

EC 763 : Mathématiques pour l'ingénieur 2

Guillaume Franchi

Cursus Ingénieur 2ème année

Chapitre 4 : L'espace vectoriel \mathbb{R}^p

1. Introduction

Espace vectoriel

- Intuitivement, un **espace vectoriel** est un ensemble sur lequel on définit une addition interne et une multiplication externe par un scalaire.
- On dispose d'un élément neutre pour l'addition, noté 0, et les règles usuelles de calcul sont vérifiées.

1. Introduction

Exemples

L'ensemble

$$\mathbb{R}^{p} = \{ \overrightarrow{X} = (x_{1}, \dots, x_{p}) : \forall i \in \{1, \dots, p\}, \ X_{i} \in \mathbb{R} \}$$

est un espace vectoriel avec :

$$\overrightarrow{x} + \overrightarrow{y} = (x_1 + y_1, \dots, x_p + y_p) \text{ et } \lambda \cdot \overrightarrow{x} = (\lambda x_1, \dots; \lambda x_p);$$

• L'ensemble des matrices de dimension $n \times p$, noté $M_{n,p}(\mathbb{R})$, est un espace vectoriel, avec les opérations vues dans les cours précédents.

Introduction

2. Sous-espace vectoriel

Définition

Un sous-ensemble F d'un espace vectoriel E est un **sous-espace vectoriel** (noté sev) si :

- 0 ∈ *F*;
- F est stable par combinaison linéaire :

$$\forall \overrightarrow{\mathbf{X}}, \overrightarrow{\mathbf{y}} \in \mathbf{F}, \ \forall \lambda, \mu \in \mathbb{R}, \ \lambda \overrightarrow{\mathbf{X}} + \mu \overrightarrow{\mathbf{y}} \in \mathbf{F}.$$

Exemples

- L'ensemble $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = 0\}$ est un sev de \mathbb{R}^2 .
- L'ensemble des matrices diagonales de $M_n(\mathbb{R})$ est un sev de $M_n(\mathbb{R})$.
- L'ensemble $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1^2\}$ n'est pas un sev de \mathbb{R}^2 .
- L'ensemble des matrices inversibles de $M_n(\mathbb{R})$, noté $GL_n(\mathbb{R})$ n'est pas un sev.

2. Sous-espace vectoriel 6

Définition

Soient $\overrightarrow{v_1}, \dots, \overrightarrow{v_k}$ des éléments d'un espace vectoriel E.

• On appelle sous-espace vectoriel engendré par $\overrightarrow{v_1}, \dots, \overrightarrow{v_k}$ le sev

$$Vect(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) = \{\lambda_1 \overrightarrow{v_1} + \dots + \lambda_k \overrightarrow{v_k} : \lambda_1, \dots, \lambda_k \in \mathbb{R}\}.$$

• Il s'agit du plus petit sev (au sens de l'inclusion) de E contenant $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$.

2. Sous-espace vectoriel 7

3. Bases d'un espace vectoriel

Définition

Soient $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$ des éléments d'un espace vectoriel E.

• La famille $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ est dite **libre** si

$$\lambda_1 \overrightarrow{v_1} + \cdots + \lambda_n \overrightarrow{v_n} = \overrightarrow{0} \Longrightarrow \lambda_1 = \cdots = \lambda_n = 0.$$

• La famille $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ est dite **génératrice** si pour tout $\overrightarrow{v} \in E$, il existe $\lambda_1, \dots, \lambda_n$ tels que

$$\overrightarrow{v} = \lambda_1 \overrightarrow{v_1} + \cdots + \lambda_n \overrightarrow{v_n}.$$

• $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ est une **base** de *E* si elle est à la fois libre et génératrice.

Exemples

- La famille $\overrightarrow{e_1} = (1,0,\ldots,0), \overrightarrow{e_2} = (0,1,0,\ldots,0),\ldots, \overrightarrow{e_p} = (0,\ldots,0,1)$ est une base de \mathbb{R}^p , appelée **base canonique**.
- La famille formée des matrices E_{i,j} avec E_{i,j} = (e_{k,l})_{k,l}, où e_{i,j} = 1 et e_{k,l} = 0 si k ≠ i et l ≠ j, est une base de M_{n,p}(ℝ).

