ELEMENTI DI TEORIA DELLA COMPUTAZIONE

Nozioni matematiche e terminologia

• Insiemi, operazioni sugli insiemi e rappresentazioni.

- Insiemi, operazioni sugli insiemi e rappresentazioni.
- Prodotto cartesiano e sequenze.

- Insiemi, operazioni sugli insiemi e rappresentazioni.
- Prodotto cartesiano e sequenze.
- Funzioni.

- Insiemi, operazioni sugli insiemi e rappresentazioni.
- Prodotto cartesiano e sequenze.
- Funzioni.
- Insieme potenza.

- Insiemi, operazioni sugli insiemi e rappresentazioni.
- Prodotto cartesiano e sequenze.
- Funzioni.
- Insieme potenza.
- Grafi e alberi.

- Insiemi, operazioni sugli insiemi e rappresentazioni.
- Prodotto cartesiano e sequenze.
- Funzioni.
- Insieme potenza.
- Grafi e alberi.
- Logica Booleana.

Un insieme è una collezione non ordinata di oggetti o elementi distinti.

Un insieme è una collezione non ordinata di oggetti o elementi distinti.

Ordine e ridondanza non contano

 $\{a, b, c\}$ ha elementi a, b, c.

 $\{a, b, c\}$, $\{c, b, a\}$ e $\{b, a, b, c, c\}$ sono lo stesso insieme.

Un insieme è una collezione non ordinata di oggetti o elementi distinti.

- Ordine e ridondanza non contano
 - $\{a, b, c\}$ ha elementi a, b, c.
 - $\{a, b, c\}$, $\{c, b, a\}$ e $\{b, a, b, c, c\}$ sono lo stesso insieme.
- {a} ed a sono oggetti diversi
 - $\{a\}$ insieme che contiene solo elemento a.

Un insieme finito può essere descritto dalla lista dei suoi elementi (separati da virgole e) tra { }.

Un insieme finito può essere descritto dalla lista dei suoi elementi (separati da virgole e) tra { }.

A volte per gli insiemi infiniti si usa la notazione "...". Esempio: $\mathbb{N} = \{1, 2, \dots, n, \dots\}$.

Un insieme finito può essere descritto dalla lista dei suoi elementi (separati da virgole e) tra { }.

A volte per gli insiemi infiniti si usa la notazione "...". Esempio: $\mathbb{N} = \{1, 2, ..., n, ...\}$.

Un altro modo per definire un insieme è di specificare la proprietà caratteristica dei suoi elementi. La notazione

$$A = \{ w \mid w \text{ ha la proprietà } P \}$$

si legge: "A è l'insieme di tutti gli elementi w che hanno la proprietà P".

Un insieme finito può essere descritto dalla lista dei suoi elementi (separati da virgole e) tra { }.

A volte per gli insiemi infiniti si usa la notazione "...". Esempio: $\mathbb{N} = \{1, 2, ..., n, ...\}$.

Un altro modo per definire un insieme è di specificare la proprietà caratteristica dei suoi elementi. La notazione

$$A = \{ w \mid w \text{ ha la proprietà } P \}$$

si legge: "A è l'insieme di tutti gli elementi w che hanno la proprietà P".

Per ogni insieme S, $w \in S$ indica che w è un elemento di S.

Un insieme finito può essere descritto dalla lista dei suoi elementi (separati da virgole e) tra { }.

A volte per gli insiemi infiniti si usa la notazione "...". Esempio: $\mathbb{N} = \{1, 2, ..., n, ...\}$.

Un altro modo per definire un insieme è di specificare la proprietà caratteristica dei suoi elementi. La notazione

$$A = \{ w \mid w \text{ ha la proprietà } P \}$$

si legge: "A è l'insieme di tutti gli elementi w che hanno la proprietà P".

Per ogni insieme S, $w \in S$ indica che w è un elemento di S.

Esempi: $A = \{1, 5, 7, 9\}, B = \{x \mid x \in \mathbb{R}, x = 2k\}$

 \mathbb{R} è l'insieme dei numeri reali, B è l'insieme dei numeri reali pari.

• Es: L' insieme dei numeri pari è

$$\{0,2,4,\dots,2n,\dots\}=\{2n\mid n\in\mathbb{N}, n\geq 0\}$$

$$\{0, 2, 4, \dots, 2n, \dots\} = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

L' insieme dei pari positivi è

$$\{2,4,\ldots,2n,\ldots\} = \{2n \mid n \in \mathbb{N}, n \geq 1\}$$

$$\{0, 2, 4, \dots, 2n, \dots\} = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

L' insieme dei pari positivi è

$$\{2,4,\ldots,2n,\ldots\} = \{2n \mid n \in \mathbb{N}, n \geq 1\}$$

L' insieme dei numeri dispari è

$$\{1,3,5,7,\ldots,2n+1...\} = \{2n+1 \mid n \in \mathbb{N}, n \ge 0\}$$

$$\{0, 2, 4, \dots, 2n, \dots\} = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

L' insieme dei pari positivi è

$$\{2,4,\ldots,2n,\ldots\} = \{2n \mid n \in \mathbb{N}, n \geq 1\}$$

L' insieme dei numeri dispari è

$$\{1,3,5,7,\ldots,2n+1...\} = \{2n+1 \mid n \in \mathbb{N}, n \ge 0\}$$

• **Es:** Se $A = \{2n \mid n \in \mathbb{N}, n \ge 0\}$, allora $4 \in A$, ma $5 \notin A$.

$$\{0, 2, 4, \dots, 2n, \dots\} = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

L' insieme dei pari positivi è

$$\{2,4,\ldots,2n,\ldots\} = \{2n \mid n \in \mathbb{N}, n \geq 1\}$$

L' insieme dei numeri dispari è

$$\{1,3,5,7,\ldots,2n+1...\} = \{2n+1 \mid n \in \mathbb{N}, n \ge 0\}$$

- **Es:** Se $A = \{2n \mid n \in \mathbb{N}, n \ge 0\}$, allora $4 \in A$, ma $5 \notin A$.
- Esercizio: dare una descrizione formale dell'insieme dei numeri non negativi che verificano la seguente proprietà: "Se $n \ge 5$ allora n è dispari".

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

 $A = \{x \in U \mid x \text{ ha il carattere 0 solo nelle posizioni dispari}\}$

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

 $A = \{x \in U \mid x \text{ ha il carattere 0 solo nelle posizioni dispari}\}$

La sequenza 11 appartiene ad A?

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

 $A = \{x \in U \mid x \text{ ha il carattere 0 solo nelle posizioni dispari}\}$ La sequenza 11 appartiene ad A?

Esempio 2

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

 $A = \{x \in U \mid x \text{ ha il carattere 0 solo nelle posizioni dispari}\}$ La sequenza 11 appartiene ad A?

Esempio 2

 $B = \{x \in U \mid \text{ogni terna di bit consecutivi in } x \text{ contiene al più uno } 0\}$

Nei seguenti esempi l'insieme universale U è l'insieme di tutte le sequenze di bit.

Esempio 1

 $A = \{x \in U \mid x \text{ ha il carattere 0 solo nelle posizioni dispari}\}$ La sequenza 11 appartiene ad A?

Esempio 2

 $B = \{x \in U \mid \text{ogni terna di bit consecutivi in } x \text{ contiene al più uno 0} \}$

Le sequenze 1, 10 appartengono a *B*?

Una definizione ricorsiva (o induttiva) di un insieme consiste di un passo base e di un passo ricorsivo.

Una definizione ricorsiva (o induttiva) di un insieme consiste di un passo base e di un passo ricorsivo.

Il passo base definisce uno o più elementi (elementari) dell'insieme.

Una definizione ricorsiva (o induttiva) di un insieme consiste di un passo base e di un passo ricorsivo.

Il passo base definisce uno o più elementi (elementari) dell'insieme.

Il passo ricorsivo definisce regole per formare nuovi elementi dell'insieme da elementi dell'insieme già definiti (specificati nel passo base o generati da precedenti applicazioni del passo ricorsivo).

Una definizione ricorsiva (o induttiva) di un insieme consiste di un passo base e di un passo ricorsivo.

Il passo base definisce uno o più elementi (elementari) dell'insieme.

Il passo ricorsivo definisce regole per formare nuovi elementi dell'insieme da elementi dell'insieme già definiti (specificati nel passo base o generati da precedenti applicazioni del passo ricorsivo).

• **Esempio**: Sia *A* l'insieme definito ricorsivamente nel modo seguente.

Una definizione ricorsiva (o induttiva) di un insieme consiste di un passo base e di un passo ricorsivo.

Il passo base definisce uno o più elementi (elementari) dell'insieme.

Il passo ricorsivo definisce regole per formare nuovi elementi dell'insieme da elementi dell'insieme già definiti (specificati nel passo base o generati da precedenti applicazioni del passo ricorsivo).

• **Esempio**: Sia *A* l'insieme definito ricorsivamente nel modo seguente.

PASSO BASE: $i_1 = 1 \in A$.

PASSO RICORSIVO: Se $i_k \in A$ allora $i_{k+1} = i_k + 2 \in A$.

• Esercizio: Dare una definizione di *A* attraverso una proprietà caratteristica dei suoi elementi.

- Esercizio: Dare una definizione di *A* attraverso una proprietà caratteristica dei suoi elementi.
- Esercizio: Dare una definizione ricorsiva di n!

- Esercizio: Dare una definizione di *A* attraverso una proprietà caratteristica dei suoi elementi.
- Esercizio: Dare una definizione ricorsiva di n!
- Esercizio: Dare una definizione ricorsiva di una lista di elementi.

- Esercizio: Dare una definizione di *A* attraverso una proprietà caratteristica dei suoi elementi.
- Esercizio: Dare una definizione ricorsiva di n!
- Esercizio: Dare una definizione ricorsiva di una lista di elementi.

 NOTA: NON CONFONDERE le definizioni ricorsive con le dimostrazioni per induzione.

Cardinalità

Definizione

La cardinalità |S| di un insieme finito S è il numero di elementi in S.

Cardinalità

Definizione

La cardinalità |S| di un insieme finito S è il numero di elementi in S.

Es. Se
$$S = \{ab, bb\}$$
 allora $|S| = 2$ Se $T = \emptyset$, allora $|T| = 0$

La cardinalità |S| di un insieme finito S è il numero di elementi in S.

Es. Se
$$S = \{ab, bb\}$$
 allora $|S| = 2$ Se $T = \emptyset$, allora $|T| = 0$

E se l'insieme ha infiniti elementi? Esempio: $\{a^n \mid n > 1\}$.

Ci ritorneremo....

Insiemi: Relazioni ed Operazioni

Definizione

Siano S e T insiemi. Diciamo che $S\subseteq T$ (S sottoinsieme di T) se $w\in S$ implica $w\in T$.

Cioè ogni elemento di S è anche un elemento di T.

Insiemi: Relazioni ed Operazioni

Definizione

Siano S e T insiemi. Diciamo che $S \subseteq T$ (S sottoinsieme di T) se $w \in S$ implica $w \in T$.

Cioè ogni elemento di S è anche un elemento di T.

Esempio

$$S = \{ab, ba\}$$
 e $T = \{ab, ba, aaa\}$ allora $S \subseteq T$ ma $T \not\subseteq S$.

$$S = \{ba, ab\}$$
 e $T = \{aa, ba\}$ allora $S \not\subseteq T$ e $T \not\subseteq S$.

Insiemi uguali

Definizione

Due insiemi S e T sono uguali (S = T) se $S \subseteq T$ e $T \subseteq S$.

Due insiemi S e T sono uguali (S = T) se $S \subseteq T$ e $T \subseteq S$.

Esempio

```
Siano S = \{ab, ba\} e T = \{ba, ab\} allora S \subseteq T e T \subseteq S; quindi S = T.
Siano S = \{ab, ba\} e T = \{ba, ab, aaa\},
```

allora $S \subseteq \{as, as, as, as\}$ allora $S \subseteq T$ ma $T \not\subseteq S$; quindi $S \ne T$.

Dati due insiemi S e T, la loro unione è l'insieme

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ è l'insieme degli elementi che sono in S oppure in T (o in entrambi).

Dati due insiemi S e T, la loro unione è l'insieme

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ è l'insieme degli elementi che sono in S oppure in T (o in entrambi).

Dati due insiemi S e T, la loro unione è l'insieme

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ è l'insieme degli elementi che sono in S oppure in T (o in entrambi).

Es.

• $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cup T = \{ab, bb, aa, a\}$

Dati due insiemi S e T, la loro unione è l'insieme

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ è l'insieme degli elementi che sono in S oppure in T (o in entrambi).

- $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cup T = \{ab, bb, aa, a\}$
- $S = \{a, ba\}$ e $T = \emptyset$, allora $S \cup T = S$.

Dati due insiemi S e T, la loro unione è l'insieme

$$S \cup T = \{ w \mid w \in S \text{ oppure } w \in T \}$$

 $S \cup T$ è l'insieme degli elementi che sono in S oppure in T (o in entrambi).

- $S = \{ab, bb\} \ e \ T = \{aa, bb, a\} \ allora \ S \cup T = \{ab, bb, aa, a\}$
- $S = \{a, ba\}$ e $T = \emptyset$, allora $S \cup T = S$.
- $S = \{a, ba\}$ e $T = \{\epsilon\}$ allora $S \cup T = \{\epsilon, a, ba\}$

Intersezione

Definizione

Dati due insiemi S e T, la loro intersezione è l'insieme

$$S \cap T = \{ w \mid w \in S \ e \ w \in T \}.$$

Intersezione

Definizione

Dati due insiemi S e T, la loro intersezione è l'insieme

$$S \cap T = \{ w \mid w \in S \ e \ w \in T \}.$$

 $S \cap T$ è l'insieme degli elementi comuni a S e T.

Intersezione

Definizione

Dati due insiemi S e T, la loro intersezione è l'insieme

$$S \cap T = \{ w \mid w \in S \ e \ w \in T \}.$$

 $S \cap T$ è l'insieme degli elementi comuni a S e T.

Definizione

Due insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$.

Dati due insiemi S e T, la loro intersezione è l'insieme

$$S \cap T = \{ w \mid w \in S \ e \ w \in T \}.$$

 $S \cap T$ è l'insieme degli elementi comuni a S e T.

Definizione

Due insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$.

Es.

• Sia $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cap T = \{bb\}$

Dati due insiemi S e T, la loro intersezione è l'insieme

$$S \cap T = \{ w \mid w \in S \ e \ w \in T \}.$$

 $S \cap T$ è l'insieme degli elementi comuni a S e T.

Definizione

Due insiemi S e T si dicono disgiunti se $S \cap T = \emptyset$.

- Sia $S = \{ab, bb\}$ e $T = \{aa, bb, a\}$ allora $S \cap T = \{bb\}$
- Sia $S = \{ab, bb\}$ e $T = \{aa, ba, a\}$ allora $S \cap T = \emptyset$, quindi S e T sono disgiunti.

Cardinalità

Lemma

Se S e T sono insiemi finiti allora $|S \cup T| = |S| + |T| - |S \cap T|$. In particolare, se S e T sono disgiunti (cioè $S \cap T = \emptyset$), allora $|S \cup T| = |S| + |T|$.

Lemma

Se S e T sono insiemi finiti allora $|S \cup T| = |S| + |T| - |S \cap T|$. In particolare, se S e T sono disgiunti (cioè $S \cap T = \emptyset$), allora $|S \cup T| = |S| + |T|$.

Il lemma si può dimostrare usando il principio di induzione.

Differenza

Definizione

Dati due insiemi S e T, la loro differenza è

$$S - T = \{ w \mid w \in S \ e \ w \not\in T \}$$

Dati due insiemi S e T, la loro differenza è

$$S-T=\{w\mid w\in S\ e\ w\not\in T\}$$

Dati due insiemi S e T, la loro differenza è

$$S - T = \{ w \mid w \in S \ e \ w \not\in T \}$$

Sia
$$S = \{a, b, bb, bbb\}$$
 e $T = \{a, bb, bab\}$ allora $S - T = \{b, bbb\}$.

Dati due insiemi S e T, la loro differenza è

$$S - T = \{ w \mid w \in S \ e \ w \not\in T \}$$

Sia
$$S = \{a, b, bb, bbb\}$$
 e $T = \{a, bb, bab\}$ allora $S - T = \{b, bbb\}$.
Sia $S = \{ab, ba\}$ e $T = \{ab, ba\}$ allora $S - T = \emptyset$

Complemento

Definizione

Dato un insieme universale U, il complemento di un insieme $S\subset U$ è

$$\overline{S} = \{ w \mid w \in U, \ w \notin S \} = U - S$$

Complemento

Definizione

Dato un insieme universale U, il complemento di un insieme $S\subset U$ è

$$\overline{S} = \{ w \mid w \in U, \ w \notin S \} = U - S$$

 \overline{S} è l'insieme di tutti gli elementi di U che non sono in S.

Complemento

Definizione

Dato un insieme universale U, il complemento di un insieme $S\subset U$ è

$$\overline{S} = \{ w \mid w \in U, \ w \notin S \} = U - S$$

 \overline{S} è l'insieme di tutti gli elementi di U che non sono in S.

