Unraveling as Endogenous Market Thinness

Tyler Hoppenfeld

UC Davis

February 3, 2020

Outline

Introduction

Dysfunctional Markets Functional Markets State of Literature

Model

Model Goals
Model Design
Model Solution

Comparative Statics

Sufficient Statistic Welfare Endogenous Thinness

Law Clerkships

- The very best law school graduates want high-prestige clerkships
- The very best judges would like to hire the very best graduates as clerks
- All of these positions are filled after summer of 1st year. (Law school is 3 years)

Medical Residencies

- The very best medical school graduates want high-prestige residencies
- The very best residencies would like to hire the very best graduates as residents
- This market clears smoothly with an orderly centralized deferred acceptance process

•0

Past Research

- Past modeling of unraveling uses:
 - Risk aversion
 - Cost of using match process (ie, frictions)
- Past empirical work appeals to stability of matching
 - It is a usually true various medical matching markets that if the process gives a stable allocation, it works
 - That said, some markets with stable allocations have still unraveled (eg, GI fellowships)

Past Research

- Fails to capture "endogenous market thinness"
- Do not explain why some stable clearinghouses fail

Model Goals

- Friction-less access to stable matching
- Stability at unraveled state
- Stable matching pareto preferred to unraveled state

Outline

Introduction

Dysfunctional Markets Functional Markets State of Literature

Model

Model Goals
Model Design
Model Solution

Comparative Statics

Sufficient Statistic Welfare Endogenous Thinness

• Two-Period Model

- Two-Period Model
- Two types of agents
 - Buyers (eg. employers)
 - Sellers (eg. employees)

- Two-Period Model
- Two types of agents
 - Buyers (eg. employers)
 - Sellers (eg. employees)
- First period random matching, opportunity to contract and exit market

- Two-Period Model
- Two types of agents
 - Buyers (eg. employers)
 - Sellers (eg. employees)
- First period random matching, opportunity to contract and exit market
- Second period DA with fixed contracts

Agents

- Sellers mass 1, indexed $i \in (0,1]$
- Buyers mass 1, ex ante homogeneous, indexed $j \in (0,1]$

Valuations

- When buyer and seller contract, a surplus of $i + \alpha \epsilon_{ij}$ is generated
- For each Buyer/Seller pair ϵ_{ij} is randomly drawn from Uniform [0,1]

Mechanics

• In period 1, buyers and sellers are matched randomly. Buyer has opportunity to make TIOLI offer. If they do not contract, they both move on to the next period.

Mechanics

- In period 1, buyers and sellers are matched randomly. Buyer has opportunity to make TIOLI offer. If they do not contract, they both move on to the next period.
- In period 2, remaining buyers and sellers engage in a deferred acceptance market. In this DA market, buyer receives a fixed share η of the surplus from trade

First Understand Period 2

Lemma

For any buyer and seller $\{s_i, b_j\}$ matched in period 2:

$$\epsilon_{ij} = 1$$

Definition

 $\omega(i)$ is the probability that seller s_i has chosen to proceed to period 2

Period 2 Outcomes

Lemma

Each seller s_i who proceeds to period 2 expects a payoff of

$$\eta(i+\alpha) \tag{1}$$

Lemma

Each buyer expects a payoff of

$$\eta \left[\frac{\int_0^1 \hat{i}\omega(\hat{i})d\hat{i}}{\int_0^1 \omega(\hat{i})d\hat{i}} + \alpha \right] \tag{2}$$

Period 1 Outcomes

Lemma

Agents i and j matched in period 1 will contract early if:

$$i + \alpha \epsilon_{ij} > (1 - \eta)(i + \alpha) + \eta \left[\frac{\int_0^1 \hat{i}\omega(\hat{i})di}{\int_0^1 \omega(\hat{i})d\hat{i}} + \alpha \right]$$
(3)

Guess and Verify

• First see that for each value of i, there is some value $\epsilon^*(i)$ such that inequality 3 is satisfied iff $\epsilon_{ij} > \epsilon^*(i)$

$$\epsilon^*(i) = (1 - \eta) + \frac{\eta \left[\frac{\int_0^1 \hat{i}\omega(\hat{i})di}{\int_0^1 \omega(\hat{i})d\hat{i}} + \alpha - i \right]}{\alpha}$$
(4)

• Guess:

$$\epsilon^*(i) = a - \frac{\eta}{\alpha}i\tag{5}$$

for
$$a \in [0, 1 + \frac{\eta}{\alpha}]$$

Elaborate on $\omega(\cdot)$

As we have specified that ϵ_{ij} U[0,1], we also can note that

$$\omega(i) = \begin{cases} 0|\epsilon^*(i) < 0\\ \epsilon^*(i)|\epsilon^*(i) \in [0, 1]\\ 1|\epsilon^*(i) > 1 \end{cases}$$

$$(6)$$

The Part Where I Skip The Algebra

Combining equations 4, 5 and 6, I find:

$$\epsilon^*(i) = 1 - \frac{\sqrt{3}}{3} - \frac{\eta}{\alpha}i\tag{7}$$

(* This is almost but not quite true)

Outline

Introduction

Dysfunctional Markets Functional Markets State of Literature

Model

Model Goals
Model Design
Model Solution

Comparative Statics

Sufficient Statistic Welfare Endogenous Thinness

 $\epsilon^*(i)$ is a sufficient statistic

Welfare

- TIOLI structure means sellers are unaffected by unraveling
- Buyers are worse off because of unraveling
 - Haven't quantified this yet, but since Sellers see no welfare change and the realized values of ϵ_{ij} are lower, this is clear

Endogenous Component

The next step here is to identify how much early contracting is caused by the endogenous of:

$$\eta \left[\frac{\int_0^1 \hat{i}\omega(\hat{i})d\hat{i}}{\int_0^1 \omega(\hat{i})d\hat{i}} + \alpha \right]$$

0

Defining Stability

A stable matching is a matching between the two sides of the market that is

- 1. feasible
- 2. individually rational
 - no agent would prefer to be unmatched
- 3. free of blocking pairs
 - no two agents would prefer to be matched to each other instead of their current assignments

Return