Ingoniourcgrundlagonblatt

ing	ingenieursgrundiagenblatt							
Allge	emeine	es	$\Phi = \frac{1+\sqrt{5}}{2} \approx 1,61803$					
$\pi pprox e pprox \sqrt{2}$	ge Zahler $3, 1415$, $2, 71828$ $\approx 1, 414$ $\approx 1, 732$	1: 9 3 :21	Quantore $\forall x$ $\exists_1 x$ $\exists x$ $\not\exists x$ \vdots	für all (Es) e (Es) e (Es) e	xistiert r xistiert k	genau ein nind. ein	×	
10 [±]	21	18	15	12	9	6	3	2
+	Z zetta	E exa	P peta	T tera	G giga	M mega	k kilo	h hecto
-	z zepto	a atto	f femto	p pico	n nano	μ micro	m milli	C centi
$a \pm b$	$a^2 - b^2 = a^2 \pm 2ab + b^2$ $a^2 - b^2 = (a - b)(a + b)$							
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$ $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$								
(5)	, -) -	1	- 10	, 200	,a_			

1. Analysis $e^{\alpha+i\beta}=e^{\alpha}\cdot(\cos(\beta)+i\cdot\sin(\beta))$

Imaginäre Einheit: $i^2 = -1$ $i^{-1} = -i$ $z\overline{z} = a^2 + b^2$ Konjugiert: $\overline{\boldsymbol{z}} = a - b\mathrm{i}$ $z_1 \cdot z_2 = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$ $z^{-1} = \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2 + b^2}$

 $\big||x|-|y|\big|\leq |x\pm y|\leq |x|+|y|$ Dreiecksungleichung: $\left|\underline{\boldsymbol{x}}^{\top}\cdot\boldsymbol{y}\right| \leq \left\|\underline{\boldsymbol{x}}\right\| \cdot \left\|\boldsymbol{y}\right\|$ Cauchy-Schwarz-Ungleichung:

 $a^x = e^{x \ln a}$ $\log_a x = \frac{\ln x}{\ln a}$ $\ln x \le x - 1$ $ln(x^a) = a ln(x)$ $\ln(\frac{x}{a}) = \ln x - \ln a$ log(1) = 0

1.1	1.1 Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$							
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\frac{1}{2}\pi$	π	$1\frac{1}{2}\pi$ 270°	2π
φ	00	30°	45°	60°	90°	180°	270°	360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$ $\frac{1}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\begin{array}{c c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

tan 0 3 1	V3 ±∞ 0 +∞ 0
Additionstheoreme	Stammfunktionen
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) dx = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

1.1.1 Sinus/Cosinus Hyperbolicus sinh, cosh

 $\sinh x = \frac{1}{2}(e^x - e^{-x}) = -i \sin(ix) \qquad \cosh^2 x - \sinh^2 x = 1$ $\cosh x = \frac{1}{2}(e^x + e^{-x}) = \cos(ix)$ $\cosh x + \sinh x = e^x$ Der Graph von $\cosh(x)$ entspricht dem Verlauf eines hängenden Seils Kardinalsinus $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$ genormt: $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

1.2 Reihen

$\sum\limits_{n=1}^{\infty}rac{1}{n} ightarrow\infty$ Harmonische Reihe	$\sum_{n=0}^{\infty} q^n \stackrel{ q <1}{=} \frac{1}{1-q}$ Geometrische Reihe	$\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$ Exponential reihe	
101 - 1 - 7	() (D-!! C!!	`	

1.2.1 Taylorpolynom $T_{m,f,x_0}(x)$ (Reihe für $m \to \infty$)

$$T(x) = \sum_{i=0}^{m} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i \quad \text{Konvergenz radius } a_i = \frac{f^{(i)}(x_0)}{i!} R = \lim_{i \to \infty} \left| \frac{a_i}{a_{i+1}} \right|$$

1.3 Integrale $\int e^x dx = e^x = (e^x)'$

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
	. (

 $\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$ $\int xe^{ax^2} dx = \frac{1}{2}e^{ax^2}$ $\int t^2 e^{at} dt = \frac{(ax-1)^2 + 1}{2} e^{at}$ 1.3.1 Volumen und Oberfläche von Rotationskörpern um x-Achse $V = \pi \int_{a}^{b} f(x)^{2} dx$ $Q = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^{2}} dx$

