2024 IEEE Conference on Artificial Intelligence (CAI) CAI 2024

Table of Contents

Message from the General Chairs Message from the Program Chairs Organizing Committee Program Committee Sponsors	xl xli xlv
CAI 2024	
3D Reconstruction and Estimation from Single-view 2D Image by Deep Learning – A Survey Yongfeng Shan (University of Technology Sydney, Australia), Christy Jie Liang (University of Technology Sydney, Australia), and Min Xu (University of Technology Sydney, Australia)	. 1
3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification Shyam Varahagiri (Indian Institute of Information Technology, India), Aryaman Sinha (Indian Institute of Information Technology, India), Shiv Ram Dubey (Indian Institute of Information Technology, India), and Satish Kumar Singh (Indian Institute of Information Technology, India)	8
A Comparative Study of Reinforcement Learning-Based Collision Avoidance for Maritime Autonomous Surface Ships Liangbin Zhao (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Xingrui Yu (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Xiuju Fu (Institute of High Performance Computing(IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	15
A Division Based Neuron for Neural Networks	19
A Knowledge Guided Multi-Population Evolutionary Algorithm for Dynamic Workflow Schedu Problem Jingyuan Xu (Southern University of Science and Technology, China), Jiajian Yang (Southern University of Science and Technology, China), Peiru Li (Southern University of Science and Technology, China), Ziming Wang (Southern University of Science and Technology, China), Changwu Huang (Southern University of Science and Technology, China), and Xin Yao (Lingnan University, Hong Kong SAR)	_
A Lightweight Neural Network with Transformer to Predict Credit Default	29

A Model-Free Deep Reinforcement Learning Approach to Piano Fingering Generation
A Personalised Learning Tool for Physics Undergraduate Students Built On a Large Language Model for Symbolic Regression
A Review of Data-Centric Artificial Intelligence (DCAI) and its Impact on Manufacturing Industry: Challenges, Limitations, and Future Directions
A Semi-Supervised Model for Automated Classification of AI-Related Job Tasks Using Bloom's Taxonomy
A Spatiotemporal Excitation Classifier Head for Action Recognition Applications Dinh Nguyen (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Siying Liu (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Vicky Sintunata (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Yue Wang (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Jack Ho (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), ZhaoYong Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Ryan Lee (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), and Karianto Leman (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Republic of Singapore)
A Study of the Generalisability of CNNs for Disease Prediction
A Unified Approach for Binary-Class and Multi-Class Data Augmented Generation
Abstracted Trajectory Visualization for Explainability in Reinforcement Learning

Accurate and Explainable Cataract Detection Using Eye Images Taken by Hand-held Slit-lamp Cameras
Daniel Kai Xiang Fung (Nanyang Technological University (NTU), Singapore), Di Wang (Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderl (NTU), Singapore), Hao Wang (Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderl (NTU), Singapore), Yongwei Wang (Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderl (NTU), Singapore), Pengcheng Wu (Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderl (NTU), Singapore), Yan Yee Hah (Khoo Teck Puat Hospital, Singapore), Chee Chew Yip (Khoo Teck Puat Hospital, Singapore), Wee Jin Heng (Tan Tock Seng Hospital, Singapore), Tock Han Lim (Tan Tock Seng Hospital, Singapore), Cyril Leung (Nanyang Technological University (NTU), Singapore), and Chunyan Miao (Nanyang Technological University (NTU), Singapore; Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderl (NTU), Singapore)
Active Semi-Supervised Learning Based on Global Uncertainty Variation with Noise Resistance
ADAAUG: An Adaptive Data Augmentation Method for Change Detection
Adaptive Graph Normalized Sign Algorithm
Adaptive Home Energy Management: Human-Centric RL Approach for Diverse Situations 104 Zachary Tchir (University of Alberta, Canada), Petr Musilek (University of Alberta, Canada), and Marek Z. Reformat (University of Alberta, Canada; University of Social Sciences, Łódź, Poland)
Adoption of Generative AI in Content Creation: A Case Study from the Advertising Industry . 111 Dinh Thi Chinh Nguyet (Singapore University of Social Sciences)
Adversarial Latent Autoencoder with Self-Attention for Structural Image Synthesis
Adverse Weather Benchmark Dataset for LiDAR-Based 3D Object Recognition and Segmentation in Autonomous Driving
AI as a Tool for Fair Journalism: Case Studies from Malta

AI Hallucinations: A Misnomer Worth Clarifying	l 2 7
AI-Based Approach to Efficient Information Extraction for Supply Chain Contracts	133
AI-Based Learning Assistants: Enhancing Math Learning for Migrant Students in German Schools	138
Aircraft Engines Performances Estimation from Multi-Point and Multi-Time Operational Data via Neural Networks	44
Aligning Crowd-Sourced Human Feedback for Code Generation with Bayesian Inference 1 Man Fai Wong (City University of Hong Kong) and Chee Wei Tan (Nanyang Technological University)	52
An Effective Ensemble Deep Learning Framework for Blood-Brain Barrier Permeability Prediction	158
An Efficient TF-IDF Based Query by Example Spoken Term Detection	64
An End-to-end Learning Approach for Counterfactual Generation and Individual Treatment Effect Estimation	l 7 0
An Ensembled Convolutional Recurrent Neural Network Approach for Automated Classroom Sound Classification	l <i>77</i>

