VV285 RC Final Final Exercise Last but not least...

Pingbang Hu

University of Michigan-Shanghai Jiao Tong University Joint Institute

July 30, 2021

Calculate the directional derivative of the continuous function

$$f: \mathbb{R}^2 \to R, \qquad f(x,y) = \sqrt[3]{x^2y}$$

at (x,y)=(0,0) in the direction of the vector $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

Calculate the directional derivative of the continuous function

$$f: \mathbb{R}^2 \to R, \qquad f(x,y) = \sqrt[3]{x^2y}$$

at (x,y)=(0,0) in the direction of the vector $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

From the definition, we need to calculate . . .

Calculate the directional derivative of the continuous function

$$f: \mathbb{R}^2 \to R, \qquad f(x,y) = \sqrt[3]{x^2y}$$

at (x,y)=(0,0) in the direction of the vector $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

From the definition, we need to calculate

$$\frac{d}{dt} \left. f(x_0 + th) \right|_{t=0}$$

where $x_0 = 0$ and $h = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

Solution 1 I

Calculate the directional derivative of the continuous function

$$f: \mathbb{R}^2 \to R, \qquad f(x,y) = \sqrt[3]{x^2y}$$

at (x,y)=(0,0) in the direction of the vector $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

From the definition, we need to calculate

$$\frac{d}{dt} \left. f(x_0 + th) \right|_{t=0}$$

where $x_0 = 0$ and $h = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Hence, we have

$$f(x_0 + th) = f(t \cdot {1/\sqrt{2} \choose 1\sqrt{2}}) = \sqrt[3]{\frac{t^2}{2} \cdot \frac{t}{\sqrt{2}}} = \frac{t}{\sqrt{2}}$$

so that

Calculate the directional derivative of the continuous function

$$f: \mathbb{R}^2 \to R, \qquad f(x,y) = \sqrt[3]{x^2y}$$

at (x,y)=(0,0) in the direction of the vector $h=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.

From the definition, we need to calculate

$$\frac{d}{dt} \left. f(x_0 + th) \right|_{t=0}$$

where $x_0 = 0$ and $h = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Hence, we have

$$f(x_0 + th) = f(t \cdot {1/\sqrt{2} \choose 1\sqrt{2}}) = \sqrt[3]{\frac{t^2}{2} \cdot \frac{t}{\sqrt{2}}} = \frac{t}{\sqrt{2}}$$

so that

$$\frac{d}{dt}f(x_0+th)=\frac{d}{dt}\frac{t}{\sqrt{2}}=\frac{1}{\sqrt{2}}.$$

Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$.

Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \qquad F(x) = g(\|x\|)x$$

is conservative.

Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$.

Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \qquad F(x) = g(\|x\|)x$$

is conservative.

The set $\mathbb{R}^3 \setminus \{0\}$ is simply connected

Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$.

Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \qquad F(x) = g(\|x\|)x$$

is conservative.

The set $\mathbb{R}^3 \setminus \{0\}$ is simply connected, so it suffices to show that rot F = 0.

Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$.

Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \qquad F(x) = g(\|x\|)x$$

is conservative.

The set $\mathbb{R}^3 \setminus \{0\}$ is simply connected, so it suffices to show that rot F = 0. Now

$$|(\mathsf{rot}F)_i| = \left| \frac{\partial F_j}{\partial x_k} - \frac{\partial F_k}{\partial x_j} \right|$$

where (i, j, k) is any one of the permutation of $\{1, 2, 3\}$.

Let $g:(0,\infty)\to\mathbb{R}$ be a differentiable function and let $\|x\|=\sqrt{x_1^2+x_2^2+x_3^2}$ for $x=(x_1,x_2,x_3)\in\mathbb{R}^3$.

Prove that the vector field

$$F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3, \qquad F(x) = g(\|x\|)x$$

is conservative.

The set $\mathbb{R}^3 \setminus \{0\}$ is simply connected, so it suffices to show that rot F = 0. Now

$$|(\mathsf{rot}F)_i| = \left| \frac{\partial F_j}{\partial x_k} - \frac{\partial F_k}{\partial x_j} \right|$$

where (i, j, k) is any one of the permutation of $\{1, 2, 3\}$.

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$
$$= x_j g'(\|x\|) \frac{\partial}{\partial x_k} \sqrt{x_1^2 + x_2^2 + x_3^2}$$

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$
$$= x_j g'(\|x\|) \frac{\partial}{\partial x_k} \sqrt{x_1^2 + x_2^2 + x_3^2}$$
$$= x_j g'(\|x\|) \frac{x_k}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$

$$= x_j g'(\|x\|) \frac{\partial}{\partial x_k} \sqrt{x_1^2 + x_2^2 + x_3^2}$$

$$= x_j g'(\|x\|) \frac{x_k}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$= x_j x_k \frac{g'(\|x\|)}{\|x\|}$$

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$

$$= x_j g'(\|x\|) \frac{\partial}{\partial x_k} \sqrt{x_1^2 + x_2^2 + x_3^2}$$

$$= x_j g'(\|x\|) \frac{x_k}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$= x_j x_k \frac{g'(\|x\|)}{\|x\|} = \frac{\partial F_k}{\partial x_j}$$

We then have

$$\frac{\partial F_j}{\partial x_k} = \frac{\partial}{\partial x_k} (g(\|x\|)x)_j = \frac{\partial}{\partial x_k} g(\|x\|)x_j$$

$$= x_j g'(\|x\|) \frac{\partial}{\partial x_k} \sqrt{x_1^2 + x_2^2 + x_3^2}$$

$$= x_j g'(\|x\|) \frac{x_k}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$= x_j x_k \frac{g'(\|x\|)}{\|x\|} = \frac{\partial F_k}{\partial x_j}$$

Hence, the rotation of F vanishes everywhere on $\mathbb{R}^3 \setminus \{0\}$.

