CSCI 6971 Project Report

Iterative Hessian Sketch: Fast and Accurate Solution Approximation for Constrained Least-Squares (2014)

by Mert Pilanci Martin J. Wainwright

Jiajia Yu

Department of Mathematics

April 22, 2019

Outline

Introduction

Problem Description Motivation

Iterative Hessian Sketch

Idea

Algorithm

Guarantees

Numerical Simulation

Geometrical Decrease of the error Classical Sketch vs Iterative Hessian Sketch Unconstrained vs I₁ Constrained LSP

Least Square Problems

▶ Data: $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d} (n \gg d)$, Ground truth: $\mathbf{x}^* \in \mathbb{R}^d$,

$$y = Ax^* + \omega, \quad \omega \sim N(\mathbf{0}, I_d).$$

▶ Goal: recover the truth x^* from data (y, A)

$$x^{LS} := \arg\min_{x \in C} ||Ax - y||_2^2.$$
 (1)

- Example: linear regression (unconstrained), SVM (*I*₁ constrained).
- ► Guarantee:

$$||x^{LS} - x^*||_A := \frac{1}{\sqrt{n}} ||A(x^{LS} - x^*)||_2 = \mathcal{O}\left(\sqrt{\frac{d}{n}}\right).$$

lssue: when $n \gg d$, it is expensive to directly solve (1).

Least Square Problems

▶ Data: $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d} (n \gg d)$, Ground truth: $\mathbf{x}^* \in \mathbb{R}^d$,

$$y = Ax^* + \omega, \quad \omega \sim N(\mathbf{0}, I_d).$$

▶ Goal: recover the truth x^* from data (y, A)

$$x^{LS} := \arg\min_{x \in C} ||Ax - y||_2^2.$$
 (1)

- Example: linear regression (unconstrained), SVM (I₁ constrained).
- ► Guarantee:

$$||x^{LS} - x^*||_A := \frac{1}{\sqrt{n}} ||A(x^{LS} - x^*)||_2 = \mathcal{O}\left(\sqrt{\frac{d}{n}}\right).$$

lssue: when $n \gg d$, it is expensive to directly solve (1).

Least Square Problems

▶ Data: $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d} (n \gg d)$, Ground truth: $\mathbf{x}^* \in \mathbb{R}^d$,

$$y = Ax^* + \omega, \quad \omega \sim N(\mathbf{0}, I_d).$$

Goal: recover the truth x* from data (y, A)

$$x^{LS} := \arg\min_{x \in C} ||Ax - y||_2^2.$$
 (1)

- Example: linear regression (unconstrained), SVM (I₁ constrained).
- Guarantee:

$$||x^{LS} - x^*||_A := \frac{1}{\sqrt{n}} ||A(x^{LS} - x^*)||_2 = \mathcal{O}\left(\sqrt{\frac{d}{n}}\right).$$

▶ Issue: when $n \gg d$, it is expensive to directly solve (1).

- Ground truth: $y = Ax^* + \omega$, $\omega \sim N(0, I_d)$.
- ▶ Original problem: $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d} (n \gg d)$,

$$x^{LS} := \arg\min_{x \in \mathcal{C}} \|\mathbf{A}x - y\|_2^2. \tag{1}$$

► Classical sketching method: $S \in \mathbb{R}^{m \times n}$,

$$\tilde{X} := \arg\min_{x \in C} \|SAx - Sy\|_2^2. \tag{2}$$

▶ Guarantee: if $m \succeq \frac{d}{\epsilon^2}$, then

$$\|\tilde{\mathbf{x}} - \mathbf{x}^{LS}\|_{A} \le \epsilon \|A\mathbf{x}^{LS} - \mathbf{y}\|_{2}, \quad \text{w.h.p.}$$

- Ground truth: $y = Ax^* + \omega$, $\omega \sim N(\mathbf{0}, I_d)$.
- ▶ Original problem: $y \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times d} (n \gg d)$,

$$x^{LS} := \arg\min_{x \in \mathcal{C}} \|\mathbf{A}x - y\|_2^2. \tag{1}$$

▶ Classical sketching method: $S \in \mathbb{R}^{m \times n}$,

$$\tilde{x} := \arg\min_{x \in C} \| \frac{SAx}{SAx} - \frac{Sy}{2} \|_2^2.$$
 (2)

▶ Guarantee: if $m \succeq \frac{d}{\epsilon^2}$, then

$$\|\tilde{\mathbf{x}} - \mathbf{x}^{LS}\|_{A} \le \epsilon \|\mathbf{A}\mathbf{x}^{LS} - \mathbf{y}\|_{2}, \quad \text{w.h.p.}$$

▶ Classical sketching method: $S \in \mathbb{R}^{m \times n}$,

$$\tilde{x} := \arg\min_{x \in C} \|SAx - Sy\|_2^2. \tag{2}$$

▶ Guarantee: if $m \gtrsim \frac{d}{\epsilon^2}$, then

$$\|\tilde{x} - x^{LS}\|_A \le \epsilon \|Ax^{LS} - y\|_2$$
, w.h.p.