An Evaluation of Reasoning Capabilities of Large Language Models in Financial Sentiment	102
Analysis	183
An Evolutionary Algorithm with Variable-Length Chromosome for Multi-Objective Minimalis Attack Chengyu Zhou (Dalian University of Technology, China), Yaqing Hou (Dalian University of Technology, China), Wenqiang Ma (Dalian University of Technology, China), Hua Yu (Dalian University of Technology, China), and Hongwei Ge (Dalian University of Technology, China)	
Anomaly Detection and Breakdown Diagnosis for Condition Monitoring of Marine Engines Nhu Khue Vuong (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Sateesh Babu Giduthuri (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Gen Liang Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Terrence Tan (PSA International (PSA), Singapore), and Savitha Ramasamy (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore)	194
Application of Adaptive Douglas-Peucker with Acceleration Algorithm in Ship Trajectory Compression Lichao Yang (Wuhan University of Technology, China), Jingxian Liu (Wuhan University of Technology, China), and Yukuan Wang (Wuhan University of Technology, China)	200
Applications of Artificial Intelligence in Oceanic Nuclear Contamination Management	204
Archive-Based Cooperative Coevolution Genetic Programming for Workflow Scheduling Yuanzi Hong (Guangdong Polytechnic Normal University, China), Wei-Li Liu (Guangdong Polytechnic Normal University, China), Jinghui Zhong (South China University of Technology, China), Peng Liang (Guangdong Polytechnic Normal University, China), Jianhua Guo (Guangdong Polytechnic Normal University, China), and Chunying Li (Guangdong Polytechnic Normal University, China; Guangdong Provincial Key Laboratory of Intellectual Property & Big Data, China)	210
ARIMA Time Series Modelling for Energy Forecasting in Wireless Sensor Networks	214
Artificial Intelligence for Modeling Complex Treatment Decisions in Aortic Valve Intervention Jie Jun Wong (National Heart Centre Singapore, Singapore), Glades Tan (National Heart Centre Singapore, Singapore), Xinliu Zhong (National University of Singapore, Singapore), Kay Woon Ho (National Heart Centre Singapore, Singapore), Vincent Wei Jun Sim (National Heart Centre Singapore, Singapore), Si Yong Yeo (Lee Kong Chian School of Medicine, Singapore), and Angela S. Koh (National Heart Centre Singapore, Singapore)	220

Astro-Det: Resident Space Object Detection for Space Situational Awareness	22
Asymmetric Source-Free Unsupervised Domain Adaptation for Medical Image Diagnosis 22 Yajie Zhang (The Hong Kong Polytechnic University, China), Zhi-An Huang (City University of Hong Kong (Dongguan), China; City University of Hong Kong, Shenzhen Research Institute, China), Jibin Wu (The Hong Kong Polytechnic University, China), and Kay Chen Tan (The Hong Kong Polytechnic University, China)	28
Multimodal Fusion of EEG and Eye Data for Attention Classification Using Machine Learning 23 Indrani Paul Roy (North-Eastern Hill University, India) and Debanga Raj Neog (Indian Institute of Technology Guwahati, India)	34
Attention-Based Deep Learning Models for Detecting Misinformation of Long-Term Effects of COVID-19	36
Automatic Multiple Choice Question Evaluation Using Tesseract OCR and YOLOv8	12
Automatic Radar Waveform Design	1 9
Autonomous Gain Tuning for Differential Drive Robots Targeting Control Using Soft Actor-Critic	51
Bayesian Neural Network For Personalized Federated Learning Parameter Selection	57

Benchmarking Shadow Removal for Facial Landmark Detection
Port
for Science, Technology and Research (A*STAR), Singapore), Zhe Xiao (Agency for Science, Technology and Research (A*STAR), Singapore), Xiuju Fu (Agency for Science, Technology and Research (A*STAR), Singapore), and Zheng Qin (Agency for Science, Technology and Research (A*STAR), Singapore)
Blockchain-Based AI Agent and Autonomous World Infrastructure
Bounded Gaussian Process with Multiple Outputs and Ensemble Combination
Breaking the Silence: Whisper-Driven Emotion Recognition in AI Mental Support Models286 Xinghua Qu (Tianqiao and Chrissy Chen Institute, Singapore), Zhu Sun (CFAR, IHPC, A*STAR, Singapore), Shanshan Feng (CFAR, IHPC, A*STAR, Singapore), Caishun Chen (CFAR, IHPC, A*STAR, Singapore), and Tian Tian (University of California, United States)

Carbon Stock Estimation at Scale from Aerial and Satellite Imagery Alex To (University of Sydney, Australia), Hoang Quoc Viet Pham (University College Cork, Ireland), Quang H. Nguyen (Reliable Machine	288
Learning Group, Vietnam), Joseph G. Davis (University of Sydney, Australia), Barry O'Sullivan (University College Cork, Ireland), Shan L Pan (University of New South Wales, Australia), and Hoang D. Nguyen	
(University College Cork, Ireland)	
Category-Aware Test-Time Training Domain Adaptation Yangqin Feng (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Xinxing Xu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Yan Wang (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Zizhou Wang (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Liangli Zhen (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Rick Siow Mong Goh (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), and Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), and Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore)	296
ChatGPT vs Bard: Which is a Better Writer? Ai Leng Ng (Singapore University of Social Sciences, Singapore) and Justina Ong (Singapore University of Social Sciences, Singapore)	303
CI-VAE: A Generative Deep Learning Model for Class-Specific Data Interpolation	309
Clash of Titans on Imbalanced Data: TabNet vs XGBoost Róbert Kanász (Technical University of Košice, Slovakia), Peter Drotár (Technical University of Košice, Slovakia), Peter Gnip (Technical University of Košice, Slovakia), and Martin Zoričák (Technical University of Košice, Slovakia)	316
ColdU: User Cold-Start Recommendation with User-Specific Modulation	
Compressed Bayesian Federated Learning for Reliable Passive Radio Sensing in Industrial IoT	334
Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data	340
Confidence Estimation in Analyzing Intravascular Optical Coherence Tomography Images w Deep Neural Networks	
Lennard Korte (Nanyang Technological University, Singapore), Li Rong Wang (Nanyang Technological University, Singapore), and Xiuyi Fan (Nanyang Technological University, Singapore)	

Confidential and Protected Disease Classifier Using Fully Homomorphic Encryption
Context-Based Semantic Caching for LLM Applications
Continually Learning Planning Agent for Large Environments Guided by LLMs
Contrastive Information Maximization Clustering for Self-Supervised Speaker Recognition373 Abderrahim Fathan (Computer Research Institute of Montreal (CRIM), Canada) and Jahangir Alam (Computer Research Institute of Montreal (CRIM), Canada)
Coronary Artery Disease Classification Using One-Dimensional Convolutional Neural Network 379
Atitaya Phoemsuk (University of Essex, United Kingdom) and Vahid Abolghasemi (University of Essex, United Kingdom)
Retinal Fundus Photography
CTrPile: A Computer Vision and Transformer Approach for Pile Capacity Estimation from Dynamic Pile Load Test

