Analysis on Flight Delay and Cancellation

GROUP 01: Pranjal Shukla, Eric Tien, Sai Chaithanya Vadakattu, Jinni Yang, Frank Yao

Group Lead: Pranjal Shukla

Ask 1: Search for a dataset

Identify and describe your dataset

For the project, our group would like to look into the Flight delays and cancellations in the United States . More specifically, the dataset presents flight data from all the domestic airlines inthe year 2015. Some of the data includes flight performance(time delays or aheads), flight origins and destinations, flight identifications.

You can download the dataset by unzipping the folder which can be downloded here: (https://www.kaggle.com/datasets/usdot/flight-delays?select=flights.csv).

The dataset's size is 592.41 MB and is last updated on 2015. The dataset contains data fromover 5800k domestic flight trips completed.

Identify datasetsource

The flight delay and cancellation data was collected and published by the DOT's Bureau of Transportation Statistics. The U.S. Department of Transportation's (DOT) Bureau of Transportation Statistics tracks the on-time performance of domestic flights operated by largeair carriers. Summary information on the number of on-time, delayed, canceled, and diverted flights is published in DOT's monthly Air Travel Consumer Report and in this dataset of 2015 flight delays and cancellations.

Why is important and what appeals to you about it

While we are in the middle of the holiday season, finding a flight or airline that won't do you bad can be tricky. What airlines are prone to delays? What airlines have the best overall performance? What airport seems to be the busiest? We hope by analyzing the performance of airlines and flights, we can probably find some insights to help you save time and money.

As we dive deeper into the reasons for causing the delays, we can also find some insights regarding the reasons and provide recommendations for the airport and area management tobetter manage delays.

Another reason for choosing this dataset is because this dataset comes in quite a good shape. There are fewer missing values and we have quite a lot factors to choose from when it comes todata analysis.

Acquire data and perform initial exploration to make sure it is suitable for dimensional modeling and analytical analysis

Yes, this dataset has 40 columns of both numerical and categorical data representing informations regarding flight origins, destinations, time, and location. Those attributes includesairtime, distance, arrival time, cancellation reason, etc. I think with all that information, we can generate a lot of interesting questions for analysis.

Describe the analytical questions you want to answer with thedata. Minimum of 3 major questions are required

Business Question 1:

In order to improve the operating efficiency at major airports, the FAA would like to develop a system of reward and punishment based on the performance of major airline carriers. What aresome measurements that they could use? And based on the result from the busiest route in USA in 2015, which airline performs the best and which airline performs the worst?

Business Question 2:

During what time period, does the air route from Washington D.C. to New York sees the most delays? What are the reason for delays? Advices that we can give to airlines to better improve their service.

Business Question 3:

Is there a relationship between customer's attitude on social media with performance of airlines ? Should people rely on social media platforms to choose airlines or should the airline companies use social media to monitor their brands?

Describe any concerns with the data and changes you expect to overcome

While taking an initial look at the data, we found that there are a lot of missing data in the cancellation reason column, in order to make sure we still have a reasonably large dataset to analyze, we might have to delete this column.

Some other areas that we might have to make efforts on are providing supporting information so that they can be understood by the public. The names of airlines and airports are often timeswritten in its assigned spells or initials, which makes it difficult for us to report.

Limitations in analyzing due to lack of data in the cancellation reasons provided. For example, aflight cancellation might be due to 2 or 3 reasons combined.

Ask 2: Data Wrangling and Dimensional Modeling

Dataset of "flights"

In [1]: !pwd

/home/ubuntu/notebooks

In [2]: !xsv headers flights.csv

- 1 YEAR
- 2 MONTH
- 3 DAY
- 4 DAY OF WEEK
- 5 AIRLINE
- 6 FLIGHT_NUMBER
- 7 TAIL_NUMBER
- 8 ORIGIN_AIRPORT
- 9 DESTINATION_AIRPORT
- 10 SCHEDULED DEPARTURE
- 11 DEPARTURE_TIME
- 12 DEPARTURE_DELAY
- 13 TAXI_OUT
- 14 WHEELS_OFF
- 15 SCHEDULED TIME
- 16 ELAPSED TIME
- 17 AIR_TIME
- 18 DISTANCE
- 19 WHEELS_ON
- 20 TAXI_IN
- 21 SCHEDULED_ARRIVAL
- 22 ARRIVAL_TIME
- 23 ARRIVAL_DELAY
- 24 DIVERTED
- 25 CANCELLED
- 26 CANCELLATION REASON
- 27 AIR_SYSTEM_DELAY
- 28 SECURITY_DELAY
- 29 AIRLINE_DELAY
- 30 LATE_AIRCRAFT_DELAY
- 31 WEATHER_DELAY

There are 31 columns totally in the original dataset.

Here are the Data definition of "flights":

WHEELS_OFF Time - The time point that the aircraft's wheels leave the ground.

WHEELS_ON Time - The time point that the aircraft's wheels touch on the ground.

TAXI_OUT Time - The time duration elapsed between departure from the origin airport gate andwheels off.

TAXI_IN Time - The time duration elapsed between wheels-on and gate arrival at the destinationairport.

AIR TIME - The time duration between wheels off and wheels on time.

Data Relationship

```
arrival_time = wheels_on + taxi_in arrival_delay =
arrival_time - scheduled_arrivaldarture_time =
wheels_off - taxi_outep
departure_delay = departure_time - scheduled_departure
elapsed_time = air_time + taxi_in + taxi_out
air_time = wheels_on - wheels_off
```

Because some columns we will not used in the analysis, so we want to remove 14 columns from the dataset and keep 17 columns, we can just select the columns which we want to reverve and create a new dataset called 'flights2'.

- 1 YEAR
- 2 MONTH
- 3 DAY
- 4 DAY_OF_WEEK
- **5 AIRLINE**
- 6 FLIGHT_NUMBER
- 7 TAIL_NUMBER
- **8 ORIGIN AIRPORT**
- 9 DESTINATION_AIRPORT
- 10 SCHEDULED_DEPARTURE
- 11 DEPARTURE TIME
- 12 DEPARTURE_DELAY
- 21 SCHEDULED ARRIVAL
- 22 ARRIVAL_TIME
- 23 ARRIVAL DELAY
- 24 DIVERTED
- 25 CANCELLED

```
In [3]: !csvcut -c 1,2,3,4,5,6,7,8,9,10,11,12,21,22,23,24,25 flights.csv > flights2.csv
```

check the number of lines in the flights2 file.

```
In [4]: !wc -1 flights2.csv
```

5819080 flights2.csv

use csvcut -n to find the heading (attribute labels) of the flights2 file

In [5]: !csvcut -n flights2.csv

- 1: YEAR
- 2: MONTH
- 3: DAY
- 4: DAY OF WEEK
- 5: AIRLINE
- 6: FLIGHT NUMBER
- 7: TAIL NUMBER
- 8: ORIGIN AIRPORT
- 9: DESTINATION AIRPORT
- 10: SCHEDULED DEPARTURE
- 11: DEPARTURE TIME
- 12: DEPARTURE DELAY
- 13: SCHEDULED ARRIVAL
- 14: ARRIVAL TIME
- 15: ARRIVAL DELAY
- 16: DIVERTED
- 17: CANCELLED

Now there are 17 columns totally in the new dataset, flights2.

Check the first few rows of the dataset in the 17 fields.

In [6]: !head -n 10 flights2.csv

YEAR, MONTH, DAY, DAY_OF_WEEK, AIRLINE, FLIGHT_NUMBER, TAIL_NUMBER, ORIGIN_AIRPORT, DESTINATI ON_AIRPORT, SCHEDULED_DEPARTURE, DEPARTURE_TIME, DEPARTURE_DELAY, SCHEDULED_ARRIVAL, ARRIVAL TIME, ARRIVAL DELAY, DIVERTED, CANCELLED

2015,1,1,4,AS,98,N407AS,ANC,SEA,0005,2354,-11,0430,0408,-22,0,0

2015,1,1,4,AA,2336,N3KUAA,LAX,PBI,0010,0002,-8,0750,0741,-9,0,0

2015,1,1,4,US,840,N171US,SFO,CLT,0020,0018,-2,0806,0811,5,0,0

2015,1,1,4,AA,258,N3HYAA,LAX,MIA,0020,0015,-5,0805,0756,-9,0,0

2015,1,1,4,AS,135,N527AS,SEA,ANC,0025,0024,-1,0320,0259,-21,0,0

2015,1,1,4,DL,806,N3730B,SFO,MSP,0025,0020,-5,0602,0610,8,0,0

2015,1,1,4,NK,612,N635NK,LAS,MSP,0025,0019,-6,0526,0509,-17,0,0

2015,1,1,4,US,2013,N584UW,LAX,CLT,0030,0044,14,0803,0753,-10,0,0 2015,1,1,4,AA,1112,N3LAAA,SFO,DFW,0030,0019,-11,0545,0532,-13,0,0

Then we can use xsv stat to summarize the statistical information of each column.

!xsv **select** 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 flights2.csv | xsv stats | xsv t

field	type stddev	sum	min	max	min_length	max_length	mea
n						_	
YEAR	Integer	11725444185	2015	2015	4	4	201
5	0						
MONTH	Integer	37964167	1	12	1	2	6.5
240851688037305	3.4051365	354718484					
DAY	Integer	91386273	1	31	1	2	15.
704593974407977	8.7834243	15098282					
DAY_OF_WEEK	Integer	22851181	1	7	1	1	3.9
269411877722624	1.9888448	425430394					
AIRLINE	Unicode		AA	WN	2	2	
FLIGHT_NUMBER	Integer	12645398342	1	9855	1	4	217
3.092742339536	1757.0638	478123092					
TAIL_NUMBER	Unicode		7819A	N9EAMQ	0	6	
ORIGIN_AIRPORT	Unicode		10135	YUM	3	5	
DESTINATION_AIRPORT	Unicode		10135	YUM	3	5	
SCHEDULED_DEPARTURE	Integer	7737061812	1	2359	4	4	132
9.6024700815033	483.75177	930708827					
DEPARTURE_TIME	Integer	7654628244	1	2400	0	4	133
5.2044390594685	496.42321	68236126					
DEPARTURE_DELAY	Integer	53718424	-82	1988	0	4	9.3
70158275199213	37.080939	26275547					
SCHEDULED_ARRIVAL	Integer	8692588209	1	2400	4	4	149
3.8082485218195	507.16465	201594326					
ARRIVAL_TIME	Integer	8455224236	1	2400	0	4	147
6.4911879127544	526.31969	12579521					
ARRIVAL_DELAY	Integer	25181961	-87	1971	0	4	4.4
07057357987326	39.271293	65748114					
DIVERTED	Integer	15187	0	1	1	1	0.0
026098631759425435	0.0510201	1162419795					
CANCELLED	Integer	89884	0	1	1	1	0.0
15446430612128189	0.1233200	6484540309					

we use csvstat to examine first 10% of the records.

In [8]: !head -n 505051 flights2.csv | csvstat

1. "YEAR"

Type of data: Number
Contains null values: False
Unique values: 1
Smallest value: 2015
Largest value: 2015
Sum: 1017675750

Mean: 101/6/5/

Median: 2015 StDev: 0

Most common values: 2015 (505050x)

2. "MONTH"

Type of data: Number Contains null values: False Unique values: 2 Smallest value: 1 Largest value: 2 Sum: 540132 Mean: 1.069 Median: 1 StDev: 0.254 Most common values: 1 (469968x)

2 (35082x)

3. "DAY"

Type of data: Number
Contains null values: False
Unique values: 31
Smallest value: 1
Largest value: 31
Sum: 7512862

Mean: 14.875 Median: 15 StDev: 9.35

Most common values: 2 (32716x)

1 (27356x) 3 (21135x) 5 (16548x) 4 (16352x)

4. "DAY_OF_WEEK"

Type of data: Number
Contains null values: False
Unique values: 7
Smallest value: 1
Largest value: 7

Sum:2013103Mean:3.986Median:4StDev:2.012Most common values:5 (80955x)

1 (80142x)

4 (78022x) 7 (73087x) 2 (66538x)

5. "AIRLINE"

Type of data: Text
Contains null values: False
Unique values: 14

Longest value: 2 characters
Most common values: WN (107403x)

DL (69260x) EV (53465x) OO (51674x) AA (47404x)

6. "FLIGHT_NUMBER"

Type of data: Number
Contains null values: False
Unique values: 6345
Smallest value: 1
Largest value: 9793

Sum:1142680330Mean:2262.509Median:1732StDev:1803.429Most common values:469 (401x)

345 (388x) 711 (357x) 61 (354x) 745 (342x)

7. "TAIL_NUMBER"

Type of data: Text

Contains null values: True (excluded from calculations)

Unique values: 4414

Longest value: 6 characters
Most common values: None (3802x)

N475HA (409x) N484HA (394x) N476HA (392x) N491HA (391x)

8. "ORIGIN_AIRPORT"

Type of data: Text
Contains null values: False
Unique values: 313

Longest value: 3 characters
Most common values: ATL (31629x)

ORD (25202x)
DFW (24866x)
LAX (18642x)
DEN (18310x)

9. "DESTINATION AIRPORT"

Type of data: Text
Contains null values: False
Unique values: 313

Longest value: 3 characters
Most common values: ATL (31730x)

ORD (25313x) DFW (24971x) LAX (18622x) DEN (18328x)

10. "SCHEDULED DEPARTURE"

Type of data: Number Contains null values: False Unique values: 1177 Smallest value: Largest value: 2359 Sum: 665800988 Mean: 1318.287 Median: 1315 StDev: 468.503 Most common values: 600 (10478x) 700 (7388x) 800 (5478x)

11. "DEPARTURE_TIME"

Type of data: Number

Contains null values: True (excluded from calculations)

900 (3843x) 1000 (3540x)

Unique values: 1407
Smallest value: 1
Largest value: 2400
Sum: 648746602
Mean: 1328.318
Median: 1324
StDev: 480.026

Most common values: None (16653x)

555 (1328x) 556 (1290x) 557 (1167x) 558 (1095x)

12. "DEPARTURE_DELAY"

Type of data: Number

Contains null values: True (excluded from calculations)

Unique values: 684
Smallest value: -48
Largest value: 1988
Sum: 4937138
Mean: 10.109
Median: -1
StDev: 37.685

Most common values: -5 (36470x)

-4 (36097x) -3 (35851x) -2 (34034x) -1 (30115x)

13. "SCHEDULED_ARRIVAL"

Type of data: Number
Contains null values: False
Unique values: 1303
Smallest value: 1
Largest value: 2359

Sum: 758744526

Mean: 1502.316

Median: 1520

StDev: 483.286

Most common values: 1030 (2011x)

2100 (1866x) 1905 (1727x) 1535 (1716x) 1210 (1703x)

14. "ARRIVAL_TIME"

Type of data: Number

Contains null values: True (excluded from calculations)

Unique values: 1439
Smallest value: 1
Largest value: 2400
Sum: 726355084
Mean: 1489.492
Median: 1518
StDev: 502.565

Most common values: None (17397x)

1652 (606x) 1645 (602x) 1640 (598x) 1633 (591x)

15. "ARRIVAL_DELAY"

Type of data: Number

Contains null values: True (excluded from calculations)

Unique values: 710
Smallest value: -82
Largest value: 1971
Sum: 3027783
Mean: 6.219
Median: -4
StDev: 40.461

Most common values: None (18195x)

-9 (14053x) -8 (14045x) -10 (13945x) -7 (13939x)

2022/12/9 23:		:49	Group1_Final project
			MQ,American Eagle Airlines Inc. VX,Virgin America
			IATA_CODE can be considered as the primary key of the dataset, we use csvstat to check thedata.

In [12]: !head -n 15 airlines.csv | csvstat

1. "IATA CODE"

Type of data: Text
Contains null values: False
Unique values: 14

Longest value: 2 characters
Most common values: UA (1x)

ost common values: UA (1x)
AA (1x)
US (1x)

F9 (1x) B6 (1x)

2. "AIRLINE"

Type of data: Text
Contains null values: False
Unique values: 14

Longest value: 28 characters

Most common values: United Air Lines Inc. (1x)

American Airlines Inc. (1x)

US Airways Inc. (1x)

Frontier Airlines Inc. (1x)

JetBlue Airways (1x)

Row count: 14

Reference table of Airlines:

IATA_code: The International Air Transport Association's (IATA) Location Identifier is a unique 3-letter code (also commonly known as IATA code) used in aviation and also in logistics to identify an airport.

AIRPORT: Full name of the airport for that IATA code, ex: Waterloo Regional AirportCITY:

name of the city where the airport is located

STATE: name of the state where the airport is located COUNTRY: country where the airport is located LATITUDE: the latitude of the airport location LONGITUDE: the longitude of airport location

Dataset of "airports"

In [13]: !xsv headers airports.csv

- 1 IATA_CODE
- 2 AIRPORT
- 3 CITY
- 4 STATE
- 5 COUNTRY
- 6 LATITUDE
- 7 LONGITUDE

In [14]: !wc -l airports.csv

323 airports.csv

In [15]: !head -n 10 airports.csv

IATA_CODE,AIRPORT,CITY,STATE,COUNTRY,LATITUDE,LONGITUDE

ABE,Lehigh Valley International Airport,Allentown,PA,USA,40.65236,-75.44040

ABI,Abilene Regional Airport,Abilene,TX,USA,32.41132,-99.68190

ABQ,Albuquerque International Sunport,Albuquerque,NM,USA,35.04022,-106.60919

ABR,Aberdeen Regional Airport,Aberdeen,SD,USA,45.44906,-98.42183

ABY,Southwest Georgia Regional Airport,Albany,GA,USA,31.53552,-84.19447

ACK,Nantucket Memorial Airport,Nantucket,MA,USA,41.25305,-70.06018

ACT,Waco Regional Airport,Waco,TX,USA,31.61129,-97.23052

ACV,Arcata Airport,Arcata/Eureka,CA,USA,40.97812,-124.10862

ACY,Atlantic City International Airport,Atlantic City,NJ,USA,39.45758,-74.57717

IATA_CODE can be considered as the primary key of the dataset, we use csvstat to check thedata.

