Name:	Student ID:
-------	-------------

ECON 0150 | MiniExam 07 | Spring 2025

This MiniExam will take 8 minutes with a quick break to follow. MiniExams are designed to both test your knowledge and challenge you to apply familiar concepts in new environments. Treat it as if you're trying to show me that you understand the material. Answer clearly, completely, and concisely.

Academic Conduct Code

The following academic conduct code is designed to protect the integrity of your work. Print your name/initials beside the three academic honesty agreements. I pledge to my fellow students, the university, and the instructor, that:

____ I will complete this MiniExam solely using my own work.

____ I will not use any digital resources unless explicitly allowed by the instructor.

____ I will not communicate directly or indirectly with others during the MiniExam.Q1. Agricultural Productivity and Rainfall

1. Below are two residual plots from separate regression analyses:

- a) Which regression assumption is violated in Plot A?
- □ Linearity
- □ Normality
- □ Homoskedasticity
- □ Independence
- b) The most appropriate approach to address the issue in Plot A would be:

☐ Transform the dep☐ Add a squared ter☐ Use robust standa☐ Remove outliers fr	m of the inde rd errors	pendent varia	_	del			
c) If a residual plot violated?	shows a fan	shape (with s	pread increas	ing as fitted v	values increase)), what assumptic	n is being
□ Linearity□ Normality□ Homoskedasticity□ Independence							
2. A labor economic Here are the	-		ship between	years of educ	ation, work ex _]	perience, and hou	rly wages.
		0LS Rec	ression Re	sults			
	coef	std err	t	P> t	[0.025	0.975]	
Intercept education experience	5.427 1.238 0.452			0.000			
a) Write the estimate □ wage = 5.427 + 1.2 □ wage = 5.427 + 0.4 □ education = 5.427 □ wage = 5.427 × (1.5) b) Interpret the coeff	38 × educatio 52 × educatio + 1.238 × wag 238 × educati	on + $0.452 \times ex$ on + $1.238 \times ex$ ge + $0.452 \times ex$ on) × $(0.452 \times ex)$	perience perience perience experience)				
☐ For each additiona☐ For each additiona☐ Experience is 0.45€☐ The correlation be	al year of expo al year of expo 2 times more	erience, hourly erience, hourly important than	wage increa wage increa and addition in	ses by 0.452%	, holding educa		
c) If we had instead on education would	_	regression of v	wage on educ	ation only (wi	thout including	g experience), the	coefficient
☐ The same as in the☐☐ Lower than in the☐☐ Higher than in the☐☐ Cannot be determ	multiple regree multiple reg	ression (<1.238 ression (>1.238) 3)				

- 3. An education researcher wants to study whether student performance on standardized tests differs between schools with different levels of per-pupil funding. They have data on test scores and funding levels for 70 schools.
- a) What regression model would be most appropriate to answer this question?

```
□ TestScore = \beta_0 + \beta_1 \times \text{Funding} + \epsilon

□ TestScore = \beta_0 + \beta_1 \times \text{I(Funding} > \text{threshold}) + \epsilon

□ Funding = \beta_0 + \beta_1 \times \text{TestScore} + \epsilon

□ log(TestScore) = \beta_0 + \beta_1 \times \log(\text{Funding}) + \epsilon
```

- b) If the researcher finds $\beta_1 = 0.042$ with p = 0.005 in the model TestScore $= \beta_0 + \beta_1 \times Funding + \epsilon$ (where funding is in hundreds of dollars), what can they conclude?
- □ Higher funded schools have significantly higher test scores
- □ Increasing school funding causes higher test scores
- $\hfill\Box$ For every \$100 increase in per-pupil funding, test scores increase by 0.042 points
- □ For every 1 point increase in test scores, funding increases by \$0.042 per pupil