Definition 28 Suppose X is a (real or complex) vector space. An *inner product* on X is a mapping $\langle \cdot, \cdot \rangle$ from $X \times X$ into \mathbb{C} such that

i.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

ii.
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

iii.
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

iv.
$$\langle x, x \rangle > 0$$
 if $x \neq \theta$

It should be observed that properties (i) - (iv) imply also that $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ and $\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle$.

(Check) By property (iii): $\langle x, y+z\rangle = \overline{\langle y+z, x\rangle}$. By property (i): $\overline{\langle y+z, x\rangle} = \overline{\langle y, x\rangle} + \overline{\langle z, x\rangle}$. By properties (iii) again: $\langle x, y\rangle = \overline{\langle y, x\rangle}$ and $\langle x, z\rangle = \overline{\langle z, x\rangle} \implies \langle x, y\rangle + \langle x, z\rangle$. For the second part, by property (iii) we have $\langle x, \alpha y\rangle = \overline{\langle \alpha y, x\rangle}$. Using property (ii) $\overline{\alpha}\langle y, x\rangle$ and by property (iii) again we have $\overline{\alpha}\langle x, y\rangle$.

Note also that if $\langle x, x \rangle = 0$, then x must be θ , and if $\langle x, y \rangle = 0$ for all y in X, then $x = \theta$ since $\langle x, x \rangle = 0$.

For our case in question we will be considering X the space of continuous functions on [a,b] and for our inner product we will use

$$\langle u, v \rangle = \int_a^b u(t) \overline{v(t)} w(t) dt, \quad w(t) \ge 0$$

(Check)

Property (i):

$$\begin{split} \langle x+y,z\rangle &= \int_a^b \left(x(t)+y(t)\right)\overline{z(t)}w(t)dt \\ &= \int_a^b x(t)\overline{z(t)}w(t)+y(t)\overline{z(t)}w(t)dt \\ &= \int_a^b x(t)\overline{z(t)}w(t)dt + \int_a^b y(t)\overline{z(t)}w(t)dt \\ &= \langle x,z\rangle + \langle y,z\rangle \end{split}$$

Property (ii)

$$\langle \alpha x, y \rangle = \int_{a}^{b} \alpha x(t) \overline{y(t)} w(t) dt$$
$$= \alpha \int_{a}^{b} x(t) \overline{y(t)} w(t) dt$$
$$= \alpha \langle x, y \rangle$$

Property (iii)

$$\langle x, y \rangle = \int_{a}^{b} x(t) \overline{y(t)} w(t) dt$$
$$= \int_{a}^{b} \overline{y(t)} x(t) w(t) dt$$
$$= \overline{\langle y, x \rangle}$$

Property (iv)

$$\langle x, x \rangle = \int_a^b x(t) \overline{x(t)} w(t) dt$$
$$= \int_a^b |x(t)|^2 w(t) dt > 0 \text{ if } x \neq \theta$$

We shall say that u and v are orthogonal if and only if $\langle u, v \rangle = 0$ and that u is normal if $\langle u, u \rangle = 1$. Now define $||u||^2 = \langle u, u \rangle$.

Theorem 36 (Cauchy-Schwarz-Bunyakowski)

$$|\langle u, v \rangle|^2 \le ||u||^2 \cdot ||v||^2 \le \langle u, u \rangle \langle v, v \rangle$$

Proof. Notice that $0 \leq \langle v - \alpha u, v - \alpha u \rangle$ holds for all $\alpha \in \mathbb{C}$. Set $\alpha = \frac{\langle v, u \rangle}{\langle u, u \rangle}$ and we get

$$0 \leq \langle v - \alpha u, v - \alpha u \rangle = \langle v, v \rangle$$

$$= \langle v, v \rangle + \langle v, -\alpha u \rangle + \langle -\alpha u, v \rangle + \langle -\alpha u, -\alpha u \rangle$$

$$= \langle v, v \rangle - \langle v, \alpha u \rangle - \langle \alpha u, v \rangle + \langle \alpha u, \alpha u \rangle$$

$$= \langle v, v \rangle - \overline{\alpha} \langle v, u \rangle - \alpha \langle u, v \rangle + \alpha \overline{\alpha} \langle u, u \rangle$$

