# Lovely Professional University, Punjab

| <b>Course Code</b>  | Course Title                    | Lectures | Tutorials  | Practicals | Credits  |                                 |
|---------------------|---------------------------------|----------|------------|------------|----------|---------------------------------|
| CSE101              | COMPUTER PROGRAMMING            | 2        | 0          | 2          | 3        |                                 |
| Course Weightage    | ATT: 5 CA: 25 MTT: 20 ETT: 50   | Exam Cat | egory: 11: | Mid Term   | Exam: Al | ll MCQ – End Term Exam: All MCQ |
| <b>Course Focus</b> | EMPLOYABILITY,SKILL DEVELOPMENT |          |            |            |          |                                 |

#### Course Outcomes: Through this course students should be able to

CO1 :: discuss the various approaches towards solving a particular problem using the C language constructs

CO2 :: write programs to solve different problems using C constructs irrespective of the compilers

CO3:: plan the process of code reuse by forming a custom library of one's own functions

CO4 :: complete the understanding and usage of one of the building blocks of data structures namely pointers

CO5 :: categorize the theoretical knowledge and insights gained thus far to formulate working code

CO6 :: validate the underlying logic and formulate code which is capable of passing various test cases

|       | TextBooks (T)         |                                  |                         |  |  |  |  |  |
|-------|-----------------------|----------------------------------|-------------------------|--|--|--|--|--|
| Sr No | Title                 | Author                           | Publisher Name          |  |  |  |  |  |
| T-1   | PROGRAMMING IN C      | ASHOK N. KAMTHANE,               | Pearson Education India |  |  |  |  |  |
|       | Reference Books (R)   |                                  |                         |  |  |  |  |  |
| Sr No | Title                 | Author                           | Publisher Name          |  |  |  |  |  |
| R-1   | PROGRAMMING IN ANSI C | E. BALAGURUSAMY                  | Tata McGraw Hill, India |  |  |  |  |  |
| R-2   | C HOW TO PROGRAM      | PAUL DEITEL AND<br>HARVEY DEITEL | Pearson Education India |  |  |  |  |  |

| Relevant Websites (RW) |                                                                            |                                 |  |  |  |  |
|------------------------|----------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Sr No                  | (Web address) (only if relevant to the course)                             | Salient Features                |  |  |  |  |
| RW-1                   | https://www.programiz.com/c-programming/c-for-loop                         | Loops                           |  |  |  |  |
| RW-2                   | http://www.c4learn.com/c-programs/category/structure-programs              | Structures                      |  |  |  |  |
| RW-3                   | http://www.c4learn.com/c-programs/category/union-programs                  | Union                           |  |  |  |  |
| RW-4                   | https://www.cprogramming.com/discussionarticles/sorting_and_searching.html | Linear and binary search        |  |  |  |  |
| RW-5                   | https://www.tutorialspoint.com/format-specifiers-in-c                      | Format specifiers in C language |  |  |  |  |

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

| RW-6            | http://tigcc.ticalc.org/doc/keywords.html                                   | Keywords in C                                          |
|-----------------|-----------------------------------------------------------------------------|--------------------------------------------------------|
| RW-7            | http://www.c4learn.com/c-programs/category/1-d-array-programs               | Arrays programs                                        |
| RW-8            | http://www.c4learn.com/c-programs/program-bubble-sort-elemets-in-c-all.html | Bubble sort                                            |
| RW-9            | https://www.programiz.com/c-programming/c-dynamic-memory-allocation         | Dynamic memory management                              |
| RW-10           | https://www.exforsys.com/tutorials/c-language/c-structures-and-unions.html  | Structures and union                                   |
| RW-11           | https://www.learn-c.org/en/Pointers                                         | Pointers                                               |
| RW-12           | https://users.cs.cf.ac.uk/Dave.Marshall/C/node10.html                       | Pointers in depth                                      |
| RW-13           | https://www.tutorialspoint.com/cprogramming/c_strings.htm                   | Strings                                                |
| RW-14           | https://www.tutorialspoint.com/cprogramming/c_arrays.htm                    | Arrays                                                 |
| RW-15           | https://www.tutorialspoint.com/cprogramming/c_storage_classes.htm           | Storage classes                                        |
| RW-16           | https://www.tutorialspoint.com/c_standard_library/math_h.htm                | Math Library in c                                      |
| RW-17           | https://www.tutorialspoint.com/cprogramming/c_recursion.htm                 | Recursion                                              |
| RW-18           | https://www.tutorialspoint.com/cprogramming/c_functions.htm                 | Functions                                              |
| RW-19           | https://www.tutorialspoint.com/cprogramming/c_type_casting.htm              | Type Casting                                           |
| RW-20           | https://www.studytonight.com/c/c-input-output-function.php                  | Input and output statements in C language              |
| RW-21           | https://www.learn-c.org/en/While_loops                                      | While loop in iterative constructs                     |
| RW-22           | https://www.learn-c.org/en/For_loops                                        | For loop in iterative constructs                       |
| RW-23           | https://www.tutorialspoint.com/cprogramming/c_operators.htm                 | Operators present in C language                        |
| RW-24           | https://www.sitepoint.com/fundamentals-of-c/                                | Basic features of C language                           |
| RW-25           | https://www.tutorialspoint.com/ansi_c/c_control_statements.htm              | Control statements in C language                       |
| RW-26           | https://www.webcreate.me/best-coding-challenge-websites/                    | The 10 most popular coding challenge websites for 2022 |
| RW-27           | https://www.programiz.com/c-programming                                     | Tutorials and simple explanation of c concepts         |
| Audio Visual Ai | ds (AV)                                                                     |                                                        |
| Sr No           | (AV aids) (only if relevant to the course)                                  | Salient Features                                       |
| AV-1            | https://freevideolectures.com/course/2519/c-programming-and-data-structures | C Video Lectures                                       |
| AV-2            | https://www.youtube.com/playlist?list=PLBlnK6fEyqRggZZgYpPMUxdY1CYkZtARR    | Fundamentals of C Programming Video Lectures           |

