NSI Terminale - Base de données relationnelles Conception

Conception d'une base de données relationnelle

Menu

- Conception, cas général
 - Généralités
 - Analyse
 - MCD
 - Modèle Relationnel
- Conception à partir d'un csv

Conception, cas général

Généralités

Intérêts d'un Système de Gestion de Base de Données (SGBD)

- Assure la persistance des données
- Structure l'information
- Permet de trouver rapidement une information
- Multi-utilisateurs
- Sécurise les données
 - Filtre les données qu'un groupe d'utilisateurs peut voir
 - Centralise la sauvegarde et la mise à jour des données
- Maintient la cohérence des données
 - Non redondance
 - Contrôle de l'intégrité des données (lors de la saisie, de la mise à jour, de la suppression)

Généralités

Type de SGBD

- Bases hiérarchiques (structure arborescente) ou réseau (structure de graphe)
 - navigation entre les données
- Bases relationnelles
 - Données sous forme de table, langage SQL
- Bases déductives
 - Intégration d'ensemble de règles, langage DATALOG
- Bases objet
 - Données sous forme d'objets
- Bases noSQL
 - Pas de structuration des données

Généralités

Exemples de SGBD Relationnels (SGDBR)

- Access (suite Microsoft Office)
- SQlite (libre, https://www.sqlite.org/index.html)

- PosgreSQL (libre, https://www.postgresql.org/)
- Oracle (https://www.oracle.com/)
- DB2 (https://www.ibm.com/analytics/db2)
- H2 (libre, www.h2database.com)

Volumétrie

Exemple de la banque (BNP Paribas)

- Grande masse d'informations 8.10⁶ clients
 - 4 comptes par client, donc 32.10⁶ comptes
 - 20 écritures par mois par compte, donc 6, 4.10⁸ écritures par mois
- Plusieurs utilisateurs simultanément
 - 2140 agences
 - 31.460 collaborateurs
 - des milliers d'accès internet

Analyse

- Travail préalable à la création de la base de données
- Travail Complexe et Difficile
- Déterminer les informations qui sont nécessaires à l'application
 - gestion de la paie, des congés, du stock
 - application web

Dictionnaire de données

- Parmi toutes les informations, on repère les données élémentaires ou propriétés
 - niveau de granularité dépend du contexte (adresse, client,...)
- Le dictionnaire de données représente l'ensemble des données élémentaires

Modèle Conceptuel de Données: MCD

- Le MCD est une représentation du système d'informations à l'aide d'entités et d'associations
- C'est le résultat du travail des analystes, il sert de base à la création de la base de données
- Peut être lu et compris par des non informaticiens
- Un MCD est toujours contextuel

MCD: Notion d'Entité

- Une entité regroupe les propriétés relatives à un même sujet, qui a du sens
 - Exemple: une voiture, un individu...
- Comporte un identifiant
 - peut être composé par une seule ou plusieurs propriétés
- est unique: ne peut être le même pour deux entités
- Se représente par un rectangle, l'identifiant est souligné

FIGURE 1 – Entité client

MCD: Notion d'Association

- Les entités peuvent être liées par des associations
- Une association est une représentation abstraite de la mémorisation d'un lien entre entités
- Elle est représentée par un cercle entre entités

— Exemples: commande, est_inscrit, travaille_pour, est_marie, habite_dans....

MCD: Cardinalités

- Les cardinalités précisent le nombre de fois que l'entité peut intervenir dans une association.
- La valeur minimale est 0 ou 1, la valeur maximale est 1 ou n
- L'association peut-être hiérarchique (maximum 1 d'un côté, n de l'autre) ou maillée (maximum n des deux côtés), entre une ou plusieurs entités

FIGURE 2 – Association commande

MCD: Autres exemples

Figure 3 – Association est inscrit

MCD: Autres exemples

FIGURE 4 – Association est_inscrit

MCD: Autres exemples

Modèle Relationnel

- La traduction concrète du MCD dépend du modèle de la base
- Dans le cas d'une base de données relationnelle, on obtient un modèle relationnel

