PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-031628

(43) Date of publication of application: 04.02.1997

(51)Int.CI.

C23C 14/06

F16C 33/12

(21)Application number: 07-208535

(71)Applicant: RIKEN CORP

(22)Date of filing:

25.07.1995

(72)Inventor: KOMURO TOSHIAKI

(54) SLIDING MEMBER AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a sliding member excellent in wear and seizing resistances by specifying the size of a metal Cr structure existing in a coating film in a dotty state when the top of a substrate is coated with the coating film having a composite structure based on metal Cr and chromium nitride.

SOLUTION: The top of a substrate is coated with a coating film having a composite structure based on metal Cr and chromium nitride by a reactive ion plating method to produce a sliding member. At this time, the size of a metal Cr structure scattered in the coating film is regulated to 0.2–5µm and the Cr structure is allowed to account for 1–20% of the total area of the coating film. A chromium nitride structure in the coating film is made of CrN, Cr2N or a mixture of them. The substrate is properly selected from among Fe-, Al- and Ti-base materials. The objective sliding member not causing chipping or peeling even under severe service conditions is obtd.

LEGAL STATUS

[Date of request for examination]

26.03.2002

[Date of sending the examiner's decision of

26.10.2005

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-31628

(43)公開日 平成9年(1997)2月4日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C 2 3 C 14/06			C 2 3 C 14/06	Α
F 1 6 C 33/12		71 2 3-3 J	F 1 6 C 33/12	Z

		家在請求	未請求 請求項の数6 FD (全 9 頁)				
(21)出顧番号	特願平7-208535	(71)出顧人	000139023 株式会社リケン				
(22)出顧日	平成7年(1995)7月25日	(72)発明者	東京都千代田区九段北1丁目13番5号 小室 寿朗 新潟県柏崎市北斗町1番37号 株式会社リケン柏崎事業所内				
		(74)代理人	弁理士 桑原 英明				

(54) 【発明の名称】 摺動部材およびその製造方法

(57)【要約】 (修正有)

【課題】 CrNおよびCr,Nを主成分としてなる窒化 クロム系皮膜を有する耐摩耗性および耐焼付性に優れた 摺動部材およびその製造方法。

【解決手段】 基材上に、金属クロム組織が点在する窒 化クロムの複合皮膜を被覆することで得られる耐摩耗性 及び耐焼付性に優れた摺動部材。摺動部材はPVD法に よりクロム及び窒素を混合した気相と基材を接触させる ことにより製造する。

【特許請求の範囲】

【請求項1】 金属クロムおよび窒化クロムを主成分と する複合組織を有する皮膜を基材上に被覆してなる摺動 部材であって、前記皮膜中の点在する金属クロム組織の 大きさが0.2 μm から5 μm の大きさであることを特徴 とする摺動部材。

【請求項2】 金属クロム組織が点在する窒化クロムの 複合皮膜を被覆してなる摺動部材において、点在する金 属クロム組織の皮膜全体に占める面積比率が1~20% であることを特徴とする摺動部材。

【請求項3】 請求項1および3の何れか一項に記載の 摺動部材において、皮膜中の窒化クロム組織が、CrN またはCr, Nおよびその混合である化学組成よりなるこ とを特徴とする摺動部材。

【請求項4】 請求項1から4に記載の摺動部材におい て、前記皮膜と前記基材との間にクロムからなる下地層 が介在することを特徴とする摺動部材。

【請求項5】 摺動部材がピストンリングである請求項 1乃至4の何れか1項に記載の摺動部材。

部材において、前記皮膜PVD法によりクロム及び窒素 を混合した気相と基材を接触させることにより形成する ことを特徴とする摺動部材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CrNおよびCг Nを主成分としてなる窒化クロム系皮膜を有する耐摩耗 性および耐焼付性に優れた摺動部材およびその製造方法 に関する。

[0002]

