PSTAT 174/274, Week 2, Lecture 3: Moving Average Models

Creating Time Series Models from White Noise

Lecture 4 Outline:

p. 25

p. 32

pp. 26-27

pp. 28 - 31

Part I: Review of MA(1):pp. 3 - 5;Part II: Backshift Operator B:pp. 7 - 8;Invertibility, also MA(1):pp. 9 - 11;Estimating θ_1 from data:pp. 12 - 13Part III: MA(q), ACVF, ACF:pp. 15 - 17Check Your Understanding pp. 18 -- 21Part IV: MA(q), invertibility:pp. 23 - 24

MA(1) example:

MA(2) example:

Check your Understanding:

Summary of Lecture 3:

Lecture 3 Outline:

Part I: Review of MA(q): p. 35; AR(1) model: pp. 36 - 39 **Part II:** ACVF and ACF of AR(1): pp. 42 - 43AR(1): summary, graphs pp. 44 - 47Estimating ϕ_1 from data: p. 48 **Property of Causality:** pp. 49 - 50Review of parts I-II: 51 p. Part III: AR(p) models, intro: pp. 53 - 54 AR(p), properties: p. 55 Graphs of AR(p) and ACF: pp. 56-57 **Summary of Lecture 4:** pp. 58 R code for week 2: p. 59 1

PSTAT 174/274, Week 2, Lecture 3: Moving Average Models

Creating Time Series Models from White Noise

LECTURE 3 PART 1: Review of MA(1)

Review of Moving Average of Order 1 Model

3.1: MA(0) (Moving Average of Order Zero) process Z_t is the White Noise process $\{Z_t\} \sim WN(0, \sigma_Z^2)$. It is characterized by properties

- $E(Z_t) = 0$, for all t; $Var(Z_t) = E(Z_t^2) = \sigma_Z^2$ for all t; $Cov(Z_{t_s}Z_s) = E(Z_tZ_s) = 0$, $t \neq s$.
- 3.2: MA(1) (Moving Average of Order One) process X_t satisfies equation

$$X_t = Z_t + \theta_1 Z_{t-1}$$
 where $Z_t \sim WN$ (0, σ_z^2) and $|\theta_1| < 1$

It's properties are:

- $\mathbf{E}X_t = \mathbf{0}$ for all t;
- ACVF (autocovariance function) is

$$\gamma_X(0) = \text{Var}(X_t) = \sigma_Z^2 (1 + \theta_1^2); \quad \gamma_X(1) = \gamma_X(-1) = \sigma_Z^2 \theta_1; \quad \gamma_X(k) = 0, |k| > 1.$$

- ACF (autocorrelation function) Recall: $\rho_X(k) = \gamma_X(k) / \gamma_X(0)$ $\rho_X(0) = 1; \quad \rho_X(1) = \theta_1/(1 + \theta_1^2); \quad \rho_X(k) = 0 \text{ for } |k| > 1.$
- Because ACVF of X_t depends only on lag k and mean is constant (zero), MA(1) process is always (weakly) stationary.

Recall: $\gamma_x(k) = \text{Cov}(X_t, X_{t+k})$

is covariance at lag k

ACVF and ACF of Moving Average Models: MA(1)

$$X_t = Z_t + \theta_1 Z_{t-1}$$
 where $Z_t \sim WN$ (0, σ_Z^2) and $|\theta_1| < 1$.

X is stationary with
$$\mu_X=E(X_t)=0$$
, and ACF ρ_X (0) = 1; ρ_X (k) = 0 for |k| >1, and ρ_X (1)= $\theta_1/(1+\theta_1^2)$

Important: For MA(1), autocorrelations for lags k ≠ 0, 1 are zero:

$$\rho_X$$
 (k) = 0 for |k| >1. Sign (ρ_X (1)) = Sign (θ_1)

Check your understanding:

Figures (a), (b), & (c) plot acfs for different TS

- Which graphs correspond to MA(1)?
- For graphs corresponding to MA(1) what is the sign of its coefficient θ_1 ?

ACVF and ACF of Moving Average Models: MA(1)

 $X_t = Z_t + \theta_1 Z_{t-1}$ where $Z_t \sim WN$ (0, σ_Z^2) and $|\theta_1| < 1$. Important: For MA(1), autocorrelations for lags $k \neq 0$, 1 are zero: $\rho_X(k) = 0$ for |k| > 1. Sign $(\rho_X(1)) = Sign(\theta_1)$

"For crying out loud, Jensen! Stop licking yourself and pay attention!"

Remote learning is hard. It requires focus and patience...

- Which graphs correspond to MA(1)? Graphs (a) & (c). Because (b) has $\rho_X(2) \neq 0$, it is not MA(1).
- Because sign $(
 ho_X(1))$ = Sign $(heta_1)$, for (a), $heta_1 < 0$, and for (c), $heta_1 > 0$.

PSTAT 174/274, Week 2, Lecture 3: Moving Average Models

Creating Time Series Models from White Noise

LECTURE 3 PART II:

Backshift Operator B: pp. 7 - 8;

Definition of Invertibility: p. 9

Invertibility of MA(1): pp. 10 - 11;

Estimating θ_1 from data: pp. 12 - 13

Start New Material: (Backward) Shift Operator B

The shift operator B acts on a time series X as follows:

$$B X_t = X_{t-1}; \quad B^k X_t = X_{t-k}.$$

B also is called Backshift operator.

What is operator?
Do you have an example?
If not, check the next slide.

Using shift operator B, MA(1) process can be written as

$$X_t = Z_t + \theta_1 Z_{t-1}$$
 or $X_t = 1 \cdot Z_t + \theta_1 B Z_t \equiv (1 + \theta_1 B) Z_t$

Polynomials in B are manipulated in the same way as polynomial functions of real variables.

Define MA(1) operator $\theta(B) = 1 + \theta_1 B$. Treating B as a (complex) number z, This defines a polynomial $\theta(z) = 1 + \theta_1 z$ (sometimes called characteristic)

Shift Operator is a useful technical tool!

We use it to investigate INVERTIBILITY of MA(1)

Let's practice: Name

$$B^2 X_{+} = ?$$

$$B^5 Y_{+1} = ?$$

You may check your answers on the next slide Or skip to slide 9.

New notion!

More about Operators

- In calculus, function f(x) maps a real value x into another real value y=f(x). For example, $y=x^2$ will map x=1 into y=1; x=2 into y=4, etc.
- In TS, we consider operators that map sequences into different sequences or numbers.

For example, $B \ X_t = X_{t-1}$ will map sequence $\{ \mathsf{X_5}, \mathsf{X_6}, \mathsf{X_7}, ... \}$ into $\{ \mathsf{X_4}, \mathsf{X_5}, \mathsf{X_6}, ... \}$ $B^3 \ X_t = X_{t-3}$ will map TS $\{ \mathsf{X_5}, \mathsf{X_6}, \mathsf{X_7}, ... \}$ into TS $\{ \mathsf{X_2}, \mathsf{X_3}, \mathsf{X_4}, ... \}$

You have seen example of operators in your classes before:

Calculus: derivative $\frac{\partial y}{\partial x}$ maps a real function y= x² into another real function : $\frac{\partial}{\partial x}$ (x²) = 2x. integral \int maps real function into another function: $\int x^2 dx = x^3/3$. summation \sum maps a sequence $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{9}, \dots)$ into a number: $\sum_{i=0}^{\infty} \frac{1}{2^i} = 2$.

