Metody probabilistyczneRozwiązania zadań

11. Twierdzenia graniczne

19.12.2017

Zadanie 1^* . (Słabe prawo wielkich liczb Czebyszewa) Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych z wartościami oczekiwanymi $EX_i = \mu_i$ i wariancjami $D^2(X_i) = \sigma_i^2$, wspólnie ograniczonymi przez σ^2 (tzn. $\sigma_i^2 \leqslant \sigma^2$ dla wszystkich i). Pokaż, że:

$$\overline{X}_n - \overline{\mu}_n \stackrel{P}{\to} 0$$

 $gdzie \ \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \ oraz \ \overline{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i.$

Odpowiedź:Zgodnie z definicją zbieżności według prawdopodobieństwo, $\overline{X}_n-\overline{\mu}_n\stackrel{P}{\to} 0$ oznacza, że dla dowolnego $\epsilon > 0$:

$$\lim_{n \to \infty} P(|\overline{X}_n - \overline{\mu}_n| > \epsilon) = 0, \tag{1}$$

co musimy teraz udowodnić. Wyznaczamy wartość oczekiwaną i wariancję zmiennej losowej \overline{X}_n :

$$\begin{split} E\overline{X}_n &= E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) &= \frac{1}{n}\sum_{i=1}^n EX_i &= \frac{1}{n}\sum_{i=1}^n \overline{\mu}_n, \\ D^2(\overline{X}_n) &= D^2\left(\frac{1}{n}\sum_{i=1}^n X_i\right) &= \frac{1}{n}\sum_{i=1}^n D^2(X_i) &= \frac{1}{n^2}\sum_{i=1}^n \sigma_i^2 \leqslant \frac{1}{n^2}\sum_{i=1}^n \sigma^2 &= \frac{\sigma^2}{n}, \end{split}$$

przy czym przy liczeniu wariancji wykorzystaliśmy niezależność zmiennych X_1, X_2, \dots Stosujemy do \overline{X}_n nierówność Czebyszewa:

$$P(|\overline{X}_n - E\overline{X}_n| > \epsilon) \leqslant \frac{D^2(\overline{X}_n)}{\epsilon^2},$$

co po podstawieniu wartości oczekiwanej i wariancji daje:

$$P(|\overline{X}_n - \overline{\mu}_n| > \epsilon) \leqslant \frac{\sigma^2}{n\epsilon^2},$$

Biorą $n \to \infty$, prawa strona dąży do 0, co implikuje (1) i kończy dowód.

Zadanie 2^* . Pokaż, że zbieżność z prawdopodobieństwem jeden implikuje zbieżność według prawdopodobie'nstwa:

$$X_n \stackrel{z \ pr. \ 1}{\to} X \qquad \Longrightarrow \qquad X_n \stackrel{P}{\to} X$$

Odpowiedź: Zacznijmy od przypomnienia definicji zbieżności:

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1 \qquad \left(X_n \stackrel{\text{z pr. } 1}{\to} X\right)$$
 (2)

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1 \qquad \left(X_n \stackrel{\text{z pr. } 1}{\to} X\right)$$

$$\forall \epsilon > 0 \quad \lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0 \qquad \left(X_n \stackrel{P}{\to} X\right)$$
(2)

Musimy wykazać, że jeśli (2) jest spełnione, to również spełnione jest (3). Zbieżność (3) można przepisać w równoważny sposób jako:

$$\forall \epsilon > 0 \quad \lim_{n \to \infty} P(|X_n - X| \le \epsilon) = 1.$$

Rozważmy zdarzenie losowe:

$$A_n = \{ \omega \in \Omega \colon |X_n(\omega) - X(\omega)| \le \epsilon \}.$$

Aby udowodnić (3) wystarczy więc pokazać, że dla każdego $\epsilon > 0$:

$$\lim_{n \to \infty} P(A_n) = 1, \tag{4}$$

W tym celu rozważymy jeszcze jeden rodzaj zdarzenia:

$$B_n = \{ \omega \in \Omega \colon \forall m \ge n \mid X_m(\omega) - X(\omega) \mid \le \epsilon \}.$$

