

税益 (13072919527) 及824, Cyrus Tang Building

日期	周次、星期	调休及教学安排		
9月29日	第4周星期五	法定节假日,停课,放假		
9月30日	第4周星期六	停课,放假		
10月1日	第4周星期日			
10月2日	第5周星期一	法定节假日, 停课, 放假		
10月3日	第5周星期二			
10月4日	第5周星期三	停课,放假		
10月5日	第5周星期四	放假,原安排课程调整至10月7日		
10月6日	第5周星期五	放假,原安排课程调整至10月8日		
10月7日	第5周星期六	停原10月7日课程,补10月5日课程		
10月8日	第5周星期日	停原10月8日课程,补10月6日课程		

惠更斯原理

1690年,荷兰物理学家惠更斯提出: □

- (1) 行进中的波面上任意一点都可看作是新的子波源;
- (2) 所有子波源各自向外发出许多子波;
- (3) 各个子波所形成的包络面,就是原波面在一定时间 内所传播到的新波面。

波的干涉

波传播的独立性:

当几列波在传播过程中在某一区域相遇后再行分开,各波的传播情况与未相遇一样,仍保持它们各自的频率、波长、振动方向等特性继续沿原来的传播方向前进。

叠加原理:

在波相遇区域内,任一质点的振动,为各波单独存在时所引起的振动。

注意 波的叠加原理仅适用于线性波的问题

相干波与相干条件

一般情况下,各个波的振动 方向和频率均不同,相位关 系不确定,叠加的合成波较 为复杂。

• 干涉现象

当两列(或多列)相干波叠加的结果,其合振幅 A 和合强度 I 在空间形成一种稳定的分布,即某些点上的振动始终加强,某些点上的振动始终减弱。 —— 波的干涉

- 相干条件 频率相同、振动方向相同、相位差恒定
- 相干波 满足相干条件的波
- 相干波源 产生相干波的波源

Superposition of Plane Waves to Create Standing Wave

@ Ralph Muehleisen, 2001

(4) 简正模式: 特定的振动方式称为系统的简正模式。

弦线上形成驻波的条件:
$$L = n \frac{\lambda}{2}$$
 $(n = 1, 2, 3, \cdots)$

驻波频率则为:
$$v = \frac{u}{\lambda} = \frac{nu}{2L}$$
 $(n = 1, 2, 3, \cdots)$

(5) 半波损失

反射点为波节,表明入射波与反射波在该点反相。

$$\Delta \varphi = \pi$$
 \Longrightarrow $\Delta r = \frac{\lambda}{2\pi} \Delta \varphi$ \Longrightarrow $\Delta r = \frac{\lambda}{2}$

相当于入射波与反射波之间附加了半个波长的波程差

$$n_1 < n_2$$
 有半波损失(波节) 入射波 $n_1 \mid n_2$ $n_1 > n_2$ 无半波损失(波腹)

透射波没有半波损失

透射波

两端<mark>固定</mark>的弦振动 的简正模式

$$l=n\,\frac{\lambda_n}{2}$$

一端<mark>固定一端自由的弦振</mark> 动的简正模式

$$l = (n - 1/2) \frac{\lambda_n}{2}$$

末端封闭的笛中的驻波

末端开放的笛中的驻波

Third

harmonic

 $\lambda = \frac{2L}{3}$

n = 3

Anti-

node

Node

Antinode

Node

半波损失和反射波波函数

$$y_{\lambda \text{ high}}(x,t) = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$$

$$y_{\odot$$
 財波 $(x,t)=?$

- 一 若入射波从波疏介质向波密介质传播 → 反射点P → 波节
- → 入射波在 P 点的振动和反射波在 P 点的振动始终**反相!**

$$y_{\lambda \text{shit}}(x_P,t) = A\cos\left[\omega\left(t - \frac{x_P}{u}\right) + \varphi_0\right]$$

$$y_{\text{反射波}}(x_P,t) = A\cos\left[\omega\left(t - \frac{x_P}{u}\right) + \varphi_0 \pm \pi\right] \longrightarrow y_{\text{反射波}}(x,t)$$

而对于入射波从波密介质向波疏介质传播发生反射以及 两种情况下的透射,则无半波损失现象!