- ► Goal: $\|\tilde{x} x^{LS}\|_A \approx \|x^{LS} x^*\|_A = \mathcal{O}\left(\sqrt{\frac{d}{n}}\right)$.
- ▶ Issue: to achieve desired accuracy, we need $m = \mathcal{O}(n)$.

▶ Classical sketching method: $S \in \mathbb{R}^{m \times n}$,

$$\tilde{x} := \arg\min_{x \in C} \|SAx - Sy\|_2^2. \tag{2}$$

• Guarantee: if $m \gtrsim \frac{d}{\epsilon^2}$, then

$$\|\tilde{x} - x^{LS}\|_{\mathcal{A}} \le \epsilon \|Ax^{LS} - y\|_2$$
, w.h.p.

- ► Goal: $\|\tilde{x} x^{LS}\|_A \approx \|x^{LS} x^*\|_A = \mathcal{O}\left(\sqrt{\frac{d}{n}}\right)$.
- ▶ Issue: to achieve desired accuracy, we need m = O(n).

Hessian Sketch

$$x^{LS} := \arg\min_{x \in C} \|Ax - y\|_{2}^{2} = \arg\min_{x \in C} \left\{ \frac{1}{2} \|Ax\|_{2}^{2} - \langle y, Ax \rangle \right\}$$
$$\tilde{x} := \arg\min_{x \in C} \|SAx - Sy\|_{2}^{2} = \arg\min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle S^{T}y, Ax \rangle \right\}$$

► Hessian Sketch:

$$\hat{X} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_2^2 - \langle y, A^T x \rangle \right\}$$
 (3)

Hessian Sketch

$$x^{\mathit{LS}} := \arg\min_{x \in \mathit{C}} \|\mathit{Ax} - y\|_2^2 = \arg\min_{x \in \mathit{C}} \left\{ \frac{1}{2} \|\mathit{Ax}\|_2^2 - \langle \mathit{y}, \mathit{Ax} \rangle \right\}$$

$$\tilde{\mathbf{X}} := \arg\min_{\mathbf{X} \in C} \|\mathbf{S}\mathbf{A}\mathbf{X} - \mathbf{S}\mathbf{y}\|_2^2 = \arg\min_{\mathbf{X} \in C} \left\{ \frac{1}{2} \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2^2 - \langle \mathbf{S}^\mathsf{T}\mathbf{y}, \mathbf{A}\mathbf{x} \rangle \right\}$$

Hessian Sketch:

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_2^2 - \langle y, A^T x \rangle \right\}$$
 (3)

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_2^2 - \langle A^T y, x \rangle \right\}$$
 (3)

Consider transformed tangent cone

$$\mathcal{K}^{LS} := \left\{ v \in \mathbb{R}^d \middle| v = tA(x - x^{LS}) \text{ for some } t \geq 0 \text{ and } x \in C \right\}$$
 and unit sphere $\mathcal{S}^{n-1} := \left\{ v \in \mathbb{R}^d \middle| \|v\|_2 = 1 \right\}$.

Illustration of transform tangent cone

$$\mathcal{K}^{LS} := \left\{ v \in \mathbb{R}^d \middle| v = tA(x - x^{LS}) \text{ for some } t \geq 0 \text{ and } x \in C \right\}$$

Figure: [Wainwright 2015] Tangent cone

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_2^2 - \langle A^T y, x \rangle \right\}$$
 (3)

Consider transformed tangent cone \mathcal{K}^{LS} and unit sphere \mathcal{S}^{n-1} . And define

$$Z_1(S) := \inf_{v \in \mathcal{K}^{LS} \cap \mathcal{S}^{n-1}} \| \overset{Sv}{} \|_2^2,$$

$$Z_2(S) := \sup_{v \in \mathcal{K}^{LS} \cap S^{n-1}} \left| \langle u, (S^T S - I_n) v \rangle \right| \text{ where } \|u\|_2 = 1.$$

