Stabilization via LMIs

Matthew M. Peet Illinois Institute of Technology

Lecture 22: Stabilization via LMIs

Linear Matrix Inequalities

Review

Linear Matrix Inequalities are often a Simpler way to solve control problems.

Semidefinite Programming

$$\min c^T x$$
:

$$Y_0 + \sum_i x_i Y_i > 0$$

Here the Y_i are symmetric matrices.

Linear Matrix Inequalities

Findx:

$$Y_0 + \sum_i x_i Y_i > 0$$

Commonly Takes the Form

Find X:

$$\sum_{i} A_i X B_i + Q > 0$$

Lyapunov Theory

LMIs unite time-domain and frequency-domain analysis

Theorem 1 (Lyapunov).

Suppose there exists a continuously differentiable function V for which V(0)=0 and V(x)>0 for $x\neq 0$. Furthermore, suppose $\lim_{\|x\|\to\infty}V(x)=\infty$ and

$$\lim_{h\to 0^+}\frac{V(x(t+h))-V(x(t))}{h}=\frac{d}{dt}V(x(t))<0$$

for any x such that $\dot{x}(t)=f(x(t))$. Then for any $x(0)\in\mathbb{R}$ the system of equations

$$\dot{x}(t) = f(x(t))$$

has a unique solution which is stable in the sense of Lyapunov.

The Lyapunov Inequality

Lemma 2.

A is Hurwitz if and only if there exists a P > 0 such that

$$A^T P + PA < 0$$

Proof.

Suppose there exists a P > 0 such that $A^T P + PA < 0$.

- Define the Lyapunov function $V(x) = x^T P x$.
- Then V(x) > 0 for $x \neq 0$ and V(0) = 0.
- Furthermore,

$$\dot{V}(x(t)) = \dot{x}(t)^T P x(t) + x(t)^T P \dot{x}(t)$$
$$= x(t)^T A^T P x(t) + x(t)^T P A x(t)$$
$$= x(t)^T (A^T P + P A) x(t)$$

- Hence $\dot{V}(x(t)) < 0$ for all $x \neq 0$. Thus the system is globally stable.
- Global stability implies A is Hurwitz.

M. Peet

Lecture 22:

The Lyapunov Inequality

Proof.

For the other direction, if A is Hurwitz, let

$$P = \int_0^\infty e^{A^T s} e^{As} ds$$

- Converges because A is Hurwitz.
- Furthermore

$$PA = \int_0^\infty e^{A^T s} e^{As} A ds$$

$$= \int_0^\infty e^{A^T s} A e^{As} ds = \int_0^\infty e^{A^T s} \frac{d}{ds} (e^{As}) ds$$

$$= \left[e^{A^T s} e^{As} \right]_0^\infty - \int_0^\infty \frac{d}{ds} e^{A^T s} e^{-As}$$

$$= -I - \int_0^\infty A^T e^{A^T s} e^{-As} = -I - A^T P$$

• Thus $PA + A^TP = -I < 0$.

The Lyapunov Inequality

Other Versions:

Lemma 3.

(A,B) is controllable if and only if there exists a X>0 such that

$$A^TX + XA + BB^T \le 0$$

Lemma 4.

(C,A) is stabilizable if and only if there exists a X>0 such that

$$AX + XA^T + C^TC \leq 0$$

These also yield Lyapunov functions for the system.

The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 5.

The Static State-Feedback Problem is to find a feedback matrix K such that

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$u(t) = Kx(t)$$

is stable

We have already solved the problem earlier using the Controllability Grammian.

• Find K such that A + BK is Hurwitz.

Can also be put in LMI format:

Find
$$X > 0, K$$
:
$$X(A+BK) + (A+BK)^TX < 0$$

Problem: Bilinear in K and X.

The Static State-Feedback Problem

- The bilinear problem in K and X is a common paradigm.
- Bilinear optimization is not convex.
- To convexify the problem, we use a change of variables.

Problem 1:

Find
$$X > 0, K$$
:
$$X(A + BK) + (A + BK)^T X < 0$$

Problem 2:

Find
$$P > 0, Z$$
:
$$AP + BZ + PA^T + ZB^T < 0$$

Definition 6.

Two optimization problems are equivalent if a solution to one will provide a solution to the other.

Theorem 7.

Problem 1 is equivalent to Problem 2.

The Dual Lyapunov Equation

Problem 1:

Problem 2:

Find X>0,:

Find Y > 0, :

 $XA + A^TX < 0$

 $YA^T + AY < 0$

Lemma 8.