| Software/Equipments/Databases                      |                                                            |                                                     |  |  |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|
| Sr No                                              | (S/E/D) (only if relevant to the course)  Salient Features |                                                     |  |  |  |  |  |  |  |
| SW-1                                               | https://www.evl.uic.edu/aspale/dvl/dev-cpp/                | Using Bloodshed Dev-C++ for OpenGL-GLUT Programming |  |  |  |  |  |  |  |
| SW-2                                               | https://www.tutorialspoint.com/online_c_compiler.php       | Online compiler for program execution               |  |  |  |  |  |  |  |
| Virtual Lal                                        | bs (VL)                                                    |                                                     |  |  |  |  |  |  |  |
| Sr No                                              | (VL) (only if relevant to the course)                      | Salient Features                                    |  |  |  |  |  |  |  |
| VL-1 https://cse02-iiith.vlabs.ac.in/ Virtual Labs |                                                            |                                                     |  |  |  |  |  |  |  |
| VL-2                                               | https://www.hackerearth.com/                               | Network of top developers across the world          |  |  |  |  |  |  |  |

| LTP week distribution: (LTP Weeks) |   |  |  |  |  |
|------------------------------------|---|--|--|--|--|
| Weeks before MTE                   | 7 |  |  |  |  |
| Weeks After MTE                    | 7 |  |  |  |  |
| Spill Over (Lecture)               | 4 |  |  |  |  |

### **Detailed Plan For Lectures**

| Week<br>Number | Lecture<br>Number | Broad Topic(Sub Topic)                             | Chapters/Sections of<br>Text/reference<br>books | Other Readings,<br>Relevant Websites,<br>Audio Visual Aids,<br>software and Virtual<br>Labs | Lecture Description                                                               | Learning Outcomes | Pedagogical Tool<br>Demonstration/<br>Case Study /<br>Images /<br>animation / ppt<br>etc. Planned | Live Examples                                                                                                                             |
|----------------|-------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Week 1         | Lecture 1         | Basics and introduction to C (The C character set) | T-1                                             | RW-6<br>RW-23                                                                               | Components of C character set, discussion on identifiers, keywords and data types |                   | Power point<br>presentation and<br>live demonstration<br>on compiler                              | An example of performing various operations on different kinds of data by a human can be taken to explain the need for various data types |



| Week 1 | Lecture 1 | Basics and introduction to C (Identifiers and keywords) | T-1 | RW-6<br>RW-23  | Components of C character set, discussion on identifiers, keywords and data types | Students will become<br>aware of the basics<br>of C language<br>without which it is<br>not possible to work<br>with C language | Power point<br>presentation and<br>live demonstration<br>on compiler | An example of performing various operations on different kinds of data by a human can be taken to explain the need for various data types |
|--------|-----------|---------------------------------------------------------|-----|----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|        |           | Basics and introduction to C (Data types)               | T-1 | RW-6<br>RW-23  | Components of C character set, discussion on identifiers, keywords and data types | Students will become<br>aware of the basics<br>of C language<br>without which it is<br>not possible to work<br>with C language | Power point<br>presentation and<br>live demonstration<br>on compiler | An example of performing various operations on different kinds of data by a human can be taken to explain the need for various data types |
|        | Lecture 2 | Basics and introduction to C (Constants and variables)  | T-1 | RW-23<br>RW-27 | Discussion on constant,<br>variable and various<br>arithmetic operators           | Students will become familiar with performing various operations with the help of C operators                                  | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators        |
|        |           | Basics and introduction to C (Expressions)              | T-1 | RW-23<br>RW-27 | Discussion on constant,<br>variable and various<br>arithmetic operators           | Students will become familiar with performing various operations with the help of C operators                                  | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators        |



| Week 1 | Lecture 2 | Basics and introduction to C (Arithmetic operators)    | T-1 | RW-23<br>RW-27 | Discussion on constant, variable and various arithmetic operators | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|--------|-----------|--------------------------------------------------------|-----|----------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Week 2 | Lecture 3 | Basics and introduction to C (Constants and variables) | T-1 | RW-23<br>RW-27 | Discussion on constant, variable and various arithmetic operators | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Expressions)             | T-1 | RW-23<br>RW-27 | Discussion on constant, variable and various arithmetic operators | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Arithmetic operators)    | T-1 | RW-23<br>RW-27 | Discussion on constant, variable and various arithmetic operators | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |



| Week 2 | Lecture 4 | Basics and introduction to C (Unary)                                | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|--------|-----------|---------------------------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|        |           | Basics and introduction to C (Relational)                           | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Logical)                              | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Assignment and conditional operators) | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |



| Week 2 | Lecture 4 | Basics and introduction to C (Bitwise operators) | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point presentation and live demonstration on compiler          | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|--------|-----------|--------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Week 3 | Lecture 5 | Basics and introduction to C (Unary)             | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point presentation and live demonstration on compiler          | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Relational)        | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |
|        |           | Basics and introduction to C (Logical)           | T-1<br>R-1 | RW-23 | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators |



| Week 3 | Lecture 5 | Basics and introduction to C (Assignment and conditional operators)                                            | T-1<br>R-1 | RW-23                                          | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators         | Power point presentation and live demonstration on compiler          | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators                                                                               |
|--------|-----------|----------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |           | Basics and introduction to C (Bitwise operators)                                                               | T-1<br>R-1 | RW-23                                          | Discussion on various unary, relational, logical, assignment operators, conditional, bitwise operators along with operator precedence and associativity, example of various expressions involving these operators can be taken | Students will become familiar with performing various operations with the help of C operators         | Power point<br>presentation and<br>live demonstration<br>on compiler | An example involving separate operations on various kinds of data in real life can be taken to explain the importance of operators                                                                               |
|        | Lecture 6 | Control structures and Input/Output functions(If, If else, Switch case statements, While, For, Do-while loops) | T-1<br>R-1 | RW-1<br>RW-21<br>RW-22<br>SW-1<br>SW-2<br>VL-1 | if, if else, switch case statements, while loop for, do while loops,at least 2 examples should be discussed for all the constructs                                                                                             | Students will become<br>aware of which<br>statements to use<br>while dealing with<br>various problems | Power point presentations and live demonstration on compiler         | The choices the students face while choosing a career can be used to explain if else and switch case statement, similarly the process of coming to the classroom everyday can be used as an example of iteration |



| Week 4 | Lecture 7 | Control structures and Input/Output functions (Break and continue statements)     | T-1<br>R-1 | RW-1<br>RW-21<br>RW-22<br>RW-25 | break and continue<br>statements, jump<br>statements namely goto<br>and return, at least 2<br>examples should be<br>discussed for all the<br>constructs | Students will learn<br>how to use jump<br>execution within the<br>program                                              | Power point presentation and live demonstration on compiler. Animations can also be used for the same                   | The choices the students face while choosing a career can be used to explain if else and switch case statement, similarly the process of coming to the classroom everyday can be used as an example of iteration |
|--------|-----------|-----------------------------------------------------------------------------------|------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |           | Control structures and Input/Output functions (Goto,Return)                       | T-1<br>R-1 | RW-1<br>RW-21<br>RW-22<br>RW-25 | break and continue<br>statements, jump<br>statements namely goto<br>and return, at least 2<br>examples should be<br>discussed for all the<br>constructs | Students will learn<br>how to use jump<br>execution within the<br>program                                              | Power point<br>presentation and<br>live demonstration<br>on compiler.<br>Animations can<br>also be used for the<br>same | The choices the students face while choosing a career can be used to explain if else and switch case statement, similarly the process of coming to the classroom everyday can be used as an example of iteration |
|        | Lecture 8 | Control structures and Input/Output functions(Type conversion and type modifiers) | T-1<br>R-1 | RW-19                           | Importance of type casting and type modifiers should be discussed. Discussion on structured programming                                                 | Students will learn<br>how to convert one<br>data into another<br>type of data and use<br>of structured<br>programming | Power point<br>presentation and<br>live demonstration<br>on compiler.<br>Animations can<br>also be used for the<br>same | division operations, cgpa  calculation can be given as example of type casting,return can be given as example of result of any operation                                                                         |



| Week 4 | Lecture 8  | Control structures and<br>Input/Output functions<br>(Designing structured<br>programs in C)                                                      | T-1<br>R-1 | RW-19                          | Importance of type casting and type modifiers should be discussed. Discussion on structured programming                   | Students will learn<br>how to convert one<br>data into another<br>type of data and use<br>of structured<br>programming                                     | Power point presentation and live demonstration on compiler. Animations can also be used for the same | division operations, cgpa  calculation can be given as example of type casting,return can be given as example of result of any operation                                                                |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 5 | Lecture 9  | Control structures and Input/Output functions (Formatted and unformatted Input/Output functions like printf(), Scanf(), Puts(), Gets () etc)     | T-1<br>R-1 | RW-5<br>RW-20<br>RW-24<br>AV-2 | printf, scanf<br>functions along with<br>various format specifiers<br>gets, puts, getch,<br>getchar, putchar<br>functions | Students will learn<br>about the suitability<br>of various input and<br>output statements for<br>handling different<br>types of data                       | Power point presentation and live demonstration on compiler                                           | Different types of information is printed in a newspaper in various ways, separate way is used for printing headlines etc, this example may be used to explain the usage of input and output statements |
|        | Lecture 10 |                                                                                                                                                  |            |                                | Test 1                                                                                                                    |                                                                                                                                                            |                                                                                                       |                                                                                                                                                                                                         |
| Week 6 | Lecture 11 | User defined functions and<br>Storage classes(Function<br>prototypes, Function<br>definition)                                                    | T-1<br>R-1 | RW-18                          | Description about user defined functions, methods of calling a function and function prototypes                           | Students will be able<br>to write customized<br>functions according<br>to the given<br>requirement and will<br>learn modular<br>approach of<br>programming | Power point<br>presentation and<br>live demonstration<br>on compiler                                  | Calling some<br>person on your<br>behalf to do a<br>task can be used<br>as an example<br>of a function                                                                                                  |
|        |            | User defined functions and<br>Storage classes(Function<br>call including passing<br>arguments by value and<br>passing arguments by<br>reference) | T-1<br>R-1 | RW-18                          | Description about user defined functions, methods of calling a function and function prototypes                           | Students will be able<br>to write customized<br>functions according<br>to the given<br>requirement and will<br>learn modular<br>approach of<br>programming | Power point<br>presentation and<br>live demonstration<br>on compiler                                  | Calling some<br>person on your<br>behalf to do a<br>task can be used<br>as an example<br>of a function                                                                                                  |