Probability: Expectation takes a r.v. X and maps it into a real number: E(X) = μ .

Let's practice:

$$B^1 X_t = X_{t-1}$$
; $B^2 X_t = B(B X_t) = B X_{t-1} = X_{t-2}$; $B^3 X_t = X_{t-3}$; ... $B^1 Y_{t-1} = Y_{t-2}$ (one step back); $B^5 Y_{t-1} = Y_{t-6}$ (five steps back)

Back to Time Series: Property of Invertibility of X

Time Series $\{X_t\}$ is *Invertible* if the shocks $\{Z_t\}$ can be expressed via values of

X_t as a convergent series:

$$Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + \dots$$

Why important? Because then

$$X_t = Z_t - \pi_1 X_{t-1} - \pi_2 X_{t-2} - \pi_3 X_{t-3} - \dots$$

Since the series is convergent, $|\pi_n| \to 0$, so that the contribution of the most recent terms is most important.

Invertibility roughly says that remote past has less influence on current values.

A fact from calculus:

If an infinite series $\sum_{n=0}^\infty a_n$ converges then its common term $|a_n| o 0 ext{ as } n o \infty.$

Forgot your calculus? Meet

Better: review your Math class ...

Invertibility of MA(1)

Definition: Time Series $\{X_t\}$ is *Invertible* if the shocks (that is, values of the White Noise) $\{Z_t\}$ can be expressed via values of X_t as a *convergent* series:

$$Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + \dots$$

To check invertibility of MA(1), rewrite the model using backshift operator B:

$$X_t = Z_t + \theta_1 Z_{t-1} = \mathbf{1} \cdot Z_t + \theta_1 B \cdot Z_t \equiv (\mathbf{1} + \theta_1 B) Z_t$$

By property of geometric series $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n$ (iff |q| < 1), with $q = -\theta_1 B$:

$$Z_{t} = \frac{1}{1+\theta_{1}B} X_{t} = \frac{1}{1-(-\theta_{1}B)} X_{t} = (1+(-\theta_{1})B+(-\theta_{1})^{2}B^{2} + ... + (-\theta_{1})^{k}B^{k} + ...) X_{t}$$
$$= X_{t} - \theta_{1}X_{t-1} + ... + (-\theta_{1})^{k}X_{t-k} - ...$$

Polynomials in B are manipulated in the same way as polynomial functions of real variables.

This series converges only for $|\theta_1| < 1$ (geometric series).

A fact from calculus:

An infinite series $\sum_{n=0}^{\infty}q^n$ is convergent iff $|\mathbf{q}|<1$. Then, $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}$.

More on Invertibility of MA(1)

Another way to check invertibility of MA(1): $X_t = Z_t + \theta_1 Z_{t-1}$

Write:

$$Z_{t} = -\theta_{1} Z_{t-1} + X_{t}$$

$$= -\theta_{1} (-\theta_{1} Z_{t-2} + X_{t-1}) + X_{t} = (-\theta_{1})^{2} Z_{t-2} + (-\theta_{1}) X_{t-1} + X_{t}$$

$$\cdots$$

$$= (-\theta_{1})^{n} Z_{t-n} + \sum_{k=0}^{n-1} (-\theta_{1})^{k} X_{t-k}$$

This method suggests that, by continuing to iterate backward, and provided that $|\theta_1| < 1$, one can represent shocks (White Noise) $\{Z_t\}$ as a convergent infinite series of observations $\{X_t\}$:

$$Z_t = \sum_{k=0}^{\infty} (-\theta_1)^k X_{t-k}$$

Justification (convergence in m.s.):

$$\lim_{n\to\infty} E[Z_t - \sum_{k=0}^{n-1} (-\theta_1)^k X_{t-k}]^2 = \lim_{n\to\infty} (\theta_1)^{2n} E[Z_{t-n}]^2 = 0.$$

Note that we used $|\theta_1| < 1$ in the last expression: $E[Z_{t-n}]^2 = \sigma_z^2 = \text{constant};$ $|(-\theta_1)^{2n}| \to 0 \text{ iff } |\theta_1| < 1.$

Still MA(1)

Some food for thought ...

We have equation: $X_t = Z_t + \theta_1 Z_{t-1}$; θ_1 unknown.

We observe a time series data:

Question: How to estimate θ_1 from data?

From theory: ACF $\rho_X(1) = \theta_1/(1+\theta_1^2)$ depends on θ_1^3

From data: find estimate of the ACF, called sample ACF, $\widehat{\rho}_{x}(1)$;

(formulas for sample mean and sample covariance are given (i) on slide 38 of Week 1; (ii) in § 1.2 of Lecture Notes, Week 1); and (iii) in Problem 3 of Homework 1.)

By comparing theoretical and sample ACFs, try to find an estimate of θ_1 .

(check your solution on the next slide)

MA(1) Still ...

Some food for thought ...

We have equation: $X_t = Z_t + \theta_1 Z_{t-1}$; θ_1 unknown.

We observe a time series data:

Question: How to estimate θ_1 from data?

From theory: ACF $\rho_X(1) = \theta_1/(1+\theta_1^2)$ depends on θ_1^2

From data: find estimate of the ACF, called sample ACF, $\widehat{\rho}_{x}(1)$;

(formulas for sample mean and covariance are given (i) on slide 38 of Week 1;

(ii) in § 1.2 of Lecture Notes, Week 1); and (iii) in Problem 3 of Homework 1.)

ework 1.) Vieta's Formulas:

By comparing theoretical and sample ACFs, find an estimate of $heta_1$:

From $\hat{\rho}_{X}(1) = \frac{\hat{\theta}_{1}}{1 + \hat{\theta}_{1}^{2}}$ obtain the quadratic equation

$$\hat{\theta}_1^2 \hat{\rho}_X(1) - \hat{\theta}_1 + \hat{\rho}_X(1) = 0 \text{ or } \hat{\theta}_1^2 - (1/\hat{\rho}_X(1))\hat{\theta}_1 + 1 = 0.$$

This equation has two roots.

Because their product is equal 1, only one root satisfies $|\hat{\theta}_1| < 1$.

PSTAT 174/274, Week 2, Lecture 3: Moving Average Models

Creating Time Series Models from White Noise

Outline of Lecture 3, Part III:

MA(q) model: p. 15

Calculation of ACVF: p. 16

Stationarity and ACF: pp. 17 – 18

Check your Understanding: pp. 18 - 21

Moving to ... Moving Average Models, MA(q)

$$X_t = Z_t + heta_1 Z_{t-1} + heta_2 Z_{t-2} + \cdots + heta_q Z_{t-q}$$
 where $Z_t \sim WN$ (0, σ_z^2)

For example,

MA(2):
$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$$

MA(3):
$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \theta_3 Z_{t-3}$$

 $X_t = Z_t + \theta_1 Z_{t-1} + \theta_3 Z_{t-3}$

 $\theta_0 = 1$. All missing terms correspond to a zero coefficient.

