第五章 挖掘频繁模式、关联和相关

张静

(Jingzhang@ecust.edu.cn)

主要内容

- □ 基本概念
- □ 频繁项集挖掘方法
- □ 挖掘各种类型的关联规则
- □ 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- □ 小结

频繁模式分析

- ◆ 频繁模式: 数据集中频繁出现的模式 (一组项的集合,子 序列,子结构等。)
- ◆ 最先由Agrawal, Imielinski, and Swami [AIS93] 在描述频 繁项集和关联规则挖掘的相关文档中提出
- ◆ 动机: 找到数据之间的内在规律
 - ◆哪些产品经常一起出售?— 啤酒和纸尿裤?!
 - ◆用户在买了PC之后接下来很有可能买什么?
 - ◆哪种DNA对新药物敏感?
 - ◆ 我们能够自动地对网络文档分类么?
- ◆ 应用
 - ◆购物篮分析,交叉市场分析,Web日志分析以及DNA 序列分析等。

频繁模式挖掘的重要性

- ◆ 频繁模式: 数据集本质的并且重要的性质
- ◆ 很多重要数据挖掘工作的基础
 - ◆ 关联,相关以及因果分析
 - ◆ 序列的, 结构化的 (例如, 子图) 模式
 - ◆ 在时空、多媒体、时间序列以及流数据上的模式分析
 - ◆ 分类: 区分性, 频繁模式分析
 - ◆ 聚类分析: 基于频繁模式的聚类
 - ◆ 数据仓库: 冰立方以及立方体聚集
 - ◆ 语义数据压缩

Tid	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

- □ 项集: 一个或多个项的集合
- \square k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: 项集 X出现的频率
- □ (relative) support, s, 事务中包含 X的部分 (即, 一个事务包含 X的概率)
- □ 项集X 是频繁的(frequent),如果X的支持度不小于支持 度阈值

基本概念: 关联规则

- □假设:(1)事务数据库,(2)每一个事务是一个项目集列 表(例如:顾客一次购买的商品集)
- □ 找出: 所有使目前的项集与另一个项集相关联的规则 □ 例子:
 - ■规则形式: "Body →Head [支持度,置信度]".
 - buys(x, "diapers") → buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") $^{\Lambda}$ takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]
- □应用
 - □*⇒维修协议(商店应该怎样做才能提升维修协议的销售)
 - □家电⇒*(商店应该增加其它那些产品的存储量?)

基本概念: 关联规则

Tid	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

- 找到所有满足最小支持度和置信度 阈值的规则 X → Y
 - ◆ support, s, 一个事务包含 X ∪ Y 的概率
 - ◆ confidence, c, 一个事务既包含X 也包含Y的条件概率
- ◆ 令 minsup = 50%, minconf = 50% 频繁模式: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3
 - 关联规则:
 - Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

极大项集与频繁闭项集

(Closed Patterns and Max-Patterns)

- □ A long pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{100} + \binom{100}{100} + ... + \binom{100}{100} = 2^{100}$ − 1 = 1.27*10³⁰ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no superpattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

极大项集与频繁闭项集

- ◆ 极大项集和频繁闭项集
 - ◆极大项集: 频繁项集p, 使得p的任何超项集都不是频繁的。
 - ◆频繁闭项集:一个频繁的闭的项集,其中项集c是闭的,如果不存在c的真超集c',使得每个包含c的事务也包含c'。

频繁模式挖掘的分类体系

- ◆ 根据挖掘的模式的完全性分类
 - ◆频繁项集的完全集、闭频繁项集、极大频繁项集
 - ◆被约束的频繁项集、近似的频繁项集、接近匹配的频繁项集、 最频繁的k个项集
- ◆根据规则中所处理的值类型分类
 - ◆布尔关联和量化关联
 - ◆ buys(x, "SQLServer") ^ buys(x, "DMBook") → buys(x, "DBMiner") [0.2%, 60%]
 - age(x, "30..39") ^ income(x, "42..48K") → buys(x, "PC") [1%, 75%]
- ◆ 根据规则中所涉及的数据维数分类
 - 单维关连和多维关联

