第2章 逻辑门电路

§ 2.1 概述

用以实现逻辑运算单元电路称为逻辑门电路。

Output ~ Input 逻辑函数

逻辑运算和逻辑门:

用电压(电平)表示逻辑高和低:

逻辑高 – 高电平逻辑低 – 低电平

获得高 (logic 1)、低 (logic 0) 输出电平的基本原理:

开关 S输出电位 V_o断开高接通低

S { Diode Transistor MOS FET

输入信号 V_i 控制其工作在截止和导通两个状态,S 起开关作用。

§ 2.2 逻辑门电路

- 1. 与门 (AND)
 - 1) 与开关电路

两个开关串联

只有当A和B都闭合(逻辑1),灯(F)才亮。

2) 真值表

表:输入的所有可能取值 按二进制数大小排列 在左;对应的输出列 在右。

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

3) 与功能

输入只要有低,输出为低;输入都为高时,输出为高。

4) 与门符号及表达式

最多8输入端

表达式:
$$F = A \cdot B = AB$$
 (A and B) (逻辑乘)

5) 与运算

$$0 \cdot 0 = 0$$
 $0 \cdot 0 = 0$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $A \cdot 1 = A$
 $A \cdot A = A$
 $A \cdot \overline{A} = 0$

A: 变量输入

6)波形图,时序图

输出波形必须对应输入波形

2. 或 (OR)

1) 或开关电路

两个开关 (A, B) 并联

任何一个开关闭合, 灯F亮。

2) 真值表

A B	F
0 0	0
0 1	1
1 0	1
1 1	1

3) 或功能描述

或关系:

只要有一个输入为高电平1,输出就为高电平1; 只有输入全为低电平0时,输出才为低电平0。

4) 或门符号及表达式

$$F = A + B$$
 逻辑加

5) 或运算

6) 波形图

$$0+0=0$$

$$0+1=1$$

$$1+1=1$$

$$A+0=A$$

$$A+1=1$$

$$A+A=A$$

$$A + \overline{A} = 1$$

3. 非门 (NOT)

1) 非开关电路

如果 A 闭合, 灯 F 灭。

2) 真值表

3) 非功能描述

输出与输入波形相反, 产生反向输出波形。

4) 非门符号及表达式

$$F = \overline{A}$$

5) 非门电路

$V_{\rm i}$	$V_{\rm o}$	
0	$E_{\rm c}$ (1)	T截止
1	$V_{\rm ces}(0)$	T 导通

6) 非运算

$$\overline{0} = 1$$
 $\overline{1} = 0$

$$\overline{\overline{A}} = A$$

$$A \cdot \overline{A} = 0$$

$$A + \overline{A} = 1$$

7) 波形图

2.2.2 复合逻辑门

逻辑门及表达式

2. 或门 (OR) A—

$$F = A + B$$

3. 非门(NOT)

4. 与非门(NAND)
$$A = B$$
 $B = \overline{AB}$

6. 与或门 (AND-OR)

$$\begin{array}{c|c}
A & & & & \\
B & & & \\
C & & & \\
C & & & \\
\end{array}$$

$$\geq 1 \quad F = AB + CD$$

7. 与或非门 (AND-OR-NOT)

$$\begin{array}{c|c}
A & & & & \\
B & & & & \\
C & & & & \\
\hline
C & & & & \\
\end{array}$$

$$F = \overline{AB + CD}$$

8. 异或门 (XOR: Exclusive - OR)

$$F = A \oplus B$$
$$= \overline{AB} + A\overline{B}$$

$$B$$
 =1 F

真值表:

A B	F(xor)
0 0	0
0 1	1
1 0	1
1 1	0

输入端只有2个且必须 2个,两输入相异时输出高电平。

9. 同或门(XNOR: (Exclusive-NOR)

真值表:

$$A - = 1$$
 $\Rightarrow F$

$$F = A \odot B = AB + \overline{A} \cdot \overline{B}$$

$$F = \overline{A \oplus B}$$

A B	F (xor) <i>F</i> (xnor)
0 0	0	1
0 1	1	0
1 0	1	0
1 1	0	1

同或门2输入,输出与异或门相反;两输入相同时输出高电平。

10. 集电极开路与非门

(OC: Open collector NAND Gate)