Es.

N: insieme dei numeri naturali

$$\underline{S} = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

<u>S</u>: ?

Dato un insieme universale U, il complemento di un insieme $S\subset U$ è

$$\overline{S} = \{ w \mid w \in U, \ w \notin S \} = U - S$$

 \overline{S} è l'insieme di tutti gli elementi di U che non sono in S.

Es.

N: insieme dei numeri naturali

$$S = \{2n \mid n \in \mathbb{N}, n \ge 0\}$$

S: ?

$$\overline{S} = \{2n+1 \mid n \in \mathbb{N}, n \ge 0\} = \text{insieme dei numeri dispari.}$$

Sequenze

Definizione

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza è denotata scrivendo la lista tra parentesi ().

Sequenze

Definizione

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza è denotata scrivendo la lista tra parentesi ($\,$). Ad esempio, (7,21,57) denota una sequenza.

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza è denotata scrivendo la lista tra parentesi ().

Ad esempio, (7, 21, 57) denota una sequenza.

Ordine e ridondanza sono importanti in una sequenza.

Ad esempio (7,21,57), (57,21,7) e (7,7,21,57) sono tre sequenze diverse.

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza è denotata scrivendo la lista tra parentesi ().

Ad esempio, (7, 21, 57) denota una sequenza.

Ordine e ridondanza **sono** importanti in una sequenza. Ad esempio (7,21,57), (57,21,7) e (7,7,21,57) sono tre

Ad esemplo (7,21,57), (57,21,7) e (7,7,21,57) sono trosequenze diverse.

Definizione

Una k-upla è una sequenza che ha k elementi.

Una sequenza di oggetti è una lista di tali oggetti in qualche ordine.

Una sequenza è denotata scrivendo la lista tra parentesi ().

Ad esempio, (7,21,57) denota una sequenza.

Ordine e ridondanza sono importanti in una sequenza.

Ad esempio (7, 21, 57), (57, 21, 7) e (7, 7, 21, 57) sono tre sequenze diverse.

Definizione

Una k-upla è una sequenza che ha k elementi.

Es.

(4,2,7) è una tripla (9,23) è una coppia

Prodotto Cartesiano

Definizione

Dati due insiemi A e B, il prodotto cartesiano $A \times B$ è l'insieme di coppie

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Prodotto Cartesiano

Definizione

Dati due insiemi A e B, il prodotto cartesiano $A \times B$ è l'insieme di coppie

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

• Es.

Siano
$$A = \{a, ba, bb\}$$
 e $B = \{ba\}$, allora $A \times B = \{(a, ba), (ba, ba), (bb, ba)\},$ $B \times A = \{(ba, a), (ba, ba), (ba, bb)\}.$
Nota: $(ba, a) \in B \times A$ ma $(ba, a) \notin A \times B$

Nota: $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.

Definizione

Dati due insiemi A e B, il prodotto cartesiano $A \times B$ è l'insieme di coppie

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Es.

Siano
$$A = \{a, ba, bb\}$$
 e $B = \{ba\}$, allora
$$A \times B = \{(a, ba), (ba, ba), (bb, ba)\},$$

$$B \times A = \{(ba, a), (ba, ba), (ba, bb)\}.$$

Nota: $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.

• **Nota**: ∅ × *B* =?

Dati due insiemi A e B, il prodotto cartesiano $A \times B$ è l'insieme di coppie

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Es.

Siano
$$A = \{a, ba, bb\}$$
 e $B = \{ba\}$, allora
$$A \times B = \{(a, ba), (ba, ba), (bb, ba)\},$$

$$B \times A = \{(ba, a), (ba, ba), (ba, bb)\}.$$

Nota: $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.

- Nota: $\emptyset \times B = ?$
- Nota: Se A e B sono insiemi finiti, $|A \times B| = |A||B|$, Perchè?

Definizione

Dati due insiemi A e B, il prodotto cartesiano $A \times B$ è l'insieme di coppie

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

• Es.

Siano
$$A = \{a, ba, bb\}$$
 e $B = \{ba\}$, allora

$$A \times B = \{(a, ba), (ba, ba), (bb, ba)\},\$$

$$B \times A = \{(ba, a), (ba, ba), (ba, bb)\}.$$

Nota: $(ba, a) \in B \times A$, ma $(ba, a) \notin A \times B$, Quindi $B \times A \neq A \times B$.

- Nota: $\emptyset \times B = ?$
- **Nota:** Se A e B sono insiemi finiti, $|A \times B| = |A||B|$, Perchè? Suggerimento: utilizzare il principio di induzione su |A|.

Proposizione

Se A e B sono insiemi finiti, allora $|A \times B| = |A||B|$.

Dimostrazione

Proposizione

Se
$$A$$
 e B sono insiemi finiti, allora $|A \times B| = |A||B|$.

Dimostrazione

PASSO BASE: Se
$$A = \emptyset$$
 allora $|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|$.

Proposizione

Se
$$A$$
 e B sono insiemi finiti, allora $|A \times B| = |A||B|$.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

Proposizione

Se A e B sono insiemi finiti, allora
$$|A \times B| = |A||B|$$
.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

PASSO INDUTTIVO:

Proposizione

Se A e B sono insiemi finiti, allora
$$|A \times B| = |A||B|$$
.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

PASSO INDUTTIVO:

Sia $A \neq \emptyset$, sia $a \in A$ e sia $A' = A \setminus \{a\}$.

Proposizione

Se A e B sono insiemi finiti, allora
$$|A \times B| = |A||B|$$
.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

PASSO INDUTTIVO:

Sia $A \neq \emptyset$, sia $a \in A$ e sia $A' = A \setminus \{a\}$.

Poiché |A'| < |A|, per ipotesi induttiva risulta $|A' \times B| = |A'||B|$.

Proposizione

Se A e B sono insiemi finiti, allora $|A \times B| = |A||B|$.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

PASSO INDUTTIVO:

Sia $A \neq \emptyset$, sia $a \in A$ e sia $A' = A \setminus \{a\}$.

Poiché |A'| < |A|, per ipotesi induttiva risulta $|A' \times B| = |A'||B|$.

Siccome $A \times B = (A' \times B) \cup \{(a, b) \mid b \in B\}$, si ha anche $|A \times B| = |A' \times B| + |B| = |A'||B| + |B| = |A||B|$.

Proposizione

Se A e B sono insiemi finiti, allora $|A \times B| = |A||B|$.

Dimostrazione

PASSO BASE: Se $A = \emptyset$ allora

$$|A \times B| = |\emptyset| = 0 \cdot |B| = |A||B|.$$

Abbiamo provato il passo base.

PASSO INDUTTIVO:

Sia $A \neq \emptyset$, sia $a \in A$ e sia $A' = A \setminus \{a\}$.

Poiché |A'| < |A|, per ipotesi induttiva risulta $|A' \times B| = |A'||B|$.

Siccome $A \times B = (A' \times B) \cup \{(a, b) \mid b \in B\}$, si ha anche $|A \times B| = |A' \times B| + |B| = |A'||B| + |B| = |A||B|$.

Abbiamo provato il passo induttivo. Per il principio di induzione, l'enunciato è vero.

Possiamo anche definire il prodotto cartesiano di più di due insiemi. $A_1 \times ... \times A_k$ è l'insieme di k-uple

$$A_1 \times \ldots \times A_k = \{(x_1, \ldots, x_k) \mid x_i \in A_i, \ 1 \le i \le k\}$$

```
Es. Siano A_1 = \{ab, ba, bbb\} A_2 = \{a, bb\}, A_3 = \{ab, b\}. allora
```

```
Es. Siano A_1 = \{ab, ba, bbb\} A_2 = \{a, bb\}, A_3 = \{ab, b\}. allora
```

$$A_1 \times A_2 \times A_3 = \{(ab, a, ab), (ab, a, b), (ab, bb, ab), (ab, bb, b), (ba, a, ab), (ba, a, b), (ba, bb, ab), (ba, bb, b), (bbb, a, ab), (bbb, a, b), (bbb, bb, ab), (bbb, bb, b)\}.$$

Definizione

Dati due insiemi non vuoti X e Y, una funzione $f: X \to Y$ da X in Y è una relazione che associa a ogni elemento x in X uno e un solo y = f(x) in Y. X è il **dominio** della funzione, Y è il **codominio** della funzione.

Dati due insiemi non vuoti X e Y, una funzione $f: X \to Y$ da X in Y è una relazione che associa a ogni elemento x in X uno e un solo y = f(x) in Y. X è il **dominio** della funzione, Y è il **codominio** della funzione.

