

Análise e Síntese de Algoritmos Complexidade Computacional

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais
 - Complexidade Computacional [CLRS, Cap.34]

Monteiro ASA @ LEIC-T 2024/2025 2/43

Resumo

Motivação

Motivação

Problemas Resolúveis em Tempo Polinomial

Problemas Verificáveis em Tempo Polinomial

Redutibilidade e Completude-NP

- A empresa onde trabalham vai entrar no competitivo mercado dos gambozinómetros
- O vosso chefe, chama-vos ao gabinete e pede-vos para elaborarem um algoritmo que permita determinar as especificações óptimas para o primeiro modelo do gambozinómetro
- Após consultarem o departamento responsável pelo desenho dos gambozinómetros, para se inteirarem dos contornos do problema, colocam mãos à obra ...
- Várias semanas depois, já com o vosso gabinete atolado de pilhas de papel, e muitas noites mal dormidas, o vosso entusiasmo diminuiu ...

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/43 P.T. Monteiro ASA @ LEIC-T 2024/2025 4

Motivação

Motivação

 Até agora ainda não descobriram um algoritmo melhor do que percorrer e avaliar todos os desenhos possíveis de gambozinómetros, para determinar qual o melhor Isso provavelmente envolverá vários anos de computação...

• Mas, não querem voltar ao gabinete do vosso chefe e dar-lhe a má notícia...

"I can't find an efficient algorithm, I guess I'm just too dumb."

 Para evitar e mancharem a vossa reputação como engenheiros informáticos do IST, seria preferível se conseguissem provar que o problema dos gambozinómetros é intrinsecamente intratável, ou seja, que não existe um algoritmo eficiente para sua solução

"I can't find an efficient algorithm, because no such algorithm is possible!"

ro ASA @ LEIC-T 2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

P.T. Monteiro

Motivação

Motivação

- Infelizmente, provar que um problema é intrinsecamente intratável pode ser tão difícil quanto encontrar um algoritmo eficiente para o resolver
- A teoria da completude-NP (NP-completeness) fornece-nos um conjunto de técnicas para provar que um dado problema computacional é tão difícil quanto um conjunto de outros problemas amplamente reconhecidos como sendo difíceis de resolver

 Utilizando estas técnicas poderão conseguir provar ao vosso chefe que o problema em questão é NP-completo, e que portanto é equivalente a um conjunto de outros problemas já estudados por cientistas ilustres, e para a solução dos quais não se conseguiu descobrir um algoritmo eficiente

Motivação

Motivação

Perspectiva

- Problemas de decisão.
 - Resposta sim(1)/não(0)
- Classe de complexidade P
 - Problemas resolúveis em tempo polinomial
- Codificação de problemas
- Linguagens formais
- Algoritmos de verificação
- Classe de complexidade NP
 - Problemas verificáveis em tempo polinomial
- Redutibilidade entre problemas de decisão
- Problemas NP-completos

Polynomial time

Nondeterministic Polynomial time

Algoritmos Polinomiais

- Complexidade em O(n^k)
- Quase todos os algoritmos estudados em ASA (até agora) (Exemplo excepção: Simplex)
- Existem algoritmos polinomiais para qualquer problema ? Não !
 - Existem problemas não resolúveis
 - Existem problemas não resolúveis em tempo $O(n^k)$ para qualquer k
 - Problemas intratáveis: requerem tempo superpolinomial (ex: $O(2^n)$ ou O(n!))

