Page 20 Dkt: 341.030US1

REMARKS

Reconsideration and withdrawal of the rejections of the claims, in view of the amendments and remarks herein is respectfully requested. Claims 1 and 5-6 are amended. The amendments are intended to advance the application and are not intended to concede to the correctness of the Examiner's position or to prejudice the prosecution of the claims prior to amendment, which claims are present in a continuation of the above-referenced application. Claims 1-67 are now pending in this application.

The 35 U.S.C. § 112 Rejections

Claims 4-6 were rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which Applicant regards as the invention. The amendments to claims 5 and 6 obviate the rejection, as the recited restriction enzymes generate blunt ends.

Thus, withdrawal of the § 112(2) rejection is respectfully requested.

Claims 10-12 were rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the written description requirement. This rejection is respectfully traversed.

The Examiner is respectfully reminded that Applicant need not teach what is well-known to the art. With regard to " X_1 - X_3 , X_2 X_3 G or X_3 GC is a codon which is not a stop codon" in claim 10, " X_1 X_2 X_3 is a codon in an open reading frame which is not a stop codon" in claim 11, and " X_1 X_2 X_3 , X_2 X_3 G or X_3 GT is a codon in an open reading frame which is not a stop codon" in claim 12, the Examiner is requested to consider pages 900-901 in Metzler: Biochemistry: the Chemical Reactions of Living Cells, Academic Press, Inc. (1977) (a copy is enclosed herewith), where every codon including stop codons is described.

Moreover, Applicant has described exemplary restriction enzymes that 1) generate a 3' TA overhang, 2) generate blunt ends, and 3) have infrequent sites in cDNAs and generate blunt ends (see, for example, pages 16-17 and 49-50 of the specification). Accordingly, one of skill in the art in possession of Applicant's specification would be apprised that Applicant was in possession of the claimed vectors.

Therefore, withdrawal of the § 112(1) "written description" rejection is respectfully requested.

AMENDMENT AND RESPONSE UNDER 37 C.F.R. § 1.111

Serial Number: 10/702,228 Filing Date: November 5, 2003

Title: VECTORS FOR DIRECTIONAL CLONING

Page 21 Dkt: 341.030US1

The 35 U.S.C. § 102(b) Rejection

Claims 1-8 were rejected under 35 U.S.C. § 102(b) as being anticipated by Bilcock et al. (J. Biol. Chem., 274:36379 (1999)). This rejection, as it may be maintained with respect to the pending claims, is respectfully traversed.

Bilcock et al. disclose 5 plasmids (Figure 1) with a plurality of restriction endonuclease recognition sites designed to determine whether certain Type II enzymes that recognize a site with 8 specified base pairs require two sites per molecule or can cleave a molecule with only one site.

pAT153, pDB7, and pDB8 in Figure 1 of Bilcock et al., if cleaved with a restriction enzyme that generates a 3' TA overhang (*Sgf*I in pAT153, pDB7, and pDB8) and a restriction enzyme which generates blunt ends (*Srf*I in pAT153, pDB7, and pDB8), would <u>not</u> yield a vector backbone where the end generated by *Sgf*I could be ligated 5' to an open reading frame, because the restriction enzyme which generates blunt ends in pAT153, pDB7, and pDB8 is 5' to the site for *Sgf*I.

Moreover, pNEB193 and pAB1 (pAB1 is derived from pNEB193) in Figure 1 of Bilcock et al., if cleaved with a restriction enzyme that generates a 3' TA overhang (*PacI* in pNEB193 and pAB1) and *SspI* or *PvuII* in pNEB193 or *PmeI* in pAB1, would <u>not</u> yield a vector backbone where the end generated by *PacI* is 5' to the open reading frame. That is because *SspI* in pNEB193 is 5' to *PacI*, and *PvuII* in pNEB193 and *PmeI* in pAB1 have two sites that flank *PacI*.

Further, pNEB193 and pAB1 do not include a promoter operably linked to an open reading 5' to *PacI* (see enclosed summary of genetic elements in pNEB193).

Therefore, withdrawal of the § 102(b) rejection is respectfully requested.

Serial Number: 10/702,228 Filing Date: November 5, 2003

Title: VECTORS FOR DIRECTIONAL CLONING

Page 22 Dkt: 341.030US1

CONCLUSION

Applicant respectfully submits that the claims are in condition for allowance, and notification to that effect is earnestly requested. The Examiner is invited to telephone Applicant's attorney at (612) 373-6959 to facilitate prosecution of this application.

If necessary, please charge any additional fees or credit overpayment to Deposit Account No. 19-0743.

Respectfully submitted,

MICHAEL R. SLATER ET AL.

By their Representatives,

SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A. P.O. Box 2938

Minneapolis, MN 55402

(612) 373-6959

Date MMMM SOUT

Janet E. Embred

Reg. No/39,865

CERTIFICATE UNDER 37 CFR 1.8: The undersigned hereby certifies that this correspondence is being deposited with the United States
Postal Service with sufficient postage as first class mail, in an envelope addressed to: Mail Stop Amendment, Commissioner of Patents, P.O. Box
1450, Alexandria, VA 22333-1430 on this 15th day of January 2007.

