基于粒子群新陈代谢 GM(1,1) 模型的环境保护与绿色经济研究

摘 要

为探究环境保护对世界经济形势与工业水平发展的影响,本文对相关问题进行建模求解,问题一为预测类问题,构建粒子群新陈代谢 GM(1,1)模型解决;问题二为关联分析类问题,建立各行业产值变化模型和退耕还林影响评价模型解决;问题三为评价类问题,建立 TOPSIS 模型解决;问题四对上述问题总结,并向联合国递交报告。

对问题一,使用粒子群新陈代谢 GM(1,1)模型,采用粒子群算法优化新陈代谢 GM(1,1)模型的生成系数。以中国 1990-2020 年森林面积为原始数据,使用 Matlab 求解,预测出中国 2025-2035 年的森林面积。由预测结果可知,中国森林面积持续增长趋势,从 2025-2035 年共增加森林面积 26.6 万平方公里。为证明粒子群新陈代谢 GM(1,1)模型的优越性,将其与传统 GM(1,1)模型和新信息 GM(1,1)模型以预测误差平方和为指标进行比较,本文模型误差平方和最小,并比误差平方和最大者低了 17.67%。

对问题二,分别构建了农业、林业、森林旅游业、工业和 GDP 的产值变化模型。为使石油能源和电力资源使用最大化,在工业产值变化量模型中引入了线性规划;基于符号函数构建退耕还林影响评价模型,用于描述退耕还林对国民经济的影响。以我国 2020 年数据为例,通过 Excel 和 Lingo 求解可知 2170 亩的森林面积增加可增长农业产值 3.53 亿元,林业产值 115.68 亿元,森林旅游业产值 17.41 亿元,工业产值 62.76 亿元,国内生产总值(GDP)总计提高 199.38 亿元。

对问题三,采用 TOPSIS 综合评价法,以工业增加值、GDP、森林面积和森林占比四个指标对世界各国进行评价,从收入类型和地域两个分类标准对世界各国分析发现高收入国家工业发达、GDP 高,但森林面积少;低收入国家有更多的森林面积但工业和 GDP 水平落后;撒哈拉以及南非地区收入普遍较低,森林面积广阔。

对问题四,综合问题一至问题三分析,向联合国递交报告说明森林面积对国家工业水平和国民经济的影响,指出世界各国存在的问题,并给出高收入国家退耕还林及工业转移,低收入国家大力发展绿色经济,中低、高等国家稳步发展工业和扩张森林面积的建议。

关键词: 粒子群优化,新陈代谢 GM(1,1)模型, TOPSIS 评价法,线性规划,退耕还林,森林面积,工业水平,国民经济

1

一、问题重述

1.1 问题背景

"节能减排"和发展绿色经济是国家一项重大战略规划。习总书记指出"在生态环境保护建设上,一定要树立大局观、长远观、整体观,坚持保护优先,坚持节约资源和保护环境的基本国策,像保护眼睛一样保护生态环境,像对待生命一样对待生态环境,推动形成绿色发展方式和生活方式。"因此,环境的保护对国民经济的发展有着重要意义,且随着工业化进程的加快,环境保护方面的问题的解决刻不容缓。

1.2 问题提出

根据附件数据,要求解决以下问题:

- (1)问题一:在给出中国森林面积相关数据的情况下,预测中国在 2025-2035 年内的森林面积。
- (2)问题二:分析中国的有关数据并查找其它需要的数据,使用数学模型分析来 分析探究退耕还林政策对国家工业水平和国民经济的影响。
- (3)问题三:根据附件中给出的国家数据构建数学模型对世界各国经济水平、工业水平和森林植被面积进行评价,并进行分析总结。
 - (4) 问题四:以前三问分析结果为基础,向联合国递交报告书,并提出具体措施。

二、问题分析

2.1 问题一的分析

问题一要求根据附件中森林面积的相关数据对中国 2025年-2035年数据进行预测。 该问题属于预测问题,通过对所给数据筛选整理后发现仅有 1990-2020 年 31 年的中国 森林面积数据,故问题一为小样本容量预测问题,可用 GM(1,1)模型对其进行预测。但 该预测又属于中长期预测,传统 GM(1,1)模型在此题中亦存在较大误差。故在此基础上本文首先提出新陈代谢 GM(1,1)模型,充分利用新信息,淘汰旧信息,从而解决传统

GM(1,1)模型在中长期预测中不适用的问题;其次,用粒子群优化算法对新陈代谢 GM(1,1)模型中的生成系数进行优化,得到更加精确的中国森林面积预测结果;最后,为证明粒子群新陈代谢 GM(1,1)模型在该问题解决中的优越性,就该问题数据为例与传统 GM(1,1)模型和新信息 GM(1,1)模型进行对比,以预测误差平方和作为评价指标开展 对比实验。

2.2 问题二的分析

问题二要求根据所给数据和自行查找数据,探究退耕还林政策对中国工业水平以及国民经济的影响。首先,对退耕还林政策能产生的相关影响进行分析,通过分析将退耕还林政策与国家工业水平和国民经济相关联;其次,根据上一步分析分别建立农业产值变化模型、林业产值变化模型、森林旅游业产值变化模型、工业产值变化模型、国内生产总值(GDP)变化模型以及退耕还林影响评价模型,并用信号函数对 GDP 变化进行评价,由此探究退耕还林政策对工业水平和国民经济的影响;最后,以中国 2020 年相关数据为例,使用上一步模型进行计算,通过真实数据说明退耕还林政策对我国工业水平和国民经济存在的长足的影响。

2.3 问题三的分析

问题三要求结合所给数据对世界各国的工业水平、国民经济和森林面积展开评价并总结分析。该问题为评价分析类问题,本文首先选用 GDP、工业增加值、森林面积和森林占土地面积为指标,使用 TOPSIS 综合评价对世界各国展开评价,其次,将世界各国按照收入类型区分为高收入国家、中高收入国家、中低收入国家和低收入国家,按照国家地区,划分为南亚、欧洲与中亚地区、东亚与太平洋地区、拉丁美洲与加勒比海地区、撒哈拉以及南非地区、中东与北非地区,对结合第一步评价结果,对两种分类方法下的世界各国据其指标结果展开分析讨论。

2.4 问题四的分析

问题四基于前三问的研究成果,从时代背景,森林面积对国家工业水平和国民经

济的影响,世界各国存在的问题以及具体改进措施与建议四个方面出发,向联合国环境规划署递交报告。

三、模型假设

- 1. 假设题目所给的数据真实可靠;
- 2. 假设不会出现意外灾害等不可抗力影响森林面积;
- 3. 假设退耕还林后农产品产量和价格变动,但销售收入和退耕前保持一致。
- 4. 假设中国生产能力溢余,受碳排放影响而不能充分发挥所有生产能力。

四、符号说明

 符号	含义
$x^{(0)}(n)$	1990-2020 年中国森林占地面积数据列
$\lambda(k)$	级比检验值
$y^{(0)}(k)$	平移处理后的原始数据列
$x^{(1)}(k)$	累加生成数据列
$\hat{x}^{(1)}(k+1)$	预测得到的累加生成数列
$\hat{x}^{(0)}(k+1)$	预测结果数列
F	粒子群算法适应度函数
$z^{(1)}(k)$	邻值生成数
$\varepsilon(k)$	相对残差检验值
$\rho(k)$	级比偏差检验值
ΔQ	农产品销售收入变化量
$\Delta \mu$	农业产值变化量
l	平均每亩林业用地产生的收入
Δf	林业产值变化量
m	平均森林每亩可创造森林旅游业产值
ΔA	森林旅游业产值变化量
G	二氧化碳允许量
ΔY	工业产值增加量
ΔR	国内生产总值(GDP)变化量
S_{γ}	第γ个评价对象的得分

五、模型的建立与求解

5.1 问题一模型的建立与求解

为了对中国 2025-2035 年内的森林占地面积进行预测,本文建立了一种基于粒子群算法优化的新陈代谢灰色预测模型。GM(1,1)模型较依赖原始数据,使得模型本身不适用于中长期预测,未考虑预测得到的新信息对预测结果造成的影响,而新陈代谢GM(1,1)模型[1]则模仿人体新陈代谢,通过淘汰旧信息或无用信息,纳入新信息的方式提高模型的预测精度。但在新陈代谢 GM(1,1)模型中邻值生成数计算中的生成系数亦会影响到模型最终的预测效果,生成系数的具体数值难以得到确定,故本文采用粒子群优化算法进行对生成系数进行优化,选择出最优生成系数。

