

## HEXFET® Power MOSFET

| V <sub>DSS</sub>                           | -20  | V  |
|--------------------------------------------|------|----|
| V <sub>GS</sub>                            | ± 12 | ٧  |
| $R_{DS(on)}$ max<br>(@ $V_{GS}$ = -4.5V)   | 32   | mΩ |
| $R_{DS(on)}$ max $(@V_{GS} = -2.5V)$       | 55   | mΩ |
| Q <sub>g (typical)</sub>                   | 12   | nC |
| I <sub>D</sub><br>(@T <sub>A</sub> = 25°C) | -6.9 | A  |





## **Applications**

- Battery operated DC motor inverter MOSFET
- System/Load Switch

#### **Features**

| Industry-Standard TSOP-6 Package                             |
|--------------------------------------------------------------|
| RoHS Compliant Containing no Lead, no Bromide and no Halogen |
| MSL1, Consumer Qualification                                 |

## **Benefits**

results in

| Multi-Vendor Compatibility |                            |  |  |
|----------------------------|----------------------------|--|--|
|                            | Environmentally Friendlier |  |  |
|                            | Increased Reliability      |  |  |
|                            | Environmentally Friendlier |  |  |

| Dage next number | Dookses Turns | Standard P    | ack      | Ordereble Bort Number |  |
|------------------|---------------|---------------|----------|-----------------------|--|
| Base part number | Package Type  | Form          | Quantity | Orderable Part Number |  |
| IRLTS2242TRPbF   | TSOP-6        | Tape and Reel | 3000     | IRLTS2242TRPbF        |  |

### **Absolute Maximum Ratings**

|                                        | Parameter                                        | Max.         | Units |
|----------------------------------------|--------------------------------------------------|--------------|-------|
| $V_{DS}$                               | Drain-to-Source Voltage                          | - 20         |       |
| $V_{GS}$                               | Gate-to-Source Voltage                           | ± 12         | - V   |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 4.5V | -6.9         |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ 4.5V | -5.5         | Α     |
| I <sub>DM</sub>                        | Pulsed Drain Current ①                           | -55          |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Power Dissipation                                | 2.0          | 147   |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Power Dissipation                                | 1.3          | W     |
|                                        | Linear Derating Factor                           | 0.02         | W/°C  |
| $T_J$                                  | Operating Junction and                           | -55 to + 150 | 0.0   |
| T <sub>STG</sub>                       | Storage Temperature Range                        |              | °C    |

