



DoD Corrosion Prevention and Control Program

# Corrosion/Degradation Monitoring Technology for Composite Materials Used to Extend Building Service Life

Final Report on Project F07-AR03

Michael K. McInerney, Orange S. Marshall, L.D. Stephenson, Ashok Kumar, Lawrence Clark, Chris Olaes, and Vishal Shinde July 2014



The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at <a href="www.erdc.usace.army.mil">www.erdc.usace.army.mil</a>.

To search for other technical reports published by ERDC, visit the ERDC online library at <a href="http://acwc.sdp.sirsi.net/client/default">http://acwc.sdp.sirsi.net/client/default</a>.

# Corrosion/Degradation Monitoring Technology for Composite Materials Used to Extend Building Service Life

Final Report on Project F07-AR03

Michael K. McInerney, Orange Marshall, L.D. Stephenson, and Ashok Kumar

Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center 2902 Newmark Drive Champaign, IL 61822

Lawrence Clark and Chris Olaes

Mandaree Enterprise Corporation. 812 Park Drive Warner Robins, GA 31088

Vishal Shinde

Physical Acoustic Corporation 195 Clarksville Road Princeton Junction, NJ 08550

#### Final report

Approved for public release; distribution is unlimited.

Prepared for Office of the Secretary of Defense (OUSD(AT&L))

3090 Defense Pentagon

Washington, DC 20301-3090

Under Project F07-AR03, "Corrosion/Degradation Monitoring for FRP Composites

Used for Service Life Extension of Buildings"

## **Abstract**

Fiber-reinforced polymer (FRP) composites offer cost and performance advantages for patching concrete structures that have corroded reinforcing steel, but the Army largely avoids structural composite repair applications because of the lack of long-term performance data. Established composite patch inspection methods are fast but highly subjective. This report describes the demonstration of acoustic guided wave (AGW) technology as a nondestructive evaluation (NDE) methodology for assessing the condition of FRP composite structural patches. The technology uses a hand-guided rolling probe to collect ultrasonic inspection data that can then be analyzed to determine patch condition.

The technology was used to evaluate more than 250 composite seismic upgrade patches installed in 1999 at historic Michie Stadium, U.S. Military Academy. The amplitude difference between the probe's emitted signal and the measured reflection provides data about bond quality and potential material defects. The technology identified several patches needing follow-up attention and possible rehabilitation. When considering costs for equipment procurement, logistics, labor, and field contingencies, an average patch-inspection time of 1.5 hours was estimated. The calculated lifecycle return on investment for this application was 11.91.

**DISCLAIMER:** The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

# **Contents**

| Abs | stract                  |          |                                   | ii   |  |
|-----|-------------------------|----------|-----------------------------------|------|--|
| Fig | gures a                 | and Tab  | les                               | v    |  |
| Pre | eface.                  |          |                                   | vi   |  |
| Exe | ecutiv                  | e Sumn   | nary                              | vii  |  |
| Uni | it Con                  | version  | Factors                           | viii |  |
| 1   | Intro                   | duction  | 1                                 | 1    |  |
|     | 1.1                     | Proble   | em statement                      | 1    |  |
|     | 1.2                     | Object   | tive                              | 2    |  |
|     | 1.3                     | Approa   | ach                               | 3    |  |
| 2   | Technical Investigation |          |                                   |      |  |
|     | 2.1                     | Techn    | ology overview                    | 4    |  |
|     | 2.2                     | Field v  | work                              | 7    |  |
|     | 2.3                     | Data a   | analysis                          | 11   |  |
| 3   | Discussion              |          |                                   |      |  |
|     | 3.1                     | Metric   | S                                 | 12   |  |
|     |                         | 3.1.1    | Data imaging                      | 12   |  |
|     |                         | 3.1.2    | Statistical analysis              |      |  |
|     | 3.2                     |          | ts                                |      |  |
|     | 3.3                     | Lesso    | ns learned                        |      |  |
|     |                         | 3.3.1    | Site selection                    |      |  |
|     |                         | 3.3.2    | Inspection                        |      |  |
|     |                         | 3.3.3    | Unforeseen issues                 |      |  |
|     |                         | 3.3.4    | Data management                   |      |  |
|     |                         | 3.3.5    | Analysis software                 | 18   |  |
| 4   | Ecor                    | nomic S  | ummary                            | 19   |  |
|     | 4.1                     | Costs    | and assumptions                   | 19   |  |
|     | 4.2                     | Returr   | n on investment (ROI) computation | 20   |  |
| 5   | Cond                    | clusions | and Recommendations               | 22   |  |
|     | 5.1                     | Conclu   | usions                            | 22   |  |
|     | 5.2                     | Recon    | nmendations                       | 23   |  |
|     |                         | 5.2.1    | Applicability                     | 23   |  |
|     |                         | 5.2.2    | Implementation                    | 23   |  |
| Ref | feren                   | ces      |                                   | 25   |  |

| Appendix A: Full-Tier Drawings Showing Locations of Inspected Patches  | A1 |
|------------------------------------------------------------------------|----|
| Appendix B: Inspected Locations                                        | B1 |
| Appendix C: Statistical Analysis Results                               | C1 |
| Appendix D: C-scan Results With Digital Pictures                       | D1 |
| Appendix E: Original ROI Projection From Project Management Plan (PMP) | E1 |
| Report Documentation Page                                              |    |

# **Figures and Tables**

# **Figures**

| Figure 1. Structural support beams with FRP composite patches and |    |
|-------------------------------------------------------------------|----|
| piezoelectric sensors under Michie Stadium.                       |    |
| Figure 2. Pocket AU scanning system                               | 5  |
| Figure 3. Workspace for composite patch evaluation.               | 7  |
| Figure 4. Composite wraps at column tops.                         | 8  |
| Figure 5. Patch naming convention for data logging.               | 9  |
| Figure 6. List of inspected locations.                            | 10 |
| Figure 7. Inspection in progress.                                 | 10 |
| Figure 8. A-scan graph showing amplitude response                 | 13 |
| Figure 9. C-scan image.                                           | 13 |
| Figure 10. AU color scale.                                        | 14 |
| Figure 11. Statistical toolbox.                                   | 15 |
| Figure 12. Sample C-scan image statistical content.               | 16 |
| Figure 13. Lower-tier amplitude distribution                      | 16 |
| Figure 14. Middle-tier amplitude distribution.                    | 17 |
| Figure 15. Upper-tier amplitude distribution                      | 17 |
| Tables                                                            |    |
|                                                                   |    |
| Table 1. Breakdown of total project costs                         |    |
| Table 2. Project field demonstration costs                        | 19 |
| Table 3. ROI calculation.                                         | 21 |

# **Preface**

This demonstration was performed for the Office of the Secretary of Defense (OSD) under Department of Defense (DoD) Corrosion Prevention and Control Project F07-AR03, "Corrosion/Degradation Monitoring for FRP Composites used for Service Life Extension of Buildings." The proponent was the U.S. Army Office of the Assistant Chief of Staff for Installation Management (ACSIM), and the stakeholder was the U.S. Army Installation Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF).

The work was performed by the Engineering and Materials Branch (CEERD-CF-M), Facilities Division (CF), U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL). The ERDC CPC Program Manager was Michael K. McInerney, CEERD-CF-M. Mandaree Enterprise Corporation (MEC), Warner Robins, GA, provided project management and onsite process assessments. At the time this report was prepared, Vicki L. Van Blaricum was Chief, CEERD-CF-M; L. Michael Golish was Chief, CEERD-CF; and Kurt Kinnevan (CEERD-CV-T) was the Acting Technical Director for Adaptive and Resilient Installations. The Deputy Director of ERDC-CERL was Dr. Kirankumar Topudurti and the Director was Dr. Ilker Adiguzel.

The following personnel are gratefully acknowledged for their support and assistance in this project:

- Mr. Jeffery Friese, U.S. Army Engineer District New York, CENAN-EN-MM
- Mr. Pete McGaughran, Directorate of Public Works (DPW) EP&S, USMA West Point
- Mr. Randy McMurtrie, Directorate of Public Works (DPW) EP&S, USMA West Point.

COL Jeffrey R. Eckstein was the Commander of ERDC, and Dr. Jeffery P. Holland was the Director.

ERDC/CERL TR-14-9 vii

# **Executive Summary**

Aging reinforced concrete buildings in the Army inventory often have severely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety codes. Fiber-reinforced polymer (FRP) composites offer many cost and performance advantages for patching degraded reinforced concrete, but the Army largely avoids using them because of the lack of long-term performance data. Improved material inspection methods could help the Army better manage risks and information gaps associated with composite structural reinforcement materials.

This report describes the demonstration of acoustic guided wave (AGW) technology as a nondestructive evaluation (NDE) methodology for assessing the condition of FRP composite structural patches. The technology was used to evaluate patches applied in a 1999 seismic upgrade of historic Michie Stadium at the U.S. Military Academy, West Point, NY. The objective of the inspection was to verify the quality of the bond between the patches and the concrete, and also to check for evidence of delamination within the patches.

The demonstrated AGW technology measures variations in the propagation of acoustic energy used to probe the composite patch. A manually directed rolling-sensor probe emits acoustic energy (100–500 kHz) into the patch and measures the reflected energy. The amplitude difference between the emitted and reflected signal provides data about bond quality and potential material defects. In this study, 250 randomly selected patches were scanned, and the acquired data were statistically analyzed.

Considering all implementation factors and contingencies (e.g., wet patches) encountered during the project, the average patch-inspection time is 1.5 hours. The technology provides objective results, as compared with visual and finger-tap acoustic evaluation by inherently subjective individual inspectors. Results indicate that the technology is effective at identifying composite/concrete bond defects that may need repair. The return on investment for implementing AWG NDE inspection, as compared with conventional inspection methods, was calculated to be 11.91.

ERDC/CERL TR-14-9 viii

# **Unit Conversion Factors**

| Multiply              | Ву            | To Obtain       |  |
|-----------------------|---------------|-----------------|--|
| degrees Fahrenheit    | (F-32)/1.8    | degrees Celsius |  |
| Feet                  | 0.3048        | meters          |  |
| gallons (U.S. liquid) | 3.785412 E-03 | cubic meters    |  |
| Inches                | 0.0254        | meters          |  |
| Mils                  | 0.0254        | millimeters     |  |
| square feet           | 0.09290304    | square meters   |  |

## 1 Introduction

#### 1.1 Problem statement

Structural degradation of buildings is a facility sustainment problem of immense scope for the Department of Defense (DoD), with the U.S. Army alone being responsible for more than 143,000 buildings. These include thousands of barracks buildings and many historically significant structures. Aging reinforced concrete buildings in the Army inventory often have severely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety codes.

Advanced structural composites, such as fiberglass-reinforced polymer (FRP) materials, offer many cost and performance advantages over conventional upgrade systems for reinforced concrete. They can significantly reduce life-cycle costs, including up to a 50 percent reduction in first costs. They are also easier to install than conventional upgrades and provide improved occupant safety. However, they are typically characterized by a brittle (i.e., non-ductile) failure mode, which could lead to catastrophic structural failure with little forewarning. For this reason, and because of the lack of long-term performance data, the Army largely avoids using composite patches.

Improved material inspection methods could provide Army engineers and facility operators more reliable and current information about composite patch service life. Established methods of composite patch assessment—visual inspection and finger-tap acoustic evaluation—are fast, but they depend on the inherently subjective judgment of each individual inspector.

The U.S. Military Academy (USMA) has installed FRP composite structural upgrades for Michie Stadium at USMA, West Point, NY. This stadium, constructed in 1924, is a historically significant structure. The upgrades are intended to help restore the stadium's resistance to seismic motions that can accelerate structural degradation, often in difficult-to-detect locations. The structural patches need to be monitored using a method that can predict long-term degradation rates on the basis of short-term nondestructive testing. Several of the stadium upgrades were originally installed with embedded piezoelectric sensors (Figure 1), but those can affect the strength and performance of composites. An improved, nondestructive evaluation (NDE) method—one that does not affect material perfor-

mance—is needed to track and document the in situ condition of FRP composites.



Figure 1. Structural support beams with FRP composite patches and piezoelectric sensors under Michie Stadium.

Acoustic guided wave (AGW) inspection is an emerging technology for NDE of FRP composites. Short-term AGW data can be extrapolated to predict long-term material performance and service life. This technology requires no manual intrusion into or physical sampling of the composite repair material, unlike piezoelectric sensors. The DoD Corrosion Prevention and Control Program sponsored a demonstration of AGW technology on selected composite structural patches at Michie Stadium to investigate and validate its efficacy in the in situ monitoring composite material integrity.

## 1.2 Objective

The objective of this demonstration is to conduct a proof-of-performance evaluation of AGW technology by inspecting a large sample of FRP composite patches installed at Michie Stadium.

## 1.3 Approach

The U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) coordinated with the USMA Directorate of Public Works (DPW) to select the specific patches to be inspected. The team performed a preliminary visual inspection of the patches and selected candidates for AGW testing. From the patches that were considered easily accessible for AGW testing, 250 were randomly selected for testing. The group contained a cross section of ages, patches with obvious debonding or delamination\*, and patches with no obvious debonding or delamination.

The selected patches were indexed and scanned for defects. A scissors lift and articulated manlift were used to perform the inspections, which involved sites located above grade and in cramped quarters beneath the stadium seats.

The scan results were analyzed and bond quality determined based on previous theoretical, laboratory, and field studies (Godínez-Azcuaga 2004, Trovillion et al. 2004).

\* Debonding is the separation of two materials adhered to each other. Delamination is the separation of layers in a single laminated material, sometimes caused by manufacturing flaws or stress in service.

-

# 2 Technical Investigation

#### 2.1 Technology overview

The NDE technology used in this demonstration was the FRP-Concrete Inspection System (FRPCIS) from Physical Acoustics Corporation, Princeton Junction, NJ. This technology was first developed by Physical Acoustics Corporation under a 2004 Small Business Innovative Research (SBIR) Project funded through ERDC-CERL (Godínez-Azcuaga 2004, Trovillion et al. 2004).

The system uses a sonic emitter to send out a short-duration sound pulse and a sensor that captures returning echoes. A defect will change the propagation characteristics of the pulse and the return signal will be modified based on the size and orientation of the defect. Pulse-echo ultrasonic measurements can determine the location of a discontinuity in a part or structure by accurately measuring the time required for a short ultrasonic pulse generated by the rolling-sensor probe to travel through a thickness of material, reflect from the back or the surface of a discontinuity, and be returned to the probe.

One common method of displaying ultrasonic data is termed an "A-scan." For an A-scan, the probe is fixed in position and the strength of the returning echoes as a function of time (or, equivalently of penetration depth) is displayed. The A-scan presentation displays the amount of received ultrasonic energy as a function of time. The relative amount of received energy is plotted along the vertical axis, and the elapsed time (which may be related to the sound energy travel time within the material) is displayed along the horizontal axis. Most instruments with an A-scan display allow the signal to be displayed in its natural radio frequency (RF) form, as a fully rectified RF signal; or as either the positive or negative half of the RF signal. In the A-scan presentation, relative discontinuity size can be estimated by comparing the signal amplitude obtained from an unknown reflector to that from a known reflector. Reflector depth can be determined by the position of the signal on the horizontal sweep.

Another common data display type is the ultrasonic C-scan. In a C-scan, the probe is manually rolled in two dimensions across the surface of the specimen being inspected. The display typically shows the peak response within a time or depth interval of interest as a function of probe position.

The C-scan presentation provides a plan-type view of the location and size of test specimen features. The plane of the image is parallel to the scan pattern of the probe. C-scan presentations are produced with an automated data acquisition system. Typically, a data collection gate is established on the A-scan, and the amplitude or the time of flight of the signal is recorded at regular intervals as the probe is rolled over the test piece. The relative signal amplitude or the time of flight is displayed as a shade of gray or a color for each of the positions where data was recorded. The C-scan presentation provides an image of the features that reflect and scatter the sound within and on the surfaces of the test piece.

The scanning system used in this demonstration was the Physical Acoustics Pocket Guided Wave Acousto-Ultrasonics (AU) system (Figure 2), which is designed for NDE of composite materials that are difficult to inspect using conventional ultrasonic or other evaluation methods. The Pocket AU system includes a scanner unit with 1 Gb onboard flash memory and a USB computer interface (see center picture below). A-scan or C-scan data can be exported as ASCII files so a third-party application can be used to view and analyze the data. The exported ASCII files are saved in \*.TXT format.



Figure 2. Pocket AU scanning system.

The Pocket AU system includes a unique dry-coupled rolling-sensor probe (Figure 2, right-hand picture) that contains two wide-band acoustic rolling sensors—one working as a pulser and the other as a receiver. These sensors are spring loaded to maintain a constant contact pressure of 20 lb against the structure, while four guide wheels are used to stabilize the scanner during the inspection procedure.

The rear guide wheels incorporate a rotary encoder that tracks the distance the scanner travels during the scanning process. The position information is necessary to generate the C-scan images.

The rolling-sensor probe also contains a multipurpose button that allows the operator to scale the acoustic signal displayed on the scanner unit screen when working in the A-scan mode, to save A-scan files to memory, or to begin a new scanning line when working in the C-scan mode. A light-emitting diode (LED) mounted on top of the rolling-sensor probe is automatically turned on during scanning and turned off to indicate that the probe has reached the end of a scanning line during a C-scan inspection. The electronics necessary for the LED, multipurpose button, and a 26 dB preamplifier to boost the received acoustic signal are included in a connection board housed inside an ergonomically designed enclosure.

A 2 m interface cable is provided to connect the rolling sensor probe to the Pocket AU scanner unit. This cable has three connectors at each end: two SMB coaxial connectors for the analog acoustic signals and a single DB9 serial connector for the encoder and other digital signals. It is very important that the pulser output from the scanner unit be connected to the pulsing input on the probe; if instead it is connected to the receiver port of the probe, the internal preamplifier on the probe may be damaged.

