1 Limites en l'infini

1.1 Définition(limite finie)

Soit L un réel.

La fonction f a pour limite L quand x tend vers $+\infty$, si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) pour x assez grand.

On note
$$\lim_{x \to +\infty} f(x) = L$$

Remarque : On définit de manière analogue une limite réelle en $-\infty$.

1.2 Définition: Asymptote

Lorsque $\lim_{x \to +\infty} f(x) = L$, alors on dit que la droite horizontale d'équation y = L est une asymptote horizontale à la courbe représentative $\mathscr C$ de f en $+\infty$.

Remarque : On définit de manière analogue une asymptote horizontale en $-\infty$

lorsque
$$\lim_{x \to -\infty} f(x) = L$$
.

Illustration

Quelle que soit la taille de l'intervalle ouvert centré sur L (du "tube"), à partir d'une valeur x_0 , tous les points de la courbe "rentrent dans le tube" formé par l'intervalle I autour de la limite L.

1.3 **Définition**(limite $+\infty$)

La fonction f a pour limite $+\infty$ quand x tend vers $+\infty$ si tout intervalle ouvert du type A; $+\infty$ [contient toutes les valeurs de f(x) pour x assez grand.

On note
$$\lim_{x \to +\infty} f(x) = +\infty$$

Illustration

Quelle que soit la hauteur de la "barre", à partir d'une valeur x_0 , tous les points de la courbe passent audessus de la "barre" A.

Remarque:

Il existe des fonctions qui n'ont pas de limite en $+\infty$. Par exemple, la fonction cosinus.

1.4 **Définition**(limite $-\infty$)

La fonction f a pour limite $-\infty$ quand x tend vers $+\infty$ si tout intervalle ouvert du type $]-\infty$; A[contient toutes les valeurs de f(x) pour x assez grand.

On note
$$\lim_{x \to +\infty} f(x) = -\infty$$

2 Limites en un réel a

Soit f une fonction définie sur \mathcal{D}_f . On étudie la limite de f en un nombre réel a que si $a \in \mathcal{D}_f$ ou si $a \notin \mathcal{D}_f$ lorsque a est une borne de \mathcal{D}_f

2.1 Définition : Limites à gauche et à droite

— Lorsque x tend vers a par valeurs inférieures à a, on parle de limite à gauche en a et

on note :
$$\lim_{\substack{x \to a \\ x < a}} f(x)$$
 ou $\lim_{x \to a^{-}} f(x)$

— Lorsque x tend vers a par valeurs supérieures à a, on parle de limite à droite en a et

on note :
$$\lim_{\substack{x \to a \\ x > a}} f(x)$$
 ou $\lim_{x \to a^+} f(x)$

2.2 Définition (limite finie)

Soit L un réel.

La fonction f a pour limite L quand x tend vers a, si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) pour x assez proche de a.

On note
$$\lim_{x \to a} f(x) = L$$

Autrement dit, si pour tout intervalle ouvert I contenant L, il existe un réel r strictement positif tel que pour tout $x \in]a-r; a+r[\cap \mathcal{D}_f, f(x) \in I$

Illustration

Quand x est suffisamment proche de a, f(x) devient proche de L.

Remarque:

Si de plus L = f(a) alors on dit que la fonction f est continue en a. (voir T03)

2.3 Définition(limite $+\infty$)

La fonction f a pour limite $+\infty$ quand x tend vers a, si tout intervalle ouvert du type]A; $+\infty$ [contient toutes les valeurs de f(x) pour x assez proche a.

On note
$$\lim_{x \to a} f(x) = +\infty$$

Autrement dit, si pour tout réel A, il existe un réel r strictement positif tel que pour tout $x \in]a-r; a+r[\cap \mathcal{D}_f, f(x) > A$

2.4 Définition Asymptote

Lorsque $\lim_{x\to a} f(x) = +\infty$, alors on dit que la droite verticale d'équation x = a est une asymptote verticale à la courbe représentative $\mathscr C$ de f.

Illustration

Quelle que soit la hauteur de la "barre", pour tout x suffisamment proche de a, tous les points de la courbe se trouvent au-dessus de la "barre" A et "collent" dans un "tube" autour de l'asymptote d'équation x = a.

2.5 **Définition**(limite $-\infty$)

La fonction f a pour limite $-\infty$ quand x tend vers a, si tout intervalle ouvert du type $]-\infty$, A[contient toutes les valeurs de f(x) pour x assez proche a.

On note
$$\lim_{x \to a} f(x) = -\infty$$

Autrement dit, si pour tout réel A, il existe un réel r strictement positif tel que pour tout $x \in]a-r; a+r[\cap \mathcal{D}_f, f(x) < A$

2.6 Définition Asymptote

Lorsque $\lim_{x\to a} f(x) = -\infty$, alors on dit que la droite verticale d'équation x=a est une asymptote verticale à la courbe représentative $\mathscr C$ de f.

