Masalah Penugasan

Tujuan : Memahami dan membuat formulasi model dari permasalahan alokasi sumber daya yang ada dan solusinya

Masalah penugasan adalah masalah pemasangan satu sumber daya dengan tepat satu aktivitas dan satu aktivitas dengan tepat satu sumber daya, yang memenuhi tujuan (yaitu meminimumkan biaya). Masalah penugasan ini merupakan bentuk khusus masalah transportasi dengan n tempat asal dan n tempat tujuan. Penyelesaiannya berupa 1 (dipasangkan) atau 0 (tidak dipasangkan). Walaupun untuk menyelesaikan masalah penugasan ini dapat digunakan metode enumeratif ataupun metode transportasi, tetapi lebih disarankan untuk digunakan metode Hongaria.

Prinsip dari metode Hongaria adalah dengan melakukan manipulasi terhadap matriks biaya yang diberikan. Manipulasi tersebut adalah operasi pengurangan elemen tiap baris dengan elemen minimum barisnya. Kemudian melakukan operasi pengurangan elemen tiap kolom dengan elemen minimum kolomnya. Setelah itu, melakukan pembuatan garis yang melalui elemen-elemen '0'. Selanjutnya, dicari elemen minimum pada submatriks yang tidak dilewati garis. Akhirnya, elemen minimum tersebut dikurangkan dari setiap elemen pada submatriks yang tidak dilewati garis dan ditambahkan pada elemen yang dilalui dua garis. Manipulasi terhadap matriks biaya tersebut dilakukan beberapa kali sampai diperoleh matriks biaya optimum, yang dapat diidentifikasi dengan banyaknya garis (yang melalui elemen '0') tepat sama dengan n.

Apabila banyak sumber daya tidak sama dengan aktivitas maka diperkenalkan peubah rekaan. Apabila tujuannya adalah memaksimumkan (keuntungan) maka untuk hal ini diselesaikan dengan meminimumkan negatif dari biaya.

Masalah Minimisasi

Misalkan sebuah perusahaan memiliki 3 tenaga ahli yang berdomisili di tiga daerah. Mereka akan dikirim ketiga daerah lain yang membutuhkan dengan alokasi biaya dalam jutaan. Alokasikan tenaga ahli tersebut sehingga hanya satu tenaga ahli hanya untuk satu lokasi tujuan dengan meminimalisasi biaya perjalanan.

		Tujuan		
		Pontianak	Yogyakarta	Denpasar
	Jakarta	25	31	35
li Ahl	Surabaya	15	20	24
Domisili Ahli	Ujung Pandang	22	19	17

Penyelesaian:

Iterasi 1 : Buatlah Tabel opportunity cost baris(elemen setiap baris – elemen terkecil pada baris tersebut)

Iterasi 2 : Buatlah Tabel opportunity cost kolom (elemen setiap kolom – elemen terkecil pada kolom tersebut).)

Iterasi 3:

- Kurangi semua angka yang tidak tertutup garis (dua angka nol pada setiap garis yang terbentuk) dengan angka terkecil yang tidak tertutup.
- Tambahkan angka terkecil itu pada angka yang menempati posisi silang

Pastikan jumlah garis minimal sama dengan baris/kolom yang tersedia, maka solusi telah optimum. Cat: iterasi 1 dan 2 boleh ditukar urutannya.

Kesimpulan:

Alokasi sumber daya yang ada, yaitu ahli domisili Jakarta ditugaskan ke Pontianak, ahli domisili Surabaya ditugaskan ke Yogyakarta, ahli domisili Ujung pandang ditugaskan ke Denpasar dengan total biaya perjalanan sebesar 25 + 20 +17 = 62 juta

Masalah Maksimum

Misalkan sebuah perusahaan mempekerjakan 3 salesman untuk tiga daerah untuk tiga daerah pemasarannya. Perkiraan penjualan setiap salesman untuk setiap pasar ditunjukkan sebagai berikut. Tentukan alokasi terbaik setiap salesman hanya dengan satu pasar saja agar mendapatkan keuntungan maksimum!

