Os exercícios abaixo foram retirados do URI.

1)

Neste problema você deverá ler 15 valores colocá-los em 2 vetores conforme estes valores forem pares ou ímpares. Só que o tamanho de cada um dos dois vetores é de 5 posições. Então, cada vez que um dos dois vetores encher, você deverá imprimir todo o vetor e utilizá-lo novamente para os próximos números que forem lidos. Terminada a leitura, deve-se imprimir o conteúdo que restou em cada um dos dois vetores, imprimindo primeiro os valores do vetor impar. Cada vetor pode ser preenchido tantas vezes quantas for necessário.

Entrada

A entrada contém 15 números inteiros.

Saída

Imprima a saída conforme o exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
1	par[0] = 4
3	par[1] = -4
4	par[2] = 2
-4	par[3] = 8
2	par[4] = 2
3	impar[0] = 1
8	impar[1] = 3
2	impar[2] = 3
5	impar[3] = 5
-7	impar[4] = -7
54	impar[0] = 789
76	impar[1] = 23
789	par[0] = 54
23	par[1] = 76
98	par[2] = 98

2)

Faça um programa que leia um valor N. Este N será o tamanho de um vetor X[N]. A seguir, leia cada um dos valores de X, encontre o menor elemento deste vetor e a sua posição dentro do vetor, mostrando esta informação.

Entrada

A primeira linha de entrada contem um único inteiro \mathbf{N} (1 < \mathbf{N} < 1000), indicando o número de elementos que deverão ser lidos em seguida para o vetor $\mathbf{X}[N]$ de inteiros. A segunda linha contém cada um dos \mathbf{N} valores, separados por um espaço. Vale lembrar que nenhuma entrada haverá números repetidos.

Saída

A primeira linha apresenta a mensagem "Menor valor:" seguida de um espaço e do menor valor lido na entrada. A segunda linha apresenta a mensagem "Posicao:" seguido de um espaço e da posição do vetor na qual se encontra o menor valor lido, lembrando que o vetor inicia na posição zero.

Exemplo de Entrada	Exemplo de Saída
10	Menor valor: -5
1 2 3 4 -5 6 7 8 9 10	Posicao: 4

Paulinho tem em suas mãos um novo problema. Agora a sua professora lhe pediu que construísse um programa para verificar, à partir de dois valores muito grandes A e B, se B corresponde aos últimos dígitos de A.

Entrada

A entrada consiste de vários casos de teste. A primeira linha de entrada contém um inteiro **N** que indica a quantidade de casos de teste. Cada caso de teste consiste de dois valores **A** e **B** maiores que zero, cada um deles podendo ter até 1000 dígitos.

Saída

Para cada caso de entrada imprima uma mensagem indicando se o segundo valor encaixa no primeiro valor, confome exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
4	encaixa
56234523485723854755454545478690 78690	nao encaixa
5434554 543	encaixa
1243 1243	nao encaixa
54 64545454545454545454545454545454	

4)

Neste problema estamos interessados na frequência das letras em uma dada linha de texto.

Especificamente, deseja-se saber qual(is) a(s) letra(s) de maior frequência do texto, ignorando o "case sensitive", ou seja maiúsculas ou minúsculas (sendo mais claro, "letras" referem-se precisamente às 26 letras do alfabeto).

Entrada

A entrada contém vários casos de teste. A primeira linha contém um inteiro **N** que indica a quantidade de casos de teste. Cada caso de teste consiste de uma única linha de texto. A linha pode conter caracteres "não letras", mas é garantido que tenha ao menos uma letra e que tenha no máximo 200 caracteres no total.

Saída

Para cada caso de teste, imprima uma linha contendo a(s) letra(s) que mais ocorreu(ocorreram) no texto em minúsculas (se houver empate, imprima as letras em ordem alfabética).

Exemplo de Entrada		Exemplo de Saída
3 Computers account for only country's commercial consumption. Input frequency letters	5% of the electricity	

Uma aliteração ocorre quando duas ou mais palavras consecutivas de um texto possuem a mesma letra inicial (ignorando maiúsculas e minúsculas). Sua tarefa é desenvolver um programa que identifique, a partir de uma sequência de palavras, o número de aliterações que essa sequência possui.

Entrada

A entrada contém diversos casos de testes. Cada caso é expresso como um texto em uma única linha, contendo de 1 a 100 palavras separadas por um único espaço, cada palavra tendo de 1 a 50 letras minúsculas ou maiúsculas ('A'-'Z','a'-'z'). A entrada termina em EOF.

Saída

Para cada caso de teste imprima o número de aliterações existentes no texto informado, conforme exemplos abaixo.

Exemplo de Entrada	Exemplo de Saída
He has four fanatic fantastic fans	2
There may be no alliteration in a sequence	0
Round the rugged rock the ragged rascal ran	2
area artic Soul Silly subway ant artic none	3

^{*} Este problema é de autoria do TopCoder (www.topcoder.com/tc) e foi adaptado por bitfreeze para utilização (autorizada) no URI OJ.