3. Bases d'un espace vectoriel

Définition

Un espace vectoriel E est dit de **dimension finie** s'il existe une famille finie de vecteurs $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$ qui soit une base de E.

Propriété

Dans un espace vectoriel E de dimension finie, toutes les bases ont le même nombre d'éléments. On appelle ce nombre la **dimension** de E, notée dim(E).

Propriété

Dans un espace vectoriel E de dimension finie dim(E) = n.

- Toute famille libre avec *n* éléments est une base.
- Toute famille génératrice avec *n* éléments est une base.

Propriété

Soit $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ une base d'un espace vectoriel E. Tout vecteur $\overrightarrow{v} \in E$ s'écrit **de façon unique** :

$$\overrightarrow{v} = \lambda_1 \overrightarrow{v_1} + \ldots + \lambda_n \overrightarrow{v_n}.$$

Le *n*-uplet $(\lambda_1, \ldots, \lambda_n)$ constitue les **coordonnées** de \overrightarrow{v} dans cette base.

Exemple

Considérons la base canonique $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ de \mathbb{R}^3 .

- Les coordonnées de $\overrightarrow{u} = 2\overrightarrow{e_1} 4\overrightarrow{e_2} + \overrightarrow{e_3}$ sont (2, -4, 1).
- Si \overrightarrow{v} a pour coordonnées (-1,0,3), alors $\overrightarrow{v}=3\overrightarrow{e_3}-\overrightarrow{e_1}$.

 \clubsuit Dans toute la suite, sauf mention contraire, la famille $(\overrightarrow{e_1}, \dots, \overrightarrow{e_p})$ désigne la base canonique de \mathbb{R}^p .

Propriété

Pour tout $j \in \{1, \dots, p\}$, on définit

$$\overrightarrow{f_j} = \sum_{i=1}^{p} \alpha_{i,j} \overrightarrow{e_i} = \alpha_{1,j} \overrightarrow{e_1} + \alpha_{2,j} \overrightarrow{e_2} + \cdots + \alpha_{p,j} \overrightarrow{e_p},$$

et on note $P = (\alpha_{i,j})_{1 \leq i,j \leq n}$ la matrice

$$P = \begin{pmatrix} \overrightarrow{f_1} & \overrightarrow{f_2} & \dots & \overrightarrow{f_p} \\ \alpha_{1,1} & \alpha_{1,2} & \dots & \alpha_{1,p} \\ \alpha_{2,1} & \alpha_{2,2} & \dots & \alpha_{2,p} \\ \vdots & \vdots & & \vdots \\ \alpha_{p,1} & \alpha_{p,2} & \dots & \alpha_{p,p} \end{pmatrix} = \|\overrightarrow{f_1} \dots \overrightarrow{f_p}\|_{\overrightarrow{e_i}}$$

La famille $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$ est une base de \mathbb{R}^p ssi la matrice P est inversible.

Exercice

Dans l'espace vectoriel \mathbb{R}^3 , les familles suivantes sont-elles des bases?

- $\overrightarrow{v_1} = (1, 1, 1), \ \overrightarrow{v_2} = (1, 0, 1) \text{ et } \overrightarrow{v_3} = (-1, 0, 0).$ $\overrightarrow{v_1} = (1, -1, 1), \ \overrightarrow{v_2} = (0, 0, 1) \text{ et } \overrightarrow{v_3} = (1, 1, 1).$

Définition

La matrice $P = \|\overrightarrow{f_1} \dots \overrightarrow{f_p}\|_{\overrightarrow{e_i}}$ s'appelle la **matrice de passage** de $(\overrightarrow{e_1}, \dots \overrightarrow{e_p})$ à $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$, aussi notée :

$$P=P_{\overrightarrow{e_i}
ightarrow\overrightarrow{f_i}}.$$

Propriété

La matrice P^{-1} vérifie

$$P^{-1} = \|\overrightarrow{e_1} \dots \overrightarrow{e_p}\|_{\overrightarrow{f_i}} = P_{\overrightarrow{f_i} o \overrightarrow{e_i}}.$$

Propriété

Soit \overrightarrow{X} un vecteur de \mathbb{R}^p , de coordonnées $X=(x_1,\ldots,x_p)$ dans une base $(\overrightarrow{e_1},\ldots,\overrightarrow{e_p})$.

