Homework 1

Alejandro De La Torre

MATH 421 – The Theory of Single Variable Calculus

Section 003

Instructor: Grace Work

September 2025

Collaboration Statement

I worked on this homework independently. No outside collaborators or resources were used.

Problem 1

Determine whether the following statements are true or false and provide a short justification.

A. For every integer $x, x \leq 5$ and x > 3.

Solution: This statement is **false**, by counterexample. For instance, x = 7 is an integer such that x > 3, but $x \nleq 5$. Therefore, not every integer satisfies the conditions.

B. There exists an integer n such that $n \leq 5$ and n > 3.

Solution: The statement claims that there exists an integer n such that $n \leq 5$ and n > 3. Consider n = 4. Clearly, $4 \in \mathbb{Z}$, and it satisfies both $4 \leq 5$ and 4 > 3. Therefore, the statement is **true**.

C. There exists a unique integer x such that $x \leq 5$ and x > 3.

Solution: The statement is **false**. Both x = 4 and x = 5 are integers with $x \le 5$ and x > 3. Since more than one integer satisfies the condition, the solution is not unique.

D. There exists an integer x such that for all integers y, xy = x.

Solution: This statement is **true**. We want to determine whether there is some integer x such that for all $y \in \mathbb{Z}$, the equality xy = x holds.

If x = 0, then for every integer y, we have $0 \cdot y = 0 = x$. Thus, x = 0 satisfies the condition.

If $x \neq 0$, consider y = 2. Then $xy = 2x \neq x$. Therefore, no nonzero integer x works.

Hence, the statement is true, and the only integer x with this property is x = 0.

E. For all integers x there exists an integer y such that xy = x.

Solution: The statement is **true**. Let $x \in \mathbb{Z}$ be arbitrary. Choose y = 1. Then $xy = x \cdot 1 = x$. Since x was arbitrary, we conclude that $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z}$ with xy = x.

Problem 2

Create an (A) example of an "if..., then..." statement (can be mathematical or not), then write the (B) converse and (C) contrapositive of your statement.

Solution:

A. **Example:** If there is no endogeneity, then there *might* be causality.

B. Converse: If there *might* be causality, then there is no endogeneity.

C. Contrapositive: If there is not causality, then there is endogeneity.

Problem 3

Use a truth table to show that the converse of an "if..., then..." statement is not equivalent to the original statement.

Solution: Let P and Q be statements. The original statement is $P \Rightarrow Q$, and the converse is $Q \Rightarrow P$. We construct the truth table:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

From the table, we see that $P \Rightarrow Q$ and $Q \Rightarrow P$ do not always have the same truth value (for instance, in the second and third rows). Therefore, the converse of a conditional statement is **not** logically equivalent to the original statement.

Problem 4

Theorem 1. If x and y are odd integers, then xy is an odd integer.

Proof. Let x and y be odd integers. Then there exist integers $k, m \in \mathbb{Z}$ such that

$$x = 2k + 1$$
 and $y = 2m + 1$.

Multiplying, we have

$$xy = (2k+1)(2m+1) = 4km + 2k + 2m + 1 = 2(2km+k+m) + 1.$$

Let j = 2km + k + m, which is an integer since $k, m \in \mathbb{Z}$. Thus,

$$xy = 2j + 1$$
,

which is the definition of an odd integer. Therefore, xy is odd.

Problem 5

Theorem 2. If x and y are two integers with the same parity (that is, both even or both odd), then x + y is even.

Proof. We split the proof into two cases:

Case 1: x and y are both odd. Then there exist integers $k, m \in \mathbb{Z}$ such that x = 2k+1 and y = 2m+1.

$$x + y = (2k + 1) + (2m + 1) = 2(k + m + 1).$$

Thus, x + y is even.

Case 2: x and y are both even. Then there exist integers $k, m \in \mathbb{Z}$ such that x = 2k and y = 2m.

$$x + y = 2k + 2m = 2(k + m).$$

Thus, x + y is even.

Since both cases lead to x + y being even, we conclude that if x and y have the same parity, then x + y is even.

Problem 6

Theorem 3. For all real numbers x and y,

$$(x+y)^2 = x^2 + y^2$$
 if and only if $x = 0$ or $y = 0$.

Proof. Let P be the statement $(x+y)^2 = x^2 + y^2$ and let Q be the statement x=0 or y=0. We will prove the biconditional $P \Leftrightarrow Q$ by showing both directions: $P \Rightarrow Q$ and $Q \Rightarrow P$.

 $(P \Rightarrow Q)$ Suppose $(x+y)^2 = x^2 + y^2$. Expanding the left-hand side gives

$$x^2 + 2xy + y^2 = x^2 + y^2.$$

Subtracting $x^2 + y^2$ from both sides yields 2xy = 0, hence xy = 0. Over \mathbb{R} this implies x = 0 or y = 0. Thus, Q holds.

 $(Q \Rightarrow P)$ Conversely, suppose x = 0 or y = 0.

- If x = 0, then $(x + y)^2 = (0 + y)^2 = y^2 = x^2 + y^2$.
- If y = 0, then $(x + y)^2 = (x + 0)^2 = x^2 = x^2 + y^2$.

In either case, P holds.

Since we have shown both $P \Rightarrow Q$ and $Q \Rightarrow P$, we conclude that

$$(x+y)^2 = x^2 + y^2$$
 if and only if $x = 0$ or $y = 0$.