TD: Probabilités

1 Variable Aléatoire

- $-X:\Omega\to\mathbb{R}$: une v.a. à valeurs réelles (affecte un nombre réel à un événement de Ω)
- --x: une valeur possible prise par X
- P(X = x): probabilité que l'événement $\{X = x\}$ se réalise
- $p_X(x)$: loi de probabilité de X définie comme $p_X(x) = P(X = x)$
- $F_X(x) = P(X \le x)$: fonction de répartition de X

Exercice 1 : Une entreprise fabrique des interrupteurs avec voyants lumineux. Un relevé statistique indique que 5% des interrupteurs fabriqués sont défectueux. Supposons que l'on prélève successivement et au hasard de la production deux interrupteurs. Notons X la v.a. "nombre d'interrupteurs défectueux dans l'échantillon prélevé".

- 1. Définir la v.a. X.
- 2. Déterminer la loi de probabilité de X.
- 3. Définir la fonction de répartition de X.
- 4. Quelle est la probabilité pour qu'au plus, un interrupteur soit défectueux?

Exercice 2 : On tire successivement, avec remise, deux boules d'une urne qui contient une rouge R, une verte V et une blanche B.

- 1. On gagne 1 euro avec R, 2 euros avec V et on perd 3 euros avec B. Définir la v.a. X qui représente le gain. Définir la variable aléatoire X
- 2. Déterminer sa loi de probabilité
- 3. Déterminer sa fonction de répartition
- 4. Calculer son espérance

2 Lois de probabilité

- Loi binomiale $X \sim \beta(n, p)$: $P(X = x) = C_n^x p^x (1 p)^{n-x}$
- Loi de Poisson $X \sim \mathcal{P}(\lambda)$: $P(X = x) = \frac{-\lambda \lambda^{x}}{x!}$, $\forall \lambda > 0$
- Espérance: $E[X] = \sum_{x} x P(X = x)$
- Variance: $V[X] = E[(X E[X])^2] = E[X^2] E[X]^2$

Exercice 3: On jette successivement, cinq fois un dé. On s'intéresse à la v.a. X qui représente le nombre de fois qu'un 3 apparaît.

- 1. Définir X (seulement les ensembles de départ et d'arrivée).
- 2. Définir la loi de probabilité de X (avec ses paramètres).
- 3. Quelle est la probabilité d'obtenir le nombre 3 deux fois?
- 4. Quelle est la probabilité de ne pas obtenir le nombre 3?
- 5. Quelle est la probabilité d'obtenir le nombre 3 au moins une fois?
- 6. Quelle est la probabilité d'obtenir le nombre 3 au moins 3 fois?
- 7. Quelle est l'espérance de X?

Exercice 4 : On considère la v.a. X qui modélise le nombre de fois qu'un tireur à l'arc atteint sa cible après n tirs. Sachant que ce tireur a une probabilité $p = \frac{5}{7}$ d'atteindre sa cible.

- 1. Définir la v.a. X.
- 2. Quelle est la probabilité que le tireur touche 3 fois sa cible après 5 tirs? Même question après 10 tirs?
- 3. On suppose que le tireur gagne 1 euro à chaque fois qu'il touche sa cible. Définir cette nouvelle v.a. Y qui définit le gain du tireur après un tir.
- 4. Calculer l'espérance mathématique de Y après 5 tirs.
- 5. Calculer la variance de Y après 5 tirs.

Exercice 5: Une étude réalisée par un technicien a permis d'établir que le nombre moyen des arrivées de pièces à usiner à un certain poste est de 90 à l'heure. En supposant que la v.a. X qui compte le nombre d'arrivées à la minute suit une loi de Poisson.

- 1. Définir la loi de probabilité de X
- 2. Quelle est la probabilité qu'entre 10h52 et 10h53 il n'y ait aucune arrivée?
- 3. Quelle est la probabilité que pendant une minute il y ait entre 2 et 5 arrivées?
- 4. Quelle est l'espérance de X?
- 5. Quelle est la variance de X?

Exercice 3

Dans cet exercice, on considère les fonctions f_n définies sur ${\bf R}$ pour n entier naturel par :

$$\forall x \in \mathbf{R}, \quad f_n(x) = x^n \exp(-\frac{x^2}{2}).$$

Les définitions et résultats suivants seront utiles dans la suite du problème.

- La fonction f est une densité de probabilité si f est définie sur \mathbf{R} , positive ou nulle sur \mathbf{R} , continue sur \mathbf{R} sauf peut-être en un nombre fini de points, et si l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et vaut 1.
- Soit f une densité et X est une variable aléatoire réelle. On dit que X a pour densité f si la fonction de répartition F de X est donnée pour tout $x \in \mathbb{R}$, par $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$.
- Soit X une variable aléatoire réelle de densité f. Si $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente, alors X admet une espérance notée E(X) donnée par

$$E(X) = \int_{-\infty}^{+\infty} t f(t) dt.$$

Si de plus $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge, alors X^2 admet une espérance $E(X^2)$ donnée par

$$E(X^2) = \int_{-\infty}^{+\infty} t^2 f(t) dt$$

et X admet une variance donnée par $V(X) = E(X^2) - (E(X))^2$.

