

Data Booklet
Updated 2010

Government of Alberta ■

Albertan

Freedom To Create. Spirit To Achieve.

Table of Contents

Page

1 General Formulas and Data

Units and Prefixes

2 Kinematics and Dynamics Formulas

Gravitational and Electric Fields

Astronomy Data

3 Electricity Formulas

Wave Formulas

4 Electrochemistry

Geological Time-Line

Thermodynamics

- 6 Periodic Chart of the Elements and Ions
- 8 Nuclear Chemistry
- *9* Organic Chemistry
- 10 Solutions
- 11 Acids and Bases
- 13 Genetics
- 14 Scoring Descriptions for Standards Setting

Cover design interpretation of DNA in the presence of electromagnetic energy by Nathan A. Smith of Alberta Education.

Copyright 2010 the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Learner Assessment, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Special permission is granted to **Alberta educators only** to reproduce, for educational purposes and on a non-profit basis, this document or any of its parts.

General Formulas and Data

Formulas and Data

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{\text{percent difference}}{\text{from theoretical value}} = \frac{\left| \text{experimental value} - \text{theoretical value} \right|}{\left| \text{theoretical value} \right|} \times 100\%$$

percent efficiency =
$$\left(\frac{\text{output}}{\text{input}}\right) \times 100\%$$

$$magnification = \begin{pmatrix} power \text{ of } \\ ocular \text{ lens} \end{pmatrix} \times \begin{pmatrix} power \text{ of } \\ objective \text{ lens} \end{pmatrix}$$

Distilled Water at Room Temperature (25°C) and Standard Pressure (101.325 kPa)

Volume	Mass	Density
$1.0 \text{ mL or } 1.0 \text{ cm}^3$	1.0 g	1.0 g/cm ³
1.0 L or 1.0 dm ³	1.0 kg	1.0 kg/dm ³

Units and Prefixes

Prefix	Symbol	Factor by Which Base Unit Is M	lultiplied
tera	Т	1 000 000 000 000	$=10^{12}$
giga	G	1 000 000 000	$=10^9$
mega	M	1 000 000	$=10^6$
kilo	k	1 000	$=10^{3}$
hecto	h	100	$=10^2$
deca	da	10	$=10^{1}$
Common Base Units*		1	$=10^{0}$
deci	d	0.1	$=10^{-1}$
centi	с	0.01	$=10^{-2}$
milli	m	0.001	$=10^{-3}$
micro	μ	0.000 001	$=10^{-6}$
nano	n	0.000 000 001	$=10^{-9}$
pico	p	0.000 000 000 001	$=10^{-12}$

^{*}metre (m), gram (g), litre (L), mole (mol)

Some Non-SI Units Used with SI

Quantity	Unit Name	Symbol	Definition
Time	minute	min	$1 \min = 60 \text{ s}$
	hour	h	1 h = 3 600 s
	day	d	1 d = 86 400 s
	year (annum)	a	1 a = 31 557 600 s
Area	hectare	ha	$1 \text{ ha} = 1 \text{ hm}^2$
			$= 10~000~\text{m}^2$
Volume	litre	L	$1 L = 1 000 \text{ cm}^3$
Mass	metric ton or tonne	t	1 t = 1 000 kg
			= 1 Mg
Pressure	standard atmosphere	atm	1 atm = 101.325 kPa

Kinematics and Dynamics Formulas

$$v = \frac{\Delta d}{\Delta t}$$

$$\vec{v} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_{f} - \vec{v}_{i}}{\Delta t}$$

$$\vec{F}_{\text{net}} = m\vec{a}$$

$$\vec{F}_{\rm net} = \vec{F}_{\rm a} + \vec{F}_{\rm f}$$

$$W = F\Delta d$$

$$P = \frac{W}{t}$$

$$\Delta \vec{d} = \vec{v}_{i} \Delta t + \frac{1}{2} \vec{a} (\Delta t)^{2}$$

$$\Delta \vec{d} = \left(\frac{\vec{v}_{i} + \vec{v}_{f}}{2}\right) \Delta t$$

$$\vec{p} = m\vec{v}$$

$$\Delta \vec{p} = \vec{F} \Delta t, \ \Delta \vec{p} = \vec{p}_{f} - \vec{p}_{i}$$

$$\vec{F} = \frac{m(\vec{v}_{\rm f} - \vec{v}_{\rm i})}{\Delta t}$$

$$E_{\rm p} = mgh$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

v = average speed (m/s)

 \vec{v} = average velocity (m/s)

Collisions

Hit and rebound:

Hit and stick:

Explosion:

 $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$

 $m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}_{1 \text{ and } 2}$

 $(m_1 + m_2)\vec{v}_{1 \text{ and } 2} = m_1\vec{v}_1' + m_2\vec{v}_2'$

d = distance (m)

 \vec{d} = displacement (m)

t = time elapsed (s)

 \vec{a} = acceleration (m/s²)

 \vec{F} = force (kg·m/s² or N)

 \vec{F}_{net} = net force (N)

 \vec{F}_a = applied force (N)

 $\vec{F}_{\rm f}$ = force of friction (N)

F = magnitude of a force (N)

m = mass (kg)

 $W = \text{work} (N \cdot m \text{ or } J)$

P = power (J/s or W)

 Δ = change in

 $\vec{F}\Delta t = \text{impulse}$

 \vec{p} = momentum (kg·m/s)

 $E_{\rm p}$ = gravitational potential energy (J)

 $g = \text{magnitude of acceleration due to gravity (m/s}^2)$

 $E_{\rm k}$ = kinetic energy (J)

Gravitational and Electric Fields

$$\vec{F}_{g} = m\vec{g}$$

 \vec{F}_{g} = force due to gravity (N)

m = mass (kg)

 $g = \frac{Gm}{r^2}$

 $|\vec{E}| = \frac{kq}{2}$

 $G = \text{gravitational constant} = 6.67 \times 10^{-11} \,\text{N} \cdot \text{m}^2/\text{kg}^2$

r = radius or centre-to-centre distance (m)

g = magnitude of gravitational field strength (N/kg)

 $k = \text{Coulomb's law constant} = 8.99 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$ q = electrostatic charge in coulombs (C)

 $|\vec{E}|$ = electric field strength (N/C)

Astronomy Data

Mass of Earth = 5.98×10^{24} kg

Radius of Earth = 6.37×10^6 m Mass of sun = 1.99×10^{30} kg

1 light-year = 9.47×10^{15} m

1 AU (astronomical unit) = 1.50×10^{11} m

Average acceleration due

to gravity on surface of Earth = 9.81 m/s^2

Average gravitational field

strength on surface of Earth = 9.81 N/kg

Electricity Formulas

P = IV, $P = I^2R$

V = IR

E = Pt

 $R = \text{resistance}(\Omega)$

P = power(W)

I = current(A)

V = voltage(V)

E = energy (J)

t = time elapsed (s)

For resistances connected in parallel

 $R_{\rm T} = R_1 + R_2 + R_3 + \dots R_n$

For resistances connected in series

$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Ideal Transformers

 $\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}} = \frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}, \quad \frac{N_{\mathrm{p}}}{N_{\mathrm{s}}} = \frac{I_{\mathrm{s}}}{I_{\mathrm{p}}}, \quad \frac{V_{\mathrm{p}}}{V_{\mathrm{s}}} = \frac{I_{\mathrm{s}}}{I_{\mathrm{n}}}$

