Math 131B: Homework 1

Owen Jones

4/14/2023

Problem 1: Exercise 1.1.5:

We will complete a proof by induction on n to show $(\sum_{i=1}^{n} a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 = (\sum_{i=1}^{n} a_i)^2 (\sum_{i=1}^{n} b_i)^2$

is true for all n. We will denote the statement $P(n): (\sum_{i=1}^{n} a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 = (\sum_{i=1}^{n} a_i)^2 (\sum_{i=1}^{n} b_i)^2$.

Base case: The LHS of $P(1): (\sum_{i=1}^{1} a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^{1} \sum_{j=1}^{1} (a_i b_j - a_j b_i)^2$ and the RHS of $P(1): (\sum_{i=1}^{1} a_i^2) (\sum_{i=1}^{1} b_i^2)$

are both equal to $a_1^2b_1^2$. Since the left-hand-side and the right-hand-side are equal, the statement P(1) holds.

Induction hypothesis: Assume for some arbitrary $n \ge 1$ the statement P(n) holds.

Induction step: It remains to show the statement P(n+1) holds by manipulating the LHS of P(n+1) to look like the RHS.

First, foil
$$(\sum_{i=1}^{n+1} a_i b_i)^2 = (a_1 b_1 + a_2 b_2 + \dots + a_{n+1} b_{n+1})(a_1 b_1 + a_2 b_2 + \dots + a_{n+1} b_{n+1}) = \sum_{i=1}^{n+1} \sum_{i=1}^{n+1} a_i b_i a_j b_j$$

Second, foil
$$\frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2$$

$$=\frac{1}{2}\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}a_{i}^{2}b_{j}^{2}-2a_{i}b_{i}a_{j}b_{j}+a_{j}^{2}b_{i}^{2}$$

$$=\frac{1}{2}\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}a_{i}^{2}b_{j}^{2}-\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}a_{i}b_{i}a_{j}b_{j}+\frac{1}{2}\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}a_{j}^{2}b_{i}^{2}$$

We can swap the index variables j and i, so $\frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_j^2 b_i^2 = \frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i^2 b_j^2$

$$\Rightarrow \frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} (a_i b_j - a_j b_i)^2 = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i^2 b_j^2 - \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i b_i a_j b_j$$

Thus, the LHS of P(n+1) is equivalent to $\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i^2 b_j^2$

Factoring the above, we obtain $\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}a_i^2b_j^2=(a_1^2+a_2^2+\ldots+a_{n+1}^2)(b_1^2+b_2^2+\ldots+b_{n+1}^2)=(\sum_{i=1}^{n+1}a_i^2)(\sum_{i=1}^{n+1}b_i^2)$

which is exactly the RHS of P(n+1). Thus, P(n+1) holds.

Hence, by induction, P(n) holds for all n.

QED

Because the square of a number is always non-negative

$$(\sum_{i=1}^{n} a_i b_i)^2 \le (\sum_{i=1}^{n} a_i b_i)^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j - a_j b_i)^2 \le (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)$$

Taking the square root of both sides

$$|\sum_{i=1}^{n} a_i b_i| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

Thus, we obtain the Cauchy-Schwarz innequality. QED

Foiling
$$(a_i+b_i)^2$$
, we obtain $\sqrt{\sum_{i=1}^n (a_i+b_i)^2} = \sqrt{\sum_{i=1}^n a_i^2 + 2\sum_{i=1}^n a_i b_i + \sum_{i=1}^n b_i^2}$
Using the Cauchy-Schwarz innequality, $\sqrt{\sum_{i=1}^n a_i^2 + 2\sum_{i=1}^n a_i b_i + \sum_{i=1}^n b_i^2} \le \sqrt{\sum_{i=1}^n a_i^2 + 2\sqrt{\sum_{i=1}^n a_i^2}} \sqrt{\sum_{i=1}^n b_i^2 + \sum_{i=1}^n b_i^2}$
Factoring $\sqrt{\sum_{i=1}^n a_i^2 + 2\sqrt{\sum_{i=1}^n a_i^2}} \sqrt{\sum_{i=1}^n b_i^2 + \sum_{i=1}^n b_i^2}$ we obtain $\sqrt{(\sqrt{\sum_{i=1}^n a_i} + \sqrt{\sum_{i=1}^n b_i})^2}$
Cancelling the square with the square root, we obtain $|\sqrt{\sum_{i=1}^n a_i^2 + \sqrt{\sum_{i=1}^n b_i^2}}| = \sqrt{\sum_{i=1}^n a_i^2 + \sqrt{\sum_{i=1}^n b_i^2}}$