Cultivating Navigational Autonomy in the Visually Impaired: A Novel Approach with VirtualEYE	398
Aishwarya Singh (Nanyang Technological University, Singapore) and Smitha K G (Nanyang Technological University, Singapore)	
Data-Centric AI Practice in Maritime: Securing Trusted Data Quality via a Computer Vision-Based Framework Ke Wang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Qi Hao Tristan Ong (School of Computing, Singapore Polytechnic, Republic of Singapore), Xiaocai Zhang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), Xiuju Fu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore), and Zheng Qin (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore)	404
Data-Driven Reinforcement Learning for Optimal Motor Control in Washing Machines Chanseok Kang (LG Electronics, Korea), Guntae Bae (LG Electronics, Korea), Daesung Kim (LG Electronics, Korea), Kyoungwoo Lee (LG Electronics, Korea), Dohyeon Son (LG Electronics, Korea), Chul Lee (LG Electronics, Korea), Jaeho Lee (LG Electronics, Korea), Jinwoo Lee (LG Electronics, Korea), and Jae Woong Yun (LG Electronics, Korea)	408
Decoding Cyberbullying on Social Media: A Machine Learning Exploration	415
Deep Learning Based Layout Recognition Approach for HMI Software Validation	419
Expert-Agnostic Medical Image Segmentation	428
Deep Learning for Tumor Localization with Depth Estimation: A Minimally Invasive Robotics-Assisted Approach	434
Differentiable Hash Encoding for Physics-Informed Neural Networks Ge Jin (Beijing Institute of Technology (BIT), China), Deyou Wang (Beijing Institute of Technology (BIT), China), Jian Cheng Wong (Nanyang Technological University (NTU), Singapore; Agency for Science, Technology and Research (A*STAR), Singapore), and Shipeng Li (Beijing Institute of Technology (BIT), China)	440
Comparison of Metaheuristic Algorithms for Photovoltaic Systems Allocation in a Power Distribution Feeder	444

DIRA: Dynamic Incremental Regularised Adaptation Abanoub Ghobrial (University of Bristol, UK), Xuan Zheng (University of Bristol, UK), Darryl Hond (RTI, Thales UK, UK), Hamid Asgari (RTI, Thales UK, UK), and Kerstin Eder (University of Bristol, UK)	450
Diversified Sequential Recommendation via Evolutionary Multi-Objective Transfer Optimization	458
Does Metacognitive Prompting Improve Causal Inference in Large Language Models?	460
Effective Generative AI Implementation in Developing Country Universities	462
Efficient Offloading in UAV-MEC IoT Networks: Leveraging Digital Twins and Energy Harvesting	466
Efficient Wildfire Detection Framework Based on Artificial Intelligence Using Convolutional Neural Network and Multi-Color Filtering	472
Encouraging Trust in AI-Powered Teaching Tools: Ranking Design Principles Lee Peney (The Hague University of Applied Sciences, The Netherlands), Raoul Dernee (The Hague University of Applied Sciences, The Netherlands), and Hani Alers (The Hague University of Applied Sciences, The Netherlands)	478
Enhancing Biomedical Multi-Modal Representation Learning with Multi-Scale Pre-Training and Perturbed Report Discrimination	
Enhancing Early Stunting Detection: A Novel Approach Using Artificial Intelligence with an Integrated SMOTE Algorithm and Ensemble Learning Model	488
Enhancing EEG-Based Emotion Recognition Using Semi-Supervised Co-Training Ensemble Learning Rachel Hui Min Yeo (National University of Singapore, Singapore) and Aung Aung Phyo Wai (Nanyang Technological University, Singapore)	496
Enhancing Human-Computer Interaction Through AI: A Study on ChatGPT in Educational Environments Dhruval Kenal Kothari (Nanyang Technological University, Singapore) and Owen Noel Newton Fernando (Nanyang Technological University, Singapore)	502

Enhancing Ischemic Brain Stroke Detection on CT Images: A Investigation of Transfer Learning Techniques of DenseNet-201 for Neuroimaging Analysis
Enhancing Out-of-Distribution Detection with Multitesting-Based Layer-wise Feature Fusion . 51: Jiawei Li (Beijing Normal University, China), Sitong Li (Beijing Normal University, China), Shanshan Wang (Beijing Normal University, China), Yicheng Zeng (The Chinese University of Hong Kong (Shenzhen), China), Falong Tan (Hunan University, China), and Chuanlong Xie (Beijing Normal University, China)
Enhancing Privacy and Security of Autonomous UAV Navigation
Entropy-Weighted Simulated Annealing Optimisation of Human-Simulated Multi-mode PD-PI Control for Biped Robots
Ethical Practices for Collecting Ground-Truth Food Datasets: A Systematic Review
EVA-ASCA: Enhancing Voice Anti-Spoofing Through Attention-Based Similarity Weights and Contrastive Negative Attractors
Evaluating Temporal Fidelity in Synthetic Time-Series Electronic Health Records
Performance Analysis of Llama 2 Among Other LLMs
Explainable Artificial Intelligence for Deep Synthetic Data Generation Models

