LARUTAN DAN ASAM BASA

- a. Konsep mol
- 1. Molaritas (M)

$$M = \frac{\text{mol terlarut}}{\text{L. larutan}} = \frac{\text{gr}}{\text{Mr}} \times \frac{1000}{\text{ml}}$$

2. Molalitas (m)

$$m = \frac{\text{mol terlarut}}{\text{kg pelarut}} = \frac{\text{gram}}{\text{Mr}} \times \frac{1000}{\text{P(gram)}}$$

3. Fraksi mol (X)

$$X_A = \frac{n_A}{n_A + n_B}$$

4. Persen berat

$$\%$$
A = $\frac{\text{massa A}}{\text{massa total}}$ x100%

5. Hubungan M dengan r

$$M = \frac{\% \times \rho \times 10}{Mr}$$

6. Hubungan m dengan %

$$m = \frac{\%}{Mr} \times \frac{1000}{(100 - \%)}$$

7. Pengenceran dan pencampuran

X pengenceran

Mol sebelum = mol sesudah
$$V_1M_1 = V_2M_2$$

X Pencampuran

$$\frac{V_{1}M_{1}+V_{2}M_{2}+...}{V_{1}+V_{2}+\cdots}$$

b. Larutan Elektrolit dan Nonelektrolit

	Elektrolit Kuat		Elektrolit Kuat		Non-elektrolit
✓	Daya hantar listrik yang kuat, karena zat terlarut di dalam pelarut seluruhnya berubah menjadi ion-ion (α = 1).	✓	Daya hantar listriknya lemah dengan harga derajat ionisasi sebesar $0 < \alpha < 1$.	✓	Tidak dapat menghantarkan arus listrik $(\alpha = 0)$
✓	Nyala lampu terang dan gelembung gas banyak	✓	Nyala lampu redup/mati dan gelembung gas sedikit	✓	Nyala lampu mati dan gelembung tidak ada
✓	Contoh: Asam-asam kuat, seperti: HCl, HBr, Hl, HClO ₃ , H ₂ SO ₄ , HNO ₃ . Basa-basa kuat, yaitu basa-basa golongan alkali dan alkali tanah, seperti: NaOH, KOH, Ca(OH) ₂ , Ba(OH) ₂ dan lain-lain Garam-garam yang mudah larut, seperti: NaCl, Kl, Al ₂ (SO ₄) ₃ , dan lain-lain	✓	Contoh: Asam-asam lemah, seperti: CH ₃ COOH, HCN, H ₂ CO ₃ , H ₂ S dan lain-lain Basa-basa lemah seperti: NH ₄ OH, Ni(OH) ₂ , dan lain-lain Garam-garam yang sukar larut, seperti: AgCl, CaCrO ₄ , Pbl ₂ , dan lain-lain	✓	Contoh: Larutan urea, sukrosa, laru- tan glukosa, larutan alkohol, dan lain-lain

c. Sifat Koligatif Larutan

Sifat koligatif larutan adalah sifat-sifat yang tidak bergantung pada jenis zat terlarutnya tetapi ditentukan oleh jumlah partikel zat terlarut. Sifat koligatif terbagi menjadi 4, yaitu:

	Sifat koligatif	Non elektrolit	Elektrolit
1.	Penurunan tekanan uap (ΔP)	$\Delta P = X_t \cdot P^0$ atau $P = X_p \cdot P^0$	$\Delta P = X_t . P^0 i$
2.	Kenaikan titik didih (ΔT _b)	$\Delta T_b = K_b. M$ atau $\Delta Tb = Kb. \frac{gr}{Mr} x \frac{1000}{p}$ $\Delta Tb = T_b - T_b^0$	$\Delta Tb = K_b \cdot M \cdot i$ atau $\Delta Tb = Kb \cdot \frac{gr}{Mr} x \frac{1000}{p} \cdot i$
3.	Penurunan Titik Beku	$\begin{split} \Delta T_{\rm f} &= \mathbf{K}_{\rm f.} \mathbf{M} \\ \text{atau } \Delta T_{\rm f} &= \mathbf{K}_{\rm b}. \ \frac{\rm gr}{\rm Mr} \mathbf{x} \frac{1000}{\rm p} \\ \Delta T_{\rm f} &= \mathbf{K}_{\rm f}^{ 0} \cdot \! T_{\rm f} \end{split}$	$\Delta T_f = K_f \cdot M \cdot i$ atau $\Delta T_f = K_f \cdot \frac{gr}{Mr} x \frac{1000}{p} \cdot i$
4.	Tekanan osmotik (p)	π = M. R. T	π = M. R. T. i

