WEEK 3 QUIZ Sequence models & Attention mechanism

TOTAL POINTS 10

1. Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

() True

False

2.	In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to be true? Check all that apply.
	Beam search will run more slowly.
	Beam search will use up more memory.
	$igwedge$ Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
	Beam search will converge after fewer steps.
3.	In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
	True
	○ False

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This

suggest you should focus your attention on improving the search algorithm.

True.

False.

6. Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_{x}} \exp(e^{})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

7.	The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural network:
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.
	True
	○ False
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
	$igorup $ The input sequence length T_x is large.
	\bigcirc The input sequence length T_x is small.

9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?
	_c_oo_o_kkb_ooooo_oo_kkk
	○ cokbok
	Cookbook
	O cook book
	○ coookkbooooookkk
10.	In trigger word detection, $x^{< t>}$ is:
	$igoreal{igoreal}$ Features of the audio (such as spectrogram features) at time t .
	\bigcirc The t -th input word, represented as either a one-hot vector or a word embedding.
	\bigcirc Whether the trigger word is being said at time $t.$
	igcup Whether someone has just finished saying the trigger word at time t .