### Natural Language Processing

Lecture 09

Dirk Hovy

dirk.hovy@unibocconi.it





### Goals for Today

- Understand what information topic models can and can not provide
- Learn about the Latent Dirichlet Allocation (LDA) model
- Understand the parameters influencing the output
- Learn about evaluation criteria



### What Gets Funded?



## Latent Dirichlet Allocation

### How to Generate Documents

$$P(w_1, w_2, ..., w_n) \approx$$

UNIGRAM LM: 
$$\prod_{i=1}^{N} P(w_i)$$
 NO CONTEXT

BIGRAM LM: 
$$\prod_{i=1}^{N} P(w_i|w_{i-1}) \text{ I-WORD CONTEXT}$$

TOPIC MODEL: 
$$\prod_{i=1}^{N} P(CK \text{ TOPIC CONTEXT} \\ P(w_i|topic=k) \\ P(cK \text{ WORD})$$

### How to Generate Documents

- Draw a topic distribution  $\theta$  0,14 0,14
- For i in N:
  - Draw a topic from  $\theta$



Sample a word from the word distribution z





### Opics per Document $\theta = P(topic | document)$

| Document N | 0,04 | 0,11 | 0,04 | 0,04 | 0,79 |
|------------|------|------|------|------|------|
|            |      |      |      |      | 0,79 |
| •••        |      |      |      |      |      |
| Document 4 | 0,47 | 0,20 | 0,07 | 0,07 | 0,20 |
| Document 3 | 0,17 | 0,17 | 0,17 | 0,33 | 0,17 |
| Document 2 | 0,14 | 0,14 | 0,29 | 0,29 | 0,14 |
| Document 1 | 0,04 | 0,13 | 0,13 | 0,65 | 0,04 |



### Plate Notation



### Dirichlet Distributions

### "DISTRIBUTION GENERATOR"



### Evaluating LDA



### CONTENT-BASED

[apple, banana, pear, lime, orange]



[apple, banana, foot, lime, orange]

WHICH ONE'S WRONG?



# Training and Parameters

### Parameters: K



### Parameters: α

MORE UNIFORM: EVERY TOPIC IN EVERY DOCUMENT

0,21 0,19 0,20 0,21 0,19



1.0

### Parameters: B

1.0 ALL WORDS FOR ALL TOPICS WORDS ARE HIGHLY TOPIC-SPECIFIC

Rocconi

0.01

### Training

- Goal: Find distributions  $\theta$  and z
- In LM: use MLE (count and divide)
- In topic models: ??? (can't count what you don't see)

### P(DATA) STOPS CHANGING

Initialize  $\theta$  and z randomly

Repeat until convergence:

"Hallucinate" topics from current  $\theta$  and z

Count hallucinated topics

Normalize





### Caveats!

Topic models ALWAYS needs manual assessment, because:

- Random initialization: no two models are the same!
- More likely models ≠ more interpretable topics
- "Interpretable" is subjective



### Adding Constraints

- Maybe we know which words go with a topic
- Fix some probabilities/add smoothing



### Constrained Training



### Preprocessing

- Be aggressive:
  - lemmatization,
  - stopwords,
  - replace numbers/user names,
  - join collocations
- use minimum document frequency 10, 20, 50, or even 100
- use maximum document frequency 50% 10\%



### Wrapping Up

### Take-Home Points

- LDA is one architecture for topic models
- Model document generation conditioned on latent topics
- Topic models are stochastic: each run is different
- Preprocessing and parameters influence performance
- Results need to be interpreted!

