

OSS域2016年岗位技能认证培训

——资源模型V1.4模型使用篇

集团企信部OSS工作组 2016年10月

资源模型概览

V1.4升级说明

全网统一资源模型涉及的范围

- 1. 从资源全生命周期的不同视角出发,划分为6个域;
 - 存量资源域
 - 产品服务关联域
 - 码号标识关联域
 - 地域空间关联域
 - 资产工程关联域
 - 运营服务关联域:
- 各关联域的内容为存量资源 在不同视角的一个视图映射, 拥有自身特有模型和属性;
- 3. 保证各个域内独立管理,域 间松耦合管理,确保资源各 个生命周期独立管理;

描述资源的静态关系

"硬建模"支持双面配线架示例

"大类建模"支持双面配线架示例

- 传统上是对现实概念进行一对一建表的"硬建模 ,概念间关系分散在现实概念的各个存储表中
 - 概念新增和变化都会对数据表造成影响
 - 关系的新增和变化都会对数据表的Schema 造成影响
 - 各厂商开始运用大类+元数据进行建模,概念间 的关系集中在大类的主表上,利用元数据进行动 态扩展
- 本次建模主要完成:
 - 明确大类建模的收敛维度和收敛颗粒度,从 理论上确保大类建模的合理性;
 - 从资源应用的视角触发,明确资源业务对象 的管理颗粒度,构建资源规格目录;
 - 论证和验证大类建模的结果,确保可以将IT 语言有效的翻译为业务语言;

概念模型的推导验证方法

- ■概念模型保证对现实概念的覆盖
 - ◆以点、线、面、体几何形态作为 顶层分类的依据,确保子类对现实 概念集合的划分
 - ◆以功能为核心对概念进行定义, 确保概念定义明确,不存在模棱两 可的概念
 - ◆如果从某维度对单个概念的分类 是一个划分,则说明此概念具备分 解的可能,要尽量细分下去直到无 法分解为止
 - ·细分可提升IT计算出来的目标 概念相对于现实概念的精度
 - •为下一步逻辑模型的大类聚合 提供输入
 - ◆非一一对应,而是基于模型现有 概念和关系,进行IT运算实现覆盖
 - •组合、聚合、引用等运算
 - •用模式与规格适应现实概念

以几何形状分类保证所有结构实体的集合划分

点

线

体

以功能分类保证所有资源实体的集合划分

以上述两个分类维度的笛卡尔积进行划分,为继续细分提供 稳固基础。

		传送	处理	存储	容纳	供能	防护
	点	1	1	1	1	1	1
	线	1	0	0	1	0	0
面和体向量相	面	0	0	0	1	0	0
同,需要细分	体	0	0	0	1	0	0

资源存量域概念模型关系图

存量域表规模

- 实体主表9张
- 关系主表12张
- 扩展表36张
- 纵表9张
- 共:66张

当前业界情况

- 主流厂商可控 制在100张以内
- 非主流程厂商 达数百张表。

资源关联域概念模型关系图

以存量资源域为核心,制 定产品服务关联域、配置 关联域、地域关联域、资 产关联域的概念模型关系 图,从而实现对资源全生 命周期管理对象的全覆盖。

关联域表规模

- 实体主表8张
- 关系主表12张
- 扩展表7张
- 纵表1张
- 共:28张

物理模型建模思路:物理表存储设计

实体/关系存储表类型:

- □ A类属性存储在主表内;
- □ B类属性存储在扩展表、纵表及多选关系表内;
- □ 型号类属性平铺在主表、扩展表、纵表及 多选关系表内;
- □ 注:关系亦可以同实体一样,有主表、扩展表、纵表及多选关系表;

物理模型建模思路:物理表存储约束设计

物理表存储原则:

- □ 业务实体物理表只允许两级扩展,不允许多级扩展,且仅允许水平两级扩展;(性能因素)
- □ 主表、纵表由大类负责管理,规格仅能 继承和重定义,不允许超出大类范围;
- 集团扩展表、省扩展表由规格负责管理。原则上,集团扩展表统一定义,省与集团颗粒度一致;(因省属性数据历史原因,可允许省自行定义省扩展表颗粒度)
- 根据业务的需求,访问的性能等因素, 定期按照纵表->省扩展表->集团扩展表 ->主表的顺序进行属性的升级存储;
- □ 省扩展表作为省内临时个性化需求使用, 未来逐步标准化和统一到集团扩展表;

物理模型建模思路:关系存储位置设计

1:1, 1:N

关系存储位置设计:

- ✓ 1:1关系:采用外键存储; 1:N关系:采用外键或关系表存储; N:N关系:采用关系表存储;
- ✓ 智能外键:实体间的N:N不确定关系采用智能外键存储,如辅助、保护关系等;
- ✓ 应用域与核心域、存量域的关系,不管是何种关系均 采用应用域外键引用或者关系表的模式;
- ✓ 关系表归属于查询入口较频繁实体所在的域。如:地 址覆盖实体,从地址查实体,故放到关联域;
- ✓ 按照关系的AZ端实体是否相同、关系是否可频繁递归 或关联搜索等要素,明确关系表是否合并;

物理模型建模思路:关系存储位置约束

大类规格ID	大类规格名	大类规格编码	关系类型	A_SPEC_ID	Z_SPEC_ID	TABLE_CODE	A_SPEC_FI ELD_CODE	A_ENTITY_FI ELD_CODE	Z_SPEC_FI ELD_CODE	Z_ENTITY_FIE LD_CODE	约束
--------	-------	--------	------	-----------	-----------	------------	-----------------------	-------------------------	-----------------------	-------------------------	----

