Life Expectancy Prediction Using ML

By Kaneez Ayesha Associate – Data Scientist 18-03-2022

Table of Contents

Columns Names and Detail:	3
Libraries:	3
Loading Data:	2
Statistics:	
Shape of Data:	
Data Info:	
Data Cleaning:	5
EDA With Visualization:	6
Correlation:	11
Separating Dependent and Independent Variables:	12
Label Encoder:	12
Min Max Scaler:	13
Train Test Split:	
Linear regression:	12
Bagging Regressor:	15
XG Boost Predictions with Full data:	15
XG Boost Regression with Train and Test data:	17
Conclusion:	20

Life Expectancy Prediction Using ML

I picked up a dataset from Kaggle website name as "Life expectancy". Life expectancy dataset has 2938 records and 22 columns. The insights from this analysis can be used by Government and Healthcare sectors for the betterment of society. And prediction system to evaluate life expectancy of each and every country of world.

Columns Names and Detail:

Country: Country

Year: Year

Status: Developed or Developing status **Life Expectancy:** Life Expectancy in age

Adult Mortality: Adult Mortality Rates of both sexes (probability of dying between 15 and 60 years per 1000

population)

Infant Deaths: Number of Infant Deaths per 1000 population

Alcohol: Alcohol, recorded per capita (15+) consumption (in liters of pure alcohol)

Percentage Expenditure: Expenditure on health as a percentage of Gross Domestic Product per capita (%)

Hepatitis B: Hepatitis B (Hep B) immunization coverage among 1-year-olds (%)

Measles: Measles - number of reported cases per 1000 population.

BMI: Body Mass Index.

Under Five Deaths: deaths per 1,000 live births.

Polio: Between 2 and 10 out of 100 people who have paralysis from poliovirus infection. **Total Expenditure:** Health financing is reported as the annual per capita health expenditure.

Diphtheria: Diphtheria

HIV/AIDS:

GDP: Gross Domestic Product, GDP per capita increases by 1%, life expectancy increases by 5.38 years.

Population: Population Thinness_1_to_19_years: Thinness_5_to_9_years:

Income Composition of resources: Income composition of resources have the highest correlation coefficient of 0.91 which means that if a country utilizes its resources productively, it is more likely to see its citizens live longer than expected.

Schooling: average based on participation in different levels of education, the expected number of years of schooling may be pulled down by the magnitude of children who never go to school. Those children who are in school may benefit from many more years of education than the average.

Libraries:

import pandas as pd

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

from sklearn import preprocessing

from sklearn import metrics

from sklearn.metrics import f1 score

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import r2_score

Loading Data:

#Reading csv files

df = pd.read_csv("Life Expectancy Data.csv")
df

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Diphtheria	HIV/AIDS	
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	 6.0	8.16	65.0	0.1	584.2
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	58.0	8.18	62.0	0.1	612.69
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	62.0	8.13	64.0	0.1	631.74
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	67.0	8.52	67.0	0.1	669.9
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	68.0	7.87	68.0	0.1	63.50
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	67.0	7.13	65.0	33.6	454.38
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	7.0	6.52	68.0	36.7	453.3
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	73.0	6.53	71.0	39.8	57.3
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	76.0	6.16	75.0	42.1	548.51
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	78.0	7.10	78.0	43.5	547.3
2938	rows × 22 co	olumns													
4															-

Statistics:

#Loading Statistics

df.describe()

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under-five deaths	Polio	exţ
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000000	2938.000000	2904.000000	2938.000000	2919.000000	27
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.940461	2419.592240	38.321247	42.035739	82.550188	
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25.070016	11467.272489	20.044034	160.445548	23.428046	
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.000000	0.000000	1.000000	0.000000	3.000000	
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.000000	0.000000	19.300000	0.000000	78.000000	
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.000000	17.000000	43.500000	4.000000	93.000000	
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.000000	360.250000	56.200000	28.000000	97.000000	
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000	212183.000000	87.300000	2500.000000	99.000000	
(- }

Shape of Data:

#Shape

df.shape

(2938, 22)

Data Info:

#Loading Info df.info()

```
        <cclass 'pandas.core.frame.DataFrame'>
        Nangelndex: 2938 entries, 0 to 2937

        Octume
        Non-Null Count
        Dtype

        Octume
        2938 non-null
        object

        1 Country
        2938 non-null
        object

        2 Status
        2938 non-null
        object

        3 Life expectancy
        2928 non-null
        floated

        4 Adult Mortality
        2928 non-null
        floated

        5 infant deaths
        2938 non-null
        floated

        7 percentage expenditure
        2938 non-null
        floated

        8 Hepatitis B
        2938 non-null
        floated

        9 Measles
        2938 non-null
        floated

        10 II
        2944 non-null
        floated

        11 Direction
        2919 non-null
        floated

        12 Polio
        2919 non-null
        floated

        13 Total expenditure
        2919 non-null
        floated

        14 Diphtheria
        2919 non-null
        floated

        15 HU/AIDS
        2938 non-null
        floated

        16 Hu/AIDS
        2938 non-null
        floated

        17 Population
        2266 non-null
        floated

        18 thinnes
```

Data Cleaning:

#Changing name of columns

```
df.rename(columns = {'Life expectancy' : 'Life_expectancy' }, inplace = True)

df.rename(columns = {'Adult Mortality' : 'Adult_Mortality' }, inplace = True)

df.rename(columns = {'infant deaths' : 'infant_deaths' }, inplace = True)

df.rename(columns = {'percentage expenditure' : 'percentage_expenditure' }, inplace = True)

df.rename(columns = {'Hepatitis B' : 'Hepatitis_B' }, inplace = True)

df.rename(columns = {'Measles ' : 'Measles' }, inplace = True)

df.rename(columns = {'BMI ' : 'BMI' }, inplace = True)

df.rename(columns = {'under-five deaths ' : 'under_five_deaths' }, inplace = True)

df.rename(columns = {'Diphtheria ' : 'Diphtheria' }, inplace = True)

df.rename(columns = {'HIV/AIDS' : 'HIV_AIDS' }, inplace = True)

df.rename(columns = {'thinness 1-19 years' : 'thinness_1_to_19_years' }, inplace = True)

df.rename(columns = {'Income composition of resources' : 'Income_composition_of_resources' }, inplace = True)

df.rename(columns = {'Income composition of resources' : 'Income_composition_of_resources' }, inplace = True)
```

#Columns names after replacing

df.columns

#Finding null values

for col in df.columns:

print(col , df[col].isnull().sum())

```
Country 0
Year 0
Year 0
Status 0
Life_expectancy 10
Adult_Mortality 10
infant_deaths 0
Alcohol 194
percentage_expenditure 0
Hepatiits_B 553
Measles 0
BMI 34
under_five_deaths 0
Polio 19
Total_expenditure 226
Diphtheria 19
HIV_AIDS 0
GDP 448
Population 652
thinness_1_to_19_years 34
thinness_5_to_9_years 34
Income_composition_of_resources 167
Schooling 163
```

#Droping null values

df.dropna(axis=0, inplace=True)
df

	Country	Year	Status	Life_expectancy	Adult_Mortality	infant_deaths	Alcohol	percentage_expenditure	Hepatiits_B	Measles	 Polio	Total_exp
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	 6.0	
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	 58.0	
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	 62.0	
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	 67.0	
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	 68.0	
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	 67.0	
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	 7.0	
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	 73.0	
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	 76.0	
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	 78.0	
1649 ı	rows × 22 co	lumns										
4												>

#Null values after cleaning

for col in df.columns:
print(col , df[col].isnull().sum())

Country 0
Year 0
Status 0
Life_expectancy 0
Adult_Mortality 0
infant_deaths 0
Alcohol 0
Percentage_expenditure 0
Hepatiits_B 0
Measles 0
BMI 0
under_five_deaths 0
Polio 0
Total_expenditure 0
Diphtheria 0
HIV_AIDS 0
GDP 0
Population 0
thinness_1_to_19_years 0
thinness_5_to_9_years 0
Income_composition_of_resources 0
Schooling 0

#Determine if data has any duplicate values

df.duplicated(subset=None,keep='first').sum()

0

No duplicate values exists

Data is clean.