$$\Rightarrow \sqrt{\sum_{i=1}^n (a_i+b_i)^2} \le \sqrt{\sum_{i=1}^n a_i^2 + \sqrt{\sum_{i=1}^n b_i^2}}$$

Thus, we obtain the triangle innequality. QED

Problem 2: Exercise 1.1.6:

a) For
$$x \in \mathbf{R}^n$$
 $d(x,x) = \sqrt{\sum_{i=1}^n (x_i - x_i)^2} = \sqrt{\sum_{i=1}^n 0} = 0$

b) For $x,y \in \mathbf{R}^n$ $d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \ge 0$ because the square of a number is always nonnegative.

c) For
$$x, y \in \mathbf{R}^n$$
 $d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = \sqrt{\sum_{i=1}^n (y_i - x_i)^2} = d(y, x)$

d) For
$$x, y, z \in \mathbf{R}^n$$
 $d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = \sqrt{\sum_{i=1}^n ((x_i - z_i) + (z_i - y_i))^2} \le \sqrt{\sum_{i=1}^n (x_i - z_i)^2} + \sqrt{\sum_{i=1}^n (y_i - z_i)^2} = d(x, z) + d(y, z)$ by the Cauchy-Schwarz innequality.

Hence, $d(\mathbf{R}^n, d_{l1})$ is a metric space. QED

Problem 3: Exercise 1.1.16

 (\Rightarrow) By the triangle innequality, $\lim_{n\to\infty} d(x_n,y_n) \leq \lim_{n\to\infty} (d(x_n,x)+d(y_n,x)) \leq \lim_{n\to\infty} (d(x_n,x)+d(y_n,y)+d(y_n,y)) \leq \lim_{n\to\infty} (d(x_n,x)+d(y_n,y)+d(y_n,y)+d(y_n,y)) \leq \lim_{n\to\infty} (d(x_n,x)+d(y_n,y)+d(y_n,y)+d(y_n,y)+d(y_n,y)) \leq \lim_{n\to\infty} (d(x_n,x)+d(y_n,y)+$

Because x_n converges to x and y_n converges to y, $\lim_{n\to\infty} (d(x_n,x)d(y_n,y)) = 0$

Thus, $\lim_{n\to\infty} d(x_n,y_n) \leq d(x,y)$

 (\Leftarrow) Similar to the forward direction, we can use the triangle innequality to show $d(x,y) \leq \lim_{n \to \infty} d(x,x_n) + \lim_{n \to \infty} d(x,x_n) = \lim_{n \to \infty} d(x,x_n)$ $d(y,x_n) \leq \lim_{n \to \infty} (d(x,x_n) + d(y,y_n) + d(x_n,y_n))$ Because x_n converges to x and y_n converges to y, $\lim_{n \to \infty} (d(x_n,x)d(y_n,y)) = 0$

Thus $d(x,y) \leq \lim_{n \to \infty} d(x_n, y_n)$ Because $d(x,y) \leq \lim_{n \to \infty} d(x_n, y_n)$ and $d(x,y) \geq \lim_{n \to \infty} d(x_n, y_n)$, this implies $d(x,y) = \lim_{n \to \infty} d(x_n, y_n)$ **QED**

Problem 4: Exercise 1.2.2

We WTS $a \Rightarrow b$ then $b \Rightarrow c$ then $c \Rightarrow a$

If x_0 is an adherent point, $\forall r > 0, B(x_0, r) \cap E \neq \emptyset$

The definition of an exterior point is the logical negation of an adherent point. This implies x_0 is not an exterior point of E.

