OPTIMIZACIÓN DE FORMAS CUADRÁTICAS CON RESTRICCIONES

Nos interesa ahora resolver el siguiente problema

Dada una forma cuadrática $Q: \mathbb{R}^n \to \mathbb{R}$ $Q(x) = x^T A x$ buscar el valor máximo o el valor mínimo de $\frac{Q(x)}{\|x\|^2}$ para $x \neq 0_{\mathbb{R}^n}$ o también buscar el valor máximo o el valor mínimo sujeto a una restricción $\|x\| = 1$, que también podemos escribir como $x^T x = 1$ y que llamaremos *restricción estándar*

La respuesta es bastante inmediata cuando la forma cuadrática $\it Q$ carece de términos de producto cruzado, como observaremos en el siguiente ejemplo:

$$Q: \mathbb{R}^3 \to \mathbb{R} \ Q(x) = 2x_1^2 - 3x_2^2 + 4x_3^2$$

Como $2{x_1}^2 \le 4{x_1}^2$ y $-3{x_2}^2 \le 4{x_2}^2$ entonces se puede escribir que

$$2x_1^2 - 3x_2^2 + 4x_3^2 \le 4x_1^2 + 4x_2^2 + 4x_3^2 = 4(x_1^2 + x_2^2 + x_3^2) = 4||x||^2$$

es decir
$$Q(x) \le 4||x||^2$$
 (1)

De manera análoga

Como
$$-3x_1^2 \le 2x_1^2$$
 y $-3x_3^2 \le 4x_3^2$ podemos escribir
$$-3x_1^2 - 3x_2^2 - 3x_3^2 \le 2x_1^2 - 3x_2^2 + 4x_3^2$$
 y así resulta $-3(x_1^2 + x_2^2 + x_3^2) \le Q(x)$
$$-3\|x\|^2 \le Q(x) \ (2)$$

De (1) y (2) escribimos $-3||x||^2 \le Q(x) \le 4||x||^2 \forall x \in \mathbb{R}^3$

Resulta
$$-3 \le \frac{Q(x)}{\|x\|^2} \le 4$$
 si $x \ne 0_{\mathbb{R}^3}$

Podemos concluir que :

$$min_{\|x\|
eq 0} \left(rac{Q(x)}{\|x\|^2}
ight) \geq -3$$
 y que $min_{\|x\|
eq 0} \left(rac{Q(x)}{\|x\|^2}
ight) \leq 4$

Para determinar que efectivamente el $min_{\|x\|\neq 0}\left(\frac{Q(x)}{\|x\|^2}\right)=-3$ alcanzaría con encontrar vectores en los que se alcanza efectivamente ese valor por ejemplo $Q\begin{pmatrix}0\\1\\0\end{pmatrix}=Q\begin{pmatrix}0\\-1\\0\end{pmatrix}=-3$ y de manera análoga observar que el $m\acute{a}x_{\|x\|\neq 0}\left(\frac{Q(x)}{\|x\|^2}\right)=4$ se realiza en $x=\pm\begin{pmatrix}0\\0\\1\\1\end{pmatrix}$.

A fin de encontrar todos los vectores sobre los que se alcanza el $min_{\|x\|\neq 0}\left(\frac{Q(x)}{\|x\|^2}\right)$

veremos primero donde vale la igualdad $Q(x) = -3||x||^2$

Planteamos entonces que:

$$2x_1^2 - 3x_2^2 + 4x_3^2 = Q(x) = -3||x||^2 = -3x_1^2 - 3x_2^2 - 3x_3^2$$

Resulta pues que : $5x_1^2 + 7x_3^2 = 0 \Leftrightarrow x_1 = x_3 = 0, \forall x_2 \in \mathbb{R}$

Los vectores llamados minimizantes son de la forma $x_m = \begin{pmatrix} 0 \\ x_2 \\ 0 \end{pmatrix}$, $\forall x_2 \in \mathbb{R}$

Si agregamos que ||x||=1 hemos encontrado para este problema los dos vectores dónde se realiza o alcanza el valor mínimo de la forma cuadrática Q(x)

Es decir
$$x_m = \pm \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Razonando de manera similar podemos encontrar que $m\acute{a}x_{\|x\|\neq 0}\left(\frac{Q(x)}{\|x\|^2}\right)=4$ se realiza en los vectores llamados maximizantes que en este caso serán $x_M=\pm\begin{pmatrix}0\\0\\1\end{pmatrix}$

Observe que en este ejemplo el máximo y el mínimo de valor que toman los cocientes $\frac{Q(x)}{\|x\|^2}$ $(x \neq 0)$ (denominados cocientes de Rayleigh), son, respectivamente, el máximo y el mínimo coeficiente de la forma cuadrática. Además, los maximizantes (minimizantes) son los vectores que tienen nulas las componentes correspondientes a los coeficientes de la forma cuadrática que son distintos del máximo (mínimo).