频繁模式挖掘的分类体系

- ◆ 根据规则集所涉及的抽象层分类
 - 单层关联规则和多层关联规则
 - \bullet age(x, "30..39") \rightarrow buys(x, "laptop computer")
 - \bullet age(x, "30..39") \rightarrow buys(x, "computer")
- ◆ 根据所挖掘的规则类型分类
 - ◆ 关联规则、相关规则、强梯度联系(与父母、子女或兄 妹之间的关系)
 - ◆相关性和因果关系分析
 - ◆关联并不一定必须意味着相关性和因果性
- ◆ 根据所挖掘的模式类型分类
 - ◆频繁项集挖掘、序列模式挖掘、结构模式挖掘

关联规则基本模型

- ◆ 关联规则就是支持度和置信度分别满足用户给 定阈值的规则。
- ◆ 发现关联规则需要经历如下两个步骤:
 - ◆找出所有频繁项集。
 - ◆由频繁项集生成满足最小置信度阈值的规则。

例子

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

Min. support 50%

Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \Rightarrow C$:

support = support(
$$\{A\} \cup \{C\}$$
) = 50%

confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

主要内容

- □ 基本概念
- 频繁项集挖掘方法
- □ 挖掘各种类型的关联规则
- □ 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- □ 小结

Apriori算法: 通过限制候选产生发现频繁项集

- ◆ Apriori算法是R. Agrawal和R. Srikant于1994年提出的为布尔关联规则挖掘频繁项集的原创性算法。
- ◆ 算法的思想
 - ◆使用频繁项集性质的先验知识
 - ◆使用逐层搜索的迭代方法产生频繁项集
- ◆ Apriori性质
 - ◆频繁项集的所有非空子集也必须是频繁的

频繁项集

- □ 为了避免计算所有项集的支持度(实际上频繁项集只占很少一部分), Apriori算法引入候选频繁项集的概念。
- □ 若候选频繁k项集的集合记为 C_k ,频繁k项集的集合记为 L_k ,m个项构成的k项集的集合为 C_m^k ,则三者之间满足关系 $L_k \subseteq C_k \subseteq C_m^k$ 。
- □ 可以根据Apriori性质生成潜在的频繁项集。

Apriori算法

- □ 连接步: 通过连接产生 Ck
- □ 剪枝步:如果一个候选k-项集的(k-1)-子集不在(k-1)-的频繁项集中,则该候选项集也不可能是频繁的,从而由Ck删除
- □ 伪代码
 - □ C_k: 大小为k的候选集
 - □ Lk: 大小为k的频繁项集
 - □ L₁= {频繁项集};
 - for(k= 1; Lk!=Ø; k++) do begin
 - Ck+1= 从Lk中产生的候选集;
 - for each transaction t∈D do
 - 对于包含在†中的属于Ck+1的所有候选集的计数加一
 - Lk+1= Ck+1 中满足最小支持度的候选集
 - end
 - □ return UkLk;

实例 (support:50%)

					-				
18			Itemset	sup		Itom	eot.	CUID	
Datal	base TDB		{A}	2	\rceil_{r}	Ittelli	1961	Sup	
Tid	Items	C_I	{B}	3	L_1	{A		2	
10	A, C, D	1	{C}	3	1	{B		3	
20	B, C, E	1 st scan	{D}	1		{C		3	
30	A, B, C, E		{E}	3		{E	:}	3	
40	B, E	<u> </u>			_				
		C_2	Itemset :	sup		C_2	Iter	nset	
L_2	Itemset	sup	{A, B}	1	2 nd sca		. Δ	, B}	7
2	{A, C}	2	{A, C}	2	•				
-	{B, C}	2	{A, E}	1				, C}	
	{B, E}	3	{B, C}	2			{A	, E}	
	{C, E}	2	{B, E}	3			{B	, C}	
	(0, L)		{C, E}	2			{B	, E}	
							{C	, E}	
	C ₃ Itemse	3 rd so	$can L_3$	Iten	nset s	un			
	{B, C, E} {B, C, E} 2								

