Další NP-úplné problémy

Známe SAT, CNF, 3CNF, k-KLIKA

...a ještě následující easy NP-úplný problém:

Existence Certifikátu (CERT)

Instance: M,x,t, kde M je DTS, x je řetězec, t číslo zakódované jako 1^t

Otázka: Existuje řetězec y s $|y| \le t$, t.ž. M přijme [x, y] v t krocích?

Věta

CERT je NP-úplný.

Důkaz (část I.).

Ukážeme, že $CERT \in NP$:

Nechť U je univerzální TS, jenž na vstup dostane [M,x,y] a simuluje nad [x,y] práci TS M. Tento stroj bude sloužit jako verifikátor pro CERT.

Pokud M přijme v t krocích, U přijme, v opačném případě zamítne. Dá se ukázat, že bude stačit pouze $\mathcal{O}(t^2)$.

Každopádně stačí polynomiální čas.

 $[M,x,t] \in CERT$ p.k. existuje y, pro nějž platí, že $|y| \leq t$ a U přijme $[M,x,1^t,y].$

Jan Konečný

Důkaz (část II.).

CERT je NP-těžký

Nechť $A\in \mathrm{NP}$, existuje tedy TS M (verifikátor pro A), který pracuje v polynomiálním čase, a polynom p(n), pro které platí, že $x\in A$ p.k. existuje $y,\ |y|\leq p(|x|)$, t.ž. M přijme [x,y].

Předpokládejme, že čas M je taky omezen p(n).

Definujeme funkci $r: x \mapsto [M, x, p(|x|)].$

Jistě je možno vyčíslovat ji v polynomiálním čase.

Ukážeme, že jde o redukci.

Pokud $x \in A$, existuje certifikát y délky omezené p(|x|), t.ž. M přijme [x,y].

M zastaví v čase t=p(|x|), protože polynom pomezuje i délku výpočtu M nad [x,y].

Podle definice problému CERT tedy $[M,x,p(|x|)] \in CERT$.

Pokud $[M,x,p(|x|)]\in CERT$, podle definice CERT to znamená, že existuje $y,\,|y|\leq p(|x|)$, pro nějž M(x,y) přijme p(|x|) krocích, a tedy $x\in A$.

NP-úplný problém – Vrcholové pokrytí

Vrcholové pokrytí (VP)

Instance: [G, k], kde G = (V, E) je graf a k je číslo.

Otázka: Tj. $|S| \le k$ a $(\forall e \in E)[S \cap e \ne \emptyset]$.

Tj.: Existuje množina $S\subseteq V$, která obsahuje nejvýše k vrcholů a z každé hrany obsahuje alepoň jeden koncový vrchol?

Věta

VP je NP-úplný.

Důkaz (část I.).

 ${
m VP}\in {
m NP}$ plyne z toho, že pro danou množinu S dokážeme ověřit v polynomiálním čase, jde-li o vrcholové pokrytí správné velikost.

VP je NP-těžký – ukážeme tak, že ukážeme $3CNF \leq_P VP$.

Mějme tedy 3cnf-formuli $\phi=C_1\wedge\cdots\wedge C_2$ s proměnnými $U=\{u_1,\ldots,u_n\}$. Ukážeme, jak k ní zkonstruovat graf G=(V,E) a číslo k, pro něž bude platit, že v G existuje vrcholové pokrytí velikostí nejvýš k, právě když ϕ je splnitelná.

Důkaz (část II.).

Pro každou proměnnou $u_i \in U$ definujeme podgraf $T_i = (V_i, E_i)$, kde

- $V_i = \{u_i, \overline{u_i}\}$
- $E_i = \{\{u_i, \overline{u_i}\}\}$

všimněte si: ve vrcholovém pokrytí musí být alespoň jeden z uzlů u_i a $\overline{u_i}$

Příklad

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

Důkaz (část III.)