Caso general

Estudiemos ahora el caso general, es decir $Q(x) = x^T A x$ con $A \in \mathbb{R}^{n \times n}$ simétrica.

Sean P ortogonal y D diagonal tales que $A = PDP^T$. Recordemos que D tiene en su diagonal a los autovalores de A y que las columnas de P son autovectores de A.

Llamemos λ_M y λ_m al máximo y al mínimo autovalor de A respectivamente, y supongamos que hemos ordenado los autovalores de A en forma decreciente, que λ_M tiene multiplicidad r y que λ_m tiene multiplicidad k, es decir

$$\lambda_M = \lambda_1 = \dots = \lambda_r < \lambda_{r+1} \leq \dots < \lambda_{n-k+1} = \dots = \lambda_n = \lambda_m.$$

Entonces, si $P = [u_1 \cdots u_n]$ tenemos que

$$S_{\lambda_M} = \operatorname{gen}\{u_1, \dots, u_r\}$$
 y $S_{\lambda_m} = \operatorname{gen}\{u_{n-k+1}, \dots, u_n\}.$

Con el cambio de variable x = Py la forma cuadrática Q adquiere la expresión

$$Q(x) = \tilde{Q}(y) = y^{T} D y = \lambda_{1} y_{1}^{2} + \dots + \lambda_{n} y_{n}^{2}.$$
 (3)

Teniendo en cuenta que

$$\lambda_i y_i^2 = \lambda_M y_i^2$$
 para todo $1 \le i \le r$ y $\lambda_i y_i^2 \le \lambda_M y_i^2$ para todo $r + 1 \le i \le n$, (4)

deducimos inmediatamente la desigualdad

$$Q(x) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \le \lambda_M (y_1^2 + \dots + y_n^2) = \lambda_M ||y||^2.$$
 (5)

Como P es ortogonal, y por lo tanto ||y|| = ||x||, resulta

$$Q(x) \le \lambda_M ||x||^2 \quad \forall x \in \mathbb{R}^n.$$

Por otra parte, teniendo en cuenta (3) y que

 $\lambda_i y_i^2 \ge \lambda_m y_i^2$ para todo $1 \le i \le n-k$ y $\lambda_i y_i^2 = \lambda_m y_i^2$ para todo $n-k+1 \le i \le n$, resulta la desigualdad

$$Q(x) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \ge \lambda_m (y_1^2 + \dots + y_n^2) = \lambda_m ||y||^2,$$
(6)

y de allí, teniendo en cuenta nuevamente que ||x|| = ||y||, obtenemos

$$Q(x) \ge \lambda_m ||x||^2 \quad \forall x \in \mathbb{R}^n.$$

En resumen, hemos probado que

$$\lambda_m ||x||^2 \le Q(x) \le \lambda_M ||x||^2, \quad \forall x \in \mathbb{R}^n,$$

y por lo tanto que

$$\max_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} \leq \lambda_M \qquad \text{y} \qquad \min_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} \geq \lambda_m.$$

Ahora veamos que el máximo es λ_M y que el mínimo es λ_m . Para ello basta exhibir vectores x_M y x_m tales que $\frac{Q(x_M)}{||x||^2} = \lambda_M$ y $\frac{Q(x_m)}{||x||^2} = \lambda_m$.

