ENSTA 1ère année, Cours MA 103

26 Juin 2017

Contrôle de connaissances. Durée : 3 heures

Aucun document ni telephone/calculatrice/tablette/ordinateur/game boy/nintendo switch ou tout appareil électronique équivalent n'est autorisé. Les montres avec aiguilles sont acceptées et les montres digitales ne contenant pas plus de 8 chiffres sont tolérées.

Question 1. On considère le problème de Cauchy

$$\begin{cases}
-2\frac{\partial u_1}{\partial t} + \frac{\partial u_2}{\partial t} + 3\frac{\partial u_1}{\partial x} + 6\frac{\partial u_2}{\partial x} = 0, & \forall (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\
\frac{\partial u_1}{\partial t} + \frac{\partial u_2}{\partial t} - 3\frac{\partial u_1}{\partial x} + 3\frac{\partial u_2}{\partial x} = 0, & \forall (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\
u_1(x,0) = u_1^0(x) & \text{et} \quad u_2(x,0) = u_2^0(x), & \forall x \in \mathbb{R}
\end{cases} \tag{1}$$

1.a. Ecrire ce problème sous la forme

$$\begin{cases} \mathbb{M} \frac{\partial \mathbb{U}}{\partial t} + \mathbb{A} \frac{\partial \mathbb{U}}{\partial x} = 0 \\ \mathbb{U}(x, 0) = \mathbb{U}^{0}(x), \quad \forall x \in \mathbb{R} \end{cases}$$
 (2)

où l'on précisera le vecteur \mathbb{U} et les matrices \mathbb{M} et \mathbb{A} .

1.b. Est ce que ce système est hyperbolique? Justifier.

Corrigé de la question 1. On trouve

$$\mathbb{U} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad \mathbb{M} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{et} \mathbb{A} = \begin{bmatrix} 3 & 6 \\ -3 & 3 \end{bmatrix}.$$

La matrice M est inversible et on montre que

$$\mathbb{M}^{-1}\mathbb{A} = \begin{bmatrix} -2 & -1 \\ -1 & 4 \end{bmatrix}$$

qui est symétrique réelle. Cette matrice est donc diagonalisable à valeurs propres réelles. Le système est donc hyperbolique.

Question 2. On considère le problème de Cauchy

$$\begin{cases}
\frac{\partial u}{\partial t} + \sum_{k=0}^{n} a_k \frac{\partial^{2k+1} u}{\partial x^{2k+1}} = 0, & \forall (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\
u(x,0) = u^0(x), & \forall x \in \mathbb{R},
\end{cases}$$
(3)

où les coefficients a_k sont réels. Montrer que la norme L^2 (en espace) de la solution se conserve au cours du temps.

Corrigé de la question 2. Par transformation de Fourier spatiale $u(x,t) \to \widehat{u}(\xi,t)$ on obtient

$$\frac{d\widehat{u}}{dt} + i \xi p_n(\xi)\widehat{u} = 0, \quad \text{avec } p_n(\xi) = \sum_{k=0}^n (-1)^k a_k \xi^{2k}$$

d'où on déduit

$$\widehat{u}(\xi, t) = \widehat{u}^{0}(\xi) e^{-i \xi p_{n}(\xi) t}.$$

Comme $p_n(\xi) \in \mathbb{R}, \forall \xi \in \mathbb{R}, |\widehat{u}(\xi,t)| = |\widehat{u}_0(\xi)|$ et on conclut avec le théorème de Plancherel.

Question 3. On cherche la solution ψ à valeurs complexes de l'équation de Schrödinger monodimensionnelle

$$\begin{cases} i \frac{\partial \psi}{\partial t} - \frac{\partial^2 \psi}{\partial x^2} = 0, & \forall (x, t) \in \mathbb{R} \times \mathbb{R}^+ \\ \psi(x, 0) = \psi^0(x), & \forall x \in \mathbb{R}, \end{cases}$$
(4)

où ψ_0 est une donnée qui vérifie

$$\int_{\mathbb{R}} |\psi_0(x)|^2 \, dx = 1.$$

Montrer que

$$\forall t > 0, \quad \int_{\mathbb{R}} |\psi(x,t)|^2 dx = 1.$$

Corrigé de la question 3. On peut utiliser la transformée de fourier ou une methode energetique.

Question 4. On considère le schéma d'Euler explicite pour (4)

$$i\frac{\psi_j^{n+1} - \psi_j^n}{\Delta t} - \frac{\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n}{h^2} = 0$$
 (5)

- 4.a. Quel est l'ordre de consistance de ce schéma?
- 4.b. Ce schéma est il stable?

Corrigé de la question 4. Ce schéma est consistant d'ordre 1 en temps et 2 en espace. Le schéma est inconditionnellement instable puisque :

$$\hat{S}_h(\xi, \Delta t) = 1 - 2i \frac{\Delta t}{h^2} (\cos(\xi h) - 1)$$

Question 5. On considère maintenant le schéma suivant pour (4)

$$i\frac{\psi_j^{n+1} - \psi_j^{n-1}}{2\Delta t} - \frac{\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n}{h^2} = 0$$
 (6)

- **5.a.** Ce schéma est il stable?
- **5.b.** Quels sont les avantages et inconvénients de ce schéma?

Corrigé de la question 5. L'étude de la stabilité revient à l'étude du polynôme

$$r^{2} + 4i \frac{\Delta t}{h^{2}} (\cos(\xi) - 1)r - 1 = 0.$$

On prouve que le schéma est stable lorsque le discriminant est positif, ce qui correspond à

$$\frac{\Delta}{h^2} \leqslant \frac{1}{4}$$

Ce schéma a pour avantage d'être consistant et stable, ce qui implique qu'il est convergent. Son inconvénient est qu'il est à 2 pas de temps.

Question 6. On considère le schéma numérique suivant :

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{u_{j+2}^n - 3u_{j+1}^n + 3u_j^n - u_{j-1}^n}{h^3} = 0$$
 (7)

Quelle est l'équation aux dérivées partielles avec laquelle ce schéma est consistant?

Corrigé de la question 6. On trouve aisément :

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} = 0.$$

Question 7. On étudie la stabilité L^2 du schéma numérique de la question précédente. **7.a.** Écrire le coefficient d'amplification du schéma sous la forme

$$\hat{S}_h(\xi, \Delta t) = 1 - i e^{i\frac{\xi h}{2}} \hat{A}_h(\xi)$$

où \hat{A}_h est une fonction à valeurs réelles qu'on exprimera explicitement à l'aide de $\sin\frac{\xi h}{2}$. 7.b. En déduire la condition de stabilité du schéma.

Corrigé de la question 7.

7.a On calcule que $S_h(\xi)=1-\beta\left(e^{2i\xi h}-3\,e^{i\xi h}+3-e^{-i\xi h}\right)$, soit $S_h(\xi)=1-e^{i\frac{\xi h}{2}}\,B_h(\xi)$ avec

$$B_h(\xi) = \beta \left(e^{3i\frac{\xi h}{2}} - 3e^{i\frac{\xi h}{2}} + 3e^{i\frac{\xi h}{2}} - e^{-3i\frac{\xi h}{2}} \right) = \beta \left(e^{i\frac{\xi h}{2}} - e^{-i\frac{\xi h}{2}} \right)^3, \quad \beta := \frac{\Delta t}{h^3}.$$

Autrement dit, comme $e^{i\frac{\xi h}{2}} - e^{-i\frac{\xi h}{2}} = 2\,i\,\sin\frac{\xi h}{2}$, on obtient le résultat annoncé avec

$$A_h(\xi) = -8\beta \sin^3 \frac{\xi h}{2}$$

7.b On calcule $|S_h(\xi)|^2 = 1 + |A_h(\xi)|^2 - 2 \Re e \left(i e^{i \frac{\xi h}{2}} A_h(\xi) \right) = 1 + |A_h(\xi)|^2 + 2 \sin \frac{\xi h}{2} A_h(\xi)$.

 $\operatorname{Par \, cons\'equent} |S_h(\xi)| \leq 1 \quad \Longleftrightarrow \quad |A_h(\xi)|^2 < 2 \, \sin \frac{\xi h}{2} A_h(\xi) \quad \Longleftrightarrow \quad 64 \, \beta^2 \, \sin^6 \frac{\xi h}{2} \leq 16 \, \beta \, \sin^4 \frac{\xi h}{2} = 16 \, \beta \, \sin$

Ceci devant être vrai pour tout ξ on obtient $\beta < \frac{1}{4}$.

Question 8. Donner les équations des caractéristiques associées à la loi de conservation scalaire

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^{p+1}}{p+1} \right) = 0, \tag{8}$$

oì p > 0 est un entier, et à la donnée de Cauchy $u^0(x)$.

Corrigé de la question 8. On trouve $x = \xi + u_0(\xi)^n t$.

Question 9. On considère le problème de Cauchy associé à (8) pour $u^0(x)=e^{-x^2}$.

- **9.a.** Calculer le temps maximal d'existence de la solution classique.
- 9.b. Donner l'abscisse du point en lequel les dérivées de la solution explosent.

Corrigé de la question 9. La distribution des vitesses initiales $a_0(x)$ vérifie

$$a_0(x) = e^{-nx^2}, \quad a_0'(x) = -2nx e^{-nx^2}, \quad a_0''(x) = 2n e^{-nx^2} (2nx^2 - 1)$$

On véritie alors aisément que $a_0'(x)$ est minimum en $x_n = 1/\sqrt{2n}$ et donc que

$$\inf_{x_0 \in \mathbb{R}} a_0'(x) = -2n \, x_n \, e^{-nx_n^2} = -\sqrt{\frac{2n}{e}}$$

et le temps maximal d'existence de la solution classique est donc :

$$T_n = \sqrt{\frac{e}{2n}}$$

L'équation de la caractéristique issue du point x_n a pour équatuon

$$x = x_n + u_0(x_n)^n t = x_n + e^{-nx_n^2} t = x_n + t/\sqrt{e}$$

L'abscisse du point d'explosion est obtenue avec $t = T_n$, ce qui donne

$$x_n^* = x_n + T_n/\sqrt{e} = 1/\sqrt{2n} + 1/\sqrt{2n} = \sqrt{\frac{2}{n}}$$
.

Question 10 On considère (8) avec p=2. On s'interesse au problème de Riemann associé à la donnée initiale

$$u^0(x) = u_g$$
 si $x < 0$ et u_d si $x > 0$

10.a. Trouver la solution dans les cas suivants :

- (i) $u_g = 0, u_d = 1$
- (ii) $u_q = 1, u_d = 0.$

10.b. Trouver la solution dans les cas suivants :

- (i) $u_g = -1, u_d = 0$,
- (ii) $u_q = 0, u_d = -1$.

Corrigé de la question 10. (a) On remarque que dans l'intervalle [0, 1], la fonction $\frac{u^3}{3}$ est convexe.

Pour $u_g=0, u_d=1$ on va trouver une onde de détente (voir aussi figure 1)

$$\begin{cases} \text{ Pour } x < 0, & u(x,t) = 0 \\ \text{ Pour } 0 < x < t, & u(x,t) = \sqrt{x/t} \\ \text{ Pour } x > t, & u(x,t) = 1 \end{cases}$$

Pour $u_q = 1$, $u_d = 0$ on va trouver un choc

$$\left\{ \begin{array}{ll} \text{Pour } x < t/3, & u(x,t) = 1 \\ \\ \text{Pour } x > t/3, & u(x,t) = 0 \end{array} \right.$$

(b) On remarque que dans l'intervalle [-1,0], la fonction $\frac{u^3}{3}$ est concave.

Pour $u_g = -1$, $u_d = 0$ on va trouver un choc

$$\begin{cases} \text{ Pour } x < t/3, \quad u(x,t) = -1 \\ \text{ Pour } x > t/3, \quad u(x,t) = 0 \end{cases}$$

Pour
$$u_g=0,u_d=-1$$
 on va trouver une onde de détente
$$\left\{ \begin{array}{ll} \mbox{Pour }x<0,&u(x,t)=0\\ \mbox{Pour }0< x< t,&u(x,t)=-\sqrt{x/t}\\ \mbox{Pour }x>0,&u(x,t)=-1 \end{array} \right.$$

Question 11 11.a. Rappeler la condition géométrique sur le graphe de la fonction f pour qu'un choc (u_q, u_d) qui est solution faible de

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \Big(f(u) \Big) = 0,$$

soit un choc entropique. (On distinguera le cas $u_g > u_d$ et le cas $u_g < u_g$).

11.b. On reprend la question 10 avec $u_g=-1, u_d=a\geq 0$. Jusqu'à quelle valeur maximale a^* de a la solution sera-t-elle composée d'un seul choc?

Corrigé de la question 11. Ce sera le cas tant que le graphe de la courbe $f(u) = u^3/3$ sera situé au dessus de la corde joignant les points d'abscisse 0 et a. La valeur maximale de a est obtenue quand la pente de la corde est égale à celle de la tangente en a ce qui donne

$$\frac{a^3 + 1}{3(a+1)} = a^2 \quad \Longleftrightarrow \quad 2a^3 + 3a^2 - 1 = 0$$

FIGURE 1 – A gauche et au centre : caractéristiques, choc et détente. A droite : question 8

Comme a = -1 est une racine double (évident géonétriquement) on factorise

$$a^3 + 3a^2 - 1 = (a+1)^2(2a-1)$$

ce qui donne $a^* = \frac{1}{2}$.

Question 12. On considère l'équation de transport à coefficients variables

$$\begin{cases} \frac{\partial u}{\partial t} + x^3 t^3 \frac{\partial u}{\partial x} = 0, & \forall (x, t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x, 0) = u^0(x), & \forall x \in \mathbb{R}, \end{cases}$$
(9)

12.a. Expliquer pourquoi cette equation ne vérifie pas les hypothèses du cours.

On va voir que néanmoins, on peut adapter la méthode des caractéristiques pour calculer une solution explicitement.

12.b. Ecrire l'équation différentielle des caractéristiques.

12.c. On s'intéresse à la solution $t \mapsto X(t; x_0)$ de cette équation qui part de x_0 à l'instant t = 0. Montrer que cette fonction existe jusqu'à un temps maximal $T(x_0)$ que l'on précisera et calculer $X(t; x_0)$ pour $0 < t < T(x_0)$.

12.d. Représenter graphiquement la caracrtéristique $C_{x_0} := \{(X(t; x_0), t), 0 \le t < T(x_0)\}$ issue de x_0 (pour plusieurs valeurs de x_0). Montrer que, lorsque x_0 varie, les courbes C_{x_0} remplissent le demi-espace $\mathbb{R} \times \mathbb{R}^+$ et que, pour tout $(x, t) \in \mathbb{R} \times \mathbb{R}^+$, il existe un unique $x_0 \in \mathbb{R}$ tel que $(x, t) \in C_{x_0}$. En déduire l'expression de l'unique solution classique du problème de Cauchy.

Corrigé de la question 12.

13.a. La fonction $c(x,t)=x^3\,t^3$ n'est pas globalement lipschitzienne en x.

13.b. L'équation des caractéristiques s'écrit :

$$\frac{dX}{dt} = c(X, t) = t^3 X^3$$

13.c. On remarque que

$$\frac{dX}{dt} = c(X, t) = t^3 X^3 \iff \frac{dX}{X^3} = t^3 dt$$

ce qui s'intégre, avec $X(0) = x_0$, en

$$\frac{1}{2x_0^2} - \frac{1}{2X^2} = \frac{t^4}{4}$$

On voit que la solution ne peut exister qe si $t^4/4 < 1/(2x_0^2)$, c'est à dire $t < T(x_0) := 2^{\frac14}|x_0|^{-\frac12}$.

On calcule alors que

$$X(t; x_0) = x_0 \left(1 - \frac{x_0^2 t^4}{2}\right)^{-1}, \quad 0 \le t < T(x_0)$$

13.d. L'équation $x=x_0\left(1-\frac{x_0^2\,t^4}{2}\right)^{-1}$ s' inverse aisément en $x_0=x\,\left(1+\frac{x^2\,t^4}{2}\right)^{-1}$, d'où la solution

FIGURE 2 – L'allure des caractéristiques (question 9)

du problème de Cauchy

$$u(x,t) = u_0 \left(x \left(1 + \frac{x^2 t^4}{2} \right)^{-1} \right)$$