PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-350669

(43)Date of publication of application: 21.12.2001

(51)Int.Cl.

GOSF 12/08 GOSF 3/08

G11B 20/10

(21)Application number: 2000-175556

(22)Date of filing: 07.06.2000

(71)Applicant:

HITACHI LTD

(72)Inventor: IGUCHI SHINYA

TSUNODA MOTOYASU HONDA KIYOSHI ICHIKAWA MASATOSHI TAKAYASU ATSUSHI

NISHIKAWA MANABU

(54) PRE-READ PREDICTING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a pre-read predicting device controlling a pre-read quantity and obtaining an access characteristic for every region on memory media for improving the utilization efficiency of a cache memory in a disk device with the cache memory mounted. SOLUTION: This pre-read predicting device comprises a weighted statistical circuit, a register group, a pre-read calculating circuit, and a work memory. The command data sent via a data bus are retained in the work memory, and the command history retained in the work memory is statistically processed by the weighted statistical circuit in consideration of the order of the command history. The statistical result is compared with the sent command by a pre-read quantity calculating circuit to calculate a pre-read quantity. In statistical processing, an evaluated value for every region of the memory media is retained in the work memory as reference for a disk control device in the data substituting work of the cache memory.

FIL

EGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-350669

(P2001-350669A)

(43)公開日 平成13年12月21日(2001.12.21)

(51) Int.CL7		識別記号	FI	テーマコート*(参考)	
G06F	12/08	505	G06F 12/08	505C 5B005	
3001	10,00	543		543B 5B065	
		557		557 5D044	
	3/06	302	3/06	302A	
0110	-	302	G11B 20/10	A	
G11B 2	20/10			部求項の数5 OL (全 26 頁)	
(21)出願番号		特顏2000-175556(P2000-175556)		. 000005108 株式会社日立製作所	
(22)出願日		平成12年6月7日(2000.6.7)	東京都一	千代田区神田駿河台四丁目6番地	
		•	(72)発明者 井口 🖠	真也	
			神奈川県	県川崎市麻生区王禅寺1099番地 株	
			式会社	日立製作所システム開発研究所内	
			(72)発明者 角田 ラ	元泰	
			神奈川	県川崎市麻生区王禅寺1099番地 株	
			式会社	日立製作所システム開発研究所内	
			(74)代理人 1000750	96	
			弁理士	作田 康夫	
				最終頁に続く	

(54) 【発明の名称】 先読み予測装置

(57)【要約】

【課題】キャッシュメモリを搭載したディスク装置において、キャッシュメモリの利用効率を改善するため、先 読み量の制御と、記録媒体上の領域ごとのアクセス特性 を求める先読み予測装置を提供する。

【解決手段】加重統計回路、レジスタ群、先読み量計算回路および、ワークメモリから構成された先読み予測装置を構成し、データバスを介して送られてきたコマンドデータをワークメモリへ保持すると共に、ワークメモリへ保持されたコマンド履歴を加重統計回路でコマンド履歴の順序を考慮した統計処理を行い、その統計結果と送られてきたコマンドを先読み量計算回路で比較し、先読み量を算出する。また、統計処理を行う際、ディスク制御装置がキャッシュメモリのデータの置換などの作業を行う際参照できるように、記録媒体の領域ごとの評価値をワークメモリへ保持しておく。

【特許請求の範囲】

【請求項1】現在のコマンドと以前のコマンドの履歴か ら最適な先読み量を算出する先読み予測装置において、 コマンドの履歴と、コマンド履歴内の各コマンドの順 序、コマンドがアクセスしたロジカルブロックアドレス 及びセクタ数によって重み付けして統計処理を行った結 果を保持しておくワークメモリと、コマンド履歴のアク セス順序から重み付け統計処理を行う際に用いる評価値 を求めるための評価値変換テーブルと、コマンドの履歴 をワークメモリから取り出し、評価値変換テーブルを用 いて評価値を求め、統計データと統計データの範囲の広 がりを計算し、ワークメモリへ統計データを記録する加 重統計計算回路と、統計データの範囲の広がりを先読み 量の比率に変換する比較変換テーブルと、ワークメモリ 内の統計データと現在のコマンドを比較し対応する統計 データの先読み量に関するデータを取り出し、比較変換 テーブルを用いて算出した先読み比率と積をとることで 先読み量を算出する先読み計算回路からなることを特徴 とする先読み予測装置。

【請求項2】請求項1記載の先読み予測装置を内蔵し、ホストとのインタフェースを制御するインタフェース制御回路、複数のアドレスパスを制御するアドレスマルチプレクサ、データパスを制御するデータマルチプレクサ、記録媒体を制御するディスクフォーマッタ、エラー訂正を行うECC、各モジュールを制御するシーケンサから構成され、ホストからコマンドを受け取ると直接先読み予測装置を起動して先読み量を計算し、ディスクフォーマッタに最大先読み量を設定することで記録媒体からの先読みを制限することを特徴とするディスク制御装置。

【請求項3】請求項1記載の先読み予測装置と、ディスク制御装置、キャッシュメモリ、ROM、CPU、記録媒体を制御するサーボ系制御回路から構成され、ディスク制御装置がホストからコマンドを受け取ると、CPUに対してディスク制御装置が割り込みを発生させることでコマンドの入力を知らせ、CPUが先読み予測装置を制御して先読み量を算出し、ディスク制御装置に対して先読み量を設定することを特徴とする記録装置。

【請求項4】請求項2記載のディスク制御装置を内蔵した記録装置において、CPUがキャッシュメモリ内のデータをセグメント単位で扱い、個々のセグメント情報を記録したセグメント管理テーブルによってセグメントを管理するキャッシュメモリの制御方式において、先読み予測装置が計算した評価値をCPUが読み出し、その評価値をセグメント管理テーブルの各セグメントに関する評価値情報と比較し、最も評価値が低いセグメント情報を破棄することで、先読みを行うデータの格納領域をキャッシュメモリ上に確保することを特徴とする記録装置。

