Лабораторная работа №6

Пределы, последовательности, ряды и интегрирование

Смирнов-Мальцев Егор Дмитриевич

Содержание

Цель работы	4
Задание	5
Теоретическое введение	6
Выполнение лабораторной работы	7
Выводы	11
Список литературы	12

Список иллюстраций

1	Оценка предела
2	Частичные суммы
3	График частичных суммы
4	Сумма гармоничекого ряда
5	Вычисление интеграла. Функция quad()
6	Вычисление интеграла по правилу средней точки через цикл
7	Вычисление интеграла по правилу средней точки через векторы
8	Сравнение времени выполнения вычислений интеграла различными
	функциями

Цель работы

- 1. Научиться считать пределы,
- 2. Научиться работать с последовательностями и рядами,
- 3. Научиться выполнять численное интегрирование.

Задание

- Оценить предел,
- Найти частичные суммы,
- Найти сумму ряда,
- Вычислить интеграл встроенной функцией,
- Вычислить интеграл по правилу средней точки.

Теоретическое введение

Интеграл примерно равен сумме по разбиению значений умноженных на длину интервала. Octave - векторно-ориентированный язык. Поэтому стоит использовать вектора вместо циклов при выполнении заданий.

Выполнение лабораторной работы

Оценим предел:

$$\lim_{n\to\infty} (1+\frac{1}{n})^n.$$

Для этого определим функцию f равную этому выражению. Затем создадим вектор из степеней 10. Оценим f(n). (рис. [-@fig:001])

Рис. 1: Оценка предела

Найдем частичные суммы ряда

$$\sum_{n=2}^{\infty} \frac{1}{n(n+2)}.$$

Для получения последовательности частичных сумм используем цикл и цункцию sum(). Затем отобразим слагаемые и частичные суммы на графике (рис. [-@fig:002], [-@fig:003]).

Рис. 2: Частичные суммы

Рис. 3: График частичных суммы

Найдём сумму первых 1000 членов ряда

$$\sum_{n=1}^{1000} \frac{1}{n}.$$

Для этого сгенерируем члены ряда как вектор и возьмём их сумму (рис. [-@fig:004]).

Рис. 4: Сумма гармоничекого ряда

Вычислим интеграл

$$\int_0^{\pi/2} e^{x^2} \cos(x) dx,$$

с помощью встроенной функции quad('f',a,b) (рис. [-@fig:005])

```
octave:15> sum(a)
ans = 7.485470860550343
octave:16> function y=f(x)
> y = exp(x .^ 2) .* cos(x);
> end
octave:17> quad('f',0,pi/2)
ans = 1.875665011463391
```

Рис. 5: Вычисление интеграла. Функция quad()

Напишем функцию, вычисляющую интеграл по правилу средней точки через цикл. Она расположена в файле programs/midpoint.m. Применим ее (рис. [-@fig:006])

Рис. 6: Вычисление интеграла по правилу средней точки через цикл.

Напишем такую же функцию через векторы. Новая функция расположена в файле programs/midpoint_v.m. Применим ее (рис. [-@fig:007]).

Рис. 7: Вычисление интеграла по правилу средней точки через векторы.

Сравним время выполнения для каждой функции (рис. [-@fig:008]).

Рис. 8: Сравнение времени выполнения вычислений интеграла различными функциями.

Выводы

В результате выполнения работы научились работать с пределами, последовательностями, рядами и выполнять численное интегрирование в Octave.

Список литературы