WO 00/09557 A1

Job No.: 1505-80958

Translated from Japanese by the Ralph McElroy Translation Company 910 West Avenue, Austin, Texas 78701 USA

INTERNATIONAL PATENT OFFICE WORLD ORGANIZATION FOR INTELLECTUAL PROPERTY

International patent published on

the basis of the Patent Cooperation Treaty

INTERNATIONAL PUBLICATION NO. WO 00/09557 A1

International Patent Classification⁶:

C 07 K 14/47

C 12 N 15/12

//5/10

C 12 P 21/02 (C 12 P 21/02

C 12 R 1:91)

International Filing No.:

PCT/JP99/04352

International Filing Date:

August 11, 1999

International Publication Date:

February 24, 2000

Priority

Date:

August 12, 1998

JP

No.:

Country:

Hei 10[1998]-227723

Designated States:

AU, CA, CN, KR, US, European patent (AT, BE, CH, CY, DE, DK,

ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE)

NOVEL GENE AND PGTH PROTEIN ENCODED THEREBY

Inventors and

Inventors/Applicants (only for US):

Osamu Ohara;

Takahiro Nagase;

Nobuo Nomura

Kazusa DNA Research Institute

Foundation

1532-3 Yakuni, Kisarazu-shi,

Chiba-ken (JP)

Kiyoshi Takayama Hitoshi Toyoda; Makoto Yoshimoto Taisho Pharmaceutical Co., Ltd. 3-24-1 Takata, Toshima-ku, Tokyo-to (JP)

Applicant (for all designated states other than US):

Kazusa DNA Research Institute Foundation 1532-3 Yakuni Kisarazu-shi, Chiba-ken (JP)

Taisho Pharmaceutical Co., Ltd. 3-24-1 Takata, Toshima-ku, Tokyo-to (JP)

Tomizo Kitagawa Taisho Seiyaku K.K. 3-24-1 Takata, Toshima-ku, Tokyo-to (JP)

Agent:

Published

With International Search Report.

FOR INFORMATION ONLY

Codes for the identification of PCT contract states on the cover sheets of the documents that publish the international applications in accordance with the PCT.

AE AL	United Arab Emirates Albania	KP KR	Democratic People's Republic of Korea South Korea	YU ZA ZW	Yugoslavia South Africa Zimbabwe
AM	Armenia	KZ	Kazakhstan	<i>L</i> **	Zimodowe
AT AU	Austria	LC	Saint Lucia		
AZ	Australia Azerbaijan	LÏ	Liechtenstein		
BA	Bosnia-Herzegovina	ĹK	Sri Lanka		
BB	Barbados	ĹŔ	Liberia		
BE	Belgium	ĹŚ	Lesotho		
BF	Burkina Faso	ĹŤ	Lithuania		
BG	Bulgaria	ĹÙ	Luxembourg		
BJ	Benin	ĹV	Latvia		
BR	Brazil	ΜA	Morocco		
BY	Belarus	MC	Monaco		
ČA	Canada	MD	Republic of Moldavia		
CF	Central African	MG	Madagascar		
CI	Republic	MK	Macedonia (former		
CG	Congo		Yugoslavian Republic		
ČH	Switzerland		of Macedonia)		
ČÏ	Côte d'Ivoire	ML	Mali		
ČM	Cameroon	MN	Mongolia		
ČN	China	MR	Mauritania		
CR	Costa Rica	MW	Malawi		
CU	Cuba	MX	Mexico		
CY	Cyprus	NE	Niger		
CZ	Czech Republic	NL	Netherlands		
DE	Germany	NO	Norway		
DK	Denmark	NZ	New Zealand		
DM	Dominica	PL	Poland .		
EE	Estonia	PT	Portugal		
ES	Spain	RO	Romania		
FI	Finland	RU	Russian Federation		
FR	France	SD	Sudan		
GA	Gabon	SE	Sweden		
GB	United Kingdom	SG	Singapore		
GD	Grenada	SI	Slovenia		
GE	Georgia	SK	Slovakia Sierra Leone		
GH	Ghana	SL SN			
GM	Gambia	SZ	Senegal Swaziland		
GN GP	Guinea	TD	Chad		
GR HR	Greece Croatia	TG	Togo		
HU		ŤĴ	Tajikistan		
ID	Hungary Indonesia	ΤM	Turkmenistan		
ĬĒ	Ireland	TR	Turkey		
ΪĹ	Israel	ŤΤ	Trinidad and Tobago		
ÏN	India	ŤŽ	Tanzania		
IS	Iceland	ŬĀ	Ukraine		
ΪΤ	Italy	ŬĠ	Uganda		
ĴР	Japan	ŬŠ	United States of		
KE	Kenya		America		
KĞ	Kyrgyzstan	UZ	Uzbekistan		
		VN	Vietnam		

Field of the technology

This invention pertains to a novel PGTH protein of human brain origin having a prostaglandin transport activity and the pgth gene encoding the protein.

Prior art

Prostaglandin is a generic name for a series of physiologically active lipids such as prostaglandin E, prostaglandin D, prostaglandin F, prostaglandin I, prostaglandin J, etc. Prostaglandin is a physiologically active substance inside the body strongly related to control of physiological functions such as blood flow rate, sleeping, gastric mucosa protective action, thrombus formation, pregnancy, etc., through specific cell membrane or intranuclear receptors.

Prostaglandin is produced inside cells as a result of eicosapolyenic acids such as arachidonic acid, etc., being cut out by phospholipase A2 from the cell membrane and converted with cyclooxygenase and various prostaglandin synthetic enzymes by responding to various physiological stimuli, and after being released outside the cells, it has autocrine or paracrine effects. On the other hand, liberated prostaglandin is also circulated in the blood flow, taken up by a specific cell, metabolized and so disappears.

A trace amount of prostaglandin shows a strong physiological activity, and consequently, the production of prostaglandin compounds is strictly controlled by controlling the activity of production-related and metabolism-related enzymes.

However, prostaglandin has been reported to be unable to pass through the lipid double layer of the cell membrane by itself. Therefore, as a prostaglandin transport mechanism, the presence of a special protein has been presumed in the process of prostaglandin produced inside a cell exiting it and the process of prostaglandin circulating in the blood flow being taken up into a specific cell.

As a protein involved in the transport mechanism described above, prostaglandin transporter (abbreviated hPGT: human prostaglandin transporter, below) has been reported, but it is not a protein involved in the transport of all prostaglandin compounds, and there are many unclear points. Consequently, it is thought that if a biological molecule other than hPGT involved in the transport mechanism can be elucidated, the biological molecule found might be usable directly as a medical drug or indirectly as a compound for studying compounds that might be usable as a medical drug. Therefore, the objective of this invention is to identify such a molecule and use it as a medical drug or for the development of medical drugs.

Presentation of the invention

The inventors of this invention studied diligently to find the desired protein by using genes expressed in the human brain, and as a result, they found the presence of a novel PGTH protein (prostaglandin transporter homologue), successfully isolated a pgth gene encoding the protein, and they arrived at this invention.

Specifically, this invention pertains to (a) a protein having the amino acid sequence described in sequence No. 1 or (b) a protein having an amino acid sequence with 1 to several amino acids deleted, substituted or added to the amino acid sequence of sequence No. 1, and having a prostaglandin transport activity.

