Simulare Examen de bacalaureat 2025 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

A. MECANICĂ

SUBIECTUL I $(10 \times 3 \text{ puncte} = 30 \text{ puncte})$ Nr subject 1 2 3 4 5 6 8 10 Varianta corectă a a a a

SUB	IECTUL II.1	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru: $\Delta t = \frac{h}{v}$ rezultat final: $\Delta t = 49 \text{ s}$	р 3р
b.	Pentru: $P = m \cdot g \cdot v$ rezultat final: $P = 2.0 \cdot 10^3 \text{ W}$	p 4p
c.	Pentru: $\frac{m \cdot v_1^2}{2} = m \cdot g \cdot h \Rightarrow v_1 = \sqrt{2 \cdot g \cdot h}$ rezultat final: $v_1 = 14$ m/s	p 4p
d.	Pentru: $g = \frac{\Delta v}{t_c} \Rightarrow t_c = \frac{v_1}{g}$ rezultat final : $t_c = 1.4$ s	р 4р

SUB	BIECTUL II.2	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	Pentru:		
	T = mg	1p	
	$T = \mu Mg$	1p	4p
	$M = \frac{m}{\mu}$	1p	4 p
	rezultat final: $M = 100 \text{ kg}$	1p	
b.	Pentru:		
	$v = \frac{D}{\Delta t}$ $D = l_0 - d$	1p	
	$D = I_0 = d$		4p
	$l_0 - d$	1p	- tb
	v	1p	
	rezultat final $\Delta t = 2$ s	1p	
c.	Pentru:		
		2p	
	$a = \frac{-k\Delta l}{M+m}$		4p
	Regulational $a = -2$ m/s ²	1p	
		1p	
d.	Pentru:		
	$k = \frac{SE}{l_0}$	1p	
	$C = \pi r^2$		3p
		1p	
	rezultat final $E \cong 10.8 \cdot 10^6 \text{ N/m}^2$	1p	

SUBIECTUL III.1 (15 puncte) Soluție, rezolvare Punctaj Pentru: 3p reprezentarea corectă a tuturor forțelor b. Pentru: 4p $E_c = m \cdot \alpha \cdot x$ sau $E_c = m \cdot g(\sin \alpha - \mu \cos \alpha) \cdot x$ 4p Pentru: c. calcularea valorilor energiei cinetice 1p indicarea pe axe a mărimilor fizice și a unităților de măsură 1p 4p reprezentarea punctelor corespunzătoare valorilor determinate experimental 1p trasarea dreptei reprezentând dependența $E_c = f(x)$ 1p Pentru: d. $a = \frac{v^2 - v_0^2}{2 \cdot \Delta x} \Rightarrow a = 2m/s^2$ 1p $ma = G_t - F_f \Rightarrow \mu = \frac{g \cdot \sin \alpha - a}{g \cdot \cos \alpha}$ 4p 2p rezultat final: $\mu \approx 0.35$ 1p

SUB	IECTUL III.2	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru:	
	$E_c = \frac{Mv^2}{2}$	4p
	rezultat final: E_c = 25 kJ	_
b.	Pentru:	3p
	reprezentarea corectă a greutății, reacțiunii normale și a forței de frecare	o Sp
c.	Pentru:	
	$L_{F_f} = -F_f d 1$,
	$F_f = \mu M_a \cos \alpha$	
	$L_{F_f} = -\mu Mgl$) ¬¬р
	rezultat final $L_{F_f} = -1.4 \text{ kJ}$)
d.	Pentru:	
	$\Delta E_c = L_G + L_{F_f}$,
	$L_C = Mgh$	
	$ L_G = Mgh $ $ h = \frac{v^2}{2g} + \mu l $) ⁴ P
	rezultat final: $h = 33 \text{ m}$)

Simulare Examen de bacalaureat 2025 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

B. ELEMENTE DE TERMODINAMICĂ

SUBIECTUL I $(10 \times 3 \text{ puncte} = 30 \text{ pu})$							<u>uncte)</u>			
Nr subiect	1	2	3	4	5	6	7	8	9	10
Varianta corectă	b	b	d	a	c	d	b	a	b	d