【従来の技術】例えば、自動車のエンジン部品、各種機 械部品などの摺動部には摺動特性に優れた皮膜を表面処 理により形成した摺動部品が使用されている。従来より 行われている表面処理方法には、窒化処理、クロムめっ き処理、モリブデン溶射処理などの方法がある。しか し、近年摺動部品の使用条件が苛酷になるに従って、部 品にはより高度な摺動特性が要求されるようになり、従 来の表面処理では対応できない場合が生じてきて、更に 優れた耐摩耗性及び耐焼付性を有する皮膜が望まれてい た。このような要請に対し、最近PVD (Physical Vap 40 or Deposition)法により摺動部材の摺動面に金属窒化物 や金属炭化物等の皮膜を被覆することが提案されてい る。TiN、TiC、CrN等のPVD皮膜は、優れた 耐摩耗性、耐焼付性を有しており、特に窒化チタンや窒 化クロムなどが実用化可能な皮膜として注目され、一部 の機械部品やエンジン部品で使用されている。しかし、 現在では使用条件がさらに苛酷になり、これら窒化チタ ンや窒化クロムを用いても、摺動特性が充分とは言えな い状況が生じている。特に摺動運動に加え摺動面に法線 方向の振動運動が相乗し、接触面が離れることが生じる 50 た金属クロム組織の大きさが 5 μπ 以上では局部的に金

場合、または摺動運動において法線方向の荷重が変動す る場合など摺動条件が厳しい使用条件下では、イオンプ レーティングによる窒化クロム皮膜をはじめとする硬質 皮膜において欠け状剥離が発生し、摺動部材の寿命を短 くすることがある。また使用温度が高かったり、接触荷 重が大きく摺動部分に潤滑油膜が形成されにくい場合な ど潤滑条件が厳しい使用条件下でも同様な硬質皮膜の欠 け状剥離が観察される。そこで現状の表面処理皮膜より も耐欠け性及び耐剥離性に優れたセラミックスコーティ 10 ング皮膜を被覆した摺動部材が望まれている。

[0003]

【発明が解決しようとする課題】本発明は以上の観点に 基づいてなされたもので、厳しい使用条件下でも欠けや 剥離が発生せず、同時に充分な耐焼付性、耐摩耗性を有 するクロム窒化物皮膜を被覆した摺動部材およびその製 造方法を提供することを目的とする。

[0004]

【課題を解決するための手段】上記問題を解決すべく鋭 意研究の結果、本発明者は、PVD法によりクロムおよ 【請求項6】 請求項1から5の何れか一項記載の摺動 20 び窒素を混合した気相を基材に接触させ、基材の表面上 にCrNおよびCr,Nを主成分とし、金属クロム組織が 皮膜中に点在している複合皮膜を形成させ、その際点在 している金属クロム組織の大きさを0.2~5 μm 、金属 クロム組織の面積率が1~20%に調整することによ り、耐摩耗性、耐焼付性に優れさらに欠け状剥離が発生 しにくい摺動部材が得られることを見出し、本発明を完 成した。すなわち、本発明の摺動部材は、CェNおよび Cr. Nを主成分とし、金属クロム組織が皮膜中に点在し ている窒化クロム複合皮膜を形成させ、その際点在して 30 いる金属クロム組織の大きさおよび金属クロム組織の面 積率を限定することを特徴とする。本発明の摺動部材に おける皮膜は、軟質の金属クロム組織が窒化クロム皮膜 中に均一に点在しているために、高硬度である窒化クロ ムのみよりなる皮膜に比べ、靱性に優れる。従って、本 部材は欠けや剥離が発生しにくい。

> 【0005】金属クロム組織が窒化クロム組織中に点在 する皮膜を形成するために、金属クロム蒸発源を複数個 備えたイオンプレーティング法を使用する。反応ガス分 圧および各々の金属クロム蒸発源と被処理物との距離を 異なるように調整することにより、蒸発クロムと反応ガ スとの反応速度を制御し、目的とする皮膜を形成する。 反応窒素ガス分圧、金属クロム蒸発源と被処理物の距離 およびアーク電流比を調整することにより皮膜中の金属 クロム組織の量および大きさ、さらに窒化クロムの組成 を適宜調整することが可能である。金属クロム組織の大 きさは、0.2~5 μm 、面積率は1~20%の範囲に限 定される。金属クロム組織の大きさが0.2 μm 以下、ま たは面積率が1%以下では金属クロム組織の効果が顕著 でなく、耐欠けおよび耐剥離性の向上がみられない。ま

