Lemmas, Theorems and Definitions Pumping Lemma through page 52

Author: José Kuiper, Noud de Kroon

May 24, 2015

Lemmas and Theorems

1.1 Chapter 1

1.1	Definition of an alphabet:
	Let Σ be an alphabet. The set Σ^* of strings or finite words of Σ is defined as follows:
	• The empty string $\epsilon \in \Sigma^*$;
	• if $a \in \Sigma$ and $w \in \Sigma^*$ then $aw \in \Sigma^*$
1.2	Definition of length of a string:
	Given an alphabet Σ , the length $ w $ for a string $w \in \Sigma^*$ is given by:
	$ i \epsilon = 0, (ii) aw = w + 1.$
1.4	Definition of concatenations:
	Let Σ be an alphabet. The concatenation $wv \in \Sigma^*$ of strings $w, v \in \Sigma^*$ is given by:
	(i) $\epsilon v = v$, and (ii) $(aw)v = a(wv)$
def	A string v is called a prefix of a string w if $vu = w$ for some string u, notation $v \leq w$.
	In the situation that $v \leq w$ we occasionaly write $u = w/v$, so if $v \leq w$ then we have
	v(w/v) = w.
1.5	Let Σ be an alphabet and $c \in \Sigma$. The count $\#_c(w)$ of a symbol $c \in \Sigma$ in a string
	$w \in \Sigma^*$ is given by:
	$\bullet \ \#_c(\epsilon) = 0;$
	• $\#_c(cw) = \#_c(w) + 1;$
	• $\#_c(aw) = \#_c(w)$ if $a \neq c$
1.6	Definition of a language:
	Let Σ be an alphabet. A subset $L \subset \Sigma^*$ is called a language over Σ .
1.8a	Definition of language concatenation:
	Let $L_1, L_2 \subset \Sigma^*$ be two languages over an alphabet Σ . The concatenation $L_1 \cdot L_2$
	of L_1 and L_2 is given by:
	$L_1 \cdot L_2 = \{ w_1 w_2 w_1 \in L_1, w_2 \in L_2 \}$
1.8b	Definition of Kleene-closure:

Let $L \subset \Sigma$ be a language over an alphabet Σ . The Kleene-closure L^* of L is given by:

 $L^* = \{w_1 \cdots w_n | n \ge 0, w_1, \cdots, w_n \in L\}$

1.2 Chapter 2

2.27 Pumping Lemma for regular languages:

This theorem can be used to prove that a language is not regular.

Details:

Let L be a regular language over an alphabet Σ . There exists a constant m>0 such that each $w\in L$ with |w|>m can be written as w=xyz where $x,\,y,\,z\in\Sigma^*,\,y\neq\varepsilon,\,|xy|\leq m,$ and for all k>0: $xy^kz\in L$.

- 2.30 Let L be a regular language over an alphabet Σ represented by an NFA N accepting L. Then it can be decided if $L = \emptyset$ or not.
- 2.31 With this theorem you can decide whether a string is in a language or not. Details:

Let $L \subseteq \Sigma^*$ be a regular language over the alphabet Σ , represented by an NFA N accepting L, and let $w \in \Sigma^*$ be a string over Σ . Then it can be decided if $w \in L$ or not.

How to prove this:

Construct, using the algorithm given in the proof of Theorem 2.13, a DFA D such that $\mathcal{L}(D) = \mathcal{L}(N)$. Simulate D starting from its initial state on input w, say $(q_0, w) \vdash^*_D (q', \varepsilon)$ for some state q' of D. Decide $w \in L$ if q' is a final state of D, decide $w \notin L$ otherwise.

1.3 Chapter 3

3.1 Push-down automata

3.2 Definition of a push-down automaton:

A push-down automaton (PDA) is a septuple $P = (Q, \Sigma, \Delta, \emptyset, \rightarrow, q_0, F)$ where

- 1. Q is a finite set of states,
- 2. \sum is a finite input alphabet with $\tau \neq \sum$,
- 3. Δ is a finite data alphabet or stack alphabet,
- 4. $\emptyset \neq \Delta$ a special symbol denoting an empty stack,
- 5. $\rightarrow \subseteq Q \times \sum_{\tau} \times \Delta_{\emptyset} \times \Delta^* \times Q$, where $\sum_{\tau} = \sum \cup \tau$ and $\Delta_{\emptyset} = \Delta \cup \emptyset$, is a finite set of transitions or steps,
- 6. $q_0 \in Q$ is the initial state,
- 7. $F \subseteq Q$ is the set of final states.
- 3.4 Definition of configuration of a PDA:

Let $P = (Q, \sum, \Delta, \emptyset, \rightarrow, q_0, F)$ be a push-down automaton. A configuration or instantaneous description (ID) of P is a triple $(q, w, x) \in Q \times \sum^* \times \Delta^*$. The relation $\vdash_P \subseteq (Q \times \sum^* \times \Delta^*) \times (Q \times \sum^* \times \Delta^*)$ is given as follows.

