History

Operations Research I: Models & Applications Course Overview

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Motivation.
- Business analytics.
- ► Mathematical programming.
- ► History.
- ▶ Preview for this course.

Resource allocation

- ▶ What is **management**?
- Someone said:
 - "Management is the attainment of organizational goals in an effective and efficient manner through planning, organizing, leading, and controlling organizational resources." (Daft, 2014, p. 7)
- ▶ What are **resources** in an organization?

¹Daft, R. L. (2014). Management.

Resource allocation

Motivation

000000

- ► Setting an objective requires strategic thinking, experiences, vision, etc.
- ► "Resource allocation" uses Operations Research (OR).
- ▶ Names of similar subjects/ideas:
 - ► Management science.
 - Decision science.
 - Optimization method/algorithm.
 - ► Mathematical programming.
- ► Let's see some examples.

- ➤ Two people are going to hold an event, and they need to complete some tasks.
- One task must be assigned to exactly one person; one person can work on one task at a time.
- ► How to assign the tasks so that they can complete all tasks the fastest?
- ► What are the resources? What is the objective?

II) task	processing time (min)
1	boiling boba	20
2	brewing milk tea	30
3	baking cookies	60
4	designing poster	15
_5	renting handcart	25

Example: project management

- n workers are going to complete m jobs in a project.
 - Some jobs must be processed with precedence rules.
 - Some jobs cannot be done by certain workers
 - Some jobs can be split and allocated to several workers.
 - Some jobs require different processing time if allocated to different workers.
- ► How many days does it take to complete this project?

Industry applications

- ► Key decisions:
 - ▶ How to deliver 6.5 millions items to more than 220 countries each day?
 - ▶ In each region, where to build distribution hubs?
 - ▶ In each distribution hub, how to classify and sort items?
 - ▶ In each city, how to choose routes?
- ▶ What do you need?
 - ▶ Well-designed information systems.
 - Operations Research!

Industry applications

- ► Key decisions:
 - ► How to determine the cities to connect?
 - ► How to schedule more than 2000 flights per day?
 - ► How to assign crews to flights?
 - How to reassign crews immediately when there is an emergency?
- ▶ What do you need?
 - Well-designed information systems.
 - Operations Research!

What is Operations Research?

- Operations Research (OR) is:
 - be the methodology to "allocate the available resources to the various activities in a way that is most effective for the organization as a whole."
 - It is "applied to problems that concern how to conduct and coordinate the **operations** (i.e., activities) within an organization."²
- ► It aims to support decision making.
 - ► Typical tools: intuitions, business senses, and experiences.
 - ► And OR (and other quantitative tools)!
 - By doing OR studies, we generate some suggestions to decision makers.

²Both are quoted from the ninth edition of *Introduction to Operations* Research by Hillier and Lieberman.

Road map

- ► Motivation.
- ► Business analytics.
- ► Mathematical programming.
- ► History.
- ▶ Preview for this course.

Business analytics

- ► Today, everybody talks about business analytics.
- ▶ Master of business administration (MBA) becomes master of business analytics (or master of science in business analytics).

Operations research/mathematical programming

- ▶ A typical process of decision making with business analytics:
 - Data analysis: Collect information and understand the problem.
 - Operations research: Allocate resources and solve the problem.

Example: multi-product inventory

- ► How to set the inventory levels of multiple products to maximize the total expected profit?
- ▶ Suppose that there is only one product.
 - ▶ Prevent understocking or overstocking.
 - Data analysis: Estimate the random amount of demand during one order cycle time.
 - ▶ Operations research: According to the random amount of demand, find the inventory level to maximize the expected profit.

Example: multi-product inventory

- ▶ When we have multiple products:
 - **Demand substitution**: "There is no more Coke. How about Pepsi?"
- ▶ Data analysis is difficult.
 - **Estimate** the probability of demand substitution between A and B. which is the probability for one to purchase B when A is sold out (or purchase A when B is sold out).
- Operations research is also difficult.
 - Given the substitution probabilities, find the best inventory levels of all products.

