TAREFA 2

Avalie a Confiabilidade do Sistema Teste Sul Brasileiro de 32 barras (STSB-32) para contingências de 1ª e 2ª ordem, de acordo com o ponto de operação definido na Tabela 1. Monte o diagrama de cortes mínimos com qualquer violação de tensão, fluxo ou geração. Considere a probabilidade de falha das LTs de acordo com a Tabela 2.

Nível de Carregamento (MW) Nível de Geração **ALUNO** Área 1 Área 2 Área 3 Área 1 Área 2 ANDRÉ FOLETTO -4000 3800 8300 5% HENRIQUE EICHKOFF 4000 8000 -3500 5% 5% JOÃO OLAVO DA LEITE 3500 8500 -3000 10% 5% KAYNAN DE ANDRADE 10% 3000 8000 -2500 20% LEONARDO DOS SANTOS -20% 3100 7800 -4500 -20% MATHEUS VEIGA 2800 7500 -3500 -10% -10% MIGUEL MARTINS 2700 7300 -2500 0% 0% 3000 -10% ROAN BROLESE 7500 -2500 20%

Tabela 1 – Ponto de operação de cada aluno

Tabela 2 – Probabilidade de falha (q) das LTs

8300

-2000

30%

0%

2800

WELLINGTON BONATO

De	Para	q	De	Para	q
AREIAPR525	SEGRED-PR525	2,7883E-04	ITA0425	MACHAD-SC525	3,1767E-04
AREIAPR525	BATEIA-PR525	1,2577E-03	ITA0425	SSANTI-PR525	9,1902E-04
AREIAPR525	CNOVOS-SC525	8,6648E-04	IVAIPE-PR525	SSANTI-PR525	8,2081E-04
AREIAPR525	CURITI-PR525	1,1556E-03	SCAXIA-PR525	SSANTI-PR525	4,4252E-04
AREIAPR525	IVAIPE-PR525	8,5126E-04	SEGRED-PR525	SSANTI-PR525	2,9751E-04
BATEIA-PR525	CURITI-PR525	1,6476E-04	AREIA-230	CURITI-PR230	6,5850E-04
BIGUAC-SC525	BLUMEN-SC525	4,2778E-04	AREIA-230	SOSORIO-230	4,2973E-04
BIGUAC-SC525	CNOVOS-SC525	1,1535E-03	BIGUAC-SC230	BLUMEN-SC230	3,3626E-04
BLUMEN-SC525	CNOVOS-SC525	1,2405E-03	BIGUAC-SC230	JLAC-B-SC230	3,4676E-04
BLUMEN-SC525	CURITI-PR525	6,7837E-04	BLUMEN-SC230	JOINOR-SC230	1,9550E-04
CASCOE-PR525	SCAXIA-PR525	3,0981E-04	CASCAV-PR230	SOSORIO-230	2,1504E-04
CASCOE-PR525	IVAIPE-PR525	1,0270E-03	CASCAV-PR230	CASCOE-PR230	2,7589E-05
CAXIAS-RS525	CNOVOS-SC525	9,9905E-04	CAXIAS-RS230	MCLARO-RS230	1,4267E-04
CAXIAS-RS525	GRAVAT-RS525	3,8747E-04	CAXIAS-RS230	SIDERO-SC230	5,6385E-04
CAXIAS-RS525	ITA0425	1,2528E-03	CURITI-PR230	JOINOR-SC230	2,6752E-04
CNOVOS-SC525	NSRITA-RS525	1,2646E-03	JLAC-B-SC230	SIDERO-SC230	1,2668E-04
CNOVOS-SC525	MACHAD-SC525	1,9623E-04	MCLARO-RS230	PFUNDO-RS230	6,1219E-04
GRAVAT-RS525	NSRITA-RS525	1,4509E-04	PFUNDO-RS230	XANXER-SC230	2,1210E-04
ITA0425	NSRITA-RS525	1,5422E-03	SOSORIO-230	XANXER-SC230	4,3374E-04

PROCEDIMENTO:

- 1. Carregue o caso base do STBS-32.
- 2. Verifique se todos os geradores individualizados estão com a opção "Calcular unidades" ativada, senão, ative. Aperte F2 e clique sobre o desenho.

3. No menu Dados, Nível de Carregamento de Área..., selecione o Tipo: Área, escolha o Número, marque a opção "Fator de Potência Constante", e digite a Carga Ativa conforme a Tabela 1. Clique em "Alterar".

