Chapter 6

Introduction to Graphs

The Main Topics Covered

- Learn about graphs
- Become familiar with the basic terminology of graph theory
- Discover how to represent graphs in computer memory
- Examine and implement various graph traversal/search algorithms
- Examine and implement some applications of graphs

Introduction

 In 1736, in the town of Königsberg in Prussia, the river Pregel flows around the island Kneiphof and then divides into two branches

Introduction

- The river has four land areas: A, B, C, and D
- These land areas are connected using seven bridges that are labeled a, b, c, d, e, f, and g
- The Königsberg bridge problem

Starting at one land area, is it possible to walk across all of the bridges exactly once and return to the starting land area?

4

Introduction

• In 1736, Euler represented the *Königsberg bridge* problem as a graph ...

... and answered the question in the negative

This marked the birth of graph theory

- A graph G is a pair, G = (V, E), in which V is the set of vertices of G, and E is the set of edges in G
- If the elements of E are ordered pairs, G is called a
 directed graph (or digraph); otherwise, G is called an
 undirected graph
 - In an undirected graph, the pairs (u,v) and (v,u) represent the same edge
 - If (u, v) is an edge in a digraph, the vertex u is called the *origin* of the edge, and the vertex v is called the *destination*

A graph can be shown pictorially

- A graph is called a weighted graph if its edges are labelled with numeric values
- A graph $H = (V_H, E_H)$ is called a *subgraph* of G if $V_H \subseteq V, E_H \subseteq E$

Let G be an undirected graph; u, v be two vertices of G

- u and v are called *adjacent* if there is an edge from one to the other; that is, $(u, v) \in E$
- Let $e = (u, v) \in E$. Edge e is *incident on* the vertices u and v
- An edge incident on a single vertex is called a loop
- If two edges, e_1 and e_2 , are associated with the same pair of vertices, then e_1 and e_2 are called *parallel edges*

- A graph is called a simple graph if it has no loops and no parallel edges
- There is a *path* from u to v if there is a sequence of vertices $u_1, u_2, ..., u_n$ such that $u = u_1, v = u_n$, and (u_i, u_{i+1}) is an edge for all i = 1, 2, ..., n-1
- A $simple\ path$ from u to v is a path from u to v with no repeated vertices
- A cycle is a simple path in which the first and last vertices are the same

- Vertices u and v are called connected if there is a path from u to v
- *G* is called *connected* if there is a path from any vertex to any other vertex
 - A subset of connected vertices is called a *connected component* of *G*

Let G be a directed graph; u, v be two vertices in G

- If $(u, v) \in E$ then we say that u is adjacent to v and v is adjacent from u
- G is called strongly connected if any two vertices in G are connected
 - A strongly connected component of G is a maximal strongly connected subgraph
- The *outdegree* of v is the number of directed edges leaving v; the *indegree* of v is the number of directed edges entering v

Graph Representation

- A graph can be represented in several ways
 - How a graph is represented in memory depends on the specific application
- The most two common methods are adjacency matrices and adjacency lists
- Let G = (V, E) be a graph with n(=|V|) vertices
 - Let $V = \{v_1, v_2, ..., v_n\}$

Graph Representation: Adjacency Matrices

- The *adjacency matrix* A of G is a two-dimensional $n \times n$ matrix such that
 - If there is an edge from v_i to v_j , the $(i,j)^{th}$ entry of A is 1
 - Otherwise, the $(i,j)^{th}$ entry is zero
- In an undirected graph, if $(v_i, v_j) \in E$ then $(v_j, v_i) \in E$, so the $(i, j)^{th}$ entry is as same as the $(j, i)^{th}$ entry
 - The adjacency matrix of an undirected graph is symmetric

Graph Representation: Adjacency Lists

- With *adjacency lists*, corresponding to each vertex, u, there is a linked list such that each node of the linked list contains the vertex, v, such that $(u, v) \in E$
- Technically, we use an array A of size n, such that A[i] is
 - a representation of the vertex v_i
 - a pointer to the first node of the linked list containing the vertices to which v_i is adjacent

