Algoritmi e Strutture Dati a.a. 2015/16

Prima prova intermedia del 20/01/2016

e: Nome: a: E-mail:
Dato un albero generico i cui nodi hanno attributi key, left-child, right-sib , scrivere una funzione C che restituisce il numero di nodi interni i cui figli hanno tutti la stessa chiave. Qual è la complessità della funzione?
Sia T un albero binario di ricerca di altezza h e avente n nodi con chiavi intere eventualmente ripetute. Si progetti un algoritmo efficiente che, ricevuto in ingresso T e un intero k , conta il numero di occorrenze di k in T . Analizzare la complessità dell'algoritmo.
Si definiscano formalmente le relazioni O, Ω , Θ , o, ω e si dimostri la verità o la falsità di ciascuna delle seguenti affermazioni, giustificando formalmente le risposte: a) Se $P(n)$ è un polinomio di grado k , allora $P(n) = \Theta(n^k)$
b) $n = O(n \log \log n)$
c) $n \log \log n = O(n^{1+\varepsilon})$, per ogni $\varepsilon > 0$

d) f(n) = O(g(n)) se e solo se $g(n) = \Omega(f(n))$

e) $\omega(f(n)) \cap O(g(n)) = \emptyset$