

Phase-1 Submission

Student Name: Bharathidhasan M

Register Number: 712523104007

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: BE-CSE

Date of Submission: 27.04.2025

1.Problem Statement

The rapid spread of fake news on digital platforms poses a significant threat to societal trust, public safety, and democratic processes. This project aims to build an NLP-based system that can automatically detect fake news, helping users and organizations make informed decisions and combat misinformation effectively.

2. Objectives of the Project

- interface. Build a machine learning model that accurately classifies news as real or fake.
- Analyze linguistic patterns in fake vs real news using NLP techniques.

3.Scope of the Project

- Text preprocessing and NLP-based feature extraction
- Multiple classification models (Logistic Regression, Random Forest, etc.)

Limitations/Constraints:

- *Model trained on static datasets*
- Focus limited to English-language news.

4.Data Sources

- Fake and real news dataset from Kaggle (e.g., "Fake News Detection" dataset)
- Static dataset downloaded once.

Data Source Link: https://www.kaggle.com/datasets/mahdimashayekhi/fakenew

5.High-Level Methodology

- Data Collection: Download dataset from Kaggle.
- Data Cleaning: Remove duplicates, handle missing values, standardize text formatting.
- EDA: Word clouds, frequency plots, sentiment analysis.
- Feature Engineering: TF-IDF, n-grams, stop word removal, POS tagging.
- Model Building: Logistic Regression, Naive Bayes, Random Forest, XG Boost.
- Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AU
- Data Collection: Download dataset from Kaggle.
- Data Cleaning: Remove duplicates, handle missing values, standardize text formatting.
- EDA: Word clouds, frequency plots, sentiment analysis.
- Feature Engineering: TF-IDF, n-grams, stop word removal, POS tagging.
- Model Building: Logistic Regression, Naive Bayes, Random Forest, XG Boost.

6.Tools and Technologie

- Programming Language: Python.
- Notebook/IDE: Google Colab, Jupyter Notebook
- *Libraries:* pandas, numpy, matplotlib, seaborn, scikit-learn, nltk, spaCy, TensorFlow/Keras
- Deployment Tools (Optional): Streamlit, Gradio, Flask.

7. Team Members and Roles;

NAME	ROLE	WORK
MURALIDHARAN.K	NLP Engineer	Model development and evaluation.
GOWTHAM.P	Marketing & Outreach Lead	Data collection, cleaning, and preprocessing.
PUGAZHENTHI.G	Document and presentation	Visualization and interpretation of results.
BHARATHIDHASAN.M	Testing and deployment	(Optional) Deployment and UI design.
JESLIN SAJAN	Data Scientist	Materials and coordination among the team members