1

Lista Markov

Luiz Renault Leite Rodrigues (luiz.rodrigues@dtel.inatel.br) Instituto Nacional de Telecomunicações (INATEL) Santa Rita do Sapucaí, MG 37540-000

I. QUESTÃO:

A.

Diagrama de transição de estados

В.

$$\mathbf{M} = \begin{bmatrix} 0 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0.33 & 0 & 0 & 0.33 & 0.33 & 0 \\ 0 & 0.33 & 0.33 & 0 & 0 & 0.33 \\ 0 & 0 & 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de transição de estados

C.

A probabilidade do rato chegar ao estado (sala) 5 em 3 horas é obtida a partir de: $\pi\cdot M\cdot M\cdot M$

$$\pi = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Distribuição de probabilidade do estado inicial

Utilizando o código em Python referente a este exercício, foi possível calcular analiticamente que a probabilidade é 0,222. Também é mostrado no mesmo código uma simulação que utiliza três transições para calcular esta mesma probabilidade pelo método de Monte Carlo.

D.

Os cálculos foram realizados no programa em Python.

II. QUESTÃO

A.

Diagrama de transição de estados

В.

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.3 & 0.4 & 0.3 & 0 \\ 0 & 0.3 & 0.4 & 0.3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de transição de estados

C.

A probabilidade da mosca que pousou em 1 cair na teia exatamente em 3 minutos pode ser calculada como a probabilidade da mosca não estar no estado 0 ou 3 nos minutos 1 e 2 e estar nos estados 0 ou 3 no minuto 3.

cálculos no programa questao_2.ipynb.

D.

cálculos no programa questao_2.ipynb.

E.

cálculos no programa questao_2.ipynb.