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_{2}^{2} - \langle A^{T}y, x \rangle \right\}$$

$$\mathcal{K}^{LS} := \left\{ v \in \mathbb{R}^{d} \middle| v = tA(x - x^{LS}) \text{ for some } t \geq 0 \text{ and } x \in C \right\}$$

$$Z_{1}(S) := \inf_{v \in \mathcal{K}^{LS} \cap S^{n-1}} \| Sv \|_{2}^{2},$$

$$Z_{2}(S) := \sup_{v \in \mathcal{K}^{LS} \cap S^{n-1}} \left| \langle u, (S^{T}S - I_{n})v \rangle \right| \text{ where } \|u\|_{2} = 1.$$

Proposition 1 [Pilanci 2016]

For any convex set C and any sketching matrix $S \in \mathbb{R}^{m \times n}$, the Hessian sketch solution \hat{x} satisfies the bound

$$\|\hat{x} - x^{LS}\|_{A} \le \frac{Z_2}{Z_1} \|x^{LS}\|_{A}$$

$$\hat{X} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SAx \|_2^2 - \langle A^T y, x \rangle \right\}$$
 (3)

$$\mathcal{K}^{LS} := \left\{ v \in \mathbb{R}^d \middle| v = tA(x - x^{LS}) \text{ for some } t \geq 0 \text{ and } x \in C \right\},$$

Define Gaussian width to measure the size of K^{LS} :

$$\mathcal{W}(\mathcal{K}^{LS}) := \mathbb{E}_{g} \left[\sup_{v \in \mathcal{K}^{LS} \cap \mathcal{S}^{n-1}} |\langle g, v
angle |
ight].$$

Lemma 1(a) [Pilanci 2016]

For sub-Gaussian sketch matrices, given a sketch size $m \ge \frac{c_0}{\rho^2} \mathcal{W}^2(\mathcal{K}^{LS})$, we have

$$\|\hat{x} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}$$
 w.h.p.

Issues of Hessian Sketch

$$\tilde{x} := \arg\min_{x \in C} \|SAx - Sy\|_2^2. \tag{2}$$

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_2^2 - \langle A^T y, x \rangle \right\}$$
 (3)

▶ Classical sketch: if $m \gtrsim \frac{d}{2}$, then

$$\|\tilde{x} - x^{LS}\|_{A} \le \epsilon \|Ax^{LS} - y\|_{2}, \quad \text{w.h.p.}$$

► Hessian sketch: if $m \ge \frac{c_0}{\rho^2} W^2(\mathcal{K}^{LS})$, then

$$\|\hat{x} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}$$
 w.h.p.

One-step Hessian sketch has the same issue as classical sketch has. But now we can do Hessian Sketch iteratively.

Issues of Hessian Sketch

$$\tilde{x} := \arg\min_{x \in C} \|SAx - Sy\|_2^2. \tag{2}$$

$$\hat{x} := \arg\min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_2^2 - \langle A^T y, x \rangle \right\}$$
 (3)

► Classical sketch: if $m \gtrsim \frac{d}{c^2}$, then

$$\|\tilde{x} - x^{LS}\|_A \le \epsilon \|Ax^{LS} - y\|_2$$
, w.h.p

► Hessian sketch: if $m \ge \frac{c_0}{\rho^2} \mathcal{W}^2(\mathcal{K}^{LS})$, then

$$\|\hat{x} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}$$
 w.h.p.

One-step Hessian sketch has the same issue as classical sketch has. But now we can do Hessian Sketch iteratively.

(1)
$$x^{LS} := \arg \min \|Ax - y\|_{2}^{2} = \arg \min_{x \in C} \left\{ \frac{1}{2} \|Ax\|_{2}^{2} - \langle y, Ax \rangle \right\}$$

$$x^{1} := \arg \min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle y, Ax \rangle \right\}$$

$$\|x^{1} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}.$$

(1)
$$x^{LS} := \arg\min \|Ax - y\|_{2}^{2} = \arg\min_{x \in C} \left\{ \frac{1}{2} \|Ax\|_{2}^{2} - \langle y, Ax \rangle \right\}$$

$$x^{1} := \arg\min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle y, Ax \rangle \right\}$$

$$\|x^{1} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}.$$
(2)
$$x^{LS} - x^{1} = \arg\min_{x \in C - x^{1}} \|Ax - (y - Ax^{1})\|_{2}^{2}$$

$$= \arg\min_{x \in C - x^{1}} \left\{ \frac{1}{2} \|Ax\|_{2}^{2} - \langle y - Ax^{1}, Ax \rangle \right\}$$

$$x^{1.5} := \arg\min_{x \in C - x^{1}} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle y - Ax^{1}, Ax \rangle \right\}$$

$$\|x^{1.5} - (x^{1} - x^{LS})\|_{A} \le \rho \|x^{1} - x^{LS}\|_{A} \le \rho^{2} \|x^{LS}\|_{A}.$$

$$x^{1} := \arg\min_{x \in C} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle y, Ax \rangle \right\}$$

