H1 Disjoint Sets

Operations

- union(S1, S2)
 - return union of S_1 and S_2
- find(S, x)
 - find the "representative member" (determined by some rule) of the set that $\,x\,$ belongs to

Let σ be the procedure of n-1 unions and $m \geq n$ finds

H2 Naive implementations

H₃ Linked List

- one list per set
- for each list, store pointers to head and tail
 - this way, union is fast
- finding representative takes $\mathcal{O}(n)$ time

H3 Augmented Linked List

- each element stores pointer to its representative
 - this way, find is fast
- union is slow because it must now change $\mathcal{O}(min(|S_1|,|S_2|))$ pointers to the new representative

H2 Forest (tree-like)

- each set is a tree
- root of a tree is representative of set

- non-root nodes point to a parent node
 - [find] works by ascending the tree until it reaches the root
 - it takes $\mathcal{O}(h)$ time where h is height of tree
- union is fast because we must only change one parent pointer make one tree's root point to an element of other tree
 - to support this, record size (number of nodes) for each tree

H3 Weighted Union

To do union, make root of smaller tree point to root of larger tree

H₄ Lemma

With weighted union, any tree T of height h created during the execution of σ has $|T| \geq 2^h$

Proof.

Base case:

If h = 0, then the tree has $1 = 2^0$ node

Inductive step:

Suppose lemma holds for some $h \ge 0$.

To construct a tree of height h+1, we make the root of a tree A of height h point to the root of a bigger tree B (because we are using weighted union)

By IH,
$$|A| \geq 2^h$$

By WU rule, $|B| \geq |A| \geq 2^h$

Then resulting tree has number of nodes $|A|+|B|\geq 2(2^h)=2^{h+1}$

H3 Path compression

- [find(S, x)] ascends tree until root is reached
- intermediate nodes n_1, \ldots, n_m on way to root do not matter, so after we find root we can change n.parent = root for each n

on the way to the root (as well as x.parent = root)

Before:

find(S, x) traverses from x to root

After:

- this does not increase complexity, as same nodes must be operated on twice, aka a constant factor difference
- speeds up subsequent calls to find on x or any of its ancestors
 becomes constant time
 - does not affect time for find on other parts of the tree,
 does not affect union at all

History: 25 years after publication of weighted union + path compression implementation, proof that σ takes $\Theta(m \cdot \alpha(m,n))$ time using WU+PC was finally completed (where α is inverse Ackerman function).

The Ackerman function grows ridiculously quickly so α grows ridiculously slowly, so for all reasonable (read: physically possible) intents, σ runs in linear time.