Ex4.1 Term "is defined" for Regular Functions.

X::variety と $\langle U,f\rangle, \langle V,g\rangle \in K(X)$ について,f=g on $U\cap V$ とする.このとき,U 上で f,V 上で g であるような写像 h が $U\cup V$ 上の regular function であることを示そう. つまり,regular function の定義域を接続する.

 $P \in U \cup V$ をとる. $P \in U \setminus V$ ならば単に $P \in U$ と考えて開近傍をとり、h は P で regular であることが分かる. $P \in U \cap V$ の時は P の適当な開近傍上で f,g がそれぞれ有理関数表示をとるが、f=g on $U \cap V$ により、その有理関数表示も等しい。正確には、P の開近傍 Z で $f=f_n/f_d, g=g_n/g_d$ と同時にとれたとすると、f=g より $f_ng_d-f_dg_n=0$ on Z. 左辺は多項式であり、Z は無限集合であるから、左辺は零項式である。なので h の P 近傍での有理関数表示としては $f_n/f_d, g_n/g_d$ のいずれをとっても同じである。よって h は $U \cap V$ で well-defined.

以上のように $\langle U,f\rangle$ の定義域を拡大していくと、定義域(開集合)の集合が出来る。ネーター空間上で議論しているので、これは極大元を持つ。もしも二つ極大な定義域が存在すれば、どちらも U を含むので接続が出来る。したがって定義域の拡張でできる極大な定義域はただ一つである。

Ex4.2 Term "is defined" Rational Maps.

 $\phi: U$ and $U' \to V$ が rational map であるとする. このとき ϕ は明らかに $U \cup U'$ で連続. また, regular funciton $f: Z \to k$ を任意にとった時, $f \circ \phi: \phi^{-1}(Z) \to k$ が regular であることは $f_1 \circ \phi: \phi^{-1}(Z) \cap U \to k, f_2 \circ \phi: \phi^{-1}(Z) \cap U' \to k$ の両方が regular であることから明らか.

Ex4.3 Example of "defined"

(a) Open subset where $f = x_1/x_0$ is defiend.

(b)

Ex4.4 "Rational"

Y ::variety がある \mathbb{P}^n と birational であるとき, Y は rational であるという. 同値な条件として, K(Y)/k が純超越拡大であるとき Y は rational である.

(a) Any conic in \mathbb{P}^2 is a rational curve.

 \mathbb{P}^2 内の任意の conic curve は \mathbb{P}^1 に同型. したがって conic curve 全体から \mathbb{P}^1 全体への morphism が 存在するので rational である.

(b) $C: y^2 - x^3 = 0$ is a rational curve.

まず、C がパラメータ表示 $\gamma(t)=(t^2,t^3)$ を持つことを言っておく、 $U=C\setminus\{(0,0)\}$ という C の開部分集合をとると、パラメータ表示から以下は birational である.

$$\phi: U \xrightarrow{\cong} \mathbb{P}^1$$
$$(x, y) \mapsto (x: y) = (1: t)$$

明らかにこれは U とアフィン開被覆 U_0 の間の isomorphism であるから C は birational.

(c) Projection of $Y : y^2z - x^2(x+z) = 0$.

P=(0:0:1) から z=0 への射影を ϕ とする.このとき, $\phi(x:y:z)=(x:y)$.ここから以下の写像が得られる.

$$\bar{\phi}: Y \cap U_0 \to \{(1:s) \mid s^2 \neq 1\} \subset \mathbb{P}^1$$
$$(1:s:t) \mapsto (1:s)$$
$$\left(1:s: \frac{1}{s^2 - 1}\right) \longleftrightarrow (1:s)$$

 $\{(1:s)\mid s\neq 1\}=U_0\cap (\mathcal{Z}_p(x^2-y^2))^c$ は開集合である。また、像、原像ともに affine であるから、Lemma 3.6 によって $\bar{\phi}$, $\bar{\phi}^{-1}$ の両方が morphism であることが分かる。よってこれは birational map.

Ex4.5 Q: xy - zw = 0 is birational to \mathbb{P}^2 but not isomorphic.

 $\blacksquare Q$ is birational to \mathbb{P}^2 . $Q_3 = Q \cap U_3$ を考えると,

$$\phi: (x:y:z:w) \mapsto \left(\frac{x}{w}: \frac{y}{w}: \frac{z}{w}\right)$$

という写像が得られる.これは直ちに逆写像が得られるので,birational map $\phi:Q\cap U_3\xrightarrow{\cong}\mathbb{P}^2$ が得られた.

