

Agenda

- What is Causal Inference?
- What is Causal Inference with Machine Learning?
- Technique #1 : Meta Learners
 - Case Study in Economics with EconML
- Technique #2 : Uplift Modeling
 - Case Study in Marketing with CausalML
- Summary

For the sake of time, please save your questions until the end!

About Me

Hajime Takeda (Jimmy)

Education & Career

- Master's in CS at Kyoto University
- Data Analyst at Procter & Gamble
- Data Scientist at MIKI HOUSE

Conferences Speaker

- PyData Global (2022)
- ODSC EAST (2023)
- PyData NYC (2023)
- PyData London (2024)

MIKI HOUSE

Expected Takeaways

- Understand the key concepts and approaches of Causal Inference with Machine Learning
- Learn how to run **Meta Learners and Uplift Modeling** using EconML/CausalML

Typical Scenario

Jessy Marketing

"Awesome! We sent **coupons** to **some users** and their **purchase rate** was **twice** as high as others! That means **the coupons must have doubled the purchase rate**!"

	Without Coupon	With Coupon COUPON
# of Customers	1,000	1,000
# of Purchasers	100	200
Purchase rate (%)	10%	20%

Typical Scenario

Jessy Marketing

"We sent coupons to **customers who purchased** within the last 12 months"

Pitfall: Selection Bias

Customers who received coupons might have purchased anyway.

What is Causal Inference?

Causal Inference is the process of determining whether a cause-and-effect relationship exists between **Treatment** and **Outcome**.

What is the challenge?

Counterfactual: We can only observe one outcome from the same individual.

Randomized Controlled Trial (RCT)

Participants are $\underline{\text{randomly}}$ assigned to either a treatment group or a control group. RCT = A/B Testing

Limitations of RCT

Business

- RCTs take a lot of time.
- RCTs result in Opportunity losses in sales.

Social and Economic Program

- Assigning citizens randomly to control groups is infeasible.
- Many policies are one-time and irreversible.

Healthcare

 It is ethically problematic to randomly assign people with life-threatening conditions to control groups.

That's why we use Causal Inference.

Simpson's Paradox - Challenges of Observed Data

Questions: What's the effect of exercise on cholesterol?

Simpson's Paradox : Overall and subgroup trends differ.

Confounding Variable

Confounding variable affects both treatment and outcome.

History of Causal Machine Learning

Donald Rubin

Establishment of Traditional Causal Inference

Fusion of Causal Inference and Machine

1970s - 1990s

2000s

2010s

2020s

Big Data

Machine learning technology evolved rapidly with the increase in data volume.

Machine Learning vs. Causal ML

Supervised Machine Learning focuses on "Prediction", while Causal Machine Learning focuses on "Causality".

	Supervised Machine Learning	Causal Machine Learning / Causal Inference		
Purpose	Prediction based on correlation	Estimating the treatment effect		
Questions	What will the customer buy next? What is the probability?	Did the coupon increase sales? How much was its impact?		
Variables	X (Features): Age, gender, <u>coupon availability</u> Y (Target Variable): Sales	X (Control Variables): Age, gender Z (Treatment Variable): Coupon availability Y (Outcome Variable): Sales uplift		

Two Techniques

1. Meta Learners

- The goal is to measure the treatment effect
- i.e. S-learner, T-learner, DML etc.

2. Uplift Modeling

- The goal is to select the right users for targeting
- i.e. uplift tree / uplift random forest

Persuadables	Sure Things
2 couron }	
Lost Cause	Sleeping Dogs
	(-)

What is Treatment Effect?

Potential Outcomes Framework, also known as Rubin causal model (RCM)

Treatment Effect
$$\tau = \frac{Y(1)}{Y(0)} - \frac{Y(0)}{10\%}$$

 τ (Tau): Treatment effect

Y (Outcome): Sales, Purchase rate, etc.

Z (Treatment): Campaign, Coupon, etc.

X (Confounders): Age, Gender, Living location,

Preference, Past purchase history, etc.

Types of Treatment Effect

There are mainly 3 types of treatment effects

Term	Abbreviation	Formula	Definition
Average Treatment Effect	ATE	$\tau ATE = E[Y(1) - Y(0)]$	Across the entire customers
Conditional Average Treatment Effect	CATE	$\tau CATE(X) = E[Y(1) - Y(0) X]$	Segment level (i.e. gender, age groups)
Individual Treatment Effect	ITE	$\tau i = Yi (1) - Yi (0)$	Individual Level

How to Calculate Treatment Effect

Question: Did a coupon increase sales?

