

CS60010: Deep Learning Spring 2023

Sudeshna Sarkar

Multilayer Perceptron – Part 2

25 Jan 2023

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Notations

$$a_j^l = gig(\sum_k w_{jk}^l \, a_k^{l-1} + b_j^lig)$$
 Vectorized form: $a^l = gig(w^l a^{l-1} + b^lig)$ $z^l = w^l a^{l-1} + b^l$ $a^l = gig(z^lig)$

Neural networks in blocks

• We can visualize $a_L = h_L \circ h_{L-1} \circ \cdots \circ h_1(x)$ as a cascade of blocks.

Forward connections (Feedforward architecture)

The activation functions must be 1st-order differentiable (almost) everywhere

Backpropagation

- Feedforward Propagation: Accept input $x^{(i)}$, pass through intermediate stages and obtain output $\hat{y}^{(i)}$
- During Training: Compute scalar cost $J(\theta)$

$$J(\theta) = \sum_{i} L(NN(x^{(i)}; \theta), y^{(i)})$$

 Backpropagation allows information to flow backwards from cost to compute the gradient

$$z_{1}^{1} = b_{1}^{1} + \sum_{i=1}^{d} w_{1,i}^{1} x_{i} = [w_{1}^{1} b_{1}^{1}] \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$a_{1}^{1} = g(z_{1}^{1})$$

$$[x_{1} x_{2} ... x_{d}]^{T}$$

$$z_{1}^{1} = \begin{bmatrix} \mathbf{w}_{1}^{1} b_{1}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$z_{2}^{1} = \begin{bmatrix} \mathbf{w}_{2}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$\vdots$$

$$z_{M}^{1} = \begin{bmatrix} \mathbf{w}_{2}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$z_{M}^{1} = \begin{bmatrix} \mathbf{w}_{2}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$z_{M}^{1} = \begin{bmatrix} \mathbf{w}_{m}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$z_{M}^{1} = \begin{bmatrix} \mathbf{w}_{m}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$z_{M}^{1} = \begin{bmatrix} \mathbf{w}_{m}^{1} b_{2}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a_1^1 \\ a_2^1 \\ \vdots \\ a_n^1 \end{bmatrix} = \begin{bmatrix} g(z_1^1) \\ g(z_2^1) \\ \vdots \\ g(z_n^1) \end{bmatrix} \qquad \boldsymbol{a}^1 = \boldsymbol{g}(\mathbf{z}^{(1)})$$

$$a^{(0)} = x$$

$$z^{(1)} = \mathbf{w}^{(1)} \mathbf{a}^{(0)}$$

$$a^{(1)} = g(\mathbf{z}^{(1)})$$

Output Layer Pre-activation

$$z_1^2 = \left[\boldsymbol{w}_1^2 \ b_1^2 \right] \begin{bmatrix} \boldsymbol{a}^1 \\ 1 \end{bmatrix}$$

Output Layer Activation

$$y_1 = o(\mathbf{z}_1^2)$$

output

- Sigmoid for 2-class classification
- Softmax for multi-class classification
- Linear for regression

Training a Neural Network – Loss Function

Aim to maximize the probability corresponding to the correct class for any example x

$$\max \mathbf{y}_c$$

$$\equiv \max (\log \mathbf{y}_c)$$

$$\equiv \min (-\log \mathbf{y}_c)$$

Can be equivalently expressed as

$$-\sum_{i} \prod_{i=c} \log(y_i)$$
known as cross-entropy loss

Forward-Backward Passes

Forward Pass

θ is the collection of all learnable parameters i.e., all
W and b

Hidden layer pre-activation:

For
$$l = 1, ..., L$$
; $\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$

Hidden layer activation:

For
$$l = 1, ..., L - 1$$
; $\mathbf{a}^{(l)} = g(\mathbf{z}^{(l)})$

Output layer activation:

For
$$l = L$$
; $y = a^{(L)} = o(z^{(L)}) = f(x, \theta)$

Error back-propagation

- 1. Compute Loss
- 2. Compute the derivative of the L w.r.t. the final output of the network A^L
- 3. Compute the derivative of L w.r.t. the pre-activation Z^L
- 4. Compute the derivative of L wrt W^L •
- 5. Then compute the derivative of the L w.r.t. the final output of the network A^{L-1}
- 6. Then compute the derivative of L w.r.t. the pre-activation Z^{L-1}
- 7. Compute the derivative of L wrt W^{L-1}

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain Rule

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial C} \times \frac{\partial C}{\partial B} \times \frac{\partial B}{\partial A} \times \frac{\partial A}{\partial x}$$

Multiple Path

Backpropagation is just repeated application of the chain rule.

