Math XXXX – Independent Study: Manifolds
– Summer 2025 w/Professor Berchenko-Kogan

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\it An~Introduction~to~Lie~Algebras} - {\rm August},~2025 \end{array}$

Chapter 1

Introduction

Definition 1.0.1 (Lie Bracket). We define the Lie Bracket, $[\cdot,\cdot]$ as a bilinear operation

$$[\cdot,\cdot]:L\times L\to L$$

with the following properties

$$[x, x] = 0 (L1)$$

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
(L2)

1.1 Exercises

1.1 (Pg 2.)

(a) Show that [v, 0] = 0 = [0, v] for all $v \in L$.

$$[v, v] = 0$$

$$[v, v] - [v, 0] = 0 - [v, 0]$$

$$[v - v, v - 0] = [0, v]$$

$$[0, v] = [v, 0]$$

but [0, v] = -[v, 0] for all v therefore [0, v] = 0.

(b) Suppose that $x, y \in L$ satisfy $[x, y] \neq 0$. Show that x and y are linearly independent on F. Want to show that ax + by = 0 implies that a, b = 0.

Let
$$ax + by = 0$$

 $by = -ax \implies y = cx$, for some c
 $[x, y] = [x, cx] = c[x, x] = 0$

but $[x, y] \neq 0$ therefore c = 0 and x, y are linearly independent.

1.2 (Pg 2.) Convince yourself that \wedge is bilinear. Then check that the Jacobi Identity holds. *Hint*: if $x \cdot y$ denotes the dot product of $x, y \in \mathbb{R}^3$, then

$$x \wedge (y \wedge z) = (x \cdot z)y - (x \cdot y)z, \forall x, y, z \in \mathbb{R}^3.$$

wedge is bilinear.

Given $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ we have

$$x \wedge y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$$

$$(x + (0, b, 0)) \wedge y = ((x_2 + b)y_3 - (x_3 + 0)y_2, (x_3 + 0)y_1 - (x_1 + 0)y_3, (x_1 + 0)y_2 - (x_2 + b)y_1)$$

$$= (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) + (by_3, 0, -by_1)$$

$$= x \wedge y + (0, b, 0) \wedge y$$

Therefore additive on the left for the middle coordinate. Each argument is independent of coordinate so is true for (a, 0, 0) and (0, 0, c) and can be easily seen when used on the write (e.g., $x \wedge (y + (0, b, 0))$).

The Jacobi Identity

Want to show

$$x \wedge (y \wedge z) + y \wedge (z \wedge x) + z \wedge (y \wedge x) = 0 \tag{1.1}$$

from the hint

$$x \wedge (y \wedge z) = (x \cdot z)y - (x \cdot y)z$$

and from (1)

$$x \wedge (y \wedge z) + y \wedge (z \wedge x) + z \wedge (y \wedge x) = (x \cdot z)y - (x \cdot y)z$$

$$+ (y \cdot x)z - (y \cdot z)x$$

$$+ (z \cdot y)x - (z \cdot x)y$$

$$= ((x \cdot z) - (z \cdot x))y$$

$$+ (-(x \cdot y) + (y \cdot x))z$$

$$+ (-(y \cdot z) + (z \cdot y))x$$

$$= 0$$

1.3 (Pg 2.) Suppose that V is a finite-dimensional vector space over F. Write gl(V) for the set of all linear maps from V to V. This is again a vector space over F, and it becomes a Lie algebra, known as the *general linear algebra*, if we define the Lie bracket [--, --] by

$$[x, y] := x \circ y - y \circ x, \, \forall x, y \in \operatorname{gl}(V),$$

where o deontes the composition of maps. Check that the Jacobi Identity holds.

