ÁLGEBRA LINEAL

Espacios Vectoriales

Espacios vectoriales

Espacios vectoriales

Espacio vectorial. Sea \mathbb{K} un cuerpo y E un conjunto no vacío; diremos que E es un **espacio vectorial** sobre \mathbb{K} si:

En E hay una **operación interna**, que denotaremos +, y se cumplen las siguientes propiedades:

· Asociativa:
$$(u + v) + w = u + (v + w)$$
; $\forall u, v, w \in E$

· Conmutativa:
$$u + v = v + u$$
; $\forall u, v \in E$

- · Existencia elemento neutro: $\exists 0 \in E$ tal que 0+v=v+0=v; $\forall v \in E$
- · Existencia elemento opuesto: $\forall v \in E, \exists -v \in Ev + (-v) = (-v) + v = 0$

Espacios vectoriales

En E hay definida una **operación externa** sobre \mathbb{K} :

$$a \cdot (u + v) = a \cdot u + a \cdot v; \forall u, v \in E, \forall a \in \mathbb{K}$$
$$(a + b) \cdot u = a \cdot u + b \cdot u; \forall u \in E, \forall a, b \in \mathbb{K}$$
$$a \cdot (bu) = (ab) \cdot (u); \forall u \in E, \forall a, b \in \mathbb{K}$$

 $1 \cdot u = u$; $\forall u \in E$ donde 1 es el elemento neutro de \mathbb{K}

Los elementos del espacio vectorial suelen denominarse **vectores** y los de $\mathbb K$ **escalares**. La operación externa recibe el nombre de producto escalar.

Espacios vectoriales ejemplos

 $ightharpoonup \mathbb{R}^2$ sobre el cuerpo \mathbb{R} formado por los vectores de 2 componentes (x_1,x_2)

Espacios vectoriales ejemplos

▶ \mathbb{R}^3 sobre el cuerpo \mathbb{R} formado por los vectores de 3 componentes (x_1, x_2, x_3)

Subespacios vectoriales

Subespacio vectorial

Subespacio vectorial. Sea $F \subseteq E$ un subconjunto no vacío del espacio vectorial E sobre un cuerpo \mathbb{K} . Diremos que F es un subespacio vectorial de E si, y solo si, se verifica

▶ La suma de dos elementos de F es otro elemento de F:

$$\forall \vec{x}, \vec{y} \in F \Rightarrow \vec{x} + \vec{y} \in F$$

► El producto de un escalar por un elemento *F* es otro elemento de *F*:

$$\forall \vec{x} \in F, \ \alpha \in \mathbb{K} \Rightarrow \alpha \vec{x} \in F$$

Subespacio vectorial

Ejemplo: el plano es un subespacio del espacio 3D.

Combinación lineal

Combinación lineal.

Una combinación lineal es una suma de pares de elementos multiplicados entre sí. Dados p vectores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_p \in \mathbb{K}^n$ y los escalares $\alpha_1, \alpha_2, \ldots, \alpha_p \in \mathbb{K}$, una combinación lineal de esos p vectores es un vector dado por una expresión de la forma

$$\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2 + \dots + \alpha_p \vec{u}_p \in \mathbb{K}^n$$

En el espacio vectorial \mathbb{R}^2 sobre el cuerpo \mathbb{R} . Una combinación lineal de los vectores (1,0) y (3,5) es (11,15) porque $2,3\in\mathbb{R}$ y se cumple la ecuación

$$(11,15) = 2(1,0) + 3(3,5).$$

En el espacio vectorial \mathbb{R}^2 sobre el cuerpo \mathbb{R} . ¿Es el vector (2,-4) una combinación lineal de los vectores (1,1) y (-2,0)?

