Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 4 marca 2025 r.

> Prowadząca: dr Iwona Mróz

Ćwiczenie nr 9

Wyznaczanie modułu Younga metodą jednostronnego rozciągania

1 Wstęp teoretyczny

Gdy na ciało stałe działa siła zewnętrzna, jego struktura ulega odkształceniu - zmianie kształtu lub rozmiaru. W przypadku niewielkich sił ciało może powrócić do swojej pierwotnej postaci po ustaniu działania siły - takie odkształcenie nazywane jest odkształceniem sprężystym. W przypadku jednak, gdy wartość siły przekroczy granicę sprężystości, odkształcenie stanie się trwałe - takie odkształcenie nazywane jest odkształceniem plastycznym.

W zakresie odkształceń sprężystych zachodzi prawo Hooke'a, które stwierdza, że ciśnienie (p) wewnątrz ciała jest proporcjonalne do odkształcenia względnego (α) :

$$p = k\alpha \tag{1}$$

gdzie:

- p ciśnienie,
- k współczynnik proporcjonalności zwany modułem sprężystości,
- α odkształcenie względne.

Prawo Hooke'a obowiązuje tylko w zakresie sprężystości. Po przekroczeniu granicznego naprężenia, materiał przechodzi w zakres plastyczny, a zależność ta przestaje być liniowa.

Moduł Younga (E) jest stałą sprężystości materiału, która określa moduł sprężystości dla deformacji wydłużania. W przypadku odkształcenia wydłużającego, odkształcenie względne jest określone jako stosunek wydłużenia bezwzględnego Δl do początkowej długości ciała l:

$$\alpha = \frac{\Delta l}{l}$$

Podstawiając te zależności do prawa Hooke'a (1), moduł Younga można zapisać w postaci:

$$E = \frac{Fl}{q\Delta l} \tag{2}$$

gdzie:

- F siła rozciągająca,
- \bullet l początkowa długość próbki,
- q pole przekroju poprzecznego materiału,
- Δl wydłużenie próbki pod wpływem siły.

Moduł Younga ma wymiar ciśnienia i jest wyrażany w paskalach [Pa]. Do wyznaczenia wartości modułu Younga można skorzystać z metody jednostronnego rozciągania, wykorzystując zależność podaną w równaniu (2).

Podstawy teoretyczne niniejszego eksperymentu zostały opracowane w oparciu o monografię $\acute{C}wiczenia\ laboratoryjne\ z\ fizyki\ [2],\ rozdział\ 21\ zatytułowany\ Wyznaczanie\ modułu\ Younga\ metodą\ jednostronnego\ rozciągania.$

2 Opis doświadczenia

Doświadczenie polegało na pomiarze zmian długości drutu w zależności od obciążenia oraz na określeniu parametrów geometrycznych badanego układu. Pomiary zostały wykonane zgodnie z poniższymi etapami:

1. Pomiar długości drutu

Za pomocą miary metrowej dokonano 10 pomiarów początkowej długości drutu dla obciążenia 0,5 kg. Pomiar został wykonany przez dwie osoby (każda wykonała 5 pomiarów). Pomiary zostały przedstawione w tabeli 1.

2. Pomiar błędu zerowego śruby mikrometrycznej i korekta wyników

Przed wykonaniem pomiarów średnicy drutu i wskazówki zmierzono błąd zerowy śruby mikrometrycznej, który wyniósł -0.04 mm. Uzyskane wyniki pomiarów zostały odpowiednio skorygowane w celu eliminacji systematycznego błędu pomiarowego.

3. Pomiar średnicy drutu

Średnicę drutu zmierzono pięciokrotnie za pomocą śruby mikrometrycznej, uwzględniając korektę błędu zerowego. Wyniki zostały przedstawione w tabeli 2.

4. Pomiar średnicy wskazówki

Średnicę wskazówki zmierzono pięciokrotnie za pomocą śruby mikrometrycznej, również z uwzględnieniem korekty błędu zerowego. Wyniki pomiarów znajdują się w tabeli 3.

5. Kalibracja skali mikroskopu

Wyznaczono odległość między działkami skali mikroskopu, porównując średnicę wskazówki zmierzoną za pomocą śruby mikrometrycznej z ilością działek. Obliczenia zostały zawarte w sekcji 2.

