Beta mapper proof

Mohsen Sadatsafavi

2024-01-10

Lemma: the combination of expected value and c-statistic uniquely identifies a beta distirbution

Proof

Let μ and c be, respectively, the expected value and the c-statistic of a random variable (RV) $Beta(\alpha, \beta)$ distribution, with $\mu = \mathbf{E}\pi = \frac{\alpha}{\alpha + \beta}$ and $c = P(\pi_1 > \pi_0 | Y_1 > Y_0)$ where π_0, π_1 are iid RVs all with $Beta(\alpha, \beta)$ distribution, and Y_0, Y_1 are Bernoulli RVs with oribabilities π_0 and π_1 , respectively. We shall prove a unique α, β solution exists for a given μ and c.

Noting that $m = \frac{\alpha}{\alpha + \beta}$, we remove β as $\beta = \alpha \frac{\mu}{1 - \mu}$.

Next, we apply Bayes' theorem to the definition of c:

$$c = P(Y_1 > Y_0 | \pi_1 > \pi_0) \frac{P(\pi_1 > \pi_0)}{P(Y_1 > Y_0)} = P(Y_1 = 1, Y_0 = 0 | \pi_1 > \pi_0) \frac{0.5}{P(Y_1 = 1, Y_0 = 0)} = \frac{\mathbf{E} \pi_M (1 - \mathbf{E} \pi_m)}{2\mu (1 - \mu)},$$

where π_M and π_m are, respectively, the maximum and minimum of a pair of independent RVs from $Beta(\alpha, \beta)$.

The goal is achieved by showing that $\mathbf{E}\pi_M$ is monotonically decreasing as a function of α . By symmetry, the opposite can be proven for π_m .

 $\mathbf{E}\pi_M = \int_0^1 2x f(x;\alpha) F(x;\alpha) . dx$, with f() and F(), respectively, the PDF and CDF of the $Beta(\alpha, \alpha \frac{\mu}{1-\mu})$. Integrating by parts (with $u' = 2x f(x;\alpha) F(x;\alpha)$ and v = x), we have

$$\mathbf{E}\pi_M = xF^2(x;\alpha)|_0^1 - \int_0^1 F^2(x;\alpha).dx = 1 - \int_0^1 F^2(x;\alpha).dx$$

So the task in front of us can be formulated as showing that $\int_0^1 F^2(x;\alpha).dx$ is monotonic with respect to α .

To proceed, we take advantage of a particular property of the beta distribution: that the integral of its CDF is equal to one minus its expected value:

Proposition:
$$\int_0^1 F(x).dx = xF(x) + \int_0^1 xf(x).dx = [1F(1) - 0F(0)] - \mu = 1 - \mu.$$

Let f_0 and f_1 be PDF of two beta distributions with mean μ but with two different α_0 and α_1 parameters, and $\alpha_1 > \alpha_0$. We note that around x = 0, the CDF F_0 rises faster than F_1 (proof?). Given the proposition, the two CDFs, being smooth and monotonical, must cross. However, they can only cross once, given the identifiability of beta distribution by a pair of quantiles proven by Shih et al (if the two CDFs crosses 2 or more times, any pairs of quantiles defined by crossing points will fail to identify uniquely a beta distribution).

Let z be the unique crossing point of the two CDFs (where $F_0(z) = F_1(z)$) be the value of these CDFs at this point.

$$\int_0^1 (F_0^2(x) - F_1^2(x)) . dx = \int_0^z (F_0^2(x) - F_1^2(x)) . dx + \int_z^1 (F_0^2(x) - F_1^2(x)) . dx = \int_0^z (F_0(x) - F_1(x)) (F_0(x) + F_1(x)) . dx + \int_z^1 (F_0(x) - F_1(x)) (F_0(x) + F_1(x)) . dx + \int_z^1 (F_0(x) - F_1(x)) (F_0(x) + F_1(x)) . dx$$

In the left region $(x \in [0, z])$, $F_0(x) - F_1(x) \ge 0$, and $0 < F_0(x) + F_1(x) \le F_0(z) + F_1(z)$. As such, replacing $F_0(x) + F_1(x)$ by the larger positive quantity $F_0(z) + F_1(z)$ will increase this term. As well, in the right region $(x \in [z, 1])$, $F_0(x) - F_1(x) \le 0$, and $0 < F_0(x) + F_1(x) \le F_0(z) + F_1(z)$. As such, replacing $F_0(x) + F_1(x)$ by the smaller positive quantity $F_0(z) + F_1(z)$ will also increase this term. Therefore we have

 $\int_0^1 (F_0^2(x) - F_1^2(x)).dx \leq \int_0^z (F_0(x) - F_1(x))(F_0(z) + F_1(z)).dx + \int_z^1 (F_0(x) - F_1(x))(F_0(z) + F_1(z)).dx, \text{ and the term on the right hand side is zero because of the proposition. Therefore, } \int_0^1 (F_0^2(x) - F_1^2(x)).dx \leq 0,$ establishing the results.