Note Π Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten 5 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Studienbegleitende Fachprüfung Mathematik für Physik 2 (Analysis 1) Prof. Dr. S. Warzel 9. Februar 2009, 9:00 - 10:30 Uhr 10 Hörsaal: Reihe: Platz: 11 Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: ${f 11}$ Aufgaben Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter Bei Multiple-Choice-Aufgaben sind ${\bf genau}$ die zutreffenden Aussagen anzukreuzen. Erstkorrektur Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt. II Zweitkorrektur Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis Vorzeitig abgegeben um Besondere Bemerkungen:

Musterlösung

(mit Bewertung)

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{n} \frac{1}{k^2 + k} = \frac{n}{n+1}$$

LÖSUNG:

Induktionsbeginn (n = 1): $\sum_{k=1}^{1} \frac{1}{k^2 + k} = \frac{1}{2} = \frac{1}{1+1}$

Induktionsschritt $(n-1 \rightarrow n)$:

$$\sum_{k=1}^{n} \frac{1}{k^2 + k} \stackrel{\text{[2]}}{=} \sum_{k=1}^{n-1} \frac{1}{k^2 + k} + \frac{1}{n^2 + n}$$

$$\stackrel{\text{I.V.[2]}}{=} \frac{n - 1}{n} + \frac{1}{n(n+1)}$$

$$\stackrel{\text{[1]}}{=} \frac{n^2 - 1 + 1}{n(n+1)}$$

$$\stackrel{\text{[1]}}{=} \frac{n}{n+1}$$

Alternativ:

Induktionsschritt $(n \rightarrow n+1)$:

$$\sum_{k=1}^{n+1} \frac{1}{k^2 + k} \stackrel{\text{[2]}}{=} \sum_{k=1}^{n} \frac{1}{k^2 + k} + \frac{1}{(n+1)^2 + n + 1}$$

$$\stackrel{\text{I.V.[2]}}{=} \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$\stackrel{\text{[1]}}{=} \frac{n(n+2) + 1}{(n+1)(n+2)} = \frac{n^2 + 2n + 1}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

Erklärung:

[2 Punkte] für den Induktionsbeginn,

[2 Punkte] für das Zerlegen,

[2 Punkte] für das Einsetzen der Induktionsvoraussetzung,

[2 Punkte] für das Zusammenfassen.

2. Komplexe Zahlen

[6 Punkte]

(a) Geben Sie Real- und Imaginärteil von $(a+ib)^{-1}$ an, $a,b\in\mathbb{R}$.

[2]

$$\frac{1}{a+ib} = \boxed{\qquad \frac{a}{a^2+b^2} + i \qquad \frac{-b}{a^2+b^2}}$$

(b) Geben Sie $(-1+i)^6$ in Polardarstellung, $r\,e^{i\phi},\,r\in\mathbb{R}^+,\,\phi\in(-\pi,\pi],$ an.

[4]

$$r = 8$$

$$\phi = \frac{\pi}{2}$$

LÖSUNG:

(a)
$$\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2+b^2}$$

(b) $(-1+i) = \sqrt{2}e^{i\frac{3}{4}\pi}$. Somit ist $(-1+i)^6 = \sqrt{2}^6 e^{i\frac{18}{4}\pi} = 8e^{i\frac{\pi}{2}}$.

3	Konvergenz	von	Folgen	und	Reihen
υ.	TOHVELECITE	VOII	TOISCII	unu	remen

[7 Punkte]

[2]

(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^2+1}-n\right)$.

 $\square = -\infty$ $\square = 0$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square existient nicht

(b) Welchen Wert besitzt die Reihe $\sum_{n=1}^{\infty} \left(-\frac{4}{3}\right)^n$? [2]

 \Box -4 \Box -3 \Box 0 \Box $\frac{3}{7}$ \Box $\frac{4}{7}$ \Box ∞ \square undefinient

(c) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{1}{(-n)^n}$? [3]

 $\square = -\infty \qquad \boxtimes \in (-\infty, 0) \qquad \square = 0 \qquad \square \in (0, \infty) \qquad \square = +\infty \qquad \square \text{ undefiniert}$

LÖSUNG:

(a)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 1} - n \right) = \lim_{n \to \infty} \frac{n^2 + 1 - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{n \left(\sqrt{1 + \frac{1}{n^2}} + 1 \right)} = 0.$$

(b) Die Terme der Reihe bilden keine Nullfolge, also nicht konvergent.

(c) $\sum_{n=0}^{\infty} \frac{1}{(-n)^n} = \frac{1}{(-1)^1} + \frac{1}{(-2)^2} - \frac{1}{(-3)^3} \pm \dots = -1 + \frac{1}{4} - \frac{1}{27} \pm \dots$ Die Reihe ist nach dem

Leibnitzkriterium (alternierende betragsmäßig monotone Nullfolge) konvergent. Die Teilsummen bilden eine Intervallschachtelung. Insbesondere liegt der Grenzwert im Intervall $[-1, -\frac{3}{4}]$, ist also negativ.