Problem 1 is equivalent to problem 2.

Proof.

First we show 1) solves 2). Suppose X>0 is a solution to Problem 1. Let $Y=X^{-1}>0$.

• If $XA + A^TX < 0$, then

$$X^{-1}(XA + A^TX)X^{-1} < 0$$

Hence

$$X^{-1}(XA + A^{T}X)X^{-1} = AX^{-1} + X^{-1}A^{T} = AY + YA^{T} < 0$$

• Therefore, Problem 2 is feasible with solution $Y = X^{-1}$.

The Dual Lyapunov Equation

Problem 1:

Problem 2:

Find
$$X > 0$$
,:
 $XA + A^T X < 0$

Find
$$Y > 0$$
,:
 $YA^T + AY < 0$

Proof.

Now we show 2) solves 1) in a similar manner. Suppose Y>0 is a solution to Problem 1. Let $X=Y^{-1}>0$.

Then

$$XA + A^{T}X = X(AX^{-1} + X^{-1}A^{T})X$$

= $X(AY + YA^{T})X < 0$

Conclusion: If $V(x) = x^T P x$ proves stability of $\dot{x} = A x$,

• Then $V(x) = x^T P^{-1} x$ proves stability of $\dot{x} = A^T x$.

The Stabilization Problem

Thus we rephrase Problem 1

Problem 1:

Find
$$P > 0, K$$
:

$$(A + BK)P + P(A + BK)^T < 0$$

Find
$$X > 0, Z$$
:
 $AX + BZ + XA^{T} + ZB^{T} < 0$

Theorem 9.

Problem 1 is equivalent to Problem 2.

Proof.

We will show that 2) Solves 1). Suppose $X>0,\ Z$ solves 2). Let P=X>0 and $K=ZP^{-1}.$ Then Z=KP and

$$(A+BK)P + P(A+BK)^T = AP + PA^T + BKP + PK^TB^T$$
$$= AP + PA^T + BZ + Z^TB^T < 0$$

Now suppose that P>0 and K solve 1). Let X=P>0 and Z=KP. Then $AP+PA^T+BZ+Z^TB^T=(A+BK)P+P(A+BK)^T<0$

The Stabilization Problem

The result can be summarized more succinctly

Theorem 10.

(A,B) is static-state-feedback stabilizable if and only if there exists some P>0 and Z such that

$$AP + PA^T + BZ + Z^TB^T < 0$$

with $u(t) = ZP^{-1}x(t)$.

Standard Format:

$$\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} P \\ Z \end{bmatrix} + \begin{bmatrix} P & Z^T \end{bmatrix} \begin{bmatrix} A^T \\ B^T \end{bmatrix} < 0$$

There are a number of general-purpose LMI solvers available. e.g.

- SeDuMi Free
- LMI Lab in Matlab Robust Control Toolbox (in Computer lab)
- YALMIP A nice front end for several solvers (Free)

The Schur complement

Before we get to the main result, recall the Schur complement.

Theorem 11 (Schur Complement).

For any $S \in \mathbb{S}^n$, $Q \in \mathbb{S}^m$ and $R \in \mathbb{R}^{n \times m}$, the following are equivalent.

$$\begin{array}{ll} \mathbf{1}. \ \begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} > 0 \end{array}$$

2.
$$Q > 0$$
 and $M - RQ^{-1}R^T > 0$

A commonly used property of positive matrices.

Also Recall: If X > 0,

• then $X - \epsilon I > 0$ for ϵ sufficiently small.

M. Peet Lecture 22: 13 / 19

The KYP Lemma (AKA: The Bounded Real Lemma)

The most important theorem in this class.

Lemma 12.

Suppose

$$\hat{G}(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}.$$

Then the following are equivalent.

- $||G||_{H_{\infty}} \leq \gamma$.
- There exists a X > 0 such that

$$\begin{bmatrix} A^TX + XA & XB \\ B^TX & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} < 0$$

Can be used to calculate the H_{∞} -norm of a system

- Originally used to solve LMI's using graphs. (Before Computers)
- Now used directly instead of graphical methods like Bode.

The feasibility constraints are linear

· Can be combined with other methods.

Proof.

We will only show that ii) implies i). The other direction requires the Hamiltonian, which we have not discussed.