 $\blacksquare Q$ is not isomorphic to \mathbb{P}^2 . $\mathrm{Ex}3.7$ より, \mathbb{P}^2 の任意の曲線は交わる.しかし $\mathrm{Ex}2.15$ より二つの直線 $L_t, L_u(t \neq u)$ は交わらない.よって Q と \mathbb{P}^2 は同相でなく,したがって同型でもない.

Ex4.6 Plane Cremona Transformations.

 \mathbb{P}^2 から自分自身への birational map は plane Cremona transformation と呼ばれる. Quadratic transformation.

$$\phi: \mathbb{P}^2 \to \mathbb{P}^2; \ (a_0: a_1: a_2) \mapsto (a_1 a_2: a_0 a_2: a_0 a_1)$$

ここで a_0, a_1, a_2 のいずれか二つは 0 でない.

(a) ϕ itself is its inverse as a rational map.

 ϕ を2回適用する.

$$(a_0:a_1:a_2) \mapsto (a_1a_2:a_0a_2:a_0a_1) \mapsto (a_0^2a_1a_2:a_0a_1^2a_2:a_0a_1a_2^2) = (a_0:a_1:a_2)$$

したがって ϕ は $U = (\mathcal{Z}_p(x_0x_1x_2))^c$ から U 自身への isomorphism である.定義域がこれ以上拡大出来ないことは明らか.

(b) Find $U, V \in \mathbb{P}^2$ where $U \stackrel{\phi}{\equiv} V$

すでに述べた.

(c) Find opensets where ϕ and ϕ^{-1} are defiend. すでに述べた.

Ex4.7
$$\mathcal{O}_{P,X} \equiv \mathcal{O}_{Q,Y} \implies {}^{\exists}\psi, \ \psi: X \stackrel{\cong}{\to} Y; P \mapsto Q$$

- **■**We can assume X,Y::affine. Prop4.3 より, $P \in Z \subset X$ なる Z::affine open subset が存在する. こ のとき $\mathcal{O}_{P,X}$ と $\mathcal{O}_{P,Z}$ は $\langle U,f \rangle \mapsto \langle U \cap Z,f \rangle; \langle V,g \rangle \leftrightarrow \langle V,g \rangle$ なる写像で同型である. なので X,Y::affine と仮定して良い.
- \blacksquare Make ϕ_* and ψ . 今, 仮定から $\phi: A(X)_{\mathfrak{m}_P} \xrightarrow{\equiv} A(Y)_{\mathfrak{m}_Q}$ なる同型写像が存在する.同型の両辺で Quot を取ることで $\phi_*: K(X) \stackrel{\equiv}{\longrightarrow} K(Y)$::isomorphism が得られる. $^{1)}\phi_*(x_i + \mathcal{I}(X)) \in \mathrm{Quot}(A(Y)) = K(Y)$ は有理関数であるから、以下の写像が定義できる開集合 $U \subset Y$ が存在する.

$$\psi: U \to X; S \mapsto (\phi_*(x_0 + \mathcal{I}(X))(S), \dots, \phi_*(x_n + \mathcal{I}(X))(S))$$

逆写像も同様に作れるため、これは birational map である. $f \in A(X)_{\mathfrak{m}_P}$ についてあきらかに $\phi_* \circ f =$ $f \circ \psi$.²⁾

■Paraphrasing of $\psi^{-1}: P \mapsto Q$. ϕ_* によって極大イデアル $\bar{\mathfrak{m}}_P \subset A(X)_{\mathfrak{m}_P} \subset K(X)$ は極大イデアル $ar{\mathfrak{m}}_Q\subset A(Y)_{ar{\mathfrak{m}}_Q}\subset K(Y)$ に写され, $\mathcal{Z}_a(ar{\mathfrak{m}}_Q)=\mathcal{Z}_a(\phi_*(ar{\mathfrak{m}}_P))=\{Q\}.$ $\phi_*\circ f=f\circ \psi$ から以下のように $\psi^{-1}: P \mapsto Q$ が得られる.

$$Q \in \mathcal{Z}_{a}(\phi_{*}(\bar{\mathfrak{m}}_{P})) = \mathcal{Z}_{a}(\bar{\mathfrak{m}}_{Q})$$

$$\iff^{\forall} f \in \bar{\mathfrak{m}}_{P}, \quad \phi_{*}(f)(Q) = 0$$

$$\iff^{\forall} f \in \bar{\mathfrak{m}}_{P}, \quad f(\psi(Q)) = 0$$

$$\iff \psi(Q) \in \mathcal{Z}_{a}(\bar{\mathfrak{m}}_{P}) = \{P\}$$

$$\iff \psi^{-1}(P) = Q$$

なお,証明には全て \Longrightarrow で十分.