History

The process of conducting an OR study

Analytics is not everything

- ► Advantages:
 - It describes a problem in a precise and concise way (among people and between a person and a computer).
 - ▶ It facilitates the use of computers to solve a problem whose model has been formulated.
- ► Disadvantages:
 - Some of the problems are hard to be formulated into mathematical models.
 - ▶ Some critical information is missing.
- ▶ The aim of this course: Through various examples, we want to let people get an concrete idea about:
 - ▶ What **may** be solved by operations research.
 - ▶ What **cannot** be solved by operations research.

- ▶ Motivation.
- Business analytics.
- Mathematical programming.
- ► History.
- Preview for this course.

Example: knapsack problem

- ➤ You preparing for hiking. There are some useful items, but your backpack (knapsack) can only carry 5 kilograms.
- An item cannot be split: Each item should be either chosen or discarded.
- ► Which items should you bring to maximize the total value?

ID	Item	Weight	Value
1	compass	0.5	6
2	hatchet	1.5	5
3	matches	0.4	4
4	tarpaulin	1	4
5	telescope	1.1	3
6	cylinder	1.6	4
7	Rilakkuma	0.8	1

- Choosing items according to their weight-value ratios results in items 1, 2, 3, 4, and 5. The total value is 22.
- ► The optimal solution is to bring items 1, 2, 3, 4, and 6. The total
- ► How may we **model** or **formulate** this problem?

ID	Item	Weight	Value	Value / Weight
1	compass	0.5	6	12
2	hatchet	1.5	5	3.33
3	matches	0.4	4	10
4	tarpaulin	1	4	4
5	telescope	1.1	3	2.73
6	cylinder	1.6	4	2.5
7	Rilakkuma	0.8	1	1.25

value is 23.

A mathematical programming model

▶ **Decision variables**: What may we determine?

$$x_i = \begin{cases} 1 & \text{if item } i \text{ is chosen,} \\ 0 & \text{otherwise.} \end{cases}$$

▶ **Objective function**: What do we want?

$$\max 6x_1 + 5x_2 + 4x_3 + 4x_4 + 3x_5 + 4x_6 + x_7.$$

▶ Constraints: What are the limitations?

$$0.5x_1 + 1.5x_2 + 0.4x_3 + x_4 + 1.1x_5 + 1.6x_6 + 0.8x_7 \le 5.$$

and

$$x_i \in \{0, 1\} \quad \forall i = 1, ..., 7.$$

A mathematical programming model

Collectively, a complete **formulation** (**model**) is:

$$\begin{aligned} & \max & 6x_1 + 5x_2 + 4x_3 + 4x_4 + 3x_5 + 4x_6 + x_7 \\ & \text{s.t.} & 0.5x_1 + 1.5x_2 + 0.4x_3 + x_4 + 1.1x_5 + 1.6x_6 + 0.8x_7 \leq 5 \\ & x_i \in \{0,1\} \quad \forall i=1,...,7. \end{aligned}$$

A compact formulation (advanced)

- ▶ Let w_i and v_i be the weight and value of item i.
- \triangleright Let n be the number of items and B be the maximum allowable weight.
- ▶ A **compact** (and more abstract) formulation is

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \le B$$

$$x_i \in \{0,1\} \quad \forall i = 1,...,n.$$

Application: order selection

- ightharpoonup Let w_i and v_i be the processing time and gross profit of order i.
- ightharpoonup Let n be the number of orders and B be the factory capacity (the maximum total processing time that a factory has).
- ► The formulation is (still)

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \le B$$

$$x_i \in \{0, 1\} \quad \forall i = 1, ..., n.$$

Application: portfolio optimization

- Let w_i and v_i be the maximum possible investment amount and expected return of stock i.
- \blacktriangleright Let n be the number of assets and B be the total budget.
- ▶ The formulation is

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \le B$$

$$0 \le x_i \le 1 \quad \forall i = 1, ..., n.$$

- ▶ Note that investment decision is not all-or-nothing.
 - $x_i \in \{0,1\}$ becomes $x_i \in [0,1]$ or $0 < x_i < 1$.

