Построение грамматики для результата операции над языками

для выполнения домашнего задания N5

Содержание

Прежде чем строить новую грамматику						
					1	Для 1.1
	1.2	Конкатенация $L(G)L(G')$	2			
	1.3	Итерация $L(G')^*$	3			
	1.4	Положительная итерация $L(G')^+$	3			
2	Для грамматик типа 2					
	2.1	Объединение $L(G) \cup L(G')$	3			
	2.2	Конкатенация $L(G)L(G')$	3			
	2.3	Итерация $L(G')^*$	4			
	2.4	Положительная итерация $L(G')^+$	4			
3	Для неукорачивающих грамматик и грамматик типа 1					
	3.1	Объединение $L(G) \cup L(G')$	4			
	3.2		4			
	3.3	Итерация $L(G')^*$	5			
	3.4	Положительная итерация $L(G')^+$	5			
4	Для	грамматик типа 0	5			
	4.1	Объединение $L(G) \cup L(G')$	5			
	4.2	Конкатенация $L(G)L(G')$	5			
	4.3	Итерация $L(G')^*$	6			
	4.4	Положительная итерация $L(G')^+$	6			
5		праволинейных грамматик	6			
	5.1	Объединение $L(G) \cup L(G')$				
	5.2	Конкатенация $L(G)L(G')$				
	5.3	Итерация $L(G')^*$				
	5.4	Положительная итерация $L(G')^+$	7			
6	Для леволинейных автоматных грамматик					
	6.1	Объединение $L(G) \cup L(G')$	7			
	6.2	Конкатенация $L(G)L(G')$	8			
	6.3	Итерация $L(G')^*$	8			
	6.4	Положительная итерация $L(G')^+$	9			

7	Для	праволинейных автоматных грамматик	9
	7.1	Объединение $L(G) \cup L(G')$	9
	7.2	Конкатенация $L(G)L(G')$	9
	7.3	Итерация $L(G')^*$	10
	7.4	Положительная итерация $L(G')^+$	10

Введение

В дальнейшем предполагаем, что заданы две грамматики

$$G = (N, \Sigma, P, S),$$

 $G' = (N', \Sigma', P', S')$

для построения результата бинарной операции, или одна грамматика

$$G' = (N', \Sigma', P', S')$$

для построения результата унарной операции.

Прежде чем строить новую грамматику

- 1. При построении результата бинарной операции удостоверьтесь, что $N \cap N' = \emptyset$. Если это не так, то совпадающие нетерминальные символы одной из грамматик следует переименовать.
- 2. При построении результатов операций конкатенации или итерации (положительной итерации) убедитесь, что в левых частях правил отсутствуют терминальные символы. Если это не так, то необходимо исключить появление таких терминальных символов в левых частях правил (см. Теорема 2 теоретического материала на портале).

1 Для грамматик типа 3

1.1 Объединение $L(G) \cup L(G')$

- 1. $N''=N\cup N'\cup \{S''\},$ где $S''\notin (N\cup N');$
- $2.\ P''=P\cup P'\cup \{S''\to S,\ S''\to S'\};$
- 3. $\Sigma'' = \Sigma \cup \Sigma'$;
- 4. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

1.2 Конкатенация L(G)L(G')

- 1. $N'' = N \cup N'$:
- 2. Превратим множество правил P' в P_1' : каждое правило в P' вида

$$A \to \alpha$$
, $A \in N'$, $\alpha \in \Sigma'^*$

заменим на

- 3. $P'' = P \cup P'_1$;
- 4. $\Sigma'' = \Sigma \cup \Sigma'$;
- 5. Результат грамматика $G'' = (N'', \Sigma'', P'', S')$.

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \alpha$$
, $A \in N'$, $\alpha \in \Sigma'^*$

добавим в P_1'

$$A \to S'\alpha$$
:

- 3. $P'' = P' \cup P'_1 \cup \{S'' \to \varepsilon, S'' \to S'\};$
- 4. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

1.4 Положительная итерация $L(G')^+$

1. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \alpha$$
, $A \in N'$, $\alpha \in \Sigma'^*$

добавим в P_1'

$$A \to S'\alpha;$$

- 2. $P'' = P' \cup P'_1$;
- 3. Результат грамматика $G'' = (N', \Sigma', P'', S')$.

