Complex Analysis Qualifying Exam Review

D. Zack Garza

Table of Contents

Contents

Ta	Table of Contents 2					
1	Use	ful Techniques	4			
	1.1	Notation	4			
	1.2	Greatest Hits	4			
	1.3	Basic but Useful Facts	5			
	1.4	Advice	6			
2	Calculus Preliminaries					
	2.1	Convergence	6			
	2.2	Series and Sequences	7			
	2.3	Exercises	9			
3	Prel	liminaries	9			
•	3.1	Complex Arithmetic	9			
	3.2		10			
	0.2		10			
		3.2.2 Delbar, Harmonic Functions, Laplacian				
		3.2.3 Exercises				
	3.3		16			
	0.0		19			
	Cauchy's Theorem 2					
4						
	4.1		21			
	4.2		22 20			
			$\frac{22}{2}$			
			23			
	4.0	4.2.3 Continuation Principle				
	4.3		24			
		4.3.1 Symmetric Regions	24			
5	Zero	os and Singularities 2	25			
6	Resi	idues 2	28			
	6.1	Computing Residues	28			
		• •	30			
	6.2		31			
		•	32			
	6.3		32			
7	Rou	oche	32			
•			32			

Contents

8	Conformal Maps	33			
	8.1 Linear Fractional Transformations	33			
	8.2 Schwarz	35			
	8.3 By Type				
	8.3.1 Plane to Disc				
	8.3.2 Sector to Disc	36			
	8.3.3 Strip to Disc	36			
9	Schwarz Reflection	37			
10	Linear Fractional Transformations	37			
11	Unsorted Theorems	37			
12	Appendix: Proofs of the Fundamental Theorem of Algebra	38			
	12.0.1 Fundamental Theorem of Algebra: Argument Principle	38			
	12.0.2 Fundamental Theorem of Algebra: Rouche's Theorem	38			
	12.0.3 Fundamental Theorem of Algebra: Liouville's Theorem	39			
	12.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem	39			
13	Appendix				
	13.1 Misc Basic Algebra	40			
14	Draft of Problem Book	42			

Contents 3

A great deal of content borrowed from the following: https://web.stanford.edu/~chriseur/notes_pdf/Eur_ComplexAnalysis_Notes.pdf

1 | Useful Techniques

1.1 Notation

Remark 1.1.1(Showing a function is constant): If you want to show that a function f is constant, try one of the following:

- Write f = u + iv and use Cauchy-Riemann to show $u_x, u_y = 0$, etc.
- Show that f is entire and bounded.

If you additionally want to show f is zero, try one of these:

• Show f is entire, bounded, and $\lim_{z\to\infty} f(z) = 0$.

1.2 Greatest Hits

Things to know well:

- Estimates for derivatives, mean value theorem
- ??CauchyTheorem|Cauchy's Theorem
- ??CauchyIntegral|Cauchy's Integral Formula
- ??CauchyInequality|Cauchy's Inequality

1.2 Greatest Hits

- ??Morera]Morera's Theorem
- ??SchwarzReflection|The Schwarz Reflection Principle
- ??MaximumModulus|Maximum Modulus Principle
- ??SchwarzLemma]The Schwarz Lemma
- ??Liouville|Liouville's Theorem
- ??Casorati|Casorati-Weierstrass Theorem
- ??Rouche]Rouché's Theorem
- Properties of linear fractional transformations
- Automorphisms of $\mathbb{D}, \mathbb{C}, \mathbb{CP}^1$.

1.3 Basic but Useful Facts

Fact 1.3.1 (Some useful facts about basic complex algebra)

•
$$z\bar{z} = |z|^2$$

$$\Re(z) = \frac{z + \bar{z}}{2}$$

$$\Im(z) = \frac{z - \bar{z}}{2i}.$$

- $\operatorname{Arg}(z/w) = \operatorname{Arg}(z) \operatorname{Arg}(w)$.
- Exponential forms of cosine and sine:

$$\cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

$$\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right).$$

• Various differentials:

$$dz = dx + i dy$$

$$d\bar{z} = dx - i \ dy$$

$$f_z = f_x = f_u/i$$
.

• Integral of a complex exponential:

$$\int_0^{2\pi} e^{i\ell x} dx = \begin{cases} 2\pi & \ell = 0 \\ 0 & \text{else} \end{cases}.$$

Fact 1.3.2 (Some useful series)

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\log(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n} (z-a)^n$$

$$\frac{\partial}{\partial z} \sum_{j=0}^{\infty} a_j z^j = \sum_{j=0}^{\infty} a_{j+1} z^j$$

• Consider 1/f(z) and f(1/z).

2 | Calculus Preliminaries

Theorem 2.0.1 (Implicit Function Theorem).

Theorem 2.0.2 (Inverse Function Theorem).

Theorem 2.0.3 (Green's Theorem).

If $\Omega \subseteq \mathbb{C}$ is bounded with $\partial\Omega$ piecewise smooth and $f,g \in C^1(\overline{\Omega})$, then

$$\int_{\partial\Omega} f \, dx + g \, dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \, dA.$$

2.1 Convergence

Remark 2.1.1: Recall that absolutely convergent implies convergent, but not conversely: $\sum k^{-1} = \infty$ but $\sum (-1)^k k^{-1} < \infty$. This converges because the even (odd) partial sums are monotone

increasing/decreasing respectively and in (0,1), so they converge to a finite number. Their difference converges to 0, and their common limit is the limit of the sum.

Proposition 2.1.2 (Uniform Convergence of Series).

A series of functions $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly iff

$$\lim_{n \to \infty} \left\| \sum_{k \ge n} f_k \right\|_{\infty} = 0.$$

Theorem 2.1.3 (Weierstrass M-Test).

If $\{f_n\}$ with $f_n: \Omega \to \mathbb{C}$ and there exists a sequence $\{M_n\}$ with $\|f_n\|_{\infty} \leq M_n$ and $\sum_{n \in \mathbb{N}} M_n < \infty$,

then $f(x) := \sum_{x \in \mathbb{N}} f_n(x)$ converges absolutely and uniformly on Ω .

Moreover, if the f_n are continuous, by the uniform limit theorem, f is again continuous.

2.2 Series and Sequences

Remark 2.2.1: Note that if a power series converges uniformly, then summing commutes with integrating or differentiating.

Fact 2.2.2

Consider $\sum c_k z^k$, set $R = \lim \left| \frac{c_{k+1}}{c_k} \right|$, and recall the **ratio test**:

- $R \in (0,1) \implies$ convergence.
- $R \in [1, \infty] \implies$ divergence.
- R = 1 yields no information.

Proposition 2.2.3 (Radius of Convergence by the Root Test).

For
$$f(z) = \sum_{k \in \mathbb{N}} c_k z^k$$
, defining

$$\frac{1}{R} := \limsup_{k} |a_k|^{\frac{1}{k}},$$

then f converges absolutely and uniformly for $D_R := |z| < R$ and diverges for |z| > R. Moreover f is holomorphic in D_R , can be differentiated term-by-term, and $f' = \sum_{k \in \mathbb{N}} nc_k z^k$.

Fact 2.2.4

Recall the *p*-test:

$$\sum n^{-p} < \infty \iff p \in (1, \infty).$$

Fact 2.2.5

The product of two sequences is given by the Cauchy product

$$\sum a_k z^k \cdot \sum b_k z^k = \sum c_k z^k, \quad c_k \coloneqq \sum_{j \le k} a_k b_{k-j}.$$

Fact 2.2.6

Recall how to carry out polynomial long division:

Polynomial long division

Fact 2.2.7 (Partial Fraction Decomposition)

- For every root r_i of multiplicity 1, include a term $A/(x-r_i)$.
- For any factors g(x) of multiplicity k, include terms $A_1/g(x), A_2/g(x)^2, \dots, A_k/g(x)^k$. For irreducible quadratic factors $h_i(x)$, include terms of the form $\frac{Ax+B}{h_i(x)}$.

Fact 2.2.8 (Generalized Binomial Theorem)

Define $(n)_k$ to be the falling factorial $\prod_{j=0}^{k-1} (n-k) = n(n-1)\cdots(n-k+1)$ and set $\binom{n}{k} \coloneqq (n)_k/k!$, then

$$(x+y)^n = \sum_{k \ge 0} \binom{n}{k} x^k y^{n-k}.$$

Fact 2.2.9 (Some useful series)

$$\sqrt{1+x} = (1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \cdots$$

Fact 2.2.10

Useful trick for expanding square roots:

$$\sqrt{z} = \sqrt{z_0 + z - z_0} = \sqrt{z_0 \left(1 + \frac{z - z_0}{z}\right)} = \sqrt{z_0} \sqrt{1 + u}, \quad u := \frac{z - z_0}{z}$$

$$\implies \sqrt{z} = \sqrt{z_0} \sum_{k \ge 0} \binom{1/2}{k} \left(\frac{z - z_0}{z}\right)^k.$$

2.3 Exercises

Exercise 2.3.1 (?)

