

Wireless Communications I

1. Introduction

Overview An introduction and overview to the course topic and contents are given.

Source The material is mainly based on Chapter 1 of the course book.

Outline of the Lecture

- Motivation
- Course Overview
- Communications Systems
 - Block diagram, channel, capacity, methods
- Course Objectives
- History of Wireless Communications
- Technical Challenges
- Current Wireless Communication Systems
- Spectrum Regulation
- Trends for Future Systems and Networks
- 6G Flagship

Motivation

- Why wireless communications?
 - Reasons for no wires are manyfold.
- Flexibility
- Mobility
- Robustness?
 - Yes and no.
- Faster to deploy than wired

Course Overview

- 1 Introduction
- 2 Radio Channels
- 3 Digital Modulation and Detection
- 4 Coding for Wireless Channels
- 5 Performance over Wireless Channels
- 6 Diversity Techniques
- 7 Wideband Systems
- 8 Cellular System Principle

Format

- Operation to convert signal into digital form (digital symbols)
 - E.g., A/D-conversion
- Does not remove redundancy

Source coding

- Information signal's (from source) redundancy is removed (e.g., HUFFMAN-coding)
- Compressing the message
- Digital symbols have redundancy,
 - if symbols have not the same probability or
 - if symbols are not independent of each others
- Source symbols inherent redundancy is nonsystematic
 - wastes channel capacity
 - cannot be efficiently used to detect/correct errors

Encryption: two goals

- privacy (sanoman yksityisyys):
 - prevents the inappropriate users to get the infomation (useless to intercept)
- authentiation (sanoman luotettavuus):
 - prevents the inapropriate users to sent information (prevents false alarms)

Channel coding

- Redundance is increased in a way, that the receiver can use it efficiently to detect and correct errors -> parity check bits (e.g., repetition codes, block codes, convolutional codes)
- Every sequence of k bits is presented as code word of length n => amount of redundance is n/k; inverse k/n is code rate
- Channel coding increases signals' distance in signal space, therefore error probability decreases
- Errors should be usually randomized using interleaving

Multiplexing

- Sharing of transfer capacity of channes to different users
- Is usually fixed
- Can be done in frequency or time domain (orthogonality)
 - Frequency division multiplexing (FDM)
 - Time division multiplexing (TDM)

Modulation

- To match the signal spectra in the band pass channel
- Can be changed carries wave amplitude, phase or frequency
- Line coding is corresponding process in low pass channel

<u>Spectrum spreading</u> (spread spectrum systems)

- Signal spectrum is spread by a factor of 100-1000
- Goals, e.g.,
 - Increase interference resistance of the receiver
 - Decrease propability of interception (LPI)
 - Tolerate multipath propagation
 - Multiple access (CDMA = code division multiple access)
 - Distance measuring
- Spreading is done using special spreading code

Multiple access

- Also sharing of channel capacity
- Not necessary fixed but it can be changed based on requirements of the users
- Access is controlled
- Examples
 - Frequency division multiple access (FDMA)
 - Time division multiple access (TDMA), e.g., GSM
 - Code division multiple access (CDMA), e.g., WCDMA
 - Space division multiple access (SDMA)
 - Polarization division multiple access (PDMA)

Synchronization

- To find meaningful time instants of the received signal time axis
 - Frequency (carrier synchronization) and time (symbol synchronization) estimation

Propagation Characteristics

- Path loss (includes average shadowing)
- Shadowing (due to obstructions)
- Small scale multipath fading

Multipath Propagation

- time (coherence time)
- frequency (coherence bandwidth)
- space (distance $0,5...10 \lambda$)
- polarization (orthogonality)
- FEC (channel coding)

- parallel
 - transmission
- spread spectrum
- linear
- nonlinear (DFE)
- Viterbi algorithm

Channel Capacity

- Capacity defines theoretical rate limit
 - Maximum error free rate a channel can support
 - Depends on what is known about channel
- Unknown fading
 - Worst-case channel capacity
- Fading statistics known
 - Hard to find capacity
- Fading known at receiver only
- Fading known at transmitter and receiver
 - For fixed transmit power, same as with only receiver knowledge of fading
 - Transmit power $S(\gamma)$ can also be adapted
 - Leads to optimization problem

