Cox Model Building and Diagnostics

Contents

Model building	2
Load the data	2
The 4 candidate models	2
Comparing nested models: LRT	4
Comparing non-nested models: AIC	4
Automatic model selection based on AIC	4
There's only so much we can automate: transformed variables	7
Measuring predictions performance - C statistic	8
Split data into a training and a testing set	8
Train 3 candidate models	8
Measure predictions performance - THE \mathbf{WRONG} WAY	8
Make predictions in the testing dataset	ć
Assess predictive performance	12
Measuring predictions performance - effect size	14
Raw estimates	15
Standardized predictions	15
Discretized predictions - based on quantiles	16
Model diagnostics	18
Martingale residuals	18
Case-deletion residuals	21
Proportionality of hazards	21
Dealing with assumptions violations	27
Stratification	27
Truncation	28

Model building

Load the data

The 4 candidate models

```
MO <- coxph(Surv(ttr, relapse) ~ 1, data = dat)

MA <- coxph(Surv(ttr, relapse) ~ ageGroup4, data = dat)

MB <- coxph(Surv(ttr, relapse) ~ employment, data = dat)

MC <- coxph(Surv(ttr, relapse) ~ ageGroup4 + employment, data = dat)
```

```
summary(MA)
```

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ ageGroup4, data = dat)
##
##
    n= 125, number of events= 89
##
##
                    coef exp(coef) se(coef)
                                               z Pr(>|z|)
## ageGroup435-49 0.0293 1.0297 0.3093 0.095 0.9245
## ageGroup450-64 -0.7914
                           0.4532 0.3361 -2.355
                                                   0.0185 *
## ageGroup465+ -0.3173
                           0.7281 0.4435 -0.715
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
                 exp(coef) exp(-coef) lower .95 upper .95
## ageGroup435-49
                   1.0297
                              0.9711
                                        0.5616
                                                 1.8880
## ageGroup450-64
                    0.4532
                              2.2066
                                        0.2345
                                                 0.8757
## ageGroup465+
                    0.7281
                              1.3734
                                        0.3053
                                                 1.7367
##
## Concordance= 0.593 (se = 0.032)
```

```
## Likelihood ratio test= 12.22 on 3 df,
                                          p=0.007
## Wald test
                      = 11.36 on 3 df,
                                         p=0.01
## Score (logrank) test = 11.93 on 3 df,
                                          p=0.008
summary(MB)
## Call:
## coxph(formula = Surv(ttr, relapse) ~ employment, data = dat)
##
    n= 125, number of events= 89
##
##
##
                    coef exp(coef) se(coef)
                                               z Pr(>|z|)
## employmentother 0.1982
                           1.2192
                                    0.2371 0.836
                                                    0.403
## employmentpt
                  0.4500
                            1.5683
                                    0.3229 1.394
                                                    0.163
##
##
                  exp(coef) exp(-coef) lower .95 upper .95
## employmentother
                      1.219
                               0.8202
                                         0.7661
                                                    1.940
## employmentpt
                      1.568
                               0.6376
                                         0.8328
                                                    2.953
##
## Concordance= 0.541 (se = 0.028)
## Likelihood ratio test= 2.06 on 2 df,
                                         p = 0.4
## Wald test
                      = 2.17 on 2 df,
                                        p = 0.3
## Score (logrank) test = 2.2 on 2 df,
                                        p = 0.3
summary(MC)
## Call:
## coxph(formula = Surv(ttr, relapse) ~ ageGroup4 + employment,
##
      data = dat)
##
##
    n= 125, number of events= 89
##
##
                     coef exp(coef) se(coef)
                                                 z Pr(>|z|)
                                     0.3213 -0.404 0.68594
## ageGroup435-49
                            0.8782
                  -0.1299
## ageGroup450-64 -1.0239
                            ## ageGroup465+
                  -0.7825
                            0.4573
                                     0.5046 -1.551 0.12102
## employmentother 0.5257
                            1.6917
                                     0.2748 1.913 0.05577 .
## employmentpt
                   0.5001
                            1.6489
                                     0.3315 1.508 0.13143
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                  exp(coef) exp(-coef) lower .95 upper .95
## ageGroup435-49
                     0.8782
                               1.1387
                                         0.4678
                                                   1.6484
## ageGroup450-64
                     0.3592
                               2.7839
                                         0.1779
                                                   0.7253
                                         0.1701
                                                   1.2295
## ageGroup465+
                     0.4573
                               2.1868
                    1.6917
                               0.5911
                                         0.9871
## employmentother
                                                   2.8992
                     1.6489
                               0.6065
                                         0.8610
## employmentpt
                                                  3.1578
## Concordance= 0.617 (se = 0.033)
                                         p=0.005
## Likelihood ratio test= 16.79 on 5 df,
## Wald test
                      = 15.77 on 5 df,
                                          p=0.008
## Score (logrank) test = 16.35 on 5 df,
                                          p=0.006
```

Comparing nested models: LRT

```
## Analysis of Deviance Table
## Cox model: response is Surv(ttr, relapse)
## Model 1: ~ ageGroup4
## Model 2: ~ ageGroup4 + employment
## loglik Chisq Df Pr(>|Chi|)
## 1 -380.04
## 2 -377.76 4.5666 2 0.1019
```

Comparing non-nested models: AIC

```
fits <- list(MA = MA, MB = MB, MC = MC)
sapply(fits, AIC)

## MA MB MC
## 766.0860 774.2464 765.5194
```

Automatic model selection based on AIC

Model 'MC' is the best.

```
MAIC <- step(Mfull)</pre>
```

```
## Start: AIC=769.66
## Surv(ttr, relapse) ~ grp + gender + race + employment + yearsSmoking +
        levelSmoking + age + I(age^2) + priorAttempts + longestNoSmoke
##
                              AIC
##
                       Df
                     3 767.42
## - race
## - gender
                      1 767.68
## - priorAttempts 1 767.87
## - levelSmoking
                        1 767.92
## - longestNoSmoke 1 767.99
## - yearsSmoking 1 768.31
## - I(age^2) 1 769.17

