

Modulhandbuch für den Studiengang

Verfahrens -und Umwelttechnik (VUB) Bachelor of Engineering

HTWG Konstanz

. Nach SPO Nr. 6 (Version nach Amtsblatt Nr. 120 | Senat 08.02.2022) Stand: 12.07.2022

Gültig ab Sommersemester 2023

Inhalt

Einordnung

Legende

Abkürzungen

SWS = Semesterwochenstunden

ECTS = European Credit Transfer System

PM = Pflichtmodul
WPM = Wahlpflichtmodul
GS = Grundstudium
HS = Hauptstudium
V = Vorlesung

Ü = Übung (mit Betreuung)

LÜ = Laborübung

W = Workshop, Seminar

P = Praktikum E = Exkursion

PSS = Integriertes praktisches Studiensemester

Kx = Klausur (x = Dauer in Minuten)

Mx = Mündliche Prüfung (x = Dauer in Minuten)

R = Referat

SP = sonstige schriftliche oder praktische Arbeit

AB = Ausarbeitungen/Berichte LP = Labor-/Programmierarbeiten

PR = Präsentation TE = Testat PJ = Projekt

Dokumentinformation

Version: SPO Nr. 6 | Version nach Amtsblatt Nr. 120 | Senat 08.02.2022

Stand: 12.07.2022

Editors: Prof. Dr.-Ing. Karen Schirmer

INdigit: Automatisch generiert am 21.03.2023 um 14:33 Uhr

Aufbau des Studiengangs Verfahrens -und Umwelttechnik (Bachelor of Engineering) für Studierende mit Studienbeginn ab Sommersemester 2023:

Modul 1	Mathematik 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. U. Behrendt	WS	MO 01	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	70 h	80 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	Mathematik Oberstufe
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 07 (Mathematik 2), MO 04 (Technische Mechanik) , MO 12 (Thermodynamik), MO 17 (Strömungslehre) Sinnvoll zu kombinieren mit Modul: MO 02 (Physik 1)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 		gen	

Lernziele des Moduls

Fachliche Kompetenzen Die Studierenden

- kennen Fachbegriffe, Konzepte und praktische Anwendungen der Höheren Mathematik
- können einfache physikalische Probleme mithilfe mathematischer Gleichungen modellieren und lösen.

Methodische Kompetenzen

 können zur Lösung praktischer Fragestellungen geeigente mathematische Methoden und Techniken auswählen

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem una Lermonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Tutorium

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mathematik 1 Prof. DrIng. U. Behrendt	V	4	3	 Vektorrechnung: Skalarprodukt, Vektorprodukt, Spatprodukt Funktionenlehre der natürlichen Funktionen Differentialrechnung: Ableitungsregeln, Kurvendiskussion, Extremwertaufgaben; Newton-Verfahren, Grenzwerte Integralrechnung: Integrationsregeln, Flächenberechnung, Rotationskörper, Kurvenlängen Differentialrechnung und Integralrechnung für Funktionen mit mehreren Variablen
Übungen Mathematik 1 Prof. DrIng. U. Behrendt	Ü	2	2	 Übungsaufgaben zu den og. Lehrinhalten Lösung anwendungsbezogener Aufgaben aus dem Studienkontext

Literatur/Medien	 Papula, Lothar; Mathematik für Ingenieure und Naturwissenschaftler Bd.1-3, Vieweg Teubner, aktuelle Auflage 		chaftler Bd.1-3,
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2022

Modul 2	Physik 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. B. Jödicke	WS	MO 02	5	150 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	4	90 h	150 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	Schulmathematik für den Modulteil Physik,
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: Als Vorkenntnis erforderlich für MO 8 Physik und Elektrotechnik
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)		K90	
	Modulteilprüfung (MTP)			SP, SP
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden

- sind geübt im Umgang mit Einheiten;
- können die Dimensionsanalyse einsetzen um Gleichungen zu finden:
- können schnell Überschlagsrechnungen durchführen, auch über große Wertebereiche hinweg;
- erkennen die physikalische Verbindung zwischen Ingenieursdisziplinen (z.B. Statik, Dynamik, E-Technik, Thermodynamik);

Methodische Kompetenzen

- kennen wissenschaftliche Arbeitsweisen: Beobachten, Herbeiführen/Experiment, Erklären/Theorie und Mitteilen/Publizieren

Lernziele des Moduls

- besitzen die F\u00e4higkeit Systeme zu identifizieren und deren Bilanzierungen durchzuf\u00fchren;
- sind in der Modellierung und Lösung offener Fragen (Fermi-Probleme) geübt und können diese in die Ingenieurdisziplinen übertragen;
- können Experimente selbst aufbauen;
- kennen die grundlegenden Methoden zur Bewertung und Verbesserung von experimentellen Aufbauten;
- können Ergebnisse interpretieren und verständlich aufbereiten;

Personale Kompetenzen

- sind geübt in Teamarbeit, dabei ist ihnen das Problem unterschiedlich aktiver Teammitglieder bekannt und sie kennen dafür Lösungsmöglichkeiten;
- kennen den Adressatenbezug von Veröffentlichungen und Texten, sie können gezielt auf Adressaten gerichtet die Information aufbereiten. (Geübt wird als Adressat: Chefin, wissenschaftliche Kolleginnen extern, interne Kollegen)

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: LaborTeamCoaching & Technisches Schreiben

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Physik 1 Prof. Dr. B. Jödicke	V	2	2	Physikalische Methoden für Ingenieure Modellbildung; Einheitenanalyse und Dimensionsanalyse, Rechnen ohne Rechner Kinematik, Symmetrie und Erhaltungssätze; Erhaltungsgrößen und Bilanzierung: Mengenartige Größen und Ströme Anwendung davon: Impuls und Kräfte

Labor Physik 1 Prof. Dr. B. Jödicke	LÜ	1	2	Messungen und Grafiken, einfache Unsicherheitsanalyse; Schwingungen, Umgang mit Messungen und Messmittel Optimierung von einfachen Messaufbauten. Laborberichte (inhaltlich und sprachlich, zusammen mit Schreibberatung)	
Softskills U. Reiche	V	1	1	 physiologische Grundlagen die Bedeutung des Lebensstils für den Lernerfolg der Zusammenhang von Biorhythmus und produktiven Phasen Die Rolle der Emotionen beim Lernen Neurobiologie: Merkfähigkeit, Konzentration und Fokus Salutogenese: dauerhaft leistungsfähig und gesund bleiben Übungen zur Steigerung der Konzentration und Merkfähigkeit Selbststeuerung Die eigene Motivation (er)kennen Die Auswirkung von Stress und Druck auf das Lernergebnis Die Bedeutung von Regeneration und Pausenkultur Das eigene Bewegungs- und Entspannungsprofil entwickeln und im Alltag etablieren (Hausaufgabe für den 3. Teil) Übungen zum Anheben des Energielevels 	
				3. Selbstorganisiertes Lernen - Vorbereitung: eine gute Lernumgebung schaffen - Ziele setzen und verfolgen - Prüfungsvorbereitung, inkl. Prüfungsangst überwinden - Eine persönliche Lernkultur entwickeln, Methoden: Zielbild - Präsentation des eigenen Bewegungs- und Entspannungsprofils	

Literatur/Medien	 Skript "Methoden der Physik" Jödicke Laboranleitungen Physik-Standardwerke 	/Sum/Hettich
Sprache	Deutsch	Zuletzt aktualisiert 27.01.2023

Modul 3	Chemie 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. A. Detter	WS	MO 03	5	150 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	75 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	keine
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 16 (Chemie 2), MO 18 (Simulation), MO 21 (Chemische Verfahrenstechnik), MO 28 (Industrieller Emissionsschutz) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Lernziele des

Moduls

Die Studierenden ...

- können den Aufbau des Periodensystems beschreiben, das Orbitalmodell und die Elektronenkonfiguration der Atome im Grundzustand erklären;
- können stöchiometrische Gleichungen aufstellen und Stoffmengen berechnen;
- können Reaktionsenthalpie, Reaktionsgeschwindigkeit und chemisches Gleichgewicht berechnen und beurteilen, ob eine Reaktion freiwillig abläuft;
- sind in der Lage Löslichkeitsberechnungen durchzuführen;
- können verschiedene Säure-Base Definitionen gegenüberstellen und pH-Werte berechnen;
- können elementare Laboroperationen durchführen;
- haben Kenntnis über die Arbeitssicherheit im Chemielabor und über den Umgang mit Gefahrstoffen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Chemie 1 Prof. DrIng. A. Detter	V	4	4	 Periodensystem und chemische Bindung Orbitalmodell Energetik chemischer Reaktionen Reaktionsgeschwindigkeit Chemisches Gleichgewicht (Massenwirkungsgesetz) Löslichkeitsprodukt Säure-Base-Beziehungen
Labor Chemie 1 Prof. DrIng. A. Detter	LÜ	1	1	 Sicherheitsunterweisung Durchführung grundlegender Arbeiten im Chemielabor Begleitende Versuche zu den Inhalten der Vorlesung (Teilmodul "Allgemeine Chemie")

Literatur/Medien	 Riedel, E.: Allgemeine und Anorganische Chemie Mortimer, C.; Müller, U.: Basiswissen der Chemie Hollemann-Wiberg: Lehrbuch der Anorganischen Chemie jeweils neueste Auflage 				
Sprache	Deutsch	Zuletzt aktualisiert	27.07.2022		

Modul 4	Technische Mechanik						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. DrIng. K. Schirmer	WS	MO 04	5	150 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	90 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	Mathematik Oberstufe
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: Als Vorkenntnis erforderlich für: MO 10 (Apparatebau 1)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

- Die Studierenden ...
 können wichtige Fachbegriffe und Berechnungsmethoden der Technischen Mechanik,
 können wichtige Fachbegriffe und Berechnungsmethoden der Technischen Mechanik, insbesondere der Statik und der Festigkeitslehre, benennen und darstellen;

 - verstehen den Zusammenhang zwischen Bauteilbelastung, beanspruchung und -verformung; wenden die erlernten Berechnungmethoden an, um einfache ing.-techn. Aufgaben aus dem Bereich der Statik und der Festigkeitslehre zu lösen.

Methodische Kompetenzen Die Studierenden ...

- wenden die erlernten Lösungsmethoden an einfachen Aufgabenbeispielen an.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Tutorium

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Technische Mechanik 1 Prof. DrIng. K. Schirmer	V	3	3	 Begriff der Kraft Kräftesysteme und Gleichgewichtsbedingungen Schwerpunkte Technische Lager und Auflagerreaktionen Schnittgrössen und ihre Verteilung Haftung und Reibung zwischen festen Körpern Spannung, Dehnung, Stoffgesetze
Technische Mechanik Übungen Prof. DrIng. K. Schirmer	Ü	1	2	Übungsaufgaben zu den o.g. Lehrinhalten

Literatur/Medien	Jeweils die aktuellen, in der Bibliothek erhält - Böge: Technische Mechanik. Brausch - Holzmann / Mayer / Schumpich: Tecl - Gross / Hauger / Schnell: Technische - Mayr, Martin: Technische Mechanik Assmann, Bruno: Technische Mechan	weig / Wiesbaden: View hnische Mechanik. B.G. Mechanik. Springer-Leh Carl-Hansa Verlag ik. Band 2; Oldenbourg	Teubner Verlag nrbuch
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2022

Modul 5	Konstruktion und Werkstoffkunde					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. DrIng. K. Schirmer	WS	MO 05	5	150 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	90 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 10 (Apparatebau 1)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			
	Modulteilprüfung (MTP)	K60	M20	
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden ...

- kennen die Verantwortung der Ingenieur*in bzgl. funktionstüchtiger, haltbarer, wirtschaftlicher und umweltverträglicher Produkte;
- kennen die Grundzüge des Technischen Zeichnens;
- können einfache Technische Zeichnungen lesen und anfertigen;
- visualisieren konstruktive Überlegungen durch qualifizierte Handskizzen;
- können einfache Handskizzen im peer-review auf ihre zeichnerische Korrektheit überprüfen und besprechen;
- sind in der Lage die Bedeutung von Toleranzen für die Funktion von Bauteilen anhand von Beispielen zu erläutern und können diese anwendungsbezogen korrekt auswählen;
- wägen das Für und Wider unterschiedlicher Toleranzklassen (Maß- und Oberflächentoleranzen)
 in Bezug auf Funktionstüchtigkeit und Wirtschaftlichkeit ab;
- wissen was Fertigunsunterlagen sind;
- entwickeln und veranschaulichen die Struktur von Fertigungsunterlagen;
- sind in der Lage unter Berücksichtigung vorgegebener Randbedingungen (Einsatz, Belastung, Wirtschaftlichkeit) für die Herstellung eines Bauteils ein adequates Verfahren und einen passenden Werkstoff auszuwählen und die Konstruktion entsprechend zu gestalten;
- analysieren Bauteile, deren Konstruktion und Bemaßung auf ihre Herstellbarkeit und Funktionstüchtigkeit;
- erkennen Lagersituationen und interpretieren deren Funktion im Bauteil;
- bewerten und berechen die Lebensdauer von ausgewählten Wälzlagern;
- sind in der Lage einfache Lagerungssituationen selbständig zu konstruieren;
- haben Kenntnis der Grundlagen der Werkstoffkunde;
- können wichtige Werkstoffe und Werkstoffkenngrößen ihren Anwendungsbereichen zuordnen;
- sind in der Lage Verfahren der Werkstoffkunde, mittels derer die Werkstoffeigenschaften angepaßt werden können (z.B. Härten), zu erklären und ihre korrekte Anwendung zu identifizieren:
- begründen die eigene Verantwortung für nachhaltige Produkte aus fachlicher Sicht.

Methodische Kompetenzen

Die Studierenden ...

Lernziele des

Moduls

- wenden die Methoden des Technischen Zeichnens an.