The technology works by directing acoustic waveform bursts (100–500 kHz) into the material being inspected via the pulser sensor on the rolling-sensor probe. The receiver sensor on the rolling-sensor probe receives the reflected waves, and the scanner unit processes the results and displays them as A-scan waveforms and C-scan image maps. The acoustic signal features include gated amplitude and time-of-flight parameters that change when the acoustic bursts travel through the material and encounter defects or discontinuities such as cracks, material property changes, delamination, and debonding. Defects can be identified from the C-scan images.

The probe's AU emitter can be excited in two ways: fixed or swept frequency. The duration of the pulse is also selectable. Fixed frequency enables the user to select the frequency at which the pulsing sensor will send out a signal. The user can also specify the duration of this signal. By choosing this mode, the signal used to excite the pulsing sensor will be a square wave burst of the frequency and duration chosen.

Swept frequency enables the user to specify a lower and upper range for the frequency of the pulsing sensor. The system will automatically set up the required number of cycles and their durations based on user input to the frequency values. As before, the user can also specify the duration of this signal.

#### 2.2 Field work

Access to the patches, which are installed at the underside of the stadium structure, was provided with a scissors lift and an articulating manlift. The use of ladders was not acceptable because two hands and a stable platform are required to operate the scanning instrument. Scaffolding was not feasible because the uneven ground and debris in the work space would hinder scaffold assembly and relocation. The manlift provided the best combination of stability and mobility between work locations; an entire section between support columns could be completed by moving the arm without repositioning the lift. Figure 3 shows one of the space-constrained work locations. Figure 4 shows examples of the composite wraps (light-gray bands) at the tops of columns beneath the seating.



Figure 3. Workspace for composite patch evaluation.



Figure 4. Composite wraps at column tops.

Two technicians and two support personnel inspected 250 FRP composite patches over 24 days from 15 October to 8 November 2007. The technicians operated the scanning systems while the support personnel operated the lifts. When all tasks and delays in the field operation are included (setup, staging, scanning, teardown, rain, humidity), the average inspection time was about 1.5 hours per patch.

For the inspection of the Michie Stadium patches, the pulser waveform was a 230 kHz square wave of 50  $\mu S$  duration. Five random FRP patches were selected in the lower tier to calibrate the unit. The received amplitude from all five patches was recorded, and the patch returning the maximum amplitude was used as the calibration benchmark. (The maximum-amplitude return signal corresponded to a good patch—one with minimal to no debonding or delamination.) The A-scan screen height was then adjusted to the maximum detected amplitude of the waveform. The AU unit was used to generate A-scan and C-scan images for each of the inspected patches.

Figure 5 shows the naming convention used for data logging purposes. The entire inspection was divided according to tiers (upper, middle and lower), and each tier was further divided into sections. Every location has two sub patches—an elevation and a bottom patch. Figure 6 shows the number of locations per section that were inspected between October and November. In addition to the 250 preselected locations, 18 additional locations were

inspected. Diagrams of inspected locations and fully marked stadium tier drawings are shown in Appendix A and Appendix B, respectively.



Figure 5. Patch naming convention for data logging.

Section Locations/Section Section Locations/Section Lower Upper Tier Tier Section Locations/Section Middle 

Figure 6. List of inspected locations.

Each inspection was subdivided into two scans: one for the bottom patch and one for the elevation patch. Figure 7 shows the inspection of a bottom patch, with labels indicating both the bottom and elevation patches.



Figure 7. Inspection in progress.

# 2.3 Data analysis

When the scan results were analyzed, bond and lamination qualities were determined based on previous theoretical, laboratory, and field studies by Godínez-Azcuaga (2004) and Trovillion et al. (2004). The statistical analysis of the acquired data is based on the 6 dB drop method—the principle that when ultrasonic waves travel through a delamination, the amplitude of the wave decreases (IAEA 1988). A 6 dB decrease corresponds to a 50% reduction in amplitude.

Appendix C contains all of the statistical results for each inspected location. Appendix D contains all of the C Scan images and accompanying photographs of each inspected location.

## 3 Discussion

#### 3.1 Metrics

#### 3.1.1 Data imaging

The direct metric for evaluating the qualities of the bond and lamination of an FRP patch is change in AU signal amplitude (emitted versus returned) across each patch. Five FRP patches in the lower tier were selected randomly to calibrate the unit. The received amplitude from each patch was recorded, and the patch returning the maximum amplitude was used as the calibration benchmark. (The maximum amplitude return signal corresponded to a good patch—one with minimal or no debonding or delamination.) The A-scan screen height was then adjusted to the maximum detected amplitude of the waveform.

As discussed previously, AU scanner data were displayed as A- and C-scans. Statistical analysis of the acquired data was based on the 6 dB drop method (IAEA 1988).

In an A-scan, the closer the returned-signal amplitude is to the emitted-signal amplitude, the better are the qualities of the bond and lamination. Examples of good and poor bonds are shown in Figure 8. The evaluation is qualitative because (1) the maximum amplitude of a good bond is determined from a random sampling of patch A-scans (it is assumed that a good bond does exist and that it will be found), and (2) a bond of lesser quality has lesser amplitude. The quantitative bond strength\* is not known, just that the bond is of lesser quality.

\* One quantitative method of measuring bond strength is ASTM D7522 / D7522M – 09, which determines the greatest perpendicular force (in tension) that an FRP system can bear before a plug of material is detached.



Figure 8. A-scan graph showing amplitude response.

The C-scan image provides information in terms of time of flight and amplitude of the received signals as a raster scan along the X-Y plane of a test sample. Figure 9 shows a C-scan image of a scanned FRP patch. The acquired data are post-processed using UTwin\*, a Windows-based data acquisition, imaging, and analysis software system for C-Scan images. (Note that this software required much time and effort to configure before reading the exported data file produced by the AU scanner unit.)



Figure 9. C-scan image.

<sup>\*</sup> UTwin is a trademark of MISTRAS Group, Inc, Princeton Junction, NJ.

Figure 10 shows the AU scanner bar scale that is used to plot the C-scan image. Generally, blue or light-blue colors signify lower AU signal amplitude values that indicate defect-containing areas; and greenish or bright-green colors represent defect-free regions.



Figure 10. AU color scale.

#### 3.1.2 Statistical analysis

The statistical analysis of the acquired data is based on the 6 dB drop method (IAEA 1988), also known as the K9.3 length. This method is a standard used in ultrasonic testing to analyze flaws. As the rolling-sensor probe passes from a flawless area to a debonded or delaminated area, the amplitude decreases. When the decrease in amplitude is equal to 6 dB, the scanner has moved halfway off of the flawless area. By traversing the flawless area and measuring 6 dB drop dimensions, the approximate dimensions of debonded and delaminated areas may be obtained.

The maximum screen height is set to 100% on the AU color bar in Figure 10 (which indicates a flawless area), and the 6 dB drop is set to 40%\* on the color bar. In order to indicate debonded and delaminated areas on the C-scan, whenever the relative amplitude falls below 40% on the A-scan graph shown in Figure 8, a blue pixel is plotted on the C-scan.

The statistical analysis tool allows a quantitative assessment of the C-scan data. Before the acquired data are analyzed, the statistical toolbox (Figure 11) is configured in two steps. In the first step, the feature to analyze is selected; in the second step, the threshold values are set along with the desired C-scan area (the complete scan, in this case).

<sup>\*</sup> Although a 6 dB drop corresponds to 50%, experience has shown that 40% is a better factor to use when inspecting FRP composite patches on concrete.



Figure 11. Statistical toolbox.

As seen in Figure 11, three thresholds were used. Threshold#0 was set to 0.0%, threshold#1 was set to 40.0%, and threshold#2 was set to 100%. The statistical tool analyzes the entire C-scan data set and shows the minimum, maximum, average, standard deviation results for the data, along with the distribution (percentage) of the data in the selected thresholds.

#### 3.2 Results

Appendix C shows the statistical results for all 250 locations in a tabular format. Appendix D contains all C-scan images of inspected patches, with the corresponding digital photographs. Figure 12 shows the statistical features extracted from a C-scan image.



Figure 12. Sample C-scan image statistical content.

All detected flaws were determined to be caused by patch debonding, not delamination. This conclusion was reached using time-of-flight data, which can be used to determine the depth of the flaw beneath the surface. All scans indicated that the flaws were beneath the FRP composite material. As discussed previously, the better the bond between the FRP and the concrete beam, the higher the average amplitude per patch (maximum = 100%). Within each section, 4-10 randomly selected patches were inspected. For each section, the average amplitude is calculated as shown below:

$$Average \ Amplitude / Section = \frac{\sum_{0}^{Total \ inspected \ Patches / Section} Average \ Amplitude / \ patch}{Total \ number \ of \ Patches \ per \ section}$$

Figure 13 – Figure 15 show the amplitude distribution per section.



Figure 13. Lower-tier amplitude distribution.



Figure 14. Middle-tier amplitude distribution.

Figure 15. Upper-tier amplitude distribution.



#### 3.3 Lessons learned

#### 3.3.1 Site selection

A pre-inspection site visit was useful to select the patches to be inspected and to identify possible obstacles to field work.

#### 3.3.2 Inspection

Inspection of all the patches was completed within the scheduled time frame. Patches on which surface moisture (e.g., dew) had accumulated produced less signal attenuation than dry ones, which produced skewed readings. Inspection was delayed to wait for wet patches to dry in order to obtain an accurate scan for bond strength.

Patches with protruding resins damaged the encoder on the rolling-sensor probe. No inspection time was lost because a spare probe was available.

The problem was eliminated with a design change to the spare encoder assembly.

#### 3.3.3 Unforeseen issues

Rain caused inspection delays because the work areas are not enclosed and the concrete slabs that make up the seating area are not sealed, allowing rain to get into the inspection area. Rainwater also accumulated on patch surfaces, slowing the drying.

#### 3.3.4 Data management

Data collection, management, and analysis for this project were scoped to suit the purposes of technology demonstration and validation. A detailed examination of the numerical and photographic records indicates a small number of gaps and inconsistencies. When the demonstrated technology is applied to a formal engineering study, the use of data-management best practices is essential in order to accurately track every potentially degraded structural patch. However, even given data-management limitations in the current project, identify several patches requiring expert inspection and possible repair were unambiguously identified.

#### 3.3.5 Analysis software

The UTwin analysis software was selected based on the capabilities stated in the manufacturer's product bulletin, but it was not ready to use "out of the box." Much time and effort was needed to configure this software to read the exported data file produced by the AU scanner unit.

# **4 Economic Summary**

### 4.1 Costs and assumptions

Total project costs were \$940K. A rough breakdown of project expenses is presented in Table 1.

Description **Amount** Labor \$250,000 Materials \$95,000 Contracts \$425,000 Travel \$80,000 Reporting \$80,000 Air Force and Navy Participation \$10,000 Total \$940,000

Table 1. Breakdown of total project costs.

The field demonstration costs for this CPC project are shown in Table 2.

| Item | Description                                                                         | Amount    |
|------|-------------------------------------------------------------------------------------|-----------|
| 1    | Labor for two equipment operators (30 days)                                         | \$63,520  |
| 2    | Travel for two equipment operators (30 days)                                        | \$23,030  |
| 3    | Rental for two manlifts                                                             | \$41,410  |
| 4    | Personal protective equipment (PPE)                                                 | \$3,550   |
| 5    | Miscellaneous (equipment operations)                                                | \$4,140   |
| 6    | Labor for two people (Research Engineer I) for preparation and inspection (30 days) | \$90,000  |
| 7    | Travel for two people for inspection (25 days)                                      | \$15,480  |
| 8    | Travel for two people for preparation (5 days)                                      | \$5,964   |
| 9    | AU Handheld Rental 2-units + chargers                                               | \$10,000  |
| 10   | Consumables and supplies (inspections)                                              | \$500     |
| 11   | Labor for one person (Research Engineer I) for analysis and reporting (25 days)     | \$37,500  |
|      | Total                                                                               | \$295,094 |

Table 2. Project field demonstration costs.

**Alternative 1 (Baseline Scenario).** Structural components of the West Point Michie Stadium require complete replacement at Year 8, at a cost of

\$25.5M, as shown in Table 3 (column B). Average annualized maintenance cost of the existing structural components is \$280K, which drops to \$6.5K after complete replacement of the components.

Alternative 2 (New Technology Application). The application of corrosion/degradation monitoring and degradation sensing technologies in Year 1 at a total project cost of \$940K is projected to extend the life of the structural components over the conventional maintenance schedule by another 30 years. Data from maintenance personnel indicate that early detection and subsequent preventive measures result in maintenance cost savings of 50%, which means that the new system cost will be \$140K. The annual cost of operating the sensors would be \$10K, resulting in a total cost of \$150K (Table 3, column D). Under this alternative, the structural components must be replaced in Year 30 at a cost of \$25.5M.

#### 4.2 Return on investment (ROI) computation

The ROI for this technology was computed using methods prescribed by Office of Management and Budget (OMB) Circular No. A-94, *Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs*. Comparing the costs and benefits of the two alternatives, the 30-year return on investment after implementing the new technology (Alternative 2) is projected to be about 12 (11.91 as shown in Table 3).

This is very close to the original estimated ROI of 11.98 (see Appendix 1). The difference comes from reconsidering the \$10K annual expense for use of the new technology in the maintenance of the replaced structural components (Alternative 1). Since the primary use for FRP composite patches is for structural upgrades, once the components are replaced, the patches would not be required.

## Table 3. ROI calculation.

## **Return on Investment Calculation**

|        | Investment Required                                                  |                  |               |                  | [                | 940,000          |               |
|--------|----------------------------------------------------------------------|------------------|---------------|------------------|------------------|------------------|---------------|
|        |                                                                      |                  | Return on Inv | estment Ratio    | 11.91            | Percent          | 1191%         |
|        | Net Present Value of Costs and Benefits/Savings 5,192,295 16,391,820 |                  |               |                  | 16,391,820       | 11,199,525       |               |
|        |                                                                      |                  |               |                  |                  | _                |               |
| Α      | В                                                                    | С                | D             | E                | F                | G                | н             |
| Future | Baseline Costs                                                       | Baseline         | New System    | New System       | Present Value of | Present Value of | Total Present |
| Year   |                                                                      | Benefits/Savings | Costs         | Benefits/Savings | Costs            | Savings          | Value         |
|        |                                                                      |                  |               |                  |                  |                  |               |
| 1      | 280.000                                                              |                  | 150,000.0     |                  | 140.190          | 261.688          | 121,498       |
| 2      | 280,000                                                              |                  | 150,000.0     |                  | 131,010          | 244,552          | 113,542       |
| 3      | 280,000                                                              |                  | 150,000.0     |                  | 122,445          | 228,564          | 106,119       |
| 4      | 280,000                                                              |                  | 150,000.0     |                  | 114.435          | 213,612          | 99.177        |
| 5      | 280,000                                                              |                  | 150,000.0     |                  | 106,950          | 199,640          | 92,690        |
| 6      | 280,000                                                              |                  | 150,000.0     |                  | 99,945           | 186,564          | 86,619        |
| 7      | 280,000                                                              |                  | 150,000.0     |                  | 93,405           | 174,356          | 80,951        |
| 8      | 25,500,000                                                           |                  | 150,000.0     |                  | 87,300           | 14,841,000       | 14,753,700    |
| 9      | 6,500                                                                |                  | 150,000.0     |                  | 81,585           | 3,535            | -78,050       |
| 10     | 6,500                                                                |                  | 150,000.0     |                  | 76,245           | 3,304            | -72,941       |
| 11     | 6,500                                                                |                  | 150,000.0     |                  | 71,265           | 3,088            | -68,177       |
| 12     | 6,500                                                                |                  | 150,000.0     |                  | 66,600           | 2,886            | -63,714       |
| 13     | 6,500                                                                |                  | 150,000.0     |                  | 62,250           | 2,698            | -59,553       |
| 14     | 6,500                                                                |                  | 150,000.0     |                  | 58,170           | 2,521            | -55,649       |
| 15     | 6,500                                                                |                  | 150,000.0     |                  | 54,360           | 2,356            | -52,004       |
| 16     | 6,500                                                                |                  | 150,000.0     |                  | 50,805           | 2,202            | -48,603       |
| 17     | 6,500                                                                |                  | 150,000.0     |                  | 47,490           | 2,058            | -45,432       |
| 18     | 6,500                                                                |                  | 150,000.0     |                  | 44,385           | 1,923            | -42,462       |
| 19     | 6,500                                                                |                  | 150,000.0     |                  | 41,475           | 1,797            | -39,678       |
| 20     | 6,500                                                                |                  | 150,000.0     |                  | 38,760           | 1,680            | -37,080       |
| 21     | 6,500                                                                |                  | 150,000.0     |                  | 36,225           | 1,570            | -34,655       |
| 22     | 6,500                                                                |                  | 150,000.0     |                  | 33,855           | 1,467            | -32,388       |
| 23     | 6,500                                                                |                  | 150,000.0     |                  | 31,635           | 1,371            | -30,264       |
| 24     | 6,500                                                                |                  | 150,000.0     |                  | 29,565           | 1,281            | -28,284       |
| 25     | 6,500                                                                |                  | 150,000.0     |                  | 27,630           | 1,197            | -26,433       |
| 26     | 6,500                                                                |                  | 150,000.0     |                  | 25,830           | 1,119            | -24,711       |
| 27     | 6,500                                                                |                  | 150,000.0     |                  | 24,135           | 1,046            | -23,089       |
| 28     | 6,500                                                                |                  | 150,000.0     |                  | 22,560           | 978              | -21,582       |
| 29     | 6,500                                                                |                  | 150,000.0     |                  | 21,090           | 914              | -20,176       |
| 30     | 6,500                                                                |                  | 25,500,000    |                  | 3,350,700        | 854              | -3,349,846    |

# 5 Conclusions and Recommendations

#### 5.1 Conclusions

Using the demonstrated acoustic guided wave technology, two technicians and two support personnel inspected 250 FRP composite patches over 24 days at Michie Stadium. When all tasks and delays in the field operation are included (setup, staging, scanning, teardown, rain, humidity), the average inspection time was about 1.5 hours per patch at a cost of about \$1,180 (\$295,100/250) per patch. An average inspection time of 1.5 hours per patch using this technology (when setup, staging, and teardown are included) seems like a reasonable estimate for planning other inspections.

