Variational Inference: The Basics

Philip Schulz

https://vitutorial.github.io

https://github.com/vitutorial/VITutorial

Generative Models

Examples

Variational Inference

Deriving VI with Jensen's Inequality

Deriving VI from KL Divergence

Relationship to EM

Mean Field Inference

Amortized VI

Generative Models

Examples

Variational Inference

Deriving VI with Jensen's Inequality

Deriving VI from KL Divergence

Relationship to EM

Mean Field Inference

Amortized VI

Joint Distribution

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

Joint Distribution

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

3 Examples of Generative Models

- p(x,z) = p(x)p(z|x)
- p(x,z) = p(z)p(x|z)
- p(x,z) = p(x)p(z)

Likelihood and prior

From here on, x is our observed data. On the other hand, z is an unobserved outcome.

- p(x|z) is the **likelihood**
- ightharpoonup p(z) is the **prior** over Z

Notice: both distributions may depend on a non-random quantity α (write e.g. $p(z|\alpha)$). In that case, we call α a hyperparameter.

Bayes rule

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

Bayes rule

$$p(z|x) = \frac{\overbrace{p(x|z)}^{\text{likelihood}} \overbrace{p(z)}^{\text{prior}}}{p(x)}$$

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x|z)}}_{\substack{\text{prior} \\ \text{p(x)}}} \underbrace{\frac{prior}{p(x)}}_{\substack{\text{prior} \\ \text{p(x)}}}$$

Bayes rule

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x)}\underbrace{p(z)}_{\text{posterior}}}_{\text{marginal likelihood/evidence}}$$

The Basic Problem

We want to compute the posterior over latent variables p(z|x). This involves computing the marginal likelihood

$$p(x) = \int p(x,z) dz$$

which is often **intractable**. This problem motivates the use of **approximate inference** techniques.

Bayesian Inference

The evidence becomes even harder to compute because θ is often high-dimensional (just think of neural nets!).

- $p(x) = \int p(x, z|\theta) dz$ (frequentist)
- $p(x) = \int \int p(x, z, \theta) dz d\theta$ (Bayesian)

Bayesian Inference

The evidence becomes even harder to compute because θ is often high-dimensional (just think of neural nets!).

- $p(x) = \int p(x, z|\theta) dz$ (frequentist)
- $p(x) = \int \int p(x, z, \theta) dz d\theta$ (Bayesian)

Today we will mostly focus on the frequentist case!

Generative Models

Examples

Variational Inference
Deriving VI with Jensen's Inequality
Deriving VI from KL Divergence
Relationship to EM

Mean Field Inference

Amortized VI

We cannot compute the posterior when

- 1. The functional form of the posterior is unknown (we don't know which parameters to infer)
- 2. The functional form is known but the computation is intractable

Bayesian Log-Linear Model

$$p(x|\mu,\sigma) \propto \int \exp(w^T x) p(w|\mu,\sigma) dz$$

The functional form of the posterior is unknown.

Bayesian Log-Linear Model

$$p(x|\mu,\sigma) \propto \int \exp(w^T x) p(w|\mu,\sigma) dz$$

The functional form of the posterior is unknown.

Bayesian Log-Linear Model

Intuition

Simply assume that the posterior is Gaussian.

Inference network for FHHMs.

- M Markov chains over latent variables.
- L outcomes per latent variable.
- Sequence of length T.
- ▶ Complexity of inference: $\mathcal{O}(L^{2M}T)$.

FHMMs have several Markov chains over latent variables.

- M Markov chains over latent variables.
- L outcomes per latent variable.
- Sequence of length T.
- ▶ Complexity of inference: $\mathcal{O}(L^{2M}T)$.

Intractable

Exponential dependency on the number of hidden Markov chains.

Intuition

Simply assume that the posterior consists of independent Markov chains.

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Posterior: latent variables are conditionally dependent

Latent binary variables that together produce an output.

- N output variables (e.g. pixels).
- \triangleright K binary factors (usually much less than N).
- ▶ Complexity of inference: $\mathcal{O}(2^K)$.

Intuition

Simply assume that the posterior consists of independent Bernoulli variables.

Intuition

Simply assume that the posterior consists of independent Bernoulli variables.

Rule of Thumb

Simply assume that the posterior is in the same family as the prior.

