[ML Fall'22] Project Outline - Milestone 2

The objective of the projects is to prepare you to apply different machine learning algorithms to real-world tasks. This will help you to increase your knowledge about the workflow of the machine learning tasks. You will learn how to apply pre-processing, feature engineering, regression, and classification methods.

- ➤ Delivering Milestone 2: Practical Exam.
- ➤ You must deliver a presentation for each milestone containing all your work for the **top 2 submissions** (feature analysis, algorithms used in each module and the achieved accuracy for each one)

Note: Each presentation will be graded

- ➤ In the project delivery, <u>each team member will present</u> a part of the whole team's work. The final presentation slides should contain both the work of the first milestone and the second.
- ➤ Each team should work on their project's updated dataset for milestone 2. Available through the 2nd Kaggle Competition.

➤ In the practical exam:

- Each team member will be graded individually according to their response to the oral questions related to their project.
- ➤ In the second milestone, you will apply the following: -

Classification:

- Split your dataset into 80% training and 20% testing.
- Train at least 3 models to classify each sample into distinct classes.
- Choose at least two hyperparameters to vary. Study **at least three different choices** for each hyperparameter. When varying one hyperparameter, all the other hyperparameters should be fixed.
- <u>Teams of 6:</u> You should apply at least one dimensionality-reduction technique to the data, e.g., Principle Component Analysis (PCA).

Milestone 2:

➤ Classification and Hyperparameter tuning.

Milestone 2 Presentation Must Include:

- Summarize the classification accuracy, total training time, and total test time using three bar graphs.
- ❖ Note that your **Feature Selection** process may differ in this phase (classification) from the previous (regression), If so, explain your feature selection process and how it was proved or disproved.
- **Explain** in detail how **hyperparameter tuning** affected your models' performance.
- * Finally, end your presentation with a **conclusion** about this phase of the project and what intuition you had about your problem and how it was proved/disproved.

Rules:

- 1) Don't share code outside of the team (you will get 0 in the milestone)
- 2) Don't use external data
- 3) Each team will have 5 submissions per day, all members should merge in the leaderboard with team name titled by (Team [ID])
- 4) Don't use Advanced Architectures of neural networks (out of scope).
- 5) Save the implementation of the top 2 submissions you will get that reproduce the same score.
- 6) You should define a seed for each model (fixed).
- 7) #Hint 1 : Use random_state parameter in train_test_split function
- 8) #Hint 2: check this link for definition of random seed here

Project: Car Market Prediction

An **updated dataset** will be provided in the second milestone competition.

Dataset Snapshot:

car_id	car-info	condition	mileage(kilometers)	fuel_type	volume(cm3)	color	transmission	drive_unit	segment	Price Category
([(90),(audi),(1986)]	with mileage	319999	PETROL	2200	gray	mechanics	front-wheel drive	D	cheap
1	[(rapid),(skoda),(2016)]	with mileage	53000	petrol	1600	blue	mechanics	front-wheel drive	С	moderate
2	[(primera),(nissan),(1992)]	with mileage	350000	PETROL	2000	blue	mechanics	front-wheel drive	D	cheap
3	[(combo),(opel),(1997)]	with mileage	299709	petrol	1400	white	mechanics	front-wheel drive	M	cheap
4	[(zafira),(opel),(2007)]	with mileage	110000	PETROL	1800	silver	mechanics	front-wheel drive	M	moderate
5	[(s-klass),(mercedes-benz)	with mileage	182000	PETROL	4700	brown	auto	all-wheel drive	S	expensive
6	[(vectra),(opel),(1998)]	with mileage	300000	petrol	1800	burgundy	mechanics	front-wheel drive	D	moderate
7	[(5-seriya),(bmw),(1998)]	with mileage	273000	petrol	2500	gray	mechanics	rear drive	E	moderate

Updated Dataset Description:

- The "price(USD)" column used in the previous milestone as the actual output has been removed.
- A New "Price Category" column has been added instead. Each car can have a category that is either {cheap, moderate, expensive or very expensive}.

Milestone 2 tasks:

Classify a car price into one of four categories: {cheap, moderate, expensive or very expensive} based on the provided features in **the updated dataset**.

Note: You must preprocess all features, but the model and feature selection can be done after that (i.e You can drop a feature only after preprocessing and with a valid reason)

Final Presentation Agenda:

- ❖ Preprocessing (Your work in Milestone 1 + Milestone 2)
 - ➤ Techniques/Analysis
 - > Categorical Encoding
 - ➤ Data Imputation
- Feature Selection
 - > Regression Task
 - > Classification Task
- Regression Models
- Classification Models
- Hyperparameter Tuning
- Results (Top 2 Submissions per milestone)

These are the main points you should cover, but you can have <u>more detailed section</u>s or <u>reorder</u> the sequence as you see fit.

Prepare yourselves to fully present your work in 15 minutes.