

Lecture 10: Z-test, T-test, and test the difference in the mean

Lecturer: Jie Fu

Null hypotheris testing. Ho:?

Kinary . Ho . H

Z-test: Example

$$7-\text{Score}$$
 in 7 test : $\left| \left(\frac{\hat{u}_{x}-1000}{\sqrt{100}} \right) \right| \leq \frac{1}{\sqrt{100}}$

7,-Score.

- Example: A battery manufacturer claims that the average lifespan of their batteries is 1000 hours and standard deviation of 50 hours. A consumer protection agency takes a random sample of 50 batteries and finds that the sample mean lifespan is 990 hours.
- We want to test whether the manufacturer's claim is true at a 5% significance level.

Null Ho: claim true. X lifespan $M_X = 1000$, $G_X = 50$

average

7=50

observation:

P (observation Ho) <5/

sample of 50.

a sample of $u_X \sim N(u_X, \frac{6x}{n})$

$$P(\hat{M}_{x} = 7)$$

$$P(\hat{M}_{x} \leq 990 | 1-10)$$

loon

 $\times P(\hat{u}_{x} = 990 | H_{0}) \qquad \hat{u}_{x} \sim N(1000, 50^{2})$

Z-test: whether the sample mean \bar{X} differs significantly from a known population mean μ_0 .

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Go ~ N(0,1)
$$7 = \frac{990 - 1000}{50/150} = \frac{-10}{150}$$

P(observation 1Ho) = Go.cdf(3) ?
< 0.05

One-sided or two-sided

- Use a one-sided test when you want to test whether the population parameter is greater than or less than a specific value.
 - Left-tailed test:

· Right-tailed test:

- A **one-sided test** is used when your research hypothesis is **directional**—that is, you expect the parameter to be either greater than or less than a specific value, but not both.
 - if prior research or theory strongly suggests that a new drug increases response time compared to a known standard, you would use a one-sided test to check if the mean response time is significantly higher.
 - If our study strongly suggests that the manufacture may be lie about the average lifetime about their product, then you would use a one-sided test to check if the lifetime is significantly lower than what they claims.

(significantly higher/lower) → with (rare event) probability smaller than a given threshold.

Two-sided test

- Use when you are testing for any deviation from a specified value without assuming a direction.
 - For instance, if you are testing whether a new process leads to a different average performance (without a clear expectation of it being higher or lower), a two-sided test is used.

Example: Evaluating the effect of a curriculum re-design on student performance.

- 1. The previous average score was 75.
- 2. We collect a sample of 100 students who followed the new curriculum, and their average score is 78. $M_X \sim N(75, 10^3)$
- 3. The population standard deviation is known to be 10.

Is the new mean significantly different from the previous mean? With significance level 0.05.

P(
$$|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > \text{observed difference} | H_0$$
) ? 0.05: reject the difference P($|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > 78-75$) = P($|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > 78-75$) = P($|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > 78-75$) ? 0.05 P($|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > 78-75$) ? 0.05 P($|\hat{\mathbf{M}}_{\mathbf{X}} - \mathbf{M}_{\mathbf{X}}| > 78-75$) ? 0.05

T-test: Unknown variance.

A battery manufacturer claims that the average lifespan of their batteries is 1000 hours. A
consumer protection agency takes a random sample of 10 batteries and the lifetime is reported as
follows:

```
array([ 960., 1074., 947., 974., 971., 1075., 1008., 1048., 1026., 993., 1016., 1035., 974., 953., 986., 937., 1002., 928., 989., 1010., 1037., 974., 964., 1005., 985., 1002., 1033., 1085., 925., 1013., 881., 986., 951., 1003., 973., 994., 1023., 991., 945., 881., 919., 995., 1055., 996., 965., 1001., 1097., 1015., 953., 1042.])
```

Test of difference in the mean

- A data set called baby smoke represents a random sample of 150 cases of mothers and their newborns in North Carolina over a year.
- We are particularly interested in two variables: weight and smoke.
- The weight variable represents the weights of the newborns and the smoke variable describes which mothers smoked during pregnancy.
- We would like to know if there is convincing evidence that newborns from mothers who smoke have a different average birth weight than newborns from mothers who don't smoke?

Hypothesis testing: Difference in the mean

 The null hypothesis represents the case of no difference between the groups.

• H₀: There is no difference in average birth weight for newborns from mothers who did and did not smoke.

• H₁: There is some difference in average newborn weights from mothers who did and did not smoke.

