STD – 9 MATHS

CHAPTER - 2

polynomials

EXERCISE - 2.1 Q:1

- 1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
- (i) $4x^2 3x + 7$
- \triangleright The equation $4x^2 3x + 7$ can be written as $4x^2 3x^1 + 7x^0$
- ➤ Since x is the only variable in the given equation and the powers of x (i.e., 2, 1 and 0) are whole numbers, we can say that the expression 4x² 3x + 7 is a polynomial in one variable.

(ii)
$$y^2 + \sqrt{2}$$

- > The equation $y^2 + \sqrt{2}$ can be written as $y^2 + \sqrt{2} y^0$
- Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^2 + \sqrt{2}$ is a polynomial in one variable.

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

- > The equation $3\sqrt{t} + t\sqrt{2}$ can be written as $3t^{\frac{1}{2}} + \sqrt{2}t$
- Though, t is the only variable in the given equation, the powers of t (i.e., $\frac{1}{2}$) is not a whole number.
- ➤ Hence, we can say that the expression $3\sqrt{t} + t\sqrt{2}$ is not a polynomial in one variable.

(iv) Y +
$$\frac{2}{y}$$

- > The equation Y + $\frac{2}{y}$ an be written as y + $2y^{-1}$
- ➤ Though, y is the only variable in the given equation, the powers of y (i.e.,-1) is not a whole number.
- > Hence, we can say that the expression $Y + \frac{2}{y}$ is not a polynomial in one variable.

(v)
$$x^{10} + y^3 + t^{50}$$

- \triangleright Here, in the equation $x^{10} + y^3 + t^{50}$
- > Though, the powers, 10, 3, 50, are whole numbers, there are 3 variables used in the expression $x^{10} + y^3 + t^{50}$.
- > Hence, it is not a polynomial in one variable.

Thanks

For watching