MA1101R Exercise Question Cheatsheet

by Yiyang, AY20/21

Chapter 2 - Matrices

Ex2Qn9

Suppose the homogeneous system $A\mathbf{x} = \mathbf{0}$ has non-trivial solution. Then the linear system $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solution.

Ex2Qn11(e)

There are no square matrices A and B of same order such that AB - BA = I.

Ex2Qn23 (Block matrix multiplication)

Let A be an $m \times n$ matrix,

• For matrices B_1 and B_2 of size $n \times p$ and $n \times q$ respectively,

$$A(B_1\:B_2)=(AB_1\:AB_2)$$

• For matrices D_1 and D_2 of size $p \times m$ and $q \times m$ respectively,

$$\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} A = \begin{pmatrix} D_1 A \\ D_2 A \end{pmatrix}$$

Ex2Qn60

Suppose A is an invertible matrix, then adj(A) is invertible.

Chapter 3 - Vector Space

Ex3Qn30

Let $u_1, u_2, ..., u_k$ be vectors in \mathbb{R}^n and P a square matrix of order n,

- If $Pu_1, Pu_2, ..., Pu_k$ are linearly independent, then $u_1, u_2, ..., u_k$ are linearly independent.
- If $u_1, u_2, ..., u_k$ are linearly independent, and P is invertible, then $Pu_1, Pu_2, ..., Pu_k$ are linearly independent.

Ex3Qn41

Let *V* be a vector space,

- suppose S is a finite subset of V such that span(S) = V, then there exists a subset S' such that S' is a basis for V.
- suppose T is a finite subset of V such that T is linearly independent, then there exists a basis T^* for V such that $T \subseteq T^*$

Ex3Qn43

Let V, W be two subspaces of \mathbb{R}^n , then

$$\dim(V + W) = \dim(V) + \dim(W) - \dim(V \cap W)$$

Ex3Qn45

Let *V*, *W* be two subspaces of a given vector space,

- there exists a basis S_1 for V and a basis S_2 for W, such that $S_1 \cap S_2$ is a basis for $V \cap W$.
- there exists a basis T_1 for V and a basis T_2 for W, such that $T_1 \cup T_2$ is a basis for V + W.

Chapter 4 - Rank & Nullity

Ex4Qn20

Suppose *A* and *B* are two matrices such that $AB = \mathbf{0}$, then column space of *B* is contained in the nullspace of *A*.

Ex4Qn21

There is no matrix whose row space and nullspace both contain the same nonzero vector.

Ex4Qn22

Let *A* be an $m \times n$ matrix and *P* an $m \times m$ matrix. If *P* is invertible, then rank(PA) = rank(A). (The inverse is not true)

Ex4Qn23

For two matrices *A*, *B* of the same size,

$$rank(A + B) \le rank(A) + rank(B)$$

Ex4Qn24

Let A be an $m \times n$ matrix. Suppose the linear system $A\mathbf{x} = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^n$, then the linear system $A^T \mathbf{y} = \mathbf{0}$ has only the trivial solution.

Ex4Qn25

For a matrix A of size $m \times n$,

- nullspace of A is equal to nullspace of A^TA
- $\operatorname{nullity}(A) = \operatorname{nullity}(A^T A)$
- $rank(A) = rank(A^T A)$
- $rank(A) = rank(AA^T)$

(However, nullity(A) \neq nullity(AA^T))

Chapter 5 - Orthogonality

Ex5Qn9

Let $\{u_1, u_2, ..., u_n\}$ be an orthogonal set of vectors in a vector space, then

$$||u_1 + u_2 + ... + u_n||^2 = ||u_1||^2 + ||u_2||^2 + ... + ||u_n||^2$$

Ex5Qn18 Uniqueness of (Orthogonal) Projection

Let V be a subspace of \mathbb{R}^n and \boldsymbol{u} a vector in \mathbb{R}^n . \boldsymbol{u} can written uniquely as $\boldsymbol{u} = \boldsymbol{n} + \boldsymbol{p}$ such that \boldsymbol{n} is a vector orthogonal to V and \boldsymbol{p} a vector in V.