Decision Regions and Error Probability

ML (maximum likelihood) receiver decodes s_i closest to x

- Assign decision regions:
 - $Z_i = (x : |x S_i| < |x S_j| \text{ all } j)$
 - $x \in Z_i \Rightarrow m = \underline{m}_i$
 - P_e based on noise distribution

$$P_{s} \leq (M-1)Q\left(\sqrt{d_{\min}^{2}/(2N_{0})}\right)$$

Wireless Communications I @ University of Oulu, CWC

1. Introduction

Signal Constellation

Diversity

- Basic Idea
 - Send same bits over independent fading paths
 - Independent fading paths obtained by time, space, frequency, or polarization diversity
 - Combine paths to mitigate fading effects

Multiple paths unlikely to fade simultaneously

Multiple—Input Multiple—Output (MIMO) or Multiantenna Communications

multiple-input

- Beamforming (adaptive antennae)
- Antenna diversity
- Spatial multiplexing

multiple-output

Course Objectives

Core contents:

- Radio channel models and basic phenomena causing fading
- Digital modulation and detection
 - Signal space analysis, modulation principles, symbol and carrier synchronization
- Performance of digital modulation over wireless channels
 - In AWGN, in Fading
- Diversity
- Coding for wireless channels

Additional knowledge

Multicarrier systems and spread spectrum systems

Special knowledge

Cellular system principle

Resources

- Basic resources of the communication system:
 - bandwidth and
 - transmit power
 - Error probability depends on symbols' average energy, noise power density and symbols' distance in signal space (measured by Euclidean distance)
 - Tradeoff: increasing distance by signal design, error probability decreases but bandwidth increases
 - Bandwidth is estimated using power spectral density of the modulation method
 - Needed transmit power is estimated by error probablity of the modulation method

System division

- In bandlimited system, there is enough transmit power, but lack of spectrum (e.g., radio spectrum in general)
 - Need to be used signals having small distance (e.g., QAM)
- In power limited systems, there is lack of transmit power
 - Need to be used signals having large distance (e.g., channel coding in FEC systems, FEC = forward error correction)
- Use of channel coding to detect errors (ARQ = automatic repeat request) can be usefull both in bandlimited and power limited systems

Performance evaluation

- Performance evaluation methods for communication system
 - Mathematical analysis
 - Simplified assumptions, linear systems, Gaussian noise
 - Computer simulation
 - Complicated systems possible
 - Can be concentrated into one problem at a time, because nonidealities of the equipments need not to be taken into acccount
 - Easy to make changes
 - Simulation times can be a problem
 - Building equipments
 - Slow and expensive, difficult to make changes
 - However, are necessar, because models are always incomplete
- Choice of the system is bounded by cost and complexity
 - -> need to investigate also suboptimal systems

History of Wireless Communications

- Ancient systems: smoke signals, carrier pigeons, semaphore flags at yards, flashing mirrors etc.
- Wireline electrical communications
 - Telegraph by Samuel Morse in 1838
 - Telephone by Alexander Graham Bell in 1875 (patent 1876)
- Radio and electromagnetism
 - Maxwell's equations by James Maxwell in 1873
 - Radio waves by Heinrich Hertz in 1888
- Radio communications
 - Nikolai Tesla in 1892 (patent in 1898)
 - Guglielmo Marconi in 1895 (patent in 1900)
 - Better public relations
 - Nobel prize 1909

The first half 20th Century

- Audio broadcasting over radio
- Video broadcasting over radio (television)
- Government radio systems
 - Police radio
 - Military radio
- World War II
 - Secure communications and spread spectrum
- Theoretical breakthroughs
 - Wiener filter
 - Matched filter
 - Information theory

Mobile Communications

- Voice transmission between New York and San Francisco in 1915
 - convergence of telephone and radio started.
- Public mobile telephone introduced by AT&T in USA in 1946
 - FM radio transmission, 120 kHz per voice channel, limited to 80 km from base station, operator-assisted dialing.
- Mid-1960s: AT&T's IMTS (Improved Mobile Telephone Service) uses 30 kHz voice channels, narrowband FM and direct dialing
- Cellular concept introduced by AT&T in 1950s.
 - Spatial frequency reuse.
 - Concept designed completed in late 1960s.

Cellular System Evolution

Decade	1980s	1990s	2000s	2010s	2020s	2030s
Generation	1G	2G	3G	4G	5G	6G
	NMT,	GSM, GPRS,				
	AMPS,	EDGE,	UMTS,	LTE,		
Access	TACS,	D-AMPS,	CDMA	WiMAX	5G	6G
Platform	Analog	Digital	Packets	Broadband	Cloud	AI?
				Web,		
				Facebook,	lloT,	
Application	Voice	Voice, SMS	WAP, Web	Youtube	Verticals	?