关系存储位置约束:

- ✓ 一个关系规格只能对应一个物理存储位置(含存储表和存储字段);
- ✓ 注:一旦出现同一个关系规格存储于多个存储位置,需要拆分成多个关系类型,关系决定存储;如缆线设备关系,关系类型分为A端终结、Z端终结、多端终结。
- ✓ 只有大类关系记录物理存储位置,所有 细类和子类,不记录物理存储位置,清 空;

关系类型	包含	关系类型	绑定
关系类型	容纳	关系类型	位于地址
关系类型	承载	关系类型	位于管理区域
关系类型	依赖	关系类型	位于行政区域
关系类型	复用	关系类型	A端位于管理区域
关系类型	划分	关系类型	Z端位于管理区域
关系类型	接续	关系类型	A端位于行政区域
关系类型	拆分	关系类型	Z端位于行政区域
关系类型	聚合	关系类型	A端位于地址
关系类型	穿孔	关系类型	Z端位于地址
关系类型	成端	关系类型	保护
关系类型	A端终结	关系类型	辅助
关系类型	Z端终结	关系类型	并联
关系类型	多端终结	关系类型	多端位于行政区域
关系类型	创建	关系类型	多端位于管理区域
关系类型	使用	关系类型	多端位于地址
关系类型	覆盖	关系类型	组成
关系类型	标注	关系类型	转固

物理模型示例:设备物理模型

元数据-资源规格、属性、枚举值说明

资源模型的顶层抽象,用于描述稳定的资源对象及 关系,管理主表、纵表。如:设施段

大类的稳定划分,用于管理业务对象及关系,约束 扩展表,提升管理效率,降低管理难度。如:支撑 段、支撑通道

大类下具体业务对象及关系,业务人员使用和理解 的内容,用于管理关系、属性、扩展表。如:管道 段、管孔

注:主语+谓语+宾语+约束+存储位置+智能指针,描述一个关系规格;

域

方便管理和 维护

包括:主表属性+扩 字典值统一编码,

展表属性+纵表属性

不重复定义:

字典类型管理

字典值;

目标是元数据统一, 但支持个件化定义;

注:按属性分类存于不同表,主表和纵表属性继承大类,扩展表属性继承规格;

元模型概念关系图

- 关系主表4张
- · 共:12张

使用元模型来描述大类建模条件下,规格、属性、枚举值的存储和使用!

元数据模型

资源模型概览

V1.4升级说明

V1.4升级说明

生命周期状态ID字典值引用说明(1/5)

生命周期状态字典值说明:

- □ 规划:指资源处于规划阶段,规划预录入的资源,由规划应用产生,规划状态在设计状态前;
- **□ 设计:**指资源处于设计阶段,设计预录入的资源,由设计应用产生,设计状态在施工状态前;
- □ **施工:**工程建设期间预录入的资源,还未完成工程验收,E8-C的放装过程也是施工状态,施工状态的资源可以转完工状态或投用状态;
- **□ 完工:**原"竣工"状态
 - 表示资源在工程建设完成,可以开始验收,只有完工状态的资源才能进入验收;
 - 完工状态的资源才能通过验收、挂测应用转入投用状态、未启用状态;
- □ **投用:**表示资源已经入网建设并验收完成,可以投产使用,处于投用状态的资源才能进行业务分配和占用。在用、投用、有效、可用,都是投用。完工状态在投用状态前;

生命周期状态ID字典值引用说明(2/5)

生命周期状态字典值说明:

□ 闲置:

- 资源还在网,但不承载业务,还可以直接转投用,也可以直接调拨;
- 投用状态可以转闲置状态,闲置状态可以再转投用状态,闲置状态可以转离网或报废状态

□ 离网:

- 退网状态改为离网状态,是指资源不在网的状态,已经退网拆除或者新领用还未建设入网的资源均为离网状态;
- 处于离网状态的资源,可直接搬入仓库,可以走实物的调拨等管理流程,实物自身的调拨等状态单独体系,资源模型暂未涵盖;
- 离网状态的实物资源,可以走工程建设、维护更换流程再入网,如工程建设、备件更换等
- 如果未管理离网状态的实物资源,可以没有离网状态,直接进入报废状态;
- □ 报废:指资源实物的报废,资产报废不在这里,报废做逻辑删除用。

生命周期状态ID字典值引用说明(3/5)

□ **写码中:**指IMSI等五码数据的状态,前台写码的过程,写到空白SIM卡的状态,写完后生命周期状态转为投用,业务状态转为空闲或预占;

□ 未启用:

- 码号的状态,创建了一批号码,设备上的数据都已做好,还没启用,不能对外选号,未启用状态的码号不入号池,启用后转为投用状态;
- 如果资源在竣工完成后,暂时未投用,则转为未启用状态,未启用状态的资源可以转为投用状态, 投用状态也可以转为未启用状态;
- □ 制卡中:指IMSI等五码数据的状态,将IMSI等导出给制卡商,送到制卡中心制卡的过程,制卡完成如果是成品卡IMSI等五码数据的状态转为投用状态,如果是空白卡IMSI等五码数据的状态转为可写码状态;
- □ 可写码:指IMSI等五码数据的状态,数据尚未写码,可用来写空白SIM卡;
- □ 回收中:指IMSI等五码数据的状态,用户拆机以后,回收IMSI等五码数据,可重新用于制卡,与可写码 类似,前者是新的数据,这个是拆机后的旧数据;

生命周期状态ID字典值引用说明(4/5)

