Probability

Bayes Theorem:

$$P(Y = \pm 1|X) = \frac{P(X|Y = \pm 1)P(Y = \pm 1)}{P(X|Y = +1)P(Y = +1) + P(X|Y = -1)P(Y = -1)}$$

Perceptron

$$f(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0, \ \hat{y} = \begin{cases} 1, & \text{if } f(x) \ge 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

Decision boundary, a hyperplane in \mathbb{R}^d : $H = {\mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) = 0} = {\mathbf{x} \in \mathbb{R}^d : \boldsymbol{\theta} \cdot \mathbf{x} + \theta_0 = 0}$

 θ is the **normal** of the hyperplane,

 θ_0 is the **offset** of the hyperplane from origin,

 $-\frac{\theta_0}{\|\theta\|}$ is the **signed distance** from the origin to hyperplane.

Perceptron algorithm.

Input:
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}$$

while some $y_i \neq \text{sign}(\boldsymbol{\theta} \cdot \mathbf{x}_i)$
pick some misclassified (\mathbf{x}_i, y_i)
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y_i \mathbf{x}_i$

Given a linearly separable data, perceptron algorithm will take no more than $\frac{R^2}{\gamma^2}$ updates to **converge**, where $R = \max_i \|\mathbf{x}_i\|$ is the radius of the data, $\gamma = \min_i \frac{y_i(\pmb{\theta} \cdot \mathbf{x}_i)}{\|\pmb{\theta}\|}$ is the margin. Also, $\frac{\theta \cdot \mathbf{x}}{\|\boldsymbol{\theta}\|}$ is the signed distance from H to \mathbf{x} in the direction $\boldsymbol{\theta}$.

 $\boldsymbol{\theta} = \sum_i \alpha_i y_i \mathbf{x}_i$, thus any inner product space will work, this is a kernel.

Gradient descent view of perceptron, minimize margin cost function $J(\boldsymbol{\theta}) = \sum_{i} (-y_i(\boldsymbol{\theta} \cdot \mathbf{x}_i))_+$ with $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla J(\boldsymbol{\theta})$

Support Vector Machine

Hard margin SVM. $\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2$, such that $y_i \boldsymbol{\theta} \cdot \mathbf{x}_i \geq 1 (i = 1, \dots, n)$ Soft margin SVM, $\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n (1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i)_+$

Regularization and SVMs: Simulated data with many features $\phi(\mathbf{x})$; C controls trade-off between margin $1/\|\boldsymbol{\theta}\|$ and fit to data; Large C: focus on fit to data (small margin is ok). More overfitting. Small C: focus on large margin, less tendency to overfit. Overfitting increases with: less data, more features.

$$\boldsymbol{\theta} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}, \ \alpha_{j} \neq 0$$
 only for support vectors.

 $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$, K is called a kernel. Solve α_j to determine $\sum_j \alpha_j y_j \phi(\mathbf{x}_j)$. Compute the classifier for a test point x via $\boldsymbol{\theta} \cdot \phi(\mathbf{x}) = \sum_{j} \alpha_{j} y_{j} K(\mathbf{x}_{j}, \mathbf{x})$

degree-m polynomial kernel: $K_m(\mathbf{x}, \tilde{\mathbf{x}}) = (1 + \mathbf{x} \cdot \tilde{\mathbf{x}})^m$ radial basis function kernel: $K_{rbf}(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\gamma ||\mathbf{x} - \tilde{\mathbf{x}}||^2)$

Decision Theory

Loss function: $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, and $l(\hat{y}, y)$ is the cost of predicting \hat{y} when the outcome is y.

Assume (X, Y) are chosen i.i.d according to some probability distribution on $\mathcal{X} \times \mathcal{Y}$. **Risk** is misclassification probability: $R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = Pr(f(\mathbf{X}) \neq \mathbf{Y})$

Bayes Decision Rule is

$$f^*(x) = \begin{cases} 1, & \text{if } P(\mathbf{Y} = 1|x) > P(\mathbf{Y} = -1|x) \\ -1, & \text{otherwise.} \end{cases}$$

and the optimal risk (Bayes risk) $R^* = \inf_f R(f) = R(f^*)$

Excess risk is for any $f: \mathcal{X} \to \{-1, +1\}$, $R(f) - R^* = \mathbb{E}(1[f(x) \neq f^*(x)]|2P(\mathbf{Y} = +1|\mathbf{X}) - 1|)$

Risk in Regression is expected squared error:

 $R(f) = \mathbb{E}l(f(\mathbf{X}), \mathbf{Y}) = \mathbb{E}\mathbb{E}[f(\mathbf{X}) - \mathbf{Y}^2 | \mathbf{X}]$

