

Universität Ulm

Abgabe: Freitag, den 05.06. um $12~\mathrm{Uhr}$

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020

Punktzahl: 10

Lösungsvorschlag Analysis 1: Blatt 6

23. Zeige, dass für die nachstehenden Zahlenfolgen $(a_n)_{n\in\mathbb{N}}$ jeweils eine Zahl $a\in\mathbb{R}$ existiert, sodass $\lim_{n\to\infty}a_n=a$ gilt und berechne für gegebenes $\varepsilon>0$ ein N>0 derart, dass $|a_n-a|<\varepsilon$ für alle $n\geq N$ gilt. Für $n\in\mathbb{N}$ sei

(a)
$$a_n := \frac{n+4}{n+1}$$

Lösungsvorschlag: Es sei $\varepsilon > 0$ beliebig. Es gilt

$$a_n = \frac{n+4}{n+1} = \frac{n(1+\frac{4}{n})}{n(1+\frac{1}{n})} = \frac{1+\frac{4}{n}}{1+\frac{1}{n}} \le 1+\frac{4}{n}.$$

Da die natürlichen Zahlen nach oben unbeschränkt sind, existiert ein $N \in \mathbb{N}$, sodass $N \geq \frac{1}{4\varepsilon}$. Wir behaupten nun, dass $\lim_{n \to \infty} a_n = 1$. Dann folgt

$$|a_n-1|=\left|\frac{n+4}{n+1}-1\right|\leq \left|1+\frac{4}{n}-1\right|=\left|\frac{4}{n}\right|=\frac{4}{n}\leq \varepsilon$$
 für alle $n\geq N.$

(b)
$$a_n := \frac{4n-1}{n^2 + n^7 + 25}$$

Lösungsvorschlag: Es gilt

$$a_n = \frac{4n-1}{n^2+n^7+25} \le \frac{4n}{n^7} = \frac{4}{n^6}.$$

Wir zeigen nun, dass $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist. Da \mathbb{N} unbeschränkt ist in \mathbb{R} , existert ein $N\in\mathbb{N}$ mit $N\geq \sqrt[6]{\frac{4}{\varepsilon}}$ für jedes $\varepsilon>0$. Es folgt

$$|a_n| = \left| \frac{4n-1}{n^2 + n^7 + 25} \right| \le \left| \frac{4}{n^6} \right| \le \varepsilon$$
 für alle $n \ge N$.

Somit ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge.

(c)
$$a_n := \sum_{k=1}^n \frac{1}{k(k+1)}$$

Lösungsvorschlag: Zunächst bemerken wir, dass

$$\frac{1}{k} - \frac{1}{k+1} = \frac{k+1}{k(k+1)} - \frac{k}{k(k+1)} = \frac{1}{k(k+1)}.$$

Wir erhalten also eine Teleskopsumme

$$a_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \frac{1}{k} - \frac{1}{k+1} = 1 - \frac{1}{n+1}.$$

Die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen den Wert 1: Es sei $\varepsilon>0$ beliebig. Dann existiert ein $N\in\mathbb{N}$ mit $N\geq \frac{1}{\varepsilon}-1$. Es folgt somit

$$|a_n - 1| = \left| \sum_{k=1}^n \frac{1}{k(k+1)} - 1 \right| = \left| 1 - \frac{1}{n+1} - 1 \right| = \frac{1}{n+1} \le \frac{1}{\frac{1}{\varepsilon} - 1 + 1} = \varepsilon.$$

1

24. Es sei 0 < q < 1 und $(y_n)_{n \in \mathbb{N}}$ sei eine Folge reeller Zahlen mit $|y_{n+1} - y_n| \le q \cdot |y_n - y_{n-1}|$ für alle $n \in \mathbb{N}$. Zeige, dass die Folge in \mathbb{R} konvergiert.

Hinweis: Zeige hierzu, dass (y_n) eine Cauchyfolge ist. Ohne Beweis darf verwendet werden, dass jede Cauchyfolge in \mathbb{R} konvergiert. Schätze mit einer geometrischen Reihe ab.