Notes ① through ③ are on page 2



## Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                | Parameter                            | Min. | Тур. | Max. | Units | Conditions                                                                        |
|--------------------------------|--------------------------------------|------|------|------|-------|-----------------------------------------------------------------------------------|
| $BV_{DSS}$                     | Drain-to-Source Breakdown Voltage    | -20  |      |      | V     | $V_{GS} = 0V, I_{D} = -250\mu A$                                                  |
| $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient  |      | 9.4  |      | mV/°C | Reference to 25 $^{\circ}$ C, $I_D$ = -1mA                                        |
| R <sub>DS(on)</sub>            | Static Drain-to-Source On-Resistance |      | 26   | 32   |       | $V_{GS}$ = -4.5V, $I_{D}$ = -6.9A ②                                               |
|                                |                                      |      | 45   | 55   | mΩ    | V <sub>GS</sub> = -2.5V, I <sub>D</sub> = -5.5A ②                                 |
| $V_{GS(th)}$                   | Gate Threshold Voltage               | -0.4 |      | -1.1 | V     | V - V I - 100A                                                                    |
| $\Delta V_{GS(th)}$            | Gate Threshold Voltage Coefficient   |      | -3.8 |      |       | $V_{DS} = V_{GS}$ , $I_D = -10\mu A$                                              |
| I <sub>DSS</sub>               | Drain-to-Source Leakage Current      |      |      | -1.0 |       | $V_{DS}$ = -16V, $V_{GS}$ = 0V<br>$V_{DS}$ = -16V, $V_{GS}$ = 0V, $T_{J}$ = 125°C |
|                                |                                      |      |      | -150 | μA    | $V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$                                |
| $I_{GSS}$                      | Gate-to-Source Forward Leakage       |      |      | -100 |       | $V_{GS} = -12V$                                                                   |
|                                | Gate-to-Source Reverse Leakage       |      |      | 100  | nA    | V <sub>GS</sub> = 12V                                                             |
| gfs                            | Forward Transconductance             | 8.5  |      |      | S     | $V_{DS} = -10V, I_{D} = -5.5A$                                                    |
| $Q_g$                          | Total Gate Charge                    |      | 12   |      |       | V <sub>DS</sub> = -10V                                                            |
| $Q_gs$                         | Pre-Vth Gate-to-Source Charge        |      | 1.5  |      | nC    | $V_{GS} = -4.5V$                                                                  |
| $Q_{gd}$                       | Gate-to-Drain Charge                 |      | 4.3  |      |       | I <sub>D</sub> = -5.5A                                                            |
| $R_G$                          | Gate Resistance                      |      | 17   |      | Ω     |                                                                                   |
| $t_{d(on)}$                    | Turn-On Delay Time                   |      | 5.8  |      |       | $V_{DD} = -10V, V_{GS} = -4.5V$                                                   |
| t <sub>r</sub>                 | Rise Time                            |      | 18   |      | ns    | $I_D = -5.5A$                                                                     |
| $t_{d(off)}$                   | Turn-Off Delay Time                  |      | 81   |      |       | $R_G = 6.8\Omega$                                                                 |
| t <sub>f</sub>                 | Fall Time                            |      | 68   |      |       |                                                                                   |
| C <sub>iss</sub>               | Input Capacitance                    |      | 905  |      |       | $V_{GS} = 0V$                                                                     |
| Coss                           | Output Capacitance                   |      | 280  |      | pF    | $V_{DS} = -10V$                                                                   |
| C <sub>rss</sub>               | Reverse Transfer Capacitance         |      | 200  |      |       | f = 1.0KHz                                                                        |

### **Diode Characteristics**

|                 | Parameter                              | Min. | Тур. | Max. | Units | Conditions                                            |
|-----------------|----------------------------------------|------|------|------|-------|-------------------------------------------------------|
| I <sub>S</sub>  | Continuous Source Current (Body Diode) |      |      | -2.0 |       | MOSFET symbol showing the                             |
| I <sub>SM</sub> | Pulsed Source Current                  |      |      | -55  | A     | integral reverse                                      |
|                 | (Body Diode) ①                         |      |      |      |       | p-n junction diode.                                   |
| $V_{SD}$        | Diode Forward Voltage                  |      |      | -1.2 | V     | $T_J = 25^{\circ}C$ , $I_S = -5.5A$ , $V_{GS} = 0V$ ② |
| t <sub>rr</sub> | Reverse Recovery Time                  |      | 41   | 62   | ns    | $T_J = 25$ °C, $I_F = -5.5A$ , $V_{DD} = -16V$        |
| $Q_{rr}$        | Reverse Recovery Charge                |      | 16   | 24   | nC    | di/dt = 100A/µs ②                                     |

#### **Thermal Resistance**

|                 | Parameter             | Тур. | Max. | Units |
|-----------------|-----------------------|------|------|-------|
| $R_{\theta JA}$ | Junction-to-Ambient ③ |      | 62.5 | °C/W  |

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width  $\leq 400\mu s$ ; duty cycle  $\leq 2\%$ .
- ③ When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: <a href="http://www.irf.com/technical-info/appnotes/an-994.pdf">http://www.irf.com/technical-info/appnotes/an-994.pdf</a>





