

Struktur Diskrit Minggu Ke-9 PAIK6105

TEORI GRAF

Bagian 1

Departemen Informatika Fakultas Sains dan Matematika Universitas Diponegoro

Outline

Pendahuluan dan Motivasi

Definisi Graf dan Contohnya

Jenis-jenis Graf

Contoh Penerapan Graf

Beberapa Terminologi dalam Graf

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

Gambar. Peta jaringan jalan raya yang menghubungkan beberapa kota di Jawa Tengah Sumber: R. Munir, *Matematika Diskrit*, edisi 3, 2010 (hal 354)

Sejarah Graf

Gambar: Masalah 7 jembatan Konigsberg

Sumber: K.H. Rosen, Discrete Mathematics and Its Applications, edisi 7 (hal 693)

Permasalahan: bisakah seseorang mengunjungi setiap kota dengan melalui setiap jembatan tepat satu kali dan kembali ke titik awal/mula-mula?

Sejarah Graf

Gambar: Masalah 7 jembatan Konigsberg

Sumber: K.H. Rosen, Discrete Mathematics and Its Applications, edisi 7 (hal 693)

Solusi Permasalahan diperoleh dengan merepresentasikan masalah tersebut kedalam graf.

Graf yang merepresentasikan jembatan Konigsberg:

Titik/Simpul (*vertex*) → menyatakan daratan

Sisi (*edge*) → menyatakan jembatan

Definisi Graf

Suatu graph G merupakan pasangan terurut (V, E), ditulis dengan notasi G = (V, E), yang terdiri dari

-> himpunan tidak kosong *V* (disebut himpunan simpul-simpul/titik-titik/node/vertex dari *G*) dan

-> himpunan *E* (disebut himpunan sisi/edge dari *G*). Setiap sisi pada E menghubungkan sepasang titik (bisa dua titik yang berbeda atau satu titik yang sama), titik-titik tersebut merupakan titik ujung dari sisi tersebut.

Contoh:

 G_1 adalah graf dengan

$$V_1 = \{ A, B, C, D, E \}$$

 $E_1 = \{ (A, B), (A, E), (B, C), (B, D), (C, D), (C,E), (D,E) \}$
 $= \{ e_1, e_5, e_2, e_7, e_3, e_6, e_4 \}$

Catatan: Jika sisi pada graf diberikan label seperti e_1 atau e_5 , maka label tersebut harus ditulis sebagai elemen dari himpunan sisinya (dalam hal ini E).

$$Graf G_1 = (V_1, E_1)$$

Perhatikan

Himpunan sisi *E* pada *G* boleh merupakan himpunan kosong.

Contoh:

Titik v_1 berikut merupakan contoh Graf Sesuai pada definisi graf, himpunan titik tidak boleh kosong, sehingga kita dapatkan himpunan titik (V) dan sisinya (E) adalah:

$$V = \{v_1\}$$

$$dan$$

$$E = \{ \}.$$

Sisi pada graf G yang berarah disebut sebagai busur (arc).

Contoh Graf

G_1 adalah graf dengan

•
$$V = \{1, 2, 3, 4\}$$

•
$$E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$$

G_2 adalah graf dengan

•
$$V = \dots$$

•
$$E = \dots$$

G_3 adalah graf dengan

- $V = \dots$
- E = ...

Gambarkan graf G₄ dengan

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$E = \{ (1, 2), (2, 3), (2, 4), (3, 4), (1, 5) \}!$$

Contoh Graf

- $V = \{1, 2, 3, 4\}$
- $E = \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) \}$

G₂ adalah graf dengan

- $V = \{1, 2, 3, 4\}$
- $E = \{ (1, 2), (2, 3), (1, 3), (3, 1), (2, 4), (3, 4), (4, 3) \}$ = $\{ e_1, e_2, e_3, e_4, e_5, e_6, e_7 \}$

G_3 adalah graf dengan

- $V = \{1, 2, 3, 4\}$
- $E = \{ (1, 2), (2, 3), (1, 3), (3, 1), (2, 4), (3, 4), (4, 3), (3, 3) \}$ = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8 \}$

Gambarkan graf G_4 dengan

$$V = \{ 1, 2, 3, 4, 5 \}$$

 $E = \{ (1, 2), (2, 3), (2, 4), (3, 4), (1, 5) \}!$

- Pada G_2 , sisi $e_3 = (1, 3)$ dan sisi $e_4 = (1, 3)$ dinamakan **sisi-ganda** (*multiple edges*) atau *paralel edges*) karena kedua sisi ini menghubungi dua buah simpul yang sama, yaitu simpul 1 dan simpul 3.
- Pada G_3 , sisi $e_8 = (3, 3)$ dinamakan **gelang** atau **kalang** (*loop*) karena ia berawal dan berakhir pada simpul yang sama.