11. 三态门 (TSL: Three State Logic)

Tristates: 1,0,Hi-Z(高阻态)

1) 高电平有效 (Active High)

2) 低电平有效 (Active Low)

12. 传输门 (TG: Transmission Gate)

C: Control

C=1, $\overline{C}=0$, F=A (开关合上信号传过) C=0, $\overline{C}=1$, (开关断开)

§ 2.3 TTL 集成门电路

Transistor-Transistor-Logic

2.5.1 TTL集成电路概述

2.5.2 TTL 与非门

1. 工作原理

T1: 两发射极 (多发射极),

两个eb结

与非门真值表

A B	F
0 0	1
0 1	1 A 或 B 或二者为低, F 为高电平
1 0	1
1 1	1 1 A 或 B 或二者为低,F 为高电平 1 → A 和 B 都为高电平时,F 为低电平

1) 入端有低

A 或 B 或二者接地, 电流从 +5 V 电源经 R1 和 T1 到地。

$$I_{i} = \frac{5 - 0.7}{4 \times 10^{3}} = 1.1 \text{ mA}$$

$$V_{b1} = 0.7 \text{ V}$$

T1管基极电位钳位 $V_{\rm b1} \approx 0.7 \text{ V}$.

0.7 V 不足以使 **T1**_{bc} 和 **T2**_{be} 正向导通

∴T2 截止, T5 截止

等效电路:

输入端有低电平,输出为高电平. 关门状态

2) 入都为高 (A和B都为高电平) 3.6 V

A和B都是3.6V,

T1 导通,

V_{b1} 钳位 4.3 V (=3.6 + 0.7).

4.3 V 足以正向导通 T1_{bc}, T2_{be}和 T5_{be}结。

∴ T2, T5 导通

电流从 +5 V电源, 经 T1,T2 和 T5 流向地.

等效电路:

输入全高,输出低. 开门状态

实现与非功能:

$$F = \overline{AB}$$

T2 和 T5导通, $V_{\rm b1} = 2.1 \text{ V}$

$$V_{b4} = V_{be5} + V_{ce2}$$

= 0.7 +0.3 = 1.0 V

 V_{b4} 不足以

 正向导通T4_{be} 和 D3

T4, D3 截止

输出

$$F=V_{ce5}=0.1\sim 0.3 \text{ V (低)}$$
T5 饱和压降

2. 电压传输特性

研究当输入 $V_i(A)$ 从低到高时,输出 $V_o(F)$ 如何从高到低

电压传输特性

$$V_i: 0 \to 0.7 \to 1.4 (V_T = 1.4 \text{ V}) \to > 1.4 \text{ V}$$

$$V_{b1}: 0.7 \rightarrow 1.4 \rightarrow 2.1 \longrightarrow > 2.1 \text{ V}$$

$$V_0: 3.6 \rightarrow 3.6 \rightarrow 2.8 \xrightarrow{V_0 \downarrow \downarrow \downarrow} 0.3 \text{ V}$$

$V_{\mathbf{T}}$: 阈值电压(门坎电压)

TTL 系列典型值

高电平 1: 2.8~3.6 V;

低电平 0: 0~0.3 V.

V_{off} V_{on} 噪声容限:

在保证逻辑门正常逻辑功能情况下,输入端所能承受的最大干扰电压值。

2.2.3 TTL与非门的电气特性

1. 输入负载特性

理想的TTL与非门电压传输特性是:

输入电阻 R_i $V_{Ri} = V_i$

$$V_{\rm Ri} = V_{\rm i}$$

求出当 $V_{\rm T}$ =1.4 V时的输入电阻值 $R_{\rm T}$

 R_i 小, V_{Ri} 低 \Longrightarrow 输入低电平

 R_i 大, V_{Ri} 高 \Longrightarrow 输入高电平

$$V_{Ri} = \frac{R_i}{4 \times 10^3 + R_i} (5 - 0.7)$$
=1.4 V (V_T)