Given $R, S, T \in gl(V)$ there exists matrix $A, B, C \in \mathcal{M}_{n \times n}(F)$ where $n = \dim V$ and Rx = Ax, Sx = Bx, Tx = Cx, $\forall x \in V$. Further remember that $R \circ S = AB$ (similar for the other two transormations) for all $x \in V$. Then

$$\begin{split} [R,[S,T]] + [S,[T,R]] + [T,[R,S]] &= (R \circ (S \circ T - T \circ S) - (S \circ T - T \circ S) \circ R) \\ &+ (S \circ (T \circ R - R \circ T) - (T \circ R - R \circ T) \circ S) \\ &+ (T \circ (R \circ S - S \circ R) - (R \circ S - S \circ R) \circ T) \\ &= (A(BC - CB) - (BC - CB)A) \\ &+ (B(CA - AC) - (CA - AC)B) \\ &+ (C(AB - BC) - (AB - BA)C) \end{split}$$

by rearranging the terms we can see that they all cancel out. Most notably this is done without commuting. It is important to remember that, in general, $R \circ S \neq S \circ R$.

1.4 Let b(n, F) be the upper triangular matrices in gl(n, F). (A matrix x is said to be upper triangular if $x_{ij} = 0$ whenever i > j.) This is a Lie algebra with the same Lie bracket as gl(n, F).

Similarly, let n(n, F) be the strictly upper triangular matrices in gl(n, F). (A matrix x i said to be strictly upper triangular if $x_{ij} = 0$ whenever $i \ge j$.) Again this is a Lie algebra with teh same Lie bracket as gl(n, F).

Verify these assertions.

Let
$$b(n, F) = \{ A \in gl(n, F) \mid A = [x_{ij}], i > j \to x_{ij} = 0 \}$$
. Define $[x, y] := x \circ y - y \circ x, \forall x, y \in b(n, F),$

The only question that needs to be answered is ... Given $S, T \in (n, F)$ is $S \circ T \in b(n, F)$. Let $A, B \in \mathcal{M}_{n \times n}(F)$ and $T(x) = Ax, S(x) = Bx, \forall x \in F$. Then $(T \circ S)(x) = ABx$. Is $AB \in b(n, F)$.

Let
$$A = [a_{ij}]$$
 and $B = [b_i j]$

$$AB = \left[x_{ij} = \sum_{k=1}^{n} a_{ik} b_{k_j} \right]$$

If i > j then x_{ij}

1.5 (Pg 4) Find Z(L) when L = sl(2, F). You should find the answer depends on the characteristic of F.

Let sl(n, F) be the subspace of GL(n, F) consisting of all matrices whose trace is zero, i.e., $sl(n, F) = \left\{ A \in \mathcal{M}_{n \times n}(F) \middle| \sum_{i=1}^{n} a_{ii} = 0 \right\}$. This is known as *Special Linear Algebra* on square matrices.

When is $\sum_{i=1}^{n} a_{ii} = 0$ for all $a_{ii} \in F$? OR $a_{11} + a_{22} = 0$?.

Notice, for example, that on the discrete field $F = \mathbb{Z}/\mathbb{Z}5$, 2+3=0. Thus, when $L = \mathrm{sl}(2,\mathbb{Z}/\mathbb{Z}p)$ where p is prime, Z(L) will have elements where $a_{11} + a_{22} = p$.

1.6 (Pg 5.) Show that if $\varphi: L_1 \to L_2$ is a homormorphism, then the kernel of φ , ker φ , is an ideal of L_1 , and the image of φ , im φ , is a Lie subalgebra of L_2 .

Show that the kernel is an ideal. Let $h, k \in \ker \varphi$ such that $h \neq k$. Then $\varphi(k) = \varphi(h) = 0$.

$$\varphi(a-b) = \varphi(a) - \varphi(b) = 0$$

$$\therefore a - b \in \ker \varphi$$

which makes it a group under addition. Now we need to show that it is closed under multiplication, that is, $ra \in \ker \varphi$ for all $r \in L$. Let $r \in L$ then

$$\varphi(ra) = \varphi(r)\varphi(a) = 0$$
$$\therefore ra \in \ker \varphi$$

Show that the image is a subalgebra. We need to show three things:

Closed under addition (group condition).

Let $u, v \in \text{im } \varphi$ then there exists $x, y \in L_1$ such that $\varphi(x) = u, \varphi(y) = v$.