Computation Graph and Backpropagation

$$f(x,y,z)=(x+y)z$$
 $x=-2,\,y=5,\,z=-4$
 $q=x+y$
 $rac{\partial q}{\partial x}=1,rac{\partial q}{\partial y}=1$
 $f=qz$
 $rac{\partial f}{\partial q}=z,rac{\partial f}{\partial z}=q$

Find

Computation Graph and Backpropagation

$$f(x,y,z)=(x+y)z$$
 $x=-2,\,y=5,\,z=-4$
 $q=x+y$
 $rac{\partial q}{\partial x}-1$ $rac{\partial q}{\partial y}-1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ Find $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Upstream

gradient

Local

gradient

The Computation Graph of Logistic Regression

Let us translate logistic regression into a computation graph

Where b=1, $w=[w_1,w_2,w_3]$, $x=[x_1,x_2,x_3]$, and $\mathcal{L}(a,y)$ is the cost (or *loss*) function

Forward Propagation

• The loss function can be computed by moving from left to right

Partial derivative of \mathcal{L} with respect to \boldsymbol{a}

$$\frac{\partial \mathcal{L}}{\partial a} = \frac{\partial}{\partial a} \left(-y \log(a) - (1 - y) \log(1 - a) \right)$$
$$= \frac{-y}{a} + \frac{(1 - y)}{(1 - a)}$$

$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} = \left(\frac{-y}{a} + \frac{(1-y)}{(1-a)}\right) \times \frac{\partial a}{\partial z} = \left(\frac{-y}{a} + \frac{(1-y)}{(1-a)}\right) \times a(1-a)$$

$$= a - y$$

$$\frac{\partial \mathcal{L}}{\partial b}$$
 = Partial derivative of \mathcal{L} with respect to b

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial b} = (a - y) \times \frac{\partial z}{\partial b} = (a - y) \times 1 = (a - y)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w} = (a - y) \times \frac{\partial z}{\partial w} = (a - y)x$$

Backward Propagation: Summary

Here is the summary of the gradients in logistic regression:

$$\frac{d\mathbf{z}}{d\mathbf{z}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}} = \mathbf{a} - \mathbf{y}$$

$$db = \frac{\partial \mathcal{L}}{\partial b} = a - y$$

$$\frac{dw}{dw} = \frac{\partial \mathcal{L}}{\partial w} = (a - y)x$$

Gradient Descent For Logistic Regression

Outline:

- Have a loss function $\mathcal{L}(w, b)$
- ullet Start off with some guesses for w_1, \dots, w_m
- Repeat until convergence{

$$w_{j} = w_{j} - \eta \frac{\partial \mathcal{L}(w, b)}{\partial w_{j}}$$

$$b = b - \eta \frac{\partial \mathcal{L}(w, b)}{\partial b}$$

Gradient Descent For Logistic Regression

• Outline:

Assuming n examples

Repeat until convergence

Forward propagation
$$z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$
 Backward propagation
$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$dw = dw + dz^{(i)} x^{(i)}$$

$$db = db + dz^{(i)}$$
 Outside the loop
$$dw = dw/n$$

$$db = db/n$$

$$w = w - \eta dw$$

$$b = b - \eta db$$

$$Z = w^{T}X + b$$

$$A = \sigma(Z)$$

$$dZ = A - Y$$

$$dw = \frac{1}{n}XdZ^{T}$$

$$db = \frac{1}{n}\sum_{i=1}^{n}dz^{(i)}$$

$$w = w - \eta dw$$

$$b = b - \eta db$$

Vectorized version

Computation Graph of a 2-layer Neural Network

The loss function can be computed by moving from left to right

The derivatives can be computed by moving from right to left

$$\frac{\partial \mathcal{L}}{\partial a^{[2]}} = \frac{-y}{a^{[2]}} + \frac{(1-y)}{(1-a^{[2]})}$$

• The derivatives can be computed by moving from right to left

$$\frac{\partial \mathcal{L}}{\partial z^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]} - y$$

$$\frac{\partial \mathcal{L}}{\partial b^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial b^{[2]}} = a^{[2]} - y$$

$$\frac{\partial \mathcal{L}}{\partial W^{[2]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial W^{[2]}} = (a^{[2]} - y)a^{[1]T}$$

• The derivatives can be computed by moving from right to left

$$\frac{\partial \mathcal{L}}{\partial a^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} = (a^{[2]} - y)w^{[2]T}$$

The derivatives can be computed by moving from right to left

$$\frac{\partial \mathcal{L}}{\partial z^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} = \left(a^{[2]} - y\right) w^{[2]T} * a^{[1]} (1 - a^{[1]})$$
Element-wise product

$$\frac{\partial \mathcal{L}}{\partial W^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} \times \frac{\partial z^{[1]}}{\partial W^{[1]}}$$
$$\frac{\partial \mathcal{L}}{\partial W^{[1]}} = \left(\left(a^{[2]} - y \right) w^{[2]T} * a^{[1]} \left(1 - a^{[1]} \right) \right) x^{T}$$

$$\frac{\partial \mathcal{L}}{\partial b^{[1]}} = \frac{\partial \mathcal{L}}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial z^{[2]}} \times \frac{\partial z^{[2]}}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}} \times \frac{\partial z^{[1]}}{\partial b^{[1]}}$$
$$\frac{\partial \mathcal{L}}{\partial b^{[1]}} = (a^{[2]} - y)w^{[2]T} * a^{[1]}(1 - a^{[1]})$$