如何产生候选集

- □ 假设Lk-1中的项是按顺序列出的
- □ 第一步: 自我连接Lk-1
 - Insert into C_k
 - select p.item1, p.item2, ..., p.item1, q.item1
 - □ from L_{k-1}p, L_{k-1} q
 - where p.item₁=q.item₁, ..., p.itemҝ₂=q.itemҝ₂, p.itemҝ₁ < q.itemҝ₁
- □ 第二步: 剪枝步
 - □ 对于Ck中的所有项集c do
 - ■对于c的所有(k-1)子集s do
 - if (s 不在Lk-1中) then 从Ck中删除c

产生候选项集的例子

- ◆ L₃={abc, abd, acd, ace, bcd}
- ◆ 自我连接: L3*L3
 - ◆由abc和abd产生abcd
 - ◆由acd和ace产生acde
- ◆剪枝:
 - ◆删除acde因为ade不在L3
 - ◆ C₄={abcd}

由频繁项集产生关联规则

◆方法

- ◆对于每个频繁项集l,产生l的所有非空子集。
- ◆ 对于l 的每个非空子集S,如果 $\frac{\sup port_count(l)}{\sup port_count(s)} \ge \min_conf$ 则输出规则 " $s \Rightarrow (l-s)$ "。其中, min_conf 是最小置信度阈值。

◆ 例子

- ◆ 频繁项集 $l = \{I1, I2\}$, 可以由I产生哪些关联规则?
- ◆ L的非空子集: {I1}, {I2}
- lack o 关联规则如下: $I1 \Longrightarrow I2$ $I2 \Longrightarrow I1$
- ◆ 计算置信度,大于置信度阈值就是强关联规则

提高Apriori算法的效率

- ◆ 基于散列的技术
 - ◆ 如果一个k-项集对应的哈希桶计数低于支持度阈值,则它不可能是频繁的
- ◆ 事务压缩
 - ◆ 不包含任何频繁k-项集的事务在以后的扫描中是无用的
- ◆ 划分
 - ◆ 任何项集如果在DB中是潜在频繁的,那么它至少在DB中的一个划分中 是频繁的
- ◆ 抽样
 - ◆ 在给定数据的一个子集上进行挖掘,低支持阈值+好的策略可以得到 完整的频繁项集
- ◆ 动态项集计数
 - ◆ 如果一个项集的所有子集已被确定为频繁的,则添加它作为新的候选

不产生候选项集挖掘频繁集

- ◆ Apriori算法存在的问题
 - ◆大量的候选集
 - ◆10⁴个频繁1-项集将生成107个候选2-项集
 - ◆为了发现一个大小为100的频繁模式,如 $\{a_1, a_2, ..., a_{100}\}$,需要产生 $2^{100} \approx 10^{30}$ 个候选集
 - ◆数据库的多遍扫描
 - ◆假定n是最长项集的长度,则需要(n+1)遍扫描数据库。

频繁模式增长

- ◆ 把大型数据库压缩成一棵Frequent-Pattern tree (FP-tree) [Han, Pie and Yin, SIGMOD2000]
 - ◆ 高度浓缩,同时对频繁集的挖掘又完备的
 - ◆ 避免代价较高的数据库扫描
- ◆ 开发一种高效的基于FP-tree的频繁集挖掘算法
 - ◆分而治之的策略:分解数据挖掘任务为小任务
 - ◆避免候选项集的产生: 只检测子数据库

建立 FP-tree

<u>TID</u>	Items bought (ord	lered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, \overline{a}, m, p\}$	具小士柱庄 0.5
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	最小支持度 = 0.5
300	$\{b, f, h, j, o\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	[]

步骤:

- 1. 扫描数据库一次,得到频繁 1-项集
- 2. 把项按支持度递减排序
- 3. 再一次扫描数据库,建立 FP-tree

FP-tree 结构的优点

- ◆ 完整性
 - ◆不会破坏交易中的任何模式
 - ◆包含了频繁模式挖掘所需的全部信息
- ◆ 简洁性
 - ◆减少了不相关的信息-----非频繁项集被删掉
 - ◆ 频繁项集按支持度递减顺序排列:越是频繁的项 集越有可能被共享
 - ◆不会比原数据库大(如果不算节点链和计数)

用FP-tree挖掘频繁项集

- ◆ 基本思想 (分而治之)
 - ◆ 用FP-tree递归增长频繁集
- ◆ 主要步骤
 - ◆ 为FP-tree中的每个节点生成条件模式基
 - ◆ 用条件模式基构造对应的条件FP-tree
 - ◆ 递归构造条件 FP-trees 同时生成其包含的频繁集
 - ◆如果条件FP-tree只包含一个路径,则直接生成所包 含的频繁集。
 - ◆如果条件FP-tree包含多个路径,则采用混合的方法

步骤1: 从 FP-tree 到条件模式基

- □ 从FP-tree的头表开始
- □ 按照每个频繁项的连接遍历 FP-tree
- □ 列出能够到达此项的所有前缀路径,得到条件模式 基

条件模式基

<u>item</u>	cond. pattern base
c	<i>f</i> :3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

步骤2: 建立条件 FP-tree

- ◆ 对任意模式基
 - ◆ 计算其中每个项的支持度
 - ◆为模式基中的频繁项建立条件FP-tree

步骤3: 生成条件FP-tree

设最小支持度计数为3

项	条件模式基	条件FP-tree
p	{(fcam:2), (cb:1)}	Empty
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

步骤4:递归挖掘条件FP-tree

"cam"条件模式基: (f:3) f:3 cam-条件 FP-tree

单一FP-tree路径的产生

- □ 假设一个FP-tree T 有一个单一的路径P
 - □ T的完全频繁模式集可以通过列举P的子路径的所有组合来产生

m-条件FP-树

拥有单一前缀路径的FP-tree

- □ 假定一个条件FP-tree T 有一个共享的单一前缀路径 P
- □挖掘可以分成两个部分
- - □把两部分挖掘结果结合起来

频繁模式增长的性能分析

- ◆ 性能研究表明
 - ◆FP-树比Apriori算法快一个数量级
- ◆原因
 - ◆ 没有候选集的产生,没有候选测试
 - ◆使用简洁的数据结构
 - ◆除去了重复的数据库扫描
 - ◆基本操作是计数和FP-树构造

主要内容

- □ 基本概念
- □ 频繁项集挖掘方法
- □ 挖掘各种类型的关联规则
- □ 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- □ 小结

挖掘各种类型的关联规则

- ◆ 多层关联规则
 - ◆ 涉及不同抽象层中的概念
- ◆ 多维关联规则
 - ◆涉及多个维或谓词(如涉及顾客买什么和顾客年龄的规则)
- ◆ 量化关联规则
 - ◆ 涉及维之间具有隐含排序数值属性(如年龄)

挖掘多层关联规则

- ◆ 项集通常构成层次关系
 - ◆ 在多个抽象层上挖掘数据产生的关联规则称多层关联规则
- ◆ 灵活的支持度阈值
 - ◆ 对于所有层使用一致的最小支持度
 - ◆ 在较低层使用递减的最小支持度
 - ◆ 使用基于项或基于分组的最小支持度

uniform support

reduced support

多层关联规则: 灵活的支持度和冗余过滤

- ◆ 灵活的支持度阈值:一些项很有价值但却不频繁
 - ◆ 利用非一致的,基于组的支持度阈值
 - ◆ E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...
- ◆ 冗余过滤: 因为项之间的父子关系,一些规则可能是冗余的
 - milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
 - ◆ 第一个规则是第二个规则的父规则
 - ◆ 基于该规则的父规则,如果它的支持度和置信度接近期望值,则这个规则是冗余的

