CÀLCUL DIFERENCIAL EN \mathbb{R}^n

15 de setembre de 2014

$\mathbf{\acute{I}ndex}$

Capít	ol 1. Producte escalar, norma i distància en un espai vectorial	1			
1.	L'espai vectorial $(\mathbb{R}^n, +, \cdot)$ i l'espai afí \mathbb{R}^n	1			
2.					
3.	Topologia en \mathbb{R}^n .	7			
4.	Límits de successions de \mathbb{R}^n	11			
5.	Conjunts acotats i conjunts compactes	13			
Capít	ol 2. Límits i continuïtat en \mathbb{R}^n	15			
1.	Gràfiques de funcions. Corbes de nivell	15			
2.	Límits de funcions. Continuïtat.	16			
3.	Càlcul de límits	18			
4.	Funcions contínues i topologia relativa	21			
Capít	ol 3. Funcions diferenciables	25			
1.	Derivades parcials i derivades direccionals	25			
2.	Funcions diferenciables. Propietats	27			
3.	Funcions de classe \mathcal{C}^1	30			
4.	Interpretació geomètrica de la diferenciabilitat d'una funció	31			
5.	Teoremes del valor mig	32			
Capít	ol 4. Polinomi de Taylor. Extrems locals	33			
1.	Funcions de classe C^k . Teorema d'Schwarz	33			
2.	Polinomi de Taylor	34			
3.	Extrems locals	36			
Capít	ol 5. Els teoremes de la funció inversa i de la funció implícita.				
	Extrems condicionats	41			
1.	Teorema de la funció inversa	41			
2.	Teorema de la funció implícita	43			
3.	Subvarietats en \mathbb{R}^n	46			
4.	Extrems condicionats. Multiplicadors de Lagrange.	47			
Índex	alfabètic	53			

CAPíTOL 1

Producte escalar, norma i distància en un espai vectorial

1. L'espai vectorial $(\mathbb{R}^n, +, \cdot)$ i l'espai afí \mathbb{R}^n

Recordem que el conjunt $\mathbb{R}^n = \{u = (x_1, \dots, x_n) : x_j \in \mathbb{R}, j = 1, \dots, n\}$ equipat amb les operacions suma $+ : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, definida per

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n),$$

i producte $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, definit per

$$\lambda(x_1,\cdots,x_n)=(\lambda x_1,\cdots,\lambda x_n),$$

és un espai vectorial. La notació habitual per designar aquest espai és $(\mathbb{R}^n, +, \cdot)$, tot i que normalment només s'escriu \mathbb{R}^n .

Els elements d'un espai vectorial és diuen vectors. Utilitzarem la notació $0 \in \mathbb{R}^n$ per indicar l'element neutre de l'espai, és a dir $0 = (0, \dots, 0)$.

El mateix conjunt $\mathbb{R}^n = \{p = (x_1, \dots, x_n) : x_j \in \mathbb{R}, j = 1, \dots, n\}$ el podem pensar com el conjunt de punts de l'espai n-dimensional. En aquest cas no tenim operacions, però podem definir translacions $T : \mathbb{R}^n \times (\mathbb{R}^n, +, \cdot) \to \mathbb{R}^n$: si $p = (x_1, \dots, x_n)$ i $u = (y_1, \dots, y_n)$, llavors $T(p, u) = (x_1 + y_1, \dots, x_n + y_n)$, és a dir formalment T(p, u) = p + u. El conjunt \mathbb{R}^n equipat amb aquest conjunt de translacions és un espai afí.

Observeu que donats dos punts qualsevols p, q, hi ha un únic vector \overrightarrow{pq} que trasllada el punt p al punt q, i que en la pràctica es calcula restant a les coordenades de l'extrem q, les de l'origen p, és a dir $\overrightarrow{pq} = "q - p"$. Així doncs podem identificar tot punt p amb el vector $\overrightarrow{0p}$.

Tot i que els dos conceptes de \mathbb{R}^n com a espai vectorial o com espai afí són diferents, en anàlisi s'acostuma a utilitzar-los de forma ambígua per tal d'alleugerir les notacions. Per exemple si tenim dos punts p i q de \mathbb{R}^n , no podem parlar de 2p-q, ja que en l'espai afí no tenim definides les operacions suma i produce. No obstant T(0,20p-0q)="2p-q". Així doncs, quan ens referin al punt 2p-q, formalment hauríem de dir el punt T(0,20p-0q).

La visió algebraica ens permet operar amb els elements de \mathbb{R}^n , i normalment els espais que apareixen en l'anàlisi matemàtica són espais vectorials. Però la visió geomètrica és útil ja que permet representar gràficament determinats conjunts de vectors.

1.1. Notacions habituals.

• Utilitzarem les lletres x, y i z de forma ambigua. Si tenim una funció $f: \mathbb{R}^n \to$ \mathbb{R}^m , al escriure f(x) hem de pensar que $x=(x_1,\cdots,x_n)$, i de forma anàloga amb f(y) o f(z). En canvi quan treballem amb funcions de \mathbb{R}^2 escriurem habitualment f(x,y). En aquest cas (x,y) indicaran les coordenades d'un punt en el pla. En el cas de \mathbb{R}^3 també escriurem f(x, y, z).

Aquesta notació és la que s'utilitza habitualment i per tant cal acostumar-se a fer-la servir. Si penseu que significa el que escrivim mai hi ha confusió.