Then $\varphi(x+y) = \varphi(x) + \varphi(y) = u + v \in \text{im } \varphi$.

Therefore closed under addition.

closed under scalar multiplication (ring condition).

Let $r, a \in \text{im } \varphi$. Then there exists $x, y \in L_1$ such that $\varphi(x) = r, \varphi(y) = x$.

Then $\varphi(xy) = \varphi(x)\varphi(y) = ra \in \operatorname{im} \varphi$

Therefore closed under scalar multiplication.

closed under Lie bracket (subalgebra condition).

Let $u, v \in \operatorname{im} \varphi$ then there exists $x, y \in L_1$ such that $\varphi(x) = u, \varphi(y) = v$.

Then

$$\varphi([x + y, x + y]) = \varphi([x, x] + [x, y] + [y, x] + [y, y])$$

$$= \varphi([x, y] + [y, x])$$

$$= \varphi([x, y]) + \varphi([y, x])$$

$$\varphi([x, y]) = -\varphi([y, x])$$

$$[\varphi(x + y), \varphi(x + y)] = [\varphi(x) + \varphi(y), \varphi(x) + \varphi(y)]$$

$$= [u + v, u + v]$$

$$= [u, u] + [u, v] + [v, u] + [v, v]$$

$$= [u, v] + [v, u]$$

$$[u, v] = -[v, u]$$

therefore closed under Lie Bracket.

- 1.7 (Pg 6.) Let L be a Lie algebra. Show that the Lie bracket is associative, this is [x, [y, z]] = [[x, y], z] for all $x, y, z \in L$, if and only if for all $a, b \in L$ the commutator [a, b] lies in Z(L).
- 1.8 (Pg 6) Let D and E be derivations on algebra A.
 - (i) Show that $[D, E] = D \circ E E \circ D$ is also a derivation.

$$(D \circ E)(ab) = D (aE(b) - E(a)b)$$

$$= D(aE(b)) - D(E(a)b)$$

$$= aD(E(b)) - D(a)E(b) - E(a)D(b) + D(E(a))b$$

$$= aD(E(b)) + D(E(a))b - D(a)E(b) - E(a)D(b)$$

We can switch D and E to computer $E \circ D$

$$(E \circ D)(ab) = aE(D(b)) + E(D(a))b - E(a)D(b) - D(a)E(b)$$

taking the difference

$$(D \circ E)(ab) - (E \circ D)(ab) = aD(E(b)) + D(E(a))b - D(a)E(b) - E(a)D(b) - (aE(D(b)) + E(D(a))b - E(a)D(b) - D(a)E(b))$$

$$[D, E](ab) = a[D, E](b) - [D, E](a)b$$

$$= a(D \circ E)(b) - ((D \circ E)(a))b - (a(E \circ D)(b) - (E \circ D)(a)b)$$

$$[D, E](ab) = (D \circ E)(ab) - (E \circ D)(ab)$$

$$= D(E(ab)) - E(D(ab))$$

$$= D(aE(b) - E(a)b) - E(aD(b) - D(a)b)$$

$$= D(aE(b)) - D(E(a)b) - E(aD(b)) + E(D(a)b)$$

$$= aD(E(b)) - E(b)D(a)$$

$$- E(a)D(b) + D(E(a))b$$

$$- aE(D(b)) + E(a)D(b)$$

$$+ D(a)E(b) - E(D(a))b$$

= a(D(E(b)) - E(D(b)) - (E(b))D(a)

(ii) Show that $D \circ E$ need not be a derivation. (see example).

1.9 (Pg 7.) Let L_1 and L_2 be Lie algebras. Show that L_1 is isomorphic to L_2 if and only if there is a basis B_1 of L_1 and a basis B_2 of L_2 such that the structure constants of L_1 with respect to B_1 are equal to the structure constants of L_2 with respect to B_2 .

