96 890	26	10.03 110	9.86 448	12	
			58 59	9.83 351	14	9.96 915	25	10.03 085	9.86 436	12	
			60	9.83 365	13	9.96 940	26	10.03 060	9.86 425	11	
			- 00	9.83 378 L Cos	d	9.96 966 L Cot	od	10.03 034	9.86 413	13	
T	rop. Pt	_			_	1	_	L Tan		_	Γ

-	1	1 0			Tuneti	Ulis				11.	[FIVE-
÷	L Sin	d	L Tan	c d	L Cot	L Cos	d			Prop. I	rts.
0	9.83 378	14	9.96 966	25	10.03 034		12	60			
1	9.83 392 9.83 405		9.96 991	25	10.03 009	9.86 401	12	59			
2	9.83 419	14	9.97 016	26	10.02 984	9.86 389	12	58			
4	9.83 432	13	9.97 067	25	10.02 958	9.86 377 9.86 366	11	57			
$\frac{4}{5}$	9.83 446	1 1 4	9.97 092	25			12	56			
6	9.83 459	13	9.97 118	26	10.02 908	9.86 354 9.86 342	12	55 54			
6	9.83 473	14	9.97 143	25	10.02 857	9.86 330	12	53			
8	9.83 486	13	9.97 168	25	10.02 832	9.86 318	12	52			
9	9.83 500	14	9.97 193	25	10.02 807	9.86 306	12	51			
10	9.83 513	13	9.97 219		10.02 781	9.86 295	II	50			
11	9.83 527	14	9.97 244	25 25	10.02 756	9.86 283	12	49	l		
12	9.83 540	14	9.97 269	26	10.02 731	9.86 271	12	48			
13 14	9.83 554	13	9.97 295	25	10.02 705	9.86 259	12	47			
15	9.83 567	14	9.97 320	25	10.02 680		12	46	.1	26	2.5
16	9.83 581	13	9.97 345	26	10.02 655	9.86 235	12	45	.2	5.2	5.0
17	9.83 594 9.83 608	14	9.97 371	25	10.02 629	9.86 223 9.86 211	12	44	.3 .4	7.8	7.5 10.0
18	9.83 621	13	9.97 396 9.97 421	25	10.02 579	9.86 200	11	43	.5 .6	13.0	12.5
19	9.83 634	13	9.97 447	26	10.02 553	9.86 188	12	41	.0	15.6	15.0
20	9.83 648	14	9.97 472	25	10.02 528	9.86 176	12	40	.7 .8	20.8	20.0
21	9.83 661	13	9.97 497	25	10.02 503	9.86 164	12	39	.9	23 4	22.5
22	9.83 674	13	9.97 523	26	10.02 477	9.86 152	12	38			
23	9.83 688	14	9.97 548	25	10.02 452	9.86 140	12	37			
24	9.83 701	13	9.97 573	25	10.02 427	9.86 128	12	36			
25	9.83 715	14	9.97 598	25 26	10.02 402	9.86 116	12	35	100		
26	9.83 728	13	9.97 624	25	10.02 376	9.86 104	12	34			
27	9.83 741	13	9.97 649	25	10.02 351	9.86 092	12	33	ı.	14 I.4	13 1.3
28	9.83 755	13	9.97 674	26	10.02 326		12	32	.2	2.8	2.6
$\frac{29}{30}$	9.83 768	13	9.97 700	25	10.02 300	9.86 068	12	31	.3	4.2 5.6	3.9 5.2
	9.83 781	14	9.97 725	25	10.02 275	9.86 056	12	30	.5	7.0	6.5
31 32	9.83 795 9.83 808	13	9.97 750 9.97 776	26	10.02 250	9.86 044 9.86 032	12	29 28	.6 .7	8.4 9.8	7.8 9.1
33	9.83 821	13	9.97 801	25	10.02 199	9.86 020	12	27	.8	11.2	10.4
34	9.83 834	13	9.97 826	25	10.02 174	9.86 008	12	26	.0	12.6	11.7
35	9.83 848	14	9.97 851	25	10.02 149	9.85 996	12	25			
36	9.83 861	13	9.97 877	26	10.02 123	9.85 984	12	24			
37	9.83 874	13	9.97 902	25	10.02 098	9.85 972	12	23			
38	9.83 887	13	9.97 927	25 26	10.02 073	9.85 960	12	22			
39	9.83 901	14	9.97 953	25	10.02 047	9.85 948	12	21		1 12	11
40	9.83 914	13	9.97 978	25	10.02 022	9.85 936	12	20	.I	1.2	I.I
41	9.83 927	13	9.90 003	26	10.01 997	9.85 924	12	19 18	.3	3.6	3.3
42	9.83 940	14	9.98 029	25	10.01 971	9.85 912 9.85 900	12	17	.4	4.8	4.4
43 44	9.83 954	13	9.98 054 9.98 079	25	10.01 946	9.85 888	12	16	.6	7.2	5.5 6.6
45	9.83 967	13		25	10.01 896	9.85 876	12	15	.7	8.4	7.7 8.8
45	9.83 980	13	9.98 104 9.98 130	26	10.01 870	9.85 864	12	14	.8	9.6	9.9
47	9.83 993 9.84 006	13	9.98 155	25	10.01 845	9.85 851	13	13	.,		
48	9.84 020	14	9.98 180	25	10.01 820	9.85 839	12	12			
49	9.84 033	13	9.98 206	26	10.01 794	9.85 827	12	11			
50	9.84 046	13	9.98 231	25	10.01 769	9.85 815	12	10			
51	9.84 059	13	9.98 256	25	10.01 744	9.85 803	12	9			
52	9.84 072	13	9.98 281	25 26	10.01 719	9.85 791	12	8 7			
53	9.84 085	13	9.98 307	25	10.01 693	9.85 779	13	6			
54	9.84 098	13	9.98 332	25	10.01 668	9.85 766	12	5			
55	9.84 112	14	9.98 357	26	10.01 643	9.85 754	12	4			
56	9.84 125	13	9.98 383	25	10.01 617	9.85 742 9.85 730	12	3			
57	9.84 138	13	9.98 408	25	10.01 592	9.85 718	12	2			
58	9.84 151	13	9.98 433 9.98 458	25	10.01 542	9.85 706	12	1			
59 60	9.84 164	13	9.98 484	26	10.01 516	9.85 693	13	0			
90	9.84 177	,	L Cot	c d		L Sin	d	,	I	Prop. Pt	.8.
	L Cos	d	LOU	- u			_	46°			- 496 —

Prop. Pts.			١.	44		Lo	garithm	s of	f Function	ns		
	Prop	Pts		1	L Sin	d	L Tan	cd	L Cot	L Cos	d	Ī
				0	9.84 177	13	9.98 484	25	10.01 516		12	Т
				1 2	9.84 190	13	1 9.90 509		10.01 491	9.85 681	12	
				3	9.84 203 9.84 216	13	9.98 534 9.98 560	26	10.01 466		12	ı
				4	9.84 229	13	9.98 585	25	10.01 440		12	ı
				5	9.84 242	13	9.98 610				13	ŀ
				6	9.84 255	13	9.98 635		10.01 390	9.85 632	12	1
				7	9.84 269	14	9.98 661	26	10.01 365		12	
				8	9.84 282	13	9.98 686	25	10.01 339		12	ı
				l ŏ	9.84 295	13	9.98 711	25	10.01 314	0.85 582	13	ı
				10		13		26			12	ŀ
				111	9.84 308 9.84 321	13	9.98 737 9.98 762	25	10.01 263	9.85 571	12	1
				12	9.84 334	13	9.98 787	25	10.01 238	9.85 559	12	1
				13	9.84 347	13	9.98 812	25	10.01 188		13	ı
				14	9.84 360	13	9.98 838	26	10.01 162	9.85 522	12	ı
				15		13	9.98 863	25			12	ŀ
				16	9.84 373 9.84 385	12	9.98 888	25	10.01 137 10.01 112	9.85 510	13	
9.3				17	9.84 398	13	9.98 913	25	10.01 087	9.85 497 9.85 485	12	
, 26		25	14	18	9.84 411	13	9.98 939	26	10.01 061	9.85 473	12	
2 5.	2	5.0	2.8	19	9.84 424	13	9.98 964	25	10.01 036	9.85 460	13	
3 7.	8	7.5	4.2 5.6	20	9.84 437	13	9.98 989	25	10.01 011	9.85 448	12	1
4 10. 5 13. 6 15.		2.5		21	9.84 450	13	9.99 015	26	10.00 985	9.85 436	12	
15.	6 1	5.0	7.0 8.4	22	9.84 463	13	9.99 040	25	10.00 960	9.85 423	13	
7 18.	2 1	7.5	9.8	23	9.84 476	13	9.99 065	25	10.00 935	9.85 411	12	
20.		2.5	11.2	24	9.84 489	13	9.99 090	25	10.00 910	9.85 399	12	1
				25	9.84 502	13	9.99 116	26	10.00 884	9.85 386	13	ŀ
				26	9.84 515	13	9.99 141	25	10.00 859	9.85 374	12	ı
				27	9.84 528	13	9.99 166	25	10.00 834	9.85 361	13	ı
				28	9.84 540	12	9.99 191	25	10.00 809	9.85 349	12	
				29	9.84 553	13	9.99 217	26	10.00 783	9.85 337	12	
				30	9.84 566	13	9.99 242	25	10.00 758	9.85 324	13	ŀ
				31	9.84 579	13	9.99 267	25	10.00 733	9.85 312	12	
				32	9.84 592	13	9.99 293	26	10.00 707	9.85 299	13	
				33	9.84 605	13	9.99 318	25	10.00 682	9.85 287	12	
				34	9.84 618	12	9.99 343	25	10.00 657	9.85 274	13	
				35	9.84 630		9.99 368	25	10.00 632	9.85 262	12	1
1	13		12	36	9.84 643	13	9.99 394	26	10.00 606	9.85 250	12	
.I	1.3		1.2	37	9.84 656	13	9.99 419	25 25	10.00 581	9.85 237	13	1
-3	3.9		2.4 3.6	38	9.84 669	13	9.99 444	25	10.00 556	9.85 225		
.4	5.2		4.8	39	9.84 682	12	9.99 469	26	10.00 531	9.85 212	13	
.5	6.5 7.8		6.0 7.2	40	9.84 694	13	9.99 495	25	10.00 505	9.85 200	12	Ĩ
.7	9.1	1 3	8.4	41	9.84 707	13	9.99 520	25	10.00 480	9.85 187	13	
.8	10.4	1.5	9.6 0.8	42	9.84 720	13	9.99 545	25	10.00 455	9.85 175	13	
١ و.	-1.7	1 1	0.0	43	9.84 733	12	9.99 570	26	10.00 430	9.85 162	12	
				44	9.84 745	13	9.99 596	25	10.00 404	9.85 150	13	
				45	9.84 758	13	9.99 621	25	10.00 379	9.85 137	12	ſ
			1 1	46	9.84 771	13	9.99 646	26	10.00 354	9.85 125	100	
			- - - - - - - - - - - - - -	47	9.84 784	12	9.99 672	25	10.00 328	9.85 112	13	1
				48 49	9.84 796	13	9.99 697	25	10.00 303	9.85 100	13	
					9.84 809	13	9.99 722	25	10.00 278	9.85 087	100	L
				50 51	9.84 822	13	9.99 747	26	10.00 253	9.85 074	13	
				52	9.84 835	12	9.99 773	25	10.00 227	9.85 062	12	
				53	9.84 847 9.84 860	13	9.99 798	25	10.00 202	9.85 049	13	
			1/1	54	9.84 873	13	9.99 823	25	10.00 177	9.85 037	13	
						12	9.99 848	26	10.00 152	9.85 024	100	L
			1.71	55 56	9.84 885	13	9.99 874	25	10.00 126	9.85 012	12	ſ
			0 (4.1)	57	9.84 898	13	9.99 899	25	10.00 101	9.84 999	13	
				58	9.84 911	12	9.99 924	25	10.00 076	9.84 986	13	
					9.84 936	13	9.99 949	26	10.00 051	9.84 974	13	1
						13	9.99 975	25	10.00 025	9.84 961	12	L
		PA			9.84 949 L Cos	d	L Cot		10.00 000	9.84 949		L
TO TO	rop. 1					-		od	L Tan	L Sin	ď	

00		Ii	J. Natu	ral Tr	igor	onometric Functions									
<u>0°</u>		-				1°									
0	Sin	Tan	Cot	Cos	-	1	Sin	Tan	Cot	Cos	-				
1	0.0000	0.0000	2427.75	1.0000	59	0	0.0175	0.0175	57.2900	0.9998					
2	0.0006	0.0006	3437.75	1.0000	58	2	0.0177	0.0177	56.3506		59				
3	0.0009	0.0009	1145.92	1.0000	57	3	0.0183	0.0183	55.4415 54.5613	0.9998	58 57				
4	0.0012	0.0012	859.436	1.0000	56	4	0.0186	0.0186	53.7086	0.9998	56				
5	0.0015	0.0015	687.549	1.0000	55	5	0.0189	0.0189	52.8821	0.9998	55				
6	0.0017	0.0017	572.957	1.0000	54	6	0 0192	0.0192	52.0807	0.9998	54				
8	0.0020	0.0020	491.106	1.0000	53	7	0.0195	0.0195	51.3032	0.9998	53				
9	0.0025	0.0023	429.718 381.971	1.0000	52 51	8 9	0.0198	0.0198	50.5485	0.9998	52				
10	0.0029	0.0020	343.774	1.0000	50	10	0.0201	0.0201	49.8157	0.9998	51				
11	0.0032	0.0032	312.521	1.0000	49	11	0.0204	0.0204	49.1039	0.9998	50 49				
12	0.0035	0.0035	286.478	1.0000	48	12	0.0209	0.0209	47.7395	0.9998	48				
13	0.0038	0.0038	264.441	1.0000	47	13	0.0212	0.0212	47.0853	0.9998	47				
14	0.0041	0.0041	245.552	1.0000	46	14	0.0215	0.0215	46.4489	0.9998	46				
15	0.0044	0.0044	229.182	1.0000	45	15	0.0218	0.0218	45.8294	0.9998	45				
16	0.0047	0.0047	214.858	1.0000	44	16	0.0221	0.0221	45.2261	0.9998	44				
17 18	0.0049	0.0049	202.219	1.0000	43	17	0.0224	0.0224	44.6386	0.9997	43				
19	0.0052	0.0052	190.984	1.0000	41	18 19	0.0227	0.0227	44.0661	0.9997	42				
20	0.0058	0.0055	180.932	1.0000	40	20	0.0230	0.0230	43.5081	0.9997	41				
21	0.0061	0.0050	163.700	1.0000	39	21	0.0233	0.0233	42.9641	0.9997	40 39				
22	0.0064	0.0064	156.259	1.0000	38	22	0.0239	0.0239	42.4335	0.9997	38				
23	0.0067	0.0067	149.465	1.0000	37	23	0.0241	0.0241	41.4106	0.9997	37				
24	0.0070	0.0070	143.237	1.0000	36	24	0.0244	0.0244	40.9174	0.9997	36				
25	0.0073	0.0073	137.507	1.0000	35	25	0.0247	0.0247	40.4358	0.9997	35				
26	0.0076	0.0076	132.219	1.0000	34	26	0.0250	0.0250	39.9655	0.9997	34				
27	0.0079	0.0079	127.321	1.0000	33	27	0.0253	0.0253	39.5059	0.9997	33				
28	0.0081	0.0081	122.774	1.0000	32	28	0.0256	0.0256	39.0568	0.9997	32				
29	0.0084	0.0084	118.540	1.0000	31	29	0.0259	0.0259	38.6177	0.9997	31				
30 31	0.0087	0.0087	114.589	1.0000	30 29	30 31	0.0262 $0.026\overline{5}$	0.0262 $0.026\overline{5}$	38.188 5 37.7686	0.9997	30 29				
32	0.0090	0.0090	107.426	1.0000	28	32	0.0268	0.0268	37.7000	0.9996	28				
33	0.0096	0.0096	104.171	1.0000	27	33	0.0270	0.0271	36.9560	0.9996	27				
34	0.0099	0.0099	101.107	1.0000	26	34	0.0273	0.0274	36.5627	0.9996	26				
35	0.0102	0.0102	98.2179	0.9999	25	35	0.0276	0.0276	36.1776	0.9996	25				
36	0.0105	0.0105	95.4895	0.9999	24	36	0.0279	0.0279	35.8006	0.9996	24				
37	0.0108	0.0108	92.9085	0.9999	23	37	0.0282	0.0282	35.4313	0.9996	23				
38	0.0111	0.0111	90.4633	0.9999	22	38	0.0285	0.0285	35.0695	0.9996	22				
39	0.0113	0.0113	88.1436	0.9999	21	39	0.0288	0.0288	34.7151	0.9996	$\frac{21}{20}$				
40	0.0116	0.0116	85.9398	0.9999	20 19	40 41	0.0291	0.0291	34.3678 34.0273	0.9996	19				
41 42	0.0119	0.0119	83.8435 81.8470	0.9999	18	42	0.0294	0.0294	33.6935	0.9996	18				
43	0.0122	0.0122	79.9434	0.9999	17	43	0.0300	0.0300	33.3662	0.9996	17				
44	0.0128	0.0128	78.1263	0.9999	16	44	0.0302	0.0303	33.0452	0.9995	16				
45	0.0131	0.0131	76.3900	0.9999	15	45	0.0305	0.0306	32.7303	0.9995	15				
46	0.0134	0.0134	74.7292	0.9999	14	46	0.0308	0.0308	32.4213	0.9995	14				
47	0.0137	0.0137	73.1390	0.9999	13	47	0.0311	0.0311	32.1181	0.9995	13				
48	0.0140	0.0140	71.6151	0.9999	12	48	0.0314	0.0314	31.8205	0.9995	12 11				
49	0.0143	0.0143	70.1533	0.9999	11	49	0.0317	0.0317	31.5284	0.9995	10				
50	0.0145	0.0145	68.7501	0.9999	10	50	0.0320	0.0320	30.9599	$0.999\overline{5} \\ 0.999\overline{5}$	9				
51	0.0148	0.0148	67.4019	0.9999	9	51 52	0.0323	0.0325	30.6833	0.9995	8				
52	0.0151	0.0151	66.1055 64.8580	0.9999	7	53	0.0329	0.0329	30.4116	0.9995	7				
53 54	0.0154	0.0154	63.6567	0.9999	6	54	0.0332	0.0332	30.1446	$0.999\overline{5}$	_6				
55	0.0157	0.0157	62.4992	0.9999	-5	55	0.0334	0.0335	29.8823	0.9994	5				
56	0.0163	0.0163	61.3829	0.9999	4	56	0.0337	0.0338	29.6245	0.9994	4				
57	0.0166	0.0166	60.3058	0.9999	3	57	0.0340	0.0340	29.3711	0.9994	3				
58	0.0169	0.0169	59.2659	0.9999	2	58	0.0343	0.0343	29.1220	0.9994	1				
59	0.0172	0.0172	58.2612	0.9999	1	59	0.0346	0.0346	28.8771	0.9994	- ô				
60	0.0175	0.0175	57.2900	0.9998	0	60	0.0349	0.0349	28.6363 Tan	0.9994 Sin	<u>,</u>				
	Cos	Cot	Tan	Sin	/	_	Cos	Cot	ran		88°				
7					89°				4	198 — '					

20					1	3°					
4	Sin	Tan	Cot	Сов		'	Sin	Tan	Cot	Cos	
0	0.0349	0.0349	28.6363	0.9994	60	0	0.0523	0.0524	19.0811	0.9986	60
1	0.0352	0.0352	28.3994	0.9994	59	1	0.0526	0.0527	18.9755	0.9986	59
2	0.0355	0.0355	28.1664	0.9994	58	2	0.0529	0.0530	18.8711	0.9986	58
3	0.0358	0.0358	27.9372	0.9994	57	3	0.0532	0.0533	18.7678	0.9986	57
4	0.0361	0.0361	27.7117	0.9993	56	4	0.0535	0.0536	18.6656	0.9986	56
5	0.0364	0.0364	27.4899	0.9993	55	5	0.0538	0.0539	18.5645	0.9986	55
6	0.0366	0.0367	27.2715	0.9993	54	6	0.0541	0.0542	18.4645	0.9985	54
7	0.0369	0.0370	27.0566	0.9993	53	7	0.0544	0.0544	18.3655	0.9985	53
8	0.0372	0.0373	26.8450	0.9993	52	8	0.0547	0.0547	18.2677	0.9985	52 51
9	0.0375	0.0375	26,6367	0.9993	51	9	0.0550	0.0550	18.1708	0.9985	50
10	0.0378	0.0378	26.4316	0.9993	50	10	0.0552	0.0553	18.0750	0.9985	49
11	0.0381	0.0381	26,2296	0.9993	49	11 12	0.0555	0.0556	17.9802	0.9985	48
12	0.0384	0.0384	26.0307	0.9993	47	13	0.0558	0.0559	17.7934	0.9984	47
13	0.0387	0.0387	25.8348 25.6418	0.9993	46	14	0.0564	0.0565	17.7015	0.9984	46
14	0.0390	0.0390		0.9992	45	15	0.0567	0.0568	17.6106	0.9984	45
15	0.0393	0.0393	25.4517 25.2644	0.9992	44	16	0.0570	0.0571	17.5205	0.9984	44
17	0.0396	6.0399	25.0798	0.9992	43	17	0.0573	0.0574	17.4314	0.9984	43
18	0.0401	0.0402	24.8978	0.9992	42	18	0.0576	0.0577	17.3432	0.9983	42
19	0.0404	0.0405	24.7185	0.9992	41	19	0.0579	0.0580	17.2558	0.9983	41
20	0.0407	0.0407	24.5418	0.9992	40	20	0.0581	0.0582	17.1693	0.9983	40
21	0.0410	0.0410	24.3675	0.9992	39	21	0.0584	0.0585	17.0837	0.9983	39
22	0 0413	0.0413	24.1957	0.9991	38	22	0.0587	0.0588	16.9990	0.9983	38
23	0.0416	0.0416	24.0263	0.9991	37	23	0.0590	0.0591	16.9150	0.9983	37
24	0.0419	0.0419	23.8593	0.9991	36	24	0.0593	0.0594	16.8319	0.9982	36
25	0.0422	0.0422	23.6945	0.9991	35	25	0.0596	0.0597	16.7496	0.9982	35
26	0.0423	0.0425	23.5321	0.9991	34	26	0.0599	0.0600	16.6681	0.9982	34
27	0.0427	0.0428	23.3718	0.9991	33	27	0.0602	0.0603	16.5874	0.9982	33
28	0.0430	0.0431	23.2137	0.9991	32	28	0.0605	0.0606	16.5075	0.9982	32
29	0.0433	0.0434	23.0577	0.9991	31	29	0.0608	0.0609	16.4283	0.9982	31
30	0.0436	0.0437	22.9038	0.9990	30	30	0.0610	0.0612	16.3499	0.9981	30
31	0.0439	0.0440	22.7519	0.9990	29 28	31 32	0.0613	0.0615	16.2722	0.9981	29 28
32 33	0.0442	0.0442	22,6020	0.9990	27	33	0.0619	0.0620	16.1952	0.9981	27
34	0.0445	0.0445	22.454I 22.308I	0.9990	26	34	0.0622	0.0623	16.0435	0.9981	26
35	0.0448	0.0448	22.1640	0.9990	25	35	0.0625	0.0626	15.9687	0.9980	25
36	0.0451	0.0451	22.0217	0.9990	24	36	0.0628	0.0629	15.8945	0.9980	24
37	0.0457	0.0454	21.8813	0.9990	23	37	0.0631	0.0632	15.8211	0.9980	23
38	0.0459	0.0460	21.7426	0.9989	22	38	0.0634	0.0635	15.7483	0.9980	22
39	0.0462	0.0463	21.6056	0 9989	21	39	0.0637	0.0638	15.6762	0.9980	21
40	0.0465	0.0466	21.4704	0.9989	20	40	0.0640	0.0641	15.6048	0.9980	20
41	0.0468	0.0469	21.3369	0.9989	19	41	0.0642	0.0644	15.5340	0.9979	19
42	0.0471	0.0472	21.2049	0.9989	18	42	0.0645	0.0647	15.4638	0.9979	18
43	0.0474	0.0475	21.0747	0.9989	17	43	0.0648	0.0650	15-3943	0.9979	17
44	0.0477	0.0477	20.9460	0.9989	16	44	0.0651	0.0653	15.3254	0.9979	16
45	0.0480	0.0480	20.8188	0.9988	15	45	0.0654	0.0655	15.2571	0.9979	15
46	0.0483	0.0483	20,6932	0.9988	14	46	0.0657	0.0658	15.1893	0.9978	14
47	0.0486	0.0486	20.5691	0.9988	13	47	0.0660	0.0661	15.1222	0.9978	13
48	0.0488	0.0489	20.4465	0.9988	12	48	0.0663	0.0664	15.0557	0.9978	12
49 50	0.0491	0.0492	20.3253	0.9988	11	49	0.0666	0.0667	14.9898	0.9978	11
51	0.0494	0.0495	20.2056	0.9988	10	50 51	0.0669	0.0670	14.9244	0.9978	10
52	0.0497	0.0498	20.0872	0.9988	8	52	0.0671	0.0673	14.8596	0.9977	8
53	0.0500	0.0501	19.9702	0.9987	7	53	0.0677	0.0679	14.7954	0.9977	1 %
54	0.0503	0.0504	19.8546	0.9987	6	54	0.0680	0.0682	14.7317	0.9977	6
<u>54</u> <u>55</u>	0.0500	0.0507	19.7403	0.9987	5	55	0.0683	0.0685	14.6059	0.9977	<u>_</u>
56	0.0512	0.0509	19.5273	0.9987	4	56	0.0686	0.0688	14.5438	0.9977	4
57	0.0512	0.0512	19.5150	0.9987	3	57	0.0689	0.0690	14.4823	0.9976	3
58	0.0518	0.0518	19.2959	0.9987	2	58	0.0692	0.0693	14.4212	0.9976	2
59	0.0520	0.0521	19.1879	0.9986	1	59	0.0695	0.0696	14.3607	0.9976	1
80	0.0523	0.0524	19.0811	0.9986	0	60	0.0698	0.0699	14.3007	0.9976	Ō
_	Cos	Cot	Tan	Sin	1		Cos	Cot	Tan	Sin	7
	-				870						260

40	III. Natural Trigonometric Functions										
1						5°					
-	Sin	lan	Cot	Cos			Sin	Tan	Cot	Cos	_
0		,,,	14.3007	1			1 0.00/-		11.4301		60
2	0.0700		14.2411	0.9975			0.0874				
3	0.0706		14.1821	0.9975	58 57	3	0.0877		11.3540	1 ,,	
4	0.0709		14.0655		56				0 0	1	
5	0.0712		14.0079	0.9975		_			11.2789		_
6	0.0715	0.0717	13.9507	0.9974	54	6	0.0889		11.2048		
7	0.0718	0.0720	13.8940	0.9974	53	7	0.0892			1 // -	
8	0.0721	0.0723	13.8378	0.9974	52	8	0.0895	0.0898	11.1316	///	
10	0.0724		13.7821	0.9974	51	9	0.0898	0.0901	11.0954	0.9960	
11	0.0727	0.0729	13.7267	0.9974	50	10	, , ,	0.0904	11.0594		
12	0.0732	0.0731	13.6174	0.9973	49	11	0.0903		11.0237		
13	0.0735	0.0737	13.5634	0.9973	47	13	0.0906	0.0910	10.9882	1,00	
14	0.0738	0.0740	13.5098	0.9973	46	14	0.0912	0.0916	10.9529		
15	0.0741	0.0743	13.4566	0.9973	45	15	0.0915	0.0919	10.8829		
16	0.0744	0.0746	13.4039	0.9972	44	16	0.0918	0.0922	10.8483		
17	0.0747	0.0749	13.3515	0.9972	43	17	0.0921	0.0925	10.8139	0.9958	
18	0.0750	0.0752	13.2996	0.9972	42	18	0.0924	0.0928	10.7797	0.9957	
19	0.0753	0.0755	13.2480	0.9972	41	19	0.0927	0.0931	10.7457	0.9957	41
20 21	0.0756	0.0758	13.1969	0.9971	40	20	0.0929	0.0934	10.7119	0.9957	40
22	0.0758	0.0761	13.1461	0.9971	39	21 22	0.0932	0.0936	10.6783	0.9956	
23	0.0764	0.0767	13.0458	0.9971	37	23	0.0935	0.0939	10.6450		
24	0.0767	0.0769	12.9962	0.9971	36	24	0.0941	0.0945	10.5789	0.9956	
25	0.0770	0.0772	12.9469	0.9970	35	25	0.0944	0.0948	10.5462	0.9955	35
26	0.0773	0.0775	12.8981	0.9970	34	26	0.0947	0.0951	10.5136	0.9955	34
27	0.0776	0.0778	12.8496	0.9970	33	27	0.0950	0.0954	10.4813	0.9955	33
28	0.0779	0.0781	12.8014	0.9970	32	28	0.0953	0.0957	10.4491	0.9955	32
29	0.0782	0.0784	12.7536	0.9969	31	29	0.0956	0.0960	10.4172	0.9954	31
30 31	0.0785	0.0787	12.7062	0.9969	30 29	30 31	0.0958	0.0963	10.3854	0.9954	30
32	0.0790	0.0790	12.6591 12.6124	0.9969	28	32	0.0961	0.0966	10.3538	0.9954	29 28
33	0.0793	0.0796	12.5660	0.9968	27	33	0.0967	0.0972	10.2913	0.9953	27
34	0.0796	0.0799	12.5199	0.9968	26	34	0.0970	0.0975	10.2602	0.9953	26
35	0.0799	0.0802	12.4742	0.9968	25	35	0.0973	0.0978	10.2294	0.9953	25
36	0.0802	0.0805	12.4288	0.9968	24	36	0.0976	0.0981	10.1988	0.9952	24
37	0.0805	0.0808	12.3838	0.9968	23	37	0.0979	0.0983	10.1683	0.9952	23
38	0.0808	0.0810	12.3390	0.9967	22	38 39	0.0982	0.0986	10.1381	0.9952	22
$\frac{39}{40}$	0.0811	0.0813	12.2946	0.9967	21 20	40	0.0985	0.0989	10.1080	0.9951	20
41	0.0814	0.0816	12.2505 12.2067	0.9967 0.9967	19	41	0.0990	0.0992	10.0483	0.9951	19
42	0.0819	0.0822	12.1632	0.9966	18	42	0.0993	0.0998	10.0187	0.9951	18
43	0.0822	0.0825	12.1201	0.9966	17	43	0.0996	0.1001	9.9893	0.9950	17
44	0.0825	0.0828	12.0772	0.9966	16	44	0.0999	0.1004	9.9601	0.9950	16
45	0.0828	0.0831	12.0346	0.9966	15	45	0.1002	0.1007	9.9310	0.9950	15
46	0.0831	0.0834	11.9923	0.9965	14	46	0.1005	0.1010	9.9021	0.9949	14
47	0.0834	0.0837	11.9504	0.9965	13 12	47 48	0.1008	0.1013	9.8734 9.8448	0.9949	12
48 49	0.0837	0.0840	11.9087	$0.996\overline{5}$ $0.996\overline{5}$	11	49	0.1013	0.1019	9.8164	0.9949	11
50	0.0840	0.0843	11.8262	0.9964	10	50	0.1016	0.1022	9.7882	0.9948	10
51	0.0845	0.0849	11.7853	0.9964	9	51	0.1019	0.1025	9.7601	0.9948	9
52	0.0848	0.0851	11.7448	0.9964	8	52	0.1022	0.1028	9.7322	0.9948	8
53	0.0851	0.0854	11.7045	0.9964	7	53	0.1025	0.1030	9.7044	0.9947	6
54	0.0854	0.0857	11.6645	0.9963	6	54	0.1028	0.1033	9.6768	0.9947	-5
55	0.0857	0.0860	11.6248	0.9963	5	55	0.1031	0.1036	9.6493	0.9947	4
56	0.0860	0.0863	11.5853	0.9963	3	56 57	0.1034	0.1039	9.5949	0.9946	3
57	0.0863	0.0866	11.5461	0.9963	2	58	0.1037	0.1045	9.5679	0.9946	2
58	0.0866	0.0869	11.5072 $11.468\overline{5}$	0.9962	ĩ	59	0.1042	0.1048	9.5411	0.9946	_1
59 60	0.0869	$\frac{0.0872}{0.0875}$	11.4301	0.9962	0	60	0.1045	0.1051	9.5144	0.9945	_0
00	Con	Cot	Tan	Sin	,		Cos	Cot	Tan	Sin	7
_		300			85°					-00	8 4°
						70			-:	500 —	

6°					0	170					
-		Tan	Cot	Cos		7	Sin	lan	Cot	Cos	T
0			9.5144	0.9945	60	0	0.1219	0.1228	8.1443	0.9925	60
1	0.1048		9.4878	0.9945	59	1	0.1222	0.1231	8.1248	0.9925	59
2		0.1057	9.4614	0.9945	58 57	3	0.1224	0.1234	8.1054	0.9925	58
3		0.1063	9.4352	0.9944	56	4	0.1227	0.1237	8.0860	0.9924	57
5	0.1060		9.3831	0.9944	55	5	0.1230	0.1240		0.9924	55
6			9.3572	0.9943	54	6	0.1236	0.1245	8.0476 8.028 5	0.9924	54
7	0.1066		9.3315	0.9943	53	7	0.1239	0.1249	8.0095	0.9923	53
8	0.1068	0.1075	9.3060	0.9943	52	8	0.1242	0.1251	7.9906	0.9923	52
9	0.1071	0.1078	9.2806	0.9942	51	9	0.1245	0.1254	7.9718	0.9922	51
10	0.1074	0.1080	9.2553	0.9942	50	10	0.1248	0.1257	7.9530	0.9922	50
11	0.1077	0.1083	9.2302	0.9942	49	11	0.1250	0.1260	7.9344	0.9922	49
12 13	0.1080	0.1086	9.2052	0.9941	48	12 13	0.1253	0.1263	7.9158	0.9921	48
14	0.1086	0.1092	9.1555	0.9941	46	14	0.1256	0.1266	7.8973 7.8789	0.9921	47
15	0.1089	0.1095	9.1309	0.9941	45	15	0.1262	0.1272	7.8606	0.9920	45
16	0.1092	0.1098	9.1065	0.9940	44	16	0.1265	0.1275	7.8424	0.9920	44
17	0.1094	1011.0	9.0821	0.9940	43	17	0.1268	0.1278	7.8243	0.9919	43
18	0.1097	0.1104	9.0579	0.9940	42	18	0.1271	0.1281	7.8062	0.9919	42
19	0.1100	0.1107	9.0338	0.9939	41	19	0.1274	0.1284	7.7882	0.9919	41
20	0.1103	0.1110	9.0098	0.9939	40	20	0.1276	0.1287	7.7704	0.9918	40
21	0.1106	0.1113	8.9860	0.9939	39	21	0.1279	0.1290	7.7525	0.9918	39
22	0.1109	0.1116	8.9623	0.9938	38	22	0.1282	0.1293	7.7348	0.9917	38
24	0.1112	0.1119	8.9387	0.9938	37 36	23 24	0.1286	0.1296	7.7171	0.9917	37
25	0.1118		8.9152	0.9938	35	25	0.1288	0.1299	7.6996	0.9917	36
26	0.1120	0.1125	8.8686	0.9937	34	26	0.1291	0.1302	7.6821	0.9916	35
27	0.1123	0.1131	8.8455	0.9937	33	27	0.1294	0.1305	7.6647	0.9916	34
28	0.1126	0.1133	8.8225	0.9936	32	28	0.1299	0.1311	7.6301	0.9916	33 32
29	0.1129	0.1136	8.7996	0.9936	31	29	0.1302	0.1314	7.6129	0.9915	31
30	0.1132	0.1139	8.7769	0.9936	30	30	0.1305	0.1317	7.5958	0.9914	30
31	0.1135	0.1142	8.7542	0.9935	29	31	0.1308	0.1319	7.5787	0.9914	29
32	0.1138	0.1145	8.7317	0.9935	28	32	0.1311	0.1322	7.5618	0.9914	28
33	0.1141	0.1148	8.7093	0.9935	27	33	0.1314	0.1325	7-5449	0.9913	27
$\frac{34}{35}$	0.1144	0.1151	8.6870	0.9934	26	34	0.1317	0.1328	7.5281	0.9913	26
36	0.1146	0.1154	8.6648	0.9934	25	35	0.1320	0.1331	7.5113	0.9913	25
37	0.1149	0.1157	8.6427 8.6208	0.9934	24 23	36 37	0.1323	0.1334	7.4947	0.9912	24
38	0.1155	0.1163	8.5989	0.9933	22	38	0.1325	0.1337	7.4781	0.9912	23
39	0.1158	0.1166	8.5772	0.9933	21	39	0.1328	0.1340	7.4615	0.9911	22
40	0.1161	0.1169	8.5555	0.9932	20	40	0.1334	0.1343	7.4451	0.9911	21
41	0.1164	0.1172	8.5340	0.9932	19	41	0.1337	0.1349	7.4287	0.9911	20 19
42	0.1167	0.1175	8.5126	0.9932	18	42	0.1340	0.1352	7.3962	0.9910	18
43	0.1170	0.1178	8.4913	0.9931	17	43	0.1343	0.1355	7.3800	0.9909	17
44	0.1172	0.1181	8.4701	0.9931	16	44	0.1346	0.1358	7.3639	0.9909	16
45 46	0.1175	0.1184	8.4490	0.9931	15	45	0.1349	0.1361	7-3479	0.9909	15
47	0.1178	0.1187	8.4280	0.9930	14	46	0.1351	0.1364	7.3319	0.9908	14
48	0.1181	0.1189	8.4071	0.9930	13	47	0.1354	0.1367	7.3160	0.9908	13
49	0.1187	0.1192	8.3863	0.9930	12 11	48 49	0.1357	0.1370	7.3002	0.9907	12
50	0.1190	0.1198	8.36 <u>5</u> 6 8.34 <u>5</u> 0	0.9929	10	50	0.1360	0.1373	7.2844	0.9907	11
51	0.1193	0.1201	8.3245	0.9929	9	51	0.1363	0.1376	7.2687	0.9907	10
52	0.1196	0.1204	8.3041	0.9928	8	52	0.1369	0.1379	7.2531	0.9906	9
53	0.1198	0.1207	8.2838	0.9928	7	53	0.1372	0.1385	7.2375	0.9906	8
54 55	0.1201	0.1210	8.2636	0.9928	6	54	0.1374	0.1388	7.2066	0.9905	6
55	0.1204	0.1213	8.2434	0.9927	5	55	0.1377	0.1391	7.1912	0.9905	-5
56	0.1207	0.1216	8.2234	0.9927	4	56	0.1380	0.1394	7.1759	0.9904	4
57	0.1210	0.1219	8.2035	0.9927	3	57	0.1383	0.1397	7.1607	0.9904	3
58	0.1213	0.1222	8.1837	0.9926	2	58	0.1386	0.1399	7-1455	0.9903	2
59 60	0.1216	0.1225	8.1640	0.9926		59	0.1389	0.1402	7.1304	0.9903	1
-	0.1219	0.1228	8.1443	0.9925	0	60	0.1392	0.1405	7.1154	0.9903	0
!	Cos	Cot	Tan	Sin	~		Cos	Cot	Tan	Sin	-
	— 501				83°					8	32°
	301										

