

"Our new application is slow for me and Jasmine can't access it.

It HAS to be the network.

I've checked everything on our end"

Table of Contents

- Using traceroute
- Using ping Utility
- Using the Address Resolution Protocol
- Using nslookup Utility
- Using mtr Command (pathping)
- Using nmap
- Using route Command

Table of Contents

- Using netstat Utility
- Using tcpdump
- Using the File Transfer Protocol
- Using telnet and ssh Utility
- Using scp and curl Commands
- Network Configuration Files

CLARUSWAY® WAY TO REINVENT YOURSELF

ping - Overview

- most basic TCP/IP utility for network troubleshooting
- uses the ICMP protocol to send a "ping" to a device
- target device must have ICMP enabled
- can confirm if a host is running
- cannot conclusively determine if a host is down

Linux / MacOS / Windows

ping hostname or IP address

ping - Understanding the Output


```
DNS lookup if target is a
                                                                                                                      hostname
usr > ping ec2-100-26-99-73.compute-1.amazonaws.com
PING ec2-100-26-99-73.compute-1.amazonaws.com (172.31.81.253) 56(84) bytes of data.
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp seq=1 ttl=255 time=0.579 ms
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp_seq=2 ttl=255 time=0.358 ms
                                                                                                                       Size of packet
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp_seq=3 ttl=255 time=0.372 ms
                                                                                                                       Hops from destination to
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp_seq=4 ttl=255 time=0.486 ms
                                                                                                                       source. Not too helpful since
64 \ \ \text{bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp\_seq=5} \ \ \text{ttl=255 time=0.415} \ \ \text{ms}
                                                                                                                       starting TTL is not always
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp_seq=6 ttl=255 time=2.35 ms
                                                                                                                       known.
64 bytes from ip-172-31-81-253.ec2.internal (172.31.81.253): icmp seq=7 ttl=255 time=2.77 ms
 -- ec2-100-26-99-73.compute-1.amazonaws.com ping statistics ---
                                                                                                                          Round trip return time
7 packets transmitted, 7 received, 0% packet loss, time 6105ms rtt min/avg/max/mdev = 0.358/1.048/2.773/0.967 ms
                                                                                                                          (RTT) for single packet
```

- Summary statistics.
- Packet loss
- Min/max/avg RTT

CLARUSWAY®

traceroute (tracert)

CLARUSWAY®
WAY TO REINVENT YOURSELF

traceroute (tracert) - Overview

- uses ICMP ping command by manipulating the Time To Live (TTL) value
- identifies each router between a source and destination device
- provides an *indication* of latency
- provides clues to identify bottlenecks in the path

CLARUSWAY®

1

traceroute (tracert) - Basic Syntax

Linux / MacOS(*)	traceroute -I [DNS name] or [IP Address]
Windows	tracert [DNS name] or [IP Address]

(*) without the -I option in Linux, traceroute may not always use the same route.

traceroute - Understanding the Output

Sidebar: FQDN

- FQDN = <u>f</u>ully <u>q</u>ualified <u>d</u>omain <u>n</u>ame
- Example
 - o Hostname: myserver
 - FQDN: myserver.mydomain.com
- Devices need to distinguish between hosts on different networks; e.g.:
 - o FQDN: myserver.mydomain.com Hostname: myserver
 - FQDN: myserver.anotherplace.com also Hostname: myserver
- Especially important with hybrid network in AWS

traceroute - Inferences

"Request timed out" message near the beginning

Request timed out.

• Common & typically a device that doesn't respond to traceroute requests.

"Request timed out" at the end

16	*	*	*	Request	timed	out
17	*	*	*	Request	timed	out
1.0		+		D	42444	

- May or may not be a concern
 Firewall may be blocking ICMP (application may still work)
- Could be issue with return path
- Legitimate issue connecting to the system

• This where you want to start troubleshooting

Latency for a later hop is less than for an earlier hop

4	13 ms	8 ms	9 ms	ashbbprj02-ae2.0.rd.as.cox.net [68.1.4.139]
5	95 ms	100 ms	90 ms	ae-104.border1.dcn.edgecastcdn.net [152.195.65.214]
6	10 ms	8 ms	9 ms	ae-66.corel.dcb.edgecastcdn.net [152.195.65.129]