- 例 平面简谐波初始时刻的波形如图,此波波速为u,沿x方向传播,振幅为A,频率为f。
- 求 (1) 以 D 为原点,写出波函数; → 反射波波函数?
 - (2) 以 B 为反射点,且为波节,若以 B 为 x 轴坐标原点, 写出入射波、反射波波函数;
 - (3) 以 B 为反射点,求合成波,并分析波节、波腹的坐标。

(3)
$$y(x,t) = y_{\lambda} + y_{\mathbb{R}} = 2A\cos(2\pi f \frac{x}{u} + \frac{\pi}{2})\cos 2\pi f t$$

= $-2A\sin 2\pi f \frac{x}{u}\cos 2\pi f t$

$$\left|\sin 2\pi f \frac{x}{u}\right| = 1$$

波腹
$$\sin 2\pi f \frac{x}{u} = 1 \qquad 2\pi f \frac{x}{u} = \frac{2k+1}{2}\pi$$

$$x = \frac{2k+1}{4} \cdot \frac{u}{f} = \frac{2k+1}{4}\lambda$$
 $k = -1, -2, -3\cdots$

波节
$$\left| \sin 2\pi f \frac{x}{u} \right| = 0$$

$$2\pi f \frac{x}{u} = k\pi$$

$$x = \frac{k}{2} \cdot \frac{u}{f} = \frac{k}{2} \lambda$$

$$k = 0, -1, -2, -3 \cdots$$

例2 如图所示,
$$x_0 = 5\lambda$$

$$y_{\lambda} = A \cos[2\pi(\frac{t}{T} - \frac{x}{\lambda})]$$

求反射波和驻波的波节,波腹点。 0

解:
$$y_{\lambda P} = A \cos[2\pi(\frac{t}{T}) - 10\pi]$$

$$y_{\mathbb{R}P} = A\cos[2\pi(\frac{t}{T}) - 11\pi]$$

$$y_{\boxtimes O} = A\cos[2\pi(\frac{t}{T}) - 21\pi]$$

$$y_{\mathbb{K}} = A\cos[2\pi(\frac{t}{T} + \frac{x}{\lambda}) - 21\pi]$$

入射波 -

反射波 ←

• 波节点:

$$x = \frac{k\lambda}{2}$$

• 波腹点:

$$x = (2k+1)\frac{k\lambda}{4}$$

 $n_1 < n_2$

入射波与反射

波叠加:

$$y = y_{\lambda} + y_{\overline{k}} = -2A \sin \frac{2\pi x}{\lambda} \sin \frac{2\pi t}{T}$$

§13.7 多普勒效应

§13.7 多普勒效应

由于观察者(接收器)或波源、或二者同时相对媒质运动,而使观察者 接收到的频率与波源发出的频率不同,这种现象称为多普勒效应。

一. 波源静止, 观察者运动

$$f = \frac{u + v_o}{\lambda} = \frac{u + v_o}{u / f_0}$$

$$f = (1 + \frac{v_o}{u})f_0$$

远离
$$v_0 < 0$$

二. 观察者静止, 波源运动

$$\lambda' = uT - v_s T = \lambda - v_s T = \frac{u - v_s}{f_0}$$

$$f = \frac{u}{\lambda'} = \frac{u}{u - v_s} f_0$$

靠近 $v_s > 0$; 远离 $v_s < 0$

三. 波源和观察者同时运动

$$f = \frac{u + v_o}{\lambda - v_S T} = \frac{u + v_o}{u - v_S} f_0$$

符号正负的选择与上述相同

S运动的前方波长变短

(1) 若波源和观察者不沿两者的连线运动。

$$v = \frac{u + v_0 \cos \alpha}{u - v_S \cos \beta} v_0$$

- (2) 当波源或观察者在二者联线垂直方向上运动时,无多普勒效应。
- (3) 应用: 监测车辆行驶速度、测量血液流速、跟踪卫星等。

机械波的多普勒效应

1. 波源静止,观察者运动

$$f = (1 + \frac{v_o}{u})f_0$$

 $f = (1 + \frac{v_o}{u})f_0$ 靠近 $v_0 > 0$ 远离 $v_0 < 0$

2. 波源运动,观察者静止

$$f = \frac{u}{\lambda'} = \frac{u}{u - v_s} f_0$$

3. 波源和观察者同时运动

$$f = \frac{u + v_o}{\lambda - v_S T} = \frac{u + v_o}{u - v_S} f_0$$

靠近 $v_{c} > 0$;