8°		•••	. Nati	ıraı 1r	igor	10m 9°	etric I	unctio	ons		
	Sin	Tan	Cot	Cos		1	1 Sin	Tan	Cot	Cos	_
0	0.1392	0.1405	7.1154	0.9903	60	0	0.1564		_		60
2	0.1395	0.1408	7.1004	0.9902	59	1	0.1567		6.3019		
3	0.1397	0.1411	7.0855		58	2	0.1570	0.1590	6.2901	0.9876	
4	0.1403	0.1414	7.0706	0.9901	57	3	0 1573	0.1593	6.2783	0.9876	57
5	0.1406	0.1417	7.0558	0.9901	56	4	0.1576		6.2666	0.9875	
6	0.1400	0.1420	7.0410	0.9901	55	5	0.1579	0//	6.2549	0.9875	55
7	0.1412	0.1423	7.0264	0.9900	54 53	6	0.1582		6.2432	0.9874	
8	0.1415	0.1429	6.9972	0.9900	52	8	0.1584		6.2316	0.9874	
9	0.1418	0.1432	6.9827	0.9899	51	9	0.1587	0.1608	6.2200	0.9873	52
10	0.1421	0.1435	6.9682	0.9899	50	10	0.1593	0.1614	6.2085	0.9873	
11	0.1423	0.1438	6.9538	0.9898	49	11	0.1596	0.1617	6.1970	0.9872	50
12	0.1426	0.1441	6.9395	0.9898	48	12	0.1599	0.1620	6.1742	0.9872	49
13	0.1429	0.1444	6.9252	0.9897	47	13	0.1602	0.1623	6.1628	0.9871	47
14	0.1432	0.1447	6.9110	0.9897	46	14	0.1605	0.1626	6.1515	0.9870	46
15	0.1435	0.1450	6.8969	0.9897	45	15	0.1607	0.1629	6.1402	0.9870	45
16	0.1438	0.1453	6.8828	0.9896	44	16	0.1610	0.1632	6.1290	0.9869	44
17	0.1441	0.1456	6.8687	0.9896	43	17	0.1613	0.1635	6.1178	0.9869	43
18	0.1444	0.1459	6.8548	0.9895	42	18	0.1616	0.1638	6.1066	0.9869	42
19	0.1446	0.1462	6.8408	0.9895	41	19	0.1619	0.1641	6.0955	0.9868	41
20	0.1449	0.1465	6.8269	0.9894	40	20	0.1622	0.1644	6.0844	0.9868	40
21 22	0.1452	0.1468	6.8131	0.9894	39	21	0.1625	0.1647	6.0734	0.9867	39
23	0.1455	0.1471	6.7994	0.9894	38	22	0.1628	0.1650	6.0624	0.9867	38
24	0.1458	0.1474	6.7856	0.9893	37 36	23 24	0.1630	0.1653	6.0514	0.9866	37
$\frac{21}{25}$		0.1477	6.7720		35	25	0.1633	0.1655	6.0405	0.9866	36
26	0.1464	0.1480	6.7584 6.7448	0.9892	34	26	0.1636	0.1658	6.0296	0.9865	35
27	0.1469	0.1486	6.7313	0.9891	33	27	0.1642	0.1661	6.0188	0.9865	34
28	0.1472	0.1489	6.7179	0.9891	32	28	0.1645	0.1667	5.9972	0.9864	32
29	0.1475	0.1492	6.7045	0.9891	31	29	0.1648	0 1670	5.9865	0.9863	31
30	0.1478	0.1495	6.6912	0.9890	30	30	0.1650	0.1673	5.9758	0.9863	30
31	0.1481	0.1497	6.6779	0.9890	29	31	0.1653	0.1676	5.9651	0.9862	29
32	0.1484	0.1500	6.6646	0.9889	28	32	0.1656	0.1679	5.9545	0.9862	28
33	0.1487	0.1503	6.6514	0.9889	27	33	0.1659	0.1682	5.9439	0.9861	27
34	0.1490	0.1506	6.6383	0.9888	26	34	0.1662	0.1685	5.9333	0.9861	26
35	0.1492	0.1509	6.6252	0.9888	25	35	0.1665	0.1688	5.9228	0.9860	25
36	0.1495	0.1512	6.6122	0.9888	24	36	0.1668	0.1691	5.9124	0.9860	24
37	0.1498	0.1515	6.5992	0.9887	23	37	0.1671	0.1694	5.9019	0.9859	23
38	0.1501	0.1518	6.5863	0.9887	22	38	0.1673	0.1697	5.8915	0.9859	22
39	0.1504	0.1521	6.5734	0.9886	21	39	0.1676	0.1700	5.8811	0.9859	21 20
40	0.1507	0.1524	6.5606	0.9886	20 19	40 41	0.1679	0.1703	5.8708	0.9858 0.9858	19
41 42	0.1510	0.1527	6.5478	0.9885 $0.988\overline{5}$	18	42	0.1682 $0.168\overline{5}$	0.1706	5.8605 5.8502	0.9857	18
43	0.1513	0.1530	6.5350 6.5223	0.9884	17	43	0.1688	0.1712	5.8400	0.9857	17
44	0.1518	0.1536	6.5097	0.9884	16	44	0.1691	0.1715	5.8298	0.9856	16
45	0.1521	0.1539	6.4971	0.9884	15	45	0.1693	0.1718	5.8197	0.9856	15
46	0.1524	0.1542	6.4846	0.9883	14	46	0.1696	0.1721	5.8095	0.9855	14
47	0.1527	0.1545	6.4721	0.9883	13	47	0.1699	0.1724	5.7994	0.9855	13
48	0.1530	0.1548	6.4596	0.9882	12	48	0.1702	0.1727	5.7894	0.9854	12
49	0.1533	0.1551	6.4472	0.9882	11	49	0.1705	0.1730	5.7794	0.9854	11
50	0.1536	0.1554	6.4348	0.9881	10	50	0.1708	0.1733	5.7694	0.9853	10
51	0.1538	0.1557	6.4225	0.9881	9	51	0.1711	0.1736	5.7594	0.9853	8
52	0.1541	0.1560	6.4103	0.9880	8	52	0.1714	0.1739	5.7495	0.9852	7
53	0.1544	0.1563	6.3980	0.9880	7	53	0.1716	0.1742	5.7396	0.9852	6
54	0.1547	0.1566	6.3859	0.9880	6	54	0.1719	0.1745	5.7297	0.9851	$-\frac{6}{5}$
55	0.1550	0.1569	6.3737	0.9879	5	55	0.1722	0.1748	5.7199 5.7101	0.9850	4
56	0.1553	0.1572	6.3617	0.9879	4	56 57	0.1725	0.1751	5.7004	0.9850	3
57	0.1556	0.1575	6.3496	0.9878	3 2	58	0.1728	0.1754	5.6906	0.9849	2
58	0.1559	0.1578	6.3376	0.9878	1	59	0.1731	0.1760	5.6809	0.9849	1
59	0.1561	0.1581	6.3257		0	60	0.1736	0.1763	5.6713	0.9848	0
60	0.1564	0.1584	6.3138	0.9877 Sin	,		Cos	Cot	Tan	Sin	,
_!	Cos	Cot	Tan	SIII	81°		200				80°
					01				_	502—	

10	0				0	11°					
-	Sin	Tan	Cot	Cos		,	Sin	Tan	Cot	Cos	
0	0.1736	0.1763	5.6713	0.9848	60	0	0.1908	0.1944	5.1446	0.9816	60
1	0.1739	0.1766	5.6617	0.9848	59	1	0.1911	0.1947	5.1366	0.9816	59
2	0.1742	0.1769	5.6521 5.642 5	0.9847	58 57	3	0.1914	0.1950	5.1286	0.9815	58 57
3	0.1745	0.1772	5.6329	0.9846	56	4	0.1920	0.1953	5.1128	0.9814	56
5	0.1751	0.1778	5.6234	0.9846	55	5	0.1922	0.1959	5.1049	0.9813	55
6	0.1754	0.1781	5.6140	0.9845	54	6 7	0.1925	0.1962	5.0970	0.9813	54
7	0.1757	0.1784	5.6045	0.9845	53		0.1928	0.1965	5.0892	0.9812	53
8	0.1759	0.1787	5.5951	0.9844	52	8	0.1931	0.1968	5.0814	0.9812	52
9	0.1762	0.1790	5.5857	0.9843	51	9 10	0.1934	0.1971	5.0736	0.9811	51
10	0.1765	0.1793	5.5764 5.5671	0.9843	49	11	0.1937	0.1974	5.0658 5.0581	0.9811	50 49
11 12	0.1768	0.1796	5.5578	0.9842	48	12	0.1939	0.1980	5.0504	0.9810	48
13	0.1774	0.1802	5.5485	0.9841	47	13	0.1945	0.1983	5.0427	0.9809	47
14	0.1777	0.1805	5.5393	0.9841	46	14	0.1948	0.1986	5.0350	0.9808	46
15	0.1779	0.1808	5.5301	0.9840	45	15	0.1951	0.1989	5.0273	0.9808	45
16	0.1782	0.1811	5.5209	0.9840	44	16	0.1954	0.1992	5.0197	0.9807	44
17	0.1785	0.1814	5.5118	0.9839	43	17	0.1957	0.1995	5.0121	0.9807	43
18 19	0.1788	0.1817	5.5026	0.9839	42	18 19	0.1959	0.1998	5.0045 4.9959	0.9806	42
20	0.1791	0.1823	5.4936 5.4845	0.9838	40	20	0.1965	0.2004	4.9894	0.9805	40
21	0.1794	0.1826	5.4755	0.9837	39	21	0.1968	0.2007	4.9819	0.9804	39
22	0.1799	0.1829	5.4665	0.9837	38	22	0.1971	0.2010	4.9744	0.9804	38
23	0.1802	0.1832	5.4575	0.9836	37	23	0.1974	0.2013	4.9669	0.9803	37
24	0.1805	0.1835	5.4486	0.9836	36	24	0.1977	0.2016	4.9594	0.9803	36
25	0.1808	0.1838	5.4397	0.9835	35	25	0.1979	0.2019	4.9520	0.9802	35
26 27	0.1811	0.1841	5.4308	0.9835	34	26 27	0.1982	0.2022	4.9446	0.9802	34
28	0.1814	0.1844	5.4219	0.9834	32	28	0.1988	0.2025	4.9372	0.9801	32
29	0.1819	0.1850	5.4043	0.9833	31	29	0.1991	0.2031	4.9225	0.9800	31
30	0.1822	0.1853	5.3955	0.9833	30	30	0.1994	0.2035	4.9152	0.9799	30
31	0.1825	0.1856	5.3868	0.9832	29	31	0.1997	0.2038	4.9078	0.9799	29
32	0.1828	0.1859	5.3781	0.9831	28	32	0.1999	0.2041	4.9006	0.9798	28
33	0.1831	0.1862	5.3694	0.9831	27	33	0.2002	0.2044	4.8933	0.9798	27
$\frac{34}{35}$	0.1834	0.1865	5.3607	0.9830	25	34	0.2005	0.2047	4.8860	0.9797	26
36	0.1837	0.1868	5.3521	0.9830	24	36	0.2008	0.2050	4.8788	0.9796	25 24
37	0.1842	0.1874	5.3435 5.3349	0.9829	23	37	0.2014	0.2056	4.8644	0.9796	23
38	0.1845	0.1877	5.3263	0.9828	22	38	0.2016	0.2059	4.8573	0.9795	22
39	0.1848	0.1880	5.3178	0.9828	21	39	0.2019	0.2062	4.8501	0.9794	21
40	0.1851	0.1883	5.3093	0.9827	20	40	0.2022	0.2065	4.8430	0.9793	20
41	0.1854	0.1887	5.3008	0.9827	19	41	0.2025	0.2068	4.8359	0.9793	19
42 43	0.1857	0.1890	5.2924	0.9826	18	42 43	0.2028	0.2071	4.8288	0.9792	18
44	0.1862	0.1893	5.2839 5.2755	0.9825	16	44	0.2031	0.2074	4.8218	0.9792	17 16
45	0.1865	0.1899	5.2672	0.9825	15	45	0.2036	0.2080	4.8077	0.9790	15
46	0.1868	0.1902	5.2588	0.9824	14	46	0.2039	0.2083	4.8007	0.9790	14
47	0.1871	0.1905	5.2505	0.9823	13	47	0.2042	0.2086	4.7937	0.9789	13
48	0.1874	0.1908	5.2422	0.9823	12	48	0.2045	0.2089	4.7867	0.9789	12
49 50	0.1877	0.1911	5.2339	0.9822	11	49	0.2048	0.2092	4.7798	0.9788	11
51	0.1880	0.1914	5.2257	0.9822	10	50 51	0.2051	0.2095	4.7729	0.9787	10
52	0.1882	0.1917	5.2174	0.9821	8	52	0.2054	0.2098	4.7659	0.9787	8
53	0.1888	0.1923	5.2011	0.9820	7	53	0.2059	0.2104	4.7591	0.9786	2
54	0.1891	0.1926	5.1929	0.9820	6	54	0.2062	0.2107	4.7453	0.9785	6
55	0.1894	0.1929	5.1848	0.9819	5	55	0.2065	0.2110	4.7385	0.9784	-5
56	0.1897	0.1932	5.1767	0.9818	4	56	0.2068	0.2113	4.7317	0.9784	4
57 58	0.1900	0.1935	5.1686	0.9818	3	57	0.2071	0.2116	4.7249	0.9783	3
50	0.1902	0.1938	5.1606	0.9817	2	58	0.2073	0.2119	4.7181	0.9783	2
59 80	0.1905	0.1941	5.1526	0.9817	$-\frac{1}{0}$	59 60	0.2076	0.2123	4.7114	0.9782	<u></u>
-	Cos	0.1944 Cot	5.1446 Tan	Sin	÷	-00	0.2079 Cos	0.2126 Cot	4.7046 Tan	0.9781	0
	200	COL	1 dil	SIII	79°		408	COL	Lan	Sin	
	— 503	_			17						78°

12° 13°											
_	Sin	fan	Cot	Cos	1	13	Sin	Tan	1 C-1		
0	0.2079	And the second second second	4.7046	0.9781	60	0			Cot	Cos	-
1	0.2082		4.6979		59		0.2252	0 /	1000		
3	0.2085	0_	4.6912		58	2	0.2255				
4	0.2088		4.6845		57	3	0.2258				
5	0.2090		4.6779		_56	4		0.2321	4.3086		56
6	0.2093	0.2141	4.6712	0.9778	55	5	1	0.2324			-
7	0.2090	7.7	4.6646		54	6	/	0.2327		/ / /	54
8	0.2102	0.2147	4.6580		53	6	0.2269	00		0.9739	53
9	0.2105	0.2153	4.6448	0.9777	52 51	8 9		000			52
10	0.2108	0.2156	4.6382	0.9775	50	10	0.2275			0.9738	51
11	0.2110	0.2159	4.6317	0.9775	49	11	0.2278	007		0.9737	50
12	0.2113	0.2162	4.6252	0.9774	48	12	0.2284	0.2342		0.9736	49
13	0.2116	0.2165	4.6187	0.9774	47	13	0.2286	010		0.9736	48
14	0.2119	0.2168	4.6122	0.9773	46	14	0.2289	0.77	4.2580	0.9735	47
15	0.2122	0.2171	4.6057	0.9772	45	15		0.2355	4.2524	0.9734	$\frac{46}{45}$
16	0.2125	0.2174	4.5993	0.9772	44	16	0.2295	0.2358	4.2468	0.9734	
17	0.2127	0.2177	4.5928	0.9771	43	17	0.2298	0.2361	4.2358	0.9733	44 43
18	0.2130	0.2180	4.5864	0.9770	42	18	0.2300		4.2303	0.9732	42
19	0.2133	0.2183	4.5800	0.9770	41	19	0.2303	0.2367	4.2248	0.9731	41
20	0.2136	0.2186	4.5736	0.9769	40	20	0.2306	0.2370	4.2193	0.9730	40
21	0.2139	0.2189	4.5673	0.9769	39	21	0.2309	0.2373	4.2139	0.9730	39
22	0.2142	0.2193	4.5609	0.9768	38	22	0.2312	0.2376	4.2084	0.9729	38
23	0.2145	0.2196	4.5546	0.9767	37	23	0.2315	0.2379	4.2030	0.9728	37
24	0.2147	0.2199	4.5483	0.9767	36	24	0.2317	0.2382	4.1976	0.9728	36
25	0.2150	0.2202	4.5420	0.9766	35	25	0.2320	0.2385	4.1922	0.9727	35
26 27	0 2153	0.2205	4.5357	0.9765	34	26	0.2323	0.2388	4.1868	0.9726	34
28	0.2156	0.2208	4.5294	0.9765	33	27	0.2326	0.2392	4.1814	0.9726	33
29	0.2159	0.2211	4.5232	0.9764	32	28 29	0.2329	0.2395	4.1760	0.9725	32
30	0.2164		4.5169	0.9764	30	30	0.2332	0.2398	4.1706	0.9724	31
31	0.2167	0.2217	4.5107	0.9763	29	31	0.2334	0.2401	4.1653	0.9724	30
32	0.2170	0.2223	4.5045	0.9762	28	32	0.2337	0.2404	4.1600	0.9723	29
33	0.2173	0.2226	4.4922	0.9761	27	33	0.2340	0.2407	4.1547	0.9722	28 27
34	0.2176	0.2229	4.4860	0.9760	26	34	0.2346	0.2413	4.1493	0.9722	26
35	0.2179	0.2232	4.4799	0.9760	25	35	0.2349	0.2416	4.1388	0.9720	25
36	0.2181	0.2235	4.4737	0.9759	24	36	0.2351	0.2419	4.1335	0.9720	24
37	0.2184	0.2238	4.4676	0.9759	23	37	0.2354	0.2422	4.1282	0.9719	23
38	0.2187	0.2241	4.4615	0.9758	22	38	0.2357	0.2425	4.1230	0.9718	22
39	0.2190	0.2244	4.4555	0.9757	21	39	0.2360	0.2428	4.1178	0.9718	21
40	0.2193	0.2247	4.4494	0.9757	20	40	0.2363	0.2432	4.1126	0.9717	20
41	0.2196	0.2251	4.4434	0.9756	19	41	0.2366	0.2435	4.1074	0.9716	19
42	0.2198	0.2254	4.4373	0.9755	18	42	0.2368	0.2438	4.1022	0.9715	18
43	0.2201	0.2257	4.4313	0.9755	17	43	0.2371	0.2441	4.0970	0.9715	17
44	0.2204	0.2260	4.4253	0.9754	16	44	0.2374	0.2444	4.0918	0.9714	16
45	0.2207	0.2263	4.4194	0.9753	15	45	0.2377	0.2447	4.0867	0.9713	15
46	0.2210	0.2266	4.4134	0.9753	14 13	46	0.2380	0.2450	4.0815	0.9713	14 13
47 48	0.2213	0.2269	4.4075	0.9752	12	48	0.2383	0.2453	4.0764	0.9712	12
49	0.2215	0.2272	4.4015	0.9751	11	49	0.2388	0.2459	4.0662	0.9711	11
50	0.2218	0.2275	4.3956	0.9750	10	50	0.2391	0.2462	4.0611	0.9710	10
51	0.2221	0.2278	4.3838	0.9750	9	51	0.2394	0.2465	4.0560	0.9709	9
52	0.2224	0.2284	4.3779	0.9749	8	52	0.2397	0.2469	4.0509	0.9709	8
53	0.2230	0.2287	4.3721	0.9748	7	53	0.2399	0.2472	4.0459	0.9708	7
54	0.2233	0.2290	4.3662	0.9748	6	54	0.2402	0.2475	4.0408	0.9707	6
55	0.2235	0.2293	4.3604	0.9747	5	55	0.2405	0.2478	4.0358	0.9706	5
56	0.2238	0.2296	4.3546	0.9746	4	56	0.2408	0.2481	4.0308	0.9706	4
57	0.2241	0.2299	4.3488	0.9746	3	57	0.2411	0.2484	4.0257	0.9705	3
58	0.2244	0.2303	4.3430	0.9745	2	58	0.2414	0.2487	4.0207	0.9704	2
59	0.2247	0.2306	4.3372	0.9744	1	59	0.2416	0.2490	4.0158	0.9704	<u>_</u>
60	0.2250	0.2309	4.3315	0.9744	0	60	0.2419	0.2493	4.0108	0.9703	_0
	Cos	Cot	Tan	Sin	′_		Cos	Cot	Tan	Sin	770
					77°]				-5	504 —	6°

14	•					15°	700				
-	Sin	Tan	Cot	Сов		′	Sin	Tan	Cot	Cos	
0	0.2419	0.2493	4.0108	0.9703	60	0	0.2588	0.2679	3.7321	0.9659	60
1	0.2422	0.2496	4.0058	0.9702	59	1	0.2591	0.2683	3.7277	0.9659	59
2	0.2425	0.2499	4.0009	0.9702	58	2	0.2594	0.2686	3.7234	0.9658	58
3	0.2428	0.2503	3.9959	0.9701	57 56	3 4	0.2597	0.2689	3.7191	0.9657	57 56
5	0.2431	0.2506	3.9910	0.9700	55	$\frac{1}{5}$	0.2599	0.2692	3.7148	0.9656	55
	0.2433	0.2509	3.9861	0.9699	54	6	0.2605	0.2695	3.7105 3.7062	0.9655	54
6	0.2436	0.2515	3.9763	0.9698	53	7	0.2608	0.2701	3.7019	0.9654	53
8	0.2442	0.2518	3.9714	0.9697	52	8	0.2611	0.2704	3.6976	0.9653	52
ğ	0.2445	0.2521	3.9665	0.9697	51	9	0.2613	0.2708	3.6933	0.9652	51
10	0.2447	0.2524	3.9617	0.9696	50	10	0.2616	0.2711	3.6891	0.9652	50
11	0.2450	0.2527	3.9568	0.9695	49	11	0.2619	0.2714	3.6848	0.9651	49
12	0.2453	0.2530	3.9520	0.9694	48	12	0.2622	0.2717	3.6806	0.9650	48
13	0.2456	0.2533	3.9471	0.9694	47	13	0.2625	0.2720	3.6764	0.9649	47
14	0.2459	0.2537	3.9423	0.9693	46	14	0.2628	0.2723	3.6722	0.9649	46
15	0.2462	0.2540	3.9375	0.9692	45 44	15 16	0.2630	0.2726	3.6680	0.9643	45
16 17	0.2464	0.2543	3.9327	0.9692	43	17	0.2633	0.2729	3.6638 3.6596	0.9647	44
18	0.2470	0.2546	3.9279	0.9690	42	18	0.2639	0.2733	3.6554	0.9646	42
19	0.2473	0.2552	3.9184	0.9689	41	19	0.2642	0.2739	3.6512	0.9645	41
20	0.2476	0.2555	3.9136	0.9689	40	20	0.2644	0.2742	3.6470	0.9644	40
21	0.2478	0.2558	3.9089	0.9688	39	21	0.2647	0.2745	3.6429	0.9643	39
22	0.2481	0.2561	3.9042	0.9687	38	22	0.2650	0.2748	3.6387	0.9642	38
23	0.2484	0.2564	3.8995	0.9687	37	23	0.2653	0.2751	3.6346	0.9642	37
24	0.2487	0.2568	3.8947	0.9686	36	24	0.2656	0.2754	3.6305	0.9641	36
25	0.2490	0.2571	3.8900	0.9685	35	25	0.2658	0.2758	3.6264	0.9640	35
26	0.2493	0.2574	3.8854	0.9684	34.	26	0,2661	0.2761	3.6222	0.9639	34
27	0.2495	0.2577	3.8807	0.9684	33	27	0.2664	0.2764	3.6181	0.9639	33
28	0.2498	0.2580	3.8760	0.9683	32	28 29	0.2667	0.2767	3.6140	0.9638	32
29 30	0.2501	0.2583	3.8714	0.9682	30	30	0.2670	0.2770	3.6100	0.9637	31
31	0.2504	0.2586	3.8667 3.8621	0.9681	29	31	0.2672	0.2773	3.6059	0.9636	30 29
32	0.2507	0.2592	3.8575	0.9680	28	32	0.2678	0.2780	3.5978	0.9635	28
33	0.2512	0.2595	3.8528	0.9679	27	33	0.2681	0.2783	3.5937	0.9634	27
34	0.2515	0.2599	3.8482	0.9679	26	34	0.2684	0.2786	3.5897	0.9633	26
35	0.2518	0.2602	3.8436	0.9678	25	35	0.2686	0.2789	3.5856	0.9632	25
36	0.2521	0.2605	3.8391	0.9677	24	36	0.2689	0.2792	3.5816	0.9632	24
37	0.2524	0.2608	3.8345	0.9676	23	37	0.2692	0.2795	3.5776	0.9631	23
38	0.2526	0.2611	3.8299	0.9676	22	38	0.2695	0.2798	3.5736	0.9630	22
39	0.2529	0.2614	3.8254	0.9675	21	39	0.2698	0.2801	3.5696	0.9629	21
40	0.2532	0.2617	3.8208	0.9674	20 19	40 41	0.2700	0.2805	3.5656	0.9628	20
42	0.2535	0.2620	3.8163	0.9673	18	42	0.2703	0.2811	3.5616	0.9628	19
43	0.2538	0.2627	3.8073	0.9672	17	43	0.2709	0.2814	3.5576	0.9626	17
44	0.2543	0.2630	3.8028	0.9671	16	44	0.2712	0.2817	3.5497	0.9625	16
44 45	0.2546	0.2633	3.7983	0.9670	15	45	0.2714	0.2820	3.5457	0.9625	15
46	0.2549	0.2636	3.7938	0.9670	14	46	0.2717	0.2823	3.5418	0.9624	14
.47	0.2552	0.2639	3.7893	0.9669	13	47	0.2720	0.2827	3.5379	0.9623	13
48	0.2554	0.2642	3.7848	0.9668	12	48	0.2723	0.2830	3.5339	0.9622	12
49	0.2557	0.2645	3.7804	0.9667	11	49	0.2726	0.2833	3.5300	0.9621	11
50	0.2560	0.2648	3.7760	0.9667	10	50	0.2728	0.2836	3.5261	0.9621	10
51 52	0.2563	0.2651	3.7715	0.9666	9	51	0.2731	0.2839	3.5222	0.9620	9
53	0.2566	0.2655	3.7671	0.9665	8 7	52 53	0.2734	0.2842	3.5183	0.9619	8
54	0.2569	0.2658	3.7627	0.9665	6	54	0.2737	0.2845	3.5144	0.9618	1
55	0.2571		3.7583	0.9663	5	55	0.2740		3.5105	0.9617	_6
56	0.2574	0.2664	3.7539	0.9662		56	0.2742	0.2852	3.5067 3.5028	0.9617	5
57	0.2580	0.2670	3.7495 3.7451	0.9662	3	57	0.2748	0.2858	3.4989	0.9615	3
58	0.2583	0.2673	3.7408	0.9661	2	58	0.2751	0.2861	3.4951	0.9614	2
59	0.2585	0.2676	3.7364	0.9660	1	59	0.2754	0.2864	3.4912	0.9613	1
60	0.2588	0.2679	3.7321	0.9659	0	60	0.2756	0.2867	3.4874	0.9613	Ô
	Cos	Cot	Tan	Sin	1		Cos	Cot	Tan	Sin	7
47)	FOF				75°					The same of the sa	74°

16°					- J	17°		unctio			
	Sin	Tan	Cot	Сов		,	Sin	Tan	Cot	Cos	_
U	0.2756	0.2867	3.4874	0.9613	60	0	0.2924	0.3057	3.2709	0.9563	60
1	0.2759	0.2871	3.4836	0.9612	59	1	0.2926	0.3060	3.2675	0.9562	59
2	0.2762	0.2874 0.2877	3.4798	0.9611	58	2	0.2929	0.3064	3.2641	0.9561	58
4	0.2765	0.2880	3.4760 3.4722	0.9610	57 56	3 4	0.2932	0.3067	3.2607	0.9560	57
5	0.2770	0.2883	3.4684	0.609	55	5	0.2935	0.3070	3.2573	0.9560	56
6	0.2773	0.2886	3.4646	0.9608	54	6	0.2930	0.3073	3.2539 3.2506	0.9559 0.9558	54
7	0.2776	0.2890	3.4608	0.9607	53	7	0.2943	0.3080	3.2472	0.9557	53
8	0.2779	0.2893	3.4570	0.9606	52	8	0.2946	0.3083	3.2438	0.9556	52
9	0.2782	0.2896	3.4533	0.9605	_51_	9	0.2949	0.3086	3.2405	0.9555	51
10	0.2784	0.2899	3.4495	0.9605	50	10	0.2952	0.3089	3.2371	0.9555	50
11	0.2787	0.2902	3.4458	0.9604	49	11	0.2954	0.3092	3.2338	0.9554	49
12 13	0.2790	0.2905	3.4420	0.9603	48	12	0.2957	0.3096	3.2305	0.9553	48
14	0.2793	0.2908	3.4383	0.9602 0.9601	47 46	13 14	0.2960	0.3099	3.2272	0.9552	47
15	0.2798	0.2915	3.4346	0.9600	45	15	0.2965	0.3102	3.2238	0.9551	45
16	0.2801	0.2918	3.4271	0.9600	44	16	0.2968	0.3108	3.2205 3.2172	0.9550	44
17	0.2804	0.2921	3.4234	0.9599	43	17	0.2971	0.3111	3.2139	0.9548	43
18	0.2807	0.2924	3.4197	0.9598	42	18	0.2974	0.3115	3.2106	0.9548	42
19	0.2809	0.2927	3.4160	0.9597	41	19	0.2977	0.3118	3.2073	0.9547	41
20	0.2812	0.2931	3.4124	0.9596	40	20	0.2979	0.3121	3.2041	0.9546	40
21	0.2815	0.2934	3.4087	0.9596	39	21	0.2982	0.3124	3.2008	0.9545	39
22	0.2818	0.2937	3.4050	0.9595	38	22	0.2985	0.3127	3.1975	0.9544	38
23	0.2821	0.2940	3.4014	0.9594	37	23	0.2988	0.3131	3.1943	0.9543	37
24	0.2823	0.2943	3.3977	0.9593	36	24	0.2990	0.3134	3.1910	0.9542	36
25	0.2826	0.2946	3.3941	0.9592	35	25	0.2993	0.3137	3.1878	0.9542	35
26	0.2829	0.2949	3.3904	0.9591	34	26 27	0.2996	0.3140	3.1845	0.9541	34
27 28	0.2832 $0.283\overline{5}$	0.2953	3.3868 3.3832	0.9591	33	28	0.2999	0.3143	3.1780	0.9540	32
29	0.2837	0.2956	3.3796	0.9590	31	29	0.3004	0.3150	3.1748	0.9538	31
30	0.2840	0.2962	3.3759	0.9588	30	30	0.3007	0.3153	3.1716	0.9537	30
31	0.2843	0.2965	3.3723	0.9587	29	31	0.3010	0.3156	3.1684	0.9536	29
32	0.2846	0.2968	3.3687	0.9587	28	32	0.3013	0.3159	3.1652	0.9535	28
33	0.2849	0.2972	3.3652	0.9586	27	33	0.3015	0.3163	3.1620	0.9535	27
34	0.2851	0.2975	3.3616	0.9585	26	34	0.3018	0.3166	3.1588	0.9534	26
35	0.2854	0.2978	3.3580	0.9584	25	35	0.3021	0.3169	3.1556	0.9533	25
36	0.2857	0.2981	3.3544	0.9583	24	36	0.3024	0.3172	3.1524	0.9532	24 23
37	0.2860	0.2984	3.3509	0.9582	23	37	0.3026	0.3175	3.1492	0.9531	22
38	0.2862	0.2987	3.3473	0.9582	22 21	38	0.3029	0.3179	3.1460	0.9530	21
39	0.2865	0.2991	3.3438	0.9581	20	40	0.3035	0.3185	3.1397	0.9528	20
40	0.2868	0.2994	3.3402	0.9580	19	41	0.3038	0.3188	3.1366	0.9527	19
41	0.2871	0.2997	3.3367 3.3332	0.9578	18	42	0.3040	0.3191	3.1334	0.9527	18
42 43	0.2876	0.3003	3.3297	0.9577	17	43	0.3043	0.3195	3.1303	0.9526	17
44	0.2879	0.3006	3.3261	0.9577	16	44	0.3046	0.3198	3.1271	0.9525	16
45	0.2882	0.3010	3.3226	0.9576	15	45	0.3049	0.3201	3.1240	0.9524	15
46	0.2885	0.3013	3.3191	0.9575	14	46	0.3051	0.3204	3.1209	0.9523	14
47	0.2888	0.3016	3.3156	0.9574	13	47	0.3054	0.3207	3.1178	0.9522	13.
48	0.2890	0.3019	3.3122	0.9573	12	48	0.3057	0.3211	3.1146	0.9521	11
49	0.2893	0.3022	3.3087	0.9572	11	49	0.3060	0.3214	3.1115	0.9520	10
50	0.2896	0.3026	3.3052	0.9572	10	50 51	0.3062	0.3217	3.1053	0.9519	9
51	0.2899	0.3029	3.3017	0.9571	8	52	0.3068	0.3223	3.1022	0.9518	8
52	0.2901	0.3032	3.2983	0.9570	7	53	0.3071	0.3227	3.0991	0.9517	7
53	0.2904	0.3035	3.2948	0.9560 0.9568	6	54	0.3074	0.3230	3.0961	0.9516	_6
54	0.2907	0.3038	3.2914	0.9567	5	55	0.3076	0.3233	3.0930	0.9515	5
55	0.2910	0.3041	3.2845	0.9566	4	56	0.3079	0.3236	3.0899	0.9514	4
56	0.2913	0.3045	3.2811	0.9566	3	57	0.3082	0.3240	3.0868	0.9513	3
57 58	0.2915	0.3040	3.2777	0.9565	2	58	0.3085	0.3243	3.0838	0.9512	1
59	0.2910	0.3054	3.2743	0.9564	_1	59	0.3087	0.3246	3.0807	0.9511	-
60	0.2924	0.3057	3.2709	0.9563	0	60	0.3090	0.3249	3.0777	0.9511 Sin	Ļ
-	Cos	Cot	Tan	Sin	1		Cos	Cot	Tan		72°
_					73°	1			- 5		. 4
										00	

18	•				0	19°					٧,
-	Sin	Tan	Cot	Cos			Sin	Tan	Cot	Cos	
0	0.3090	0.3249	3.0777	0.9511	60	0	0.3256	0.3443	2.9042	0.9455	60
1	0.3093	0.3252	3.0746	0.9510	59	1	0.3258	0.3447	2.9015	0.9454	59
2	0.3096	0.3256	3.0716	0.9509	58 57	3	0.3261	0.3450	2.8987	0.9453	58 57
3	0.3098	0.3259	3.0686	0.9508	56	4	0.3264	0.3453	2.8960 2.8933	0.9452 0.9451	56
5	0.3101	0.3265	3.0625	0.9506	55	5	0.3269	0.3460	2.8905	0.9450	55
6	0.3107	0.3269	3.0595	0.9505	54	6	0.3272	0.3463	2.8878	0.9449	54
7	0.3110	0.3272	3.0565	0.9504	53	7	0.3275	0.3466	2.8851	0.9449	53
8	0.3112	0.3275	3.0535	0.9503	52	8	0.3278	0.3469	2.8824	0.9448	52
9	0.3115	0.3278	3.0505	0.9502	51	9	0.3280	0.3473	2.8797	0.9447	51
10	0.3118	0.3281	3.0475	0.9502	50	10	0.3283	0.3476	2.8770	0.9446	50
11	0.3121	0.3285	3.0445	0.9501	49	11	0.3286	0.3479	2.8743 2.8716	0.9445	49
13	0.3123	0.3291	3.0415	0.9499	47	13	0.3291	0.3486	2.8689	0.9444	47
14	0.3129	0.3294	3.0356	0.9498	46	14	0.3294	0.3489	2.8662	0.9442	46
15	0.3132	0.3298	3.0326	0.9497	45	15	0.3297	0.3492	2.8636	0.9441	45
16	0.3134	0.3301	3.0296	0.9496	44	16	0.3300	0.3495	2.8609	0.9440	44
17	0.3137	0.3304	3.0267	0.9495	43	17	0.3302	0.3499	2.8582	0.9439	43
18	0.3140	0.3307	3.0237	0.9494	42	18	0.3305	0.3502	2.8556	0.9438	42
19	0.3143	0.3310	3.0208	0.9493	41	19	0.3308	0.3505	2.8529	0.9437	41
20 21	0.3145	0.3314	3.0178	0.9492	40 39	20 21	0.3311	0.3508	2.8502	0.9436	40 39
22	0.3148	0.3317	3.0149	0.9491	38	22	0.3313	0.3512	2.8476	0.9435	38
23	0.3154	0.3323	3.0090	0.9490	37	23	0.3319	0.3518	2.8423	0.9433	37
24	0.3156	0.3327	3.0061	0.9489	36	24	0.3322	0.3522	2.8397	0.9432	36
25	0.3159	0 3330	3.0032	0.9488	35	25	0.3324	0.3525	2.8370	0.9431	35
26	0.3162	0.3333	3.0003	0.9487	34	26	0.3327	0.3528	2.8344	0.9430	34
27	0.3165	0.3336	2.9974	0.9486	33	27	0.3330	0.3531	2.8318	0.9429	33
28	0.3168	0.3339	2.9945	0.9485	32	28	0.3333	0.3535	2.8291	0.9428	32
29 30	0.3170	0.3343	2.9916	0.9484	31	29 30	0.3335	0.3538	2.8265	0.9427	31
31	0.3173	0.3346	2.9887	0.9483	30 29	31	0.3338	0.3541	2.8239	0.9426	30
32	0.3179	0.3349	2.9829	0.9481	28	32	0.3341	0.3544	2.8187	0.9425	28
33	0.3181	0.3356	2.9800	0.9480	27	33	0.3346	0.3551	2.8161	0.9423	27
34	0.3184	0.3359	2.9772	0.9480	26	34	0.3349	0.3554	2.8135	0.9423	26
35	0.3187	0.3362	2.9743	0.9479	25	35	0.3352	0.3558	2.8109	0.9422	25
36	0.3190	0.3365	2.9714	0.9478	24	36	0.3355	0.3561	2.8083	0.9421	24
37 38	0.3192	0.3369	2.9686	0.9477	23	37	0.3357	0.3564	2.8057	0.9420	23
39	0.3195	0.3372	2.9657	0.9476	22 21	38 39	0.3360	0.3567	2.8032	0.9419	22
40	0.3201	0.3375	2,9600	0.9475	20	40	0.3363	0.3571	2.7980	0.0418	21 20
41	0.3203	0.3382	2.9572	0.9473	19	41	0.3368	0.3577	2.7955	0.9417	19
42	0.3206	0.3385	2 9544	0.9472	18	42	0.3371	0.3581	2.7929	0.9415	18
43	0.3209	0.3388	2.9515	0.9471	17	43	0.3374	0.3584	2.7903	0.9414	17
44	0.3212	0.3391	2.9487	0.9470	16	44	0.3376	0.3587	2.7878	0.9413	16
45	0.3214	0.3395	2.9459	0.9469	15	45	0.3379	0.3590	2.7852	0.9412	15
47	0.3217	0.3398	2.9431	0.9468	14	46	0.3382	0.3594	2.7827	0.9411	14
48	0.3220	0.3401	2.9403	0.9467	13 12	47 48	0.3385	0.3597	2.7801	0.9410	13
49	0.3225	0.3404	2.9375 2.9347	0.9466	11	49	0.3387	0.3600	2.7776	0.9409	12
50	0.3228	0.3411	2.9319	0.9465	10	50	0.3393	0.3607	2.7751 2.7725	0.0408	10
51	0.3231	0.3414	2.9291	0.9464	9	51	0.3396	0.3610	2.7700	0.9407	9
52	0.3234	0.3417	2.9263	0.9463	8	52	0.3398	0.3613	2.7675	0.9405	8
53	0.3236	0.3421	2.9235	0.9462	7	53	0.3401	0.3617	2.7650	0.9404.	7
54 55	0.3239	0.3424	2.9208	0.9461	6	54	0.3404	0.3620	2.7625	0.9403	6
56	0.3242	0.3427	2.9180	0.9460	5	55	0.3407	0.3623	2.7600	0.9402	5
57	0.3245	0.3430	2.9152	0.9459	4	56	0.3409	0.3627	2.7575	0.9401	4
58	0.3247	0.3434	2.9125	0.9458	3 2	57 58	0.3412	0.3630	2.7550	0.9400	3
59	0.3253	0.3440	2.9097	0.9457	1	59	0.3415	0.3633	2.7525	0.9399	2
60	0.3256	0.3443	2.9042	0.9455	ô	60	0.3420	0.3640	2.7500	0.9398	$\frac{1}{0}$
	Con	Cot	Tan	Sin	-		Cos	Cot	2.7475 Tan	0.9397 Sin	~
					71°					THE RESERVE TO SHARE THE PARTY OF THE PARTY	70°
	-507	—									.0