Ex50n19

Let A be a square matrix of order n such that $A^2 = A^T = A$,

- for any two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, $(A\boldsymbol{u}) \cdot \boldsymbol{v} = \boldsymbol{u} \cdot (A\boldsymbol{v})$
- for any vector $\mathbf{w} \in \mathbb{R}^n$, $A\mathbf{w}$ is the projection of \mathbf{w} onto the subspace $V = \{\mathbf{u} \in \mathbb{R}^n | A\mathbf{u} = \mathbf{u}\}$ of \mathbb{R}^n

Ex5Qn32

Let *A* be an orthogonal matrix of order *n* and let u, v be any two vectors in \mathbb{R}^n ,

- ||u|| = ||Au||
- $d(\boldsymbol{u}, \boldsymbol{v}) = d(A\boldsymbol{u}, A\boldsymbol{v})$
- the angle between \boldsymbol{u} and \boldsymbol{v} is equal to the angle between $A\boldsymbol{u}$ and $A\boldsymbol{v}$

Ex5Qn33

Let *A* be an orthogonal matrix of order *n* and $S = \{u_1, u_2, ..., u_n\}$ be a basis for \mathbb{R}^n

- $T = \{Au_1, Au_2, ..., Au_n\}$ is a basis for \mathbb{R}^n
- S is orthogonal $\rightarrow T$ is orthogonal
- S is orthonormal $\rightarrow T$ is orthonormal

Chapter 6 - Diagonalisation

Ex6Qn3

Let λ be an eigenvalue of a square matrix A,

- λ^n is an eigenvalue of A^n for any $n \in \mathbb{Z}_{>1}$
- $\frac{1}{3}$ is an eigenvalue for A^{-1} if A is invertible
- λ is an eigenvalue for A^T

Ex6Qn4

Let *A* be a square matrix such that $A^2 = A$. If λ is an eigenvalue of *A*, then $\lambda = 0$ or 1.

Ex6Qn16

Let A be a stochastic matrix,

- 1 is an eigenvalue of A,
- if λ is an eigenvalue of A, then $|\lambda| \leq 1$.

(A stochastic matrix $(a_{i_j})_{m \times n}$ is one where all entries are nonnegative and sum of entries of each column is 1, i.e. $a_{1i} + a_{2i} + ... + a_{ni} = 1$, for all i = 1, 2, ..., n)

Ex6Qn25

Let \boldsymbol{u} be a column matrix, then $I - \boldsymbol{u}\boldsymbol{u}^T$ is orthogonally diagonablisable

Ex6Qn26

Let *A* be a symmetry matrix. If u, v are two eigenvalues of *A* associated with different eigenvalues, then $u \cdot v = 0$.

Ex6Qn30

For two orthogonally diagonalisable matrices of same order, A,B,A+B is orthogonally diagonalisable . (However, AB might not be.)

Chapter 7 - Linear Transformations *Ex7Qn8*

Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be a linear transformation such that $T \circ T = T$,

- if T is not the zero transformation, then there exits a nonzero vector $u \in \mathbb{R}^n$ such that T(u) = u
- if T is no the identity transformation, then there exists a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ such that $T(\mathbf{v}) = 0$

Ex7Qn10

A linear operator T on \mathbb{R}^n is called isometry if ||T(u)|| = ||u|| for all $u \in \mathbb{R}^n$.

- if T is an isometry on \mathbb{R}^n , then $T(u) \cdot T(v) = u \cdot v$ for all $u, v \in \mathbb{R}^n$
- let *A* be the standard matrix for a linear operator *T*. *T* is isometry iff. *A* is an orthogonal matrix.

Ex7Qn16

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Ker $(T) = \{\mathbf{0}\}$ iff T is one-to-one (i.e. $\forall u, v \in \mathbb{R}^n, u \neq v \to T(u) \neq T(v)$)

Ex7Qn17

Let $S: \mathbb{R}^m \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations,

- $Ker(S) \subseteq Ker(T \circ S)$
- $R(T \circ S) \subseteq R(T)$