Machine Learning Fundamentals

What is Machine Learning?

Learn from Examples

Inputs & Desired Output How to conversion between input to output Bikes **Training Trained Model ML System Prices** Bikes → Prices **Predictions Trained Model Traditional Software Engineering** Data **Traditional Outcome Software**

Spam Detection

Code

• If title says - 100% discount

• If title says - Great chance

• Otherwise - "non spam"

• promotions.com

Deposit

Types of Machine Learning

New email

Supervised **Un-Supervised** Reinforcement Features (X) **Labelled Dataset** (X&y)

Flow of Machine learning

Supervised ML: When predicting a Real value (y) - Regression

Logistic Regression

Linear Regression

Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Like all regression analyses, logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

When predicting a Binary value (y) **Gradient Descent**

Take the gradient of loss function wrt parameters w(new) = w(initial) - (learning_rate)*grad_w

Using K fold Cross Validation Data in uncleaned & contains noise Regularisation technique Model is having high variance Training with more data Model is too complex • Ensemble Technique

Overfitting Vs Underfitting

• Data in uncleaned & contains noise Increase the number of feature **Underfitting** Model has high bias Increase model complexity Model is too simple Increase the duration of training

Overfitting

Support Vectors:

Using K fold Cross Validation Hold-out Leave-one-out Leave-p-out

Cross Validation

Hyper-parameter Tuning Techniques Manual Method GridSearchCV • Random Search CV

KNN Algorithm

- No parameters to learn during the training - Lazy Learning **Support Vector Machine(SVM)**

Margin: Distance between Hyperplane and Support vectors Data Points that are closest to the hyperplane (Hard margin & soft margin)

Non-Linear SVM

Find Hyperplane that best separates the two classes

Linear SVM

2. Bagging Classifier 3. Random Forest 4. Boosting

Unsupervised Learning

1. Voting Classifier

 Exclusive Clustering - K Means Overlapping Clustering - fuzzy/c-means clustering Hierarchial Clustering

Clustering

- **KMeans Clustering**
- Step 1: Select the Number of Clusters, k. ... Step 2: Select k Points at Random. ... Step 3: Make k Clusters. ... Step 4: Compute New Centroid of Each Cluster. ... Step 5: Assess the Quality of Each Cluster. ...
- Step 6: Repeat Steps 3–5. Silhouette Score Inertia/SSE

Hierarchical Clustering

clusters

- Agglomerative Clustering (Bottom level) Division Cluster (Split from Root - Top Level)
- 1. Complete Linkage Clustering Max distance two clusters 2. Single Linkage Clustering - Min possible distance between two clusters 3. Mean Linkage Clustering - mean of pairwise distance for points of 2

4. Centroid Linkage Clustering - distance between 2 cluster centroids