属クロム組織が表面に露呈し耐スカッフ性が窒化クロム 単一組織に比べ低下する。一方、面積率が20%以上で は皮膜硬さが低下し、窒化クロム単一組織に比較し耐ス カッフ性、耐摩耗性とも劣化する。皮膜の全体の厚みは 1~80μm であることが好ましい。特に好ましくは2 0~60 μm である。皮膜の厚みが1 μm 未満の場合、 摩耗により皮膜の寿命は短い。一方、皮膜全体の厚みが 60 µm を超える場合、皮膜が剥離したり、皮膜に亀裂 が生じたりして、基材との密着力が低下する。また必要 以上に皮膜を厚くすることは、経済上好ましくない。皮 10 膜で被覆する基材は、鉄系材料、アルミ系材料、およ び、チタン系材料の中から用途により適宜選択する。以 下詳しく説明するPVD法は、CVD (Chemical Vapor Deposition)法などに比べ低温処理に類するが、蒸着現 象による入熱は避けられないので、できれば耐熱性のあ る鉄系材料およびチタン材料を基材として使用すること が好ましい。

【0006】以上が、金属クロム組織が点在する窒化ク ロム皮膜を基材に形成させる方法であるが、本発明にお い。上述における皮膜形成の工程中、窒素ガスの導入前 にイオンプレーティングを行うと基材にクロム金属の下 地層が形成される。このクロム金属の下地層は、熱膨張 率が基材に近く、熱応力の影響を受けにくいため、密着 性が良好で柔軟性に富む。クロム金属の下地層は0.1~ 2 μm の厚さに形成するのが好ましい。0.1 μm 未満で は密着性向上の効果が薄く、また2 μm を超えてもそれ 以上の効果を得ることはできず、また経済上も好ましく ない。このように皮膜と基材との間に、密着性および柔 軟性に富む下地層を形成することは、皮膜の剥離防止に 30 効果がある。

[0007]

【発明の実施の形態】

【実施例】本発明を以下に、具体的実施例によりさらに 詳細に説明する。本発明において、PVD法によりクロ ムおよび窒素を混合した気相と基材とを接触させる。P VD法は、皮膜を形成する技術の一種であり、基本的に は蒸着、スパッタリング、イオンプレーティングの三法 に分類できる。特に、本発明においては、クロムの蒸気 を窒素と反応させて窒化クロムの皮膜を基材上に堆積さ せる反応性イオンプレーティング法が最も好ましい。ク ロム蒸気は、HCDガンや電子ビームなどの高エネルギ ービームをクロムに照射し、蒸発させることにより得 る。また陰極アークプラズマ式イオンプレーティング 法、およびスパッタリング法のように、陰極からクロム 粒子を飛出させることにより、クロム蒸気を得てもよ い。そのクロム蒸気に窒素を混合した気相中でプラズマ を発生させると、クロムはイオン化し、窒化イオンと結 合し窒化クロムを生成する。その結果、基材表面に窒化 クロムの皮膜が形成される。以下においては、イオンプ 50 また、個々のターゲットに流すアーク電流値、ターゲッ

