Решение систем линейных уравнений

С.В. Лемешевский (sergey.lemeshevsky@gmail.com)

Институт математики НАН Беларуси

Sep 18, 2018

Аннотация

Проблема решения линейной системы

$$Ax = b \tag{1}$$

является центральной в научных вычислениях. В этой главе мы остановимся на методах решения систем вида (1). Сначала остановимся на методе исключения Гаусса, а затем рассмотрим некоторые итерационные методы.

Содержание

1	Прямые методы линейной алгебры	1
	1.1 Метод исключения Гаусса	2
	1.2 Методы решения систем с симметричными матрицами	
2	Задачи	14
	1: Решение системы линейных уравнений с трехдиагональ-	
	ной матрицей	14
	2: Метод Гаусса с частичным выбором ведущего элемента	
	3: Разложение Холецкого	15
П	редметный указатель	17

1. Прямые методы линейной алгебры

Одной из основных задач вычислительной математики является проблема решения систем линейных алгебраических уравнений с вещественными ко- эффициентами. Для нахождения приближенного решения систем уравнений используются прямые и итерационные методы. Математический аппарат ли- нейной алгебры базируется на понятиях нормы вектора и матрицы, числа обусловленности. Рассматриваются классические методы исключения неиз- вестных, отмечаются особенности решения задач с симметричной веществен- ной матрицей.

1.1. Метод исключения Гаусса

Начнем с обсуждения того, как можно легко решать треугольные системы. Затем опишем приведение системы общего вида к треугольной форме при помощи преобразований Гаусса. И, наконец, учитывая то, что полученный метод ведет себя очень плохо на нетривиальном классе задач, рассмотрим концепцию выбора ведущих элементов.

Треугольные системы. Рассмотрим следующую треугольную 2×2 -систему:

$$\begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Если $l_{11}, l_{22} \neq 0$, то неизвестные могут быть определены последовательно:

$$\begin{cases} x_1 &= b_1/l_{11}, \\ x_2 &= (b_2 - l_{21}x_1)/l_{22} \end{cases}$$

Это 2×2 -версия алгоритма, известного как *прямая подстанов-ка*. Общую процедуру получаем, разрешая i-е уравнение системы Lx=b относительно x_i :

$$x_i = \left(b_i - \sum_{j=1}^{i-1} l_{ij} x_j\right) / l_{ii}.$$

Если вычисления выполнить для i от 1 до n, то будут получены все компоненты вектора x. Заметим, что на i-м шаге необходимо скалярное произведение векторов L(i,1:i-1) и x(1:i-1). Так как b_i содержится только в формуле для x_i , мы можем записать x_i на месте b_i .

Прямая подстановка.

Предположим, что $L \in \mathbb{R}^{n \times n}$ — нижняя треугольная матрица и $b \in \mathbb{R}^n$. Следующий код Python заменяет b на решение системы Lx = b. Матрица L должна быть невырождена.

```
b[0] = b[0]/L[0,0]
for i in range(1,len(b)):
    b[i] = (b[i] - np.dot(L[i,:i], b[:i]))/L[i,i]
```

Аналогичный алгоритм для верхней треугольной системы Ux=b называется обратная подстановка. Вот формула для x_i :

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii}.$$

и снова x_i можно записать на месте b_i .

Обратная подстановка.

Если матрица $U\in\mathbb{R}^{n\times n}$ верхняя треугольная и $b\in\mathbb{R}^n$, то следующий код Python заменяет b на решение системы Ux=b. Матрица U должна быть невырождена.

```
b[-1] = b[-1]/U[-1,-1]
for i in range(len(b)-2, -1, -1):
   b[i] = (b[i] - np.dot(U[i,i+1:], b[i+1:]))/U[i,i]
```

Отметим, что при реализации формул прямой и обратной подстановки мы использовали срезы массивов (см. раздел ??). В первом алгоритме L[i,:i] означает, что берется из строки двумерного массива с индексом і все элементы с нулевого до i-1-го включительно, а b[:i] — элементы массива b с индексами от 0 до i-1 включительно. Во втором алгоритме используются срезы U[i,i+1:], содержащий от i+1-го до последнего (включительно) элементы i-той строки, и b[i+1:] с элементами от i+1-го до последнего (включительно). Кроме того использовалась функция dot модуля питру, которая вычисляет скалярное произведение двух векторов. Таким образом, мы здесь использовали векторизованные вычисления.