【請求項5】請求項4記載の記録装置において、ホストの発行したコマンドが、キャッシュメモリ内のデータの

一部にヒットした場合(ハーフヒット)、先読み予測装置が計算したアクセス評価値を調べ、評価値が高ければハーフヒットしたセグメントに不足分のデータを記録媒体から読み出すことで新しいセグメントを生成することなくハーフヒットしたセグメントのセグメントサイズを拡大することで、評価値の高いセグメントを残すように制御を行うことを特徴とする記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記憶装置及びそれ を搭載する情報機器に関係し、特に記録装置からのデー タの先読みの制御方式に関する。

[0002]

【従来の技術】磁気ディスクを用いた記憶装置におい て、磁気ディスクのシーク動作などを考慮すると、アク セス速度はそれを使用するホストのデータ転送速度と比 較してかなり低速である。このため、従来から磁気ディ スクを用いた記憶装置にはこれらの速度差を吸収するた めにキャッシュメモリが搭載されてきた。これを用い て、一度磁気ディスクから読み出されたデータをキャッ シュメモリへ保存し、さらに、ホストが一度要求したデ ータの論理ブロックアドレス(以下、LBA)に対応するデ 一タを磁気ディスクよりあらかじめ読み出す先読みと呼 ばれる機能を用いることで、ホストへのデータ転送速度 を向上させてきた。従来技術では、特開平6-119244に記 載されているように、記録装置の物理領域ごとのヒット 判定の結果を統計処理し、記録装置からの読み出しを制 御する方式、特開平8-134634に記載されているように、 ホストからのアクセスパターンがランダムアクセスか、 シーケンシャルアクセスかを識別して、記録装置からの 読み出しを行う方式、そして、米国特許5765213に記載 されているように、キャッシュメモリ内のデータの格納 状態から次に先読みを行うべき位置と先読み量を計算す る方式がある。

[0003]

【発明が解決しようとする課題】上記従来技術では、先 読みを行う記録媒体上の各領域において、過去平均どれだけのデータが一度にアクセスされたかという情報を持たない。そのため、ヒット率は高いがホストが少量のデータしか要求してこないような領域に対してのアクセスが行われた場合、その領域に対して先読みが起動されると、必要以上にシーケンシャルに多量のデータをキャッシュメモリへ読み込んでしまう。このため、キャッシュメモリ上の他のデータを上書きしてしまうので、全体的に見てキャッシュメモリのヒット率が低下する。

【0004】また、上記従来技術では、ホストからのシーケンシャルアクセスが一定期間続いた後、ランダムアクセス傾向が強い領域のデータのアクセスを行った場合、シーケンシャルに多量にキャッシュメモリに読み込んでしまい、他のデータを上書きしてしまうので、キャ

ッシュメモリのヒット率が低下する。

【0005】また、上記従来技術では、先読制御のためのデータをキャッシュメモリの状態を処理することで得ていたため、キャッシュメモリの容量に依存する。このため、キャッシュメモリの容量が少ないと、先読み制御のためのデータを十分に得ることが出来ず、先読み制御の精度が低下する。

【0006】本発明の目的は、キャッシュメモリ内のデータの不要な上書きを抑制し、キャッシュメモリの利用 効率を改善することである。

【〇〇〇7】また、本発明の別の目的は、キャッシュメモリ内のデータのヒット率を向上させことである。

【0008】さらに、本発明の別の目的は、キャッシュ メモリの容量とその制御方式の影響を受けずに先読みの 制御を行うことである。

[0009]

【課題を解決するための手段】上記目的を達成するために、ホストからのコマンドの履歴とそのコマンド履歴から計算された統計結果を記録するワークメモリと、コマンド履歴をワークメモリから読み出し、コマンド履歴の順序により重み付けした統計処理を行い、記録装置の各領域に対する評価値と平均アクセス量を求めワークメモリへ統計結果を記録する加重統計処理回路と、その統計結果を読み出してホストからのコマンドと比較して、先読み量とホストが要求している記録媒体上の領域の評価値を計算する先読み量計算回路と、加重統計回路と先読み量計算回路で使用する値を一時的に保持するレジスタ群から構成された先読み予測装置を構成する。

【〇〇1〇】また、上記他の目的を達成するために、先 読み予測装置を搭載し、ホストからのリード要求に対し て、ホストが要求している記録媒体上の領域の評価値を 求めると同時に、先読み予測装置がディスクフォーマッ タに対して先読み制御のための指示を出し、先読み量を 制限する機能を有するディスク制御装置を構成し、この ディスク制御装置からCPUが評価値を取り出し、キャッ シュメモリ内に保持されているデータの置換に用いるこ とでキャッシュメモリを制御する記録装置を構成する。

[0011]

【発明の実施の形態】図1は、本発明を用いて構成された先読み予測装置の構成図の一例である。先読み予測装置101は、統計データとコマンド履歴を保持するワークメモリ102と、ホストからのコマンド履歴から重み付け統計処理を行いアクセス特性を求める加重統計回路103と、統計結果から先読み量の算出と評価値を求める先読み計算回路105と、加重統計回路103と先読み量計算回路105が使用するレジスタをまとめたレジスタ群104から構成されている。尚、図2に示すようにワークメモリ102を先読み予測装置201に内蔵せず、外部メモリを使用してもよい。信号マルチプレクサ106は加重統計回路103と先読み量計算回路105の制御信号を外部制御信号110によ

って切り替えてワークメモリ制御信号108を作り出す。 アドレスマルチプレクサ107は加重統計回路103と先読み 量計算回路105、外部アドレスバス112を外部制御信号11 0によって切り替えてワークメモリ102へのアドレスバス 109に接続する。データバス111は、各回路とワークメモ リ102および外部回路のデータバスとの接続に使用され データの送受を行うために使用される。

【0012】本発明で行う統計処理の概念について説明する。図3は、本発明で行う統計処理の説明図である。 【0013】図示のグラフは、縦軸を評価値301、横軸をLBA302としている。また、このとき、ホストからのコマンド履歴がコマンド順序303の順番で古い方から305a~305eの順番に保持されているとする。

