Underactuated Robots Lecture 6: Examples

Nicola Scianca

September 2024

outline

- cart pendulum
- pendubot
- planar UAV
- humanoid robot

implementation

- the first three examples are written in Python, using casADi to formulate the optimization problem and ipopt to solve it
- the Python code is available at this repository: https://github.com/DIAG-Robotics-Lab/underactuated

 the last example is written in C++, using DART (Dynamic Animation and Robotics Toolkit), and the optimization problem is solved with HPIPM

cart pendulum

- the cart pendulum consists of a pendulum swinging in the vertical plane attached to a cart moving on a horizontal track
- the state variables are
 - x position of the cart
 - ightharpoonup heta angle of the pendulum with the vertical
 - $ightharpoonup \dot{x}$ velocity of the cart
 - $ightharpoonup \hat{ heta}$ angular velocity of the pendulum
- the trajectory optimization problem is

$$\min \sum_{i=0}^{N-1} u_i^2$$

s. t.
$$x_{i+1} = f(x_i, u_i)$$
 for $i = 0, ..., N-1$
 $x_0 = (0, \pi, 0, 0)$
 $x_N = (0, \pi, 0, 0)$

cart pendulum

pendubot

- the pendubot is a two-link robot arm (double pendulum), where the first joint is actuated and the second is not
- the state variables are
 - lackbox θ_1 angle of the first link with the vertical
 - $ightharpoonup heta_2$ angle of the second link relative to the first
 - $ightharpoonup \dot{ heta}_1$ angular velocity of the first link
 - lackbox $\dot{ heta}_2$ angular velocity of the second link
- the trajectory optimization problem is

$$\min \sum_{i=0}^{N-1} u_i^2$$

s. t.
$$x_{i+1} = f(x_i, u_i)$$
 for $i = 0, ..., N-1$
 $x_0 = (\pi, 0, 0, 0)$
 $x_N = (0, 0, 0, 0)$

pendubot

planar UAV

- the planar UAV consists of an aerial vehicle in the vertical plane, with two thrust forces applied at different points
- the state variables are
 - x horizontal position
 - z vertical position
 - \triangleright θ pitch angle of the UAV
 - \dot{x} , \dot{z} , $\dot{\theta}$ velocities of the corresponding states
- the trajectory optimization problem is

$$\min \sum_{i=0}^{N-1} u_i^T u_i$$
 s. t.
$$x_{i+1} = f(x_i, u_i) \text{ for } i = 0, \dots, N-1$$

$$x_0 = (0, 0, 0, 0, 0, 0)$$

$$(x_{N/2}^x, x_{N/2}^y) = (-1, 1)$$

$$x_N = (0, 0, 0, 0, 0, 0)$$

planar UAV

humanoid robot

- in this example, control of a humanoid robot is achieved via the interaction of different modules
- a footstep planner determines the position (and possibly the orientation and timing) of the footstep sequence
- an MPC generates the CoM and ZMP trajectory, according to a simplified model (LIP dynamics)
- a whole-body controller generates joint commands (here joint accelerations)
- a push is applied to test for robustness

humanoid robot

pendubot MPC

- the next two examples show MPC control of a pendubot, with and without warmstarting the optimization to the previous solution
- if we warmstart the optimization to the previous solution evreything goes smooth and the swing-up task is correctly achieved
- if we don't do that, at some point the solution jumps to a different local minimum, and the pendulum gets stuck in a loop

pendubot MPC: with warmstart

pendubot MPC: without warmstart

