

Advanced Applications of Systems Modeling & Simulation Multiple Runs

Dr. Xueping Li University of Tennessee, Knoxville

How to Make Multiple Runs

- The need
 - Ad hoc multiple runs??
 - Recall HW#2 open question
- Let's simply use the "case study 2" as an example
 - Save as "Phase-3"

New modules

- Parameter
- Dataset

Parameter variation

Before each	n experiment run:	
	•	
Before simi	ulation run:	
A francisco d		
After simul		
dsTIS.	add(getCurrentIteration(), root.timeMeasureEnd.distribution.mean());	
dsTIS.		
dsTIS.	add(getCurrentIteration(), root.timeMeasureEnd.distribution.mean());	

CaseStudy02Phase3 : ParametersVariation

Iteration: 1,000

dsTIS 1,000 samples ...[998, 8.956]

dsTIS1 1,000 samples ...[998, 5.619]

Parameters

Run

pRun 1,000

How many runs are needed??

Half Width, Number of Replications

- Prefer smaller confidence intervals precision
- Notation:

$$n = \text{no. replications}$$
 $\overline{X} = \text{sample mean}$
 $s = \text{sample standard deviation}$
 $t_{n-1,1-\alpha/2} = \text{critical value from } t \text{ tables}$

- Confidence interval:
- Half-width =

$$t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$$

■ Must increase *n* — how much?

$$\overline{X} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$$

Want this to be "small," say ≤ h where h is prespecified

Half Width, Number of Replications

(cont'd.)

$$n = t_{n-1,1-\alpha/2}^2 \frac{s^2}{h^2}$$

- Set half-width = h, solve for
- Not really solved for n (t, s depend on n)
- Approximation:
 - Replace t by z, corresponding normal critical value
 - Pretend that current s will hold for larger samples
 - Get

$$n \cong Z_{1-\alpha/2}^2 \frac{s^2}{h^2}$$

s = sample standard deviation from "initial" number n_0 of replications

Easier but different approximation:

$$n \cong n_0 \frac{h_0^2}{h^2}$$

 h_0 = half width from "initial" number n_0 of replications n grows quadratically as h decreases