Personale Kompetenzen

Die Studierenden ...

wenden peer-review in vorgegebenen Situationen an.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lenr- und Lerntormen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Tutorium

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Werkstoffkunde T. Bogatzky	V	2	2	 Einteilung der Werkstoffe Eigenschaften und Struktur der Metalle Legierungen und Zustandsdiagramme Das System Eisen-Kohlenstoff Wärmebehandlung der Eisenwerkstoffe Einteilung und Bezeichnung der Werkstoffe Einführung in die Werkstoffprüfung Schadensanalyse und Schadensmechanismen
Konstruktionslehre 1 Prof. DrIng. K. Schirmer	V, Ü	2	3	 Einführung in die Verantwortung des Ingenieurs / der Ingenieurin funktionstüchtige, haltbare, wirtschaftliche und umweltverträgliche Produkte zu konstruieren und Diskussion dieser Grundsätze; Grundlagen der Auslegung; Freihandzeichnen; Normgerechtes Technisches Zeichnen (Darstellungen, Schnitte etc., Bemassung etc.); Baugruppenzeichnung; Struktur von Fertigungsunterlagen; Normen, Normung; Toleranzrechungen; Überprüfung vorgegebener Maß- und Oberflächentoleranzen auf Vereinbarkeit; Elemente der Kraftleitung; Wellen-Naben-Verbindungen: Konstruktion und Berechnung ausgewählter Verbindungssituationen

Modul 6	Verfahrenstechnische Grundlagen der Umwelttechnik								
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. DrIng. U. Behrendt	WS	MO 06	5	150 h					
	Dauer	sws	Kontaktzeit	Selbststudium					
	1 Semester	3	35 h	115 h					

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	1	

Inhaltliche Teilnahme Voraussetzung	keine
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 14 (Process Equipment), MO 23 (Fördern und Dosieren), MO 21 (Chemische Verfahrenstechnik), MO 25 (Integriertes Prakt. Studiensemester), MO 24 (Mechanische Verfahrenstechnik), MO 22 (Thermische Prozesse der Umwelttechnik) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden ...

- wissen, was Verfahrenstechnik ist und kennen praktische Anwendungsfelder, insbesondere im Bereich der Umwelttechnik
- kennen die wichtigsten verfahrenstechnischen Grundoperationen
- kennen die grundsätzliche Funktion wichtiger verfahrenstechnischer Apparate und Maschinen
- können erste Kenngrößen zur quantitativen Beurteilung von Stoffumwandlungsprozesse bestimmen
 kennen und verstehen den sachlogischen Aufbau des Studiengangs und das Zusammenspiel
- Lernziele des Moduls

der unterschiedlichen verfahrenstechnischen Fachdisziplinen

Methodische Kompetenzen

- konnten erste praktische Erfahrungen im verfahrenstechnischen Labor sammeln (messen/beobachten, dokumentieren, bewerten)

Personale Kompetenzen

- können die Bedeutung der Verfahrens- und Umwelttechnik im industriellen und gesellschaftlichen Kontext einordnen und von anderen ingenieurtechnischen Fachdisziplinen abgrenzen
- können ihre Studienwahl qualifiziert reflektieren

Lehr- und Lernformen	
Lenr- und Lermormen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Verfahrenstechnische Grundlagen der Umwelttechnik Prof. DrIng. U. Behrendt	V	2	3	 Verfahrenstechnische Anwendungen im Alltag Relevanz der Verfahrenstechnik für die Lösung umwelttechnischer Fragestellungen Verfahrenstechnische Grundbegriffe: Maschine, Apparat, Anlage, Prozess, Anlage, Unit-Operation Verfahrenstechnische Fließbilder Anwendungen der Mechanischen Verfahrenstechnik Anwendungen der Thermische Aufbereitungs- und Trenntechnik Physikalisch/Chemische Verfahren Abgasreinigung, Entstaubung, Abwasseraufbereitung, Recycling 	

Grundlagenlabor Prof. DrIng. U. Behrendt	LÜ	1	2	Experimentelle Versuche zu den Grundoperationen der Verfahrens- und Umwelttechnik - Heizen/Kühlen - Dosieren - Sortieren / Klassieren, - Chemische Reaktion, - Destillieren / Kondensieren - Extraktion - Trockung - Abschätzung physikalische Größen
--	----	---	---	---

Literatur/Medien	 Ignatowitz, E.: Chemietechnik, Europ Schwister, K. Leven, V.: Verfahrenste Schwister, K.; Taschenbuch der Verf Schwister, K.; Taschenbuch der Umw Martens, H., Goldmann, D.: Recyclir Springer-Verlag jeweils aktuellste Auflage 	chnik für Ingenieure, Ca ahrenstechnik, Carl-Hans elttechnik, Carl-Hanser-	ser-Verlag Verlag		
Sprache	Deutsch Zuletzt aktualisiert 28.07.2022				

Modul 7	Mathematik 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. U. Behrendt	SS	MO 07	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	70 h	80 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	2	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	M0 01 (Mathematik 1)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Als Vorkenntniss erforderlich für MO 20 (Sensors and Data Aquisition), MO 15 (Wärmeübertragung und Stofftransport), MO 18 (Computer Aided Process Engineering 1) Sinnvoll zu kombinieren mit Modul: MO 08 (Physik 2 und Elektrotechnik)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden ..

- kennen die Struktur komplexer Zahlen und können damit grundlegende Rechenoperationen durchführen;
- kennen die mathematischen Grundlagen zur Beschreibung und Modellierung dynamischer Prozesse;
- können statistische Sachverhalte mit geeigneten mathematischen Prüfverfahren bewerten;
- können mti Hilfe von Potenzreihen Näherungsfunktionen entwickeln und deren Genauigkeit bewerten;
- haben insgesamt die Fähigkeit zur mathematischen Beschreibung und Lösung ingenieurtechnischer Fragstellungen erheblich erweitert

Personale Kompetenzen

Die Studierenden

Lernziele des Moduls

- können in Lernteams effizient und zielorientiert arbeiten
- können komplexe Sachverhalte visualisieren und verbalisieren
- können ihren Lernfortschritt reflektieren

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Lernteam-Coaching, Statistik

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Übungen Mathematik 2 Prof. DrIng. U. Behrendt	Ü	2	2	 Mathematische Übungsaufgaben zu den Lehrinhalten der Vorlesung Anwendungsbezogene Aufgaben Fachintegriert werden vermittelt: Moderationsmethodik, Organisieren und Leiten von Besprechungen
Mathematik 2 Prof. DrIng. U. Behrendt	V	4	3	 Komplexe Zahlen und Funktionen Gewöhnliche Differentialgleichungen Laplace-Transformation Statistik: Grundbegriffe, Vertrauensbereiche, Statistische Testverfahren, Varianzanalyse, Regressionsrechnung Reihenentwicklung: Grundbegriffe, Taylorreihen, Näherungen, Fehlerabschätzung

Literatur/Medien	 Papula, Lothar; Mathematik für Ingen Vieweg-Teubner Elser, Thomas; Statistik für die Praxis Lerntexte zu ausgewählten Themeng 	- vom Problem zur Met	,
Sprache	Deutsch	Zuletzt aktualisiert	15.03.2022

Modul 8	Physik 2 und Elektrotechnik							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. B. Jödicke	SS	MO 08	5	150 h				
	Dauer	sws	Kontaktzeit	Selbststudium				
	1 Semester	5	90 h	150 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	2	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 02 Physik 1
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 9 (Thermodynamik), MO 16 (Chemie 2), MO 12 (Prozessmess-technik), MO 15 (Wärmeübertragung und Stofftransport), MO 18 (Simulation) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	К90				
	Modulteilprüfung (MTP)			SP (LP), SP		
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung ☑ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 					

Die Studierenden

- sind sich bewusst, dass bei kleinen Dimensionen die klassische Physik durch Wellenmechanik ersetzt werden muss;
- können Erhaltungssätze allgemein anwenden, egal ob Energie, Impuls, Ladung usw.
- können einfache physikalische und elektrotechnische Versuche durchführem, dokumentieren und auswerten.

Methodische Kompetenzen

Die Studierenden

Lernziele des

Moduls

- können Experimente selbst aufbauen;
- kennen erweiterte Methoden zur Bewertung und Verbesserung von experimentellen Aufbauten;
- können Ergebnisse interpretieren und verständlich aufbereiten;

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☑ Workshop/Seminar ☑ Projekt ☐ Labor
Lenii- una Leniionnien	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Physik 2 Prof. Dr. B. Jödicke	V	2	2	Physikalische Methoden für Ingenieure Vertiefung Modellbildung; Vertiefung Erhaltungsgrößen und Bilanzen Energieströme, Energieformen und Gibbssche Fundamentalform Strahlen-Wellen-Teilchen: Akustik, Optik, kleine Dimensionen und Quantenmechanik; Je nach Studierendenwunsch Schwerpunkt: Qubits oder Atom und chemische Bindungen
Physik 2 Labor Prof. Dr. B. Jödicke	Ü, LÜ	1	1	Unsicherheitsanalyse/ Totales Differenzial; Vertiefung Grafiken und Berichte aus Semester 1. Ausführliche Versuchsberichte Schwingkreis, Massenträgheitsmoment Optimierung komplexer Versuchsaufbauten.

Elektrotechnik Dipllng. T. Gsell	V	1	1	Gleichstromkreis, Zählpfeile, Zweipole, Halbleiterbauelemente, Kirchhoffsche Regeln, Serien- und Parallelschaltung von Widerständen, Messung Strom, Spannung, Widerstand, Leistung und Leistungsanpassung, Leistungsumwandlung, Wirkungsgrad, Elektromagnetische Induktion, Wechselstrom und Wechselspannung, Dreiphasen-Wechselspannung (Drehstrom), Induktivität, Kapazität, Elektrische Antriebe, Gleichrichtung, Phasenanschnitt, Leistung im Wechselstromkreis, Leistung im Dreiphasen-Wechselstromkreis
Elektrotechnik Labor DiplIng. M. Bürkle	LÜ	1	1	Messungen mit dem Multimeter, Nichtlineare Widerstände, Spannungsteiler und Brückenschaltung, Spannungsquellen, Oszilloskop, Kondensator und Spule bei Wechselstrom.

Literatur/Medien	 Skript "Methoden der Physik" Jödicke, Laboranleitungen E-Technik und Phys Skript E-Technik Gsell Physik-Standardwerke 		
Sprache	Deutsch	Zuletzt aktualisiert	27.01.2023

Modul 9	Business Skills			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. U. Behrendt	SS	MO 09	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	2 Semester	5	60 h	90 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	2	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 19 (Konstruktionsprojekt Apparatebau), MO 25 (Integriertes Praktisches Studiensemester), MO 30 (Projektarbeit), Bachelorarbeit Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			
	Modulteilprüfung (MTP)	K60, SP		SP
Zusammensetzung der Endnote	☐ Note der benoteten Mod☒ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden...

- kennen die betriebswirtschaftlichen Strukturen eines Wirtschaftsunternehmens
- können eine Gewinn-und Verlustrechnung interpretieren
- können eine Unternehmensbilanz lesen und interpretieren
- Sind in der Lage eine Investitionsrechnung zu erstellen
- können einen Business-Plan für ein konkretes Projekt entwickeln und präsentieren

Methodische Kompetenzen

Die Studierenden

Lernziele des Moduls

- können Projektaufträge systematisch klären und konkretisieren
- können Projektrisiken bewerten und zweckmaßige Gegenmaßnahmen erarbeiten
- kennen die Vorgehensweise und Werkzeuge zur Planung von Projekte bezüglich Inhalt, Zeit und Kosten
- kennen die Methoden zur ergebnisorientierten Steuerung von Projekten
- haben Methoden des Projektmanagement in Fallstudien angewendet und erprobt.
- sind in der Lage, einfache Projekte professionell zu leiten.

Personale Kompetenzen

Die Studierenden...

- sind in der Lage komplexe Sachverhalte Empfänger-orientiert darzustellen.
- kennen die Regeln nachvollziehbarer Kommunikation und wenden diese bei der Vermittlung komplexer Sachverhalte systematisch an.
- treten in Präsentationen selbstsicher und gewinnend auf.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lein- una Leimormen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Fallstudien

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Projektmanagement Prof. DrIng. U. Behrendt	V, W	2	2	 Aufgabe und Relevanz des Projektmanagements Auftragsklärung und Auftragsananalyse Risikomanagement Projektstrukturierung Ablaufplanung Kostenplanung Projektorganisation – Projektleiter -Projektteam Projektsteuerung Projektabschluss und Reviews EDV- Werkzeuge für das Projektmanagement

Betriebswirtschaftslehre Dipl-Betriebswirt W. Schulz	V	2	2	 Sinn und Zweck eines Unternehmens Unternehmensorganisation, Rechtsformen Grundbegriffe des Rechnungswesens Bilanz Gewinn- und Verlustrechnung Kosten- und Erlösrechnung Investitionsrechnung Wirtschaftlichkeitsrechnung
Presentation Skills (EN) Prof. DrIng. K. Schirmer	V, W	1	1	- Regeln nachvollziehbarer Kommunikation - Entwicklung und Strukturierung von Präsentationen - Visualisierung von Sachverhalten (Grafiken, Tabellen) und Präsentationsfolien - Vorbereitung und Durchführung überzeugender Präsentationen - Körpersprache und Verhalten in Präsentationen

Literatur/Medien	Projektmanagement - H. Schelle, O. Linssen: Projekte zum systematisch und kompakt; dtv-Bec - R. Stöger: Wirksames Projektmanager Betriebswirtschaftslehre - T. Gonschorek: Betriebswirtschaftsleh Hanser-Verlag - A. Schwab: Managementwissen für In Springer-Verlag Präsentationstechnik - J. Kochs: Pyramidales Strukturieren und H.F. Ebel, C.Bliefert, A. Kellersohn: Erfür Ingenieure - N. Schulenburg, Exzellent präsentieren Ideenvermittlung – Werkzeuge und Präsentationen, Springer-Gabler-Ver	k-Verlag ment, Schäfer-Poeschel- nre für Ingenieure: Lehr- genieure: Wie funktioni nd Visualisieren, Beltz-V folgreich kommunizierr en: Die Psychologie erfo Techniken für herausra lag	Verlag - und Praxisbuch, eren Unternehmen?, /erlag nen - Ein Leitfaden lgreicher gende
Sprache	Deutsch/Englisch Zuletzt aktualisiert 28.07.2		

Modul 10	Apparatebau 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. K. Schirmer	SS	MO 10	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	75 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	2	

Inhaltliche Teilnahme Voraussetzung	MO 05 (Konstruktion und Werkstoffkunde), MO 04 (Technische Mechanik)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 13 (Apparatebau 2), MO 19 (Projekt Apparatebau)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			
	Modulteilprüfung (MTP)	SP, K90		
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` '.	oteten Modulteilprüfun	gen

Die Studierenden...