 (\Rightarrow) Assuming that $L_1 \xrightarrow[\text{iso}]{} L_2$. Define $f: L_1 \to L_2$ to be that isomorphism. Let $B_1 = (x_1, \dots, x_n)$ be the basis vectors for L_1 . Then,

$$f([x_i, x_j]) = f\left(\sum_{k=1}^n a_{ij}^k x_k\right)$$
$$= \sum_{k=1}^n a_{ij}^k f(x_k)$$
(1.6)

since f is isomorphic, it is also injective and surjective. Thus, each $f(x_k)$ is unique. Further, given any $i, j \in [1, ..., n]$ we know that x_i, x_j are linearly independent. Thus,

$$0 = Ax_i + Bx_j \implies A = B = 0 \text{ and}$$

$$f(0) = 0 = f(Ax_i + Bx_j) = Af(x_i) + Bf(x_j)$$

therefore, $f(x_i)$, $f(x_j)$ are linearly independent and thus, form a basis. From (1.6) we see that it has the same Structure Constants.

1.10 (Pg 7.) Let L be a Lie algebra with basis (x_1, \ldots, x_n) . What condition does the Jacobi identity impose on the structure constants a_{ij}^k ?

We have three brackets for the Jacobi Identity that start with

$$[x_{i}, x_{j}] = \sum_{k=1}^{n} a_{ij}^{k} x_{k}$$

$$[x_{e}, x_{f}] = \sum_{k=1}^{n} a_{ef}^{k} x_{k}$$

$$[x_{b}, x_{c}] = \sum_{k=1}^{n} a_{bc}^{k} x_{k}$$

$$[x_{i}, [x_{e}, x_{f}]] = \begin{bmatrix} x_{i}, \sum_{k=1}^{n} a_{ef}^{k} x_{k} \end{bmatrix}$$

$$= \sum_{k=1}^{n} a_{ef}^{k} [x_{i}, x_{k}]$$

$$= \sum_{k=1}^{n} a_{ef}^{k} \sum_{k=1}^{n} a_{ik}^{k} x_{l}$$

Since, the x_i are linearly independent we can examining each element l independently that is

$$[x_i, [x_e, x_f]]_l = \sum_{k=1}^n a_{ef}^k a_{ik}^l x_l$$

cycling through the other terms of the Jacobi identity we get

$$[x_e, [x_f, x_i]]_l = \sum_{k=1}^n a_{fi}^k a_{ek}^l x_l$$
$$[x_f, [x_i, x_e]]_l = \sum_{k=1}^n a_{ei}^k a_{fk}^l x_l$$

The Jacobi Identity means that the sum of the coefficients of these terms must be zero that is

$$0 = \sum_{k=1}^{n} a_{ef}^{k} a_{ik}^{l} + \sum_{k=1}^{n} a_{fi}^{k} a_{ek}^{l} g + \sum_{k=1}^{n} a_{ei}^{k} a_{fk}^{l}$$

1.11 (Pg 8.) Let L_1 and L_2 be two abelian Lie algebras. Show that L_1 and L_2 are isomorphic if and only if they have the same dimension.

If L_1 and L_2 are abelian then since [x,y] = -[y,x] then [x,y] = 0 for all $x,y \in L_1$ or L_2 . Consequently, these are vector spaces that are isomorphic to the each other and, hence, have the same dimension.

1.12 Find the structure constants of sl(2, F) with respect to the basis given by the matrices

$$e = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), f = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

The Lie Bracket for sl(2, F) is [X, Y] = XY - YX. Thus,

$$[e, f] = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$= h$$

$$[f, h] = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$

$$= 2f$$

$$[h, e] = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -2 \\ 0 & 0 \end{pmatrix}$$

$$= -2e$$

Thus,

$$\begin{aligned} a_{ii}^k &= 0, \forall k = 1, 2, 3 \\ [e, f] &= a_{12}^1 e + a_{12}^2 f + a_{12}^3 h = h \rightarrow a_{12}^3 = 1 \\ [f, h] &= a_{23}^1 e + a_{23}^2 f + a_{23}^3 h = 2f \rightarrow a_{23}^2 = 2 \\ [h, e] &= a_{31}^1 e + a_{31}^2 f + a_{31}^3 h = -2e \rightarrow a_{31}^1 = -2 \end{aligned}$$

all else are zero.