					• • •			
	2	X		Z	Y	<i>Y</i> (1)	<i>Y</i> (0)	<i>Y</i> (1) - <i>Y</i> (0)
Name	Age	Gender	Location	Treatment	Outcome with treatment		Outcome without treatment	ITE : Individual Treatment Effect
Anne	30	Male	Urban	0	0	NA	0	?
Ben	40	Female	Urban	0	0	NA	0	?
Chris	45	Female	Rural	0	1	NA	1	?
Diana	58	Female	Rural	0	0	NA	0	?
Ethan	25	Female	Urban	1	1	1	1 NA	
Faye	38	Male	Rural	1	0	0	NA	?
Gary	42	Male	Urban	1	1	1	NA	?
Helen	60	Male	Urban	1	1	1	NA	?

Meta Learners

Meta learners are meta-algorithms designed to estimate treatment effects by using ML models to handle unobserved outcomes

	2	Y		Z	Y	<i>Y</i> (1)	<i>Y</i> (0)	<i>Y</i> (1) - <i>Y</i> (0)	
Name	Age	Gender	Location	Treatment	Outcome	Outcome with treatment	Outcome without treatment	ITE : Individual Treatment Effect	
Anne	30	Male	Urban	0	0	0.9	0	+0.9	
Ben	40	Female	Urban	0	0	0.8	0	+0.8	
Chris	45	Female	Rural	0	1	0.9	1	-0.1	
Diana	58	Female	Rural	0	0	0.6	0	+0.6	
Ethan	25	Female	Urban	1	1	1	0.2	+0.8	
Faye	38	Male	Rural	1	0	0	0.1	-0.1	
Gary	42	Male	Urban	1	1	1 0.5		+0.5	
Helen	60	Male	Urban	1	1	1	0.4	+0.6	

Types of Meta Learners

Learner	Approach	Reference	Training Speed (relative to S learner)
S Learner	<u>S</u> ingle Model Approach	Künzel et al. 2019	1x
T Learner	<u>T</u> wo-Model Approach	Künzel et al. 2019	2x
X Learner	<u>Cross</u> -Fitting Approach	Künzel et al. 2019	5x
DR Learner	<u>D</u> oubly <u>R</u> obust	Kennedy et al.2020	13x
DML	D ouble M achine L earning	Chernozhukov, Victor, et al. 2018	27x

S Learner - Single Model Approach

S Learner uses a single model for training and prediction

		X		Z	Y	Y(1)	Υ(0)	<i>Y</i> (1) - <i>Y</i> (0)
Name	Age	Gender	Location	Treatment	Outcome	Outcome with treatment	Outcome without treatment	ITE : Individual Treatment Effect
Anne	30	Male	Urban	0	0	0.4	0.1	0.3
Ben	40	Female	Urban	0	0	0.6	0.2	0.4
Chris	45	Female	Rural	0	1	0.7 0.5	0.5	0.2
Diana	58	Female	Rural	0	0	0.9	0.6	0.3
Ethan	25	Female	Urban	1	1	0.6	0.1	0.5
Faye	38 Male Rural		Rural	1	0	0.2	0.0	0.2
Gary	42	Male	Urban	1	1	0.7	0.3	0.4
Helen	60	Male	Urban	1 1		0.8	0.6	0.2
							<u> </u>	

T Learner - Two Model Approach

Uses separate models for treatment and control groups

(Treated)

How to Select the Appropriate Meta Learner

Step 1: Start with simple methods to get a baseline
Step 2: Compare other methods by measuring accuracy such as MAPE or RMSE, and
performing refutation for robustness.

Learner	Approach	Training Speed (relative to S learner)
S Learner	<u>S</u> ingle Model Approach	1x
T Learner	<u>T</u> wo-Model Approach	2x
X Learner	<u>Cross</u> -Fitting Approach	5x
DR Learner	<u>D</u> oubly <u>R</u> obust	13x
DML	<u>D</u> ouble <u>M</u> achine <u>L</u> earning	27x

Useful Libraries

I will use EconML for the case study of meta learners , and CausalML for the case study of uplift modeling.