## <none> 769.66

## - age 1 771.40

## - employment 2 773.89

## - grp 1 775.27
```

```
##
## Step: AIC=767.42
## Surv(ttr, relapse) ~ grp + gender + employment + yearsSmoking +
       levelSmoking + age + I(age^2) + priorAttempts + longestNoSmoke
##
##
##
                    Df
                          AIC
## - gender
                    1 765.42
## - levelSmoking
                     1 765.43
## - priorAttempts
                     1 765.59
## - yearsSmoking
                     1 765.76
## - longestNoSmoke 1 766.28
                     1 766.63
## - I(age^2)
                       767.42
## <none>
## - age
                     1 768.38
## - employment
                     2 770.69
## - grp
                     1 773.24
##
## Step: AIC=765.42
## Surv(ttr, relapse) ~ grp + employment + yearsSmoking + levelSmoking +
       age + I(age^2) + priorAttempts + longestNoSmoke
##
##
                    Df
                          AIC
                     1 763.43
## - levelSmoking
## - priorAttempts
                     1 763.59
## - yearsSmoking
                     1 763.76
## - longestNoSmoke 1 764.29
## - I(age^2)
                     1 764.63
                       765.42
## <none>
## - age
                     1 766.42
                     2 768.88
## - employment
## - grp
                     1 771.29
##
## Step: AIC=763.43
## Surv(ttr, relapse) ~ grp + employment + yearsSmoking + age +
##
       I(age^2) + priorAttempts + longestNoSmoke
##
##
                    Df
                          AIC
## - priorAttempts
                    1 761.60
## - yearsSmoking
                     1 761.78
## - longestNoSmoke 1 762.29
## - I(age^2)
                    1 762.75
## <none>
                       763.43
                     1 764.57
## - age
                     2 766.88
## - employment
                     1 769.31
## - grp
##
## Step: AIC=761.6
## Surv(ttr, relapse) ~ grp + employment + yearsSmoking + age +
##
       I(age^2) + longestNoSmoke
##
##
                    Df
                          AIC
                     1 759.98
## - yearsSmoking
## - longestNoSmoke 1 760.46
                     1 760.86
## - I(age^2)
```

```
## <none>
                       761.60
                     1 762.67
## - age
## - employment
                     2 764.95
## - grp
                     1 767.34
##
## Step: AIC=759.98
## Surv(ttr, relapse) ~ grp + employment + age + I(age^2) + longestNoSmoke
##
                    Df
                          AIC
## - longestNoSmoke 1 758.95
## - I(age^2)
                     1 759.25
                       759.98
## <none>
## - age
                     1 760.72
## - employment
                     2 763.30
                     1 766.07
## - grp
##
## Step: AIC=758.95
## Surv(ttr, relapse) ~ grp + employment + age + I(age^2)
##
##
                Df
                      AIC
## - I(age^2)
                1 758.28
## <none>
                   758.95
                 1 759.89
## - age
## - employment 2 762.73
## - grp
                 1 765.15
## Step: AIC=758.28
## Surv(ttr, relapse) ~ grp + employment + age
                \mathsf{Df}
                      AIC
##
## <none>
                   758.28
## - employment 2 762.48
## - grp
                 1 764.18
                 1 767.24
## - age
summary(MAIC)
## coxph(formula = Surv(ttr, relapse) ~ grp + employment + age,
##
       data = dat)
##
##
    n= 125, number of events= 89
##
##
                       coef exp(coef) se(coef)
                                                    z Pr(>|z|)
## grppatchOnly
                    0.60788
                              1.83654 0.21837 2.784 0.00537 **
## employmentother 0.70348
                              2.02077 0.26929 2.612 0.00899 **
## employmentpt
                   0.65369
                              1.92262 0.32732 1.997 0.04581 *
                              0.96533 0.01075 -3.282 0.00103 **
                   -0.03529
## age
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
##
                   exp(coef) exp(-coef) lower .95 upper .95
                      1.8365
                                 0.5445
                                           1.1971
## grppatchOnly
                                           1.1920
```

3.4256

0.4949

2.0208

employmentother

```
1.9226
## employmentpt
                            0.5201 1.0122
                                              3.6518
                           1.0359
                   0.9653
                                     0.9452
                                              0.9859
## age
##
## Concordance= 0.638 (se = 0.03)
## Likelihood ratio test= 22.03 on 4 df,
                                     p=2e-04
## Wald test = 21.91 on 4 df,
                                     p=2e-04
## Score (logrank) test = 22.48 on 4 df, p=2e-04
```

There's only so much we can automate: transformed variables

```
M_ageLinear <- MAIC
M_ageCat <- coxph(Surv(ttr, relapse) ~ grp + employment + ageGroup4, data = dat)
AIC(M_ageLinear)

## [1] 758.2785

AIC(M_ageCat)