LU-разложение. Как мы только что видели, треугольные системы решаются «легко». Идея метода Гаусса — это преобразование системы (1) в эквивалентную треугольную систему. Преобразование достигается соответствующих линейных комбинаций уравнений. Например, в системе

$$3x_1 + 5x_2 = 9,$$

$$6x_1 + 7x_2 = 4,$$

умножая ее первую строку на 2 и вычитая ее из второй части, мы получим

$$3x_1 + 5x_2 = 9,$$

$$-3x_2 = -14.$$

Это и есть метод исключений Гаусса при n=2. Дадим полное описание этой важной процедуры, причем опишем ее выполнение на языке матричных разложений. Данный пример показывает, что алгоритм вычисляет нижнюю треугольную матрицу L и верхнюю треугольную матрицу U так, что A=LU, т.е.

$$\begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & -3 \end{bmatrix}$$

Решение исходной задачи Ax = b находится посредством последовательного решения двух треугольных систем:

$$Ly = b$$
, $Ux = y \Rightarrow Ax = LUx = Ly = b$

Матрица преобразования Гаусса. Чтобы получить разложение, описывающее исключение Гаусса, нам нужно иметь некоторое матричное описание процесса обнуления матрицы. Пусть n=2, тогда как $x_1 \neq 0$ и $\tau = x_2/x_1$, то

$$\begin{bmatrix} 1 & 0 \\ -\tau & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$$

В общем случае предположим, что $x \in \mathbb{R}^n$ и $x_k \neq 0$. Если

$$\tau^{(k)T} = [\underbrace{0, \dots, 0}_{k}, \tau_{k+1}, \dots, \tau_{n}], \quad \tau_{i} = \frac{x_{i}}{x_{k}} \quad i = k+1, k+2, \dots, n$$

и мы обозначим

$$M_k = I - \tau^{(k)} e_k^T, \tag{2}$$

где

$$e_k^T = [\underbrace{0, \dots, 0}_{k-1}, 1, \underbrace{0, \dots, 0}_{n-k}],$$
$$I = [e_1, e_2 \dots, e_n]$$

TO

$$M_{k}x = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & -\tau_{k+1} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -\tau_{n} & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \\ x_{k+1} \end{bmatrix} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Матрица M_k — это матрица n реобразования Γ аусса. Она является нижней унитреугольной. Компоненты $\tau_{k+1}, \tau_{k+2}, \dots, \tau_n$ — это множители Γ аусса. Вектор $\tau^{(k)}$ называется вектором Γ аусса.

Для реализации данных идей имеется функция, которая вычисляет вектор множителей. Если х — массив из п элементов и х[0] ненулевой, функция gauss возвращает вектор длины n-1, такой, что если м — матрица преобразования Гаусса, причем м[1:,1] = -gauss(x) и у = dot(M,x), то у[1:] = 0:

```
def gauss(x):
    x = np.array(x,float)
    return x[1:]/x[0]
```

