

В	Zeros	
	Time Limit	1 second
	Memory Limit	32 MB

Let **L** be an infinite set of bit strings defined by the following recursive definition:

- 0 is in L
- If **0X** is in **L**, then **01X** is also in **L**
- If 1X is in L, then <u>0</u>0X is also in L
- If X0 is in L, then X10 is also in L
- If X1 is in L, then X00 is also in L
- If X00Y is in L, then X101Y is also in L
- If X01Y is in L, then X1<u>0</u>0Y is also in L
- If X10Y is in L, then X001Y is also in L
- If X11Y is in L, then X000Y is also in L

, where X and Y are any bit strings (can be empty string). For example, all members of L having length less than four are listed here: 0, 01, 10, 000, 001, 011, 100 and 110.

Let Z_N be a bit string of length N containing **only zeros**. For any given positive integer N_c , is Z_{Nc} a member of L?

INPUT

Input will consist of many test cases (no more than 10^4 test cases), each on a separate line. Each line will consist of a positive integer N_c ($N_c \le 10^4$). Input will be terminated by a line containing zero (0), and this line should not be processed.

OUTPUT

Output for each test case is a line "Case #c: A" where c is the test case number and A is "YES" if Z_{Nc} is in L, otherwise "NO".

EXAMPLE

Sample Input	Sample Output
	Case #1: YES Case #2: NO Case #3: YES Case #4: YES