QSAR Fish Toxicity Data Set] (https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxic (https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxic

- Data
 - Attribute Information
 - Datatable
 - Boxplots
 - Histograms
 - Scatter Plots & Correlations
 - Correlation Heat Map
- · Models (TODO)
 - Using regsubsets() to find best-fitted model

Data

This dataset was used to develop quantitative regression QSAR models to predict acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals. LC50 data, which is the concentration that causes death in 50% of test fish over a test duration of 96 hours, was used as model response. The model comprised 6 molecular descriptors: MLOGP (molecular properties), CIC0 (information indices), GATS1i (2D autocorrelations), NdssC (atom-type counts), NdsCH ((atom-type counts), SM1_Dz(Z) (2D matrix-based descriptors). Details can be found in the quoted reference: M. Cassotti, D. Ballabio, R. Todeschini, V. Consonni. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas), SAR and QSAR in Environmental Research (2015), 26, 217-243; doi: 10.1080/1062936X.2015.1018938

Attribute Information

6 molecular descriptors and 1 quantitative experimental response:

- 1. CICO
- 2. SM1_Dz(Z)
- 3. GATS1i
- 4. NdsCH
- 5. NdssC
- 6. MLOGP
- 7. quantitative response, LC50 [-LOG(mol/L)]

Datatable

Data

Raw Data	Normalized Data	Statistics Summary of Normalized Data	
Show 10 \$	entries		Search:

	CICO	SM1_Dz	GATS1i	NdsCH	NdssC	MLOGP	у
1	3.26	0.829	1.676	0	1	1.453	3.77
2	2.189	0.58	0.863	0	0	1.348	3.115
3	2.125	0.638	0.831	0	0	1.348	3.531
4	3.027	0.331	1.472	1	0	1.807	3.51
5	2.094	0.827	0.86	0	0	1.886	5.39
6	3.222	0.331	2.177	0	0	0.706	1.819
7	3.179	0	1.063	0	0	2.942	3.947
8	3	0	0.938	1	0	2.851	3.513
9	2.62	0.499	0.99	0	0	2.942	4.402
10	2.834	0.134	0.95	0	0	1.591	3.021

Showing 1 to 10 of 908 entries Previous 1 2 3 4 5 ... 91 Next

Boxplots


```
p <- ggplot(data = meltdt, aes(factor(variable),value)) + geom_boxplot() + xlab("") + ylab("")
p %>% ggplotly(.)
```


Histograms

Histogram of Response Variable

Histograms of Explanatory Variables

Scatter Plots & Correlations

Correlation Heat Map

Models (TODO)

Using regsubsets() to find best-fitted model

models <- regsubsets(dt\$y ~., data = dt, method = "exhaustive")</pre> models_summary <- summary(models); models_summary</pre>

```
## Subset selection object
## Call: eval(expr, envir, enclos)
## 6 Variables (and intercept)
         Forced in Forced out
## CIC0
             FALSE
                        FALSE
## SM1 Dz
             FALSE
                        FALSE
## GATS1i
             FALSE
                        FALSE
## NdsCH
             FALSE
                        FALSE
## NdssC
             FALSE
                        FALSE
## MLOGP
             FALSE
                        FALSE
\#\# 1 subsets of each size up to 6
## Selection Algorithm: exhaustive
           CICO SM1_Dz GATS1i NdsCH NdssC MLOGP
## 1 (1)""""
## 2 ( 1 ) " "
## 3 (1) " " *"
                       " "
                              " * "
## 4 ( 1 ) " " *"
                       11 4 11
                              " 4 "
                                          11 4 11
## 5 (1) "*" "*"
                       "*"
                              " * "
                                    . .
                                          "*"
## 6 (1) "*" "*"
                       " * "
```

```
models_res <- data.frame(
Adj.R2 = which.max(models_summary$adjr2),
   CP = which.min(models_summary$cp)
); models_res # observation: model 6</pre>
```

```
## Adj.R2 CP
## 1 6 6
```

```
models_summary$adjr2
```

```
## [1] 0.4240310 0.5053395 0.5398406 0.5492448 0.5736370 0.5743478
```

Best-fitted model summary

```
# Using the best model (model 6, selecting all variables) (& generate residual plot):
reg <- lm(dt$y ~ ., data = dt)
summary(reg)</pre>
```

```
##
## Call:
## lm(formula = dt$y ~ ., data = dt)
##
## Residuals:
##
    Min
              10 Median
                             30
                                    Max
## -4.4921 -0.5287 -0.0712 0.4861 5.6876
##
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.17456 0.18122 12.000 < 2e-16 ***
                        0.06089 6.333 3.79e-10 ***
## CIC0
              0.38563
## SM1 Dz
             1.25562 0.08702 14.430 < 2e-16 ***
              -0.74641 0.10135 -7.365 4.00e-13 ***
## GATS1i
## NdsCH
              0.41355
                         0.05410
                                  7.644 5.41e-14 ***
                                 1.583 0.114
## NdssC
              0.06433
                         0.04064
## MLOGP
              0.39005
                       0.03376 11.555 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9497 on 901 degrees of freedom
## Multiple R-squared: 0.5772, Adjusted R-squared: 0.5743
## F-statistic: 205 on 6 and 901 DF, p-value: < 2.2e-16
```

Residual Plots