3 Opérations sur les limites

3.1 Limites de fonctions de référence (A CONNAITRE)

Fonction	Limite
$x \longmapsto k$	$\lim_{x \to +\infty} k = \lim_{x \to -\infty} k = k$
$x \longmapsto \sqrt{x}$	$\lim_{x \to +\infty} \sqrt{x} = +\infty$
	$\lim_{x \to +\infty} x^n = +\infty$
$x \longmapsto x^n$	si <i>n</i> est pair alors $\lim_{x \to -\infty} x^n = +\infty$
	si <i>n</i> est impair alors $\lim_{x \to -\infty} x^n = -\infty$

Fonction	Limite
	$\lim_{x \to +\infty} \frac{1}{x^n} = \lim_{x \to -\infty} \frac{1}{x^n} = 0$
	$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty$
$x \longmapsto \frac{1}{x^n}$	si n est pair, $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = +\infty$
	si n est impair, $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = -\infty$
	$\lim_{x \to +\infty} e^x = +\infty$
$x \longmapsto e^x$	$\lim_{x \to +\infty} e^x = +\infty$
	$\lim_{x \to -\infty} e^x = 0$

3.1.1 preuve de la limite de la fonction exponentielle en $+\infty$

Le nombre e est supérieur strictement à 1, donc la suite géométrique (e^n) diverge vers $+\infty$ (voir cours T05) Donc pour tout réel A positif, il existe un rang n_0 tel que pour tout entier $n > n_0$, $e^n > A$

Pour x assez grand comme $x > n_0$, comme la fonction exponentielle est croissante, on a $e^x > e^{n_0}$ et donc pour tout $x > n_0$, on a $e^x > A$

Donc d'après la définition 1.3, $\lim_{x\to+\infty} e^x = +\infty$

3.2 Limites: somme et produit

Soient f et g deux fontions définies sur le même ensemble de définition. a désigne un réel ou $+\infty$ ou $-\infty$ et L et L' désignent des nombres réels.

3.2.1 Limites: somme

$\operatorname{Si} \lim_{x \to a} f(x) = \dots$	L	L	L	+∞	+∞	$-\infty$
Si $\lim_{x \to a} g(x) = \dots$	L'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
alors $\lim_{x \to a} (f(x) + g(x)) = \dots$	L+L'	+∞	$-\infty$	+∞	FI	-∞

Dans le cas noté FI pour forme indéterminée, on ne peut pas conclure immédiatement et tout résultat est possible. Dans un tel cas, il faut lever l'indétermination en changeant l'écriture.

3.2.2 Limites: produit

$\operatorname{Si} \lim_{x \to a} f(x) = \dots$	L	L>0	L>0	L < 0	L < 0	+∞	+∞	$-\infty$	L = 0
Si $\lim_{x \to a} g(x) = \dots$	L'	+∞	-∞	+∞	$-\infty$	+∞	$-\infty$	$-\infty$	+∞ ou −∞
alors $\lim_{x \to a} (f(x) \times g(x)) = \dots$	L×L'	+∞	-∞	$-\infty$	+∞	+∞	$-\infty$	+∞	FI

3.3 Limites: quotients

3.3.1 Cas où $\lim_{x \to a} g(x) \neq 0$

Si $\lim_{x \to a} f(x) = \dots$	L	L	+∞	+∞	-∞	-∞	+∞ ou −∞
Si $\lim_{x \to a} g(x) = \dots$	L'	+∞ ou −∞	L' > 0	L' < 0	L'>0	L' < 0	+∞ ou −∞
alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \dots$	<u>L</u> L'	0	+∞	-∞	-∞	+∞	FI

3.3.2 Cas où $\lim_{x \to a} g(x) = 0$

$\operatorname{Si} \lim_{x \to a} f(x) = \dots$	L > 0 ou +∞	L < 0 ou −∞	L > 0 ou +∞	L < 0 ou −∞	0
$\operatorname{Si} \lim_{x \to a} g(x) = \dots$	0 par valeurs positives	0 par valeurs positives	0 par valeurs négatives	0 par valeurs négatives	0
alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \dots$	+∞	-∞	-∞	+∞	FI

3.4 Limites de fonctions composées

Pour calculer la limite d'une fonction composée, on effectue le plus souvent un changement de variable et on suit la méthode suivante.