Como estamos interesados en hallar todos los maximizantes y todos los minimizantes, procedamos como en el ejemplo anterior. Primero busquemos los x que verifican la igualdad

$$Q(x) = \lambda_M ||x||^2.$$

Como x = Py, ||x|| = ||y|| y $Q(x) = y^T Dy$, esto es equivalente a buscar los y que verifican la igualdad

$$\lambda_1 y_1^2 + \dots + \lambda_n y_n^2 = \lambda_M ||y||^2.$$

De (4) se deduce inmediatamente que estos resultan ser todos los y de la forma

$$y = [y_1 \cdots y_r \ 0 \cdots 0]^T.$$

Luego, los x que verifican $Q(x) = \lambda_{max} ||x||^2$ son aquéllos de la forma

$$x = P[y_1 \cdots y_r \ 0 \cdots 0]^T = y_1 u_1 + y_2 u_2 + \cdots + y_r u_r.$$

Como $\{u_1, \ldots, u_r\}$ es base de \mathcal{S}_{λ_M} , hemos demostrado que

$$Q(x) = \lambda_M ||x||^2 \iff x \in \mathcal{S}_{\lambda_M}.$$

Por lo tanto,

$$\max_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} = \lambda_M \quad \text{y el máximo se alcanza en los } x \in \mathcal{S}_{\lambda_M} - \{0\}.$$

Respecto de los minimizantes, procediendo en forma similar se deduce que

$$Q(x) = \lambda_m ||x||^2 \Longleftrightarrow x \in \mathcal{S}_{\lambda_m},$$

con lo cual

$$\min_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} = \lambda_m \quad \text{y el mínimo se alcanza en los } x \in \mathcal{S}_{\lambda_m} - \{0\}.$$

Si ahora imponemos la restricción ||x|| = 1, de lo anterior resulta inmediatamente que

$$\max_{\|x\|=1} Q(x) = \lambda_M, \qquad \min_{\|x\|=1} Q(x) = \lambda_m,$$

que el máximo se alcanza en los $x \in \mathcal{S}_{\lambda_M}$ tales que ||x|| = 1 y que el mínimo se alcanza en los $x \in \mathcal{S}_{\lambda_m}$ tales que ||x|| = 1.

Teorema 3 (Rayleigh) Sea $A \in \mathbb{R}^{n \times n}$ simétrica y $Q(x) = x^T A x$. Sean λ_M y λ_m los autovalores máximo y mínimo de A respectivamente, y sean S_{λ_M} y S_{λ_m} los respectivos autoespacios. Entonces

- 1. $\lambda_m \|x\|^2 \leq Q(x) \leq \lambda_M \|x\|^2 \quad \forall x \in \mathbb{R}^n \ (Designal dad \ de \ Rayleigh).$ $Además, \ Q(x) = \lambda_m \|x\|^2 \ si \ y \ sólo \ si \ x \in \mathcal{S}_{\lambda_m} \ y \ Q(x) = \lambda_M \|x\|^2 \ si \ y \ sólo \ si \ x \in \mathcal{S}_{\lambda_M}.$
- 2. $\max_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} = \lambda_M \ y \ el \ m\'{a}ximo \ se \ alcanza \ en \ los \ x \in \mathcal{S}_{\lambda_M} \{0\}.$
- 3. $\min_{\|x\|\neq 0} \frac{Q(x)}{\|x\|^2} = \lambda_m \ y \ el \ m'inimo \ se \ alcanza \ en \ los \ x \in \mathcal{S}_{\lambda_m} \{0\}.$

En particular, $\max_{\|x\|=1} Q(x) = \lambda_M$ (resp. $\min_{\|x\|=1} Q(x) = \lambda_m$) y el máximo (resp. mínimo) se produce en los autovectores unitarios asociados a λ_M (resp. λ_m).

Ejemplo

Consideremos la forma cuadrática
$$Q: \mathbb{R}^3 \to \mathbb{R} \ Q(x) = x^T \begin{pmatrix} 5 & 3 & 0 \\ 3 & 5 & 0 \\ 0 & 0 & 8 \end{pmatrix} x$$

Con el polinomio característico $p_A(\lambda) = ((5 - \lambda)^2 - 9)(\lambda - 8)$

Y autovalores $\lambda_1=\lambda_2=8$ y $\lambda_3=2$

Es decir
$$\lambda_M=8$$
 y $\lambda_m=2$

Por lo que
$$m \acute{a} x_{||x||=1} Q(x) = 8$$
 y $m \acute{n}_{||x||=1} Q(x) = 2$

Para calcular los vectores *maximizantes* y los vectores *minimizantes* consideramos los subespacios propios

$$S_{\lambda_{M}} = gen\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \ \forall \ S_{\lambda_{m}} = gen\left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\}$$

Entonces
$$min_{||x||=1}Q(x)=2$$
 y se realiza en $x_m\in S_{\lambda_m}$: $x_m=\pm\begin{pmatrix} \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}}\\ 0 \end{pmatrix}$

