Notes du Cours : MATH2308P

Cours assuré par Sébastien GODILLON

Fiche 译正X rédigé par Corentin 邱天意 Semestre 2024-2025-2

Table des matières

Ι	Espaces vectoriels normés	3
1	Normes et distances	3
2	Exemples d'espaces vectoriels normés	7
	2.1. Cas de la dimension finie	7

Première partie

Espaces vectoriels normés

On commence notre travail avec les espaces vectoriels normés.

Dans tout ce chapitre, E désigne un \mathbb{K} -espace vectoriel, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et on note 0_E le vecteur nul de E.

1 Normes et distances

Définition 1.1

Une **norme** sur E est une application de E dans \mathbb{R} . Elle a pour notation N, et elle vérifie les propriétés suivantes :

$$- \forall x \in E, N(x) = 0 \Rightarrow x = 0_E$$
 (séparation)

$$-- \forall (\lambda, x) \in \mathbb{K} \times E, N(\lambda x) = |\lambda| N(x)$$
 (homogénéité absolue)

$$-- \forall (x,y) \in E^2, \quad N(x+y) \le N(x) + N(y)$$
 (sous-additivité)

Dans le deuxième point, $|\lambda|$ peut représenter la valeur absolue(en \mathbb{R}) ou le module(en \mathbb{C}), et ça dépend de l'ensemble dans lequel on se place.

Définition 1.2

Si N est une norme sur E, alors on dit que (E,N) est un **espace vectoriel normé**.

Proposition 1.1

Soit N une norme sur E, alors on a:

$$-N(0_E)=0$$
 (réciproque de la séparation)

$$-- \forall x \in E, \quad N(x) \ge 0$$
 (positivité)

$$-- \ \forall (x,y) \in E^2, \quad |N(x)-N(y)| \leq N(x-y) \tag{``continuité''}$$

Petit remarque 1 : la première nous donne l'équivalence dans la propriété de séparation :

$$\forall x \in E, N(x) = 0 \iff x = 0_E$$

Petit remarque 2 : dans la troisième, |N(x) - N(y)| désigne la valeur absolue puisque la norme est une application dans \mathbb{R} .

Preuve : Soient $(x, y) \in E^2$.

- $N(0_E) = N(0.x) = |0|N(x) = 0$, donc on a : $N(0_E) = 0$.

Remarque : ne mélangez pas 0_E et 0.

— D'après la propriété qu'on vient de démontrer, on a :

$$0 = N(0_E) = N(x - x) = N(x + (-x))$$

De plus, par sous-additivité, on a :

$$N(x + (-x)) \le N(x) + N(-x) = N(x) + |-1|N(x) = 2N(x)$$

On obtient $N(x) \geq 0$ en mettant les deux relations ensemble.

— Rappel: $|x| \ge k \iff -k \le x \le k$.

Donc il faut démontrer les inégalités à gauche et à droite.

- $N(x) = N(x y + y) \le N(x y) + N(y)$ (par sous-additivité), et on trouve la relation $N(x) N(y) \le N(x y)$.
- De même façon on trouve l'autre, en utilisant N(y) au début : $-N(x-y) \le N(x) N(y)$.

Ces deux inégalités nous donnent le résultat : $\forall (x,y) \in E^2$, $|N(x) - N(y)| \leq N(x-y)$.

Remarque 1.1

Dans la troisième on reconnaît une propriété de continuité. Si x est proche de y ("tend vers"), alors x-y est proche du vecteur nul. Donc N(x,y) devient proche de 0, |N(x)-N(y)| aussi(par séparation). Donc N(x) est proche de N(y).

Exemple 1.1

La valeur absolue de $\mathbb R$

On dit que l'application $N: x \mapsto |x|$ est une norme sur \mathbb{R} , parce qu'elle vérifie les conditions :

- $-\forall x \in \mathbb{R}, |x| < 0 \iff x = 0.$
- $--\forall (\lambda, x) \in \mathbb{R}^2, |\lambda x| = |\lambda||x|.$
- $-- \forall (x,y) \in \mathbb{R}^2, |x+y| \le |x| + |y|$ (l'inégalité triangulaire).

Le module de $\mathbb C$

De même, $N: x \mapsto |x|$ est une norme sur \mathbb{C} .

On peut remarquer que (K, |.|) est un espace vectoriel normé.

Remarque 1.2

Les normes sont les objets qui généralisent la valeur absolue et le module pour les espaces vectoriels plus grands que \mathbb{K} .