Quindi, per definire una specifica funzione occorre fornire:

Dati due insiemi non vuoti X e Y, una funzione $f: X \to Y$ da X in Y è una relazione che associa a ogni elemento x in X uno e un solo y = f(x) in Y. X è il **dominio** della funzione, Y è il **codominio** della funzione.

Quindi, per definire una specifica funzione occorre fornire:

dominio

Definizione

Dati due insiemi non vuoti X e Y, una funzione $f: X \to Y$ da X in Y è una relazione che associa a ogni elemento x in X uno e un solo y = f(x) in Y. X è il **dominio** della funzione, Y è il **codominio** della funzione.

Quindi, per definire una specifica funzione occorre fornire:

- dominio
- 2 codominio

Dati due insiemi non vuoti X e Y, una funzione $f: X \to Y$ da X in Y è una relazione che associa a ogni elemento x in X uno e un solo y = f(x) in Y. X è il **dominio** della funzione, Y è il **codominio** della funzione.

Quindi, per definire una specifica funzione occorre fornire:

- dominio
- 2 codominio
- 3 la relazione che a ogni elemento del dominio associa un elemento del codominio.

Esempi di funzioni definite ricorsivamente

La funzione $f : \mathbb{N} \to \mathbb{N}$ è definita ricorsivamente come segue:

Esempi di funzioni definite ricorsivamente

La funzione $f : \mathbb{N} \to \mathbb{N}$ è definita ricorsivamente come segue:

$$f(0) = 3,$$

 $f(n+1) = 2f(n) + 3$

Definizione

Una funzione $f: X \to Y$ è iniettiva se $\forall x, x' \in X$ $x \neq x' \Rightarrow f(x) \neq f(x')$

Definizione

Una funzione $f: X \to Y$ è iniettiva se $\forall x, x' \in X \quad x \neq x' \Rightarrow f(x) \neq f(x')$

Definizione

Una funzione $f: X \to Y$ è suriettiva se $\forall y \in Y \ \exists x \in X : y = f(x)$

Definizione

Una funzione $f: X \to Y$ è iniettiva se $\forall x, x' \in X \quad x \neq x' \Rightarrow f(x) \neq f(x')$

Definizione

Una funzione $f: X \to Y$ è suriettiva se $\forall y \in Y \exists x \in X : y = f(x)$

Definizione

Una funzione $f: X \to Y$ è una funzione biettiva di X su Y (o una biezione tra X e Y) se f è iniettiva e suriettiva.

Insieme potenza

Definizione

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

Insieme potenza

Definizione

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

L'insieme potenza di S è l'insieme di tutti i possibili sottoinsiemi di S.

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

L'insieme potenza di S è l'insieme di tutti i possibili sottoinsiemi di S.

Es. Se
$$S = \{a, bb\}$$
, allora $\mathcal{P}(S) = \{\emptyset, \{a\}, \{bb\}, \{a, bb\}\}$

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

L'insieme potenza di S è l'insieme di tutti i possibili sottoinsiemi di S.

Es. Se
$$S=\{a,bb\}$$
, allora
$$\mathcal{P}(S)=\{\emptyset,\{a\},\{bb\},\{a,bb\}\}$$

Lemma Se S è un insieme finito allora $|\mathcal{P}(S)| = 2^{|S|}$.

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

L'insieme potenza di S è l'insieme di tutti i possibili sottoinsiemi di S.

Es. Se
$$S = \{a, bb\}$$
, allora

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{bb\}, \{a, bb\}\}\$$

Lemma Se S è un insieme finito allora $|\mathcal{P}(S)| = 2^{|S|}$.

Cioè, esistono $2^{|S|}$ differenti sottoinsiemi di S. Perchè?

Per ogni insieme S, l'insieme potenza (o insieme delle parti) $\mathcal{P}(S)$ è

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}$$

L'insieme potenza di S è l'insieme di tutti i possibili sottoinsiemi di S.

Es. Se
$$S = \{a, bb\}$$
, allora

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{bb\}, \{a, bb\}\}$$

Lemma Se S è un insieme finito allora $|\mathcal{P}(S)| = 2^{|S|}$.

Cioè, esistono $2^{|S|}$ differenti sottoinsiemi di S. Perchè? Suggerimento: utilizzare il principio di induzione su |S|.

Rivedere i concetti di:

• grafo (orientato e non),

- grafo (orientato e non),
- cammino (semplice) e ciclo (semplice),

- grafo (orientato e non),
- cammino (semplice) e ciclo (semplice),
- grafo connesso, grafo fortemente connesso,

- grafo (orientato e non),
- cammino (semplice) e ciclo (semplice),
- grafo connesso, grafo fortemente connesso,
- albero, altezza di un albero, nodo interno e foglia.

Logica Booleana

Rivedere i concetti di:

• Operazioni Booleane AND (o ∧), OR (o ∨), NOT (o ¬)

Rivedere i concetti di:

- Operazioni Booleane AND (o ∧), OR (o ∨), NOT (o ¬)
- Variabili booleane e letterali

Rivedere i concetti di:

- Operazioni Booleane AND (o ∧), OR (o ∨), NOT (o ¬)
- Variabili booleane e letterali
- Espressioni Booleane

Rivedere i concetti di:

- Operazioni Booleane AND (o ∧), OR (o ∨), NOT (o ¬)
- Variabili booleane e letterali
- Espressioni Booleane
- Forme normali canoniche SOP e POS

Definizione

Un'espressione booleana ϕ sulle variabili x_1, \ldots, x_n è soddisfacibile se esiste un'assegnamento di valori alle variabili x_1, \ldots, x_n , che renda vera ϕ .

Definizione

Un'espressione booleana ϕ sulle variabili x_1, \ldots, x_n è soddisfacibile se esiste un'assegnamento di valori alle variabili x_1, \ldots, x_n , che renda vera ϕ .

 Valutare un'espressione booleana (su un'assegnamento di valori) è un problema diverso dallo stabilire se l'espressione è soddisfacibile.

Definizione

Un'espressione booleana ϕ sulle variabili x_1, \ldots, x_n è soddisfacibile se esiste un'assegnamento di valori alle variabili x_1, \ldots, x_n , che renda vera ϕ .

- Valutare un'espressione booleana (su un'assegnamento di valori) è un problema diverso dallo stabilire se l'espressione è soddisfacibile.
- Entrambi i problemi sono poi diversi dal problema di cercare un'assegnamento di valori alle variabili che renda vera un'espressione booleana soddisfacibile.

• Esempio. Valutare l'espressione $(x_1 \lor x_2) \land (x_1 \lor \overline{x_2})$ per $x_1 = 1, x_2 = 0.$

- Esempio. Valutare l'espressione $(x_1 \lor x_2) \land (x_1 \lor \overline{x_2})$ per $x_1 = 1, x_2 = 0.$
- Esempio. Indicare quali delle seguenti espressioni sono soddisfacibili, giustificando la risposta.

$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}),$$
$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_2}),$$
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

ELEMENTI DI TEORIA DELLA COMPUTAZIONE

Definizioni, teoremi e prove

Dimostrazioni per assurdo.

Dimostrazioni per assurdo.

Teorema

 $\sqrt{2}$ è irrazionale.

Dimostrazioni per assurdo.

Teorema $\sqrt{2}$ è irrazionale.

Dimostrazioni costruttive.

Dimostrazioni per assurdo.

Teorema

 $\sqrt{2}$ è irrazionale.

Dimostrazioni costruttive.

Teorema

Per ogni numero pari n, n > 2, esiste un grafo non orientato con n nodi, in cui ogni nodo ha grado 3.

Dimostrazioni per assurdo.

Teorema

 $\sqrt{2}$ è irrazionale.

Dimostrazioni costruttive.

Teorema

Per ogni numero pari n, n > 2, esiste un grafo non orientato con n nodi, in cui ogni nodo ha grado 3.

Dimostrazioni per induzione.

Dimostrazioni per assurdo.

Teorema

 $\sqrt{2}$ è irrazionale.

Dimostrazioni costruttive.

Teorema

Per ogni numero pari n, n > 2, esiste un grafo non orientato con n nodi, in cui ogni nodo ha grado 3.

Dimostrazioni per induzione.

$$S(n): 1+2+\ldots+n = \frac{n(n+1)}{2}$$

Dimostrazioni per assurdo.

Teorema

 $\sqrt{2}$ è irrazionale.

Dimostrazioni costruttive.

Teorema

Per ogni numero pari n, n > 2, esiste un grafo non orientato con n nodi, in cui ogni nodo ha grado 3.

