TRIGONOMETRY Chapter 7

Razones trigonométricas de ángulos notables II

HELICO-MOTIVACIÓN

Conociendo la altura del edificio y los ángulos agudos de dichos triángulos notables, ¿se podrá determinar a quién atacara primero el pokemon pitgeod ?

¿ CÓMO CALCULAMOS LAS LONGITUDES DE LOS LADOS EN LOS TRIÁNGULOS RECTÁNGULOS

Las calculamos utilizando una constante positiva K para conservar las proporcionalidades fijas y muy conocidas entre las longitudes de sus respectivos lados.

Luego aplicamos las definiciones de las Razones Trigonométricas del ángulo agudo.

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

α RT	sen	cos	tan	cot	sec	CSC
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	2 3 5	4 5	$\frac{3}{4}$	$\frac{4}{3}$	$\frac{5}{4}$	5 3
53°	4 5	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

Josué ha rendido sus exámenes de Trigonometría, Geometría y Razonamiento Matemático y ha obtenido las notas a, b y c, respectivamente. ¿En cuál de los cursos obtuvo más nota?

: En Trigonometría obtuvo la nota mayor.

$$\therefore \tan \alpha = \frac{3}{1} = \boxed{3}$$

 $\tan \alpha = \frac{1}{CA}$

Del gráfico, calcule $\cot \alpha$ si el triángulo ABC es equilátero.

Resolución

- \star Trazamos $\overline{MH} \perp \overline{AC}$
- ❖ Se observa △AHM es notable

PIDEN

$$\cot \alpha = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{\sqrt{3}\sqrt{3}} = \boxed{\frac{4\sqrt{3}}{3}}$$

Recordar:

$$tan\theta = \frac{CO}{CA}$$

Del gráfico, calcule x.

Recordar:

$$\cos \alpha = \frac{CA}{H}$$

Recuerda

Resolución

❖ Del gráfico:

$$\cos 37^{\circ} = \frac{3x + 1}{8x - 4}$$

$$\frac{4K}{5K} = \frac{3x + 1}{8x - 4}$$

$$\cos 37^\circ = \frac{3x+1}{9x-4}$$
 4(8x-4) = 5(3x+1)

$$17x = 21$$

Del gráfico, calcule $\cot \alpha$.

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA