CHEMISTRY Chapter 7

NOMENCLATURA INORGÁNICA

www.tuprofesorvirtual.com

- Entre dos átomos el que tenga mayor valor de electronegatividad atraerá con más fuerza a los electrones del enlace, esto hace que adquiera una carga negativa.
- El átomo de menor electronegatividad quedará con carga positiva.

Producido por: Lic. Nohemi Arellano

¡Recuerda: Pérdida o ganancia de electrones se da en el enlace iónico!

1. ¿QUÉ ES VALENCIA?

La valencia es la capacidad que tiene un átomo de un elemento para combinarse con los átomos de otros elementos y formar compuestos.

Es el número de electrones que comparte un átomo al formar un compuesto.

El nitrógeno tiene 5 electrones de valencia

Al formar la molécula del amoniaco solo comparte 3 electrones. Entonces su valencia es 3.

2. VALENCIAS MÁS USADAS

Metales:

Metal	Valencias	
Li, Na, K, Rb, Cs, Fr, Ag	1	
Be, Mg, Ca, Sr, Ba, Ra, Zn	2	
Al	3	
Cu, Hg	1;2	
Au	1;3	
Fe, Co, Ni	2;3	
Pb, Pt, Sn	2;4	

No metales:

No metal	Valencias
Н, F	1
0	2
В	3
C, Si	2; 4
S, Se, Te	2;4;6
P; As, Sb	1;3;5
Cl, Br, I	1;3;5;7

3. ANOMALIAS:

Anomalía	Valencia metálica	Valencia no metálica
Cromo	2;3	3;6
Manganeso	2;3	4;6;7
Nitrógeno	2;4	1;3;5
Vanadio	2;3	4;5

4. ¿QUÉ ES EL NÚMERO DE OXIDACIÓN?

El número de oxidación es un parámetro numérico que presenta signo. Representa la carga real o la carga aparente que adquiere un átomo de un elemento al formar enlaces químicos, ya sea iónico o covalente.

En el cloruro de sodio NaCl (compuesto iónico):

En este caso el número de oxidación es la carga real de cada elemento.

REGLAS DEL NÚMERO DE OXIDACIÓN

- 1. Escriba verdadero (V) o falso (F), según corresponda.
- Valencia, capacidad de combinación del átomo.
- El número de oxidación del hidrógeno siempre es igual a +1.
 (F)
- ➤ El número de oxidación representa la carga real o aparente que adquiere un elemento.
 ✓)

Respuesta: FVF

- 2. Indique el número de proposiciones correctas (enumérelas), según corresponda.
- I. Los elementos en estado libre presentan número de oxidación igual a cero.

 Correcto
- II. En la mayoría de sus compuestos, el oxígeno actúa con número de oxidación igual a -2.
 Correcto
- III. La suma de los números o estados de oxidación en un compuesto siempre es igual a cero.
 Correcto
- IV. El número de oxidación del nitrógeno en el ion $(NO_3)^{1-}$ es igual a +5.

RESOLUCIÓN

Correcto

$$\begin{array}{c} x & 2- & 1- \\ (NO_3) & \longrightarrow & x + 3(-2) = -1 \end{array}$$

x = +5

Rpta

Cuatro: I, II, III y IV

3. Determine el número o estado de oxidación para el carbono

X CO₂

RESOLUCIÓN

Es un compuesto, entonces:

$$1(x) + 2(-2) = 0$$

4. Calcule el número de oxidación para el azufre:

X H₂SO₄

RESOLUCIÓN

Es un compuesto, entonces:

$$2(+1) + 1(x) + 4(-2) = 0$$

$$+2 + x - 8 = 0$$

$$x = +6$$

Rpta + 6

5. Determine el número de oxidación del elemento subrayado. Ca<u>C</u>O₃

RESOLUCIÓN

$$1(+2) + 1(x) + 3(-2) = 0$$

$$2 + x - 6 = 0$$

$$x = +4$$

6. Indique el número de oxidación del azufre en: $Al_2(SO_4)_3$

RESOLUCIÓN

$$3(+2) + 3(x) + 3(4)(-2) = 0$$

$$6 + 3x - 24 = 0$$

$$x = +6$$

$$x = +6$$

7. Indique el número de oxidación del fósforo $(\underline{P}O_4)^{3-}$

RESOLUCIÓN

$$(PO_4)^{3}$$

$$((x) + (4)(-2) = -3$$

$$x - 8 = -3$$

$$x = +5$$

$$x = +5$$

8. La piedra de alumbre no es más que un sulfato doble de aluminio y potasio, un elemento químico completamente natural que se emplea de tiempos inmemoriales en diversas disciplinas. Si bien, hoy por hoy, su uso es bastante ligado a los remedios caseros y naturales, esta piedra ya se empleaba en Oriente Medio en rituales desarrollados en la belleza. Es antiséptica y astringente, tiene la capacidad de cerrar poros y regular la sudoración. Determine el número de oxidación del azufre en el alumbre. $[KAl(SO_4)_2 \cdot 12H_2O]$

RESOLUCIÓN

1+ 3+ × 2-

KAI(SO₄)₂-12H₂O

$$1(+1) + 1(+3) + 2(x) + 2(4)(-2) =$$

+ 1 + 3 + 2x - 16 = 0

doble

del EO del azufre.

donde

$$2x = 12$$

$$x = +6$$

El alumbre es una sal oxisal

El agua de hidratación no

influíra en la determinación

dodecahidratada,