

Objetivos:

- I. Introdução ao modelo lógico;
 - Modelo relacional;
- II. Chave estrangeira;
- III. Restrições de integridade;
- Conversão do DER para o modelo relacional. IV.

I. Introdução ao modelo lógico

O modelo lógico de dados leva os elementos da modelagem conceitual de dados um passo adiante, adicionando mais informações a eles.

Um modelo de dados lógico estabelece a estrutura dos elementos de dados, os relacionamentos entre eles e algumas restrições.

Um modelo de dados lógico deve ser projetado para ser independente da tecnologia, de modo a não ser afetado pelas rápidas mudanças do ambiente de negócios. O modelo lógico geralmente adota o modelo relacional (baseada no modelo Entidade Relacionamento) ou modelo orientado a objetos (baseada na UML - Linguagem Unificada de Modelagem).

RA: 123 Nome: Pedro

Modelo conceitual

Modelo lógico

Representação de uma tabela

Modelo físico

```
create table tbaluno(
  ra integer not null primary key, SGBD PostgreSQL
 nome varchar(50)
);
```

Cláusula SQL compatível com o

II. Modelo relacional

O modelo relacional foi criado por Codd em 1970 e tem por finalidade representar os dados como uma coleção de relações, onde cada relação é representada por uma tabela, ou falando de uma forma mais direta, um arquivo. O modelo relacional foi o primeiro modelo de dados para SGBD comerciais.

É usado na maioria das aplicações comerciais. Os SGBD relacionais são baseados no modelo relacional.

O BD relacional é constituído por uma coleção de tabelas, compostas por colunas e linhas, inter-relacionadas:

Cliente

Cpf Nome		Endereço	Telefone	Sexo
123456789	Maria Silva	R. Afonso Pena, 123	1234567890	F
234567890	Paulo Alves	Av. Tiradentes, 321	1236540987	М
345678901	Josué Souza	R. Getúlio Vargas, 78	1235438901	М

As tabelas Cliente e ContaCorrente estão relacionadas pela coluna Cpf ContaCorrente

Nro	Cpf	Saldo
001234	123456789	23567.09
028902	234567890	456.89
045678	345678901	3402.11

Na terminologia do modelo relacional:

- tabela é chamada de relação;
- Linha ou registro de uma tabela é chamada de tupla;
- Coluna ou campo é chamado de atributo;
- O tipo de dado que especifica o tipo dos valores que podem aparecer em uma coluna é chamado de domínio.

O domínio de um atributo é o conjunto de possíveis valores que o atributo pode receber. No exemplo a seguir é exibido os domínios dos atributos da tabela Cliente:

Atributo	Domínio		
Cpf	Inteiro longo sem sinal		
Nome	Conjunto de caracteres		
Endereço	Conjunto de caracteres		
Telefone	Conjunto de caracteres		
Sexo	Conjunto de caracteres		

O domínio dos atributos de uma tabela (relação) é semelhante aos tipos de dados das variáveis na programação.

Diferença entre esquema e instância: a descrição da tabela é chamada de esquema da tabela os dados armazenados na tabela formam um conjunto chamado de instâncias da tabela. A seguir tem-se destacado o esquema e as instâncias da relação (tabela) Cliente:

	Esquema da relação Cliente					
Cliente		I				
Cpf	Nome	Endereço	Telefone	Sexo		
123456789	Maria Silva	NULL	1234567890	F		
234567890	Paulo Alves	Av. Tiradentes, 321	NULL	М		
345678901	Josué Souza	R. Getúlio Vargas, 78	1235438901	М		
Instâncias da relação Cliente						

III. Chave estrangeira

A chave estrangeira é uma coluna ou combinação de colunas, cujos valores aparecem necessariamente na chave primária de uma outra tabela.

Este é o mecanismo que permite a implementação de relacionamentos no BD relacional. O fato da coluna Cpf da tabela ContaCorrente utilizar os mesmos valores armazenados na coluna Cpf da tabela Cliente forma o conceito de relacionamento (ligação) entre as tabelas. Através do relacionamento, evitamos a repetição de dados.

Cliente Cpf Nome Endereço Telefone Sexo Maria Silva F 123456789 R. Afonso Pena, 123 1234567890 234567890 Paulo Alves 1236540987 Av. Tiradentes, 321 M 345678901 R. Getúlio Vargas, 78 Josué Souza 1235438901 М

_	_	_	•-	_	_		_	_	1 -
	$^{\circ}$	n	та	•	n	rr	0	n	te

Nro	Cpf	Saldo
001234	123456789	23567.09
028902	234567890	456.89
045678	345678901	3402.11

Nesse exemplo Cpf é a chave primária da tabela Cliente e Nro é chave primária da tabela ContaCorrente.