- können wichtige Fachbegriffe und Berechnungsmethoden der Festigkeitslehre und der Konstruktionslehre benennen und darstellen;
- verwenden die erlernten Berechnungsmethoden, um Bauteilspannungen und -verformungen unter verschiedener, auch mehrachsiger Belastung zu ermitteln;
- Verstehen den Begriff Lebensdauer und können Lebensdauerberechnungen gegen Festigkeitsberechnungen abwägen;
- überprüfen Berechnungsergebnisse auf Plausibilität hin;
- sind in der Lage unter Berücksichtigung vorgegebener Randbedingungen (Einsatz, Belastung, Wirtschaftlichkeit) für die Herstellung eines Bauteils ein adequates Verfahren und einen passenden Werkstoff auszuwählen und die Konstruktion entsprechend zu gestalten;
- analyieren Bauteile, deren Konstruktion und Bemaßung auf ihre Herstellbarkeit und Funktionstüchtigkeit hin;
- begründen die eigene Verantwortung für nachhaltige Produkte aus fachlicher Sicht;
- setzen Werkstoffe entsprechend der Betriebsbedingungen korrekt ein;
- interpretieren Schäden an Bauteilen bzgl. Korrosion und Verschleiß.

Methodische Kompetenzen

Die Studierenden...

Lernziele des

Moduls

- setzen zielgerecht erlernte Werkzeuge und Methoden ein, um Bauteilspannungen- und Vervormungen unter unterschiedlicher Belastung zu beurteilen.
- eignen sich aufbauend auf die im Modul 2 erworbenen Methoden Inhalte im Selbststudium an;
- leiten gemeinsam Lösungswege her unter Verwendung der gelernten Methoden.

Personale Kompetenzen

Die Studierenden...

- lernen im Selbstudium mit Lerntexten;
- integrieren die Inhalte des Moduls 05;
- diskutieren und reflektieren gemeinsam über Schwerpunktinhalte;
- klären Fragen im Team;
- rechnen tw. Aufgaben für die Mitstudent*innen an einem geegneten Projektionselement vor.

Lehr- und Lernformen	 ✓ Vorlesung ✓ Übung ✓ Selbststudium ✓ Workshop/Seminar ✓ Projekt ✓ Labor ✓ Exkursion ✓ E-Learning ✓ Hausarbeit ✓ Sonstiges: Tutorium, Lerntexte 			
Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt

Werkstoffe im Apparatebau Dipl-Ing. (FH) M. Sorg	V, Ü	1	1	 Korrosion metallischer Werkstoffe Verschleiß Korrosionsschutz Nichtrostende Stähle NE-Metalle Kunststoffe und keramische Werkstoffe Einführung in die Schweisstechnik
Konstruktionslehre und Technische Mechanik 2 Prof. DrIng. K. Schirmer	V, Ü	4	4	 Grundlagen der Auslegung Lager, insbesondere Wälzlager: Anwendung, Konstruktion von Lagersituationen, Auslegung, Normung Flächenträgheits- und Widerstandsmomente Spannungen – Biegung, Torsion, Schub Verformung – Biegung Instabilität – Knickung Überprüfung von Berechnungen (z. B. durch überschlägige Betrachtung, Einheitenvergleich) Aufbauend auf die im Modul 2 erworbenen Lern- und Arbeitstechniken (z. B. Lesetechniken, Teamarbeit) eignen sich die Studierenden die oben genannten Inhalte teilweise in Form von Lerntexten im Selbststudium an. In der Vorlesung werden die Inhalte gemeinsam diskutiert und reflektiert sowie Fragen geklärt. Bei den Inhalten, die Berechnungen betreffen, werden teilweise die Lösungswege in der gemeinsamen Diskussion von Studierenden mit der Lehrenden entwickelt.

Literatur/Medien	 Wittel, Herbert; Muhs, Dieter; Jannaso Maschinenele-mente: Normung, Be Springer Vieweg, 2015 Tabellenbuch Metall; viele Autoren; E Böge: Technische Mechanik. Vieweg-\ - Holzmann / Mayer / Schumpich: Tech Stuttgart / Leipzig / Wiesbaden: B.C Gross / Hauger / Schnell: Technische Lehrbuch Assmann, Bruno: Technische Mechanik. O Wagner, Walter: Festigkeitsberechnun Fachbuch Verlag: Würzburg Kalpakjian, Schmid, Werner: Werkstof Immer die neueste in der HTWG-Biblothek er Lerntexte zu ausgewählten Themeng 	rechnung, Gestaltung, 2 uropa Lehrmittel Verlag: Brauschweig / W nnische Mechanik. Teil 2 i. Teubner Verlag Mechanik. Teil 2 und T ik. Band 2; Oldenbourg Carl Hanser Verlag: Mün g im Apparate- und Roh ffkunde, Pearson Verlag hältliche Ausgabe ebieten	22. Aufl., Wiesbaden, liesbaden 2 und Teil 3, eil 3 ; Springer- Verlag chen rleitungsbau, Vogel
Sprache	Deutsch	Zuletzt aktualisiert	01.08.2022

Modul 11	Regenerative Energien					
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. DrIng. R. Erpelding	SS	MO 11	5	150 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	2 Semester	3	60 h	90 h		
Einsatz des Moduls im Studiengang	Angestrebter Abschluss	Modul-Typ (PM/WPM)	Beginn im Studiensemester	SPO-Version / Jahr		
VUB	B.Eng.	PM	22	SPO 6 / 2022		

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Dieses Modul führt die Studierenden in die Technik der Erneuerbaren / regenerativen Energien ein. Ein expliziter Zusammenhang mit anderen (folgenden) Modulen ist strukturell nicht gegeben. Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)				
	Modulteilprüfung (MTP)	K60	SP	SP	
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Fachliche Kompetenzen Die Studierenden .. - können die Art und Quellen erneuerbarer Energie, ihre Nutzungsmöglichkeiten und Grenzen verstehen und analysieren; verstehen die Funktion der Apparate und Infrastrukturen zur Gewinnung, Verteilung, Nutzung und ggf. Speicherung erneuerbarer Energien; können einfache Verbrennungsrechnungen durchführen können die wichtigsten verfahrenstechnischen Komponenten einer Biogasanlage beschreiben und durch Beispiele erläutern; Lernziele des verstehen die Biologie des Biogas-Prozesses; Moduls können eine Biogasanlage entwerfen und den Biogasreaktor berechnen (Durchsatz, Verweilzeit, Reaktorvolumen) kenn die verschiedenen Energiespeicherarten und die praktischen Ausführungen Methodische Kompetenzen - haben Kenntnis darüber, wie ein technischer Bericht zu erstellen ist; können Massen- und Stoffbilanzen für Materialströme aufstellen und berechnen (bilanzieren); Personale Kompetenzen - können sich und Arbeit in einer Projektgruppe organisieren können in einer Projektgruppe zusammenarbeiten wissen wie sie ingenieur-wissenschaftliche Literatur zu einem Thema recherchieren

Lehr- und Lernformen		kursion		ung 🗵 Selbststudium 🗌 Workshop/Seminar 🗵 Projekt 🗀 Labor earning 🗀 Hausarbeit 🖾 Sonstiges: Projektbericht (Technisches
Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt

Biogasprojekt Prof. DrIng. R. Erpelding	PJ	1	3	Projektarbeit in Kleingruppen - Umgang mit technischen Einheiten in der Praxis - Erstellen von verfahrenstechnischen Fliessbildern - Bilanzierung von Massen und Stoffströmen - Verfahrenstechnische Auslegung eines Bioreaktors - Auswahl von Apparate und Maschinen für den Biogasprozess - Einführung und Übungen zum technischen Schreiben Prozessbeschreibung und Dokumentation der Entscheidungen in Form eines technischen Berichts mit Grundfließbild und Verfahrensfließbild
Regenerative Energien Prof. DrIng. R. Erpelding	V	2	2	 Grundlagen der Energiewirtschaft in Deutschland und Europa Energiebedarf und Verbrauch in Europa und in Entwicklungsländern Kohlenstoffkreislauf einfache Verbrennungsrechnung Technologien zu Nutzung erneuerbarer Energie ins. Biogas und Biomasse Energiespeicherung Wasserstoff als Energieträger und Grundchemikalie

Literatur/Medien	 Krimmling-Müller: Erneuerbare Energ Wirtschaftlich-keit, 1. Auflage, Köln Watter H.; Regenerative Energiesyste Kaltschmitt, M. et al.; Energie aus Bio Eder, B.: Biogas-Praxis: Grundlagen, F Wirtschaftlichkeit, Umwelt, 5. Aufla Fachagentur Nachwachsende Rohstof Gewinnung zur Nutzung, 7. Auflage Ullmanns Encyclopedia of Industrial O 	, Verlag Rudolf Müller, 2 me, 5. Aufl. Springer Vie masse 2. Aufl. Springer Planung, Anlagenbau, Be ge, Staufen, Ökobuch Vi fe (Herausgeber): Leitfa e, Gülzow, 2016	2009 eweg 2019 2009 eispiele, erlag, 2012 den Biogas - von der
Sprache	Deutsch	Zuletzt aktualisiert	23.09.2019

Modul 12	Thermodynamik						
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsauf						
Prof. DrIng. R. Erpelding	SS	MO 12	5	150 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	90 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	2	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 1 (Mathematik 1), MO 2 (Physik)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Als Vorkenntnisse erforderlich für: MO 12 (Prozessmesstechnik), MO 14 (Projekt: Apparatebau), MO 15 (Wärmeübertragung u. Stofftransport), MO 18 (Simulation), MO 19 (Chemische Verfahrenst.), MO 25 (Thermische Verfahrenst.), MO 21 (Prozessmaschinen) Sinnvoll zu kombinieren mit Modul: MO17 Strömungslehre

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden ...

- können die Begriffe der Thermodynamik anwenden;
- kennen die Hauptsätze der Thermodynamik und können diese auf ausgewählte technische Systeme anwenden
- können energetische Bilanzierungen von Energiewandlungsprozessen verstehen, analysieren und bewerten;
- verstehen das thermische Verhalten von Gasen und Fluiden

Lernziele des Moduls

Methodische Kompetenzen

- sind in der Lage die Prinzipien der Energie-Bilanzierung auf technische Prozesse anzuwenden;
- können sich spezielles, weitergehendes Detailwissen aus diesem Fachgebiet selbständig erarbeiten und dieses anwenden;
- können die Rechenmethoden aus dem VDI-Wärmeatlas anwenden und thermodynamische Stoffdaten recherchieren;
- können sich spezielles, weitergehendes Detailwissen aus diesem Fachgebiet selbständig erarbeiten und dieses anwenden.

Personale Kompetenzen

- verstehen die Thermodynamik als grundlegende Wissenschaft der Verfahrens- und Umwelttechnik

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Thermodynamik Übungen Prof. DrIng. R. Erpelding	V	1	2	Übungen zur Thermodynamik in technischen Anwendungen

Thermodynamik Prof. DrIng. R. Erpelding	V	3	3	 Grundlegende Begriffe, thermodynamische Grössen Hauptsätze der Thermodynamik Wärme und Ausprägungsformen von Arbeit Ideales Gasgesetz und Zuständsänderungen idealer Gase Anwendungen des ersten Hauptsatzes in Umwelt- und Verfahrenstechnischen Anwendungen Thermisches Verhalten der Materie (reine Stoffe, Festkörper, Flüssigkeiten, ideale und nichtideale Gase, feuchte Luft, Gas- Dampfgemische) Erstellen und lösen von Energiebilanzen für ausgewählte technische Systeme
---	---	---	---	---

Literatur/Medien	Jeweils neueste Ausgabe von - U. Nickel Lehrbuch der Thermodynam - H.D. Baehr et al.: Thermodynamik 16. - F. Barth, Praktische Thermodynamik, - C. Lüdecke et al. Thermodynamik für Vieweg - J. Gehling, B. Kolbe Thermodynamik 2 - VDI Wärmeatlas, 10 Aufl. VDI-Gesellsc Chemieingenieurwesen (Hrsg.) Be	. Aufl., Springer-Vieweg DeGruyter Verlag Verfahrensingenieure 2 2. Aufl. VCH Verlag Weir chaft Verfahrenstechnik	. Aufl. Springer- nheim 1992
Sprache	Deutsch	Zuletzt aktualisiert	26.07.2022

Modul 13	Apparatebau 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. K. Schirmer	WS	MO 13	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	75 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 10 (Apparatebau 1)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 19 (Projekt Apparatebau), MO 25 (Integriertes Praktisches Studiensemesters), MO 33 (Projektarbeit mit Seminar), Bachelorarbeit (MO 34)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MO 14 (Process Equipment)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)					
	Modulteilprüfung (MTP)	K90		SP		
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 					

Die Studierenden....

- haben Kenntnis von den wichtigsten Apparateelementen, ihre Anwendungsbereichen und ihren konstruktiven Besonderheiten;
- sind in der Lage relevante DIN -Normen entsprechend deren Anwendungsbereich anzuwenden;
- können (Wälz-) Lager passend zur Anwendung auslegen;
- sind in der Lage die Belastungssituation ausgewählter Apparateelemente (u.a. Lagern, Welle, Flanschverbindungen) zu analysieren;
- können gewonnene (Berechnungs-)Lösungen auf Richtigkeit überprüfen und interpretieren;
- können die gewählte Herangehensweise bewerten und ggf. ändern;
- sind in der Lage komplexe Konstruktionssituationen der u.g. Apparateelemente bzgl deren Fuktion zu interpretieren und ggf. zu ändern;
- können u.g. Apparateelemente für konkreten Anwendungssituationen konsturieren;
- können ein CAD-Werkzeug bedienen;
- können konstruktive Konzepte und Entwürfe hinterfragen und ggf. korrigieren;
- sind in der Lage Konstruktionsaufgabenvorgaben auf Funktion und Montagegerechtheit zu hinterfragen und bei Bedarf zu korrigieren;
- können aus Skizzen 3D-Modelle generieren unter Beachtung von Herstellung, Montage, Funktion und noprmgerechter Bemaßung des Teils bzw der Baugruppe;
- können CAD-basierte Fertigungsunterlagen erstellen.

