ECE113, Winter 2023

Homework #1 Prof. A. Kadambi TA: S. Zhou, A. Vilesov

Digital Signal Processing
University of California Los Angales: Depart

University of California, Los Angeles; Department of ECE

Due Friday, 27 Jan 2023, by 11:59pm to Gradescope. 50 points total.

1. (10 points) Consider the following sequences:

$$x[n] = \{2, 0, -1, 6, -3, 2, 0\}, -3 \le n \le 3,$$

 $y[n] = \{8, 2, -7, -3, 0, 1, 1\}, -5 \le n \le 1,$
 $w[n] = \{3, 6, -1, 2, 6, 6, 1\}, -2 \le n \le 4.$

The sample values of each of the above sequences outside the ranges specified are all zeros. Generate the following sequences:

(a)
$$c[n] = x[n+3],$$

(b)
$$d[n] = y[n-2],$$

(c)
$$e[n] = x[-n]$$

(d)
$$u[n] = x[n-3] + y[n+3]$$

(e)
$$v[n] = y[n-3] \cdot w[n+2],$$

(f)
$$s[n] = y[n+4] - w[n-3]$$
, and

(g)
$$r[n] = 3.9w[n]$$

Solution:

(a)
$$c[n] = x[n+3] = \{ 2 \ 0 \ -1 \ 6 \ -3 \ 2 \ 0 \}, \ -6 \le n \le 0.$$

(b)
$$d[n] = y[n-2] = \{ 8 \ 2 \ -7 \ -3 \ 0 \ 1 \ 1 \}, \ -3 \le n \le 3.$$

(c)
$$e[n] = x[-n] = \{ 0 \ 2 \ -3 \ 6 \ -1 \ 0 \ 2 \}, \ -3 \le n \le 3.$$

(d)
$$x[n-3] = \{2, 0, -1, 6, -3, 2, 0\}$$
 $0 \le n \le 6$
 $y[n+3] = \{8, 2, -7, -3, 0, 1, 1\}$ $-8 \le n \le -2$

$$u[n] = x[n-3] + y[n+3] = \{8, 2, -7, -3, 0, 1, 1, 0, 2, 0, -1, 6, -3, 2, 0\} \quad -8 \le n \le 6$$

(e)
$$y[n-3] = \{8, 2, -7, -3, 0, 1, 1\}$$
 $-2 \le n \le -4$
 $w[n+2] = \{3, 6, -1, 2, 6, 6, 1\}$ $-4 \le n \le 2$

$$v[n] = y[n-3]w[n+2] = \{-8, 4, -42, -18\}$$
 $-2 \le n \le 1$

(f)
$$y[n+4] = \{8, 2, -7, -3, 0, 1, 1\} -9 \le n \le -3$$

$$w[n-3] = \{3, 6, -2, 2, 6, 6, 1\} \quad 1 \le n \le 7$$

$$s[n] = y[n+4] - w[n-3] = \{8, 2, -7, -3, 0, 1, 1, 0, 0, 0, -3, -6, 2, -2, -6, -6, -1\}, -9 \le n \le 7$$

(g)
$$r[n] = 3.9w[n] = \{11.7, 23.4, -3.9, 7.8, 23.4, 23.4, 3.9\}$$
 $-2 \le n \le 4$

- 2. (10 points) Determine the fundamental period of the sinusoidal sequence $\tilde{x}[n] = A \sin(\omega_0 n)$ for the following values the angular frequency ω_0 :
 - (a) 0.3π ,
 - (b) 0.48π ,
 - (c) 0.45π ,
 - (d) 0.525π ,
 - (e) 0.7π ,
 - (f) 0.75π .

Solution:

- (a) For this problem, $\omega_0 = 0.3\pi$, so the equation reduces to $0.3\pi N = 2\pi r$, which is satisfied with N = 20, r = 3.
- (b) For this problem, $\omega_0 = 0.48\pi$, so the equation reduces to $0.48\pi N = 2\pi r$, which is satisfied with N = 25, r = 6.
- (c) For this problem, $\omega_0 = 0.45\pi$, so the equation reduces to $0.45\pi N = 2\pi r$, which is satisfied with N = 40, r = 9.
- (d) For this problem, $\omega_0 = 0.525\pi$, so the equation reduces to $0.525\pi N = 2\pi r$, which is satisfied with N = 80, r = 21.
- (e) For this problem, $\omega_0 = 0.7\pi$, so the equation reduces to $0.7\pi N = 2\pi r$, which is satisfied with N = 20, r = 7
- (f) For this problem, $\omega_0 = 0.75\pi$, so the equation reduces to $0.75\pi N = 2\pi r$, which is satisfied with N = 8, r = 3.
- 3. (10 points) Determine the fundamental period of the following periodic sequences:
 - (a) $\tilde{x}_a[n] = e^{j0.25\pi n}$,
 - (b) $\tilde{x}_b[n] = \cos(0.6\pi n + 0.3\pi)$
 - (c) $\tilde{x}_c[n] = \text{Re}\left(e^{j\pi n/8}\right) + \text{Im}\left(e^{j\pi n/5}\right)$
 - (d) $\tilde{x}_d[n] = 6\sin(0.15\pi n) \cos(0.12\pi n + 0.1\pi)$
 - (e) $\tilde{x}_e[n] = \sin(0.1\pi n + 0.75\pi) 3\cos(0.8\pi n + 0.2\pi) + \cos(1.3\pi n)$