1.3.2 Weg- und Oberflächeintegrale

$$\begin{split} & \int_{\gamma} f \, \mathrm{d}s := \int_{a}^{b} f \big(\underline{\gamma}(t) \big) \cdot \left\| \underline{\dot{\gamma}}(t) \right\| \, \mathrm{d}t \quad \int_{\gamma} \underline{v} \cdot \mathrm{d}\underline{s} := \int_{a}^{b} \underline{v} \big(\underline{\gamma}(t) \big)^{\top} \cdot \underline{\dot{\gamma}}(t) \, \mathrm{d}t \\ & \boxed{ \iint_{\underline{\phi}} \underline{v} \cdot \, \mathrm{d}\underline{\mathcal{O}} := \iint_{B} \underline{v} \Big(\underline{\phi}(u, w) \Big)^{\top} \cdot \Big(\underline{\phi}_{u} \times \underline{\phi}_{w} \Big) \, \mathrm{d}u \, \, \mathrm{d}w } \end{split}$$

Integralsatz von Gauß:

Integralsatz von Stokes:

$$\iint\limits_{A} \operatorname{rot} \underline{\boldsymbol{v}} \, dA = \oint\limits_{\partial A} \underline{\boldsymbol{v}} \, d\underline{\boldsymbol{s}}$$

1.4 Abbildungen $f: \mathbb{D}^n \to \mathbb{W}^m, \ \boldsymbol{x} \mapsto \boldsymbol{f}(\boldsymbol{x})$

Bild $f(D) := \{ f(x) \, | \, x \in D \}$ $\operatorname{Kern} \ker f := \{\underline{x} \mid f(\underline{x}) = \underline{0}\}\$ Komposition $f \circ g := f(g(x))$ Fixpunkt a := f(a)Injektiv $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ } beides: Bijektiv Surjektiv $\forall u \in W \exists x \in D : f(x) = u$

1.5 Funktionen $f: \mathbb{D} \to \mathbb{W}, x \mapsto f(x)$

Achsensym.(g): f(-x) = f(x) Punktsym.(u): f(-x) = -f(x) $g_1 \pm g_2 = g_3$ gerade/ungerade Fkt. q/u $g_1 \cdot g_2 = g_3$

1.5.1 Asymptoten von f

Horizontal: $c = \lim_{x \to +\infty} f(x)$ Vertikal: \exists Nullst. a des Nenners Polynomasymptote P(x): $f(x) := \frac{A(x)}{Q(x)} = P(x) + \left(\frac{B(x)}{Q(x)} \to 0\right)$ Regel von L'Hospital: $\lim_{x \to a} \frac{f(x)}{g(x)} \to \begin{bmatrix} 0 \\ 0 \end{bmatrix} / \begin{bmatrix} \infty \\ \infty \end{bmatrix} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

1.6 Polynome $P(x) \in \mathbb{R}[x]_n = \sum_{i=1}^n a_i x^i$ vom Grad n

Gerade durch Punkt $P(x_0, y_0)$:

Quadratisch: $y = ax^2 + bx + c$ Mitternachtsformel für Nullstellen:

1.7 Lineare Abbildungen (Homomorphismus)

 $m{f}:V o U$ heißt linear, falls $m{f}(\lambda \underline{m{v}} + \mu \underline{m{w}}) = \lambda m{f}(\underline{m{v}}) + \mu m{f}(\underline{m{w}})$ lin. Abbildung \Leftrightarrow lin. Gleichungssystem \Leftrightarrow Matrix: $f(x) = UF_V \cdot x$

$$\begin{split} \dim V &= \dim \left(\ker \underline{f}\right) + \dim \left(\operatorname{Bild} \underline{f}\right) \\ \operatorname{rg} \underline{f} &= \dim \left(\operatorname{Bild} \underline{f}\right) = \dim (U) - \dim \left(\ker \underline{f}\right) \end{split}$$

1.8 Matrix $A = (a_{ij}) \in \mathbb{K}^{m \times n}$

Die Matrix $\mathbf{A} = (a_{ij}) \in \mathbb{K}^{m \times n}$ hat m Zeilen \mathbf{z}_i^{\top} und n Spalten \mathbf{s}_i $(\mathbf{A} \cdot \mathbf{B})^{\top} = \mathbf{B}^{\top} \cdot \mathbf{A}^{\top} \qquad (\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$ $(\pmb{A}|\pmb{1}) \xrightarrow{\mathsf{EZF}} (\pmb{1}|\pmb{A}^{-1}) \quad \mathsf{EZF/ESF} \; (\lambda \neq 0) : \underline{\pmb{z}}_1' = \lambda_1 \underline{\pmb{z}}_1 + \lambda_2 \underline{\pmb{z}}_2$

