PROPERTY TABLES AND CHARTS (SI UNITS)

TABLE A-1	Molar mass, gas constant, and ideal-gas specific heats of some substances 866
TABLE A-2	Boiling and freezing point properties 867
TABLE A-3	Properties of solid metals 868–870
TABLE A-4	Properties of solid nonmetals 871
TABLE A-5	Properties of building materials 872–873
TABLE A-6	Properties of insulating materials 874
TABLE A-7	Properties of common foods 875–876
TABLE A-8	Properties of miscellaneous materials 877
TABLE A-9	Properties of saturated water 878
TABLE A-10	Properties of saturated refrigerant–134a 879
TABLE A-11	Properties of saturated ammonia 880
TABLE A-12	Properties of saturated propane 881
TABLE A-13	Properties of liquids 882
TABLE A-14	Properties of liquid metals 883
TABLE A-15	Properties of air at 1 atm pressure 884
TABLE A-16	Properties of gases at 1 atm pressure 885–886
TABLE A-17	Properties of the atmosphere at high altitude 887
TABLE A-18	Emissivities of surfaces 888–889
TABLE A-19	Solar radiative properties of materials 890
FIGURE A-20	The Moody chart for friction factor for fully developed

APPENDIX

1

866 APPENDIX 1

TABLE A-1

Molar mass, gas constant, and ideal-gas specific heats of some substances

			Speci	fic Heat Data at	25°C
Substance	Molar Mass <i>M</i> , kg/kmol	Gas Constant R, kJ/kg·K*	c_p , kJ/kg·K	c, kJ/kg⋅K	$k = c_p/c_v$
Air	28.97	0.2870	1.005	0.7180	1.400
Ammonia, NH ₃	17.03	0.4882	2.093	1.605	1.304
Argon, Ar	39.95	0.2081	0.5203	0.3122	1.667
Bromine, Br ₂	159.81	0.05202	0.2253	0.1732	1.300
Isobutane, C ₄ H ₁₀	58.12	0.1430	1.663	1.520	1.094
<i>n</i> -Butane, C ₄ H ₁₀	58.12	0.1430	1.694	1.551	1.092
Carbon dioxide, CO ₂	44.01	0.1889	0.8439	0.6550	1.288
Carbon monoxide, CO	28.01	0.2968	1.039	0.7417	1.400
Chlorine, Cl ₂	70.905	0.1173	0.4781	0.3608	1.325
Chlorodifluoromethane (R-22), CHCIF ₂	86.47	0.09615	0.6496	0.5535	1.174
Ethane, C ₂ H ₆	30.070	0.2765	1.744	1.468	1.188
Ethylene, C ₂ H ₄	28.054	0.2964	1.527	1.231	1.241
Fluorine, F ₂	38.00	0.2187	0.8237	0.6050	1.362
Helium, He	4.003	2.077	5.193	3.116	1.667
n -Heptane, C_7H_{16}	100.20	0.08297	1.649	1.566	1.053
<i>n</i> -Hexane, C ₆ H ₁₄	86.18	0.09647	1.654	1.558	1.062
Hydrogen, H ₂	2.016	4.124	14.30	10.18	1.405
Krypton, Kr	83.80	0.09921	0.2480	0.1488	1.667
Methane, CH ₄	16.04	0.5182	2.226	1.708	1.303
Neon, Ne	20.183	0.4119	1.030	0.6180	1.667
Nitrogen, N ₂	28.01	0.2968	1.040	0.7429	1.400
Nitric oxide, NO	30.006	0.2771	0.9992	0.7221	1.384
Nitrogen dioxide, NO ₂	46.006	0.1889	0.8060	0.6171	1.306
Oxygen, O ₂	32.00	0.2598	0.9180	0.6582	1.395
<i>n</i> -Pentane, C ₅ H ₁₂	72.15	0.1152	1.664	1.549	1.074
Propane, C ₃ H ₈	44.097	0.1885	1.669	1.480	1.127
Propylene, C ₃ H ₆	42.08	0.1976	1.531	1.333	1.148
Steam, H ₂ O	18.015	0.4615	1.865	1.403	1.329
Sulfur dioxide, SO ₂	64.06	0.1298	0.6228	0.4930	1.263
Tetrachloromethane, CCI ₄	153.82	0.05405	0.5415	0.4875	1.111
Tetrafluoroethane (R-134a), $C_2H_2F_4$	102.03	0.08149	0.8334	0.7519	1.108
Trifluoroethane (R-143a), C ₂ H ₃ F ₃	84.04	0.09893	0.9291	0.8302	1.119
Xenon, Xe	131.30	0.06332	0.1583	0.09499	1.667

^{*}The unit kJ/kg·K is equivalent to kPa·m³/kg·K. The gas constant is calculated from $R = R_U/M$, where $R_U = 8.31447$ kJ/kmol·K is the universal gas constant and M is the molar mass.

Source: Specific heat values are obtained primarily from the property routines prepared by The National Institute of Standards and Technology (NIST), Gaithersburg, MD.

TABLE A-2

Boiling and freezing point properties

	Boiling	Data at I atm	Freez	zing Data	Lic	quid Proper	ties
		Latent Heat of		Latent Heat			Specific
0.1.1	Boiling	Vaporization	Freezing	of Fusion	Temperature		Heat
Substance	Point, °C	h_{fg} , kJ/kg	Point, °C	<i>h_{if},</i> kJ/kg	°C	ho, kg/m ³	c_p , kJ/kg·K
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium							
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide	-78.4*	230.5 (at 0°C)	-56.6		0	298	0.59
Ethanol	78.2	838.3	-114.2	109	25	783	2.46
Ethyl alcohol	78.6	855	-156	108	20	789	2.84
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	_	_	-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204–293		-24.9	_	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4		13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
					-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)					25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	_	230-384			20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	216.8	-96.6	_	-50	1443	1.23
					-26.1	1374	1.27
					0	1295	1.34
					25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

868 APPENDIX 1

TABLE A-3

Properties of solid metals

	Melting		Proper	ties at 300) K		Propertie	s at Variou k(W/n	us Tempe n∙K)/c _p (J/		(K),
Composition	Point, K	$\frac{\rho}{ ho}$ kg/m ³	<i>c_p</i> J/kg⋅K	<i>k</i> W/m∙K	$\alpha \times 10^6$ m ² /s	100	200	400	600	800	1000
Aluminum:		<u> </u>									
Pure	933	2702	903	237	97.1	302 482	237 798	240 949	231 1033	218 1146	
Alloy 2024-T6 (4.5% Cu, 1.5% Mg	775 ,	2770	875	177	73.0	65	163	186	186		
0.6% Mn) Alloy 195, Cast		2700	002	160	60.0	473	787	925	1042		
(4.5% Cu) Beryllium	1550	2790 1850	883 1825	168 200	68.2 59.2	990	301	174 161	185 126	106	90.8
Bismuth	545	9780	122	7.86	6.59	203 16.5	1114	2191 7.04	2604		3018
Boron	2573	2500	1107	27.0	9.76	112 190	120 55.5	127 16.8	10.6	9.6	0 9.85
Cadmium	594	8650	231	96.8	48.4	128 203	600 99.3	1463 94.7	1892	2160	
Chromium	2118	7160	449	93.7	29.1	198 159	222 111	242 90.9	80.7	71.3	65.4
Cobalt	1769	8862	421	99.2	26.6	192 167	384 122	484 85.4	542 67.4	581 58.2	
0						236	379	450	503	550	628
Copper: Pure	1358	8933	385	401	117	482 252	413 356	393 397	379 417	366 433	352 451
Commercial bronze (90% Cu, 10% AI)	1293	8800	420	52	14	202	42 785	52 160	59 545	400	701
Phosphor gear bronze (89% Cu, 11% Sn)	1104	8780	355	54	17		41	65 —	74 —		
Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	149 425		
Constantan (55% Cu, 45% Ni)	1493	8920	384	23	6.71	17 237	19 362				
Germanium	1211	5360	322	59.9	34.7	232 190	96.8 290	43.2 337	27.3 348	19.8 357	375
Gold	1336	19,300	129	317	127	327 109	323 124	311 131	298 135	284 140	270 145
Iridium	2720	22,500	130	147	50.3	172 90	153 122	144 133	138 138	132 144	126 153
Iron: Pure	1810	7870	447	80.2	23.1	134 216	94.0 384	69.5 490	54.7 574	43.3 680	32.8 975
Armco (99.75% pure)		7870	447	72.7	20.7	95.6 215	80.6 384	65.7 490	53.1 574	42.2 680	32.3 975
Carbon steels: Plain carbon (Mn ≤ 1	0/	7854	434	60.5	17.7	210	304	56.7	48.0	39.2	
Si $\leq 0.1\%$) AISI 1010	. 70							487	559		1169
	0/	7832	434	63.9	18.8		487	58.7 559	48.8 685	1168	
Carbon-silicon (Mn ≤ 1 0.1% $<$ Si \leq 0.6%)	%	7817	446	51.9	14.9			49.8 501	44.0 582	37.4 699	29.3 971

869 Appendix 1

TABLE A-3

Properties of solid metals (Continued)

	Melting		Proper	ties at 300) K	1	Propertie	es at Vario k(W/r	<i>us Tempe</i> n⋅K)/ <i>c_p</i> (J/		K),
Composition	Point, K	$\frac{\rho}{ ho}$ kg/m ³	c _p J/kg⋅K	<i>k</i> W/m∙K	$lpha imes 10^6$ m ² /s	100	200	400	600	800	1000
Carbon-manganese-s (1% < Mn < 1.65% 0.1% < Si < 0.6%	6	8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090
Chromium (low) steels: $\frac{1}{2}$ Cr- $\frac{1}{4}$ Mo-Si (0.18% 0.65% Cr, 0.23% Mo		7822	444	37.7	10.9			38.2	36.7	33.3	26.9
0.6% Si) 1 Cr $-\frac{1}{2}$ Mo (0.16% C, 1% Cr, 0.54% Mo,		7858	442	42.3	12.2			492 42.0	575 39.1	688 34.5	969 27.4
0.39% Si) 1 Cr–V (0.2% C, 1.02% Cr,		7836	443	48.9	14.1			492 46.8	575 42.1	688 36.3	969 28.2
0.15% V)								492	575	688	969
Stainless steels: AISI 302		8055	480	15.1	3.91			17.3 512	20.0 559	22.8 585	25.4 606
AISI 304	1670	7900	477	14.9	3.95	9.2 272	12.6 402	16.6 515	19.8 557	22.6 582	25.4 611
AISI 316		8238	468	13.4	3.48			15.2 504	18.3 550	21.3 576	24.2 602
AISI 347		7978	480	14.2	3.71			15.8 513	18.9 559	21.9 585	24.7 606
Lead	601	11,340	129	35.3	24.1	39.7 118	36.7 125	34.0 132	31.4 142		
Magnesium	923	1740	1024	156	87.6	169 649	159 934	153 1074	149 1170	146 1267	
Molybdenum Nickel:	2894	10,240	251	138	53.7	179 141	143 224	134 261	126 275	118 285	112 295
Pure	1728	8900	444	90.7	23.0 232	164 383	107 485	80.2 592	65.6 530	67.6 562	71.8
Nichrome (80% Ni, 20% Cr)	1672	8400	420	12	3.4			14 480	16 525	21 545	
Inconel X-750 (73% Ni, 15% Cr,	1665	8510	439	11.7	3.1	8.7	10.3	13.5	17.0	20.5	24.0
6.7% Fe) Niobium	2741	8570	265	53.7	23.6	 55.2	372 52.6	473 55.2	510 58.2	546 61.3	626 64.4
						188	249	274	283	292	301
Palladium Platinum:	1827	12,020	244	71.8	24.5	76.5 168	71.6 227	73.6 251	79.7 261	86.9 271	94.2 281
Pure	2045	21,450	133	71.6	25.1	77.5 100	72.6 125	71.8 136	73.2 141	75.6 146	78.7 152
Alloy 60Pt-40Rh (60% Pt, 40% Rh)	1800	16,630	162	47	17.4			52 —	59 —	65 —	69 —
Rhenium	3453	21,100	136	47.9	16.7	58.9 97	51.0 127	46.1 139	44.2 145	44.1 151	44.6 156
Rhodium	2236	12,450	243	150	49.6	186 147	154 220	146 253	136 274	127 293	121 311

