多變量分析 HW4

劉昱維, 吳冠瑋, 廖永賦, 謝靖惟, 黃奎鈞

Contents

11.1	 1
11.4	 1
11.19	 1
11.32	 2

11.1

• a)
$$\hat{y} = (\bar{x_1} - \bar{x_2})' S_{pooled}^{-1} x = \hat{a}' x$$
 $S_{pooled}^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ $\begin{bmatrix} -2 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} x = -2x_1$

• b)
$$\hat{m} = \frac{1}{2}(\hat{y_1} + \hat{y_2}) = -8$$
 $-2(2) = -4 > -8 \Rightarrow assign to \pi_1$

11.4

$$\bullet \quad \text{a)} \quad (\frac{c(1|2)}{c(2|1)})(\frac{p_2}{p_1}) = 0.5 \qquad \Rightarrow assign\ to\ \pi_1\ if\ \frac{f_1(x)}{f_2(x)} \geq 0.5,\ otherwise\ assign\ to\ \pi_2$$

• b)
$$\frac{f_1(x)}{f_2(x)} = \frac{0.3}{0.5} = 0.6 > 0.5 \Rightarrow assign \ to \ \pi_1$$

11.19

• b) $\hat{y_0} = \hat{a}'x_0 = -0.33x_1 + 0.67x_2$ where $\hat{m} = 4.5$ assign to π_1 if $-0.33x_1 + 0.67x_2 - 4.5 \ge 0$, otherwise assign to π_2

	π_1			π_2	
obs.	$0.33x_1 + 0.67x_2 + 4.5$	class.	obs.	$0.33x_1 + 0.67x_2 + 4.5$	class.
1	2.83	π_1	1	-1.5	π_2
2	0.83	π_1	2	0.5	π_1
3	-0.17	π_2	3	-2.5	π_2

• c)
$$D_i^2(x) = (x - \bar{x_i})' S_{pooled}^{-1}(x - \bar{x_i})$$

		π_1			π_2
obs.	D_1^2	D_{2}^{2}	class.	obs.	D_1^2
1	1.33	7	π_1	1	4.33
2	1.33	3	π_1	2	0.33
3	1.33	1	π_2	3	6.33

11.32

(a) Bivariate plot

The bivariate plot doesn't seem to fit well into a bivariate normal distribution.

SAS pool=test

Test not significant. The covariance of the two groups are assumed to be equal.

SAS manova

Mi	ıltivar	riate Statistic	s and	Exa	ct E Statis	tics	
		S=1 M			ce i ocuci.		
統計值		值	F值	分	子自由度	分母自由度	Pr > F
Wilks' Lambda		0.46994422	40.60		2	72	<.0001
Pillai's Trace		0.53005578	40.60		2	72	<.0001
Hotelling-Lawley 1	Frace	1.12791213	40.60		2	72	<.0001
Roy's Greatest Roo	ot	1.12791213	40.60		2	72	<.0001
		線性判別	函數: G	rot	ıp		
	變數	起數		1	:	2	
	常勲		-0.410	72	-3.97019	•	
	log1	0_AHF_Act	-6.823	77	-26.1427	7	
	log1	0 AHF Anti	1.270	17	18.39440)	

Means of two groups are not equal.

(b) linear disciminant function

$$\hat{y} = (\bar{x}_1 - \bar{x}_2)^T S_{pool}^{-1} x_0$$

$$= a^T x_0$$

$$= (19.319 -17.124) x_0$$
(1)

Then allocate $oldsymbol{x}_0$ to π_1 if:

$$\hat{y} \ge \frac{1}{2} (\bar{x}_1 - \bar{x}_2)^T S_{pool}^{-1} (\bar{x}_1 + \bar{x}_2)$$

$$= \frac{1}{2} a^T (\bar{x}_1 + \bar{x}_2) = -3.559$$
(2)

where,
$$ar{x}_1 = \begin{pmatrix} -0.135 \\ -0.078 \end{pmatrix}, ar{x}_2 = \begin{pmatrix} -0.308 \\ -0.006 \end{pmatrix}$$

The linear discriminant function is:

$$19.319x_{0.1} - 17.124x_{0.1} + 3.559 (3)$$

The confusion matrix constructed with the holdout procedure is

	Group 1	Group 2
1	26	4
2	8	37

, and the estimated error rate is 0.16.

The misclassified observations are No. 3, 5, 7, 17, 32, 35, 58, 62, 63, 64, 67, 69, labeled "M" in the plot below.

