

# **AI/ML Programming**

MCA-475

CIA - 01

BY

Himanshu Heda (24225013)

**SUBMITTED TO** 

Dr. Manjula Shannhog

**SCHOOL OF SCIENCES** 

# importing the Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import date / 13.3s Python importing the CSV file to Perform some analysis df = pd.read\_csv('./Dataset/train.csv') / 0.1s Python

# Performing few commmands like head, tail, info, describe, shape, columns, dtypes





```
Python
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column
                 Non-Null Count Dtype
   PassengerId 891 non-null
     Survived 891 non-null
    Name
                 891 non-null
                                  object
    Age
                 714 non-null
                                 float64
                 891 non-null
                                  float64
 10 Cabin
                 204 non-null
                                 object
                 889 non-null
 11 Embarked
                                 object
dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
```



### Is use to Replace the Exisiting Values in the DataFrame df.rename(columns={'PassengerId': 'P\_ID', 'Pclass': 'P\_Class'}, inplace=True) df.head() ✓ 0.0s Python P\_ID Survived P\_Class Fare Cabin Embarked Sex Age SibSp Parch Ticket Name Braund, Mr. Owen Harris NaN Cumings, Mrs. John Bradley (Florence female 38.0 Briggs Th... STON/O2. Heikkinen, Miss. Laina female 26.0 NaN Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 113803 53.1000 Allen, Mr. William Henry



df.isnull().sum()

y 0.0s

P\_ID 0
Survived 0
P\_Class 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64

df['P\_Class'].value\_counts().plot(kind='pie', autopct='%1.1f%%')



### df['Sex'].value\_counts().plot(kind='pie', autopct='%1.1f%%')







# Perform the analysis on the basis of which gender is sitting in which class

```
# Plotting the survival rate by P_Class and Sex

plt.figure(figsize=(8,6))
sns.barplot(data=grouped, x='P_Class', y='Survived', hue='Sex',
palette='Set2')
plt.title('Survival Rate by Passenger Class and Sex')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')
plt.legend(title='Sex')
plt.show()
```





Passenger Class

0.0

```
# Graphical presentation of Cabin data
plt.figure(figsize=(10,5))
cabin_missing = df['Cabin'].isnull().sum()
cabin_present = df['Cabin'].notnull().sum()
sns.barplot(x=['Missing', 'Present'], y=[cabin_missing, cabin_present],
palette=['#d7263d', '#1b998b'])
plt.title('Cabin Data Availability')
plt.ylabel('Number of Passengers')
plt.show()
```

# 

```
# Most common cabins (excluding missing)
cabin_counts = df['Cabin'].value_counts().head(10)
plt.figure(figsize=(12,6))
sns.barplot(x=cabin_counts.index, y=cabin_counts.values, palette='viridis')
plt.title('Top 10 Most Common Cabins')
plt.xlabel('Cabin')
plt.xlabel('Cabin')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



Perform the analysis on the basis of Age and Sex using Boxplot and Violinplot

```
# Age distribution by Sex: Boxplot and Violinplot
plt.figure(figsize=(10,6))
sns.boxplot(data=df, x='Sex', y='Age', palette='Set2')
plt.title('Age Distribution by Sex (Boxplot)')
plt.xlabel('Sex')
plt.ylabel('Age')
plt.show()

plt.figure(figsize=(10,6))
sns.violinplot(data=df, x='Sex', y='Age', palette='Set2')
plt.title('Age Distribution by Sex (Violinplot)')
plt.xlabel('Sex')
plt.ylabel('Sex')
plt.show()
```





## Perform the analysis on the basis of how much Survivals on the Embarked Port using Barplot

```
# Survival rate by Embarked port
embarked_survival = df.groupby('Embarked')['Survived'].mean().reset_index()
print('Survival rate by Embarked port:')
print(embarked_survival)
plt.figure(figsize=(6,4))
sns.barplot(data=embarked_survival, x='Embarked', y='Survived',
palette='Set2')
plt.title('Survival Rate by Embarked Port')
plt.ylabel('Survival Rate')
plt.xlabel('Embarked Port')
plt.show()
```

### Survival Rate by Embarked Port



Perform the analysis on the basis of which Age group, whats's the Fare and How much Survived using Pairplot

```
# Pairplot for selected features
sns.pairplot(df, vars=['Age', 'Fare', 'Survived'], hue='Sex', palette='Set2')
plt.suptitle('Pairplot of Age, Fare, Survived by Sex', y=1.02)
plt.show()
```



Perform the analysis on the basis of Passenger Class and how much Fare it is paying using Boxplot

```
# Distribution of Fare by Passenger Class
plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='P_Class', y='Fare', palette='Set2')
plt.title('Fare Distribution by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Fare')
plt.show()
```





# Perform the analysis on the basis of Counting the SibSp(Siblings/Spouses) using Countplot

```
# Countplot for number of siblings/spouses aboard (SibSp)
plt.figure(figsize=(7,5))
sns.countplot(data=df, x='SibSp', palette='Set2')
plt.title('Number of Siblings/Spouses Aboard (SibSp)')
plt.xlabel('SibSp')
plt.ylabel('Count')
plt.show()
```