- Recordem algunes notacions habituals de conjunts.
 - Donats dos subconjunts no buits A i B de \mathbb{R}^n , no buits i $\lambda \in \mathbb{R}$, definim els següents subconjunts:
 - $* A \cap B = \{ x \in \mathbb{R}^n : x \in A \text{ i } x \in B \}.$ $* A \cup B = \{x \in \mathbb{R}^n : x \in A \text{ o } x \in B\}.$ $* A^c = \mathbb{R}^n \setminus A = \{ x \in \mathbb{R}^n : x \notin A \}.$ $*A + B = \{z \in \mathbb{R}^n : z = x + y \ x \in A, y \in B\}.$ $*A - B = \{z \in \mathbb{R}^n : z = x - y \ x \in A, y \in B\}.$ * $\lambda A = \{ z \in \mathbb{R}^n : z = \lambda x, \ x \in A, \ \lambda \in \mathbb{R} \}.$ $* A \setminus B = \{ x \in A : x \notin B \}.$
 - Si tenim una família (finita o infinita) de conjunts $\{A_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, per indicar la intersecció i la unió de tots ells escriurem $\bigcap_{\alpha \in \mathcal{A}} A_{\alpha}$ o $\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$.
 - Es compleixen les relacions següents:

$$* (A^c)^c = A.$$

*
$$A \cap B = (A^c \cup B^c)^c$$
, o més generalment $\bigcap_{\alpha \in \mathcal{A}} A_\alpha = \left(\bigcup_{\alpha \in \mathcal{A}} A_\alpha\right)^c$.
* $A \cup B = (A^c \cap B^c)^c$, o més generalment $\bigcup_{\alpha \in \mathcal{A}} A_\alpha = \left(\bigcap_{\alpha \in \mathcal{A}} A_\alpha\right)^c$.

*
$$A \cup B = (A^c \cap B^c)^c$$
, o més generalment $\bigcup_{\alpha \in \mathcal{A}} A_\alpha = \left(\bigcap_{\alpha \in \mathcal{A}} A_\alpha\right)$.
* $A \setminus B = A \cap B^c$.

$$A \cap B^c = A \setminus B$$

$$A \cap B = (A^c \cup B^c)^c$$

$$A$$

$$B \cap A^c = B \setminus A$$

$$B$$

$$A^c \cap B^c = (A \cup B)^c$$

1.2. Figures geomètriques elementals.

Les equacions següents es corresponen amb còniques i quàdriques amb eixos paral·lels als eixos de coordenades:

A, B i C són nombres reals diferents de 0.

Paràbola de vèrtex (a,b)

Hipèrbola centrada en (a, b)

$$\frac{(x-a)^2}{A^2} - \frac{(y-b)^2}{B^2} = 1$$

Con el·líptic amb vèrtex en (a,b,c)

El·lipsoid centrat en
$$(a, b, c)$$

Paraboloid el·líptic de vèrtex (a,b,c)

$$A(x-a)^{2} + B(y-b)^{2} - (z-c) = 0$$

Hiperboloid el·líptic d'una fulla

centrat en
$$(a, b, c)$$

 $\frac{(x-a)^2}{A^2} + \frac{(y-b)^2}{B^2} - \frac{(z-c)^2}{C^2} = 1$

Hiperboloid el·líptic de dues fulles

Canviant les variables x,y,z podem obtenir més equacions. Per exemple $x^2-y=0$ és l'equació d'una paràbola. Per tant $x-y^2=0$ també ho és.

4

2. Producte escalar, norma i distància

El **producte escalar (euclidià)** de dos vectors $x=(x_1,\cdots,x_n)$ i $y=(y_1,\cdots,y_n)$ de \mathbb{R}^n ve definit per

$$\langle x, y \rangle = x \cdot y = \sum_{k=1}^{n} x_k y_k = x_1 y_1 + \dots + x_n y_n.$$

Per a tot $x, y, z \in \mathbb{R}^n$ i tot $\lambda \in \mathbb{R}$ aquest producte escalar compleix:

PE1: $\langle x, y \rangle = \langle y, x \rangle$.

PE2: $\langle x, x \rangle \ge 0$, i $\langle x, x \rangle = 0$ si i només si x = 0.

PE3: $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$.

PE4: $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.

Definició 1.1. Un **producte escalar** en un espai vectorial real E és una aplicació $\langle \cdot, \cdot \rangle : E \times E \rightarrow \mathbb{R}$ que compleix les quatre propietats anteriors per a tot $x, y, z \in (x, y) \rightarrow \langle x, y \rangle$

 $E \ i \ tot \ \lambda \in \mathbb{R}.$

Un espai vectorial E amb un producte escalar $\langle \cdot, \cdot \rangle$ és diu un **espai prehilbertià**.

A partir del producte escalar euclidià podem definir la **norma euclidiana** d'un vector $x \in \mathbb{R}^n$ de la forma

$$||x|| = \sqrt{x \cdot x} = \left(\sum_{k=1}^{n} x_k^2\right)^{1/2}.$$

Definició 1.2. Una **norma** en un espai vectorial real E és una aplicació $\|\cdot\|:E\to\mathbb{R}$ que compleix $x\to\|x\|$

N1: $||x|| \ge 0$ i ||x|| = 0 si i només si x = 0.

N2: $\|\lambda x\| = |\lambda| \|x\|$ per a tot $\lambda \in \mathbb{R}$ i tot $x \in E$.

N3: $||x+y|| \le ||x|| + ||y||$ per a tot $x, y \in E$ (designal tat triangular).

Un espai vectorial E equipat amb una norma $\|\cdot\|$ es diu un **espai normat**. Els vectors x que compleixen $\|x\| = 1$ es diuen **vectors unitaris**.

Observeu que si $x \neq 0$, llavors $y = \frac{x}{\|x\|}$ és un vector unitari.

Es clar que en el cas del producte escalar $x \cdot y$, si $||x|| = \sqrt{x \cdot x}$ es compleixen [N1] $(|x_k| \le ||x||)$ per a tot $k = 1, \dots, n$ i [N2] (recordeu que $\sqrt{\lambda^2} = |\lambda|$).

La condició [N3] és pot demostrar a partir del teorema del cosinus.