1.13 Prove $sl(2, \mathbb{C})$ has no non-trivial ideals.

1.14 Let L by the 3-dimensional complex Lie algebra with basis (x, y, z) and Lie bracket defined by

$$[x,y] = z, [y,z] = x, [z,x] = y$$

(Here L is the "complexification" of the 3-dimensional real Lie algebra \mathbb{R}^3 .)

(i) Show that L is isomorphic to the Lie subalgebra of $gl(3, \mathbb{C})$ consistent for all 3×3 antisymmetric matrices with entries in \mathbb{C} .

Let $U = \{A = \text{gl}(3, N) : A \text{ is an anti-symmetric matrix } \}$. Thus for any $A \in U$ there exists $a, b, c \in \mathbb{C}$ such that

$$X = \left(\begin{array}{ccc} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array}\right)$$

which have three linearly independent elements

$$x = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

Verify

$$[x,y] = xy - yx$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= z$$

$$\begin{split} [y,z] &= yz - zy \\ &= \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right) - \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right) \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right) \\ &= \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right) - \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \\ &= \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \\ &= x \end{split}$$

$$[z,x] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$= y$$

- (ii) Find an explicit isomorphism $sl(2,\mathbb{C}) \xrightarrow{iso} L$.
- 1.15 Let S be an $n \times n$ matrix with entries in a field F. Define

$$gl_S(n, F) = \{x \in gl(n, F) : x^t S = -Sx\}.$$

(i) Show that $gl_S(n, F)$ is a Lie subalgebra of $\mathfrak{gl}(n, F)$.

Additive Group

Let $x, y \in gl_S(n, F)$, then

$$(x+y)^t S = x^t S + y^t S = -Sx - Sy = -S(x+y)$$

Multicative property.

Let $x \in \operatorname{gl}_S(n, F)$ then $x^t S = -Sx$ and $rx^t S = -Sxr$ for all $r, \in F$ Lie Bracket

Let $x, y \in gl_S(n, F)$ then

$$[x,y] = xy - yx$$

$$[x,y]^t S = (xy - yx)^t S$$

$$= (xy)^t S - (yx^t) S$$

$$= y^t x^t S - x^t y^t S$$

$$= -y^t Sx + x^t Sy$$

$$= Syx - Sxy$$

$$= S(yx - xy)$$

$$= -S[x,y]$$

(ii) Find $\operatorname{gl}_S(2,\mathbb{R})$ if $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Let $x \in \operatorname{gl}_S(2,\mathbb{R})$ and

$$x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$x^{t}S = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}$$

$$Sx = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} b & d \\ 0 & 0 \end{pmatrix}$$

$$0 = x^{t}S + Sx = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} + \begin{pmatrix} b & d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b & a+d \\ 0 & b \end{pmatrix}$$

$$x = \begin{pmatrix} a & 0 \\ c & -a \end{pmatrix}$$

(iii) Does there exist a matrix S such that $gl_S(2,\mathbb{R})$ is equal to the set of all diagonal matrices in $gl(2,\mathbb{R})$.

Let $A \in gl(2, \mathbb{R})$ be a diagonal matrix.

Let
$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

Let $S = \begin{pmatrix} u & v \\ w & z \end{pmatrix}$
 $A^t S + SA = AS + SA \rightarrow AS = -SA$
 $au = -ua$ and $bz = -zb$

No, no such S exists.

(iv) Find a matrix S such that $\operatorname{gl}_S(3,\mathbb{R})$ is isomorphic to the Lie algebra \mathbb{R}^3_{\wedge} defined in §1.2, Example 1.

Hint: Part (i) of Exercise 1.14 is relevant.

Let x, y, z be a basis of \mathbb{R}^3 . We want to find $\phi : \mathbb{R}^3 \to \mathbb{R}^3_{\wedge}$.