Exploring Viability of Test-Time Training: Application to 3D Segmentation in Multiple Sclerosis	.558
Benoît Gérin (ICTEAM, UCLouvain, Belgium), Maxime Zanella (ICTEAM, UCLouvain, Belgium; ILIA, UMons, Belgium), Maxence Wynen (ICTEAM, UCLouvain, Belgium; NIL, UCLouvain, Belgium), Saïd Mahmoudi (ILIA, UMons, Belgium), Benoît Macq (ICTEAM, UCLouvain, Belgium), and Christophe De Vleeschouwer (ICTEAM, UCLouvain, Belgium)	
Fairness-Aware Federated Minimax Optimization with Convergence Guarantee	564
Fast Convergence PINNs Using Pseudo-Density Embedding: A Study on Solid Mechanics Melvin Wong (Nanyang Technological University, Singapore), Jiao Liu (Nanyang Technological University, Singapore), Ge Jin (Beijing Institute of Technology, China), Kunpeng Li (Nanyang Technological University, Singapore), and Doan Ngoc Chi Nam (Singapore Institute of Manufacturing Technology, A*STAR, Singapore)	570
Fast Vision Transformer via Additive Attention	
Fast-Converging Decentralized ADMM for Consensus Optimization	576
Fed-SHARC: Resilient Decentralized Federated Learning Based on Reward Driven Clustering Renuga Kanagavelu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Chris George Anil (Vellore Institute of Technology, India), Yuan Wang (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Huazhu Fu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Qingsong Wei (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), Yong Liu (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Rick Siow Mong Goh (Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore)	582
Fine-Grained Partial Label Learning Cheng Chen (University of Technology1, Australia; CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Yueming Lyu (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Xingrui Yu (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), Jing Li (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore), and Ivor W Tsang (CFAR, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore; IHPC, Agency for Science, Technology and Research, Singapore; Nanyang Technological University, Singapore)	588

Fine-Grained Visual Classification Using Self Assessment Classifier
Local Optima Networks for Reinforcement Learning - A Case Study: Coupled Inverted Pendulum Task
Yuyang Zhou (University of Nottingham Ningbo China, China), Alexander Turner (University of Nottingham, UK), and Ferrante Neri (University of Surrey, UK)
Forecasting Infectious and Parasitic Disease Emergency Department Attendances using High-Dimensional Time Series Data
(Ministry of Health, Singapore), John Abisheganaden (Tan Tock Seng Hospital, Singapore), and Borame Dickens (National University of Singapore, Singapore)
Gated Self-Supervised Learning for Improving Supervised Learning
Gaussian Process-Enhanced Impedance Iterative Learning for Robot Interaction Control 623 Yongping Pan (Sun Yat-sen University, China), Wei Li (Sun Yat-sen University, China), and Tian Shi (Sun Yat-sen University, China)
Gene Targeting Particle Swarm Optimization for Large-Scale Optimization Problem
Generative Active Learning with Variational Autoencoder for Radiology Data Generation in Veterinary Medicine
Generative AI-Based Cognitive Robot for Exam Candidates' Knowledge Self-Assessment 639 Intissar Haddiya (University Mohamed Premier, Morocco) and Andrea Pitrone (Loop AI Group LLC, United States)
GlobeMetrics: A Healthcare Framework for Video Based Saccade Characterization

Gradient Recalibration for Improved Visibility of Tail Classes in Supervised Contrastive Learning
Genze Zhan (Beijing institute of technology, China), Xin Li (Beijing Institute of Technology, China), Yong Heng (Beijing Institute of Electronic System Engineering, China), Yan Zhang (Beijing Institute of Technology, China), Jiaojiao Wang (Institute of Automation Chinese Academy of Sciences, China), Peiyao Zhao (Beijing Institute of Technology, China), Meitao Mu (Beijing Institute of Technology, China), Xueying Zhu (Beijing Institute of Technology, China), and Mingzhong Wang (The University of the Sunshine Coast, Australia)
Graph Learning Based Financial Market Crash Identification and Prediction
Group Correction-Based Local Disturbance Particle Swarm Optimization Algorithm for Solving Continuous Distributed Constraint Optimization Problems
Hand Function Assessment Using Computer Vision for Hand Rehabilitation
Harnessing Deep Learning and Satellite Imagery for Post-Buyout Land Cover Mapping 672 Hakan T. Otal (University at Albany SUNY, NY), Elyse Zavar (University of North Texas), Sherri B. Binder (BrokoppBinder Research & Consulting, PA), Alex Greer (University at Albany SUNY, NY), and M. Abdullah Canbaz (University at Albany SUNY, NY)
HFNeRF: Learning Human Biomechanic Features with Neural Radiance Fields
Hierarchical Optimization for Operationally-Constrained Resource Planning
Human-Generative AI Collaborative Problem Solving Who Leads and How Students Perceive the Interactions
HyMark: Application of Hybrid AI for Markdown Syntax Generation

Imitating Human Joystick Control Ability Using Style and Content Disentanglement	
Improving 3D Occupancy Prediction Through Class-Balancing Loss and Multi-Scale Representation	
Incremental Random Forest for Unsupervised Learning	
Informed Machine Learning for Optimizing Melt Spinning Processes	
Integrating Local Learning to Improve Deep-Reinforcement-Learning-Based Pairs Trading Strategies	
Integrating Time Series Forecasting, NLP, and Financial Analysis for Optimal Investment Strategy: A Case Study on Adani Ports	
Interact360: Interactive Identity-Driven Text to 360° Panorama Generation	

Inverse Multiobjective Optimization by Generative Model Prompting	14
Inverse Reinforcement Learning for Legibility Automation in Intelligent Agents	18
Is Complexity Required for Neural Network Pruning? A Case Study on Global Magnitude Pruning	54
Science, Technology and Research (A*STAR), Singapore), Efe Camci (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Vishandi Rudy Keneta (National University of Singapore (NUS), Singapore), Abhishek Vaidyanathan (Nanyang Technological University (NTU), Singapore), Ritwik Kanodia (Nanyang Technological University (NTU), Singapore), Ashish James (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), Chuan Sheng Foo (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore; Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore), Min Wu (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore), and Jie Lin (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore)	
It Takes Two to Trust: Mediating Human-AI Trust for Resilience and Reliability	52
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models 76 Peike Patrick Li (Futureverse AI Research), Boyu Chen (Futureverse AI Research), Yao Yao (Futureverse AI Research), Yikai Wang (Futureverse AI Research), Allen Wang (Futureverse AI Research), and Alex Wang (Futureverse AI Research)	59
Knowledge-Based Reactive Planning and Re-Planning – A Case-Study Approach	77
Landscape Analysis Based vs. Domain-Specific Optimization for Engineering Design Applications: A Clear Case	33