- Some routers de-prioritize traceroute packets
- Results in higher latency
- . Best to consider the final hop as an indicator of end-to-end latency

mtr (pathping)

mtr (pathping) - Overview

- mtr "My Traceroute"
- combines functionality from both ping and traceroute
- automatic refresh with configurable output
- Windows (pathping) not as dynamic

mtr (pathping) - Basic Syntax

CLARUSWAY®

11

mtr (pathping) - Understanding the Output

ifconfig (ipconfig) - Overview

- "Interface Configuration" or "IP Configuration"
- Provides fundamental information about network interfaces, including:
 - o IP, Subnet Mask, Default Gateway
 - MAC Address
 - IP Lease Information
 - o Other network configuration parameters
- Also able to **set configuration parameters** for network interface
 - e.g. ipconfig /renew, ipconfig /release
 - o e.g. ifconfig eth1 up, ifconfig eth1 down

່າ

ifconfig (ipconfig) - Basic Syntax

Linux / MacOS	ifconfig, also ifconfig -a
Windows	ipconfig, also ipconfig /a

the "-a" and "/a" options shows information about all network interfaces

arp - Overview

- arp "Address Resolution Protocol"
- used to translate TCP/IP addresses to MAC addresses using broadcasts
- Used when a device needs to send a packet:
 - o First check is in its own **ARP cache** (or **MAC address lookup table**)
 - o If not found, device will send out an ARP broadcast
- ARP cache clears entries until a timeout has expired
- The arp command is used to query and modify the ARP cache
 - Can be useful to identify errors in IP-to-MAC mapping or identifying duplicate IP addresses

nslookup – Overview

- used to perform **DNS queries** and receive:
 - IP addresses
 - o other specific **DNS Records** (NS, MX, etc...)
- default behavior is to return IP address for a given domain
- does a lookup using the default DNS server
- useful to ensure your DNS is properly configured

7

nslookup - Basic Syntax

Linux / MacOS / Windows

nslookup <domain name>

in Unix-based systems, the dig command is favored over nslookup and achieves the same results.

nmap - a port scanning tool

6

nmap - Overview

- nmap is a popular port scanning tool (i.e. not a command)
- By scanning certain flags in packets, security analysts (and hackers) can make certain assumptions
- These flags are used to **control the TCP connection process** and so are present only in TCP packets

Using nmap

- Security analysts and hackers alike can perform scans with these flags set in the scan packets to get responses that allow them to determine the following information:
 - o If a port is open on a device
 - o If the port is **blocked by a firewall** before its gets to the device
- nmap can also be used:
 - o To **determine the live hosts** on a network
 - To create a logical "map" of the network

- used to view and manipulate the network route table
- helpful to debug outbound traffic issues

route - Basic Syntax

Linux / MacOS / Windows	route print	prints the current route table
	route -p add [opt]	add a route
	route -p change [opt]	changes a route
	route -p delete [opt]	delete a route

be careful changing routes, it's complex and you must understand what you're doing

7.

Sidebar - Special IPs

- 0.0.0.0/0
 - o "Everything else"
 - o Traffic directed to the default gateway
 - Often means Internet traffic
- x.x.x.x/32 (or x.x.x.x 255.255.255.255)
 - o Single IP x.x.x.x i.e. device

netstat - Overview

- lists TCP/IP connections on a device both inbound and outbound
- alternatively, shows packet statistics both sent and received
- helpful for:
 - o **identifying connections** to/from a device
 - o indicating **transmission errors**

Ľ

netstat - Basic Syntax

	netstat -a	Shows connections
Linux / MacOS / Windows	netstat -e	displays overall packet statistics
Williadws	netstat -s [-p <protocol>]</protocol>	displays protocol-level statistics

netstat -a - Understanding the Output > netstat -a Active Connections Shows communication on the same machine between two ports Proto Local Address (host:port). <snip> kubernetes:49478 127.0.0.1:49477 ESTABLISHED TCP 127.0.0.1:49478 ESTABLISHED TCP kubernetes: 49477 Connection is active <snip> 192.168.1.178:139 DESKTOP-D4LE3NN:0 LISTENING TCP 192.168.1.178:1025 40.76.170.235:https TIME WAIT TCP Listening on port 139, 192.168.1.178:1026 52.114.128.93:https TIME_WAIT TCP available to connect TCP 192.168.1.178:1027 52.96.90.34:https 192.168.1.178:1028 TCP 13.69.109.131:https ESTABLISHED TCP 192.168.1.178:1029 52.113.206.22:https ESTABLISHED 192.168.1.178:1030 BRWEC5C68E47C8E:http TCP TIME WAIT Remote device has 192.168.1.178:1031 52.96.35.178:https ESTABLISHED TCP disconnected, waiting to 192.168.1.178:1032 TCP 162.125.19.130:https ESTABLISHED terminate <snip> Example of a public IP connection CLARUSWAY[©]