Fig 1. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



Fig 5. Typical Capacitance vs. Drain-to-Source Voltage



Fig 2. Typical Output Characteristics



Fig 4. Normalized On-Resistance vs. Temperature



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage





Fig 7. Typical Source-Drain Diode Forward Voltage



Fig 9. Maximum Drain Current vs. Case Temperature



Fig 8. Maximum Safe Operating Area



Fig 10. Threshold Voltage vs. Temperature



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case





Fig 12. On-Resistance vs. Gate Voltage



Fig 14. Maximum Avalanche Energy vs. Drain Current





Fig 13. Typical On-Resistance vs. Drain Current



Fig 15. Typical Power vs. Time



Fig 16. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs





Fig 17a. Gate Charge Test Circuit



Fig 18a. Unclamped Inductive Test Circuit



Fig 19a. Switching Time Test Circuit



Fig 17b. Gate Charge Waveform



Fig 18b. Unclamped Inductive Waveforms



Fig 19b. Switching Time Waveforms



### **TSOP-6 Package Outline**



### **TSOP-6 Part Marking Information**



#### PART NUMBER CODE REFERENCE:

| A = SI3443DV | O = IRLTS6342TRPBF |
|--------------|--------------------|
| B = IRF5800  | P = IRFTS8342TRPBF |
| C = IRF5850  | R = IRFTS9342TRPBF |
| D = IRF5851  | S = Not applicable |
| E = IRF5852  | T = IRLTS2242TRPBF |
| F = IRF5801  |                    |
| G = IRF5803  |                    |
| H = IRF5804  |                    |
| I = IRF5805  |                    |
| J = IRF5806  |                    |
| K = IRF5810  |                    |
| N = IRF5802  |                    |
|              |                    |

Note: A line above the work week (as shown here) indicates Lead-Free.

#### DATE CODE MARKING INSTRUCTIONS

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

| YE   | AR   | Υ | WORK<br>WEEK | W |
|------|------|---|--------------|---|
| 2011 | 2001 | 1 | 01           | Α |
| 2012 | 2002 | 2 | 02           | В |
| 2013 | 2003 | 3 | 03           | С |
| 2014 | 2004 | 4 | 04           | D |
| 2015 | 2005 | 5 |              |   |
| 2016 | 2006 | 6 |              |   |
| 2017 | 2007 | 7 |              |   |
| 2018 | 2008 | 8 | 1            | 1 |
| 2019 | 2009 | 9 | Y            | 7 |
| 2020 | 2010 | 0 | 24           | X |
|      |      |   | 25           | Υ |
|      |      |   | 26           | Z |

WW = (27-52) IF PRECEDED BY A LETTER

| YE   | AR   | Υ | WORK<br>WEEK | W |
|------|------|---|--------------|---|
| 2011 | 2001 | Α | 27           | Α |
| 2012 | 2002 | В | 28           | В |
| 2013 | 2003 | С | 29           | С |
| 2014 | 2004 | D | 30           | D |
| 2015 | 2005 | Ε | 1            |   |
| 2016 | 2006 | F |              |   |
| 2017 | 2007 | G |              |   |
| 2018 | 2008 | Н | 1            | 1 |
| 2019 | 2009 | J | Ţ            | 7 |
| 2020 | 2010 | K | 50           | X |
|      |      |   | 51           | Υ |
|      |      |   | 52           | Z |

Note: For the most current drawing please refer to IR website at <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>



# **TSOP-6 Tape and Reel Information**



NOTES: OUTLINE CONFORMS TO EIA-481 & EIA-541.





NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>

### Qualifiction Information<sup>†</sup>

| Qualification Level        | Consumer <sup>††</sup><br>(per JEDEC JESD47F <sup>†††</sup> guidelines) |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------|--|--|--|--|
| Moisture Sensitivity Level | TSOP-6 MSL1 (per IPC/JEDEC J-STD-020D <sup>††</sup>                     |  |  |  |  |
| RoHS Compliant             | Yes                                                                     |  |  |  |  |

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Revision History

| Date       | Comment                                                                                              |
|------------|------------------------------------------------------------------------------------------------------|
| 11/18/2014 | Updated data sheet with IR corporate template.                                                       |
|            | <ul> <li>Updated figure 12 on page 5 for V<sub>GS</sub> from "20V" to "12V" due to error.</li> </ul> |



IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/