Simple Linear Regression

Nate Wells

Math 243: Stat Learning

September 13th, 2021

Outline

In today's class, we will...

- Discuss theoretical foundation for linear regression
- Perform inference for simple linear models
- Implement simple linear regression in R

Section 1

Foundations

• Suppose we have one or more predictors (X_1, X_2, \dots, X_p) and a *quantitative* response variable Y, and that

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

• Suppose we have one or more predictors (X_1, X_2, \dots, X_p) and a *quantitative* response variable Y, and that

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 The function f could theoretically take many forms. But the simplest form assumes f is a linear function:

$$f(x_1, x_2, \ldots, x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

• Suppose we have one or more predictors (X_1, X_2, \dots, X_p) and a *quantitative* response variable Y, and that

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

$$f(x_1, x_2, \ldots, x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

Note: a change in f is constant per unit change in any of the inputs.

• Suppose we have one or more predictors (X_1, X_2, \dots, X_p) and a *quantitative* response variable Y, and that

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

$$f(x_1,x_2,\ldots,x_p)=\beta_0+\beta_1x_1+\cdots+\beta_px_p$$

- Note: a change in f is constant per unit change in any of the inputs.
- If Y depends on only 1 predictor X, then the linear model reduces to

$$y = \hat{f}(x) = \beta_0 + \beta_1 x$$

• Suppose we have one or more predictors (X_1, X_2, \dots, X_p) and a *quantitative* response variable Y, and that

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

$$f(x_1, x_2, \ldots, x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- Note: a change in f is constant per unit change in any of the inputs.
- If Y depends on only 1 predictor X, then the linear model reduces to

$$y = \hat{f}(x) = \beta_0 + \beta_1 x$$

• We'll use Simple Linear Regression (SLR) to build intuition about all linear models

• In reality, the relationship f between Y and X_1, \ldots, X_p may not be linear

- In reality, the relationship f between Y and X_1, \ldots, X_p may not be linear
- But many functions can be well-approximated by linear ones (especially when inputs are restricted to a small range)

- In reality, the relationship f between Y and X_1, \ldots, X_p may not be linear
- But many functions can be well-approximated by linear ones (especially when inputs are restricted to a small range)
- But even if f is truly linear, we still have problems: We do not know the parameters
 of the linear model.

- In reality, the relationship f between Y and X_1, \ldots, X_p may not be linear
- But many functions can be well-approximated by linear ones (especially when inputs are restricted to a small range)
- But even if f is truly linear, we still have problems: We do not know the parameters
 of the linear model.
- Based on data, we estimate the parameters to create an estimated linear model

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

- In reality, the relationship f between Y and X_1, \ldots, X_p may not be linear
- But many functions can be well-approximated by linear ones (especially when inputs are restricted to a small range)
- But even if f is truly linear, we still have problems: We do not know the parameters
 of the linear model.
- Based on data, we estimate the parameters to create an estimated linear model

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

 So we are estimating an approximation to a relationship between response and predictors.

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

State-by-State Graduation and Poverty Rates

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

State-by-State Graduation and Poverty Rates

 Suppose we want to model Y as a function of X

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

- Suppose we want to model Y as a function of X
- Let's assume a linear relationship

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

State—by—State Graduation and Poverty Rates

- Suppose we want to model Y as a function of X
- Let's assume a linear relationship

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Model (hand-fitted):

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = 96.2 - 0.9 X$$

Consider the relationship between a state's high school grad rate Y and its poverty rate X.

State—by—State Graduation and Poverty Rates

- Suppose we want to model Y as a function of X
- Let's assume a linear relationship

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Model (hand-fitted):

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = 96.2 - 0.9 X$$

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation (x_i, y_i) has its own residual e_i , which is the difference between the observed (y_i) and predicted (\hat{y}_i) value:

$$e_i = y_i - \hat{y}_i$$

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation (x_i, y_i) has its own residual e_i , which is the difference between the observed (y_i) and predicted (\hat{y}_i) value:

$$e_i = y_i - \hat{y}_i$$

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation (x_i, y_i) has its own residual e_i , which is the difference between the observed (Y_i) and predicted (\hat{y}_i) value:

 $e_i = v_i - \hat{v}_i$

Oregon's residual is

$$e = y - \hat{y} = 86.9 - 86.2 = 0.7$$

Poverty Rate, X

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

• Points preserve original x-position, but with y-position equal to residual.