X, = fraksi mol terlarut X_D = fraksi mol pelarut i = 1 + (n - 1). α n = jumlah ion

 α = derajat ionisasi T_b^0 = titik didih pelarut $T_b = titik didih larutan$

T₀ = titk beku pelarut

T, = titk beku larutan $T = {}^{\circ}C + 273$

Teori Asam-Basa

1. Teori Arrhenius

Asam = zat yang dalam pelarut air, melepas ion H⁺

Contoh: $HCI \rightarrow H^+ + CI^-$

Basa = zat yang dalam pelarut air, melepas ion OH-

Contoh : $Ca(OH)_{2} \rightarrow Ca^{2+} + 2OH^{-}$

2. Teori Bronsted-Lowry Asam = pemberi/donor H⁺ Basa = penerima/akseptor H⁺

Pasangan asam basa konjugasi

c. Teori asam basa Lewis Asam: penerima/akseptor PEB Basa: pemberi/donor PEB

b. Konsep Derajat Keasaman (pH) larutan

$$pH = -log [H^+]$$

 $pOH = -log [OH^-]$
 $pH + pOH = 14$

Asam, $[H^+] < 10^{-7}$ atau pH < 7 Basa, $[H^+] > 10^{-7}$ atau pH > 7 $[H^+] = 10^{-7}$ atau pH = 7 Tetapan air: $K_{W} = [H^{+}] [OH^{-}] = 10^{-14}$

pH larutan asam-basa

Larutan	Rumus
Asam kuat: HCl, HClO ₄ , HBr, HI, HNO ₃ , H ₂ SO ₄	[H⁺] = M x Val
Asam lemah: CH_3COOH , HCOOH, HF, HCN, H_2S , dll	$[H^{+}] = \sqrt{K_a.M}$ $[H^{+}] = \alpha \times M$ $K_a = \alpha^2 \times M$
Basa kuat: NaOH, KOH, Ba(OH) ₂ , Ca(OH) ₂ , Sr(OH) ₂ ,	[OH⁻] = M x Val
Basa lemah: NH ₄ OH, Al(OH) ₃ , Fe(OH) ₃ , dll	$[OH^{-}] = \sqrt{K_b.M}$ $[OH^{-}] = \alpha \times M$ $K_b = \alpha^2 \times M$

- pH Larutan Penyangga (Buffer) Larutan penyangga adalah larutan yang dapat mempertahankan pH. Sifat:
 - pH tetap walaupun ditambahkan sedikit asam atau sedikit basa
 - pH tetap walaupun diencerkan

Larutan penyangga ada 2 jenis, yaitu:

Buffer asam = campuran asam lemah + garamnya

Contoh: CH, COOH + CH, COONa Rumus:

$$[H^+] = K_a \frac{a}{g}$$

- a = mol asam = mmol asam = molaritas
- g = mol garam = mmol garam = molaritas garam
- 2) Buffer basa = campuran basa lemah + garamnya Contoh: NH₄OH + NH₄Cl

Rumus:

$$[OH^-] = K_b \frac{a}{g}$$

b = mol basa = mmol basa = molaritas basa

g = mol garam = mmol garam = molaritas garam

3. pH Larutan Garam (Hidrolisis)

Hidrolisis adalah terurainya garam dalam air yang menghasilkan asam atau basa.

Ada Empat Jenis Garam, Yaitu:

Garam yang terbentuk dari reaksi *asam kuat* dengan *basa kuat* (misalnya NaCl, K₂SO₄, dan

 lain-lain) tidak mengalami hidrolisis. Untuk jenis garam yang demikian nilai pH = 7 (bersifat netral).

Garam yang terbentuk dari reaksi *asam*lemah dengan basa kuat (terhidrolisis
sebagian/parsial) dan pH > 7 (bersifat basa).
Contoh: CH₃COONa, KF, NaCN.

Garam yang terbentuk dari reaksi *asam kuat* dengan *basa lemah* (terhidrolisis sebagian/ parsial) dan pH < 7 (bersifat asam). Contoh: NH_ACI,AICI₃, Fe₂(SO₄).

Garam yang terbentuk dari reaksi *asam lemah* dengan *basa lemah* mengalami hidrolisis total (sempurna) dan pH tergantung Ka dan Kb. Contoh: CH₃COONH₄, Al₂S₃.