Применение матриц преобразовния Гаусса. Умножение на матрицу преобразования Гаусса выполняется достаточно просто. Если матрица $C \in \mathbb{R}^{n \times r}$ и $M_k = I - \tau^{(k)} e_k^T$, тогда преобразование вида

$$M_k C = (I - \tau^{(k)} e_k^T) C = C - \tau^{(k)} (e_k^T C)$$

осуществляет одноранговую модификацию. Кроме того, поскольку элементы вектора $\tau^{(k)}$ равны нулю от первого до k-го равны нулю, то в каждой k-ой строке матрицы C задействованы лишь элементы, начиная с k+1-го. Следовательно, если "С" — двумерный массив, задающий матрицу C, и "М" задает $n \times n$ -преобразование Гаусса M_1 , причем "М[1:,1] = -t", "t" — множитель Гаусса, соответствующий $\tau^{(1)T}$, тогда следующая функция заменяет C на M_1C :

```
def gauss_app(C, t):
    C = np.array(C, float)
    t = np.array([[t[i]] for i in range(len(t))], float)
    C[1:,:] = C[1:,:] - t*C[0,:]
    return C
```

Отметим, что если матрица M[k+1:,k] = -t, тогда обращение вида $C[k:,:] = gauss_app(C[k:,:], t)$ заменяет C на M_kC

Матрицы преобразовния Гаусса M_1, M_2, \dots, M_{n-1} , как правило, можно подобрать так, что матрица $M_{n-1}M_{n-2}\dots M_1A=U$ является

верхней треугольной. Легко убедиться, что если $M_k = I - \tau^{(k)} e_k^T$, тогда обратная к ней задается следующим выражением $M_k^{-1} = I + \tau^{(k)} e_k^T$ и поэтому

$$A = LU, (3)$$

где

$$L = M_1^{-1} M_2^{-1} \dots M_{n-1}^{-1}$$
.

Очевидно, что L — это нижняя унитреугольная матрица. Разложение (3) называется LU-разложением матрицы A. Необходимо проверять ведущие элементы матрицы A (a_{kk}) на нуль, чтобы избежать деления на нуль в функции gauss. Это говорит о том, что LU-разложение может не существовать. Известно, что LU-разложение матрицы A существует, если главные миноры матрицы A не равны нулю при этом оно единственно и $\det A = u_{11}u_{22}\cdots u_{nn}$.

Реализация. Рассмотрим пример при n = 3:

```
In [1]: import numpy as np
In [2]: A = np.array([[1, 4, 7], [2, 5, 8], [3, 6, 10]])
In [3]: A
Out[3]:
array([[ 1, 4, 7], [ 2, 5, 8],
       [ 3, 6, 10]])
In [4]: M1 = np.array([[1, 0, 0], [-2, 1, 0], [-3, 0, 1]])
In [5]: M1
Out[5]:
In [6]: np.dot(M1, A)
Out[6]:
array([[ 1, 4, 7],
        [ 0, -3, -6],
        [ 0, -6, -11]])
In [7]: M2 = np.array([[1, 0, 0], [0, 1, 0], [0, -2, 1]])
In [8]: M2
Out[8]:
array([[ 1, 0, 0],
       [ 0, 1, 0],
[ 0, -2, 1]])
In [9]: np.dot(M2,np.dot(M1,A))
Out[9]:
array([[1, 4, 7],
```

```
[ 0, -3, -6],
[ 0, 0, 1]])
```

Функция numpy.dot.

Обратите внимание, что в приведенном примере мы использовали функцию dot модуля numpy, которая выполняет умножение матриц в "правильном смысле", в то время как выражение M1*A производит поэлементное умножение.

Обобщение этого примера позволяет представить k-й шаг следующим образом:

- Мы имеем дело с матрицей $A^{(k-1)} = M_{k-1} \cdots M_1 A$, которая с 1-го по (k-1)-й столбец является верхней треугольной.
- Поскольку мы уже получили нули в столбцах с 1-го по (k-1)-й, то преобразование Гаусса можно применять только к столбцам с k-го до n-го. На самом деле нет необходимости применять преобразование Гаусса также и k-му столбцу, так как мы знаем результат.
- Множители Гаусса, задающие матрицу M_k получаются по матрице A(k:n,k) и могут храниться в позициях, в которых получены нули.