Rappel 1.1

Pour qu'on puisse commencer à étudier les distances, on rappelle que :

- La valeur absolue du réel a représent la distance entre 0 et a sur la droite réelle.
- Même chose pour le module pour les complexes, mais cette fois on trouve la distance sur le plan complexe.
- Plus généralement |a-b| représent la distance entre a et b.

Définition 1.3

Soit (E, N) un espace vectoriel normé, alors l'application :

$$d: \begin{cases} E^2 \to [0, +\infty[\\ (a, b) \mapsto d(a, b) = N(a - b) \end{cases}$$

est une distance sur E. De plus, elle vérifie 3 propriétés :

- $-- \forall (a,b) \in E^2, d(a,b) = d(b,a)$ (symétrie)
- $-- \forall (a,b) \in E^2, d(a,b) = 0 \iff a = b$ (séparation)
- $\forall (a, b, c) \in E^3, d(a, b) \le d(a, c) + d(c, b)$ (inégalité triangulaire)

Remarque : la deuxième propriété se démontre avec la séparation des normes, et la troisième avec la homogénéité absolue.

Propriété 1.1

Notre espace vectoriel normé (E, N, d) est un **espace métrique**.

Vous pouvez regarder les autres livres pour la définition d'un espace métrique, qui est essentiellement un ensemble muni d'une distance :).

Propriété 1.2

La translation et l'homothétie, on les a vu au MATH1301P, dans le chapitre de la géométrie euclidienne. La norme vérifie aussi ces deux propriétés :

- d est invariante par translation, c'est-à-dire : $\forall (t, x, y) \in E^3, d(x+t, y+t) = d(x, y)$.
- d est absoluement homogène par homothétie, c'est-à-dire : $\forall (\lambda, x, y) \in \mathbb{K} \times E^2, d(\lambda x, \lambda y) = |\lambda| d(x, y).$

Remarque 1.3

On peut aussi faire de la topologie dans les espaces métriques, la théorie est plus générale(car on a pas besoin de la structure d'espace vectoriel).

Les espaces métriques fournissent un cadre plus général que les espaces vectoriels normés pour introduire les différentes notions de topologie de ce chapitre. Cependant, on se limitera ici à l'étude moins abstraite des espaces vectoriels normés afin de pouvoir continuer à utiliser les opérations classigues d'algèbre linéaire.

Définition 1.4

Soit (E, N) un espace vectoriel normé, on définit :

— La **boule ouverte** de centre $a \in E$ et de rayon r > 0.

$$B(a,r) = \{x \in E | N(x-a) < r\}.$$

C'est l'ensemble des vecteurs à une distance de a strictement plus petite que r.

— La **boule fermé** de centre $a \in E$ et de rayon r > 0.

$$\overline{B}(a,r) = \{ x \in E | N(x-a) \le r \}.$$

— La **sphère** de centre $a \in E$ et de rayon r > 0.

$$\partial B(a,r) = \{ x \in E | N(x-a) = r \}.$$

Propriété 1.3

On peut passer d'une boule à une autre (de la même nature), à l'aide d'une translation et une homothétie.

En particulier, $\forall (a, r) \in E \times]0, +\infty[$, on a $B(a, r) = a + rB(0_E, 1)$.

L'addition de a et la multiplication par r sont respectivement la translation et la homothétie. Mais attention, on commence toujours par la homothétie, car l'inverse nous donnerait une boule agrandie.

Preuve: Soient $B(a_1, r_1)$ et $B(a_2, r_2)$ deux boules, où $(a_1, a_2) \in E^2$ et $(r_1, r_2) \in [0, +\infty]^2$.

- On peut démontrer que l'opération de translation est faisable en justifiant l'égalité entre ces deux ensembles suivants : $B(a_1, r_1) = a_1 + r_1 B(0_E, 1)$. Vous devez procéder par double inclusion.
- On raisonne étape par étape pour la homothétie :

$$B(a_1, r_1) = a_1 + B(0_E, r_1) = a_1 + \frac{r_1}{r_2}B(0_E, r_2)$$

Comme on a dit déjà qu'on peut faire la translation par un vecteur, on manipule :

$$a_1 + \frac{r_1}{r_2}(B(a_2, r_2) - a_2) = a_1 - \frac{r_1 a_2}{r_2} + \frac{r_1}{r_2}B(a_2, r_2)$$

C'est la même preuve pour toutes les boules ouvertes, fermées et les sphères.

2 Exemples d'espaces vectoriels normés

2.1 Cas de la dimension finie

On fixe un entier $n \geq 1$, et on considère l'espace vectoriel $E = \mathbb{K}^n$.