Backward Propagation: Summary

$$dz^{[2]} = \frac{\partial \mathcal{L}}{\partial z^{[2]}} = a^{[2]} - y \qquad dz^{[1]} = \frac{\partial \mathcal{L}}{\partial z^{[1]}} = dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})$$

$$db^{[2]} = \frac{\partial \mathcal{L}}{\partial b^{[2]}} = a^{[2]} - y \qquad db^{[1]} = \frac{\partial \mathcal{L}}{\partial b^{[1]}} = dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})$$

$$dW^{[2]} = \frac{\partial \mathcal{L}}{\partial W^{[2]}} = (a^{[2]} - y) a^{[1]T} \qquad dW^{[1]} = \frac{\partial \mathcal{L}}{\partial W^{[1]}} = \left(dz^{[2]} w^{[2]T} * a^{[1]} (1 - a^{[1]})\right) x^{T}$$

Backpropagation

- Compute derivatives per layer, utilizing previous derivatives
- Objective: J(w)
- Arbitrary layer: y = f(x, w)
- Need:

$$\bullet \frac{\partial J}{\partial x} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$$

$$\bullet \frac{\partial J}{\partial w} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial w}$$

Backpropagation (layerwise)

- Compute derivatives per layer, utilizing previous derivatives
- Objective: I(w)
- Arbitrary layer: y = f(x, w)
- Init:

$$\frac{\partial J}{\partial w} = 0$$

- Compute:
 - $\frac{\partial J}{\partial x} + = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$
 - $\frac{\partial J}{\partial w} + = \frac{\partial J}{\partial y} \frac{\partial y}{\partial w}$

Error back-propagation

To do SGD for a training example (x, y), we need to compute

$$\frac{\nabla_{W} Loss(NN(x; W), y)}{\frac{\partial L}{\partial W^{L}}} = \frac{\partial L}{\partial A^{L}} \cdot \frac{\partial A^{L}}{\partial Z^{L}} \cdot \frac{\partial Z^{L}}{\partial W^{L}}$$

Error back-propagation

$$\begin{array}{c}
X = A^{0} \\
\hline
W^{1} \\
W^{1} \\
\hline
W^{1} \\
\hline
W^{2} \\
\hline
W^{2}$$

$$\frac{\partial L}{\partial W^{l}} = A^{l-1} \left(\frac{\partial L}{\partial Z^{l}}\right)^{T}$$

$$m^{l} \times n^{l} \quad m^{l} \times 1 \quad 1 \times n^{l}$$

So, in order to find the gradient of the loss with respect to the weights in the other layers of the network,

we just need to be able to find $\frac{\partial Los}{\partial z^l}$

Gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

Approach:

- pick a starting point (θ)
- repeat:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

$$\theta_j = \theta_j - \eta \frac{d}{d\theta_j} \text{Loss}(\theta)$$

Aside - Convex Sets and Functions

• Convex Set: A set $C \subseteq \mathbb{R}^n$ is a convex set if for all $x, y \in C$, the line segment connecting x and y is in C, i.e.,

$$\forall x, y \in \mathcal{C}, \theta \in [0,1], \theta x + (1-\theta)y \in \mathcal{C}$$

Convex Sets and Functions

• Convex Function: A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function if its domain dom(f) is a convex set and for all $x, y \in dom(f)$, and $\theta \in [0,1]$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Batch, Stochastic and Minibatch

- Optimization algorithms that use the entire training set to compute the gradient are called batch or deterministic gradient methods.
 Ones that use a single training example for that task are called stochastic or online gradient methods
- Most of the algorithms we use for deep learning fall somewhere in between!
- These are called minibatch or minibatch stochastic methods

Batch, Stochastic and Mini-batch Stochastic Gradient Descent

Algorithm 1 Batch Gradient Descent at Iteration k

Require: Learning rate ϵ_k **Require:** Initial Parameter θ

1: while stopping criteria not met do

2: Compute gradient estimate over N examples:

3:
$$\hat{\mathbf{g}} \leftarrow +\frac{1}{N} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$$

4: Apply Update: $\theta \leftarrow \theta - \epsilon \hat{\mathbf{g}}$

5: end while

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate ϵ_k

Require: Initial Parameter θ

1: while stopping criteria not met do

2: Sample example $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ from training set

3: Compute gradient estimate:

4: $\hat{\mathbf{g}} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$

5: Apply Update: $\theta \leftarrow \theta - \epsilon \hat{\mathbf{g}}$

6: end while

Mini-batch

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k . Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

end while

Images courtesy: Shubhendu Trivedi et. Al, Goodfellow et. al..

Batch and Stochastic Gradient Descent

