Processus de décision markoviens : contrôle de stock

TRAVAUX PRATIQUES

- Objectif de la séance -

Le but de ce TP est de contrôler le stock d'un vendeur de machines à laver de manière à optimiser son profit. Le cadre est le suivant :

- on note X_t le nombre de machines à laver qu'il détient dans son magasin à la fin de la semaine numéro numéro t;
- au maximum, il peut stocker M machines; mais chaque semaine, le coût d'entretien et de lavage de chaque machine est de h;
- il peut acheter A_t machines au prix unitaire c: il les reçoit alors au début de la semaine suivante; les frais de livraison sont de K quel que soit le nombre de machines livrées, sauf bien sûr si $A_t = 0$;
- il vend ses machines au prix p; le nombre de clients au cours de la semaine t est une variable aléatoire D_t , et on suppose que la suite $(D_t)_{t\geq 1}$ est i.i.d.
- on note R_t son chiffre d'affaire sur la semaine t;
- on suppose qu'au temps initial t=1, son stock est plein : $X_0=M$;
- soit $\gamma \in]0,1[$ tel que le taux d'inflation par semaine soit égal à $\gamma^{-1}-1$: on suppose donc que le vendeur cherche à maximiser en espérance son profit actualisé

$$\mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t R_{t+1}\Big] .$$

On pourra prendre, par exemple : $M=15, K=0.8, c=0.5, h=0.3, p=1, \gamma=0.99$ et pour la distribution de D_t une loi géométrique de paramètre 0.1.

- SIMULATION -

1. Montrer que

$$X_{t+1} = \left((X_t + A_t) \wedge M - D_{t+1} \right)_+,$$

$$R_{t+1} = -K\mathbb{1}\{A_t > 0\} - c\left((X_t + A_t) \wedge M - X_t \right)_+ - hX_t + p\left(D_{t+1} \wedge (X_t + A_t) \wedge M \right).$$

2. Comment évolue son chiffre d'affaire s'il commande chaque semaine exactement deux machines? Faire des simulations.

13 AVRIL 2012 ______ page 1

- Paramètres du MDP -

3. Pour chaque $(x, y, a) \in \{0, \dots, M\}^3$, calculer $P(X_{t+1} = y | X_t = x, A_t = a)$. Construire en R une liste trans telle que

trans[[a]][x,y] =
$$P(X_{t+1} = y | X_t = x, A_t = a)$$

4. Pour chaque $(x, a) \in \{0, \dots, M\}^2$, calculer $\mathbb{E}[R_{t+1}|X_t = x, A_t = a]$. Construire en R une liste rew telle que

$$rew[[a]][x] = \mathbb{E}[R_{t+1}|X_t = x, A_t = a]$$

- EVALUATION D'UNE POLITIQUE -

On code une politique pol par un tableau tel que pol [1+x] désigne le nombre de machines à acheter quand $X_t = x$.

- 5. Ecrire une fonction policyValue <- function(pol) qui calcule la fonction valeur d'une politique pol.
- 6. Que peut-il espérer gagner en achetant exactement deux machines chaque semaine?

- Itération sur les valeurs -

- 7. Programmer l'opérateur de Bellman de sorte que la fonction BellmanOperator <function(V) renvoie res $V=T^*(V)$ ainsi que la politique gloutonne associée resD01.
- 8. Programmer l'algorithme d'itération sur les valeurs pour trouver la stratégie optimale pour le vendeur.

- Itération sur les politiques -

9. Programmer l'algorithme d'itération sur les politiques, et commenter le résultat. En particulier, on comparera le temps de calcul avec l'algorithme d'itération sur les valeurs.

- Q-LEARNING -

On suppose maintenant que le vendeur ne connaît pas la loi de D_t .

10. Implémenter la méthode de Q-learning, et vérifier sa convergence quand t tend vers l'infini.

Références

- [1] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc. New York, NY, USA, 1994.
- [2] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

13 AVRIL 2012 ____ _ page 2