## [1] 758.4157</pre>
```

"" [1] 700.1107

AIC prefers a linear term of Age. However, it might not necessarily be the best choice if the age effect is *not* actually linear, and we want to e.g. explicitly account for ethnicity:

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + race + employment +
##
      ageGroup4, data = dat)
##
    n= 125, number of events= 89
##
##
##
                  coef exp(coef) se(coef)
                                            z Pr(>|z|)
## grppatchOnly
                 ## racehispanic
                -0.4010 0.6696 0.4984 -0.805 0.42099
## raceother
                                 1.0313 -1.132 0.25780
                -1.1671
                         0.3113
               -0.2893
## racewhite
                         ## employmentother 0.6914
                         1.9966
                                 0.2777 2.490 0.01277 *
## employmentpt
                         1.7348
                                 0.3343 1.648 0.09943 .
                0.5509
## ageGroup435-49 -0.1579
                         0.8539
                                 0.3273 -0.482 0.62951
                       0.3399
                                 0.3623 -2.978 0.00290 **
## ageGroup450-64 -1.0792
## ageGroup465+
                -0.8313
                         0.4355 0.5029 -1.653 0.09830 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                exp(coef) exp(-coef) lower .95 upper .95
                  1.9149
                            0.5222
                                    1.24664
## grppatchOnly
                                             2.9414
```

```
## racehispanic 0.6696
                            1.4934 0.25213
                                             1.7785
## raceother
                 0.3113
                            3.2126 0.04124
                                             2.3497
                0.7488
## racewhite
                           1.3355 0.47220 1.1873
## employmentother 1.9966
## employmentpt 1.7348
                            0.5009 1.15857 3.4407
                            0.5764 0.90084 3.3407
## ageGroup435-49 0.8539 1.1711 0.44958 1.6219
## ageGroup450-64 0.3399 2.9423 0.16707 0.6914
               0.4355 2.2964 0.16252 1.1668
## ageGroup465+
##
## Concordance= 0.667 (se = 0.032)
## Likelihood ratio test= 28.78 on 9 df, p=7e-04
## Wald test = 27.04 on 9 df, p=0.001
## Score (logrank) test = 27.93 on 9 df, p=0.001
AIC(MAIC)
## [1] 758.2785
AIC(M_new)
## [1] 761.5297
```

Measuring predictions performance - C statistic

Split data into a training and a testing set

```
set.seed(1234)
i.training <- sample.int(nrow(dat), size = ceiling(nrow(dat)/2), replace = FALSE)
i.testing <- setdiff(seq_len(nrow(dat)), i.training)
d_training <- dat[i.training, ]
d_testing <- dat[i.testing, ]</pre>
```

Train 3 candidate models

```
MA <- coxph(Surv(ttr, relapse) ~ gender + age, data = d_training)
MB <- coxph(Surv(ttr, relapse) ~ gender + employment, data = d_training)
MC <- coxph(Surv(ttr, relapse) ~ gender + age + employment, data = d_training)</pre>
```

Measure predictions performance - THE WRONG WAY

WROOOOONG! THIS WOULD BE INCORRECT:

```
models <- list(A = MA, B = MB, C = MC)
map_dbl(models, ~ summary(.)$concordance[1])

## A B C
## 0.5489433 0.6315350 0.6359844</pre>
```

WROOOOOOONG!!!!

The same dataset is used for both training and performance evaluation. This will always favor the model with more parameters.

Make predictions in the testing dataset

```
d_testing$lp_A <- predict(MA, newdata = d_testing, type = "lp")
d_testing$lp_B <- predict(MB, newdata = d_testing, type = "lp")
d_testing$lp_C <- predict(MC, newdata = d_testing, type = "lp")
d_testing</pre>
```

##		id	ttr	relapse	grp	age	gender	race	employment	yearsSmoking
##	1	21	182	0	patchOnly	36	Male	white	ft	26
##	7	16	14	1	patchOnly	66	Male	black	pt	54
##	10	70	0	1	patchOnly	38	Male	black	ft	23
##	11	84	12	1	patchOnly	64	Female	black	other	30
##	12	85	182	0	${\tt combination}$	51	Male	black	ft	35
##	13	25	21	1	patchOnly	37	${\tt Female}$	white	pt	23
##	15	59	170	1	patchOnly	42	${\tt Female}$	white	ft	30
##	18	3	182	0	${\tt combination}$	52	${\tt Female}$	white	other	19
##	19	15	140	1	${\tt combination}$	43	Male	white	ft	27
##	20	32	63	1	${\tt combination}$	34	${\tt Female}$	white	ft	18
##	23	110	110	1	${\tt combination}$	49	${\tt Female}$	white	other	35
##	24	127	182	0	${\tt combination}$	58	${\tt Female}$	white	ft	38
##	25	119	0	1	patchOnly	48	Male	${\tt hispanic}$	other	33
##	27	62	15	1	patchOnly	49	Female	black	pt	35
##	29	112	4	1	patchOnly	33	Male	black	ft	12
##	30	60	56	1	${\tt combination}$	49	Female	black	ft	37
##	31	93	2	1	${\tt combination}$	46	Male	black	ft	25
##	33	130	182	0	${\tt combination}$	46	Female	white	pt	25
##	34	19	56	1	patchOnly	52	Male	black	other	25
##	36	4	14	1	patchOnly	48	${\tt Female}$	white	ft	34
##	37	20	14	1	patchOnly	48	Female	white	ft	39
##	39	26	182	0	patchOnly	58	Male	white	other	41
##	44	8	182	0	${\tt combination}$	70	${\tt Female}$	white	other	52
##	45	12	75	1	${\tt combination}$	62	Female	white	pt	46
##	46	13	30	1	${\tt combination}$	86	Male	white	other	40
##	50	36	182	0	${\tt combination}$	62	Male	white	ft	35
##	52	44	8	1	${\tt combination}$	40	Male	white	ft	27
##	53	61	140	1	${\tt combination}$	49	Male	white	other	14
##	55	69	63	1	${\tt combination}$	47	Female	white	pt	15
##	58	106	50	1	${\tt combination}$	29	Male	white	ft	12
##	59	114	14	1	${\tt combination}$	64	Female	white	pt	45
##	60	120	0	1	${\tt combination}$	52	Male	white	ft	38
##	61	40	84	1	patchOnly	38	Female	${\tt hispanic}$	ft	10
##	64	123	182	0	${\tt combination}$	63	Female	${\tt hispanic}$	other	45
##	65	7	182	0	patchOnly	58	Male	black	ft	40
##	68	52	182	0	patchOnly	34	Female	black	ft	20
##	69	86	0	1	patchOnly	49	Female	black	ft	36
##	73	75	12	1	${\tt combination}$	46	Female	black	other	30