| Week 6 | Lecture 12 | User defined functions and Storage classes(Math library functions)                     | T-1<br>R-1 | RW-16<br>RW-17 | Discussion on various math library functions and recursion.                                                                                                                                       | Students will<br>learn how to use<br>function pow,<br>sqrt, sin, other<br>math function<br>with general<br>purpose task of<br>programming.<br>Discussion on<br>use of recursion. | Power point<br>presentations and<br>live demonstration<br>using compiler | calculating compound interest using pow function, root mean square velocity of any vehicle.how to find roots of quadratic equations using sqrt function and Factorial function.     |
|--------|------------|----------------------------------------------------------------------------------------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |            | User defined functions and Storage classes(Recursive functions)                        | T-1<br>R-1 | RW-16<br>RW-17 | Discussion on various math library functions and recursion.                                                                                                                                       | Students will<br>learn how to use<br>function pow,<br>sqrt, sin, other<br>math function<br>with general<br>purpose task of<br>programming.<br>Discussion on<br>use of recursion. | Power point presentations and live demonstration using compiler          | calculating compound interest using pow function, root mean square velocity of any vehicle.how to find roots of quadratic equations using sqrt function and Factorial function.     |
| Week 7 | Lecture 13 | User defined functions and<br>Storage classes(Scope rules<br>(local and global scope)) | T-1<br>R-1 | RW-15          | Lifetime of a variable,<br>Visibility of a variable,<br>Various storage classes<br>such as automatic,<br>external, static and<br>register, example in<br>context to function calls<br>may be used | Students will come to<br>know about the scope<br>and lifetime of<br>variables used in C<br>programs                                                                              | presentations and                                                        | A company operating in a city could be treated as an example of a local variable whereas a company operating all over the world could be treated as an example of external variable |



| Week 7 | Lecture 13 | User defined functions and<br>Storage classes(Storage<br>classes in C namely auto,<br>Extern, Register, Static<br>storage classes) | T-1<br>R-1 | RW-15                                                 | Lifetime of a variable,<br>Visibility of a variable,<br>Various storage classes<br>such as automatic,<br>external, static and<br>register, example in<br>context to function calls<br>may be used | Students will come to<br>know about the scope<br>and lifetime of<br>variables used in C<br>programs                                                                                                                             | presentations and                                                    | A company operating in a city could be treated as an example of a local variable whereas a company operating all over the world could be treated as an example of external variable |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |            |                                                                                                                                    |            | SPI                                                   | LL OVER                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                      |                                                                                                                                                                                     |
| Week 7 | Lecture 14 |                                                                                                                                    |            |                                                       | Spill Over                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                      |                                                                                                                                                                                     |
|        |            |                                                                                                                                    |            | $\mathbf{M}$                                          | <b>ID-TERM</b>                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                      |                                                                                                                                                                                     |
| Week 8 | Lecture 15 | Arrays in C(Declaring and initializing arrays in C)                                                                                | T-1<br>R-1 | RW-7<br>RW-14<br>AV-1<br>AV-2<br>VL-2                 | introduction to arrays,<br>declaration,<br>initialization of arrays                                                                                                                               | Students will learn<br>about storing data in<br>arrays and<br>performing various<br>operations on it                                                                                                                            | Power point<br>presentation and<br>live demonstration<br>on compiler | A list of the<br>marks of various<br>students in a<br>class                                                                                                                         |
|        |            | Arrays in C(Defining and processing 1D and 2D arrays)                                                                              | T-1<br>R-1 | RW-7<br>RW-14<br>AV-1<br>AV-2<br>VL-2                 | introduction to arrays,<br>declaration,<br>initialization of arrays                                                                                                                               | Students will learn<br>about storing data in<br>arrays and<br>performing various<br>operations on it                                                                                                                            | Power point<br>presentation and<br>live demonstration<br>on compiler | A list of the marks of various students in a class                                                                                                                                  |
|        | Lecture 16 | Arrays in C(Array applications)                                                                                                    | T-1<br>R-1 | RW-7<br>RW-14<br>SW-2<br>AV-1<br>AV-2<br>VL-1<br>VL-2 | passing array as a<br>function argument, few<br>sample programs of<br>passing arrays to<br>functions, Insertion and<br>deletion<br>from different positions<br>from array                         | Students will learn about how to pass an entire array to a function and The students will come to know the basic idea behind looking up an element in a list and how we can insert and delete any data from particular position | Power point presentation and live demonstration on compiler          | One of the inbuilt string functions can be used to explain about passing an array to a function, Example of queue can be considered to understand the insertion and deletion        |



| Week 8 | Lecture 16 | Arrays in C(Passing arrays to functions)                          | T-1<br>R-1 | RW-7<br>RW-14<br>SW-2<br>AV-1<br>AV-2<br>VL-1<br>VL-2 | passing array as a<br>function argument, few<br>sample programs of<br>passing arrays to<br>functions, Insertion and<br>deletion<br>from different positions<br>from array                                                                                                  | Students will learn about how to pass an entire array to a function and The students will come to know the basic idea behind looking up an element in a list and how we can insert and delete any data from particular position | Power point presentation and live demonstration on compiler          | One of the inbuilt string functions can be used to explain about passing an array to a function, Example of queue can be considered to understand the insertion and deletion  |
|--------|------------|-------------------------------------------------------------------|------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |            | Arrays in C(inserting and deleting elements of an array)          | T-1<br>R-1 | RW-7<br>RW-14<br>SW-2<br>AV-1<br>AV-2<br>VL-1<br>VL-2 | passing array as a<br>function argument, few<br>sample programs of<br>passing arrays to<br>functions,Insertion and<br>deletion<br>from different positions<br>from array                                                                                                   | Students will learn about how to pass an entire array to a function and The students will come to know the basic idea behind looking up an element in a list and how we can insert and delete any data from particular position | Power point<br>presentation and<br>live demonstration<br>on compiler | One of the inbuilt string functions can be used to explain about passing an array to a function, Exampl e of queue can be considered to understand the insertion and deletion |
| Week 9 | Lecture 17 | Arrays in C(Searching including linear and binary search methods) | T-1<br>R-1 | RW-4<br>RW-8<br>RW-14<br>RW-26<br>AV-1                | Finding a single element in a list using the strategies of linear and binary search is to be discussed. Discussion on arranging array elements into ascending or descending order as well as arranging of strings into ascending or descending order only with bubble sort | come to know the basic idea behind looking up an element in a list. Student will learn basic technique of sorting algorithm as                                                                                                  | Power point presentation and live demonstration on compiler          |                                                                                                                                                                               |



