

Overview of the Stormwater Management Model

Caleb Buahin, Ph.D. (US EPA ORD) and Mitch Heineman (CDM Smith)

What is the EPA

Stormwater

Management Model
(SWMM)?

- Dynamic rainfall-runoff simulation model
 - Event or continuous simulation
 - Runoff quantity and quality
- Hydrologic components of subcatchments and groundwater modules receive precipitation (other meteorologic inputs) and estimate runoff quantity and quality
- Runoff can be routed through built collection infrastructure (e.g., pipes, storage/treatment assets, pumps, and control structures) and open channels

What can SWMM be used for?

- Design, sizing, and placement of draining system infrastructure
 - Both traditional gray infrastructure
 - As well green /nature-based infrastructure/ low impact development and best management solutions
- Modeling inflow and infiltration
- Nonpoint and point source pollutant loadings for load allocation studies
- Control of combined and sanitary sewer overflows and other stormwater pollutants
- Flood inundation modeling studies
- Digital twins of collection systems for real time decision support applications

What does SWMM currently not do well very well?

- Watershed level studies including irrigated agricultural
- Subsurface and LID water quality routing
- Feedback between built and overland flow
- Sediment routing
- Explicit water quality routing with multi-species reactions
- No in-built tools for parameter estimation, uncertainty assessment, sensitivity analysis, etc
- No in-built tools for infrastructure and operational optimization

United States Environmental Protection Agency CSO/SSO: Hartford, Conn.

Water quality: Boston

United State Flood control: New Haven, Conn. Agency

Drainage design: Revere, Mass.

United States Drainage design: Arizona State U. Agency

Sanitary sewer planning: Liberty Hill, Texas

Agnou						
Feature	Arizona State U.	Liberty Hill	New Haven	Hartford	Boston	Revere
Purpose	Drainage design	Sanitary sewer planning	Flood control	CSO / SSO / Flood control	Water quality	Drainage design
Design condition	10-yr & 100-yr	2-yr	10-yr / 1-yr tide	various	annual	10-yr
Model domain (ha)	1,100	1,700	400	18,000	110,000	8
Subcatchments	1,400	170	1,500	4,000	3,700	130
Nodes	2,100	800	500	5,200	4,400	70
Outfalls	40	1	18	1	80	2
Real-time control				✓	✓	
Streets/inlets						✓
Open channel flow				✓	✓	
Groundwater				✓	✓	
Infiltration/inflow		✓		✓		
Low impact development			✓			
Infiltration galleries	✓					
Water quality					✓	
Long-term simulation				✓	✓	
Climate change			✓			

Fundamentals of SWMM5 Hydraulic Routing Formulations

Caleb Buahin, Ph.D.

US EPA Office of Research and Development

Center for Environmental Solutions and Emergency Response

Water Infrastructure Division

SWMM Hydraulic Routing Conceptualization

- Node-link network representation of built component of collection system infrastructure
- Nodes:
 - Junctions (maintenance holes)
 - Outfalls
 - Flow divider
 - Storage units
- Links
 - Conduits
 - Channels with irregular and regular crosssections
 - Pumps
 - Orifices
 - Weirs
 - Outlets

Governing Equations

- One-dimensional flow
- Hydrostatic pressure dominates with negligible vertical acceleration
- Bottom slope of channel/pipe is small
- Mannings equation describes resistance effects
- Incompressible flow

Numerical Approximations – Spatial Derivatives

 First order upwind differencing used for spatial derivates

$$\frac{\partial A}{\partial x} = \frac{A_{Upstream} - A_{Downstream}}{L}$$

$$\frac{\partial H}{\partial x} = \frac{H_{Upstream} - H_{Downstream}}{L}$$

Numerical Approximations – Time Integration

Explicit

$$U_{n+1} = U_n + \Delta t. f(U_n, t_n)$$

- Simple and fast to implement
- Conditionally stable

Implicit

$$U_{n+1} = U_n + \Delta t. f(U_{n+1}, t_{n+1})$$

- Unconditionally stable
- Requires solving a system of equations at each timestep

