

Sztuczna Inteligencja w Systemach Informatycznych 2024

Algorytmy uczenia maszynowego wykorzystywane do prognozowania zjawisk pogodowych na podstawie zdjęć nieba

1. Cel projektu

Celem projektu było stworzenie algorytmu uczenia maszynowego wykorzystywanego do prognozowania zjawisk pogodowych na podstawie zdjęć nieba. W ramach demonstracji praktycznego zastosowania tego narzędzia, zaplanowano również stworzenie aplikacji, która rozpoznaje rodzaj chmur i przewiduje prognozę pogody na podstawie zdjęcia przesłanego przez użytkownika.

2. Koncepcja rozwiązania

Rozwiązanie składa się z dwóch części:

- sieci neuronowej,
- aplikacji mobilnej.

Do aplikacji mobilnej wgrywamy wytrenowany model, który służy do rozpoznawania chmur na zdjęciach dodanych przez użytkownika. Wykorzystując datę i porę roku, aplikacja przewiduje prognozy pogodowe i prezentuje je użytkownikowi. Schemat działania tego procesu przedstawiono na poniższym diagramie.

3. Sieć neuronowa

3.1. Zbiór danych

Użyliśmy zbioru danych Cirrus Cumulus Stratus Nimbus (CCSN) opublikowanego przez Harvard Dataverse. Zbiór ten zawiera 2543 obrazy różnych rodzajów chmur oraz smug kondensacyjnych.

3.2. Rodzaje chmur rozpoznawane przez sieć

Chmury rozpoznawane przez naszą sieć to: cirrus, cirrostratus, cirrocumulus, altocumulus, altostratus, cumulus, cumulonimbus, nimbostratus, stratocumulus, stratus.

3.3. Architektura sieci

Do stworzenia sieci neuronowej wykorzystaliśmy algorytm YOLOv8. Jest to najnowsza wersja algorytmu YOLO (You Only Look Once), używanego do detekcji obiektów w czasie rzeczywistym. Charakteryzuje się poprawioną architekturą, która zwiększa zarówno dokładność, jak i szybkość działania. Dzięki zaawansowanym technikom

przetwarzania danych, oferuje lepsze wykrywanie obiektów w złożonych i dynamicznych scenach. Jest zoptymalizowany do pracy na różnych urządzeniach, od serwerów po urządzenia mobilne, co czyni go wszechstronnym narzędziem w różnych zastosowaniach.

3.4. Wyniki treningu

Model YOLO po zastosowaniu tzw. fine-tuningu osiągnął dokładność około 60%. Próba odtworzenia modelu CloudNet we frameworku PyTorch dała dokładność 15%.

4. Aplikacja mobilna

Aplikacja została napisana w języku Kotlin i oferuje użytkownikom możliwość dodania zdjęcia z telefonu lub zrobienia nowego zdjęcia. Następnie, za pomocą wbudowanego modelu, aplikacja wykrywa chmurę widoczną na zdjęciu i dostarcza informacje o jej rodzaju oraz możliwej prognozie pogody. Zrzuty ekranu z aplikacji są przedstawione poniżej.

