Causality and observational studies

Seung-Ho An, University of Arizona

Agenda

- Review
- Observational studies (cont)
- Descriptive statistics
- Missing data
- Proportion tables
- Measurement

Review

- Factual?
- Counterfactual?
- Why does RCT have a gold standard for social science research?
- Cross-sectional research

4. Observational Studies

Do newspaper endorsements matter

• Can newspaper endorsements change voters' minds?

Why not compare vote choice of readers of different papers?

- Problem: readers choose papers based on their previous beliefs
- Liberals \approx New York Times, conservatives \approx Wall Street Journal

Our case: British newspapers switching their endorsements

- Some news papers endorsing Tories in 1992 switched to Labour in 1997
- Treated group: readers of Tory -> Labour papers
- Control group:: readers of papers who didn't switch

Codebook for newspapers data

Variable	Description
to_labour	Read a newspaper that switched endorsement to Labour between 1992 and 1997 (1=yes, $0=no$)
vote_lab_92	Did respondent vote for Labour in 1992 election (1=yes, 0=no)?
vote_lab_97	Did respondent vote for Labour in 1997 election $(1=yes, 0=no)$?
age	Age of respondent
male	Does the respondent identify as Male $(1=yes, 0=no)$
parent_labour	Does the respondent' identify as 's parents vote for Labour (1=yes, 0=no)
work_class	Does the responedent identify as working class (1=yes, 0=no)?

library(tidyverse) library(TPDdata) newspapers

```
## # A tibble: 1,593 x 7
     to_labour vote_lab_92 vote_lab_97
                                             age male parent_labour work_class
##
##
         <db1>
                     <dbl>
                                 <dbl> <hvn_lbll> <dbl>
                                                              <db1>
                                                                          <dbl>
## 1
             0
                                              33
                                                     0
                                              51
                                                     0
## 3
                                              46
                                                     0
                                              45
## 5
                                              29
                                              47
                                              34
                                              31
                                              24
## 10
                                              48
                                                     0
## # ... with 1,583 more rows
```

Before-and-after comparison

Compare readers of party-switching newspapers before & after switch

Advantage: all person-specific features held fixed

• comparing within a person over time

Before-and-after estimate:

$$\overline{Y}_{treated}^{after} - \overline{Y}_{treated}^{before}$$

Threat to inference: **time-varying counfounders**

 time trend: Labour just did better overall in 1997 compared to 1992

Before and after in R

```
newspapers |>
 mutate(
   vote_change = vote_lab_97 - vote_lab_92
  ) |>
  summarize(avg_change = mean(vote_change))
## # A tibble: 1 x 1
## avg_change
       <dbl>
##
## 1 0.119
```

Differences in differences

Key idea: use the before-and-after difference of **control group** to infer what would have happened to **treatment group** without treatment

DiD estimate:

$$\underbrace{\left(\overline{Y}_{treated}^{after} - \overline{Y}_{treated}^{before}\right)}_{trend in treated group} - \underbrace{\left(\overline{Y}_{control}^{after} - \overline{Y}_{control}^{before}\right)}_{trend in control group}$$

Change in treated group above and beyond the change in control group

Parallel time trend assumption

- Changes in vote of readers of non-switching papers roughly the same as changes that readers of switching papers would have been if they read non-switching papers
- Threat to inference: non-parallel trends

Difference-in-differences in R

```
newspapers |>
 mutate(
   vote_change = vote_lab_97 - vote_lab_92,
   to_labour = if_else(to_labour ==1, "switched", "unswitched")
 ) |>
 group_by(to_labour) |>
 summarize(avg_change = mean(vote_change)) |>
 pivot_wider(
   names_from = to_labour,
   values from = avg change
 ) |>
 mutate(DID = switched - unswitched)
## # A tibble: 1 x 3
## switched unswitched DID
## <dbl> <dbl> <dbl>
## 1 0.190 0.110 0.0796
```

Summarizing approaches

1. Cross-sectional comparison

- Compare treated units with control unites after treatment
- Assumption: treated and control units are comparable
- Possible confounding

2. Before-and-after comparison

- Compare the same units before and after treatment
- Assumption: no time-varying confounding

3. Differences-in-differences

- Assumption: parallel trends assumptions
- Under this assumption, it accounts for unit-specific and time-varying confounding

