Fifa practice by Crist Alcázar

We want to predict the *value* of the players using the information of the player.

The files of this project are in this repository:

https://github.com/kralcazar/practica_inteligencia

Import libraries

First of all we import the libraries we're gonna use.

```
import os
import time
import datetime

from sklearn.model_selection import train_test_split
from sklearn import linear_model
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pandas as pd
import numpy as np
```

Read the data

To read the data we're gonna use pandas and an utility from the library os .

```
In [2]: df = pd.read_csv(os.path.join("..", "in", "fifa.csv"))
    df.head()
```

Out[2]:	Unnamed: 0		ID	ID Name Age Ph		Photo	Nationality	
	0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cdn.so
	1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cdn.so
	2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cdn.so
	3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cdn.so
	4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://cdn.s

5 rows × 89 columns

Data analysis

First of all we want to known what is happening to the data. To do so we increase the number of columns to show. After that we're gonna use a special instruction that will show us the data structure.

```
In [3]: pd.set_option('display.max_columns', None)
    df.head()
```

Out[3]:	Unnamed: 0		ID Name Ag			Photo	Nationality	
	0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cdn.so
	1		20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cdn.so
	2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cdn.so
	3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cdn.so
	4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://cdn.s

Cleaning non relevant columns

We can see that the two first columns do not provide any meaningful information so we can delete them. We will also clean all columns that, after being proved, do not contains relevant information because them worsen the score. The keeped columns have proved that benefits the final score.

```
In [4]: df = df.iloc[:, 2:]
    df.drop(['Name','Photo','Flag','Club Logo','Real Face','Body Type','Jersey Number'], axis:
    df
```

Out[4]:

	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation
0	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	2202	Left	5.0
1	33	Portugal	94	94	Juventus	€77M	€405K	2228	Right	5.0
2	26	Brazil	92	93	Paris Saint- Germain	€118.5M	€290K	2143	Right	5.0
3	27	Spain	91	93	Manchester United	€72M	€260K	1471	Right	4.0
4	27	Belgium	91	92	Manchester City	€102M	€355K	2281	Right	4.0
•••										
18202	19	England	47	65	Crewe Alexandra	€60K	€1K	1307	Right	1.0

	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation	
18203	19	Sweden	47	63	Trelleborgs FF	€60K	€1K	1098	Right	1.0	
18204	16	England	47	67	Cambridge United	€60K	€1K	1189	Right	1.0	
18205	17	England	47	66	Tranmere Rovers	€60K	€1K	1228	Right	1.0	
18206	16	England	46	66	Tranmere Rovers	€60K	€1K	1321	Right	1.0	
18207 rows × 80 columns											
4										•	

The data contains NaN (Not a Number). What it mean a NaN? What we do with NaN

Handle NaNs

Let's see which columns contain NaNs.

```
In [5]:
          df.columns[df.isna().any()].tolist()
Out[5]: ['Club',
           'Preferred Foot',
           'International Reputation',
           'Weak Foot',
           'Skill Moves',
           'Work Rate',
           'Position',
           'Joined',
           'Loaned From',
           'Contract Valid Until',
           'Height',
           'Weight',
           'LS',
'ST',
'RS',
           'LW',
           'LF',
           'CF',
           'RF',
           'RW',
           'CAM',
           'RAM',
           'LM',
'LCM',
           'CM',
'RCM',
           'RM',
'LWB',
           'LDM',
           'CDM',
           'RDM',
           'RWB',
           'LB',
'LCB',
           'CB',
           'RCB',
```

```
'RB',
'Crossing',
'Finishing',
'HeadingAccuracy',
'ShortPassing',
'Volleys',
'Dribbling',
'Curve',
'FKAccuracy',
'LongPassing',
'BallControl',
'Acceleration',
'SprintSpeed',
'Agility',
'Reactions',
'Balance',
'ShotPower',
'Jumping',
'Stamina',
'Strength'
'LongShots',
'Aggression',
'Interceptions',
'Positioning',
'Vision',
'Penalties',
'Composure',
'Marking',
'StandingTackle',
'SlidingTackle',
'GKDiving',
'GKHandling',
'GKKicking',
'GKPositioning',
'GKReflexes',
'Release Clause']
```

We can see that almost all players has a NaN. We can see multiple columns that always are a NaN as for example **Loaned From**. And some problematic player as David DeGea. And the rest of columns that we known that haves NaN as for example the **Club** columns what can we do?.

