HIGIDURA ZUZEN UNIFORMEA	HIGIDURA ZIRKULAR UNIFORMEA
$\Delta s \equiv Desplazamendu lineal aedo ibilitako distantzia (m)$	$\Delta \phi \equiv$ Desplazamendu angeluarra edo biratutako angelua (rad)
v ≡ Abiadura lineala (m/s)	1bira $\rightarrow 2\pi$ rad $\omega = \text{Abiadura angeluarra (rad/s)}$
$1\frac{\mathrm{km}}{\mathrm{h}} = 1\frac{\mathrm{km}}{\mathrm{h}} \cdot \frac{1000\mathrm{m}}{1\mathrm{km}} \cdot \frac{1\mathrm{h}}{3600\mathrm{s}}$	$1\frac{\text{bira}}{\text{min}} = 1\frac{\text{bira}}{\text{min}} \cdot \frac{2\pi \text{ rad}}{1 \text{ bira}} \cdot \frac{1 \text{ min}}{60 \text{ s}} = \frac{2\pi}{60} \frac{\text{rad}}{\text{ s}}$
Ekuazioak:	Ekuazioak:
$v = \frac{\Delta s}{\Delta t}$	$\omega = \frac{\Delta \phi}{\Delta t}$
$s = s_o + v \cdot t$	$\varphi = \varphi_{o} + \omega \cdot t$
BIE	EN ARTEKO ERLAZIOAK

$$s = r \cdot \phi$$
 edo $\Delta s = r \cdot \Delta \phi$

$$v = r \cdot \omega$$