All rely on assumptions that can't be verified to handle confounding

RCTs handle confounding by design (gold standard)

1. Descriptive Statistics

Lots of data

```
library(tidyverse)
library(gapminder)
gapminder
```

```
## # A tibble: 1,704 x 6
##
     country
                 continent
                            year lifeExp
                                              pop gdpPercap
##
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                            <int>
                                                      <db1>
##
    1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                       779.
##
    2 Afghanistan Asia
                            1957
                                    30.3 9240934
                                                       821.
   3 Afghanistan Asia
##
                            1962
                                    32.0 10267083
                                                       853.
##
    4 Afghanistan Asia
                            1967
                                    34.0 11537966
                                                       836.
##
    5 Afghanistan Asia
                            1972
                                    36.1 13079460
                                                       740.
   6 Afghanistan Asia
##
                            1977
                                    38.4 14880372
                                                       786.
##
   7 Afghanistan Asia
                            1982
                                    39.9 12881816
                                                       978.
##
   8 Afghanistan Asia
                            1987
                                    40.8 13867957
                                                       852.
##
    9 Afghanistan Asia
                            1992
                                    41.7 16317921
                                                       649.
## 10 Afghanistan Asia
                            1997
                                    41.8 22227415
                                                       635.
## # ... with 1.694 more rows
```

Lots and lots of data

head(gapminder \$gdpPercap, n = 200)

```
##
     [1]
           779.4453
                       820.8530
                                  853,1007
                                              836.1971
                                                          739.9811
                                                                     786.1134
     [7]
                                                          726.7341
##
           978.0114
                       852.3959
                                  649.3414
                                              635.3414
                                                                     974.5803
##
    [13]
          1601.0561
                      1942,2842
                                 2312.8890
                                             2760.1969
                                                        3313,4222
                                                                    3533.0039
    Г197
##
          3630.8807
                      3738.9327
                                 2497.4379
                                             3193.0546
                                                        4604.2117
                                                                    5937.0295
##
    Γ251
          2449.0082
                      3013.9760
                                 2550.8169
                                             3246.9918
                                                        4182.6638
                                                                    4910.4168
##
    [31]
          5745,1602
                      5681.3585
                                 5023,2166
                                             4797, 2951
                                                        5288,0404
                                                                    6223.3675
##
    [37]
          3520.6103
                      3827.9405
                                 4269.2767
                                             5522.7764
                                                        5473.2880
                                                                    3008.6474
##
    [43]
          2756.9537
                      2430,2083
                                 2627.8457
                                             2277,1409
                                                        2773,2873
                                                                    4797.2313
##
    [49]
          5911.3151
                      6856.8562
                                 7133,1660
                                             8052,9530
                                                        9443.0385 10079.0267
    [55]
                      9139.6714
                                            10967.2820
                                                        8797.6407 12779.3796
##
          8997.8974
                                 9308.4187
##
    [61]
         10039.5956 10949.6496 12217.2269 14526.1246 16788.6295 18334.1975
    [67]
         19477.0093 21888.8890 23424.7668 26997.9366 30687.7547 34435.3674
##
    [73]
          6137.0765
                      8842.5980 10750.7211 12834.6024 16661.6256 19749.4223
##
##
    [79]
         21597.0836 23687.8261 27042.0187
                                            29095.9207 32417.6077 36126.4927
    [85]
##
          9867.0848 11635.7995 12753.2751 14804.6727
                                                       18268.6584 19340.1020
##
    [91]
         19211.1473 18524.0241 19035.5792 20292.0168 23403.5593 29796.0483
##
    [97]
           684.2442
                       661.6375
                                  686.3416
                                              721,1861
                                                          630,2336
                                                                     659.8772
   Γ1037
                                              972,7700
                                                         1136.3904
##
           676.9819
                       751.9794
                                  837.8102
                                                                    1391.2538
##
   [109]
          8343.1051
                      9714.9606 10991.2068 13149.0412 16672.1436 19117.9745
   Γ115]
         20979.8459 22525.5631 25575.5707 27561.1966 30485.8838 33692.6051
   [121]
          1062.7522
                       959.6011
                                  949.4991
                                             1035.8314
                                                        1085.7969
                                                                    1029.1613
##
##
   [127]
          1277.8976
                      1225.8560
                                 1191.2077
                                             1232,9753
                                                        1372.8779
                                                                    1441,2849
                                                                    3548.0978
  Γ1337
          2677.3263
                                                        2980.3313
##
                      2127.6863
                                 2180.9725
                                             2586.8861
## [120]
          2166 6106
                      2752 6015
                                  2061 6007
                                             2226 1/22
                                                         2/12 2627
```

How to summarize data

- How should we summarize the wages data? Many possibilities!
 - Up to now: focus on averages or means of variables
- Two salient features of a variable that we want to know:
 - Central tendency: where is the middle/typical/average value
 - Spread around the center: are all values to the center or spread out?