1.8.1 Spezialfall 2×2 Matrix A

1.8.2 Eigenwerte λ und Eigenvektoren v

$$\underbrace{\underline{A}\underline{v}} = \lambda \underline{v} \qquad \det \underbrace{\underline{A}} = \prod \lambda_i \qquad \operatorname{Sp} \underbrace{\underline{A}} = \sum \lambda_i$$

Eigenwerte: $det(A - \lambda 1) = 0$. Det-Entwickl.. Polynom-Div

1.9 Vektorräume V über \mathbb{K}^n

Basis $B = \{\underline{b}_1, \underline{b}_2, \dots\}$: n Vektoren, linear unabhängig, erzeugen VLineare Unabhängigkeit: $\forall v_i \not\equiv \lambda_i \neq 0 : \sum \lambda_i v_i = 0$ Linearkomb.: $\lambda \underline{v} + \mu \underline{w}$ Skalarprodukt: $\underline{v}^{\top} \cdot \underline{w} = \sum v_i w_i$ Kreuzprodukt(\mathbb{R}^3): $\boldsymbol{v} \times \boldsymbol{w} =$ $v_3w_1 - v_1w_3$

1.10 Differentialoperatoren $\operatorname{div}(\operatorname{rot} \mathbf{f}) \equiv 0$

Laplace $\Delta f = \operatorname{Sp} \mathcal{H}_f(\underline{x})$

Ableitungs-/Gradientenregeln: SF f, q sind partiell diffbar: Linearität: $\nabla(\lambda f + \mu g)(\mathbf{x}) = \lambda \nabla f(\mathbf{x}) + \mu \nabla g(\mathbf{x})$ $\nabla (f \cdot g)(\mathbf{x}) = g(\mathbf{x}) \nabla f(\mathbf{x}) + f(\mathbf{x}) \nabla g(\mathbf{x})$ Quotient: $\nabla \left(\frac{f}{g}\right)(\underline{\boldsymbol{x}}) = \frac{1}{g^2(\underline{\boldsymbol{x}})} \left(g(\underline{\boldsymbol{x}}) \nabla f(\underline{\boldsymbol{x}}) - f(\underline{\boldsymbol{x}}) \nabla g(\underline{\boldsymbol{x}})\right)$

$$h := g\big(f(\underline{x})\big) \text{ für SF } f, \text{ Fkt. } g$$

$$\nabla h(\underline{x}) = g'\big(f(\underline{x})\big) \cdot \nabla f(\underline{x})$$

$$h := f(\underline{g}(x)) \text{ für SF } f, \text{ Kurve } g$$

$$h'(x) = \nabla f(\underline{g}(x))^\top \cdot \underline{\dot{g}}(x)$$

Jacobimat. $\left[\partial_1 f_1 \cdots \partial_n f_1 \right]$: : $\widetilde{J}_{f}(\underline{x}) =$

 $\left[\partial_{11}f\cdots\partial_{1n}f\right]$ Hessematrix $H_f(\underline{x}) =$ $\operatorname{sym} \Leftrightarrow f \in \mathcal{C}^2 \quad \left| \partial_{n1} f \cdots \partial_{nn} f \right|$

1.11 Koordinatensysteme $0 < \varphi < 2\pi, 0 < \theta < \pi$

Um einen karthesischen Vektor mit anderen Koordinaten darzustellen Zylinderkoordinaten: Kugelkoordinaten:

 $(r \cdot \cos(\varphi) \sin(\theta))$ $r \cdot \sin(\varphi)$ $= r \cdot \sin(\varphi) \sin(\theta)$

Basistransformation von Basis A zur Basis B mit Trafo-Matrix $_{\mathcal{D}}\mathbf{T}_{A}$: Spalten von ${}_B \boldsymbol{T}_A$ entsprechen $B\underline{\boldsymbol{v}} = B\underline{\boldsymbol{T}}_A \cdot A\underline{\boldsymbol{v}}$ Basisvektoren von A in B dargestellt.