BIECTUL II.1		(15 puncte)
$\mathbf{a}.\ m_{0,2} = \frac{\mu_2}{N_A}$	2p	
R final: $m_{0,2} \cong 4.6 \cdot 10^{-23}$ g	1p	3p
$\mathbf{b}.\ p_A V_A = \frac{m}{\mu_A} R T_A$	1p	
$p_B V_B = \frac{m}{\mu_2} R T_B$	1p	4p
$p_B V_B = \frac{m^{r_1}}{\mu_2} R T_B$ $\frac{p_A}{p_B} = \frac{1}{2} \frac{T_A}{T_B} \frac{\mu_2}{\mu_1}$	1p	
R final: $\frac{p_A}{p_B} = \frac{7}{12} \approx 0.58$	1p	
$\mathbf{c.} \ p(2V_B - S\Delta x) = \frac{m}{\mu_1} RT$ $p(V_B + S\Delta x) = \frac{m}{\mu_2} RT$ $V_B = \frac{LS}{3}$	1p 1p	4p
$p(V_B + S\Delta x) = \frac{m}{m}RT$	ТР	¬Р
LS	1p	
$V_B = \frac{1}{3}$	1p	
R final: $\Delta x = 0.2 \text{ m} = 20 \text{ cm}$	-	
$\mathbf{d}.\ \mu_{am} = \frac{m_{am}}{\vartheta_{am}}$	lp	4p
$\mu_{am} = \frac{2\mu_1 \mu_2}{\mu_1 + \mu_2}$	2p	тр
R final: $\mu_{am} = 29.86 \frac{g}{\text{mol}} \approx 30 \frac{g}{\text{mol}}$	1p	

SUBIECTUL II.2		(1:	5 puncte)
$\mathbf{a.} \vartheta_1 = \frac{p_1 V_1}{RT}$ $\vartheta_2 = \frac{p_2 V_2}{RT}$	1p 1p	3p	
$\theta_2 = \frac{p_2 V_2}{RT}$		Sp.	
R final: $\theta_1 = 0.8mol$; $\theta_2 = 4mol$	1p		
b. p = $\frac{(\vartheta_1 + \vartheta_2)RT}{V_1 + V_2} = \frac{12}{7} \frac{\vartheta_1 RT}{V_1} = \frac{12}{7} p_1 (\cong 8,57 \cdot 10^5 Pa)$	1p		
$\vartheta_1'' = \frac{pV_1}{RT} = \frac{12}{7}\vartheta_1$	1p	4p	
$m_1^{"}=artheta_1^{"}\mu$	1p		
R final: $m_1^{"} = 5{,}48g \cong 5{,}5 \text{ g}$	1p		
c. θ_2^* =ct; V_2 =ct – încălzire izocoră	1p	4p	
$\frac{p}{T} = \frac{p_2^{"}}{T_2}$	1p		
$T - T_2$			
$p_2'' = \frac{12}{7} \frac{p_1 T_2}{T}$	1p		
R final: $p_2^n = 11,42 \cdot 10^5 \text{Pa}$	1p		
$\mathbf{d.}\Delta\mathbf{U}_1=U_1"-U_1$	1p		
$\mathbf{d.} \Delta U_1 = U_1^r - U_1$ $\Delta U_1 = C_V T(\vartheta_1^r - \vartheta_1) = \frac{15}{14} \vartheta_1 RT$		4p	
$\Delta v_1 - c_V I (v_1 - v_1) = \frac{14}{14} v_1 K I$	2p		

D.C. 1 ATT 2424 O.I.	4	
	l In	
$ \mathbf{K} \mathbf{M} \Delta U_1 - \Delta I_3 U_1 \mathbf{K} \mathbf{M} \Delta U_1 - \Delta I_3 U_1 \Delta I_3 U_$	1 10	

SUBIECTUL III.1 (15 puncte)

a. Reprezentarea corectă în p-T a ciclului termodinamic	4p	4p
$\mathbf{b.} \mathbf{Q}_{12} = \vartheta \mathcal{C}_V (\mathbf{T}_2 - T_1)$	1p	
$T_{max} = T_2 = T_1 + \frac{2Q_{12}}{5\theta R}$		3p
	1p	
R final: $T_{max} = 900 \text{ K}$	1p	
$C.L_{tot} = L_{23} + L_{41}$	1p	
$C.L_{tot} = L_{23} + L_{41}$ $L_{41} = -\vartheta RT_1 \ln \left(\frac{V_3}{V_1}\right)$ $\ln \left(\frac{V_3}{V_1}\right) = \frac{L_{23}}{\vartheta RT_2} = \frac{5}{3}$	1p	4p
$ln\left(\frac{V_3}{V}\right) = \frac{L_{23}}{^{3}RT} = \frac{5}{3}$	1p	
R final: $L_{tot} = 1000 \text{ J}$	1p	
$\mathbf{d.}\eta = \frac{L_{tot}}{Q_{abs}}$	2p	4p
$Q_{abs} = Q_{12} + Q_{23} = Q_{12} + L_{23}$	1p	
R final: $\eta = \frac{1}{3} \cong 0.33$	1p	