What order is $X_t = Z_t - 0.2Z_{t-1} - 0.7Z_{t-2}$?

What order is $X_t = Z_t - 0.6Z_{t-1} + 0.08Z_{t-2} + 0.3Z_{t-5}$?

Mean and ACVF for Moving Average Models: MA(q)

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$
 where $Z_t \sim WN$ (0, σ_z^2)

Moment Calculation: $E(X_t) = 0$

(linearity; $E(Z_i) = 0$ by def'n of WN)

Denote $\theta_0 = 1$. Then,

For $\{Z_t\} \sim WN(0, \sigma^2)$,

 $E(Z_t) = 0$ for all t

 $E(Z_t Z_s) = 0, t \neq s.$

 $E(Z_t^2) = \sigma_z^2$ for all t

$$X_{t} = 1 \cdot Z_{t} + \theta_{1} Z_{t-1} + \theta_{2} Z_{t-2} + \dots + \theta_{q} Z_{t-q} = \sum_{i=0}^{q} \theta_{i} Z_{t-i}$$

$$\gamma_X(k) = E(X_t X_{t+k}) = E\{(\sum_{i=0}^q \theta_i Z_{t-i})(\sum_{j=0}^q \theta_j Z_{t+k-j})\}$$
 (k-j = -m or m=j-k)

$$= E \{ (\sum_{i=0}^{q} \theta_i Z_{t-i}) (\sum_{m=-k}^{q-k} \theta_{k+m} Z_{t-m}) \} \quad \text{(t-i=t-m)}$$

$$= \sum_{i=0}^{q-k} \theta_i \; \theta_{k+i} \; E(Z_{t-i}Z_{t-i})$$

$$E(Z_t Z_s) = 0$$
, $t \neq s$.
 $E(Z_t^2) = \sigma_z^2$ for all t

$$= \sigma_z^2 \sum_{i=0}^{q-k} \theta_i \theta_{k+i}$$

$$= \sigma_{z}^{2} (\theta_{k} + \theta_{1} \theta_{k+1} + \theta_{2} \theta_{k+2} + ... + \theta_{q-k} \theta_{q})$$

$$\theta_{0} = 1$$

Note:
$$\gamma_X(0) \equiv Var(X_t) = \sigma_z^2 (1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2) = \sigma_X^2$$
.

Moving Average Models: MA(q)

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$
 where $Z_t \sim WN$ (0, σ_z^2)

Conclude: MA(q) is always stationary with

Mean
$$\mu_X = 0$$
, $Var(X_t) = \sigma_X^2 = \sigma_Z^2 (1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2)$, \leftarrow constants

Autocovariance for lags k = 1, 2, ... q,

$$\gamma_X(k) = Cov(X_t, X_{t+k}) = \sigma_z^2(\theta_k + \theta_1\theta_{k+1} + \theta_2\theta_{k+2} + \dots + \theta_{q-k}\theta_q)$$

Autocovariance for lags k > q are 0: $\gamma_X(k) = 0$ for |k| > q.

depends on lag k but not on t

Autocorrelation
$$\rho_{X}(k) = \frac{\theta_{k} + \theta_{1}\theta_{k+1} + \theta_{2}\theta_{k+2} + ... + \theta_{q-k}\theta_{q}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + ... + \theta_{q}^{2}}, k=1, ..., q$$

$$\rho_{X}(k) = 0, k > q.$$

Moving Average Models: MA(q)

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$
 where $Z_t \sim WN$ (0, σ_z^2)

ACF
$$\rho_{X}(k) = \frac{\theta_{k} + \theta_{1}\theta_{k+1} + \theta_{2}\theta_{k+2} + \dots + \theta_{q-k}\theta_{q}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{q}^{2}} = \frac{\sum_{i=0}^{q-k} \theta_{i} \theta_{k+i}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{q}^{2}}, \quad k = 1, ..., q$$

$$\rho_{X}(k) = 0, k > q.$$

Write expression for ACF for MA(2) $X_t = Z_t - 0.2Z_{t-1} - 0.7Z_{t-2}$

Hint: identify θ_1 = -0.2. What is the value of θ_2 ?

Moving Average Models: MA(q)

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$
 where $Z_t \sim WN$ (0, σ_z^2)

ACF
$$\rho_{X}(k) = \frac{\theta_{k} + \theta_{1}\theta_{k+1} + \theta_{2}\theta_{k+2} + \dots + \theta_{q-k}\theta_{q}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{q}^{2}} = \frac{\sum_{i=0}^{q-k} \theta_{i} \theta_{k+i}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{q}^{2}}, \quad k = 1, ..., q$$

$$\rho_{X}(k) = 0, k > q.$$

Write expression for ACF for MA(2) $X_t = Z_t - 0.2Z_{t-1} - 0.7Z_{t-2}$

Answer: Substitute q = 2, θ_1 = -0.2, and θ_2 = -0.7: $\rho_X(k) = \frac{\theta_k + \theta_{2-k} \theta_2}{1 + \theta_1^2 + \theta_2^2}$, k = 1, 2

$$\rho_{X}(1) = \frac{\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}} = \frac{(-0.2) + (-0.2)(-0.7)}{1 + (-0.2)^{2} + (-0.7)^{2}}; \qquad \rho_{X}(2) = \frac{\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}} = \frac{(-0.7)}{1 + (-0.2)^{2} + (-0.7)^{2}}$$

$$\rho_X(0) = 1$$
 (always!); $\rho_X(k) = 0, k > 2.$

Check your understanding: ACF for MA(q)

The MA(6) model $X_t = Z_t + \theta_1 Z_{t-1} + \theta_3 Z_{t-3} + \theta_6 Z_{t-6}$ is being analyzed, with θ_1 , θ_3 & θ_6 all non-zero.

How many of the following autocorrelations must be 0:

I.
$$\rho_{X}$$
 (2) II. ρ_{X} (3) III. ρ_{X} (4) IV. ρ_{X} (5)

Check your answer of the next slide

One way to think about this problem:

If an MA model does not have any pair of Z terms that are k time lags apart,

then $\rho_x(k)$ must be 0:

$$E(X_{t}X_{t+k}) = E\{(Z_{t} + \theta_{1}Z_{t-1} + \theta_{3}Z_{t-3} + \theta_{6}Z_{t-6})(Z_{t+k} + \theta_{1}Z_{t+k-1} + \theta_{3}Z_{t+k-3} + \theta_{6}Z_{t+k-6})\} =$$

$$= E(Z_{t}Z_{t+k}) + \theta_{1}E(Z_{t}Z_{t+k-1}) + \theta_{3}E(Z_{t}Z_{t+k-3}) + \theta_{6}E(Z_{t}Z_{t+k-6}) + \theta_{1}E(Z_{t-1}Z_{t+k}) + \theta_{1}E(Z_{t-1}Z_{t+k-1}) + \theta_{3}E(Z_{t-1}Z_{t+k-3}) + \theta_{6}E(Z_{t-1}Z_{t+k-6})\}$$

$$+ \, \theta_{3} \, \{ E \, (Z_{t-3} \, Z_{t+k}) + \, \theta_{1} \, E \, (Z_{t-3} \, Z_{t+k-1}) + \, \theta_{3} \, E \, (Z_{t-3} \, Z_{t+k-3}) \, + \, \theta_{6} \, E \, (Z_{t-3} \, Z_{t+k-6}) \} \, \blacktriangleleft$$

+
$$\theta_6$$
 {E ($Z_{t-6}Z_{t+k}$)+ θ_1 E ($Z_{t-6}Z_{t+k-1}$)+ θ_3 E ($Z_{t-6}Z_{t+k-3}$) + θ_6 E ($Z_{t-6}Z_{t+k-6}$)}

Pairs of Z terms that are k time lags apart: 0, 1 ($Z_t \& Z_{t-1}$), 2 ($Z_{t-1} \& Z_{t-3}$), 3 ($Z_{t-3} \& Z_{t-6}$),

5 (
$$Z_{t-1} \& Z_{t-6}$$
), 6 ($Z_t \& Z_{t-6}$).