20°		***	· Natu	iai iii	gon	21°	etric r	unetto	ns		
1	Sin	Tan	Cot	Cos			Sin	Tan	Cot	Cos	_
0	0.3420	0.3640	2.7475	0.9397	60	0	0.3584	0.3839	2.6051	0.9336	60
1	0.3423	0.3643	2 7450	0.9396	59	1	0.3586	0.3842	2.6028	0.9335	59
2	0.3426	0.3646	2.7425	0.9395	58	2	0.3589	0.3845	2.6006	0.9334	58
3	0.3428	0.3650	2.7400	0.9394	57	3	0.3592	0.3849	2.5983	0.9333	57
5	0.3431	0.3653	2.7376	0.9393	56	4	0.3595	0.3852	2.5961	0.9332	56
6	0.3434	0.3656	2.7351	0.9392	55	5	0.3597	0.3855	2.5938	0.9331	55
7	0.3437	0.3659	2.7326	0.9391	54 53	6	0.3600	0.3859	2.5916	0.9330	54
8	0.3439	0.3666	2.7302	0.9390	52	8	0.3603	0.3862	2.5893	0.9328	53
9	0.3445	0.3669	2.7253	0.9388	51	9	0.3608	0.3869	2.5871 2.5848	0.9327	52
10	0.3448	0.3673	2.7228	0.9387	50	10	0.3611	0.3872	2.5826	0.9326	51
11	0.3450	0.3676	2.7204	0.9386	49	11	0.3614	0.3875	2.5804	0.9325	49
12	0.3453	0.3679	2.7179	0.9385	48	12	0.3616	0.3879	2.5782	0.9323	48
13	0.3456	0.3683	2.7155	0.9384	47	13	0.3619	0.3882	2.5759	0.9322	47
14	0.3458	0.3686	2.7130	0.9383	46	14	0.3622	0.3885	2.5737	0.9321	46
15	0.3461	0.3689	2.7106	0.9382	45	15	0.3624	0.3889	2.5715	0.9320	45
16	0.3464	0.3693	2.7082	0.9381	44	16	0.3627	0.3892	2.5693	0.9319	44
17	0.3467	0.3696	2.7058	0.9330	43	17	0.3630	0.3895	2.5671	0.9318	43
18	0.3469	0.3699	2.7034	0.9379	42	18	0.3633	0.3899	2.5649	0.9317	42
19	0.3472	0.3702	2.7009	0.9378	41	19	0.3635	0.3902	2.5627	0.9316	41
20	0.3475	0.3706	2.6985	0.9377	40	20	0.3638	0.3906	2.5605	0.9315	40
21	0.3478	0.3709	2.6961	0.9376	39	21	0.3641	0.3909	2.5583	0.9314	39
22	0.3480	0.3712	2.6937	0.9375	38	22	0.3643	0.3912	2.5561	0.9313	38
23	0.3483	0.3716	2.6913	0.9374	37	23	0.3646	0.3916	2.5539	0.9312	37
24	0.3486	0.3719	2.6889	0.9373	36	24	0.3649	0.3919	2.5517	0.9311	36
25	0.3488	0.3722	2.6865	0.9372	35	25	0.3651	0.3922	2.5495	0.9309	35
26	0.3491	0.3726	2.6841	0.9371	34	26 27	0.3654	0.3926	2.5473	0.9308	34
27	0.3494	0.3729	2.6818	0.9370	33	28	0.3657	0.3929	2.5452	0.9307	33
28 29	0.3497	0.3732	2.6794	0.9369	31	29	0.3660	0.3932	2.5430 2.5408	0.9306	31
30	0.3499	0.3736	2.6770	0.9368	30	30	0.3665	0.3936	2.5386	0.9304	30
31	0.3502	0.3739	2.6746	0.9367	29	31	0.3668	0.3939	2.5365	0.9303	29
32	0.3505 0.3508	0.3742	2.6699	0.9365	28	32	0.3670	0.3946	2.5343	0.9302	28
33	0.3510	0.3749	2.6675	0.9364	27	33	0.3673	0.3949	2.5322	0.9301	27
34	0.3513	0.3752	2.6652	0.9363	26	34	0.3676	0.3953	2.5300	0.9300	26
35	0.3516	0.3755	2.6628	0.9362	25	35	0.3679	0.3956	2.5279	0.9299	25
36	0.3518	0.3759	2.6605	0.9361	24	36	0.3681	0.3959	2.5257	0.9298	24
37	0.3521	0.3762	2.6581	0.9360	23	37	0.3684	0.3963	2.5236	0.9297	23
38	0.3524	0.3765	2.6558	0.9359	22	38	0.3687	0.3966	2.5214	0.9296	22
39	0.3527	0.3769	2.6534	0.9358	21	39	0.3689	0.3969	2.5193	0.9295	21
40	0.3529	0.3772	2.6511	0.9356	20	40	0.3692	0.3973	2.5172	0.9293	20
41	0.3532	0.3775	2.6488	0.9355	19	41	0.3695	0.3976	2.5150	0.9292	19
42	0.3535	0.3779	2.6464	0.9354	18	42	0.3697	0.3979	2.5129	0.9291	18
43	0.3537	0.3782	2.6441	0.9353	17	43	0.3700	0.3983	2.5108	0.9290	16
44	0.3540	0.3785	2.6418	0.9352	16	44	0.3703	0.3986	2.5086	0.9288	15
45	0.3543	0.3789	2.6395	0.9351	15	45	0.3706	0.3990	2.5065 2.5044	0.9287	14
46	0.3546	0.3792	2.6371	0.9350	14	46 47	0.3708	0.3993	2.5023	0.9286	13
47	0.3548	0.3795	2.6348	0.9349	12	48	0.3714	0.4000	2.5002	0.9285	12
48	0.3551	0.3799	2.6325	0.9348	11	49	0.3716	0.4003	2.4981	0.9284	11
49	0.3554	0.3802	2.6302	0.9347	10	50	0.3719	0.4006	2.4960	0.9283	10
50	0.3557	0.3805	2.6279	0.9346	9	51	0.3722	0.4010	2.4939	0.9282	9
51	0.3559	0.3809	2.6256	0.9345	8	52	0.3724	0.4013	2.4918	0.9281	8
52	0.3562	0.3812	2.6210	0.9343	7	53	0.3727	0.4017	2.4897	0.9279	7
53	0.3565	0.3815	2.6187	0.9342	6	54	0.3730	0.4020	2.4876	0.9278	_6
54	0.3567	0.3819	2.6165	0.9341	5.	55	0.3733	0.4023	2.4855	0.9277	5
55	0.3570	0.3822	2.6142	0.9340	4	56	0.3735	0.4027	2.4834	0.9276	4
56 57	0.3573	0.3829	2.6119	0.9339	3	57	0.3738	0.4030	2.4813	0.9275	3
58	0.3576	0.3832	2.6096	0.9338	2	58	0.3741	0.4033	2.4792	0.9274	2
59	0.3578 0.3581	0.3835	2.6074	0.9337	_ 1	59	0.3743	0.4037	2.4772	0.9273	-
60	0.3584	0.3839	2.6051	0.9336	0	60	0.3746	0.4040	2.4751	0.9272	÷
-	Cos	Cot	Tan	Sin	1		Cos	Cot	Tan	Sin	68°
					69°				J <u> </u>	508 —	00
										000	

22	0				0	23	0				
-		Tan	Cot	Cos		7	Sin	Tan	Cot	Cos	T
0	0.3746	0.4040	2.4751	0.9272			0.3907	0.4245	2.3559	0.9205	60
1	0.3749						0.3910				
3			2.4709			3	1 0 0	1			58
4		0.4050	1	0.9269			0, 0			0.9202	57
5	0.3760		2.4648	0.9266	-	_	1 1//				55
6	0.3762		2.4627	0.9265		6			2.3464	0.9199	54
7	0.3765		2.4606	0.9264		7	0.3926		2.3426	0.9197	53
8	0.3768	0.4067	2.4586	0.9263	52	8	0.3929		2.3407	0.9196	52
9	0.3770		2.4566	0.9262		9	0.3931	0.4276	2.3388	0.9195	51
10	0.3773	0.4074	2.4545	0.9261	50	10	0,01		2.3369	0.9194	50
11 12	0.3776		2.4525	0.9260	49	11	0.3937		2.3351	0.9192	49
13	0.3778	0.4081	2.4501	0.9259	48	13	0.3939		2.3332	0.9191	48
14	0.3784		2.4464	0.9257	46	14	0.3942		2.3313	0.9190	47
15	0.3786	0.4091	2.4443	0.9255	45	15	0.3947	0.4296	2.3276	0.9188	45
16	0.3789	0.4095	2.4423	0.9254	44	16	0.3950		2.3257	0.9187	44
17	0.3792	0.4098	2.4403	0.9253	43	17	0.3953	0.4303	2.3238	0.9186	43
18	0.3795	0.4101	2.4383	0.9252	42	18	0.3955	0.4307	2.3220	0.9184	42
19	0.3797	0.4105	2.4362	0.9251	41	19	0.3958	0.4310	2.3201	0.9183	41
20	0.3800	0.4108	2.4342	0.9250	40	20	0.3961	0.4314	2.3183	0.9182	40
21 22	0.3803	0.4111	2.4322	0.9249	39	21	0.3963		2.3164	0.9181	39
23	0.3808	0.4115	2.4302	0.9248	38	22 23	0.3966	1	2.3146	0.9180	38
24	0.3811	0.4122	2.4262	0.9247	36	24	0.3969	0.4324	2.3127	0.9179	37
25	0.3813	0.4125	2.4242	0.9244	35	25	0.3974	0.4327	2.3109	0.9178	36
26	0.3816	0.4129	2.4222	0.9243	34	26	0.3977	0.4334	2.3090	0.9176	34
27	0.3819	0.4132	2.4202	0.9242	33	27	0.3979	0.4338	2.3053	0.9174	33
28	0.3821	0.4135	2.4182	0.9241	32	28	0.3982	0.4341	2.3035	0.9173	32
29	0.3824	0.4139	2.4162	0.9240	31	29	0.3985	0.4345	2.3017	0.9172	31
30	0.3827	0.4142	2.4142	0.9239	30	30	0.3987	0.4348	2.2998	0.9171	30
31 32	0.3830	0.4146	2.4122	0.9238	29	31	0.3990	0.4352	2.2980	0.9169	29
33	0.3835	0.4149	2.4102 2.4083	0.9237	28 27	32 33	0.3993	0.4355	2.2962	0.9168	28
34	0.3838	0.4156	2.4063	0.9235	26	34	0.3995	0.4359	2.2944	0.9167	27
35	0.3840	0.4159	2.4043	0.9233	25	35	0.4001	0.4362	2.2925	0.9166	26 25
36	0.3843	0.4163	2.4023	0.9232	24	36	0.4003	0.4369	2.2889	0.9165	24
37	0.3846	0.4166	2.4004	0.9231	23	37	0.4006	0.4372	2.2871	0.9162	23
38	0.3848	0.4169	2.3984	0.9230	22	38	0.4009	0.4376	2.2853	0.9161	22
39 40	0.3851	0.4173	2.3964	0.9229	21	39	0.4011	0.4379	2.2835	0.9160	21
41	0.3854 0.3856	0.4176	2.3945	0.9228	20	40	0.4014	0.4383	2.2817	0.9159	20
42	0.3859	0.4183	2.3925	0.9227	19 18	41 42	0.4017	0.4386	2,2799	0.9158	19
43	0.3862	0.4187	2.3886	0.9225	17	43	0.4019	0.4390	2.2781	0.9157	18
44	0.3864	0.4190	2.3867	0.9223	16	44	0.4022	0.4393	2.2763	0.9155	17
45	0.3867	0.4193	2.3847	0.9222	15	45	0.4027	0.4400	2.2745	0.9154	16
46	0.3870	0.4197	2.3828	0.9221	14	46	0.4030	0.4404	2.2709	0.9152	14
47	0.3872	0.4200	2.3808	0.9220	13	47	0.4033	0.4407	2.2691	0.9151	13
48 49	0.3875	0.4204	2.3789	0.9219	12	48	0.4035	0.4411	2.2673	0.9150	12
50	0.3878	0.4207	2.3770	0.9218	11	49	0.4038	0.4414	2.2655	0.9148	11
51	0.3883	0.4210	2.3750	0.9216	10	50	0.4041	0.4417	2.2637	0.9147	10
52	0.3886	0.4214	2.3731	0.9215	8	51 52	0.4043	0.4421	2.2620	0.9146	9
53	0.3889	0.4221	2.3693	0.9213	7	53	0.4046	0.4424	2.2602	0.9145	8
54	0.3891	0.4224	2.3673	0.9212	6	54	0.4051	0.4428	2.2584	0.9144	7
54 55 56 57	0.3894	0.4228	2.3654	0.9211	5	55	0.4054	0.4431	2.2566	0.9143	5
56	0.3897	0.4231	2.3635	0.9210	4	56	0.4057	0.4438	2.2549	0.9141	
57	0.3899	0.4234	2.3616	0.9208	3	57	0.4059	0.4442	2.2531 2.2513	0.9140	3
50	0.3902	0.4238	2.3597	0.9207	2	58	0.4062	0.4445	2.2496	0.9138	2
58 59 60	0.3905	0.4241	2.3578	0.9206	1	59	0.4065	0.4449	2.2478	0.9137	ī
20	0.3907	0.4245	2.3559	0.9205	0	60	0.4067	0.4452	2.2460	0.9135	<u></u>
	Cos	Cot	Tan	Sin	(700		Cos	Cot	Tan	Sin	~
	— 509				67°						66°
	009										-

24°			· ııatu		gon	25°		unctio	пь		
	Sin	Tan	Cot	Cos		,	Sin	Tan	Cot	Cos	
0	0.4067	0.4452	2.2460	0.9135	60	0	0.4226	0.4663	2.1445	0.9063	60
1	0.4070	0.4456	2.2443	0.9134	59	1	0.4229	0.4667	2.1429	0.9062	59
3	0.4073	0.4459	2.2425	0.9133	58	2	0.4231	0.4670	2.1413	0.9061	58
4	0.4075	0.4463	2.2408	0.9132	57	3	0.4234	0.4674	2.1396	0.9059	57
5	0.4078	0.4466	2.2390	0.9131	56	4	0.4237	0.4677	2.1380	0.9058	56
6	0.4081	0.4470	2.2373	0.9130	55	5	0.4239	0.4681	2.1364	0.9057	55
7	0.4086	0.4473 0.4477	2.2355 2.2338	0.9128	54 53	6	0.4242	0.4684	2.1348	0.9056	54
8	0.4089	0.4480	2.2320	0.9126	52	8	0.4245	0.4688	2.1332	0.9054	53
9	0.4091	0.4484	2.2303	0.9125	51	9	0.4250	0.4695	2.1315	0.9053	52 51
10	0.4094	0.4487	2.2286	0.9124	50	10	0.4253	0.4699	2.1283	0.9051	50
11	0.4097	0.4491	2,2268	0.9122	49	11	0.4255	0.4702	2.1267	0.9050	49
12	0.4099	0.4494	2.2251	0.9121	48	12	0.4258	0.4706	2.1251	0.9048	48
13	0.4102	0.4498	2.2234	0.9120	47	13	0.4260	0.4709	2.1235	0.9047	47
14	0.4105	0.4501	2.2216	0.9119	46	14	0.4263	0.4713	2.1219	0.9046	46
15	0.4107	0.4505	2.2199	0.9118	45	15	0.4266	0.4716	2.1203	0.9045	45
16	0.4110	0.4508	2.2182	0.9116	44	16	0.4268	0.4720	2.1187	0.9043	44
17	0.4112	0.4512	2.2165	0.9115	43	17	0.4271	0.4723	2.1171	0.9042	43
18 19	0.4115	0.4515	2.2148	0.9114	42	18	0.4274	0.4727	2.1155	0.9041	42
20	0.4118	0.4519	2.2130	0.9113	41	19	0.4276	0.4731	2.1139	0.9040	41
21	0.4120	0.4522	2.2113	0.9112	40 39	20 21	0.4279	0.4734	2.1123	0.9038	40
22	0.4123	0.4526	2.2096	0.9110	38	22	0.4281	0.4738	2.1107	0.9037	39
23	0.4128	0.4529	2.2062	0.9109	37	23	0.4287	0.4741 $0.474\overline{5}$	2.1076	0.9035	37
24	0.4131	0.4536	2.2045	0.9107	36	24	0.4289	0.4748	2.1060	0.9033	36
25	0.4134	0.4540	2,2028	0.9106	35	25	0.4292	0.4752	2.1044	0.9032	35
26	0.4136	0.4543	2.2011	0.9104	34	26	0.4295	0.4755	2.1028	0.9031	34
27	0.4139	0.4547	2.1994	0.9103	33	27	0.4297	0.4759	2.1013	0.9030	33
28	0.4142	0.4550	2.1977	0.9102	32	28	0.4300	0.4763	2.0997	0.9028	32
29	0.4144	0.4554	2.1960	0.9101	31	29	0.4302	0.4766	2.0981	0.9027	31
30	0.4147	0.4557	2.1943	0.9100	30	30	0.4305	0.4770	2.0965	0.9026	30
31	0.4150	0.4561	2.1926	0.9098	29	31	0.4308	0.4773	2.0950	0.9025	29
32	0.4152	0.4564	2.1909	0.9097	28	32	0.4310	0.4777	2.0934	0.9023	28 27
33	0.4155	0.4568	2.1892	0.9096	27 26	33 34	0.4313	0.4780	2.0918	0.9022	26
$\frac{34}{25}$	0.4158	0.4571	2.1876	0.9095	25	35	0.4316	0.4784	2.0887	0.9020	25
35 36	0.4160	0.4575	2.1859 2.1842	0.9094	24	36	0.4318	0.4791	2.0872	0.9018	24
37	0.4163	0.4578 0.4582	2.1825	0.9091	23	37	0.4323	0.4795	2.0859	0.9017	23
38	0.4168	0.4585	2.1808	0.9090	22	38	0.4326	0.4798	2.0840	0.9016	22
39	0.4171	0.4589	2.1792	0.9089	21	39	0.4329	0.4802	2.0825	0.9015	21
40	0.4173	0.4592	2.1775	0.9088	20	40	0.4331	0.4806	2.0809	0.9013	20
41	0.4176	0.4596	2.1758	0.9086	19	41	0.4334	0.4809	2.0794	0.9012	19
42	0.4179	0.4599	2.1742	0.9085	18	42	0.4337	0.4813	2.0778	0.9011	18 17
43	0.4181	0.4603	2.1725	0.9084	17	43	0.4339	0.4816	2.0763	0.9010	16
44	0.4184	0.4607	2.1708	0.9083	16	44	0.4342	0.4820	2.0748	0.9007	15
45	0.4187	0.4610	2.1692	0.9081	15	45	0.4344	0.4823	2.0732	0.9007	14
46	0.4189	0.4614	2.1675	0.9080	14 13	46 47	0.4347	0.4831	2.0701	0.9004	13
47	0.4192	0.4617	2.1659	0.9079	12	48	0.4350	0.4834	2.0686	0.9003	12
48	0.4195	0.4621	2.1642	0.9078	11	49	0.4355	0.4838	2.0671	0.9002	11
49	0.4197	0.4624		0.9075	10	50	0.4358	0.4841	2.0655	0.9001	10
50 51	0.4200	0.4628 0.4631	2.1609	0.9074	9	51	0.4360	0.4845	2.0640	0.8999	9
52	0.4202	0.4635	2.1576	0.9073	8	52	0.4363	0.4849	2.0625	0.8998	8
53	0.4208	0.4638	2.1560	0.9072	7	53	0.4365	0.4852	2.0609	0.8997	6
54	0.4210	0.4642	2.1543	0.9070	6	54	0.4368	0.4856	2.0594	0.8996	$\frac{-6}{5}$
55	0.4213	0.4645	2.1527	0.9069	5	55	0.4371	0.4859	2.0579	0.8994	4
56	0.4216	0.4649	2.1510	0.9068	4	56	0.4373	0.4863	2.0564	0.8993	3
57	0.4218	0.4652	2.1494	0.9067	3	57	0.4376	0.4867	2.0549 2.0533	0.8992	2
58	0.4221	0.4656	2.1478	0.9066	2	58	0.4378	0.4870	2.0518	0.8989	1
59	0.4224	0.4660	2.1461	0.9064	1	59	0.4381	0.4877	2.0503	0.8988	0
60	0.4226	0.4663	2.1445	0.9063	0	60	0.4384	Cot	Tan	Sin	7
	Cos	Cot	Tan	Sin			Cos	000			64°
					65°				_	510 —	

26	0				_	127	•				
7	Sin	Tan	Cot	Cos		1	Sin	Tan	Cot	Cos	T
0		0.4877	2.0503	0.8988	60	0	0.4540	0.5095	1.9626		60
1	0.4386	0.4881	2.0488	0.8987	59	1	0.4542		1.9612		59
3	0.4389	1 000	2.0473	0.8985	58 57	2	0.4545		1.9598		58
4			2.0458	0.8983	56	3 4	0.4548	The state of the s			57 56
5	0.4397		2.0428	0.8982	55	5	0.4550		1.9570	-	55
6	0.4399	1 0	2.0413	0.8980	54	6	0.4553	0.5114	1.9556	0.8903	54
7	0.4402		2.0398	0.8979	53	7	0.4558	0.5121	1.9528		53
8	0.4405		2.0383	0.8978	52	8	0.4561	0.5125	1.9514	0.0	52
9	0.4407	0.4910	2.0368	0.8976	51	9	0.4563	0.5128	1.9500		51
10	0.4410	0.4913	2.0353	0.8975	50	10	0.4566		1.9486		50
11	0.4412	0.4917	2.0338	0.8974	49	11	0.4568	0.5136	1.9472	0.8895	49
12	0.4415	0.4921	2.0323	0.8973	48	12	0.4571	0.5139	1.9458	0.8894	48
13	0.4418		2.0308	0.8971	47	13	0.4574	0.5143	1.9444	0.8893	47
14 15	0.4420	0.4928	2.0293	0.8970	46	14	0.4576	0.5147	1.9430	0.8892	46
16	0.4423	0.4931	2.0278	0.8969	45	15	0.4579	0.5150	1.9416	0.8890	45
17	0.4425	0.4935	2.0263	0.8967	43	16 17	0.4581	0.5154	1.9402	0.8889	44
18	0.4431	0.4942	2.0233	0.8965	42	18	0.4586	0.5158	1.9388	0.8888	43
19	0.4433	0.4946	2.0219	0.8964	41	19	0.4589	0.5165	1.9361	0.8885	41
20	0.4436	0.4950	2.0204	0.8962	40	20	0.4592	0.5169	1.9347	0.8884	40
21	0.4439	0.4953	2.0189	0.8961	39	21	0.4594	0.5172	1.9333	0.8882	39
22	0.4441	0.4957	2.0174	0.8960	38	22	0.4597	0.5176	1.9319	0.8881	38
23	0.4444	0.4960	2.0160	0.8958	37	23	0.4599	0.5180		0.8879	37
24	0.4446	0.4964	2.0145	0.8957	36	24	0.4602	0.5184	1.9292	0.8878	36
25	0.4449	0.4968	2.0130	0.8956	35	25	0.4605	0.5187	1.9278	0.8877	35
26 27	0.4452	0.4971	2.0115	0.8955	34	26	0.4607	0.5191	1.9265	0.8875	34
28	0.4454	0.4975	2.0101	0.8953	33	27	0.4610	0.5195	1.9251	0.8874	33
29	0.4457	0.4979	2.0072	0.8952	32	28 29	0.4612	0.5198	1.9237	0.8873	32
30	0.4462	0.4986	2.0057	0.8949	30	30	0.4615	0.5202	1.9223	0.8871	31
31	0.4465	0.4989	2.0042	0.8948	29	31	0.4620	0.5206	1.9210	0.8870	30
32	0.4467	0.4993	2.0028	0.8947	28	32	0.4623	0.5213	1.9183	0.8867	28
33	0.4470	0.4997	2.0013	0.8945	27	33	0.4625	0.5217	1.9169	0.8866	27
34	0.4472	0.5000	1.9999	0.8944	26	34	0.4628	0.5220	1.9155	0.8865	26
35	0.4475	0.5004	1.9984	0.8943	25	35	0.4630	0.5224	1.9142	0.8863	25
36 37	0.4478	0.5008	1.9970	0.8942	24	36	0.4633	0.5228	1.9128	0.8862	24
38	0.4480	0.5011	1.9955	0.8940	23	37	0.4636	0.5232	1.9115	0.8861	23
39	0.4483	0.5015	1.9941	0.8939	22 21	38 39	0.4638	0.5235	1.9101	0.8859	22
40	0.4488	0.5022	1.9912	0.8936	20	40	0.4641	0.5239	1.9088	0.8858	21
41	0.4491	0.5026	1.9897	0.8935	19	41	0.4643	0.5243	1.9074	0.8857	20
42	0.4493	0.5029	1.9883	0.8934	18	42	0.4648	0.5246	1.9061	0.8855 0.8854	19
43	0.4496	0.5033	1.9868	0.8932	17	43	0.4651	0.5254	1.9047	0.8853	18 17
44	0.4498	0.5037	1.9854	0.8931	16	44	0.4654	0.5258	1.9020	0.8851	16
45	0.4501	0.5040	1.9840	0.8930	15	45	0.4656	0.5261	1.9007	0.8850	13
46	0.4504	0.5044	1.9825	0.8928	14	46	0.4659	0.5265	1.8993	0.8849	14
48	0.4506	0.5048	1.9811	0.8927	13	47	0.4661	0.5269	1.8980	0.8847	13
49	0.4509	0.5051	1.9797	0.8926	12	48	0.4664	0.5272	1.8967	0.8846	12
50	0.4511	0.5055	1.9782	0.8925	11	49	0.4666	0.5276	1.8953	0.8844	11
51	0.4517	0.5062	1.9754	0.8923	10	50 51	0.4669	0.5280	1.8940	0.8843	10
52	0.4519	0.5066	1.9740	0.8921	8	52	0.4672	0.5284	1.8927	0.8842	9
53	0.4522	0.5070	1.9725	0.8919	7	53	0.4677	0.5291	1.8900	0.8840	8
53 54 55	0.4524	0.5073	1.9711	0.8918	6	54	0.4679	0.5295	1.8887	0.8838	6
55	0.4527	0.5077	1.9697	0.8917	5	55	0.4682	0.5298	1.8873	0.8836	_6
56	0.4530	0.5081	1.9683	0.8915	4	56	0.4684	0.5302	1.8860	0.8835	A
57 58	0.4532	0.5084	1.9669	0.8914	3	57	0.4687	0.5306	1.8847	0.8834	3
50	0.4545	0.5088	1.9654	0.8913	2	58	0.4690	0.5310	1.8834	0.8832	2
59 60	0.4537	0.5092	1.9640	0.8911		59	0.4692	0.5313	1.8820	0.8831	1
-	0.4540 Cos	0.5095 Cot	1.9626	0.8910	0	60	0.4695	0.5317	1.8807	0.8829	0
	200	COL	Tan	Sin			Cos	Cot	Tan	Sin	7
	 511	_			63°l						520

28°	•			rai III	gon	29°		unetto	ns		
	Sin	Tan	Cot	Cos		,	Sin	lan	Cot	Cos	_
0	0.4695	0.5317	1.8807	0.8829	60	0	0.4848	0.5543	1.8040	0.8746	60
1	0.4697	0.5321	1.8794	0.8828	59	1	0.4851	0.5547	1.8028	0.8745	59
2	0.4700	0.5325	1.8781	0.8827	58	2	0.4853	0.5551	1.8016	0.8743	58
4	0.4702	0.5328	1.8768	0.8825	57	3	0.4856	0.5555	1.8003	0.8742	57
5	0.4705	0.5332	1.8755	0.8824	56	$\frac{4}{5}$	0.4858	0.5558	1.7991	0.8741	56
6	0.4708	0.5336	1.8741	0.8823	55	5	0.4861	0.5562	1.7979	0.8739	55
7	0.4713	0.5340	1.8715	0.8820	54 53	6	0.4863	0.5566	1.7966	0.8738	54
8	0.4715	0.5347	1.8702	0.8819	52	8	0.4868	0.5570	1.7954	0.8736	53
9	0.4718	0.5351	1.8689	0.8817	51	9	0.4871	0.5574 9.5577	I.7942 I.7930	0.873 5 0.8733	52 51
10	0.4720	0.5354	1.8676	0.8816	50	10	0.4874	0.5581	1.7917	0.8732	50
11	0.4723	0.5358	1.8663	0.8814	49	11	0.4876	0.5585	1.7905	0.8731	49
12	0.4726	0.5362	1.8650	0.8813	48	12	0.4879	0.5589	1.7893	0.8729	48
13	0.4728	0.5366	1.8637	0.8812	47	13	0.4881	0.5593	1.7881	0.8728	47
14	0.4731	0.5369	1.8624	0.8810	46	14	0.4884	0.5596	1.7868	0.8726	46
15	0.4733	0.5373	1.8611	0.8809	45	15	0.4886	0.5600	1.7856	0.8725	45
16	0.4736	0.5377	1.8598	0.8808	44	16	0.4889	0.5604	1.7844	0.8724	44
17	0.4738	0.5381	1.8585	0.8806	43	17	0.4891	0.5608	1.7832	0.8722	43
18	0.4741	0.5384	1.8572	0.8805	42	18	0.4894	0.5612	1.7820	0.8721	42
19	0.4743	0.5388	1.8559	0.8803	41	19	0.4896	0 5616	1.7808	0.8719	41
20	0.4746	0.5392	1.8546	0.8802	40	20	0.4899	0.5619	1.7796	0.8718	40
21	0.4749	0.5396	1.8533	0.8801	39	21	0.4901	0.5623	1.7783	0.8716	39
22 23	0.4751	0.5399	1.8520	0.8799	38 37	22 23	0.4904	0.5627	1.7771	0.8715	38
24	0.4754	0.5403	1.8507 1.8495	0.8798	36	24	0.4907	0.5631 $0.563\overline{5}$	1.7759	0.8714	37 36
$\frac{24}{25}$	0.4756	0.5407	1.8482	0.8795	35	25	0.4909	0.5639	1.7747	0.8711	35
26	0.4759 0.4761	0.5411	1.8469	0.8794	34	26	0.4912	0.5642	1.7735	0.8709	34
27	0.4764	0.5418	1.8456	0.8792	33	27	0.4917	0.5646	1.7711	0.8708	33
28	0.4766	0.5422	1.8443	0.8791	32	28	0.4919	0.5650	1.7699	0.8706	32
29	0.4769	0.5426	1.8430	0.8790	31	29	0.4922	0.5654	1.7687	0.8705	31
30	0.4772	0.5430	1.8418	0.8788	30	30	0.4924	0.5658	1.7675	0.8704	30
31	0.4774	0.5433	1.8405	0.8787	29	31	0.4927	0.5662	1.7663	0.8702	29
32	0.4777	0.5437	1.8392	0.8785	28	32	0.4929	0.5665	1.7651	0.8701	28
33	0.4779	0.5441	1.8379	0.8784	27	33	0.4932	0.5669	1.7639	0.8699	27
34	0.4782	0.5445	1.8367	0.8783	26	34	0.4934	0.5673	1.7627	0.8698	26
35	0.4784	0.5448	1.8354	0.8781	25	35	0.4937	0.5677	1.7615	0.8696	25
36	0.4787	0.5452	1.8341	0.8780	24	36 37	0.4939	0.5681	1.7603	0.8695	24 23
37	0.4789	0.5456	1.8329	0.8778	23 22	38	0.4942	0.5685	1.7591	0.8692	22
38 39	0.4792	0.5460	1.8316 1.8303	0.8776	21	39	0.4944	0.5692	1.7567	0.8691	21
40	0.4795	0.5464	1.8291	0.8774	20	40	0.4950	0.5696	1.7556	0.8689	20
41	0.4797 0.4800	0.5467 0.5471	1.8278	0.8773	19	41	0.4952	0.5700	1.7544	0.8688	19
42	0.4802	0.5475	1.8265	0.8771	18	42	0.4955	0.5704	1.7532	0.8686	18
43	$0.480\overline{5}$	0.5479	1.8253	0.8770	17	43	0.4957	0.5708	1.7520	0.8685	17
44	0.4807	0.5482	1.8240	0.8769	16	44	0.4960	0.5712	1.7508	0.8683	16
45	0.4810	0.5486	1.8228	0.8767	15	45	0.4962	0.5715	1.7496	0.8682	15
46	0.4812	0.5490	1.8215	0.8766	14	46	0.4965	0.5719	1.7485	0.8681	14
47	0.4815	0.5494	1.8202	0.8764	13	47	0.4967	0.5723	1.7473	0.8679	13
48	0.4818	0.5498	1.8190	0.8763	12	48	0.4970	0.5727	1.7461	0.8678	12
49	0.4820	0.5501	1.8177	0.8762	11	49	0.4972	0.5731	1.7449	0.8676	10
50	0.4823	0.5505	1.8165	0.8760	10	50	0.4975	0.5735	1.7437	0.8675	9
51	0.4825	0.5509	1.8152	0.8759	9	51 52	0.4977	0.5739	1.7426	0.8672	8
52	0.4828	0.5513	1.8140	0.8757	8 7	53	0.4980 0.4982	0.5743	1.7402	0.8670	7
53	0.4830	0.5517	1.8127	0.8756 $0.875\overline{5}$	6	54	0.4985	0.5750	1.7391	0.8669	6
54	0.4833	0.5520	1.8115	0.8753	5	55	0.4987	0.5754	1.7379	0.8668	5
55	0.4835	0.5524	1.8103	0.8752	4	56	0.4990	0.5758	1.7367	0.8666	4
56	0.4838	0.5528	1.8078	0.8750	3	57	0.4992	0.5762	1.7355	0.8665	3
57	0.4840	0.5532	1.8065	0.8749	2	58	0.4995	0.5766	1.7344	0.8663	2
58 59	0.4843	0.5535 0.5539	1.8053	0.8748	1	59	0.4997	0.5770	1.7332	0.8662	1
60	0.4848	0.5543	1.8040	0.8746	0	60	0.5000	0.5774	1.7321	0.8660	0
90	Cos	Cot	Tan	Sin	,		Cos	Cot	Tan	Sin	100
	000	- Cot			61°					-10	60°
									_	512 —	

30)°				_	131	0				
7	Sin	Tan	Cot	Cos		7	Sin	1 Tan	Cot	Cos	T
0	0.5000	0.5774	1.7321	0.8660	60	0	0.5150	0.6009			60
1	0.5003		1.7309	0.8659	59	1	0.5153	0.6013	1.6632	0.8570	59
2	0.5005		1.7297	0.8657	58	2	0.5155		1.6621	0.8569	58
3			1.7286	0.8656	57	3	0.5158				57
5	0.5010		1.7274	0.8654	56	4				0.8566	56
			1.7262	0.8653	55	5	0 0		1.6588	0.8564	55
6	0.5015		1.7251	0.8652 0.8650	54	7	0.5165		1.6577	0.8563	54
8	0.5018		1.7239	0.8649	53	8	0.5168	0.6036	1.6566	0.8561	53
9	0.5023		1.7216	0.8647	51) š	0.5170		1.6555	0.8560	52
10		_	1.7205	0.8646	-	10	0.5173		1.6545	0.8558	51
11	0.5028		1.7193	0.8644		11	0.5175		1.6534 1.6523	0.8557	50 49
12	0.5030		1.7182	0.8643	48	12	0.5180	0.6056	1.6512	0.8555 0.8554	48
13	0.5033	0.5824	1.7170	0.8641	47	13	0.5183	0.6060	1.6501	0.8552	47
14	0.5035		1.7159	0.8640	46	14	0.5185	0.6064	1.6490	0.8551	46
15	0.5038	0.5832	1.7147	0.8638	45	15	0.5188	0.6068	1.6479	0.8549	45
16	0.5040		1.7136	0.8637	44	16	0.5190	0.6072	1.6469	0.8548	44
17	0.5043	0.5840	1.7124	0.8635	43	17	0.5193	0.6076	1.6458	0.8546	43
18	0.5045	0.5844	1.7113	0.8634	42	18	0.5195	0.6080	1.6447	0.8545	42
19	0.5048	0.5847	1.7102	0.8632	41	19	0.5198	0.6084	1.6436	0.8543	41
20	0.5050	0.5851	1.7090	0.8631	40	20	0.5200	0.6088	1.6426	0.8542	40
21	0.5053	0.5855	1.7079	0.8630	39	21	0.5203	0.6092	1.6415	0.8540	
22	0.5055	0.5859	1.7067	0.8628	38	22	0.5205		1.6404	0.8539	38
23	0.5058	0.5863	1.7056	0.8627	37	23	0.5208	0.6100	1.6393	0.8537	37
24	0.5060	0.5867	1.7045	0.8625	36	24	0.5210	0.6104	1.6383	0.8536	36
25	0.5063	0.5871	1.7033	0.8624	35	25	0.5213	0.6108	1.6372	0.8534	35
26	0.5065		1.7022	0.8622	34	26	0.5215	0.6112	1.6361	0.8532	34
27	0.5068	0.5879	1.7011	0.8621	33	27	0.5218	0.6116	1.6351	0.8531	33
28	0.5070	0.5883	1.6999	0.8619	32	28	0.5220	0.6120	1.6340	0.8529	32
29	0.5073	0.5887	1.6988	0.8618	31	29	0.5223	0.6124	1.6329	0.8528	31
30 31	0.5075	0.5890	1.6977	0.8616	30	30	0.5225	0.6128	1.6319	0.8526	30
32	0.5078	0.5894	1.6965	0.8615	29	31	0.5227	0.6132	1.6308	0.8525	29
33	0.5080	0.5898	1.6954	0.8613	28	32	0.5230	0.6136	1.6297	0.8523	28
34	0.5083	0.5902	1.6943 1.6932	0.8612	27 26	33	0.5232	0.6140	1.6287	0.8522	27
35	0.5088	0.5910	1.6920		25	34	0.5235	0.6144	1.6276	0.8520	26
36	0.5090	0.5914	1.6909	0.8609	24	35 36	0.5237	0.6148	1.6265	0.8519	
37	0.5093	0.5918	1.6898	0.8606	23	37	0.5240	0.6152	1.6255	0.8517	24
38	0.5095	0.5922	1.6887	0.8604	22	38	0.5242	0.6156	1.6244	0.8516	23
39	0.5098	0.5926	1.6875	0.8603	21	39	0.5247	0.6164	1.6234	0.8514	22
40	0.5100	0.5930	1.6864	0.8601	20	40	0.5250	0.6168		0.8513	
41	0.5103	0.5934	1.6853	0.8600	19	41	0.5252	0.6172	1.6212	0.8511	20
42	0.5105	0.5938	1.6842	0.8599	18	42	0.5255	0.6176	1.6191	0.8510	19
43	0.5108	0.5942	1.6831	0.8597	17	43	0 5257	C.6180	1.6181	0.8507	17
44	0.5110	0.5945	1.6820	0.8596	16	44	0 5260	0.6184	1.6170	0.8505	16
45	0.5113	0.5949	1.6808	0.8594	15	45	0.5262	0.6188	1.6160	0.8504	15
46	0.5115	0.5953	1.6797	0.8593	14	46	0.5265	0.6192	1.6149	0.8502	14
47	0.5118	0.5957	1.6786	0.8591	13	47	0.5267	0.6196	1.6139	0.8500	13
48	0.5120	0.5961	1.6775	0.8590	12	48	0.5270	0.6200	1.6128	0.8499	12
49 50	0.5123	0.5965	1.6764	0.8588	11	49	0.5272	0.6204	1.6118	0.8497	11
51	0.5125	0.5969	1.6753	0.8587	10	50	0.5275	0.6208	1.6107	0.8496	10
52	0.5128	0.5973	1.6742	0.8585	9	51	0.5277	0.6212	1.6097	0.8494	9
53	0.5130	0.5977	1.6731	0.8584	8	52	0.5279	0.6216	1.6087	0.8493	8
53 54	0.5133	0.5981	1.6720	0.8582	7	53	0.5282	0.6220	1.6076	0.8491	7
55	0.5135	0.5985	1.6709	0.8581	_6	54	0.5284	0.6224	1.6066	0.8490	6
56	0.5138	0.5989	1.6698	0.8579	5	55	0.5287	0.6228	1.6055	0.8488	- 5
57	0.5140	0.5993	1.6687	0.8578	4	56	0.5289	0.6233	1.6045	0.8487	4
58	0.5145	0.5997 0.6001	1.6676	0.8576	3	57	0.5292	0.6237	1.6034	0.8485	3
59	0.5148	0.6005	1.6654	0.8575	2	58	0.5294	0.6241	1.6024	0.8484	2
59 60	0.5150	0.6009	1.6643	0.8573	$\frac{1}{0}$	59	0.5297	0.6245	1.6014	0.8482	_ 1
-	Cos	Cot	Tan	0.8572 Sin	Ÿ	60	0.5299	0.6249	1.6003	0.8480	0
		1701	- 411	oin I			Cos	Cot	Tan	Sin	1
	-513	_			59°						58°
	0.0										

