Research Problem

Making NNs Applicable to Real Life

- Neural Networks (NNs) accurately classify objects seen during training
- In-Distribution (ID) objects [1]

- NNs confidently misclassify objects NOT seen in training
- Out-of-Distribution (OOD) objects [1]

 OOD objects are rare & overlooked, but even 1 misclassification can be fatal

OOD Classification Issues

- NN doesn't know what OOD objects it will encounter
 - You can't train a NN on ALL OOD objects to prepare it
 - So new algorithms must be designed & implemented

Background

- > 90% NN research focuses on improving ID classification
- Generalized OOD field includes OOD & OSR
- OOD differentiate between ID & OOD datasets
- OSR differentiate between ID & OOD classes of single dataset

OOD Literature Review

- Thresholding SoftMax confidences [1]
- ID objects (in train set) should be classified confidently
- OOD unseen inputs should be less confidently classified
- Auxiliary OOD class [2]
- NN learns representation of OOD

OSR Literature Review

Generative Adversarial Networks [3]

New Algorithms

OOD Classification w/ Minimal Training

- Prevent fatal misclassification
- Classify 85% of OOD objects as "OOD"
- Classify 99% of ID objects appropriately

Reduce need for image labeling by user

Basic NN Structure

5-layer LeNet (CNN) [4], 15 epochs, Exponential learning rate of 0.001

References

- D. Hendrycks and K. Gimpel, "A baseline for detecting misclassified and out-of-distribution examples in neural networks," in Proc. Int. Conf. Learn. Representations (ICLR), 2017. https://arxiv.org/pdf/1610.02136.pdf
- 2. D. Hendrycks, M. Mazeika, T. Dietterich, "Deep Anomaly Detection with Outlier Exposure," in Proc. Int. Conf. Learn. Representations, 2019.
- 3. C. Geng, S. Huang, and S. Chen, "Recent Advances in Open Set Recognition: A Survey", 2015, https://arxiv.org/pdf/2110.11334.pdf 4. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition".
- Proceedings of the IEEE. 86 (11): 2278–2324. doi:10.1109/5.726791. 5. Y. LeCun, C. Cortes, and J. C. Burges, "The MNIST Database of Handwritten Digits", 1999.
- J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, B. Ni, "MedMNIST v2 A large-scale lightweight benchmark for 2D and 3D biomedical image classification," Sci Data 10, 41 (2023).
- https://doi.org/10.1038/s41597-022-01721-8. . N. B. Erichson, S. H. Lim, W. Xu, F. Utera, Z. Cao, and M. W. Mahoney, "NoisyMix: Boosting Model Robustness to Common Corruptions". https://arxiv.org/abs/2202.01263.

Can AI Recognize Unseen/Untrained Objects?

Mitigating the Impact of Out-of-Distribution Objects for Digit & Medical Classification Problems

SCM102

Set-Up

Datasets

MNIST [5] handwritten digits 50000 train, 10000 test images

OrganAMNIST [6] low-res organ scans 34581 train, 6491 test images

Procedure

Confidence level threshold for OOD detection

using Traditional 2-class NN

NN expected to

1. Train NN w/ ID class 0 & ID 1

confidently classify ID

2. Use confidence threshold to

Threshold = average of OOD

3. Test NN w/ ID & OOD unseen

image is OOD unseen

Confidence < threshold →

Confidence > threshold →

1. Train NN w/ ID class 0, ID class 1,

confidently classify ID

2. Test NN w/ ID & OOD unseen

confidently classify OOD

differentiate ID & OOD

train confidences

image is ID

Procedure

3-class NN w/ Novel OOD class

OOD train

NN expected to

less confidently classify OOD

PathMNIST [6] colorectal tissue 89996 train, 10004 test images

1. Train NN

2. Confidence Threshold

1 • "0", 52%

OOD Threshold = 54%

⊘ →"0", 99%→"ID 0"

/ →"1", 99%→"ID 1"

1. Train Novel NN

2. Test Novel NN

"OOD", 97%

D ID class 0

/ ID class 1-

5 ···

→ "0", 53%

ID class 0

Train set – train NN to differentiate ID & OOD • ID: ID class 0, ID class 1

- Primary classes NN is trained to detect
- OOD: OOD train
- Mixed image set of 3 known OOD objects
- **Test set** evaluate ID & OOD classification • ID: ID class 0, ID class 1
- OOD: OOD unseen
- Mixed image set of true OOD objects (not in train set)

