Lecture 3: Updating SEPs

(supervised learning vs. posterior updating)

Instructor: Aaron Schein

Modern Methods in Applied Statistics STAT 34800 (Spring 2023)

Recap

- USS Scorpion is lost in the Atlantic
- "Search effectiveness probability" (SEP)

$$q = P(\tilde{Z} = 1 \mid Z = 1, a = 1)$$

- a = whether we search the cell
- Z = whether it is in the cell
- \tilde{Z} = whether we actually find it
- $\pi^* = \text{posterior over } Z$

Choose action that minimizes
 Bayesian expected loss

$$\rho(\pi^*, a) = E_{Z \sim \pi^*}[\ell(Z, a)]$$

$$P(T_1^*, 1) = T_1^* L_{TP} + (1 - T_1^*) L_{FP}$$
where $L_{TP} = Q L_{STP} + (1 - Q) L_{FTP}$ Q =1

Binomial trials

- SEPs play pivotal role in our decision
- In the real search, they tried estimating SEPs with trials
- \bullet e.g., drop N objects, see how many (b) divers can find

$$b \sim \text{Binom}(N, q)$$

• PMF is proportional (in q) to

$$P(b \mid N, q) \propto_q q^b (1 - q)^{N - b}$$

• Sum this over # of all N-sequences with b successes

$$P(b \mid N, q) = \frac{N!}{b!(N-b)!} q^b (1-q)^{N-b}$$

often aliased as **N-choose-b** $\binom{N}{b}$

Binomial trials

- How should we update q based on trials?
- Maximum likelihood estimate (MLE) is

$$\hat{q}^{MLE} = \operatorname{argmax}_{q} q^{b} (1 - q)^{N-b}$$

$$= \frac{b}{N}$$

• "Black swan effect" (e.g., N=2, $b=0 \rightarrow \hat{q}^{MLE}=0$)

Binomial trials

- Recall there are K cells
- Want to search cell with lowest expected loss
- Involves K different SEPs

$$q_k = P(\tilde{Z} = k \mid Z = k, \ a = k)$$

• We can run trials in *only some* cells; for most $N_k=0$

$$b_k \sim \text{Binom}(N_k, q_k)$$

- Desideratum: learn structure that generalizes
- ullet i.e., estimating q_k with trial should tell us about $q_{k'}$

Outline

- Part I: Supervised learning
- Part II: Bayesian posterior updating

Outline

- Part I: Supervised learning
- Part II: Bayesian posterior updating

Supervised learning: Basic setup

- Each cell i has covariates $x_i \in \mathbb{R}^p$
- e.g., $x_{i1} \in \{0,1\}$ is depth (shallow vs deep)
- e.g., $x_{i2} \in \{0,1\}$ is temperature (warm vs cold)
- Share information across cells by assuming SEPs are

$$q_i = q(\mathbf{x}_i)$$

- Learn $\hat{q}(\cdot)$ using the few cells where we did do trials
- Then evaluate $\hat{q}(\cdot)$ on cells where we didn't do trials

Supervised learning: Basic setup

- Each cell i has covariates $x_i \in \mathbb{R}^p$
- e.g., $x_{i1} \in \{0,1\}$ is depth (shallow vs deep)
- e.g., $x_{i2} \in \{0,1\}$ is temperature (warm vs cold)
 - **Disclaimer:** We are going temporarily depart from some of our notation and setup to match Chapter 1 of ESL
 - It will all connect back though...

Supervised learning: Basic setup

- Each cell i has covariates $x_i \in \mathbb{R}^p$
- e.g., $x_{i1} \in \{0,1\}$ is depth (shallow vs deep)
- e.g., $x_{i2} \in \{0,1\}$ is temperature (warm vs cold)
- Binary outcome $y_i \in \{0,1\}$ (success vs failed)
- Want to learn decision rule $y_i \approx f(x_i)$
- Run trials in n cells to obtain supervised data

$$\mathcal{T} = (\mathbf{x}_i, \mathbf{y}_i)_{i=1}^n$$

- ullet This is our **training set**; use it to learn \hat{f}
- Then we evaluate on **test data** $\hat{y} = \hat{f}(x)$