Center of the data

- "Center" of the data: typical/average value
- Mean: Sum of the values divided by the number of observations

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Median:

$$\mathsf{median} = \left\{ \begin{array}{ll} \mathsf{middle} \ \mathsf{value} & \mathsf{if} \ \mathsf{number} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{is} \ \mathsf{odd} \\ \frac{\mathsf{sum} \ \mathsf{of} \ \mathsf{two} \ \mathsf{middle} \ \mathsf{values}}{2} & \mathsf{if} \ \mathsf{number} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{is} \ \mathsf{even} \end{array} \right.$$

In R: mean() and median()

Mean vs. median

- Median more robust to outliers:
 - Example 1: data = $\{0, 1, 2, 3, 5\}$. Mean? Median?
 - Example 2 data= {0, 1, 2, 3, 100}. Mean? Median?
- What does Mark Zuckerberg do the mean vs. median income?

```
ggplot(gapminder, aes(x = lifeExp)) +
  geom_histogram(binwidth = 1) +
  geom_vline(aes(xintercept = mean(lifeExp)), color = "indianred") +
  geom_vline(aes(xintercept = median(lifeExp)), color = "dodgerblue")
```


summary(gapminder\$lifeExp)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 23.60 48.20 60.71 59.47 70.85 82.60
```

```
ggplot(gapminder, aes(x = gdpPercap)) +
  geom_histogram(binwidth = 5000) +
  geom_vline(aes(xintercept = mean(gdpPercap)), color = "indianred") +
  geom_vline(aes(xintercept = median(gdpPercap)), color = "dodgerblue")
```


summary(gapminder\$gdpPercap)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 241.2 1202.1 3531.8 7215.3 9325.5 113523.1
```

Which distribution would you prefer?

Lottery where we randomly draw one value from A or B:

They have the same mean, so why do we care about the difference? Spread!!

Spread of the data

- Are the values of the variable close to the center?
- Range: [min(X), max(X)]
- Quantile (quartile, percentile, etc.): divide data into equal sized groups
 - 25th percentile = lower quartile (25% of the data below this value)
 - 50th percentile = median (50% of the data below this value)
 - 75th percentile = upper quartile (75% of the data below this value)
- Interquartile range (IQR): a measure of variability
 - How spread out is the middle half of the data?
 - Is most of the data really close to the median or are the values spread out?
- R function: range(), summary(), and IQR()

Standard deviation

• **Standard deviation**: On average, how far away are data points from the mean?

standard deviation =
$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2}$$

- Steps:
 - 1 Subtract each data point by the mean
 - 2 Square each resulting difference
 - 3 Take the sum of these values
 - 4 Divide by n-1 (or n, does not matter much)
 - **5** Take the square root
- Variance = standard deviation²
- Why not just take the average deviations from mean without squaring?

2. Missing data

Missing data

- Nonresponse: respondent can't or won't answer question
 - Sensitive questions \approx social desirability bias
 - Some countries lack official statistics like unemployment
 - Leads to missing data
- Missing data in R: a special value NA
- Have already seen how to use na.rm= TRUE

Afghan study

```
library(TPDdata)
cces_2020
```

```
## # A tibble: 51.551 x 6
## gender race educ
                                    pid3
                                               turnout_self pres_vote
     <fct> <fct> <fct>
                                    <fct>
                                                     <dbl> <fct>
## 1 Male White 2-vear
                                    Republican
                                                         1 Donald J. Trump (~
## 2 Female White Post-grad
                                    Democrat
                                                       NA <NA>
## 3 Female White 4-year
                                                       1 Joe Biden (Democr~
                                    Independent
## 4 Female White 4-year
                                    Democrat
                                                        1 Joe Biden (Democr~
## 5 Male White 4-year
                                    Independent
                                                        1 Other
## 6 Male White Some college
                                    Republican
                                                       1 Donald J. Trump (~
## 7 Male Black Some college
                                    Not sure
                                                       NA <NA>
## 8 Female White Some college
                                    Independent
                                                     1 Donald J. Trump (~
                                                   1 Donald J. Trump (~
## 9 Female White High school graduate Republican
## 10 Female White 4-year
                                                      1 Joe Biden (Democr~
                                    Democrat
## # ... with 51,541 more rows
```