Cardinality and Homeomorphism of Curves

Lemma

念の為に以下を証明しておく.

補題 $\mathbf{Ex4.8.1.}$ 体 k の代数閉包を \bar{k} とする. k が有限体ならば $|\bar{k}|=\aleph_0$ であり, k が無限体ならば $|\bar{k}| = |k|$ である.

(証明). k 上の n 次多項式は次のように k^n の元と一対一対応する.

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_0 \leftrightarrow (c_{n-1}, \dots, c_0)$$

n 次多項式の根は高々n 個だから、以下のように濃度が計算できる.

$$|\bar{k}| \leq \sum_{n \in \mathbb{N}} n|k^n| = \sum_{n \in \mathbb{N}} n|k|^n = |\{(i,j,x) \mid i \in \mathbb{N}, 1 \leq j \leq i, x \in k^i\}|$$

 $^{^{(1)}}$ $\phi_*(a/s)=\frac{\phi(a/1)}{\phi(s/1)}$ とすれば良い.Them3. $^{(2)}$ の議論と Ati-Mac Ex3.3 を参照. $^{(2)}$ 実際は $(a/s)(P)=0\iff a(P)=0$ なので $f\in A(X)$ についてのみこの等式を言えば良い.

以降は|k|が有限かどうかで計算が変わる.

■Case: $|k| < \aleph_0$ |k| が有限ならば $n|k|^n$ も有限なので

 $|\bar{k}| \le |\{(i,j) \mid i \in \mathbb{N}, 0 \le j \le i|k|^i\}| \le |\mathbb{N} \times \mathbb{N}| = \aleph_0.$

任意の自然数 $d\in\mathbb{N}$ に対して d 次既約多項式が存在することが知られているので $|\bar{k}|\geq\aleph_0$. よって $|k|=\aleph_0$.

■Case: $|k| \ge \aleph_0$ |k| が無限ならば $n|k|^n = n|k| = |k|$ なので³⁾

 $|\bar{k}| \le |\mathbb{N} \times k| \le |k^2| = |k|.$

 $k \subseteq \bar{k}$ から $|k| \le |\bar{k}|$ なので証明が完成した.

(a) For any variety X whose dimention ≥ 1 , |X| = |k|.

 $k = \bar{k} \$ とする.

- $\blacksquare |\mathbb{A}^n| = |\mathbb{P}^n| = |k|$ $\mathbb{A}^n = k^n$ なので |k| が無限濃度であることと合わせて $|\mathbb{A}^n| = |k|$. また, $\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{O\}) / \sim$ なので, $|\mathbb{P}^n| \leq |\mathbb{A}^{n+1} \setminus \{O\}| = |k|$. $\mathbb{A}^n \equiv U_0 \subset \mathbb{P}^n$ を考えて $|\mathbb{P}^n| \geq |k|$. まとめて $|\mathbb{A}^n| = |\mathbb{P}^n| = |k|$.
- ■Start of step I: case of $\dim X=1$. $\dim X=1$ の時,X::variety, $\dim X=1$ を考える.Prop 4.9 より,X から hypersurface $H(\subset \mathbb{P}^2)$ への birational map が存在する.H の定義多項式を h としておこう.
- ■ ϕ is surjective. 一次斉次多項式 F を, $H\cup \mathcal{Z}_p(F)=\mathcal{Z}_p(\langle h,F\rangle)$ が \mathbb{P}^2 全体でないように取る. すると $P\not\in H\cup \mathcal{Z}_p(F)$ を適当に取ることができる. この点 P からの射影 $\phi:\mathbb{P}^2\setminus P\to \mathcal{Z}_p(F)$ を考えよう. 明らかに $\phi(H)\subseteq \mathcal{Z}_p(F)=\mathbb{P}^1$ かつ $|\mathcal{Z}_p(F)|=|\mathbb{P}^1|=|k|$ である. これが全射であることを示せば $|H|\geq |k|$ が分かる. $R\in \mathcal{Z}_p(F)$ を任意にとり,P と R を通る直線を L(P,R) としよう. Ex3.7(a) より, $L(P,R)\cap H\neq\emptyset$ (ここで $\dim H=1$ を用いる). したがって $Q\in L(P,R)\cap H$ を取ることができて,構成法から 4 (4 0) 4 0 の 4 2 が成立する. よって 4 3 は全射. 5 1
- ■Conclusion of step I 以上で $|H| \geq |k|$ が示された. $H \subset \mathbb{P}^2$ より $|H| \leq |k|$ なので |H| = |k|. さて, $X \succeq H$ は birational なので,2 つのある開集合 $U \subset X, V \subset H$ の間に全単射が存在する. H が 1 次元 であることから V は H から有限個の点を除いたものであり,したがって |V| = |H| = |k|. $|K| \leq |U| = |V| = |K|$. $|K| \leq |K|$ なので,Case I の証明が終わった.
- ■Next Step $\dim X \geq 2$ ならば、次元の定義より、X は 1 次元の既約閉集合 C を含む.したがって Case I より $|X| \geq |C| = |k|$. $|X| \leq |\mathbb{P}^n| = |k|$ なので一般の次元でも証明が得られた.
- (b) Any two curves over k are homeomorphic.

