БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	OT	Председатель
Протокол №	от	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №4

НАИМЕНОВАНИЕ РАБОТЫ: Вычисление вероятности событий с помощью формулы полной вероятности. Вычисление вероятностей гипотез по формулам Байеса.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по нахождению вероятности, пользуясь формулами полной вероятности и Байеса.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Формула полной вероятности.
- 1.2. Формула Байеса.

2. Работа в аудитории

2.1. Решение типового задания

Задание: Пассажир обращается с вероятностью 0.7 в одну кассу и с вероятностью 0.3 – в другую. Вероятность приобрести требуемый билет в первой кассе – 0.6, а во второй – 0.5. Найти вероятность того, что пассажир купил билет. Какова вероятность того, что пассажир приобрел билет во второй кассе?

Решение:

№ п/п	Алгоритм	Действие
1	Дать описание всех гипотез, на которые можно разбить пространство элементарных исходов и событие А.	H_1 — пассажир обратится в первую кассу; H_2 — пассажир обратится во вторую кассу; A — пассажир приобрел билет.
2	Вычислить вероятности каждой гипотезы	$p(H_1) = 0.7; p(H_2) = 0.3.$
3	Вычислить условную вероятность события А при каждой гипотезе	$p(A/H_1) = 0.6$; $p(A/H_2) = 0.5$.
4	Вычислить вероятность события А по формуле полной вероятности	$p(A) = p(A/H_1) \cdot p(H_1) + p(A/H_2) \cdot p(H_2) =$ = 0,7 \cdot 0,6 + 0,3 \cdot 0,5 = 0,57.
5	Вычислить условную вероятность по формуле Байеса	$P(H_2/A) = \frac{P(H_2)P(A/H_2)}{P(A)} = \frac{0.3 \cdot 0.5}{0.57} \approx 0.2632.$

2.2. Выполните задания, используя формулу полной вероятности и формулу Байеса.

Уровень І

Задание №1. Человек, заблудившийся в лесу, вышел на пересечение трех тропинок. Вероятность выхода из леса в течение оставшегося дня составляет соответственно p_1 , p_2 , p_3 для каждой тропинки. Чему равна вероятность того, что человек вышел из леса в этот день, если он выбирает одну из трех тропинок с равной вероятностью?

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p_I	0,8	0,9	0,7	0,5	0,6	0,4	0,5	0,8	0,6	0,8	0,6	0,7	0,9	0,4	0,8
p_2	0,6	0,4	0,9	0,8	0,7	0,8	0,9	0,9	0,7	0,7	0,9	0,6	0,4	0,6	0,5
p ₃	0,7	0,6	0,4	0,7	0,8	0,7	0,8	0,9	0,9	0,6	0,4	0,8	0,7	0,7	0,6

Уровень II

Задание №2. Партия электрических лампочек на M % изготовлена первым заводом, на N % вторым, остальные — третьим заводом. Вероятности выпуска бракованных лампочек соответственно равны p_1 , p_2 , p_3 . Найти вероятность того, что наудачу взятая из партии лампочка окажется стандартной.

10												1			
№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
M	20	40	30	10	20	50	10	30	40	30	20	50	10	40	30
N	30	10	40	50	40	20	40	50	20	30	50	30	60	30	40
p_1	0,002	0,001	0,003	0,004	0,005	0,004	0,003	0,006	0,007	0,002	0,001	0,003	0,005	0,009	0,004
p_2	0,004	0,007	0,004	0,003	0,003	0,006	0,006	0,001	0,008	0,008	0,005	0,007	0,003	0,004	0,003
p ₃	0,006	0,004	0,001	0,008	0,002	0,001	0,004	0,003	0,003	0,004	0,003	0,004	0,006	0,006	0,007

Задание №3. Идет охота на волка. В охоте участвуют 4 охотника. Вероятности выхода волка на первого охотника $-p_I$, на второго $-p_2$, на третьего $-p_3$, на четвертого $-p_4$. Вероятность убийства волка первым охотником, если волк вышел на него, $-p_5$, вероятность убийства волка вторым охотником, если волк вышел на него, $-p_6$, вероятность убийства волка третьим охотником, если волк вышел на него, $-p_6$, вероятность убийства волка четвертым охотником, если волк вышел на него, $-p_8$. Какова вероятность убийства волка? Если известно, что волк убит, какова вероятность того, что волк убит k-ым охотником?

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p_1	0,4	0,3	0,2	0,1	0,2	0,4	0,1	0,2	0,3	0,4	0,2	0,4	0,5	0,1	0,4
p_2	0,3	0,4	0,1	0,3	0,2	0,1	0,2	0,3	0,1	0,2	0,4	0,2	0,1	0,3	0,4
p_3	0,2	0,1	0,3	0,4	0,3	0,2	0,4	0,4	0,2	0,1	0,2	0,3	0,2	0,2	0,1
p_4	0,1	0,2	0,4	0,2	0,3	0,3	0,3	0,1	0,4	0,3	0,2	0,1	0,2	0,4	0,1
p_5	0,6	0,4	0,9	0,8	0,6	0,8	0,6	0,6	0,8	0,6	0,4	0,6	0,8	0,7	0,9
p_6	0,7	0,6	0,4	0,7	0,7	0,7	0,9	0,7	0,7	0,7	0,8	0,7	0,9	0,8	0,5
p_7	0,8	0,9	0,7	0,5	0,9	0,6	0,4	0,6	0,9	0,8	0,7	0,8	0,9	0,8	0,7
p 8	0,6	0,4	0,9	0,8	0,4	0,8	0,7	0,8	0,5	0,9	0,8	0,7	0,7	0,6	0,8
k	3	2	3	4	1	3	4	1	2	4	3	1	2	4	3

Уровень III

Задание №4.