Problemas NP-completos (desde 1971)

- Não provado que são tratáveis ou que são intratáveis
- Conjectura: problemas NP-completos são intratáveis

ASA @ LFIC-T 2024/2025

Motivação

P.T. Monteiro

Motivação

Problemas Resolúveis em Tempo Polinomial vs. NP-completos

- Caminhos mais curtos vs. caminhos mais longos
 - Mesmo com arcos com peso negativo é possível determinar caminhos mais curtos em

ASA @ LFIC-T 2024/2025

- Determinar o caminho mais longo entre dois vértices é NP-completo
- 2-CNF SAT vs. 3-CNF SAT
 - Determinar valores de x_1 , x_2 , x_3 , x_4 que satisfazem $(\overline{x}_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor \overline{x}_4) = 1$ pode ser feito em tempo polinomial
 - Determinar valores de x_1 , x_2 , x_3 , x_4 que satisfazem $(\overline{x}_1 \lor x_2 \lor \overline{x}_4) \land (x_2 \lor \overline{x}_3 \lor x_4) = 1$ é um problema NP-completo

Classes de Problemas P. NP e NPC

- Classe P: problemas resolúveis em tempo polinomial
- Classe **NP**: problemas verificáveis em tempo polinominal
 - Dado um certificado de uma solução, é possível verificar que o certificado é correcto, em tempo polinomial na dimensão do problema
- Classe NPC: problemas NP-completos
 - Problemas tão difíceis como qualquer problema em NP
 - Se algum problema NP-completo puder ser resolvido em tempo polinomial, então todos os problemas NP-completos podem ser resolvidos em tempo polinomial

Motivação

Exemplos de Problemas NPC

- Satisfação de fórmulas proposicionais SAT
- Coloração de grafos
- Instalação de pacotes de software
- Problemas em lógica
- Problemas em grafos / redes
- Problemas de autómatos
- Problemas em geração de código / compiladores
- Problemas em redes de computadores
- Problemas em bases de dados
- Problemas em investigação operacional
- ... (largas centenas)

. Monteiro ASA @ LEIC-T 2024/2025

Exemplo Prático - Gestão de Dependências de Software

$$P = \{p_1, p_2, p_3, p_4, p_5\}$$

$$\begin{array}{ll} \textit{depende}(p_1) = \{\{p_2\}, \{p_3, p_4\}\} & \textit{conflitos}(p_1) = \{p_5\} \\ \textit{depende}(p_2) = \{\{p_1, p_5\}, \{p_3, p_4\}\} & \textit{conflitos}(p_2) = \emptyset \\ \textit{depende}(p_3) = \emptyset & \textit{conflitos}(p_3) = \{p_5\} \\ \textit{depende}(p_4) = \{\{p_2, p_5\}\} & \textit{conflitos}(p_4) = \emptyset \\ \textit{depende}(p_5) = \emptyset & \textit{conflitos}(p_5) = \{p_2\} \end{array}$$

• $p_1 \in P$ instalável? Não é apenas um grafo de dependências. Existem conflitos!

Problema é NP-Completo

P.T. Monteiro ASA @ LEIC-T 2024/2025 14/43

Problemas Resolúveis em Tempo Polinomial

Problemas Resolúveis em Tempo Polinomial

Porquê admitir problemas resolúveis em tempo polinomial como tratáveis?

- Algoritmos polinomiais são normalmente limitados em $O(n^k)$, com k "baixo"
- Para modelos de computação usuais, algoritmo polinomial num modelo é polinomial noutros modelos
 - Serial random-access machine (habitual), computador paralelo
- Propriedades de fecho dos algoritmos polinomiais (soma, multiplicação e composição)

Problema Abstracto Q

Relação binária entre conjunto ${\it I}$ de instâncias e conjunto ${\it S}$ de soluções

Exemplo: Problema SHORTEST-PATH

- Instância: $i = \langle G, u, v \rangle$, grafo G, vértice origem u e destino v
- Solução: (uma) sequência de vértices do caminho mais curto

O problema é a relação que associa a cada instância uma ou mais soluções

Problemas Resolúveis em Tempo Polinomial

Problemas Resolúveis em Tempo Polinomial

Problemas de Decisão

- Problemas cuja resposta/solução é sim/não $(1/0), Q(i) \in \{0,1\}$
- Problemas de optimização:
 - Reformulados como problemas de decisão
 - Se problema de optimização é tratável, então reformulação como problema de decisão também é tratável

