Modelos Generativos en Computer Vision

Eugenio Herrera-Berg Machine Learning Engineer - CENIA eugenio.herrera@cenia.cl

"An expressive oil painting of a basketball player dunking, depicted as an explosion of a nebula." - Dalle 3

Recomendación práctica

Si tu objetivo con el diplomado es aprender a desarrollar proyectos de ML en industria, te recomiendo este libro :)

<u>Link a amazon</u>.

Link al repo oficial.

Objetivos de esta clase

- Comprender qué son los modelos generativos.

- Familiarizarse con distintas estrategias utilizadas para generar imágenes.

- Ver sus utilidades en la industria.

¿Qué es un Modelo Generativo?

Modelos Clasificadores

Reconocen si algo pertenece a una distribución.

$$f(\mathbb{Z}) \rightarrow dog$$
 \rightarrow Perro

Modelos Clasificadores

Reconocen si algo pertenece a una distribución.

$$f(x) \mid x \in X$$

Modelos Generativos

Aprenden a representar una distribución.

$$f(\cdot) \mid f(\cdot) \approx X$$

Modelos Generativos

Aprenden a representar una distribución.

Modelos Generativos en CV

Autoencoders / Variational Autoencoders

Generative Adversarial Networks

Modelos de difusión

Latent Diffusion

Modelos Generativos en CV

Autoencoders / Variational Autoencoders

Generative Adversarial Networks

Modelos de difusión

Stable Diffusion

Arquitectura de redes neuronales donde se comprime y luego descomprime información, generando así una representación intermedia y comprimida de esta (espacio latente).

Variational Autoencoders (VAEs)

Reformulación de la arquitectura de los autoencoders, que permite convertirlos en modelos generativos.

Variational Autoencoders (VAEs)

Espacio latente contínuo (permite interpolación contínua/consistente)

Espacio latente contínuo

Modelos Generativos en CV

Autoencoders / Variational Autoencoders

Generative Adversarial Networks

Modelos de difusión

Stable Diffusion

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

Arquitectura de modelo generativo donde se entrenan en conjunto un generador y un clasificador, mediante una competencia entre ambos.

Loss

$$\min_{G} \max_{D} V(D, G) := \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(D(x))] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

z: Ruido / Vector Latente (modelado por una normal)

x: Datos reales

G: Generador

D: Discriminador

G(z): Datos sintéticos

D(x): Discriminador evaluando datos reales

D(G(z)): Discriminador evaluando datos sintéticos

Modelos Generativos en CV

Autoencoders / Variational Autoencoders

Generative Adversarial Networks

Modelos de difusión

Stable Diffusion

Modelos de Difusión

Modelo generativo que se construye diseñando un procedimiento para gradualmente convertir datos en ruido, y luego entrenar una red neuronal que aprenda a invertir este proceso paso a paso.

Diffusion models:

Gradually add Gaussian noise and then reverse

Modelos de Difusión

UNet

The Space of All Images: "Natural Image" Manifold

Comparando

Modelos Generativos

Generative learning trilemma

Fréchet inception distance (FID)

Métrica para comparar la calidad de las imágenes creadas por un modelo generativo.

Compara la distribución de las imágenes generadas con las del dataset original utilizando representaciones de un modelo auxiliar (VGG x ejemplo).

Comparación - Fréchet inception distance [Imagenet]

Rank	Model	FID Inception score	Paper	Code	Result	Year	Tags 🗷
1	EDM2- XXL Autoguidance (M, T/3.5)	1.25	Guiding a Diffusion Model with a Bad Version of Itself		→	2024	
2	EDM2- S Autoguidance (XS, T/16)	1.34	Guiding a Diffusion Model with a Bad Version of Itself		Ð	2024	
3	EDM2-XXL w/ guidance interval	1.40	Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models		Ð	2024	
4	EDM2-S w/ guidance interval	1.68	Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models		∌	2024	
5	PaGoDA	1.80	PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher		Ð	2024	VAE Diffusion
6	EDM2-XXL	1.81	Analyzing and Improving the Training Dynamics of Diffusion Models	0	→	2023	
7	EDM2-XL	1.85	Analyzing and Improving the Training Dynamics of Diffusion Models	0	Ð	2023	
8	EDM2-L	1.88	Analyzing and Improving the Training Dynamics of Diffusion Models	0	Ð	2023	
9	MAGVIT-v2	1.91 324.3	Language Model Beats Diffusion Tokenizer is Key to Visual Generation		Ð	2023	
10	EDM2-M	2.01	Analyzing and Improving the Training Dynamics of Diffusion Models	0	Ð	2023	

