Learn Bhagawad Gita: From B K Sharma

It Is Better To Carry Out One's Own Duties A Little Imperfectly.

Rather Than To Faultlessly Perform Another's Duties.

-Bhagawad Gita

TCS-503: Design and Analysis of Algorithms

Linear-Time Sorting Algorithms

Unit I: Syllabus

- Introduction:
 - Algorithms
 - Analysis of Algorithms
 - * Growth of Functions
 - * Master's Theorem
 - Designing of Algorithms

Unit I: Syllabus

- · Sorting and Order Statistics
 - Heap Sort
 - * Quick Sort
 - * Sorting in Linear Time
 - * Counting Sort
 - Bucket Sort
 - Radix Sort
 - Medians and Order Statistics

Sorting So Far

Insertion sort: Easy to code Fast on small inputs (less than ~50 elements) Fast on nearly-sorted inputs O(n²) worst case O(n²) average (equally-likely inputs) case O(n²) reverse-sorted case Merge sort: Divide-and-conquer: Split array in half Recursively sort subarrays Linear-time merge step O(n lq n) worst case

Sorting So Far

Heap sort:

Uses the very useful heap data structure

Complete binary tree

Heap property: parent key ≥ children's keys

O(n lg n) worst case

Sorts in place

Fair amount of shuffling memory around

Quick sort:

Divide-and-conquer:

Partition array into two subarrays, recursively sort

All of first subarray ≤ all of second subarray No merge step needed!

 $O(n \mid g \mid n)$ average case $O(n^2)$ worst case

What is common to all these algorithms?

These algorithms sort by making <u>comparisons</u> between the input elements.

Comparison sorts use comparisons between elements to gain information about an input sequence $\langle a_1, a_2, ..., a_n \rangle$

Perform tests:

 $a_i < a_j$, $a_i \le a_j$, $a_i = a_j$, $a_i \ge a_j$, or $a_i > a_j$ to determine the relative order of a_i and a_j

Lower Bound: least time complexity

The time to comparison sort n elements is $\Omega(n \mid g \mid n)$

How can we do better than $\Omega(n \lg n)$?

How Fast Can We Sort?

Linear Time Sorting Algorithms: Sorting in Linear Time

Counting Sort
Bucket Sort
Radix Sort

All Three Algorithms

Make some assumptions

About the inputs

Sorting in Linear Time Algorithms Counting Sort

Assumptions:

Sort n integers which are in the range [0 ... k] k is in the order of n, that is, k=O(n)

Sorting in Linear Time Algorithms

Counting Sort

3 Input Array: 2 Auxiliary Array C: Initialized to 0 C 2 0 1 3 4 5 Put in C[i] no. of elements equal to x C0 1 2 3 5 Put in C[i] no. of elements less than or equal to x

Sorting in Linear Time Algorithms

Sorting in Linear Time Algorithms

Sorting in Linear Time Algorithms

Counting Sort

Sorting in Linear Time Algorithms

Sorting in Linear Time Algorithms

Counting Sort

Sorting in Linear Time Algorithms

Counting Sort

Sorting in Linear Time Algorithms

Counting Sort A 2 5 3 0 2 3 0 3 C 0 2 3 4 7 8 B 0 0 2 3 3 5

Sorting in Linear Time Algorithms

Counting Sort

Sorting in Linear Time Algorithms

Counting Sort

COUNTING - SORT (A, B, k)

For
$$i \leftarrow 0$$
 to k do

 $C[i] \leftarrow 0$

For $j \leftarrow 1$ to length[A] do

 $C[A[j] \leftarrow C[A[j] + 1$
 $C[i]$ now contains no. of elements equal to i

For $i \leftarrow 1$ to k do

 $C[i] \leftarrow C[i] + C[i-1]$
 $C[i]$ now contains no. of elements less than or equal to i

For \leftarrow length[A] down to 1 do

 $C[A[j]] \leftarrow A[j]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Sorting in Linear Time Algorithms Counting Sort

Step 1

Input Array A

4 5 6 7 8

3 3 3 0 0

2 3 4 5

0 $0 \mid 0 \mid$ 0 0

Sorting in Linear Time Algorithms Counting Sort

Step 2

Find No. of Elements equal to xFor j=1 to nC[A[j]]=C[A[j]]+1

$$j=1$$
, $A[1] = 2$ C 0 0 0 0 0

0

$$C[A[2]] = C[5] = C[5] + 1 = 0 + 1 = 1$$

C 0 0 1 0 0 1

2

3

4

5

Sorting in Linear Time Algorithms Counting Sort

Step 2

At the end of loop, we have

 0
 1
 2
 3
 4
 5

 2
 0
 2
 3
 0
 1

Sorting in Linear Time Algorithms Counting Sort

Step 3

Find No. of Elements less than or equal to xFor i=1 to k

$$i=1$$
, $C[1] = 0$ C $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 0 & 2 & 3 & 0 & 1 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$ $C[1] = C[1] + C[1-1] = C[1] + C[0] = 2$

1

i=2,
$$C[2] = 2$$
 $C[2] = 2$ $C[2] = C[2] + C[2-1] = C[2] + C[1] = 4$

Sorting in Linear Time Algorithms Counting Sort

Step 3

At the end of loop, we have

C 2 2 4 7 7 8

C[A[8]]=C[3]=C[3]-1=7-1=6

Sorting in Linear Time Algorithms Counting Sort

Step 4 A
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 0 & 2 & 3 & 0 & 3 \end{bmatrix}$$

For j=n to 1

B[C[A[j]]=A[j]

