Gabriele Petrillo

Problematiche della composizione musicale elettroacustica

Ciò che segue è stato sviluppato a partire dalla dispensa di composizione del 17/02/2020 del prof. N.Bernardini presso il conservatorio S.Cecilia di Roma che possono essere consultati pressohttps://git.smerm.org/SMERM/TR-2019-2020/src/branch/master/COME-02/A.A.2019-2020/20200217. Questa dispensa tratta delle problematiche principali della composizione elettroacustica e sviluppa un primo approccio a Csound.

Csound

Csound è un software per la sintesi digitale diretta del suono realizzato da Barry Vercoe al M.I.T. (Massachusetts Institute of Tecnology)

Per ottenere qualsiasi tipo di suono in Csound è necessaria la scrittura di due testi differenti:

- Orchestra
- partitura

Su questi due testi noi scriveremo rispettivamente le informazioni sugli strumenti di cui abbiamo bisogno e le operazioni che questi devono svolgere, dopo di che il programma creerà un file audio con i suoni che noi abbiamo richiesto.

Orchestra

L'orchestra è composta da due sezioni:

- Header: dove inseriamo le informazioni di base che devono seguire tutti gli strumenti;
- Strumenti: dove costruiamo i nostri strumenti virtuali.

In generale un Header contiene sempre queste informazioni:

• sr frequenza di campionamento dei segnali audio (sample rate)

- ksmps rapporto tra sr e kr (frequenza di campionamento dei segnali di controllo)
- nchnls numero dei canali di uscita

Un esempio di Header del nostro primo programma Csound è:

```
\begin{array}{l} \mathsf{sr} = 44100 \\ \mathsf{ksmps} = 32 \\ \mathsf{nchnls} = 1 \\ \mathsf{0dbfs} = 1 \end{array}
```

Dove è stato aggiunta l'opzione $0{\rm dbfs}=1$ che serve a normalizzare i valori delle ampiezze tra -1 e 1.

Gli strumenti

Gli strumenti sono molto più vari perché dipendono da ciò che vogliamo creare. La prima cosa da scrivere è il numero dello strumento, con l'istruzione instr seguita da un numero. L'ultima parola è endin con il quale si termina lo strumento. Allo'interno dello strumento dobbiamo assegnare alle variabili (che possiamo immaginare come dei cassetti dove vengono riposti tutti i risultati di determinate operazioni) i vari opcode (codici operativi di funzioni di Csound, come ad esempio gli oscillatori o i filtri ecc.) e i vari argomenti che necessita l'opcode utilizzato. Nella nostra orchestra abbiamo utilizzato 4 opcode differenti:

- soundin permette di leggere un file audio
- diskin come soundin permette di leggere un file audio ma consente di variare la ve-

locità di lettura, la direzione e realizzare dei loop.

- oscil è un generatore di forme d'onda sinusoidali
- loscil legge un file audio importato in una tabella e consente di eseguire le stesse operazioni di un campionatore come legger eil file audio cambiando ampiezza, frequenza e punti di loop.

```
instr 1
a1 soundin "sample_spoon.wav"
out a1
endin

instr 2
a1 diskin "sample_spoon.wav", p4
out a1
endin

instr 3
kfreq oscil 50, 0.8, 2
kfreq = kfreq + 261.6
a1 loscil 1, kfreq, 1, 261.6, 2, 5000, 35000
out a1
endin
```

Bisogna fare una piccola precisazione sul nome delle variabili, infatti con a si intendono le variabili audio (quindi ogni variabile che tratterà segnali audio inizierà per a) mentre con k tutte le variabili che contengono segnali di controllo (come ad esempio LFO o inviluppi ecc.). Per ultimo, alla fine di tutta la catena avremo una variabile in uscita definita dal comando out più il nome della variabile alla fine di ogni strumento.

Parametri degli opcode

- soundin nome del file audio.
- diskin nome del file audio, velocità di lettura (1=normale, 2=doppia, ecc.)
- oscil
- loscil variabili audio in uscita (1=segnale monofonico, 2=segnale stereo), ampiezza, velocità di lettura (1=normale, 2=doppia, ecc.), numero della tabella che contiene la forma d'onda, frequenza del file audio (261.6 di default), modo del

loop (0=nessun loop; 1= loop semplice, 2=loop avanti e indietro), numero del campione da cui far iniziare il loop, numero del campione da cui far terminare il loop.

BIBLIOGRAFIA

•Santoboni, Riccardo e A.Rita, Ticari, Istituzioni di fisica acustica con elementi di psicoacustica. Per il musicista, Papageno 2005