EDA With Visualization:

#Histograms of all columns

df.hist(figsize = (20, 20)) plt.show()

#Pairplot

sns.pairplot(df)

#Number of developing and developed cases

df.Status.value_counts().to_frame()

	Status
Developing	1407
Developed	242

#Visualizing number of developing and developed cases

from matplotlib import rcParams rcParams['figure.figsize'] = 5,5 sns.countplot(x="Status", data= df,orient="v", color="pink")

As we can see above many cases are in developing process

#Country Counts

df.Country.value_counts()

Afghanistan	16
Albania	16
Kiribati	15
Mexico	15
Mauritius	15
Ireland	5
Sweden	4
Netherlands	4
Haiti	2
Equatorial Guinea	1

Name: Country, Length: 133, dtype: int64

#Visualize Country Counts

rcParams['figure.figsize'] = 7,40 sns.countplot(y="Country",data=df,orient="v")

#Health financing per capita health expenditure in each country

 $expenditure = df.groupby(by = 'Country')['Total_expenditure'].sum().sort_values(ascending = False).head(10).reset_index()\\ expenditure$

	Country	Total_expenditure
0	Greece	135.58
1	Afghanistan	132.04
2	Jordan	131.72
3	Italy	131.66
4	Uruguay	131.25
5	Costa Rica	129.30
6	Spain	128.05
7	South Africa	124.59
8	Australia	123.75
9	Maldives	123.55

#Visualizing health financing per capita health expenditure in each country

rcParams['figure.figsize'] = 5,5 sns.lineplot(data=expenditure, x="Total_expenditure", y="Country")

#Number of Infant Deaths per 1000 population

 $infant_deaths = df.groupby(by = 'Country')['infant_deaths'].sum().sort_values(ascending = False).head(10).reset_index() \\ infant_deaths$

	Country	infant_deaths
0	India	13957
1	Nigeria	5237
2	China	4561
3	Pakistan	4402
4	Indonesia	2305
5	Bangladesh	1709
6	Ethiopia	1285
7	Afghanistan	1252
8	Uganda	1138
9	Brazil	1050

#Visualizing Number of Infant Deaths per 1000 population

sns.set_theme()
rcParams['figure.figsize'] = 10,5
sns.relplot(
data=infant_deaths,
x="infant_deaths", y="Country")

#Developed and developing cases life expectancy

 $groupby_country = df.groupby('Status')['Life_expectancy'].sum().sort_values(ascending = False).head(10).reset_index()\\ gc = pd.DataFrame(groupby_country)\\ gc$

Status Life_expectancy 0 Developing 95236.1 1 Developed 19043.4

#Visualizing developed and developing cases life expectancy

sns.lineplot(data=gc, x="Life_expectancy", y="Status")

Correlation:

#Corelation

Corelation = df.corr()