С учетом сказанного выше мы можем написать следующую функцию:

```
def lu(A):
    LU = np.array(A, float)
    for k in range(LU.shape[0]-1):
        t = gauss(LU[k:, k])
        LU[k+1:,k] = t
        LU[k:, k+1:] = gauss_app(LU[k:, k+1:], t)
    return LU
```

Эта функция возвращает LU-разложение матрицы A. Где же храниться матрица L? Дело в том, что если $L=M_1^{-1}M_2^{-1}\dots M_{n-1}^{-1}$, то элементы с (k+1)-го до n-го в k-том столбце матрицы L равны множителям Гаусса $\tau_{k+1}, \tau_{k+2}, \dots, \tau_n$ соответственно. Этот факт очевиден, если посмотреть на произведение, задающее матрицу L:

$$L = (I + \tau^{(1)} e_1^T \cdots (I + \tau^{(n-1)} e_{n-1}^T)) = I + \sum_{k=1}^{n-1} \tau^{(k)} e_k^T.$$

Поэтому элементы $l_{ik} = lu_{ik}$ для всех i > k. Здесь lu_{ik} — элементы матрицы возвращаемой функцией 1u.

После разложения матрицы A с помощью функции $\mathbb{1}$ и в возвращаемом массивы будут храниться матрицы L и U. Поэтому мы можем решить систему Ax = b, используя прямую и обратную подстановки описанные в разделе 1.1:

```
def solve_lu(A, b):
    LU = lu(A)
    b = np.array(b,float)
    for i in range(1,len(b)):
        b[i] = b[i] - np.dot(LU[i,:i],b[:i])
    for i in range(len(b)-1, -1, -1):
        b[i] = (b[i] - np.dot(LU[i,i+1:],b[i+1:]))/LU[i,i]
    return b
```

Замечание.

Отметим, что во всех представленных функциях мы выполняли явное преобразование входных параметров в массивы NumPy с элементами типа float. Это позволит правильно работать функциям в случае, если мы по ошибке создадим входные параметры не как массивы, а как списки.

Тестирование. Как известно метод Гаусса является прямым, т.е. дает точное решение системы линейных уравнений. Для проверки реализации решения системы линейных уравнений методом Гаусса мы можем написать следующую функцию:

```
def test_solve_lu():
    A = np.array([[1, 4, 7], [2, 5, 8], [3, 6, 10]])
    expected = np.array([-1./3, 1./3, 0])
    b = np.dot(A, expected)
    computed = solve_lu(A,b)
    tol = 1e-14
    success = np.linalg.norm(computed - expected) < tol
    msg = 'x_exact = ' + str(expected) + '; x_computed = ' + str(computed)
    assert success, msg</pre>
```

Замечание.

Здесь мы задали матрицу A системы и точное решение expected на основе которых получили вектор правой части b = np.dot(A,x). Для сравнения численного решения с точным используется

функция np.linalg.norm. В случае вызова с одним аргументом вычисляется l_2 -норма: $\|v\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$.

Выбор ведущего элемента. Как уже упоминалось, LU-разложение может не существовать. В методе Гаусса с выбором ведущего элемента на очередном шаге исключается неизвестное, при котором коэффициент по модулю является наибольшим. В этом случае метод Гаусса применим для любых невырожденных матриц $(\det A \neq 0)$.

Такая стратегия предполагает переупорядочивание данных в виде перестановки двух матричных строк. Для этого используются понятие перестановочной матрицы. Перестановочная матрица (или матрица перестановок) — это матрица, отличающаяся от единичной лишь перестановкой строк, например

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Перестановочную матрицу нет необходимости хранить полностью. Гораздо более эффективно перестановочную матрицу можно представить в виде целочисленного вектора p длины n. Один из возможных способов такого представления — это держать в p_k индекс столбца в k-й строке, содержащий единственный элемент равный 1. Так вектор p=[4,1,3,2] соответствует кодировке приведенной выше матрицы P. Также возможно закодировать P указанием индекса строки в k-ом столбце, содержащего 1, например, p=[2,4,3,1].