Figure 5 – Association est $_$ marie

Figure 6 – Association est_marie

Figure 7 – Association est_divorce

 $Figure \ 8-Association \ est_divorce$

Figure 9 – Association reservation

Figure 10 – Association reservation

Principe

- Données sous forme de tables
- Chaque table et chaque colonne (ou attribut) porte un nom
- Chaque attribut est typé
- Chaque ligne représente un enregistrement
- Pas de lien physique entre les tables

Passage du MCD au Modèle Relationnel

Principe

- Chaque entité devient une table
- Chaque propriété d'une entité devient un attribut
- L'identifiant d'une entité devient la clé primaire de la table (Primary Key)

Lien hiérarchique

— Une association (0-n)-(0-1) (lien hiérarchique) se traduit par la migration de la clé primaire côté n vers une clé étrangère (Foreign Key) côté 1

Lien hiérarchique

Figure 11 – Association est_inscrit

FIGURE 12 – Modèle Relationnel-Lien Hiérarchique

Passage du MCD au Modèle Relationnel

Lien Maillé

— Une association maillée (0-n)-(0-n) donne lieu à la création d'une nouvelle table dont la clé primaire est l'union des clés primaires des entités qu'elle relie. Ces attributs sont aussi des clés étrangères.

FIGURE 13 – Association commande

Lien Maillé

FIGURE 14 – Modèle Relationnel-Lien Maillé

Autres exemples

FIGURE 15 - Association est_marie

Autres exemples

Autres exemples

Autres exemples

Conception à partir d'un csv

Retour sur l'exemple des catégories socio-professionnelles

- Dans le cas où on récupère des données réelles, le problème se pose différemment
- Le dictionnaire des données est déduit du csv récupéré
- En revanche, les données réelles peuvent poser d'autres problèmes: doublons, incohérences, données non complétées ou peu exploitables
- En général, il faut faire un travail de "nettoyage" pour pouvoir créer les tables

FIGURE 16 – Modèle Relationnel mariage

Figure 17 – Association est_divorce

FIGURE 18 – Modèle Relationnel divorce

 $FIGURE\ 19-MCD\ Categorie$

Figure 20 – Modèle Relationnel Categorie

Construire une structure optimisée

Regrouper les données en tables

- Mettre dans une même table les données relatives à un même sujet
- Créer de nouvelles tables pour éviter la redondance des données
 - Limite les incohérences lors des mises à jour
 - Facilite la construction des requêtes et améliore la pertinence des résultats

Construire une structure optimisée

Établir les relations entre tables

- Définir les clés primaires
 - Uniques et non NULL
- Définir les clés étrangères
 - Référencent les clés primaires

Définir des colonnes pertinentes

- Facilité d'interrogation des colonnes
- Données cohérentes au sein d'une colonne
- Ne pas conserver des données qui peuvent être calculées

Construire une structure optimisée

Cas des catégories socioprofessionnelles du Nord.