Find the radius of convergences for the power series expansion of \sqrt{z} about $z_0 = 4 + 3i$.

3 | Preliminaries

3.1 Complex Arithmetic

Fact 3.1.1 (Complex roots of a number)

The complex *n*th roots of $z := re^{i\theta}$ are given by

$$\left\{\omega_k := r^{1/n} e^{i\left(\frac{\theta+2k\pi}{n}\right)} \mid 0 \le k \le n-1\right\}.$$

Note that one root is $r^{1/n} \in \mathbb{R}$, and the rest are separated by angles of $2\pi/n$. Mnemonic:

$$z = re^{i\theta} = re^{i(\theta + 2k\pi)} \implies z^{1/n} = \cdots$$

Fact 3.1.2 (Complex Log)

For $z = re^{i\theta} \neq 0$, θ is of the form $\Theta + 2k\pi$ where $\Theta = \operatorname{Arg} z$

Fact 3.1.3

Common trick:

$$f^{1/n} = e^{\frac{1}{n}\log(f)},$$

taking (say) a principal branch of log given by $\mathbb{C} \setminus (-\infty, 0] \times 0$.

3.2 Complex Calculus

Remark 3.2.1: When parameterizing integrals $\int_{\gamma} f(z) dz$, parameterize γ by θ and write $z = re^{i\theta}$ so $dz = ire^{i\theta} d\theta$.

⚠ Warning 3.2.2

 $f(z) = \sin(z), \cos(z)$ are unbounded on \mathbb{C} ! An easy way to see this: they are nonconstant and entire, thus unbounded by Liouville.

Example 3.2.3(?): You can show $f(z) = \sqrt{z}$ is not holomorphic by showing its integral over S^1 is nonzero. This is a direct computation:

$$\int_{S^1} z^{1/2} dz = \int_0^{2\pi} (e^{i\theta})^{1/2} i e^{i\theta} d\theta$$

$$= i \int_0^{2\pi} e^{\frac{i3\theta}{2}} d\theta$$

$$= i \left(\frac{2}{3i}\right) e^{\frac{i3\theta}{2}} \Big|_0^{2\pi}$$

$$= \frac{2}{3} \left(e^{3\pi i - 1}\right)$$

$$= -\frac{4}{3}.$$

Note an issue: a different parameterization yields a different (still nonzero) number

$$\cdots = \int_{-\pi}^{\pi} (e^{i\theta})^{1/2} i e^{i\theta} d\theta$$

$$= \frac{2}{3} \left(e^{\frac{3\pi i}{2}} - e^{\frac{-3\pi i}{2}} \right)$$

$$= -\frac{4i}{3}.$$

This is these are paths that don't lift to closed loops on the Riemann surface defined by $z \mapsto z^2$.

3.2.1 Holomorphy and Cauchy-Riemann

Definition 3.2.4 (Analytic)

A function $f: \Omega \to \mathbb{C}$ is analytic at $z_0 \in \Omega$ iff there exists a power series $g(z) = \sum a_n (z - z_0)^n$ with radius of convergence R > 0 and a neighborhood $U \ni z_0$ such that f(z) = g(z) on U.

Definition 3.2.5 (Complex differentiable / holomorphic /entire)

A function $f: \mathbb{C} \to \mathbb{C}$ is **complex differentiable** or **holomorphic** at z_0 iff the following limit

exists:

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(h)}{h}.$$

A function that is holomorphic on \mathbb{C} is said to be **entire**.

Equivalently, there exists an $\alpha \in \mathbb{C}$ such that

$$f(z_0 + h) - f(z_0) = \alpha h + R(h)$$
 $R(h) \xrightarrow{h \to 0} 0.$

In this case, $\alpha = f'(z_0)$.

Example 3.2.6 (Holomorphic vs non-holomorphic):

- f(z) = \frac{1}{z} \text{ is holomorphic on \$\mathbb{C} \ \{0\}\$.
 f(z) = \bar{z} \text{ is not holomorphic, since \$\frac{\bar{h}}{h}\$ does not converge (but is real differentiable).

Definition 3.2.7 (Real (multivariate) differentiable)

A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is **real-differentiable** at **p** iff there exists a linear transformation Asuch that

$$\frac{\|F(\mathbf{p} + \mathbf{h}) - F(\mathbf{p}) - A(\mathbf{h})\|}{\|\mathbf{h}\|} \stackrel{\|\mathbf{h}\| \to 0}{\longrightarrow} 0.$$

Rewriting,

$$||F(\mathbf{p} + \mathbf{h}) - F(\mathbf{p}) - A(\mathbf{h})|| = ||\mathbf{h}|| ||R(\mathbf{h})||$$
 $||R(\mathbf{h})|| \stackrel{||\mathbf{h}|| \to 0}{\longrightarrow} 0.$

Equivalently,

$$F(\mathbf{p} + \mathbf{h}) - F(\mathbf{p}) = A(\mathbf{h}) + \|\mathbf{h}\| R(\mathbf{h})$$
 $\|R(\mathbf{h})\| \stackrel{\|\mathbf{h}\| \to 0}{\longrightarrow} 0.$

Or in a slightly more useful form,

$$F(\mathbf{p} + \mathbf{h}) = F(\mathbf{p}) + A(\mathbf{h}) + R(\mathbf{h})$$
 $R \in o(\|\mathbf{h}\|), \text{ i.e. } \frac{\|R(\mathbf{h})\|}{\|\mathbf{h}\|} \xrightarrow{\mathbf{h} \to 0} 0.$

Proposition 3.2.8 (Complex differentiable implies Cauchy-Riemann).

If f is differentiable at z_0 , then the limit defining $f'(z_0)$ must exist when approaching from any direction. Identify f(z) = f(x,y) and write $z_0 = x + iy$, then first consider $h \in RR$, so $h = h_1 + ih_2$ with $h_2 = 0$. Then

$$f'(z_0) = \lim_{h_1 \to 0} \frac{f(x + h_1, y) - f(x, y)}{h_1} := \frac{\partial f}{\partial x}(x, y).$$

Taking $h \in i\mathbb{R}$ purely imaginary, so $h = ih_2$,

$$f'(z_0) = \lim_{ih_2 \to 0} \frac{f(x, y + h_2) - f(x, y)}{ih_2} := \frac{1}{i} \frac{\partial f}{\partial y}(x, y).$$

Equating,

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} \,,$$

and writing f = u + iv and 1/i = -i yields

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}
\frac{1}{i} \frac{\partial f}{\partial y} = \frac{1}{i} \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}.$$

Thus

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \,.$$

Proposition 3.2.9 (Polar Cauchy-Riemann equations).

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$.

Proof.

Setting

$$z = re^{i\theta} = r(\cos(\theta) + i\sin(\theta)) = x + iy$$

yields $x = r\cos(\theta), y = r\sin(\theta)$, one can identify

$$x_r = \cos(\theta), x_\theta = -r\sin(\theta)$$

 $y_r = \sin(\theta), y_\theta = r\cos(\theta).$

Now apply the chain rule:

$$u_r = u_x x_r + u_y y_r$$

$$= v_y x_r - v_x y_r$$

$$= v_y \cos(\theta) - v_x \sin(\theta)$$

$$= \frac{1}{r} (v_y r \cos(\theta) - v_x r \sin(\theta))$$

$$= \frac{1}{r} (v_y y_\theta + v_x x_\theta)$$

$$= \frac{1}{r} v_\theta.$$
CR

Similarly,

$$v_r = v_x x_r + v_y y_r$$

$$= v_x \cos(\theta) + v_y \sin(\theta)$$

$$= -u_y \cos(\theta) + u_x \sin(\theta)$$

$$= \frac{1}{r} (-u_y r \cos(\theta) + u_x r \sin(\theta))$$

$$= \frac{1}{r} (-u_y y_\theta - u_x x_0)$$

$$= -\frac{1}{r} u_\theta.$$
CR

Thus

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

Proposition 3.2.10 (Holomorphic functions have harmonic components).

If f(z) = u(x, y) + iv(x, y) is holomorphic, then u, v are harmonic.

Proposition 3.2.11 (Holomorphic functions are continuous.).

f is holomorphic at z_0 iff there exists an $a \in \mathbb{C}$ such that

$$f(z_0 + h) - f(z_0) - ah = h\psi(h), \quad \psi(h) \stackrel{h \to 0}{\to} 0.$$

In this case, $a = f'(z_0)$.

Proposition 3.2.12 (Cauchy-Riemann implies holomorphic).

Recall that in general, $f' = \partial f + \bar{\partial} f$. If f = u + iv with $u, v \in C^1(\mathbb{R})$ satisfying the Cauchy-Riemann equations on Ω , then f is holomorphic on Ω and

$$f'(z) = \partial f = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) f = \frac{1}{2} (u_x + iv_x).$$

Theorem 3.2.13 (Analytic functions have harmonic components).