In [16]: !head -n 323 airports.csv | csvstat

1. "IATA CODE"

Type of data: Text
Contains null values: False
Unique values: 322

Longest value: 3 characters
Most common values: ABE (1x)

ABI (1x)
ABQ (1x)
ABR (1x)
ABY (1x)

2. "AIRPORT"

Type of data: Text
Contains null values: False
Unique values: 322

Longest value: 77 characters

Most common values: Lehigh Valley International Airport (1x)

Abilene Regional Airport (1x)

Albuquerque International Sunport (1x)

Aberdeen Regional Airport (1x)

Southwest Georgia Regional Airport (1x)

3. "CITY"

Type of data: Text
Contains null values: False
Unique values: 308

Longest value: 30 characters Most common values: Albany (2x)

Columbia (2x) Charleston (2x) San Diego (2x) Columbus (2x)

4. "STATE"

Type of data: Text
Contains null values: False
Unique values: 54

Longest value: 2 characters
Most common values: TX (24x)

CA (22x) AK (19x) FL (17x) MI (15x)

5. "COUNTRY"

Type of data: Text
Contains null values: False
Unique values: 1

Longest value: 3 characters
Most common values: USA (322x)

6. "LATITUDE"

Type of data: Number

Contains null values: True (excluded from calculations)

Unique values: 320

Smallest value: 13.483

Largest value: 71.285

Sum: 12435.017

Mean: 38.981

Median: 39.298

StDev: 8.617

Most common values: None (3x)

40.652 (1x) 32.411 (1x) 35.04 (1x) 45.449 (1x)

7. "LONGITUDE"

Type of data: Number

Contains null values: True (excluded from calculations)

Unique values: 320
Smallest value: -176.646
Largest value: -64.799
Sum: -31382.89
Mean: -98.379
Median: -93.403
StDev: 21.523

Most common values: None (3x)
-75.44 (1x)
-99.682 (1x)
-106.609 (1x)
-98.422 (1x)

Row count: 322

IATA_code: IATA airline designators, sometimes called IATA reservation codes, are two-charactercodes assigned by the International Air Transport Association (IATA) to the world's airlines.

Airline: name of the airline for that IATA_code.

Setup database

```
In [17]: ! pip freeze | grep -E 'ipython-sql|psycopg2'
```

ipython-sql==0.4.1
psycopg2==2.9.5
psycopg2-binary==2.9.5

First, use PostgreSQL's dropdb command to drop the database named group1, if it exists.

```
In [18]: ! dropdb -U student group1
```

The output said that database Project does not exist, so we can just create it. Now use PostgreSQL's createdb command to create the database named group1.

```
In [19]: ! createdb -U student group1
```

createdb: error: database creation failed: ERROR: database "group1" already exists

```
In [20]: %load_ext sql
```

Use sql magic to connect to the database we just created

```
In [21]: %sql postgresql://student@/group1
In [22]: !psql --version
```

psql (PostgreSQL) 12.12 (Ubuntu 12.12-0ubuntu0.20.04.1)

Create tables

Use the CREATE TABLE command. It is a good practice to DROP the table first then create it in case the table exists. Creating table F_flights as the fact table.

(1) Create F flights Table

```
In [23]: %%sql
         DROP TABLE IF EXISTS F flights;
         CREATE TABLE F_flights (
           YEAR INTEGER NOT NULL,
           MONTH INTEGER NOT NULL,
           DAY INTEGER NOT NULL,
           DAY OF WEEK INTEGER NOT NULL,
           AIRLINE CHAR(2) NOT NULL,
           FLIGHT_NUMBER INTEGER NOT NULL,
           TAIL NUMBER CHAR(10),
           ORIGIN AIRPORT CHAR(20) NOT NULL,
           DESTINATION_AIRPORT CHAR(20) NOT NULL,
           SCHEDULED DEPARTURE INTEGER NOT NULL,
           DEPARTURE_TIME INTEGER,
           DEPARTURE_DELAY INTEGER,
           SCHEDULED ARRIVAL INTEGER,
           ARRIVAL TIME INTEGER,
           ARRIVAL_DELAY INTEGER,
           DIVERTED INTEGER,
           CANCELLED INTEGER
         );
          * postgresql://student@/group1
         Done.
         Done.
Out[23]:
In [24]:
         %%sal
         select * from F_flights
```

```
2022/12/9 23:49
                                                          Group1 Final project
                 * postgresql://student@/group1
                0 rows affected.
     Out[24]: year month day day_of_week airline flight_number tail_number origin_airport destination_airpor
     In [25]: %%sql
                COPY F flights FROM '/home/ubuntu/notebooks/flights2.csv'
                HEADER;
                 * postgresql://student@/group1
                5819079 rows affected.
     Out[25]:
                ٢٦
               %%sql
     In [26]:
                select COUNT(*) from F_flights;
                 * postgresql://student@/group1
                1 rows affected.
                   count
     Out[26]:
                 5819079
```

```
In [27]:
         ! wc -l flights2.csv
```

5819080 flights2.csv

The difference of 1 row is the head of the original files. Therefore, we have uploaded all rows of the tables, which is same for following tables.

There are approximately 2% of null data in DEPARTURE TIME, DEPARTURE DELAY, ARRIVAL TIME, ARRIVAL_DELAY columns. We then choose to use the value 0 to replace the nullvalue. The reason for that is we think flight cancellations and diverts are usually non- controllable factors for airlines, besides, it doesn't carry a lot of percentage in the whole dataset, so we are supposing the condition for all those flights that they arrived on time to make it fair for all airline companies.

```
In [28]: %%sql
         UPDATE F_flights
         SET DEPARTURE_TIME=0
         WHERE DEPARTURE TIME IS NULL;
          * postgresql://student@/group1
         86153 rows affected.
Out[28]: []
In [29]: %%sql
         UPDATE F_flights
         SET DEPARTURE DELAY=0
         WHERE DEPARTURE_DELAY IS NULL;
          * postgresql://student@/group1
         86153 rows affected.
```

```
Out[29]: []
In [30]: %%sql
         UPDATE F_flights
         SET ARRIVAL_TIME=0
         WHERE ARRIVAL_TIME IS NULL;
          * postgresql://student@/group1
         92513 rows affected.
Out[30]: []
In [31]: %%sql
         UPDATE F flights
         SET ARRIVAL DELAY=0
         WHERE ARRIVAL_DELAY IS NULL;
          * postgresql://student@/group1
         105071 rows affected.
Out[31]: []
         (2) Create Airports Table
In [32]: %%sql
         DROP TABLE IF EXISTS Airports;
         CREATE TABLE Airports (
          IATA_CODE CHAR(3) ,
          AIRPORT varchar(100),
          CITY CHAR(30),
          STATE CHAR(3),
          COUNTRY CHAR(3),
          LATITUDE FLOAT ,
          LONGITUDE FLOAT
          * postgresql://student@/group1
         Done.
         Done.
Out[32]: []
In [33]: %%sql
         COPY Airports FROM '/home/ubuntu/notebooks/airports.csv'
         CSV
         HEADER;
          * postgresql://student@/group1
         322 rows affected.
Out[33]: []
In [34]: %%sql
         select COUNT(*) from Airports;
          * postgresql://student@/group1
         1 rows affected.
```

Out[34]:

count

```
322
In [35]:
         ! wc -l airports.csv
         323 airports.csv
         (3) Create Airlines Table
In [36]: %%sql
         DROP TABLE IF EXISTS Airlines;
         CREATE TABLE Airlines (
           IATA_CODE CHAR(3) ,
          AIRLINE varchar(100)
         );
           * postgresql://student@/group1
         Done.
Out[36]: []
In [37]: %%sql
         COPY Airlines FROM '/home/ubuntu/notebooks/airlines.csv'
         CSV
         HEADER;
           * postgresql://student@/group1
         14 rows affected.
Out[37]: []
In [38]:
         %%sql
         select COUNT(*) from Airlines;
           * postgresql://student@/group1
         1 rows affected.
          count
Out[38]:
            14
         ! wc -l airlines.csv
In [39]:
         15 airlines.csv
         Dimensional Modeling
         For our dimension table we have 8 facts, we focus more on departure delay and arrival delay.
```

Airlines, Flights, Date and airports are the four dimension we created.

```
In [40]: from IPython import display
         display. Image("dim table.png")
```



```
In [42]: %%sql
INSERT INTO Date_Dim(year,month,day,day_of_week,date)
SELECT distinct year,month,day,day_of_week,
    cast(year::char(4)||'-'||month::char(2)||'-'||day::char(2) as date)::date
```

```
FROM F_flights
          ORDER BY date;
           * postgresql://student@/group1
          365 rows affected.
Out[42]:
          []
In [43]:
          %%sql
          select * from Date_Dim
          limit 10
           * postgresql://student@/group1
          10 rows affected.
          date_key year
                                       day_of_week
                                                         date
Out[43]:
                          month
                                 day
                 1 2015
                              1
                                   1
                                                    2015-01-01
                 2 2015
                                   2
                                                    2015-01-02
                              1
                                   3
                                                   2015-01-03
                 3 2015
                 4 2015
                                   4
                                                    2015-01-04
                                   5
                 5 2015
                              1
                                                    2015-01-05
                 6 2015
                              1
                                   6
                                                   2015-01-06
                                                   2015-01-07
                 7 2015
                              1
                                   7
                              1
                 8 2015
                                   8
                                                   2015-01-08
                 9 2015
                              1
                                   9
                                                   2015-01-09
                10 2015
                              1
                                  10
                                                   2015-01-10
          Next, we add FK Date key to the F flights table.
In [44]: %%sql
          ALTER TABLE F_flights
          ADD COLUMN Date_Key INTEGER NULL ,
          ADD CONSTRAINT fk_Date
               FOREIGN KEY (Date_Key)
              REFERENCES Date_Dim(Date_Key);
           * postgresql://student@/group1
          Done.
Out[44]: []
          Populate the Date_key by linking the attributes from Date_Dim table and F_flights table
In [45]: %%sql
          UPDATE F_flights AS f
          SET Date_Key = t.Date_Key
          FROM Date Dim AS t
          WHERE f.year = t.year
          and f.month = t.month
          and f.day = t.day
          and f.day_of_week=t.day_of_week;
```

* postgresql://student@/group1
5819079 rows affected.

