

FDN306P

P-Channel Enhancement Mode Field Effect Transistor

General Description

This P-Channel 2.5V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications

- · Battery management
- · Load switch
- · Battery protection

Features

$$V_{DS}(V) = -30V$$

$$I_D = -4.2 \text{ A } (V_{GS} = -10 \text{V})$$

$$R_{DS(ON)}$$
 < 50m Ω (V_{GS} = -10V)

$$R_{DS(ON)}$$
 < 65m Ω (V_{GS} = -4.5V)

$$R_{DS(ON)}$$
 < 120m Ω (V_{GS} = -2.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted				
Parameter	Symbol			

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	-30	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain	T _A =25°C		-4.2	
Current ^A	T _A =70°C	I _D	-3.5	Α
Pulsed Drain Current ^B		I _{DM}	-30	1
	T _A =25°C	P_{D}	1.4	W
Power Dissipation A	T _A =70°C		1	7 **
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C

Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient A	t ≤ 10s	$-$ R _{θJA}	65	90	°C/W
Maximum Junction-to-Ambient A	Steady-State	IN _θ JA	85	125	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	43	60	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS} Zero G	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μА
	Zero Gate Voltage Diam Garrent	T _J =55°C			-5	μιν
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-0.7	-1	-1.3	V
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-25			Α
R _{DS(ON)} Static Drain-Source On-Resistance		V _{GS} =-10V, I _D =-4.2A		42	50	mΩ
	Static Drain-Source On-Resistance	T _J =125°C			75	11122
	V_{GS} =-4.5V, I_D =-4A		53	65	mΩ	
		V_{GS} =-2.5V, I_D =-1A		80	120	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-5A	7	11		S
V_{SD}	Diode Forward Voltage	I_S =-1A, V_{GS} =0V		-0.75	-1	V
I_S	Maximum Body-Diode Continuous Curr	ent			-2.2	Α
DYNAMIC	PARAMETERS					
C_{iss}	Input Capacitance			954		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		115		pF
C_{rss}	Reverse Transfer Capacitance			77		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		6		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			9.4		nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-4A		2		nC
Q_{gd}	Gate Drain Charge			3		nC
t _{D(on)}	Turn-On DelayTime			6.3		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3.6 Ω ,		3.2		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =6 Ω		38.2		ns
t _f	Turn-Off Fall Time			12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4A, dI/dt=100A/μs		20.2		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-4A, dI/dt=100A/μs		11.2		nC

Notes:

 R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design.

 a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance