Lecture 4: Temporal Difference Learning

B. Ravindran

Dynamic Programming

Simplest "TD" Method

Simplest "TD" Method

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

Simplest "TD" Method

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

Temporal Difference

- Simple rule to explain complex behaviors
- Intuition: Prediction of outcome at time t+1 is better than the prediction at time t. Hence use the later prediction to adjust the earlier prediction.
- Has had profound impact in behavioral psychology and neuroscience!

Bootstrapping and Sampling

- Bootstrapping: Update using an estimate
 - DP and TD bootstrap
 - Monte Carlo does not bootstrap.

- TD and Monte Carlo sample.
- DP (typically) does not sample

(0 (S) - E- 2 (12) 2= 5 }

Bootstrapping and Sampling

Advantages of TD

St

 TD methods do not require a model of the environment, only experience (sampling) ~ Stall Real

- TD methods can be fully incremental (bootstrapping)
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation •
 - You can learn without the final outcome
 - From incomplete sequences

Full Model

Distributional model.

Distributional model.

come Simulations
Sample Model.

Simulations

TD Prediction

- Policy Evaluation (the prediction problem): for a given policy, compute the state-value function.
- No knowledge of p and r, but access to the real system, or a "sample" model assumed.
- Uses "bootstrapping" and sampling

The simplest TD method, TD(0):

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha [r_{t+1} + \gamma V_k(s_{t+1}) - V_k(s_t)]$$

$$s_t = \frac{r_{t+1}}{a_t} \underbrace{s_{t+1}}_{a_{t+1}} \underbrace{s_{t+2}}_{a_{t+2}} \underbrace{s_{t+3}}_{a_{t+3}} \underbrace{s_{t+3}}_{a_{t+3}}$$

Stochastic Averaging Rule

$$E(x) \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let \overline{x}_n be the average of the first *n* samples

$$\overline{x}_{n+1} = \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n \right)
= \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n + \overline{x}_n - \overline{x}_n \right)
= \frac{1}{n+1} \left((n+1)\overline{x}_n + \left(x_{n+1} - \overline{x}_n \right) \right)
= \overline{x}_n + \frac{1}{n+1} \left(x_{n+1} - \overline{x}_n \right)
= \overline{x}_n + \alpha \left(x_{n+1} - \overline{x}_n \right)$$

new estimate = old estimate + α (new sample - old estimate)

Stochastic Averaging Rule

$$E(x) \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let \overline{x}_n be the average of the first *n* samples

$$\overline{x}_{n+1} = \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n \right)
= \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n + \overline{x}_n - \overline{x}_n \right)
= \frac{1}{n+1} \left((n+1)\overline{x}_n + \left(x_{n+1} - \overline{x}_n \right) \right)
= \overline{x}_n + \frac{1}{n+1} \left(x_{n+1} - \overline{x}_n \right)
= \overline{x}_n + \alpha \left(x_{n+1} - \overline{x}_n \right)$$

new estimate = old estimate + α (new sample - old estimate)

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha [r_{t+1} + \gamma V_k(s_{t+1}) - V_k(s_t)]$$

TD Update Example

Assuming:

reward, r, $A \rightarrow B:0$

 $\alpha:0.2$

 $\gamma:0.9$

$$V(A) = V(A) + \alpha [r + \gamma V(B) - V(A)]$$

$$V(A) = 0.5 + 0.2[0 + 0.9 * 0.8 - 0.5] = 0.544$$

TD Control

- The control problem: approximate optimal policies.
- Recall the idea of GPI:

- Policy evaluation: use TD(0) to evaluate value function.
- Policy improvement: make policy greedy wrt current value function.
- Note that we estimate action values rather than state values in the absence of a model.

ε-Greedy Policies

$$a^* \leftarrow \arg\max_a Q(s, a)$$
For all $a \in \mathcal{A}(s)$:
$$\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = a^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq a^* \end{cases}$$

• Any ε -greedy policy with respect to Q following π is an improvement over any ε -soft policy π is assured by the policy improvement theorem

Sarsa: On-Policy TD Control

 In on-policy control, we try improving the policy used for making decisions.

SARSA

After every transition from a nonterminal state s_t , do this:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

If s_{t+1} is terminal, then $Q(s_{t+1}, a_{t+1}) = 0$.

$$\underbrace{S_t} \underbrace{a_t} \underbrace{r_{t+1}} \underbrace{S_{t+1}} \underbrace{a_{t+1}} \underbrace{r_{t+2}} \underbrace{S_{t+2}} \underbrace{a_{t+2}} \underbrace{s_{t+3}} \underbrace{s_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}}$$

- Convergence is guaranteed as long as
 - all state-action pairs are visited an infinite number of times
 - the policy converges in the limit to the greedy policy

Sarsa: On-Policy TD Control

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

Sarsa Algorithm

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode)
  Initialize s
  Choose a from s using policy derived from Q (e.g., \varepsilon - greedy)
  Repeat (for each step of episode):
    Take action a, observe r, s'
    Choose a' from s' using policy derived from Q (e.g., \varepsilon - greedy)
    Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]
    s \leftarrow s'; a \leftarrow a';
  until s is terminal
```

Sarsa Algorithm

```
Initialize Q(s,a) arbitrarily
        Repeat (for each episode)
          Initialize s
          Choose a from s using policy derived from Q (e.g., \varepsilon - greedy)
          Repeat (for each step of episode):
             Take action a, observe r, s'
IMPROVEMENT Choose a' from s' using policy derived from Q (e.g., \varepsilon - greedy)
            Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]
EVALUATION
            s \leftarrow s'; a \leftarrow a';
          until s is terminal
```

Sarsa Algorithm

Every time-step:

Policy evaluation Sarsa, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Q-Learning

$$\underbrace{S_t} \underbrace{a_t} \underbrace{r_{t+1}} \underbrace{S_{t+1}} \underbrace{a_{t+1}} \underbrace{s_{t+2}} \underbrace{S_{t+2}} \underbrace{a_{t+2}} \underbrace{s_{t+3}} \underbrace{s_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}}$$

One-step Q-learning:

$$\hat{q}(s_t, a_t) \leftarrow \hat{q}(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a) - \hat{q}(s_t, a_t) \right]$$

Q-Learning

$$Q^*(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \middle| s_t = s, a_t = a\right\}$$

$$\underbrace{S_t} \underbrace{a_t} \underbrace{r_{t+1}} \underbrace{S_{t+1}} \underbrace{a_{t+1}} \underbrace{r_{t+2}} \underbrace{S_{t+2}} \underbrace{a_{t+2}} \underbrace{r_{t+3}} \underbrace{S_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}}$$

One-step Q-learning:

$$\hat{q}(s_t, a_t) \leftarrow \hat{q}(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a) - \hat{q}(s_t, a_t) \right]$$

Stochastic Averaging Rule

$$E(x) \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let \overline{x}_n be the average of the first *n* samples

$$\overline{x}_{n+1} = \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n \right)
= \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n + \overline{x}_n - \overline{x}_n \right)
= \frac{1}{n+1} \left((n+1)\overline{x}_n + \left(x_{n+1} - \overline{x}_n \right) \right)
= \overline{x}_n + \frac{1}{n+1} \left(x_{n+1} - \overline{x}_n \right)
= \overline{x}_n + \alpha \left(x_{n+1} - \overline{x}_n \right)$$

new estimate = old estimate + α (new sample - old estimate)

Stochastic Averaging Rule

$$E(x) \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let \overline{x}_n be the average of the first *n* samples

$$\overline{x}_{n+1} = \frac{1}{n+1} (x_{n+1} + n\overline{x}_n)
= \frac{1}{n+1} (x_{n+1} + n\overline{x}_n + \overline{x}_n - \overline{x}_n)
= \frac{1}{n+1} ((n+1)\overline{x}_n + (x_{n+1} - \overline{x}_n))
= \overline{x}_n + \frac{1}{n+1} (x_{n+1} - \overline{x}_n)
= \overline{x}_n + \alpha (x_{n+1} - \overline{x}_n)$$

new estimate = old estimate + α (new sample - old estimate)

$$\hat{q}(s_t, a_t) \leftarrow \hat{q}(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a) - \hat{q}(s_t, a_t) \right]$$

Q-Learning

$$Q^*(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \middle| s_t = s, a_t = a\right\}$$

$$\underbrace{S_t} \underbrace{a_t} \underbrace{r_{t+1}} \underbrace{S_{t+1}} \underbrace{a_{t+1}} \underbrace{r_{t+2}} \underbrace{S_{t+2}} \underbrace{a_{t+2}} \underbrace{r_{t+3}} \underbrace{S_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}}$$

One-step Q-learning:

$$\hat{q}(s_t, a_t) \leftarrow \hat{q}(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a) - \hat{q}(s_t, a_t) \right]$$

Q-Learning

$$Q^*(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \middle| s_t = s, a_t = a\right\}$$

$$\underbrace{S_t} \underbrace{a_t} \underbrace{r_{t+1}} \underbrace{S_{t+1}} \underbrace{a_{t+1}} \underbrace{s_{t+2}} \underbrace{S_{t+2}} \underbrace{a_{t+2}} \underbrace{s_{t+3}} \underbrace{s_{t+3}} \underbrace{a_{t+3}} \underbrace{a_{t+3}}$$

One-step Q-learning:

Temporal Difference

$$\hat{q}(s_t, a_t) \leftarrow \hat{q}(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{q}(s_{t+1}, a) - \hat{q}(s_t, a_t) \right]$$

Q-Learning: Off-Policy TD Control

- In off-policy control, we have two policies:
 - the behavior policy used to generate behavior
 - estimation policy the policy that is being evaluated and improved.

Q-learning

One-step Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
  Initialize s
  Repeat (for each step of episode):
    Choose a from s using policy derived from Q (e.g., \varepsilon - greedy)
    Take action a, observey r, s'
    Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
    s \leftarrow s';
until s is terminal
```

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
  Initialize s
  Repeat (for each step of episode):
    Choose a from s using policy derived from Q (e.g., \varepsilon - greedy)
    Take action a, observey r, s'
    Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
    s \leftarrow s';
until s is terminal
```

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
  Initialize s
  Repeat (for each step of episode):
    Choose a from s using policy derived from Q (e.g., \varepsilon - greedy)
    Take action a, observey r, s'
    Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
    s \leftarrow s';
until s is terminal
```


$$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Cliff Walking: SARSA vs Q-learning

