Part 01 - Introduction

Yangang Cao

May 28, 2019

Contents

1	\mathbf{Bas}	ics	2
	1.1	Signals, Systems, and Signal Processing	2
	1.2	Classification of Signals	2
2	The	e Concept of Frequency in Continuous-Time and Discrete-	
	Tim	ne Signals	2
	2.1	Continuous-Time Sinusoidal Signals	2
	2.2	Discrete-Time Sinusoidal Signals	3
	2.3	Harmonically Related Complex Exponentials	3
3	Analog-to-Digital and Digital-to-Analog Conversion		
	3.1	Sampling of Analog Signals	4
	3.2	The Sampling Theorem	4
	3.3	Quantization of Continuous-Amplitude Signals	4
	3.4	Quantization of Sinusoidal Signals	5
	3.5	Coding of Quantized Samples	5

1 Basics

1.1 Signals, Systems, and Signal Processing

- Signal: Physical quantity that varies independent variable or variables
- System: Device that performs an operation on a signal
- Algrithm: Method or set of rules for implementing the system
- Signal Processing: Passing a signal through a system
- A/D Converter: Converting the signal from analog to digital
- D/A Converter: Converting the signal from digital to analog

1.2 Classification of Signals

- Multichannel and Multidimensional Signals
 - Multichannel Signals: Signal with one independent variable
 - Multidimensional Signals: Signal with multiple independent variables
- Continuous-Time Versus Discrete-Time Signals
 - Continuous-time Signals: Signal with every value of time
 - Discrete-time Signals: Signal with specific values of time
- Continuous-Valued Versus Discrete -Valued Signals
 - Continuous-valued Signals: Signal with continuous values
 - Discrete-valued Signals: Signal with discrete values
- Deterministic Versus Random Signals
 - Deterministic Signals: Signals that can be uniquely described
 - Random Signals: Signals evolve in an unpredictable manner

2 The Concept of Frequency in Continuous-Time and Discrete-Time Signals

We expect that the nature of time (continuous or discrete) would affect the nature of the frequency accordingly.

2.1 Continuous-Time Sinusoidal Signals

A simple harmonic oscillation:

$$x_a(t) = A\cos(\Omega t + \theta), -\infty < t < \infty$$

A is the amplitude of sinuoid, Ω is the frequency, and θ is the phase in radians. Instead of Ω , we often use the frequency F in cycles per second or hertz(Hz), where

$$\Omega = 2\pi F$$

The analog sinusoidal signal is characterized by the following properties:

- $x_a(t)$ is periodic if $x_a(t+T_p)=x_a(t)$, where $T_p=1/F$ is the fundamental period of the sinusoidal signal.
- Continuous-time sinusoidal signals with distinct frequencies are themselves distinct
- Increasing the frequency F results in an increase in the rate of oscillation of the signal.

Corresponding complex exponential form

$$x_a(t) = Ae^{j(\Omega t + \theta)}$$

This can easily be seen by expressing these signals in terms of sinusoids using the Euler indentity

$$e^{\pm j\phi} = \cos\phi \pm i\sin\phi$$

2.2 Discrete-Time Sinusoidal Signals

A discrete-time sinusoidal signal:

$$x(n) = A\cos(\omega n + \theta), -\infty < n < \infty$$

where n is an integer variable, called the sample number, A is the amplitude of the sinusoid, ω is the frequency in radians per sample, and θ is the phase in radians.

The discrete-time sinusoids are characterized by following properties:

- A discrete-time sinusoid is periodic only if its frequency f is a rational number.
- Discrete-time sinusoids whose frequencies are separated by an integer multiple of 2π are identical.
- The highest rate of oscillation in a discrete-time sinusoid is attained when $\omega = \pi(\text{or }\omega = -\pi)$ or, equivalently, $f = \frac{1}{2}$ (or $f = -\frac{1}{2}$).

Usually, we choose the range $0 \le \omega \le 2\pi$ or $-\pi \le \omega \le \pi$ $(0 \le f \le 1, -\frac{1}{2} \le f \le \frac{1}{2})$, which we call the fundamental range.

2.3 Harmonically Related Complex Exponentials

These are sets of periodic complex exponentials with fundamental frequencies that are multiples of a single positive frequency. We can construct a linear combination of harmonically related complex exponentials by adding continuous-time, harmonically related exponentials, which is called *Fourier series expansion*. For discrete-time, $f_0 = 1/N$, they are only N distinct periodic complex exponentials, this is called *Fourier series*.

3 Analog-to-Digital and Digital-to-Analog Conversion

We view A/D conversion as a three-step process: sampling, quantization and coding. The accuracy of D/A conversion depends on the quality of D/A conversion, a simple form of D/A conversion is called zero-order hold or staircase approximation. The sampling rate is sufficiently high to avoid the problem commonly called aliasing.

3.1 Sampling of Analog Signals

We limit our discussion to periodic or uniform sampling, $F_s = 1/T$ is called the sampling rate(hertz). F is frequency of analog signal, the frequency variables F and f are linearly related as

$$f = \frac{F}{F_s}$$

and f is also called *relative* or *normlized frequency*.

We observe that the fundamental difference between continuous-time and discrete-time signals is in their range of values of the frequency variable F and f, or Ω and ω .

$$F_{max} = \frac{F_s}{2} = \frac{1}{2T}$$
$$\Omega_{max} = \pi F_s = \frac{\pi}{T}$$

For example, $F_2 = 10Hz$ is an alias of the frequency $F_1 = 50Hz$ when $F_s = 40Hz$. The relationship is

$$F_k = F_0 + kF_s, \ k = \pm 1, \pm 2, \dots$$

 $F_s/2$ is called folding frequency.

3.2 The Sampling Theorem

 F_s is selected that

$$F_s > 2F_{max}$$

where F_{max} is the largest frequency component in the analog signal. The sampling rate $F_N = 2B = 2F_{max}$ is called the Nyquist rate.

3.3 Quantization of Continuous-Amplitude Signals

- Quantization: The process of converting a discrete-time continuous-amplitude signal into a digital signal by expressing each sample value as a finite number of digits
- Quantization Error: Difference between the quantized value and the actual sample value
- Quantization Level: Values allowed in the digital signal
- Quantization step size or resolution: Distance δ between two successive quantization levels
- Two ways of quantization: Truncation and rounding

3.4 Quantization of Sinusoidal Signals

Sinusoids are used as test signals in A/D converters. If the sampling rate F_s satisfies the sampling theorem, quantization is the only error in the A/D conversion process. The quality of the output of the A/D converter is usually measured by the $signal-to-quantization\ noise\ ratio(SQNR)$.

$$SQNR = \frac{P_x}{P_q} = \frac{3}{2} \cdot 2^{2b}$$

Expressed in decibels(dB), the SQNR is

$${\rm SQNR(dB)} = 10\log_{10}{\rm SQNR} = 1.76 + 6.02b$$

3.5 Coding of Quantized Samples

The number of bits required in the coder is the smallest integer greater than or equal to $\log_2 L$.