Out[45]: []

2015

2015

1

1

We can check the F_flights table we just modified by examining the first 10 rows.

```
In [46]:
           %%sql
           select * from F_flights
           limit 10
            * postgresql://student@/group1
           10 rows affected.
                                day_of_week
Out[46]:
           year
                  month day
                                              airline
                                                       flight_number
                                                                      tail_number
                                                                                    origin_airport
                                                                                                    destination_airpor
           2015
                       1
                             1
                                           4
                                                  AS
                                                                 98
                                                                          N407AS
                                                                                            ANC
                                                                                                                 SE
           2015
                                                                                             LAX
                             1
                                           4
                                                 AA
                                                               2336
                                                                          N3KUAA
                       1
           2015
                                           4
                                                                102
                                                                          N492HA
                                                                                            HNL
                                                                                                                 ΙT
                       1
                             1
                                                 HA
           2015
                       1
                                           4
                                                 00
                                                               5467
                                                                          N701BR
                                                                                            ONT
                                                                                                                 SF
           2015
                                           4
                                                 HA
                                                                108
                                                                          N476HA
                                                                                            HNL
                                                                                                                KO
                       1
                             1
           2015
                                           4
                                                 UA
                                                               1119
                                                                          N69810
                                                                                            GEG
                                                                                                                DE
           2015
                       1
                             1
                                           4
                                                 UΑ
                                                               1237
                                                                          N65832
                                                                                            SEA
                                                                                                                 IΑ
           2015
                                           4
                                                 UΑ
                                                               1540
                                                                          N78509
                                                                                            DCA
                                                                                                                 IΑ
```

The Date_key attribute has been successfully added to the F_flights table from the output.

AA

UA

1433

247

N4YNAA

N462UA

SAT

PHX

DF

IΑ

Create the Airports_Dim table as a dimension table

4

Populate the Airports_Dim table with data from the F_flights table

In [48]: **%%sql**

INSERT INTO Airports_Dim (IATA_CODE,AIRPORT,CITY,STATE,COUNTRY,LATITUDE,LONGITUDE) SELECT DISTINCT IATA CODE, AIRPORT, CITY, STATE, COUNTRY, LATITUDE, LONGITUDE FROM Airports;

* postgresql://student@/group1 322 rows affected.

Out[48]: []

Check the Airports Dim table we just created by examining the first 10 rows

In [49]: %%sql

SELECT * FROM Airports_Dim

Limit 10

* postgresql://student@/group1

10 rows affected.

Out[49]:

airports_key iat	a_code	airport	city	state	country	latitude	longitude
1	ORH	Worcester Regional Airport	Worcester	MA	USA	42.26734	-71.87571
2	SAN	San Diego International Airport (Lindbergh Field)	San Diego	CA	USA	32.73356	-117.18966
3	RST	Rochester International Airport	Rochester	MN	USA	43.90883	-92.49799
4	BUR	Bob Hope Airport (Hollywood Burbank Airport)	Burbank	CA	USA	34.20062	-118.3585
5	FAY	Fayetteville Regional Airport	Fayetteville	NC	USA	34.99147	-78.88
6	AGS	Augusta Regional Airport (Bush Field)	Augusta	GA	USA	33.36996	-81.9645
7	ICT	Wichita Dwight D. Eisenhower National Airport (Wichita Mid- Continent Airport)	Wichita	KS	USA	37.64996	-97.43305
8	DRO	Durango-La Plata County Airport	Durango	СО	USA	37.15152	-107.75377
9	SUX	Sioux Gateway Airport	Sioux City	IA	USA	42.4026	-96.38437
10	RIC	Richmond International Airport	Richmond	VA	USA	37.50517	-77.31967

Next, we add FK origin_airport_key and destination_airport_key to the F_flights table.

In [50]: **%%sql**

ALTER TABLE f flights

ADD COLUMN origin airport key INTEGER NULL,

ADD COLUMN destination_airport_key INTEGER NULL,

ADD FOREIGN KEY (origin_airport_key) REFERENCES Airports_DIM (Airports_Key) ON DELETE

ADD FOREIGN KEY (destination airport key) REFERENCES Airports DIM (Airports Key) ON DE

```
;
           * postgresql://student@/group1
          Done.
Out[50]:
          []
          Populate the origin_airport_key and destination_airport_key
          %%sq1
In [51]:
          UPDATE F flights AS f
          SET origin_airport_key = t.Airports_Key
          FROM Airports Dim AS t
          WHERE f.origin_airport = t.IATA_CODE;
           * postgresql://student@/group1
          5332914 rows affected.
Out[51]: []
In [52]: %%sql
          UPDATE F_flights AS f
          SET destination_airport_key = t.Airports_Key
          FROM Airports_Dim AS t
          WHERE f.destination_airport = t.IATA_CODE;
           * postgresql://student@/group1
          5332914 rows affected.
Out[52]: []
          %%sql
In [53]:
          select * from F_flights
          limit 10
           * postgresql://student@/group1
          10 rows affected.
Out[53]: year
                                                                                            destination_airpo
                 month
                        day
                              day_of_week
                                           airline
                                                   flight_number
                                                                 tail_number
                                                                              origin_airport
           2015
                          1
                                       4
                                              AS
                                                            98
                                                                    N407AS
                                                                                     ANC
                     1
                                                                                                        SE
           2015
                                                          2336
                                                                    N3KUAA
                                                                                      LAX
                                                                                                         Р
                     1
                          1
                                       4
                                             AA
           2015
                                       4
                                                           102
                                                                    N492HA
                                                                                     HNL
                                                                                                        ΙT
                     1
                          1
                                             HA
           2015
                          1
                                             00
                                                          5467
                                                                    N701BR
                                                                                     ONT
                                                                                                        SF
           2015
                     1
                          1
                                       4
                                             НА
                                                           108
                                                                    N476HA
                                                                                     HNL
                                                                                                        KO
           2015
                                             UA
                                                          1119
                                                                     N69810
                                                                                     GEG
                                                                                                        DE
           2015
                          1
                                       4
                                             UA
                                                          1237
                                                                     N65832
                                                                                     SEA
                                                                                                        IΑ
           2015
                                       4
                                             UA
                                                          1540
                                                                    N78509
                                                                                     DCA
                                                                                                        IΑ
           2015
                                       4
                                             AA
                                                          1433
                                                                    N4YNAA
                                                                                      SAT
                                                                                                        DF
           2015
                                       4
                                             UA
                                                           247
                                                                    N462UA
                                                                                     PHX
                                                                                                        IΑ
```

The origin_airport_key and destination_airport_keyha have been successfully added to the Exempt_Organization table from the output.

Create the Airlines Dim table as a dimension table

```
In [54]: %%sql
          DROP TABLE IF EXISTS Airlines Dim;
          CREATE TABLE Airlines_Dim (
           Airlines_Key SERIAL PRIMARY KEY,
           IATA CODE CHAR(3),
           AIRLINE varchar(100)
          );
           * postgresql://student@/group1
          Done.
          Done.
Out[54]: []
          Populate the Airlines_Dim with data from table F_Flights
In [55]: %%sql
          INSERT INTO Airlines Dim (IATA CODE,AIRLINE)
          SELECT DISTINCT
          IATA_CODE, AIRLINE
          FROM Airlines;
           * postgresql://student@/group1
          14 rows affected.
Out[55]:
         Г٦
          Next, we add FK Airlines_key to the F_flights table:
In [56]: %%sql
          ALTER TABLE F flights
          ADD COLUMN Airlines Key INTEGER NULL,
          ADD FOREIGN KEY (Airlines_Key)
          REFERENCES Airlines Dim (Airlines Key) ON DELETE SET NULL;
           * postgresql://student@/group1
          Done.
Out[56]: []
          Populate the Airlines key by linking the attributes from airlines table and F flights table
In [57]: %%sql
          UPDATE F flights AS f
          SET Airlines Key = t.Airlines Key
          FROM Airlines_Dim AS t
          WHERE f.airline = t.IATA_CODE;
           * postgresql://student@/group1
          5819079 rows affected.
```

Out[57]: []

