Corrigé exercice 75:

- 1. f est un polynôme donc est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f'(x) = x^3 3x^2 + 10x$. De même, f' est un polynôme donc est dérivable sur \mathbb{R} . Et, pour tout $x \in \mathbb{R}$, $f''(x) = 3x^2 6x + 10$.
- 2. Le discriminant de ce trinôme vaut $\Delta = (-6)^2 4 \times 3 \times 10 = -84$. $\Delta < 0$, donc le trinôme est toujours positif sur \mathbb{R} .
- 3. La fonction f est donc convexe sur \mathbb{R} et elle n'admet pas de points d'inflexion.

Corrigé exercice 76:

- 1. g est le produit des fonctions u et v définies par $u(x) = 5 x^2$ et $v(x) = \sqrt{x}$ et dérivables sur $]0; +\infty[$ donc g est dérivable sur $]0; +\infty[$. Pour tout $x \in]0; +\infty[$, $g'(x) = \frac{-5(x^2 1)}{2\sqrt{x}}$. g' est le quotient des fonctions p et q définies par $p(x) = -5(x^2 1)$ et $q(x) = 2\sqrt{x}$ et dérivables sur $]0; +\infty[$ donc g'' est dérivable sur $]0; +\infty[$. Pour tout $x \in]0; +\infty[$, $g''(x) = \frac{-15x^2 5}{2x\sqrt{x}}$.
- 2. Comme g''(x) est définie sur $]0; +\infty[$, $2x\sqrt{x} > 0$. Donc g''(x) est du signe de $-15x^2 5 = -5(3x^2 + 1)$ qui est négatif sur $]0; +\infty[$. En conclusion, g'' est négative sur cet intervalle.
- 3. Donc g est concave sur $]0; +\infty[$.

Corrigé exercice 77:

- 1. h est le produit de deux fonctions dérivables sur \mathbb{R} donc est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $h'(x) = -2xe^x + (2-x^2)e^x = (2-2x-x^2)e^x$. h' est le produit de deux fonctions dérivables sur \mathbb{R} donc est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $h''(x) = (-x^2 4x)e^x = -x(x+4)e^x$.
- 2. Comme $e^x > 0$, h''(x) est du signe de -x(x+4). Donc h est concave sur $]-\infty;-4]$, puis convexe sur [-4;0] et concave sur $[0;+\infty[$. Les abscisses de ses points d'inflexion sont -4 et 0.