We can get all the rows with the column **Club** equals to NaN.

```
In [6]: df.loc[df.Club != df.Club]
```

Out[6]:		Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot
	452	24	Argentina	80	85	NaN	€0	€0	2122	Right	2.0	4.0
	538	33	Sweden	80	80	NaN	€0	€0	1797	Right	2.0	4.0
	568	26	Russia	79	81	NaN	€0	€0	1217	Right	1.0	3.0
	677	29	Russia	79	79	NaN	€0	€0	2038	Right	2.0	3.0
	874	29	Russia	78	78	NaN	€0	€0	1810	Right	2.0	3.0
	•••											
	17197	21	India	55	64	NaN	€0	€0	838	Right	1.0	2.0

	Age	Nationality	Overall	Potential	Club	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot
17215	26	Finland	55	57	NaN	€0	€0	1366	Right	1.0	3.0
17339	23	India	54	63	NaN	€0	€0	1321	Right	1.0	3.0
17436	20	India	54	67	NaN	€0	€0	1270	Right	1.0	3.0
17539	21	India	53	62	NaN	€0	€0	1247	Right	1.0	3.0

241 rows × 80 columns

The problem of these players is that their club is not on FIFA.

So we can try to delete all the players with the club with *NaN*. To do so we can use the next instruction. We will also clean players without known position neither the goal keepers.

```
In [7]: # It's difficult to get the player's value without knowing their club
# These players also don't have information for ['Joined', 'Loaned From', 'Contract Valid
df = df.dropna(subset = ['Club'])
# Dropping the players who have NaN in position cleans a lot of NaNs scores like LS, ST, &
# It's difficult to get the player's value without knowing their positions
df = df.dropna(subset = ['Position'])
# For some reason the goal keeper information worsens the score, it also cleans a lot of I
df = df.drop(df[df['Position']=='GK'].index)
```

Distribute non numerical columns

We can see that we removed all the players without a known club. Nevertheless we still have a problem, how to use this feature for an algorithm?

So we distribute the columns that do not have numerical values to become a unique column with value 0 if they do not have this value and 1 value if they do.

```
clb = df.pop("Club")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(clb, prefix='clb').reset_index(drop=True)
prf = df.pop("Preferred Foot")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(prf, prefix='prf').reset_index(drop=True)
wr = df.pop("Work Rate")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(wr, prefix='wr').reset_index(drop=True)
pos = df.pop("Position")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(pos, prefix='pos').reset_index(drop=True)
nat = df.pop("Nationality")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(nat, prefix='nat').reset_index(drop=True)
lf = df.pop("Loaned From")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(lf, prefix='lf').reset_index(drop=True)
lf = df.pop("Loaned From")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(lf, prefix='lf').reset_index(drop=True)
```

	Age	Overall	Potential	Value	Wage	Special	International Reputation	Weak Foot	Skill Moves	Joined	Contract Valid Until	Heigl
0	31	94	94	€110.5M	€565K	2202	5.0	4.0	4.0	Jul 1, 2004	2021	5
1	33	94	94	€77M	€405K	2228	5.0	4.0	5.0	Jul 10, 2018	2022	6
2	26	92	93	€118.5M	€290K	2143	5.0	5.0	5.0	Aug 3, 2017	2022	5
3	27	91	92	€102M	€355K	2281	4.0	5.0	4.0	Aug 30, 2015	2023	5'1
4	27	91	91	€93M	€340K	2142	4.0	4.0	4.0	Jul 1, 2012	2020	5
4												•

Units and numerical formating

Now we fixed the non numerical columns but what about the **Values**, it does not have any NaN but it is not a number. How we convert the format?

First of all we define all the functions to pass from one format to the other:

```
In [9]:
         def value to int(x):
             # From K and M to int.
             ret_val = 0
             # For non assigned clause release we will return 0 assuming that these players do not
             if pd.isna(x) or x is np.nan or pd.isnull(x):
                 return ret_val
             # Remove € unit
             x = x.replace('€', '')
             # Removing and normalizing thousands and millions "shortcuts"
             if type(x) == float or type(x) == int:
                 ret_val = x
             if 'K' in x:
                 if len(x) > 1:
                     ret_val = float(x.replace('K', ''))
                 ret_val = ret_val *1000
             if 'M' in x:
                 if len(x) > 1:
                     ret_val = float(x.replace('M', ''))
                 ret val = ret val * 1000000
             return int(ret_val)
         def remove_lbs(x):
             # Remove Lbs unit
             x = int(x.replace('lbs', ''))
             return x
         def sum to int(serie):
             # Apply the sum in values like (89+2)
             for index, value in serie.items():
                 a = value.partition("+")[0]
```

```
b = value.partition("+")[2]
        serie[index] = int(a) + int(b)
    return serie
def format_apostrophes_to_float(x):
    # Convert the british pound comma style to float
    return float(x.replace("'", "."))
def correct_nan_joined(age, joined):
    # Apply one single date for the players that do not have an assigned Joined date
    if pd.isna(joined) or joined is np.nan or pd.isnull(joined):
        # We assume that the players were being in club since they were young
        # 6 year old is the mean age for the players were joining a club
        # Other tested ages return a worse score
        return str(2020-int(age)+6)
    return joined
def stringDate to timestamp(str):
    # From date in string to timestamp numerical int
    value=0
    if len(str)==4: # For the single year date (2014)
        value= time.mktime(datetime.datetime.strptime(str, "%Y").timetuple())
   else: # For the full date (Jul 1, 2004)
        value=time.mktime(datetime.datetime.strptime(str, "%b %d, %Y").timetuple())
    return int(value)
```