Patches on which surface moisture (e.g., dew) had accumulated produced less signal attenuation than dry ones, which produced skewed readings. Inspection was delayed to wait for wet patches to dry in order to obtain an accurate scan for bond strength.

Considerable effort was required to configure the commercial analysis software to read the data file exported by the AU scanner unit.

The inspection results were documented in the form of C-scan images. All of the detected flaws were determined to be caused by patch debonding, not composite material delamination. Results indicate that section 6 on the lower tier and section 14 on the upper tier should be fully investigated for patch-bond failures. Specifically, the identified patches of interest are numbers L1–L5 in section 6, and L1–L6 in section 14. Their locations in the stadium are noted in Appendices A and B.

Acoustic guided wave (AGW) inspection technology has been shown to be an objective method for detecting composite patch debonding. This is a substantive and critical benefit when compared with present evaluations, which rely on visual inspection and finger-tap acoustic testing. These methods can be executed rapidly, but they are subjective in terms of assessing of bond condition. The ROI ratio calculated based on the results of this demonstration was 11.91.

#### 5.2 Recommendations

Efforts should be initiated to characterize and model debonding failures of FRP composite patches that will lead to significant progress in understanding the modes and mechanisms of debonding failures. A pilot study should be conducted to directly correlate the reduction in the bonding strength of the patches with the change in AU signal amplitude. This will help in determining the remaining service life of the patches.

Even without a laboratory correlation study, degradation rates can be empirically derived through linear extrapolation of the results of multiple inspections over time to give a first-order degradation rate. The debonding and delamination rates may then be used to predict when the patch will need maintenance or total replacement. Environmental parameters, such loading, temperature, and humidity can be included in the degradation model to increase accuracy.

#### 5.2.1 Applicability

Acoustic guided wave (AGW) technology can be used to inspect FRP-retrofitted components of concrete infrastructure and masonry structures (both reinforced and unreinforced). Suitable applications include beams, columns, slabs, and walls of structures such as bridges, buildings, parking garages, piers, and tunnels.

#### 5.2.2 Implementation

Implementation of this technology throughout DoD could be facilitated through revisions of Unified Facilities Guide Specification (UFGS) Section 04 01 21, *Rehabilitation of Reinforced and Unreinforced Masonry Walls Using Surface-Applied FRP Composites.* Section 3.8.3, "Void Detection," could be modified with the following language:

NOTE: Acoustic guided wave (AGW) inspection technology has been shown to be an objective method for detecting voids.

Section 3.8.4, "Delaminations," could be modified with the following language:

NOTE: Acoustic guided wave (AGW) inspection technology has been shown to be an objective method for detecting delaminations.

Implementation could further be supported through efforts to incorporate this technology into

- American Concrete Institute ACI 440.2R (2008; Errata 2009), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures
- ACI 440.3R (2004), Guide Test Methods for Fiber Reinforced Polymer (FRP) for Reinforcing or Strengthening Concrete Structures.

# References

- ASTM D7522 / D7522M 09, "Standard Test Method for Pull-Off Strength for FRP Bonded to Concrete Substrate."
- Godínez-Azcuaga, Valery F. January 2004. Field Portable Infrastructure Fiber-Reinforced Polymer Composite Inspection & Evaluation System Using Ultrasound Technologies. PHASE II Final Report, Contract Number DACA42-02-C-0018.
- International Atomic Energy Agency (IAEA). 1988. "Ultrasonic Testing of Materials at Level 2," Ref. Number 19100874. *INIS* 19:23.
- Office of Management and Budget (OMB) Circular No. A-94. 1992. "Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs." Washington, DC: Office of Management and Budget.
- Trovillion, Jonathan C., Valery Godinez-Azcuaga, and Richard Finlayson, "A Nondestructive Evaluation Technique for Fiber Reinforced Polymer (FRP) Composites Using Acoustic Guided Waves (AGW) Conference Proceedings," 24th Army Science Conference, November 2004.

# Appendix A: Full-Tier Drawings Showing Locations of Inspected Patches

The drawings in Appendix A show the inspected locations as small blue rectangles in the context of each entire tier. The Lower and Upper Tiers are numbered from left to right, as if the viewer were standing behind the seats looking toward the playing field. The view adopted for the Middle Tier was oriented as if the viewer were standing on the football playing field looking toward at the stands. This "flipped" view was selected for the Middle Tier because rear access to it did not allow an observer to accurately identify the inspected locations using the marked drawing while simultaneously looking at the tier.

Six of the inspected locations are not indicated on these drawings. They are L7 and L8 in Section 3 of the Lower Tier, L9 in Section 5 of the Lower Tier, L6 and L7 in Section 6 of the Lower Tier, and L10 in Section 7 of the Lower Tier. These data gaps are addressed in section 3.3.4 under "Lessons learned."







## **Appendix B: Inspected Locations**

The drawings in this appendix show section-level detail of the inspected locations. They are derived from the drawings in Appendix A.

Five of the inspected locations are not indicated on these drawings. They are L8 in Section 3 of the Lower Tier, L6 and L7 in Section 6 of the Lower Tier, L10 in Section 7 of the Lower Tier, and L8 in Section 13 of the Upper Tier. These data gaps are addressed in section 3.3.4 under "Lessons learned."













**SECTION 6** 









SECTION 10



■ SECTION 11



SECTION 12



SECTION 13







**LOWER TIER** 

SECTION 16





**SECTION 1** 



## Middle Tier SECTION 14

L = LOCATION







Middle Tier SECTION 17









L = LOCATION

Upper Tier SECTION 4



L = LOCATION

## Upper Tier SECTION 5













L = LOCATION

Upper Tier
SECTION 11





+



BEAM 1







## **Appendix C: Statistical Analysis Results**

### **Lower Tier**

| Location | Section-1 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
|----------|-----------|--------|--------|--------|-------|-------|--------|
| 1        | s1b5ep4   | 99.759 | 1.737  | 73.102 | 18.65 | 7.44  | 92.56  |
|          | s1b6bp4   | 99.924 | 9.389  | 79.886 | 16.04 | 2.86  | 97.14  |
| 2        | s1b6ep4   | 99.716 | 17.817 | 74.553 | 15.89 | 3.37  | 96.63  |
| 2        | s1b7bp4   | 98.364 | 1.081  | 70.047 | 16.71 | 5.45  | 94.55  |
|          | •         |        |        |        |       |       |        |
| 3        | s1b4ep2   | 100    | 10.736 | 71.71  | 19.92 | 7.66  | 92.34  |
|          | s1b5bp2   | 99.274 | 13.483 | 67.864 | 14.68 | 4.17  | 95.83  |
| 4        | 01bCon2   | 00.42  | 1 022  | 64.24  | 24.22 | 10.5  | 06 AE  |
| 4        | s1b6ep2   | 99.42  | 1.923  | 61.34  | 21.32 | 13.5  | 86.45  |
|          | s1b7bp2   | 98.8   | 14.164 | 64.387 | 15.25 | 5.92  | 94.08  |
| 5        | s1b4ep1   | 94.954 | 14.725 | 62.821 | 13.86 | 6.93  | 93.07  |
|          | s1b5bp1   | 99.756 | 13.7   | 67.278 | 16.11 | 3.15  | 96.85  |
|          |           |        |        |        |       |       |        |
| 6        | s1b5ep1   | 95.046 | 1.92   | 56.674 | 17.94 | 13.8  | 86.18  |
|          | s1b6bp1   | 98.358 | 4.933  | 64.203 | 15.36 | 6.63  | 93.38  |
| 7        | s1b5ep2   | 98.617 | 0.586  | 55.005 | 21.83 | 23.7  | 76.3   |
|          | s1b6bp2   | 96.688 | 15.43  | 65.491 | 14.27 | 4.96  | 95.04  |
| 8        | s1b5ep3   | 100    | 2.005  | 67.541 | 22.25 | 10.5  | 89.45  |
| 0        | s1b3ep3   | 99.985 | 29.911 | 78.093 | 13.35 | 0.75  | 99.25  |
|          | STOODPS   | 99.900 | 29.911 | 70.093 | 13.33 | 0.75  | 99.25  |
| 9        | s1b7bp3   | 98.394 | 1.239  | 56.662 | 14.25 | 11.9  | 88.1   |
|          | s1b6ep3   | 99.707 | 3.187  | 68.314 | 16.05 | 6.21  | 93.8   |
|          |           |        |        |        |       |       |        |
| Location | Section-2 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | s2b13ep1  | 99.985 | 6.395  | 77.526 | 16.71 | 2.97  | 97.03  |
|          | s2b14bp1  | 99.179 | 20.281 | 74.833 | 12.74 | 0.81  | 99.19  |
|          | 01.10     | 400    | 1.000  | 74.000 | 04.07 | 7.0-  | 00.47  |
| 2        | s2b13ep2  | 100    | 1.236  | 74.829 | 21.24 | 7.85  | 92.15  |
|          | s2b14bp2  | 100    | 28.776 | 79.254 | 12.49 | 0.11  | 99.89  |
| 3        | s2b14ep1  | 99.771 | 9.365  | 73.594 | 11.34 | 1.31  | 98.69  |
| -        | s2b15bp1  | 99.838 | 12.344 | 80.548 | 13.4  | 1.41  | 98.59  |
|          | 01.44     |        | 0.1.00 |        | 100:  |       |        |
| 4        | s2b14ep2  | 100    | 24.509 | 83.73  | 13.34 | 0.56  | 99.45  |
|          | s2b15bp2  | 99.933 | 27.338 | 84.85  | 10.43 | 0.32  | 99.68  |

| 5                | -0h4F0    | 100    | 20.42  | 04 407 | 44.00 | 0.04  | 00.00  |
|------------------|-----------|--------|--------|--------|-------|-------|--------|
| 5                | s2b15ep2  | 100    | 22.43  | 81.497 | 11.63 | 0.64  | 99.36  |
|                  | s2b16bp2  | 99.6   | 24.371 | 76.531 | 12.7  | 1.09  | 98.91  |
|                  | 20h1Fam1  | 00.040 | 07.000 | 70.00  | 10.10 | 0.05  | 00.25  |
| 6                | s2b15ep1  | 98.049 | 27.268 | 73.29  | 12.12 | 0.65  | 99.35  |
|                  | s2b16bp1  | 99.277 | 19.902 | 71.309 | 13.55 | 2.25  | 97.76  |
| 7                | s2b16ep1  | 100    | 13.95  | 72.929 | 13.66 | 1.7   | 98.3   |
|                  | s2b17bp1  | 99.737 | 34.289 | 76.872 | 13.02 | 0.33  | 99.67  |
|                  |           |        |        |        |       |       |        |
| 8                | s2b16ep2  | 100    | 24.417 | 86.269 | 12.97 | 0.19  | 99.82  |
|                  | s2b17bp2  | 99.841 | 25.583 | 84.313 | 11.89 | 0.32  | 99.68  |
|                  |           |        |        |        |       |       |        |
| Location         | Section-3 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1                | s3b17ep2  | 93.724 | 0.662  | 46.304 | 16.21 | 35.5  | 64.52  |
|                  | s3b18bp2  | 97.909 | 10.031 | 61.238 | 15.56 | 9.14  | 90.86  |
|                  |           |        |        |        |       |       |        |
| 2                | s3b17ep1  | 100    | 3.208  | 76.934 | 18.2  | 4.34  | 95.66  |
|                  | s3b18bp1  | 94.988 | 9.835  | 55.575 | 15.01 | 16.2  | 83.79  |
|                  |           |        |        |        |       |       |        |
| 3                | s3b16ep2  | 100    | 8.922  | 82.11  | 16.28 | 2.81  | 97.19  |
|                  | s3b17bp2  | 100    | 4.753  | 75.526 | 20.5  | 6.53  | 93.47  |
|                  |           |        |        |        |       |       |        |
| 4                | s3b16ep1  | 100    | 7.857  | 85.836 | 15.14 | 2.41  | 97.59  |
|                  | s3b17bp1  | 100    | 12.805 | 87.635 | 14.05 | 1.06  | 98.94  |
|                  | -0-440    | 00.00  | 00.000 | 00.075 | 40.05 | 0.40  | 00.54  |
| 5                | s3b14ep2  | 99.93  | 20.226 | 82.275 | 13.85 | 0.46  | 99.54  |
|                  | s3b15bp2  | 100    | 31.12  | 83.046 | 12.41 | 0.36  | 99.64  |
| 6                | s3b14ep1  | 100    | 0.733  | 80.57  | 22.82 | 7.4   | 92.6   |
| -                | s3b15bp1  | 100    | 12.421 | 86.028 | 13.24 | 1.37  | 98.63  |
|                  |           |        |        |        |       |       |        |
| 7 <sup>§</sup>   | s3b13ep2* | 99.948 | 16.361 | 82.576 | 14.72 | 1.68  | 98.32  |
|                  | s3b14bp2  | 100    | 7.515  | 81.891 | 16.21 | 3.07  | 96.93  |
|                  |           |        |        |        |       |       |        |
| 8 <sup>§,‡</sup> | s3b13ep1  | 99.557 | 10.922 | 76.34  | 16.36 | 3.47  | 96.53  |
|                  | s3b14bp1  | 99.875 | 20.375 | 80.464 | 15.03 | 1.65  | 98.35  |
|                  |           |        |        |        |       |       |        |
| Location         | Section-4 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1                | s4b14ep2  | 94.075 | 16.984 | 60.104 | 14.84 | 10.8  | 89.23  |
|                  | s4b15bp2  | 94.518 | 11.99  | 59.443 | 13.47 | 8.78  | 91.22  |
|                  |           |        |        |        |       |       |        |
| 2                | s4b14ep1  | 95.754 | 6.651  | 52.292 | 13.96 | 17.9  | 82.15  |
|                  | s4b15bp1  | 88.996 | 16.804 | 51.82  | 11.94 | 15.9  | 84.14  |

-

<sup>\*</sup> Associated C-scan result with digital photograph not provided

<sup>§</sup> Location not indicated on Full Tier Drawing

<sup>‡</sup> Location not indicated on Section Level Drawing

|                |                      | 1                |                  |                  |                |              |                |
|----------------|----------------------|------------------|------------------|------------------|----------------|--------------|----------------|
| 3              | s4b15ep2             | 92.402           | 0.842            | 52.271           | 15.26          | 21.5         | 78.49          |
|                | s4b16bp2             | 89.328           | 20.708           | 52.858           | 9.447          | 7.64         | 92.36          |
| 4              | s4b15ep1             | 95.809           | 7.561            | 55.111           | 17.33          | 19.8         | 80.2           |
| •              | s4b16bp1             | 91.395           | 13.077           | 55.492           | 11.6           | 8.72         | 91.28          |
|                |                      |                  |                  |                  |                |              |                |
| 5              | s4b17ep2             | 96.422<br>97.405 | 10.553           | 60.745           | 14.62          | 8.11         | 91.9           |
|                | s4b18bp2             | 97.405           | 8.773            | 60.645           | 14.8           | 9.83         | 90.17          |
| 6              | s4b17ep1             | 94.243           | 0.968            | 52.771           | 16.35          | 24           | 76.01          |
|                | s4b18bp1             | 93.275           | 21.215           | 55.434           | 12.13          | 9.03         | 90.97          |
| 7              | 0.4h16an2            | 89.802           | 4.267            | 48.023           | 15.44          | 31.3         | 68.7           |
| 1              | s4b16ep2<br>s4b17bp2 | 88.858           | 15.424           | 52.349           | 13.44          | 21.6         | 78.37          |
|                | 34017002             | 00.000           | 13.424           | 32.343           | 13.07          | 21.0         | 70.57          |
| 8              | s4b16ep1             | 99.09            | 1.996            | 61.846           | 17.47          | 10.8         | 89.21          |
|                | s4b17bp1             | 95.195           | 12.204           | 64.123           | 14.01          | 4.13         | 95.87          |
|                |                      |                  |                  |                  |                |              |                |
| Location       | Section-5            | Max              | Min              | Avg              | Std            | 0-40%        | 0-100%         |
| 1              | s5b14ep2             | 90.861           | 6.227            | 48.292           | 16.19          | 33.3         | 66.7           |
|                | s5b15bp2             | 93.541           | 18.107           | 48.594           | 13.82          | 30.2         | 69.81          |
| 2              | s5b14ep1             | 86.911           | 4.64             | 45.826           | 12.39          | 30           | 70.04          |
| _              | s5b15bp1             | 92.216           | 2.427            | 50.178           | 15.28          | 27           | 73.05          |
|                |                      |                  |                  |                  |                |              |                |
| 3              | s5b15ep2             | 98.318           | 18.703           | 68.689           | 15.09          | 2.65         | 97.35          |
|                | s5b16bp2             | 88.318           | 8.538            | 40.894           | 11.04          | 47.8         | 52.18          |
| 4              | s5b15ep1             | 96.716           | 5.592            | 60.154           | 14.6           | 6.95         | 93.06          |
|                | s5b16bp1             | 98.956           | 24.057           | 59.262           | 13.6           | 5.13         | 94.87          |
|                | -51.404              | 07.700           | 0.07             | 44.000           | 40.00          | 50.0         | 40.70          |
| 5              | s5b16ep1             | 87.793           | 6.67             | 41.386           | 12.06          | 53.2         | 46.79          |
|                | s5b17bp1             | 87.888           | 9.069            | 46.297           | 12.23          | 30.4         | 69.6           |
| 6              | s5b16ep2             | 99.008           | 15.836           | 65.15            | 14.93          | 5.71         | 94.29          |
|                | s5b17bp2             | 99.679           | 20.25            | 70.132           | 13.77          | 1.1          | 98.9           |
| 7              | oEh12on1             | 00.007           | 15 110           | 02.226           | 15.57          | 1 55         | 00.45          |
| 7              | s5b13ep1<br>s5b14bp1 | 99.997           | 15.443<br>36.941 | 83.326<br>82.322 | 15.57<br>11.72 | 1.55<br>0.04 | 98.45<br>99.96 |
|                | 300140P1             | 100              | 30.341           | 02.322           | 11.12          | 0.04         | 33.30          |
| 8              | s5b13ep2             | 100              | 11.096           | 75.685           | 18.09          | 4.61         | 95.39          |
|                | s5b14bp2             | 99.78            | 7.747            | 74.943           | 17.33          | 3.68         | 96.32          |
| 9 <sup>§</sup> | o Erob and           | 07.040           | 7 405            | EC 220           | 11.45          | 10.7         | 07.04          |
| 9°             | s5r3bcp2             | 97.643           | 7.485            | 56.326           | 14.45          | 12.7         | 87.34          |
|                | s5r3ecp2             | 99.093           | 6.511            | 48.402           | 16.1           | 31.2         | 68.83          |

