The group G is isomorphic to the group labelled by [16, 7] in the Small Groups library. Ordinary character table of $G \cong D16$:

	1a	8a	2a	4a	2b	8b	2c
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	-1	1
χ_3	1	-1	1	1	-1	-1	1
χ_4	1	1	-1	1	-1	1	1
χ_5	2	0	0	-2	0	0	2
χ_6	2	$E(8) - E(8)^3$	0	0	0	$-E(8) + E(8)^3$	-2
χ_7	2	$-E(8) + E(8)^3$	0	0	0	$E(8) - E(8)^3$	-2

Trivial source character table of $G \cong D16$ at p=2:

invial source character table of $G = D10$ at $p = 2$.											
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}
Representatives $n_j \in N_i$		1a	1a								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 2 \cdot \chi_6 + 2 \cdot \chi_7$	16	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	8	8	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	8	0	2	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	8	0	0	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	2	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	0	2	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	0	2	2	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	0	2	2	0	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	0	0	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2
P_3 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong C2
P_4 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong C2
P_5 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4
P_6 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong C2 \times C2
P_7 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong C2 \times C2
P_8 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong D8
P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong D8
P_{10} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,12,4,13,5,16,11,6)(2,9,7,10,8,15,14,3)]) \cong \mathbb{C}8
P_{11} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong D16
N_1 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong D16
N_2 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong D16
N_3 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong \mathbb{C}2 \times \mathbb{C}2
N_4 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2 \times C2
N_5 = Group([(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong D16
N_6 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong D8
N_7 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong D8
N_8 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong D16
N_9 = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong D16
N_{10} = Group([(1,12,4,13,5,16,11,6)(2,9,7,10,8,15,14,3),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15)]) \cong D16
```

 $N_{11} = Group([(1,2)(3,12)(4,14)(5,8)(6,9)(7,11)(10,16)(13,15),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong D16$