

Final Assessment Test - April 2019

Course: MAT2002

Applications of Differential and Difference

Equations

Class NBR(s): 0517 / 0521 / 0526 / 0529 / 0532 / 0534 /

Slot: E2+TE2

0536 / 0537 / 0538 / 0868 / 0872 / 3333 / 5955 / 6000

Max. Marks: 100

Time: Three Hours

Answer any FIVE Questions $(5 \times 20 = 100 \text{ Marks})$

1. a) Expand
$$f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$$

[10]

As the Fourier series of sine terr

b) The turning moment T is given for a series of values of the crank angle $\theta^0 = 75^\circ$

[10]

θ^{0}	0	30	60	90	120	150	180
T	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of sines to represent T and calculate T for $\theta^0 = 75^\circ$.

a) Show that $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ is similar to a diagonal matrix, and find the transforming matrix 2. [12]

and diagonal matrix. Also identify it's nature.

b) If
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$
, verify Cayley-Hamilton theorem. Hence find inverse of A . [8]

3. a) Solve $\frac{d^2y}{dx^2} + a^2y = \sec ax$ by the method of variation of parameters. [10]

b) Find the response (the current) of the RLC-circuit in the Figure

[10]

where E(t) is sinusoidal, acting for a short time interval only : $E(t) = 100 \sin 400 t$ if $0 < t < 2\pi$ and E(t) = 0 if $t > 2\pi$ and over and E(t)=0 if $t>2\pi$ and current and charge are initially zero.

a) Solve $ty'' + 2y' + ty = \cos t$, given that y(0) = 1 by Laplace transform method. 4. [10]

b) Find the general solution of system of non-homogeneous linear system of differential equation [10] $v' = -3v + v = 6e^{-2t}$ $y_1 = -3y_1 + y_2 - 6e^{-2t}$, $y_2 = y_1 - 3y_2 + 2e^{-2t}$ by matrix method.

Page 1 of 2

- 5. a) Obtain Frobenius series solution for the differential equation xy'' + y' y = 0 about x = 0. [10]
 - b) For the Strum-Liouville problem $y' + \lambda y = 0$, y(0) = 0, y(l) = 0, find the eigen functions and verify if they are orthogonal. [10]
- 6. a) Evaluate $Z^{-1}\left[\frac{z^2}{(z-a)(z-b)}\right]$ using convolution theorem, for a=2, $b=\frac{1}{2}$.
 - b) Find the Z-transform of (i) $e' \sin 2t$ (ii) $n^2 e^{an}$
- 7. a) Solve $u_{n+2} + u_{n+1} 6u_n = 8(-2)^n$ by the method of undetermined coefficients. [10]
 - b) Find the response of the system $y_{n+2} 5y_{n+1} + 6y_n = u_n$; $y_0 = 0$, $y_1 = 1$ and $u_n = 1$ for n = 0, 1, 2, 3, ... by the Z transform. [10]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

YOUN MIT QUESTION PAPERS ON TELEGRAM

SPARCH VIT QUESTION PAPERS ON TELEGRAM YO JOIN