GÉNÉRALISATION D'UN RÉSULTAT DE COMPLEXITÉ À UNE CLASSE PLUS LARGE D'ALGORITHMES RÉCURSIFS

AMAR AHMANE & PIERRE-GABRIEL BERLUREAU

ABSTRACT. Si on note \mathcal{A} un algorithme prenant en entrée un seul paramètre de taille n. Dans l'hypothèse où \mathcal{A} est algorithme récursif utilisant la stratégie diviser pour régner, on montrera dans le Théorème I que, dans des conditions particulières, la complexité de l'algorithme est quasi-linéaire et on précisera la constante.

1. Introduction

Ce qui a motivé la recherche et la preuve du petit résultat généralisé qui sera exposé plus tard est l'exercice de Khôlle qui a été posé à Louis Thevenet. On considère l'algorithme suivant :

Algorithm 1

```
1: procedure FOO(lst)
2: if Length(lst) = 0 then
3: return 1
4: m \leftarrow \text{Length}(lst)/3
5: return FOO(lst[:m]) + FOO(lst[m:])
```

On arrive très bien à dénombrer les différentes tailles qui apparaissent à un certain étage de l'arbre d'appel de cet algorithme récursif. On a alors le résultat suivant

Proposition 1. L'Algorithme 1 a une complexité en $\mathcal{O}\left(n\log_{\frac{3}{2}}(n)\right)$.

L'idée était alors de considérer le cas général décrit ci-dessous.

2. Résultat généralisé

Dans toute la suite, on notera \mathcal{A} un algorithme récursif utilisant la stratégie diviser pour régner. Un premier résultat que l'on va énoncer et démontrer ici consistera à dénombrer des objets d'une certaine forme dans un type d'arbres particulier. En réalité, on s'intéressera à des arbres à (au plus) m fils par noeud, avec $m \geq 2$ un entier naturel, définis par récurrence d'une façon qui sera précisée plus tard. Mais avant de s'y attaquer, précisons quelques notations et définitions locales.

Définition 2. Soit E un ensemble. On appelle arbre sur E un arbre dont les noeuds sont des éléments de E. On notera \mathfrak{A}_E l'ensemble des arbres sur E.

Définition 3. Soit E, F deux ensembles et $f \in F^E$. Alors, lorsque $A \in \mathfrak{A}_E$, on note $\tilde{f}: \mathfrak{A}_E \to \mathfrak{A}_F$ l'application qui à A associe un arbre sur F dont les noeuds sont les noeuds de A auxquels on aura appliqué f.

Proposition-Définition 4. Soit $m \ge 2$, $X = (x_1, ..., x_m) \in (\mathbf{R}^*)^m$. On définit par récurrence un arbre parfait infini sur \mathbf{R}^m , et on le note A_X , de la façon suivante :

- La racine de A_X est $0_{\mathbf{R}^m}$.
- Pour tout noeud $N = (n_1, ..., n_m)$ de A_X , N possède exactement m fils et pour tout $i \in [1, m]$, le ième fils est le noeud $N_i = (n_1, ..., n_i + x_i, ..., n_m)$.

Ainsi, pour tout $k \in \mathbb{N}$, pour tout $(i_1, \ldots, i_m) \in \mathbb{N}^m$ tel que $i_1 + \cdots + i_m = k$, le nombre de noeuds de valeur $(i_1x_1, i_2x_2, \ldots, i_mx_m)$ à l'étage k est

$$\frac{k!}{i_1! \dots i_m!}$$

Note: l'étage 0 correspond à celui de la racine.

Preuve On montre le résultat par récurrence sur k.

- Pour k=0, l'étage 0 correspond à celui de la racine, de valeur $0_{\mathbf{R}^m}$, qui apparaît bien $1=\frac{0!}{0!\dots 0!}$, $0_{\mathbf{R}^m}$ étant le seul m-uplet d'entiers naturels de somme 0.
- Soit $k \in \mathbb{N}$. On suppose notre proposition vraie pour l'étage k. Soit $(i_1, \ldots, i_m) \in \mathbb{N}^m$ tel que $i_1 + \cdots + i_m = k + 1$. Il est clair que (i_1, \ldots, i_m) n'est pas le m-uplet nul, ainsi, l'ensemble $K = \{j \in [1, m] | i_j \neq 0\}$ est non vide; on a alors nécessairement l'existence d'un $j \in K$ tel que un noeud de valeur (i_1x_1, \ldots, i_mx_m) soit le jème fils de $(i_1x_1, \ldots, (i_j 1)x_j, \ldots, i_mx_m)$. Ainsi, les noeuds de cette valeur sont au nombre de

$$\sum_{j \in K} \frac{k!}{i_1! \dots (i_j - 1)! \dots i_m!}$$

Puisque, par hypothèse de récurrence, il y a $\frac{k!}{i_1!...(i_j-1)!...i_m!}$ de noeuds de valeur $(i_1x_1,\ldots,(i_j-1)x_j,\ldots,i_mx_m)$ pour $j\in K$. Or,

$$\sum_{j \in K} \frac{k!}{i_1! \dots (i_j - 1)! \dots i_m!} = \frac{\sum_{j \in K} i_j(k!)}{i_1! \dots i_m!} = \frac{(k!) \sum_{j \in K} i_j}{i_1! \dots i_m!} = \frac{(k + 1)!}{i_1! \dots i_m!}$$

• D'après le principe de récurrence, on a montré le résultat voulu pour tout $k \in \mathbb{N}$.

Proposition 5. Soient E un ensemble, $m \in \mathbb{N}^*$, $m \ge 2$, et f une injection de \mathbb{R}^m dans E. Soit $X = (x_1, \dots, x_m) \in (\mathbb{R}^*)^m$, alors pour tout $k \in \mathbb{N}$, pour tout $(i_1, \dots, i_m) \in \mathbb{N}^m$ tel que $i_1 + \dots + i_m = k$, $f(i_1x_1, \dots, i_mx_m)$ apparaît $\frac{k!}{i_1!\dots i_m!}$ fois au kème étage de $\tilde{f}(A_X)$.

Preuve En effet, pour tout $k \in \mathbb{N}$, pour tout $(i_1, \ldots, i_m) \in \mathbb{N}^m$ tel que $i_1 + \cdots + i_m = k$, $f(i_1x_1, \ldots, i_mx_m)$ a exactement un antécédant (par injectivité de f) qui apparaît $\frac{k!}{i_1! \ldots i_m!}$ fois au kème étage de A_X .

Théorème I. Soit $m \in \mathbb{N}^*$, $m \ge 2$, $p \in \mathbb{N}^* \setminus \{m\}$ et $(q_1, \ldots, q_m) \in (\mathbb{N}^*)^m$ un m-uplet d'entiers non tous égaux tels que

$$\sum_{k=1}^{m} q_k = p$$

Soit \mathcal{A} un algorithme récursif prenant un seul paramètre et utilisant la stratégie diviser pour régner et tel que pour une entrée de taille n

$$T(n) = \sum_{k=1}^{m} T\left(\frac{q_k n}{p}\right) + \mathcal{O}(1)$$

où T(n) représente le nombre d'opérations élémentaires effectuées par $\mathcal A$ pour une entrée de taille n. Alors

 $T(n) = \mathcal{O}\left(n\log_{\frac{p}{\max(q_1,\dots,q_m)}}(n)\right)$

Proof of Theorem I. le grand moment