Bias-variance decomposition:

$$R(f) = \mathbb{E}[\underbrace{(f(\mathbf{X}) - \mathbb{E}[\mathbf{Y}|\mathbf{X}])^{2}}_{\text{bias}^{2}}] + \mathbb{E}[\underbrace{(\mathbb{E}[\mathbf{Y}|\mathbf{X}] - \mathbf{Y})^{2}}_{\text{variance}}]$$

$$R(f) = \mathbb{E}[(f(\mathbf{X}) - f^{*}(\mathbf{X}))^{2}] + \mathbb{E}[(f^{*}(\mathbf{X}) - \mathbf{Y})^{2}]$$

 $R(f) = \mathbb{E}[(f(\mathbf{X}) - f^*(\mathbf{X}))^2] + R(f^*)$ $R(f) - R(f^*) = \mathbb{E}[(f(\mathbf{X}) - f^*(\mathbf{X}))^2], f^*(\mathbf{X}) = \mathbb{E}[\mathbf{Y}|\mathbf{X}]$

Generative and Discriminative

Discriminative models: P(X, Y) = P(X)P(Y|X). Estimate $P(\mathbf{Y}|\mathbf{X})$, then pretend out estimate $\hat{P}(\mathbf{Y}|\mathbf{X})$ is the actual $P(\mathbf{Y}|\mathbf{X})$ and plug in bayes rule expression.

Generative model: P(X, Y) = P(Y)P(X|Y).

Estimate $P(\mathbf{Y})$ and $P(\mathbf{X}|\mathbf{Y})$, then use bayes theorem to calculate $P(\mathbf{Y}|\mathbf{X})$ and use discriminative model.

Estimation

Method of moments: Match moments of the distribution to momemnts measured in the data.

Maximum likelihood: Choose parameter so that the distribution it defines gives the obverved data the highest probability (likelihood).

Maximum log likelihood: Log of maximum likelihood, equilvalent to maximum likelihood since log is monotonically increase; it is useful since it can change \prod to \sum .

Penalized maximum likelihood: Add a penalty term in the maximum (log) likelihood equation; treat the penalty term as some imaginary data points crafted for desired probability.

Bayesian estimate: Treat parameter as a random variable, then update based on observed value (data).

Prior: $\pi(p) = 1$,

Posterior: $P(p|\mathbf{X}_1 = 1) = P(\mathbf{X}_1 = 1|p)\pi(p) / \int P(X_1 = 1|q)d\pi(q)$

Maximum a posterior probability: the mode of the posterior. If uniform prior, MAP is MLE; if not uniform prior, MAP is Penalized MLE.

Multivariate Normal Distribution

 $\mathbf{x} \in \mathbb{R}^d : p(x) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}))}$

Covariance matrix: $\Sigma = \mathbb{E}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'$

Symmetric: $\Sigma_{i,j} = \Sigma_{j_i}$

Non-negative diagonal entries: $\Sigma i, i \geq 0$ Positive semidefinite: $\forall \mathbf{v} \in \mathbb{R}^d, \mathbf{v}' \Sigma \mathbf{v} > 0$

Super-level sets of pdf:

$$\boldsymbol{\xi}_r = \left\{ \mathbf{x} \in \mathbb{R}^d : (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \le r^2 \right\}.$$
 Volume of $\boldsymbol{\xi}_r \propto \prod_{i=1}^d \sigma_i = \sqrt{|\boldsymbol{\Sigma}|}$

Spectral Theorem for non-diagonal covariance:

 $U = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n], \mathbf{\Lambda} = \operatorname{diag}([\lambda_1, \lambda_2, \dots, \lambda_n]')$

We can eigen decompose $\Sigma^{-1} = U\Lambda^{-1}U'$, this is like to change to a different eigen spaces, where covariances (Λ) diagonal axis-alianed.

Assume independent,

$$\mathcal{N}(\boldsymbol{\mu}_x, \boldsymbol{\Sigma}) + \mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_y) = \mathcal{N}(\boldsymbol{\mu}_x + \boldsymbol{\mu}_y, \boldsymbol{\Sigma}_x + \boldsymbol{\Sigma}_y)$$

Given a d-dimensiaonal Gaussian $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, write $\mathbf{X} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix}$, $\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{Y}} \\ \boldsymbol{\mu}_{\mathbf{Z}} \end{bmatrix}$, $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{YY}} & \boldsymbol{\Sigma}_{\mathbf{YZ}} \\ \boldsymbol{\Sigma}_{\mathbf{ZY}} & \boldsymbol{\Sigma}_{\mathbf{ZZ}} \end{bmatrix}$, where $\mathbf{Y} \in \mathbb{R}^m$, and $\mathbf{Z} \in \mathbb{R}^{d-m}$. Then $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{YY}})$

Given a d-dimensional Gaussian $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, matrix $\mathbf{A} \in \mathbb{R}^{m \times d}$ and vector $\mathbf{b} \in \mathbb{R}^m$, define $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$. Then $\mathbf{Y} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$

Given a d-dimensional Gaussian $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with Σ positive definite,

$$\mathbf{Y} = \mathbf{\Sigma}^{-\frac{1}{2}}(\mathbf{X} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}, \mathbf{I})$$