32°			· ivata		Son	33°	etric r	unctio	ns		
-	Sin	Tan	Cot	Cos		,	Sin	lan	Cot	Cos	1
0	0.5299	0.6249	1.6003	0.8480	60	0	0.5446	0.6494	1.5399	0.8387	60
1	0.5302	0.6253	1.5993	0.8479	59	1	0.5449	0.6498	1.5389	0.8385	59
2	0.5304	0.6257	1.5983	0.8477	58	2	0.5451	0.6502	1.5379	0.8384	58
4	0.5307	0.6265	1.5972 1.5062	0.8476	57 56	3 4	0.5454	0.6506	1.5369	0.8382	57
5	0.5312	0.6269	1.5952	0.8473	55	5	0.5456	0.6511	1.5359	0.8380	56
6	0.5314	0.6273	1.5941	0.8471	54	6	0.5459 0.5461	0.6515	1.5350	0.8379	55 54
7	0.5316	0.6277	1.5931	0.8470	53	7	0.5463	0.6523	1.5330	0.8376	53
8	0.5319	0.6281	1.5921	0.8468	52	8	0.5466	0.6527	1.5320	0.8374	52
9	0.5321	0.6285	1.5911	0.8467	51	9	0.5468	0.6531	1.5311	0.8372	51
10	0.5324	0.6289	1.5900	0.8465	50	10	0.5471	0.6536	1.5301	0.8371	50
11 12	0.5326	0.6293	1.5890 1.5880	0.8463	49 48	11 12	0.5473	0.6540	1.5291	0.8369	49
13	0.5329	0.6301	1.5869	0.8460	47	13	0.5476	0.6544	1.5282	0.8368	48 47
14	0.5334	0.6305	1.5859	0.8459	46	14	0.5480	0.6552	I.5272 I.5262	0.8366	46
15	0.5336	0.6310	1.5849	0.8457	45	15	0.5483	0.6556	1.5253	0.8363	45
16	0.5339	0.6314	1.5839	0.8456	44	16	0.5485	0.6560	1.5243	0.8361	44
17	0.5341	0.6318	1.5829	0.8454	43	17	0.5488	0.6565	1.5233	0.8360	43
18	0.5344	0.6322	1.5818	0.8453	42	18	0.5490	0.6569	1.5224	0.8358	42
19	0.5346	0.6326	1.5808	0.8451	41	19	0.5493	0.6573	1.5214	0.8356	41
20 21	0.5348	0.6330	1.5798	0.8450	40 39	20 21	0.5495	0.6577	1.5204	0.8355	40
22	0.5351	0.6334 0.6338	1.5788 1.5778	0.8448 0.8446	38	22	0.5498	0.6581	1.5195	0.8353	39
23	0.5356	0.6342	1.5768	0.8445	37	23	0.5502	0.6590	1.5175	0.8350	37
24	0.5358	0.6346	1.5757	0.8443	36	24	0.5505	0.6594	1.5166	0.8348	36
25	0.5361	0.6350	1.5747	0.8442	35	25	0.5507	0.6598	1.5156	0.8347	35
26	0.5363	0.6354	1.5737	0.8440	34	26	0.5510	0.6602	1.5147	0.8345	34
27	0.5366	0.6358	1.5727	0.8439	33	27	0.5512	0.6606	1.5137	0.8344	33
28	0.5368	0.6363	1.5717	0.8437	32	28 29	0.5515	0.6610	1.5127	0.8342	32
29 30	0.5371	0.6367	1.5707	0.8435	31	30	0.5517	0.6615	1.5118	0.8340	30
31	0.5373 0.5375	0.6371	1.5697	0.8434	29	31	0.5519	0.6623	1.5099	0.8337	29
32	0.5378	0.6379	1.5677	0.8431	28	32	0.5524	0.6627	1.5089	0.8336	28
33	0.5380	0.6383	1.5667	0.8429	27	33	0.5527	0.6631	1.5080	0.8334	27
34	0.5383	0.6387	1.5657	0.8428	_26_	34	0.5529	0.6636	1.5070	0.8332	26
35	0.5385	0.6391	1.5647	0.8426	25	35	0.5531	0.6640	1.5061	0.8331	25
36	0.5388	0.6395	1.5637	0.8425	24	36	0.5534	0.6644 0.6648	1.5051	0.8329	24 23
37	0.5390	0.6399	1.5627 1.5617	0.8423	23 22	37 38	0.5536	0.6652	1.5042	0.8326	22
38 39	0.5393	0.6403 0.6408	1.5607	0.8420	21	39	0.5541	0.6657	1.5023	0.8324	21
40	0.5395	0.6412	1.5597	0.8418	20	40	0.5544	0.6661	1.5013	0.8323	20
41	0.5400	0.6416	1.5587	0.8417	19	41	0.5546	0.6665	1.5004	0.8321	19
42	0.5402	0.6420	1.5577	0.8415	18	42	0.5548	0.6669	1.4994	0.8320	18
43	0.5405	0.6424	1.5567	0.8414	17	43	0.5551	0.6673	1.4985	0.8318	17 16
44	0.5407	0.6428	1.5557	0.8412	16	44	0.5553	0.6678	1.4975	0.8316	15
45	0.5410	0.6432	1.5547	0.8410	15 14	45 46	0.5556 0.5558	0.6686	1.4957	0.8313	14
46	0.5412	0.6436	1.5537	0.8409	13	47	0.5561	0.6690	1.4947	0.8311	13
47 48	0.5415	0.6440	1.5527	0.8406	12	48	0.5563	0.6694	1.4938	0.8310	12
49	0.5417	0.6449	1.5507	0.8404	11	49	0.5565	0.6699	1.4928	0.8308	11
50	0.5422	0.6453	1.5497	0.8403	10	50	0.5568	0.6703	1.4919	0.8307	10
51	0.5424	0.6457	1.5487	0.8401	9	51	0.5570	0.6707	1.4910	0.8305	8
52	0.5427	0.6461	1.5477	0.8399	8	52	0.5573	0.6711	1.4900	0.8303	7
53	0.5429	0.6465	1.5468	0.8398	7	53 54	0.5575	0.6715	1.4882	0.8300	6
54	0.5432	0.6469	1.5458	0.8396	$\frac{6}{5}$	55	0.5577 0.5580	0.6724	1.4872	0.8298	5
55	0.5434	0.6473	1.5448	0.8395	4	56	0.5582	0.6728	1.4863	0.8297	4
56	0.5437	0.6478	1.5438	0.8393	3	57	0.5585	0.6732	1.4854	0.8295	3
57 58	0.5439	0.6482	1.5418	0.8390	2	58	0.5587	0.6737	1.4844	0.8294	2
59	0.5442	0.6490	1.5408	0.8388	1	59	0.5590	0.6741	1.4835	0.8292	1
60	0.5446	0.6494	1.5399	0.8387	0	60	0.5592	0.6745	1.4826	0.8290 Sin	ļ.,
-	Cos	Cot	Tan	Sin	1		Cos	Cot	Tan		56°
					57°				_	514 —	J

34	0				•	35°	•				
-	Sin	Tan	Cot	Cos		1	Sin	Tan	Cot	Cos	
0	0.5592	0.6745	1.4826	0.8290	60	0	0.5736	0.7002	1.4281	0.8192	60
1	0.5594	0.6749	1.4816	0.8289	59	1	0.5738	0.7006	1.4273	0.8190	59
2	0.5597	0.6754	1.4807	0.8287	58	2	0.5741	0.7011	1.4264	0.8188	58
3	0.5599		1.4798	0.8285	57	3	0.5743	0.7015	1.4255	0.8187	57
5	0.5602		1.4788	0.8284	56	4	0.5745	0.7019	1.4246	0.8185	56
	0.5604	0.6766	1.4779	0.8282	55	5	0.5748	0.7024	1.4237	0.8183	55
6	0.5606	0.6771	1.4770	0.8281	54	6	0.5750	0.7028	1.4229	0.8181	54
7	0.5609	0.6775	1.4761	0.8279	53	7	0.5752	0.7032	1.4220	0.8180	53
8	0.5611	0.6779	1.4751	0.8277	52 51	8 9	0.5755	0.7037	1.4211	0.8178	52
10	0.5614	0.6783	1.4742	0.8276			0.5757	0.7041	1.4202	0.8176	51
	0.5616	0.6787	1.4733	0.8274	50 49	10 11	0.5760	0.7046	1.4193	0.8175	50
11 12	0.5618	0.6792	1.4724	0.8272	48	12	0.5762	0.7050	1.4185	0.8173	49
13	0.5623	0.6800	1.4715	0.8269	47	13	0.5764	0.7054	1.4176	0.8171	48
14	0.5626	0.6805	1.4696	0.8268	46	14	0.5769	0.7059	1.4167	0.8170	47
15	0.5628	0.6809	1.4687	0.8266	45	15	0.5771	0.7067	1.4158	0.8168	46
16	0.5630	0.6813	1.4678	0.8264	44	16	0.5774		1.4150	0.8166	45
17	0.5633	0.6817	1.4669	0.8263	43	17	0.5776	0.7072	1.4141	0.8163	44 43
18	0.5635	0.6822	1.4659	0.8261	42	18	0.5779	0.7080	1.4132	0.8161	42
19	0.5638	0.6826	1.4650	0.8259	41	19	0.5781	0.7085	1.4115	0.8160	41
20	0.5640	0.6830	1.4641	0.8258	40	20	0.5783	0.7089	1.4106	0.8158	40
21	0.5642	0.6834	1.4632	0.8256	39	21	0.5786	0.7094	1.4097	0.8156	39
22	0.5645	0.6839	1.4623	0.8254	38	22	0.5788	0.7098	1.4089	0.8155	38
23	0.5647	0.6843	1.4614	0.8253	37	23	0.5790	0.7102	1.4080	0.8153	37
24	0.5650	0.6847	1.4605	0.8251	36	24	0.5793	0.7107	1.4071	0.8151	36
25	0.5652	0.6851	1.4596	0.8249	35	25	0.5795	0.7111	1.4063	0.8150	35
26	0.5654	0.6856	1.4586	0.8248	34	26	0.5798	0.7115	1.4054	0.8148	34
27	0.5657	0.6860	1.4577	0.8246	33	27	0.5800	0.7120	1.4045	0.8146	33
28	0.5659	0.6864	1.4568	0.8245	32	28	0.5802	0.7124	1.4037	0.8145	32
29	0.5662	0.6869	1.4559	0.8243	31	29	0.5805	0.7129	1.4028	0.8143	31
30	0.5664	0.6873	1.4550	0.8241	30	30	0.5807	0.7133	1.4019	0.8141	30
31	0.5666	0.6877	1.4541	0.8240	29	31	0.5809	0.7137	1.4011	0.8139	29
32 33	0.5669	0.6881	1.4532	0.8238	28	32	0.5812	0.7142	1.4002	0.8138	28
34	0.5671	0.6886	1.4523	0.8236	27	33	0.5814	0.7146	1.3994	0.8136	27
35	0.5674	0.6890	1.4514	0.8235	26	34	0.5816	0.7151	1.3985	0.8134	26
36	0.5676 0.5678	0.6894	1.4505	0.8233	25 24	35 36	0.5819	0.7155	1.3976	0.8133	25
37	0.5681	0.6903	1.4496	0.8231	23	37	0.5821	0.7159	1.3968	0.8131	24
38	0.5683	0.6907	1.4478	0.8238	22	38	0.5824	0.7164	1.3959	0.8129	23
39	0.5686	0.6911	1.4469	0.8226	21	39	0.5828	0.7168	1.3951	0.8128	22
40	0.5688	0.6916	1.4460	0.8225	20	40	0.5831	0.7173	1.3942	0.8126	21
41	0.5690	0.6920	1.4451	0.8223	19	41	0.5833	0.7177	1.3934	0.8124	20
42	0.5693	0.6924	1.4442	0.8221	18	42	0.5835	0.7181	1.3925	0.8123	19
43	0.5695	0.6929	1.4433	0.8220	17	43	0.5838	0.7190	1.3916	0.8121	18
44	0.5698	0.6933	1.4424	0.8218	16	44	0.5840	0.7195	1.3908	0.8119	17
45	0.5700	0.6937	1.4415	0.8216	15	45	0.5842	0.7199	1.3891		16
46	0.5702	0.6942	1.4406	0.8215	14	46	0.5845	0.7203	1.3882	0.8116	15
47	0.5705	0.6946	1.4397	0.8213	13	47	0.5847	0.7208	1.3874	0.8114	14
48	0.5707	0.6950	1.4388	0.8211	12	48	0.5850	0.7212	1.3865	0.8111	13 12
49	0.5710	0.6954	1.4379	0.8210	11	49	0.5852	0.7217	1.3857	0.8109	11
00	0.5712	0.6959	1.4370	0.8208	10	50	0.5854	0.7221	1.3848	0.8107	10
51	0.5714	0.6963	1.4361	0.8207	9	51	0.5857	0.7226	1.3840	0.8107	9
52	0.5717	0.6967	1.4352	0.8205	8	52	0.5859	0.7230	1.3831	0.8104	8
53	0.5719	0.6972	1.4344	0.8203	7	53	0.5861	0.7234	1.3823	0.8102	7
<u>54</u> <u>55</u>	0.5721	0.6976	1.4335	0.8202	_6	54	0.5864	0.7239	1.3814	0.8100	6
22	0.5724	0.6980	1.4326	0.8200	5	55	0.5866	0.7243	1.3806	0.8099	$\frac{3}{5}$
56 57	0.5726	0.6985	1.4317	0.8198	4	56	0.5868	0.7248	1.3798	0.8097	4
58	0.5729	0.6989	1.4308	0.8197	3	57	0.5871	0.7252	1.3789	0.8095	3
59	0.5731	0.6993	1.4299	0.8195	2	58	0.5873	0.7257	1.3781	0.8094	2
60	0.5733	0.6998	1.4290	0.8193	<u></u>	59	0.5875	0.7261	1.3772	0.8092	1
10	0.5736	0.7002	1.4281	0.8192	0	60	0.5878	0.7265	1.3764	0.8090	0
	Cos	Cot	Tan	Sin	·		Cos	Cot	Tan	Sin	7
	- 515				55°						4°

_						379					
	Sin	Tan	Cot	Cos		<u>'</u>	Sin	Tan	Cot	Cos	T
0	0.5878	0.7265	1.3764	0.8090	60	0	0.6018	0.7536	1.3270	0.7986	6
2	0.5880	0.7270	1.3755	0.8088	59	1	0.6020	0.7540	1.3262	0.7985	5
3	0.5885	0.7274 0.7279	1.3747	0.8087	58 57	3	0.6023	0.7545	1.3254	0.7983	5
4	0.5887	0.7283	1.3739	0.8083	56	4	0.6025	0.7549	1.3246	0.7981	5
5	0.5890	0.7288	1.3722	0.8082	55	$\frac{4}{5}$		0.7554	1.3238	0.7979	5
6	0.5892	0.7292	1.3713	0.8080	54	6	0.6030	0.7558	1.3230	0.7978	5
7	0.5894	0.7297	1.3705	0.8078	53	7	0.6034	0.7568	1.3222	0.7976	5 5
8	0.5897	0.7301	1.3697	0.8076	52	8	0.6037	0.7572	1.3206	0.7974	5
9	0.5899	0.7306	1.3688	0.8075	51	9	0.6039	0.7577	1.3198	0.7971	5
10	0.5901	0.7310	1.3680	0.8073	50	10	0.6041	0.7581	1.3190	0.7969	5
11	0.5904	0.7314	1.3672	0.8071	49	11	0.6044	0.7586	1.3182	0.7967	4
12	0.5906	0.7319	1.3663	0.8070	48	12	0.6046	0.7590	1.3175	0.7965	4
13 14	0.5908	0.7323	1.3655	0.8068	47	13	0.6048	0.7595	1.3167	0.7964	4
15	0.5911	0.7328	1.3647	0.8066	46	14	0.6051	0.7600	1.3159	0.7962	4
16	0.5913	0.7332	1.3638	0.8064	45 44	15 16	0.6053	0.7604	1.3151	0.7960	4.
17	0.5915	0.7337 0.7341	1.3630	0.8061	43	17	0.6055	0.7609	1.3143	0.7958	4
18	0.5920	0.7346	1.3613	0.8059	42	18	0.6060	0.7613	1.3135	0.7956	4.
19	0.5922	0.7350	1.3605	0.8058	41	19	0.6062	0.7623	1.3127	0.7955	4:
20	0.5925	0.7355	1.3597	0.8056	40	20	0.6065	0.7627	1.3111	0.7953	40
21	0.5927	0.7359	1.3588	0.8054	39	21	0.6067	0.7632	1.3103	0.7949	39
22	0.5930	0.7364	1.3580	0.8052	38	22	0.6069	0.7636	1.3095	0.7948	38
23	0.5932	0.7368	1.3572	0.8051	37	23	0.6071	0.7641	1.3087	0.7946	3
24	0.5934	0.7373	1.3564	0.8049	36	24	0.6074	0.7646	1.3079	0.7944	30
25	0.5937	0.7377	1.3555	0.8047	35	25	0.6076	0.7650	1.3072	0.7942	33
26	0.5939	0.7382	1.3547	0.8045	34	26	0.6078	0.7655	1.3064	0.7941	3-
27	0.5941	0.7386	1.3539	0.8044	33	27	0.6081	0.7659	1.3056	0.7939	33
28	0.5944	0.7391	1.3531	0.8042	32	28	0.6083	0.7664	1.3048	0.7937	32
29	0.5946	0.7395	1.3522	0.8040	31	29	0.6085	0.7669	1.3040	0.7935	31
30	0.5948	0.7400	1.3514	0.8039	30	30	0.6088	0.7673	1.3032	0.7934	30
31	0.5951	0.7404	1.3506	0.8037	29 28	31 32	0.6090	0.7678	1.3024	0.7932	28
32 33	0.5953	0.7409	1.3498	0.8033	27	33	0.6092	0.7683	1.3017	0.7930	27
34	0.5955 0.5958	0.7413	1.3490	0.8032	26	34	0.6097	0.7692	1.3001	0.7926	26
35	0.5960	0.7422	1.3473	0.8030	25	35	0.6099	0.7696	1.2993	0.7925	25
36	0.5962	0.7427	1.3465	0.8028	24	36	0.6101	0.7701	1.2985	0.7923	24
37	0.5965	0.7431	1.3457	0.8026	23	37	0.6104	0.7706	1.2977	0.7921	23
38	0.5967	0.7436	1.3449	0.8025	22	38	0.6106	0.7710	1.2970	0.7919	22
39	0.5969	0.7440	1.3440	0.8023	21	39	0.6108	0.7715	1.2962	0.7918	21
40	0.5972	0.7445	1.3432	0.8021	20	40	0.6111	0.7720	1.2954	0.7916	20
41	0.5974	0.7449	1.3424	0.8019	19	41	0.6113	0.7724	1.2946	0.7914	19
42	0.5976	0.7454	1.3416	0.8018	18	42	0.6115	0.7729	1.2938	0.7912	18
43	0.5979	0.7458	1.3408	0.8016	17	43	0.6118	0.7734	1.2931	0.7910	17
14	0.5981	0.7463	1.3400	0.8014	16	44	0.6120	0.7738	1.2923	0.7909	15
15	0.5983	0.7467	1.3392	0.8013	15	45 46	0.6122	0.7743	1.2915	0.7907 0.7905	14
16	0.5986	0.7472	1.3384	0.8011	14 13	47	0.6124	0.7747	1.2907	0.7903	13
17	0.5988	0.7476	1.3375	0.8009	12	48	0.6129	0.7757	1.2892	0.7902	12
18 19	0.5990	0.7481	1.3367	0.8006	11	49	0.6131	0.7761	1.2884	0.7900	11
	0.5993	0.7485	1.3359	0.8004	10	50	0.6134	0.7766	1.2876	0.7898	10
50	0.5995	0.7490 0.7495	1.3351	0.8002	9	51	0.6136	0.7771	1.2869	0.7896	9
52	o.5997 o.6000	0.7499	1.3335	0.8000	8	52	0.6138	0.7775	1.2861	0.7894	8
3	0.6002	0.7504	1.3327	0.7999	7	53	0.6141	0.7780	1.2853	0.7893	7
54	0.6004	0.7508	1.3319	0.7997	_6	54	0.6143	0.7785	1.2846	0.7891	_6
55	0.6007	0.7513	1.3311	0.7995	- 5	55	0.6145	0.7789	1.2838	0.7889	5
66	0.6009	0.7517	1.3303	0.7993	4	56	0.6147	0.7794	1.2830	0.7887	4
7	0.6011	0.7522	1.3295	0.7992	3	57	0.6150	0.7799	1.2822	0.7885	2
8	0.6014	0.7526	1.3287	0.7990	2	58	0.6152	0.7803	1.2815	0.7884 0.7882	1
59	0.6016	0.7531	1.3278	0.7988	1	59	0.6154	0.7808	1.2807	0.7880	<u></u> -6
30	0.6018	0.7536	1.3270	0.7986	0	60	0.6157	0.7813	Tan	Sin	÷
	Cos	Cot	Tan	Sin	,		Cos	Cot	ian		52°

38	°				-0	39	0				
,	Sin	Tan	Cot	Cos			Sin	Tan	Cot	Cos	
0										0.7771	60
1	0.6159		1.2792	0.7878			0.6295			0.7770	59
3	0.6161	0.7822	1.2784		58 57	3			4. 4. 4	0.7768	58
4	0.6163		1.2776	0.7875	56					0.7766	57 56
5			1.2761	0.7871	55	5	0.6305			0.7764	55
6	0.6170		1.2753	0.7869		6	0 0				
7	0.6173		1.2746	0.7868		7	0.6309	0.8132	1.2298	0.7759	53
8	0.6175	0.7850	1.2738	0.7866	52	8	0.6311	0.8136	1.2290	0.7757	52
9	0.6177	0.7855	1.2731	0.7864		9	0.6314		1.2283	0.7755	51
10	0.6180		1.2723	0.7862	50	10	0.6316	0.8146	1.2276	0.7753	50
11	0.6182	0.7865	1.2715	0.7860	49	11	0.6318		1.2268	0.7751	49
12	0.6184		1.2708	0.7859	48	12	0.6320			0.7749	48
13 14	0.6186		1.2700	0.7857	47	13	0.6323	0.8161	1.2254	0.7748	47
15	0.6189	0.7879	1.2693	0.7855	46	14	0.6325	0.8165		0.7746	46
16	0.6191	0.7883 0.7888	1.2685	0.7853	45 44	15 16	0.6327	0.8170		0.7744	45
17	0.6196	0.7893	1.2670	0.7850	43	17	0.6329		1.2232	0.7742	44
18	0.6198	0.7898	1.2662	0.7848	42	18	0.6334	0.8185	1.2218	0.7740	42
19	0.6200	0.7902	1.2655	0.7846	41	19	0.6336	0.8190		0.7737	41
20	0.6202	0.7907	1.2647	0.7844		20	0.6338	0.8195		0.7735	40
21	0.6205	0.7912	1.2640	0.7842	39	21	0.6341	0.8199	1.2196	0.7733	39
22	0.6207	0.7916	1.2632	0.7841	38	22	0.6343	0.8204		0.7731	38
23	0.6209	0.7921	1.2624	0.7839	37	23	0.6345	0.8209	1.2181	0.7729	37
24	0.6211	0.7926	1.2617	0.7837	36	24	0.6347	0.8214	1.2174	0.7727	36
25	0.6214	0.7931	1.2609	0.7835	35	25	0.6350	0.8219	1.2167	0.7725	35
26 27	0.6216	0.7935	1.2602	0.7833	34	26	0.6352	0.8224	1.2160	0.7724	34
28	0.6221	0.7940	1.2594	0.7832	33	27 28	0.6354	0.8229	1.2153	0.7722	33
29	0.6223	0.7950	1.2579	0.7828	31	29	0.6356	0.8234	1.2145	0.7720	32
30	0.6225	0.7954	1.2572	0.7826	30	30	0.6361	0.8243	1.2138	0.7718	30
31	0.6227	0.7959	1.2564	0.7824	29	31	0.6363	0.8248	1.2131	0.7716	29
32	0.6230	0.7964	1.2557	0.7822	28	32	0.6365	0.8253	1.2117	0.7713	28
33	0.6232	0.7969	1.2549	0.7821	27	33	0.6368	0.8258	1.2109	0.7711	27
34	0.6234	0.7973	1.2542	0.7819	26	34	0.6370	0.8263	1.2102	0.7709	26
35	0.6237	0.7978	1.2534	0.7817	25	35	0.6372	0.8268	1.2095	0.7707	25
36 37	0.6239	0.7983	1.2527	0.7815	24	36	0.6374	0.8273	1.2088	0.7705	24
38	0.6241	0.7988	1.2519	0.7813	23	.37	0.6376	0.8278	1.2081	0.7703	23
39	0.6243	0.7992	1.2512	0.7812	22 21	38 39	0.6379	0.8283	1.2074	0.7701	22
40	0.6248	0.8002	1.2504	0.7808	20	40	0.6381	0.8287	1.2066	0.7700	21
41	0.6250	0.8007	1.2489	0.7806	19	41	0.6383	0.8292	1.2059	0.7698	20
42	0.6252	0.8012	1.2482	0.7804	18	42	0.6388	0.8302	1.2052	0.7696	19
43	0.6255	0.8016	1.2475	0.7802	17	43	0.6390	0.8307	1.2038	0.7692	17
44	0.6257	0.8021	1.2467	0.7801	16	44	0.6392	0.8312	1.2031	0.7690	16
45	0.6259	0.8026	1.2460	0.7799	15	45	0.6394	0.8317	1.2024	0.7688	15
46	0.6262	0.8031	1.2452	0.7797	14	46	0.6397	0.8322	1.2017	0.7687	14
47 48	0.6264	0.8035	1.2445	0.7795	13	47	0.6399	0.8327	1.2009	0.7685	13
49	0.6266	0.8040	1.2437	0.7793	12	48	0.6401	0.8332	1.2002	0.7683	12
50	0.6271	0.8045	1.2430	0.7792	11	49 50	0.6403	0.8337	1.1995	0.7681	11
51	0.6273	0.8055	1.2423	0.7790	9	51	0.6406	0.8342	1.1988	0.7679	10
52	0.6275	0.8059	1.2408	0.7786	8	52	0.6410	0.8346 0.8351	1.1981	0.7677	9
53	0.6277	0.8064	1.2401	0.7784	7	53	0.6412	0.8356	1.1974	0.7675	8
54	0.6280	0.8069	1.2393	0.7782	6	54	0.6414	0.8361	1.1960	0.7674	6
55	0.6282	0.8074	1.2386	0.7781	5	55	0.6417	0.8366	1.1953	0.7670	
56	0.6284	0.8079	1.2378	0.7779	4	56	0.6419	0.8371	1.1946	0.7668	4
57	0.6286	0.8083	1.2371	0.7777	3	57	0.6421	0.8376	1.1939	0.7666	3
58 59	0.6289	0.8088	1.2364	0.7775	2	58	0.6423	0.8381	1.1932	0.7664	2
60	0.6291	0.8093	1.2356	0.7773	1	59	0.6426	0.8386	1.1925	0.7662	1
-	0.6293	0.8098	1.2349	0.7771	0	60	0.6428	0.8391	1.1918	0.7660	O
	Cos	Cot	Tan	Sin			Cos	Cot	Tan	Sin	-
	517				51°					- 1	<u>50°</u>
	317										

40°		***	· Natu	iai iii	gon	41°		unctio	ns		
-	Sin	Tan	Cot	Cos			Sin	Tan	Cot	Cos	1
0	0.6428	0.8391	1.1918	0.7660	60	0	0.6561	0.8693	1.1504	0.7547	60
1	0.6430	0.8396	1.1910	0.7659	59	1	0.6563	0.8698	1.1497	0.7545	59
2	0.6432	0.8401	1.1903	0.7657	58	2	0.6565	0.8703	1.1490	0.7543	58
3	0.6435	0.8406	1.1896	0.7655	57	3	0.6567	0.8708	1.1483	0.7541	57
5	0.6437	0.8411	1.1889	0.7653	56	$\frac{4}{5}$	0.6569	0.8713	1.1477	0.7539	56
6	0.6439	0.8416	1.1882	0.7651	55 54	6	0.6572	0.8718	1.1470	0.7538	55
7	0.6441	0.8426	1.1868	0.7647	53	7	0.6574 0.6576	0.8724 0.8729	1.1463	0.7536	54 53
8	0.6446	0.8431	1.1861	0.7645	52	8	0.6578	0.8734	1.1456	0.7534	52
9	0.6448	0.8436	1.1854	0.7644	51	ğ	0.6580	0.8739	1.1443	0.7530	51
10	0.6450	0.8441	1.1847	0.7642	50	10	0.6583	0.8744	1.1436	0.7528	50
11	0.6452	0.8446	1.1840	0.7640	49	11	0.6585	0.8749	1.1430	0.7526	49
12	0.6455	0.8451	1.1833	0.7638	48	12	0.6587	0.8754	1.1423	0.7524	48
13	0.6457	0.8456	1.1826	0.7636	47	13	0.6589	0.8759	1.1416	0.7522	47
14	0.6459	0.8461	1.1819	0.7634	46	14	0.6591	0.8765	1.1410	0.7520	46
15	0.6461	0.8466	1.1812	0.7632	45	15	0.6593	0.8770	1.1403	0.7518	45
16	0.6463	0.8471	1.1806	0.7630	44	16	0.6596	0.8775	1.1396	0.7516	44
17	0.6466	0.8476	1.1799	0.7629	43	17	0.6598	0.8780	1.1389	0.7515	43
18	0.6468	0.8481	1.1792	0.7627	42	18	0.6600	0.8785	1.1383	0.7513	42
19	0.6470	0.8486	1.1785	0.7625	41	19	0.6602	0.8790	1.1376	0.7511	41
20	0.6472	0.8491	1.1778	0.7623	40 39	20 21	0.6604	0.8796 0.8801	1.1369	0.7509	39
21	0.6475	0.8496	1.1771	0.7621	38	22	0.6607	0.8806	1.1363	0.7507	38
22 23	0.6477	0.8501	1.1764	0.7617	37	23	0.6611	0.8811	1.1349	0.7505	37
24	0.6479 0.6481	0.8511	1.1757	0.7615	36	24	0.6613	0.8816	1.1343	0.7501	36
25	0.6483	0.8516	1.1743	0.7613	35	25	0.6615	0.8821	1.1336	0.7499	35
26	0.6486	0.8521	1.1736	0.7612	34	26	0.6617	0.8827	1.1329	0.7497	34
27	0.6488	0.8526	1.1729	0.7610	33	27	0.6620	0.8832	1.1323	0.7495	33
28	0.6490	0.8531	1.1722	0.7608	32	28	0.6622	0.8837	1.1316	0.7493	32
29	0.6492	0.8536	1.1715	0.7606	31	29	0.6624	0.8842	1.1310	0.7491	31
30	0.6494	0.8541	1.1708	0.7604	30	30	0.6626	0.8847	1.1303	0.7490	30
31	0.6497	0.8546	1.1702	0.7602	29	31	0.6628	0.8852	1.1296	0.7488	29
32	0.6499	0.8551	1.1695	0.7600	28	32	0.6631	0.8858	1.1290	0.7486	28 27
33	0.6501	0.8556	1.1688	0.7598	27	33	0.6633	o.8863 o.8868	1.1283	0.7484 0.7482	26
34	0.6503	0.8561	1.1681	0.7596	26	$\frac{34}{25}$	0.6635	0.8873	1.1270	0.7480	25
35	0.6506	0.8566	1.1674	0.7595	25 24	35 36	0.6637	0.8878	1.1263	0.7478	24
36	0.6508	0.8571	1.1667	0.7593	23	37	0.6641	0.8884	1.1257	0.7476	23
37 38	0.6510	0.8576 0.8581	1.1653	0.7591	22	38	0.6644	0.8889	1.1250	0.7474	22
39	0.6512	0.8586	1.1647	0.7587	21	39	0.6646	0.8894	1.1243	0.7472	21
40	0.6517	0.8591	1.1640	0.7585	20	40	0.6648	0.8899	1.1237	0.7470	20
41	0.6519	0.8596	1.1633	0.7583	19	41	0.6650	0.8904	1.1230	0.7468	19
42	0.6521	0.8601	1.1626	0.7581	18	42	0.6652	0.8910	1.1224	0.7466	18
43	0.6523	0.8606	1.1619	0.7579	17	43	0.6654	0.8915	1.1217	0.7464	17
44	0.6525	0.8611	1.1612	0.7578	16	44	0.6657	0.8920	1.1211	0.7463	16 15
45	0.6528	0.8617	1.1606	0.7576	15	45	0.6659	0.8925	1.1204	0.7461	14
46	0.6530	0.8622	1.1599	0.7574	14	46	0.6661	0.8931	1.1197	0.7459 0.7457	13
47	0.6532	0.8627	1.1592	0.7572	13	47	0.6663	0.8936	1.1184	0.7455	12
48	0.6534	0.8632	1.1585	0.7570	12	48 49	0.6667	0.8946	1.1178	0.7453	11
19	0.6536	0.8637	1.1578	0.7568	11 10	50	0.6670	0.8952	1.1171	0.7451	10
50	0.6539	0.8642	1.1571	0.7566	9	51	0.6672	0.8957	1.1165	0.7449	9
51	0.6541	0.8647	1.1565	0.7564	8	52	0.6674	0.8962	1.1158	0.7447	8
52	0.6543	0.8652	1.1558	0.7562 0.7560	7	53	0.6676	0.8967	1.1152	0.7445	7
53	0.6545	0.8657	1.1551	0.7559	6	54	0.6678	0.8972	1.1145	0.7443	_0
54	0.6547	0.8662	1.1544	0.7557	5	55	0.6680	0.8978	1.1139	0.7441	5
55	0.6550	0.8667	1.1538	0.7555	4	56	0.6683	0.8983	1.1132	0.7439	4
56 57	0.6552	0.8678	1.1524	0.7553	3	57	0.6685	0.8988	1.1126	0.7437	2
58	o.6554 o.6556	0.8683	1.1517	0.7551	2	58	0.6687	0.8994	1.1119	0.7435	1
59	0.6558	0.8688	1.1510	0.7549	1	59	0.6689	0.8999	1.1113	0.7433	$-\hat{\bar{\mathbf{o}}}$
60	0.6561	0.8693	1.1504	0.7547	0	60	0.6691	0.9004	1.1106	0.7431 Sin	-,-
<u></u>	Cos	Cot	Tan	Sin	,		Cos	Cot	Tak		48°
	200				49°				100	518 — [°]	20
										010	

42	0				0	143	•				
7	Sin	Tan	Cot	Сов	_[1	Sin	Tan	Cot	Cos	T
0			1.1106	0.7431	60	0	0.6820	1 /0 0	1.0724	0.7314	60
1	0.6693		1.1100	0.7430		1	0.6822	100	1.0717	0.7312	59
3	0.6696	, ,	1.1093	0.7428		2	0.6824	0.9336	1.0711	0.7310	58
4	0.6700		1.1087	0.7426	-	3 4	0.6826	0.9341	1.0705	0.7308	57
5	0.6702		1.1074	0.7424	55	5	0.0828	0.9347	1.0699	0.7306	56
6	0.6704	1	1.1067	0.7420	54	6	0.6833	0.9352	1.0692	0.7304	55 54
7	0.6706		1.1061	0.7418	53	7	0.6835	0.9363	1.0680	0.7302	53
8	0.6709	0.9046	1.1054	0.7416		8	0.6837	0.9369	1.0674	0.7298	52
9	0.6711	0.9052	1.1048	0.7414		9	0.6839	0.9374	1.0668	0.7296	51
10	0.6713		1.1041	0.7412	50	10	0.6841	0.9380	1.0661	0.7294	50
11	0.6715		1.1035	0.7410	49	11	0.6843	0.9385	1.0655	0.7292	49
13	0.6717	0.9067	1.1028	0.7408	48	12	0.6845	0.9391	1.0649	0.7290	48
14	0.6722	0.9078	1.1016	0.7406	46	13	0.6848 0.6850	0.9396	1.0643	0.7288	47
15	0.6724		1.1009	0.7402	45	15	0.6852	0.9402	1.0637	0.7286	46
16	0.6726	0.9089	1.1003	0.7400	44	16	0.6854	0.9407	1.0630	0.7284	44
17	0.6728	0.9094	1.0996	0.7398	43	17	0.6856	0.9418	1.0618	0.7280	43
18	0.6730	0.9099	1.0990	0.7396	42	18	0.6858	0.9424	1.0612	0.7278	42
19	0.6732	0.9105	1.0983	0.7394	41	19	0.6860	0.9429	1.0606	0.7276	41
20	0.6734	0.9110	1.0977	0.7392	40	20	0.6862	0.9435	1.0599	0.7274	40
21	0.6737	0.9115	1.0971	0.7390	39	21	0.6865	0.9440	1.0593	0.7272	39
22 23	0.6739	0.9121	1.0964	0.7388	38	22	0.6867	0.9446	1.0587	0.7270	38
24	0.6741	0.9126	1.0958	0.7387	37	23	0.6869	0.9451	1.0581	0.7268	37
25	0.6743	0.9131	1.0951	0.7385	36	24	0.6871	0.9457	1.0575	0.7266	36
26	0.6747	0.9137	1.0945	0.7383	35 34	25	0.6873	0.9462	1.0569	0.7264	35
27	0.6749	0.9147	1.0939	0.7381	33	26 27	0.6875	0.9468	1.0562	0.7262	34
28	0.6752	0.9153	1.0926	0.7377	32	28	0.6879	0.9473	1.0556	0.7260	33
29	0.6754	0.9158	1.0919	0.7375	31	29	0.6881	0.9484	1.0544	0.7258	31
30	0.6756	0.9163	1.0913	0.7373	30	30	0.6884	0.9490	1.0538	0.7254	30
31	0.6758	0.9169	1.0907	0.7371	29	31	0.6886	0.9495	1.0532	0.7252	29
32 33	0.6760	0.9174	1.0900	0.7369	28	32	0.6888	0.9501	1.0526	0.7250	28
34	0.6762	0.9179	1.0894	0.7367	27	33	0.6890	0.9506	1.0519	0.7248	27
35	0.6764	0.9185	1.0888	0.7365	26	34	0.6892	0.9512	1.0513	0.7246	26
36	0.6769	0.9190	1.0881	0.7363	25 24	35	0.6894	0.9517	1.0507	0.7244	25
37	0.6771	0.9201	1.0869	0.7361	23	36 37	o.6896 o.6898	0.9523	1.0501	0.7242	24
38	0.6773	0.9206	1.0862	0.7357	22	38	0.6900	0.9528	1.0495	0.7240	23
39	0.6775	0.9212	1.0856	0.7355	21	39	0.6903	0.9540	1.0483	0.7238	21
40	0.6777	0.9217	1.0850	0.7353	20	40	0.6905	0.9545	1.0477	0.7234	20
41	0.6779	0.9222	1.0843	0.7351	19	41	0.6907	0.9551	1.0470	0.7232	19
42 43	0.6782	0.9228	1.0837	0.7349	18	42	0.6909	0.9556	1.0464	0.7230	18
44	0.6784	0.9233	1.0831	0.7347	17	43	0.6911	0.9562	1.0458	0.7228	17
45	0.6788	0.9239	1.0824	0.7345	10	44	0.6913	0.9567	1.0452	0.7226	16
46	0.6790	0.9244	1.0818	0.7343	15 14	45	0.6915	0.9573	1.0446	0.7224	15
46	0.6792	0.9255	1.0805	0.7341	13	46 47	0.6917	0.9578	1.0440	0.7222	14
48	0.6794	0.9260	1.0799	0.7337	12	48	0.6921	0.9584	1.0434	0.7220	13
49	0.6797	0.9266	1.0793	0.7335	11	49	0.6924	0.9595	1.0428	0.7218	12 11
50	0.6799	0.9271	1.0786	0.7333	10	50	0.6926	0.9601	1.0416	0.7214	10
51	0.6801	0.9276	1.0780	0.7331	9	51	0.6928	0.9606	1.0410	0.7212	9
52 53	0.6803	0.9282	1.0774	0.7329	8	52	0.6930	0.9612	1.0404	0.7210	8
54	0.6805	0.9287	1.0768	0.7327	7	53	0.6932	0.9618	1.0398	0.7208	7
55	0.6809	0.9293	1.0761	0.7325	_6	54	0.6934	0.9623	1.0392	0.7206	6
56	0.6811	0.9298	1.0755	0.7323	5	55	0.6936	0.9629	1.0385	0.7203	5
56 57 58	0.6814	0.9303	1.0749	0.7321	4	56	0.6938	0.9634	1.0379	0.7201	4
58	0.6816	0.9314	1.0742	0.7319	3 2	57 58	0.6940	0.9640	1.0373	0.7199	3
59 60	0.6818	0.9320	1.0730	0.7316	1	59	0.6942	0.9646	1.0367	0.7197	2
60	0.6820	0.9325	1.0724	0.7314	Ô	60	0.6944	0.9651	1.0361	0.7195	
	Cos	Cot	Tan	Sin	Ť	-00	Cos	0.9657 Cot	1.0355	0.7193	0
					47°		209	COL	Tan	Sin	<u></u>
	- 519	-			~					4	16°

III. Natural Trigonometric Functions
44°

44					
	Sin	Tan	Cot	Cos	
0	0.6947	0.9657	1.0355	0.7193	60
1	0.6949	0.9663	1.0349	0.7191	59
3	0.6951	0.9668	1.0343	0.7189	58
4	0.6953	0.9674	1.0337	0.7187	57
	0.6955	0.9679	1.0331	0.7185	56
5	0.6957	0.9685	1.0325	0.7183	55
7	0.6959	0.9691	1.0319	0.7181	54
8	0.6963	0.9696	1.0313	0.7179	53 52
9	0.6965	0.9708	1.0307	0.7177	51
10	0.6967	0.9713	1.0295	0.7173	50
11	0.6970	0.9719	1.0289	0.7171	49
12	0.6972	0.9725	1.0283	0.7169	48
13	0.6974	0.9730	1.0277	0.7167	47
14	0.6976	0.9736	1.0271	0.7165	46
15	0.6978	0.9742	1.0265	0.7163	45
16	0.6980	0.9747	1.0259	0.7161	44
17	0.6982	0.9753	1.0253	0.7159	43
18	0.6984	0.9759	1.0247	0.7157	42
19	0.6986	0.9764	1.0241	$0.715\overline{5}$	41
20	0.6988	0.9770	1.0235	0.7153,	40
21	0.6990	0.9776	1.0230	0.7151	39
22	0.6992	0.9781	1.0224	0.7149	38
23	0.6995	0.9787	1.0218	0.7147	37
$\frac{24}{25}$	0.6997	0.9793	1.0212	0.7145	36
26	0.6999	0.9798	1.0206	0.7143	35 34
27	0.7001	0.9804	1.0200	0.7141	33
28	0.700 <u>3</u> 0.700 <u>5</u>	0.9816	1.0188	0.7139	32
29	0.7007	0.9821	1.0182	$0.713\frac{7}{5}$	31
30	0.7009	0.9827	1.0176	0.7133	30
31	0.7011	0.9833	1.0170	0.7130	29
32	0.7013	0.9838	1.0164	0.7128	28
33	0.7015	0.9844	1.0158	0.7126	27
34	0.7017	0.9850	1.0152	0.7124	26
35	0.7019	0.9856	1.0147	0.7122	25
36	0.7022	0.9861	1.0141	0.7120	24
37	0.7024	0.9867	1.0135	0.7118	23
38	0.7026	0.9873	1.0129	0.7116	22
39	0.7028	0.9879	1.0123	0.7114	21 20
40	0.7030	0.9884	1.0117	0.7112	19
41	0.7032	0.0890	1.0111	0.7110	18
42	0.7034 0.7036	0.9896	1.0105	0.7106	17
44	0.7038	0.9907	1.0094	0.7104	16
45	0.7040	0.9913	1.0088	0.7102	15
46	0.7042	0.9919	1.0082	0.7100	14
47	0.7044	0.9925	1.0076	0.7098	13
48	0.7046	0.9930	1.0070	0.7096	12
49	0.7048	0.9936	1.0064	0.7094	11
50	0.7050	0.9942	1.0058	0.7092	10
51	0.7053	0.9948	1.0052	0.7090	9
52	0.7055	0.9954	1.0047	0.7088	8
53	0.7057	0.9959	1.0041	0.7085	
54	0.7059	0.9965	1.0035	0.7083	$\frac{6}{5}$
55	0.7061	0.9971	1.0029	0.7081	5 4
56	0.7063	0.9977	1.0023	0.7079	3
57	0.7065	0.9983	1.0017	0.7077 0.7075	2
58	0.7067	0.9988	1.0012	0.7073	1
59	0.7069	0.9994	1.0000	0.7071	0
60	0.7071	1.0000 Cot	Tan	Sin	-
_	Cos	Cot	Idii		45°