Dimostrazioni per induzione.

$$S(n): 1+2+\ldots+n = \frac{n(n+1)}{2}$$

Errori nelle prove:

Problemi 0.10 e 0.11 in [M. Sipser]

ELEMENTI DI TEORIA DELLA COMPUTAZIONE

Alfabeti, Stringhe e Linguaggi

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli)

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli)

Es: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli)

Es: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Es: L'alfabeto delle cifre arabe è

$$\Sigma = \{0,1,\dots,9\}$$

Un alfabeto è un insieme finito di elementi (chiamati lettere o simboli)

Es: L'alfabeto delle lettere romane minuscole è

$$\Sigma = \{a, b, c, ..., z\}$$

Es: L'alfabeto delle cifre arabe è

$$\Sigma = \{0,1,\dots,9\}$$

Es: L'alfabeto binario è

$$\Sigma = \{0, 1\}$$

Una stringa (o parola) su un alfabeto è una sequenza finita di simboli dell'alfabeto.

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

Una stringa (o parola) su un alfabeto è una sequenza finita di simboli dell'alfabeto.

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

• Es: cat, food, c, babbz sono stringhe sull'alfabeto $\Sigma = \{a, b, c, ..., z\}.$

Una stringa (o parola) su un alfabeto è una sequenza finita di simboli dell'alfabeto.

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

- **Es:** cat, food, c, babbz sono stringhe sull'alfabeto $\Sigma = \{a, b, c, ..., z\}.$
- Es: 0131 è una stringa sull'alfabeto $\Sigma = \{0, 1, 2, ..., 9\}$.

Una stringa (o parola) su un alfabeto è una sequenza finita di simboli dell'alfabeto.

La **stringa vuota** ϵ è la stringa che non contiene nessun simbolo.

- **Es:** cat, food, c, babbz sono stringhe sull'alfabeto $\Sigma = \{a, b, c, ..., z\}.$
- Es: 0131 è una stringa sull'alfabeto $\Sigma = \{0, 1, 2, ..., 9\}$.
- **Es:** 0101 è una stringa sull'alfabeto $\Sigma = \{0, 1\}$.

Definizione ricorsiva di stringa

Definizione

PASSO BASE: la stringa vuota ϵ è una stringa.

Definizione ricorsiva di stringa

Definizione

PASSO BASE: la stringa vuota ϵ è una stringa.

PASSO RICORSIVO: Se w è una stringa e $x \in \Sigma$ è un simbolo dell'alfabeto, allora wx è una stringa.

Definizione ricorsiva di stringa

Definizione

PASSO BASE: la stringa vuota ϵ è una stringa.

PASSO RICORSIVO: Se w è una stringa e $x \in \Sigma$ è un simbolo dell'alfabeto, allora wx è una stringa.

• Nota. Se nel passo ricorsivo $w = \epsilon$, porremo $\epsilon x = x$.

Per ogni stringa s, la lunghezza di s è il numero di simboli in s.

Per ogni stringa s, la lunghezza di s è il numero di simboli in s.

La lunghezza di s è denotata con |s|.

Per ogni stringa s, la lunghezza di s è il numero di simboli in s.

La lunghezza di s è denotata con |s|.

Es: |mom| = 3.

Per ogni stringa s, la lunghezza di s è il numero di simboli in s.

La lunghezza di s è denotata con |s|.

Es: |mom| = 3.

La lunghezza della parola vuota è zero $|\epsilon|=0.$

Definizione ricorsiva di lunghezza di una stringa

Definizione

La lunghezza di una stringa w sull'alfabeto Σ , denotata |w|, è definita ricorsivamente come segue:

Definizione ricorsiva di lunghezza di una stringa

Definizione

La lunghezza di una stringa w sull'alfabeto Σ , denotata |w|, è definita ricorsivamente come segue:

PASSO BASE: $|\epsilon| = 0$.

Definizione ricorsiva di lunghezza di una stringa

Definizione

La lunghezza di una stringa w sull'alfabeto Σ , denotata |w|, è definita ricorsivamente come segue:

PASSO BASE: $|\epsilon|=0$.

PASSO RICORSIVO: *Se w* è una stringa e $x \in \Sigma$ è un simbolo dell'alfabeto, allora |wx| = |w| + 1.

 Σ^*

Def. Dato un alfabeto Σ , denotiamo con Σ^* l'insieme di tutte le possibili stringhe su Σ .

 \sum^*

Def. Dato un alfabeto Σ , denotiamo con Σ^* l'insieme di tutte le possibili stringhe su Σ .

Es: Se $\Sigma = \{a, b\}$ allora

 $\Sigma^* = \{\epsilon, \textit{a}, \textit{b}, \textit{aa}, \textit{ab}, \textit{ba}, \textit{bb}, \textit{aaa}, \textit{aab}, \textit{aba}, \textit{abb}, ...\}$

Def. Dato un alfabeto Σ , denotiamo con Σ^* l'insieme di tutte le possibili stringhe su Σ .

Es: Se $\Sigma = \{a, b\}$ allora

 $\Sigma^* = \{\epsilon, \textit{a}, \textit{b}, \textit{aa}, \textit{ab}, \textit{ba}, \textit{bb}, \textit{aaa}, \textit{aab}, \textit{aba}, \textit{abb}, \ldots\}$

 Σ e Σ^* sono due insiemi diversi che non vanno confusi.

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: *Se* $w \in \Sigma^*$ *e* $x \in \Sigma$, allora $wx \in \Sigma^*$.

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: *Se* $w \in \Sigma^*$ *e* $x \in \Sigma$, allora $wx \in \Sigma^*$.

• Nota. Se nel passo ricorsivo $w = \epsilon$, porremo $\epsilon x = x$.

Def. Date due stringhe \mathbf{u} e \mathbf{v} , la concatenazione di \mathbf{u} e \mathbf{v} è la stringa $\mathbf{u}\mathbf{v}$.

Def. Date due stringhe \mathbf{u} e \mathbf{v} , la concatenazione di \mathbf{u} e \mathbf{v} è la stringa $\mathbf{u}\mathbf{v}$.

Es: $\mathbf{u} = abb \text{ e } \mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = abbab \text{ e } \mathbf{v}\mathbf{u} = ababb$

Def. Date due stringhe \mathbf{u} e \mathbf{v} , la concatenazione di \mathbf{u} e \mathbf{v} è la stringa $\mathbf{u}\mathbf{v}$.

Es: $\mathbf{u} = abb \text{ e } \mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = abbab \text{ e } \mathbf{v}\mathbf{u} = ababb$

Es: $\mathbf{u} = \epsilon \ \mathbf{e} \ \mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = ab$

Def. Date due stringhe \mathbf{u} e \mathbf{v} , la concatenazione di \mathbf{u} e \mathbf{v} è la stringa $\mathbf{u}\mathbf{v}$.

Es: $\mathbf{u} = abb$ e $\mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = abbab$ e $\mathbf{v}\mathbf{u} = ababb$

Es: $\mathbf{u} = \epsilon \ \mathbf{e} \ \mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = ab$

Es: $\mathbf{u} = bb$ e $\mathbf{v} = \epsilon$, allora $\mathbf{u}\mathbf{v} = bb$

Def. Date due stringhe \mathbf{u} e \mathbf{v} , la concatenazione di \mathbf{u} e \mathbf{v} è la stringa $\mathbf{u}\mathbf{v}$.

Es: $\mathbf{u} = abb$ e $\mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = abbab$ e $\mathbf{v}\mathbf{u} = ababb$

Es: $\mathbf{u} = \epsilon \ \mathbf{e} \ \mathbf{v} = ab$, allora $\mathbf{u}\mathbf{v} = ab$

Es: $\mathbf{u} = bb$ e $\mathbf{v} = \epsilon$, allora $\mathbf{u}\mathbf{v} = bb$

Es: $\mathbf{u} = \epsilon$ e $\mathbf{v} = \epsilon$, allora $\mathbf{u}\mathbf{v} = \epsilon$; cioè $\epsilon \epsilon = \epsilon$

Definizione ricorsiva di concatenazione

Definizione

Sia Σ^* l'insieme delle stringhe sull'alfabeto Σ . La concatenazione di due stringhe, denotata con \cdot , è definita ricorsivamente come segue:

Definizione ricorsiva di concatenazione

Definizione

Sia Σ^* l'insieme delle stringhe sull'alfabeto Σ . La concatenazione di due stringhe, denotata con \cdot , è definita ricorsivamente come segue:

PASSO BASE: Se $w \in \Sigma^*$, allora $w \cdot \epsilon = w$.

Definizione ricorsiva di concatenazione

Definizione

Sia Σ^* l'insieme delle stringhe sull'alfabeto Σ . La concatenazione di due stringhe, denotata con \cdot , è definita ricorsivamente come segue:

PASSO BASE: Se $w \in \Sigma^*$, allora $w \cdot \epsilon = w$.