Basis-Trafo-Matrizen ${}_{Z}oldsymbol{\widetilde{T}}{}_{kart}$ für Zylinder- und Kugelkoordinaten:

$$\begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos(\varphi)\sin(\theta) & -\sin(\varphi) & \cos(\varphi)\cos(\theta) \\ \sin(\varphi)\sin(\theta) & \cos(\varphi) & \sin(\varphi)\cos(\theta) \\ \cos(\theta) & 0 & -\sin(\theta) \end{bmatrix}$$

Die Spalten entsprechen den orthonorm. Basisvektoren. $\Rightarrow T^{-1} = T^{\top}$

1.12 Differentialgleichungen DGL

Gleichungen mit Funktion y und deren n-ten Ableitungen y', y'', \dots Anfangswertproblem AWP = DGL + Anfangsbedingungay''(t) + by'(t) + cy(t) = s(t) y(0) = d, y'(0) = e

Jede DGL lässt sich als DGL System erster Ordnung darstellen! 1. Substituiere $x_i := y^{(i-1)}$ 2. Drücke \dot{x}_i durch $x_1, ..., x_n$ aus. $\Rightarrow \left| \underline{\dot{x}}(t) = \underline{\underline{A}}\underline{x}(t) + \underline{s}(t) \right| \quad \text{mit } \underline{x}_{qes} = \underline{x}_{hom} + \underline{x}_{part}$ Hom. Lösung: 1. Bestimme EW λ_i und Basis aus EV \underline{b}_i von \underline{A} 2. $\underline{\boldsymbol{x}}_{hom} = \underline{\boldsymbol{c}} \cdot e^{(x-x_0)} \stackrel{\boldsymbol{A}}{\sim} = \sum_{i=1}^{n} c_i \cdot e^{\lambda_i x} \cdot \underline{\boldsymbol{b}}_i$

2. Stochastik

Ein Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P) besteht aus Ergebnismenge $\Omega = \{\omega_1, \omega_2, ...\}$ Ergebnis $\omega_i \in \Omega$ Ereignisalgebra $\mathbb{F} = \{A_1, A_2, ...\}$ Ereignis $A_i \subseteq \Omega$ Wahrscheinlichkeitsmaß $P : \mathbb{F} \to [0, 1], \ P(A) = \frac{|A|}{|\Omega|}$ Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplikationssatz: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$ Erwartungswert $\mathrm{E}[\mathrm{X}] = \mu = \sum x_i P(x_i) = \int x \cdot f_{\mathrm{X}}(x) \; \mathrm{d}x$

Varianz $Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$ Standard Abweichung $\sigma = \sqrt{\text{Var}[X]}$ Covarianz Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

2.1 Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal nElementen zu wählen bzw. k Elemente auf n Felder zu verteilen: Mit Reihenfolge Reihenfolge egal

Mit Wiederholung Ohne Wiederholung

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_n!}$ Binomialkoeffizient $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$

3. Geometrie $a^2 + b^2 = c^2$

Innenwinkelsumme im n-Eck: $(n-2) \cdot 180^{\circ}$

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Kosinussatz: $c^2 = a^2 + b^2 + 2ab\cos(\gamma)$ $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$

Höhe $h_c = a \sin \beta = b \sin \alpha$ Fläche $A = \frac{1}{2}h_c c = \frac{1}{2}h_a a$ Schwerpunkt: $x_S = \frac{1}{2}(x_A + x_B + x_C)$ $y_S = \frac{1}{2}(y_A + y_B + y_C)$

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma = 90^{\circ}$ bei C

Pythagoras: $a^2 + b^2 = c^2$ Höhensatz: $h^2 = pq$

Kathetensatz: $a^2 = pc$

 $a = c \sin \alpha = c \cos \beta = b \tan \alpha$

Pyramide mit beliebiger Grundfläche G $V = \frac{1}{3}G \cdot h$ SP: liegt auf h mit $y_S = h/4$ Zylinder/Prisma $V = G \cdot h$ $M = U \cdot h$

 $O = 4\pi rh - h^2\pi$

 $y_S = \frac{3}{4} \frac{(2r-h)^2}{(3r-h)}$

 $h = r - r\cos(\varphi/2)$

	Kreis (2D)	Kugel (3D)
<u>r</u> -)	$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$ $O = 4\pi r^2$
$\overline{}$	$U = 2\pi r$ $A = \pi r^2 \frac{\varphi}{\varphi}$	
Sektor b	$A = \pi r^2 \frac{\varphi}{360^{\circ}}$ $b = 2\pi r \frac{\varphi}{360^{\circ}}$	$V = \frac{2}{3}\pi r^2 h$ $O = r\pi(2h + \varrho)$
—	$y_S = \frac{4r\sin(\varphi/2)}{3\varphi}$	$y_S = \frac{6r - 3h}{8}$
C	$A = \frac{1}{2}r^{2}(\varphi - \sin \varphi)$ $s = 2r\sin(\varphi/2)$	$V = \frac{h^2 \pi}{3} (3r - h)$
Segment	$s = 2r \sin(\varphi/2)$	$Q = 4\pi rh - h^2\pi$