Supervised learning: Example (kNNs)

• Define the *k*-nearest neighbors (kNNs) decision rule:

$$f(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{x}_i \in N_k(\mathbf{x})} y_i$$

- $N_k(x)$ = the k nearest x_i in the training data ("neighbors") to x
- For any point x, average the outcomes y_i of the nearest neighbors in the training set

Supervised learning: Example (kNNs)

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

Supervised learning: Risk

Define optimal rule to be one that minimizes risk

$$\hat{f}^{opt} = \operatorname{argmin}_{f(\cdot)} E_{(X,Y) \sim P(X,Y)} [\ell(Y, f(X))]$$

• Optimal rule minimizes conditional expectation

$$\hat{f}^{opt}(\mathbf{x}) = \operatorname{argmin}_{a} E_{Y \sim P(Y|\mathbf{X}=\mathbf{x})} [\ell(Y, a) \mid \mathbf{X} = \mathbf{x}]$$

Depends on loss function. For squared loss:

$$\hat{f}^{opt}(\mathbf{x}) = \operatorname{argmin}_{a} E_{Y \sim P(Y|X=\mathbf{x})} [(Y-a)^{2} \mid X=\mathbf{x}]$$
$$= E[Y \mid X=\mathbf{x}]$$

Supervised learning: Risk

Optimal rule minimizes conditional expectation

$$\hat{f}^{opt}(\mathbf{x}) = \operatorname{argmin}_a E_{Y \sim P(Y|\mathbf{X}=\mathbf{x})} [\ell(Y, a) \mid \mathbf{X} = \mathbf{x}]$$

• Generally, optimal rule will be **some functional** $g(\cdot)$ of the conditional distribution:

$$\hat{f}^{opt}(\mathbf{x}) = g(P(Y \mid \mathbf{X} = \mathbf{x}))$$

- This suggests two distinct approaches:
 - generative: model $P(Y \mid X = x)$, then apply $g(\cdot)$
 - **discriminative**: learn $f(\cdot)$ directly

Supervised learning: Generative approach

- The naive Bayes classifier is generative
- It infers $P(Y \mid x)$ by modeling P(x) and $P(x \mid Y = y)$
- Main assumption: covariates are mutually independent

$$P(x \mid Y = y) = \prod_{j=1}^{p} P(x_j \mid Y = y)$$
 $P(x) = \prod_{j=1}^{p} P(x_j)$

$$P(x_1 = \text{shallow} \mid y = \text{success}) = 0.6$$

 $P(x_1 = \text{shallow} \mid y = \text{failure}) = 0.1$
 $P(x_2 = \text{cold} \mid y = \text{failure}) = 0.8$

$$P(x_1 = \text{shallow}) = 0.1$$

Supervised learning: Generative approach

- The naive Bayes classifier is generative
- It infers $P(Y \mid x)$ by modeling P(x) and $P(x \mid Y = y)$
- Main assumption: covariates are mutually independent

$$P(x \mid Y = y) = \prod_{j=1}^{p} P(x_j \mid Y = y)$$
 $P(x) = \prod_{j=1}^{p} P(x_j)$

• By Bayes rule, we can then calculate **tractably**:

$$P(Y = y \mid x) = \frac{\prod_{j=1}^{p} P(x_j \mid Y = y) P(x_j)}{\sum_{y'} \prod_{j=1}^{p} P(x_j \mid Y = y') P(x_j)}$$

Supervised learning: Discriminative approach

- The generative approach relies on modeling assumptions to make full posterior inference tractable
- Discriminative approach:
 - We don't need the full posterior $P(Y \mid X = x)$
 - We just need a functional of it

$$\hat{f}^{opt}(\mathbf{x}) = g(P(Y \mid \mathbf{X} = \mathbf{x}))$$

- So, estimate it directly!
- Example: the regression function

$$f(x) = E[Y \mid X = x]$$

Supervised learning: Discriminative approach

- Discriminative approaches also rely on modeling assumptions
- Instead of P(X, Y), assumptions are about f
- e.g., linear regression assumes that

$$f(\mathbf{x}) = E[Y \mid \mathbf{X} = \mathbf{x}] \approx \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}$$

• e.g., **k-nearest neighbors** assumes that

$$f(x) = E[Y \mid X = x] \approx \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

ullet These assumptions are about the **complexity** of f

Supervised learning: Example (kNNs)

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then predicted by 1-nearest-neighbor classification.