- (i) $(q, aw, dy) \vdash_P (p, w, xy) \text{ if } q \xrightarrow{a[d/x]} p$
- (ii) $(q, w, dy) \vdash_{P} (p, w, xy) \text{ if } q \xrightarrow{\tau[d/x]} p$ (iii) $(q, aw, \varepsilon) \vdash_{P} (p, w, x) \text{ if } q \xrightarrow{a[\emptyset/x]} p$
- (iv) $(q, w, \varepsilon) \vdash_P (p, w, x)$ if $q \xrightarrow{\tau[\emptyset/x]} p$
- Lemma for PDA properties, stating that suffixes for strings and stacks don't matter for configurations. Let $P = (Q, \sum, \Delta, \emptyset, \rightarrow, q_0, F)$ be a push-down automaton.
 - (a) For $w, w', v \in \Sigma^*$, $q, q' \in Q$, $x, x', y \in \Delta^*$ with $x \neq \varepsilon$, it holds that $(q, wv, xy) \vdash_P (q', w'v, x'y) \Leftrightarrow (q, w, x) \vdash_P (q', w', x')$
 - (b) For $n \geq 0$, $w_i \in \Sigma^*$, $q_i \in Q$, $x_i \in \Delta^*$ with $x_i \neq \varepsilon$, for $1 \leq i < n$, $v \in \Sigma^*$ and $y \in \Delta^*$, it holds that

$$(q_0, w_0v, x_0y) \vdash_P (q_1, w_1v, x_1y) \vdash_P \dots \vdash_P (q_n, w_nv, x_ny) \Leftrightarrow$$

$$(q_0, w_0, x_0) \vdash_P (q_1, w_1, x_1) \vdash_P \dots \vdash_P (q_n, w_n, x_n)$$

- Definition on when a language is accepted by a PDA:
 - Let $P = (Q, \Sigma, \Delta, \emptyset, \rightarrow, q_0, F)$ be a push-down automaton. The language $\mathcal{L}(P)$, called the language accepted by the push-down automaton P, is given by:

$$\{ w \in \sum^* \mid \exists_q \in F \,\exists_x \in \Delta^* : (q_0, w, \varepsilon) \vdash^*_P (q, \varepsilon, x) \}$$

Note that we require q to be a final state of P, i.e. $q \in F$, but x can be any stack content.

3.2 Context-free grammars

3.10 Definition of a context-free grammar:

A context-free grammar (CFG) is a four-tuple G = (V, T, R, S) where

- 1. V is a non-empty finite set of variables or non-terminals,
- 2. T is a finite set of terminals,
- 3. $R \subseteq V \times (V \cup T)^*$ is a finite set of production rules, and
- 4. $S \in V$ is the start symbol.

Example: $V = \{S\}$, $T = \{a, b\}$ and R consists of $S \to ab$ and $S \to aSb$.

Definition on production, production sequence and language of a CFG. 3.13 Let G = (V, T, R, S) be a context-free grammar.

> • Let $A \to \alpha \in R$ be a production rule of G. Thus $A \in V$ and $\alpha \in (V \cup T)^*$. Let $\gamma = \beta_1 A \beta_2$ be a string in which A occurs. Put $\gamma' = \beta_1 \alpha \beta_2$. We say that from the string γ the production rule $A \to \alpha$ produces the string γ' , notation $\gamma \Rightarrow_G \gamma'$.

> • A production sequence or derivation is a sequence $(\gamma_i)_{i=0}^n$ such that $\gamma_{i-1} \Rightarrow_G \gamma_i$, for $1 \le i \le n$. Often we write

$$\gamma_0 \Rightarrow_G \gamma_1 \Rightarrow_G \dots \Rightarrow_G \gamma_{n-1} \Rightarrow_G \gamma_n$$

The length of this production sequence is n. In case $\gamma = \gamma_0$ and $\gamma' = \gamma_n$ we also write $\gamma \Rightarrow^*_G \gamma'$.

