Ensemble Complex | CM: 4

Par Lorenzo

27 septembre 2024

1 Théorie des ensembles

1.1 Opérations sur les ensembles

Définition 1.1. Un ensemble est une collection d'éléments. Il est défini par la connaissance de ses éléments.

Soit A un ensemble $a \in A$ signifie que a appartient à A. On dit alors que a est un élément de A.

Remarques 1.1. La définition d'un ensemble peut se faire des façon suivante:

- liste exaustive (1, 2, 3)
- paramétrique ($\{2x+1 \mid x \in \mathbb{N}\}$)
- inplicite $(\{x \in \mathbb{R} \mid x(x+1) > 0\})$

Remarques 1.2. Dans un ensemble l'ordre et la répétition n'a pas son importance.

Définition 1.2. Soient A et B deux ensembles. On dit que A est un sous-ensemble de B lorsque $\forall x \in A, x \in B$, on note plus $A \subset B$.

Soit A un ensemble fini, le cardinal de A est le nombre d'éléments de A, noté cardA. Un ensemble avec un seul élément est un singleton.

Un ensemble qui ne contient aucun éléments est appelé l'ensemble vide (noté \emptyset ou $\{\}$), c'est un sous ensemble de tout les ensembles.

Remarques 1.3. Un quantificateur universelle sur l'ensemble vide est automatiquement vérifié. (e.g. $\forall x \in \emptyset, P(x)$)

Définition 1.3. Soient A, B des parties d'un ensemble E.

La réunion de A et de B, notée $A \cup B$ est la partie de E dont les éléments sont éléments de A ou de B.

$$A \cup B = \{x \in E, x \in A \lor x \in B\}$$

Définition 1.4. Soient A, B des parties d'un ensemble E.

L'intersection de A et de B, notée $A \cap B$ est la partie de E dont les éléments sont éléments de A et de B.

$$A \cap B = \{x \in E, x \in A \land x \in B\}$$

Remarques 1.4. La réunion n'est pas un ou exclusive.

Remarques 1.5. $A \cup B$ est le plus petit ensemble contenant A et B

Remarques 1.6. $A \cap B$ est le plus grand ensemble contenu dans A et B

Remarques 1.7. Comme un élement peut seulement être ou ne pas être dans un ensemble, on peut faire une disjonction de cas.

Définition 1.5. Soient A, B deux sous ensemble d'un ensemble E.

- A et B sont dits disjoints si $A \cap B = \emptyset$
- Le complémentaire de A dans E est la partie de E dont les éléments sont tous les éléments de E qui ne sont pas dans A. On le note $E \setminus A = \{x \in E \mid x \notin A\}$. Autres notations: $C_E A$ ou A^C
- La différence symétrique de A et B, notée $A\Delta B := (A \backslash B) \cup (B \backslash A)$

Définition 1.6. Soit I un ensemble, Soient $(A_i)_{i\in I}$ des sous ensembles d'une ensemble E.

L'intersection des A_i est $\bigcap_{i \in I} A_i := \{x \in E, \forall i \in I, x \in A_i\}$

L'union des A_i est $\bigcup_{i \in I} A_i := \{x \in E, \exists i \in I, x \in A_i\}$

Par convention: si $I = \emptyset$ alors $\bigcup_{i \in I} A_i := 0$ et $I = \emptyset$ alors $\bigcap_{i \in I} A_i := E$

Définition 1.7. Soient A, B deux sous ensembles non vides de E.

A et B sont complémentaires dans E ou forment une partition de E si $E = A \cup B$ et $A \cap B = \emptyset$

Remarques 1.8. Le non complémentaire vient du fait qu'une autre définition soit A = $E \backslash B \iff B = E \backslash A$

Soit E un ensemble. On note P(E) l'ensemble des parties de E.

Remarques 1.9. Il est équivalent d'écrire $A \subset E$ ou $A \in P(E)$

Remarques 1.10. Pour tout ensemble E, on a $\emptyset \in P(E)$ et $E \in P(E)$

Théorème 1.1. Lorsque card(E) = n avec $n \in \mathbb{N}$ alors $card(P(E)) = 2^n$

Démonstration 1.1.

Initialisation: $card(E) = 0 \implies E = \emptyset \text{ alors } P(E) = \{\emptyset\} \text{ donc } card(P(E)) = 1 = \emptyset$ 2^{0}

Hérédité: Soit E de cardinal $n \ge 1$. Soit $a \in E$, $F = E \setminus \{a\}$

card(F) = n - 1

Les parties de E sont les X et les $X \cup \{a\}$ où $X \in P(F)$

 $Ainsi\ card(P(E)) = card(P(F)) + card(P(F))$

Définition 1.8. Soient E et F deux ensembles.

Le produit cartésien de E par F est l'ensemble $E \times F = \{(x,y) \mid x \in E \land y \in F\}$

Remarques 1.11. Attention ce n'est pas commutatif, $E \times F \neq F \times E$

Définition 1.9. Soient $E_1, E_2, ..., E_n$ des ensembles.

$$E_1 \times E_2 \times ... \times E_n = \{(x_1, x_2, ..., x_n), \forall i \in \{1, 2, ..., n\}, x_i \in E_i\}$$

 $(x_1, x_2, ..., x_n)$ est appelé un n-uplet.

2