4. Physik $E_0 = m_0 \cdot c^2$ $E_0^2 = E^2 - c^2 p^2$

 $h = r - r\cos(\varphi/2)$

 $y_S = \frac{4}{3} \frac{r \sin^3(\varphi/2)}{\varphi - \sin(\varphi)}$

 Δ : endl. Differenz, δ : unendlich kleine Differenz, d: Differential Strecke \vec{x} , \vec{s} , Fläche A, Volumen V, Radius r, Zeit t, J \cdot e = eV

Naturkonstanten

 $c_0 = 299792458 \,\mathrm{m\,s^{-1}}$ Lichtgeschwindigkeit $e = 1.602\,177 \times 10^{-19}\,C$ Elementarladung $h = 6.62606957 \times 10^{-34} \,\mathrm{Js}$ Planck-Konst. $\varepsilon_0 = 8.854188 \times 10^{-12} \, \mathrm{Fm}^{-1}$ Elektr. Feldkonst. $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H \, m^{-1}}$ Magn. Feldkonst. $N_A = 6.022\,141 \times 10^{23}\,\mathrm{mol}^{-1}$ AVOGADRO-Konst. $u = 1.660539 \times 10^{-27} \, \text{kg}$ Atomare Masse $m_e = 9.109383 \times 10^{-31} \,\mathrm{kg}$ Elektronenmasse $m_p = 1.674927 \times 10^{-27} \text{ kg}$ Protonenmasse $m_n = 1.672622 \times 10^{-27} \,\mathrm{kg}$ Neutronenmasse $G = 6.67384 \times 10^{-11} \, \text{kg s}^{-2}$ Gravitationskonst. BOLTZMANN-Konst. $k = 1.380655 \times 10^{-23} \,\mathrm{J \, K^{-1}}$

Größe	Definition	Einheit	SI-Notation
Frequenz	$f = \frac{c}{\lambda}$	Hertz	$Hz = \frac{1}{5}$
Kraft	$\vec{F} := m \cdot \vec{a}$	Newton	$N = \frac{k\bar{g}m}{s^2}$
Druck	$p := \frac{\vec{F}_{\perp}}{A}$	Pascal	$Pa = \frac{N}{m^2} = \frac{kg}{m s_2^2}$
Arbeit, Energie	$W:=\int \vec{F} \ \mathrm{d}\vec{s}$	Joule	$J = N m = \frac{kg m^2}{s^2}$
Leistung	$P := \frac{\mathrm{d}W}{\mathrm{d}t}$	Watt	$W = \frac{J}{s} = \frac{kg m^2}{s^3}$
Spannung	$U := \frac{W}{Q}$	Volt	$V = \frac{W}{A} = \frac{kg m^2}{A s^3}$
Ladung	$Q := \int I dt$	Coulomb	C = As
Resistivität	$R := \frac{\mathrm{d}U}{\mathrm{d}I}$	Ohm	$\Omega = \frac{V}{A} = \frac{kg m^2}{A^2 s^3}$
Kapazität	$C := \frac{\mathrm{d}Q}{\mathrm{d}U}$	Farad	$F = \frac{C}{V} = \frac{A^2 s^3}{kg m^2}$
Induktivität	$L := \frac{\mathrm{d}\Phi}{\mathrm{d}I}$	Henry	$H = \frac{Vs}{A} = \frac{kg m^2}{A^2 s^2}$
Magnetischer Fluss	$\Phi_M := \int \vec{B} \ \mathrm{d}\vec{A}$	Weber	Wb = Vs = $\frac{\text{kg m}^2}{\Delta s^2}$
Magnetische Flussdichte	$\vec{B}:=\mu_0\vec{H}$	Tesla	$T = \frac{Wb}{m^2} = \frac{kg}{As^2}$
1 in = 2.54 cm	1 ft =	30.5 cm	$1\mathrm{mi}=1.609\mathrm{km}$
$1\mathrm{bar}=10^5\mathrm{Pa}$	1 Å =	$10^{-10} \mathrm{m}$	$1\mathrm{L} = 10^{-3}\mathrm{m}^3$
$J \cdot e = eV$			