Large Language Model (LLM) as a System of Multiple Expert Agents: An Approach to Solve the Abstraction and Reasoning Corpus (ARC) Challenge
Large Language Model-Assisted Clustering and Concept Identification of Engineering Design
Data
Large Language Model-Assisted Surrogate Modelling for Engineering Optimization
Large Language Models as Synthetic Electronic Health Record Data Generators
Learning Task-Specific Initialization for Effective Federated Continual Fine-Tuning of Foundation Model Adapters
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Less is More: Understanding Word-Level Textual Adversarial Attack via n-gram Frequency Descend

License Plate Recognition in Low Quality Image by Using Latent Diffusion YOLOv7	8
Lightweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced Gastrointestinal Disease Classification	6
Llama-TCR: Generate De Novo TCR with Large Language Model	2
LLM-Assisted Crisis Management: Building Advanced LLM Platforms for Effective Emergency Response and Public Collaboration	8
Local and Global Guidance for Multi-Complementary Label Learning	6
Low Variance Off-Policy Evaluation with State-Based Importance Sampling	1
LTE User Behavior Prediction Via LSTM	4

Machine and Deep Learning Based Clinical Decision Making for Coronary Artery Disease and Chatbot Tool
Wei Jun Vincent Sim (National Heart Centre Singapore, Singapore), Glades Tan (National Heart Centre Singapore, Singapore), Xinliu Zhong (National University of Singapore, Singapore), Terrance Sj Chua (National Heart Centre Singapore, Singapore), Jie Jun Wong (National Heart Centre Singapore, Singapore), Si Yong Yeo (Lee Kong Chian School of Medicine, Singapore), and Angela S. Koh (National Heart Centre Singapore, Singapore)
Machine Learning-Based Radiomic Features for Glioblastoma Overall Survival Prediction 894 Ankit Das (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), Kee Yen Cheng (Temasek Polytechnic, Singapore), Yong Liu (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), Rick Siow Mong Goh (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore), and Feng Yang (Institute of High Performance Computing, Agency for Science, Technology and Research, Republic of Singapore)
Maritime-Context Text Identification for Connecting Artificial Intelligence (AI) Models
MeLoDicA AI- Machine Learning Based Detection of Asthma via Vocal Audio Analysis 905 Zhi Qing Looi (Singapore Polytechnic, Singapore), Zi Heng Ng (Singapore Polytechnic, Singapore), Ren Xiang Yak (Singapore Polytechnic, Singapore), Oren Rosen (Technion – Israel Institute of Technology, Israel), and Arun Kumar (Singapore Polytechnic, Singapore)
Mining Contrastive Loss for Kinship Verification
Mitigating Nonlinear Algorithmic Bias in Binary Classification
Model Based Reinforcement Learning Pre-Trained with Various State Data
Modeling Variational Anchoring Effect for Recommender Systems

Prediction of Transmission Rates of Dengue in National Capital Territory Delhi Using Machine Learning Models Vipasha Sharma (Indian Institute of Technology Roorkee, India), Sanjay	932
Kumar Ghosh (Indian Institute of Technology Roorkee, India), and Siddhartha Khare (Indian Institute of Technology Roorkee, India)	
Multi-Objective Optimization for Flexible Building Space Usage	938
Multi-Order Loss Functions for Accelerating Unsteady Flow Simulations with Physics-Based AI	946
Wei Xian Lim (Nanyang Technological University, Singapore), Naheed Anjum Arafa (Nanyang Technological University, Singapore), Wai Lee Chan (Nanyang Technological University, Singapore), and Wai-Kin Adams Kong (Nanyang Technological University, Singapore)	
Multimodal Fusion for Effective Recommendations on a User-Anonymous Price Comparison Platform	953
MYCloth: Towards Intelligent and Interactive Online T-Shirt Customization Based on User's Preference	959
MyHistory: Automatic Photo Album Creation	967
MyriadAL: Active Few Shot Learning for Histopathology Nico Schiavone (University of Alberta, Canada), Jingyi Wang (University of Alberta, Canada), Shuangzhi Li (University of Alberta, Canada), Roger Zemp (University of Alberta, Canada), and Xingyu Li (University of Alberta, Canada)	973
Natural Language Processing to Estimate RECIST Response in Cancer Patients	981
Navigating the EU AI Act - A Methodological Approach to Compliance for Safety-Critical Products Jessica Kelly (Fraunhofer IKS, Germany), Shanza Ali Zafar (Fraunhofer IKS, Germany), Lena Heidemann (Fraunhofer IKS, Germany), João-Vitor Zacchi (Fraunhofer IKS, Germany), Delfina Espinoza (Fraunhofer IKS, Germany), and Núria Mata (Fraunhofer IKS, Germany)	983

Navigating the Waters of Object Detection: Evaluating the Robustness of Real-time Object Detection Models for Autonomous Surface Vehicles	989
Yunjia Wang (KU Leuven, Belgium), Kaizheng Wang (KU Leuven, Belgium), Zihao Zhang (Columbia University, USA), Jeroen Boydens (KU Leuven, Belgium), Davy Pissoort (KU Leuven, Belgium), and Mathias Verbeke (KU Leuven, Belgium)	
Neuroevolving Monotonic PINNs for Particle Breakage Analysis	997
NL2IBE – Ontology-Controlled Transformation of Natural Language into Formalized Engineering Artefacts Nicolai Schoch (Corporate Research (DECRC), ABB AG, Germany) and Mario Hoernicke (Corporate Research (DECRC), ABB AG, Germany)	1001
On Efficient Object-Detection NAS for ADAS on Edge Devices	1009
On the Generation and Assessment of Synthetic Waste Images	. 1015
On the Impact of Data Heterogeneity in Federated Learning Environments with Application the Impact of Data Heterogeneity in Federated Learning Environments with Application the Healthcare Networks	
On the Influence of Metric Learning Loss Functions for Robust Self-Supervised Speaker Verification to Label Noise	1028
On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance bystem	1036
Open-World Learning Under Dataset Shift	1044
Optimized Vision Transformer Training Using GPU and Multi-Threading	1047