物理表 "生命周期状态ID" (LIFE_STATE_ID)字段,字典类型 "生命周期状态" (字典 类型ID= 1053)及对应字典值。

- □ 所有实体的生命周期状态属性值不能为空,生命周期状态字典值不允许有私有字典值;
- □ 所有的实体(设备、硬件、缆线、设施、设施段、辅助设备、网、码号空间、码号)的 生命周期状态都**不联动**,独立变更状态。

大类/规格

生命周期状态ID字典值引用说明

	大类ID	大类	规格ID	规格	
	1020000000	设备			
	1030000000	硬件			
	1120000000	缆线			
	1010000000	设施			
	1110000000	设施段			
	1050000000	辅助设 各			_
			1211100001	管道	
-	1210000000	 	1211100002	杆路	
		[M]	1211200001	电缆	
			1211200002	光缆	

注:除管道、杆路、电缆、光缆外的网大类对应的其他规格无生命周期状态,取值为空!

#		FΛ
衣	/ 一	权

字段名
E 生命周期状态ID
生命周期状态ID
生命周期状态ID
T 生命周期状态ID
生命周期状态ID
· 生命周期状态ID
生命周期状态ID

字典类型/字典值

字典类型	字典值
生命周期状态	规划
生命周期状态	设计
生命周期状态	施工
生命周期状态	完工
生命周期状态	投用
生命周期状态	闲置
生命周期状态	离网
生命周期状态	报废

生命周期状态ID字典值引用说明(5/5)

物理表 "生命周期状态ID" (LIFE_STATE_ID)字段,字典类型 "生命周期状态" (字典 类型ID= 1053)及对应字典值。

- □ 所有实体的生命周期状态属性值不能为空,生命周期状态字典值不允许有私有字典值;
- □ 所有的实体(设备、硬件、缆线、设施、设施段、辅助设备、网、码号空间、码号)的 生命周期状态都**不联动**,独立变更状态。

生命周期状态ID字典值引用说明

字典类型/字典值

大类/规格

大类ID	大类
2010000000	码号空间

表/	'字	段
~ ~,		

表名	字段名
RM_NBRS	生命周期状态ID
PACE	

ナル大王	<u> </u>
生命周期状态	投用

工业的现代心	1XIT
生命周期状态	未启用

大类ID	大类
2020000000	码号

大类ID	大类
1040000000	端口
1130000000	链路

表名	字段名
RM_NUM BER	生命周期状态ID

表名	字段名
CM_POR T	无 无
CM_LINK	

字典类型 字典值 生命周期状态 投用 生命周期状态 写码中 生命周期状态 未启用 生命周期状态 可写码 生命周期状态 制卡中 生命周期状态 同收中

字典类型	字典值
生命周期状态	- 无

物理状态ID字典值引用说明

物理表"物理状态ID"(PHYSICAL STATE ID)字段,字典类型"物理状态"(字典类型 ID=1067) 及对应字典值。

- □ 所有实体的物理状态属性值不能为空,物理状态字典值不允许有私有字典值;
- □ **所有的实体(**设备、硬件、端口、缆线、链路、设施、设施段、网、辅助设备**)的**物理状 态都不联动,独立变更状态。

大类/规格		
大类ID	大类	
1020000000	设备	
1030000000	硬件	
1040000000	端口	
1120000000	缆线	
1130000000	链路	
1010000000	设施	
1110000000	设施段	
1050000000	辅助设备	
1210000000	X	

表/字段		
	表名	字段名
СМ	DEVICE	物理状态ID
CM	WARE	物理状态ID
CM.	PORT	物理状态ID
СМ	CABLE	物理状态ID
CM	LINK	物理状态ID
СМ	FACILITY	物理状态ID
СМ	PIPELINE	物理状态ID
CM _.	_ASSISTANCE	物理状态ID
СМ	NET	物理状态ID

 \pm \prime

字典类型/字典值

字典类型	字典值
物理状态	完好
物理状态	损坏

完好:指物理资源**完好**,逻辑资源**可用**,可以正常使用

损坏:指物理资源的**损坏**,逻辑资源的**故障不可用**。如下场景将状态置为损坏:

- 开通在途改、退单,根据异常原因释放资源,如是<mark>端口坏</mark>等原因,物理状态置为损坏状态;
- 修障改资源,故障引起的资源变更,物理状态改为损坏状态;

业务状态ID字典值引用说明(1/4)

- □ 空闲:指资源处于空闲状态,未被业务占用,可以进行资源分配;
- □ **预占:**指资源配置过程中,预占的资源,还**未正式开通**。一般资源配置完成后,资源归档前为预占状态。 与字段"**预占渠道类型ID**"结合使用,描述通过网厅掌厅等**渠道临时预占的资源;**
- □ **占用:**指资源配置且**正式开通完成**,处于业务启用状态的资源。一般资源归档完成后,资源转为实占状态;修障过程中,障碍单流程,也是预占,归档后实占;修障过程中,没有障碍单,直接修改资源的为实占。
- □ **待释放:**资源归档后,资源暂时**冻结**不做分配用,沉淀一定时间再释放为空闲,一般用作码号、链路等资源使用。也可资源归档后直接释放为空闲。
- □ **预拆:**指移机、拆机过程中,旧业务已经**拆除**,在途单**未归档,**还未释放的资源的状态,资源归档后状态可改为待释放或者空闲

注:省里资源系统实体没有预占,只有实占的情况,需要将服务上的预占转为实体上的预占

业务状态ID字典值引用说明(2/4)