Technical Challenges

- Wireless or radio communications pose a number of distinct technical and scientific challenges related to the fact that communication need to be wireless due to
 - radio propagation issues
 - power limitations if the terminal is also wireless in power supply sense.
- A wireless channel is inherently more difficult and fluctuating than a wired one.
 - Wireless connection is not always the best choice.

Technical Challenges (2)

- Terminal challenges:
 - Power limitations in portable terminals
 - => power efficiency is a crucial issue.
 - Multitude of system standards
 - => need for flexible and reconfigurable terminals.
- Radio spectrum is a scarce resource.
 - Bandwidth efficiency is a critical design issue.
 - Frequency spectrum sharing and allocation is a big political/economical issue.
 - International standardization bodies and national regulators need to co-operate.
- Security concerns due to radio transmission.

Wireless Channel

- Wireless channel distorts the signal in several manners:
 - free-space path loss (attentuation)
 - shadowing (large scale fading)
 - (small scale) fading due to multipath propagation.
- Wireless channels are always unpredictable to some extent.
- Wireless channels pose a main technical / theoretical design / research challenge for wireless communications.
- Understanding the channels is crucial.

Examples of Quality of Service (QoS) Requirements

	Voice	Data	Live video
Delay	< 100ms	1	< 100ms
Packet Loss	< 1%	0	< 1%
BER	10 ⁻³	10-6	10-6
Data Rate	8-32 kbps	1-100 Mbps	1-20 Mbps
Traffic	Continuous	Bursty	Continuous

Wireless Networking

- Locating the users and routing the signal is not always trivial in mobile communications.
- The traffic patterns, user (also interfering ones) locations and service needs (data rate, delay requirements, reliability etc.) vary over time and space.
 - High mobility poses particularly significant challenges.
- Challenges to wireless networking protocols, media access, routing etc.
- *Cross-layer optimization* is needed for performance optimum.

OSI Protocol Reference Model (1)

OSI Protocol Reference Model (2)

- Application layer: user program that generates data.
- Presentation layer: changes syntax (data format) if necessary.
- Session layer: synchronizes sessions (dialogues).
- Transport layer: end-to-end connection management, error recovery.
- Network layer: routes data through network.
- Link layer: framing, error recovery on links, including MAC.
- Physical layer: point-to-point medium-dependent transmission.

Crosslayer Design

- Hardware
- Link
- Access
- Network
- Application

Adapt across design layers Reduce uncertainty through scheduling Provide robustness via diversity

Current Wireless Communication Systems

- Cellular communication (telephone) systems
- Cordless phones
- Wireless local area networks (WLAN's)
- Wireless metropolitan area networks (WMAN's)
- Wireless body area networks (WBANs)
- Fixed wireless access
- Paging systems
- Satellite networks
- Short range connectivity
- Emerging systems and technologies
 - Ad hoc wireless networks
 - Sensor networks
 - Distributed control networks

Spectrum Regulation

- Radio spectrum is regulated by government offices.
 - Finland: Ministry of Transportation and Communications
 - USA: Federal Communications Commission (FCC) or OSM.
- Regulation utilizes system (international) standards:
 - International Telecommunication Union (ITU)
 - European Telecommunications Standadization Institute (ETSI)
 - FCC
 - Association of Radio Industries and Businesses (ARIB) in Japan.
- De facto standards by companies.

Trends for Future Systems and Networks

Convergence of heterogeneous networks to enable ubiquitous communication among people and devices

Basic pillars enabling future smart society

6G SYSTEMS:

WIRELESS COMMUNICATION
AI DISTRIBUTED AT THE EDGE
LARGE IOT NETWORKS

Flagship focuses on 5G & 6G

- Now: Utilize benefits of 5G
- Next: Develop 6G enablers

Wireless intelligent edge

- Technology convergence
- Enablers for speed, experience, performance & security

Next gen requirements

- Real-time
- Sensing-based
- Edge intelligence
- ..list goes on!

WIRELESS INTELLIGENT EDGE

6Genesis takes on grand challenges

TOP CLASS BASIC RESEARCH LEVERAGED TO HIGH IMPACT THROUGH THE ECOSYSTEM

ITEE RESEARCH FORMS A SOLUTION CREATION VALUE CHAIN

BASIC RESEARCH

Research and education spectrum