Glitch_I

จากสมการบูลลีน F(A,B,C,D) = A' + C'D + AB'D จงสร้างวงจรก่อนและหลังกำจัด Hazard แล้วเขียน test vector ที่แสดง Glitch เปรียบเทียบให้เห็นชัดเจนว่าวงจรก่อนกำจัด hazard มี glitch ส่วนวงจรหลังกำจัดไม่มี ให้แสดง K-Map ให้ผู้ตรวจดูด้วย ในวงจรประกอบด้วย Input คือ A,B,C,D ขนาด 1 Bit และ Output คือ Before,After ขนาด 1 Bit โดยที่ Before คือ Output ของวงจรก่อนการแก้ไข Glitch (สร้าง วงจรตามสมการบูลลีนที่กำหนดให้) และ After คือ Output ของวงจรหลังการแก้ไข Glitch แล้ว

รูปที่ 1. วงจรก่อนแก้ glitch

ข้อมูลน้ำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- C ขนาด 1 Bit
- D ขนาด 1 Bit

ข้อมูลส่งออก

- Before ขนาด 1 Bit
- After ขนาด 1 Bit

ชุดข้อมูลทดสอบ

• 100% โปรแกรมทำงานถูกต้องตาม Input ทุกรูปแบบและไม่มี Glitch

Glitch_II

จากสมการบูลลีน F(A,B,C,D,E,F) = \sum m(0,1,3,4,7,11,12,15,16,17,20,28) จงสร้างวงจรก่อนและหลังกำจัด Hazard แล้วเขียน test vector ที่ แสดง Glitch เปรียบเทียบให้เห็นชัดเจนว่าวงจรก่อนกำจัด hazard มี glitch ส่วนวงจรหลังกำจัดไม่มี ให้แสดง K-Map ให้ผู้ตรวจดูด้วย ในวงจร ประกอบด้วย Input คือ A,B,C,D,E,F ขนาด 1 Bit และ Output คือ Before,After ขนาด 1 Bit โดยที่ Before คือ Output ของวงจรก่อนการ แก้ใจ Glitch (สร้างวงจรตามสมการบูลลีนที่กำหนดให้) และ After คือ Output ของวงจรหลังการแก้ใจ Glitch แล้ว

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- C ขนาด 1 Bit
- D ขนาด 1 Bit
- E ขนาด 1 Bit
- F ขนาด 1 Bit

ข้อมูลส่งออก

- Before ขนาด 1 Bit
- After ขนาด 1 Bit

ชุดข้อมูลทดสอบ

• 100% โปรแกรมทำงานถูกต้องตาม Input ทุกรูปแบบและไม่มี Glitch

2's Complement Number

ให้นิสิตสร้างวงจร 2's Complement Number ที่มี Input คือ In ขนาด 8 Bit และ Output คือ Output ขนาด 9 Bit โดยให้แปลง In ซึ่งเป็น จำนวนเต็มบวกในระบบเลขฐาน 2 ขนาด 8 Bit ไปเป็นจำนวนเต็มลบที่มีค่าเป็น -In ในระบบ 2's Complement (ถ้า In มีค่าเป็น 10 แล้ววงจร ต้องแปลงไปเป็นเลขที่มีค่า -10) แล้วส่งออกไปที่ Output

รูปที่ 1. เลขในระบบ 2's Complement ขนาด 4 bit

ข้อมูลนำเข้า

In ขนาด 8 Bit

ข้อมูลส่งออก

Output ขนาด 9 Bit

ชุดข้อมูลทดสอบ

• 100% โปรแกรมทำงานถูกต้องตาม Input ทุกรูปแบบ

Conversion (2's Complement)

ให้นิสิตสร้างวงจร Conversion ที่มี Input คือ In ขนาด 4 Bit และ Output คือ Output ขนาด 4 Bit โดยให้แปลง In ซึ่งเป็นจำนวนเต็มในระบบ Sign and magnitude ไปเป็นจำนวนเต็มในระบบ 2's Complement แล้วส่งออกไปที่ Output

Decimal	Signed Magnitude	Signed One's Complement	Signed Two's Complement
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001

ตารางที่ 1. ตารางแสดงเลข 4 Bit ในระบบต่างๆ

ข้อมูลนำเข้า

In ขนาด 4 Bit

ข้อมูลส่งออก

Output ขนาด 4 Bit

ชุดข้อมูลทดสอบ

- 50% In เป็นจำนวนเต็มบวก และจำนวนเต็ม 0
- 50% In เป็นจำนวนเต็มลบ

^{*}คำแนะนำ : สร้างวงจรโดยใช้ความรู้ในการแปลงเลข 2's Complement แทนการใช้ K-map*

