Linear Regression

CMPUT 328

Nilanjan Ray

Computing Science, University of Alberta, Canada

Material source: "Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems," by Géron, Aurélien.

Linear regression with PyTorch

- We will start with a linear regression "model"
- Next, we need to understand "loss" function for regression task
- Next we will estimate the model by minimizing the loss function
- We will use PyTorch

Quick review: Gradient of a function

Example:

$$f(x,y) = -(\cos^2 x + \cos^2 y)^2$$

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 4(\cos^2(x) + \cos^2(y))\cos(x)\sin(x) \\ 4(\cos^2(x) + \cos^2(y))\cos(y)\sin(y) \end{bmatrix}$$

Note 1: *f* is a function of two variables, so gradient of *f* is a two dimensional vector

Note 2: Gradient (vector) of f points toward the steepest ascent for f

Note 3: At a (local) minimum of *f* its gradient becomes a zero vector

Example source: Wikipedia

Quick review: Gradient descent optimization

Start at an initial guess for the optimization variable: \mathbf{x}_0

Iterate until gradient magnitude becomes too small: $\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$

Gradient descent algorithm

 α is called the step-length.

Gradient descent creates a zig-zag path leading to a local minimum of f

Picture source: Wikipedia

Supervised machine learning: the tabular view

Prediction / dependent variable

ML learns to map x to y

X ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	У	
1.2	-3.9	4.0	0	1.6	
2.1	2.4	-0.7	-0.2	1.2	
•••					
•••	•••	•••	•••		
3.2	•••		1.9	0.3	_
1.4			1.5	?	
3.1			2.1	?	

Training data: complete table

In other words, ML learns a function, f so that y = f(x)

Test data: incomplete table

The function *f* is called prediction function

Linear prediction: formal setup

$$y^p = \mathbf{x}\mathbf{\theta} + b$$

Linear prediction function:
$$y^p = \mathbf{x}\mathbf{0} + b$$
 or, $y^p = \sum_{j=1}^m \theta_j x_j + b$

vector equation form

scalar equation form

A training set consists of (\mathbf{x}, y) pairs: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Linear prediction on the training data point *i*: $y_i^p = \mathbf{x}_i \mathbf{\theta} + b$ or, $y_i^p = \sum_{i=1}^m \theta_i x_{i,j} + b$

or,
$$y_i^p = \sum_{j=1}^m \theta_j x_{i,j} + i$$

Loss or cost function (on training data): $L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2$

Linear regression: A toy example

Let's take a toy example:

X_1	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

This equation
$$y_i^p = \sum_{j=1}^m \theta_j x_{i,j} + b$$

can be written for the toy training set as

$$y_1^p = \theta_1(1) + \theta_2(2) + b$$

$$y_2^p = \theta_1(3) + \theta_2(-4) + b$$

$$y_3^p = \theta_1(6) + \theta_2(2) + b$$

$$y_4^p = \theta_1(-3) + \theta_2(5) + b$$

$$y_5^p = \theta_1(7) + \theta_2(-3) + b$$

We also have responses:

$$y_1 = -1$$
, $y_2 = 7$, $y_3 = 3$, $y_4 = -4$, $y_5 = 5$

So, the loss is
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 = \frac{1}{2} [(y_1^p + 1)^2 + (y_2^p - 7)^2 + (y_3^p - 3)^2 + (y_4^p + 4)^2 + (y_5^p - 5)^2]$$

Learning a linear model

For the convenience of math, let us change our linear model a bit:

$$y_i^p = \sum_{j=1}^m \theta_j(x_{i,j} - \bar{x}_j) + b$$
 where, $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}$

And a slightly modified loss function:

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

 γ is a hyper parameter

Data fidelity

Regularization

Why do we need regularization?

Minimization of linear regression loss function

Regularized loss function:
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

Taking partial derivative using chain rule: $\frac{\partial L}{\partial b} = \sum_{i=1}^{n} (y_i^p - y_i) \frac{\partial y_i^p}{\partial b} = \sum_{i=1}^{n} (y_i^p - y_i) \quad \text{because,} \quad \frac{\partial y_i^p}{\partial b} = 1$

Using
$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}$$
 and $y_i^p = \sum_{j=1}^m \theta_j (x_{i,j} - \bar{x}_j) + b$ we get: $\frac{\partial L}{\partial b} = nb - \sum_{i=1}^n y_i$

At the minimum of
$$L$$
, $\frac{\partial L}{\partial b} = 0$ So, $b = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}$

Linear regression: A toy example...continued

Let's take a toy example:

X ₁	X ₂	У
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

$$b = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} = \frac{1}{5} (-1 + 7 + 3 - 4 + 5) = 2$$

$$\bar{x}_1 = \frac{1}{n} \sum_{i=1}^{n} x_{i,1} = \frac{1}{5} (1 + 3 + 6 - 3 + 7) = 2.8$$

$$\bar{x}_2 = \frac{1}{n} \sum_{i=1}^{n} x_{i,2} = \frac{1}{5} (2 - 4 + 2 + 5 - 3) = 0.4$$

So, using centered data, the prediction equation becomes:

$$y_i^p = \sum_{j=1}^m \theta_j(x_{i,j} - \bar{x}_j) + b = \theta_1(x_{i,1} - 2.8) + \theta_2(x_{i,2} - 0.4) + 2$$

So, the loss is

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 = \frac{1}{2} [(y_1^p + 1)^2 + (y_2^p - 7)^2 + (y_3^p - 3)^2 + (y_4^p + 4)^2 + (y_5^p - 5)^2]$$

$$= \frac{1}{2} [(\theta_1(1 - 2.8) + \theta_2(2 - 0.4) + 2 + 1)^2 + (\theta_1(3 - 2.8) + \theta_2(-4 - 0.4) + 2 - 7)^2$$

$$+ (\theta_1(6 - 2.8) + \theta_2(2 - 0.4) + 2 - 3)^2 + (\theta_1(-3 - 2.8) + \theta_2(5 - 0.4) + 2 + 4)^2 + (\theta_1(7 - 2.8) + \theta_2(-3 - 0.4) + 2 - 5)^2]$$

Minimization of linear regression loss function...

Regularized loss function:

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

Taking partial derivative of *L* using chain rule:

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^n (y_i^p - y_i) \frac{\partial y_i^p}{\partial \theta_j} + \gamma \theta_j$$

$$y_i^p = \sum_{k=1}^m \theta_k(x_{i,k} - \bar{x}_k) + b$$
, $b = \bar{y}$ and $\frac{\partial y_i^p}{\partial \theta_i} = x_{i,j} - \bar{x}_j$

$$b=ar{y}$$
 and

$$\frac{\partial y_i^p}{\partial \theta_j} = x_{i,j} - \bar{x}_j$$

We get:
$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^n \left(\sum_{k=1}^m \theta_k (x_{i,k} - \bar{x}_k) + \bar{y} - y_i \right) (x_{i,j} - \bar{x}_j) + \gamma \theta_j$$

Linear regression: A toy example...continued

Let's take a toy example:

X ₁	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

Note: For this problem I did not assume any regularization

$$\begin{split} \frac{\partial L}{\partial \theta_j} &= \sum\nolimits_{i=1}^n \left(\sum\nolimits_{k=1}^m \theta_k(x_{i,k} - \bar{x}_k) + \bar{y} - y_i\right) \left(x_{i,j} - \bar{x}_j\right) + \gamma \theta_j \\ \frac{\partial L}{\partial \theta_1} \\ &= (\theta_1(1-2.8) + \theta_2(2-0.4) + 2 + 1)(1-2.8) \\ &+ (\theta_1(3-2.8) + \theta_2(-4-0.4) + 2 - 7)(3-2.8) \\ &+ (\theta_1(6-2.8) + \theta_2(2-0.4) + 2 - 3)(6-2.8) \\ &+ (\theta_1(-3-2.8) + \theta_2(5-0.4) + 2 + 4)(-3-2.8) \\ &+ (\theta_1(7-2.8) + \theta_2(-3-0.4) + 2 - 5)(7-2.8) \\ \\ \frac{\partial L}{\partial \theta_2} \\ &= (\theta_1(1-2.8) + \theta_2(2-0.4) + 2 + 1)(2-0.4) \\ &+ (\theta_1(3-2.8) + \theta_2(-4-0.4) + 2 - 7)(-4-0.4) \\ &+ (\theta_1(6-2.8) + \theta_2(2-0.4) + 2 - 3)(2-0.4) \\ &+ (\theta_1(-3-2.8) + \theta_2(5-0.4) + 2 + 4)(5-0.4) \end{split}$$

 $+ (\theta_1(7-2.8) + \theta_2(-3-0.4) + 2-5)(-3-0.4)$

Minimization of linear regression loss function...