N = number of turns

p = primary

s = secondary

Related value:

1.00 kilowatt hour = $1.00 \text{ kW} \cdot \text{h} = 3.60 \times 10^6 \text{ J}$

Wave Formulas

 $v = f\lambda$

 $c = f\lambda$

v = speed of wave (m/s)

c =speed of electromagnetic radiation in air or vacuum $(3.00 \times 10^8 \text{ m/s})$

f = frequency (Hz or 1/s)

 λ = wavelength (m)

Electromagnetic Spectrum

Electrochemistry

Activity Series for 1.0 mol/L Solution at 25 °C and 101.325 kPa

Reduction Half-Reaction $Au^{3+}(aq)$ $3e^{-}$ Au(s) $Hg^{2+}(aq)$ $2e^{-}$ \rightarrow Hg(l) $Ag^{+}(aq)$ Ag(s) e^{-} Increasing strength of reactant as an oxidizing agent $Cu^{2+}(aq)$ $2e^{-}$ Cu(s) $2H^+(aq)$ $2e^{-}$ $H_2(g)$ $Pb^{2+}(aq)$ $2e^{-}$ Pb(s) $Sn^{2+}(aq)$ $2e^{-}$ Sn(s) $Ni^{2+}(aq)$ $2e^{-}$ Ni(s) $Cd^{2+}(aq)$ $2e^{-}$ Cd(s) \rightarrow Fe²⁺(aq) $2e^{-}$ Fe(s) \rightarrow $Zn^{2+}(aq)$ $2e^{-}$ Zn(s) $Cr^{2+}(aq)$ $2e^{-}$ Cr(s) $Al^{3+}(aq)$ $3e^{-}$ Al(s) $Mg^{2+}(aq)$ $2e^{-}$ Mg(s) Na⁺(aq) Na(s) e^{-} \rightarrow $Ca^{2+}(aq)$ $2e^{-}$ \rightarrow Ca(s) Li⁺(aq) Li(s)

Increasing strength of reactant as a reducing agent

Thermodynamics

Heat Capacities of Selected Substances at 25°C

Compou	Specific Heat Capacity (J/g.°C) or (kJ/kg.°C)	
water	$H_2O(1)$	4.19
ice (at 0 °C)	$H_2O(s)$	2.10
water vapour (at 100 °C)	$H_2O(g)$	2.08
methanol	CH ₃ OH(l)	2.53
ethanol	$C_2H_5OH(1)$	2.44
hexane	$C_6H_{14}(1)$	2.27
toluene	$C_7H_8(l)$	1.71
air	mixture of $N_2(g)$, $O_2(g)$, $CO_2(g)$,	1.01
	and trace gases	

Geological Time-Line

Millions of Years Ago	Era	Period	Epoch		
1.7 —		Quaternary	Holocene Pleistocene		
	Cenozoic	Tertiary			
65 —	ic	Cretac	ceous		
	Mesozoic	Jurassic			
210 —		Tria	ssic		
250 —		Pern	nian		
290 —		Carbon	iferous		
360 —		Devo	nian		
410	Paleozoic	Silu	rian		
	Pale	Ordov	vician		
500 —		Cambrian			
590 ——					
	Precambrian				
4 600					

^{*}Current research suggests that the start of the Quaternary period is earlier.

Thermodynamic Properties of Selected Compounds

Compound		Melting Point (°C)	Boiling Point (°C)	Heat of Fusion (kJ/mol)	Heat of Vaporization (kJ/mol)
water	H ₂ O(1)	0.00	100.00	6.01	40.66
hexane	$C_6H_{14}(1)$	-95.35	68.73	13.08	28.85
ethanol	$C_2H_5OH(1)$	-114.14	78.29	4.93	38.56
methanol	CH ₃ OH(l)	-97.53	64.6	3.22	35.21
toluene	$C_7H_8(1)$	-94.95	110.63	6.64	33.18

Standard Heats of Formation of Selected Compounds at 25°C

Compound	Formula	$\Delta_{\rm f} H^{\circ}({ m kJ/mol})$
ammonia	NH ₃ (g)	-45.9
benzene	$C_6H_6(1)$	+49.1
butane	$C_4H_{10}(g)$	-125.7
calcium carbonate	CaCO ₃ (s)	-1 207.6
calcium hydroxide	$Ca(OH)_2(s)$	-985.2
carbon dioxide	$CO_2(g)$	-393.5
carbon monoxide	CO(g)	-110.5
ethane	$C_2H_6(g)$	-84.0
ethanoic acid (acetic acid)	CH ₃ COOH(1)	-484.3
ethanol	C ₂ H ₅ OH(l)	-277.6
ethene (ethylene)	$C_2H_4(g)$	+52.4
ethyne (acetylene)	$C_2H_2(g)$	+227.4
glucose	$C_6H_{12}O_6(s)$	-1 273.3
hydrogen sulfide	$H_2S(g)$	-20.6
methane	$CH_4(g)$	-74.6
methanol	CH ₃ OH(l)	-239.2
nitrogen dioxide	$NO_2(g)$	+33.2
nitrogen monoxide	NO(g)	+91.3
octane	C ₈ H ₁₈ (1)	-250.1
pentane	$C_5H_{12}(l)$	-173.5
propane	$C_3H_8(g)$	-103.8
sucrose	C ₁₂ H ₂₂ O ₁₁ (s)	-2 226.1
sulfur dioxide	$SO_2(g)$	-296.8
sulfur trioxide	$SO_3(g)$	-395.7
water (liquid)	H ₂ O(l)	-285.8
water (gas)	$H_2O(g)$	-241.8

Note: Elements are given a value of zero.

Negative sign (–) denotes exothermic change.

Positive sign (+) denotes endothermic change.

Energy Formulas

$$Q = mc\Delta t$$

$$\Delta_{\text{fus}}H = \frac{Q}{n}$$

$$\Delta_{\text{vap}}H = \frac{Q}{n}$$

$$\Delta_{\rm r}H = \sum n\Delta_{\rm f}H^{\circ}$$
 products $-\sum n\Delta_{\rm f}H^{\circ}$ reactants

Q = quantity of heat energy (J or kJ)

m = mass (g or kg)

 $\Delta_{\text{fus}}H = \text{heat of fusion (kJ/mol)}$

 $\Delta_{\text{vap}}H$ = heat of vaporization (kJ/mol)

 $c = \text{specific heat capacity } (J/g \cdot {}^{\circ}C \text{ or } kJ/kg \cdot {}^{\circ}C)$

 Δt = change in temperature (°C)

n =amount in moles (mol)

 $\Delta_r H$ = energy change of reaction (kJ)

 Σ = the sum of

 $\Delta_f H^\circ$ = standard molar heat (enthalpy) of formation (kJ/mol)

Periodic Chart of the Elements and Ions

thorium

protactinium(IV)

uranium(IV)

plutonium(VI)