Furthermore, this invention also pertains to (c) a gene comprising DNA described sequence No. 2 or (d) DNA which can be hybridized with the DNA of sequence No. 2 under stringent conditions and which encodes a protein having a prostaglandin transport activity.

The pgth gene of this invention can be isolated as a cDNA fragment containing the gene from a cDNA library of human brain origin. The cDNA library used by the inventors of this invention was prepared based on commercially available mRNA of human brain origin from the Clonetech Co.

As a method for identifying the cDNA encoding a protein having a prostaglandin transport activity in the cDNA library described above, the method of Ohara, et al., (DNA Research 4: p 53, 1997) was used as an extensive cDNA library analysis method using a long-chain cDNA library. From a long-chain cDNA library of human brain origin prepared by the method of Ohara, et al., 25,000 recombinants are randomly selected, the 5' and 3' - base sequences of the cDNA from 15,000 clones were determined, and a clone showing homology to the gene encoding hPGT already reported from the 5' sequences of all the clones can be found by using a DNA analysis program (BLAST and FastA).

The presence of a region encoding the protein (ORF: open reading frame) in the base sequence can be confirmed by a conventional method using a computer program. After becoming confident of the presence of the desired gene in the cDNA sequence, the inventors of this invention found one ORF in the sequence by utilizing a computer, the gene was named pgth, and the protein encoded by the gene was named PGTH. The PGTH of the invention is a protein comprising a total of 709 amino acid residues and having a molecular weight of about 80 kd.

The invention pgth is a gene comprising 2130 bp shown in sequence No. 2. By using this pgth and conventional genetic recombination techniques using a suitable host vector system, it is possible to prepare a recombinant gene. As a suitable vector, there are plasmids of *E. coli* origin (such as pBR322, pUC118, etc.), of *Bacillus subtilis* origin, (such as pSH19, etc.) yeast origin plasmid (such as pUB110, pC194, etc.), bacteriophages, animal viruses such as retroviruses,

vaccinia virus, etc., etc. At the time of recombination, it is possible to add translation initiation and termination codons using suitable DNA adaptors. Furthermore, for gene expression, a suitable expression promoter is attached upstream of the gene. The promoter to be used is suitably selected depending on the host used. For example, if the host is *E. coli*, there are T7, lac, trp, λPL promoters, etc.; if the host is a *Bacillus*, there are SPO promoters, etc.; if the host is a yeast, there are PHO5, GAP, ADH promoters, etc.; and if the host is an animal cell, there are SV40-origin, retrovirus promoters, etc.

Furthermore, the gene may be expressed as a fused protein with another protein (such as glutathione-S-transferase, protein A, etc.). In the case of a fused PGTH prepared by using such a method, a suitable protease (such as thrombin, etc.), may be used to cut out the protein.

As a host usable in the case of PGTH expression, there are various strains of *Escherichia coli*, various strains of *Bacillus subtilis*, various strains of the yeast *Saccharomyces cerevisiae* and animal cells such as COS-7, CHO cells, etc.

As a method for transforming a host cell using the above recombinant vector, a specific method conventionally used to transform the selected host cell is used.

Incidentally, in this invention, DNA which has a DNA sequence other than that shown in sequence No. 2 which can be hybridized with the DNA and encodes a protein having a prostaglandin transport activity, is also included in the scope of this invention.

Specifically, DNA which has a DNA sequence, the total length of the pgth sequence, partially changed due to various artificial treatments such as random mutations, introduction of site-specific mutations, or mutagen treatment, DNA fragment mutation, deletion ligation after scission with restriction enzymes, is also included in the scope of this invention in spite of having a DNA sequence different from that of sequence No. 2 as long as such a DNA variant can be hybridized with pgth under stringent conditions and encodes a protein having a prostaglandin transport activity.

The extent of the above DNA mutation is within the allowable range if the variant has 90% or higher homology with the DNA sequence of pgth. Furthermore, as an extent of hybridization with pgth, Southern hybridization with pgth may be carried out under conventional conditions, for example, in the case of probe labeling with a DIG DNA Labeling kit (Boehringer-Mannheim Cat. No. 1175033), hybridization conditions of a DIG Easy Hyb solution (Boehringer-Mannheim Cat. No. 1603558) at 32°C and washing of the membrane in a 5X SSC solution (containing 0.1% w/v SDS) at 50°C (1X SSC comprises 0.15M NaCl and 0.015M sodium citrate).

Furthermore, a protein encoded by the gene variant which is highly homologous to pgth as described above and has a prostaglandin transport activity is also included in the scope of this invention.

Specifically, a variant having one or more amino acids deleted, substituted or added to the amino acid sequence of PGTH is included in the scope of this invention as long as this variant is a protein having a prostaglandin transport activity.

The side chains of the amino acids, which are the constituent elements of proteins are respectively different with respect to hydrophobicity, electrical charge, size, etc., but several highly conservative relationships in the meaning of practically not affecting the three-dimensional structure (it is also called the steric structure) of proteins have been known from experiences or actual physicochemical observations. For example, for substitution of amino acid residues, there are glycine (Gly) and proline (Pro), Gly and alanine (Ala) or valine (Val), leucine (Leu) and isoleucine (Ile), glutamic acid (Glu) and glutamine (Gln), aspartic acid (Asp) and asparagine (Asn), cysteine (Cys) and threonine (Thr), Thr and serine (Ser) or Ala, lysine (Lys) and arginine (Arg), etc.

Therefore, any variant protein due to substitution, insertion, deletion, etc., in the amino acid sequence of the PGTH shown in sequence No. 1 can be said to be within the scope of this invention if the variation is a variation which conserves the three-dimensional structure of the PGTH, and the protein is a protein having a prostaglandin transport activity similar to PGTH. The allowable extent of this variation is 90% or higher homology with the amino acid sequence shown in sequence No. 1.

Industrial application field

The abnormal expression of pgth or functional failure of PGTH is presumed to be a critical disorder because PGTH has a prostaglandin transport activity, and consequently the normal prostaglandin production mechanism of the body is lost.

Therefore, PGTH itself is considered to be useful as a drug, and on the other hand, pgth or PGTH may be used for effectively studying or evaluating a substance having the same function as that of PGTH, a substance promoting or inhibiting its function, a substance promoting the expression of the gene, etc.

Best embodiment of the present invention

This invention is explained further in detail using application examples as follows, but this invention is certainly not limited to these application examples. Incidentally, unless specified, the experimental procedures used in the following application examples are those described in standard experimental manuals such as Molecular Cloning, 2nd ed. (Cold Spring Harbor Laboratory Press, 1989), etc., and the operating manuals in commercially available kits, and they can be carried out under the conditions recommended for the respective commercially available products such as restriction enzymes, etc.

Application Example 1 Cloning of pgth

1) Construction of a long chain cDNA library of human brain origin

An oligonucleotide (GACTAGTTCTAGATCGCGAGCGGCCCC(T)₁₅) containing a NotI site was synthesized using a DNA synthesizer (ABI380B). It was used as a primer, and a double chain cDNA was synthesized using mRNA of human brain origin as a template and the SuperScript II reverse transcriptase kit (Gibco BRL). The ligation of the synthetic DNA was carried out with the cDNA and SalI site-containing adapter (Takara Shuzo), subsequently, NotI digestion was carried out, and cDNA fragments of 3 kb or larger were purified using electrophoresis with a 1% concentration of low-melting agarose.