远离 $v_{s} < 0$

警察用多普勒测速仪测速

超声多普勒效应测血流速

对电磁波(光)而言,也有类似的多普勒现象

不同方向的观察者会分别看到 蓝位移(BlueShift)与红位移(Redshift)

例如:由观察宇宙中各星球的光谱都有红移的现象,即 各星球似乎都远离我们而去。人们推断目前宇宙仍然在继续扩大之中。

例 多普勒效应监测车速。设固定波源发出频率为 $\nu = 100 \, \mathrm{kHz}$ 的超声波,当汽车向波源行驶时,与波源安装在一起的接 收器接收到从汽车反射回来的波的频率为 $\nu'' = 110 \, \mathrm{kHz}$ 已知空气中的声速为 $u = 330 \, \mathrm{ms}^{-1}$

求 汽车的速度

\mathbf{p} 1) 车为接收器 $\mathbf{v}' = \frac{\mathbf{u} + \mathbf{v}_0}{\mathbf{v}}$

2) 车为波源
$$v'' = \frac{u}{u - v_s} v' = \frac{v_0 + u}{u - v_s} v$$

$$v_0 = v_s = \frac{v'' - v}{v'' + v}u = 56.8 \text{ km} \cdot \text{h}^{-1}$$

例 蝙蝠可以利用超声波导航。若蝙蝠发出超声波的频率为 39 kHz, 并以 声速1/40 的速度向表面平直的崖壁飞去.

求 蝙蝠接收到的从崖壁反射回的超声波的频率?

解 蝙蝠既是波源,又是接收者,两者彼此靠近, $v_{\rm S}=v_{\rm O}=u/40$ 。

蝙蝠接收到的频率为

$$v = \frac{u + v_o}{u - v_S} v_S = \frac{1 + v_o/u}{1 - v_S/u} v_S = 41 \text{ kHz}$$

- 例 一警笛发射频率为 1500 Hz 的声波,并以22 m/s 的速度向某一方向运动,一人以 6 m/s 的速度跟踪其后. (声速 330 m/s)
- 求 该人听到的警笛发出的声音的频率以及在警笛后方空气中声 波的波长?
- 解 观察者接收到的频率(波源和观察者同时运动):

$$v_R = \frac{u + v_o}{u - v_S} v_0 = \frac{330 + 6}{330 + 22} \times 1500 = 1432 \text{ Hz}$$

警笛后方空气中声波的频率(观察者静止,波源运动):

$$v = \frac{u}{u - v_S} v_0 = \frac{330}{330 + 22} \times 1500 = 1406 \text{ Hz}$$

警笛后方空气中声波的波长:

$$\lambda = \frac{u}{v} = \frac{u - v_s}{v_0} = \frac{330 + 22}{1500} = 0.23 \text{ m}$$

- 例 一频率为1 kHz的声源,以 v_s =34 m/s 的速率向右运动.在声源的右方有一反射面,以 v_1 =68 m/s 的速率向左运动.设声波的速度为u=340m/s.
- 求 (1)声源所发出的声波在空气中的波长.
 - (2)每秒内到达反射面的波数;
 - (3)反射波在空气中的波长.