10	11	12	13	14	15	16	17	18
							1 H	² He
							hydrogen 1.01	helium 4.00
		ı	-	· •	7	0	H ⁻ hydride	He helium
			5 boron	6 C	7 nitrogen	8 O	9 F	10 Ne
Polyatomic	Elements		10.81	12.01	14.01	16.00	19.00	20.18
Elements	to dia -		B	C	N ³⁻ nitride	O ²⁻ oxide	F ⁻ fluoride	Ne neon
2	iodine I ₂ nitrogen N ₂		13 AI	¹⁴ Si	15 P	16 S	17 C	18 Ar
-	oxygen O ₂ phosphorus P ₄		aluminium 26.98	silicon 28.09	phosphorus 30.97	sulfur 32.07	chlorine 35.45	argon 39.95
	sulfur S ₈							
			Al ³⁺ aluminium	Si silicon	P ³⁻ phosphide	S ²⁻ sulfide	CI ⁻ chloride	Ar argon
²⁸ Ni	²⁹ Cu	³⁰ Zn	31 Ga	32 Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
nickel 58.69	copper 63.55	zinc 65.41	gallium 69.72	germanium 72.64	arsenic 74.92	selenium 78.96	bromine 79.90	krypton 83.80
Ni ²⁺	Cu ²⁺ copper(II)							
Ni ³⁺ nickel(III)	Cu ⁺ copper(I)	Zn ²⁺ zinc	Ga ³⁺ gallium	Ge ⁴⁺ germanium	As ³⁻ arsenide	Se ²⁻ selenide	Br ⁻ bromide	Kr krypton
⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	53	⁵⁴ Xe
palladium 106.42	silver 107.87	cadmium 112.41	indium 114.82	tin 118.71	antimony 121.76	tellurium 127.60	iodine 126.90	xenon 131.29
Pd ²⁺ palladium(II)			_	Sn ⁴⁺ tin(IV)	Sb ³⁺ antimony(III)			
Pd ³⁺ palladium(III)	Ag ⁺ silver	Cd ²⁺ cadmium	In ³⁺ indium	Sn ²⁺ tin(II)	Sb ⁵⁺ antimony(V)	Te ²⁻ telluride	- iodide	Xe xenon
78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	Po Polonium	85 At	86 Rn
195.08	196.97	200.59	204.38	207.2*	208.98	(209)	(210)	(222)
Pt ⁴⁺ platinum(IV)	Au ³⁺	Hg ²⁺ mercury(II)	TI+ thallium(I)	Pb ²⁺ lead(II)	Bi ³⁺ bismuth(III)	Po ²⁺ polonium(II)		
Pt ²⁺ platinum(II)	gold(I)	Hg ⁺ mercury(I)	TI ³⁺ thallium(III)	Pb ⁴⁺ lead(IV)	Bi ⁵⁺ bismuth(V)	Po ⁴⁺ polonium(IV)	At ⁻ astatide	Rn radon
110 Ds	111 Rg	* The isotopic mix of naturally occurring lead is more variable than that of other elements, preventing precision to greater than tenths of a gram per mole.						
(271)	(272)			,				

europium 151.96	64 Gd gadolinium 157.25	65 Tb terbium 158.93	dysprosium 162.50	67 Ho holmium 164.93	68 Er erbium 167.26	69 Tm thulium 168.93	ytterbium 173.04	Iutetium 174.97
Eu ³⁺ europium(III) Eu ²⁺ europium(II)	Gd ³⁺ gadolinium	Tb ³⁺ terbium	D y ³⁺ dysprosium	Ho ³⁺ holmium	Er ³⁺ erbium	Tm ³⁺ thulium	Yb ³⁺ ytterbium(III) Yb ²⁺ ytterbium(II)	Lu ³⁺ lutetium
95 Am americium (243)	96 Cm	97 Bk berkelium (247)	98 Cf californium (251)	einsteinium (252)	100 Fm fermium (257)	mendelevium (258)	102 No nobelium (259)	103 Lr lawrencium (262)
Am ³⁺ americium(III) Am ⁴⁺ americium(IV)	Cm ³⁺	Bk ³⁺ berkelium(III) Bk ⁴⁺ berkelium(IV)	Cf ³⁺	Es ³⁺ einsteinium	Fm ³⁺ fermium	Md ²⁺ mendelevium(II) Md ³⁺⁻ mendelevium(III)	No ²⁺ nobelium(II) No ³⁺ nobelium(III)	Lr ³⁺

Nuclear Chemistry

Masses of Subatomic Particles and Radiation

Subatomic Particle or Radiation		Mass (10 ⁻³ kg/mol)	Subatomic Particle or Radiation		Mass (10 ⁻³ kg/mol)
alpha particle (helium nucleus)	${}_{2}^{4}$ He or α	4.001 51	positron gamma radiation	0 +1 0 0 γ	0.000 549
beta particle	$_{-1}^{0}$ e or β	0.000 549	neutron	${}^{1}_{0}$ n	1.008 66
(electron)	_10 or p	0.000 2 17	proton	¹ ₁ p	1.007 28

Masses of Selected Nuclides

Nuclide		Mass (10 ⁻³ kg/mol)	Nuclide		Mass (10 ⁻³ kg/mol)
barium-141	¹⁴¹ ₅₆ Ba	140.914 41	nitrogen-15	¹⁵ ₇ N	15.000 11
beryllium-7	$_{4}^{7}\mathrm{Be}$	7.016 93	oxygen-15	¹⁵ ₈ O	15.003 07
beryllium-8	${}^{8}_{4}\mathrm{Be}$	8.005 31	oxygen-16	¹⁶ ₈ O	15.994 91
boron-8	⁸ ₅ B	8.024 61	oxygen-18	¹⁸ O	17.999 16
carbon-14	$^{14}_{6}\text{C}$	14.003 24	phosphorus-31	$^{31}_{15}P$	30.973 76
cesium-144	¹⁴⁴ ₅₅ Cs	143.932 02	plutonium-239	$^{239}_{94}$ Pu	239.052 16
fluorine-17	¹⁷ ₉ F	17.002 10	polonium-210	²¹⁰ ₈₄ Po	209.982 86
helium-3	³ He	3.016 03	polonium-218	²¹⁸ ₈₄ Po	218.008 97
hydrogen-1	$^{1}_{1}\mathrm{H}$	1.007 83	potassium-40	$^{40}_{19}{ m K}$	39.964 00
hydrogen-2 (deuterium)	² H	2.014 10	radium-226	²²⁶ ₈₈ Ra	226.025 40
hydrogen-3 (tritium)	$^{3}_{1}H$	3.016 03	radon-222	$^{222}_{86}$ Rn	222.017 57
krypton-92	$^{92}_{36}$ Kr	91.926 11	rubidium-90	$^{90}_{37}$ Rb	89.914 81
lanthanum-146	¹⁴⁶ La	145.925 8	ruthenium-107	¹⁰⁷ ₄₄ Ru	106.909 9
lead-206	²⁰⁶ ₈₂ Pb	205.974 5	strontium-95	$^{95}_{38}$ Sr	94.919 31
lead-208	²⁰⁸ ₈₂ Pb	207.976 64	sulfur-31	³¹ ₁₆ S	30.979 56
neon-20	²⁰ ₁₀ Ne	19.992 44	thorium-230	²³⁰ Th	230.033 13
nitrogen-13	$^{13}_{7}N$	13.005 74	uranium-235	$^{235}_{92}U$	235.043 92
nitrogen-14	¹⁴ ₇ N	14.003 07			