门坎电压时的 R_i $R_i = 1.9 k\Omega \approx 2 k\Omega = R_T$

 $R_{\rm T}$: 门坎电阻

输入电阻
$$R_i < R_T$$
, 等效于输入低电平 (0) $R_i > R_T$, 等效于输入高电平 (1) R_i 对地悬空 (∞) 逻辑高电平 (1)

2. 输出特性(带负载能力一同类门)

1) 输出低一灌流负载

当 F=0, 电流从5 V 电源 经 T1, T2 和 T5 流向地.

负载门: 输入低电平

驱动门:

$$i_{b5} > 0, \qquad I_{cs5} = 0,$$

$$\therefore i_{b5} >> \frac{I_{cs5}}{\beta} = I_{b5}$$

∴T5 深饱和

每个负载门有电流 I,灌入,灌电流。

$$I_i = \frac{5 - 0.7}{4 \times 10^3} = 1.1 \text{ mA}$$

灌入驱动门, 这时的负载为灌流负载。

$$I_{\text{max}} = 1.6 \text{ mA}$$

如果驱动门从每一个负载门接收 1.1 mA (1.6 mA) 灌电流, I_{cs5} 就要升高,饱和就会变浅,输出脱离标准低电平。

因此,TTL不能带过多负载门。驱动门的最大容许灌电流 16 mA.

扇出系数:

一个输出所能驱动的同类门的最大数目。

$$N = \frac{16 \text{ mA}}{1.6 \text{ mA}} = 10$$
 手册上规定: $N \le 8$

2) 输出高一拉流负载

从 F 拉出的电流是负载门 T1 管的反向漏电流。

驱动门输出高电平时,要承受各负载门的<u>拉电流</u>。拉电流越大,驱动门中 **R4** 上压降越大。F 非高非低,脱离标准逻辑高电平。

每负载门的拉电流为40μA,驱动门最大允许 拉电流400μA

扇出系数与灌电流时相同:
$$\frac{400 \mu A}{40 \mu A} = 10$$

手册规定: N<8

§ 2.3.4 其他类型TTL门电路

1. TTL 非门

TTL 非门与 TTL 与非门基本相同。

2. 或非门

A: T₁, T₂, R₁ B: T₁', T₂', R₁' } 相同电路

中间级和输出级与与 非门相同

A: 高 $\left\{ egin{array}{ll} T_2, T_5 & \oplus \mathbb{H} \\ T_4, D_3 & \oplus \mathbb{H} \end{array} \right\}$ F: 低 $\left\{ egin{array}{ll} T_2, T_5 & \oplus \mathbb{H} \\ T_2, T_5 & \oplus \mathbb{H} \\ T_4, D_3 & \oplus \mathbb{H} \end{array} \right\}$ F: 低 $\left\{ egin{array}{ll} F_2, T_5 & \oplus \mathbb{H} \\ T_4, D_3 & \oplus \mathbb{H} \end{array} \right\}$ F: 低 $\left\{ egin{array}{ll} T_4, D_3 & \oplus \mathbb{H} \\ T_4, D_3 & \oplus \mathbb{H} \end{array} \right\}$

3. 与或非门

或非门的输入端

多发射极晶体管

A和B都高,F低;C和D都高,F低;只有当

 $\left\{ \begin{array}{c} A \, \Pi \, B \\ C \, \Pi \, D \end{array} \right\}$

不同时为高时

$$F = \overline{A \cdot B + C \cdot D}$$

4. 异或门

A, B 都高

$$\left\{ egin{array}{ll} \mathbf{T_6},\mathbf{T_9}$$
导通 \mathbf{F} 低 $\mathbf{T_8}$ 截止 $\left. \right\}$

A, B 都低

F 低

 $\left\{ egin{array}{ll} T_1 导通, T_6 截止 \ T_4, T_5 之一导通,
ightarrow T_7 截止 \ T_8 导通, T_9 截止 \end{array}
ight.$ $A \setminus B$ 不同

5. 集电极开路与非门

当需要下面运算时

$$F = F_1 \bullet F_2 = \overline{AB} \bullet \overline{CD}$$

有一种连接方法 如图

这种连法称"线与"

普通TTL门电路禁止这种连接方法

原因:

TTL 门输入电阻很小。如果 G1 输出高,而 G2 输出低, 会形成一个很大电流 I 从 G1 T4 流向 G2 T5.

