

Q1 Update
The vLLM Meetup at Beijing

The vLLM Team

Agenda

- VLLM V1 (Chen Zhang)
- Q1 Roadmap Update (Chen Zhang)
- DeepSeek Enhancements (Kaichao You)
- Ecosystem Projects (Kaichao You)

Build the fastest and
easiest-to-use open-source
LLM inference & serving engine

√LLM Today

https://github.com/vllm-project/vllm

\$ pip install vllm

41.5K Stars

vLLM API (1): LLM class

A Python interface for offline batched inference

```
from vllm import LLM

# Example prompts.
prompts = ["Hello, my name is", "The capital of France is"]
# Create an LLM with HF model name.
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B")
# Generate texts from the prompts.
outputs = llm.generate(prompts) # also Llm.chat(messages)]
```

vLLM API (2): OpenAI-compatible server

A FastAPI-based server for online serving

Server

```
$ vllm serve meta-llama/Meta-Llama-3.1-8B
```

Client

```
$ curl http://localhost:8000/v1/completions \
   -H "Content-Type: application/json" \
   -d '{
        "model": "meta-llama/Meta-Llama-3.1-8B",
        "prompt": "San Francisco is a",
        "max_tokens": 7,
        "temperature": 0
}'
```

VLLM V1

vLLM V1: A Major Upgrade to vLLM's Core Architecture

What is vLLM V1?

Re-architect the "core" of vLLM

based on the lessons from V0 (current version)

Unchanged

- User-level APIs
- Models
- GPU Kernels
- Utility functions
- ...

Changed

- Scheduler
- Memory Manager
- Model Runner
- API Server
- ..

Why vLLM V1?

- Main goals:
 - Simple & easy-to-hack codebase
 - vllm/v1/core/scheduler.py 608 LOC (>2k LOC in v0)
 - High performance with near-zero CPU overheads
 - Combining all key optimizations & enabling them by default

Key changes in vLLM V1

1. Optimized engine loop & API server

2. Simplified scheduler

3. Clean implementation of distributed inference

4. Piecewise CUDA graphs

Key changes in vLLM V1

Optimized engine loop & API server

2. Simplified scheduler

Clean implementation of distributed inference

4. Piecewise CUDA graphs

Simplified Scheduler

- Synchronous single-step scheduler
- Chunked prefills (aka Dynamic SplitFuse) by default
 - The scheduling decision is simply represented as a dictionary of {request_id: num_tokens}

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num_compute_tokens and len(all_token_ids)
- Ex1) "Prefill" & "Decode"

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num_compute_tokens and len(all_token_ids)
- Ex2) Chunked prefills

Simplified Scheduler (cont'd)

- Unification of "prefill" and "decode"
 - o In V1, there's no concept of prefill and decode
 - Schedule based on the difference between num_compute_tokens and len(all_token_ids)
- Ex3) Prefix caching

Simplified Scheduler: Next Steps

 Current: First-come-first-served policy is baked in the scheduler

- Next step 1: Support various scheduling policies
 - Priority-based scheduling
 - Fair scheduling
 - Predictive scheduling

- Next step 2: Pluggable scheduler
 - E.g., workload-specific scheduler
 - E.g., different schedulers for different hardware backends

Piecewise CUDA Graphs

V0: Single CUDA graph for the entire model

 Pros: Minimal CPU overheads in model execution

- Cons: Limited flexibility
 - Static shapes are required
 - No CPU operations are allowed
 - → Increased development burden

Piecewise CUDA Graphs (cont'd)

Graph split using <u>torch.compile</u>

- Runs the attention op in eager-mode PyTorch
- Runs other ops with CUDA graphs
 - Easy to capture, since the ops are token-wise
 - Critical to capture the all-reduce op

Piecewise CUDA Graphs (cont'd)

- Pros: Maximum freedom in implementing the attention op
 - No restriction on shapes
 - Any CPU operations are allowed

- Cons: CPU overheads unhidden by CUDA graphs could slow down the model execution
 - Negligible for 8B+ models on H100

Potential Use Cases of Piecewise CUDA Graphs

Piecewise CUDA graphs will allow vLLM to easily integrate new optimizations such as:

- Cascade Attention
- KV cache offloading to CPU memory (#11532)
- KV cache offloading to disk
- Sparse KV cache
- Brand-new attention algorithms
- ...

V1 Current Status

- Set VLLM_USE_V1=1 to use the V1 engine
 - Same end-user APIs as V0 (OpenAI server & LLM class)
- On by default for supported use cases in the upcoming v0.8.0 release.