After ligation of the purified cDNA fragments with a SalI-NotI restriction enzyme-treated pBluescriptIISK+ plasmid, the recombinant plasmids were introduced into *E. coli* ElectroMax DH10B strain (Gibco BRL) using the electroporation method. Subsequently, 25,000 recombinants were randomly selected from the library, the recombinant DNAs were extracted, and the 5'- and 3'-base sequences of the cDNAs of 15,000 clones were determined. For the sequence determination, a PE Applied Biosystem Co., DNA sequencer (ABI PRISM377) and the reaction kit from the same company were used.

2) Selection of clones containing the pgth sequence

The 5 sequences of all the clones determined in 1) were compared with the sequence of hPGT already reported using DNA analytical programs (BLAST and FastA), and as a result, a clone named HK07457 showed significant homology.

3) DNA fragment base sequence determination

The base sequence determination was carried out using a PE Applied Biosystem Co. DNA sequencer and the dye primer method. The sequence was mostly determined using the shotgun method, and for a portion of the base sequence, an oligonucleotide was synthesized based on the base sequence already determined, and the primer walking method was used to determine the entire base sequences of the two chains. The entire base sequence of the cDNA of the clone is shown in sequence No. 3.

The cDNA contains an ORF encoding a protein (PGTH) comprising 709 residues. A termination codon was found to appear in the upstream region of a methionine residue, which was an initiation codon of the protein, with the same reading frame. Therefore, the amino acid sequence shown in sequence No. 3 was confirmed to be the only possibility as an amino acid sequence of the protein encoded by the cDNA fragment.

Figure 1 shows the amino acid homology between already reported hPGT and the PGTH of this invention. The two show high homology, especially, the position of the cysteine residue present at the C-terminal of PGTH is preserved, and the 77th residue glutamine, 561st residue arginine and 614th residue lysine of hPGT, which are amino acids especially important for the transport activity, are also preserved in PGTH.

Application Example 2

Confirmation of protein expression by in vitro translation of pgth

The plasmid containing pgth prepared in Application Example 1 was treated with RNase A, subsequently, RNase A was removed using ADVAMAX beads (AGTC Co.), and in vitro translation was carried out using a TNT T7 coupled reticulocyte lysate system (Promega Co.) in the presence of (³⁵S)-methionine. A portion of the reaction mixture was separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and the analysis carried out using BAS-2000 (Fuji Shashin Kogyo). As a result, the presence of a single band at about 80 kd was confirmed as shown in Figure 2.

Application Example 3

Construction of animal cell expression vector

1) Amplification of ORF-containing cDNA

An oligonucleotide (following sequence 1) having a sequence upstream from the initiation codon of the protein of sequence No. 3 and oligonucleotide (following sequence 2) having a sequence of a portion downstream from the termination codon of the protein and the reverse complementary strand chain were synthesized using a DNA synthesizer (ABI Co., Model 380B).

Sequence 1

5-CTGGAGCTCACTGCACTCCAGCAGTC-3

Sequence 2

5-AGCTCACACTCGGGAATCCTCTGGCTTC-3

The recombinant cDNA containing sequence No. 3 isolated in application example 1 was used as a template, the oligonucleotides of the sequences 1 and sequences 2 were used as a primer, and the following PCR procedures were carried out using a Takara LA PCR kit Ver. 2 and the PCR thermal cycler MP (Takara Shuzo).

cDNA	$5 \mu L (10 ng)$
10X PCR buffer (containing 25 mM Mg ⁺⁺)	5 μL
2.5 mM dNTP	8 μL
10 μM Sequence 1	2 μL
10 μM Sequence 2	2 μL
Water	27.5 μL
LA Taq polymerase	$0.5~\mu L$
Total amount	50 μL

The PCR cycle was carried out by holding at 94°C for 2 mn, carrying out the reaction at 98°C for 20 sec, cooling to 68°C at a rate of 1°C/2 sec, holding at 68°C for 3 min, at 72°C for 10 min, and repeating 30 times.

The above method was used to amplify a DNA fragment (about 2.2 kb) having a portion of sequence No. 3.

2) Subcloning to an animal cell expression vector

The DNA fragment amplified in 1) was fractionated by 1% agarose gel electrophoresis. After staining the gel with ethidium bromide, the gel containing the desired band observed under ultraviolet irradiation was cut out. The extraction of the DNA fragment from the agarose gel and purification were carried out using a GENECLEAN II Kit (Bio101 Co.)

The extracted and purified DNA fragment was subcloned to animal cell expression vector pTARGET (Promega Co.) The ligation solution used was a Takara Ligation Kit Ver. 2 (Takara Shuzo), and the reaction was carried out with the following composition at 16°C for 1.5 h.

Extracted and purified DNA fragment	1 μL (50 ng)
PTARGET	1 μL (10 ng)
Water	3 μL
Ligation solution	<u>5 μL</u>
Total	10 μL

The reaction solution after the above reaction was used to transform the *E. coli* K12 strain DH5. The transformant was inoculated on an LB agar medium containing 50 μ g/mL of ampicillin (Amp), 40 μ g/mL of 5-bromo-4-chloro-3-indolyl- β -D-galactoside (IPTG) [sic; isopropyl- β -D-thioglucopyranoside] and 100 μ M of isopropyl-b-D-thiogalactopyranoside

(X-gal) [sic; 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside] *and cultivated overnight at 37°C.

Each colony that developed on the above plate was inoculated in 10 mL of an LB liquid medium containing 50 μ g/mL of Amp, cultivation was carried out overnight at 37°C, the biomass was collected by centrifugation, and subsequently the recombinant DNA was purified using a QIAprep Spin Plasmid Miniprep Kit (Qiagen Co.) to obtain pTARGETpgth.

3) Determination of the base sequence of the inserted cDNA

The base sequence determination was carried out using a DNA sequencer (ABI Co., Model PRISM377) and the dye terminator method, and the whole base sequence of the two chains was determined using the primer walking method. The clone was found to contain all of the region between sequences 1 and 2 among sequence No. 3 confirming that the desired gene pTARGETpgth had been cloned.

Application Example 4

Insertion into CHOk1 cells and stable transformant preparation

The recombinant DNA, pTARGETpgth, prepared in Application Example 2 has a CMV promoter upstream of pgth, and if it is inserted into an animal cell, the expression of pgth is possible.

CHOk1 cells were cultured in 60 mm diameter plastic Petri dishes. As the culture medium, Ham F-12 (Gibco, called growth medium, below) containing 10% fetal bovine serum (Dainippon Seiyaku), 50 U/mL of penicillin and 50 μg/mL of streptomycin was used, and culture was carried out at 37°C in the presence of 5% CO₂. When the cell density was 50%, LIPOFECTAMINE reagent (Gibco) containing pTARGETpgth prepared in Application Example 2 was added in a layer over the cells, incubated for 6 h, and, after replacement with the growth medium, culture was continued for 48 h. After dispersing the cells with trypsin, the cell suspension was placed in a 60 mm diameter plastic Petri dish, and culture was carried out for 24 h. After removing the culture medium, it was replaced by growth medium containing G418 (Gibco, final concentration of 500 μg/mL). The G418 medium was changed every 3 days and culture continued for 2 weeks. When the cell colonies were observable with the naked eye, 3 colonies were isolated using stainless steel cups. As a control, only the pTARGET vector (Promega Co.) was inserted into CHOk1 cells by carrying out the same procedures as those described above to isolate a stable transformant.