drop_na() to remove rows with missing values

```
cces_2020 |>
drop_na()
```

```
## # A tibble: 45,651 x 6
     gender race educ
                                     pid3
                                                turnout_self pres_vote
     <fct> <fct> <fct>
                                     <fct>
                                                      <dbl> <fct>
## 1 Male White 2-year
                                     Republican
                                                          1 Donald J. Trump (~
## 2 Female White 4-year
                                                         1 Joe Biden (Democr~
                                    Independent
## 3 Female White 4-vear
                                    Democrat
                                                         1 Joe Biden (Democr~
## 4 Male White 4-year
                                     Independent
                                                         1 Other
## 5 Male White Some college
                                     Republican
                                                       1 Donald J. Trump (~
1 Donald J. Trump (~
## 6 Female White Some college
                                     Independent
## 7 Female White High school graduate Republican
                                                       1 Donald J. Trump (~
## 8 Female White 4-year
                                     Democrat
                                                       1 Joe Biden (Democr~
## 9 Female White 4-year
                                     Democrat
                                                 1 Joe Biden (Democr~
## 10 Female White 4-year
                                    Democrat 1 Joe Biden (Democr~
## # ... with 45,641 more rows
```

Drop rows based on certain variables

```
cces_2020 |>
  dim_desc()
## [1] "[51,551 x 6]"
cces_2020 |>
  drop_na() |>
  dim_desc()
## [1] "[45,651 x 6]"
cces_2020 |>
  drop_na(turnout_self) |>
  dim_desc()
## [1] "[48,462 x 6]"
```

Available-case vs. complete-case analysis

Available-case analysis: use the data you have for that variable:

```
cces_2020 |>
  summarize(mean(turnout_self, na.rm=TRUE)) |>
  pull()
```

[1] 0.9421815

Complete-case analysis: only use units that have data on all variables

```
cces_2020 |>
drop_na() |>
summarize(mean(turnout_self)) |>
pull()
```

[1] 0.9994524

(also called listwise deletion)

is.na() to detect missingness

Trying to detect missingness with == doesn't work:

[1] FALSE FALSE TRUE FALSE

Can use sum() or mean() on this to get number/proportion missing:

```
sum(is.na(c(5, 6, NA, 0)))
## [1] 1
```

Nonresponse bias

Nonresponse can create bias if lower turnout -> more non-response:

```
cces_2020 |>
  group_by(pid3) |>
  summarize(
   mean_turnout = mean(turnout_self, na.rm = TRUE),
  missing_turnout = mean(is.na(turnout_self))
)
```

```
## # A tibble: 5 x 3
##
    pid3 mean_turnout missing_turnout
    <fct>
                     <dbl>
                                   <db1>
##
## 1 Democrat
                     0.963
                                  0.0280
## 2 Republican
                  0.953
                                  0.0403
## 3 Independent 0.924
                                  0.0718
## 4 Other
                    0.957
                                  0.0709
## 5 Not sure
                  0.630
                                  0.431
```

3. Proportion tables

Review of getting counts

First, let's review how to get counts:

```
cces 2020 |>
  group_by(pres_vote) |>
  summarize(n = n())
## # A tibble: 7 x 2
##
    pres_vote
                                       n
##
     <fct>
                                   <int>
## 1 Joe Biden (Democrat)
                                   26188
## 2 Donald J. Trump (Republican) 17702
## 3 Other
                                    1458
## 4 T did not vote in this race
                                     100
## 5 I did not vote
                                     13
                                     190
## 6 Not sure
## 7 <NA>
                                    5900
```

First attempt to create proportions

```
cces 2020 |>
 group_by(pres_vote) |>
 summarize(prop = n() / sum(n()))
## # A tibble: 7 x 2
##
    pres vote
                                   prop
   <fct>
                                  <dbl>
##
## 1 Joe Biden (Democrat)
## 2 Donald J. Trump (Republican)
## 3 Other
## 4 I did not vote in this race
## 5 T did not vote
## 6 Not sure
## 7 <NA>
```

Inside summarize() all operations are done within groups!