Если P — это матрица перестановок, а A — некоторая матрица, тогда матрица AP является вариантом матрицы A с переставленными столбцами, а PA — вариантом матрицы A с переставленными строками.

Перестановочные матрицы ортогональны, и поэтому если P — перестановочная матрица, то $P^{-1}=P^T.$

В этом разделе особый интерес представляют взаимные перестановки. Такие перестановки осуществляют матрицы, получаемые простой переменой мест двух строк единичной матрицы, например

$$E = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Взаимные перестановки могут использоваться для описания перестановок строк и столбцов матрицы. В приведенном примере

порядка 4×4 матрица EA отличается от матрицы A перестановкой 1-й и 4-й строк. Аналогично матрица AE отличается от матрицы A перестановкой 1-го и 4-го столбцов.

Если $P=E_nE_{n-1}\cdots E_1$ и каждая матрица E_k является единичной с переставленными k-й и p_k -й строками, то вектор $p=[p_1,p_2,\ldots,p_n]$ содержит всю необходимую информацию о матрице P. Действительно, вектор x может быть замещен на вектор Px следующим образом:

for
$$k = 1 : n$$

 $x_k \leftrightarrow x_{p_k}$

Здесь символ ↔ обозначает «выполнение перестановки»:

$$x_k \leftrightarrow x_{p_k} \Leftrightarrow r = x_k, \ x_k = x_{p_k}, \ x_{p_k} = r.$$

Поскольку каждая матрица E_k является симметричной и $P^T = E_1 E_2 \cdots E_n$, то также можно выполнить замещение вектора x на вектор $P^T x$:

for
$$k = n : 1 : -1$$

 $x_k \leftrightarrow x_{p_k}$

Существуют разные стратегии выбора ведущего элемента. Мы остановимся на стратегии частичного выбора. Пусть матрица

$$A = \begin{bmatrix} 3 & 17 & 10 \\ 2 & 4 & -2 \\ 6 & 18 & -12 \end{bmatrix}.$$

Чтобы добиться наименьших множителей в первой матрице разложения по Гауссу с помощью взаимных перестановок строк, надо сделать элемент a_{11} наибольшим в первом столбце. Если E_1 — матрица взаимных перестановок, тогда

$$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Поэтому

$$E_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 2 & 4 & -2 \\ 3 & 17 & 10 \end{bmatrix}$$

И

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ -1/2 & 0 & 1 \end{bmatrix} \Rightarrow M_1 E_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 0 & -2 & 2 \\ 0 & 8 & 16 \end{bmatrix}.$$

Теперь, чтобы получить наименьший множитель в матрице M_2 , необходимо переставить 2-ю и 3-ю строки и т.д.

Пример иллюстрирует общую идею, основанную на перестановке строк. Обобщая эту идею, получим следующий алгоритм:

LU-разложение с частичным выбором.

Если матрица $E \in \mathbb{R}^{n \times n}$, то данный алгоритм вычисляет матрицы преобразования Гаусса $M_1, M_2 \dots, M_{n-1}$ и матрицы взаимных перестановок E_1, E_2, \dots, E_{n-1} , такие что матрица $M_{n-1}E_{n-1} \cdots M_1E_1A = U$ является верхней треугольной. При этом нет множителей, превосходящих 1 по абсолютной величине. Подматрица $[a_{ik}]_{i=1}^n$ замещается на матрицу $[u_{ik}]_{i=1}^k$, $k=1,2,\dots,n$. Подматрица $[a_{ik}]_{i=k+1}^n$ замещается на матрицу $[m_{k;ik}]_{i=k+1}^n$, $k=1,2,\dots,n-1$. Целочисленный вектор piv размера n-1 задает взаимные перестановки. В частности, матрица E_k переставляет строки k и piv_k , $k=1,2,\dots,n-1$.

for k = 1 : n

- 1. Зададим μ , такое что $k \le \mu \le n$ и $|a_{\mu k}| = \max_{k \le i \le n} |a_{ik}|$
- 2. $a_{k,k:n} \leftrightarrow a_{\mu,k:n}$; $piv_k = \mu$