| Week 9  | Lecture 17 | Arrays in C(Sorting of array using bubble sort)                        | T-1<br>R-1        | RW-4<br>RW-8<br>RW-14<br>RW-26<br>AV-1 | Finding a single element in a list using the strategies of linear and binary search is to be discussed. Discussion on arranging array elements into ascending or descending order as well as arranging of strings into ascending or descending order only with bubble sort | come to know the basic idea behind looking up an element in a list. Student will learn basic technique of sorting algorithm as                          | Power point presentation and live demonstration on compiler          |  |
|---------|------------|------------------------------------------------------------------------|-------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|         | Lecture 18 |                                                                        |                   |                                        | Test 2                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |  |
| Week 10 | Lecture 19 | Pointers in C(Pointer declaration and initialization)                  | T-1<br>R-1<br>R-2 | RW-11<br>RW-12                         | Need of pointers,<br>declaring and<br>initialization of pointer<br>variables, various<br>operators such as<br>address operators,<br>indirection operator,<br>types of<br>pointers including void,<br>wild and null pointers                                                | Students will learn<br>the knowledge of<br>different types of<br>pointers and their<br>importance, that is<br>generally asked in the<br>placement exams | Power point presentation and live demonstration on compiler          |  |
|         |            | Pointers in C(types of pointers –dangling, wild, null, generic (void)) | T-1<br>R-1<br>R-2 | RW-11<br>RW-12                         | Need of pointers,<br>declaring and<br>initialization of pointer<br>variables, various<br>operators such as<br>address operators,<br>indirection operator,<br>types of<br>pointers including void,<br>wild and null pointers                                                | Students will learn<br>the knowledge of<br>different types of<br>pointers and their<br>importance, that is<br>generally asked in the<br>placement exams | Power point presentation and live demonstration on compiler          |  |
|         | Lecture 20 | Pointers in C(Pointer operators)                                       | T-1<br>R-1        | RW-11<br>RW-12                         | Operations feasible<br>on pointers and<br>arithmetic operations<br>possible on a pointer                                                                                                                                                                                   | Students will learn to<br>work with addresses<br>of the variables                                                                                       | Power point presentation and live demonstration on compiler          |  |
|         |            | Pointers in C(Pointer expressions and arithmetic)                      | T-1<br>R-1        | RW-11<br>RW-12                         | Operations feasible<br>on pointers and<br>arithmetic operations<br>possible on a pointer                                                                                                                                                                                   | Students will learn to<br>work with addresses<br>of the variables                                                                                       | Power point<br>presentation and<br>live demonstration<br>on compiler |  |



| Week 10 | Lecture 20 | Pointers in C(Operations on pointers)                                                             | T-1<br>R-1 | RW-11<br>RW-12 | Operations feasible<br>on pointers and<br>arithmetic operations<br>possible on a pointer | Students will learn to<br>work with addresses<br>of the variables                | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
|---------|------------|---------------------------------------------------------------------------------------------------|------------|----------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|         |            | Pointers in C(Passing pointer to a function)                                                      | T-1<br>R-1 | RW-11<br>RW-12 | Operations feasible<br>on pointers and<br>arithmetic operations<br>possible on a pointer | Students will learn to<br>work with addresses<br>of the variables                | Power point presentation and live demonstration on compiler          |  |
| Week 11 | Lecture 21 | Pointers in C(Pointer and one dimensional array)                                                  | T-1<br>R-1 | RW-11<br>RW-12 | Operations feasible on pointers vs Arrays                                                | Students will learn<br>the use of array name<br>working like pointer             | Power point presentation and live demonstration on compiler          |  |
|         |            | Pointers in C(Pointer to a group of one dimensional arrays)                                       | T-1<br>R-1 | RW-11<br>RW-12 | Operations feasible on pointers vs Arrays                                                | Students will learn<br>the use of array name<br>working like pointer             | Power point presentation and live demonstration on compiler          |  |
|         |            | Pointers in C(Array of pointers)                                                                  | T-1<br>R-1 | RW-11<br>RW-12 | Operations feasible<br>on pointers vs Arrays                                             | Students will learn<br>the use of array name<br>working like pointer             | Power point presentation and live demonstration on compiler          |  |
|         | Lecture 22 |                                                                                                   |            |                | Project                                                                                  |                                                                                  |                                                                      |  |
| Week 12 | Lecture 23 | Dynamic Memory Management(Dynamic Memory Management functions (malloc, calloc, realloc and free)) | T-1<br>R-1 | RW-9           | Different function<br>used for dynamic<br>memory allocation                              | Students will<br>learn to<br>work with dynamic<br>memory allocation<br>functions | Power point presentation and live demonstration on compiler          |  |
|         |            | Dynamic Memory<br>Management(Memory leak)                                                         | T-1<br>R-1 | RW-9           | Different function used for dynamic memory allocation                                    | Students will<br>learn to<br>work with dynamic<br>memory allocation<br>functions | Power point presentation and live demonstration on compiler          |  |
|         | Lecture 24 | File I/O(The FILE structure)                                                                      | T-1<br>R-1 | RW-27<br>AV-1  | Introduction to file and dealing with different modes of files,text and binary files     | Students will learn about the importance of file text and binary                 | Power point presentation and live demonstration on compiler          |  |
|         |            | File I/O(Opening and closing files)                                                               | T-1<br>R-1 | RW-27<br>AV-1  | Introduction to file and dealing with different modes of files,text and binary files     | Students will learn about the importance of file text and binary                 |                                                                      |  |
|         |            | File I/O(Text and binary files)                                                                   | T-1<br>R-1 | RW-27<br>AV-1  | Introduction to file and dealing with different modes of files,text and binary files     | Students will learn about the importance of file text and binary                 | Power point presentation and live demonstration on compiler          |  |
|         |            | File I/O(Reading)                                                                                 | T-1<br>R-1 | RW-27<br>AV-1  | Introduction to file and dealing with different modes of files,text and binary files     | Students will learn<br>about the importance<br>of file text and binary           | Power point presentation and live demonstration on compiler          |  |