Elements for Radioactive Dating

•			_	
Radioisotope (Parent Nuclide)		Final Decay Nuclide		Approximate Half-Life (annum—a)
carbon-14	¹⁴ ₆ C	nitrogen-14	¹⁴ ₇ N	5.73×10^3
potassium-40	$^{40}_{19}{ m K}$	argon-40	$^{40}_{18}{\rm Ar}$	1.26×10^9
rubidium-87	$^{87}_{37}$ Rb	strontium-87	$^{87}_{38}{ m Sr}$	4.88×10^{10}
uranium-235	$^{235}_{92}U$	lead-207	²⁰⁷ ₈₂ Pb	7.04×10^8
uranium-238	$^{238}_{\ \ 92}U$	lead-206	²⁰⁶ ₈₂ Pb	4.47×10^9

Energy Change Formula

 $\Delta E = \Delta mc^2$ $\Delta E = \text{change in energy (J)}$ $\Delta m = \text{mass converted to energy (kg)}$ $c = \text{speed of EMR } (3.00 \times 10^8 \text{ m/s})$

Organic Chemistry

Homologous Series of Alkanes at 25°C and 101.325 kPa

Name*	Formula	Name*	Formula
<i>meth</i> ane	CH ₄ (g)	hex ane	C ₆ H ₁₄ (l)
eth ane	$C_2H_6(g)$	<i>hept</i> ane	$C_7H_{16}(1)$
prop ane	$C_3H_8(g)$	oct ane	$C_8H_{18}(l)$
but ane	$C_4H_{10}(g)$	non ane	$C_9H_{20}(1)$
pent ane	C ₅ H ₁₂ (l)	dec ane	$C_{10}H_{22}(1)$

^{*}Note: Italics indicate organic nomenclature prefixes.

Prefixes for Molecular Compounds

1 = mono-	6 = hexa-
2 = di-	7 = hepta-
3 = tri-	8 = <i>octa</i> -
4 = tetra-	9 = <i>ennea-</i> (<i>nona-</i>)
5 = penta-	10 = deca

Types of Reactions

Formation (Synthesis)

element + element → compound

Decomposition

 $compound \rightarrow element + element$

Single Replacement

compound + element \rightarrow new compound + new element

Double Replacement

compound + compound → new compound + new compound

Complete Hydrocarbon Combustion

hydrocarbon + oxygen → carbon dioxide + water

Addition

alkene or alkyne + excess hydrogen \rightarrow alkane alkene or alkyne + halogen \rightarrow halogenated hydrocarbon

Cracking

large hydrocarbon → small hydrocarbons

Polymerization

 $monomer + monomer \rightarrow polymer$

Esterification

alcohol + carboxylic acid → ester + water

General Formulas and Names of Some Organic Compounds

General Formula	Classification	Example Formula	Example Name
$C_nH_{(2n+2)}$	alkane	H H	ethane
$C_nH_{(2n)}$	alkene	H $C = C$ H	ethene
$C_nH_{(2n-2)}$	alkyne	$H-C \equiv C-H$	ethyne
R – O – H	alcohol	H H	ethanol
R - C O - H	carboxylic acid	H - C - C O - H	ethanoic acid
R - C O - R'	ester	H O H H-C-C-C-O-C-H H H	methyl ethanoate
R – Q	halogenated hydrocarbon	H H H-C-C-Cl H H	chloroethane
$\cdots - x - y _{n} \cdots$	polymer	H H H I C C C	polyethene

R usually represents a carbon group

R' usually represents a different carbon group

Q represents a halogen (fluoro-, chloro-, bromo-, iodo-)

x-y represents the monomer unit

n represents a whole number

Solutions

Solubility of Selected Ionic Compounds in Aqueous Solutions at 25°C

Ion	Group 1 ions NH ₄ ⁺ NO ₃ ⁻ ClO ₃ ⁻ ClO ₄ ⁻ CH ₃ COO ⁻	F	Cl ⁻ Br ⁻ I ⁻	SO ₄ ²⁻	CO ₃ ²⁻ PO ₄ ³⁻ SO ₃ ²⁻	IO ₃ ⁻ OOCCOO ²⁻	OH-
Solubility greater than or equal to 0.1 mol/L (very soluble) (aq)	most	most	most	most	Group 1 ions ${\rm NH_4}^+$	Group 1 ions NH ₄ ⁺ Co(IO ₃) ₂ Fe ₂ (OOCCOO) ₃	Group 1 ions $N{\rm H_4}^+$
Solubility less than 0.1 mol/L (slightly soluble) (s)	RbClO ₄ CsClO ₄ AgCH ₃ COO	Li ⁺ Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ Fe ²⁺ Pb ²⁺	Cu ⁺ Ag ⁺ Pb ²⁺ Tl ⁺	Ca ²⁺ Sr ²⁺ Ba ²⁺ Ag ⁺ Pb ²⁺ Ra ²⁺	most	most	most

Note: This solubility table is only a guideline that was established using the $K_{\rm sp}$ values. A concentration of 0.1 mol/L corresponds to approximately 10 g/L to 30 g/L, depending on molar mass.

Stoichiometry and Solution Formulas

$$n = \frac{m}{M}$$

$$C = \frac{n}{V}$$

$$C_{\rm i}V_{\rm i} = C_{\rm f}V_{\rm f}$$

$$\frac{coefficient_{\rm r}}{coefficient_{\rm g}} = \frac{n_{\rm r}}{n_{\rm g}} \quad \text{or} \quad n_{\rm r} = n_{\rm g} \times \frac{coefficient_{\rm r}}{coefficient_{\rm g}}$$

$$(\% \ V/V) = \frac{V_{\rm solute}}{V_{\rm solution}} \times 100\%$$

parts per million =
$$\frac{m_{\text{solute}}}{m_{\text{solution}}} \times 10^6 \text{ ppm}$$

$$n = \text{number of moles (mol)}$$

$$m = mass(g)$$

$$M = \text{molar mass (g/mol)}$$

C = molar concentration (mol/L)

V = volume (L)

i = initial solution

f = final solution

r = required substance

g = given substance

% V/V = percent by volume concentration

Identification of Selected Ions in 1.0 mol/L Aqueous Solutions

Ion	Symbol	Colour in Solution
chromate	CrO ₄ ²⁻ (aq)	yellow
chromium(III)	Cr ³⁺ (aq)	blue-green
chromium(II)	Cr ²⁺ (aq)	dark blue
cobalt(II)	Co ²⁺ (aq)	red
copper(I)	Cu ⁺ (aq)	blue-green
copper(II)	Cu ²⁺ (aq)	blue
dichromate	$\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq})$	orange
iron(II)	Fe ²⁺ (aq)	lime green
iron(III)	Fe ³⁺ (aq)	orange-yellow
manganese(II)	Mn ²⁺ (aq)	pale pink
nickel(II)	Ni ²⁺ (aq)	blue-green
permanganate	MnO ₄ ⁻ (aq)	deep purple

Flame Colour of Elements

· ·				
Element	Symbol	Colour		
barium	Ba	yellowish-green		
calcium	Ca	yellowish red		
cesium	Cs	violet		
copper	Cu	blue to green		
lead	Pb	blue-white		
lithium	Li	red		
potassium	K	violet		
rubidium	Rb	violet		
sodium	Na	yellow		
strontium	Sr	scarlet red		

Note: The flame test can be used to determine the identity of a metal or a metal ion. Blue to green indicates a range of colours that might appear.

