빅데이터 공부 과정 정리.md

개인 KPI 정리

github 주소: https://github.com/gilgim/BigdataStudy

cloneUrl: https://github.com/gilgim/BigdataStudy.git

성과목표: 머신러닝 기술 습득

- 학습 개요 및 진행 순서
 - 1. 미적분학
 - 교재 : 미분적분학 바이블 (한빛 아카데미)
 - 함수의 극한 ~ 매개변수 방정식과 극좌표
 - 벡터공간과 연산을 위해 기본적인 과정으로 학습.
 - 2. 선형대수학
 - 노트 정리 및 문제 풀이
 - 선형 대수학과 빅데이터의 연관성 학습
 - 3. 파이썬
 - PEP8 학습
 - Test Program 작성
 - 4. 머신러닝 이론 및 모델링 학습
 - 머신러닝 : 빅데이터 학습 과정.ipynb에 정리해두었다.

• 학습 상세 내용 및 기반 기술

1. 미적분학

(선형대수학을 위한 기초 선행 과정이다.)

ㅇ 함수의 극한

수의 확장을 위해서 필요한 개념으로 실수 체(Field)의 증명과 후에 나오는 선형대수학에서의 벡터체를 이해하는데 선행되는 학습이다. 극한의 개념을 통해 점과 점 사이의 간격을 무한대로 좁혀 해당 지점의 기울기를 구하거나 그래프를 무한한 직사각형으로 채워 넓이를 구하는 개념에 사용되는 기초 개념이다.

○ 도함수 및 응용 & 적분 및 적분의 응용

벡터의 연산을 위한 행렬식을 위한 선행과정이다. 해당 부분은 매개변수를 이용한 단위접선 벡터를 활용할 수 있고, 곡률를 구하는 등 벡터 연산에서 필수적인 선행과정이다. 벡터의 기저를 구할 때 적분의 개념을 사용할 수 있으며, 벡터의 공간을 정의할 때 사용된다.

○ 매개변수

x,y 등 좌표계를 더욱 넓은 환경에서 접근할 수 있게 만들어 준다고 생각한다. 벡터의 방향수(벡터가 나아가야

빅데이터 공부 과정 정리.md 2022.9.30.

할 방향)를 정할 때도 사용되고, x,y,z를 하나의 매개변수로 표현할 수 있기 때문에 세 값을 관련짓게 해주는 중요한 개념이다.

○ 벡터와 공간기하

스칼라와 벡터를 구분짓고 벡터가 좌표계에서 가지는 기하적의미를 공부하고 위치벡터, 단위벡터, 접선벡터, 외적, 내적 등을 학습하여 선형대수학 전에 벡터의 기초를 다질 수 있다.

2. 선형대수학

(머신러닝 학습 시 라이브러리인 sklearn, pandas를 이해하기 위한 선행 과정이다.)

ㅇ 벡터 공간

벡터 체를 정의하기 위해 실수 체에서의 항등원과 역원의 이해를 바탕으로 벡터체가 성립하기 위한 증명 과정을 담고있다. 벡터의 일차독립, 기저, 차원 등을 정의하여 벡터공간을 구성할 수 있는 최소집합을 구한다. 벡터공간 내에서 행렬를 함께 익히고 행렬은 pandas에서 DataFrame의 형태로 사용가능하다.

○ 선형변환과 행렬

일반 식을 행렬로 변환하는 것을 벡터 공간을 통해 벡터공간의 기저와 차원의 개념을 통해 익혔다면 변환된 행렬 식을 선형화 할 수 있다. 식을 선형화하게 되면 데이터들의 값을 비교적 높은 확률로 예측할 수 있게 되고 해당 과정은 python의 sklearn 라이브러리의 함수를 통해 사용할 수 있다. 앞서 공부한 행렬을 희소 행렬, 밀집 행렬 등으로 변화시키는 함수 또한 라이브러리에 포함되어있다.

