

Manual do Usuário

Manual do Usuário

Capítulo 1 - Primeiros passos no appy	3
1.1) Realizando o download do appy	3
1.1.1) Google Drive	3
1.1.2) GitHub	4
1.2) Instalando o appy	4
1.3) Interface gráfica do appy	6
1.3.1) Menu principal	6
1.3.2) Menu lateral	7
1.3.3) Sistema de abas	8
1.3.4) Área de visualização	8
Capítulo 2 - Configurando um projeto appy	9
2.1) Criando um novo projeto appy	9
2.2) Carregando um projeto appy existente	10
Capítulo 3 - Importar dados	11
3.1) Importar arquivos *.las	11
Capítulo 4 - Exportar dados	14
4.1) Exportar arquivos *.las	14
Capítulo 5 - LogPlot	16
5.1) Logplot via template	16
5.2) Logplot customizado	18
Capítulo 6 - CrossPlots	16
Capítulo 7 - Comandos	25
7.1) Batch import LAS file	25
7.2) Calculadora de perfis	27
7.3) Cálculos de porosidade	28
7.3.1) Porosidade pelo perfil densidade	28
7.3.2) Porosidade pelo perfil neutrão	29
7.3.3) Porosidade Gaymard-Poupon	30
7.4) Cálculo do volume de argila	30
7.5) Cálculo da saturação de água	31

Capítulo 1 - Primeiros passos no appy

Esse capítulo exemplifica como fazer o *download* e a instalação do appy. Em seguida, descreve algumas funcionalidades básicas da interface gráfica.

Objetivos:

- Download do appy;
- Instalação do appy;
- Resumo básico da interface gráfica do appy;

1.1) Realizando o download do appy

Existem duas formas de se obter o instalador do appy, sendo a primeira por meio da pasta compartilhada do Google Drive, e a segunda a partir da página do GIECAR no GitHub.

1.1.1) Google Drive

Passo 1: Acessar a pasta releases.

Passo 2: Selecionar a versão mais recente e clicar com botão direito.

Passo 3: Clicar no botão de "Download", para executar o download.

1.1.2) GitHub

1.2) Instalando o appy

Passo 1: Extrair o arquivo compactado obtido por meio do download para qualquer diretório desejado.

Passo 2: Acessar a pasta "appy" criada.

Passo 3: Executar o arquivo "appy Setup 1.0.1".

Passo 4: Aguarde até que seja finalizada a instalação. Será criado um atalho na Área de Trabalho e o appy será iniciado automaticamente.

1.3) Interface gráfica do appy

A interface gráfica do appy consiste nos seguintes componentes que serão descritos a seguir:

- Menu principal: onde é acessado todos os comandos do appy.
- Menu lateral: onde é visualizado todas as informações do projeto carregado.
- Sistemas de abas: para navegar entre as diferentes visualizações.
- Área de visualização: área onde os objetos são apresentados, como os logplots e crossplots.

1.3.1) Menu principal

O menu principal do appy é localizado no topo da janela. Clicando em cada botão do menu é visualizado o submenu correspondente. Os ícones na extremidade direita do menu possibilita o appy ser minimizado, maximizado e encerrado, respectivamente.

O menu principal inclui:

- File: para manipular os projetos.
- Import: para importar dados para o projeto carregado.
- Export: para exportar dados do projeto carregado.
- Plot: para criar visualizações, como os logplots e crossplots.
- Command: para executar comandos, como os cálculos petrofísicos.

1.3.2) Menu lateral

O menu lateral é localizado na parte esquerda da janela. O menu lateral permite ao usuário interpretar os dados do projeto carregado por meio de uma interface em formato de "árvore". Nessa versão do software, só é possível visualizar as informações a respeito do poços importados, como os grupos de perfis e os próprios perfis presentes nesses grupos.

1.3.3) Sistema de abas

O sistema de abas é localizado logo acima da área de visualização. É responsável por apresentar todas as janelas abertas e clicando em cada título é possível mover entre as diferentes visualizações. Clicando no ícone do X, é possível fechar aquela janela em particular.