Generative Models

Examples

Variational Inference
Deriving VI with Jensen's Inequality
Deriving VI from KL Divergence
Relationship to EM

Mean Field Inference

Amortized VI

The Goal

Assume p(z|x) is not computable.

The Goal

Assume p(z|x) is not computable.

Idea

Let's approximate it by an auxiliary distribution q(z) that is computable!

The Goal

Assume p(z|x) is not computable.

ldea

Let's approximate it by an auxiliary distribution q(z) that is computable!

Requirement

Choose q(z) as close as possible to p(z|x) to obtain a faithful approximation.

$$ightharpoonup \operatorname{\mathsf{KL}}(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)} \left[\log \left(rac{q(z)}{p(z|x)}
ight)
ight]$$

$$ightharpoonup \operatorname{\mathsf{KL}}(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)} \left[\log \left(rac{q(z)}{p(z|x)}
ight)
ight]$$

▶
$$\mathsf{KL}(q(z) \mid\mid p(z|x)) = \int q(z) \log \left(\frac{q(z)}{p(z|x)}\right) dz$$
 (continuous)

- $ightharpoonup \operatorname{\mathsf{KL}}(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)} \left[\log \left(rac{q(z)}{p(z|x)}
 ight)
 ight]$
- ▶ $\mathsf{KL}(q(z) \mid\mid p(z|x)) = \int q(z) \log \left(\frac{q(z)}{p(z|x)}\right) dz$ (continuous)
- $ightharpoonup ext{KL}\left(q(z) \mid\mid p(z|x)
 ight) = \sum_{z} q(z) \log\left(rac{q(z)}{p(z|x)}
 ight) ext{ (discrete)}$

Properties

► KL $(q(z) || p(z|x)) = \mathbb{E}_{q(z)} \left[\log \left(\frac{q(z)}{p(z|x)} \right) \right] \ge 0$ with equality iff q(z) = p(z|x).

Properties

- ▶ $\mathsf{KL}(q(z) \mid\mid p(z|x)) = \mathbb{E}_{q(z)}\left[\log\left(\frac{q(z)}{p(z|x)}\right)\right] \geq 0$ with equality iff q(z) = p(z|x).
- $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \mathbb{E}_{q(z)}\left[\log\left(\frac{p(z|x)}{q(z)}\right)\right] \leq 0.$

Properties

- ► KL $(q(z) || p(z|x)) = \mathbb{E}_{q(z)} \left[\log \left(\frac{q(z)}{p(z|x)} \right) \right] \ge 0$ with equality iff q(z) = p(z|x).
- $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \mathbb{E}_{q(z)}\left[\log\left(\frac{p(z|x)}{q(z)}\right)\right] \leq 0.$
- ▶ We want: $supp(q) \subseteq supp(p)$; otherwise $KL(q(z) || p(z|x)) = \infty$

$$\log p(x) = \log \left(\int p(x,z) dz \right)$$

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$
$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$

$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$= \log \left(\mathbb{E}_{q(z)} \left[\frac{p(x, z)}{q(z)} \right] \right)$$

$$\geq \mathbb{E}_{q(z)} \left[\log \left(\frac{p(x, z)}{q(z)} \right) \right]$$

$$\log p(x) = \log \left(\int p(x, z) dz \right)$$

$$= \log \left(\int \frac{q(z)}{q(z)} \frac{p(x, z)}{q(z)} dz \right)$$

$$= \log \left(\mathbb{E}_{q(z)} \left[\frac{p(x, z)}{q(z)} \right] \right)$$

$$\geq \mathbb{E}_{q(z)} \left[\log \left(\frac{p(x, z)}{q(z)} \right) \right]$$

$$= \mathbb{E}_{q(z)} \left[\log \left(\frac{p(z|x)p(x)}{q(z)} \right) \right]$$

$$\log p(x) \ge \mathbb{E}_{q(z|x)} \left[\log \left(\frac{p(z|x)p(x)}{q(z)} \right) \right]$$

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log \left(rac{p(z|x)p(x)}{q(z)}
ight)
ight] \ &= \int q(z) \log \left(rac{p(z|x)}{q(z)}
ight) \mathrm{d}z + \log p(x) \end{aligned}$$