$$= \langle v, v \rangle - \frac{\overline{\langle v, u \rangle}}{\langle u, u \rangle} \langle v, u \rangle - \frac{\langle v, u \rangle}{\langle u, u \rangle} \langle u, v \rangle + \left| \frac{\langle v, u \rangle}{\langle u, u \rangle} \right|^2 \langle u, u \rangle$$

$$= \langle v, v \rangle - \frac{\overline{\langle v, u \rangle}}{\langle u, u \rangle} \langle v, u \rangle - \frac{\overline{\langle u, v \rangle}}{\langle u, u \rangle} \langle u, v \rangle + \left| \frac{\langle v, u \rangle}{\langle u, u \rangle} \right|^2 \langle u, u \rangle$$

$$= \langle v, v \rangle - \frac{\overline{\langle v, u \rangle}}{\langle u, u \rangle} \langle v, u \rangle - \frac{\overline{\langle v, u \rangle}}{\langle u, u \rangle} \langle v, u \rangle + \left| \frac{\langle v, u \rangle}{\langle u, u \rangle} \right|^2 \langle u, u \rangle$$

$$= \langle v, v \rangle - 2 \frac{|\langle v, u \rangle|^2}{\langle u, u \rangle} + \frac{|\langle v, u \rangle|^2}{\langle u, u \rangle}$$

$$= \langle v, v \rangle - \frac{|\langle v, u \rangle|^2}{\langle u, u \rangle}$$

Now we have

$$|\langle v, u \rangle|^2 \le \langle v, v \rangle \langle u, u \rangle = ||u||^2 ||v||^2$$

In our setting this says

$$\left| \int_a^b v(x) \overline{u(x)} w(x) \right| \le \left[\int_a^b |v(x)|^2 w(x) \right] \left[\int_a^b |u(x)|^2 w(x) \right]$$

Theorem 37 $||v||^2 = \langle v, v \rangle$ defines a norm ||v|| on [C[a, b]]X.

Proof. To be a norm $||\cdot||$ needs to be a function $||\cdot||: [C[a,b]]X \to \mathbb{R}$ that satisfies three properties.

- i. ||v|| > 0 and ||v|| = 0 if and only if $v = 0 \ \forall \ v \in C[a, b] X$
- ii. $||\alpha v|| = |\alpha|||v|| \ \forall \ \lambda \in \mathbb{R} \ and \ \forall \ v \in C[a,b]]X$
- iii. $||u+v|| \le ||u|| + ||v|| \ \forall u, v \in C[a, b]|X$

Property (i) and (ii) are true by the definition of the inner product. We need only check property (iii) the triangle inequality.

$$0 \le ||u+v||^2 = \langle u+v, u+v \rangle$$

$$= \langle u, u+v \rangle + \langle v, u+v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} + \langle v, v \rangle$$

$$= \langle u, u \rangle + 2Re\langle u, v \rangle + \langle v, v \rangle$$

$$\le \langle u, u \rangle + 2|\langle u, v \rangle| + \langle v, v \rangle$$

$$\le ||u|| + ||v|||^2$$

Our space of functions is now $X, \mu \equiv (C[a, b], \mu)$ as a metric space and a normed space with norm being the L_2 norm with weight function w(x):

$$||f - g||^2 = \int_a^b w(x)|f(x) - g(x)|^2 dx$$

and $\mu(f,g) = ||f-g||$ being the metric. This space of course has a completion which is unique up to isometric isomorphisms and we denote this space by $L_{2_w}([a,b])$. As we saw earlier the Riemann integral is uniformly continuous on this original space and thus has a unique extension to the entire space L_{2_w} .

Definition 29 A *Hilbert Space* is a complete inner product space.

Exercise 39

1. Show that if u and v are points in an inner product space, then

$$||u + v||^2 + ||u - v||^2 = 2[||u||^2 + ||v||^2]$$

If the inner product is real valued, then this is called the Parallelogram Law.