Para hallar los vectores maximizantes expresamos $x_M = \alpha \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} : \alpha^2 + \beta^2 = 1$

En este caso son infinitos los vectores donde se alcanza el $m \acute{a} x_{||x||=1} Q(x) = 8$

Notamos que en este caso hay un número infinito de maximizantes y que todos ellos se encuentran sobre la circunferencia de radio 1 centrada en el origen que está contenida en el plano S_{λ_M} .

$$\text{Observación}: Q \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}^T \begin{pmatrix} 5 & 3 & 0 \\ 3 & 5 & 0 \\ 0 & 0 & 8 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = 2$$

(no debería llamarnos la atención)

Ejemplo:

Veamos ahora el siguiente caso

Se trata de minimizar la forma cuadrática $Q(x)=x_1^2+x_2^2=\|x\|^2$ sujeto a la restricción dada por $R(x)=9x_1^2+4x_2^2=36$

Claramente esta restricción no es la llamada estándar

De manera que lo primero que haremos es un cambio de variable que nos permita "estandarizar" la restricción

Para esto escribimos $\frac{9}{36}x_1^2 + \frac{4}{36}x_2^2 = 1$ y de manera conveniente $\left(\frac{x_1}{2}\right)^2 + \left(\frac{x_2}{3}\right)^2 = 1$

Llamando ahora $\frac{x_1}{2} = z_1$ y $\frac{x_2}{3} = z_2$ la restricción queda ahora $z_1^2 + z_2^2 = 1 = \|z\|^2$

Volviendo a la forma cuadrática a optimizar, debemos expresar la misma en términos de las variables de la restricción.

De manera que
$$Q(x) = x_1^2 + x_2^2 = (2z_1)^2 + (3z_2)^2 = \widehat{Q(z)}$$

Así el problema de minimizar $Q(x)=x_1^2+x_2^2$ sujeto a $9x_1^2+4x_2^2=36$ nos lleva a buscar el mínimo de $\widehat{Q(z)}=4z_1^2+9z_2^2$ sujeto a $z_1^2+z_2^2=1$

Y este problema ya sabemos cómo tratarlo

$$\widehat{Q(z)} = (z_1 \quad z_2)^T \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \text{ donde } \min_{\|z\|=1} \widehat{Q(z)} = 4 \text{ y } z_m = \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Volviendo a la variable original con el cambio que realizamos $\frac{x_1}{2} = z_1$ $\frac{x_2}{3} = z_2$ escribimos:

$$\binom{x_1}{x_2} = \binom{2}{0} \quad \binom{2}{3} \binom{z_1}{z_2} \text{ y así } x_m = \pm \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \binom{1}{0} = \pm \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Y
$$Q\left(\pm {2 \choose 0}\right) = 4$$
 que es el mínimo que estábamos buscando.

Observación

Dado que $Q(x) = x_1^2 + x_2^2 = ||x||^2$ se trata de la función distancia al cuadrado, este problema también podría pensarse geométricamente ya que siendo

$$R(x) = 9x_1^2 + 4x_2^2 = 36 \Leftrightarrow R(x) = x^T \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} x$$

de manera que R es una forma cuadrática y en este caso $\mathcal{N}_{36}=\{x\in\mathbb{R}^2:R(x)=36\}$

Este conjunto de nivel corresponde a los puntos de una elipse de ecuación

$$\left(\frac{x_1}{2}\right)^2 + \left(\frac{x_2}{3}\right)^2 = 1$$
 y los puntos más cercanos al origen son $x_m = \pm \binom{2}{0}$.

Y también tenemos los más alejados que son $x_M = \pm \begin{pmatrix} 0 \\ 3 \end{pmatrix}$.

En general, el problema de minimizar o maximizar una forma cuadrática $x^T A x$, con $A \in \mathbb{R}^{n \times n}$ simétrica, sujeto a la restricción sin productos cruzados

$$x^T \Lambda x = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2 = 1$$
, con $\lambda_i > 0 \,\forall i$,

se reduce a uno con la restricción estándar $z^Tz=1$ efectuando el cambio de variable

$$z_1 = \sqrt{\lambda_1} x_1, \ldots, z_n = \sqrt{\lambda_n} x_n,$$

que en forma matricial se expresa

$$z = \Lambda^* x$$
 con $\Lambda^* = \begin{bmatrix} \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda_n} \end{bmatrix}$ $(x = \Lambda^{*-1} z).$

