Set cover, linear programming and randomized rounding

Getting a set cover

Idea: repeat!

Randomized rounding algorithm

n=#elements
Repeat In(n)+3 times
For each S
Put S in cover w.pr. x(S)
(if not there already)

Note: $e^3 = 20.0...$

Cost

In expectation:
at most
(ln(n) +3)OPT

Correctness

$$Pr[cover] = 1 - Pr[not cover]$$

Pr[not cover] = $Pr[\exists element not covered] \le$ $\sum_{e} Pr[e not covered]$

For one element e and for one iteration

Pr[e not covered] < 1/e

For one element e and for all iterations together

Pr[e not covered] <
$$(1/e)^{\ln(n)+3} = \frac{1}{e^3n}$$

$$\sum_{\mathbf{e}} \Pr[\mathbf{e} \ \mathbf{not} \ \mathbf{covered}] < \\ \mathbf{n} \frac{1}{\mathbf{e^3}\mathbf{n}} = \frac{1}{\mathbf{e^3}} < 0.05$$

So:

Result

Iterated randomized rounding gives collection of sets that is a set cover with probability 95% and with average cost at most (ln(n)+3) OPT.

Set cover, linear programming and randomized rounding

