

Divvy Case Study

By: Tanner Quesenberry

Summary

This project is a case study analysis of <u>Divvy's bike-share program</u> that operates within the city of Chicago. Data based analytical tools and visualizations are used to draw insights and present conclusions to better inform stakeholders to make business related decisions. The following sections detail the critical thinking and problem-solving steps related to the project.

1. Business Task

The task at hand is to gain more insight into the ridership habits of customers and discover differences in how members and non-members use the bike share program. These insights will be used to drive company decision making related to transitioning from developing brand awareness/general appeal to actively converting casual riders to annual members. This will drive future growth as members are deemed more profitable than casual riders.

2. Data Description

The data for this analysis came from Divvy collected user data available through the following link: https://divvy-tripdata.s3.amazonaws.com/index.html. It was made available by Motivate International Inc. under this license. This case study covers a year's worth of ridership data from June 2020 to May 2021 which correlates to the 12 csv files from '202006-divvy-tripdata.zip' to '202105-divvy-tripdata.zip'. This data is anonymized and therefore does not contain any personally identifiable information.

3. Data Cleaning and Analysis Setup

Cleaning of the datasets for this analysis was done using R and RStudio due to the large sizes of each file. After the 12 csv had been downloaded, they were put into a project folder. Each file was read into a data frame appropriately named after the month/year using the read_csv() function. Each set of data contains the same 13 data points per observation for the applicable month. Prior to merging the 12 data frames into one, type casting was done for two columns on half the data frames to account for a change in how that data is recorded.

Once merged into one data frame, duplicate records were removed, unnecessary coordinated data was discarded, and columns were verified to only contain the correct inputs. Finally, new columns were created that parsed the start date/time, day of week and total length of the ride. Rows with ride lengths that were negative were discarded from the data frame. The cleaned data was saved to a new csv file for future use/backup.

- For a deeper look into the code, please refer to the R markdown file here.

4. Analyzing and Understanding the Data

Let's start the analysis by taking a look at some descriptive statistics in regards to ride lengths among all users.

Ride length (seconds)

Min: 1

Max: 3257001 Median: 843 Mean: 1617.189

Converting these measurements into minutes, the average length of a ride is about 27 minutes with a median ride time of 14 minutes. Now let's take a closer look at these statistics when broken down between members and casual riders.

Mean

Rider length_secs 1 casual 2562.0662 2 member 930.4542

Median

Rider length_secs 1 casual 1213 2 member 664

Max

Rider length_secs 1 casual 3257001 2 member 2476260

Min

Rider length_secs
1 casual 1
2 member 1

When categorized by rider type, we determine that casual riders tend to have far longer ride durations than members on average. This difference is quite large given times of 43 minutes to 16 minutes. One possible hypothesis for this is that members could be short distance commuters to work while casual riders are visitors to the city.

Analyze ridership by type and weekday

##	# /	A tibble: 14 x	4		
##	# (Groups: membe	er_casual	. [2]	
##		member_casual	weekday	number_of_rides	average_duration
##		<chr></chr>	<ord></ord>	<int></int>	<dbl></dbl>
##	1	casual	Sun	329920	2934.
##	2	casual	Mon	188393	2533.
##	3	casual	Tue	174391	2280.
##	4	casual	Wed	182540	2299.
##	5	casual	Thu	191733	2395.
##	6	casual	Fri	246620	2430.
##	7	casual	Sat	396397	2674.
##	8	member	Sun	307785	1048.
##	9	member	Mon	315457	895.
##	10	member	Tue	329375	875.
##	11	member	Wed	347149	889.
##	12	member	Thu	341939	877.
##	13	member	Fri	350544	913.
##	14	member	Sat	360531	1020.