Pro každou klauzuli C_j , $j=1,\ldots,m$ přidáme úplný podgraf o třech nových vrcholech, tedy trojúhelník $S_j=(V_j',E_j')$.

$$\begin{split} V_j' &= \{a_1[j], a_2[j], a_3[j]\} \\ E_j' &= \{\{a_1[j], a_2[j]\}, \{a_1[j], a_3[j]\}, \{a_2[j], a_3[j]\}\} \end{split}$$

 $\emph{v\textit{simn}\/ete}\ \emph{si:}$ vrcholové pokrytí musí obsahovat alespoň dva vrcholy z $V'_j.$

Příklad

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

Důkaz (část IV.)

Podgrafy spojíme mezi sebou hranami, které spojují vrcholy pro literály s jejich výskyty v klauzulí.

Předpokládejme, že pro každé $j=1,\ldots,m$ je klauzule $C_j=(x_j\vee y_j\vee z_j)$, kde x_j,y_j,z_j jsou literály (pozitivní nebo negativní).

Pak přidáme hrany z S_j do příslušných vrcholů literálů, tedy množinu hran:

$$E_j'' = \{\{a_1[j], x_j\}, \{a_2[j], y_j\}, \{a_3[j], z_j\}\}$$

V naší konstrukci nakonec položíme k=n+2m a G=(V,E), kde

$$V = (\bigcup_{1 \le i \le n} V_i) \cup (\bigcup_{1 \le i \le m} V_i')$$

$$E = (\bigcup_{1 \le i \le n} E_i) \cup (\bigcup_{1 \le i \le m} E_i') \cup (\bigcup_{1 \le i \le n} E_i'')$$

Z popisu je zjevné, že ji lze zkonstruovat v polynomiálním čase.

Příklad

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Důkaz (část V.)

Zbývá dokázat, že tato transformace je redukce.

Tj. že

 ϕ je splnitelná $\Leftrightarrow G$ má pokrytí k vrcholy.

ldea této části důkazu

Připomínka: Hledání ohodnocení, ve kterém je splnitelná cnf-formule $C_1 \wedge C_2 \wedge \cdots \wedge C_m$ je vlastně nalezení j-tice literálů $\langle l_1, l_2, \ldots, l_m \rangle$, t.ž.

- (1) l_i je členem klauzule C_i ,
- (2) v *m*-tici se nevyskytuje žádná výroková proměnná jako pozitivní a negativní literál současně.
- (1) je v G zajištěno výběrem dvojice uzlů v trojúhelnících: třetí –nevybraný představuje literál zařazený do m-tice.
- (2) je zajištěno provázáním přes dvojice.

Důkaz (část VII.)

" \Leftarrow ": Mějme G, které má vrcholové pokrytí $W\subseteq V$ velikosti k=n+2m. W musí pokrýt alespoň jeden uzel z každého podgrafu T_i $i=1,\ldots,n$ a alespoň dva vrcholy z každého trojúhelníku S_j $j=1,\ldots,m$.

Musí tedy platit $|W| \geq n+2m$. A protože současně $W \leq n+2m$, musí ve skutečnosti platit, že W pokrývá právě jeden vrchol z každého T_i a právě dva vrcholy z každého S_i .

Definujeme ohodnocení $t:U \rightarrow \{0,1\}$

$$t(u_i) = \begin{cases} 1 & u_i \in W, \\ 0 & \overline{u}_i \in W. \end{cases}$$

Tedy z každého T_i je ve W jeden vrchol, je v definici $t(u_i)$ vždy splněna právě jedna z podmínek, jde tedy o dobře definované ohodnocení.

Důkaz (část VIII.)

Nechť $C = (x_1 \vee y_j \vee z_j)$ je libovolná klauzule ϕ .

Množina W pokrývá dva vrcholy z trojúhelníku S_j , existuje tedy jeden vrchol, který není pokrytý.