(c)

By eq. (1) and eq. (2), $\hat{y}_0=2.614\geq -3.559.$ Hence, it is allocated to **Group 1**.

(d)

Classification rule based on posterior probabilities is equivalent to classification rule based on minimizing TPM.

Since the prior probabilities are assumed to be equal, the posterior probabilities are calculated as:

$$p(\pi_1|\mathbf{x}_0) = \frac{f_1(\mathbf{x}_0)}{f_1(\mathbf{x}_0) + f_2(\mathbf{x}_0)} = 0.9608785$$

$$p(\pi_2|\mathbf{x}_0) = 1 - p(\pi_1|\mathbf{x}_0) = 0.0389789$$
(4)

, where the densities $f_1(\boldsymbol{x}_0)$ and $f_2(\boldsymbol{x}_0)$ are assumed to be normal and are estimated using $\bar{\boldsymbol{x}}_1, \bar{\boldsymbol{x}}_2, \boldsymbol{S}_1, \boldsymbol{S}_2$. By $p(\pi_1|\boldsymbol{x}_0) > p(\pi_2|\boldsymbol{x}_0)$, \boldsymbol{x}_0 is classified as **Group 1**.

(e)

By eq. (1), eq. (2), and c, the linear discriminant score is calculated as $\hat{y}_0 - \frac{1}{2}(\bar{x}_1 - \bar{x}_2)^T S_{pool}^{-1} (\bar{x}_1 + \bar{x}_2) = 6.173$.

(f)

Assume $p_1=0.75$ and $p_2=0.25$, then allocate ${\boldsymbol x}_0$ to π_1 if:

$$\hat{y} \ge \frac{1}{2} (\bar{x}_1 - \bar{x}_2)^T S_{pool}^{-1} (\bar{x}_1 + \bar{x}_2) + \ln(\frac{c(1|2)p_2}{c(2|1)p_1})$$

$$= \frac{1}{2} a^T (\bar{x}_1 + \bar{x}_2) + \ln(\frac{0.25}{0.75}) = -4.658$$
(5)

where,
$$ar{m{x}}_1=egin{pmatrix} -0.135 \\ -0.078 \end{pmatrix}, ar{m{x}}_2=egin{pmatrix} -0.308 \\ -0.006 \end{pmatrix}$$

The linear discriminant function is:

$$19.319x_{0,1} - 17.124x_{0,1} + 4.658 (6)$$

The confusion matrix constructed with the holdout procedure is

	Group 1	Group 2
1	30	0
2	18	27

, and the estimated error rate is 0.24.

The misclassified observations are **No. 32, 34, 35, 39, 47, 51, 54, 55, 57, 58, 60, 61, 62, 63, 64, 67, 69, 73**, labeled "M" in the plot below.

(g)

By eq. (1) and eq. (5), $\hat{y}_0 - [\frac{1}{2} {m a}^T (\bar{{m x}}_1 + \bar{{m x}}_2) + ln(\frac{0.25}{0.75})] = 7.272 > 0$. Hence, it is allocated to **Group 1**.

(h)

Classification rule based on posterior probabilities is equivalent to classification rule based on minimizing TPM.

The posterior probabilities are calculated as:

$$p(\pi_1|\mathbf{x}_0) = \frac{p_1 f_1(\mathbf{x}_0)}{p_1 f_1(\mathbf{x}_0) + p_2 f_2(\mathbf{x}_0)} = 0.9876759$$

$$p(\pi_2|\mathbf{x}_0) = 1 - p(\pi_1|\mathbf{x}_0) = 0.0133553$$
(7)

, where the densities $f_1(\boldsymbol{x}_0)$ and $f_2(\boldsymbol{x}_0)$ are assumed to be normal and are estimated using $\bar{\boldsymbol{x}}_1, \bar{\boldsymbol{x}}_2, \boldsymbol{S}_1, \boldsymbol{S}_2$. By $p(\pi_1|\boldsymbol{x}_0) > p(\pi_2|\boldsymbol{x}_0)$, \boldsymbol{x}_0 is classified as **Group 1**.

(i)

By eq. (1), eq. (5), and g, the linear discriminant score is calculated as $\hat{y}_0 - [\frac{1}{2} \boldsymbol{a}^T (\bar{\boldsymbol{x}}_1 + \bar{\boldsymbol{x}}_2) + ln(\frac{0.25}{0.75})] = 7.271934.$

(j)

When the prior probability p_1 changes from 0.5 to 0.75, the discriminant function shifts parallelly to the upper-left direction.