6. Pomiar początkowego położenia wskazówki

Zmierzono początkowe położenie wskazówki dla drutu z obciążeniem początkowym.

7. Pomiar położenia wskazówki dla obciążeń dodatkowych

Położenie wskazówki zmierzono dla różnych wartości obciążeń. Pomiary zostały przedstawione w tabeli 4.

3 Opracowanie wyników pomiarów

Wszystkie obliczenia zostały wykonane wykorzystując język Python z bibliotekami numpy oraz scikit-learn stosując wzory opisane w tej sekcji.

3.1 Tabele pomiarowe

Nr pomiaru	Długość początkowa drutu l [m]		
INI poliliaru	Osoba 1	Osoba 2	
1	0.945	0.949	
2	0.951	0.950	
3	0.950	0.948	
4	0.950	0.949	
5	0.949	0.949	

Tabela 1: Pomiary długości drutu dla obciążenia prostującego 0.5 kg

Nr pomiaru	Średnica drutu d [mm]
1	0.81
2	0.81
3	0.81
4	0.81
5	0.81

Tabela 2: Pomiary średnicy drutu po uwzględnieniu błędu pomiarowego.

Nr pomiaru	Średnica wskazówki [mm]
1	0.62
2	0.61
3	0.62
4	0.62
5	0.62

Tabela 3: Pomiary grubości wskazówki po uwzględnieniu błędu pomiarowego.

Obajažanja [kg]	Przemieszczenie wskazówki (n) [l. podziałek]		
Obciążenie [kg]	Osoba 1	Osoba 2	
1.0	1	1	
2.0	2	2	
3.0	4	5	
4.0	5	7	
5.0	8	8	
6.0	11	9	
6.5	13	10	
6.5	13	10	
6.0	11	9	
5.0	9	8	
4.0	7	7	
3.0	6	5	
2.0	5	4	
1.0	4	3	

Tabela 4: Przemieszczenie wskazówki w zależności od obciążenia.

3.2 Wartości średnie pomiarów

Obliczono średnią wartość długości początkowej drutu \bar{l} , średnicy drutu \bar{d} oraz grubości wskazówki $\bar{d_w}$ na podstawie wzoru:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3}$$

Uzyskano następujące wartości średnie:

Średnia długość początkowa drutu, \bar{l}	0.95 m
Średnia średnica drutu, \bar{d}	$0.81~\mathrm{mm}$
Średnia grubość wskazówki, $\bar{d_w}$	$0.62~\mathrm{mm}$

Tabela 5: Obliczone wartości średnich długości i średnic.

3.3 Kalibracja skali mikroskopu

W celu kalibracji skali mikroskopu zmierzono szerokość wskazówki, która wyniosła 10 podziałek. Znając obliczoną średnią wartość grubości wskazówki \bar{d}_w , określono szerokość jednej podziałki mikroskopu d_m według zależności:

$$d_m = \frac{\bar{d_w}}{N}$$

Podstawiając wartości do wzoru, otrzymano wartość:

$$d_m = \frac{0.62}{10} = 0.062 \text{ mm}$$

3.4 Wydłużenie drutu w zależności od obciążenia

Na podstawie skalibrowanej skali mikroskopu d_m i wartości przemieszczenia wskazówki n obliczono wartości wydłużenia drutu Δl (wzór 4). Wyniki przedstawiono w tabeli 6.

Obciążenie m [kg]	Wydłużenie drutu Δl [mm]		
	Osoba 1	Osoba 2	
1.0	0.0618	0.0618	
2.0	0.1236	0.1236	
3.0	0.2472	0.3090	
4.0	0.3090	0.4326	
5.0	0.4944	0.4944	
6.0	0.6798	0.5562	
6.5	0.8034	0.6180	
6.5	0.8034	0.6180	
6.0	0.6798	0.5562	
5.0	0.5562	0.4944	
4.0	0.4326	0.4326	
3.0	0.3708	0.3090	
2.0	0.3090	0.2472	

$$\Delta l = nd_m \tag{4}$$

Tabela 6: Wydłużenie drutu przeliczone na milimetry.