Mutate after summerizing

```
cces_2020 |>
  group_by(pres_vote) |>
  summarize(n = n()) >
 mutate (prop = n / sum(n))
## # A tibble: 7 x 3
## pres_vote
                                          prop
## <fct>
                                  <int> <dbl>
## 1 Joe Biden (Democrat)
                                  26188 0.508
## 2 Donald J. Trump (Republican) 17702 0.343
## 3 Other
                                   1458 0.0283
## 4 I did not vote in this race 100 0.00194
                                     13 0.000252
## 5 T did not vote
## 6 Not sure
                                    190 0.00369
## 7 <NA>
                                   5900 0.114
```

Grouping is silently dropped after summarize()

Another approach

```
cces 2020 |>
  group_by(pres_vote) |>
  summarize(prop = n() / nrow(cces 2020))
## # A tibble: 7 x 2
## pres_vote
                                       prop
## <fct>
                                      <dbl>
## 1 Joe Biden (Democrat)
                                  0.508
## 2 Donald J. Trump (Republican)
                                  0.343
## 3 Other
                                  0.0283
## 4 T did not vote in this race
                                  0.00194
## 5 T did not vote
                                  0.000252
                                  0.00369
## 6 Not sure
## 7 <NA>
                                  0.114
```

Doesn't work if you have filtered the data in any way during the pipe

Multiple grouping variables

What happens with multiple grouping variables?

```
## `summarise()` has grouped output by 'pid3'. You can override using the
## `.groups` argument.
## # A tibble: 10 x 3
## # Groups:
            pid3 [5]
##
     pid3
              pres vote
                          prop
     <fct>
             <chr>
                          <dbl>
##
   1 Democrat Biden
                         0.968
##
##
   2 Democrat Trump
                         0.0319
   3 Republican Biden
                         0.0712
##
##
   4 Republican
                Trump
                         0.929
##
   5 Independent Biden
                         0.571
   6 Independent Trump
                         0.429
##
##
   7 Other
                Biden
                         0.487
                         0.513
##
   8 Other
                Trump
##
   9 Not sure
                Biden
                         0.599
## 10 Not sure Trump
                         0.401
```

With multiple grouping variables, summarize() drops the last one

Visualizing the cross-tab

We can visualize this using the fill aesthetic and position="dodge":

Pivoting to create cross-tab

```
vote_by_party <- cces_2020 |>
 filter(pres_vote %in% c("Joe Biden (Democrat)",
                          "Donald J. Trump (Republican)")) |>
 mutate(pres_vote = if_else(pres_vote == "Joe Biden (Democrat)",
                             "Biden", "Trump")) |>
 group_by(pid3, pres_vote) |>
 summarize (n = n()) >
 mutate(prop = n / sum(n)) >
 select(-n) |>
 pivot_wider(
   names_from = pid3,
   values_from = prop
vote by party
```

 $\mbox{\tt \#\#}$ `summarise()` has grouped output by 'pid3'. You can override using the $\mbox{\tt \#\#}$ `.groups` argument.

##	#	A tibble:	2 x 6					
##		pres_vote	${\tt Democrat}$	Republican	Independent	Other	`Not	sure`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>
##	1	Biden	0.968	0.0712	0.571	0.487		0.599
##	2	Trump	0.0319	0.929	0.429	0.513		0.401

What if we want row proportions?

```
## `summarise()` has grouped output by 'pres_vote'. You can override using the
## `.groups` argument.
```

A tibble: 2 x 6

Groups: pres_vote [2]

pres_vote Democrat Republican Independent Other `Not sure`

<chr> ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 Biden 0.674 0.0327 0.252 0.0281 0.0133

2 Trump 0.0328 0.631 0.280 0.0437 0.0131

Proportion of all observations

If we want the proportion of all rows, drop all groups

```
## # A tibble: 2 x 6
## pres_vote Democrat Republican Independent Other `Not sure`
    <chr>
##
               <dbl>
                     <dbl>
                                  <dbl>
                                        <dbl>
                                                 <dbl>
## 1 Biden
              0.402 0.0195 0.150 0.0167 0.00791
                                  0.113 0.0176
## 2 Trump
              0.0132
                       0.254
                                               0.00529
```

4. Measurement

Where does data come from?