• Effective number of parameters $p \approx N/k$

- As the complexity of f increases, it begins to memorize training data
- This threatens its ability to **generalize**
- Overfitting: train loss ↓, test loss ↑

FIGURE 2.4. Misclassification curves for the simulation example used in Figures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test sample of size 10,000. The orange curves are test and the blue are training error for k-nearest-neighbor classification. The results for linear regression are the bigger orange and blue squares at three degrees of freedom. The purple line is the optimal Bayes error rate.

- As another example: linear regression
- Introduce linear basis expansions

$$f(\mathbf{x}) = \beta_0 + \sum_{j=1}^{p^*} h_j(\mathbf{x})\beta_j$$

- e.g., polynomial interactions $h_j(\mathbf{x}) = x_1^2 x_2^3$
- Still linear, but **number of parameters** is bigger $(p^* \gg p)$
- f can fit complex functions (of original covariates)
- Risk of overfitting...

https://www.davidinouye.com/course/ece57000-fall-2021/lectures/loss-functions-and-regularization.pdf

- Caveat: everything I've said is true for data sets and models that aren't BIG...
- When training sets and models get BIG, things get more complicated...
- See recent papers on "double descent"

https://arxiv.org/pdf/2109.02355.pdf

Supervised learning: Regularization

- ullet One way to constrain f is to limit the number of parameters
- Another way is to restrict values of the parameters
- Example: linear regression with basis expansion (p^* large)

$$f_{\beta}(x) = \beta_0 + \sum_{j=1}^{p^*} h_j(x)\beta_j$$

- Minimize penalized or regularized loss function
- $R(\cdot)$ is the regularizer and λ is the strength of regularization

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin} \left[\sum_{i=1}^{n} \ell(y_i, f_{\beta}(\boldsymbol{x}_i)) + \lambda R(\boldsymbol{\beta}) \right]$$

Supervised learning: Regularization

- ullet One way to constrain f is to limit the number of parameters
- Another way is to restrict values of the parameters
- Example: linear regression with basis expansion (p^* large)

$$f_{\beta}(x) = \beta_0 + \sum_{j=1}^{p^*} h_j(x)\beta_j$$

- Minimize penalized or regularized loss function
- e.g., L2 or ridge penalty (encourages small squared values)

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin} \left[\sum_{i=1}^{n} \ell(y_i, f_{\boldsymbol{\beta}}(\boldsymbol{x}_i)) + \lambda \sum_{j=1}^{p^*} (\beta_j)^2 \right]$$

Supervised learning: Regularization

- ullet One way to constrain f is to limit the number of parameters
- Another way is to restrict values of the parameters
- Example: linear regression with basis expansion (p^* large)

$$f_{\beta}(x) = \beta_0 + \sum_{j=1}^{p^*} h_j(x)\beta_j$$

- Minimize penalized or regularized loss function
- e.g., L1 or LASSO penalty (encourages small absolute values)

$$\hat{\beta} = \operatorname{argmin} \left[\sum_{i=1}^{n} \ell(y_i, f_{\beta}(\mathbf{x}_i)) + \lambda \sum_{j=1}^{p^*} |\beta_j| \right]$$

https://www.davidinouye.com/course/ece57000-fall-2021/lectures/loss-functions-and-regularization.pdf

Supervised learning: Regularizers as inductive biases

- Imagine ${\bf true}$ function f vs ${\bf estimated}$ function \hat{f}
- Consider (squared) prediction error at a given point x
- How does \hat{f} do in expectation over training sets \mathcal{T} ?

$$\begin{split} & \mathsf{Err}(x) = E_{\mathcal{T}}[(\hat{f}(x) - f(x))^2] \\ &= \mathsf{Var}_{\mathcal{T}}(\hat{f}(x) - f(x)) + E_{\mathcal{T}}[\hat{f}(x) - f(x)]^2 \\ &= \mathsf{Var}_{\mathcal{T}}(\hat{f}(x)) + \mathsf{Bias}(\hat{f}(x))^2 \end{split}$$

• Bias-variance decomposition: we can bias our estimator to decrease its variance and decrease expected error

Supervised learning: Regularizers as inductive biases

Supervised learning: Regularizers as inductive biases

- Regularizers bias our estimator in a good way
- "Inductive bias": decrease variance, improve generalization

FIGURE 2.11. Test and training error as a function of model complexity.

