AMENDMENTS TO THE CLAIMS

Claim 1 (Currently Amended): An apparatus comprising:

a medical device adapted to be inserted in an anatomy, the medical device comprising a plurality of target markers,

wherein a magnetic resonance imaging (MRI) system will-one of is not unable to detect and disregards the medical device and the target markers as noise without having stored information obtained onof the plurality of target markers prior to insertion of the medical device into the anatomy.

Claim 2 (Original): The apparatus of claim 1, wherein the plurality of target markers comprise one of ferromagnetic and paramagnetic material.

Claim 3 (Original): The apparatus of claim 2, wherein the plurality of target markers are disregarded by MRI systems as noise operating between 0.2 and 5.0 Tesla.

Claim 4 (Original): The apparatus of claim 1, the medical device is one of a fluid delivering catheter, a stent delivering device, a photographic device and a balloon catheter.

Claim 5 (Original): The apparatus of claim 4, wherein the medical device comprises a polymer material.

Claim 6 (Original): The apparatus of claim 4, wherein the medical device is expandable.

Claim 7 (Original): The apparatus of claim 1, wherein the orientation and precise location of the medical device in relation to the anatomy is determinable based on the location of the plurality of target markers in relation to the medical device and each of the plurality of target markers.

Claim 8 (Currently Amended): A system comprising:

a magnetic resonance imaging (MRI) processor, the processor including a lowlevel signal detection process stored in a memory,

a MRI scanner coupled to the processor,

- a control unit coupled to the processor,
- a display coupled to the processor, and
- a medical device to insert in an anatomy, the medical device having a plurality of target markers,

wherein the medical device and the plurality of target markers are each one of not detectable and disregardable as noise for MRI systems without the low-level signal detection process and without having stored information of the plurality of target markers prior to insertion of the medical device into the anatomy.

Claim 9 (Original): The system of claim 8, further comprising a pre-scanning device coupled to the processor.

Claim 10 (Original): The system of claim 9, wherein the pre-scanner transmits one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device and the plurality of target markers to the processor.

Claim 11 (Original): The system of claim 8, wherein the plurality of target markers comprise one of ferromagnetic and paramagnetic material.

Claim 12 (Original): The system of claim 11, wherein the plurality of target markers are disregarded by MRI systems operating between 0.2 and 5.0 Tesla.

Claim 13 (Original): The system of claim 8, the medical device is one of a fluid delivering catheter, a stent delivering device, a photographic device and a balloon catheter.

Claim 14 (Original): The system of claim 13, wherein the medical device comprises a polymer material.

Claim 15 (Original): The system of claim 14, wherein the medical device is expandable.

Claim 16 (Original): The system of claim 8, wherein an orientation and a precise location of the medical device in relation to the anatomy is determinable based on the

location of the plurality of target markers.

Claim 17 (Original): The system of claim 8, wherein an image of the medical device is superimposed over its precise location within the anatomy, the superimposed image having the precise orientation that the medical device has within the anatomy.

Claim 18 (Original): The system of claim 8, wherein a plurality of pixels of the medical device replace a plurality of pixels of an anatomy at the precise location that the medical device is located at within the anatomy, the plurality of pixels of the medical device having the precise orientation that the medical device has within the anatomy.

Claim 19 (Original): The system of claim 8, wherein the memory having stored one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device.

Claim 20 (Original): The system of claim 8, wherein the low-level signal detection process adjusts a signal detection threshold to detect a low-level signal produced from the target markers.

Claim 21 (Original): The system of claim 20, wherein a non-adjusted signal threshold will one of disregard and not detect the low-level signal produced from the target markers.

Claim 22 (Original): The system of claim 8, wherein the low-level signal detection process determines to not discard low-level signals returned from the target markers upon a match from a comparison of known geometric data from the target markers with the returned low-level signals.

Claim 23 (Currently Amended): A method comprising:

inserting a medical device into an anatomy, the medical device having a plurality of target markers,

scanning a magnetic resonance image (MRI) of the anatomy,
processing the scanned image by a MRI processor coupled to a memory,
determining a location and orientation of the medical device in relation to the
anatomy based on the plurality of target markers, and

displaying a precise image of the medical device within the anatomy, wherein the medical device and the plurality of target markers are one of disregardable as noise and undetectable for MRI systems without having stored information of the plurality of target markers prior to insertion of the medical device into the anatomy.

Claim 24 (Original): The method of claim 23, further comprising: pre-scanning the medical device before inserting the medical device in an anatomy, and

transmitting one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device and the plurality of target markers to the MRI processor.

Claim 25 (Original): The method of claim 23, wherein the plurality of target markers comprise one of ferromagnetic and paramagnetic material.

Claim 26 (Original): The method of claim 25, wherein the plurality of target markers are one of not detectable and disregarded by MRI systems operating between 0.2 and 5.0 Tesla.

Claim 27 (Original): The method of claim 23, wherein the medical device is one of a fluid delivering catheter, a stent delivering device, a photographic device and a balloon catheter.

Claim 28 (Original): The method of claim 27, wherein the medical device comprises a polymer material.

Claim 29 (Original): The method of claim 27, wherein the medical device is expandable.

Claim 30 (Currently Amended): The method of claim 23, further including superimposing an stored image of the medical device over the anatomy, wherein the superimposed image of the medical device is located at its precise location within the anatomy, the superimposed image having the precise orientation that the medical device has within the anatomy.