If f = u + iv is analytic, then u, v are harmonic.

Proof (?).

• By CR,

$$u_x = v_y u_y = -v_x.$$

• Differentiate with respect to x:

$$u_{xx} = v_{yx} u_{yx} = -v_{xx}.$$

• Differentiate with respect to y:

$$u_{xy} = v_{yy} u_{yy} = -v_{xy}.$$

• Clairaut's theorem: partials are equal, so

$$u_{xx} - v_{yx} = 0 \implies u_{xx} + u_{yy} = 0$$

$$v_{xx} + u_{yx} = 0 \implies v_{xx} + v_{yy} = 0$$

.

3.2.2 Delbar, Harmonic Functions, Laplacian

Definition 3.2.14 (del and delbar operators)

$$\partial \coloneqq \partial_z \coloneqq \frac{1}{2} \left(\partial_x - i \partial_y \right) \quad \text{ and } \quad \bar{\partial} \coloneqq \partial_{\bar{z}} = \frac{1}{2} \left(\partial_x + i \partial_y \right).$$

Proposition 3.2.15 (Holomorphic iff delbar vanishes).

f is holomorphic at z_0 iff $\bar{\partial} f(z_0) = 0$:

$$2\bar{\partial}f := (\partial_x + i\partial_y)(u + iv)$$

$$= u_x + iv_x + iu_y - v_y$$

$$= (u_x - v_y) + i(u_y + v_x)$$

$$= 0$$

by Cauchy-Riemann.

Definition 3.2.16 (Laplacian and Harmonic Functions)

A real function of two variables u(x,y) is **harmonic** iff it is in the kernel of the Laplacian operator:

$$\Delta u := \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u = 0.$$

3.2.3 Exercises

Proposition 3.2.17 (Injectivity Relates to Derivatives).

If z_0 is a zero of f' of order n, then f is (n+1)-to-one in a neighborhood of z_0 .

Proof.

proof

Exercise 3.2.18 (Zero derivative implies constant)

Show that if f' = 0 on a domain Ω , then f is constant on Ω

Solution:

Write f = u + iv, then $0 = 2f' = u_x + iv_x = u_y - iu_y$, so grad u = grad v = 0. Show f is constant along every straight line segment L by computing the directional derivative grad $u \cdot \mathbf{v} = 0$ along L connecting p, q. Then u(p) = u(q) = a some constant, and v(p) = v(q) = b, so f(z) = a + bi everywhere.

Exercise 3.2.19 (f and fbar holomorphic implies constant)

Show that if f and \bar{f} are both holomorphic on a domain Ω , then f is constant on Ω .

Solution:

- Strategy: show f' = 0.
- Write f = u + iv. Since f is analytic, it satisfies CR, so

$$u_x = v_y u_y = -v_x.$$

• Similarly write $\bar{f}=U+iV$ where U=u and V=-v. Since \bar{f} is analytic, it also satisfies CR , so

$$U_x = V_y U_y = -V_x$$

$$\implies u_x = -v_y \qquad \qquad u_y = v_x.$$

- Add the LHS of these two equations to get $2u_x = 0 \implies u_x = 0$. Subtract the right-hand side to get $-2v_x = 0 \implies v_x = 0$
- Since f is analytic, it is holomorphic, so f' exists and satisfies $f' = u_x + iv_x$. But by above, this is zero.
- By the previous exercise, $f' = 0 \implies f$ is constant.

Exercise 3.2.20 (SS 1.13: Constant real/imaginary/magnitude implies constant) If f is holomorphic on Ω and any of the following hold, then f is constant:

- 1. $\Re(f)$ is constant.
- 2. $\Im(f)$ is constant.
- 3. |f| is constant.

Solution:

Part 3:

- Write $|f| = c \in \mathbb{R}$.
- If c = 0, done, so suppose c > 0.
 Use f\(\bar{f} = |f|^2 = c^2\) to write \(\bar{f} = c^2/f\).
- Since $|f(z)| = 0 \iff f(z) = 0$, we have $f \neq 0$ on Ω , so \overline{f} is analytic.
- Similarly f is analytic, and f, \bar{f} analytic implies f' = 0 implies f is constant.

3.3 Power Series

If f is holomorphic on a region Ω with $\overline{D_R(z_0)} \subseteq \Omega$, and for every $z \in D_r(z_0)$, f has a power series expansion of the following form:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 where $a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta$.

Proposition 3.3.2 (Power Series are Smooth).

Any power series is smooth (and thus holomorphic) on its disc of convergence, and its derivatives can be obtained using term-by-term differentiation:

$$\frac{\partial}{\partial z} f(z) = \frac{\partial}{\partial z} \sum_{k \ge 0} c_k (z - z_0)^k = \sum_{k \ge 1} k c_k (z - z_0)^k.$$

Moreover, the coefficients are given by

$$c_k = \frac{f^{(n)}(z_0)}{n!}.$$

Proposition 3.3.3 (Exponential is uniformly convergent in discs).

 $f(z) = e^z$ is uniformly convergent in any disc in \mathbb{C} .

Proof.

Apply the estimate

$$|e^z| \le \sum \frac{|z|^n}{n!} = e^{|z|}.$$

Now by the M-test,

$$|z| \le R < \infty \implies \left| \sum \frac{z^n}{n!} \right| \le e^R < \infty.$$

Lemma 3.3.4(Dirichlet's Test).

Given two sequences of real numbers $\{a_k\},\{b_k\}$ which satisfy

1. The sequence of partial sums $\{A_n\}$ is bounded,

 $2. b_k \searrow 0.$

then

$$\sum_{k\geq 1} a_k b_k < \infty.$$

Proof (?).

See http://www.math.uwaterloo.ca/~krdavids/Comp/Abel.pdf

Use summation by parts. For a fixed $\sum a_k b_k$, write

$$\sum_{n=1}^{m} x_n Y_n + \sum_{n=1}^{m} X_n y_{n+1} = X_m Y_{m+1}.$$

Set $x_n := a_n, y_N := b_n - b_{n-1}$, so $X_n = A_n$ and $Y_n = b_n$ as a telescoping sum. Importantly, all y_n are negative, so $|y_n| = |b_n - b_{n-1}| = b_{n-1} - b_n$, and moreover $a_n b_n = x_n Y_n$ for all n. We have

$$\begin{split} \sum_{n\geq 1} a_n b_n &= \lim_{N\to\infty} \sum_{n\leq N} x_n Y_n \\ &= \lim_{N\to\infty} \sum_{n\leq N} X_N Y_N - \sum_{n\leq N} X_n y_{n+1} \\ &= -\sum_{n\geq 1} X_n y_{n+1}, \end{split}$$

where in the last step we've used that

$$|X_N| = |A_N| \le M \implies |X_N Y_N| = |X_N| |b_{n+1}| \le M b_{n+1} \to 0.$$

So it suffices to bound the latter sum:

$$\begin{split} \sum_{k \geq n} |X_k y_{k+1}| & \leq M \sum_{k \geq 1} |y_{k+1}| \\ & \leq M \sum_{k \geq 1} b_k - b_{k+1} \\ & \leq 2M (b_1 - b_{n+1}) \\ & \leq 2M b_1. \end{split}$$

Theorem 3.3.5 (Abel's Theorem).

If $\sum_{k=1}^{\infty} c_k$ converges, then

$$\lim_{z \to 1^-} \sum_{k \in \mathbb{N}} c_k z^k = \sum_{k \in \mathbb{N}} c_k.$$

Lemma 3.3.6 (Abel's Test).

If $f(z) := \sum_{k \in \mathbb{Z}} c_k z^k$ is a power series with $c_k \in \mathbb{R}^{\geq 0}$ and $a_n \searrow 0$, then f converges on S^1 except possibly at z = 1.

Example 3.3.7 (application of Abel's theorem): Integrate a geometric series to obtain

$$\sum \frac{(-1)^k z^k}{n} = \log(z+1) \qquad |z| < 1.$$

Since $c_k := (-1)^k/k \setminus 0$, this converges at z = 1, and by Abel's theorem $f(1) = \log(2)$.

Remark 3.3.8: The converse to Abel's theorem is false: take $f(z) = \sum_{n=0}^{\infty} (-z)^n = 1/(1+z)$. Then $f(1) = 1 - 1 + 1 - \cdots$ diverges at 1, but 1/1 + 1 = 1/2. So the limit $s := \lim_{x \to 1^-} f(x)1/2$, but $\sum_{n=0}^{\infty} a_n = 1/2$. So the limit $a_n = 1/2$.

Proposition 3.3.9 (Summation by Parts).