Necesitamos $x, y \in \mathbb{R}$ tales que

$$(2,-4) = x(1,1) + y(-2,0)$$

$$(2,-4) = x(1,1) + y(-2,0)$$

Por lo tanto, desarrollamos la anterior ecuación:

$$(2,-4) = (x,x) + (-2y,0)$$

$$(2,-4) = (x-2y,x+0)$$

$$(2,-4) = (x-2y, x+0)$$

Igualamos las componentes del vector y obtenemos un sistema lineal de dos ecuaciones y dos incógnitas:

$$\begin{cases} x - 2y = 2 \\ x = -4 \end{cases}$$

Se resuelve el **sistema compatible determinado** y obtenemos que x = -4, y = -3. Por lo tanto, el vector (2, -4) sí es combinción lineal de los otros dos vectores.

Dependencia lineal

Dependencia lineal. Dado un conjunto de vectores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_p \in \mathbb{K}^n$, se dice que el conjunto es linealmente dependiente (LD) si la ecuación vectorial

$$\sum_{i=1}^{p} \alpha_i \vec{u}_i = \vec{0}$$

tiene infinitas soluciones (sistema compatible INDETERMINADO).

El conjunto $\{\vec{v}_1=(1,0), \vec{v}_2=(1,2), \vec{v}_3=(2,2)\}$ es linealmente dependiente. Planteamos la ecuación vectorial:

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 = \vec{0}$$

$$\alpha_1(1,0) + \alpha_2(1,2) + \alpha_3(2,2) = (0,0)$$

$$(\alpha_1 \cdot 1, \alpha_1 \cdot 0) + (\alpha_2 \cdot 1, \alpha_2 \cdot 2) + (\alpha_3 \cdot 2, \alpha_3 \cdot 2) = (0,0)$$

$$(\alpha_1 \cdot 1, \alpha_1 \cdot 0) + (\alpha_2 \cdot 1, \alpha_2 \cdot 2) + (\alpha_3 \cdot 2, \alpha_3 \cdot 2) = (0, 0)$$
$$(\alpha_1, 0) + (\alpha_2, \alpha_2 \cdot 2) + (\alpha_3 \cdot 2, \alpha_3 \cdot 2) = (0, 0)$$
$$(\alpha_1 + \alpha_2 + \alpha_3 \cdot 2, 0 + \alpha_2 \cdot 2 + \alpha_3 \cdot 2) = (0, 0)$$

$$(\alpha_1 + \alpha_2 + \alpha_3 \cdot 2, 0 + \alpha_2 \cdot 2 + \alpha_3 \cdot 2) = (0, 0)$$

Planteamos el sistema de ecuaciones:

$$\begin{cases} 0 &= 1\alpha_1 + 1\alpha_2 + 2\alpha_3 \\ 0 &= 0\alpha_1 + 2\alpha_2 + 2\alpha_3 \end{cases}$$

Extraemos las matrices del sistema:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Aplicamos el Teorema de Rouché-Frobenius:

rg(A) = rg(A|b) = 2 entonces el sistema es compatible, pero como el número de incógnitas no es 2, entonces el sistema es compatible indeterminado (infinitas soluciones). Es decir, los vectores son linealmente dependientes.

Dependencia lineal

Dependencia lineal. Dados los vectores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_p \in \mathbb{K}^n$, diremos que son linealmente dependientes (LD) si alguno de ellos se puede expresar como una combinación lineal del resto:

$$\exists 1 \leq i \leq p: \ \vec{u}_i = \sum_{k \neq i} \alpha_k \vec{u}_k$$

El conjunto $\{\vec{v}_1=(1,0), \vec{v}_2=(1,2), \vec{v}_3=(-1,-6)\}$ es linealmente dependiente porque se cumple la igualdad

$$v_3=2v_1-3v_2$$

ya que

$$(-1, -6) = 2(1, 0) - 3(1, 2)$$

 $(-1, -6) = (2, 0) - (3, 6)$
 $(-1, -6) = (-1, -6)$

Independencia lineal

Independencia lineal. Dados los vectores $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p \in \mathbb{K}^n$, diremos que son linealmente independientes (LI) si la ecuación vectorial

$$\sum_{i=1}^{p} \alpha_i \vec{u}_i = \vec{0}$$

tiene una única solución (sistema compatible DETERMINADO), y la solución es la solución trivial, es decir, $\alpha_i = 0 \ \forall i = 1, 2, ..., p$.