Since x_0 is not an exterior point of E, it must either be an interior or boundary point.

If x_0 is an interior point of $E \exists r_1 > 0 \text{ s.t } B(x_0, r) \subset E$

If x_0 is a boundary point of $E \ \forall r > 0 \ \exists x \in B(x_0, r) \ \text{s.t.} x \in E$.

In either case, we can construct a sequence x_n s.t $\forall n \in \mathbb{N}$ choose $x_n \in E$ s.t $d(x_n, x) < \frac{r_1}{n} \Rightarrow$

Thus, there exists a sequence $(x_n)_{n=1}^{\infty}$ in E that converges to x_0 .

3) $c \Rightarrow a$

We will prove this by contradiction.

Assume to the contrary there exists a sequence $(x_n)_{n=1}^{\infty}$ in E that converges to x_0 and x_0 is an exterior point i.e $\exists r > 0$ s.t $B(x_0, r) \cap E = \emptyset$.

It follows if $d(x_0, x_n) < r \ \exists n \in \mathbb{N} \ \text{s.t.} \ x_n \notin E$. This is a contradiction because $(x_n)_{n=1}^{\infty}$ is a sequence in E.

Thus, x_0 must be an adherent point.

By transitivity $a \Leftrightarrow b \Leftrightarrow c$ (i.e if $a \Rightarrow b$ and $b \Rightarrow c$ then $a \Rightarrow c$). Thus, a,b, and c are equivalent.

Problem 5: Exercise 1.2.4

a) We will prove this by contradiction

Assume to the contrary $\exists x \in \overline{B} \text{ s.t } x \notin C \Rightarrow d(x, x_0) > r$.

By density, $\exists a \text{ s.t } d(x, x_0) - r > a > 0.$

By Prop 1.2.10, since x is an adherent point of B, there exists a sequence $(x_n)_{n=1}^{\infty}$ in B s.t $\lim x_n = x.$

This is a contradiction because by the triangle innequality, $\lim_{n\to\infty}d(x,x_n)\geq\lim_{n\to\infty}d(x,x_0)-d(x_n,x_0)>$ $r+a-r=a>0\Rightarrow \lim_{n\to\infty}d(x_n,x)\neq 0.$ Hence, $d(x,x_0)\leq r\Rightarrow x\in C.$

b) Let (\mathbb{R}, d_{disc}) be the metric space with $r=1, x_0=0$, $\overline{B}=0, C=\mathbb{R}\Rightarrow \overline{B}\subset C$ and $\overline{B}\neq C$

Problem 6: Additional Problems

Problem 7: Additional Problems

```
Let x_0 and r be arbitrary.
```

 $\forall x \in V(x_0, r) \text{ choose } \epsilon(x) < d(x, x_0) - r.$

WTS, for any x, $B(x, \epsilon(x)) \subset V(x_0, r)$.

It suffices to show, for some arbitrary $b \in B(x, \epsilon(x)), d(b, x_0) > r \Rightarrow b \in V(x_0, r)$.

By the triangle innequality, $d(x_0, b) \ge d(x_0, x) - d(x, b)$.

 $x \in V(x_0, r) \Rightarrow d(x_0, x) > r$ and $b \in B(x, \epsilon(x)) \Rightarrow d(x, b) < \epsilon(x) < d(x, x_0) - r$.

It follows $d(x_0, x) - d(x, b) > r \Rightarrow d(x_0, b) > r \Rightarrow b \in V(x_0, r)$.

Thus, $B(x, \epsilon(x)) \subset V(x_0, r)$ for any $x \in V(x_0, r) \Rightarrow x$ is an interior point of $V(x_0, r)$, $\forall x \in V(x_0, r)$.

Hence, $V(x_0, r)$ is an open set.