Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Linear Algebra and Groups

Module Code: MATH40003

Date: 07/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	
Q4	√
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered
- Trainiboi	7410470104

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

CID:01738166 MATH40003 Question 4 Page 1 19) A7-3A+2In=On Posto the determinant on both isides: ded Suppose det(A)=0. Then det(A?)=det(A).det(A)=0 det (-3A) = + 3) det(A) = 0; det(2 In) = 2" det In = 2"; det(on) = 0 We g. have: A(A-3In) = -2 In TAIR The determinent on Both sides: det (A). det (A-3In) = det (-2In). The LHS equals 0, but the RUS=+2) =) x, del(A) + O A-1 (A7-3A +2In) = A-10=0 => P-1 AA - 3P-1 A+ 2 P-1 = 0 => 2A-1 = 3In-A => A-1 = 3 In - 1 D (ii) F Suppose $v \in E_1 \cap E_2 =$ $v \in E_1 \text{ and } v \in E_2 =$ Av= v and Av = 2v = v = 2v = v = 0 = V = 0 =

CID: 01738166 MATH40003 Guestion 4 Page 2 VTCV=VTBTBV=(BV)TBV As B is (nxn) and vishri), By is (nx1) vector, say $\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}. \text{ Then } (Bv)^T | 3v = (v_1 \ v_2 \dots v_n) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1^2 \times v_2^3 \times \dots \times v_n^2 > 0,$ Since (=137.13 is a symmetric matrix, from Throrom \$ (6.5.4) in the lecture notes =) There exists an orthogonal matrix Ps, with Picp = D- a g diagonal matrix. We have C=P,DPi. Substitute C=13TB and multiply both sides on the lest with (BT) to gets B = (BT) -1. P. D P.-1 Since P_i is orthogonal, then $P_i^{-1} = P_i^{-1} = P_i^{-1} = P_i^{-1}$ is also althogonal. Denote $P_i^{-1} := P_i = P_i = P_i = P_i^{-1} = P_i^{-1} = P_i^{-1}$ is also althogonal. News we are let to show that the State of a show that