6. Кинематика твердого тела: вращение вокруг неподвижной оси. Связь линейных и угловых величин.

Вращение абсолютно твердого тела — это движение, при котором одна или несколько его точек остаются неподвижны. При вращении в трехмерном пространстве остаются неподвижными все точки, лежащие на одной линии — оси вращения. Вращение вокруг неподвижной оси является частным случаем плоского движения.

Так как траектории всех точек лежат в параллельных плоскостях, то для описания движения достаточно следить за одной такой плоскостью АТТ.

Рассмотрим поворот на малый угол $d\varphi$. Помимо величины угла, поворот характеризуется направлением оси вращения в пространстве. Эти две величины можно объединить в один вектор $d\vec{\varphi}$ - вектор угла поворота:

- ullet длина этого вектора $|dec{arphi}| = darphi; [darphi] -$ рад
- ullet направление $dec{arphi}$ совпадает с направлением оси вращения и определяется по правилу «правого винта»

Правило буравчика (винта): «Если вращать винт (буравчик) в том направлении, в котором вращается тело, то винт будет завинчиваться (или вывинчиваться) в ту сторону, куда направлена ось».

Установим связь между векторами $d\vec{\varphi}$ и $d\vec{r}$ (вектор перемещения, которое т. А тела совершила за тот же промежуток времени dt):

$$\begin{split} |d\vec{r}| &= R|d\vec{\varphi}| = |\vec{r}| \cdot |d\vec{\varphi}| \cdot \sin\theta = |\vec{r}| \cdot |d\vec{\varphi}| \cdot \sin(\hat{\vec{r}}; d\vec{\varphi}) \\ \\ d\vec{r} \perp d\vec{\varphi} \\ \\ d\vec{r} \perp \vec{r} \\ \\ d\vec{r} \perp OAO_1 \end{split}$$

 $d\vec{r} = [d\vec{\varphi}, \vec{r}] = d\vec{\varphi} \times \vec{r}$ – операция векторного произведения.

По аналогии с мгновенной скоростью $\vec{v} = \frac{d\vec{r}}{dt}$ и ускорением $\vec{a} = \frac{d\vec{v}}{dt}$ можно вывести:

При вращении вокруг неподвижной оси вектор углового ускорения также направлен по оси вращения. Его направление может совпадать (при ускоренном вращении) или быть противоположным с направлением вектора угловой скорости (при замедлении).

Связь линейных и угловых величин

Аксиальный вектор (псевдовектор) — вектор, модуль которого равен углу поворота, а направление определяется правилом правого винта. $d\vec{\varphi}, \vec{\omega}, \vec{\beta}$ — аксиальные векторы

Линейные величины	Угловые величины		
1) полярные векторы	1) аксиальные векторы		
2) направление определяется самим	2) направление определяется по		
движением	правилу «правого винта»		
$d\vec{r}, \vec{v}, \vec{a}$	$dec{arphi},ec{\omega},ec{eta}$		

Линейная	Связь величин	Угловая
$d\vec{r}$	$d\vec{r} = [d\vec{\varphi}, \vec{r}]$	$dec{arphi}$
	$ d\vec{r} = d\vec{\varphi} \cdot \underbrace{ \vec{r} \cdot \sin(\widehat{d\vec{\varphi},\vec{r}})}_{R} = d\varphi \cdot R$	
	$ d\vec{r} = Rd\varphi$	
\vec{v}	$\vec{v} = \frac{d\vec{r}}{dt} = \frac{[d\vec{\varphi}, \vec{r}]}{dt} = \left[\frac{d\vec{\varphi}}{dt}, \vec{r}\right] = [\vec{\omega}, \vec{r}]$	$\vec{\omega}$
	$ \vec{v} = \vec{\omega} \cdot \vec{r} \cdot \sin(\widehat{\vec{\omega}, \vec{r}}) = \vec{\omega} \cdot \vec{r} \cdot \sin(\widehat{d\vec{\varphi}, \vec{r}}) = \omega R$	
	$v = \omega R$	
å	$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} [\vec{\omega}, \vec{r}] = \left[\frac{d\vec{\omega}}{dt}, \vec{r} \right] + \left[\vec{\omega}, \frac{d\vec{r}}{dt} \right] = \left[\vec{\beta}, \vec{r} \right] + \left[\vec{\omega}, \vec{v} \right]$	β
	$\vec{a} = \vec{a}_n + \vec{a}_\tau$	
	При вращении вокруг неподвижной оси	
	$\vec{a}_n = [\vec{\omega}, \vec{v}]; a_n = \omega^2 R$ $\vec{a}_\tau = [\vec{\beta}, \vec{r}]; a_\tau = \beta R$	
	$\vec{a}_{\tau} = [\vec{\beta}, \vec{r}]; \ a_{\tau} = \beta R$	

Пояснения, откуда что берется

Связь между линейными и угловыми величинами

Найдем вектор скорости \vec{V} произвольной т.М тв.т., вращающегося вокруг неподвижной оси OO' с угловой скоростью $\vec{\omega}$. $d\vec{r} = [d\vec{\varphi}\ \vec{r}]$.

<u>Поделим</u> правую и левую часть этой формулы на соответствующий промежуток времени dt:

$$\frac{d\vec{r}}{dt} = \left[\frac{d\vec{\varphi}}{dt} \vec{r} \right]$$

$$\vec{V} = [\vec{\omega} \, \vec{r}] \quad (*)$$

По правилу векторного произведения $|\vec{V}| = \omega r \sin \theta$

т.е. $V = \omega \rho$, где ρ – радиус окружности, по которой движется м.т.

Продифференцируем (*) по времени :
$$\frac{d\vec{V}}{dt} = \left[\frac{d\vec{\omega}}{dt}\vec{r}\right] + \left[\vec{\omega}\frac{d\vec{r}}{dt}\right]$$

$$\vec{a} = [\vec{\beta} \ \vec{r}] + [\vec{\omega} \ \vec{V}] = [\vec{\beta} \ \vec{r}] + [\vec{\omega} \ [\vec{\omega} \ \vec{r}]]$$

Т.к. ось вращения неподвижна $\vec{\beta} \mid \mid \vec{\omega}$, то вектор, равный $[\vec{\beta} \ \vec{r}] \mid \mid \vec{a}_{\tau}$ – направлен по касательной к траектории.

$$\left| \left[\vec{\beta} \ \vec{r} \right] \right| = \beta r \sin \theta \quad a_{\tau} = \beta \rho$$

Вектор равный $[\vec{\omega} \ [\vec{\omega} \ \vec{r}]] \mid \vec{a}_n -$ направлен к оси вращения.

$$|[\vec{\omega} \ [\vec{\omega} \ \vec{r}]]| = \omega(\omega r \sin \theta) = \omega^2 \rho$$

 $a_n = \omega^2 \rho$

$$a = \sqrt{a_t^2 + a_n^2} = \int \beta^2 g^2 + \omega^4 g^2 = g \int \beta^2 + \omega^4$$