INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Why RISC-V?

Meta's Bold Move: Embracing RISC-V for AI Acceleration Over GPUs and CPUs

The RISC-V Revolution Gains Momentum

ANOCHIE ESTHER — December 15, 2023 in Al, Business, Manufacturing, News, Tech Reading Time: 2 mins read

Technology Review

Newslett

Qualcomm

Press Note

Qualcomm to Bring RISC-V Based Wearable Platform to Wear OS by Google

Important first milestone to bring RISC-V compatible CPUs to the Ecosystem Qualcomm products mentioned within this press release are offered OCT 17, 2023 | SAN DIEGO

https://www.qualcomm.com/news/releases/2023/10/qualcom m-to-bring-risc-v-based-wearable-platform-to--wear-os-by-

https://techstory.in/risc-v-chosen-over-gpus-and-cpus-by-meta/ https://www.technologyreview.com/2023/01/09/1064876/riscv-computer-chips-10-breakthough-technologies-2023/

https://riscv.org/news/in-the-news/

IIT ROORKEE

Number of pages and words of ISA manuals

ISA	Pages	Words	Hours to read	Weeks to read
RISC-V	236	76,702	6	0.2
ARM-32	2736	895,032	79	1.9
x86-32	2198	2,186,259	182	4.5

2 Versions of RISC-V (based on maximum width of registers supported)

- 1. RISC-V 32 (RV32): max register width (XLEN) is 32 bits
- 2. RISC-V 64 (RV64): max register width (XLEN) is 64 bits

RV64 supports RV32 also.

Both versions have 32 registers.

In both of them, each instruction is encoded into 32 bits.

RISC-V ISA includes

- A small base integer ISA, usable by itself as a base for customized accelerators or for educational purposes, and
- Optional standard extensions, to support general-purpose software development
- Optional customer extensions

Mandatory Base integer ISA

I: Integer instructions:

- -ALU
- Branches/jumps
- Loads/stores

Standard extensions

- Standard RISC encoding in a fixed 32bit instruction format
- The "C" extension (compressed extension) offers shorter 16-bit versions of common 32-bit RISC-V instructions (can be intermixed with 32-bit instructions)

Name	Extension	
М	Integer Multiply/Divide	
Α	Atomic Instructions	
F	Single-precision FP	
D	Double-precision FP	
G	General-purpose (= IMAFD)	
Q	Quad-precision FP	
°c	Compressed Instructions	

Registers

All the registers can be used as general purpose registers.

Some of them are usually used for specific purposes

Register	ABI Name	Description	Saver
x0	zero	Hard-wired zero	_
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
х3	gp	Global pointer	
x4	tp	Thread pointer	
x5	t0	Temporary/alternate link register	Caller
x6-7	t1-2	Temporaries	Caller
x8	s0/fp	Saved register/frame pointer	Callee
x9	s1	Saved register	Callee
x10-11	a0-1	Function arguments/return values	Caller
x12-17	a2-7	Function arguments	Caller
x18-27	s2-11	Saved registers	Callee
x28-31	t3-6	Temporaries	Caller

Dedicating a register to zero is a surprisingly large factor in simplifying the RISC-V ISA

RV32I has 31 registers plus x0. ARM-32 has merely 16 registers while x86-32 has only 8.

Argument and temporary register

Argument registers: x10 to x17 are used to pass arguments to a function. Before calling a function, arguments are copied to these registers.

If more than 8 arguments need to be passed, we use the stack.

Temporary registers (t0 to t6): used to hold intermediate values during instruction or function execution.