En efecto, con ese cambio de variable tenemos que

$$x^T \Lambda x = x^T \Lambda^{*2} x = (\Lambda^* x)^T (\Lambda^* x) = z^T z,$$

y que,

$$x^{T}Ax = (\Lambda^{*-1}z)^{T}A(\Lambda^{*-1}z) = z^{T}(\Lambda^{*-1}A\Lambda^{*-1})z.$$

Luego, llamando $A^* = \Lambda^{*-1} A \Lambda^{*-1}$, tenemos que,

$$\max_{x^T \Lambda x = 1} x^T A x = \max_{z^T z = 1} z^T A^* z,$$

y que x maximiza x^TAx sujeto a la restricción $x^T\Lambda x=1$ si y sólo si $x=\Lambda^{*-1}z$ y z maximiza z^TA^*z sujeto a $z^Tz=1$. Lo mismo vale si cambiamos máximo por mínimo.

Ejemplo

Un poco más complicado proponemos ahora el siguiente problema de optimización

Dada la forma cuadrática
$$Q(x) = x^T \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} x$$
 queremos buscar el $m \acute{a} x_{R(x)=1} Q(x)$ donde

$$R(x) = x^T \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x$$
 una forma cuadrática definida positiva .

Con el objetivo de "estandarizar" la restricción trabajaremos primero con ${\it R}$

Sea
$$B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 la matriz de R .

Con autovalores
$$\beta_1=3$$
 y $\beta_2=1$ y $S_{\beta_1}=gen\left\{ inom{1}{1} \right\}$; $S_{\beta_2}=gen\left\{ inom{-1}{1} \right\}$ de manera que

construyendo
$$P_B = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 podemos realizar un cambio de variables en la restricción para

diagonalizarla y escribir:
$$R(x) = x^T \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x$$
 con $x = P_B y$ como $\widetilde{R(y)} = y^T \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} y$

o también
$$\widetilde{R(y)} = 3y_1^2 + y_2^2$$

De manera que: $R(x) = x^T \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x = 1 \Leftrightarrow \widetilde{R(y)} = y^T \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} y = 1 \Leftrightarrow 3y_1^2 + y_2^2 = 1$

Escribiendo ahora que $\sqrt{3}y_1 = z_1$ y $y_2 = z_2$ y matricialmente como $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$

queda finalmente ${z_1}^2 + {z_2}^2 = 1$ es decir, con los cambios realizados, logramos estandarizar la restricción.

$$R(x) = 1 \Leftrightarrow \widetilde{R(y)} = 1 \Leftrightarrow \widehat{R(z)} = 1$$

$$\operatorname{con} \mathbf{x} = P_B \mathbf{y} = P_B \begin{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{pmatrix}$$

Ahora necesitamos escribir la forma cuadrática a optimizar en la variable $z={z_1\choose z_2}$

Realizamos los mismos cambios:

$$Q(x) = x^{T} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} x = \begin{pmatrix} \left(\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\right) \begin{pmatrix} y_{1} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} \end{pmatrix}^{T} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \left(\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\right) \begin{pmatrix} y_{1} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} \left(\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\right) \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} \end{pmatrix}^{T} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \left(\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\right) \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} \end{pmatrix}$$
$$= Q(z) = (z_{1} \quad z_{2}) \begin{pmatrix} \frac{5}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix}$$

El problema ahora es buscar el

$$m \acute{a} x_{R(x)=1} Q(x) \Leftrightarrow m \acute{a} x_{\widehat{R(z)}=1} Q(z)$$

Es decir, llegamos a un problema estándar que además para este caso particular quedó sencillo pues Q(z) tiene asociada una matriz diagonal por lo que $m \acute{a} x_{\widehat{R(z)}=1} Q(z) = \frac{5}{3}$ y se realiza en los

$$z_M = \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Verificamos que efectivamente

$$\left(\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)^{T} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \left(\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \frac{5}{3}$$

Que no es otra cosa que el valor de Q en el vector $x_M = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$

Análogamente si calculamos usando
$$z_M = {-1 \choose 0}$$

En resumen
$$m \acute{a} x_{R(x)=1} Q(x) = \frac{5}{3}$$
 y se realiza en los vectores $x_M = \pm \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$.

Comentarios finales:

Si por el contrario el problema final hubiera quedado sin una matriz diagonal, habría que volver a empezar.

