IRF7313PbF-1

HEXFET® Power MOSFET

V _{DS}	30	٧	
R _{DS(on) max}	0.029	Ω	
$(@V_{GS} = 10V)$	0.020		
Q _{g (typical)}	22	nC	
I _D	6.5	Α	
(@T _A = 25°C)	0.5	A	

Features

Industry-standard pinout SO-8 Package				
Compatible with Existing Surface Mount Techniques				
RoHS Compliant, Halogen-Free				
MSL1, Industrial qualification				

Benefits

Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Door Dort Number	Doolsono Tuno	Standard Pac	Oudeveble Deut Niverber		
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IRF7313PbF-1	SO-8	Tube/Bulk	95	IRF7313PbF-1	
INF/313PDF-1	-1 50-8	Tape and Reel	4000	IRF7313TRPbF-1	

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maximum	Units
Drain-Source Voltage Gate-Source Voltage		V _{DS}	30	
		V _{GS}	± 20	_ v
Continuous Drain Current®	T _A = 25°C		6.5	
Continuous Diam Current	T _A = 70°C	- I _D -	5.2	A
Pulsed Drain Current		I _{DM}	30	_ ^
Continuous Source Current (Diode Co	nduction)	Is	2.5	
Maximum Power Dissipation ⑤	T _A = 25°C	D	2.0	10/
Maximum Fower Dissipation 🥥	T _A = 70°C	P _D	1.3	W
Single Pulse Avalanche Energy ②		E _{AS}	82	mJ
Avalanche Current		I _{AR}	4.0	А
Repetitive Avalanche Energy		E _{AR}	0.20	mJ
Peak Diode Recovery dv/dt ③		dv/dt	5.8	V/ ns
Junction and Storage Temperature Ra	ange	T _{J,} T _{STG}	-55 to + 150	℃

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient®	$R_{\theta JA}$	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.022		V/°C	Reference to 25°C, I _D = 1mA
Roor \	Static Drain-to-Source On-Resistance		0.023	0.029	Ω	V _{GS} = 10V, I _D = 5.8A ④
R _{DS(on)}	Static Brain-to-Godroe Gri-resistanoe		0.032	0.046	1 22	V _{GS} = 4.5V, I _D = 4.7A ④
V _{GS(th)}	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance		14		S	V _{DS} = 15V, I _D = 5.8A
1	Drain-to-Source Leakage Current			1.0		V _{DS} = 24V, V _{GS} = 0V
I _{DSS}	Diali-lo-Source Leakage Current			25	μA	V _{DS} = 24V, V _{GS} = 0V, T _J = 55°C
lass	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
Qg	Total Gate Charge		22	33		I _D = 5.8A
Q _{gs}	Gate-to-Source Charge		2.6	3.9	nC	V _{DS} = 15V
Q _{gd}	Gate-to-Drain ("Miller") Charge		6.4	9.6	1	V _{GS} = 10V, See Fig. 10 ⊕
t _{d(on)}	Turn-On Delay Time		8.1	12		V _{DD} = 15V
t _r	Rise Time		8.9	13	ns	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		26	39	115	$R_G = 6.0\Omega$
t _f	Fall Time		17	26		$R_D = 15\Omega \oplus$
C _{iss}	Input Capacitance		650			V _{GS} = 0V
Coss	Output Capacitance		320		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		130			f = 1.0MHz, See Fig. 9

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.5		MOSFET symbol
	(Body Diode)			2.5	_	showing the
I _{SM}	Pulsed Source Current			20	Α	integral reverse
	(Body Diode) ①			30		p-n junction diode.
V _{SD}	Diode Forward Voltage		0.78	1.0	V	T _J = 25°C, I _S = 1.7A, V _{GS} = 0V ③
t _{rr}	Reverse Recovery Time		45	68	ns	$T_J = 25^{\circ}C, I_F = 1.7A$
Q _{rr}	Reverse RecoveryCharge		58	87	nC	di/dt = 100A/µs ③

Notes:

- 1 Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 10mH, R_G = 25 Ω , I_{AS} = 4.0A.
- $\ensuremath{ \begin{tabular}{l} \ensuremath{ \begin{tabular$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

VDS

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

$SO\text{-}8\ Tape\ and\ Reel\ (\text{Dimensions}\ are\ shown\ in\ millimeters\ (inches)})$

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification information[†] Industrial Qualification level (per JEDEC JES D47F^{††} guidelines) MSL1 Moisture Sensitivity Level **SO-8** (per JEDEC J-STD-020D^{††})

- Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Yes

RoHS compliant