TD C7 - Oscillateurs linéaires en régime sinusoïdal forcé

Capacités exigibles

- Manipuler des signaux complexes en régime sinusoïdal forcé : tous les exercices!
- Exploiter des courbes d'amplitude et de phase en fonction de la fréquence d'excitation : exercices 2, 3, 4.
- Déterminer l'impédance équivalente d'un circuit en régime sinusoïdal forcé : exercices 4, 6.
- Relier l'acuité d'une résonance au facteur de qualité : exercices 4, 6.

1 Notation complexe

Écrire, sous forme complexe, les équations différentielles suivantes :

$$\tau \frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = E_0 \sin \omega t \qquad \qquad \ddot{x} + 2\lambda \dot{x} + \omega_0^2 x(t) = F_0 \cos \omega t$$

2 Filtre de Wien

On considère le circuit ci-contre avec $e(t)=E_m\cos(\omega t).$ On note $u(t)=U_m\cos(\omega t+\varphi)$ et on pose $H_m=U_m/E_m$

1. Déterminer les valeurs limites de u(t) à basse et haute fréquences.

Les courbes représentatives de $H_m(\omega)$ et $\varphi(\omega)$ sont fournies par les figures ci-dessous.

- 2. Observe-t-on un phénomène de résonance en tension? Justifier.
- 3. Déterminer graphiquement la pulsation de résonance, les pulsations de coupure et la bande passante du filtre.
- 4. Après avoir associé certaines impédances entre elles, établir l'expression de $\underline{H} = \underline{u}/\underline{e}$. La mettre sous la forme :

$$\underline{H} = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad \text{avec } x = \frac{\omega}{\omega_0}$$

avec H_0, ω_0 et Q des constantes à exprimer en fonction (éventuellement) de R et C.

5. Déterminer graphiquement la valeur du produit RC.

3 Modélisation d'un haut-parleur

On modélise la partie mécanique d'un haut-parleur comme une masse m, se déplaçant horizontalement le long d'un axe (Ox). Cette masse est reliée à un ressort de longueur à vide ℓ_0 et de raideur k et subit une force de frottement fluide : $\vec{f} = -\alpha \vec{v}$. Elle est par ailleurs soumise à une force $\vec{F}(t)$, imposée par le courant i(t) entrant dans le haut-parleur, qui vaut : $\vec{F}(t) = Ki(t)\vec{u}_x$ où K est une constante. On travaille dans le référentiel du laboratoire $(O, \vec{u}_x, \vec{u}_y)$. On suppose que le courant est de la forme $i(t) = I_m \cos(\omega t)$.

 $Donn\acute{e}es: m=10$ g, K=200 N.A $^{-1}$ et $I_m=1,0$ A.

- 1. Écrire l'équation différentielle vérifiée par x(t), la position de la masse m.
- 2. La mettre sous forme canonique et identifier les expressions de la pulsation propre ω_0 et du facteur de qualité Q.
- 3. Justifier qu'en régime permanent : $x(t) = X_m \cos(\omega t + \phi)$
- 4. On pose $\underline{x}(t) = \underline{X}e^{i\omega t}$. Déterminer l'expression de l'amplitude complexe \underline{X} .
- 5. Exprimer $X_m(\omega)$. Existe-t-il toujours une résonance?

On a tracé ci-dessous les courbes de $X_m(\omega)$ et de $\phi(\omega)$. L'axe des abscisses est en échelle logarithmique.

6. Pour quelle pulsation le déplacement est-il en quadrature de phase avec la force excitatrice? Déterminer alors graphiquement la pulsation propre ω_0 .

4 Résonance d'un circuit bouchon

On considère le circuit RLC représenté ci-contre, composé d'un résistor, de résistance R, d'une bobine idéale d'inductance L, d'un condensateur idéal, de capacité C, alimenté par une source idéale de tension, de f.e.m. $e(t) = E_0 \cos(\omega t)$. On se place en régime sinusoïdal forcé.

- 1. Exprimer l'amplitude complexe \underline{U} de u(t) en fonction de E_0, R, L, C et ω .
- 2. Établir qu'il existe un phénomène de résonance pour la tension u(t). Préciser la pulsation ω_0 à laquelle ce phénomène se produit et la valeur de l'amplitude réelle de u(t) à cette pulsation.
- 3. Mettre l'amplitude réelle U de u(t) sous la forme :

$$U = \frac{E_0}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

avec Q un facteur sans dimension à exprimer en fonction de R, L et C.