\_

<sup>§</sup> Location not indicated on Full Tier Drawing

| Location         | Section-6            | Max              | Min             | Avg              | Std            | 0-40%       | 0-100%         |
|------------------|----------------------|------------------|-----------------|------------------|----------------|-------------|----------------|
| 1                | s6b15bcp1            | 92.021           | 3.648           | 40.617           | 12.84          | 51.6        | 48.36          |
|                  | s6b15ecp1            | 90.47            | 2.375           | 43.897           | 14.49          | 41.9        | 58.15          |
|                  |                      |                  |                 |                  |                |             |                |
| 2                | s6b16bcp1            | 99.557           | 11.419          | 59.689           | 15.44          | 10.4        | 89.57          |
|                  | s6b16ecp1            | 53.364           | 1.786           | 20.469           | 8.103          | 97.6        | 2.375          |
|                  |                      |                  |                 |                  |                |             |                |
| 3                | s6b17bcp1            | 99.212           | 15.815          | 72.611           | 14.66          | 2.74        | 97.26          |
|                  | s6b17ecp1            | 99.936           | 1.016           | 42.14            | 20.95          | 50.1        | 49.87          |
|                  |                      |                  |                 |                  |                |             |                |
| 4                | s6b10bcp1            | 78.7             | 10.672          | 40.283           | 12.52          | 53.6        | 46.42          |
|                  | s6b10ecp1            | 71.587           | 4.655           | 23.669           | 12.84          | 87.8        | 12.2           |
|                  |                      |                  |                 |                  |                |             |                |
| 5                | s6b12bcp1            | 80.281           | 7.817           | 31.841           | 9.928          | 81.3        | 18.67          |
|                  | s6b12ecp1            | 88.959           | 2.005           | 39.526           | 19.16          | 50.7        | 49.29          |
| 6 <sup>§,‡</sup> | s6b10bcp1            | 78.7             | 10.672          | 40.283           | 12.52          | 53.6        | 46.42          |
|                  | s6b10ecp1            | 71.587           | 4.655           | 23.669           | 12.84          | 87.8        | 12.2           |
|                  |                      |                  |                 |                  | 1 1 1 1        | 0.10        |                |
| 7 <sup>§,‡</sup> | s6b12bcp1            | 80.281           | 7.817           | 31.841           | 9.928          | 81.3        | 18.67          |
| -                | s6b12ecp1            | 88.959           | 2.005           | 39.526           | 19.16          | 50.7        | 49.29          |
|                  | ,                    |                  |                 |                  |                |             |                |
| Location         | Section-7            | Max              | Min             | Avg              | Std            | 0-40%       | 0-100%         |
| 1                | s7b16ep2             | 99.719           | 5.317           | 60.926           | 16.75          | 9.87        | 90.13          |
|                  | s7b17bp2             | 100              | 9.927           | 65.918           | 19.63          | 11.5        | 88.52          |
| 2                | s7b16ep1             | 99.496           | 6.847           | 67.221           | 17.99          | 9.08        | 90.92          |
| _                | s7b17bp1             | 99.655           | 9.121           | 73.149           | 15.39          | 3.21        | 96.79          |
|                  |                      |                  |                 |                  |                |             |                |
| 3                | s7b15ep1             | 98.239           | 19.219          | 66.931           | 15.68          | 6.01        | 93.99          |
|                  | s7b16bp1             | 99.835           | 15.668          | 77.58            | 15.72          | 2.47        | 97.53          |
|                  | ·                    |                  |                 |                  |                |             |                |
| 4                | s7b14ep1             | 100              | 18.996          | 62.765           | 17.85          | 8.86        | 91.14          |
|                  | s7b15bp1             | 99.887           | 12.341          | 76.962           | 14.41          | 1.88        | 98.13          |
|                  |                      |                  |                 |                  |                |             |                |
| 5                | s7b14ep2             | 94.985           | 5.452           | 49.707           | 17.39          | 30.7        | 69.27          |
|                  | s7b15bp2             | 96.407           | 16.731          | 58.682           | 13.29          | 5.8         | 94.2           |
|                  |                      |                  |                 |                  |                |             |                |
| 6                | s7b15ep2             | 99.249           | 8.51            | 57.359           | 15.9           | 13.2        | 86.79          |
|                  | s7b16bp2             | 99.814           | 13.755          | 70.579           | 16             | 4.61        | 95.39          |
|                  |                      |                  |                 |                  |                |             |                |
|                  |                      | _                |                 |                  | 4 - 00         | 000         | 77.04          |
| 7                | s7b13ep1<br>s7b14bp1 | 96.944<br>99.597 | 9.191<br>14.429 | 54.438<br>71.896 | 17.38<br>15.71 | 22.8<br>3.2 | 77.21<br>96.81 |

\_

<sup>§</sup> Location not indicated on Full Tier Drawing

<sup>‡</sup> Location not indicated on Section Level Drawing

<sup>\*</sup> Associated C-scan result with digital photograph not provided

| 8                 | s7b13ep2              | 92.668 | 9.066 | 48.818 | 16.07 | 30.2 | 69.81 |
|-------------------|-----------------------|--------|-------|--------|-------|------|-------|
|                   | s7b14bp2              | 98.877 | 9.222 | 66.569 | 14.23 | 5.12 | 94.88 |
|                   |                       |        |       |        |       |      |       |
| 9                 | s7b17ep2              | 99.719 | 5.317 | 60.926 | 16.75 | 9.87 | 90.13 |
|                   | s7b18bp2              | 100    | 9.927 | 65.918 | 19.63 | 11.5 | 88.52 |
|                   |                       |        |       |        |       |      |       |
| 10 <sup>§,‡</sup> | s7b17ep1 <sup>*</sup> | 99.496 | 6.847 | 67.221 | 17.99 | 9.08 | 90.92 |
|                   | s7b18bp1 <sup>*</sup> | 99.655 | 9.121 | 73.149 | 15.39 | 3.21 | 96.79 |

| Location | Section-8 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
|----------|-----------|--------|--------|--------|-------|-------|--------|
| 1        | s8b15bcp2 | 96.926 | 22.213 | 66.579 | 12.94 | 2.61  | 97.39  |
|          | s8b15ecp2 | 87.311 | 10.885 | 38.03  | 12.18 | 70.1  | 29.94  |
|          |           |        |        |        |       |       |        |
| 2        | s8b14bcp2 | 100    | 23.965 | 82.699 | 15.12 | 1.97  | 98.03  |
|          | s8b14ecp2 | 91.725 | 0.528  | 49.084 | 15.76 | 30.2  | 69.78  |
|          |           |        |        |        |       |       |        |
| 3        | s8b13bcp2 | 100    | 26.261 | 79.644 | 13.61 | 0.82  | 99.18  |
|          | s8b13ecp2 | 96.618 | 3.681  | 46.555 | 20.13 | 43.9  | 56.11  |
| 4        | s8b12bcp2 | 99.792 | 24.802 | 81.652 | 14.51 | 1.71  | 98.29  |
| 7        | s8b12ecp2 | 97.469 | 1.804  | 33.258 | 20.1  | 69.5  | 30.51  |
|          |           | 011100 |        | 00.200 |       | 00.0  |        |
| 5        | s8b13ep2  | 99.976 | 8.034  | 77.235 | 15.7  | 2.43  | 97.57  |
|          | s8b14bp2  | 99.884 | 9.118  | 75.062 | 16.91 | 4.69  | 95.31  |
|          |           |        |        |        |       |       |        |
| 6        | s8b13ep1  | 100    | 8.791  | 74.497 | 16.72 | 4.05  | 95.95  |
|          | s8b14bp1  | 99.982 | 7.915  | 72.212 | 18.97 | 6.26  | 93.75  |
| 7        | a0b44am4  | 00.070 | 04.070 | 70 700 | 44.04 | 0.77  | 00.04  |
| /        | s8b14ep1  | 99.976 | 21.276 | 79.726 | 14.81 | 0.77  | 99.24  |
|          | s8b15bp1  | 99.915 | 24.28  | 72.738 | 14.84 | 2.06  | 97.94  |
| 8        | s8b14ep2  | 100    | 11.606 | 81.989 | 17.8  | 4.18  | 95.82  |
|          | s8b15bp2  | 100    | 13.968 | 87.449 | 12.45 | 0.42  | 99.58  |
|          |           |        |        |        |       |       |        |
| Location | Section-9 | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | s9b13ep2  | 100    | 30.687 | 83.86  | 12.97 | 0.38  | 99.62  |
|          | s9b14bp2  | 100    | 17.213 | 83.249 | 13.75 | 0.79  | 99.21  |
|          |           |        |        |        |       |       |        |
| 2        | s9b13ep1  | 100    | 6.905  | 70.723 | 18.89 | 7.48  | 92.52  |
|          | s9b14bp1  | 99.676 | 8.669  | 67.023 | 15.45 | 6.09  | 93.91  |

\_

<sup>§</sup> Location not indicated on Full Tier Drawing

<sup>‡</sup> Location not indicated on Section Level Drawing

<sup>\*</sup> Associated C-scan result with digital photograph not provided

| 3        | s9b14ep1               | 99.985           | 3.455          | 68.377           | 17.51          | 5.76       | 94.24          |
|----------|------------------------|------------------|----------------|------------------|----------------|------------|----------------|
|          | s9b15bp1               | 99.109           | 5.687          | 68.34            | 19.12          | 10.3       | 89.69          |
|          | ·                      |                  |                |                  |                |            |                |
| 4        | s9b14ep2               | 100              | 17.213         | 81.421           | 16.21          | 1.95       | 98.05          |
|          | s9b15bp2               | 100              | 15.69          | 82.538           | 13.67          | 0.67       | 99.33          |
|          |                        |                  |                |                  |                |            |                |
| 5        | s9b15ep1               | 99.918           | 20.153         | 76.243           | 14.8           | 1.35       | 98.65          |
|          | s9b16bp1               | 99.985           | 5.021          | 70.692           | 17.24          | 5.24       | 94.76          |
|          |                        |                  |                |                  |                |            |                |
| 6        | s9b15ep2               | 100              | 20.601         | 81.679           | 14.24          | 0.79       | 99.21          |
|          | s9b16bp2               | 100              | 6.743          | 80.866           | 17.17          | 3.07       | 96.93          |
| 7        | 0.454                  | 400              | 44.400         | 00.004           | 40.00          | 0          | 400            |
| 7        | s9b15bcp1              | 100              | 44.469         | 88.834           | 10.23          | 0          | 100            |
|          | s9b15ecp1              | 100              | 6.148          | 67.25            | 18.83          | 9.89       | 90.11          |
| 8        | s9b16bcp1              | 100              | 41.23          | 86.809           | 11.13          | 0          | 100            |
| 0        | s9b16bcp1              | 99.811           | 1.09           | 72.581           | 18.75          | 5.82       | 94.18          |
|          | Sapioechi              | 33.011           | 1.03           | 72.301           | 10.73          | 3.02       | 34.10          |
|          | 0 11 10                |                  |                | _                | 0.1            | 0.400/     | 0.4000/        |
| Location | Section-10             | Max              | Min            | Avg              | Std            | 0-40%      | 0-100%         |
| 1        | s10b7ep1               | 94.606           | 0.379          | 45.755           | 23.12          | 31.7       | 68.31          |
|          | s10b8bp1               | 97.726           | 18.507         | 62.049           | 14.1           | 6.75       | 93.25          |
|          | 101.101                | 22               |                | 22.22.4          | 22.22          | 40.0       | 04.00          |
| 2        | s10b10bcp1             | 99.573           | 1.194          | 63.984           | 26.02          | 18.6       | 81.38          |
|          | s10b10ecp1             | 95.162           | 8.846          | 49.399           | 16.91          | 30         | 70             |
| 3        | s10b15ep2              | 96.722           | 10.458         | 55.907           | 13.89          | 11.3       | 88.75          |
| 3        | s10b13ep2              | 99.075           | 20.324         | 69.86            | 14.97          | 2.87       | 97.13          |
|          | 310010002              | 99.013           | 20.324         | 09.00            | 14.31          | 2.01       | 37.13          |
| 4        | s10b14ep1              | 95.266           | 4.451          | 51.606           | 15.87          | 21.7       | 78.31          |
|          | s10b15bp1              | 99.96            | 9.505          | 70.293           | 15.8           | 3.43       | 96.57          |
|          |                        |                  |                |                  |                |            |                |
| 5        | s10b18ep1              | 98.031           | 14.905         | 68.788           | 15.68          | 4.66       | 95.34          |
|          | s10b19bp1              | 98.458           | 9.826          | 70.948           | 14.13          | 2.64       | 97.36          |
| •        | 010011000              | 06.040           | 7.050          | EQ 44E           | 12.00          | 177        | 00.00          |
| 6        | s10b11ep2<br>s10b12bp2 | 96.218<br>92.991 | 7.259<br>1.734 | 52.145<br>56.757 | 13.63<br>15.88 | 17.7<br>15 | 82.26<br>85.02 |
|          | \$100120p2             | 92.991           | 1.734          | 30.737           | 13.00          | 15         | 00.02          |
|          |                        |                  |                | _                |                |            |                |
| Location | Section-11             | Max              | Min            | Avg              | Std            | 0-40%      | 0-100%         |
| 1        | s11b2ep1               | 99.402           | 12.473         | 68.035           | 19.91          | 11.3       | 88.69          |
|          | s11b3bp1               | 94.444           | 7.158          | 55.794           | 16.15          | 16.8       | 83.25          |
|          |                        |                  |                |                  |                |            |                |
| 2        | s11b7ep1               | 97.735           | 1.093          | 42.701           | 15.75          | 41.5       | 58.54          |
|          | s11b8bp1               | 98.477           | 8.196          | 64.749           | 18.12          | 11.3       | 88.74          |
|          |                        | 00.555           |                |                  | 00 ==          | 0          |                |
| 3        | s11b8ep2               | 99.969           | 7.68           | 74.843           | 20.53          | 9.56       | 90.44          |
|          | s11b9bp2               | 100              | 20.58          | 89.119           | 10.4           | 0.36       | 99.64          |

| 4 | s11b10ep3 | 99.89  | 0.464  | 62.601 | 26.14 | 19.1 | 80.9  |
|---|-----------|--------|--------|--------|-------|------|-------|
|   | s11b11bp3 | 99.988 | 16.593 | 67.344 | 16.73 | 5.35 | 94.65 |
|   |           |        |        |        |       |      |       |
| 5 | s11b11ep3 | 98.08  | 2.668  | 50.798 | 17.88 | 29.7 | 70.31 |
|   | s11b12bp3 | 100    | 14.918 | 69.852 | 14.93 | 3.32 | 96.68 |
|   |           |        |        |        |       |      |       |
| 6 | s11b14ep1 | 99.478 | 14.832 | 60.157 | 16.8  | 11.3 | 88.66 |
|   | s11b15bp1 | 98.477 | 16.963 | 63.884 | 13.69 | 4.13 | 95.87 |
|   |           |        |        |        |       |      |       |
| 7 | s11b13ep1 | 99.667 | 6.126  | 67.99  | 19.58 | 11   | 88.98 |
|   | s11b14bp1 | 99.878 | 21.947 | 84.95  | 11.59 | 0.36 | 99.64 |
|   |           |        |        |        |       |      |       |
| 8 | s11b18ep2 | 98.883 | 8.733  | 68.271 | 18.33 | 8.98 | 91.02 |
|   | s11b19bp2 | 99.377 | 21.978 | 69.559 | 16.84 | 5.69 | 94.31 |

