Título com assunto e proposta

Autor Nome Sobrenome

Minha Unidade, UFMG

Relatório de Estágio Técnico do Projeto PRAE/COLTEC/UFMG

Orientador: Prof. Fulano de Tal, UFMG Supervisor: Eng. John Doe, Empresa

Novembro, 2017

Título com assunto e proposta

Autor Nome Sobrenome Minha Unidade, UFMG

Novembro, 2017

Resumo

O resumo deve explicitar o assunto, a proposta e o escopo do trabalho. Ao ler o resumo o leitor deve entender de que se trata efetivamente o trabalho ou projeto, o que se aborda e como se produz evidências (simulação, experimento, dedução teórica). Normalmente a última sentença do resumo trata das evidências e discussões apresentadas ou almejadas.

Sumário

1	Intr	rodução	1
	1.1	Contribuições	2
2	Títi	ulo do capitulo 2	4
	2.1	Introdução	4
	2.2	Comentários finais	4
3	Títi	ulo do capitulo 3	5
	3.1	Introdução	5
	3.2	Comentários finais	5
4	Títi	ulo do capitulo 4	6
	4.1	Introdução	6
	4.2	Comentários finais	6
5	Títı	ulo do capitulo 5	7
	5.1	Introdução	7
	5.2	Comentários finais	7
6	Cor	nclusões e sugestões de trabalho futuro	8
	6.1	Conclusões	8
	6.2	Propostas de Trabalho futuro	8
A	List	ca dos principais símbolos e abreviações	9

Sumário	ii

A.1	Abreviações	9
A.2]	Principais símbolos utilizados	10
A.3	Nomenclatura	11
Referên	cias	11

Lista de Figuras

1.1	Arquitetura simplificada de um sistema de controle baseado em modelo com a	
	função de Auditor de Processo.	3

Introdução

O Relatório Técnico Final é um documento em que o leitor encontra todas as informações técnicas sobre o trabalho desenvolvido.

O relatório deve conter os seguintes tópicos:

- Capa ou página de título: deve conter o nome da instituição, o título (e subtítulo) do projeto, os autores e supervisores, local e data. O título é considerado o resumo mais sintético do projeto e, portanto, é imprescindível que inclua o assunto ou o tópico e a proposta do mesmo. Verifique ainda se o título é: suficientemente preciso, fácil para ler e entender, e estruturado para o tema e a audiência.
- Contra-capa: mesma informação da capa mais as assinaturas dos autores.
- Sumário: Enumeração das principais divisões (capítulo, seções, artigos, etc.) do documento, na mesma ordem em que a matéria nele se sucede; visa a facilitar visão do conjunto da obra e a localização de suas partes, e, para tanto, deve aparecer no início da publicação e indicar, para cada parte, a paginação (Dicionário Aurélio, 1999).
- Abstract: é um resumo sucinto do trabalho que serve como um guia para a leitura do relatório. A leitura do abstract deve indicar se vale ou não a pena ler o relatório. O abstract pode ser de dois tipos:
 - Abstract descritivo que responde a questão: qual é o escopo do relatório?
 - Abstract informativo que responde a questão: quais são os pontos mais importantes apresentados no relatório.
- Introdução: uma introdução bem escrita deve abordar os seguintes itens:
 - o assunto
 - a proposta ou proposição
 - Objetivos: Enumere uma lista com bullets. Recomenda-se iniciar os itens com verbos no infinitivo. É imperativo manter o paralelismo de linguagem, i.e. se o

primeiro item inicia-se com um verbo no infinitivo, todos os demais itens devem também iniciar com verbos no infinitivo!

- o "background"ou fundamentos do projeto
- o escopo
- a organização do relatório
- os termos chaves
- Descrição da metodologia: descreva os métodos usados para executar o projeto.
- Apresentação dos resultados
- Conclusões: conclua baseado nos resultados apresentados, comentando todos os objetivos propostos.
- Sugestões e recomendações
- **Apêndices:** nomenclatura utilizada (vide exemplo) e material de suporte ou complementação do corpo do relatório, e.g. diagramas de circuitos, códigos de programas desenvolvidos, etc.
- Referências bibliográficas.

Um livro clássico mas difícil de ler e entender é [Ast70], mas também clássico e muito bom é [Ast97].

Note que figuras são referenciadas com o rótulo *figura* seguindo de uma referência numérica sem parênteses, e.g. Mostra-se na figura 1.1 um diagrama em blocos de uma arquitetura de controle de processos genérica.

A referência a uma equação é feita usando numeração entre parênteses, e.g. a equação (1.1) é uma das mais belas equações matemáticas.

$$\frac{dy}{dt} = Ay. (1.1)$$

1.1 Contribuições

As principais contribuições apresentadas neste trabalho são destacadas abaixo para cada capítulo.

• Capítulo 1. Neste capítulo contribuiu-se a partir de uma revisão da literatura...

Figura 1.1: Arquitetura simplificada de um sistema de controle baseado em modelo com a função de Auditor de Processo.

- Capítulo 2. Descreve-se...
- Capítulo 3. Apresenta-se...
- Capítulo 4. No capítulo 4 é apresentada ...
- Capítulo 5. No capítulo 5 é apresentada ...

Conclusões e sugestões de trabalho futuro são apresentadas no Capítulo 6.

Título do capitulo 2

- 2.1 Introdução
- 2.2 Comentários finais

Título do capitulo 3

- 3.1 Introdução
- 3.2 Comentários finais

Título do capitulo 4

- 4.1 Introdução
- 4.2 Comentários finais

Título do capitulo 5

- 5.1 Introdução
- 5.2 Comentários finais

Conclusões e sugestões de trabalho futuro

6.1 Conclusões

Os objetivos foram alcançados?

