Avance de Phase – Train d'atterrissage d'hélicoptère **

Banque PT - SIA 2014

Savoirs et compétences :

- Res1.C4.SF1: Proposer la démarche de réglage d'un correcteur à avance de phase
- Con.C2 : Correction d'un système asservi

Mise en situation

Objectif Pour une vitesse d'impact de $4 \,\mathrm{m \, s^{-1}}$ l'accélération de la queue doit rester inférieure à $3 \,\mathrm{rad \, s^{-2}}$.

Fonction de transfert en boucle ouverte non corrigée

Objectif II s'agit dans un premier temps d'analyser la forme de la fonction de transfert en boucle ouverte non corrigée de la chaîne de commande semi-active.

Question 1 Déterminer littéralement et sous forme canonique la fonction de transfert $H_F(p) = \frac{\dot{Z}^*(p)}{F_{\acute{e}a}(p)}$.

$$\begin{split} & \text{Correction} \\ & H_{F}(p) = \frac{H_{Z}(p)\frac{1}{p}}{1 + \lambda_{a}H_{Z}(p)\frac{1}{p}} = \frac{\frac{K_{Z}p^{2}}{1 + \frac{2\xi_{Z}}{\omega_{Z}}p + \frac{p^{2}}{\omega_{Z}^{2}}}}{1 + \lambda_{a}\frac{K_{Z}p^{2}}{1 + \frac{2\xi_{Z}}{\omega_{Z}}p + \frac{p^{2}}{\omega_{Z}^{2}}}} = \\ & \frac{K_{Z}p^{2}}{p\left(1 + \frac{2\xi_{Z}}{\omega_{Z}}p + \frac{p^{2}}{\omega_{Z}^{2}}\right) + \lambda_{a}K_{Z}p^{2}}} \\ & = \frac{K_{Z}p}{1 + \left(\frac{2\xi_{Z}}{\omega_{Z}} + \lambda_{a}K_{Z}\right)p + \frac{p^{2}}{\omega_{Z}^{2}}}. \end{split}$$

Question 2 Déterminer littéralement et sous forme canonique la fonction de transfert en boucle ouverte non corrigée $H_{BONC}(p)$.

Correction
$$H_{\mathrm{BONC}}(p) = \frac{K_Z p}{1 + \left(\frac{2\xi_Z}{\omega_Z} + \lambda_a K_Z\right) p + \frac{p^2}{\omega_Z^2}} \cdot \frac{K_S}{1 + T_S p}.$$

Question 3 Justifier la forme de ce diagramme en traçant les asymptotes et en indiquant comment retrouver sur le tracé les valeurs de K_z et ω_z . Tracer en rouge les dia-

1

grammes de la fonction $H_{BONC}(p)$. On prendra pour cela $20 \log K_S \simeq 100 \, \mathrm{dB}$.

Correction H_F est un second ordre dérivé de coefficient d'amortissement ξ_F et de pulsation propore ω_Z . Ne pouvant pas calculer ξ_F , l'allure du diagrame de Bode suggère que $\xi_F < 1$ car il y a une seule rupture de pente à $\omega_Z = 5.5 \, \mathrm{rad} \, \mathrm{s}^{-1}$.

Pour $\omega < \omega_Z <$ l'asymptote du second ordre à un gain de 0 dB. Seul le dérivateur est influent. En conséquence, pour $\omega = 1 \operatorname{rad} s^{-1}$, on a donc $\left| K_Z p \right|_{\mathrm{dB}} = 20 \log K_Z = -106$. On a donc $K_Z = 5 \times 10^{-6}$.

Choix et réglage de la correction

Objectif II s'agit à présent de définir la structure du correcteur et de proposer un réglage permettant de satisfaire les critères du cahier des charges.

Question 4 Quelle doit être la classe minimale du correcteur afin de garantir le critère de précision?

Correction Pour que l'erreur statique soit nulle, il faut que la classe de la FTBO soit de 1. La classe de la FTBO non corrigée étant de «-1», il faut donc que le correcteur soit de classe 2 pour que le critère de précision soit garanti.