| Location | Section-12             | Max    | Min    | Avg    | Std    | 0-40%      | 0-100% |
|----------|------------------------|--------|--------|--------|--------|------------|--------|
| 1        | s12b3ep1               | 96.78  | 5.888  | 59.822 | 14.76  | 9.67       | 90.33  |
|          | s12b4bp1               | 97.817 | 24.008 | 67.084 | 12.55  | 1.68       | 98.32  |
|          |                        |        |        |        |        |            |        |
| 2        | s12b7ep1               | 94.606 | 0.379  | 45.755 | 23.12  | 31.7       | 68.31  |
|          | s12b8bp1               | 97.726 | 18.507 | 62.049 | 14.1   | 6.75       | 93.25  |
|          |                        |        |        |        |        |            |        |
| 3        | s12b9ep2               | 99.112 | 1.071  | 56.252 | 17.48  | 15.5       | 84.51  |
|          | s12b10bp2              | 95.702 | 9.539  | 63.036 | 14.42  | 6.05       | 93.96  |
|          |                        |        |        |        |        |            |        |
| 4        | s12b13ep2              | 96.734 | 0.949  | 47.832 | 18.07  | 27.4       | 72.6   |
|          | s12b14bp2              | 95.003 | 9.686  | 58.38  | 15.23  | 12.1       | 87.89  |
|          |                        |        |        |        |        |            |        |
| 5        | s12b16ep1              | 96.832 | 9.383  | 55.774 | 15.29  | 15         | 85.05  |
|          | s12b17bp1              | 96.645 | 25.824 | 66.878 | 12.46  | 2.11       | 97.89  |
|          |                        |        |        |        |        |            |        |
| 6        | s12b19ep2              | 94.145 | 2.601  | 51.975 | 15.61  | 19.5       | 80.46  |
|          | s12b20bp2              | 98.773 | 19.051 | 68.352 | 12.48  | 2.18       | 97.82  |
|          | 101.10                 | 22.222 |        | 00.010 | 1= 0.1 | 100        | 20.4   |
| 7        | s12b19ep1              | 98.288 | 8.04   | 62.813 | 17.81  | 10.6       | 89.4   |
|          | s12b20bp1              | 98.431 | 2.198  | 62.64  | 15.72  | 6.12       | 93.88  |
| 0        | 012611002              | 96.218 | 7.259  | 52.145 | 13.63  | 177        | 82.26  |
| 8        | s12b11ep2<br>s12b12bp2 | 90.218 | 1.734  | 56.757 | 15.88  | 17.7<br>15 | 85.02  |
|          | \$120120p2             | 92.991 | 1.734  | 30.737 | 15.66  | 10         | 05.02  |
| Location | Section-13             | Max    | Min    | Avg    | Std    | 0-40%      | 0-100% |
| 1        | s13b11ep3              | 98.443 | 7.335  | 54.607 | 14.02  | 13.1       | 86.89  |
|          | s13b12bp3              | 98.48  | 11.606 | 64.339 | 14.8   | 5.54       | 94.46  |
|          |                        |        |        |        |        |            |        |
| 2        | s13b11ep1              | 99.368 | 5.372  | 49.537 | 15.42  | 28.1       | 71.95  |
|          | s13b12bp1              | 100    | 15.186 | 59.998 | 15.66  | 11.4       | 88.56  |
|          |                        |        |        |        |        |            |        |

|          |             | T      | ı      | I      | 1     |       | 1      |
|----------|-------------|--------|--------|--------|-------|-------|--------|
| 3        | s13b3ep1    | 96.972 | 2.176  | 53.136 | 18.37 | 24.6  | 75.43  |
|          | s13b4bp1    | 99.396 | 9.93   | 66.573 | 21.08 | 12.8  | 87.17  |
|          |             |        |        |        |       |       |        |
| 4        | s13b9ep2    | 96.456 | 13.547 | 56.4   | 13.04 | 8.8   | 91.2   |
| -        | s13b10bp2   | 96.92  | 14.289 | 61.448 | 13.69 | 7.66  | 92.34  |
|          | 3100100P2   | 00.02  | 14.200 | 01.440 | 10.00 | 7.00  | 32.04  |
| 5        | s13b14ep1   | 97.952 | 10.192 | 53.157 | 15.02 | 20.5  | 79.55  |
| 5        |             |        |        |        |       |       |        |
|          | s13b15bp1   | 98.245 | 6.352  | 56.474 | 19.39 | 21.1  | 78.88  |
|          |             |        |        |        |       |       |        |
| 6        | s13b12ep2   | 94.145 | 18.031 | 53.121 | 12.69 | 13.9  | 86.13  |
|          | s13b13bp2   | 99.194 | 23.538 | 74.855 | 14.03 | 1.46  | 98.54  |
|          |             |        |        |        |       |       |        |
| 7        | s13b15ep2   | 99.737 | 4.341  | 66.729 | 17.94 | 8.45  | 91.55  |
|          | s13b16bp2   | 98.764 | 12.61  | 65.549 | 14.75 | 5.81  | 94.19  |
|          |             |        |        |        |       |       |        |
| 8        | s13b14ep2   | 95.894 | 17.03  | 55.965 | 12.87 | 11.1  | 88.93  |
|          | s13b15bp2   | 95.815 | 5.519  | 63.634 | 14.45 | 6.64  | 93.36  |
|          |             |        |        |        |       |       |        |
|          |             |        |        | _      |       |       |        |
| Location | Section-14  | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | s14b14bcp1  | 95.458 | 11.291 | 57.842 | 16.47 | 15.8  | 84.22  |
|          | s14b14ecp1  | 84.35  | 1.016  | 40.869 | 17.07 | 39    | 60.99  |
|          |             | 0 1100 |        |        |       |       |        |
| 2        | s14b16bcp1  | 99.997 | 27.854 | 78.269 | 14.1  | 1.23  | 98.77  |
| _        | s14b16ecp1  | 93.425 | 2.64   | 48.825 | 16.93 | 25.5  | 74.55  |
|          | 314b10ecp1  | 33.423 | 2.04   | 40.023 | 10.33 | 20.0  | 74.55  |
| 3        | s14b10bcp2  | 99.609 | 13.718 | 74.519 | 16.21 | 3.5   | 96.5   |
| 3        | s14b10bcp2  |        | 1.12   | 43.006 |       | 38.7  |        |
|          | \$14b10ecp2 | 97.176 | 1.12   | 43.000 | 20.14 | 30.1  | 61.33  |
| 4        | -4.45.4450  | 00 000 | 47 700 | F7 470 | 40.55 | 7.07  | 00.00  |
| 4        | s14b11bcp2  | 96.288 | 17.799 | 57.472 | 12.55 | 7.97  | 92.03  |
|          | s14b11ecp2  | 87.766 | 8.922  | 46.492 | 13.3  | 30.8  | 69.24  |
| _        |             |        |        |        |       |       |        |
| 5        | s14b8ep2    | 98.248 | 3.223  | 55.72  | 16.95 | 17.4  | 82.61  |
|          | s14b9bp2    | 99.179 | 3.681  | 66.466 | 19.21 | 9.83  | 90.17  |
|          |             |        |        |        |       |       |        |
| 6        | s14b10ep2   | 97.326 | 5.696  | 59.67  | 16.86 | 12.2  | 87.76  |
|          | s14b11bp2   | 99.035 | 7.848  | 61.543 | 20.46 | 15.9  | 84.15  |
|          |             |        |        |        |       |       |        |
| 7        | s14b12ep3   | 97.503 | 0.366  | 53.049 | 23.17 | 25.4  | 74.56  |
|          | s14b13bp3   | 99.081 | 2.698  | 63.074 | 16.7  | 9.44  | 90.56  |
|          |             |        |        |        |       |       |        |
| 8        | s14b16ep1   | 95.772 | 18.538 | 57.552 | 11.37 | 6.92  | 93.08  |
|          | s14b17bp1   | 99.524 | 11.129 | 65.68  | 14.5  | 4.23  | 95.77  |
|          | - 1         |        |        | 20.00  | 10    | 0     |        |
|          |             |        |        | _      | _     |       |        |
| Location | Section-15  | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | s15b8ep1    | 89.603 | 8.852  | 45.253 | 10.61 | 29.4  | 70.64  |
|          | s15b9bp1    | 85.76  | 1.963  | 51.074 | 12.56 | 16.2  | 83.75  |
|          | 310000P1    | 00.70  | 1.500  | 01.074 | 12.00 | 10.2  | 00.70  |
| 2        | s15b10ep1   | 98.877 | 9.017  | 64.423 | 15.57 | 6.24  | 93.76  |
|          |             |        |        |        |       |       |        |
|          | s15b11bp1   | 99.863 | 18.303 | 69.256 | 15.1  | 2.92  | 97.08  |

| 3          | s15b12ep2               | 92.711            | 1.7              | 53.573            | 15.85            | 16.6                 | 83.41               |
|------------|-------------------------|-------------------|------------------|-------------------|------------------|----------------------|---------------------|
| 3          | s15b12ep2               | 100               | 23.162           | 76.349            | 13.51            | 0.81                 | 99.19               |
|            | \$130130p2              | 100               | 23.102           | 70.349            | 13.31            | 0.01                 | 99.19               |
| 4          | s15b13ep1               | 98.632            | 10.034           | 48.638            | 14.18            | 29.1                 | 70.94               |
| •          | s15b14bp1               | 94.338            | 1.2              | 51.554            | 17.53            | 23.9                 | 76.13               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 5          | s15b15ep2               | 98.968            | 6.258            | 67.618            | 18.39            | 8.69                 | 91.32               |
|            | s15b16bp2               | 99.38             | 4.142            | 67.538            | 18.46            | 9.33                 | 90.67               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 6          | s15b16ep1               | 93.922            | 7.598            | 54.72             | 13.77            | 12.9                 | 87.15               |
|            | s15b17bp1               | 98.675            | 6.52             | 59.971            | 17.41            | 13.2                 | 86.76               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 7          | s15b16ecp1              | 95.925            | 2.118            | 53.329            | 17.52            | 18.6                 | 81.4                |
|            | s15b17bcp1              | 97.579            | 19.225           | 64.768            | 12.28            | 2.59                 | 97.41               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 8          | s15b12bcp1              | 100               | 2.018            | 68.272            | 20.69            | 11.2                 | 88.81               |
|            | s15b12bcp1              | 98.278            | 9.078            | 51.632            | 15.07            | 20.8                 | 79.17               |
|            |                         |                   |                  |                   |                  |                      |                     |
| Location   | Section-16              | Max               | Min              | Avg               | Std              | 0-40%                | 0-100%              |
| 1          | s16b05ep3               | 97.824            | 20.427           | 54.413            | 13.28            | 12.2                 | 87.84               |
|            | s16b06bp3               | 98.755            | 1.856            | 61.483            | 21.14            | 15.8                 | 84.25               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 2          | s16b08ep1               | 95.385            | 12.631           | 59.462            | 13.36            | 6.97                 | 93.03               |
|            | s16b09bp1               | 99.359            | 2.882            | 62.856            | 18.52            | 9.97                 | 90.03               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 3          | s16b10bcp2              | 99.118            | 1.413            | 56.755            | 24.6             | 21.6                 | 78.35               |
|            | s16b10ecp2              | 92.305            | 13.547           | 54.434            | 12.55            | 12.7                 | 87.33               |
|            |                         |                   |                  |                   |                  |                      |                     |
| 4          | s16b09ep3               | 99.447            | 8.489            | 63.353            | 14.59            | 4.69                 | 95.31               |
|            | s16b10bp3               | 99.142            | 9.154            | 66.83             | 16.53            | 6.93                 | 93.07               |
|            | .40.44 **               | 00.00=            | 7.1-             | F7 400            | 40.00            | 0.40                 | 00.07               |
| 5          | s16b11ep2               | 98.837            | 7.17             | 57.132            | 13.68            | 9.13                 | 90.87               |
|            | s16b12bp2               | 97.527            | 13.312           | 66.142            | 14.52            | 5.32                 | 94.68               |
| 6          | 016612054               | 00.650            | 12.06            | 67 450            | 14 70            | 2.0                  | 06.4                |
| 6          | s16b13ep1<br>s16b14bp1  | 99.652            | 12.86<br>16.392  | 67.453<br>72.718  | 14.78            | 3.9<br>3.57          | 96.1                |
|            | 9100140P1               | 99.78             | 10.392           | 12.110            | 15.72            | 3.3 <i>1</i>         | 96.44               |
| 7          | s16b15ep2               | 94.338            | 5.195            | 49.808            | 12.21            | 18.8                 | 81.2                |
| 1          | s16b15ep2               | 95.629            | 10.369           | 62.598            | 12.44            | 4.94                 | 95.07               |
|            | 310010002               | 33.023            | 10.003           | 02.000            | 12.77            | 7.37                 | 55.01               |
| 8          | s16b17bcp1              | 99.161            | 12.54            | 69.604            | 17.31            | 6.75                 | 93.25               |
| -          | s16b17ecp1              | 98.919            | 2.985            | 59.29             | 22.28            | 20.3                 | 79.72               |
|            |                         | 22.2.3            |                  |                   |                  |                      |                     |
|            |                         | I                 |                  |                   | +                |                      | 1                   |
| Location   | Section-17              | Max               | Min              | Avg               | Std              | 0-40%                | 0-100%              |
| Location 1 | Section-17<br>s17b05ep2 | <b>Max</b> 99.084 | <b>Min</b> 3.669 | <b>Avg</b> 57.325 | <b>Std</b> 13.35 | <b>0-40%</b><br>8.54 | <b>0-100%</b> 91.46 |

| 2 | s17b09bcp1 | 99.991 | 31.474 | 87.864 | 11.73 | 0.21 | 99.79 |
|---|------------|--------|--------|--------|-------|------|-------|
|   | s17b09ecp1 | 99.921 | 19.664 | 72.39  | 15.74 | 4.46 | 95.54 |
|   |            |        |        |        |       |      |       |
| 3 | s17b08ep1  | 99.148 | 3.81   | 67.691 | 17.7  | 6.07 | 93.93 |
|   | s17b09bp1  | 99.991 | 8.718  | 80.251 | 15.22 | 1.64 | 98.36 |
|   |            |        |        |        |       |      |       |
| 4 | s17b11ep2  | 98.126 | 9.847  | 60.778 | 15.64 | 8.36 | 91.64 |
|   | s17b12bp2  | 100    | 4.017  | 68.71  | 20.2  | 10.2 | 89.82 |
|   |            |        |        |        |       |      |       |
| 5 | s17b13ep2  | 99.985 | 9.447  | 67.586 | 16.28 | 5.81 | 94.19 |
|   | s17b14bp2  | 99.963 | 10.14  | 77.807 | 16.95 | 4.43 | 95.57 |
|   |            |        |        |        |       |      |       |
| 6 | s17b17ep1  | 99.542 | 17.732 | 63.676 | 14.11 | 5.33 | 94.67 |
|   | s17b18bp1  | 99.808 | 13.669 | 71.196 | 16.95 | 5.44 | 94.56 |
|   |            |        |        |        |       |      |       |
| 7 | s17b19ep2  | 99.151 | 3.632  | 60.557 | 16.5  | 9.99 | 90.01 |
|   | s17b20bp2  | 100    | 14.231 | 79.422 | 16.59 | 1.81 | 98.19 |
|   |            |        |        |        |       |      |       |
| 8 | s17b16bcp2 | 99.872 | 36.612 | 84.617 | 11.13 | 0.03 | 99.97 |
|   | s17b16ecp2 | 99.933 | 26.532 | 72.838 | 14.15 | 1.37 | 98.63 |

