Laborationsinstruktion

Elektrisk kretsteori EE466A Laboration 167 - Mätningar på elektriska kretsar patrik.harrysson@hig.se

Syfte

Syftet med laborationen är att betrakta några grundläggande samband och begrepp inom likströmsläran. Kirchhoffs lagar och resultat berörande linjära tvåpoler tags fasta på.

Allmänna instruktioner

Laborationen utförs i grupper om två studenter. En rapport per laborationsgrupp skall lämnas senast *fem arbetsdagar* efter laborationstillfället. Inlämningen görs elektroniskt på läroplattformen Blackboard.

Förberedelser

Uppgifter märkta **F** är förberedelseuppgifter och skall ha utförts på förhand.

1 Seriekrets

1.1 Två resistorer i serie

Med resistanser $R_1 = 100\Omega$ och $R_2 = 220\Omega$, samt valfri (dock lämplig) storlek E på likspänningskällan, koppla upp den elektriska krets som följande figur visar:

- (1) Mät strömmen i punkterna A, B och C. Kommentera resultatet.
- 2 Mät spänningen mellan alla par av punkter A, B och C. Kommentera resultatet utgående från en analys m h a Kirchhoffs spänningslag.

1.2 Inverkan av parallellgren

Ordna en parallellgren, innehållandes endast en resistor R_3 av storlek 330 Ω , över resistorerna R_1 och R_2 enligt följande figur:

 \bigcirc Mät storleken av strömmen I_1 samt storleken av strömmen I_2 genom punkt B. Jämför med resultatet i föregående uppgift.

2 Parallellkrets

Med någon lämplig storlek E på spänningskällan, parallellkoppla två resistorer $R_1 = 100\Omega$ och $R_2 = 220\Omega$ enligt följande figur:

- ① Mät storleken på strömmarna I, I_1 och I_2 . Kommentera resultatet utgående från en analys m h a Kirchhoffs strömlag.
- (2) Beräkna spänningarna U_1 och U_2 . Mät sedan spänningarna och jämför med de beräknade värdena.

3 Resistansmätningar

I denna laborationsdel skall ersättningsresistansen för ett antal enklare resistornät beräknas och sedan uppmätas m h a multimeter. Observera att det får *inte* vara någon spänningskälla inkopplad vid mätning av resistans, detta ty multimetern förser nämligen kretsen med en lämplig spänning på egen hand med vilken den beräknar resistansen.

1 För samtliga resistornät som visas nedan: beräkna ersättningsresistansen sett från ingången AB, och vidare koppla upp kretsen och mät motsvarande resistans för att verifiera riktigheten i teorin.

4 EMK och inre resistans i en linjär tvåpol

I denna laborationsdel studeras en linjär tvåpol som är belastad med en rent resistiv belastning. Uppställningen beskrivs av följande figur, där E=15V, $R_1=1200\Omega$ och $R_2=3700\Omega$, samt att storleken $R_{\rm b}$ på belastningen är variabel från 0 till 10MΩ:

- (\mathbf{F}) Beräkna tvåpolens inre resistans R_0 , samt dess elektromotoriska spänning E_0 . (Ledning: minns Thèvenins teorem eller tvåpolssatsen.)
- (1) Mät tvåpolens elektromotoriska spänning, d v s tomgångsspänningen mellan punkter A och B, dels genom att (i) koppla bort belastningen och dels genom att (ii) ställa in belastningsstorleken R_b till sitt maximala värde. Jämför resultaten och kommentera. (För R_b tag en potentiometer eller en dekadresistans.)
- ② Genom att göra lämpliga ström- och spänningsmätningar kan effekten P_b utvecklad i belastningsmotståndet indirekt uppmätas. Mät effekten P_b för olika storlekar på belastningsresistansen R_b , där R_b varierar mellan 100Ω och 1700Ω i steg om 100Ω eller mindre. Bokför datan i tabell.
- (3) Plotta P_b mot R_b i ett diagram. M h a diagrammet avgör för tvåpolens inre resistans, och vidare jämför detta med den redan beräknade inre resistansen.

5 Karaktäristiken hos en lysdiod

I denna laborationsdel studeras en lysdiod som belastar en linjär tvåpol. Uppställningen beskrivs av följande figur, där E = 10V och storleken R_0 på den inre resistansen är variabel från 0 till 10MΩ:

- ① Mät strömmen I genom dioden för ett lämpligt antal olika uppmätta spänningar U över dioden. Bokför mätdatan i en tabell. (Spänningen U kan varieras med storleken R_0 på resistansen. Utgå från en mycket stor resistans ty den största strömmen som dioden tål är 20mA.)
- 2 Använd erhållen mätdata för att producera en IU-karaktäristik för lysdioden. (IU-karaktäristik: plotta förhållandet I = I(U) i ett diagram.)