Acids and Bases

Rules for Naming Acids

Compound	Classical System Example				IUPAC System Example
Name	Acid Name	Formula	Compound Name	Acid Name	Acid Name
hydrogen -ide	hydro–ic acid	HCl(aq)	hydrogen chlor ide	hydrochlor ic acid	aqueous hydrogen chloride
hydrogen -ate	−ic acid	H ₃ PO ₄ (aq)	hydrogen phosphate	phosphor ic acid	aqueous hydrogen phosphate
hydrogen –ite	-ous acid	H ₃ PO ₃ (aq)	hydrogen phosphite	phosphor ous acid	aqueous hydrogen phosphite

IUPAC Rules for Naming Inorganic Bases

Dogo Nomo	Example		
Base Name	Formula	Base Name	
cation + anion	NaOH(aq)	sodium hydroxide	

pH Formulas

 $pH = -log_{10}[H_3O^+(aq)]$ [$H_3O^+(aq)] = 10^{(-pH)}$ [] = concentration (mol/L)

Relative Strengths of Selected Acids and Bases for 0.10 mol/L Solution at $25^{\circ}C$

Acid Name	Acid Formula	Conjugate Base Formula
hydrochloric acid	HCl(aq)	Cl ⁻ (aq)
sulfuric acid	$H_2SO_4(aq)$	HSO ₄ ⁻ (aq)
nitric acid	HNO ₃ (aq)	NO ₃ ⁻ (aq)
hydronium ion	$H_3O^+(aq)$	H ₂ O(l)
oxalic acid	HOOCCOOH(aq)	HOOCCOO ⁻ (aq)
sulfurous acid	$H_2SO_3(aq)$	HSO ₃ ⁻ (aq)
hydrogen sulfate ion	HSO ₄ ⁻ (aq)	SO ₄ ² -(aq)
phosphoric acid	$H_3PO_4(aq)$	$H_2PO_4^-(aq)$
orange IV	HOr(aq)	Or ⁻ (aq)
nitrous acid	$HNO_2(aq)$	NO ₂ ⁻ (aq)
hydrofluoric acid	HF(aq)	F ⁻ (aq)
methanoic (formic) acid	HCOOH(aq)	HCOO ⁻ (aq)
methyl orange	HMo(aq)	Mo ⁻ (aq)
benzoic acid	C ₆ H ₅ COOH(aq)	C ₆ H ₅ COO ⁻ (aq)
ethanoic (acetic) acid	CH ₃ COOH(aq)	CH ₃ COO ⁻ (aq)
carbonic acid $(CO_2(g) + H_2O(l))$	$H_2CO_3(aq)$	HCO ₃ ⁻ (aq)
bromothymol blue	HBb(aq)	Bb ⁻ (aq)
hydrosulfuric acid	$H_2S(aq)$	HS ⁻ (aq)
phenolphthalein	HPh(aq)	Ph ⁻ (aq)
ammonium ion	$NH_4^+(aq)$	NH ₃ (aq)
hydrogen carbonate ion	HCO ₃ ⁻ (aq)	CO ₃ ²⁻ (aq)
indigo carmine	HIc(aq)	Ic ⁻ (aq)
water (55.5 mol/L)	$H_2O(1)$	OH ⁻ (aq)

Acid-Base Indicators at 25°C

Indicator	Abbreviation (acid/conjugate base)	pH Range	Colour Change as pH Increases
methyl violet	HMv(aq) / Mv ⁻ (aq)	0.0 – 1.6	yellow to blue
thymol blue	$H_2Tb(aq) / HTb^-(aq)$	1.2 - 2.8	red to yellow
thymol blue	$HTb^{-}(aq) / Tb^{2-}(aq)$	8.0 – 9.6	yellow to blue
orange IV	HOr(aq) / Or ⁻ (aq)	1.4 - 2.8	red to yellow
methyl orange	HMo(aq) / Mo ⁻ (aq)	3.2 – 4.4	red to yellow
bromocresol green	HBg(aq) / Bg ⁻ (aq)	3.8 - 5.4	yellow to blue
litmus	HLt(aq) / Lt ⁻ (aq)	4.5 - 8.3	red to blue
methyl red	HMr(aq) / Mr ⁻ (aq)	4.8 - 6.0	red to yellow
chlorophenol red	HCh(aq) / Ch ⁻ (aq)	5.2 – 6.8	yellow to red
bromothymol blue	HBb(aq) / Bb ⁻ (aq)	6.0 - 7.6	yellow to blue
phenol red	HPr(aq) / Pr ⁻ (aq)	6.6 - 8.0	yellow to red
phenolphthalein	HPh(aq) / Ph ⁻ (aq)	8.2 - 10.0	colourless to pink
thymolphthalein	HTh(aq) / Th ⁻ (aq)	9.4 – 10.6	colourless to blue
alizarin yellow R	HAy(aq) / Ay ⁻ (aq)	10.1 – 12.0	yellow to red
indigo carmine	HIc(aq) / Ic ⁻ (aq)	11.4 – 13.0	blue to yellow
1,3,5-trinitrobenzene	HNb(aq) / Nb ⁻ (aq)	12.0 – 14.0	colourless to orange

Genetics

Pedigree Chart

DNA Nitrogen Bases

Nitrogen Base	Abbreviation
adenine	A
cytosine	C
guanine	G
thymine	T

Alleles

Upper case—dominant
Lower case—recessive
Sex linked— $X^{?}Y$ or $X^{?}X^{?}$

DNA Base Triplets and Their Corresponding Amino Acids

		$S \ E \ C \ O \ N \ D B \ A \ S \ E$					
		T	C	A	G		
		TTT phenylalanine	TCT serine	TAT tyrosine	TGT cysteine	Т	
	Т	TTC phenylalanine	TCC serine	TAC tyrosine	TGC cysteine	C	
	1	TTA leucine	TCA serine	TAA STOP**	TGA STOP**	A	
\boldsymbol{F}		TTG leucine	TCG serine	TAG STOP**	TGG tryptophan	G	T
I		CTT leucine	CCT proline	CAT histidine	CGT arginine	Т	H
R	C	CTC leucine	CCC proline	CAC histidine	CGC arginine	C	I
S		CTA leucine	CCA proline	CAA glutamine	CGA arginine	A	R
T		CTG leucine	CCG proline	CAG glutamine	CGG arginine	G	D
		ATT isoleucine	ACT threonine	AAT asparagine	AGT serine	Т	
\boldsymbol{B}	A	ATC isoleucine	ACC threonine	AAC asparagine	AGC serine	C	B
A	A	ATA isoleucine	ACA threonine	AAA lysine	AGA arginine	A	A
S		ATG methionine or START*	ACG threonine	AAG lysine	AGG arginine	G	S
\boldsymbol{E}		GTT valine	GCT alanine	GAT aspartate	GGT glycine	Т	E
	G	GTC valine	GCC alanine	GAC aspartate	GGC glycine	C	
	G	GTA valine	GCA alanine	GAA glutamate	GGA glycine	A	
		GTG valine	GCG alanine	GAG glutamate	GGG glycine	G	

Note: This table uses base triplets from the "complementary" $(5' \rightarrow 3')$ strand of DNA.

