

Detección de Neumonía Empleando Radiografías de Tórax a través de redes Neuronales

Proyecto inteligencia artificial

Gómez Natalia¹, Ramirez Nicolas¹

¹Dept. of Computer Science Universidad Industrial de Santander

April 1, 2020

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

Introduction

¿NEUMONIA?

- Esta enfermedad es una de las principales causas de mortalidad tanto en niños como en adultos en todo el mundo.
- Ambigüedad entre profesionales.

Causa carga enfermedad	Casos
Cardiopatía isquémica	2.530
Enfermedad cerebrovascular	1.397
Infecciones de vías respiratorias inferiores	920
Enf. Pulmonar obstructiva crónica	795
Diabetes mellitus	767
Otras enfermedades del sistema circulatorio **	564
	537
Residuo	529
Cáncer de Estomago	493
Cardiopatía hipertensiva	457
Agresiones	450
Otras enfermedades respiratorias **	423
Nefritis y nefrosis	383
Otras enfermedades del sistema digestivo **	378
Accidentes de tránsito	369
Cáncer de traquea, bronquios,pulmón	363

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

Introduction

CHEST X-RAY IMAGES (PNEUMONIA)

 Dataset extraido de https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

	Normal	Neumonia	Total
Train	1,341	3,875	5,216
Test	234	390	624

Table: Cantidad de imagenes utilizadas para entrenar y testear

Introduction

Procesamiento

- Listar
- Recorrer las imágenes.
- Convertir a escalas de grises.
- Dimensionar las imágenes.
- Guardar.
- Etiquetar

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

Metodo

₽	Model:	"sequential_13"

Layer (type)	Output Shape	Param #
flatten_13 (Flatten)	(None, 22500)	0
dense_69 (Dense)	(None, 200)	4500200
dense_70 (Dense)	(None, 100)	20100
dense_71 (Dense)	(None, 150)	15150
dense_72 (Dense)	(None, 50)	7550
dense_73 (Dense)	(None, 2)	102

Total params: 4,543,102 Trainable params: 4,543,102 Non-trainable params: 0

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

Metodo

Clasificadores

- Decision Tree Classifier
- Gaussian NB
- Random Forest
- SVM

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones


```
[175] history=model.fit(data test, vtest, epochs=10 batch size=50)
□→ Train on 624 samples
   Epoch 1/10
   Epoch 2/10
   624/624 [============== ] - 0s 430us/sample - loss: 14.7225 - acc: 0.8045
   624/624 [============== ] - 0s 450us/sample - loss: 5.5259 - acc: 0.8814
   Epoch 4/10
   624/624 [============================== ] - 0s 442us/sample - loss: 1.8953 - acc: 0.9391
   Epoch 5/10
   Epoch 6/10
   Epoch 7/10
   624/624 [============= ] - 0s 434us/sample - loss: 6.6519 - acc: 0.8253
   Epoch 8/10
   624/624 [============ ] - 0s 435us/sample - loss: 2.3851 - acc: 0.9103
   Fnoch 9/10
   624/624 [============ ] - 0s 432us/sample - loss: 2.3200 - acc: 0.9119
   Epoch 10/10
   test loss, test acc = model.evaluate(data test, vtest)
```

```
[179] history=model.fit(data test, ytest, epochs=10 batch size=200)
□ Train on 624 samples
  Epoch 1/10
  624/624 [============= ] - 0s 281us/sample - loss: 1.1599 - acc: 0.9327
  Epoch 2/10
  Epoch 3/10
  Epoch 4/10
  624/624 [=============== ] - 0s 271us/sample - loss: 0.3721 - acc: 0.9599
  Epoch 6/10
  624/624 [============] - 0s 279us/sample - loss: 0.1273 - acc: 0.9824
  Epoch 7/10
  624/624 [============= ] - 0s 273us/sample - loss: 0.1289 - acc: 0.9776
  Epoch 8/10
  Epoch 9/10
  Epoch 10/10
  test loss, test acc = model.evaluate(data test, ytest)
```

185] history-model.fit data_test, ytest, epochs=18)	[183] history=model.fit(data_test, ytest, epochs=10 batch_size=5)
□	Train on 624 samples [poch 1/18	D	Train on 624 samples Epoch 1/19 624/624 [
0	test_loss, test_acc = model.evaluate(data_test, ytest)	0	test_loss, test_acc = model.evaluate(data_test, ytest)
D	624/624 [] - 0s 217us/sample - loss: 0.6585 - acc: 0.6250	D	624/624 [] - 0s 235us/sample - loss: 0.6585 acc: 0.6250

CASIFICADOR	PRECISIÓN
DecisionTreeClassifier	82.9 %
GaussianNB	85.6%
DNN	96.9%

- Introduction
 - Motivacicón
 - Data-set
- 2 Metodo propuesto
 - Metodología
 - Clasificadores
- Resultados
 - Resultados Preliminares
 - Resultados finales
- 4 Conclusiones

CASIFICADOR	PRECISIÓN
DecisionTreeClassifier	85.9 %
GaussianNB	85.6%
Random Forest Classifier	94.3%
SVM	85.6%
DNN	89.7%

Conclusiones

Conclusiones

- Esperabamos un rendimiento sobresaliente con la red neuronal por ser en estos momentos tendencia mundial, pero los resultados obtenidos muestran una mejor precisión con otros metodos de vanguardia.
- La red neuronal para este caso no fue la más precisa, pero en cuestión de tiempo-precisión es la mejor opción, se debe tener en cuanta, ya que toma relevancia a la hora de trabajar con muchos datos.
- Se determinó que el clasificador que arrojo mejores resultados fue Random Forest Classifier