Définition 1.5

Pour tout $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$, on définit :

$$||x||_1 = \sum_{k=1}^n |x_k|$$

et:

$$||x||_{\infty} = \max_{k \in [1,n]} |x_k|$$

Propriété 1.4

 $||x||_1$ et $||x||_{\infty}$ sont les normes sur \mathbb{K}^n , appelées les normes 1 et infinie.

Preuve: Soient $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$ et $y = (y_1, y_2, ... y_n) \in \mathbb{K}^n$

On va démontrer que ces applications vérifient les trois propriétés.

— (séparation)

On remarque que, pour tout $k \in [1, n]$, on a :

$$0 \le |x_k| \le ||x||_{\infty} \le ||x||_1$$

Donc, si on a $||x||_1 = 0$ ou $||x||_{\infty} = 0$, alors $x_k = 0$ pour tout k.

— (homogénéité absolue)

Soit $\lambda \in \mathbb{K}$, on a:

$$\|\lambda x\|_{1} = \|(\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n})\|_{1} = \sum_{k=1}^{n} |\lambda x_{k}| = |\lambda| \sum_{k=1}^{n} |x_{k}| = |\lambda| ||x||_{1}$$
$$\|\lambda x\|_{\infty} = \max_{k \in [1, n]} |\lambda x_{k}| = |\lambda| \max_{k \in [1, n]} |x_{k}| = |\lambda| ||x||_{\infty}$$

On a utilisé la linéarité de |.| pour \mathbb{K} .

— (sous-additivité)

$$||x + y||_1 = \sum_{k=1}^n (|x_k + y_k|)$$

$$\leq \sum_{k=1}^n (|x_k| + |y_k|) \quad \text{(sous-additivit\'e de } ||\cdot||_1 \text{ sur } \mathbb{K})$$

$$= \sum_{k=1}^n |x_k| + \sum_{k=1}^n |y_k| \quad \text{(lin\'earit\'e)}$$

$$= ||x||_1 + ||y||_1.$$

Pour $\|\cdot\|_{\infty}$, on commence par remarquer que $\forall k \in [1, n]$,

On a : $|x_k + y_k| \le |x_k| + |y_k| \le ||x||_{\infty} + ||y||_{\infty}$, qui ne dépend pas de k.

Donc:

$$\max_{k \in [1, n]} |x_k + y_k| \le ||x||_{\infty} + ||y||_{\infty}$$

Conclusion: $||.||_1$ et $||.||_{\infty}$ sont les normes sur \mathbb{K}^n .

Exemple 1.2

Pour n=2 et $\mathbb{K}=\mathbb{R}$, on peut représenter graphiquement les boules unités des normes $||x||_1$ et $||x||_{\infty}$.

Définition 1.6

Pour tout réel $p \ge 1$ et tout vecteur $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$, on définit :

$$||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}$$

Remarque : Pour p = 1 on retrouve la norme $||.||_1$.

Preuve : On veut démontrer que $||x||_p$ est aussi une norme.

Plus tard. On aura besoin de démontrer autres lemmes et inégalités avant de commencer la preuve de cette définition. Plus spécifiquement, on va démontrer un lemme, qui est essentiel pour démontrer l'inégalité de Hölder, qui nous donnera un corollaire(Inégalité de Minkovsky), qui sera utile pour montrer la sous-additivité de $||x||_p$.

Propriété 1.5

On a : $\lim_{n\to+\infty} ||x||_n = ||x||_{\infty}$

Preuve: Soit $p \ge 1$ et $x = (x_1, \dots, x_n) \in \mathbb{K}^n$.

On pose $I = \{k \in [1, n] \mid |x_k| = ||x||_{\infty}\} \neq \emptyset$.

On a :

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = \left(\sum_{k=1,k\in I}^n |x_k|^p + \sum_{k=1,k\notin I}^n |x_k|^p\right)^{\frac{1}{p}}$$
$$= \left(\operatorname{card}(I) + \sum_{k=1,k\notin I}^n \left(\frac{|x_k|}{||x_k||_{\infty}}\right)^p\right)^{\frac{1}{p}} \cdot ||x||_{\infty}$$

$$\longrightarrow ||x||_{\infty}$$
 lorsque $p \to +\infty$

Donc on a : $||x||_p \xrightarrow[p \to +\infty]{} ||x||_{\infty}$.

Remarque : on peut dire que $\sum_{k=1,k\notin I}^n \left(\frac{|x_k|}{\|x_k\|_{\infty}}\right)^p$ tend vers 0 parce que $\frac{|x_k|}{\|x_k\|_{\infty}}$ est strictement plus petit que 1, et le fait que c'est une somme finie.