挖掘多维关联规则

- ◆ 单维关联规则
 - ◆ buys(X, "milk") ⇒ buys(X, "bread")
- ◆ 多维关联规则: 大于等于两个维或谓词的关联规则
 - ◆ 维间关联规则: 无重复谓词
 - ◆ age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X, "coke")
 - ◆ 混合维关联规则: 重复谓词
 - \bullet age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
 - ◆ 在多维关联规则挖掘中,搜索频繁谓词集。k谓词集是包含k个合取谓词的集合。例如:{age, occupation, buys} 是一个3谓词集。

40

- 」 属性
 - ◆ 分类属性: 具有有限个可能值, 值之间无序, 如: 职业、品牌
 - ◆量化属性:数值的,在值之间有蕴含的序,如:年龄,收入
- □ 挖掘量化关联规则
 - ◆ 数据立方体方法
 - ◆ 基于聚类的方法
 - ◆ 揭示异常行为的统计学方法

量化关联规则的基于数据立方体挖掘

- 在挖掘之前,用概念层次将量化 属性离散化
- 数值属性的值用区间标号替代
- 变换后的多维数据可以用来构造数据立方体。
- 数据立方体非常适合挖掘多维关 联规则:它们在多维空间存储聚 集信息,这对于计算多维关联规 则的支持度和置信度是重要的。
- 可以用n维方体的单元存放对应 的n谓词集的支持度计数
- 从数据立方体挖掘多维关联规则 速度更快

挖掘基于聚类的量化关联规则

- □ 假定,有趣的频繁模式或关联规则通常在量化 属性相对稠密的簇中发现。
- □自顶向下方法
 - □对于每个量化维,使用聚类算法发现该维上满足最小支持度阈值的簇。
 - ■对于每个这样的簇,考察该簇与另一维的一个簇或标称属性值组合生成的二维空间,看这一组合是否满足最小支持度阈值。如果满足,进一步考察更高维。
- □自底向上方法
 - □先在高维空间聚类,然后投影并合并较少维组合上的簇。 ECUST--Jing Zhang

使用统计学理论发现异常行为

- □ 发现揭示异常行为的量化关联规则,其中"异常"的定义建立在统计学理论的基础上。
- □ 比如:

Sex=female=>meanwage=7.9\$/h(overall_mean_wage=9.02\$/h)

(注:美国1985年)

主要内容

- □ 基本概念
- □ 频繁项集挖掘方法
- □ 挖掘各种类型的关联规则
- □ 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- □ 小结

兴趣度度量

- ◆ 客观度量
 - ◆两个流行的度量方法
 - ◆支持度
 - ◆置信度
- ◆ 主观度量
 - ◆一个规则(模式)是有趣的,如果
 - ◆它是非预期的(令用户吃惊的)
 - ◆可控制的(用户可以用它来做一些事情)

支持度和置信度的缺点

◆ 例1:

- ◆ 在5000个学生中
 - ◆ 3000 个打篮球
 - ◆ 3750 个吃谷类食品
 - ◆ 2000 个既打篮球又吃谷类食品
- ◆ 打篮球⇒吃谷类食品[40%, 66.7%]
 - ◆ 是一个误导,因为吃谷类食品的学生的可能性是75%,比66.7%要高
- ◆ 打篮球⇒不吃谷类食品[20%, 33.3%]
 - ◆ 虽然具有较低的支持度和置信度,但比以上的规则要"有趣"得多

	打篮球	不打篮球	行和
吃谷类食品	2000	1750	3750
不吃谷类食品	1000	250	1250
列和	3000	2000	5000

支持度和置信度的缺点(续)

- ◆ 例2:
 - ◆ X 和Y: 正相关
 - ◆ X 和Z, 负相关
 - ◆ 无论是支持度还是置信度,规则 X=>Z 都有较高的值
- ◆ 我们需要一个依赖或相关事件 的度量----提升度(Lift)

X	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

lift(A, B) =	$P(A \cup B)$
$\operatorname{III}(A, D) =$	$\overline{P(A)P(B)}$

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37.50%	75%

◆ P(B|A)/P(B) 也被称作规则A => B的"提升"