Berdasarkan ada atau tidaknya sisi ganda pada graf. Graf dapat dibedakan menjadi beberapa jenis:

1. Graf sederhana / simple graph

Graf yang tidak mengandung gelang maupun sisi-ganda.

Pada graf sederhana, sisi adalah pasangan tak-terurut (unordered pairs). Jadi menuliskan sisi (u, v) sama saja dengan (v, u).

2. Graf tak sederhana / unsimple graph Graf yang mengandung sisi ganda atau gelang.

Terdapat dua macam graf tak sederhana:

- a. Graf ganda / multigraph: graf yang mengandung sisi ganda
- **b. Graf semu** / pseudograph: graf yang mengandung gelang (loop), dan bahkan mungkin memiliki sisi ganda

Termasuk jenis graf yang manakah G_1 , G_2 , dan G_3 ?

Termasuk jenis graf yang manakah G_1 , G_2 , dan G_3 ?

- Graf G_1 adalah graf sederhana, karena tidak memiliki sisi ganda dan sisi gelang.
- Graf G_2 adalah graf ganda, karena memiliki sisi ganda.
- Graf G_3 adalah graf semu, karena memiliki sisi gelang.

Berdasarkan orientasi arah pada sisi:

1. Graf tak-berarah / undirected graph

Graf yang sisinya tidak memiliki orientasi arah disebut sebagai graf takberarah / undirected graph.

Pada graf tak-berarah, urutan pasangan simpul yang dihubungkan oleh sisi tidak diperhatikan, sehingga (u, v) = (v, u) adalah sisi yang sama.

2. Graf berarah / directed graph

Graf yang sisinya memiliki orientasi arah sehingga sisi $(u, v) \neq (v, u)$.

Graf berarah juga bisa memiliki sisi ganda dan loop, yang mana disebut sebagai graf ganda berarah / *directed multi graph*.

Sisi berarah pada graf berarah disebut juga sebagai busur.

Jenis Graf	Sisi	Sisi ganda dibolehkan ?	Sisi gelang dibolehkan ?
Graf sederhana	Tidak- Berarah	Tidak	Tidak
Graf ganda (multigraph)	Tidak- Berarah	Ya	Tidak
Graf semu (pseudograph)	Tidak- Berarah	Ya	Ya
Graf sederhana berarah (simple directed graph)	Berarah	Tidak	Tidak
Graf ganda berarah (directed multigraph)	Berarah	Ya	Ya

Sumber: K.H. Rosen, Discrete Mathematics and Its Applications, edisi 7 (hal 644)

Sisi pada graf G yang berarah disebut sebagai busur (arc).

Gambarkan masing-masing 1 contoh dari jenis graf berikut dan berikan keterangan himpunan simpul V dan himpunan sisinya E!

- ■Graf sederhana
- Graf ganda
- •Graf semu
- Graf sederhana berarah
- Graf-ganda berarah

•Graf sederhana $G_1 = (V_1, E_1)$

 G_1 adalah graf sederhana karena tidak memiliki sisi ganda dan sisi gelang.

$$-V_1 = \{A, B, C, D, E\}$$

$$-E_1 = \{(A, B), (B, C), (C, D), (D, E), (E, A), (A, D), (E, B), (E, C)\}$$

$$= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$$

•Graf ganda $G_2 = (V_2, E_2)$

 G_2 adalah graf ganda karena memiliki sisi ganda yaitu e_1 dan e_2 , begitu juga e_8 dan e_9 .

$$-V_2 = \{A, B, C, D, E\}$$

$$-E_2 = \{(A, B), (A, B), (A, C), (A, D), (B, C), (B, E), (C, D), (C, D), (D, E)\}$$

$$= \{e_1, e_2, e_5, e_4, e_3, e_6, e_8, e_9, e_7\}$$

•Graf semu $G_3 = (V_3, E_3)$

 G_3 adalah graf semu karena memiliki sisi gelang yaitu e_1 dan e_4 .

$$-V_{1} = \{A, B, C, D, E\}$$

$$-E_{1} = \{(A, A), (A, B), (A, C), (B, B), (B, C), (B, D), (B, E), (D, E)\}$$

$$= \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{7}, e_{6}, e_{8}\}$$

•Graf sederhana berarah $G_4 = (V_4, E_4)$

 G_4 adalah graf sederhana berarah karena graf sederhana yang sisinya memiliki arah.

