Chapter 3 디지털논리회로

본 자료는 저자의 파워포인트 파일을 기반으로 작성하였습니다

Contents

학습목표

- 논리 게이트의 동작 원리와 진리표, 게이트 기호를 이해하고 이를 활용할 수 있다.
- 곱의 합과 최소항, 합의 곱과 최대항의 개념을 이해하고 이를 활용할 수 있다.
- 여러 가지 조합 논리 회로의 동작 원리를 이해하고 응용 회로를 설계할 수 있다.
- 여러 가지 순서 논리 회로의 동작 원리를 이해하고 응용 회로를 설계할 수 있다.

내용

- 01 논리 게이트
- 02 불 대수
- 03 조합 논리 회로
- 04 순서 논리 회로
- 05 집적 회로

1 논리 게이트의 개념과 종류

□ TTL과 CMOS 논리 레벨 정의영역

그림 3-1 TTL과 CMOS 논리 레벨 정의 영역

□ NOT 게이트

- 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리 부정을 나타낸다.
- NOT 게이트를 인버터(inverter)라고도 한다.

그림 3-2 NOT 게이트의 진리표와 논리 기호

□ 버퍼 게이트

버퍼 buffer는 입력 신호를 그대로 출력하여
단순 전송을 표현하는 게이트다.
입력이 0이면 0을 출력하고, 입력이 1이면 1을 출력한다.

입력 <i>A</i>	출력 <i>F</i>	
0	0	$A \longrightarrow F$
1	1	
F =	: A	

그림 3-3 버퍼의 진리표와 논리 기호

❖ 3상태 버퍼(tri-state buffer)

• 출력이 3개 레벨(High, Low, 하이 임피던스) 중의 하나를 갖는 논리소자

입	력	출력
A	\overline{E}	F
0	0	0
1	0	1
0	1	하이 임피던스
1	1	하이 임피던스

입력		출력
A	\boldsymbol{E}	F
0	0	하이 임피던스
1	0	하이 임피던스
0	1	0
1	1	1

(a) 제어 단자가 Low일 때 동작

그림 3-4 3상태 버퍼의 진리표와 논리 기호

(b) 제어 단자가 High일 때 동작

■ AND 게이트

• 입력이 모두 1인 경우에만 출력이 1이고, 입력 중 0이 하나라도 있으면 출력은 0이 되는 논리곱이다.

ဥ	l력	출력	
A	В	F	
0	0	0	A
0	1	0	B— F
1	0	0	
1	1	1	

(a) 2입력인 경우: F = AB

그림 3-5 AND 게이트의 진리표와 논리 기호

(b) 3입력인 경우: F = ABC

□ OR 게이트

• 입력이 모두 0인 경우에만 출력이 0이고, 입력 중 1이 하나라도 있으면 출력은 1이 되는 논리합이다.

	력 D	<u>출</u> 력 <i>F</i>	
A	В	Γ	
0	0	0	A
0	1	1	B— F
1	0	1	
1	1	1	

(a) 2입력인 경우: F = A + B

그림 3-6 OR 게이트의 진리표와 논리 기호

입력			출력	
A	B	C	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	$A \longrightarrow$
1	0	1	1	$B \longrightarrow F$
1	1	0	1	$C \longrightarrow$
1	1	1	1	

(b) 3입력인 경우: F = A + B + C

■ NAND 게이트

- 입력이 모두 1인 경우에만 출력이 0이고, 입력에 0이 하나라도 있는 경우는 모두 출력이 1이다.
- AND 게이트와 반대로 동작하여 NOT-AND의 의미로 NAND 게이트라고 한다.

입력 A B	출력 <i>F</i>	
0 0	1	A
0 1	1	B—— F
1 0	1	
1 1	0	_

(a) 2입력인 경우: $F = \overline{AB}$

그림 3-7 NAND 게이트의 진리표와 논리 기호

	입력		출력
A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

■ NOR 게이트

- 입력이 모두 0인 경우에만 출력이 1이고, 입력에 1이 하나라도 있는 경우는 모두 출력이 0이다.
- OR 게이트와 반대로 동작하여 NOT-OR의 의미로 NOR 게이트라고 한다.