Let $X, Y \in \operatorname{gl}_S(3, \mathbb{R})$ and $\phi : \operatorname{gl}_S(3, \mathbb{R}) \to \mathbb{R}^3_{\wedge}$ such that

$$\phi([X,Y]) = [\phi(X), \phi(Y)] = \phi(X) \land \phi(Y)$$

$$\phi(XY - YX) = \phi(X) \land \phi(Y)$$

Notice that

$$(XY)^t S = Y^t X^t S = -Y^t S X = SYX$$
and $[X, Y]^t S = (XY - YS)^t S$

$$= (XY)^t S - (YX)^t S$$

$$= SYX - SXY$$

$$= S(YX - XY)$$

$$= -S[X, Y]$$

$$\phi(X^t S) = \phi(-SX) = -\phi(S)\phi(X)$$

- 1.16 Show, by giving an example, that if F is a field of characteristic 2, there are algebras over F which statisfy (L1') and (L2) but are not Lie algebras.
- 1.17 Let V be an n-dimensional complex vector space and let L = gl(V). Suppose that $x \in L$ is diagonalisable, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that ad $x \in gl(L)$ is also diagonalisable and that its eigenvalues are $\lambda_i \lambda_j$ for $1 \le i, j \le n$.
- 1.18 Let L be a Lie algebra. We saw in §1.6, Example 1.2(2) that the maps ad $x: L \to L$ for $x \in L$ are derivations of L; these are known as *inner derivations*. Show that if IDER L is the set of inner derivations of L, then IDER L is an ideal of DER L.
- 1.19 Let A be an algebra and let $\delta: A \to A$ be a derivation. Prove that δ satisfies the Leibniz rule

$$\delta^{n}(xy) = \sum_{r=0}^{n} \binom{n}{r} \delta^{r}(x) \delta^{n-r}(y), \, \forall x, y \in A.$$

This resembles the binomial theorem

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r}$$

Consider an inductive proof and consider $\delta^0(x) = x$ Show true for n = 1.

$$\delta(xy) = \binom{1}{0} \delta^0(x)\delta(y) + \binom{1}{1} \delta(x)\delta^0(y)$$
$$= x\delta(y) + \delta(x)y$$

which is the Liebniz rule.

Show true for n+1. Now, assuming that this is true for some number n, we must show that it is also true for n+1. Thus, starting with n we'll calculate $\delta(\delta^n(xy)) = \delta^{n+1}(xy)$.

$$\delta^{n}(xy) = \sum_{r=0}^{n} \binom{n}{r} \delta^{r}(x) \delta^{n-r}(y), \forall x, y \in A.$$

$$\delta(\delta^{n}(xy)) = \delta \left(\sum_{r=0}^{n} \binom{n}{r} \delta^{r}(x) \delta^{n-r}(y) \right)$$

$$= \sum_{r=0}^{n} \binom{n}{r} \delta \left(\delta^{r}(x) \delta^{n-r}(y) \right) \tag{*}$$

Let us focus on the term in the summation

$$\delta\left(\delta^{r}(x)\delta^{n-r}(y)\right) = \delta^{r}(x)\delta(\delta^{n-r}(y)) + \delta(\delta^{r}(x))\delta^{n-r}(y)$$
$$= \delta^{r}(x)\delta^{n-r+1}(y) + \delta^{r+1}(x)\delta^{n-r}(y).$$

Thus,

$$\sum_{r=0}^{n} \binom{n}{r} \delta \left(\delta^{r}(x) \delta^{n-r}(y) \right) = \sum_{r=0}^{n} \binom{n}{r} \left(\delta^{r}(x) \delta^{n-r+1}(y) + \delta^{r+1}(x) \delta^{n-r}(y) \right)$$
$$= \sum_{r=0}^{n} \left(\binom{n}{r} + \binom{n}{r-1} \right) \delta^{r}(x) \delta^{n-r+1}(y)$$

when r = 0 we have

$$r = 0 \to x\delta^{n+1}(y) + \delta(x)\delta^{n}(y)$$

$$r = n \to \delta^{n}(x)\delta(y) + \delta^{n+1}(x)y$$

From combinatorics we have the identity

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

and we have

$$\begin{split} \delta^{n+1}(xy) &= x\delta^{n+1}(y) + \delta(x)\delta^n(y) \\ &+ \sum_{r=0}^n \binom{n+1}{r} \delta^r(x)\delta^{n-r+1}(y) \\ &+ \delta^n(x)\delta(y) + \delta^{n+1}(x)y \\ &= \sum_{r=0}^{n+1} \binom{n+1}{r} \delta^r(x)\delta^{n-r+1}(y) \end{split}$$

Thus, by Mathematical Induction, our assertion is true

Chapter 2

Ideals and Homomorphisms

Operations that work on Ideals

Addition: $I + J = \{x + y : x \in I, y \in J\}$ is an ideal.

