

GeoAnalytics

Operações

Binning

Objetivo: Dado um conjunto de pontos, esta operação tem como objetivo agregar os pontos em formato geométrico, sendo eles: retângular ou hexagonal.

Vale ressaltar que apesar da agregação ocorrer, na visualização não ocorrerá sobreposição de geometrias.

Exemplo: Foi utilizada uma tabela chamada Dados, onde têm-se uma quantidade de pontos considerável. A fim de melhorar a visualização, será aplicado a operação *Binning* para realizar uma agregação dos pontos.

Dados

station_id	point	num_bikes_available
144	[-73.98068914,40.69839895]	50
482	[-73.99931783,40.73935542]	69
2005	[-73.97100056,40.70531194]	4
461	[-73.98205027,40.73587678]	46
83	[-73.97632328,40.68382604]	51
445	[-73.98142006,40.72740794]	66
3874	[-73.91054,40.70461]	2
3746	[-74.0047303587198,40.7243083216022]	33

Operation:	Binning	~ ?
Operation parameters		
Shape of bins:	Hexagonal	~
Side length of bins (deg)*:	0.015	
Bin width-height-ratio:	1.5	
Point Dataset		
Name:	Dataset	
Type:	Loaded table	v ?
Table Name:	Dados	
Table Fields (key,geometry,)*:	station_id,point	
Geometry Type:	Point	~
Only load distinct:	No	~
Location ID Suffix:		
CRS:	Auto	

^{*=}Required field

Closest

Objetivo: Dado um conjunto de pontos, esta operação tem como objetivo relacionar um ponto de partida à um ponto destino, e assim, encontrar quais pontos destinos são possíveis serem alcançados em um dado período de tempo ou distância, e um meio de deslocamento.

Exemplo: Foram utilizadas 2 tabelas, consequentemente chamadas de: *Police* e *Occurrences*. A tabela *Police* contém a localização de uma suposta delegacia, enquanto a tabela *Occurrences*

representa as ocorrências. O objetivo foi em encontrar quais ocorrências a delegacia consegue atender, levando em conta um período de 10 minutos para chegar até o local, utilizando como meio de deslocamento um carro. Também foi levado em consideração que a delegacia possui 5 viaturas para atendimento imediato. Como representação, o ponto vermelho no mapa é a delegacia, enquantos os azuis são as ocorrências.

Police

police_id	police_name	police_lat	police_long
1	12ª DP	-15.836485	-47.951263

Occurrences

occurrence_id	occurrence_name	occurrence_lat	occurrence_long
1	Ocorrunce 1	-15.808509	-47.893879
2	Ocorrunce 2	-15.834432	-47.950442
3	Ocorrunce 3	-15.826645	-47.952911
4	Ocorrunce 4	-15.820180	-47.935079

Operation:	Closest	~	5
Operation parameters			
Distance unit:	Minutes	~	
Maximum distance (cost) between			
geometries*:	10		
Distance type:	Car	~	
Closest count:	5		
Dataset containing geometries to r	measure from		
Name:	Dataset1		
Type:	Loaded table	~	?
Table Name:	Police		
Table Fields (key,geometry,)*:	police_id,police_lat,police_long		
Geometry Type:	Latitude and Longitude Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
Dataset containing geometries to r	measure to		
Name:	Dataset2		
Type:	Loaded table	~	?
Table Name:	Occurrences		
Table Fields (key,geometry,)*:	occurrence_id,occurrence_lat,occurr	ence_lc	
Geometry Type:	Latitude and Longitude Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Required field			

Cluster

Objetivo: Esta operação tem como objetivo realizar uma agregação de pontos dentro de um raio específicado.

Vale ressaltar que, quando aplicada esta operação, o resultado dela será um ponto central para cada agregação realizada. Para exibir a área da agregação feita, deve ser usada, posteriormente, a operação *TravelAreas* com o meio de deslocamento pássaro.

Exemplo: Foi utilizada uma tabela chamada Dados, onde têm-se uma quantidade de pontos considerável. A fim de melhorar a visualização, será aplicado a operação *Cluster* para realizar uma agregação dos pontos e, posteriormente, a operação *TravelAreas* para exibir as áreas agregadas.

