Using Single-Row Functions to Customize Output

Objectives

After completing this lesson, you should be able to do the following:

- Describe various types of functions that are available in SQL
- Use character, number, and date functions in SELECT statements
- Describe the use of conversion functions

SQL Functions

Two Types of SQL Functions

Single-Row Functions

Single-row functions:

- Manipulate data items
- Accept arguments and return one value
- Act on each row that is returned
- Return one result per row
- May modify the data type
- Can be nested
- Accept arguments that can be a column or an expression

```
function_name [(arg1, arg2,...)]
```

Single-Row Functions

Character Functions

Case-Manipulation Functions

These functions convert case for character strings:

Function	Result
LOWER('SQL Course')	sql course
UPPER('SQL Course')	SQL COURSE
<pre>INITCAP('SQL Course')</pre>	Sql Course

Using Case-Manipulation Functions

Display the employee number, name, and department number for employee Higgins:

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';
```

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID
205 Higgins		110

Character-Manipulation Functions

These functions manipulate character strings:

Function	Result
CONCAT('Hello', 'World')	HelloWorld
SUBSTR('HelloWorld',1,5)	Hello
LENGTH('HelloWorld')	10
<pre>INSTR('HelloWorld', 'W')</pre>	6
LPAD(salary,10,'*')	****24000
RPAD(salary, 10, '*')	24000****
REPLACE ('JACK and JUE','J','BL')	BLACK and BLUE
TRIM('H' FROM 'HelloWorld')	elloWorld

Using the Character-Manipulation Functions

EMPLOYEE_ID	NAME	JOB_ID	LENGTH(LAST_NAME)	Contains 'a'?
174	EllenAbel	SA_REP	4	0
176	JonathonTaylor	SA_REP	6	2
178	KimberelyGrant	SA_REP	5	3
202	PatFay	MK_REP	3	2
	1		2	3

Number Functions

- ROUND: Rounds value to specified decimal
- TRUNC: Truncates value to specified decimal
- MOD: Returns remainder of division

Function	Result
ROUND (45.926, 2)	45.93
TRUNC (45.926, 2)	45.92
MOD(1600, 300)	100

Using the ROUND Function

DUAL is a dummy table that you can use to view results from functions and calculations.

Using the TRUNC Function

Using the MOD Function

For all employees with job title of Sales Representative, calculate the remainder of the salary after it is divided by 5,000.

```
SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';
```

LAST_NAME	SALARY MOD(SALARY,5000)	
Abel	11000	1000
Taylor	8600	3600
Grant	7000	2000

Working with Dates

- The Oracle database stores dates in an internal numeric format: century, year, month, day, hours, minutes, and seconds.
- The default date display format is DD-MON-YY.
 - Enables you to store 21st-century dates in the 20th century by specifying only the last two digits of the year
 - Enables you to store 20th-century dates in the 21st century in the same way

```
SELECT last_name, hire_date

FROM employees
WHERE hire_date < '01-FEB-88';
```

LAST_NAME	HIRE_DATE
King	17-JUN-87
Whalen	17-SEP-87

Working with Dates

SYSDATE is a date function that returns the current database server date and time.

SYSDATE is a function that returns:

- Date
- Time
- SELECT SYSDATE FROM DUAL;

Arithmetic with Dates

- Add or subtract a number to or from a date for a resultant date value.
- Subtract two dates to find the number of days between those dates.
- Add hours to a date by dividing the number of hours by 24.

Using Arithmetic Operators with Dates

```
SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;
```

LAST_NAME	WEEKS	
King	744.245395	
Kochhar	626.102538	
De Haan	453.245395	

Date Functions

Function	Result
MONTHS_BETWEEN	Number of months between two dates
ADD_MONTHS	Add calendar months to date
NEXT_DAY	Next day of the date specified
LAST_DAY	Last day of the month
ROUND	Round date
TRUNC	Truncate date

Using Date Functions

Function	Result
MONTHS_BETWEEN	19.6774194
('01-SEP-95','11-JAN-94')	
ADD_MONTHS ('11-JAN-94',6)	'11-JUL-94'
NEXT_DAY ('01-SEP-95','FRIDAY')	'08-SEP-95'
LAST_DAY ('01-FEB-95')	'28-FEB-95'

Using Date Functions

Assume SYSDATE = '25-JUL-03':

Function	Result
ROUND (SYSDATE, 'MONTH')	01-AUG-03
ROUND (SYSDATE , 'YEAR')	01-JAN-04
TRUNC (SYSDATE , 'MONTH')	01-JUL-03
TRUNC (SYSDATE , 'YEAR')	01-JAN-03

Practice 3: Overview of Part 1

This practice covers the following topics:

- Writing a query that displays the current date
- Creating queries that require the use of numeric, character, and date functions
- Performing calculations of years and months of service for an employee

Conversion Functions

Implicit Data Type Conversion

For assignments, the Oracle server can automatically convert the following:

From	То
VARCHAR2 or CHAR	NUMBER
VARCHAR2 or CHAR	DATE
NUMBER	VARCHAR2
DATE	VARCHAR2

Implicit Data Type Conversion

For expression evaluation, the Oracle Server can automatically convert the following:

From	То
VARCHAR2 or CHAR	NUMBER
VARCHAR2 or CHAR	DATE

Explicit Data Type Conversion

Using the TO_CHAR Function with Dates