4. Potenzreihen	[6 Punkte]
-----------------	------------

Bestimmen Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n^3}{2^n} \, x^n.$

LÖSUNG: $\limsup_{n\to\infty} \sqrt[n]{\frac{n^3}{2^n}} = \lim_{n\to\infty} \frac{n^{3/n}}{2} = \frac{1}{2} \lim_{n\to\infty} (n^{1/n})^3 = \frac{1}{2}. \text{ Der Konvergenzradius ist also 2.}$

[4 Punkte]			\mathbf{t}	arkei	setz	Fort	tetige	en, s	ktion	Fun	e von	zwert	Gren	5.
[2]								$\frac{\log x}{x^2-1}$?	$\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{1}{x}$	t hat	n Wei	Welch	(a) '	
∞ \square existiert nicht	$2 \Box$	\Box 2	2	\mathbb{Z}	0		$-\frac{1}{2}$		-1		$-\infty$			
$= \frac{x}{\tan x} \text{ bei } x = 0 \text{ stetig}$ [2]	$\mathbb{R}, f(x)$	$\rightarrow \mathbb{R}$	{0}	$(\frac{\pi}{2}, \frac{\pi}{2})$: (-	on f	Funkti	die	ert ist	en W		Durch fortset		
nicht stetig fortsetzbar	2 🗆	\Box 2	L	X :	$\frac{1}{2}$		□ 0	<u>l</u>	$-\frac{1}{2}$		- 1			

LÖSUNG:

(a)
$$\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{\log x}{x^2 - 1} \stackrel{\text{l'H}}{=} \lim_{\substack{x \to 1 \\ x \neq 1}} \frac{\frac{1}{x}}{2x} = \frac{1}{2}.$$

(b)
$$\lim_{x \to 0} \frac{x}{\tan x} \stackrel{\text{l'H}}{=} \lim_{x \to 0} \cos^2 x = 1.$$

C	Grenzwert		Intomola
().	Grenzwert	emes	integrais

[4 Punkte]

Grenzwert eines Integrals Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Berechnen Sie $\lim_{h\to 0} \frac{1}{h} \int\limits_x^{x+h} f(t) dt$.

LÖSUNG:

Sei F eine Stammfunktion von f. Dann ist $\lim_{h\to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt \stackrel{[2]}{=} \lim_{h\to 0} \frac{F(x+h)-F(x)}{h} \stackrel{[1]}{=} F'(x) \stackrel{[1]}{=} f(x)$.

7. Maximales Volumen [10 Punkte]

Aus einer Kugel mit Radius R soll ein Zylinder mit maximalem Volumen geschnitten werden.

- (a) Welche Beziehung besteht zwischen der Höhe h und dem Radius r des Zylinders, wenn der Rand von Boden und Deckel des Zylinders jeweils in der Kugeloberfläche liegen?
- (b) Wie groß ist das Volumen des Zylinders in Abhängigkeit von der Höhe h?
- (c) Bestimmen Sie, mit Begründung, die Höhe des Zylinders, dessen Volumen maximal ist.

LÖSUNG:

(a)
$$R^2 = r^2 + \frac{1}{4}h^2$$

(b)
$$V(h) = \pi r^2 h = \pi (R^2 - \frac{1}{4}h^2)h = \pi (R^2 h - \frac{1}{4}h^3)$$
 [2]

(c) Es ist $0 \le h \le 2R$. Kandidaten für das Maximum von V(h) sind die Randpunkte h = 0 und h = 2R, jeweils mit V(h) = 0 [1]

und die stationären Punkte mit
$$V'(h) = \pi(R^2 - \frac{3}{4}h^2) = 0$$
, bzw. $h = \sqrt{\frac{4}{3}}R$. [3]

Wegen V(h) > 0 für 0 < h < 2R muss dies das absolute Maximum von $V: [0, 2R] \to \mathbb{R}$ sein. [2]

8. Integration

[6 Punkte]

(a) Bestimmen Sie

$$\int x e^{-x^2} \, dx = -\frac{1}{2} e^{-x^2}$$

(b) Das Integral $\int_{1}^{\infty} \frac{\cos x - 1}{x^2} dx$ ist

- \boxtimes konvergent, \square absolut konvergent, \square nicht konvergent.
- (c) Das Integral $\int_{0}^{1} \frac{\sin x}{x} dx$ ist

[2]

- X konvergent,
- X absolut konvergent,
- \square nicht konvergent.

LÖSUNG:

- (a) $\int xe^{-x^2} dx \stackrel{y=x^2}{=} \int e^{-y} \frac{dy}{2} = -\frac{1}{2}e^{-y} = -\frac{1}{2}e^{-x^2}$.
- (b) $\left|\frac{\cos x 1}{x^2}\right| \le \frac{2}{x^2}$, der Integrand ist auf $[0, \infty)$ durch eine absolut integrierbare Funktion beschränkt, ist also selbst absolut integrierbar, also auch integrierbar.
- (c) $\lim_{x\to 0} \frac{\sin x}{x} = 1$, der Integrand ist auf [0,1] also stetig fortsetzbar. Das Integral existiert somit im eigentlichen Sinne, ist daher konvergent und absolut konvergent.

