COLUMBIA UNIVERSITY EEME E6911 FALL '25

TOPICS IN CONTROL: PROBABILISTIC ROBOTICS

EKF LOCALIZATION

Instructor: Ilija Hadzic

Summary

- Use motion model for prediction:
 - System input (throttle, commands, etc.)
 - Velocity estimate (form odometry)
 - Accumulated odometry
- Use measurement model for update:
 - Direct pose measurement (e.g.GPS, etc.)
 - Raw sensor signals
 - Known or unknown correspondences
- Linearize both models using Jacobians
- Apply Kalman filter equations

Motion Model

Recall 2D model from odometry class:

$$\begin{bmatrix} \theta[n] \\ x[n] \\ y[n] \end{bmatrix} = \begin{bmatrix} \theta[n-1] + \omega[n] \Delta t \\ v_x[n] \Delta t \cdot \cos \theta[n-1] - v_y[n] \Delta t \cdot \sin \theta[n-1] + x[n-1] \\ v_x[n] \Delta t \cdot \sin \theta[n-1] + v_y[n] \Delta t \cdot \cos \theta[n-1] + y[n-1] \end{bmatrix}$$

- We can use it for prediction if we know the velocity.
- What is the geometric interpretation of this model?

Motion Model – Tangent Motion

- Can we do better?
- Follow the motion curvature instead?
- Should we?

Motion Model – Arc Motion

- Follows the curvature of motion.
- Works better if Δt is long.
- Thrun, Section 5.3.3
- Careful:
 - Thrun derives the model for $v_y = 0$
 - Valid assumption for many drivetrains:
 - Differential, Skid-Steer, Ackermann, etc.
 - Does not work for omnidirectional drivetrains:
 - H-drive, X-drive, 4WIS-drive

Motion Model – Arc Motion

Where is the center of rotation?

Where is the center of rotation?

Do the arc motion!

New coordinates relative to the center?

New coordinates relative to the center

New coordinates in global frame

Motion Model – Arc Motion

$$\theta[n] = \theta[n-1] + \omega \Delta t$$

$$x[n] = x[n-1] - \frac{v}{\omega} \sin \theta + \frac{v}{\omega} \sin(\theta + \omega \Delta t)$$

$$y[n] = y[n-1] + \frac{v}{\omega} \cos \theta - \frac{v}{\omega} \cos(\theta + \omega \Delta t)$$

- Find Jacobians
- Have everything needed for prediction
- Exercise: Derive motion model for $v_v \neq 0$

Correspondences

- Index table that relates measurements to the map
- At given time, we see different subset of features
- Subset changes in each time instant

• We have multiple measurements:

$$z_1$$
 , Σ_{z1}

$$z_2, \Sigma_{z2}$$

$$z_i, \Sigma_{zi}$$

What are the options to incorporate them?

$$egin{aligned} oldsymbol{z}_1, oldsymbol{\Sigma}_{Z1} & oldsymbol{z} & oldsymbol{z} & oldsymbol{z} & oldsymbol{z}_1, oldsymbol{\Sigma}_{Z2} \\ oldsymbol{z}_1, oldsymbol{\Sigma}_{Z2} & oldsymbol{\Sigma}_{Z2} & oldsymbol{0} & oldsy$$

- Construct one big measurement vector
- Yields one big Kalman gain matrix

$$egin{aligned} oldsymbol{z}_{1}, oldsymbol{\Sigma}_{Z1} & oldsymbol{z} & = & [oldsymbol{z}_{1}, oldsymbol{z}_{2}, \dots oldsymbol{z}_{i}, \dots]^{T} \ oldsymbol{z}_{2}, oldsymbol{\Sigma}_{Z2} & oldsymbol{\Sigma}_{2} & 0 & 0 & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Z2} & 0 & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Z2} & 0 & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Z2} & 0 & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Z2} & 0 & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Zi} & 0 & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Zi} & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Zi} & 0 \ oldsymbol{0} & oldsymbol{\Sigma}_{Zi} & oldsymbol{0} \ oldsymbol{\Sigma}_{Zi} & oldsymbol{0} \ oldsymbol{\Sigma}_{Zi} & oldsymbol{\Sigma}_{Zi} & oldsymbol{\Sigma}_{Zi} & oldsymbol{\Sigma}_{Zi} \ oldsymbol{\Sigma}_{Zi} & old$$