```
TO_CHAR(date, 'format_model')
```

The format model:

- Must be enclosed by single quotation marks
- Is case-sensitive
- Can include any valid date format element
- Has an fm element to remove padded blanks or suppress leading zeros
- Is separated from the date value by a comma

Elements of the Date Format Model

Element	Result
YYYY	Full year in numbers
YEAR	Year spelled out (in English)
ММ	Two-digit value for month
MONTH	Full name of the month
MON	Three-letter abbreviation of the month
DY	Three-letter abbreviation of the day of the week
DAY	Full name of the day of the week
DD	Numeric day of the month

Using the TO_CHAR Function with Dates

```
SELECT last_name,

TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;
```

LAST_NAME	HIREDATE	
King	17 June 1987	
Kochhar	21 September 1989	
De Haan	13 January 1993	
Hunold	3 January 1990	
Ernst	21 May 1991	
Lorentz	7 February 1999	
Mourgos	16 November 1999	

. . .

20 rows selected.

Using the TO_CHAR Function with Numbers

```
TO_CHAR(number, 'format_model')
```

These are some of the format elements that you can use with the TO_CHAR function to display a number value as a character:

Element	Result
9	Represents a number
0	Forces a zero to be displayed
\$	Places a floating dollar sign
L	Uses the floating local currency symbol
•	Prints a decimal point
1	Prints a comma as thousands indicator

Using the TO_CHAR Function with Numbers

```
SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';
```

```
$6,000.00
```

Using the TO_NUMBER and TO_DATE Functions

 Convert a character string to a number format using the TO_NUMBER function:

```
TO_NUMBER(char[, 'format_model'])
```

 Convert a character string to a date format using the TO_DATE function:

```
TO_DATE(char[, 'format_model'])
```

These functions have an fx modifier. This
modifier specifies the exact matching for the
character argument and date format model of a
TO_DATE function.

Nesting Functions

- Single-row functions can be nested to any level.
- Nested functions are evaluated from deepest level to the least deep level.

Nesting Functions

```
SELECT last name,
    UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))
FROM employees
WHERE department_id = 60;
```

LAST_NAME	UPPER(CONCAT(SUBSTR(LAST_NAME,1,8		
Hunold	HUNOLD_US		
Ernst	ERNST_US		
Lorentz	LORENTZ_US		

General Functions

The following functions work with any data type and pertain to using nulls:

- NVL (expr1, expr2)
- NVL2 (expr1, expr2, expr3)

NVL Function

Converts a null value to an actual value:

- Data types that can be used are date, character, and number.
- Data types must match:

```
- NVL(commission pct,0)
```

```
- NVL(hire_date,'01-JAN-97')
```

- NVL(job id,'No Job Yet')

Using the NVL Function

LAST_NAME	SALARY	NVL(COMMISSION_PCT,0)	AN_SAL
King	24000	0	288000
Kochhar	17000	0	204000
De Haan	17000	0	204000
Hunold	9000	0	108000
Ernst	6000	0	72000
Lorentz	4200	0	50400
Mourgos	5800	0	69600
Rajs	3500	0	42000
■■ 20 rows selected.		1) (2

Using the NVL2 Function

LAST_NAME	SALARY	COMMISSION_PCT	INCOME
Zlotkey	10500	.2	SAL+COMM
Abel	11000	.3	SAL+COMM
Taylor	8600	.2	SAL+COMM
Mourgos	5800		SAL
Rajs	3500		SAL
Davies	3100		SAL
Matos	2600		SAL
Vargas	2500		SAL
rows selected.		1) (2)

Conditional Expressions

- Provide the use of IF-THEN-ELSE logic within a SQL statement
- Use two methods:
 - CASE expression
 - DECODE function

CASE Expression

Facilitates conditional inquiries by doing the work of an IF-THEN-ELSE statement:

```
CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]
END
```

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an IF-THEN-ELSE statement:

```
SELECT last_name, job_id, salary,

CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary

WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"

FROM employees;
```

LAST_NAME	JOB_ID	SALARY	REVISED_SALARY
Lorentz	IT_PROG	4200	4620
Mourgos	ST_MAN	5800	5800
Rajs	ST_CLERK	3500	4025
•••			
Gietz	AC_ACCOUNT	8300	8300

20 rows selected.

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE expression or an IF-THEN-ELSE statement:

Using the DECODE Function

LAST_NAME	JOB_ID	SALARY	REVISED_SALARY
Lorentz	IT_PROG	4200	4620
Mourgos	ST_MAN	5800	5800
Rajs	ST_CLERK	3500	4025
•			
Gietz	AC_ACCOUNT	8300	8300

20 rows selected.

Summary

In this lesson, you should have learned how to:

- Perform calculations on data using functions
- Modify individual data items using functions
- Manipulate output for groups of rows using functions
- Alter date formats for display using functions
- Convert column data types using functions
- Use NVL functions
- Use IF-THEN-ELSE logic

Practice 3: Overview of Part 2

This practice covers the following topics:

- Creating queries that require the use of numeric, character, and date functions
- Using concatenation with functions
- Writing case-insensitive queries to test the usefulness of character functions
- Performing calculations of years and months of service for an employee
- Determining the review date for an employee