1.3.4) Área de visualização

A área de visualização é o componente principal do appy. Todos os objetos criados a partir do resultado da execução de comandos são apresentados nessa área, como por exemplo, logplots e crossplots.

Capítulo 2 - Configurando um projeto appy

2.1) Criando um novo projeto appy

Para iniciar a utilização do appy, os usuários precisam criar um novo projeto como primeiro passo. Todos os dados importados, os dados processados, e as visualizações resultantes serão salvos dentro do projeto.

Passo 1: No menu principal, clique no botão FILE.

Passo 2: Clique no botão CREATE PROJECT.

Passo 3: Uma nova janela será inicializada. Nela selecione o nome do projeto e o diretório onde deseja salvar. Para navegar entre as pastas do computador, o usuário pode clicar no ícone à direita. Em seguida, clique no botão **OK**.

Quando finalizado, uma pasta será criada no caminho selecionado com diversos arquivos padrões do projeto appy. Na tela, apresentará uma janela informando que o projeto foi criado com sucesso.

2.2) Carregando um projeto appy existente

Com algum projeto appy já criado, é possível carregar esse projeto para continuar a utilização do software.

Passo 1: No menu principal, clique no botão FILE.

Passo 2: Clique no botão LOAD PROJECT.

Passo 3: Uma nova janela será inicializada. Selecione o local onde o projeto appy está. É possível navegar pelas pastas do computador, clicando no ícone à direita. Em seguida, clique no botão **OK**.

Quando finalizado, todos os dados do projeto serão visualizados no menu lateral, assim como, uma mensagem de que o projeto foi carregado com sucesso.

Capítulo 3 - Importar dados

3.1) Importar arquivos *.las

Na versão atual do software appy, é possível apenas importar dados de arquivo no formato LAS 2.0 (Log ASCII Format).

Passo 1: No menu principal, clique no botão IMPORT.

Passo 2: Clique no botão IMPORT LAS FILE.

Passo 3: Uma nova janela será inicializada. O primeiro parâmetro a ser selecionado é o caminho do arquivo LAS. Para navegar pelas pastas do computador, pode ser utilizado o ícone à direita.

Passo 4: No campo "Well name", selecione o nome do poço em que será salvo os dados do arquivo LAS.

Passo 5: No campo "Well log set name", selecione o nome do grupo de curvas em que será salvo os dados do arquivo LAS.

mport LAS file - Select LAS file	
C:\Users\rmota\Documents\appy	y\appy-data\7-MP-25-BA.las
- Well name — 7-MP-25-BA	
Well log set name wireline	
	CANCEL OK
asso 6: Clique no botão OK .	
Import LAS file - Select LAS file	
C:\Users\rmota\Documents\appy	

Quando finalizado, será adicionado o poço selecionado ao banco de dados do projeto. As informações referentes a esse poço serão atualizadas no menu lateral.

IMPORTANTE: Se o campo "Well name" não for preenchido, por padrão o appy colocará o nome do poço contido no arquivo LAS. Se o campo "Well log set name" não for preenchido, por padrão o appy nomeará de "wireline".

Capítulo 4 - Exportar dados

4.1) Exportar arquivos *.las

Na versão atual do software appy, é possível apenas exportar dados para arquivo no formato LAS 2.0 (Log ASCII Format).

Passo 1: No menu principal, clique no botão EXPORT.

Passo 2: Clique no botão EXPORT LAS FILE.

Passo 3: Uma nova janela será inicializada. O primeiro parâmetro a ser selecionado é o caminho onde o arquivo LAS será salvo. Para navegar pelas pastas do computador, pode ser utilizado o ícone à direita.

Passo 4: No campo "Well name", selecione o nome do poço presente no banco de dados de onde os dados adquiridos para ser salvo no arquivo LAS.

Export LAS file	
C:\Users\rmota\Documents\well.las	0
7-MP-25-BA	
Well log set name	
	CANCEL OK

Passo 5: No campo "Well log set name", selecione o nome do grupo de curvas, presente no poço selecionado anteriormente, de onde os dados adquiridos para ser salvo no arquivo LAS.

Passo 6: Clique no botão OK.

