

Strategy 2: Post Topic Modeling Phrase Construction

- **TurboTopics** [Blei & Lafferty'09] Phrase construction as a post-processing step to Latent Dirichlet Allocation
 - Perform Latent Dirichlet Allocation on corpus to assign each token a topic label
 - Merge adjacent unigrams with the same topic label by a distribution-free permutation test on arbitrary-length back-off model
 - End recursive merging when all significant adjacent unigrams have been merged
- KERT [Danilevsky et al.'14] Phrase construction as a post-processing step to Latent Dirichlet Allocation
 - Perform frequent pattern mining on each topic
 - Perform phrase ranking based on four different criteria

Example of TurboTopics

Annotated documents

What is phase₁₁ transition₁₁? Why is there phase₁₁ transitions₁₁? These is are old₁₂₇ questions₁₂₇ people₁₇₀ have been asking₁₉₅ for many years₁₂₇ but get₁₅₃ few answers₁₂₇ We established₁₂₇ one general₁₁ theory₁₂₇ based₁₅₃ on game₁₅₃ theory₁₂₇ and topology₈₅ it provides₁₁ a basic₁₂₇ understanding₁₂₇ to phase₁₁ transitions₁₁ We proposed₁₁ a modern₁₂₇ definition₁₁₇ of phase₁₁ transition₁₁ based₁₅₃ on game₁₅₃ theory₁₂₇ and topology₈₅ of symmetry₁₁ group₁₈₄ which unified₁₃₅ Ehrenfests definition₁₁₇ A spontaneous₁₁ result₆₈ of this topological₈₅ phase₁₁ transition₁₁ theory₁₂₇ is the universal₁₄ equation₁₁₇ of coexistence₁₉₅ curve₁₉₅ in phase₁₁ diagram₁₁ it holds₁₅₃ both for classical₁₂₂ and quantum₁₁ phase₁₁ transition₁₁ This

LDA topic #11

phase, transitions, phases, transition, quantum, critical, symmetry, field, point, model, order, diagram, systems, two, theory, system, study, breaking, spin, first

Turbo topic #11

phase transitions, model, symmetry, point, quantum, systems, phase transition, phase diagram, system, order, field, order, parameter, critical, two, transitions in, models, different, symmetry breaking, first order, phenomena

- Perform LDA on corpus to assign each token a topic label
- E.g., ... phase₁₁ transition₁₁ game₁₅₃ theory₁₂₇ ...
- Then merge adjacent unigrams with same topic label

KERT: Topical Keyphrase Extraction & Ranking

[Danilevsky, et al. 2014]

knowledge discovery using least squares support vector machine classifiers

a hybrid approach to feature selection pseudo conditional random fields

automatic web page classification in a dynamic and hierarchical way

inverse time dependency in convex regularized learning postprocessing decision trees to extract actionable knowledge

variance minimization least squares support vector machines

. . .

Unigram topic assignment: Topic 1 & Topic 2

learning
support vector machines
reinforcement learning
feature selection
conditional random fields
classification
decision trees
:

Topical keyphrase extraction & ranking

Framework of KERT

- 1. Run bag-of-words model inference and assign topic label to each token
- 2. Extract candidate keyphrases within each topic

Frequent pattern mining

- 3. Rank the keyphrases in each topic
 - Popularity: 'information retrieval' vs. 'cross-language information retrieval'
 - Discriminativeness: only frequent in documents about topic t
 - Concordance: 'active learning' vs. 'learning classification'
 - Completeness: 'vector machine' vs. 'support vector machine'

Comparability property: directly compare phrases of mixed lengths

KERT: Topical Phrases on Machine Learning

Top-Ranked Phrases by Mining Paper Titles in DBLP

kpRel [Zhao et al. 11]	KERT (-popularity)	KERT (-discriminativeness)	KERT (-concordance)	KERT [Danilevsky et al. 14]
learning	effective	support vector machines	learning	learning
classification	text	feature selection	classification	support vector machines
selection	probabilistic	reinforcement learning	selection	reinforcement learning
models	identification	conditional random fields	feature	feature selection
algorithm	mapping	constraint satisfaction	decision	conditional random fields
features	task	decision trees	bayesian	classification
decision	planning	dimensionality reduction	trees	decision trees
:	:	:	:	:

The topic that represents the area of Machine Learning