<u>Dataset Class Structure</u>						
e ID & OOD	Original class #	MNIST	OrganAMNIST	PathMNIST	Altered Class	
d to detect	0	"handwritten 0"	"left lung"	"cancerous stroma"	ID class 0	
	1	"handwritten 1"	"right lung"	"normal colon mucosa"	ID class 1	
OOD objects	2	"handwritten 2"	"femur"	"debris"		
	3	"handwritten 3"	"spleen"	"background"	OOD train	
sification	4	"handwritten 4"	"kidney"	"adipose"		
	5	"handwritten 5"	"bladder"	"mucus"		
objects (not	6	"handwritten 6"	"heart"	"lymphocytes"	OOD	
	7	"handwritten 7"	"liver"	"smooth muscle"		
	8	"handwritten 8"	"pancreas"	"colorectal adenocarcinoma"	unseen	
	9	"handwritten 9"				

Procedure Phase 1:

Preventing Fatal Misclassification

Algorithm 1: Thresholded NN

Thresholded NN accurately classifies ID, inaccurately classifies OOD unseen

Analysis of Results: Inaccurate OOD

Single threshold value can't represent the entire general OOD class > OOD unseen misclassified as ID

Algorithm 2: Novel NN

Results **ID Mean Accuracy OOD Unseen Mean Accuracy** 25% OrganAMNIST OrganAMNIST Novel NN accurately classifies both ID & OOD unseen **Analysis of Results: Accurate OOD**

- OOD class in train set → NN tunes many weights & biases for accurate, general representation of entire OOD class
 - Accurate representation → preventing misclassification

Comparing Algorithm 1 & 2: **OOD Unseen Mean Accuracy**

Only Novel NN achieves > 85% OOD unseen accuracy

Novel NN outperforms Thresholded NN by... **63.95%** for MNIST (digits) 59.57% for OrganAMNIST

66.97% for PathMNIST (cancer)

T-Test Analysis

Thresholded v. Novel **OOD Unseen Accuracies**

Dataset

MNIST (digits)

OrganAMNIST

PathMNIST (cancer)

acies	NI I NIN		
o-value	Novel NN		
$\alpha = 0.05$)	unseen a		
8×10^{-12}	is <i>signific</i>		
0.1×10^{-9}	greater t		
1,40-11	Threshol		

P-values $< \alpha \rightarrow$

N's OOD accuracy cantly than the

Thresholded NN's

Procedure Phase 2:

Reducing Image Labeling & Discovering new OOD objects

Algorithm 3: Semi-Supervised Iterative

Procedure

Algorithm self-labels OOD unseen images & trains 2-class NN to differentiate OOD unseen & OOD train

- . Create OOD train & unseen classes
 - Use confidence threshold (97%) to differentiate OOD train & unseen
 - Confidence < 97% → add image to new OOD unseen class
 - Confidence > 97% → add image to new OOD train class

2. Train 2-class NN w/ OOD train &

unseen classes (created in Step 1)

 Improves NN's understanding of OOD unseen & OOD train objects

Corrects misclassifications

4. Iterate Steps 2 & 3 40 times

►"OOD unseen, 99%

- Step 3 corrects misclassifications made in previous iterations
- Step 2 retrains NN w/ corrections → better understanding
- More iterations → more corrections → better understanding → higher accuracy

Results Accuracy increases quickly after critical mass is reached (~25%)

Iterative Algorithm's Accuracies After 40 Iterations

	OOD train	OOD unseen
MNIST (digits)	82.05%	85.14%
OrganAMNIST	90.02%	90.70%
PathMNIST (cancer)	99.25%	97.37%

Accuracy increases over iterations \rightarrow > 80% accuracies

Analysis of Results

- Saves on user image labeling
- Self-labels an entire new class
- Trains w/ ~3000 images
- Self-labels ~9000 images
- Stores objects unseen by trainers Likely to make discoveries

NN discovers carcinoma images, which were not in train set, & stores images in **OOD** unseen

NN

"cancer stroma", 0.33%

"mucosa", 0.33%

"OOD train", 0.33%

OOD unseen

Conclusion

Algorithm developed to enhance the capabilities of NNs for real life applications beyond controlled environments

With Iterative Algorithm NNs...

- are freed from limitation of training and testing on similar images
- classify objects completely different from those seen in training
- can discover new objects before humans

Limitations

 NNs only successful if OOD objects look notably different from ID Future Work

- Implement image augmentation & JSD loss [7] for low-res datasets & datasets with very similar classes
- Test limits of computer vision