입력	출력	
A B	F	
0 0	1	A — — — — — — — — — — — — — — — — — — —
0 1	0	$B \longrightarrow F$
1 0	0	
1 1	0	

(a) 2입력인 경우: $F = \overline{A + B}$

그림 3-8 NOR 게이트의 진리표와 논리 기호

(b) 3입력인 경우: $F = \overline{A + B + C}$

- □ XOR 게이트 (eXclusive OR gate)
 - 입력에 1이 홀수 개이면 출력이 1이고, 짝수 개이면 출력이 0이다.
 - 2입력 XOR 게이트는 두 입력 중 하나가 1이면 출력이 1이고, 두 입력 모두 0이거나 1인 경우에만 출 력이 0이 되는 것이다.

입력 <i>A B</i>	출력 <i>F</i>	
0 0 0 1 1 0 1 1	0 1 1 0	$A \longrightarrow F$

(a) 2입력인 경우: $F = \overline{AB} + A\overline{B} = A \oplus B$

그림 3-9 XOR 게이트의 진리표와 논리 기호

(b) 3입력인 경우: $F = A \oplus B \oplus C$

- □ XNOR 게이트 (eXclusive NOR gate)
 - 입력에 1이 짝수 개이면 출력이 1이고, 홀수 개이면 출력이 0이다.
 - XOR 게이트에 NOT 게이트를 연결한 것과 출력이 같으므로 XOR 게이트와 반대다.
 - 2입력 XNOR 게이트는 두 입력이 다르면 출력이 0이고, 두 입력이 같으면 출력이 1이라고 생각하면 쉽다.

입력 A B	출력 <i>F</i>	
0 0 0 1	1 0	$A \longrightarrow F$
1 0	0	
1 1	1	

(a) 2입력인 경우: $F = A \oplus B = A \odot B$

그림 3-10 XNOR 게이트의 진리표와 논리 기호

(b) 3입력인 경우: $F = A \oplus B \oplus C = A \odot B \odot C$

2 유니버설 게이트

 NAND와 NOR 게이트만으로도 모든 회로를 만들 수 있으므로 이 둘을 특별히 유니버설 게이트 (universal gate) 또는 범용 게이트라고 한다.

□ NOT 게이트 구성

- A = 0이면 입력 2개에 모두 0이 입력되므로 출력 F = 1이 된다.
- A = 1이면 입력 2개에 모두 1이 입력되므로 출력 F = 0이 된다.

□ AND 게이트 구성

• AND 게이트의 논리식 F=AB를 이중 부정하고 드모르간의 정리를 적용해 $F=AB=\overline{AB}=\overline{A}+\overline{B}$ 로 변형하여 논리 회로를 구성한다.

□ OR 게이트 구성

• OR 게이트의 논리식 F=A+B= 이중 부정하고 드모르간의 정리를 적용해 $F=A+B=\overline{A+B}=\overline{AB}$ 로 변형하여 논리 회로를 구성한다.

□ XOR 게이트 구성

• 2입력 XOR 게이트의 논리식은 $F = \overline{A}B + A\overline{B}$ 로, 두 입력이 모두 0이거나 1이면 출력이 0이 된다. 이 논리식을 불 대수 법칙으로 다음과 같이 정리하여 논리 회로를 구성한다.

$$F = \overline{AB + \overline{AB}} = (A + B)\overline{AB} = A \cdot \overline{AB} + B \cdot \overline{AB}$$
$$= \overline{A \cdot \overline{AB}} + B \cdot \overline{AB} = \overline{A \cdot \overline{AB}} \cdot \overline{B} \cdot \overline{AB}$$

(a) AND-OR-NOT 게이트 이용: $\overline{A}B+A\overline{B}$

그림 3-14 XOR 게이트 구성

3 와이어드 로직

- 집적 회로(IC)에서는 대부분 NAND나 NOR 게이트 형태로 구성한다.
- 둘 이상의 NAND 또는 NOR 게이트의 출력을 연결해 특정 논리 함수를 수행하는 형태를 **와** 이어드 로직(wired logic)이라고 한다.

그림 3-15 와이어드 로직 예

(b) ECL의 wired-OR 구성

수고하셨습니다!