3. 파이썬

- 다른 언어와 달리 tap을 이용해 구문을 구분하고 오픈 소스 기반으로 성장한 언어이기에 개발자들이 읽기 쉽게 하기위한 코딩 스타일 가이드인 PEP이 존재한다.
- o 해당 PEP8를 본 내용은 https://zerosheepmoo.github.io/pep8-in-korean/doc/introduction.html 에서 확인 할 수 있다.
- 내용 요약은 ipynb 파일로 정리해 깃허브에 올려두었다.
- o 기초 문법은 익히기 쉬우므로 md 파일에 정리하진 않겠지만 문법 https://wikidocs.net/book/1 에서 익힐 수 있다.
- o 다른언어와의 차이점을 간단하게 하면 파이썬은 타입이 정해지지 않았고 스위치문이 존재하지 않는다.
- o C와 C++ 과의 연동 작업이 쉬워 속도가 느리지많은 않다.
- o 머신러닝 공부 시 기초가되는 프로그램을 작성해 빅데이터 학습과정.ipynb 파일과 함께 익힐 수 있다. 시작 파일은 check data.py 이다.

numpy

■ 파이썬에 리스트가 존재함에도 불구하고 numpy를 사용하는 이유는 파이썬은 모든 타입을 리스트에 넣을 수 있기에 속도가 느리지만 넘파이는 C로 구현되어 있기 때문에 속도가 빠르다. 하지만 오로지 하나의 타입의 리스트만 구현이 가능하다. 해당 머신러닝에서 쓰이는 배열은 numpy를 as np로 하여 축약해서 사용한다.

pandas

빅데이터 공부 과정 정리.md 2022.9.30.

■ 데이터를 쉽게 접근하고 다루고 정제하기 위해 DataFrame이라는 틀을 제공하고 각종 분할 기능을 제공하는 함수이다. 작성한 프로그램에서는 첫 시작에 계층화를 허용하게되면 pandas를 이용하게된다.

○ sklearn

■ 계층화된 데이터를 통해 데이터를 훈련과 테스트에 맞게 정제하는 기능을 제공한다. 그리고 LinearRegression을 통해 선형화 작업을 진행하면 선형 회귀 모델을 만들 수 있다.

4. 프로그램 구성

(프로그램의 목적은 데이터를 분석하는 것에 목적이 있으면 학습은 주피터 노트북에서 학습한다.)

- 첫 시작 시 계층적 분할의 여부를 묻고 분할 시 테스트 케이스의 분리는 랜덤하게 된다.
- head 를 입력 시 각 데이터의 컬럼 값을 확인할 수 있다.
- info 를 입력 시 추후 희소행렬 사용 여부를 위한 컬럼 타입을 확인 할 수 있다.
- describe 를 입력 시 데이터 전반의 요약 정보를 확인 할 수 있다.
- graph 를 입력하면 계층화에 필요한 데이터 정보와, 전체적인 데이터 정보를 그래프로 확인할 수 있다.
- stratified 를 입력하면 계층화 데이터가 테스트 셋과 훈련 셋으로 분할 가능할 시 분할 시킨다.
- correlation 를 입력하면 서로 컬럼과의 상관계수를 출력한다.
- refresh 를 입력하면 분할된 테스트 셋과 훈련 셋을 다시 하나로 합친다.
- exit 프로그램을 종요한다.

빅데이터 공부 과정 정리.md 2022. 9. 30.

해당 프로그램의 프로세스 흐름도

마치며

- 머신러닝 모델 하나하나가 깊은 지식이 필요하기에 많은 시간이 걸린다.
- 머신러닝이 필요한 데이터의 예측값을 실무에서 사용하게 되더라도 이론을 모르면 해당 결과 값을 사용하는데 이해도 가 떨어지게 된다.
- 머신러닝 학습 중 DB의 값을 이용한 선형화가 선형대수학 이론을 사용하는 것을 선형화 과정으로써 체감하였고, 모델의 적용을 위해서 이론 공부가 선행되어야한다고 생각한다.
- 파이썬은 다른 언어들 보다 타입를 생략하고 키워드 언어가 많이 없어 쉽지만 코딩 가이드가 필요하고 타입을 명시하지 않아 분석에 어려움이 있을 것 같다.
- 미적분학은 미분과 적분은 기초개념만 습득하고 매개변수와 벡터를 탄탄히 공부하여야 선형대수학을 이해하기에 쉬울 것으로 예측된다.
- 추후에 신경망을 공부할 예정이다.