Nechť je to BÚNO $a_1[j]$, protože hrana $\{a_1[j],x_j\}$ musí být pokryta, a tedy $x_j\in W$ a tedy hodnocení přiřadí x_j hodnotu 1.

Tedy

- pokud $x_j = u_i \in W$, platí $t(u_i) = 1$,
- pokud $x_j = \overline{u}_i \in W$, platí $t(u_i) = 0$.

V obou případech je literál x_i splněn ohodnocením t.

Protože to platí pro všechny klauzule, je t splňující ohodnocení ϕ .

Důkaz (část IX.)

" \Rightarrow ": Předpokládejme, že ϕ je splněná ohodnocením $t:U\to\{0,1\}$ a definujme množinu

$$W = \{u_i \, | \, t(u_i) = 1\} \cup \{\overline{u}_i \, | \, t(u_i) = 0\}.$$

Množina obsahuje n vrcholů.

Mezi hranami z E_j'' vedoucímí z každého trojúhelníku S_j musí být alespoň jedna pokrytá nějakým vrcholem z W, neboť t je splňující ohodnocení, které tedy splňuje některý literál z klauzule C_j .

Z každého trojúhelníku stačí tedy vybrat dva vrcholy tak, aby byly pokryty jak hrany z E_j , tak hrany z E_j'' . Přidáním těchto vrcholů do W dostaneme vrcholové pokrytí celého grafu velikosti k=n+2m.

Hamiltonovská kružnice v grafu (HAMILTON)

Hamiltonovská kružnice v grafu (HAMILTON)

Instance: [G, k], kde G = (V, E).

Otázka: Existuje v grafu G cyklus vedoucí přes všechny vrcholy?

Věta

HAMILTON je NP-úplný.

Důkaz (část I.)

 ${\rm HAMILTON} \in {\rm NP}$: zjevné, máme-li k dispozici pořadí vrcholů, snadno v polynomiálním čase ověříme, tvoří-li hamiltonovskou kružnici.

HAMILTON je NP-těžký: ukážeme jako $VP \leq_p HAMILTON$.

Uvažujme instanci vrcholového pokrytí $\left[G,k\right]$.

Zkonstruujeme nový graf G'=(V',E'), pro který bude platit, že G' existuje hamiltonovská kružnice p.k. existuje vrcholové pokrytí velikosti k.

Pro každou hranu $e=\{u,v\}\in E$ definujeme podgraf $G'_e=(V'_e,E'_e)$, kde

$$\begin{split} V'_e &= \{(u,e,i),(v,e,i) \,|\, 1 \leq i \leq 6\} \text{ a} \\ E'_e &= \{\{(u,e,i),(u,e,i+1)\} \,|\, 1 \leq i \leq 5\}\} \\ &\cup \{\{(v,e,i),(v,e,i+1)\} \,|\, 1 \leq i \leq 5\}\} \\ &\cup \{\{(u,e,i),(v,e,3)\},\{(u,e,3),(v,e,1)\},\\ &\quad \{(u,e,4),(v,e,6)\},\{(u,e,6),(v,e,4)\}\} \,. \end{split}$$

Důkaz (část II.)

Graf G'_e je zobrazen tu:

Jediné vrcholy k nimž v další konstrukci připojíme další hrany budou (u,e,1),(u,e,6),(v,e,1),(v,e,6), což zaručí, že hamiltonovská kružnice musí vstoupit i vystoupit z podgrafu jedním z těchto 4 vrcholů.

Jan Konečný

Důkaz (část III.)