Dados

station_id	point	num_bikes_available
144	[-73.98068914,40.69839895]	50
482	[-73.99931783,40.73935542]	69
2005	[-73.97100056,40.70531194]	4
461	[-73.98205027,40.73587678]	46
83	[-73.97632328,40.68382604]	51
445	[-73.98142006,40.72740794]	66
3874	[-73.91054,40.70461]	2
3746	[-74.0047303587198,40.7243083216022]	33

Operation: Cluster ? Operation parameters Distance (m)*: 1700 Point Dataset Name: Cluster Туре: Loaded table ? Table Name: Dados Table Fields (key,geometry,...)*: station_id,point Point Geometry Type: Only load distinct: No ~ Location ID Suffix: CRS: Auto *=Required field

Operation:	TravelAreas	~	?
Operation parameters			
Cost Value:	1700		
Cost Field:			
Cost Unit:	Meters	~	
Transportation:	Bird	~	
Origins			
Name:	Dataset		
Type:	Loaded table	~	?
Table Name:	Clusters		
Table Fields (key,geometry,)*:	Clusters_ClusterID,Clusters_ClusterCen	ter	
Geometry Type:	Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Required field			

Dissolve

Objetivo: Esta operação tem como objetivo realizar uma agregação de áreas, facilitando na criação de novas áreas baseadas em suas sub áreas. Um exemplo prático, pode ser criar uma geometria de região, baseando-se apenas nos estados que as compõem.

Exemplo: Foi utilizada uma tabela chamada Mapa que contém todos os estados dos território brasileiro e suas respectivas regiões. O objetivo deste exemplo é criar uma nova geometria para as regiões, baseando-se apenas nos estados.

Mapa

Regiao	ID	Estado
Norte	1	Acre
Norte	2	Amapá
Norte	3	Amazonas
Norte	4	Pará
Norte	5	Rondônia
Norte	6	Roraima
Norte	7	Tocantins
Nordeste	8	Alagoas

Intersects

Objetivo: Esta operação tem como objetivo encontrar a intercessão entre dados de 2 conjuntos de dados. O resultado é uma tabela de relacionamento entre os lds que se relacionam e suas respectivas informações de intercessão (ex: percentual de intercessão).

Exemplo: Foram utilizadas 2 tabelas chamadas de Dataset1 e Dataset2, onde contem polígonos. Propositalmente, foram colocadas 2 áreas de cada tabela para servir como intercessão na outra tabela e 2 áreas que não possuem nenhuma intercessão. Na objeto filtro da última imagem desta seção, pode-se ver que foram encontradas 2 intercessões (como esperado). A figura abaixo exemplica a estrutura do dado utilizado.

Dataset1

ID1	Area1
P1	[[[[-47.88104118614934,-15.85051843
P2	[[[[-47.87538977623328,-15.80078371
P3	[[[[-47.82586128623687,-15.83339426

Dataset2

ID2	Area2
I1	[[[[-47.85144913596819,-15.85639639
12	[[[[-47.8596060598129,-15.800948251
13	[[[[-47.9219835205181,-15.823362940

Operation:	Intersects	~ ?
Operation parameters		
Max intersecting:	0	
Dataset containing geometries.		
Name:	Dataset1_edit	
Type:	Loaded table	~ ?
Table Name:	Dataset1	
Table Fields (key,geometry,)*:	ID1,Area1	
Geometry Type:	Polygon	~
Only load distinct:	No	~
Location ID Suffix:		
CRS:	Auto	
Dataset containing geometries.		
Name:	Dataset2_edit	
Type:	Loaded table	~ ?
Table Name:	Dataset2	
Table Fields (key,geometry,)*:	ID2,Area2	
Geometry Type:	Polygon	~
Only load distinct:	No	~
Location ID Suffix:		
CRS:	Auto	
*=Required field		

IntersectsMost

Objetivo: Esta operação é similar a *Intersects*, entretanto, o retorno esperado desta, é uma tabela contendo as intercessões com maiores percentuais de cada objeto do segundo conjunto de dados.

Exemplo: Foi utilizado um exemplo similar ao anterior, entretanto, foram adicionadas mais 2 intercessões. Como o objetivo desta operação é retornar as maiores intercessões de cada objeto, de acordo com a imagem abaixo, espera-se que encontre somente as intercessões I1>P1 e I5>P2.