Library	Features	GitHub
III EconML	 Covers a wide range of algorithms, strong in economics Part of a bigger DoWhy ecosystem Developed by Microsoft Research 	py-why/EconM L (3.6k star)
Causal ML	 Focus on Uplift modeling and Meta Learners Designed as a standalone tool Developed by Uber 	uber/causalml (4.8k star)

Get the Full Code Here!

https://bit.ly/causalml

Or

https://github.com/takechanman1228/Effective-Uplif-Modeling

Lalonde Dataset: National Supported Work Demonstration

An employment program led by Lalonde in the 1970s.

```
# Load the data
data = dowhy.datasets.lalonde_dataset()
data.head()
```

	treat	age	educ	black	hisp	married	nodegr	re74	re75	re78	u74	u75
0	False	23.0	10.0	1.0	0.0	0.0	1.0	0.0	0.0	0.00	1.0	1.0
1	False	26.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	12383.68	1.0	1.0
2	False	22.0	9.0	1.0	0.0	0.0	1.0	0.0	0.0	0.00	1.0	1.0
3	False	18.0	9.0	1.0	0.0	0.0	1.0	0.0	0.0	10740.08	1.0	1.0
4	False	45.0	11.0	1.0	0.0	0.0	1.0	0.0	0.0	11796.47	1.0	1.0
	\ /	(J	(J	\ /		

Demographics

Salary before the program

Salary in the following year

Define the Causal Model

```
# Set features and target
features = ['age', 'educ', 'black', 'hisp', 'married', 'nodegr', 're74', 're75']
X = data[features]
y = data['re78']
T = data['treat']
# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Define the causal model using DoWhy
model = CausalModel(
    data=data,
    treatment='treat',
    outcome='re78',
    common_causes=features
# Identify the causal effect
estimand = model.identify_effect(proceed_when_unidentifiable=True)
```


Estimate ATE

```
# Estimate the causal effect using DML
estimate = model.estimate_effect(
    identified estimand=estimand,
                                                              ← Select Meta Learner method
    method name='backdoor.econml.dml.LinearDML',
    target units='ate',
    method_params={
        'init_params': {
            'model_y': LGBMRegressor(n_estimators=100, max_depth=3, verbose=-1),
            'model_t': LogisticRegression(max_iter=1000),
                                                               ← Select Base Learner algorithm
            'discrete_treatment': True,
        'fit_params': {}
# Display the estimated causal effect
print(f"Estimated Average Treatment Effect (ATE): {estimate.value}")
```

Estimated Average Treatment Effect (ATE): 1684.7821381418985

Evaluation: Refutation

```
refutation_methods = [
    "random_common_cause",
    "placebo_treatment_refuter"
]

for method in refutation_methods:
    result = model.refute_estimate(estimand, estimate, method_name=method)
    print(result)
```

Refute: Add a random common cause

Estimated effect:1684.7821381418985

New effect:1714.3310110163663

p value:0.919999999999999

← OK if the new effect remains similar to the original and the p-value exceeds 0.05

Refute: Use a Placebo Treatment

Estimated effect:1684.7821381418985

New effect: 13.757303277165368

p value:1.0

← OK if the new effect is close to zero

What is Uplift Modeling?

Uplift modeling identifies customers who are influenced positively by marketing offers.

Treatment effect $\tau = Y(1) - Y(0)$

Segmentation of Customers

Focus marketing efforts on the **Persuadables**

Will buy no matter what

Lost Cause

Won't buy regardless of the campaign

Sleeping Dogs

Won't buy if receives an incentive

Two Methods for Uplift Modeling

While uplift modeling can also be implemented with Meta Learners, decision-tree based method is a common approach

Meta Lerners

- Predict the outcome with treatment and the outcome without treatment separately, and then calculate the uplift
- i.e. T Learner (Two model approach)

Decision Tree Based Method

- Directly estimate the uplift
- i.e. Uplift Trees, Uplift Random Forest
- Some algorithms support multiple treatment groups (5% coupon vs 10% coupon, 15% coupon)
- Feature importance

Traditional Decision Tree to Uplift Tree

Traditional Decision Tree

Will the customer make a purchase? (**Prediction**)

Uplift Tree

Who should we give coupons to? (Causality)

Traditional Decision Tree

These tree tries to identify: "Will the customer make a purchase?"
How can we construct a better decision tree?

Purchasers are grouped into one cluster

For split criteria, "Gini Impurity" is used

Gini impurity =
$$1 - (p_1^2 + p_0^2)$$

Here, p1 is the probability of purchase and p0 is the probability of no purchase.