870 APPENDIX 1

TABLE A-3

Properties of solid metals (Concluded)

	Melting		Proper	ties at 30	0 K	Properties at Various Temperatures (K), $k(W/m \cdot K)/c_p(J/kg \cdot K)$											
Composition	Point, K	$ ho$ kg/m 3	<i>c_p</i> J/kg⋅K	<i>k</i> W/m∙K	$lpha imes 10^6$ m²/s	100	200	400	600	800	1000						
Silicon	1685	2330	712	148	89.2	884 259	264 556	98.9 790	61.9 867	42.4 913	31.2 946						
Silver	1235	10,500	235	429	174	444 187	430 225	425 239	412 250	396 262	379 277						
Tantalum	3269	16,600	140	57.5	24.7	59.2 110	57.5 133	57.8 144	58.6 146	59.4 149	60.2 152						
Thorium	2023	11,700	118	54.0	39.1	59.8 99	54.6 112	54.5 124	55.8 134	56.9 145	56.9 156						
Tin	505	7310	227	66.6	40.1	85.2 188	73.3 215	62.2 243									
Titanium	1953	4500	522	21.9	9.32	30.5 300	24.5 465	20.4 551	19.4 591	19.7 633	20.7 675						
Tungsten	3660	19,300	132	174	68.3	208 87	186 122	159 137	137 142	125 146	118 148						
Uranium	1406	19,070	116	27.6	12.5	21.7 94	25.1 108	29.6 125	34.0 146	38.8 176	43.9 180						
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3 515	33.3 540	35.7 563	38.2 597						
Zinc	693	7140	389	116	41.8	117 297	118 367	111 402	103 436								
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6 300	20.7 332	21.6 342	23.7 362						

From Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., 1990. This material is used by permission of John Wiley & Sons, Inc.

871 APPENDIX 1

TABLE A-4

Properties of solid nonmetals

	Melting		Proper	ties at 30	0 K		Prope		ous Temperat K)/c _p (J/kg·K)		
Composition	Point, K	ρ kg/m ³	<i>c_p</i> ³ J/kg⋅K	<i>k</i> C W/m∙K	$lpha imes 10^6$ m ² /s	100	200	400	600	800	1000
Aluminum oxide, sapphire	2323	3970	765	46	15.1	450 —	82 —	32.4 940	18.9 1110	13.0 1180	10.5 1225
Aluminum oxide, polycrystalline Beryllium oxide	2323 2725	3970 3000	765 1030	36.0 272	11.9	133 —	55 —	26.4 940 196	15.8 1110 111	10.4 1180 70	7.85 1225 47
berymum oxide	2725	3000	1030					1350	1690	1865	1975
Boron	2573		1105	27.6	9.99	190	52.5 —	18.7 1490	11.3 1880	8.1 2135	6.3 2350
Boron fiber epoxy (30% vol.) composite k , \parallel to fibers k , \perp to fibers c_p	590 e	2080	1122	2.29 0.59		2.10 0.37 364	2.23 0.49 757	2.28 0.60 1431			
Carbon Amorphous	1500	1950	_	1.60	_	0.67	1.18	1.89	21.9	2.37	2.53
Diamond, type Ila insulator	_	3500	509	2300	1	0,000	4000 194	1540 853			
Graphite, pyrolytic k , \parallel to layers k , \perp to layers c_p	2273	2210	709	1950 5.70		4970 16.8 136	3230 9.23 411	1390 4.09 992	892 2.68 1406	667 2.01 1650	534 1.60 1793
Graphite fiber epoxy (25% vol.) composite	450	1400									
k , heat flow II to fibe k , heat flow \perp to fibe c_p			0.8 935	11.1 37	0.46	5.7 0.68 337	8.7 1.1 642	13.0 1216			
Pyroceram, Corning 9606	1623	2600	808	3.98	1.89	5.25	4.78	3.64 908	3.28 1038	3.08 1122	2.96 1197
Silicon carbide	3100	3160	675	490	230			880	1050	 1135	87 1195
Silicon dioxide, crystalline (quartz) k, to c -axis k , \perp to c -axis	1883	2650		10.4 6.21		39 20.8	16.4 9.5	7.6 4.70	5.0 3.4	4.2 3.1	
<i>c_p</i> Silicon dioxide, polycrystalline	1883	2220	745 745	1.38	0.834	0.69	1.14	885 1.51	1075 1.75	1250 2.17	2.87
(fused silica) Silicon nitride	2173	2400	691	16.0	9.65	<u> </u>	— — E70	905 13.9	1040 11.3	9.88	8.76
Sulfur	392	2070	708	0.206	0.141	0.165 403	578 0.185 606	778	937	1063	1155
Thorium dioxide	3573	9110	235	13	6.1	3		10.2 255	6.6 274	4.7 285	3.68 295
Titanium dioxide, polycrystalline	2133	4157	710	8.4	2.8			7.01 805	5.02 880	8.94 910	3.46 930

872 APPENDIX 1

TABLE A-5

Properties of building materials (at a mean temperature of 24°C)

Material	Thickness, <i>L</i> mm	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m⋅K	Specific Heat, c_p kJ/kg·K	R-value (for listed thickness, L/k), K⋅m²/W
Building Boards					_
Asbestos-cement board Gypsum of plaster board	6 mm 10 mm 13 mm	1922 800 800		1.00 1.09	0.011 0.057 0.078
Plywood (Douglas fir)	— 6 mm	545 545	0.12	1.21 1.21	0.055
	10 mm 13 mm	545 545	_ _	1.21 1.21	0.083 0.110
	20 mm	545	_	1.21	0.165
Insulated board and sheating (regular density) Hardboard (high density, standard	13 mm 20 mm	288 288	_	1.30 1.30	0.232 0.359
tempered) Particle board:	_	1010	0.14	1.34	_
Medium density		800	0.14	1.30	_
Underlayment	16 mm	640	_	1.21	0.144
Wood subfloor	20 mm	_	_	1.38	0.166
Building Membrane					
Vapor-permeable felt Vapor-seal (2 layers of mopped	_	_	_	_	0.011
0.73 kg/m ² felt)	_	_	_	_	0.021
Flooring Materials Carpet and fibrous pad Carpet and rubber pad Tile (asphalt, linoleum, vinyl)		_ _ _	_ _ _	1.42 1.38 1.26	0.367 0.217 0.009
Masonry Materials Masonry units:					
Brick, common		1922	0.72	_	_
Brick, face		2082	1.30	_	_
Brick, fire clay		2400	1.34	_	_
		1920	0.90	0.79	_
Concrete blocks (3 oval cores,	100 mm	1120	0.41 0.77	_	0.13
sand and gravel aggregate)	200 mm 300 mm	_	1.0 1.30		0.13 0.20 0.23
Concretes:					
Lightweight aggregates, (including		1920	1.1	_	_
expanded shale, clay, or slate;		1600	0.79	0.84	_
expanded slags; cinders;		1280	0.54	0.84	_
pumice; and scoria)	940	960 0.18	0.33	_	_
Cement/lime, mortar, and stucco		1920	1.40	_	_
		1280	0.65	_	_
Stucco		1857	0.72	_	_

TABLE A-5

Properties of building materials (Concluded) (at a mean temperature of 24°C)

Material	Thickness, L mm	Density, <i>ρ</i> kg/m³	Thermal Conductivity, <i>k</i> W/m∙K	Specific Heat, <i>c_p</i> kJ/kg⋅K	R-value (for listed thickness, L/k), K·m²/W
Roofing					
Asbestos-cement shingles		1900	_	1.00	0.037
Asphalt roll roofing		1100	_	1.51	0.026
Asphalt shingles		1100	_	1.26	0.077
Built-in roofing	10 mm	1100	_	1.46	0.058
Slate	13 mm	_	_	1.26	0.009
Wood shingles (plain and				1.00	0.166
plastic/film faced)		_	_	1.30	0.166
Plastering Materials					
Cement plaster, sand aggregate	19 mm	1860	0.72	0.84	0.026
Gypsum plaster:					
Lightweight aggregate	13 mm	720	_	_	0.055
Sand aggregate	13 mm	1680	0.81	0.84	0.016
Perlite aggregate	_	720	0.22	1.34	_
Siding Material (on flat surfaces)					
Asbestos-cement shingles	_	1900	_	_	0.037
Hardboard siding	11 mm	_	_	1.17	0.12
Wood (drop) siding	25 mm	_	_	1.30	0.139
Wood (plywood) siding lapped	10 mm	_	_	1.21	0.111
Aluminum or steel siding (over					
sheeting):	10			1.00	0.11
Hollow backed	10 mm 10 mm	_	_	1.22 1.34	0.11 0.32
Insulating-board backed Architectural glass	10 11111	2530	1.0	0.84	0.018
Architectural glass	<u> </u>	2550	1.0	0.64	0.016
Woods					
Hardwoods (maple, oak, etc.)	_	721	0.159	1.26	_
Softwoods (fir, pine, etc.)	_	513	0.115	1.38	_
Metals					
Aluminum (1100)	_	2739	222	0.896	_
Steel, mild	_	7833	45.3	0.502	_
Steel, Stainless	_	7913	15.6	0.456	_

Source: Table A–5 and A–6 are adapted from ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1993), Chap. 22, Table 4. Used with permission.

TABLE A-6

Properties of insulating materials (at a mean temperature of 24°C)

Material	Thickness, <i>L</i> mm	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, <i>c_p</i> kJ/kg·K	R-value (for listed thickness, L/k), K·m²/W
Blanket and Batt Mineral fiber (fibrous form processed from rock, slag, or glass)	50 to 70 mm 75 to 90 mm 135 to 165 mm	4.8–32 4.8–32 4.8–32	_ _ _	0.71–0.96 0.71–0.96 0.71–0.96	1.23 1.94 3.32
Board and Slab Cellular glass Glass fiber (organic bonded) Expanded polystyrene (molded beads) Expanded polyurethane (<i>R</i> -11 expanded) Expanded perlite (organic bonded) Expanded rubber (rigid) Mineral fiber with resin binder Cork		136 64–144 16 24 16 72 240 120	0.055 0.036 0.040 0.023 0.052 0.032 0.042 0.039	1.0 0.96 1.2 1.6 1.26 1.68 0.71 1.80	
Sprayed or Formed in Place Polyurethane foam Glass fiber Urethane, two-part mixture (rigid foam) Mineral wool granules with asbestos/ inorganic binders (sprayed)		24–40 56–72 70	0.023-0.026 0.038-0.039 0.026	 1.045 	_ _ _ _
Loose Fill Mineral fiber (rock, slag, or glass) Silica aerogel Vermiculite (expanded) Perlite, expanded	~75 to 125 mm ~165 to 222 mm ~191 to 254 mm ~185 mm	9.6–32 9.6–32 — — 122 122 32–66		0.71 0.71 0.71 0.71 	1.94 3.35 3.87 5.28 — —
Sawdust or shavings Cellulosic insulation (milled paper or wood Roof Insulation	pulp)	128–240 37–51	0.065 0.039–0.046	1.38 —	_
Cellular glass Preformed, for use above deck	 13 mm 25 mm 50 mm	144 — — —	0.058 — — —	1.0 1.0 2.1 3.9	 0.24 0.49 0.93
Reflective Insulation					
Silica powder (evacuated) Aluminum foil separating fluffy glass mats		160	0.0017	_	_
(evacuated); for cryogenic applications (1 Aluminum foil and glass paper laminate; 7	5–150	40	0.00016	_	_
layers (evacuated); for cryogenic applicat	ions (150 K)	120	0.000017	_	_