Setting $A_n := \sum_{k=1}^n b_k$ and $B_0 := 0$,

$$\sum_{k=m}^{n} a_k b_k = A_n b_n - A_{m-1} b_m - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k).$$

Compare this to integrating by parts:

$$\int_{a}^{b} fg = F(b)g(b) - F(a)g(a) - \int_{a}^{b} Fg'.$$

Note there is a useful form for taking the product of sums:

$$A_n B_n = \sum_{k=1}^n A_k b_k + \sum_{k=1}^n a_k B_{k-1}.$$

3.3.1 Exercises: Series

Exercise 3.3.10 (Application of summation by parts)

Use summation by parts to show that $\sin(n)/n$ converges.

Solution:

An inelegant proof: define $A_n := \sum_{k \le n} a_k$, use that $a_k = A_k - A_{k-1}$, reindex, and peel a top/bottom term off of each sum to pattern-match.

Behold:

$$\begin{split} \sum_{m \leq k \leq n} a_k b_k &= \sum_{m \leq k \leq n} (A_k - A_{k-1}) b_k \\ &= \sum_{m \leq k \leq n} A_k b_k - \sum_{m \leq k \leq n} A_{k-1} b_k \\ &= \sum_{m \leq k \leq n} A_k b_k - \sum_{m-1 \leq k \leq n-1} A_k b_{k+1} \\ &= A_n b_n + \sum_{m \leq k \leq n-1} A_k b_k - \sum_{m-1 \leq k \leq n-1} A_k b_{k+1} \\ &= A_n b_n - A_{m-1} b_m + \sum_{m \leq k \leq n-1} A_k b_k - \sum_{m \leq k \leq n-1} A_k b_{k+1} \\ &= A_n b_n - A_{m-1} b_m + \sum_{m \leq k \leq n-1} A_k (b_k - b_{k+1}) \\ &= A_n b_n - A_{m-1} b_m - \sum_{m \leq k \leq n-1} A_k (b_{k+1} - b_k). \end{split}$$

Exercise 3.3.11 (1.20: Series convergence on the circle)

Show that

- ∑ kz^k diverges on S¹.
 ∑ k⁻²z^k converges on S¹.
 ∑ k⁻¹z^k converges on S¹ \ {1} and diverges at 1.

1. Use that $|z^k| = 1$ and $\sum c_k z^k < \infty \implies |c_k| \to 0$, but $|kz^k| = |k| \to \infty$ here.

- 2. Use that absolutely convergent implies convergent, and $\sum |k^{-2}z^k| = \sum |k^{-2}|$ converges by the p-test.
- 3. If z=1, this is the harmonic series. Otherwise take $a_k=1/k, b_k=e^{ik\theta}$ where $\theta\in(0,2\pi)$ is some constant, and apply Dirichlet's test. It suffices to bound the partial sums of the b_k . Recalling that $\sum_{k < N} r^k = (1 - r^{N+1})/(1 - r)$,

$$\left\| \sum_{k \le m} e^{ik\theta} \right\| = \left\| \frac{1 - e^{i(m+1)\theta}}{1 - e^{i\theta}} \right\| \le \frac{2}{\|1 - e^{i\theta}\|} := M,$$

which is a constant. Here we've used that two points on S^1 are at most distance 2 from each other.

Exercise 3.3.12 (Laurent expansions inside and outside of a disc)

Expand $f(z) = \frac{1}{z(z-1)}$ in both

- |z| < 1
- |z| > 1

Solution:

$$\frac{1}{z(z-1)} = -\frac{1}{z}\frac{1}{1-z} = -\frac{1}{z}\sum z^k.$$

and

$$\frac{1}{z(z-1)} = \frac{1}{z^2(1-\frac{1}{z})} = \frac{1}{z^2} \sum \left(\frac{1}{z}\right)^k.$$

Exercise 3.3.13 (Laurent expansions about different points)

Find the Laurent expansion about z = 0 and z = 1 respectively of the following function:

$$f(z) \coloneqq \frac{z+1}{z(z-1)}.$$

Solution:

Note: once you see that everything is in terms of powers of $(z - z_0)$, you're essentially done. For z = 0:

$$\begin{aligned} \frac{z+1}{z(z-1)} &= \frac{1}{z} \frac{z+1}{z-1} \\ &= -\frac{z+1}{z} \frac{1}{1-z} \\ &= -\left(1 + \frac{1}{z}\right) \sum_{k \ge 0} z^k. \end{aligned}$$

For z = 1:

$$\frac{z+1}{z(z-1)} = \frac{1}{z-1} \left(1 + \frac{1}{z} \right)$$

$$= \frac{1}{z-1} \left(1 + \frac{1}{1-(1-z)} \right)$$

$$= \frac{1}{z-1} \left(1 + \sum_{k \ge 0} (1-z)^k \right)$$

$$= \frac{1}{z-1} \left(1 + \sum_{k \ge 0} (-1)^k (z-1)^k \right).$$

4 | Cauchy's Theorem

4.1 Complex Integrals

Definition 4.1.1 (Complex Integral)

$$\int_{\gamma} f dz := \int_{I} f(\gamma(t)) \gamma'(t) dt = \int_{\gamma} (u + iv) dx \wedge (-v + iu) dy.$$

Proposition 4.1.2 (Crude integral estimate).

Define the *length* of a curve by

$$\operatorname{len}(\gamma) := \int_{\gamma} |dz| = \int_{I} |\gamma'(t)| dt.$$

Then there is an estimate of the following form:

$$\left| \int_{\gamma} f dz \right| \leq \int_{\gamma} |f| |dz| \leq \left(\sup_{\gamma} |f| \right) \cdot \operatorname{len}(\gamma).$$

Exercise 4.1.3 (Primitives imply vanishing integral)

Show that if f has a primitive F on Ω then $\int_{\gamma} f = 0$ for every closed curve $\gamma \subseteq \Omega$.

Theorem 4.1.4 (Goursat).

If f is analytic on a rectangle R with horizontal and vertical sides, then $\int_{\partial R} f = 0$.

Theorem 4.1.5 (Cauchy's Theorem).

If f is holomorphic on a simply-connected region Ω , then for any closed path $\gamma \subseteq \Omega$,

$$\int_{\gamma} f(z) \, dz = 0.$$

Slogan 4.1.6

Closed path integrals of holomorphic functions vanish.

4.2 Applications of Cauchy's Theorem

Cauchy's Theorem 21

4.2.1 Integral Formulas and Estimates

Theorem 4.2.1 (Cauchy Integral Formula).

Suppose f is holomorphic on Ω , then for any $z_0 \in \Omega$ and any open disc $\overline{D_R(z_0)}$ such that $\gamma := \partial \overline{D_R(z_0)} \subseteq \Omega$,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z_0} d\xi$$

and

$$\frac{\partial^n f}{\partial z^n}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi.$$

Theorem 4.2.2 (Cauchy's Inequality).

For $z_0 \in D_R(z_0) \subset \Omega$, we have

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{\infty}}{R^{n+1}} R \, d\theta = \frac{n! \|f\|_{\infty}}{R^n},$$

where $||f||_{\infty} := \sup_{z \in C_R} |f(z)|$.

Proof (of Cauchy's inequality).

- Given $z_0 \in \Omega$, pick the largest disc $D_R(z_0) \subset \Omega$ and let $C_R = \partial D_R$.
- Then apply the integral formula.

Slogan 4.2.3

The *n*th Taylor coefficient of an analytic function is at most $\sup_{|z|=R} |f|/R^n$.

Theorem 4.2.4 (Mean Value Theorem for Holomorphic Functions).

If f is holomorphic on $D_r(z_0)$

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = \frac{1}{\pi r^2} \iint_{D_r(z_0)} f(z) dA.$$

4.2.2 Liouville

Theorem 4.2.5 (Liouville's Theorem).

If f is entire and bounded, f is constant.

Proof(?).

Use Cauchy's inequality to show $f' \equiv 0$.

Exercise 2.E. [SSh03, 2.15] Suppose f is continuous and non-zero on $\overline{\mathbb{D}}$ and holomorphic on \mathbb{D} such that |f(z)| = 1 for all |z| = 1. Show that f is then constant.

Figure 1: image_2021-05-17-11-54-14

Exercise 4.2.6 (?)

4.2.3 Continuation Principle

Theorem 4.2.7 (Continuation Principle / Identity Theorem).

If f is holomorphic on a bounded connected domain Ω and there exists a sequence $\{z_i\}$ with a limit point in Ω such that $f(z_i) = 0$, then $f \equiv 0$ on Ω .

Slogan 4.2.8

Two functions agreeing on a set with a limit point are equal on a domain.

Proof (?).
Apply Improved Taylor Theorem?

Exercise 2.D. [SSh03, 2.13] If f is holomorphic on a region Ω and for each $z_0 \in \Omega$ at least one coefficient in the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is zero. Then show that f is a polynomial.

Figure 2: $image_2021-05-17-11-53-33$

Exercise 4.2.9 (?)

4.3 Morera's Theorem

Cauchy's Theorem

Theorem 4.3.1 (Morera's Theorem).