Using tcpdump

tcpdump - Overview

- used to **read packets** captured **live** from a network or previously **saved to a file**
- available on Linux/MacOS
- **WinDump** is a utility available for Windows
- output is extensive, must filter for specific conditions of interest
- helpful to troubleshoot and **check traffic** from a **specific IP** or on a **particular** interface

tcpdump - Basic Syntax Linux / MacOS tcpdump -i <interface> display traffic on interface tcpdump host <IP> display traffic to/from host CLARUSWAY®

10 Using telnet

telnet - Overview

- utility that allows you to make connections to remote devices
- can telnet to any TCP port to see if it's responding
- useful to check if ports on remote machines are listening e.g. SMTP and HTTPS - a "quick & easy" test
- warning: it is **insecure** since it sends all data in clear text
- often, **not installed by default** on most devices

curl - Overview

- transfer data to or from a server, using any of the supported protocols
- very **helpful when no UI is available** (e.g. no web browser on Linux)
 - o can check if remote web server is responding
 - o or if a device is able to connect to a remote web server
- besides https & https, **supports many protocols**

_ 5

curl - Basic Syntax

Linux / MacOS / Windows

curl [options] URL

Linux Network Configuration Files

- "/etc/sysconfig/network" file is a global configuration file. It allows us to define whether:
 - we want networking (NETWORKING=yes|no)
 - what the hostname should be (HOSTNAME=)
 - which gateway to use (GATEWAY=)
- "/etc/hosts" configuration file resolves hostnames that cannot be resolved any other way. It can also be used to resolve hostnames on small networks with no DNS server.
- "/etc/resolv.conf" file is used for configuring the DNS resolver library. It contains information parameters used by the DNS resolver.

CLARUSWAY®

Host-Based Firewalls

14

iptables (Linux) Windows Firewall (Windows)

Firewalls - A Brief Overview

- one of a firewall's (FW) functions is **packet filtering**
- early on, this was based on port-protocol rules only
 e.g. allow: TCP:80, TCP:443
- FWs can be appliances (hardware) or software
- firewall placement varies
 - typically a FW is placed at the network perimeter
 - o sometimes, additional FWs are placed inside a private network
 - o some FWs run directly on a device
- two common categories
 - network FW
 - host-based FW

Host-Based Firewalls

- by definition, **software-only**
- concerned only with traffic in-and-out of the host
- common host-based FWs
 - o **iptables** (Linux)
 - o Windows Defender (Windows) sometimes just called Windows Firewall

່ ເ

Secure, but an Operational Headache

- FWs provide a much needed layer of security to an IT environment
- given concerns about security, there are sometimes layers of FWs that traffic needs to cross
 e.g. perimeter FW → internal FW 1 → internal FW 2 → host-based FW
- downsides are:
 - performance degradation
 - operational challenges to debug access and performance issues
- understanding where FWs are and how rules are constructed is important

A last note on FWs: AWS Security Groups

- AWS security groups (SGs) protect EC2 instances much like host-based FWs
- many traditional security and IT practitioners continue to insist on additional host-based FWs
 - o this creates yet **another layer of FWs** for traffic to traverse

์ลเ

iptables - Overview

- uses 3 "chains" to decide which rules to apply:
 - o Input (inbound)
 - Forward (transient)
 - Output (outbound)
- uses 3 actions to decide what to do with the traffic:
 - accept
 - o **drop** (no error returned)
 - reject
- various "front-ends" are available, such as Shorewall