- We will show that if y = Gu, then $||y||_{L_2} \le \gamma ||u||_{L_2}$.
- From the 1 \times 1 block of the LMI, we know that $A^TX + XA < 0$, which means A is Hurwitz.
- ullet Because the inequality is strict, there exists some $\epsilon>0$ such that

$$\begin{split} &\begin{bmatrix} A^TX + XA & XB \\ B^TX & -(\gamma - \epsilon)I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} \\ &= \begin{bmatrix} A^TX + XA & XB \\ B^TX & -\gamma I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \epsilon I \end{bmatrix} < 0 \end{split}$$

• Let y = Gu. Then the state-space representation is

$$y(t) = Cx(t) + Du(t)$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$x(0) = 0$$

M. Peet Lecture 22: 15 / 3

Proof.

• Let $V(x) = x^T X x$. Then the LMI implies

$$\begin{split} & \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} \begin{bmatrix} A^TX + XA & XB \\ B^TX & -(\gamma - \epsilon)I \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \\ & = \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} A^TX + XA & XB \\ B^TX & -(\gamma - \epsilon)I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \frac{1}{\gamma} \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} C^T \\ D^T \end{bmatrix} \begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \\ & = \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} A^TX + XA & XB \\ B^TX & -(\gamma - \epsilon)I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \frac{1}{\gamma}y^Ty \\ & = x^T (A^TX + XA)x + x^TXBu + u^TB^TXx - (\gamma - \epsilon)u^Tu + \frac{1}{\gamma}y^Ty \\ & = (Ax + Bu)^TXx + x^TX(Ax + Bu) - (\gamma - \epsilon)u^Tu + \frac{1}{\gamma}y^Ty \\ & = \dot{x}(t)^TXx(t) + x(t)^TX\dot{x}(t) - (\gamma - \epsilon)\|u(t)\|^2 + \frac{1}{\gamma}\|y(t)\|^2 \\ & = \dot{V}(x(t)) - (\gamma - \epsilon)\|u(t)\|^2 + \frac{1}{\gamma}\|y(t)\|^2 < 0 \end{split}$$

M. Peet Lecture 22: 16 / 19

Proof.

- Now we have $\dot{V}(x(t)) (\gamma \epsilon) ||u(t)||^2 + \frac{1}{\gamma} ||y(t)||^2 < 0$
- Integrating in time, we get

$$\int_0^T \left(\dot{V}(x(t)) - (\gamma - \epsilon) \|u(t)\|^2 + \frac{1}{\gamma} \|y(t)\|^2 \right) dt$$

$$= V(x(T)) - V(x(0)) - (\gamma - \epsilon) \int_0^T \|u(t)\|^2 dt + \frac{1}{\gamma} \int_0^T \|y(t)\|^2 dt < 0$$

- Because A is Hurwitz, $\lim_{t\to\infty} x(t) = 0$.
- Hence $\lim_{t\to\infty} V(x(t)) = 0$.
- Likewise, because x(0) = 0, we have V(x(0)) = 0.

Lecture 22:

Proof.

• Since $V(x(0)) = V(x(\infty)) = 0$.

$$\begin{split} &\lim_{T \to \infty} \left[\dot{V}(x(T)) - \dot{V}(x(0)) - (\gamma - \epsilon) \int_0^T \|u(t)\|^2 dt + \frac{1}{\gamma} \int_0^T \|y(t)\|^2 \right) dt \right] \\ &= 0 - 0 - (\gamma - \epsilon) \int_0^\infty \|u(t)\|^2 dt + \frac{1}{\gamma} \int_0^\infty \|y(t)\|^2 dt \\ &= -(\gamma - \epsilon) \|u\|_{L_2}^2 + \frac{1}{\gamma} \|y\|_{L_2}^2 dt < 0 \end{split}$$

Thus

$$\|y\|_{L_2}^2 dt < (\gamma^2 - \epsilon \gamma) \|u\|_{L_2}^2$$

• By definition, this means $||G||_{H_{\infty}}^2 \leq (\gamma^2 - \epsilon \gamma) < \gamma^2$ or

$$||G||_{H_{\infty}} < \gamma$$

The Positive Real Lemma

A Passivity Condition

A Variation on the KYP lemma is the positive-real lemma

Lemma 13.

Suppose

$$\hat{G}(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}.$$

Then the following are equivalent.

- G is passive. i.e. $(\langle u, Gu \rangle_{L_2} \geq 0)$.
- There exists a P > 0 such that

$$\begin{bmatrix} A^T P + PA & PB - C^T \\ B^T P - C & -D^T - D \end{bmatrix} \le 0$$

M. Peet Lecture 22: 19 / 19