

Fakultät Wirtschaftswissenschaften, Lehrstuhl für Betriebswirtschaftslehre, insb. Betriebliche Umweltökonomie

Hauptseminar Automatisierungs-, Mess- und Regelungstechnik

Roboterprojekt "Autonomes Einparken"

Zijian Jiang, Simon Bilík, Junjie Cai, Xuehua Jia, Bianca Grütze

Dresden, 07.11.2017

AUFGABENSTELLUNG MODUL CONTROL

Wintersemester2017/2018 Zijian Jiang

Vorbereitung für die korrekte Linienverfolgung

Vergleich der soll-Lichtintensität mit der ist-Lichtintensität

	Lichtintensität (soll)	Lichtintensität (ist)
schwarz	0	33-42
grau	0-100	44-53
weiß	100	51-60

Daten für Linienverfolgung

lichtsensor		motor	
link	recht	link	recht
Schwarz(2)	Grau(1)	Lowpower(1)	Highpower(30)
Grau(1)	Schwarz(2)	Highpower(30)	Lowpower(1)
Schwarz(2)	Weiß (0)	Lowpower(1)	Highpower(30)
Weiß (0)	Schwarz(2)	Highpower(30)	Lowpower(1)
Grau(1)	Weiß (0)	Lowpower(1)	Highpower(30)

Aktueller Zustand

- 1. Roboter eingebaut
- 2. der Algorithmus zur Linienverfolgung verbessert

Nächster Arbeitsplan

- 1. Entwurf des Reglers durch PIDRegelalgorithmus
- 2. Einstellung der Geschwindigkeit von v,w

AUFGABENSTELLUNG MODUL NAVIGATION

Wintersemester 2017/2018 Simon Bilík

Navigation

- Grundliche position bestimmung aus Radodometrie
- x, y Koordinaten, Schwenkwinkel φ
- Verbesserung die Präzision der Koordinaten mit den Abstandsensoren (Ecken) und mit dem Maussenzor
- Verbesserung die Präzision des Schwenkwinkel mit den Lichtsensoren und aus den bekannten Koordinaten und aus dem berechneten Abstand
- Benutzung den Robotgeometrie

Navigation

- Parklückendetektion mit den senkrechten Abstandsenzoren
 - Bestimmung den Anfang und die Ende die Parkbarrieren
 - Fusion von Daten von zwei Abstandsenzoren
- Speichern den Anfang- und Ende-Koordinaten, Länge des Parklücke und den Parklücke ID

Navigation

AUFGABENSTELLUNG MODUL PERCEPTION

Wintersemester 2017/2018 Junjie Cai

Perception

Ziel: Erfassung und Weiterverarbeitung von Messdaten

Der Type der Sensors:
1Lichtsensor (Lego)
2 Radencoder(lego)
3Triangulationssensor(extra)
4Maussensor(extra)

Software: Eclipese, Arduino, Matlab

A: Kalibrerung der Sensors (3&4)

Software: Arduino und Matlab

Verstehen der Aruino Code von Kalib.ino und der Befehler Schreiben Matlab Code von nichtlienar Polynom und Mittelwert

```
y=4:1:30;
x=[];
A=polyfit(x,y,4);
z=polyval(A,x);
plot(x,y,'r*',x,z,'b')
A
u=[];
average=mean(u);
```

```
| Second | Breadfoints | Bread
```


Eintragen diese kalibrierungskoeffizient in Arduino

```
//Frontsensor (an A0-FRONT)
float poly0[] = {1.7414,-14.8394,47.9233,-72.8555,50.8990};
//Frontsidesensor (an A1-FRONTSIDE)
float poly1[] = {-23.971,230.2351,-852.0955,1543.1741,-1445.8621,693.349};
//Backsensor (an A2-BACK)
float poly2[] = {2.0052,-15.8862,47.9391,-68.8851,46.6604};
//Backsidesensor (an A3-BACKSIDE)
float poly3[] = {2.7625,-20.3513,56.7034,-75.3014,47.9168};

Presiden,07.11.2017
Folie 13
```


kalibrien des Maussensors

- Kalibrierungskoeffizient=Zahl(Arduino monitor)/250mm
- Eintragen in Arduino NXT.ino

Lichtsensor : 15 mal Werte aufnehmen und dann berechen der Mittelwert und zufaellige Messunsicherheit

Radencoder:Messunsicherheit der Winkelmessung ist weitergehened. Je mehr Abstaenden das Robot faehrt, groessere Messunsicherheit gibt es hier.
Zur Odometrie hat es eine grosse Abweichung

AUFGABENSTELLUNG MODUL HMI

Wintersemester 2017/2018 Bianca Grütze

aktueller Stand

bisher:

- Aneignung von Wissen
 - Verstehen der Struktur
- Einrichtung Entwicklungsumgebung
- erster Test der App
- Mock-Up

Arbeitsplan

Probleme:

Kopplung von NXT mit Tablet

demnächst:

- Bluetooth-Verbindung mit NXT herstellen
- · Implementierung der Benutzeroberfläche

AUFGABENSTELLUNG MODUL GUIDANCE

Wintersemester 2017/2018 Xuehua Jia

Guidance

Zeitplan

Automatisierung HS - Roboter

07.11.

Gantt-Diagramm

Vielen Dank für Ihre Aufmerksamkeit!