Dataset1

ID1	Area1
P1	[[[[-47.88104118614934,-15.85051843
P2	[[[[-47.87538977623328,-15.8007837]
P3	[[[[-47.82586128623687,-15.83339426

Dataset2

ID2	Area2
I1	[[[[-47.85144913596819,-15.85639639477023],[-
12	[[[[-47.8596060598129,-15.8009482512422],[-47.
13	[[[[-47.9219835205181,-15.82336294088045],[-4
I4	[[[[-47.88499267871636,-15.84638740926707],[-
15	[[[[-47.87942111317685,-15.79485940925303],[-

Operation:	IntersectsMost	~ ?
Dataset containing geometries.		
Name:	Dataset1_edit	
Type:	Loaded table	v ?
Table Name:	Dataset1	
Table Fields (key,geometry,)*:	ID1,Area1	
Geometry Type:	Polygon	~
Only load distinct:	No	~
Location ID Suffix:		
CRS:	Auto	
Dataset containing geometries.		
Name:	Dataset2_edit	
Type:	Loaded table	v ?
Table Name:	Dataset2	
Table Fields (key,geometry,)*:	ID2,Area2	
Geometry Type:	Polygon	~
Only load distinct:	No	~
Location ID Suffix:		
CRS:	Auto	
*=Required field		

IPLookUp

Objetivo: Esta operação tem como objetivo receber um IP de entrada e tentar recuperar o local de onde está localizado o IP.

Exemplo: Foi utilizado uma tabela chamada IPS, que contém dados de Ips de alguns sites escolhidos na internet, a fim de tentar descobrir o local onde está hospedado cada site.

IPS

IP	ID	Name
216.58.202.238	1	Google.com
192.185.214.131	2	IN1.com.br
176.32.98.166	3	Amazon.com

Operation:	IPLookup	~	?
Operation parameters			
IP field*:	IP		
IP table			
Name:	IpTable		
Type:	Loaded table	~	?
Table Name:	IPS		
Table Fields (key,geometry,)*:	IP,IP		
Geometry Type:	None	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Required field			

Load

Objetivo: Esta operação tem como objetivo carregar um conjunto de dados especificado através de seu caminho informado. Após o carregamento, não é aplicado nenhum processamento de dados.

Exemplo: Para este exemplo, gostaríamos de ter todos os polígonos de todos os estados do Brasil. Para isso, esta operação resolveu da seguinte forma:

Operation: Load ? Dataset Name: Estados ? ~ Туре: Standard areas and points Geometry kind: Area **v** Type of data: Adm 1 Area ~ Country code(s): BR Name of service: default *=Required field

NamedAreaLookUp

Objetivo: Esta operação tem como objetivo tentar obter o polígono de um dado nominal.

Exemplo: Foi utilizada uma tabela chamada Estados, onde contém o nome de 5 estados. Por padrão, o Qlik Sense já reconhece os nomes e, mesmo sem ter o polígono/ponto na base de dados, o Qlik consegue exibi-los na visualização. Entretanto, a utilização do campo nominal pode afetar na performance de um mapa. Para isso, esta operação tem como objetivo recuperar os polígonos de cada estado.

NamedPointLookUp

Objetivo: Esta operação tem como objetivo tentar obter o ponto de um dado nominal.

Exemplo: Foi utilizado o mesmo exemplo da operação NamedAreaLookUp, entretanto, esperamos obter como resultado, o ponto do estado.

Estados

Estado
Acre
Amazonas
Rio Grande do Sul
São Paulo
Distrito Federal

NamedPointLookup Operation: **~** ? Operation parameters Name field*: Estado Type of data: any ~ Country code(s): BR Names table Name: Dataset Type: Loaded table Table Name: Estados Table Fields (key,geometry,...)*: Estado, Estado Geometry Type: Location Named Area Only load distinct: No Location ID Suffix: CRS: Auto

Routes

Objetivo: Traçar rotas a partir de um ponto de partida, até um destino final.

Esta operação, possui como característica utilizar dois critérios para traçar suas rotas, sendo elas: encontrar a menor rota possível (*Shortest*) ou a rota mais rápida (*Fastest*).

Quando fala-se da menor rota possível ou da mais rápida, deve-se levar em consideração qual o meio de deslocamento será utilizado. Para isso, esta operação requer que seja informado um tipo de deslocamento. Os tipos disponíveis são: carro, bicicleta, pedestre, caminhão ou pássaro.

Exemplo: Foi utilizada uma tabela chamada Matriz com os dados de origem e destino. O objetivo é encontrar as menores rotas possíveis, a distância e o tempo gasto.

Matr	riz		
ID	CidadeOrigem	CidadeDestino	
2	Uberlandia	Campinas	
3	Uberlandia	Belo Horizonte	
4	Uberlandia	Goiania	
5	Campinas	Uberlandia	
7	Campinas	Belo Horizonte	
8	Campinas	Goiania	
9	Belo Horizonte	Uberlandia	
10	Belo Horizonte	Campinas	

Simplify

Objetivo: Dado um conjunto de pontos, esta operação tem como objetivo realizar uma simplificação na quantidade de pontos. Desta forma, é possível tornar sua aplicação mais leve, sem perder uma qualidade significativa da geometria.