Les coordonnées $X'=(x'_1,\ldots,x'_p)$ de \overrightarrow{X} dans une autre base $(\overrightarrow{f_1},\ldots,\overrightarrow{f_p})$ sont données par

$$X' = P^{-1}X \iff PX' = X.$$

Remarque

Attention, dans cette dernière écriture matricielle, les vecteurs X et X' sont écrits en colonnes.

Exercice

Dans \mathbb{R}^2 on considère les vecteurs $\overrightarrow{f_1}$ et $\overrightarrow{f_2}$ définis par

$$\left\{ \begin{array}{l} \overrightarrow{f_1} = 2\overrightarrow{e_1} + \overrightarrow{e_2} \\ \overrightarrow{f_2} = 3\overrightarrow{e_1} + 2\overrightarrow{e_2}. \end{array} \right.$$

- Vérifier que $(\overrightarrow{f_1}, \overrightarrow{f_2})$ forme une base de \mathbb{R}^2 .
- Soit $\overrightarrow{x} = 2\overrightarrow{e_1} + 3\overrightarrow{e_2}$. Quelles sont les coordonnées de \overrightarrow{x} dans la base $(\overrightarrow{f_1}, \overrightarrow{f_2})$?

Soit M une matrice carrée de $M_p(\mathbb{R})$. On dit que le vecteur \overrightarrow{y} est l'**image** du vecteur \overrightarrow{x} par M si

$$Y = MX$$

Où X et Y sont les vecteurs colonnes des coordonnées respectives de \overrightarrow{X} et \overrightarrow{Y} dans la base $(\overrightarrow{e_1}, \dots, \overrightarrow{e_p})$.

Propriété

Si X' et Y' sont les coordonnées des vecteurs \overrightarrow{X} et \overrightarrow{y} dans une base $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$, alors Y' = M'X' où

$$M' = P^{-1}MP$$
 avec $P = P_{\overrightarrow{e_i} \rightarrow \overrightarrow{f_i}} = \|\overrightarrow{f_1} \dots \overrightarrow{f_p}\|_{\overrightarrow{e_i}}$.

Exercice

On pose $M = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \in M_3(\mathbb{R})$, et on considère les vecteurs

$$\begin{cases} \overrightarrow{f_1} = (1,0,-1) \\ \overrightarrow{f_2} = (0,1,1) \\ \overrightarrow{f_3} = (1,0,1) \end{cases}$$

exprimés dans la base canonique.

- Vérifier que $(\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3})$ est une base de \mathbb{R}^3 .
- Déterminer la représentation de *M* dans cette nouvelle base.

Définitions

Soient $\overrightarrow{X} = (x_1, \dots, x_p)$ et $\overrightarrow{Y} = (y_1, \dots, y_p)$ deux vecteurs de \mathbb{R}^p .

• Le **produit scalaire** de \overrightarrow{x} et \overrightarrow{y} est le nombre réel donné par

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \sum_{i=1}^{p} x_i y_i = x_1 y_1 + \cdots + x_p y_p.$$

• La **norme** du vecteur \overrightarrow{x} est donnée par :

$$\|\overrightarrow{x}\| = \sqrt{\langle \overrightarrow{X}, \overrightarrow{X} \rangle} = \sqrt{\sum_{i=1}^{p} x_i^2}.$$

Propriétés

• Le produit scalaire est symétrique, et linéaire en chacun de ces arguments :

• Le produit scalaire est défini positif :

$$\forall \overrightarrow{x} \in \mathbb{R}^p, \ \langle \overrightarrow{x}, \overrightarrow{x} \rangle \geqslant 0,$$

avec égalité ssi $\overrightarrow{x} = \overrightarrow{0}$.