			4.0		. 10	_					4.0
	75 76	1	49	1	patchOn	•		Female	white	pt	18
##	76	6	182	0	patchOn	•	58	Male	white	ft	46
##	77	11		0	patchOn	•		Female	white	ft	25
##	81	56		0	patch0n	•		Female	white	other	47
##	82	72	0	1	patch0n	•		Female	white	ft	30
##	83	78	28	1	patch0n	•	47	Male	white	ft	22
##	85	83	2	1	patch0n	•	51	Male	white	other	36
##	88	95	1	1	patch0n	•		Female	white	pt	9
##	89	99	140	1	patchOn	•		Female	white	ft	18
##	91	115	28	1	patch0n	•		Female	white	ft	12
##	92	116	1	1	patch0n	•	31	Male	white	ft	19
##	94	126	77	1	patch0n	•		Female	white	ft	44
##	96		182	0	combinati		69	Male	white	other	50
##	97		182	0	combinati		41	Male	white	ft	29
##	102	64	60	1				Female	white	other	54
##	104	92	182	0	combinati			Female	white	ft	36
##	106	103		0	combinati		72	Male	white	other	55
##	109	96	182	0	combinati			Female	other	other	52
##	110	46	2	1	combinati		40	Female	hispanic	pt	23
##	116	109	30	1	patch0n	ıly	51	Male	black	other	30
##	118	45	2	1	combinati	on	47	${\tt Female}$	black	ft	33
##	121	74	10	1	combinati	.on	45	${\tt Female}$	black	ft	32
##	124	118	15	1	combinati	.on	56	${\tt Female}$	black	other	39
##	125	128	182	0	combinati	on	50	${\tt Female}$	black	pt	30
##		leve	elSmoking	age	eGroup2 ag	geGr	oup4	l prior	Attempts	longestNoSmoke	lp_A
##	1		heavy		21-49	3	5-49)	0	0	-0.109308465
##	7		heavy		50+		65-	+	0	0	-0.510397624
##	10		light		21-49	3	5-49)	10	90	-0.136047742
##	11		heavy		50+	5	0-64	1	12	365	-0.216673033
##	12		heavy		50+	5	0-64	1	1	7	-0.309853044
##	13		light		21-49	3	5-49)	5	1095	0.144307211
##	15		heavy		21-49	3	5-49)	5	240	0.077459018
##	18		light		50+	5	0-64	1	1	7	-0.056237369
##	19		heavy		21-49	3	5-49)	5	120	-0.202895935
##	20		heavy		21-49	2	1-34	1	8	90	0.184416127
##	23		heavy		21-49	3	5-49)	10	60	-0.016128453
##	24		heavy		50+	5	0-64	1	1	0	-0.136455201
##	25		heavy		21-49	3	5-49)	4	120	-0.269744128
##	27		light		21-49	3	5-49)	4	540	-0.016128453
##	29		light		21-49	2	1-34	1	1	730	-0.069199549
##	30		heavy		21-49	3	5-49	9	3	2920	-0.016128453
##	31		light		21-49	3	5-49)	2	1095	-0.243004851
##	33		heavy		21-49	3	5-49)	3	365	0.023980463
##	34		light		50+	5	0-64	1	10	7	-0.323222683
##	36		heavy		21-49	3	5-49)	6	2555	-0.002758814
##	37		heavy		21-49	3	5-49)	1	2	-0.002758814
	39		light		50+		0-64		100		-0.403440515
	44		heavy		50+		65-		3		-0.296890864
	45		heavy		50+	5	0-64		8		-0.189933755
	46		light		50+	ĺ	65-		4		-0.777790397
	50		heavy		50+	5	0-64		1		-0.456919069
	52		heavy		21-49		5-49		2		-0.162787019
	53		heavy		21-49		5-49		0		-0.283113767
	55		heavy		21-49		5-49		1	90	0.010610824
						_			_	30	

```
21-34
                                                                           0 -0.015720994
## 58
               heavy
                           21 - 49
                                                          0
## 59
                             50+
                                      50-64
                                                          4
                                                                          60 -0.216673033
               heavy
##
  60
               heavy
                             50+
                                      50 - 64
                                                          4
                                                                           7 -0.323222683
## 61
                          21-49
                                      35-49
                                                                              0.130937572
               heavy
                                                          2
                                                                           3
##
   64
               heavy
                             50+
                                      50-64
                                                          1
                                                                          28
                                                                             -0.203303394
##
   65
                             50+
                                      50-64
                                                          0
                                                                           0 -0.403440515
               heavy
##
   68
                          21 - 49
                                      21 - 34
                                                          5
                                                                              0.184416127
               heavy
## 69
                          21 - 49
                                      35-49
                                                                        6205 -0.016128453
               heavy
                                                          1
##
   73
               light
                          21 - 49
                                      35 - 49
                                                          2
                                                                          55
                                                                              0.023980463
##
  75
                             50+
                                      50-64
                                                          6
                                                                        3650 -0.069607008
               heavy
##
   76
               heavy
                             50+
                                      50-64
                                                         10
                                                                          14 -0.403440515
  77
                          21-49
##
                                      35 - 49
                                                                        2920
                                                                              0.104198295
               heavy
                                                          1
   81
##
               heavy
                             50+
                                      50 - 64
                                                          4
                                                                         365 -0.216673033
## 82
               heavy
                             50+
                                      50-64
                                                          1
                                                                          90 -0.029498092
##
  83
                          21-49
                                      35-49
                                                          3
                                                                           4 -0.256374490
               heavy
## 85
               heavy
                             50+
                                      50-64
                                                          1
                                                                             -0.309853044
##
   88
                          21-49
                                      21-34
                                                          2
                                                                              0.344851790
               heavy
                                                                           3
   89