Let's revisit minimizing squared error (no regularizer)

$$\hat{\beta} = \operatorname{argmin} \left[\sum_{i=1}^{n} (y_i - f_{\beta}(x_i))^2 \right]$$

• Instead think probabilistically... assume y_i are Gaussian

$$\log P(\mathbf{y} \mid \mathbf{x}) = \log \prod_{i=1}^{n} \mathcal{N}(y_i; f_{\beta}(\mathbf{x}_i), \sigma^2)$$

$$= \sum_{i=1}^{n} \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{y_i - f_{\beta}(\mathbf{x})_i}{\sigma}\right)^2\right) \right]$$

• The terms in this likelihood proportional to parameters are

$$\propto_{\beta} -\frac{1}{\sigma^2} \sum_{i=1}^{n} \left(y_i - f_{\beta}(\mathbf{x})_i \right)^2$$

Minimizing squared loss = maximizing Gaussian likelihood

Now let's revisit L2-regularized (``ridge") regression

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \left[\sum_{i=1}^{n} (y_i - f_{\boldsymbol{\beta}}(\boldsymbol{x}_i))^2 + \lambda \sum_{j=1}^{p^*} (\beta_j)^2 \right]$$

• Assume β_i are independent zero-mean Gaussian...

$$\log P(\beta) = \sum_{j=1}^{p^*} \log \mathcal{N}(\beta_i; 0, \tau^2) = \sum_{j=1}^{p^*} \log \left[\frac{1}{\tau \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\beta_j}{\tau}\right)^2\right) \right]$$

$$\propto_{\beta} -\frac{1}{\tau^2} \sum_{j=1}^{p^*} (\beta_j)^2$$

Minimizing L2 penalty = maximizing Gaussian prior

Now let's revisit L2-regularized (``ridge") regression

$$\hat{\beta} = \operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} (y_i - f_{\beta}(x_i))^2 + \lambda \sum_{j=1}^{p^*} (\beta_j)^2 \right]$$

• So, then maximizing posterior $P(\beta \mid y, x) \propto P(\beta, y \mid x)...$

$$\hat{\beta}^{MAP} = \operatorname{argmax}_{\beta} \left[-\frac{1}{\sigma^2} \sum_{i=1}^{n} \left(y_i - f_{\beta}(\mathbf{x})_i \right)^2 - \frac{1}{\tau^2} \sum_{j=1}^{p^*} (\beta_j)^2 \right]$$

• ...is minimizing the ridge regression loss:

=
$$\operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} \left(y_i - f_{\beta}(\mathbf{x})_i \right)^2 + \frac{\sigma^2}{\tau^2} \sum_{j=1}^{p^*} (\beta_j)^2 \right]$$

• where regularization determined by prior variance $\lambda = \frac{\sigma^2}{\tau^2}$

- Regularizers are morally like priors on parameters
- Not all have strict probabilistic interpretations...
- ...but the most common ones do: e.g.,
 - L2 / "ridge" = Gaussian priors
 - L1 / "LASSO" = Laplace priors
 - "Group LASSO" = spike-and-slab priors
- Generally, these are shrinkage priors

• L1 selects sparse coefficients, L2 selects shrunk coefficients

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

• L1 selects sparse coefficients, L2 selects shrunk coefficients

The geometric view:

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

The probabilistic view:

https://www.researchgate.net/figure/Gaussian-distribution-and-Laplace-distribution_fig7_321825093