TABLE A-7

Properties of common foods

(a) Specific heats and freezing-point properties

																																						A	.PF	8 PEI	75 ND	IX :	i
Latent	Heat of Fusion, ^c kJ/kg	297	277	284	287	284	52	301	201	311	+ +)		261	727	704	190	214	277		164	234	224	187	247	217	124	187	127	214		17	53	124	130	m	247	22	210	294	20	\ ^c	13)
. <i>heat,</i> ^b g.K	Below	1.96	1.89	1.91	1.92	1 91	1.07	1.07	1.97	2.04	j	,	1.82	1.78	1.84	1.56	1.65	1.89		1.46	1.72	1.68	1.55	1.77	1.66	1.31	1.55	1.32	1.65		0.89	1.04	1.31	1.33	0.85	1.77	1.05	1.63	1.95	0.92	0.87	0.0	1
Specific heat, ^b kJ/kg·K	Above Freezing	3.82	3.62	3,69	3.72	3 69	9	98 8	3,75	3.96)	(3.45	3.30	5.4 7 L	2.75	2.98	3.62		2.48	3.18	3.08	2.72	3,32	3.02	2.08	2.72	2.11	2.98				2.08	2.15		3.32		2.95	3.79				
	Freezing Point ^a °C	6.0-	-1.6	-1.0	-0.8	-20	i	α 0	0.1	-0.4 -0.4	-	0	7.27	7.7	7.7	7.7	-2.2	-2.2		-1.7	-1.7	;	1	-2.8	1		-1.7						-12.9	-10.0		9.0-		-5.6	9.0-				
	Water content, ^a %(mass)	68	83	85	86	20.00	α	0 0	0 00	60,00)	1	7 0	1 / 2	ן ע	2/	64	83		49	70	67	56	74	65	37	56	38	64		2	16	37	39	П	74	17	63	80	9	Ν (o 4	
	Food	Peaches	Pears	Pineapples	Plums	Quinces	Raisins	Strawbarriae	Jangarinas	Watermelon		FISIVSearood	Cod, whole	Hallbut, whole	Lobster	Mackerel	Salmon, whole	Shrimp	Meats	Beef carcass	liver	Round, beef	Sirloin, beef	Chicken	Lamb leg	Port carcass	Ham	Pork sausage	Turkey	Other	Almonds	Butter	Cheese, Cheddar	Cheese, Swiss	Chocolate milk	Eggs, whole	Honey	Ice cream	Milk, whole	Peanuts	Peanuts, roasted	Walnuts	
-atent	Heat of Fusion, ^c kJ/kg		281	311	297	301	307	294	307	314	247	321	311	251	284	31/	304	301	297	294	284	247	200	707	304	217	307	à		281	204	251	274	307	281	267	77	261	297	274	297	291	_
at, ^b	Below)	1.90	2.01	1.96	1.97	2.00	1.95	2.00	2.02	1.77	2.05	2.01	1.78	1.91	2.04	1.99	1.97	1.96	1.95	1.91	1.77	7.00	1.82	۲. در در	2.01	2.02	00.5		1.90	1.91	1.00	1.70	2.00	1 90	1.85	1.13	1.82	1.96	1.87	1.96	1.78	
Specific hea kJ/kg·K	Above)	3.65	3.96	3.82	3.86	3.92	3.79	3.92	3.99	3.32	4.06	3.96	3.35	3.69	4.02	3.89	3.86	3.82	3.79	3.69	3.32	5.92	3.45	0.00 0.00	5.90	3.99 200	30.0		3.65	3.03	3.02 3.02	3.50	3.92	3.65	3.52	I	3.45	3.82	3.59	3.82	3.50	:
	Freezing Point ^a °C		-1.2	9.0-	-0.7	9.0-	-0.9	-1.4	-0.8	-0.5	9.0-	-0.5	-0.8	-1.8	-0.7	7.0	6.0-	-1.8	6.0-	-0.8	-1:1	-0.6		9.0	0.0	ا د.م	- 1	1:1		-1.1	T.T	? œ		-1.2	-17	-1.8		-2.4	-1.1	-1.1	-1.4	1 - 1 4 00)
	Water content, ^a %(mass)		84	93	88	06	92	88	92	94	74	96	63	75	Ω Ω Ω	95	91	06	86	∞ i	82	4 6 0	7 6	× -	91	0 0	40 0	30		84	O U	75	C &	95	84	80	23	78	88	82	80	C / 2	
	Food	Vegetables	Artichokes	Asparagus	Beans, snap	Broccoli	Cabbage	Carrots	Cauliflower	Celery	Corn, sweet	Cucumpers	Eggplant	Horseradish	Leeks	Lettuce	Mushrooms	Okra	Onions, green	Onions, dry	Parsley	Peas, green	reppers, sweet	Potatoes	Fumpkins	Spiriacii Temetee ylee	Turning	2	Fruits	Apples	Apricots	Rananas	Rineherries	Cantaloupes	Cherries, sour	Cherries, sweet	Figs. dried	Figs, fresh	Grapefruit	Grapes	Lemons	Oranges	0

Sources: *Water content and freezing-point data are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chap. 30. Table 1. Used with permission. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

 b Specific heat data are based on the specific heat values of a water and ice at 0° C and are determined from Siebel's formulas: $c_{p,fresh} = 3.35 \times (Water content) + 0.84$, above freezing, and $c_{p,fresh} = 1.26 \times (Water content) + 0.84$, below freezing.

^cThe latent heat of fusion is determined by multiplying the heat of fusion of water (334 kJ/kg) by the water content of the food.

876 APPENDIX 1

TABLE A-7

Properties of common foods (Concluded) (b) Other properties

Food	Water Content, % (mass)	Temperature, <i>T</i>	Density, $ ho$ kg/m 3	Thermal Conductivity, <i>k</i> W/m·K	Thermal Diffusivity, α m ² /s	Specific Heat, c_p kJ/kg·K
	/6 (IIId55)	<u> </u>	Kg/III-	VV/111-TX	111-75	NJ/Ng·N
Fruits/Vegetables Apple juice	87	20	1000	0.559	0.14×10^{-6}	3.86
Apples	85	8	840	0.418	0.14×10^{-6} 0.13×10^{-6}	3.81
Apples, dried	41.6	23	856	0.219	0.096×10^{-6}	2.72
Apricots, dried	43.6	23	1320	0.375	0.030×10^{-6} 0.11×10^{-6}	2.77
Bananas, fresh	76	27	980	0.481	0.11×10^{-6} 0.14×10^{-6}	3.59
Broccoli	_	_6	560	0.385	_	—
Cherries, fresh	92	0–30	1050	0.545	0.13×10^{-6}	3.99
Figs	40.4	23	1241	0.310	0.096×10^{-6}	2.69
Grape juice	89	20	1000	0.567	0.14×10^{-6}	3.91
Peaches	89	2–32	960	0.526	0.14×10^{-6}	3.91
Plums	_	-16	610	0.247	_	_
Potatoes	78	0–70	1055	0.498	0.13×10^{-6}	3.64
Raisins	32	23	1380	0.376	0.11×10^{-6}	2.48
Meats						
Beef, ground	67	6	950	0.406	0.13×10^{-6}	3.36
Beef, lean	74	3	1090	0.471	0.13×10^{-6}	3.54
Beef fat	0	35	810	0.190	_	_
Beef liver	72	35	_	0.448	_	3.49
Cat food	39.7	23	1140	0.326	0.11×10^{-6}	2.68
Chicken breast	75	0	1050	0.476	0.13×10^{-6}	3.56
Dog food	30.6	23	1240	0.319	0.11×10^{-6}	2.45
Fish, cod	81	3	1180	0.534	0.12×10^{-6}	3.71
Fish, salmon	67	3	_	0.531	_	3.36
Ham	71.8	20	1030	0.480	0.14×10^{-6}	3.48
Lamb	72	20	1030	0.456	0.13×10^{-6}	3.49
Pork, lean	72	4	1030	0.456	0.13×10^{-6}	3.49
Turkey breast	74 75	3 20	1050	0.496	0.13×10^{-6}	3.54
Veal	/5	20	1060	0.470	0.13×10^{-6}	3.56
Other	1.0			0.107		0.00
Butter	16	4	_	0.197		2.08
Chocolate cake	31.9	23	340	0.106	0.12×10^{-6}	2.48
Margarine	16	5	1000	0.233	0.11×10^{-6}	2.08
Milk, skimmed	91 88	20	_	0.566	_	3.96
Milk, whole	0	28 32	910	0.580	_	3.89
Olive oil Peanut oil	0	32 4	910	0.168 0.168	_	_
Water	100	0	1000	0.168	$\frac{-}{0.14 \times 10^{-6}}$	4.217
vvalei	100	30	995	0.618	0.14×10^{-6} 0.15×10^{-6}	4.217
White cake	32.3	23	450	0.082	0.13×10^{-6} 0.10×10^{-6}	2.49

Source: Data obtained primarily from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Tables 7 and 9. Used with permission.

Most specific heats are calculated from $c_{\rho}=1.68+2.51 \times$ (Water content), which is a good approximation in the temperature range of 3 to 32°C. Most thermal diffusivities are calculated from $\alpha=k/\rho c_{\rho}$. Property values given here are valid for the specific water content.

TABLE A-8

Properties of miscellaneous materials (Values are at 300 K unless indicated otherwise)

Material	Density, <i>ρ</i> kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p J/kg·K	Material	Density, ρ kg/m³	Thermal Conductivity, <i>k</i> W/m·K	Specific Heat, c_p J/kg·K
Asphalt Bakelite Brick, refractory Chrome brick	2115 1300	0.062 1.4	920 1465	Ice 273 K 253 K 173 K	920 922 928	1.88 2.03 3.49	2040 1945 1460
473 K 823 K	3010 —	2.3 2.5	835 —	Leather, sole Linoleum	998 535	0.159 0.081	_
1173 K Fire clay, burnt 1600 K 773 K	2050	2.0	960	Mica Paper	1180 2900 930	0.186 0.523 0.180	 1340
1073 K 1373 K 1373 K Fire clay, burnt	— —	1.1 1.1	— —	Plastics Plexiglass Teflon	1190	0.19	1465
1725 K 773 K	2325	1.3	960	300 K 400 K	2200 — 1200	0.35 0.45	1050
1073 K 1373 K Fire clay brick		1.4 1.4	_ _	Lexan Nylon Polypropylene Polyester	1200 1145 910 1395	0.19 0.29 0.12 0.15	1260 — 1925 1170
478 K 922 K 1478 K	2645 — —	1.0 1.5 1.8	960 — —	PVC, vinyl Porcelain Rubber, natural	1470 2300 1150	0.1 1.5 0.28	840 —
Magnesite 478 K 922 K	=	3.8 2.8	1130 —	Rubber, vulcanized Soft Hard	1100 1190	0.13 0.16	2010
1478 K Chicken meat, white (74.4% water content)	_	1.9	_	Sand Snow, fresh Snow, 273 K	1515 100 500	0.2–1.0 0.60 2.2	800 — —
198 K 233 K 253 K	_ _ _	1.60 1.49 1.35	_ _	Soil, dry Soil, wet Sugar	1500 1900 1600	1.0 2.0 0.58	1900 2200 —
273 K 293 K	_ _ _	0.48 0.49	_ _ _	Tissue, human Skin Fat layer	_	0.37 0.2	_
Clay, dry Clay, wet Coal, anthracite	1550 1495 1350	0.930 1.675 0.26	 1260	Muscle Vaseline		0.41 0.17	_
Concrete (stone mix) Cork Cotton Fat	2300 86 80 —	1.4 0.048 0.06 0.17	880 2030 1300	Wood, cross-grain Balsa Fir Oak White pine Yellow pine	140 415 545 435 640	0.055 0.11 0.17 0.11 0.15	 2720 2385 2805
Glass Window Pyrex Crown Lead	2800 2225 2500 3400	0.7 1–1.4 1.05 0.85	750 835 — —	Wood, radial Oak Fir Wool, ship	545 420 145	0.19 0.14 0.05	2385 2720 —

Source: Compiled from various sources.