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^n \left(\sum_{k=1}^m \theta_k (x_{i,k} - \bar{x}_k) + \bar{y} - y_i \right) \left(x_{i,j} - \bar{x}_j \right) + \gamma \theta_j$$
simplification

Gradient of *L*:

$$\nabla L = \left[\sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^T (\mathbf{x}_i - \bar{\mathbf{x}})\right] \mathbf{\theta} + \gamma \mathbf{\theta} - \sum_{i=1}^{n} (y_i - \bar{y}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

where
$$\mathbf{x}_i = [x_{i,1} \quad \cdots \quad x_{i,m}], \quad \bar{\mathbf{x}} = [\bar{x}_1 \quad \cdots \quad \bar{x}_m] \quad \text{and} \quad \mathbf{\theta} = [\theta_1 \quad \cdots \quad \theta_m]^T$$

More simplified form: $\nabla L = (X^T X + \gamma I) \mathbf{\theta} - X^T \mathbf{y}$

where matrix
$$X$$
 is defined as: $X = \begin{bmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \overline{\mathbf{x}} \end{bmatrix}$ and vector \mathbf{y} is defined as: $\mathbf{y} = \begin{bmatrix} y_1 - \overline{y} \\ \vdots \\ y_n - \overline{y} \end{bmatrix}$

and I is an identity matrix of size m-by-m

Equating gradient of *L* to zero vector and solving gives us:

$$\mathbf{\theta} = (X^T X + \gamma I)^{-1} X^T \mathbf{y}$$

Linear regression: A toy example...finally!

Let's take a toy example:

x ₁	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

$$X = \begin{bmatrix} \mathbf{x}_1 - \bar{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \bar{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 - 2.8 & 2 - 0.4 \\ 3 - 2.8 & -4 - 0.4 \\ 6 - 2.8 & 2 - 0.4 \\ -3 - 2.8 & 5 - 0.4 \\ 7 - 2.8 & -3 - 0.4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{bmatrix} = \begin{bmatrix} -1 - 2 \\ 7 - 2 \\ 3 - 2 \\ -4 - 2 \\ 5 - 2 \end{bmatrix}$$

$$\mathbf{\theta} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} 0.3580 \\ -0.8535 \end{bmatrix}$$

So, finally the prediction for the test data point

$$? = \sum_{j=1}^{m} \theta_j (x_j - \bar{x}_j) + b = 0.3580(4 - 2.8) - 0.8535(3 - 0.4) + 2 = 0.2105$$

Linear regression by gradient descent

$$\mathbf{\theta} = (X^T X + \gamma I)^{-1} X^T \mathbf{y}$$

If the data does not fit into the memory, you cannot compute θ directly with the above formula; you apply gradient descent to compute it (approximately).

$$\nabla L(\mathbf{\theta}; X, \mathbf{y}) = X^T X \mathbf{\theta} + \gamma \mathbf{\theta} - X^T \mathbf{y}$$

Guess a starting value for $\theta = \theta_0$

Initialize learning rate and regularization parameter: α , γ

Iterate for t = 0, 1,...

Consider a subset of data (X_t, \mathbf{y}_t)

Update: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t - \alpha \nabla L(\mathbf{\theta}_t; X_t, \mathbf{y}_t)$

Gradient descent algorithm

Derivation using vector calculus

Regularized loss function:
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$
 or, $L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \mathbf{\theta}^T \mathbf{\theta}$

Using vector calculus:
$$\nabla L = \sum_{i=1}^{n} (y_i^p - y_i) \nabla y_i^p + \frac{\gamma}{2} \nabla (\mathbf{\theta}^T \mathbf{\theta})$$

Use vector differentiation to: $y_i^p = (\mathbf{x}_i - \bar{\mathbf{x}})\mathbf{\theta} + \bar{y}$ and get: $\nabla y_i^p = (\mathbf{x}_i - \bar{\mathbf{x}})^T$

Also note, using vector differentiation rule: $\nabla(\mathbf{\theta}^T\mathbf{\theta}) = 2\mathbf{\theta}$

$$\nabla L = \begin{bmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \overline{\mathbf{x}} \end{bmatrix}^T \begin{bmatrix} y_1^p - y_1 \\ \vdots \\ y_n^p - y_n \end{bmatrix} + \gamma \mathbf{\theta}$$
"centered data" "error"

MNIST Dataset

Classify images into digits

Each image is 28x28

10 labels

55,000 training images

5,000 validation images

10,000 test images.

Linear regression on MNIST dataset

Small 28 pixels-by-28 pixels images of hand written digits

The visual recognition problem definition: to recognize the digit from an image

Our very first line of attack would be to use linear regression.

Feature dimension, m = 28 * 28 = 784

Pixel values (feature)	Digit

x ₁	<i>X</i> ₂	•••	X ₇₈₄	у
0.1	0.3		0.0	0
0.2	0.1		0.5	1
0.0	0.98		0.8	9
0.5	0.25		0.36	?
0.1	0.95		0.1	?

Let's look at our PyTorch implementation