Question 5 Évaluer les marges de stabilité pour ce réglage. Déterminer la valeur de K_p garantissant le critère de pulsation de coupure à 0 dB. Ce correcteur peut-il permettre de répondre aux critères de performances énoncés en début de partie? Justifier la réponse

Correction La marge de gain est de $18 \, \mathrm{dB}$ et la marge de phase est de 95° .

Pour avoir une pulsation de coupure à 0 dB de $6 \, \text{rad} \, \text{s}^{-1}$, il faut relever le gain de $20 \, \text{dB}$ soit $K_P = 10$. Dans ces conditions, la marge de phase est de -15° et la marge de gain est $-2 \, \text{dB}$.

En conséquences, le système est précis (écart nul) et la pulsation de coupure du cahier des charges est respectée. Les marges ne sont plus satisfaites.

Question 6 Comment se nomme l'action de correction obtenue avec ce terme?

Correction L'action de correction obtenue est de l'avance de phase.

Question 7 Quelle valeur doit-on donner à μ pour garantir le critère de marge de phase?

Correction Cas 1: on conserve $K_P = 10$. Le correcteur doit ajouter 60° de phase pour $\omega = 6 \, \text{rad s}^{-1}$. Il faut donc $\mu = 14$.

Cas 2: on reprend $K_P = 1$. Dans ce cas, on souhaite que lorsque $\omega = 6 \, \text{rad} \, \text{s}^{-1}$, φ soit égal à 45°. Il faut donc ajouter 65°de phase à cette pulsation. Dans ces conditions, $\mu = 20$.

Le critère de précision reste validé car il y a toujours les deux intégrateurs dans le correcteur.

Question 8 En déduire les valeurs de T et de K_P permettant d'assurer les critères de stabilité et de bande passante énoncés au début de partie. Le critère de précision est-il validé?

Correction Dans le cas 1 :
$$\omega = \frac{1}{T\sqrt{\mu}} \Leftrightarrow T = \frac{1}{\omega\sqrt{\mu}} =$$

 $\frac{1}{6\sqrt{14}}$ = 0,045 s. Le gain K_P déjà déterminé permet de satisfaire le cahier des charges. Il faut donc que le gain du correcteur à avance de phase soit nul à la pulsation de coupure à $\omega_{\rm 0dB}$.

Il faut donc que $\frac{1}{2} \left(20 \log(\mu K_p') + 20 \log K_p' \right) = 0 \Rightarrow$ $\log(\mu K_p'^2) = 0 \Rightarrow \mu K_p'^2 = 1 \Rightarrow K_p' = \sqrt{1/\mu} = 0,267.$

$$\log(\mu K_P'^2) = 0 \Rightarrow \mu K_P'^2 = 1 \Rightarrow K_P' = \sqrt{1/\mu} = 0,267.$$
Dans le cas 2 : $\omega = \frac{1}{T\sqrt{\mu}} \Leftrightarrow T = \frac{1}{\omega\sqrt{\mu}} = \frac{1}{6\sqrt{20}} = 0,037 \text{ s.}$

Actuellement, le gain est de $-20\,\mathrm{dB}$ pour $\omega = 6\,\mathrm{rad}\,\mathrm{s}^{-1}$. Il faut donc augmenter le gain de $20\,\mathrm{dB}$ pour la pulsation $\frac{1}{T\sqrt{u}}$. Ceci revient donc à résoudre

$$20\log K_p + \frac{1}{2} \left(20\log \mu K_p - 20\log K_p \right) = 20 \Rightarrow \log K_p + \log \sqrt{\mu} = 1 \Rightarrow K_p \sqrt{\mu} = 10 \Rightarrow K_p = 10/\sqrt{20} = 2, 6.$$

Remarque: dans le cas 1 le gain du correcteur est $K_p \times K_p' = 2,6$. Dans le cas 2 $K_p = 2,6$.

Validation des performances

Objectif II s'agit dans cette dernière partie de vérifier les performances globales de la boucle d'asservissement.

Question 9 En analysant cette courbe, conclure quant à la validité du cahier des charges.

Correction Pour une vitesse d'impact de $4 \,\mathrm{m\,s^{-1}}$ l'accélération reste bien inférieure à $3 \,\mathrm{rad\,s^{-2}}$.