Exercise 6.4.22

a. Let p(x) and q(x) lie in \mathbf{P}_1 and suppose that $p(1) \neq 0$, $q(2) \neq 0$, and p(2) = 0 = q(1). Show that $\{p(x), q(x)\}$ is a basis of \mathbf{P}_1 . [Hint: If rp(x) + sq(x) = 0, evaluate at x = 1, x = 2.]

LI: since
$$P(1) \neq 0$$

at $2(=1)$
 $P(1) + 9(1) \neq 0$
 $P(1) + 9(1) \neq 0$

and samp thing happens at X=2 P(2) + 9(2) \$0

2. 1 P(z) + 5 9(z) if and anly it V= S=0

Span: since P(z) =0 & Mc1)=0 $p(x) = \alpha(\gamma(-2))$ 9(2) = 6(76-17

U ≠ 0 & b ≠ 0 Since P(1) ≠ 0 & 9 cm ≠ 0

Exercise 7.1.1 Show that each of the following functions is a linear transformation.

e.
$$T: \mathbf{M}_{nn} \to \mathbf{M}_{nn}; T(A) = A^T + A$$

additive:

$$T(H+B) = (H+B)^T + (H+B)$$

= $H^T + B^T + H + B$

- nalds additivity.

Scalar male -

To show that
$$T(CA) = cT(A)$$

$$T(cA) = (cA)^{T} + (cA)$$

$$= (A)^{T} + cA$$

$$= (A)^{T} + cA$$

$$= (A)^{T} + cA$$

$$cT(H) = c(H^T + A)$$

· nalds gealar multiplicity.

g.
$$T: \mathbf{P}_n \to \mathbb{R}; T(r_0 + r_1 x + \cdots + r_n x^n) = r_n$$

$$\overline{\left((\alpha_0 + b_0) + (\alpha_1 + b_1) \chi + \dots + (\alpha_n + b_n) \chi^n \right)}$$

$$= T(a_0 + a_1)(t \cdots + a_n x^n) + T(b_0 + b_1 x + \cdots + b_n x^n)$$
which is

$$(a_n + b_n) = (a_n) + (b_n)$$

Scalar montiplicity:

$$\left(\left(\left(\alpha_{0} + \alpha_{1} \chi + \dots + \alpha_{n} \chi^{n} \right) \right) = \left(\left(\left(\alpha_{0} + \alpha_{1} \chi + \dots + \alpha_{n} \chi^{n} \right) \right) \right)$$

$$\left(\left(\left(\left(\alpha_{0}+\alpha_{1}\chi+\cdots+\alpha_{n}\chi^{n}\right)\right)=\left(\left(\left(\alpha_{0}+\alpha_{1}\chi+\cdots+\alpha_{n}\chi^{n}\right)\right)\right)\right)$$

So Tis a linear transformation

i.
$$T : \mathbf{P}_n \to \mathbf{P}_n$$
; $T[p(x)] = p(x+1)$

additivity:

Scalar multiplicity;

$$T(C \cdot A(x)) = (\cdot A(x+1))$$

· halds scular multiplicity.

· Tis a linear trans formation

Exercise 7.1.11 Let $S: V \to W$ and $T: V \to W$ be linear transformations. Given a in \mathbb{R} , define functions $(S+T): V \to W$ and $(aT): V \to W$ by $(S+T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$ and $(aT)(\mathbf{v}) = aT(\mathbf{v})$ for all \mathbf{v} in V. Show that S+T and aT are linear transformations.

' halds Scalar multiplicity.

additivity at (aT):

to shan that for u, V f V

 $(\alpha T)(y+y) = (\alpha T)(xy) + (\alpha T)(y)$

 $(\alpha T)_{(v)} + (\alpha T)_{(v)} = (\alpha T)_{(\alpha)} + (\alpha T)_{(v)}$

. it halds additivity.

Scalar multiplicity for (aT)

To Show that $(\alpha T)(c.u) \geq c.(\alpha T)(u)$

 $= ((\alpha \cdot T_{(\alpha)}) = \alpha ((\cdot T_{(\alpha)}) = \alpha (T_{(c \cdot \alpha)}) = (\alpha T_{(c \cdot \alpha)})$

. halds scalar multiplicity.

- (G+T) and (aT) are linear transformation

Exercise 7.2.2 In each case, (i) find a basis of ker T, and (ii) find a basis of im T. You may assume that T is linear.

a.
$$T: \mathbf{P}_2 \to \mathbb{R}^2$$
; $T(a+bx+cx^2) = (a, b)$

(i)
$$\alpha = 0$$
, $b = 0$ and we have cx^2 .

-(abasis for ker(T) is $\{(x^2)\}$?

(ii) Since all passibe output is (α, b)

hence
$$(a,0)$$
 and (o,b)

-ahasis for $im(7)$ is $\{(1,0),(o,1)\}$

e.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & b+c \\ c+d & d+a \end{bmatrix}$$

(i)
$$\alpha + b = 0$$
, $b + c = 0$, $c + d = 0$, $d + \alpha = 0$
So $\alpha = -b$, $b = -c$, $c = -d$, $d = -\alpha$
 $\alpha = +c$, $\alpha = -d$, $\alpha = +\alpha$
 $\alpha = \alpha$, $b = -\alpha$, $c = \alpha$, $d = -\alpha$
So $a = \alpha$, $c = \alpha$, $c = \alpha$, $d = -\alpha$
So $a = \alpha$, $c = \alpha$, $c = \alpha$, $d = -\alpha$
(ii) $c = \alpha$ $c = \alpha$ $c = \alpha$ $c = \alpha$
(iii) $c = \alpha$
 $c = \alpha$ $c = \alpha$ $c = \alpha$ $c = \alpha$ $c = \alpha$
(iv) $c = \alpha$ c

i. $T : \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = XA - AX$, where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{array}{c} (i) \\ (ab) \\ (cd) \\ (d) \\ (d$$

$$\begin{pmatrix}
b-c & a-d \\
d-a & c-b
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

· uhasis of Ker [is {[0] (0] }

from a from b

a basis for im [is
$$\{0, 0\}, \{0, 0\}\}$$

Exercise 7.2.7 Show that linear independence is preserved by one-to-one transformations and that spanning sets are preserved by onto transformations. More precisely, if $T: V \to W$ is a linear transformation, show that:

- a. If T is one-to-one and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent in V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is independent in W.
- b. If T is onto and $V = \operatorname{span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, then $W = \operatorname{span} \{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$.

a. Since Tis linear transformation, a, T(v,) + --- + a, T(vn) = $T(\alpha_1 V_1 + \cdots + \alpha_n V_n)$ and since T is one to one $0 = T(a_1 v_1 t - \cdots + a_n v_n)$ $O = (a_1 V_1 + \cdots + a_n V_n)$

then Miz ... an = 0 which then {T(vi), -. T(vn) } is independent in w

b. since T is anto,

for any w E W . . . /

there's V t V
Such that T(U) = W

Ehen

 $T(\alpha_1 V_1 + \cdots \times \alpha_n V_n) \leq W$

Can be rewritten since Tis linear Transformation

40 $\alpha_i T_{(V_i)} + \cdots + \alpha_n T_{(V_n)} = W$

Which means

wis span & T(vi), ..., T(vn) }