iptables - Example Syntax

iptables -A INPUT -s 192.168.10.1 -j DROP

blocks a connection from the device at 192.168.10.1

iptables -A INPUT -s 172.16.0.0/16 -j DROP

blocks all connections from all devices in the 172.16.0.0/16 network

iptables -A INPUT -p tcp --dport ssh -s 10.110.61.5 -j I

blocks SSH connections from 10.110.61.5

iptables -A INPUT -p tcp --dport ssh -j DROP

blocks SSH connections from any IP address

CLARUSWAY®

Linux / MacOS

7

Summary of Network
Debugging Tools and Commands

4

Summary of Tools & Commands - Part 1

Tool/Command	What it Does	How it Helps	Notes
ping	Sends an ICMP "are you there?" request	Can determine definitively if a host is running	Cannot say for certain a host is down if it fails
traceroute/tracert	Sends ICMP requests to all routers on the path from source to destination	Identifies the number of hops from end-to-end and indicates latency	
mtr/pathping	Combines ping and tracert with continuous refresh	Identifies if a host is up and any potential latency issues	
ifconfig/ipconfig	Enables you to view or modify properties of network interfaces	Helps ensure interfaces are properly configured	
arp	Allows you to view or edit the ARP cache (IP-MAC address lookup)	Troubleshoot any outbound packet drops	Be wary of making changes to the ARP cache
nslookup	Provides DNS information about a particular domain	Debug to make sure source-to-destination connections are going where expected	

Summary of Tools & Commands - Part 2

Tool/Command	What it Does	How it Helps	Notes
nmap	A tool that allows you to discover open ports and map a network topology	Provides a birds-eye view of a network to identify which devices have which ports open	This is a 3rd party tool and may or may not be approved by an organization to use
route	View and edit the network route table	Troubleshoot any issues for any inbound or outbound packet loss	Be wary of changing a route table
netstat	View TCP connections and packet statistics by protocol	Validate existing connections and identify issues with packet errors	
tcpdump	View live network traffic	Trace traffic from a particular host and/or ensure it is arriving	
telnet	Connect to a remote host on any port	Ensure remote ports are listening and a path exists from source to target	Telnet is insecure and not installed by default usually
curl	Receive or send information to a remote host using a range of protocols	Ensures that the remote application is connected and able to respond	Particularly useful when no UI is available, especially for http & https

Summary of Tools & Commands - Part 3

Tool/Command	What it Does	How it Helps	Notes
Linux network configuration files	View and modify host aliases and resolver addresses	Look here to determine if the host is misconfigured with the wrong DNS server or aliases	
iptables/Windows Firewall	View and edit host-based firewall rules	Determine if any rules are blocking traffic you are expecting	There are layers of FWs in any network that cause operational headaches

CLARUSWAY©

75

16 Accessing remote hosts

Using ssh

- Secure Shell (SSH) provides the same options as Telnet, plus a lot more and transfers the data in encrypted form
- To use SSH, your servers, routers, and other devices need to be enabled with SSH
- Syntax:

ssh user-name@host(IP or Domain Name)

7

Using ftp

- File Transfer Protocol (FTP) is used for the transfer of files
- To start the ftp utility, enter ftp at a command prompt/terminal

```
C:\Users\clarusway>ftp
Commands may be abbreviated. Commands are:
                                                  prompt
                                                                  send
                debug
                                                  put
                                                                  status
append
                                 mdelete
                                                                  type
bell
                                 mget
                                                                  user
                glob
                                 mkdir
                                                                   verbose
                                                  remotehelp
                help
                                 mput
                                                  rename
                                                  rmdir
```

Using ftp

• To connect a FTP server type open [server name]

 After successfully connecting to the FTP server you need to log in with your username and password

70

Using ftp

 Before downloading a file from a FTP server you need to set the file type as ASCII or binary:

```
ftp>ascii
Type set to A

ftp>binary
Type set to I
```

After setting up the file type use use get command to download the file:

```
ftp>get test.exe
200 PORT command successful.
150 Opening BINARY mode data connection for 'test.exe'
(567018 bytes).
```

When the file has downloaded, following message is displayed:

```
CLARUSWAY®
```

226 Transfer complete.
567018 bytes received in 116.27 seconds (4.88 Kbytes/sec)

Using ftp

- To upload a file to a FTP server you have to have rights
- Before uploading file from a FTP server you need to set the file type as
 ASCII or binary
- After setting up the file type use use put command to upload the file:

```
ftp> put [local file] [destination file]

ftp> put test.txt myfile.txt
```

When the file has uploaded, following message is displayed:

```
200 PORT command successful.
150 Opening BINARY mode data connection for myfile.txt
226 Transfer complete.
743622 bytes sent in 0.55 seconds (1352.04 Kbytes/sec)
```

CLARUSWAY®

Ŕ

Using scp

- scp (Secure Copy) a command-line tool which is used to transfer files and directories across the systems securely over the network through ssh connection
- Syntax:

```
scp <options> <files or directories> user@target-host:/<folder>
scp <options> user@target host:/files <folder-local-system>
```


17

Test Your Knowledge

I use ping against a remote device and there is no response.

Which of the following is definitely true?

- A. The remote server is down
- B. ICMP is not enabled on the remote device
- C. A firewall along the way is blocking ICMP traffic
- D. There is nothing for certain based on this ping result

I use traceroute and get the output below. Approximately what is the latency from source to target?

```
Tracing route to example.com [93.184.216.34]
over a maximum of 30 hops:
                <1 ms <1 ms 192.168.0.1
                                 Request timed out.
                        6 ms 100.123.249.2

9 ms ashbbprj02-ae2.0.rd.as.cox.net [68.1.4.139]
               5 ms
8 ms
       6 ms
      13 ms
      95 ms 100 ms 90 ms ae-104.border1.dcn.edgecastcdn.net [152.195.65.214]
      10 ms 8 ms 9 ms ae-66.core1.dc
10 ms 9 ms 10 ms 93.184.216.34
                           9 ms ae-66.core1.dcb.edgecastcdn.net [152.195.65.129]
```

- Approximately 125ms (the sum of the 3rd column)
- Approximately 10ms (one value in the 3rd row) В.
- Approximately 22ms (the average of all the columns)
- Approximately 391ms (the sum of all the columns)

I use traceroute and get the output below. My manager tells me that there is an issue with the network at the 5th hop. Is she correct?

- No, chances are that router is de-prioritizing ICMP packets
- No, chances are that router is dropping ICMP packets
- No, my computer probably glitched when it sent that request
- Yes, she's right

I use traceroute and get the output below. An application engineer looks at it and tells me traffic is being blocked at hop #2. Is it correct?

```
Tracing route to example.com [93.184.216.34]
over a maximum of 30 hops:
                 <1 ms <1 ms 192.168.0.1
                         * Request timed out.
6 ms 100.123.249.2
9 ms ashbbprj02-ae2.0.rd.as.cox.net [68.1.4.139]
               5 ms
8 ms
        6 ms
       13 ms
       95 ms 100 ms 90 ms ae-104.border1.dcn.edgecastcdn.net [152.195.65.214]
               8 ms 9 ms ae-66.core1.do
9 ms 10 ms 93.184.216.34
       10 ms
                            9 ms ae-66.core1.dcb.edgecastcdn.net [152.195.65.129]
```

- Yes, the request definitely timed out
- Yes, since every attempted ping resulted in a * В.
- No, that router is most likely dropping netstat requests
- No, the previous result is <1ms and it's too fast for hop #2 to respond

You're on a Linux server within a secure company network which is not connected to the Internet. How do you find out what your IP is?

- Use ipconfig
- Use ifconfig
- Use my browser to go to whatismyip.com
- Check the resolver file at /etc/resolv.conf

You're on a Linux server with no GUI. You want to check if a specific website responds properly from that server. What will you do?

- A. curl the URL
- B. nslookup the domain
- C. log in to my Windows laptop, which is on the same network anyhow, and use my browser
- D. check the hosts file at /etc/hosts

ΩC

Some asks you to check the local firewall rules on the Linux server that is having issues. What do you do?

- A. call the security engineer, as a DevOps engineer I don't have to worry about firewall rules
- B. log into the network firewall and download the rules to view on the server
- C. check Defender, which is the host-based firewall
- D. check iptables

Which of the following does not represent a single server?

- A. 130.10.5.1
- B. 192.168.255.255
- C. 192.168.2.10
- D. 192.168.2.10/32

Q1

You want to test your network bandwidth. What will you use?

- A. ping
- B. mtr
- C. netstat
- D. none of these

Traffic is not egressing from a single server to the default gateway? What might you do?

- A. use arp to check the ARP cache and make sure the MAC address of the default gateway is correct
- B. use iptables and make sure there is no outbound rule blocking traffic
- C. use the "route print" command to verify the routes are properly setup
- D. all of these
- E. none of these

93

THANKS! Any questions?