#### **Middle Tier**

| Location   | Section-1                                                                  | Max                                                     | Min                                                 | Avg                                                      | Std                                               | 0-40%                                        | 0-100%                                             |
|------------|----------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| 1          | ms01lsbp1                                                                  | 100                                                     | 25.699                                              | 76.523                                                   | 14.71                                             | 1.55                                         | 98.45                                              |
|            | ms01lsep1                                                                  | 99.515                                                  | 23.019                                              | 74.306                                                   | 13.42                                             | 1.15                                         | 98.85                                              |
|            |                                                                            |                                                         |                                                     |                                                          |                                                   |                                              |                                                    |
| 2          | ms01bkbp4                                                                  | 100                                                     | 25.424                                              | 74.811                                                   | 13.43                                             | 1.47                                         | 98.53                                              |
|            | ms01bkep4                                                                  | 99.014                                                  | 29.411                                              | 79.877                                                   | 11.56                                             | 0.28                                         | 99.72                                              |
|            |                                                                            |                                                         |                                                     |                                                          |                                                   |                                              |                                                    |
| 3          | ms01bkbp3                                                                  | 99.777                                                  | 9.554                                               | 80.28                                                    | 14.39                                             | 2.25                                         | 97.76                                              |
|            | ms01bkep3                                                                  | 99.493                                                  | 14.966                                              | 78.13                                                    | 12.64                                             | 1.1                                          | 98.9                                               |
|            |                                                                            |                                                         |                                                     |                                                          |                                                   |                                              |                                                    |
| 4          | ms01bkbp2                                                                  | 99.618                                                  | 13.074                                              | 74.649                                                   | 15.55                                             | 3.43                                         | 96.57                                              |
|            | ms01bkep2                                                                  | 98.596                                                  | 15.253                                              | 72.257                                                   | 13.51                                             | 2.5                                          | 97.5                                               |
|            |                                                                            |                                                         |                                                     |                                                          |                                                   |                                              |                                                    |
|            |                                                                            |                                                         |                                                     |                                                          |                                                   |                                              |                                                    |
| Location   | Section-14                                                                 | Max                                                     | Min                                                 | Avg                                                      | Std                                               | 0-40%                                        | 0-100%                                             |
| Location 1 | Section-14<br>ms14bkbp3                                                    | <b>Max</b> 99.994                                       | <b>Min</b><br>1.563                                 | <b>Avg</b> 71.259                                        | <b>Std</b> 19.94                                  | <b>0-40%</b> 7.45                            | <b>0-100%</b> 92.55                                |
|            |                                                                            |                                                         |                                                     | )                                                        |                                                   |                                              |                                                    |
| 1          | ms14bkbp3                                                                  | 99.994                                                  | 1.563                                               | 71.259                                                   | 19.94<br>16.84                                    | 7.45                                         | 92.55                                              |
|            | ms14bkbp3                                                                  | 99.994                                                  | 1.563                                               | 71.259                                                   | 19.94                                             | 7.45                                         | 92.55                                              |
| 1          | ms14bkbp3<br>ms14bkep3                                                     | 99.994                                                  | 1.563<br>3.223                                      | 71.259<br>49.607                                         | 19.94<br>16.84                                    | 7.45<br>29.5                                 | 92.55<br>70.53                                     |
| 2          | ms14bkbp3<br>ms14bkep3<br>ms14bkbp2<br>ms14bkep2                           | 99.994<br>98.004<br>97.176<br>97.717                    | 1.563<br>3.223<br>1.508<br>13.339                   | 71.259<br>49.607<br>55.297<br>67.201                     | 19.94<br>16.84<br>17.5<br>14.54                   | 7.45<br>29.5<br>19.3<br>4.47                 | 92.55<br>70.53<br>80.66<br>95.53                   |
| 1          | ms14bkbp3<br>ms14bkep3<br>ms14bkbp2<br>ms14bkep2<br>ms14bkbp1              | 99.994<br>98.004<br>97.176<br>97.717                    | 1.563<br>3.223<br>1.508<br>13.339                   | 71.259<br>49.607<br>55.297<br>67.201<br>54.515           | 19.94<br>16.84<br>17.5<br>14.54                   | 7.45<br>29.5<br>19.3<br>4.47<br>21.9         | 92.55<br>70.53<br>80.66<br>95.53<br>78.12          |
| 2          | ms14bkbp3<br>ms14bkep3<br>ms14bkbp2<br>ms14bkep2                           | 99.994<br>98.004<br>97.176<br>97.717                    | 1.563<br>3.223<br>1.508<br>13.339                   | 71.259<br>49.607<br>55.297<br>67.201                     | 19.94<br>16.84<br>17.5<br>14.54                   | 7.45<br>29.5<br>19.3<br>4.47                 | 92.55<br>70.53<br>80.66<br>95.53                   |
| 2          | ms14bkbp3<br>ms14bkep3<br>ms14bkbp2<br>ms14bkep2<br>ms14bkbp1<br>ms14bkep1 | 99.994<br>98.004<br>97.176<br>97.717<br>99.64<br>94.487 | 1.563<br>3.223<br>1.508<br>13.339<br>1.526<br>1.709 | 71.259<br>49.607<br>55.297<br>67.201<br>54.515<br>49.041 | 19.94<br>16.84<br>17.5<br>14.54<br>20.83<br>16.99 | 7.45<br>29.5<br>19.3<br>4.47<br>21.9<br>25.4 | 92.55<br>70.53<br>80.66<br>95.53<br>78.12<br>74.62 |
| 2          | ms14bkbp3<br>ms14bkep3<br>ms14bkbp2<br>ms14bkep2<br>ms14bkbp1              | 99.994<br>98.004<br>97.176<br>97.717                    | 1.563<br>3.223<br>1.508<br>13.339                   | 71.259<br>49.607<br>55.297<br>67.201<br>54.515           | 19.94<br>16.84<br>17.5<br>14.54                   | 7.45<br>29.5<br>19.3<br>4.47<br>21.9         | 92.55<br>70.53<br>80.66<br>95.53<br>78.12          |

| 5        | ms14ftbp1              | 99.863           | 11.346         | 65.764          | 16.99         | 8.78         | 91.22         |
|----------|------------------------|------------------|----------------|-----------------|---------------|--------------|---------------|
|          | ms14ftep1              | 99.585           | 7.091          | 66.401          | 15.28         | 4.92         | 95.08         |
|          |                        |                  |                |                 |               |              |               |
| Location | Section-15             | Max              | Min            | Avg             | Std           | 0-40%        | 0-100%        |
| 1        | ms15bkbp1              | 99.811           | 2.393          | 66.541          | 15.24         | 4.31         | 95.7          |
|          | ms15bkep1              | 99.973           | 13.748         | 67.349          | 13.87         | 2.92         | 97.08         |
|          |                        |                  |                |                 |               |              |               |
| 2        | ms15bkbp2              | 98.535           | 23.178         | 68.685          | 11.72         | 1.25         | 98.75         |
|          | ms15bkep2              | 95.052           | 4.933          | 58.621          | 15.92         | 12.4         | 87.57         |
|          |                        |                  |                |                 |               |              |               |
| 3        | ms15bkbp3              | 98.202           | 18.4           | 66.279          | 15.22         | 5.05         | 94.95         |
|          | ms15bkep3              | 98.526           | 5.079          | 59.979          | 14.5          | 9.35         | 90.65         |
|          |                        |                  |                |                 |               |              |               |
| Location | Section-16             | Max              | Min            | Avg             | Std           | 0-40%        | 0-100%        |
| 1        | ms16ftbp2              | 99.927           | 20.354         | 67.874          | 14.16         | 2.62         | 97.39         |
|          | ms16ftep2              | 99.136           | 12.454         | 66.391          | 14.65         | 3.75         | 96.25         |
|          |                        |                  |                |                 |               |              |               |
| 2        | ms16ftbp1              | 99.866           | 3.901          | 63.907          | 17.46         | 10.4         | 89.55         |
|          | ms16ftep1              | 99.246           | 3.523          | 62.342          | 17.86         | 9.92         | 90.08         |
|          |                        |                  |                |                 |               |              |               |
| 3        | ms16bkbp3              | 99.585           | 11.645         | 68.937          | 16.39         | 5.24         | 94.76         |
|          | ms16bkep3              | 99.087           | 7.995          | 58.3            | 15.2          | 11.9         | 88.15         |
|          |                        |                  |                |                 |               |              |               |
| 4        | ms16bkbp2              | 98.275           | 15.143         | 66.397          | 14.5          | 4.89         | 95.12         |
|          | ms16bkep2              | 98.199           | 7.485          | 68.111          | 15.75         | 4.74         | 95.26         |
| 5        | man of Childhan f      | 05 400           | 0.050          | C4 00C          | 40.0          | F 04         | 04.7          |
| 5        | ms16bkbp1<br>ms16bkep1 | 95.409<br>98.129 | 9.359<br>5.198 | 64.986<br>66.33 | 13.9<br>17.76 | 5.31<br>9.56 | 94.7<br>90.44 |
|          | шеторкерт              | 90.129           | 5.190          | 00.33           | 17.70         | 9.50         | 90.44         |
|          |                        |                  |                |                 |               |              |               |
| Location | Section-17             | Max              | Min            | Avg             | Std           | 0-40%        | 0-100%        |
| 1        | ms17rsbp1              | 99.93            | 7.234          | 74.628          | 14.27         | 1.49         | 98.51         |
|          | ms17rsep1              | 98.834           | 8.993          | 70.209          | 15.9          | 4.74         | 95.26         |
|          |                        |                  |                |                 |               |              |               |
| 2        | ms17bkbp1              | 98.611           | 2.451          | 53.292          | 17.3          | 20.9         | 79.11         |
|          | ms17bkep1              | 93.538           | 10.852         | 53.458          | 13.35         | 15.1         | 84.95         |
|          |                        |                  |                |                 |               |              |               |
| 3        | ms17bkbp2              | 99.148           | 7.735          | 58.477          | 14.96         | 11.5         | 88.54         |
|          | ms17bkep2              | 92.195           | 4.289          | 50.727          | 14.87         | 22.2         | 77.81         |
|          | 47111                  | 00.000           | 7.540          | 74.004          | 44.40         | 4.0.4        | 00.00         |
| 4        | ms17bkbp3              | 99.396           | 7.518          | 74.661          | 14.43         | 1.94         | 98.06         |
|          | ms17bkep3              | 99.527           | 10.391         | 72.725          | 15.16         | 2.6          | 97.4          |

## **Upper Tier**

| Location | Section-1              | Max              | Min              | Avg             | Std            | 0-40%        | 0-100%         |
|----------|------------------------|------------------|------------------|-----------------|----------------|--------------|----------------|
| 1        | us1b16ep2              | 98.944           | 6.371            | 61.558          | 14.33          | 7.65         | 92.35          |
|          | us117bp2               | 95.543           | 8.306            | 67.334          | 13.21          | 3.22         | 96.78          |
| 2        | us1b16ep1              | 99.289           | 14.634           | 62.969          | 13.82          | 4.55         | 95.45          |
|          | usb17bp1               | 99.957           | 9.219            | 71.35           | 15.9           | 3.96         | 96.04          |
| 3        | us1b17ep2              | 100              | 10.885           | 71.294          | 15.87          | 4.11         | 95.89          |
|          | us1b18bp2              | 93.602           | 20.815           | 63.79           | 11.64          | 3.23         | 96.77          |
| 4        | us1b17ep1              | 99.161           | 20.073           | 72.199          | 16.21          | 4.38         | 95.62          |
|          | us1b18bp1              | 98.223           | 14.341           | 70.906          | 14.93          | 2.9          | 97.1           |
| 5        | us1b15ep2              | 96.712           | 3.046            | 60.051          | 14.13          | 7.83         | 92.17          |
|          | us1b16bp2              | 99.719           | 19.478           | 62.381          | 13.15          | 4.87         | 95.13          |
| 6        | us1b15ep1              | 99.988           | 19.02            | 70.18           | 14.96          | 2.65         | 97.35          |
| O        | us1b16bp1              | 96.23            | 18.544           | 66.028          | 12.94          | 3.13         | 96.87          |
|          |                        |                  |                  |                 |                |              |                |
| Location | Section-2              | Max              | Min              | Avg             | Std            | 0-40%        | 0-100%         |
| 1        | us2b15ep2              | 99.194           | 33.837           | 68.344          | 10.08          | 0.25         | 99.75          |
|          | us2b16bp2              | 99.402           | 18.864           | 66.201          | 12.72          | 1.83         | 98.17          |
| 2        | us2b16ep2              | 100              | 23.709           | 74.49           | 14.61          | 1.35         | 98.66          |
|          | us2b17bp2              | 99.921           | 27.256           | 78.806          | 13.3           | 0.26         | 99.74          |
| 3        | us2b17ep2              | 99.713           | 15.629           | 68.713          | 15.6           | 3.78         | 96.23          |
|          | us2b18bp2              | 98.535           | 17.43            | 72.265          | 13.51          | 3.21         | 96.79          |
| 4        | us2b15ep1              | 99.976           | 34.811           | 77.302          | 12.24          | 0.1          | 99.9           |
|          | us2b16bp1              | 97.259           | 25.852           | 65.545          | 13.37          | 1.9          | 98.1           |
| 5        | us2b16ep1              | 100              | 30.736           | 72.34           | 13.21          | 0.57         | 99.43          |
| Ü        | us2b17bp1              | 99.53            | 25.101           | 76.615          | 12.77          | 0.31         | 99.69          |
| 6        | ue0b17ep1              | 00.051           | 22.202           | 77 155          | 12.01          | 0.00         | 00.11          |
| 6        | us2b17ep1<br>us2b18bp1 | 99.951<br>99.557 | 22.292<br>21.013 | 77.155<br>73.62 | 13.01<br>13.27 | 0.89<br>1.25 | 99.11<br>98.75 |
|          |                        |                  |                  |                 |                |              |                |
| Location | Section-3              | Max              | Min              | Avg             | Std            | 0-40%        | 0-100%         |
| 1        | us3b15ep2              | 99.979           | 27.005           | 82.018          | 14.44          | 0.51         | 99.49          |
|          | us3b16bp2              | 99.921           | 25.971           | 78.628          | 16.01          | 1.32         | 98.68          |
| 2        | us3b16ep2              | 98.941           | 15.22            | 72.959          | 15.63          | 3.12         | 96.88          |
|          | us3b17bp2              | 99.609           | 10.47            | 74.406          | 18.29          | 5.47         | 94.54          |

| 0        | 05470                  | 400     | 40.000 | 00.000 | 40.70 | 0.40        | 00.04  |
|----------|------------------------|---------|--------|--------|-------|-------------|--------|
| 3        | us3b17ep2              | 100     | 13.999 | 60.999 | 13.78 | 6.19        | 93.81  |
|          | us3b18bp2              | 99.353  | 21.438 | 63.295 | 12.44 | 2.01        | 97.99  |
| 4        | -01-454                | 00.40   | 40.404 | 54.450 | 40.00 | 40.0        | 00.07  |
| 4        | us3b15ep1              | 98.12   | 10.491 | 54.156 | 12.33 | 10.9        | 89.07  |
|          | us3b16bp1              | 95.629  | 16.227 | 58.322 | 12.82 | 6.98        | 93.02  |
| 5        | us3b16ep1              | 95.125  | 9.38   | 56.888 | 13.23 | 10.7        | 89.26  |
| 5        | us3b10ep1              | 99.997  | 21.575 | 59.78  | 13.4  | 5.33        | 94.67  |
|          | ussbirbpi              | 33.331  | 21.373 | 39.70  | 13.4  | 3.33        | 34.07  |
| 6        | us3b17ep1              | 95.842  | 20.055 | 61.79  | 11.65 | 4.24        | 95.76  |
|          | us3b18bp1              | 97.821  | 22.292 | 64.011 | 12.26 | 1.75        | 98.25  |
|          |                        |         |        |        |       |             |        |
| Location | Section-4              | Max     | Min    | Avg    | Std   | 0-40%       | 0-100% |
| 1        | us4b15ep2*             | 99.924  | 17.366 | 80.162 | 16.63 | 2.52        | 97.48  |
|          | us4b16bp2*             | 100     | 25.098 | 82.091 | 12.84 | 0.56        | 99.45  |
|          |                        |         |        |        |       |             |        |
| 2        | us4b16ep2*             | 99.744  | 10.91  | 73.386 | 18.49 | 6.27        | 93.73  |
|          | us4b17bp2*             | 99.335  | 17.753 | 68.167 | 13.06 | 1.72        | 98.29  |
|          |                        |         |        |        |       |             |        |
| 3        | us4b18bp2 <sup>*</sup> | 97.186  | 32.366 | 66.229 | 12.24 | 0.89        | 99.11  |
|          | us4b17ep2*             | 99.982  | 12.833 | 73.172 | 16.3  | 3.48        | 96.52  |
|          |                        |         |        |        |       |             |        |
| 4        | us4b15ep1 <sup>2</sup> | 96.905  | 20.015 | 64.942 | 12.63 | 3.78        | 96.23  |
|          | us4b16bp1              | 99.985  | 21.569 | 64.56  | 13.78 | 3.54        | 96.46  |
|          |                        | 00.00   | 4.000  | 00.070 | 45.07 | 2.0         | 00.4   |
| 5        | us4b16ep1              | 99.89   | 4.096  | 68.279 | 15.87 | 3.9         | 96.1   |
|          | us4b17bp1              | 99.386  | 4.1    | 66.245 | 16.03 | 5.21        | 94.79  |
| 6        | us4b17ep1              | 99.814  | 6.001  | 65.976 | 19.58 | 11.3        | 88.71  |
| O        | us4b18bp1*             | 99.759  | 11.99  | 69.284 | 13.82 | 1.18        | 98.82  |
|          | do 15 100p 1           | 00.700  | 11.00  | 00.201 | 10.02 | 1.10        | 00.02  |
| Location | Section-5              | Max     | Min    | Avg    | Std   | 0-40%       | 0-100% |
| 1        | us5b15ep2              | 99.918  | 15.891 | 76.534 | 15.25 | 1.46        | 98.54  |
|          | us5b16bp2              | 100     | 16.34  | 76.401 | 15.08 | 2.18        | 97.82  |
|          |                        |         |        |        |       |             |        |
| 2        | us5b16ep2              | 100     | 13.669 | 70.728 | 16.33 | 5.02        | 94.98  |
|          | us5b17bp2              | 99.747  | 34.463 | 68.953 | 11.97 | 0.68        | 99.32  |
| 3        | us5b17ep2              | 100     | 31.163 | 80.896 | 15.08 | 0.36        | 99.64  |
| -        | us5b18bp2              | 99.728  | 28.455 | 81.807 | 11.53 | 0.2         | 99.8   |
|          | 20021000               | 55.7.25 |        | 5007   |       | ~· <b>-</b> | 55.0   |
| 4        | us5b15ep1              | 97.332  | 12.497 | 56.205 | 14.3  | 12.7        | 87.27  |
|          | us5b16bp1              | 99.817  | 9.393  | 63.096 | 16.08 | 5.92        | 94.08  |
|          | ·                      |         |        |        |       |             |        |
| 5        | us5b16ep1              | 98.376  | 15.211 | 56.182 | 14.97 | 14.6        | 85.41  |