レーティング法を例にとって説明するが、本発明はこれ に限定されない。

【0008】図1に本発明に用いられるイオンプレーテ ィング装置の一例を示す。との装置は、反応窒素ガス入 □22、排気□23を有する真空容器24を備え、真空 容器24内にアーク電源25の陰極に接続された第一タ ーゲット26とアーク電源27の陰極に接続された第二 ターゲット28が配置されている。第一および第二ター ゲットには金属クロムがセットされている。第一ターゲ ットと第二ターゲットは、被処理物よりの距離が異なっ て設置されている。さらに、真空容器24内には、バイ アス電源29に接続された回転テーブル30が配置され テーブル上には、被処理物31が設置されている。次 に、このイオンプレーティング装置を用いて、被処理物 31に本発明皮膜を形成する方法について説明する。ま ず、被処理物31を洗浄し、表面に付着した汚れを取 り、充分清浄化してイオンプレーティング装置の真空容 器24内に挿入した後、排気口23より排気する。容器 内圧力が1.3×10-3~5×10-3Paになるまで真空 いては皮膜と基材との間に金属下地層を介在させてもよ 20 引きを行なってから、イオンプレーティング装置に内蔵 されているヒーターにより加熱して基材の内在ガスを放 出させる。加熱温度は300~500℃とするのが好ま しい。チャンバー内圧力が4×10-3Pa以下になった 時点でターゲットであるクロムを陰極として、その表面 でアーク放電を発生させクロムを飛び出させる。この 際、被処理物31にはバイアス電圧を印加しておき、陰 極より飛び出した金属イオンを基板表面に高エネルギー で衝突させる方法、いわゆるボンバードクリーニングに より基材表面の酸化物除去と活性化処理を行う。そのと きのバイアス電圧は-700~-900Vとするのが好 ましい。その後バイアス電圧を低下させ、クロムイオン を基材表面に堆積させながら、窒素ガスを容器内に導入 し、プラズマ内を通過させて、窒素をイオン化する。こ の際、窒素分圧を1.3×10-1~13.3 Pa程度にし て、バイアス電圧を0~-100V印加して基材表面に イオンプレーティング皮膜を形成させる。この皮膜形成 時において、第一ターゲットより蒸発したクロム粒子 は、被処理物との距離が短いので、反応ガスの窒素分子 と衝突する確率は低く、またプラズマ中を通過する時間 が短いのでイオン化しにくく、ガス分圧と距離の選択に よっては、金属のまま被処理物上に析出することができ る。また第二ターゲットより蒸発したクロム粒子は、該 第一ターゲットより被処理物との距離が長いので、ガス 分圧とワーク距離との選択によりCr, N、Cr, N+Cr Nの混合皮膜、CrNを析出することができる。すなわ ち、ガス分圧を適宜選択し、第一ターゲットを金属クロ ムの析出する距離に、第二ターゲットを窒化クロムの析 出する距離に配置することにより、金属クロムと窒化ク ロムからなる複合組成の皮膜を形成することができる。

トと被処理物の距離を適当に設定することにより金属ク ロム組織と窒化クロム組織の複合比を変化させたり、点 在する金属クロム組織の大きさおよび面積比を制御する ことができる。以下に具体的な実施例によりその作用お よび効果を説明する。前述した方法により、材質がSU S440材のテストピース表面に金属クロム組織が点在 した種々の窒化クロム複合皮膜を作成した。第一ターゲ ットの被処理物との距離は約50mmであり、これは予備 実験の結果金属クロムが析出することを確認しており、 また金属クロム組織の大きさはアーク電流に比例すると 10 【表1】 とも確認した。 金属クロム組織の面積率は、二個のアー*

* ク電流比により調整できる。さらに第二ターゲットの被 処理物との距離は約200mmとした。窒素分圧によって 組成は異なり、窒素分圧が高くなるにつれてCRN、C r, N+CrNの混合皮膜、CrNと変化する。皮膜の組 成は、X線回折により、金属クロム組織の大きさと面積 率はEPMAで、また皮膜硬さはマイクロビッカース硬 度計で測定した。本発明部材の作成条件と測定結果を表 1 に示した。

[0009]

表 1

٦-	ティング	条件	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6
第一ターゲットと 被処理物との 距離(mm)			5 0	5 0	5 0	5 0	5 0	5 0
	-ターゲッ -ク電流(100	100	100	90	140	140
第二ターゲットと 被処理物との 距離(m)			200	200	200	200	200	200
第二ターゲット アーク電流(A)			200	200	200	200	200	150
窒素	ガス分E	E(Pa)	0.5	0. 7	1.0	1. 0	1.0	1. 0
-	ティング	分時間	120	120	120	120	120	120
	組	成	Cr, Cr ₂ N	Cr, Cr ₂ N, CrN	Cr, CrN	Cr, CrN	Cr, CrN	Cr, CrN
測	硬	さ	1400~1900	1400~1900	1400~1900	1400~1900	1400~1900	1200~1700
定	膜厚	μū	3 0	2 9	2 7	2 6	2 8	2 7
結果	織の平均径		1.0	1. 1	1. 1	0. 5	21	2.3
	金属クロ 織の面		7. 1	6. 8	5. 9	2.8	7.4	8.6