                                                          2
##
               light
                          21 - 49
                                      21 - 34
                                                                        2190
                                                                              0.184416127
##
  91
                          21 - 49
                                      21 - 34
                                                          0
                                                                              0.237894681
               light
                                                                           0
## 92
               heavy
                          21 - 49
                                      21 - 34
                                                         10
                                                                         120 -0.042460271
##
   94
               heavy
                             50+
                                      50-64
                                                          4
                                                                        1095 -0.109715923
## 96
               heavy
                             50+
                                        65+
                                                          6
                                                                        5475 -0.550506540
## 97
                          21-49
                                      35-49
                                                         20
                                                                         180 -0.176156658
               heavy
   102
                             50+
                                                                          90 -0.296890864
               heavy
                                        65+
                                                          1
                                                                          90 -0.136455201
## 104
                                      50-64
                                                          2
               light
                             50+
## 106
               light
                             50+
                                        65+
                                                         30
                                                                          30 -0.590615456
##
  109
               heavy
                             50+
                                      50-64
                                                          2
                                                                         180 -0.203303394
   110
                           21-49
                                      35-49
                                                          2
                                                                              0.104198295
##
               heavy
                                      50-64
                                                          2
                                                                          30 -0.309853044
## 116
               heavy
                             50+
                                      35-49
                                                          4
                                                                              0.010610824
## 118
               light
                           21 - 49
                                                                         365
                                      35-49
## 121
               heavy
                          21 - 49
                                                          1
                                                                          75
                                                                              0.037350102
##
   124
               heavy
                             50+
                                      50-64
                                                          3
                                                                           7 -0.109715923
   125
                             50+
                                      50-64
                                                          0
                                                                           0 -0.029498092
##
               heavy
##
              lp_B
                             lp_C
##
   1
        -0.1527679
                     0.260670756
##
        0.6226736
                     0.351007796
## 10
       -0.1527679
                     0.208171444
## 11
         0.6993553
                     0.494356461
##
   12
       -0.1527679 -0.133074083
##
  13
         0.7754415
                     1.161156338
##
   15
         0.000000
                     0.152081340
##
   18
         0.6993553
                     0.809352333
        -0.1527679
                     0.076923164
   19
##
   20
        0.000000
                     0.362078587
##
   23
         0.6993553
                     0.888101300
## 24
         0.0000000 -0.267913155
   25
##
         0.5465874
                     0.865442437
##
   27
                     0.846160467
         0.7754415
##
   29
        -0.1527679
                     0.339419724
##
   30
         0.0000000 -0.031666252
##
   31
        -0.1527679 -0.001825803
   33
                    0.924909435
##
        0.7754415
##
  34
         0.5465874 0.760443813
        0.0000000 -0.005416596
## 36
```

```
## 37
        0.0000000 -0.005416596
## 39
        0.5465874 0.602945877
## 44
        0.6993553 0.336858526
## 45
        0.7754415 0.504914940
        0.5465874 -0.132044489
       -0.1527679 -0.421820298
## 50
       -0.1527679 0.155672132
## 52
## 53
       0.5465874 0.839192781
## 55
       0.7754415
                  0.898659779
## 58
      -0.1527679 0.444418348
## 59
       0.7754415 0.452415628
## 60
       -0.1527679 -0.159323739
##
  61
       0.0000000 0.257079964
## 64
       0.6993553 0.520606117
## 65
       -0.1527679 -0.316821675
## 68
        0.0000000 0.362078587
##
        0.0000000 -0.031666252
  69
##
  73
        0.6993553 0.966850268
##
        0.7754415 0.741161843
  75
## 76
       -0.1527679 -0.316821675
## 77
       0.0000000 0.204580652
## 81
        0.6993553 0.494356461
## 82
       0.0000000 -0.057915908
## 83
       -0.1527679 -0.028075459
## 85
       0.5465874 0.786693469
## 88
        0.7754415
                  1.554901177
## 89
       0.0000000
                  0.362078587
       0.0000000
## 91
                  0.467077211
## 92
                  0.391919036
      -0.1527679
## 94
       0.0000000 -0.215413843
        0.5465874 0.314199662
## 96
## 97
       -0.1527679
                  0.129422476
## 102
       0.6993553
                  0.336858526
## 104
       0.0000000 -0.267913155
## 106
       0.5465874
                  0.235450694
## 109
       0.6993553 0.520606117
## 110
       0.7754415
                  1.082407370
## 116
       0.5465874 0.786693469
## 118
       0.0000000
                  0.020833060
## 121
       0.0000000
                  0.073332372
## 124
       0.6993553
                  0.704353709
## 125
       0.7754415 0.819910811
```

