pst-am

A PSTricks package for drawing Modulations and Demodulations; v.1.02

Manuel Luque Herbert Voß

April 19, 2023

Contents

1	Introduction	3
	1.1 Example of a modulation	3
	1.2 Schéma de principe du montage de la démodulation	4
2	Optional arguments	4
3	Possibility of drawing the curves in black on white	5
4	Le dessin de l'enveloppe	6
5	Le signal redressé	7
6	Le signal démodulé	8
7	L'influence de R et C sur la qualité de la démodulation	10
8	Suppression de la composante continue	12
9	Le phénomène de surmodulation	13
10	XY mode	15
11	Deux autres exemples	16
12	Les styles	18
13	List of all optional arguments for pst-am	19
R e	ferences	10

Contents 2

pst-am allows the simulation of modulated and demodulated amplitude of the radio waves. You can choose several possible parameters and plot the following curves:

- modulated signals;
- wave carrier;
- signal modulation;
- signal recovering;
- signal demodulation.

The main command is called \psAM [Options] and has different options, including allowing view table of the used values, are detailed thereafter. The macro was written directly in PostScript¹.

\psAM[SignalModulant,timeDiv=2e-4,SignalRedresse,SignalDemodule,
 voltDivY2=0.5,R=4700]

¹ Original idea by Peter Kleiweg and inspired by discussions on http://melusine.eu.org/cgi-bin/mailman/listinfo/syracuse

1 Introduction 3

1 Introduction

1.1 Example of a modulation

• l'onde **porteuse**, onde sinusoïdale de haute fréquence(H.F.) et d'amplitude constante. Elle est produite par l'oscillateur de l'émetteur :

$$u_p(t) = U_p \cos 2\pi F_p t$$

• le signal modulant(signal B.F. à transmettre), considéré comme une onde sinusoïdale de la forme :

$$u_m(t) = U_m \cos 2\pi F_m t + U_0$$

- Le premier terme $u_m(t) = U_m \cos 2\pi F_m t$ représente le signal à transmettre.
- U_0 est la tension de décalage ou *offset*.

Un circuit électronique, appelé **multiplieur**, donne en sortie une tension :

$$u_s(t) = k \times u_p(t) \times u_m(t)$$

La tension obtenue à la sortie est de la forme :

$$u_{s} = k.U_{p}\cos 2\pi F_{p}t.(U_{m}\cos 2\pi F_{m}t + U_{0})$$

Cette expression est mise sous la forme :

$$u_s(t) = A(1 + m\cos 2\pi F_m t)\cos 2\pi F_p t$$

avec:

- $A = kU_0.U_p$;
- $m = \frac{U_m}{U_0}$: taux de modulation

2 Optional arguments 4

2 Optional arguments

Name	type	default	description
Up	number	3.5	carrier amplitude in V
Um	number	1	smodulated ignal amplitude in V
Fp	number	2e4	frequency of carrier wave in Hz
Fm	number	1e3	frequency of modulated signal in Hz
U0	number	2	offset in V
R	number	3.3e3	resistor in Ω
C	number	3.9e-8	capacitor in F
timeDiv	number	2e-4	time base in s/div
voltDivY1	number	1	coefficient for the amplification 1 in V/div
voltDivY2	number	1	coefficient for the amplification 2 en V/div
SignalModulant	boolean	false	trace of signal modulant (curve 1)
SignalModule	boolean	false	trace of signal module (curve 2)
SignalPorteuse	boolean	false	trace of signal module (curve 2)
SignalRedresse	boolean	false	trace of signal redressé (curve 2)
SignalDemodule	boolean	false	trace of signal demodulte (curve 2)
XY	boolean	false	positionne l'écran en mode XY
traceU	boolean	false	trace la ligne de décalage U_0
UMandUm	boolean	false	pour permettre le calcul de m
values	boolean	false	values as a tabular under the image
BW	boolean	false	output curves in black on white
Centering	boolean	false	image and optional values are centered
title	text	{}	a title for the lower line

3 Possibility of drawing the curves in black on white

Avec l'option BW. Lorsqu'on souhaite afficher une courbe, il suffit de rajouter son nom dans la liste des options.

Amplitude porteuse 2,8 V
Amplitude audio 1 V
Frequence porteuse $1 \cdot 10^4$ Hz
Frequence audio $1 \cdot 10^3$ Hz
Decalage(U_0) 2 V

R 3 300 Ω
C 3,9 · 10⁻⁸ F

\psAM[SignalModulant,SignalPorteuse,Up=2.8,frequencePorteuse=1e4,values,BW]

4 Le dessin de l'enveloppe

Avec l'option enveloppe.

\psAM[SignalModule,enveloppe,frequencePorteuse=1e4,voltDivY2=0.5,timeDiv=5e-4]

L'option UMandUm permettra de déterminer facilement le taux de modulation.

