Dashboard / My courses / CS305 2022 / Quiz / Quiz 1

Started on Saturday, 6 August 2022, 11:34 AM

State Finished

Completed on Saturday, 6 August 2022, 11:44 AM

Time taken 9 mins 41 secs

Question 1

Complete

Marked out of 1.00

Is the string 011110011 accepted by the following DFA

$$\delta(q_0,0)=q_1$$
 , $\delta(q_0,1)=q_3$, $\delta(q_1,1)=q_2$, $\delta(q_1,0)=q_3$, $\delta(q_2,0)=q_2$, $\delta(q_2,1)=q_0$, $\delta(q_3,1)=q_2$, $\delta(q_3,0)=q_3$ where q_0 and q_3 are the initial and final states, respectively.

Select one:

- True
- False

Question ${\bf 2}$

Complete

Marked out of 1.00

The minimum length of a string in $L(((0+1)(0+1)^*)^*00(0+1)^*)$ is

Answer: 2

Question $\bf 3$

Complete

Marked out of 1.00

Let $\Sigma = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$. The number of strings in Σ^* of length 6 such that except for the first and last symbol (which are identical) no symbol is used more than once, are:

Answer: 64

Question 4

Complete

Marked out of 1.00

What is the solution for the equation R = Q + RP if the regular expression does not contain the empty string λ ?

- $\ igotimes$ a. $R=QP^*$
- $\bigcirc \ \text{b.} \ R = PQ^*$

Your answer is correct.

Question **5**

Complete

Marked out of 1.00

Write a transition table for the following regular expression:

$$(ab+ba)^*$$
.

A is the start state and D is the dead state.

Which is a final state?

Transition

table

Your answer is partially correct.

You have correctly selected 3.

722/22, 3.40 PIVI Quiz	1. Attempt review
Question 6	
Complete	
Marked out of 1.00	
Ivial neurour 1.00	
T = T + T = T + T = T = T	
In order to have two regular languages L_1 and L_2 equal, $L_3=(L_1\cap \overline{L_2})\cup$	$(L_1 \cap L_2)$ must be
a. ∅	
<u> </u>	
○ b. Non-empty	
O (1)	
\bigcirc c. $\{\lambda\}$	
Your answer is correct.	
Question 7	
Complete	
Marked out of 1.00	
Precedence of regular expressions in decreasing order is	
a. Kleen star > Concatenation > Union	
a. Nech star / Contactination / Onion	
○ b. Concatenation > Kleen star > Union	
○ c. Kleen star > Union > Concatenation	
C. Kleen star > Union > Concatenation	
Your answer is correct.	
Question 8	
Question • Complete	
Marked out of 1.00	
INGINED OUT OF 1.00	
The language of all words with at least with at least two a 's can be described	by the regular expression
\bigcirc a. $a(ab)^*a$	
\bigcirc b. $b^*ab^*a(a+b)^*$	
\bigcirc c. $(a+b)^*ab^*a(a+b)^*$	

Your answer is incorrect.

d. All of the above

Question **9**Complete
Marked out of 4.00

Convert the given DFA into a regular expression by finding out the solutions for each of the states.

Your answer is partially correct.

You have correctly selected 1.

Question 10 Complete Marked out of 1.00	
Let $\Sigma=\{0,1\}$. Define prefix of a language as: $\Pr{e}(L)=\{u:uv\in L \text{ for some }v\in\{0,1\}^*\}\;.$ Let $L=\{w\in\Sigma^+:w \text{ has equal number of 0's and 1's}\}\;.$ Then $\Pr{e}(L)$ is:	
a. Set of all strings with unequal number of 0's and 1's	
b. Set of all strings with one more 0 than 1's	
$\ igodots$ c. Set of all strings over Σ	
Od. Set of all strings with one more 1 than 0's	
Your answer is correct.	
Question 11	
Complete	
Marked out of 1.00	
The set of all real numbers in C is a regular language. Select one: True False	
Question 12	
Complete	
Marked out of 1.00	
What language does the regular expression $(\emptyset^*)^*$ denote? \bigcirc a. $\{\lambda\}$ \bigcirc b. Σ^* \bigcirc c. \emptyset	

Your answer is incorrect.

C	Complete
Ν	Marked out of 1.00
	qu
	Which type of string is accepted by the following finite automata ?
	a. Empty string
	○ b. All of the above
	○ c. No string
	Your answer is correct.
	→ Announcements
	Jump to

Quiz 1 (re-exam) ►