Corelation

	Year	Life_expectancy	Adult_Mortality	infant_deaths	Alcohol	percentage_expenditure	Hepatiits_B	Measles	BN
Year	1.000000	0.050771	-0.037092	0.008029	-0.113365	0.069553	0.114897	-0.053822	0.00573
Life_expectancy	0.050771	1.000000	-0.702523	-0.169074	0.402718	0.409631	0.199935	-0.068881	0.54204
Adult_Mortality	-0.037092	-0.702523	1.000000	0.042450	-0.175535	-0.237610	-0.105225	-0.003967	-0.35154
infant_deaths	0.008029	-0.169074	0.042450	1.000000	-0.106217	-0.090765	-0.231769	0.532680	-0.23442
Alcohol	-0.113365	0.402718	-0.175535	-0.106217	1.000000	0.417047	0.109889	-0.050110	0.35339
percentage_expenditure	0.069553	0.409631	-0.237610	-0.090765	0.417047	1.000000	0.016760	-0.063071	0.24273
Hepatiits_B	0.114897	0.199935	-0.105225	-0.231769	0.109889	0.016760	1.000000	-0.124800	0.14330
Measles	-0.053822	-0.068881	-0.003967	0.532680	-0.050110	-0.063071	-0.124800	1.000000	-0.15324
BMI	0.005739	0.542042	-0.351542	-0.234425	0.353396	0.242738	0.143302	-0.153245	1.00000
under_five_deaths	0.010479	-0.192265	0.060365	0.996906	-0.101082	-0.092158	-0.240766	0.517506	-0.24213
Polio	-0.016699	0.327294	-0.199853	-0.156929	0.240315	0.128626	0.463331	-0.057850	0.18626
Total_expenditure	0.059493	0.174718	-0.085227	-0.146951	0.214885	0.183872	0.113327	-0.113583	0.18946
Diphtheria	0.029641	0.341331	-0.191429	-0.161871	0.242951	0.134813	0.588990	-0.058606	0.17629
HIV_AIDS	-0.123405	-0.592236	0.550691	0.007712	-0.027113	-0.095085	-0.094802	-0.003522	-0.21089
GDP	0.096421	0.441322	-0.255035	-0.098092	0.443433	0.959299	0.041850	-0.064768	0.26611
Population	0.012567	-0.022305	-0.015012	0.671758	-0.028880	-0.016792	-0.129723	0.321946	-0.08141
thinness_1_to_19_years	0.019757	-0.457838	0.272230	0.463415	-0.403755	-0.255035	-0.129406	0.180642	-0.54701
thinness_5_to_9_years	0.014122	-0.457508	0.286723	0.461908	-0.386208	-0.255635	-0.133251	0.174946	-0.55409
Income_composition_of_resources	0.122892	0.721083	-0.442203	-0.134754	0.561074	0.402170	0.184921	-0.058277	0.51050
Schooling	0.088732	0.727630	-0.421171	-0.214372	0.616975	0.422088	0.215182	-0.115660	0.55484
4									-

#Visualizing Corelation By Heatmap

top_fatures = Corelation.index
plt.figure(figsize = (14, 6))

g = sns.heatmap(df[top_fatures].corr(), annot = True, cmap = "bone_r")

Separating Dependent and Independent Variables:

from sklearn.model_selection import train_test_split

x_data = df[['Country', 'Year', 'Status', 'Adult_Mortality', 'infant_deaths', 'Alcohol',
'percentage_expenditure', 'Hepatiits_B', 'Measles', 'BMI', 'under_five_deaths', 'Polio', 'Total_expenditure',
'Diphtheria', 'HIV_AIDS', 'GDP', 'Population', 'thinness_1_to_19_years', 'thinness_5_to_9_years',
'Income_composition_of_resources', 'Schooling']]

y_data = df[['Life_expectancy']]

Label Encoder:

data = x_data categ = list(data.select_dtypes(include=['object']).columns)

#Encode Categorical Columns

le = preprocessing.LabelEncoder()
data[categ] = data[categ].apply(le.fit_transform)

#Changing datatypes of object

bools = list(data.select_dtypes(include=['bool']).columns) data[bools] = data[bools].astype(int)

#Data info after datatype conversion

data.info()

#Data after Encoding

	Country	Year	Status	Adult_Mortality	infant_deaths	Alcohol	percentage_expenditure	Hepatiits_B	Measles	BMI	 Polio	Total_expenditure	Diphtheri
0	0	2015	1	263.0	62	0.01	71.279624	65.0	1154	19.1	 6.0	8.16	65.
1	0	2014	1	271.0	64	0.01	73.523582	62.0	492	18.6	58.0	8.18	62.
2	0	2013	1	268.0	66	0.01	73.219243	64.0	430	18.1	62.0	8.13	64.
3	0	2012	1	272.0	69	0.01	78.184215	67.0	2787	17.6	67.0	8.52	67.
4	0	2011	1	275.0	71	0.01	7.097109	68.0	3013	17.2	68.0	7.87	68.
2933	132	2004	1	723.0	27	4.36	0.000000	68.0	31	27.1	67.0	7.13	65.
2934	132	2003	1	715.0	26	4.06	0.000000	7.0	998	26.7	7.0	6.52	68.
2935	132	2002	1	73.0	25	4.43	0.000000	73.0	304	26.3	73.0	6.53	71.
2936	132	2001	1	686.0	25	1.72	0.000000	76.0	529	25.9	76.0	6.16	75.
2937	132	2000	1	665.0	24	1.68	0.000000	79.0	1483	25.5	78.0	7.10	78.
1649	rows × 21	colum	ne										
4	10W3 ~ 21	COIGIT	110										→

