CSE2006 Microprocessor & Interfacing

Module - 1

Introduction to 8086 Microprocessor

Dr. E. Konguvel

Assistant Professor (Sr. Gr. 1),
Dept. of Embedded Technology,
School of Electronics Engineering (SENSE),
konguvel.e@vit.ac.in
9597812810

Module 1: Introduction to 8086 Microprocessor

- Introduction to Microprocessor
- Introduction to 8086
- Pin Diagram
- Architecture
- Addressing Modes
- Instruction Sets

Two Categories:

- General Purpose Registers
 - 16 Bits / 8 Bits
 - For holding data, variables, intermediate results, as counters, etc
- Special Purpose Registers
 - 16 Bits
 - For segment registers, index, offset storage, etc.

Four Groups:

- General Data Registers
- Segment Registers
- Pointers & Index Registers
- Flag Registers

General Data Registers

- AX Accumulator
- BX Offset Storage
- CX Default Counter
- DX Implicit Operand/Destination

General data registers

Segment Data Registers

- 1MB memory is divided into 16 logical segments (64K)
- Code Segment (CS)
 - Addressing memory location in code segment, where the executable program is stored
- Data Segment (DS)
 - Data segment of memory
- Extra Segment (ES)
 - Extra Data (Like DS)
- Stack Segment (SS)
 - Memory which is used to store stack data

CS SS DS ES

Segment registers

Pointers and Index Registers

- IP Offset with the code
- BP & SP Offset with the stack
- Index Registers Indexed or Base Indexed or Relative Base Indexed addressing modes
- SI Source Data
- DI Destination Data
- Useful for string manipulations

SP
BP
SI
DI
IP

Flag Registers

- Contents that indicate ALU computations
- Flag bits to control CPU operations

FLAGS/PSW

Architecture

- Supports 16 bit ALU, 16 bit registers.
- Provides segmented memory addressing capability, rich instruction set, powerful interrupt structure, fetched instruction queue for overlapped fetching and execution.

Architecture:

- Bus Interface Unit (BIU)
- Execution Unit (EU)

Architecture

Architecture

Physical Address Calculation based on Segment & Offset Addresses:

Segment address	$\rightarrow 10$	05H					
Offset address	\longrightarrow 55	55H					
Segment address	$\rightarrow 10$	05H -	\rightarrow	0001	0000	0000	0101
Shifted by 4 bit position	ons	\rightarrow	0001	0000	0000	0101	0000
		+					
Offset address			\rightarrow	0101	0101	0101	1 0101
Di			0001	0101	0101	1010	0.0101
Physical address		\rightarrow	0001	0101	_	1010	0101
			1	5	5	A	5

Memory Segmentation

- Memory system is organized as segmented memory.
- The complete physically available memory may be divided into a number of logical segments.
- Each segment is 64K bytes in size and is addressed by one of the segment registers.
- The 16-bit contents of the segment register actually point to the starting location of a particular segment.
- To address a specific memory location within a segment, we need an offset address.
- The offset address is also 16-bit long so that the maximum offset value can be FFFFH, and the maximum size of any segment is thus 64K locations.

Memory Segmentation

Overlapping & Non overlapping Segments

Memory Segmentation

Advantages of Memory Segmentation

- Allows the memory capacity to be 1Mbytes although the actual addresses to be handled are of 16-bit size
- Allows the placing of code, data and stack portions of the same program in different parts (segments) of memory, for data and code protection
- Permits a program and/or its data to be put into different areas of memory each time the program is executed, i.e. provision for relocation is done.
- In the Overlapped Area Locations Physical Address = CS1
 + IP1 = CS2 + IP2, where '+' indicates the procedure of physical address formation.

Flag Registers

Flag Registers

S – Sign	Set 1 when result is negative		
Z – Zero	Set 1 when result is zero		
P – Parity	Set 1 when lower byte of result contains even number of ones		
C – Carry	Set 1 when Carry Out / Borrow in Addition / Subtraction		
T – Trap	If 1, processor enters single step execution mode (Debugging)		
I – Interrupt	If 1, maskable interrupts are recognized by CPU		
D – Direction	String manipulation, 0 – Lower to Higher address, 1 – Higher to Lower Address		
Ac – Auxillary Carry	Set if carry is from lowest nibble		
O – Overflow	Set 1 when Overflow in Signed Operations		