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log \left(rac{p(z|x)p(x)}{q(z)}
ight)
ight] \ &= \int q(z) \log \left(rac{p(z|x)}{q(z)}
ight) \mathrm{d}z + \log p(x) \ &= - \operatorname{\mathsf{KL}} \left(q(z) \mid\mid p(z|x)
ight) + \log p(x) \end{aligned}$$

$$egin{aligned} \log p(x) &\geq \mathbb{E}_{q(z|x)} \left[\log \left(rac{p(z|x)p(x)}{q(z)}
ight)
ight] \ &= \int q(z) \log \left(rac{p(z|x)}{q(z)}
ight) \mathrm{d}z + \log p(x) \ &= - \operatorname{\mathsf{KL}} \left(q(z) \mid\mid p(z|x)
ight) + \log p(x) \end{aligned}$$

We have derived a lower bound on the log-evidence whose gap is exactly KL(q(z) || p(z|x)).

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small.

Recall that we want to find q(z) such that $\mathsf{KL}\left(q(z)\mid\mid p(z|x)\right)$ is small.

Formal Objective

$$\min_{q(z)} \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right)$$

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small.

Formal Objective

$$\min_{q(z)} \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right)$$

Deriving VI from KL Divergence

$$\max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right)$$

$$\max_{q(z)} - \mathsf{KL}(q(z) \mid\mid p(z|x))$$

$$= \max_{q(z)} \int q(z) \log \left(\frac{p(z|x)}{q(z)}\right) dz$$

$$\begin{aligned} & \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \max_{q(z)} \int q(z) \log\left(\frac{p(z|x)}{q(z)}\right) \mathrm{d}z \\ &= \max_{q(z)} \int q(z) \log\left(\frac{p(z,x)}{p(x)q(z)}\right) \mathrm{d}z \end{aligned}$$

$$\begin{aligned} & \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z|x)}{q(z)}\right) \mathrm{d}z \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z,x)}{p(x)q(z)}\right) \mathrm{d}z \\ &= \max_{q(z)} \int q(z) \log \left(p(z,x)\right) \mathrm{d}z - \int q(z) \log q(z) \mathrm{d}z - \overbrace{\log p(x)}^{constant} \end{aligned}$$

$$\begin{aligned} & \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z|x)}{q(z)}\right) \mathrm{d}z \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z,x)}{p(x)q(z)}\right) \mathrm{d}z \\ &= \max_{q(z)} \int q(z) \log \left(p(z,x)\right) \mathrm{d}z - \int q(z) \log q(z) \mathrm{d}z - \overbrace{\log p(x)}_{q(z)} \\ &= \max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z)\right] + \mathbb{H}\left(q(z)\right) \end{aligned}$$

As before, we have derived a lower bound on the log-evidence. This **evidence lower bound** or **ELBO** is our optimisation objective.

ELBO

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

Variational Objective

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

This finds us the best posterior approximation for a **given model**.

Variational Objective

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

This finds us the best posterior approximation for a **given model**.

Also optimize the model!

$$\max_{q(z),p(x,z)} \mathbb{E}_{q(z)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z) \right)$$

VI in its basic form can be performed as a 2-step procedure via coordinate ascent.

VI in its basic form can be performed as a 2-step procedure via coordinate ascent.

1. Maximize (regularised) expected log-density.

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[\log \left(p(x,z) \right) \right] + \mathbb{H} \left(q(z) \right)$$

VI in its basic form can be performed as a 2-step procedure via coordinate ascent.

Maximize (regularised) expected log-density.

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[\log \left(p(x,z) \right) \right] + \mathbb{H} \left(q(z) \right)$$

2. Optimise generative model.

$$\max_{p(x,z)} \mathbb{E}_{q(z)} \left[\log \left(p(x,z) \right) \right] + \underbrace{\mathbb{H} \left(q(z) \right)}_{\text{constant}}$$

Recap: EM Algorithm

```
E-step Compute: \mathbb{E}_{p(z|x)} [\log (p(x,z))]. Same as: \max_{p(z|x)} \mathbb{E}_{p(z|x)} [\log p(x,z)]
```

Recap: EM Algorithm

```
E-step Compute: \mathbb{E}_{p(z|x)} [\log (p(x,z))]. Same as: \max_{p(z|x)} \mathbb{E}_{p(z|x)} [\log p(x,z)] M-step \max_{p(x,z)} \mathbb{E}_{p(z|x)} [\log p(x,z)] + \underbrace{\mathbb{H} (p(z|x))}_{\text{constant}}
```