5.1.1 粒子群新陈代谢 GM(1,1)模型

图 1 粒子群新陈代谢 GM(1,1)模型流程图

在 GM(1,1)模型构建前需对原始数据列进行级比检验,原始数据列表达式如式(1)所示。

$$x^{(0)} = (x^{(0)}(1), x^{(0)}(1), \dots, x^{(0)}(n)$$
 (1)

则级比检验计算公式如式(2)所示。

$$\lambda(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)}, k = 2,3...,n$$
 (2)

若所有级比皆在可容覆盖区间 $(e^{\frac{-2}{n+1}}, e^{\frac{2}{n+1}})$ 内,则原始数据列 $x^{(0)}$ 可构建GM(1,1)模型且可进行灰色预测,若存在级比不在可容覆盖区间内,则需要将数据做平移处理,直至取得的数据列所有级比在 $(e^{\frac{-2}{n+1}}, e^{\frac{2}{n+1}})$,如式(2)所示。

$$y^{(0)}(k) = x^{(0)}(k) + c \tag{3}$$

其中c是为了达到平移目的而添加的常数。

级比检验通过后需对原始数据列 $x^{(0)}$ 累加生成数据列 $x^{(1)}$,如式(4)所示。

$$x^{(1)}(k) = \sum_{j=1}^{k} x^{(0)}(j), k = 1, 2, ..., n$$
 (4)

GM(1,1)模型预测后得到的累加生成数列预测值和最终预测结果如式(6)和式(7)所示。

$$\hat{x}^{(1)}(k+1) = \left(x^{(0)}(1) - \frac{b}{a}\right)e^{-ak} + \frac{b}{a}, \quad k = 1, 2, \dots, n$$
 (5)

$$\hat{x}^{(0)}(k+1) = \hat{x}^{(1)}(k+1) - \hat{x}^{(1)}(k), \quad k = 1, 2, ..., n$$
 (6)

而后构建粒子群算法模型,初始化粒子数量、惯性权重和学学习因子,设置迭代次数,粒子的取值范围和粒子的速度范围,并对粒子的位置进行初始化。为使预测效果达到最优,将预测结果的平均误差和作为评价指标,则该模型的适应度函数F如式(7)所示。

$$F = \sum_{k=2}^{n} [\hat{x}^{(0)}(k) - x^{(0)}(k)]^{2}$$
 (7)

将式(5)、(6)代入式(7)中可得适应度函数公式。

$$F = \sum_{k=2}^{n} \left[e^{-ak} (1 - e)(x^{(0)}(1) - \frac{b}{a}) - x^{(0)}(k) \right]^{2}$$
 (8)

适应度函数值越小,则模型预测效果越好,利用每个粒子的历史最优解,通过式(9)和(10)对粒子的速度和位置进行更新。

$$v_n^i = w v_n^{i-1} + c_1 r_1 (p_n^i - s_n^i) + c_2 r_2 (g^i - s_n^i)$$
(9)

$$s_n^{d+1} = s_n^d + v_n^d \tag{10}$$

其中 v_n^i 表示第i次迭代时,第n个粒子的速度; s_n^d 表示第i次迭代时,第n个粒子的位置; r_1 , r_2 为[0,1]上的随机数; c_1 、 c_2 分别为个体学习因子和社会学习因子; p_n^i 为到第i次迭代时,第n个粒子的所达到最优解; g^i 为到第i次迭代时,所有粒子中的最优解。当达到最大迭代次数时,停止迭代,输出最小适应度值和此时粒子所在的位置 g^i 。将 g^i 作为最优生成系数,构建 $x^{(1)}$ 在生成系数 g^i 下的邻值生成数,如式(11)所示。

$$z^{(1)}(k) = g^{i}x^{(1)}(k) + (1 - g^{i})x^{(1)}(k+1), \quad k = 1, 2, ..., n$$
 (11)

利用 $x^{(0)}$ 和 $z^{(1)}$ 构建GM(1,1)模型,将式(11)代入下式

$$x^{(0)}(k) + az^{(1)}(k) = b, k = 1.2, ..., n$$
 (12)

可得GM(1,1)模型如(13)所示。

$$x^{(0)}(k) + a[g^i x^{(1)}(k) + (1 - g^i) x^{(1)}(k+1)] = b, k = 1, 2, ..., n$$
 (13)

由上所述可列出方程组如式(14)所示。

$$\begin{cases} x^{(0)}(2) + a[g^{i}x^{(1)}(1) + (1 - g^{i})x^{(1)}(2)] = b \\ x^{(0)}(3) + a[g^{i}x^{(1)}(2) + (1 - g^{i})x^{(1)}(3)] = b \\ \vdots \\ x^{(0)}(n) + a[g^{i}x^{(1)}(n - 1) + (1 - g^{i})x^{(1)}(n)] = b \end{cases}$$
(14)

根据式(14)方程组提取相关系数可得,

$$\mu = \begin{bmatrix} a \\ b \end{bmatrix} \tag{15}$$

$$Y = \begin{bmatrix} x^{(0)}(2) \\ x^{(0)}(3) \\ \vdots \\ x^{(0)}(n) \end{bmatrix}$$
 (16)

$$B = \begin{bmatrix} -[g^{i}x^{(1)}(1) + (1-g^{i})x^{(1)}(2)] & 1\\ -[g^{i}x^{(1)}(1) + (1-g^{i})x^{(1)}(3)] & 1\\ \vdots & \vdots\\ -[g^{i}x^{(1)}(1) + (1-g^{i})x^{(1)}(n)] & 1 \end{bmatrix}$$

$$(17)$$

则GM(1,1)模型可表示为 $Y = B\mu$,用最小二乘法可求出发展系数a和灰作用量的b估计值,如式(18)所示。

$$\hat{\mu} = \begin{bmatrix} \hat{\mathbf{a}} \\ \hat{\mathbf{b}} \end{bmatrix} = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{Y}$$
 (18)

求出估计值后,将t=2,3...,n 视为连续变量,于是相应的白化模型如式(19)所示。

$$\frac{dx^{(1)}(t)}{dt} + \hat{a}x^{(1)}(t) = \hat{b}$$
 (19)

对白化模型求解可得 $x^{(1)}$ 的预测值,每生成一个新的预测值都将原始数据列的第一个数据淘汰,并将新生成预测值纳入至原始数据列中,重复上述操作直至得到最终预测值数据列。对基于粒子群优化的新陈代谢**GM(1,1)**模型得到的预测结果进行相对残差检验和级比偏差检验,如式(20)和式(21)所示。

$$\varepsilon(k) = \frac{\hat{x}^{(0)}(k) - x^{(0)}(k)}{x^{(0)}(k)}, k = 1, 2, ..., n$$
 (20)

$$\rho(k) = 1 - \frac{1 - g^i \hat{a}}{1 + g^i \hat{a}} \lambda(k) \tag{21}$$

若所有 $|\varepsilon(k)|$ 和 $|\rho(k)|$ 的值均小于 0.1,则说明预测效果较好,若存在值大于或等于 0.1,则对原始数据进行平移处理,重新预测,直至相对残差检验和级比偏差检验结果 皆小于 0.1。

5.1.2 预测模型求解

根据世界银行公布数据可知,1990年-2020年中国森林占地面积如表1所示。

年份	1990	1991	1992	1993	1994	1995	1996	1997
面积(平方公里)	1571405.90	1591265.86	1611125.82	1630985.78	1650845.74	1670705.70	1690565.66	1710425.62
年份	1998	1999	2000	2001	2002	2003	2004	2005
面积(平方公里)	1730285.58	1750145.54	1770005.50	1793615.33	1817225.16	1840834.99	1864444.82	1888054.65
年份	2006	2007	2008	2009	2010	2011	2012	2013
面积(平方公里)	1911664.48	1935274.31	1958884.14	1982493.97	2006103.80	2025471.54	2044839.28	2064207.02
年份	2014	2015	2016	2017	2018	2019	2020	
面积(平方公里)	2083574.76	2102942.50	2124598.67	2143394.70	2162190.40	2180986.10	2199781.80	