Si x=0 o bé y=0 [N3] és certa. Suposem que els dos són diferents de 0. Aplicant el teorema del cosinus al triangle de vèrtexs 0, x i y es té $\|x-y\|^2 = \|x\|^2 + \|y\|^2 - 2\|x\|\|y\|\cos\theta_{x,y}$, on $\theta_{x,y}$ indica l'angle que formen els vectors x i y. Combinant la igualtat anterior amb $\|x-y\|^2 = \|x\|^2 - 2x \cdot y + \|y\|^2$ tenim la fórmula

 $x \cdot y = ||x|| ||y|| \cos \theta_{x,y}$ (cosinus de l'angle que formen dos vectors no nuls)

i la designaltat $||x \cdot y| \le ||x|| ||y||$ (designaltat de Cauchy-Schwarz)

Utilitzant aquesta desigualtat s'obté

$$||x + y||^2 = ||x||^2 + 2x \cdot y + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2,$$

que junt amb el fet que $||x + y|| \ge 0$ i $||x|| + ||y|| \ge 0$ prova [N3].

De la igualtat $x \cdot y = ||x|| ||y|| \cos \theta_{x,y}$ s'obté que dos vectors x, y no nuls són **ortogonals** (**perpendiculars**) només quan $x \cdot y = 0$.

Aquest concepte és pot generalitzar a espais vectorials amb un producte escalar.

Definició 1.3. Dos vectors x, y en un espai vectorial E amb un producte escalar $\langle \cdot, \cdot \rangle$ són ortogonals si $\langle x, y \rangle = 0$. Per indicar que x i y són ortogonals escrivrem $x \perp y$.

Una tècnica utilitzada habitualment en mecànica és la descomposicioó de forces. Aquesta tècnica és basa en projectar ortogonalment un vector sobre un altre vector.

Definició 1.4. Si $x, y \in E$, la **projecció ortogonal** de x sobre y és l'unic vector $\Pi_y x$ que compleix

$$\Pi_y x = \lambda y$$
 i $(x - \Pi_y x) \perp y$.

Per tant, si $y \neq 0$ es compleix $\Pi_y x = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$.

Exemple 1.5. Calculeu la projecció ortogonal de u = (2, 2, 0) sobre el vector v = (2, 0, 2).

$$\Pi_v u = \frac{u \cdot v}{\|v\|^2} v = \frac{4}{8} (2, 0, 2) = (1, 0, 1).$$

En \mathbb{R}^n hem vist com a partir del producte escalar euclidià podíem construïr una norma utilitzant la desigualtat de Cauchy-Schwarz. Aquests resultats són certs per a qualsevol producte escalar.

Proposició 1.6. Si $\langle \cdot, \cdot \rangle$ és un producte escalar en un espai vectorial real E, llavors $||x|| = \langle x, x \rangle^{1/2}$ és una norma en E.

Lema 1.7 (Designaltat de Cauchy-Schwarz). Si $x, y \in \mathbb{R}^n$, llavors $|\langle x, y \rangle| \leq ||x|| ||y||$. A més la ignaltat $\langle x, y \rangle = ||x|| ||y||$ només s'obté quan $x = \lambda y$ o be $y = \lambda x$ per a un cert $\lambda \geq 0$.

Un corol·lari de la desigualtat triangular és:

Corol·lari 1.8. Si ||x|| és una norma en espai vectorial E, per a tot $x, y \in E$ es compleix $|||x|| - ||y||| \le ||x - y||.$

Demostració. Utilitzant la designaltat triangular es té $||x|| = ||y + (x - y)|| \le$ ||y|| + ||x - y|| i per tant $||x|| - ||y|| \le ||x - y||$. Canviant x per y tenim $||y|| - ||x|| \le ||x - y||$. ||y-x|| = ||x-y||, és a dir $||x|| - ||y|| \ge -||x-y||$.

Combinat les dues desigualtats s'obté el resultat.

Exercici 1.9. Si x i y són dos vectors en un espai prehibertià, llavors es compleix:

• Teorema de Pitàgores: Si x i y són ortogonals, $||x + y||^2 = ||x||^2 + ||y||^2$. • Regla del paral·lelogram: $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$.

Fins are hem estudiat normes definides a partir d'un producte escalar. No obstant hi ha normes que no provenen d'un producte escalar. Per exemple, en \mathbb{R}^n , $||x||_1 = \sum_{k=1}^n |x_k|$ i $\|x\|_{\infty} = \max_{k=1,\cdots,n} |x_k|$ són també dues normes, que compleixen

$$||x||_{\infty} \le ||x|| \le ||x||_1 \le n||x||_{\infty},$$

<u>és a dir</u>

$$|x_k| \le \max_{k=1,\dots,n} |x_k| \le \left(\sum_{k=1}^n x_k^2\right)^{1/2} \le \sum_{k=1}^n |x_k| \le n \max_{k=1,\dots,n} |x_k|.$$

En l'espai vectorial \mathbb{R}^n amb el producte escalar i la norma euclidians podem definir una distància entre vectors mitjançant d(x,y) = ||x-y||. No obstant també podem definir una distància en l'espai afí \mathbb{R}^n mitjançant la formula $dist(x,y) = \|\overrightarrow{xy}\|$. És a dir, no cal que un conjunt E sigui un espai vectorial per tal de poder-hi definir una distància.

Definició 1.10. Una distància en un conjunt X és una aplicació $d(\cdot,\cdot): X \times X \to \mathbb{R}$ complint

D1: d(x,y) = d(y,x)

D2: $d(x,y) \ge 0$ i d(x,y) = 0 si i només si x = y

 $d(x,y) \le d(x,z) + d(z,y)$ (designal tat triangular)

per a tot $x, y, z \in X$.

Un conjunt X amb una distància és diu un espai mètric. Escriurem $(X, d(\cdot, \cdot))$.