Jsou jen 3 způsoby jak pokrýt hranu e v G:

- (I) Cesta vstoupí G_e' v (u,e,1), vystoupí (u,e,6) a mezitím projde všechny vrcholy (cesta je jednoznačně daná).
- (II) Cesta vstoupí G_e' v (v,e,1), vystoupí (v,e,6) (symetricky s předchozím případem)
- (III) kužnice do podgrafu vstoupí dvakrát, jednou projde "sloupec" u a jednou projde "sloupec" v.

všimněte si:

- vzhledem k tomu, že je graf neorentovaný, nezáleží na tom, jestli například v prvním případě vstoupí cesta do G_e' vrcholem (u,e,1) a vystoupí (u,e,6), nebo naopak.
- Pokud cesta vstoupí vrcholem (v,e,1), vystoupí vždy (v,e,6). Stejně tak pro u.

Důkaz (část IV.)

Do množiny vrcholů V' nového grafu G' přidáme ještě k vrcholů $a_1,\ldots,a_k.$ Ty použijeme k výběru k vrcholů vrcholového pokrytí.

Zbývá popsat, jak spojíme jednotlivé podgrafy G'_e a nově přidané vrcholy a_i Pro každý vrchol $v \in V$ zapojíme jednotlivé grafy G'_e s $v \in e$ za sebe. Přesněji, označme si

- ullet stupeň vrcholu v pomocí $\deg(v)$,
- ullet hrany z G, v nichž se vyskytuje v pomocí $e_{v[1]},\ldots,e_{v[\deg(v)]}.$

Nyní definujme $E'_v = \{\{(v, e_{v[i]}, 6), (v, e_{v[i+1]}, 1)\} \mid 1 \le i < \deg(v)\}.$

Příklad

Důkaz (část V.)

Vrcholy na koncích této posloupnosti, tedy $(v,e_{v[1]},1)$ a $(v,e_{v[\deg(v)]},6)$ připojíme ke všem výběrovým vrcholům a_1,\ldots,a_k .

$$E_v'' = \left\{ \{a_i, (v, e_{v[1]}, 6)\}, \{a_i, (v, e_{v[\deg(v)]}, 1)\} \mid 1 \le i \le k \right\}.$$

Příklad

Důkaz (část VI.)

Konstruovaný graf G' = (V', E') vznikne spojením popsaných částí:

$$V' = \{a_1, \dots, a_k\} \cup \left(\bigcup_{e \in E} V'_e\right)$$
$$E' = \left(\bigcup_{e \in E} E'_e\right) \cup \left(\bigcup_{v \in V} E'_v\right) \cup \left(\bigcup_{v \in V} E''_v\right)$$

Tuto transformaci je zjevně možné provést v polynomiálním čase.

Důkaz (část VII.)

Ukážeme, že jde o redukci:

V G' existuje hamiltonovská kružnice daná pořadím vrcholů u_1,\dots,u_n , kde n=|V'|.

Uvažme úsek této kružnice, který začíná a končí v některém z vrcholů a_1, \ldots, a_k , přičemž mezi tím žádným z nich neprochází. Nechť tento úsek BÚNO začíná v a_i a končí a_i .

Vrchol následující po a_i v ham. kružnici musí být $(v,e_{v[1]},1)$ pro nějaký vrchol $v\in V$.

Vejde-li ham. kružnice vrcholem $(v,e_{v[1]},1)$ do $G'_{e_{v[1]}}$, musí z něj vyjít vrcholem $(v,e_{v[1]},6)$. Odtud přejde do $(v,e_{v[1]},1)$, takto projde všechny grafy G'_e pro hrany e obsahující vrchol v až nakonec přejde z vrcholu $(v,e_{v[\deg(v)]},6)$ do a_j .

Důkaz (část VIII)

Definujeme množinu vrcholů

$$S = \{v \mid (\exists i \in \{1, \dots, k\})$$

$$(\exists j \in \{1, \dots, n\})$$

$$[(u_j = a_i) \land (u_{(j+1 \bmod k)} = (v, e_{v[1]}, 1)]\}.$$

Tvrdíme, že jde o vrcholové pokrytí v grafu G, přičemž jeho velikost je k.

