Hippocampal functions modulate transfer-appropriate cortical representations supporting subsequent memory

Shenyang Huang¹, Cortney M. Howard¹, Mariam Hovhannisyan², Maureen Ritchey³, Roberto Cabeza¹, Simon W. Davis¹ ¹Duke University, ²University of Arizona, ³Boston College

1. Transfer-Appropriate Representations

- Transfer-appropriate processing: matching cognitive operations during encoding and retrieval improve memory.¹
- Encoding representations of visual and semantic properties may selectively support perceptual and conceptual memory, respectively.
- The hippocampus may be agnostic to stimulus properties, 2,3 yet it may modulate the mnemonic effect of cortical representations.

3. Activation Level, Neural Pattern Similarity, Representational Strengths

- We computed representational strengths (RS, visual and semantic)⁴ for Brainnetome brain regions.⁵
- We additionally computed item-wise Activation Level (AL) and Neural Pattern Similarity (NPS) for the hippocampus, to examine diverse ways in which it modulates cortical representations.

4. Hippocampal-cortical interactions

Transfer-appropriate models

Perceptual memory $\sim (Cort_{VRS} * Hipp_{AL}) + (Cort_{VRS} * Hipp_{NPS}) + (Cort_{VRS} * Hipp_{VRS})$

VGG16-conv2-based

Visual similarity matrix

Perceptual memory was predicted by the interaction between representational strength of visual information in medio-ventral occipital cortex (vMOC_{VRS}) and hippocampal activation level (Hipp_{AL}).

Conceptual memory $\sim (Cort_{SRS} * Hipp_{AL}) + (Cort_{SRS} * Hipp_{NPS}) + (Cort_{SRS} * Hipp_{SRS})$

Conceptual memory was predicted by the interaction between representational strength of semantic information in left inferior frontal gyrus (L. IFG_{SRS}) and hippocampal activation level (Hipp_{AL}).

2. Experimental Design

N = 19, 7 females, age = 23.08 \pm 2.73, native English speakers

Individual sensitivity (d') to Old/New concepts and images are positively correlated (r = 0.72, p < .001).

5. Discussion

- Cortical regions, but not the hippocampus, robustly represent visual and semantic information of everyday objects.
- Hippocampal functions modulated the mnemonic impact of cortical representations that are transfer-appropriate.
- No evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory.
- Future studies may evaluate the impact of other non-representational regions, such as prefrontal control regions⁶ on episodic memory.

1. Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519–533. 2. Huffman, D. J., & Stark, C. E. L. (2014). Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus. Hippocampus, *24*(11), 1394–1403. 3. Xiao, X., Dong, Q., Gao, J., Men, W., Poldrack, R. A., & Xue, G. (2017). Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval. Journal of Neuroscience, 37(11), 2986–2998. 4. Davis, S. W., Geib, B. R., Wing, E. A., Wang, W.-C., Hovhannisyan, M., Monge, Z. A., & Cabeza, R. (2021). Visual and Semantic Representations Predict Subsequent Memory in Perceptual and Conceptual Memory Tests. Cerebral Cortex, 31(2), 974–992.

Architecture. Cerebral Cortex, 26(8), 3508–3526. 6. Takehara-Nishiuchi, K. (2020). Prefrontal-hippocampal interaction during the encoding of new memories. Brain and Neuroscience Advances, 4.

5. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional

Transfer-incongruent models

Perceptual memory $\sim (Cort_{SRS} * Hipp_{AL}) + (Cort_{SRS} * Hipp_{NPS}) + (Cort_{SRS} * Hipp_{SRS})$ Perceptual memory was boosted by semantic representation in the right perirhinal cortex and fusiform gyrus; no effects found for conceptual memory.