Export LAS file	
C:\Users\rmota\Documents\well.las	
7-MP-25-BA	
Well log set name wireline	
	CANCEL OK

Capítulo 5 - LogPlot

O logplot é uma ferramenta fundamental para a avaliação de perfis, com ela é possível visualizar diferentes tipos de dados, como por exemplo, perfis, zonas, marcos, textos. Na versão atual do appy, é possível criar um logplot a partir de um template previamente configurado e também um customizado de acordo com as preferências do usuário.

5.1) Logplot via template

Uma das maneiras de criar um logplot no appy é a partir de um template. Um template é um arquivo no formato .JSON que contém todas as configurações de um gráfico logplot.

- Passo 1: No menu principal, clique no botão PLOT.
- Passo 2: Clique no botão CREATE LOGPLOT.
- **Passo 3:** Uma nova janela será inicializada. Duas opções serão apresentadas, clique em: **FROM A TEMPLATE**.
- Passo 4: Em seguida, é necessário informar o caminho onde o template (arquivo .JSON) está localizado. Clicando no ícone à direita é possível navegar entre as pastas do computador.

Select template:

Passo 5: Clique no botão OK.

Select template:

Passo 6: Uma nova aba será criada, juntamente com uma nova janela de visualização e terá como o título o nome poço que está sendo visualizado no gráfico.

5.2) Logplot customizado

O logplot customizado é uma outra forma de se criar esse tipo de visualização. A cada passo o usuário constrói o gráfico, do jeito que desejar.

- Passo 1: No menu principal, clique no botão PLOT.
- Passo 2: Clique no botão CREATE LOG PLOT.
- **Passo 3:** Uma nova janela será inicializada. Duas opções serão apresentadas, agora clique em: **CUSTOM**.
- **Passo 4:** Em seguida, é necessário selecionar o poço que será visualizado. Clicando no ícone à direita, o seletor apresentará todas as opções de poços presentes no banco de dados do projeto carregado.

Passo 5: Selecione a quantidade de *tracks* desejada clicando no botão Add Track.

Passo 6: Para cada *track* selecionado, informe qual perfil deseja plotar, escolhendo o mnemônico da curva no seletor. Em seguida, escolha o tipo de cada curva correspondente, selecionando a opção de texto ou linha.

Passo 7: Clique no botão OK.

Uma nova aba será criada com o título do poço selecionado.

Capítulo 6 - CrossPlots

Passo 1: No menu principal, clique no botão PLOT.

Passo 2: Clique no botão CREATE CROSSPLOT.

Passo 3: Uma nova janela será inicializada. No primeiro campo é preciso selecionar o poço. Clicando no ícone à direita, o seletor apresentará todas as opções de poços presentes no banco de dados do projeto carregado. Em seguida, o appy apresentará as configurações para cada eixo do gráfico.

Create crossplot			
← Well name		_]
	7-MP-22-BA		
	7-MP-25-BA		
	7-MP-50D-BA		

Passo 4: Para o eixo X (horizontal), no campo **DATA** selecione o perfil que deseja ser visualizado. Nos campos **LEFT** e **RIGHT**, selecione os limites à direita e à esquerda do gráfico. Caso não seja informado, o appy automaticamente cria o cross plot com o limite à esquerda, sendo o mínimo e o limite a direita, o máximo da curva.

Create crossplot	
7-MP-25-BA	•
	X-Axis
RHOZ	•
Left — 2	Right—3
	Y-Axis
Data	•
Bottom	Тор
	Z-Axis
Data	•
	CANCEL OK

Passo 5: Para o eixo Y (vertical), no campo **DATA** selecione o perfil que deseja ser visualizado. Nos campos **BOTTOM** e **TOP**, selecione os limites de baixo e de cima do gráfico. Caso não seja informado, o appy automaticamente cria o cross plot com o limite de baixo, sendo o mínimo e o limite de cima, o máximo da curva.

Create crossplot
Vell name — ▼
X-Axis
RHOZ *
CLeft Right 3
Y-Axis
Data ■ NPHI
O Top—O.5
Z-Axis
Data
CANCEL OK

Passo 6: Caso seja necessário a visualização do terceiro eixo, selecione no campo **DATA** o perfil. Caso não deseje a informação do eixo Z, não preencha o campo **DATA**.