【〇〇14】コマンド305aのLBAがAでアクセスセクタ数がA、セクタとする。この時、グラフ上では、コマンド 履歴の番号に応じた評価値分だけ、位置Aから始まる領域A、の評価値が上昇する。次に、コマンド305bに関しても同様の処理を行う。ただし、コマンド305aの領域と一部重なるため、重なっている両端でのLBAを求め記録する必要がある。コマンド305bのLBAであるBが対応するが、コマンド305aとコマンド305bの重なりの先頭部分はコマンド305bの重なりの終端部分ついては、対応するLBAが存在しないため、新たにLBAを計算し、この計算した値を新たな統計データとして保持しておく。尚、図3ではこの新規LBAをaとしている。同様な手順でコマンド305eまでの重み付け統計処理を行った結果が図3の統計結果304である。

【0015】図4は、実際の統計処理を行う場合におけるワークメモリ102の状態と各領域でのデータの形式、および計算式を示している。ワークメモリ102は、コマンド領域401と統計データ領域402および作業領域403に分けられる。コマンド領域401では、データ形式404に示すように、ホストからのコマンド履歴のLBAとアクセスセクタ数を古いものから順に保持している。本実施例では、数百個のコマンド履歴を保持できるとする。ただし、コマンド領域は有限であるので、コマンド領域にコマンド履歴が収まりきらなくなった場合もっとも古いデータを削除し新しいデータを書き込む。このためコマンド領域はリングバッファになっている。

【0016】統計データ領域402はデータ形式405で示す形式で統計データを記録している。本実施例では、コマンド領域の約4倍程度の大きさを持つとする。評価値は数式(1)で示す計算式で計算される。数式(1)において、コマンド履歴と評価値の対応づけを行うためのテーブルについては後述する。LBAは各統計データの先頭LBAである。平均アクセス量は数式(2)で示す計算式によって計算される。アクセス総和およびコマンド重畳数は平均アクセス量を計算するために使用される。尚、表中の値は、例として図3のコマンド履歴の状態における値を示している。尚、統計データ領域402もコマンド履歴領域4

01と同様有限であるため、統計データ領域402に空きがなくなった場合、統計データでもっとも評価値の低い統計データを削除して領域を確保する。

【0017】図5は、レジスタ群104の構成図の一例である。コマンド履歴に関する各レジスタ(504~508)と統計データに関する各レジスタ(509~513)は、レジスタの内容をアドレスデータとして出力することがあるのでアドレスマルチプレクサ503を介してアドレスバス502と接続されている。

【0018】各レジスタの役割について説明する。コマンド履歴先頭レジスタ504はワークメモリ102上のコマンド履歴領域401の先頭を示す。コマンド履歴境界レジスタ505はコマンド履歴領域401の終端を示す。コマンド履歴最大数レジスタ506は、現在保持されているコマンド履歴の総数を示す。コマンド履歴カレントポインタ507は、コマンド履歴領域401の中で、現在のコマンド履歴情報の中でどの部分が先頭になるかを示す。これは、コマンド履歴領域がリングパッファになっているためである。コマンド履歴力ウンタ508は、コマンド履歴情報を用いて処理を行う際に利用する。

【〇〇19】統計データ先頭レジスタ509はワークメモリ102上の統計データ領域402の先頭を示す。統計データ境界レジスタ510は統計データ領域402の終端を示す。統計データ最大数レジスタ511は、現在保持されている統計データの総数を示す。統計データカレントポインタ512は、統計データ領域512の中で、現在の統計データ領域の中でどの部分が先頭になるかを示す。統計データカウンタ513は、統計データ情報を用いて処理を行う際に利用する。

【0020】コマンドレジスタ514は、現在のコマンドに関する情報を保持する。コマンド履歴レジスタ515は、ワークメモリ102より読み出したコマンド履歴情報を保持するために使用される。統計データレジスタ516は、ワークメモリ102より読み出した統計データを保持するために使用される。統計データLBAバッファレジスタ517は、統計データレジスタ516のLBA情報のみを保持するために使用される。平均アクセス数保持レジスタ518は、平均アクセス数を保持するために使用される。評価値保持レジスタ519は、評価値を保持するために使用される。評価値保持レジスタ519は、評価値を保持するために使用される。統計LBA最小値レジスタ520は、統計データの中で最小のLBAの値を保持する。統計LBA最大値レジスタ521は統計データの中で最大のLBAの値を保持する。

【0021】評価値変換テーブル522は、図6の評価値変換テーブル601に示すように、コマンド履歴番号と評価値を対応付けるための変換データが保持される。コマンド履歴番号と評価値は対になって記録されており、コマンド履歴番号をこのテーブルに入力すると、対応する評価値が出力される。このテーブルは必要に応じて動的に更新できるようにRAMで構成してもよい。また、このテーブルの更新をホストなど外部機器から行えるように

するために、テーブル制御用のコマンドセットを用意 し、それを用いて外部から動的にテーブルの制御を行っ てもよい。

【0022】先読み量変換テーブル523は図6の先読み 量変換テーブル602に示すように、統計データのアクセ スLBAの範囲と先読み比率を対応付けるための変換デー タが保持される。統計データのアクセスLBAの範囲と先 読み比率は対になって記録さており、統計データのアク セスLBAの範囲を入力すると先読み比率が出力される。 このテーブルは必要に応じて更新できるようにRANで構 成してもよい。

【 O O 2 3】外部回路によって先読み予測装置101および201を制御する手順を説明する。図7は先読み予測装置の制御の手順を表したフローチャートである。これについて説明する。

【OO24】外部回路はまず、ステップ700を実行する

【0025】ステップ700では、ワークメモリ102のコマンド履歴カレントポインタ507の示す位置にホストからのコマンドデータを記録する。

【0026】ステップ701では、コマンド履歴カレントポインタ507に1を加える。

【0027】ステップ702では、コマンド履歴カレントポインタ507とコマンド履歴境界レジスタ505の値を比較し、コマンド履歴カレントポインタ507の値が大きい場合は、ステップ703を実行する。

【0028】ステップ703では、コマンド履歴カレントポインタ507をクリアする。

【0029】ステップ704では、加重統計回路103を起動して重み付け統計処理を行なう。動作の詳細については後述する。

【0030】ステップ705では、先読み量計算回路105を 起動して先読み量を算出する。動作の詳細については後 述する。

【0031】加重統計回路103の動作について説明する。図8及び図9は加重統計回路103が重み付け統計処理を行う際の動作を示すフローチャートである。

【0032】加重統計回路103が外部回路によって起動されると、まず、ステップ801が実行され、コマンド履歴カウンタ508と統計データLBAバッファレジスタ517がクリアされる。

