Devoir maison 7.

À rendre le jeudi 1er février 2024

Exercice 1

Le plan est rapporté à un repère orthonormé direct.

Pour tout nombre complexe $z \neq -1$, on pose :

$$f(z) = \frac{-iz - 2}{z + 1}.$$

On confondra un complexe z et le point d'affixe z.

- $\mathbf{1}^{\circ}$) Montrer que $f^{-1}(\mathbb{R})$ est le cercle Γ de centre $\Omega\left(-\frac{1}{2},1\right)$ et de rayon $\frac{\sqrt{5}}{2}$.
- 2°) Montrer que f réalise une bijection de $\mathbb{C} \setminus \{-1\}$ sur un ensemble à déterminer déterminer sa réciproque.
- $\mathbf{3}^{\circ}$) Déterminer l'ensemble $f(\mathbb{U})$ où \mathbb{U} est l'ensemble des complexes de module 1. Quelle est la nature géométrique de $f(\mathbb{U})$?

Exercice 2

Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction croissante, vérifiant :

$$(*)$$
: $\forall (x,y) \in]0, +\infty[^2, f(xy) = f(x) + f(y).$

On suppose de plus que f n'est pas la fonction nulle.

Le but de cet exercice est de montrer que $f(x) \xrightarrow[x \to +\infty]{} +\infty$ et que $f(x) \xrightarrow[x \to 0]{} -\infty$.

- $\mathbf{1}^{\circ}$) Que vaut f(1)? En déduire le signe de f(x) selon x.
- **2**°) Montrer que pour tout $x \in]0, +\infty[, f\left(\frac{1}{x}\right) = -f(x).$
- **3°)** Montrer qu'il existe un réel x_0 de $]1, +\infty[$ tel que $f(x_0) > 0$.
- **4**°) Montrer que pour tout $n \in \mathbb{N}$, $f(x_0^{2^n}) = 2^n f(x_0)$.
- **5°)** Montrer que $f(x) \xrightarrow[x \to +\infty]{} +\infty$.
- **6°)** En déduire que $f(x) \xrightarrow[x\to 0]{} -\infty$.