

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C1 (6663)

June 2007 6663 Core Mathematics C1 Mark Scheme

Question number		Scheme	Marks	
1.	9 – 5	or $3^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$ or $3^2 - (\sqrt{5})^2$	M1	
	= <u>4</u>		A1cso	(2) 2
	M1 e.g.	for an attempt to multiply out. There must be at least 3 correct terms. Allow only, no arithmetic errors. $3^2 + 3\sqrt{5} - 3\sqrt{5} + \left(\sqrt{5}\right)^2 \text{ is M1A0}$	w one sign sli	р
	BUT	$3^2 + 3\sqrt{5} + 3\sqrt{5} - (\sqrt{5})^2$ is M1A0 as indeed is $9 \pm 6\sqrt{5} - 5$ $9 + \sqrt{15} - \sqrt{15} - 5 = 4$ is M0A0 since there is more than a sign error. $6 + 3\sqrt{5} - 3\sqrt{5} - 5$ is M0A0 since there is an arithmetic error.		
		If all you see is 9 ± 5 that is M1 but please check it has not come from incoming the second seco	orrect working	5.
		Expansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0		
	A1cso	for 4 only. Please check that no incorrect working is seen.		
		Correct answer only scores both marks.		

Question number	Scheme	Marks	
2.	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$	M1	
	= <u>16</u>	A1	(2)
	(b) $5x^{\frac{1}{3}}$ 5, $x^{\frac{1}{3}}$	B1, B1	(2)
			4
	$(23)^{\frac{4}{3}}$ $(30)^4$ $(24)^4$ $(3\sqrt{2})^4$ $(32$		

- for: 2 (on its own) or $(2^3)^{\frac{1}{3}}$ or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$ (a) 8^3 or 512 or $(4096)^{\frac{1}{3}}$ is M0 for 16 only **A**1
- 1^{st} B1 for 5 on its own or \times something. (b)

So e.g.
$$\frac{5x^{\frac{4}{3}}}{x}$$
 is B1 But $5^{\frac{1}{3}}$ is B0

An expression showing cancelling is not sufficient

(see first expression of QC0184500123945 the mark is scored for the second expression)

$$2^{\text{nd}} B1 \text{ for } x^{\frac{1}{3}}$$

Can use ISW (incorrect subsequent working)

e.g $5x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5x^4}$ which we ignore as ISW.

Correct answers only score full marks in both parts.

Question number	Scheme	Marks	
3.	(a) $\left(\frac{dy}{dx}\right) = 6x^{1} + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$	M1 A1	(2)
	(b) $6 + -x^{-\frac{3}{2}}$ or $6 + -1 \times x^{-\frac{3}{2}}$	M1 A1ft	(2)
	(a) $\left(\frac{dy}{dx}\right) = 6x^{1} + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$ (b) $\frac{6 + -x^{-\frac{3}{2}}}{}$ or $\frac{6 + -1 \times x^{-\frac{3}{2}}}{}$ (c) $\frac{x^{3} + \frac{8}{3}x^{\frac{3}{2}} + C}{}$ A1: $\frac{3}{3}x^{3}$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ A1: both, simplified and $+C$	M1 A1 A1	(3)
			7
(a)	M1 for <u>some</u> attempt to differentiate: $x^n \to x^{n-1}$ Condone missing $\frac{dy}{dx}$ or $y = \dots$		
	A1 for both terms correct, as written or better. No + C here. Of course $\frac{2}{\sqrt{x}}$ is	acceptable.	
(b)	M1 for some attempt to differentiate again. Follow through their $\frac{dy}{dx}$, at least of or correct follow through.	one term correc	et
	A1f.t. as written or better, follow through must have 2 distinct terms and simplifie	ed e.g. $\frac{4}{4} = 1$.	
(c)	M1 for some attempt to integrate: $x^n \to x^{n+1}$. Condone misreading $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ (+ <i>C</i> alone is not sufficient)		
	1 st A1 for either $\frac{3}{3} x^3$ or $\frac{4x^{\frac{1}{2}}}{\left(\frac{3}{2}\right)}$ (or better) $\frac{2}{3} \times 4x^{\frac{3}{2}}$ is OK here too but not for 2 nd .	A1.	
	2^{nd} A1 for <u>both</u> x^3 and $\frac{8}{3}x^{\frac{3}{2}}$ or $\frac{8}{3}x\sqrt{x}$ i.e. simplified terms <u>and</u> $+C$ all on one 1	ine.	
	$2\frac{2}{3}$ instead of $\frac{8}{3}$ is OK		

