Лабораторная работа № 5.5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и опредление их энерегии.

Трунов Владимир Группа Б01-108

Цель работы: с помощью сцинтилляционного счетки измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их велечине определить энергию γ -квантов.

1 Теоретическая часть

Гамма-лучи возникают при переходе возбужденных ядер из одного энергетического состояния в другое, более низкое. Энергия γ -квантов обычно заключена между несколькими десятками килоэлектронвольт и несколькими миллионами электронвольт. Гамма-кванты не несут электрического заряда, их масса равна нулю. Проходя, через вещество, пучок γ -квантов постепенно ослабляется. Ослабление просходит по експоненциальному закону, который может быть записан в следующей форме:

$$I = I_0 e^{-\mu l},\tag{1}$$

где I, I_0 – интенсивности прошедшего и падающего излучений; l – длина пути, пройденного пучком γ -лучей; μ – коэффициент ослабления потока в веществе.

Ослабление потока γ -лучей, происходящее при прохождении среды, связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянием и с генерацией электрон-позитронных пар.

В случае опытов, поставленных в хорошей геометрии, при прохождении γ -лучей через вещество меняет только количество, но не энергия γ -квантов в пучке, так что коэффициент μ , характеризующий поглощение γ -квантов в веществе, не зависит от длины пути. Обозначим через -dN число γ -квантов, выбывших их пучка на пути dl. Это число пропорционально имеющемуся их числу N и пройденному пути dl. Следовательно,

$$-dN = \mu N \, dl. \tag{2}$$

Интегрируя уравнение (2) от нулевой толщины до заданной, получим

$$N = N_0 e^{-\mu l}. (3)$$

Вообще говоря, в плохой геометрии, когда рассеянные под небольшими углами γ -кванты остаются в пучке, их спектр с прохождением вещества меняется, поэтому формула (1) непреминима. Однако в этом случае она работает лучше, чем можно было ожидать.

В данной работе коэффициент ослабления μ измеряется в хорошей геометрии. Из формулы (3) имеем:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}. \tag{*}$$

Для определения коэффициента ослабления нужно, таким образом, измерить толщтну образца l, число падающих частиц N_0 и число частиц N, прошедших через образец.

2 Экспериментальная установка

Схема установки, исползуемой в работе, показана на рис. 1. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтиляцонным счетчиком. Сигналы от счетчика усиливаются и регистрируются пересчетным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счетчика.

Рис. 1: Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей.

При недостаточно хорошей геометрии в результаты опытов могут вкрасться существенные погрешности. В реальных установках всегда имеется конечная вероятность того, что γ -квант провзаимодействует в поглотителе несколько раз до того, как попадет в детектор (пути таких квантов показаны на рис. 2). Чтобы уменьшить число таких случаев, в данной работе сцинтилляционный счетчик расположен на большом расстоянии от источиника γ -квантов, а поглотители имеют небольшие размеры. Их следует устанавливать за коллиматорной щелью на некотором расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние и выбывшие из прямого потока кванты с меньшей вероятностью могли в него вернуться.

Рис. 2: Схема рассеяния γ -квантов в поглотителе.

3 Экспериментальные данные

В условиях нашего эксперимента необходимо учитывать фон, поэтому

$$N_0 = n_0 - n_{\text{фон}}, \ N = n - n_{\text{фон}}.$$

	d, mm
аллюминий	19.66
железо	11
свинец	4.68

Таблица 1: Толщина образцов.

Таблица 2: Измерение фона и потока γ -излучения в воздухе.

	t, c	n_1	n_2	n_3
$n_{\Phi^{\mathrm{OH}}}$	180	4421	4404	4467

Усредним значения $n_{\text{фон}}$:

$$n_{\text{фон}} = 4431$$

Таблица 3: Результаты измерений.

Алюминий		Железо			Свинец			
кол-во	<i>t</i> , c	n	кол-во	<i>t</i> , c	n	кол-во	t, c	n
1	10	39653	1	10	33651	1	10	33388
2	15	40102	2	20	38254	2	20	38598
3	30	53861	3	30	32764	3	30	33293
4	40	47422	4	40	24772	4	40	25304
5	50	39699	5	50	18259	5	50	18491
			6	60	11339	6	60	13636
			7	70	9722	7	70	10506

4 Обработка результатов

Для определения коэффициента ослабления μ в различных веществах небходимо построить графики зависимостей $\ln N_0/N$ от l. Погрешность вычисления натурального логарифма можно оценить следующим образом:

$$\sigma_{\rm ln} = \sqrt{\left(\frac{\sigma_{n_0}}{n_0}\right)^2 + \left(\frac{\sigma_n}{n}\right)^2} \approx 0,03\sqrt{2} \approx 0,04.$$

Таблица 4: Результаты вычислений.

Алюминий		Железо		Свинец	
кол-во	$\ln N/N_0$	кол-во	$\ln N/N_0$	кол-во	$\ln N/N_0$
1	0	1	0	1	0
2	-0,4	2	-0,57	2	-0,55
3	-0,8	3	-1,14	3	-1,12
4	-1,22	4	-1,73	4	-1,69
5	-1,63	5	-2,28	5	-2,26
		6	-3,01	6	-2,79
		7	-3,37	7	-3,27

По данным таблицы 4 были построены прямые (рис. 3), наклоны которых согласно формуле (\star) есть линейные коэффициенты ослабления μ потока γ -излучения в веществе.

Рис. 3: Графики зависимостей $\ln N_0/N$ от l для различных материалов.

Имеем:

Таблица 5: Наклоны прямых.

	Свинец	Железо	Аллюминий
$\mu, 10^{-3} \cdot \text{cm}^{-1}$	1179 ± 12	524 ± 5	208 ± 7