SWMM Semi-implicit

$$U_{n+1} = U_n + \Delta t. f(U_n, t_n) + \Delta t. f(U_{n+1}, t_{n+1})$$

- Splitting the difference
- Improved stability than fully explicit methods
- Stability considerations for SWMM:
 - Time step can be no longer than the time it takes for wave to travel length of conduit

$$\Delta t \le \frac{L}{|\overline{U} + c|}$$

Continuity at Nodes

- For non-storage nodes minimum nodal storage area specified is applied to prevent division by zero:
 - Default = 12.566 ft²

$$\frac{\partial H}{\partial t} = \frac{\sum Q}{A_{SN} + \sum A_{SL}}$$

Nodal Flooding

- Nodal surcharging all conduits connected are full or water level exceeds the crown of the highest conduit
- Flooding can be either be configured as:
 - Loss to the system
 - Ponding over user specified area to mimic overland flooding.
 - Flows reintroduced back into the system when capacity is available

Convergence - Continuity

Continuity Error =
$$\frac{\left(Q_{Inflow} - \left(Q_{Outflow} + \Delta V\right)\right)}{Q_{Inflow}} \times 100$$

******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	33.470	10.907
External Outflow	33.344	10.866
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.119	0.039
Continuity Error (%)	0.020	

Advanced Features

- Evaporation from open channels and storage units
- Minor losses
- Force mains
- Culverts
- Control rules for hydraulic elements
- HEC-22 Inlet Analysis

Drop Curb Inlet

Visualizing Results

Report Summary

Analysis Options						
Flow Units	CMS					
Process Models: Rainfall/Runoff	NO					
RDII						
Snowmelt						
Groundwater						
Flow Routing Ponding Allowed						
Water Quality						
Flow Routing Method						
Surcharge Method Starting Date						
Ending Date						
Antecedent Dry Days						
Report Time Step Routing Time Step						
Variable Time Step						
Maximum Trials						
Number of Threads						
lead Totelance	0.000100 m					
*********	Volume	Volume				
Flow Routing Continuity	hectare-m					

Ory Weather Inflow Net Weather Inflow	0.000	0.000				
Groundwater Inflow	0.000	0.000				
RDII Inflow	0.000	0.000				
External Inflow	1519618.200	15196340.435				
External Outflow	1512181.528 0.000	15121972.942				
Evaporation Loss	0.000	0.000				
Exfiltration Loss	0.000	0.000				
Initial Stored Volume Final Stored Volume	2424.512 10047.401	24245.369 100475.053				
Continuity Error (%)	-0.012	100473.033				
*******	k					
Time-Step Critical Elements						
**************************************	×.					
Link L_214.1 (65.568)						

********* Highest Flow Instability Indexes ********** All links are stable.

********** Most Frequent Nonconverging Nodes ********** Convergence obtained at all time steps.

Routing Time Step Summary ******** Minimum Time Step 11.19 sec Average Time Step 19.09 sec Maximum Time Step 25.05 sec % of Time in Steady State 0.00 Average Iterations per Step : % of Steps Not Converging Time Step Frequencies 30.000 - 13.228 sec 100.00 % 13.228 - 5.833 sec 0.00 % 5.833 - 2.572 sec 0.00 % 2.572 - 1.134 sec 0.00 % 1.134 - 0.500 sec

Analysis begun on: Thu May 15 16:10:26 2025 Analysis ended on: Thu May 15 16:15:50 2025 Total elapsed time: 00:05:24

Learning Resources

- SWMM User Manuals
 - https://www.epa.gov/water-research/storm-water-management-modelswmm
- CHI openswmm
 - https://www.openswmm.org/
- http://www.dynsystem.com/NetSTORM
- UWRI, 2023, "SWMM PowerPoint course"
 - https://doi.org/10.18738/T8/S5PU4Q

Contact

Caleb Buahin

buahin.caleb@epa.gov

SWMM Email

swmm@epa.gov

GitHub

https://github.com/USEPA/Stormwater-Management-Modelhttps://github.com/USEPA/SWMM-GUI

Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA. Any mention of trade names, products, or services does not imply an endorsement by the US Government or EPA. EPA does not endorse any commercial products, services, or enterprises.