Create crossplot
Vell name — ▼ 7-MP-25-BA
X-Axis
RHOZ Total
CLeft Right 3
Y-Axis
Data ▼ NPHI ▼
Bottom Top 0.5
Z-Axis
Data
CANCEL OK

Passo 7: Para finalizar e criar o gráfico, clique no botão **OK**. Uma nova aba e uma nova janela de visualização serão criadas.

Capítulo 7 - Comandos

Diversos outros comandos mais específicos desenvolvidos para o appy são apresentados na seção **COMMAND**, como por exemplo, diferentes métodos de cálculos petrofísicos, a calculadora de perfis, entre outros. A seguir serão detalhados como executar cada um desses comandos.

7.1) Batch import LAS file

Com a execução do comando *Batch import LAS file* é possível importar diversos arquivos LAS presentes em uma única pasta, para o projeto carregado.

Passo 1: No menu principal, clique no botão COMMAND.

Passo 2: Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.

Passo 3: No seletor Select command, clique no comando Batch import LAS file.

Passo 4: No primeiro campo disponível, *LAS file folder path*, digite o caminho da pasta em que contém os arquivos LAS a serem importados.

Passo 5: Em seguida, no campo *File extension*, digite LAS para a extensão do arquivo LAS.

Passo 6: Caso deseje filtrar arquivos presentes na pasta selecionada, no campo *Regular Expression*, digite uma expressão regular correspondente.

Passo 7: Clique no botão RUN para executar o comando. Após realizada, o poço referente a cada arquivo LAS importado será adicionado no banco de dados do projeto e o menu lateral será atualizado.

7.2) Calculadora de perfis

A execução do comando *Log Calculator*, permite calcular um novo perfil a partir de uma equação informada. Os perfis presentes no banco de dados do projeto carregado podem ser utilizados como parâmetros.

Passo 1: No menu principal, clique no botão COMMAND.

Passo 2: Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.

Passo 3: No seletor Select command, selecione o comando Log Calculator.

- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.
 - **Passo 5:** Informe o nome do grupo de curvas, no campo *Well log set name*.
- **Passo 6:** Para todos os perfis utilizados na equação, informe os mnemônicos separados por vírgula, no campo *Well log names*.
- **Passo 7:** Em *Equation*, digite a equação que deseja realizar. Para utilizar os perfis informados anteriormente, basta escrever os mnemônicos da mesma forma na equação.
- **Passo 8:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 9:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.

7.3) Cálculos de porosidade

Para calcular o perfil de porosidade existem três diferentes métodos desenvolvidos na versão atual do appy. Todas as fórmulas das diferentes metodologias utilizam a biblioteca científica stoneforge, também em desenvolvimento pelo grupo GIECAR. As etapas para executar os diferentes métodos são descritas abaixo.

7.3.1) Porosidade pelo perfil densidade

- Passo 1: No menu principal, clique no botão COMMAND.
- **Passo 2:** Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.
- **Passo 3:** No seletor *Select command*, selecione o comando *Density Porosity* (StoneForge).
- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.
 - Passo 5: Informe o nome do grupo de curvas, no campo Well log set name.
- **Passo 6:** Informe o mnemônico referente ao perfil de densidade (geralmente representado pelo mnemônico RHOB ou RHOZ).

- Passo 7: Informe o valor da densidade da matriz da rocha.
- Passo 8: Informe o valor da densidade do fluido presente na rocha.
- **Passo 9:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 10:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.

IMPORTANTE: Na versão atual do appy ainda não é possível calcular um perfil por zonas, ou seja, não é possível informar mais de um valor para o mesmo parâmetro. No caso do cálculo da porosidade será necessário informar um único valor da densidade da matriz da rocha e do fluído que representa o poço inteiro.

