Практическое задание №1 Нахождение прообраза функции сжатия MD2

1. Описание алгоритма MD2.

Oсобенности реализации: 2-битный "байт", S = [1, 3, 0, 2], длина блока = 16 байт. Дано сообщение $m = m_0...m_{b-1}$, где m_i - i-ый байт сообщения.

- 1) **Padding**: сообщение m дополняется num байтами со значением ($num \mod 4$) до длины, кратной 16. N новая длина сообщения
- 2) **Контрольная сумма**: к концу сообщения добавляется 16 байт контрольная сумма C по следующему алгоритму:

```
For i = 0 to 15 do
                                     /* Обнуляется буффер контрольной суммы */
1
        Set C[i] to 0.
2
    end /* of loop on i */
3
    Set L to 0.
4
    For i = 0 to N/16-1 do
                                    /* Для каждого блока выполняется */
        For j = 0 to 15 do
                                     /* Подсчет контрольной суммы блока */
6
            Set c to M[i*16+j].
7
            Set C[j] to C[j] xor S[c xor L].
8
            Set L to C[j].
9
         end /* of loop on j */
10
    end /* of loop on i */
```

Новая длина сообщения N' = N + 16

3) Для вычисления хэша используется буффер X размера 48 байт, который инициализируется нулями. Основной цикл вычисления MD2:

```
For i = 0 to N'/16 - 1 do
                                   /* Для каждого блока выполняется */
        block = m[i * 16 : (i + 1) * 16]
2
        X = F(block, X)
   end /* of loop on i */
MD2 = X[0..15], где функция F:
    function F(msgBlock, X):
        Set newX to X.
2
        For i = 0 to 15 do
3
            Set b to msgBlock[i].
4
            Set newX[16 + i] to b.
5
            Set newX[2 * 16 + i] to b xor newX[i].
6
        end /* of loop on i */
7
        Set t to 0.
8
        For i = 0 to 17 do
9
            For j = 0 to 47 do
10
                Set newX[j] to newX[j] xor S[t].
11
                Set t to newX[j].
12
            Set t to (t + i) \mod 4.
13
            end /* of loop on j */
14
        end /* of loop on i */
15
        return newX.
16
```

2. Описание атаки.

Определим функцию сжатия:

```
function compress(H, M):
       X = [0..47]
2
       For i = 0 to 15 do
                                         /* Обнуляется буффер X */
3
           Set X[i] to 0.
4
       end /* of loop on i */
       For i = 0 to 15 do
                                         /* Первая треть буффера X присваивается Н*/
6
           X[i] = H[i]
7
       end /* of loop on i */
8
       return F(M,X)[0..15]
```

Задача: зная H_i и H_{i+1} , найти M: $H_{i+1} = compress(H_i, M)$.

Работу функции compress описывает Рис.1. Элементы матрицы A вычисляются по формуле $A_i^t = A_i^{t-1} \oplus S(A_{i-1}^t)$, где t - номер строки, i - номер столбца. Элементы матриц B и C вычисляются по аналогичным формулам.

Рис. 1. Промежуточные результаты работы *compress*

Шаг 1: Получение всей необходимой информации

Рис. 2. Процесс вычисления матрицы А

- 1) Зная H_i и то, что по алгоритму для вычисления первой строки всегда подается 0, можем вычислить первую строку.
- 2) С помощью H_{i+1} по формуле $A_i^{t-1}=A_i^t\oplus S(A_{i-1}^t)$ вычисляется правый нижний треугольник матрицы А.
- 3) Угадав байт C_{15}^1 , мы можем до конца восстановить матрицу A и узнать C_{15}^i , $t = \overline{2, 17}$.