表 1 1990-2020 年中国森林占地面积

根据表 1 数据绘制出 1990-2020 年中国森林占地面积的图像,如图 2 所示,根据图像分析易得,30 年来,中国的森林占地面积在不断扩大。

图 2 1990-2020 年中国森林占地面积

将上述数据作为原始数据构建数据列 $x^{(0)}$,并对 $x^{(0)}$ 进行级比检验,级比检验结果如表 2 所示。

	级比检验											
λ(2)	λ(3)	λ(4)	λ(5)	λ(6)	λ(7)	下界						
0.9875	0.9877	0.9878	0.9880	0.9881	0.9883	r 3r						
λ(8)	λ(9)	λ(10)	λ(11)	λ(12)	λ(13)							
0.9884	0.9885	0.9887	0.9888	0.9868	0.9870	0.9394						
λ(14)	λ(15)	λ(16)	λ(17)	λ(18)	λ(19)							
0.9872	0.9873	0.9875	0.9876	0.9878	0.9879	上界						
λ(20)	λ(21)	λ(22)	λ(23)	λ(24)	λ(25)	上介						
0.9881	0.9882	0.9904	0.9905	0.9906	0.9907							
λ(26)	λ(27)	λ(28)	λ(29)	λ(30)	λ(31)	1.0645						
0.9908	0.9898	0.9912	0.9913	0.9914	0.9915							

表 2 原始数据列级比检验结果

由表 2 可知原始数据检验合格,可构建灰色预测模型。将 $x^{(0)}$ 放入粒子群新陈代谢 GM(1,1)模型中分别构建累加生成数列 $x^{(1)}$ 和加权累加数列 $z^{(1)}$ 。通过粒子群优化可得最优生成系数 g^{i} = 0. 4987。则加权累加数列如式(22)所示。

$$z^{(1)}(k) = g^{i}x^{(1)}(k) + (1 - g^{i})x^{(1)}(k+1), \quad k = 1, 2, ..., n$$
 (22)

因该森林面积预测模型采用了新陈代谢 GM(1,1)模型,预测过程中旧信息的剔除和新信息的纳入都会导致模型的发展系数和会作用量发生变动,在此次预测模型求解过程中共生成 16 组不同的发展系数和灰作用量,如表 3 所示。

大 3/1/3/1/3/11/3/11/3/11/3/1/3/1/3/1/3/1/												
新陈代谢次数	1	2	3	4								
发展系数	0.0113	0.0113	0.0113	0.0113								
灰作用量	1575996.5479	1575996.5479	1595273.1284	1614671.8518								
新陈代谢次数	5	6	7	8								
发展系数	0.0112	0.0112	0.0112	0.0111								
灰作用量	1634209.6768	1653905.0815	1673778.1472	1693850.6460								
新陈代谢次数	9	10	11	12								
发展系数	0.0111	0.0110	0.0110	0.0110								
灰作用量	1714146.1323	1734690.0382	1755509.7755	1776634.8439								
新陈代谢次数	新陈代谢次数 13		15	16								
发展系数	0.0109	0.0109	0.0109	0.0109								
灰作用量	1797608.0037	1818468.4841	1839215.0033	1859847.1434								

表 3 新陈代谢情况下模型发展系数及会作用量变化情况

利用上述数据对森林面积预测模型求解可得到 2021-2035 年中国森林占地面积的预测数据,如表 4 和图 3 所示。

年份	2021	2022	2023	2024	2025									
面积(平方公里)	2251676.37	2276520.92	2301585.77	2326866.01	2352354.51									
年份	2026	2027	2028	2029	2030									
面积(平方公里)	2378041.69	2403915.23	2429959.71	2456156.36	2482482.64									
年份	2031	2032	2033	2034	2035									
面积(平方公里)	2508911.89	2535689.77	2562843.80	2590402.75	2618396.58									

表 4 2021-2035 年中国森林占地面积

图 3 2021-2035 年中国森林面积预测数据

通过分析可知,在未来的 15 年内,我国森林面积将会保持一个持续性大幅增长趋势,至 2035年,我国森林占土地面积可达 2618396.58 平方公里。由图 3 观察可知,使用粒子群新陈代谢 GM(1,1)模型的中国森林面积预测数据与原始数据有着较高的拟合度。

为验证模型的有效性,对模型预测结果进行相对残差检验和级比偏差检验,检验结果如图 4 所。

图 4 预测结果相对残差及级比偏差检验

通过计算,使用本预测模型得到的预测数据和原始数据之间的平均相对残差为 0.0049,最高相对残差值为 0.0121; 平均级比偏差为 0.0013,最高级比偏差值为 0.0028。相对残差和级比检验结果均远小于 0.1,证明模型的预测效果较好,预测数据具有可靠性。

5.1.3 模型效果检验

为验证本文针对问题一提出的粒子群新陈代谢 GM(1,1)模型在预测中的优越性,特展开对比实验,将粒子群新陈代谢 GM(1,1)模型同传统 GM(1,1)模型和新信息 GM(1,1)模型的预测效果进行对比。

原始数据列共 31 条数据,其中选取前 28 条数据作为训练数据,余下 3 条数据作为试验数据,以误差平方和为评价指标对三种预测模型进行评价,实验结果如图 5 所示。

图 5 三种模型的预测误差平方和

由实验结果可得,在预测误差上粒子群 GM(1,1)模型相比传统 GM(1,1)模型和新信息 GM(1,1)模型有着显著的优越性。

5.2 问题二模型的建立与求解

为探究退耕还林政策对我国工业生产水平和国民经济的影响^[2],本文通过对退耕还林政策产生的多种影响进行关联分析分别建立了农业、林业、森林旅游业、工业、国内生产总值变化量模型和退耕还林影响评价模型,以此来分析退耕还林政策对我国工业水平和国民经济的影响,并用退耕还林影响评价模型判断退耕还林政策对我国国民经济的影响方式。

5.2.1 退耕还林政策产生的相关影响

退耕还林政策最直接的影响到了农业用地和森林面积。农业用地的减少使得农产品的产量发生变化,供不应求或供过于求,致使农产品的价格也发生变化;农业用地减少的同时,于全国而言在农业生产成本上亦将获得改善。

森林面积的提升则使得林业和旅游业得到了发展^[3]。同时,这还迎合了世界"碳中和"的排放理念,森林面积的提升提高了中国对温室气体的处理能力,在需要的情况下,允许中国可以使用更多的电能和石油能源用于工业生产,促进工业水平的提升。

图 6 退耕还林政策产生的相关影响

而国民经济水平可通过我国国内生产总值(GDP)来衡量^[4],上述退耕还林政策影响下的农业、林业、工业以及第三产业旅游业皆为国内生产总值的一部分^[5],退耕还林政策正是通过这些产业来影响国民经济。

5.2.2 农业产值变化量模型

缓和粮食的供求矛盾^[6],消化我国的粮食库存是退耕还林的经济动因之一。由于农产品相比其它产业有着较长的生命周期和较低的需求弹性,供过于求的粮食产量反而可能会影响农民的收入。

设我国现有农业用地 ξ 亩,原农产品产量 τ_0 ,原产品价格为 q_0 ,退耕还林政策实施后,退耕 η 亩,农产品产量下降至 τ_1 ,供求关系改善,农产品价格上涨至 q_1 ,并基于假设2农产品产量和价格变动,但销售收入(不指代最终利润)和退耕前保持一致可得农产品销售收入变化量如式(23)所示。

$$\Delta Q = \tau_0 * q_0 - \tau_1 * q_1 = 0 \tag{23}$$

通过查询资料可得当年农田平均每亩生产成本为 φ ,则当年的农业产值为:

$$\mu = \tau_1 * q_1 - \varphi * (\xi - \eta) \tag{24}$$

综上可得农业产值变化量模型为:

$$\Delta \mu = [\tau_1 * q_1 - \varphi * (\xi - \eta)] - (\tau_0 * q_0 - \varphi * \xi) = \Delta Q + \varphi * \eta = \varphi * \eta \quad (25)$$

