AY: 2022-2023 M1-S1: Dept. of Electrical Engineering

RESIT | AI-ECUE122 Teacher: A. Mhamdi July 2023 Time Limit: $\mathbf{1}_{2}^{\eta}$ h

This document contains 5 pages numbered from 1/5 to 5/5. As soon as it is handed over to you, make sure it is complete. The 4 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **No document** is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- **18 Mysterious or unsupported answers** will not receive full credit.
- **O Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- **\bullet** Task N° 4: Each correct answer will grant a mark with no negative scoring.

·		─	0	>>>C	5	
VIEW	Task	1	2	3	4	Total
SELF-REVIEW	Points	7½	5	4	3½	20
S	Score		7			

Task Nº1

 $30mn \mid (7\frac{1}{2} \text{ points})$

Given the following weight matrices and biases vectors. Draw the corresponding neural network architecture. (Place the values of the synaptic weights and biases on the arrows.)

$$\mathcal{W}^{(1)} = \begin{pmatrix} 0 & 7.14 & 8 & 4 \\ 1 & -5 & 5.12 & -1 \\ -1 & 0.35 & -2 & 0.15 \end{pmatrix} \quad \text{and} \quad b^{(1)} = \begin{pmatrix} -1.2 \\ 3 \\ 0.9 \end{pmatrix}$$

$$W^{(2)} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -2.5 & 0.41 \end{pmatrix}$$
 and $b^{(2)} = \begin{pmatrix} 0.58 \\ -2.4 \end{pmatrix}$

Task N⁰2

20mn | (5 points)

We consider the vastly simplified model of real neuron, also known as **Threshold Logic Unit**. The processing element sums the weighted inputs $w_1x_1 + w_2x_2$, add a bias b and then applies a non linear activation function. The output transmits +1 if and only if the input is positive. Otherwise, it transmits -1.

Consider the problem approximating an \forall (OR) gate. Use bipolar data instead of binary data for the inputs x_1 and x_2 , *i.e.* ± 1 . Weights and bias are all set initially to zero: $w_1 = w_2 = b = 0$.

On your answer sheet, reproduce and fill in, according to Rosenblatt learning rule, the following table. y and \hat{y} denote the target (i.e. the actual output of the gate) and the output of the perceptron. The factor α is set to 1.

x_1	x_2	b	ŷ	у	Δw_1	Δw_2	Δb	w_1	w_2	b
-1	-1	1	1	-1	1	1	-1	1	1	-1
-1	1	1	-1	1	-1	1	1	0	2	0
1	-1	1	-1	1	1	-1	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

Task Nº3

20mn | (4 points)

The code given by Fig. 1, p. 3 allows approximating a non-linear function, using a neural network. Provide the result of the approximation and highlight all intermediate steps.

```
~/appware/julia/julia-1.8/julia
julia> f
  nain(
Dense(2 => 2, relu), # ο parameters

Dense(2 => 1, σ), # 3 parameters

# Total: 4 arrays, 9 parameters, 292 bytes.
Chain(
julia> f.layers[1].weight
2×2 Matrix{Float32}:
 1.05509 0.0551044
0.467942 -0.951435
julia> f.layers[1].bias
2-element Vector{Float32}:
 0.0
 0.0
julia> f.layers[2].weight
1×2 Matrix{Float32}:
1.15204 -0.476447
julia> f.layers[2].bias
1-element Vector{Float32}:
0.0
julia> f([-1.3; 4.5]) # f([-1.3; 4.5])
```

FIG. 1. Julia REPL

Result is 1-element vectorFloat64: 0.5

AY: 2022-2023 M1-S1: Dept. of Electrical Engineering	Full Name: ID:	
RESIT AI-ECUE122	Class:	
July 2023	Room:	
Teacher: A. Mhamdi	Time Limit:	1½ h
Answei	~~~~	
<u>k №4</u>		$\sqrt{2}$ 20mn (3½ points)
(a) $\binom{1}{2}$ point) What is the main motivation	g	
 Transforming continuous va 		
 Help avoiding the vanishing 		dient problem.
Capturing complex non-line		
 Their ability to activate eac 	h neurons indi	vidually.
(b) $\binom{1}{12}$ point) You work for an insurance	e company. Wł	nich machine learning projec
would add the most value for the co	=	
 Create an artificial neural n 	etwork that w	ould host the company direc
tory.	•	
Use machine learning to be	•	
 Create an algorithm that co one data lake. 	nsolidates all o	f your Excel spreadsheets int
\bigcirc Use machine learning and $\mathfrak l$	oig data to rese	arch salary requirements.
(c) $\binom{1}{2}$ point) What is one reason not to and your testing set?	use the same d	lata for both your training se
 You will almost certainly ur 	nderfit the mod	del.
 You will pick the wrong alg 	orithm.	
 You might not have enough 	data for both.	
You will almost certainly ov	verfit the mode	ıl.
(d) (½ point) What is the form of fuzzy	logic?	
○ Two-valued logic √ Many-value	· ·	risp set logic
(e) ($\frac{1}{12}$ point) The values of the set mem	bership is repr	esented by "".
· / (12 1 /		<u> </u>

DO NOT WRITE ANYTHING HERE

(f) $\binom{1}{2}$ point) « The room temperature is <u>hot</u>. » The linguistic variable <u>hot</u> can be represented by "______".

√ fuzzy set

○ crisp set

 \bigcirc fuzzy and crisp set

O none of the mentioned

(g) (½ point) Fuzzy set theory defines fuzzy operators. Choose the fuzzy operators from the following. ✓! ✓ ✓ ✓ ∧