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.



| Week 12 | Lecture 24 | File I/O(writing and appending files)                                                      | T-1<br>R-1 | RW-27<br>AV-1 | Introduction to file and dealing with different modes of files,text and binary files                                                                                                                                                                                                     | Students will learn<br>about the importance<br>of file text and binary                                                                                    | Power point presentation and live demonstration on compiler          |  |
|---------|------------|--------------------------------------------------------------------------------------------|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|         |            | File I/O(Random access of files)                                                           | T-1<br>R-1 | RW-27<br>AV-1 | Introduction to file and dealing with different modes of files,text and binary files                                                                                                                                                                                                     | Students will learn<br>about the importance<br>of file text and binary                                                                                    | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
| Week 13 | Lecture 25 | Strings, Derived types including structures and unions (Defining and initializing strings) | T-1<br>R-1 | RW-13         | String basics including<br>the use of character<br>arrays to store and<br>manipulate strings,<br>reading and writing<br>from and to strings                                                                                                                                              | Students will learn<br>about strings and the<br>various string input<br>and output functions<br>and will learn how to<br>perform operations<br>on strings | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
|         |            | Strings, Derived types including structures and unions (Reading and writing a string)      | T-1<br>R-1 | RW-13         | String basics including<br>the use of character<br>arrays to store and<br>manipulate strings,<br>reading and writing<br>from and to strings                                                                                                                                              | Students will learn<br>about strings and the<br>various string input<br>and output functions<br>and will learn how to<br>perform operations<br>on strings | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
|         |            | Strings,Derived types including structures and unions(Processing of string)                | T-1<br>R-1 | RW-13         | String basics including<br>the use of character<br>arrays to store and<br>manipulate strings,<br>reading and writing<br>from and to strings                                                                                                                                              | Students will learn<br>about strings and the<br>various string input<br>and output functions<br>and will learn how to<br>perform operations<br>on strings | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
|         | Lecture 26 | Strings, Derived types including structures and unions (Character arithmetic)              | T-1<br>R-1 | RW-13         | Performing arithmetic operation on characters of string, String processing functions such as strlen, strcpy, strcmp, strcat, character arithmetic including increment, decrement, addition, subtraction operations, string manipulation functions including atof, atol, atol, itoa, ftoa | Students will come to<br>know about strings<br>and how to perform<br>operations on strings                                                                | Power point presentation and live demonstration on compiler          |  |



| Week 13 | Lecture 26 | Strings,Derived types including structures and unions(String manipulation functions and library functions of string) | T-1<br>R-1 | RW-13                 | Performing arithmetic operation on characters of string, String processing functions such as strlen, strcpy, strcmp, strcat, character arithmetic including increment, decrement, addition, subtraction operations, string manipulation functions including atof, atoi, atol, itoa, ftoa        | Students will come to<br>know about strings<br>and how to perform<br>operations on strings          | Power point presentation and live demonstration on compiler          |  |
|---------|------------|----------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Week 14 | Lecture 27 | Strings,Derived types including structures and unions(Declaration of a structure)                                    | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures, union<br>and how<br>to work with them | Power point<br>presentation and<br>live demonstration<br>on compiler |  |
|         |            | Strings,Derived types including structures and unions(Definition and initialization of structures)                   | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures,union<br>and how<br>to work with them  | Power point presentation and live demonstration on compiler          |  |



| Week 14 | Lecture 27 | Strings, Derived types including structures and unions (Accessing structures)    | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures, union<br>and how<br>to work with them | Power point presentation and live demonstration on compiler          |  |
|---------|------------|----------------------------------------------------------------------------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|         |            | Strings, Derived types including structures and unions (Structures and pointers) | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures, union<br>and how<br>to work with them | Power point presentation and live demonstration on compiler          |  |
|         |            | Strings,Derived types including structures and unions(Nested structures)         | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures, union<br>and how<br>to work with them | Power point<br>presentation and<br>live demonstration<br>on compiler |  |



| Week 14 | Lecture 27 | Strings, Derived types including structures and unions (Declaration of a union) | T-1<br>R-1 | RW-2<br>RW-3<br>RW-10 | Introduction to structures including the need of structures, defining and assigning values to a structure, operations which can be carried out on structure members after accessing them, few examples on structures, Creating a pointer to structure, Creating a structure with in a structure | Students will learn<br>about the importance<br>of structures, union<br>and how<br>to work with them | Power point presentation and live demonstration on compiler |  |
|---------|------------|---------------------------------------------------------------------------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
|         |            |                                                                                 |            | SPII                  | LL OVER                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                             |  |
| Week 14 | Lecture 28 |                                                                                 |            |                       | Spill Over                                                                                                                                                                                                                                                                                      |                                                                                                     |                                                             |  |
| Week 15 | Lecture 29 |                                                                                 |            |                       | Spill Over                                                                                                                                                                                                                                                                                      |                                                                                                     |                                                             |  |
|         | Lecture 30 |                                                                                 |            |                       | Spill Over                                                                                                                                                                                                                                                                                      |                                                                                                     |                                                             |  |

