

Task-level Collaborative Ad-hoc AGVs for Efficient Warehouse Logistics

Luzi Schöb, Christoph Zweifel

Advisor: Prof. Dr. Bruno Rodrigues

Achieving Collaboration in AGV systems

Automated Guided Vehicles

Autonomous task coordination

Baseline Setup

Required Actions during Task Execution

Conventional Approach	Collaborative Approach	
Robot A	Robot B1	Robot B2
Drive	Drive	Drive
Pick up	Pick up	Idle
Transport	Transport	
Drop off	Drop off	
		Pick up
		Transport
		Drop off

Actual Operational Steps

# actions	Conventional Approach	Collaborative Approach	
	Robot A	Robot B1	Robot B2
Driving	0	0	2
Pick up	1	1	1
Transport	4	2	2
Drop off	1	1	1
Idle	0	0	2
	6 steps	12 steps (8 steps actual)	

Preliminary Results

	Conventional	Collaborative
Single Task Execution	100%	75% slower
Consecutive Task Execution	200%	4.5% slower
Consecutive Task Execution	300%	2% slower

Discussion

- Pick-up and drop-off times can highly vary due to environment and mechanic's of the individual robot
- Warehouse layout, including floorplans and travel distances, have a high influence on the cooperation of robots.
 - Relatively longer paths may benefit from task-level cooperation as it can reduce idle times
 - Relatively shorter paths may degrade performance due to the latency induced by robotic arms handling parcels

Further problems arise in more complex environments as a node or edge is being blocked

Further Ideas

Extend Environment

- More nodes and edges
- Up to eight robots

Simulation

- Handle more edge cases
- Easily scalable
- Likely more time-efficient

Join our robots at our booth for a competitive race

Q & A