4.1 Mechanik $\vec{F} = m\vec{a}$

	Translation	Rotation (Radius r)
Strecke/Winkel	\vec{x}	$\vec{\varphi} = \frac{\vec{x}}{r}$
Geschwindigkeit	$ec{v}=\dot{ec{x}}$	$ec{\omega}=\dot{ec{arphi}}=rac{ec{v}}{r}$
Beschleunigung	$\vec{a} = \dot{\vec{v}} = \ddot{\vec{x}}$	$\vec{lpha} = \dot{\vec{\omega}} = \ddot{\vec{ec{ec{ec{ec{\sigma}}}}} = rac{ec{a}}{r}$
Masse/Trägh.	m	$\Theta = \int_V \vec{r}_\perp^2 dm$
Impuls/Drall	$\vec{p}=m\vec{v}$	$ec{L} = oldsymbol{\Theta} ec{\omega} = ec{r} imes ec{p}$
Kraft/Moment	$\vec{F}=\dot{\vec{p}}=m\vec{a}$	$\vec{M} = \dot{\vec{L}} = \mathbf{\Theta} \vec{\alpha} = \vec{r} \times \vec{F}$
Energie	$E_{kin} = \frac{1}{2}mv^2$	$E_{rot} = \frac{1}{2}\Theta\omega^2$
Leistung	$P = \vec{F} \cdot \vec{v}$	$P = \vec{M} \cdot \vec{\omega}$

Bewegungsgleichungen:

$$v = v_0 + at$$

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

$$2ax = v^2 - v_0^2$$

 $\omega = \omega_0 + \alpha t$

$$\begin{split} F_G &= -G\frac{m_1m_2}{r^2} \approx \vec{g}m & F_{el} = \frac{1}{4\pi\varepsilon}\frac{q_1q_2}{r^2} \\ F_Z &= -m\frac{v^2}{r} = -m\omega^2 r & F_R = \mu F_N \\ \text{Energie: } E &= \int \vec{F}^\top \cdot \, \mathrm{d}\vec{s} & E_{pot} = mgh = \frac{1}{2}kx^2 \end{split}$$

4.2 Relativitätstheorie $E_0 = m_0 c^2$

$$\gamma = 1 \Big/ \sqrt{1 - \frac{v^2}{c^2}} \quad \begin{array}{ll} E = E_0 + E_{kin} = m^*c^2 & m^* = \gamma \cdot m_0 \\ E_0^2 = E^2 - c^2 p^2 & t_0 = \gamma \cdot t^* \end{array}$$

4.3 Wellen $\Psi(x,t) = A \cdot \cos(\omega t - kx)$

$$\frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} - \Delta \Psi = \Box \Psi = 0 \qquad c = \lambda f = \frac{\omega}{k} \qquad k\lambda = 2\pi$$

$$\omega = 2\pi f \qquad 2l = n\lambda$$
stehend

Reflexion: $\alpha_1 = -\alpha_2$ Einfallwinkel Ausfallwinkel Brechung: $\frac{\sin(\alpha)}{\sin(\beta)} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$ Brewster-Winkel: $tan(\alpha_B) = \frac{n_2}{n_1}$

Grenzwinkel: Phasensprung um π bei (Total-)Reflexion am optisch dichteren Medium!

4.5 Elektrizität und Magnetismus

$$\begin{array}{ll} U = \dot{\Phi}_M & \quad \text{div}\, \vec{D} = \rho & \quad \text{div}\, \vec{B} = 0 \\ I = \dot{Q} & \quad \text{rot}\, \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 & \quad \text{rot}\, \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} \end{array}$$

Resistiv	Kapazitiv	Induktiv
dI = G dU	$dQ = C \ dU$	$\mathrm{d}\Phi_M = L \; \mathrm{d}I$
$ec{j} = \sigma ec{E}$	$\vec{D} = \varepsilon \vec{E}$	$\vec{B} = \mu \vec{H}$
$\mathrm{d}I = \vec{j} \; \mathrm{d}A$	$\mathrm{d} U = \vec{E} \ \mathrm{d} \vec{r}$	$\mathrm{d}\Phi_M = \vec{B} \; \mathrm{d}A$
$ec{j} = q n ec{v}$	$Q(V) \equiv \underset{\partial V}{\not\equiv} \vec{D} \ d\vec{A}$	$I(A) \equiv \oint\limits_{\partial A} \vec{H} \ \mathrm{d}\vec{r}$
Widerst. $R = \rho \frac{l}{A}$	Kondensator $C = \varepsilon \frac{A}{d}$	Spule $L = \mu A \frac{N^2}{l}$
- □	\longrightarrow	·