$$-V_1 = \{A, B, C, D, E\}$$

- $E_1 = \{(E, A), (E, C), (C, B), (B, D), (D, C)\}$

■Graf ganda berarah $G_5 = (V_5, E_5)$

 G_5 adalah graf ganda berarah karena bukan graf sederhana dan sisinya memiliki arah.

$$-V_5 = \{A, B, C, D, E\}$$

$$-E_5 = \{(A, B), (B, D), (A, D), (C, B), (C, B), (D, C), (D, E)\}$$

Catatan:

Graf yang dibuat bisa bebas/tidak harus sama dengan contoh jawaban Latihan.

1. Rangkaian listrik.

2. Isomer senyawa kimia karbon

Atom karbon dan hydrogen dinyatakan sebagai simpul dalam graf, sedangkan ikatan antara atom dinyatakan sebagai sisi.

Isomer merupakan senyawa kimia yang memiliki rumus molekul sama, tapi rumus bangun / bentuk graf berbeda

3. Transaksi konkuren pada basis data terpusat

Transaksi yang dilakukan pada **basisdata/ database**Dapat digunakan untuk mendeteksi apakah akan terjadi deadlock dengan melihat siklus graf.

Siklus graf T1-T3-T2-T1.

Penanganan deadlock tidak dipelajari di struktur diskrit, nanti akan dipelajari di sistem operasi.

4. Pengujian program

```
read(x);
while x <> 9999 do
begin
   if x < 0 then
        writeln('Masukan tidak boleh negatif')
   else
        x:=x+10;
   read(x);
   end;
writeln(x);</pre>
```

```
Keterangan: 1 : read(x) 5 : x := x + 10

2 : x < 9999 6 : read(x)

3 : x < 0 7 : writeln(x)
```

4: writeln('Masukan tidak boleh negatif');

Flow diagram dari suatu proses program Menyatakan alur/aliran kendali program untuk berbagai kasus uji

5. Pemodelan Mesin Jaja / Vending Machine [teori otomata]

5. Pemodelan Mesin Jaja / Vending Machine [teori otomata] Misal vending machine menjual coklat seharga 15 sen

Keterangan:

a: 0 sen dimasukkan

b: 5 sen dimasukkan

c:10 sen dimasukkan

d: 15 sen atau lebih dimasukkan

Gambarkan graf sederhana yang menggambarkan (merepresentasikan) sistem pertandingan ½ kompetisi (round-robin tournaments) yang diikuti oleh 4, 6, dan 8 tim!

 A round-robin tournament (or all-go-awaytournament) is a competition in which each contestant meets every other participant, usually in turn.

Gambarkan graf yang menggambarkan (merepresentasikan) sistem pertandingan ½ kompetisi (round-robin tournaments) yang diikuti oleh 4, 6, dan 8 tim!

A round-robin tournament (or all-go-away-tournament) is a competition in which each contestant meets every other participant, usually in turn.

Terminologi dalam Graf

- 1. Bertetangga / adjacency
- 2. Bersisian / incidency
- 3. Simpul terpencil / isolated vertex
- 4. Graf kosong / null graph / empty graph
- 5. Lintasan / path
- 6. Siklus atau sirkuit / cycle or circuit
- 7. Terhubung / connected
- 8. Derajat / degree

Bertetangga / Adjacent

Dua buah simpul dikatakan *bertetangga* jika keduanya <u>terhubung langsung</u>. Dengan kata lain, titik u bertetangga dengan titik v jika (u, v) merupakan sebuah sisi pada graf G.

Tinjau graf G_1 :

titik 1 bertetangga dengan simpul 2 dan 3, titik 1 tidak bertetangga dengan simpul 4.

Bertetangga / Adjacent

Dua buah titik dikatakan *bertetangga* jika keduanya <u>terhubung langsung</u>. Dengan kata lain, titik u bertetangga dengan simpul v jika (u, v) merupakan sebuah sisi pada graf G.

Tinjau graf G_1 :

titik 1 bertetangga dengan simpul 2 dan 3, titik 1 tidak bertetangga dengan simpul 4.

Bertetangga / Adjacent

Himpunan semua tetangga dari titik v pada G = (V, E), dinotasikan dengan N(v), disebut sebagai tetangga dari v.