Com en el cas de la norma, a partir de la desigualtat triangular s'obté

$$\boxed{|d(x,y) - d(y,z)| \le d(x,z)}.$$

Com a consequência de les propietats de la norma es té:

Lema 1.11. Si tenim un espai vectorial normat E llavors d(x,y) = ||x-y|| defineix una distància en E. A més aquesta distància és invariant per translacions, és a dir d(x+z, y+z) = d(x, y).

3. Topologia en \mathbb{R}^n .

Si no s'especifica el contrari, en \mathbb{R}^n considerarem el producte escalar euclidià amb la corresponent norma i distància.

3.1. Conjunts oberts i conjunts tancats. Interior i adherència d'un conjunt. Donat $x \in \mathbb{R}^n$ i r > 0, diem $B(x,r) = \{y \in \mathbb{R}^n : d(x,y) < r\} = \{y \in \mathbb{R}^n : ||y-x|| < r\}$. Aquest conjunt s'anomena **bola oberta** de centre x i radi r (més endavant justificarem la paraula oberta).

Donat un conjunt $A \subset \mathbb{R}^n$ no buit volem separar \mathbb{R}^n en diferents subconjunts en funció de si la familia de boles $\{B(x,r)\}_{r>0}$ tallen A, A^c o tots dos.

Definició 1.12. Sigui A un subconjunt no buit de \mathbb{R}^n .

- Un punt $x \in \mathbb{R}^n$ és adherent a A si per a tot r > 0 es compleix $B(x,r) \cap A \neq \emptyset$, és a dir, tota bola centrada en x talla A.
 - * Els punts adherents és poden classificar en dos tipus en funció de si totes les boles B(x,r) tallen A^c o no:
 - Direm que $x \in \mathbb{R}^n$ és un **punt interior** a A si existeix r > 0 tal que $B(x,r) \subset A$, és a dir per a un cert r > 0, B(x,r) no conté punts de A^c . L' **interior** de A és el conjunt format per tots els punts interiors a A. El denotarem per A^c .
 - Direm que $x \in \mathbb{R}^n$ és un punt de la **frontera** de A si totes les boles B(x,r) tallen A i A^c . El conjunt format pels punts frontera s'anomena frontera de A i el denotarem Fr(A).

Clarament es compleix $Fr(A) = \overline{A} \setminus A^o$.

 p_3

Així doncs tindren, $\overline{A} = A^o \cup Fr(A)$ i $A^o \cap Fr(A) = \emptyset$.

- * També es poden classificar en funció de si les boles tallen $A \setminus \{x\}$ o no:
 - Direm que $x \in \mathbb{R}^n$ és un **punt d'acumulació** de A si tota bola B(x,r) conté punts de A diterents de x. El conjunt format pels punts d'acumulació de A el denotarem per A'.
 - Els punts del conjunt $\overline{A} \setminus A'$ és diuen **punts aïllats**. Així doncs x és un punt aïllat de A quan existeix r > 0 tal que $B(x,r) \cap A = \{x\}$. Observeu que si P_I és el conjunt de punts aïllats, llavors $\overline{A} = A' \cup P_I$, $A' \cap P_I = A' \cup A' \cap A' \cap A'$

7)

• Direm que $x \in \mathbb{R}^n$ és un **punt exterior** a A si $x \in (\overline{A})^c$, és a dir existeix r > 0 tal que $B(x,r) \subset A^c$. Al conjunt de punts exteriors a A li direm Ext(A).

Definició 1.13. • Un conjunt no buit A és **obert** si $A^o = A$, és a dir si tots els seus punts són interiors.

- Per definició el conjunt buit Ø és un conjunt obert.
- Un conjunt A és un conjunt tancat si A^c és obert, és a dir si $A = \overline{A}$.
- Un conjunt A és dens en \mathbb{R}^n si $\overline{A} = \mathbb{R}^n$.
- Un entorn d'un punt p és un conjunt A tal que $p \in A^o$.

Per tal de tenir una idea intuitiva dels conceptes anteriors, feu els dos problemes següents. Més endavant veurem com provar aquests resultats.

Exercici 1.14. Donat el conjunt $A = \{(x,y) \in \mathbb{R}^2 : 0 < x^2 + 4y^2 - 8y \le 5\}$:

- (1) Representeu-lo gràficament.
- (2) Trobeu un punt interior, un d'exterior i un de la frontera del conjunt A.
- (3) Quins creieu que són els conjunts A^o , \overline{A} A' i Fr(A).

Exercici 1.15. Repetiu el problema anterior amb el conjunt

$$A = \{(x,y) \in \mathbb{R}^2 : (x^2 + 4y^2)(x^2 + y^2 - 4) \ge 0\}.$$

Exercici 1.16. Dibuixeu un conjunt del pla que compleixi $\overline{A^o} \subseteq \overline{A}$.

Més endavant veurem més exemples de conjunts oberts i de conjunts tancats.

Un exemple senzill de conjunt dens és \mathbb{Q} en \mathbb{R} , ja que $\mathbb{Q} \subset \mathbb{R} = \mathbb{Q}$. En general \mathbb{Q}^n és dens en \mathbb{R}^n , ja que $\mathbb{Q}^n \subset \mathbb{R}^n = \overline{\mathbb{Q}^n}$. Observeu que $(\mathbb{Q}^n)^o = \emptyset$, $Fr(\mathbb{Q}^n) = \overline{\mathbb{Q}^n} = \mathbb{R}^n$.

A partir de les definicions donades abans es compleix :

Lema 1.17. Sigui A un subconjunt de \mathbb{R}^n .