$$\|x^{1} - x^{LS}\|_{A} \le \rho \|x^{LS}\|_{A}.$$

$$x^{1.5} := \arg\min_{x \in C - x^{1}} \left\{ \frac{1}{2} \|SAx\|_{2}^{2} - \langle y - Ax^{1}, Ax \rangle \right\}$$

$$x^{2} := \arg\min_{x \in C} \left\{ \frac{1}{2} \|SA(x - x^{1})\|_{2}^{2} - \langle y - Ax^{1}, Ax \rangle \right\} = x^{1.5} + x^{1}$$

$$\|x^{1.5} - (x^{1} - x^{LS})\|_{A} \le \rho^{2} \|x^{LS}\|_{A}.$$

$$\|x^{2} - x^{LS}\|_{A} = \|x^{1.5} - (x^{LS} - x^{1})\|_{A} \le \rho^{2} \|x^{LS}\|_{A}.$$

Algorithm: Iterative Hessian Sketch [Pilanci 2016]

Given an iteration number $N \ge 1$:

- (1) Initialize at $x^0 = 0$.
- (2) For iterations t = 0, 1, 2, ..., N-1, generate an independent sketch matrix $S^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$x^{t+1} := \arg\min_{x \in \mathcal{C}} \left\{ \frac{1}{2} \| \textit{SA}(x - x^t) \|_2^2 - \langle y - Ax^t, Ax \rangle \right\}.$$

(3) Return the estimate $\hat{x} = x^N$.

Algorithm: Iterative Hessian Sketch [Pilanci 2016]

Given an iteration number $N \ge 1$:

- (1) Initialize at $x^0 = 0$.
- (2) For iterations $t=0,1,2,\ldots,N-1$, generate an independent sketch matrix $\mathcal{S}^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$x^{t+1} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| \textit{SA}(x - x^t) \|_2^2 - \langle \textit{y} - \textit{A}x^t, \textit{A}x \rangle \right\}.$$

(3) Return the estimate $\hat{x} = x^N$.

Algorithm: Iterative Hessian Sketch [Pilanci 2016]

Given an iteration number $N \ge 1$:

- (1) Initialize at $x^0 = 0$.
- (2) For iterations $t=0,1,2,\ldots,N-1$, generate an independent sketch matrix $\mathcal{S}^{t+1} \in \mathbb{R}^{m \times n}$, and perform the update

$$x^{t+1} := \arg\min_{x \in C} \left\{ \frac{1}{2} \| SA(x - x^t) \|_2^2 - \langle y - Ax^t, Ax \rangle \right\}.$$

(3) Return the estimate $\hat{x} = x^N$.

Guarantees for Iterative Hessian Sketch

Corollary 1 [Pilanci 2016]

Fix some $\rho \in (0, 1/2)$, and choose sub-Gaussian sketches with sketch dimension $m \geq \frac{c_0}{\rho^2} \mathcal{W}^2(\mathcal{K}^{LS})$. If we apply IHS algorithm for $N(\rho, \epsilon) := 1 + \frac{\log(1/\epsilon)}{\log(1/\rho)}$ steps, then the output $\hat{x} = x^N$ satisfies

$$\|\hat{\mathbf{x}} - \mathbf{x}^{LS}\|_{\mathcal{A}} \le \epsilon \|\mathbf{x}^{LS}\|_{\mathcal{A}}$$

with probability at least $1 - c_1 N(\rho, \epsilon) \exp(-c_2 m \rho^2)$

Geometrical Decrease of the error

umber: left: unconstrained, right: I_1

IIx hat-x LSII A vs number of iteration

Figure: $\|\hat{x} - x^{LS}\|_A$ vs iteration number: left: unconstrained, right: l_1 constrained.

Classical Sketch vs Iterative Hessian Sketch

Figure: [Pilanci 2016] Plots of mean-squared error vs the row dimension.

Unconstrained vs I₁ Constrained

Figure: Plots of mean-squared error vs the row dimension, $m = 5s \ln d \approx 191$.

Unconstrained vs I₁ Constrained

Figure: Plots of mean-squared error vs the row dimension, $m = 4s \ln(ed/s) \approx 90$.

Summary

- Random sketching method can approximately solve least-squares problems.
- Iterative Hessian sketch can solve least-squares problems with better accuracy than classical sketching method.
- The "best" sketch size depends on the width of transformed tangent cone.

References

Wainwright, M.J.

Randomized algorithms for optimization: Statistical and computational guarantees. [Slides]

Retrieved from https://warwick.ac.uk/fac/sci/wdsi/events/yobd/computational/wainwright_warwick15_final.pdf