

Firefly: Spoofing Earth Observation Satellites through Radio Overshadowing

Edd Salkield ¹ Joshua Smailes ¹ Sebastian Köhler ¹ Simon Birnbach ¹ Richard Baker ¹ Martin Strohmeier ² Ivan Martinovic ¹

¹Systems Security Lab, University of Oxford

²Cyber-Defence Campus, armasuisse Science + Technology

NDSS SpaceSec 2023

Challenges

Implications Threat mode

Attacker capabilitie

Case Study:

Experiment setup
Attack overview
Affecting the deri
dataset

Exploiting the decode

Countermeasures

Future work

Conclusion

Challenges of unauthenticated satellites

- Many current satellites do not encrypt the downlink, due to:
 - Increased power budget, mission complexity, and cost
 - Legacy systems backwards compatibility
 - Open access data
- Other satellites are decryptable, due to:
 - Insecure cryptosystems ¹
 - Leaked keys²

¹COMS-1 uses single DES https://vksdr.com/lrit-key-dec/

²GK-2A keys leaked in source code https://vksdr.com/xrit-rx/

Challenges

Threat model Attacker capabilitie

Case Study:

Experiment setu

Affecting the derived dataset Exploiting the decoder

Countermeasures

Future work

Conclusion

Challenges of unauthenticated satellites

Insecure Earth Observation Satellites

Satellites with insecure downlinks include:

- Fire detection and management, e.g., Terra, Aqua
- Geospatial intelligence, e.g., Landsat-7..9
- Weather monitoring, e.g., GOES-14..17, FengYun series
- Infrared sensing, e.g., Metop-A,B
- Climate monitoring, e.g., Suomi-NPP

Implications
Threat mode

Threat model Attacker capabilitie

Case Study: FIRMS

Attack overview
Affecting the derived dataset
Exploiting the decode

. .

Future work

Conclusion

Implications

Data secrecy

Using an SDR and open source software, attackers can:

- Read confidential maritime data¹ and internet traffic²
- Eavesdrop on Iridium traffic and calls ³

¹Pavur et al. (2020) "A Tale of Sea and Sky on the Security of Maritime VSAT Communications"

²Pavur et al. (2019) "Secrets in the Sky: On Privacy and Infrastructure Security in DVB-S Satellite Broadband"

³muccc "Iridium Toolkit" https://github.com/muccc/iridium-toolkit

Implications
Threat mode

Attacker capabilitie

Case Study: FIRMS

Attack overview

Affecting the derived dataset

Exploiting the decoder

Countermeasures

Future work

Conclusion

Implications

Data authenticity and integrity

Spoofing attacks have been shown against:

- GNSS to manipulate calculated location¹
- Uplinks for satellite hijacking² or broadcast intrusion³

No work considers spoofing Earth Observation satellites

RQ: What can the attacker achieve by exploiting the unauthenticated channel of these specific systems?

¹ Motallebighomi et. al. (2022) "Cryptography Is Not Enough: Relay Attacks on Authenticated GNSS Signals"

^{2&}quot;2011 REPORT TO CONGRESS of the U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION" p.223-224

³Broadcasting (1986) "'Captain Midnight' unmasked"

Challenges Implication

Threat model

Attacker capabilitie

Case Study: FIRMS

Attack overview
Affecting the deridataset

Countermeasures

Future work

Conclusion

Threat model

Attacker transmits counterfeit signals in the vicinity of the receiver, to:

- Affect the satellite-derived datasets
- Exploit or disrupt downlink processing stages

Challenges Implications Threat model

Threat model

Attacker capabilities

Case Study:

Attack overview
Affecting the derived dataset
Exploiting the decode

Countermeasur

Future worl

Conclusion

Attacker capabilities

Estimated cost

Hardware component	Cost
Software-defined radio	598 USD ¹
X-Band upconverter	$\sim 100~\mathrm{USD^2}$
X-Band amplifier	$1,638\mathrm{USD}$
Compatible antenna	431 USD
Total	~3,000 USD

Within the budget of a motivated hobbyist

¹Cost of a LimeSDR

²Estimated price from self-built amateur radio equipment

SSL Systems Security Lat

Motivation

Challenges Implications Threat model

Case Study: FIRMS

Experiment setup

Affecting the d

Exploiting the de

Countermeasures

Future work

Conclusion

Case Study: Forest fire detection in FIRMS

NASA's global fire detection service

The 2019 Australia bushfires as seen from Aqua's MODIS instrument, annotated with the *Fires and Thermal Anomalies* dataset on NASA's worldview.