- (1) \mathbb{R}^n i \emptyset són conjunts oberts i tancats (de fet són els únics conjunts que són oberts i tancats simultàniament).
- (2) $\mathbb{R}^n = A^o \cup Fr(A) \cup Ext(A)$ i A^o , Fr(A) i Ext(A) són disjunts.
- (3) $Ext(A) = (\overline{A})^c = (A^c)^o$ i per tant $\overline{A^c} = (A^o)^c$.
- $(4) Fr(A) = (A^o \cup Ext(A))^c = (A^o)^c \cap (Ext(A))^c = \overline{A^c} \cap \overline{A}.$
- (5) $Si \ A \subset B \ llavors \ A^o \subset B^o \ i \ \overline{A} \subset \overline{B}.$
- (6) A és obert si i nomes si A^c és tancat.
- (7) A^o és el conjunt obert més gran contingut en A, és a dir si $C \subset A$ és obert, llavors $C \subset A^o$.
- (8) Ext(A) és el conjunt obert més gran contingut en A^c .
- (9) \overline{A} és el conjunt tancat més petit que conté A.

El lema següent és útil per estudiar l'interior, la adherència i la frontera d'un conjunt.

Lema 1.18. Sigui A un conjunt no buit de \mathbb{R}^n . Si existeix un conjunt tancat B i un conjunt obert C complint:

- (1) $C \subset A \subset B$.
- (2) $D = B \setminus C \subset Fr(A)$.

LLavors $\overline{A} = B$, $A^o = C$ i Fr(A) = D.

DEMOSTRACIÓ. Donat que \overline{A} és el conjunt més petit que conté A i A^o és l'obert més gran contingut en A, tenim

$$\overline{A} \subset B = C \cup D \subset A^o \cup Fr(A) = \overline{A},$$

d'on s'obté $\overline{A} = B$. Utilitzant que A^o i Fr(A) són disjunts i que $C \subset A^o$ i $D \subset Fr(A)$, s'obté $C = A^o$ i $Fr(A) = \overline{A} \setminus A^o = B \setminus C = D$.

Exemples importants de conjunts oberts o tancats són les boles i les esferes.

Lema 1.19. Siguin $z \in \mathbb{R}^n$ i r > 0 i diem A = B(z, r).

- (1) A és un conjunt obert. Per aquest motiu B(z,r) s'anomena **bola oberta** de centre z i radi r.
- (2) $\overline{A} = A' = B'(z, r) = \{x \in \mathbb{R}^n : ||x z|| \le r\}$. B'(z, r) s'anomena **bola tancada** de centre z i radi r.
- (3) $Fr(A) = S(z,r) = \{x \in \mathbb{R}^n : ||x-z|| = r\}$. S(z,r) és l'**esfera** de centre z i radi r.

DEMOSTRACIÓ. Diem $B=B'(z,r),\ C=B(z,r)$ i D=S(z,r). Comprovarem les hipòtesis del Lema 1.18. Per definició $C=A\subset B=C\cup D$.

- <u>C</u> és obert: Hem de veure que donat $x \in B(z,r)$ existeix $\varepsilon > 0$ tal que $B(x,\varepsilon) \subset B(z,r)$, és a dir que si $||y-x|| < \varepsilon$, llavors ||y-z|| < r. Triant $\varepsilon < r ||x-z||$ es compleix, ja que $||y-z|| \le ||y-x|| + ||x-z|| < r$.
- <u>B</u> és tancat: Hem de veure que $B^c = \{x \in \mathbb{R}^n : ||x-z|| > r\}$ és obert. Per tant cal veure que si $x \in B^c$ llavors existeix $\varepsilon > 0$ tal que $B(x,\varepsilon) \subset B^c$, és a dir que si $||y-x|| < \varepsilon$, llavors ||y-z|| > r. Triant $\varepsilon < ||x-z|| r$ es compleix, ja que $||y-z|| \ge ||x-z|| ||y-x|| > ||x-z|| \varepsilon > r$.
- $D \subset Fr(A)$: Si $x \in D$ cal veure que tota bola $B(x,\varepsilon)$ conté punts de A i de A^c . Per veure que conté punts de A hem de trobar y tal que $\|y-z\| < r$ i $\|y-x\| < \varepsilon$. Busquem y de la forma $y = x \delta(x-z)$ amb $\delta > 0$. En aquest cas $\|y-z\| = |1-\delta|r$ i $\|y-x\| = \delta r$. Triant $0 < \delta < \min\{1,\varepsilon/r\}$ es compliran les condicions.

Veure que $B(x,\varepsilon)$ conté punts de A^c és més senzill, ja que $x \in A^c$.

Així doncs B(x,r) és obert, B(x,r) = B'(x,r) i Fr(B(x,r)) = S(x,r).

Queda només veure que B'(z,r) és el conjunt de punts d'acumulació de B(z,r), és a dir que si $x \in B'(x,r)$, tota bola $B(x,\varepsilon)$ conté algun punt de A diferent de x. Per tant cal trobar y tal que ||y-z|| < r i $0 < ||y-x|| < \varepsilon$.

Si x = z, triem $0 < \delta < \min\{r, \varepsilon\}$ i $y = z + \delta w$ on w és un vector unitari qualsevol. Si $x \neq z$, triem com abans $y = x - \delta(x - z)$ amb $0 < \delta < \min\{1, \varepsilon/r\}$.

Proposició 1.20. La unió i intersecció de conjunts oberts o tancats compleix.

- (1) La unió (finita o infinita) de conjunts oberts és un conjunt obert.
- (2) La intersecció finita de conjunts oberts és un conjunt obert.
- (3) La intersecció (finita o infinita) de conjunts tancats és un conjunt tancat.
- (4) La unió finita de conjunts tancats és un conjunt tancat.

DEMOSTRACIÓ. (1) Suposem que tenim una familia $\{A_{\alpha}\}_{\alpha}$ de conjunts oberts. Volem veure que $A = \bigcup_{\alpha} A_{\alpha}$ també és obert, és a dir que per a cada $x \in A$ existeix $\varepsilon > 0$ tal que $B(x, \varepsilon) \subset A$.