Nechť $e=\{u,v\}$ je libovolná hrana grafu G, protože u_1,\ldots,u_n určuje pořadí vrcholů na hamiltonovské kružnici, musí projít i podgraf G'_e . Vejde-li do G'_e vrcholem (u,e,1), pak musí platit, že $u\in S$, podobně pokud vejde vrcholem (v,e,1), musí platit, že $v\in S$, tedy hrana e je pokryta.

Důkaz (část IX).

Naopak: S je VP velikosti k.

Můžeme uvažovat, že jde o množinu velkou přesně k.

Pokud je menší, doplníme do ní libovolné vrcholy tak, aby její velikost byla k.

Z popisu konstrukce plyne, jak pospojujeme jednotlivé podgrafy odpovídající hranám.

Předp. že $S = \{v_1, \dots, v_k\} \subseteq V$.

Mezi vrcholy a_i a a_{i+1} (popř. a_1 pokud i=k) povedeme cestu mezi podgrafy G'_e pro $e=e_{v_i[1]},\ldots,e_{v_i[\deg(v_i)]}$ v tomto pořadí.

Graf přitom projdeme způsobem (I) nebo (II). Pokud platí $e\subseteq S$, použijeme způsob (III).

Vzhledem k tomu žč S tvoří vrcholové pokrytí, projdeme takto všechny vrcholy grafu G' a vznikne tedy hamiltonovská kružnice.

NP-úplný problém – Trojrozměrné párování

Trojrozměrné párování (3DM)

Instance: Množina $M \in X \times Y \times Z$, X,Y,Z jsou po dvou disjunktní množiny, z nichž každá obsahuje právě q prvků.

Otázka: Obsahuje M perfektní párování? Neboli, existuje množina $M' \subseteq M$, |M'| = q, trojice v níž obsažené jsou po dvou disjunktní?

Věta

3DM je NP-úplný.

Důkaz:

 $3DM\in NP$ opět snadné. Plyne to z toho, že pokud máme k dispozici množinu $M'\subseteq M$, dokážeme ověřit v polynomiálním čase, jde-li o párování velikosti q.

3DM je NP-těžký: Ukážeme $CNF \leq_p 3DM$

Nechť $\phi = C_1 \wedge \cdots \wedge C_m$ je cnf-formule s proměnnými $U = \{u_1, \dots, u_n\}$.

Sestrojíme instanci problému 3DM, pro kterou bude platit, že v ní existuje perfektní párování, právě když ϕ je splnitelná.

Konstrukci rozdělíme na tři části:

- vytvoříme komponentu, která bude určovat, jakou hodnotu která proměnná dostane.
- vytvoříme komponentu, která bude zajišťovat propojení této hodnoty s klauzulemi, v nichž se tato proměnná vyskytuje.
- doplníme trojice tak, abychom dostali ke splňujícímu ohodnocení skutečně perfektní párování a naopak.

Nechť u_i je libovolná proměnná, za ni přidáme nové vnitřní prvky

- $a_i[1], \ldots, a_i[m]$ do X
- $b_i[1], \ldots, b_i[m]$ do Y

Do Z přidáme prvky $u_i[1],\ldots,u_i[m]$ a $\overline{u}_i[1],\ldots,\overline{u}_i[m]$.

Na těchto prvcích vytvoříme množiny trojic T_i^f a T_i^t takto:

$$\begin{split} T_i^t &= \{(a_i[j], b_i[j], \overline{u}_i[j]) \mid 1 \le j \le m\} \\ T_i^f &= \{(a_i[(j+1) \mod m], b_i[j], u_i[j]) \mid 1 \le j \le m\} \\ T &= T_i^t \cup T_i^f \end{split}$$

Protože žádný z prvků $a_i[j]$ ani $b_i[j]$ se nebude vyskytovat v jiných trojicích, je tímto vynuceno, že perfektní párování musí obsahovat všechny trojice z T_i^t nebo všechny trojice z T_i^f .

