Momentum-Aware Planning Synthesis for Dynamic Legged Locomotion

Ziyi Zhou, Bruce Wingo, Nathan Boyd, Seth Hutchinson, and Ye Zhao Institute for Robotics and Intelligent Machines, Georgia Institute of Technology

Introduction and Objective

- Hierarchical gait-->centroidal-->whole-body pipelines reduce planning complexity, additional constraints on momentum and fullbody kinematics enable more dynamically feasible solutions.
- Design a centroidal optimization capable of discovering both contact sequences and angular momentum trajectories.
- Achieve a dynamic consensus between centroidal and wholebody models using constrained ADMM.

Centroidal and Whole-Body Optimization

- Centroidal optimization utilizes a single rigid body model with equimomental-ellipsoid-based Moment of Inertia (MoI) [2, 3].
- Simultaneously solve for footholds, contact forces, centroidal and momentum trajectories.
- Ellipsoid Mol tracks joint motion effects on Composite Rigid Body Mol from whole-body model for accurate momentum generation.
- WBD tracks the consensus quantities from centroidal optimization, and then solved via Differential Dynamic Programming (DDP).

ADMM Constrained Trajectory Optimization

 The consensus [1] is enforced by adding equality consistency constraints for Center of Mass (CoM) positions, momentum, footholds. The Mol is directly computed from whole-body CRBMol.

Sample for one iteration procedure:

$$\begin{aligned} & \min_{\boldsymbol{\phi}_{\text{cen}}} & & \sum_{k=1}^{K} \sum_{i=1}^{N_k} \mathcal{L}_{\text{cen}}(\boldsymbol{\phi}_{\text{cen}}) + \sum_{i \in \mathcal{I}} \frac{\rho_i}{2} \| \mathbf{r}_i + \mathbf{w}_i^k \|_2^2 \\ & \text{s.t.} & & \begin{bmatrix} m \ddot{\mathbf{c}} \\ \dot{\mathbf{h}} \end{bmatrix} = \begin{bmatrix} \sum_j \mathbf{f}_j + m \mathbf{g} \\ \sum_j \mathbf{f}_j \times (\mathbf{c} - \mathbf{e} \mathbf{e}_j) \end{bmatrix} \\ & \mathbf{h} = \mathbf{I}_{\text{ellip}} \boldsymbol{\omega} \\ & \text{Force, terrain and RoM constraints} \end{aligned}$$

Centroidal Primal Updates

$$\mathbf{w}_{c}^{k+1} = \mathbf{w}_{c}^{k} + \operatorname{CoM}(\mathbf{q}^{k+1}) - \mathbf{c}^{k+1}$$

$$\mathbf{w}_{h}^{k+1} = \mathbf{w}_{h}^{k} + \boldsymbol{A}_{g}(\mathbf{q}^{k+1})\dot{\mathbf{q}}^{k+1} - \begin{bmatrix} m\dot{\mathbf{c}}^{k+1} \\ \mathbf{I}\dot{\boldsymbol{\theta}}^{k+1} \end{bmatrix}$$

$$\mathbf{w}_{ee}^{k+1} = \mathbf{w}_{ee}^{k} + \operatorname{FK}(\mathbf{q}^{k+1}) - \mathbf{e}\mathbf{e}^{k+1}$$
Dual Updates

Results

Quadruped Robot jump-twist and trotting examples.

Dynamic consensus of the desired variables for a jump-twist maneuver between centroidal and whole-body models.

Dynamic consensus for a trotting gait motion between centroidal and whole-body models.

Snapshots of an athletic jump-twist maneuver (a) and quadruped trotting gait (b) solved by SNOPT [4] and Crocoddyl [5] for centroidal and whole-body updates respectively.

Discussion and On-going Work

- Designed a centroidal optimization scheme for generating contact sequences and momentum.
- Dynamic consensus between centroidal and full body dynamic models.
- On-going work includes improving the angular momentum and inertial tracking. We are also exploring real-time constrained MPC implementations. This would require more improvements on the algorithm efficiency and scope for real applications.

References

Momentum-Aware Planning Synthesis for

Dynamic Legged Locomotion

Georgia Laboratory for Intelligent Decision Tech and Autonomous Robots Ziyi Zhou, Bruce Wingo, Nathan Boyd, Seth Hutchinson, Ye Zhao

Introduction and Objective

- Hierarchical gait-->centroidal-->whole-body pipelines reduce complexity, but additional constraints are required to ensure feasible solutions.
- Create a centroidal optimization capable of discovering both contact sequences and angular momentum trajectories.
- Achieve a dynamic consensus between centroidal and wholebody models

Centroidal and Whole-Body Optimization

- Centroidal optimization utilizes phase-based gait [2] and subject to equimomental-ellipsoid-based Moment of Inertia (MoI) [3].
- Simultaneously solve for footholds, contact forces, centroidal and momentum trajectories
- Ellipsoid Mol tracks joint motion effects on Composite Rigid Body Mol from whole-body model for accurate momentum generation
- Track the consensus quantities from centroidal optimization, and then solved via Differential Dynamic Programming (DDP).