Name

Signature

BICOCHELINISTRY The Chemical Reactions of Living Cells

DAVID E. METZLER

BEST AVAILABLE COPY

ferred from the donor strain. Using this technique it was found that complete transfer of the chromosome takes ~ 100 min at 37°C and that the approximate location of any gene on the chromosome can be determined by the length of time required for transfer of that gene into the recipient cell. It is a little more complex than this. Because complete chromosome transfer is rare, substrains of E. coli K-12 with the F agent integrated at different points are used. In each case, those genes lying clockwise* around the circle in Fig. 15-1 immediately beyond the point of integration are transferred quickly and with high frequency.

The map in Fig. 15-1 is based not only on interrupted matings but also on the use of "transduction" by bacteriophage P1. 15 Transduction by phage, discussed in more detail in Section D, permits the transfer of a short fragment of DNA, about 2 min in length, on the *E. coli* map. Joint transduction, i.e., joint incorporation of two genes into the chromosome of the receptor, occurs with a frequency related to the map distance between these two genes. Thus, finer mapping has been done within many segments of the *E. coli* chromosome.

Note that while the map in Fig. 15-1 is calibrated in minutes, this is regarded as a temporary expedient. It will soon be possible to express the linkage map directly as micrometers of DNA length (total length $\sim 1100~\mu m$) or in thousands of nucleotide units, sometimes called kilobases (kb). The total length is $\sim 3800~\rm kb.^{\dagger}$

2. The Genetic Code

The general nature of the genetic code was suggested by the structure of DNA itself. Both DNA and proteins are linear polymers. Thus, it seemed logical to suppose that the sequence of the bases in DNA coded for the sequence of amino

acids. Since there are only four bases in DNA but 20 different amino acids in proteins (at the time of their synthesis) each amino acid must be specified by some combination of more than one base. While 16 pairs of bases are possible, this is still too few to specify 20 different amino acids. Therefore, it appeared that at least a *triplet* group of three nucleotides would be required to code for one amino acid. Sixty-four (4²) such triplet codons exist, as is indicated in Tables 15-2 and 15-3.

TABLE 15-2 The Genetic Code^a

Amino acid	Codons	Total number of codons
Alanine	GCX	4
Arginine	CGX, AGA, AGG	6
Asparagine	AAU, AAC	2
Aspartic acid	GAU, GAC	2
Cysteine	UGU, UGC	2
Glutamic acid	GAA, GAG	2
Glutamine	CAA, CAG	2
Glycine	GGX	4
Histidine	CAU, CAG	2 2 2 2 2 4 2 3
Isoleucine	AUU, AUC, AUA	
Leucine	UUA, UUG, CUX	6
Lysine	AAA, AYG	2
Methionine (also	AUG 🕟	1
initiation codon)	1100 41	
Phenylalanine	UUU, UUC	2
Proline	CCX	4
Serine	UCX, AGU, AGC	6
Threonine	ACX	4
Tryptophan	UGG	1
Tyrosine	UAU, UAC	2
Valine (GUG is	GUX	4
sometimes an initiation codon)	30//	
Termination	UAA (ochre)	
Tellitation	UAG (amber)	
	UGA	3
Total		64

^a The codons for each amino acid are given in terms of the sequence of bases in messenger RNA. From left to right the sequence is from the 5' end to the 3' end. The symbol X stands for any one of the four RNA bases. Thus each codon symbol containing X represents a group of four codons.

^{*} With one type of F factor. Others are integrated in the opposite direction.

[†] This value is somewhat uncertain. Thus the map in Fig. 15-1 is based ¹⁵ on a total length of 4100 kb or a molecular weight of 2.7×10^9 .

TABLE 15-3
The Sixty-Four Codons of the Genetic Code

5'-OH Terminal base	Middle base				3'-OH
	U(T)	C .	Α	G	Terminal base
U(T)	Phe	Ser	Tyr	Cys	U(T)
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Term	Term	A
	Leu	Ser	Term	Trp	G
С	Leu	Pro	His	Arg	U
	Leù	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
Α	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met ^a	Thr	Lys	Arg	G
Ğ .	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val ^a	Ala	Glu	Gly	G

^a Initiation codons. The methionine codon AUG is the most common starting point for translation of a genetic message but GUG can also serve. In such cases it codes for methionine rather than valine.

Simplicity argued that the genetic blueprint specifying amino acid sequences in proteins should consist of consecutive, nonoverlapping triplets. However, there was initially no proof of this and other possibilities were actively considered, but within a few years genetic experiments (some of which are discussed in Section D) together with chemical experiments considered in the following section provided unequivocal proof for a nonoverlapping code.