^{*}Note: ATG is an initiator base triplet but also codes for the amino acid methionine.

^{**}Note: TAA, TAG, and TGA are terminator base triplets.

Data Booklet

Cambridge International Advanced Subsidiary and Advanced Level in Chemistry (9701)

For use from 2016 in all papers for the above syllabus, except practical examinations.

CSTxxx

Contents: Tables of Chemical Data

		Page no.
1	Important values, constants and standards	3
2	Ionisation energies (1 st , 2 nd , 3 rd and 4 th) of selected elements in kJ mol ⁻¹	4
3	Bond energies	5
4	Standard electrode potential and redox potentials, E^{\ominus} at 298K (25 °C)	7
5	Atomic and ionic radii	10
6	Typical proton (1 H) chemical shift values (δ) relative to TMS = 0	12
7	Typical carbon (13 C) chemical shift values (δ) relative to TMS = 0	13
8	Characteristic infra-red absorption frequencies for some selected bonds	14
9	The orientating effect of groups in aromatic substitution reactions	15
10	Names, structures and abbreviations of some amino acids	16
11	The Periodic Table of Elements	17

1 Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
the Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{Js}$
speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
rest mass of proton, ¹ ₁ H	$m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
rest mass of neutron, ¹ ₀ n	$m_{\rm n} = 1.67 \times 10^{-27} \rm kg$
rest mass of electron, ⁰ ₋₁ e	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ under room conditions (where s.t.p. is expressed as 101 kPa, approximately, and 273 K [0 °C])
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6}$ (at 298 K [25 °C])
specific heat capacity of water	= $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (= $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in kJ mol⁻¹

	Proton number	First	Second	Third	Fourth
Н	1	1310	_	_	_
He	2	2370	5250	-	-
Li	3	519	7300	11800	-
Be	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
Р	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300	3850	5150
Ar	18	1520	2660 3950		5770
K	19	418	3070 4600		5860
Ca	20	590	1150 4940		6480
Sc	21	632	1240 2390		7110
Ti	22	661	1310 2720		4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Br	35	1140	2080	3460	4850
Rb	37	403	4632	3900	5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074 3361		_
I	53	1010	1840 2040		4030
Cs	55	376	2420	3300	_
Ва	56	502	966	3390	_

3 Bond Energies

3(a) Bond energies in diatomic molecules (these are exact values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
н—н	436
D—D	442
N≡N	944
O=O	496
P≣P	485
S=S	425
F—F	158
Cl—Cl	242
Br—Br	193
I—I	151

Heteronuclear

Bond	Energy / kJ mol ⁻¹			
H—F	562			
H—C1	431			
H—Br	366			
H—I	299			
C≡O	1077			

3(b) Bond energies in polyatomic molecules (these are average values)

Homonuclear

Bond	Energy / kJ mol ⁻¹
с—с	350
C=C	610
C≡C	840
C—C (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	222
P—P	200
S—S	264

Heteronuclear

Bond	Energy / kJ mol ⁻¹
С—Н	410
C—C1	340
C—Br	280
C—I	240
C—N	305
C=N	610
C≡N	890
C—O	360
C=O	740
C=O in CO ₂	805
N—H	390
N—C1	310
0—Н	460
Si—C <i>l</i>	359
Si—H	320
Si—O (in SiO ₂ (s))	460
Si=O (in SiO ₂ (g))	640
P—H	320
P—C1	330
P—O	340
P=O	540
S—H	347
S—C1	250
S—0	360
S=0	500

4 Standard electrode potential and redox potentials, E[→] at 298 K (25 °C)

For ease of reference, two tables are given:

- (a) an extended list in alphabetical order;(b) a shorter list in decreasing order of magnitude, i.e. a redox series.

(a) \boldsymbol{E}^{\ominus} in alphabetical order

Electrode r	eaction		E [⊕] /V
Ag ⁺ + e ⁻		Ag	+0.80
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al	-1.66
Ba ²⁺ + 2e ⁻		Ba	-2.90
Br ₂ + 2e ⁻	$\overline{}$	2Br ⁻	+1.07
Ca ²⁺ + 2e ⁻		Ca	-2.87
$Cl_2 + 2e^-$	$\overline{}$	2C1 ⁻	+1.36
2HOC <i>l</i> + 2H ⁺ + 2e ⁻	 	C <i>l</i> ₂ + 2H ₂ O	+1.64
ClO + H ₂ O + 2e	$\overline{}$	C1 ⁻ + 2OH ⁻	+0.89
Co ²⁺ + 2e ⁻	$\overline{}$	Co	-0.28
Co ³⁺ + e ⁻	$\overline{}$	Co ²⁺	+1.82
$[Co(NH_3)_6]^{2+} + 2e^-$	$\overline{}$	Co + 6NH ₃	-0.43
Cr ²⁺ + 2e ⁻	$\overline{}$	Cr	-0.91
Cr ³⁺ + 3e ⁻	$\overline{}$	Cr	-0.74
Cr ³⁺ + e ⁻		Cr ²⁺	-0.41
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	$\stackrel{\smile}{\Rightarrow}$	2Cr ³⁺ + 7H ₂ O	+1.33
Cu ⁺ + e ⁻	$\stackrel{\smile}{\Rightarrow}$	Cu	+0.52
Cu ²⁺ + 2e ⁻	$\stackrel{\smile}{\Rightarrow}$	Cu	+0.34
Cu ²⁺ + e ⁻	$\stackrel{\sim}{\rightleftharpoons}$	Cu [†]	+0.15
[Cu(NH ₃) ₄] ²⁺ + 2e ⁻	$\stackrel{\cdot}{\rightleftharpoons}$	Cu + 4NH ₃	-0.05
F ₂ + 2e ⁻	\rightleftharpoons	2F ⁻	+2.87
Fe ²⁺ + 2e ⁻	$\stackrel{\cdot}{\rightleftharpoons}$	Fe	-0.44
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0.04
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	\rightleftharpoons	[Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	\rightleftharpoons	Fe(OH) ₂ + OH ⁻	-0.56
2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂	0.00
2H₂O + 2e ⁻	\rightleftharpoons	H ₂ + 2OH ⁻	-0.83
I ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+0.54
K ⁺ + e ⁻	=	K	-2.92
Li⁺ + e⁻	\rightleftharpoons	Li	-3.04
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2.38
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1.18
Mn ³⁺ + e ⁻	=	Mn ²⁺	+1.49
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+1.23
MnO ₄ ⁻ + e ⁻	\rightleftharpoons	MnO ₄ ²⁻	+0.56
MnO ₄ ⁻ + 4H ⁺ + 3e ⁻	\rightleftharpoons	$MnO_2 + 2H_2O$	+1.67
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	, 	Mn ²⁺ + 4H ₂ O	+1.52
NO ₃ ⁻ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2 + H_2O$	+0.81
NO ₃ ⁻ + 3H ⁺ + 2e ⁻	\rightleftharpoons	HNO ₂ + H ₂ O	+0.94
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	\rightleftharpoons	$NH_4^+ + 3H_2O$	+0.87