- □ 预留:包含临时预留和长期性预留,与保留等级属性配合使用,仅当业务状态为预留时才需判断保留等级。临时预留时保留等级是字典值无保留,长期预留时有具体的保留等级字典值。
 - 临时预留时,业务分配后,状态为占用;业务拆除后,状态恢复为空闲;
 - 长期保留时,业务分配后,状态为占用;业务拆除后,状态恢复为预留状态;保留等级不变;

业务状态ID字典值引用说明(3/4)

- □ 所有实体的业务状态属性 值不能为空,字典值不允 许有私有字典值;
- 业务状态字典值类型1073 USING_STATE_ID
- □ 预占渠道类型字典类型1553 RESERVED
- □ 保留等级字典类型1221 ---> RESERVED_LEVEL_ID

大类/规格

大类ID	大类
1020000000	设备
1030000000	硬件
104000000	端口
1120000000	缆线
1010000000	设施
1110000000	设施段
1050000000	辅助设备
1210000000	X
2010000000	码号空间

大类ID	大类
1130000000	链路
2020000000	码 号

表/字段

表名	字段名
C) 4 DEV/7CE	业务状态ID —
CM_DEVICE	预占渠道类型ID
CM WARE	业务状态ID
CIVI_VVARE	预占渠道类型ID
CM DODT	业务状态ID
CM_PORT	预占渠道类型ID
CM CABLE	业务状态ID
CIVI_CABLE	预占渠道类型ID
CM FACILITY	业务状态ID
CIVI_FACILITY	预占渠道类型ID
	业务状态ID
CM_PIPELINE	预占渠道类型ID
CM ASSISTANCE	业务状态ID
CIVI_A33I3TAINCE	预占渠道类型ID
CNA NIET	业务状态ID
CM_NET	预占渠道类型ID
DAA NIDDODAGE	业务状态ID
RM_NBRSPACE	预占渠道类型ID

	表名	字段名
	CM LINK	业务状态ID ·
		预占渠道类型ID
>	CM_LINK	保留等级ID
	RM_NUMBER	业务状态ID
	RM_NUMBER	预占渠道类型ID
	RM_NUMBER	保留等级ID

字典类型/字典值

字典类型	字典值
业务状态	空闲
业务状态	预占
业务状态	占用
业务状态	预拆

字典类型	字典值
预占渠道类型	无
预占渠道类型	网厅
预占渠道类型	掌厅 ←
预占渠道类型	代理商
预占渠道类型	虚拟运营商
预占渠道类型	其他

配合使用 , "无" 代表真正的预占 , 其它字典值代表的是预订。

字典类型	字典值
业务状态	空闲
业务状态	预占
业务状态	占用
业务状态	预留
业务状态	待释放
业务状态	预拆

字典类型	字典值
保留等级	VPN保留
保留等级	保留
保留等级	集团保留
保留等级	其它保留
保留等级	省保留
保留等级	无保留
保留等级	云卡保留

配合使用,临时预留时保留等级是"无保留",长期预留时有具体字典值

业务状态ID字典值引用说明(4/4)

□ 业务状态变更时,需要进行资源实体间的联动:

- ▶ 链路业务状态:占用/释放时需根据产生/拆除的链路关系进行关联链路状态的变化,链路两端端口状态与链路状态同步变化。
 - **组成、集合**关系产生/拆除时,关联链路的状态**不变**;
 - **承载、划分**关系产生/拆除时,关联链路的状态**变**为占用/空闲,**下层的组成、集合**关系关联的链路需同时**变**更为占用/空闲。
 - 局向光纤、光链路路由、光纤光路**同时变更**状态,**主子光** 路的状态均需要记录和变更,只要**有一个上层**链路的承载 就占用;
- 设备和硬件的业务状态只有出租才有意义,不和端口的业务状态 联动;
- 缆线、管道业务状态联动,缆线穿孔管道时,管道业务状态为占 用,管道无任何缆线穿孔时,管道业务状态为空闲;
- ▶ 码号业务状态不联动,预绑定时也不联动,独立进行状态的变更
- 被产品服务占用的资源,业务状态需要改为"预占"或"占用"

封锁状态ID字典值引用说明

- □ 所有实体的生命周期状态属性值不能为空,生命周期状态字典值不允许有私有字典值;
- □ 所有的实体的生命周期状态都不联动,独立变更状态。

大类/规格

大类ID	大类
1020000000	设备
1030000000	硬件
1040000000	端口
1120000000	缆线
1130000000	链路
1010000000	设施
1110000000	设施段
1210000000	X
2020000000	码号
2010000000	码号空间

=	/ 一	⊏Л
ᆽ	<i> </i> 'Z'	FΉ
ユベ		HХ

表名	字段名
CM_DEVICE	封锁状态ID
CM_WARE	封锁状态ID
CM_PORT	封锁状态ID
CM_CABLE	封锁状态ID
CM_LINK	封锁状态ID
CM_FACILITY	封锁状态ID
CM_PIPELINE	封锁状态ID
CM_NET	封锁状态ID
RM_NUMBER	封锁状态ID
RM_NBRSPACE	封锁状态ID

字典类型/字典值

100	、字典类型	字典值
102	封锁状态	待核查封锁
	封锁状态	割接封锁
\longrightarrow	封锁状态	工程设计封锁
	封锁状态	满载封锁
C	封锁状态	审批封锁
S	封锁状态	无封锁
 AT	封锁状态	其他封锁
~ !		-