Methodische Kompetenzen

Die Studierenden....

Lernziele des

Moduls

Lehrende

- sind in der Lage zielgerecht erlernte Werkzeuge und Methoden einzusetzen, um die Haltbarkeit bzw. Lebensdauer u.g. Apparateelemente zu beurteilen;
- können erlernte Methoden der Sturkturierung von Baugruppen auf 3D-Modelle übertragen;
- wissen wie ein das 3D-Modell eines Teils bzw einer Baugruppe auf Funktion, Herstellung, Montagegerechtigkeit und normgerechte Bemaßung überprüft wird.

Personale Kompetenzen

Die Studierenden....

- recherchieren (in) Normen und Fachliteratur
- wenden peer-review und peer-coaching an

Teilmodul	Art	SWS	ECTS	Lehrinhalt
Lein's und Leimormen	☐ Exk	cursion	☐ E-Le	earning 🗆 Hausarbeit 🗆 Sonstiges:
Lehr- und Lernformen	∣ ⊠ Vor	rlesung	⊠ Ubι	ung ⊠ Selbststudium ⊔ Workshop/Seminar ⊔ Projekt ⊔ Labor

CAD Prof. DrIng. K. Schirmer	Ü	2	2	 Solid Works Volumenmodelle Baugruppen Blech Zeichnungsvorlagen, Verwendung von Steuerbefehlen Zeichnungen ableiten Hinterfragen von gegebene, bemaßten Bauteil- und Baugruppenskizzen / -zeichnungen auf Funktion und normgerechte Bemaßung bzw Korrektur derer Erstellen von Baugruppenstrukturen Genannte Lehrinhalte werden tw. mittels entsprechender Lerntexte unter fachlichem coaching selbständig erarbeitet und in Solid Works realisiert. Fachintegriert wird vermittelt: Kritischer Umgang mit Vorgaben peer-review peer-coaching
Apparateelemente Prof. DrIng. K. Schirmer	V	3	3	 Grundlagen der Auslegung: allg. Herangehensweise, Analyse der Belastungssituation, Versagenskriterien, Methoden und Werkzeuge Achsen und Wellen: Konstruktionsregeln und Auslegung in Anlehnung an DIN 743 Dichtungen: Anwendungsbereiche, Berechnung, Konstruktion der Dichtsituation (auch für hygienische Anwendungen) Schrauben: Anwendungen, Berechnung in Anlehnung an VDI 2230 Flanschverbindungen: Konstruktionshinweise, Normungsrichtlinien für Flansche, Berechung von Flanschverbindungen nach DIN EN 1591 (vormals DIN 2505) Diskussion von Konstruktionszeichnungen der gelehrten Apparateelemente in Anwendungssituationen und deren Überprüfung auf zeichnerische und funktionelle Richtigkeit. Fachintegriert werden vermittelt: Analysefähigkeit im technischen Kontext Fachgespräch / Fachterminologie

Literatur/Medien	 Wittel, Herbert; Muhs, Dieter; Jannasc Maschinenelemente: Normung, Ber Springer Vieweg, 2015 Wagner, Walter: Festigkeitsberechnung Fachbuch Verlag Titzw, H., Wilke, HP.: Elemente des A Klapp, E.: Apparate- und Anlagentech Beitz, W., Küttner, KH.: DUBBEL Tasc Verlag Schmid, E., u.a.: Handbuch der Dichtung Müller: Abdichtung bewegter Maschir Kloss, KH., Thomala, W.: Schrauben Eigenschaften, Handhabung, Spring Immer die neueste in der HTWG-Biblothek erl Lerntexte zu ausgewählten Themengebieten Lerntexte und Arbeitsanweisungen für CAD 	echnung, Gestaltung, 2 g im Apparate- und Roh Apparatebaus, Springer nik, Springer-Verlag chenbuch für den Masch ungstechnik, expert Ver gspraxis, VulkanVerlag nenteile, Medienverlag verbindungen: Grundlag er-Verlag hältliche Ausgabe des Apparatebaus	2. Aufl., Wiesbaden, irleitungsbau, Vogel Verlag iinenbau, Springer- lag gen, Berechnung,
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2022

Modul 14	Process Equipment							
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. DrIng. K. Schirmer	WS	MO 14	5	150 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	3	45 h	105 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 06 (Verfahrenstechnische Grundlagen der Umwelttechnik)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 19 (Projekt Apparatebau), MO 25 (Integriertes Praktisches Studiensemesters), MO 26 (Nachhaltige Prozess- und Anlagentechnik), MO 33 (Projektarbeit mit Seminar), Bachelorarbeit (MO 34) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			
	Modulteilprüfung (MTP)	B, PR, PR		SP
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung ☑ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 		gen	

Die Studierenden....

- haben Kenntnis ausgewählter Armaturen, Apparate und Maschinen der Verfahrenstechnik;
- verstehen deren Funktion, konstruktiven Aufbau und Anwendung;
- können einen Apparat / Armatur / Maschine passend zu einer definierten Aufgabe auswählen und können ihre Entscheidung begründen;

Für die englischsprachige Vorlesung:

- understand the benefits and drawbacks of design methodology and risk assessment methods;
- know when and how to employ these methods / methodologies during the development process and during product life of process equipment, apparatus and armatures.

Methodische Kompetenzen

Die Studierenden...

- wählen für eine praktische Anwendung den richtigen Apparat, Armatur, Maschine aus;
- erweitern ihr Wissen im Bedarfsfalle eigenständig;
- sind in der Lage selbständig nach den relevante (DIN) Normen zu recherchieren und entsprechend deren Anwendungsbereich einzusetzten;
- strukturieren Arbeitsabläufe selbständig.

Für die englischsprachige Vorlesung:

- understand the benefits and drawbacks of design methodology and risk assessment methods.

Personale Kompetenzen

Die Studierenden....

Lernziele des

Moduls

- sind in der Lage sich eigenständig in neue Themen einzuarbeiten und bei Bedarf selbständig ihr Wissen zu erweitern;
- können durch Literaturrecherche gewonnene Kenntnisse reflektieren und zusammenfassen;
- sind in der Lage selbständig einen sachgerechten Technischen Bericht in Form einer Hausarbeit über ein gestelltes Thema zu verfassen;
- erkennen zitierfähige Quellen;
- können im Team eine schriftliche Ausarbeitung zu einem gestellten Thema so verfassen, dass Struktur, Format, Sprache und inhaltliche Herangehensweise konsistent sind;
- strukturieren Arbeitsabläufe selbständig;
- erkennen, wenn sie sich fachliche Hilfe bei einer Expert*in holen müssen.

Für die englischsprachige Vorlesung:

- are able to work in a team on a technical assignment;
- are able to conduct a technical discussion in English.

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	\Box Exkursion \Box E-Learning \boxtimes Hausarbeit \boxtimes Sonstiges: Literaturrecherche, Technisches Schreiben

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Process Equipment Prof. DrIng. K. Schirmer	V	1	1	 Hygienic design Heat exchanger Other selected chapters of the topic Subject-integrated are taught: Subject specific technical terminology in English Expert discussion in English 	
Projekt: Process Equipment Prof. DrIng. K. Schirmer	PJ	1	2	 Literaturrecherche inkl. Normen und Patente, Regeln des Schreibens bzw. Erstellens eines Technischen Berichtes (aufbauend auf die Vorkenntnisse), Erstellen einer schriftlichen Hausarbeit im Team zu ausgewählten Fachthemen, Ausgewählte Apparate, Armaturen, Maschinen der Verfahrenstechnik (Funktion, Konstruktionsmerkmale, Anwendung, Auswahlkriterien). Fachintegriert werden vermittelt selbständige Wissenserweiterung, Umgang mit neuen fachlichen Fragestellungen, Reflexion über und Zusammenfassung von durch Literaturrecherche gewonnenen Kenntnissen, Erkennen zitierfähiger Quellen. 	
Design Methodology and Risk Assessment Prof. DrIng. K. Schirmer	V, Ü	1	2	- Introduction to Design Methodology and Systematic Product Development as per VDI 2221. - Risk Assessment Methods in the Product Development Process - FMEA - FTA - Assignments to above as teamwork Subject-integrated are taught: - Subject specific technical terminology in English	

Sprache Deutsch/Englisch Zuletzt aktualisiert 28.07.2022
--

Modul 15	Wärmeübertragung und Stofftransport						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. DrIng. R. Erpelding	WS	MO 15	5	150 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	5	75 h	75 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 9 (Thermodynamik), MO 2 (Physik), MO 8 (Mathematik 2), MO 11 (Strömungslehre)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: Als Vorkenntnis erforderlich für: MO 14 (Projekt: Apparatebau), MO 25 Thermische Verfahrenstechnik, MO 19(chemische Reaktionstechnik), MO 26 (Anlagentechnik)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	К90		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen Die Studierenden... - können die Terminologie des Fachgebietes verstehen und anwenden; verstehen die Grundlagen zu den Wärmeübertragungs- und Stoffsportmechanismen; - können Wärme- und Stofftransportvorgänge qualitativ und quantitativ analysieren; kennen typische Wärmetransportfragstellungen und deren Lösungsansätze sowie die -Methoden Lernziele des können verschiedene Berechnungs- und Lösungsansätze auf Wärmeübergang und Moduls Wärmedurchgang anwenden; Methodische Kompetenzen - Dokumentieren von Messungen Durchführung von Messungen an technischen Anlagen - Anwendung von standardisierten Berechnungsvorschriften des VDI-Wärmeatlas Personale Kompetenzen - können sich spezielles Detailwissen aus diesem Fachgebiet selbständig erarbeiten

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wärmeübertragung und Stofftransport Prof. DrIng. R. Erpelding	V, Ü	4	4	 Eindimensionale, stationäre Wärmeleitung Stationäre Diffusion konvektiver Wärme- und Stoffübergang in Fluiden Dimensionslose Beschreibung von Wärmeübertragungsvorgängen Wärmedurchgang Berechnung von Wärmetauschern mit charakteristischen Funktionen nach VDI-Wärmeatlas

Wärmeübertragung und Stofftransport Labor Prof. DrIng. R. Erpelding	LÜ	1	1	 Kinetik des Stofftransportes beim Rühren gekoppelter Wärme- und Stofftransport in Schüttungen Erzwungene Konvektion im Doppelrohrwärmetauscher Überprüfung von Meßdaten anhand von Energiebilanzen Anwendung von Tabellenkalkulation zur Dokumentation und Auswertung von Messungen
				- Anpassung von kinetischen Parameter an Messungen

Literatur/Medien	 M. Kraume Transportvorgänge in der Berlin 2020 S. Weiss et. al Thermische Verfahrens H. D. Baehr et al. Wärme- und SToffül 2019 VDI-Wärmeatlas 10. Aufl. VDI-Gesells Chemieingenieurwesen (Hrsg.) Be Wagner: Wärmeübertragung 	stechnik Wiley-VCH, Leip bertragung 10. Aufl. Spi chaft Verfahrenstechnik	ozig 1993 ringer-Vieweg Berlin
Sprache	Deutsch	Zuletzt aktualisiert	26.07.2022

Modul 16	Chemie 2 und Umweltanalytik							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. DrIng. A. Detter	WS	MO 16	5	150 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	75 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 2 (Physik), MO 3 (Chemie1)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 21 (Chemische Verfahrenstechnik), MO 28 (Industrieller Emissionsschutz)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden ...

- sind in der Lage die Spannung galvanischer Zellen zu berechnen
- konnen bei der Elektrolyse die Reihenfolge der Stoffabscheidung mittels Berechnung vorauszusagen;
- können den Aufbau von Batterien, Akkus und Brennstoffzellen beschreiben;
- können die theoretischen Grundlagen wichtiger Analysemethoden erklären;
- können die wichtigsten Stoffklassen der organischen Chemie benennen und deren physikalische und chemische Eigenschaften beschreiben;
- sind in der Lage die grundlegenden Reaktionstypen der organischen Chemie an einfachen Beispielen zu erklären.

Methodische Kompetenzen

Die Studierenden

Lernziele des

Moduls

- können selbständig nass-chemische und instrumentelle Analysemethoden anwenden und einfache Synthesen durchführen;
- können die Analysenergebnisse qualifiziert darstellen, vergleichen und bewerten;
- können mit Gefahrstoffen sicher umgehen und Unfälle im Labor durch sicherheitsbewusstes Handeln vorbeugen.

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	\Box Exkursion \Box E-Learning \Box Hausarbeit \boxtimes Sonstiges: Laborbericht: Technisches Schreiben

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Elektrochemie und Umweltanalytik Prof. DrIng. A. Detter	V	2	2	Elektrochemie: Redoxreaktionen Galvanische Zellen Elektrolyse Elektrochemische Stromerzeugung (Batterie, Akku, Brennstoffzelle) Einführung in die Umweltanalytik Trennung von Substanzgemischen (Chromatographie) Strukturaufklärung, Spektroskopie Elektroanalytische Methoden (Leitfähigkeit, pH, Redox)

Organische Chemie Prof. DrIng. A. Detter	V	2	2	 Kohlenwasserstoffe (Alkane, Alkene, Alkine) Organische Sauerstoffverbindungen (Alkohole, Aldehyde, Ketone, Carbonsäuren, Ester) Aromatische Verbindungen Kunststoffe Chemie der Biomoleküle (Fette, Kohlenhydrate, Aminosäuren)
Labor Chemie 2 Prof. DrIng. A. Detter	LÜ	1	1	 Sicherheitsunterweisung Synthese verschiedener Ester Redox-Titration Trennung von Substanzgemischen (Gaschromatograph) UV-VIS Spektroskopie Elektrogravimetrie Atom-Absorptions-Spektroskopie

Literatur/Medien	 Vollhardt, K.; Schore, N.: Organische Schwedt, G.: Taschenatlas der Analyt Riedel, E.: Allgemeine und Anorganis Mortimer, C.; Müller, U.: Basiswissen jeweils neueste Auflage 	ik che Chemie	
Sprache	Deutsch	Zuletzt aktualisiert	27.07.2022

Modul 17	Strömungslehre							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. DrIng. C. Nied	WS	MO 17	5	150 h				
	Dauer	sws	Kontaktzeit	Selbststudium				
	1 Semester	4	60 h	90 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 1 (Mathematik 1), MO 2 (Physik 1)			
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 22 (Thermische Prozesse), MO 23 (Fördern und Dosieren), MO 24 (Mechanische Verfahrenstechnik), MO 28 (Industrieller Umweltschutz), MO 30 (Umwelttechnisches Projektierungsseminar), MO 31 (Nachhaltige Prozesse) Sinnvoll zu kombinieren mit Modul: MO 14 (Process Equipment), MO 15 (Wärmeübertragung und Stofftransport), MO 18 (Computer Aided Process Engineering 1)			

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	· /I	oteten Modulteilprüfun	gen

Die Studierenden...