Tips pH campuran asam + basa

- a. Jika tidak ada sisa (asam dan basa habis), gunakan rumus hidrolisis
- b. Jika yang lemah yang sisa (yang kuat yang habis), gunakan rumus buffer
- c. Jika yang kuat yang sisa, gunakan rumus pH yang kuat

c. Hasil Kali Kelarutan (Ksp)

Kelarutan/solubilitas (s) adalah banyaknya jumlah (mol/berat) yang dapat larut dalam 1 liter larutan. Satuan kelarutan adalah molaritas (mol zat terlarut/liter larutan). Kesetimbangan kelarutan terjadi pada elektrolit yang sukar larut dalam air.

RUMUS UMUM

$$s = \sqrt[x+y]{\frac{Ksp}{x^x y^y}}$$

Tipe 2 ion: $Ksp = s^2$ Tipe 3 ion: $Ksp = 4s^3$ Tipe 4 ion: $Ksp = 27s^4$ Tipe 5 ion: $Ksp = 108s^5$

Kriteria pengendapan bila:

Q < Ksp: larutan encer/belum jenuh (tidak ada endapan)

Q = Ksp : larutan tepat jenuh (zat terlarut siap mengendap)

Q > Ksp : larutan lewat jenuh (telah terbentuk endapan)

Pergeseran Kesetimbangan Kelarutan

1. Efek ion sejenis

Jika suatu elektrolit dilarutkan dalam larutan lain yang mengandung ion sejenis maka kelarutannya (s) akan menjadi lebih kecil.

$$s = \frac{Ksp}{\left[\text{ion sejenis}\right]^{\text{indeks}}}$$

2. Efek pH

lon H⁺ dan OH⁻ turut memengaruhi kelarutan dengan jalan membentuk garam asam yang mudah larut atau basa yang sukar larut.

$$Ksp = \frac{1}{x} [OH]^{x+1}$$

3. Efek suhu

Secara umum, makin tinggi suhu maka makin besar nilai kelarutan. Harga Ksp ikut berubah.

LARUTAN DAN ASAM BASA

CONTOH SOAL

1. Soal SNMPTN

Jika 1,8 gram asam monoprotik tepat habis bereaksi dengan 100 ml larutan NaOH 0,2 M maka massa molekul asam tersebut adalah...

- (A) 30
- (B) 60
- (C) 90
- (D) 120
- (E) 180

Jawaban: C

Asam monoprotik artinya asam yang hanya dapat melepaskan 1 proton (H⁺).

<u>Tepat habis bereaksi</u> artinya mol ekuivalen asam sama dengan mol ekivalen basa sehingga:

$$\frac{\mathsf{m}}{\mathsf{Mr}} = \mathsf{M.V}$$

$$\frac{1.8 \text{ gram}}{1.00 \text{ gram}} = 0.2 \text{ M. } 0.1 \text{ L}$$

Mr =
$$\frac{1,8 \text{ gram}}{0,2 \text{ M.0,1L}} = \frac{1,8 \text{ gram}}{0,02 \text{ mol}}$$

Mr = 90 gram/mol

2. Soal SPMB

Di antara spesi berikut yang dapat bertindak sebagai asam dan basa menurut teori Bronsted-Lowry adalah

- (1) HCO,-
- (2) H₂PO₄
- (3) NH₃
- (4) SO₄²⁻

Jawaban: A

Spesi yang dapat bertindak sebagai asam dan basa (amfoter) menurut teori Bronsted-Lowry adalah spesi yang dapat menerima atau melepas H⁺

- (1) HCO_3^- benar Jika HCO_3^- menerima $H^+ \rightarrow H_2CO_3$ Jika HCO_3^- melepas $H^+ \rightarrow CO_3^{2-}$
- (2) $H_2PO_4^-$ benar Jika $H_2PO_4^-$ menerima $H^+ \rightarrow H_3PO_4$ Jika $H_2PO_4^-$ melepas $H^+ \rightarrow HPO_4^{2-}$
- (3) NH_3 benar Jika NH_3 menerima $H^+ \rightarrow NH_4^+$ Jika NH_3 melepas $H+ \rightarrow NH_2^-$
- (4) SO₄²⁻ salah Jika SO₄²⁻ menerima H⁺ → HSO₄⁻ SO₄²⁻ tidak dapat melepas H⁺ karena tidak memiliki atom H