

CE) Assume S is closed.

Grown: 32 C S

WEYO

Axe 3S, S

X

YNEW, BXnES nBI(x), d(xn,x)<?

S = NE

SCE

Cloud

 $\frac{B_{\epsilon}(x)}{\sum_{i=1}^{n} \{y \in X \mid d(x,y) \leq \epsilon\}} = \{y \in X \mid d(x,y) \leq \epsilon\}$ 

(x,d) discrete metric  $B_1(x) = \{y \in X : der_{xy} > 1\} = \{x\}.$ 

$$C_1(x) = \{y \in X: d(x,y) \leq 1\} = X$$
.

B, (x) = B, (x).

dense Sc(x,d)
is dense

3= X.

· Q = R , R ,

Q is dense in R.

R/Q . - -

f(x+y) = f(x) f(y) Ux, y ER.

5° := 5\25.

 $f:(X,d_X) \rightarrow (Y,d_Y)$ 

xeBx(a)(a).

lim f(x) = P

duf X=0, 3870

sit. 0 < d(x,a) < 8

( ) S

 $\Rightarrow d_{\gamma}(for), p) < \epsilon.$ 

S < X a & S'

$$\lim_{x\to a} \frac{1}{2}(x) = 1$$

$$\lim_{x\to a} \frac{1}{2}(x) = 0.$$

$$\lim_{x\to a} \frac{1}{2}(x) = 0.$$

$$f: (x, d_x) \rightarrow (x, d_y)$$
 is continuous  
at  $x=a$   
 $\lim_{x\to a} f(x) = f(a)$ 

e.g. 2.44:  $A \subset (X, d)$   $d_A : X \to \mathbb{R}$   $d_A(x) := \inf \{d(x, a) : a \in A\}$ Claim:  $d_A := \inf \{d(x, a) : a \in A\}$ Tran: Want:  $|d_A(x) - d_A(y)| \leq d(x, y)$ .  $d(x, a) \leq d(x, y) + d(y, a) \quad \forall a \in A$ 

 $d(x,\alpha) \leq d(x,y) + d(y,\alpha) \quad \forall \alpha \in A.$   $\inf = \int_{\alpha \in A} d_{\alpha}(x) \leq \inf_{\alpha \in A} \{d(x,\alpha) + d(y,\alpha) : \alpha \in A\}.$   $= d(x,y) + \inf_{\alpha \in A} \{d(y,\alpha) : \alpha \in A\}.$   $= d(x,y) + \inf_{\alpha \in A} \{d(y,\alpha) : \alpha \in A\}.$   $= d_{\alpha}(y)$   $= \int_{\alpha} d_{\alpha}(y) = d_{\alpha}(y).$ 

Let f: (X,dx)-x(Y,dy), TFAE:

① f is continuous on X

② f-'(u) is open in X

for any open set UCY.

$$f^{-1}(u) := \{x \in X : fox \in U\}$$
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 
 $u = \{x \in X : fox \in U\}$ 

2 := set of all invertible matrices.

det: M" > IR

$$Z = des^{-1}(R(sos)) = \{Rem^{so}: details is upon in  $r(sos)$ .

Let  $f: (X,d_X) - (Y,d_{Y})$ ,  $Trae:$ 

Of is continuous an  $X$ 

If any open set  $U \in Y$ .

$$= Vae X, Ve>0,  $\exists 5>0$$$

$$= (f(x), f(x)) < E$$

$$= XeB_{\delta}(a) \qquad f(x) \in B_{\epsilon}(f(a))$$

$$X \in f^{-1}(B_{\epsilon}(f(a)))$$

$$= B_{\delta}(a) \subset f^{-1}(B_{\epsilon}(f(a)))$$

$$= XeB_{\delta}(a) \qquad f(x) \in B_{\epsilon}(f(a))$$

$$= XeB_{\delta}(a) \qquad f(x) \in B_{\epsilon}(f(a))$$$$

(i) => (i) :

Take UCY open



