Trig Final (Solution v46)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.9 radians. The radius is 4.3 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 8.17 meters.

Question 2

Consider angles $\frac{15\pi}{4}$ and $\frac{-19\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{15\pi}{4}\right)$ and $\sin\left(\frac{-19\pi}{6}\right)$ by using a unit circle (provided separately).

Find $cos(15\pi/4)$

$$\cos(15\pi/4) = \frac{\sqrt{2}}{2}$$

Find $sin(-19\pi/6)$

$$\sin(-19\pi/6) = \frac{1}{2}$$

Question 3

If $\cos(\theta) = \frac{48}{73}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$48^{2} + B^{2} = 73^{2}$$

$$B = \sqrt{73^{2} - 48^{2}}$$

$$B = 55$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-55}{73}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 7.8 Hz, an amplitude of 3.25 meters, and a midline at y = -5.67 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -3.25\cos(2\pi 7.8t) - 5.67$$

or

$$y = -3.25\cos(15.6\pi t) - 5.67$$

or

$$y = -3.25\cos(49.01t) - 5.67$$