Ost f(x)=sinx fonksiyonunun türevini tüsev teniminden hesaplayınız

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to \infty} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to \infty} \frac{\sin x \cosh_{+} \sinh_{+} \cos x - \sin x}{h}$$

$$= \lim_{h \to \infty} \frac{\sin x (\cosh_{-}1) + \sinh_{+} \cos x}{h}$$

$$= \lim_{h \to \infty} \frac{\sin x \cdot \cosh_{-}1}{h} + \frac{\sinh_{+} \cos x}{h}$$

$$= \cos x$$

on: $y = \frac{1}{1+x}$ fonkoryonunun n. mertebeden toneuini hesaplayınız

hesoplayin'2

$$y = \frac{1}{1+x} = 0$$
 $y = (1+x)^{-1}$ $y' = -1.(1+x)^{-2}$ $y'' = 2.(1+x)^{-3}$
 $y''' = -2.3(1+x)^{-1}$ $y'' = 2.3.4.(1+x)^{-5}$
 $y''' = -2.3(1+x)^{-1}$ $y'' = 2.3.4.(1+x)^{-5}$
 $y''' = -2.3(1+x)^{-1}$ $y'' = 2.3.4.(1+x)^{-5}$

Kapali Janksyonlanda Toren

x3+y3-9xy=0 , x2+xy3+y=0, y2-xe3

F(xy)=0 sewinder bor forbygon icin

J=f(x) sellade yozamayabiliriz

in $y^2 = x =$ $\frac{dy}{dx} = ?$ $(\frac{dy}{dx} =) \frac{y + anto y and }{x^2 = pose threw})$

y = x 2yy' = 1 = 3 $y' = \frac{1}{2y} = 3$ $y' = \frac{1}{2\sqrt{x}} = 2$ $y' = \frac{1}{2\sqrt{x}} = 3$

 $y^2 = x = y = \pm \sqrt{x}$ = $y = \pm \sqrt{x}$ = $y = \pm \sqrt{x}$ $y^2 = x = y = \pm \sqrt{x}$ $y = \sqrt$

I 301 x2+7=25 => 2x+2yy'=0 => 24y'=-2x=)\(\begin{array}{c} \frac{1}{2} \\ \end{array}\)

 $m = 3' |_{(3,-4)} = -\frac{3}{(-4)} = \frac{3}{4}$

I yol: $\chi^2 + \chi^2 = 25 =$ $y = +\sqrt{25-\chi^2}$ $y = \sqrt{25-\chi^2} \times$

 $y' = \frac{-4x}{\sqrt{25-x^2}} = \frac{x}{\sqrt{25-x^2}} = \frac{3}{4}$

$$\frac{\partial}{\partial x} : 3^{2} = x^{2} + 3 \ln(xy) = 3 \quad \frac{\partial}{\partial x} = ? \quad (\frac{\partial}{\partial x} = y^{2})$$

$$\frac{\partial}{\partial x} = 2x + (xy)^{2} \cdot \cos(xy).$$

$$\frac{\partial}{\partial y} = 2x + (y + xy^{2}) \cdot \cos(xy)$$

$$\frac{\partial}{\partial y} = 2x + y \cos(xy) + xy^{2} \cos(xy).$$

$$\frac{\partial}{\partial y} = 2x + y \cos(xy) = 2x + y \cos(xy).$$

$$\frac{\partial}{\partial y} = 2x + y \cos(xy) = 2x + y \cos(xy).$$

$$\frac{\partial}{\partial y} = 2x + y \cos(xy) = 2x + y \cos(xy).$$

$$\frac{\partial}{\partial y} = 2x + y \cos$$

$$\begin{array}{lll}
& \text{On:} & x^{2}y - xy^{3} + \sin(x+y) = 0 & =) \frac{dy}{dx} = ? & (\frac{dy}{dx} = y) \\
& \text{If tonkishing the price of t$$

-1+cos(x4)

$$\frac{dx}{dy} = 10$$
 (= 0=(6x) wp + 10 = $\frac{dx}{dy} = 7$

$$x+ton(xy)=0$$

$$1 + (xy)^{1} \cdot (1 + + on^{2}(xy)) = 0$$

* Normal daprulen: Tepet doprusuna dik deprularder.

*# On: (2,4) noktosinin x3+y3-9xy=0 egrisi üzerinde bulundupinu posterinia. Eprinin tejet ve normal dopmenu buhava.

