

Machine Learning Fundamentals – DTSC102

Lecture 5 Linear Regression

Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- ➤ Supervised Learning
- ➤ Linear Regression
- ➤ Method of Gradient Descent
- ➤ Parameter Learning

Supervised Learning

- Learning a function $h: x \rightarrow y$ such that h(x) is a good predictor for the corresponding value of y
- h is called the <u>hypothesis</u>
- How do we represent h??

In its simplest form:

$$h(x) = \theta_0 + \theta_1 x$$

where h(x) is some straight-line function of x, and h(x) is a continuous output

That is Linear Regression with One Variable

Supervised Learning

Linear Regression with One Variable

$$h(x) = \theta_0 + \theta_1 x$$

Where θ_0 , θ_1 are the function parameters

 \triangleright How to choose $\theta_i's??$

Supervised Learning

Linear Regression with One Variable

$$h(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0, θ_1 so that h(x) is close to y for our training examples (x, y)

 \triangleright i.e.: Minimize the difference between $h(x_i)$ and y_i

- ➤ Objective: Minimizing cost function
- \triangleright Cost function: average difference between $h(x_i)$ and y_i
- \triangleright Optimize with respect to: θ_0 , θ_1

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Notes:

- $J(\theta_0, \theta_1)$ is defined as a "Mean Square Error Function"; most commonly used for regression problems
- Division by sample size m to get the mean error
- Function is halved as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the (1/2) term.

Optimization Problem

minimize
$$J(\theta_0, \theta_1)$$

BUT Mind the difference between $h_{\theta}(x)$ and $J(\theta_0, \theta_1)$

- Consider a simple example where $\theta_0 = 0$
 - \triangleright Hypothesis: $h_{\theta}(x) = \theta_1 x$
 - \triangleright Parameter: θ_1
 - \triangleright Cost Function: $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x_i) y_i)^2$
 - \triangleright Goal: Minimize $J(\theta_1)$

$$h_{\theta}(x)$$
 $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)

 $h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)

 $h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)

 $h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)

Now consider an example where $\theta_0, \theta_1 \neq 0$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

Now consider an example where $\theta_0, \theta_1 \neq 0$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

• Each ellipse in the contour plot shows sets of values for θ_0 , θ_1 that take on the same value for $J(\theta_0, \theta_1)$

Now consider an example where $\theta_0, \theta_1 \neq 0$ $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

• Each ellipse in the contour plot shows sets of values for θ_0 , θ_1 that take on the same value for $J(\theta_0, \theta_1)$

Now consider an example where $\theta_0, \theta_1 \neq 0$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

• Each ellipse in the contour plot shows sets of values for θ_0 , θ_1 that take on the same value for $J(\theta_0, \theta_1)$

So how can we find values for θ_0, θ_1 to minimize the cost function $J(\theta_0, \theta_1)$??

- ➤ Using the method of Gradient Descent
 - Simplest algorithm for unconstrained programming
 - Also known as Steepest Descent
- ➤ How does Gradient Descent work?
 - Start with some θ_0 , θ_1
 - Free changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum value

Gradient Descent

 \triangleright Start with some θ_0 , θ_1

 \triangleright Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a

Gradient Descent

 \triangleright Start with some θ_0 , θ_1

 \triangleright Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a global

Gradient Descent

 \triangleright Start with some θ_0 , θ_1 (Your beginning value makes a big difference!)

 \triangleright Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a global

Gradient Descent Algorithm

Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 for j=0 & j=1

where:

- α is the learning rate which controls the sizes of steps we take; i.e.: large α implies aggressive gradient descent with large steps and small α implies taking small steps
- $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$ is the rate of change of $J(\theta_0, \theta_1)$ with respect to θ_j
- θ_0 , θ_1 must be updated simultaneously

Gradient Descent Algorithm

Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

for j=0 & j=1

How to select α :

- \triangleright If α is too small, gradient descent can be slow
- If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

Gradient Descent Algorithm

Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 for j=0 & j=1

How to select α :

And anyway, as we approach a local minimum, the gradient term $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ will be come smaller, and gradient descent will automatically take smaller steps. So no need to decrease α over time

Gradient Descent Algorithm

Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
 for j=0 & j=1

Important to know:

- This gradient descent on cost function $J(\theta_0, \theta_1)$ is called Batch Gradient Descent as it looks at every example in the entire training set on every step
- J is a convex quadratic function
- While gradient descent can be susceptible to local minima in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optima; thus gradient descent always converges (assuming the learning rate α is not too large) to the global minimum.

Gradient Descent for Linear Regression

Linear Regression Model

$$h(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Gradient Descent Algorithm

Repeat until convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
for j=0 & j=1

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x_i) - y_i)^2 = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x - y_i)^2$$

For j=0:
$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x - y_i)$$

For j=1:
$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x - y_i) \cdot x_i$$

Gradient Descent for Linear Regression

Algorithm

Repeat until convergence:

$$\{\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1}x - y_{i}), \\ \theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1}x - y_{i}).x_{i}\}$$

And don't forget to update the parameters simultaneously!