Si $x \in A$, llavors $x \in A_{\alpha}$ per a un cert α . Donat que A_{α} és obert, existeix $\varepsilon > 0$ tal que $B(x, \varepsilon) \subset A_{\alpha} \subset A$.

- (2) Suposem que $A = \bigcap_{j=1}^m A_j$ amb A_j obert. Si algun $A_j = \emptyset$, llavors $A = \emptyset$ i per tant A és obert. Suposem que tots els A_j són no buits. Llavors donat $x \in A$, llavors $x \in A_j$ per a tot j. Per tant existeix $\varepsilon_j > 0$ tal que $B(x, \varepsilon_j) \subset A_j$. Triant $\varepsilon = \min\{\varepsilon_j : 1 \le j \le m\} > 0$ és té $B(x, \varepsilon) \subset A$.
- (3) Suposem que tenim una familia $\{B_{\alpha}\}_{\alpha}$ conjunts tancats. Per veure que $B = \bigcap_{\alpha} B_{\alpha}$ és tancat només cal veure B^c és obert. Aquest resultat és conseqüència del fet que $B^c = \bigcup_{\alpha} B^c_{\alpha}$ i la primera part amb $A_{\alpha} = B^c_{\alpha}$.

- (4) Utilitzant que si $B = \bigcap_{j=1}^m B_j$ llavors $B^c = \bigcup_{j=1}^m B_j^c$, s'obté que B^c és tancat.
- **Observació 1.21.** La intersecció infinita de conjunts oberts no és necessàriament obert. Per exemple si $A_j = (-1/j, 1/j), j \in \mathbb{N}$, llavors $\cap_j A_j = \{0\}$ que no és obert.
 - La unió infinita de conjunts tancats no és necessàriament tancada. Per exemple si $B_j = [-1 + 1/j, 1 1/j], j \in \mathbb{N}, llavors \cup_j B_j = (-1, 1)$ que és obert.
 - Les propietats (1) i (2) proven que el conjunt τ format per tots els subconjunts oberts de \mathbb{R}^n és una topologia.

Una **topologia** τ_X en un conjunt X és un conjunt de subconjunts de X tals que \emptyset i X pertanyen a τ_X , i la unió (finita o infinita) i la intersecció finita de conjunts de τ_X també pertanyen a τ_X .

Corol·lari 1.22. Sigui $\{A_i\}_i$ una familia de subconjunts de \mathbb{R}^n . Llavors es compleixen les següents inclusions

$$\frac{\left(\bigcap_{\alpha} A_{\alpha}\right)^{o} \subset \bigcap_{\alpha} A_{\alpha}^{o}}{\left(\bigcap_{\alpha} A_{\alpha}\right)} \subset \bigcap_{\alpha} \overline{A_{\alpha}} \qquad i \qquad \qquad \frac{\left(\bigcup_{\alpha} A_{\alpha}\right)^{o} \supset \bigcup_{\alpha} A_{\alpha}^{o}}{\left(\bigcup_{\alpha} A_{\alpha}\right)} \supset \bigcup_{\alpha} \overline{A_{\alpha}}.$$

Les inclusions anteriors poden ser estrictes.

DEMOSTRACIÓ. La primera inclusió s'obté a partir de $(\cap_{\alpha} A_{\alpha})^{o} \subset A_{\alpha}^{o}$ per a tot α . Per veure que la inclusió pot ser estricta, només cal triar $A_{j} = (-1/j, 1/j) \subset \mathbb{R}, j \in \mathbb{N}$. La inclusió serà una igualtat si $\cap_{\alpha} A_{\alpha}^{o}$ és un obert.

La segona inclusió s'obté a partir de $(\cup_{\alpha} A_{\alpha})^{o} \supset A_{\alpha}^{o}$ per a tot α . La designaltat estricta es pot obtenir triant $A_{1} = [-1, 0]$ i $A_{2} = (0, 1]$.

La tercera inclusió s'obté a partir de $\overline{(\cap_{\alpha} A_{\alpha})} \subset \overline{A_{\alpha}}$ per a tot α . Per veure que la inclusió pot ser estricte, només cal triar $A_1 = [-1, 0]$ i $A_2 = (0, 1]$.

La darrera inclusió s'obté a partir de $(\bigcup_{\alpha} A_{\alpha}) \supset \overline{A_{\alpha}}$ per a tot α . La inclusió estricta es pot obtenir triant $A_j = [-1 + 1/j, 1 - 1/j] \subset \mathbb{R}$. La inclusió serà una igualtat si $\bigcup_{\alpha} \overline{A_{\alpha}}$ és tancat.

Lema 1.23. (1) Si A és un obert de \mathbb{R}^n i B és un obert de \mathbb{R}^m , llavors $A \times B$ és obert en \mathbb{R}^{n+m} .

- (2) Si A és un tancat de \mathbb{R}^n i B és un tancat de \mathbb{R}^m , llavors $A \times B$ és tancat en \mathbb{R}^{n+m} .
- DEMOSTRACIÓ. (1) Cal veure que tot c = (a, b) amb $a \in A$ i $b \in B$ és interior a $A \times B$. Triem $\varepsilon > 0$ tal que $B(a, \varepsilon) \subset A$ i $B(b, \varepsilon) \subset B$. LLavors $B(a, \varepsilon) \times B(b, \varepsilon) \subset A \times B$. Si veiem que $B(c, \varepsilon) \subset B(a, \varepsilon) \times B(b, \varepsilon)$ tindrem provat que c és interior. Cal veure que si $\|(x, y) (a, b)\| = \|(x a, y b)\| < \varepsilon$, llavors $\|x a\| < \varepsilon$ i $\|y b\| < \varepsilon$, que es dedueix de les designaltats $\|x a\| \le \|(x a, y b)\|$ i $\|y b\| \le \|(x a, y b)\|$.
- (2) Si A és tancat A^c és obert i per l'apartat anterior $A^c \times \mathbb{R}^m$ és obert en \mathbb{R}^{n+m} . De forma anàloga $\mathbb{R}^m \times B^c$ és obert en \mathbb{R}^{n+m} . Utilitzant que $(A \times B)^c = (A^c \times \mathbb{R}^m) \cup (\mathbb{R}^n \times B^c)$ expresem $(A \times B)^c$ com unió de dos oberts i per tant és obert.