Min Max Scaler:

#Define min max scaler

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

#Transform data

 $scaled_x = scaler.fit_transform(data)$

print(scaled_x)

#Scaled Data

	Country	Year	Status	Adult_Mortality	infant_deaths	Alcohol	percentage_expenditure	Hepatiits_B	Measles	BMI	 Polio	Total_expenditure	Diphther
0	0	2015	1	263.0	62	0.01	71.279624	65.0	1154	19.1	6.0	8.16	65
1	0	2014	1	271.0	64	0.01	73.523582	62.0	492	18.6	 58.0	8.18	62
2	0	2013	1	268.0	66	0.01	73.219243	64.0	430	18.1	 62.0	8.13	64
3	0	2012	1	272.0	69	0.01	78.184215	67.0	2787	17.6	 67.0	8.52	67
4	0	2011	1	275.0	71	0.01	7.097109	68.0	3013	17.2	 68.0	7.87	68
2933	132	2004	1	723.0	27	4.36	0.000000	68.0	31	27.1	 67.0	7.13	65
2934	132	2003	1	715.0	26	4.06	0.000000	7.0	998	26.7	 7.0	6.52	68
2935	132	2002	1	73.0	25	4.43	0.000000	73.0	304	26.3	 73.0	6.53	71
2936	132	2001	1	686.0	25	1.72	0.000000	76.0	529	25.9	 76.0	6.16	75
2937	132	2000	1	665.0	24	1.68	0.000000	79.0	1483	25.5	 78.0	7.10	78
649 1	ows × 21	colum	ine										
U+0 I	UW3 ^ Z I	COIUII	1113)

13

Train Test Split:

x_train, x_test, y_train, y_test = train_test_split (scaled_x, y_data, test_size = 0.3, train_size = 0.7, $random_state = 0$

#Shape Of Train Test Data

```
print ("Train Data x Shape: " , x_train.shape)
print ("Test Data x Shape: " , x_test.shape)
print ("Train Data y Shape: " , y_train.shape)
print ("Test Data y Shape: " , y_test.shape)
```

```
[[0.
             1.
                        1.
                                    ... 0.61209964 0.51175214 0.35757576]
[0.
             0.93333333 1.
                                    ... 0.61921708 0.50854701 0.35151515]
[0.
             0.86666667 1.
                                    ... 0.62633452 0.50213675 0.34545455]
. . .
[1.
             0.13333333 1.
                                    ... 0.04270463 0.45619658 0.35151515]
[1.
             0.06666667 1.
                                    ... 0.0569395 0.45619658 0.33939394]
[1.
                        1.
                                    ... 0.39501779 0.46367521 0.33939394]]
```

Linear regression:

from sklearn import linear_model reg = linear_model.LinearRegression() reg.fit(x_train, y_train)

LinearRegression()

#Predicted values by model

```
pre_lr = reg.predict(x_test)
pre_lr
```

```
Out[155]: array([[59.94207222]
                          [75.59419528],
[71.20771619],
                          [42.5009569
[74.1670219
```

[55.49292841], [61.90232091], [83.84991803] [49.94769265], [61.50636378], [76.33024977], [74.26737913], 78.5668246 [70.5044872 [84.1388897 [45.10475129], [46.24288454], [68.89741717], [73.73843575],

#Score

reg.score(x_test,y_test)*100

84,29368282860217

#MSE, MAE and R^2

```
print('R^2 : ',metrics.r2_score(y_test, pre_lr))
print('Mean Absolute Error : ',metrics.mean_absolute_error(y_test, pre_lr))
```

print('Mean Squared Error : ',metrics.mean_squared_error(y_test, pre_lr))