Comparación - Fréchet inception distance [FFHQ]

ank	Model	FID ♣ FD Precision Recall IS bits/ dimensi		Code	Result	Year	Tags 🗗
1	StyleSAN-XL	1.68	SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer	C	Ð	2023	GAN
2	StyleNAT	2.05	StyleNAT: Giving Each Head a New Perspective	O	Ð	2022	GAN Transformer Neighborhood Attention
3	StyleGAN-XL	2.19	StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets	O	Ð	2022	GAN
4	PDM+CS	2.57	Compensation Sampling for Improved Convergence in Diffusion Models	C	Ð	2023	
5	HiT-L	2.58	Improved Transformer for High-Resolution GANs	C	Ð	2021	Transformer
6	Poly-INR	2.72	Polynomial Implicit Neural Representations For Large Diverse Datasets	0	Ð	2023	
7	StyleSwin	2.81	StyleSwin: Transformer- based GAN for High- resolution Image Generation	C	Ð	2021	Transformer Swin-Transformer
8	ніт-в	2.95	Improved Transformer for High-Resolution GANs	O	Ð	2021	Transformer
9	HiT-S	3.06	Improved Transformer for High-Resolution GANs	C	Ð	2021	Transformer
10	InsGen	3.31	Data-Efficient Instance Generation from Instance Discrimination	0	Ð	2021	

	Velocidad generación imagen	Calidad imagen	Distribución imagenes generadas
VAEs	Rápida	Baja	Alta
GANs	Rápida	Alta	Baja
Difusión	Lenta	Alta	Alta

Modelos Generativos en CV

Autoencoders / Variational Autoencoders

Generative Adversarial Networks

Modelos de difusión

Latent Diffusion

Stable Diffusion

Latent Diffusion (Abril, 2022)

Stable Diffusion (Latent Diffusion)

Arquitectura generativa compuesta, que entrena un modelo de difusión en el espacio latente de un autoencoder que fue pre-entrenado mediante el esquema competitivo de una GAN.

El proceso de difusión ocurre en el espacio intermedio del autoencoder

Latent Diffusion

Pixel Space

Ventajas de Difusión Latente

"Soluciona" el trilema de los modelos generativos.

• Permite entrenar modelos de difusión competentes con bajos recursos.

• **Genera imágenes de cualquier dimensión**, sin necesidad de reentrenamiento.

 Desacopla la lógica de condicionamiento, por lo que puede ser ajustado para nuevas tareas, como generación de imágenes a partir de texto, repintar secciones de imágenes, etc.

Usos en la industria

¿cuándo me va a servir esto?

Synthetic Data from Diffusion Models Improves ImageNet Classification

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia*, Mohammad Norouzi, David J. Fleet Google Research, Brain Team †

Abstract

Deep generative models are becoming increasingly powerful, now generating diverse high fidelity photo-realistic samples given text prompts. Have they reached the point where models of natural images can be used for generative data augmentation, helping to improve challenging discriminative tasks? We show that large-scale text-to-image diffusion models can be fine-tuned to produce class-conditional models with SOTA FID (1.76 at 256×256 resolution) and Inception Score (239 at 256 × 256). The model also yields a new SOTA in Classification Accuracy Scores (64.96 for 256×256 generative samples, improving to 69.24 for 1024×1024 samples). Augmenting the ImageNet training set with samples from the resulting models yields significant improvements in ImageNet classification accuracy over strong ResNet and Vision Transformer baselines.

1. Introduction

Deep generative models are becoming increasingly mature to the point that they can generate high fidelity photo-

Data augmentation

Caso: quiero entrenar un clasificador, pero tengo pocos datos, o son de mala calidad.

Un modelo generativo pre-entrenado puede ser *fine-tuneado* para generar datos sintéticos de alta calidad, permitiendo así entrenar un modelo competente.

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

https://nv-tlabs.github.io/datasetGAN/

Ejemplo real en CENIA:)

(Resumen)

TL:DR

Modelos Generativos

- Los modelos generativos aprenden a representar distribuciones.
- Es un área de constante estudio sin una arquitectura
 "ganadora". Cada arquitectura tiene sus pro y contras.
- Es útil para escenarios en los que quiero entrenar un modelo y tengo pocos datos. Permite aumentar mi dataset con datos sintéticos de alta calidad.

Problemas de Modelos Generativos en CV

- No son útiles para todo tipo de datos; por ejemplo, datos tabulares.
- Requieren muchos recursos para ser entrenados desde 0.
- Heredan los sesgos de los datos de entrenamiento.

Fin 🐇

Avances Recientes

ControlNet

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges (top), human pose (bottom), etc., to control the image generation of large pretrained diffusion models. The default results use the prompt "a high-quality, detailed, and professional image". Users can optionally give prompts like the "chef in kitchen".

Würstchen (Stable Cascade)

Diffusion Transformer (DiT)

Scalable Diffusion Models with Transformers

William Peebles* UC Berkeley Saining Xie New York University

Figure 1. Diffusion models with transformer backbones achieve state-of-the-art image quality. We show selected samples from two of our class-conditional DiT-XL/2 models trained on ImageNet at 512×512 and 256×256 resolution, respectively.