878 APPENDIX 1

TABLE A-9

Properties of saturated water

Temp.	Saturation Pressure		ensity kg/m³	Enthalpy of Vaporization	Specif Hea $c_{ m p}$, J/k	t	Condu	rmal ctivity /m·K	,	: Viscosity ⟨g/m⋅s		ndtl nber r	Volume Expansion Coefficient β , $1/K$
T, °C	$P_{\rm sat}$, kPa	Liquid	Vapor	$h_{\rm fg}$, kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00	-0.068×10^{-3}
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00	0.015×10^{-3}
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00	0.733×10^{-3}
15	1.7051	999.1	0.0128	2466	4185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138×10^{-3}
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10^{-3}
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247×10^{-3}
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-3}
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-3}
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00	0.377×10^{-3}
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00	0.415×10^{-3}
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00	0.451×10^{-3}
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00	0.484×10^{-3}
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00	0.517×10^{-3}
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}	1.110×10^{-5}	2.75	1.00	0.548×10^{-3}
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00	0.578×10^{-3}
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142×10^{-5}	2.38	1.00	0.607×10^{-3}
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00	0.653×10^{-3}
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-3}
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240	0.315×10^{-3}	1.193×10^{-5}	1.96	1.00	0.702×10^{-3}
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-5}	1.85	1.00	0.716×10^{-3}
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251	0.282×10^{-3}	1.227×10^{-5}	1.75	1.00	0.750×10^{-3}
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262	0.255×10^{-3}	1.261×10^{-5}	1.58	1.00	0.798×10^{-3}
120	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00	0.858×10^{-3}
130	270.1	934.6	1.496	2174	4263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-5}	1.33	1.01	0.913×10^{-3}
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1.02	0.970×10^{-3}
150	475.8	916.6	2.546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02	1.025×10^{-3}
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05	1.145×10^{-3}
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05	1.178×10^{-3}
180	1,002.1	887.3	5.153	2015	4410	2590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-5}	0.983	1.07	1.210×10^{-3}
190	1,254.4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.142×10^{-3}	1.537×10^{-5}	0.947	1.09	1.280×10^{-3}
200	1,553.8	864.3	7.852	1941	4500	2840	0.663	0.0401	0.134×10^{-3}	1.571×10^{-5}	0.910	1.11	1.350×10^{-3}
220	2,318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0.865	1.15	1.520×10^{-3}
240	3,344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-5}	0.836	1.24	1.720×10^{-3}
260	4,688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35	2.000×10^{-3}
280	6,412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49	2.380×10^{-3}
300	8,581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69	2.950×10^{-3}
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97	
340	14,586	610.5	92.62	1028	8240	11,870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43	
360	18,651	528.3			14,690	25,800	0.427	0.178	0.060×10^{-3}	2.571×10^{-5}	2.06	3.73	
374.14	22,090	317.0	317.0	0	_	_	_	_	0.043×10^{-3}	4.313×10^{-5}			

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = kl\rho c_p = \nu/Pr$. The temperatures 0.01°C, 100°C, and 374.14°C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) can be used at any pressure with negligible error except at temperatures near the critical-point value.

 $\textit{Note 2:} \ \text{The unit kJ/kg-}{}^{\circ}\text{C for specific heat is equivalent to kJ/kg-K, and the unit W/m-}{}^{\circ}\text{C for thermal conductivity is equivalent to W/m-K.}$

Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.

TABLE A-10

Properties of saturated refrigerant-134a

	Saturation Pressure	¹ ρ,	nsity kg/m³	Enthalpy of Vaporization	1	ecific Ieat J/kg·K	Cond k, V	ermal uctivity V/m·K	μ, k	: Viscosity g/m·s	Nu F	andtl mber Pr	Volume Expansion Coefficient β , I/K	Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	<i>h</i> _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	51.2	1418	2.773	225.9	1254	748.6	0.1101	0.00811	4.878×10^{-4}	2.550×10^{-6}	5.558	0.235	0.00205	0.01760
-35	66.2	1403	3.524	222.7	1264	764.1	0.1084	0.00862	4.509×10^{-4}	3.003×10^{-6}	5.257	0.266	0.00209	0.01682
-30	84.4	1389	4.429	219.5	1273	780.2	0.1066	0.00913	4.178×10^{-4}	3.504×10^{-6}	4.992	0.299	0.00215	0.01604
-25	106.5	1374	5.509	216.3	1283	797.2	0.1047	0.00963	3.882×10^{-4}	4.054×10^{-6}	4.757	0.335	0.00220	0.01527
-20	132.8	1359	6.787	213.0	1294	814.9	0.1028	0.01013	3.614×10^{-4}	4.651×10^{-6}	4.548	0.374	0.00227	0.01451
-15	164.0	1343	8.288	209.5	1306	833.5	0.1009	0.01063	3.371×10^{-4}	5.295×10^{-6}	4.363	0.415	0.00233	0.01376
-10	200.7	1327	10.04	206.0	1318	853.1	0.0989	0.01112	3.150×10^{-4}	5.982×10^{-6}	4.198	0.459	0.00241	0.01302
-5	243.5	1311	12.07	202.4	1330	873.8	0.0968	0.01161	2.947×10^{-4}	6.709×10^{-6}	4.051	0.505	0.00249	0.01229
0	293.0	1295	14.42	198.7	1344	895.6	0.0947	0.01210	2.761×10^{-4}	7.471×10^{-6}	3.919	0.553	0.00258	0.01156
5	349.9	1278	17.12	194.8	1358	918.7	0.0925	0.01259	2.589×10^{-4}	8.264×10^{-6}	3.802	0.603	0.00269	0.01084
10	414.9	1261	20.22	190.8	1374	943.2	0.0903	0.01308	2.430×10^{-4}	9.081×10^{-6}	3.697	0.655	0.00280	0.01014
15	488.7	1244	23.75	186.6	1390	969.4	0.0880	0.01357	2.281×10^{-4}	9.915×10^{-6}	3.604	0.708	0.00293	0.00944
20	572.1	1226	27.77	182.3	1408	997.6	0.0856	0.01406	2.142×10^{-4}	1.075×10^{-5}	3.521	0.763	0.00307	0.00876
25	665.8	1207	32.34	177.8	1427	1028	0.0833	0.01456	2.012×10^{-4}	1.160×10^{-5}	3.448	0.819	0.00324	0.00808
30	770.6	1188	37.53	173.1	1448	1061	0.0808	0.01507	1.888×10^{-4}	1.244×10^{-5}	3.383	0.877	0.00342	0.00742
35	887.5	1168	43.41	168.2	1471	1098	0.0783	0.01558	1.772×10^{-4}	1.327×10^{-5}	3.328	0.935	0.00364	0.00677
40	1017.1	1147	50.08	163.0	1498		0.0757	0.01610	1.660×10^{-4}	1.408×10^{-5}	3.285	0.995	0.00390	0.00613
45	1160.5	1125	57.66	157.6	1529	1184	0.0731		1.554×10^{-4}	1.486×10^{-5}	3.253	1.058	0.00420	0.00550
50	1318.6	1102	66.27	151.8	1566	1237	0.0704	0.01720	1.453×10^{-4}	1.562×10^{-5}	3.231	1.123	0.00455	0.00489
55	1492.3	1078	76.11	145.7	1608	1298	0.0676	0.01777	1.355×10^{-4}	1.634×10^{-5}	3.223	1.193	0.00500	0.00429
60	1682.8	1053	87.38	139.1	1659	1372	0.0647	0.01838	1.260×10^{-4}	1.704×10^{-5}	3.229	1.272	0.00554	0.00372
65	1891.0	1026	100.4	132.1	1722	1462	0.0618	0.01902	1.167×10^{-4}	1.771×10^{-5}	3.255	1.362	0.00624	0.00315
70	2118.2	996.2	115.6	124.4	1801	1577	0.0587	0.01972	1.077×10^{-4}	1.839×10^{-5}	3.307	1.471	0.00716	0.00261
75	2365.8	964	133.6	115.9	1907	1731	0.0555	0.02048	9.891×10^{-5}	1.908×10^{-5}	3.400	1.612	0.00843	0.00209
80	2635.2	928.2	155.3	106.4	2056	1948	0.0521	0.02133	9.011×10^{-5}	1.982×10^{-5}	3.558	1.810	0.01031	0.00160
85	2928.2	887.1	182.3	95.4	2287	2281	0.0484	0.02233	8.124×10^{-5}	2.071×10^{-5}	3.837	2.116	0.01336	0.00114
90	3246.9	837.7	217.8	82.2	2701	2865	0.0444	0.02357	7.203×10^{-5}	2.187×10^{-5}	4.385	2.658	0.01911	0.00071
95	3594.1	772.5	269.3	64.9	3675	4144	0.0396	0.02544	6.190×10^{-5}	2.370×10^{-5}	5.746	3.862	0.03343	0.00033
100	3975.1	651.7	376.3	33.9	7959	8785	0.0322	0.02989	4.765×10^{-5}	2.833×10^{-5}	11.77	8.326	0.10047	0.00004

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\rho c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg.°C for specific heat is equivalent to kJ/kg.K, and the unit W/m.°C for thermal conductivity is equivalent to W/m.K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994; M.J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, "Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants," *IJR*, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).