Lie Bracket: $[I, J] = \text{span}\{[x, y] | x \in I, y \in J\}$ is an ideal.

Quotient: $L/I = \{z + I : z \in L\}$ is a quotient algebra.

2.1 Exercises

2.1 (Pg. 11) Show that I + J is an ideal of L where

$$I + J = \{x + y : x \in I, y \in J\}.$$

Let $z \in L$ and $x, y \in I + J$ then there exists $x_I, y_I \in I$ and $x_J, y_J \in J$ such that $x = x_I + x_J$ and $y = y_I + y_J$ then from (L2) we have

$$\underbrace{[[y,x],z]}_{\in I+J} = \underbrace{[x,[y,z]]}_{\in I} + \underbrace{[y,[z,x]]}_{\in J} \in I+J$$

2.2 (Pg. 12) Show that $sl(2, \mathbb{C})' = sl(2, \mathbb{C})$.

Let $L = sl(2, \mathbb{C})$ and $X \in [L, L]$. Then, there exist $A, B \in L$ such that [A, B] = X thus

$$X = [A, B] = AB - BA$$

 $AB \in L$ and $BA \in L$ therefore $X \in L$.

- 2.3 (Pg. 13)
 - (i) Show that the Lie Bracket defined in L/I is bilinear and satisfies the axioms (L1) and (L2).
 - (ii) Show that the linear transformation $\pi: L \to L/I$ which takes an element $z \in L$ to its coset z+I is a homomorphism of a Lie Algebras.
- 2.4 (Pg. 14) Show that if L is a Lie Algebra then L/Z(L) is isomorphic to a subalgebra of gl(L).
- 2.5 Show that if $z \in L'$ then $\operatorname{tr} \operatorname{ad} z = 0$.
- 2.6 Suppose L_1 and L_2 are Lie algebras. let $L := \{(x_1, x_2) : x_i \in L_i\}$ be the direct sum of their underlying vector spaces, e.g., $L = L_1 \oplus L_2$. Shwo that if we define

$$[(x_1, x_2), (y_1, y_2)] := ([x_1, y_1], [x_2, y_2,])$$

then L becomes a Lie algebra, the direct sum of L_1 and L_2 , $L = L_1 \oplus L_2$.

- (i) Prove that $gl(2, \mathbb{C})$ is isomorphic to the direct sum of $sl(2, \mathbb{C}) \oplus \mathbb{C}$, the 1-dimensional complex abelien Lie algebra.
- (ii) Show that if $L = L_1 \oplus L_2$ then $Z(L) = Z(L_1) \oplus Z(L_2)$ and $L' = L'_1 \oplus L'_2$. Formulate a general version for a direct sum $L_1 \oplus \cdots \oplus L_k$.
- (iii) Are the summands in teh driect sum decomposition of a Lie Algebra uniquely determined? Hint: If you think that the answer is yes, now might be a good time to read §16.4 in Appendix A on the "diagonal fallacy". The next quesiton looks at this point in more detail.
- 2.7 Suppose $L = L_1 \oplus L_2$ is the direct sum of two Lie algebras.
 - (i) Show that $\{(x_1,0): x_1 \in L_1\}$ is an ideal of L isomorphic to L_1 and that $\{(0,x_2): x_2 \in L_2\}$ is an ideal of L isomorphic to L_2 . Show that the projections $p_1(x_1,x_2)=x_1$ and $p_2(x_1,x_2)=x_2$ are Lie algebra homomorphisms.

