

Tarea No. 5

Importante: Dejar constancia de procedimiento

- Describa (gramática, funcionamiento, objetivo, alcance, etc) las diferentes implementaciones de analizadores sintácticos (LL, SLR, LR, LALR).
- Describa brevemente los elementos necesarios para construir analizadores sintácticos LR(k).
- Discuta la diferencia y/o similitudes existentes entre los analizadores sintácticos SLR, LR y LALR.
- Considere la gramática

Construya la tabla de análisis sintáctico SLR(1)

• Considere la gramática

Construya la tabla de análisis sintáctico LR(1)

ANEXO

LR(0)

Closure()

- Every item in I is also an item in Closure(I)
- If A $\rightarrow \alpha$ B β is in Closure(I) and B \rightarrow γ is an item, then add B \rightarrow • γ to Closure(I)
- Repeat until no more new items can be added to Closure(I)

Goto()

Algorithm for Goto(I, X), where I is a set of items and X is a grammar symbol: Goto(I, X) = Closure($\{A \rightarrow \alpha \ X \ \bullet \ \beta \ | \ A \rightarrow \alpha \ \bullet \ X \ \beta$ in **I**})

Building the DFA states

- Start with the production $\langle S' \rangle \rightarrow \langle S \rangle$ \$
- Create the first state to be closure (<S' $> \rightarrow \cdot <$ S>\$)
- Pick a state I
 - for each $A \rightarrow \alpha \cdot X \beta$ in I
 - find Goto(I, X)
 - if Goto(I, X) is not already a state, make one
 - Add an edge X from state I to goto(I, X) state
- Repeat until no more additions possible

Creating the parse tables

For each state

- Transition to another state using a terminal symbol is a shift to that state (shift to sn)
- · Transition to another state using a non-terminal is a goto that state (goto sn)
- If there is an item $A \to \alpha$ in the state do a **reduction** with that production for all terminals (reduce k)

SLR(1)

first(): For any string α , $first(\alpha)$ is the set of terminals that begin the string derived from α .

- If a is a terminal, then first(a) = {a}
- If $A \rightarrow \epsilon$ is a production or
 - $A \rightarrow X_1 X_2 \dots X_k$ is a production and $\epsilon \in first(X_1), \dots,$ $first(X_k)$
- then first(A) = first(A) ∪ {ε}
- If $A \,\rightarrow\, X_1 \,\, X_2 \ldots\,\, X_i \,\, X_{i+1} \,\, \ldots\,\, X_k$ is a production and
 - $\varepsilon \in first(X_1)$, ..., $first(X_i)$ and
 - the terminal $a \in first(X_{i+1})$
- then first(A) = first(A) ∪ {a}

follow(S): For each non-terminal A, follow(A) is the set of terminals that can come after ${\boldsymbol A}$ in some derivation

• $follow(S) = \{\$\}$ where S is the start symbol

- If $A \to \alpha B \beta$ is a production then $follow(B) = follow(B) \cup (first(\beta) \{\epsilon\})$
- If $A \rightarrow \alpha B$ is a production or
 - $A \rightarrow \alpha B \beta$ is a production and $\epsilon \in first(\beta)$
- then follow(B) = follow(B) ∪ follow(A)

Creating the parse tables

For each state

- Transition to another state using a terminal symbol is a shift to that state $(shift\ to\ sn)$
- Transition to another state using a non-terminal is a goto that state $(goto \ sn)$
- If there is an item $\mathbf{A} \to \alpha$ in the state, for all terminals $\mathbf{c} \in \mathbf{follow}(\mathbf{A})$ do a **reduction** with the production (*reduce k*)

LR(1)

Closure(I)

Goto(I, X)

Building LR(1) DFA

- Start with the item [$\langle S' \rangle \rightarrow \cdot \langle S \rangle$ \$]
- Find the closure of the item and make an state
- Pick a state I
 - for each item $[A \rightarrow \alpha \cdot X \beta \quad c]$ in I
 - find Goto(I, X)
 - if Goto(I, X) is not already a state, make one
 - Add an edge X from state I to Goto(I, X) state
- Repeat until no more additions possible

Creating the parse tables

For each LR(1) DFA state

- Transition to another state using a terminal symbol is a shift to that state $(shift\ to\ sn)$
- Transition to another state using a **non-terminal** is a **goto** that state (*goto sn*)
- If there is an item $[\mathbf{A} \to \alpha \ \bullet \ \mathbf{a}]$ in the state, do a **reduction** for input symbol \mathbf{a} with the production $\mathbf{A} \to \alpha$ (reduce k)