Solution:

- (a) Here, $\omega_0 = 0.25\pi$, so that the equation for fundamental period reduces to $0.25\pi N = 2\pi r$, which is satisfied with N = 8, r = 1.
- (b) Here, $\omega_0 = 0.6\pi$, so that the equation for fundamental period reduces to $0.6\pi N = 2\pi r$, which is satisfied with N = 10, r = 2.
- (c) We first determine the fundamental period N_1 of Re $\{e^{j\pi n/8}\}=\cos(\pi n/8)$. In this case, the equation reduces to $0.125\pi N_1=2\pi r_1$, which is satisfied with $N_1=16$ and $r_1=1$. Next, we determine the fundamental period N_2 of Im $\{e^{j\pi n/5}=j\sin(0.2\pi n)\}$. In this case, the equation reduces to $0.2\pi N_2=2\pi r_2$, which is satisfied with $N_2=10$ and $r_2=1$. Hence the fundamental period is given by LCM $(N_1,N_2)=\text{LCM}(10,16)=80$.

- (d) We first determine the fundamental period N_1 of $\sin(0.15\pi n)$ In this case, the equation reduces to $0.15\pi N_1 = 2\pi r_1$, which is satisfied with $N_1 = 40 \text{ N}_1 = 40 \text{ and } r_1 = 3$. Next, we determine the fundamental period N_2 of $\cos(0.12\pi n - 0.1\pi)$. In this case, the equation reduces to $0.12\pi N_2 = 2\pi r_2$, which is satisfied with $N_2 = 50$ and $r_2 = 3$. Hence the fundamental period is given by LCM $(N_1, N_2) = LCM(50, 40) = 200$.
- (e) Again, we start by finding the fundamental period of each sinusoidal component and then find the least common multiple of the three to determine the overall fundamental period. The fundamental period N_1 of $\sin(0.1\pi n + 0.75\pi)$ In this case, the equation reduces to $0.1\pi N_1 =$ $2\pi r_1$, which is satisfied with $N_1 = 20$ and $r_1 = 1$. Next, we determine the fundamental period N_2 of $\cos(0.8\pi n + 0.2\pi)$. The equation reduces to $0.8\pi N_2 = 2\pi r_2$, which is satisfied with $N_2 = 5$ and $r_2 = 2$. Lastly, we determine the fundamental period N_3 of $\cos(1.3\pi n)$. The equation reduces to $1.3\pi N_3 = 2\pi r_3$, which is satisfied with $N_3 = 20$ and $r_3 = 13$. Hence the fundamental period is given by LCM $(N_1, N_2, N_3) = LCM(20, 5, 20) = 20$.
- 4. (10 points) Assume x(n) has period N. Are the following sequences periodic? Please provide your reasoning:
 - (i) x(1-2n)
 - (ii) $x(n) + (-1)^n x(0)$

Solution:

(i) Since x(n) has period N, we know x(n) = x(n-N) for all n. If we let y(n) = x(1-2n),

we have
$$y(n-N)=x(1-2(n-N))=x(1-2n)=y(n), \ \text{for all } n.$$
 Hence, $y(n)=x(1-2n)$ is periodic.

(ii) The sequence $z(n) = x(n) + (-1)^n x(0)$ can be considered as the summation of two sequences: x(n) and $y(n) = (-1)^n x(0)$. Since y(n) = y(n-2) for all n, y(n) has period 2. Hence, the period of z(n) (let it be M) can be computed as

$$M = \frac{2N}{GCD(2, N)}$$

If N is odd, GCD(2, N) = 1, and M = 2N; if N is even, GCD(2, N) = 2, and M = N.

- 5. (10 points) Write a **Python** or **MATLAB** program to plot a continuous-time signal x(t) = 0 $\cos(2\pi f_0 t)$ and its sampled version with the following frequency f_0 and sampling frequency f_s :
 - (i) $f_0 = 3 \text{ Hz}, f_s = 10 \text{ Hz}$
 - (ii) $f_0 = 7 \text{ Hz}, f_s = 10 \text{ Hz}$
 - (iii) $f_0 = 13 \text{ Hz}, f_s = 10 \text{ Hz}$

Is it possible to perfectly reconstruct the original continuous-time function from the samples? Why? Please provide your code, plots, and answers in your report.

Solution:

Only (i) can be perfectly reconstructed according to nyquist sampling theorem.

```
import numpy as np
import matplotlib.pyplot as plt
def sampling(f0, sf):
    t = np.arange(0,1,0.00001)
    gl = np.cos(2* np.pi * f0 * t)
    plt.plot(t,gl)

n = np.arange(0,sf+1,1)
sample_points = np.cos(2* np.pi * f0 * n/sf)
plt.plot(n/sf, sample_points, 'o')
plt.show()
```

sampling(f0=3, sf=10)

sampling(f0=7, sf=10)

sampling(f0=13, sf=10)