Exemplo: Problema PATH

- Instância: $i = \langle G, u, v, k \rangle$, número máximo de arcos k
- Solução: 1/0, se um caminho mais curto entre u e v tem ou não no máximo k arcos

P.T. Monteiro

ASA @ LFIC-T 2024/2025

Codificação de Problemas

- Codificação:
 - Dado conjunto abstracto de objectos S, uma codificação e é uma função que mapeia os elementos de S em strings binárias
- Problema concreto:
 - Problema com conjunto de instâncias / representadas como strings binárias
- Uma codificação e permite mapear um problema abstracto, Q, num problema concreto, e(Q)

Exemplo

- Codificação dos números naturais $IN = \{0, 1, 2, 3, 4, \dots\}$ nas strings binárias $\{0, 1, 10, 11, 100, \dots\}$
- Utilizando esta codificação, e(17) = 10001

ASA @ LFIC-T 2024/2025

Problemas Resolúveis em Tempo Polinomial

Problemas Resolúveis em Tempo Polinomial

Codificação de Problemas

- Problema resolúvel em tempo polinomial
 - Solução para instância $i \in I$, n = |i|, pode ser encontrada em tempo $O(n^k)$, com k constante
- Classe de complexidade P
 - Conjunto de problemas de decisão concretos resolúveis em tempo polinomial

Codificação de Problemas

- A codificação utilizada tem impacto na eficiência com que é possível resolver um problema
- Para codificações "razoáveis" de problemas abstractos, a codificação utilizada não afecta se um dado problema pode ser resolúvel em tempo polinomial
- Função $f: \{0,1\}^* \to \{0,1\}^*$ é computável em tempo polinomial se existe um algoritmo de tempo polinomial A que, dado $x \in \{0,1\}^*$, calcula f(x)
- Codificações e1 e e2 são relacionadas polinomialmente se existem duas funções polinomialmente computáveis, f_{12} e f_{21} , tal que para $i \in I$, $f_{12}(e_1(i)) = e_2(i)$ e $f_{21}(e_2(i)) = e_1(i)$

Problemas Resolúveis em Tempo Polinomial

Utilização de Linguagens Formais

Codificação de Problemas

Seja Q um problema de decisão abstracto com conjunto de instâncias I, e sejam e_1 e e_2 codificações relacionadas polinomialmente.

Então, $e_1(Q) \in P$ se e só se $e_2(Q) \in P$

- Admitir que $e_1(Q)$ é resolúvel em tempo $O(n^k)$ (k constante)
- $e_1(i)$ calculável a partir de $e_2(i)$ em tempo $O(n^c)$, com $n = |e_2(i)|$
- Para resolver o problema $e_2(Q)$ sobre a instância $e_2(i)$
 - Calcular $e_1(i)$ a partir de $e_2(i)$
 - Resolver o problema $e_1(Q)$ sobre a instância $e_1(i)$
- Complexidade polinomial $O(n^{ck})$
 - Conversão de codificações: $O(n^c)$ (c constante)
 - $-|e_1(i)|=O(n^c)$, a saída é limitada pelo tempo de execução
 - Tempo para resolver $e_1(i)$: $O(|e_1(i)|^k) = O(n^{ck})$
 - ightharpoonup Polinomial por c e k serem constantes

Utilização de Linguagens Formais

- Alfabeto Σ: conjunto finito de símbolos
- Linguagem L definida em Σ : conjunto de strings de símbolos de Σ
- Linguagem Σ^* : todas as strings de Σ
 - String vazia: ϵ
 - − Linguagem vazia: ∅
- Qualquer linguagem L em Σ é um subconjunto de Σ^*
- Operações sobre linguagens: união, intersecção, complemento, concatenação, fecho

Exemplo

Se $\Sigma=\{0,1\}$, então $\Sigma^*=\{\epsilon,0,1,00,01,10,11,000,\dots\}$ é o conjunto de todas as strings binárias