Electrode r	eaction		E [⊕] /V
Na ⁺ + e ⁻	\rightleftharpoons	Na	-2.71
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0.25
$[Ni(NH_3)_6]^{2+} + 2e^-$	=	Ni + 6NH ₃	-0.51
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1.77
$HO_2^- + H_2O + 2e^-$	=	3OH⁻	+0.88
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	\rightleftharpoons	40H ⁻	+0.40
$O_2 + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0.68
$O_2 + H_2O + 2e^-$; ; ; ; ;	HO ₂ ⁻ + OH ⁻	-0.08
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0.13
Pb ⁴⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺	+1.69
PbO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺ + 2H ₂ O	+1.47
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	SO ₂ + 2H ₂ O	+0.17
S ₂ O ₈ ²⁻ + 2e ⁻	\rightleftharpoons	2SO ₄ ²⁻	+2.01
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons	2S ₂ O ₃ ²⁻	+0.09
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0.15
V ²⁺ + 2e ⁻	\rightleftharpoons	V	-1.20
V ³⁺ + e ⁻	\rightleftharpoons	V ²⁺	-0.26
VO ²⁺ + 2H ⁺ + e ⁻		V ³⁺ + H ₂ O	+0.34
VO ₂ ⁺ + 2H ⁺ + e ⁻	\rightleftharpoons	VO ²⁺ + H ₂ O	+1.00
VO ₃ ⁻ + 4H ⁺ + e ⁻	\rightleftharpoons	VO ²⁺ + 2H ₂ O	+1.00
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

(b) \boldsymbol{E}^{\ominus} in decreasing order of oxidising power

(a selection only – see also the extended alphabetical list on the previous pages)

Electrode r	eaction		E [⊕] /V
F ₂ + 2e ⁻	\rightleftharpoons	2F ⁻	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	\rightleftharpoons	2SO ₄ ²⁻	+2.01
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1.77
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\rightleftharpoons	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺ + 2H ₂ O	+1.47
Cl ₂ + 2e ⁻	\rightleftharpoons	2C1 ⁻	+1.36
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H₂O	+1.23
Br ₂ + 2e ⁻	\rightleftharpoons	2Br ⁻	+1.07
C1O - + H2O + 2e	\rightleftharpoons	C <i>l</i> ⁻ + 2OH ⁻	+0.89
NO ₃ ⁻ + 10H ⁺ + 8e ⁻		$NH_4^+ + 3H_2O$	+0.87
NO ₃ ⁻ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2 + H_2O$	+0.81
Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+0.80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0.77
$I_2 + 2e^-$	\rightleftharpoons	$2I^{-}$	+0.54
$O_2 + 2H_2O + 4e^-$ $Cu^{2^+} + 2e^-$	\rightleftharpoons	40H ⁻	+0.40
	\rightleftharpoons	Cu	+0.34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	SO ₂ + 2H ₂ O	+0.17
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons	$2S_2O_3^{2-}$	+0.09
2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂	0.00
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0.13
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0.44
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76
2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ + 2OH ⁻	-0.83
V ²⁺ + 2e ⁻	\rightleftharpoons	V	-1.20
Mg ²⁺ + 2e ⁻		Mg	-2.38
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2.87
K ⁺ + e ⁻	\rightleftharpoons	K	-2.92

5 Atomic and ionic radii

(a)	Period 1	atomic/nm	ionic/nm
	single covalent	H 0.037	H⁻ 0.208
	van der Waals	He 0.140	
(b)	Period 2	atomic/nm	ionic/nm
	metallic	Li 0.152	Li ⁺ 0.060
		Be 0.112	Be ²⁺ 0.031
	single covalent	B 0.080	B ³⁺ 0.020
		C 0.077	C ⁴⁺ 0.015 C ⁴⁻ 0.260
		N 0.074	N ³⁻ 0.171
		O 0.073	O ²⁻ 0.140
		F 0.072	F ⁻ 0.136
	van der Waals	Ne 0.160	
(c)	Period 3	atomic/nm	ionic/nm
	metallic	Na 0.186	Na ⁺ 0.095
		Mg 0.160	Mg ²⁺ 0.065
		Al 0.143	Al ³⁺ 0.050
	single covalent	Si 0.117	Si ⁴⁺ 0.041
		P 0.110	P ³⁻ 0.212
		S 0.104	S ²⁻ 0.184
		C1 0.099	C <i>l</i> ⁻ 0.181
	van der Waals	Ar 0.190	
(d)	Group 2	atomic/nm	ionic/nm
	metallic	Be 0.112	Be ²⁺ 0.031
		Mg 0.160	Mg ²⁺ 0.065
		Ca 0.197	Ca ²⁺ 0.099
		Sr 0.215	Sr ²⁺ 0.113
		Ba 0.217	Ba ²⁺ 0.135
		Ra 0.220	Ra ²⁺ 0.140

(e)	Group 14	atom	ic/nm	ionic	nm		
	single covalent	С	0.077	C ⁴⁺	0.015		
		Si	0.117	Si ⁴⁺	0.041		
		Ge	0.122	Ge ²⁺	0.093		
	metallic	Sn	0.162	Sn ²⁺	0.112		
		Pb	0.175	Pb ²⁺	0.120		
(f)	Group 17	atom	ic/nm	ionic	'nm		
	single covalent	F	0.072	F ⁻	0.136		
		Cl	0.099	Cl-	0.181		
		Br	0.114	Br ⁻	0.195		
		I	0.133	I-	0.216		
		At	0.140				
(g)	First row transition elements	atom	ic/nm	ionic	nm .		
	metallic	Sc	0.164			Sc ³⁺	0.081
		Ti	0.146	Ti ²⁺	0.090	Ti ³⁺	0.067
		V	0.135	V ²⁺	0.079	V ³⁺	0.064
		Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
		Mn	0.132	Mn ²⁺	0.067	Mn ³⁺	0.062
		Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
		Со	0.125	Co ²⁺	0.078	Co ²⁺	0.053
		Ni	0.124	Ni ²⁺	0.070	Ni ³⁺	0.056
		Cu	0.128	Cu ²⁺	0.073		
		Zn	0.135	Zn ²⁺	0.075		

6 Typical proton (1 H) chemical shift values (δ) relative to TMS = 0

type of proton	environment of proton	example structures	chemical shift range (δ)	
	alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7	
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0	
	alkyl next to aromatic ring	CH ₃ –Ar, –CH ₂ –Ar, >CH–Ar	2.3–3.0	
	alkyl next to electronegative atom	CH ₃ –O, –CH ₂ –O, –CH ₂ –C <i>l</i> , >CH–Br	3.2–4.0	
C–H	attached to alkyne	≡С–Н	1.8–3.1	
C-H	attached to alkene	=CH ₂ , =CH–	4.5–6.0	
	attached to aromatic ring	Н	6.0–9.0	
	aldehyde	R—C H	9.3–10.5	
	alcohol	RO-H	0.5–6.0	
O-H (see	phenol	ОН	4.5–7.0	
note below)	carboxylic acid	R—C O—H	9.0–13.0	
	alkyl amine	R-NH-	1.0–5.0	
N-H (see	aryl amine	\sim NH $_2$	3.0-6.0	
note below)	amide	R—C N—H	5.0–12.0	

