Introduction to Bayesian Networks

Based on the Tutorials and Presentations:

- (1) Dennis M. Buede Joseph A. Tatman, Terry A. Bresnick;
- (2) Jack Breese and Daphne Koller;
- (3) Scott Davies and Andrew Moore;
- (4) Thomas Richardson
- (5) Roldano Cattoni
- (6) Irina Rich

Suppose you are trying to determine if a patient has inhalational anthrax. You observe the following symptoms:

- The patient has a cough
- The patient has a fever
- The patient has difficulty breathing

You would like to determine how likely the patient is infected with inhalational anthrax given that the patient has a cough, a fever, and difficulty breathing

We are not 100% certain that the patient has anthrax because of these symptoms. We are dealing with uncertainty!

Now suppose you order an x-ray and observe that the patient has a wide mediastinum.

Your belief that that the patient is infected with inhalational anthrax is now much higher.

- In the previous slides, what you observed affected your belief that the patient is infected with anthrax
- This is called reasoning with uncertainty
- Wouldn't it be nice if we had some methodology for reasoning with uncertainty? Why in fact, we do...

Bayesian Networks

• In the opinion of many AI researchers, Bayesian networks are the most significant contribution in AI in the last 10 years

Conditional probability

- A conditional probability statement has the form:
- "Given that B happened, the probability that A happened is x."
 - » This is written: $P(A \mid B) = x$.
- This does not imply that whenever B is true the probability of A is x
 - » P(Snow today | Snow yesterday).
 - » \neq P(Snow today | Snow yesterday, the month is July)

Rules of Probability

■ Product Rule

$$P(X,Y) = P(X \mid Y)P(Y) = P(Y \mid X)P(X)$$

■ Marginalization

$$P(Y) = \sum_{i=1}^{n} P(Y, x_i)$$

X binary:
$$P(Y) = P(Y, x) + P(Y, \overline{x})$$

Bayes rule

Likelihood of Evidence given Hypothesis \(\)

What are Bayesian nets?

- Bayesian nets (BN) are a network-based framework for representing and analyzing models involving uncertainty;
- BN are different from other knowledge-based systems tools because uncertainty is handled in mathematically rigorous yet efficient and simple way
- BN are different from other probabilistic analysis tools because of network representation of problems, use of Bayesian statistics, and the synergy between these

Definition of a Bayesian Network

Knowledge structure:

- variables are nodes
- arcs represent probabilistic dependence between variables
- conditional probabilities encode the strength of the dependencies

Computational architecture:

- computes posterior probabilities given evidence about some nodes
- exploits probabilistic independence for efficient computation

Bayesian Networks

0.15 P(S=heavy)0.05 $C \in \{none, benign, malignant\}$

Smoking=	no	light	heavy
P(C=none)	0.96	0.88	0.60
P(C=benign)	0.03	0.08	0.25
P(C=malig)	0.01	0.04	0.15

Product Rule

 $\blacksquare P(C,S) = P(C|S) P(S)$

$S \downarrow C$	$\Rightarrow \mid none$	benign	malignant
no	0.768	0.024	0.008
light	0.132	0.012	0.006
heavy	0.033	0.010	0.005

Marginalization

$S \Downarrow C \Rightarrow$	none	benign	malig	total	
no	0.768	0.024	0.008	.80	
light	0.132	0.012	0.006	.15	P(Smoke)
heavy	0.035	0.010	0.005	.05	
total	0.935	0.046	0.019		<i>)</i>
			,		•

P(Cancer)

Bayes Rule Revisited

$$P(S \mid C) = \frac{P(C \mid S)P(S)}{P(C)} = \frac{P(C,S)}{P(C)}$$

$S^{\downarrow} C \Rightarrow$	none	benign	malig
no	0.768/.935	0.024/.046	0.008/.019
light	0.132/.935	0.012/.046	0.006/.019
heavy	0.030/.935	0.015/.046	0.005/.019

Cancer=	none	benign	malignant
P(S=no)	0.821	0.522	0.421
P(S=light)	0.141	0.261	0.316
P(S=heavv)	0.037	0.217	0.263

What Bayesian Networks are good for?

Diagnosis: P(cause|symptom)=?

Prediction: P(symptom | cause)=?

- Classification: $\max_{class} P(class|data)$

Decision-making (given a cost function)

Why learn Bayesian networks?

 Combining domain expert knowledge with data

 Efficient representation and inference

- Incremental learning / \
- Handling missing data: <1.3 2.8 ?? 0 1 >
- Learning causal relationships: S < < >

"Icy roads" example

- Inspector Smith is waiting for Holmes and Watson who are both late for an appointment.
- Smith is worried that if the roads are icy one or both of them may have crashed his car.
- Suddenly Smith learns that Watson has crashed.
- Smith thinks: If Watson has crashed, probably the roads are icy, then Holmes has probably crashed too!
- Smith then learns it is warm outside and roads are salted
- Smith thinks: Watson was unlucky; Holmes should still make it.

Causal relationships

Watson has crashed!

... But the roads are salted !