El. Potential $\Phi_{el}(\vec{r}) = \frac{1}{4\pi\varepsilon} \iiint_{\mathbb{R}^3} \rho(\vec{x}) \frac{\vec{x} - \vec{r}}{\|\vec{x} - \vec{r}\|^3} \ \mathrm{d}^3 \vec{x} = \frac{1}{4\pi\varepsilon} \cdot \frac{Q}{\|\vec{r}\|}$ $U_{12} = \Phi_1 - \Phi_2 = \int_{r_1}^{r_2} \vec{E} \; \mathrm{d}r$ Poisson: $\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{2}$ El. magn. Kraft: $\vec{F}_{em} = q\vec{E} + q(\vec{v} \times \vec{B})$

4.6 Komplexe Wechselstromrechnung

Vorraussetzung: lineares, eingeschwungenes System mit sinusförmiger Erregung $x(t) = \hat{x} \cdot \cos(\omega t + \varphi)$ Effektivwert $X = \frac{\hat{x}}{\sqrt{2}}$

Effektiver Zeiger:
$$\vec{X}=X_w+\mathrm{j}X_b=X\exp(\mathrm{j}\varphi_x)$$
 Reeles Zeitsignal: $x(t)=\hat{x}\cdot\cos(\omega t+\varphi_x)$

V	viderstand	Kondensator	Spuie	iviemristor
Z =	R	$\frac{1}{\omega C}$	$\mathrm{j}\omega L$	M
Y =	$G = \frac{1}{R}$	$\mathrm{j}\omega C$	$\frac{1}{\mathrm{j}\omega L}$	$\frac{1}{M}$
Wirkleistung	$P = \Re(\vec{S})$	$= UI \cdot \cos(\varphi)$	[W]	13
Blindleistung	$Q = \Im(\vec{S})$	$=UI \cdot \sin(\varphi)$	[Var]	
Scheinleistung	$\vec{S} = P + j$	$Q = \vec{U} \cdot \vec{I}^*$	[VA]	Q 3 1 m

4.7 Thermodynamik

$$\frac{\mathrm{d}U}{\mathrm{innere \, Energie}} = \frac{\delta Q}{\mathrm{W\"{a}rmeenergie}} + \frac{\delta W}{\mathrm{Volumenarbeit}} \qquad \begin{array}{c} Q = C \cdot \Delta T \\ C = c \cdot m = c_m \cdot n \end{array}$$

Thermische Energie eines Teilchens mit f Freiheitsgraden:

Thermische Rauschenergie bei 300K: $\Delta E_{th} = kT = 25.85\,\mathrm{meV}$

 $ec{F}_H \leq \mu_0 ec{F}_N$ Zustandsgleichung ideales Gas:

 $pV = nT \cdot N \Lambda k$

4.8 Quantenphysik $E_{Ph} = f \cdot h = \omega \cdot \hbar = \frac{hc}{\lambda}$

De Broglie: $\lambda \cdot \vec{p} = h$ $p = \hbar k$ $h = 2\pi\hbar$ $k\lambda = 2\pi$ Unschärferelationen:

Lichtspektrum: λ : **700**, 600, 570, 520, 460 in nr

4.9 Kernphysik

 α -Zerfall $\underset{n}{\overset{m}X^0} \longrightarrow \underset{n-2}{\overset{m-4}{Y^2}} Y^{2-} + \underset{2}{\overset{4}{4}} He^{2+}$ β^{\mp} -Zerfall ${}^{\rm m}_{\rm n} {\rm X}^0 \longrightarrow {}^{\rm m}_{\rm n+1} {\rm Y}^{\pm} + {}^{\rm 0}_{\pm 1} {\rm e}^{\mp} + {}^{\rm 0}_{0} \overline{\nu}_e$ γ -Zerfall ${}^{m}X^{*} \longrightarrow {}^{m}X + {}^{0}\gamma$

5. Informatik 8 bit = 1 Byte

Komplexität mit Landausymbol $\mathcal{O}(g(n))$

Schrankenfunktionen: $1 < \log_{10}(n) < \ln(n) < \log_2(n) < \sqrt{n} <$ $n < n \cdot \ln(n) < (\log n)! < n^2 < e^n < n! < n^n < 2^{2^n}$ Datentypen: boolean, char, word, int, long, float, double Datenstrukturen: Array, List, Stack, Queue, Tree, Hashtable Mooresches Gesetz (1965): Die Anzahl der Bauelemente pro Computerchip verdoppelt sich etwa alle 18 Monate.