0.2472

3.5 Współczynniki prostej regresji liniowej

1.0

Współczynniki a i b prostej opisującej zależność wydłużenia drutu od masy obciążników zostały wyznaczone na podstawie regresji liniowej dla funkcji:

$$\Delta l = am + b \tag{5}$$

Zastosowano metodę regresji liniowej, wykorzystując funkcję LinearRegression z biblioteki sklearn w języku Python. Regresja liniowa dopasowuje model liniowy, aby zminimalizować sumę kwadratów reszt między obserwowanymi wartościami docelowymi w zbiorze danych a wartościami przewidywanymi przez liniową aproksymację. Uzyskane wartości współczynników wyniosły:

$$a = 0.103 \, \frac{\text{mm}}{\text{kg}}, \quad b = 0.0075 \, \text{mm}$$
 (6)

0.1854

Otrzymana prosta regresji została naniesiona na wykres pomiarów, przedstawiony na rysunku 2.

3.6 Moduł Younga

Na podstawie wzoru na moduł Younga (2), otrzymano zależność wydłużenia od masy obciążników:

$$\Delta l = \frac{F\bar{l}}{aE} = \frac{4g\bar{l}}{\pi\bar{d}^2E} \cdot m \tag{7}$$

Przyrównując tę zależność do prostej regresji (5) otrzymano wzór na moduł Younga:

$$am = \frac{4g\bar{l}}{\pi\bar{d}^2E}m$$

$$E = \frac{4g\bar{l}}{\pi\bar{d}^2a}$$

Podstawiając wartości liczbowe, otrzymano jego wartość wynoszącą $E=175\,\mathrm{GPa}$

4 Ocena niepewności pomiaru

4.1 Niepewności pomiarowe wielkości pośrednich

Niepewności pomiarów początkowej długości drutu (l) oraz grubości wskazówki (d_w) obliczono korzystając ze wzoru na całkowitą niepewność standardową (8), gdzie $u_A(x)$ oznacza niepewność standardową typu A obliczoną korzystając ze wzoru (9), a $u_B(x)$ oznacza niepewność standardową typu B obliczoną ze wzoru (10). W przypadku pomiarów średnicy drutu (d) pomiary nie wskazały rozrzutu, więc obliczono jedynie niepewność typu B. Niepewność wzorcowania $\Delta_d x$ dla zastosowanej śruby mikrometrycznej wynosi 0.01 mm, a miary metrowej 1 mm.

$$u_c(x) = \sqrt{u_A^2 + u_B^2} \tag{8}$$

$$u_A(x) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
(9)

$$u_B(x) = \frac{\Delta_d x}{\sqrt{3}} \tag{10}$$

Przykładowe obliczenie dla niepewności długości drutu $u_c(l)$:

$$u_A(l) = \sqrt{\frac{1}{10 - 1} \sum_{i=1}^{10} (l_i - 0.95)^2}$$

$$= \sqrt{\frac{1}{9} ((0.945 - 0.95)^2 + (0.951 - 0.95)^2 + \dots + (0.949 - 0.95)^2)}$$

$$= 0.0018 \,\mathrm{m}$$

$$u_B(l) = \frac{0.001}{\sqrt{3}} = 0.00058 \,\mathrm{m}$$

$$u_c(l) = \sqrt{(0.0018)^2 + (0.00058)^2} = 0.0060 \,\mathrm{m}$$

Końcowe wyniki po podstawieniu wartości:

- $u(l) = 0.0060 \,\mathrm{m}$
- $u(d_w) = 0.0045 \text{ mm}$
- $u(d) = 0.00058 \,\mathrm{mm}$

4.2 Niepewność pomiarowa współczynników prostej regresji liniowej

Niepewności pomiarowe dla wyznaczonej prostej regresji liniowej y = ax + b obliczono na podstawie odchylenia standardowego reszt s_y oraz rozkładu punktów pomiarowych wzdłuż osi x, korzystając z następujących wzorów:

$$s_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - 2}}$$
$$u_a = s_y \sqrt{\frac{n}{n \sum x_i^2 - (\sum x_i)^2}}$$
$$u_b = s_y \sqrt{\frac{\sum x_i^2}{n \sum x_i^2 - (\sum x_i)^2}}$$

gdzie x_i to wartości zmiennej niezależnej, y_i to wartości zmierzone, \hat{y}_i to wartości przewidywane przez model regresji, a n to liczba punktów pomiarowych. Dzielnik n-2 wynika z faktu, że model regresji liniowej ma dwa parametry $(a \ i \ b)$.

