Project Report On

INVENTORY MANAGEMENT SYSTEM

Submitted By:

Chinmayi C. Ramakrishna (181IT113)

K. Keerthana (181IT221)

IV Sem BTech (IT)

Under the guidance of

Dr. Melwyn D'Souza

Dept of IT, NITK Surathkal

In partial fulfilment for the award of the degree

Of

Bachelor of Technology

In

Information Technology

At

Department of Information Technology

National Institute of Technology Karnataka, Surathkal

7 June, 2020

Abstract

The Inventory System is a necessity to ensure the continuity of services. Unwanted service interruptions caused by failures can have serious consequences at management as well as financial levels. For efficient business transactions, it is essential to access the current status of all products in an inventory. To achieve all these, it is important to have an efficient inventory management system that includes all minimal details of each product for detailed report. For busy transactional shops, it is a need for a fast and efficient management system. Therefore, we have proposed an "Inventory System" with the retailer as the super user. It helps the owner make business easy and keep in track with all the items bought in and sold out of his shop. The system aims at providing a detailed overview of all the transactions so as to keep a proper check on them and in turn ensuring an efficient flow of goods in and out of the shop.

TABLE OF CONTENTS

	TOPIC		PAGE NO.	
1. Proj		ect Overview		
	1.1	Introduction	1	
	1.2	Functional Requirements	2	
2.	Data	base Design		
	2.1	ER-Diagram	3	
	2.2	Mapping to Schema	4	
	2.3	Tables and Constraints	5	
	2.4	Functional Dependencies	8	
	2.5	Normalization up to 3NF	10	
3.	Imple	ementation		
	3.1	Tools and Technologies	12	
	3.2	Application Architecture	12	
	3.3	Snapshots of project	13	
	3.4	Individual Contribution	16	
	3.5	References	17	

Introduction

The project aims at designing an inventory management with utmost efficiency and minimal redundancy. It is for those retailers whose shops' stock needs proper maintenance which includes purchases and sales to keep track of all the transactions taking place. Here, we have considered a shop which deals with electronics. The super user sits at the top of the user hierarchy having all the permissions to access the different components of the inventory system. Each user has a set of roles and permissions which determine his accessibility to the system, i.e. different tables are accessible to him depending on his position in the user hierarchy. The 'Sales' and 'Purchases' departments operate independently for their respective set of users. The system provides its users with their accessibility permissions to avoid misuse of data. This project has been designed keeping in mind the perks of data abstraction to ensure an increased amount of security and to avoid inconsistencies and mishandling of data.

Functional Requirements

Sales & Purchases	Records transactions of sales and purchases to be updated in the inventory after billing.
Billing	Officialises the transaction so inventory can be updated.
Users	Restricted access to the database depending on the user.
Inventory	List of items in stock.

ER Diagram

ER to Relational Mapping

Tables and Constraints

User Entity

Attribute	Datatype	Constraint
User_name	varchar2	Not null
User_mobile	number	Not null
User_id	number	Primary Key
DOB	date	
Sex	char	Sex in (M,F)
User_email	varchar2	
User_address	varchar	

Login Entity

Attribute	Datatype	Constraint
Login_id	number	Primary Key
Login_role_id	number	
Login_username	varchar2	Not null
Login_password	varchar2	len(Login_password)>8 and
		len(Login_password)<32

Roles Entity

Attribute	Datatype	Constraint
Role_id	number	Primary Key
Role_name	varchar2	Not Null
Role_desc	varchar2	

Permission Entity

Attribute	Datatype	constraint
Per_id	number	Primary Key
Per_role_id	number	
Per_name	varchar2	Not Null
Per_module	varchar2	Not Null

Billing Entity

Attribute	Datatype	constraint
Bill_id	number	Primary Key
Item_id	number	Foreign Key Inventory (Item id)
Transaction_id	number	Foreign Key
Bill_Total	number	Not null
Bill_date	date	
Bill_status	varchar	Default 'Pending'

Sales Entity

Attribute	Datatype	constraint
Sale_id	number	Primary Key
Item_id	number	Foreign Key
		Inventory(Item_id)
Sale_cus_id	number	
Sale_amt	number	Not Null
Sale_date	date	
Bill_produced	varchar	Bill_produced in
		(Yes, No)