PASSO RICORSIVO: Se $w_1 \in \Sigma^*$, $w_2 \in \Sigma^*$ e $x \in \Sigma$, allora $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x \in \Sigma^*$.

La concatenazione di due stringhe w_1 e w_2 è spesso denotata w_1w_2 (invece che $w_1 \cdot w_2$).

Potenza di una stringa

Def. Per una stringa \mathbf{w} , definiamo \mathbf{w}^n per $n \ge 0$ ricorsivamente:

PASSO BASE: $\mathbf{w}^0 = \epsilon$

PASSO RICORSIVO: $\mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}$, per ogni $n \ge 0$.

Potenza di una stringa

```
Def. Per una stringa w, definiamo w<sup>n</sup> per n > 0
ricorsivamente:
PASSO BASE: w^0 = \epsilon
PASSO RICORSIVO: \mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}, per ogni n > 0.
Es: Se \mathbf{w} = cat, allora
\mathbf{w}^0 = \epsilon.
\mathbf{w}^1 = cat.
\mathbf{w}^2 = catcat.
\mathbf{w}^3 = catcatcat.
```

Potenza di una stringa

```
Def. Per una stringa w, definiamo w<sup>n</sup> per n > 0
ricorsivamente:
PASSO BASE: w^0 = \epsilon
PASSO RICORSIVO: \mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}, per ogni n > 0.
Es: Se \mathbf{w} = cat, allora
\mathbf{w}^0 = \epsilon.
\mathbf{w}^1 = cat.
\mathbf{w}^2 = catcat.
\mathbf{w}^3 = catcatcat.
Es: Data una lettera a
a^3 = aaa
a^0 = \epsilon
```

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi sequenza di simboli consecutivi della stringa s cioè,
w è una sottostringa di s se esistono stringhe x e y
(eventualmente vuote) tali che

 $\mathbf{s} = \mathbf{x} \mathbf{w} \mathbf{y}$

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi sequenza di simboli consecutivi della stringa s cioè,
w è una sottostringa di s se esistono stringhe x e y
(eventualmente vuote) tali che

 $\mathbf{s} = \mathbf{x} \mathbf{w} \mathbf{y}$

Es:

567 è sottostringa di 56789 567 è sottostringa di 45678 567 è sottostringa di 34567

Sottostringa

Def. Data una stringa s, una sottostringa di s è una qualsiasi sequenza di simboli consecutivi della stringa s cioè,
w è una sottostringa di s se esistono stringhe x e y
(eventualmente vuote) tali che

$$\mathbf{s} = \mathbf{x} \mathbf{w} \mathbf{y}$$

Es:

567 è sottostringa di 56789 567 è sottostringa di 45678

567 è sottostringa di 34567

Es: La stringa 472 ha sottostringhe

$$\epsilon$$
, 4, 7, 2, 47, 72, 472

Ma 42 non è sottostringa di 472.

Inversa di una stringa

Definizione

L'inversa (o reverse) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

Inversa di una stringa

Definizione

L'inversa (o reverse) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

$$\epsilon^R=\epsilon$$
 e se $w=a_1\cdots a_n$, con a_j lettere, allora ${f w}^R=a_na_{n-1}\cdots a_1.$

Inversa di una stringa

Definizione

L'inversa (o reverse) \mathbf{w}^R di una stringa w è la stringa ottenuta scrivendo i caratteri di w da destra verso sinistra.

$$\epsilon^R = \epsilon$$
 e se $w = a_1 \cdots a_n$, con a_j lettere, allora

$$\mathbf{w}^R = a_n a_{n-1} \cdots a_1.$$

Es.
$$(cat)^R = tac$$
.

Definizione ricorsiva dell'inversa di una stringa

PASSO BASE: $\epsilon^R = \epsilon$.

Definizione ricorsiva dell'inversa di una stringa

PASSO BASE: $\epsilon^R = \epsilon$.

PASSO RICORSIVO: Per ogni $x \in \Sigma^*$ e $\sigma \in \Sigma$, $(x\sigma)^R = \sigma x^R$.

Linguaggi

Definizione

Un linguaggio (formale) è un insieme di stringhe su un alfabeto.

L è un linguaggio sull'alfabeto Σ se $L \subseteq \Sigma^*$.

Definizione

Un linguaggio (formale) è un insieme di stringhe su un alfabeto. L è un linguaggio sull'alfabeto Σ se $L \subseteq \Sigma^*$.

Esempi: Linguaggi per computer, quali C, C^{++} o Java, sono linguaggi formali con alfabeto

$${a, b, ..., z, A, B, ..., Z, 0, 1, 2, ..., 9, >, <, =, +, -, *, /, (,), ...}$$

Le regole della sintassi definiscono le regole del linguaggio. L'insieme dei nomi validi di variabili in C (o in C^{++} o Java) è un linguaggio formale.

Linguaggi

• Nota: non solo insiemi finiti.

Infatti gli insiemi finiti non sono di solito linguaggi interessanti.

Tutti i nostri alfabeti sono finiti, ma la maggior parte dei linguaggi che incontreremo sono infiniti.

• Es. Alfabeto $\Sigma = \{a\}$. Linguaggio $L = \{\epsilon, a, aa, aaa, aaaa, ...\} = \{a^n \mid n \in \mathbb{N}, n \geq 0\}$ Nota: $a^0 = \epsilon \in L$

- Es. Alfabeto $\Sigma = \{a\}$. Linguaggio $L = \{\epsilon, a, aa, aaa, aaaa, ...\} = \{a^n \mid n \in \mathbb{N}, n \geq 0\}$ Nota: $a^0 = \epsilon \in L$
- Es. Alfabeto $\Sigma = \{a\}$. Linguaggio $L = \{a, aaa, aaaaa, ...\} = \{a^{2n+1} \mid n \in \mathbb{N}, n \geq 0\}$

- Es. Alfabeto $\Sigma = \{a\}$. Linguaggio $L = \{\epsilon, a, aa, aaa, aaaa, ...\} = \{a^n \mid n \in \mathbb{N}, n \geq 0\}$ Nota: $a^0 = \epsilon \in L$
- Es. Alfabeto $\Sigma = \{a\}$. Linguaggio $L = \{a, aaa, aaaaa, ...\} = \{a^{2n+1} \mid n \in \mathbb{N}, n \geq 0\}$
- Es. Alfabeto $\Sigma = \{0,1,2,...,9\}$. Linguaggio $L = \{$ qualsiasi stringa che non inizia con $0\} = \{\epsilon,1,2,3,...,9,10,11,...\}$

• Es. Alfabeto $\Sigma = \{a, b\}$. Linguaggio $L = \{\epsilon, ab, aabb, aaabbb, ...\} = \{a^nb^n \mid n \in \mathbb{N}, n \geq 0\}$

- Es. Alfabeto $\Sigma = \{a, b\}$. Linguaggio $L = \{\epsilon, ab, aabb, aaabbb, ...\} = \{a^nb^n \mid n \in \mathbb{N}, n \geq 0\}$
- Es. Alfabeto Σ = {a, b}.
 Linguaggio
 X = {w ∈ Σ* | numero di occorrenze di a in w = numero di occorrenze di b in w}

- Es. Alfabeto $\Sigma = \{a, b\}$. Linguaggio $L = \{\epsilon, ab, aabb, aaabbb, ...\} = \{a^nb^n \mid n \in \mathbb{N}, n \geq 0\}$
- Es. Alfabeto Σ = {a, b}.
 Linguaggio
 X = {w ∈ Σ* | numero di occorrenze di a in w = numero di occorrenze di b in w}
- L = X?

Es. Sia $A = \{a, b\}$, definiamo il linguaggio L delle stringhe che iniziano con a seguita da 0 o più b; $L = \{a, ab, abb, abbb, ...\} = \{ab^n | n \in \mathbb{N}, n \geq 0\}$

Es. Sia $A = \{a, b\}$, definiamo il linguaggio L delle stringhe che iniziano con a seguita da 0 o più b; $L = \{a, ab, abb, abbb, ...\} = \{ab^n | n \in \mathbb{N}, n \geq 0\}$

Nota. L'insieme vuoto \emptyset è il linguaggio che non contiene nessuna stringa.

Es. Sia $A = \{a, b\}$, definiamo il linguaggio L delle stringhe che iniziano con a seguita da 0 o più b; $L = \{a, ab, abb, abbb, ...\} = \{ab^n | n \in \mathbb{N}, n \geq 0\}$

Nota. L'insieme vuoto \emptyset è il linguaggio che non contiene nessuna stringa.

 ϵ ∉ ∅

Es. Sia $A = \{a, b\}$, definiamo il linguaggio L delle stringhe che iniziano con a seguita da 0 o più b; $L = \{a, ab, abb, abbb, ...\} = \{ab^n | n \in \mathbb{N}, n \ge 0\}$

Nota. L'insieme vuoto \emptyset è il linguaggio che non contiene nessuna stringa.