5.2.2 林业产值变化量模型

退耕还林政策的实施使得森林面积得到提升^[7],在森林面积包含于林业面积内,故林业面积也得到了提升,设原林业面积为 ρ 。利用问题一粒子群新陈代谢 GM(1,1),结合历年林业产业总产值数值对当年林业产业总产值作出预测得到结果为d,则平均每亩林业用地产生的收入如式(26)所示。

$$l = \frac{d}{\rho} \tag{26}$$

综上可得林业产值变化量模型为:

$$\Delta f = (w + \eta) * l - w * l = \eta * l \tag{27}$$

5.2.3 森林旅游业产值变化量模型

森林旅游业的发展符合国际社会对发展的需要,践行了低碳经济应履行的义务。 通过国家林业和草原局数据可得森林旅游创造社会综合产值为v,故平均森林每亩可创造森林旅游业产值为:

$$m = \frac{v}{w} \tag{28}$$

则可得森林旅游业产值变化量模型为:

$$\Delta A = m * \eta = \frac{v * \eta}{w} \tag{29}$$

5.2.4 工业产值变化量模型

在退耕还林政策下工业产值的变化主要取决于增加的森林面积可吸收的二氧化碳量,二氧化碳允许量的增加使得产能溢余的工厂可以扩大自己的生产,提高我国的工业水平。设每亩森林可吸收的二氧化碳量为*Å*,则增加二氧化碳允许量为:

$$G = \hbar * \eta \tag{30}$$

每千克燃油燃烧会产生 J_1 千吨二氧化碳,每千瓦时耗电会产生 J_2 千吨二氧化碳。我国目前发电依然以火力发电为主,其中用作燃油的在石油中所占比例为t;每千克燃油可产生s千瓦时的电;每千克石油购买价格为E,加工成本为 Γ 。若可用石油量为B,则可

产生电力为:

$$C = (B * t) * s \tag{31}$$

每千瓦时电所贡献的国内生产总值(GDP)数额为度电产值,而其对 GDP 的贡献主要体现在工业领域。根据资料可确认度电产值的数值 ζ ,则增加 η 亩森林面积的最大工业产值增加量为:

$$\max \Delta Y = C * \zeta - B * (E + \Gamma)$$

$$s.t. \begin{cases} B * J_1 + C * J_2 \le G \\ \hbar * \eta = G \\ (B * t) * s = C \\ B C > 0 \end{cases}$$
(32)

工业增加量 ΔY 反映了退耕还林政策对我国工业水平的影响, ΔY 数值越大,说明退耕还林政策对工业水平的促进最优越越秀。

5.2.5 GDP 变化量模型及退耕还林影响评价模型

根据前文所述的农业产值、林业产值、森林旅游业产值和工业产值的变化量模型可得国内生产总值(GDP)变化量模型如式(33)所示。

$$\Delta R = \Delta \mu + \Delta f + \Delta A + \Delta Y \tag{33}$$

国内生产总值(GDP)变化量 ΔR 反映了退耕还林政策对国民经济的影响,用符号函数 $sgn(\Delta R)$ 构建退耕还林影响评价模型评价退耕还林政策对国民经济的影响。

$$sgn(\Delta R) = \begin{cases} 1 & , \Delta R > 0 \\ 0 & , \Delta R = 0 \\ -1 & , \Delta R < 0 \end{cases}$$
 (34)

分析该符号函数的取值可知,当符号函数取值为1时,退耕还林政策对我国国民经济具有促进作用;当符号函数取值为0时,退耕还林政策对国民经济不产生影响;当符号函数取值为-1时,退耕还林政策对国民经济存在负面影响。

5.2.6 模型求解与分析

以 2020 年中国的退耕还林政策下的相关数据为例对模型求解开展分析,定量探究 退耕还林政策对工业水平和国民经济的影响。搜集相关数据如表 5 所示。

表 5 2020 年中国的退耕还林政策下的相关数据

意义	—————— 符号	 数值
2020年中国退耕还林面积	η	2170 亩
平均每亩生产成本	arphi	162.56 元/亩
2020 年林业用地面积	ho	163.2 万平方公里
2020 年林业产值	d	8.7万亿元
2020 年森林旅游创造社会综合产值	v	1.75 万亿元
每千克燃油燃烧产生的二氧化碳	J_1	33.66 千克
每千瓦时耗电产生的二氧化碳	J_2	0.785 千克
每亩森林可吸收的二氧化碳量	ħ	24455 千克/年
石油用作燃油的比例	t	88%
每千克燃油可产生的电力	S	0.43 千瓦时/千克
每千克石油购买价格	Е	2.23 元/千克
每千克石油加工成本	Γ	5. 22 元/千克
度电产值	ζ	20 元/千瓦时

由上述数据计算可得2020年中国各行业产值变化情况如图6所示。

图 7 2020年中国各行业产值变化情况

农业产值变化量 $\Delta\mu$ 为 3.53 亿元,林业产值变化量 Δf 为 115.68 亿元,森林旅游业产值变化量 ΔA 为 17.41 亿元。

通过对线性规划的求解可求得可用使用量为B为 837494.7 千克,可产生电力C为

0.32 亿千瓦时,由此可求得工业产值变化量ΔY为 62.76 亿元,可见退耕还林政策对我国工业水平有着极大的促进作用。

综上可得国内生产总值(GDP)的变化量为 ΔR 为 199.38 亿元。用符合函数求值可得 $sgn(\Delta R)=1$,说明退耕还林政策对我国有着良性的促进作用,以 2020 年为例可增加我国 GDP 约 199.38 亿元。

5.3 问题三模型的建立与求解

为对世界各国的经济水平、工业水平和森林植被面积进行评价^[8],本文统计了各国从 1960-2020 年国内生产总值(GDP)、工业增加值、森林面积和森林占土地面积的百分比四项指标的平均值并进行数据清洗与整理,利用 TOPSIS 综合评价模型对各国展开评价分析。

5.3.1 TOPSIS 综合评价模型

该模型选用 1960-2020 年国内生产总值(GDP)、工业增加值、森林面积和森林占土地面积的百分比四项指标各自的平均值 $\sigma_{\gamma 1}$ 、 $\sigma_{\gamma 2}$ 、 $\sigma_{\gamma 3}$ 、 $\sigma_{\gamma 4}$ 作为模型预测效果的评价指标,对世界各国的经济水平、工业水平和森林植被面积进行定量评价。其中 γ 表示第 γ 个国家。四项指标皆为极大值型指标,不需要进行正向化处理。故可构建二维数据列 ∂ ,如式(35)所示。

$$\partial = (\sigma_{\gamma 1}, \sigma_{\gamma 2}, \sigma_{\gamma 3}, \sigma_{\gamma 4}) \tag{35}$$

综上可构建 $\gamma * 4$ 的正向化矩阵A。

$$A = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{22} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{\gamma 1} & \sigma_{\gamma 2} & \sigma_{\gamma 3} & \sigma_{\gamma 4} \end{bmatrix}$$
 (36)

对其标准化矩阵记为Z,Z中的每一个元素为:

$$Z = \frac{A_{\gamma i}}{\sqrt{\sum_{q=1}^{\gamma} A_{\gamma i}^{2}}} \quad , \quad i = 1,2,3,4$$
 (37)

由式计算可得标准化矩阵Z如式(38)所示。

$$Z = \begin{bmatrix} z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \\ \vdots & \vdots & \vdots & \vdots \\ z_{\gamma 1} & z_{\gamma 2} & z_{\gamma 3} & z_{\gamma 4} \end{bmatrix}$$
 (38)

定义最大值的集合为 Z^+ ,最小值的集合为 Z^- ,则最大值和最小值的集合如式(39)和式(40)所示。

$$z^{+} = \{z_{1}^{+}, z_{2}^{+}, z_{3}^{+}, z_{4}^{+}\}$$

$$= \{\max\{z_{11}, z_{21}, \dots, z_{\gamma 1}\}, \max\{z_{12}, z_{22}, \dots, z_{\gamma 2}\}, \dots, \max\{z_{14}, z_{24}, \dots, z_{\gamma 4}\}\} \quad (39)$$

$$z^{-} = \{z_{1}^{-}, z_{2}^{-}, z_{3}^{-}, z_{4}^{-}\}$$

$$= \left\{ \min \{z_{11}, z_{21}, \dots, z_{\gamma 1}\}, \min \{z_{12}, z_{22}, \dots, z_{\gamma 2}\}, \dots, \min \{z_{14}, z_{24}, \dots, z_{\gamma 4}\} \right\} \quad (40)$$