Na tabela ContaCorrente Cpf é chave estrangeira e só poderá receber valores que existam na coluna Cpf da tabela Cliente.

Observações sobre uma chave estrangeira:

- Uma chave estrangeira não precisa ser uma chave primária na sua relação. Por exemplo, o atributo Cpf compõe a chave primária da tabela ContaCorrente;
- Uma chave estrangeira n\u00e3o precisa ter o mesmo nome que a chave prim\u00e1ria correspondente na outra tabela (apenas o mesmo dom\u00ednio). Por exemplo, o atributo chave estrangeira Cpf na tabela ContaCorrente poderia ser nomeado com outro nome, tal como, CodigoCliente.

Restrições que devem ser garantidas ao serem executadas as operações de inserir, alterar e remover na chave estrangeira:

- Inserir registro/tupla na tabela que contém a chave estrangeira:
 - É necessário garantir que o valor exista na chave primária da tabela referenciada.
- Alterar o valor da chave estrangeira na tabela referenciada:
 - É necessário garantir que o valor seja atualizado na chave estrangeira.
- Remover o valor da chave estrangeira na tabela referenciada:
 - É necessário garantira que o valor não exista numa chave estrangeira.

IV. Restrições de integridade

- Restrição de domínio determina que o valor de cada atributo de um esquema de relação deve ser um valor do domínio do atributo. Por exemplo, a coluna Cpf deve receber somente valores do domínio "inteiro longo sem sinal";
- Restrição de chave determina que os valores dos atributos que compõem uma chave primária devem ser únicos de modo a identificar o registro. Por exemplo, a coluna Cpf da tabela Cliente não poderá ter valores repeditos;
- Restrição de integridade de entidade determina que nenhum valor da chave primária pode ser nulo. Isso
 porque, o valor de uma chave primária é utilizado para identificar os registros da relação. Por exemplo, se
 duas ou mais tuplas tiverem o valor null na chave primária, não haverá como diferenciar um registro do
 outro;
- Restrição de integridade referencial é uma restrição usada para manter a consistência entre os registros
 de duas relações. Ela estabelece que um registro de uma relação que se refere à outra relação deve-se
 referir a um registro existente naquela relação. No exemplo a seguir, na coluna Cpf da tabela
 ContaCorrente não pode existir um registro cujo valor do Cpf não exista na tabela Cliente.

	Cliente				
	Cpf	Nome	Endereço	Telefone	Sexo
	123456789	Maria Silva	R. Afonso Pena, 123	1234567890	F
	234567890	Paulo Alves	Av. Tiradentes, 321	1236540987	М
	345678901	Josué Souza	R. Getúlio Vargas, 78	1235438901	М
ContaCorre Nro	nte 👃	relacionadas pe	ela coluna Cpf		
Nro	Cpf	Saldo			
001234	123456789	23567.09			
028902	234567890	456.89			
045678	333444555	3402.11			
	a não possui don lo existir na tabel	•			

V. Conversão do DER para o modelo relacional

Em projetos de BD é comum realizarem a modelagem de dados através de um modelo de alto-nível. Os produtos gerados por esse processo são os esquemas de visões que são posteriormente integrados para formar um único esquema.

Passos de um projeto de BD

O modelo de dados de alto-nível normalmente adotado é o MER e o esquema das visões e de toda a base de dados são especificados em DER.

O passo seguinte à modelagem dos dados é o mapeamento do DER para um modelo de dados de implementação. Existem os modelos de dados de implementação: hierárquico, rede, relacional e orientado a objetos. Para cada um desses modelos, pode-se definir estratégias de tradução a partir de um DER. Aqui faremos a tradução para o modelo relacional.

Tendo em mente as fases de construção de um banco de dados, o MER e DER são utilizados durante o projeto conceitual e o modelo de dados relacional durante o projeto lógico.

Conversão de entidade: o tipo de entidade é traduzido para uma relação (tabela). No exemplo a seguir o tipo de entidade Cliente foi traduzido para a representação de esquema de tabela no modelo relacional. Observações:

 O atributo chave é chamado de chave primária no modelo relacional. O atributo Codigo é a chave primária da tabela Cliente;

O atributo opcional é representado normalmente no modelo relacional.

Conversão de atributo multivalorado: o atributo multivalorado se torna uma nova relação (tabela) contendo a chave estrangeira que faz ligação com a tabela que deveria possuir o atributo multivalorado. No exemplo a seguir o atributo multivalorado Telefone se tornou a tabela Telefone. A ligação entre as tabelas se dá pela chave estrangeira Codigo_Cliente que faz a ligação com a chave primária da tabela Cliente.

Como cada telefone será 1 registro e 1 cliente pode ter N telefones, então não é possível acomodar N telefones em 1 registro de cliente. Por este motivo é necessário colocar os registros de telefones numa tabela específica.