Gini impurity = 0

Low Impurity

Reference: Calculation of Gini Impurity for the Left Tree

Gini impurity =
$$1 - (p_1^2 + p_0^2)$$

Gini impurity = 0.44 High Impurity Weighted Gini Impurity for the split:

$$= \frac{3}{6} \cdot Gini_{left} + \frac{3}{6} \cdot Gini_{right}$$

$$= \frac{3}{6} \cdot \left(1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right)\right) + \frac{3}{6} \cdot \left(1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right)\right)$$

$$= \frac{4}{9}$$

$$\approx 0.44$$

Reference: Calculation of Gini Impurity for the Right Tree

Gini impurity =
$$1 - (p_1^2 + p_0^2)$$

Low Impurity

Weighted Gini Impurity for the split:

$$= \frac{2}{6} \cdot \operatorname{Gini}_{\operatorname{left}} + \frac{4}{6} \cdot \operatorname{Gini}_{\operatorname{right}}$$

$$= \frac{2}{6} \cdot \left(1 - \left(\left(\frac{2}{2}\right)^2 + \left(\frac{0}{2}\right)^2\right)\right) + \frac{4}{6} \cdot \left(1 - \left(\left(\frac{0}{4}\right)^2 + \left(\frac{4}{4}\right)^2\right)\right)$$

$$= \frac{2}{6} \cdot 0 + \frac{4}{6} \cdot 0$$

$$= 0$$

Uplift Tree

This uplift tree tries to identify: "Who should we give coupons to?"

How can we construct a better causal decision tree?

Purchased

For split criteria, "Squared Euclidean Distance" is used

Squared Euclidean Distance =
$$(P(0) - Q(0))^2 + (P(1) - Q(1))^2$$

• P(1) / P(0) is the probability of purchase / no purchase in the treatment group.

Q(1) / Q(0) is the probability of purchase / no purchase in the control group.

Distance = 1 Low divergence

Distance = 4 High divergence

Reference: Euclidean Distance Calculation for the Left Tree

Squared Euclidean distance of split

= Distance of left + Distance of right

= $(P_{\text{left}}(1) - Q_{\text{left}}(1))^2 + (P_{\text{left}}(0) - Q_{\text{left}}(0))^2 + (P_{\text{right}}(1) - Q_{\text{right}}(1))^2 + (P_{\text{right}}(0) - Q_{\text{right}}(0))^2$ = $(0 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2 + (\frac{1}{2} - 0)^2 + (\frac{1}{2} - 1)^2$

Reference: Euclidean Distance Calculation for the Right Tree

Squared Euclidean distance of split

= Distance of left + Distance of right

$$= (P_{\text{left}}(1) - Q_{\text{left}}(1))^2 + (P_{\text{left}}(0) - Q_{\text{left}}(0))^2 + (P_{\text{right}}(1) - Q_{\text{right}}(1))^2 + (P_{\text{right}}(0) - Q_{\text{right}}(0))^2$$

$$= (0-1)^2 + (1-0)^2 + (1-0)^2 + (0-1)^2$$

= 4

Useful Libraries

I will use EconML for the case study #1 (meta learners) and CausalML for the case study #2 (uplift modeling).

Library	Features	GitHub	
I IEconML	 Covers a wide range of algorithms, strong in economics Part of a bigger DoWhy ecosystem Developed by Microsoft Research 	py-why/EconM L (3.6k star)	
Causal ML	 Focus on Uplift modeling and Meta Learners Designed as a standalone tool Developed by Uber 	uber/causalml (4.8k star)	