Check the F flights table we just created by examining the first 10 rows

```
In [58]:
           %%sql
           select * from F_flights
           limit 10;
            * postgresql://student@/group1
           10 rows affected.
Out[58]: year
                   month
                          day
                                 day_of_week
                                                        flight_number
                                                                       tail_number
                                                                                     origin_airport
                                                                                                     destination_airpor
            2015
                                           4
                                                                  98
                                                                           N407AS
                       1
                             1
                                                  AS
                                                                                             ANC
                                                                                                                  SE
            2015
                                                                2336
                                                                          N3KUAA
                       1
                                                  AA
                                                                                              LAX
            2015
                      10
                             6
                                           2
                                                 MQ
                                                                3241
                                                                          N662MQ
                                                                                            13930
                                                                                                                1336
            2015
                      10
                                           2
                                                  00
                                                                4671
                                                                           N685BR
                                                                                            11823
                                                                                                                1039
            2015
                      10
                             6
                                           2
                                                  DL
                                                                 581
                                                                            N3753
                                                                                            14869
                                                                                                                1474
            2015
                                           2
                                                                2567
                                                                           N950DL
                      10
                             6
                                                  DL
                                                                                            12278
                                                                                                                1039
            2015
                             6
                                           2
                                                  DL
                                                                1690
                                                                           N938DL
                                                                                            10529
                                                                                                                1039
                      10
            2015
                                           2
                                                  ΕV
                                                                4175
                                                                           N11194
                                                                                            10431
                      10
                             6
                                                                                                                1161
            2015
                                           2
                                                                           N904DL
                      10
                             6
                                                  DL
                                                                1532
                                                                                            11423
                                                                                                                1039
                                           2
            2015
                      10
                             6
                                                  UA
                                                                1749
                                                                           N78509
                                                                                            14771
                                                                                                                1383
```

The Airlines_KEY attribute has been successfully added to the F_flights table from the output.

Create the Flights_Dim table as a dimension table

```
In [59]: %%sql
          DROP TABLE IF EXISTS Flights_Dim;
          CREATE TABLE Flights_Dim (
           Flights_Key SERIAL PRIMARY KEY,
           flight_number INTEGER ,
           tail number CHAR(10)
          );
           * postgresql://student@/group1
          Done.
          Done.
Out[59]: []
          Populate the Flights_Dim table with data from the F_filghts table
In [60]:
          %%sql
          INSERT INTO Flights Dim (flight number, tail number)
          SELECT DISTINCT
          flight number, tail number
          FROM F_flights;
```

```
2022/12/9 23:49
                                                           Group1 Final project
                 * postgresql://student@/group1
                2098568 rows affected.
     Out[60]:
                []
                Add FK Flights KEY to the F flights table:
     In [61]: %%sql
                ALTER TABLE F flights
                ADD COLUMN Flights Key INTEGER NULL,
                ADD FOREIGN KEY (Flights_Key)
                    REFERENCES Flights Dim (Flights Key) ON DELETE SET NULL;
                 * postgresql://student@/group1
                Done.
     Out[61]:
                []
                Populate the Flights KEY by linking the attributes from Flights table and F flights table
     In [62]:
                %%sql
                UPDATE F flights AS f
                SET Flights Key = t.Flights Key
                FROM Flights Dim AS t
                WHERE f.flight number = t.flight number AND f.tail number = t.tail number;
                 * postgresql://student@/group1
                5804358 rows affected.
     Out[62]:
                []
                The Flights KEY attribute has been successfully added to the F flights table from the output.
                We can drop all the unnecessary columns from the rides table and only reserve the facts and
                surrogate keys.
                %%sql
     In [63]:
                ALTER TABLE F_flights
                DROP COLUMN year,
                DROP COLUMN month,
                DROP COLUMN day,
                DROP COLUMN day of week,
                DROP COLUMN airline,
```

```
DROP COLUMN flight_number,
         DROP COLUMN tail number,
         DROP COLUMN origin_airport,
         DROP COLUMN destination_airport;
          * postgresql://student@/group1
         Done.
Out[63]: []
```

```
In [64]: %%sql
         select * from F_flights
```

Check the F flights table we just modified by examining the first 10 rows.

limit 20;

* postgresql://student@/group1
20 rows affected.

scheduled_departure departure_time scheduled_arrival Out[64]: departure_delay arrival_time arrival_delay di -23 -19 -10 -22 -11 -3 -29 -24 -7 -8 -25 -8 -6 -1 -5 -29 -3 -11 -4 -1 -18 -9 -31 -17 -13 -5 -16 -8

Check the number of records in our fact table. If it shows 5819079, which is the original number of records in our dataset, then we have succeeded in the wrangling steps.

-1

1 rows affected.

Out[65]: **count**5819079

In [66]: !wc -1 flights2.csv
5819080 flights2.csv

-25

Ask 3: Data analysis and visualization

Business Question 1:

In order to improve the operating efficiency at major airports, the FAA would like to develop a system of reward and punishment based on the performance of major airline carriers. What aresome measurements that they could use? And based on the result from the busiest route in USA in 2015, which airline performs the best and which airline performs the worst?

The average method

First, our data scientist thinks that its always good to take a look at the avearges. So we aregoing to find what that number is for our dataset.

Avg departure delay of airlines

We start with departure delay because this type of delay would mean that the flights are using resources such as runway space, air space, operating capacity, etc. This will generate a higher operating cost for the airpots, and for FAA, running at capacity or exceeding it may raise safty concerns as well. By calculating the average, we hope we can provide some insights for regulorsso that they can probably using a price ladder to encourage airline carriers to operate more efficiently.

```
In [67]: %%sql
    SELECT f.airlines_key , air.iata_code,air.airline, AVG(f.departure_delay) as total_avg
    FROM F_flights as f
    join Airlines_Dim as air
        on f.airlines_key=air.airlines_key
    GROUP BY f.airlines_key, air.iata_code, air.airline
    ORDER BY total_avg_delay Desc
```

* postgresql://student@/group1
14 rows affected.

Out[67]:	airlines_key	iata_code	airline	total_avg_delay
	5	NK	Spirit Air Lines	15.6832738394431713
	9	UA	United Air Lines Inc.	14.2622066496937309
	6	F9	Frontier Airlines Inc.	13.2706085692897089
	7	В6	JetBlue Airways	11.3330449956562116
	4	WN	Southwest Airlines Co.	10.4501071834719520
	2	MQ	American Eagle Airlines Inc.	9.6320426837546499
	8	VX	Virgin America	8.9470946480784453
	13	AA	American Airlines Inc.	8.7735198020893022
	11	EV	Atlantic Southeast Airlines	8.4921911195729898
	1	00	Skywest Airlines Inc.	7.6782305860597294
	10	DL	Delta Air Lines Inc.	7.3380904483599941
	3	US	US Airways Inc.	6.0209194071912035
	14	AS	Alaska Airlines Inc.	1.7794761217474974
	12	НА	Hawaiian Airlines Inc.	0.48473882945248584015
In [68]:	%matplotlib	inline		

Out[69]: <BarContainer object of 14 artists>

In [69]: _.bar()

airlines key, iata code, airline

As per the above graph, Spirit Air Lines has a maximum delay of 15.68 mins. The best- performance airline is Hawaiian Airlines, with 0.48 mins of delay. We recommend our customersprefer Hawaiian AirlinesSpirit Air Lines for stressfree travel. Other airlines can use the use Alaska airlines practices to better their performance.

Avg arrival delay of airlines

We also want to count arrival delay as a factor, because the delay of arrival would also meanthat this airline is prone to use more reasources mentioned above.

```
In [70]: %%sql
         SELECT f.airlines_key , air.iata_code,air.airline, AVG(f.arrival_delay) as avg_arrival
         FROM F_flights as f
         join Airlines Dim as air
             on f.airlines_key=air.airlines_key
         GROUP BY f.airlines_key, air.iata_code, air.airline
         ORDER BY avg arrival delay Desc
```

In [71]

In [72]: _.bar()

* postgresql://student@/group1
14 rows affected.

	14 10W3 a1	recteu
Out[70]:	airlines_key	iata_co

]:	airlines_key	iata_code	airline	avg_arrival_delay
	5	NK	Spirit Air Lines	14.2022849061586826
	6	F9	Frontier Airlines Inc.	12.4020102162138359
	7	В6	JetBlue Airways	6.5526796680746532
	11	EV	Atlantic Southeast Airlines	6.3870610181877943
	2	MQ	American Eagle Airlines Inc.	6.1106634717206549
	1	00	Skywest Airlines Inc.	5.7310050258943185
	9	UA	United Air Lines Inc.	5.3477486945511447
	8	VX	Virgin America	4.6875757233090480
	4	WN	Southwest Airlines Co.	4.3075218626545839
	3	US	US Airways Inc.	3.6224291070125557
	13	AA	American Airlines Inc.	3.3893364041080795
	12	НА	Hawaiian Airlines Inc.	2.0169655968114118
	10	DL	Delta Air Lines Inc.	0.18555831214514300459
	14	AS	Alaska Airlines Inc.	-0.97043838141443650338
]:	%matplotlib	inline		

Out[72]: <BarContainer object of 14 artists>

airlines key, iata code, airline

From the above graph we guys can see that even after having departure delay Alaska Airlines manages to reach on time, along with Delta airlines, these two are the best for arrival performance. spirit air lines and frontier airline has the wrost arrival delay.