A figura a seguir é usada para ilustrar como os dados dos clientes serão armazenados no BD. Veja que cada

telefone ocupa um único registro (linha da tabela).

Tabela Telefone **Tabela Cliente** Codigo Identificador Nome Genero Telefone Codigo_Cliente F 1 Ana 1 1239012345 2 Pedro 2 12987654321 3 М Estes três telefones 3 F 3 Maria 1239005522 3 pertencem a Maria 4 12912122323 3

A ligação entre as tabelas se dá pela chave estrangeira Codigo_Cliente

No relacionamento entre Cliente e Telefone a chave estrangeira migra sempre para o lado N.

A chave estrangeira é o único instrumento de ligação entre duas tabelas.

Conversão de atributo composto: no modelo relacional são colocados apenas os atributos simples. No exemplo a seguir o atributo Endereço não foi incluído no modelo relacional, mas os atributos simples que compõe o atributo composto foram incluídos na tabela.

Conversão de relacionamento 1:1: para cada tipo de relacionamento R 1:1 do DER:

- Criar as relações S e T que correspondem aos tipos de entidades participantes de R. No exemplo a seguir foram criadas as relações Empregado e Departamento;
- Escolher uma das relações é melhor escolher o tipo de entidade com participação total em R. Digamos T,
 e incluir como chave estrangeira de T a chave primária de S. Incluir todos os atributos simples de R como
 atributos de T. No exemplo a seguir foi incluída a chave estrangeira CPF_Gerente que referencia a chave
 primária da tabela Empregado.

Os atributos que estão no relacionamento precisam migrar para uma das tabelas. Como o relacionamento é 1:1 entre as entidades Empregado e Departamento, então o atributo Data_inicio e a chave estrangeira poderiam ser colocados em qualquer uma das tabelas. Porém, todo departamento deve ter um gerente, mas nem todos os empregados são gerentes, então considera-se que a participação de Departamento no relacionamento é total, por este motivo o atributo Data_inicio e a chave estrangeira foram colocado na tabela Departamento.

No exemplo a seguir considera-se que todo empregado gerencia um departamento, logo a participação de ambas as entidades é total. A solução neste caso é criar uma única tabela com todos os atributos.

Conversão de relacionamento 1:N: para cada tipo de relacionamento R 1:N do DER:

- Identificar a relação S que representa o tipo de entidade que participa do lado N do tipo de relacionamento;
- Incluir como chave estrangeira de S a chave primária da relação T, que representa o outro tipo de entidade que participa em R, isto porque cada instância de entidade do lado 1 está relacionada a mais de

uma instância de entidade no lado N. Por exemplo, no relacionamento 1:N Trabalha cada empregado está relacionado a um único departamento;

• Incluir também quaisquer atributos do tipo de relacionamento 1:N como atributos de S.

No exemplo a seguir 1 empregado trabalha para 1 departamento, e 1 departamento pode ter N empregados. Desta forma, a chave primária do lado 1 vai para o lado N como chave estrangeira, bem como o atributo Data inicio que está no relacionamento Trabalha.

Conversão de relacionamento 1:N recursivo: no exemplo a seguir, alguns empregados são gerentes, isso está representado pela cardinalidade 0,1, e um gerente pode ter N subordinados, representado pela cardinalidade 0,n. Como o relacionamento é 1:N é recursivo, então a chave primária CPF migra para a tabela Empregado como chave estrangeira, porém veja que CPF e CPF_gerente são atributos distintos. O atributo Data_inicio também migra para o lado N.

Conversão de relacionamento N:N: o relacionamento N:N se torna uma tabela. No exemplo a seguir, o relacionamento Trabalha se tornou uma tabela que recebe as chaves estrangeiras das tabelas Empregado e Projeto, bem como o atributo Data_inicio do relacionamento.

Exercícios

Exercício 1: Qual é a diferença entre esquema e instância no modelo relacional?

Exercício 2: Qual é o mecanismo utilizado para implementar o relacionamento no modelo relacional?

Exercício 3: Converter do modelo conceitual para o modelo lógico o Exercício 3 da Aula 2.

Exercício 4: Converter do modelo conceitual para o modelo lógico o Exercício 4 da Aula 2.

Exercício 5: Converter do modelo conceitual para o modelo lógico o Exercício 5 da Aula 2.

Exercício 6: Converter do modelo conceitual para o modelo lógico o Exercício 6 da Aula 2.

Exercício 7: Converter do modelo conceitual para o modelo lógico o Exercício 7 da Aula 2.

Exercícios Complementares

Exercício 8: Converter do modelo conceitual para o modelo lógico o Exercício 8 da Aula 2.

Exercício 9: Converter do modelo conceitual para o modelo lógico o Exercício 9 da Aula 2.

Exercício 10: Converter do modelo conceitual para o modelo lógico o Exercício 10 da Aula 2.