

DPP – 6

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/WqijpBRMccA

Q 1. A wedge of mass M is pushed with an constant acceleration of a = gtanq along a smooth horizontal surface and a block of mass m is projected down the smooth incline of the wedge with a velocity V relative to the wedge.

- (a) The time taken by the block to cover distance L on the incline plane is $\frac{L}{V}$
- (b) The time taken by the block to cover distance L on the incline plane is $\sqrt{\frac{2L}{g \sin \theta}}$
- (c) The normal reaction between the block and wedge is mg secq
- (d) The horizontal force applied on the wedge to produce acceleration a is (M + m) g tanq.
- Q 2. A man goes up in a uniformly accelerating lift. He returns downward with the lift accelerating at the same rate. The ratio of apparent weighs in the two cases is 2:1. The acceleration of the lift is -
 - (a) g/3
- (b) g/4
- (c) g/5
- (d) g/6
- Q 3. A block can slide on a smooth inclined plane of inclination q kept on the floor of a lift. When the lift is descending with a retardation a. the acceleration of the block relative to incline is -
 - (a) $(g + a) \sin q$

(b) (g-a)

(c) g sin q

- (d) $(g a) \sin q$
- Q 4. Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to block of mass M as shown in figure. The magnitude of force P is –

- (a) (M + m) g tan b
- (c) mg cos b

(d) (M + m) cosec b

hysicsaholics

- Q 5. Two weights w_1 and w_2 are suspended from the ends of a light string passing over a smooth fixed pulley. If the pulley is pulled up at an acceleration g, the tension in the string will be-
 - (a) $4w_1 w_2 / (w_1 + w_2)$
 - (b) $2w_1 w_2 / (w_1 + w_2)$
 - (c) $(w_1 w_2) / (w_1 + w_2)$
 - (d) $w_1 w_2 / \{2 (w_1 + w_2)\}$
- Q 6. A pearl of mass m is in a position to slide over a smooth wire. At the initial instant the pearl is in the middle of the wire. The wire moves linearly in a horizontal plane with an acceleration a in a direction having angle q with the wire. The acceleration of the pearl w.r.t. wire is-

- (a) $g \sin q a \cos q$
- (c) $g \sin q + a \cos q$
- (b) $g \sin q g \cos q$ (d) $g \cos q + a \sin q$
- A particle is observed from two frames S_1 and S_2 . The graph of relative velocity of S_1 Q 7. with respect to S₂ is shown in figure. Let F₁ and F₂ be the pseudo forces on the particle when seen from S₁ and S₂ respectively. Which one of the following is not possible?

- (a) $F_1 = 0$, $F_2 = 0$
- (b) $F_1^1 0$, $F_2 = 0$
- (c) F₁ 10, F2 10
- (d) $F_1 = 0$, $F_2 = 0$
- A particle slides down a smooth inclined plane of elevation a. The incline is fixed Q 8. end to end in an elevator of base length 1 accelerating up with acceleration a_0 . Assume at t = 0 the particle is at the top of the incline then—
 - (a) the particle has to travel a length 1 cosa with acceleration $(g + a_0)$ sina down the incline in a time $\sqrt{\frac{\ell}{(g+a_0)\sin 2\alpha}}$
 - (b) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in a time $\sqrt{\frac{2\ell}{a_0 \sin 2\alpha}}$
 - (c) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in
 - (d) the incline offers a normal reaction $m(a_0 + g)\cos a$ to the block so that it remains in contact with the incline.

hysicsaholics

Q9. A block of mass 1 kg is at rest relative to a smooth wedge moving leftwards left with constant acceleration $a = 5 \text{ m/s}^2$. Let N be the normal reaction between the block and the wedge. Then $(g = 10 \text{ m/s}^2)$

- (a) $N = 5\sqrt{5} \text{ N}$
- (b) N = 15 N
- (c) $\tan \theta = \frac{1}{2}$ (d) $\tan \theta = 2$
- Q 10. A pendulum of mass m is hanging from the ceiling of a car having an acceleration a₀ with respect to the road in the direction shown. If angle made by the string with the vertical is θ , find tan θ ?

 - (a) a_0/g
 - (c) $2 a_0/g$

- (b) $a_0/2g$
- (d) none of these

Answer Key

Q.1	a,c,d	Q.2	a	Q.3	a	Q.4	a	Q.5	a
Q.6	a	Q.7	d	Q.8	d	Q.9	a,c	Q.10	a