3.4.1 Application : Limite de la fonction exponentielle en $-\infty$

$$\lim_{x \to -\infty} e^x = 0$$

preuve:

on peut écrire $e^x = \frac{1}{e^{-x}}$

on a $\lim_{x \to -\infty} -x = +\infty$ et $\lim_{X \to +\infty} e^X = +\infty$ d'après la preuve 3.1.1

Donc on obtient que $\lim_{x \to -\infty} e^{-x} = +\infty$

D'après les règles sur les limites de quotient (3.3), on a $\lim_{x\to-\infty}\frac{1}{e^{-x}}=0$

Donc $\lim_{x\to-\infty} e^x = 0$

Exemple Déterminer la limite de la fonction $h(x) = (5-6x)^5$ en $-\infty$ et $+\infty$

On pose u(x) = 5 - 6x et $v(X) = X^5$, donc $h = v \circ u$ $\lim_{x \to -\infty} 5 - 6x = +\infty \text{ et } \lim_{X \to +\infty} X^5 = +\infty \text{ donc } \lim_{x \to -\infty} h(x) = +\infty$

 $\lim_{x \to +\infty} 5 - 6x = -\infty \text{ et } \lim_{X \to -\infty} X^5 = -\infty \text{ donc } \lim_{x \to +\infty} h(x) = -\infty$

4 Limites et comparaison

Soient a, α et β des réels et r un réel stritement positif.

4.1 Théorème de comparaison

Soient deux fonctions f et g définies $\sup \alpha; +\infty[$,

Si pour tout réel
$$x$$
 de $]\alpha; +\infty[$, $f(x) \le g(x)$ et $\lim_{x \to +\infty} f(x) = +\infty$

alors
$$\lim_{x \to +\infty} g(x) = +\infty$$

4.2 Propriété

Soient deux fonctions f et g définies $\sup \alpha; +\infty[$,

Si pour tout réel
$$x$$
 de $]\alpha; +\infty[$, $f(x) \le g(x)$ et $\lim_{x \to +\infty} g(x) = -\infty$

alors
$$\lim_{x \to +\infty} f(x) = -\infty$$

4.3 Théorème des gendarmes

Soient trois fonctions f, g et h définies $\sup \alpha$; $+\infty$ [,

Si pour tout réel
$$x$$
 de $]\alpha$; $+\infty$ [, $f(x) \le g(x) \le h(x)$ et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$

alors
$$\lim_{x \to +\infty} h(x) = L$$

Remarque:

Ces théorèmes s'étendent au cas de limite en $-\infty$. On remplace alors dans l'énoncé du théorème et de la propriété $]\alpha; +\infty[$ par $]-\infty;\beta[$.

Ces théorèmes s'étendent au cas de limite en un réel a. On remplace alors dans l'énoncé du théorème et de la propriété $]\alpha; +\infty[$ par]a-r;a+r[.

4.4 Croissance comparée

4.4.1 Lemme(admis)

Pour tout x réel, $e^x \ge x + 1$

4.4.2 Théorème

Pour tout entier naturel *n* non nul, $\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$

Preuve:

On utilise le lemme pour $\frac{x}{n+1}$

Ainsi on obtient l'inégalité : $e^{\frac{x}{n+1}} \ge \frac{x}{n+1} + 1$

Or la fonction $f: \longrightarrow x^{n+1}$ est croissante sur $[0; +\infty[$ et $e^{\frac{x}{n+1}}$ est un réel positif

, comme la fonction exponentielle est positive sur \mathbb{R} , et $\frac{x}{n+1}+1$ est positif lorsque x est positif.

Donc pour tout réel
$$x$$
 positif, $\left(e^{\frac{x}{n+1}}\right)^{n+1} \ge \left(\frac{x}{n+1} + 1\right)^{n+1}$

Or
$$\left(e^{\frac{x}{n+1}}\right)^{n+1} = e^x$$
 et $\left(\frac{x}{n+1} + 1\right)^{n+1} = \frac{x^{n+1}}{(n+1)^{n+1}} = kx$ en posant $k = \frac{1}{(n+1)^{n+1}}$ où k est un réel positif donc on a $e^x \ge kx^{n+1}$

Pour tout réel x strictement positif, on peut diviser par x^n chaque membre de l'inégalité sans en modifier l'ordre car x^n est strictement positif pour x > 0

Pour tout
$$x > 0$$
, on $\frac{e^x}{x^n} \ge kx$

Or
$$\lim_{x \to +\infty} kx = +\infty$$

Donc d'après le théorème de comparaison , $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$

Remarque:

On énonce souvent ce résultat ainsi : "en $+\infty$, l'exponentielle l'emporte sur les puissance x^n ".

4.4.3 Corollaire(admis)

Pour tout entier naturel n non nul, $\lim_{x \to +\infty} x^n e^{-x} = 0$ et $\lim_{x \to -\infty} x^n e^x = 0$

Exercice d'application (1)

Soit la fonction f définie sur l'intervalle $[0;+\infty[$ par $f(x)=\sqrt{x}$ Démontrer que $\lim_{x\to+\infty}f(x)=+\infty$

Exercice d'application (2)

Soit la fonction f définie sur l'intervalle $[0; +\infty[$ par $f(x) = \frac{1}{x}$ Démontrer que $\lim_{x \to +\infty} f(x) = 0$

Interpréter graphiquement cette limite.