1 Probability

1.1 Probability Space

- Sample space Ω is the collection of all possible outcomes.
- An event is a subset of Ω .
- A σ -field, denoted by \mathcal{F} , is a collection of events such that: (i) $\emptyset \in \mathcal{F}$; (ii) if an event $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$; (iii) if $\{A_i \in \mathcal{F} : i \in \mathbb{N}\}$, then $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$.
- (Ω, \mathcal{F}) is called a measure space.
- A function $\mu : \mathcal{F} \mapsto [0, \infty]$ is called a *measure* if it satisfies (i) $\mu(A) \geq 0$ for all $\mu \in \mathcal{F}$; (ii) if $A_i \in \mathcal{F}$, $i \in \mathbb{N}$, are mutually disjoint, then $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i)$
- If $\mu(\Omega) = 1$, we call μ a probability measure. A probability measure is often denoted as P.
- (Ω, \mathcal{F}, P) is called a *probability space*.

1.2 Random Variable

- A function $X : \Omega \to \mathbb{R}$ is $(\Omega, \mathcal{F}) \setminus (\mathbb{R}, \mathcal{R})$ measurable if $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$ for any $B \in \mathcal{R}$, where \mathcal{R} is the Borel σ -field on the real line. Random variable is an alternative name for a measurable function.
- Discrete random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is finite or countable.
- Continuous random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is uncountable.
- $P_X : \mathcal{R} \mapsto [0,1]$ defined as $P_X(B) = P(X^{-1}(B))$ for any $B \in \mathcal{R}$ is a probability measure. We call P_X the probability measure induced by the measurable function X.

1.3 Distribution Function

• (Cumulative) distribution function

$$F(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

• Properties of CDF: $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, non-decreasing, and right-continuous

$$\lim_{y \to x^{+}} F(y) = F(x).$$

• Probability density function (PDF): if there exists a function f such that for all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy,$$

then we call f the PDF of the distribution of X. PDF is the Radon-Nikodym derivative of the probability measure P_X with respect to the Lebesgue measure (F((a,b]) = b - a) on the real line.

• Properties: $f(x) \ge 0$. $F(b) - F(a) = \int_a^b f(x) dx$

1.4 Examples

- binary, Poisson, uniform, normal, χ^2 , t, F
- parametric distribution vs. nonparametric distribution
- Implementation in R: d for density, p for probability, q for quantile, and r for random variable. For instance, dnorm, pnorm, qnorm, and rnorm. Execute online http://www.tutorialspoint.com/execute_r_online.php.

2 Expected Value

- Expected value, or expectation, is an average of a random variable. Expectation is nothing but an integral. We write E[X], instead of $\int X dP$, just for a concise notation when the underlying probability measure is clear.
- Elementary calculation: $E[X] = \sum_{x} x P(X = x)$ or $E[X] = \int x f(x) dx$.
- $P\left(X\in A\right)=E\left[1\left\{X\in A\right\}\right]$, where $1\left\{\cdot\right\}$ is the indicator function, and $\left\{X\in A\right\}=\left\{\omega\in\Omega:X\left(\omega\right)\in A\right\}$.
- $E[X^r]$ is call the r-moment of X. Mean $\mu = E[X]$, variance $var[X] = E[(X \mu)^2]$, skewness $E[(X \mu)^3]$ and kurtosis $E[(X \mu)^4]$.
- Skewness coefficient $E\left[\left(X-\mu\right)^3\right]/\sigma^3$, degree of excess $E\left[\left(X-\mu\right)^4\right]/\sigma^4-3$.
- Jensen's inequality. If $\varphi\left(\cdot\right)$ is a convex function, then $\varphi\left(E\left[x\right]\right)\leq E\left[\varphi\left(x\right)\right]$.
- Chebyshev inequality: $P\left[|X| > \epsilon\right] \le E\left[X^2\right]/\epsilon^2$.

3 Multivariate Random Variable

- Bivariate random variable: $X: \Omega \mapsto \mathbb{R}^2$.
- Multivariate random variable $X: \Omega \mapsto \mathbb{R}^d$.
- Joint CDF: $F(x_1, ..., x_d) = P(X_1 \le x_1, ..., X_d \le x_d)$. Joint PDF is defined similarly.

3.1 Law of Iterated Expectations

- Given a probability space (Ω, \mathcal{F}, P) , a sub σ -algebra $\mathcal{G} \subset \mathcal{F}$ and a \mathcal{F} -measurable function X with $E|X| < \infty$, the conditional expectation $E[X|\mathcal{G}]$ is defined as a \mathcal{G} -measurable function such that $\int_A X dP = \int_A E[X|\mathcal{G}] dP$ for all $A \in \mathcal{G}$.
- Law of iterated expectation

$$E[E[Y|X]] = E[Y]$$

is a trivial fact from the definition of the conditional expectation by taking $A = \Omega$.

- Properties of conditional expectations
 - 1. $E[E[Y|X_1, X_2]|X_1] = E[Y|X_1]$
 - 2. $E[E[Y|X_1]|X_1, X_2] = E[Y|X_1]$
 - 3. E[h(X)Y|X] = h(X)E[Y|X]

3.2 Elementary Formulation

- Conditional distribution
- conditional probability

$$P\left(A|B\right) = \frac{P\left(A,B\right)}{P\left(B\right)} = \frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)}.$$

- conditional density f(Y|X) = f(X,Y)/f(X)
- marginal density $f(Y) = \int f(X, Y) dX$.
- conditional expectation $E[Y|X] = \int Y f(Y|X) dY$
- proof of law of iterated expectation

4 Independence

X and Y are independent if $P\left[X\in A,Y\in B\right]=P\left(X\in A\right)P\left(Y\in B\right)$ for all A and B.

Application: (Chebyshev law of large numbers) If X_1, X_2, \ldots, X_n are independent, and they have the same mean μ and variance $\sigma^2 < \infty$. Let $Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)$. Then the probability $P(|Z_n| > \epsilon) \to 0$ as $n \to \infty$,