7.3.2) Porosidade pelo perfil neutrão

- Passo 1: No menu principal, clique no botão COMMAND.
- **Passo 2:** Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.
- **Passo 3:** No seletor *Select command*, selecione o comando *Neutron Porosity* (StoneForge).
- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.
 - **Passo 5:** Informe o nome do grupo de curvas, no campo *Well log set name*.
- **Passo 6:** Informe o mnemônico referente ao perfil neutrão (geralmente representado pelo mnemônico NPHI ou NPOR).
 - Passo 7: Informe o mnemônico referente ao perfil de volume de argila calculado.
 - Passo 8: Informe o valor do perfil neutrão para os folhelhos.
- **Passo 9:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 10:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.

7.3.3) Porosidade Gaymard-Poupon

- Passo 1: No menu principal, clique no botão COMMAND.
- **Passo 2:** Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.
- **Passo 3:** No seletor *Select command*, selecione o comando *Gaymard Porosity* (StoneForge).
- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.
 - Passo 5: Informe o nome do grupo de curvas, no campo Well log set name.
- **Passo 6:** Informe o mnemônico referente ao perfil de densidade (geralmente representado pelo mnemônico RHOB ou RHOZ).
- **Passo 7:** Informe o mnemônico referente ao perfil neutrão (geralmente representado pelo mnemônico NPHI ou NPOR).
- **Passo 8:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 9:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.

7.4) Cálculo do volume de argila

Para calcular o perfil que representa o volume de argila existem três diferentes métodos desenvolvidos na versão atual do appy: método linear, método larionov, método larionov para rochas terciárias. Todas as fórmulas das diferentes metodologias utilizam a biblioteca científica stoneforge, também em desenvolvimento pelo grupo GIECAR. As etapas para executar os diferentes métodos são descritas abaixo.

- Passo 1: No menu principal, clique no botão COMMAND.
- **Passo 2:** Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.

- **Passo 3:** No seletor *Select command*, selecione o comando *Shale Volume* (StoneForge).
- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.
 - Passo 5: Informe o nome do grupo de curvas, no campo Well log set name.
- **Passo 6:** Informe o mnemônico referente ao perfil de raios gama (geralmente representado pelo mnemônico GR).
 - Passo 7: Informe o valor mínimo do perfil de raios gama (GR).
 - Passo 8: Informe o valor máximo do perfil de raios gama (GR).
- **Passo 9:** No campo *Method*, informe qual método deseja ser utilizado para calcular o perfil de volume de argila. Pode ser escolhido apenas um dentre os três métodos disponíveis: *linear, larionov ou larionov terciary*.
- **Passo 10:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 11:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.

7.5) Cálculo da saturação de água

Para calcular o perfil que representa a saturação de água, existe apenas um método desenvolvido na versão atual do appy, o método por meio da equação de Archie. O software utiliza as fórmulas e equações necessárias, da biblioteca científica *StoneForge*, também em desenvolvimento pelo grupo GIECAR. As etapas para executar o comando são descritas abaixo.

- Passo 1: No menu principal, clique no botão COMMAND.
- **Passo 2:** Clique no botão **RUN COMMAND**. Em seguida, uma nova janela se inicializará para escolher o comando desejado.
- **Passo 3:** No seletor *Select command*, selecione o comando *Shale Volume* (StoneForge).
- **Passo 4:** No primeiro campo, *Well name*, digite o nome do poço, disponível no banco de dados, que deseje utilizar os perfis e também salvar o perfil criado.

- Passo 5: Informe o nome do grupo de curvas, no campo Well log set name.
- **Passo 6:** Informe o mnemônico referente ao perfil de resistividade profunda (geralmente representado pelo mnemônico RT ou ILD).
- **Passo 7:** Informe o mnemônico referente ao perfil neutrão (geralmente representado pelo mnemônico NPHI ou NPOR).
 - Passo 8: Informe o valor da resistividade da água.
 - Passo 9: Informe o fator de tortuosidade (a), da equação de Archie.
 - Passo 10: Informe o expoente de cimentação (m), da equação de Archie.
 - Passo 11: Informe o expoente de saturação (n), da equação de Archie.
- **Passo 12:** No campo *Output curve name*, digite o nome do perfil criado como resultado da execução do comando.
- **Passo 13:** Clique no botão **RUN** para executar o comando. Após finalizado, o novo perfil criado será salvo no banco de dados do grupo de curvas selecionado no passo 5 e no poço selecionado no passo 4. O menu lateral também será atualizado.