Lernziele des

Moduls

- kennen wichtige Aspekte zur Charakterisierung von Fluiden und Strömungen,
- kennen die Grundgleichungen der Strömungslehre und können sie anwenden, verstehen die Reibung von Fluiden und die Grundlagen von Grenzschichten,
- wissen von Widerstandskräften und können Kraftwirkungen auf umströmte Körper berechnen,
 - können Druckverluste in Rohrströmungen und durchströmten porösen Schichten berechnen.

Methodische Kompetenzen

Die Studierenden...

- wissen um die grundsätzliche Herangehensweise an strömungsmechanische Fragestellungen,
- können strömungstechnische Grundlagen auf die einfache Berechnung/Auslegung von Apparaten anwenden.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lein's und Leimormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Strömungslehre Prof. Drlng. C. Nied	V	3	3	 Eigenschaften von Fluiden (Dichte, Viskosität, Kompressibilität) Charakterisierung von Strömungen Fluid-Statik: Hydrostatik und Aerostatik Methoden in der Strömungsmechanik: Ähnlichkeitslehre und Dimensionsanalyse Eindimensionale Modelle: Stromfadentheorie, Grundgleichungen Zweidimensionale Modelle: Grundgleichungen Reibungsphänomene und Grenzschichten Umströmung von Körpern Rohrströmungen Strömungen in porösen Medien

Hochschule Konstanz
Fakultät Maschinenbau

Modulhandbuch des Studiengangs Verfahrens -und Umwelttechnik, Bachelor of Engineering

Strömungslehre Übungen Prof. DrIng. C. Nied	Ü	1	2	 Übungsaufgaben zu den og. Lehrinhalten Lösung anwendungsbezogener Aufgaben aus dem Studienkontext
--	---	---	---	--

Literatur/Medien	 Skriptum zu Vorlesung Herwig, H., Strömungsmechanik – Ein Springer Vieweg, Wiesbaden (auch Zierep, J., Bühler, K., Grundzüge der Wiesbaden (auch als eBook auf Springer Strömungsle eBook auf SpringerLink) 	als eBook auf SpringerLi Strömungslehre, Spring ingerLink)	ink) er Vieweg,
Sprache	Deutsch	Zuletzt aktualisiert	01.08.2022

Modul 18	Computer Aided Process Engineering 1					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. DrIng. C. Nied	WS	MO 18	5	150 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	3	45 h	105 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	3	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 2 (Physik), MO 3 (Chemie 1), MO 7 (Mathematik 2), MO 12 (Thermodynamik)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 30 (Umwelttechnisches Projektierungseminar) Sinnvoll zu kombinieren mit Modul: MO 26 (Nachh. Prozess- und Anlagentechnik), MO 27 (Regelungstechnik), MO 29 (Computer Aided Process Engineering 2)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			SP
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 			

Fachliche Kompetenzen Die Studierenden... - haben Kenntnisse über die Modellbildung und Simulation realer Systeme und können Beispiele geben, wie das Verhalten realer Systeme in Simulationsmodellen abgebildet werden kann, - sind in der Lage, Differentialgleichungen und Differentialgleichungssysteme mit Simulink zu lösen, - können Differentialgleichungen/Differentialgleichungssysteme zur Modellierung einfacher dynamischer Systeme aus dem technisch-naturwissenschaftlichen Bereich entwickeln und die Simulation mit Simulink durchführen. Methodische Kompetenzen Die Studierenden... - sind in der Lage, die Ergebnisse der Simulation zu analysieren und dem realen System

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Projektbericht: Technisches Schreiben

gegenüberzustellen, erkennen die Vorteile und die Grenzen von Simulationen.

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Modellbildung und Simulation Prof. DrIng. C. Nied	V, Ü	1	1	 Grundlagen der Modellbildung Aufstellen von Bilanzgleichungen Numerisches Lösen von Differentialgleichungen Einführung in MATLAB und Simulink Modellbildung und Simulation einfacher kinetischer Aufgaben Modellbildung und Simulation einfacher dynamischer Prozesse Abbildung einfacher Regelungsaufgaben in Simulink
Übungen Modellbildung Prof. DrIng. C. Nied	Ü	1	2	Vertiefende Übungen zu den Vorlesungsinhalten, insbesondere zur Modellbildung und Simulation dynamischer Prozesse.
Simulationsprojekt Prof. DrIng. C. Nied	PJ	1	2	Projektarbeit in Kleingruppen zur Modellierung und Simulation dynamischer Systeme an einer selbst gewählten oder vorgegebenen Aufgabenstellung aus dem technisch- naturwissenschaftlichen Bereich.

Literatur/Medien	 Skriptum zur Vorlesung Kutzner, R., Schoof, S., MATLAB/Simulink - Eine Einführung, RRZN-Handbuch (kann über das RZ bezogen werden) Fachliteratur der zugrundeliegenden Fachvorlesungen 			
Sprache	Deutsch	Zuletzt aktualisiert	01.08.2022	

Modul 19	Projekt Apparatebau				
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. DrIng. K. Schirmer	SS	MO 19	5	150 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	50 h	100 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	alle Module des Grundstudiums, MO13 Apparatebau 2, MO14 Process Equipment, MO15 Wärmeübertragung und Stofftransport, MO17 Strömungslehre,
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO25 Integriertes Praktisches Studiensemester, MO33 Projektarbeit mit Seminar, Bachelorarbeit (MO34)
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	, ,,	noteten Modulteilprüfun	gen

Die Studierenden ...

- erkennen sachliche und fachliche Fehler in Vorlagen und Aufgabenstellungen und korrigieren diese bei Bedarf;
- wählen eine Armatur oder einen verfahrenstechnischen Apparat / Maschine passend zu einer definierten Anwendung aus;
- sind in der Lage eine Armatur oder einen verfahrenstechnischen Apparat / Maschine ausgehend von einem Kundenwunsch konstruktiv zu entwickeln und die fertigungsrelevanten Unterlagen zu erstellen:
- erstellen CAD-basierte Fertigungsunterlagen;
- hinterfragen und bewerten Konzepte und Entwürfe und rechtfertigen ihre Bewertungsentscheidungen;
- strukturieren Arbeitspakete aus einem Arbeitsauftrag und setzten diese zeitgerecht um;
- können komplexe Sachverhalte (hier : konstruktive Lösung) nachvollziehbar strukturieren, visualisieren und präsentieren.

Methodische Kompetenzen

Die Studierenden ...

Lernziele des

Moduls

- können komplexe Sachverhalte (hier: konstruktive Lösung) nachvollziehbar strukturieren;
- sind in der Lage Arbeitspakete strukturiert und für eine zeitgerechte Abgabe ein- und aufzuteilen;
- wenden das Konzept des Methodischen Konstrukierens an;
- wenden sachgerecht Methoden des Qualitätssicherung und Fehlersuche an.

Personale Kompetenzen

- hinterfragen und bewerten Konzepte und Entwürfe und rechtfertigen ihre Bewertungsentscheidungen;
- strukturieren, visualisieren und präsentieren komplexe Sachverhalte (hier : konstruktive Lösung) nachvollziehbar;
- wenden die gelernten Regeln nachvollziehbarer Kommunikation in Präsentationen und Konstruktionsberschreibung gezielt an;
- bearbeiten ein komplexes Projekt strukturiet und weitestgehend selbständig;
- organisieren sich im vorgegebenen Team;
- übernehmen individuel Arbeitspakete und tragen die Verantwortung, diese ziel- und zeitgerecht abzugeben;
- können mit Zeitdruck und "deliverables" umgehen;
- können mit fachbezogener Kritik umgehen.

Lehr- und Lernformen	\square Vorlesung \square Übung \boxtimes Selbststudium \boxtimes Workshop/Seminar \boxtimes Projekt \square Labor
Lem- una Lemionnen	\square Exkursion \square E-Learning \boxtimes Hausarbeit \boxtimes Sonstiges: Literaturrecherche

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Konstruktionsprojekt Apparatebau Prof. DrIng. K. Schirmer	PJ	4	5	Selbständiges Bearbeiten eines Konstruktionsprojektes aus dem Bereich Apparate, Armaturen, Maschinen der Verfahrenstechnik im Team vom Kundenauftrag bis zur 3D-Modellierung und reflektierender Präsentation der Konstruktion. - Konstruktion eines ausgewählten Apparates / Armatur / Maschine basierend auf einem Kundenauftrag. - Anwendung des Methodischen Konstruierens (VDI 2221) und Anwendung von FMEA. - Recherche von Fachliteratur / Normen / Patenten zur ausgewählten Aufgabe und deren Integration in die Lösung der Aufgabe. - Projektstruktur, Anfertigung von Fertigungsunterlagen, Berechnungen, technische Konstruktionsbeschreibung, abschließende Praesentation. - Arbeiten im selbstorganisierten Team. - Abgaben unter Einhaltung inhaltlich und zeitlich vorgegebener Meilensteine. - Fachlich orientierte Rückmeldungen der Dozentin an das Team in Anlehnung an die Sandwichmethode in terminierten feedback Gesprächen mit dem Team.

Literatur/Medien	 Pahl G. and Beitz W. , Feldhusen J. an Systematic Approach. Third Edition. Pahl, G., Beitz, W., et.al: Konstruktion Produktentwicklung; Methoden und Naefe P. : Einführung in das Methodis Vieweg+Teubner Verlag, Wiesbaden Dietz P. : Konstruktion verfahrenstec mechanischen, thermischen oder chechanischen, thermischen oder chechanischen J. : Reliability a VCHVoig, Kai-Ingo: Risikomanagem Schmidt Verlag Moss, T.R., Andrew, J.D.: Reliability a Engineering Pub Immer die neueste in der HTWG-Biblothek er Normen und Richtlinien: VDI 2221 Methodik um Entwickeln und Produkte VDI 2222 Konzipieren technischer Produkte VDI 2225 Technisch-wissenschaftlischen Themenbezogen in Eigenregie recher 	, Springer Verlag, Londo islehre: Grundlagen erf I Anwendung, Springer V sche Konstruieren. 1. Au hnischer Maschinen bei nemischen Belastungen. nd Risk Assessment. Sei ent im industriellen Anl nd Risk Assessment, Pro hältliche Ausgabe nd Konstruieren technisc odukte; Planen – Konzip hes Konstruieren	on olgreicher Verlag uflage, besonderen Springer cond Edition, Wiley- agenbau, Erich ofessional cher Systeme und vieren – Entwerfen -
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2022

Modul 20	Sensors and Data Acquisition				
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. Dr. H. Gimpel	SS	MO 20	5	150 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	90 h	90 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 2 (Physik), MO 8 (Mathematik 2), MO 9 (Thermodynamik), MO 11 (Strömungslehre)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Als Vorkenntnis erforderlich für: MO 23 (Integriertes Praktisches Studiensemesters), MO 24 (Partikeltechnologie), MO 25 (Thermische Verfahrenstechnik), MO 26 (Prozesstechnik), MO 27 (Regelungstechnik), MO 30 (Projektarbeit), Bachelorarbeit Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K60		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden....

- sind in der Lage die messtechnischen Grundlagen darzustellen und zu erklären
- können verfahrenstechnische Standard-Größen an Anlagen messen
- können dazu die richtigen Sensoren und Messgeräte auswählen
- sind in der Lage die Signalverarbeitung zu verstehen, zu beurteilen und zu überprüfen

Lernziele des Methodische Kompetenzen Moduls

Die Studierenden....

- können die praktische Vorgehensweise für eine Messung an einem Versuchsaufbau planen und die Ergebnisse auf Plausibilität prüfen

können einen Laborbericht nach Vorgaben erstellen.

Personale Kompetenzen

Die Studierenden....

- können in einer kleinen Gruppe zusammen an einem Gerät arbeiten

	_	\square Workshop/Seminar \square Projekt $oximes$ Labor
Lehr- und Lernformen ☐ Exkursion Schreiben	☐ E-Learning ☐ Hausarbeit	☑ Sonstiges: Laborbericht: Technisches

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Sensors and Data Acquisition (EN) Prof. Dr. H. Gimpel	V, Ü	2	2	 Eigenschaften und Kenngrößen von Messgeräten und Sensoren, Sensorprinzipien, Messunsicherheit nach GUM. Wichtige Messgrößen in der Verfahrens- und Umwelttechnik: z. B. Messung von Temperaturen, Druck, Füllstand, Durchfluss, Durchsatz, mechanische Größen (z. B. Kraft, Drehmoment, Beschleunigung, Drehzahl, Länge), Dehnungsmessstreifen. digitale Messsignalerfassung, -verarbeitung und -analyse. Diese Vorlesung findet regulär in englischer Sprache statt.
Labor Prozessmesstechnik Prof. Dr. H. Gimpel	LÜ	2	3	Messung von Temperatur, Druck, Füllstand, Durchfluss, mechanische Größen (Kraft, Drehmoment, Drehzahl, Abstand, Position), Kalibrierung, Programmierung einer Messwerterfassung.

Literatur/Medien	 Fachliteratur der HTWG-Bibliothek für Grundlagen der Sensorik und Messtechnik Vorlesungsskript H. Gimpel "Sensors and Data Acquisition" 					
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	19.01.2023			

Modul 21	Chemische Verfahrenstechnik							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. DrIng. A. Detter	SS	MO 21	5	150 h				
	Dauer	sws	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	75 h				

Einsatz des Moduls im	Angestrebter	j , , ,		SPO-Version /
Studiengang	Abschluss			Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 3 (Chemie 1), MO 6 (Verfahrenstechnische Grundlagen der Umwelttechnik), MO 12 (Thermodynamik), MO 16 (Chemie 2)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 25 (Integriertes Praktisches Studiensemesters), MO 26 (Nachhaltige Prozess- und Anlagentechnik), MO 28 (Industrieller Emissionsschutz) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden ...