Examining this rider difference deeper, we can look for differences and similarities between riders for each day of the week. Both casual riders and members tend to follow the same pattern regarding ride times, with the longest average durations occuring on the weekends. In terms of when rides are most common, members seem to steadily take more rides throughout the week before dropping off on Sundays. Casual riders on the other hand, take far more rides on the weekend compared to the weekdays. For example, there are over twice as many rides on Saturday than on Tuesday. Overall, members take far more rides in total than casual riders.

	start_station_name	station_count
	<chr></chr>	<int></int>
1	Streeter Dr & Grand Ave	<u>47</u> 998
2	Lake Shore Dr & Monroe St	<u>39</u> 332
3	Clark St & Elm St	<u>35</u> 979
4	Theater on the Lake	<u>35</u> 931
5	Lake Shore Dr & North Blvd	<u>32</u> 400
6	Millennium Park	<u>30</u> 379
7	Wells St & Concord Ln	<u>29</u> 947
8	Michigan Ave & Oak St	<u>28</u> 521
9	Indiana Ave & Roosevelt Rd	<u>27</u> 858
10	Wells St & Elm St	<u>27</u> 328

Taking a quick glance at starting location, Streeter Dr & Grand Ave is the most popular spot to rent a bike. The rest of the list shows the top 10 locations for all riders. Let's break it down by rider type next.

	member_casual	start_station_name	station_count
	<chr></chr>	<chr></chr>	<int></int>
1	casual	Streeter Dr & Grand Ave	<u>36</u> 557
2	casual	Lake Shore Dr & Monroe St	<u>28</u> 231
3	casual	Millennium Park	<u>24</u> 804
4	casual	Theater on the Lake	<u>18</u> 561
5	casual	Michigan Ave & Oak St	<u>18</u> 361
6	casual	Lake Shore Dr & North Blvd	<u>16</u> 867
7	casual	Indiana Ave & Roosevelt Rd	<u>15</u> 883
8	casual	Michigan Ave & Lake St	<u>13</u> 926
9	casual	Shedd Aquarium	<u>13</u> 868
10	casual	Clark St & Elm St	<u>13</u> 348
11	member	Clark St & Elm St	<u>22</u> 631
12	member	Wells St & Concord Ln	<u>17</u> 679
13	member	Theater on the Lake	<u>17</u> 370
14	member	Broadway & Barry Ave	<u>17</u> 307
15	member	Dearborn St & Erie St	<u>17</u> 186
16	member	Kingsbury St & Kinzie St	<u>17</u> 083
17	member	St. Clair St & Erie St	<u>16</u> 771
18	member	Wells St & Elm St	<u>16</u> 521
19	member	Wells St & Huron St	<u>16</u> 113
20	member	Lake Shore Dr & North Blvd	<u>15</u> 533

When broken down by rider type, we find some interesting stats. For members, Clark St & Elm St is the most popular starting station but not by much. Most of the members' station counts are very evenly distributed. Casual riders however skew heavily towards their top 3 station locations. These locations all correspond to tourist type areas in the city of Chicago.

5. Visuals

Visualizations were made using Tableau (interactable here) and R.

These graphs really help visualize the differences between longer durations of casual riders vs the frequency at which members use the bikes. We also notice the stark difference in that casual riders rent bikes for weekend use while member usage is evenly distributed.

Total Weekday Ride Hours by Membership Total Ride Hours Percentage (Weekday)

Again, this bar chart shows that casual riders ride for longer durations than members and heavily leans to weekend usage. Total ridership overall seems to be pretty evenly distributed with a slight edge to the weekend.

Total Seasonal Member Ridership Total Seasonal Casual Ridership

Seasonal differences reveal that over half of the casual ridership occurs during the summer months of June to August while winter rides are very slim. Members tend to ride more during the summer as well but not to the extent of casual riders.

Top 10 Start Locations for Casual Riders

Top 10 Start Locations for Members

Total Starting Locations with Membership Status

Finally, let's take a visual look at the starting station preferences among users. As noted in the earlier analysis, casual riders gravitate more towards stations near tourist destinations such as Millenium Park. Member locations are more evenly distributed and are not as clustered around tourist areas.

6. Recommendations

With all data, there are limitations. Since the data used in this analysis was anonymized, determining the relationship between Divvy users who live in Chicago vs. outside city limits is not possible. If it were possible to use this personal information along with things like socioeconomic status, insights could be made on price points, promotions, and geographical recruiting.

Given the data that was available, the following are recommendations for growth:

- 1. Target promotions to casual riders during the summer months of June to August, as that is when 46% of all rides take place.
- 2. Casual riders are far more likely to use the service on weekends making it a prime time to advertise to them.
- 3. Casual riders on average ride for longer durations than members. Offer a promotion that highlights the savings of becoming a member.
- 4. Place fliers or advertisements at the most popular locations for renting Divvy bicycles such as Millenium Park or Theater on the Lake.