Gaussian maximum likelihood estimation:

Sample mean: $\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$; Sample covariance: $\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \hat{\boldsymbol{\mu}})(\mathbf{x}_i - \hat{\boldsymbol{\mu}})'$

Linear Regression

Given $\mathbf{X} \in \mathbb{R}^p$, $Y \in \mathbb{R}$, consider linear(affine) prediction rules, $F_{\text{lin}} := \{ \mathbf{x} \mapsto \mathbf{x}' \boldsymbol{\beta} + \beta_0 : \boldsymbol{\beta} \in \mathbb{R}^p, \beta_0 \in \mathbb{R} \}$

Empirical risk minimization

 ${\bf Empirical\ risk}$ is the sample average of squared error:

$$\hat{R}(f) = \hat{\mathbb{E}}_n \ell(f(\mathbf{X}), Y) = \frac{1}{n} \sum_{i=1}^{n} n(f(\mathbf{X}_i) - Y_i)^2$$

 $\overline{\text{Choose } \hat{f} := \arg \min_{f \in F_{\text{lin}}} \hat{\mathbb{E}}_n \ell(f(\mathbf{X}), Y)}$

Find
$$\hat{f}: \mathbf{x} \mapsto \mathbf{x}' \hat{\boldsymbol{\beta}}$$
, such that $\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i=1}^n (\mathbf{X}_i' \boldsymbol{\beta} - Y_i)^2 = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \underbrace{\|\mathbf{X} \boldsymbol{\beta} - \mathbf{y}\|^2}_{\mathbf{X} \boldsymbol{\beta} - \mathbf{y}}$

where design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ and response vector $\mathbf{y} \in \mathbb{R}^n$.

Normal equations:
$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y} \Rightarrow \hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Projection Theorem also leads to normal equations: $(\mathbf{y} - \hat{\mathbf{y}})^{-1}\mathbf{X} = 0 \Leftrightarrow \mathbf{X}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0 \Leftrightarrow \mathbf{X}'\mathbf{y} = \mathbf{X}'\mathbf{X}\boldsymbol{\beta}$

Linear model with additive Gaussian noise

Model the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$ as: $P(Y|\mathbf{X} = \mathbf{x}) = \mathcal{N}(\mathbf{x}'\boldsymbol{\beta}, \sigma^2)$

Equivalently: $Y = \mathbf{x}'\boldsymbol{\beta} + \epsilon$, where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

Maximum likelihood is least square:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} p(Y_i | \mathbf{X}_i, \boldsymbol{\beta}) \Leftrightarrow \ell(\boldsymbol{\beta}) = g(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{X}' \boldsymbol{\beta})^2$$

Fix **X**. Provided $\mathbb{E}\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$ and $Cov(\mathbf{y}) = \sigma^2 \mathbf{I}$

Bayesian analysis: Treat β as a r.v. with prior distribution $\mathcal{N}(\mathbf{0}, \tau^2 \mathbf{I})$, then compute posterior distribution $P(\beta | \mathbf{X}, Y)$.

$$\begin{split} &P(\boldsymbol{\beta}|\mathbf{X}_1,Y_1,\ldots,\mathbf{X}_n,Y_n) \propto P(Y_1,\ldots,Y_n|\boldsymbol{\beta},\mathbf{X}_1,\ldots,\mathbf{X}_n)P(\boldsymbol{\beta}) \\ &P(\boldsymbol{\beta}|\mathbf{X}_1,Y_1,\ldots,\mathbf{X}_n,Y_n) \propto exp(-\frac{1}{2}(\sum_{i=1}^n \frac{(Y_i-\mathbf{X}_i'\boldsymbol{\beta})^2}{\sigma^2} + \frac{1}{\tau^2}\|\boldsymbol{\beta}\|^2)) \end{split}$$

Linear Regression Regularization

Trading off bias and variance: some increase in bias can give a big decrease in variance.

Subset selection is like L0 regularization: RSS decreases as the complexity increases because the best fit with a smaller subset is always possible with a larger subset.

Find a path through subset space: using cross-validation and forward-stepwise selection or backward-stepwise selection (need n > p).

Ridge regression is like L2 regularization:

$$\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} (\sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \sum_{j=1} p \beta_j^2)$$
$$\hat{\boldsymbol{\beta}}^{\text{ridge}} = (\mathbf{X}' \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{x}' \mathbf{y}$$

Lasso regression is like L1 regularization:

$$\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} \left(\sum_{i=1}^{n} (y_i - \mathbf{x}_i' \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{n} p |\beta_j| \right)$$

While ridge regression leads to reduced, but non-zero values of the coefficients, Lasso regression forces some coefficients to be zero.

Bayesian analysis: Ridge regression is equivalent to a MAP estimate with a gaussian prior. Lasso regression is equivalent to a MAP estimate with a Laplace prior.