P.T. Monteiro

ASA @ LEIC-T 2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/20

Utilização de Linguagens Formais

Utilização de Linguagens Formais

Utilização de Linguagens Formais

- Para qualquer problema de decisão Q, o conjunto de instâncias é Σ^* , com $\Sigma = \{0,1\}$
- Q é completamente caracterizado pelas instâncias que produzem solução 1 (sim)
- Q pode ser interpretado como linguagem L definida em $\Sigma = \{0,1\}$

$$L = \{x \in \Sigma^* : Q(x) = 1\}$$

Exemplo

PATH=
$$\{\langle G, u, v, k \rangle : G = (V, E) \text{ é um grafo não dirigido}$$

 $u, v \in V,$
 $k \geq 0 \text{ é um inteiro, e}$

existe um caminho de u para v em G que consiste em, no máximo, k arcos

Utilização de Linguagens Formais

- Algoritmo A aceita $x \in \{0,1\}^*$ se A(x) = 1
- Algoritmo A rejeita $x \in \{0,1\}^*$ se A(x) = 0
- Linguagem aceite por A: $L = \{x \in \{0,1\}^* : A(x) = 1\}$
- L é decidida por A se qualquer string $x \in \{0,1\}^*$ é aceite ou rejeitada
- L aceite/decidida em tempo polinomial se A tem tempo de execução em $O(n^k)$, com n=|x|

Utilização de Linguagens Formais

Problemas Verificáveis em Tempo Polinomial

Definições Alternativas para a Classe P

- $P = \{L \in \{0,1\}^* : \text{ existe um algoritmo } A \text{ que decide } L \text{ em tempo polinomial}\}$
- $P = \{L \in \{0,1\}^* : L \text{ \'e aceite por um algoritmo de tempo polinomial}\}$
 - Conjunto das linguagens decididas em tempo polinomial é subconjunto das linguagens aceites em tempo polinomial
 - Basta provar que se L é aceite por algoritmo polinomial, implica que L é decidida por algoritmo polinomial
 - A aceita L em $O(n^k)$, pelo que A aceita L em tempo não superior a $T = cn^k$
 - Utilizar A' que executa A e observa resultado após $T = cn^k$
 - ▶ Se A aceita, A' aceita; se A não aceita (ainda), A' rejeita

Problemas Verificáveis em Tempo Polinomial

 Objectivo é verificar se uma instância pertence a uma dada linguagem utilizando um certificado (i.e. uma possível solução)

P.T. Monteiro

ASA @ LFIC-T 2024/202

-- / --

ASA @ LEIC-T 2024/202

Problemas Verificáveis em Tempo Polinomial

Classe de Complexidade NP

Algoritmos de Verificação

Algoritmo de verificação A:

- Argumentos:
 - string x: entrada
 - string y: certificado
- O algoritmo A verifica, para uma entrada x e certificado y, se A(x,y)=1
 - Certificado permite provar que $x \in L$
- A linguagem verificada por A é:
 - $L = \{x \in \{0,1\}^* : \text{existe } y \in \{0,1\}^* \text{ tal que } A(x,y) = 1\}$
- Exemplo: CNFSAT

Classe NP

- Classe de complexidade NP:
 - $\,$ Linguagens que podem ser verificadas por um algoritmo de tempo polinomial ${\it A}$
 - ▶ $L = \{x \in \{0, 1\}^* : \text{ existe um certificado } y \in \{0, 1\}^*, \text{ com } |y| = O(|x|^c), \text{ tal que } A(x, y) = 1\}$
 - $ightharpoonup L \in NP$
 - ► A verifica L em tempo polinomial
- Classe co-*NP*:
 - Linguagens L tal que $\bar{L} \in NP$
 - Exemplo: CNFUNSAT

Problemas Verificáveis em Tempo Polinomial

Problemas Verificáveis em Tempo Polinomial

NP

Relações entre classes de complexidade

P = NP = co-NP

(a)

 $P = NP \cap co-NP$

(c)

co-NP

Relações entre classes de complexidade

- P ⊂ NP
 - Poder decidir implica poder verificar
- $P \subseteq NP \cap \text{co-}NP$
 - P fechado quanto a complemento
- Questões em aberto:
 - P = NP ??
 - $P = NP \cap co-NP$??
 - Existe *L* em (*NP* \cap co-*NP*) − *P* ??