			Pasar	•
		Р	Q	R
۲	Α	25	31	35
SalesmenA	В	15	20	24
Sale	С	22	19	17

Penyelesaian:

Iterasi 1 : Buatlah Tabel regret (elemen terbesar setiap baris – setiap elemen baris tersebut)

Iterasi 2: Buatlah Tabel opportunity cost kolom dan baris

menjadi

Pastikan jumlah garis minimal sama dengan baris/kolom yang tersedia, maka solusi telah optimum. Cat: iterasi 3 sama dengan cara minimisasi.

Kesimpulan:

Alokasi sumber daya yang ada terdapat dua alternatif.

- I. Salesmen A ditugaskan ke pasar Q, Salesmen B ditugaskan ke pasar R, Salesmen
 C ditugaskan ke pasar P. Total maksimum penjualan : 31 + 24 +22 = 77 juta
- II. Salesmen A ditugaskan ke pasar R, Salesmen B ditugaskan ke pasar Q, SalesmenC ditugaskan ke pasar P. Total maksimum penjualan : 22 + 20 +35 = 77 juta

Sumber:

Lia Praba Kusuma Putri, Diktat Riset Operasional Design, Teknik Informatika, Universitas Indraprasta PGRI, Jakarta, 2010.

Kasus:

Sebuah perusahaan pengecoran logam mempunyai 4 jenis mesin yang diberi nama M1, M2, M3 dan M4. Setiap mesin memiliki kapasitas yang berbeda dalam pengoperasiannya. Dalam minggu mendatang perusahaan mendapatkan pesanan untuk menyelesaikan 4 jenis pekerjaan (job) yaitu J1, J2, J3 dan J4. Biaya pengoperasian setiap pekerjaan oleh keempat mesin sbb:

lob	Mesin			
Job	M1	M2	M3	M4
J1	210	150	180	130
J2	140	160	200	190
J3	150	175	220	200
J4	200	115	160	190

Penyelesaian:

1. Tabel Biaya

	M1	M2	МЗ	M4	S
J1	210 1	150	180	130	1
J2	140	160	200	190	1
J3	150	175	220	200	1
J4	200	115	160	190 1	1
D	1	1	1	1	4

2. Melakukan pengurangan kolom

Job	Mesin			
JOD	M1	M2	M3	M4
J1	70	35	20	0
J2	0	45	40	60
J3	10	60	60	70
J4	60	0	0	60

3. Melakukan pengurangan baris

Job	Mesin			
300	M1	M2	M3	M4
J1	70	35	20	0
J2	0	45	40	60
J3	0	50	50	20
J4	60	0	0	60

4. Membentuk penugasan optimum

	Mesin			
Job	M1	M2	M3	M4
J1	70	35	20	0
J2	0	45	40	60
J3	0	50	50	20
J4	60	0	0	60

5. Melakukan revisi tabel

	Mesin			
Job	M1	M2	M3	M4
J1	110	35	20	0
J2	00	5	0	20
J3	0	10	10	20
J4	100	0	0	60

6. Menentukan penugasan optimum

	Mesin					
Job	M1	M2	M3	M4		
J1				1		

J2			1	
J3	1			
J4		1		

Perhitungan biaya minimum:

Contoh lain Assignment (penugasan)

Pekerjaan				
Karyawan	1	II	III	IV
A	. 15	20	18	22
В	14	16	21	17
С	25	20	23	20
D	17	18	18	16

Lokasikan masing-masing karyawan utuk masing-masing pekerjaan agar biayanya minimum. Hitunglah besarnya biaya yang harus dibayarkan perusahaan.