根据上述最大值和最小值集合可定义第 γ 个评价对象与最大值和最小值的距离,如式(41)和式(42)所示。

$$D_{\gamma}^{+} = \sqrt{\sum_{i=1}^{4} (z_{i}^{+} - z_{i\gamma})^{2}}$$
 (41)

$$D_{\gamma}^{-} = \sqrt{\sum_{i=1}^{4} (z_{i}^{-} - z_{i\gamma})^{2}}$$
 (42)

综上可计算出第γ个评价对象的得分为:

$$S_{\gamma} = \frac{D_{\gamma}^{-}}{D_{\nu}^{+} + D_{\nu}^{-}} \tag{43}$$

比较各评价对象的得分大小,得分越高则评价越好,对得分进行排名,得分最高的则为最优秀的评价对象。

5.3.2 评价模型求解

因四项指标皆为极大型指标,无需正向化,故仅将世界各国的四项指标统一量纲,变化为标准化矩阵,列出标准化矩阵如式(44)所示。

$$Z = \begin{bmatrix} 0.0363 & 0.001 & 0.001 & 0.0038 \\ 0.0447 & 0.001 & 0.001 & 0.0030 \\ \vdots & \vdots & \vdots & \vdots \\ 0.0462 & 0.001 & 0.001 & 0.0819 \end{bmatrix} \tag{44}$$

通过计算可知,该标准化矩阵最大值的集合和最小值的集合分别为:

$$z^+ = \{0.1659, 0.1357, 0.0956, 0.1593\}$$
 (45)

$$z^{-} = \{0.0137, 0.000, 0.000, 0.000\} \tag{46}$$

根据上述最大值集和最小值集可定义每个评价对象与最大值和最小值的距离,并通过式(43)计算出评价对象的最终得分并进行排名。最终排名情况如表6所示,详情见附录1。

总排名	国家	收入分类	工业增加值	排名	GDP	排名	森林面积	排名	森林占比	排名
1	赤道几内亚	中高等收入国家	0.1464	2	0. 0001	139	0.0003	99	0. 1490	4
2	文莱达鲁萨兰国	高收入国家	0. 1453	3	0. 0001	126	0.0000	143	0. 1205	11
			•••	•••						
34	中国	中高等收入国家	0. 0919	18	0. 0455	3	0. 0222	5	0. 0325	124
200	基里巴斯	中低等收入国家	0. 0237	191	0.0000	200	0.0000	188	0.0024	179
201	马尔代夫	中高等收入国家	0. 0227	194	0.0000	165	0.0000	191	0.0044	173

表 6 世界各国 TOPSIS 评分及排名

5.3.3 评价与分析

通过对 TOPSIS 综合评价模型求解得到如附录 1 的详细评分与排名,并对该排名进行分析。已知根据居民收入状况可分为低收入国家、中低等收入国家、中高等收入国家和高等收入国家四个类别。其中低收入国家 26 个,中低等收入国家 54 个,中高等收入国家 53 个,高收入国家 67 个,共计 201 个国家。

图 8 201 个国家的收入类型分布

对这 201 个国家进行分析发现,在总评分排名前 50 名中共有低收入国家 3 个,中低收入国家 14 个,中高收入国家 18 个和高收入国家 15 个。而在总分排名前 100 中则有低收入国家 5 个,中低收入国家 25 个,中高收入国家 35 个以及高收入国家 35 个。

如图 8 所示。

图 9 世界各国综合排名前 50 和前 100 名情况

对 201 个国家根据四项评价指标进行更加细致的分析,并进行数据统计,可得到如图 9 所示结果。

图 10 世界各国细分指标排名前 100 名

通过上述数据,结合 TOPSIS 综合评价模型的计算过程,不难得出低收入国家在国内生产总值(GDP)、工业增加值和森林占比三个指标上普遍远远落后于其它收入类型。低收入国家主要聚集在撒哈拉以南非洲地区,以低收入国家中排名最高者,综合排名22 名的利比里亚为例,其工业增加值得分为 0.0227,在 201 个国家中,该指标得分排名 193 名,为世界倒数,国内生产总值得分仅为 0.00003,其综合得分分值多数源于森

林面积和森林占地面积百分比。而低收入国家中工业增加值得分最高的国家南苏丹,工业增加值排名 17,分值为 0.0966,国内生产总值也为利比里亚的 6.59 倍,但因其森林占比相对较低,在 201 个国家中综合排名 80,远落后于利比里亚。

而中低收入国家相比低收入国家,有了显著的提升,在工业水平上仅逊色于中高收入国家,但在国内生产总值(GDP)上还有着较大的差距。

图 11 中低等收入国家地区分布

中高收入国家在工业增加值、GDP 和森林占比上又有了提升,但其 GDP 于高收入国家依旧存在着较大的差距。

图 12 中高等收入国家地区分布

高收入国家最明显的特点是远超于其它类型国家的国内生产总值和明显较高的工

业化水平,但其森林面积得分排名反而是各类国家中表现最差的,在森林面积这一单项指标前100名的国家中,高收入国家仅有23个。

5.4 问题四的求解

经过上述问题所得结论的总结,本团队发现了一系列问题,本着探讨与请教的态度,本团队决定向联合国提交报告,并提出相关措施。报告内容如下:

《森林面积对国家工业水平和国民经济的影响》

联合国环境规划署:

此篇报告旨在通过数学模型和对相关数据的分析来体现森林面积对国家工业水平和国民经济的影响,指出目前世界各国在工业水平、国内生产总值、森林面积和森林国土百分比四个指标下存在的不足并给出具体优化措施,为早日实现碳中和,对世界环境保护和绿色经济的发展出一份力。现将森林面积对国家工业水平和国民经济的影响情况报告如下。

一、碳中和目标下的时代背景

气候变化是全球人类都在面临的严苛问题,随着世界各国二氧化碳的排放大量增加,全球温室效应问题影响到了自然生态和人类社会的可持续发展,该问题亟待解决。 为了解决温室效应问题,除了在工业上需减少二氧化碳的排放,另一大方式为增大森林面积,本团队通过数学模型和相关数据的分析探究森林面积对国家工业水平和国民经济的影响。

二、森林面积对国家工业水平和国民经济的影响

森林面积的提升使得林业和旅游业得到了发展。同时,这还迎合了世界"碳中和"的排放理念,提高了各国对温室气体的处理能力,在需要的情况下,允许各国可以使用更多的电能和石油能源用于工业生产,促进工业水平和国民经济的提升。

为对该影响进行定量分析,本团队构建了林业产值变化模型、森林旅游业产值变化模型、工业产值变化模型和 GDP 变化模型等数学模型,以中国 2020 年相关数据为例探究森林面积对各行业以及国民经济的影响。通过数据搜集和计算可知 2020-2021 年一年内中国森林面积增加了 2170 亩,在农业、林业、森林旅游业、工业以及 GDP 上皆有

了长足正面的影响。

图 1 农业、林业、森林旅游业、工业和 GDP 增长量

农业产值增加了 3.53 亿元人民币,林业产值增加了 115.68 亿元人民币,森林旅游业产值增加了 17.41 亿元人民币,工业产值增加了 62.76 亿元人民币,GDP 增长了 199.38 亿元人民币。平均每亩森林面积的增加可增长 289.21 万元人民币的工业产值和 918.8 万元人民币的国内生产总值。

三、世界各国在森林面积中存在的问题

以世界银行中世界各国的工业增加值、国内生产总值(GDP)、森林面积和森林占国土面积百分比对世界各国展开评价分析可知,在总评分排名前 50 名中共有低收入国家 3 个,中低收入国家 14 个,中高收入国家 18 个和高收入国家 15 个。而在总分排名前 100 中则有低收入国家 5 个,中低收入国家 25 个,中高收入国家 35 个以及高收入国家 35 个。如图 2 所示。

图 2 世界各国综合排名前 50 和前 100 名情况

对世界各国根据四项指标进行更加细致的分析,并进行数据统计,可得到如图3所示结果。

图 3 世界各国细分指标排名前 100 名

通过上述数据,结合 TOPSIS 综合评价模型的计算过程,不难得出低收入国家在国内生产总值(GDP)、工业增加值和森林占比三个指标上普遍远远落后于其它收入类型,但有着较高的森林面积。