- Pokud obsahuje trojice z T_i^t , znamená to, že žádná další nesmí obsahovat \overline{u}_i , tedy vynucujeme hodnotu 1 pro u_i .
- ullet Pokud obsahuje trojice z T_i^f , vynucujeme hodnotu 0.

Za klauzuli C_j přidáme

- nový prvek $s_1[j]$ do množiny X,
- ullet nový prvek $s_2[j]$ do množiny Y,
- a množinu trojic

$$S_{j} = \{(s_{1}[j], s_{2}[j], u_{i}[j]) \mid u_{i} \in C_{j}\} \cup \{(s_{1}[j], s_{2}[j], \overline{u}_{i}[j]) \mid \overline{u}_{i} \in C_{j}\}$$

$$S_j = \{(s_1[j], s_2[j], u_i[j]) \mid u_i \in C_j\} \cup \{(s_1[j], s_2[j], \overline{u}_i[j]) \mid \overline{u}_i \in C_j\}$$

Prvky $s_1[j]$ a $s_2[j]$ se opět nebudou vyskytovat v jiných trojicích, díky tomu v perfektním párování musí být právě jedna trojice z množiny S_j .

Navíc pokud se trojice $(s_1[j],s_2[j],u_i[j])$ vyskytuje v perfektním párování, znamená to, že u $u_i[j]$ se nemůže vyskytovat v jiné trojici a to znamená, že v tomto párování jsou všechny trojice z T_I^t a žádná z T_i^f .

Podobně by to bylo, kdyby v perfektním párování byla trojice s negativním literálem.

Těmito trojicemi jsme ale schopni v párování pokrýt jen mn+m prvků z 2mn prvků $u_i[j], \overline{u}_i[j], i=1,\ldots,n, j=1,\ldots,m$

- ullet mn jsme pokryli pomocí T_i^t nebo T_i^f pro každé $i=1,\ldots,n$
- m jsme pokryli pomocí trojic z S_j , $j=1,\ldots,m$.

Zbývá tedy 2mn-(mn+m)=mn-m=m(n-1) prvků, které nejsme schopni pokrýt (zatím).

Přidáme do

- Do X při dáme $g_1[k]$ pro $k=1,\ldots,m(n-1)$.
- Do Y při dáme $g_2[k]$ pro $k=1,\ldots,m(n-1)$.

Do M přidáme množinu trojic

$$G = \{(g_1[k], g_2[k], u_i[j]), (g_1[k], g_2[k], \overline{u}_i[j]) \mid 1 \leq k \leq m(n-1), 1 \leq i \leq n, 1 \leq$$

Tím je konstrukce dokončena.

Shrňme si to:

$$X = \{a_{i}[j] \mid 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{s_{1}[j] \mid 1 \leq j \leq m\} \cup \{g_{1}[j] \mid 1 \leq j \leq m(n-1)\}$$

$$Y = \{a_{i}[j] \mid 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{s_{1}[j] \mid 1 \leq j \leq m\} \cup \{g_{1}[j] \mid 1 \leq j \leq m(n-1)\}$$

$$Z = \{u_{i}[j], \overline{u}_{i}[j] \mid 1 \leq i \leq n, 1 \leq j \leq m\}$$

$$M = \left(\bigcup_{i=1}^{n} T_{i}\right) \cup \left(\bigcup_{i=1}^{n} S_{i}\right) \cup G$$

Zjevně platí

- $M \subseteq X \times Y \times Z$.
- $|M| = 2mn + 3m + 2m^2n(n-1)$
- |X| = |Y| = |Z| = 2mn

Předpokládejme, že v M existuje perfektní párování M', na jehož základě zkonstruujeme ohodnocení t, které bude splňovat formuli ϕ .

Nechť i je libovolný index z $1, \ldots, n$. V M' jsou buď všechny trojice z T_i^t , nebo všechny trojice z T_i^f .