Matriks opportunity cost

Pilihlah elemen terkecil setiap baris dan gunakan untuk mengurangi seluruh elemen pada baris tersebut

Pekerjaan				
Karyawan	I	II	III	IV
А	0	5	3	7
В	0	2	7	3
С	5	0	3	0
D	1	2	2	0

Reduced cost matrix

P	ekerjaan				
Karyawan			II	III	IV
A		Q	5	1	7
В		Θ	2	5	3
 C		5	0.	1	0
 D		4	2	0	۵
				9	

Pilihlah elemen terkecil yang belum terliput dan gunakan elemen tersebut untuk mengurangi seluruh elemen yang belum terliput. Serta gunakan utuk menambah elemen yang berada pada persimpangan liputan

Pekerjaa	an			
Karyawan	1	II	III	IV
A	~b	4	0	6
В	D	1	4	2
C	6	0	1	0.
D	2	2		n

Alokasikan :

 Karyawan A
 : III
 : 18

 Karyawan B
 : I
 : 14

 Karyawan C
 : II
 : 20

 Karyawan D
 : IV
 : 16

68

Soa-soal Latihan:

Selesaikan soal di bawah dengan menggunakan Metode Penugasan

1.

Tenaga	Wilayah Penjualan					
Penjual	Kota Bengkulu	Bengkulu	Bengkulu Utara	Rejang Lebong		
		Selatan				
Feri	200	500	300	250		
Anisah	300	600	400	250		
Jihan	350	200	175	100		
Bella	500	800	550	650		

2.

Jenis Produk	Hari					
	Senin	Minggu				
Lemari buku	8	7	5	5		
Lemari	5	4	3	4		
Meja Tulis	6	6	4	5		
Meja	10	9	6	7		
Kursi	8	3	3	10		

Ketentuan:

- a) Selesaikan dengan menggunakan POM for Windows
- b) Tampilkan iterasi masing-masing soal.
- c) Buatkan kesimpulan Anda sendiri!

Soal-soal latihan:

 Ada 6 calon karyawan untuk menjabat 4 buah tugas. Tiap tugas hanya dapat dikerjakan oleh satu orang. Ke 6 orang calon tersebut masing-masing di tes mengerjakan ke 4 tugas tersebut. Waktu pengerjaan masing-masing adalah sebagai berikut (menit)

Tugas / Calon	T1	T2	T3	T4
C1	65	73	63	57
C2	67	70	65	58

C3	68	72	69	55
C4	67	75	70	59
C5	71	69	75	57
C6	69	71	66	59

Bila anda manager sumber daya manusia, tentukan alokasi kerja dan total waktu pengerjaan minimalnya. Tentukan pula calon yang terpaksa ditolak.

2. Ada 5 pembeli (P1,P2, P3, P4, P5) yang ingin membeli 5 mobil yang dilelang (M1, M2, M3, M4, M5). Penawaran lelang dalam amplop tertutup. Pihak yang melelang memperoleh data penawaran seperti berikut (US\$)

Mobil/Calon Pembeli	M1	M2	М3	M4	M5
P1	3000	2500	3300	2600	3100
P2	3500	3000	2800	2800	3300
P3	2800	2900	3900	2300	3600
P4	3300	3100	3400	2900	3500
P5	2800	3500	3600	2900	3000

Carilah kepada siapa ke 5 mobil tersebut harus dijual agar perolehannya maksimum. Cari juga nilai peroleh maksimum tersebut.

3. Sebuah pabrik mempunyai 4 divisi yang berbeda. Masing-masing divisi dapat memproduksi 4 produk (kecuali divisi D1 tidak dapat dapat memproduksi produk P3) dengan kecepatan yang berbeda-beda. Hanya satu macam produk yang boleh diproduksi oleh setiap divisi. Tingkat produksi setiap hari sebagai berikut.

Produk / Divisi	P1	P2	P3	P4
D1	100	60	0	80
D2	100	80	140	100
D3	110	75	150	120
D4	85	50	100	75

Carilah penugasan produksi setiap divisi yang memaksimumkan keluaran produk total setiap hari.