Learning SEPs with penalized logistic regression

- Let's map this all back to our setting...
- ullet For cell k our SEP q_k parameterizes a binomial likelihood

$$P(b_k \mid q_k, N_k) = \text{Binom}(b_k; N_k, q_k)$$

• Define $q_k = q_{\beta}(x_k)$ to be a function of covariates

$$q_{\beta}(\mathbf{x}_k) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_k)}{1 + \exp(\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_k)}$$

Equivalently, define the log odds or logit to be linear

$$\log \operatorname{it}(q_{\beta}(\boldsymbol{x}_k)) = \log \frac{q_{\beta}(\boldsymbol{x}_k)}{1 - q_{\beta}(\boldsymbol{x}_k)} = \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_k$$

This is (binomial) logistic regression

Learning SEPs with penalized logistic regression

Our loss function is the negative log likelihood

$$\mathcal{E}(\boldsymbol{\beta}) = -\log \sum_{k=1}^{K} \text{Binom}\left(b_k; N_k, q_{\boldsymbol{\beta}}(\boldsymbol{x}_k)\right)$$

• Could also introduce **linear basis expansions** (for a more complex function) with a **penalized** loss function (e.g., L1)

$$\mathcal{E}(\boldsymbol{\beta}) = -\left[\log \sum_{k=1}^{K} \operatorname{Binom}\left(b_{k}; N_{k}, q_{\boldsymbol{\beta}}(\boldsymbol{x}_{k})\right) - \lambda \sum_{j=1}^{p^{*}} |\beta_{j}|\right]$$

Minimize the loss (maximize the likelihood)

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} \mathcal{E}(\boldsymbol{\beta})$$

• e.g., can use Newton-Raphson (loss is convex)

Learning SEPs with penalized logistic regression

• We can then apply $\hat{\pmb{\beta}}$ to cells k' where we didn't do trials

$$\hat{q}_{k'} = q_{\hat{\beta}}(x_{k'}) = \frac{\exp(\hat{\beta}_0 + \hat{\beta}^{\mathsf{T}} x_{k'})}{1 + \exp(\hat{\beta}_0 + \hat{\beta}^{\mathsf{T}} x_{k'})}$$

Voila! Data-informed SEPs for all search cells.

Supervised learning: Takeaways

- Good idea if you have good covariates
 "Features are king" -famous phrase (forgot who)
- If not, may need to more complex functions (e.g., basis expansions)
- For more complex functions we then risk overfitting
- We can combat this with **regularizers** \approx **inductive biases** \approx **priors**

Uncertainty

- ullet The usual discriminative approaches return **point estimates** \hat{q}_k
- If we think error is high, we'd rather quantify that uncertainty $P(q_k)$
- We could then propagate uncertainty into our decision problem
- This leads us to the next section...

Outline

- Part I: Supervised learning
- Part II: Bayesian posterior updating

Bayesian updating of SEPs

- We can propagate uncertainty $P(q_k \mid -)$ into decision
- Define $q = (q_1, ..., q_K)$ to be the full vector SEPs
- Re-define our **latent state** to be $\theta = (Z, q)$
- Our posterior is now $\pi^*(\theta) = P(q_k \mid -) P(Z \mid -)$
- Then the Bayesian expected loss is

$$\rho(\pi^*, a) = E_{\theta \sim \pi^*}[\ell(\theta, a)]$$

ullet The principle: treat $oldsymbol{q}$ like a **latent variable** and integrate

Bayesian updating of SEPs

• Like all latent variables, we begin with a prior

$$P(q_k)$$

• If we have a (binomial) trial in cell k, our posterior would be

$$P(q_k \mid b_k, N_k)$$

A convenient prior in this case is the Beta distribution

$$q_k \sim \text{Beta}(\alpha_0, \beta_0)$$

Bayesian updating: Beta distribution

• The **Beta distribution** has support on (0,1)

Bayesian updating: Beta distribution

• The PDF is proportional (in q) to

Beta
$$(q; \alpha_0, \beta_0) \propto_q q^{\alpha_0 - 1} (1 - q)^{\beta_0 - 1}$$

- This is called the kernel of the distribution; it will be useful
- The normalizing constant is then

$$\int_0^1 q^{\alpha_0-1} (1-q)^{\beta_0-1} \ dq = \frac{\Gamma(\alpha_0) \Gamma(\beta_0)}{\Gamma(\alpha_0+\beta_0)} \quad \text{often aliased as the Beta function: } \mathsf{B}(\alpha_0,\beta_0)$$