 $E(Z_t Z_s) = 0, t \neq s.$ $E(Z_t^2) = \sigma_Z^2 \text{ for all } t$

Indices are the same

(sign does not matter) if

Index k = 4 is missing

Check your understanding: ACF for MA(q)

The MA(6) model $X_t = Z_t + \theta_1 Z_{t-1} + \theta_3 Z_{t-3} + \theta_6 Z_{t-6}$ is being analyzed, with θ_1 , $\theta_3 \& \theta_6$ all non-zero. How many of the following autocorrelations must be 0: I. ρ_x (2) II. ρ_x (3) III. ρ_x (4) IV. ρ_x (5)

 $E(Z_t Z_s) = 0$, $t \neq s$. $E(Z_t^2) = \sigma_Z^2$ for all t

This MA (6) does not have any pair of Z terms that are 4 time lags apart, so that $\rho_x(4)$ must be 0.

 $Z_{t-1} \& Z_{t-3}$ are 2 lags apart and for k=2 term E ($Z_{t-1} Z_{t+k-3}$) = E ($Z_{t-1} Z_{t+2-3}$) = σ_Z^2 , so that ρ_X (2) $\neq 0$.

 $Z_t \& Z_{t-3}$ are 3 lags apart and for k=3 term $E(Z_t Z_{t+k-3}) = E(Z_t Z_{t+3-3}) = \sigma_Z^2$, so that $\rho_X(3) \neq 0$.

 $Z_{t-1} \& Z_{t-6}$ are 5 lags apart and for k=5 term E ($Z_{t-1} Z_{t+k-6}$) = E ($Z_{t-1} Z_{t+5-6}$) = σ_Z^2 , so that ρ_X (5) $\neq 0$.

Answer: Only one acf ρ_x (4) must be zero.

$$\begin{split} E\left(X_{t}\,X_{t+k}\,\right) &= E\{(Z_{t}\,+\,\theta_{1}Z_{t-1}\,+\,\theta_{3}Z_{t-3}\,+\,\theta_{6}Z_{t-6})(Z_{t+k}\,+\,\theta_{1}Z_{t+k-1}\,+\,\theta_{3}Z_{t+k-3}\,+\,\theta_{6}Z_{t+k-6})\} = \\ &= E\left(Z_{t}\,Z_{t+k}\,\right) +\,\theta_{1}\,E\left(Z_{t}\,Z_{t+k-1}\right) +\,\theta_{3}\,E\left(Z_{t}\,Z_{t+k-3}\,\right) +\,\theta_{6}\,E\left(Z_{t}\,Z_{t+k-6}\right) \\ &+\,\theta_{1}\,\left\{E\left(Z_{t-1}\,Z_{t+k}\,\right) +\,\theta_{1}\,E\left(Z_{t-1}\,Z_{t+k-1}\right) +\,\theta_{3}\,E\left(Z_{t-1}\,Z_{t+k-3}\,\right) +\,\theta_{6}\,E\left(Z_{t-1}\,Z_{t+k-6}\right)\right\} \\ &+\,\theta_{3}\,\left\{E\left(Z_{t-3}\,Z_{t+k}\,\right) +\,\theta_{1}\,E\left(Z_{t-3}\,Z_{t+k-1}\right) +\,\theta_{3}\,E\left(Z_{t-3}\,Z_{t+k-3}\,\right) +\,\theta_{6}\,E\left(Z_{t-3}\,Z_{t+k-6}\right)\right\} \\ &+\,\theta_{6}\,\left\{E\left(Z_{t-6}\,Z_{t+k}\,\right) +\,\theta_{1}\,E\left(Z_{t-6}\,Z_{t+k-1}\right) +\,\theta_{3}\,E\left(Z_{t-6}\,Z_{t+k-3}\,\right) +\,\theta_{6}\,E\left(Z_{t-6}\,Z_{t+k-6}\right)\right\} \\ &+\,\theta_{6}\,\left\{E\left(Z_{t-6}\,Z_{t+k}\,\right) +\,\theta_{1}\,E\left(Z_{t-6}\,Z_{t+k-1}\right) +\,\theta_{3}\,E\left(Z_{t-6}\,Z_{t+k-3}\,\right) +\,\theta_{6}\,E\left(Z_{t-6}\,Z_{t+k-6}\right)\right\} \end{aligned}$$

PSTAT 174/274, Week 2, Lecture 3: Moving Average Models

Creating Time Series Models from White Noise

Lecture 3 part IV Outline:

MA(q), invertibility: pp. 23 – 24

Invertibility of MA(1): p. 25

MA(2) example: pp. 26 - 27

Check your understanding: pp. 28-31

Summary of Lecture 3: p. 32

Invertibility of MA(q)

Time Series $\{X_t\}$ is *Invertible* if the shocks $\{Z_t\}$ can be expressed via values of X_t as a *convergent* series: $Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + ...$

To investigate invertibility of MA(q) rewrite the model using shift operator:

MA(q):
$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$$

(i) Use shift operator to rewrite $\boldsymbol{Z}_{t-k} = \boldsymbol{B}^k \boldsymbol{Z}_t$. Then,

$$X_t = 1 \cdot Z_t + \theta_1 B Z_t + \theta_2 B^2 Z_t + \dots + \theta_q B^q Z_t$$

(ii) Introduce notation for polynomial θ of order q: (see slides 7 - 11 for MA(1))

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q.$$

Then,
$$\theta(B)=1+\theta_1B+\theta_2B^2+\cdots+\theta_qB^q$$
 and $X_t=\theta(B)~Z_t$

23

Invertibility of MA(q)

Time Series $\{X_t\}$ is *Invertible* if the shocks Z_t can be expressed via values of X_t as a *convergent* series:

$$Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + \dots$$

$$\begin{aligned} \text{MA(q)} \quad X_t &= \theta(B) \ Z_t = (1+\theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q) \ Z_t \\ \text{with } \theta(z) &= 1+\theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q \end{aligned} \qquad \underbrace{Z_t = \frac{1}{\theta(B)} X_t}$$

is invertible, that is, $Z_t = \theta^{-1}(B)X_t$, if $\theta(z) \neq 0$ for $|z| \leq 1$, that is, the roots of the polynomial $\theta(z)$ lie outside of the unit circle.