Code g	Rég [Dépa Libellé géo	Coordonnees	Date	var	Populati	Sexe	Tranche 6	Catégorie Socio-Professionelle	categorie
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Prof. intermédiaires	28	Femmes	15+	Professions Intermédiaires	Prof. Intermédiaires
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Employés	64	Total	15+	Employés	Employés
59001	31	59 Abancourt	50.2368696873,3.20	2012	55+ - Agriculteurs exploitants	0	Total	55+	Agriculteurs Exploitants	Agriculteurs
59001	31	59 Abancourt	50.2368696873,3.20	2012	15-24 - Employés	16	Total	15-24	Employés	Employés
59001		59 Abancourt	50.2368696873,3.20	2012	25-54 - Autres	12	Total	25-54	Autres	Autres
59001		59 Abancourt	50.2368696873,3.20	2012	25-54 -	176	Total	25-54	Total	Total
59001	31		50.2368696873,3.20			196	Hommes	15+	Total	Total
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Artisans, Comm., Chefs entr.	44	Total	15+	Artisans, Commerçants ,Chefs d'entreprises	Chefs d'entreprises
59001		59 Abancourt	50.2368696873,3.20	2012	15+ - Autres	32	Total	15+	Autres	Autres
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Ouvriers	8	Femmes	15+	Ouvriers	Ouvriers
59001	31	59 Abancourt	50.2368696873,3.20	2012	25-54 - Artisans, Comm., Chefs entr.	28	Total	25-54	Artisans, Commerçants ,Chefs d'entreprises	Chefs d'entreprises
59001	31	59 Abancourt	50.2368696873,3.20	2012	25-54 - Ouvriers	28	Total	25-54	Ouvriers	Ouvriers
59001	31	59 Abancourt	50.2368696873,3.20	2012	55+ - Autres	0	Total	55+	Autres	Autres
59001	31				15+ - Artisans, Comm., Chefs entr.	24	Hommes	15+	Artisans, Commerçants ,Chefs d'entreprises	Chefs d'entreprises
59001	31	59 Abancourt	50.2368696873,3.20	2012	Population en 2012 (princ)	445	Total	Population	Total	Total
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Cadres, Prof. intel. sup.	16	Total	15+	Cadres, Professions Intellectuelles Supérieure	Cadres, PIS
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Retraités	48	Femmes	15+	Retraités	Retraités
59001	31	59 Abancourt	50.2368696873,3.20	2012	55+ - Prof. intermédiaires	8	Total	55+	Professions Intermédiaires	Prof. Intermédiaires
59001	31	59 Abancourt	50.2368696873,3.20	2012	15+ - Employés	20	Hommes	15+	Employés	Employés

FIGURE 21 – Fichier d'origine : CSV

Construire une structure pertinente

Regrouper les données en tables

- Tables = données relatives à un même sujet
 - Données sur les villes et sur les effectifs des catégories

Éviter la redondance des colonnes

- var = Tranche + categorie
- categorie = abréviation Catégorie socioprofessionnelle

Construire une structure pertinente

Éviter la redondance des valeurs

- Les colonnes departement et region ne contiennent qu'une seule valeur
- À conserver uniquement si volonté d'étendre à d'autres données

Données cohérentes

- Les colonnes Sexe, Tranche, ... contiennent aussi des totaux !
 - Les totaux peuvent être calculés à l'aide de fonctions et d'agrégats
- Décomposer coordonnees en deux REAL

MCD possible

FIGURE 22 – MCD Categorie

Modèle Relationnel possible

Modèle Relationnel utilisé

Bilan

Quelques remarques

- Base de données relationnelle: ensemble de tables, aucun lien physique entre les tables
- Contraintes d'intégrité :
 - Clé primaire
 - Clé étrangère (contrainte référentielle)
 - Contrainte de domaine (CHECK prix > 0, CHECK reponse IN ('O', 'N')...)
- JOIN vs Produit Cartésien: JOIN plus efficace
- JOIN indépendant des contraintes référentielles

FIGURE 23 – Modèle Relationnel Categorie

FIGURE 24 – Modèle Relationnel utlisé

— Exécution d'une requête: SELECT DISTINCT attribut_1, attribut_2 FROM table1 WHERE attribut_3 > 4 ORDER BY attribut_2;

Important

- Livres
 - Des Bases de Données à l'Internet, Philippe Mathieu, Vuibert
 - Bases de Données, de la modélisation au SQL, Laurent Audibert, Ellipses
- Sources: articles Wikipedia
 - https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
 - https://fr.wikipedia.org/wiki/Mod%C3%A8le_relationnel
 - http://www.capa-invest.fr/portfolio/bnp-paribas-bddf/
- Remerciements
 - Philippe Mathieu pour son aide
 - Maude pour la co-rédaction du sujet de TP
 - Eric et Philippe pour les relectures et corrections