Algorithmic Trip Chartering

Program summarization

McIntire, Sairam, Shaikh

Background - 1/2

Current public transit is overcrowded. Eplane intends to offer a novel solution by introducing aerial public transportation. By circumventing conventional traffic, air taxis provide an expedited form of transportation.

Background - 2/2

Problem Statement

- How do we assign air taxis to the customers?
 - Air taxis are charged at vetihubs and vertiports
 - Rides are chartered to be picked up and dropped at vertiports and vertistops

Complexities

- On demand chartering
- Battery health
- No fly zoning
- CAA regulations

Literature Review

OPTIMIZATION OF TAXI CABS ASSIGNMENT USING A GEOGRAPHICAL LOCATION-BASED SYSTEM IN DISTINCT OFFER AND DEMAND SCENARIOS

- o Introduces hybrid simulation goal programming (HSGP) for real-time air taxi dispatching in cities.
- Focuses on New York City's centralized network.
- o Dynamically allocates air taxis after each customer drop-off.
- Decides whether taxis should idle or pick up new customers and where they should go.
- o Concludes that 84 air taxis are needed for efficiency in New York City.
- Real-time dispatching of air taxis in metropolitan cities using a hybrid simulation goal programming algorithm
 - Evaluates methods for assigning taxis to customers in location-based systems.
 - Focuses on optimizing time and distance.
 - Combines GPS and pythagorean distance calculations.
 - Uses greedy and optimization-based vehicle assignment strategies.
 - Finds that using a shortest path algorithm with an optimization model significantly improves service efficiency.

Incorporated solution - 1/3

'Greedy' Approach

Named for its minimization wait time. The greedy approach is a relatively fundamental algorithm that assigns the closest taxi capable of completing the charter. A taxi is considered available if it is currently idle and has enough battery to complete the trip.

Greedy Algorithms Strategy

Incorporated solution - 2/3

Algorithm Overview

- Greedy Approach for Trip
 Assignment
- Calculated travel time and battery requirement for each trip
- Adjusted the start times based on the availability of the Air Taxi
- Updated the States of the Air Taxi after the trips

Key Functions

- calculate_travel_time Assume one unit of distance will take one unit of time
- calculate _required_battery Add Distance to Start and
 Distance of the trip, and assume that 1 unit of distance
 will take 1 unit of charge
- find_nearest_vertiport Find nearest port to send for charging if battery falls below threshold
- simulate_air_taxi_operations Simulate the operations based on the amount of time period specified

Incorporated solution - 3/3

Advantages	Disadvantages
Easy to implement	Future customers can get affected,
Speed and Efficiency	since it ignores how current choices
Good initial solution that can be	could affect the future
improved upon	Suboptimal Routing for the air taxi,
Can handle large data sets more	since it selects the nearest option not
efficiently	considering the overall route
Provides good approximate estimates	

Simulation - First Sketch

Simulation - Current Look

- Simulation runs for selected period of time
- Demand is generated using the poisson distribution
- Vertiports are created at random locations in a 2d grids
- Trips are assigned to air taxis
- Assumptions:
 - Each kilometer = 1% battery loss
 - Trip path was simplified and all paths were assumed straight

Integer Programming

- Choose a variable to optimize
- Aims to find most optimal solution to the problem
- Easier to incorporate constraints such as trip start and end timings
- Can optimize multiple variables such as minimizing travel time and maximizing battery health
- Is computationally intensive
- Might overfit trying to find the most exact solution

Trip Assignment Updating

- Sorted the trips by start time
- Found the best Air Taxi by arrival time and battery level
- Adjusted the start time if the air taxi will be late

Updating the Air Taxis

- Update location battery level and availability time after each trip
- Handle Charging if battery falls below threshold

Future Developments

- Implement and compare different approaches such as integer programming and heuristic algorithms
- Add actual vertiport data, in a 3d map and plan out flight routes depending on altitudes and no fly zones
- Add a 3d simulation of the flight path and optimize battery charging by deciding whether to send it to fast, slow or rapid charging
- Implement mechanisms to adapt to on demand change
- Update simulation to display curved paths for trip
- Implement algorithm into application with group 1's vertistop project