SUBIECTUL III.2 (15 puncte)

a. Reprezentarea corectă în p-V a proceselor descrise pe cele două căi	4p	4p
b. $L_{A-1-B} = L_{A-1} + L_{1-B} = L_{1-B}$ $L_{1-B} = p_B(V_B - V_A)$ R final: $L_{A-1-B} = 100 \text{ J}$	1p 1p 1p	3p
$\mathbf{c.ln}(2,25) = ln\left(\frac{9}{4}\right) = 2ln\left(\frac{3}{2}\right)$ $Q_{A-2} = \vartheta RT_A ln\left(\frac{V_B}{V_A}\right) = p_A V_A ln\left(\frac{3}{2}\right) = \frac{p_A V_A}{2} ln(2,25)$ $R \text{ final: } Q_{A-2} = 160 \text{ J}$	1p 2p 1p	4p
$\mathbf{d.} \eta = \frac{L_{A-2-B-1-A}}{Q_{abs}}$ $L_{A-2-B-1-A} = L_{A-2} + L_{B-1} = Q_{A-2} + (-L_{1-B})$ $Q_{abs} = Q_{1-A} + Q_{A-2} = \vartheta C_V (T_A - T_1) + Q_{A-2} = \frac{3}{2} V_A (p_A - p_B) + Q_{A-2}$ $R \text{final:} \eta = \frac{3}{23} \cong 0,13$	1p 1p 1p 1p	4p

Simulare Examen de bacalaureat 2025 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

SUBIECTUL I $(10 \times 3 \text{ puncte} = 30 \text{ pu})$						<u>uncte)</u>				
Nr subiect	1	2	3	4	5	6	7	8	9	10
Varianta corectă	c	a	b	c	d	b	a	c	a	a

SUB	IECTUL II.1	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru reprezentare corectă	4p
b.	$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2}$ $R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4}$	•
	$R_{12} = \frac{1}{R_1 + R_2}$	
	$R_3 \cdot R_4$	4.5
	$R_{34} = \frac{1}{R_2 + R_4}$	4p
	$R_{ach} = R_{12} + R_{34}$	
	Calcul numeric $R_{ech} \cong 9.3 \Omega$)
c.	Calcul numeric $R_{ech} \cong 9.3 \Omega$ $E_{ech} = 2E, r_{ech} = \frac{2r}{3}$ $U = IR_{12}$ $I = \frac{E_{ech}}{R_{ech} + r_{ech}}$	
	$II = IR_{12}$	•
	E_{ach}	4p
	$I = \frac{ecn}{P + r}$) -
	$R_{ech} + R_{ech}$ Calcul numeric $U \cong 26.7 \text{ V}$)
d.	$\frac{E}{1 - E}$)
	$I_{SC} = \frac{1}{r}$	3p
	Calcul numeric $I_{sc} = 20 \text{ A}$	_

SUBIECTUL II.2 (15 puncte) Soluție, rezolvare Punctaj $R = R_1 + R_2$ 2p 3p Calcul numeric $R = 35 \Omega$ 1p b. U = IR2p $U_1 = IR_1$ 1p 4p Calcul numeric U = 8,75 V1p c. u = Ir1p u = E - U1p 4p $E = U_0$ 1p Calcul numeric $r = 1 \Omega$ $R' = R_2 + \frac{R_1 \cdot R_A}{R_1 + R_A}$ 1p 1p $I' = \frac{E}{R' + r}$ $I_A R_A = (I' - I_A) R_1$ Calcul numeric $I_A = 0.36 \text{ A}$ 1p 4p 1p 1p

SUB	IECTUL III.1	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$W = \frac{1}{R_2} \cdot \Delta t$	p 4p
	Calcul numeric $W = 5.4 \cdot 10^3 \text{J}$	p
b.	$P = E \cdot I$	р

	$I = \frac{E - U}{I}$	2p	4p
	r Calcul numeric $P = 32 W$	1p	
c.	U U	2p	
	$\frac{\eta - \overline{E}}{E}$		3p
d.	Calcul numeric $\eta = 75\%$	1p	
u.	$I_b = I - \frac{\sigma}{R_2}$	1p	
	U^{-}		4n
	$R_b = \frac{1}{I_b}$	1p	4p
	$R_b = R_{01}(1 + \alpha \cdot t)$ Calcul numeric $t = 2000$ °C	1p 1p	
	Calcul numeric $t = 2000$ °C	- P	