Math: z^* is a root of $\theta(z)$ if $\theta(z^*) = 0$. Condition for invertibility: $|z^*| > 1$.

In this case, $\theta^{-1}(z)=1+\pi_1z+\pi_2z^2+\cdots$ has a representation as a convergent series so that

$$Z_t = \theta^{-1}(B)X_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \cdots$$

...continued on the next slide

Math facts:

 z^* is a root of polynomial $\theta(z)$ if it satisfies the characteristic equation: $\theta(z^*) = 0$. Roots of polynomial of order q > 1 may be complex and lie on a complex plane (x,y).

For z*= x+iy, condition $|z^*| = |\sqrt{\{x^2 + y^2\}}| > 1$ means that on the complex plane (x,y), z* lies is outside the unit circle $x^2 + y^2 = 1$. Points z: |z| < 1 are inside the circle.

Invertibility of MA(q): Check for MA(1) Model

MA(q) $X_t = \theta(B) Z_t$ with $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ is

Invertible if $\theta(z) \neq 0$ for $|z| \leq 1$, that is,

the roots z^* of the polynomial $\theta(z)$ lie outside of the unit circle: $|z^*| > 1$.

Check for MA(1): $X_t = Z_t + \theta_1 Z_{t-1} \equiv (1 + \theta_1 B) \ Z_t \equiv \theta(B) \ Z_t \text{ with } \theta(z) = 1 + \theta_1 z.$

Check that it is invertible if the roots z^* of the polynomial $\theta(z)$ lie outside of the unit circle:

$$\theta(z*) = 1 + \theta_1 z^* = 0$$
 if $z^* = -1/\theta_1$. $|z^*| = |-1/\theta_1| > 1$ iff $|\theta_1| < 1$.

(same as on slides 10-11)

$$\theta^{-1}(z) = \frac{1}{1+\theta_1 z} = \frac{1}{1-(-\theta_1 z)} = 1 + (-\theta_1 z) + (-\theta_1 z)^2 + \cdots$$
$$= 1 - \theta_1 z + \theta_1^2 z^2 + \cdots \text{, convergent for } |\theta_1| < 1 \text{ and } |z| \le 1.$$

Substitute z = B to get

$$Z_{t} = \theta^{-1}(B)X_{t} = \frac{1}{1+\theta_{1}B}X_{t} = (1 - \theta_{1}B + \theta_{1}^{2}B^{2} - ...)X_{t}$$
$$= X_{t} - \theta_{1}X_{t-1} + \theta_{1}^{2}X_{t-2} - \cdots$$

A fact from calculus: If
$$|\mathbf{q}| < 1$$
, then $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n$.

Results of MA(2) Example - Lab 2

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$$
 with $Z_t \sim WN (0, \sigma_z^2)$

Corresponding polynomial $\theta(z) = 1 + \theta_1 z + \theta_2 z^2$;

Stationary with mean zero and ACF:

$$\rho_{X}(1) = \frac{\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}, \quad \rho_{X}(2) = \frac{\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}, \quad \rho_{X}(k) = 0, \ k > 2. \ \text{(see slide #19)}$$

Invertible if

$$\theta_2 + \theta_1 > -1$$
 $\theta_2 - \theta_1 > -1$, $-1 < \theta_2 < 1$

$$\theta_2 + \theta_1 > -1$$

 $\theta_2 - \theta_1 > -1$
 $-1 < \theta_2 < 1$.

Note: for invertibility, $|\theta_2| < 1$.

This property extends to MA(q): $|\theta_q| < 1$.

ACF for 100 simulated values of MA(2) $X_t = Z_t + 0.6 Z_{t-1} - 0.3 Z_{t-2}$

ACF=0, k > 2. Negative correlation at lag 2 corresponds to negative θ_2 .

$$\rho_{X}(1) = \frac{\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}, \quad \rho_{X}(2) = \frac{\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}, \quad \rho_{X}(k) = 0, \ k > 2.$$

Check your Understanding: MA(q): Model Identification from Sample ACF

Identify graphs of sample ACFs corresponding to MA(q) processes. Determine q.

MA(q): Model Identification from Sample ACF

Identify graphs of sample ACFs corresponding to MA(q) processes. Determine q.

Discussion:

- (A) Sample ACFs at lag 1 is outside the confidence interval, but is inside the intervals for lags k >1. Thus, the model is MA(1). (ρ_{χ} (14) and ρ_{χ} (20) are almost in the interval.)
- (B) Sample ACFs at lag 2 is outside the confidence interval, but is inside the intervals for lags k >2. Thus, the model is MA(2).
- (C) Sample ACFs are large and do not follow pattern of MA(q).
- (D) Sample ACFs at lag 1 is outside the confidence interval, but is inside the intervals for lags k > 1. Thus, the model is MA(1).

MA(q): Check of Understanding

You are given the following statements about stationarity:

- I. Linear models for time series are stationary when they include functions of time.
- II. All moving averages processes are stationary.
- III. All random walk processes are nonstationary.

Determine which of the above statements are true:

- A. None are true
- B. I and II only
- C. I and III only
- D. II and III only
- E. The answer is not given by (A), (B), (C) or (D).

MA(q): Check of Understanding -- Discussion

You are given the following statements about stationarity:

- I. Linear models for time series are stationary when they include functions of time.
- II. All moving averages processes are stationary.
- III. All random walk processes are nonstationary.

Determine which of the above statements are true:

- A. None are true
- B. I and II only
- C. I and III only
- D. II and III only
- E. The answer is not given by (A), (B), (C) or (D).

Quick answer: D

I is false: Random walk (discussed in § 2.1.5, slide 55 of week 1) is linear but not stationary.

II is correct: All MA(q) models are stationary,

(see slide 17 of this lecture)

III is correct: Random walk is not stationary, its variance depends on time t

(§ 2.1.5 of lecture notes; slide 55 of week 1)

Main Points to Take from Lecture 3

- Backshift or Shift Operator B, $B X_t = X_{t-1}$; $B^k X_t = X_{t-k}$.
- Notions of invertibility and stationarity
- MA(1) and MA(q) processes:
 - Model equation (e.g., $X_t = Z_t + \theta_1 Z_{t-1}$ for MA(1))
 - Restrictions on model coefficients for invertibility (e.g., $|\theta_q|$ <1);
 - Fact that MA models are always stationary;
 - ACVF and ACF formulas for MA(1), MA(2) and MA(q) models or simply remember where to find them;
 - -- Fact that for MA(q) model,

 ACF at lag q is NOT zero, and ACFs at lags k > q are all zeros.
 - Sample ACF, its' use for model identification

Welcome to Lecture 4: Autoregressive Models

Creating Time Series Models from White Noise

Lecture 4 Outline:

Part I: Review of MA(q): p. 35;

AR(1) model: pp. 36 – 37

MA(∞) representation: pp. 38-39

Part II:

Estimating ϕ_1 from data: p. 39

Property of Causality: pp. 40 - 41

AR(p) models, intro: pp. 42 - 43

AR(p), properties: p. 44

Graphs of AR(p) and ACF: pp. 45 - 46

Summary of Lecture 4: pp. 47

Some R code: p. 48

Welcome to Week 2 Lecture 4: Autoregressive Models Part 1: AR(1) Models

Creating Time Series Models from White Noise

Lecture 4 Part 1: Review of MA(q): AR(1) model: Stationarity & Invertibility of AR(1): MA(∞) representation of AR(1): p. 35; p. 36 p. 37 pp. 37

40

p.