If f is continuous on a domain Ω and $\int_T f = 0$ for every triangle $T \subset \Omega$, then f is holomorphic.

Slogan 4.3.2

If every integral along a triangle vanishes, implies holomorphic.

Corollary 4.3.3 (Sufficient condition for a sequence to converge to a holomorphic function).

If $\{f_n\}_{n\in\mathbb{N}}$ is a holomorphic sequence on a region Ω which uniformly converges to f on every compact subset $K\subseteq\Omega$, then f is holomorphic, and $f'_n\to f'$ uniformly on every such compact subset K.

Proof (?).

Commute limit with integral and apply Morera's theorem.

Remark 4.3.4: This can be applied to series of the form $\sum_{k} f_k(z)$.

4.3.1 Symmetric Regions

In this section, take Ω to be a region symmetric about the real axis, so $z \in \Omega \iff \bar{z} \in \Omega$. Partition this set as $\Omega^+ \subseteq \mathbb{H}, I \subseteq \mathbb{R}, \Omega^- \subseteq \overline{\mathbb{H}}$.

Theorem 4.3.5 (Symmetry Principle).

Suppose that f^+ is holomorphic on Ω^+ and f^- is holomorphic on Ω^- , and f extends continuously to I with $f^+(x) = f^-(x)$ for $x \in I$. Then the following piecewise-defined function is holomorphic on Ω :

$$f(z) := \begin{cases} f^{+}(z) & z \in \Omega^{+} \\ f^{-}(z) & z \in \Omega^{-} \\ f^{+}(z) = f^{-}(z) & z \in I. \end{cases}$$

4.3 Morera's Theorem 24

Proof (?).
Apply Morera?

Theorem 4.3.6 (Schwarz Reflection).

If f is continuous and holomorphic on \mathbb{H}^+ and real-valued on \mathbb{R} , then the extension defined by $F^-(z) = \overline{f(\overline{z})}$ for $z \in \mathbb{H}^-$ is a well-defined holomorphic function on \mathbb{C} .

Proof(?).

Apply the symmetry principle.

Remark 4.3.7: \mathbb{H}^+ , \mathbb{H}^- can be replaced with any region symmetric about a line segment $L \subseteq \mathbb{R}$.

5 | Zeros and Singularities

Definition 5.0.1 (Singularity)

A point z_0 is an **isolated singularity** if $f(z_0)$ is undefined but f(z) is defined in a punctured neighborhood $D(z_0) \setminus \{z_0\}$ of z_0 .

There are three types of isolated singularities:

- Removable singularities
- Poles
- Essential singularities

Example 5.0.2(?): The singularities of a rational function are always isolated, since there are finitely many zeros of any polynomial. The function F(z) := Log(z) has a singularity at z = 0 that is **not** isolated, since every neighborhood intersects the branch cut $(-\infty, 0) \times \{0\}$, where F is not even defined. The function $G(z) := 1/\sin(\pi/z)$ has a non-isolated singularity at 0 and isolated singularities at 1/n for all n.

Definition 5.0.3 (Removable Singularities)

If z_0 is a singularity of f, then z_0 is a **removable singularity** iff there exists a holomorphic function g such that f(z) = g(z) in a punctured neighborhood of z_0 . Equivalently,

$$\lim_{z \to z_0} (z - z_0) f(z) = 0.$$

Equivalently, f is bounded on a neighborhood of z_0 .

Theorem 5.0.4 (Extension over removable singularities).

If f is holomorphic on $\Omega \setminus \{z_0\}$ where z_0 is a removable singularity, then there is a unique holomorphic extension of f to all of Ω .

Zeros and Singularities 25

Proof (?).

Take γ to be a circle centered at z_0 and use

$$f(z) := \int_{\gamma} \frac{f(\xi)}{\xi - z} dx.$$

This is valid for $z \neq z_0$, but the right-hand side is analytic. (?)

Revisit

Theorem 5.0.5 (Improved Taylor Remainder Theorem).

If f is analytic on a region Ω containing z_0 , then f can be written as

$$f(z) = \left(\sum_{k=0}^{n-1} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k\right) + R_n(z) (z - z_0)^n,$$

where R_n is analytic.

Definition 5.0.6 (Zeros)

If f is analytic and not identically zero on Ω with $f(z_0) = 0$, then there exists a nonvanishing holomorphic function g such that

$$f(z) = (z - z_0)^n g(z).$$

We refer to z_0 as a **zero of order** n.

$\textbf{Definition 5.0.7} \ (\textbf{Poles (and associated terminology}))$

A pole z_0 of a function f(z) is a zero of $g(z) := \frac{1}{f(z)}$. Equivalently, $\lim_{z \to z_0} f(z) = \infty$. In this case there exists a minimal n and a holomorphic h such that

$$f(z) = (z - z_0)^{-n} h(z).$$

Such an n is the order of the pole. A pole of order 1 is said to be a simple pole.

Definition 5.0.8 (Principal Part and Residue)

If f has a pole of order n at z_0 , then there exist a holomorphic G in a neighborhood of z_0 such that

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + G(z) := P(z) + G(z).$$

The term P(z) is referred to as the *principal part of* f at z_0 consists of terms with negative degree, and the *residue* of f at z_0 is the coefficient a_{-1} .

Definition 5.0.9 (Essential Singularity)

A singularity z_0 is essential iff it is neither removable nor a pole. Equivalently, a Laurent series expansion about z_0 has a principal part with infinitely many terms.

Zeros and Singularities 26

Theorem 5.0.10 (Casorati-Weierstrass).

If f is holomorphic on $\Omega \setminus \{z_0\}$ where z_0 is an essential singularity, then for every $V \subset \Omega \setminus \{z_0\}$, f(V) is dense in \mathbb{C} .

Slogan 5.0.11

The image of a punctured disc at an essential singularity is dense in \mathbb{C} .

Proof (of Casorati-Weierstrass).

Pick $w \in \mathbb{C}$ and suppose toward a contradiction that $D_R(w) \cap f(V)$ is empty. Consider

$$g(z) := \frac{1}{f(z) - w},$$

and use that it's bounded to conclude that z_0 is either removable or a pole for f.

Definition 5.0.12 (Singularities at infinity)

For any f holomorphic on an unbounded region, we say $z = \infty$ is a singularity (of any of the above types) of f if g(z) := f(1/z) has a corresponding singularity at z = 0.

Definition 5.0.13 (Meromorphic)

A function $f: \Omega \to \mathbb{C}$ is meromorphic iff there exists a sequence $\{z_n\}$ such that

- $\{z_n\}$ has no limit points in Ω .
- f is holomorphic in $\Omega \setminus \{z_n\}$.
- f has poles at the points $\{z_n\}$.

Equivalently, f is holomorphic on Ω with a discrete set of points delete which are all poles of f.

Theorem 5.0.14 (Meromorphic implies rational).

Meromorphic functions on \mathbb{C} are rational functions.

Proof (?).

Consider f(z) - P(z), subtracting off the principal part at each pole z_0 , to get a bounded entire function and apply Liouville.

Theorem 5.0.15 (Riemann Extension Theorem).

A singularity of a holomorphic function is removable if and only if the function is bounded in some punctured neighborhood of the singular point.

Zeros and Singularities 27

6 Residues

Fact 6.0.1

Some useful facts:

$$|e^z| = e^{\Re(z)}.$$

On S^1 ,

$$\begin{aligned} 1/z &= e^{-i\theta} \\ \cos(\theta) &= \frac{\mathrm{e}^{i\theta} + \mathrm{e}^{-i\theta}}{2} = \frac{z + 1/z}{2} \\ \sin(\theta) &= \frac{\mathrm{e}^{i\theta} - \mathrm{e}^{-i\theta}}{2i} = \frac{z - 1/z}{2i}. \end{aligned}$$

Fact 6.0.2

The major fact that reduces integrals to residues:

$$\int_{\gamma} z^k \, dz = \int_0^{2\pi} e^{ik\theta} i e^{i\theta} \, d\theta = \int_0^{2\pi} e^{i(k+1)\theta} \, d\theta = \begin{cases} 2\pi i & k = -1 \\ 0 & \text{else.} \end{cases}.$$

Thus

$$\int \sum_{k \ge -M} c_k z^k = \sum_{k \ge -M} \int c_k z^k = 2\pi i c_{-1},$$

i.e. the integral picks out the c_{-1} coefficient in a Laurent series expansion.

Remark 6.0.3: Check: do you need residues at all?? You may be able to just compute an integral!

• Directly by parameterization:

$$\int_{\gamma} f = \int_{a}^{b} f(z(t)) z'(t) \qquad \text{for } z(t) \text{ a parameterization of } \gamma,$$

- Finding a primitive F,
- Writing $z = z_0 + re^{i\theta}$

6.1 Computing Residues

Residues 28

Definition 6.1.1 (Toy contour)

A closed Jordan curve that separates \mathbb{C} into an exterior and interior region is referred to as a **toy contour**.