$\sum_{k=1}^{K} \int_{t_k}^{t_k + \triangle t_k} \mathcal{L}_{\text{wbd}}(\phi_{\text{wbd}}) dt + \int_{t_k}^{t_k} \mathcal{L}_{\text{wbd}}(\phi_{\text{wbd}}) dt +$	$\mathcal{L}_{\mathrm{cen}}(\boldsymbol{\phi}_{\mathrm{cen}})dt$
$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{B}\mathbf{u} + \mathbf{J}_c^T \boldsymbol{\lambda}_c$	(2a)
$m\ddot{\mathbf{r}} = \sum_{j} \mathbf{f}_{j} - m\mathbf{g}$	(2b)
$\mathbf{\dot{L}} = \sum olimits_j (\mathbf{p}_j - \mathbf{r}_j) imes \mathbf{f}_j$	(2c)
$\dot{\boldsymbol{\phi}} = W(\mathbf{I}^{-1}\mathbf{L})$	(2d)
$\dot{\mathbf{e}} = C_e(t, u_e)$	(2e)
$\mathbf{\dot{v}} = C_v(t, u_v)$	(2f)
$[\mathbf{r}, \boldsymbol{\theta}](t=0) = [\mathbf{r}_0, \theta_0]$	(2g)
$\mathbf{r}(t=T) = \mathbf{r}_g$	(2h)

6 6			
for every foot i :			
	$\mathbf{p}_i(t)$ $\mathcal{P}_i(\mathbf{r}, \boldsymbol{\theta})$	(2i)	
	if foot in cornet:	(2j)	
	$\dot{\mathbf{p}}_i(t \in \mathcal{C}_i) = 0$	(2k)	
1	$\mathbf{p}_{i}(t) \notin \mathcal{R}_{i}(\mathbf{r}, \boldsymbol{\theta})$ if foot in \mathbf{c} part: $\dot{\mathbf{p}}_{i}(t \in \mathcal{C}_{i}) = 0$ $\mathbf{p}_{i}^{z}(t \in \mathcal{C}_{i}) = h_{terrain}(\mathbf{p}_{i}^{xy})$	(21)	
	$\mathbf{f}_i(t \in \mathcal{C}_i) \cdot \mathbf{n}(\mathbf{p}_i^{xy}) \ge 0$	(2m)	
	$\mathbf{f}_i(t \in \mathcal{C}_i) \in \mathcal{F}(\mu, \mathbf{n}, \mathbf{p}_i^{xy})$	(2n)	
	if foot i in air:	(20)	
	$\mathbf{f}_i(t \notin \mathcal{C}_i) = 0$	(2p)	
	$\sum_{j=1}^{2n_{s,i}} \triangle T_{i,j} = T$	(2q)	
	$CoM(\mathbf{q}) = \mathbf{r}$	(2r)	
	$FK(\mathbf{q}) = \mathbf{p}$	(2s)	
	$m{A}_g(\mathbf{q})\dot{\mathbf{q}} = egin{bmatrix} m\dot{\mathbf{r}} \ \mathbf{L}_g \end{bmatrix}$	(2t)	
	$\mathbf{I}_{cen}(\mathbf{q}) = \mathbf{I}$	(2u)	
	$\mathbf{s} \in \mathcal{S}, \mathbf{u} \in \mathcal{U}$	(2v)	
	$\lambda_j \in \mathcal{F}_j, \ \forall j \in \mathcal{I}_{\text{contact}}$	(2w)	

ADMM Constrained Trajectory Optimization

Stage-wise Accelerated Alternating Direction Method of Multiplier (SWA-ADMM) framework [1] alternately updates optimization