【0033】ステップ802では、ワークメモリ102上のコマンド履歴カレントポインタ507の示す場所のコマンド履歴の値から統計データ形式405に基づいて初期統計データを作成する。具体的には、コマンド履歴番号を評価値変換テーブル601を用いて変換したものを評価値として、コマンド履歴のLBAをLBAとして、コマンド履歴のアクセスセクタ数を平均アクセス量とアクセス総和として、そしてコマンド重量数を1と設定する。このデータをワークメモリ102上の統計データ領域402の先頭に記録

する。

【0034】ステップ803では、統計データ最大数レジスタ511に1をセットする。

【0035】ステップ804では、重畳フラグをクリアする。この重畳フラグは、統計処理を行う際、現在処理対象になっているコマンドが統計データ領域の記録されているデータと重なる部分が存在したかを示す。

【OO36】ステップ805では、コマンド履歴カウンタ5 08へ1を足す。

【0037】ステップ806では、ワークメモリ102のコマンド履歴領域401から、コマンド履歴カレントポインタ507にコマンド履歴カウンタ508を足した値の示す場所からコマンド履歴を取り出し、コマンド履歴レジスタ515に読み出す。

【OO38】ステップ807では、統計データカウンタ513 をクリアする。

【0039】ステップ808では、ワークメモリ102上の統計データ領域の空き領域を調べ、空き領域が存在する場合は、ステップ809を実行する。そうでない場合はステップ910へ制御を移す。

【0040】ステップ809では、統計データカウンタ513と統計データ最大数レジスタ511の値を比較して統計データカウンタ513の値が最大数レジスタ511の値よりも大きい場合に、ステップ901へ制御を移す。そうでない場合は、ステップ810を実行する。

【0041】ステップ810では、ワークメモリ102上の統計データ領域402内の統計データカレントポインタ512と統計データカウンタ513を足した値が示す領域の統計データを読み出し、統計データレジスタ516にセットする。

【0042】ステップ811は、コマンド履歴レジスタ515と統計データレジスタ516の示す領域が重なっているかを比較し、重なっている場合はステップ812を実行し、そうでない場合はステップ820を実行する。

【0043】ステップ812では、ステップ811の比較結果より、コマンド履歴と統計データの重なりが存在することが分かったため、重畳フラグをセットする。

【0044】ステップ813では、統計データレジスタ516 のコマンド重量数に1を加える。

【0045】ステップ814では、統計データレジスタ516 のアクセス総和にコマンド履歴レジスタ515のセクタ数 の値を加える。

【0046】ステップ815では、統計データレジスタ516 内のコマンド重量数とアクセス総和から平均アクセス量 を計算する。また、現在のコマンド履歴の番号を評価値 変換テーブル601を用いて評価値に変換し、その値を統 計データレジスタ516の評価値へ加える。

【0047】ステップ816では、統計データのLBAとコマンド履歴のLBAを比較し、コマンド履歴のLBAが大きい場合は、ステップ906を実行する。そうでない場合は、ス

テップ817を実行する。

【0048】ステップ817では、統計データレジスタ516 の内容をワークメモリ102の統計データ領域402内の統計 データカレントポインタ512と統計データカウンタ513の 値を加えた値が示す領域へ記録する。

【0049】ステップ818では、統計データカウンタ513 へ1を足す。

【0050】ステップ819では統計データLBAパッファレジスタ517に統計データレジスタ516の統計データLBAを設定し、ステップ808を実行する。

【0051】ステップ820では、重量フラグがセットされているかをチェックし、セットされている場合は、ステップ818を実行する。そうでない場合は、ステップ821を実行する。

【0052】ステップ821では、統計データLBAバッファレジスタ517の値とコマンド履歴レジスタ515のLBAを比較し、コマンド履歴レジスタ515の値が大きい場合は、ステップ818を実行する。そうでない場合は、ステップ823を実行する。

【0053】ステップ822では、統計データレジスタ516の値とコマンド履歴レジスタ505のLBAを比較し、コマンド履歴レジスタ505の値が大きい場合は、ステップ818を実行する。そうでない場合は、ステップ822を実行する

【0054】ステップ823では、統計データカレントポインタ512の示すデータ以降のデータをすべて後ろにシフトして、新しい統計データを挿入できる領域を用意する。そして、コマンド履歴レジスタ515の値から、ステップ802で作成した同様の形式で新規統計データを作成し、そのデータを挿入する。

【 O O 5 5】ステップ824では、統計データ最大数レジ スタ511に1を足す。

【0056】ステップ825では、重畳フラグをセットして、ステップ804を実行する。

【0057】ステップ901では、重畳フラグをチェックする。セットされていればステップ904を実行する。セットされていなければステップ902を実行する。

【0058】ステップ902はでは、コマンド履歴レジスタ515の値からステップ802で述べたのと同様の形式で、コマンド履歴レジスタ515から新規統計データを作成し、ワークメモリ102の統計データ領域402内で、現在存在する統計データの最後尾に追加する。

【0059】ステップ903では、統計データ最大数レジスタ511に1を加える。

【OO6O】ステップ904では、コマンド쭪歴カウンタ5 08に1を加える。

【0061】ステップ905では、コマンド履歴カウンタ508とコマンド履歴最大数レジスタ506の内容を比較し、コマンド履歴カウンタ508の値が大きければ、処理を終了する。そうでなければ、ステップ804へ制御を移す。

【OO62】ステップ906では、統計データレジスタ516のLBAの値をコマンド履歴レジスタ515のLBAの値に置き換える。

【0063】ステップ907では、統計データ最大数レジスタ511に1を加える。

【0064】ステップ908では、統計データカレントポインタ512の示すデータの次のデータ以降のすべてのデータをすべて後ろにシフトして、統計データレジスタ516の内容を新規統計データとして挿入する。

【0065】ステップ909では、統計データカウンタ513 に2を加え、ステップ819を実行する。

【0066】ステップ910では、統計データカウンタ513 の値を一時的に退避し、統計データカウンタ513をクリ アする。

【0067】ステップ911では、統計データカレントポインタ512に統計データ先頭レジスタの値をセットする。

【0068】ステップ912では、ワークメモリ1021から、統計データを統計データレジスタ516に読み出し、統計データの評価値を評価値保持レジスタ519へ保存する。

