de résolution angulaire de l'œil de l'utilisateur, supposé emmétrope, est de 1,5'.
La monture de l'objectif est diaphragme d'ouverture, son diamètre vaut φ₁ = 25 mm. La monture de l'oculaire est diaphragme de champ, φ₂ = 12 mm.
1. Objet à l'infini
1.1. Définir le grossissement de la lunette à l'aide d'un schéma de principe et calculer

La lunette «suiveuse» d'un télescope est une lunette afocale composée d'un objectif L_1 de distance focale $f'_1 = 200 \, \text{mm}$ et d'un oculaire L_2 de distance focale $f'_2 = 25 \, \text{mm}$. La limite

sa valeur.

1.2. La limite de résolution est-elle liée à l'œil de l'observateur ou à la diffraction par la monture de la lunette? On prendra comme longueur d'onde moyenne $\lambda = 550 \, nm$.