Main points of Part 1:

Short Review

Lectures 2 and 3 discussed MA(q) processes:

- Model equation for MA(q): $X_t = Z_t + \theta_1 Z_{t-1} + ... + \theta_q Z_{t-q}$
- Stationarity: MA(q) is always stationary, i.e., $E(X_t) = 0$; $Cov(X_t, X_{t+k}) = \gamma_X$ (k) that is, ACVF does not depend on time t, but only on lag k.
- Formulas for ACVF and ACF for MA(q) are known, see slide 17.
- Important characteristic of MA(q): ACF ρ_x (q) \neq 0; ρ_x (k) =0 for all k > q.
- Invertibility means that the shocks $\{Z_t\}$ can be expressed via values of X_t as a convergent series: $Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + ...$
- MA(q) are invertible under the condition that the roots of polynomial

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q$$
 (i.e., z* such that θ (z*) = 0)

are outside unit circle: $|z^*| > 1$ (for q > 1, the roots can be complex numbers)

A math fact:

4.1 Autoregressive models: AR(1)

4.1: AR(1) Autoregressive of Order One

$$X_t = \phi_1 X_{t-1} + Z_t$$
 where $\mathsf{Z_t} \sim \mathsf{WN}$ (0, σ_Z^2) and $|\phi_1| < 1$.

In AR(1) model, current observation X_t depends on today's shock Z_t and yesterday's observation X_{t-1} !

AR(1) processes are created from past observations and WN!

Examples of AR(1):

$$X_t = 0.8 X_{t-1} + Z_t$$
; $\phi_1 = 0.8$
 $X_t = -0.6 X_{t-1} + Z_t$; $\phi_1 = -0.6$

Can you give an intuitive reason why ϕ_1 should be in the (-1,1) interval?

4.1 Autoregressive models: AR(1)

AR(1) Autoregressive of Order One

$$X_t = \phi_1 X_{t-1} + Z_t$$
 where $\mathsf{Z_t} \sim \mathsf{WN}$ (0, $\sigma_\mathsf{Z}^\mathsf{2}$) and $|\phi_1| < 1$.

Invertibility: Unlike in MA models, AR(1) is always invertible:

$$Z_t = X_t - \phi_1 X_{t-1} + 0$$

Stationarity: We will see that AR(1) is not always stationary!

Condition: $|\phi_1| < 1$.

Under this condition, AR(1) has $MA(\infty)$ representation

Follow derivation on the next slide...

Recall: Invertibility means that the shocks $\{Z_t\}$ can be expressed via values of X_t as a convergent series: $Z_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \pi_3 X_{t-3} + ...$

Recall: Stationarity means $E(X_t) = \mu_X$; $Cov(X_t, X_{t+k}) = \gamma_X$ (k), does not depend on t

4.1 MA representation for AR(1)

$$AR(1)$$
: $X_t = \phi_1 X_{t-1} + Z_t$ where $Z_t \sim WN (0, \sigma_2^2)$ and $|\phi_1| < 1$.

Plan to determine stationarity of AR(1) and find its moments:

(i) Show that for $|\phi_1| < 1$, AR(1) model has a MA(∞) representation

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} = \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}$$
 that is, $\psi_j = \phi_1^j$.

- (ii) Because MA processes are always stationary, (i) will imply that AR(1) process $X_t = \phi_1 X_{t-1} + Z_t$ is stationary as long as $|\phi_1| < 1$.
- (iii) MA(∞) representation can be used to find ACVF of X_t similar to the method used to find ACVF of MA(q).

Derivation: Use shift operator B
$$X_t = X_{t-1}$$
 to write $X_t - \phi_1 X_{t-1} = (1 - \phi_1 B) X_t = Z_t$

Then,
$$X_t=rac{1}{1-\phi_1 B}Z_t=\left(1+\phi_1 B+\phi_1^2 B^2+\cdots
ight)Z_t \ =Z_t+\phi_1 Z_{t-1}+\phi_1^2 Z_{t-2}+\cdots$$

The series is convergent if $|\phi_1| < 1$. (geometric series)

A fact from calculus:

An infinite series $\sum_{n=0}^{\infty}q^n$ is convergent iff $|\mathbf{q}|<1$. Then, $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}$.

More on $MA(\infty)$ Representation of AR(1)

Another way to see MA(∞) representation of AR(1) $X_t = \phi_1 X_{t-1} + Z_t$:

$$\begin{split} X_t &= \phi_1 X_{t-1} + Z_t \\ &= \phi_1 (\phi_1 X_{t-2} + Z_{t-1}) + Z_t = \phi_1^2 X_{t-2} + \phi_1 Z_{t-1} + Z_t \\ &= \phi_1^2 (\phi_1 X_{t-3} + Z_{t-2}) + \phi_1 Z_{t-1} + Z_t = \phi_1^3 X_{t-3} + \phi_1^2 Z_{t-2} + \phi_1 Z_{t-1} + Z_t \\ &\cdots \\ &= \phi_1^k X_{t-k} + \sum_{j=0}^{k-1} \phi_1^j Z_{t-j} \end{split}$$

This method suggests that, by continuing to iterate backward, and provided that $|\phi_1| < 1$, and that $\{X_t\}$ is stationary, $\{X_t\}$ has a representation as a convergent infinite series of $\{Z_t\}$, that is, MA(∞):

$$\mathbf{X}_{\mathsf{t}} = \sum_{j=0}^{\infty} \boldsymbol{\phi}_{1}^{j} \, \boldsymbol{Z}_{t-j}$$

Justification (convergence in m.s.):

$$\lim_{k\to\infty} E[X_t - \sum_{j=0}^{k-1} (\phi_1)^j Z_{t-j}]^2 = \lim_{k\to\infty} (\phi_1)^{2k} E[X_{t-k}]^2 = 0.$$

Main Points to Take from Part 1 Lecture 4

AR(1) model

- Model equation: $X_t = \phi_1 X_{t-1} + Z_t$ where $Z_t \sim WN$ (0, σ_z^2) and $|\phi_1| < 1$.
- AR(1) is always invertible;
- AR(1) process has a MA(∞) representation X_t = $\sum_{j=0}^{\infty} \phi_1^j \ Z_{t-j}$ when $|\phi_1| < 1$.