## **Scheme for CA:**

CA Category of this Course Code is:C010102 (Total 3 tasks, 1 compulsory and out of remaining 1 best out of 2 to be considered)

| Component | Iscompulsory | Weightage (%) | Mapped CO(s)                       |
|-----------|--------------|---------------|------------------------------------|
| Project   | Yes          | 50            | CO1, CO2,<br>CO3, CO4,<br>CO5, CO6 |
| Test 1    | NO           | 50            | CO1, CO2                           |
| Test 2    | NO           | 50            | CO3, CO4                           |

## **Details of Academic Task(s)**



| Academic Task | Objective                                                                                                        | Detail of Academic Task                                                                                                                                                                                                                   | Nature of Academic<br>Task<br>(group/individuals) | Academic Task<br>Mode | Marks | Allottment /<br>submission<br>Week |
|---------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-------|------------------------------------|
| Project       | To evaluate the student's overall understanding of the C programming concepts                                    | In the project, the students should be provided problems to check for the overall understanding of the C programming concepts. The aim of the project is to check the overall understanding of the students and evaluate them accordingly | Individual                                        | Offline               | 30    | 4/11                               |
| Test 1        | To ensure understanding of the concepts and check the student's progress and his performance on individual basis | Test will cover the topics completed in week 1 till week 5                                                                                                                                                                                | Individual                                        | Offline               | 30    | 3/5                                |
| Test 2        | To ensure understanding of the concepts and check the student's progress and his performance on individual basis | Test will cover the topics completed in week 6 till week 8                                                                                                                                                                                | Individual                                        | Offline               | 30    | 7/9                                |

### **Detailed Plan For Practicals**

| Practical No | Broad topic                       | Subtopic                                                                                                                                        | Other Readings | Learning Outcomes                                                                                                                                                                        |
|--------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical 1  | List of Practicals / Experiments: | Basics and introduction to C:  • Programs to explore different data types and usage.  • Programs for different type of operators and the usage. | SW-1<br>SW-2   | The students will become familiar with<br>the C program development environment and will<br>get exposure to weekly practice problems on<br>Hackerrank/Hackerearth or equivalent platform |
| Practical 2  | List of Practicals / Experiments: | Basics and introduction to C:  • Programs to explore different data types and usage.  • Programs for different type of operators and the usage. | SW-1<br>SW-2   | The students will become familiar with<br>the C program development environment and will<br>get exposure to weekly practice problems on<br>Hackerrank/Hackerearth or equivalent platform |
| Practical 3  | List of Practicals / Experiments: | Basics and introduction to C:  • Programs to explore different data types and usage.  • Programs for different type of operators and the usage. | SW-1<br>SW-2   | The students will become familiar with<br>the C program development environment and will<br>get exposure to weekly practice problems on<br>Hackerrank/Hackerearth or equivalent platform |

| Practical 4  | List of Practicals / Experiments: | Basics and introduction to C:  • Programs to explore different data types and usage.  • Programs for different type of operators and the usage.                                                                                       | SW-1<br>SW-2 | The students will become familiar with<br>the C program development environment and will<br>get exposure to weekly practice problems on<br>Hackerrank/Hackerearth or equivalent platform            |
|--------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical 5  | List of Practicals / Experiments: | Control structures and Input/Output functions:  • Programs on decision making constructs as if, if else and switch.  • Programs on formatted and unformatted functions as printf(),scanf (),gets() and puts().                        | SW-1<br>SW-2 | The students will be familiar with decision making statements and the use in different scenarios and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 6  | List of Practicals / Experiments: | Control structures and Input/Output functions:  • Programs on decision making constructs as if, if else and switch.  • Programs on formatted and unformatted functions as printf(),scanf (),gets() and puts().                        | SW-1<br>SW-2 | The students will be familiar with decision making statements and the use in different scenarios and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 7  | List of Practicals / Experiments: | Control structures and Input/Output functions:  • Programs on decision making constructs as if, if else and switch.  • Programs on formatted and unformatted functions as printf(),scanf (),gets() and puts().                        | SW-1<br>SW-2 | The students will be familiar with decision making statements and the use in different scenarios and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 8  | List of Practicals / Experiments: | Control structures and Input/Output functions:  • Programs on decision making constructs as if, if else and switch.  • Programs on formatted and unformatted functions as printf(),scanf (),gets() and puts().                        | SW-1<br>SW-2 | The students will be familiar with decision making statements and the use in different scenarios and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 9  | List of Practicals / Experiments: | Control structures and Input/Output functions:  • Programs on decision making constructs as if, if else and switch.  • Programs on formatted and unformatted functions as printf(),scanf (),gets() and puts().                        | SW-1<br>SW-2 | The students will be familiar with decision making statements and the use in different scenarios and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 10 | List of Practicals / Experiments: | User defined functions, Storage classes:  • Program to explore different prototypes.  • Program to differentiate between call by value, call by address.  • Program to demonstrate storage classes as auto, register, extern, static. | SW-1<br>SW-2 | The students will be familiar with functions and storage classes and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform                                 |

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

| Practical 11 | List of Practicals / Experiments:  | User defined functions, Storage classes:  • Program to explore different prototypes.  • Program to differentiate between call by value, call by address.  • Program to demonstrate storage classes as auto, register, extern, static.                                                                                                | SW-1<br>SW-2 | The students will be familiar with functions and storage classes and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform           |
|--------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical 12 | List of Practicals / Experiments : | User defined functions, Storage classes:  • Program to explore different prototypes.  • Program to differentiate between call by value, call by address.  • Program to demonstrate storage classes as auto, register, extern, static.                                                                                                | SW-1<br>SW-2 | The students will be familiar with functions and storage classes and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform           |
| Practical 13 | List of Practicals / Experiments : | User defined functions, Storage classes:  • Program to explore different prototypes.  • Program to differentiate between call by value, call by address.  • Program to demonstrate storage classes as auto, register, extern, static.                                                                                                | SW-1<br>SW-2 | The students will be familiar with functions and storage classes and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform           |
| Practical 14 | List of Practicals / Experiments : | User defined functions, Storage classes:  • Program to explore different prototypes.  • Program to differentiate between call by value, call by address.  • Program to demonstrate storage classes as auto, register, extern, static.                                                                                                | SW-1<br>SW-2 | The students will be familiar with functions and storage classes and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform           |
| Practical 15 | List of Practicals / Experiments : | Arrays in C and pointers in C:  • Program to demonstrate memory arrangement of 1D and 2D array.  • Program to demonstrate operations on array as insertion, deletion, searching (linear, binary).  • Program to demonstrate bubble sort  • Program to demonstrate type of pointers.  • Program to demonstrate pointer vs array name. | SW-1<br>SW-2 | The students will be familiar with array and different operations on array and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |

| Practical 16 | List of Practicals / Experiments : | Arrays in C and pointers in C:  • Program to demonstrate memory arrangement of 1D and 2D array.  • Program to demonstrate operations on array as insertion, deletion, searching (linear, binary).  • Program to demonstrate bubble sort  • Program to demonstrate type of pointers.  • Program to demonstrate pointer vs array name. | SW-1<br>SW-2 | The students will be familiar with array and different operations on array and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
|--------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical 17 | List of Practicals / Experiments:  | Arrays in C and pointers in C:  • Program to demonstrate memory arrangement of 1D and 2D array.  • Program to demonstrate operations on array as insertion, deletion, searching (linear, binary).  • Program to demonstrate bubble sort  • Program to demonstrate type of pointers.  • Program to demonstrate pointer vs array name. | SW-1<br>SW-2 | The students will be familiar with array and different operations on array and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 18 | List of Practicals / Experiments:  | Arrays in C and pointers in C:  • Program to demonstrate memory arrangement of 1D and 2D array.  • Program to demonstrate operations on array as insertion, deletion, searching (linear, binary).  • Program to demonstrate bubble sort  • Program to demonstrate type of pointers.  • Program to demonstrate pointer vs array name. | SW-1<br>SW-2 | The students will be familiar with array and different operations on array and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 19 | List of Practicals / Experiments:  | Arrays in C and pointers in C:  • Program to demonstrate memory arrangement of 1D and 2D array.  • Program to demonstrate operations on array as insertion, deletion, searching (linear, binary).  • Program to demonstrate bubble sort  • Program to demonstrate type of pointers.  • Program to demonstrate pointer vs array name. | SW-1<br>SW-2 | The students will be familiar with array and different operations on array and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |

| Practical 20 | List of Practicals / Experiments: | Dynamic memory Management and File I/O: • Program to demonstrate dynamic memory management functions (malloc(),calloc(),realloc() and free(). • Program to create text and binary file with different modes.                  | SW-1<br>SW-2 | The students will be familiar with dynamic memory allocation and will understand the concept of file and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
|--------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical 21 | List of Practicals / Experiments: | Dynamic memory Management and File I/O: • Program to demonstrate dynamic memory management functions (malloc(),calloc(),realloc() and free(). • Program to create text and binary file with different modes.                  | SW-1<br>SW-2 | The students will be familiar with dynamic memory allocation and will understand the concept of file and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 22 | List of Practicals / Experiments: | Dynamic memory Management and File I/O: • Program to demonstrate dynamic memory management functions (malloc(),calloc(),realloc() and free(). • Program to create text and binary file with different modes.                  | SW-1<br>SW-2 | The students will be familiar with dynamic memory allocation and will understand the concept of file and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 23 | List of Practicals / Experiments: | Dynamic memory Management and File I/O: • Program to demonstrate dynamic memory management functions (malloc(),calloc(),realloc() and free(). • Program to create text and binary file with different modes.                  | SW-1<br>SW-2 | The students will be familiar with dynamic memory allocation and will understand the concept of file and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 24 | List of Practicals / Experiments: | Dynamic memory Management and File I/O: • Program to demonstrate dynamic memory management functions (malloc(),calloc(),realloc() and free(). • Program to create text and binary file with different modes.                  | SW-1<br>SW-2 | The students will be familiar with dynamic memory allocation and will understand the concept of file and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |
| Practical 25 | List of Practicals / Experiments: | Strings, User defined types including structures and unions:  • Program to demonstrate string operations.  • Program to demonstrate structure and nested structures.  • Program to differentiate between structure and union. | SW-1<br>SW-2 | The students will be familiar with different operations on strings, structures and union and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform             |

| Practical 26 | List of Practicals / Experiments: | Strings, User defined types including structures and unions:  • Program to demonstrate string operations.  • Program to demonstrate structure and nested structures.  • Program to differentiate between structure and union. | SW-1<br>SW-2 | The students will be familiar with different operations on strings, structures and union and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |  |  |
|--------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Practical 27 | List of Practicals / Experiments: | Strings, User defined types including structures and unions:  • Program to demonstrate string operations.  • Program to demonstrate structure and nested structures.  • Program to differentiate between structure and union. | SW-1<br>SW-2 | The students will be familiar with different operations on strings, structures and union and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |  |  |
| Practical 28 | List of Practicals / Experiments: | Strings, User defined types including structures and unions:  • Program to demonstrate string operations.  • Program to demonstrate structure and nested structures.  • Program to differentiate between structure and union. | SW-1<br>SW-2 | The students will be familiar with different operations on strings, structures and union and will get exposure to weekly practice problems on Hackerrank/Hackerearth or equivalent platform |  |  |
|              | SPILL OVER                        |                                                                                                                                                                                                                               |              |                                                                                                                                                                                             |  |  |
| Practical 29 | Spill Over                        |                                                                                                                                                                                                                               |              |                                                                                                                                                                                             |  |  |