ROBT 402 Robotic/Mechatronic System Design

Mini-Project 3

By Zarema Balgabekova

Task 1

Since the application of a cable pulling system is not specified, I have chosen the winch from available manufacturers and will describe it.

I have chosen portable (mounted on wheels) electrically operated cable pulling winch available at https://www.aacess.com/electric-cable-pulling-winch. Their winches are rugged, sturdy and are able to work in harsh environments. The winch is powered by AC power supply to produce mechanical power that is then used to run a hydro pump, which in turn is used to run a hydro motor.

The main components of the winch include wire rope (to pull the cable), rope holding drum (keeps wire rope wound on it) and hydro motor fixed to the rope drum (to wind and unwind the rope).

The unit is driven throughout double capstan, ensuring steady speed, and is provided with wire rope guiding mechanism. Also, it is equipped with a control panel with HMI and PLC to control speed and load.

Winches with pulling capacity range of 3, 5, 10, 15, 20 and 25 ton; and wire rope length of 100, 500 and 750 meters are available so that the winch with needed parameters can be chosen with respect to its application.

Fig 1. Winch outside

Fig 2. Winch inside

Task 2

I have chosen the upper-limb rehabilitation robot CAREX and the lower-limb rehabilitation robot LOPES.

Table I. Characteristics of CAREX and LOPES robots

	CAREX	LOPES
The overall mechatronic	It is a 5-DOF robot designed	It is an 8-DOF robot for hip
system architecture with the	for shoulder, elbow and	and knee movements.
description of the	forearm movements. Its	LOPES is a serial
components	human-robot physical	exoskeleton with series

	T	
	interaction type is parallel	elastic actuator. It is
	exoskeleton, and it uses	equipped with 6D force and
	electric actuator. It is	position sensors, and its
	equipped with orientation,	control strategy is
	rotary and load sensors and	impedance control.
	utilizes assist-as-needed	
	control strategy.	
Advantages	It conducted the clinical	It carried out the clinical
	study with 8 healthy persons	study with 10 patients,
	and one stroke patient and	during which significant
	found that subjects	improvements in the
	efficiently followed the	rehabilitation process were
	desired trajectories. It does	observed.
	not cause hinders or	
	incorrect postures to	Traditional rigid link serial
	subjects' movements.	robot modelling and control
		strategies can be applied to
	Electric actuators have	serial type exoskeletons.
	excellent motion control	
	capabilities, accuracy and	Impedance based control
	repeatability; and they are	strategy provides stable
	quieter than other actuators.	interaction between a
		subject and robot and allows
	There are no misalignment	adjustment of impedance
	issues with parallel type	based on the therapist's
	exoskeletons.	experience and patient's
		disability. Also, real-time
	For assist-as-needed control	adjustments are possible,
	strategy, parameters are	and the precise knowledge
	adjusted based on the level	of external parameters is not
	of assistance required by the	required.
	patient or rehabilitation	
	exercise.	
Disadvantages	Patients felt tired after one	It is not equipped with
	hour of exercise with it.	human-machine interface.
	It is not equipped with	Serial type exoskeletons
	human-machine interface.	need tuning and
		readjustment for each
	Electric actuators may	patient.
	overheat.	1
		For impedance based control
	Traditional cable-driven	strategy, performance
	parallel mechanism	declined with the decrease in
	modelling and control	the environment's stiffness.
	strategies are not directly	Also, it requires force
	applicable with parallel type	sensors that are expensive
	exoskeletons. Also, they	and sensitive to temperature
	have a limited workspace.	changes.
		I

strategy, inconsistent and inaccurate estimation of patient's functional movement can be a major limitation and challenge	inaccurate estimation of patient's functional
patient's functional movement can be a major	patient's functional
movement can be a major	
y .	movement can be a major
limitation and challenge	mo voment our co u mager
mintation and chancinge.	limitation and challenge.