Name: Atul Kumar Roll No.: RD2110B79

Reg. No: 12102801 Course Code: CAP-446

Instructor: Dr. Geeta Sharma CA: 03

91. Consider the given data set and perform Nacive Bayesian plassification.

Mention each steps and calculation elearly.

(outlook = Seenny, Temperatuse = Cool,

Heimidity = High, Wind = Tsue)

Day	Outlook	Temperature	Humidity	Wind	Play Golf
1	Sunny	Hot	High	False	No
2	Sunny	Hot	ABIH	True	No
3	Overanst	Hot	ABIH	False	Yes
4	Rain	Mild	High	False	Yes
5	Rain	Cool	Normal	False	294
6	Rain	Cool	Mormal	True	No
7	Overcast	Cool	Normal	True	Yes
8	Sunny	Mild	High	Folse	No
9	Sunny	eool	Normal	False	Yes
10	Rain	MILD	Normal	False	Yes
11	Sunny	Mild	Normal	True	Yes
12	Overcast	Mild	High	True	Yes
13	Overast	Hotel	Normal	False	Yes
14	Rain	Mild	HIBA	True	No

Prior probability (Pasgel node)

P(E) = Potal no of fav. outcomes

rotal no or outcomes

Now we have to calculate the eonditional probability based on the given table for all the attributes like Outlook, remperature, tumidity and Wind.

Outlook	У	1
Sunny	2/9	3/5
Overcoist	4/9	0
Roce'n	3/9	2/5

Pemperature	У	*/
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	У	N
High	3/9	4/5
Normal	6/9	1/5

wind	Y	N
Prue	3/9	3/5
False	6/9	2/5

From the given condition in the question we have to find the new instance for yes and no. (Outlook = Seenny, remperatuse = Cool, Heemidity = High, Wind = True) $V_{N/B} = \alpha rg max P(V_i) \Pi_i P(\alpha_i | V_i)$ $V_j \in \{yes, no\}$ = argmax P(Vi) P(Certlook = Seenny/Vi) Vj E syes, no) P(remperature = Cool | Vi) P(Humiclity = High IV) p(wind= True | vi) Put the values in the above formula for yes and no i) FOR YES VMB (Yes)=P(Yes) P(SunnylYes) P(Cool | Yes)
P(HI'GR | Yes) P(Tsue | Yes) = 914×3×3×3×3 = 0.00526

Page:03

ii) For no

VMB (NO) = P(NO) P(Sunny | NO) P(COOL | NO)
P(NO'GR | NO) P(True | NO)

= 0.02057

Now calculate the probability for Yes and No if the probability of yes in greater than player can play golf and if no is greater than players can't play golf.

i) For Yes

= 0.2036

ii) For No

$$V_{N_B}(N_0) = V_{N_B}(N_0)$$

$$V_{N_B}(Y_{es}) + V_{N_D}(N_0)$$

$$= 0.02057$$

$$0.00526+0.02057$$

$$= 0.7963$$

VNB (Yes) < NB (NO)

Playes ean't play golf.

Briefly explain Decision tree and its terminologies by taking an example.

Ans: Decision Pree is a general, predictive modelling tool that has applications spanning a number of different aseas. Decision are constructed by an algorithm approach that identifies ways to oplit a data set based on different conditions. The goal is to Create a model that predicts the value of a target variable by learning simple decision rules interred from the data features ex includes a root node, branches and leaf nodes. Each internal node denotes a test on an attribute, each branch denotes the outcome of a test, and each leaf node holds a class label. They are used in non-linear decision malcing with simple linear-decision pustace. Page: 06 Page: 06

The benefits of flaving a decision tree ase:-

4) It does not requere any domain kn-

olo/edge

u) It its easy to comprehand

- un) The learning and classification steps of a decision tree are pemple and TCISt.
- -> There are two approaches to prune (cut) a tree
 - i) Pre-pruning: The tree is pruned by halting its construction early.
- ii) Post-pruning: This approach removes a oub-tree from a fully constructed
- There are some terminologies of decession tree:
 - i) Instances: Attribute that define the input space.
 - ii) Attribute: A quantity describing an instance
 - iii) Hypotheois Class: Set of all the possi-ble attributes.

Page:07

- iv) Root Mode: The topmost node in the tree is the root node.
- v) Non-leaf Mode: shore node which have branches (children).
- vi) Leaf Node: Those node which have no branches (children).

Eg: Draw a decision tree for the concept Play Badminton

Day	Weather	Temperature	Humidity	Play
1	Sunny	Hot	High	No
2	Cloudy	Hot	HiBR	No
3	Sunny	Mild	Normal	Yes
4	closedy	blim	HIER	No
5	Rainy	Mild	HIBR	Mo
6	Rainy	Cool	Normal	MO
7	Rainy	Mild	High	No
8	Sunny	Hot	High	No
9	Cloudy	Hot	Normal	Yes
10	Rainy	Mild	HIBA	No

Observations of the last ten days.

Decision Tree Root Node: Weather

Fig: A decision tree for the condition of playing Badminton.

Page: 09