

## Кто?

• Тарасов Юлий @botan razdolb



• Белов Владислав @sick hoof



# Где?

Аудитория – Цифра 328б

Слайды – Github <u>riscv-technologies-lab/testgen-lectures</u>



# Когда?

Понедельник 13:55-15:20

## Что?

- Архитектура и экосистема RISC-V
- Как сделать свой RISC-V
- Как понять что ваш процессор работает (или нет)
- Настоящий тестовый генератор

- Как использовать генераторы
- Почему для успеха нужна модель
- Примеры отлова багов
- Веселое соревнование проектов

# Уровни абстракции

- Абстракции помогают не сойти с ума
- SW компилятор и выше
- HW микроархитектура и ниже
- Архитектура интерфейс между SW и HW





## Архитектура определяет ...

- Набор инструкций
- Регистры
- Типы данных
- Работу с памятью
- Ввод/вывод
- Создание прерываний и исключительных состояний и их обработка

# Какие архитектуры уже есть









x86 x86-64

Ноутбуки, ПК, сервера

ARM

Мобильные устройства, сервера

**MIPS** 

PSP, сетевые устройства

Эльбрус

ДАННЫЕ УДАЛЕНЫ

# Зачем еще одна?

#### КАК ПОЯВЛЯЮТСЯ СТАНДАРТЫ:

СИТУАЦИЯ:
В МИРЕ
СУЩЕСТВУЕТ
14 СТАНДАРТОВ
КАКОЙ-НИБУДЬ
ТЕХНОЛОГИИ

14?! ЭТО ЖЕ ПРОСТО
СМЕШНО! НАМ НУЖНО
ПРИДУМАТЬ СВОЙ
УНИВЕРСАЛЬНЫЙ
СТАНДАРТ, КОТОРЫЙ
БУДЕТ ЛУЧШЕ ВСЕХ
ОСТАЛЬНЫХ.

ОТЛИЧНАЯ
ИДЕЯ!

ТЕПЕРЬ:

СИТУАЦИЯ:

В МИРЕ

СУЩЕСТВУЕТ

15 СТАНДАРТОВ

КАКОЙ-НИБУДЬ

ТЕХНОЛОГИИ

### **RISC-V**



- Открытая
  - Спецификация в открытом доступе, royalty-free
- Свободная
  - Развитие в рамках комитета
- Модульная и расширяемая
  - Минимальный базовый набор
  - Дополнительная функциональность включается через расширения
  - Возможно включать расширения в различных комбинациях

### **RISC-V Foundation**

- Основан в 2015 индустриальными лидерами и стартапами
- 3900+ членов из 70+ стран
- Продвигает исследования и инновации









成为资本CHENGWEI







[magination







Phytium飞腾







ZTE















# Процесс ратификации спецификации RISC-V



## Альянс RISC-V

#### Задачи:

- создание открытого сообщества разработчиков
- участие в фундаментальных исследованиях
- развитие российской экосистемы продуктов

#### Профильные комитеты:

- Технологический
- Индустриальный
- Юридический
- Академический

# Модульность и расширяемость RISC-V

- Базовый набор и стандартные расширения зафиксированы
- Добавление функциональности через расширения, не выпуск новых версий

| М  | Умножение и деление              |
|----|----------------------------------|
| С  | Сжатые инструкции                |
| F  | Single-precision floats          |
| D  | Double-precision floats          |
| E  | Сокращенное количество регистров |
| Α  | Атомики                          |
| Z* | Другие стандартные расширения    |





## Минимализм базовой ISA

| Jumps & Calls |  |  |  |
|---------------|--|--|--|
| JAL           |  |  |  |
| JALR          |  |  |  |
| BEQ           |  |  |  |
| BNE           |  |  |  |
| BLT           |  |  |  |
| BGE           |  |  |  |
| BLTU          |  |  |  |
| BGEU          |  |  |  |

| Loads & Stores |
|----------------|
| LB             |
| LH             |
| LW             |
| LBU            |
| LHU            |
| SB             |
| SH             |
| SW             |
| LWU            |
| LD             |
| SD             |

| Arithmetics |      |      |       |  |
|-------------|------|------|-------|--|
| ADD         | ADDI | ADDW | ADDIW |  |
| SUB         |      | SUBW |       |  |
| OR          | ORI  |      |       |  |
| XOR         | XORI |      |       |  |
| AND         | ANDI |      |       |  |
| SRL         | SRLI | SRLW | SRLIW |  |
| SLL         | SLLI | SLLW | SLLIW |  |
| SRA         | SRAI | SRAW | SRAIW |  |
| Data flow   |      |      |       |  |
| SLT         | SLTU | SLTI | SLTIU |  |

| Special            |
|--------------------|
| FENCE              |
| ECALL              |
| EBREAK             |
| Upper<br>immediate |
| LUI                |
| AIUPC              |