The Percentage of delay Method

Afterwards, we are going to set up another performance measurement criteria that seems to bemore . The Federal Aviation Administration (FAA) considers a flight to be delayed when it is 15 minutes later than its scheduled time. As a result, we will use a 15 minutes delay as threshold tomeasure the percentage of flight delays that is less than or equal to 15 minutes. But Why 15 minutes? Interestingly, few airlines strive to be 100 percent on time. In fact, reaching 100 percent OTP is all but impossible, and if achieved, it would have a negative effect on profits and financial performance. External factors ranging from weather, poorly located airport gates, industrial disputes or long immigration queues all can result in delays. Airlines plan with 15- minute criteria and typically aim to achieve around 85 percent to-90 percent OTP throughout the year. Planning for a shorter time period of 10 minutes and striving to achieve a higher OTP

level of 95 percent would require additional resources and lead to higher airfares for some travelers. A requirement for additional resources in terms of aircraft, crew and supporting operations woulbdn't make sense. For the best economic value for both airlines and customers, we choose 15 minutes as a threshold as the definition of delay.

Finding the busiest Air route.

In order to put this criteria into use, we think it would make more sense to specify this performance criteria by route than calculating the universal statistics like above. As a result, weare using the busiest airline route to demostrate, it would be connecting the 2 airports, which obviously, has the most count of departure flights and arrival flights.

* postgresql://student@/group1
6 rows affected.

Out[7	3]	
-------	----	--

origin_airport_key	destination_airport_key	total_flight
None	None	486165
302	78	13744
78	302	13457
65	78	12016
78	65	12015
73	78	9715

After reffering to the airport key table, we found that the busiest route is SFO to LAX. So, we are combining the flgiht route LAX to SFO along with the flight route SFO to LAX, so that it counts both incoming flights and outgoing flights of those two airports.

```
In [74]: from IPython import display
display. Image("abba.jpg")
```

Out[74]: Map of top ten routes


```
In [75]: %%sql
         select case when cast(origin airport key as integer) > cast(destination airport key as
         origin_airport_key,destination_airport_key
         from F_flights)
         select route , count(*) as total_flights
         from t1
         group by route
         order by total_flights desc
         limit 10
```

* postgresql://student@/group1 10 rows affected.

total flights Out[75]: route

Toute	total_mgmts
,	486165
302,78	27201
78,65	24031
78,73	19309
290,100	19214
302,65	16877
252,174	16595
290,146	16449
293,146	16404
100,78	16197

Calculating the percentage of arrival delay.

Here we put the 15 minute thershhold into use.

```
In [76]: %%sql
    with t1 as (
        select case when cast(origin_airport_key as integer) > cast(destination_airport_key as origin_airport_key,destination_airport_key,airlines_key, case when arrival_delay > 15
        from F_flights),
        t2 as (select airlines_key,count(*) as total_flights,sum(delay) as total_delay_flights
        from t1
        where route = '302,78'
        group by airlines_key)
        select * ,(total_delay_flights*100)/total_flights as delay_percent
        from t2
```

* postgresql://student@/group1

6 rows affected.

total_delay_flights airlines_key total_flights delay_percent Out[76]: 1 1235 313 25 4 6143 1539 25 8 6155 1491 24 9 7043 1571 22 10 2727 1078 39 13 3898 825 21

airline key 1 = skywest airlines

airline key 4 = southwest airlines

airline key 8 = virgin america airline

key 9 = united airlines airline key

10 = delta airlines airline key 13 =

american airlines

```
In [77]: %matplotlib inline
In [78]: _.bar()
```

Out[78]: <BarContainer object of 6 artists>

While travelling from Manchester-Boston Regional Airport to Los Angeles International Airport, the Southwest Airline with key number 4 has highest arrival delay percentage of 20 followed by Virgin America airlines of key number 8 with 17 percent, United airlines of key number 9 with 19 percent and American airlines of key number 13 with 19 percent. We can suggest customers that the virgin America airline has minimal arrival delay

airlinekey 1 represent

```
In [79]: %%sql
SELECT
a.airline,
CASE
    WHEN (f.arrival_delay) < 15 THEN 'On Time'
    ELSE 'Late'
END as delay,
COUNT(*) AS cnt,
SUM(COUNT(*))OVER(PARTITION BY a.airline) AS total_cnt,
COUNT(*)/SUM(COUNT(*))OVER(PARTITION BY a.airline )::float AS Percentage_Rate
FROM F_flights f
INNER JOIN date_dim d ON f.date_key=d.date_key
INNER JOIN airlines_dim a ON f.airlines_key=a.airlines_key
GROUP BY 1,2;

* postgresql://student@/group1</pre>
```

28 rows affected.

Out[79]:	airline	delay	cnt	total_cnt	percentage_rate
_	Alaska Airlines Inc.	Late	22352	172521	0.1295610389459834
	Alaska Airlines Inc.	On Time	150169	172521	0.8704389610540166
	American Airlines Inc.	Late	130279	725984	0.1794516132586944
	American Airlines Inc.	On Time	595705	725984	0.8205483867413056
	American Eagle Airlines Inc.	Late	60547	294632	0.20550042086399306
	American Eagle Airlines Inc.	On Time	234085	294632	0.794499579136007
	Atlantic Southeast Airlines	Late	109184	571977	0.1908887944794983
	Atlantic Southeast Airlines	On Time	462793	571977	0.8091112055205018
	Delta Air Lines Inc.	Late	118023	875881	0.13474775682998033
	Delta Air Lines Inc.	On Time	757858	875881	0.8652522431700197
	Frontier Airlines Inc.	Late	23570	90836	0.25947862081113215
	Frontier Airlines Inc.	On Time	67266	90836	0.7405213791888678
	Hawaiian Airlines Inc.	Late	8618	76272	0.11299035032515209
	Hawaiian Airlines Inc.	On Time	67654	76272	0.887009649674848
	JetBlue Airways	Late	59175	267048	0.22158937719061741
	JetBlue Airways	On Time	207873	267048	0.7784106228093826
	Skywest Airlines Inc.	Late	107795	588353	0.183214838710774
	Skywest Airlines Inc.	On Time	480558	588353	0.8167851612892261
	Southwest Airlines Co.	Late	236626	1261855	0.18752233814503252
	Southwest Airlines Co.	On Time	1025229	1261855	0.8124776618549675
	Spirit Air Lines	Late	34221	117379	0.29154278022474206
	Spirit Air Lines	On Time	83158	117379	0.7084572197752579
	US Airways Inc.	Late	36549	198715	0.18392672923533704
	US Airways Inc.	On Time	162166	198715	0.816073270764663
	United Air Lines Inc.	Late	104722	515723	0.20305861867708053
	United Air Lines Inc.	On Time	411001	515723	0.7969413813229195
	Virgin America	Late	11778	61903	0.19026541524643395
	Virgin America	On Time	50125	61903	0.8097345847535661

In [80]: from IPython import display
display. Image("image5.jpeg")

Out[80]:
III Columns
isDelayed

III Rows
AIRLINE (airlines.c.. ►

Percentage of Delayed/On Time flights by Airlines

	Delayed	On Time
Hawaiian Airlines Inc.	10.01%	89.99%
Alaska Airlines Inc.	13.06%	86.94%
Delta Air Lines Inc.	13.38%	86.62%
US Airways Inc.	17.68%	82.32%
American Airlines Inc.	18.06%	81.94%
Skywest Airlines Inc.	18.12%	81.88%
Virgin America	18.60%	81.40%
Atlantic Southeast Airli	18.67%	81.33%
Southwest Airlines Co.	18.88%	81.12%
United Air Lines Inc.	20.34%	79.66%
American Eagle Airlines	20.62%	79.38%
JetBlue Airways	21.81%	78.19%
Frontier Airlines Inc.	25.85%	74.15%
Spirit Air Lines	28.97%	71.03%

Calculating the percentage of Departure delay

^{*} postgresql://student@/group1
6 rows affected.

Out[81]

airlines_k	ey	total_flights	total_delay_flights	delay_percent
	1	1235	273	22
	4	6143	1497	24
	8	6155	1329	21
	9	7043	1504	21
	10	2727	913	33
	13	3898	729	18

In [82]: %matplotlib inline
In [83]: _.bar()

Out[83]: <BarContainer object of 6 artists>

The Virgin America airlines has minimal departure delay among the other airlines- Southwest airline, United airlines and American airlines while travelling from Manchester-Boston Regional Airport to Los Angeles International Airport. Only 16 percent of the flights have departure delays. We can suggest customers that the Virgin America airlines have minimal departure delay

Question 2 : DC airports(DCA,IAD) to NYU(JFK)

In the second question, we are shifting our focus from regulaors to cusotmers.

During what time period, does the air route from Washington D.C. to New York sees the most delays? What are the reason for delays? Advices that we can give to airlines to better improve their service.

For customers: calculating arrival delay

* postgresql://student@/group1
15 rows affected.