Ex3.1d から $\mathbb{A}^2 \not\equiv \mathbb{P}^2$ であることに注意.

 $^{^{3)}}$ 無限濃度 κ について $\kappa^2 = \kappa$ は選択公理と同値.

 $^{^{(4)}}$ つまり P,Q,R が一直線上にあり、 $Q \in H,R \in \mathcal{Z}_p(F)$ だから.

 $^{^{5)}}$ $L(P,R)\cap H$ が有限集合であることは,M(R;t)=P+tR とすると h(M(R;t)) が t の 1 変数多項式であり,したがって 根は高々 $\deg h$ 個であることから得られる.

 $^{^{6)}}$ H に含まれる既約閉集合は 1 点のみであり,H の任意の閉集合は Prop1.5 から有限個の点である.

二つの曲線 C,D をとろう. (a) の結果から |C|=|k|=|D| なので全単射 $\phi:C\to D$ が存在する. C,D は 1 次元なので C,D 上の閉集合は空集合,有限個の点,曲線全体しかない.明らかに ϕ は空集合,点,曲線全体をそれぞれ空集合,点,曲線全体に写すので,同相写像である.

(c) Another proof for |any curve| > |k|

任意の曲線 C を取ると、これは hypersurface $H \subset \mathbb{P}^2$ と birational. H の定義多項式を $h \in k[x,y,z]$ とする.このとき、写像 $\iota: k \to H$ が構成できる.これは単純に $f(1,a,z) \in k[z]$ の零点 z=b を一つ選 $\mho^{7)}\iota: a \mapsto (1:a:b)$ とすれば良い.代数閉体で考えているので零点は必ず有限個存在する.これは明らかに単射だから $|C| \geq |k|$.

Ex4.9 Stereographic projection can induce a birational morphism.

X::projective variety in \mathbb{P}^n , $n \geq \dim X + 2 = r + 2$ とする. local な議論をするので, $Y = X \cap U_{x_0}$::affine open subset として K(Y) (= K(X)) by Cor4.5) を考察する. 明らかに Y は affine variety である.

 $\bar{x}_i = x_i + \mathcal{I}_a(Y)$ とすると Them3.2 より $K(Y) = \operatorname{Quot}(A(Y)) = k(\bar{x}_1, \dots, \bar{x}_n)$. Them3.2 と Them4.8 より拡大 K(Y)/k は finitely and separably generated. Them4.7 より, $\{\bar{x}_i\}_{i=1}^n$ は separating transcendence base を部分集合として含む.そこで番号を付け替えて, $\{\bar{x}_i\}_i$ に含まれる separating transcendence base を $\{\bar{x}_i\}_{i=1}^r$ としよう.base の濃度が $r(=\dim X)$ であることは Them3.2 による.そして以下の拡大は finite generated extension である.

$$k(\{\bar{x}_i\}_{i=1}^n)/k(\{\bar{x}_i\}_{i=1}^r)$$

 $J=k(\{\bar{x}_i\}_{i=1}^r)$ としておこう. Them4.6 から、この拡大は以下のようなただ一つの元 α で生成することが出来る.

$$\alpha = \sum_{i=r+1}^{n} c_i \bar{x}_i$$
 where $c_i(\bar{x}_1, \dots, \bar{x}_r) \in J$

今述べたように,K(Y) は k に r+1 個の元 $\bar{x}_1,\dots,\bar{x}_r,\alpha$ を添加したものである.n>r+1 なので少なくとも 1 つの \bar{x}_i は $\bar{x}_1,\dots,\bar{x}_r,\alpha$ のいずれとも一致しない.それを \bar{x}_n とする.(必要ならば変数を交換する.)

