Principes de dénombrement

Cardinal d'un ensemble et principe additif

n et *p* sont des nombres entiers naturels avec $p \ge 1$. *E* est un ensemble fini.

Définition: Cardinal

Le **cardinal** de E, noté Card(E), est le nombre d'éléments de l'ensemble E.

Remarque:

 $\int Card(\emptyset) = 0$

Propriété:

Si $E_1, E_2..., E_p$ sont p ensembles finis deux à deux disjoints, alors :

 $Card(E_1 \cup E_2 \cup ... \cup E_n) = Card(E_1) + Card(E_2) + ... + Card(E_n).$

Remarque: Si A et B sont deux ensembles finis d'un ensemble fini E, alors les ensembles A et $\overline{A} \cap B$ sont deux

ensembles disjoints. On en déduit que

 $Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$

tamaran. On sait que , parmi un groupe de jeunes, 16 pratiquent le Stand-up paddle, 12 le catamaran

Application nº 1 Dénombrer avec un tableau ou un diagramme, Utiliser le principe additif

, 5 pratiquent ces deux sports et 6 n'en pratique aucun. Déterminer, avec deux manières différentes le nombre de personnes dans ce groupe.

Dans un club de vacances, deux sports, entre autres, sont proposés! stand-up paddle (SUP) et le ca-

ran.

catamaran.

Correction :

On note "P" L'ensemble des jeunes pratiquant le paddle. et "C" celui des sportifs pratiquant le Catama-

Ρ \			
Oui	5	11	16
Non	7	6	13
Total	12	17	29
		<u> </u>	

1^{re}Méthode : Le tableau

C Oui Non Total

2^eMéthode : Le diagramme

Paddle. Le nombre total de jeunes dans le groupe est 11+5+7+6=29.

В Produit cartésien

Le **produit Cartésien** de deux ensembles finis et E et F, noté $E \times F$ est l'ensemble des **couples**(x; y) où x est un élément de E et y un élément de F.

Définition : Produit Cartésien

Exemple: Pour $E = \{1; 2\}$ et $F = \{3; 4\}$; on a $E \times F = \{(1; 3); (1; 4); (2; 3); (2; 4)\}$

Soient E et F deux ensembles finis. Alors $Card(E \times F) = Card(E) \times Card(F)$

Propriété :

Définition et Propriété :

• L'ensemble des ces k – uplets est le produit cartésien $E_1 \times E_2 \times ... \times E_k$.

Démonstration

k – liste)

• Lorsque les ensembles E_1, E_2, \dots, E_k sont finis :

Soient k un entier supérieur ou égal à 2 et E_1, E_2, \dots, E_k , k ensembles non vides.

 $Card(E_1 \times E_2 \times ... \times E_k) = Card(E_1) \times Card(E_2) \times ... \times Card(E_k)$

• Toute liste ordonnée $(x_1; x_2; ... x_k)$, avec $x_i \in E_i$ pour i allant de 1 à k, est appelée k – **uplet** (ou

$\operatorname{Card}(E \times F) = \operatorname{Card}\left(\bigcup_{k=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \operatorname{Card}(A_{i}) = \sum_{k=1}^{n} \operatorname{Card}(F) = n \times m$ <u>Pour *k* ensembles</u> : Démonstration par récurrence :

 $Card(E_{i+1})$

 $n \ge 2$

Pour deux ensembles :

• Sinon soit $E = \{x_1; ...; x_n\}.$

Soit \mathscr{P}_k la propriété : Card $(E_1 \times E_2 \times ... \times E_k) = \text{Card}(E_1) \times \text{Card}(E_2) \times ... \times \text{Card}(E_k)$ pour $k \ge 2$

• Initialisation : Démontrons que la propriété est vraie pour k = 2 on à :

Soient E et F deux ensembles finis avec n = Card(E) et m = Card(F)

• Si m = 0 ou n = 0 alors $E \times F = \emptyset$ et la propriété est vraie.

 $Card(E_1 \times E_2) = Card(E_1) \times Card(E_2)$ d'après la preuve précédente. La propriété est donc vraie pour k = 2 et la propriété est initialisée. • **Hérédité**: Supposons qu'il existe $i \ge 2$ tel que la propriété \mathcal{P}_i soit vraie . alors on à $Card(E_1 \times E_2 \times ... \times E_i \times E_{i+1}) = Card(E_1 \times E_2 ... E_i) \times Card(E_{i+1}) = Card(E_1) \times Card(E_2) \times ... \times Card(E_{i+1}) \times Card(E_1) \times Card(E_2) \times ... \times Card(E_1) \times Card(E_2) \times ... \times Card(E_2) \times ... \times Card(E_1) \times Card(E_2) \times ... \times Card(E_2$

 $\forall i \in \{1...\}$; on note $A_i = \{x_i\} \times F$. Les ensembles A_i sont disjoints et de même cardinal que F.

Conséquence : Si E est un ensemble de cardinal n et si $k \in N^*$, alors Card $(E^k) = n^k$

• Conclusion La propriété est initialisée pour k = 2 et héréditaire donc elle est vraie pour tout

Un code secret est constitué de trois 0 à 9 chiffres suivis de deux lettres de l'alphabet en majuscule, puis d'un caractère spécial à choisir parmi + - * \$ &. Combien de codes secrets différents peut-on

Application nº 2 Utiliser le principe multiplicatif

constituer?

Correction:

cules, et enfin 5 choix possibles pour le caractère spécial. En tout il y a : $10^3 \times 26^2 \times 5 = 3380000$ codes secrets différents que l'on peut constituer.

Il y a 10³ choix possibles pour les trois chiffres, puis 26² choix possibles pour les deux lettres en minus-