Partie A: préliminaires

- 1. (a) Montrer que, pour tout $x \in \mathbb{R}$, $x \le x^2 + 1$.
 - (b) En déduire que pour tout $x \in \mathbb{R}$, $|x| \le x^2 + 1$.
 - (c) Soit X une variable aléatoire réelle de densité donnée f telle que $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge. Montrer que la variable aléatoire X admet une espérance et une variance.
- 2. Soit Y une variable aléatoire qui suit la loi exponentielle de paramètre λ , où $\lambda \in \mathbf{R}_+^*$, c'est-à-dire que Y a pour densité la fonction g_λ définie par $g_\lambda(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geq 0 \\ 0 & \text{si } x < 0 \end{cases}$
 - (a) Montrer que *Y* admet une espérance et une variance.
 - (b) Montrer que l'espérance de Y est $E(Y) = \frac{1}{\lambda}$ et que la variance de Y est $V(Y) = \frac{1}{\lambda^2}$.
 - (c) Déterminer la fonction de répartition G de la variable aléatoire Y.

- 3. Soit X une variable aléatoire qui suit la loi normale centrée réduite, c'est-à-dire que X a pour densité la fonction φ définie sur \mathbf{R} par $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$.
 - (a) Montrer que *X* admet une espérance et une variance.
 - (b) Montrer que l'espérance de X est E(X) = 0 et que la variance de X est V(X) = 1.

Partie B : étude du cas particulier de la fonction f_0

On considère la fonction f_0 définie sur **R** par : $\forall x \in \mathbf{R}$, $f_0(x) = \exp(-\frac{x^2}{2})$.

- 1. Étudier la parité de la fonction f_0 .
- 2. Construire, en le justifiant, le tableau de variations de f_0 .
- 3. Exprimer $f_0(x)$ en fonction de $\varphi(x)$ et en déduire la valeur de $\int_0^{+\infty} f_0(t) dt$.

Partie C : étude du cas particulier de la fonction f_1

1. Étude de la fonction f_1 .

Dans cette partie, on note \mathcal{C}_1 la courbe représentative de la fonction f_1 dans un repère orthonormé du plan.

- (a) Étudier la parité de la fonction f_1 .
- (b) Établir le tableau des variations de la fonction f_1 sur $[0; +\infty[$.
- (c) Montrer que la courbe \mathscr{C}_1 admet une asymptote horizontale et préciser la position de \mathscr{C}_1 par rapport à cette asymptote.
- (d) Déterminer une équation de la tangente T_0 à la courbe \mathcal{C}_1 au point d'abscisse 0.
- (e) Justifier que f_1 est de classe 2 sur **R**. Étudier la convexité de f_1 et déterminer les éventuels points d'inflexion.
- (f) Tracer T_0 et \mathcal{C}_1 dans un repère orthonormé du plan, en choisissant une unité graphique adaptée.
- 2. Étude d'une suite

On considère la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f_1(u_n)$.

- (a) Montrer que , pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- (b) Montrer que la suite (u_n) est décroissante et convergente.
- (c) Déterminer sa limite L.
- (d) Construire un algorithme en langage naturel permettant de déterminer le plus petit rang n_0 à partir duquel, pour tout $n \ge n_0$, $|u_n L| \le 10^{-1}$.
- (e) Déterminer à l'aide de votre calculatrice ce rang n_0 .

Partie D: étude du cas général

1. Étude de la fonction f_n pour $n \in \mathbb{N}^*$.

On rappelle que la fonction f_n est définie sur **R** par $f_n(x) = x^n \exp(-\frac{x^2}{2})$.

- (a) Étudier la parité de f_n en fonction de n.
- (b) Donner le sens de variation de $f_n \operatorname{sur} \mathbf{R}_+$.
- (c) Construire le tableau des variations de f_n sur ${\bf R}$ en fonction de la parité de n.
- 2. Calcul d'intégrales

On pose, pour tout $n \in \mathbb{N}^*$, $I_n = \int_0^{+\infty} f_n(t) dt$.

- (a) Calculer $\lim_{t\to +\infty} t^2 f_n(t)$. En déduire qu'il existe un réel t_0 (qu'on ne cherchera pas à déterminer) tel que pour tout $t \ge t_0$, $0 \le f_n(t) \le \frac{1}{t^2}$.
- (b) Justifier que l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente. En déduire que l'intégrale I_n est convergente.
- (c) Montrer que pour tout $n \in \mathbb{N}^*$, $I_{n+2} = (n+1)I_n$.
- (d) Justifier, en utilisant la **Partie B**, que $I_0 = \sqrt{\frac{\pi}{2}}$.
- (e) Calculer I_1 .
- (f) Montrer pour tout $n \in \mathbb{N}^*$, les relations suivantes : $I_{2n+1} = 2^n n!$ et $I_{2n} = \sqrt{\frac{\pi}{2}} \frac{(2n)!}{2^n n!}$.

Partie E: étude d'une variable à densité

On considère la fonction f définie sur \mathbf{R} par $f(x) = \begin{cases} f_1(x) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$.

- 1. Montrer que *f* est une densité.
- 2. Soit X une variable aléatoire réelle de densité f.
 - (a) Déterminer la fonction de répartition F de X.
 - (b) Montrer que X admet une espérance E(X) et déterminer sa valeur.
 - (c) Montrer que X admet une variance V(X) et déterminer sa valeur.
- 3. On pose $Y = X^2$ et on admet que Y est une variable à densité. On note G sa fonction de répartition et g une densité de Y.
 - (a) Soit $x \ge 0$ et soit x' le réel vérifiant $P(Y \le x) = P(X \le x')$. Exprimer x' en fonction de x. En déduire G(x) en fonction de F(x) si $x \ge 0$.
 - (b) Déterminer G(x) si x < 0.
 - (c) Déduire une densité g de la variable aléatoire Y. Reconnaître la loi de Y, donner E(Y) et V(Y).

FIN