Exemple 1.24. • El cilindre $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 9, -1 < z < 2\}$ és obert ja que $A = B((0,0),3) \times (-1,2)$.

• El cilindre $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 9\}$ és tancat ja que $A = B'((0, 0), 3) \times \mathbb{R}$.

4. Límits de successions de \mathbb{R}^n

En aquest apartat utilitzarem una notació amb superíndexs per indicar els termes d'una successió. És a dir $\{x^k=(x_1^k,\ldots,x_n^k)\}_k$ serà una successió de \mathbb{R}^n .

Definició 1.25. Una successió $\{x^k\}_k \subset \mathbb{R}^n$ té límit (convergeix cap a) $x = (x_1, \dots, x_n)$, si $\lim_{k \to \infty} \|x^k - x\| = 0$, és a dir donat $\varepsilon > 0$ existeix un k_{ε} tal que $\|x^k - x\| < \varepsilon$ si $k > k_{\varepsilon}$. Com es habitual escriurem $\lim_{k \to \infty} x^k = x$, o bé $x^k \to x$ si $k \to \infty$, o simplement $x^k \to x$.

El resultat següent ens permetrà obtenir propietats dels límits de successions en \mathbb{R}^n a partir de les propietats dels límits de successions en \mathbb{R} .

Proposició 1.26. Són equivalents:

- $(1) x^k \to x$
- (2) $x_j^k \to x_j \text{ per a tot } 1 \le j \le n.$

Demostració. Utilitzant les desigualtats

(4.1)
$$0 \le |x_j^k - x_j| \le ||x^k - x|| \le \sum_{j=1}^n |x_j^k - x_j|$$

i la regla del sandwich, s'obté el resultat.

Observació 1.27. La proposició anterior la podem escriure de la forma

$$\lim_{k \to \infty} (x_1^k, \dots, x_n^k) = \left(\lim_{k \to \infty} x_1^k, \dots, \lim_{k \to \infty} x_n^k\right),\,$$

entenent que en la igualtat anterior l'existència del límit de l'esquerra implica l'existència dels de la dreta, i viceversa.

Per tant el càlcul de límits de successions de \mathbb{R}^n és redueix al càlcul de n límits de successions en \mathbb{R} .

Exemple 1.28. $\lim_{k\to\infty} (1/k, k\sin(1/k)) = (0, 1)$.

Corol·lari 1.29. El límit si existeix és únic.

Demostració. És conseqüència de la proposició anterior i de que el límit d'una successió de $\mathbb R$ és únic.

Directament: Si x, y són dos límits de la mateixa successió tindrem

$$0 \le ||x - y|| \le ||x - x^k|| + ||x^k - y|| < \varepsilon \quad \text{si } k > K_{\varepsilon}$$

per a tot $\varepsilon > 0$. Per tant ||x - y|| = 0 i x = y.

4.1. Caracteritzacions de $\overline{A},\ A'$ i Fr(A) en termes de convergência de successions.

Proposició 1.30. Sigui A un conjunt de \mathbb{R}^n no buit. L'Lavors:

(1) Un punt $x \in \overline{A}$ si i només si existeix una successió de punts $\{y^k\}_k \subset A$ tal que $y^k \to x$.

- (2) Un punt $x \in A'$ si i només si existeix una successió de punts $\{y^k\}_k \subset A \setminus \{x\}$ tal que $y^k \to x$.
- (3) Un punt $x \in Fr(A)$ si i només si existeixen successions de punts $\{y^k\}_k \subset A$ i $\{z^k\}_k \subset A^c$, tals que $y^k \to x$ i $z^k \to x$.

Observació 1.31. La primera condició ens permet donar una tècnica per provar que un conjunt A és tancat:

se suposa que tenim una successió $\{y^k\}_k \subset A$ que convergeix cap a $x \in \mathbb{R}^n$ i es prova que $x \in A$.

DEMOSTRACIÓ. (1) Si $x \in \overline{A}$ llavors per a cada $k \in \mathbb{N}$, existeix $y^k \in A \cap B(x, 1/k)$, i per tant $||y^k - x|| < 1/k \to 0$ si $k \to +\infty$.

Viceversa, si $\{y^k\}_k \subset A$ i $y^k \to x$, llavors per a tot $\varepsilon > 0$ existeix k_{ε} tal que $||y^k - x|| < \varepsilon$ si $k > k_{\varepsilon}$. Per tant per a tot $\varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset$.

(2) La demostració és idèntica a l'anterior. Si $x \in A'$ llavors per a cada $k \in \mathbb{N}$, existeix $y^k \in (A \setminus \{x\}) \cap B(x, 1/k)$, i per tant $||y^k - x|| < 1/k \to 0$ si $k \to +\infty$.

Viceversa, si $\{y^k\}_k \subset A \setminus \{x\}$ i $y^k \to x$, llavors per a tot $\varepsilon > 0$ existeix k_{ε} tal que $0 < \|y^k - x\| < \varepsilon$ si $k > k_{\varepsilon}$. Per tant per a tot $\varepsilon > 0$, $B(x, \varepsilon) \cap A \setminus \{x\}) \neq \emptyset$.

(3) Aquest resultat es dedueix del fet que $Fr(A) = \overline{A} \cap \overline{A^c}$ i de l'apartat (1).