Definition 6.1.2 (Winding Number)

For $\gamma \subseteq \Omega$ a closed curve not passing through a point z_0 , the winding number of γ about z_0 is defined as

$$n_{\gamma}(z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z_0} d\xi.$$

Proposition 6.1.3 (Residue formula for higher order poles).

If f has a pole z_0 of order n, then

Res
$$_{z=z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{\partial}{\partial z} \right)^{n-1} (z - z_0)^n f(z).$$

Proposition 6.1.4 (Residue formula for simple poles).

As a special case, if z_0 is a simple pole of f, then

Res_{z=z_0} f =
$$\lim_{z \to z_0} (z - z_0) f(z)$$
.

Corollary 6.1.5 (Better derivative formula that sometimes works for simple poles). If additionally f = g/h where $h(z_0) = 0$ and $h'(z_0) \neq 0$, we can apply L'Hopital's rule to compute this residue:

$$(z - z_0) \frac{g(z)}{h(z)} = \frac{(z - z_0)g(z)}{h(z)} \stackrel{LH}{=} \frac{g(z) + (z - z_0)g'(z)}{h'(z)} \stackrel{z \to z_0}{\longrightarrow} \frac{g(z_0)}{h'(z_0)}.$$

Example 6.1.6(Residue of a simple pole (order 1)): Let $f(z) = \frac{1}{1+z^2}$, then $Res(i, f) = \frac{1}{2i}$.

Theorem 6.1.7 (The Residue Theorem).

Let f be meromorphic on a region Ω with poles $\{z_1, z_2, \dots, z_N\}$. Then for any $\gamma \in \Omega \setminus \{z_1, z_2, \dots, z_N\}$,

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{N} n_{\gamma}(z_j) \operatorname{Res}_{z=z_j} f.$$

If γ is a toy contour, then

$$\frac{1}{2\pi i} \int_{\gamma} f \, dz = \sum_{j=1}^{N} \operatorname{Res}_{z=z_j} f.$$

6.1 Computing Residues

29

6.1.1 Exercises

Some good computations here.

Exerci

Exercise 3.A. [SSh03, 3.1] Show that the complex zeros of $\sin \pi z$ are exactly at the integers, and are each of order 1. Calculate the residue of $1/\sin \pi x$ are $z=n\in \mathbb{Z}$.

Exercise 3.C. [SSh03, 3.8] Prove that

 $\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}$

Exercise 6.1.8 (?)

$$\int_{\mathbb{R}} \frac{1}{(1+x^2)^2} \, dx.$$

Solution:

• Factor $(1+z^2)^2=((z-i)(z+i))^2$, so f has poles at $\pm i$ of order 2. • Take a semicircular contour $\gamma:=I_R\cup D_R$, then $f(z)\approx 1/z^4\to 0$ for large R and

• Note $\int_{I_R} f \to \int_{\mathbb{R}} f$, so $\int_{\gamma} f \to \int_{\mathbb{R}} f$.

• $\int_{\gamma} f = 2\pi i \sum_{z_0} \underset{z=z_0}{\text{Res }} f$, and $z_0 = i$ is the only pole in this region.

• Compute

$$\operatorname{Res}_{z=i} f = \lim_{z \to i} \frac{1}{(2-1)!} \frac{\partial}{\partial z} (z-i)^2 f(z)$$

$$= \lim_{z \to i} \frac{\partial}{\partial z} \frac{1}{(z+i)^2}$$

$$= \lim_{z \to i} \frac{-2}{(z+i)^3}$$

$$= -\frac{2}{(2i)^3}$$

$$= \frac{1}{4i}$$

$$\implies \int_{\gamma} f = \frac{2\pi i}{4i} = \pi/2,$$

Exe

6.2 Argument Principle

Theorem 6.2.1 (Argument Principle).

For f meromorphic in γ° with zeros $\{z_j\}$ and poles $\{p_k\}$ repeated with multiplicity where γ does not intersect any zeros or poles, then

$$\Delta_{\gamma} \arg f(z) := \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n_{\gamma}(z_i) - \sum_{k} n_{\gamma}(p_k) = Z_f - P_f,$$

where Z_f and P_f are the number of zeros and poles respectively enclosed by γ , counted with multiplicity.

Proof (?).

Residue formula applied to $\frac{f'}{f}$?

Corollary 6.2.2 (Rouché's Theorem).

If f, g are analytic on a domain Ω with finitely many zeros in Ω and $\gamma \subset \Omega$ is a closed curve surrounding each point exactly once, where |g| < |f| on γ , then f and f + g have the same number of zeros.

Alternatively:

Suppose f = g + h with $g \neq 0, \infty$ on γ with |g| > |h| on γ . Then

$$\Delta_{\gamma} \arg(f) = \Delta_{\gamma} \arg(h)$$
 and $Z_f - P_f = Z_g - P_g$.

Prove

Corollary 6.2.3 (Open Mapping).

Any holomorphic non-constant map is an open map.

Prove

Corollary 6.2.4 (Maximum Modulus).

If f is holomorphic and nonconstant on an open connected region Ω , then |f| can not attain a maximum on Ω . If Ω is bounded and f is continuous on $\overline{\Omega}$, then $\max_{\overline{\Omega}} |f|$ occurs on $\partial\Omega$.

Conversely, if f attains a local supremum at $z_0 \in \Omega$, then f is constant on Ω .

Prove

6.2 Argument Principle 31

7 Rouche

6.2.1 Exercises

Exercise 3.E. [SSh03, 3.14] Prove that all entire functions that are also injective take the form f(z) = az + b with $a, b \in \mathbb{C}$ and $a \neq 0$.

Figure 3: image_2021-05-17-13-33-55

6.3 Complex Log

Proposition 6.3.1 (Existence of complex log).

Suppose Ω is a simply-connected region such that $1 \in \Omega, 0 \notin \Omega$. Then there exists a branch of F(z) := Log(z) such that

- F is holomorphic on Ω ,
- $e^{F(z)} = z$ for all $z \in \Omega$
- $F(x) = \log(x)$ for $x \in \mathbb{R}$ in a neighborhood of 1.

Definition 6.3.2 (Principal branch and exponential)

Take \mathbb{C} and delete $\mathbb{R}^{\leq 0}$ to obtain the **principal branch** of the logarithm, defined as

$$Log(z) := log(r) + i\theta$$

 $|\theta| < \pi$.

Similarly define

$$z^{\alpha} \coloneqq e^{\alpha \operatorname{Log}(z)}.$$

Theorem 6.3.3 (Existence of log).

If f is holomorphic and nonvanishing on a simply-connected region Ω , then there exists a holomorphic G on Ω such that

$$f(z) = e^{G(z)}.$$

7 Rouche

7.1 Counting Zeros

Example 7.1.1:

- Take $P(z) = z^4 + 6z + 3$.
- On |z| < 2:

- Set $f(z) = z^4$ and g(z) = 6z + 3, then $|g(z)| \le 6|z| + 3 = 15 < 16 = |f(z)|$.
- So P has 4 zeros here.
- On |z| < 1:
 - Set f(z) = 6z and $g(z) = z^4 + 3$.
 - Check $|g(z)| \le |z|^4 + 3 = 4 < 6 = |f(z)|$.
 - So P has 1 zero here.

Example 7.1.2: • Claim: the equation $\alpha z e^z = 1$ where $|\alpha| > e$ has exactly one solution in \mathbb{D} .

- Set $f(z) = \alpha z$ and $g(z) = e^{-z}$.
- Estimate at |z|=1 we have $|g|=|e^{-z}|=e^{-\Re(z)}\leq e^1<|\alpha|=|f(z)|$
- f has one zero at $z_0 = 0$, thus so does f + g.

8 | Conformal Maps

8.1 Linear Fractional Transformations

Definition 8.1.1 (Conformal Map / Biholomorphism)

A map f is **conformal** on Ω iff f is complex-differentiable, $f'(z) \neq 0$ for $z \in \Omega$, and f preserves signed angles (so f is orientation-preserving). Conformal implies holomorphic, and a bijective conformal map has a holomorphic inverse. A bijective conformal map $f: U \to V$ is called a **biholomorphism**, and we say U and V are **biholomorphic**. Self-biholomorphisms of a domain Ω form a group $\mathrm{Aut}_{\mathbb{C}}(\Omega)$.

Remark 8.1.2: There is an oft-used weaker condition that $f'(z) \neq 0$ for any point. Note that that this condition alone doesn't necessarily imply f is holomorphic, since anti-holomorphic maps may be nonzero derivative. For example, take $f(z) = \bar{z}$, so f(x+iy) = x - iy – this does not satisfy the Cauchy-Riemann equations.

Remark 8.1.3: A bijective holomorphic map automatically has a holomorphic inverse. This can be weakened: an injective holomorphic map satisfies $f'(z) \neq 0$ and f^{-1} is well-defined on its range and holomorphic.