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

Points preserve original x-position, but with y-position equal to residual.

Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = e_1^2 + \dots + e_n^2$$

Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = e_1^2 + \dots + e_n^2$$

• Note that $RSS = n \cdot MSE$.

Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = e_1^2 + \dots + e_n^2$$

- Note that $RSS = n \cdot MSE$.
- Using calculus or linear algebra, we can show that RSS is minimized when

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Section 2

Inference for Linear Models

• **Goal**: Use *statistics* calculated from data to make estimates about unknown *parameters*

- Goal: Use statistics calculated from data to make estimates about unknown parameters
- Parameters: β_0 , β_1

- Goal: Use statistics calculated from data to make estimates about unknown parameters
- Parameters: β_0 , β_1
- Statistics: $\hat{\beta}_0$, $\hat{\beta}_1$

- Goal: Use statistics calculated from data to make estimates about unknown parameters
- Parameters: β_0 , β_1
- Statistics: $\hat{\beta}_0$, $\hat{\beta}_1$
- Tools: confidence intervals, hypothesis tests

- Goal: Use statistics calculated from data to make estimates about unknown parameters
- Parameters: β_0 , β_1
- Statistics: $\hat{\beta}_0$, $\hat{\beta}_1$
- Tools: confidence intervals, hypothesis tests
- The Problems: Our model will change if built using a different random sample. So in addition to estimates, we need to know about variability

The Confidence Interval

 Confidence Intervals give estimates and express an amount of uncertainty we have about those estimates

The Confidence Interval

- Confidence Intervals give estimates and express an amount of uncertainty we have about those estimates
- A C-level confidence interval for a parameter θ using the statistic $\hat{\theta}$ takes the form

$$\hat{\theta} \pm t_C^* \cdot SE(\hat{\theta})$$

The Confidence Interval

- Confidence Intervals give estimates and express an amount of uncertainty we have about those estimates
- A C-level confidence interval for a parameter θ using the statistic $\hat{\theta}$ takes the form

$$\hat{\theta} \pm t_C^* \cdot SE(\hat{\theta})$$

- The value $t_{\mathcal{C}}^*$ is the $1-(1-\mathcal{C})/2$ quantile for the sampling distribution of $\hat{\theta}$
 - i.e. if $\hat{\theta}$ is approximately Normally distributed and C=.95, then $t_C^* \approx 2$.

The Confidence Interval

- Confidence Intervals give estimates and express an amount of uncertainty we have about those estimates
- A C-level confidence interval for a parameter heta using the statistic $\hat{ heta}$ takes the form

$$\hat{\theta} \pm t_C^* \cdot SE(\hat{\theta})$$

- The value $t_{\mathcal{C}}^*$ is the $1-(1-\mathcal{C})/2$ quantile for the sampling distribution of $\hat{ heta}$
 - i.e. if $\hat{\theta}$ is approximately Normally distributed and C=.95, then $t_C^*\approx 2$.
- The value $SE(\hat{\theta})$ is the standard error of $\hat{\theta}$, or the standard deviation of the sampling distribution

In order to safely use simple linear regression, we require these assumptions:

 $oldsymbol{0}$ Y is related to X by a simple linear regression model.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

In order to safely use simple linear regression, we require these assumptions:

 $oldsymbol{0}$ Y is related to X by a simple linear regression model.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

2 The errors e_1, e_2, \ldots, e_n are independent of one another.

In order to safely use simple linear regression, we require these assumptions:

 $oldsymbol{0}$ Y is related to X by a simple linear regression model.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- 2 The errors e_1, e_2, \ldots, e_n are independent of one another.
- **3** The errors have a common variance $Var(\epsilon) = \sigma^2$.

