LIST OF FIGURES

CHAPTER NO.	TITLE		PAGE NO.
2	REVIEW OF		
	Numerical T	echniques to Represent Text Data	
	Figure 2.1	1-Hot Encoding	7
	Figure 2.2	Bigram Model	7
	Figure 2.3	Bag of Words	8
	Figure 2.4	Vector Semantics	9
	Figure 2.5	Word2Vec Sample Sentence	10
	Figure 2.6	Updation Criteria of Word2Vec	10
		Matrix	
	Summarizat	ion	12
	Figure 2.7	Text Summarization Approaches	13
	Figure 2.8	Types of Extractive Summarization	16
	Figure 2.9	PageRank Nodes and Edges	17
	Figure 2.10	Singular Value Decomposition	
	Evaluation o	f text summarization	
			19
	Figure 2.11	Types of Evaluations of Summaries	20
	Figure 2.12	Algorithms for Intrinsic Evaluation	22
	Figure 2.13	Types of ROUGE Measures	

Evaluation of text summarization

	Figure 2.14	Techniques for Web Scraping	24
	Twitter		
	Figure 2.15	Trends as shown on Twitter	28
		on 27-03-2020	
3	ANALYSIS A	AND DESIGN	
	Figure 3.1	Component Diagram	32
	Figure 3.2	Swimlane Diagram	36
4	IMPI FMFN'	TATION DETAILS	
7	Figure 4.1	Extractive Text Summarization	39
	Figure 4.1	Extractive Text Summarization	39
	Figure 4.2	TextRank Algorithm	41
	Figure 4.3	Latent Semantic Analysis Algorithm	43
5	RESULTS A	ND DISCUSSION	
	Figure 5.1	Average F-Measure Scores	49
	Figure 5.2	F-Measure Scores Comparison	50
	Figure 5.3	Average Computation Time	51
	Figure 5.4	Bot Result on System Console on	52
		13-03-2020	
	Figure 5.5	Bot Result on Twitter on 13-03-2020	53
	Figure 5.6	Bot Result on Twitter on 27-03-2020	54

LIST OF TABLES

CHAPTER NO.	TITLE		PAGE NO
5	RESULTS A	ND DISCUSSION	
	Table 5.1	Zero Value Count in each Method	49
	Table 5.2	High F-Measure Probability per Method	51

LIST OF EQUATIONS

CHAPTER NO.	TITLE		PAGE NO		
2	REVIEW OF LITERATURE				
	Equation 2.1 Word Frequency		14		
	Equation 2.2	Term Frequency	14		
	Equation 2.3	Inverse Document Frequency	15		
	Equation 2.4	TF-IDF	15		
	Equation 2.5	Recall	19		
	Equation 2.6	Precision	20		
	Equation 2.7	Brevity Penalty	21		
	Equation 2.8	BLEU Score	22		
3	ANALYSIS AND	DESIGN			
	Equation 3.1	F-Measure	31		
4	IMPLEMENTATIO	ON			
	Equation 5.1	Improved Word Frequency	42		

ABBREVIATIONS

ABBREVIATION DESCRIPTION

TF-IDF Term Frequency – Inverse Document Frequency

BLEU Bilingual Evaluation Understudy

BP Brevity Penalty

ROUGE Recall-Oriented Understudy for Gisting Evaluation

LCS Longest Common Subsequence

WOEID Where On Earth IDentifier

NLP Natural Language Processing

NLTK Natural Language Toolkit (Python)

API Application Programming Interface

DOM Document Object Model

GPU Graphical Processing Unit

CPU Central Processing Unit

RAM Random Access Memory

XML Extensible Mark-up Language

UML Unified Modelling Language

JSON JavaScript Object Notation

BBC British Broadcasting Channel

URL Uniform Resource Locator

TOI Times of India

ABSTRACT

With the boom of social media in the 21st century, it has grown to impact nearly every aspect of our life. This widespread nature of social media makes it a critical platform for the spread of information. This information, more often than not, is filled with flaws such as incomplete information, uncredited sources and may even go as far as being downright false. Platforms such as Facebook, Twitter, Instagram, and many more receive more than a billion active users every day with double that active every month, making them excellent platforms for the spread of information. There have always been suspicions and even some verified examples of these platforms being used to influence the lives of people by feeding them news from biased sources in order to influence the decisions they make in real life.[14]

Twitter is a critical player in the propagation of information with 500 million tweets containing snippets of information being sent every day, proved to be the ideal platform on which we could implement a system to verify and then spread information. The decision was made to consider the trending topics on twitter to be the keywords on which more information must be found and propagated.

Summarization of the selected articles, however, proved to be the greatest challenge. We decided to focus on extractive methods of summarization where sentences are lifted from the source verbatim instead of abstractive methods, which generated sentences due to its high complexity and resource requirements. We compared a variety of methods such as word frequency, term frequency-inverse document frequency, TextRank, latent semantic analysis based on the intrinsic evaluation. We also modified word frequency to obtain better results.

Bots proved to be the ideal form with which could implement said system as it reduces the probability of human error, removes work redundancy, and is inherently unbiased. The bot would scrape data off articles from reliable sources, summarize them using the best method from those mentioned above, and then tweet them along with a link to the actual source.