

Иван Кочкожаров, студент группы М8О-108Б-22

8 мая 2023 г.

1. Определить для орграфа, заданного матрицей смежности
$$A=\begin{pmatrix}0&1&0&1\\0&0&0&1\\1&1&0&1\\0&0&0&0\end{pmatrix}$$

- а) матрицу односторонней связности;
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров.

Решение.

Изображение графа:

Матрица односторнней связности:

$$A = A(D) = \begin{vmatrix} & v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 0 & 0 & 0 & 1 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 0 & 0 & 0 & 0 \end{vmatrix}$$

$$A^{2} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Матрица двусторонней связности:

$$S(D) = T(D) \& [T(D)]^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $S(D) = E \Rightarrow$ в графе D нет контуров.

Компонентны сильной связности:

$$S_2(D) = S(D) = \begin{vmatrix} & v_1 & v_2 & v_3 & v_4 \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 0 & 0 \\ v_3 & 0 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$D_1 = (V_1, X_1), V_1 = \{v_1\}$$

$$A(D_1) = \begin{array}{|c|c|} \hline v_1 \\ \hline v_1 & 0 \end{array} \qquad D_1: \qquad \boxed{1}$$

$$S_2(D) = \begin{vmatrix} & v_2 & v_3 & v_4 \\ v_2 & 1 & 0 & 0 \\ v_3 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 1 \end{vmatrix}$$

$$D_2 = (V_2, X_2), V_2 = \{v_2\}$$

$$D_3 = (V_3, X_3), V_3 = \{v_3\}$$

$$A(D_3) = \begin{array}{|c|c|c|c|}\hline v_3 \\ \hline v_3 & 0 \end{array} \qquad D_3: \qquad \begin{array}{|c|c|c|c|}\hline \\ S_4(D) = \begin{array}{|c|c|c|}\hline v_4 \\ \hline v_4 & 1 \end{array} \\ \\ D_4 = (V_4, X_4), V_4 = \{v_4\} \\ \\ A(D_4) = \begin{array}{|c|c|c|}\hline v_4 \\ \hline v_4 & 0 \end{array} \qquad D_4: \qquad \begin{array}{|c|c|c|c|}\hline \end{array}$$

Матрица контуров:

2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

Решение.

Для решения этой задачи действуем в соответствии с алгоритмом Тэрри. Для реализации алгоритма помечаем первые заходящие в вершины ребра крестиками, которые наносим на ребрах ближе к той вершине в которую в первый раз заходим, а также указываем направления прохождения ребер и последовательность прохождения ребер. Алгоритм дает следующий возможный маршрут:

 $v_1v_2v_3v_5v_4v_3v_4v_2v_4v_1v_4v_5v_3v_2v_1$

3. Орграф D=(V,X), где $V=\{v_1,\ldots,v_{10}\}$ задан матрицей смежности A(D). Найти все минимальные пути v_1 в v_8 .

		v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
	v_1	0	0	1	0	0	1	0	0
	v_2	1	0	1	1	1	1	0	0
	v_3	1	0	0	0	0	1	0	0
A = A(D) =	v_4	1	1	1	0	0	1	0	0 .
	v_5	1	1	1	1	0	0	1	1
	v_6	0	0	1	1	0	0	0	0
	v_7	1	0	1	1	1	1	1	0
	v_8	1	0	1	1	0	0	1	0

Решение.

Действуя согласно алгоритму фронта волны, последовательно определяем:

$$FW_0(v_1) = \{v_1\}, FW_1(v_1) = D(v_1) = \{v_3, v_6\},$$

$$FW_2(v_1) = D(FW_1(v_1)) \setminus (FW_0(v_1) \cup FW_1(v_1)) = D(\{v_3, v_6\}) \setminus \{v_1, v_3, v_6\} =$$

$$= \{v_1, v_3, v_4, v_6\} \setminus \{v_1, v_3, v_6\} = \{v_4\}$$

$$FW_3(v_1) = D(FW_2(v_1)) \setminus (FW_0(v_1) \cup FW_1(v_1) \cup FW_2(v_1)) = \{v_1, v_2, v_3, v_6\} \setminus \{v_1, v_3, v_4, v_6\} = \{v_2\}$$

$$FW_4(v_1) = D(FW_3(v_1)) \setminus (FW_0(v_1) \cup FW_1(v_1) \cup FW_2(v_1) \cup FW_3(v_1)) =$$

$$= \{v_1, v_3, v_4, v_5, v_6\} \setminus \{v_1, v_2, v_3, v_4, v_6\} = \{v_5\}$$

$$FW_5(v_1) = D(FW_4(v_1)) \setminus (FW_0(v_1) \cup FW_1(v_1) \cup FW_2(v_1) \cup FW_3(v_1) \cup FW_4(v_1)) =$$

$$\{v_1, v_2, v_3, v_4, v_7, v_8\} \setminus \{v_1, v_2, v_3, v_4, v_5, v_6\} = \{v_7, v_8\}$$

Таким образом