Out[84]:

airline	year	month	delay	cnt	total_cnt	rate
Alaska Airlines Inc.	2015	1	Late	1939	13257	0.14626235196499962
Alaska Airlines Inc.	2015	1	On Time	11318	13257	0.8537376480350004
Alaska Airlines Inc.	2015	2	Late	1652	12194	0.1354764638346728
Alaska Airlines Inc.	2015	2	On Time	10542	12194	0.8645235361653272
Alaska Airlines Inc.	2015	3	Late	1970	14276	0.13799383580834967
Alaska Airlines Inc.	2015	3	On Time	12306	14276	0.8620061641916503
Alaska Airlines Inc.	2015	4	Late	1407	13974	0.10068699012451696
Alaska Airlines Inc.	2015	4	On Time	12567	13974	0.899313009875483
Alaska Airlines Inc.	2015	5	Late	1682	14682	0.11456204876719793
Alaska Airlines Inc.	2015	5	On Time	13000	14682	0.8854379512328021
Alaska Airlines Inc.	2015	6	Late	1803	15075	0.11960199004975125
Alaska Airlines Inc.	2015	6	On Time	13272	15075	0.8803980099502487
Alaska Airlines Inc.	2015	7	Late	2067	15821	0.1306491372226787
Alaska Airlines Inc.	2015	7	On Time	13754	15821	0.8693508627773213
Alaska Airlines Inc.	2015	8	Late	2685	16095	0.1668219944082013

DC local, calculate on time percentage base on month.

```
In [85]: %%sql
         SELECT * FROM (
         SELECT
         a.airline,d.year, d.month,
         CASE
             WHEN (f.arrival_delay) < 15 THEN 'On Time'</pre>
             ELSE 'Late'
         END as delay,
         COUNT(*) AS cnt,
         SUM(COUNT(*))OVER(PARTITION BY a.airline,d.year, d.month ) AS total_cnt,
         COUNT(*)/SUM(COUNT(*))OVER(PARTITION BY a.airline,d.year, d.month )::float AS rate
         FROM F_flights f
         INNER JOIN date_dim d ON f.date_key=d.date_key
         INNER JOIN airlines_dim a ON f.airlines_key=a.airlines_key
         WHERE origin_airport_key in (select airports_key from airports_dim WHERE iata_code in
         and destination_airport_key in (select airports_key from airports_dim WHERE iata_code
         GROUP BY 1,2,3,4
         ) AS T
         WHERE delay='On Time';
```

* postgresql://student@/group1
35 rows affected.

Out[85]:	airline	year	month	delay	cnt	total_cnt	rate
	American Airlines Inc.	2015	1	On Time	11	31	0.3548387096774194
	American Airlines Inc.	2015	2	On Time	12	27	0.4444444444444444
	American Airlines Inc.	2015	3	On Time	12	31	0.3870967741935484
	American Airlines Inc.	2015	4	On Time	20	30	0.6666666666666666666666666666666666666
	American Airlines Inc.	2015	5	On Time	18	31	0.5806451612903226
	American Airlines Inc.	2015	6	On Time	18	30	0.6
	American Airlines Inc.	2015	7	On Time	18	31	0.5806451612903226
	American Airlines Inc.	2015	8	On Time	23	31	0.7419354838709677
	American Airlines Inc.	2015	9	On Time	25	30	0.8333333333333333
	American Airlines Inc.	2015	11	On Time	25	29	0.8620689655172413
	American Airlines Inc.	2015	12	On Time	20	29	0.6896551724137931
	American Eagle Airlines Inc.	2015	1	On Time	103	154	0.6688311688311688
	American Eagle Airlines Inc.	2015	2	On Time	93	140	0.6642857142857143
	American Eagle Airlines Inc.	2015	3	On Time	105	144	0.7291666666666666
	American Eagle Airlines Inc.	2015	4	On Time	23	30	0.766666666666666
	American Eagle Airlines Inc.	2015	5	On Time	26	31	0.8387096774193549
	American Eagle Airlines Inc.	2015	6	On Time	19	30	0.6333333333333333
	American Eagle Airlines Inc.	2015	7	On Time	20	31	0.6451612903225806
	American Eagle Airlines Inc.	2015	8	On Time	24	31	0.7741935483870968
	American Eagle Airlines Inc.	2015	9	On Time	7	8	0.875
	Delta Air Lines Inc.	2015	6	On Time	3	5	0.6
	Delta Air Lines Inc.	2015	7	On Time	29	29	1.0
	Delta Air Lines Inc.	2015	8	On Time	26	32	0.8125
	Delta Air Lines Inc.	2015	9	On Time	1	1	1.0
	JetBlue Airways	2015	1	On Time	64	88	0.7272727272727273
	JetBlue Airways	2015	2	On Time	58	80	0.725
	JetBlue Airways	2015	3	On Time	77	88	0.875
	JetBlue Airways	2015	4	On Time	67	86	0.7790697674418605
	JetBlue Airways	2015	5	On Time	72	88	0.81818181818182
	JetBlue Airways	2015	6	On Time	70	86	0.813953488372093
	JetBlue Airways	2015	7	On Time	72	89	0.8089887640449438
	JetBlue Airways	2015	8	On Time	75	88	0.8522727272727273
	JetBlue Airways	2015	9	On Time	66	86	0.7674418604651163

rate	total_cnt	cnt	delay	month	year	airline
0.8705882352941177	85	74	On Time	11	2015	JetBlue Airways
0.7558139534883721	86	65	On Time	12	2015	JetBlue Airways

Four airways travel from IAD to NYU - American Airlines Inc, American Eagle Airlines Inc, DeltaAir Lines Inc and JetBlue Airways.

For JetBlue Airways, the On-time percentage is consistent for the months 3 to 12.

For American Egale Airlines, the on time percentage vaires a lot, but keeps rising until winterseason.

For Delta Airlines, they only offer flights during the summer seasons, but it has the highest ontime percentage during that time.

For American airlines, it has the worst on time percentage during winter season, but it keepsgetting better as the weather gets warm.

Overall, the on-time percentage is less in the month of January and February. However, JetBlueairways outperformed it's competitors a lot. It looks like they are the best choice during the winter seasons if you don't want delays.

Advice for airline companies:

Because American airlines and American Eagle airlines has the worst on time perforance during the winter, they could probably ask consulting comapnies to help them take a look into the practices that JetBlueis using.

For Delta airlines, if they can successfully manage on-time percentage during the winter time, there might be a chance for them to further the competition by adding flights from Dec to

March. espcially if they could keep up with the good job during summer time.

```
In [87]: %%sql
         SELECT * FROM (
         SELECT
         a.airline,d.year, d.month,
         CASE
             WHEN (f.departure_delay) < 15 THEN 'On Time'</pre>
             ELSE 'Late'
         END as delay.
         COUNT(*) AS cnt,
         SUM(COUNT(*))OVER(PARTITION BY a.airline,d.year, d.month ) AS total_cnt,
         COUNT(*)/SUM(COUNT(*))OVER(PARTITION BY a.airline,d.year, d.month )::float AS On_time
         FROM F_flights f
         INNER JOIN date_dim d ON f.date_key=d.date_key
         INNER JOIN airlines dim a ON f.airlines key=a.airlines key
         WHERE origin_airport_key in (select airports_key from airports_dim WHERE iata_code in
         and destination_airport_key in (select airports_key from airports_dim WHERE iata_code
         GROUP BY 1,2,3,4
         ) AS T
         WHERE delay='On Time';
```

35 rows affected.

^{*} postgresql://student@/group1

Out[87]:	airline	year	month	delay	cnt	total_cnt	on_time_rate
	American Airlines Inc.	2015	1	On Time	17	31	0.5483870967741935
	American Airlines Inc.	2015	2	On Time	14	27	0.5185185185185185
	American Airlines Inc.	2015	3	On Time	14	31	0.45161290322580644
	American Airlines Inc.	2015	4	On Time	19	30	0.6333333333333333
	American Airlines Inc.	2015	5	On Time	20	31	0.6451612903225806
	American Airlines Inc.	2015	6	On Time	19	30	0.6333333333333333
	American Airlines Inc.	2015	7	On Time	18	31	0.5806451612903226
	American Airlines Inc.	2015	8	On Time	21	31	0.6774193548387096
	American Airlines Inc.	2015	9	On Time	21	30	0.7
	American Airlines Inc.	2015	11	On Time	25	29	0.8620689655172413
	American Airlines Inc.	2015	12	On Time	15	29	0.5172413793103449
	American Eagle Airlines Inc.	2015	1	On Time	112	154	0.7272727272727273
	American Eagle Airlines Inc.	2015	2	On Time	103	140	0.7357142857142858
	American Eagle Airlines Inc.	2015	3	On Time	112	144	0.777777777777778
	American Eagle Airlines Inc.	2015	4	On Time	25	30	0.8333333333333333
	American Eagle Airlines Inc.	2015	5	On Time	23	31	0.7419354838709677
	American Eagle Airlines Inc.	2015	6	On Time	22	30	0.7333333333333333
	American Eagle Airlines Inc.	2015	7	On Time	21	31	0.6774193548387096
	American Eagle Airlines Inc.	2015	8	On Time	22	31	0.7096774193548387
	American Eagle Airlines Inc.	2015	9	On Time	6	8	0.75
	Delta Air Lines Inc.	2015	6	On Time	4	5	0.8
	Delta Air Lines Inc.	2015	7	On Time	29	29	1.0
	Delta Air Lines Inc.	2015	8	On Time	29	32	0.90625
	Delta Air Lines Inc.	2015	9	On Time	1	1	1.0
	JetBlue Airways	2015	1	On Time	75	88	0.8522727272727273
	JetBlue Airways	2015	2	On Time	65	80	0.8125
	JetBlue Airways	2015	3	On Time	77	88	0.875
	JetBlue Airways	2015	4	On Time	66	86	0.7674418604651163
	JetBlue Airways	2015	5	On Time	68	88	0.7727272727272727
	JetBlue Airways	2015	6	On Time	68	86	0.7906976744186046
	JetBlue Airways	2015	7	On Time	71	89	0.797752808988764
	JetBlue Airways	2015	8	On Time	74	88	0.8409090909090909
	JetBlue Airways	2015	9	On Time	66	86	0.7674418604651163

airline	year	month	delay	cnt	total_cnt	on_time_rate
JetBlue Airways	2015	11	On Time	78	85	0.9176470588235294
JetBlue Airways	2015	12	On Time	72	86	0.8372093023255814

Here, we used Tableau to create a graph that compares the performance of each airlines.