Obs: O resultado desta operação torna-se interessante para visualizações que não exigem um alto grau de detalhamento nas geometrias.

Exemplo: Foi utilizada uma tabela chamada Areas, onde têm-se dados das geometrias que resultam no mapa do DF dividido por regiões administrativas. Antes, vale ressaltar que o dado bruto estava com uma qualidade alta, resultando num conjunto de geometrias, que ao totalizar, obteve-se mais de 3 milhões de caracteres. Após o processamento da operação, foi obtido uma simplificação, resultando por volta de 66 mil caracteres.

Areas

UF	Shape
Plano Piloto	[[[[-47.91733205773222,-15.74000588424713],[-47.919638294578
Gama	[[[[-48.0383819336528,-15.94564151565666],[-48.0384416264581
Brazlândia	[[[[-48.20555703793817,-15.7470444633077],[-48.2056087294517
Sobradinho	[[[[-47.76413973676798,-15.52741651979817],[-47.764520438188
Planaltina	[[[[-47.77206604715406,-15.50237022295473],[-47.772054856700
Paranoá	[[[[-47.66169548437924,-15.7331606024467],[-47.6611163770870
Guará	[[[[-47.970354871449,-15.80536864853574],[-47.97028727749281
Samambaia	[[[[-48.04796911673082,-15.85968498012328],[-48.047977036083

*=Required field

Operation:	Simplify	~	5
Operation parameters			
Resolution:	Auto	~	
Geometries to simplify			
Name:	Dataset		
Туре:	Loaded table	~	?
Table Name:	Areas		
Table Fields (key,geometry,)*:	UF,Shape		
Geometry Type:	Polygon	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		

UF	Q	Sem Simplify	Simplify
Totais		3.791.175	66.393
Planaltina		531.912	5.309
Sobradinho		259.918	3.662
Paranoá		241.526	5.615
Fercal		222.537	2.597
Ceilândia		216.479	4.291
Jardim Botânico		210.406	4.376
Lago Norte		208.303	3.141
Park Way		180.983	2.820
Lago Sul		173.317	2.601
Sobradinho II		169.610	2.941
São Sebastião		146.074	3.353
Brazlândia		142.984	2.591
Samambaia		138.867	2.769
Gama		129.123	2.050
Plano Piloto		124.435	1.904
Recanto das Emas		120.302	1.975
Riacho Fundo		87.374	783
Guará		83.498	989
Pôr do Sol		64.219	1.399
Riacho Fundo II		58.620	704
Santa Maria		58.135	1.242
Taguatinga		48.002	2.125
Itapoã		47.638	1.174
Varjão		30.234	414
Vicente Pires		21.992	867
Águas Claras		14.094	583
Núcleo Bandeirante		14.087	887
SCIA		12.341	461
Arniqueira		11.539	624
SIA		9.910	1.077
Sudoeste/Octogonal		6.729	528
Cruzeiro		3.311	242

SpatialIndex

Objetivo: Esta operação tem como objetivo gerar uma indexação espacial no objeto de mapa (deve ser o objeto do GeoAnalytics). Ou seja, os dados que são vistos no painel, são os que estão sendo visualizados no mapa. Caso seja feito um zoom no mapa, automaticamente será feito uma seleção nos dados, dados esses que estão dispostos na visualização do mapa.

Exemplo: Utilizando o mesmo exemplo da operação *Binning*, aqui foi acrescentado uma indexação espacial. Por padrão, a tabela sem nenhuma seleção feita, apresenta um indicador com o total de 14.301 bicicletas disponíveis. Após feito um zoom no mapa, automaticamente é filtrado em todo o painel, consequentemente, afetando o total de bicicletas disponíves, que caiu para 10.583.

Dados

station_id	point	num_bikes_available
144	[-73.98068914,40.69839895]	50
482	[-73.99931783,40.73935542]	69
2005	[-73.97100056,40.70531194]	4
461	[-73.98205027,40.73587678]	46
83	[-73.97632328,40.68382604]	51
445	[-73.98142006,40.72740794]	66
3874	[-73.91054,40.70461]	2
3746	[-74.0047303587198,40.7243083216022]	33

Operation:	SpatialIndex	~	?
Operation parameters			
Side length of cells (deg):	0.001		
Cell width-height-ratio:	1.5		
Number of levels:	6		
Level factor:	4		
Point Dataset			
Name:	Dataset		
Type:	Loaded table	~	?
Table Name:	Dados		
Table Fields (key,geometry,)*:	station_id,point		
Geometry Type:	Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Peguired field			

TravelAreas

Objetivo: Dado um ponto inicial, esta operação tem como objetivo calcular a maior área possível, considerando um custo específico, que se pode alcançar utilizando um meio de deslocamento.