R^2: 0.8429368282860217

Mean Absolute Error : 2.7673355518522182 Mean Squared Error : 12.862871599744555

Bagging Regressor:

#Importing bagging regressor

from sklearn.svm import SVR

from sklearn.ensemble import BaggingRegressor

breg = BaggingRegressor(base_estimator=SVR(), n_estimators=10, random_state=0) breg.fit(x_train, y_train)

BaggingRegressor(base_estimator=SVR(), random_state=0)

#Predicted values by model

pre_bag = breg.predict(x_test)
pre_bag

```
Out[161]: array([60.48233193, 76.51586198, 72.35492508, 57.06573814, 60.77621667,
81.8031801, 51.31215286, 63.28381723, 54.12616072, 75.96457477,
78.95213076, 74.70124239, 79.60843352, 71.30821013, 79.52594929,
56.97849581, 57.33282053, 68.50233095, 73.66360434, 70.47901861,
79.5654534, 70.80665009, 64.42214119, 72.92434911, 73.02040779,
65.67047093, 64.0238549, 63.91789431, 78.9162672, 69.08110317,
71.10720823, 52.08594797, 57.5642965, 71.44119226, 72.2333887,
71.64229778, 69.59210664, 79.01946473, 79.36862454, 56.22532062,
78.62987124, 64.88568559, 78.18641113, 74.66773215, 82.19243941,
80.21253472, 55.756349, 71.98943283, 70.47658, 79.77017428,
63.09419262, 69.45781308, 58.41270938, 77.72271795, 68.85269156,
79.35972368, 74.1645692, 75.63891626, 68.82521117, 67.8124713,
72.83860345, 69.27226563, 68.91877727, 76.46512459, 76.2777936,
78.62198655, 71.83668705, 69.98479624, 71.53842303, 73.24005741,
67.5284315, 79.9612721, 47.41169892, 78.7394853, 78.17972053,
63.92733141, 77.52042954, 78.12609551, 64.86055145, 66.19194794,
61.23627015, 75.661406539, 64.24550195, 67.37967658, 61.9923026,
69.3662024, 72.44881551, 45.67871109, 69.3466799, 69.47665839,
62.87993568, 74.44652705, 75.74339987, 51.46834518, 69.14711564,
```

#MAE, MSE and R^2

print('R^2 : ',metrics.r2_score(y_test, pre_bag))

 $print('Mean\ Absolute\ Error: ',metrics.mean_absolute_error(y_test,\ pre_bag))$

print('Mean Squared Error : ',metrics.mean_squared_error(y_test, pre_bag))

R^2: 0.8320881765876771

Mean Absolute Error : 2.670106329928039 Mean Squared Error : 13.751334581252893

XG Boost Predictions with Full data:

#Loading xgboost

import xgboost as xg

fullxg = xg.XGBRegressor(objective = 'reg:linear', n_estimators = 10, seed = 123)

#Fitting the model

xgfull = fullxg.fit(x_train, y_train)

#Predicted values of model

```
predfull = fullxg.predict(scaled_x)
predfull
                 array([61.75452 , 57.646152, 59.42004 , ..., 43.518574, 44.540825,
                        44.867332], dtype=float32)
#MSE, MAE and R^2
print('R^2 : ',metrics.r2_score(y_data, predfull))
print('Mean Absolute Error : ',metrics.mean_absolute_error(y_data, predfull))
print('Mean Squared Error : ',metrics.mean_squared_error(y_data, predfull))
                    R^2: 0.8996935641510315
                    Mean Absolute Error: 2.2047304536300114
                    Mean Squared Error: 7.757435219573645
#Saving model using joblib
import joblib
joblib.dump(xgfull, 'model_save2')
model2 = joblib.load('model save2')
              XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                          colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
                          gamma=0, gpu_id=-1, importance_type=None,
                          interaction_constraints='', learning_rate=0.300000012,
                          max delta_step=0, max_depth=6, min_child_weight=1, missing=nan,
                          monotone_constraints='()', n_estimators=10, n_jobs=8,
                          num_parallel_tree=1, objective='reg:linear', predictor='auto',
                          random_state=123, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
                          seed=123, subsample=1, tree method='exact', validate parameters=1,
                          verbosity=None)
#Input data for train model
d1 = ["Bahamas", 1999, "Developed", 43, 65, 76, 56, 78, 67, 2.4, 76, 765, 786, 76, 6.6, 76,
7645345678899888, 56, 89, 7896, 981
d2 = np.array([d1])
data1 = pd.DataFrame(d2)
data1
                       2 3 4 5 6 7 8 9 ... 11 12 13 14 15
0 Bahamas 1999 Developed 43 65 76 56 78 67 2.4 ... 765 786 76 6.6 76 7645345678899888 56 89 7896 98
#Label Encoder and min max scaler to convert and normalize input data
categ = list(data1.select dtypes(include=['object']).columns)
le = preprocessing.LabelEncoder()
data1[categ] = data1[categ].apply(le.fit transform)
```