【 O O 6 9 】ステップ913では、統計データカウンタ513 へ 1 を加える。

【0070】ステップ914では、統計データレジスタ516へ、統計データを読みむ。

【0071】ステップ915では、評価値保持レジスタ519 と統計データレジスタ516の値を比較し、統計データレ ジスタ516の値が大きければ、ステップ916を実行する。

【0072】ステップ916では、評価値保持レジスタ519 に統計データレジスタ516の値の評価値を記録し、統計 データカレントポインタ512の値を読み出した統計デー タの位置へセットする。

【0073】ステップ917では、統計データカウンタ513 の値と統計データ最大数を比較し、等しければ、ステップ918を実行する。そうでなければ、ステップ908へ制御を移す。

【OO74】ステップ918では、ワークメモリ102の統計 データカレントポインタ507の示す位置のデータを削除 する。

【0075】ステップ919では、統計データ最大数レジスタ511から1を引く。

【0076】ステップ920では、統計データカウンタを 復旧し、ステップ809へ制御を移す。

【0077】加重統計回路103が統計データの生成を終 了すると、次に、統計データのLBAの範囲を求めるため に、加重統計回路103は図10で示すフローチャートに 従った動作を行う。これについて説明する。

【0078】まず、ステップ1001が実行され統計データカウンタ513がクリアされる。

【0079】ステップ1002では、統計データをワークメ

モリ102の統計データ領域402から統計データレジスタ51 6に読み出す。

【0080】ステップ1003では統計LBA最大値レジスタ5 21と統計LBA最小値レジスタ520に統計データレジスタ51 6の値をセットする。

【OOB1】ステップ1004では、統計データカウンタ51 3に1を加える。

【OO82】ステップ1005では、統計データレジスタ51 6に統計データをワークメモリ102から読み出す。

【0083】ステップ1006では、統計データレジスタ51 6のLBAと統計LBA最大値レジスタ521の値を比較し、統計 データのLBAが大きい場合は、ステップ1008を実行す る。そうでない場合は、ステップ1007を実行する。

【0084】ステップ1007では、統計データレジスタ516のLBAと統計LBA最小値レジスタ520の値を比較し、統計データのLBAが小さい場合は、ステップ1009を実行する。そうでない場合は、ステップ1010を実行する。

【0085】ステップ1008では、統計データレジスタ51 6のLBAの値を統計LBA最大値レジスタ521へセットする。

【0086】ステップ1009では、統計データレジスタ51 6のLBAの値を統計LBA最小値レジスタ520へセットする。

【0087】ステップ1010では、統計データカウンタ51 3と統計データ最大数レジスタ521の値を比較し、統計データカウンタ513の値が大きければ、処理を終了する。 そうでない場合は、ステップ1004を実行する。

【0088】図11は先読み計算回路105の動作のフローチャートを示したものである。これについて説明する。

【0089】先読み量計算回路が外部回路によって起動されると、まずステップ1100が実行される。このステップでは、ホストからデータパス111を介して転送されてきたLBAとセクタ数をコマンドレジスタ514に記録する。

【0090】ステップ1101では、統計データカウンタ51 3と評価値保持レジスタ519および平均アクセス数保持レ ジスタ518をクリアする。

【0091】ステップ1102では、統計データカウンタ513と統計データ最大数レジスタ511の値を比較し、もし統計データカウンタ513の値が大きければ、ステップ1109を実行する。そうでなければ、ステップ1103を実行する。

【〇〇92】ステップ1103では、ワークメモリ102から 統計データを統計データレジスタ516へ読み出す。

【0093】ステップ1104では、統計データレジスタ516とコマンドレジスタ514の値を比較し、アクセス領域の重なりを調べる。アクセス領域の重なりがあれば、ステップ1105を実行する。そうでなければステップ1108を実行する。

【0094】ステップ1105では、統計データレジスタ51 6の評価値と評価値保持レジスタ519の値を比較し、統計 データレジスタ516の値が大きければ、ステップ1106を 実行する。そうでなければ、ステップ1108を実行する。 【0095】ステップ1106では、評価値保持レジスタ51 9の値を統計データレジスタ516の評価値に置きかえる。

【0096】ステップ1107では、平均アクセス数保持レジスタ518の値を、統計データレジスタ516の平均アクセス数に置きかえる。

【0097】ステップ1108では、統計データカウンタに 1を加える。

【0098】ステップ1109では、統計LBA最大値レジスタ521から統計LBA最小値レジスタ520の値を引くことで統計データのアクセス範囲を求める。

【0099】ステップ1110では、アクセス幅の値を先読 み量変換テーブル602を用いて先読み比率データに変換 する。

【0100】ステップ1111では、先読み比率と平均アクセス数の積を取ることで先読み量を算出する。

【0101】次に、本発明を用いて構成されたハードディスクについて説明する。

【0102】(1)ディスク制御装置1203内に先読み予測 装置1211を内蔵する場合

図12は、本発明を用いて構成されたハードディスクを用いた情報器機の構成図の一例である。ホスト1200はホストインタフェース1201によってハードディスク1202と接続されている。ハードディスク1202はディスク制御装置1203、キャッシュメモリ1220、ROM1208、CPU1213、サーボ系制御回路1224、そして記録媒体1228から構成されている。ディスク制御装置1203は、インタフェース制御回路1204、シーケンサ1207、先読み予測装置1211、アドレスマルチプレクサ1209および1214、データマルチプレクサ1222、ECC1227、ディスクフォーマッタ1226から構成されている。キャッシュメモリ1220は、ハードディスク1202とホスト1200間で送受を行うデータを記憶しておくと共に、キャッシュメモリ1220内のデータを管理すためのセグメント管理テーブルなどの情報を記憶する場合もある。