Deciphering the Code

Even after the triplet nature of the genetic code became evident, many questions remained. Were all of the 64 possible codons used by the living cell? If so, were they all used to code for amino acids or were some set aside for other purposes? How many codons were used for a single amino acid? Was the code "universal," applying to all organisms, or did different organisms use dif-

ferent codes? How could one decipher the code? Despite the complexity of these questions, they all seem to have been answered definitively.

An important experiment¹⁷ was performed by M. Nirenberg* and H. Matthaei in 1961. Using a typical biochemist's approach, Nirenberg had isolated ribosomes from E. coli. He mixed these with crude extracts of soluble materials, also from E. coli cells. The extracts included tRNA molecules and amino acid activating enzymes. The 20 amino acids, ATP, and an ATP-generating system (PEP + pyruvate kinase) were added. Nirenberg was able to show that under such conditions protein was synthesized by ribosomes in response to the presence of added RNA. For example, RNA from tobacco mosaic virus (Chapter 4, Section D,2) was very effective in stimulating protein synthesis. The crucial experiment (originally done simply as a "control") was one in which a synthetic polynucleotide consisting solely of uridylic acid units was substituted for mRNA. In effect, this was a synthetic mRNA containing only the codon UUU repeated over and over. To Nirenberg's surprise, the ribosomes read this code and synthesized a peptide containing only phenylalanine. Thus, poly(U) gave polyphenylalanine and UUU was identified as a codon specifying phenylalanine. The first nucleotide triplet had been identified! In the same manner CCC was identified as a proline codon and AAA as a lysine codon. Study of mixed copolymers containing two different nucleotides in a random sequence suggested other codon assignments. However, it was a few years later, after H. G. Khorana had supplied the methods for synthesis of oligonucleotides and of regular alternating polymers of known sequence, that the remaining codons were identified.

An important technique was based on the observation that synthetic trinucleotides induced the binding to ribosomes of specific tRNA molecules "charged" with their specific amino acids. ^{18,19} For example, the trinucleotides UpUpU and ApApA stimulated the binding of ¹⁴C-labeled phenyl-

^{*} In 1968 Nirenberg and Khorana together with R. Holley, who first determined the sequence of a transfer RNA, were awarded a Nobel Prize.

!!NA_SEQUENCE 1.0 Plasmid pNEB193

Update 6/11/03

Features:	
496- 146	lacZ alpha CDS (start 496, complementary strand)
546- 541	Plac promoter -10 sequence (TATGTT)
570- 565	Plac promoter -35 sequence (TTTACA)
602- 590	CAP protein binding site
396- 479	multiple cloning site (EcoRI-HindIII)
1482- 894	origin of replication (counterclockwise)
	(RNAII -35 to RNA/DNA switch point):
1300-1305	RNAI transcript promoter -35 sequence (TTGAAG)
1322-1327	RNAI transcript promoter -10 sequence (GCTACA)
1336-1443	RNAI transcript
1446- 894	RNAII transcript (complementary strand)
1461-1456	RNAII transcript promoter -10 sequence (CGTAAT)
1482-1477	RNAII transcript promoter -35 sequence (TTGAGA)
2513-1653	beta-lactamase (bla; amp-r) CDS
	(start 2513, complementary strand)
2513-2445	beta-lactamase signal peptide CDS
	(start 2513, complementary strand)

pneb193.seq Length: 2713 June 11, 2003 12:46 Type: N Check: 1526

1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG 51 GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG 101 TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG 151 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA 201 CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT 251 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT 401 CGAGCTCGGT ACCCGGGGC GCGCCGGATC CTTAATTAAG TCTAGAGTCG 451 ACTGTTTAAA CCTGCAGGCA TGCAAGCTTG GCGTAATCAT GGTCATAGCT 501 GTTTCCTGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG CCTAATGAGT GAGCTAACTC 551 601 ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC 651 GTGCCAGCTG CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC 701 GTATTGGGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC

<u>د</u> را

751 GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT 801 ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC 851 AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT 901 AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG 951 GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA 1001 GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG 1051 TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCATA GCTCACGCTG 1101 TAGGTATCTC AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC 1151 ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT 1201 CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC 1251 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT 1301 TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGAACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG 1351 1401 ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC 1451 AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT 1501 TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT 1601 AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC 1651 AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA TCTGTCTATT 1701 TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC 1751 GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA 1801 CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC 1851 CGAGCGCAGA AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA 1901 ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC 1951 AACGTTGTTG CCATTGCTAC AGGCATCGTG GTGTCACGCT CGTCGTTTGG 2001 TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT 2051 CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 2101 GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT 2151 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG

2201	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT
2251	TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC
2301	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA
2351	GGATCTTACC	GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC
2401	AACTGATCTT	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA
2451	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT
2501	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG
2551	GGTTATTGTC	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAATAA
2601	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCT
2651	AAGAAACCAT	TATTATCATG	ACATTAACCT	ATAAAAATAG	GCGTATCACG
2701	AGGCCCTTTC	GTC			