# Псевдооперации

```
for (i = 0; i < N; ++i)
    if (a[i] == x)
    return i;
```

```
a5,a0
        ΜV
        li
                a0,0
                 .loop
.latch:
                a0,a0,1
        addiw
.loop:
                a4,0(a5)
        lw
        addi
                a5,a5,4
                a4,a2,.latch
        bne
.exit:
        ret
```

| Псевдоинструкция      | Базовая инструкция              | Смысл                                 |
|-----------------------|---------------------------------|---------------------------------------|
| nop                   | addi x0, x0, 0                  | Нет операции                          |
| li rd, immediate      | Различные<br>последовательности | Загрузка константы                    |
| mv rd, rs             | addi rd, rs, 0                  | Копирование регистров                 |
| not rd, rs            | xori rd, rs, -1                 | Инверсия числа                        |
| neg rd, rs            | sub rd, x0, rs                  | Изменение знака числа                 |
| seqz rd, rs           | sltiu rd, rs, 1                 | Установить 1, если == 0               |
| snez rd, rs           | sltu rd, x0, rs                 | Установить 1, если != 0               |
| sltz rd, rs           | slt rd, rs, x0                  | Установить 1, если < 0                |
| sgtz rd, rs           | slt rd, x0, rs                  | Установить 1, если > 0                |
| beqz rs, offset       | beq rs, x0, offset              | Перейти, если == 0                    |
| bnez rs, offset       | bne rs, x0, offset              | Перейти, если != 0                    |
| blez rs, offset       | bge x0, rs, offset              | Перейти, если <= 0                    |
| bgez rs, offset       | bge rs, x0, offset              | Перейти, если >= 0                    |
| bltz rs, offset       | blt rs, x0, offset              | Перейти, если < 0                     |
| bgtz rs, offset       | blt x0, rs, offset              | Перейти, если > 0                     |
| bgt rs1, rs2, offset  | blt rs2, rs1, offset            | Перейти, если >                       |
| ble rs1, rs2, offset  | bge rs2, rs1, offset            | Перейти, если <=                      |
| bgtu rs1, rs2, offset | bltu rs2, rs1, offset           | Перейти, если >, беззнаковое          |
| bleu rs1, rs2, offset | bgeu rs2, rs1, offset           | Перейти, если <=, беззнаковое         |
| j offset              | jal x0, offset                  | Переход по метке                      |
| jal offset            | jal x1, offset                  | Переход с сохранением адреса возврата |
| jr rs                 | jalr x0, 0(rs)                  | Переход по значению из регистра       |
| jalr rs               | jalr x1, 0(rs)                  | Переход с сохранением адреса возврата |
| ret                   | jalr x0, x1, 0                  | Возврат из подпрограммы               |

# Формат кодировки

| 31 30 25                  | 24 21   | 20     | 19  | $15 \ 14$ | 12    | 11 8     | 7       | 6 0    |        |
|---------------------------|---------|--------|-----|-----------|-------|----------|---------|--------|--------|
| funct7                    | rs2     |        | rs1 | fu        |       | ro       | l       | opcode | R-type |
|                           |         |        |     |           |       |          |         |        | _      |
| imm[1]                    | 1:0]    |        | rs1 | fu        |       | rc       | l       | opcode | I-type |
|                           |         |        | •   | •         |       |          |         |        | _      |
| imm[11:5]                 | rs2     |        | rs1 | fu        | ınct3 | imm[     | 4:0]    | opcode | S-type |
|                           |         |        |     | •         |       |          |         |        | _      |
| $[imm[12] \mid imm[10:5]$ | rs2     |        | rs1 | fu        |       | imm[4:1] | imm[11] | opcode | B-type |
|                           |         |        |     |           |       |          |         |        | _      |
|                           | imm[31: | 12]    |     |           |       | ro       | l       | opcode | U-type |
|                           |         |        |     |           |       |          |         |        |        |
| imm[20] $imm[1]$          | 0:1] i  | mm[11] | imr | n[19:12   | 2]    | rc       | l       | opcode | J-type |

# ABI и calling convention

| Name                          | Alias                     |
|-------------------------------|---------------------------|
| x0                            | zero                      |
| x1                            | ra                        |
| x2                            | sp                        |
| x3                            | gp                        |
| x4                            | tp                        |
| x5-x7                         | t0-t2                     |
| x8-x9                         | s0-s1                     |
| x10-x15, <mark>x16,x17</mark> | a0-a5, <mark>a6,a7</mark> |
| x18-x27                       | s2-s11                    |
| x28-x31                       | t3-t6                     |

| FP Name | FP Alias |
|---------|----------|
| f0-f7   | ft0-ft7  |
| f8-f9   | fs0-fs1  |
| f10-f17 | fa0-fa7  |
| f18-f27 | fs2-fs11 |
| f28-f31 | ft8-ft11 |

Красных регистров нет в RV32E

# Обсуждение

Оказавшись компилятором, чтобы вы сказали?

- Для RV32I?
- Для RV32IF?
- Для RV32ID?

```
int fto_int(float f) {
  return f;
}
```

# Гладко было на бумаге...

Не компилируется, потому что нет fp регистров ... но это можно заставить скомпилироваться: godbolt.org

Доступные RISCV ABI: ilp32 ilp32d ilp32e ilp32f lp64 lp64d lp64f

**LP64** – long и pointer = 64, int = 32

**LP64d** – то же и поддержаны double

ILP32, ILP32d – integer, long и pointer = 32

А с каким ABI собрана libc с которой вы линкуетесь? :-)

## To be continued ...

На следующем занятии прикоснемся к экосистеме RISC-V:

- Научимся пользоваться кросс-компилятором (и узнаем почему он кросс)
- Научимся запускать RISC-V программы без RISC-V
- Запустим программу на настоящем RISC-V
- Научимся отлаживаться удаленно

# Канал курса в telegram