Gradient Descent - Fine Tuning

Now that you understand the algorithm, lets turn into fine tuning details!

1. Scaling Features

It is found that during gradient descent if the features are on the **same scale** then the algorithm converges faster than when the features are not appropriately scaled in the same range.

Solution : Get every feature approximately in the range between $-1 \le x \le 1$

Normalization: Divide each feature by max of the feature column

e.g.: $x_1 = size (0 - 2000 feet^2)$ $x_2 = number of bedrooms (1 - 5)$ $x_1 = size/2000$ $x_2 = number of bedrooms/5$

Gradient Descent - Fine Tuning

1. Scaling Features

Another Solution:

Mean Normalization: Replace a feature x_i with $x_i - \mu_i$ so that the approximate mean of the features is 0 which is then normalized. (not applied to x_0)

$$x_i = \frac{x_i - \mu_i}{S_i}$$

e.g.: $x_1 = size (0 - 2000 feet^2)$ $x_2 = number of bedrooms (1 - 5)$ $x_1 = (size - 1000)/2000$ $x_2 = (number of bedrooms - 2)/5$

where:

 x_i is the feature value μ_i is the mean S_i is the standard deviation or the range (min-max)

Gradient Descent - Fine Tuning

2. Learning Rate α

In order to tell if gradient descent is running well, plot $J(\theta)$ vs number of iterations

- In graph A: α seems to be appropriate as $J(\theta)$ converges soon
- In graph B: $J(\theta)$ is taking too long to converge, thus α must be increased
- In graph C: $J(\theta)$ is increasing, thus α must be decreased
- While programming, we typically declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration
- \triangleright Typical values to try for α are: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1,...

Linear hypothesis: Not always a good option!

Linear hypothesis: Not always a good option!

But! Quadratic function eventually comes down, which is not case with our data...

A straight line is not a good representation for the data

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Linear hypothesis: Not always a good option!

e.g.:

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Or a square root function

The Hypothesis is not a linear function but the regression is still linear because regression is interested in values of θ which is still linear

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h(x) = \theta_0 + \theta_1 x + \theta_2 \sqrt{x}$$

Polynomial hypothesis

Considering the choice of a cubic function

• <u>Hypothesis Function:</u>

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$h(x) = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$
(y)

• Features:

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

$$h(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

- Important to consider in Polynomial hypothesis: Feature Scaling
- ightharpoonup If (size)=1:1000, then $(size)^2=1:1000000$ and $(size)^3=1:1000000000$
- Then use Gradient Descent to find parameters θ that minimizes $J(\theta)$

..... but is Gradient Descent the only method to solve Regression problems??

Alternative to Gradient Descent

Recall from Calculus how to minimize any function with respect to its parameters?

- 1. Differentiate the function with respect to each parameter
- 2. Equate derivative to zero to find each parameter's value
- ➤ This approach is called: **Normal Equation**
 - A method to solve for θ analytically
 - Finds optimum parameters without iteration

- 1. Set $\frac{\partial}{\partial \theta_j} J(\theta) = 0$, for every j
- 2. Solve for $\theta_0, \theta_1, \dots, \theta_m$ (m+1 equations)

Or better, solve it using Matrices...

Normal Equation

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} + \theta_{2} x_{2}^{(i)} + \dots + \theta_{n} x_{n}^{(i)} - y^{(i)} \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} + \theta_{2} x_{2}^{(i)} + \dots + \theta_{n} x_{n}^{(i)} - y^{(i)} \right) x_{j}^{(i)}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{0} x_{0}^{(i)} x_{j}^{(i)}\right) + \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{1} x_{1}^{(i)} x_{j}^{(i)}\right) + \cdots + \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{m} x_{m}^{(i)} x_{j}^{(i)}\right) - \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} x_{j}^{(i)}\right) \\ R_{0,j} \qquad R_{1,j} \qquad \text{Correlation} \qquad \text{Correlation} \qquad \text{Correlation}$$

$$(X^T X)\theta - X^T Y = 0$$

$$R_{\gamma\gamma}$$

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Normal Equation

Example: m=4

x_0	Size $(feet)^2$ x_1	Number of Bedrooms x_2	Number of Floors x_3	Age of Home x_4	Price (\$1000) Y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

- \triangleright Add a column for extra feature x_0 with value 1
- Construct Matrix *X* including all features for training data and Vector Y for price values

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}, Y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}, Normal Equation: \boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Gradient Descent vs. Normal Equation

Assuming *m* training examples and *n* features

Gradient Descent	Normal Equation		
Need to choose α	No need to choose α		
Needs many iterations	Doesn't need to iterate		
Needs Feature Scaling	No need for Feature Scaling		
Complexity: $O(kn^2)$	Complexity: $O(n^3)$ (due to the inverse operator)		
Works well even if n is large i.e.: suitable for $n \ge 10^6$	Slow if <i>n</i> is large		

- \triangleright For Normal Equation, X^TX may not always be invertible due to...
- 1. Redundant Features (linearly dependent) \rightarrow Eliminate them
- 2. Too many Features \rightarrow Delete some features / use Regularization