• **待核查封锁:**资源数据质量有问题,需要比对、清洗、核查等场景的封锁状态

LOC K_S TAT E ID

- · 割接封锁:处于割接中的资源的封锁状态
- · 工程设计封锁:指工程设计中占用的资源的封锁状态
- · 满载封锁:指对利用率超过警戒值的资源进行封锁的状态
- 审批封锁:指运营管理上待审批的资源的封锁状态
- 无封锁:指无运营操作封锁,可正常开放业务的状态
- 其他封锁:其它未定义的各类运营操作的通用封锁状态

集团OSS工作组

V1.4升级说明

所属电信管理区ID字段存储说明(1/2)

场景1:实体有归属局站

大类/规格

表/字段

大类ID	大类
1020000000	设备
1030000000	硬件
1040000000	端口
1120000000	缆线
1130000000	链路
1010000000	设施
1110000000	设施段
1050000000	辅助设备
1210000000	X

表名	字段名	字段
CM_DEVICE	所属电信管理区ID	TML_ID
CM_WARE	所属电信管理区ID	TML_ID
CM_PORT	所属电信管理区ID	TML_ID
CM_CABLE	A/Z端所属电信管理区ID	A/Z_TML_ID
CM_LINK	A/Z端所属电信管理区ID	A/Z_TML_ID
CM_FACILITY	所属电信管理区ID	TML_ID
CM_PIPELINE	A/Z端所属电信管理区ID	A/Z_TML_ID
CM_ASSISTANCE	所属电信管理区ID	TML_ID
CM_NET	所属电信管理区ID	TML_ID

规格ID	规格	 表名		字段名
2210200001	局站	RM_AREA	ID	\leftarrow

外键存储

- □ 实体(设备、硬件、端口、缆线、链路、设施、设施段、辅助设备、网)与局站(规格 ID=2210200001)的管理归属关系通过"外键"存储。关系类型为"位于管理区域"。
- □ 具体存储方式为实体对应物理表中"所属电信管理区ID" (TML_ID)字段,存储实体 规格"局站"对应物理表中"ID"字段内容。

场景二:实体无归属局站

□ 实体对应物理表中 "所属电信管理区ID" 字段为空

所属电信管理区ID字段存储说明(2/2)

场景三:实体归属非局站的电信管理区

大类/规格

表/字段

大类ID	大类
1020000000	设备
1030000000	硬件
1040000000	端口
1120000000	缆线
1130000000	链路
1010000000	设施
1110000000	设施段
1050000000	辅助设备
1210000000	M

表名	字段名	字段
CM_DEVICE	ID	ID
CM_WARE	ID	ID
CM_PORT	ID	ID
CM_CABLE	ID	ID
CM_LINK	ID	ID
CM_FACILITY	ID	ID
CM_PIPELINE	ID	ID
CM_ASSISTANCE	ID	ID
CM_NET	ID	ID

规格ID	规格
2210200002	局向

	表名	字段名
/	RM_AREA	ID

表名	字段名
RR_AREA_ENTITY	AREA_ID
RR_AREA_ENTITY	ENTITY_ID

实体与电信管理区的关系通过"关系表RR_AREA_ENTITY"存储,存储的关系说明如下:

- **覆盖关系**(关系类型ID= 1079,关系类型编码= 17),指一个资源的应用范围,如下区域都是覆盖关系:概念区、划小单元、营销区、资源覆盖区、营业区、装维区域、放号区、局向;
- <mark>位于关系</mark>,指一个资源的物理归属,通过实体坐标的物理位置归属于区域,通过坐标计算, 暂无实体关系存储(局站除外,局站关系类型为"位于管理区域");

所属地区ID字段存储说明(1/2)

管理现状

- 1、管理精细化的,可到区县级,多为管理归属,而非物理归属;
- 2、有如下情况,难以到区县:
- 资源归属为省/本地网、应用通过配置规则跨本地网/区县管理和使用;
- □ 资源归属为虚拟的本地网/区县,跨本地网/跨区县管理和使用;
- □ 资源根据调拨的阶段不同,逐步由 省->本地网->区县,每个级别的区 域都可能是资源的归属,如码号和 终端;
- □ 资源归属的地区与行政区域不完全相同,如:行政合并、管理未合并,虚拟的行政区域等;

表名	字段名	字段
CM_DEVICE	所属地区ID	REGION_ID
CM_WARE	所属地区ID	REGION_ID
CM_PORT	所属地区ID	REGION_ID
CM_CABLE	A/Z端所属区ID	A/Z_REGION_ID
CM_LINK	A/Z端所属区ID	A/Z_REGION_ID
CM_FACILITY	所属地区ID	REGION_ID
CM_PIPELINE	A/Z端所属区ID	A/Z_REGION_ID
CM_ASSISTANCE	所属地区ID	REGION_ID
CM_NET	所属地区ID	REGION_ID
RM_NBRSPACE	所属地区ID	REGION_ID
RM_NUMBER	所属地区ID	REGION_ID

所属地区ID字段存储说明(2/2)

管理结论

- □ 实体(设备、硬件、端口、缆线、链路、设施、设施段、辅助设备、网、码号空间、码号)对应物理表的"所属地区ID"(REGION_ID)字段,存储管理归属的地区(一般物理位置所属地区和管理归属地区是一致的,在二者不一致时,存储的是管理归属的地区);
- □ 所属地区,至少到本地网层级(非本地网资源除外),尽可能细化到区县级,并按照地区层级向下继承,如:区县层级继承本地网;
- □ 统计类指标,仅统计**归属地区及下级地区** 的数据,未归属该地区或归属上级地区的 ,不在指标统计的范畴内,如需统计,则 由省负责清理数据到区县级;