- ullet Buscando la matriz simétrica de la forma cuadrática Q(z)
- Diagonalizar la matriz simétrica a fin de encontrar el λ_M y los vectores sobre los que se alcanza
- Una vez hallados en la variable z con los cambios efectuados anteriormente encontraríamos los x_M que pedía el problema original

Es verdad que todo este procedimiento lleva algunas cuentas adicionales, pero las mismas no son más que operaciones entre matrices.

Ejercicio 11 de la Práctica 6

$$Q_1(x) = x_1 x_2,$$
 $Q_2(x) = 9x_1^2 + 3x_2^2 - 8x_1 x_2.$

(a) Hallar
$$\max_{Q_2(x)=1} Q_1(x)$$
 y $\min_{Q_2(x)=1} Q_1(x)$.

- (b) Hallar y graficar el conjunto de todos los $x \in \mathbb{R}^2$ tales que $Q_2(x) = 1$ y que maximizan $Q_1(x)$.
- (c) Hallar y graficar el conjunto de todos los $x \in \mathbb{R}^2$ tales que $Q_2(x) = 1$ y que minimizan $Q_1(x)$.

Dada la forma cuadrática
$$Q_1(x)=x^T\begin{pmatrix}0&\frac12\\\frac12&0\end{pmatrix}x$$
 queremos buscar el $m\acute{a}x_{Q_2(x)=1}Q_1(x)$ donde

 $Q_2(x) = x^T \begin{pmatrix} 9 & -4 \\ -4 & 3 \end{pmatrix} x$ una forma cuadrática definida positiva.

Con el objetivo de "estandarizar" la restricción trabajaremos primero con $Q_2(x)$

Sea
$$B=\begin{pmatrix} 9 & -4 \ -4 & 3 \end{pmatrix}$$
 la matriz de Q_2 .

Con autovalores
$$\beta_1=11$$
 y $\beta_2=1$ y $S_{\beta_1}=gen\left\{ {2\choose -1} \right\}$; $S_{\beta_2}=gen\left\{ {1\choose 2} \right\}$ de manera que

construyendo
$$P_B = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$$
 podemos realizar un cambio de variables en la restricción para

diagonalizarla y escribir:
$$Q_2(x) = x^T \begin{pmatrix} 9 & -4 \\ -4 & 3 \end{pmatrix} x$$
 con $x = P_B y$ como $\widetilde{Q_2(y)} = y^T \begin{pmatrix} 11 & 0 \\ 0 & 1 \end{pmatrix} y$

o también
$$\widetilde{Q_2(y)} = 11y_1^2 + y_2^2$$

De manera que:
$$Q_2(x) = x^T \begin{pmatrix} 9 & -4 \\ -4 & 3 \end{pmatrix} x = 1 \Leftrightarrow \widetilde{Q_2(y)} = 11y_1^2 + y_2^2 = 1$$

Escribiendo ahora que $\sqrt{11}y_1=z_1$ y $y_2=z_2$ y matricialmente como $\begin{pmatrix} y_1\\y_2 \end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{11}} & 0\\ 0 & 1 \end{pmatrix}\begin{pmatrix} z_1\\z_2 \end{pmatrix}$

queda finalmente ${z_1}^2 + {z_2}^2 = 1$ es decir, con los cambios realizados, logramos estandarizar la restricción.

$$Q_2(x) = 1 \Leftrightarrow \widetilde{Q_2(y)} = 1 \Leftrightarrow \widehat{Q_2(z)} = 1$$

$$\operatorname{con} x = P_B y = P_B \begin{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{11}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{11}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

Ahora necesitamos escribir la forma cuadrática a optimizar en la variable $z=\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$

Realizamos los mismos cambios:

$$Q_{1}(x) = x^{T} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} x = \begin{pmatrix} \left(\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} {y_{1} \choose y_{2}} \right)^{T} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} \left(\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} {y_{1} \choose y_{2}} \end{pmatrix}$$

$$= \left(\begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{11}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right)^T \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} \left(\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{11}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right)$$

$$= \widetilde{Q}_1(z) = (z_1 \quad z_2) \begin{pmatrix} \frac{-2}{55} & \frac{3}{10\sqrt{11}} \\ \frac{3}{10\sqrt{11}} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

El problema ahora es buscar el

$$m \land x_{Q_2(x)=1}Q_1(x) \Leftrightarrow m \land x_{\widehat{Q_2(z)}=1}\widetilde{Q_1}(z)$$

Es decir, llegamos a un problema estándar donde las cuentas no son amigables, pero pueden realizarse.