Assess predictive performance

```
models <- list(
    A = coxph(Surv(ttr, relapse) ~ lp_A, data = d_testing),
    B = coxph(Surv(ttr, relapse) ~ lp_B, data = d_testing),
    C = coxph(Surv(ttr, relapse) ~ lp_C, data = d_testing)
)
summary(models$A)</pre>
```

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ lp_A, data = d_testing)
   n= 62, number of events= 42
##
##
##
       coef exp(coef) se(coef) z Pr(>|z|)
## lp A 1.3700 3.9354 0.7538 1.818 0.0691 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
      exp(coef) exp(-coef) lower .95 upper .95
## lp_A
         3.935
                  0.2541 0.8982
## Concordance= 0.571 (se = 0.046)
## Likelihood ratio test= 3.44 on 1 df, p=0.06
## Wald test = 3.3 on 1 df, p=0.07
## Score (logrank) test = 3.32 on 1 df, p=0.07
summary(models$B)
## Call:
## coxph(formula = Surv(ttr, relapse) ~ lp_B, data = d_testing)
## n= 62, number of events= 42
##
##
         coef exp(coef) se(coef) z Pr(>|z|)
exp(coef) exp(-coef) lower .95 upper .95
## lp_B 0.9474
                  1.055 0.4273 2.101
##
## Concordance= 0.512 (se = 0.049)
## Likelihood ratio test= 0.02 on 1 df,
                                     p = 0.9
## Wald test
            = 0.02 on 1 df, p=0.9
## Score (logrank) test = 0.02 on 1 df, p=0.9
summary(models$C)
## Call:
## coxph(formula = Surv(ttr, relapse) ~ lp_C, data = d_testing)
## n= 62, number of events= 42
##
       coef exp(coef) se(coef)
##
                               z Pr(>|z|)
## lp_C 0.6048 1.8308 0.3944 1.533
##
##
      exp(coef) exp(-coef) lower .95 upper .95
## lp_C 1.831 0.5462 0.8451 3.966
## Concordance= 0.54 (se = 0.053)
## Likelihood ratio test= 2.38 on 1 df,
                                     p=0.1
## Wald test = 2.35 on 1 df, p=0.1
```

p = 0.1

Score (logrank) test = 2.37 on 1 df,

1. Check that the predictions go into the right direction

sapply(models, coef)

```
A.lp_A
                    B.lp_B
                                C.lp_C
   1.37000089 -0.05399827 0.60475515
2. Extract the C-statistic from the 'summary' output
map_dbl(models, ~ summary(.)$concordance[1])
##
## 0.5710006 0.5119832 0.5401438
3. Flip directions as needed
benchmark <-
  tibble(
   model = names(models),
   sign = sapply(models, coef) |> sign(),
   C_summary = map_dbl(models, ~ summary(.)$concordance[1]),
    C = ifelse(sign > 0, C_summary, 1 - C_summary)
benchmark
```

benchmark |> select(model, C)

```
## # A tibble: 3 x 2
## model C
## <chr> <dbl>
## 1 A 0.571
## 2 B 0.488
## 3 C 0.540
```

Measuring predictions performance - effect size

```
d1 <- d_testing |> select(ttr, relapse, lp_A, lp_B, lp_C)
head(d1)
```

```
##
                                 lp_B
     ttr relapse
                       lp_A
                                            lp_C
## 1 182
               0 -0.1093085 -0.1527679 0.2606708
               1 -0.5103976  0.6226736  0.3510078
## 7
     14
## 10 0
               1 -0.1360477 -0.1527679 0.2081714
## 11 12
              1 -0.2166730 0.6993553 0.4943565
## 12 182
              0 -0.3098530 -0.1527679 -0.1330741
## 13 21
               1 0.1443072 0.7754415 1.1611563
```

Raw estimates

```
A <- coxph(Surv(ttr, relapse) ~ lp_A, data = d1) |> tidy()
B <- coxph(Surv(ttr, relapse) ~ lp_B, data = d1) |> tidy()
C <- coxph(Surv(ttr, relapse) ~ lp_C, data = d1) |> tidy()
bind_rows(A, B, C)
```

```
## # A tibble: 3 x 5
##
   term estimate std.error statistic p.value
##
    <chr> <dbl> <dbl> <dbl> <dbl>
## 1 lp_A
         1.37
                     0.754
                              1.82 0.0691
## 2 lp_B
         -0.0540
                     0.406
                             -0.133 0.894
           0.605
                     0.394
                              1.53 0.125
## 3 lp_C
```

These log-HRs are not directly comparable.

```
d_testing |> select(lp_A, lp_B, lp_C) |> sapply(sd)
```

```
## lp_A lp_B lp_C
## 0.2155693 0.3863618 0.4227361
```

```
d_testing |> select(lp_A, lp_B, lp_C) |> sapply(IQR)
```

```
## lp_A lp_B lp_C
## 0.2770125 0.6993553 0.7281209
```

Standardized predictions

```
ttr relapse
                                 lp_B
                                            lp_C
##
                       lp_A
## 1
               0 \ -0.1093085 \ -0.1527679 \quad 0.2606708 \ -0.5070688 \ -0.3954011
     182
## 7
               1 -0.5103976  0.6226736  0.3510078 -2.3676733  1.6116333
               1 -0.1360477 -0.1527679 0.2081714 -0.6311091 -0.3954011
## 10
      0
## 11
     12
               ## 12 182
               0 -0.3098530 -0.1527679 -0.1330741 -1.4373710 -0.3954011
               1 0.1443072 0.7754415 1.1611563 0.6694238 2.0070344
## 13 21
             7.C
##
## 1
      0.6166277
## 7
      0.8303238
## 10 0.4924384
## 11 1.1694211
## 12 -0.3147924
## 13 2.7467644
A <- coxph(Surv(ttr, relapse) ~ ZA, data = d2) |> tidy()
B <- coxph(Surv(ttr, relapse) ~ ZB, data = d2) |> tidy()
C <- coxph(Surv(ttr, relapse) ~ ZC, data = d2) |> tidy()
bind_rows(A, B, C) |>
 transmute(term, estimate, HR = exp(estimate), p.value)
## # A tibble: 3 x 4
##
    term estimate
                     HR p.value
##
    <chr>>
             <dbl> <dbl>
                          <dbl>
## 1 ZA
            0.295 1.34
                         0.0691
## 2 ZB
           -0.0209 0.979 0.894
## 3 ZC
            0.256 1.29
                         0.125
```

Discretized predictions - based on quantiles

