Efficient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Map

Liu Liu, Hongdong Li, and Yuchao Dai

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017

Outline

- □ Research field
- Motivation
- Proposed scheme
- Experiment and comparison
- Conclusion

What?

□ Image-based localization

Why?

□ Large-scale problem \rightarrow ambiguity

- 3D points can be visually similar or even identical (repeated structure)
- **ambiguous matches** are almost inevitable

□ Local search \rightarrow sub-optimal solution

- □ take account of similarities between 2D-3D matches
- involves in global compatibility among all matching pairs? effective?

Local search V.S. Global search

How? – Step 1 (Build a map graph)

- □ Traditionally, 3D map is in the form of unordered point clouds
- □ Transform into weighted and bi-directed map graph
 - covisibility c_{ij} if P_j is seen by an image set, how likely P_i can also be seen from the same image set

How? – Step 1 (Build a map graph)

- \square Collect all c_{ij} into a square matrix $C = [c_{ij}]$ of size $N \times N$
- □ Normalize each column unit norm to form a left stochastic matrix
 - with each column summing to 1
- □ Also call C as state transition matrix

$$c_{ij} = \frac{|A_i \cap A_j|}{|A_j|} \qquad \qquad \begin{bmatrix} c_{00} & \cdots & c_{0N} \\ \vdots & \ddots & \vdots \\ c_{N0} & \cdots & c_{NN} \end{bmatrix}$$

How? – Step 2 (query vector)

- \square query image \rightarrow a set of 2D feature points
- of for every 2D feature points, find a set of tentative matches from 3D graph nodes, by comparing their descriptor similarity via Bag-of-words vocabulary tree search

How? – Step 2 (query vector)

- \square Collect all q_i into a vector q
- □ Normalize q to have unit norm $q_i \leftarrow \frac{q_i}{\sum_{i=1}^N q_i}$
- \square q can also be interpreted as a probability
 - measures the probability of point *i* belongs to the optimal sub-set of 3D points that can be matched to the set of 2D query features

How? – Step 3 (random walk)

- Map graph → Markov network (aka. Markov Random Field)
 - for global match between 2D query image and 3D map
 - when random walks converge, reach steady state
 - $p_{v}(t)$ is the probability of finding random walker at node v at time t
 - $\square p_{\nu}(\infty)$ gives the probability that the random walker eventually ends at node ν

How? – Step 3 (random walk)

□ Random Walk with Restart (RWR)

- $\square p(0)$ is initialized by q
- □ p(∞) stands for the final matchability of every 3D point to the set of 2D query features
- \square sort $p(\infty)$ in descending order

How? – Step 4 (camera pose computation)

■ Recover one-to-one correspondences

- do ratio test to retrieve one-to-one matches
- fed into PnP-RANSAC to find camera position and orientation

How? - Summary

Experiment – dataset selection

□ Four standard publicly available benchmark datasets for city-scale localization (1) Dubrovnik, (2) Rome, (3) Vienna, (4) San Francisco (SF-0)

Dataset	#(images)	#(points)	#(query images)
Dubrovnik [32]	6,044	1,975,263	800
Rome [32]	15,179	4,067,119	1,000
Vienna [23]	1,324	1,123,028	266
SF-0 [12]	610,773	30,342,328	803

□ In term of recall-rate (# images have been successfully localized)

Method	Inlier thresholds						
	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Active Search [43,44]	709	673	607	528	420	287	162
Our method	791	774	757	730	690	607	516

□ In term of precision (camera localization error)

□ In term of precision (camera localization error)

Method	quartile errors (m)			num. of images			
Method	1st	median	3rd	<18.3m	>400m	#(reg.)	
our method	0.24	0.70	2.67	743	7	794	
act. se. [43,44]	0.40	1.40	5.30	704	9	795	
all desc. [42]	0.40	1.40	5.90	685	16	783	
int. mean [42]	0.50	1.30	5.10	675	13	782	
P2F [32]	7.50	9.30	13.40	655	-	753	
vis. prob. [13]	0.88	3.10	11.83	-	-	788	

Demo

Conclusion

a global method, taking account of not only individual feature match's visual similarity but also the global compatibilities as measured by the pair-wise covisibility, to deal with scalability and ambiguity for localization