Singular Value Decomposition for prevention of the Graph Convolutional Network overfitting

Problem Statement

Overfitting

- Close fit to train set
- Huge amount of neurons and layers
- Inability to make predictions

Common techniques:

- Adding more data
- Data augmentation
- Complexity reduction
- Dropout

Graph Convolutional Network

Graph Neural Net

- Social networks
- Knowledge graphs
- Protein-interaction networks
- The World Wide Web

Applications

- Node classification
- Social recommendation
- Link prediction

Why?

- Typically shallow
- Overfitting main issue in deep GCN
- Dropout and weight penalizing don't help

Overfitting

- Beyond 50 epoch model overfits
- Loss: 0.6
- Accuracy: 0.84

Numerical Linear Algebra

SVD vs Overfitting

• Recap SVD on fully-connected layers: $A = USV^T \rightarrow A_r = U_rS_rV_r^T$

$$Ax + b \rightarrow (U_r S_r V_r^T)x + b = U_r (S_r V_r^T x) + b$$

Accuracy: 0.85; Loss: 0.57

Bonus

Thank you for your attention!