Lernziele des

Moduls

- verstehen die thermodynamischen Grundlagen von Zweistoffgemischen;
- verstehen die Grundlagen der physikalisch-chemischen Verfahren;
- können die zur Auslegung der Verfahren relevanten Prozessgrößen ermitteln;
- können einfache Trennoperationen bewerten und ein geeignetes Verfahren auswählen;
- sind in der Lage physikalisch-chemische Verfahren zu planen und zu entwerfen;
- verstehen die Grundlagen der chemischen Reaktionstechnik (Reaktionskinetik, Bilanzgleichungen, Verweilzeitverteilungen);
- können einfache Chemiereaktoren auswählen und dimensionieren;
- haben das zur weiterführenden, eigenständigen Erweiterung und Vertiefung notwendige Fachwissen;
- sind in der Lage experimentelle Untersuchungen selbständig durchzuführen und die Ergebnisse zu interpretieren und zu bewerten.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Physikalisch-Chemische Verfahren Prof. DrIng. A. Detter	V	2	2	Phasengleichgewichte in Zweistoffsystemen

Chemische Reaktionstechnik Prof. DrIng. A. Detter	V	2	2	Chemische Reaktionstechnik
Labor Chemische Verfahrenstechnik Prof. DrIng. A. Detter	LÜ	1	1	Begleitende Laborversuche zu den Inhalten der Vorlesungen: - Physikalisch-Chemische Verfahren - Chemische Reaktionstechnik

Literatur/Medien	 Atkins, P.: Physikalische Chemie Hagen, J.: Chemiereaktoren Baerns, M.; Behr, A.; Brehm, A.; Gmel Melin, T.; Rautenbach, R.: Membranv Anlagenauslegung jeweils neueste Auflage 		
Sprache	Deutsch	Zuletzt aktualisiert	27.07.2022

Modul 22	Thermische Prozesse der Umwelttechnik							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. DrIng. R. Erpelding	SS	MO 22	5	150 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	4	0 h	0 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden ..

- kennen die Terminologie des Fachgebietes und können diese anwenden;
- kennen die physikalischen Grundlagen, die thermischen Trennoperationen zu Grunde liegen
- verstehen die Prinzipien der Auslegung von thermischen Trennverfahren im Kontext der Umwelttechnik
- können Bilanzierungsmethoden anwenden um thermische Trennverfahren auszulegen
- Emissionsgrenzwerte entsprechend TA-Luft umrechnen und anwenden;

Lernziele des Moduls

Methodische Kompetenzen

- können das erworbene Wissen und Verständnis der Modellbildung auch auf umwelttechnische Sonderprozesse anwenden;
- können sich spezielles Detailwissen aus diesem Fachgebiet selbständig erarbeiten und dieses anwenden.

- Können geeignete Trennmethoden für Trennaufgaben der Umwelttechnik auswählen

Personale Kompetenzen

- sind in der Lage experimentelle Untersuchungen selbständig durchzuführen und zu dokumentieren
- können die Ergebnisse qualifiziert darstellen, überprüfen, interpretieren und hinterfragen
- können praktische Aufgaben im Team bearbeiten und zielorientiert lösen

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Laborbericht (Technisches Schreiben)

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Einführung in die Thermische Verfahrenstechnik Prof. DrIng. R. Erpelding	V, Ü	3	3	 Grundlagen der Mehrphasengleichgewichte Thermische Trenntechnik: Trocknung, Trennen von Flüssigkeiten, Trennen von Gasen Anwendung der Trennverfahren in der Umwelttechnik Technische Umsetzung der Trennverfahren Grundlagen der Anlagen- und Apparatedimensionierung und -auslegung

Labor Thermische Verfahrenstechnik Prof. DrIng. R. Erpelding	LÜ	1	2	 Laborübungen aus den Themenbereichen der thermischen Trennung z.B. Verdampfen, Destillieren, Sorption Einfache Analyseverfahren Diffractometrie und Gaschromatographie Erstellen von Kalibrationen Berichtwesen und Kommunikation von technisch-
				wissenschaftlichen Ergebnissen (Vortrag, Poster)

Literatur/Medien	 K. Schwister, Verfahrenstechnik für II 2020 A. Mersmann et. al. Thermische Verfa 2005 P. Grassmann et al. Einführung in die DeGruyiter Verlag M. Kraume, Transportvorgänge in de Vieweg Berlin 2019 M. Schultes Abgasreinigung, Springe W. Vauck et al. Grundopeartionen Ch Leizig 2000 Ullmann's Encyclopedia Of Industrial 	ahrenstechnik, 2. Aufl. Se Thermische Verfahrenser Verfahrenstechnik, 3. dr Verlag Berlin 1996 nemischer Verfahrenstec	Springer-VDI Berlin stechnik 3. Aufl. Aufl. Springer- hnik Wieley-VCH, Online
Sprache	Deutsch	Zuletzt aktualisiert	26.07.0022

Modul 23	Fördern und Dosieren				
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufv				
Prof. DrIng. U. Behrendt	SS	MO 23	5	150 h	
	Dauer	sws	Kontaktzeit	Selbststudium	
	1 Semester	3	35 h	115 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 06 (Verfahrenstechnische Grundlagen der UT), MO 12 (Thermodynamik), MO 17 (Strömungslehre)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 25 (Integriertes PSS), MO 25 (Mechanische VT), MO 22 (Thermische Prozesse der Umwelttechnik), MO 26 (Nachhaltige Prozessund Anlagentechnik), MO 33 (Projektarbeit), Bachelorarbeit Sinnvoll zu kombinieren mit Modul: MO 20 (Seonsors & Data Aquisition)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)	K90		SP
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden ...

- Kennen den Aufbau, die Funktion sowie wesentlichen Konstruktionsmerkmale der wichtigsten Prozessmaschinen, die zur F\u00f6rderung fester, fl\u00fcssiger und gasf\u00f6rmiger Prozessmedien eingesetzt werden
- Können das Förderverhalten anhand von Kennlinien beurteilen

Lernziele des Moduls

Methodische Kompetenzen

Die Studierenden...

- Können für konkrete Prozessanforderungen geeignete Prozessmaschinen auswählen und verfahrenstechnisch auslegen.

Personale Kompetenzen

- Sind in der Lage mit Herstellern und Kunden qualifiziert zu kommunizieren
- Können experimentelle Untersuchungsergebnisse nachvollziehbar und qualifiziert aufbereiten und dokumentieren.

	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Projektbericht (CFD) und Laborbericht (Sortiertechnik)

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Fördern und Dosieren Prof. DrIng. U. Behrendt	V, Ü	2	3	 Grundlagen der Rohrleitungstechnik Anlagenkennlinie und Betriebspunkt Flüssigkeitspumpen: Bauarten und Einsatzbereiche Verdichter & Ventialtoren: Bauarten, Einsatzbereiche Fördern von Feststoffen Dosieren von Flüssigkeiten und Feststoffen Auswahl und Beschaffung geeigneter Prozessmaschinen
Labor Fördern und Dosieren Prof. DrIng. U. Behrendt	LÜ	1	2	Laborversuche zu ausgewählten Themen der Vorlesung - Volumetrische Schüttgutdosierung - Siloauslegung mittels Ringschergerät - Ventilator-Kennlinie und Scale-up - NPSHR-Bestimmung

Literatur/Medien	 Wagner, W.: Kreiselpumpen und Kreis Merkle, T.: Kreiselpumpen und Kreis Eifler, W., Schlücker, E.: Kolbenmasch Vieweg-Teubner-Verlag Vetter, G.: Rotierende Verdrängerpur Neumaier, R, Surek, D.: Hermetische Kreiselpumpen und rotierenden Ve Wagner, W. Lufttechnische Anlagen: Verlag Dilger, V.: Richtig dosieren: Flüssigke Business-Media Verlag Schulze, D.: Pulver und Schüttgüter, Videos und Animationen von Herstel Videos und Animationen von Herstel SPA - Pump Selector: Auswahlprogra 	elpumpensysteme, l, exp ninen- Kolbenpumpen, K npen für die Prozesstech Pumpen: Die ökologisch drängerpumpen, Verlag Ventilatoren und Ventila eiten dosieren, messen, Springer Verlag ern – Links auf Lernplat	pert-Verlag olbenverdichter, nnik, Vulkan Verlag ne Lösung bei g Faragallah toranlagen, Vogel- regeln, Vogel- tform Moodle
	 Vorlesungsscript und Übungsaufgabe Wagner, W.: Rohrleitungstechnik, Voe Franke, W., Platzer, B.; Rohrleitunger Verlag Wagner, W.: Kreiselpumpen und Kreiselpumpen und Kreiselpumpen 	gel-Verlag n – Grundlagen- Planung selpumpenanlagen, Vog	- Montage, Hanser- el-Verlag

Modul 24	Mechanische V	erfahrenstechnik		
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. C. Nied	SS	MO 24	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	4	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 6 (Verfahrenstechnische Grundlagen der Umwelttechnik), MO 17 (Strömungslehre)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 28 (Industrieller Umweltschutz), MO 30 (Umwelttechnisches Projektierungsseminar), MO 31 (Nachhaltige Prozesse),MO 33 (Projektarbeit), Bachelorarbeit
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MO 20 (Sensors and Data Acquisition), MO 23 (Fördern und Dosieren)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen Die Studierenden... - verstehen, wie disperse Systeme formal charakterisiert werden können, - wissen, wie ausgewählte Merkmale disperser Systeme messtechnisch erfasst werden können, - können Partikelbewegungen in Fluiden berechnen, - kennen die wichtigsten Durchströmungsgleichungen, - wissen um die Bedeutung interpartikuläre Kräfte, - kennen die Grundlagen der verfahrenstechnischen Grundoperationen Trennen, Mischen, Zerkleinern und Agglomerieren und können entsprechende Apparate berechnen, auslegen und auswählen. Methodische Kompetenzen Die Studierenden... - sind in der Lage, experimentelle Untersuchungen selbstständig durchzuführen und die Ergebnisse qualifiziert darzustellen, zu überprüfen, zu interpretieren und zu hinterfragen.

Lehr- und Lernformen	 ☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor ☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☑ Sonstiges: Laborbericht: Technisches Schreiben

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Lenrende				

Partikeltechnologie Prof. DrIng. C. Nied	V, Ü	4	4	 Disperse Systeme (Kennzeichnung, Eigenschaften, Rechnen mit Partikelgrößenverteilungen, messtechnische Charakterisierung, Probenahme) Interaktion von disperser und kontinuierlicher Phase (Partikel in Fluiden, Durchströmung von porösen Systemen und Partikelschichten) Wechselwirkungen auf Mikroebene (interpartikuläre Kräfte, Bruchphänomene) Trennung disperser Systeme (formale Beschreibung, Rechnen mit Trennkurven, Windsichtung) Größenänderung disperser Systeme (Grundlagen der Zerkleinerung und Agglomeration) Mischen disperser Systeme (Grundlagen des Feststoffmischens, Bestimmung der Mischgüte) Ausgewählte Übungsaufgaben zu den Kapiteln der Vorlesung
Partikeltechnologie Labor Prof. DrIng. C. Nied	LÜ	1	1	Ausgewählte Laborversuche zur Charakterisierung von Partikelsystemen sowie zur Zerkleinerung und Windsichtung

Literatur/Medien	 Skriptum zur Vorlesung Stieß, M., Mechanische Verfahrensted Verlag, Berlin Stieß, M., Mechanische Verfahrensted Schubert, H., Handbuch der Mechanis Weinheim 	hnik 2, Springer-Verlag	Berlin
Sprache	Deutsch	Zuletzt aktualisiert	03.03.2022

Modul 25	Integriertes Praktisches Studiensemester					
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. DrIng. U. Behrendt	WS	MO 25	30	900 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	1 Semester	1	15 h	885 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	5	

Inhaltliche Teilnahme Voraussetzung	MO 06 (Verfahrenstechnische GL der UT), MO 09 (Business Skills), MO 14 (Process Equipmentst.), MO 18 (CAPE 1), MO 21 (Chemische VT), MO 23 (Fördern und Dosieren)
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 33 (Projektarbeit), Bachelorarbeit
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			SP
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Keine Note 			

Die Studierenden ...

- konnten die im Studium erworbeneen Fähigkeiten in einem industriellen Kontext anwenden
- erwerben in mindestens einem verfahrens- bzw. umwelttechnischen Fachgebiet Spezialkenntnisse
- haben ihre fachlichen Interessen innerhalb der Verfahrens-und Umwelttechnik reflektiert

Lernziele des Moduls

Personale Kompetenzen

- sind in der Lage ihre Arbeitsergebnisse nachvollziehbar und überzeugend zu präsentieren
- können sich adäquat bei qualifizierten Unternehmen bewerben
- sind in der Lage, sich selbstständig in eine industrielle Aufgabenstellung einzuarbeiten und angemessene Ergebnisse erzielen
- können sich in professionelle Arbeitsgruppen integrieren
- haben die Erfahrungen des Praxissemester reflektiert und bewertet.