Testing a difference of two means

Testing the difference of two means:

Given two data samples $\mathbf{X} = [X_0, X_1, \dots, X_{n_X-1}]$ and $\mathbf{Y} = [Y_0, Y_1, \dots, Y_{n_Y-1}]$, where all data samples are assumed to be independent

• Test statistics: difference between sample mean estimators.

$$T = \hat{\mu}_X - \hat{\mu}_Y.$$

 Given the observed difference t, what is the probability to observe a difference this big assuming the null hypothesis is true?

$$P(T \ge t|H_0)$$
 (one-sided) or $P(|T| \ge t|H_0)$ (two-sided)

Testing a difference of two means

What we need to determine?

$$T = \hat{\mu}_X - \hat{\mu}_Y.$$

• The observed difference t and some other information can be obtained from data:

	smoker	nonsmoker
mean	6.78	7.18
st. dev.	1.43	1.60
samp. size	50	100

Testing a difference of two means

What is the distribution of T?

- Given X_i , Y_k have the same, known variance?
- Given X_i , Y_k have the different but known variances?
- Given X_i , Y_k 's variances are unknown but equal?
- Given X_i , Y_k 's variances are unknown and unequal?

Some preliminaries

- Let X_i be i.i.d. RV, what is the mean and variance of $M_n = \frac{1}{n} \sum_{i=1}^n X_i$?
- The linear combination of two independent Gaussian RVs. is a Gaussian RV.

Testing a difference of two means: Different but known variances

Given two data samples $\mathbf{X} = [X_0, X_1, \cdots, X_{n_X-1}]$ and $\mathbf{Y} = [Y_0, Y_1, \cdots, Y_{n_Y-1}]$, where all data samples are assumed to be independent Assume the X_i 's variance is σ_X^2 , Y_k 's variance is σ_Y^2

$$T = \hat{\mu}_X - \hat{\mu}_Y.$$

Testing a difference of two means: same, known variance

Given two data samples $\mathbf{X} = [X_0, X_1, \cdots, X_{n_X-1}]$ and $\mathbf{Y} = [Y_0, Y_1, \cdots, Y_{n_Y-1}]$, where all data samples are assumed to be independent Assume X_i, Y_k share the same variance σ^2 .

$$T = \hat{\mu}_X - \hat{\mu}_Y.$$

Testing a difference of two means: Unknown and unequal variances

Given two data samples $\mathbf{X} = [X_0, X_1, \cdots, X_{n_X-1}]$ and $\mathbf{Y} = [Y_0, Y_1, \cdots, Y_{n_Y-1}]$, where all data samples are assumed to be independent Assume X_i, Y_k share the same variance σ^2 .

However, we don't know the variance.

Testing a difference of two means: Unknown and equal variances

Given two data samples $\mathbf{X} = [X_0, X_1, \cdots, X_{n_X-1}]$ and $\mathbf{Y} = [Y_0, Y_1, \cdots, Y_{n_Y-1}]$, where all data samples are assumed to be independent Assume the X_i 's variance is σ_X^2 , Y_k 's variance is σ_Y^2

However, we don't know the variance for either?

Testing a difference of two means: Unknown and unequal variances

If we cannot assume that the variances are equal, then the distribution of the following normalized form will be approximately equal to a Student's t distribution:

$$\frac{T}{S_d} \sim t_{\nu},$$

where

$$S_d = \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}}.$$

The standard error of the difference of two sample means

Here, the value of ν must be determined from the sample standard errors of the means, which we denote by

$$s^2_{\overline{x}} = s^2_x/n_x$$
, and $s^2_{\overline{y}} = s^2_y/n_x$, and

standard error of a single mean

Then ν is the largest integer that satisfies

$$\nu \le \frac{\left(s_{\overline{x}}^2 + s_{\overline{y}}^2\right)^2}{s_{\overline{x}}^4/(n_x - 1) + s_{\overline{y}}^4/(n_y - 1)}.$$

Testing a difference of two means: Unknown and unequal variances

• For sample sizes greater than 30, the differences between the t distribution and the normal distribution are negligible.

• In other words, we can assume, when the sample size > 30,

$$\frac{T}{S_d} \sim N(0, 1)$$

Example

Mother smoke related to baby weights.

	smoker	nonsmoker
mean	6.78	7.18
st. dev.	1.43	1.60
samp. size	50	100

• Observation: no knowledge about the underlying distribution: unknown and unequal variance

• The standard error of a single mean is:

• The standard error of the difference of two sample means:

Example (cont.)

