Probability

Basics

Experiment

- Observation of random occurence
- Toy examples:
 - Rolling a die, tossing a coin
- Serious examples:
 - o Dropping a ball and a feather in vacuum
 - Measuring light distorion
- How about these?
 - Measuring economic effect of earthquakes
 - Vietnam draft lottery effect on education and wages

Basics

Experiment

- Each unique possible outcome
- Toy example:

Elementary outcomes

Basics

Experiment

• The sample space is the set of elementary outcomes, usually denoted by Ω

Elementary outcomes

• An event is a subset of the sample space.

Sample space and event

* A set is a collection of distinct objects

Basics

Experiment

Remember your set operations?

Elementary

Let A = $\{1,2,3\}$, B = $\{2,4,5\}$ be two subsets of Ω = $\{1, ..., 10\}$

outcomes $A \cup B$

 $A \cap B$

Sample

space and

event

 $A - B = A \backslash B$

 A^c

|A|

 $\emptyset = \{\}$

Basics

Experiment

Defining probability

Elementary outcomes

That's hard! Our first impulse is to talk about **frequencies**:

If we toss a coin an infinite number of times, heads will come up 50% of the time.

Sample space and event

However*:

Probability

We need a working definition.

^{*}See more on page 35 of the textbook.

Probability

Naive definition

Classical or Naive probability

$$P_{Classical}(A) = \frac{|A|}{|\Omega|} = \frac{\text{\# Favorable outcomes}}{\text{\# Total outcomes}}$$

When is this definition applicable?

- Symmetry
- Design

When is it not applicable?

Probability

Naive definition

Two dice are rolled

Take the sum of the pips. Is an 11 more likely than a 12?

Examples

Probability

Naive definition

Multiplication rule

In English: There are 6 ways of pairing 2 entrees and 3 deserts

Examples

 When an experiment E can be split into two subexperiments A and B, the total number of outcomes in E equals the numbers of outcomes in A and B multiplied.

Counting

"Proof": Tree branching.

Applications []:

- Sampling with replacement
- Permutations
- Sampling without replacement

Probability

Naive definition

Kolmogorov's axioms:

Let Ω be the sample space, and let A be an event.

Examples

1. Positivity

$$P(A) \ge 0$$

Counting

2. Unitarity

$$P(\Omega) = 1$$

Non-naive definition

3. Additivity* If A and B are disjoint

$$P(A \cup B) = P(A) + P(B)$$

All other properties can be derived from these []

 $[\]displaystyle\bigstar$ Actually, Kolmogorov's axioms hold for an infinite collection of sets.

Probability

Naive definition

Proving properties

Let's prove that

Examples

$$P(A^c) = 1 - P(A)$$

Thee probabiliy of A not happening equals 1 minus the probabiliy of it happening

Counting

 $P((\Omega \backslash A) \cup A) = 1$

 $P(\Omega) = 1$

Def of union

From axiom 2

Non-naive definition

 $P(A^c \cup A) = 1$ Def of complement

 $P(A^c) + P(A) = 1$

Axiom 3

 $P(A^c) = 1 - P(A)$ Rearranging

Proof example

Done! Have fun doing your homeworks.