```
d3 <-
  mutate(d2,
         FA = factor((lp_A > median(lp_A)), levels = c(FALSE, TRUE), labels = c("low", "high")),
         FC = factor((lp_C > median(lp_C)), levels = c(FALSE, TRUE), labels = c("low", "high"))
A <- coxph(Surv(ttr, relapse) ~ FA, data = d3) |> tidy()
C <- coxph(Surv(ttr, relapse) ~ FC, data = d3) |> tidy()
bind_rows(A, C) |>
 transmute(term, estimate, HR = exp(estimate), p.value)
## # A tibble: 2 x 4
     term
            estimate
                        HR p.value
##
               <dbl> <dbl>
                             <dbl>
     <chr>>
## 1 FAhigh
               0.599 1.82 0.0583
## 2 FChigh
               0.253 1.29 0.416
fit.KM <- survfit(Surv(ttr, relapse) ~ FA, data = d3)</pre>
fit.KM
```



```
plot(fit.KM, col = 1:2)
```


Model diagnostics

Martingale residuals

```
library(survival)
library(asaur) ## dataset

data(pharmacoSmoking)
dat <- pharmacoSmoking

fit <- coxph(Surv(ttr, relapse) ~ grp + age + employment, data = dat)
dat$residual <- residuals(fit, type = "martingale")

par(mfrow = c(1, 3), mar = c(4.2, 2, 2, 2))
with(dat, {
   plot(age, residual)
   lines(lowess(age, residual), lwd = 2)</pre>
```

```
plot(residual ~ grp)
plot(residual ~ employment)
})
```


fit_better <- coxph(Surv(ttr, relapse) ~ grp + age + I(age^2) + employment, data = dat)
summary(fit_better)</pre>

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age + I(age^2) + employment,
##
      data = dat)
##
    n= 125, number of events= 89
##
##
                              exp(coef)
                                          se(coef)
                                                        z Pr(>|z|)
##
                        coef
## grppatchOnly
                   0.6206075
                              1.8600577
                                         0.2188288 2.836 0.00457 **
## age
                   -0.1001902
                              0.9046654
                                         0.0549849 -1.822
                                                           0.06843 .
## I(age^2)
                   0.0006729 1.0006732
                                         0.0005572 1.208
                                                           0.22713
## employmentother 0.6800741 1.9740240
                                         0.2754600 2.469
## employmentpt
                   0.6757762 1.9655581 0.3278821 2.061 0.03930 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                   exp(coef) exp(-coef) lower .95 upper .95
##
```

```
## grppatchOnly
                       1.8601
                                  0.5376
                                             1.2113
                                                         2.856
                       0.9047
                                             0.8122
                                                         1.008
## age
                                  1.1054
## I(age^2)
                       1.0007
                                  0.9993
                                             0.9996
                                                         1.002
## employmentother
                       1.9740
                                  0.5066
                                             1.1505
                                                        3.387
## employmentpt
                       1.9656
                                  0.5088
                                             1.0337
                                                        3.737
##
## Concordance= 0.633 (se = 0.031)
## Likelihood ratio test= 23.36
                                  on 5 df,
                                              p = 3e - 04
## Wald test
                         = 24.19
                                  on 5 df,
                                              p=2e-04
## Score (logrank) test = 24.68 on 5 df,
                                              p=2e-04
dat$residual <- residuals(fit_better, type = "martingale")</pre>
par(mfrow = c(1, 3), mar = c(4.2, 2, 2, 2))
with(dat, {
  plot(age, residual)
  lines(lowess(age, residual), lwd = 2)
  plot(residual ~ grp)
  plot(residual ~ employment)
})
```


Case-deletion residuals

```
dfbetas <- residuals(fit, type = 'dfbetas')</pre>
head(dfbetas)
##
             [,1]
                          [,2]
                                      [,3]
                                                    [,4]
## 1 -0.164823287 0.15809557
                                0.05955969
                                            0.089952431
## 2 0.006822493 -0.01266160
                                0.01817193
                                            0.005336660
## 3 -0.050525661 -0.13050951
                                0.10683305
                                            0.017798812
## 4 -0.101956037  0.08958552 -0.10516817 -0.064573127
## 5 -0.126362316 -0.07386963
                                0.13516905 -0.008288001
## 6 0.114896122 0.01309695
                                0.06960045
                                            0.054304287
dat$dfbetas <- sqrt(rowSums(dfbetas^2))</pre>
plot(dat$dfbetas, type = 'h')
abline(h = 0)
```