C[A[j]]=C[A[j]] -1

1 2 3 4 5 6 7 8

A $\begin{bmatrix} 2 & 5 & 3 & 0 & 2 & 3 & 0 & 3 \\ 2 & 5 & 3 & 0 & 2 & 3 & 0 & 3 \end{bmatrix}$

B $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 0 & 2 & 3 & 0 & 3 \end{bmatrix}$

C $\begin{bmatrix} 2 & 2 & 4 & 7 & 7 & 8 \\ 2 & 2 & 4 & 7 & 7 & 8 \end{bmatrix}$

j=8, A[8]=3, B[C[A[8]]]=B[C[3]]=B[7]=3

Sorting in Linear Time Algorithms Counting Sort

Step 4
At the end of loop, we have

Sorting in Linear Time Algorithms

Analysis of Counting Sort

```
COUNTING - SORT (A, B, k)
                                                            Assumptions:
    For i \leftarrow 0 to k do
                                                  Θ(k)
                                                                 k=O(n)
           C[i] \leftarrow 0
   For j \leftarrow 1 to length[A] do
                                                              T(n)=\Theta(n+n)
                                                  \Theta(n)
           C[A[j] \leftarrow C[A[j] + 1]
                                                              T(n) = \Theta(2n)
    For i \leftarrow 1 to k do
                                                              T(n) = \Theta(n)
                                                  Θ(k)
           C[i] \leftarrow C[i] + C[i-1]
                                                  Counting sort is stable
   For ← length[A] down to 1 do
                                                  Counting sort is not in place sort
            B[C[A[i]]] \leftarrow A[i]
                                                   \Theta(n)
            C[A[j]] \leftarrow C[A[j]] -1
```

Overall time:
$$\Theta(2n + 2k)$$

 $T(n) = \Theta(n + k)$

Sorting in Linear Time Algorithms Analysis of Counting Sort

Be Cool! And Answer the following Answer the following questions?

Question: Why don't we always use counting sort?

Answer: Because it depends on range k of elements.

Question: Could we use counting sort to sort 32 bit integers?

Why or why not?

Answer: Number, k too large $(2^{32} = 4,294,967,296)$

Radix Sort

Assumptions:	326
All numbers are d-digit numbers.	453
e.g. d=Θ(1)	608
k is in the order of n, that is, $k=O(n)$	835
Where k is the base.	751
Where each digit may take k possible values	435
	704
	690

Radix Sort

Sorting looks at one column at a time

For a d digit number, sort the <u>least significant</u> digit first.

Continue sorting on the <u>next least significant</u> digit, until all digits have been sorted.

329		720		720		329	
457		355 436	1838	55	329		355
657			200		436		436
839			jjir-	839	<u>]</u>]]]]	457	
436		657	557 329	355		657	
720		329		457		720	
355		839		657		839	

Requires only d passes through the list.

RADIX-SORT(A, d) for $i\leftarrow 1$ to d do

Use a stable sorting algorithm to sort array A on digit i

Learn DAA: From B K Sharma Analysis of Radix Sort

RADIX-SORT(A, d)

```
for i\leftarrow 1 to d do
 Use a stable sorting algorithm to sort array A on digit i
    Assume that we use counting sort.
                                                        326
    Each pass over n numbers with d digits takes
                                                        453
    time: \Theta(n+k)
                                                        608
    There are d passes (for each digit)
    Given n numbers of digits, where each digit
                                                        835
    may take k possible values, RADIX-SORT
                                                        751
    correctly sorts the numbers in \Theta(d(n+k))
                                                        435
    d is constant, d=\Theta(1), T(n) = \Theta(n+k)
                                                        704
    k=O(n), k \le n, T(n) = \Theta(n+n) = \Theta(2n) = \Theta(n)
```

Bucket Sort

Assumptions:

The input is generated by a random process that distributes elements uniformly over [0, 1) means ≥ 0 and < 1

Number of Buckets k=O(n)

Input: A[1 . . n], where $0 \le A[i] < 1$ for all i

Output: elements A[i] sorted

Auxiliary B[0 . . n - 1] of <u>linked lists</u>, each list

array: initially empty

Bucket Sort: Example

Bucket Sort: Example

Learn DAA: From B K Sharma **Bucket Sort** Alg.: BUCKET-SORT(A, n) for $i \leftarrow 1$ to n do insert A[i] into list B[\nA[i]] for $i \leftarrow 0$ to n - 1 do sort list B[i] with Insertion Sort/Quick Sort

concatenate lists B[0], B[1], . . . , B[n -1] together in order

return the concatenated lists

Learn DAA: From B K Sharma Analysis of Bucket Sort

Alg.: BUCKET-SORT(A, n) for $i \leftarrow 1$ to n do insert A[i] into list B[\nA[i]] for $i \leftarrow 0$ to n - 1do sort list B[i] with insertion sort concatenate lists B[0], B[1], . . . , B[n -1] together in order return the concatenated lists

Comparison of Sorting Algorithms

Insertion sort: suitable only for small *n*.

Merge sort: guaranteed to be fast even in its worst case; stable.

Heapsort: requiring minimum memory and guaranteed to run fast;

average and maximum time both roughly twice the average

time of quicksort.

Quicksort: most useful general-purpose sorting for very little memory

requirement and fastest average time. (choose the median of

three elements as pivot in practice :-)

Counting sort: very useful when the keys have small range; stable;

memory space for counters and for 2n records.

Radix sort: appropriate for keys either rather short or with a lexicographic

collating sequence.

Bucket sort: assuming keys to have uniform distribution.