Recap: EM Algorithm

E-step Compute:
$$\mathbb{E}_{p(z|x)} [\log (p(x,z))]$$
. Same as: $\max_{p(z|x)} \mathbb{E}_{p(z|x)} [\log p(x,z)]$
M-step $\max_{p(x,z)} \mathbb{E}_{p(z|x)} [\log p(x,z)] + \underbrace{\mathbb{H}(p(z|x))}_{\text{constant}}$

EM is variational inference!

$$q(z) = p(z|x)$$
 $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = 0$

Generative Models

Examples

Variational Inference
Deriving VI with Jensen's Inequality
Deriving VI from KL Divergence
Relationship to EM

Mean Field Inference

Amortized VI

Designing a tractable approximation

- ▶ Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).

Designing a tractable approximation

- ▶ Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).
- Formal assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).
- Formal assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

This approximation strategy is commonly known as **mean field** approximation.

Original FHHM Inference

Exact posterior p(s, z|x)

Mean field FHHM Inference

Approximate posterior
$$q(s,z) = \prod_{t=1}^T q(s_t) q(z_t)$$

Original Latent Factor Model Inference

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Exact Posterior: latent variables are dependent given observations

Mean Field Latent Factor Model Inference

Joint distribution: latent variables are marginally independent a priori

for example,
$$K = 3$$
, $N = 4$

Approximate Posterior: $q(z_1, \ldots, z_K) = \prod_{k=1}^K q(z_k)$

Generative Models

Examples

Variational Inference
Deriving VI with Jensen's Inequality
Deriving VI from KL Divergence
Relationship to EM

Mean Field Inference

Amortized VI

Mean field assumption

We have K latent variables and D data points

▶ assume the posterior factorises as *KD* independent terms

$$q(z_1,\ldots,z_KD) = \prod_{j=1}^{KD} q(z_j|\lambda_j)$$
mean field

Mean field assumption

We have K latent variables and D data points

▶ assume the posterior factorises as *KD* independent terms

$$q(z_1,\ldots,z_KD) = \prod_{j=1}^{KD} q(z_j|\lambda_j)$$
mean field

with independent sets of parameters
$$\lambda_j = \{b_j\}$$
 $Z_j \sim \mathsf{Bernoulli}(b_j)$

Mean field: example

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_{KD}|x)=\prod_{j=1}^{KD}q(z_j|\mathsf{NN}_{\lambda}(x)=b_j)$$

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_{KD}|x)=\prod_{j=1}^{KD}q(z_j|\mathsf{NN}_{\lambda}(x)=b_j)$$

still mean field

$$Z_j|x \sim \text{Bernoulli}(b_j)$$

Amortised variational inference

Amortise the cost of inference using NNs

$$q(z_1,\ldots,z_{KD}|x)=\prod_{j=1}^{KD}q(z_j|\mathsf{NN}_{\lambda}(x)=b_j)$$

still mean field

$$Z_j|x \sim \text{Bernoulli}(b_j)$$

but with a shared set of parameters

• where $b_1^K = NN_{\lambda}(x)$

Amortized mean field: example

Overview

Summary

- Posterior inference is often **intractable** because the marginal likelihood (or **evidence**) p(x) cannot be computed efficiently.
- ▶ Variational inference approximates the posterior p(z|x) with a simpler distribution q(z).
- The variational objective is the evidence lower bound (ELBO):

$$\mathbb{E}_{q(z)}\left[\log\left(p(x,z)\right)\right] + \mathbb{H}\left(q(z)\right)$$

Summary

- ▶ The **ELBO** is a lower bound on the log-evidence.
- ▶ When q(z) = p(z|x) we recover EM.
- ► A common approximation is the **mean field** approximation which assumes that all latent variables are independent:

$$q(z) = \prod_{i=1}^{N} q(z_i)$$

Literature I

```
David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3(4-5):993–1022, 2003. doi: 10.1162/jmlr.2003.3.4-5.993. URL http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993.
```

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians. 01 2016. URL https://arxiv.org/abs/1601.00670.

Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. In NIPS, pages 472-478, 1996. URL http://papers.nips.cc/paper/1144-factorial-hidden-markov-models.pdf.

Literature II

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In *Learning in graphical models*, pages 355–368. Springer, 1998. URL

http://www.cs.toronto.edu/~fritz/absps/emk.pdf.