Práctica 2: Lógica Digital - Combinatorios

Organización del Computador I DC - UBA

Segundo Cuatrimestre 2020

Compuertas - NOT

Α	NOT A
0	1
1	0

Compuertas - AND

Compuertas - OR

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Compuertas - XOR u OR-EXCLUSIVA

A	4	В	A XOR B
()	0	0
()	1	1
	1	0	1
	1	1	0

Notación

$$A + B \equiv A \ OR \ B$$

 $AB \equiv A.B \equiv A \ AND \ B$
 $\overline{A} \equiv NOT \ A$

Propiedades

Propiedad	AND	OR
Identidad	1.A = A	0+A=A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A+\overline{A}=1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A + B) + C = A + (B + C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Tarea: ¡Demostrarlas!

Ejercicio I

Armar un inversor de 3 bits. Este circuito invierte o no las tres entradas de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un inversor de k-bits es un circuito de k entradas $(e_k,...,e_0)$ y k-1 salidas $(s_k-1,...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = not(e_i)$ para todo i < k
- Si $e_k = 0$, entonces $s_i = e_i$ para todo i < k

Ejemplo:

inversor(1,011)=100inversor(0,011)=011inversor(1,100)=011inversor(1,101)=010

Ejercicio I

Primero pensar como invertir un bit,

ei	ek	si
0	0	0
0	1	1
1	0	1
1	1	0

Como suma de productos, $(\overline{ei} \cdot ek) + (ei \cdot \overline{ek})$

¡Oh! casualidad, es una XOR (
$$\oplus$$
) ($\overline{A} \cdot B$) + ($A \cdot \overline{B}$) = $A \oplus B$

Solucion con XOR:

Ejercicio II - Sumador Simple

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Ejercicio III - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. Tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S.

Solución:

Ejercicio IV - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits. Solución:

¡Tarea!

Ejercicio IV - Shift

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Ejemplos:

$$shift_{r}(1,011) = 110$$

 $shift_{r}(0,011) = 001$
 $shift_{r}(1,100) = 000$
 $shift_{r}(1,101) = 010$

Ejercicio IV - Shift

Armar un circuito de 3 *bits*. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

$$s_2 = egin{cases} 0 & ext{si } e_3 = 0 \ e_1 & ext{si } e_3 = 1 \end{cases}$$
 $s_0 = egin{cases} 0 & ext{si } e_3 = 1 \ e_1 & ext{si } e_3 = 0 \end{cases}$ $s_1 = egin{cases} e_0 & ext{si } e_3 = 1 \ e_2 & ext{si } e_3 = 0 \end{cases}$ $e_3.e_1$ $e_3.e_0 + \overline{e_3}.e_2$

Ejercicio IV - Solución

Solución:

Multiplexor y Demultiplexor

Las líneas de control *c* permiten seleccionar una de las entradas *e*, la que corresponderá a la salida *s*.

Las líneas de control *c* permiten seleccionar cual de las salidas *s* tendrá el valor de *e*.

Multiplexor y Demultiplexor

• Ejemplo,

Codificador y Decodificador

Cada combinación de las líneas *e* corresponderá a una sola línea en alto de la salida *s*.

Una y sólo una línea en alto de *e* corresponderá a una combinación en la salida s.

Codificador y Decodificador

• Ejemplo,

La práctica...

- Con lo visto hoy pueden realizar la parte A de la práctica 2.
- Pueden usar el Logisim para probar sus circuitos.
- El MARTES 15 de Septiembre tenemos el primer taller de la materia. Obligatorio
 - Tienen que tener el Logisim instalado.
 - Van a tener que compartirnos pantalla.
 - ¡Los queremos escuchar! Prueben los micrófonos de sus compus/celulares.
- Bibliografía recomendada: The Essentials of Computer
 Organization and Architecture Linda Null Capítulo 3

¡Eso es todo amigos!

¿Preguntas?