Now we want to apply these functions to each value of the needed columns so we can train the prediction with them.

```
# Apply for thouse that do not have Joined date
In [10]:
          df['Joined'] = df.apply(lambda x: correct nan joined(x['Age'], x['Joined']), axis=1)
          # Convert the string Joined dates to numerical dates
          df["Joined"] = df["Joined"].apply(stringDate_to_timestamp)
          # Convert the string Contract Valid Unitl dates to numerical dates
          df["Contract Valid Until"] = df["Contract Valid Until"].apply(stringDate_to_timestamp)
          # Format values to int with an unit in the value
          df["Value"] = df["Value"].apply(value_to_int)
          df["Wage"] = df["Wage"].apply(value_to_int)
          df["Release Clause"] = df["Release Clause"].apply(value_to_int)
          df["Weight"] = df["Weight"].apply(remove lbs)
          df["Height"] = df["Height"].apply(format apostrophes to float)
          # Apply the sum embedded in value
          df[['LS','ST','RS','LW','LF','CF','RF','RW','LAM','CAM','RAM','LM','LCM','CM','RCM','RM',
          # Show the results
          df.head()
```

Out[10]:

	Age	Overall	Potential	Value	Wage	Special	International Reputation	Weak Foot	Skill Moves	Joined	Cont Valid U
0	31	94	94	110500000	565000	2202	5.0	4.0	4.0	1088632800	1609455
1	33	94	94	77000000	405000	2228	5.0	4.0	5.0	1531173600	1640991
2	26	92	93	118500000	290000	2143	5.0	5.0	5.0	1501711200	1640991
3	27	91	92	102000000	355000	2281	4.0	5.0	4.0	1440885600	1672527
4	27	91	91	93000000	340000	2142	4.0	4.0	4.0	1341093600	1577833

Now we have all columns with numerical and trainable values.

Prediction

Finally we want to try to predict the **value**, to do so we store this column in the val variable.

```
In [11]: val = df.pop("Value")
```

Now we have the data we want to predict in a numeric format, the value information. So now we can use this data to train a model. But first we need to split the data to being able to known its true performance.

We assign a test size value, which it will be the non trained data for testing the results after the training. The recomendation in to set it at 20%.

```
In [12]: X_train, X_test, y_train, y_test = train_test_split(df, val, test_size=0.20, random_state=
In [13]: len(X_train)
Out[13]: 12740
```

We have 12740 rows to train the model.

We will use a LinearRegression model because we need to obtain a continuous value from multidimensional dataset and can support some dominant classes and small variations in data without change its prediction too much.

The higher cost of the computing time is not an issue for this kind of training so the LinearRegression model for this problem is a good choice.

Let's do the train fitting the splitted data.

```
In [14]: reg = linear_model.LinearRegression().fit(X_train, y_train)
```

Predict the Value using the linear model of data testing splited.

```
In [15]: preds = reg.predict(X_test)
```

Let's see the first row **predicted** value.

```
In [16]: preds[0]
```

Let's see the first row **real** value.

```
In [17]: y_test[0]
```

Let's see the coeficients.

Out[17]: **110500000**

Out[16]: 738540.7504741431

In [18]: # The coefficients
 print('Coefficients: \n', reg.coef_)
 # The mean squared error
 print('Mean squared error: %.2f' % mean_squared_error(y_test, preds))

```
# The coefficient of determination: 1 is perfect prediction
print('Coefficient of determination: %.2f' % r2_score(y_test, preds))
```

Coefficients:

 $[-56276.26181173 \quad 71126.96011495 \quad -15303.90321458 \quad \dots \quad 20011.34688828$

0. -56102.01678503] Mean squared error: 850784715073.95 Coefficient of determination: 0.98

Finally we get a metric \mathbb{R}^2 for the regression, we use the implementation from sickit-learn.

In [19]: r2_score(preds, y_test)

Out[19]: 0.9785421951971136

We obtanined a good score (97,85%)