Definition 8.1.4 (Linear fractional transformation / Mobius transformation)

A map of the following form is a linear fractional transformation:

$$T(z) = \frac{az+b}{cz+d},$$

where the denominator is assumed to not be a multiple of the numerator. These have inverses given by

$$T^{-1}(w) = \frac{dw - b}{-cw + a}.$$

Conformal Maps 33

Proposition 8.1.5(?).

Given any three points z_1, z_2, z_3 , the following Mobius transformation sends them to $1, 0, \infty$ respectively:

$$f(z) := \frac{(z - z_2)(z_1 - z_3)}{(z - z_3)(z_1 - z_2)}.$$

Such a map is sometimes denoted (z, z_1, z_2, z_3) .

Example 8.1.6(?):

- $(z, i, 1, -1) : \mathbb{D} \to \mathbb{H}$
- $(z,0,-1,1): \mathbb{D} \cap \mathbb{H} \to Q_1.$

Theorem 8.1.7 (Cayley Transform).

The fractional linear transformation given by $F(z) = \frac{i-z}{i+z}$ maps $\mathbb{D} \to \mathbb{H}$ with inverse $G(w) = i\frac{1-w}{1+w}$.

Theorem 8.1.8 (Classification of Conformal Maps).

There are 8 major types of conformal maps:

Type/Domains	Formula
Translation/Dilation/Rotation	$z \mapsto e^{i\theta}(cz+h)$
Sectors to sectors	$z \mapsto z^n$
$\mathbb{D}_{\frac{1}{2}} \to \mathbb{H}_{\frac{1}{2}}$, the first quadrant	$z \mapsto \frac{1+z}{1-z}$
$\mathbb{H} o S$	$z\mapsto \log(z)$
$\mathbb{D}_{\frac{1}{2}} \to S_{\frac{1}{2}}$	$z \mapsto \log(z)$
$\begin{array}{c} \mathbb{D}_{\frac{1}{2}} \to S_{\frac{1}{2}} \\ S_{\frac{1}{2}} \to \mathbb{D}_{\frac{1}{2}} \end{array}$	$z \mapsto e^{iz}$
$\mathbb{D}_{rac{1}{2}} o \mathbb{H}$	$z \mapsto \frac{1}{2} \left(z + \frac{1}{z} \right)$
$egin{aligned} \mathbb{D}_{rac{1}{2}} & ightarrow \mathbb{H} \ S_{rac{1}{2}} & ightarrow \mathbb{H} \end{aligned}$	$z\mapsto\sin(z)$

Theorem 8.1.9 (Characterization of conformal maps).

Conformal maps $\mathbb{D} \to \mathbb{D}$ have the form

$$g(z) = \lambda \frac{1-a}{1-\bar{a}z}, \quad |a| < 1, \quad |\lambda| = 1.$$

8.2 Schwarz

Theorem 8.2.1 (Schwarz Lemma).

If $f: \mathbb{D} \to \mathbb{D}$ is holomorphic with f(0) = 0, then

1.
$$|f(z)| \le |z|$$
 for all $z \in \mathbb{D}$
2. $|f'(0)| \le 1$.

2.
$$|f'(0)| \le 1$$
.

Moreover, if

•
$$|f(z_0)| = |z_0|$$
 for any $z_0 \in \mathbb{D}$, or
• $|f'(0)| = 1$,

•
$$|f'(0)| = 1$$
,

then f is a rotation.

Proof (?).

Apply the maximum modulus principle to f(z)/z.

Exercise 8.2.2 (?)

Show that $\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}) = \{ z \mapsto az + b \mid a \in \mathbb{C}^{\times}, b \in \mathbb{C} \}.$

Theorem 8.2.3 (Biholomorphisms of the disc).

$$\operatorname{Aut}_{\mathbb{C}}(\mathbb{D}) = \left\{ z \mapsto e^{i\theta} \left(\frac{\alpha - z}{1 - \overline{\alpha}z} \right) \right\}.$$

Proof (?).

Schwarz lemma.

Theorem 8.2.4(?).

$$\operatorname{Aut}_{\mathbb{C}}(\mathbb{H}) = \left\{ z \mapsto \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{C}, ad-bc = 1 \right\} \cong \operatorname{PSL}_{2}(\mathbb{R}).$$

8.3 By Type

8.2 Schwarz 35

8.3.1 Plane to Disc

$$\begin{split} \varphi: \mathbb{H} &\to \mathbb{D} \\ \varphi(z) &= \frac{z-i}{z+i} \qquad f^{-1}(z) = i \left(\frac{1+w}{1-w}\right). \end{split}$$

8.3.2 Sector to Disc

For $S_{\alpha} := \{z \in \mathbb{C} \mid 0 < \arg(z) < \alpha\}$ an open sector for α some angle, first map the sector to the half-plane:

$$g: S_{\alpha} \to \mathbb{H}$$
$$g(z) = z^{\frac{\pi}{\alpha}}.$$

Then compose with a map $\mathbb{H} \to \mathbb{D}$:

$$f: S_{\alpha} \to \mathbb{D}$$

$$f(z) = (\varphi \circ g)(z) = \frac{z^{\frac{\pi}{\alpha}} - i}{z^{\frac{\pi}{\alpha}} + i}.$$

8.3.3 Strip to Disc

- Map to horizontal strip by rotation $z \mapsto \lambda z$.
- Map horizontal strip to sector by $z\mapsto e^z$
- Map sector to \mathbb{H} by $z \mapsto z^{\frac{\pi}{\alpha}}$.

• Map $\mathbb{H} \to \mathbb{D}$.

$$e^z: \mathbb{R} \times (0, \pi) \to \mathbb{R} \times (0, \infty).$$

9 | Schwarz Reflection

10 Linear Fractional Transformations

11 Unsorted Theorems

Theorem 11.0.1 (Riemann Mapping).

If Ω is simply connected, nonempty, and not \mathbb{C} , then for every $z_0 \in \Omega$ there exists a unique conformal map $F: \Omega \to \mathbb{D}$ such that $F(z_0) = 0$ and $F'(z_0) > 0$.

Thus any two such sets Ω_1, Ω_2 are conformally equivalent.

Theorem 11.0.2 (Riemann's Removable Singularity Theorem).

If f is holomorphic on Ω except possibly at z_0 and f is bounded on $\Omega \setminus \{z_0\}$, then z_0 is a removable singularity.

Theorem 11.0.3 (Little Picard).

If $f: \mathbb{C} \to \mathbb{C}$ is entire and nonconstant, then $\operatorname{im}(f)$ is either \mathbb{C} or $\mathbb{C} \setminus \{z_0\}$ for some point z_0 .

Corollary 11.0.4.

The ring of holomorphic functions on a domain in \mathbb{C} has no zero divisors.

Proof. ???

Find the proof!

Morera

Proposition 11.0.5 (Bounded Complex Analytic Functions form a Banach Space). For $\Omega \subseteq \mathbb{C}$, show that $A(\mathbb{C}) := \{ f : \Omega \to \mathbb{C} \mid f \text{ is bounded} \}$ is a Banach space.

Schwarz Reflection 37

???

Proof.

Apply Morera's Theorem and Cauchy's Theorem

$12 \left| \begin{array}{c} \text{Appendix: Proofs of the Fundamental} \\ \text{Theorem of Algebra} \end{array} \right|$

12.0.1 Fundamental Theorem of Algebra: Argument Principle

- Let $P(z) = a_n z^n + \cdots + a_0$ and g(z) = P'(z)/P(z), note P is holomorphic
- Since $\lim_{z \to \infty} P(z) = \infty$, there exist an R > 0 such that P has no roots in $\{|z| \ge R\}$.
- Apply the argument principle:

$$N(0) = \frac{1}{2\pi i} \oint_{|\xi|=R} g(\xi) d\xi.$$

- Check that $\lim_{|z \to \infty|} zg(z) = n$, so g has a simple pole at ∞
- Then g has a Laurent series $\frac{n}{z} + \frac{c_2}{z^2} + \cdots$ Integrate term-by-term to get N(0) = n.

12.0.2 Fundamental Theorem of Algebra: Rouche's Theorem

- Let $P(z) = a_n z^n + \cdots + a_0$
- Set $f(z) = a_n z^n$ and $g(z) = P(z) f(z) = a_{n-1} z^{n-1} + \dots + a_0$, so f + g = P. Choose $R > \max\left(\frac{|a_{n-1}| + \dots + |a_0|}{|a_n|}, 1\right)$, then

$$\begin{split} |g(z)| &\coloneqq |a_{n-1}z^{n-1} + \dots + a_1z + a_0| \\ &\le |a_{n-1}z^{n-1}| + \dots + |a_1z| + |a_0| \quad \text{by the triangle inequality} \\ &= |a_{n-1}| \cdot |z^{n-1}| + \dots + |a_1| \cdot |z| + |a_0| \\ &= |a_{n-1}| \cdot R^{n-1} + \dots + |a_1|R + |a_0| \\ &\le |a_{n-1}| \cdot R^{n-1} + |a_{n-2}| \cdot R^{n-1} + \dots + |a_1| \cdot R^{n-1} + |a_0| \cdot R^{n-1} \quad \text{since } R > 1 \implies R^{a+b} \ge R^a \\ &= R^{n-1} \left(|a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0| \right) \\ &\le R^{n-1} \left(|a_n| \cdot R \right) \quad \text{by choice of } R \\ &= R^n |a_n| \\ &= |a_n z^n| \\ &\coloneqq |f(z)| \end{split}$$

13 Appendix

• Then $a_n z^n$ has n zeros in |z| < R, so f + g also has n zeros.