- $\epsilon \notin \emptyset$
- $\emptyset \neq \{\epsilon\}$

Es. Sia $A = \{a, b\}$, definiamo il linguaggio L delle stringhe che iniziano con a seguita da 0 o più b; $L = \{a, ab, abb, abbb, ...\} = \{ab^n | n \in \mathbb{N}, n \geq 0\}$

Nota. L'insieme vuoto \emptyset è il linguaggio che non contiene nessuna stringa.

- $\epsilon \notin \emptyset$
- $\emptyset \neq \{\epsilon\}$

poiché Ø non ha elementi.

I linguaggi sono insiemi. Quindi possiamo applicare a essi le operazioni di unione, intersezione, differenza, complemento.

I linguaggi sono insiemi. Quindi possiamo applicare a essi le operazioni di unione, intersezione, differenza, complemento.

Se
$$L \subseteq \Sigma^*$$
,
 $\overline{L} = \Sigma^* - L = \{ w \in \Sigma^* \mid w \not\in L \}$.

I linguaggi sono insiemi. Quindi possiamo applicare a essi le operazioni di unione, intersezione, differenza, complemento.

Se
$$L \subseteq \Sigma^*$$
, $\overline{L} = \Sigma^* - L = \{w \in \Sigma^* \mid w \not\in L\}$.
Es. Alfabeto $\{a, b\}$
Linguaggio $L = \{w \in \{a, b\}^* \mid \text{ la prima lettera di } w \in b\}$
 \overline{L} : ?

I linguaggi sono insiemi. Quindi possiamo applicare a essi le operazioni di unione, intersezione, differenza, complemento.

Se
$$L \subseteq \Sigma^*$$
, $\overline{L} = \Sigma^* - L = \{w \in \Sigma^* \mid w \not\in L\}$.
Es. Alfabeto $\{a, b\}$
Linguaggio $L = \{w \in \{a, b\}^* \mid \text{ la prima lettera di } w \text{ è } b\}$
 \overline{L} : ?

 \overline{L} : insieme delle stringhe su $\{a,b\}$ che non iniziano con b. **N.B.**: NON insieme stringhe che iniziano con a (es. stringa vuota $e \in \overline{L}$)

I linguaggi sono insiemi. Quindi possiamo applicare a essi le operazioni di unione, intersezione, differenza, complemento.

Se
$$L \subseteq \Sigma^*$$
, $\overline{L} = \Sigma^* - L = \{w \in \Sigma^* \mid w \not\in L\}$.
Es. Alfabeto $\{a, b\}$
Linguaggio $L = \{w \in \{a, b\}^* \mid \text{ la prima lettera di } w \in b\}$
 \overline{L} : ?

 \overline{L} : insieme delle stringhe su $\{a,b\}$ che non iniziano con b. **N.B.**: NON insieme stringhe che iniziano con a (es. stringa vuota $e \in \overline{L}$)

Es. Alfabeto
$$\Sigma = \{a, b\}$$

Linguaggio $L = \{\epsilon, ab, aabb, aaabbb, ...\} = \{a^nb^n \mid n \in \mathbb{N}, n \geq 0\}$.
Chi è il complemento \overline{L} di L ?

Prodotto di linguaggi

Prodotto di linguaggi

Definizione

Dati due linguaggi S e T sull'alfabeto Σ , il prodotto (o concatenazione) di S e T è

$$ST = S \circ T = \{uv \in \Sigma^* \mid u \in S, v \in T\}$$

Prodotto di linguaggi

Definizione

Dati due linguaggi S e T sull'alfabeto Σ , il prodotto (o concatenazione) di S e T è

$$ST = S \circ T = \{uv \in \Sigma^* \mid u \in S, v \in T\}$$

ST è l'insieme di tutte le stringhe che sono concatenazione di una stringa in S e di una stringa in T.

Prodotto di linguaggi

Definizione

Dati due linguaggi S e T sull'alfabeto Σ , il prodotto (o concatenazione) di S e T è

$$ST = S \circ T = \{uv \in \Sigma^* \mid u \in S, v \in T\}$$

ST è l'insieme di tutte le stringhe che sono concatenazione di una stringa in S e di una stringa in T.

Es. Se
$$S = \{a, aa\}$$
 e $T = \{\epsilon, a, ba\}$, allora

$$ST = \{a, aa, aba, aaa, aaba\}, \quad TS = \{a, aa, aaa, baa, baaa\}$$

Prodotto di linguaggi

Definizione

Dati due linguaggi S e T sull'alfabeto Σ , il prodotto (o concatenazione) di S e T è

$$ST = S \circ T = \{uv \in \Sigma^* \mid u \in S, v \in T\}$$

ST è l'insieme di tutte le stringhe che sono concatenazione di una stringa in S e di una stringa in T.

Es. Se
$$S = \{a, aa\}$$
 e $T = \{\epsilon, a, ba\}$, allora

$$ST = \{a, aa, aba, aaa, aaba\}, \quad TS = \{a, aa, aaa, baa, baaa\}$$

Nota: $aba \in ST$, ma $aba \notin TS$. Quindi $ST \neq TS$

Prodotto di linguaggi

Definizione

Dati due linguaggi S e T sull'alfabeto Σ , il prodotto (o concatenazione) di S e T è

$$ST = S \circ T = \{uv \in \Sigma^* \mid u \in S, v \in T\}$$

ST è l'insieme di tutte le stringhe che sono concatenazione di una stringa in S e di una stringa in T.

Es. Se
$$S = \{a, aa\}$$
 e $T = \{\epsilon, a, ba\}$, allora

$$ST = \{a, aa, aba, aaa, aaba\}, \quad TS = \{a, aa, aaa, baa, baaa\}$$

Nota: $aba \in ST$, ma $aba \notin TS$. Quindi $ST \neq TS$

$$\emptyset \circ T = ?$$

Prodotto di linguaggi

Prodotto di linguaggi

Nota Il prodotto di linguaggi è un'operazione diversa dal prodotto cartesiano:

prodotto cartesiano:
se
$$S = \{a, ba, bb\}$$
 e $T = \{\epsilon, ba\}$ allora

$$ST = \{a, aba, ba, baba, bb, bbba\},$$

$$S \times T = \{(a, \epsilon), (a, ba), (ba, \epsilon), (ba, ba), (bb, \epsilon), (bb, ba)\},$$

$$ST \neq S \times T$$

Prodotto di linguaggi

Nota Il prodotto di linguaggi è un'operazione diversa dal prodotto cartesiano:

se
$$S = \{a, ba, bb\}$$
 e $T = \{\epsilon, ba\}$ allora
$$ST = \{a, aba, ba, baba, bb, bbba\},$$

$$S \times T = \{(a, \epsilon), (a, ba), (ba, \epsilon), (ba, ba), (bb, \epsilon), (bb, ba)\},$$

$$ST \neq S \times T$$

• Nota: Se S e T sono linguaggi finiti, |ST| = |S||T| ?

Prodotto di linguaggi

Nota Il prodotto di linguaggi è un'operazione diversa dal prodotto cartesiano:

se
$$S = \{a, ba, bb\}$$
 e $T = \{\epsilon, ba\}$ allora
$$ST = \{a, aba, ba, baba, bb, bbba\},$$

$$S \times T = \{(a, \epsilon), (a, ba), (ba, \epsilon), (ba, ba), (bb, \epsilon), (bb, ba)\},$$

$$ST \neq S \times T$$

• Nota: Se S e T sono linguaggi finiti, |ST| = |S||T| ? Suggerimento: Considerare $S = \{ab, a\}, T = \{a, ba\}.$

Potenza di un linguaggio

Potenza di un linguaggio

Definizione

Sia L un linguaggio sull'alfabeto Σ . Definiamo:

$$L^{0} = \{\epsilon\},$$

$$L^{k} = L^{k-1}L, \quad k \ge 1$$

Potenza di un linguaggio

Definizione

Sia L un linguaggio sull'alfabeto Σ . Definiamo:

$$L^{0} = \{\epsilon\},$$

$$L^{k} = L^{k-1}L, \quad k \ge 1$$

Nota.
$$L^1 = L$$
, $L^k = \{w_1 w_2 \dots w_k \mid w_i \in L, \ 1 \le i \le k\}, \ k \ge 0$.