导致:

 $I = \begin{cases} G2 \text{ T5 烧毁} \\ 输出 F 脱离标准逻辑电平 \end{cases}$

非1非0,逻辑错误。

OCIJ:

(负载电阻的计算,见书)

集电极开路与非门去掉了T4和D3,用一个上拉电阻 R_L 替代。

选择适当 V_{cc} '和 R_{L} 值,就可以实现高电平和线与。

OC 门符号:

$$F = F_1 \bullet F_2 = \overline{AB} \bullet \overline{CD} = \overline{AB + CD}$$

6. 三态门 TSL

三态门输出:

高, 低, 高阻抗 (Hi-Z)

高阻抗是 T_4 和 T_5 管都截止,输出对地和对电源 E_c 都为高阻抗.

输出是悬浮的终端,既不是逻辑低也不是逻辑高电平.

实际中,输出端是一个几兆欧或更大的电阻.

TTL三态门

三态钳位电路示意图

高电平有效

EN = 1, T6倒置放大, T7 导通, T8 截止, T8 集电极开路; 三态钳位电路不起作用, 输入完全取决于A、B。

EN = 0, T8 导通, V_{b4} 钳位 0.3 V, T4 D3 截止

T1 导通, V_{b1} ≤ 1.0 V T2 T5 截止

F: Hi-Z 悬浮导线

三态门:

符号:

高电平有效
$$\left\{ egin{aligned} \operatorname{EN=1}, F=\overline{AB} \ \operatorname{EN=0}, F: \operatorname{Hi-Z} \end{aligned}
ight.$$

低电平有效
$$\left\{ \begin{array}{ll} \operatorname{EN=0}, F=\overline{AB} \\ \operatorname{EN=1}, F: \operatorname{Hi-Z} \end{array} \right.$$
 $\left. \begin{array}{ll} A \\ B \\ \end{array} \right.$ $\left. \begin{array}{ll} E \\ \end{array} \right.$ $\left. \begin{array}{ll} F \\ \end{array} \right.$

$$A \longrightarrow \& \longrightarrow F$$

2.3.5 TTL 电路的改进

理想电压传输特性:

输入电压在1/时,输出电压翻转.

多种改进的方法。

一种是在TTL电路中增加T6管:

 R_3 造成电压传输特性不理想.

用 R₅, R₆, T6 替代 R₃.

原电路:

$$V_i = 0.7 \text{ V, T2 导通}$$
 ($\mathbf{R}_3 \to \mathbf{\mathfrak{W}}$)

改进电路:

$$V_i = 0.7 \text{ V, T2}$$
 截至

只有当 V_i =1.4 V, T2 和 T5 同时导通, 或 T2 和 T6 同时导通. R₅ 的存在, 通常T6 滞后于T5.

只有 $V_{\rm T}$, 没有 $V_{\rm on}$ 和 $V_{\rm off}$ $V_{\rm T}$: 预置电压threshold voltage , $V_{\rm T}$ =1.4 $\rm V$

$$\{V_i < 1.4 \text{ V} \quad \text{相当于} V_i = 0 \}$$

输入 $V_i \in \{V_i > 1.4 \text{ V} \quad \text{相当于} V_i = 1 \}$
 $\{V_i \text{悬空} V_i = 1 \}$

§ 2.6 MOS 逻辑电路

2.6.1 NMOS 门电路

1. NMOS 非门

NMOS 非门含有两个 N-沟 FETs:

 $R_{\rm ON 1} = 100 \text{ k}\Omega$

T₁: 负载管

T₂: 驱动管

负载管 T_1 栅极接 E_D ,总是导通,基本作用为负载电阻

输入
$$A = 0$$
 V (logic 0), $V_{GS2} < V_{T}$.

$$V_{\rm GS2} < V_{\rm T,}$$

$$T_2$$
 截至, $R_{off} \ge 10^{10} \Omega$

输出:
$$F = \frac{10^{10}}{10^5 + 10^{10}} \times E_D \approx E_D$$

$$F = E_D$$
 (logic 1) $\therefore A = 0, F = 1$

输入A = 5 V (logic 1), $V_{GS} > V_{T}$, T, 导通, $R_{on2} = 1 \text{ k}\Omega$

$$F = \frac{R_{ON2}}{R_{ON1} + R_{ON2}} E_D = \frac{1k}{100k + 1k} E_D \approx 0.01 E_D \approx 0$$

$$\therefore F = 0 \text{ (logic 0)}$$

真值表

\boldsymbol{A}	T_1	T_2	F
0	on	off	1
1	on	on	0

实现逻辑功能

$$F = \overline{A}$$

2. NMOS 与非门

输入、输出列于真值表:

$$F = \overline{AB}$$

两个驱动管 T_2 和 T_3 串联,输入分别为 A 和B.

AB	T_1	T_2 T_3	F
0 0	on	off off	1
0 1	on	off on	1
1 0	on	on off	1
1 1	on	on on	0

3. NMOS 或非门

\boldsymbol{A}	В	T_1	T_2	T_3	F
0	0	on	off	off	1
0	1	on	off	on	0
1	0	on	on	off	0
1	1	on	on	on	0

两个驱动管 T2 和 T3 并联,输入分别为 A 和 B.

$$\therefore F = \overline{A + B}$$

注意: 无负载管不是逻辑电路

2.6.2 CMOS 门电路

互补型MOS (CMOS: complementary) 逻辑门在一个电路 中同时包含P- 和 N- 沟道FET。

\boldsymbol{A}	$T_{ m P}$	$T_{ m N}$	F
0	on	off	1
1	off	on	0
	$oldsymbol{F}$	<u> </u>	

PMOS: 负载 NMOS: 驱动

$$E_D = 10 \text{ V}$$
 $E_D = V_{TN} + |V_{TP}|$
大于两门坎电压代数和

$$A = 0$$
, $T_{\rm N}$ Off, $T_{\rm P}$ On $(V_{\rm GSN} < V_{\rm TN}, \ V_{\rm GSP} = 0 - E_{\rm D} = -E_{\rm D} \ |V_{\rm GSP}| > |V_{\rm TP}|)$ $F = E_{\rm D} = 1$

$$A = 1$$
, $T_{\rm N}$ On, $T_{\rm P}$ Off
 $(V_{\rm GSP} = E_{\rm D} - E_{\rm D} = 0 < |V_{\rm TP}|)$ $F = 0$

2. CMOS 与非门

A B	3	<i>T</i> n ₁	<i>T</i> n ₂	<i>T</i> p ₁	Tp_2	F
0 0)	off	off	on	on	1
0	1	off				1
1	0	on on	off	off	on	1
1	1	on	on	off	off	0

两个驱动管 Tn_1 和 Tn_2 串联. 两个负载管 Tp_1 和 Tp_2 并联。

功能: 与非

$$F = \overline{AB}$$

3. CMOS 或非门:

A	B	Tn ₁	Tn ₂	Tp_1	Tp_2	$oldsymbol{F}$
0	0	off	off	on	on off on off	1
0	1	off	on	on	off	0
1	0	on	off	off	on	0
1	1	on	on	off	off	0

两 NMOSFETs 并联作为驱动管.

两 PMOSFETs 串联作为负载管.