所属设施ID字段存储说明

- □ 实体(设备、硬件、辅助设备)对 应物理表的"所属设施ID"(FACILITY ID)字段,存储为<mark>容纳该</mark> **资源实体的设施**,一个资源实体只 会由一个设施所属容纳,设施可以 是规格为"机房"(规格ID= 1010100001)、"地下进线室" 、(规格ID= 1010100002)、 人(手)井"(规格ID= 1010100003)等,容纳关系记录 的是与其最近的直接容纳它的设施 实体;
- □ 如按机房查询统计,只需要查询所 属设施字段,**关联的设施实体为机** 房即可;

规格ID	规格
1010100001	机房
1010100002	地下进线室
1010100003	人(手)井
•••••	••••
/	

表名	字段名
CM_FACILITY	ID <

外键存储

表名	字段名	字段
CM_DEVICE	所属设施ID	FACILITY_ID
CM_WARE	所属设施ID	FACILITY_ID —
CM_ASSISTANCE	所属设施ID	FACILITY_ID

V1.4升级说明

物理逻辑划分说明(1/3):规格划分

一、判断是物理设备还是逻辑设备的原则,即是否需要拆分逻辑设备的原则:

- 连接设备(电连接设备、光连接设备、综合连接设备)、无源器件不需要拆分逻辑设备;
- 动环设备不需要拆分逻辑设备;
- 物理设备的集合是物理设备,逻辑设备的集合是逻辑设备;
- 允许没有对应物理设备的纯逻辑设备存在;
- 平台类设备不需要拆分物理设备,只有逻辑设备;
- 信号、信息处理设备,暂不拆分逻辑设备,只有物理设备;

设备物理逻辑划分

二、判断是物理端口还是逻辑端口,即是虚端口、实端口还是虚实合一端口的原则:

- 传送层划分端口、会话层/表示层端口(网络管理类端口除外)只有逻辑端口
- 连接端子、动力端子只有物理端口;
- 传送层基础端口(收发分开管除外)、会话层/表示层端口(指网络管理类端口)、复合端口(拆分为多个逻辑端口的除外)为物理和逻辑合一端口;
- 传送层基础端口(收发分开管)、复合端口(拆分为多个逻辑端口管理),拆分为物理端口、逻辑端口;

端口物理逻辑划分

注:元数据的实体规格 (MM_ENTITY_SPEC)和字段 (MM_FIELD)表各增加一个"虚实属性 字段"(VIRTUAL_REAL_ID)字段, 从规格和字段层面区分物物理和逻辑。

物理逻辑划分说明(2/3):属性划分

一、物理和逻辑共有的属性确定原则:

- ① IT系统处理过程中记录的实体属性,如:ID、版本、时间戳、分片ID、备注、创建人、创建时间、修改人、修改时间、图形坐标等;
- ② 描述实体的维护和使用信息的属性,如:维护、检查、数据采集、使用、管理等相关的等级、人员、部门、时间、区域等;
- ③ 描述实体间保护关系的属性,如:保护方式、工作方式、工作状态等;
- ④ 描述实体编码、名称的属性;
- ⑤ 描述实体状态和状态变更时间的属性;
- ⑥ 描述实体的规格、类型、角色的属性;
- ⑦ 描述设备上安装的操作系统、数据库及其版本、licens的属性;
- ⑧ 描述实体归属的网络层级,用以识别所在的网络拓扑中的位置的属性;
- ⑨ 描述实体的物理和逻辑共用的归属关系的属性;
- ⑩ 描述无线信号的物理覆盖和逻辑覆盖的属性;
- ① 描述实体的业务支撑能力相关的属性,如:用户数、业务量、接入带宽等;

二、仅物理实体拥有的属性确定原则:

- ① 描述实体的物理形态的属性,如:长、宽、高、外观、材质、损耗等;
- ② 描实体的物理标准的属性,如:接口标准、光电特性等;

物理逻辑划分说明(3/3):属性划分

二、仅物理实体拥有的属性确定原则:

- ④ 描述实体的资产相关的属性,如:产权、维保、使用性质、生产厂商、 生产日期等;
- ⑤ 描述动环专业相关联的属性;
- ⑥ 描述设备所包含硬件的属性,如:CPU、内存等的规格、型号、数量、 类型等;
- ⑦ 描述实体的信号处理的属性 , 如:功率、频率、波等 ;
- ⑧ 描述实体的物理容量的属性 , 如:硬件容量、端子容量等 ;
- ⑨ 描述实体的序列号及硬件BIOS、硬件版本的属性;

三、仅逻辑实体拥有的属性确定原则:

- ① 描述实体的安全认证相关的属性,如:用来登录、认证、鉴权的帐号、 名称、密码、秘钥、激活码、MAC地址等信息;
- ② 描述实体的网管信息相关的属性,如:网管系统的名称、编码、连接地址、登录等信息及网管内实体的编码、名称、ID等信息;
- ③ 描述实体的网元配置相关的属性,如:如协议、码号、业务类型,信号处理的调制解调、编码转换、信号类型,无线设备的信道、扇区、载频、载扇等;
- ④ 描述实体处理能力相关的属性,如:速率、吞吐量、呼叫次数、分插复用比等;
- ⑤ 描述实体操作系统安装的软件属性,如:中间件及版本、license等;