Claim 31 (Original): method of claim 23, further including replacing a plurality of pixels of an anatomy with a plurality of pixels of the medical device at the precise location that the medical device is located at within the anatomy, the plurality of pixels of the medical device having the precise orientation that the medical device has within the anatomy.

Claim 32 (Original): The method of claim 23, wherein the memory having stored one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device and the plurality of target markers.

Claim 33 (Original): The method of claim 23, processing the scanned image further includes:

adjusting a signal detection threshold to detect a low-level signal produced from the plurality of target markers, wherein if the signal detection threshold is not adjusted the low-level signal produced from the plurality of target markers will be discarded.

Claim 34 (Currently Amended): An apparatus comprising a machine-readable medium containing instructions which, when executed by a machine, cause the machine to perform operations comprising:

scanning a magnetic resonance image (MRI) of an anatomy,

processing the scanned image by a MRI processor coupled to a memory, the MRI processor having a low-level signal detection process,

determining a location and orientation of the medical device in relation to the anatomy based on a plurality of target markers, and

displaying a precise image of the medical device within the anatomy, wherein the medical device and the plurality of target markers are each one of not detectable and disregardable as noise for MRI systems without having stored information of the plurality of target markers prior to insertion of the medical device into the anatomy.

Claim 35 (Original): The apparatus of claim 34, further containing instructions which, when executed by the machine, cause the machine to perform operations including:

pre-scanning the medical device before the medical device is inserted in an anatomy,

transmitting one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device and the plurality of target markers to the MRI processor, and

withdrawing a medical device from an anatomy at a dynamically adjusted pace.

Claim 36 (Original): The apparatus of claim 34, wherein the plurality of target markers comprise one of ferromagnetic and paramagnetic material.

Claim 37 (Original): The apparatus of claim 36, wherein the plurality of target markers are one of not detectable and disregarded by MRI systems operating between 0.2 and 5.0 Tesla.

Claim 38 (Original): The apparatus of claim 34, wherein the medical device is one of a fluid delivering catheter, a stent delivering device, a photographic device and a balloon catheter.

Claim 39 (Original): The apparatus of claim 38, wherein the medical device comprises a polymer material.

Claim 40 (Original): The apparatus of claim 38, wherein the medical device is expandable.

Claim 41 (Original): The apparatus of claim 34, further containing instructions which, when executed by the machine, cause the machine to perform operations including:

superimposing an image of the medical device over the anatomy, wherein the superimposed image of the medical device is located at its precise location within the anatomy, the superimposed image having the precise orientation that the medical device has within the anatomy.

Claim 42 (Original): The apparatus of claim 34, further containing instructions which, when executed by the machine, cause the machine to perform operations including:

replacing a plurality of pixels of an anatomy with a plurality of pixels of the medical device at the precise location that the medical device is located at within the anatomy, the plurality of pixels of the medical device having the precise orientation that the medical device has within the anatomy.

Claim 43 (Original): The apparatus of claim 34, wherein the memory having stored one of a plurality of geometric data, a plurality of image data, and a plurality of geometric data and a plurality of image data of a medical device.

Claim 44 (Original): The apparatus of claim 34, wherein the low-level signal detection process adjusts a signal detection threshold to detect a low-level signal produced from the target markers.

Claim 45 (Currently Amended): An apparatus comprising a machine-readable medium containing instructions which, when executed by a machine, cause the machine to perform operations comprising:

scanning a magnetic resonance image (MRI) of an anatomy,
processing the scanned image by a MRI processor coupled to a memory,
the MRI processor having a low-level signal detection process,

determining a location and orientation of the medical device in relation to the anatomy based on detection of a plurality of target markers in relation to the medical device and each of the plurality of target markers, wherein the plurality of target markers and geometric data of the medical device is determined stored before the medical device is inserted into the anatomy, and

displaying a precise image of the medical device within the anatomy, wherein the medical device and the plurality of target markers are each one of not detectable and disregardable as noise for MRI systems without the low-level signal detection process.

Claim 46 (Original): The apparatus of claim 45, wherein the low-level signal detection process adjusts a signal detection threshold to detect a low-level signal produced from the target markers.

Claim 47 (Currently Amended): A system comprising:

a magnetic resonance imaging (MRI) processor, the processor including a low-level signal detection process stored in a memory,

- a MRI scanner coupled to the processor,
- a control unit coupled to the processor,
- a display coupled to the processor, and
- a medical device to insert in an anatomy, the medical device having a plurality of target markers that are one of not detectable and disregardable as noise for MRI systems,

wherein the medical device is disregardable as noise for MRI systems-without the low-level signal detection process, and

prior to insertion of the medical device into the anatomy, location and orientation of the medical device in relation to the anatomy is determined by the processor based on detection of the plurality of target markers in relation to the geometric information of the medical device and each of the plurality of target markers, wherein the geometric information of the medical device and the plurality of the target markers is obtained stored before the medical device is inserted into the anatomy.

Claim 48 (Original): The system of claim 47, wherein the low-level signal detection process adjusts a signal detection threshold to detect a low-level signal produced from the target markers.

Claim 49 (Original): The system of claim 48, wherein the information of the medical device before insertion into the anatomy and position the detected plurality of target markers are used to display a properly oriented constructed image of the medical device in anatomy.