【0010】なお比較例として、従来から公知である窒 化クロム皮膜を作成しその性質を同様に測定した(比較 例1~3)。さらに金属クロム組織が窒化クロム皮膜中 に点在するが、金属クロム組織の大きさおよび面積率が 不適当な例についても比較した(比較例4~6)。それ らの作成条件と測定結果を表2に示した。

[0011]

【表2】

8

2 丧

コー	ティング	7条件	比較例1	比較例2	比較例3	比較例4	比較例5	比較例6
第一ターゲットと 被処理物との 距離(mm)			200	200	200	5 0	5 0	5 0
	-ターゲ -ク電流(′ `	200	200	200	70	90	200
	ニターゲ・ 心理物との 距離(ס	200	2 0 0	200	200	200	200
	ニターゲ -ク電流(200	200	200	220	300	100
窒	スプス 分 [E (Pa)	0. 5	0. 7	1.0	1. 0	1. 0	1. 0
_	ティング	分時間分分	90	9 0	90	120	120	120
	組	成	Cr₂N	Cr ₂ N, CrN	CrN	CrN	CrN	CrN
測	硬	ż	1700~2000	1700~2000	1700~2000	1500~1900	1500~1900	1100~1600
定	膜厚	μĐ	2 8	2 6	2 5	2 6	3 5	2 9
結果	金属クロ総の平					0. 1	0. 5	5. 7
	金属クロ機の面					0. 5	0. 7	21, 4

する。SKD61材からなり、縦5mm×横5mm×髙さ5 mmのピン状突起10(図2、図3参照)を同心円上に等 間隔に三個配置した試験片5を用いて、5mm角の正方形 端面に本発明による皮膜を厚さ20~30μm 形成した 試験片を作成して、超高圧摩耗試験機によって耐焼付性 試験を行なった。前述した方法により形成した実施例皮 膜と比較例皮膜について試験を実施した。さらに比較例 として、試験片の5 mm角の端面に厚さ100 μm のクロ ムめっき皮膜(比較例7)を形成した試験片を用いて同 の装置と試験条件は次の通りである。試験装置は図2 お よび図2のA-A矢視断面図である図3に要部を図解的 に示すものであって、ステータホルダ1に取外し可能に 取り付けられた直径80mm×厚さ10mmの研磨仕上げを 施した円盤2(相手材)の中央には、裏側から注油口3 を通して潤滑油が注油される。ステータホルダ1には図 示しない油圧装置によって図において右方に向けて所定 圧力で押圧力Pが作用するようにしてある。円盤2に相 対向してロータ4があり、図示しない駆動装置によって 所定速度で回転するようにしてある。ロータ4には試験 50 抽温 80℃、供給量 250cc/分

【0012】〔耐焼付性〕本発明材料の耐焼付性を評価 30 片5が表面処理層を形成した5㎜角の正方形の端面を摺 動面として円盤2に対し摺動自在に取り付けてある。こ のような装置において、ステータホルダ1に所定の押圧 カPをかけ、所定の面圧で円盤2と試験片5のピン状突 起10とが接触するようにしておいて、注油口3から摺 動面に所定給油速度で給油しながらロータ4を回転させ る。一定時間毎にステータホルダ1に作用する圧力を段 階的に増加していき、ロータ4の回転によって試験片5 と相手の円盤2との摩擦によってステータホルダ1に生 ずるトルクTをステンレスファイバー6を介してロード 様な試験を追加した。本試験に用いた超高圧摩耗試験機 40 セルフに作用せしめ、その変化を動歪計8で読取り、記 録計9に記録させる。トルクTが急激に上昇したとき焼 付が発生したものとして、この時の接触面圧をもって耐 焼付特性の良否を判断する。相手材としては、鉄系FC 250材を用いた。試験条件は次の通りである。

> 摩擦速度:8m/秒 相手材 : FC250材

接触面圧:20kgf/cmlでならした後、焼付発生まで

10kgf/cm² ずつ増圧。各面圧に3分間保持。

潤滑油 :モーターオイル#30

9

試験結果を表3に示した。

*【表3】

[0013]