Purchases Entity

Attribute	Datatype	constraint
Pur_id	number	Primary Key
Item_id	number	Foreign Key
		Inventory (Item_id)
Pur_cus_id	number	
Pur_amt	number	Not Null
Pur_date	date	
Bill_produced	varchar	Bill_produced in
		(Yes, No)

Inventory Entity

Attribute	Datatype	constraint
Item_id	number	Primary Key
Item_desc	varchar2	
Item_amt	number	Default 0
Item_pur_cost	number	Not Null
Item_sale_cost	number	Not Null
Last_Update	date	

Functional Dependencies

User Entity

User_id -> Attribute

User_id -> User_name

User_id -> User_mobile

User_id -> DOB

User_id -> Sex

User_id -> User_email

User_id -> User_address

Login Entity

Login_id -> Attribute

Login_id -> Login_role_id

Login_id -> Login_username

Login_id -> Login_password

Roles Entity

Role_id -> Attribute

Role_id -> Role_name

Role_id -> Role_desc

Permission Entity

Per_id -> Attribute

Per_id -> Per_role_id

Per_id -> Per_name

Per_id -> Per_mobile

Billing Entity

Bill_id -> Attribute

Bill_id -> Item_id

Bill_id -> Transaction_id

Bill_id -> Bill_total

Bill_id -> Bill_date

Bill_id -> Bill_status

Sales Entity

Sale_id -> Attribute

Sale_id -> Item_id

Sale_id -> Sale_cus_id

Sale_id -> Sale_amt

Sale_id -> Sale_date

Sale_id -> Bill_produced

Purchases Entity

Pur_id -> Attribute

Pur_id -> Item_id

Pur_id -> Pur_cus_id

 $Pur_id -\!\!> Pur_amt$

Pur_id -> Pur_date

Pur_id -> Bill_produced

Inventory Entity

Item_id -> Attribute

 $Item_id -> Item_desc$

Item_id -> Item_amt

Item_id -> Item_pur_cost

Item_id -> Item_sale_cost

Item_id -> Last_Update

Normalization

User Entity

Each attribute contains only atomic values. Hence it is in 1NF.

The relation has full functional dependency. No subset of candidate key determines the other attributes. The table is in 2NF

The table doesn't have transitive dependency as the primary key is determining the non-prime attributes. It's in 3NF.

Login Entity

Attributes only contain atomic values and have no partial or transitive dependency. This relation is in 3NF.

Roles Entity

It's in 1NF and 2NF as there is no duplication and no partial dependency. As there is no transitive dependency it's in 3NF.

Permission Entity

There is no partial dependency and no transitive dependency. So, it's in 3NF.

Billing Entity

Primary key is the only candidate key. This primary key determines non-prime attributes with no partial dependency. Hence, it's in 3NF.

Sales Entity

Candidate keys determine non-prime attributes in the table. It shows full dependency and no non-prime attribute determines a non-prime attribute. Hence, it's in 3rd NF.

Purchases Entity

Attributes only contain atomic values and have no partial or transitive dependency. This relation is in 3NF.

Inventory Entity

Each attribute contains only atomic values. Hence it is in 1NF. The relation has full functional

dependency. No subset of candidate key determines the other attributes. The table is in 2NF. The table doesn't have transitive dependency as the primary key is determining the non-prime attributes. It's in 3NF.

Implementation

Tools and technologies used:

- 1. Frontend Html, CSS, Javascript
- 2. Backend Framework Django
- 3. Database sqlite3

Application Architecture:

Screenshots

Individual Contribution

Chinmayi C. Ramakrishna (181IT113)	Sales & Purchases, ERD and Relational Mapping
K.Keerthana (181IT221)	Inventory and Billing

References

- [1] https://www.w3schools.com/sql/
- [2] https://www.dotnettricks.com/learn/sqlserver/database-normalization-basics
- [3] https://www.sqlservertutorial.net/sql-server-triggers/sql-server-create-trigger/
- [4] https://www.djangoproject.com/start/
- [5] https://docs.python.org/2/library/sqlite3.html