- 4. Exprimer la bande passante $\Delta\omega$ de cette résonance en fonction de Q et ω_0 .
- 5. En déduire les valeurs numériques de C et E_0 à l'aide du graphe ci-dessous représentant l'amplitude réelle de u(t) en fonction de la fréquence $f=\omega/2\pi$, sachant que L=1 mH et R=1 k Ω .

5 Système à deux ressorts

Un point matériel M, de masse m, peut se déplacer sur une tige horizontale parallèle à l'axe Ox au sein d'un fluide visqueux qui exerce sur lui la force de frottement $\vec{f} = -h\vec{v}$ avec \vec{v} le vecteur vitesse de M dans le référentiel galiléen \mathcal{R} du laboratoire. Les frottements entre M et l'axe horizontal sont négligeables. On repère M par son abscisse x(t).

M est relié à deux parois verticales par deux ressorts de raideurs k_1 et k_2 , de longueurs à vide l_{10} et l_{20} . Celle de droite est immobile en x=L, celle de gauche, d'abscisse $x_0(t)$, est animée d'un mouvement d'équation horaire $x_0(t)=X_{0m}\cos(\omega t)$. On supposera que $L=l_{10}+l_{20}$.

- 1. Identifier les différentes forces s'exerçant sur M.
- 2. Déterminer la position d'équilibre $x_{\rm eq}$ de M lorsque la paroi de gauche est immobile en x=0.
- 3. On introduit $X=x-x_{\rm eq}$. Établir l'équation différentielle vérifiée par X lorsque la paroi bouge. Pour étudier le régime sinusoïdal forcé, on introduit les grandeurs complexes $\underline{x}_0(t)=X_{0m}\exp(j\omega t),\,X(t)=X_m\exp(j(\omega t+\varphi))$ et $v(t)=V_m\exp(j(\omega t+\phi))$ associées à $x_0(t),\,X(t)$ et $v(t)=\dot{X}(t)$.
- 4. Définir les amplitudes complexes \underline{X}_0 , \underline{X} et \underline{V} de $x_0(t)$, X(t) et v(t).
- 5. En exprimant ω_0 , Q et α en fonction des données du problème, établir la relation :

$$\underline{V}\!=\!\frac{\alpha}{1+jQ\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)}\underline{X}_0$$

6. Mettre en évidence l'existence d'une résonance de vitesse.

6 Résonance d'intensité dans un circuit RLC parallèle

L'antenne d'un émetteur radio peut être modélisée par un circuit électrique équivalent composé de l'association en parallèle d'une résistance R, d'une bobine d'inductance L et d'un condensateur de capacité C.

On s'intéresse à la manière dont l'amplitude de la tension u(t) aux bornes de l'antenne, qui correspond au signal envoyé, dépend de ω .

- 1. Déterminer l'impédance complexe de l'association des dipôles R, L et C.
- 2. En déduire l'amplitude complexe \underline{U} de la tension u en fonction de ω, I_0, R, L et C.
- 3. Pour quelle pulsation l'amplitude réelle U de u prend-elle sa valeur maximale notée U_{\max} ? Conclure sur la fréquence à utiliser.
- 4. Représenter le graphe donnant U en fonction de la pulsation réduite $x = \omega/\omega_0$ avec $\omega_0 = 1/\sqrt{LC}$.
- 5. Exprimer la largeur de la bande passante $\Delta\omega.$
- 6. On se place dans le cas $R=37~\Omega,~L=1,2\times 10^{-8}~{\rm H}$ et $C=2,3\times 10^{-10}~{\rm F}.$ Calculer la valeur de l'acuité $A_c=\omega_0/\Delta\omega$ de la résonance. Interpréter sa dépendance en R.

7 Condition de résonance

Le circuit ci-contre est alimenté par une source de tension sinusoïdale de f.é.m. $e(t) = E_0 \cos(\omega t)$. On s'intéresse à la tension u(t) aux bornes du résistor et de la capacité montés en parallèle.

On pose :
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$ et $x = \frac{\omega}{\omega_0}$.

- 1. Établir l'expression du signal complexe \underline{u} associé à u(t) en régime sinusoïdal forcé, en fonction de E_0 , x et ξ .
- 2. Étudier l'existence éventuelle d'une résonance pour la tension u(t).