\psAM[SignalModule,enveloppe,UMandUm]

5 Le signal redressé 7

5 Le signal redressé

Avec l'option SignalRedresse.

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $2 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR $3 300 \Omega$ C $3,9 \cdot 10^{-8}$ F

 $\verb|\psAM[SignalModulant,timeDiv=1e-4,SignalRedresse,voltDivY2=0.5,values]|$

6 Le signal démodulé 8

6 Le signal démodulé

Avec l'option SignalDemodule et, en exemple, deux possibilités en fonction du choix de la base de temps.

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $2 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR $3 300 \Omega$ C $3.9 \cdot 10^{-8}$ F

\psAM[SignalModulant,timeDiv=0.5e-4,SignalRedresse,SignalDemodule,values]

6 Le signal démodulé 9

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $2 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR $3 300 \Omega$ C $3,9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalRedresse,SignalDemodule,timeDiv=2e-4,
frequencePorteuse=2e4,voltDivY2=0.5,values,traceU]

7 L'influence de R et C sur la qualité de la démodulation

Avec les paramètres R et C.

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $2 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR $1 \cdot 10^4$ Ω C $3,9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalRedresse,SignalDemodule,timeDiv=2e-4,
 frequencePorteuse=2e4,voltDivY2=0.5,R=1e4,values]
\psline[linecolor=blue,linestyle=dashed](U01)(U02)
\uput[l](U01){\$U_0\$}

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $2 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR 470Ω C $3.9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalRedresse,SignalDemodule,timeDiv=2e-4,
frequencePorteuse=2e4,voltDivY2=0.5,R=470,values]

8 Suppression de la composante continue

Avec l'option SignalFinal.

Amplitude porteuse3,5 VAmplitude audio1 VFrequence porteuse $4 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)2 VR $4,7 \cdot 10^3$ ΩC $3,9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalFinal,timeDiv=2e-4,voltDivY2=0.5,frequencePorteuse=4e4,R=4.7e3,values]

9 Le phénomène de surmodulation

Amplitude porteuse4 VAmplitude audio2 VFrequence porteuse $4 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)0.5 VR $3 300 \Omega$ C $3.9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalModule,timeDiv=2e-4,U0=0.5,frequencePorteuse=4e4, Up=4,Um=2,voltDivY2=0.5,values]

 $\label{lem:lemodule} $$ \operatorname{SignalModulant}, \operatorname{SignalRedresse}, \operatorname{SignalDemodule}, \operatorname{timeDiv=1e-4}, \operatorname{U0=0.5}, \\ frequence \operatorname{Porteuse=4e4}, \operatorname{voltDivY2=0.2}, \operatorname{voltDivY1=0.5}] $$$

10 XY mode 15

10 XY mode

\psAM[XY,U0=0.5,frequencePorteuse=4e4,Up=4,Um=2,voltDivY2=0.5]

\psAM[XY,frequencePorteuse=4e4,voltDivY2=0.5,voltDivY1=1]

11 Deux autres exemples

Amplitude porteuse 2 V
Amplitude audio 10 V
Frequence porteuse $1 \cdot 10^4$ Hz
Frequence audio $1 \cdot 10^3$ Hz
Decalage(U_0) 2 V

R 4700 Ω
C $3.9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalRedresse,SignalDemodule,voltDivY2=1,voltDivY1=5, timeDiv=2e-4,U0=2,R=4700,frequencePorteuse=1e4,Up=2,Um=10,values,traceU,values]

11 Deux autres exemples

Amplitude porteuse3 VAmplitude audio1 VFrequence porteuse $4 \cdot 10^4$ HzFrequence audio $1 \cdot 10^3$ HzDecalage(U_0)1,5 VR $3 300 \Omega$ C $3,9 \cdot 10^{-8}$ F

\psAM[SignalModulant,SignalRedresse,SignalDemodule,timeDiv=1e-4,U0=1.5, frequencePorteuse=4e4,Up=3,voltDivY2=0.2,traceU,values]

12 Les styles 18

12 Les styles

À chaque courbe est associée un style, ce qui permet de les différencier. Le style du tracé d'une courbe pourra donc être modifié, simplement, en redéfinissant le \newpstyle associé à la courbe avant son tracé.