Vale ressaltar que, quando fala-se em custo, esse valor pode ser nas seguintes unidades de medida: segundos, minutos, horas, metros, quilômetros, jardas ou milhas.

Os meios de deslocamento disponíveis são: carro, bicicleta, pedestre, caminhão ou pássaro.

Exemplo: Foi utilizada uma tabela chamada Enderecos, onde têm-se dados de duas localizações específicas. A partir dessas localizações, o objetivo foi saber qual área máxima que consegue-se percorrer num período de 5 minutos, utilizando como meio de deslocamento um carro.

Enderecos

localNome	localNome Endereco	
The Union	SMAS trecho 3 Edifício The Union torre A sala 404 - Brasilia, Brasília - DF, 73006-105	[-47.951295,-15.836408]
SSPDF	Brasília, DF, 70297-400	[-47.908948,-15.781155]

Operation:	TravelAreas	~	?
Operation parameters			
Cost Value:	5		
Cost Field:			
Cost Unit:	Minutes	~	
Transportation:	Car	~	
Origins			
Name:	Dataset		
Type:	Loaded table	~	?
Table Name:	Enderecos		
Table Fields (key,geometry,)*:	localNome,Point		
Geometry Type:	Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Required field			

Within

Objetivo: Esta operação tem como objetivo encontrar possíveis relacionamentos de dados georreferenciados com alguma respectiva área contida no modelo de dados.

Resumidamente, a operação busca encontrar dados que estão "inclusos" em outras áreas, mas que não se relacionam no modelo de dados.

Exemplo: Foram utilizadas 2 tabelas chamadas de Clientes e Areas. A tabela de clientes possui todos os pontos de seus clientes, enquanto a tabela Areas possui o polígono das áreas da região. Importante ressaltar que as tabelas não se relacionam. O objetivo deste exemplo é encontrar a quais áreas os clientes pertencem.

Clientes

cliente_id	cliente_point
67	[-49.5134811228430,-20.8174434107309]
132	[-49.5092181115901,-20.8175341073952]
146	[-49.5037581106952,-20.8195634110774]
150	[-49.5092381115935,-20.8154534104042]
176	[-49.4998981100633,-20.8132934100497]
265	[-49.4998081100473,-20.8127534099610]
390	[-49.5036181106716,-20.8167341061943]
397	[-49.5110981118978,-20.8176934107715]

Areas

area_name	area_shape
p1	[[[[-49.50949896,-20.81865204],[-49.51058
p2	[[[[-49.50939312,-20.815578],[-49.5104416
p3	[[[[-49.50503388,-20.816748],[-49.5061621
p4	[[[[-49.50524016,-20.82088098],[-49.50641
p5	[[[[-49.51007604,-20.812689],[-49.5109519
p6	[[[[-49.50267912,-20.81383704],[-49.50382
p7	[[[[-49.50387288,-20.81578797],[-49.50466

Operation:	Within	~	?
Dataset to test within on			
Name:	Enclosed		
Туре:	Loaded table	~	?
Table Name:	Clientes		
Table Fields (key,geometry,)*:	cliente_id,cliente_point		
Geometry Type:	Point	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
Area dataset			
Name:	Enclosing		
Туре:	Loaded table	~	?
Table Name:	Areas		
Table Fields (key,geometry,)*:	area_name,area_shape		
Geometry Type:	Polygon	~	
Only load distinct:	No	~	
Location ID Suffix:			
CRS:	Auto		
*=Required field			

Referências

Qlik GeoAnalytics Operation - https://help.qlik.com/en-us/geoanalytics/subsystems/GeoConnector/Content/connector/connector-geoanalytics reference-Operation.htm

Qlik GeoAnalytics Dataset - <a href="https://help.qlik.com/en-US/geoanalytics/Subsystems/GeoConnector/Content/connector/connector-geoanalytics/subsystems/GeoConnector/Content/connector-geoanalytics/subsystems/GeoConnector/Content/connector-geoanalytics/subsystems/GeoConnector/Content/connector-geoanalytics/subsystems/GeoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoConnector-geoanalytics/subsystems/geoAcon-geoanalytic

Clever Anjos - https://www.youtube.com/channel/UC8cHuMtoCceGU5ZyH-Vt8ZA/videos