No	Задание
	Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2; 0,4;
1	0,6. При одновременном выстреле всех трех стрелков оказалось одно попадание. Определить ве-
	роятность того, что попал первый стрелок.
	Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором - 10 белых
2	и 10 черных шаров, в третьем - 20 черных шаров. Из выбранного наугад ящика вынули белый
	шар. Вычислить вероятность того, что шар вынут из первого ящика.
	Для проверки усвоения лекционного материала в группе был случайным образом выбран уча-
	щийся, и ему был предложен тест по теме лекции. В этой группе 7 отличников, 8 хороших уча-
3	щихся и 10 средних учащихся (по результатам прошедшей сессии). Было известно, что отличник
3	справляется с тестом с вероятностью 0,85, хороший учащийся справляется с тестом с вероятно-
	стью 0,6, а средний – с вероятностью 0,3. Выбранный учащийся справился с тестом. Какова веро-
	ятность того, что был выбран хорошист?

4	Студент идет на экзамен. Если ему дорогу перебежит черная кошка, то вероятность успешной сдачи экзамена равна -0.2 , если не перебежит, то -0.7 . Вероятность, что кошка перебежит дорогу -0.1 . Студент не сдал экзамен. Какова вероятность, что кошка перебежала дорогу?
5	11% всех мужчин и 1% всех женщин – дальтоники. Наугад выбранное лицо оказалось дальтоником. Какова вероятность того, что это мужчина? Число мужчин и женщин считается одинаковым.
6	Предприятие объявило конкурс на замещение вакантной должности главного менеджера. На отбор пришли 4 человека, каждого из которых могут взять на работу с равной вероятностью. Если главным менеджером станет первый претендент, то предприятие останется довольно своим выбором с вероятностью 0,9; для 2, 3 и 4-го претендентов эти вероятности равны соответственно 0,6; 0,8; 0,7. Известно, что новый главный менеджер отлично справляется со своими обязанностями. Какова вероятность того, что им стал третий претендент?
7	Партия лекарственных препаратов изготовлена тремя фирмами, причем первая изготовила 20% всей продукции, вторая — 35%, а третья — 45%. В продукции первой фирмы брак составляет 5%, второй — 4%, и третьей — 2%. Случайно выбранная упаковка оказалась бракованной. Какова вероятность, что это продукция первой фирмы?
8	В колледже 40% юношей – брюнеты, 35% – блондины, остальные – рыжие. Вероятность, что учащейся Красавиной понравится брюнет, равна 0,7, блондин – 0,8, рыжий – 0,6. Выбранный юноша понравился Красавиной. Найти вероятность того, что понравившийся юноша – брюнет.
9	В двух параллельных группах была проведена одна и та же контрольная работа. В первой группе, состоящей из 30 учащихся, оказалось 8 выполненных на «отлично» работ, во второй, состоящей из 27 учащихся, — 9 таких работ. Все работы перемешали и произвольно выбрали одну работу. Она оказалась написанной на «отлично». Определить вероятность того, что эта работа принадлежит учащемуся второй группы.
10	Старик обращается к золотой рыбке с тремя различными просьбами. Вероятность того, что он попросит новое корыто для своей старухи в первый раз, равна $0,7$. Во второй и третий $-0,2$ и $0,1$. Вероятности исполнения просьбы рыбкой $-0,8$, $0,3$ и $0,1$ соответственно. Если старик все-таки получил новое корыто, какова вероятность, что это произошло сразу?
11	В игорном клубе половина игроков честные, половина — шулеры. Вероятность вытащить из колоды короля для шулера равна 1. Игрок вытаскивает из колоды короля с первого раза. Какова вероятность, что это шулер?
12	В колледже учащиеся получают профессию по 4 специальностям. Бухгалтерами хотят стать 80 человек, программистами — 120, юристами — 40 и строителями — 60. Количество девушек каждой специальности составляет 70%, 40%, 80% и 15% соответственно. Определить вероятность того, что учащаяся Красавина — будущий программист.
13	У рыбака имеется три излюбленных места для ловли рыбы, которые он посещает с равной вероятностью каждое. Если он закидывает удочку в первом месте, рыба клюет с вероятностью 0,6; во втором месте – с вероятностью 0,9; в третьем – с вероятностью 0,7. Рыбак, выйдя на ловлю рыбы, закинул удочку, и рыба клюнула. Найти вероятность того, что он удил рыбу в первом месте.
14	В магазине три холодильника, в которых хранится мороженое. В первом 4 белых и 6 шоколадных, во втором – 2 белых и 8 шоколадных, в третьем – 3 белых и 7 шоколадных. Наугад выбирают холодильник и вынимают из него мороженое. Определить вероятность того, что оно белое.
15	Число грузовых автомобилей, проезжающих по шоссе на которой стоит бензоколонка, относится к числу легковых автомобилей, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовой автомобиль, равна 0,1; для легковых автомобилей эта вероятность равна 0,2. К бензоколонке подъезжает для заправки автомобиль. Найти вероятность того, что это грузовой автомобиль.

<u>Уровень IV.</u> Составьте и решите задачу, в которой необходимо определить вероятность, используя формулу полной вероятности.

Контрольные вопросы:

- 1. Какую вероятность называют условной? Приведите пример.
- 2. Какие события называют гипотезами?
- 3. Когда применяются формула полной вероятности и формулы Байеса?

Литература

Гусак А.А. Теория вероятностей: справ. Пособие к решению задач / А.А. Гусак, Е.А. Бричикова. — 6-е изд. — Минск: ТетраСистемс, 2007. — c.67— 83.

Преподаватель В.П. Кошелева