A Calculus of Tracking: Theory and Practice

Giorgio Di Tizio, Fabio Massacci

Analysis of Web Tracking

 As Web Tracking is a ubiquitous activity on the Internet, a variety of tracker-blocking tools has been proposed

- The de-facto approach to evaluate the efficacy of these tools or to determine policy compliance is by mean of large-scale crawling
 - Results are often contradictory and lack transparency
 - Do the users need a Top X million analysis if they only visit few well-known domains?
- Manual inspection is simply impractical

A framework for Web Tracking

Technical Contributions:

- a framework for independent verification of tracking practices
- based on tracking techniques and data exchange from the client perspective
- formal rules based on IFOL
- automated extraction of rules from snapshots of the Internet (OpenWPM)
- extension to probability

Demonstrated Applications:

- Compare trade-off of tracker-blocking extensions
- Determine potential need for compliance with COPPA

A Formal Model for Web Tracking

- Tracking is decomposed as a sequence of pre- and post-conditions observable as network interactions between websites and the user visiting them.
- Tracker-blocking extensions are modeled as pre-conditions that disable tracking techniques:
 - Block cookies
 - Block connections

Example: Modeling 3rd-party Tracking

UNIVERSITÀ

DI TRENTO

General Rules for Modeling Web Tracking

Inclusion rule:

Access rule:

3rd-party tracking rule

Visit(w)	Access(w,w')	~Block_cookie(w')
	_	

Description

If a website w includes content from a website w', there is a link that allows an exchange of information

Description

If a website w has a link with a website w' that is not blocked by any tracker-blocking tool, then the user access w' from w

Description

If a user visits a website w that forces to access a website w' not blocked by any tool, then w' knows that the user visited w

From Theory to Practice: Predicates instantiation

- The framework automatically instantiates ground predicates from OpenWPM databases
- The remaining predicates are derived by applying the rules in the model

of instantiated ground predicates for the Top Alexa

Variables vs Top Domains	10	20	30	40	50
HTTP responses	925	1957	2864	3618	4530
$\overline{IncludeContent(w,w')}$	824	1803	2681	3391	4272
Redirect(w, w')	101	154	184	229	261
Link(w, w')	925	1957	2865	3620	4533
$Link_{cookie}(w,w')$	3	3	3	5	6
Access(w, w')	925	2272	3636	5024	6382
$Access_{cookie}(w,w')$	3	3	3	5	6
$Cookie_sync(w, w')$	3	3	3	7	8

Analysis of Mitigations for Individual Cases

- The *Knows* and *Access* predicates are used to compare the trade-off of different tracker-blocking tools:
 - # unique Knows

 measures the potential trackers a user can encounter while browsing the Web
 - # unique Access
 measures the connections established and thus site breakage
- A tool A is better than B if the # of unique Access predicates is greater or equal than B, while the # of unique Knows predicate is smaller.

Analysis of Mitigations for Individual Cases

 Different tracker/ad-blocking tools have different trade-offs when visiting 5 to 100 Top Alexa websites. EasyList&EasyPrivacy blocks most trackers at the cost of fewer connections

Do you have to respect COPPA?

- The rules are encoded as axioms for the *Slakje* intuitionistic prover
- Given a conjecture: is req_COPPA(site.com)?
- The framework produces a proof (if exists) of the conjecture by combining ground predicates using the rules

A Calculus of Tracking: Theory and Practice

- We presented a framework for the analysis of web tracking that fills the gap between large-scale and manual inspection by providing an explanation in the form of a proof
- The framework can be used to:
 - Directly take data from OpenWPM
 - Compare tracker-blocking tools
 - Determine potential need for compliance with COPPA
- Future directions can:
 - Extend the model with more tracking techniques and mitigations e.g. browser fingerprinting

