

An Infobiotics Workbench Conversion Tool for SBOL and SBML

Peter Dun

Dept. of Computer Science Stanford University Stanford, CA

Chris Myers

Dept. of Computer Science University of Utah Salt Lake City, Utah

Harold Fellerman

School of Computing Newcastle University Newcastle-upon-Tyne, UK

Laurentiu Mierla

Dept. of Computer Science University of Pitesti Pitesti, Romania

A domain specific programming language

- For synthetic biology
- Supports scalable designs through modularity
- Declarative language with Java-like syntax
- Provides declarations to
 - Design synthetic biological systems through specification
 - Define rules and rates for stochastic simulation
 - Annotate designs with verification statements
 - Annotate designs with compilation directives

Example: mRNA transcription from up-regulated promoter


```
PBAD = PROMOTER(http://parts.igem.org/Part:BBa_I13453)

Ara = MOLECULE()

rnaP = MOLECULE()

rna = RNA()

Bule regulation: PBAD + Ara <-> PBAD~Ara

Rule transcriptionInitiation: PBAD~Ara + rnaP <-> PBAD~Ara~rnaP

Rule transcriptionStep: PBAD~Ara~rnaP -> PBAD + Ara + rnaP + rna

Rule rnaDegradation: rna ->
```

Devices encode functional pieces of DNA:


```
operon_one = DEVICE(
    parts = [pTrc2, cl, gfpmut3],
    input = [aTc], output = [Cl, GFPmut3]
) {
    mrna_Lacl = RNA() // a local "variable"
    // PROCESSES and RULES here
}
```


collection of parts, rules, and processes that characterize the piece of DNA

Cells introduce compartments with physical boundaries

Biomatter Compilation

- Compilation of DNA sequences performed by the Assistant To Genetic Compilation (ATGC)
- Completes IBL designs with terminators, spacers, RBS's
- Optionally infers RBS sequences from given desired transcription rate (Sallis RBSCalculator)
- Arranges parts according to given constraints
- Adds cloning sites from specified library

Ladroue, C., Kalvala, S.: Constraint-based genetic compilation. In: Algorithms for Computational Biology,

LNBI, vol. 9199, pp 25-3. Springer International, Heidelberg (2015)

SBOL Export

SBOL – With/Without

Riccompilation

Biocompilation Device Genetic parts **DNA** ComponentDefinition Component Component Component ComponentDefinition + ComponentDefinition + ComponentDefinition + SequenceAnnotation **SequenceAnnotation SequenceAnnotation Terminator** Promoter Gene

SBOL - Structural


```
define Ecoli typeof CELL() {
    aTc = MOLECULE()

    operon_one = DEVICE(
        parts = [pTrc2, cl, gfpmut3],
        input = [aTc], output = []
    ) {}
}
```

SBML Export – Flattened/Hierarchical

SBML - Functional

Reactions

- Rate law set through KineticLaw of Reaction
- Extent units: M, mM, uM, ... -> SBML "items"
- Time unit: second

Replacements

- Cell Compartment replaces Device Compartments
- Cell Species replace Device Species

SBML - Functional

Summary

- IBW design, simulation, and verification language
- IBL modular language that uses Devices, Cells, and Regions
- Sequence and structure captured by SBOL
- Rates and quantities captured by SBML

The Infobiotics Workbench

http://ico2s.org/data/code/IBW-1.0.0.ova (prerelease)

Developer Team

- Laurentiu Mierla
- Christophe Ladroue
- Daven Sanassy
- Jonny Naylor
- Savas Konur
- Peter Dun

- Chris Myers
- Harold Fellermann
- Sara Kalvala
- Marian Gheorghe
- Natalio Krasnogor

