FIG. 1

4/17

FIG. 4B

FIG. 5

FIG. 6

7/17

FIG. 7A

FIG. 7B

FIG. 8A

FIG. 8B

9/17

10/17

FIG. 10A

FIG. 10B

11/17

FIG. 12

13/17

FIG. 14

15/17

	JUDGED BONDIN STRENGTH	NG)OK	УО	Ж О	Ж О	УО	УО	УО	УО	УО
	W2 $(\mu\mathrm{g/cm}^2)$	37.83	63. 05	94. 64	126.1	252. 2	64. 02	106.7	160. 16	213. 4	426.8
FIG. 15	W1 (mg/cm²)	2.91	4.85	7. 28	9.7	19. 4	2.91	4.85	7. 28	9.7	19. 4
	ACTIVE HARD BRAZING MATERIAL COMPOSITION	60Ag-24. 7Cu-141n-1. 3Ti	DITTO	DITTO	DITTO	DITTO	59. 8Ag-24Cu-14In-2. 2Ti	DITTO	DITTO	DITTO	01110
·	SAMPLE	1	2	3	4	2	9	7	8	6	10

16/17

17/17

JUDGED ALLOYING	0	0	×	×	0	0	0	0	0	×	×	0	0	0	0	0	×	_ ©	0	0	0	0	×
hm (mg)	180	216	984	1440	72	144	204	360	624	936	1488	48	96	192	360	552	840	36	96	168	336	504	888
λm (W/mK)	368	366	367	368	368	368	367	368	366	368	355	368	366	367	366	350	344	361	366	367	358	349	334
JUDGED BOND ING STRENGTH	NG NG	SN	NG	X	NG	NG	NG NG	¥	Ж	УO	УO	DN.	УO	ЖO	УO	УO)OK)OK)OK	OK	OK	OK	OK
W2 (μg/cm²)	126.1	252. 2	378.3	630. 5	106. 7	160.16	213. 4	320.1	426.8	640. 2	1067	218. 25	327.6	436. 5	654. 75	873	1309. 5	339. 5	9 .603	629	1018.5	1358	2037
W1 (mg/cm ²)	9.7	19.4	29. 1	48.5	4.85	7. 28	9.7	14.55	19.4	29. 1	48.5	4.85	7. 28	9.7	14.55	19.4	29. 1	4.85	7. 28	9.7	14.55	19.4	29. 1
ACTIVE HARD BRAZING MATERIAL COMPOSITION	60Ag-24. 7Cu-141n-1. 3Ti	1-	01110	DITTO	59. 8Ag-24Cu-141n-2. 2Ti		DITTO	DITTO	DITTO	DITTO	01110	58. 4Ag-23. 5Cu-13. 51n-4. 5Ti		DITTO	DITTO	DITTO	DITTO	58Ag-22Cu-131n-7T i	DITTO	DITTO	DITTO	DITTO	DITTO
SAMPLE	-	2	က	4	2	9	_	8	6	9	=	12	13	14	15	16	17	18	19	20	21	22	23

[6. 17