TABLE A-11

Properties of saturated ammonia

	Saturation Pressure	1	ensity kg/m³	Enthalpy of Vaporizatio	Н n <i>С_р</i> , .	ecific eat J/kg·K	Cond	ermal luctivity N/m·K	Dynamic ΄ μ, kg/	,	Nur	ndtl mber Pr	Volume Expansion Coefficient eta, I/K	Surface Tension,
T, °C	<i>P</i> , kPa	Liquid	Vapor	h _{fg} , kJ/kg	Liquic	l Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-40	71.66	690.2	0.6435	1389	4414	2242	_	0.01792	2.926×10^{-4}	7.957×10^{-6}	_	0.9955	0.00176	0.03565
-30	119.4	677.8	1.037	1360	4465	2322	_	0.01898	2.630×10^{-4}	8.311×10^{-6}	_	1.017	0.00185	0.03341
-25	151.5	671.5	1.296	1345	4489	2369	0.5968	0.01957	2.492×10^{-4}	8.490×10^{-6}	1.875	1.028	0.00190	0.03229
-20	190.1	665.1	1.603	1329	4514	2420	0.5853	0.02015	2.361×10^{-4}	8.669×10^{-6}	1.821	1.041	0.00194	0.03118
-15	236.2	658.6	1.966	1313	4538	2476	0.5737	0.02075	2.236×10^{-4}	8.851×10^{-6}	1.769	1.056	0.00199	0.03007
-10	290.8	652.1	2.391	1297	4564	2536	0.5621	0.02138	2.117×10^{-4}	9.034×10^{-6}	1.718	1.072	0.00205	0.02896
-5	354.9	645.4	2.886	1280	4589	2601	0.5505	0.02203	2.003×10^{-4}	9.218×10^{-6}	1.670	1.089	0.00210	0.02786
0	429.6	638.6	3.458	1262	4617	2672	0.5390	0.02270	1.896×10^{-4}	9.405×10^{-6}	1.624	1.107	0.00216	0.02676
5	516	631.7	4.116	1244	4645			0.02341	1.794×10^{-4}	9.593×10^{-6}	1.580	1.126	0.00223	0.02566
10	615.3	624.6	4.870	1226	4676			0.02415	1.697×10^{-4}	9.784×10^{-6}	1.539	1.147	0.00230	0.02457
15	728.8	617.5	5.729	1206	4709			0.02492	1.606×10^{-4}	9.978×10^{-6}	1.500	1.169	0.00237	0.02348
20	857.8	610.2	6.705	1186	4745	3016	0.4927	0.02573	1.519×10^{-4}	1.017×10^{-5}	1.463	1.193	0.00245	0.02240
25	1003	602.8	7.809	1166	4784			0.02658	1.438×10^{-4}	1.037×10^{-5}	1.430	1.218	0.00254	0.02132
30	1167	595.2	9.055	1144	4828	3232	0.4695	0.02748	1.361×10^{-4}	1.057×10^{-5}	1.399	1.244	0.00264	0.02024
35	1351		10.46	1122	4877			0.02843	1.288×10^{-4}	1.078×10^{-5}	1.372	1.272	0.00275	0.01917
40	1555	579.4	12.03	1099	4932			0.02943	1.219×10^{-4}	1.099×10^{-5}	1.347	1.303	0.00287	0.01810
45	1782	571.3		1075	4993			0.03049	1.155×10^{-4}	1.121×10^{-5}	1.327	1.335	0.00301	0.01704
50	2033		15.78	1051	5063			0.03162	1.094×10^{-4}	1.143×10^{-5}	1.310	1.371	0.00316	0.01598
55	2310	554.2		1025	5143	3967		0.03283	1.037×10^{-4}	1.166×10^{-5}	1.297	1.409	0.00334	0.01493
60	2614	545.2		997.4	5234			0.03412	9.846×10^{-5}	1.189×10^{-5}	1.288	1.452	0.00354	0.01389
65	2948	536.0		968.9	5340			0.03550	9.347×10^{-5}	1.213×10^{-5}	1.285	1.499	0.00377	0.01285
70	3312	526.3		939.0	5463			0.03700	8.879×10^{-5}	1.238×10^{-5}	1.287	1.551	0.00404	0.01181
75	3709	516.2		907.5	5608			0.03862	8.440×10^{-5}	1.264×10^{-5}	1.296	1.612	0.00436	0.01079
80	4141	505.7	33.87	874.1	5780			0.04038	8.030×10^{-5}	1.292×10^{-5}	1.312	1.683	0.00474	0.00977
85	4609	494.5	38.36	838.6	5988			0.04232	7.646×10^{-5}	1.322×10^{-5}	1.338	1.768	0.00521	0.00876
90	5116	482.8	43.48	800.6	6242			0.04447	7.284×10^{-5}	1.354×10^{-5}	1.375	1.871	0.00579	0.00776
95	5665	470.2	49.35	759.8	6561			0.04687	6.946×10^{-5}	1.389×10^{-5}	1.429	1.999	0.00652	0.00677
100	6257	456.6	56.15	715.5	6972	7503	0.3075	0.04958	6.628×10^{-5}	1.429×10^{-5}	1.503	2.163	0.00749	0.00579

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu / \rho$ and $\alpha = k / \rho c_p = \nu / \text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

Note 2: The unit kJ/kg.°C for specific heat is equivalent to kJ/kg.K, and the unit W/m.°C for thermal conductivity is equivalent to W/m.K.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, "Eine neue Fundamentalgleichung fur Ammoniak," DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, "Thermophysical Properties of Refrigerants," ASHRAE, 1993, ISBN 1-1883413-10-9.

TABLE A-12

Properties of saturated propane

Temp.	Saturation Pressure	Den ρ, kį	,	Enthalpy of Vaporizatior	Spector C_p , J/	at	Cond	ermal uctivity //m·K		c Viscosity kg/m·s	Nur	ndtl nber Pr	Volume Expansion Coefficient β , I/K	Surface Tension,
<i>T</i> , °C	<i>P</i> , kPa	Liquid	Vapor	<i>h</i> _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
-120	0.4053	664.7	0.01408	498.3	2003	1115	0.1802	0.00589	6.136×10^{-4}	4.372×10^{-6}	6.820	0.827	0.00153	0.02630
-110	1.157	654.5	0.03776	489.3	2021	1148	0.1738	0.00645	5.054×10^{-4}	4.625×10^{-6}	5.878	0.822	0.00157	0.02486
-100	2.881	644.2	0.08872	480.4	2044	1183	0.1672	0.00705	4.252×10^{-4}	4.881×10^{-6}	5.195	0.819	0.00161	0.02344
-90	6.406	633.8	0.1870	471.5	2070	1221	0.1606	0.00769	3.635×10^{-4}	5.143×10^{-6}	4.686	0.817	0.00166	0.02202
-80	12.97	623.2	0.3602	462.4	2100	1263	0.1539	0.00836	3.149×10^{-4}	5.409×10^{-6}	4.297	0.817	0.00171	0.02062
-70	24.26	612.5	0.6439	453.1	2134	1308	0.1472	0.00908	2.755×10^{-4}	5.680×10^{-6}	3.994	0.818	0.00177	0.01923
-60	42.46	601.5	1.081	443.5	2173	1358	0.1407	0.00985	2.430×10^{-4}	5.956×10^{-6}	3.755	0.821	0.00184	0.01785
-50	70.24	590.3	1.724	433.6	2217	1412	0.1343	0.01067	2.158×10^{-4}	6.239×10^{-6}	3.563	0.825	0.00192	0.01649
-40	110.7	578.8	2.629	423.1	2258	1471	0.1281	0.01155	1.926×10^{-4}	6.529×10^{-6}	3.395	0.831	0.00201	0.01515
-30	167.3	567.0	3.864	412.1	2310	1535	0.1221	0.01250	1.726×10^{-4}	6.827×10^{-6}	3.266	0.839	0.00213	0.01382
-20	243.8	554.7	5.503	400.3	2368	1605	0.1163	0.01351	1.551×10^{-4}	7.136×10^{-6}	3.158	0.848	0.00226	0.01251
-10	344.4	542.0	7.635	387.8	2433	1682	0.1107	0.01459	1.397×10^{-4}	7.457×10^{-6}	3.069	0.860	0.00242	0.01122
0	473.3	528.7	10.36	374.2	2507	1768	0.1054	0.01576	1.259×10^{-4}	7.794×10^{-6}	2.996	0.875	0.00262	0.00996
5	549.8	521.8	11.99	367.0	2547	1814	0.1028	0.01637	1.195×10^{-4}	7.970×10^{-6}	2.964	0.883	0.00273	0.00934
10	635.1	514.7	13.81	359.5	2590	1864	0.1002	0.01701	1.135×10^{-4}	8.151×10^{-6}	2.935	0.893	0.00286	0.00872
15	729.8	507.5	15.85	351.7	2637	1917	0.0977	0.01767	1.077×10^{-4}	8.339×10^{-6}	2.909	0.905	0.00301	0.00811
20	834.4	500.0	18.13	343.4	2688	1974	0.0952	0.01836	1.022×10^{-4}	8.534×10^{-6}	2.886	0.918	0.00318	0.00751
25	949.7	492.2	20.68	334.8	2742	2036	0.0928	0.01908	9.702×10^{-5}	8.738×10^{-6}	2.866	0.933	0.00337	0.00691
30	1076	484.2	23.53	325.8	2802	2104	0.0904	0.01982	9.197×10^{-5}	8.952×10^{-6}	2.850	0.950	0.00358	0.00633
	1215	475.8	26.72	316.2	2869	2179	0.0881	0.02061	8.710×10^{-5}	9.178×10^{-6}	2.837	0.971	0.00384	0.00575
	1366	467.1	30.29	306.1	2943	2264	0.0857	0.02142	8.240×10^{-5}	9.417×10^{-6}	2.828	0.995	0.00413	0.00518
	1530	458.0	34.29	295.3	3026	2361	0.0834	0.02228	7.785×10^{-5}	9.674×10^{-6}	2.824	1.025	0.00448	0.00463
	1708	448.5	38.79	283.9	3122	2473	0.0811	0.02319	7.343×10^{-5}	9.950×10^{-5}	2.826	1.061	0.00491	0.00408
	2110	427.5	49.66	258.4	3283	2769	0.0765	0.02517	6.487×10^{-5}	1.058×10^{-5}	2.784	1.164	0.00609	0.00303
	2580	403.2	64.02	228.0	3595	3241	0.0717	0.02746	5.649×10^{-5}	1.138×10^{-5}	2.834	1.343	0.00811	0.00204
	3127	373.0	84.28	189.7	4501	4173	0.0663	0.03029	4.790×10^{-5}	1.249×10^{-5}	3.251	1.722	0.01248	0.00114
90	3769	329.1	118.6	133.2	6977	7239	0.0595	0.03441	3.807×10^{-5}	1.448×10^{-5}	4.465	3.047	0.02847	0.00037

Note 1: Kinematic viscosity ν and thermal diffusivity α can be calculated from their definitions, $\nu = \mu/\rho$ and $\alpha = k/\mu c_\rho = \nu/\text{Pr}$. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value.

 $\textit{Note 2:} \ \ \textit{The unit kJ/kg-C} \ \ \textit{for specific heat is equivalent to kJ/kg-K}, \ \textit{and the unit W/m-C} \ \ \textit{for thermal conductivity is equivalent to W/m-K}.$

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, "Fundamental Equations of State," Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, "Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, "A Generalized Equation for Surface Tension from the Triple-Point to the Critical-Point," International Journal of Thermophysics, Vol. 9, No. 4, 1988.