Шаг 2: Метод встречи посередине

- 1) Угадываем $B_{15}^1...B_{15}^4$
- 2) Для всех возможных значений $B_0^0..B_7^0$ найдем
 - $B_7^1..B_7^4$ (т.к. известны $A_{15}^1..A_{15}^4$ и $B_0^0..B_7^0$);
 - $C_7^1...C_7^4$ (т.к. известны $B_{15}^1...B_{15}^4$ и $C_0^0...C_7^0$)

В таблицу Т внесем запись: $(B_7^1,..,B_7^4,C_7^1,..,C_7^4):(B_0^0..B_7^0,3)$ Для всех возможных значений $B_8^0..B_{15}^0$ найдем)

- - $B_7^1..B_7^4$ (т.к. известны $B_{15}^1..B_{15}^4$ и $B_8^0..B_{15}^0$);
 - $C_7^1..C_7^4$ (т.к. известны $C_{15}^1..C_{15}^4$ и $C_8^0..C_{15}^0$)

В таблицу Т внесем запись или добавим к уже существующей:

$$(B_7^1,..,B_7^4,C_7^1,..,C_7^4):(,B_8^0..B_{15}^0)$$

4) В полученной таблице Т ищем такие записи, где присутстыуют и левые, и правые части сообщения. Из них формируются всевозможные кандидаты в искомое сообщение и проверяются с помощью функции compress.

Таким образом, с помощью этого перебора будет найдет корректный прообраз M: $H_{i+1} = compress(H_i, M).$

3. Теоритическая оценка времени работы и требуемой памяти.

Реальное время работы.

1) Память:

Требуется хранить в памяти матрицу A $(19 \cdot 16 = 304 \text{ байт})$; части матриц B и C, необходимые для расчетов $(2 \cdot 5 \cdot 16 = 160 \text{ байт})$; Sbox (4 байта); таблицу с записями вида $(B_7^1,..,B_7^4,C_7^1,..,C_7^4):([B_0^0..B_7^0,...],[B_8^0..B_{15}^0,...])$ (в среднем 9320 байт - найдено опытным путем). Т.е всего 9788 байт.

2) Время работы:

Для расчета времени работы будем учитывать число арифметических операций.

• Работа с матрицами:

Зафиксировав пятерку параметров $(C_{15}^1, B_{15}^4, B_{15}^3, B_{15}^2, B_{15}^1)$, нужно выполнить для матрицы A: 136 операций XOR не зависящих от C_{15}^1 и 136 операций XOR зависящих от C_{15}^1 ;

для матрицы В: для всевозможных значений $B_0^0,...,B_{15}^0$ $4\cdot 16=64$ операции XOR, т.е. $64 \cdot 4^{16} = 2^{38}$ операций;

для матрицы С: аналогично матрице В 2^{38} операций;

Т.е. $136 + 4 \cdot 136 + 1024 \cdot 2^{38} * 2 \approx 2^{49}$ операций

• Работа с таблицей:

Для каждой пятерки параметров $(C_{15}^1, B_{15}^4, B_{15}^3, B_{15}^2, B_{15}^1)$ строится таблица вида $(B_7^1,..,B_7^4,C_7^1,..,C_7^4):([B_0^0..B_7^0,...],[B_8^0..B_{15}^0,...]).$ Опытным путем найдено, что в ней в среднем 256 записей. Для каждой записи нужно проверить левые и правые половинки предполагаемого сообщения. Предполагая, что 4^{16} всевозможных вариантов сообщений равномерно распределены на пространстве ключей таблицы

(т.е. на одну запись приходится $2^{32-8}=2^{24}$ сообщений), получим что для проверки одной записи таблицы нужно 2^{24} раз вызывать функцию check, которая включает в себя 50 операций сложения, 18 операций взятия остатка от деления, 304 операции XOR и 1 операцию сравнения. Таким образом, имеем еще $256 \cdot 2^{24} \cdot 373 \approx 2^{40}$ арифметических операций.

Если взять время выполнение одной арифметической операции за 2^{-31} сек, то получим $(2^{40}+2^{49})\cdot 2^{-31}\approx 73$ ч

3) Реальное время работы:

Реальное время работы программы бутет больше ввиду операций чтения, обращения к памяти... Однако на тестах, предоставленных в задании, программа работает достаточно быстро, т.к. первый подходящий прообраз находится при параметрах, находящихся в самом начале списка проверки.

Например, для варианта 16:

 $H_i = 3 \ 2 \ 2 \ 2 \ 2 \ 0 \ 0 \ 2 \ 0 \ 3 \ 2 \ 0 \ 1 \ 0 \ 3 \ 1$

 $H_{i+1} = 0 \ 0 \ 3 \ 3 \ 0 \ 2 \ 1 \ 1 \ 0 \ 3 \ 3 \ 0 \ 2 \ 2 \ 1 \ 1$

Время работы составило 8.47 сек.