	\square Vorlesung \square Übung \boxtimes Selbststudium \boxtimes Workshop/Seminar \square Projekt \square Labor
Lehr- und Lernformen	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Präsentation,
	Praxissemesterbericht

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Ausbildung in der Praxis Prof. DrIng. U. Behrendt	PSS	0	26	 Weitgehend selbstständige Bearbeitung einer verfahrens- und umwelttechnischen Problemstellung im industriellen Kontext unter fachlicher Anleitung. Kennenlernen industrieller Arbeitsumgebungen im Bereich der Verfahrens- und Umwelttechnik. Die fachliche Ausrichtung ist innerhalb der Verfahrens- und Umwelttechnik nach eigenen Schwerpunkten wählbar.
Praxisseminar Prof. DrIng. U. Behrendt	W	1	4	 Zielsetzung und Ablauf des praktischen Studiensemesters Planung des praktischen Studiensemesters Firmensuche und Bewerbung Präsentation individueller Erfahrungsberichte im Nachbereitungsseminar Dokumentation der Praxistätigkeit in Form eines schriftlichen Berichts (PSS-Bericht). Fachliche und persönliche Reflexion der gewonnen Erfahrungen

Literatur/Medien	 Hering L.; Hering K.: Technische Beri Anleitung und Vorlagen zum PSS-Beri Praktische Hinweise zur Durchführun Studiensemesters auf Lernplattform 	icht auf Lernplattform M g und Planung des Prak	loodle
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	28.07.2022

Teilmodul

Lehrende

Modul 26		Nachhaltige Pi	Nachhaltige Prozess- und Anlagentechnik				
Modul-Koordina	ation	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. DrIng. U. Behrendt		SS	MO 26	5	150 h		
		Dauer	SWS	Kontaktzeit	Selbststudium		
		1 Semester	4	45 h	105 h		
Einsatz des Mo Studiengang	duls im	Angestrebter Abschluss	Modul-Typ (PM/WPM)	Beginn im Studiensemester	SPO-Version / Jahr		
VUI	В	B.Eng.	PM	6	SPO 6 / 2022		
Inhaltliche Teili Voraussetzung	nahme		Data Quisition), MO 18 (, MO 14 (Process Equipn d Dosieren)				
Verwendbarkei im o.g. Studieng		Sinnvoll zu kombir	forderlich für Modul: MO nieren mit Modul: MO 24 3 (Industrieller Umweltsc	(Mechanische VT), MO			
Püfungsleistun des Moduls	gen		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
		Modulprüfung (MP)	K90/S/R				
	Mod	ulteilprüfung (MTP)					
Zusammensetz der Endnote	ung 🔲 EC	ote der benoteten Mod TS-gewichtetes, arithr onstiges:	netisches Mittel der ben	oteten Modulteilprüfung	gen		
Lernziele des Moduls	Die Studiere - kön - sinc - kön	nen Stoffumwandlung: I in der Lage anhand vom Welttechnsichen Pronen mit Hilfe von Stoffozessdaten für die Ausnen konkrete Maßnahrentifizieren de Kompetenzen en mit Hilfe der Freiheurteilen und geeignetenen mit Hilfe der PINC odellieren und analysienen mit Hilfe der PINC od vorhandene Energie	H-Analyse verfahrensted einsparpotentiale quanti	ressbeschreibungen ein rozesse analysieren und Maschinen und Rohrleiti Optimierung verfahrenst zipielle Lösbarkeit von wickeln men verfahrenstechnisch	en verfahnres- I fehlende ungen ermitteln echnischer Prozesse Bilanzproblemen he Prozesse getisch analysieren		

 \Box Exkursion \Box E-Learning \Box Hausarbeit \Box Sonstiges:

Lehrinhalt

sws

ECTS

Art

Nachhaltige Prozess- und Anlagentechnik Prof. DrIng. U. Behrendt	V	2	2	Verfahrenstechnische Fließbilder (Grundfließbild, Verfahrensfließbild, R&I-Fließbild) Stoff- und Energiebilanzierung - Grundlagen der Bilanzierung - Bilanzräume - Arten und Eigenschaften - Stoffbilanzierung komplexer Anlagensysteme - Energiebilanzierung von Anlagensystemen - Freiheitsgradanalyse von Bilanzierungsproblemen - Bilanzierung instationärer Prozesse - Einführung in die computergestützte Prozessmodellierung Energetische Optimierung verfahrenstechnischer Prozesse - Grundlagen der Wärmeintegration - Energetische Analyse von Wärmemstromsystemen - Bestimmung der PINCH-Temperatur / PINCH-Regeln - Entwurf und Auslegung von Wärmeübertragernetzwerken
Übungen Prozess- und Anlagentechnik Prof. DrIng. U. Behrendt	LÜ	2	3	Übungsaufgaben und Fallstudien zu ausgewählten Themen der Vorlesung - Massen- und Stoffmengenbilanzierung komplexer Prozesse - Freiheitsgradanalyse - Energiebilanzierung komplexer Prozesse - Instationäre Stoffbilanzierung - Pinch-Analyse

Literatur/Medien	 Behrendt, U.: Vorlesungsunterlagen umoodle Sattler, K, Kasper W.: Verfahrenstecht Blass, E.: Entwicklung verfahrenstecht Schnitzer, H.: Stoff und Energiebilanz Kemp, I.: Pinch analysis and process Smith, R.: Chemical process design a Brunner, F., Krummenacher, P.: Einfüfür Energie/CH 	nische Anlagen,Wiley-VC nischer Prozesse, Spring en, Verlag der TU-Graz integration, Elsevier Ltd nd integration, Wiley-Ve	Ger rlag
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2022

Modul 27	Regelungstechnik				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. M. Kurth	SS	MO 27	5	150 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	75 h	75 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	6	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 20 (Sensors and Data Aquisition), MO 18 (Computer Aided Process Engineering)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 33 (Projektarbeit mit Seminar), Bachelorarbeit (MO 34) Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden kennen...

- Anwendungsfelder von Automatisierungssystemen in der Verfahrenstechnik;
- die Abgrenzung von Regelkreisen zur Automatisierungstechnik und deren Projektierung;
- wichtige Theorien und Modellvorstellungen kontinuierlicher Systeme als Grundlage für die Regelungstechnik;
- Verfahren zur Analyse und zum Entwurf von kontinuierlichen Systemen.

Methodische Kompetenzen

Die Studierenden ...

Lernziele des Moduls

- beurteilen das dynamische Verhalten linearer, kontinuierlicher Systeme im Zeit- und Frequenzbereich;
- beschreiben das regelungstechnische Verhalten von technischen Systemen analysieren und mathematisch;
- entwerfen einfache Regelkreise für verfahrenstechnische Anwendungen entwerfen und optimieren deren Stabilität und Regelverhalten.

Personale Kompetenzen

Die Studierenden ...

 bearbeiten gestellte fachspezifische Aufgaben in Kleingruppen mit Hilfe des Simulationsprogramms Matlab/Simulink und stellen die Ergebnisse vorstellen und verteidigen diese.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lenii- una Leniionnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Regelungstechnik Prof. Dr. M. Kurth	V, Ü	4	5	 Grundlagen der Automatisierungstechnik Struktur eines Regelkreises Systemdynamik, Linearität, Zeitinvarianz, Stabilität, Modellbildung, Li-nearisierung Messung von Sprungantworten und Frequenzgängen, deren theoreti-sche Bedeutung zur Charakterisierung von LTI Systemen PI- und PID-Reglerdesign, charakteristisches Polynom, Stabilität und Dämpfung, Nyquistkriterium

Literatur/Medien	- Lunze, J., Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und
------------------	---

Hochschule Konstanz
Fakultät Maschinenbau

Modulhandbuch des Studiengangs Verfahrens -und Umwelttechnik, Bachelor of Engineering

	Entwurf einschleifi-ger Regelungen, - Lunze, J., Regelungstechnik 2: Mehrg Lehrbuch), Springer 2016 - Unbehauen, H., Regelungstechnik II: New Synthese linearer kontinuierlicher R Vieweg+Teubner 2008 - Unbehauen, H., Regelungstechnik III: nichtlineare Regelsys-teme, Vieweg - Tieste, KD., Romberg, T.: Keine Pan	rößensysteme, Digitale Klassische Verfahren zur egelsysteme, Fuzzy-Reg Zustandsregelungen, di +Teubner 2009	r Analyse und gelsysteme, gitale und
Sprache	Deutsch	Zuletzt aktualisiert	02.08.2022

Modul 28	Industrieller Emmissionsschutz						
Modul-Koordination	Start	Arbeitsaufwand					
Prof. DrIng. A. Detter	SS	MO 28	5	150 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	5	75 h	75 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	6	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 17 (Strömungslehre), MO 21 (Chemische Verfahrenstechnik)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 33 (Projektarbeit), Bachelorarbeit Sinnvoll zu kombinieren mit Modul: MO 24 (Mechanische Verfahrenstechnik), MO 30 (Umwelttechnisches Projektierungsseminar)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	K90				
	Modulteilprüfung (MTP)			SP		
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 					

Die Studierenden ..

- verstehen die Grundlagen der biologischen Abwasserreinigung;
- können die Verfahren der biologischen, mechanischen und physikalisch-chemischen Abwasserreinigung bewerten, auswählen, kombinieren, planen und entwerfen;
- können im Spannungsfeld von Umwelt/Gesundheit/Kosten/Nutzen/Recht argumentieren und entscheiden;

Lernziele des Moduls

- verstehen die Grundlagen der Verfahren zur Staubabscheidung und zur Minderung von Schadgasen;
- verstehen die Wirkungsweise und die Funktion der Abscheider zur Reinhaltung von Luft und können diese Technologien und deren Potenziale vergleichend bewerten und Anlagen konzipieren;
- haben das zur weiterführenden, eigenständigen Erweiterung und Vertiefung notwendige Fachwissen.

Methodische Kompetenzen

Die Studierenden ...

- können experimentelle Untersuchungen selbständig durchzuführen und die Ergebnisse interpretieren und bewerten (Labor Industrieabwasser- reinigung).

Lehr- und Lernformen	 ☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor ☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☑ Sonstiges: Projektbericht: Technisches Schreiben 				
Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	

Industrieabwasserreinigung Prof. DrIng. A. Detter	V	2	2	 Abwasserinhaltsstoffe, Produktionsintegrierter Umweltschutz, Mehrfachverwendung und Kreislaufführung Diskussion anhand von Beispielen über die Ziele der Industrieabwasserreinigung im Spannungsfeld von Umwelt/Gesundheit/Kosten/Nutzen/ Recht Biologie der Abwasserreinigung Aerobe und anaerobe Verfahren zur biologischen Abwasserreinigung Mechanische Verfahren (Sedimentation, Flotation, Koaleszenz, Filtration, Zentrifugieren) Physikalisch-chemische Verfahren (Neutralisation, Fällung/Flockung, Adsorption, Ionenaustausch, Membranverfahren, Oxidation/Reduktion, Rektifikation)
Labor Industrieabwasserreinigung Prof. DrIng. A. Detter	LÜ	1	1	Begleitende Laborversuche zu den Inhalten des Teilmoduls "Industrieabwasserreinigung"
Abluftreinigung Prof. DrIng. C. Nied / Prof. DrIng. R. Erpelding	V	2	2	 Luftreinhaltung im Spannungsfeld von Umweltschutz und Technik Verfahrenstechnik der Staubabscheidung (Massenkraft-Abscheider, filternde Abscheider, Nassabscheider) Sorptionsverfahren und chemische/katalytische Verfahren zur Abtrennung gasförmiger Schadstoffe Emissionszertifikate und -handel Methoden, Aufbau und Auswertung von Emissionsmessungen

Literatur/Medien	- Skript zur Vorlesung Industrieabwasserreinigung - Dietrich, G.: Hartinger - Handbuch der Abwasser- und Recyclingtechnik - DWA: Fachbuch Industrieabwasserbehandlung - Skript zur Vorlesung Abluftreinigung - Stieß, M.: Mechanische Verfahrenstechnik I u. II - Schubert, H.: Handbuch der Mechanischen Verfahrenstechnik - relevante VDI-Richtlinien jeweils neueste Auflage						
Sprache	Deutsch	Zuletzt aktualisiert	29.07.2022				

Modul 29	Computer Aided Process Engineering 2							
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. DrIng. R. Erpelding	SS	MO 29	5	150 h				
	Dauer	sws	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	75 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	PM	6	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung	MO 12, MO 21, MO 22, MO 23, MO 24
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MO 30

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis			
	Modulprüfung (MP)			SP			
	Modulteilprüfung (MTP)	SP					
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 						

Die Studierenden ..

- kennen die Grundlagen der numerischen Strömungsberechnung auf Basis der die Naviert-Stokes-Gleichung sowie die Modelle zur Beschreibung von Turbulenzen
- -sind in der Lage Lösungsverfahren zu implementieren und können mit Fehlerquellen und Unsicherheiten umgehen
- -kennen die Grundlagen, Anwendungsmöglichkeiten und den Umgang mit der kommerziellen Prozess-Simulations-Software ChemCAD und wissen verfahrens- und umwelttechnische technische Prozesse in verschiedenen Varianten mit ChemCAD zu implementieren

Lernziele des Moduls

-können Prozesse anhand von bestehenden Simulationen vergleichen, analysieren und modifizieren **Methodische Kompetenzen**

- beherrschen den Umgang mit der kommerziellen Software ANSYS Workbench (CFX) und können Geometrien aufbereiten, Rechengitter erstellen, sowie das Pre- und Postprocessing bedienen -können verschiedene Strömungsprobleme berechnen, interpretieren und präsentieren sind in der Lage Sonsitivitätestudien über den Einfluss von Prozessparameter auf einen verfahren
- -sind in der Lage Sensitivitätsstudien über den Einfluss von Prozessparameter auf einen verfahrensoder umwelttechnischen Prozess zu implementieren und durchzuführen

Personale Kompetenzen

- können verschiedene Strömungsprobleme berechnen, interpretieren und präsentieren
- -können nachhaltig günstige Verfahrensvarianten aus den Simulationsergebnissen ableiten

	Nv-d Nül Nc-ll Nc-ll Nc-d Nc-d Nc-d
	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lehr- und Lernformen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Projektbericht: Technisches
	Schreiben

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
CFD (EN) Prof. Dr. P. Stein	Ü	3	3	 Grundlagen einphasiger Strömungssimulationen, Fehlerquellen und Unsicherheiten Simulation einfacher Strömungsprobleme anhand der Software ANSYS/CFX - speziell die Simulation von verfahrenstechnischen Apparaten und Interpretation der Resultate (Plausibilitätskontrolle)

ChemCad (EN) Prof. DrIng. R. Erpelding	V, Ü, P	2	2	 Grundsätzlicher Aufbau und Funktion von verfahrenstechnischer Prozess-Simualtions-Software Verfahrens- und umwelttechnische Fließbilder mittels ChemCAD zu erstellen Definition von Stoffströmen für die Simulation Erstellung von einfachen Prozess-Simulationen (z.B. Biogasaufbereitung) Anwendung von Prozess-Simulationen zur Analyse des Prozessverhaltens (z.B. Biodiesel-Herstellung) Sensitivitätsstudien von Betriebsparameter an Beispielprozessen Erweiterung von bestehenden Prozess-Simulationen um zusätzliche Grundoperationen
--	------------	---	---	--

Literatur/Medien	Encyclopaedia of Industrial Chemist	Dynamics, in Ullmanns Encyclopaedia of Industrial
Sprache	Englisch	Zuletzt aktualisiert 27.07.0022

Modul 30	Umwelttechnisches Projektierungsseminar							
Modul-Koordination	Start	ECTS-Punkte	Arbeitsaufwand					
Prof. DrIng. U. Behrendt	SS	MO 30	5	150 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	4	50 h	100 h				
Einsatz des Moduls im Studiengang	Angestrebter Abschluss	Modul-Typ (PM/WPM)	Beginn im Studiensemester	SPO-Version / Jahr				
VUB	B.Eng.	PM	6	SPO 6 / 2022				

Inhaltliche Teilnahme Voraussetzung	MO 18 (CAPE-1), MO 20 (Sensors&Data Aquisition) , MO 21 (Chemische VT), MO 22 (Thermische Prozesse der UT) , MO23 (Fördern und Dosieren) , MO 24 (Mechanische VT)
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: MO 33, Bachelorarbeit Sinnvoll zu kombinieren mit Modul: MO 26 (Nachhaltige Prozess- und Anlagentechnik), MO 27 (Regelungstechnik), MO 28 (Ind. Umweltschutz), 29 (CAPE-2), MO 31 (Nachhaltige Prozesse und Kreislaufwirtschaft)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	SP				
	Modulteilprüfung (MTP)					
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 					

Die Studierenden ...