882 APPENDIX 1

TABLE A-13

Properties of liquids

	ics or riquic							
		Chasifia	Thormal	Thormal	Dynamia	Vinamatia	Drandtl	Volume
Temp.	Density	Specific Heat	Thermal Conductivity	Thermal Diffusivity	Dynamic Viscosity	Kinematic Viscosity	Prandtl Number	Expansion Coeff.
<i>T</i> , °C	ρ , kg/m ³	c _D , J/kg⋅K	k, W/m·K	α , m ² /s	μ, kg/m·s	ν , m ² /s	Pr	β, 1/K
					ne [CH ₄]	,		
-160	420.2	3492	0.1863	1.270×10^{-7}	1.133×10^{-4}	2.699×10^{-7}	2.126	0.00352
-150	405.0	3580	0.1703	1.174×10^{-7}	9.169×10^{-5}	2.264×10^{-7}	1.927	0.00391
-140	388.8	3700	0.1550	1.077×10^{-7}	7.551×10^{-5}	1.942×10^{-7}	1.803	0.00444
-130	371.1	3875	0.1402	9.749×10^{-8}	6.288×10^{-5}	1.694×10^{-7}	1.738	0.00520
-120	351.4	4146	0.1258	8.634×10^{-8}	5.257×10^{-5}	1.496×10^{-7}	1.732	0.00637
-110	328.8	4611	0.1115	7.356×10^{-8}	4.377×10^{-5}	1.331×10^{-7}	1.810	0.00841 0.01282
$-100 \\ -90$	301.0 261.7	5578 8902	0.0967 0.0797	5.761×10^{-8} 3.423×10^{-8}	3.577×10^{-5} 2.761×10^{-5}	1.188×10^{-7} 1.055×10^{-7}	2.063 3.082	0.01282
	201.7		0.0737			1.033 × 10	3.002	0.02322
					[CH ₃ (OH)]			
20	788.4	2515	0.1987	1.002×10^{-7}	5.857×10^{-4}	7.429×10^{-7}	7.414	0.00118
30	779.1	2577	0.1980	9.862×10^{-8}	5.088×10^{-4}	6.531×10^{-7}	6.622	0.00120
40 50	769.6 760.1	2644 2718	0.1972 0.1965	9.690×10^{-8} 9.509×10^{-8}	4.460×10^{-4} 3.942×10^{-4}	5.795×10^{-7} 5.185×10^{-7}	5.980 5.453	0.00123 0.00127
60	750.1	2718	0.1965	9.320×10^{-8}	3.510×10^{-4}	4.677×10^{-7}	5.433	0.00127
70	740.4	2885	0.1950	9.128×10^{-8}	3.146×10^{-4}	4.250×10^{-7}	4.655	0.00132
				Isohutan	e (R600a)			
100	602.0	1001	0.1383	1.075×10^{-7}	9.305×10^{-4}	1.360×10^{-6}	12.65	0.00142
-100 -75	683.8 659.3	1881 1970	0.1363	1.075×10^{-7} 1.044×10^{-7}	5.624×10^{-4}	8.531×10^{-7}	8.167	0.00142
-50	634.3	2069	0.1283	9.773×10^{-8}	3.769×10^{-4}	5.942×10^{-7}	6.079	0.00150
-25	608.2	2180	0.1181	8.906×10^{-8}	2.688×10^{-4}	4.420×10^{-7}	4.963	0.00177
0	580.6	2306	0.1068	7.974×10^{-8}	1.993×10^{-4}	3.432×10^{-7}	4.304	0.00199
25	550.7	2455	0.0956	7.069×10^{-8}	1.510×10^{-4}	2.743×10^{-7}	3.880	0.00232
50	517.3	2640	0.0851	6.233×10^{-8}	1.155×10^{-4}	2.233×10^{-7}	3.582	0.00286
75	478.5	2896	0.0757	5.460×10^{-8}	8.785×10^{-5}	1.836×10^{-7}	3.363	0.00385
100	429.6	3361	0.0669	4.634×10^{-8}	6.483×10^{-5}	1.509×10^{-7}	3.256	0.00628
				Glyd	cerin			
0	1276	2262	0.2820	9.773×10^{-8}	10.49	8.219×10^{-3}	84,101	
5	1273	2288	0.2835	9.732×10^{-8}	6.730	5.287×10^{-3}	54,327	
10	1270	2320	0.2846	9.662×10^{-8}	4.241	3.339×10^{-3}	34,561	
15 20	1267 1264	2354 2386	0.2856 0.2860	9.576×10^{-8} 9.484×10^{-8}	2.496 1.519	1.970×10^{-3} 1.201×10^{-3}	20,570 12,671	
25	1261	2416	0.2860	9.388×10^{-8}	0.9934	7.878×10^{-4}	8,392	
30	1258	2447	0.2860	9.291×10^{-8}	0.6582	5.232×10^{-4}	5,631	
35	1255	2478	0.2860	9.195×10^{-8}	0.4347	3.464×10^{-4}	3,767	
40	1252	2513	0.2863	9.101×10^{-8}	0.3073	2.455×10^{-4}	2,697	
				Engine Oi	I (unused)			
0	899.0	1797	0.1469	9.097×10^{-8}	3.814	4.242×10^{-3}	46,636	0.00070
20	888.1	1881	0.1450	8.680×10^{-8}	0.8374	9.429×10^{-4}	10,863	0.00070
40	876.0	1964	0.1444	8.391×10^{-8}	0.2177	2.485×10^{-4}	2,962	0.00070
60	863.9	2048	0.1404	7.934×10^{-8}	0.07399	8.565×10^{-5}	1,080	0.00070
80	852.0	2132	0.1380	7.599×10^{-8}	0.03232	3.794×10^{-5}	499.3	0.00070
100 120	840.0 828.9	2220 2308	0.1367 0.1347	7.330×10^{-8} 7.042×10^{-8}	0.01718 0.01029	2.046×10^{-5} 1.241×10^{-5}	279.1 176.3	0.00070 0.00070
140	828.9 816.8	2308	0.1347	7.042×10^{-8} 6.798×10^{-8}	0.01029	1.241×10^{-6} 8.029×10^{-6}	176.3	0.00070
150	810.3	2441	0.1327	6.798×10^{-8}	0.005344	6.595×10^{-6}	98.31	0.00070

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

TABLE	A-14						
	ties of liquid	l metals					
Порен	ics or riquid	i incluis					Volume
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl Expansion
Temp.	Density	Heat	Conductivity	Diffusivity	Viscosity	Viscosity	Number Coeff.
<i>T</i> , °C	ρ , kg/m ³	c_p , J/kg·K	<i>k</i> , W/m⋅K	α , m ² /s	μ, kg/m⋅s	ν, m²/s	Pr β, 1/K
					Iting Point: -39°C		
0	13595	140.4	8.18200	4.287×10^{-6}	1.687×10^{-3}	1.241×10^{-7}	$0.0289 1.810 \times 10^{-4}$
25 50	13534 13473	139.4 138.6	8.51533 8.83632	4.514×10^{-6} 4.734×10^{-6}	1.534×10^{-3} 1.423×10^{-3}	1.133×10^{-7} 1.056×10^{-7}	$0.0251 1.810 \times 10^{-4}$ $0.0223 1.810 \times 10^{-4}$
75	13412	137.8	9.15632	4.956×10^{-6}	1.316×10^{-3}	9.819×10^{-8}	$0.0198 1.810 \times 10^{-4}$
100	13351	137.1	9.46706	5.170×10^{-6}	1.245×10^{-3}	9.326×10^{-8}	$0.0180 1.810 \times 10^{-4}$
150	13231	136.1	10.07780	5.595×10^{-6}	1.126×10^{-3}	8.514×10^{-8}	$0.0152 1.810 \times 10^{-4}$
200 250	13112 12993	135.5 135.3	10.65465 11.18150	5.996×10^{-6} 6.363×10^{-6}	1.043×10^{-3} 9.820×10^{-4}	7.959×10^{-8} 7.558×10^{-8}	$0.0133 1.815 \times 10^{-4}$ $0.0119 1.829 \times 10^{-4}$
300	12993	135.3	11.68150	6.705×10^{-6}	9.336×10^{-4}	7.252×10^{-8}	$0.0119 1.829 \times 10^{-4}$ $0.0108 1.854 \times 10^{-4}$
					elting Point: 271°C		
350	9969	146.0	16.28	1.118×10^{-5} 1.096×10^{-5}	1.540×10^{-3} 1.422×10^{-3}	1.545×10^{-7} 1.436×10^{-7}	0.01381
400 500	9908 9785	148.2 152.8	16.10 15.74	1.096×10^{-5} 1.052×10^{-5}	1.422×10^{-3} 1.188×10^{-3}	1.436×10^{-7} 1.215×10^{-7}	0.01310 0.01154
600	9663	157.3	15.60	1.032×10^{-5} 1.026×10^{-5}	1.013×10^{-3}	1.048×10^{-7}	0.01022
700	9540	161.8	15.60	1.010×10^{-5}	8.736×10^{-4}	9.157×10^{-8}	0.00906
				Lead (Pb) Melting F	Point: 327°C		
400	10506	158	15.97	9.623×10^{-6}	2.277×10^{-3}	2.167×10^{-7}	0.02252
450	10449	156	15.74	9.649×10^{-6}	2.065×10^{-3}	1.976×10^{-7}	0.02048
500	10390	155	15.54	9.651×10^{-6}	1.884×10^{-3}	1.814×10^{-7}	0.01879
550 600	10329 10267	155 155	15.39 15.23	9.610×10^{-6} 9.568×10^{-6}	1.758×10^{-3} 1.632×10^{-3}	1.702×10^{-7} 1.589×10^{-7}	0.01771 0.01661
650	10207	155	15.07	9.526×10^{-6}	1.505×10^{-3}	1.475×10^{-7}	0.01549
700	10145	155	14.91	9.483×10^{-6}	1.379×10^{-3}	1.360×10^{-7}	0.01434
				Sodium (Na) M	elting Point: 98°C		
100	927.3	1378	85.84	6.718×10^{-5}	6.892×10^{-4}	7.432×10^{-7}	0.01106
200	902.5	1349	80.84	6.639×10^{-5}	5.385×10^{-4}	5.967×10^{-7}	0.008987
300	877.8	1320	75.84	6.544×10^{-5}	3.878×10^{-4}	4.418×10^{-7}	0.006751
400 500	853.0 828.5	1296 1284	71.20 67.41	6.437×10^{-5} 6.335×10^{-5}	2.720×10^{-4} 2.411×10^{-4}	3.188×10^{-7} 2.909×10^{-7}	0.004953 0.004593
600	804.0	1272	63.63	6.220×10^{-5}	2.101×10^{-4}	2.614×10^{-7}	0.004393
				Potassium (K) Meltin	g Point: 64°C		
200	795.2	790.8	43.99	6.995×10^{-5}	3.350×10^{-4}	4.213×10^{-7}	0.006023
300	771.6	772.8	42.01	7.045×10^{-5}	2.667×10^{-4}	3.456×10^{-7}	0.004906
400	748.0	754.8	40.03	7.090×10^{-5}	1.984×10^{-4}	2.652×10^{-7}	0.00374
500	723.9	750.0	37.81	6.964×10^{-5}	1.668×10^{-4}	2.304×10^{-7}	0.003309
600	699.6	750.0	35.50	6.765×10^{-5}	1.487×10^{-4}	2.126×10^{-7}	0.003143
			Sodium-P	otassium (%22Na-%78	BK) Melting Point: -	-11°C	
100	847.3	944.4	25.64	3.205×10^{-5}	5.707×10^{-4}	6.736×10^{-7}	0.02102
200 300	823.2 799.1	922.5 900.6	26.27 26.89	3.459×10^{-5} 3.736×10^{-5}	4.587×10^{-4} 3.467×10^{-4}	5.572×10^{-7} 4.339×10^{-7}	0.01611 0.01161
400	799.1	900.8 879.0	27.50	4.037×10^{-5}	2.357×10^{-4}	3.041×10^{-7}	0.00753
500	751.5	880.1	27.89	4.217×10^{-5}	2.108×10^{-4}	2.805×10^{-7}	0.00665
600	728.0	881.2	28.28	4.408×10^{-5}	1.859×10^{-4}	2.553×10^{-7}	0.00579

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

884 APPENDIX 1

TABLE A-15

Properties of air at 1 atm pressure

Temp.	Density ρ, kg/m³	Specific Heat c _p , J/kg·K	Thermal Conductivity k, W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr
-150	2.866	983	0.01171	4.158×10^{-6}	8.636×10^{-6}	3.013×10^{-6}	0.7246
				8.036×10^{-6}		5.837×10^{-6}	0.7246
-100 50	2.038	966	0.01582		1.189×10^{-5}		
-50 40	1.582	999 1002	0.01979	1.252×10^{-5} 1.356×10^{-5}	1.474×10^{-5} 1.527×10^{-5}	9.319×10^{-6} 1.008×10^{-5}	0.7440 0.7436
-40 -30	1.514	1002	0.02057 0.02134	1.465×10^{-5}	1.579×10^{-5}	1.008×10^{-5} 1.087×10^{-5}	0.7436
-30 -20	1.451	1004	0.02134	1.465×10^{-5} 1.578×10^{-5}	1.630×10^{-5}	1.087×10^{-5} 1.169×10^{-5}	0.7423
-20 -10	1.394 1.341	1005	0.02211	1.696×10^{-5}	1.680×10^{-5}	1.169×10^{-5} 1.252×10^{-5}	0.7408
	1.292	1006		1.818×10^{-5}		1.232×10^{-5} 1.338×10^{-5}	0.7362
0	1.269	1006	0.02364 0.02401	1.880×10^{-5}	1.729×10^{-5} 1.754×10^{-5}	1.382×10^{-5}	0.7362
5 10	1.246	1006	0.02401	1.860×10^{-5} 1.944×10^{-5}	1.754×10^{-5} 1.778×10^{-5}	1.382×10^{-5} 1.426×10^{-5}	0.7336
15	1.225	1006	0.02439	2.009×10^{-5}	1.778×10^{-5} 1.802×10^{-5}	1.420×10^{-5} 1.470×10^{-5}	0.7323
20	1.204	1007	0.02476	2.009×10^{-5} 2.074×10^{-5}	1.802×10^{-5} 1.825×10^{-5}	1.470×10^{-5} 1.516×10^{-5}	0.7323
25	1.184	1007	0.02514	2.074×10^{-5} 2.141×10^{-5}	1.825×10^{-5} 1.849×10^{-5}	1.516×10^{-5} 1.562×10^{-5}	0.7309
30	1.164	1007	0.02588	2.141×10^{-5} 2.208×10^{-5}	1.872×10^{-5}	1.608×10^{-5}	0.7282
35	1.145	1007	0.02588	2.208×10^{-5} 2.277×10^{-5}	1.872×10^{-5} 1.895×10^{-5}	1.655×10^{-5}	0.7268
40	1.127	1007	0.02623	2.346×10^{-5}	1.893×10^{-5} 1.918×10^{-5}	1.702×10^{-5}	0.7255
45	1.109	1007	0.02699	2.416×10^{-5}	1.918×10^{-5} 1.941×10^{-5}	1.752×10^{-5} 1.750×10^{-5}	0.7233
50	1.092	1007	0.02735	2.487×10^{-5}	1.941×10^{-5} 1.963×10^{-5}	1.798×10^{-5}	0.7241
60	1.059	1007	0.02733	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7228
70	1.028	1007	0.02881	2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	0.7202
80	0.9994	1007	0.02953	2.760×10^{-5} 2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7177
90	0.9718	1008	0.03024	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.7134
100	0.9458	1009	0.03095	3.243×10^{-5}	2.183×10^{-5}	2.306×10^{-5}	0.7111
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.7041
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.7014
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
200	0.7459	1023	0.03779	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974
250	0.6746	1033	0.04104	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946
300	0.6158	1044	0.04418	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935
350	0.5664	1056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.6937
400	0.5243	1069	0.05015	8.951×10^{-5}	3.261×10^{-5}	6.219×10^{-5}	0.6948
450	0.4880	1081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997×10^{-5}	0.6965
500	0.4565	1093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986
600	0.4042	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037
700	0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
800	0.3289	1153	0.07037	1.855×10^{-4}	4.362×10^{-5}	1.326×10^{-4}	0.7149
900	0.3008	1169	0.07465	2.122×10^{-4}	4.600×10^{-5}	1.529×10^{-4}	0.7206
1000	0.2772	1184	0.07868	2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.7260
1500	0.1990	1234	0.09599	3.908×10^{-4}	5.817×10^{-5}	2.922×10^{-4}	0.7478
2000	0.1553	1264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7539