Graph Representation: Examples

Two representations of an undirected graph

Two representations of a directed graph

Graph Traversals

- Traversing a graph is a bit more complicated than traversing a binary tree
 - A binary tree has no cycles, but a graph might have cycles
 - We might not be able to traverse the entire graph from a single vertex
- In order to traverse the entire graph, we must ...
 - keep track of the vertices that have been visited
 - traverse the graph from each unvisited vertex

Depth First Traversal/Search

A *depth first ordering* of the vertices of the graph is 0, 1, 4, 3, 2, 5, 7, 8, 6, 9

Depth First Traversal: A Non-recursive Algorithm

// the DFT starts at the vertex v

Mark v as visited

Push *v* onto the stack

while the stack is not empty

Pop *u* off the stack

Visit the vertex

for each vertex w adjacent to u

if w is not visited

Mark w as visited

Push w onto the stack

Depth First Traversal: Pseudo-code

```
dft(graph, vertex, visited) {
  visited[vertex] = true;
  push(S, vertex);
  while (!isEmpty(S)) {
    vertex = pop(S);
    cout << vertex;</pre>
    p = graph[vertex];
    while (p) {
      if (!visited[p->vertex]) {
        visited[p->vertex] = true;
        push(S, p->vertex);
      p = p->next;
```

Depth First Traversal: A Recursive Algorithm

```
// the DFT starts at the vertex v
Mark v as visited
Visit the vertex
for each vertex u adjacent to v
  if u is not visited
    Start the DFT at u
```

Depth First Traversal: Pseudo-code

```
dft(graph, vertex, visited) {
  visited[vertex] = true;
  cout << vertex << " ";</pre>
  p = graph[vertex];
  while (p) {
    if (!visited[p->vertex])
      dft(graph, p->vertex, visited);
    p = p->next;
```

Depth First Traversal: Pseudo-code

```
dft(graph, vertex, visited) {
  visited[vertex] = true;
  cout << vertex << " ";
 p = graph[vertex];
  while (p) {
    if (!visited[p->vertex])
      dft(graph, p->vertex, visited);
   p = p-next;
visited[0 .. n - 1] = false;
for (i = 0; i < n; i++)
  if (!visited[i])
    dft(graph, i, visited);
```

Breadth First Traversal/Search

A *breadth first ordering* of the vertices of the graph is 0, 1, 3, 4, 2, 5, 7, 8, 6, 9

Breadth First Traversal/Search: Algorithm

for each vertex v in the graph if v is not visited

Add v to the queue

Mark v as visited

Extract *u* from the queue

Visit the vertex

for each vertex w that is adjacent to u

if w is not visited

Add w to the queue

Mark w as visited

Breadth First Traversal/Search: Pseudo-code

```
bft(graph) { visited[0 .. n - 1] = false;
  for (i = 0; i < n; i++)
    if (!visited[i]) {
      enQueue(Q, i); visited[i] = true;
      while (!isEmpty(Q)) {
        vertex = deQueue(Q);
        cout << vertex << " ";</pre>
        p = graph[vertex];
        while (p) {
          if (!visited[p->vertex]) {
            enQueue(Q, p->vertex);
            visited[p->vertex] = true;
   p = p->next;
}
```

An Application of Graphs: Topological Sorting

Linear ordering vs. Partial ordering

- A linear ordering on a finite set of items is an ordering which is given over all pairs of items
- A partial ordering on a finite set of items is an ordering which is given over some pairs of items but not among all of them

Applications of Graphs: Topological Sorting

Following are examples of partial orderings:

- A task is broken up into subtasks and completion of certain subtasks must usually precede the execution of other subtasks
 - Topological sorting means their arrangement in an order such that upon initiation of each subtask, all its prerequisite subtasks have been completed
 - If a subtask v must precede a subtask w, we write $v \angle w$

Partial Ordering: Example

- In a curriculum of computer science, certain courses must be taken before others
 - Topological sorting means arranging the courses in such an order that no course lists a later course as prerequisite
 - If course v is a prerequisite for course w: $v \angle w$

Applications of Graphs: Topological Sorting

Following are examples of partial orderings:

- In a computer program, some procedures may contain calls of other procedures
 - Topological sorting implies the arrangement of procedure declarations in such a way that there are no forward references
 - If a procedure v is called by a procedure w, we write $v \angle w$

Topological Sorting: Properties

- A partial ordering on a set S satisfies the following properties for any distinct items x, y, and z of S:
 - Transitivity: If $x \angle y$ and $y \angle z$, then $x \angle z$
 - Asymmetry: If $x \angle y$, then not $y \angle x$
 - Irreflexivity: Not $x \angle x$
- Hence, a partial ordering can be illustrated by drawing a directed acyclic graph (DAG) in which ...
 - the vertices denote the items of S
 - the directed edges represent ordering relationships

Topological Sorting

- The problem of topological sorting is to embed the partial order in a linear order
 - Graphically, if the vertices are arranged linearly and in a topological order, the edges will all point in one direction
- The vertices in a DAG may have several topological orders

Topological Sorting: Algorithm

- Step 1: Add all vertices whose indegree is 0 to a queue
- Step 2: Do the following substeps repeatedly until the queue is empty
 - Step 2.1: Take a vertex v off the queue and add v to the <u>end</u> of the resulting list
 - Step 2.2: Remove vertex v and the edges that leave it from the graph
 - Step 2.3: Some vertices whose *indegree* is 0 may occur in the graph after Step 2.2. Add them to the queue

Topological Sorting: An Alternative Version

- Step 1: Add all vertices whose outdegree is 0 to a queue
- Step 2: Do the following substeps repeatedly until the queue is empty
 - Step 2.1: Take a vertex v off the queue and add v to the beginning of the resulting list
 - Step 2.2: Remove vertex v and the edges that enter it from the graph
 - Step 2.3: Some vertices whose outdegree is 0 may occur in the graph after Step 2.2. Add them to the queue

Applications of Graphs: Spanning Trees

- A tree is a special kind of undirected graph, one that is connected but that has no cycles
 - Although all trees are graphs, not all graphs are trees
- A spanning tree of a connected undirected graph G is a subgraph of G that contains all of G's vertices and enough of its edges to form a tree
- There may be several spanning trees for a given graph

Spanning Trees: Example

Spanning Trees: Some Observations

- A connected undirected graph that has n vertices ...
 - ... must have at least n-1 edges
 - ... and exactly n-1 edges cannot contain a cycle
 - ... and more than n-1 edges must contain at least one cycle
- To obtain the spanning tree of a connected graph of n vertices, we must connect its n vertices with n-1 edges

Spanning Trees: Algorithm

- Beginning at a vertex, our computer visits all other vertices in the graph
 - Each vertex will only be visited once
- As our computer traverses the graph, it also marks the edge that it follows
- After the traversal is complete, the graph's vertices and marked edges form a spanning tree
 - The unmarked edges can be removed from the graph

Applications of Graphs: Minimum Spanning Trees

- A minimum spanning tree (or mst) of an undirected weighted connected graph is its spanning tree of the smallest weight
 - The weight of a tree is defined as the sum of the weights on all its edges
- It has direct applications to the design of all kinds of networks by providing the cheapest way to achieve connectivity

Example

Minimum Spanning Trees: Prim's Algorithm

- The algorithm constructs a *mst* through a sequence of expanding subtrees:
 - The initial subtree consists of a single vertex selected arbitrarily from the set V
 - On each iteration, the algorithm expands the current tree by attaching to it the *nearest vertex* not in that tree
 - The algorithm stops after all the graph's vertices have been included in the tree being constructed
- The total number of such iterations is |V|-1

An Outline of Prim's Algorithm

```
Prim(G = (V, T))
  V_T = \{v_0\}
  E_T = \emptyset
   for i = 1 to |V| - 1
      Find a minimum-weight edge e^* = (u^*, v^*) among all
         edges (u, v) such that u \in V_T, v \in V \setminus V_T
      V_T = V_T \cup \{v^*\}
      E_T = E_T \cup \{e^*\}
   return G_T = (V_T, E_T)
```

