

| To show that \$\phi\$ is a formula of LR (o group),                                                       |
|-----------------------------------------------------------------------------------------------------------|
| we can use Theorem 5.3.8.                                                                                 |
| First we consider terms:                                                                                  |
| · x, and xe are variables, so they are terms                                                              |
| -by (a).                                                                                                  |
| · is a function symbol with arity 2, then by                                                              |
| (c) · (x, x, ) is a thru                                                                                  |
| · e is a constant symbol, so it is a term                                                                 |
| by (b).                                                                                                   |
| Nout we Cousider formulae                                                                                 |
| • $(x_1, x_2)$ and $e$ are terms, so $(\cdot(x_1, x_2) = e)$                                              |
| the terminal of the second                                                                                |
| . Similarly, $(\cdot(x_2,x_1)=e)$ is a formula.                                                           |
| · Then, by (d), $\Psi := ((\cdot(x_1, x_2) = e) \wedge (\cdot(x_2, x_1) = e))$                            |
| is a formula                                                                                              |
| . Finally, by (f), we have successively =                                                                 |
| 3 x2 Y is a formula,                                                                                      |
| ∀x, ∃x2 γ is a formula.                                                                                   |
| therfore, & is a formula of LR ( o group).                                                                |
| ,                                                                                                         |
| (a)                                                                                                       |
|                                                                                                           |
| $(\phi \wedge (\forall \forall \chi)) (\lambda E)$ $(\phi \wedge (\forall \forall \chi)) (\lambda E)$     |
| A X(XI)                                                                                                   |
| $(\phi \wedge (\psi \wedge \chi))_{(AE)}$ $(\phi \wedge \psi)$ $(\chi I)$ $(\phi \wedge \chi)$ $(\chi I)$ |
|                                                                                                           |
| $((\phi \wedge \forall) \vee (\phi \wedge \chi))$                                                         |
|                                                                                                           |

3)



```
3) The tree to has I leaves. The formula of has complexity 5. (...)
```

## 4) The truth table of \$ :

## (the 5-structures are ordered as usual.)

- 5) The formula \$\phi\$ is sah's fiable since there exists a 5-structure A such that A\*(φ)=T, for example the 5-structure in the fourth row.

  \$\phi\$ is reither a tanhology since there exists a 5-structure A such that A\*(φ)=F, Nor a contradiction since it is satisfiable.
- 6) From the truth table we Sind \$DNF = (PATGATA)V(TPAGATA)V(TPATGAR)

6) Set 0: (7\$) PNF. Then 0 eg (7\$), hence (70) eq (7(7\$)) eq \$ . Since (7\$) is + me if and only if \$ is false, then from the t with table of \$ we get  $(1\phi)^{DNF} = (P \wedge q \wedge h) \vee (P \wedge q \wedge 7h) \vee (P \wedge 7q \wedge h)$ ソ(コアハタハル) ソ (コアハフタハコル), Ao we deduce & CNF = (コアソフタソコル)人(コアソフタソル)人(ファソタソコル) 1 (pv79 v72) 1 (pv9 v2). 7) Define p: the gold is in the first box g: the gold is in the second box r: the gold is in the third box. Since one box contains gold and the other two are empty, then the following formula is true: (PA 79 A72) V (7P A9 A72) V (7P A79 A2). (1) Notice that this is first & DNF Since only one message is true, then the following formula is true = (TPA 779 A79) V(77 PA79 A79) V(77 PA779 A9) (2) This last formula is equivalent to:  $(P \land \neg q) \lor (P \land q)$ which is true if and only if P is true. Using the truth table of  $\phi$ , we can see that (1) and (2) are true if and only if p is true and gandr are false, which implies that the gold is in the first hox.

Exercise 3 (1+2+2)+3

D We prove the property in 1) by induction on the complexity of \$.

If  $\phi$  has complexity o, then  $\phi \in \sigma$ , so if  $A(\phi) = T$ then  $B(\phi)$  is true by assumption.

Suppose the property is true for all formulae of  $F_+$  that have complexities  $\leq k$ . Let  $\phi \in F_+$  of complexity k+1 such that  $A^*(\phi)=T$ . From the definition of  $F_+$ ,  $\phi$  has one of the forms  $(Y \vee X)$  or  $(Y \wedge X)$ . Since the complexities of Y and X are  $\leq k+1 \leq k$ , then we have :

i)  $A^*(\phi) = A^*(Yvx) = T$ , then  $A^*(Y) = T$  or  $A^*(x) = T$ , so by the induction hypothesis  $B^*(Y) = T$  or  $B^*(X) = T$ , thus  $B^*(Yvx) = B^*(\phi) = T$ ,

or

- ii)  $A^*(\phi) = A^*(Y \wedge X) = T$ , then  $A^*(Y) = A^*(X) = T$ , so by the induction hypothesis  $B^*(Y) = B^*(X) = T$ , hence  $B^*(Y \wedge X) = B^*(\phi) = T$ .
- The statement in 1) doesn't remain time if we replace F+ by F. Here is a counter-example. Let o = 1 P, P, Z and let A and B be the o-structures defined by A(P,)=T, A(P,)=F, B(P,)=T and B(P,)=T. Then we have =

 $A(P_i) = T \Rightarrow B(P_i) = T$  for all  $P_i \in G$ . But, if we take  $\phi = (\neg P_2)$ , we have:  $A^*(\phi) = A^*(\neg P_2) = T$  and  $B^*(\phi) = B^*(\neg P_2) = T$ .