Note: δ values for –O-H and –N-H protons can vary depending on solvent and concentration

7 Typical carbon (13 C) chemical shift values (δ) relative to TMS = 0

hybridisation of the carbon atom	environment of carbon atom	example structures	chemical shift range (δ)
sp ³	alkyl	CH ₃ , -CH ₂ , -CH<	0–50
sp ³	next to alkene/arene	- C H ₂ -C=C,	10–40
sp ³	next to carbonyl/carboxyl	-C H ₂ −COR, -C H ₂ −CO ₂ R	25–50
sp ³	next to nitrogen	-CH ₂ -NH ₂ , -CH ₂ -NR ₂ , -CH ₂ -NHCO	30–65
sp ³	next to chlorine (-CH ₂ -Br and -CH ₂ -I are in the same range as alkyl)	-C H ₂ −C <i>l</i>	30–60
sp ³	next to oxygen	- C H ₂ -OH, - C H ₂ -O-CO-	50–70
sp ²	alkene or arene	>C=C<, C C C	110–160
sp ²	carboxyl	R- C O ₂ H, R- C O ₂ R	160–185
sp ²	carbonyl	R-CHO, R-CO-R	190–220
sp	alkyne	R- C ≡ C -	65–85
sp	nitrile	R- C ≡N	100–125

8 Characteristic infra-red absorption frequencies for some selected bonds

bond	functional groups containing the bond	absorption range (in wavenumbers) /cm ⁻¹	appearance of peak (s = strong, w = weak)
C-O	alcohols, ethers, esters	1040–1300	ø
C=C	aromatic compounds, alkenes	1500–1680	w unless conjugated
C=O	amides, ketones and aldehydes esters,	1640–1690 1670–1740 1710–1750	0 0 0
C≡C	alkynes	2150–2250	w unless conjugated
C≡N	nitriles	2200–2250	w
C–H	alkanes, CH ₂ –H alkenes/arenes, =C–H	2850–2950 3000–3100	s W
N–H	amines, amides	3300–3500	w
O–H	carboxylic acids, RCO ₂ –H H–bonded alcohol, RO–H free alcohol, RO–H	2500–3000 3200–3600 3580–3650	s and very broad s s and sharp

9 The orientating effect of groups in aromatic substitution reactions.

The position of the incoming group, \mathbf{Y} , is determined by the nature of the group, \mathbf{X} , already bonded to the ring, and not by the nature of the incoming group \mathbf{Y} .

X- groups that direct the incoming Y group to the 2- or 4- positions	X- groups that direct the incoming Y group to the 3- position
–NH ₂ , –NHR or –NR ₂	-NO ₂
–OH or –OR	-NH ₃
-NHCOR	-CN
–CH ₃ , –alkyl	-CHO, -COR
-Cl	−CO ₂ H, −CO ₂ R

10 Names, structures and abbreviations of some amino acids

			structure of side chain R- in
name	3-letter abbreviation	1-letter symbol	ho $ ho$
alanine	Ala	А	CH ₃ –
aspartic acid	Asp	D	HO ₂ CCH ₂ -
cysteine	Cys	С	HSCH₂-
glutamic acid	Glu	Е	HO ₂ CCH ₂ CH ₂ -
glycine	Gly	G	H–
lysine	Lys	К	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ -
phenylalanine	Phe	F	-CH ₂ -
serine	Ser	S	HOCH ₂ -
tyrosine	Tyr	Y	HO-CH ₂ -
valine	Val	V	CH ₃ CH-

Group																	
1	2	13 14 15 16 17									18						
Key							1 H hydrogen 1.0										2 He helium 4.0
3 Li lithium 6.9 11 Na	4 Be beryllium 9.0 12 Mg		ato	omic numb mic sym name ve atomic i	ibol	·		1				5 B boron 10.8 13 A <i>l</i>	6 C carbon 12.0 14 Si	7 N nitrogen 14.0 15 P	8 O oxygen 16.0 16 S	9 F fluorine 19.0 17 C <i>l</i>	10 Ne neon 20.2 18 Ar
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
19 K potassiu 39.1 37 Rb rubidiun 85.5 55 Cs caesiun 132.9	40.1 38 Sr strontium 87.6 56 Ba barium 137.3	21 SC scandium 45.0 39 Y yttrium 88.9 57–71 lanthanoids	Ti titanium 47.9 40 Zr zirconium 91.2 72 Hf hafnium 178.5	V vanadium 50.9 41 Nb niobium 92.9 73 Ta tantalum 180.9	Cr chromium 52.0 42 Mo molybdenum 95.9 74 W tungsten 183.8	25 Mn manganese 54.9 43 Tc technetium - 75 Re rhenium 186.2	26 Fe iron 55.8 44 Ru ruthenium 101.1 76 Os osmium 190.2	27 Co cobalt 58.9 45 Rh rhodium 102.9 77 Ir iridium 192.2	28 Ni nickel 58.7 46 Pd palladium 106.4 78 Pt platinum 195.1	29 Cu copper 63.5 47 Ag silver 107.9 79 Au gold 197.0	30 Zn zinc 65.4 48 Cd cadmium 112.4 80 Hg mercury 200.6	31 Ga gallium 69.7 49 In indium 114.8 81 Tl thallium 204.4	Ge germanium 72.6 50 Sn tin 116.7 82 Pb lead 207.2	33 As arsenic 74.9 51 Sb antimony 121.8 83 Bi bismuth 209.0	34 Se selenium 79.0 52 Te tellurium 127.6 84 Po polonium -	35 Br bromine 79.9 53 I iodine 126.9 85 At astatine -	36 Kr krypton 83.8 54 Xe xenon 131.3 86 Rn radon -
87 Fr franciun	88 Ra radium	89–103 actinoids	104 Rf rutherfordium -	105 Db dubnium –	106 Sg seaborgium	107 Bh bohrium –	108 Hs hassium –	109 Mt meitnerium	110 Ds darmstadtium –	111 Rg roentgenium –	112 Cr copernicium		114 F <i>l</i> flerovium		116 Lv livermorium		
lantha		57 La lanthanum 138.9 89 Ac actinium	58 Ce cerium 140.1 90 Th thorium 232.0	59 Pr praseodymium 140.9 91 Pa protactinium 231.0	60 Nd neodymium 144.4 92 U uranium 238.0	61 Pm promethium — 93 Np neptunium	62 Sm samarium 150.4 94 Pu plutonium	63 Eu europium 152.0 95 Am americium	64 Gd gadolinium 157.3 96 Cm curium	65 Tb terbium 158.9 97 Bk berkelium	66 Dy dysprosium 162.5 98 Cf californium	67 Ho holmium 164.9 99 Es einsteinium	68 Er erbium 167.3 100 Fm fermium	69 Tm thulium 168.9 101 Md mendelevium	70 Yb ytterbium 173.1 102 No nobelium	71 Lu lutetium 175.0 103 Lr lawrencium -	

17

BLANK PAGE

BLANK PAGE

BLANK PAGE