El conjunto $\{\vec{v}_1=(1,0), \vec{v}_2=(1,2)\}$ es linealmente independiente.

Planteamos la ecuación vectorial:

$$lpha_1 \vec{v}_1 + lpha_2 \vec{v}_2 = \vec{0}$$

 $lpha_1(1,0) + lpha_2(1,2) = (0,0)$

$$\alpha_1(1,0) + \alpha_2(1,2) = (0,0)$$

Planteamos el sistema de ecuaciones:

$$\begin{cases}
0 &= 1\alpha_1 + 1\alpha_2 \\
0 &= 0\alpha_1 + 2\alpha_2
\end{cases}$$

Extraemos las matrices del sistema:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Aplicamos el Teorema de Rouché-Frobenius:

$$rg(A) = rg(A|b) = 2$$

entonces el sistema es compatible. Además, como el número de incógnitas también es 2, entonces el sistema es compatible determinado (única solución).

Resolvemos el sistema con la función solve() y obtenemos que las soluciones son $\alpha_1=0$ y $\alpha_2=0$. Por lo que los vectores son linealmente independientes.

Bases de un espacio vectorial

Bases de un espacio vectorial

Base de E. Un conjunto de vectores $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \in E$ son una base de E si

- $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ es un sistema generador de E
- $ightharpoonup ec{u}_1, ec{u}_2, \ldots, ec{u}_n$ son linealmente independientes

En la práctica (para nosotros) un conjunto de vectores $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \in E$ forman una base de E si cumplen lo siguiente:

- Los vectores $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ son linealmente independientes.
- La cantidad de vectores y la dimensión del espacio son iguales:

$$|\{\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_n\}|=\dim_{\mathbb{R}}(E).$$

Base de un espacio vectorial

Ejemplo. En el espacio vectorial \mathbb{R}^2 sobre el cuerpo \mathbb{R} los vectores (1,1) y (-2,0) forman una base porque se cumple lo siguiente:

- Los vectores son linealmente dependientes.
- $ightharpoonup dim_{\mathbb{R}}(\mathbb{R}^2)=2.$

Bases ortogonales y ortonormales

Bases ortogonales y ortonormales

Base ortogonal. Dada una base $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ de un espacio vectorial E, se dice que se trata de una base ortogonal si sus elementos son ortogonales dos a dos:

$$\langle \vec{u}_i, \vec{u}_j \rangle = 0 \quad \forall i \neq j$$

Base ortogonal

Ejemplo base ortogonal. La base $B = \{\vec{u}_1 = (1,0), \vec{u}_2 = (0,3)\}$ es una base ortogonal porque

$$\langle \vec{u}_1 = (1,0), \vec{u}_2 = (0,3) \rangle = 0$$

ya que el producto escalar es 0:

$$(1,0)$$
ů $(0,3)=0$

Bases ortogonales y ortonormales

Base ortonormal. Dada una base $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ de un espacio vectorial E, se dice que se trata de una base ortonormal si es ortogonal y todos sus elementos son unitarios:

$$\langle \vec{u}_i, \vec{u}_j \rangle = 0 \quad \forall i \neq j$$

$$||\vec{u}_i|| = 1 \quad \forall i$$

Base ortonormal

Ejemplo base ortonormal. La base $B = \{\vec{u}_1 = (1,0), \vec{u}_2 = (0,1)\}$ es una base ortonormal porque se cumplen las condiciones siguientes:

$$\langle \vec{u}_1 = (1,0), \vec{u}_2 = (0,1) \rangle = 0$$

 $||\vec{u}_1|| = ||(1,0)|| = 1, ||\vec{u}_2|| = ||(0,1)|| = 1$