An Implementation of Prim's Algorithm

- Each vertex in $V \setminus V_T$ needs to remember the shortest edge connecting the vertex to a vertex in V_T
- Each vertex has two labels:
 - "parent" label: The name of the nearest tree vertex ($\in V_T$)
 - "distance" label: The weight of the corresponding edge
- A vertex that is not adjacent to any of the tree vertices:
 - "parent" label is NIL
 - "distance" label is ∞

An Implementation of Prim's Algorithm

- A vertex ($\in V \setminus V_T$) with the smallest distance label is the next one to be added to the tree being constructed G_T
 - Ties can be broken arbitrarily
- Let v^* be the next vertex to be added to G_T
 - Move v^* from the set $V \setminus V_T$ to the set V_T
 - For each remaining vertex v in $V \setminus V_T$ that is connected to v^* by a shorter edge than the v's current distance label, update its labels by v^* and $G[v^*][v]$, respectively


```
Prim(G, root) {
  for (each vertex v \in V) {
    v.dist = \infty;
    v.parent = NIL;
  root.dist = 0; V_{\pi} = \emptyset;
  createQueue(Q, V);
  while (!isEmpty(Q)) {
    v* = extractQueue(Q);
    add v^* to V_{\pi};
    for (each v \in Q that is adjacent to v^*)
      if (G[v*][v] < v.dist) {
        v.dist = G[v*][v];
        v.parent = v*;
        updateQueue(Q, v);
```

Single-Source Shortest-Paths Problem

- For a given vertex called the source in a weighted connected graph, find shortest paths to all its other vertices
- The most widely applications of the problem are transportation planning and packet routing in communication networks, including the Internet
- Dijkstra's algorithm is the best-known algorithm for the problem

Dijkstra's Algorithm: The General Idea

- The algorithm finds the shortest path from the *source* to a vertex nearest to it, then to a second nearest, ...
- Before the i^{th} iteration starts, the algorithm has already identified the shortest paths to i-1 other vertices nearest to the *source*
 - These vertices, the *source*, and the edges of the shortest paths leading to them from the *source* form a subtree T_i
- The next vertex nearest to the *source* can be found among the vertices adjacent to the vertices of T_i

An Outline of Dijkstra's Algorithm

```
//d_{\nu} the length of the shortest path from the source to u
Dijkstra(G = (V, T))
  V_T = \{v_0\} // v_0 is the source
  E_T = \emptyset
   for i = 1 to |V| - 1
      Find an edge e^* = (u^*, v^*) among all edges (u, v) such
that u \in V_T, v \in V \setminus V_T and d_{u^*} + G[u^*][v^*] \leq d_u + G[u][v]
      V_T = V_T \cup \{v^*\}
      E_T = E_T \cup \{e^*\}
   return G_T = (V_T, E_T)
```

An Implementation of Dijkstra's Algorithm

- Each vertex has two labels:
 - "parent" label: The name of the nearest tree vertex ($\in V_T$)
 - "distance" label: The length of the shortest path from the source to this vertex found by the algorithm so far
 - lacktriangle When a vertex is added to V_T , this label indicates the length of the shortest path from the *source* to that vertex
- A vertex that is not adjacent to any of the tree vertices:
 - "parent" label is NIL
 - "distance" label is ∞

An Implementation of Dijkstra's Algorithm

- Let v^* be the next vertex to be added to G_T
 - Move v^* from the set $V \setminus V_T$ to the set V_T
 - For each remaining vertex v in $V \setminus V_T$ that is connected to v^* by an edge of weight $G[v^*][v]$ such that $d_{v^*} + G[v^*][v] < d_v$, update the labels of v by v^* and $d_{v^*} + G[v^*][v]$, respectively


```
Dijkstra(G(V, E), source) {
  for (each vertex v \in V) {
    v.dist = \infty;
    v.parent = NIL;
  source.dist = 0; V_{\pi} = \emptyset;
  createQueue(Q, V);
  while (!isEmpty(Q)) {
    v^* = extractQueue(Q);
    add v^* to V_{\pi};
    for (each v \in Q that is adjacent to v^*)
      if (v^*.dist + G[v^*][v] < v.dist) {
        v.parent = v*;
        v.dist = v*.dist + G[v*][v];
        updateQueue(Q, v);
```