Contoh:

Tinjau graf G_1 :

titik 1 bertetangga dengan titik 2 dan 3, titik 1 tidak bertetangga dengan titik 4. Tetangga dari titik 3 adalah $N(3) = \{1,2,4\}$

Bersisian / Incidency

Untuk sembarang sisi e = (u, v) dikatakan

- e bersisian dengan titik u, atau
- e bersisian dengan titik v

Tinjau graf G_1 :

sisi (2, 3) bersisian dengan titik 2 dan titik 3, sisi (2, 4) bersisian dengan titik 2 dan titik 4, tetapi sisi (1, 2) tidak bersisian dengan titik 4.

Tinjau graf G_2 :

sisi e_3 bersisian dengan titik 1 dan 3.

Simpul terpencil / Isolated vertex

• Simpul/titik terpencil adalah titik yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graf G_3 : simpul 5 adalah titik terpencil.

Graf kosong / Null graph / Empty graph

Graf Kosong adalah Graf yang himpunan sisinya merupakan himpunan kosong (N_n) , yang dalam hal ini n merupakan banyak titik.

Graf N_5 :

1

4 • • • 2

•

Derajat / Degree

Derajat suatu simpul adalah banyak sisi yang bersisian dengan titik tersebut.

Notasi d(v) menyatakan derajat simpul v. Pada beberapa literatur/buku, dituliskan dengan deg(v).

Tinjau graf G_1 :

$$d(1) = d(4) = 2$$

$$d(2) = d(3) = 3$$

Catatan:

Derajat dari titik yang dihubungkan dengan sisi gelang/loop dihitung dua kali

Derajat / Degree

D

Derajat suatu simpul adalah banyak sisi yang bersisian dengan simpul tersebut.

Notasi d(v) menyatakan derajat simpul v

Tinjau graf G_3 :

 $d(5) = 0 \rightarrow \text{simpul terpencil}$

 $d(4) = 1 \rightarrow \text{simpul anting-anting } (pendant vertex)$

Tinjau graf G_2 :

d(1) = 3 \rightarrow bersisian dengan sisi ganda

d(3) = 4 \rightarrow bersisian dengan sisi gelang (loop)

Perhatikan simpul 3 pada graf G_2 ! Sisi gelang e_5 dihitung dua untuk simpul 3

Tinjau graf G_4 :

$$d(A) = 2$$

$$d(B) = 2$$

5

D

Pada graf berarah, derajat suatu titik dibedakan menjadi dua macam:

- $d_{in}(v) = \text{derajat-masuk} (in-degree)$
 - = banyak busur (sisi berarah) yang masuk ke simpul v
- $d_{\text{out}}(v) = \text{derajat-keluar} (out\text{-}degree)$
 - = jumlah busur yang keluar dari simpul v

Sehingga:

$$d(v) = d_{\text{in}}(v) + d_{\text{out}}(v)$$

Sisi gelang pada graf berarah menyumbangkan masing-masing 1 untuk derajat masuk dan derajat keluar

• Tinjau graf G_4 :

$$d_{in}(1) = \dots$$
 $d_{out}(1) = \dots$
 $d_{in}(2) = \dots$ $d_{out}(2) = \dots$
 $d_{in}(3) = \dots$ $d_{out}(3) = \dots$
 $d_{in}(4) = \dots$ $d_{out}(4) = \dots$

• Jadi, pada graf G_4

$$d(1) = ...$$

 $d(2) = ...$
 $d(3) = ...$
 $d(4) = ...$

 G_4

• Tinjau graf G_4 :

$$d_{in}(1) = 2$$
 $d_{out}(1) = 1$
 $d_{in}(2) = 2$ $d_{out}(2) = 3$
 $d_{in}(3) = 2$ $d_{out}(3) = 1$
 $d_{in}(4) = 1$ $d_{out}(4) = 2$

• Jadi, pada graf G_4

$$d(1) = d_{in}(1) + d_{out}(1) = 2 + 1 = 3$$

$$d(2) = d_{in}(2) + d_{out}(2) = 2 + 3 = 5$$

$$d(3) = d_{in}(3) + d_{out}(3) = 2 + 1 = 3$$

$$d(4) = d_{in}(4) + d_{out}(4) = 1 + 2 = 3$$

 G_4

Struktur Diskrit Minggu Ke-9 PAIK6105

TEORI GRAF

Bagian 2

Departemen Informatika Fakultas Sains dan Matematika Universitas Diponegoro

Outline

Review Materi Teori Graf sebelumnya

Beberapa terminologi dalam Graf

Komponen Graf

Review Graf

D

Suatu graph G merupakan pasangan terurut (V, E), ditulis dengan notasi G = (V, E), yang terdiri dari himpunan tidak kosong V (disebut himpunan simpul-simpul/titik-titik dari G) dan himpunan E (disebut himpunan sisi dari G).

