A High-Order Low-Order Algorithm with Exponentially-Convergent Monte Carlo for Thermal Radiative Transfer

Simon Bolding¹, Jim Morel¹, and Mathew Cleveland²

¹Texas A&M University ²Los Alamos National Laboratory

MC 2015 - April 22

Introduction

EXAS A&M *
NGINEERING

1 / 23

S.R. Bolding HOLO for TRT MC 2015 - April 22

Outline

- Introduction
- 2 Low-Order Solver
- High-Order Solver
- 4 Algorithm
- **6** Computational Results
- **6** Conclusions

ÉNĞİNEERING

Overview

Introduction

- We are interested in modeling thermal radiation transport in the high-energy density physics regime
 - Temperatures on order of 10^6 K or more
 - Significant energy and momentum may be exchanged with material

3 / 23

 Low-Order Solver
 High-Order Solver
 Algorithm
 Computational Results
 Conclusions

 00
 0
 0000
 00

Overview

Introduction

- We are interested in modeling thermal radiation transport in the high-energy density physics regime
 - Temperatures on order of 10⁶ K or more
 - Significant energy and momentum may be exchanged with material
- Radiative transfer simulations important in modeling:
 - Material under extreme conditions
 - Inertial confinement fusion
 - Supernovae and other astrophysical phenomena.

ENGINEERING

S.R. Bolding HOLO for TRT MC 2015 - April 22 3 / 23