Criteo Uplift Prediction Dataset

- Fetch Criteo Data via sklift library
- Data: https://ailab.criteo.com/criteo-uplift-prediction-dataset


```
from sklift.datasets import fetch criteo
X, y, treatment = fetch_criteo(target_col='conversion', treatment_col='treatment', return_X_y_t=True)
data = X.copy()
data['conversion'] = y.astype('int64')
data['treatment'] = treatment.replace({0: 'control', 1: 'treatment'})
data.head()
        f0
                            f2
                                                f4
                                                                            f7
                   f1
                                     f3
                                                         f5
                                                                   f6
                                                                                     f8
                                                                                                f9
                                                                                                        f10
                                                                                                                       conversion
                                                                                                                                  treatment
  12.616365
            10.059654
                                          10.280525
                                                    4.115453
                                                             0.294443
                                                                                          13.190056
                                                                                                             -0.168679
                                                                                                                                   treatment
  12.616365
            10.059654
                      9.002689
                                4.679882
                                         10.280525
                                                    4.115453
                                                             0.294443
                                                                       4.833815
                                                                                3.955396
                                                                                         13.190056
                                                                                                    5.300375
                                                                                                             -0.168679
                                                                                                                                   treatment
            10.059654
                                         10.280525
                                                    4.115453
                                                                                         13.190056
                                                                                                    5.300375
  12.616365
                      8.964775
                                4.679882
                                                             0.294443
                                                                       4.833815
                                                                                3.955396
                                                                                                             -0.168679
                                                                                                                                   treatment
            10.059654
                                                                                                    5.300375
  12.616365
                                4.679882
                                         10.280525
                                                    4.115453
                                                                       4.833815
                                                                                3.955396
                                                                                         13.190056
                                                                                                             -0.168679
                                                                                                                                   treatment
 12.616365
            10.059654
                                         10.280525
                                                    4.115453
                                                                                                             -0.168679
                                4.679882
                                                             0.294443
                                                                       4.833815
                                                                                3.955396
                                                                                                    5.300375
                                                                                                                                   treatment
```


Uplift modeling

Train the Uplift Random Forest model (uplift_rf) and predict the uplift (y_pred)

```
# Split data into training and testing sets
X_train, X_test, y_train, y_test, treatment_train, treatment_test = train_test_split(
    df.drop(columns = ['conversion', 'treatment']), df['conversion'], df['treatment'],
    test_size=0.3, random_state=42)

# Train Uplift Random Forest model
uplift_rf = UpliftRandomForestClassifier(control_name='control')
uplift_rf.fit(X_train.values, treatment=treatment_train.values, y=y_train.values)

# Predict using the trained model
y_pred = uplift_rf.predict(X_test)
```


Feature Importance

```
# Plotting the feature importance of the uplift tree
pd.Series(uplift_tree.feature_importances_, index=X.columns).sort_values().plot(kind='barh', figsize=(12,8))
```


Uplift Curve : Total Cumulative Gain

Targeting just 20% of the total users can achieve 80% of the results as if we targeted everyone

```
plot_gain(auuc_metrics, outcome_col='conversion', treatment_col='is_treated')
plt.show()
```


AUUC (Area Under the Uplift Curve)

- Evaluate the modeling using AUUC score.
- The concept is similar to AUC (Area Under the ROC Curve).
- The closer the AUUC is to 1, the better.

```
from causalml.metrics import auuc_score
score = auuc_score(auuc_metrics, outcome_col='conversion', treatment_col='is_treated')
print(score)
```

```
uplift 0.844375
Random 0.506221
dtype: float64
```


Extract User ID to Be Targeted

Extract the customer IDs who should be targeted.

```
# Calculate Rank and Decile Label
uplift_results_sorted['rank'] = uplift_results_sorted['uplift'].rank(method='first', ascending=False)
uplift_results_sorted['decile'] = pd.qcut(uplift_results_sorted['rank'], 10, labels=False)

decile_labels = [
    "top 10%", "top 10%-20%", "top 20%-30%", "top 30%-40%", "top 40%-50%",
    "top 50%-60%", "top 60%-70%", "top 70%-80%", "top 80%-90%", "bottom 10%"
]
uplift_results_sorted['decile_label'] = uplift_results_sorted['decile'].map(lambda x: decile_labels[x])
display(uplift_results_sorted.head(10))
```

	user_id	uplift	rank	decile	decile_label
0	4202557	0.132893	1.0	0	top 10%
1	3076434	0.132893	2.0	0	top 10%
2	5407785	0.132893	3.0	0	top 10%
3	1102088	0.132893	4.0	0	top 10%

Summary

- When measuring the treatment effect of marketing activities, it is important to be mindful of <u>selection bias</u> and to control for <u>confounding variables</u>.
- 2. <u>Meta learners</u> are techniques designed to estimate treatment effects by using ML models to handle unobserved outcomes
- 3. <u>Uplift Modeling</u> enables the identification of customers who are most likely to respond positively to treatments, thereby improving the marketing ROI.
- 4. **EconML or CausalML** is a good first step.

Reference

- CausalML : https://github.com/uber/causalml
- Criteo Dataset: https://ailab.criteo.com/criteo-uplift-prediction-dataset
- Demo Code: https://github.com/takechanman1228/Effective-Uplif-Modeling
- You tube: "Decision Trees are more powerful than you think" by "CodeEmporium"
- **Book**: Causal Inference and Discovery in Python

Questions/Collaboration

Feel free to contact me!