Question 3

Is there a relationship between customer's attitude on social media with performance of airlines ? Should people rely on social media platforms to choose airlines or should the airline companies use social media to monitor their brands?

We found an extra dataset, twitter_2015.csv that represents customers' interactions with airline comapnies that alreday has twitter account.

Situation Analysis:

Social media platforms, in nature, in an excellent place where companies can collect important business information such as customer attitude, product experience, as well as managing and

processing customer questions. The twitter platform, stands out among all the other platforms it provides a more focused, simple environment for both users and companies to interact with each other. As we can see in the graph, from 2013 to 2015, more and more customers choose to express their attitude on the twitter platform than the others.

To testify that, we are trying to see if twitter is a good source of information for airline companies to help explain insights provided by our previous analysis, such as whether the performance of airlines would have a positive effect on brand attitude. Thus, an airline shouldinvest resources in managing and creating social media presence. We can also use this information to see whether or not consumers can rely on informations on social media to determine what airline they should trust for a better experience.

As a result, we are choosing Twitter data from 6 major airlines that has a twitter account in 2015. We also have data for all 6 of the airlines in our previous dataset. So let's start comparing.

In [89]: from IPython import display
display. Image("image202.png")

Out[89]: CUSTOMER SERVICE QUERIES BY PLATFORM

SOURCE | Socialbakers #Sociallydevoted Q3 2015 (worldwide)

In [101... !xsv headers Tweets.csv

1

2

tweet_id

```
airline_sentiment
          3
              airline_sentiment_confidence
          4
               negativereason
          5
               negativereason_confidence
          6
               airline
          7
               airline sentiment gold
          8
          9
               negativereason_gold
          10 retweet count
          11 text
          12 tweet_coord
          13 tweet_created
          14 tweet_location
          15 user_timezone
In [112...
          !csvcut -c 2,6 Tweets.csv > Tweets2.csv
In [113...
          !xsv headers Tweets2.csv
              airline_sentiment
          2
               airline
          First, we create a new table that combines twitter sentiment data with the names of airline
In [114...
          %%sql
          DROP TABLE IF EXISTS T_tweets;
          CREATE TABLE T tweets (
           Airline_sentiment varchar(100),
            airline char(100)
          );
            * postgresql://student@/group1
          Done.
          Done.
Out[114]: []
In [115...
          %%sql
          select *
          from T tweets
          limit 10
            * postgresql://student@/group1
          0 rows affected.
Out[115]: airline_sentiment airline
In [116...
          %%sql
          COPY T_tweets FROM '/home/ubuntu/notebooks/Tweets2.csv'
          CSV
          HEADER;
            * postgresql://student@/group1
          14640 rows affected.
Out[116]:
          Γ1
```

We are changing the airline names on the twitter data, so that the names match our data in theairline dimension atable

Out[117]: []

Here we count the oveall number of customers' attitutes in the format of percentage of total interactions.

```
In [118... %%sql
SELECT
airline ,
ROUND(SUM(CASE WHEN airline_sentiment='neutral' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
ROUND(SUM(CASE WHEN airline_sentiment='positive' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
ROUND(SUM(CASE WHEN airline_sentiment='negative' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
FROM T_tweets
GROUP BY airline ;
```

* postgresql://student@/group1 6 rows affected.

Out[118]:

airline	neutral	positive	negative
AA	0.17	0.12	0.71
VX	0.34	0.30	0.36
UA	0.18	0.13	0.69
US	0.13	0.09	0.78
WN	0.27	0.24	0.49
DL	0.33	0.24	0.43

add the columns into airline dimension table

```
In [119...

ALTER TABLE airlines_dim
   ADD COLUMN neutral float,
   ADD COLUMN positive float,
   ADD COLUMN negative float;
```

```
* postgresql://student@/group1
           (psycopg2.errors.DuplicateColumn) column "neutral" of relation "airlines_dim" already
           exists
           [SQL: ALTER TABLE airlines dim
             ADD COLUMN neutral float,
             ADD COLUMN positive float,
             ADD COLUMN negative float;]
           (Background on this error at: https://sqlalche.me/e/14/f405)
In [120...
           %%sql
           UPDATE airlines_dim AS f
           SET neutral = t.neutral, positive = t.positive, negative = t.negative
            SELECT
            airline,
            ROUND(SUM(CASE WHEN airline_sentiment='neutral' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
            ROUND(SUM(CASE WHEN airline_sentiment='positive' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
            ROUND(SUM(CASE WHEN airline_sentiment='negative' THEN 1 ELSE 0.0 END)/COUNT(*),2) AS
            FROM T tweets
            GROUP BY airline
           ) AS t
           WHERE f.iata code = t.airline;
            * postgresql://student@/group1
           6 rows affected.
Out[120]:
          []
In [121...
           %%sq1
           select * from airlines dim where neutral is not null;
            * postgresql://student@/group1
           6 rows affected.
            airlines_key iata_code
                                              airline
                                                     neutral
                                                             positive
                                                                      negative
Out[121]:
                    3
                                                                         0.78
                             US
                                       US Airways Inc.
                                                        0.13
                                                                0.09
                            WN
                                  Southwest Airlines Co.
                                                        0.27
                                                                0.24
                                                                         0.49
                    4
                    8
                             VX
                                        Virgin America
                                                        0.34
                                                                 0.3
                                                                         0.36
                    9
                             UA
                                    United Air Lines Inc.
                                                        0.18
                                                                0.13
                                                                         0.69
                                     Delta Air Lines Inc.
                   10
                             DL
                                                        0.33
                                                                0.24
                                                                         0.43
                             AA
                                   American Airlines Inc.
                                                        0.17
                                                                0.12
                                                                         0.71
                   13
In [122...
           from IPython import display
           display. Image("image302.png")
```


The 6 Airlines are all received mostly negative feedback.

```
%%sql
In [127...
          SELECT
          a.airline,
          CASE
          WHEN (f.arrival_delay) < 15 THEN 'On Time'</pre>
          ELSE 'Late'
          END as delay,
          COUNT(*) AS cnt,
          SUM(COUNT(*))OVER(PARTITION BY a.airline) AS total_cnt,
          COUNT(*)/SUM(COUNT(*))OVER(PARTITION BY a.airline )::float AS Rate
          FROM F_flights f
          INNER JOIN date_dim d ON f.date_key=d.date_key
          INNER JOIN airlines_dim a ON f.airlines_key=a.airlines_key
          WHERE f.airlines_key in (select airlines_key from airlines_dim where neutral is not nu
          GROUP BY 1,2;
```

* postgresql://student@/group1

12 rows affected.

Out[127]:

airline	delay	cnt	total_cnt	rate
American Airlines Inc.	Late	130279	725984	0.1794516132586944
American Airlines Inc.	On Time	595705	725984	0.8205483867413056
Delta Air Lines Inc.	Late	118023	875881	0.13474775682998033
Delta Air Lines Inc.	On Time	757858	875881	0.8652522431700197
Southwest Airlines Co.	Late	236626	1261855	0.18752233814503252
Southwest Airlines Co.	On Time 10	25229	1261855	0.8124776618549675
US Airways Inc.	Late	36549	198715	0.18392672923533704
US Airways Inc.	On Time	162166	198715	0.816073270764663
United Air Lines Inc.	Late	104722	515723	0.20305861867708053
United Air Lines Inc.	On Time	411001	515723	0.7969413813229195
Virgin America	Late	11778	61903	0.19026541524643395

50125

61903

0.8097345847535661

Virgin America On Time

There are not directly relationship between on time percentage rate and sentiment on Twitter.Result

showcase:

For passengers flight delays is a problem that cause inconveniences. This not only irritate passengers and disrupt their schedules but also cause a decrease in efficiency and brand damage for the airline. We are expecting that there will be a positive relationship between thesentiment of airline and delay time. (Higher delay will have a higher negative sentiment rate)

About the data

Virgin America and delta airlines have the highest positive review on twitter, but we do not observe any relationship between delay time and reviews on twitter. Below are the reasons whythis approach of analysis does not work out

Most airline companies from the data set have a lot of negative reviews on twitter. The reasonfor this can be that anyone can share their incomplete opinions freely. That also includes the potential widespread of false information. And when false news is spread, it creates a lot of emotional responses from people, which drives more toxicity onto the platform.

On kaggle we found an Airline Customer Satisfaction Analysis that shows all other variables thatcan also affect customers satisfaction. Surprisingly for customers there are a lot of things that come before punctuality.