【0103】また、先読み予測装置1211が図1で示した 先読み予測装置101のようにワークメモリ102を内蔵せず、図2で示した先読み予測装置201の構成になっている 場合には、先読み予測装置1211のワークメモリの働きもする。ROM1208はハードディスク1202の制御に必要なファームウェア、制御パラメータなどが記憶されている。 CPU1213は、ファームウェアの実行、サーボ系制御回路1224は記録 媒体1228の機械系とそれに関連のある部分の制御を行う。記録媒体1228はデータを記録する磁気ディスク、磁気ディスクからの信号と、ディスクフォーマッタとの間のデータ変換を行い読み出し書き込みを行うためのR/W チャネル、磁気ディスクを制御する機械系等から構成されている。尚、記録媒体としては磁気ディスク以外の記録媒体でも良い。 【0104】インタフェース制御回路1204は、ホスト12 00とインタフェース1201を介して接続されており、ホスト1200とハードディスク1202間の実際のデータ転送を制御し、必要なデータを内部データバス1212へ載せる。シーケンサ1207はインタフェース制御信号1205、モジュール制御信号1210を用いて、ディスク制御装置1203内の各モジュールおよびキャッシュメモリ1220を制御する。また、必要に応じてCPU割り込み制御信号1206によってCPU 1213へ割り込みを発生させる。アドレスマルチプレクサ1209はシーケンサ1207の内部アドレスバス1215とCPU121 3のCPUアドレスバス1219を切り替えて、先読み予測装置1211のアドレスバスと接続する。先読み予測装置1211はホストからコマンドが来た際にそのコマンドをコマンド履歴として保持し、コマンド履歴に関する統計処理を行い、現在のコマンドにおける評価値と先読み量を算出する。

【0105】また、ディスクフォーマッタ制御信号1221 が存在する場合は、この信号によって直接ディスクフォ ーッタに先読み量を設定し、先読みを制御する。アドレ スマルチプレクサ1214は、キャッシュメモリ1220と接続 するディスク制御装置1203内の内部アドレスパス1215と CPUアドレスパス1219及びディスクフォーマッタアドレ スパス1216及び、先読み予測装置1211がキャッシュメモ リ1220をワークメモリとして用いる場合に使用されるア ドレスパス1231を切り替える。データマルチプレクサ12 22はCPUデータバス1218及びフォーマッタデータバス122 3とディスク制御装置1203内の内部データバス1212との 接続を制御する。ECC1227はディスクフォーマッタ1226 とECCデータバス1229を介して接続されており、記録媒 体1228より読み出したデータのエラー訂正を行う。ディ スクフォーマッタ1226は、信号バス1230を介して記録媒 体1228との間でデータ転送を行う。

【0106】本実施例では、キャッシュメモリ1220の制御方式として可変セグメント方式を用いた。ただし、先読み予測装置1211自体は、キャッシュメモリの制御方式に依存せずに使用することが可能である。

【0107】可変セグメント方式について説明する。図14にこの方式におけるキャッシュメモリ1400内の状態とセグメント管理テーブル1401を示す。キャッシュメモリ1400はワークエリアとデータエリアに分けて使用される。ワークエリアには、ファームウェアの情報およびセグメント管理テーブル、場合によっては先読み予測装置1211のデータが記憶される。ただし、セグメント管理テーブルは高速なアクセスが要求されるので、キャッシュメモリ1400以外の場所(ディスク制御装置1203内、CPU1213内の作業用不揮発性メモリ等)の記録領域に記録される場合もある。データエリアはハードディスク1202とホスト1200間で送受されるデータが記憶される。図

【0108】本方式では、データエリア内のLBAの連続するデータを一まとまりとしてセグメントとし、各セグ

メントをセグメント管理テーブルで管理する。セグメン ト管理テーブルの内容は、図14のセグメント管理テー ブル1401に示すように、そのセグメントの評価値、各セ グメント内のデータの先頭LBA、キャッシュメモリ1220 内でのデータの先頭アドレス、セグメントのデータサイ ズが記録されている。新しくデータを記憶する場合、デ 一タアクセスポインタ1402の示すアドレスからデータ を記憶させ、データの記憶が終了した時点で、データの 記憶を開始した先頭アドレスおよび対応するLBA、そし て記憶したデータのサイズをセグメント管理テーブルに 登録し、生成したセグメントの最後尾の次のアドレス値 にデータアクセスポインタ1402の値を更新する。データ エリアはリングバッファになっており、データエリアの 最後までデータが記憶されると、データエリアの先頭に **戻って後続のデータを記憶させる。この時、新しいデー** タによって上書きされるセグメントが存在する場合、そ のセグメントを破棄し、セグメント管理テーブルの対応 するセグメント情報を無効にする。

【0109】ホストからコマンド受けた場合についてハードディスク1202の動作について説明する。

【0110】図16は、ディスク制御装置1203とCPU1213の動作を示すフローチャートである。ステップ1502に示すようにディスク制御装置1203がホスト1200からコマンドを受けると、ディスク制御装置1203はコマンド受信割り込みをCPU1213に対して発行しCPU1213を呼び出す。次にディスク制御装置1203は、ステップ1503に示すように、先読み予測装置1211へホスト1200からのコマンドデータを転送する。その後、ステップ1504では、先読み予測装置1211が統計処理と先読み量の算出を行う。そして、ステップ1505で、先読み予測装置1211は、直接ディスクフォーマッタ1226に対して最大先読み量を設定する。

【0111】一方、CPU1213は、ディスク制御装置1203からコマンド受信割り込みを受けると、ステップ1512に示すようにコマンドの解析を行う、そして、ステップ1513では、ホスト1200からのコマンドがリードコマンドかどうか判定し、違えば、ステップ1516で示すように、他のコマンドの処理をディスク制御装置1203を操作して行う。リードコマンドなら、ステップ1515で、キャッシュメモリの内のデータとのヒット判定を行う。データがヒットした場合、ステップ1506に示すように、ディスク制御装置1203を制御してキャッシュメモリ1220上のヒットしたデータをホスト1200へ転送する。またその時点で行われている先読みに関する処理はそのまま継続する。

【0112】ヒットしなかった場合、ステップ1516でハ 一フヒット判定を行う。

【0113】ミスの場合、ステップ1517を実行する。このステップでは、新しいセグメントをキャッシュメモリ1220上に生成する。もしキャッシュメモリ1220に空き領域がない場合、セグメント管理テーブル1401の各セグメ