4. Após definir a carga das três áreas, vá no menu Dados, Nível de Geração de Potência Ativa..., selecione o tipo Área e o Número correspondente. Aplique o Fator de Geração. Não esqueça o sinal negativo se for o caso.

5. Rode um Fluxo de Potência com os seguintes controle ativos:

Controles						
☑ Limite de Geração Reativa (QLIM)						
Limite de Tensão (VLIM)						
Tensão em Barra Remota (CREM)						
✓ Tap do Transformador (CTAP)						
✓ Shunt Chaveado Automáticamente (CSCA)						

6. Chame um Relatório, na aba de Elementos marque Geradores e na aba Monitoração marque Tensão, Geração e Fluxo. Verifique se a geração em MVA das usinas não viola as suas capacidades máximas e se não há violações de tensão ou fluxo:

X		X		X-				X			-xx-		X	XX
	BARRA		TEN	SAO		GER MW		GE:	R Mvar		GER I	ATOR	PART.	BARRA
NUM.	NOME	TP	MOD	ANG	MIN	MAX	ATUAL	MIN	MAX	ATUAL	MVA (ER	EQV %	CONT. EST
xxxxxxxx								-xx-	2	КX	xx			
856	SEGRED-PR525	1	1.018	17.9	0.0	1260.0	882.0	-465.0	465.0	-91.2	886.7	0.0	0.0	856 LIG
897	SCAXIA-PR525	1	1.015	26.2	0.0	1240.0	867.0	-465.0	465.0	-80.7	870.8	0.0	0.0	897 LIG
933	AREIAPR525	1	1.012	13.8	0.0	1676.0	1168.0	-800.0	800.0	-50.3	1169.1	0.0	0.0	933 LIG
955	CNOVOS-SC525	2	1.010	-0.0	-66.5	1760.0	1080.5	-450.0	450.0	116.6	1086.8	0.0	0.0	955 LIG
995	ITA0425	1	1.020	3.3	0.0	1450.0	1012.0	-580.0	580.0	268.1	1046.9	0.0	0.0	995 LIG
1030	MACHAD-SC525	1	1.016	1.8	0.0	1140.0	829.4	-570.0	570.0	-20.6	829.7	0.0	0.0	1030 LIG
1060	SSANTI-PR525	1	1.023	18.9	0.0	1420.0	1039.5	-525.0	525.0	13.1	1039.6	0.0	0.0	1060 LIG

- **7.** Caso tenha problemas, reduza a geração individualizada, ou aumente a tensão das barras PV mais próximas do problema.
- 8. No menu Análise, Análise de Contingências, Programada... Clique em "Dados de Contig.", e abra o menu de Identificação. Se aparecerem 38, tudo certo, senão adicione o arquivo PWF com as contingências de 1ª ordem, via menu Caso, Adicionar...

- **9.** Abre um arquivo de Histórico e salve o seu Caso Base, sendo interessante colocar alguns parâmetros no nome para diferenciar do inicial
- 10. Volte para a Análise de Contingências, Programada... marque as opções conforme figura abaixo e execute:

11. Role o texto até o final, onde fica o Sumário dos casos mais severos. Essas contingências compõem seus cortes de 1ª ordem, inclusive os casos divergentes.

12. Faça uma lista de contingências de 2ª ordem, porém retirando combinações com as LTs que compõem casos de 1ª. Crie uma numeração começando com 200, e coloque Prioridade 2, para poder carregar junto com as contingências existentes, pois o ANAREDE não permite carregar números repetidos.

```
001 🗆 DCTG
              2 Contingência dupla de L1 e L2
002
      201 0
003
      CTRD
                    2
004
      CIRD
                    5
005
006
      202
              2 Contingência dupla de L1 e L3
007
                    2
                     3
008
      CIRD
009
      FCAS
010
      203 0 2 Contingência dupla de L1 e L4
011
      CIRD
      CIRD
                    5
012
013
      FCAS
```

- **13.** Execute as contingências programadas de 2ª ordem, não esqueça de marcar a Prioridade 2, e análise o sumário.
- **14.** Monte o diagrama de cortes e calcule a confiabilidade do sistema (N-2) para o seu ponto de operação, conforme as probabilidades de falha (q) da Tabela 2.
- 15. Faça um artigo no formato do IEEE/PES até o dia 23/06.