1.3 명제의 동치									
교과목명	이산수학	분반		담당교수	김 외 현				
학부(과)		학번		성명					

정의 항진명제, 모순, 불확정명제

- (1) 항진명제
 - : 합성명제를 구성하는 단순명제의 진리값에 상관없이 항상 참인 명제
- (2) 모순
 - : 합성명제를 구성하는 단순명제의 진리값에 상관없이 항상 거짓인 명제
- (3) 불확정명제
 - : 항진명제도 아니고 모순도 아닌 명제 즉, 경우에 따라 참 또는 거짓의 진리값을 갖는 명제

예제 다음을 구하여라.

1. 한 개의 명제 변수를 사용하여 항진명제와 모순의 예를 만들어보아라.

1.3.2 논리적 동치

정의 논리적 동치

p ≡ q (or p⇔q)
: 두 합성명제 p, q에 대하여
p ↔ q가 항진명제

두 합성명제가 모든 경우에 동일한 진리값을 갖는 경우는 동치이다.

예제 다음을 구하여라.

2. $\neg (p \lor q)$ 와 $\neg p \land \neg q$ 가 논리적 동치임을 보여라.

3. $p \rightarrow q$ 와 $\neg p \lor q$ 가 논리적 동치임을 보여라.(이것 은 조건-논리합 동치라고 부른다.)

4. $p \lor (q \land r)$ 과 $(p \lor q) \land (p \lor r)$ 이 논리적 동치임을 보여라.

1.3.3 드 모르간 법칙 사용하기

$$: \neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

p	q	¬р	$\neg q$	(p ∨ q)	¬(p∨q)	$\neg p \land \neg q$
Т	Т	F	F	Ţ	F	F
Т	F	F	Т	T	F	F
F	Т	T	F	Т	F	F
F	F	Т	Т	F	T	T

예제 다음을 구하여라.

5. 드 모르간 법칙을 사용하여 "철수는 휴대폰과 노트 북을 가지고 있다."와 "해인이가 콘서트에 가거나 수미가 콘서트에 갈 것이다."의 부정을 표현하라.

참고 주요 논리적 동치

항등 법칙 : $p \wedge T \equiv p$, $p \vee F \equiv p$

지배 법칙 : $p \lor T \equiv T$, $p \land F \equiv F$

등멱 법칙 : $p \lor p \equiv p$, $p \land p \equiv p$

이중 부정 법칙 : $\neg(\neg p) \equiv p$

부정 법칙 : $p \lor \neg p \equiv T$, $p \land \neg p \equiv F$

교환 법칙 : $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

결합 법칙 : $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

분배 법칙 : $(p \lor (q \land r)) \equiv (p \lor q) \land (p \land r)$

 $(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$

흡수 법칙 : $p \lor (p \land q) \equiv p$, $p \land (p \lor q) \equiv p$

참고 조건문을 포함한 논리적 동치

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

참고 상호 조건문을 포함한 논리적 동치

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

1.3.4 새로운 논리적 동치 만들기

주요 논리적 동치와 그 외 이미 입증된 동치를 사용하여 새로운 논리적 동치를 만들 수 있다.

 $A\equiv B$ 임을 보이기 위해 A로 시작해서 B로 끝나는 동치를 만들어 낸다.

$$A \equiv A_1$$

$$A_1 \equiv A_2$$

:

$$A_n \equiv B$$

예제 다음을 구하여라.

6. $\neg(p \rightarrow q)$ 와 $p \land \neg q$ 가 논리적으로 동치임을 보여 라.

7. 논리적 동치를 연속적으로 적용하여 $\neg (p \lor (\neg p \land q)) 와 \quad \neg p \land \neg q \vdash \quad 논리적 \quad 동치임을 \\ 보여라.$

8. $(p \land q) \rightarrow (p \lor q)$ 가 항진명제임을 보여라.