bools = list(data1.select_dtypes(include=['bool']).columns) data1[bools] = data1[bools].astype(int) scaler1 = MinMaxScaler() scaled data1 = scaler.fit transform(data1)

```
7
                                                  11
                                                      12
                                                           13
                                                                    15
                                                                         16
                                                                             17
                                                                                  18
                                                                                      19
                                                                                           20
                                                                14
                      0.0 0.0 0.0
0.0
    0.0 0.0 0.0 0.0
                                    0.0
                                         0.0
                                                 0.0
                                                      0.0
                                                          0.0
                                                               0.0
                                                                   0.0
                                                                        0.0
                                                                             0.0
                                                                                  0.0
                                                                                      0.0
                                                                                           0.0
```

#Predicting Life Expectancy from train model using input data

model2.predict(scaled_data1)

array([50.865726], dtype=float32)

XG Boost Regression with Train and Test data:

#Predicted values of XG Boost

```
import xgboost as xg
xgb_r = xg.XGBRegressor(objective ='reg:linear', n_estimators = 10, seed = 123)
xg = xgb_r.fit(x_train, y_train)
pred = xgb_r.predict(x_test)
pred
```

```
[22:20:32] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/objective/regression_obj.cu:188: reg:lin
           ear is now deprecated in favor of reg:squarederror
Out[144]: array([57.150448, 79.28581, 73.38556, 52.42246, 59.91934, 79.39506,
                 52.22916 , 50.659386 , 44.501724 , 71.702705 , 78.05668 , 71.81858
                 76.59998 , 69.76818 , 76.019424, 49.069935, 49.120934, 70.476204,
                 70.84275 , 67.01421 , 76.002495, 64.511856, 63.30731 , 71.51044
                 71.45687 , 63.767136 , 64.377975 , 55.302467 , 78.875916 , 68.26204
                 69.34918 , 47.40433 , 59.35104 , 68.72463 , 71.91212 , 68.59195
                 72.601814, 80.58408 , 78.57061 , 56.412605, 73.47177 , 63.377087,
                 79.010574, 66.75747 , 79.41991 , 79.1699 ,
                                                             50.0022
                 70.07894 , 79.82624 , 60.008205, 69.205
                                                             54,497154, 77,834724,
                 65.330475, 80.54611 , 73.084785, 77.31941 , 65.99192 , 65.17439 ,
                 70.84275 , 71.233696, 64.74178 , 73.58172 ,
                 71.17783 , 70.58811 , 71.296646, 72.87761 ,
                                                             65.66038 , 79.010574,
                 45.08122 , 80.15629 , 78.491516, 53.32604 , 73.15613 , 80.19748 ,
                 64.31973 , 66.141174 , 59.581646 , 73.48605 , 65.97903 , 65.24479
                 62.68722 , 64.62638 , 72.08066 , 43.812805 , 63.664097 , 65.63582
                 60.675854, 73.084785, 73.48605 , 45.25416 , 70.21816 , 59.369514,
                            56 129505 46 30752
                                                  51 /23/92 /5 351658
```