- Pour tout $\overrightarrow{X} \in \mathbb{R}^p$, $\|\overrightarrow{X}\| = 0 \iff \overrightarrow{X} = \overrightarrow{0}$.
- Pour tout $\overrightarrow{X} \in \mathbb{R}^p$ et tout $\lambda \in \mathbb{R}$, $\|\lambda \overrightarrow{X}\| = |\lambda| \cdot \|\overrightarrow{X}\|$.
- Pour tous \overrightarrow{x} , $\overrightarrow{y} \in \mathbb{R}^p$, $\|\overrightarrow{x} + \overrightarrow{y}\| \le \|\overrightarrow{x}\| + \|\overrightarrow{y}\|$ (inégalité triangulaire).

Orthogonalité

Deux vecteurs \overrightarrow{x} et \overrightarrow{y} d \mathbb{R}^p sont **orthogonaux** si

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = 0.$$

Propriété

Soient \overrightarrow{x} et \overrightarrow{y} deux vecteurs orthogonaux de \mathbb{R}^p , on a

$$\|\overrightarrow{\textbf{X}}+\overrightarrow{\textbf{y}}\|^2=\|\overrightarrow{\textbf{X}}\|^2+\|\overrightarrow{\textbf{y}}\|^2.$$

Familles orthogonales et orthonormales

Une famille $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ de \mathbb{R}^p est dite :

• orthogonale si

$$\forall i,j \in \{1,\ldots,n\}, \ \langle \overrightarrow{v_i}, \overrightarrow{v_j} \rangle = 0.$$

• orthonormale si elle est orthogonale et si

$$\forall i \in \{1,\ldots,n\}, \|\overrightarrow{v_i}\| = 1.$$

Remarques

- La base canonique de \mathbb{R}^p est une base orthonormale.
- Toute famille orthogonale de vecteurs non nuls est libre.

Exercice

• Montrer que la famille de vecteurs

$$\overrightarrow{v_1} = (1, 1, 1, 1), \ \overrightarrow{v_2} = (1, 0, 0, -1), \overrightarrow{v_3} = (0, 1, -1, 0) \text{ et } \overrightarrow{v_4} = (1, -1, -1, 1)$$

est orthogonale.

• En déduire une base orthonormale de \mathbb{R}^4 .

 \mathbb{Q} Soient \overrightarrow{x} et \overrightarrow{y} deux vecteurs de \mathbb{R}^p , dont les coordonnées s'écrivent en vecteurs colonnes

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}$.

Le produit scalaire de \vec{x} et \vec{y} est donné par

$$\langle \overrightarrow{X}, \overrightarrow{Y} \rangle = X^T Y.$$

Propriété

Soit $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$ une famille de \mathbb{R}^p , et P la matrice

$$P = \|\overrightarrow{f_1} \dots \overrightarrow{f_p}\|.$$

 $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$ est une base orthonormale de \mathbb{R}^p ssi

$$P^TP = PP^T = I_p$$
.

Remarque

En particulier, la matrice de passage de la base canonique $(\overrightarrow{e_1}, \dots \overrightarrow{e_p})$ vers une base orthonormale $(\overrightarrow{f_1}, \dots, \overrightarrow{f_p})$, notée $P = P_{\overrightarrow{e_i} \to \overrightarrow{f_i}}$ est inversible, d'inverse $P^{-1} = P^T$.

Exercice

Soit *P* la matrice de passage de la base canonique vers une base orthonormale.

• Montrer que pour tout $X, Y \in \mathbb{R}^p$

$$\langle P^T X, P^T Y \rangle = \langle X, Y \rangle$$

où les vecteurs sont notés en colonnes.

• En déduire que pour tout $X \in \mathbb{R}^p$,

$$||P^TX|| = ||X||.$$

Qu'en déduit-on?