• Let $A \in V$ be a variable of G. The language $\mathcal{L}_G(A)$ generated by G from A is given by $\mathcal{L}_G(A) = \{ w \in T^* \mid A \Rightarrow_G^* w \}$

• The language (G), the language generated by the CFG G, consists of all strings of terminals that can be produced from the start symbol S, i.e.

$$\mathcal{L}(G) = \mathcal{L}_G(S)$$

• A language L is called context-free, if there exists a context-free grammar G such that $L = \mathcal{L}(G)$.

Lemma on splitting and combining production sequences. This technical lemma 3.15 summarizes the context independence of the machinery introduced and is used in many situations. Let G = (V, T, R, S) be a context-free grammar.

- (a) Let $x, x', y, y' \in (V \cup T)^*$. If $x \Rightarrow_G^n x'$ and $y \Rightarrow_G^m y'$ then $xy \Rightarrow_G^{n+m} x'y'$.
- (b) Let $k \geq 1, X_1, ..., X_k \in V \cup T, n_1, ..., n_k \geq 0$, and $x_1, ..., x_k \in (V \cup T)^*$. If $X_1 \Rightarrow_G^{n_1} x_1, ..., X_k \Rightarrow_G^{n_k} x_k, \text{ then } X_1...X_k \Rightarrow_G^n x_1...x_k \text{ where } n = n_1 + ... + n_k.$
- (c) Let $X_1, ..., X_k \in V \cup T$, and $x \in (V \cup T)^*$. If $X_1...X_k \Rightarrow_G^n x$ then exist $n_1, ..., n_k \ge 0$, and $x_1, ..., x_k \in V \cup T$)* such that $n = n_1 + ... + n_k, X_1 \Rightarrow_G^{n_1}$ $x_1, ..., X_k \Rightarrow_G^{n_k} x_k$, and $x = x_1 ... x_k$.

3.17 Definition on left- and rightmost production and sequence.

Let G = (V, T, R, S) be a context-free grammar. A production $\gamma \Rightarrow_G \gamma'$ is called a leftmost production if γ' is obtained from γ by application of a production rule of G on the leftmost variable occurring in γ , i.e., $\gamma = wA\beta$, $A \to \alpha$ a rule of G, $\gamma' = w\alpha\beta$ for some $w \in T^*$, $A \in V$, and α , $\beta \in (V \cup T)^*$. Notation, $\gamma \stackrel{l}{\Rightarrow}_G \gamma'$. A leftmost derivation of G is a production sequence $(\gamma_i)_{i=0}^n$ of G for which every production is leftmost. Notation, $\gamma \stackrel{l}{\Rightarrow}_G \gamma'$. Similarly, one can define the notion of a rightmost production and a rightmost derivation for a CFG G.

3.18 Theorem: If L is a regular language, then L is also context-free.

How to prove:

Let $D = (Q, \sum, \delta, q_0, F)$ be a deterministic automaton that accepts L. Define the grammar $G = (Q, \sum, R, q_0)$ where R is given by

$$R = \{q \to aq' \mid \delta(q, a) = q'\} \cup \{q \to \varepsilon \mid q \in F\}$$

Then prove that $L \subseteq \mathcal{L}(G)$ as well as the other way around, with the help of a string $w \in L$, from which you may conclude that: $L = \mathcal{L}(G)$.

Note: the reverse of this theorem does *not* hold!

3.3 Parse trees

3.19 Definition of parse trees:

Let G = (V, T, R, S) be a context-free grammar. The collection \mathcal{PT}_G of parse trees of G, a set of rooted node-labeled trees, is given as follows:

- A single root tree [X] with root labeled X is a parse tree for G if X is a variable or terminal of G.
- A two-node tree $[A \to \varepsilon]$, with root labeled A and leaf labeled ε is a parse tree for G if $A \in V$ and $A \to \varepsilon$ is a production rule of G.
- If PT_1 , PT_2 , ..., PT_k are k parse trees for G with roots X_1 , X_2 , ..., X_k , respectively, and $A \to X_1X_2...X_k$ is a production rule of G, then the tree $[A \to PT_1, PT_2, ..., PT_k]$ with root labeled A and subtrees of the root $PT_1, PT_2, ..., PT_k$ is a parse tree for G.

Definition of yield function:

The yield function: $yield: \mathcal{PT}_G \to (V \cup T)^*$ with respect to G is given by:

- $yield([X]) = X \text{ for } X \in V \cup T$,
- $yield([A \to \varepsilon]) = \varepsilon$ for $A \in V$,
- $yield([A \rightarrow PT_1, PT_2, ..., PT_k]) = yield(PT_1) * yield(PT_2) * ... * yield(PT_k)$ for $A \in V, PT_1, ..., PT_k \in \mathcal{PT}_G$.