

Gravity currents in volcanology

Paul A. Jarvis

paul.jarvis@unige.ch

22nd November 2019

Volcanic flows

Lava flows

Cloud spreading

Pyroclastic density currents (PDCs)

Lahars

Hydrostatic gradients

Consider horizontal plane at depth z What are the forces acting on this plane?

- **Weight** of overlying fluid $W = \rho Azg$
- Balanced by **hydrostatic pressure** $F_p = PA$

Consider a volume of fluid of:

- Density ρ
- Height *H*
- Horizontal cross section A

z =Negative vertical coordinate (depth below top surface)

Hydrostatic gradients

Nothing is moving \implies Mechanical equilibrium

$$W = F_{p}$$

$$P = \rho gz$$

P increases linearly with z

Hydrostatic gradient:

$$\frac{\mathrm{d}P}{\mathrm{d}z} = \rho g$$

Gravity currents - Hydrostatic gradients

Gravity current - A horizontal flow in a gravitational field that is driven by a density difference

Consider two fluids (densities ρ_1 and ρ_2 , $\rho_1 > \rho_2$) initially side-by-side and separated by a vertical barrier Vertical pressure gradient:

$$\frac{\mathrm{d}P}{\mathrm{d}z} = \rho g$$

$$\mathrm{d}P = \rho g \mathrm{d}z$$

$$\int_0^P \mathrm{d}P = \rho g \int_0^z \mathrm{d}z$$

$$P = \rho gz$$

Gravity currents - Horizontal force balance

Remove barrier, and consider pressure difference ΔP across line

 ΔP increases with depth

Flow follows a pressure gradient - but horizontal pressure gradient is greatest at the depth

This initiates from from high to low pressure at the base, which is compensated by return flow at the top

Gravity currents - Energy minimisation

$$U = \frac{g(\rho_1 + \rho_2)H}{2}$$

$$U = \frac{g(\rho_1 + \rho_2)H}{2}$$

