Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 24 : Principe d'incertitude et noyau de Poisson

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Il n'y a pas de bonus, mais nous vous encourageons à faire les exercices et nous rendre dans nos casiers. Les exercices avec une étoile sont pour votre entraînement et ne seront pas corrigés.

- 1. (Principe d'incertitude.) Soit une fonction $\varphi \in \mathcal{S}(\mathbb{R})$ telle que $\int_{-\infty}^{\infty} |\varphi(x)|^2 dx = 1$.
 - (a) Utiliser $1 = \int |\varphi|^2$ et commencer par une intégration par partie, montrer

$$1 \leqslant 2 \left(\int_{-\infty}^{\infty} x^2 |\varphi(x)|^2 dx \right)^{1/2} \left(\int_{-\infty}^{\infty} |\varphi'(x)|^2 dx \right)^{1/2}.$$

(b) Utiliser le théorème de Plancherel pour montrer l'inégalité suivante

$$\left(\int_{-\infty}^{\infty} x^2 |\varphi(x)|^2 dx\right) \left(\int_{-\infty}^{\infty} \xi^2 |\widehat{\varphi}(\xi)|^2 d\xi\right) \geqslant \frac{1}{16\pi^2}.$$

- (c) Quand a-t-on l'égalité?
- (d) (Pour les physiciens.) Dans quelle mesure cette inégalité peut être interprétée comme le principe d'incertitude?
- 2. (Problème de Dirichlet dans le demi-plan supérieur.) On se place ici dans le demiplan supérieur $\mathbb{H} = \{z, \text{Im}(z) > 0\}$. Le problème de Dirichlet consiste à résoudre l'equation différentielle (dans la classe des fonctions à décroissance modérée)

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{D}$$

dans \mathbb{H} avec condition au bord u(x,0)=f(x) où f est une fonction à décroissance modérée.

(a) Établir l'équation différentielle suivante vérifiée par \widehat{f} , la transformée de Fourier par rapport à la première coordonnée

$$-4\pi^2 \xi^2 \widehat{u}(\xi, y) + \frac{\partial^2 \widehat{u}}{\partial y^2}(\xi, y) = 0.$$
 (D')

Quelle est la condition au bord pour \widehat{u} ?

(b) Sachant que la solution de (D) est à décroissance modérée, montrer que la solution générale de (D') s'écrit

$$\widehat{u}(\xi, y) = A(\xi)e^{-2\pi|\xi|y}.$$

Que peut-on dire sur A avec la condition au bord de \hat{u} ?

(c) On va étudier les propriétés de la fonction $h_y: \xi \mapsto e^{-2\pi|\xi|y}$ avec y > 0. Expliquer pourquoi si on peut écrire h_y comme la transformée de Fourier d'une certaine fonction, alors on a une formule pour la solution du problème de Dirichlet (D).

(d) Vérifier le calcul d'intégrale

$$P_y(x) := \int_{-\infty}^{\infty} e^{-2\pi|\xi|y} e^{2\pi i \xi x} d\xi = \frac{1}{\pi} \frac{y}{x^2 + y^2}.$$
 (P)

On appelle $P_y(x)$ le noyau de Poisson sur le demi-plan supérieur. Quelle est la transformée de Fourier de P_y ? Pourquoi ? Écrire la solution u du problème de Dirichlet (D) sous forme de convolution.

- (e) Vérifier que le noyau de Poisson est un bon noyau (ou une approximation de l'unité) lorsque $y \to 0$.
- 3. (Noyau de Poisson.) Soient D et D' deux domaines (*i.e.* ouverts et simplement connexes) dans \mathbb{C} . Un théorème de Riemann (admis ici) donne l'existence d'une application holomorphe $f:D\to D'$, inversible et d'inverse holomorphe. Une telle fonction est dite conforme.
 - (a) Si $u: D' \to \mathbb{R}$ est une fonction harmonique $(i.e. \Delta u \equiv 0 \text{ sur } D')$, montrer que $u \circ f$ est harmonique sur D.

Le noyau de Poisson sur un domaine D est une fonction harmonique sur D qui est nulle sur le bord et admet une singularité en un point. La solution d'un problème de Dirichlet avec condition au bord peut être vue comme une « superposition infinitésimale » de telles fonctions, dont la singularité est associée à la condition au bord via convolution.

- (b) Montrer que le noyau de Poisson dans l'équation (P) est harmonique. Indication : Si z = x + iy avec x et y réels, montrer $P_y(x) = \text{Re}\left(\frac{i}{\pi z}\right)$.
- (c) Montrer que l'application $f: z \mapsto i\frac{1-z}{1+z}$ est conforme et envoie le disque unité $\mathbb D$ sur le demi-plan supérieur $\mathbb H$. Quelle est son application réciproque?
- (d) Pourquoi la composition $P \circ f$ devrait donner le noyau de Poisson (à une constante multiplicative près) sur le disque unité où $P(z) = P(x+iy) = P_y(x)$ pour x = Re(z) et y = Im(z)? Vérifier le calcul.
- (e) (Un peu plus difficile) Qu'est-ce qui nous empêche d'avoir le noyau de Poisson avec la bonne constante multiplicative?