^{* [}Editor's note: The compound names and abbreviations are so garbled in the original text that it is impossible to be certain whether it should be 40 μ g/mL IPTG and 100 μ m X-gal, or vice-versa.]

washed with a suitable buffer solution containing bovine serum albumin, and culture was continued for 20 min using a buffer solution containing (3H)-labeled PGE2 (Amersham Co.). After washing the cells, they were recovered, and the radioactivity taken up was measured. As a result, the prostaglandin transport activity of the CHOk1 cells with pgth inserted was statistically significantly higher than that of the CHOk1 cells with only the control vector inserted.

Application Example 6

Expression of pgth mRNA in human macrophages loaded with oxidized LDL

- 1) Preparation of human macrophages loaded with oxidized LDL and normal monocyte cDNA Normal monocyte cDNA was prepared using RNA prepared with Trizol (Gibco BRL Co.) from CD14-positive monocytes from human peripheral blood as a template and the SuperScript II reverse transcriptase kit (Gibco BRL). Human macrophages loaded with oxidized LDL were prepared by culturing normal monocytes in a RPMI-1640 medium (Dainippon Seiyaku) containing 20% AB serum and antibiotics for 14 days, adding human LDL oxidized with copper sulfate using conventional procedures (oxidized LDL) in the final concentration of 40 μ/mL [sic; dimension incorrect] and continuing culture for 24 h. A method similar to that used for normal monocytes was used to prepare cDNA.
- 2) Confirmation of pgth mRNA expression by the RT-PCR method Oligonucleotides (following sequence 3) having a sequence contained in sequence No. 2 and oligonucleotides (following sequence 4) having the sequence of the reverse complementary strand were respectively synthesized using a DNA synthesizer (ABI Co., Model 380B).

Sequence 3

5-GCTCCTGCCCATTGGACGGCTTTAACC-3

Sequence 4

5-TCACACTCGGGAATCCTCTGGCTTC-3

The cDNA prepared in (1) was used as a template, the oligonucleotides with sequences 3 and 4 were used as primers, and the following PCR procedures were carried out using a Takara LA PCR kit Ver. 2 and the PCR thermal cycler MP (Takara Shuzo).

2 µL (40 ng) 10X PCR buffer (containing 25 mM Mg⁺⁺) 1.5 μL

2.5 mM dNTP $2.4 \mu L$

10 μM Sequence 3	0.4 μL
10 μM Sequence 4	0.4 μL
Water	10.15 μL
LA Taq polymerase	0.15 μL
Total amount	15 μL

The PCR cycle was carried out by holding at 94°C for 5 min, carrying out the reaction at 94°C for 1 min, holding at 58°C for 1 min, furthermore at 72°C for 1 min, and repeating 30 times. The PCR reaction mixture was fractionated using 1% agarose gel electrophoresis. After staining the gel with ethidium bromide, the ultraviolet irradiation was carried out to detect an amplified band at about 500 bp. Similarly, the glyceraldehyde 3-phosphate dehydrogenase gene amplified primer (G3PDH, Clonetech Co.) was used as the standard cDNA for PCR testing. As a result, the expression of pgth mRNA was strongly induced in the macrophages loaded with oxidized LDL, as shown in Figure 3.

Normal monocytes, macrophages loaded with oxidized LDL or equivalent cultured cells may be cultured with a test compound added, and subsequently the change in the PGTH mRNA may be measured by the method described above to screen any substance controlling PGTH mRNA expression.

Brief description of the figures

Figure 1 shows comparison of amino acid sequence homology between hPGT and the PGTH of this invention.

Figure 2 shows the results of SDS-PAGE of PGTH expressed using the in vitro translation method using pgth.

Figure 3 shows the results of detection of mRNA for the expression of pgth in human macrophages loaded with oxidized LDL using the RT-PCR method. In the figure o shows the results for human macrophages loaded with oxidized LDL, and m shows the results for normal human monocytes.

Claims

- (1) A protein of the following (a) or (b).
- (a) Protein comprising the amino acid sequence of sequence No. 1
- (b) Protein comprising an amino acid sequence with one or more amino acids deleted, substituted or added to the amino acid sequence of sequence No. 1, and, at the same time, having a prostaglandin transport activity.

- (2) DNA of the following (a) or (b).
- (a) DNA comprising the base sequence of sequence No. 2
- (b) DNA which can be hybridized with the DNA of sequence No. 2 under stringent conditions and at the same time, encodes a protein having a prostaglandin transport activity.

61H PGT GTB	6 G K A S P D P Q D V R P S V F H N I K L F V L C H S L L Q L A Q L H I S G Y L K S S I S I S I S I S I S I S I S I S I
н	DAPQDFKASLCLPT-TSAPASAPSNGNCSSYTETQHLSYVGIHFYAQTLLGYGGYPIQPFGISYIDDFAHNSNSP:::
PGTB #P 4 +	280 280 290 290 299 299 299 299 LYLGILFAVTHHGPGLAFGLGSLHLRLYVDINQHPEGGISLTIKDPRVVGAVWLGFLIAAGAVALAAIPYFFFPK
	800 850 850 870 EHPKERRELGFRREVLAYTDSPARKGKDSPSKQSPGESTKKQDGLVQIAPNLTVIQFIKVFPRYLLQTLRHPIFL

Figure 1

Replacement Sheet (Regulation 26)

380 430 440 TH LYYLSQYCLSSHAAGHATFLPKFLERQFSITASYANLLIGCLSFPSYIYGIYYGGYLYKRLHLGPYGCGAL	450 460 470 480 480 500 510 510 5TH CLIGALLCLFFSLPLFIGCSSAQIAGITAQTSAHPGLELSPSCAEACSCPLDGFNPYCDPSTRVEYITPCH :: : : ::	520 530 540 550 550 570 570 570 570 570 570 570 57	600 610 620 630 640 650 660 660 650 660 671 611 611 611 611 611 611 611 611 611	670 680 700 709 CTH -CFALVLAYLRQQDKEARTKESRSSPAVEQQLLYSGPGKKPEDSRV IPGT LCFISHRYKKNKEYNVQKAAGLI	"
.GT	F G T	ь б В Р	9 d	d. H	

Figure 1 (cont.)

Replacement Sheet (Regulation 26)

Figure 2

Figure 3

SEQUENCE LISTING

<110> TAISHO PHARMACEUTICAL CO., Ltd.

<120> Prostaglandin

<130> P487

<150> JP10-227723

(151) 1998-08-12

<160> 3

<210> 1

(211) 709

<212> PRT

<213> Homo sapience

<400> 1

Met Gly Pro Arg lie Gly Pro Ala Gly Glu Val Pro Gin Val Pro Asp Lys Glu Thr Lys Ala Thr Met Gly Thr Glu Asn Thr Pro Gly Gly Lys Ala Ser Pro Asp Pro Gln Asp Val Arg Pro Ser Val Phe 40 35 His Asn lle Lys Leu Phe Val Leu Cys His Scr Lcu Lcu Gln Lcu 55 50 Ala Gln Leu Met Ile Ser Gly Tyr Leu Lys Ser Ser Ile Ser Thr 70 Val Glu Lys Arg Phe Gly Leu Ser Ser Gln Thr Ser Gly Leu Leu 85 Ala Ser Phe Asn Glu Yal Gly Asn Thr Ala Leu Ile Val Phe Val 100 95 Ser Tyr Phe Gly Ser Arg Val His Arg Pro Arg Met lle Gly Tyr 115 Gly Ala Ile Leu Val Ala Leu Ala Gly Leu Leu Met Thr Leu Pro 125 130 His Phe lle Ser Glu Pro Tyr Arg Tyr Asp Asn Thr Ser Pro Glu 145 140 Asp Met Pro Gln Asp Phe Lys Ala Ser Leu Cys Leu Pro Thr Thr 160 155 Ser Ala Pro Ala Ser Ala Pro Ser Asn Gly Asn Cys Ser Ser Tyr 175 170 Thr Glu Thr Gln His Leu Ser Val Val Gly lle Met Phe Val Ala 190 185