Optimizing Demand Forecasting: A Framework With Bayesian Optimization Embedded Reinforcement Learning for Combined Algorithm Selection and Hyperparameter Optimization 1049
Zizhe Wang (Agency for Science, Technology and Research, Singapore), Xiaofeng Yin (Agency for Science, Technology and Research, Singapore), Yun Hui Lin (Agency for Science, Technology and Research, Singapore), Ping Chong Chua (Agency for Science, Technology and Research, Singapore), Ning Li (Agency for Science, Technology and Research, Singapore), and Xiuju Fu (Agency for Science, Technology and Research, Singapore)
Optimizing Indoor Farming: Deep Learning for Predicting Plant Growth Under LED Light Treatments
Optimizing Supply Chain Risk Management: An Integrated Framework Leveraging Large Language Models
PANO-ECHO: PANOramic Depth Prediction Enhancement with ECHO Features
Path-Based Link Prediction on Hyper-Relational Knowledge Graph
PepPFN: Protein-Peptide Binding Residues Prediction via Pre-Trained Module-Based Fourier Network
Phased Continuous Exploration Method for Cooperative Multi-Agent Reinforcement Learning 1085 Jie Kang (Dalian University of Technology, China), Yaqing Hou (Dalian University of Technology, China), Yifeng Zeng (Northumbria University, UK), Yongchao Chen (The Institute of Effectiveness Evaluation of Flying Vehicle, China), Xiangrong Tong (Yantai University, China), Xin Xu (Wuhan University of Science and Technology, China), and Qiang Zhang (Dalian University of Technology, China)
PLNet: Light Recipe Design for Indoor Farming Through Generative Deep Learning

redicting Mild Cognitive Impairment Through Ambient Sensing and Artificial Intelligence . Ah-Hwee Tan (Singapore Management University, Singapore), Weng-Yan Ying (Singapore Management University, Singapore), Budhitama Subagdja (Singapore Management University, Singapore), Anni Huang (Singapore Management University, Singapore), Shanthoshigaa D (Singapore Management University, Singapore), Tony Chin-Ian Tay (Sengkang General Hospital and Singhealth Duke NUS Academic Medical Centre, Singapore), and Iris Rawtaer (Sengkang General Hospital and Singhealth Duke NUS Academic Medical Centre, Singapore)	1097
rediction of Students' Academic Progression Using Machine Learning	1104
rediction of Successful Memory Formation During Audiovisual Advertising Using EEG Sign 10 Vangelis P. Oikonomou (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Kostas Georgiadis (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Fotis P. Kalaganis (Centre for Research and Technology Hellas, CERTH-ITI, Greece), Spiros Nikolopoulos (Centre for Research and Technology Hellas, CERTH-ITI, Greece), and Ioannis Kompatsiaris (Centre for Research and Technology Hellas, CERTH-ITI, Greece)	als
rediction of Treatment Outcome to Transcranial Direct Current Stimulation in Major Repression Based on Deep Learning of EEG Data	1116
rivacy Preserving Layer Partitioning for Deep Neural Network Models	1122
rivacy-Preserving Federated Learning for Industrial Defect Detection Systems via differential Privacy and Image Obfuscation	1129
rivacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data	1135
rivacy-Preserving Intrusion Detection Using Convolutional Neural Networks	1141
roviding Real-World Benchmarks for Super-Resolving Fluorescence Microscope Imagery Usenerative Adversarial Networks	

Query-Selected Global Attention for Text Guided Image Style Transfer Using Diffusion Model 1155
Jungmin Hwang (Unviversity of Ottawa, Canada) and Wonsook Lee (University of Ottawa, Canada)
Rapid Classification of Aerosol Particle Mass Spectra Using Data Augmentation and Deep
Learning
Schade (University of the Bundeswehr Munich, Germany), Johannes Passig (University of Rostock, Germany), Ralf Zimmermann (University of
Rostock, Germany), Günther Dollinger (University of the Bundeswehr
Munich, Germany), and Thomas Adam (University of the Bundeswehr Munich, Germany)
Real-time Scheduling Optimization with Deep Learning-Powered Demand Forecasting in Water Transportation
Wang Yukuan (Wuhan University of Technology, China), Liu Jingxian
(Wuhan University of Technology, China), Zhang Jiayi (Wuhan University
of Technology, China), Yu Hongchu (Wuhan University of Technology, China), and Di Zhongjie (Wuhan University of Technology, China)
Real-World License Plate Image Super-Resolution via Domain-Specific Degradation Modeling 1168
Xin Luo (East China Normal University, China), Yihao Huang (Nanyang Technological University, Singapore), and Weika Miao (East China Normal University, China)
Reconceptualizing AI Literacy: The Importance of Metacognitive Thinking in an Artificial Intelligence (AI)-Enabled Workforce
ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers 1180 Arvid Weyrauch (Karlsruhe Institute of Technology (KIT), Germany), Thomas Steens (German Aerospace Center (DLR), Germany), Oskar Taubert (Karlsruhe Institute of Technology (KIT), Germany), Benedikt Hanke (German Aerospace Center (DLR), Germany), Aslan Eqbal (INENSUS GmbH, Germany), Ewa Götz (Siemens AG, Germany), Achim Streit (Karlsruhe Institute of Technology (KIT), Germany), Markus Götz (Karlsruhe Institute of Technology (KIT), Germany), and Charlotte Debus (Karlsruhe Institute of Technology (KIT), Germany)
Reinforcement Learning for Strategic Airport Slot Scheduling: Analysis of State Observations and Reward Designs
(Singapore Management University, Singapore) Representation Learning and Knowledge Distillation for Lightweight Domain Adaptation 1195 Sayed Rafay Bin Shah (South Westphalia University of Applied Sciences,
Germany), Shreyas Subhash Putty (South Westphalia University of Applied Sciences, Germany), and Andreas Schwung (South Westphalia University of Applied Sciences, Germany)
Resolving Ethics Trade-offs in Implementing Responsible AI