$\phi_{ ext{cen}}^{k+1} := \operatorname*{argmin}_{oldsymbol{\phi}_{ ext{cen}}} \sum_{i=1}^{N} \mathcal{L}_{ ext{cen}}(\phi_{ ext{cen}})$	(32a)	1
$+ \frac{\rho_c}{2} \ \text{CoM}(\mathbf{q}^k) - \mathbf{c} + \mathbf{w}_i^k\ _2^2$	(32b)	
$+\frac{\rho_h}{2}\ \mathbf{A}_g(\mathbf{q}^k)\dot{\mathbf{q}}^k - \begin{bmatrix} m\dot{\mathbf{c}} \\ \mathbf{I}\dot{\boldsymbol{\theta}} \end{bmatrix} + \mathbf{w}_i^k\ _2^2$	(32c)	
$+\frac{\rho_{\lambda}}{2}\ g_{\lambda}(\mathbf{q}^{k},\dot{\mathbf{q}}^{k},\mathbf{u}^{k}) - \lambda + \mathbf{w}_{i}^{k}\ _{2}^{2}$	(32d)	
$+\frac{\rho_{ee}}{2} \ FK(\mathbf{q}^k) - \mathbf{p} + \mathbf{w}_i^k\ $	(32e)	
$\phi_{ ext{wbd}}^{k+1} := rg \min_{oldsymbol{\phi}_{ ext{wbd}}} \sum_{i=1}^{N} \mathcal{L}_{ ext{wbd}}(\phi_{ ext{wbd}})$	(32f)	1
$+\frac{\rho_c}{2}\ \text{CoM}(\mathbf{q}) - \mathbf{c}^{k+1} + \mathbf{w}_i^k\ _2^2$	(32g)	
$+\frac{\rho_h}{2}\ \boldsymbol{A}_g(\mathbf{q})\dot{\mathbf{q}}-\begin{bmatrix}m\dot{\mathbf{c}}^{k+1}\\\mathbf{I}\dot{\boldsymbol{\theta}}^{k+1}\end{bmatrix}+\mathbf{w}_i^k\ _2^2$	(32h)	200
$+\frac{\rho_{\lambda}}{2}\ g_{\lambda}(\mathbf{q},\dot{\mathbf{q}},\mathbf{u}) - \boldsymbol{\lambda}^{k+1} + \mathbf{w}_{i}^{k}\ _{2}^{2}$	(32i)	
$+\frac{\rho_{ee}}{2} \ FK(\mathbf{q}) - \mathbf{p}^{k+1} + \mathbf{w}_i^k\ $	(32j)	
Dual updates:		
$\mathbf{w}_c^{k+1} = \mathbf{w}_c^k + \text{CoM}(\mathbf{q}^{k+1}) - \mathbf{c}^{k+1}$	(32k)	
$\mathbf{w}_h^{k+1} = \mathbf{w}_h^k + \boldsymbol{A}_g(\mathbf{q}^{k+1})\dot{\mathbf{q}}^{k+1} - egin{bmatrix} m\dot{\mathbf{c}}^{k+1} \ \mathbf{I}\dot{oldsymbol{ heta}}^{k+1} \end{bmatrix}$	(321)	
$\mathbf{w}_{\lambda}^{k+1} = \mathbf{w}_{\lambda}^{k} + g_{\lambda}(\mathbf{q}^{k+1}, \dot{\mathbf{q}}^{k+1}, \mathbf{u}^{k+1}) - \lambda^{k+1}$	(32m)	

Results

Quadruped Robot two block ADMM optimization problem

Dynamic consensus of a jump-twist maneuver between centroidal and whole-body model.

Snapshots of an athletic jump-twist maneuver (a) and quadruped bound gait (b) computed by the proposed approach.

Discussion and Future Work

- Designed a centroidal optimization scheme for generating contact sequences and momentum
- 2. Dynamic consensus between template and full body dynamic models

Future work includes improving the angular momentum and inertia tracking. We are also considering exploring real-time constrained MPC implementations. This would require more multiple improvements on the algorithm efficiency and scope for real applications.

References

Momentum-Aware Planning Synthesis for Dynamic Legged Locomotion

Ziyi Zhao, Bruce Wingo, Nathan Boyd, Ye Zhao Georgia Laboratory for Intelligent Decision Tech and Autonomous Robots

Results

Dfa;hdjljadf

Future Work

dfasfdadf

Whole-Body Dynamics

Optimization

References

High-Level Input

Momentum-Aware Centroidal

Dynamics Optimzation

Initial, final poses Initial traj guess

> CoM pos Footholds Momentum

(32k)

(32I)

(32m)

 $= \mathbf{w}_h^k + \mathbf{A}_g(\mathbf{q}^{k+1})\dot{\mathbf{q}}^{k+1} - \begin{bmatrix} m\dot{\mathbf{c}}^{k+1} \\ \mathbf{I}\dot{\boldsymbol{\theta}}^{k+1} \end{bmatrix}$

 $= \mathbf{w}_{\lambda}^{k} + g_{\lambda}(\mathbf{q}^{k+1}, \dot{\mathbf{q}}^{k+1}, \mathbf{u}^{k+1}) - \boldsymbol{\lambda}^{k+1}$

Iteration k+1:

Moment

Dyna

$$\begin{aligned} \min_{\boldsymbol{\phi}_{\text{wbd}}} \quad & \sum_{k=1}^{K} \sum_{i=1}^{N_k} \mathcal{L}_{\text{wbd}}(\boldsymbol{\phi}_{\text{wbd}}) + \sum_{i \in \mathcal{I}} \frac{\rho_i}{2} \|\mathbf{r}_i + \mathbf{w}_i^k\|_2^2 \\ \text{s.t.} \quad & \mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{B}\mathbf{u} + \mathbf{J}_c^T \boldsymbol{\lambda}_c \\ & \ddot{\mathbf{x}}_e = \mathbf{J}_c \ddot{\mathbf{q}} + \dot{\mathbf{J}}_c \dot{\mathbf{q}} = 0 \end{aligned}$$