The PDF is then equal to

Beta
$$(q; \alpha_0, \beta_0) = \frac{\Gamma(\alpha_0 + \beta_0)}{\Gamma(\alpha_0)\Gamma(\beta_0)} q^{\alpha_0 - 1} (1 - q)^{\beta_0 - 1}$$

• Again the kernel of the Beta distribution is:

Beta
$$(q; \alpha_0, \beta_0) \propto_q q^{\alpha_0 - 1} (1 - q)^{\beta_0 - 1}$$

Recall the terms in the binomial PMF proportional to q

$$Binom(b; N, q) \propto_q q^b (1 - q)^{N-b}$$

• If prior is $q \sim \text{Beta}(\alpha_0, \beta_0)$, and likelihood is $b \sim \text{Binom}(N, q)$...

$$P(q \mid b, N, \alpha_0, \beta_0) \propto_q \mathsf{Binom}(b; N, q) \mathsf{Beta}(q; \alpha_0, \beta_0)$$

$$\propto_q q^{b+\alpha_0-1} (1-q)^{N-b+\beta_0-1}$$

• The kernel of a (different) Beta distribution!

• Again the kernel of the Beta distribution is:

Beta
$$(q; \alpha_0, \beta_0) \propto_q q^{\alpha_0 - 1} (1 - q)^{\beta_0 - 1}$$

Recall the terms in the binomial PMF proportional to q

Binom
$$(b; N, q) \propto_q q^b (1 - q)^{N-b}$$

• If prior is $q \sim \text{Beta}(\alpha_0, \beta_0)$, and likelihood is $b \sim \text{Binom}(N, q)$...

$$P(q \mid b, N, \alpha_0, \beta_0) = \text{Beta}(q; \alpha_0 + b, \beta_0 + N - b)$$

Conjugacy: the posterior is in the same family as the prior

• If prior is $q \sim \text{Beta}(\alpha_0, \beta_0)$, and likelihood is $b \sim \text{Binom}(N, q)$...

$$P(q \mid b, N, \alpha_0, \beta_0) = \text{Beta}(q; \alpha_0 + b, \beta_0 + N - b)$$

• e.g., say N=1 and b=1 (Bernoulli trial with outcome 1)

$$P(q \mid b, N, \alpha_0, \beta_0) = \text{Beta}(q; \alpha_0 + 1, \beta_0)$$

• e.g., say N=3 and b=2 (Bernoulli trial with outcome 1)

$$P(q \mid b, N, \alpha_0, \beta_0) = \text{Beta}(q; \alpha_0 + 2, \beta_0 + 1)$$

• Notice how the hyperparameters α_0, β_0 act as **pseudocounts**

• Notice how the hyperparameters α_0, β_0 act as **pseudocounts**

Three posterior Beta distributions with $\alpha_0 = \beta_0 = 1$ $\alpha = \alpha_0 + 0, \ \beta = \beta_0$ $\alpha = \alpha_0 + 1, \ \beta = \beta_0$ $\alpha = \alpha_0 + 5, \ \beta = \beta_0$ 1.893

Strong prior

- Notice how the hyperparameters α_0, β_0 act as **pseudocounts**
- A common reparameterization is mean-concentration

$$\mu_0 = \frac{\alpha_0}{\alpha_0 + \beta_0}$$
 mean

$$c_0 = \alpha_0 + \beta_0$$
 concentration

Posterior mean of the Beta distribution is

$$E[q \mid \alpha_0, \beta_0, b, N] = \frac{\alpha_0 + b}{\alpha_0 + \beta_0 + N}$$

$$= \frac{b}{N} \left(\frac{N}{\alpha_0 + \beta_0 + N} \right) + \left(\frac{\alpha_0}{\alpha_0 + \beta_0} \right) \left(\frac{\alpha_0 + \beta_0}{\alpha_0 + \beta_0 + N} \right)$$

$$= \frac{b}{N} \left(\frac{N}{c_0 + N} \right) + \mu_0 \left(\frac{c_0}{c_0 + N} \right)$$

$$= \hat{q}^{MLE} \gamma + \mu_0 (1 - \gamma)$$

- Linear combination of the MLE and the prior mean
- ullet Combination given by sample size $oldsymbol{N}$ versus prior strength c_0
- Smooths MLE away from "Black Swan" values near 0,1