Restoration of Material Pore Structure Image Using Transformer Architecture
Retrieval Augmented MedLM
Robust FOD Detection Using Frame Sequence-Based DEtection TRansformer (DETR)
Robust Lagrangian and Adversarial Policy Gradient for Robust Constrained Markov Decision
Processes
Roles of Standardised Criteria in Assessing Societal Impact of AI
Route Planning Through Genetic Algorithm for Multi-Axis Motion Control
Safe Multi-Agent Reinforcement Learning via Dynamic Shielding
Scaffolding Language Learning via Multi-Modal Tutoring Systems with Pedagogical Instructions
Scanning Electron Microscope Image Segmentation with Foundation AI Vision Model for Nanoparticles in Autonomous Materials Explorations

SegMAE-Net: A Hybrid Method Using Masked Autoencoders for Consistent 3D Medical Ir	-
Segmentation	-
Self-Supervised Modular Architecture for Multi-Sensor Anomaly Detection and Localization Mohammed Ayalew Belay (Norwegian University of Science and Technology, Norway), Adil Rasheed (Norwegian University of Science and Technology, Norway), and Pierluigi Salvo Rossi (SINTEF Energy Research, Norway)	n 1271
Semantic Textual Similarity Analysis of Clinical Text in the Era of LLM	1277
Sensor-Drift-Aware Time-Series Anomaly Detection for Climate Stations	1283
Sequential Transfer via Clustering-Based Similarity Measurement for Faster Trajectory Optimization Wu Lin (The Hong Kong Polytechnic University, China), Qiuzhen Lin (Shenzhen University, Shenzhen, China), Xiaoming Xue (City University of Hong Kong, China), and Kay Chen Tan (The Hong Kong Polytechnic University, China)	1289
Ship Trajectory Prediction Using AIS Data with TransFormer-Based AI	1295
SHSML: A Stochastic Approach to Hierarchically Structured Meta-Learning for Improved Inference and Confidence	1299
Soft Constraint in Local Structure Approximation-PINN Jian Cheng Wong (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore; Nanyang Technological University (NTU), Singapore), Pao-Hsiung Chiu (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore), Chinchun Ooi (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore; Center for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), and My Ha Dao (Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore)	1305

SPADENet: Skill-Based Player Action Decision and Evaluation for Card Games Using Deep Neural Networks (Online Rummy as Case Study)
Divyansh Jain (Data Science Group, Gameskraft, India) and Anurag Garg (Data Science Group, Gameskraft, India)
SPD Hashing Network for Fast Image Set Classification and Retrieval
Split Learning of Multi-Modal Medical Image Classification
SSR: SAM is a Strong Regularizer for Domain Adaptive Semantic Segmentation
SSSwin: Sequential Spectral Swin Transformer for Solar Panel Mapping in Satellite Imagery 1327 Zhiyuan Yang (Northeastern University, Canada) and Ryan Rad (Northeastern University, Canada)
Stable Probabilistic Graphical Models for Systemic Risk Estimation
Stage-Aware Brain Graph Learning for Alzheimer's Disease
Stay Tuned! Analysing Hyperparameters of a Wide-Kernel Architecture for Industrial Faults 1343 Dan Hudson (Osnabrück University, Germany), Jurgen van den Hoogen (Osnabrück University, Germany), Stefan Bloemheuvel (Jheronimus Academy of Data Science (JADS), Netherlands), and Martin Atzmueller (Osnabrück University, Germany)
Study on Stochastic Gradient Descent Without Explicit Error Backpropagation with Momentum 1350
Shahrzad Mahboubi (Shonan Institute of Technology, Japan) and Hiroshi Ninomiya (Shonan Institute of Technology, Japan)

Supervised Virtual-to-Real Domain Adaptation for Object Detection Task Using YOLO
Surpassing Human Counterparts: A Breakthrough Achievement of Large Language Models in Professional Tax Qualification Examinations in China
Sustainable Machine Learning: Evaluating the Environmental Cost of AutoML Algorithms in AI Development
Symbolic Regression for Discovery of Medical Equations: A Case Study on Glomerular Filtration Rate Estimation Equations
Talking Face Generation via Face Mesh - Controllability Without Reference Videos
TelLungNet - Enabling Telemedicine Utilizing an Improved U-Net Lung Image Segmentation Rifat Al Mamun Rudro (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Api Alam (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Shafin Talukder (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Tanvir Ahmed (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), Nayma Islam (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh), and Kamruddin Nur (Department of Computer Science, American International University-Bangladesh (AIUB), Bangladesh)
Textile Surface Defects Analysis with Explainable AI
The Detection of Vibration Dampers Based on Optimized RetinaNet
The Impact of the Artificial Intelligence (AI) Art Generator in Pre-Service Art Teacher Training

The Proposal of an AI Policy Maturity Model
Towards a More Robust and Accurate OCR Model with Adversarial Techniques in HMI Testing Scenarios
Towards Adversarially Robust Data-Efficient Learning with Generated Data
Towards Efficient Rail Transportation: Bayesian Network Modeling for Predicting Passenger Train Delays Using Secondary Train Information
Towards End-to-End Prompt-Vision-Physics Neural Network for Fast Design Discovery 1423 Qingshan Xu (Nanyang Technological University, Singapore), Jiao Liu (Nanyang Technological University, Singapore), Melvin Wong (Nanyang Technological University, Singapore), Ge Jin (Beijing Institute of Technology, China), Ryan Lau (Nanyang Technological University, Singapore), Yew-Soon Ong (Nanyang Technological University, Singapore; Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore), Stefan Menzel (Honda Research Institute Europe, Germany), Thiago Rios (Honda Research Institute Europe, Germany), Joo-Hwee Lim (Institute for Infocomm Research (I2R), Agency for Science, Technology and Research, Singapore), and Chin Chun Ooi (Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore)
Towards FAIR Workflows for Federated Experimental Sciences
Towards Fault-Tolerant Quadruped Locomotion with Reinforcement Learning