Zdarzenie B_n jest silniejsze od A_n , tzn. jeśli $\omega \in B_n$, to również $\omega \in A_n$, a więc $B_n \subseteq A_n$. Wynika to z faktu, że w zdarzeniu B_n warunek $|X_m(\omega) - X(\omega)| \le \epsilon$ musi zajść nie tylko dla m = n (jak w zdarzeniu A_n), ale również dla wszystkich m > n. Pokażemy, że zbieżność z prawdopodobieństwem jeden (2) implikuje:

$$\lim_{n \to \infty} P(B_n) = 1. (5)$$

Ponieważ $B_n \subseteq A_n$, z monotoniczności miary prawdopodobieństwa mamy $P(B_n) \leqslant P(A_n)$, a więc skoro $\lim_{n\to\infty} P(B_n) = 1$, to również $\lim_{n\to\infty} P(A_n) = 1$; tym samym zajdzie (4) i udowodnimy (3). Pozostaje więc nam pokazać, że zachodzi (5).

W tym celu zauważmy, że ciąg zdarzeń B_1, B_2, B_3, \ldots jest ciągiem wstępującym, tzn:

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \dots$$

Wynika to z tego, że jeśli np. $\omega \in B_1$ ("dla wszystkich $m \ge 1$ zachodzi $|X_m(\omega) - X(\omega)| \le \epsilon$ "), to również $\omega \in B_2$ ("dla wszystkich $m \ge 2$ zachodzi $|X_m(\omega) - X(\omega)| \le \epsilon$ "), itp. Definiując teraz zdarzenie:

$$B = \bigcup_{n=1}^{\infty} B_n,$$

z ciągłości miary prawdopodobieństwa dla ciągów wstępujących (patrz: wykład II o aksjomatycznej definicji prawdopodobieństwa) wynika, że:

$$\lim_{n \to \infty} P(B_n) = P(B). \tag{6}$$

Czy jest zdarzenie B? Należą do niego zdarzenia elementarne ω , które znajdują się w którymkolwiek ze zdarzeń B_n (z definicji sumy zdarzeń). Innymi słowy $\omega \in B$, jeśli istnieje takie n, że dla wszystkich $m \geqslant n$ zachodzi $|X_m(\omega) - X(\omega)| \leqslant \epsilon$. Ale z definicji granicy, to są dokładnie te zdarzenia, dla których mamy $\lim_{n\to\infty} X_n(\omega) = X(\omega)$:

$$B = \{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \}.$$

Ponieważ zbieżność z prawdopodobieństwem jeden (2) mówi, że P(B) = 1, z (6) wynika, że $\lim_{n\to\infty} P(B_n) = 1$, a więc pokazaliśmy, że zachodzi (5), co kończy dowód.

Zadanie 3. Pokaż, że dla dowolnej zmiennej losowej X, zmienna:

$$U = \frac{X - EX}{D(X)},$$

jest zmienną standaryzowaną, tzn. EU = 0 oraz $D^2(U) = 1$.

Odpowiedź: Zgodnie ze wzorem E(aX+b)=aEX+b, dla $a=\frac{1}{D(X)}$ oraz $b=-\frac{EX}{D(X)}$ mamy:

$$EU \ = \ E\left(\frac{X}{D(X)} - \frac{EX}{D(X)}\right) \ = \ \frac{EX}{D(X)} - \frac{EX}{D(X)} \ = \ 0.$$

Podobnie, zgodnie ze wzorem $D^2(aX + b) = a^2D^2(X)$, dla a, b jak powyżej, mamy:

$$D^{2}(U) = D^{2}\left(\frac{X}{D(X)} - \frac{EX}{D(X)}\right) = \frac{D^{2}(X)}{D^{2}(X)} = 1.$$