Lemme 1.1(pour l'inégalité de Hölder après)

Pour tout réel a et b positifs et $(p,q) \in [1,+\infty]^2 {\rm tel}$ que $\frac{1}{p} + \frac{1}{q} = 1,$ on a

$$ab \le \frac{a^p}{p} + \frac{b^q}{q},$$

Preuve: On fixe $b \ge 0$ et on pose la fonction

$$f: x \mapsto f(x) = \frac{x^p}{p} + \frac{b^q}{q} - xb.$$

Elle est dérivable sur $]0, +\infty[$, et

$$\forall x > 0, \quad f'(x) = x^{p-1} - b.$$

Or, p > 1, donc $x^{p-1} - b$ est strictement croissante.

$$f'(x) < 0$$
 pour $x < (b)^{\frac{1}{p-1}}$
 $f'(x) = 0$ pour $x = (b)^{\frac{1}{p-1}}$
 $f'(x) > 0$ pour $x > (b)^{\frac{1}{p-1}}$

Cela montre que f(x) admet un minimum en $x = (b)^{\frac{1}{p-1}}$.

Et ce minimum vaut :

$$f\left((b)^{\frac{1}{p-1}}\right) = \frac{b^{\frac{p}{p-1}}}{p} + \frac{b^q}{q} - b^{\frac{p}{p-1}}.$$

Or, $\frac{p}{p-1} = \frac{1}{1-\frac{1}{p}} = q$, donc

$$f\left((b)^{\frac{1}{p-1}}\right) = \left(\frac{1}{p} + \frac{1}{q} - 1\right)b^q = 0.$$

C'est-à-dire que f est positive sur $[0, +\infty[$. En particulier, pour $a \ge 0$, on a :

$$f(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab \ge 0$$
, d'où $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

Théorème 1.1 : Inégalité de Hölder

Soient $x = (x_1, x_2, ..., x_n) \in \mathbb{K}^n$ et $y = (y_1, y_2, ..., y_n) \in \mathbb{K}^n$.

On se donne $p \in [1, +\infty]$ et $q \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, alors

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q.$$

Preuve:

Premier cas:

Supposons qu'on a : p = 1 et $q = +\infty$

En utilisant la linéarité et en remplaçant les normes usuelles on a :

$$\sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| \le \left(\sum_{k=1}^{n} |x_k| \right) ||y||_{\infty} = ||x||_1 ||y||_{\infty}.$$

De même, pour la situation $p = +\infty$ et q = 1, l'inégalité est évidente.

Deuxième cas:

Désormais on suppose que $(p,q) \in]1, +\infty[^2$

On remarque que si $||x||_p = 0$, alors $x_k = 0$ pour tout $k \in [1, n]$ (par séparation), qui donne $x = 0_k$ (de même si $||y||_q = 0$). Donc l'inégalité est triviale dans ce cas.

Troisième cas:

Supposons que $(p,q) \in]1, +\infty[^2$ et que $||x||_p \neq 0$, $||y||_q \neq 0$. On applique le lemme avec $a = \frac{|x_k|}{||x||_p}$ et $b = \frac{|y_k|}{||y||_q}$ (non-nuls):

$$\sum_{k=1}^{n} \frac{|x_k y_k|}{\|x\|_p \|y\|_q} = \sum_{k=1}^{n} \frac{|x_k|}{\|x\|_p} \frac{|y_k|}{\|y\|_p} \le \sum_{k=1}^{n} \left(\frac{1}{p} \frac{|x_k|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_k|^q}{\|y\|_q^q} \right).$$

On peut retirer les constantes et on obtient :

$$\sum_{k=1}^n \left(\frac{1}{p} \frac{|x_k|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_k|^q}{\|y\|_q^q}\right) \leq \frac{1}{p\|x\|_p^p} \sum_{k=1}^n |x_k|^p + \frac{1}{q\|y\|_q^q} \sum_{k=1}^n |y_k|^q = \frac{1}{p} + \frac{1}{q} = 1$$

Donc,

$$\sum_{k=1}^{n} \frac{|x_k y_k|}{\|x\|_p \|y\|_q} \le \frac{1}{p} + \frac{1}{q} = 1.$$

En multipliant par $\|x\|_p\|y\|_q,$ on obtient l'inégalité de Hölder :

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q.$$

Corollaire du théorème 1.1 : Inégalité de Minkowski

Pour tout réel $p\in[1,+\infty],$ on a :

$$\forall (x,y) \in (\mathbb{K}^n)^2, ||x+y||_p \le ||x||_p + ||y||_p$$

Cela nous donne la sous-additivité de $||.||_p$