			IV.	Squa	ares a	nd Sq	uare J	Koots			
N	N2	√N	√10N	N	N2	_√N	√10N	N	N2	√N	√10N
1.00			-		2.560	1.265	4.000	2.20	4.840	1.483	4.690
1.01			1	1.61	2.592			2.21	4.884	1.487	4.701
1.02				1.62		1.273		2.22	4.928	1.490	
1.04		1.020		1.64	2.690	1.277	4.037	2.23	4.973 5.018	1.493	4.722
1.05		1.025		1.65				2.25	5.062	1.500	4.733
1.06	1.124	1.030		1.66	2.756	1.288		2.26	5.108	1.503	4.743
1.07				1.67	2.789		4.087	2.27	5.153	1.507	4.764
1.08			3.286	1.68	2.822 2.856			2.28	5.198	1.510	4.775
1.10	-			1.70	2.890		4.111	2.29	5.244	1.513	4.785
1.11	1	1.054	3.332	1.71	2.924	1.308	4.123	2.30	5.290	1.517	4.796
1.12		1.058	3.347	1.72	2.958	1.311	4.147	2.32	5.382	1.523	4.817
1.13		1.063	3.362	1.73	2.993	1.315	4.159	2.33	5.429	1.526	4.827
1.14		1.068	3.376	1.74	3.208	1.319	4.171	2.34	5.476	1.530	4.837
1.16		1.072	3.391	1.75	3.062	1.323	4.183	2.35	5.522	1.533	4.848
1.17	1.369	1.082	3.421	1.77	3.133	1.330	4.195	2.36	5.570	1.536	4.858
1.18	1.392	1.086	3.435	1.78	3.168	1.334	4.219	2.38	5.664	1.543	4.879
1.19	1.416	1.091	3.450	1.79	3.204	1.338	4.231	2.39	5.712	1.546	4.889
I.20 I.21		1.095	3.464	1.80	3.240	1.342	4.243	2.40	5.760	1.549	4.899
1.22	1.464	1.100	3.479	1.81	3.276	1.345	4.254	2.41	5.808	1.552	4.909
1.23	1.513	1.109	3.507	1.83	3.349	1.349	4.266	2.42	5.856	1.556	4.919
1.24	1.538	1.114	3.521	1.84	3.386	1.356	4.290	2.44	5.954	1.562	4.940
1.25	1.562	1.118	3.536	1.85	3.422	1.360	4.301	2.45	6.002	1.565	4.950
1.26	1.588	1.122	3.550	1.86	3.460	1.364	4.313	2.46	6.052	1.568	4.960
1.28	1.638	1.127	3.564	1.87	3.497	1.367	4.324	2.47	6.101	1.572	4.970
1.29	1.664	1.136	3.592	1.89	3.534 3.572	1.371	4.336	2.48	6.150	1.575	4.980
1.30	1.690	1.140	3.606	1.90	3.610	1.378	4.359	2.50	6.250	1.581	5.000
1.31	1.716	1.145	3.619	1.91	3.648	1.382	4.370	2.51	6.300	1.584	5.010
1.32	1.742	1.149	3.633	1.92	3.686	1.386	4.382	2.52	6.350	1.587	5.020
1.33	1.796	1.153	3.647	1.93	3.725	1.389	4.393	2.53	6.401	1.591	5.030
1.35	1.822	1.162	3.674	1.95	3.802	1.393	4.405	2.54	6.452	1.594	5.040
1.36	1.850	1.166	3.688	1.96	3.842	1.400	4.416	2.55 2.56	6.502 6.554	1.597	5.050
1.37	1.877	1.170	3.701	1.97	3.881	1.404	4.438	2.57	6.605	1.603	5.060
1.38	1.904	1.175	3.715	1.98	3.920	1.407	4.450	2.58	6.656	1.606	5.079
1.40	1.932	1.179	3.728	1.99	3.960	1.411	4.461	2.59	6.708	1.609	5.089
1.41	1.988	1.187	3.742 3.755	2.00	4.000	1.414	4.472	2.60	6.760 6.812	1.612	5.099
1.42	2.016	1.192	3.768	2.02	4.080	1.421	4.494	2.62	6.864	1.616	5.109
1.43	2.045	1.196	3.782	2.03	4.121	1.425	4.506	2.63	6.917	1.622	5.128
1.44	2.074	1.200	3.795	2.04	4.162	1.428	4.517	2.64	6.970	1.625	5.138
1.45	2.102	1.204	3.808 3.821	2.05	4.202	1.432	4.528	2.65	7.022	1.628	5.148
1.47	2.161	1.212	3.834	2.07	4.244	1.435	4.539 4.550	2.66	7.076	1.631	5.158
1.48	2.190	1.217	3.847	2.08	4.326	1.442	4.561	2.68	7.129	1.634	5.167
1.49	2.220	1.221	3.860	2.09	4.368	1.446	4.572	2.69	7.236	1.640	5.187
1.50	2.250	1.225	3.873	2.10	4.410	1.449	4.583	2.70	7.290	1.643	5.196
1.52	2.280	1.229	3.886	2.11	4.452	1.453	4.593	2.71	7.344	1.646	5.206
1.53	2.341	1.237	3.912	2.12	4.494 4.537	1.456	4.604	2.72	7.398	1.649	5.215
1.54	2.372	1.241	3.924	2.14	4.580	1.463	4.626	2.73 2.74	7.453 7.508	1.652 1.655	5.225
1.55	2.402	1.245	3.937	2.15	4.622	1.466	4.637	2.75	7.562	1.658	5.235
1.56	2.434	1.249	3.950	2.16	4.666	1.470	4.648	2.76	7.618	1.661	5.254
1.58	2.465	1.253	3.962	2.17	4.709	1.473	4.658	2.77	7.673	1.664	5.263
1.59	2.528	1.261	3.987	2.19	4.752 4.796	1.476	4.669	2.78	7.728	1.667	5.273
1.60	2.560	1.265	4.000	2.20	4.840	1.483	4.690	2.79	7.784	1.670	5.282
N	N2	Ä	√10N	N	N3	√N	√10N	N N	7.840	1.673	5.292
- 52	1-	-			-		A 1014	14	Na	√N	$\sqrt{10N}$

			14.	Squa	res ar	nd Squ	uare r	Coots			
N	N ²	√N	√10N	N	N ²	√N	√10N	N	N ²	I √N	√10N
2.80	7.840	1.673	5.292	3.40	11.56	1.844	5.831	4.00	16.00	2.000	6.325
2.81	7.896	1.676	5.301	3.41	11.63	1.847	5.840	4.01	16.08	2.002	6.332
2.82	7.952	1.679	5.310	3.42	11.70	1.849	5.848	4.02	16.16	2.005	6.340
2.83	8.009	1.682	5.320	3.43	11.76	1.852	5.857	4.03	16.24	2.007	6.348
2.84	8.066	1.685	5.329	3.44	11.83	1.855	5.865	4.04	16.32	2.010	6.356
2.85	8.122	1.688	5.339	3.45	11.90	1.857	5.874	4.05	16.40	2.012	6.364
2.86	8.180	1.691	5.348	3.46	11.97	1.860	5.882	4.06	16.48	2.015	6.372
2.87	8.237	1.694	5.357	3.47	12.04	1.863	5.891	4.07	16.56	2.017	6.380
2.88	8.294	1.697	5.367	3.48	12.11	1.865	5.899	4.08	16.65	2.020	6.387
2.89	8.352	1.700	5.376	3.49	12.18	1.868	5.908	4.09	16.73	2.022	6.395
2.90	8.410	1.703	5.385	3.50	12.25	1.871	5.916	4.10	16.81	2.025	6.403
2.91	8.468	1.706	5.394	3.51	12.32	1.873	5.925	4.11	16.89	2.027	6.411
2.92	8.526 8.585	1.709	5.404	3.52	12.39	1.876	5.933	4.12	16.97	2.030	6.419
2.94	8.644	1.712	5.413	3.53	12.46	1.879	5.941	4.13	17.06	2.032	6.427
		1.715	5.422	3.54	12.53	1.881	5.950	4.14	17.14	2.035	6.434
2.95 2.96	8.702 8.762	1.718	5.431	3.55	12.60	1.884	5.958	4.15	17.22	2.037	6.442
2.97	8.821	1.720	5.441	3.56	12.67	1.887	5.967	4.16	17.31	2.040	6.450
2.98	8.880	1.726	5.450 5.459	3.57 3.58	12.74	1.892	5.975 5.983	4.17	17.39	2.042	6.458
2.99	8.940	1.729	5.468	3.59	12.89	1.895	5.992	4.18	17.47	2.045	6.465
3.00	9.000	1.732	5.477	3.60	12.96	1.897	6.000				6.473
3.01	9.060	1.735	5.486	3.61	13.03	1.900	6.008	4.20 4.21	17.64	2.049	6.481
3.02	9.120	1.738	5.495	3.62	13.10	1.903	6.017	4.22	17.81	2.054	6.496
3.03	9.181	1.741	5.505	3.63	13.18	1.905	6.025	4.23	17.89	2.057	6.504
3.04	9.242	1.744	5.514	3.64	13.25	1.908	6.033	4.24	17.98	2.059	6.512
3.05	9.302	1.746	5.523	3.65	13.32	1.910	6.042	4.25	18.06	2.062	6.519
3.06	9.364	1.749	5.532	3.66	13.40	1.913	6.050	4.26	18.15	2.064	6.527
3.07	9.425	1.752	5.541	3.67	13.47	1.916	6.058	4.27	18.23	2.066	6.535
3.08	9.486	1.755	5.550	3.68	13.54	1.918	6.066	4.28	18.32	2.069	6.542
3.09	9.548	1.758	5.559	3.69	13.62	1.921	6.075	4.29	18.40	2.071	6.550
3.10	9.610	1.761	5.568	3.70	13.69	1.924	6.083	4.30	18.49	2.074	6.557
3.11	9.672	1.764	5.577	3.71	13.76	1.926	6.091	4.31	18.58	2.076	6.565
3.12	9.734	1.766	5.586	3.72	13.84	1.929	6.099	4.32	18.66	2.078	6.573
3.13	9.797	1.769	5.595	3.73	13.91	1.931	6.107	4.33	18.75	2.081	6.580 6.588
3.14	9.860	1.772	5.604	3.74	13.99	1.934	6.116	4.34	18.84		
3.15	9.922	1.775	5.612	3.75	14.06	1.936	6.124	4.35	18.92 19.01	2.086	6.595 6.603
3.16	9.986	1.778	5.621	3.76	14.14	1.939	6.132	4.36 4.37	19.10	2.090	6.611
3.17	10.05	1.780	5.630 5.639	3.77 3.78	14.21	1.942	6.148	4.38	19.18	2.093	6.618
3.19	10.18	1.786	5.648	3.79	14.36	1.947	6.156	4.39	19.27	2.095	6.626
	10.24	1.789	5.657	3.80	14.44	1.949	6.164	4.40	19.36	2.098	6.633
3.20 3.21	10.30	1.792	5.666	3.81	14.52	1.952	6.173	4.41	19.45	2.100	6.641
3.22	10.37	1.794	5.675	3.82	14.59	1.954	6.181	4.42	19.54	2.102	6.648
3.23	10.43	1.797	5.683	3.83	14.67	1.957	6.189	4.43	19.62	2.105	6.656
3.24	10.50	1.800	5.692	3.84	14.75	1.960	6.197	4.44	19.71	2.107	6.663
3.25	10.56	1.803	5.701	3.85	14.82	1.962	6.205	4.45	19.80	2.110	6.671
3.26	10.63	1.806	5.710	3.86	14.90	1.965	6.213	4.46	19.89	2.112	6.678
3.27	10.69	1.808	5.718	3.87	14.98	1.967	6.221	4.47	19.98	2.114	6.686
3.28	10.76	1.811	5.727	3.88	15.05	1.970	6.229	4.48	20.07	2.117	6.701
3.29	10.82	1.814	5.736	3.89	15.13	1.972	6.237	4.49			6.708
3.30	10.89	1.817	5.745	3.90	15.21	1.975	6.245	4.50	20.25	2.121	6.716
3.31	10.96	1.819	5.753	3.91	15.29	1.977	6.253	4.51	20.34	2.126	6.723
3.32	11.02	1.822	5.762	3.92	15.37	1.980	6.261 6.269	4.52 4.53	20.52	2.128	6.731
3.33	11.09	1.825	5.771	3.93	15.44	1.982	6.277	4.54	20.61	2.131	6.738
3.34	11.16	1.828	5.779	3.94	15.52		6.285	4.55	20.70	2.133	6.745
3.35	11.22	1.830	5.788	3.95	15.60	1.987	6.293	4.56	20.79	2.135	5.753
3.36	11.29	1.833	5.797	3.96	15.68	1.990	6.301	4.57	20.88	2.138	6.760
3.37	11.36	1.836	5.805	3.97 3.98	15.76	1.995	6.309	4.58	20.98	2.140	6.768
3.38	11.42	1.838	5.814 5.822	3.99	15.92	1.997	6.317	4.59	21.07	2.142	6.775
3.39	11.49	1.841			16.00	2.000	6.325	4.60	21.16	2.145	6.782
3.40	11.56	1.844	5.831	4.00		\sqrt{N}	$\sqrt{10N}$	N	N ²	\sqrt{N}	$\sqrt{10N}$
N	N ²	√N	$\sqrt{10N}$	N	N ²	VI	V 2011				522 —

			17.	-qua	ites ai	iu Sq	uaic i	toots			
N	N ²	\sqrt{N}	√10N	N	N ²	Ä	√10N	N	N ²	√N	√10N
4.60	21.16	2.145	6.782	5.20	27.04	2.280	7.211	5.80	33.64	2.408	7.616
4.61	21.25	2.147	6.790	5.21	27.14	2.283	7.218	5.81	33.76	2.410	7.622
4.62	21.34	2.149	6.797	5.22	27.25	2.285	7.225	5.82	33.87	2.412	7.629
4.63	21.44	2.152	6.804	5.23	27.35	2.287	7.232	5.83	33.99	2.415	7.635
4.64	_	2.154	6.812	5.24	27.46	2.289	7.239	5.84	34.11	2.417	7.642
4.65	21.62	2.156	6.819	5.25	27.56	2.291	7.246	5.85	34.22	2.419	7.649
4.66		2.159	6.826	5.26	27.67	2.293	7.253	5.86	34.34	2.421	7.655
4.67	21.81	2.161	6.834	5.27	27.77	2.296	7.259	5.87	34.46	2.423	7.662
4.68	21.90	2.163	6.841	5.28	27.88	2.298	7.266	5.88	34.57	2.425	7.668
4.69	22.00	2.166	6.848	5.29	27.98	2.300	7.273	5.89	34.69	2.427	7.675
4.70	22.09	2.168	6.856	5.30	28.09	2.302	7.280	5.90	34.81	2.429	7.681
4.71	22.18	2.170	6.863	5.31	28.20	2.304	7.287	5.91	34.93	2.431	7.688
4.72	22.37	2.173	6.870	5.32	28.30 28.41	2.307	7.294	5.92	35.05	2.433	7.694
4.73	22.47	2.177	6.885	5·33 5·34	28.52	2.309	7.301	5.93	35.16	2.435	7.701
	22.56	2.179	6.892		28.62	2.311		5.94	35.28	2.437	7.707
4.75	22.66	2.182	6.899	5.35	28.73	2.313	7.314	5.95	35.40	2.439	7.714
4.77	22.75	2.184	6.907	5.36	28.84	2.315	7.321	5.96	35.52 35.64	2.441	7.720
4.78	22.85	2.186	6.914	5.38	28.94	2.319	7.335	5.97 5.98	35.76	2.443	7.727
4.79	22.94	2.189	6.921	5.39	29.05	2.322	7.342	5.99	35.88	2.447	7.740
4.80	23.04	2.191	6.928	5.40	29.16	2.324	7.348	6.00	36.00		7.746
4.81	23.14	2.193	6.935	5.41	29.27	2.326	7.355	6.01	36.12	2.449	7.752
4.82	23.23	2.195	6.943	5.42	29.38	2.328	7.362	6.02	36.24	2.454	7.759
4.83	23.33	2.198	6.950	5.43	29.48	2.330	7.369	6.03	36.36	2.456	7.765
4.84	23.43	2.200	6.957	5.44	29.59	2.332	7.376	6.04	36.48	2.458	7.772
4.85	23.52	2.202	6.964	5.45	29.70	2.335	7.382	6.05	36.60	2.460	7.778
4.86	23.62	2.205	6.971	5.46	29.81	2.337	7.389	6.06	36.72	2.462	7.785
4.87	23.72	2.207	6.979	5.47	29.92	2.339	7.396	6.07	36.84	2.464	7.791
4.88	23.81	2.209	6.986	5.48	30.03	2.341	7.403	6.08	36.97	2.466	7.797
4.89	23.91	2.211	6.993	5.49	30.14	2.343	7.409	6.09	37.09	2.468	7.804
4.90	24.01	2.214	7.000	5.50	30.25	2.345	7.416	6.10	37.21	2.470	7.810
4.91	24.11	2.216	7.007	5.51	30.36	2.347	7.423	6.11	37.33	2.472	7.817
4.92	24.21	2.218	7.014	5.52	30.47	2.349	7.430	6.12	37.45	2.474	7.823
4.93	24.30	2.220	7.021	5.53	30.58	2.352	7.436	6.13	37.58	2.476	7.829
4.94	24.40	2.223	7.029	5.54	30.69	2.354	7.443	6.14	37.70	2.478	7.836
4.95	24.50	2.225	7.036	5.55	30.80	2.356	7.450	6.15	37.82	2.480	7.842
4.96	24.60	2.227	7.043	5.56	30.91	2.358	7.457	6.16	37.95	2.482	7.849
4.98	24.80	2.229	7.050	5.57	31.02	2.360	7.463	6.17	38.07	2.484	7.855
4.99	24.90	2.234	7.057	5.58	31.14	2.362	7.470	6.18	38.19	2.486	7.861
5.00	25.00	2.236	7.071	5.60	31.25		7.477	6.19	38.32	2.488	7.868
5.01	25.10	2.238	7.078	5.61	31.36	2.366	7.483	6.20	38.44	2.490	7.874
5.02	25.20	2.241	7.085	5.62	31.47 31.58	2.369	7.490	6.21	38.56	2.492	7.880
5.03	25.30	2.243	7.092	5.63	31.70	2.373	7.497 7.503	6.23	38.81	2.494	7.887
5.04	25.40	2.245	7.099	5.64	31.81	2.375	7.510	6.24	38.94	2.498	7.899
5.05	25.50	2.247	7.106	5.65	31.92	2.377	7.517	6.25	39.06		
5.06	25.60	2.249	7.113	5.66	32.04	2.379	7.523	6.26	39.19	2.500	7.906
5.07	25.70	2.252	7.120	5.67	32.15	2.381	7.530	6.27	39.31	2.504	7.912 7.918
5.08	25.81	2.254	7.127	5.68	32.26	2.383	7.537	6.28	39.44	2.506	7.925
5.09	25.91	2.256	7.134	5.69	32.38	2.385	7.543	6.29	39.56	2.508	7.931
5.10	26.01	2.258	7.141	5.70	32.49	2.387	7.550	6.30	39.69	2.510	
5.11	26.11	2.261	7.148	5.71	32.60	2.390	7.556	6.31	39.82	2.512	7.937 7.944
5.12	26.21	2.263	7.155	5.72	32.72	2.392	6.563	6.32	39.94	2.514	7.950
5.13	26.32	2.265	7.162	5.73	32.83	2.394	7.570	6.33	40.07	2.516	7.956
5.14	26.42	2.267	7.169	5.74	32.95	2.396	7.576	6.34	40.20	2.518	7.962
5.15	26.52	2.269	7.176	5.75	33.06	2.398	7.583	6.35	40.32	2.520	7.969
5.16	26.63	2.272	7.183	5.76	33.18	2.400	7.589	6.36	40.45	2.522	7.975
5.17	26.73 26.83	2.274	7.190	5.77	33.29	2.402	7.596	6.37	40.58	2.524	7.981
5.19	26.94	2.276	7.197	5.78	33.41	2.404	7.603	6.38	40.70	2.526	7.987
		2.278	7.204	5.79	33.52	2.406	7.609	6.39	40.83	2.528	7.994
5.20	27.04	2.280	7.211	5.80	33.64	2.408	7.616	6.40	40.96	2.530	8.000
N	N ²	√N	√10N	N	Ns	Ä	√10N	N	Ns.	√N	√10N
- 52	3 —										

IV. Squares and Square Roots

IV. Squares and Square Roots											
N	N ^z	√N	$\sqrt{10N}$	N	N ²	\sqrt{N}	VIUN	N	N ²	√N	√10N
6.40	40.96	2.530	8.000	7.00	49.00	2.646	8.367	7.60	57.76	2.757	8.718
6.41	41.09	2.532	8.006	7.01	49.14	2.648	8.373	7.61	57.91	2.759	8.724
6.42	41.22	2.534 2.536	8.012	7.02	49.28	2.650	8.379	7.62	58.06	2.760	8.729
6.44	41.47	2.538	8.025	7.03	49.42	2.651 2.653	8.385 8.390	7.63	58.22	2.762	8.735
6.45	41.60	2.540	8.031	7.05	49.70	2.655	8.396	7.64	58.37	2.764	8.741
6.46	41.73	2.542	8.037	7.06	49.84	2.657	8.402	7.65 7.66	58.52 58.68	2.766	8.746 8.752
6.47	41.86	2.544	8.044	7.07	49.98	2.659	8.408	7.67	58.83	2.769	8.758
6.48	41.99	2.546	8.050	7.08	50.13	2.661	8.414	7.68	58.98	2.771	8.764
6.49	42.12	2.548	8.056	7.09	50.27	2.663	8.420	7.69	59.14	2.773	8.769
6.50 6.51	42.25	2.550	8.062 8.068	7.10	50.41	2.665	8.426	7.70	59.29	2.775	8.775
6.52	42.51	2.551	8.075	7.II 7.I2	50.55	2.666 2.668	8.432 8.438	7.71	59.44	2.777	8.781
6.53	42.64	2.555	8.081	7.13	50.84	2.670	8.444	7.72 7.73	59.60 59.75	2.778	8.786 8.792
6.54	42.77	2.557	8.087	7.14	50.98	2.672	8.450	7.74	59.91	2.782	8.798
6.55	42.90	2.559	8.093	7.15	51.12	2.674	8.456	7.75	60.06	2.784	8.803
6.56	43.03	2.561	8.099	7.16	51.27	2.676	8.462	7.76	60.22	2.786	8.809
6.57	43.16	2.563	8.106	7.17	51.41	2.678	8.468	7.77	60.37	2.787	8.815
6.58 6.59	43.30	2.565 2.567	8.112	7.18	51.55 51.70	2.680	8.473 8.479	7.78 7.79	60.53 60.68	2.789	8.820 8.826
6.60	43.56	2.569	8.124	7.20	51.84	2.683	8.485	7.80	60.84	2.791	8.832
6.61	43.69	2.571	8.130	7.21	51.98	2.685	8.491	7.81	61.00	2.793	8.837
6.62	43.82	2.573	8.136	7.22	52.13	2.687	8.497	7.82	61.15	2.796	8.843
6.63	43.96	2.575	8.142	7.23	52.27	2.689	8.503	7.83	61.31	2.798	8.849
6.64	44.09	2.577	8.149	7.24	52.42	2.691	8.509	7.84	61.47	2.800	8.854
6.65	44.22	2.579	8.155	7.25	52.56	2.693	8.515	7.85	61.62	2.802	8.860
6.66	44.36 44.49	2.581	8.161	7.26	52.71 52.85	2.694	8.521 8.526	7.86 7.87	61.78	2.804	8.866 8.871
6.68	44.62	2.585	8.173	7.28	53.00	2.698	8.532	7.88	62.09	2.807	8.877
6.69	44.76	2.587	8.179	7.29	53.14	2.700	8.538	7.89	62.25	2.809	8.883
6.70	44.89	2.588	8.185	7.30	53.29	2.702	8.544	7.90	62.41	2.811	8.888
6.71	45.02	2.590	8.191	7.31	53.44	2.704	8.550	7.91	62.57	2.812	8.894
6.72	45.16	2.592	8.198	7.32	53.58	2.706	8.556 8.562	7.92	62.73 62.88	2.814	8.899 8.905
6.73 6.74	45.29 45.43	2.594 2.596	8.204 8.210	7·33 7·34	53.73 53.88	2.707	8.567	7.93 7.94	63.04	2.818	8.911
6.75	45.56	2.598	8.216	7.35	54.02	2.711	8.573	7.95	63.20	2.820	8.916
6.76	45.70	2.600	8.222	7.36	54.17	2.713	8.579	7.96	63.36	2.821	8.922
6.77	45.83	2.602	8.228	7.37	54.32	2.715	8.585	7.97	63.52	2.823	8.927
6.78	45.97	2.604	8.234	7.38	54.46	2.717	8.591	7.98	63.68 63.84	2.825 2.827	8.933 8.939
6.79	46.10	2.606	8.240	7.39	54.61	2.718	8.597 8.602	7.99 8.00	64.00	2.828	8.944
6.80	46.24	2.608	8.246 8.252	7.40	54.76 54.91	7.720 2.722	8.608	8.01	64.16	2.830	8.950
6.81 6.82	46.38 46.51	2.612	8.258	7.41 7.42	55.06	2.724	8.614	8.02	64.32	2.832	8.955
6.83	46.65	2.613	8.264	7.43	55.20	2.726	8.620	8.03	64.48	2.834	8.961
6.84	46.79	2.615	8.270	7.44	55.35	2.728	8.626	8.04	64.64	2.835	8.967
6.85	46.92	2.617	8.276	7.45	55.50	2.729	8.631	8.05	64.80	2.837 2.839	8.972 8.978
6.86	47.06	2.619	8.283	7.46	55.65	2.731	8.637 8.643	8.06 8.07	64.96 65.12	2.841	8.983
6.87	47.20	2.621	8.289 8.295	7.47 7.48	55.80 55.95	2.733 2.735	8.649	8.08	65.29	2.843	8.989
6.88	47·33 47·47	2.623 2.625	8.301	7.49	56.10	2.737	8.654	8.09	65.45	2.844	8.994
6.90	47.61	2.627	8.307	7.50	56.25	2.739	8.660	8.10	65.61	2.846	9.000
6.91	47.75	2.629	8.313	7.51	56.40	2.740	8.666	8.11	65.77	2.848	9.006
6.92	47.89	2.631	8.319	7.52	56.55	2.742	8.672	8.12	65.93 66.10	2.850 2.851	9.017
6.93	48.02	2.632	8.325	7.53	56.70	2.744	8.678 8.683	8.13 8.14	66.26	2.853	9.022
6.94	48.16	2.634	8.331	7.54	56.85	2.748	8.689	8.15	66.42	2.855	9.028
6.95	48.30	2.636	8.337	7.55	57.00 57.15	2.740	8.695	8.16	66.59	2.856	9.033
6.96	48.44 48.58	2.638	8.343 8.349	7.56 7.57	57.30	2.751	8.701	8.17	66.75	2.858	9.039
6.97 6.98	48.72	2.642	8.355	7.58	57.46	2.753	8.706	8.18	66.91	2.860 2.862	9.044
6.99	48.86	2.644	8.361	7.59	57.61	2.755	8.712	8.19	67.08	2.864	9.055
7.00	49.00	2.646	8.367	7.60	57.76	2.757	8.718	8.20	67.24 N2	$\frac{2.604}{\sqrt{N}}$	$\frac{9.033}{\sqrt{10N}}$
N		\sqrt{N}	√10N	N	N ²	√N	√10N	N	N ²		
											524 —

				-1		id oq	uaic i	toots			
N	N ²	\sqrt{N}	√10N	N	N ₂	√N	√10N	N	N2	Ä	VION
8.20	67.24	2.864	9.055	8.80	77.44	2.966	9.381	9.40	88.36	3.066	9.695
8.21	1	2.865	9.061	18.8	77.62	2.968	9.386	9.41	88.55	3.068	9.701
8.22	1 -	2.867	9.066	8.82	77-79	2.970	9.391	9.42	88.74	3.069	9.706
8.23		2.869	9.072	8.83	77.97	2.972	9.397	9.43	88.92	3.071	9.711
8.24		2.871	9.077	8.84	78.15	2.973	9.402	9.44	89.11	3.072	9.716
8.25	68.06	2.872	9.083	8.85	78.32	2.975	9.407	9.45	89.30	3.074	9.721
8.26	68.23	2.874	9.088	8.86	78.50	2.977	9.413	9.46	89.49	3.076	9.726
8.27	68.39	2.876	0.094	8.87	78.68	2.978	9.418	9.47	89.68	3.077	9.731
8.28	68.56	2.877	9.099	8.88	78.85	2.980	9.423	9.48	89.87	3.079	9.737
8.29	68.72	2.879	9.105	8.89	79.03	2.982	9.429	9.49	90.06	3.081	9.742
8.30	68.89	2.881	9.110	8.90	79.21	2.983	9.434	9.50	90.25	3.082	9.747
8.31	69.06	2.883	9.116	8.91	79.39	2.985	9.439	9.51	90.44	3.084	9.752
8.32	69.22	2.884	9.121	8.92	79-57	2.987	9.445	9.52	90.63	3.085	9.757
8.33	69.39	2.886	9.127	8.93	79.74	2.988	9.450	9.53	90.82	3.087	9.762
8.34	69.56	2.888	9.132	8.94	79.92	2.990	9.455	9.54	91.01	3.089	9.767
8.35	69.72	2.890	9.138	8.95	80.10	2.992	9.460	9.55	91.20	3.090	9.772
8.36	69.89	2.891	9.143	8.96	80.28	2.993	9.466	9.56	91.39	3.092	9.778
8.37	70.06	2.893	9.149	8.97	80.46	2.995	9.471	9.57	91.58	3.094	9.783
8.38	70.22	2.895	9.154	8.98	80.64	2.997	9.476	9.58	91.78	3.095	9.788
8.39	70.39	2.897	9.160	8.99	80.82	2.998	9.482	9.59	91.97	3.097	9.793
8.40	70.56	2.898	9.165	9.00	81.00	3.000	9.487	9.60	92.16	3.098	9.798
8.41	70.73	2.900	9.171	9.01	81.18	3.002	9.492	9.61	92.35	3.100	9.803
8.42	70.90	2.902	9.176	9.02	81.36	3.003	9.497	9.62	92.54	3.102	9.808
8.43	71.07	2.903	9.182	9.03	81.54	3.005	9.503	9.63	92.74	3.103	9.813
8.44	71.23	2.905	9.187	9.04	81.72	3.007	9.508	9.64	92.93	3.105	9.818
8.45	71.40	2.907	9.192	9.05	81.90	3.008	9.513	9.65	93.12	3.106	9.823
8.46	71.57	2.909	9.198	9.06	82.08	3.010	9.518	9.66	93.32	3.108	9.829
8.47	71.74	2.910	9.203	9.07	82.26	3.012	9.524	9.67	93.51	3.110	9.834
8.48	71.91	2.912	9.209	9.08	82.45	3.013	9.529	9.68	93.70	3.111	9.839
8.49	72.08	2.914	9.214	9.09	82.63	3.015	9.534	9.69	93.90	3.113	9.844
8.50	72.25	2.915	9.220	9.10	82.81	3.017	9.539	9.70	94.09	3.114	9.849
8.51	72.42	2.917	9.225	9.11	82.99	3.018	9.545	9.71	94.28	3.116	9.854
8.52	72.59	2.919	9.230	9.12	83.17	3.020	9.550	9.72	94.48	3.118	9.859
8.53	72.76	2.921	9.236	9.13	83.36	3.022	9.555	9.73	94.67	3.119	9.864
8.54	72.93	2.922	9.241	9.14	83.54	3.023	9.560	9.74	94.87	3.121	9.869
8.55	73.10	2.924	9.247	9.15	83.72	3.025	9.566	9.75	95.06	3.122	9.874
8.56	73.27	2.926	9.252	9.16	83.91	3.027	9.571	9.76	95.26	3.124	9.879
8.57	73.44	2.927	9.257	9.17	84.09	3.028	9.576	9.77	95.45	3.126	9.884
8.58	73.62	2.929	9.263	9.18	84.27	3.030	9.581	9.78	95.65	3.127	9.889
8.59	73.79	2.931	9.268	9.19	84.46	3.032	9.586	9.79	95.84	3.129	9.894
8.60	73.96	2.933	9.274	9.20	84.64	3.033	9.592	9.80	96.04	3.130	9.899
8.61 8.62	74.13	2.934	9.279	9.21	84.82	3.035	9.597	9.81	96.24	3.132	9.905
8.63	74.30	2.936	9.284	9.22	85.01	3.036	9.602	9.82	96.43	3.134	9.910
8.64	74.48 74.65	2.938	9.290	9.23	85.19 85.38	3.038	9.607	9.83	96.63	3.135	9.915
8.65		2.939	9.295	9.24	APPLICATION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	3.040	9.612	9.84	96.83	3.137	9.920
8.66	74.82	2.941	9.301	9.25	85.56	3.041	9.618	9.85	97.02	3.138	9.925
8.67	75.00 75.17	2.943	9.306	9.26	85.75	3.043	9.623	9.86	97.22	3.140	9.930
8.68	75.34	2.944 2.946	9.311	9.27 9.28	85.93 86.12	3.045	9.628	9.87	97.42	3.142	9.935
8.69	75.52	2.948	9.317 9.322	9.29	86.30	3.046	9.633	9.88	97.61	3.143	9.940
8.70	75.69				86.49		9.638	9.89	97.81	3.145	9.945
8.71	75.86	2.950	9.327	9.30	86.68	3.050	9.644	9.90	98.01	3.146	9.950
8.72	76.04	2.953	9.333 9.338	9.31 9.32	86.86	3.051	9.649	9.91	98.21	3.148	9.955
8.73	76.21	2.955	9.343	9.33	87.05	3.053	9.654 9.659	9.92	98.41	3.150	9.960
8.74	76.39	2.956	9.349	9.34	87.24	3.056	9.664	9.93	98.60 98.80	3.151	9.965
8.75	76.56	2.958	9.354	9.35	87.42	3.058	9.670	9.94		3.153	9.970
8.76	76.74	2.960	9.359	9.36	87.61	3.059	9.675	9.95	99.00	3.154	9.975
8.77	76.91	2.961	9.365	9.37	87.80	3.061	9.680	9.96	99.20	3.156	9.980
8.78	77.09	2.963	9.370	9.38	87.98	3.063	9.685	9.98	99.40 99.60	3.158	9.985
8.79	77.26	2.965	9.375	9.39	88.17	3.064	9.690	9.99	99.80	3.159	9.990
8.80	77.44	2.966	9.381	9.40	88.36	3.066	9.695	10.0	100.0	3.161	9.995
N	N ²	\sqrt{N}	√10N	N	Nº	√N	√10N			3.162	10.00
		V 4.4	4 2014		14- 1	A IA	A YOLA	N	N ₃	Ä	√10N
-52	5—										

Answers to Odd-Numbered Exercises

(The answers to certain exercises have been intentionally omitted.)

Page 4

7. 7, 16, $\frac{5}{8}$, 2, 8, 4, 10

Pages 6, 7

1. (a) 98, (b) 16. **3.** (a) -96, (b) -18. **5.** (a) -76, (b) -76.

7. (a) -5x, (b) -x. 9. (a) -2y, (b) 8y. 11. -168. 13. -24.

15. -12x. 17. -7. 19. 8. 21. -2. 23. -42abc. 25. ad + bd + cd.

29. 7. **31.** -3. **33.** 97. **35.** 5, 11. **37.** 2, 3. **27.** 10.

39. 168 ft. below sea level.

Page 8

1. 4x-6. 3. 7u-8v-3. 5. 20r-27. 7. 3s-18t+3. 9. -6, 28.

11. (a) 6x - 4y + 2z + (-9x + 4y - 5z), (b) 6x - 4y + 2z - (9x - 4y + 5z).

13. (a) 9x + y - 14z, (b) 5x + 7y - 4z. 15. $3z^3 - z^2 + 5z + 10$.

17. $4r^3 + 6r^2 - 10r + 5$.

Page 10

1. $39m^9$. 3. $56a^5b^3c^5d^4$.

5. $21a^4r^6z^8$. 7. 6u6v4w2x5y.

9. 6a - 12b + 3c.

11. $4a^3bc + 28ab^3c - 36abc^3$.

13. $14rs^3t^3 - 35r^2s^2t^4 + 21r^3s^5t$.

15. $-33a^3b^2c^3 + 55a^4bc^4 + 22a^2b^2c^4$.

17. $8x^2 - 6x - 35$.

19. $15m^2 + 34mn - 16n^2$.

21. $3x^3 - 13x^2 - 5x + 3$.

23. $x^4 - x^2y^2 + 10xy^3 - 4y^4$.

25. $x^3 + y^3 + z^3 + x^2y + xy^2 + y^2z + yz^2 + z^2x + zx^2$.

27. $3x^5 + x^4 - 27x^3 + 43x^2 - 28x$.

Page 12

1. $4x^5$. 3. $\frac{3xz^2}{4v^2}$. 5. $\frac{7b^6d}{3a^3c^5}$. 7. $7x^2 - 11x - 6$. 9. $\frac{7xy^2}{2a} + \frac{8x^3y^2}{3a^2} + \frac{4z}{x}$.

11. 2x-5. 13. $2x^2-x-5-\frac{18}{2x-7}$. 15. $5x-8+\frac{20}{3x+2}$.

17. $4a-3b-\frac{8b^2}{2a-5b}$

19. $3a^2b - 4t^3 + \frac{17t^6}{a^2b + 4t^3}$

21. $5v - 9 + \frac{3v + 25}{2v^2 + 7v + 9}$ 23. $7rs + 4t - \frac{4rst^2 + 16t^3}{3r^2s^2 - rst + 4t^2}$

25. $m^3n^3 - m^2n^2z + 2z^3 + \frac{3z^4}{mn+3z}$ 27. $5y^4 - 3y^3 + 2y^2 - 8y + 7 + \frac{13}{2v+3}$

Page 13

1. 6ax + 18ay. 3. $x^2 - 9$. 5. 9991. 7. $9x^2 + 24xy + 16y^2$.

9. $x^2 + 11x + 28$. 11. $9x^2 - 12x - 5$. 13. $27x^3 + y^3$. 15. $z^4 - 4z^2 - 21$. 19. $6a^4 + 19a^2b^2 + 10b^4$. 21 $x^4 - 16$. 23. $x^6 - y^6$. 17. $x^2y - xy^3$.

1.
$$3y(5x+7y)$$
. 3. $(6x-5y)(6x+5y)$. 5. $(2p+9q)^2$. 7. $2a(3x-1)^2$.

9.
$$(ab-3c)(ab+3c)$$
.
11. $u(2u+3v)(4u^2-6uv+9v^2)$.

13.
$$(5z+2)(z-4)$$
.
15. $(4a+7b)(5a+3b)$.
17. $(x-y)^2(x+y)^2$.

19.
$$(xy-2c^2)(x^2y^2+2xyc^2+4c^4)$$
. 21. $(x+y-z)(x+y+z)$.

23.
$$(3v - u)(3u - v)$$
.
25. $(a - b + 1)(a^2 + ab + b^2 + 2a + b + 1)$.

Page 15

1.
$$(2a+3b)(3x+5y)$$
. 3. $(x+4y)(x-3z)$. 5. $(x-2)(x+2)(2x+5)$.

7.
$$(x+2y)(x+2y-7)$$
.
9. $(3a-b)(3a+b-5c)$.

7.
$$(x+2y)(x+2y-7)$$
.
9. $(3a-b)(3a+b-5c)$.
11. $(u+3v+3)(u+3v-2)$.
13. $(x-2y)(x+2y)(x-z)(x+z)$.

15.
$$(x^2 - xy + y^2)(x^2 + xy + y^2)$$
. 17. $(x - 2y - 2)(x - 2y - 3)$.

19.
$$(y+3z)(y^2-3yz+9z^2-5x)$$
.

Page 16

1.
$$72a^2b^6c^4d^3$$
. 3. $(x+y)^2(x-y)^2$.

5.
$$(x-3)(x+2)(x+5)$$
. 7. $x^2(x-2)(x+2)(x-3)$; $(x-2)$.

9.
$$(3x - y - 2)(3x - y + 2)(3x + y + 2)$$
; $(3x - y + 2)$.

Page 18

1.
$$\frac{7}{3}$$
 3. $\frac{13yz^2}{6x}$ 5. $\frac{5x^2}{3y}$ 7. $\frac{x}{3y^2}$ 9. $\frac{x+1}{2x-3}$ 11. $\frac{x+b}{x-b}$

13.
$$\frac{a+b-c-d}{a-b+c-d}$$
.

15. $\frac{2x}{x-y}$.

17. $\frac{7}{11}$.

19. $\frac{n}{n+3}$.

Pages 19, 20

1. -1. 3.
$$\frac{1}{5x+1}$$
. 5. $\frac{4}{99}$. 7. $\frac{4b}{3a^3}$. 9. $\frac{19ab^2x^3}{18y^4z^6}$. 11. $\frac{2a^2}{bc}$.

13.
$$\frac{y^3}{6x^3}$$
. 15. $\frac{3(2x-y)}{2(x+y)(2x+y)}$. 17. $x-2$. 19. $\frac{(y-1)(y-2)}{(2y-1)(y+4)}$.

21.
$$\frac{(x+2y)(x-y)}{(2x+3y)(x-3y)}$$
. 23. $\frac{3x+2}{2x-1}$. 25. $\frac{1}{5}(x-3)(2x-3)$. 27. $\frac{2r}{s^2}$.