Moving to Part 2 of Lecture 4

Welcome to Week 2 Lecture 4: Autoregressive Models Part 2: AR(1) Models

Creating Time Series Models from White Noise

Outline of Lecture 4 Part 2:

ACVF and ACF for AR(1): p. 42-43

Summary of properties of AR(1): p. 44

Simulation examples of AR(1): pp. 45 - 47

Estimating ϕ_1 from data: p. 48

Property of Causality: pp. 49 -- 50

Main points of Parts 1 -- 2: p. 51

4.1 Calculation of ACVF and ACF of AR(1)

AR(1): $X_t = \phi_1 X_{t-1} + Z_t$ where Z_t ~ WN (0, σ_z ²) and $|\phi_1| < 1$. MA(∞) representation: $X_t = Z_t + \phi_1 Z_{t-1} + \phi_1^2 Z_{t-2} + \cdots$

Calculate first and second moments:

- $E(X_t) = 0$ (b/c MA process has mean zero.)
- ACVF $\gamma_X(k) = E(X_t X_{t-k}) = E\{(\phi_1 X_{t-1} + Z_t) X_{t-k}\};$
- For $k \ge 1$, $E(Z_t X_{t-k}) = 0$

b/c X_{t-k} depends on Z_{t-k} , Z_{t-k-1} , etc., uncorrelated with Z_t

For $k \ge 1$, we obtained recursive formula for ACVF:

$$\begin{split} \gamma_X(\mathsf{k}) &= \mathsf{E}\{(\phi_1 X_{t-1} + Z_t) \, X_{t-k}\} = \phi_1 E[X_{t-1} X_{t-k}] = \phi_1 \gamma_X(\mathsf{(t-1)-(t-k)}) \\ &= \phi_1 \, \gamma_X(\mathsf{k-1}) \end{split}$$

$$\gamma_X(1) = \phi_1 \gamma_X(0), \quad \gamma_X(2) = \phi_1 \gamma_X(1) = \phi_1^2 \gamma_X(0), \quad \gamma_X(3) = \phi_1 \gamma_X(2) = \phi_1^3 \gamma_X(0), \dots$$

For $k \ge 1$, ACF $\rho_X(k) = \gamma_X(k)/\gamma_X(0)$, that is, $\rho_X(1) = \phi_1, \ \rho_X(2) = \phi_1^2, ..., \rho_X(k) = \phi_1^k.$

For $\{Z_t\} \sim WN(0, \sigma^2)$,

 $E(Z_{+}) = 0$ for all t

 $E(Z_tZ_s)=0,\ t\neq s.$

 $E(Z_t^2) = \sigma_z^2$ for all t

Calculation of ACVF of AR(1)

AR(1): $X_t = \phi_1 X_{t-1} + Z_t$ where Z_t ~ WN (0, σ_z ²) and $|\phi_1| < 1$. MA(∞) representation: $X_t = Z_t + \phi_1 Z_{t-1} + \phi_1^2 Z_{t-2} + \cdots$

ACVF
$$\gamma_X(k) = E(X_t X_{t-k}) = E\{(\phi_1 X_{t-1} + Z_t) \ X_{t-k}\};$$
Calculation of $\gamma_X(0) = \text{Var}(X_t)$:

For $k = 0$, $E(Z_t X_t) = E\{Z_t \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}\}$

$$= \sum_{j=0}^{\infty} \phi_1^j \ E\{Z_t Z_{t-j}\}$$

$$= \phi_1^0 \ E\{Z_t^2\} = \sigma_z^2$$
Thus, $\gamma_X(0) = E\{(\phi_1 X_{t-1} + Z_t) \ X_t\} = \phi_1 \gamma_X(1) + \sigma_z^2 = \phi_1^2 \gamma_X(0) + \sigma_z^2$

$$E(X_{t-1} X_t) = \gamma_X(1)$$
So that
$$\gamma_X(0) = \frac{\sigma_z^2}{1 - \phi_1^2}, \quad \gamma_X(k) = \phi_1^k \gamma_X(0).$$

$$\rho_X(1) = \phi_1, \ \rho_X(2) = \phi_1^2, \dots, \rho_X(k) = \phi_1^k.$$

Summary of Properties of AR(1)

AR(1): $X_t = \phi_1 X_{t-1} + Z_t$ where $\mathsf{Z_t} \sim \mathsf{WN}$ (0, σ_Z^2) and $|\phi_1| < 1$.

Summary:

- Always invertible!
- MA(∞) representation: $X_t = Z_t + \phi_1 Z_{t-1} + \phi_1^2 Z_{t-2} + \cdots$ when $|\phi_1| < 1$
- Stationary when $|\phi_1| < 1$.
- Variance: Var (X) = $\gamma_X(0) = \frac{\sigma_Z^2}{1-\phi_1^2}$;
- ACF: $\rho_X(1) = \phi_1$, $\rho_X(2) = \phi_1^2$, ..., $\rho_X(k) = \phi_1^k \leftarrow \text{converges to 0}$

Notice: ACFs of AR(1) decay exponentially, but are never zero!

For both graphs $|\phi_1| = 0.95$. Name the graph with $\phi_1 < 0$.

100 simulated values of AR(1) $X_t = -0.95 X_{t-1} + Z_t$ and its ACF

Correlations die out slowly because $\phi=-0.95$ is near -1. Signs alternate, exponential decay.

Graph choppy because of strong negative correlation.

(the same acf with confidence intervals)

Commands used in R:

- > ar1 <- arima.sim(model=list(ar=c(-0.95)), n=100, sd=1)
- > plot(ar1)
- > plot(ARMAacf(ar=c(-0.95), lag.max=40), ylab="r",type="h", main="ACF for AR(1) c=-0.95"); abline(h=0)

100 simulated values of $X_t = 0.95 X_{t-1} + Z_t$ (AR(1)) and its ACF

- **Correlations die out slowly because** φ = 0.95 is close to 1.
- Sample ACF: exponential decay is slow.
- **Graph of X is smooth because of strong** positive correlation.

Commands used in R:

- > ar1 <- arima.sim(model=list(ar=c(0.95)), n=100, sd=1)
- > plot(ar1)
- > acf(ar1)
- > plot(ARMAacf(c(0.95,0), lag.max = 10, pacf = FALSE))

Theoretical ACF Sample ACF

100 simulated values of $X_t = 0.65 X_{t-1} + Z_t$ (AR(1)) and its ACF

- ACF dies out faster than on the previous slide because ϕ =0.65 is not close to 1;
- Graph of X less smooth (less correlation, less linear dependence).

AR(1) still: Estimating ϕ_1 from Data

Some food for thought ...

We have equation: $X_t = \phi_1 X_{t-1} + Z_t$; ϕ_1 unknown

We observe a time series data:

Question: How to estimate ϕ_1 from data?

From theory: ACF $\rho_X(1) = \phi_1$, $\rho_X(2) = \phi_1^2$, ..., $\rho_X(k) = \phi_1^k$

From data: find estimate of the ACF, called sample ACF, $\widehat{\rho}_{x}(1)$;

(formulas for sample mean and covariance are given (i) on slide 38 of Week 1;

(ii) in § 1.2 of Lecture Notes, Week 1); and (iii) in Problem 3 of Homework 1.)

By comparing theoretical and sample ACFs, find an estimate of ϕ_1 :

$$\hat{\phi}_1 = \hat{\rho}_X(1)$$

4.2 Property of Causality of X

Time Series $\{X_t\}$ is causal or a causal function of shocks $\{Z_t\}$ if its value can be expressed in terms of current or past values of Z_t :

$$X_t = function (Z_s, s \le t)$$

Why causality important? ———— FUTURE-INDEPENDENCE

Invertibility: remote past has less influence on current values.

