Exploration Numérique 1

06/09/2019

Soient t_1, \ldots, t_n des réels; on suppose qu'il existe au moins deux indices $i \neq j$ tels que $t_i \neq t_j$. On considère le modèle statistique

$$\left(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \left\{ p_{\theta} \cdot dLeb^{\otimes n} := \bigotimes_{i=1}^n N(\beta_1 + \beta_2 t_i, \sigma^2) : \theta := (\beta_1, \beta_2, \sigma^2) \in \Theta = \mathbb{R}^2 \times \mathbb{R}_+^* \right\} \right) .$$

On note 1 et t les vecteurs de \mathbb{R}^n définis par $\mathbf{1} := (1, \dots, 1)^T$ et $\mathbf{t} := (t_1, \dots, t_n)^T$. Dans la suite, on pose

$$s := \frac{1}{n} \|\mathbf{t}\|^2 - (\bar{t})^2$$
, avec $\bar{t} := n^{-1} \sum_{i=1}^n t_i$.

Nous notons X_i , $i \in \{1, ..., n\}$ les observations canoniques et posons $\mathbf{X} = [X_1, ..., X_n]^T$ et $\bar{X} = n^{-1} \sum_{i=1}^n X_i$.

On appelle estimateurs des moindres carrés de β_1 et β_2 les estimateurs $\hat{\beta}_1$ et $\hat{\beta}_2$ obtenus en minimisant

$$S(\beta_1, \beta_2) = \sum_{i=1}^{n} (X_i - \beta_1 - \beta_2 t_i)^2 = \|\mathbf{X} - \beta_1 \mathbf{1} - \beta_2 \mathbf{t}\|^2.$$

Les questions théoriques ont été traitées en PC. Une rédaction succincte est simplement demandée [il vous suffit de rappeler les résultats pour référence, mais soyez sûr de savoir les établir!]

1. Montrer que

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (t_i - \bar{t}) X_i}{\sum_{i=1}^n (t_i - \bar{t})^2} \quad \text{et} \quad \hat{\beta}_1 = \bar{X} - \hat{\beta}_2 \bar{t} \ . \tag{1}$$

Nous notons $\hat{X}_i = \hat{\beta}_1 + \hat{\beta}_2 t_i$, $\hat{\varepsilon}_i = X_i - \hat{X}_i$ le résidu de prédiction et

$$\hat{\sigma}^2 = \sum_{i=1}^n \hat{\varepsilon}_i^2 / (n-2) \tag{2}$$

On rappelle que

- $\frac{(n-2)}{\sigma^2}\hat{\sigma}^2$ suit une loi du χ^2 à (n-2) degrés de liberté.
- Pour $j=1,2,\,\frac{\hat{\beta}_j-\beta_j}{\hat{\sigma}_j}$ suit une loi de Student à (n-2) degrés de liberté où

$$\hat{\sigma}_1^2 = \hat{\sigma}^2 \left(\frac{\sum_{i=1}^n t_i^2}{n \sum_{i=1}^n (t_i - \bar{t})^2} \right) \quad \text{et} \quad \hat{\sigma}_2^2 = \frac{\hat{\sigma}^2}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

Nous considérons les données des anomalies de températures annuelles à la surface du globe décrites sur https://data.giss.nasa.gov/gistemp/. On utilisera les données fournies dans https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt (txt) ou https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv (csv). Dans les applications numériques t_i est l'année.

- 2. Visualiser les données d'anomalies de températures sur la période 1880-2020.
- 3. Estimer les paramètres $\hat{\beta}_1$, $\hat{\beta}_2$ et $\hat{\sigma}^2$ en utilisant les données d'anomalies sur des intervalles de temps de 30 ans (1880-1910), (1890-1920), etc..
- 4. Pour chaque paramètre, déterminer les intervalles de niveau de couverture 0.95.
- 5. Visualiser en superposition du graphe des observations les différentes droites de régression $\hat{X}_i = \hat{\beta}_1 + \hat{\beta}_2 t_i$ et les intervalles de confiance de prédiction de niveau de couverture .0.95.
- 6. Calculer pour chaque période de 30 ans la p-valeur du test bilatère $H_0: \beta_2 = 0$, contre $H_1: \beta_2 \neq 0$.
- 7. Conclure.