さて、ここで $\mathbb{P}^{n-1}=\mathcal{Z}_p(x_n), P=(0:\dots:0:1)$ という設定の stereographic projection ψ を考える. \bar{x}_n が $\{\bar{x}_i\}_{0\leq i\leq n-1}$ の有理関数 η として表すことが出来た時、すなわち $\bar{x}_n=\eta\in k[\{\bar{x}_i\}_{0\leq i\leq n-1}]$ の時、以下のように birational map が構成できる.

$$\psi: X \supset V \to U \subset \mathbb{P}^{n-1}$$

$$(1:a_1:\dots:a_{n-1}:a_n) \mapsto (1:a_1:\dots:a_{n-1}:0)$$

$$(1:a_1:\dots:a_{n-1}:\eta(a_0,\dots,a_{n-1})) \leftrightarrow (1:a_1:\dots:a_{n-1}:0)$$

ただし V,U はそれぞれ開集合である. 逆に,この逆写像が birational となるのは Lemma 3.6 より $\bar{x}_n \in k[\{\bar{x}_i\}_{0 \leq i \leq n-1}]$ の時.

任意の stereographic projection は線形変換によって上の設定に読み替えることが出来る.なので,適切な線形変換をとって $\bar{x}_n \in k[\{\bar{x}_i\}_{0 \leq i \leq n-1}]$ とすれば良い.ある i について $c_i = 0$ であれば変数交換で $c_n = 0$ とできるので,いずれの c_i も 0 でないとしよう. α の \bar{x}_n の係数 $c_n \in J$ を 0 にすることを考え

⁷⁾ 選択公理を用いる.

るが、 c_n は必ずしも k の元ではない.なので k 上の線形変換では必ずしも 0 に出来ない.そこで J 上の線形変換を考え、以下のような J 上の正則行列 M をとる.

$$M = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & -c_n \\ & & & 0 & c_{n-1} \end{bmatrix}$$

この行列で定まる線形変換 κ_M は α を次のように写す.

$$c_{r+1}\bar{x}_{r+1} + \dots + c_{n-1}\bar{x}_{n-1} + c_n\bar{x}_n \mapsto c_{r+1}\bar{x}_{r+1} + \dots + c_{n-1}(\bar{x}_{n-1} - c_n\bar{x}_n) + c_n(c_{n-1}\bar{x}_n).$$

こうして \bar{x}_n が消える.実際はこのような正則行列であれば M は何でも良い.このような M がとれることは n>r+1,すなわち M が 1×1 行列でないことによる.小行列に分割して計算することで直ちに $\det M=c_{n-1}$ が分かる.そこで開集合 $V_\#=(\mathcal{Z}_a(c_{n-1}))^c$ を取ろう.今 $c_{n-1}\neq 0$ であり,しかも c_{n-1} は A(Y) の元であるから, $V_\#$ は Y 上の空でない開集合であり,M は $V_\#$ 上で正則.したがって Lemma S もり,S は S から S にS の部分集合 S への isomorphism である.この S で S が働く.

Ex4.10 Blowing up of $C: y^2 - x^3 = 0$ at O = (0,0).

 $V_0 = \mathbb{A}^2 \times U_0, V_1 = \mathbb{A}^2 \times U_1$ とおく. これらはそれぞれ $\mathbb{A}^2 \times \mathbb{A}^1$ とみなすことが出来る.

- ■Blowing up to V_0 . C の V_0 への blow-up は, $y^2-x^3=0,y=xu$ の連立方程式を解くことで得られる.計算すると $x^2(u^2-x)=0$. よって $E_0=(0,0)\times(1:u)$, $\tilde{C}_0=\mathcal{Z}_a(u^2-x)\subset V_0$. $E_0\cap \tilde{C}_0=(0,0)\times(1:0)$ が得られる.また, \tilde{C}_0 は $u\mapsto (u^2,u^3)\times(1:u)$ により \mathbb{A}^1 と同型である.
- ■Blowing up to V_1 . 同様に $y^2 x^3 = 0$, x = ty を解いて $y^2(1 t^3y) = 0$. よって $E_1 = (0,0) \times (t:1)$, $\tilde{C}_1 = \mathcal{Z}_a(1 t^3y) \subset V_1$ となる. $E_1 \cap \tilde{C}_1$ は空である. また, \tilde{C}_1 は $t \mapsto (t^2, t^3) \times (1:t)$ により \mathbb{A}^1 と同型である.
- ■Summarize.

$$E = O \times \mathbb{P}^1$$

$$\tilde{C} = \{(t^2, t^3) \times (1:t) \mid t \in k\}$$

 \tilde{C} は直ちに \mathbb{A}^3 の曲線と見ることが出来る.

gnuplot でのコードは set parametric; splot u**2, u**3, u なので試すと良い.