- können verfahrenstechnische Grundoperationen zielgrichtet auswählen und zu einem Gesamtprozess integrieren (Prozesssysnthese)
- können Grundoperationen auf der Basis von Laboruntersuchen auslegen (Scale-Up)
- sind in der Lage das verfahrenstechnische Basic Engineering eines Prozesses durchzuführen
- können verfahrenstechnische Prozess hinsichtlich deren Energieffizienz analysieren und optimieren (Pinch Analyse)
- sind in der Lage, eine strukturierte Sicherheitsanalyse des Prozesses durchzuführen und zu bewerten

Lernziele des Moduls

Methodische Kompetenzen

Die Studierenden ...

- können ein verfahrenstechnisches Projekt sinnvoll strukturieren, planen und zielorientiert bearbeiten (Projektmanagement)
- können die Arbeitsergebnisse von Fachplanungsgruppen koordinieren, integrieren und steuern
- sind in der Lage das Ergebnis einer Anlagenprojektierung strukturiert und nachvollziehbar zu präsentieren

Personale Kompetenzen

- können ihre Entscheidungen bei der Entwicklung der Prozessstruktur nachvollziehbar verargumentieren.
- können ihre Entscheidungen bei der Auswahl und Dimensionierung von Apparaten, Maschinen und Rohrleitungen nachvollziehbar begründen.

Lehr- und Lernformen		_		ung 🗵 Selbststudium 🗌 Workshop/Seminar 🗍 Projekt 🗀 Labor earning 🗀 Hausarbeit 🖾 Sonstiges: Abschlussbericht
Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt

Umwelttechnisches Projektierungsseminar Prof. DrIng. U. Behrendt / Prof. DrIng. C. Nied / Prof. DrIng. R. Erpelding	LÜ, PJ	4	5	 Entwicklung einer nachhaltigen Umwandlungsabfolge (Prozess-Synthese) Planung, Durchführung und Auswertung von prozessrelevanten Experimenten Scale up von Grundoperationen auf Basis experimenteller Untersuchungen und Kennzahlen Beschaffung von prozess- und umweltelevanten Stoffdaten Numerische Modellierung und Optimierung des Prozesses Softwaregestützte Fließbild-Entwicklung und Spezifikationsdokumentation (Plant-Engineer) Anwendung von Verfahrens- und umwelttechnische Auslegungsrichtlinien & Normen für Apparate und Maschinen Struktierte Sicherheitsanalyse (HAZOP-Methode) Präsentation der Planungsergebinsse
---	-----------	---	---	---

Literatur/Medien	 Weber, K.H.: Engineering verfahrenst Rippersberger, S. und Nikolaus, K.: E verfahrenstechnischer Anlagen, Spr Fachliteratur der zugrundeliegenden 	Entwicklung und Planung inger-Verlag	
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	28.07.2022

Modul 31	Nachhaltige Prozesse						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwa					
Prof. DrIng. C. Nied	SS	MO 31	5	150 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	90 h			

Einsatz des Moduls im A		Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang		Abschluss	(PM/WPM)	Studiensemester	Jahr
	VUB	B.Eng.	PM	6	SPO 6 / 2022

Inhaltliche Teilnahme Voraussetzung MO 2 (Physik), MO 6 (Verfahrenstechnische Grundlagen der Umwelttechni (Strömungslehre), MO 24 (Mechanische Verfahrenstechnik)	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MO 33 (Projektarbeit), Bachelorarbeit
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MO 30 (Umwelttechnisches Projektierungsseminar)

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			gen

Die Studierenden...

- wissen, wie eine Zerkleinerung zum Zweck des Aufschlusses der Komponenten zu führen ist (selektive Mahlung) und welche Fehler zu vermeiden sind,
- können Trennprozesse formal beschreiben und hinsichtlich ihrer Güte beurteilen,
- kennen die physikalischen Grundprinzipien der Sortierverfahren und übertragen diese zur gezielten Auswahl eines passenden Apparates.

Lernziele des Moduls

Methodische Kompetenzen Die Studierenden...

- sind in der Lage, die gewonnenen Versuchsergebnisse anhand von Massenbilanzen zu überprüfen und Fehler in der Versuchsdurchführung zu entdecken, sowie deren Auswirkung auf das Ergebnis zu interpretieren,
- können Gruppenergebnisse hinsichtlich wichtiger Prozessgrößen vergleichen und diskutieren.

Personale Kompetenzen

- erkennen die gesellschaftliche Bedeutung des Recyclings und der Kreislaufwirtschaft aufgrund knapper Ressourcen,
- sind fähig, Projektergebnisse einem kritischen Publikum zu präsentieren.

i enr- una i ernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Abschlussbericht

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Nachhaltige Prozesse und Kreislaufwirtschaft Prof. DrIng. C. Nied	V, LÜ, PJ	4	5	 Einführung in das Recycling und die Kreislaufwirtschaft Bilanzierung von Materialströmen Mechanische Verfahren zum Aufschluss von Werkstoffverbunden Formale Beschreibung von Sortierprozessen Physikalische Grundlagen der Sortierung und apparatetechnische Umsetzung Laborversuche zur Aufschlußmahlung und Sortierung eines Wertstoffgemisches Entwicklung eines Recyclingprozesses für ausgewählte Wertstoffe (Projektarbeit in Kleingruppen)

Literatur/Medien	 Skriptum zur Vorlesung Bunge, R., Mechanische Aufbereitung, WILEY-VCH, Weinheim
------------------	--

Hochschule Konstanz
Fakultät Maschinenbau

Modulhandbuch des Studiengangs Verfahrens -und Umwelttechnik, Bachelor of Engineering

	 Martens, H., Recyclingtechnik, Spektrum Akademischer Verlag, Heidelberg Schubert, H., Handbuch der Mechanischen Verfahrenstechnik, WILEY-VCH, Weinheim 			
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	01.08.2022	

Modul 32	Wahlpflichtmodul (Abs. 14)						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsauf					
Prof. DrIng. A. Detter	WS	MO 32	10	300 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	2 Semester	8	120 h	180 h			

Einsatz des Moduls im Angestrebt		Modul-Typ	Beginn im	SPO-Version /
Studiengang Abschlus		(PM/WPM)	Studiensemester	Jahr
VUB	B.Eng.	WPM	7	SPO 6 / 2022

Inhaltliche Teilnahme	Je nach inhaltlichem Bezug Grundlagenmodule oder Module für den fortgeschrittenen
Voraussetzung	Studienabschnitt
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)					
	Modulteilprüfung (MTP)	X	X	X		
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung ☑ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 					

Lernziele des Moduls

- haben Kenntnisse und Kompetenzen in ausgewählten Gebieten des Hauptstudiums durch die Wahl weiterführender Lehrveranstaltungen vertieft;
 haben das Spektrum an Wissen und Kompetenz durch Themengebiete, die nicht im Curriculum vorgeschrieben sind, interdisziplinär verbreitert.

	☑ Vorlesung ☑ Übung ☑ Selbststudium ☑ Workshop/Seminar ☑ Projekt ☑ Labor
Lehr- und Lernformen	oximes Exkursion $oximes$ E-Learning $oximes$ Hausarbeit $oximes$ Sonstiges: je nach gewähltem Wahlpflichtfach

	Art	sws	ECTS	Lehrinhalt
--	-----	-----	------	------------

Lehrveranstaltungen des Wahlpflichtmoduls Prof. DrIng. A. Detter	X	8	10	Fächerbeispiele aus dem Wahlpflichtkatalog: Abfalltechnik (Dach) Biochemie und Biotechnologie für Nichtbiologen (Schmidtke / Uni Konstanz) Einführung in CHEMCAD (Erpelding) Einführung in die Energietechnik (Lohmberg) Einführung in die Medizin (Leist / Uni Konstanz) Elektrische Antriebe (Gollor) Erneuerbare Energiesysteme 1 (da Silva) Ethik und Nachhaltigkeit (verschiedene Veranstaltungen) Fremdsprachen (ausgeschlossen Englisch-Grundkurs) Future Technologies (Erpelding) Globaler Wandel (Rothstein) Grundlagen der Li-lonen- Batterietechnologie (Nied) Leadership Outdoor (Rosche) Lichttechnik / -planung (Joedicke) Nachhaltige Energiewirtschaft (Göllinger) Nachhaltigkeit/Ringvorlesung (Steinke) / belegbar mit 1, 2 od. 3 ECTS Produktionslogistik (Fricker) Regenerative Energiewirtschaft (Göllinger) Schweisskurs Statistik und Stochastik Thermische Füge- und Trenntechnik (Winkler) Versuche richtig planen (Nied) Auf Antrag können weitere Lehrveranstaltungen der HTWG Konstanz und der UNI Konstanz als Wahlpflichtfach genehmigt werden. Weitere Wahlpflichtfächer finden Sie auf der Homepage des
				Studiengangs Verfahrens- und Umwelttechnik.

Literatur/Medien	Nach Bekanntgabe der Dozentin / des Dozenten						
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	27.07.2022				

Teilmodul Lehrende

Modul 33			Projektarbeit mit Seminar					
Modul-Koordination			Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. DrIng. K. Schirmer WS			WS	MO 33	8	240 h		
			Dauer	SWS	Kontaktzeit	Selbststudium		
			1 Semester	1	0 h	240 h		
Einsatz des Mo Studiengang	duls i	m	Angestrebter Abschluss	Modul-Typ (PM/WPM)	Beginn im Studiensemester	SPO-Version / Jahr		
VU	В		B.Eng.	PM	7	SPO 6 / 2022		
Inhaltliche Teilnahme Voraussetzung Verwendbarkeit des Moduls im o.g. Studiengang Je nach inhaltlichem Bezug ausgewä Als Vorkenntnis erforderlich für Mod Sinnvoll zu kombinieren mit Modul: Abschlussarbeit.			forderlich für Modul:					
Püfungsleistun des Moduls	gen			Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
		N	lodulprüfung (MP)	SP	-			
		Modu	lteilprüfung (MTP)					
/usammensetzung			e der benoteten Modul(teil)prüfung S-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen etiges:					
	Die S	Studieren - wisse Sach - könne	n, wie eine ingenieur nverhalte präzise zu en die erworbenen Fa	wissenschaftliche Arbeit formulieren, achkenntnisse gezielt eir	-	und lernen,		
Methodische Kompetenzen Die Studierenden - lernen, wie eine praktische Aufgabenstellung aus dem Bereich der Verfahrens- und Umwelttechnik selbstständig und unter Anwendung wissenschaftlicher Methoden strukturiert zu lösen ist, - können komplexe, ganzheitliche Themen/ Problembereiche gliedern und strukturieren, - arbeiten zielgerichtet und lösungsorientiert an einem Thema ihrer Wahl. Personale Kompetenzen Die Studierenden können komplexe, ganzheitliche Themen/ Problembereiche gliedern und strukturieren, - arbeiten zielgerichtet und lösungsorientiert an einem Thema ihrer Wahl.								
Lehr- und Lernf	orme	n		bung 🗵 Selbststudium Learning 🗌 Hausarbeit				

SWS

Art

ECTS Lehrinhalt

Projektarbeit mit Seminar Prof. DrIng. K. Schirmer / Prof. DrIng. C. Nied / Prof. DrIng. A. Detter / Prof. DrIng. U. Behrendt / Prof. DrIng. R. Erpelding	1	8	Die Projektaufgaben können aus dem Gesamtgebiet der Verfahrens- und Umwelttechnik und insbesondere aus Aufgabenstellungen der Industrie stammen, müssen jedoch unmittelbaren Bezug zu Aktivitäten des Studiengangs haben. Insbesondere werden folgende Projekttypen angeboten:
			 Teilprojekte innerhalb größerer Entwicklungs- bzw. Laborprojekte Literatur- und Recherchearbeiten zur Übersicht Durchführung von Machbarkeitsstudien im Vorfeld von Technologie- und Entwicklungsprojekten Analyse, Beurteilung und Optimierung bestehender verfahrenstechnischer Apparate und Prozesse Entwurf, Konstruktion und Bau von verfahrenstechnischen, Maschinen, Komponenten und Anlagen, sowie Tests Experimentelle Untersuchungen an Apparaten und Versuchseinrichtungen und Auswertung der Ergebnisse. Bei der Bearbeitung der Projektarbeit werden die Studierenden durch eine*n hauptamtliche*n Dozentin*en betreut und angeleitet.

Literatur/Medien	div. Fachliteratur je nach Aufgabenstellung					
Sprache	Deutsch/Englisch	Zuletzt aktualisiert	28.07.2022			