姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月24日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月24日

目录

第一章	二重积分	1
1.1	二重积分的概念	1
1.2	交换积分次序	3
1.3	二重积分的计算	6
1.4	其他题型	12

第一章 二重积分

1.1 二重积分的概念

1. (2010, 数一、数二)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy \quad (D) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy$$

2. (2016, 数三) 设
$$J_i = \iint_{D_i} \sqrt[3]{x - y} dx dy (i = 1, 2, 3),$$
 其中
$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x, y) | 0 \le x \le 1, x^2 \le y \le 1\}, \text{ 则}$$

$$(A) \ J_1 < J_2 < J_3 \qquad (B) \ J_3 < J_1 < J_2$$

$$(C) \ J_2 < J_3 < J_1 \qquad (D) \ J_2 < J_1 < J_3$$

1.2 交换积分次序

3. (2001, 数一) 交换二次积分的积分次序: $\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx = ______$ *Solution*.

4. 二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = _____$$

5. 交换
$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$$
 的积分次序。

1.3 二重积分的计算

6. (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数,且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a,$ 其中 $D=\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\},$ 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) \mathrm{d}x \mathrm{d}y.$$

7. 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

8. (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ $(0 \le t \le 2\pi)$ 与 x 轴围成,计算二 重积分 $\iint_D (x+2y) dx dy$ 。

9. (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy,$ 其中 $D = \{(x,y) | |x| + |y| \leq 2\}$ 。

10. (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \mathrm{d}x \mathrm{d}y.$$

11. (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \leq y, (x^2 + y^2)^3 \leq y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x \mathrm{d}y.$$

1.4 其他题型

12. (2010, 数二) 计算二重积分
$$I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$$
 其中 $D = \left\{ (r, \theta) \mid 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$

13. (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$ 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$

1.4 其他题型

第一章 二重积分