-

<sup>\*</sup> Associated C-scan result with digital photograph not provided

| Í          |                        | 0.4.0.40       |                   | 00.004            | 40 = 4           | 4 = 4             | 0= 00               |
|------------|------------------------|----------------|-------------------|-------------------|------------------|-------------------|---------------------|
|            | us5b17bp1              | 94.048         | 5.44              | 62.334            | 12.54            | 4.71              | 95.29               |
| 6          | us5b17ep1              | 97.689         | 9.106             | 61.08             | 14.84            | 9.47              | 90.53               |
| Ü          | us5b18bp1              | 99.237         | 27.1              | 74.782            | 11.4             | 0.47              | 99.53               |
|            | шесь геор :            | 00.20.         |                   | 02                |                  | 0                 | 00.00               |
| Location   | Section-6              | Max            | Min               | Avg               | Std              | 0-40%             | 0-100%              |
| 1          | us6b15ep3              | 100            | 3.889             | 68.103            | 20.08            | 9.09              | 90.91               |
|            | us6b16bp3              | 99.789         | 17.885            | 74.628            | 15.62            | 1.47              | 98.53               |
|            |                        |                |                   |                   |                  |                   |                     |
| 2          | us6b16ep3              | 100            | 10.085            | 64.519            | 15.13            | 5.56              | 94.44               |
|            | us6b17bp3              | 99.881         | 28.855            | 77.581            | 14.04            | 0.46              | 99.54               |
|            |                        | 00.774         | 40.00             | 70.005            | 40.00            | 0.47              | 07.00               |
| 3          | us6b17ep3              | 99.771         | 18.98             | 70.085            | 12.38            | 2.17              | 97.83               |
|            | us6b18bp3              | 99.85          | 9.466             | 73.235            | 16.19            | 4.07              | 95.93               |
| 4          | us6b15ep1              | 99.64          | 20.604            | 63.595            | 14.48            | 5.44              | 94.56               |
| <b>⊤</b> T | us6b16bp1              | 100            | 16.001            | 70.138            | 15.85            | 2.22              | 97.78               |
|            | doop roop r            | 100            | 10.001            | 70.100            | 10.00            | _,                | 01.10               |
| 5          | us6b16ep1              | 91.67          | 11.493            | 55.739            | 12.44            | 11.5              | 88.53               |
|            | us6b17bp1              | 94.774         | 11.566            | 57.152            | 13.18            | 9.47              | 90.53               |
|            |                        |                |                   |                   |                  |                   |                     |
| 6          | us6b17ep1              | 100            | 13.495            | 68.629            | 16.64            | 4.84              | 95.16               |
|            | us6b18bp1              | 98.834         | 3.764             | 69.639            | 15.55            | 4.21              | 95.79               |
|            |                        |                |                   |                   |                  |                   |                     |
| Location   | Section-7              | Max            | Min               | Avg               | Std              | 0-40%             | 0-100%              |
| 1          | us7b16ep3              | 99.664         | 16.242            | 81.9              | 14.32            | 1.27              | 98.73               |
|            | us7b17bp3              | 99.707         | 21.3              | 84.523            | 11.7             | 0.32              | 99.68               |
|            |                        |                |                   |                   | 10.01            |                   | 22.24               |
| 2          | us7b17ep3              | 99.863         | 14.753            | 71.679            | 12.84            | 1.16              | 98.84               |
|            | us7b18bp3              | 99.869         | 27.036            | 76.067            | 13.66            | 0.57              | 99.43               |
| 3          | us7b16ep2              | 97.833         | 8.962             | 63.67             | 14.22            | 5.39              | 94.61               |
| 3          | us7b10ep2<br>us7b17bp2 | 99.963         | 13.352            | 74.439            | 15.54            | 1.65              | 98.35               |
|            | do / b / r bp2         | 00.000         | 10.002            | 7 1. 100          | 10.01            | 1.00              | 00.00               |
| 4          | us7b16ep1              | 97.802         | 7.146             | 54.657            | 15.64            | 16.1              | 83.86               |
|            | us7b17bp1              | 98.016         | 20.391            | 64.126            | 13.3             | 3.47              | 96.53               |
|            | ·                      |                |                   |                   |                  |                   |                     |
| 5          | us7b17ep2              | 99.817         | 14.06             | 74.05             | 14.99            | 2.06              | 97.94               |
|            | us7b18bp2              | 99.429         | 28.501            | 72.129            | 12.75            | 0.75              | 99.25               |
|            |                        |                |                   |                   |                  |                   |                     |
| 6          | us7b17ep1              | 99.56          | 21.044            | 71.708            | 14.28            | 1.48              | 98.52               |
|            | us7b18bp1              | 99.945         | 16.627            | 77.877            | 13.61            | 0.64              | 99.36               |
|            | 1                      |                |                   |                   | 1                |                   |                     |
|            |                        |                |                   |                   |                  |                   |                     |
| Location   | Section-8              | Max            | Min               | Avg               | Std              | 0-40%             | 0-100%              |
| Location 1 | Section-8              | <b>Max</b> 100 | <b>Min</b> 21.419 | <b>Avg</b> 76.823 | <b>Std</b> 16.93 | <b>0-40%</b> 2.37 | <b>0-100%</b> 97.63 |

| 2        | us8b17ep2 | 100    | 4.597  | 62.88  | 18.81 | 11.7   | 88.34  |
|----------|-----------|--------|--------|--------|-------|--------|--------|
| _        | us8b18bp2 | 99.719 | 26.383 | 68.749 | 12.79 | 0.42   | 99.58  |
|          |           |        |        |        |       |        |        |
| 3        | us8b17ep1 | 99.24  | 5.171  | 62.543 | 16.4  | 7.54   | 92.46  |
|          | us8b18bp1 | 99.521 | 21.364 | 73.509 | 15.29 | 2.27   | 97.73  |
|          |           |        |        |        | 10.20 |        |        |
| 4        | us8b16ep3 | 99.927 | 9.014  | 75.785 | 17.73 | 3.59   | 96.41  |
|          | us8b17bp3 | 99.973 | 24.939 | 83.22  | 13.62 | 0.57   | 99.43  |
|          |           |        |        |        |       |        |        |
| 5        | us8b16ep2 | 97.65  | 19.954 | 61.916 | 14.48 | 6.79   | 93.22  |
|          | us8b17bp2 | 99.985 | 16.071 | 73.389 | 14.69 | 2.05   | 97.95  |
|          |           |        |        |        |       |        |        |
| 6        | us8b16ep1 | 99.536 | 1.557  | 64.88  | 18.18 | 9.3    | 90.7   |
|          | us8b17bp1 | 99.786 | 17.43  | 73.786 | 14.15 | 1.07   | 98.93  |
|          |           |        |        |        |       |        |        |
| 7        | us8b18ep3 | 100    | 6.001  | 81.172 | 16.85 | 2.34   | 97.66  |
|          | us8b19bp3 | 99.823 | 22.796 | 75.469 | 14.18 | 1.96   | 98.04  |
|          |           |        |        |        |       |        |        |
| 8        | us8b18ep2 | 94.212 | 7.821  | 51.008 | 15.16 | 23     | 77.01  |
|          | us8b19bp2 | 90.046 | 9.438  | 48.57  | 13.61 | 28.3   | 71.66  |
|          |           |        |        |        |       |        |        |
| 9        | us8b18ep1 | 98.147 | 5.159  | 64.881 | 16.27 | 7.6    | 92.4   |
|          | us8b19bp1 | 96.502 | 5.22   | 51.572 | 17.1  | 27.5   | 72.45  |
|          |           |        |        |        |       |        |        |
| 10       | us8b19ep3 | 99.753 | 7.335  | 69.283 | 17.47 | 5.63   | 94.38  |
|          | us8b20bp3 | 100    | 13.935 | 75.212 | 14.88 | 1.42   | 98.58  |
| 4.4      | -01.404   | 00.454 | 00.454 | 74.000 | 40.50 |        | 00     |
| 11       | us8b19ep1 | 99.454 | 29.451 | 74.262 | 13.58 | 1 5 40 | 99     |
|          | us8b20bp1 | 95.006 | 10.47  | 62.596 | 13.41 | 5.18   | 94.82  |
|          |           |        |        |        |       |        |        |
| Location | Section-9 | Max    | Min    | Avg    | Std   | 0-40%  | 0-100% |
| 1        | us9b16ep3 | 99.295 | 16.227 | 69.847 | 14.22 | 2.32   | 97.68  |
|          | us9b17bp3 | 99.658 | 14.56  | 67.07  | 16.48 | 4.57   | 95.44  |
|          |           |        |        |        |       |        |        |
| 2        | us9b16ep2 | 99.954 | 9.612  | 73.642 | 17.88 | 5.54   | 94.46  |
|          | us9b17bp2 | 100    | 30.977 | 84.56  | 11.99 | 0.37   | 99.63  |
|          |           |        |        |        |       |        |        |
| 3        | us9b16ep1 | 100    | 21.197 | 74.984 | 14.75 | 2.2    | 97.8   |
|          | us9b17bp1 | 100    | 35.275 | 86.106 | 12.59 | 0.05   | 99.95  |
|          |           |        |        |        |       |        |        |
| 4        | us9b17ep3 | 100    | 5.379  | 75.552 | 18.87 | 5.34   | 94.66  |
|          | us9b18bp3 | 100    | 10.794 | 83.977 | 16.09 | 2.17   | 97.83  |
|          |           |        |        |        |       |        |        |
| 5        | us9b17ep2 | 99.728 | 17.991 | 75.998 | 13.67 | 0.72   | 99.28  |
|          | us9b18bp2 | 99.792 | 9.035  | 77.468 | 15.88 | 2.55   | 97.45  |
|          | 01.17     | 00.005 | 40.000 | 74000  | 45.01 | 0.0=   | 07.00  |
| 6        | us9b17ep1 | 99.866 | 10.962 | 74.396 | 15.81 | 2.97   | 97.03  |
|          | us9b18bp1 | 99.905 | 18.959 | 78.507 | 14.06 | 0.88   | 99.12  |

| 7        | us9b19ep1                | 94.014          | 2.018            | 51.954           | 16.82          | 21.7         | 78.33          |
|----------|--------------------------|-----------------|------------------|------------------|----------------|--------------|----------------|
| ,        | us9b20bp1                | 96.658          | 15.211           | 56.025           | 14.71          | 14.4         | 85.63          |
|          | u590200p1                | 90.000          | 13.211           | 30.023           | 14.71          | 14.4         | 05.05          |
| Location | Section-10               | Max             | Min              | Avg              | Std            | 0-40%        | 0-100%         |
| 1        | us10b17ep3               | 100             | 32.121           | 80.721           | 13.77          | 0.43         | 99.57          |
| •        | us10b18bp3               | 99.783          | 2.326            | 72.368           | 23.43          | 11           | 89.01          |
|          |                          |                 |                  |                  |                |              |                |
| 2        | us10b17ep2               | 100             | 34.606           | 80.566           | 14.06          | 0.33         | 99.67          |
|          | us10b18bp2               | 100             | 19.185           | 80.429           | 13.3           | 0.9          | 99.1           |
|          |                          |                 |                  |                  |                |              |                |
| 3        | us10b17ep1               | 100             | 16.871           | 82.913           | 15.01          | 1.57         | 98.43          |
|          | us10b18bp1               | 99.985          | 10.256           | 88.88            | 11.09          | 0.41         | 99.59          |
| 4        | ua10b16an2               | 100             | 10 747           | 00.710           | 14.07          | 1 70         | 00.00          |
| 4        | us10b16ep3               | 100             | 12.747           | 80.712<br>79.14  | 14.07          | 1.72         | 98.29          |
|          | us10b17bp3               | 99.841          | 12.128           | 79.14            | 13.98          | 0.74         | 99.26          |
| 5        | us10b16ep2               | 100             | 3.37             | 78.495           | 20.31          | 5.32         | 94.68          |
| J        | us10b17bp2               | 100             | 10.259           | 87               | 11.57          | 0.77         | 99.24          |
|          | d0100170P2               | 100             | 10.200           | 0,               | 11.01          | 0.77         | 00.21          |
| 6        | us10b16ep1               | 99.957          | 15.443           | 83.216           | 16.82          | 3.32         | 96.68          |
|          | us10b17bp1               | 99.933          | 17.21            | 84.023           | 13.6           | 0.9          | 99.1           |
|          |                          |                 |                  |                  |                |              |                |
| 7        | us10b18ep1               | 95.321          | 6.862            | 53.055           | 14.99          | 18.2         | 81.77          |
|          | us10b19bp1               | 97.701          | 7.759            | 56.071           | 14.29          | 12.3         | 87.69          |
|          | . 401. 40 0              | 400             | 00.000           | 70.004           | 40.00          | 0.0          | 00.4           |
| 8        | us10b18ep2               | 100             | 23.269           | 79.001           | 12.08          | 0.6          | 99.4           |
|          | us10b19b p2              | 97.872          | 7.805            | 64.74            | 16.27          | 8.19         | 91.81          |
| 9        | us10b19ep1               | 99.56           | 8.318            | 60.603           | 18.04          | 14           | 86.02          |
| J        | us10b13cp1               | 98.864          | 0.47             | 58.69            | 20.17          | 15.3         | 84.72          |
|          | G5100200P1               | 30.00           | 0.47             | 00.00            | 20.17          | 10.0         | 04.72          |
| 10       | us10b19ep2               | 99.789          | 10.803           | 56.353           | 15.11          | 13.2         | 86.85          |
|          | us10b20bp2               | 99.414          | 5.4              | 50.68            | 17.64          | 26.5         | 73.5           |
|          |                          |                 |                  |                  |                |              |                |
| Location | Section-11               | Max             | Min              | Avg              | Std            | 0-40%        | 0-100%         |
| 1        | us11b16ep3               | 99.603          | 13.95            | 72.565           | 13.69          | 1.23         | 98.77          |
|          | us11b17bp3               | 99.432          | 6.667            | 67.98            | 15.66          | 4.69         | 95.31          |
|          |                          |                 |                  |                  |                |              |                |
| 2        | us11b16ep2               | 98.214          | 3.52             | 58.955           | 12.41          | 6.5          | 93.5           |
|          | us11b17bp2               | 98.501          | 12.491           | 61.703           | 13.76          | 6.11         | 93.89          |
| 3        | uc11h17on2               | 06.99           | 10 722           | 64 075           | 11 02          | 2.46         | 07.55          |
| S        | us11b17ep3<br>us11b18bp3 | 96.88<br>94.325 | 19.722<br>15.058 | 64.975<br>63.764 | 11.82<br>12.19 | 2.46<br>3.01 | 97.55<br>96.99 |
|          | as i in ionho            | 34.323          | 13.036           | 03.704           | 14.19          | 3.01         | 30.33          |
| 4        | us11b16ep1               | 99.304          | 10.571           | 71.034           | 17.39          | 6.07         | 93.93          |
| •        | us11b17 bp1              | 92.927          | 1.459            | 50.339           | 14.23          | 23.9         | 76.07          |

| 5        | us11b17ep1              | 85.192 | 11.148 | 52.303 | 11.7  | 14.5  | 85.53  |
|----------|-------------------------|--------|--------|--------|-------|-------|--------|
| 3        | us11b17ep1              | 95.577 | 12.005 | 61.011 | 12.36 | 5.45  | 94.55  |
|          | ustrotopi               | 33.311 | 12.003 | 01.011 | 12.30 | 3.43  | 34.33  |
| 6        | us11b17ep2              | 97.357 | 2.61   | 66.249 | 16.5  | 7.24  | 92.76  |
| O        | us11b17ep2              | 99.365 | 11.99  | 69.987 | 11.85 | 1.2   | 98.8   |
|          | изттитоирг              | 99.303 | 11.99  | 09.901 | 11.00 | 1.2   | 90.0   |
| 7        | us11b18ep2 <sup>†</sup> |        |        |        |       |       |        |
|          | us11b19bp2 <sup>†</sup> |        |        |        |       |       |        |
|          |                         |        |        |        |       |       |        |
| Location | Section-12              | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | us12b16ep3              | 90.403 | 8.739  | 45.531 | 12.19 | 32.3  | 67.68  |
|          | us12b17bp3              | 93.477 | 9.185  | 50.257 | 14.97 | 26.8  | 73.21  |
| 2        | ua12b16ap2              | 96.233 | 11.294 | 58.167 | 15.14 | 11.2  | 88.8   |
| 2        | us12b16ep2              |        |        |        | 13.14 |       |        |
|          | us12b17bp2              | 93.541 | 14.167 | 57.259 | 13.93 | 12.1  | 87.94  |
| 3        | us12b16ep1              | 95.687 | 20.446 | 63.876 | 13.36 | 3.65  | 96.35  |
| _        | us12b17bp1              | 89.56  | 10.198 | 49.64  | 13.86 | 25.4  | 74.61  |
|          |                         |        |        |        |       |       |        |
| 4        | us12b17ep3              | 96.719 | 8.52   | 60.606 | 13.17 | 5.85  | 94.15  |
|          | us12b18bp3              | 98.523 | 8.028  | 66.525 | 17.26 | 8.65  | 91.35  |
|          |                         |        |        |        |       |       |        |
| 5        | us12b17ep2              | 98.242 | 13.66  | 70.357 | 15.37 | 3.94  | 96.07  |
|          | us12b18bp2              | 99.023 | 3.12   | 68.798 | 14.01 | 3.66  | 96.34  |
|          |                         |        |        |        |       |       |        |
| 6        | us12b17ep1              | 98.327 | 14.035 | 66.82  | 15.41 | 4.57  | 95.44  |
|          | us12b18bp1              | 99.451 | 15.317 | 67.738 | 13.55 | 2.85  | 97.15  |
|          |                         |        |        |        |       |       |        |
| Location | Section-13              | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | us13b16ep1              | 95.51  | 6.795  | 50.51  | 15.69 | 24.1  | 75.93  |
|          | us13b17bp1              | 93.178 | 1.816  | 51.887 | 19.17 | 26.4  | 73.65  |
|          |                         |        |        |        |       |       |        |
| 2        | us13b17ep1              | 98.791 | 17.051 | 63.794 | 13.74 | 4.05  | 95.95  |
|          | us13b18bp1              | 99.765 | 22.756 | 64.685 | 13.91 | 3.68  | 96.32  |
|          |                         |        |        |        |       |       |        |
| 3        | us13b18ep1              | 90.891 | 9.902  | 47.006 | 11.3  | 27.9  | 72.12  |
|          | us13b19bp1              | 99.615 | 9.64   | 63.958 | 17.1  | 7.71  | 92.29  |
| 4        | us13b19ep1              | QQ 70A | 6.02   | 30 201 | 12.01 | 62.2  | 37.75  |
| 4        |                         | 88.724 | 6.02   | 38.281 |       | 62.3  | 37.75  |
|          | us13b20bp1              | 98.602 | 2.543  | 49.043 | 18    | 29.4  | 70.61  |
| 5        | us13b16ep2              | 95.168 | 8.584  | 55.372 | 12.62 | 10.4  | 89.63  |
| J        | us13b17bp2              | 99.017 | 5.629  | 66.299 | 17.91 | 8.59  | 91.41  |
|          | us 13017042             | 99.017 | J.UZ3  | 00.233 | 17.31 | 0.08  | 31.41  |