In order to safely use simple linear regression, we require these assumptions:

 $oldsymbol{0}$ Y is related to X by a simple linear regression model.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- **2** The errors e_1, e_2, \ldots, e_n are independent of one another.
- **3** The errors have a common variance $Var(\epsilon) = \sigma^2$.
- **4** The errors are normally distributed: $\epsilon \sim N(0, \sigma^2)$

In order to safely use simple linear regression, we require these assumptions:

lacktriangledown Y is related to X by a simple linear regression model.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- 2 The errors e_1, e_2, \ldots, e_n are independent of one another.
- **3** The errors have a common variance $Var(\epsilon) = \sigma^2$.
- **4** The errors are normally distributed: $\epsilon \sim N(0, \sigma^2)$

If one or more of these conditions do not hold, our predictions may not be accurate and we should be skeptical of inferential claims.

Assume the following true model:

$$f(x) = 12 + .7x; \epsilon \sim N(0,4)$$

Assume the following true model:

$$f(x) = 12 + .7x; \epsilon \sim N(0,4)$$

Assume the following true model:

$$f(x) = 12 + .7x; \epsilon \sim N(0,4)$$

Estimate for f based on 1 simulation

Assume the following true model:

$$f(x) = 12 + .7x$$
; $\epsilon \sim N(0,4)$

Estimates for f based on 1000 simulations

The Sampling Distribution has the following characteristics:

1 Centered at β_1 , i.e. $E(\hat{\beta}_1) = \beta$.

The Sampling Distribution has the following characteristics:

- Centered at β_1 , i.e. $E(\hat{\beta}_1) = \beta$.
- $\text{ Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{XX}}.$
 - where $S_{XX} = \sum_{i=1}^{n} (x_i \bar{x})^2$

The Sampling Distribution has the following characteristics:

- **1** Centered at β_1 , i.e. $E(\hat{\beta}_1) = \beta$.
- $\text{ Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{XX}}.$
 - where $S_{XX} = \sum_{i=1}^{n} (x_i \bar{x})^2$
- $\hat{\beta}_1|X \sim N(\beta_1, \frac{\sigma^2}{S_{XX}}).$

• Our best estimate of β_1 is $\hat{\beta}_1$ (since the expected value $\hat{\beta}_1$ is β_1)

- Our best estimate of β_1 is $\hat{\beta}_1$ (since the expected value $\hat{\beta}_1$ is β_1)
- However, since we have to estimate σ with the Residual Standard Error $\hat{\sigma}=\mathrm{RSE}=\sqrt{\mathrm{RSS}/n-2}$, the distribution of $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}}$ isn't Normal. . .

- Our best estimate of β_1 is $\hat{\beta}_1$ (since the expected value $\hat{\beta}_1$ is β_1)
- However, since we have to estimate σ with the Residual Standard Error $\hat{\sigma}=\mathrm{RSE}=\sqrt{\mathrm{RSS}/n-2}$, the distribution of $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}}$ isn't Normal. . .
- Instead, it is the *t*-distribution with n-2 degrees of freedom.

- Our best estimate of β_1 is $\hat{\beta}_1$ (since the expected value $\hat{\beta}_1$ is β_1)
- However, since we have to estimate σ with the Residual Standard Error $\hat{\sigma}=\mathrm{RSE}=\sqrt{\mathrm{RSS}/n-2}$, the distribution of $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}}$ isn't Normal...
- Instead, it is the *t*-distribution with n-2 degrees of freedom.
- Our confidence interval for \hat{eta}_1 is thus

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot SE(\hat{\beta}_1)$$
 where $SE(\hat{\beta}_1) = \frac{s}{\sqrt{S_{XX}}}$

- Our best estimate of β_1 is $\hat{\beta}_1$ (since the expected value $\hat{\beta}_1$ is β_1)
- However, since we have to estimate σ with the Residual Standard Error $\hat{\sigma}=\mathrm{RSE}=\sqrt{\mathrm{RSS}/n-2}$, the distribution of $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}}$ isn't Normal. . .
- Instead, it is the *t*-distribution with n-2 degrees of freedom.
- Our confidence interval for \hat{eta}_1 is thus

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot SE(\hat{\beta}_1)$$
 where $SE(\hat{\beta}_1) = \frac{s}{\sqrt{S_{XX}}}$

Interpretation We are 95% confident that the true slope relating x and y lies between lower and upper bound of this interval.