Exemple 1.32. Considerem el conjunt $A = \{(x,y) \in \mathbb{R}^2; 1 < x^2 + 2y^2 \le 4\} \cup \{(0,0),(1,0)\}.$

(1) PROVEM QUE $P_0 = (0,0)$ ÉS UN PUNT AÏLLAT: Cal veure que P_0 no és pot aproximar per punts de A, és a dir que existeix una constant $\delta > 0$ tal que $||p - P_0|| \ge \delta$ per a tot $p \in A \setminus \{P_0\}$.

 $Si \ p = (x, y) \in A \setminus \{(0, 0)\} \ \text{\'es t\'e} \ \|p - P_0\| = \|(x, y)\| = (x^2 + y^2)^{1/2} > \frac{x^2 + 2y^2}{2} \ge \frac{1}{2}$ i per tant podem triar $\delta = 1/2$.

- (2) PROVEM QUE $P_1 = (1,1)$ ÉS UN PUNT DE \overline{A} : Cal triar una successió de punts $\{p_k\} \subset A$ tal que $p_k \to P_1$. Donat que $1 < 1^2 + 21^2 = 3 \le 4$, $P_1 \in A$, i per tant podem triar la successió constant on $p_k = P_1$.
- (3) PROVEM QUE $P_1 = (1,1)$ ÉS UN PUNT DE A': Cal triar una successió de punts $\{p_k\} \subset A \setminus \{P_1\}$ tal que $p_k \to P_1$. Triant $p_k = (x_k, y_k) = (1 + 1/k, 1)$ es compleix $p_k \to P_1$ i $x_k^2 + 2y_k^2 = (1 + 1/k)^2 + 2$. Per tant $1 < x_k^2 + 2y_k^2 \le 4$ si $k \ge 3$.
- (4) PROVEM QUE $P_2 = (1,0)$ ÉS UN PUNT DE Fr(A): Cal veure que $P_2 \in \overline{A} \cap \overline{A^c}$, és a dir que existeixen successions $\{p_k\} \subset A$ i $\{q_k\} \subset A^c$ tals que $p_k \to P_2$ i $q_k \to P_2$.

Com a successió p_k podem triar $p_k = (1,0)$ ja que $(1,0) \in A$. Triem $q_k = (z_k, w_k) = (1 - 1/k, 0)$ amb $k \geq 2$. El fet que $q_k = A^c$ és dedueix de $0 < z_k^2 + 2w_k^2 = (1 - 1/k)^2 < 1$ si $k \geq 2$.

Exercici 1.33. Proveu que si A és el conjunt de l'exemple anterior, llavors $P_3 = (2,0)$ és un punt de la frontera de A.

Proveu que tots els punts P = (a, b) que compleixen $a^2 + 2b^2 = 4$ són de la frontera de A.

5. Conjunts acotats i conjunts compactes

Definició 1.34. Un conjunt $A \subset \mathbb{R}^n$ és **acotat** si existeix r > 0 tal que $||x|| \le r$ per a tot $x \in A$, és a dir si $A \subset B'(0,r)$.

De forma equivalent es té:

Lema 1.35. A és acotat si i només si existeix $M \ge 0$ tal que $|x_j| \le M$ per a tot $x = (x_1, \dots, x_n) \in A$ que també és equivalent a que existeix R > 0 tal que $A \subset B(0, R)$.

Exemple 1.36. • El conjunt $A = \{(x,y) \in \mathbb{R}^2; x^4 + y^6 < 4\}$ és acotat, ja $x^4 < 4$ i $y^6 < 4$ i per tant $x^2 + y^2 \le 2 + \sqrt[3]{4}$.

• El conjunt $A = \{(x,y) \in \mathbb{R}^2; xy < 4\}$ no és acotat, ja que $\{(k,1/k)\}_k \subset A$ i $\|(k,1/k)\| = \sqrt{k^2 + 1/k^2} \to \infty$ si $k \to \infty$.

La definició de conjunt compacte en \mathbb{R}^n està motivada pel teorema Bolzano-Weierstrass.

Teorema 1.37 (Bolzano-Weierstrass en \mathbb{R}^n). Tota successió acotada $\{x^k\}_k$ de \mathbb{R}^n conté una parcial convergent.

Definició 1.38. Direm que un subconjunt K de \mathbb{R}^n és compacte per successions, si qualsevol successió $\{x^k\}_k \subset K$ conté una parcial que convergeix cap a un element de K.

Teorema 1.39. Si K és un subconjunt de \mathbb{R}^n són equivalents:

- (1) K és compacte per successions.
- (2) K és tancat i acotat.

Corol·lari 1.40. Si $K \subset \mathbb{R}^n$ és compacte i $A \subset \mathbb{R}^n$ és tancat, llavors $A \cap K$ és compacte. En particular si $A \subset K$, A és compacte, és a dir tot tancat inclòs en un compacte és compacte.

Demostració. Clarament $A \cap K$ és tancat i acotat.

Corol·lari 1.41. Si K és un compacte de \mathbb{R}^n i K' és un compacte de \mathbb{R}^m , llavors $K \times K'$ és un compacte de \mathbb{R}^{n+m} .

Demostració. Clarament $K \times K'$ és tancat i acotat.

5.1. La definició topològica de conjunt compacte. En aquest apartat comentarem uns resultats que es proven en les assignatures de topologia.

Definició 1.42. Direm que un conjunt K és compacte (compacte per recobriments), si tot recobriment per oberts $\{A_{\alpha}\}_{\alpha}$ de K (és a dir $K \subset \cup_{\alpha} A_{\alpha}$) conté un subrecobriment finit de K (és a dir existeix un nombre finit de índex α_j , $1 \leq j \leq J$ tals que $K \subset A_{\alpha_1} \cup \cdots \cup A_{\alpha_J}$).

Un teorema que es demostra a topologia és

Teorema 1.43. Si (X, d) és un espai mètric i K és un subconjunt de X, són equivalents:

- (1) K és compacte.
- (2) K és compacte per successions.