解 (1)在声源的右侧,相对空气静止的观察者接收到的频率

$$v'_1 = \frac{u}{u - v_s} v_0$$
 $\lambda'_1 = \frac{u}{v'_1} = \frac{u - v_s}{v_0} = \frac{340 - 34}{1 \times 10^3} \text{m} = 0.306 \text{m}$

在声源的左侧声波在空气中的波长:

$$v'_{2} = \frac{u}{u + v_{s}} v_{0}$$
 $\lambda'_{2} = \frac{u}{v'_{2}} = \frac{u + v_{s}}{v_{0}} = 0.374(m)$

(2)反射面作为接收者测到的频率:

$$v'_2 = \frac{u + v_1}{u - v_s} v_0 = \frac{340 + 80}{340 - 34} \times 10^3 = 1.3 \text{(kHz)}$$

(3)反射波在空气中的频率:

$$v'_{3} = \frac{u}{u - v_{1}} v'_{2} = \frac{u + v_{1}}{u - v_{s}} \cdot \frac{u}{u - v_{1}} v_{0} = \frac{u(u + v_{1})}{(u - v_{s})(u - v_{1})} v_{0}$$

反射波在空气中的波长:

$$\lambda'_3 = \frac{u}{v'_3} = \frac{(u - v_s)(u - v_1)}{(u + v_1)v_0} = 0.20 \text{ (m)}$$

$$v'_3 = 1700 \text{Hz}$$

如下图,当水面上 的小虫子在原地摆 动它的肢体时,会 产生以它为圆心 向 四方散开的水波 假如 小虫子摆动它的肢体时, 也同时朝著前方游动时,我 们可能会观察到如下的水波 (当 小虫子 游动的速率 小于 水波传递的速率)

若是波速恰好 等於波源移动 的速率时,则 会产生如下的 图形

v为 虫子游动的速度, v_w为水波的波速

冲击波 (激波)

 $v_s > u$ 时,多普勒效应失去意义,此时形成冲击波。

后发出的波面将超越先发出的波面,形成锥形波阵面

第14章 波动光学基础

北极光

光本质的两种学说

微粒学说

光是粒子流,由发光物体发出并遵循力学规律波动学说

光是机械波,在弹性介质"以太"中传播

光的本性

- 光的电磁理论 波动性: 干涉、衍射、偏振
- 光的量子理论 粒子性: 黑体辐射、光电效应、康普顿效应

光学的分类

• 几何光学

以光的直线传播和反射、折射定律为基础,研究光学仪器成象规律。

• 物理光学

以光的波动性和粒子性为基础,研究光现象的基本规律

- ▶波动光学 —— 光的波动性: 研究光的传输规律及其应用的学科
- ▶量子光学 —— 光的粒子性:研究光与物质相互作用规律及其应用的学科

§14.1 光是电磁波

1. 电磁波的产生及传播

凡作加速运动的电荷或电荷系都是发射电磁波的波源。

例如:天线中的振荡电流 分子或原子中电荷的振动

$$\iint_{L} \vec{E} \cdot d\vec{l} = -\frac{d\varphi_{m}}{dt} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \qquad \iint_{L} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{j} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$$

变化磁场可以激发涡旋电场

$$\iint_{\mathbf{L}} \vec{H} \cdot d\vec{l} = \int_{\mathbf{S}} (\vec{j} + \frac{\partial D}{\partial t}) \cdot d\vec{S}$$

传导电流和变化电场可 以激发涡旋磁场

电磁波 = 交变电磁状态的传播

电磁波是矢量波(横波)

变化的电场产生磁场,变化的磁 场产生电场,交替变化, 远地传播出去,形成电磁波。

由麦克斯韦理论可得:

$$\frac{\partial^2 E}{\partial x^2} = \varepsilon \mu \frac{\partial^2 E}{\partial t^2}$$

$$\left| \frac{\partial^2 E}{\partial x^2} = \varepsilon \mu \frac{\partial^2 E}{\partial t^2} \right| \quad \left| \frac{\partial^2 E}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 E}{\partial t^2} \right|$$

$$\left| \frac{\partial^2 H}{\partial x^2} = \varepsilon \mu \frac{\partial^2 H}{\partial t^2} \right|$$

同理:
$$\left| \frac{\partial^2 H}{\partial x^2} = \varepsilon \mu \frac{\partial^2 H}{\partial t^2} \right| \quad \left| \frac{\partial^2 H}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 H}{\partial t^2} \right|$$

当电场振动沿 X 轴正向传播 > 平面简谐波

$$E = E_0 \cos \left[\omega \left(t - \frac{x}{u} \right) \right]$$

$$H = H_0 \cos \left[\omega \left(t - \frac{x}{u} \right) \right]$$

$$H_0 = \frac{E_0}{\mu_0 u} = \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0$$