功能: 或非 $F = \overline{A+B}$

$$F = \overline{A + B}$$

4. CMOS 三态门

低电平有效三态门

 T_{P1} 、 T_{N1} : 非功能

增加 T_{N2} 和 T_{P2} 分别与驱动管 T_{N1} 及负载管 T_{P1} 串联

$$\overline{EN}=0$$
 $\left\{egin{array}{ll} oldsymbol{T_{N2}}, & oldsymbol{T_{P2}} & oldsymbol{\mathbb{P}} oldsymbol{\mathbb{P}} \ oldsymbol{T_{N1}}, & oldsymbol{T_{P1}} # 门工作 \ oldsymbol{F} & oldsymbol{\overline{A}} \end{array}
ight.$

MOS电路输入电阻 $R_{\rm GS} > 10^{10}\,\Omega$, 所以无论外接电阻多大,都是:接地 $\to 0$, $E_{\rm c} \to 1$ 。

§ 2.7 TTL与 CMOS 电路的连接

两种电路匹配条件:

驱动管 负载管

电压匹配

voltage
$$\begin{cases} V_{OH} > V_{IH} \\ V_{OL} < V_{IL} \end{cases}$$

电流匹配

current
$$\begin{vmatrix} I_{OH} > I_{IH} \\ I_{OI} > I_{II} \end{vmatrix}$$

TTL, CMOS 参数:

	TTL CT1000 系列	TTL CT4000 系列	CMOS CC4000 系列 $E_D = 5 \text{ V}$
$V_{OH(ext{min})}(ext{V})$	2.4	2.7	4.95
$V_{\mathit{OL}(\min)}(\mathrm{V})$	0.4	0.5	0.05
$I_{OH(\mathrm{max})}(\mathrm{mA})$	0.4	0.4	0.5
$I_{OL(max)}(mA)$	16	8	0.5
$V_{IH \text{ (min)}}(V)$	2	2	3.5
$V_{IL(\mathrm{min})}(\mathrm{V})$	0.8	0.8	1.5
$I_{IH}(\mu A)$	40	20	0.1
$I_{IL}(mA)$	1.6	0.4	0.1×10^{-3}

1. COMS 驱动 TTL

	TTL 1000	TTL 4000	CMOS 4000
$V_{{\it OH(min)}}({ m V})$	2.4	2.7	4.95
$V_{\mathit{OL}(min)}(V)$	0.4	0.5	0.05
$I_{OH(\mathrm{max})}(\mathrm{mA})$	0.4	0.4	0.5
$I_{OL(max)}(mA)$	16	8	0.5
$V_{IH \text{ (min)}}(V)$	2	2	3.5
$V_{IL(min)}(V)$	0.8	0.8	1.5
$I_{IH}(\mu A)$	40	20	0.1
$I_{IL}(mA)$	1.6	0.4	0.1×10^{-3}

$$\begin{cases} V_{OH} > V_{IH} \\ V_{OL} < V_{IL} \end{cases}$$

$$\begin{cases} I_{OH} > I_{IH} \\ I_{OL} > I_{IL} \end{cases}$$

从表中看出,

△COMS驱动TTL 4000系列时, 4个条件全都满足,可以直接驱动

△COMS驱动TTL 1000系列时, 第4个条件不满足,即:

$$I_{OL} > I_{IL}$$

0.5 $mA < 1.6 mA$

不能直接连接。

连接方法:

 $I_{OL} > I_{IL}$ 0.5 mA < 1.6 mA

1) 接转换电路 CC4049, CC4050

2) 并联几个CMOS

灌入每个门的电 流减小.

2. TTL 驱动 CMOS

第1条不满足: $V_{\text{OH}} > V_{\text{IH}}$ 当TTL输出高时:

连接方法: 加一上拉电阻 $R_{\rm V}$

TTL: T5, T2截止,此时T5的 反向漏电流约1~2μA,按

 $1 \times 10^{-6} A$ 计算 ($R_{\rm V}$ 取5 k Ω)

$$1 \times 10^{-6} \times 5 \times 10^{3} = 0.005 \text{ V}$$

在 $R_{\rm V}$ 上降 $0.005\,{
m V}$

a 点电位 V_a = 5 V-0.005 V = 4.995 V

提高了 V_{OH}