1.
$$\frac{3}{7}$$
. 3. $\frac{4x-5}{x}$. 5. $\frac{5x+11}{10}$. 7. $\frac{8-3x+10x^2-4x^3}{2x^3}$.

9.
$$\frac{sy-tx-2s-3t}{xy}$$
. 11. $\frac{3x-11}{(x+3)(x-1)}$. 13. $\frac{11x+17}{(x-1)(x+4)}$.

15.
$$\frac{3x^2-2x+1}{x+2}$$
. $(x+3)(x-1)$ $(x-1)(x+4)$.

19.
$$\frac{x^2y + x^2z + y^2z + y^2x + z^2x + z^2y - x^3 - y^3 - z^3 - 3xyz}{(x - y)(y - z)(z - x)}$$

21.
$$\frac{3x^3 + 2x^2 - 13x - 32}{(x+1)^2(x+3)^2}$$

1.
$$\frac{1}{3}$$
.

3. $\frac{2-3a}{1+5a}$.

5. $-\frac{x}{y}$.

7. $\frac{b-a}{b+a}$.

9. $a+b$.

11. $\frac{x^2-y^2}{xy}$.

13. $\frac{1}{(x+1)(x+h+1)}$.

Pages 25, 26

1. Identity. 3.
$$-6$$
. 5. Identity. 7. -5 . 9. -4 . 11. $\frac{4}{3}$. 13. $-\frac{12}{5}$. 15. -7 . 17. $-\frac{3}{7}$. 19. $\frac{4}{3}$. 21. 1.1 23. $1-a$. 25. $\frac{b+a}{b-a}$. 27. $\frac{y-b}{m}$. 29. $\frac{A-P}{mP}$.

Pages 27, 28

Pages 29, 30

1.
$$\frac{5}{14}$$
 3. $\frac{2x^3z^5}{5y}$ 5. $\frac{a(x+y)}{bc(x+3y)}$ 7. $\frac{3}{4}$ 17. 20. 19. -51. 21. ± 3 23. 16 ft., by 28 ft. 25. 10. 27. $\frac{5}{6}$ 29. z^2 31. 12. 33. $\sqrt{35}$ 35. 9. 37. $\frac{4}{7}$

Pages 32, 33

1.
$$S = ke^2$$
, $S = 6e^2$.
13. 9.75 in.
24. 11. 162 lbs.
25. 27. 15. 2.4.

Pages 34, 35

1. 81.	3 16.	5. $\frac{27}{8}$.	7	- 0.000027.	9. 16	i. 11. 1024.
13. x^{12} .		15. z.		17. 81y4.		19. /t²n.
21. $t^{a^2-b^2}$.		23. alpbmp	np.	25.	20.	,, ,

Page 36

1.
$$7, -\sqrt{49} = -7.$$
 3. $0.5, -\sqrt{0.25} = -0.5.$ 5. $-1.$ 7. $-\frac{3x^2}{y^3}$. 9. 19. 11. $\frac{a^6b^{10}}{c^{14}d^2}$.

Pages 38, 39

1. 13. 3. 5. 5.
$$\frac{1}{32}$$
. 7. 1. 9. $\frac{3x^2}{y^4}$. 11. $-\frac{a^2}{8}$. 13. $\frac{7}{4a^2}$. 15. $\frac{x-y}{x+y}$. 17. $\frac{1}{x^3+y^3}$. 19. $\frac{xy^2}{x+y^2}$. 21. $3ab^{-1}c^{-2}$.

23.
$$xy^{-\frac{1}{2}}z^{-\frac{1}{2}}$$
. 25. $9a\sqrt{a}$. 27. $xz^2\sqrt{2xy}$. 29. $2a^2b^4$. 31. $a\frac{17}{24}$. 33. $x^2 + 3x^{\frac{1}{2}} - 5x$. 35. $y + 7y^{\frac{1}{2}} + 10$. 37. $x^2y^{\frac{1}{2}} - 3xy^{\frac{1}{2}} + x^{\frac{1}{2}}y^{\frac{1}{2}}$.

1.
$$3xy^2\sqrt[3]{6x^2y}$$
.

3.
$$\frac{2ab}{3yz^2}\sqrt[4]{\frac{5ab^3c^2}{xy^2z^3}}$$
. 5. $\frac{x^2y}{z^3}\sqrt[n]{\frac{x^4y}{z^5}}$. 7. $\sqrt[4]{250}$.

$$5. \frac{x^2y}{z^3} \sqrt[n]{\frac{x^4y}{z^5}}.$$

7.
$$\sqrt[3]{250}$$

9.
$$\sqrt{\frac{u+v}{u-v}}$$

11.
$$\frac{\sqrt{ab}}{b}$$

9.
$$\sqrt{\frac{u+v}{u-v}}$$
. 11. $\frac{\sqrt{ab}}{b}$. 13. $\frac{2x^2y}{5u^2v}\sqrt[3]{75yuv}$. 15. $\frac{\sqrt[3]{x^2-y^2}}{x_2+v}$.

15.
$$\frac{\sqrt[3]{x^2-y^2}}{x_1+y}$$
.

17.
$$\sqrt{\frac{3x^3y^5}{5z^7}}$$
.

19.
$$\sqrt{2(u-v)^3}$$
.

21.
$$\sqrt[3]{xy^n(x+y)^2}$$
.

23.
$$2xy^3\sqrt[3]{5xy}$$
.

$$25. \ \frac{\sqrt{a^2+b^2}}{ab}.$$

27.
$$\frac{x-y}{xy}\sqrt{xy}$$
.

Pages 42, 43

1. 47.63. **3.** 23.81. **5.**
$$(3a-b-6abx)\sqrt{x}$$
. **7.** $(b-2a)\sqrt{a+b}$.

7.
$$(b-2a)\sqrt{a+b}$$

9.
$$\frac{a+b}{ab}\sqrt{ab}$$

9.
$$\frac{a+b}{ab}\sqrt{ab}$$
. 11. $\frac{x+2y-3ab}{xy}\sqrt{3xy}$.

13.
$$\left(\frac{x}{2} + 2x^3\right)\sqrt[4]{2x}$$
.

15.
$$\left(\frac{u^{4n+3}}{v^{2n-3}}-\frac{u^3}{v^4}\right)\sqrt[n]{u^2v}$$
.

17.
$$\left(x - \frac{2}{x}\right)\sqrt[3]{2y} + \left(\frac{5}{y} - y\right)\sqrt[3]{2x}$$
.

Page 44

1.
$$\sqrt[12]{6561}$$
, $\sqrt[12]{4913}$; $\sqrt[4]{17}$, $\sqrt[3]{9}$.

3.
$$\sqrt[6]{216}$$
, $\sqrt[6]{169}$, $\sqrt[6]{143}$; $\sqrt[6]{143}$, $\sqrt[6]{13}$, $\sqrt[6]{6}$.

5.
$$\sqrt[6n]{x^3y^3}$$
, $\sqrt[6n]{x^4y^{10}}$.

7.
$$\sqrt[6]{\frac{6}{55}}$$

7.
$$\sqrt[6]{\frac{6}{55}}$$
. 9. $\sqrt[6]{\frac{288}{1375}}$.

11.
$$\sqrt[10]{32u^{17}v^9w^{24}}$$
.

13.
$$\sqrt[4]{\frac{18a^5}{b}}$$
.

15.
$$\sqrt[6]{600x^{11}y^{19}}$$
.

17.
$$\sqrt[mn]{y^{m+n^2}x^{m^2+2mn-n^2}}$$
.

Page 45

1.
$$15\sqrt{2} + 14\sqrt{5}$$
.

3.
$$29\sqrt{30} - 74$$
.

5.
$$\frac{8y}{z} - \frac{6x}{y} + 5\sqrt{\frac{2x}{z}}$$
.

7.
$$\frac{52+11\sqrt{15}}{7}$$
.

9.
$$\frac{22+3\sqrt{35}}{13}$$
.

11.
$$a\sqrt{a}(\sqrt{a+4}+2)$$
.

13.
$$\frac{\sqrt{x^2-5}-2}{x-3}$$
.

15.
$$2x + 2 + 2\sqrt{x^2 + 2x - 15}$$
.

17.
$$2z^2 + 8 + 2\sqrt{z^4 + 10z^2 + 21}$$
.

19.
$$8-4\sqrt{3}-2\sqrt{2}+\sqrt{6}$$
.

21.
$$\frac{15b + 6a - 8\sqrt{6ab}}{3b - 2a}$$
.

1.
$$V = f(e) = e^3$$
.

3.
$$A = f(n) = 100 + 4n$$
. 5. $h = f(s) = s\sqrt{2}$.

$$5. h = f(s) = s\sqrt{2}.$$

9.
$$2, \frac{9}{4}, \frac{6\sqrt{6}+1}{6}, \sqrt{a}+\frac{1}{a}$$

11.
$$\frac{5}{13}$$
, -1 , $\frac{3y+y^2}{1+y^2}$, $\frac{3z^2+1}{z^4+1}$.

13.
$$3x^3 + 7, \frac{3+7y}{y}, 9x + 28.$$

17. 4. 19.
$$-\frac{34}{5}$$
.

21. (a)
$$11x + x^2$$
, (b) $2x^2 + 22x + 121$

5. (a) 12, (b) 35.
7. (a)
$$(4, -3)$$
, (b) $(3, 6)$.
9. $(6, 6)$, $(-6, 6)$, $(-6, -6)$, $(6, -6)$.
11. 0.

Pages 58, 59

1.
$$(4, 3)$$
. 3. $(3, -1)$. 5. $(\frac{2}{3}, \frac{5}{3})$. 7. $(2, 1)$. 9. $(\frac{41}{11}, \frac{17}{11})$. 11. $(\frac{25}{11}, -\frac{27}{11})$. 13. $(2, 3)$. 15. $(\frac{7}{2}, -1)$. 17. Dependent.

19.
$$(5, -2)$$
. 21. Inconsistent. 23. $(a + b, a - b)$. 25. $(\frac{b}{a}, a)$. 27. $(1, 2)$. 29. $(2, 2)$. 31. $(a, -b)$.

Pages 59, 60

1.
$$(2, 3, 3)$$
. 3. $(-1, 1, 2)$. 5. $(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$. 7. $(1, -3, 4)$. 9. $(\frac{d}{a+b+c}, \frac{d}{a+b+c}, \frac{d}{a+b+c})$. 11. $(2, -1, 3)$. 13. $(2, -3, 4, 1)$.

Page 60

1. 5. 3.
$$-18$$
. 5. 11. 7. $5x - 2y$.

Page 62

23.
$$(2, -3)$$
. 25. $(\frac{67}{47}, \frac{3}{47})$. 27. Inconsistent.

Page 63

1.
$$-83$$
. 5. $3x^2 + 5x + 36$.

Pages 65, 66

1. 17, 4. 3.
$$\frac{17}{21}$$
. 5. Airplane 195 mph; wind 15 mph. 7. 83, 19. 9. \$3800 at 4%; \$3200 at 5%. 11. 57.6 ft. by 46.2 ft. 13. $m = \frac{3}{2}$, $b = -7$. 15. Mother, \$3900; son, \$2800; daughter, \$1700.

Page 67

1.
$$2x^2 + 3x - 3 = 0$$
. 3. $7x^2 - 14x + 87 = 0$. 5. $15y^2 - 17y - 52 = 0$. 7. $(a^2 - 4ce)x^2 + (2ab - 4cf - 4de)x + (b^2 - 4df) = 0$.

Page 68

1.
$$\frac{5}{3}$$
, $-\frac{5}{3}$.

3. 2, 5.

5. 0, $\frac{8}{5}$.

7. $\frac{4}{3}$, $\frac{5}{2}$.

9. -3 , 2.

11. $\frac{8}{3}$, $-\frac{1}{2}$.

13. b , $\frac{1}{a}$.

15. 0, 1, 3.

Pages 69, 70

1.
$$9, (x-3)^2$$
. 3. $\frac{4}{25}, (x+\frac{2}{5})^2$. 5. $-3, 5$. 7. $7, \frac{5}{3}$. 9. $\frac{1}{2}, \frac{2}{3}$.

11. $\frac{-5 \pm \sqrt{13}}{4}$; -2.152, -0.349. 13. $\frac{-6 \pm \sqrt{11}}{5}$; -1.863, -0.537.

15. $\frac{9 \pm \sqrt{41}}{2}$; 1.299, 7.702. 17. $\frac{-8 \pm \sqrt{29}}{7}$; -1.912, -0.374.

19.
$$-3 \pm 2i$$
.

23.
$$-3a$$
, $7a$.

21.
$$\frac{-1 \pm \sqrt{3}i}{2}$$
.
25. $\frac{-1 \pm \sqrt{1-4b^2}}{2b}$.

1.
$$11, -3$$
.

3.
$$-\frac{1}{2}$$
, 3.

5.
$$-2, \frac{5}{2}$$
.

7.
$$\frac{11 \pm \sqrt{61}}{10}$$
.

9.
$$\frac{5 \pm \sqrt{13}}{3}$$
.

11.
$$\frac{-5 \pm \sqrt{37}}{6}$$
.

13.
$$\frac{-4 \pm \sqrt{5}i}{7}$$
.

15.
$$\frac{3 \pm \sqrt{11}i}{10}$$
.

17.
$$\frac{-3 \pm \sqrt{6}i}{3}$$
.

19.
$$\frac{\sqrt{6} \pm \sqrt{10}i}{4}$$
.

21.
$$b-a$$
, $b+a$.

23.
$$-1$$
, $1-k$.

Page 72

1.
$$3, \frac{9}{4}$$
.

3.
$$2, \frac{5}{2}$$
.

5.
$$-2$$
.

7. 1,
$$-\frac{3}{2}$$

9.
$$-2, \frac{2}{3}$$
.

1.
$$3, \frac{9}{4}$$
. 3. $2, \frac{5}{2}$. 5. -2 . 7. $1, -\frac{3}{2}$. 9. $-2, \frac{2}{3}$. 11. $ab, -ab$.

Page 73

11.
$$1, \frac{1}{2}$$
.

13.
$$\frac{16}{3}$$
.

15.
$$-15$$
.

3. 7. 5. 2, 3. 7. 3. 9.
$$3, \frac{9}{4}$$
. 13. $\frac{16}{3}$. 15. -15. 17. $2a^2, 3a^2$.

Pages 74, 75

1.
$$-2$$
, 2, -3 , 3. 3. 49. 5. -7 . 7. -2 , 1. 9. -2 , 1, 5, 8.

$$5. - 7.$$

7.
$$-2, 1$$
.

9.
$$-2, 1, 5, 8$$
.

11.
$$\frac{5 \pm \sqrt{31}}{2}$$
, $\frac{5 \pm \sqrt{33}}{2}$.

13.
$$-3, -\frac{3}{2}, 1, 2$$
.

17.
$$-2, \frac{1}{2}, 1, \frac{7}{2}$$
.

Pages 77, 78

1.
$$(0, -4), 2, -2$$
.

3.
$$(\frac{1}{2}, \frac{25}{4}), -2, 3.$$
 5. $(1, 0), 1, 1.$

7.
$$\left(-\frac{3}{4}, -\frac{33}{8}\right), -2.19, 0.69.$$
 9. $\left(-\frac{1}{2}, -\frac{21}{4}\right), -2.79, 1.79.$

9.
$$\left(-\frac{1}{2}, -\frac{21}{4}\right), -2.79, 1.79.$$

Page 79

- 1. Real, unequal, rational.
- 5. Real, equal, rational.
- 9. Real, unequal, rational.
- 3. Real, unequal, irrational.
- 7. Imaginary, unequal.
- 11. Real, unequal, rational. 17. -5, 5.
- 15. 5, $-\frac{5}{11}$. 13. $\frac{16}{5}$.

Pages 81, 82

1.
$$-\frac{8}{3}, \frac{17}{3}$$
.

3.
$$-\frac{7}{9}$$
, $-\frac{4}{7}$

5.
$$x^2 + 3x - 28 = 0$$

7.
$$x^2 - 4x + 3.91 = 0$$

9.
$$x^2 + 6x + 4 = 0$$
.

1.
$$-\frac{8}{3}, \frac{17}{3}$$
.
2. $-\frac{7}{9}, -\frac{4}{7}$.
3. $-\frac{7}{9}, -\frac{4}{7}$.
3. $-\frac{7}{9}, -\frac{4}{7}$.
4. $x^2 + 3x - 28 = 0$.
5. $x^2 + 3x - 28 = 0$.
11. $x^2 + 10x + 27 = 0$.
17. $(2x + 2)(5x - 1)$

13.
$$x^2 + x + 1 = 0$$
.

15.
$$x^2 + 2px - q = 0$$
.

17.
$$(3x+2)(5x-1)$$
.

19.
$$7\left(x+\frac{3-2\sqrt{3}i}{7}\right)\left(x+\frac{3+2\sqrt{3}i}{7}\right)$$
.

$$3+2\sqrt{3}i$$

21.
$$(2x - 5y + 3)(x + 3y - 1)$$
.

25.
$$3x^2 + 7x - 6 = 0$$
.

$$27. \ 3x^2 + 2x - 2 = 0.$$

Pages 82, 83

1. 11, 14; -14, -11. **3.** 7, 9, 11. **5.** $\frac{5}{2}$, $-\frac{2}{5}$. **7.** $\frac{6}{5}$, $\frac{4}{5}$. **9.** 20 ft. 11. 8 in. by 8 in. or 6 in. by 10 in. 13. $16\frac{2}{3}\%$. 15. 11:46 A.M. or 12:46 P.M.

Page 87

11.
$$(4, -3), (-3, 4)$$
.
13. $(5, 1), (7, 5)$.
15. $(-2, 6)(-6, 2)(2, -6)(6, -2)$.
17. $(-2.6, 8.2), (1.3, 0.4)$.

19. (0.4, 0.3), (-8.0, 4.5).

Page 89

1.
$$(2, 6), (6, -2)$$
.

3. $(5, 17), (-2, 3)$.

5. $(4, 2), (1, 8)$.

7. $(5, 1), (7, 5)$.

9. $(1, -2), (1, -2)$.

11.
$$\left(\frac{3+\sqrt{7}i}{4}, \frac{1+\sqrt{7}i}{2}\right), \left(\frac{3-\sqrt{7}i}{4}, \frac{1-\sqrt{7}i}{2}\right)$$
.

Pages 89, 90

1.
$$(3, 4), (-3, 4), (-3, -4), (3, -4).$$

3.
$$(3, 5), (-3, 5), (-3, -5), (3, -5).$$

5.
$$(5, 3), (-5, 3), (-5, -3), (5, -3).$$

7.
$$(\sqrt{3}, \sqrt{5}), (-\sqrt{3}, \sqrt{5}), (-\sqrt{3}, -\sqrt{5}), (\sqrt{3}, -\sqrt{5}).$$

9.
$$(0, 3), (0, 3), (0, -3), (0, -3).$$

11.
$$(3, 2i), (-3, 2i), (-3, -2i), (3, -2i).$$

Page 91

1.
$$(1, -3), (-1, 3), (2, 1), (-2, -1).$$

3.
$$(3, 1), (-3, -1), (1, 4), (-1, -4).$$

5.
$$(2, 1), (-2, -1), (7, -3), (-7, 3).$$

7.
$$(2\sqrt{2}, \sqrt{2}), (-2\sqrt{2}, -\sqrt{2}), (\sqrt{3}, -2\sqrt{3}), (-\sqrt{3}, 2\sqrt{3}).$$

9.
$$(2i, -i), (-2i, i), (3i, 2i), (-3i, -2i).$$

11.
$$(2, -4), (2, -4), (-2, 4), (-2, 4).$$

Pages 92, 93

1.
$$(6, 6), (6, -6, (-3, 9), (-3, -9).$$

3.
$$(1, 3), (-1, 3), (1, -7), (-1, -7).$$

5.
$$(2, 1), (1, 2), (\frac{3}{2}, -\frac{1}{2}), (-\frac{1}{2}, \frac{3}{2}).$$

7. (1, 2), (2, 1),
$$(-3 + \sqrt{2}i, -3 - \sqrt{2}i)$$
, $(-3 - \sqrt{2}i, -3 + \sqrt{2}i)$.

9.
$$(1, 2), (2, 1)$$
.
11. $(5, 1), (-3, -\frac{5}{3})$.
13. $(4, 2), (\frac{20}{7}, -10)$.
15. $(1, -\frac{1}{2}), (-1, \frac{1}{2}), (\frac{2}{3}, -2), (-\frac{2}{3}, 2)$.
17. $(4, 1), (\frac{5}{3}, \frac{12}{5})$.

15.
$$(1, -\frac{1}{2}), (-1, \frac{1}{2}), (\frac{2}{3}, -2), (-\frac{2}{3}, 2).$$
 17. $(4, 1), (\frac{5}{3}, \frac{12}{5}).$

19.
$$(\sqrt{2}, \sqrt{5})$$
, $(-\sqrt{2}, \sqrt{5})$, $(-\sqrt{2}, -\sqrt{5})$, $(\sqrt{2}, -\sqrt{5})$.

21.
$$(\frac{1}{2}, \frac{3}{2}), (-3, 5).$$
 23. $(2, 13), (3, 24).$

Pages 93, 94

1. 8 ft., 3 ft.
7.
$$\left(\frac{3+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$$
, $\left(\frac{3-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)$.
9. 7 ft., 3 ft.
11. 12 ft., 5 ft.
13. \$3600 at 4.5%, \$2800 at 5.5%.

Pages 95, 96

1.
$$\log_2 32 = 5$$
.

3.
$$\log_{49} 7 = \frac{1}{2}$$
.

1.
$$\log_2 32 = 5$$
.
3. $\log_{49} 7 = \frac{1}{2}$.
5. $\log_{81} 3 = 0.25$.
7. $\log_{25} 5 = \frac{1}{2}$.

7.
$$\log_{25} 5 = \frac{1}{2}$$
.

17.
$$a^2 = a^2$$

11.
$$36^{0.5} = 6$$
.

9.
$$\log_{17} 1 = 0$$
. 11. $36^{0.5} = 6$. 13. $2^{-4} = 0.0625$. 15. $32^{-0.2} = 0.5$.

15.
$$32^{-0.2} = 0.5$$

17.
$$a^2 = a^2$$
.

17.
$$a^2 = a^2$$
. 19. 3. 21. $\frac{3}{2}$. 23. -2 . 25. $-\frac{1}{2}$. 27. -1 .

25.
$$-\frac{1}{2}$$
.

$$27. - 1.$$

29.
$$\frac{1}{8}$$
.

29.
$$\frac{1}{8}$$
. 31. $\frac{1}{7}$. 33. 1. 35. 343. 37. 32. 39. a^2 .

Pages 98, 99

1.
$$\log_{11} 51 + \log_{11} 896 + \log_{11} 743$$

1.
$$\log_{11} 51 + \log_{11} 896 + \log_{11} 743$$
.

3.
$$2 \log_7 43 + \frac{2}{3} \log_7 695 - \frac{1}{3} \log_7 71 - \frac{1}{2} \log_7 563$$
. 5. $\log_7 \frac{76^2 \cdot 48^3}{59^5}$.

5.
$$\log_7 \frac{76^2 \cdot 48^3}{59^5}$$
.

9.
$$\log_{10} \frac{4}{3} \pi r^3$$
.

7.
$$\log_{10} 16t^2$$
. 9. $\log_{10} \frac{4}{3}\pi r^3$. 11. $\log_{10} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.

13.
$$\frac{2}{3}$$
.

15.
$$\frac{76}{15}$$
.

13.
$$\frac{2}{3}$$
. 15. $\frac{76}{15}$. 17. $\frac{7}{6}$. 19. 1.77815. 21. 0.69897.

Page 100

3. 0. 5.
$$9-10$$
. 7. $5-10$.

7.
$$5-10$$
.

Page 102

Pages 103, 104

Pages 108, 109

Page 111

11.
$$\frac{\pi}{2}$$
.

13.
$$-\frac{4\pi}{3}$$

1.
$$30^{\circ}$$
. 3. 90° . 5. 15° . 7. -390° . 9. 114.59° . 11. $\frac{\pi}{3}$. 13. $-\frac{4\pi}{3}$. 15. $\frac{11\pi}{6}$. 17. $\frac{7\pi}{2}$. 19. 0.087266 .

17.
$$\frac{7\pi}{2}$$
.

13. 17.41°. 15. 234.41°. 17. 43.341°. 19.
$$\frac{\pi}{3}$$
, $\frac{\pi}{4}$. 21. 298 ft. 23. 6080 ft.

$$\pi$$
 π 21 208

1. 105.

3. 3.61.

5. 1520 ft. per sec.

Page 116

1. .29, .96, .31, 3.3, 1.0, 3.4.

3. .95, .31, 3.1, .32, 3.2, 1.1.

5. -.39, -.92, .42, 2.4, -1.1, -2.6.

7. -.56, .83, -.67, -1.5, 1.2, -1.8.

9. .87, .50, 1.7, .58, 2.0, 1.2.

11. -.50, -.87, .58, 1.7, -1.2, -2.

Page 117

1.
$$\frac{5}{13}$$
, $\frac{12}{13}$, $\frac{5}{12}$, $\frac{12}{5}$, $\frac{13}{12}$, $\frac{13}{5}$.

3. $-\frac{24}{25}$, $\frac{7}{25}$, $-\frac{24}{7}$, $-\frac{7}{24}$, $\frac{25}{7}$, $-\frac{25}{24}$.

5.
$$-\frac{2}{5}$$
, $-\frac{\sqrt{21}}{5}$, $\frac{2\sqrt{21}}{21}$, $\frac{\sqrt{21}}{2}$, $-\frac{5\sqrt{21}}{21}$, $-\frac{5}{2}$.

7.
$$-\frac{\sqrt{5}}{5}$$
, $\frac{2\sqrt{5}}{5}$, $-\frac{1}{2}$, -2 , $\frac{\sqrt{5}}{2}$, $-\sqrt{5}$.

9.
$$\frac{1}{5}$$
, $-\frac{2\sqrt{6}}{5}$, $-\frac{\sqrt{6}}{12}$, $-2\sqrt{6}$, $-\frac{5\sqrt{6}}{12}$, 5.

Page 121

1. 0.6596. **3.** 0.2846. **5.** 1.6160. **7.** 0.6078. **9.** 0.9525. **11.** 0.8884.

13. 53° 38'. 15. 42° 40'. 17. 74° 35'. 19. 13° 3'. 21. 83° 34'. 23. 51° 16',

Page 122

1. 9.62355 - 10. **3.** 9.82464 - 10. **5.** 9.87430 - 10. **7.** 9.75470 - 10.

9. 9.91172 - 10. **11.** 9.66148 - 10. **13.** 16° 10.4'.

15. 74° 42.3′.

17. 3° 22.8′. 19. 33° 13.6′. 21. 85° 46.2′. 23. 5° 36.7′.

Page 124

1. $a = 36.20, b = 19.25, \beta = 28^{\circ}$.

3. $\beta = 27^{\circ} 36'$, b = 2.867, c = 6.187.

5. $\beta = 55^{\circ} 43'$, a = 0.9285, c = 1.648.

7. $\alpha = 49^{\circ} 54'$, $\beta = 40^{\circ} 6'$, $\alpha = 6.224$.

9. $\alpha = 30^{\circ} 18'$, a = 434.5, c = 861.1.

11. c = 36.15, $\alpha = 60^{\circ} 49'$, $\beta = 29^{\circ} 11'$.

13. $\alpha = 61^{\circ} 48'$, a = 1.298, b = 0.6961.

Page 125

1. 13° 0'. 3. (a) 18° 30′, (b) 14° 0′.

5. 19.4 ft. 7. 19.6 ft.

9. 146 ft.

11. 32° 50′.

13. 93.6 ft., 16.7 ft.

15. 14.1 in.

17. (a) 3.46 in., (b) 6.93 in.

Page 126

1. $\beta = 27^{\circ} 49'$, a = 173.14, c = 195.76.

3. $\alpha = 36^{\circ} 11.4'$, b = 596.10, c = 738.62.

5. $\alpha = 37^{\circ} 14.2'$, $\beta = 52^{\circ} 45.7'$, a = 262.84.

7. $\beta = 58^{\circ} 17.5'$, a = 4426.3, b = 7164.5.

9.
$$\beta = 35^{\circ} 36.6'$$
, $b = 3386.8$, $c = 5816.6$.

11.
$$\alpha = 59^{\circ} 27.9'$$
, $\beta = 30^{\circ} 32.1'$, $b = 45.176$.

13.
$$\alpha = 75^{\circ} 33.8'$$
, $a = 0.70648$, $b = 0.18188$.

15.
$$\alpha = 17^{\circ} 46.4'$$
, $a = 2.7743$, $c = 9.0886$.

17.
$$\alpha = 57^{\circ} 44.0'$$
, $\beta = 32^{\circ} 16.0'$, $c = 7.2606$.

1. 7908.2. **3.** 129,990. **5.** 45,446. **7.** 15,856,000.

9. 8,008,000.

11. 1729.9.

13. 0.064247. **15.** 12.006.

17. 11.898.

Pages 127, 128

1. 275.9, 502.5.

3. 1361, 1078.

5. 70.53, 60.38.

7. 28.12, 39° 39′.

9. 557.1, 21° 34′.

11. 0.1385, 72° 0′.

13. 123.5 N, 47.95 E.

15. 206.2 S, 160.5 W.

17. 140.6 mph., N 14° 5′ E.

19. AD = 617.1 yds., CD = 178.4 yds.

Page 132

1. -0.8116. **3.** -0.2183. **5.** 0.5176. **7.** -0.6459.

9. -0.4939. 11. -1.5458. 13. 9.53020 - 10. 15. 9.78089 - 10 (n).

17. $\sin \theta$.

19. $-\tan \theta$. 21. $-\sin \theta$.

23. $- \sec \theta$.

Pages 137, 138

13.
$$-\frac{4}{5}, \frac{3}{5}, -\frac{4}{3}, -\frac{3}{4}, \frac{5}{3}, -\frac{5}{4}$$
. **15.** $-\frac{15}{17}, -\frac{8}{17}, \frac{15}{8}, \frac{8}{15}, -\frac{17}{8}, -\frac{17}{15}$.

15.
$$-\frac{13}{17}$$
, $-\frac{3}{17}$, $\frac{13}{8}$, $\frac{3}{15}$, $-\frac{17}{8}$, $-\frac{17}{15}$.

17.
$$-\frac{2\sqrt{29}}{29}$$
, $-\frac{5\sqrt{29}}{29}$, $\frac{2}{5}$, $\frac{5}{2}$, $-\frac{\sqrt{29}}{5}$, $-\frac{\sqrt{29}}{2}$. 19. $-\frac{3}{8}$. 21. $\frac{3-\sqrt{7}}{4}$.

19.
$$-\frac{3}{8}$$
. 21. $\frac{3-\sqrt{7}}{4}$.

23.
$$\pm \sqrt{1-\sin^2 x}$$
, $\pm \frac{\sin x}{\sqrt{1-\sin^2 x}}$, $\frac{\sqrt{1-\sin^2 x}}{\sin x}$, $\pm \frac{1}{\sqrt{1-\sin^2 x}}$, $\frac{1}{\sin x}$.

25.
$$\pm \frac{\tan x}{\sqrt{1 + \tan^2 x}}$$
, $\pm \frac{1}{\sqrt{1 + \tan^2 x}}$, $\frac{1}{\tan x}$, $\pm \sqrt{1 + \tan^2 x}$, $\pm \frac{\sqrt{1 + \tan^2 x}}{\tan x}$.

Page 142

1. 60°, 120°, 240°, 300°.

3. 0°, 180°. 5. 90°, 270°. 7. 60°, 300°.

9. 0°, 180°, 225°, 315°.

11. 120°, 240°. **13.** 45°, 60°, 240°, 315°.

15. 135°, 315°.

17. 0°, 30°, 150°, 180°, 210°, 330°.

19. 41° 49′, 138° 11′, 270°. 21. 60°, 180°, 300°. 23. 45°, 120°, 225°, 300°. 27. 19° 28′, 30°, 150°, 160° 32′.

25. 0°. 29. 30°, 45°, 135°, 150°, 210°, 225°, 315°, 330°.

Pages 146, 147

1.
$$\frac{\sqrt{2}+1}{2}$$
, $\frac{\sqrt{2}+\sqrt{3}}{2}$, $1+\sqrt{3}$.

3.
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$
, $\frac{\sqrt{6}+\sqrt{2}}{4}$, $2-\sqrt{3}$, $2+\sqrt{3}$.

5.
$$-\frac{297}{425}, \frac{304}{425}, \frac{87}{425}, \frac{416}{425}$$

7.
$$\frac{220}{221}$$
, $-\frac{21}{221}$, $-\frac{140}{221}$, $-\frac{171}{221}$.

9.
$$\frac{\sqrt{26} + 20\sqrt{13}}{78}$$
, $\frac{4\sqrt{13} - 5\sqrt{26}}{78}$, $\frac{\sqrt{26} - 20\sqrt{13}}{78}$, $\frac{4\sqrt{13} + 5\sqrt{26}}{78}$.

11.
$$\frac{\sqrt{2}}{2}(\cos\theta + \sin\theta)$$
. 13. $\frac{\tan\theta - 1}{\tan\theta + 1}$. 15. $\frac{1}{2}(\sqrt{3}\cos\theta - \sin\theta)$.

13.
$$\frac{\tan \theta - 1}{\tan \theta + 1}$$

15.
$$\frac{1}{2}(\sqrt{3}\cos\theta-\sin\theta)$$
.

25. $\sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \beta \cos \gamma + \cos \alpha \cos \beta \sin \gamma - \sin \alpha \sin \beta$ $\sin \gamma$.

Pages 147, 148

5.
$$-\frac{24}{25}$$
, $-\frac{7}{25}$, $\frac{24}{7}$, $\frac{7}{24}$. 7. $-\frac{120}{169}$, $\frac{119}{169}$, $-\frac{120}{119}$, $-\frac{119}{120}$. 9. $-\frac{3}{5}$, $\frac{4}{5}$, $-\frac{3}{4}$, $-\frac{4}{3}$.

Page 149

1.
$$\frac{1}{2}\sqrt{2-\sqrt{3}}$$
, $\frac{1}{2}\sqrt{2+\sqrt{3}}$, $2-\sqrt{3}$, $2+\sqrt{3}$.

3.
$$\frac{1}{2}\sqrt{2+\sqrt{2}}$$
, $\frac{1}{2}\sqrt{2-\sqrt{2}}$, $\sqrt{2}+1$, $\sqrt{2}-1$.

5.
$$\frac{\sqrt{5}}{5}$$
, $\frac{2\sqrt{5}}{5}$, $\frac{1}{2}$, 2.

7.
$$\frac{4\sqrt{41}}{41}$$
, $-\frac{5\sqrt{41}}{41}$, $-\frac{4}{5}$, $-\frac{5}{4}$.

9.
$$\frac{\sqrt{15}}{5}$$
, $-\frac{\sqrt{10}}{5}$, $-\frac{\sqrt{6}}{2}$, $-\frac{\sqrt{6}}{3}$.

Pages 150, 151

3.
$$\sin 70^{\circ} + \sin 40^{\circ}$$
.

5.
$$\cos .40^{\circ} - \cos .70^{\circ}$$
.

3.
$$\sin 70^{\circ} + \sin 40^{\circ}$$
. 5. $\cos 40^{\circ} - \cos 70^{\circ}$. 7. $\frac{1}{2} (\sin 5x + \sin x)$.

9.
$$\frac{1}{2}(\cos 2x - \cos 8x)$$
. 11. $2 \sin 35^{\circ} \cos 15^{\circ}$. 13. $2 \sin 50^{\circ} \sin 25^{\circ}$.

15.
$$2 \cos 3x \sin x$$
. 17. $-2 \sin 7x \sin 3x$. 19. $2 \sin 28^{\circ} \sin 6^{\circ}$. 21. $\sqrt{3}$.

Page 152

Page 156

1.
$$-135^{\circ}$$
, -45° , 225° , 315° , etc.

5.
$$-225^{\circ}$$
, -45° , 135° , 315° , etc.

7.
$$-292^{\circ} 10'$$
, $-247^{\circ} 50'$, $67^{\circ} 50'$, $112^{\circ} 10'$, etc.

11.
$$60^{\circ} = \frac{\pi}{3}$$
. 13. $-60^{\circ} = -\frac{\pi}{3}$. 15. $0^{\circ} = 0$. 17. 37°. 19. 131° 19′.

15.
$$0^{\circ} = 0$$
.

21.
$$\frac{\sqrt{3}}{2}$$
.

21.
$$\frac{\sqrt{3}}{2}$$
. 23. 1. 25. $\frac{2\sqrt{3}}{3}$. 27. 45°. 29. 135°. 31. -60°.

33.
$$1-2u^2$$
.

35.
$$\frac{2u}{1-u^2}$$
.

37.
$$\pm \frac{2\sqrt{u^2-1}}{u^2}$$
.

39.
$$\pm u\sqrt{1-v^2} \pm v\sqrt{1-u^2}$$
. 41. $\frac{u-v}{1+uv}$.

$$41. \ \frac{u-v}{1+uv}.$$

1.
$$a = 4.6074$$
, $b = 4.1455$, $\beta = 61^{\circ} 21.0'$.

3.
$$b = 4.7168$$
, $c = 4.4433$, $\beta = 78^{\circ} 10.3'$.

5.
$$a = 3797.9$$
, $b = 7951.3$, $\beta = 111^{\circ} 47.7'$.

7.
$$a = 4.5089$$
, $c = 3.9972$, $\gamma = 59^{\circ} 41.2'$.

11. 17.06 mi.

Page 163

1.
$$b_1 = 12.691$$
, $\beta_1 = 115^{\circ} 16.7'$, $\gamma_1 = 41^{\circ} 2.1'$ or $b_2 = 4.1850$, $\beta_2 = 17^{\circ} 20.9'$, $\gamma_2 = 138^{\circ} 57.9'$.

3.
$$a_1 = 4195.0$$
, $\alpha_1 = 75^{\circ} 34.3'$, $\gamma_1 = 61^{\circ} 13.8'$ or $a_2 = 1340.8$, $\alpha_2 = 18^{\circ} 1.9'$, $\gamma_2 = 118^{\circ} 46.2'$.

5.
$$c = 117.61$$
, $\alpha = 59^{\circ} 50.0'$, $\gamma = 48^{\circ} 40.4'$.

7. No solution.

9.
$$c_1 = 0.54371$$
, $\beta_1 = 40^{\circ} 47.4'$, $\gamma_1 = 112^{\circ} 23.4'$ or $c_2 = 0.14196$, $\beta_2 = 139^{\circ} 12.6'$, $\gamma_2 = 13^{\circ} 58.2'$.

11. 77.81 in. or 15.92 in.

Page 164

1.
$$c = 40.861$$
, $\alpha = 83^{\circ} 40.8'$, $\beta = 39^{\circ} 52.6'$.

3.
$$b = 414.80$$
, $\alpha = 21^{\circ} 48.1'$, $\gamma = 44^{\circ} 50.1'$.

5.
$$a = 15.675$$
, $\beta = 29^{\circ} 33.9'$, $\gamma = 112^{\circ} 6.5'$.
7. $a = 10.827$, $\beta = 69^{\circ} 14.3'$, $\gamma = 93^{\circ} 54.5'$.

9. 37.58 mi.

Page 165

5.
$$\alpha = 49^{\circ} 41'$$
, $\beta = 35^{\circ} 54'$, $\gamma = 94^{\circ} 25'$.

7. 100.9 mi.

Pages 167, 168

1.
$$\alpha = 51^{\circ} 47.0'$$
, $\beta = 81^{\circ} 57.8'$, $\gamma = 46^{\circ} 15.4'$.

3.
$$\alpha = 39^{\circ} 10.6'$$
, $\beta = 24^{\circ} 42.8'$, $\gamma = 116^{\circ} 6.6'$.

5.
$$\alpha = 73^{\circ} 37.4'$$
, $\beta = 43^{\circ} 14.2'$, $\gamma = 63^{\circ} 8.2'$.

7.
$$\alpha = 56^{\circ} 21.0'$$
, $\beta = 26^{\circ} 54.0'$, $\gamma = 96^{\circ} 45.0'$.

9.
$$\alpha = 43^{\circ} 55'$$
, $\beta = 56^{\circ} 18'$, $\gamma = 79^{\circ} 47'$.

Page 168

1. 134,750.

3. 114.82.

5. 633.46.

Pages 169, 170

1. 4188 ft., 2074 ft. 3. 4264 ft. 5. 2681 ft. 7. 61.39 ft., 30.08 ft.

9. 29° 40′, 62° 22′. 11. N 35° 34′ E, 126 min. 13. 36.72 ft. 19. 218.8.

Page 172

1. 3.3.
$$-8$$
.5. -6 .7. 5.9. 10.11. -7 .13. 4, 3.15. 7 , -2 .17. -5 , -9 .

Pages 173, 174

3. 5. 5. 13. 7.
$$\sqrt{153}$$
. 9. $2\sqrt{5}$, $2\sqrt{10}$, $2\sqrt{17}$. 11. $2\sqrt{37}$, $\sqrt{61}$, $\sqrt{113}$. 21. -1. 23. (-3, 5), (7, 5). 25. $x + 2y = 1$.

1. (a)
$$(-3, 2)$$
, (b) $(2, -4)$. 3. $(2, 10)$, $(5, 14)$, $(8, 18)$.

Pages 176, 177

1.
$$\frac{\sqrt{3}}{3}$$
. 3. 0.4877. 5. 1. 7. $\sqrt{3}$. 9. 30°. 11. 120°. 13. 27°.