设备属性物理逻辑 划分

端口属性物理逻辑 划分

V1.4升级说明

装维需求:悦me产品的支撑说明

- □ 悦me当做实体规格 "ITV服务" (规格ID=2311100003)管理,通过产品服务物理表(RM_SERVICE)的 "产品服务版本ID" (SERVICE_VERSION_ID)字段区分悦me和普通iTV;
- □ 悦me的帐号、口令,统一作为**帐号实体的编码、密码存储**,不作为iTV(悦me)产品服务的属性,是iTV 和帐号的占用关系;
- □ 悦me的帐号类型,作为**客户类型属性**, "家庭客户" "政企客户",是iTV所属客户的信息;
- □ 悦me使用产品服务的"付费类型"字段区分预付费和后付费;
- □ 悦me的关联业务号码、绑定类型、绑定对象存储在**产品服务纵表**(RV_SERVICE)中,对应字段为"关联业务号码"(RELATE_NUMBER)、"认证方式"(AUTHENTICATION_MODE)、"认证号码"(AUTHENTICATION_NUMBER)
- □ "认证方式"属性对应字典类型"认证方式"(ID=1557)

装维需求:iWIFI产品的支撑说明

- □ iWifi当做实体规格 "宽带接入服务" (规格ID=2311100002)管理,使用产品服务物理表的 "产品服务类型ID"字段区分。
- □ "产品服务类型ID"字段引用字典类型"宽带类型"(ID=1511)的字典值"iWiFi"(ID=105463)。
- □ iWifi是集团、还是省平台提供的,通过产品服务纵表"业务范围" (BUSY RANGE ID)字段来标识。
- "业务范围"字段引用字典类型"业务范围"(ID=1554)

装维需求:客户等级

- 原有客户等级保留,兼容老的数据;
- 新增客服部新的客户等级七星标准,通过字典类型 "客户等级" (ID=1500)对应的字典值(ID=105453~105459)管理;
- 根据省内实际情况将<mark>数据切换</mark>为新的客户等级。

字典类型	字典值
客户等级	一星级
客户等级	二星级
客户等级	三星级
客户等级	四星级
客户等级	五星级
客户等级	六星级
客户等级	七星级

字典类型	字典值
客户等级	普通会员
客户等级	金卡等级会员
客户等级	银卡等级会员
客户等级	钻石卡等级会员
客户等级	一星级尊享
客户等级	二星级尊享
客户等级	三星级尊享
客户等级	1A
客户等级	2A
室户 等级	2A 3A
客户等级	4A
客户等级	5A
客户等级	1B
客户等级	2B
客户等级	3B
客户等级	4B
客户等级	5B
客户等级	A级
客户等级	B级
客户等级	C级
客户等级	D级
客户等级	E级
客户等级	街道级
客户等级	区级
客户等级	社区级
客户等级	无类等级
客户等级	未定义

装维需求-宽带型产品开通

- □ 为满足带宽型产品开通时需求,通过**产品服务纵表**(RV_SERVICE)进行管理,其中涉及 字段"付费客户名称"(PAY_CUST_NAME)、"付费客户ID"(PAY_CUST_ID)、 "付费对象ID" (PAY_OBJECT_ID)、"业务范围ID" (BUSY_RANGE_ID)、"通达类 型ID"(REACH WAY ID)。
- □ "付费对象ID"字段引用字典类型"付费对象"(ID=1555),"业务范围ID"字段引 用字典类型"业务范围"(ID=1554),"通达类型ID"字段引用字典类型"通达类型" (ID=1556)

其它需求:光宽端到到和OSS数据直采

光宽端到端需求:

- ✓ 业务测速信息和工程挂测信息,随测速及挂测业务单记录,资源系统内部记录;
- ✓ E8-C/机顶盒等终端、VLAN/时隙等码号、网络拓扑及其它逻辑资源信息,需要从网管系统采集同步比对更新并补充资源未管理的数据,形成完整的统一模型资源库数据,支撑端到端业务资源数。

OSS数据直采需求:

- ✓ 针对OSS地区与MSS、BSS地区数据同步需求,通过地区扩展表(RE_AREA_REGION)中,字段"PPM编码"(PPM_CODE)和"MSS编码"(MSS_CODE)实现。
- ✓ MSS编码字段暂时为空,待MSS内部编码统一后再行补充。
- ✓ PPM编码人工进行数据比对核实,补充PPM编码属性值,如无法1:1匹配的区域,则可不填PPM的编码值,由省公司自行根据业务上规划考虑未映射区域的匹配清理。

V1.4升级说明

工作方式/工作状态字典使用说明

±5 ±4±5		
表名	表中文名	
CM_CABLE	缆线	
CM_CABLE	缆线	
CM_DEVICE	设备	
CM_DEVICE	设备	
CM_LINK	链路	
CM_LINK	链路	
CM_NET	XX	
CM_NET	XX	
CM_PORT	端口	
CM_PORT	端口	
CM_WARE	硬件	
CM_WARE	硬件	

字段	字段名	字典 类型
WORK_ST ATE_ID	工作状态ID	1029
WORK_WA Y_ID	工作方式ID	1078

工作方式

□ 备用:备用资源的工作方式

□ 主用:主用资源的工作方式

□ 互备:互备资源的工作方式

工作状态

□ 热备:备用的资源状态描述

■ 工作:主用的资源状态描述,或备用切换后

的资源状态描述

□ 未工作:冷备的资源状态描述,或主用故障

暂停工作后的资源状态描述

规格实例化要求补充说明

IP地址实例化

■ 所有IP地址均实例化管理,包括管理IP。

虚拟接入号实例化

■ 虚拟接入号暂**不实例化**,存储在产品服务表(RM_SERVICE)的"接入号码"(ACCESS_CODE)、"A端接入号码"(A_ACCESS_CODE)、"Z端接入号码"(Z_ACCESS_CODE)字段上,待后续有需求再考虑是否实例化。