Question number	Scheme	Marks
4.	(a) Identify $a = 5$ and $d = 2$ (May be implied)	B1
	$(u_{200} =) a + (200 - 1)d$ $(= 5 + (200 - 1) \times 2)$	M1
	= <u>403(p)</u> or (£) <u>4.03</u>	A1 (3)
	(b) $\left(S_{200} = \frac{200}{2} \left[2a + (200 - 1)d \right] \text{ or } \frac{200}{2} \left(a + \text{"their } 403 \right) \right)$	M1
	$= \frac{200}{2} [2 \times 5 + (200 - 1) \times 2] \text{ or } \frac{200}{2} (5 + \text{"their } 403\text{"})$	A1
	= <u>40 800</u> or <u>£408</u>	A1 (3)
		6
(a)	B1 can be implied if the correct answer is obtained. If 403 is <u>not</u> obtained the	n the values of
	a and d must be clearly identified as $a = 5$ and $d = 2$.	
	This mark can be awarded at any point.	
	M1 for attempt to use n th term formula with $n = 200$. Follow through their a as	and d .
	Must have use of $n = 200$ and one of a or d correct or correct follow through	gh.
	Must be 199 not 200.	
	A1 for 403 or 4.03 (i.e. condone missing £ sign here). Condone £403 here.	
N.B.	$a = 3$, $d = 2$ is B0 and $a + 200d$ is M0 <u>BUT</u> $3 + 200 \times 2$ is B1M1 and A1 in	f it leads to 403.
	Answer only of 403 (or 4.03) scores 3/3.	
(b)	M1 for use of correct sum formula with $n = 200$. Follow through their a and d	and their 403.
	Must have <u>some</u> use of $n = 200$, and some of a , d or l correct or correct follows:	ow through.
	1^{st} A1 for any correct expression (i.e. must have $a = 5$ and $d = 2$) but can f.t. their	403 still.
	2^{nd} A1 for 40800 or £408 (i.e. the £ sign is required before we accept 408 this tim	e).
	40800p is fine for A1 but £40800 is A0.	
ALT	Listing	
(a)	They might score B1 if $a = 5$ and $d = 2$ are clearly identified. Then award M1A1 t	ogether for 403.
(b)	$\sum_{r=1}^{200} (2r+3)$. Give M1 for $2 \times \frac{200}{2} \times (201) + 3k$ (with $k > 1$), A1 for $k = 200$ and A1	for 40800.

Question number	Scheme	Marks	
5.	Translation parallel to x-axis Top branch intersects +ve y-axis	M1	
	Lower branch has no intersections No obvious overlap	A1	
	$\left(0,\frac{3}{2}\right)$ or $\frac{3}{2}$ marked on y- axis	B1 ((3)
	(b) $x = -2$, $y = 0$	B1, B1	(2)
S.C.	[Allow ft on first B1 for $x = 2$ when translated "the wrong way" but must be compatible with their sketch.]		5
(a)	 M1 for a horizontal translation – two branches with one branch cutting y – axis only. If one of the branches cuts both axes (translation up and across) this is M0. A1 for a horizontal translation to left. Ignore any figures on axes for this mark. B1 for correct intersection on positive y-axis. More than 1 intersection is B0. x=0 and y = 1.5 in a table alone is insufficient unless intersection of their sketch is with +ve y-axis. A point marked on the graph overrides a point given elsewhere. 		
(b)	1 st B1 for $x = -2$. NB $x \ne -2$ is B0. Can accept $x = +2$ if this is compatible with their sketch. Usually they will have M1A0 in part (a) (and usually B0 too) 2 nd B1 for $y = 0$.		
S.C.	If $x = -2$ and $y = 0$ and some other asymptotes are also given award B1B0		
	The asymptote equations should be clearly stated in part (b). Simply mark on the sketch is insufficient <u>unless</u> they are clearly marked "asymptote $x = -2$ " etc.		0