ントの評価値とデータサイズを比較して、データサイズ が平均アクセス数保持レジスタ518の値よりも大きく、 その中で評価値が最も低いセグメントを調べ、そのセグ メントの先頭にデータアクセスポインタ1402を設定す る。そのセグメント情報を削除する。新たにデータアク セスポインタ1402の値を先頭アドレスとし、評価値保持 レジスタ519の値を評価値として設定した新規セグメントを生成する。

【0114】ハーフヒットの場合、ステップ1518を実行する。このステップでは、評価値保持レジスタ519の値が高ければ、ステップ1519でセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。この更新方法には以下に示す2通りがある。

【0115】(a) ハーフヒットの場合でハーフヒットしたセグメントのデータが図17の1700に示すようにホスト要求データの後ろにあたる場合、データアクセスポインタ1402を図17の1700から1701で示す位置に更新する。これによってホスト要求データを記録媒体1228から読み出した場合、後ろの部分がちょうどハーフヒットしたセグメントのデータと重なるようにデータアクセスポインタ1402を設定される。そしてセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。

【0116】(b) ハーフヒットの場合でハーフヒットしたセグメントのデータが図18の1800に示すように、ホスト要求データの前半部にあたる場合、データアクセスポインタ1402を図18の1800から1801で示す位置に更新する。これによって不足分のデータのみをハーフヒットしたセグメントの直後から連続して読み出すようにする。そしてセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。

【O 1 1 7】ミスおよびハーフヒットの場合ステップ15 07に示すようにCPU1213がディスク制御装置1203を操作 して先読みを起動する。

【0118】ステップ1508で、ホスト要求分のデータがキャッシュメモリ1220に読みこまれたかを判定し、読みこまれた場合、ディスク制御装置1203はCPU1213に対してセグメント更新割り込みを発行する。CPU1213は、ステップ1519でセグメント情報を更新し、ディスク制御装置1203を起動して、ステップ1506を実行させる。次にディスク制御装置1203は、ステップ1509で先読みを継続し、ステップ1510で最大先読み量に先読み量が達したか判定する。最大先読み量に先読み量が達したか判定する。最大先読みを停止させ、CPU1213に先読み停止割り込みを発行する。これを受けたCPU1213はステップ1520でセグメント情報を更新する。

【0119】(2)ディスク制御装置1301の外部に先読み 予測装置1302を搭載する場合

図13は、本発明を用いて構成されたハードディスクを

用いた情報器機の構成図の一例である。図12の構成との変更点は、先読み予測装置1302がディスク制御装置1301の外部に設置されている。このため、先読み予測装置1302はCPUデータバス1218とCPUアドレスバス1219およびCPU制御信号1217に接続されている。

【0120】ホストからコマンドを受けた場合についてハードディスク1300の動作について説明する。

【0121】図16は、ディスク制御装置1301とCPU121 3の動作を示すフローチャートである。ステップ1600に 示すようにホストからコマンドを受けると、ディスク制 御装置は1301はコマンド受信割り込みを発行してCPU121 3を呼び出す。CPU1213は、ディスク制御装置1203からの 割り込みを受けると、ステップ1608でコマンドの解析を 行う、そして、ステップ1609では、ホスト1200からのコ マンドがリードコマンドかどうか判定し、違えばステッ プ1601で、他のコマンドの処理をディスク制御装置1203 を操作して行う。リードコマンドなら、ステップ1610で **先読み予測装置1302へホスト1200からのコマンドデータ** を転送する。そして、ステップ1611で先読み予測装置13 02を制御して統計処理と先読み量を算出する。この後、 ステップ1612で、キャッシュメモリ1220内のデータのヒ ット判定を行う。データがヒットした場合、ステップ16 02で、ディスク制御装置1301を制御してキャッシュメモ リ1220上のヒットしたデータをホスト1200へ転送する。 先読み関しては特に制御をせず現状を維持する。

【O122】ヒットしなかった場合、ステップ1613でハーフヒット判定を行う。

【0123】ミスの場合、ステップ1614で、新しいセグメントをキャッシュメモリ1220上に生成する。もしキャッシュメモリ1220に空き領域がない場合、セグメント管理テーブル1401の各セグメントの評価値とデータサイズを比較して、データサイズが平均アクセス数保持レジスタ518の値よりも大きく、その中で評価値が最も低いセグメントを調べ、そのセグメントの先頭にデータアクセスポインタ1402を設定する。そして、セグメント情報を削除し、新たにデータアクセスポインタ1402の値を先頭アドレスとし、評価値保持レジスタ519の値を評価値として設定した新規セグメントを生成する。

【0124】ハーフヒットの場合、ステップ1615を実行する。このステップでは、評価値保持レジスタ519の値が高ければ、ステップ1615でセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。この更新方法には以下に示す2通りがある。

【0125】(a) ハーフヒットの場合でハーフヒットしたセグメントのデータが図17の1700に示すようにホスト要求データの後ろにあたる場合、データアクセスポインタ1402を図17の1700から1701で示す位置に更新する。これによってホスト要求データを記録媒体1228から読み出した場合、後ろの部分がちょうどハーフヒットし

たセグメントのデータと重なるようにデータアクセスポインタ1402を設定される。そしてセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。

【0126】(b) ハーフヒットの場合でハーフヒットしたセグメントのデータが図18の1800に示すように、ホスト要求データの前半部にあたる場合、データアクセスポインタ1402を図18の1800から1801で示す位置に更新する。これによって不足分のデータのみをハーフヒットしたセグメントの直後から連続して読み出すようにする。そしてセグメント管理テーブル1401内のハーフヒットしたセグメントのセグメントサイズを更新する。

【0127】ミスおよびハーフヒットの場合、ステップ 1601を実行する。

【0128】このステップでは、先読み予測装置1302から最大先読み量を読み出し、ディスク制御装置1301に指示をだし、ディスクフォーマッタ1304に最大先読み量を設定する。そして、ステップ1603に示すように先読みを起動する。

【0129】ステップ1604で、ホスト1200要求分のデータがキャッシュメモリ1220に読みこまれたかを判定し、読みこまれた場合、ディスク制御装置1301はCPU1213に対してセグメント更新割り込みを発生させる。CPU1213は、ステップ1617でセグメント情報を更新し、ディスク制御装置1301を起動して、ステップ1602を実行させる。次にディスク制御装置1301は、ステップ1605で先読みを継続し、ステップ1606で最大先読み量に先読み量が達したか判定する。最大先読み量に先読み量が達した場合、ステップ1607で先読みを停止させ、CPU1213に対してディスク制御装置1301は先読み停止割り込みを発行する。これを受けたCPU1213はステップ1618でセグメント情報を更新する。