Proof. Expanding the first term on the left hand side we have

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u+v \rangle + \langle v, u+v \rangle$$
$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= ||u||^2 + \langle u, v \rangle + \langle v, u \rangle + ||v||^2$$

Similarly expand the second term on the left hand side

$$||u+v||^2 = \langle u-v, u-v \rangle = \langle u, u-v \rangle - \langle v, u-v \rangle$$
$$= \langle u, u \rangle - \langle u, v \rangle - [\langle v, u \rangle - \langle v, v \rangle]$$
$$= ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2$$

Add these two together and terms cancel to arrive at

$$||u+v||^2 + ||u-v||^2 = 2[||u||^2 + ||v||^2]$$

2. Show that $||u+v||^2=||u||^2+||v||^2$ if $u\perp v$, that is $\langle u,v\rangle=0$. This is called the Pythagorean Theorem.

Proof.

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u+v \rangle + \langle v, u+v \rangle$$
$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= ||u||^2 + ||v||^2$$

3. Find an example of a complex inner product space in which (2) above fails. Also give an example where the converse fails.

If $\langle u, v \rangle = 0$ then $||u + v||^2 = ||u||^2 + ||v||^2$. An example of an complex inner product space where this fails is:... If $||u + v||^2 = ||u||^2 + ||v||^2$ then $\langle u, v \rangle = 0$. An example of an complex inner product space where this fails is:...

p. 177

Definition 30

1. If $(X, \langle \cdot, \cdot \rangle)$ is a given inner product space and $x \in X$, then $x^{\perp} = \{y \in X | \langle x, y \rangle = 0\}$ and is called the *orthogonal complement of x*.

Note: Clearly x^{\perp} is a vector subspace of X since if $y_1 \in x^{\perp}$ and $y_2 \in x^{\perp}$, then so is $\alpha y_1 + \beta y_2$. Moreover, x^{\perp} is closed, that is if $y_n \in x^{\perp}$, and $y_n \to y$, then $|\langle x, y_n - y \rangle| \leq ||x|| \cdot ||y_n - y|| \to 0$ and since $\langle x, y_n \rangle = 0$, we have that $\langle x, y \rangle = 0$ also.

П

- 2. Suppose M is a subset of X, then we define $M^{\perp} \equiv \cap_{x \in M^{\perp}} x^{\perp}$. Since the intersection of vector spaces is again a vector space; moreover, since the intersection of closed sets is closed, M^{\perp} is a closed vector subspace of X for all subsets M of X.
- 3. A subset $N \in M$ is said to be convex if $x \in N$ and $y \in N$ and also $0 \le \lambda \le 1$, then $z = \lambda x + (1 \lambda)y \in N$; this says that the segment joining x and y lies in N.

Exercise 40

1. Show that the intersection of a vector space is again a vector space.

Proof. Suppose X and Y are both vector spaces. To show that $X \cap Y$ is a vector space we need to verify that it contains θ (the zero vector), and that it is closed under vector addition and scalar multiplication.

Since X is a vector space we know that it contains θ . Since Y is also a vector space it also contains θ which implies that $\theta \in \{x \mid x \in X \text{ and } x \in Y\} = X \cap Y$. First property verified.

Suppose $x, y \in X \cap Y$. If $x \in X$ and $y \in X$ since X is a vector space $x + y \in X$. If $x \in Y$ and $y \in Y$ since Y is a vector space $x + y \in Y$. Which implies that $x + y \in \{x \mid x \in X \text{ and } x \in Y\} = X \cap Y$, thus the second property is verified.

Finally, suppose $x \in X \cap Y$ and $\lambda \in F$, where F is any scalar field. Since $x \in X$ and X is a vector space this means that $\lambda x \in X$. Similarly since $x \in Y$ and Y is a vector space this means that $\lambda y \in Y$ which implies that $\lambda x \in \{x \mid x \in X \text{ and } x \in Y\} = X \cap Y$. Third property verified.

2. Show that the intersection of convex space is convex.

Proof. Suppose X, Y are two convex spaces and that $x, y \in X \cap Y$. Since X is convex and since $x, y \in X$ this means $z = \lambda x + (1 - \lambda)y \in X$. Similarly since Y is convex and since $x, y \in Y$ this means $z = \lambda x + (1 - \lambda)y \in Y$. Thus $z = \lambda x + (1 - \lambda)y \in X \cap Y$ which shows that $X \cap Y$ is convex.

3. Show that the intersection of closed spaces is closed.

Proof. Suppose X,Y are closed spaces. This means that X^c and Y^c are open. This implies that $X^c \cup Y^c$ is open. The complement of $X^c \cup Y^c$ is therefore closed which by DeMorgan's Law is $X \cap Y$.