2 Для грамматик типа 2

2.1 Объединение $L(G) \cup L(G')$

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- $2.\ P''=P\cup P'\cup \{S''\to S,\ S''\to S'\};$
- 3. $\Sigma'' = \Sigma \cup \Sigma'$;
- 4. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

2.2 Конкатенация L(G)L(G')

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- 2. $P'' = P \cup P' \cup \{S'' \to SS'\};$
- 3. $\Sigma'' = \Sigma \cup \Sigma'$;
- 4. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. $P'' = P' \cup \{S'' \rightarrow \varepsilon, S'' \rightarrow S''S'\};$
- 3. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

2.4 Положительная итерация $L(G')^+$

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. $P'' = P' \cup \{S'' \to S', S'' \to S''S'\};$
- 3. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

3 Для неукорачивающих грамматик и грамматик типа 1

3.1 Объединение $L(G) \cup L(G')$

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- 2. Построим множество $P_1'' = (P \cup P' \cup \{S'' \to S, S'' \to S'\}) \setminus \{S \to \varepsilon, S' \to \varepsilon\};$
- 3. Если $S \to \varepsilon \in P$ или $S' \to \varepsilon \in P'$, то $P_2'' = \{S'' \to \varepsilon\}$. Иначе $P_2'' = \varnothing$;
- 4. $P'' = P_1'' \cup P_2'';$
- 5. $\Sigma'' = \Sigma \cup \Sigma'$;
- 6. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

${f 3.2}$ Конкатенация L(G)L(G')

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- 2. Построим множество $P_1'' = (P \cup P') \setminus \{S \to \varepsilon, S' \to \varepsilon\};$
- 3. Если $S \to \varepsilon \in P$ и $S' \to \varepsilon \in P'$, то $P_2'' = \{S'' \to SS', \ S'' \to S, \ S'' \to S', \ S'' \to \varepsilon\};$
- 4. Если $S \to \varepsilon \in P$ и $S' \to \varepsilon \notin P'$, то $P_2'' = \{S'' \to SS', \ S'' \to S'\};$
- 5. Если $S \to \varepsilon \notin P$ и $S' \to \varepsilon \in P'$, то $P_2'' = \{S'' \to SS', \ S'' \to S\};$
- 6. Если $S \to \varepsilon \notin P$ и $S' \to \varepsilon \notin P'$, то $P_2'' = \{S'' \to SS'\};$
- 7. $P'' = P_1'' \cup P_2''$;
- 8. $\Sigma'' = \Sigma \cup \Sigma';$
- 9. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

1.
$$N'' = N' \cup \{S_0'', S_1''\}$$
, где $S_0'', S_1'' \notin N'$;

2. Построим множество
$$P_1'' = P' \setminus \{S' \to \varepsilon\};$$

3.
$$P_2'' = \{S_0'' \to \varepsilon, S_0'' \to S', S_0'' \to S_1''S'\};$$

4.
$$P_3'' = \{S_1''a \to S_1''S'a \mid a \in \Sigma'\};$$

5.
$$P_4'' = \{S_1''a \to S'a \mid a \in \Sigma'\};$$

6.
$$P'' = P_1'' \cup P_2'' \cup P_3'' \cup P_4''$$
;

7. Результат — грамматика
$$G'' = (N'', \Sigma', P'', S_0'')$$
.

3.4 Положительная итерация $L(G')^+$

1.
$$N'' = N' \cup \{S_0'', S_1''\}$$
, где $S_0'', S_1'' \notin N'$;

2. Построим множество
$$P_1'' = P' \setminus \{S' \to \varepsilon\};$$

3.
$$P_2'' = \{S_0'' \to S', S_0'' \to S_1''S'\};$$

4.
$$P_3'' = \{S_1''a \to S_1''S'a \mid a \in \Sigma'\};$$

5.
$$P_4'' = \{S_1''a \to S'a \mid a \in \Sigma'\};$$

6. Если
$$S' \to \varepsilon \in P'$$
, то $P''_5 = \{S''_0 \to \varepsilon\}$. Иначе $P''_5 = \varnothing$;

7.
$$P'' = P_1'' \cup P_2'' \cup P_3'' \cup P_4'' \cup P_5'';$$

8. Результат — грамматика
$$G'' = (N'', \Sigma', P'', S_0'')$$
.

4 Для грамматик типа 0

4.1 Объединение $L(G) \cup L(G')$

1.
$$N'' = N \cup N' \cup \{S''\}$$
, где $S'' \notin (N \cup N')$;

$$2.\ P''=P\cup P'\cup \{S''\to S,\ S''\to S'\};$$

3.
$$\Sigma'' = \Sigma \cup \Sigma';$$

4. Результат — грамматика
$$G'' = (N'', \Sigma'', P'', S'')$$
.