WO 00/09557

) J/JP99/04352

	110	00,07.												
Gln	Thr	Leu	Leu		V a 1	Gly	Gly	V a l		llc	Gln	Pro	Pħc	
110	c o r	Tur	مان	200	4 e n	Pho	Ala	His	205 Asn	Ser	A s n	Ser	Pro	210 Leu
116	361	1 9 1	116	215	лэр	1 11 0	,, , u	,	220	001		00.	•••	225
Туг	Leu	Gly	He		Phe	Ala	V a l	Thr		Met	Gly	Pro	Gly	
-				230					235					240
Ala	P h e	Gly	Leu		Ser	Leu	Met	Leu	Arg	Leu	Туг	V a l	Asp	lle
			_	245	٥.	0.1		•	250	~ 1	• 1			255
Asn	Gln	Met	Pro		Gly	Gly	116	Ser	Leu 265	101	116	Lys	Asp	270
Ara	Trn	Vel	Glv	260 Ala	Trn	Trn	Len	Glv		Leu	He	Ala	Ala	
AI E	110		0.,	275		,	202	.,	280					285
Ala	Yal	Ala	Leu		Ala	1 l e	Pro	Туг	Phe	P h e	Phe	Pro	L y s	Glu
				290					295					300
Met	Pro	Lys	Glu		Arg	Glu	Leu	Gln		Arg	Arg	Lys	V a l	
	** 1	T ! -		305	D	41.	A	1	310	1	4	C 0 #	D = 0	315
Ala	Yaı	1 11 1	ASP	320	rro	Ага	АГВ	Lys	325	LYS	АХР	261	Pro	330
Lvs	Gln	Ser	Pro		Glu	Ser	Thr	Lys		Gln	Asp	Gly	Leu	
2,3	0	00.		335					340		•	•		345
Gln	lle	Ala	Pro	Asn	Leu	Thr	γal	lle	$G \mid n$	Phe	lle	Lys	V a ì	Phe
				350					355	_				360
Pro	Arg	V a !	Leu		Gin	Thr	Leu	Arg		Pro	lle	Phe	Leu	
V = 1	Val	Lon	202	365	Val	Cvc	lan	507	370	Net	Δla	Ala	Gly	375 Net
v a ı	Yaı	rea	261	380	t a i	C y S	Leu	361	385	MCI	nia	ліа	U i j	390
Ala	Thr	Phc	Leu		Lys	Phe	Leu	Glu		Gln	Phe	Ser	lle	
				395					400					405
Ala	Ser	Tyr	Aia		Lcu	Leu	lle	Gly		Leu	Ser	Phe	Pro	
				410		,, ,			415		*, *	1		420
Val	lie	V a I	Gly	11e	Yaı	y a ı	GIY	GTY	4 3 0	LCU	v a i	Lys	Arg	435
Hic	Len	Glv	Pro		Glv	Cvs	Glv	Ala		Cvs	Leu	Leu	Gly	
1113	БСС	0,,		440	0.,	0,0	.,		445	.,.			,	450
Leu	Leu	Суs	Leu	Phe	Phe	Ser	Leu	Pro	Leu	Phe	Phe	I l e	Gly	Cys
				455					460			_		465
Ser	Ser	His	Gln		Ala	Gly	lle	Thr		Gin	Thr	Ser	Ala	
Dro	Cly	Len	Clu	470	Sor	Pro	Ser	ſυς	475	Glu	Ala	ſvs	Ser	480 Cvs
110	Gly	Leu	GIU	485	361	110	561	C) S	490	014	,,,,	O y s	001	495
Pro	Leu	Λsp	Gly		Λsn	Pro	Val	Суs		Pro	Ser	Thr	Arg	
				500					50 5					510
Glu	Туг	Ilc	Thr		Суs	His	Ala	Gly			Ser	Trp	Val	
۵.			-	515			C.	., .	520		T L		. C	525
Gln	Asp	Ala	Leu			Ser	GIR	. Yal	Phe 535		1 p t	AST	Cys	Ser 540
(ve	Val	۷a۱	G I m	530		Pro	V a l	Leu			Ser	Cvs	. Asn	Ser
cys	141		314	545				u	550		501	. J.	p	555
Thr	Суs	Ser	His			V a l	Pro	Phe			Leu	ı Val	Ser	Leu
	•			560					565					570

TP99/04352

WO 00/09557

Gly Ser Ala Leu Ala Cys Leu Thr His Thr Pro Scr Phc Mct Leu 580 575 lle Leu Arg Gly Val Lys Lys Glu Asp Lys Thr Leu Ala Val Gly 595 590 lle Gln Phe Met Phe Leu Arg Ile Leu Ala Trp Met Pro Ser Pro 610 605 Val lle His Gly Ser Ala lle Asp Thr Thr Cys Val His Trp Ala 625 620 Leu Ser Cys Gly Arg Arg Ala Val Cys Arg Tyr Tyr Asn Asn Asp 645 640 Leu Leu Arg Asn Arg Phe lle Gly Leu Gln Phe Phe Phe Lys Thr 660 650 Gly Ser Val Ile Cys Phe Ala Leu Val Leu Ala Val Leu Arg Gln 670 665 Gin Asp Lys Glu Ala Arg Thr Lys Glu Ser Arg Ser Ser Pro Ala 685 680 Val Glu Gln Gln Leu Leu Val Ser Gly Pro Gly Lys Lys Pro Glu 700 695 Asp Ser Arg Val 709

(210) 2

(211) 2130

<212> DNA

<213> Homo sapience

<400> 2

30 50 20 40 atgggaccca ggatagggcc agcgggtgag gtaccccagg taccagacaa ggaaaccaaa 60 gccacaatgg gcacagaaaa cacaccigga ggcaaagcca gcccagaccc icaggacgig eggecaagig igitecataa cateaageig liegiteigi gecaeageet geigeageig gogoagotoa igatotoogg ciacciaaag agotocatot coacagigga gaagogotio ggccicicca gccagacgic ggggcigcig gccicciica acgaggiggg gaacacagcc 300 tigatigigi ligigagcia tiliggcage egggigeace gacceegaat gatiggetai 360 ggggclaice ligiggeeel ggegggeelg clealgacte teeegeacti calcleggag 420 480 ccataccgct acgacaacac cagccclgag gatatgccac aggacticaa ggcticcctg tgcctgccca caacctcggc cccagcctcg gcccctcca atggcaactg ctcaagctac acagaaaccc agcalcigag igiggigggg alcalgileg iggcacagac ceigeiggge 600 WO 00/09557