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by P and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 1984; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

885 Appendix 1

TABLE	A-16						
Propertie	es of gases at 1	atm pressure					
		Specific	Thermal	Thermal	Dynamic	Kinematic	Prandtl
Temp.	Density	Heat	Conductivity k, W/m·K	Diffusivity	Viscosity	Viscosity	Number
<i>T</i> , °C	ρ, kg/m ³	c_p , J/kg·K	· · · · · · · · · · · · · · · · · · ·	α , m ² /s	μ, kg/m⋅s	ν, m ² /s	Pr
-50	2.4035	746	0.01051	Dioxide, CO_2 5.860×10^{-6}	1.129×10^{-5}	4.699×10^{-6}	0.8019
-50 0	1.9635	811	0.01051	9.141×10^{-6}	1.129×10^{-5} 1.375×10^{-5}	7.003×10^{-6}	0.7661
50	1.6597	866.6	0.01858	1.291×10^{-5}	1.612×10^{-5}	9.714×10^{-6}	0.7520
100	1.4373	914.8	0.02257	1.716×10^{-5}	1.841×10^{-5}	1.281×10^{-5}	0.7464
150	1.2675	957.4	0.02652	2.186×10^{-5}	2.063×10^{-5}	1.627×10^{-5}	0.7445
200	1.1336	995.2	0.03044	2.698×10^{-5}	2.276×10^{-5}	2.008×10^{-5}	0.7442
300	0.9358	1060	0.03814	3.847×10^{-5}	2.682×10^{-5}	2.866×10^{-5}	0.7450
400	0.7968	1112	0.04565	5.151×10^{-5}	3.061×10^{-5}	3.842×10^{-5}	0.7458
500 1000	0.6937 0.4213	1156 1292	0.05293 0.08491	6.600×10^{-5} 1.560×10^{-4}	3.416×10^{-5} 4.898×10^{-5}	4.924×10^{-5} 1.162×10^{-4}	0.7460 0.7455
1500	0.3025	1356	0.10688	2.606×10^{-4}	6.106×10^{-5}	2.019×10^{-4}	0.7433
2000	0.2359	1387	0.11522	3.521×10^{-4}	7.322×10^{-5}	3.103×10^{-4}	0.8815
			Carb	on Monoxide, CO			
-50	1.5297	1081	0.01901	1.149×10^{-5}	1.378×10^{-5}	9.012×10^{-6}	0.7840
0	1.2497	1048	0.02278	1.739×10^{-5}	1.629×10^{-5}	1.303×10^{-5}	0.7499
50	1.0563	1039	0.02641	2.407×10^{-5}	1.863×10^{-5}	1.764×10^{-5}	0.7328
100	0.9148	1041	0.02992	3.142×10^{-5}	2.080×10^{-5}	2.274×10^{-5}	0.7239
150	0.8067	1049	0.03330	3.936×10^{-5}	2.283×10^{-5}	2.830×10^{-5}	0.7191
200	0.7214	1060	0.03656	4.782×10^{-5}	2.472×10^{-5}	3.426×10^{-5}	0.7164
300	0.5956	1085	0.04277	6.619×10^{-5}	2.812×10^{-5}	4.722×10^{-5}	0.7134
400 500	0.5071 0.4415	1111 1135	0.04860 0.05412	8.628×10^{-5} 1.079×10^{-4}	3.111×10^{-5} 3.379×10^{-5}	6.136×10^{-5} 7.653×10^{-5}	0.7111 0.7087
1000	0.2681	1226	0.07894	2.401×10^{-4}	4.557×10^{-5}	1.700×10^{-4}	0.7087
1500	0.1925	1279	0.10458	4.246×10^{-4}	6.321×10^{-5}	3.284×10^{-4}	0.7733
2000	0.1502	1309	0.13833	7.034×10^{-4}	9.826×10^{-5}	6.543×10^{-4}	0.9302
			I	Methane, CH ₄			
-50	0.8761	2243	0.02367	1.204×10^{-5}	8.564×10^{-6}	9.774×10^{-6}	0.8116
0	0.7158	2217	0.03042	1.917×10^{-5}	1.028×10^{-5}	1.436×10^{-5}	0.7494
50	0.6050	2302	0.03766	2.704×10^{-5}	1.191×10^{-5}	1.969×10^{-5}	0.7282
100	0.5240	2443	0.04534	3.543×10^{-5}	1.345×10^{-5}	2.567×10^{-5}	0.7247
150 200	0.4620 0.4132	2611 2791	0.05344 0.06194	4.431×10^{-5} 5.370×10^{-5}	1.491×10^{-5} 1.630×10^{-5}	3.227×10^{-5} 3.944×10^{-5}	0.7284 0.7344
300	0.4132	3158	0.07996	7.422×10^{-5}	1.886×10^{-5}	5.529×10^{-5}	0.7344
400	0.2904	3510	0.09918	9.727×10^{-5}	2.119×10^{-5}	7.297×10^{-5}	0.7501
500	0.2529	3836	0.11933	1.230×10^{-4}	2.334×10^{-5}	9.228×10^{-5}	0.7502
1000	0.1536	5042	0.22562	2.914×10^{-4}	3.281×10^{-5}	2.136×10^{-4}	0.7331
1500	0.1103	5701	0.31857	5.068×10^{-4}	4.434×10^{-5}	4.022×10^{-4}	0.7936
2000	0.0860	6001	0.36750	7.120×10^{-4}	6.360×10^{-5}	7.395×10^{-4}	1.0386
				Hydrogen, H ₂			
-50	0.11010	12635	0.1404	1.009×10^{-4}	7.293×10^{-6}	6.624×10^{-5}	0.6562
0	0.08995	13920	0.1652	1.319×10^{-4}	8.391×10^{-6}	9.329×10^{-5}	0.7071
50 100	0.07603	14349	0.1881	1.724×10^{-4} 2.199×10^{-4}	9.427×10^{-6} 1.041×10^{-5}	1.240×10^{-4} 1.582×10^{-4}	0.7191
100 150	0.06584 0.05806	14473 14492	0.2095 0.2296	2.199×10^{-4} 2.729×10^{-4}	1.041×10^{-5} 1.136×10^{-5}	1.582×10^{-4} 1.957×10^{-4}	0.7196 0.7174
200	0.05193	14482	0.2486	3.306×10^{-4}	1.130×10^{-5} 1.228×10^{-5}	2.365×10^{-4}	0.7174
							200

886 APPENDIX 1

TABLE A	\-16						
Properties	s of gases at 1	atm pressure (Concluded)				
Temp.	Density ρ, kg/m³	Specific Heat c _p , J/kg·K	Thermal Conductivity <i>k</i> , W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ, kg/m⋅s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr
300 400 500 1000 1500 2000	0.04287 0.03650 0.03178 0.01930 0.01386 0.01081	14481 14540 14653 15577 16553 17400	0.2843 0.3180 0.3509 0.5206 0.6581 0.5480	4.580×10^{-4} 5.992×10^{-4} 7.535×10^{-4} 1.732×10^{-3} 2.869×10^{-3} 2.914×10^{-3}	1.403×10^{-5} 1.570×10^{-5} 1.730×10^{-5} 2.455×10^{-5} 3.099×10^{-5} 3.690×10^{-5}	3.274 × 10 ⁻⁴ 4.302 × 10 ⁻⁴ 5.443 × 10 ⁻⁴ 1.272 × 10 ⁻³ 2.237 × 10 ⁻³ 3.414 × 10 ⁻³	0.7149 0.7179 0.7224 0.7345 0.7795 1.1717
				Nitrogen, N ₂			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	1.5299 1.2498 1.0564 0.9149 0.8068 0.7215 0.5956 0.5072 0.4416 0.2681 0.1925 0.1502	957.3 1035 1042 1041 1043 1050 1070 1095 1120 1213 1266 1297	0.02001 0.02384 0.02746 0.03090 0.03416 0.03727 0.04309 0.04848 0.05358 0.07938 0.11793 0.18590	1.366×10^{-5} 1.843×10^{-5} 2.494×10^{-5} 3.244×10^{-5} 4.058×10^{-5} 4.921×10^{-5} 6.758×10^{-5} 8.727×10^{-5} 1.083×10^{-4} 2.440×10^{-4} 4.839×10^{-4} 9.543×10^{-4}	1.390×10^{-5} 1.640×10^{-5} 1.874×10^{-5} 2.094×10^{-5} 2.300×10^{-5} 2.494×10^{-5} 2.849×10^{-5} 3.166×10^{-5} 3.451×10^{-5} 4.594×10^{-5} 5.562×10^{-5} 6.426×10^{-5}	9.091×10^{-6} 1.312×10^{-5} 1.774×10^{-5} 2.289×10^{-5} 2.851×10^{-5} 3.457×10^{-5} 4.783×10^{-5} 6.242×10^{-5} 7.816×10^{-5} 1.713×10^{-4} 2.889×10^{-4} 4.278×10^{-4}	0.6655 0.7121 0.7114 0.7056 0.7025 0.7025 0.7078 0.7153 0.7215 0.7022 0.5969 0.4483
				Oxygen, O ₂			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	1.7475 1.4277 1.2068 1.0451 0.9216 0.8242 0.6804 0.5793 0.5044 0.3063 0.2199 0.1716	984.4 928.7 921.7 931.8 947.6 964.7 997.1 1025 1048 1121 1165 1201	0.02067 0.02472 0.02867 0.03254 0.03637 0.04014 0.04751 0.05463 0.06148 0.09198 0.11901 0.14705	1.201×10^{-5} 1.865×10^{-5} 2.577×10^{-5} 3.342×10^{-5} 4.164×10^{-5} 5.048×10^{-5} 7.003×10^{-5} 9.204×10^{-5} 1.163×10^{-4} 2.678×10^{-4} 4.643×10^{-4} 7.139×10^{-4}	$\begin{array}{c} 1.616\times10^{-5}\\ 1.916\times10^{-5}\\ 2.194\times10^{-5}\\ 2.451\times10^{-5}\\ 2.694\times10^{-5}\\ 2.923\times10^{-5}\\ 3.350\times10^{-5}\\ 3.744\times10^{-5}\\ 4.114\times10^{-5}\\ 5.732\times10^{-5}\\ 7.133\times10^{-5}\\ 8.417\times10^{-5}\\ \end{array}$	$\begin{array}{c} 9.246 \times 10^{-6} \\ 1.342 \times 10^{-5} \\ 1.818 \times 10^{-5} \\ 2.346 \times 10^{-5} \\ 2.923 \times 10^{-5} \\ 3.546 \times 10^{-5} \\ 4.923 \times 10^{-5} \\ 6.463 \times 10^{-5} \\ 8.156 \times 10^{-5} \\ 1.871 \times 10^{-4} \\ 3.243 \times 10^{-4} \\ 4.907 \times 10^{-4} \end{array}$	0.7694 0.7198 0.7053 0.7019 0.7019 0.7025 0.7030 0.7023 0.7010 0.6986 0.6985 0.6873
			W	later Vapor, H₂O			
-50 0 50 100 150 200 300 400 500 1000 1500 2000	0.9839 0.8038 0.6794 0.5884 0.5189 0.4640 0.3831 0.3262 0.2840 0.1725 0.1238 0.0966	1892 1874 1874 1887 1908 1935 1997 2066 2137 2471 2736 2928	0.01353 0.01673 0.02032 0.02429 0.02861 0.03326 0.04345 0.05467 0.06677 0.13623 0.21301 0.29183	7.271×10^{-6} 1.110×10^{-5} 1.596×10^{-5} 2.187×10^{-5} 2.890×10^{-5} 3.705×10^{-5} 5.680×10^{-5} 8.114×10^{-5} 1.100×10^{-4} 3.196×10^{-4} 6.288×10^{-4} 1.032×10^{-3}	7.187×10^{-6} 8.956×10^{-6} 1.078×10^{-5} 1.265×10^{-5} 1.456×10^{-5} 1.650×10^{-5} 2.045×10^{-5} 2.446×10^{-5} 2.847×10^{-5} 4.762×10^{-5} 6.411×10^{-5} 7.808×10^{-5}	7.305×10^{-6} 1.114×10^{-5} 1.587×10^{-5} 2.150×10^{-5} 2.806×10^{-5} 3.556×10^{-5} 5.340×10^{-5} 7.498×10^{-5} 1.002×10^{-4} 2.761×10^{-4} 8.084×10^{-4}	1.0047 1.0033 0.9944 0.9830 0.9712 0.9599 0.9401 0.9240 0.9108 0.8639 0.8233 0.7833