4.2 Конкатенация L(G)L(G')

1.
$$N''=N\cup N'\cup \{S''\},$$
где $S''\notin (N\cup N');$

2.
$$P'' = P \cup P' \cup \{S'' \to SS'\};$$

3.
$$\Sigma'' = \Sigma \cup \Sigma';$$

4. Результат — грамматика
$$G'' = (N'', \Sigma'', P'', S'')$$
.

- 1. $N'' = N' \cup \{S_0'', S_1''\}$, где $S_0'', S_1'' \notin N'$;
- 2. Превратим множество правил P'' в множество P_1'' : каждое правило вида

$$\alpha \to \varepsilon, \quad \alpha \in N^+$$

заменим на набор правил

$$\{\alpha X \to X \mid X \in N\} \cup \{X\alpha \to X \mid X \in N\}.$$

- 3. $P_2'' = \{S_0'' \to \varepsilon, S_0'' \to S', S_0'' \to S_1''S'\};$
- 4. $P_3'' = \{S_1''a \to S_1''S'a \mid a \in \Sigma'\};$
- 5. $P_4'' = \{S_1''a \to S'a \mid a \in \Sigma'\};$
- 6. $P'' = P_1'' \cup P_2'' \cup P_3'' \cup P_4''$;
- 7. Результат грамматика $G'' = (N'', \Sigma', P'', S_0'')$.

4.4 Положительная итерация $L(G')^+$

- 1. $N'' = N' \cup \{S_0'', S_1''\}$, где $S_0'', S_1'' \notin N'$;
- 2. Превратим множество правил P'' в множество P_1'' : каждое правило вида

$$\alpha \to \varepsilon, \quad \alpha \in N^+$$

заменим на набор правил

$$\{\alpha X \to X \mid X \in N\} \cup \{X\alpha \to X \mid X \in N\}.$$

- 3. $P_2'' = \{S_0'' \to S', S_0'' \to S_1''S'\};$
- 4. $P_3'' = \{S_1''a \to S_1''S'a \mid a \in \Sigma'\};$
- 5. $P_4'' = \{S_1''a \to S'a \mid a \in \Sigma'\};$
- 6. Если $\varepsilon \in L(G')$, то $P_5'' = \{S_0'' \to \varepsilon\}$. Иначе $P_5'' = \varnothing$;
- 7. $P'' = P_1'' \cup P_2'' \cup P_3'' \cup P_4'' \cup P_5''$;
- 8. Результат грамматика $G'' = (N'', \Sigma', P'', S_0'')$.

5 Для праволинейных грамматик

5.1 Объединение $L(G) \cup L(G')$

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- 2. $P'' = P \cup P' \cup \{S'' \to S, S'' \to S'\};$
- 3. $\Sigma'' = \Sigma \cup \Sigma'$;
- 4. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

5.2 Конкатенация L(G)L(G')

- 1. $N'' = N \cup N'$;
- 2. Превратим множество правил P в P_1 : каждое правило в P вида

$$A \to \alpha, \quad A \in \mathbb{N}, \ \alpha \in \Sigma^*$$

заменим на

$$A \to \alpha S'$$
;

- 3. $P'' = P_1 \cup P'$;
- 4. $\Sigma'' = \Sigma \cup \Sigma'$;
- 5. Результат грамматика $G'' = (N'', \Sigma'', P'', S)$.

5.3 Итерация $L(G')^*$

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \alpha, \quad A \in N', \ \alpha \in {\Sigma'}^*$$

добавим в P_1'

$$A \to \alpha S';$$

- 3. $P'' = P' \cup P'_1 \cup \{S'' \to \varepsilon, S'' \to S'\};$
- 4. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

5.4 Положительная итерация $L(G')^+$

1. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \alpha, \quad A \in N', \ \alpha \in \Sigma'^*$$

добавим в P_1'

$$A \to \alpha S'$$
;

- 2. $P'' = P' \cup P'_1$;
- 3. Результат грамматика $G'' = (N', \Sigma', P'', S')$.