P.T. Monteiro

A @ LEIC-T 2024/2025

,, 10

ASA @ LEIC-T 2024/2025

NP

NP = co-NP

(b)

NP ∩ co-NP

(d)

Figure 34.3 Four possibilities for relationships among complexity classes. In each diagram, one region enclosing another indicates a proper-subset relation. (a) P = NP = co-NP. Most researchers regard this possibility as the most unlikely. (b) If NP is closed under complement, then NP = co-NP, but it need not be the case that P = NP. (c) $P = NP \cap \text{co-NP}$, but NP is not closed under complement. (d) $NP \neq \text{co-NP}$ and $P \neq NP \cap \text{co-NP}$. Most researchers regard this possibility as the most likely.

co-NP

Complexity Theory's 50-Year Journey to the Limits of Knowledge

Recomendo a versão texto:

https://www.quantamagazine.org/complexity-theorys-50-year-journey-to-the-limits-of-knowledge-20230817/

Recomendo a versão vídeo:

https://www.youtube.com/watch?v=pQsdygaYcE4

Redutibilidade e Completude-NP

Relações entre classes de complexidade

- Noção de redução entre problemas
- Definição de problemas NP-Completos
- Um problema NP-completo
- Provar problemas NP-completos

P.T. Monteiro ASA @ LEIC-T 2024/2025 31/43 P.T. Monteiro ASA @ LEIC-T 2024/2025 32

Redutibilidade e Completude-NP

Completude-NP

Redutibilidade

- Z é redutível em tempo polinomial a X, $Z \leq_P X$, se existir uma função, $f: Z \to X$, calculável em tempo polinomial, tal que para qualquer $z \in Z$:
 - Z(z) = 1 se e só se X(x) = X(f(z)) = 1
- f é designada por função de redução, e o algoritmo F de tempo polinomial que calcula f é designado por algoritmo de redução
- Se Z, X são problemas de decisão, com $Z \leq_P X$, então $X \in P$ implica $Z \in P$

Completude-NP

- Um problema de decisão X diz-se NP-difícil se:
 - Z ≤_P X para qualquer Z ∈ NP
- Um problema de decisão X diz-se NP-completo se:
 - $-X \in NP$ (verificável em tempo polinomial)
 - X é NP-difícil
- NPC: classe de complexidade dos problemas de decisão NP-completos

P.T. Monteiro

ASA @ LEIC-T 2024/2025

//2 D.T

ASA @ LEIC-T 2024/2

Completude-NP

Completude-NP

Completude-NP

- Se existir problema NP-completo X, resolúvel em tempo polinomial, então P = NP
 - Todos os problemas em NP redutíveis a X (em tempo polinomial)
 - Logo, resolúveis em tempo polinomial
- Se existir problema X em NP não resolúvel em tempo polinomial, então todos os problemas NP-completos não são resolúveis em tempo polinomial
 - Se existisse Y em NPC resolúvel em tempo polinomial, dado que $X \leq_P Y$, então X seria resolúvel em tempo polinomial

Provar Problemas NP-Completos

Seja X um problema de decisão tal que $Y \leq_P X$, em que $Y \in NPC$. Se $X \in NP$, então $X \in NPC$

- Y ∈ NPC
 - ∀Z ∈ NP, Z ≤_P Y
- Notando que \leq_P é transitiva e que $Y \leq_P X$, obtemos:
 - $\forall Z \in NP, Z \leq_P X$
- Deste modo:
 - $-X \in NP$
 - $\ \forall Z \in \mathit{NP}, Z \leq_{\mathit{P}} X$
- Pelo que $X \in NPC$!