gigggcgggg lgcccalica gcccitiggc alcicctaca icgaigacti lgcccacaac 660 agcaaciege ecciciacel egggaleelg litgeagiga ceatgaiggg gecaggeeig gcctligggc igggcagcci caigcigcgc cittaigigg acaltaacca gaigccagaa ggiggiaica gccigaccai aaaggacccc cgaigggigg gigcciggig gcigggiiic cicalogoly coggigory georiget gocalococt acticitoti coccaaggaa 900 atgcccaagg aaaaacgiga gciicagiii cggcgaaagg icitagcagi cacagactca 960 colgocagga agggcaagga ciciccotol aagcagagoo olggggagic cacgaagaag 1020 caggatggcc tagtccagat tgcaccaaac ctgactgtga tccagttcat taaagtcttc 1080 cccagggige igeigeagae ectaegeeae eccatetice igeiggiggi ccigi.cccag 1140 gtatgetigt catecatgge tgegggeatg gecaectice tgeccaagit cetggagege 1200 cagititicea icacagodic ciacgodaac cigotoalog gotgodicio ciiccottog 1260 gicalcgigg gcalcgiggi gggiggcgic ciggicaagc ggclccacci gggcccigig 1320 ggalgeggig ecctitgeet getggggalg etgetgigee telletteag eetgeegete 1380 licitialeg geigelecag ceaceagail gegggealea cacaceagae cagigeceae 1440 colgggoigg agoigicies aagoigealg gaggooigel colgcocall ggacggoiii 1500 aaccolgici gogaccocag cactogigig gaalacalca caccolgoca ogcaggoigo 1560 tcaagctggg tggtccagga tgctctggac aacagccagg ttttctacac caactgcagc 1620 igcgiggigg agggcaaccc cgigciggca ggaiccigcg actcaacgig cagccaicig 1680 giggigacai tacigatasi ggicagacig ggalaggac iggacigiai cacacaca 1740 cccicciica igcicaicci aagaggagig aagaaagaag acaagaciii ggcigigggc 1800 alccagitca igitccigag gattitggcc iggatgccca gccccgtgal ccacggcagc 1860 gccatcgaca ccaccigigi gcacigggcc cigagciglg ggcgicgagc igicigicgc 1920 lactacaata algacetget eegaaacegg ticateggee lecagiicii eticaaaaca 1980 ggildigiga leigetiege etiagililg gelgicelga ggeageagga caaagaggea 2040 aggaccaaag agagcagaic cagcceigee giagagcage aaiigeiagi gieggggeea 2100

)_{JP99/04352}

gggaagaagc cagaggatic ccgagigiga

2130

<210>	3	
(211)	4083	
<212>	DNA	
<213>	Ното	sapience

〈400〉 3

(400)	Ü													
aagtg	ассса	ggga	ıgac aa ;	a cad	itg	gaga	tac	ttgg	ggc	1 gag	litg	ag c	aagactccc	60
taacc	tglgl	ctgs	gacaag	tctg	galg	tcct	gtg	tggc	сса	agaa	gaac	lg a	cccgtgtc	120
lggag	ctccc	accs	gltaltı	g cal	tccc	tgct	gtg	gctc	асс	t gc t	gctg	tc t	ccaggagcc	180
cctga	gaaga	1111	gcclcc	t cto	сссс	tgct	aag	ctcc	agg	tcct	gaga	11 g	aallagggg	240
ctgga	gctca	clg	cactee	a gc	aglo									266
atg g	ga co	c ag	gala	ggg (cca	gcg	ggl	gag	gta	CCC	cag	gla Val	c c a P r o	311
			glle S					10					15	356
gac a Asp i	ag ga .ys Gl	u ac	caaa rLys	gcc Ala	a c a Thr	aig Met	ggc Gly	Thr	gaa Glu	a a c A s n	a c a Thr	Pro	Gly	330
ggc a	aa go	c ag	20 cca	gac	cct	cag	gac	25 g1g	cgg	cca	agt	glg	30 t t c	401
			r Pro 35					40					45	
cal :	aaca: Asn I	tcaa le Ly	g cig s Leu	ttc Phe	git Val	c t g Le u	t g c C y s	His	agc Ser	c t g Le u	c t g Le u	c a g G l n	Leu	446
gcg	cag c	tc at	50 g alc	ıcc	ggc	tac	cta	55 aag	agc	tcc	a t c	t c c	60 aca	491
			1 11e					70					75	
gig Val	gag a: Glu L:	ag cg ys Ar	c lic g Phe	ggc Gly	c i c Le u	lcc Scr	agc Ser	cag Gln	a c g Thr	t c g Se r	ggg Gly	ctg Leu	ctg Leu	536
			80 c gag					85					90	581
Ala	Ser P	he As	n Glu 95	V a l	Gly	Asn	Thr	Ala 100	Leu	llc	V a l	Phc	V a l 105	
agc Ser	t at t Tvr P	ti gg he Gl	c agc y Ser	cgg Arg	glg Val	cac His	cga Arg	ccc Pro	cga Arg	atg Met	att He	ggc Gly	tat Tyr	626
			110 t gtg					115					120	671
Gly	Ala I	le Lo	u Val	Ala	Leu	Ala	Gly	Leu 130	Leu	Met	Thr	Leu	Pro 135	
cac	tic a	tc tc	g gag er Glu	c c a	1 a c Tvr	cgc Arg	t a c Tvr	gac	a a c A s n	acc Thr	agc Ser	cct Pro	gag Glu	716
1112	1115 1	16 31	140	1,0	.,.	6	.,.	145			1		150	

