Site Frequency Spectrum (SFS)

Tyler Linderoth Physalia lcWGS course 2024

SFS =
$$\mathbf{P} = (p_0, p_1, p_2, p_3, p_4, ..., p_{2n})$$

 p_j : proportion of sites in the genome with j derived alleles n = diploid sample size

Likelihood of the SFS (**P**) assuming we know the genotypes at a single site:

X: observed data (sequencing reads) G: genotype vector = $(G_1, G_2, G_3, ..., G_n)$ $p(X, G|P) = \sum_{j=0}^{2n} p(X, G|s_d = j) p(s_d = j|P)$

 s_d : number of derived alleles in genotype vector, \boldsymbol{G}

Likelihood of the SFS (**P**) assuming we know the genotypes at a single site:

$$p(X, \mathbf{G}|\mathbf{P}) = \sum_{j=0}^{2n} p(X, \mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

$$= p_j$$

$$p(a, b|c) = p(a|b) p(b|c) \quad \text{Recall that SFS} = \mathbf{P} = (p_o, p_v, ..., p_{2n})$$

$$= \sum_{j=0}^{2n} p(X|\mathbf{G}) p(\mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

Likelihood of the SFS (**P**) assuming we know the genotypes at a single site:

$$p(X, \mathbf{G}|\mathbf{P}) = \sum_{j=0}^{2n} p(X, \mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

$$= p_j$$

$$p(a, b|c) = p(a|b) p(b|c) \quad \text{Recall that SFS} = \mathbf{P} = (p_o, p_1, ..., p_{2n})$$

$$= \sum_{j=0}^{2n} p(X|\mathbf{G}) p(\mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

$$= \sum_{j=0}^{2n} \left(\prod_{i=1}^{n} p(X|G_i) \right) p(\mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

Likelihood of the SFS (**P**) assuming we know the genotypes at a single site:

$$p(X, G|P) = \sum_{i=0}^{2n} \left(\prod_{i=1}^{n} p(X|G_i)\right) p(G|s_d = j) p(s_d = j|P)$$

Probability based on the number of ways to have j derived alleles in G out of the total number of ways to to arrange j derived alleles in 2n chromosomes (i.e. choose(2n, j)).

Assumes HWE

Example with 4 diploid individual with derived allele T.

$$j = 4$$
, $k = \#$ heterozygotes = 2

$$2^k = 2^2 = 4$$
 combinations

$$p(X, \mathbf{G}|\mathbf{P}) = \sum_{j=0}^{2n} p(X, \mathbf{G}|s_d = j) p(s_d = j|\mathbf{P})$$

Allow for unknown genotypes (consider the likelihood for all possible genotypes)

$$p(X|\mathbf{P}) =$$

$$\sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_d \in \{0,1,2\}} P(G | s_d = j) \prod_{d=1}^{n} p(X_d | G_d)$$

Likelihood of **P** for site v (-doSaf 1):

$$p(X^{\nu}|\mathbf{P})=$$

$$\sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_d \in \{0,1,2\}} P(G^{v} | s_d = j) \prod_{d=1}^{n} p(X_d^{v} | G_d^{v})$$

Assume sites are independent

Likelihood of P:

$$p(X|P) =$$

$$\prod_{v=1}^{\text{all sites}} \sum_{j=0}^{2n} p(s_d = j | \mathbf{P}) \sum_{G_1 \in \{0,1,2\}} \cdots \sum_{G_d \in \{0,1,2\}} p(G^v | s_d = j) \prod_{d=1}^n p(X_d^v | G_d^v)$$

Folding the SFS

Folding the SFS

How to estimate posterior probabilities of allele frequencies

-doSaf 1:

	0	1	2	3	4	2n
Site1	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site2	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site3	-76.63	-37.87	-10.42	0.00	-9.59	-467.13
Site4	0.00	-2.24	-5.53	-6.99	-9.63	-237.55
Sitek	0.00	-8.62	-19.22	-30.67	-43.27	-626.78

$$P(\theta|X) = P(X|\theta)P(\theta)$$

How to estimate posterior probabilities of allele frequencies

2-dimensional SFS

Population j derived allele frequency

Proportion of sites where pop *i* has 3 derived alleles and pop *j* has 2 derived alleles.

Population j derived allele frequency (z)

Probability of k derived alleles in pop i and z derived alleles in pop j

Likelihood of k derived alleles in pop i at site v

Likelihood of z derived alleles in pop j at site v

$$E(a|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} a_{popi,popj}^{k,z} P(X_{i,v}|s_{d,v}=k) P(X_{j,v}|s_{d,v}=z) Q_{i,j}^{k,z}$$

$$E(b|X) = \sum_{k=0}^{2n} \sum_{z=0}^{2n} b_{popi,popj}^{k,z} P(X_{i,v}|s_{d,v}=k) P(X_{j,v}|s_{d,v}=z) Q_{i,j}^{k,z}$$