8+64-9.2.4=0 -> (2,4) noktosi epri üzeinde

3x²+3y²y'-9y-9xy'= 0.

(3y2-9x)y'=9y-3x2

 $y' = \frac{3y - x^2}{y^2 - 3x}$

 $m = 9' |_{(2,14)} = \frac{3.4 - 2^2}{4^2 - 3.2} = \frac{12 - 4}{16 - 6} = \frac{8}{10} = \frac{4}{5}$

m_T.m_=-1 =) m_N=-54

(2,4) noteder jegen Topet dopru derkleni! ejimi m= 4 olon

4-4=4.(x-2)

y= 4x+12

Normal dopru derklen: (2,4) noteder geger epimi mn=-54

 $y-4=-\frac{5}{4}.(x-2)=)$ $y=-\frac{5}{4}x+\frac{13}{2}$

Linear lestime: Eper f fonksiyonu X=a noktosnda toreverebilin ise opgjidahi yaklarım fonkayonu

$$L(x) = f(a) + f'(a) \cdot (x - a)$$

f fonksiyonunun a noktasındaki lineenlestirmesi olerak tanımlarır. fin Lile

yaklasımına f fonksiyonunun a noktasındaki

lineer yaklapımı derir, x=a noktasına den

bu yaklopimin merkezi derir.

On: f(x)=VI+x fonksiyonunun x=0 daki

lineenlestimesini bulunuz. $f(x) = \frac{1}{2}$, $f'(x) = \frac{1}{2}$

L(x)=f(0)+f'(0).(x-0)

L(x)=1+ =x

cin: (1,001) 5-3.(1,001) 3/2+2 deperini lineerles timme yonteni ile yaklasik olarah heseplaziniz.

$$f(x) = x^{5} - 3x^{3} + 2.$$

$$f(1) = 1 - 3 + 2 = 0$$

$$f'(x) = 5x^{4} - \frac{9}{2}x^{4} , f'(4) = 5 - \frac{9}{2} = \frac{1}{2}$$

$$L(x) = f(1) + f'(4).(x - 1)$$

$$L(x) = 0 + \frac{1}{2}.(x - 1)$$

$$L(x) = \frac{1}{2}.(x - 1)$$

$$f(x) \approx L(x).$$

$$f(x) \approx \frac{1}{2}.(x - 1).$$

$$f(x) \approx L$$
 $f(x) \approx \frac{1}{2}(x-1)$
 $f(1,001) \approx \frac{1}{2}(1,001-1)$
 $\approx \frac{1}{2}(0,001)$
 $\approx \frac{1}{2}(0,001)$
 $\approx \frac{1}{2}(0,000)$

Digenosyel; y= f(x) threwlerebilir bir fonksyon olsin dx diferensiyel: bağımsız bir değizkendir. ve dy dogeransiyeli dy = f'(x)dx

ile tonimlerin.

on: y=x5+37x iqin ai)dy diperensyelini heseplayiniz

dy=f'(x)dx., f'(x)=5x4+37.

dy= (5 x 4+37) dx

b.) x=1 ve dx=0,2 ian dy=?

dy=(5+37).(0,2)

dy= 42.0,2

dy= 8,4

N NOT

1-75 - F(a+q+)- F(a)=t(a)+t(a) (a+q-a)-t(a) Lingfand (a) (a-a) = f1(0) mx

* Geometrik Olorok X=a noklasiny dx= Ax Eader degitmesi duran un da Plan lines emen de me plono Jeles AL depromi dy

dywardel dir

on: $(1,001)^5 - 3.(1,001)^{3/2} + 2$ dépermi différensiquel The yaklepik olarale hesoplayini2 $f(x) = x^5 - 3x^{3/2} + 2$, f(1) = 1 - 3 + 2 = 0. $f(x) = 5x^4 - 9x^{1/2}$, f(1) = 5 - 9 = 1

Arter/Azulen Forlesigenles

f(x), [a,b] de sûrehli, (a,b) de tirevli olsin.

* Vxe(a,b) iqin f((x)>0 =) f(x), [a,b] de artandir.

* $\forall x \in (a,b)$ iain f'(x) < 0 =) f(x), [a,b] de ozalondar

 $\vec{O}\vec{\Lambda}$: $f(x) = 6x^2 - x^4 - 4$ fonksiyonunun arten/ozalen.