Question number	Scheme	Marks
6.	(a) $2x^2 - x(x-4) = 8$	M1
	$x^2 + 4x - 8 = 0 \tag{*}$	A1cso (2)
	(b) $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 1 \times -8)}}{2}$ or $(x+2)^2 \pm 4 - 8 = 0$	M1
	$x = -2 \pm \text{(any correct expression)}$	A1
	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$ or $\sqrt{12} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$	B1
	$y = (-2 \pm 2\sqrt{3}) - 4$ M: Attempt at least one y value	M1
	$x = -2 + 2\sqrt{3}, y = -6 + 2\sqrt{3}$ $x = -2 - 2\sqrt{3}, y = -6 - 2\sqrt{3}$	A1 (5)
		7
(a)	M1 for correct attempt to form an equation in <i>x</i> only. Condone sign errors/slip	s but attempt at
	this line must be seen. E.g. $2x^2 - x^2 \pm 4x = 8$ is OK for M1.	
	A1cso for correctly simplifying to printed form. No incorrect working seen. The	= 0 <u>is</u> required.
	These two marks can be scored in part (b). For multiple attempts pick	best.
(b)	1 st M1 for use of correct formula. If formula is not quoted then a fully correct sub	stitution is
	required. Condone missing $x = \text{or just} + \text{or} - \text{instead of } \pm \text{ for M1}.$	
	For completing the square must have as printed or better.	
	If they have $x^2 - 4x - 8 = 0$ then M1 can be given for $(x-2)^2 \pm 4 - 8 = 0$.	
	1 st A1 for -2 \pm any correct expression. (The \pm is required but $x = $ is not)	
	B1 for simplifying the surd e.g. $\sqrt{48} = 4\sqrt{3}$. Must reduce to $b\sqrt{3}$ so $\sqrt{16}\sqrt{3}$	or $\sqrt{4}\sqrt{3}$ are OK.
	2 nd M1 for attempting to find at least one y value. Substitution into one of the give	en equations
	and an attempt to solve for y.	
	2 nd A1 for correct y answers. Pairings need <u>not</u> be explicit but they must say which	h is x and which y .
	Mis-labelling <i>x</i> and <i>y</i> loses final A1 only.	

Question number	Scheme	Marks	
7.	(a) Attempt to use discriminant $b^2 - 4ac$	M1	
	$k^2 - 4(k+3) > 0 \implies k^2 - 4k - 12 > 0$ (*)	A1cso (2)	
	(b) $k^2 - 4k - 12 = 0 \implies$		
	$(k \pm a)(k \pm b)$, with $ab = 12$ or $(k =)\frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or $(k-2)^2 \pm 2^2 - 12$	M1	
	k = -2 and 6 (both	n) A1	
	$\underline{k < -2, k > 6}$ or $(-\infty, -2); (6, \infty)$ M: choosing "outsi	de' M1 A1ft (4)	
		6	
(a)	M1 for use of $b^2 - 4ac$, one of b or c must be correct. Or full attempt using completing the square that leads to a 3TQ in k e.g. $\left(\left[x + \frac{k}{2}\right]^2 = \right) \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that $b^2 - 4ac > 0$ and no incorrect working seen. Must have >0 . If >0 just appears with $k^2 - 4(k+3) > 0$ that is OK. If >0 appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k+3)$ is M0A0 (wrong formula) Using $\sqrt{b^2 - 4ac} > 0$ is M0.		
(b)	1 st M1 for attempting to find critical regions. Factors, formula or completing the square. 1 st A1 for $k = 6$ and -2 only 2 nd M1 for choosing the outside regions 2 nd A1f.t. as printed or f.t. their (non identical) critical values 6 < k < -2 is M1A0 but ignore if it follows a correct version -2 < k < 6 is M0A0 whatever their diagram looks like Condone use of x instead of k for critical values and final answers in (b).		

Question number	Scheme	Marks	
8.	(a) $(a_2 = \underline{)3k + 5}$ [must be seen in part (a) or labelled $a_2 = \underline{]}$	B1	(1)
	(b) $(a_3 =)3(3k+5)+5$	M1	
	$=\underline{9k+20}\tag{*}$	A1cso	(2)
	(c)(i) $a_4 = 3(9k + 20) + 5 (= 27k + 65)$	M1	
	$\sum_{k=1}^{4} a_{k} = k + (3k+5) + (9k+20) + (27k+65)$	M1	
	(ii) = 40k + 90	A1	
	$= \underline{10(4k+9)} $ (or explain why divisible by 10)	A1ft	(4) 7
(b)	M1 for attempting to find a_3 , follow through their $a_2 \neq k$. A1cso for simplifying to printed result with no incorrect working seen.		
(c)	1 st M1 for attempting to find a_4 . Can allow a slip here e.g. $3(9k + 20)$ [i.e.	forgot +5]	
	2 nd M1 for attempting sum of 4 relevant terms, follow through their (a) and	(b).	
	Must have 4 terms starting with k .		
	Use of arithmetic series formulae at this point is M0A0A0		
	1 st A1 for simplifying to $40k + 90$ or better	1 / \/1	
	2 nd A1ft for taking out a factor of 10 or dividing by 10 or an explanation in v Follow through their sum of 4 terms provided that both Ms are	vords true $\forall k$	
	scored and their sum <u>is</u> divisible by 10.		
	A comment is <u>not</u> required.		
	e.g. $\frac{40k + 90}{10} = 4k + 9$ is OK for this final A1.		
S.C.	$\sum_{r=2}^{5} a_r = 120k + 290 = 10(12k + 29) \text{ can have M1M0A0A1ft.}$		

