In The Claims

- 1. (Original) A molecular composite composed of a core molecule having one or more active sites, and having a plurality of smaller <u>molecular weight</u> labile residues reversibly attached to the core molecule, the attachment of said labile residues causing an alteration of the ability of the core molecule to provide the activity associated with said active site or sites, the labile residue or residues being dissociable from the core molecule by exposure of the molecular composite to electromagnetic energy so as to result in at least restoration of the activity associated with said active site (s).
 - 2. to 14. (Previously Canceled)
- 15. (Presently Amended) A product or a method The composite according to claim 1 wherein the electromagnetically labile residue comprises:

$$R_1$$
 R_2

wherein $R_1 = H$ or NO_2 ; $R_2 = H$, N_3 NO_2 or OCH_3 ; $R_3 = H$, OCH_3 NO_2 and $R_4 = H$, NO_2 or OCH_3 ; and preferably wherein at least one of R_1 , R_2 , R_3 and R_4 is NO_2 ; and Z is $C\underline{H}(R_5)$ OH — with $R_5 = H$, CH_3 , C_2H_5 , or an aryl group such as o-nitrobenzyl or phenyl; a glycol such as ethylene glycol an oxycarboxyl group formula $-R_6$ -O-CO- with $R_6 = a$ bond, or a straight or branched lower alkyl group (ie with 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms); an aryl

group such as -CO-Y with Y =

$$R_4$$
 R_3
 R_2

where R = H or CH_3 ; -S-; or

with R, = lower alkyl group, cyclohexyl, or an aryl groups such as benzyl or -CH2-C6H6.

16. (Presently Amended) A product or a method The composite according to claim 1 wherein said electromagnetically labile residue comprises

$$R_8$$
 C OH R_8 C OH R_{10} R_{10} R_{10} R_{10} R_{10}

wherein $R_8 = H$, CH_3 , C_2H_5 ; o-nitrobenzyl, phenyl; and R_9 and R_{10} are, independently, H or - OCH_3 , or sites for irreversible protein or antibody coupling.

17. (Presently Amended) A product or a method <u>The composite</u> according to claim 1 wherein said electromagnetically labile residue comprises

$$R_{18}$$
 R_{19}
 R_{19}

wherein R₁₈ and R₁₉ are, independently, H or –OCH₃, and R₂₀ is CH₃, C₄H₉, cyclohexyl, benzyl or phenly phenyl-CH₂-.

18. (Presently Amended) A product or a method The composite according to claim 1 wherein said electromagnetically labile residue comprises

$$R_8$$
 C
 OH
 R_{10}
 R_9

with R_8 = H, CH₃ or C_2H_5 and R_9 and R_{20} $\underline{R_{10}}$ = OCH₃.

- 19. (Previously Presented) An antibody to which is attached a labile residue or residues which reduce the ability of the antibody to bind to its binding partner, the labile residue or residues being able to be disassociated from the antibody by exposure to electromagnetic radiation to restore binding ability of the antibody.
- 20. (Presently Amended) An antibody The composite according to claim 1, wherein the labile residue is 2-nitrobenzyloxycarbonyl.
- 21. (Previously Presented) The antibody according to claim 19 wherein the labile residue or residues is 2-nitrobenzyloxycarbonyl.
- 22. (Previously Presented) The composite according to claim 1 wherein the electromagnetic radiation is visible or uv light.

23.	(Previously Presented) The antibody according to claim 19 wherein the electromagnetic
radiation is uv light.	