Challenges Implications Threat mode Attacker cap

Case Study: FIRMS

Experiment setup

Attack overview

Affecting the derived dataset

Exploiting the decoder

Countermeasures

Future work

Conclusion

Case Study: Forest fire detection in FIRMS

Experiment setup

 $^{^{1} \}text{NASA source code available with a research account from $\texttt{https://directreadout.sci.gsfc.nasa.gov/}$$

²Custom tools to pack/unpack CADU frames https://github.com/ssloxford/libcadu

³Custom tools to pack/unpack SPP packets https://github.com/ssloxford/libspp

⁴Custom tools to modify MODIS sensor readings https://github.com/ssloxford/libgiis

Challenges Implications Threat model

Case Study:

FIRMS

Attack overview

Affecting the derived dataset

Exploiting the decoder

Countermeasures

Future work

Conclusion

Attack overview

Our attack

- Obtain legitimate data from digital archive¹
- Perform security audit on downlink decoder software²
 - Determine data integrity checks
 - Identify vulnerabilities where safe input data assumed
- Create maliciously crafted data
 - Reprocess archived data to add/remove artifacts
 - Construct payload packet to trigger vulnerability chain

¹ NASA Distributed Active Archive containing MODIS data: https://ladsweb.modaps.eosdis.nasa.gov/archive/

² Decoder source code available with an academic account; https://directreadout.sci.gsfc.nasa.gov/

SSL Systems Security L

Motivation Challenges

Threat model

Attacker capabilitie

Case Study: FIRMS

Attack overview

Affecting the derived dataset

Exploiting the deco

Countermeasure

Future work

Conclusio

Affecting the derived dataset

Packet structure

Prima	Primary Header Secondary Header							Data Zone				
	Packet Length	Time Tag		Packet Type	Scan Count	Mirror Side		Frame Count		Data Field	Checksum	

SSL Systems Security La

Motivation

Challenges

implication

acker capabilitie

Case Study: FIRMS

Experiment setu

Attack overview

Affecting the derived dataset

Exploiting the deco

Future work

Affecting the derived dataset

Attack consequences

Original image.

SSL Systems Security Lat

Motivation

Challenges

Threat mode

acker capabilitie

Case Study: FIRMS

Experiment setu

Affecting the derived

Exploiting the deco

Countermeasure

Future worl

Conclusion

Affecting the derived dataset

Attack consequences

Masking existing fires.

SSL Systems Security Lat

Motivation

Challenges

Threat model

kttacker capabilitis

Case Study: FIRMS

Experiment setu

Affecting the derived

Evoluiting the day

Countermeasur

Future work

Conclusion

Affecting the derived dataset

Attack consequences

Fine-grained control over fire injection.

Implications

Attacker capabilities

Case Study: FIRMS

Experiment setup Attack overview Affecting the der dataset

Exploiting the decoder

Countermeasure

Future work

Conclusior

Exploiting the decoder

Packet structure

Prim	Primary Header Secondary Header						Data Zone				
	Packet Length	Time Tag		Packet Type	Scan Count	Mirror Side		Frame Count		Data Field	Checksum

./spppack

Motivation Challenges Implications Threat model

Threat model Attacker capat

Case Study:

Experiment setup
Attack overview
Affecting the deriv

Exploiting the decoder

Countermeasures

Future work

Conclusion

Exploiting the decoder

Attack consequences

```
$ printf %1337s | tr
  spppack --type-flag telecommand \
            --sec-hdr-flag 1 \
            --app-id aqua_modis \
  > bad_packet.PDS
$ cat bad packet.PDS good packet sequence.PDS \
    > ./data/MYD00F.A2015299...001.PDS
$ ./run all.sh ./data/
DATA PATH: /mnt/data
CONTAINER_RUNTIME: docker
### Processing new PDS:
  MYDOOF, A2015299, 2110, 20152992235, 001, PDS
### Running modisl1db l1a-geo initial processing
10fix_modis: Unrecoverable error in 10fix_modis!
```

Further vulnerabilities have been discovered since submission

Countermeasures

Cryptography should be required in future satellites But existing satellites can't be upgraded

Backwards-compatible countermeasures:

- Multi-receiver data comparison
- Timing analysis²
- Physical-layer fingerprinting³

Existing countermeasures are effective, but aren't viable in all scenarios

Motivation Challenges

Implications Threat model Attacker capabilitie

Case Study:

Experiment setup Attack overview

Affecting the derived dataset
Exploiting the decoder

Countermeasures

Future work

Conclusion

² Jedermann et. al. (2021) "Orbit-based Authentication Using TDOA Signatures in Satellite Networks"

³ Oligeri et. al. (2022) "PAST-AI: Physical-Layer Authentication of Satellite Transmitters via Deep Learning"

Motivation Challenges

Implications
Threat model

Case Study:

Experiment setup Attack overview

Affecting the derived dataset Exploiting the decode

Countermeasures

Future work

Conclusion

Future research directions

This work confirms the real-world vulnerability of existing Earth Observing systems

Future research is required to:

- Validate this work against real-world receiver hardware
- Comprehensively review other vulnerable satellites
- Analyze the effectiveness of proposed overshadowing countermeasures

Challenges Implications

mplications Threat model Attacker capabilities

Case Study:

Attack overview Affecting the deriv dataset

Countermeasures

Future work

Conclusion

Conclusion

We have...

- demonstrated viable spoofing attacks against NASA's forest fire detection system.
- provided the source code required to manipulate the packet data and structure.
- confirmed that only a moderate budget is required to perform these attacks.
- identified current countermeasures which significantly increase attack difficulty.

Challenges

implication

Attacker capabilitie

Case Study:

FIRMS

Experiment set

Affecting the de

Exploiting the decod

Countermeasures

Future work

Conclusion

Thank you for your attention

Any questions?

Reach out to me at edd.salkield@cs.ox.ac.uk