Universidade Federal Fluminense

Instituto de Matemática e Estatística

Lista 03

- 1. Gere uma amostra de tamanho 100 das seguintes distribuições:
 - (a) Uniforme $\{0,...,10\}$.
 - (b) Gama(2,3).
 - (c) Normal(3,9).
 - (d) Exponencial(7).
- 2. Faça um histograma para cada amostra obtida nos itens (b), (c) e (d) na questão anterior e plot sobre o histograma a função densidade de probabilidade das variáveis aleatórias de onde as amsotras foram sorteadas. Apresente todos os gráficos numa mesma figura. Utilize margens adequadas para melhor visualização dos gráficos.
- 3. Para a variável $X \sim \text{Poisson}(5)$, faça o que se pede
 - (a) Calcule P(X > 0).
 - (b) Calcule $P(3 \le X < 12)$.
 - (c) Encontre x_0 tal que, $P(X \le x_0) = 0,76$.
 - (d) Encontre x_0 tal que, $P(X > x_0) = 0,73$.
- 4. Para a variável $X \sim \text{Beta}(3,10)$, faça o que se pede::
 - (a) Calcule $P(X \ge 0, 7)$.
 - (b) Calcule $P(0, 2 \le X < 0, 25)$.
 - (c) Encontre x_0 tal que, $P(X \le x_0) = 0, 20$.
 - (d) Encontre x_0 tal que, $P(X > x_0) = 0$, 12.
- 5. Gere uma amostra de tamanho 200 para cada uma das variáveis a seguir e verifique por meio de um applot se a amostra gerada é proveniente de uma distribuição $\chi^2(2)$.
 - (a) N(10, 5).
 - (b) Gama(2, 4).
 - (c) Poisson(2).
 - (d) $\chi^2_{(2)}$.
- 6. Suponha que $X \sim \text{Exponencial}(5)$ e $Y \sim \text{Binomial}(15,0.3)$. Calcule:
 - (a) P(X > 5).
 - (b) $P(2 < X \le 9)$.
 - (c) P(X = 0).
 - (d) P(X < 2).
 - (e) P(Y = 2).
 - (f) P(Y < 5).
 - (q) P(-2 < Y < 6).

- (h) $P(2 < Y \le 9)$.
- (i) P(Y > 3).
- 7. Suponha que X tem função densidade de probabilidade dada por

$$f(x) = \frac{x^3}{20}, \quad 1 \le x \le 3.$$

Calcule as sequintes probabilidades:

- (a) P(X > 2).
- (b) $P(2 < X \le 2, 6)$.
- (c) P(X > 2, 8).
- (d) P(X < 2) + P(X > 2, 5).
- 8. Plote a função de distribuição acumulada das sequintes variáveis aleatórias.
 - (a) Uniforme(0,10).
 - (b) Gama(2,3).
 - (c) Normal(3,9).
 - (d) Exponencial(7).
 - (e) X, com $f(x) = \frac{x^3}{20}$, $1 \le x \le 3$.
 - (f) Uniforme {0, 1, 2, 3}.
- 9. Plote o gráfico da função de probabilidade e da função de distribuição acumulada das seguintes variáveis aleatórias.
 - (a) Binomial(100,0.85), para os valores de -1 a 110.
 - (b) Poisson(5), para valores de -5 a 25.

1 0,05 2 0,35	
2 0.35	
-,	
(c) $\begin{pmatrix} 3 & 0.15 \\ 0.05 & , para valores de 0 a \end{pmatrix}$	10
4 0,05 , para valores de 0 a	10.
5 0,20	
6 0,15	
7 0,05	

- 10. Gere uma amostra de tamanho 1000 de uma Exponencial(5) e acrescente uma linha vertical vermelha no histograma no valor da média da distribuição e uma linha vertical azul no valor da média amostral.
- 11. Seja X uma v.a. com função de probabilidade dada por:

Χ	P(X = x)
1	0,05
2	0,35
3	0,15
4	0,05
5	0,20
6	0,15
7	0,00
8	0,00
9	0,05

- (a) Faça o gráfico de sua função de probabilidade de X.
- (b) Faça o gráfico de F(x), x = 0, ..., 12..
- 12. Crie a seguinte função no R e faça o que se pede abaixo.

$$f(x,k) = \frac{\Gamma(k)e^{-kx-3}}{k}, x, k > 0.$$

- (a) Plote a função f(x, 4), -2 < x < 6.
- (b) Plote a função f(2, k), -2 < k < 10.
- (c) Maximize a função acima, considerando que k=2.
- (d) Plote a função que foi maximizada no item anterior e uma linha vertical no valor que maximiza a função.
- 13. Encontre uma estimativa de máxima verossimilhança do parâmetro desconhecido das distribuições abaixo se foram observadas as amostras fornecidas em cada caso (Faça cada item maximizando a função de verossimilhança e a função de log-verossimilhança).
 - (a) $X \sim \text{Gama}(3,\beta)$, x = (1, 2, 2.4, 2.8, 5, 1, 3, 4, 6.3, 2.9)
 - (b) $X \sim \text{Normal } (\mu,10), x = (10, 12, 11, 12.8, 13, 14.9, 12, 16.2)$
 - (c) $X \sim \text{Geom?trica(p)}, x = c(2, 3, 2, 2, 3, 3, 3, 4, 4, 5, 7, 2, 2, 2)$
 - (d) $X \sim \text{Normal}(10, \sigma^2)$, x = c(25, 23, 22, 21, 27, 39, 35, 33, 32)
 - (e) $X \sim \text{Exponencial}(\eta), x = (4, 5, 6.2, 4, 3, 5, 6.9, 7, 9.3)$
- 14. Para checar o resultado do teorema central do limite faça o seguinte: (1) gere 1.000 amostras de tamanho n, (2) Calcule a média de cada amostra (3) Faça um histograma com as médias das amostras e compare com a curva da respectiva distribuição apontada pelo teorema para \bar{X} . Siga os passos para todos os seguintes valores de n=2,5,10,50,100. O que acontece com a distribuição de \bar{X} a medida que n cresce em cada um dos casos abaixo?:
 - (a) $X \sim \text{Gama}(2,8)$.
 - (b) $X \sim \text{Geom?trica}(0.8)$.
 - (c) $X \sim \text{Uniforme}(2,20)$.

		•
(d)	X	P(X = x)
	1	0,05
	2	0,35
	3	0,15
	4	0,05
	5	0,20
	6	0,15
	7	0,05
		•

- (e) $X \sim \text{Normal}(2,8)$.
- (f) $X \sim \text{Binomial}(20,0.8)$.
- (g) $X \sim \chi^2_{(3)}$.
- 15. Seja $X \sim N(25,70)$, $T \sim \chi^2_{(5)}$, $Y \sim Exp(10)$, $Z \sim Gama(3,5)$ e $W \sim Gama(10,5)$. Verifique se as afirmações abaixo são verdadeiras:
 - (a) $Z + W \sim Gama(13, 5)$.
 - (b) $2Y \sim Gama(2, 10)$.

- (c) $\frac{\bar{X}-25}{\sqrt{70/5}} \sim \mathcal{N}(0,1)$, se $\bar{X} = \sum_{i=1}^5 \frac{X_i}{5}$, em que X_i é uma a.a.s. de X.
- (d) $3T \sim Gama(\frac{15}{2}, \frac{1}{2})$. (e) $\sum_{i=1}^{3} X_i + 20 \sim N(95, 210)$.