 $\begin{array}{l} \textbf{if} \ a_{kk} \neq 0 \\ t = \texttt{gauss} \ (A_{k:n,k}); \ A_{k+1:n,k} = t \\ A_{k:n,k+1:n} = \texttt{gauss_app} \ (A_{k:n,k+1:n},t) \\ \textbf{end if} \\ \textbf{end for} \end{array}$

Чтобы решить линейную систему Ax=b после вызова последнего алгоритма, мы должны

1. Вычислить вектор $y=M_{n-1}E_{n-1}\cdots M_1E_1b$. 2. Решить верхнюю треугольную систему Ux=y.

1.2. Методы решения систем с симметричными матрицами

Здесь мы опишем методы, использующие специфику при решении задачи Ax=b. В случае, когда A — симметричная невырожденная матрица, т.е. $A=A^T$ и $\det(A)\neq 0$, существует разложение вида

$$A = LDL^T, (4)$$

где L — нижняя унитреугольная матрица, D — диагональная матрица. В связи с этим работа связанная с получением разложения :eq:sles-ldl, составляет половину от того, что требуется для исключения Гаусса. Когда разложение :eq:sles-ldl получено, решение системы Ax=b может быть найдено посредством решения систем Ly=b (прямая подстановка), Dz=y и $L^Tx=z$.

 LDL^T -разложение. Разложение (4) может быть найдено при помощи исключения Гаусса, вычисляющего A=LU, с последующим определением D из уравнения $U=DL^T$. Тем не менее можно использовать интересный альтернативный алгоритм непосредственного вычисления L и D.

Допустим, что мы знаем первые j-1 столбцов матрицы L, диагональные элементы $d_1, d_2, \ldots, d_{j-1}$ матрицы D для некоторого j, $1 \le j \le n$. Чтобы получить способ вычисления l_{ij} , $i = j+1, j+2, \ldots, n$, и d_i приравняем j-е столбцы в уравнении $A = LDL^T$. В частности,

$$A(1:j,j) = Lv, (5)$$

где

$$v = DL^T e_j = \begin{bmatrix} d_1 l_{j1} \\ \vdots \\ d_{j-1} l_{jj-1} \\ d_j \end{bmatrix}.$$

Следовательно, компоненты v_k , $k=1,2,\ldots,j-1$ вектора v могут быть получены простым масштабированием элементов j-й строки матрицы L. Формула для j-й компоненты вектора v получается из j-го уравнения системы L(1:j,1:j)v=A(1:j,j):

$$v_j = a_{jj} - \sum_{k=1}^{j-1} l_{ik} v_k,$$

Когда мы знаем v, мы вычисляем $d_j=v_j$. "Нижняя" половина формулы :eq:sles-v дает уравнение

$$L(j+1:n,1:j)v(1:j) = A(j+1:n,j),$$

откуда для вычисления j-го столбца матрицы L имеем:

$$L(j+1:n,j) = (A(j+1:n,j) - L(j+1:n,1:j-1)v(1:j-1))/v_j.$$

Реализация. Для получения LDL^{T} -разложения матрицы A можем написать функцию (сценарий $ld.py^{1}$):

```
def ld(A):

Для симметричной матрицы А бычисляет нижнюю треугольную матрицу L и диагональную матрицу D, такие что A = LDL^*T. Элементы a_{ij} замещаются на l_{ij}, если i > j, и на d_{ij}, если i = j n = len(A)
```

 $^{^{1} {\}it src-sles/ld.py}$

```
LD = np.array(A, float)
for j in range(n):
    v = np.zeros(j+1)
    v[:j] = LD[j,:j]*LD[range(j),range(j)]
    v[j] = LD[j,j] - np.dot(LD[j,:j],v[:j])
    L[j,j] = v[j]
    LD[j+1:,j] = (LD[j+1:,j] - np.dot(LD[j+1:,:j],v[:j]))/v[j]
return L
```

В этой реализации мы использовали векторизованные вычисления. Разберем некоторые выражения. Строка

```
v[:j] = LD[j,:j]*LD[range(j),range(j)]
```

можно заменить следующим циклом:

```
for i in range(j):
    v[i] = LD[j,i]*LD[i,i]
```

В нашей программе доступ к j диагональным элементам массива A осуществляется выражением A[range(j),range(j)].

