Machine Learning for Demand Forecasting in Smart Grid

Saima Aman, Wei Yin, Yogesh Simmhan, and Viktor Prasanna University of Southern California, Los Angeles, CA

Machine Learning Approach

- An informatics approach for forecasting electricity demand
- Use direct and indirect indicators of power usage
- Use scalable Machine Learning for data intensive workloads
- Use Hadoop Map-Reduce on Clouds platforms for performance, scalability and reliability
- Experiment on the USC campus microgrid testbed

Demand Forecasting using Machine Learning[†]

Regression Tree Machine Learnt Models

• Use CV-RMSE to compare model accuracy – root mean square error between observed and predicted normalized to the mean of observed

Campus-level Daily Model

	<u> </u>		
Model Used	CV-RMSE		
Annual Mean	11.32%	Deselles	
Day of Week Mean	14.39%		
Day of Year Mean	12.62%	Models	
Regression Tree	7.45%%	۱	
Day of Week Mean Day of Year Mean	14.39% 12.62%	Baseline Models	

<u> </u>		
Model Used	CV-RMSE	
Annual 15-min Mean	17.37%	- Danding
Time of Week Mean	16.00%	Baseline
Time of Year Mean	15.07%	Models
Regression Tree	13.70%	_

Features used in models were evaluated

Ongoing Work

- Dynamic feature selection
- Moving windows of predictions
- Data feeds from information repository
- Effect of data granularity on prediction
- Multiple models for buildings/consumers
- From Medium term » Short term Models

Model Used	CV-RMSE	
Annual Mean	11.32%	Deseline
Day of Week Mean	14.39%	Baseline
Day of Year Mean	12.62%	Models
Regression Tree	7.45%%	ا ا

Campus-level 15-MinModel

Weekday	Semester	Temperature	Holiday	CV-RMSE
•	•	+	•	7.40%
•		+	•	7.60%
•		+		7.95%
•	•	+		8.05%
*	•		•	8.37%
•	•			8.54%
*				8.86%
		*		10.48%
	•			11.05%
			•	11.54%

Campus & Building- level features		Building-level features	
Weekday Semester Holiday	Max temp Avg. temp	Gross Building Area Net Area in Use Year of construction	
		Type of building	

[†]Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators, Saima Aman, Yogesh Simmhan and Viktor K. Prasanna, DDDM, 2011

Scalable Forecasting

- AMI's collect TB of data from millions of customers @ 15min
- Several forecasting models
- New data arrives constantly
- Models operate on large data sets

Performance Limitations of Centralized Machine Learning

For 15-min interval data, we need 32 days & 700GB memory to train the model

Solution

 Parallel processing on Cluster/ Cloud using Hadoop Map-Reduce

Benefits

- Divide and conquer: Scalable as the training data size increases
- High Performance, Lower time for data intensive modeling
- Reliable operation for continuous execution

PLANET Scalable Learning Algorithm

- Google's Regression Tree Algorithm
- Combine MR+Weka
- → Master Mode1 **■** Latest model File
- MR_Expan MR_Initia lization dNode oryGrow Analyze data

Ongoing work

- Migrate prototype to Eucalyptus
- Automatic feature selection
- Software infrastructure for launching ensemble models

Acknowledgement This material is based upon work supported by the Department of Energy under Award Number DE-OE0000192. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.