6.2 Propostas de Trabalho futuro.

Trabalho futuro.

Apêndice A

Lista dos principais símbolos e abreviações

A.1 Abreviações

ADC	Conversor Analógico Digital	(Analogue to Digital Converter)
ARMA	Auto-Regressivo, Média Móvel	$(Auto-Regressive\ Moving\ Average)$
CLP	Potencial de desempenho de controle	(Closed Loop Potential)
DAC	Conversor Digital Analógico	(Digital to Analogue Converter)
DCS	Sistema de Controle Distribuído	(Distributed Control system)
FIR	Resposta ao Impulso Finita	(Finite Impulse Response)
GMV	Mínima Variância Generalizado	(Generalized Minimum Variance)
GPC	Controle Preditivo Generalizado	(Generalized Predictive Control)
IIR	Resposta ao Impulso Infinita	(Infinite Impulse Response)
LITP	Linear nos Parâmetros	(Linear-In The Parameters)
LS	Mínimos Quadrados	$(Least\ Squares)$
MIMO	Múltiplas Entradas, Múltiplas Saídas	$(Multi-Input,\ Multi-Output)$
MISO	Múltiplas Entradas, Saída Única	$(Multi-Input,\ Single-Output)$
MMRLS	Múltiplos Modelos RLS	$(Multiple\ Models\ RLS)$
MV	Variância Mínima	$(Minimum\ Variance)$
PI(D)	$Proportional + Integral \ (Derivativo)$	
PIMS	Sist. gerenciamento informação de processo	$(Process\ Information\ Management\ System)$
RLS	Mínimos Quadrados Recursivo	(Recursive Least Squares)
SCADA	Sistema de Supervisão e Aquisição de Dados	(Supervisory Control and Data Acquisition)
SEC	Semáforo de Estado de Componente	
SEM	Semáforo de Estado de Medida	
SISO	Entrada Única, Saída Única	$(Single-Input,\ Single-Output)$
UD	Diagonal Superior	$(\mathit{Upper\ Diagonal})$
ZOH	Segurador de Ordem Zero	(Zero Order Hold)

A.2 Principais símbolos utilizados

e(t), e, E	variável de erro
h	período ou intervalo de amostragem expresso em segundos
i, j, k	índices de valores inteiros
n	número inteiro representando a ordem de um vetor, matriz ou polinômio
	operador diferencial, $p \stackrel{\Delta}{=} \frac{d}{dt}$
$p \ q^{-1}$	
	operador de deslocamento de atraso, e.g. $q^{-1}y(k) = y(k-1)$
s	variável complexa da Transformada de Laplace
1	segundos
t	variável de tempo
t_k	variável de tempo discreto
u(t), u, U	controle escalar/ variável manipulada (Manipulated Variable)
$y(t), y, Y, Y_p$	variável de saída de processo (<i>Process Variable</i>)
$w(t), w, W, W_r$	variável de referência (Setpoint Variable)
z	variável complexa da Transformada Z
α	complemento do fator de esquecimento: $\alpha = 1 - \beta$
eta	fator de esquecimento
γ	constante de ponderação, $0 \le \gamma \le 1$
δ	operador delta, $\delta \stackrel{\Delta}{=} \frac{1-q^{-1}}{h}$
Δ	operador diferença $\Delta(q^{-1}) = 1 - q^{-1}$
λ	operador lambda, $\lambda \stackrel{\Delta}{=} \frac{1}{p\tau+1}$
$\xi(t), \xi$	variável de ruído branco
ho	fator de ponderação de severidade ou criticidade
au	constante de tempo
heta	vetor de parâmetros
ϕ	vetor de dados
$\mathbf{u}(t),\mathbf{u}$	vetor de variável de controle ou manipulada
$\mathbf{y}(t),\mathbf{y}$	vetor de variável de saída do processo
A, B, C	polinômios no modelo ARMA $Ay(k) = Bu(k-1) + C\xi(k)$
G(s)	função de transferência no domínio de Laplace
M_s	Máxima Sensitividade (Maximum Sensitivity)
V	variável de perturbação de carga
Q	variável de ruído de medição

A.3 Nomenclatura

x, X	um valor (escalar)
X	um vetor
\mathbf{X}	uma matriz
\mathbf{x}^T	transposta de \mathbf{x}
\bar{x}	um valor médio
\hat{x}	um valor estimado
$reve{x}$	um valor medido
\dot{x}	derivada de x
$x^{(n)}$	n-ésima derivada de x , ie $\frac{dx^n}{dt^n}$
$\widehat{\dot{x}}$	derivada filtrada de x
$\widehat{ar{x}}$	média de uma amostra de x
$ ilde{x}$	o erro de uma estimativa
x_{th}	um valor de limiar (threshold)
n_a	inteiro representando a ordem de um polinômio A
σ_x	desvio padrão de x
s_x	desvio padrão de uma amostra de x
$\sigma_x^2, Var(x)$	variância de x
s_x^2	variância de uma amostra de x
$\mathbf{A}(q^{-1}), \mathbf{A}$	polinômio em q^{-1}

Referências Bibliográficas

- [Ast70] K. J. Astrom. *Introduction to Stochastic Control Theory*. Academic Press, New York, 1970.
- [Ast97] B. Astrom, Karl J.and Wittenmark. Computer-Controlled Systems: Theory and Design. Prentice Hall Information and System Sciences Series). Prentice-Hall, 3rd edition, 1997.