15.
$$28^{\circ} 27'$$
. 17. $\frac{3}{4}$, $36^{\circ} 52'$. 19. $\frac{7}{4}$, $60^{\circ} 15'$. 21. -1.4420 , $124^{\circ} 44'$. 29. $\sqrt{3}$, $-\sqrt{3}$, 0. 31. $\frac{y-1}{x+2} = 2$.

1. 136. 3. 63° 26′. 5.
$$3x - 2y = 1$$
. 7. 45°. 9. 139° 46′. 11. $-\frac{7}{2}$. 13. 70° 34′, 41° 49′, 67° 37′. 15. 65° 13′, 71° 54′, 42° 53′. 17. 9.

Pages 181, 182

1.
$$y = 0$$
.
3. $x = 3$.
5. $x^2 + y^2 = 36$.
7. $2x - y = 4$.
9. $y - 7 = -3(x+1)$.
11. $y - 1 = x - 4$.
21. $y = x$.
23. $x^2 + y^2 = 6x$.

Pages 184, 185

1.
$$3x - y - 11 = 0$$
. 3. $4x - 3y + 8 = 0$. 5. $y - 7 = 0$. 7. $x - y - 4 = 0$. 9. $2x - 3y + 10 = 0$. 11. $2y = 3x + 8$. 13. $12x + 15y + 10 = 0$.

15.
$$2y = 3x + 12$$
; $3x + y + 3 = 0$; $4x + 5y - 7 = 0$; $y - 3 = 0$.

17.
$$x - 5 = 0$$
; $x + 5 = 0$.
19. 2, 9.
21. $-\frac{2}{5}$, 3.
23. $3x - 2y = 27$.
25. $x - 3y - 6 = 0$.

23.
$$3x - 2y = 27$$
. 25. $x - 3y - 25$

Page 186

1.
$$3x + 2y - 19 = 0$$
.
3. $x + y - 1 = 0$.
5. $2x + 3y - 9 = 0$.
7. (a) $\frac{x}{7} + \frac{y}{2} = 1$, (b) $y = -\frac{2}{7}x + 2$.

9. (a)
$$\frac{x}{-5} + \frac{y}{\frac{15}{4}} = 1$$
, (b) $y = \frac{3}{4}x + \frac{15}{4}$.

11.
$$2x + 3y = 34$$
, $3x - 2y = 12$.
13. $4x - 5y + 10 = 0$, $5x + 4y + 33 = 0$.
15. $\frac{x}{\frac{5}{3}} + \frac{y}{\frac{5}{2}} = 1$.

17.
$$5x - 2y + 11 = 0$$
, $5x - 2y - 31 = 0$, $x + 8y = 23$, $x + 8y = 65$.

19.
$$2x - 5y + 14 = 0$$
, $3x - y = 31$, $4x + 3y = 24$.
21. $5x + 2y = 52$, $x + 3y = 17$, $3x - 4y = 18$; $(\frac{122}{13}, \frac{33}{13})$.

Pages 188, 189

1.
$$4, 2, -8$$
. 3. $-\frac{3}{2}, 4, 6$. 5. $-\frac{4}{7}, -\frac{5}{2}, -\frac{10}{7}$. 7. $x+y+4=0$. 9. $3x-2y+1=0$, $3x-2y=7$, $2x+5y=50$, $2x+5y=11$. 11. $3x-2y=16$, $3x+5y=2$. 13. $-b/a$.

Pages 191, 192

1.
$$\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y - 5 = 0$$
.
3. $\frac{1}{2}x + \frac{\sqrt{3}}{2}y + 4 = 0$.
5. $-\frac{1}{2}x + \frac{\sqrt{3}}{2}y - 7 = 0$
7. $\frac{1}{2}x + \frac{\sqrt{3}}{2}y - \frac{3}{5} = 0$, 60°, $\frac{3}{5}$.

9.
$$-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y = 0$$
, 135°, 0. 11. $-\frac{3}{5}x + \frac{4}{5}y + 3 = 0$, 126° 52′, -3 .

13. (a)
$$x - y - 10 = 0$$
, (b) $\sqrt{3}(x - 3) + (y + 7) = 0$.

15.
$$\sqrt{3}x - y + 8 = 0$$
. 17. $x + y = \pm 7\sqrt{2}$. 19. $\pm 3x + 4y - 20 = 0$.

Pages 193, 194

1. 5, above. **3.** -2, below. **5.**
$$\frac{17}{73}\sqrt{73}$$
, above. **9.** 3. **11.** $\frac{5\sqrt{5}}{2}$.

13. (a)
$$4x + 7y - 5 = 3\sqrt{65}$$
, (b) $4x + 7y - 5 + 7\sqrt{65} = 0$.

15.
$$4x + 3y + 49 = 0$$
, $4x + 3y - 31 = 0$.

17.
$$7x + y + 45 = 0$$
, $x - 7y - 5 = 0$, the former.

Page 195

1. $\frac{143}{2}$. 3. 93.

5. 10.

7. 13.

Page 197

1.
$$y = -3x + b$$
.
3. $x - y + k = 0$.
5. $y + 9 = m(x - 2)$.

7.
$$y = mx + 7$$
.
9. $(3x + 5y - 2) + k(2x - 7y + 8) = 0$.
17. (a) $y = 4x - 3$, (b) $y = -3x - 3$.
19. $6x - y - 7 = 0$.
21. $2x + y = 9$.

Pages 200, 201

1.
$$x^2 + y^2 - 8x - 14y + 40 = 0$$
.
3. $x^2 + y^2 + 4x - 16y + 19 = 0$.

5.
$$x^2 + y^2 - 12x + 12y + 36 = 0$$
. 7. $x^2 + y^2 - 24x + 10y = 0$.

9.
$$x^2 + y^2 + 8x - 6y + 9 = 0$$
.
11. $x^2 + y^2 - 8x + 4y - 16 = 0$.

13.
$$(5, -12), 13.$$
 15. $(4, -5), \sqrt{58}.$ **17.** $(2, 3), 3\sqrt{-1}.$

19.
$$(\frac{2}{5}, -\frac{6}{5})$$
, 3. **21.** $x^2 + y^2 - 10x + 6y + 9 = 0$. **23.** $(5, 3), (-2, 2)$.

25.
$$x^2 + y^2 = a^2$$
. **27.** $x^2 + y^2 + Ey = 0$.

Pages 202, 203

1.
$$x^2 + y^2 - 6x + 8y = 0$$
.
3. $x^2 + y^2 - 6x - 2y + 5 = 0$.

5.
$$x^2 + y^2 + 10x - 2y - 59 = 0$$
. 7. $2x^2 + 2y^2 + 6x - 15y - 83 = 0$.

9.
$$x^2 + y^2 - 17x - 7y + 52 = 0$$
.
11. $x^2 + y^2 + 2x - 4y - 40 = 0$.
13. $x^2 + y^2 + 10x - 2y + 10 = 0$.
15. $x^2 + y^2 + 2x - 8y + 4 = 0$.

17.
$$x^2 + y^2 - 20x - 38y + 292 = 0$$
, $x^2 + y^2 + 14x - 4y - 116 = 0$.

19.
$$x^2 + y^2 - 2x - 10y + 21 = 0$$
, $x^2 + y^2 - 26x - 2y + 45 = 0$.

21.
$$x^2 + y^2 - 4x - 4y + 4 = 0$$
.

Page 204

3.
$$(3, 1), (-3, 1).$$
 5. $2x^2 + 2y^2 + 15x + y - 23 = 0.$

7.
$$3x - y - 1 = 0$$
, (1, 2), (3, 8). 9. $9x + 4y - 22 = 0$.

Pages 206, 207

1.
$$4x^2 + 4y^2 - 5x - 21y + 19 = 0$$
. 3. $x^2 + y^2 + 12x - 16y + 44 = 0$.

5.
$$x^2 + y^2 - 5x - 8y + 20 = 0$$
.

Page 209

19. 10.77, 20. 21. 4.272, 6.022.

1.
$$(3\sqrt{3}, 3)$$
. **3.** $(-4, -4\sqrt{3})$. **5.** $(-3, 0)$. **7.** $(4, 60^{\circ})$. **9.** $(4, 90^{\circ})$.

11.
$$(2\sqrt{2}, 225^{\circ})$$
. 13. $4\sqrt{2}$. 15. $r \sin \theta = -4$. 17. $r(2 \cos \theta - 3 \sin \theta) = 6$. 19. $r = 8 \cos \theta$.

21.
$$x^2 + y^2 = 9$$
. 23. $y = 2$. 25. $x = 2$.

Page 212

1.
$$5x - 3y = 9$$
. 3. $y = 6$. 5. $x + \sqrt{3}y + 8 = 0$. 7. $r(3\cos\theta - 7\sin\theta) = 9$.

9.
$$r(4\cos\theta - 9\sin\theta) + 11 = 0$$
. 11. (a) $r\sin\theta + 2 = 0$, (b) $r\sin\theta - 3 = 0$,

(c)
$$r \sin \theta - 2\sqrt{2} = 0$$
. 13. $r \cos \left(\theta - \frac{5\pi}{6}\right) = 5$. 15. $\sqrt{2}r \cos \left(\theta - \frac{\pi}{4}\right) = 3$.

Page 213

1.
$$r = 7$$
.
3. $r + 4 \cos \theta = 0$.
5. $r^2 - 12r \cos \left(\theta - \frac{\pi}{6}\right) + 20 = 0$.
7. $r^2 - 2ar \cos \left(\theta - \frac{\pi}{4}\right) = 3a^2$.
9. $(3, 0^\circ), 3$.
11. $\left(4, \frac{\pi}{6}\right), 4$.

13.
$$(3, 0^{\circ}), 4.$$
 15. $\left(2, \frac{\pi}{4}\right), 4.$ 17. $x^2 + y^2 + 4x = 0.$

19.
$$x^2 + y^2 = 7x + 7\sqrt{3}y$$
.
21. $x^2 + y^2 - 3\sqrt{3}x - 3y + 5 = 0$.
23. $r = 11$.
25. $r + 6 \cos \theta = 0$.

27.
$$r^2 - 20r \cos \left(\theta - \frac{2\pi}{3}\right) = 44$$
. 29. $r^2 - 26r \cos \left(\theta - 67^{\circ} 23'\right) + 169 = 169$.

Pages 217, 218

1.
$$(4, 0), x + 4 = 0, 16.$$

3. $(0, \frac{5}{2}), y + \frac{5}{2} = 0, 10.$
5. $(0, \frac{7}{4}), y + \frac{7}{4} = 0, 7.$
7. $(0, \frac{9}{4}), y + \frac{9}{4} = 0, \frac{9}{4}$

5.
$$(0, \frac{7}{4}), y + \frac{7}{4} = 0, 7.$$
 7. $(0, \frac{9}{8}), y + \frac{9}{8} = 0, \frac{9}{2}.$ **9.** $(0, -\frac{5}{12}), y = \frac{5}{12}, \frac{5}{3}.$ **11.** $y^2 = 28x.$ **13.**

9.
$$(0, -\frac{1}{12}), y = \frac{1}{12}, \frac{3}{3}$$
.
11. $y^2 = 28x$.
13. $x^2 + 16y = 0$.
15. $7x^2 = 4y$.
17. $y^2 = 20x$.
19. $(0, 0), (3, 3)$.
21. $(0, 0), (-4, 6)$.

23.
$$3\sqrt{13}$$
.
25. $4x^2 + 4y^2 - 4px - 3p^2 = 0$.

29.
$$\left(\frac{3p}{2}, \sqrt{3}p\right), \left(\frac{3p}{2}, -\sqrt{3}p\right)$$

1.
$$(\pm 5, 0)$$
, $(\pm 3, 0)$, $\frac{3}{5}$, 5 , 4 , $\frac{32}{5}$, $3x = \pm 25$.

3.
$$(\pm 3, 0)$$
, $(\pm \sqrt{5}, 0)$, $\frac{\sqrt{5}}{3}$, 3 , 2 , $\frac{8}{3}$, $\sqrt{5}x = \pm 9$.

5.
$$(0, \pm 4)$$
, $(0, \pm \sqrt{7})$, $\frac{\sqrt{7}}{4}$, 4, 3, $\frac{9}{2}$, $\sqrt{7}y = \pm 16$.

7.
$$(0, \pm 3), (0, \pm 3\frac{\sqrt{3}}{2}), \frac{\sqrt{3}}{2}, 3, \frac{3}{2}, \frac{3}{2}, y = \pm 2\sqrt{3}.$$

9.
$$(\pm \sqrt{5}, 0)$$
, $(\pm \sqrt{2}, 0)$, $\frac{\sqrt{10}}{5}$, $\sqrt{5}$, $\sqrt{3}$, $6\frac{\sqrt{5}}{5}$, $\sqrt{2}x = \pm 5$,

11.
$$3x^2 + 4y^2 = 48$$
.

17.
$$4x^2 + 9y^2 = 180$$
.

21.
$$(1, 2), (1, -2).$$

13.
$$4x^2 + 3y^2 = 108$$
.

15.
$$x^2 + 2y^2 = 18$$
.

19.
$$7x^2 + 4y^2 = 128$$
.

23.
$$x^2 + 4y^2 = a^2$$
.

Pages 223, 224

1.
$$3x^2 + 4y^2 = 108$$
.

5.
$$3x^2 + 4y^2 = 48$$
.

9.
$$9x^2 + 25y^2 = 900$$
.

3.
$$25x^2 + 21y^2 = 2100$$
.

7.
$$9x^2 + 8y^2 = 128$$
.

11.
$$3x^2 + 4y^2 = 48$$
, $x^2 + 4y^2 = 48$.

Page 228

1.
$$(\pm 12, 0)$$
, $(\pm 13, 0)$, $\frac{13}{12}$, $\frac{25}{6}$, $12y = \pm 5x$, $13x = \pm 144$.

3.
$$(0, \pm 6)$$
, $(0, \pm 3\sqrt{5})$, $\frac{\sqrt{5}}{2}$, 3 , $y = \pm 2x$, $\sqrt{5}y = \pm 12$.

5.
$$(\pm \frac{2}{3}, 0), (\pm \frac{\sqrt{97}}{6}, 0), \frac{\sqrt{97}}{4}, \frac{27}{4}, 4y = \pm 9x, 3\sqrt{97}x = \pm 8.$$

7.
$$(0, \pm \frac{1}{5}), \left(0, \pm \frac{\sqrt{34}}{15}\right), \frac{\sqrt{34}}{3}, \frac{10}{9}, 5y = \pm 3x, 5\sqrt{34}y = \pm 3.$$

9.
$$9x^2 - 16y^2 = 576$$
.

9.
$$9x^2 - 16y^2 = 576$$
. 11. $16y^2 - 9x^2 = 144$. 13. $x^2 - 4y^2 = 9$.

13.
$$x^2 - 4y^2 = 9$$
.

15.
$$3x^2 - y^2 = 9$$
. **17.** $9y^2 - 4x^2 = 81$. **19.** $x^2 - y^2 = 8$. **21.** $9x^2 - 16y^2 = 144$.

Pages 229, 230

1.
$$3x^2 - y^2 = 108$$
.

3.
$$2x^2 - y^2 = 54$$
.

1.
$$3x^2 - y^2 = 108$$
. 3. $2x^2 - y^2 = 54$. 5. $9y^2 - 16x^2 = 576$.

7.
$$144y^2 - 25x^2 = 3600$$
; $12y = \pm 5x$, $(\pm 12, 0)$, $(\pm 13, 0)$, $13x = \pm 144$; $12y = \pm 5x$, $(0, \pm 5)$, $(0, \pm 13)$, $13y = \pm 25$.

9.
$$9y^2 - x^2 = 4$$
; $3y = \pm x$, $(\pm 2, 0)$, $(\pm 2\frac{\sqrt{10}}{3}, 0)$, $\sqrt{10}x = \pm 6$;

$$3y = \pm x$$
, $(0, \pm \frac{2}{3})$, $\left(0, \pm 2\frac{\sqrt{10}}{3}\right)$, $3\sqrt{10}y = \pm 2$.

11.
$$5x^2 - 11y^2 = 55$$
; $\sqrt{11}y = \pm \sqrt{5}x$, $(0, \pm \sqrt{5})$, $(0, \pm 4)$, $4y = \pm 5$; $\sqrt{11}y = \pm \sqrt{5}x$, $(\pm \sqrt{11}, 0)$, $(\pm 4, 0)$, $4x = \pm 11$.

17.
$$3\sqrt{13} \pm 3$$
.

1.
$$\frac{3}{4}$$
, 4, (8, 0°), ($\frac{8}{7}$, 180°).

5.
$$\frac{5}{3}$$
, 6, $(\frac{9}{8}, 0^{\circ})$, $(-\frac{9}{2}, 180^{\circ})$.

9. 1, 5,
$$(\frac{5}{4}, -90^{\circ})$$
.

13.
$$r = \frac{6}{1 - \cos \theta}$$
.

17.
$$r = \frac{18}{5 + 4 \cos \theta}$$

3.
$$\frac{3}{2}$$
, 12, $(-12, 0^{\circ})$, $(\frac{12}{5}, 180^{\circ})$.

7.
$$\frac{1}{3}$$
, 10, $(\frac{15}{2}, 90^{\circ})$, $(\frac{15}{4}, -90^{\circ})$

11.
$$\frac{5}{2}$$
, 7, (1, 90°), $(-\frac{7}{3}$, $-90°)$.
15. $r = \frac{14}{3+4\sin\theta}$.

15.
$$r = \frac{14}{3+4\sin\theta}$$

18.
$$r = \frac{10}{2 - \sin \theta}$$

Pages 235, 236

1.
$$(7, -4), (5, 3), (-3, 4), (0, 1), (2, 0)$$
.
3. $6x' - 5y' = 0$.

5.
$$4x'^2 + 25y'^2 = 100$$
. 7. $2x' + y'^2 = 0$; 4.8, -0.8 . 9. $9x'^2 + 16y'^2 = 144$.

5.
$$4x'^2 + 25y'^2 = 100$$
. 7. $2x' + y'^2 = 0$; 4.8, -0.8 . 9. $9x'^2 + 16y'^2 = 144$. 11. $y'^2 - 3x'^2 = 63$. 13. $5x'^2 - 2y' = 0$. 15. $y' = ax'^2$.

Page 237

1.
$$(-\sqrt{2}, -4\sqrt{2}), (-3\sqrt{2}, \sqrt{2}), (7\sqrt{2}, 0), (6\sqrt{2}, 6\sqrt{2}), (-2\sqrt{2} + 2\sqrt{6}, 2\sqrt{2} + 2\sqrt{6}).$$

3. (6, 2), (3,
$$3\sqrt{3}$$
), (10, 0), (3 - $2\sqrt{3}$, $3\sqrt{3} + 2$). 5. $x' + 8 = 0$.

7.
$$x'^2 + 4y'^2 = 4$$
. 9. $2x'y' = a^2$. 11. $3x'^2 - 2y'^2 = 6$.

13.
$$12y''^2 - 13x''^2 = 5$$
.
15. $x'^2 + 4x'y' + y'^2 = 6$, $3x''^2 - y''^2 = 6$.

Page 239

1.
$$(y+5)^2 = 12(x-1)$$
, $(1,-5)$, $(4,-5)$, $x+2=0$.

3.
$$(x+2)^2 = 8(y+1), (-2, -1), (-2, 1), y+3=0.$$

5.
$$\frac{(x-3)^2}{25} + \frac{(y-2)^2}{9} = 1$$
, (3, 2), (8, 2), (-2, 2), (7, 2), (-1, 2).

7.
$$\frac{(x+5)^2}{16} - \frac{(y-1)^2}{9} = 1$$
, $(-5, 1)$, $(-1, 1)$, $(-9, 1)$, $(0, 1)$, $(-10, 1)$.

9.
$$\frac{(y+5)^2}{4} - \frac{(x-4)^2}{5} = 1$$
, $(4, -5)$, $(4, -3)$, $(4, -7)$, $(4, -2)$, $(4, -8)$.

11.
$$\frac{(x-\frac{3}{2})^2}{9} + \frac{(y+1)^2}{4} = 1$$
, $(\frac{3}{2}, -1)$, $(\frac{9}{2}, -1)$, $(-\frac{3}{2}, -1)$, $(\frac{3}{2} + \sqrt{5}, -1)$, $(\frac{3}{2} - \sqrt{5}, -1)$.

15. Imaginary ellipse.

Pages 240, 241

1.
$$(y+1)^2 = 20(x+3)$$
.
3. $(x-3)^2 + 12(y+7) = 0$.

5.
$$9(x-3)^2 + 8(y-1)^2 = 72$$
.
7. $100(x-5)^2 + 36(y-1)^2 = 225$.
9. $9(y-2)^2 - 16(x-4)^2 = 144$.
11. $4(y-5)^2 - 5(x+3)^2 = 20$

$$9(y-2)^2-16(x-4)^2=144. 11. \ 4(y-5)^2-5(x+3)^2=20.$$

1.
$$12x'^2 - 13y'^2 = 48$$
.
2. $2x'^2 + y'^2 = 5$.
3. $2x'^2 + y'^2 = 5$.
4. $3x'^2 - 15y'^2 = 22$.
5. $3x'^2 - 19y'^2 = 80$.
5. $3x'^2 - 19y'^2 = 80$.

Pages 244, 245

1.
$$2x''^2 + y''^2 = 4$$
.
2. $2\sqrt{29}y''^2 + 3x'' = 0$.
3. $11x''^2 - 2y''^2 = 20$.
3. $11x''^2 - 2y''^2 = 20$.
4. $11x''^2 - 2x'' = 0$.
5. $5x''^2 + 11y''^2 = 14$.
6. $11x''^2 - 2x'' = 0$.

13.
$$x''^2 = 4$$
.
19. $9x^2 + 8xy - 13x^2 - x + 10x$ 20 17. $13x^2 + 48xy + y^2 - 65x + 3y = 0$.

19.
$$9x^2 + 8xy - 13y^2 - x + 19y - 22 = 0$$
.

21.
$$2xy = xy_1 + yx_1$$
. 23. $x^2 + by = a^2$.

1.
$$4x - 5y = 40$$
, $5x + 4y = 9$.
5. $5x + 3y = 16$, $3x - 5y = 30$.
3. $8x + 5y = 1$, $5x - 8y = 34$.
7. $7x + 3y + 27 = 0$, $3x - 7y = 5$.

9.
$$12x - y = 16$$
, $x + 12y = 98$.

9.
$$12x - y = 16$$
, $x + 12y = 98$.
11. $11x - 2y = 10$, $2x + 11y = 70$.

13.
$$4x - 5y + 12 = 0$$
, $5x + 4y = 26$.

15.
$$(y_1-k)(y-k)=p(x+x_1-2h), p(y-y_1)+(y_1-k)(x-x_1)=0.$$

17.
$$b^2(x_1-h)(x-h)-a^2(y_1-k)(y-k)=a^2b^2$$
, $b^2(x_1-h)(y-y_1)+a^2(y_1-k)(x-x_1)=0$.

1.
$$y = 3x + 2$$
.

3.
$$x + 3y = \pm 5$$
.

5.
$$y = mx - pm - \frac{p}{2}m^{5}$$
.

9.
$$y = mx - \frac{p}{2}m^2$$
.

11.
$$y-k=m(x-h)+\frac{p}{2m}$$
.

13.
$$y-k=m(x-h)\pm\sqrt{a^2m^2-b^2}$$
.

Page 256

1.
$$6x - 7$$
.

1.
$$6x - 7$$
. 3. $21x^2 + 4x$.

5.
$$16x + \frac{2}{x^2} - \frac{6}{x^3}$$
 7. $10x^4 + 2x$.

7.
$$10x^4 + 2x$$

9.
$$\frac{28}{(6\omega+5)^2}$$
.

11.
$$\frac{2x^2-6x-4}{(2x-3)^2}$$
.

13.
$$2x^{-\frac{1}{2}} - \frac{50}{3}x^{\frac{2}{3}}$$
.

15.
$$\frac{1}{2\sqrt{x}(\sqrt{x}+1)^2}$$

17.
$$5a_0x^4 + 4a_1x^3 + 3a_2x^2 + 2a_3x + a_4$$
.

21.
$$\frac{2}{9\pi}$$
 ft. per sec.

Page 257

1.
$$\frac{3x^2 - 5x}{\sqrt{2x^3 - 5x^2 - 1}}$$

1.
$$\frac{3x^2-5x}{\sqrt{2x^3-5x^2-1}}$$
 3. $\frac{x}{\sqrt{x^2+1}}+\frac{x}{\sqrt{(x^2+1)^3}}$

5.
$$\frac{x^3}{\sqrt[4]{(a^4+x^4)^3}}$$

Pages 257, 258

1.
$$\sec^2 x$$
.

3.
$$-\csc^2 x$$
.

3.
$$-\csc^2 x$$
. 5. $-\cos(\frac{\pi}{2}-x)$.

7.
$$k e^{kx}$$
.

9.
$$-2x e^{-x^2}$$
.

13.
$$2x \cos x^2$$
.

15.
$$-e^x \sin e^x$$
.

Page 258

1.
$$10x - 2$$
, 10, 0.

3.
$$4x - \frac{3}{x^2}$$
, $4 + \frac{6}{x^3}$, $-\frac{18}{x^4}$.

5.
$$-\frac{3}{(x+1)^2}$$
, $\frac{6}{(x+1)^3}$, $-\frac{18}{(x+1)^4}$.

Pages 259, 260

1.
$$(2, -9)$$
, min.

3.
$$(0, 0)$$
, max.; $(-2, -16)$, $(2, -16)$, min.

5.
$$(-1, -2)$$
, max.; $(1, 2)$, min. 7. $(0, a)$, max.

7.
$$(0, a)$$
, max.

Pages 261, 262

1.
$$x^3 + 6x^2 + 7x + C$$
.

3.
$$\frac{2}{5}x^{\frac{5}{2}} + 2x + C$$
. 5. $\frac{1}{3}(x-2)^3 + C$.

5.
$$\frac{1}{3}(x-2)^3+C$$
.

7.
$$\frac{x^2}{2} + 4\sqrt{x^3} + 9x + C$$
.

9.
$$-\frac{1}{x^2+1}+C$$
.

11.
$$\frac{1}{2}\sin(2x-5)+C$$
.

13.
$$-\frac{1}{2}e^{-x^2}+C$$
.

15.
$$y = 3x^2 - x - 7$$
.

1. 88. 3.
$$\frac{18\sqrt{3}+18}{5}$$
.

$$5. \frac{2}{3}.$$

7.
$$18 + 12\sqrt{3}$$
.

9. $\frac{2}{5}$.

Page 264

7. 2.

Pages 270, 271

23.
$$(x^2 + y^2)^2 + 2a^2(y^2 - x^2) = 0$$
.

25.
$$xy^2 + a^2x = a^3$$
.

27.
$$x^3 + xy^2 + ax^2 - ay^2 = 0$$
.

Page 274

Page 284

1.
$$x-2y+10=0$$
.

3.
$$b^2x^2 - a^2y^2 = a^2b^2$$
.

7.
$$3xy + x -$$

5.
$$x^2 - 2xy + y^2 + 2x - 6y = 0$$
. 7. $3xy + x - 4 = 0$. 9. $a^2y = x^3$.

11.
$$x^2 - 2xy + y^2 - 2ax - 2ay + a^2 = 0$$
.

13.
$$x^3 + y^3 = 3axy$$
.

15.
$$dx - by = ad - bc$$
, d/b .

Page 289

1.
$$1, 3, 5, \dots, 21; 1+3+5+\dots+21; 1\cdot 3\cdot 5\cdot \dots 21.$$

3.
$$\frac{1}{5}$$
, $\frac{1}{6}$, $\frac{1}{7}$, \cdots , $\frac{1}{19}$; $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots + \frac{1}{19}$; $\frac{1}{5} \cdot \frac{1}{6} \cdot \frac{1}{7} \cdot \cdots \cdot \frac{1}{19}$.

5.
$$2, 2^2, 2^3, \dots, 2^n$$
; $2+2^2+2^3+\dots+2^n$; $2\cdot 2^2\cdot 2^3 \dots 2^n$.

7.
$$3^3$$
, 4^3 , 5^3 , \cdots , $(n+2)^3$; $3^3+4^3+5^3+\cdots+(n+2)^3$; $3^3\cdot 4^3\cdot 5^3\cdot \cdots (n+2)^3$.

9. (a)
$$2+2^2+2^3+2^4+2^5+2^6+2^7=254$$
, (b) $2+2^2+2^3+2^4=30$, (c) $2+2^2=6$.

Pages 291, 292, 293

1. No. 3.
$$-5$$
.

7. 1. 9.
$$-3$$
. 11. 27, 99.

15.
$$n = 11$$
, $s = 77$. **17.** $l = 11$, $s = 185$.

17.
$$l = 11$$
, $s = 185$.

19.
$$a = 44$$
, $s = 1218$.

21.
$$d = -\frac{5}{11}$$
, $l = 8$. **23.** $n = 7$, $l = 11$.

$$a = -\frac{1}{11}, l = 8.$$
 23. $n = 7, l = 11.$
27. $\frac{31}{4}, \frac{21}{2}, \frac{53}{4}, 16, \frac{75}{4}, \frac{43}{2}, \frac{97}{4}, 27, \frac{119}{4}, \frac{65}{2}, \frac{141}{4}.$

25.
$$\frac{11}{2}$$
, 9, $\frac{25}{2}$. 29. -68 .

31.
$$n^2$$
. 33. 156.

39.
$$2ab + a^2c - ac$$
.

Pages 295, 296

1. 48, 96, 192. 7.
$$\frac{4}{625}$$
, $\frac{15624}{625}$.

5.
$$0.08$$
, -0.016 , 0.0032 . 11. $l = 486$, $s = 728$.

13.
$$r = \sqrt{2}$$
, $s = 45 + 21\sqrt{2}$.

15.
$$a = \frac{27}{40}$$
, $s = \frac{211}{120}$.

17.
$$s = l \frac{r^n - 1}{r^n - r^{n-1}}$$

21.
$$21\sqrt{2}$$
, 42 , $42\sqrt{2}$, 84 , $84\sqrt{2}$.

29.
$$\frac{(1+i)^n-1}{i}$$
.

Pages 297, 298

1. 12.

9. $\frac{110}{37}$.

3. $\frac{125}{9}$.

11. $\frac{173}{33}$.

5. 2500.

13. 76 ft.

7. $\frac{17}{33}$. 15. 6 ft.

Page 299

1. 40,320.

3. 126.

5. 132.

7. n(n+1).

Page 301

1. $a^4 + 8a^3 + 24a^2 + 32a + 16$. 3. $x^{12} - 12x^8 + 54x^4 - 108 + \frac{81}{x^4}$.

5. $x^{10} - 5x^8y^2 + 10x^6y^4 - 10x^4y^6 + 5x^2y^8 - y^{10}$

7. $x + 4\sqrt[4]{x^3}\sqrt[3]{y^2} + 6\sqrt{x}\sqrt[3]{y^4} + 4\sqrt[4]{x}y^2 + \sqrt[3]{y^8}$.

9. $\frac{a^3}{h^3} - 6\frac{a^2}{h^2} + 15\frac{a}{h} - 20 + 15\frac{b}{a} - 6\frac{b^2}{a^2} + \frac{b^3}{a^3}$

11. $27a - 54a^{\frac{2}{3}}b^{-\frac{2}{3}} + 36a^{\frac{1}{3}}b^{-\frac{4}{3}} - 8b^{-2}$

13. $\frac{a^{-8}}{0} + \frac{2\sqrt{6}}{0}a^{-6}b + a^{-4}b^2 + \frac{\sqrt{6}}{2}a^{-2}b^3 + \frac{b^4}{4}$

15. $a^2b^{-8} + 4a^{\frac{3}{2}}b^{-6}c^{-\frac{1}{2}}d + 6ab^{-4}c^{-1}d^2 + 4a^{\frac{1}{2}}b^{-2}c^{-\frac{3}{2}}d^3 + c^{-2}d^4$. **17.** 1.21550625.

19. $a^2 + 2ab + 2ac + b^2 + 2bc + c^2$. **21.** $x^{18} - 27x^{16}t + 324x^{14}t^2 - 2268x^{12}t^3$.

23. $81u^4 - 216\sqrt{3u^7}v^2 + 756u^3v^4 - 504\sqrt{3u^5}v^6$.

25. $\frac{1}{x^{14}} - \frac{28}{x^{13}v} + \frac{364}{x^{12}v^2} - \frac{2912}{x^{11}v^3}$

27. $x^{42} + 14x^{39}\sqrt{5y^3} + 455x^{36}y^3 + 1820x^{33}\sqrt{5y^9}$.

29. $a^4 - 8a^{\frac{15}{4}}b^{\frac{1}{2}} + 30a^{\frac{7}{2}}b - 70a^{\frac{13}{4}}b^{\frac{3}{2}}$.

31. \$201.01.

33. \$1311.09.

Page 303

1. $210a^4b^6$. **3.** $-1365x^4y^{11}$. **5.** $-8568t^{21}$.

7. $\frac{140\sqrt{2}}{3}x^3y^2$.

9. $-160x^6y^9$. 11. $\frac{5}{4}r^3s^4 + \frac{5}{2}r^2s^6$. 13. $-120u^3w^{14}$. 15. $504a^{10}b^2$. 17. $35x^9$.

Page 308

1. 28.

3. 24, 8.

5. 48. **7.** 72.

9. 252.

11. 480.

Pages 309, 310

1. 30, 24, 6720, 3360, 992.

3. 10.

5. 90,000.

7. 720.

9. 80,640.

11. 2880.

13. 1440.

Page 311

1. 6.

3. 6,720.

5. 1440.

Page 313

1. 56, 924, 1820, 3876, 8436.

3. 66, 11.

5. 13.

7. 153.

9. 8820.

11. 220, 55.

13. 60.

15. 255.

17. 63.

Pages 315, 316, 317

1.
$$\frac{7}{16}$$
. 3. $(a) \frac{1}{16}$, $(b) \frac{3}{8}$. 5. $\frac{5}{18}$. 7. $\frac{2}{9}$. 9. $(a) \frac{5}{36}$, $(b) \frac{5}{18}$. 11. $(a) \frac{5}{42}$, $(b) \frac{1}{21}$. 13. $(a) \frac{1}{6}$, $(b) \frac{1}{3}$. 15. $(a) \frac{5}{9}$, $(b) \frac{16}{81}$. 17. \$3. 19. \$2.47. 21. 0.090.

Pages 320, 321

1.
$$\frac{5}{162}$$
. 3. $\frac{5}{27}$. 5. $\frac{11}{21}$. 7. \$10. 9. $\frac{1}{4}$. 11. $\frac{6561}{15625}$. 13. $\frac{4}{128}$. 15. $\frac{4553}{15625}$. 17. (a) 0.58, (b) 0.22.

Pages 323, 324

1.
$$2i$$
. 3. $42i$. 5. $3xi$. 7. $8-6\sqrt{2}i$. 9. $-i$, 1, i , $-i$, $-i$. 11. $-5+3i$. 13. $3x-4yi$. 15. $-3-2i$. 17. $5-i$. 19. $3-6i$. 21. $-4\sqrt{2}+6\sqrt{5}i$. 23. $6\sqrt{15}+6i$. 25. $-31-i$. 27. x^2-y^2+2xyi . 29. $10+\sqrt{21}+(5\sqrt{7}-2\sqrt{3})i$. 31. $-7+24i$. 33. $-\frac{7}{5}-\frac{16}{5}i$. 35. $\frac{39}{17}+\frac{31}{17}i$. 37. $\frac{\sqrt{6}-\sqrt{35}}{10}+\frac{\sqrt{15}+\sqrt{14}}{10}i$.

39.
$$\frac{1}{49} + \frac{4\sqrt{3}}{49}i$$
.
41. $(-1, 2)$.
43. $(2, -1)$.

45.
$$(2, 1)$$
, $(-2, 1)$, $(-2, -1)$, $(2, -1)$.

47.
$$x^2 - 6x + 13$$
.
49. $x^2 - 2ax + a^2 + b^2$.
51. $x^2 + 10x + 29 = 0$.
53. $(x - 2 + 3i)(x - 2 - 3i)$.

Pages 324, 325

9.
$$4+3i$$
, $4-3i$.
11. $0+3i$, $0-3i$.
13. $9+0i$, $9-0i$.
15. $8+3i$, $8-3i$.

Pages 326, 327

1.
$$5\sqrt{2} (\cos 45^{\circ} + i \sin 45^{\circ})$$
.
2. $5\sqrt{2} (\cos 45^{\circ} + i \sin 45^{\circ})$.
3. $2(\cos 300^{\circ} + i \sin 300^{\circ})$.
5. $7(\cos 90^{\circ} + i \sin 90^{\circ})$.
7. $3(\cos 270^{\circ} + i \sin 270^{\circ})$.
9. $5(\cos 180^{\circ} + i \sin 180^{\circ})$.
11. $\sqrt{29} (\cos 338^{\circ} 12' + i \sin 338^{\circ} 12')$.
13. $2\sqrt{3} + 2i$.
15. $-3\sqrt{2} - 3\sqrt{2}i$.
17. $-7 + 0i$.
19. $0 + 3i$.
21. $8.290 + 5.592i$.
23. $-4.779 - 3.628i$.

Page 328

1.
$$12(\cos 150^{\circ} + i \sin 150^{\circ}) = -6\sqrt{3} + 6i$$
.
3. $44(\cos 135^{\circ} + i \sin 135^{\circ}) = -22\sqrt{2} + 22\sqrt{2}i$.
5. $48(\cos 120^{\circ} + i \sin 120^{\circ})$.
7. $65(\cos 111^{\circ} + i \sin 111^{\circ})$.

9.
$$3(\cos 120^{\circ} + i \sin 120^{\circ}) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$$
. 11. $7(\cos 76^{\circ} + i \sin 76^{\circ})$.

1.
$$2\sqrt{2} (\cos 135^{\circ} + i \sin 135^{\circ}) = -2 + 2i$$
.

3.
$$32(\cos 90^{\circ} + i \sin 90^{\circ}) = 0 + 32i$$
.

5.
$$64(\cos 240^{\circ} + i \sin 240^{\circ}) = -32 - 32\sqrt{3}i$$
.

7.
$$8(\cos 180^{\circ} + i \sin 180^{\circ}) = -8 + 0i$$
.

9.
$$25(\cos 150^{\circ} + i \sin 150^{\circ}) = -\frac{25\sqrt{3}}{2} + \frac{25}{2}i$$
.

Pages 330, 331

1.
$$2(\cos 30^{\circ} + i \sin 30^{\circ}) = \sqrt{3} + i$$
; $2(\cos 210^{\circ} + i \sin 210^{\circ}) = -\sqrt{3} - i$

3.
$$\cos 0^{\circ} + i \sin 0^{\circ} = 1$$
; $\cos 120^{\circ} + i \sin 120^{\circ} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$; $\cos 240^{\circ} + i \sin 240^{\circ} - \frac{1}{2} - \frac{\sqrt{3}}{2}i$.

5.
$$5(\cos 0^{\circ} + i \sin 0^{\circ}) = 5$$
; $5(\cos 90^{\circ} + i \sin 90^{\circ}) = 5i$; $5(\cos 180^{\circ} + i \sin 180^{\circ}) = -5$; $5(\cos 270^{\circ} + i \sin 270^{\circ}) = -5i$.

7.
$$3(\cos 45^{\circ} + i \sin 45^{\circ}) = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$$
; $3(\cos 165^{\circ} + i \sin 165^{\circ})$; $3(\cos 285^{\circ} + i \sin 285^{\circ})$.

9.
$$2(\cos 12^{\circ} + i \sin 12^{\circ})$$
; $2(\cos 84^{\circ} + i \sin 84^{\circ})$; $2(\cos 156^{\circ} + i \sin 156^{\circ})$; $2(\cos 228^{\circ} + i \sin 228^{\circ})$; $2(\cos 300^{\circ} + i \sin 300^{\circ}) = 1 - \sqrt{3}i$.

11.
$$3(\cos 60^{\circ} + i \sin 60^{\circ}) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$$
; $3(\cos 180^{\circ} + i \sin 180^{\circ}) = -3$; $3(\cos 300^{\circ} + i \sin 300^{\circ}) = \frac{3}{2} - \frac{3\sqrt{3}}{2}i$.

13.
$$\sqrt{10}(\cos 30^{\circ} + i \sin 30^{\circ}) = \frac{\sqrt{30}}{2} + \frac{\sqrt{10}}{2}i; \sqrt{10}(\cos 120^{\circ} + i \sin 120^{\circ})$$

 $= -\frac{\sqrt{10}}{2} + \frac{\sqrt{30}}{2}i; \sqrt{10}(\cos 210^{\circ} + i \sin 210^{\circ}) = -\frac{\sqrt{30}}{2} - \frac{\sqrt{10}}{2}i;$
 $\sqrt{10}(\cos 300^{\circ} + i \sin 300^{\circ}) = \frac{\sqrt{10}}{2} - \frac{\sqrt{30}}{2}i.$

15.
$$3(\cos 45^{\circ} + i \sin 45^{\circ}) = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i; 3(\cos 135^{\circ} + i \sin 135^{\circ})$$

$$= -\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i; 3(\cos 225^{\circ} + i \sin 225^{\circ}) = -\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i;$$

$$3(\cos 315^{\circ} + i \sin 315^{\circ}) = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i.$$

1.
$$5x^3 + 3x^2 - 2x - 8$$
.
5. $2x^3 + 4x^2 - 6x + 2$.
2. $-10, -35, -x^3 - 5x^2 - 3x - 1, \frac{x^3}{8} - \frac{5}{4}x^2 + \frac{3}{2}x - 1, 27y^3 - 45y^2 + 9y - 1$

1.
$$x^2 + x + 4$$
, 21.