При вычислении v[j] использовалась функция np.dot, которая вычисляет скалярное произведение векторов.

Отметим также строку

```
LD[j+1:,j] = (LD[j+1:,j] - np.dot(LD[j+1:,:j],v[:j]))/v[j]
```

в которой используется срез L[j+1:,j], т.е. элементы с j+1-го до последнего в j-ом столбце.

Для решения системы Ax=b' с использованием LDL^T -разложения можно написать следующую функцию

Разложение Холецкого. Известно, что в случае симметричной положительно определенной матрицы разложение (4) существует и устойчиво. Тем не менее в этом случае можно использовать другое разложение:

$$A = GG^T (6)$$

известное как разложение Холецкого, а матрицы G называются mреугольниками Холецкого.

Это легко показать, исходя из существования LDL^T разложения. Так как для симметричной положительно определенной матрицы существует $A = LDL^T$ и диагональные элементы матрицы D положительны, то $G = L\mathrm{diag}(\sqrt{d_{11}}, \sqrt{d_{22}}, \ldots, \sqrt{d_{nn}})$.

2. Задачи

Задача 1: Решение системы линейных уравнений с трехдиагональной матрицей

Написать программу, которая решает систему линейных уравнений для трехдиагональной ($a_{ij}=0$ при |i-j|>1) $n\times n$ -матрицы на основе LU-разложения. Написать следующие тестовые функции:

1. Найти решение уравнения с

$$a_{ii} = 2, \quad a_{ii-1} = a_{ii+1} = -1$$

при правой части $b_i=2h^2$, h=1/n, $i=1,2,\ldots,n-1$ и сравнить его с точным решением $x_i=ih(1-ih)$, $i=1,2,\ldots,n$. 2. Вычислить определитель матрицы и сравнить его значение с точным n+1.

Подсказка. Трехдиагональная матрица A задается тремя диагоналями:

$$d_i = a_{ii}, \quad e_i^u = a_{ii+1}, \quad e_i^l = a_{ii-1}.$$

В модуле функция (например, 1u3) выполняет LU-разложение матрицы A и возвращает результат в виде трех диагоналей. Для решения системы используется другая функция (например, solve 1u3).

Задача 2: Метод Гаусса с частичным выбором ведущего элемента

Написать модуль, который реализует идеи частичного выбора ведущего элемента из раздела 1.1. Функция для LU-разложения должна выводить, кроме самого разложения, еще и вектор, определяющий матрицу перестановок. Напишите тестовые функции

для проверки выполнения LU-разложения и решения системы уравнений с матрицей

$$A = \begin{bmatrix} 3 & 17 & 10 \\ 2 & 4 & -2 \\ 6 & 18 & -12 \end{bmatrix}$$

Задача 3: Разложение Холецкого

Написать программу, реализующую разложение Холецкого $A=GG^T$ для симметричной положительно определенной матрицы A и вычисляющей определитель матрицы на основе этого разложения. Найти разложение Холецкого и определитель матрицы Гильберта, для которой

$$a_{ij} = \frac{1}{i+j-1}, \quad i = 1, 2, \dots, n, \ j = 1, 2, \dots, n$$

при n=4.

Предметный указатель

LU-разложение, 5

Вектор Гаусса, 4
Матрица
перестановок, 8
перестановочная, 8
преобразования Гаусса, 4
Метод Гаусса, 2
обратная подстановка, 2
прямая подстановка, 2
Множители Гаусса, 4