中低收入国家相比低收入国家,有了显著的提升,在工业水平上仅逊色于中高收入国家,但在国内生产总值(GDP)上还有着较大的差距。中高收入国家在工业增加值、GDP和森林占比上又有了提升,但其 GDP 于高收入国家依旧存在着较大的差距。

高收入国家最明显的特点是远超于其它类型国家的国内生产总值和明显较高的工

业化水平,但其森林面积得分排名反而是各类国家中表现最差的,在森林面积这一单项指标前100名的国家中,高收入国家仅有23个。

四、对世界各国绿色经济优化的具体措施

通过上述对比及数据分析,得到对世界各国优化建议如下

(1) 高收入国家退耕还林及工业转移

高收入国家其森林面积在其它收入类型国家中相对最少,为促进高收入国家可持续发展和绿色经济的发展,高收入国家应积极主动大力发展退耕还林政策,增加森林面积。为对高收入国家的工业水平有基本保障,高收入国家可通过工业转移的方式,在森林面积较大,工业水平较低的低收入、中低收入国家建设工厂,既优化了碳排放问题,又促进了低收入国家的工业水平和国内生产总值的提升。

(2) 低收入国家大力发展绿色经济

低收入国家工业水平为其最大的劣势,而森林等绿化条件反而为其优势。低收入 国家应扬长避短,大力发展绿色经济,形成适应自己国家的特色绿色经济体系,带动 国内生产总值的提升,在世界"碳中和"目标中起到先锋带头作用。

(3) 中低等、中高等国家平衡稳步发展工业和扩张森林面积

中低等、中高等国家相比高收入国家,在工业水平上存在着较明显的差距,而在森林面积上与低收入国家相比亦未存在明显的优势,其在环境建设和工业发展上皆存在着较大的提升空间。因此中低等、中高等国家应平衡稳步发展工业,向高收入国家借鉴经验,同时积极主动扩张森林面积,迎合世界形势,争取在自己国内实现二氧化碳净排放为零。

五、 总结

以上为本团队对森林面积对国家工业水平和国民经济影响和世界各国在工业水平、国内生产总值、森林面积和森林国土百分比四个指标下的现状和问题分析,上述优化具体措施皆为本团队最诚挚的建议,希望能对世界环境保护和绿色经济的发展起到一定帮助,早日实现碳中和。

六、模型的评价与推广

7.1 生成系数灵敏度分析

新陈代谢 GM(1,1)模型在预测时,其预测精度受生成系数的影响,本文使用粒子群优化算法对生成系数进行优化。为说明对生成系数优化的必要性,探究不同生成系数对预测结果精度的影响,以问题一数据为例,生成系数以 0.1 为初始值,0.5 为步长进行预测,以误差平方和为评价指标,观察其变化,如图 13 所示。

图 13 不同生成系数下的预测误差平方和

通过图像清晰可见,生成系数的变化对模型的预测精度有着显著的影响,当生成系数增大时,预测均方误差先减小后增大,当生成系数为 0.4987 时误差平方和最小,当生成系数为 1 时误差平方和达到最大,为最小时的 2.36 倍,可见生成系数选取的优化对预测模型精度提升的重要性。

7.2 模型评价

7.2.1 模型的优点

(1) 粒子群新陈代谢 GM(1,1)模型的选用,从生成系数的选取和新信息的运用两个角度提高了模型预测精度。

- (2)农业、林业、森林旅游业、工业和国内生产总值各自的产值变化量模型在附件所给数据的基础上增加了更多的参数,使得模型分析结果更加严谨。
- (3)基于符号函数的退耕还林影响评价模型的使用令退耕还林政策对国民经济的影响判断更加直观。
- (4) TOPSIS 综合评价模型的使用令对世界各国的评价分析结果更具有严谨性,分析所得更具说服力。

7.2.2 模型的缺点

- (1)问题一预测模型未尝试使用或结合微分方程、神经网络等预测模型,对模型的预测误差尚有优化空间。
- (2) 参数的增多在增加结果严谨性、真实性的同时,也提高了模型的使用条件,不利于模型的推广。
- (3) TOPSIS 的使用未考虑到权重变化对结果的影响,可能使分析结果存在偏差。

7.2.3 模型的改进与推广

- (1) 粒子群新陈代谢 GM(1,1)模型可发挥更多粒子群优化算法的作用,优化更多参数以及帮助模型求解等。模型本身可适用于各类小样本数据的中长期预测。
- (2)农业、林业、森林旅游业、工业和国内生产总值各自的产值变化量模型以及退耕还林影响评价模型在参数上可进行依赖性分析并简化参数,提高模型的普适性。改进后模型可用于国家退耕还林政策的决策过程。

参考文献

- [1]沈传河, 刘洋. 基于新陈代谢 GM(1, 1)误差校正的 GARCH 混合期权定价模型[J]. 统计与决策, 2021, 37(13):184-188. DOI:10. 13546/j. cnki. tjy.jc. 2021. 13. 043.
- [2]张颖,李晓格,温亚利.碳达峰碳中和背景下中国森林碳汇潜力分析研究[J].北京林业大学学报,2022,44(01):38-47.
- [3] 刘璠. 退耕还林行为动因的经济分析[J]. 北京林业大学学报(社会科学版),2003(04):22-27.
- [4] 刘璠. 退耕还林行为动因的经济分析[J]. 北京林业大学学报(社会科学版),2003(04):22-27.
- [5]朱玉娇. 退耕还林对经济和生态效益的影响研究[J]. 农业科技与信息, 2021 (08):64-65. DOI:10. 15979/j. cnki. cn62-1057/s. 2021. 08. 024.
- [6] 杨旭东, 李敏, 杨晓勤. 试论退耕还林的经济理论基础[J]. 北京林业大学学报(社会科学版), 2002(04):19-22.
- [7] 肖政, 谢屹. 退耕还林制度下的林业经济增长影响因素分析——以江西省为例[J]. 林业经济, 2012 (06):105-110. DOI:10. 13843/j. cnki. lyjj. 2012. 06. 018.
- [8] 张雅欣,罗荟霖,王灿.碳中和行动的国际趋势分析[J].气候变化研究进展,2021,17(01):88-97.