9. Integration [6 Punkte]

Für welche Werte von $a, \mu \in \mathbb{R}$ konvergiert das Integral $\int_{-\infty}^{\infty} e^{-\mu|x-a|} dx$?

Bestimmen Sie im Konvergenzfall seinen Wert.

LÖSUNG:

Der Integrand konvergiert unabhängig von a für $|x| \to \infty$ nicht gegen 0, falls $\mu \le 0$. [1] Im Fall $(a, \mu) \in \mathbb{R} \times \mathbb{R}^+$ gilt

$$\int_{-\infty}^{\infty} e^{-\mu|x-a|} dx \stackrel{y=x-a,[1]}{=} \int_{-\infty}^{\infty} e^{-\mu|y|} dy \stackrel{[1]}{=} \int_{-\infty}^{0} e^{\mu y} dy + \int_{0}^{\infty} e^{-\mu y} dy$$
$$\stackrel{[2]}{=} \left[\frac{e^{\mu y}}{\mu} \right]_{-\infty}^{0} + \left[\frac{e^{-\mu y}}{-\mu} \right]_{0}^{\infty} \stackrel{[1]}{=} \frac{1}{\mu} + \frac{1}{\mu} = \frac{2}{\mu}.$$

Alternative:

Ohne Substitution erhält man

$$\int_{-\infty}^{\infty} e^{-\mu|x-a|} dx \stackrel{\text{[2]}}{=} \int_{-\infty}^{a} e^{\mu(x-a)} dx + \int_{a}^{\infty} e^{-\mu(x-a)} dy$$

$$\stackrel{\text{[2]}}{=} \left[\frac{e^{\mu(x-a)}}{\mu} \right]_{-\infty}^{a} + \left[\frac{e^{-\mu(x-a)}}{-\mu} \right]_{a}^{\infty} \stackrel{\text{[1]}}{=} \frac{1}{\mu} + \frac{1}{\mu} = \frac{2}{\mu}.$$

10. Taylorentwicklung

[8 Punkte]

Wir betrachten die Funktion $f: \mathbb{R}^+ \to \mathbb{R}, f(x) = \frac{1}{x}$.

(a) Wie lautet die Taylorentwicklung zweiter Ordnung von f um den Entwicklungspunkt a=2? [5]

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 + \mathcal{O}((x-2)^3)$$

(b) Welchen Konvergenzradius hat die Taylorreihe von f um den Entwicklungspunkt a=2? [3]

 \square 0 \square $\frac{1}{e}$ \square $\frac{1}{2}$ \square 1 \square 2 \square e \square ∞ \square existient nicht

LÖSUNG:

(a) Wir setzen h = x - 2, dann gilt

$$f(2+h) = \frac{1}{2+h} = \frac{1}{2} \cdot \frac{1}{1+\frac{h}{2}} = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \left(\frac{h}{2}\right)^k = \frac{1}{2} - \frac{1}{4}h + \frac{1}{8}h^2 - \frac{1}{16}h^3 + \frac{1}{32}h^4 \pm \cdots$$

- [1] für die 0-te Ordnung.
- [2] für die 1-te Ordnung.
- [2] für die 2-te Ordnung.

(b) Die Potenzreihe $\sum_{k=0}^{\infty} (-1)^k \left(\frac{h}{2}\right)^k$ ist offenbar genau für |x-2| < 2 eine konvergente geometrische Reihe. Der Konvergenzradius ist also 2.

Plausibel ist dieses Ergebnis, da die Polstelle im Ursprung den Abstand 2 vom Entwicklungspunkt hat.

11. Fourierreihen [8 Punkte]

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und 2π -periodisch, mit den Fourierkoeffizienten \hat{f}_k , wobei $\hat{f}_0 = 0$. Sei F eine Stammfunktion von f. Zeigen Sie, dass für die Fourierkoeffizienten \hat{F}_k von F gilt:

$$\hat{F}_k = \frac{\hat{f}_k}{ik} \quad \text{für } k \neq 0.$$

LÖSUNG:

Für $k \neq 0$ gilt

$$\hat{F}_k \stackrel{[\mathbf{1}]}{=} \int_{-\pi}^{\pi} F(x) e^{-ikx} \frac{dx}{2\pi} \stackrel{[\mathbf{2}]}{=} \left[F(x) \frac{e^{-ikx}}{-2\pi i k} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} F'(x) \frac{e^{-ikx}}{-ik} \frac{dx}{2\pi} \stackrel{[\mathbf{2}]}{=} \frac{(-1)^k}{-2\pi i k} (F(\pi) - F(-\pi)) + \frac{\hat{f}_k}{ik} = \frac{\hat{f}_k}{ik},$$

da
$$F(\pi) - F(-\pi) \stackrel{[2]}{=} \int_{-\pi}^{\pi} f(t)dt \stackrel{[1]}{=} 2\pi \hat{f}_0 = 0.$$