排序

希尔排序: Shell序列 + 输入敏感性

邓俊辉

deng@tsinghua.edu.cn

让上帝的归上帝, 凯撒的归凯撒

Shell's Sequence, 1959: $\mathcal{H}_{shell} = \{1, 2, 4, 8, 16, 32, 64, \ldots, 2^k, \ldots\}$

- \Rightarrow 实际上,采用 \mathcal{A}_{shell} ,在最坏情况下需要运行 $\Omega(n^2)$ 时间...
- **❖** 考查由子序列 A = unsort[0, 2^{N-1}) 和 B = unsort[2^{N-1}, 2^N) 交错而成的序列

❖ 在做2-sorting时,A、B各成一列;故此后必然各自有序

- 然而其中的逆序对依然很多,最后的1-sorting仍需 $1+2+3+\cdots+2^{N-1} = \Omega(n^2/4)$ 时间
- ❖ 问题的根源在于,ℋ_{shell}中各项并不互素,甚至相邻项也非互素

Postage Problem

❖ The postage for a letter is 50F, and a postcard 35F
But there are only stamps of 4F and 13F available

Possible to stamp
the letter and
the postcard
EXACTLY?

� Given a postage P, determine whether $P \in \{ n \cdot 4 + m \cdot 13 \mid n, m \in \mathcal{N} \}$

Linear Combination

 \clubsuit Let $g,h\in\mathcal{N}$

For any $n,m\in\mathcal{N}$, $n\cdot g+m\cdot h$ is called a linear combination of g and h

- ❖ Denote $\mathbf{C}(g,h) = \{ ng + mh \mid n,m \in \mathcal{N} \}$ $\mathbf{N}(g,h) = \mathcal{N} \backslash \mathbf{C}(g,h) \quad \text{//numbers that are NOT combinations of g and h}$ $\mathbf{x}(g,h) = \max\{ \mathbf{N}(g,h) \} \quad \text{//always exists?}$
- \clubsuit Theorem: when g and h are relatively prime, we have

$$\mathbf{x}(g,h) = (g-1) \cdot (h-1) - 1 = gh - g - h$$

e.g.
$$\mathbf{x}(3,7) = 11$$
, $\mathbf{x}(4,9) = 23$, $\mathbf{x}(\boxed{4},\boxed{13}) = \boxed{35}$, $\mathbf{x}(5,14) = 51$

h-sorting & h-ordered

- \clubsuit A sequence S[0,n) is called h-ordered if $S[i] \leq S[i+h], \ \forall \ 0 \leq i < n-h$
- ❖ A 1-ordered sequence is sorted
- ❖ h-sorting: an h-ordered sequence is obtained by
 - arranging S into a 2D matrix with h columns and
 - sorting each column respectively

Theorem K

❖ [Knuth, ACP Vol.3 p.90]

//习题解析[12-12, 12-13]

A g-ordered sequence REMAINS g-ordered after being h-sorted.

Order Preservation

Lemma L

Linear Combination

A sequence that is both g-ordered and h-ordered is called (g,h)-ordered, which must be both (g+h)-ordered and (mg+nh)-ordered for any m, $n \in N$

Inversion

 \clubsuit Let S[0,n) be a (g,h)-ordered sequence, where g and h are relatively prime Then for all elements S[j] and S[i], we have

$$i - j > \mathbf{x}(g, h)$$
 only if $S[j] \leq S[i]$

lacktriangledown This implies that to the LEFT of each element, only the previous $\mathbf{x}(g,h)$ elements could be <code>GREATER</code>

There would be no more than $n \cdot \mathbf{x}(g,h)$ INVERSIONs altogether