Jenis Graf	Sisi	Sisi ganda dibolehkan ?	Sisi gelang dibolehkan ?
Graf sederhana	Tidak- Berarah	Tidak	Tidak
Graf ganda (multigraph)	Tidak- Berarah	Ya	Tidak
Graf semu (pseudograph)	Tidak- Berarah	Ya	Ya
Graf sederhana berarah (simple directed graph)	Berarah	Tidak	Tidak
Graf ganda berarah (directed multigraph)	Berarah	Ya	Ya

Graf dapat digunakan untuk memodelkan berbagai hubungan antara dua obyek pada suatu himpunan.

Sumber: K.H. Rosen, Discrete Mathematics and Its Applications, edisi 7 (hal 644)

Terminologi dalam Graf

- 1. Bertetangga / adjacency
- 2. Bersisian / incidency
- 3. Simpul terpencil / isolated vertex
- 4. Graf kosong / null graph / empty graph
- 5. Derajat / degree
- 6. Lintasan / path
- 7. Siklus atau sirkuit / cycle or circuit
- 8. Terhubung / connected

T

Handshaking Theorem.

Misalkan G = (V, E) adalah graf tidak berarah dengan banyak sisi G adalah |E|.

Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut, sehingga

$$\sum_{v \in V} d(v) = 2|E| .$$

Note that this applies even if multiple edges and loops are present

Sumber: K.H. Rosen, Discrete Mathematics and Its Applications, edisi 7 (hal 644)

L Akibat Handshaking Lemma.

Untuk setiap graf tidak berarah G = (V, E), banyaknya simpul berderajat ganjil selalu genap.

-
$$G_1$$
:

$$\sum_{v \in V}^{1} d(v) = d(1) + d(2) + d(3) + d(4) = 2 + 3 + 3 + 2 = 10$$

= 2 × banyak sisi = 2 × 5

-
$$G_2$$
:

$$\sum_{v \in V} d(v) = d(1) + d(2) + d(3) = 3 + 3 + 4 = 10$$

= 2 × banyak sisi = 2 × 5

-
$$G_3$$
:

$$\sum_{v \in V} d(v) = d(1) + d(2) + d(3) + d(4) + d(5)$$

$$= 2 + 2 + 3 + 1 + 0 = 8$$

$$= 2 \times \text{banyak sisi} = 2 \times 4$$

 G_3

e₅

Misalkan G = (V, E) adalah graf berarah dengan banyak sisi G adalah |E|.

Jumlah derajat masuk semua simpul pada suatu graf berarah sama dengan jumlah derajat keluar semua simpul pada suatu graf berarah.

$$\sum_{v \in V} d_{in}(v) = \sum_{v \in V} d_{out}(v) = |E|.$$

Latihan

- 1. Dapatkah kita menggambar graf tidak berarah dengan barisan derajat masing-masing simpul berikut?
 - (a) 2, 3, 1, 1, 2
 - (b) 2, 3, 3, 4, 4
- 2. Diketahui graf sederhana dengan enam buah simpul sehingga setiap simpulnya memiliki derajat 5. Berapa banyak sisi pada graf tersebut?

Latihan

- 1. Dapatkah kita menggambar graf sederhana dengan barisan derajat masing-masing simpul berikut?
 - (a) 2, 3, 1, 1, 2
 - (b) 2, 3, 3, 4, 4

Penyelesaian:

a. tidak dapat, karena jumlah derajat semua simpulnya ganjil

$$(2+3+1+1+2=9).$$

b. dapat, karena jumlah derajat semua simpulnya genap

$$(2+3+3+4+4=16).$$

Sebagai contoh, graf untuk barisan (b) adalah

2. Diketahui graf sederhana dengan enam buah simpul sehingga setiap simpulnya memiliki derajat 5. Berapa banyak sisi pada graf tersebut?

Penyelesaian:

Misalkan G adalah graf sederhana.

Diketahui: |V(G)| = 6 dan d(v) = 5 untuk setiap $v \in V(G)$.

Banyak sisi pada G adalah

$$|E(G)| = \sum_{v \in V(G)} d(v)$$
$$= 5.6$$
$$= 30$$

Jadi banyak sisi di G adalah 30.

Latihan

Diberikan beberapa soal Latihan dari buku:

Discrete Mathematics and Its Applications, Kenneth H Rosen, 7th Edition.