Pontifícia Universidade Católica de Minas Gerais Curso de Ciência da Computação Trabalho de Conclusão de Curso

Análise de domínios no aprendizado por transferência para classificação de nódulos tireoidianos

Karine Mendes Tavares

Alexei M. C. Machado
Orientador

Sumário

- Introdução
- Materiais e métodos
- Resultados e Discussão
- Considerações finais

Contexto

 Tireoide é uma glândula que regula o metabolismo do corpo humano

Nódulos são problemas comuns

 A incidência de nódulos palpáveis de tireoide na população adulta é de cerca de 67% e 10% deles podem ser malignos

Contexto

Ultrassonografia para detectar e diagnosticar

 São menos invasivas e apresentam o melhor custo-benefício

Alto nível de expertise para interpretá-las

Contexto

Classificação dos nódulos é um desafio para os médicos

- Sistema de classificação
 - TI-RADS, Kwak et al. 2011
 - 1, 2, 3, 4a, 4b, 4c, 5

Motivação

- Sistemas de diagnóstico assistido por computador (CAD) e aprendizado profundo
 - Redes Neurais Convolucionais (CNNs)

- Tamanho da base de dados interfere na qualidade de aprendizado
 - Imagenet
 - RadImageNet

Objetivo

 Avaliação da adaptação de domínio no aprendizado por transferência na classificação de nódulos tireoidianos

Pesos ImageNet e RadImageNet

Objetivo

• TI-RADS categoria 4

Fonte: Pedraza et al.

- 1. Base de dados
- 2. Seleção das imagens
- 3. Modelos de treinamento e Arquitetura
- 4. Métricas de Avaliação

Base de dados

- DDTI (Digital Database Thyroid Image)
 - Disponibilizada pela Universidade Nacional da Colômbia
- 480 imagens de ultrassom

TI-RADS	Nº Imagens				
2	42				
3	19				
4a	96				
4b	79				
4c	68				
5	45				

Base de dados

Fonte: Pedraza et al.

Seleção das Imagens

Seleção das imagens TI-RADS 4a, 4b e 4c

Separação estratificada de 10 dobras

Mesmo paciente sempre no mesmo conjunto

Segmentação

Leitura do xml, recorte e fundo verde para cada imagem


```
<case><number>45</number><age>74</age><sex>F
</sex><composition>solid</composition><echogenicity>
hypoechogenicity</echogenicity><margins>well defined
</margins><calcifications>macrocalcifications
</calcifications><tirads>4b
</tirads><reportbacaf></reportbacaf><reporteco></reporteco><mar
k><svq>[{"points": [{"x": 305, "y": 84},
{"x": 299, "y": 85}, {"x": 291, "y": 88}, {"x": 286, "y":
90}, {"x": 264, "y": 95}, {"x": 259, "y": 101}, {"x": 255,
"y": 106}, {"x": 251, "y": 110}, {"x": 248, "y": 118}, {"x":
245, "y": 125}, {"x": 245, "y": 132}, {"x": 243, "y": 153},
{"x": 256, "y": 170}, {"x": 261, "y": 175}, {"x": 267, "y":
180}, {"x": 281, "y": 186}, {"x": 288, "y": 187}, {"x": 296,
"y": 187}, {"x": 304, "y": 187}, {"x": 306, "y": 187}, {"x":
307, "y": 188}, {"x": 321, "y": 188}, {"x": 333, "y": 186},
{"x": 340, "y": 180}, {"x": 347, "y": 175}, {"x": 354, "y":
169}, {"x": 359, "y": 164}, {"x": 363, "y": 155}, {"x": 365,
"y": 148}, {"x": 367, "y": 139}, {"x": 367, "y": 134}, {"x":
368, "y": 126}, {"x": 363, "y": 117}, {"x": 359, "y": 115},
{"x": 355, "y": 109}, {"x": 350, "y": 104}, {"x": 347, "y":
99}, {"x": 346, "y": 97}, {"x": 341, "y": 93}, {"x": 338,
"y": 92}, {"x": 332, "y": 91}, {"x": 325, "y": 89}, {"x":
318, "y": 86}, {"x": 308, "y": 85}, {"x": 306, "y": 85}],
"annotation": {}, "regionType": "freehand"}]
</svg></mark></case>
```

TIRADS-4b 45.xml 13

Segmentação

Resultado final

Aumento de dados e pré-processamento

Modelos pré-treinados e arquiteturas

ImageNet

- RadImageNet
 - DenseNet-121, InceptionResNetV2, InceptionV3 e ResNet50

Arquiteturas

- DenseNet-121
 - 121 camadas
 - o 7381 conexões

Fonte: Huang et al.

Arquiteturas

- InceptionResNetV2
 - 164 camadas

Fonte: Adaptado de Szegedy et al.

Materiais e métodos Métricas de avaliação

De todas as classificações, quantos % o modelo classificou corretamente

Métricas de avaliação

De todas classificações positivas, que o modelo classificou de uma classe, quantas estão corretas

Métricas de avaliação

De todas classificações de uma classe, quantas estão corretas

Métricas de avaliação

$$F1$$
-Score = 2 × $\frac{\text{Precisão} \times Recall}{\text{Precisão} + Recall}$

Média harmônica entre precisão e recall

 Validação cruzada estratificada de 10 dobras para os pesos ImageNet e RadImageNet

- Parâmetros:
 - Treinamento realizado por 50 épocas
 - Todas as camadas da rede descongeladas
 - Taxa de aprendizado de 0,001

Validação cruzada

	ImageNet				RadImageNet			
	A.	Pre.	Rec.	F1	A.	Pre.	Rec.	F1
Média	56%	56%	56%	54%	59%	60%	59%	57%
DP	5%	6%	6%	6%	7%	7%	7%	8%

DenseNet-121

InceptionResNetV2

	A.	Pre.	Rec.	F 1	A.	Pre.	Rec.	F1
Média	55%	55%	54%	54%	57%	57%	56%	54%
DP	8%	8%	8%	8%	5%	5%	5%	6%

Teste t pareado

$$\mathbf{t} = \frac{\bar{x}_d - \mu_0}{S_d / \sqrt{n}}$$

Considerando:

- x̄_d: média das diferenças de cada par
- μ₀: diferença esperada entre os dois grupos (zero)
- Sd: desvio padrão das diferenças
- n: número de pares

Hipóteses tomadas para cada métrica:

 Hipótese nula = Utilização dos pesos RadImageNet não impacta nos resultados, ou seja, as médias são iguais.

 Hipótese alternativa = Utilização dos pesos RadImageNet melhora os resultados, ou seja, média RadImageNet maior que a média ImageNet.

• Teste t pareado

	DenseNet-121				InceptionResNetV2			
	A.	Pre.	Rec.	F 1	A.	Pre.	Rec.	F1
t	2,15	1,75	2,26	1,95	0,89	0,88	0,99	0,34
p	0,03	0,057	0,025	0,041	0,2	0,2	0,17	0,37

Curvas médias de acurácia por época

Curvas médias de acurácia por época

Considerações Finais

 Utilização dos pesos médicos apresentaram melhoras estatisticamente significantes para a arquitetura DenseNet-121

Pode trazer mais rapidez no treinamento

Conclusões

Trabalhos Futuros

Testes para arquiteturas restantes (ResNet50 e InceptionV3)

Aumentar número de épocas

 Avaliar outras técnicas de pré-processamento e aumento de dados como a apresentada por Chi et al Obrigada!