Towards Lightweight Underwater Depth Estimation	.33
Towards Next-Generation Federated Learning: A Case Study on Privacy Attacks in Artificial Intelligence Systems	.37
Advancing Safety and Robustness: Perception-Planning System of an Autonomous Vehicle for Micromobility Last Mile Delivery	.45
Transformer-Based Reinforcement Learning Model for Optimized Quantitative Trading 14 Aniket Kumar (University of South Dakota, USA), Rodrigue Rizk (University of South Dakota, USA), and Kc Santosh (University of South Dakota, USA)	:51
Transforming GPP Estimation in Terrestrial Ecosystems Using Remote Sensing and Transformers	:53
TTCR: Accurate TCR-Epitope Binding Affinity Prediction Using Transformers	.59

GAN	6 E
Vicky Sintunata (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Siying Liu (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Dinh Nguyen Van (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Zhao Yong Lim (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Ryan Lee Zhikuan (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Yue Wang (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), Jack Ho Jun Feng (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore), and Karianto Leman (Agency for Science, Technology andResearch (A*STAR), Institute of Infocomm Research (I^2R), Singapore)	33
Unveiling the Dynamics of Learning Behaviors in Learning K-12 Math: An Exploration of an ASSISTments Dataset	71
Unveiling the Potential of ChatGPT in Detecting Machine Unauditable Bugs in Smart Contracts: A Preliminary Evaluation and Categorization	78
Uplift Modeling Based on Graph Neural Network Combined with Causal Knowledge	34
Using Generative AI to Drive Person Centric Networking	90

UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for
Underwater Image Enhancement 1494
Jun Huang (Southern University of Science and Technology, China), Zongze Li (Southern University of Science and Technology, China),
Ruihao Zheng (Southern University of Science and Technology, China),
and Zhenkun Wang (Southern University of Science and Technology, China)
Virtual Co-Pilot: Multimodal Large Language Model-Enabled Quick-Access Procedures for
Single Pilot Operations
for Frontier AI Research, A*STAR), Yuqi Yan (The Hong Kong Polytechnic
University), Ching-Hung Lee (Xi'an Jiaotong University, China), and
Yew Soon Ong (Nanyang Technological University, Singapore)
VirtuGuard: Ethically Aligned Artificial Intelligence Framework for Cyberbullying
Mitigation
Min Wang (University of Canberra, Australia; University of New South
Wales, Australia), Christine Boshuijzen-van Burken (University of New
South Wales, Australia), Nan Sun (University of New South Wales,
Australia), Shabnam Kasra Kermanshahi (University of New South Wales,
Australia), Yu Zhang (School of Business, University of New South
Wales, Canberra, Australia), and Jiankun Hu (University of New South Wales, Australia)
Vision Control for Cable Binding Robot in Offshore and Marine Industry
Jing Zhong Tee (Sembcorp Marine Ltd, Singapore), Ye Zhen (National
University of Singapore, Singapore), Chin Boon Chng (National
University of Singapore, Singapore), and Chee Kong Chui (National University of Singapore, Singapore)
Visualize Music Using Generative Arts
Brian Man-Kit Ng (Purdue University, USA), Samantha Rose Sudhoff
(Purdue University, USA), Haichang Li (Purdue University, USA), Joshua
Kamphuis (Purdue University, USA), Tim Nadolsky (Purdue University,
USA), Yingjie Chen (Purdue University, USA), Kristen Yeon-Ji Yun
(Purdue University, USA), and Yung-Hsiang Lu (Purdue University, USA)
W-Net: Two-Stage Segmentation for Multi-Center Kidney Ultrasound
Yu-Chi Chang (Graduate Institute of Library Information and Archival Studies, National Chengchi University, Taiwan), Chung-Ming Lo
(Graduate Institute of Library Information and Archival Studies,
National Chengchi University, Taiwan), Yi-Kong Chen (Division of
Nephrology, Department of Internal Medicine, Kaohsiung Medical
University Hospital, Taiwan), Ping-Hsun Wu (Division of Nephrology,
Department of Internal Medicine, Kaohsiung Medical University
Hospital, Taiwan), and Hsing Luh (Department of Mathematical Sciences, National Chengchi University, Taiwan)
When Audio Denoising Meets Spiking Neural Network
Xiang Hao (The Hong Kong Polytechnic University, China), Chenxiang Ma
(The Hong Kong Polytechnic University, China), Qu Yang (National
University of Singapore, Singapore), Kay Chen Tan (The Hong Kong
Polytechnic University, China), and Jibin Wu (The Hong Kong
Polytechnic University, China)
When to use Demographic Data in Healthcare Models: A Bias-Responsible Approach
Sebrina Zeleke (The Ohio State University), Tanya Berger-Wolf (The Ohio State University), and Xia Ning (The Ohio State University)

Where to Move Next: Zero-shot Generalization of LLMs for Next POI Recommendation 1527
Shanshan Feng (Centre for Frontier AI Research, A*STAR, Singapore;
Institute of High Performance Computing, A*STAR, Singapore), Haoming
Lyu (Nanyang Technological University, Singapore), Fan Li (Hong Kong
Polytechnic University, China), Zhu Sun (Centre for Frontier AI
Research, A*STAR, Singapore; Institute of High Performance Computing,
A*STAR, Singapore), and Caishun Chen (Centre for Frontier AI Research,
A*STAR, Singapore; Institute of High Performance Computing, A*STAR,
Singapore)
Wildfire Spread Prediction in North America Using Satellite Imagery and Vision Transformer 1533
Bronte Sihan Li (Northeastern University) and Ryan Rad (Northeastern University)
The Impact of Perceived Robotic Intelligence on Trust and Attitude
XES3MaP: Explainable Risks Identified from Ensembled Stacked Self-Supervised Models to Augment Predictive Maintenance
Sarala M Naidu (Mälardalen University, Sweden), Sarala M (Hitachi
Energy, Sweden), Hameri Ketokivi (RISE Research Institutes of Sweden,
Sweden), and Ning Xiong (Mälardalen University, Sweden)
Zero-shot Domain Adaptation Based on Dual-Level Mix and Contrast
µPose: Synthetic Dataset for Human Pose Estimation in Microgravity Environments
Germany), Tobias Schwandt (Ilmenau University of Technology, Germany),
and Wolfgang Broll (Ilmenau University of Technology, Germany)
Author Index