Causality: observations are future independent.

MA(q) is always causal: $X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \cdots + \theta_q Z_{t-q}$

AR(1) is causal for $|\phi_1| < 1$, when it has MA(∞) representation.

4.2 Property of Causality of X: Example of non-causal time series

Time Series $\{X_t\}$ is causal or a causal function of shocks $\{Z_t\}$ if its value can be expressed in terms of current or past values of Z_t :

$$X_t = function(Z_s, s \le t)$$

Example of non-causal time series: AR (1) with $\phi_1 > 1$:

- Write $X_t \phi_1 X_{t-1} = (1 \phi_1 B) X_t = Z_t$
- $X_t = \frac{1}{1-\phi_1 B} Z_t = -\frac{(\phi_1 B)^{-1}}{1-(\phi_1 B)^{-1}} Z_t$ (multiply numerator & denominator by $(\phi_1 B)^{-1}$) $= -(\phi_1 B)^{-1} \Big(1 + (\phi_1 B)^{-1} + (\phi_1 B)^{-2} + \dots + (\phi_1 B)^{-n} + \dots \Big) Z_t$ (b/c ϕ_1 > 1, its inverse $0 < (\phi_1)^{-1} <$ 1, so that $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n$ holds for $0 < q = (\phi_1)^{-1} <$ 1)
- Recall: $B^{-k}Z_t = Z_{t-(-k)} = Z_{t+k}$. Thus, final expression for X is:
- $X_t = -(\phi_1)^{-1}Z_{t+1} (\phi_1)^{-2}Z_{t+2} \cdots (\phi_1)^{-k}Z_{t+k} \cdots$

Is this series causal? Can it be used for forecast?

Main Points to Take from Parts 1 — 2 of Lecture 4

AR(1) model

- Model equation: $X_t = \phi_1 X_{t-1} + Z_t$ where $\mathsf{Z_t}$ ~ WN (0, σ_Z^2) and $|\phi_1| < 1$.
- AR(1) is always invertible;
- AR(1) process has a MA(∞) representation X_t = $\sum_{j=0}^{\infty} \phi_1^j Z_{t-j}$ when $|\phi_1| < 1$.
- ACVF: $\gamma_X(0) = \frac{\sigma_Z^2}{1-\phi_1^2}$, $\gamma_X(k) = \phi_1^k \gamma_X(0)$.
- ACF: $\rho_X(k) = \phi_1^k$.
- Estimate of $oldsymbol{\phi}_1$ from data: $\hat{\phi}_1 = \hat{
 ho}_X(1)$
- Causality: observations are future independent

Moving to Part 3 of Lecture 4

Welcome to Week 2 Lecture 4: Autoregressive Models Part 3: AR(p) Models

Creating Time Series Models from White Noise

Outline of Part 3 of Lecture 4:

AR(p) models, intro: pp. 53 - 54

AR(p), properties: p. 55

Graphs of AR(p): pp. 56 - 57

Summary of Lecture 4: pp. 58

Some R code: p. 59

4.3 Autoregressive of Order p Models: AR(p)

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + ... + \phi_p X_{t-p} + Z_t$$
 where $Z_t \sim WN$ (0, σ_z^2)

For example,

AR(2):
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$$

AR(3):
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \phi_3 X_{t-3} + Z_t$$

 $X_t = \phi_2 X_{t-2} + \phi_3 X_{t-3} + Z_t$

What order is
$$X_t = -0.2X_{t-1} - 0.7X_{t-2} + Z_t$$
?

What order is $X_t = 0.6X_{t-1} + 0.08X_{t-2} + 0.3X_{t-5} + Z_t$?

 $\varphi_0 = 1$. All missing terms correspond to a zero coefficient.

4.3 AR(p) and its Autoregressive Polynomial ϕ (B)

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + ... + \phi_p X_{t-p} + Z_t$$
 where $Z_t \sim WN$ (0, σ_z^2)

Writing AR(p) model concisely via shift operator:

• Use shift operator to rewrite $X_{t-k} = B^k X_t$.

Move all terms with X to left-hand side:

$$1\cdot X_t-\phi_1BX_t-\phi_2B^2X_t-\cdots-\phi_pB^pX_t=Z_t$$
 or
$$(1-\phi_1B-\phi_2B^2\ldots-\phi_pB^p)\ X_t=Z_t$$

Introduce notation for polynomial φ of order p:

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$$
.

Notice signs of φ's

- Substitute z = B: ϕ (B) = $1 \phi_1 B \phi_2 B^2 \cdots \phi_p B^p$
- Write $\phi(B) X_t = Z_t$, $Z_t \sim WN(0, \sigma_z^2)$

4.3 Autoregressive of Order p Models: AR(p)

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + ... + \phi_{p}X_{t-p} + Z_{t} \text{ where Z}_{t} \sim \text{WN (0, } \sigma_{z}^{2})$$
 or ϕ (B) $X_{t} = Z_{t}$, $Z_{t} \sim \text{WN (0, } \sigma_{z}^{2})$

Properties of AR(p):

- AR(p) always invertible by its construction: $Z_t = \phi$ (B) X_t .
- AR(p) has $MA(\infty)$ representation when $\phi(z) = 1 \phi_1 z \phi_2 z^2 \dots \phi_p z^p \neq 0$ for $|z| \leq 1$, that is, when the roots of the polynomial $\phi(z)$ lie outside of the unit circle $(z^*$ is a root of $\phi(z)$ if $\phi(z^*) = 0$. Condition: $|z^*| > 1$)
- AR(p) is stationary when it has $MA(\infty)$ representation, that is, if $\phi(z) \neq 0$ for $|z| \leq 1$ OR when $|z^*| > 1$ for z^* such that $\phi(z^*) = 0$.
- NEW: ACF is found by solving Yule-Walker equations.

Figure 10.5 Realizations of the process: $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$

Compare graphs of AR(2) models for different combinations of signs of coefficients.

0:100

56

Compare plots and graphs ACFs for AR(1) and AR(2) models. Can we guess the order from these plots?

Main Points to Take from Lecture 4

- Notion of causality
- AR(1) and AR(p):
 - Model equation;
 - AR models are stationary when they have $MA(\infty)$ representation, Restriction on coefficients: $|z^*| > 1$ for z^* such that $\phi(z^*) = 0$.
 - Fact that AR models are always invertible;
 - ACVF and ACF formulas for AR(1) model
 - Sample ACF, its' use for model identification for AR(1)

Some simple R commands used to create previous slides

- To simulate 100 values of AR(1): $X_t = -0.95X_{t-1} + Z_t$ ar1 <- arima.sim(model=list(ar=c(-0.95)), n=100, sd=1) plot(ar1)
- To plot ACF for simulated values stored in file ar1:
 acf (ar1, type="correlation", plot=T) or simply acf(ar1)
- To plot theoretical ACF for this AR(1)
 plot(ARMAacf(ar=c(-0.95), lag.max=40), col="red", type="h", xlab="lag", ylim=c(-.8,1));
 abline(h=0)

Have a nice weekend!

Take advice from Calvin:

Go for a walk!

Spend time with friends and family!