Olduğu aralıhlar, 621lanuz

 $f'(x)=12x-4x^3=$) $f'(x)=12x-4x^3=0=$) $3x-x^3=0$ $(3-x^2).x=0$ X=TV3 X=0

(-00,-13] u[0,13] = anton [-13,0] U[13, w) azalos

Jn: f(x1=3x5_15x4+15x3 fonksiyonunon artonlazolon Oldupa analiliani briliniz.

f(x)=15×4-60x2+45x2=0.

 $x^{4} - 4x^{2} + 3x^{2} = 0$ =) $x^{2} \cdot (x^{2} - 4x + 3) = 0$

$$x^{2}, (x-3), (x-1)=0$$
 $x=0 \quad x=3 \quad x=1$

(C(1)+1

LED (L)

Les Fonksiyonlar ve Porevlari

Tenim: D tonim kumesinde X1 # X2 Then f(x1) #f(x2) ise f(x) fonksiyonu D tom kimesinde bire-bir fonksiyonder derir

on: f(x)=1x fonksiyony negatit olmayan sayi-larden olupan herhangi bin tenim komesi üzerinde bire-bindin qunhi

XI + Kziker VXI + VX2 0/w.

6) f(x)=sinx fonkoiyon [0, 2) analiginder
bire-bin depitair ant sin(2)= sin(52) dus, * Bireibir fonhsigenler ign gatag dogni testi

bine-bin din

J. J. SINX Grebin depilar

** Bir fonksiyon bir I analiginda birne-bir ise.

O analikta anten veya azalandır.

Tes Tonksigen: finis D tenim komesi

Derinde gonat komesi R olan bisse-biss

bin fonksigen oldugunu varseyalim ters

fonksigen f-1 spyle tenimlerin

fonksigen f-1 spyle tenimlerin

tiper f(b)=a ise f-1(a)=b dir

f-1 in tenim komesi R ve pioninto komes: Ddir

f-1 in tenim komesi R ve pioninto komes: Ddir

Ters Forhsigon Bulmeti

Indim! x' y consider 402

1 adim! x' y consider 402

x=2y-2.

2 adm : x've y'y r ye depistir y=2x-2.

Buna posse $f(x) = \underline{X} + 1$ forksiyonum tesi $f^{-1}(x) = 2x - 2$ dis.

NOT: $(f^{-1}of)(x) = f^{-1}(f(x)) = f^{-1}(\tilde{x}+1) = 2(\tilde{x}+1)-2 = x$ $(fof^{-1})(x) = f(f^{-1}(x)) = f(2x-2) = 2x-2+1 = x$

Tes Tenhisyonlar Egin Time Kurale

Eper f nin tonim times i I ise ve I üzerinde. f'(x) vorsa ve hiq sigir olmuyorsa, f-1 tonim Komesinin (f nin garanti komesi) her noktesinda tirevlene 6, tindir ve tinevi

$$\left[f^{-1}(x)\right]' = \frac{1}{f'(f^{-1}(x))}$$

$$f^{-1}$$
 in tenim Emesindelii 6 The moletasindalii

 f^{-1} in tenim Emesindalii

 f^{-1} in tenim Emesindalii

$$f'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}$$

$$J_{1},$$

$$J_{2},$$

$$J_{3},$$

$$J$$

 $Tyol: y=x^2=) x=\sqrt{y}. =) y=\sqrt{x}$ $f(x)=x^2$ $f(x)=x^2$

$$f(x) = \sqrt{x}$$
 => $(f^{*}(x))' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$.

$$\frac{II.y=1:}{f(x)=x^2, f^{-1}(x)} = \frac{1}{f'(4^{-1}(x))} = \frac{1}{2.\sqrt{x}}$$

$$(f(x)=x^2, f^{-1}(x)=\sqrt{x}.)$$

 $\delta N: f(x) = x^3 - 2 i \sin f - 1(x) i \sin f - mil bulma - do. (f-1)'(6) depenie bulma.$

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}$$

Surable

 $f'(f^{-1}(b)) = f'(a)$
 $f'(a) = b$
 $f'(a) = b$
 $f'(a) = b$
 $f'(a) = b$
 $f'(a) = a$

Ais

$$(f-1)'(6) = \frac{1}{f'(a)}$$
, $x6 = x^3-2$, $y6 = x^3$

$$(f^{-1})'(6) = \frac{1}{f'(2)}$$

$$f'(2)$$
.
 $f'(x) = x^3 - 2 = 3$. $f'(x) = 3x^2 = 3 + 1(2) = 12$