De même, il sera possible de modifier l'allure de l'écran en redéfinissant les styles associés :

```
\newpsstyle{signalModulant}{plotpoints=1000,linecolor=green,linewidth=2\pslinewidth}
\newpsstyle{signalPorteuse}{plotpoints=2000,linecolor=blue}
\newpsstyle{signalRedresse}{plotpoints=2000,linecolor=Bleu}
\newpsstyle{signalDemodule}{plotpoints=4000,linecolor=red}
\newpsstyle{signalModule}{plotpoints=4000,linecolor=blue}
\newpsstyle{XY}{plotpoints=4000,linecolor=blue}
\newpsstyle{XY}{plotpoints=4000,linecolor=blue}
\newpsstyle{cadre}{framearc=0.05,linecolor=black}
\newpsstyle{screen}{fillstyle=solid,fillcolor=yellow!70!white!30}
```

13 List of all optional arguments for pst-am

Key	Type	Default
title	ordinary	[none]
frequencePorteuse	ordinary	2e4
frequenceAudio	ordinary	1e3
R	ordinary	3300
С	ordinary	3.9e-8
U0	ordinary	2
Up	ordinary	3.5
Um	ordinary	1
k	ordinary	0.1
timeDiv	ordinary	2e-4
voltDivY1	ordinary	1
voltDivY2	ordinary	1
Centering	boolean	true
SignalModule	boolean	true
SignalPorteuse	boolean	true
SignalRedresse	boolean	true
SignalDemodule	boolean	true
SignalModulant	boolean	true
SignalModule	boolean	true
SignalFinal	boolean	true
enveloppe	boolean	true
XY	boolean	true
traceU	boolean	true
UMandUm	boolean	true
values	boolean	true
BW	boolean	true

References

- [1] Hendri Adriaens. xkeyval package. CTAN:/macros/latex/contrib/xkeyval. 2004.
- [2] Denis Girou. "Présentation de PSTricks". in Cahier GUTenberg: 16 (april 1994), pages 21-70.
- [3] Michel Goosens **andothers**. *The LaTEX Graphics Companion*. Reading, Mass.: Addison-Wesley Publishing Company, 2007.
- [4] Alan Hoenig. TeX Unbound: LATEX & TeX Strategies, Fonts, Graphics, and More. London: Oxford University Press, 1998.
- [5] Laura E. Jackson **and** Herbert Voß. "Die Plot-Funktionen von pst-plot". **in**Die TEXnische Komödie: 2/02 (**june** 2002), **pages** 27–34.
- [6] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz. Vaterstetten: IWT, 1989.
- [7] Frank Mittelbach **and** Michel Goosens et al. *Der LaTeX Begleiter*. zweite. München: Pearson Education, 2005.
- [8] Frank Mittelbach **and** Michel Goosens et al. *The LATEX Companion*. second. Boston: Addison-Wesley Publishing Company, 2004.

References 20

[9] Herbert Voß. "Die mathematischen Funktionen von PostScript". **in***Die TeXnische Komödie*: 1/02 (**march** 2002).

- [10] Herbert Voß. PSTricks Grafik für TeX und LaTeX. fifth. Heidelberg/Hamburg: DANTE Lob.media, 2008.
- [11] Herbert Voß. Mathematiksatz in LaTeX. first. Berlin/Heidelberg: Lehmanns Media/DANTE, 2009.
- [12] Timothy Van Zandt. multido.tex a loop macro, that supports fixed-point addition. CTAN:/graphics/pstricks/generic/multido.tex, 1997.
- [13] Timothy Van Zandt. pst-plot: Plotting two dimensional functions and data. CTAN: graphics/pstricks/generic/pst-plot.tex, 1999.
- [14] Timothy Van Zandt. PSTricks PostScript macros for generic TeX. http://www.tug.org/application/PSTricks, 1993.
- [15] Timothy Van Zandt and Denis Girou. "Inside PSTricks". in TUGboat: 15 (september 1994), pages 239–246.

Index

BW, 4, 5					
C, 4, 10 Centering, 4					
enveloppe, 6					
Fm, 4 Fp, 4					
Keyword BW, 4, 5 C, 4, 10 Centering, 4 enveloppe, 6 Fm, 4 Fp, 4 R, 4, 10 SignalDemodule, 4, 8 SignalFinal, 12 SignalModulant, 4 SignalModule, 4 SignalPorteuse, 4 SignalRedresse, 4, 7 timeDiv, 4 title, 4 traceU, 4 U0, 4 Um, 4 UMandUm, 4, 6 Up, 4 values, 4 voltDivY1, 4 voltDivY2, 4 XY, 4					
Macro \newpstyle, 18 \psAM, 2					
\newpstyle, 18					
Package pst-am, 2 \psAM, 2 pst-am, 2 R, 4, 10					
n, 1 , 10					

SignalDemodule, 4, 8

```
SignalFinal, 12
{\it Signal Modulant}, \, {\it 4}
SignalModule, 4
SignalPorteuse, 4
SignalRedresse, 4, 7
timeDiv, 4
title, 4
traceU, 4
U0, 4
Um, 4
UMandUm, 4, 6
Up, 4
values, 4
voltDivY1, 4
voltDivY2, 4
XY, 4
```