【0130】本発明を用いて構成されたディスクアレイコントローラの一例を図19に示す。インタフェース制御回路1901は、ホスト1200とのインタフェース1201を制御する。マイクロプロセッサ1903は、ディスクアレイコントローラ1900内の各モジュールを制御する。記録装置制御回路1905は、記録装置1906を制御する。キャッシュメモリ1902は、ホスト1200及び記録装置1906から転送されて来たデータを一時的に保持する。バス1901は、ディスクアレイコントローラ1900内の各モジュールを接続するために使用する。記録装置接続バス1908は、ディスクアレイコントローラ1900と記録装置1906を接続するために使用する。

【0131】ホスト1200からコマンドを受けた場合についてディスクアレイ1900の動作について説明する。

【0132】図20は、ディスクアレイコントローラ1900の全体の動作とその内部のマイクロプロセッサ1903の動作を示すフローチャートである。このフローチャートで示す動作は図16で示すフローチャートと比較して、

ステップ2016で最大先読み最を設定するのが記録装置制御回路1905である以外同様である。本実施例では、磁気ディスクを記録媒体に用いた場合について説明したが、無論、記録媒体が光磁気ディスクなどの他の円盤状記録媒体を用いた場合についても同様である。

[0133]

【発明の効果】本発明では、ホストからのコマンドに対して、その履歴を保持し、記録媒体上の各領域の平均アクセス量を求める。以後その領域に対してホストからアクセスがあった場合、先読み量を最適化し、キャッシュメモリへ余分なデータを読み込まないように先読みを制御する。このためキャッシュメモリの使用効率が改善すると共に、必要なデータを読み込んだ時点でディスクフォーマッタの動作が停止しているため、ホストの要求から、シーク動作の開始までの時間を短縮することが可能である。

【 O 1 3 4 】また、コマンド履歴の時間的な情報を考慮した重み付け統計処理を行うことで、記録媒体上の各領域のホストからのアクセス頻度を求め、キャッシュメモリの各セグメントが対応する記録媒体上の領域についての評価値を求めておく、そして、ホストからアクセスがあった場合、その評価値に基づいてキャッシュメモリ内への記録媒体からのデータの読みこみ位置、およびデータの置換を制御することで、キャッシュメモリの使用効率を改善できる。

【図面の簡単な説明】

【図1】本発明を用いて構成された先読み予測装置の構成図である。

【図2】図1の先読み予測装置においてワークメモリを 外部に設けた場合の構成図である。

【図3】 先読み予測装置で行われる重み付け統計処理の 概略図である。

【図4】ワークメモリの構成と各領域でのデータ形式および統計処理を行う際に使用される計算式の説明図である

【図5】図1のレジスタ群102の詳細な構成図である。

[図6] 図5の各テーブルの変換形式の説明図である。

【図7】先読み予測装置の動作を説明したフローチャートである。

【図8】加重統計回路が重み付け統計処理を行う際の動作を説明したフローチャートである。

[図9] 加重統計回路の重み付け統計処理を行う際の動

作を説明したフローチャートである。

【図10】加重統計回路が統計データのLBAの範囲を求める際の動作を説明したフローチャートである。

【図11】先読み量計算回路の動作を説明したフローチャートである。

【図12】図1あるいは図2の先読み予測装置を内蔵したディスク制御装置を用いて構成されたハードディスク 装置の構成図である。

【図13】図1あるいは図2の先読み予測装置をディスク制御装置の外部に設けて構成されたハードディスク装置の構成図である。

【図14】図12あるいは図13のハードディスクにおけるキャッシュメモリの制御方式の説明図である。

【図15】図12のハードディスクがホストからコマンドを受けた場合の動作を説明したフローチャートであ

【図16】図13のハードディスクがホストからコマンドを受けた場合の動作を説明したフローチャートである。

【図17】図15および図16のハードディスクにおいてキャッシュメモリのデータに対してハーフヒットが起こった場合の処理の説明図である。

【図18】図15および図16のハードディスクにおいてキャッシュメモリのデータに対してハーフヒットが起こった場合の処理の説明図である。

【図19】図1あるいは図2の先読み予測装置を搭載したディスクアレイコントローラを用いて構成されたディスクアレイの構成図である。

【図20】図19のディスクアレイがホストからコマンドを受けた場合の動作を説明したフローチャートである。

【符号の説明】

106…制御信号マルチプレクサ、107…アドレスマルチプレクサ、108…ワークメモリ制御信号、404…コマンド領域データ形式、405…統計データ領域データ形式、503…アドレスマルチプレクサ、1205…インタフェース制御信号、1210…モジュール制御信号、1216…ディスクフォーマッタアドレスバス、1223…ディスクフォーマッタデータバス、1231…アドレスバス、1221…ディスクフォーマッタ制御信号、1229…ECCデータバス、1230…信号バス、1225…記録媒体制御信号、1907…バス、1908…記録装置制御バス

【図6】

【図1】

【図2】

図12

[図3]

図3

[図4]

図4

評価値の計算式

航計データ領域の評価値=∑(コマンド環距の各号に対応する評価値) ····表式()

平均アクセス量の計算式

平均アクセス量。
<u>
「アクセス領域が重なるコマンドのアクセスセクタ類)</u>
・・教式(2)
アクセス領域が重なるコマンド数

【図7】

[図8]

【図9】

【図10】

図10

[図12]

[図13]

図13

【図14】

図14

[図15]

[図16]

【図17】

【図18】

【図19】

図19

【図20】

フロントページの続き

(72) 発明者 本田 聖志

神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内

(72)発明者 市川 正敏

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所内

(72) 発明者 高安 厚志

神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内

(72) 発明者 西川 学

神奈川県小田原市国府津2880番地 株式会社日立製作所ストレージシステム事業部内

Fターム(参考) 58005 JJ13 MM11 NN22 VV03 58065 BA01 CE12 CH05 50044 AB01 BC01 CC04 FG10 FG30 HH02 HL02