其它的兴趣度量:提升度

◆ 兴趣度(相关,提升)

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

- ◆ 考虑P(A) 和P(B)
 - ◆如果A和B 是独立事件, P(AB)=P(B)*P(A)
 - ◆如果Lift(A,B)的值小于1,则A和B是负相关;大于1,A和B是正相关的;等于1,A和B不相关。

Χ	1	1	1	1	0	0	0	0
Υ	1	~	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Itemset	Support	Interest
X,Y	25%	2
X,Z	37.50%	0.9
Y,Z	12.50%	0.57

主要内容

- □ 基本概念和路线图
- 有效的和可伸缩的频繁项集挖掘方法
- **□ 挖掘各种类型的关联规则**
- 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- □ 小结

基于约束的关联挖掘

- ◆ 能否自动地找到数据库中的所有模式? ----显然是不现实的!
 - ◆ 模式太多并且也不是所有模式都是用户感兴趣的!
- ◆ 数据挖掘应该是一个交互的过程
 - ◆用户用数据挖掘查询语言(或者图形化的用户界面)指导 挖掘
- ◆ 基于约束的挖掘
 - ◆用户灵活性:对挖掘的内容进行限制
 - ◆ 优化: 利用约束规则优化查询过程(注: 在满足约束条件下仍然能够找到所有的结果,而不是在启发式搜索下找到一些结果)

基于约束的挖掘--约束的定义

- ◆ 知识类型约束
 - ◆ 关联规则, 相关规则, 分类、聚类等
- ◆ 数据约束— 指定任务相关的数据集
 - ◆ 比如:找到本年度在芝加哥商店一起售卖的商品
- ◆ 维/层约束—指定挖掘所期望的数据维,或概念分层结构的 层次
 - ◆ 比如: 挖掘 region, price, brand, customer category
- ◆ 规则 (或 模式) 约束---指定要挖掘的规则模式
 - ▶ 比如: 售价低的商品 (price < \$10) 触发大的销售额 (sum > \$200)
- ◆ 兴趣度约束
 - ◆比如: 强规则: min_support≥3%, min_confidence≥ 60%

基于约束的频繁模式挖掘

- ◆ 对于频繁项集挖掘,规则约束分类如下
 - ◆ 反单调的:如果违反了规则c,则进一步的挖掘将被终止
 - ◆ 单调的: 如果已经满足了规则c,则后续挖掘不必再检验 该规则
 - ◆ 简洁的: c必须被满足,因此可以从满足c的数据集开始 挖掘
 - ◆ 可转变的: c不是单调的或反单调的,但可以被转换成单调的或反单调的,如果事务中的项可以被正确的排序
 - ◆ 不可转变的: c不是单调的或反单调的,且不可以转换

- ◆ 约束C是反单调的,如果超模式满足C,则 其所有的子模式也满足。
- ◆ 换句话说,如果一个项集不满足该规则约束,它的任何超集也不可能满足该规则约束。
- Ex. 1. $sum(S.price) \le v$ is anti-monotone
- Ex. 2. $range((S.profit) \le 15$ is anti-monotone
 - Itemset ab violates C
 - So does every superset of ab
- Ex. 3. $sum(S.Price) \ge v$ is not anti-monotone
- ◆ Ex. 4. 支持度计数是反单调的: Apriori算法的核心属性

	` — 1 /
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

单调的约束

- ◆ 约束C是单调的,如果模式满足C,则 在后续的挖掘中不必再检查是否满足约 束C
- ◆ 换句话说,如果一个项集S满足约束,则 其所有的超集也满足。
- Ex. 1. $sum(S.Price) \ge v$ is monotone
- **♦** Ex. 2. min(S.Price) ≤ v is monotone
- ♦ Ex. 3. C: range(S.profit) \geq 15
 - Itemset ab satisfies C
 - So does every superset of ab

TDB (min_sup=2)

