Laboratório de Transformadores Ensaio 3: Curto Circuito e Vazio

Felipe Bandeira da Silva Engenharia Elétrica Unifor - Universidade de Fortaleza Email: felipeband18@gmail.com

Resumo—Conhecer o método mais utilizado para obter os parâmetros de um transformador de tensão.

I. INTRODUÇÃO

O transformador possui um papel importante em sistemas de potência em corrente alternada. Ele possibilita que a energia e a transmissão desta energia sejam realizadas em tensões mais adequadas, permitindo grande economia no sistema, além de permitir que dispositivos sejam atendidos individualmente nas tensões corretas. Também é largamente utilizado em circuitos de baixa potência, em circuitos eletrônicos de baixas correntes e nos de controle. Executam funções como: casamento de impedâncias entre fonte e carga, maximização da transferência de potência, isolação de dois circuitos, ou ainda isolar apenas a corrente CC, mantendo a continuidade da CA entre dois circuitos. O circuito mostrado na figura abaixo é a um modelo possível para um transformador, este circuito é chamada de circuito T. É largamente utilizado e representa bem o comportamento do transformador na maioria das aplicações.

 R_1 e X_{I1} representam a resistência de perdas no núcleo e reatância de dispersão do enrolamento primário. R_C e X_m representam a resistência de perdas no núcleo e a reatância de magnetização, em conjunto formam a impedância de magnetização Z_φ por onde circula a corrente de excitação $I_\varphi.$ R_2' e X_2' são a resistência e a reatância de dispersão do enrolamento secundário, referidas ao primário. Estes parâmetros podem ser obtidos em ensaios simples, se algumas simplificações forem feitas no circuito.

Setembro 9, 2013

II. ENSAIO DE CURTO-CIRCUITO

Neste ensaio, os terminais do secundário são curto-circuitos de tal forma que se possa medir a corrente que passa. Os terminais do primário é alimentado com uma tensão de tal modo que a corrente do secundário não ultrapasse o valor nominal. Como a impedância de magnetização possui um valor muito superior aos valores das duas impedância em série, a

corrente de excitação é muito pequena podendo ser desprezada. A figura 2 exemplifica a situação.

Está consideração faz o ramo de magnetização para a direito ou esquerda se moverem, permitindo somar as reatância do primário e do secundário. Um consideração útil é que utilizar o lado de alta tensão como primário é o suficiente para que a corrente atinja o valor nominal. Medindo a tensão V_{sc} , a corrente I_{sc} e a potência ativa P_{cc} é possível calcular os parâmetros:

$$Z_{eq} = \frac{V_{sc}}{I_{sc}} \tag{1}$$

$$R_{eq} = \frac{W}{I_{sc}^2} \tag{2}$$

$$X_{eq} = \sqrt{Z_{eq}^2 - R_{eq}^2} (3)$$

A. Medições

No laboratório foram feitas as medições necessárias para obter os parâmetros já ditos. O procedimento para a obtenção dos parâmetros já ditos acima são relativamente simples só requer um cuidado extra para não danificar o transformador do laboratório. Após os devidos cuidados, os seguintes valores foram obtidos:

$$egin{array}{c|c} V_{sc} & 13 \ I_{sc} \\ I_{sc} & 500 \ [mA] \\ I_{sc2} & 500 \ [mA] \\ Q & 5 \ [var] \\ W & 4 \ [W] \\ fp & 0.606 \ [ind] \\ \hline \end{array}$$

Onde: V_{sc} é a tensão no primário, I_{sc} a corrente no primário, I_{sc2} a corrente no secundário, Q e W são, potência reativa e ativa consumidas pelo transformador, e fp o fator

de potência. Com estes valores é possível obter os parâmetros para o transformador, com isso fica,

$$Z_{eq} = \frac{13}{0.5} = 26.0\Omega \tag{4}$$

$$R_{eq} = \frac{4}{0.5^2} = 16\Omega \tag{5}$$

$$X_{eq} = \sqrt{Z_{eq}^2 - Req^2} = \sqrt{26^2 - 16^2} = 20.5\Omega$$
 (6)

III. ENSAIO A VAZIO

Neste ensaio o lado do secundário fica em vazio enquanto tensão nominal é aplicada no lado do primário. É recomendado que o lado de baixa tensão seja escolhido como primário, o que facilita sua alimentação com tensão nominal. Como a impedância do ramo de magnetização Z_{φ} é muito maior que a impedância formada pela resistência do enrolamento do primário e pela reatância de dispersão, a queda de tensão que ocorre em $R_1 + X_{I1}$ é muito pequena, e pode ser desprezada. Fazer isto implica em adotar o circuito equivalente simplificado da figura 3. Como os terminais do secundário estão em aberto toda a corrente circuito pelo ramo de magnetização.

Medindo a tensão V_{oc} , a corrente I_{oc} e a potência ativa P_{oc} é possível calcular os parâmetros:

$$Z_{\varphi} = \frac{V_{oc}}{I_{oc}} \tag{7}$$

$$R_c = \frac{V_{oc}^2}{P_{oc}} \tag{8}$$

$$X_m = \frac{1}{\sqrt{\frac{1}{Z_{cc}}^2 - \frac{1}{R_c}^2}} \tag{9}$$

A. Medições

Para este ensaio os seguintes valores foram obtidos:

$$\begin{array}{c|c} V_{oc} & 117.5 \text{ [V]} \\ I_{oc} & 103.0 \text{ [mA]} \\ V_{sc} & 124.5 \text{ [V]} \\ Q & 9.0 \text{ [var]} \\ W & 6.0 \text{ [W]} \\ fp & 0.505 \text{ [ind]} \\ \end{array}$$

Onde: V_{oc} é a tensão no primário, I_{oc} a corrente no primário, V_{sc} tensão no secundário, Q e W são, potência

reativa e ativa consumidas pelo transformador, e fp o fator de potência. Com estes valores é possível obter os seguintes parâmetros:

$$Z_{\varphi} = \frac{117.5}{0.103} = 1140.7\Omega \tag{10}$$

$$R_c = \frac{117.5^2}{6.0} = 2301.0\Omega \tag{11}$$

$$X_m = \frac{1}{\sqrt{\frac{1}{1140.7}^2 - \frac{1}{2301.0}^2}} = 1313.4 \tag{12}$$

IV. QUESTIONÁRIO

a - Feito b - A energia ativa

V. CONCLUSÃO