FINAL PROJECT - DATA MINING AND APPLICATIONS

TOPIC: FORECASTING CINEMA BOX OFFICE HITS: A DATA-DRIVEN APPROACH

LECTURER: VO LE NGUYEN DUY

PHAN HUY HOANG: 21520242

PHAM THI TRAM ANH: 21520146

DUONG VAN NHAT LONG: 20521561

TRUONG QUANG THIEN: 20520310

LE DINH DUC: 19521372

TABLE OF CONTENTS

VI. References

I. Introduction	pg. 1
II. Method	pg. 3
III. Data Understanding and Mining	pg. 8
IV. Modelling & Evaluation	pg. 20
V. Deployment	pg. 29

pg. 31

INTRODUCTION

Business Understanding

CONTEXT

- The film industry is booming, with millions of new releases.
- High profit potential
 exists, but choosing the
 right films is crucial.

SOLUTION

A decision-support tool
 that uncovers hidden
 patterns and insights to
 inform strategic film
 selection.

NEED

Cinema owners face
 the daunting task of
 selecting which
 movies to invest in
 and showcase.

 Enable accurate and quick decisions based on ambigious information to identify successful movies.

METHOD

Linear Regression

Decision Tree

GridSearchCV

1

 Understanding Relationships: Identify and quantify the influence of different factors on movie-related outcomes.

2

• Feature Selection: Determine which independent variables are the most important predictors, helping to simplify models and focus on the most relevant factors.

- Statistical model to examine relationship between dependent variable (outcome) and independent variable(s) (influencers).
- Uses ordinary least squares (OLS) to find the best-fitting line/plane.

Linear Regression

R Square value

Use R Square to see how well the model fit and conclude the relationship

Decision Tree

 Supervised learning algorithm used for both classification and regression problems

A tree structure

- Nodes: decision points.
- Leaves: final outcomes.
- Selecting attributes that return the highest information gain (IG).

• Techniques:

- Pre-pruning
- Post-pruning

Model 1

- Hyperparameter optimization method
- Working through multiple combinations of parameter tunes, cross-validating as it goes to determine which gives the best performance.
- Define a grid of parameters, such as maximum depth, minimum samples split, and minimum samples leaf

DATA UNDERSTANDING AND MINING

Dataset

Larger budgets often mean better special effects, star-studded casts, and wider marketing campaigns, all of which can attract larger audiences.

• A positive relationship: movies with bigger budgets tend to make more money.

A weak positive relationship: movies with bigger budgets tend to make more money.

A strong relationship with other variables such as run time, votes, budget, country.

What is a successful movies

What is a successful movies

Rule of thumb

Gross Revenue: Exceeds at least twice the movie's budget.

IMDB Score: At least 7 out of 10.

Analyze categorical variables

Director power based on the difference average gross

Star power based on the difference average gross

Analyze categorical variables

Top-Grossing Genres

Dominance of Major Studios

Assess the impact of directors, writers, and genres on movie profitability

Score = 5: If the total profit of all their movies exceeds the average profit.

Score = 3: If the total profit of all their movies roughly equals the average profit.

Score = 1: If the total profit of all their movies is less than the average profit.

Score = 0: If the total profit of all their movies is negative (they incurred a loss).

MODELING AND EVALUATION

Modelling & Evaluation

Key features:

- Budget
- Runtime
- Rating_converted
- Director_score
- Company_score
- Genre_score
- Star_score
- Writer_score
- Month_converted

TRAINING PROCESS

DECISION TREE WITH DICISION TREE WITHOUT POST-PRUNNING DATA INSIGHTS DICISION TREE WITH PLOT TREE TO DATA INSIGHTS UNDERSTAND REASONS

DECISION TREE WITHOUT DATA INSIGHTS

Input:

'rating', 'genre', 'year', 'released',
 'writer', 'star', 'country', 'budget',
 'company', 'runtime'

Output:

'Successful' or 'Not successful'

Result:

Accuracy: 70.43%.

DECISION TREE WITH DATA INSIGHTS

Input:

'budget', 'runtime', 'rating_converted',
 'director_score',
 'company_score', 'genre_score',
 'star_score', 'writer_score',
 'month_converted'

Output:

'Successful' or 'Not successful'

Result:

Accuracy: 84.66%. (~14%)

IMPROVEMENT WITH POST-PRUNING

We implement the post-pruning technique and select the alpha. Nodes are removed from the tree if the accuracy of the model does not improve after the split.

Accuracy vs alpha for training and testing sets

IMPROVEMENT WITH POST-PRUNING

Input:

'budget', 'runtime', 'rating_converted',
 'director_score',
 'company_score', 'genre_score',
 'star_score', 'writer_score',
 'month_converted'

Output:

'Successful' or 'Not successful'

Result:

Accuracy: 87.08%. (~2.5%)

COMPARISION

METHODS	ACCURACY	INCREASE	
Decision Tree (without data insight)	70.43%		
Decision Tree (with data insight)	84.66%	~15%	
Decision Tree (post-pruning)	87.08%	~2.5%	

PLOT DECISION TREE

DEPLOYMENT

Deployment

Streamlit application github link:

https://github.com/IrisPham74/CS331.O21.KHCL.git

REFERENCES

References

- https://www.kaggle.com/datasets/danielgrijalvas/movies
- https://scikit-learn.org/stable/modules/tree.htm
- https://aws.amazon.com/what-is/linearregression/#:~:text=Linear%20regression%20is%20a%20data,variable%20as%20a%20linear%20equation.
- https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
- https://patshih.luddy.indiana.edu/publications/Gao-MovieSuccess-iConf19.pdf
- https://www.researchgate.net/publication/24072360_Successful_Movies_A_Preliminary_
 Empirical_Analysis

Assign Work Table

	Huy Hoàng	Tram Anh	Dinh Duc	Nhat Long	Truong Thien
Research and Data Mining	X	X	X	X	X
Implement code demonstration			X	X	X
Prepare Report	X	X	X	X	X
Create Slide	X	X			
Deliver the presentation	X	X			