- pokud T_i^t , definujeme $t(u_i) := 1$,
- pokud T_i^f , definujeme $t(u_i) := 0$.

Nechť C_j je libovolná klauzule formule ϕ . Množina M' musí obsahovat právě jednu z trojic z S_j (je to jediná možnost, jak pokrýt $s_1[j]$ a $s_2[j]$ a dvě obsahovat nemůže, by tam byly $s_1[j]$ či $s_2[j]$ duplicitně).

Nechť tato trojice je $(s_1[j],s_2[j],u_i[j])$ pro nějaké $i=1,\ldots,n$. Znamená to, že u_i je proměnná vyskytující se jako pozitivní literál v klauzuli C_j . Navíc musí platit, že $u_i[j]$ se nemůže vyskytovat v žádné jiné trojici v M', proto M' obsahuje trojice z T_I^t a nikoli T_I^f a tedy $t(u_i)=1$, čímž je klauzule C_j splněna.

podobně:

Nechť tato trojice je $(s_1[j],s_2[j],\overline{u}_i[j])$ pro nějaké $i=1,\dots,n$. Znamená to, že u_i je proměnná vyskytující se jako negativní literál v klauzuli C_j . Navíc musí platit, že $\overline{u}_i[j]$ se nemůže vyskytovat v žádné jiné trojici v M', proto M' obsahuje trojice z T_I^f a nikoli T_I^t a tedy $t(u_i)=0$, čímž je klauzule C_j splněna.

Nechť ϕ je splnitelná, zkonstruujeme perfektní párování následovně.

Nechť $e:U\to\{0,1\}$ je ohodnocení splňující ϕ a nechť z_j označuje literál, který je v C_j tímto ohodnocením splněn pro $j=1,\dots,m$.

Pokud je takových literálů víc, vybereme prostě jeden z nich. Pak položíme:

$$M' = \left(\bigcup_{t(u_i)=1} T_i^t\right) \cup \left(\bigcup_{t(u_i)=0} T_i^f\right) \cup \left(\bigcup_{j=1}^m \{(s_1[j], s_2[j], z_j[j])\}\right) \cup G',$$

kde G' je množina vhodně vybraných trojic z G, které doplňují párování o pokrýtí zbylých literálů. Není těžké ověřit, že tato definovaná množina M' tvoří perfektní párování M.

Loupežníci (LOUP)

Loupežníci (LOUP)

Instance: Množina prvků A a s každým prvkem $a \in A$ asociovaná cena (váha, velikost,...) $s(a) \in \mathbb{N}$.

Otázka: Lze rozdělit prvky z A na dvě poloviny se stejnou celkovou cenou? Přesněji, existuje množina $A' \in A$ taková, že

$$\sum_{a \in A'} s(a) = \sum_{a \in A \backslash A'} s(a)?$$

Věta

LOUP je NP-úplný.

Důkaz

 $LOUP \in NP$ – zase stejné, plyne to z toho, že zadanou množinu A' je snadné ověřit, zda obsahuje prvky poloviční ceny.

LOUP je NP-těžký: Ukážeme $3DM \leq_p LOUP$.

Uvažujme instanci 3DM, tedy množinu $M\subseteq X\times Y\times Z$, kde |X|=|Y|=|Z|=q.

Vytvoříme instanci LOUP, tedy množinu A a cenovou funkci $s:A\to\mathbb{N}$, pro něž bude platit, že M má perfektní párování, právě když prvky v A lze rozdělit na dvě části se stejnou cenou.

Předpokládejme, že

$$M = \{m_1, \dots, m_k\}, X = \{x_1, \dots, x_q, \}Y = \{y_1, \dots, y_q\}, Z = \{z_1, \dots, z_q\}.$$

Jednotlivé prvky trojce m_i označme jako $x_{f(i)}, y_{g(i)}, z_{h(i)}$. Tj. funkce f (resp. g,h) vrátí k zadanému indexu i index f(i) (resp. h(i),g(i)) prvku trojice m_i , který patří do množiny X (resp. Y,Z).