- Social science is about developing and testing causal theories:
 - Does minimum wage change levels of employment?
 - Does outgroup contact influence views on immigration?
- Theories are made up of concepts:
 - Minimum wage, level of employment, outgroup contact, views on immigration
 - We took these for granted when talking about causality
- Need operational definition to concretely measure these concepts

Concepts vary in how observable they are

Kinds of measurement arranged by how direct we can measure them:

Observable in the world

- Minimum wage laws
- Election results
- Crime rates

Observable by survey

- Age of a person
- Employment status
- Presidential approval

Not directly observable

- A person's ideology
- Levels of democracy

Example

- Concept: presidential approval
- Conceptual definition:
 - Extent to which US adults support the actions and policies of the current US president
- Operational definition:
 - "On a scale from 1 to 5, where 1 is least supportive and 5 is more supportive, how much would you say you support the job that Joe Biden is doing as president?"

Measurement error

Table 1: Response to Citizenship Question Across Two-Waves of CCES Panel				
Response in 2010	Response in 2012	Number of Respondents	Percentage	
Citizen	Citizen	18,737	99.25	
Citizen	Non-Citizen	20	0.11	
Non-Citizen	Citizen	36	0.19	
Non-Citizen	Non-Citizen	85	0.45	

- Measurement error: chance variation in our measurements
 - individual measurement = exact value + chance error
 - chance errors tend to cancel out when we take averages
 - why do these occur? often data entry errors or faulty memories

TRUMP PENCE TO THE PROPERTY OF
1. How would you rate President Trump's job performance so far? Great Good Gokay Gother
(Optional) Please explain why you selected your response.

Bias: systematic errors for all units in the same direction

- Individual measurement = exact value + bias + chance error
- "What did you eat yesterday?" ' → underreporting

1936 Literary Digest poll

Literary Digest predicted elections using mail-in polls Source of addresses: automobile registrations, phone books, etc In 1936, sent out 10 million ballots, over 2.3 million returned George Gappup used only 50,000 respondents

Polling organization	FDR's vote share
Literary Digest George Gallup	43 56

Polling organization	FDR %
Literary Digest	43
George Gallup	56
Actual Outcome	62

Selection bias: ballots skewed toward the wealthy (with cars, phones)

Only 1 in 4 households had a phone in 1936

Nonresponse bias: respondents differ from nonrespondents

 when selection procedure is biased, adding more units won't help

1948 Election

The polling disaster

Polling organization	Truman	Dewey	Thrumond	Wallace
Crossley	45	50	2	3
Gallup	44	50	2	4
Roper	38	53	5	4
Actual outcome	50	45	3	2

Quota sampling: fixed quota of certain respondents for each interviewer

 If black women make up 5% of the population, stop interviewing them once they make up 5% of your sample

Sample resembles the population on these characteristics

Potential unobserved confounding \leadsto selection bias

Republicans easier to find within quotas (phones, listed addresses)

Sample surveys

Probability sampling to ensure representatives

 Definition: every unit in the population has a know, non-zero probability of being selected into sample

Simple random sampling: every unit has an **equal** selection probability

Random digit dialing:

- Take a particular area code + exchange: 520-290-XXXX
- Randomly choose each digit in XXXX to call a particular phone
- Every phone in America has an equal chance of being included in sample

Sampling lingo

Target population: set of people we want to learn about

Ex: people who will vote in the next elections

Sampling frame: list of people from which we will actually sample

 Frame bias: list of registered voters (frame) might include nonvoters!

Sample: set of people contacted

Respondents: subset of sample that actually responds to the survey

- Unit non-response: sample \neq respondents
- Not everyone picks up their phone

Completed items: subset of questions that respondents answer

• Item non-response: refusing to disclose their vote preference

Difficulties of sampling

Problems of telephone survey

- Cell phone (double counting for the wealthy)
- Caller ID screening (unit non-response)
- Response rates down to 9%

An alternative: Internet surveys

- Opt-in panels, respondent-driven sampling → non-probability sampling
- Cheaper, but non-representative
- Digital divide: rich vs. poor, young vs. old
- Correct for potential sampling bias via statistical methods