* 夷 3

	実施例1	実施例2	実施列3	実施例4	実施例5	実施例6	比較例3	比較例6	比較例7
烧付発生植(kgf/cm²)	283	285	289	290	284	281	290	259	253

【0014】FC25相手で本発明品は接触面圧281 から290kgf/cm²で焼付が発生した。比較品のクロ ムめっきの耐焼付面圧253kgf/cm²以上であり、耐 焼付性が優れているCrN単一皮膜(比較例3)と同等 である。金属クロム組織が窒化クロム皮膜に点在して も、金属クロム組織が大きくその面積率が大きいと効果 は小さい(比較例6)。

【0015】〔耐摩耗性〕科研式摩耗試験機により本発 明材料の腐蝕摩耗試験を実施した。基板材質がSKD-61材で、形状は縦5mm×横5mm×長さ20mm、長手方 向の一方の先端をR6mmの曲面とした試験片を用い、前 20 雰囲気 述した実施例、比較例皮膜を試験片の先端に20~35 μm の厚さで被覆した。さらに比較例として試験片先端 Rに厚さ100μm のクロムめっき試験片を用いて同様 な試験を行なった。(比較例7) Ж

10% 試験は、表面処理を施した試験片の先端R部をドラム状 に加工した相手材の外周部に曲面同士が線接触するよう に合わせ、所定荷重を加え、所定速度で回転する。潤滑 は、PH=2に調整した硫酸水溶液を接触部に一定量滴 下して行ない、酸性雰囲気とした。試験条件は次の通り である。

10

摺動相手材:FC250材 摩擦速度 : 0.25 m/秒

摩擦時間 : 6 時間 接触荷重 : 4 kg

: 摺動部にPH=2.0 に調整した硫酸水溶液

を1.5 cc/分滴下

皮膜摩耗量の測定値を表4に示した。

[0016] 【表4】

表

	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	比較例3	比較例 6	比較例7
比摩耗量	5. 7	5. 5	5. 1	4. 6	6. 2	6. 7	4. 1	22. 0	100

※ クロムめっきの皮膜の摩耗量を100とした相対値

【0017】結果はクロムめっき皮膜の摩耗量を100 とした相対値で示した。比較例であるクロムめっき品に 比べ、本発明品は摩耗量が1/20~1/25と大幅に 減少しており、耐摩耗性がとくに優れるCrN単一皮膜 (比較例3)と同等である。金属クロム組織が窒化クロ ム皮膜に点在しても、金属クロム組織が大きくその面積 率が大きいと効果は小さい(比較例6)。

【0018】 〔耐剥離性〕 すべりを伴う転がり疲労試験 機(ローラーピッチング試験機)により本発明部材に被 覆した皮膜の耐剥離性を評価した。試験片の基板材質は SCM420材を浸炭処理した材料で、形状はφ26 mm ×28mmのローラー状でその外周表面に本発明皮膜およ び比較例皮膜を約50μmの厚さ処理した。各種皮膜の 膜厚は、被覆時間を調整して揃えた。本試験に用いたビ ッチング試験機の装置と試験条件は次の通りである。試 験装置は、図4に要部を図解的に示すものであって、φ

ー11と相対向して負荷ローラー12があり、所定圧力 で押圧力が作用するようにしてある。テストローラー1 1は、図示しない駆動装置により所定速度で回転するよ うにしてあり、その試験片13の外周には表面処理層を 形成する。 負荷ローラー12は、 φ130×18の大き さで、外周はR300mmの形状をして微視的には試験片 40 13と点接触し、大きな押圧力をかけられるようになっ ている。また、負荷ローラー12はテストローラー11 に対し図示しない歯車を介し従動し、相対的に滑りなが ら回転するようになっている。滑り率は試験片周速(U 13)と負荷ローラー周速(U12)により、(U13 -U12)/U13で表され、任意に選定できる。試験 片11と負荷ローラー12の接触部には、図示しない注 油口を通して潤滑油が注がれる。このような装置におい て、試験片13に所定の押圧力をかけ、所定の面圧で試 験片13と負荷ローラー12とが接触するようにしてお 26mm×28mmの試験片13を取り付けたテストローラ 50 いて、接触部に所定注油速度で注油しながらテストロー