Obliczone wartości niepewności dla współczynników prostej regresji wynoszą:

- $u_a = 0.0071 \frac{\text{mm}}{\text{kg}}$
- $u_b = 0.031 \,\mathrm{mm}$

4.3 Niepewność pomiarowa modułu Younga

Niepewność standardowa obliczonej wartości modułu Younga została określona na podstawie prawa przenoszenia niepewności (11):

$$u_c(E) = \sqrt{\sum_{k=1}^K \left(\frac{\partial E}{\partial x_k}\right)^2 u^2(x_k)}.$$
 (11)

gdzie moduł Younga E wyraża się wzorem:

$$E = \frac{4g\bar{l}}{\pi\bar{d}^2a}.$$

Obliczone pochodne cząstkowe wynosza:

$$\begin{split} \frac{\partial E}{\partial \bar{l}} &= \frac{4g}{\pi \bar{d}^2 a}, \\ \frac{\partial E}{\partial \bar{d}} &= -\frac{8g\bar{l}}{\pi \bar{d}^3 a}, \\ \frac{\partial E}{\partial a} &= -\frac{4g\bar{l}}{\pi \bar{d}^2 a^2}. \end{split}$$

Po podstawieniu powyższych pochodnych do równania (11) otrzymujemy:

$$u_c(E) = \sqrt{\left(\frac{4g}{\pi \bar{d}^2 a}\right)^2 u^2(l) + \left(\frac{8g\bar{l}}{\pi \bar{d}^3 a}\right)^2 u^2(d) + \left(\frac{4g\bar{l}}{\pi \bar{d}^2 a^2}\right)^2 u^2(a)}.$$

Po uproszczeniu:

$$u_c(E) = \frac{4g}{\pi \bar{d}^2 a} \sqrt{u^2(l) + \left(\frac{2\bar{l}}{\bar{d}}\right)^2 u^2(d) + \left(\frac{\bar{l}}{a}\right)^2 u^2(a)}.$$

Ostatecznie, podstawiając wartości:

$$u_c(E) = \frac{4 \cdot 9.81}{\pi \cdot (8.1 \cdot 10^{-4})^2 \cdot (1.03 \cdot 10^{-4})} \cdot \sqrt{(6.0 \cdot 10^{-3})^2 + \left(\frac{2.00 \cdot 0.95}{8.1 \cdot 10^{-4}}\right)^2 (5.8 \cdot 10^{-7})^2 + \left(\frac{0.95}{1.03 \cdot 10^{-4}}\right)^2 (7.1 \cdot 10^{-6})^2}$$
$$= 12 \cdot 10^9 \,\text{Pa}$$

5 Wnioski

Przeprowadzone pomiary wykazują liniową zależność między przyłożoną siłą a wydłużeniem drutu, co potwierdza stosowalność prawa Hooke'a w badanym zakresie obciążeń. Obliczona wartość modułu Younga 175(12) GPa jest zbliżona do wartości literaturowej dla stali nierdzewnej 304 (PN/0H18N9), wynoszącej 180 GPa (dane z [1]).

Jednakże analiza pełnego cyklu obciążenia i odciążenia ujawnia, że po zmniejszeniu obciążenia wydłużenie drutu nie powraca dokładnie do wartości początkowych. Świadczy to o tym, że materiał nie zachowuje się idealnie sprężyście. Choć większa część odkształcenia następuje natychmiast po przyłożeniu naprężenia, pewna niewielka część pojawia się stopniowo, z opóźnieniem - jest to zjawisko znane jako opóźnienie elastyczne ([2] - rozdział 21). Na wykresie 1, gdzie następujące po sobie pomiary zostały połączone prostymi, widoczny jest fragment pętli histerezy sprężystej.

Rysunek 1: Wydłużenie drutu po połączeniu następujących po sobie pomiarów prostymi (Źródło: opracowanie własne).

6 Wykresy

Rysunek 2: Pomiary z nałożoną prostą regresji (Źródło: opracowanie własne)

Literatura

- [1] Calculla. Moduł younga substancji, 2025. Dostęp: 09.03.2025.
- [2] Tadeusz Dryński. *Ćwiczenia laboratoryjne z fizyki*. Państwowe Wydawnictwo Naukowe, Warszawa, 5 edition, 1976.