

## Método dos Elementos Finitos

Claudemir Woche e Márcio Barros 19 de outubro de 2020

## 1 PVC1

Primeiro Problema de Valor de Contorno.

$$PVC1: \begin{cases} \frac{d^2y(x)}{dx^2} - y(x) = 0\\ y(0) = 0\\ y(1) = 1 \end{cases}$$
 (1)

Este PVC busca a função y(x) que satisfaz a equação diferencial e as condições de contorno especificadas  $(y(0) = 0 \ e \ y(1) = 0)$ . Neste exemplo, o domínio é o intervalo  $[0,1] \subset \mathbf{R}$ .

## 1.1 Solução do Problema

A solução exata de um PVC deve satisfazer tanto a Equação Diferencial do problema quanto as condições de contorno. Assim, para o problema (1) – PVC1 –, a solução exata é

$$y(x) = \frac{1}{e^{-1} - e} (e^{-x} - e^x)$$
 (2)

A solução aproximada obtida pelo método das diferenças finitas está compilada abaixo. Para N=8 temos o seguinte sistema de equações:

| 16.08333 | -7.97917 | 0        | 0        | 0        | 0        | 0        |           | ]    | $\begin{bmatrix} 0 \end{bmatrix}$ | ١ |
|----------|----------|----------|----------|----------|----------|----------|-----------|------|-----------------------------------|---|
| -7.97917 | 16.08333 | -7.97917 | 0        | 0        | 0        | 0        | $x_2$     |      | 0                                 |   |
| 0        | -7.97917 | 16.08333 | -7.97917 | 0        | 0        | 0        | $  x_3  $ | <br> | 0                                 |   |
| 0        | 0        | -7.97917 | 16.08333 | -7.97917 | 0        | 0        | $x_4$     | =    | 0                                 |   |
| 0        | 0        | 0        | -7.97917 | 16.08333 | -7.97917 | 0        | $x_5$     |      | 0                                 |   |
| 0        | 0        | 0        | 0        | -7.97917 | 16.08333 | -7.97917 | $x_6$     |      | 0                                 |   |
| 0        | 0        | 0        | 0        | 0        | -7.97917 | 16.08333 | $x_7$     |      | 7.97917                           |   |
| _        |          |          |          |          |          | _        | . – .     |      | (3)                               |   |

Com as seguintes comparações:

| Elementos Finitos | Diferenças Finitas | Solução Exata | Erro Relativo                                                                  |
|-------------------|--------------------|---------------|--------------------------------------------------------------------------------|
| 0                 | 0                  | 0             | 0                                                                              |
| 0.10662           | 0.10666            | 0.10664       | $2e^{-5}$                                                                      |
| 0.21491           | 0.21499            | 0.21495       | $4e^{-5}$                                                                      |
| 0.32657           | 0.32666            | 0.32662       | $   \begin{array}{c}     4e^{-5} \\     5e^{-5} \\     6e^{-5}   \end{array} $ |
| 0.44334           | 0.44347            | 0.44340       | $6e^{-5}$                                                                      |
| 0.56706           | 0.56719            | 0.56713       | $7e^{-5}$                                                                      |
| 0.69966           | 0.69978            | 0.69972       | $6e^{-5}$                                                                      |
| 0.84323           | 0.84330            | 0.84326       | $3e^{-5}$                                                                      |
| 1                 | 1                  | 1             | 0                                                                              |

## 1.2 Algoritmo

Podemos observar o código, que recebe o número de divisões do intervalo e o comprimento dessas divisões, devolverá a matriz  $A \in \mathbb{R}^{n \times n}$  e  $b \in \mathbb{R}^{n \times 1}$ , do sistema, e o  $y \in \mathbb{R}^{1 \times n}$  que é solução do sistema (3), que são nossos valores aproximados para  $f(x_i) \simeq y_i$ ,  $x_i$  discretos.