Now suppose that L_1 and L_2 do not have any non-trivial proper ideals.

- (ii) Let J be a proper ideal of L. Show that $J \cap L_1 = 0$ and $J \cap L_2 = 0$, then the projection $p_1: J \to L_1$ and $p_2: J \to L_2$ are isomorphisms.
- (iii) Deduce that if L_1 and L_2 are not isomorphic as Lie algebras, then $L_1 \oplus L_2$ has only two non-trivial proper ideals.
- (iv) Assume that the ground field is infinite. Show that if $L_1 \cong L_2$ and L_1 is 1-dimensional, then $L_1 \oplus L_2$ has infinitely many different ideals.
- 2.8 Let L_1 and L_2 be Lie algebras, and let $\varphi: L_1 \to L_2$ be a surjective Lie algebra homomorphism. True or False:
 - (a) $\varphi(L_1') = L2';$
 - (b) $\varphi(Z(L_1)) = Z(L_2);$
 - (c) $h \in L_2$ and ad h is diagonalisable then ad $\varphi(h)$ is diagonalisable.
- 2.9 For each pair of the following Lie algebras over \mathbb{R} , decide whether or not they are isomorphic:
 - (i) the Lie algebra \mathbb{R}^3_{\wedge} where the Lie bracket is given by the vector product;
 - (ii) the upper triangular 2×2 matrices over \mathbb{R} ;
 - (iii) the strict upper triangular 3×3 matrices over \mathbb{R} ;
 - (iv) $L = \{x \in gl(3, \mathbb{R}) : x^t = -x\}.$

Hint: Use Exercises 1.15 and 2.8.

- 2.10 Let F be a field. Show that the derive algebra gl(n, F) is sl(n, F)
- 2.11 In Exercise 1.15, we defined the Lie Algebra $gl_S(n, F)$ over a field F where S is an $n \times n$ matrix with entries in F.

Suppose that $T \in gl(n, F)$ is another $n \times n$ matrix such that $T = P^tSP$ for some invertible $n \times n$ matrix $P \in gl(n, F)$ (Equivalently, the bilinear forms defined by S and T are congruent.) Show that the Lie algebras $gl_S(n, F)$ and $gl_T(n, F)$ are isomorphic.

- 2.12 Let S be an $n \times n$ invertible matrix with entre in \mathbb{C} . Show that if $x \in \mathrm{gl}_S(n,\mathbb{C})$, then $\mathrm{tr}\, x = 0$
- 2.13 Let I be an ideal of a Lie Algebra L. Let B be teh centraliser of I in L; that is

$$B = C_L(I) = \{x \in L : [x, a] = 0, \forall a \in I\}$$

Showt hat B is an ideal of L. Now suppose that

(a) Z(I) = 0, and

- (b) if $D: I \to I$ is aderivation, then $D = \operatorname{ad} x$ for some $x \in I$. Show that $L = I \oplus B$.
- (c) Recall that if L is Lie algebra, we defined L' to be the subspace spanned by the commutators [x, y] for $x, y \in L$. The purpose of this execise, which may safely be skipped on first reading, is to show that the *set* of commutators may not eve be a vector space (and so certainly not an ideal of L.).

Let $\mathbb{R}[x,y]$ denote teh ring of all real polynomials in two variables. Let L be tehs et of all matrices of the form

$$A((f(x),g(y),h(x,y)) = \begin{pmatrix} 0 & f(x) & h(x,y) \\ 0 & 0 & g(y) \\ 0 & 0 & 0 \end{pmatrix}.$$

- (i) Prove L is a Lie algebra with usual commutator bracket. (In contrast to all the Lie algebras seen so fro, L is infinite-dimensionial.)
- (ii) Prove that

$$[A((f_1(x), g_1(y), h_1(x, y)), A((f_2(x), g_2(y), h_2(x, y)))] = A(0, 0, f_1(x)g_2(x) - f_2(x)g_1(y)).$$

Hence describe L'.

(iii) Show taht if $h(x,y) = s^2 + xy + y^2$, then A(0, m0, h(x,y)) is not a commutator.