-

<sup>†</sup> Statistical analysis results not provided

| 6              | us13b17ep2       | 99.359         | 9.295  | 55.896 | 14.08  | 10.8  | 89.19  |
|----------------|------------------|----------------|--------|--------|--------|-------|--------|
| O              |                  | 99.359         | 14.911 |        | 12.57  | 6.81  | 93.19  |
|                | us13b18bp2       | 94.469         | 14.911 | 59.188 | 12.57  | 0.81  | 93.19  |
| 7              |                  | 00.50          | 4.4    | E4 E00 | 44.00  | 40.0  | 00.00  |
| 7              | us13b18ep2       | 96.52          | 4.1    | 51.563 | 14.62  | 19.6  | 80.36  |
|                | us13b19bp2       | 95.668         | 6.218  | 56.328 | 16.2   | 15.9  | 84.12  |
| o.t            | 101.10           | 00.050         | 40.550 | 50.740 | 4400   | 00.4  | 70.0   |
| 8 <sup>‡</sup> | us13b19ep2       | 92.659         | 10.556 | 50.749 | 14.92  | 26.1  | 73.9   |
|                | us13b20bp2       | 99.542         | 2.485  | 56.247 | 19.47  | 20.4  | 79.65  |
| Location       | Section-14       | Max            | Min    | Avg    | Std    | 0-40% | 0-100% |
| 1              | us14b17ep2       | 85.543         | 3.886  | 37.287 | 10.5   | 62.8  | 37.16  |
| ·              | us14b18bp2       | 93.697         | 2.726  | 49.625 | 14.66  | 23.6  | 76.39  |
|                | GG 1 15 1 GS P Z | 00.001         | 220    | 10.020 | 1 1100 | 20.0  | 7 0.00 |
| 2              | us14b16ep2       | 98.284         | 12.173 | 69.429 | 15.49  | 3.53  | 96.47  |
| _              | us14b17bp2       | 99.93          | 7.463  | 64.524 | 16     | 4.91  | 95.09  |
|                | do110170p2       | 00.00          | 7.100  | 01.021 | 10     | 1.01  | 00.00  |
| 3              | us14b15ep2       | 75.397         | 8.639  | 36.629 | 10.97  | 64.3  | 35.74  |
| Ü              | us14b16bp2       | 76.236         | 4.261  | 35.403 | 10.52  | 69.7  | 30.27  |
|                | G0110100P2       | 7 0.200        |        | 00.100 | 10.02  | 00.7  | 00.27  |
| 4              | us14b15ep1       | 96.282         | 26.917 | 62.932 | 12.83  | 2.96  | 97.04  |
| •              | us14b16bp1       | 99.997         | 4.154  | 68.759 | 20.18  | 10.8  | 89.22  |
|                | изт-втоврт       | 00.007         | 7.104  | 00.700 | 20.10  | 10.0  | 00.22  |
| 5              | us14b16ep1       | 97.347         | 19.713 | 64.519 | 14.16  | 3.8   | 96.2   |
| Ü              | us14b17bp1       | 99.896         | 5.882  | 67.955 | 19.05  | 8.64  | 91.36  |
|                | de l'istropi     | 00.000         | 0.002  | 07.000 | 10.00  | 0.0 . | 01100  |
| 6              | us14b17ep1       | 74.203         | 7.009  | 28.631 | 9.366  | 89    | 11.04  |
| •              | us14b18bp1       | 76.856         | 3.132  | 36.484 | 11.29  | 63.1  | 36.94  |
|                | GG 1 15 1 GS p 1 | 7 0.000        | 0.102  | 00.101 | 11120  | 00.1  | 00.01  |
| Location       | Section-15       | Max            | Min    | Avg    | Std    | 0-40% | 0-100% |
| 1              | us15b15ep1       | 95.647         | 31.044 | 66.295 | 11.39  | 0.72  | 99.28  |
|                | us15b16bp1       | 99.496         | 1.38   | 69.589 | 15.35  | 2.42  | 97.58  |
|                |                  |                |        |        |        |       |        |
| 2              | us15b16ep1       | 96.835         | 16.819 | 65.757 | 12.15  | 2.09  | 97.92  |
|                | us15b17bp1       | 98.172         | 12.476 | 69.728 | 13.23  | 1.52  | 98.48  |
|                |                  |                |        |        |        |       |        |
| 3              | us15b15ep2       | 99.728         | 19.246 | 69.067 | 15.61  | 3.91  | 96.09  |
|                | us15b16bp2       | 99.783         | 10.998 | 68.224 | 16.09  | 4.64  | 95.36  |
|                | 1-               |                |        |        |        | -     |        |
| 4              | us15b16ep2       | 98.037         | 26.926 | 67.069 | 13.35  | 2.73  | 97.27  |
|                | us15b17bp2       | 98.727         | 15.324 | 68.259 | 14.42  | 3.79  | 96.21  |
|                |                  | · · <u>-</u> · |        | 22.20  |        |       |        |
| 5              | us15b17ep2       | 97.582         | 10.519 | 59.63  | 14.58  | 8.49  | 91.51  |
|                |                  |                |        |        |        |       |        |
| · ·            | us15b18bp2       | 96.297         | 15.131 | 60.458 | 12.93  | 6.44  | 93.56  |

<sup>-</sup>

<sup>‡</sup> Location not indicated on Section Level Drawing

<sup>\*</sup> Associated C-scan result with digital photograph not provided

| 6        | us15b17ep1    | 98.608 | 23.498 | 66.266 | 11.78 | 1.35  | 98.66  |
|----------|---------------|--------|--------|--------|-------|-------|--------|
|          | us15b18bp1    | 98.907 | 27.921 | 76.583 | 13.33 | 0.78  | 99.22  |
|          |               |        |        |        |       |       |        |
| Location | Section-16    | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | us16b16ep2    | 93.55  | 7.418  | 52.608 | 13.23 | 17.1  | 82.93  |
|          | us16b17bp2    | 98.574 | 6.395  | 50.715 | 15.25 | 24.8  | 75.18  |
|          |               |        |        |        |       |       |        |
| 2        | us16b15ep1    | 99.179 | 20.717 | 61.229 | 13.7  | 4.6   | 95.4   |
|          | us16b16bp1    | 97.259 | 7.378  | 55.048 | 16.7  | 18.2  | 81.79  |
|          |               |        |        |        |       |       |        |
| 3        | us16b15ep2    | 95.644 | 15.061 | 57.428 | 13.29 | 9.8   | 90.21  |
|          | us16b16bp2    | 91.557 | 5.553  | 49.703 | 14.99 | 25.7  | 74.27  |
|          |               |        |        |        |       |       |        |
| 4        | us16b16ep1    | 93.846 | 8.727  | 56.938 | 13.48 | 10.5  | 89.47  |
|          | us16b17bp1    | 99.969 | 11.908 | 59.85  | 14.48 | 8.93  | 91.07  |
|          | 401.47        | 00.000 | 40.000 | 00.550 | 40.00 | 0.50  | 00.44  |
| 5        | us16b17ep2    | 96.838 | 12.082 | 66.558 | 13.96 | 3.59  | 96.41  |
|          | us16b18bp2    | 97.653 | 5.629  | 62.549 | 16.13 | 8.92  | 91.08  |
| 6        | us16b17ep1    | 97.506 | 16.584 | 63.996 | 15.93 | 8.03  | 91.97  |
| 0        | us16b17ep1    | 100    | 1.581  | 63.437 | 19.23 | 11    | 89.03  |
|          | us rob robp r | 100    | 1.501  | 00.407 | 19.23 | 11    | 03.03  |
| Location | Section-17    | Max    | Min    | Avg    | Std   | 0-40% | 0-100% |
| 1        | us17b16ep1    | 95.852 | 16.166 | 55.043 | 13.47 | 13.9  | 86.15  |
| •        | us17b17bp1    | 99.881 | 4.744  | 56.033 | 17.36 | 16.6  | 83.43  |
|          | изти пирт     | 33.001 | 7.777  | 00.000 | 17.00 | 10.0  | 00.40  |
| 2        | us17b15ep1    | 99.002 | 13.69  | 69.381 | 15.25 | 3.39  | 96.61  |
|          | us17b16bp1    | 98.892 | 3.388  | 52.022 | 17.04 | 21.9  | 78.12  |
|          | <u>'</u>      |        |        |        |       |       |        |
| 3        | us17b17ep1    | 92.662 | 19.902 | 57.757 | 12.85 | 9.07  | 90.93  |
|          | us17b18bp1    | 99.161 | 9.164  | 64.14  | 14.96 | 5.96  | 94.04  |
|          |               |        |        |        |       |       |        |
| 4        | us17b15ep2    | 90.992 | 13.083 | 51.593 | 12.15 | 17.1  | 82.9   |
|          | us17b16bp2    | 96.02  | 10.934 | 48.973 | 14.88 | 28.2  | 71.81  |
|          |               |        |        |        |       |       |        |
| 5        | us17b16ep2    | 95.272 | 5.742  | 48.297 | 14.4  | 27.4  | 72.64  |
|          | us17b17bp2    | 91.01  | 2.674  | 47.804 | 14.73 | 24.7  | 75.29  |
|          |               |        |        |        |       |       |        |
| 6        | us17b17ep2    | 95.134 | 2.179  | 59.249 | 13.31 | 6.97  | 93.03  |
|          | us17b18bp2    | 98.697 | 7.726  | 55.547 | 17.63 | 19.4  | 80.62  |

# Appendix D: C-Scan Results With Digital Pictures

In Appendix D, the Middle Tier and Upper Tier data are labeled as such. However, due to an oversight in preparation of the original files, the Lower Tier data are not explicitly labeled. Therefore, pages not labeled as "Middle Tier" or "Upper Tier" present data gathered for the Lower Tier.

Also, during technical review, some labels on individual images were found to be inaccurate, and so those have been corrected by the authors.

























Location 3

Location 8

Section-2

























Location 8

Location 7



Section-3











































































































Section-10





Section-10





Section-10





Section-10





Section-10







Section-11







Section-11











































Location 2



Section-14



SHBIIECPZ

28











































Section-15







Section-16









Section-16











Section-16











































Location 5























Location 1

































































































































































































































USHBISEPL







# Appendix E: Original ROI Projection From Project Management Plan (PMP)

[Note: The text below is extracted from the submitted PMP for CPC Project F07-AR03. It is included for comparison with the post-demonstration economic analysis in Chapter 4.]

The Return on Investment (ROI) for project F07AR03 as computed in the Project Management Plan (PMP), revised 27 September 2006, is presented below.

# **Assumptions:**

Alternative 1: Structural components of the West Point Michie Stadium require replacement 8 years from now, at a cost of \$25.5M, as shown under Baseline Costs. Average annualized maintenance cost of the existing structural components is \$280k, which drops to \$6.5k after replacement of the components, as shown under Baseline Costs. Since the replacement components will use the sensors, the operating cost of these sensors (\$10k) is also included, bringing the total cost to \$16.5k.

Alternative 2: Installing corrosion/degradation monitoring and degradation sensing technologies in year 1 at a project cost of \$940k is projected to extend the life of the structural components over the conventional maintenance schedule by another 30 years. Data from maintenance personnel indicate that early detection and subsequent preventive measures result in maintenance cost savings of 50%, (which means that the new system cost will be \$140k) plus the annual cost of operating the sensors (\$10k) for a total of \$150k as shown under New System Costs. Under this alternative, the structural components must be replaced in Year 30 at a cost of \$25.5M.

Comparing the two alternatives, the potential return-on-investment after implementing the new technology (Alternative 2) is 11.98 [see table below].

### **Return on Investment Calculation**

**Investment Required** 940,000 Return on Investment Ratio 11.98 Percent 1198% Net Present Value of Costs and Benefits/Savings 5,192,295 16,456,195 11,263,900 С D F Α В Е G Future **Baseline Costs** Baseline New System New System Present Value of Present Value of Total Present Benefits/Savings Benefits/Savings Savings Year Costs Costs Value 280,000 150,000.0 140,190 261,688 121,498 113,542 280,000 150,000.0 131,010 244,552 280.000 150,000.0 122,445 228,564 106,119 99,177 280,000 150,000.0 114,435 213,612 280,000 150,000.0 106.950 199,640 92,690 99,945 86,619 280,000 150,000.0 186,564 280.000 150,000.0 93,405 174,356 80,951 25,500,000 150,000.0 87,300 14,841,000 14,753,700 16,500 150,000.0 81,585 8,974 -72,611 10 16,500 150,000.0 76,245 8,387 -67,858 11 16,500 150,000.0 71,265 7,839 -63,426 12 16,500 150,000.0 66,600 7,326 -59,274 13 16,500 150,000.0 -55,403 16,500 150,000.0 58,170 6,399 -51,771 15 16,500 150,000.0 54,360 5,980 -48,380 16 16,500 150,000.0 5,589 -45,216 50,805 17 16,500 150,000.0 47,490 5,224 -42,266 18 150,000.0 44,385 4,882 -39,503 16,500 19 16,500 150,000.0 41,475 4,562 -36,913 20 16,500 4,264 150,000.0 38.760 -34,496 21 16,500 -32,240 150,000.0 36,225 3,985 22 16,500 150,000.0 33,855 3,724 -30,131 3,480 -28,155 23 16,500 150,000.0 31,635 24 16.500 150,000.0 29.565 3.252 -26.313 25 16,500 150,000.0 27,630 3,039 -24,591 26 16,500 150,000.0 25,830 2,841 -22,989 27 16,500 150,000.0 24,135 2,655 -21,480

150,000.0

150,000.0

25,500,000

22,560

21,090

3,350,700

2.482

2,320

2,168

-20,078

-18,770

-3,348,532

28

29

16,500

16,500

16,500

## REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| 1. REPORT DATE (DD-MM-YYYY) July 2014                   | 2. REPORT TYPE Final                     | 3. DATES COVERED (From - To)                                |
|---------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| 4. TITLE AND SUBTITLE  Corrosion/Degradation Monitoring | 5a. CONTRACT NUMBER                      |                                                             |
| Building Service Life                                   |                                          | 5b. GRANT NUMBER                                            |
|                                                         |                                          | 5c. PROGRAM ELEMENT NUMBER Corrosion Prevention and Control |
| 6. AUTHOR(S)                                            | 5d. PROJECT NUMBER                       |                                                             |
| Michael K. McInerney, Orange S. M                       | CPC F07-AR03                             |                                                             |
| Lawrence Clark, Chris Olaes, and V                      | 5e. TASK NUMBER                          |                                                             |
|                                                         |                                          | 5f. WORK UNIT NUMBER                                        |
| 7. PERFORMING ORGANIZATION NAME(                        | 8. PERFORMING ORGANIZATION REPORT NUMBER |                                                             |
| U.S. Army Engineer Research and I                       | ERDC/CERL TR-14-9                        |                                                             |
| Construction Engineering Research                       | Laboratory                               |                                                             |
| P.O. Box 9005                                           |                                          |                                                             |
| Champaign, IL 61826-9005                                |                                          |                                                             |
| 9. SPONSORING / MONITORING AGENC                        | 10. SPONSOR/MONITOR'S ACRONYM(S)         |                                                             |
| Office of the Secretary of Defense (                    | OUSD(AT&L))                              |                                                             |
| 3090 Defense Pentagon<br>Washington, DC 20301-3090      |                                          | 11. SPONSOR/MONITOR'S REPORT NUMBER(S)                      |
|                                                         |                                          |                                                             |

### 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

## 13. SUPPLEMENTARY NOTES

#### 14. ABSTRACT

Fiber-reinforced polymer (FRP) composites offer cost and performance advantages for patching concrete structures that have corroded reinforcing steel, but the Army largely avoids structural composite repair applications because of the lack of long-term performance data. Established composite patch inspection methods are fast but highly subjective. This report describes the demonstration of acoustic guided wave (AGW) technology as a nondestructive evaluation (NDE) methodology for assessing the condition of FRP composite structural patches. The technology uses a hand-guided rolling probe to collect ultrasonic inspection data that can then be analyzed to determine patch condition.

The technology was used to evaluate more than 250 composite seismic upgrade patches installed in 1999 at historic Michie Stadium, U.S. Military Academy. The amplitude difference between the probe's emitted signal and the measured reflection provides data about bond quality and potential material defects. The technology identified five patches needing follow-up attention and possible rehabilitation. When considering costs for equipment procurement, logistics, labor, and field contingencies, an average patch-inspection time of 1.5 hours was estimated. The calculated life-cycle return on investment for this application was 11.91.

#### 15. SUBJECT TERMS

acoustic guided wave (AGW); nondestructive evaluation (NDE); corrosion/degradation monitoring; fiber-reinforced polymer composites; reinforced concrete

| 16. SECURITY CLASSIFICATION OF: |              | 17. LIMITATION<br>OF ABSTRACT | 18. NUMBER<br>OF PAGES | 19a. NAME OF RESPONSIBLE<br>PERSON |                                |
|---------------------------------|--------------|-------------------------------|------------------------|------------------------------------|--------------------------------|
| a. REPORT                       | b. ABSTRACT  | c. THIS PAGE                  |                        |                                    | 19b. TELEPHONE NUMBER (include |
| Unclassified                    | Unclassified | Unclassified                  |                        | 364                                | area code)                     |