6. Elektrotechnik $u = R \cdot i$

Serien	schaltung	Parallels	chaltung
$u = \sum u_i$ $q = \text{const.}$	i = const. $\Phi = \sum \Phi_i$	u = const. $q = \sum q_i$	$i = \sum i_i$ $\Phi = \text{const.}$
$R = \sum R_i$ $\frac{1}{C} = \sum \frac{1}{C_i}$	$M = \sum M_i$ $L = \sum L_i$	$\frac{1}{R} = \sum \frac{1}{R_i}$ $C = \sum C_i$	$\frac{\frac{1}{M} = \sum \frac{1}{M_i}}{\frac{1}{L} = \sum \frac{1}{L_i}}$
$Z = \sum Z_i$	$\frac{1}{\mathbf{Y}} = \sum \frac{1}{\mathbf{Y}_i}$	$\frac{1}{Z} = \sum \frac{1}{Z_i}$	$Y = \sum Y_i$

6.1 Halbleiter $np = n_i^2$ $\sigma = q(\mu_n n + \mu_p p)$

	Isolator	Metall	undotiert	n-Typ	p-Typ
Ladungsträger	Keine	e^-	e^-/e^+	e^-	e^+
Leitfäh.	Keine	hoch	schlecht	Hoch	Mittel
Temp. Abh.	k.A.	$\propto \frac{1}{T}$	$\propto T$	$\propto T$	$\propto T$

_																			
n=	1,00794		HauptQZ $n=0,1,$								Rel. Masse								
1	1 H		NebenQZ $l=0,\ldots,n-1$								ΕΙ α								
	Wasserstoff									Name des	Elements							Helium	
	6,941	9,01218		Spin:	Š							10,811	12,0107	14,0067	15,9994	18,9984	20,180		
2	3 Li	4 Be		Elektronegativität: <,V							O: Ordnungszahl α: Strahlungsart			6C	7 N	8 O	9 F	10 Ne	
	Lithium	Berylium												Kohlenstoff	Stickstoff	Sauerstoff	Fluor	Neon	
	22,9898	24,305		Dichte ∧,<								26			30,9738	32,065	35,453	39,948	
3	11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 Ar	
	Natrium	Magnesium										Aluminium	Silicium	Phosphor	Schwefel	Chlor	Argon		
	39,0983	40,078	44,9551	47,867	50,9415	51,9961	54,9380	55,845	58,9332	58,6934	63,546	65,409	69,723	72,61	74,9216	78,96	79,904	83,798	
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	30 Kr	
	Kalium	Calcium	Scandium	Titan	Vanadium	Chrom	Mangan	Eisen	Cobalt	Nickel	Kupfer	Zink	Gallium			Selen	Brom	Krypton	
	85,4678	87,62	88,9059	91,224	92,9064	95,94	98 4,2Ma	101,07	102,906	106,42	107,868	112,411	114,818	118,710	121,750	127,60	126,904	131,293	
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Тс в	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
	Rubidium	Strontium	Yttrium	Zirkonium	_	Molybdän		_	1 7	Palladium	Silber	Cadmium	Indium	Zinn	Antimon	Tellur	lod	Xenon	
6	132,905	137,327	174,967	178,49	180,948	183,84	186,207	190,23	192,217	195,084	196,967	200,59	204,383	207,2	208,980	209,98	209,987	222 3,8d	
	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86Rn α	
	Caesium	Barium	Lutetium	Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platin	Gold		Titan	Blei	Bismut	Polonium	Astat	Radon	
	223 22m	226 1,6ka	262	263	262	266	264	269	268	271	272	277							
7	87 Fr a	88Ra α	103 La	104 Rf	105 Db	106 Sq	107 Bh	108 Hs	109 Mt	110 Dt	111 Rg	112 Cn							
	Francium	Radium		Rutherford			Bohrium	Hassium	Meitnerium		Roentgen	Copernic							
	s1	s2	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	p1	p2	р3	p4	p5	p6	