						M						•		/	\frown
					()								(/JP99/04352
		00/095													~
gat	atg	cca	cag	gac	iic a	aag	g c l	tcc c	tg	tgc	cigo	CC	a c a	acc	761
Asp	Met	Pro	Gln	Asp	Phe 1	.ys	Ala	Ser 1	l e u	Cys	Leu F	, 10	Thr	Thr	
				155					160					165	
1 c ø	дес	сса	gcc	lcg	gcc	ссс	1 c c	aat	ggc	aac	tgc	c a	agc	tac	806
Car	Ala	Pro	Ala	Ser	Λla	Pro	Ser	Asn (Gly	Asn	Cys S	Ser	Ser	Туг	
361	ліц			170					175					180	
	<i>~</i> ~ ~ ~	200	raσ		cig	agt	gtg	glg	ggg	atc	alg	llc	gtg	gca	851
ata	gaa	The	Cln	Hie	Leu	Ser	Val	Val	Glv	He	Met	2 h e	V a l	Ala	
1 11 1	GIU	1 11 1	0111	185	LUG				190					195	
		- 1 -	0.1.0		gtg	ggr	σσσ			att	cag	ссс	ttt	ggc	896
cag	acc	CIE	LIE	Clu	Val	Clv	Clv	Val	Prn	He	Gin	Pro	Phe	Gly	
GIR	lnr	ren	reu		1 4 1	Giy	01,		205		• • • • • • • • • • • • • • • • • • • •			210	
			- 4 -	200	~ ~ ^		acc			200	aac	trø	ccc		941
atc	tcc	180	aic	gaı	gac	Dha	g L L	U a C	Acn	280	Acn	Ser	Prn	Len	
He	Ser	Туг	110		Asp	rne	Ala			361	V 2 II	501	110	225	
				215					220				a a c		986
t a c	ctc	ggg	alc	cig	111	gca	gıg	acc	alg	alg	888	CCa D-a	RRC RRC	Lau	300
Ţуг	Leu	Gly	lle	Leu	Phe	Ala	V a I	Thr	Mel	меі	GIY	Pro	біу	040	
				230					235					240	1021
gcc	111	ggg	clg	ggc	agc	ctc	alg	clg	cgc	cii	lai	gıg	gac	all	1031
Ala	Phe	Gly	Leu	Gly	Ser	Leu	Met	Leu	Arg	Leu	Tyr	Val	Asp	116	
				245					250					255	
aac	cag	atg	сса	gaa	ggt	ggt	atc	agc	ctg	асс	ata	aag	gac	CCC	1076
Asn	Gln	Met	Pro	Glu	Gly	G l y	He	Ser	Leu	Thr	I l e	Lys	Asp	Pro	
				260					265					270	
rga	lgg	gtg	ggt	gcc	tgg	lgg	ctg	ggl	ttc	ctc	atc	gcl	gcc	ggt	1121
Aro	Trr	. Val	Glv	Ala	Trp	Trp	Leu	Gly	Phe	Leu	lle	Ala	Ala	Gly	
/i. 6				275					280					285	
пса	σic	7 prr	· cle		gcc	atc	ссс	tac	ilc	110	11c	ссс	aag	gaa	1166
Ala	v Bre I a V	Ala	Len	Ala	Ala	He	Pro	Туг	Phe	Phe	Phe	Pro	Lys	Glu	
VIG	, , ,	, Ald	· Dec	290				•	295					300	
		. 996			cgl	gag	ctt	cag	ttt	cgg	cga	aag	gto	tta	1211
a Le Moi	D = /	, aag	s gau	ιίνο	Arg	Glu	l.en	Gin	Phe	Arg	Arg	Lys	Val	Leu	
met		ј гуз	, 010	305		0.0	201		310					315	
					cct	acc	200	аар			gac	tct	ccc	tct	1256
gca	i gii	i alco	a Kal		Pro	Ala	Aro	lvs	Gly	Lvs	ASD	Ser	Pro	Ser	
Ala	i Ya	1 1111	ו האו	32		11.14		2,0	325					330	i
					, g gag	100	าลาธ	ааσ			gat	22(cta	gtc	1301
aag	gca	gag	. D.	, CI.	y Glu	Sor	The	Ive	Ive	, Glr	ı Asn	Giv	v Lei	ı Val	
Lys	S 611	n se	rri			361	1 11 2	Буз	34(, 113 p	٠.,	, 20.	345	
				33			ata				- 211	2 2 2	2 014		
ca	gat	i gc	a cc	a aa	ctg	att i	. K . I	110	Cin	n Dha	o Ilo	Iv	c Va	l Phe	
Gli	n II	e Al	а Рг		n Leu	1 11 1	Yaı	110				Ly	3 10	360	,)
				351					35						
CC	c ag	g gt	g ct	g cl	g cag	acc	cia	cgc	ca	0 00	c alc	l l n L		g Lie	•
Pr	о Аг	g Va	1 Le		u Gln	Thi	Let	Arg			0 110	rn	e re	ט בעו ייים	
				36					37					375	
gί	g gt	c ct	g 1c	с са	g gla	tg	cita	g tca	1.0	c at	g gcl	gc	g gg	v al(-
V a	l Va	l Le	u Se		n Yal	C y	s Lei	ı Ser			t Ala	ΑI	a GI	y MC	ι •
				38					38					390	
gc	c ac	c ii	c ct	g cc	c aag	11	c cti	g gag	g cg	с са	g iti	t c	c al	c ac	a 1481
ΑI	a Th	r Ph	e Le	u Pr	o Lys	Ph	e Le	a Glu	ı Ar	g G!	n Phe	Se	r II	e Th	г

	wo	00/09:	557									-			/JP99/04352
				395					400					405	
					clg	cic.	alc			ctc	tcc	t t c	ccl	icg	1526
gcc	100	Tue	Ala	Ann	Leu	יים	ماا	Clv	Cvs	Len	Ser	Phe	Рго	Ser	
Ala	Ser	1 7 7	Ala		Leu	Leu	110	01)	415	200	00.			420	
				410	- 4	~ 1 ~	aai			ria	gir	220	røø		1571
gtc	atc	gıg	ggc	aic	glg	gig	65 ! Cl.,	ር L v	g (C Val	len	Val	lvc	Aro	Len	
V a l	He	Val	GIY		V a 1	rai	GIY	СТУ	430	LCU	101	Г	6	435	
				425			~ ~ 1			1 a c	cla	riσ	σσσ		1616
сас	clg	ggc	cci	glg	gga	rgc	CI"	Ala	Lan	Cuc	Lou	len	Clv	Met	
His	Leu	Gly	Pro		Gly	C y S	Giy			Cys	բես	LCu	01)	450	•
				440					445				a a c	igc	1661
cig	clg	t g c	ctc	110	1 1 c	agc	cig.	ccg	CIC	וונ	Dha	ilo	Clu	-	,,,,
l e u	Leu	C y s	Leu		P h e	Ser	Leu	Pro	ren	rne	rne	116	оту	465	
				455					460			1			1706
tcc	agc	cac	cag	att	gcg	ggc	atc	a c a	cac	cag	acc	agı	gcc	Hin	1100
Ser	Ser	His	Gln		Ala	Gly	He	Thr	HIS	Gin	ınr	2 e r	Ala	1112	
				470					475					480	1751
c c t	ggg	clg	gag	ctg	tet	сса	agc	t g c	alg	gag	gcc	1gc	100	lge	1751
Pro	Gly	Leu	Glu	Leu	Ser	Pro	Ser	Cys	Met	Glu	Ala	Cys	5е г	Lys	
				485					490					495	1200
сса	llg	gac	ggc	111	a a c	cct	glc	t g c	gac	ссс	agc	act	cgl	gtg	1796
Pro	Leu	Asp	Gly	Phe	Asn	Pro	Val	C y s	Asp	Pro	2 c t	Thr	Arg	Val	
				500					505					510	
gaa	tac	atc	aca	ссс	tgc	сас	gca	ggc			agc				
Glu	Туг	lle	Thr	Рго	Суs	His	Ala	Gly	Суs	Ser	Ser	Trp	V a l	Va)	
				515					520					525	
cag	gal	gc l	clg	gac	aac	agc	cag	gıl	110	lac	асс	a a c	lgc	agc	1886
Gln	Asp	Ala	Leu	Asp	Asn	Ser	Gln	Y a !	Pbe	Туr	Thr	Asn	Суs	Ser	
				530					535					540	
tgc	gtg	gts	gag	ggc	a a c	ссс	glg	ctg	gca	gga	t c c	t g c	gac	l c a	
Cys	Val	V a !	Glu	Gly	Asn	Pro	V a l	Leu	Ala	Gly	Ser	Суs	Asp	Ser	•
				545					550					555)
асд	tgo	age	cat	ctg	glg	glg	есс	ttc	clg	ctc	cig	gtc	agc	cts	g 1976
Thr	Су	Sei	r His	Leu	Val	γal	Pro	Phe	l e u	Leu	Leu	V a 1	Ser	Lei]
				560)				565					570	J
ggo	ter	g gc	colg	g gco	tgt	ctc	асс	cac	a c a	ссс	tcc	ttc	alg	cto	2021
Gly	, Se	. A1	a Lei	Ala	Cys	Leu	Thr	His	Thr	Pro	Ser	Phe	Met	Lei	l)
				575	5				580					58	5
ato	ct	a ag	a gga	a gt	g aag	aaa	gaa	gac	aag	act	ilg	gct	gla	ggg	c 2066
He	Le	и Аг	g Gl	y Val	Lys	Lys	Glu	Asp	Lys	Thr	Leu	Ala	ı Val	GI	у
				590					595	ı				60	0
ato	ca.	gli	c ati		ctg	agg	ati	illg	gcc	tgg	alg	ccc	age	сс	c 2111
114	e G1	n Ph	e Me	t Ph	e Leu	Arg	, He	e Leu	Ala	Trp	Met	Pro	Se	rPr	0
• • • •				60					610					61	5
or t e	g a1	с са	C QQ		c gcc	ato	gao	с асс	aco	: tgt	gle	g ca	c ig	g gc	c 2156
5 · (5 u f 1 11	o Ui	- 66 - Cl	u Ce	r Ala	lle	ASI	n Thr	Thi	· Cvs	Val	His	s Tr	p Al	a

