Probabilidad y Estadística Tarea 06

Rubén Pérez Palacios Profesor: Dr. Octavio Arizmendi Echegaray

24 Marzo 2020

Problemas

- 1. Sean X_1, \dots, X_n variables aleatorias exponenciales independientes con parametros $\lambda_1, \dots, \lambda_n$, respectivamente.
 - a) Sea $Y_n = \min(X_1, \dots, X_n)$, luego

$$\begin{split} F_Y(y) &= P(Y \leq y) \\ &= 1 - P(Y > y) \\ &= 1 - P(X_1 > y, \cdots, X_n > y) \qquad \text{por definición de mínimo} \\ &= 1 - \prod_{i=1}^n P(X_i > y) \qquad \text{al ser independientes} \\ &= 1 - \prod_{i=1}^n e^{-\lambda_i y} \qquad \text{por ser exponenciales} \\ &= 1 - e^{-\left(\sum_{i=1}^n \lambda_i\right) y} \end{split}$$

La cual es una distirbución exponencial con parámtero $\sum_{i=1}^{n} \lambda_i$.

b) Veamos como es $P(X_1 < X_2)$

$$P(X_1 < X_2) = \int_0^\infty P(X < Y | Y = y) f_Y(y) dy$$

$$= \int_0^\infty F_X(y) f_Y(y) dy$$

$$= \int_0^\infty (1 - e^{-\lambda_1 y}) \lambda_2 e^{-\lambda_2 y} dy$$

$$= \int_0^\infty \lambda_2 e^{-\lambda_2 y} dy - \int_0^\infty \lambda_2 e^{-(\lambda_1 + \lambda_2) y} dy$$

$$= 1 - \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

c) Veamos $X_1=Y$, quiere decir que X_1 es el minimo de X_1,\cdots,X_n , lo cual es cierto si y sólo si $X_1\leq X_2,\cdots,X_1\leq X_n$, por lo que

$$P(X_1 = Y) = P(X_1 \le X_2, \cdots, X)$$

Al ser independientes entonces

$$P(X_1 = Y) = \prod_{i=2}^{n} P(X_1 \le X_i)$$

Como las X_i son continuas entonces $X_i - X_j$ también lo es, por lo tanto $P(X_i = X_j) = 0$. Por lo que

$$P(X_1 = Y) = \prod_{i=2}^{n} P(X_1 < X_i),$$

por el inciso anterior

$$P(X_1 = Y) = \prod_{i=2}^{n} \frac{\lambda_1}{\lambda_1 + \lambda_i},$$

por lo que concluimos que

$$P(X_1 = Y) = \frac{\lambda_1^{n-1}}{\prod_{i=2}^{n} \lambda_1 + \lambda_i}$$

2. Sea (X,Y) un vector con función de densidad $f(x,y) = \frac{x+y}{8}$ para $0 \le x,y \le 2$. Empezaremos por calcular la funciones de densidad marginales de X y Y, ya que podrian sernos utiles mas adelante.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$= \int_{0}^{2} f(x, y) dy$$
$$= \int_{0}^{2} \frac{x + y}{8} dy$$
$$= \frac{x + 1}{4}.$$

Analogamente obtenemos que

$$f_Y(y) = \frac{y+1}{4}.$$

a) Como $0 \le x, y$ entonces $f(x, y) \ge 0$. Ahora veamos que estas acumulan 1,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{2} \int_{0}^{2} f(x, y) dx dy$$
$$= \int_{0}^{2} \int_{0}^{2} \frac{x + y}{8} dx dy$$
$$= \int_{0}^{2} \frac{y + 1}{4} dy$$
$$= 1$$

Por lo que concluimos que es una función de distribución.

b) La función de densidad marginal de Y es $f_Y(y) = \frac{y+1}{4}$ y la de X es $f_X(x) = \frac{x+1}{4}$, por lo que

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} \qquad f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$= \frac{\frac{x+y}{8}}{\frac{y+1}{4}} \qquad = \frac{x+y}{2y+2}$$

$$= \frac{x+y}{2x+2}$$

c) La probabilidad de P(X > Y) es $\frac{1}{2}$ al ser indenticamente distribuidas. Aquí dejo el calculo de no ser lo suficientemente convincente. Primero calcularemos la función de distribución marginal de X.

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$
$$= \int_0^x \frac{u+1}{4} du$$
$$= \frac{x(x+2)}{8}.$$

Usando ley total obtenemos

$$P(X < Y) = \int_0^2 F_X(x) f_Y(x) dx$$
$$= \int_0^2 \frac{x(x+2)}{8} \frac{x+1}{4} dx$$
$$= \frac{1}{2}$$