- Independent measurements → Sparse matrix
- Can we do better?

$$\mathbf{z}_1, \mathbf{\Sigma}_{z1} \longrightarrow \mathbf{K}_1 = f(\mathbf{\Sigma}_{z1}, \mathbf{\Sigma}_{x0}) \longrightarrow \mathbf{x}_1, \mathbf{\Sigma}_{x1}$$
 $\mathbf{z}_2, \mathbf{\Sigma}_{z2}$

$$oldsymbol{z}_i$$
 , $oldsymbol{\Sigma}_{zi}$

- Apply one measurement at the time
- Keep evolving the Kalman gain

$$\mathbf{z}_1, \mathbf{\Sigma}_{z1}$$
 $\mathbf{z}_2, \mathbf{\Sigma}_{z2} \longrightarrow \mathbf{K}_2 = f(\mathbf{\Sigma}_{z2}, \mathbf{\Sigma}_{x1}) \longrightarrow \mathbf{x}_2, \mathbf{\Sigma}_{x2}$

$$z_i, \Sigma_{zi}$$

- Apply one measurement at the time
- Keep evolving the Kalman gain

$$\checkmark z_1, \Sigma_{z1}$$

$$\boldsymbol{\mathsf{Z}}_2, \boldsymbol{\mathsf{\Sigma}}_{z2}$$

$$\mathbf{z}_i, \mathbf{\Sigma}_{zi} \longrightarrow \mathbf{K}_i = f(\mathbf{\Sigma}_{zi}, \mathbf{\Sigma}_{xi-1}) \longrightarrow \mathbf{x}_i, \mathbf{\Sigma}_{xi}$$

- Apply one measurement at the time
- Keep evolving the Kalman gain

Careful!

- Measurements must be independent!
- Repeated measurements of the same landmark are not independent.
- Measurements of the same landmark with different sensor are independent.
- If you have measurement dependencies, you must use the "big matrix" method and figure out the cross-terms.

Full Algorithm

- Table 7.2, Page 204 in Thrun
- All steps should follow from the lecture
- Motion model is arc-motion for $v_{
 m V}=0$
- Few additional details:
 - Step 5: Assumption that uncertainty goes up with velocity
 - Step 21: Importance factor (matters for multi-state Kalman Filter).

Unknown Correspondences

Recall from general EKF:

- How do we know which measurements to use?
 - Unique landmarks: we just know
 - Non-unique: must figure out from prior

Maximum Likelihood

- Use covariance when picking correspondence!
- Recall the Kalman gain:

$$\boldsymbol{K} = \overline{\boldsymbol{\Sigma}}_{x}[n]\boldsymbol{H}_{x}^{\mathrm{T}} (\boldsymbol{H}_{x}\overline{\boldsymbol{\Sigma}}_{x}[n]\boldsymbol{H}_{x}^{\mathrm{T}} + \boldsymbol{\Sigma}_{z}[n])^{-1}$$

Covariance of measurement difference!

Define for each landmark k:

$$S^{(k)} = \boldsymbol{H}_{x}^{(k)} \overline{\boldsymbol{\Sigma}}_{x}[n] \boldsymbol{H}_{x}^{(k)}^{T} + \boldsymbol{\Sigma}_{z}[n]$$

Maximum Likelihood

- For each landmark k, measurement difference:
 - Has normal distribution
 - Zero-mean
 - Covariance $S^{(k)}$
- Hence:

$$c_i = \operatorname*{argmax}_k \frac{\exp\left(-\frac{1}{2}(\boldsymbol{z}_i - \boldsymbol{h}(\overline{\boldsymbol{x}}))\boldsymbol{S}^{(k)^{-1}}(\boldsymbol{z}_i - \boldsymbol{h}(\overline{\boldsymbol{x}}))^T\right)}{\sqrt{(2\pi)^d|\boldsymbol{S}^{(k)}|}}$$

Full Algorithm

- Table 7.3, Page 217 in Thrun
- Prediction is the same as for known correspondences
- For each measurement:
 - Calculate $S^{(k)}$ for all landmarks
 - Pick the most likely
 - Proceed to calculate the Kalman gain
 - Update the (posterior) state