Suppose we are interested in testing the claim that the slope is zero.

$$H_0: \beta_1^0 = 0$$
 vs $H_A: \beta_1^0 \neq 0$

Suppose we are interested in testing the claim that the slope is zero.

$$H_0: \beta_1^0 = 0$$
 vs $H_A: \beta_1^0 \neq 0$

• Consider the statistic t given by

$$t = \frac{\hat{\beta}_1}{\mathsf{SE}(\hat{\beta}_1)}$$

• Then t will be t-distributed with n-2 degrees of freedom and $SE(\hat{\beta}_1)$ calculated the same as in the CI.

Suppose we are interested in testing the claim that the slope is zero.

$$H_0: \beta_1^0 = 0$$
 vs $H_A: \beta_1^0 \neq 0$

Consider the statistic t given by

$$t = \frac{\hat{\beta}_1}{\mathsf{SE}(\hat{\beta}_1)}$$

- Then t will be t-distributed with n-2 degrees of freedom and $SE(\hat{\beta}_1)$ calculated the same as in the CI.
- The p-value for an observed test statistic t is the probability that a randomly chosen value from the t-dist is larger in absolute value than |t|.

Suppose we are interested in testing the claim that the slope is zero.

$$H_0: \beta_1^0 = 0$$
 vs $H_A: \beta_1^0 \neq 0$

• Consider the statistic t given by

$$t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)}$$

- Then t will be t-distributed with n-2 degrees of freedom and $SE(\hat{\beta}_1)$ calculated the same as in the CI.
- The p-value for an observed test statistic t is the probability that a randomly chosen value from the t-dist is larger in absolute value than |t|.
- An observed t with p-value less than a desired significance level (often $\alpha=0.05$) gives good evidence against the null-hypothesis.

• We can also perform inference for β_0 , although it is often less interesting in practice (why?)

- We can also perform inference for β_0 , although it is often less interesting in practice (why?)
 - We proceed as before, using a t distribution to estimate the sampling distribution of $\hat{\beta}_0$.
 - However, the SE of $\hat{\beta}_0$ is

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}}{S_{XX}} \right]$$

- We can also perform inference for β_0 , although it is often less interesting in practice (why?)
 - We proceed as before, using a t distribution to estimate the sampling distribution of \hat{eta}_0 .
 - However, the SE of $\hat{\beta}_0$ is

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}}{S_{XX}} \right]$$

• Inference is even possible for combinations of β_0 and β_1 (i.e $\beta_0 + \beta_1 x$ for any fixed value of x)

- We can also perform inference for β_0 , although it is often less interesting in practice (why?)
 - We proceed as before, using a t distribution to estimate the sampling distribution of \hat{eta}_0 .
 - However, the SE of $\hat{\beta}_0$ is

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}}{S_{XX}} \right]$$

- Inference is even possible for combinations of β_0 and β_1 (i.e $\beta_0 + \beta_1 x$ for any fixed value of x)
 - Why might we want to obtain a confidence interval for $\beta_0 + \beta_1 x$?

- We can also perform inference for β_0 , although it is often less interesting in practice (why?)
 - We proceed as before, using a t distribution to estimate the sampling distribution of \hat{eta}_0 .
 - However, the SE of $\hat{\beta}_0$ is

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}}{S_{XX}} \right]$$

- Inference is even possible for combinations of β_0 and β_1 (i.e $\beta_0 + \beta_1 x$ for any fixed value of x)
 - Why might we want to obtain a confidence interval for $\beta_0 + \beta_1 x$?
 - The associated statistic is again t-distributed, although with more complicated SE.

- We can also perform inference for β_0 , although it is often less interesting in practice (why?)
 - We proceed as before, using a t distribution to estimate the sampling distribution of \hat{eta}_0 .
 - However, the SE of $\hat{\beta}_0$ is

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}}{S_{XX}} \right]$$

- Inference is even possible for combinations of β_0 and β_1 (i.e $\beta_0 + \beta_1 x$ for any fixed value of x)
 - Why might we want to obtain a confidence interval for $\beta_0 + \beta_1 x$?
 - The associated statistic is again t-distributed, although with more complicated SE.
 - For details, see DeGroot and Schervish "Probability and Statistics" (or take Math 392)