Lecture 8: Conducting Studies

Friday, September 22, 2023

Your Teaching Fellows:

003/004: Zahra Abolghasem Bronwen Grocott

Vasileia Karasavva Ni An

Thalia Lang 010:

Ruoning Li

Malina Lemmons

Irene Wen

Lectures: MWF 12:00 PM - 1:00 PM (003); 1:00 PM - 2:00 PM (004); 2:00 PM - 3:00 PM (010)

Office hours: Tuesdays 2:00 PM – 4:00 PM

Course timeline

- Friday, Sept 29: Lab 1
- Groups/TFs/Rooms assigned (Canvas -> Course shell -> People -> Project Groups tab -> Search for yourself!)
- Friday, Oct 6: Exam 1 (Review session on Oct 5, Thursday, 4:30-6 zoom)
- Mediation form

Experimenter Expectancy Effects

Experimenter Expectancy Effect

- Researcher knows what condition participants are in, unconsciously manipulates an experiment in order to find the expected effect.
 - Threat to internal validity
- **Examples:**

Police line-up.

Options for Avoiding Experimenter Expectancy Effects

Options?

Double-blind study

Keep the researcher/experimenter and participant blind to the hypothesis of the study

Computer study

Have a computer run the study, minimising interactions between researcher and participant

Interaction effects

Various social components of the researcher/participant interaction may

affect the results

Biosocial effect

Psychosocial effect

• Example:

Practical Considerations

How to design study to maximize chances of detecting effect if it's there?

- Optimizing our operational definitions of the IV and the DV
 - Avoiding ceiling and floor effects
 - Appropriate pairing of IV and DV

Ceiling vs. Floor Effects: not all DVs are created equal

Ceiling effect

Too easy
Everybody does very well
Very little variability
Hard to see effect of IV

Floor effect

Example Study:

$$1+1=2$$
 $1+6=7$
 $1+\lambda=3$ $1+7=8$
 $1+3=4$ $1+8=9$
 $1+4=5$ $1+9=10$
 $1+5=6$ $1+10=11$

Strength of IV

Strong

Sensitivity of DV

Tough

Sensitive

Strength of IVs and Sensitivity of DVs

Strength of IVs and Sensitivity of DVs

Strength of IVs and Sensitivity of DVs

Practical Considerations

- How do we design the study to maximize the chances that we'll be able to
- Conclude that the IV caused changes in the DV?
 - Experimental control, including ruling out potential alternative explanations (e.g., expectancy effects, demand characteristics)
- Detect an effect if it's there?
 - Optimize our operational definitions

Learning objectives

- By the end of next class, you should be able to
 - Discuss different types of IVs and DVs commonly used in research
 - Create different types of DVs to evaluate a claim
 - Understand the different types of between- and within-subjects designs
 - Understand the advantages and disadvantages associated with within-subjects designs
 - Manage disadvantages of within-subjects designs
 - Describe the relationship between strength of IV/sensitivity of DV and experimental designs

Key Terms

Manipulating the IV: Straightforward Manipulation

- Simple and easy
- Present participants with something that will influence DV
- Examples:
 - □ Music → Mood
 - Movies → Heart rate

Manipulating the IV: Staged Manipulation

- Try to indirectly elicit a state
- Make participants feel like they're in the situation

- Example:
 - Using confederates to make participants feel excluded
 - Diffusion of responsibility studies