Proportionality of hazards

Pancreatic cancer dataset - late vs early stage

```
library(survival)
library(asaur) ## dataset
library(plyr)
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
##
      arrange, count, desc, failwith, id, mutate, rename, summarise,
##
      summarize
## The following object is masked from 'package:purrr':
##
##
      compact
library(ggplot2)
fmt <- "%m/%d/%Y"</pre>
dat <- as.tibble(pancreatic) %>%
 mutate(
 onstudy = as.Date(as.character(onstudy), format = fmt),
 progression = as.Date(as.character(progression), format = fmt),
 death = as.Date(as.character(death), format = fmt),
 OS = death - onstudy,
 PFS = ifelse(is.na(progression), OS, pmin(progression - onstudy, OS))) %>%
 mutate(
 PFS = Surv(as.numeric(PFS / 30.5)),
 OS = Surv(as.numeric(OS / 30.5))
## Warning: 'as.tibble()' was deprecated in tibble 2.0.0.
## i Please use 'as_tibble()' instead.
## i The signature and semantics have changed, see '?as_tibble'.
dat
## # A tibble: 41 x 6
     stage onstudy
                     progression death
                                                  OS
                                                           PFS
##
##
     <fct> <date>
                     <date> <date>
                                              <Surv>
## 1 M
          2005-12-16 2006-02-02 2006-10-19 10.065574 1.573770
           2006-01-06 2006-02-26 2006-04-19 3.377049 1.672131
## 2 M
```

```
## 3 LA
          2006-02-03 2006-08-02 2007-01-19 11.475410 5.901639
        2006-03-30 NA 2006-05-11 1.377049 1.377049
## 4 M
## 5 LA 2006-04-27 2007-03-11 2007-05-29 13.016393 10.426230
## 6 M
         2006-05-07 2006-06-25 2006-10-11 5.147541 1.606557
## 7 LA
                          2007-01-24 5.147541 5.147541
          2006-08-20 NA
## 8 M
         2007-01-22 2007-03-20 2007-04-14 2.688525 1.868852
## 9 LA 2007-03-02 NA 2008-11-01 20.000000 20.000000
                              2007-05-15 1.606557 1.606557
## 10 M
          2007-03-27 NA
## # ... with 31 more rows
fit <- coxph(PFS ~ stage, data = dat)</pre>
summary(fit)
## Call:
## coxph(formula = PFS ~ stage, data = dat)
## n= 41, number of events= 41
##
##
          coef exp(coef) se(coef) z Pr(>|z|)
## stageM 0.5931 1.8095 0.4007 1.48 0.139
##
       exp(coef) exp(-coef) lower .95 upper .95
            1.81
                     0.5526 0.8251
## stageM
##
## Concordance= 0.589 (se = 0.033)
## Likelihood ratio test= 2.43 on 1 df, p=0.1
## Wald test = 2.19 on 1 df,
                                      p=0.1
## Score (logrank) test = 2.25 on 1 df,
                                      p=0.1
fit.KM <- survfit(PFS ~ stage, data = dat)</pre>
plot(fit.KM, col = 1:2)
```



```
fit.KM <- survfit(PFS ~ stage, data = dat)
plot(fit.KM, fun= "cloglog", col = 1:2)</pre>
```


The figure indicates violation of proportionality of the hazards.

Pharmacosmoking dataset - treatment vs control

```
fit.KM <- survfit(Surv(ttr, relapse) ~ grp, data = pharmacoSmoking)
plot(fit.KM, fun = "cloglog", col = 1:2)</pre>
```


The figure indicates no violation of the assumption of proportionality of the hazards.

Schoenfeld residuals

```
fit <- coxph(PFS ~ stage, data = dat)
residual.sch <- cox.zph(fit)
residual.sch

## chisq df p
## stage 4.52 1 0.034
## GLOBAL 4.52 1 0.034</pre>
```

The null hypothesis is of constant covariates effects through time. Evidence against this hypothesis is also evidence against the assumption of proportionality of the hazards.

plot(residual.sch)

Dealing with assumptions violations

Stratification

```
library(asaur)
d <- pharmacoSmoking
d$employment <- ifelse(d$employment == "ft", "ft", "other")

table(d$employment)

##
## ft other
## 72 53

Stratified Cox model:
fit <- coxph(Surv(ttr, relapse) ~ grp + strata(employment), data = d)

summary(fit)</pre>
```

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + strata(employment),
      data = d
##
    n= 125, number of events= 89
##
##
               coef exp(coef) se(coef) z Pr(>|z|)
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
             exp(coef) exp(-coef) lower .95 upper .95
##
## grppatchOnly
               1.895
                        0.5278
                                   1.234
##
## Concordance= 0.577 (se = 0.029)
## Likelihood ratio test= 8.71 on 1 df,
                                    p=0.003
## Wald test
                    = 8.54 on 1 df,
                                    p=0.003
## Score (logrank) test = 8.81 on 1 df, p=0.003
```

Note how there is no estimate associated with 'employment'.

Truncation

```
library(asaur)
library(survival)
d <- pancreatic2

plot(survfit(Surv(pfs, status) ~ stage, data = d), col = 1:2)</pre>
```


THIS IS NOT HOW IT IS DONE:

```
d_WRONG <- subset(d, pfs <= 180)
plot(survfit(Surv(pfs, status) ~ stage, data = d_WRONG), col = 1:2)</pre>
```


Here is how you do it:

```
d_RIGHT <- within(d, {
   status_truncated <- ifelse(pfs > 180, 0, status)
   pfs_truncated <- ifelse(pfs > 180, 180, pfs)
})

plot(survfit(Surv(pfs_truncated, status_truncated) ~ stage, data = d_RIGHT),
   col = 1:2)
```



```
plot(survfit(Surv(pfs, status) ~ stage, data = d_RIGHT),
    fun = "cloglog",
    col = 1:2)
```



```
plot(survfit(Surv(pfs_truncated, status_truncated) ~ stage, data = d_RIGHT),
    fun = "cloglog",
    col = 1:2)
```



```
summary(coxph(Surv(pfs_truncated, status_truncated) ~ stage, data = d_RIGHT))
```

```
## Call:
## coxph(formula = Surv(pfs_truncated, status_truncated) ~ stage,
       data = d_RIGHT)
##
##
##
    n= 41, number of events= 30
##
##
            coef exp(coef) se(coef)
                                        z Pr(>|z|)
## stageM 1.0466
                    2.8479 0.5418 1.932
                                           0.0534 .
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
          \exp(\texttt{coef}) \exp(\texttt{-coef}) lower .95 upper .95
##
              2.848
                        0.3511
                                  0.9848
                                             8.236
## stageM
##
## Concordance= 0.598 (se = 0.035)
## Likelihood ratio test= 4.71 on 1 df,
                                           p=0.03
## Wald test
                        = 3.73 on 1 df,
                                           p=0.05
## Score (logrank) test = 4.07 on 1 df,
                                           p=0.04
```