12.0.3 Fundamental Theorem of Algebra: Liouville's Theorem

- Suppose p is nonconstant and has no roots, then $\frac{1}{p}$ is entire. We will show it is also bounded and thus constant, a contradiction.
- Write $p(z) = z^n \left(a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right)$
- Outside a disc:
 - Note that $p(z) \stackrel{z \to \infty}{\to} \infty$. so there exists an R large enough such that $|p(z)| \ge \frac{1}{A}$ for any fixed chosen constant A.
 - Then $|1/p(z)| \le A$ outside of |z| > R, i.e. 1/p(z) is bounded there.
- Inside a disc:
 - -p is continuous with no roots and thus must be bounded below on |z| < R.
 - p is entire and thus continuous, and since $\overline{D}_r(0)$ is a compact set, p achieves a min A there
 - Set $C := \min(A, B)$, then $|p(z)| \ge C$ on all of $\mathbb C$ and thus $|1/p(z)| \le C$ everywhere.
 - So 1/p(z) is bounded an entire and thus constant by Liouville's theorem but this forces p to be constant. \mathbf{f}

12.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem

- p induces a continuous map $\mathbb{CP}^1 \to \mathbb{CP}^1$
- The continuous image of compact space is compact;
- Since the codomain is Hausdorff space, the image is closed.
- p is holomorphic and non-constant, so by the Open Mapping Theorem, the image is open.
- Thus the image is clopen in \mathbb{CP}^1 .
- The image is nonempty, since $p(1) = \sum a_i \in \mathbb{C}$
- \mathbb{CP}^1 is connected
- But the only nonempty clopen subset of a connected space is the entire space.
- So p is surjective, and $p^{-1}(0)$ is nonempty.
- So p has a root.

$oldsymbol{13}|$ Appendix

13.1 Misc Basic Algebra

Appendix 39

Appendix

Fact 13.1.1 (Standard forms of conic sections)

• Circle: $x^2 + y^2 = r^2$ • Ellipse: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ • Hyperbola: $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$

- Rectangular Hyperbola: $xy = \frac{c^2}{2}$.

• Parabola: $-4ax + y^2 = 0$.

Mnemonic: Write $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$, then consider the discriminant $\Delta = B^2 - 4AC$:

• $\Delta < 0 \iff \text{ellipse}$

 $-\Delta < 0$ and $A = C, B = 0 \iff$ circle

- $\Delta = 0 \iff \text{parabola}$
- $\Delta > 0 \iff$ hyperbola

Fact 13.1.2 (Completing the square)

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$

$$x^{2} + bx = (x+s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$.

Fact 13.1.3

The sum of the interior angles of an *n*-gon is $(n-2)\pi$, where each angle is $\frac{n-2}{n}\pi$.

Definition 13.1.4 (The Dirichlet Problem)

Given a bounded piecewise continuous function $u: S^1 \to \mathbb{R}$, is there a unique extension to a continuous harmonic function $\tilde{u}: \mathbb{D} \to \mathbb{R}$?

Remark 13.1.5: More generally, this is a boundary value problem for a region where the *values* of the function on the boundary are given. Compare to prescribing conditions on the normal vector on the boundary, which would be a Neumann BVP. Why these show up: a harmonic function on a simply connected region has a harmonic conjugate, and solutions of BVPs are always analytic functions with harmonic real/imaginary parts.

13.1 Misc Basic Algebra 40 13 Appendix

Example 13.1.6 (Dirichlet problem on the strip): See section 27, example 1 in Brown and Churchill. On the strip $(x, y) \in (0, \pi) \times (0, \infty)$, set up the BVP for temperature on a thin plate with no sinks/sources:

$$\Delta T = 0$$
 $T(0, y) = 0, T(\pi, y) = 0 \ \forall y$

$$T(x,0) = \sin(x)$$

$$T(x,y) \stackrel{y \to \infty}{\longrightarrow} 0.$$

Then the following function is harmonic on \mathbb{R}^2 and satisfies that Dirichlet problem:

$$T(x,y) = e^{-y}\sin(x) = \Re(-ie^{iz}) = \Im(e^{iz}).$$

Definition 13.1.7 (Logarithmic Derivative)

The **logarithmic derivative** of f is $(\ln f)' = f'/f$.

Remark 13.1.8: Why this is useful: deriving the argument principle. If f has a pole of order n at z_0 , then write $f(z) = (z - z_0)^{-n} g(z)$ with g analytic in a neighborhood of z_0 . Then a direct computation of the derivatives will show

$$(\ln f)' := \frac{f'(z)}{f(z)} = -\frac{n}{z - z_0} + \frac{g'(z)}{g(z)}.$$

Thus

$$\frac{1}{2\pi i} \int_{\gamma} (\ln f)' = -n,$$

for γ a small circle about z_0 . A similar argument for z_0 a **zero** of f yields

$$\frac{1}{2\pi i} \int_{\gamma} h = +n.$$

Exercise 13.1.9 (?)

Show that there is no continuous square root function defined on all of \mathbb{C} .

Solution:

Suppose $f(z)^2 = z$. Then f is a section to the covering map

$$p: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$$
$$z \mapsto z^2,$$

so $p \circ f = \text{id}$. Using $\pi_1(\mathbb{C}^\times) = \mathbb{Z}$, the induced maps are $p_*(1) = 2$ and $f_*(1) = n$ for some $n \in \mathbb{Z}$. But then $p_* \circ f_*$ is multiplication by 2n, contradicting $p_* \circ f_* = \text{id}$ by functoriality.

Basics

• Show that $\frac{1}{z}\sum_{k=1}^{\infty}\frac{z^k}{k}$ converges on $S^1\setminus\{1\}$ using summation by parts.

13.1 Misc Basic Algebra 41

- Show that any power series is continuous on its domain of convergence.
- Show that a uniform limit of continuous functions is continuous.

??

- Show that if f is holomorphic on $\mathbb D$ then f has a power series expansion that converges uniformly on every compact $K \subset \mathbb{D}$.
- Show that any holomorphic function f can be uniformly approximated by polynomials.
- Show that if f is holomorphic on a connected region Ω and $f' \equiv 0$ on Ω , then f is constant on Ω .
- Show that if |f| = 0 on $\partial \Omega$ then either f is constant or f has a zero in Ω .
- Show that if $\{f_n\}$ is a sequence of holomorphic functions converging uniformly to a function f on every compact subset of Ω , then f is holomorphic on Ω and $\{f'_n\}$ converges uniformly to f' on every such compact subset.
- Show that if each f_n is holomorphic on Ω and $F := \sum f_n$ converges uniformly on every compact subset of Ω , then F is holomorphic.
- Show that if f is once complex differentiable at each point of Ω , then f is holomorphic.

Draft of Problem Book

- Prove the triangle inequality
- Prove the reverse triangle inequality Show that $\sum z^{k-1}/k$ converges for all $z \in S^1$ except z=1.
- What is an example of a noncontinuous limit of continuous functions?
- Show that the uniform limit of continuous functions is continuous.
- Show that f is holomorphic if and only if $\bar{\partial} f = 0$.
- Show $n^{\frac{1}{n}} \stackrel{n \to \infty}{\to} 1$.
- Show that if f is holomorphic with f' = 0 on Ω then f is constant.
- Show that holomorphic implies analytic.
- Use Cauchy's inequality to prove Liouville's theorem

Problem 14.0.1 (?)

What is a pair of conformal equivalences between \mathbb{H} and \mathbb{D} ?

Draft of Problem Book 42 Solution:

$$F: HH \to \mathbb{D}$$

$$z \mapsto \frac{i-z}{i+z}$$

$$G: \mathbb{D} \to \mathbb{H}$$

$$w \mapsto i\frac{1-w}{1+w}.$$

Mnemonic: any point in $\mathbb H$ is closer to i than -i, so |F(z)| < 1.

• Maps $\mathbb{R} \to S^1 \setminus \{-1\}$.

Problem 14.0.2 (?)

What is conformal equivalence $\mathbb{H} \rightleftharpoons S \coloneqq \{ w \in \mathbb{C} \mid 0 < \arg(w) < \alpha \pi \}$?

Solution:

$$f(z) = z^{\alpha}$$
.