节点号暂不实例化

■ 节点号暂不实例化,待后续有需求再考虑是否实例化

地址实例化

■ 带宽型业务的**用户地址、设备的安装地址**等字符串记录的模式,需要**实例化**为非标准 地址及地理位置,带宽型业务、设备引用地理位置ID

1.3版本遗漏的实体关系补充说明

缆线与局向链路

- 电缆包含线序/逻辑线对(关系规格ID=1210111330001),光缆包含局向光纤(关系规格ID=1210111330002)。
- 电缆段与线序/逻辑线对、光缆段与局向光纤**无直接包含**关系。
- 光缆段包含纤芯(关系规格ID=1120111230002),电缆段包含线对(关系规格 ID=1120111230001),纤芯组成局向光纤(关系规格ID= 1123511330001),线对组成线序/逻辑线对(关系规格ID= 1123511330002)。
- 两个局之间的链路,如果**有被电缆、光缆包含**,则规格应该为**局向光纤、线序/逻辑线对** ,**否则**规格应该为**硬跳**。

设备依赖关系

- 设备与设备之间的依赖关系:是一个冗余的关系,通过链路查找太复杂才定义的关系。
- 当前主要依赖关系有:远端模块依赖母局设备(规格ID=1020410210003)、OLT依赖 SS(规格ID=1020410230001)、OLT依赖BAS/BRAS(规格ID=1020410220002)
- 设备和端口的依赖关系,通过记录端口与端口之间的链路来实现,设备表"依赖端口ID"(RELAY PORT ID)字段删除。

现有细粒度实体在新模型内的区分说明(1/3) ψ

帐号区分

- 开iTV业务需要**iTV用户帐号和iTV绑定的宽带帐号**,前者是iTV平台认证帐号,iTV绑定的 AAA宽带认证帐号,通过帐号类型字典值来区分:
- iTV帐号、宽带帐号,当iTV单开时(不包括悦me),iTV产品服务需要占用上述两个帐号; 当iTV依赖于宽带时,iTV仅需占用iTV帐号。
- 利用码号表(RM_NUMBER)的"码号类型ID"(NUMBER_TYPE_ID)字段,来区分帐号 的类型 , "码号类型ID"属性引用字典类型"帐号类型"(ID=1556)及其字典值。

IP地址区分

■ 利用码号表(RM NUMBER)的"码号角色ID"(NUMBER ROLE ID)字段,来区分IP 地址是**主用IP、备用IP还是管理IP** , "码号角色ID" 属性引用字典类型 "码号角色ID" (ID= 1294)及其字典值:主用IP(ID=105441)、备用IP(ID=105443)、管理IP(ID=105445).

PVLAN区分

使用"码号角色ID"字段,"码号角色ID"属性引用字典类型"码号角色ID"(ID= 1294)及其字典值:**ITMS PVLAN**(ID=105442)、**宽带PVLAN**(ID=105444)、**语音** PVLAN (ID=105446),区分PVLAN类型。

端口业务区分

端口**不区分宽带端口、ITV端口、语音端**口,根据产品服务占用关系来判断端口的类型;

现有细粒度实体在新模型内的区分说明(2/3) " 如果 如 有细粒度实体在新模型内的区分说明(2/3)

横直列区分

- 配线架框的横直列,通过硬件表(CM WARE)的"布局方式ID"(LAYOUT MODE ID)字段区分横直列。
- "布局方式ID"属性引用字典类型"布局方式"(ID= 1224)及其字典值。

E8-C区分

- 通过设备表(CM DEVICE)的"设备类型ID"(DEVICE TYPE ID)字段来区分E8-C的 类型。
- "设备类型ID"属性引用字典类型"E8-C类型"(ID= 1560)及其字典值。

机顶盒区分

- 通过设备表的"**设备类型ID**"字段来区分机顶盒的类型。
- "设备类型ID"属性引用字典类型"机顶盒类型"(ID=1144)及其字典值:**标清机顶** 盒(ID=105438)、高清机顶盒(ID=105439)。

SIP区分

- 通过设备表的"上行方式ID"(UPCONTACT_WAY_ID)字段来区分IMS SIP上行和 NGN SIP上行。
- "上行方式ID"属性引用字典类型"上行方式"(ID=1052)及其字典值: **NGN SIP**(ID=105435), **IMS SIP** (ID=100925).

现有细粒度实体在新模型内的区分说明(3/3) " 如果 如 有细粒度实体在新模型内的区分说明(3/3)

分光器形态区分

- 分光器的**托盘式、卡槽式**通过设备表(CM_DEVICE)的"**设备形态ID**"(DEVICE SHAPE ID)字段来识别。
- "设备形态ID"属性引用字典类型"设备形态"及其字典值。

终端产权区分

- 终端的租用、自购等属性,通过设备表(CM DEVICE)的"产权性质ID"(PROPERTY TYPE ID)字段来识别。
- "产权性质ID"属性引用字典类型"产权性质"(ID=1010)及其字典值。

iTV的高清、标清区分

高清iTV、标清iTV通过iTV产品附属的两个产品服务规格:高清iTV(规格 ID=2311500003)、标清iTV(规格ID=2311500002)来体现,不通过iTV类型及 其字典值来区分。

工程跳接与业务跳接区分

- 利用链路表(CM LINK)的"链路角色ID"(ROLE ID)字段来区分软跳和硬跳是 工程连接还是业务连接。
- "链路角色ID"属性引用字典类型"跳接角色" (ID= 1558)及其字典值

谢谢!