En este caso los autovalores son
$$\beta_1 = \frac{1}{22}(4 + 3\sqrt{3})$$
 y $\beta_2 = \frac{1}{22}(4 - 3\sqrt{3})$

$$v_1 = \pm \frac{\begin{pmatrix} -8\sqrt{11} + 5\sqrt{33} \\ \frac{11}{\|(-8\sqrt{11} + 5\sqrt{33})\|} \\ 11 \end{pmatrix}$$

$$v_{1} = \pm \frac{\begin{pmatrix} -8\sqrt{11} + 5\sqrt{33} \\ 11 \end{pmatrix}}{\left\| \begin{pmatrix} -8\sqrt{11} + 5\sqrt{33} \\ 11 \end{pmatrix} \right\|} \qquad v_{2} = \pm \frac{\begin{pmatrix} -8\sqrt{11} - 5\sqrt{33} \\ 11 \end{pmatrix}}{\left\| \begin{pmatrix} -8\sqrt{11} - 5\sqrt{33} \\ 11 \end{pmatrix} \right\|}$$

Un ejemplo más:

Hallemos , si existen, los valores máximos y mínimos de $Q(x) = x_1^2 + x_2^2 = ||x||^2$ sujeto a una restricción no necesariamente definida positiva , como $R(x) = x^T \begin{pmatrix} \frac{7}{5} & \frac{-26}{5} \\ \frac{-26}{5} & \frac{-32}{5} \end{pmatrix} x = 1$

En este caso la R tiene autovalores

$$\beta_1 = 4 \vee \beta_2 = -9 \vee S_{\beta_1} = gen\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}; S_{\beta_2} = gen\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$

construyendo $P_B = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ podemos realizar un cambio de variables en la restricción para

diagonalizarla y escribir:
$$R(x) = x^T \begin{pmatrix} \frac{7}{5} & \frac{-26}{5} \\ \frac{-26}{5} & \frac{-32}{5} \end{pmatrix} x = 1 \quad \text{con } x = P_B y$$

como
$$\widetilde{R(y)} = y^T \begin{pmatrix} 4 & 0 \\ 0 & -9 \end{pmatrix} y = 1$$

o también
$$\widetilde{R(y)} = 4y_1^2 - 9y_2^2 = 1$$

De manera que:
$$R(x) = x^T \begin{pmatrix} \frac{7}{5} & \frac{-26}{5} \\ \frac{-26}{5} & \frac{-32}{5} \end{pmatrix} x = 1 \Leftrightarrow \widetilde{R(y)} = y^T \begin{pmatrix} 4 & 0 \\ 0 & -9 \end{pmatrix} y = 1 \Leftrightarrow 4y_1^2 - 9y_2^2 = 1$$

La restricción no es definida positiva y el cambio de variables usado anteriormente no puede realizarse.

Veamos entonces el problema de manera geométrica

Los puntos que satisfacen $4y_1^2 - 9y_2^2 = 1$ corresponden a una hipérbola de ecuación canónica dada por:

$$\left(\frac{y_1}{\frac{1}{2}}\right)^2 - \left(\frac{y_2}{\frac{1}{3}}\right)^2 = 1$$
 donde observamos que los puntos más cercanos al origen corresponden a

$$y=\pm\begin{pmatrix}\frac{1}{2}\\0\end{pmatrix}$$
 que se corresponden con los $x_m=\pm\begin{pmatrix}\frac{2}{\sqrt{5}}&\frac{1}{\sqrt{5}}\\\frac{-1}{\sqrt{5}}&\frac{2}{\sqrt{5}}\end{pmatrix}\begin{pmatrix}\frac{1}{2}\\0\end{pmatrix}$ usando la matriz $\begin{pmatrix}\frac{2}{\sqrt{5}}&\frac{1}{\sqrt{5}}\\\frac{-1}{\sqrt{5}}&\frac{2}{\sqrt{5}}\end{pmatrix}$

que corresponde a la de cambio de coordenadas.

$$x_m = \pm \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{-1}{2\sqrt{5}} \end{pmatrix} \text{ En dichos puntos } Q \begin{pmatrix} \pm \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{-1}{2\sqrt{5}} \end{pmatrix} \end{pmatrix} = \frac{1}{4}$$

En este problema la forma cuadrática ${\it Q}\,$ no tiene máximo.