Supported models

- Decoder-only Transformers (e.g., Llama, Mixtral) & MOE
- Llava-style LMMs (e.g., Qwen2.5-VL, Pixtral)

Features

- Supported: chunked prefills, prefix caching, tensor parallelism, LoRA, spec decoding (n-gram only for now), pipeline parallelism, structured outputs
- Only supports NVIDIA GPUs for now
 - AMD, TPU, HPU work in progress

Q1 Roadmap

vLLM Core

- Ship a performant and modular V1 architecture
 - **X** V1 on by default
 - Spec decode
 - X Hybrid memory allocator
 - TDocumentation and Design Docs
- Support large and long context models
 - Attention DP and EP
 - Z Disaggregated prefill support
- Improved performance in batch mode
 - o 🔽 RLHF
 - **X** Long Generation

Features

- Model Support
 - Arbitrary HF model
 - Z Alternative checkpoint format
- Hardware Support
 - Stackwell
 - Improved Tranium/Inferentia, Gaudi
 - Z Productionize and support large scale deployment of vLLM on TPU
 - Out of tree support for IBM Spyre and Ascend
- Optimizations
 - SyncTP/Flux
 - FlashAttention3
- Usability
 - Multi-platform wheels and distributions

DeepSeek Support

- deepseek-ai/DeepSeek-R1 Text Generation
 • Updated 19 days ago
 •
 ± 2.29M
 •
 • ○ 11.3k
 •
- deepseek-ai/DeepSeek-R1-Zero Text Generation
 • Updated 19 days ago
 •
 ± 9.91k
 • ○ 864
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B Text Generation
 • Updated 19 days ago
 • ± 1.59M
 •
 • ○ 1.26k
- Text Generation ● Updated 19 days ago ● ± 693k ● ▼ ● ♥ 467
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
- Text Generation
 • Updated 19 days ago
 •
 ± 1.25M
 • ○ 545
- deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B Text Generation ● Updated 19 days ago ● ± 1.62M ● ▼ ● ♥ 1.04k

- QwenLlama

Status of DeepSeek Model Support

4 Major Performance Levers:

- MLA: Multi-head Latent Attention (v0, v1)
 a. FlashMLA
- 2. MTP: Multi-Token Prediction (v0, ▼v1)
- 3. EP: Expert Parallelism (🔽v0, 🔽v1)
- 4. DP: Attention Data Parallelism (Xv0, ₹v1)

vLLM's unique features:

- Pipeline Parallelism
- Integration with SOTA kernels (FlashMLA, FlashInfer, FlashAttention)
- More spec decode methods (ngrams, draft based, etc)
- Ecosystem of RLHF integrations, offline inference & serving infra

V0 Results of MLA and MTP

Multi-head Latent Attention: 2.4x decoding throughput against MHA

Multi-token prediction (k=1): Improve TPOT with low QPS

Next Step for DeepSeek Models

Efficient Serving of MoE models

- DeepEP integration
- 2. Expert Load Balance
- 3. PD disaggregation

Efficient support without loss of generality

Contribution and collaboration is welcome!

Ecosystem Projects

□ vilm A high-throughput and memory-efficient inference and serving engine for LLMs
vllm-spyre Community maintained hardware plugin for vLLM on Spyre
Ilm-compressor Transformers-compatible library for applying various compression algorithms to LLMs for optimized deployment with vLLI
aibrix Cost-efficient and pluggable Infrastructure components for GenAl inference
production-stack vLLM's reference system for K8S-native cluster-wide deployment with community-driven performance optimization
□ vIIm-ascend Community maintained hardware plugin for vLLM on Ascend

AIBrix

- High-Density LoRA Management
- LLM Gateway and Routing
- LLM App-Tailored Autoscaler
- Unified AI Runtime
- Distributed Inference
- Distributed KV Cache
- Cost-efficient Heterogeneous Serving
- GPU Hardware Failure Detection

LLMStack: Monitoring Web UI (e.g. Grafana) Monitoring A Stack on top of VLLM User Requests Router Observability gateaway Metrics (e.g. Prometheus) vLLM engines **vLLM** engines **vLLM** engines **<---**Horizontal autoscaling module (model A) (model B) (model C) Sharable KV cache storage (LMCache) Cloud / production environments (e.g. K8s / Ray)

Scale out LLM inference with Ray

Pythonic and extendible ray.serve application for scaling LLM engines

for online inference

Features

- Automatic scaling and load balancing
- Unified multi-node multi-model deployment
- OpenAI compatible
- Multi-LoRA support with shared base models
- Cloud storage as model source (AWS, GCP)

Try out today

https://docs.ray.io/en/maste r/serve/llm/overview.html


```
from ray import serve
from ray.serve.llm.configs import LLMConfig
from rav.serve.llm.deployments import VLLMService, LLMRouter
llm config = LLMConfig(
   model loading config=dict(
       model_id="Qwen/Qwen2.5-0.5B-Instruct",
   deployment_config=dict(
       autoscaling config=dict(
           min replicas=1, max replicas=2,
   # Pass the desired accelerator type (e.g. A10G, L4, etc.)
   accelerator type="A10G",
   # You can customize the engine arguments (e.g. vLLM engine kwargs)
   engine kwargs=dict(
        tensor_parallel_size=2,
# Deploy the application
deployment = VLLMService.as deployment().bind(llm config)
llm_app = LLMRouter.as_deployment().bind([deployment])
serve.run(llm_app)
```

Partner Projects

•••

Thank you sponsors (funding compute!)

novita.ai 🗼 NVIDIA SEQUOIA 📙

Building the fastest and easiest-to-use open-source LLM inference & serving engine!

https://github.com/vllm-project/vllm

https://slack.vllm.ai

https://www.linkedin.com/company/vllm-project

Search "vLLM" or scan this QR code

https://twitter.com/vllm_project

https://opencollective.com/vllm

https://www.zhihu.com/people/vllm-team

More events in China in the future!