附录

附录 1 世界各国 TOPSIS 评分及排名

总排名	国家	收入分类	工业增加值	排名	GDP	排名	森林面积	排名	森林占比	排名	总排名	国家	收入分类	工业增加值	排名	GDP	排名	森林面积	排名	森林占比	排名
1	赤道几内亚	中高等收入国家	0.1464	2	0.0001	139	0.0003	99	0.1490	4	102	几内亚	低收入国家	0.0666	51	0.0001	130	0.0008	67	0.0446	109
3	文莱达鲁萨兰国 加蓬	高收入国家 中高等收入国家	0.1453 0.1071	3	0.0001	126 125	0.0000	143 25	0.1205	11 3	103 104	危地马拉 中非共和国	中高等收入国家 低收入国家	0.0470	125	0.0004	86 174	0.0005	79 26	0.0610	77
4	美国	高收入国家	0.0437	140	0.1357	1	0.0361	4	0.0543	90	105	伊朗伊斯兰共和国	中低等收入国家	0.0843		0.0029	29	0.0012	53	0.0099	166
5	苏里南	中高等收入国家	0.0699	43	0.0000		0.0018	44	0.1593	1	106	加纳	中低等收入国家	0.0449		0.0003	96	0.0010	59	0.0612	76
7	俄罗斯联邦 安哥拉	中高等收入国家中低等收入国家	0.0722	38	0.0172	62	0.0956	10	0.0805	55 31	107 108	也门共和国 塞尔维亚	低收入国家 中高等收入国家	0.0868		0.0003	70	0.0001	134 98	0.0017	185
8	圭亚那	中高等收入国家	0.0562	84	0.0000	169	0.0022	35	0.1528	2	109	塞拉利昂	低收入国家	0.0395	148		167	0.0003	93	0.0637	72
9	<u>日本</u> 巴西	高收入国家 中高等收入国家	0.0647	56 60	0.0503	9	0.0029	23	0.1110	16	110	瑞士 葡萄牙	高收入国家 高收入国家	0.0569	81	0.0057	19	0.0001	116	0.0499	98
10	巴布亚新几内亚	中低等收入国家	0.0637	62	0.0126		0.0030	19	0.1040	21	111	法国	高收入国家	0.0462		0.0018	42 6	0.0004	85 43	0.0586	104
12	刚果 (布)	中低等收入国家	0.0909	19	0.0001	142	0.0026	28	0.1052	19	113	尼日利亚	中低等收入国家	0.0637	59	0.0024	35	0.0028	24	0.0429	111
13	委内瑞拉玻利瓦尔共和国 利比亚	未分类国家 中高等收入国家	0.1016	13	0.0017	65	0.0057	16 153	0.0894	40 194	114	尼泊尔 克罗地亚	中低等收入国家 高收入国家	0.0304	176	0.0001	61	0.0007	71 109	0.0664	89
15	赞比亚	中低等收入国家	0.0866	24	0.0001	115	0.0055	17	0.1018	23	116	意大利	高收入国家	0.0509	107	0.0177	7	0.0002	58	0.0477	103
16 17	密克罗尼西亚联邦	中低等收入国家	0.0137	201 68	0.0000	194 36	0.0000	160 27	0.1484	5	117 118	萨尔瓦多 阿根廷	中低等收入国家中高等收入国家	0.0536		0.0002	105 25	0.0001	132 21	0.0510	97
18		高收入国家	0.0024	190			0.0000	165	0.1109	13	119	阿尔及利亚	中低等收入国家	0.0800		0.0037	54	0.0002	110	0.0012	186
19	印度尼西亚	中低等收入国家	0.0903	20	0.0053	20	0.0120	8	0.0910	38	120	新加坡	高收入国家	0.0612		0.0017	48	0.0000	174	0.0391	115
20		中低等收入国家 高收入国家	0.0718	39 50	0.0000	180 14	0.0003	97 70	0.1084	17 18	121	土耳其 南非	中高等收入国家中高等收入国家	0.0555	90	0.0049	21 31	0.0024	31	0.0437	110
22	利比里亚	低收入国家	0.0227	193	0.0000	159	0.0010	61	0.1360	7	123	马耳他	高收入国家	0.0784	29	0.0001	135	0.0000	195	0.0018	181
23	老挝	中低等收入国家	0.0508	110	0.0001		0.0020	40	0.1209	10	124	乌克兰	中低等收入国家	0.0685		0.0017	46	0.0011	55	0.0267	130
24 25	马来西亚 刚果(金)	中高等收入国家 低收入国家	0.0825	26 42	0.0018	98	0.0023	33 6	0.0967	29 25	125 126	印度 卢森堡	中低等收入国家	0.0556		0.0116	81	0.0080	11 159	0.0373	80
26	特立尼达和多巴哥	高收入国家	0.1034	12	0.0002	108	0.0000	151	0.0743	59	127	贝宁	中低等收入国家	0.0318	171	0.0001	145	0.0005	80	0.0564	84
27	瑞典 几内亚比绍共和国	高收入国家 低收入国家	0.0548	92 169	0.0043	23 188	0.0033	103	0.1113 0.1216	15 9	128 129	哈萨克斯坦 阿尔巴尼亚	中高等收入国家中高等收入国家	0.0748		0.0016	49 120	0.0004	87 127	0.0019	180
29	塞舌尔	高收入国家	0.0375	153	0.0000		0.0002	170	0.1210	12	130	瓦努阿图	中低等收入国家	0.0201	196	0.0000	190	0.0001	139	0.0589	81
30	波多黎各	高收入国家	0.0898	21	0.0008	63	0.0001	140		54	131	匈牙利	高收入国家	0.0561		0.0017	43	0.0002	105	0.0354	121
31	圣文森特和格林纳丁斯 秘鲁	中高等收入国家中高等收入国家	0.0355	163 49	0.0000	193 56	0.0000	171	0.1181	14 34	132	圣卢西亚 马拉维	中高等收入国家 低收入国家	0.0251		0.0000	176 155	0.0000	172 92	0.0557	99
33	斯洛文尼亚	高收入国家	0.0628	65	0.0007	69	0.0001	115	0.0992	26	134	澳大利亚	高收入国家	0.0546	94	0.0082	16	0.0156	7	0.0279	128
34 35	中国 卡塔尔	中高等收入国家 高收入国家	0.0919	18	0.0455	60	0.0222	199	0.0325	124 199	135 136	爱尔兰 布基纳法索	高收入国家 低收入国家	0.0660		0.0018	40 140	0.0001	131 66	0.0155	155 112
36	下增示 科威特	高收入国家	0.1346	5	0.0009	59	0.0000	185	0.0000	191	137	图瓦卢	中高等收入国家	0.0475		0.00001	201	0.0008	189	0.0541	91
37	哥伦比亚	中高等收入国家	0.0644	58	0.0019	39	0.0073	13	0.0906	39	138	冈比亚	低收入国家	0.0271	185	0.0000	183	0.0000	148	0.0527	96
38	洪都拉斯 萨摩亚	中低等收入国家中低等收入国家	0.0536	97 112	0.0001	117 189	0.0008	68 155	0.0968	28	139 140	塔古克斯坦 蒙古	中低等收入国家中低等收入国家	0.0691 0.0656	46 55	0.0001	146 134	0.0000	141 45	0.0048	172 158
40	列支敦士登	高收入国家	0.0872	22	0.0000	157	0.0000	182	0.0676	64	141	希腊	高收入国家	0.0362	162	0.0021	37	0.0004	83	0.0466	105
41	<u>伯利兹</u> 巴拿马	中低等收入国家中高等收入国家	0.0387	151	0.0000	184 94	0.0002	112 76	0.1018	32	142 143	古巴 比利时	中高等收入国家 高收入国家	0.0435		0.0007	67 24	0.0003	95 129	0.0412	113
43	伊拉克	中高等收入国家	0.1247	6	0.0003	55	0.0003	126	0.0030	176	144	毛里塔尼亚	中低等收入国家	0.0473		0.0000	158	0.0001	142	0.0006	189
44	巴拉圭	中高等收入国家	0.0626	66	0.0002	103	0.0025	30	0.0861	45	145	摩洛哥	中低等收入国家	0.0595	75	0.0007	66	0.0007	73	0.0204	139
45 46	東埔寨 哥斯达黎加	中低等收入国家中高等收入国家	0.0501 0.0528	111	0.0001	92	0.0012	52 91	0.0938	35 37	146 147	纳米比亚 毛里求斯	中高等收入国家 中高等收入国家	0.0618	108	0.0001	124	0.0009	62 164	0.0152	156 125
47	多米尼克	中高等收入国家	0.0279	183			0.0000	163	0.1046	20	148	多哥	低收入国家	0.0430		0.0000	162	0.0001	114	0.0378	116
48 49	坦桑尼亚	中低等收入国家	0.0458 0.0625	132 67	0.0004		0.0061	15 46	0.0949	33 46	149 150	阿拉伯埃及共和国 海地	中低等收入国家	0.0637	61 91	0.0017	47 137	0.0000	162 144	0.0001	196 138
50	厄瓜多尔 东帝汶	中高等收入国家中低等收入国家	0.0025	180	0.0000	72 175	0.0016	124	0.1029	22	151	亚美尼亚	中低等收入国家中高等收入国家	0.0554			123	0.0000	147	0.0221	143