"Wet grass" example

- One morning as Holmes leaves for work, he notices that his grass is wet. He wonders whether he has left his sprinkler on, or it has rained.
- Glancing over to Watson's lawn he notices that it is also wet.
- Holmes thinks: Since Watson's lawn is wet, it probably rained last night.
- He then thinks: If it rained then that explains why my grass is wet, so probably the sprinkler is off.

Causal relationships

Holmes' grass is wet!

Watson's lawn is also wet!

"Burglar alarm" example

- Holmes is at work when he receives a call from Watson, informing him that his alarm has gone off.
- Holmes thinks it is likely that the alarm really went off, although Watson sometimes play practical jokes.
- Holmes is on his way home when he hears a report on the radio, that there was an earthquake in the vicinity.
- Since the burglar alarm has been known to go off when there is an earthquake, Holmes reckons that a burglary is unlikely.
- Holmes goes back to work. (Leaving the noise for Watson).

Causal relationships

Watson reports about alarm

Radio reports about earthquake

Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents.

Another non-descendant

General Product (Chain) Rule for Bayesian Networks

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | Pa_i)$$

$$Pa_i = parents(X_i)$$

Sample of General Product Rule

 $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_6 | x_5) p(x_5 | x_3, x_2) p(x_4 | x_2, x_1) p(x_3 | x_1) p(x_2 | x_1) p(x_1)$

Arc Reversal - Bayes Rule

$$p(x_1, x_2, x_3) = p(x_3 | x_1) p(x_2 | x_1) p(x_1)$$

is equivalent to

$$p(x_1, x_2, x_3) = p(x_3 \mid x_1) p(x_2, x_1)$$
$$= p(x_3 \mid x_1) p(x_1 \mid x_2) p(x_2)$$

$$p(x_1, x_2, x_3) = p(x_3 | x_2, x_1) p(x_2) p(x_1)$$

is equivalent to

$$p(x_1, x_2, x_3) = p(x_3, x_2 | x_1) p(x_1)$$

= $p(x_2 | x_3, x_1) p(x_3 | x_1) p(x_3)$

D-Separation of variables

- Fortunately, there is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: *d-separation*.
- Definition: X and Z are d-separated by a set of evidence variables E iff every undirected path from X to Z is "blocked".
- A path is "blocked" iff one or more of the following conditions is true: ...

A path is blocked when:

- There exists a variable V on the path such that
 - it is in the evidence set E
 - the arcs putting V in the path are "tail-to-tail"

- Or, there exists a variable V on the path such that
 - it is in the evidence set E
 - the arcs putting V in the path are "tail-to-head"

• Or, ...

... a path is blocked when:

- ... Or, there exists a variable V on the path such that
 - it is NOT in the evidence set E
 - neither are any of its descendants
 - the arcs putting V on the path are "head-to-head"

D-Separation and independence

- Theorem [Verma & Pearl, 1998]:
 - If a set of evidence variables E d-separates X and Z in a Bayesian network's graph, then X and Z will be independent.
- d-separation can be computed in linear time.
- Thus we now have a fast algorithm for automatically inferring whether learning the value of one variable might give us any additional hints about some other variable, given what we already know.

Holmes and Watson: "Icy roads" example

Watson and Holmes are d-connected given no evidence, but Watson and Holmes are d-separated given State of Roads

Holmes and Watson: "Wet grass" example

Watson's Lawn and Sprinkler are d-connected given Holmes' grass

Holmes and Watson: "Burglar alarm" example

Radio Report and Burglary are d-connected given Watson's Report

• Network represents a knowledge structure that models the relationship between medical difficulties, their causes and effects, patient information and diagnostic tests

- Propagation algorithm processes relationship information to provide an unconditional or marginal probability distribution for each node
- The unconditional or marginal probability distribution is frequently called the belief function of that node

- As a finding is entered, the propagation algorithm updates the beliefs attached to each relevant node in the network
- Interviewing the patient produces the information that "Visit to Asia" is "Visit"
- This finding propagates through the network and the belief functions of several nodes are updated

- Further interviewing of the patient produces the finding "Smoking" is "Smoker"
- This information propagates through the network

- Finished with interviewing the patient, the physician begins the examination
- The physician now moves to specific diagnostic tests such as an X-Ray, which results in a "Normal" finding which propagates through the network
- Note that the information from this finding propagates backward and forward $_{46}$ through the arcs

- The physician also determines that the patient is having difficulty breathing, the finding "Present" is entered for "Dyspnea" and is propagated through the network
- The doctor might now conclude that the patient has bronchitis and does not have tuberculosis or lung cancer

What is a Bayesian Network?

also called belief networks, and (directed acyclic) graphical models

- Directed acyclic graph
 - Nodes are variables (discrete or continuous)
 - Arcs indicate dependence between variables.
- Conditional Probabilities (local distributions)
- Missing arcs implies conditional independence
- Independencies + local distributions => modular specification of a joint distribution

Why Bayesian Networks?

- Expressive language
 - Finite mixture models, Factor analysis, HMM, Kalman filter,...
- Intuitive language
 - Can utilize causal knowledge in constructing models
 - Domain experts comfortable building a network
- General purpose "inference" algorithms
 - P(Bad Battery | Has Gas, Won't Start)

- Exact: Modular specification leads to large computational efficiencies
- Approximate: "Loopy" belief propagation