Potenza di un linguaggio

Definizione

Sia L un linguaggio sull'alfabeto Σ . Definiamo:

$$\begin{array}{rcl} L^0 & = & \{\epsilon\}, \\ L^k & = & L^{k-1}L, & k \ge 1 \end{array}$$

```
Nota. L^1 = L, L^k = \{w_1 w_2 \dots w_k \mid w_i \in L, \ 1 \le i \le k\}, \ k \ge 0. Es. Se L = \{a, bb\}, allora L^0 = \{\epsilon\}, L^1 = \{a, bb\}, L^2 = \{aa, abb, bba, bbbb\}, L^3 = \{aaa, aabb, abba, abba, abbab, bbaa, bbbbb, bbbba, bbbbb}.
```

Chiusura di Kleene (o Kleene star o star)

Chiusura di Kleene (o Kleene star o star)

Definizione

La chiusura di Kleene (o Kleene star o star) di un linguaggio L è

$$L^* = \bigcup_{n \in \mathbb{N}} L^n$$

Chiusura di Kleene (o Kleene star o star)

Definizione

La chiusura di Kleene (o Kleene star o star) di un linguaggio L è

$$L^* = \bigcup_{n \in \mathbb{N}} L^n$$

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

Chiusura di Kleene (o Kleene star o star)

Definizione

La chiusura di Kleene (o Kleene star o star) di un linguaggio L è

$$L^* = \bigcup_{n \in \mathbb{N}} L^n$$

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

$$L^* = \{w_1 w_2 \dots w_k \mid k \ge 0, w_i \in L, 0 \le i \le k\}$$

Chiusura di Kleene (o Kleene star o star)

Definizione

La chiusura di Kleene (o Kleene star o star) di un linguaggio L è

$$L^* = \bigcup_{n \in \mathbb{N}} L^n$$

Nota. L^* è il linguaggio delle stringhe ottenute concatenando un numero qualsiasi di stringhe di L:

$$L^* = \{w_1 w_2 \dots w_k \mid k \ge 0, \ w_i \in L, \ 0 \le i \le k\}$$

Nota. Se k = 0, $w_1 w_2 \dots w_k = \epsilon$ è la stringa vuota.

Chiusura di Kleene

Chiusura di Kleene

Es. Se
$$L = \{ba, a\}$$
, allora

$$L^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, ...\}$$

Chiusura di Kleene

Es. Se
$$L = \{ba, a\}$$
, allora

$$L^* = \{\epsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, ...\}$$

Può bb essere una sottostringa di $w \in L^*$?

Chiusura di Kleene

Es. Se
$$L = \{ba, a\}$$
, allora

$$\textit{L}^* = \{\epsilon, \textit{a}, \textit{aa}, \textit{ba}, \textit{aaa}, \textit{aba}, \textit{baa}, \textit{aaaa}, \textit{aaba}, \ldots\}$$

Può bb essere una sottostringa di $w \in L^*$?

Es. Se
$$L = \{a, b\}$$
, allora

$$L^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, ...\},$$

tutte le possibili stringhe su alfabeto L.

Chiusura di Kleene

Es. Se
$$L = \{ba, a\}$$
, allora

$$\textit{L}^* = \{\epsilon, \textit{a}, \textit{aa}, \textit{ba}, \textit{aaa}, \textit{aba}, \textit{baa}, \textit{aaaa}, \textit{aaba}, \ldots\}$$

Può bb essere una sottostringa di $w \in L^*$?

Es. Se
$$L = \{a, b\}$$
, allora

$$\textit{L}^* = \{\epsilon, \textit{a}, \textit{b}, \textit{aa}, \textit{ab}, \textit{ba}, \textit{bb}, \textit{aaa}, \textit{aab}, \textit{aba}, ...\},$$

tutte le possibili stringhe su alfabeto L.

Es. Se
$$L = \emptyset$$
, allora $L^* = \{\epsilon\}$.

Chiusura di Kleene

Es. Se
$$L = \{ba, a\}$$
, allora

$$\textit{L}^* = \{\epsilon, \textit{a}, \textit{aa}, \textit{ba}, \textit{aaa}, \textit{aba}, \textit{baa}, \textit{aaaa}, \textit{aaba}, \ldots\}$$

Può bb essere una sottostringa di $w \in L^*$?

Es. Se
$$L = \{a, b\}$$
, allora

$$\textit{L}^* = \{\epsilon, \textit{a}, \textit{b}, \textit{aa}, \textit{ab}, \textit{ba}, \textit{bb}, \textit{aaa}, \textit{aab}, \textit{aba}, ...\},$$

tutte le possibili stringhe su alfabeto L.

Es. Se
$$L = \emptyset$$
, allora $L^* = \{\epsilon\}$.

Es. Se
$$L = \{\epsilon\}$$
, allora $L^* = \{\epsilon\}$

Chiusura di Kleene

Chiusura di Kleene

Es. Se
$$L = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = \{a\}^*$$
, allora $L^* = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = L$

Chiusura di Kleene

Es. Se
$$L = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = \{a\}^*$$
, allora $L^* = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = L$

Nota. Per ogni linguaggio L risulta $(L^*)^* = L^*$.

Chiusura di Kleene

Es. Se
$$L=\{a^n\mid n\geq 0, n\in\mathbb{N}\}=\{a\}^*$$
, allora $L^*=\{a^n\mid n\geq 0, n\in\mathbb{N}\}=L$

Nota. Per ogni linguaggio L risulta $(L^*)^* = L^*$.

Per dimostrare questa uguaglianza occorre utilizzare la definizione dell'operazione star.

Chiusura di Kleene

Es. Se
$$L = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = \{a\}^*$$
, allora $L^* = \{a^n \mid n \ge 0, n \in \mathbb{N}\} = L$

Nota. Per ogni linguaggio L risulta $(L^*)^* = L^*$.

Per dimostrare questa uguaglianza occorre utilizzare la definizione dell'operazione star.

Per intuire perché sussiste l'uguaglianza: $(L^*)^*$ è l'insieme delle stringhe ottenute concatenando stringhe di L^* e la concatenazione di stringhe di L^* è ancora una stringa di L^* .

Chiusura positiva

Chiusura positiva

Definizione

Per un linguaggio L sull'alfabeto Σ , definiamo

$$L^{+} = \bigcup_{n>0} L^{n}$$

= $\{w_{1}w_{2}\cdots w_{k} \mid k>0, w_{i} \in L, 1 \leq i \leq k\}$

Chiusura positiva

Definizione

Per un linguaggio L sull'alfabeto Σ, definiamo

$$L^{+} = \bigcup_{n>0} L^{n}$$

= $\{w_{1}w_{2}\cdots w_{k} \mid k>0, w_{i} \in L, 1 \leq i \leq k\}$

Es. Se
$$L=\{a\}$$
, allora
$$L^+=\{a,aa,aaa,...\}=\{a^n\mid n>0,n\in\mathbb{N}\}$$

Chiusura positiva

Definizione

Per un linguaggio L sull'alfabeto Σ, definiamo

$$L^{+} = \bigcup_{n>0} L^{n}$$

= $\{w_{1}w_{2}\cdots w_{k} \mid k>0, w_{i} \in L, 1 \leq i \leq k\}$

Es. Se
$$L=\{a\}$$
, allora
$$L^+=\{a,aa,aaa,...\}=\{a^n\mid n>0,n\in\mathbb{N}\}$$

Esiste un linguaggio L tale che $\epsilon \in L^+$?

• Quante sono le stringhe sull'alfabeto $\Sigma = \{a_1, \dots, a_k\}$ di lunghezza n? Qual è la cardinalità di Σ^n ?

- Quante sono le stringhe sull'alfabeto $\Sigma = \{a_1, \dots, a_k\}$ di lunghezza n? Qual è la cardinalità di Σ^n ?
- Dare una definizione più semplice del linguaggio

$$L = \{w \in \{a,b\}^* \mid w \text{ non contiene occorrenze della stringa } ab$$

e non contiene occorrenze della stringa ba}

- Quante sono le stringhe sull'alfabeto $\Sigma = \{a_1, \dots, a_k\}$ di lunghezza n? Qual è la cardinalità di Σ^n ?
- Dare una definizione più semplice del linguaggio

$$L = \{w \in \{a,b\}^* \mid w \text{ non contiene occorrenze della stringa } ab$$

e non contiene occorrenze della stringa ba}

 Definire il seguente linguaggio in funzione del linguaggio L del precedente esercizio.

 $\{w \in \{a,b\}^* \mid w \text{ non è né una potenza di } a \text{ né una potenza di } b\}$

• Trovare la parola più corta sull'alfabeto $\{0\}$ che non appartiene a $\{\epsilon,0,0^2,0^5\}^3$.

- Trovare la parola più corta sull'alfabeto $\{0\}$ che non appartiene a $\{\epsilon,0,0^2,0^5\}^3$.
- Trovare una stringa w che non appartenga al linguaggio

 $\{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di } 0$

oppure esattamente due occorrenze di 1}