51	缅甸 オンパルー	中低等收入国家	0.0559	87	0.0114	12	0.0039	20	0.0830	49	152	马达加斯加	低收入国家	0.0416		0.0001	132	0.0015	48	0.0360	119
52 53	玻利维亚 沙特阿拉伯	中低等收入国家 高收入国家	0.0630	63	0.0002	104 22	0.0064	122	0.0812	53 188	153 154	英国 乌拉圭	高收入国家 高收入国家	0.0457		0.0223	5 87	0.0004	89 111	0.0202	141
54	阿曼	高收入国家	0.1207	7	0.0004	79	0.0000	187	0.0000	197	155	荷兰	高收入国家	0.0534	99	0.0067	17	0.0000	145	0.0174	153
55 56	爱沙尼亚 阿拉伯联合酋长国	高收入国家	0.0541	95 10	0.0003	90	0.0003	100	0.0877	41 171	156 157	塞浦路斯 乌兹别克斯坦	高收入国家 中低等收入国家	0.0456		0.0002	102 71	0.0000	154 88	0.0299	127 162
57	加拿大	高收入国家	0.0585	79	0.0122	10	0.0409	3	0.0629	73	158	突尼斯	中低等收入国家	0.0576	80	0.0004	85	0.0001	130	0.0071	170
58 59	<u>圣多美和普林西比</u> 斐济	中低等收入国家 中高等收入国家	0.0326 0.0414	170 145	0.0000	195 163	0.0000	161 120	0.0967	30 36	159 160	丹麦 吉尔吉斯斯坦	高收入国家 中低等收入国家	0.0491		0.0029	28	0.0001	133	0.0227	136 165
60	白俄罗斯	中高等收入国家	0.0763	32	0.0007		0.0001	60	0.0924	65	161	阿拉伯叙利亚共和国	低收入国家	0.0524		0.0001	64	0.0001	138	0.0041	174
61	拉脱维亚	高收入国家	0.0466	126	0.0004	83	0.0004	86	0.0862	44	162	安提瓜和巴布达	高收入国家	0.0313		0.0000	181	0.0000	180	0.0336	123
62	<u>奥地利</u> 津巴布韦	高收入国家 中低等收入国家	0.0614	71 76	0.0032	26 116	0.0005	81 37	0.0756	57 56	163 164	摩尔多瓦 孟加拉国	中高等收入国家中低等收入国家	0.0464	128	0.0001	129 57	0.0000	146 108	0.0177	150 134
64	黑山	中高等收入国家	0.0371	155	0.0001	150	0.0001	128	0.0865	43	165	瑙魯	高收入国家	0.0512	106	0.0000	199	0.0000	199	0.0000	199
65 66	<u> </u>	中高等收入国家中低等收入国家	0.0462	130	0.0001	121 50	0.0001	135 49	0.0819	52 71	166 167	葉索托 科摩罗	中低等收入国家 中低等收入国家	0.0508		0.0000	179 185	0.0000	169 166	0.0018	182
67	阿塞拜疆	中高等收入国家	0.1008	14	0.0005	75	0.0001	121	0.0199	142	168	科特迪瓦	中低等收入国家	0.0393		0.0003	91	0.0006	75	0.0246	131
68	<u> </u>	低收入国家	0.0390	150	0.0002	107	0.0047	18	0.0827	50	169	约旦	中高等收入国家	0.0495	113	0.0002	101	0.0000	158	0.0018	183
69 70	—————————————————————————————————————	中高等收入国家高收入国家	0.0694	45 74	0.0025	33	0.0023	32 51	0.0622	74 95	170 171	佛得角 以色列	中低等收入国家 高收入国家	0.0448	138	0.0000	178 30	0.0000	167 156	0.0151	157 163
71	喀麦隆	中低等收入国家	0.0547	93	0.0002		0.0025	29	0.0732	60	172	黎巴嫩	中高等收入国家	0.0380	152	0.0005	77	0.0000	157	0.0221	137
72	格林纳达 斯洛伐克共和国	中高等收入国家 高收入国家	0.0313	173 57	0.0000	186 58	0.0000	173	0.0845	48 70	173 174	厄立特里亚 冰岛	低收入国家 高收入国家	0.0399	147	0.0000	177	0.0001	119	0.0185	146
74	土库曼斯坦	中高等收入国家	0.0998	15	0.0003	93	0.0005	78	0.0143	160	175	巴巴多斯	高收入国家	0.0343	166	0.0000	153	0.0000	183	0.0238	133
75 76	博茨瓦纳 捷克共和国	中高等收入国家 高收入国家	0.0790	28	0.0001	131	0.0020	96	0.0488	100	176 177	9干达 约旦河西岸和加沙	低收入国家 中低等收入国家	0.0335	168	0.0002	109	0.0003	90 179	0.0240	132 178
77	马绍尔群岛	中高等收入国家	0.0273	184	0.0000	198	0.0000	178	0.0848	47	178	阿富汗	低收入国家	0.0447	139	0.0001	113	0.0000	117	0.0030	177
78	多米尼加共和国	中高等收入国家	0.0611	73	0.0004		0.0002	106	0.0661	67	179	埃塞俄比亚	低收入国家	0.0262		0.0005	76	0.0022	36	0.0276	129
79 80	新喀里多尼亚 南苏丹	高收入国家 低收入国家	0.0490	117	0.0001	97	0.0001	125 64	0.0743	58 148	180 181	巴基斯坦 百慕大	中低等收入国家 高收入国家	0.0429	000	0.0015	52 156	0.0005	77 189	0.0088	168 126
81	开曼群岛	高收入国家	0.0165	199	0.0001	138	0.0000	175	0.0870	42	182	卢旺达	低收入国家	0.0362	160	0.0000	154	0.0000	150	0.0186	145
82	墨西哥 保加利亚	中高等收入国家 中高等收入国家			0.0084		0.0080	12 84	0.0566	94 94	183 184	马里 汤加	低收入国家 中高等收入国家	0.0362		0.0001		0.0016	47 181		151
84	巴哈马	高收入国家	0.0266	186	0.0001	136	0.0001	136	0.0827	51	185	苏丹	低收入国家	0.0343	167	0.0003	88	0.0023	34	0.0163	154
85	塞内加尔	中低等收入国家			0.0001		0.0010	57	0.0731	61	186	肯尼亚 特古斯科斯群岛	中低等收入国家	0.0365		0.0004		0.0004	82	0.0107	164 149
86 87	格鲁吉亚	高收入国家 中高等收入国家	0.0680		0.0030		0.0014	50 94	0.0539 0.0652	93 69	187 188	特克斯科斯群岛 格陵兰	高收入国家 高收入国家	0.0294	154	0.0000	170	0.0000	177 196	0.0180	198
88	巴林	高收入国家	0.0967	16	0.0003	95	0.0000	192	0.0010	187	189	阿鲁巴	高收入国家	0.0363	159	0.0000	161	0.0000	193	0.0038	175
90	波斯尼亚和黑塞哥维那 罗马尼亚	中高等收入国家中高等收入国家					0.0003	102 69	0.0680	63 107	190 191	布隆迪 法罗群岛	低收入国家 高收入国家	0.0308		0.0000		0.0000	152 197	0.0146	159 195
91	新西兰	高收入国家	0.0590	77	0.0012	53	0.0011	54	0.0602	78	192	尼日尔	低收入国家	0.0353	165	0.0001	148	0.0002	113	0.0017	184
92	圣基茨和尼维斯	高收入国家	0.0470		0.0000		0.0000	176	0.0687	62	193	库拉索	高收入国家	0.0354		0.0001		0.0000	198	0.0003	193
93	非律宾 智利	中低等收入国家 高收入国家	0.0767	31	0.0017		0.0008	63	0.0393	114 120	194 195	索马里 圣马丁(荷属)	低收入国家 高收入国家	0.0200		0.0000		0.0008	65 194	0.0185	147
95	尼加拉瓜	中低等收入国家	0.0478	120	0.0001	141	0.0006	74	0.0654	68	196	乍得	低收入国家	0.0290	181	0.0001	149	0.0007	72	0.0075	169
96 97	斯威士兰 北马其顿	中低等收入国家 中高等收入国家	0.0712		0.0000		0.0001	137	0.0452 0.0616	108 75	197 198	摩纳哥 吉布提	高收入国家 中低等收入国家	0.0301	177	0.0001	151 172	0.0000	199 184	0.0000	199
98	斯里兰卡	中低等收入国家			0.0001		0.0001	101	0.0564	85	199	马恩岛	高收入国家	0.0287		0.0000		0.0000	186	0.0004	167
99	西班牙 波兰	高收入国家	0.0527	102	0.0103		0.0020	39	0.0561	86	200	基里巴斯	中低等收入国家	0.0237		0.0000		0.0000	188	0.0024	179
100	波三 立陶宛	高收入国家	0.0629 0.0586		0.0058			56 104	0.0487	101 92	201	马尔代夫	中高等收入国家	0.0221	194	0.0000	105	0.0000	191	0.0044	173