TBB (IIIII_Sup 2)		
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

简洁的约束

- ◆ 简洁的
 - ◆给定 A₁, 项的集合满足一个简洁约束C,则任何满足C的集合S基于A₁, 即,S包含一个属于A₁的子集
 - ◆基本思想: 不必查看事务数据库,一个项集\$是 否满足约束C可以由其选择的项来决定。
 - \bullet min(S.Price) \leq v is succinct
 - \bullet sum(S.Price) $\geq v$ is not succinct
- ◆ 优化: 如果C是简洁的,则C 是计数前可剪枝的

- 例如:约束C: avg(S.profit) ≥ 25
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - ◆ If an itemset afb violates C
 - ◆So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

	` _ 1 /
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

不可转变的约束

- ◆ 不是每种约束都是可转变的
- ◆ 不可转变的约束
 - ◆如: "sum(S) θ v" 其中 θ∈{≤, ≥}并且S中的每个元素可以是任意实数。
- ◆尽管有一些难处理的约束是不可转变的,但是大部分使用SQL内部聚集的简单SQL表达式都属于前四类之一,对于它们可以使用有效的约束挖掘方法。

主要内容

- □ 基本概念和路线图
- 有效的和可伸缩的频繁项集挖掘方法
- **□ 挖掘各种类型的关联规则**
- □ 由关联挖掘到相关分析
- **□ 基于约束的关联挖掘**
- 小结

小结

- ◆ 关联规则挖掘
 - ◆Apriori算法
 - ◆频繁模式增长
 - ◆多层关联规则
 - ◆基于约束的规则挖掘
- ◆相关分析
 - ◆相关规则
 - ◆提升度

参考文献

- Agrawal R, Imielinski T, and Swami A. *Mining* association rules between sets of items in large databases. SIGMOD, 207-216, 1993.
- Agrawal R, and Srikant R. Fast algorithms for mining association rules in large databases. VLDB, 478-499, 1994.
- Han J W, Pei J, Yin Y W. Mining frequent patterns without candidate generation. SIGMOD, 1-12, 2000.
- Han J W, Pei J, Yin Y W, and Mao R Y. *Mining frequent patterns without candidate generation: a frequent-pattern tree approach*. Data Mining and Knowledge Discovery. 8, 53-87, 2004

习题一

□ 数据库有4个事务。设min_sup=60%,min_conf=80%

TID	Itmes_bought	
T100	$\{K,A,D,B\}$	
T200	{D,A,C,E,B}	
T300	{C,A,B,E}	
T400	{B,A,D}	

- □ 分别使用Apriori和FP-增长算法找出频繁项集。
- □ 列出所有的强关联规则(带支持度s和置信度c),它们与下面的元规则匹配,其中,X是代表顾客的变量,itmei是表示项的变量(例如:A、B等)

 $\forall x \in \text{transaction}, buys(X, itme_1) \land buys(X, itme_2) \Rightarrow buys(X, itme_3) \quad [s, c]$

习题二

□ 下面的相依表总汇了超级市场的事务数据。其中,hot dogs表示包含热狗的事务,non-hotdogs表示不包含热狗的事务,hamburgers表示包含汉堡的事务,non-hamburgers表示不包含汉堡包的事务。

	hotdogs	Non-hotdogs	行汇总
hamburgers	2000	500	2500
Non-hamburgers	1000	1500	2500
列汇总	3000	2000	5000

- □ 假定发现关联规则"hot dog => hamburgers"。给定最小支持度 阈值25%,最小置信度阈值50%,该关联规则是强的么?
- 根据给定的数据,买hot dog独立于买hamburgers么?如果不是, 二者存在何种"相关"关系?

思考题

- □商店里每种商品的价格都是非负的。对于以下 每种情况,识别他们提供的约束类型,并简略 讨论如何有效地挖掘这种关联规则。
 - □至少包含一件任天堂游戏。
 - □包含一些商品,它们的价格和小于150美元。
 - □包含一件免费商品,并且其他商品的价格和至少是 200美元。
 - □ 所有商品的平均价格在100美元-500美元之间。

END