#Score

xgb r.score(x test,y test)*100

89.10268654445191

#MAE, MSE and R^2

```
print('R^2 : ',metrics.r2_score(y_test, pred))
print('Mean Absolute Error : ',metrics.mean_absolute_error(y_test, pred))
print('Mean Squared Error : ',metrics.mean_squared_error(y_test, pred))
```

R^2: 0.8910268654445191

Mean Absolute Error : 2.364579526342527 Mean Squared Error : 8.924481928592604

#Saving Model using Pickle

import pickle
file = open('xg.pkl', 'wb')
pickle.dump(xg, file)

#Deployment Using Flask Framework

```
from typing import Text
from flask import Flask, render_template, request
import requests
import pickle
import numpy as np
import pandas as pd
import sklearn
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
app = Flask(\underline{\quad name}\underline{\quad})
model = pickle.load(open('xg.pkl', 'rb'))
@app.route('/', methods=['GET'])
def Home():
return render template('home.html')
@app.route("/predict", methods=['POST'])
def predict():
Country = request.form.get('Country')
Year = request.form.get('Year')
Status = request.form.get('Status')
Adult_Mortality = request.form.get('Adult_Mortality')
infant_deaths = request.form.get('infant_deaths')
Alcohol = request.form.get('Alcohol')
percentage_expenditure = request.form.get('percentage_expenditure')
Hepatiits B = request.form.get('Hepatiits B')
Measles = request.form.get('Measles')
BMI = request.form.get('BMI')
under five deaths = request.form.get('under five deaths')
Polio = request.form.get('Polio')
Total_expenditure = request.form.get('Total_expenditure')
Diphtheria = request.form.get('Diphtheria')
HIV_AIDS = request.form.get('HIV_AIDS')
GDP = request.form.get('GDP')
Population = request.form.get('Population')
thinness 1 to 19 years = request.form.get('thinness 1 to 19 years')
thinness_5_to_9_years = request.form.get('thinness_5_to_9_years')
Income composition of resources = request.form.get('Income composition of resources')
Schooling = request.form.get('Schooling')
df = pd.DataFrame([[Country, Year, Status, Adult Mortality, infant deaths, Alcohol,
percentage expenditure, Hepatiits B, Measles, BMI, under five deaths, Polio, Total expenditure,
Diphtheria, HIV_AIDS, GDP, Population, thinness_1_to_19_years, thinness_5_to_9_years,
Income_composition_of_resources, Schooling]])
data = df
categ = list(data.select dtypes(include=['object']).columns)
le = preprocessing.LabelEncoder()
data[categ] = data[categ].apply(le.fit_transform)
bools = list(data.select_dtypes(include=['bool']).columns)
data[bools] = data[bools].astype(int)
```

```
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)
output = model.predict(df)
return render_template('home.html', prediction_text='Life Expectancy { }'.format(output)
if __name__ == "__main__":
    app.run(debug=True)
```

#HTML View

```
chtal lang="em">
c
```

#Web Interface

ВМІ	
ВМІ	
under five deaths	
under_five_deaths	
Polio	
P-OIIO	
Total_expenditure	
Status	
Diphtheria	
Diphtheria	
HIV AIDS	
HIV_AIDS	
GDD	
GDP	
Population	
Population	
thinness_1_to_19_years	
thinness_1_to_19_years	
thinness 5 to 9 years	
thinness 5 to 9 years	
Income composition of resources	
Income_composition_of_resources	
Schooling	
Status	
A11A111-	
SUBMIT	
LIFE EXPECTANCY [50.865726]	

Conclusion:

I make a web-based prediction system which will predict life expectancy of every country. This system is useful for Government and Healthcare sectors for the betterment of society. Government sector can predict their life expectancy for there country and make good decision. Like they should increase charity center because many people are dying because of poverty, or they should enlarge health care systems and their resources for people of society. They can try making organizations for poor people and feed them on daily bases and educate them for countries better future. They perform action against alcoholics in terms of stop ping import and making of alcohol in their countries because alcohol consumption is the big cause of decrease in life expectancy. They increase health expenditure for more reliability of there people. They should perform actions against polio which is main cause of low life expectancy of a country. They should arrang e more resources for diseases like HIV aids, Hepatitis b and Diphtheria in their country.