Question number	Scheme	Marks			
9.	(a) $f(x) = \frac{6x^3}{3} - \frac{10x^2}{2} - 12x \ (+C)$	M1 A1			
	x = 5: $250 - 125 - 60 + C = 65$ $C = 0$	M1 A1	(4)		
	(b) $x(2x^2 - 5x - 12)$ or $(2x^2 + 3x)(x - 4)$ or $(2x + 3)(x^2 - 4x)$	M1			
	= x(2x+3)(x-4) (*)	A1cso	(2)		
	Shape Through origin $\left(-\frac{3}{2},0\right) \text{ and } (4,0)$	B1 B1 B1	(3)		
	(2)		9		
(a)	1 st M1 for attempting to integrate, $x^n \to x^{n+1}$				
	1 W1 for attempting to integrate, $x \to x$ 1 st A1 for all x terms correct, need not be simplified. Ignore + C here.				
	2^{nd} M1 for some use of $x = 5$ and $f(5)=65$ to form an equation in C based on their i	integration.			
	There must be some visible attempt to use $x = 5$ and $f(5)=65$. No $+C$ is M0.				
	2^{nd} A1 for $C = 0$. This mark cannot be scored unless a suitable equation is seen.				
(b)	 M1 for attempting to take out a correct factor or to verify. Allow usual errors on signs. They must get to the equivalent of one of the given partially factorised expressions or, if verifying, x(2x²+3x-8x-12) i.e. with no errors in signs. A1cso for proceeding to printed answer with no incorrect working seen. Comment not required. This mark is dependent upon a fully correct solution to part (a) so M1A1M0A0M1A0 for (a) & (b) Will be common or M1A1M1A0M1A0. To score 2 in (b) they must score 4 in (a). 				
(c)	 1st B1 for positive x³ shaped curve (with a max and a min) positioned anywhere. 2nd B1 for any curve that passes through the origin (B0 if it only touches at the origin B1 for the two points clearly given as coords or values marked in appropriate Ignore any extra crossing points (they should have lost first B1). Condone (1.5, 0) if clearly marked on -ve x-axis. Condone (0, 4) etc if max 	places on <i>x</i> axis			
	Curve can stop (i.e. not pass through) at $(-1.5, 0)$ and $(4, 0)$.				
	A point on the graph overrides coordinates given elsewhere.				

PMT

Question number	Scheme	Marks	
11.	(a) $y = -\frac{3}{2}x(+4)$ Gradient = $-\frac{3}{2}$	M1 A1	(2)
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x =, \frac{4}{9}$	M1, A1	
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3} \left(= 3\frac{1}{3}\right)$	A1	(3)
	(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these	M1 A1	
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1	
	$= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e.	A1	(4)
			9
(a)	M1 for an attempt to write $3x + 2y - 8 = 0$ in the form $y = mx + c$ or a full method that leads to $m = 0$, e.g find 2 points, and attempt gradient using $\frac{y_2 - y_1}{x_2 - x_1}$ e.g. finding $y = -1.5x + 4$ alone can score M1 (even if they go on to say $m = 4$) A1 for $m = -\frac{3}{2}$ (can ignore the $+c$) or $\frac{dy}{dx} = -\frac{3}{2}$		
(b)	M1 for forming a suitable equation in one variable and attempting to solve leading to $x =$ or $y = 1^{st}$ A1 for any exact correct value for $x = 2^{nd}$ A1 for any exact correct value for $y = 2^{nd}$ A1 for any ex		
(c)	1 st M1 for attempting the <i>x</i> coordinate of <i>A</i> or <i>B</i> . One correct value seen scores M1. 1 st A1 for $x_A = -\frac{1}{3}$ and $x_B = 2$		
	2^{nd} M1 for a full method for the area of the triangle – follow through their x_A, x_B, y_P . e.g. determinant approach $\frac{1}{2}\begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2\\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2} 2 - \dots - (-\frac{1}{3}\dots) $		
	2^{nd} A1 for $\frac{49}{18}$ or an exact equivalent.		
	All accuracy marks require answers as single fractions or mixed numbers not necessarily in lowest terms.		