11

ラーを所定速度で回転させるとともに、所定滑り率で負 荷ローラー12を回転させる。試験中定期的に試験片表 面を注意深く観察し、試験片の表面に欠け状剥離が発生 するまでの回転の累計より耐剥離性の良否を判断する。

相手材である負荷ローラーの材質はFC250材を用い

た。試験条件は次の通りである。

面圧(ヘルツ応力): 160kgf/mm²

試験片周速

: 82 m/s

*滑り率

: 20%

使用オイル

:#30 (ベースオイル)

オイル流量

:1200cc/分

12

オイル温度

:80℃

試験結果を表5に示した。

[0019]

【表5】

* 表 5

	実施例1	実施例2	実施例3	実施例4	実施例5	実施例 6	比較例1	比較例2	比較例3	比較例4	比較例5
剝離発生	2×10' 回で発生	2×10 ⁷ 回で発生	3.1×10 ⁸ 回で象徴能	3. 2×10 ⁸ 回で象雑	2.9×10 ⁶ 回で剝離	4.6×10 ⁸ 回で象離	5.6×10 ⁶ 回で剁雌				
	신호"	世章	신호	원 ਰ	स वे	ਦ ਭ ਾ					

【0020】本発明品は、比較例である高硬度窒化クロ ムに対し、耐剥離性が非常に優れている。比較例4、比 20 2 円盤(相手材) 較例5のように金属クロム組織を窒化クロム皮膜中に点 在させても大きさが小さかったり、面積率が低いと剥離 が生じやすい。

[0021]

【発明の効果】以上説明したことから明らかなように、 本発明は基材の表面上にPVD法によりCrNおよびC r₂ Nを主成分とし、金属クロム組織が皮膜中に点在して いる複合皮膜を形成させることにより、従来から使用さ れている硬質皮膜に比較して、耐摩耗性、耐焼付性に優 れさらに欠け状剥離が発生しにくい摺動部材ならびに、 30 12 負荷ローラー その摺動部材の製造法を提供する。本発明部材は、ピス トンリング、カムフォロアなどのエンジン部品、さらに はシューディスクなどのコンプレッサー部品をはじめと する摺動部品や切削工具などに好適である。

【図面の簡単な説明】

- 【図1】イオンプレーティング装置の概略図である。
- 【図2】超髙圧摩耗試験機の一部破砕説明図である。
- 【図3】図1のA-A矢視からみた断面図である。
- 【図4】転がり疲労試験機の概要説明図である。

【符号の説明】

- 1 ステータホルダ
- - 3 注油口
- 4 ロータ
- 5 試験片
- 6 ステンレスファイバー
- 7 ロードセル
- 8 動歪計
- 9 記録計
- 10 試験片のピン状突起(5 mm角)
- 11 テストローラー
- 13 試験片
- 22 反応ガス入口
- 2.3 排気口
- 24 真空容器
- 25、27 アーク電源
- 26 第一ターゲット
- 28 第二ターゲット
- 29 バイアス電源
- 30 回転テーブル
- 40 31 被処理物

【手続補正書】

【提出日】平成8年9月5日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

[0011]

【表2】

表 2

				 				
コー	ティング	条件	比較例1	比較例2	比較例3	比較例4	比較例5	比較例6
	-ターゲッ <u>-</u> 理物との 距離(i	>	200	200	200	5 0	5 0	5 0
	-ターゲッ -ク電流(200	200	200	70	90	200
第二ターゲットと 被処理物との 距離(mm)			動との 200		200	200	200	200
第二ターゲット アーク電流(A)			200	200	200	220	300	100
空男	ガス分E	E(Pa)	0.5	0. 7	1.0	1. 0	1.0	1. 0
-	ティング		90	9 0	90	120	120	120
	組	成	Cr ₂ N	Cr2N, CrN	CrN	Cr, CrN	Cr, CrN	Cr, CrN
測	硬	ż	1700~2000	1700~2000	1700~2000	1500~1900	1500~1900	1100~1600
定	膜厚	μm	2 8	2 6	2 5	2 6	3 5	2 9
結果	織の平均径					0.1	0.5	5. 7
	金属クロ機の面積					0.5	0.7	21. 4