Matière : Physique-Chimie

 ${\bf Unit\'e: Transformations\ nucl\'eaires}$

Niveau : 2BAC-SM-X

Heure: 10H

$\frac{\text{Leçon N°2: Noyau , \'energie et masse}}{\text{Dur\'ee } 10\text{h}00}$

Fiche Pédagogique _

Prérequis	Compétences visées	Savoir et savoir-faire	Outils di-
			dactiques
-Notions de base de	- Comprendre la relation entre masse et	- Définir l'équivalence masse-énergie	
physique nucléaire.	énergie	- Calculer l'énergie de liaison nucléaire	
-Compréhension des	-Analyser les transformations	- Comprendre le défaut de masse	
concepts de masse et	nucléaires	- Expliquer les processus de fission et	
d'énergie	-Exploiter la relation d'Einstein E =	fusion nucléaire	
-Connaissance des	$\mathrm{mc^2}$	- Analyser la stabilité des noyaux ra-	
éléments chimiques et	-Comprendre les mécanismes de fission	dioactifs	
de leur structure atom-	et fusion nucléaire		
ique	-Évaluer les effets biologiques de la ra-		
	dioactivité		

Situation-problème:

La masse des noyaux atomiques semble différer de la somme des masses de leurs constituants. Comment expliquer cette différence ? Quelle relation existe-t-il entre la masse et l'énergie dans les transformations nucléaires ?

- 1. Qu'est-ce que l'équivalence masse-énergie ?
- 2. Comment calculer l'énergie de liaison d'un noyau?
- 3. Quels sont les mécanismes de fission et fusion nucléaire ?

	Déroulement		
Eléments du	Activités didactiques		
cours	Enseignant	Apprenant	Evaluation
I-Introduction : Equivalence : Masse - Energie Unités de masse et d'énergie: I.2.1 Unité de masse atomique (uma)- (u) I.2.2Unité de l'énergie : Electronvolt I.2.3 Energie équivalente à l'unité de masse atomique :	 Présenter la situation-problème Inviter les apprenants à formuler des hypothèses Guider la réflexion sur la relation masse-énergie Présentation de la relation d'Einstein Calcul de l'énergie massique Unités de masse et d'énergie (uma, électronvolt) 	- Analyser la situation Proposer des hypothèses Réfléchir aux mécanismes nucléaires Hypothèses Attendues: La masse et l'énergie sont équivalentes Les noyaux peuvent se transformer en libérant ou absorbant de l'énergie La relation E = mc² permet d'expliquer ces transformations	Evaluation diagnostique
II Energie de liaison d'un noyau : 1 Défaut de masse : 2 Energie de liaison: 3 Courbe d'Aston:	-Le professeur Définir le défaut de masse et son lien avec l'énergie de li-aison . Calculs pratiques Étudier les zones de stabilité et d'instabilité des noyaux en fonction du nombre de nucléons .	 Résoudre des exercices simples pour appliquer les concepts théoriques. Analyser la courbe et identifier les noyaux stables et instables. 	Évaluation formative
III Fission et fusion nucléaire	Décrire et simuler les processus de fission (Uranium-235) et de fusion (Hydrogène \rightarrow Hélium).	Comparer les deux processus en termes d'énergie libérée et de défis.	Formative et sommative

Déroulement					
Eléments du	Activités didactiques				
cours	Enseignant	Apprenant	Evaluation		
IV Le bilan massique et énergétique d'une réaction nucléaire :	Guider le calcul du bilan énergétique Expliquer la méthode de calcul Interpréter les résultats Vérifier la rigueur scientifique	—Résoudre des exercices simples pour appliquer les concepts théoriques.	Évaluation formative		