DataGuardian: Al-Powered Multi-Modal Visual and Textual Data Anonymization System

Karamjeet Singh Gulati, Nikita B. Emberi, Jason Yoo

Objective and Goals

In today's digital age, there is an increasing need to protect personally identifiable information (PII) present in multi-modal data, such as images and text, from exposure. The central question our project aims to address is:

"How can an AI-powered system effectively anonymize both visual and textual data simultaneously, while preserving the utility of the data for research and analysis purposes?"

Goals:

- Privacy Protection: Real-time anonymization of visual and textual PII with advanced AI models.
- Innovation: Unified system, 700ms response time, modular and adaptable design.
- Applications: Healthcare, social media, document security, and research.
- Vision: Balancing privacy and utility with scalable, user-friendly solutions.

Methodology: Data Preprocessing

1. Visual Data:

- Real-time frame capture via Gradio API (30 FPS).
- RGB-to-BGR transformation, resolution standardization, and lossless JPEG compression.
- Secure UUID-based storage with automated cleanup and error handling.

2. Text Data:

- Multilingual NLP support for six languages and a universal fallback model.
- Accurate and efficient text anonymization.

3. Integration:

Combined visual and textual preprocessing for seamless anonymization.

Methodology: Architecture

1. Three-Stage Pipeline: Streamlined design for real-time data processing and advanced anonymization.

2. Input Layer:

- Gradio-based interface for webcam streams and text prompts.
- Preprocesses multi-modal inputs while ensuring data integrity.
- **3. Core Processing:** Real-time Al-driven analysis with strict privacy controls.

4. Output Layer:

- Managed chat interface presenting anonymized data.
- Maintains privacy compliance and conversational context.

5. Key Features:

- Modular design for easy maintenance and future extensions.
- Robust foundation for handling sensitive visual and textual data.

Figure: Three-stage pipeline integrating GPT-4 Vision and Presidio for input, processing, and output anonymization.

Methodology: Output Generation

Image Processing:

- We begin by processing visual data using Python modules that convert color spaces and correct image orientations. Each processed file is securely stored with error-resilient mechanisms.
- To enhance visual analysis, we integrate GPT-4 Vision with configurations like a token limit of 500 and a low temperature of 0.1, ensuring precise and focused outputs. Timeout management and fallback strategies handle potential errors.

Entity Recognition:

- For text data, using a confidence threshold of 0.2 and contextual enhancements, we ensure high accuracy in detecting entities such as emails, phone numbers, and personal names
- Identified entities are anonymized by replacing them with placeholders like -MASKED EMAIL RELATED-, preserving data privacy.

Output Generation:

- Processed data is formatted into JSON or HTML for structured output.
- We use an interactive interface that provides real-time feedback, displays chat functionality, and tracks chat history and image references. Temporary files are cleaned after processing to maintain data integrity and system efficiency.

Current Progress

Interface Development:

- Real-time webcam integration with Gradio.
- Responsive chat interface with multi-line input and history display.

Backend Enhancements:

- Integrated GPT-4 Vision for visual data analysis with response handling.
- Image processing pipeline includes color conversion, orientation correction, and secure UUID-based storage.

Privacy Mechanisms:

- Entity recognition identifies and anonymizes sensitive data (e.g., emails, phone numbers).
- Anonymization rules replace entities with placeholders like
 -MASKED PERSON RELATED-.

Current Progress

Multi-Language Support:

Implemented models for six languages with optimized system parameters for processing.

Testing and Stability:

- Validated webcam capture, image processing, and file management.
- Server supports up to 10 threads for stable, scalable operations.

Current Results

1. Testing Setup:

- Tested on a local server (127.0.0.1:8800) with 10 threads and real-time processing.
- Evaluated response time (700ms), memory usage, entity recognition accuracy, and multi-language support.

2. Interface:

- Dual-panel Gradio interface: Webcam input on the left, interactive chat on the right.
- Real-time video streaming and frame capture using OpenCV.

3. Anonymization:

- Presidio framework detects sensitive data (e.g., names, emails) and replaces it with placeholders like `-MASKED PERSON RELATED-`.
- Errors in implementation currently limit full functionality.

4. Modular Architecture:

- Python-based components using OpenCV, Presidio, and GPT-4 Vision ensure seamless integration.
- Designed for real-time privacy-focused processing with ongoing optimizations.

Current Results

1. Testing Outcomes:

- Validated: Frame capture, image quality, color conversion, and data storage.
- Preliminary: Anonymization patterns under review, with ongoing error resolution and refinements.

Next Steps

1. Development Completion:

- Add Gaussian blur for improved image anonymization.
- Finalize context-aware entity recognition and extend recognition patterns.

2. Performance Optimization:

- Enhance image compression, memory management, and thread pooling.
- Address latency issues, memory leaks, and improve error recovery.

3. System Expansion:

- Integrate additional language models and custom entity definitions.
- Implement advanced privacy rules and secure system access with user authentication.

4. Interface Enhancements:

- Add real-time statistics visualization and configuration options.
- Enable batch processing and improve the presentation of anonymized data.

Next Steps

5. Long-Term Vision:

- Use machine learning for automated rule generation and privacy policy compliance (GDPR/HIPAA).
- Deploy the system to the cloud for scalability and explore advanced anonymization techniques.