Lösungsvorschlag: Wir zeigen, dass $(y_n)_{n\in\mathbb{N}}$ eine Cauchyfolge ist. Zusammen mit dem Hinweis erhalten wir dann, dass (y_n) in \mathbb{R} konvergiert. Zunächst bemerken wir, dass mit der Dreiecksungleichung und der Voraussetzung an die Folge (y_n) gilt:

$$\begin{aligned} |y_{n+p} - y_n| &= |y_{n+p} - y_{n+p-1} + y_{n+p-1} - y_{n+p-2} + y_{n+p-2} - + \dots - y_{n+1} + y_{n+1} - y_n| \\ &\leq |y_{n+p} - y_{n+p-1}| + |y_{n+p-1} - y_{n+p-2}| + \dots + |y_{n+1} - y_n| \\ &\leq q \cdot |y_{n+p-1} - y_{n+p-2}| + q \cdot |y_{n+p-2} - y_{n+p-3}| + \dots + q \cdot |y_n - y_{n-1}| \\ &\leq \dots \leq q^{n+p-1} \cdot |y_1 - y_0| + q^{n+p-2} \cdot |y_1 - y_0| + \dots + q^n \cdot |y_1 - y_0| \\ &= q^n \cdot |y_1 - y_0| \cdot \sum_{k=0}^{p-1} q^k = q^n \cdot |y_1 - y_0| \cdot \frac{1 - q^p}{1 - q} \leq q^n \cdot |y_1 - y_0| \cdot \frac{1}{1 - q}. \end{aligned}$$

Da 0 < q < 1, konvergiert die geometrische Summe und es folgt $|y_1 - y_0| \cdot \frac{1}{1-q} =: c < \infty$. Weiter folgt mit Satz 23, dass q^n eine Nullfolge ist. Zu beliebigem $\varepsilon > 0$ existiert somit ein $N \in \mathbb{N}$, sodass $q^n \le \frac{\varepsilon}{c}$ für $n \ge N$. Insgesamt folgt also

$$|y_{n+p} - y_n| \le q^n \cdot |y_1 - y_0| \cdot \frac{1}{1-q} = q^n \cdot c \le \frac{\varepsilon}{c} \cdot c = \varepsilon \quad \forall n \ge N, p \in \mathbb{N}.$$

Die Folge $(y_n)_{n\in\mathbb{N}}$ ist demnach eine Cauchyfolge und nach dem Hinweis konvergiert sie in \mathbb{R} .

$$k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$$

(1)

Lösungsvorschlag: Es gilt

Zeige, dass für $n, k \in \mathbb{N}$ mit $k \leq n$ gilt

$$k \cdot \binom{n}{k} = k \cdot \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1)!}{(k-1)!(n-k)!} = n \cdot \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} = n \cdot \binom{n-1}{k-1}.$$

- **26.** Wir definieren die Menge $\mathbb{Q} + i\mathbb{Q} := \{q_1 + iq_2 \mid q_1, q_2 \in \mathbb{Q}\} \subset \mathbb{C}$. Zeige die folgenden Aussagen: (3)
 - (a) Für alle $x \in \mathbb{R}$ und alle $\varepsilon > 0$ exisitert ein $q \in \mathbb{Q}$ mit $|x q| < \varepsilon$.

Lösungsvorschlag: Es seien $x \in \mathbb{R}$ und $\varepsilon > 0$. Da \mathbb{Q} dicht in \mathbb{R} liegt, existiert ein $q \in \mathbb{Q}$ mit $x < q < x + \varepsilon$. Es folgt

$$|q - x| < |x + \varepsilon - x| = |\varepsilon| = \varepsilon.$$

(b) Für alle $z \in \mathbb{C}$ und alle $\varepsilon > 0$ existiert ein $q \in \mathbb{Q} + i\mathbb{Q}$ mit $|z - q| < \varepsilon$.

Lösungsvorschlag: Schreibe $z=\operatorname{Re} z+i\operatorname{Im} z$ mit $\operatorname{Re} z,\operatorname{Im} z\in\mathbb{R}.$ Nach Aufgabenteil (a) existieren zu jedem $\varepsilon>0$ zwei rationale Zahlen $r,s\in\mathbb{Q}$ mit $|r-\operatorname{Re} z|<\frac{\varepsilon}{\sqrt{2}}$ und $|s-\operatorname{Im} z|<\frac{\varepsilon}{\sqrt{2}}.$ Wir setzen $q:=r+is\in\mathbb{Q}+i\mathbb{Q}.$ Dann folgt

$$|q - z|^2 = |(r - \operatorname{Re} z) + i(s - \operatorname{Im} z)|^2 = (r - \operatorname{Re} z)^2 + (s - \operatorname{Im} z)^2$$

= $|r - \operatorname{Re} z|^2 + |s - \operatorname{Im} z|^2 < \frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2} = \varepsilon^2$

und somit $|q - z| < \sqrt{\varepsilon^2} = \varepsilon$