6)

Textos podem conter mensagens ocultas. Neste problema a mensagem oculta em um texto é composto pelas primeiras letras de cada palavra do texto, na ordem em que aparecem.

É dado um texto composto apenas por letras minúsculas ou espaços. Pode haver mais de um espaço entre as palavras. O texto pode iniciar ou terminar em espaços, ou mesmo conter somente espaços.

Entrada

A entrada contém vários casos de testes. A primeira linha de entrada contém um inteiro **N** que indica a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de uma única linha contendo de um a 50 caracteres, formado por letras minúsculas ('a'-'z') ou espaços (' '). Atenção para possíveis espaços no início ou no final do texto!

Nota: No exemplo de entrada os espaços foram substituídos por pequenos pontos (\cdot ') para facilitar o entendimento dos exemplos.

Saída

Para cada caso de teste imprima a mensagem oculta no texto de entrada.

Exemplo de Entrada	Exemplo de Saída
4	coder
$\texttt{compete} \cdot \texttt{online} \cdot \texttt{design} \cdot \texttt{event} \cdot \texttt{rating}$	urionline
$\cdots u \cdots r \cdot i \cdots o \cdots n \cdot 1 \cdots i \cdots n \cdots e \cdots$	
	redoc
$\texttt{round} \cdot \cdot \texttt{elimination} \cdot \texttt{during} \cdot \cdot \texttt{onsite} \cdot \cdot \texttt{contest}$	

^{*} Este problema é de autoria do TopCoder (www.topcoder.com/tc) e foi adaptado por bitfreeze para utilização (autorizada) no URI OJ.

^{*} A reprodução não autorizada deste problema sem o consentimento por escrito de TopCoder, Inc. é estritamente proibida.

^{*} A reprodução não autorizada deste problema sem o consentimento por escrito de TopCoder, Inc. é estritamente proibida

Diana escreverá uma lista com todos os inteiros positivos entre **A** e **B**, inclusive, na base decimal e sem zeros à esquerda. Ela quer saber quantas vezes cada um dos dígitos irá ser usado.

Entrada

Cada caso de teste é dado em uma única linha que contém dois inteiros \mathbf{A} e \mathbf{B} (1 $\leq \mathbf{A} \leq \mathbf{B} \leq 10^8$). O último caso de teste é seguido por uma linha contendo dois zeros.

Saída

Para cada caso de teste, imprima uma única linha com 10 inteiros representando o número de vezes que cada dígito é usado ao escrever todos os inteiros entre **A** e **B**, inclusive, na base decimal e sem zeros à esquerda. Escreva a contagem de cada dígito em ordem crescente do 0 até o 9.

Exemplo de Entrada	Exemplo de Saída
1 9	0 1 1 1 1 1 1 1 1
12 321	61 169 163 83 61 61 61 61 61 61
5987 6123	134 58 28 24 23 36 147 24 27 47
12345678 12345679	0 2 2 2 2 2 2 1 1
0 0	

ACM/ICPC South America Contest 2010.

8)

Faça um programa que leia um valor \mathbf{T} e preencha um vetor $\mathbf{N}[1000]$ com a sequência de valores de 0 até \mathbf{T} -1 repetidas vezes, conforme exemplo abaixo. Imprima o vetor \mathbf{N} .

Entrada

A entrada contém um valor inteiro T (2 $\leq T \leq$ 50).

Saída

Para cada posição do vetor, escreva " $\mathbf{N}[i] = \mathbf{x}$ ", onde i é a posição do vetor e \mathbf{x} é o valor armazenado naquela posição.

Exemplo de Entrada	Exemplo de Saída
3	N[0] = 0
	N[1] = 1
	N[2] = 2
	N[3] = 0
	N[4] = 1
	N[5] = 2
	N[6] = 0
	N[7] = 1
	N[8] = 2

Agradecimentos a Cassio F.

Neste problema sua tarefa será ler vários números e em seguida dizer quantas vezes cada número aparece na entrada de dados, ou seja, deve-se escrever cada um dos valores distintos que aparecem na entrada por ordem crescente de valor.

Entrada

A entrada contém apenas 1 caso de teste. A primeira linha de entrada contem um único inteiro N, que indica a quantidade de valores que serão lidos para X ($1 \le X \le 2000$) logo em seguida. Com certeza cada número não aparecerá mais do que 20 vezes na entrada de dados.

Saída

Imprima a saída de acordo com o exemplo fornecido abaixo, indicando quantas vezes cada um deles aparece na entrada por ordem crescente de valor.

Exemplo de Entrada	Exemplo de Saída
7	4 aparece 1 vez(es)
8	8 aparece 2 vez(es)
10	10 aparece 3 vez(es)
8	260 aparece 1 vez(es)
260	
4	
10	
10	