Completude-NP

Problema NP-Completo: SAT

Problema NP-Completo

Problema de decisão: SAT

parêntesis

• Fórmula proposicional ϕ :

- variáveis proposicionais: x_1, \ldots, x_n

- conectivas proposicionais: $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$

Atribuição de satisfação: valor da fórmula é 1

 Se atribuição de satisfação existe, φ é satisfeita

 Problema SAT: determinar se uma instância φ é satisfeita

- SAT = $\{\langle \phi \rangle : \phi \text{ é uma fórmula proposicional satisfeita}\}$

Provar Problemas NP-Completos

- Abordagem para provar $X \in NPC$:
 - Provar que $X \in NP$
 - Escolher $Y \in NPC$
 - Descrever um algoritmo que calcula função f, a qual converte qualquer instância de Y numa instância de X, Y <_P X
 - Provar que $x \in Y$ se e só se $f(x) \in X$, para qualquer instância x
 - Provar que algoritmo que calcula f tem tempo de execução polinomial
- Como definir $Y \in NPC$ inicial?

P.T. Monteiro ASA @ LFIC-T

ASA @ LEIC-T 2024/2025

//2 D.T.

ASA @ LEIC-T 2024/20

Atribuição de verdade: atribuir valores proposicionais (0 ou 1) às variáveis

Problema NP-Completo: SAT

Problema NP-Completo: 2CNFSAT

Problema NP-Completo

- *SAT* ∈ *NP*:
 - O certificado consiste numa atribuição de valores às variáveis
 - Substituir valores e analisar fórmula resultante
 - Tempo de execução é polinomial no tamanho da fórmula
- *SAT* é NP-difícil [Teorema de Cook, 1971]

(1º problema a ser provado)

• ∴ *SAT* é NP-completo

Problema 2CNFSAT

3CNFSAT é NP-Completo, mas 2CNFSAT $\in P$

- Definição:
 - 2CNFSAT é uma restrição do problema CNFSAT em que cada cláusula contém exactamente 2 literais
- Teorema:
 - − O problema 2CNFSAT $\in P$
- Prova:
 - Existe algoritmo para decidir 2CNFSAT com tempo de execução linear no tamanho de $|\varphi|, \varphi \in 2\mathit{CNFSAT}$
 - Cada cláusula binária corresponde a dois arcos (implicações) num grafo
 - Identificar SCCs no grafo
 - Se existe SCC com x e $\neg x$ então instância não é satisfeita

P.T. Monteiro ASA @ LEIC-T 2024/2025 39/43 P.T. Monteiro ASA @ LEIC-T 2024/2025

Problema NP-Completo: HornSAT

Problema NP-Completo: HornSAT

Problema HornSAT

- Definição:
 - HornSAT é uma restrição do problema CNFSAT em que cada cláusula contém não mais do que 1 literal não complementado
- Teorema:
 - O problema $HornSAT \in P$
- Prova:
 - Existe algoritmo para decidir HornSAT com tempo de execução linear no tamanho de $|\varphi|, \varphi \in \mathsf{HornSAT}$
 - Repetidamente satisfazer cláusulas com apenas 1 literal x_i não complementado (i.e. atribuir valor 1 (TRUE) a x_i)
 - Reduzir cláusulas com literal complementado
 - Terminar quando identificada cláusula vazia (UNSAT) ou todas as cláusulas com literais complementados
 - Atribuir valor 0 (FALSE) às restantes variáveis; cláusulas satisfeitas !

ASA @ LEIC T 2024/2025

Problema HornSAT

```
HornSAT(\varphi)

while \exists cláusulas com literal positivo x_i do

x_i \leftarrow 1

satisfazer clásulas com x_i

reduzir clásulas com \neg x_i

if \exists cláusula vazia then

eliminar atribuições

return FALSE

end if

end while

x_j \leftarrow 0 às variáveis ainda não atribuídas

return TRUE
```

ASA @ LEIC-T 2024/2025 42/43

Questões?

P.T. Monteiro

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 43/