6 Для леволинейных автоматных грамматик

- **6.1** Объединение $L(G) \cup L(G')$
 - 1. $N''=N\cup N'\cup \{S''\},$ где $S''\notin (N\cup N');$
 - 2. $P_1'' = P \cup P';$

3. Составим множество P_2'' : для каждого правила в P вида

$$S \to \alpha$$
, $\alpha \in (N \cup \Sigma)^*$,

добавим в P_2''

$$S'' \to \alpha$$

и для каждого правила в P' вида

$$S' \to \alpha$$
, $\alpha \in (N' \cup \Sigma')^*$,

добавим в P_2''

$$S'' \to \alpha$$
;

- 4. $P'' = P_1'' \cup P_2''$;
- 5. $\Sigma'' = \Sigma \cup \Sigma'$;
- 6. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

6.2 Конкатенация L(G)L(G')

- 1. $N'' = N \cup N'$;
- 2. Превратим множество правил P' в P_1' : заменим каждое правило в P' вида

$$A \to \varepsilon, \quad A \in N'$$

на набор правил

$${A \to \alpha \mid S \to \alpha \in P, \ \alpha \in (N \cup \Sigma)^*}$$

- 3. $P'' = P \cup P'_1$;
- 4. $\Sigma'' = \Sigma \cup \Sigma'$;
- 5. Результат грамматика $G'' = (N'', \Sigma'', P'', S')$.

6.3 Итерация $L(G')^*$

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \varepsilon$$
, $A \in N'$

добавим в P_1' набор правил

$$\{A \to \alpha \mid S' \to \alpha \in P', \ \alpha \in (N' \cup \Sigma')^*\}$$

3. Составим множество P_2' : для каждого правила в P' вида

$$S' \to \alpha, \quad \alpha \in (N' \cup \Sigma')^*,$$

добавим в P_2'

$$S'' \to \alpha$$
;

- 4. $P'' = P' \cup P'_1 \cup P'_2 \cup \{S'' \to \varepsilon\};$
- 5. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

6.4 Положительная итерация $L(G')^+$

1. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \varepsilon$$
, $A \in N'$

добавим в P_1' набор правил

$$\{A \to \alpha \mid S' \to \alpha \in P', \ \alpha \in (N' \cup \Sigma')^*\}$$

- 2. $P'' = P' \cup P'_1$;
- 3. Результат грамматика $G'' = (N', \Sigma', P'', S')$.

7 Для праволинейных автоматных грамматик

7.1 Объединение $L(G) \cup L(G')$

- 1. $N'' = N \cup N' \cup \{S''\}$, где $S'' \notin (N \cup N')$;
- 2. $P_1'' = P \cup P'$;
- 3. Составим множество P_2'' : для каждого правила в P вида

$$S \to \alpha, \quad \alpha \in (N \cup \Sigma)^*,$$

добавим в P_2''

$$S'' \to \alpha$$

и для каждого правила в P' вида

$$S' \to \alpha, \quad \alpha \in (N' \cup \Sigma')^*,$$

добавим в P_2''

$$S'' \to \alpha;$$

- 4. $P'' = P_1'' \cup P_2'';$
- 5. $\Sigma'' = \Sigma \cup \Sigma'$;
- 6. Результат грамматика $G'' = (N'', \Sigma'', P'', S'')$.

7.2 Конкатенация L(G)L(G')

- 1. $N'' = N \cup N';$
- 2. Превратим множество правил P в P_1 : заменим каждое правило в P вида

$$A\to \varepsilon, \quad A\in N$$

на набор правил

$$\{A \to \alpha \mid S' \to \alpha \in P', \ \alpha \in (N' \cup \Sigma')^*\}$$

- 3. $P'' = P_1 \cup P'$;
- 4. $\Sigma'' = \Sigma \cup \Sigma'$;
- 5. Результат грамматика $G'' = (N'', \Sigma'', P'', S)$.

- 1. $N'' = N' \cup \{S''\}$, где $S'' \notin N'$;
- 2. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \varepsilon, \quad A \in N'$$

добавим в P_1' набор правил

$${A \to \alpha \mid S' \to \alpha \in P', \ \alpha \in (N' \cup \Sigma')^*}$$

3. Составим множество P_2' : для каждого правила в P' вида

$$S' \to \alpha, \quad \alpha \in (N' \cup \Sigma')^*,$$

добавим в P_2'

$$S'' \to \alpha;$$

- 4. $P'' = P' \cup P'_1 \cup P'_2 \cup \{S'' \rightarrow \varepsilon\};$
- 5. Результат грамматика $G'' = (N'', \Sigma', P'', S'')$.

7.4 Положительная итерация $L(G^\prime)^+$

1. Создадим множество правил P_1' : для каждого правила в P' вида

$$A \to \varepsilon$$
, $A \in N'$

добавим в P_1' набор правил

$$\{A \to \alpha \mid S' \to \alpha \in P', \ \alpha \in (N' \cup \Sigma')^*\}$$

- 2. $P'' = P' \cup P'_1$;
- 3. Результат грамматика $G'' = (N', \Sigma', P'', S')$.