Addendum: Cooper Pair Coherence in Unified Wave Theory for High-Temperature Superconductivity

Peter Baldwin

August 19, 2025

Abstract

This addendum to the paper "Feasibility of Unified Wave Theory for High-Temperature Superconductivity" details how the Unified Wave Theory (UWT) two-field model ($\Phi = (\Phi_1, \Phi_2)$) enhances Cooper pair coherence in high-temperature superconductors through scalar field oscillations. It complements the Higgs boson coupling mechanism and provides clarity for experimental validation. The full UWT framework is available at https://github.com/Phostmaster/Everything.

1 Cooper Pair Coherence Mechanism

The Unified Wave Theory (UWT) posits that the Golden Spark, a phase transition at $t \approx 10^{-36}$ s, splits the scalar field Φ into Φ_1, Φ_2 , driving cosmological and quantum phenomena. In high-temperature superconductivity, Φ_1, Φ_2 oscillations enhance Cooper pair coherence, enabling robust electron pairing at elevated temperatures.

The scalar fields evolve as:

$$\Phi_1(x,t) \approx \phi_1 e^{i(k_{\text{wave}}x - \omega t)}, \quad \Phi_2(x,t) \approx \phi_2 e^{i(k_{\text{wave}}x - \omega t - \pi)}, \tag{1}$$

with $\phi_1 \approx 0.00095$, $\phi_2 \approx 0.00029$, and $k_{\text{wave}} \approx 0.0047$. These oscillations, coupled to the Higgs field via the effective potential:

$$V_{eff} = V_h + \lambda_h |\Phi|^2 |h|^2, \tag{2}$$

where $\lambda_h \sim 10^{-3}$ and $|\Phi|^2 \approx 0.0511\,\mathrm{GeV^2}$, induce a coherent background that stabilizes Cooper pairs.

The Cooper pair wavefunction is modified by the UWT scalar fields:

$$\psi_{\text{pair}} \propto e^{i\theta} \left[1 + \lambda_h \frac{|\Phi_1 \Phi_2|}{m_h^2} \cos(k_{\text{wave}} |\vec{r}| + \epsilon_{\text{CP}} \pi) \right],$$
(3)

where $m_h \approx 125 \,\text{GeV}$, $\epsilon_{\text{CP}} \approx 2.58 \times 10^{-41}$, and $|\Phi_1 \Phi_2| \approx 4.75 \times 10^{-4}$. The oscillatory term $\cos(k_{\text{wave}}|\vec{r}| + \epsilon_{\text{CP}}\pi)$ enhances the pairing amplitude, increasing the critical temperature (T_c) by reducing thermal disruptions.

This coherence is amplified by Scalar-Boosted Gravity (SBG), with $g_{\text{wave}} \approx 19.5$, which aligns the Φ_1, Φ_2 phases to minimize entropy:

$$S \propto -|\Phi_1 \Phi_2| \ln(|\Phi_1 \Phi_2|). \tag{4}$$

The resulting entangled state:

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|\Phi_1\rangle|\Phi_2\rangle + |\Phi_2\rangle|\Phi_1\rangle),\tag{5}$$

sustains long-range order in the superconductor, potentially enabling room-temperature superconductivity.

1.1 Experimental Implications

The Φ_1, Φ_2 oscillations $(k_{\text{wave}} \approx 0.0047)$ can be probed via:

- SQUID-BEC Experiments (2027): Detect Φ_1, Φ_2 coherence at $f \approx 1.12 \times 10^5$ Hz, correlating with Higgs decay rate deviations ($\Gamma_{UWT} \approx 9.28 \text{ keV} \times 1.00000654$).
- ATLAS/CMS (2025–2026): Measure Higgs coupling deviations at 4σ , validating the $\lambda_h |\Phi|^2 |h|^2$ term.
- HL-LHC (2029): Confirm UWT's predictions at 5σ , potentially detecting enhanced T_c in UWT-inspired materials.

2 Conclusion

The Φ_1, Φ_2 oscillations in UWT enhance Cooper pair coherence by stabilizing electron pairing through Higgs field interactions and SBG. This mechanism supports high-temperature superconductivity, offering a pathway to room-temperature applications, with testable predictions for upcoming experiments.