Postavme $A = \{a_1, \ldots, a_k, b_1, b_2\}$, kde

- a_1, \ldots, a_k odpovídají trojicím m_1, \ldots, m_k ,
- b₁ a b₂ jsou pomocné vyrovnávací prvky.

Cenu $s(a_1)$ prvku a_i pro $i\in\{1,\ldots,k\}$ popíšeme její binární reprezentací, která bude rozdělena an $3\cdot q$ zón, z nichž každý má $p=\lceil\log_2(k+1)\rceil$ bitů. Každá z těchto zón bude odpovídat jednomu z elementů $X\cup Y\cup Z$.

Přesněji viz obrázek...

Reprezentace $s(a_i)$ bude záviset jen na prvcích trojice m_i , tedy na $x_{f(i)}$, $y_{g(i)}$, a $z_{h(i)}$. Váha $s(a_i)$ bude mít nastaveny na 1 nejpravější (t.j. nejméně významné) bity v blocích označených těmito třemi prvky, ostatní bity budou nulové:

$$s(a_i) = 2^{p(3q - f(i))} + 2^{p(2q - g(i))} + 2^{p(q - h(i))}.$$

Protože počet bitů, které potřebujeme na reprezentaci je 3pq a tedy polynomiální vzhledem k velikosti vstupu.

 $\emph{všimněte si:}$ pokud posčítáme hodoty v kterékoli zóně, nedojde k přetečení, neboť jde o sečtení nejvýše k jedniček.

Položíme

$$B = \sum_{j=0}^{3q-1} 2^{pj},$$

což je číslo, kde v každé zóně nastavíme na 1 nejméně významný bit. Množina $A' \subseteq \{a_i \mid 1 \le i \le k\}$ bude splňovat

$$\sum_{a \in A'} s(a) = B,$$

právě když $M' = \{m_i \mid a_i \in A'\}$ je perfektní párování M.

V tuto chvíli jsme tedy učinili převod problému 3DM na problém součtu podmnožiny, kde se ptáme, za existuje výběr prvků s celkovou cenou rovnou zadané hodnotě.

Abychom dostali na poloviny, doplníme dva prvky b_1 a b_2 s cenami:

$$s(b_1) = 2\left(\sum_{i=1}^k s(a_i)\right) - B$$
$$s(b_2) = \left(\sum_{i=1}^k s(a_i)\right) + B$$

Pokud nyní $A' \subseteq A$ splňuje, že

$$\sum_{a \in A'} s(a) = \sum_{a \in A \backslash A'} s(a),$$

pak se oba součty musí rovnat $2\sum_{i=1}^k s(a_i)$, neboť to je polovina ze součtu všech prvků $\sum_{i=1}^k s(a_i) + s(b_1) + s(b_2)$.

Přitom platí, že prvky b_1 a b_2 se nemohou oba vyskytovat na jedné straně, tj. nemohou být oba v A' nebo oba v $A\setminus A'$, protože $s(b_1)+s(b_2)=3\sum_{i=1}^k s(a_i).$

bez újmy na obecnosti můžeme předpokládat, že $b_1 \in A'$, $b_2 \in A \setminus A'$. z toho plyne, že

$$\sum_{a \in A' \setminus \{b_1\}} s(a) = B$$

a prvky v A' bez b_1 tedy určují perfektní párování v M.

Nyní předpokládejme, že $M'\subseteq M$ je pefektní párování. Definujeme $A'=\{a_i\,|\,m_i\in M'\}$ Musí platit, že $\sum_{a\in A'}s(a)=B$, a tedy $\sum_{A\in A'}s(a)+s(b_1)=2\sum_{i=i}^ks(a_i),$ což znamená, že množina $\{a_i|m_i\in M'\}\cup\{b_1\}$ obsahuje prvky právě poloviční ceny.