Empirical Bayes: Learning the prior

• The current setup lets us posit a Beta prior

$$q_k \sim \text{Beta}(\alpha_0, \beta_0)$$

• Then get a posterior at each cell where we did a trial

$$P(q_k | b_k, N_k) = \text{Beta}(\alpha_0 + b_k, \beta_0 + N_k - b_k)$$

- How does this help us generalize to new cells?
- Answer: empirical Bayes. We will learn the prior.

Empirical Bayes: Learning the prior

ullet Consider the marginal likelihood with all q_k marginalized out:

$$P(\boldsymbol{b} \mid \boldsymbol{N}, \alpha_0, \beta_0) = \prod_{k}^{1} \text{Binom}(b_k; N_k, q_k) \operatorname{Beta}(q_k; \alpha_0, \beta_0) \, dq_k$$
$$= \prod_{k} \operatorname{Beta-Binom}(b_k; N_k, \alpha_0, \beta_0)$$

- It equals a product of beta-binomial distributions.
- It is not an ``accident'' that the marginal has analytic form (conjugacy implies this)

Empirical Bayes: Beta-binomial distribution

$$\mathsf{Beta\text{-}Binom}(b_k;\,N_k,\alpha_0,\beta_0) = \frac{\binom{N_k}{b_k}B(\alpha_0+b_k,\beta_0+N_k-b_k)}{B(\alpha_0,\beta_0)}$$

- This is a count distribution (same support as binomial)
- Represents dependent Bernoulli trials (unlike binomial)
- Often represented as the Pólya urn sampling scheme

- There are $lpha_0$ red balls and eta_0 green balls in an urn
- Pick one at random:
 - If red put **two** red back in
 - If green put **two** green back in
- Repeat N_k times.
- $b_k = \#$ of red balls sampled.

Empirical Bayes: Learning the prior

So the marginal likelihood is

$$P(\boldsymbol{b} \mid \boldsymbol{N}, \alpha_0, \beta_0) = \prod_k \text{Beta-Binom}(b_k; N_k, \alpha_0, \beta_0)$$

• We can fit the parameters using type-II maximum likelihood

$$\hat{\alpha}_0^{MLE}, \hat{\beta}_0^{MLE} = \underset{a,b}{\operatorname{argmax}} P(\boldsymbol{b} \mid \boldsymbol{N}, a, b)$$

 We can do this in various ways, details not important for now e.g., Minka (2000)'s fixed-point algorithm

Empirical Bayes: Learning the prior

- The parameters α_0, β_0 parameterize our marginal likelihood
- They also parameterize the prior over latent variables
- Fitting them with maximum marginal (type-II) likelihood, coincides with obtaining an **empirical prior**:

$$q_k \sim \text{Beta}(\hat{\alpha}_0^{MLE}, \hat{\beta}_0^{MLE})$$

- This is a data-driven guess for SEP in cells with no trial data
- For a cells with trial data, we still get a posterior

$$P(q_k \mid -) = \text{Beta}(\hat{\alpha}_0^{MLE} + b_k, \, \hat{\beta}_0^{MLE} + N_k - b_k)$$

Summary

Part I: Supervised learning

- Featurize the problem
- Share information across cells by $\hat{q}_k = \hat{q}(\mathbf{x}_k)$
- Learn $\hat{q}(\cdot)$ discriminatively
- Plug-in \hat{q}_k point estimates

Part II: Bayesian updating

- Treat q_k as a latent variable
- Share information across cells by $q_k \sim \mathrm{Beta}(\alpha_0, \beta_0)$
- Learn the prior (empirical Bayes)
- Integrate over it

Beta
$$(q; \hat{\alpha}_0^{MLE} = 1.5, \hat{\beta}_0^{MLE} = 2.5)$$