Val lle His Gly Ser Ala lle Asp Thr Thr Cys Val His Trp Ala

cig ago igi ggg cgi cga goi gio igi cgo tao tao aat aat gao

Leu Ser Cys Gly Arg Arg Ala Val Cys Arg Tyr Tyr Asn Asn Asp

ctg cic cga aac cgg tic atc ggc cic cag tic lic itc aaa aca

	(JP99/04352
WO 00/095			Cla Dha Dha	Pho lye Thr	
Leu Leu Arg A		He Gly Leu	655	660	
ggt tot gtg a	650	gcc 112 011			2291
ggt ict gig a Gly Ser Val	ate tge ite	Ala len Val	Leu Ala Val	Leu Arg Gln	
Gly Ser Val	665	Ala Eca .a.	670	675	
cag gac aaa i	000 227 227	arr aaa gag		age cet gee	2336
cag gac aaa i	gag gla 466 Clu Ala Arg	The Lys Glu	Ser Arg Ser	Ser Pro Ala	
GIR ASP LYS	680	,	685	690	
a12 a2a c2a	raa lig cla	gtg tcg ggg	cca ggg aag	aag cca gag	2381
Val Clu Cin	Gln Leu Leu	Val Ser Gly	Pro Gly Lys	Lys Pro Glu	
, 41 010 01	695		700	705	
gal icc cga	gtg iga				2396
Asp Ser Arg					
	709				
					aaataa 2456
geigiciigg g	gececaect g	gccaagagt ag	cagodada goa	gtacete eter	gagice 2430
					1211ac 2516
tilgcccaag a	ttgggtgtc a	agageceig te	itccattc tgg	CICCICC acia	datige zoro
				Hartsa trta	aaccaa 2576
tgigigacii c	aggcaagac a	regareere re	tcagcctt tgc	rigitag icis	
		atatiques al	ticiggag caa	gagggte tict	tectee 2636
agagiigiii g	gggcatilgc l	gigitgget a	TICIBBAB CAN	6 m 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
			ggcllicci ggg	tggaaag aagt	atacci 2696
iiccccage (cagecage ig i	CLIEBERCO U	,,,,,,,,,,	086	
	nacinaata 9	raaagtgag C	catagiggg cca	iggetgee etce	atgctg 2756
aacccc3acc	raggirigea (tegeetgga t	cacciicii iga	igeettag ceat	ctcctg 2816
tragglagga	atgaactige o	agcottoag g	ctcgtlcag cla	atgaccat ctgt	gcggtc 2876
agggtacact	cagetetect (eccaactee a	gcagcciii aag	gaagigic ccti	tggcgc 2936
cccclggagg	cagagcactg a	agciggaccc i	gggtagact cco	cacaggga gga	ggaget 2990
ggcctcagga	gigggacacc	cagaciigge a	gggcctica ag	aggeeigi gigi	gggguu 3000
				aggaaatt ria:	accetta 3116
caggaatcct	tagctgaagc	ggggagacic a	ctctccatc to	aggaali tia	5000116
			caararria rr	tragggee etg	ggtgggc 3176
ccctcaggga	gccacggiig	akkkikakke e	caacacctg cc		000
			caggeceae ae	tigggtat tit	ctaatti 3236
aagicigggc	CCIERERIAE	8548554540		000	

cagacaaaca cacactcage gegeacteae igaticetae acaligecaa gatticacae 3296

atgigaccag gggccaccaa agicccigig accitigiga ciaggatect aaliteteta 3356

litticicals ggigaciggg icigigicae ciggggcagi giggalaaig illaglicig 3416

tgacacigii titigggggi ggcacciggi iciccgatgc cigggciggi gicaggccca 3476

ggactgtagi gcigggagca glaaagcica gcicigigia algagigalig claiggciig 3536
clegigicii algalecaal ectiliciae aleageeeli gililigiiii algaelagie 3596
llaiciggee liggilaliile eligeggga ggagagggii ligelaalelig eleecageee 3656
aacetaliae eaceeeacel egeliggace lacigelegg gaggeageag acagggagee 3716
aceageagig gelicelegge ectglgeligg ggglggggg aagelggggg eacalgigge 3776
cetigeetie igageagele eeaglgeeag ggeliligaga elilieeaca igalaaaaga 3836
aaagggaggi acagaagile eaalleeeli illaililige liggilggial elglaaaigi 3896
tlaalaaala telgageali lalelaleaa egeeaagaal lleaaagiel ectileacaa 3956
talgaggeli tlaggalgii lalatleeli ealeeeleti gilleecagg liligeagg 4016
aaaaaaagie iggaallala galacageli allallaaal lligilelige alaaaaaaa 4076
aaaaaaaa

International applic
PCT/JP99/04352

Int.	(C12P 21/02,C12R 1:91)		
According to	International Patent Classification (IPC) or to both nation	nal classification and IPC	
o ciri De	SEARCHED		
Minimum do	cumentation searched (classification system followed by C1 C07K 14/47, C12N 15/12, 12N 5/	10,0129 21/02,	
	on scarched other than minimum documentation to the ex		
Swis	ta base consulted during the international search (name of BProt/PIR/GeneSeq, Genbank/EMBL/DEDIALOG), BIOSIS (DIALOG)	of data base and, where practicable, sear BJ/GeneSeq,	ch terms used)
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appr		Relevant to claim No.
Y	US,5792851,A(Albert Einstin Colleg University,a Division'of Yeshiva 11 August, 1998 (11.08.98) (Family: none)	ge of Medicine of Yeshiva University)	1,2
Y	Journal of Clinical Investigatio Lu Run, et al., "Cloning, in vit tissue distribution of a human pro cDNA (hPGT)" see p.1142-1149,(1	ro expression, and ostaglandin transporter	1,2
Y	Biochemical and Biophysical Research Communications, Vol.246, No.3, (May 29,1998), Lu Run, et al., "Molecular cloning of the gene for human prostaglandin transporter hPGT: Gene organization, promoter activity and chromosomal localization", see p.805-812.		1,2
	·		,
Furth	er documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular retevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report	
09	eactual completion of the international search November, 1999 (09.11.99)	24 November, 1999	(24.11.99)
Name and Jag	mailing address of the ISA/ canese Patent Office	Authorized officer	
Facsimile	No.	Telephone No.	

Internationa ication No.
PCT/JP99/04352

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	Science, vol.268, No.5212, (1995), Kanai Naoaki et al., "Identification and Characterization of a prostaglandin transporter ", see p.866-869,	1-2
		·

Form PCT/ISA/210 (continuation of second sheet) (July 1992)