SUBIECTUL III.2 (15 puncte)

	ECTUE III,2	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$W = 2P_n \tau$) 10
	Calcul numeric $W = 180 \mathrm{J}$	$\frac{2}{9}$ 4p
b.	$R_b = R_0(1 + \alpha t)$)
	$R_b = \frac{U_n^2}{P_n}$	4p
	Carear nameric v 2000 a	_
c.	$I_n = \frac{P_n}{U_n}$ $E = I_n r + 2U_n$ $E = 2I_n r + U_n$ $Calcul numeric E = 9 V$	4p
d.	$ \eta_{s} = \frac{2U_{n}}{E} $ $ \eta_{p} = \frac{U_{n}}{E} $ Calcul numeric $\frac{\eta_{s}}{\eta_{p}} = 2$) 3p

Simulare Examen de bacalaureat 2025 Proba E. d) FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE VARIANTA 1

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10 **D. OPTICĂ**

SUBIECTUL I $(10 \times 3 \text{ puncte} = 30 \text{ puncte})$ Nr subject 2 5 1 3 4 6 8 10 Varianta corectă b b b a a

SUB	SIECTUL II.1	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	reprezentare corectă	Зр	3p
b.	$\beta = x_2/x_1 = -5$ Formula lentilelor si aflarea $f = x_1x_2/(x_1 - x_2)$	lp lp lp lp	4p
c.	aflarea coordonatei celuilalt capăt $x_2' = fx_1'/(f + x_1')$	2p lp lp	4p
d.	$F = -30 \text{ cm} x_2'' = Fx_1/(F + x_1)$	lp lp lp lp	4p

SUBIECTUL II.2		(15 puncte)	
	Soluție, rezolvare		Punctaj
a.	f = R/(n-1) rezultat final $f = 1$ m	2p 1p	3p
b.	formula lentilelor $x_2 = fx_1/(f + x_1)$ $x_2 = 2 \text{ m}$	1p 2p 1p	4p
c.	$\beta = y_2/y_1 = x_2/x_1$ rezultat final $y_2 = -10$ cm	3p 1p	4p
d.	aflarea imaginii prin lama $\Delta x = l\left(1 - \frac{1}{n_1}\right)$ $x_1' = -1.9 \text{ m}$ $x_2' = fx_1'/(f + x_1')$ rezultat final $x_2' = 2.11 \text{ m}$	1p 1p 1p 1p	4p

SUB	IECTUL III.1	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	$v = \frac{c}{\lambda}$	
	$\nu = 0.6 \cdot 10^{15} \mathrm{Hz}$	3p
b.	$i = \lambda D/d$	
	Rezultat final $i = 5 \cdot 10^{-4} \mathrm{m}$	4p
		TP
c.	$i_1 = \lambda_1 D/d$	
	$i/i_1 = \lambda/\lambda_1$	
	$\lambda/\lambda_1 = n$	
	Rezultat final $n = 1,25$	
d.	f = 1/C	
	aflarea locului unde se formează imaginea fantelor $x_2 = fx_1/(f + x_1)$	
	aflarea distanței dintre imagini $y_2 = d = 1,5 \text{ mm}$	
	aflarea interfranjei $i = \frac{\lambda(D-x_2)}{v_2} = 1,66 \cdot 10^{-4} \text{ m}$	тр
	$y_2 = 1,00 \cdot 10 \cdot 11$	

SUB	BIECTUL III.2	(1	15 puncte)
	Soluție, rezolvare		Punctaj
a.	$L = hc/\lambda_0 \lambda_0 = 5,38 \cdot 10^{-7} \text{m} = 538 \text{ nm}$	2p 1p	3p
b.	$E_{cmax} = m v_{max}^2 / 2$ $v_{max} = \sqrt{2E_{cmax}/m}$ $E_{cmax} = eU_s$ $v_{max1}/v_{max2} = \sqrt{U_{s1}/U_{s2}}$	1p 1p 1p	4p
c.	$E_c = (hc/\lambda) - L$ $E_c = 1,27 \cdot 10^{-19} \text{ J}$	3p 1p	4p
d.	$E = N \cdot h c / \lambda_2$ $N \cong 3 \cdot 10^{15}$	3p 1p	4p