• 在真空中:
$$u = 1/\sqrt{\varepsilon_0 \mu_0} = 2.9979 \times 10^8 \ m/s = c$$

折射率

• 在介质中:
$$u = 1/\sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r} = c/\sqrt{\varepsilon_r \mu_r} = c/n < c$$

2. 电磁波的性质 🌣

(1) 电磁波是横波

振动量 \vec{E} , \vec{H} 与波速 \vec{u} 构成相互 垂直的右手螺旋关系。

(2) 电磁波的偏振性

 \vec{E} , \vec{H} 分别在各自的平面上振动。

(3) 电场与磁场同相变化

$$\sqrt{\varepsilon}E = \sqrt{\mu}H$$

(4) 电磁波的能量

$$w_e = \frac{1}{2} \varepsilon E^2$$
 $w_m = \frac{1}{2} \mu H^2$ $w = w_e + w_m$

光是电磁波 —— 矢量横波,交变电磁状态的传播

- (1) 电磁波是横波 $\vec{E}_{,\vec{H}}$ 与波速 \vec{u} 构成相互垂直的右手螺旋关系。
- (2) 电磁波的偏振性 \vec{E}, \vec{H} 分别在各自的平面上振动。
 - $E = E_0 \cos \left[\omega \left(t \frac{x}{u} \right) \right]$ $H = H_0 \cos \left[\omega \left(t \frac{x}{u} \right) \right]$

(3) 电场与磁场同相变化

$$\sqrt{\varepsilon}E = \sqrt{\mu}H$$

(4) 电磁波的能量

$$w_e = \frac{1}{2} \varepsilon E^2$$

$$w_m = \frac{1}{2} \mu H^2$$
 $w = w_e + w_m$

能流密度 5 (坡印亭矢量)

$$S = \frac{dA \cdot udt \cdot w}{dA \cdot dt} = uw \qquad \sqrt{\varepsilon}E = \sqrt{\mu}H$$
$$= \frac{1}{2}(\varepsilon E^2 + \mu H^2)\sqrt{\frac{1}{\varepsilon\mu}} = EH$$

坡印亭矢量
$$\vec{S} = \vec{E} \times \vec{H}$$

波的强度
$$I$$
 $I = \overline{S} = \langle S \rangle = \frac{1}{T} \int_{t}^{t+T} S dt$
$$= \frac{1}{T} \int_{t}^{t+T} E_0 H_0 \cos^2 \omega \left(t - \frac{r}{u} \right) dt = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} E_0^2$$

结论: I 正比于 E_0^2 或 H_0^2 ,通常用其相对强度 $I = \frac{1}{2}E_0^2$ 表示

电磁波谱

电磁波具有各种频率:无线电,微波,红外线,可见光,紫外线,………

• 可见光 (visible light) —— 能够引起人的视觉的电磁波。

实验证明:引起人视觉和化学效应的电磁波是电场强度矢量,所以也常将电场强度矢量称为光矢量。

3. 光是电磁波

- ◆诸多的现象和理论研究表明:光是电磁波。
 - (1)光与电磁波的传播速度相等;有反射,折射,干涉, 衍射,偏振性质。
 - (2)用电磁波理论研究光学现象的结果也说明光是电磁波。

◆可见光七彩颜色的波长和频率范围

光色	波长(nm)	频率(Hz)	中心波长 (nm)
红	760~622	$3.9 \times 10^{14} \sim 4.8 \times 10^{14}$	660
橙	622~597	$4.8 \times 10^{14} \sim 5.0 \times 10^{14}$	610
黄	597~577	$5.0 \times 10^{14} \sim 5.4 \times 10^{14}$	570
绿	577~492	$5.4 \times 10^{14} \sim 6.1 \times 10^{14}$	540
青	492~470	$6.1 \times 10^{14} \sim 6.4 \times 10^{14}$	480
当	470~455	$6.4 \times 10^{14} \sim 6.6 \times 10^{14}$	460
紫	455~400	$6.6 \times 10^{14} \sim 7.5 \times 10^{14}$	430

人眼最为敏感的光是黄绿光,即 555 nm 附近。