Linear programming vs. integer programming

► This is a **linear program**:

► This is an **integer program**:

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \le B$$

$$0 \le x_i \le 1 \quad \forall i = 1, ..., n.$$

$$\max \sum_{i=1}^{n} v_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \le B$$

$$x_i \in \{0,1\} \quad \forall i = 1,...,n.$$

➤ Various types of mathematical programs will be introduced and compared in this course.

Road map

- ► Motivation.
- ▶ Business analytics.
- ► Mathematical programming.
- ► History.
- ▶ Preview for this course.

Origin of linear programming

- ► George Dantzig (1914-2005).
 - ▶ Ph.D. in Statistics, University of California, Berkeley (1946).
 - He solved two well-known difficult problems which were mistakenly considered as homework assignment.
- ▶ During World War II, he served in the United States Air Force doing route planning for military aircraft.
 - ► Each plan is called a "program."
- ► He found:
 - ▶ Many problems are linear optimization problems.
 - ▶ No one is able to systematically solve large-scale optimization problems.
- ▶ He invented the simplex method.
 - ▶ The "first" effective solution for linear programming in the world.
 - ▶ Still an important part in commercial software nowadays.

History

00000

▶ Numbers of personnel required at an airport vary a lot in a day.

0-6	6-8	8-10	10 – 12	12 - 14	14 - 16	16-18	18-20	22 - 24
6	10	15	20	16	24	28	20	10

- ► How many people will you hire?
 - Each person works for eight hours **continuously**.
 - ▶ They may start their shifts at different time.
- ▶ Linear programming is used by United Airlines to reduce the number of flight delays by 50% and save more than \$5 million per year in 1992.³

³Rakshit A., N. Krishnamurthy, and G. Yu. (1996) "System Operations Advisor: A Real-Time Decision Support System for Managing Airline Operations at United Airlines." *INFORMS Journal on Applied Analytics* **26**(2) 50-58.

History

00000

Swift & Company

- ▶ If you produce foods, what are important in getting an order from restaurants and retailers?
 - ➤ You have more than 8000 customers sharing your capacity and inventory.
 - ▶ Customers ask "When may I get them?" and "How much may I get?"
 - Once you promise a customer, you need to immediately update the availability information that are needed elsewhere.
 - ▶ Updating requires a lot of **planning** and calculations.
- ➤ Swift & Company increased its annual earning by more than 12 million U.S. dollars in 2006 with a linear programming solution.⁴

⁴Bixby A., B. Downs, and M. Self, (2006) "A Scheduling and Capable-to-Promise Application for Swift & Company." *INFORMS Journal of Applied Analytics* **36**(1) 69-86.

History of linear programming

- ▶ Linear programming has been widely used for government, business, and organizations.
- ➤ Two linear programming scholars, Leonid Kantorovich and Tjalling Koopmans, are awarded the 1975 Nobel Memorial Prize in Economic Sciences.
 - "For their contributions to the theory of optimum allocation of resources."
- ► How about Dantzig?
- ▶ At least they three took a photo together.⁵

⁵Gass, S. I. and Assad, A. A. (2005). An Annotated Timeline of Operations Research: An Informal History. Boston, MA: Springer.

- ▶ Motivation.
- Business analytics.
- Mathematical programming.
- ► History.
- ▶ Preview for this course.

Week	Topic	Computer
1	Course overview	
2	Linear programming	V
3	Integer programming	V
4	Nonlinear programming	V
5	Case studies	
6	Course summary and future directions	

Course contents

- ► In this course, we focus on **models** and **applications**.
 - We talk about the basic principles.
 - ▶ We formulate linear, integer, and nonlinear programs.
 - ▶ We experience solving mathematical programs using MS Excel solver.
 - ▶ We go though cases, applications, and business implications.
 - ▶ We (hopefully) let you know when to use (and when not to use) operations research.
- ▶ Prerequisites:
 - ▶ High-school mathematics (mainly algebra).
 - ► High-school English.

Let's learn operations research together!