3.
$$2x^2-3x-7,-9$$

1.
$$x^2 + x + 4$$
, 21. 3. $2x^2 - 3x - 7$, -9. 5. $2x^2 - x + 4$, -4.

7.
$$5x^3 - 14x^2 + 14x - 1$$
, 20. 9. $x^4 + 5x^3 + 3x^2 - x - 5$, - 16.

9.
$$x^4 + 5x^3 + 3x^2 - x - 5$$
, -16 .

11.
$$x^2 + (a+7)x + (a^2+7a-3)$$
, a^3+7a^2-3a+5 .

Pages 336, 337

$$3. - 13.$$

9. 30. 11.
$$-3a^3$$
.

Page 339

1. 5; 0, 0, 0,
$$3 - \sqrt{5}$$
, $3 + \sqrt{5}$.
3. 7; 3, -3, 6, 6, -1, -1, -1.

3. 7; 3,
$$-3$$
, 6, 6, -1 , -1

5. 7;
$$\frac{2}{3}$$
, $\frac{2}{3}$, $\frac{2}{3}$, $2i$, $2i$, $-2i$, $-2i$.

7. 6; 0, 0, 0, 0, 2, -4 .

9.
$$(x-1)(x-2)(x-3)$$
.
11. $(x-3)(x+5)(x+i)(x-i)$.
13. $(x-1)^2(x+2+\sqrt{5})(x+2-\sqrt{5})$.
15. $(x+1)^3(x+i)(x-i)$.

15.
$$(x+1)^3(x+i)(x-i)$$

17.
$$2(x-2)(x+2)\left(x+\frac{1+\sqrt{63}i}{2}\right)\left(x+\frac{1-\sqrt{63}i}{2}\right)$$
.

Page 340

1.
$$x^3 - 2x^2 - 5x + 6 = 0$$
.

3.
$$x^3 - 5x^2 + 2x + 12 = 0$$

5.
$$x^4 - 6x^3 + 6x^2 + 24x - 40 = 0$$
.

1.
$$x^3 - 2x^2 - 5x + 6 = 0$$
.
3. $x^3 - 5x^2 + 2x + 12 = 0$.
5. $x^4 - 6x^3 + 6x^2 + 24x - 40 = 0$.
7. $x^4 - 4x^3 + 8x^2 - 8x + 4 = 0$.

9.
$$x^6 + 4x^5 - 2x^4 - 12x^3 + 9x^2 = 0$$

9.
$$x^6 + 4x^5 - 2x^4 - 12x^3 + 9x^2 = 0$$
. 11. $x^5 - 44x^3 + 66x^2 + 187x - 210 = 0$.

Page 341

1.
$$-x^3 - 7x^2 - 7x + 15 = 0$$
.
3. $x^4 - 5x^2 - 10x - 6 = 0$.

3.
$$x^4 - 5x^2 - 10x - 6 = 0$$

5.
$$x^4 - 3x^3 - 5x - 3 = 0$$
. 7. $x^4 - 13x^2 + 36 = 0$. 9. $x^5 - 5x^4 - 2x^3 + 3x = 0$.

9.
$$x^5 - 5x^4 - 2x^3 + 3x = 0$$
.

Page 342

1. 0 Pos., 2 Neg., 0 zero, 0 Imag.; or 0 Pos., 0 Neg., 0 zero, 2 Imag.; $-2 \pm 2i$.

3. 1 Pos., 0 Neg., 0 zero, 2 Imag.; $3, \frac{3}{2}(-1 \pm \sqrt{3}i)$.

5. 2 Pos., 2 Neg., 0 zero, 0 Imag.; or 2 Pos., 0 Neg., 0 zero, 2 Imag.; or 0 Pos., 2 Neg., 0 zero, 2 Imag.; or 0 Pos., 0 Neg., 0 zero, 4 Imag.; 2, 3, -2, -3.

7. 1 Pos., 0 Neg., 0 zero, 2 Imag.

9. 1 Pos., 1 Neg., 0 zero, 4 Imag.

Page 343

1.
$$1, -5$$
.

5.
$$7, -2$$
.

7.
$$4, -4$$
.

Page 345

1.
$$x^3 - 8x^2 - 44x + 240 = 0$$
.

3.
$$2x^3 + 3x^2 + 5x - 22 = 0$$
.

$$5. \ 4x^3 + 3x^2 - 275 = 0.$$

7.
$$x^3 + 2x^2 + 3x - 10 = 0$$
.

9.
$$x^3 + 10x^2 + 10x - 500 = 0$$
.

11.
$$x^4 - 10x^2 + 36x - 56 = 0$$
.

1.
$$-5$$
, 1, 3.

3.
$$-\frac{2}{3}$$
, $-2+\sqrt{6}$, $-2-\sqrt{6}$

1.
$$-5$$
, 1, 3. 3. $-\frac{2}{3}$, $-2+\sqrt{6}$, $-2-\sqrt{6}$. 5. $\frac{3}{2}$, $3+\sqrt{13}$, $3-\sqrt{13}$.

7.
$$-5, -2, -1 + \sqrt{5}, -1 - \sqrt{5}$$
. 9. $-\frac{1}{2}, -\frac{1}{2}, -3 + \sqrt{5}, -3 - \sqrt{5}$. 11. 0, 0, 2, $-\frac{1}{2}, -\frac{3}{2}$.

13.
$$2, -2, 3, -3, i, -i$$

11.
$$0, 2.6, -2.6$$
.

11. 0, 2.6,
$$-2.6$$
. **13.** -5.8 , -1.3 , 1.1.

15. 3.6. **17.**
$$-2.8$$
, 2.8.

Page 352

3. 1.811. 5.
$$-3.222$$
.

7.
$$-1.889, 1.125, 3.764$$
.

9.
$$-2.751$$
.

13.
$$-1.879$$
, 1.532, 0.347.

15.
$$-4.303$$
, -0.697 , 0.382 , 2.618 .

Page 354

1.
$$x^3 - x^2 - 4x + 4 = 0$$
.

3.
$$x^3 + 2x^2 - 5x + 2 = 0$$
.

5.
$$3x^3 - 10x^2 + 8x + 16 = 0$$
.

5.
$$3x^3 - 10x^2 + 8x + 16 = 0$$
.
7. $x^3 - 0.9x^2 + 0.15x - 0.161 = 0$.

Pages 356, 357

$$19. - 1176$$

Page 358

9.
$$2, 3, -4$$
.

Pages 359, 360

1.
$$x^2 - 6x + 25 = 0$$
.

3.
$$x^4 + 12x^3 + 56x^2 + 88x + 68 = 0$$
.

5.
$$x^4 - 16x^3 + 98x^2 - 272x + 289 = 0$$
.

7. 2, 3,
$$-1-i$$
, $-1+i$.

9.
$$1 + \sqrt{3}i$$
, $1 + \sqrt{3}i$, $1 - \sqrt{3}i$, $1 - \sqrt{3}i$. 11. $(x^2 + 4x + 5)(2x - 3)$.

11.
$$(x^2+4x+5)(2x-3)$$
.

13.
$$x(x^2-2x+12)^2(2x+1)(x+3)$$
.

Page 363

1.
$$\frac{A}{x-4} + \frac{B}{x+7} + \frac{C}{3x+1}$$

3.
$$x+2+\frac{A}{x+3}+\frac{B}{x+1}+\frac{C}{x-1}$$

5.
$$\frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+1}$$

7.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x-1} + \frac{E}{(x-1)^2} + \frac{Fx+G}{x^2+2} + \frac{Hx+I}{(x^2+2)^2}$$

1.
$$\frac{5}{2x-3} - \frac{2}{x+4}$$

3.
$$\frac{7}{x} - \frac{4}{2x+5}$$

1.
$$\frac{5}{2x-3} - \frac{2}{x+4}$$
 3. $\frac{7}{x} - \frac{4}{2x+5}$ 5. $2 + \frac{11}{x-5} + \frac{4}{x+2}$

7.
$$\frac{2}{x-1} - \frac{5}{x-3} + \frac{3}{x-5}$$

7.
$$\frac{2}{x-1} - \frac{5}{x-3} + \frac{3}{x-5}$$
 9. $\frac{1}{x+1+\sqrt{5}} + \frac{1}{x+1-\sqrt{5}}$

1.
$$\frac{7}{x+3} - \frac{12}{(x+3)^2}$$

Page 365
3.
$$1 + \frac{7}{x+3} - \frac{12}{(x+3)^2}$$
. $\frac{7}{(x-3)^3} + \frac{7}{(x-3)^3}$

5.
$$\frac{3}{x+1} - \frac{4}{(x+1)^2} + \frac{1}{(x+1)^3} - \frac{6}{2x+7}$$
 7. $\frac{5}{x^2} - \frac{3}{x+1} - \frac{2}{(x+1)^2}$

7.
$$\frac{3}{x^2} - \frac{3}{x+1} - \frac{2}{(x+1)^2}$$

9.
$$\frac{2}{x-1} - \frac{6}{(x-1)^2} + \frac{7}{(x-1)^3} - \frac{2}{x+1} + \frac{9}{(x+1)^3}$$

1.
$$2x - 9 + \frac{4}{x} + \frac{5 - 6x}{x^2 + 1}$$
 3. $\frac{2}{x - 1} - \frac{3}{x + 1} + \frac{x - 4}{x^2 + 1}$ 5. $\frac{5x + 9}{x^2 - x + 3} - \frac{3}{x}$ 7. $\frac{7x - 1}{2x^2 + 1} + \frac{4 - 3x}{x^2 + 4}$ 9. $\frac{3}{x^2} - \frac{2}{x^3} + \frac{4}{x^2 + 2x + 2}$

1.
$$\frac{3x-1}{2x^2+x+3} - \frac{8x+5}{(2x^2+x+3)^2}$$
2.
$$\frac{3x-1}{x^2-2x+5} + \frac{x-9}{(x^2-2x+5)^2} - \frac{3}{x-1}$$
3.
$$\frac{1}{x^2+1} - \frac{3x+9}{(x^2+1)^2} + \frac{5x+4}{(x^2+1)^3}$$
7.
$$\frac{3x-7}{(x^2+3)^2} + \frac{1}{x^3}$$

3. (a)
$$(x, y, 0), (x, 0, z), (0, y, z), (b) (x, 0, 0), (0, y, 0), (0, 0, z).$$

5.
$$\sqrt{y^2+z^2}$$
, $\sqrt{x^2+z^2}$, $\sqrt{x^2+y^2}$.

11.
$$\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right), \left(-\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right), \left(-\frac{a}{2}, -\frac{a}{2}, \frac{a}{2}\right), \left(\frac{a}{2}, -\frac{a}{2}, \frac{a}{2}\right), \left(\frac{a}{2}, -\frac{a}{2}, \frac{a}{2}\right), \left(\frac{a}{2}, -\frac{a}{2}, \frac{a}{2}\right), \left(\frac{a}{2}, -\frac{a}{2}, -\frac{a}{2}\right), \left(\frac{a}{2}, -\frac{a}{2}, -\frac{a}{2}\right).$$

13.
$$(x, y, -z), (x, -y, z), (-x, y, z).$$

Page 370

1. 15. 3. 11. 5. 19. 7.
$$7\sqrt{2}$$
. 9. $\sqrt{65}$, $\sqrt{26}$, $\sqrt{91}$. 11. $2\sqrt{6}$.

13.
$$(x+7)^2 + (y-3)^2 + (z+2)^2 = 25$$
.

Page 373

1.
$$\frac{3}{13}$$
, $\frac{-4}{13}$, $\frac{12}{13}$.

3. $\frac{2}{3}$, $\frac{11}{15}$, $\frac{2}{15}$.

5. $\frac{1}{33}\sqrt{33}$, $\frac{4}{33}\sqrt{33}$, $-\frac{4}{33}\sqrt{33}$.

7.
$$\frac{4}{9}$$
, $-\frac{7}{9}$, $\frac{4}{9}$.
9. $-\frac{23}{27}$, $\frac{2}{27}$, $\frac{14}{27}$.
11. $\frac{3}{38}\sqrt{38}$, $\frac{5}{38}\sqrt{38}$, $\frac{2}{38}\sqrt{38}$.

13.
$$\frac{1}{2}$$
, $-\frac{1}{2}$, $\frac{\sqrt{2}}{2}$.

17. 1, 0, 0; 0, 1, 0; 0, 0, 1.

Pages 375, 376

Pages 377, 378

1.
$$(3, 3\sqrt{3}, 2)$$
. 3. $(4\sqrt{3}, 4, -3)$. 5. $(3\sqrt{2}, 135^{\circ}, 5)$. 7. $(5, 0^{\circ}, 2)$. 9. $(2\sqrt{6}, 2\sqrt{2}, 4\sqrt{2})$. 11. $(\sqrt{2}, -\sqrt{2}, 2\sqrt{3})$. 13. $(5, 90^{\circ}, 90^{\circ})$.

15.
$$(3, 315^{\circ}, 109^{\circ} 28')$$
.
17. $x^2 + y^2 = 36$.
19. $x^2 + y^2 = 3y$

15.
$$(3, 315^{\circ}, 109^{\circ} 28')$$
.
17. $x^{2} + y^{2} = 36$.
19. $x^{2} + y^{3} = 3y$.
21. $x^{2} + y^{2} + z^{2} = 9$.
23. $y = 2$.
25. $y^{2} + z^{3} = 25$; $\rho = 5$.

27.
$$9r^2 + 25z^2 = 225$$
; $9\rho^2 \sin^2 \phi + 25\rho^2 \cos^2 \phi = 225$.
29. $r = \rho \sin \phi$, $\theta = \theta$, $z = \rho \cos \phi$.

Pages 381, 382

1.
$$-\frac{x}{2} - \frac{\sqrt{2}}{2}y + \frac{z}{2} - 3 = 0$$
.

3.
$$-\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}z + 7 = 0$$
.

5.
$$\frac{2}{3}x - \frac{2}{3}y + \frac{z}{3} \pm 7 = 0$$
.

7.
$$\frac{2}{15}x - \frac{10}{15}y - \frac{11}{15}z \pm 4 = 0$$
.

9.
$$\frac{5}{83}\sqrt{83}x + \frac{3}{83}\sqrt{83}y + \frac{7}{83}\sqrt{83}z \pm 6 = 0$$
.

11.
$$\frac{2}{7}x - \frac{3}{7}y + \frac{6}{7}z - 7 = 0$$

13.
$$-\frac{7}{11}x + \frac{6}{11}y + \frac{6}{11}z - 11 = 0$$
.

15.
$$\frac{4}{9}x - \frac{7}{9}y + \frac{4}{9}z - 2 = 0$$
; $\frac{4}{9}, -\frac{7}{9}, \frac{4}{9}$; 2; $4x - 7y - 18 = 0, z = 0$; $4x + 4z - 18 = 0, y = 0$; $7y - 4z + 18 = 0, x = 0$.

17.
$$-\frac{3}{13}x - \frac{12}{13}y + \frac{4}{13}z + 3 = 0$$
; $-\frac{3}{13}$, $-\frac{12}{13}$, $\frac{4}{13}$; -3 ; $3x + 12y - 39 = 0$, $z = 0$; $3x - 4z - 39 = 0$, $y = 0$; $12y - 4z - 39 = 0$, $x = 0$.

19.
$$\frac{5}{13}x + \frac{12}{13}y - 2 = 0$$
; $\frac{5}{13}$, $\frac{12}{13}$, 0; 2; $5x + 12y - 26 = 0$, $z = 0$; $5x - 26 = 0$, $y = 0$; $12y - 26 = 0$, $x = 0$.

21. ± 68 .

23. (a)
$$9x - 2y + 6z + 18 = 0$$
, (b) $3x + y + 4z - 1 = 0$. **25.** $(-35, -30, 16)$.

Page 384

5.
$$6x - 2y + 3z - 19 = 0$$
, $4x + 7y + 4z + 6 = 0$.

11.
$$6x + 2y - 3z + 40 = 0$$
, $6x + 2y - 3z - 2 = 0$.

13. (a)
$$B = 0$$
, (b) $A = 0$.

Page 386

1.
$$\frac{x}{10} + \frac{y}{5} + \frac{z}{2} = 1$$
.

3.
$$\frac{x}{-3} + \frac{y}{9} + \frac{z}{6} = 1$$
.

5.
$$6x + 5y - 7z = 15$$
.

7.
$$2x - 3y + z = 6$$
. 9. $4x + 5y - 16z = 4$.

9.
$$4x + 5y - 16z = 4$$
.

11.
$$7x - 2y - 8z = 9$$
.

13.
$$x + 2y - 2z + 6 = 0$$
.

15.
$$4x + 11y + 5z = 10$$
.

17.
$$6x - 3y + z = 6$$
.

Pages 390, 391

1.
$$\frac{x-2}{6} = \frac{y-1}{-2} = \frac{z+5}{9}$$
; $\frac{6}{11}$, $-\frac{2}{11}$, $\frac{9}{11}$.

3.
$$\frac{x-4}{2} = \frac{y+1}{1} = \frac{z+7}{2}$$
; $\frac{2}{3}$, $\frac{1}{3}$, $\frac{2}{3}$

5.
$$\frac{x-2}{3} = \frac{y-5}{4} = \frac{z+8}{12}$$
; $\frac{3}{13}$, $\frac{4}{13}$, $\frac{12}{13}$.

7.
$$\frac{x+5}{7} = \frac{y-1}{-4} = \frac{z+3}{4}$$
; $\frac{7}{9}$, $-\frac{4}{9}$, $\frac{4}{9}$.

9.
$$x + 2y = 5$$
, $x + z = 3$, $2y - z = 2$; $(3, 1, 0)$, $(5, 0, -2)$, $(0, \frac{5}{2}, 3)$; $-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$.

11.
$$x + 3y = 9$$
, $x - z + 3 = 0$, $3y + z = 12$; $(-3, 4, 0)$, $(9, 0, 12)$, $(0, 3, 3)$;

$$\frac{3}{19}\sqrt{19}$$
, $-\frac{\sqrt{19}}{19}$, $\frac{3}{19}\sqrt{19}$.

15.
$$3y + z = 12$$
.

17.
$$\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-5}{2}$$
.

Page 394

1.
$$x^2 + y^2 + z^2 = a^2$$
.

3.
$$x^2 + y^2 = az$$
.

5.
$$x^4 = a^2(y^2 + z^2)$$
.

7.
$$y^2 + z^2 = x^6$$
.

9.
$$x^2 + y^2 = z^3 + z$$
.

11.
$$x^2 + z^2 = e^{2y}$$
.

13. $(x^2 + y^2 + z^2 + b^2 - a^2)^2 = 4b^2(x^2 + y^2)$.

Pages 395, 396

1.
$$x^2 + y^2 + z^2 - 12x + 4y + 18z = 0$$
.

3.
$$x^2 + y^2 + z^2 - 10x - 8y + 6z - 14 = 0$$
.

5.
$$(-3, 1, 5)$$
; 4. 7. $(-3, 2, -4)$; 0.

9.
$$x^2 + y^2 + z^2 - 6x - 6y - 6z + 18 = 0$$
.

11.
$$x^2 + y^2 + z^2 + 12x - 2y - 6z - 35 = 0$$
.

13.
$$x^2 + y^2 + z^2 + 32x + 16y - 4z = 0$$
, or $x^2 + y^2 + z^2 - 32x - 16y + 4z = 0$.

Pages 403, 404

5. 2662 mi.

Page 406

5. 65° 47'.

Pages 411, 412

1.
$$b = 62^{\circ} 32.6'$$
, $\alpha = 59^{\circ} 38.2'$, $\beta = 66^{\circ} 33.4'$.

3.
$$b = 115^{\circ} 22.5'$$
, $c = 100^{\circ} 12.4'$, $\alpha = 67^{\circ} 41.4'$.

5.
$$c = 97^{\circ} 51.3'$$
, $\alpha = 131^{\circ} 51.6'$, $\beta = 81^{\circ} 19.7'$.

7.
$$a = 58^{\circ} 17.9'$$
, $b = 25^{\circ} 59.3'$, $\beta = 29^{\circ} 48.8'$.

9.
$$b_1 = 23^{\circ} 4.4'$$
, $c_1 = 46^{\circ} 34.6'$, $\beta_1 = 32^{\circ} 39.4'$; or $b_2 = 156^{\circ} 55.6'$, $c_2 = 133^{\circ} 25.4'$, $\beta_2 = 147^{\circ} 20.6'$.

11.
$$a = 64^{\circ} 50.8'$$
, $\alpha = 69^{\circ} 4.3'$, $\beta = 122^{\circ} 49.4'$.

13.
$$a = 59^{\circ} 18.6'$$
, $c = 68^{\circ} 15.6'$, $\beta = 47^{\circ} 47.5'$.

15.
$$a = 19^{\circ} 30.8'$$
, $b = 148^{\circ} 19.0'$, $\alpha = 34^{\circ} 0.6'$.

17.
$$a = 58^{\circ} 48.0'$$
, $b = 51^{\circ} 12.3'$, $c = 71^{\circ} 3.6'$.

19.
$$a_1 = 145^{\circ} 24.7'$$
, $c_1 = 66^{\circ} 33.2'$, $\alpha_1 = 141^{\circ} 46.4'$; or $a_2 = 34^{\circ} 35.3'$, $c_2 = 113^{\circ} 26.8'$, $\alpha_2 = 38^{\circ} 13.6'$.

Pages 412, 413

1.
$$a = 106^{\circ} 22.1'$$
, $\beta = 44^{\circ} 33.3'$, $\gamma = 74^{\circ} 1.6'$.

3.
$$a = 21^{\circ} 12.0'$$
, $\alpha = 9^{\circ} 1.0'$, $\beta = 24^{\circ} 9.0'$. 5. 3015 N. M.; N 39° 58' W.

Pages 413, 414

1.
$$a = 50^{\circ} 38.8'$$
, $\beta = \gamma = 161^{\circ} 53.5'$. 3. $a = b = 40^{\circ} 17.3'$, $\gamma = 135^{\circ} 18.8'$.

Pages 420, 421

1.
$$\alpha = 76^{\circ} 19.6'$$
, $\beta = 94^{\circ} 23.0'$, $\gamma = 53^{\circ} 43.4'$.

3.
$$\alpha = 127^{\circ} 3.4'$$
, $\beta = 119^{\circ} 37.4'$, $\gamma = 103^{\circ} 17.4$.

5.
$$a = 65^{\circ} 59.2'$$
, $b = 69^{\circ} 56.6'$, $c = 62^{\circ} 9.0'$.

7.
$$a = 140^{\circ} 21.8'$$
, $b = 134^{\circ} 37.4'$, $c = 53^{\circ} 6.0'$.

- 1. $c = 71^{\circ} 7.0'$, $\alpha = 55^{\circ} 50.3'$, $\beta = 22^{\circ} 18.3'$.
- 3. $a = 112^{\circ} 36.4'$, $\beta = 124^{\circ} 5.3'$, $\gamma = 95^{\circ} 42.7'$.
- 5. $b = 74^{\circ} 2.8'$, $\alpha = 127^{\circ} 2.2'$, $\gamma = 68^{\circ} 3.8'$.
- 7. $a = 96^{\circ} 39.4'$, $b = 58^{\circ} 30.8'$, $\gamma = 131^{\circ} 36.4'$.
- **9.** $b = 68^{\circ} 56.5'$, $c = 43^{\circ} 51.7'$, $\alpha = 37^{\circ} 30.0'$.
- **11.** $a = 148^{\circ} 31.7'$, $c = 140^{\circ} 35.7'$, $\beta = 76^{\circ} 32.6'$.
- 2490 N. M.; San Diego from Colon, N 50° 13′ W; Colon from San Diego, N 115° 41′ E.
- 15. 5029 N. M.; Rio from Liverpool, N 143° 21′ W; Liverpool from Rio, N 22° 43′ E.
 17. Dec. 1° 9′; 2 hr. 47.5 min.

Pages 423, 424

- 1. $c = 117^{\circ} 48.4'$, $\beta = 27^{\circ} 24.5'$, $\gamma = 144^{\circ} 44.8'$.
- 3. $a_1 = 90^{\circ} 27.6'$, $\alpha_1 = 108^{\circ} 4.0'$, $\beta_1 = 64^{\circ} 35.7'$, or $a_2 = 39^{\circ} 57.6'$, $\alpha_2 = 37^{\circ} 38.0'$, $\beta_2 = 115^{\circ} 24.3'$.
- 5. No solution.
- 7. $b_1 = 33^{\circ} 6.4'$, $c_1 = 20^{\circ} 35.8'$, $\gamma_1 = 37^{\circ} 24.8'$, or $b_2 = 146^{\circ} 53.6'$, $c_2 = 145^{\circ} 25.0'$, $\gamma_2 = 101^{\circ} 25.8'$.
- **9.** $b = 36^{\circ} 59.8$, $c = 50^{\circ} 53.6'$, $\beta = 32^{\circ} 12.0'$.
- 11. No solution. 13. Long. 172° 48′ E; S 38° 32′ E; 14.13 knots.
- 15. N 146° 19' E; Lat. 54° 0' N.

Index

(Numbers refer to pages)

Abscissa, 3, 49	Binomial theorem, 300, 305
Absolute value, 4, 325	Bipartite cubic, 270
Addition of ordinates, 274	b-form of an equation, 345
Algebraic curve, 265	
Altitude of a star, 405	Cardoid, 279
Ambiguous cases, 161, 410, 423	Celestial sphere, 405
Amplitude of complex number, 325	equator, 405
Angle,	poles, 405
and intercepted arc, 111	Characteristic of a logarithm, 99
between two directed lines, 373	Circle,
between two planes, 382	determined by three conditions,
directed, 110	201
from l_1 to l_2 , 178	equations of, 198
hour, 405	family of, 203
in standard position, 114	great, on a sphere, 401
of a complex number, 325	imaginary, 199
of elevation or depression, 124	point, 199
spherical, 402	polar equation of a, 212
Angular velocity, 113	pole of a, 401
Antilogarithm, 101	Circular measure, 110
A.P., 289	Cissoid, 269
A posteriori probability, 315	Coefficient, 9
Archimedes spiral, 280	Cologarithm, 104
Area,	Combinations, 311
of a plane triangle, 168, 194	total number of, 315
of right triangle, 126	Common logarithms, 99
of spherical triangle, 402	Completing the square, 68
under a curve, 262	Complex fractions, 22
Argument of a complex number, 325	Complex numbers, 322
Arithmetic means, 291	angle of, 325
Arithmetic progression, 289	argument of, 325
elements of an, 289	conjugate, 322
Astronomical triangle, 405	graphical representation, 324, 325
Asymptotes, 134	modulus of, 325
horizontal and vertical, 266	operations with, 322
of hyperbola, 226	product of, 327
Axes of coördinates, 171, 368	quotient of, 327
Azimuth, 405	roots of, 329
	trigonometric form of, 325
Base of a logarithm, 95	Conchoid, 279
Bearing of B from A , 404	Conic section, 214
Binomial formula, 299	invariants of, 245
rth term of, 302	polar equations, 230
	To-m- odererous, 500

Factoring, 13, 14
Families,
of circles, 203
of lines, 193
of planes, 389
Figures in space, 361
Focus, of a conic, 215, 218, 224
Formation of equation with given
roots, 81, 339
Formula, binomial, 299, 302
Fractions,
addition and subtraction of, 20
complex, 22
division of, 18
multiplication of, 18
simplification of, 17
Function, 46
algebraic, 265
exponential, 106
graph of, 50
integral of a, 260, 262
integral rational, 332
inverse of a, 153, 272
inverse trigonometric, 153
linear, 183
logarithmic, 106
quadratic, 75
transcendental, 265
trigonometric, 114
Functional notation, 47
Geometric means, 294
Geometric progressions, 293
elements of, 293
of infinitely many terms, 296
Graph,
drawing the, 269, 279
of a function, 50
of a linear function, 188
of a logarithmic function, 106, 272
of an equation, 265
of an exponential function, 106, 272
of a polynomial function, 348
of a quadratic function, 75
of the inverse trigonometric func-
tions, 133
of the trigonometric functions, 157
Graphical representation of complex
numbers, 324, 325
,,

Graphical solution of equations, 56, 76, 350 Half-angle formulas, 165, 417 Half-side formulas, 416 H.C.F., 15 Highest common factor, 15 Horner's method, 354 Hour angle, 405 Hour circle, 405 Hyperbola, 224 asymptotes, 226 conjugate, 228 equilateral, 229 normal to, 249 tangent to, 249, 252 Hyperbolic paraboloid, 398 Hyperboloid of one sheet, 397 Hyperboloid of two sheets, 398 Hypocycloid, 286 $i = \sqrt{-1}, 35$ Identical polynomials, 357 Identities, 22, 138 trigonometric, 138, 148, 149, 151 Imaginary number, 35 Inclination of a line, 175 Inconsistent equations, 57, 59 Independent events, 317 Induction, mathematical, 303 Initial side of an angle, 110 Integral, definite, 262 indefinite, 260 Integral rational function, 332 Intercepts, of a line, 184, 185 of a plane, 385 Inverse trigonometric functions, 153 Inverse variation, 30 Irrational number, 36 Irrational root, 350, 354 Isosceles spherical triangles, solution of, 413

Joint variation, 33

Language of variation, 30

Latus rectum, 215, 220, 226

Law,	notural NT - ' '
of cosines, 164	natural, or Napierian, 107
of cosines for angles, 416	of values of trigonometric functions, 121
of cosines for sides, 415	
of sines, 158, 415	properties of, 96
of tangents, 159	Lowest common multiple, 15
L.C.M., 15	Magnitude of roots, 342
Lemniscate, 279	Mantissa of a logarithm, 101
Limaçon, 281	Mathematical expectation, 315
Limit,	Mathematical induction, 303
of $\Delta y/\Delta x$, 247, 252	Mathematical probability, 314
of sum of geometric progression, 296	Maximum, 258, 349
Limits of magnitudes of roots, 342	Mean proportional, 29
Line,	Members of an equation, 24
angle between two lines, 178	Meridian circle, 405
equations of, 183, 184, 185, 187, 189	Minimum, 258, 349
family of, 193	Mixed expression, 21
inclination of, 175	Modulus of a complex number, 325
slope of, 175	Monomial, 9
Line in space,	division of, 11
angle between two lines, 373	Multiple roots, 338
direction cosines of, 370	Multiplicand, 10
direction numbers of, 371	Multiplier, 10
equations of, 387, 388	Mutually exclusive events, 325
projecting planes of, 389	Nadir, 405
Line segment,	Napier's analogies, 418
directed, 171	Napier's rules, 407
projection of, 127	Natural, or Napierian, logarithms, 107
Linear equation, 25, 51, 55, 59	Negative exponent, 38
Linear function, 183	Normal equation of a line, 189
graph of, 188	Normal equation of a plane, 379
Linear scale, 3	Normal to a curve, 246, 248, 249
Literal number, 3	Number,
Lituus, 281	complex, 322
Locus,	graphical representation of, 3, 324,
equation of a, 180	325
of an equation, 50	imaginary, 35
Logarithmic,	literal, 3
curves, 102, 272	rational, 37
equation, 105	real, 3
function, 106, 272	reciprocal of, 19
spiral, 280	Numerical value, 4
Logarithms, 95	
base of, 95	Oblique plane triangle, 158
characteristic, 99	Oblique spherical triangle, 415
common, 99	Octants, 368
computations by, 102	Ordinate, 49
definition of, 95	addition of, 274
mantissa, 101	Origin, 3, 49, 368

Parabola, 75, 214, 246	number of roots, 338		
Parabolic spiral, 281	roots by Horner's method, 354		
Paraboloids, 398	with roots decreased by h, 352		
Parametric equation, 282, 288	with roots opposite in sign, 340		
Partial fractions, 361	Positive integral exponent, 8, 34		
Parts of a triangle, 123, 158, 402	Prime factors, 13		
Path of a projectile, 283	Principal axis of a conic, 215, 218,		
Periodicity, 132	224		
Permutations, 308	Principal root, 35, 36		
circular, 310	Principal value of inverse trigono-		
of things not all different, 310	metric function, 155		
Perpendicularity of lines,	Probability, 314		
in a plane, 177	a posteriori, 315		
in space, 374	empirical, 314		
of planes, 383	mathematical, 315		
Plane,	of independent and dependent		
distance from a, 382	events, 317		
equation of a, 379, 380, 385	of mutually exclusive events, 317		
satisfying three conditions, 384	of repeated trials, 319		
traces of a, 380	Product, 10		
Plane triangle, area of, 168, 194	Product of two trigonometric func-		
Planes,	tions, 149		
angle between two, 382	Progression, 288		
families of, 389	arithmetic, 289		
Polar and rectangular coördinates, 209	geometric, 293		
Polar coördinates, 208	Projection of line segment, 127		
Polar equation,	Prolate spheroid, 397		
of a circle, 212	Proper fraction, 361		
of a conic, 230	Proportion, 29		
of a curve, 276	extremes of a, 29		
of a line, 211	fourth, 29		
Polar form of a complex number, 325	mean, 29		
Pole, 208	means of a, 29		
Pole,	third, 29		
of a celestial sphere, 405			
of a circle, 401	Quadrant, 49		
Polynomial, 9	Quadrantal triangle, 407, 412		
division of, 11	Quadratic equation, 67		
factored form, 337	character of roots, 78		
graph of, 348	discriminant of, 78		
identical, 357	factored form, 81		
multiplication of, 10	graphical solution of, 76		
real linear and quadratic factors of,	product of roots, 80		
359	solution of, 67, 68, 70		
Polynomial equation,	sum of roots, 80		
graphical approximation of roots,	Quadratic function, 75		
350	Quadric cone, 399		
imaginary roots, 358	Quadric surface, 396		
in <i>b</i> -form, 345	Quotient, 10		

order of a, 39 Radicand, 39 Rational number, 37 Real number, 3 Reciprocal of number, 19 Rectangular coördinates, 48, 368 Rectangular hyperbola, 2:99 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right triangles, 123 Area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, 25 of quadratic equations by quaratics, 87 of simultaneous linear equation 55, 59 recisal, 405 terrestrial, 405 Spherical itriangles, 412 of quadratic equation, 67, 68, 70 of simultaneous linear equation 55, 59 of spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 419 de quadratic equations by quaratics, 87 of simultaneous linear equation 55, 59 celestial, 405 terrestrial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spherical, 250 Spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 409 of spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 409 of spherical triangles, 409 of spherical triangles, 409 of spherical triangles, 419 de spherical triangles, 419 de spherical triangles, 409 of spherical triangles, 419 de spherical triangles, 409 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spherical, an	Radian, 111 Radian measure of an angle, 110 Radical, 39	Solution, of isosceles spherical triangles, 413
Radicand, 39 Rational number, 37 Real number, 3 Reciprocal of number, 19 Rectangular coördinates, 48, 368 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175		of linear equation, 25
Rational number, 37 Real number, 37 Real number, 37 Real number, 37 Reciprocal of number, 19 Rectangular hyperbola, 2:29 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 50uton of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175		of quadrantal triangles, 412
Real number, 3 Reciprocal of number, 19 Rectangular coördinates, 48, 368 Rectangular hyperbola, 229 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous linear equations by quaratics, 87 of simultaneous linear equation 55, 5, 59 of simultaneous linear equation 55, 59 of spherical triangles, 409 of spherical right triangles, 409 of spherical triangles, 409 of spherical right triangles, 409 of spherical right triangles, 409 of spherical right triangles, 409 of spherical triangles, 409 of spheri		of quadratic equation, 67, 68, 70
Reciprocal of number, 19 Rectangular coördinates, 48, 368 Rectangular hyperbola, 229 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous linear equations, 55 involving quadratics, 84, 87 Simultaneous linear equations by quaratios, 87 of simultaneous linear equation 55, 59 of spherical triangles, 409 of spherical triangles, 405 sphere, 395 celestial, 405 sphere, 395 ociestial, 405 sphere, 395 ociestial, 405 starce of span angle, 114 successive different		of right triangles, 123
Rectangular hyperbola, 229 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical paraboloid, 399 Reduction formulas, 129 Remainder, 10 Simultaneous linear equation, 55, 59 of spherical triangles, 409 terrestrial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Rules, Napier's, 407 of species, 409 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		of simultaneous equations by quad-
Rectangular hyperbola, 22:9 Rectangular hyperbolic paraboloid, 399 Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous linear equations, solution of, 55, 59 of spherical triangles, 409 of spherical triangles, 419, 42 22 Sphere, 395 celestial, 405 sterrestrial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 409 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 of spherical triangles, 419, 42 25 Sphere, 395 celestial, 405 terrestrial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Raterory, 422 Sphere, 395 celestial, 405 terrestrial, 405 Spherical triangles, 419, 42 28 Sphere, 395 celestial, 405 terrestrial, 405 Spherical coordinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Rules, Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to a parabola, 249, 252 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coordinates, 233	Rectangular hyperbola, 229	55, 59
Reduction formulas, 129 Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175	399	of spherical right triangles, 409
Remainder, 10 Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Sphere, 395 celestial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		of spherical triangles, 419, 421,
Remainder theorem, 335 Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 150 Sines, law of, 158, 415 Slope of a line, 175 celestial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Surface of revolution, 393 Surface of rev		
Removal of parentheses, 7 Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, tion of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 terrestrial, 405 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 bogarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 376 distance, 401 excess, 402 Foral Provided Andrea Provolution, 3		
Repeated trials, 319 Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 158 Slope of a line, 175 Spherical, coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Right spherical triangles, 407 Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 100 Sinultaneous linear equations, 100 Sinultaneous linear equations, 59 Sines, law of, 158, 415 Slope of a line, 175 coördinates, 376 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 402 Spheroids, 397 Tanget roots, 35 tandard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249 to an ellipse, 402 Sequences, 280 Square roots, 35 tandard position of an angle, 114 to a parabola, 249 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 24		
Right triangles, 123 area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 distance, 401 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 Transendental curve, 265 Transformation of coördinates, 233		
area of, 126 Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 excess, 402 triangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to an ellipse, 248, 251 Transendental curve, 265 Transformation of coordinates, 233		
Roots, extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 tirtangle, 402 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 249, 252 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coordinates, 233		
extraneous, 71 irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Spheroids, 397 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coordinates, 233		
irrational, 350, 354 limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Spiral, 288 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 240 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 1		
limits of magnitude of, 342 multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 59 Sines, law of, 158, 415 Slope of a line, 175 hyperbolic, 281 logarithmic, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolac, 280 of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbolac, 280 Tangent of an angle, 115 Terminal side of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coordinates, 233		
multiple, 338 number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Involving of Archimedes, 280 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		(1) - [4]
number of, 338 of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 of Archimedes, 280 Square roots, 35 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
of a complex number, 329 of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Square roots, 35 Square roots, 35 Standard position of an angle, 114 Successive differentiation, 258 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Rules, Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		•
of positive integral order, 35 of quadratic equation, nature of, 78 principal, 35 square, 36 Square		
of quadratic equation, nature of, 78 principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Rules, Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
principal, 35 square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 50 Sines, law of, 158, 415 Slope of a line, 175 Surface of revolution, 393 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
square, 35 Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, 50 Sines, law of, 158, 415 Slope of a line, 175 Symbols of grouping, 7 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Rose curves, 279 Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Symmetry, 52, 85, 265, 276 Synthetic division, 333 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Rotation of axes, 236 Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Rules, Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transformation of coördinates, 233		
Napier's, 407 of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Tangent, at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
of species, 409 Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 at the origin, 266, 276 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		Tangent,
Sections of a cone, 214 Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 having a given slope, 250 law of, 159 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Semi-cubical parabola, 249 Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 to a hyperbola, 249, 252 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233	Sections of a cone, 214	0 0
Sequences, 288 Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 to an ellipse, 248, 251 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		to a hyperbola, 249, 252
Signed numbers, 5 Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 to a parabola, 246, 250 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		to an ellipse, 248, 251
Significant figures, 100 Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 to other curves, 249 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		to a parabola, 246, 250
Simultaneous equation, 55 involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Tangent of an angle, 115 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		to other curves, 249
involving quadratics, 84, 87 Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Terminal side of an angle, 110 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		Tangent of an angle, 115
Simultaneous linear equations, solution of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Third proportional, 29 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		Terminal side of an angle, 110
tion of, 55, 59 Sines, law of, 158, 415 Slope of a line, 175 Traces of a plane, 380 Traces of a plane, 380 Transcendental curve, 265 Transformation of coördinates, 233		
Sines, law of, 158, 415 Slope of a line, 175 Transformation of coördinates, 233		- 1.1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Slope of a line, 175 Transformation of coördinates, 233		요즘 생물이 살아내려면 하는 것이 없는 것이다.
		그 마이에 가는 그리고 하고 살아가 되었다. 그 이 때문에 그 아이들은 그 그리고 하는데
		Translation of axes, 233

Trigonometric identities, 137, 139

Trigonometric equations of condition, 141, 151 Trigonometric functions, 114 graphs of, 133 inverse, 153 line values of, 135 of half-angles, 148 of $-\theta$, 129 of $90^{\circ} - \theta$, 130 of twice an angle, 147 of two angles, 143 periodicity of, 132 properties of, 115 reduction of, 131 table of logarithms of values of, 121 table of values of, 121 values for certain angles, 117, 118, 119, 120

Variable, 46
Variation, 30
combined, 32
direct, 31
inverse, 31
joint, 32
Variation in sign, 341
Vector, 127
resultant of two, 127
Vertex of a conic, 215, 220, 226
Witch, 269
Zenith, 405
Zero
computations with, 5
division by excluded, 5

Acc. m. 42685 5/10/66

exponent, 37

