Бенчмарк	Наивный алгоритм		Алгоритм	Бойера-	Алгоритм	Кнутта-
			Мура-Хорспула		Мориса-Пратта	
	Время(мс)	Сравнения	Время(мс)	Сравнения	Время(мс)	Сравнения
bad_t_1	0.0015	18	0.0014	10	0.0021	19
bad_t_2	0.0437	910	0.0098	100	0.0154	207
bad_t_3	4.6323	90100	0.1287	1000	0.1814	2097
bad_t_4	240.9398	4001000	0.7371	5000	1.1571	10997
good_t_1	0.1041	714	0.0152	76	0.1027	730
good_t_2	0.1672	1158	0.0221	122	0.1679	1242
good_t_3	0.5980	3554	0.0943	472	0.6008	3932
good_t_4	1.6686	10714	0.1126	554	1.5480	10805

Таблица 1 – Результаты бенчмарков.

В таблице 1 приведены результаты бенчмарков каждого алгоритма. Данные результаты получены на основе усреднения результатов 100 запусков каждого бенчмарка. В тексте bad t 1 искался паттерн bad w 1, аналогично со всеми остальными файлами.

Рассмотрим плохие случаи. Наивный алгоритм значительно уступает другим как по времени, так и по операциям сравнения. Лучше всего в данных бенчмарках себя проявил алгоритм Бойера-Мура-Хорспула (БМХ). Он продемонстрировал кратно меньшее время и количество операций сравнения по сравнению с наивным. Алгоритм Кнутта-Мориса-Пратта (КМП) слегка хуже алгоритма БМХ, так как процедура построения таблицы сдвигов у него сложнее. Несмотря на это, данный алгоритм все равно отрабатывает значительно быстрее наивного.

Перейдем к хорошим случаям. В них тоже лидирует алгоритм БМХ. Отставание алгоритма КМП от алгоритма БМХ значительно увеличилось, поскольку в данных возросла мощность алфавитов. Наивный алгоритм, в свою очередь, снова оказался на последнем месте, показав слегка худшие результаты, чем алгоритм КМП.

В заключение можно сказать, что алгоритм БМХ является лучшим среди представленных.