Note: For ideal gases, the properties c_p , k, μ , and Pr are independent of pressure. The properties ρ , ν , and α at a pressure P (in atm) other than 1 atm are determined by multiplying the values of ρ at the given temperature by ρ and by dividing ν and α by P.

Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.

TABLE A-17

Properties of the atmosphere at high altitude

		<u> </u>		Speed of			Thermal
Altitude,	Temperature,	Pressure,	Gravity	Sound,	Density,	Viscosity	Conductivity,
<i>z</i> , m	T, °C	<i>P</i> , kPa	g, m/s ²	<i>c</i> , m/s	$ ho$, kg/m 3	μ , kg/m \cdot s	k, W/m⋅K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202	1.783×10^{-5}	0.0252
400	12.40	96.61	9.805	338.8	1.179	1.777×10^{-5}	0.0252
600	11.10	94.32	9.805	338.0	1.156	1.771×10^{-5}	0.0251
800	9.80	92.08	9.804	337.2	1.134	1.764×10^{-5}	0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090	1.752×10^{-5}	0.0248
1400	5.90	85.60	9.802	334.9	1.069	1.745×10^{-5}	0.0247
1600	4.60	83.53	9.802	334.1	1.048	1.739×10^{-5}	0.0245
1800	3.30	81.49	9.801	333.3	1.027	1.732×10^{-5}	0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987	1.720×10^{-5}	0.0242
2400	-0.59	75.63	9.799	331.0	0.967	1.713×10^{-5}	0.0241
2600	-1.89	73.76	9.799	330.2	0.947	1.707×10^{-5}	0.0240
2800	-3.19	71.92	9.798	329.4	0.928	1.700×10^{-5}	0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891	1.687×10^{-5}	0.0237
3400	-7.09	66.63	9.796	327.0	0.872	1.681×10^{-5}	0.0236
3600	-8.39	64.94	9.796	326.2	0.854	1.674×10^{-5}	0.0235
3800	-9.69	63.28	9.795	325.4	0.837	1.668×10^{-5}	0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802	1.655×10^{-5}	0.0232
4400	-13.6	58.52	9.793	323.0	0.785	1.648×10^{-5}	0.0231
4600	-14.9	57.00	9.793	322.2	0.769	1.642×10^{-5}	0.0230
4800	-16.2	55.51	9.792	321.4	0.752	1.635×10^{-5}	0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721	1.622×10^{-5}	0.0227
5400	-20.1	51.23	9.790	318.9	0.705	1.615×10^{-5}	0.0226
5600	-21.4	49.86	9.789	318.1	0.690	1.608×10^{-5}	0.0224
5800	-22.7	48.52	9.785	317.3	0.675	1.602×10^{-5}	0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646	1.588×10^{-5}	0.0221
6400	-26.6	44.69	9.787	314.8	0.631	1.582×10^{-5}	0.0220
6600	-27.9	43.47	9.786	314.0	0.617	1.575×10^{-5}	0.0219
6800	-29.2	42.27	9.785	313.1	0.604	1.568×10^{-5}	0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312	1.422×10^{-5}	0.0195
14,000	-56.5	14.17	9.764	295.1	0.228	1.422×10^{-5}	0.0195
16,000	-56.5	10.53	9.758	295.1	0.166	1.422×10^{-5}	0.0195
18,000	-56.5	7.57	9.751	295.1	0.122	1.422×10^{-5}	0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, T=15°C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-18

Emissivities of surfaces (a) Metals

Material	Temperature, K	Emissivity, ε	Material	Temperature, K	Emissivity, ε
Aluminum			Magnesium, polished	300–500	0.07–0.13
Polished Commercial sheet	300–900 400	0.04–0.06 0.09	Mercury Molybdenum	300–400	0.09–0.12
Heavily oxidized Anodized	400–800 300	0.20–0.33 0.8	Polished Oxidized	300–2000 600–800	0.05–0.21 0.80–0.82
Bismuth, bright Brass	350	0.34	Nickel Polished	500–1200	0.07–0.17
Highly polished Polished Dull plate	500–650 350 300–600	0.03–0.04 0.09 0.22	Oxidized Platinum, polished Silver, polished	450–1000 500–1500 300–1000	0.37–0.57 0.06–0.18 0.02–0.07
Oxidized	450–800	0.6	Stainless steel		
Chromium, polished Copper	300–1400	0.08–0.40	Polished Lightly oxidized	300–1000 600–1000	0.17–0.30 0.30–0.40
Highly polished Polished	300 300–500	0.02 0.04–0.05	Highly oxidized Steel	600–1000	0.70–0.80
Commercial sheet Oxidized Black oxidized	300 600–1000 300	0.15 0.5–0.8 0.78	Polished sheet Commercial sheet Heavily oxidized	300–500 500–1200 300	0.08-0.14 0.20-0.32 0.81
Gold	000 1000	0.00.000	Tin, polished	300	0.05
Highly polished Bright foil Iron	300–1000 300	0.03–0.06 0.07	Tungsten Polished Filament	300–2500 3500	0.03–0.29 0.39
Highly polished Case iron Wrought iron Rusted	300–500 300 300–500 300	0.05–0.07 0.44 0.28 0.61	Zinc Polished Oxidized	300–800 300	0.02–0.05 0.25
Oxidized	500–900	0.61			
Lead Polished	300–500	0.06-0.08			
Unoxidized, rough	300	0.43			
Oxidized	300	0.63			

TABLE A-18

Emissivities of surfaces (Concluded)

(b) Nonmetals

Alumina 800–1400 0.65–0.45 Paper, white Aluminum oxide 600–1500 0.69–0.41 Plaster, white	300 300	0.90
Asbestos 300 0.96 Porcelain, glazed Quartz, rough, fuse Rubber Brick Rubber Rubber Common 300 0.93–0.96 Hard Soft Fireclay 1200 0.75 Sand Cloth 300 0.75–0.90 Silicon carbide Concrete 300 0.88–0.94 Skin, human Glass Soot Soot Window 300–1200 0.82–0.62 Soot Pyrex 300–1500 0.85–0.57 Teflon Ice 273 0.95–0.99 Water, deep Magnesium oxide 400–800 0.69–0.55 Wood Masonry 300 0.80 Beech Paints 0.40–0.50 Black, lacquer, shiny 300 0.92–0.96 Red primer 300 0.93 0.93 White acrylic 300 0.90	300	0.93 0.92 0.93 0.93 0.86 0.90 0.87–0.85 0.95 0.80–0.90 0.93–0.96 0.95 0.85–0.92 0.95–0.96 0.94 0.90

TABLE A-19

Solar radiative properties of materials

Description/composition	Solar Absorptivity, $lpha_s$	Emissivity, ε , at 300 K	Ratio, $lpha_s/arepsilon$	Solar Transmissivity, $ au_s$
· · · · · · · · · · · · · · · · · · ·	$nosorptivity, \alpha_s$	at 300 K	usie	Transmissivity, 7 _S
Aluminum Polished	0.09	0.03	3.0	
Anodized	0.14	0.84	0.17	
Quartz-overcoated	0.14	0.37	0.17	
Foil	0.15	0.05	3.0	
Brick, red (Purdue)	0.63	0.93	0.68	
Concrete	0.60	0.88	0.68	
Galvanized sheet metal				
Clean, new	0.65	0.13	5.0	
Oxidized, weathered	0.80	0.28	2.9	
Glass, 3.2-mm thickness				
Float or tempered				0.79
Low iron oxide type				0.88
Marble, slightly off-white (nonreflective)	0.40	0.88	0.45	
Metal, plated	0.00	0.10	0.0	
Black sulfide	0.92	0.10	9.2	
Black cobalt oxide	0.93	0.30	3.1 11	
Black nickel oxide Black chrome	0.92 0.87	0.08 0.09	9.7	
Mylar, 0.13-mm thickness	0.67	0.09	9.7	0.87
Paints				0.07
Black (Parsons)	0.98	0.98	1.0	
White, acrylic	0.26	0.90	0.29	
White, zinc oxide	0.16	0.93	0.17	
Paper, white	0.27	0.83	0.32	
Plexiglas, 3.2-mm thickness				0.90
Porcelain tiles, white (reflective glazed surface)	0.26	0.85	0.30	
Roofing tiles, bright red				
Dry surface	0.65	0.85	0.76	
Wet surface	0.88	0.91	0.96	
Sand, dry	0.50	0.00	0.62	
Off-white Dull red	0.52 0.73	0.82	0.63	
Snow	0.73	0.86	0.82	
Fine particles, fresh	0.13	0.82	0.16	
lce granules	0.33	0.89	0.10	
Steel	0.00	0.05	0.57	
Mirror-finish	0.41	0.05	8.2	
Heavily rusted	0.89	0.92	0.96	
Stone (light pink)	0.65	0.87	0.74	
Tedlar, 0.10-mm thickness				0.92
Teflon, 0.13-mm thickness				0.92
Wood	0.59	0.90	0.66	

Source: V. C. Sharma and A. Sharma, "Solar Properties of Some Building Elements," Energy 14 (1989), pp. 805–810, and other sources.

FIGURE A-20

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$