UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA ELECTRÓNICA

PROYECTO DE GRADO

"Aprendizaje fin a fin para la conducción autónoma de vehículos domésticos usando visión artificial y redes neuronales convolucionales"

POSTULANTE: JOSE EDUARDO LARUTA ESPEJO TUTOR: JAVIER SANABRIA GARCIA

D.A.M.: GONZALO SAMUEL CABA MORALES

LA PAZ, AGOSTO 2018

 $\begin{array}{c} Dedicado\ a\\ mi\ familia \end{array}$

Agradecimientos

¡Muchas gracias a todos!

Resumen

Una bonita historia

VI RESUMEN

Índice general

Aş	grade	ecimientos	III
Re	esum	en	\mathbf{V}
Li	sta d	le figuras	IX
Li	sta d	le tablas	XI
1.	Intr	roducción	1
2.	Mai	rco Teórico	3
	2.1.	Sistemas de Conducción Autónoma	3
		2.1.1. Niveles de Autonomía	3
		2.1.2. Arquitectura de un sistema de conducción autónoma	3
	2.2.	Visión por computador	3
		2.2.1. Aprendizaje Profundo	3
		2.2.2. Procesamiento de imágenes	3
	2.3.	Redes Neuronales Artificiales	3
		2.3.1. Aprendizaje Profundo	3
		2.3.2. Redes Neuronales Convolucionales	3
		2.3.3. Sistemas de Aprendizaje Fin a Fin	3
	2.4.	Modelo cinemático del vehículo	3
		2.4.1. Ecuaciones de movimiento	3
3.	Mai	rco Práctico	5
	3.1.	Arquitectura del sistema	5
		3.1.1.	5
	3.2.	Subsistema de Adquisición de Datos y Entrenamiento	5
		3.2.1. Descripción general del subsistema	5
		3.2.2. Módulo de adquisición de datos y operación manual	5
		3.2.3. Módulo de aumentación de datos y almacenamiento	5
		3.2.4. Módulo de Entrenamiento	5
	3.3.	Subsistema de Control y actuación	5

VIII	ÍNDICE GENERAL

		3.3.2.	Descripción general del subsistema	5
			Módulo de la computadora de abordo	
		3.3.5.	Interfaces de comunicación	5
	3.4.	Subsis	tema de Inferencia y control autónomo	5
4.	Aná	ilisis y	discusión de resultados	7
5 .	Con	clusio	nes y recomendaciones	9
Α.	Cód	ligo Fu	iente	11

Índice de figuras

Índice de cuadros

XII

Capítulo 1 Introducción

La gran intro

Capítulo 2

Marco Teórico

0 1	α .	1	\sim 1	• /	
2.1.	Sigtemag	de	Condi	icción	Autónoma
<i>—</i> • • •		111			

- 2.1.1. Niveles de Autonomía
- 2.1.2. Arquitectura de un sistema de conducción autónoma
- 2.2. Visión por computador
- 2.2.1. Aprendizaje Profundo
- 2.2.2. Procesamiento de imágenes
- 2.3. Redes Neuronales Artificiales
- 2.3.1. Aprendizaje Profundo
- 2.3.2. Redes Neuronales Convolucionales

Entrenamiento de la red

Procesamiento de imágenes con redes neuronales convolucionales

- 2.3.3. Sistemas de Aprendizaje Fin a Fin
- 2.4. Modelo cinemático del vehículo
- 2.4.1. Ecuaciones de movimiento

Capítulo 3

Marco Práctico

3.1. Arquitectura del sistema

3.1.1.

3.2. Subsistema de Adquisición de Datos y Entrenamiento

- 3.2.1. Descripción general del subsistema
- 3.2.2. Módulo de adquisición de datos y operación manual
- 3.2.3. Módulo de aumentación de datos y almacenamiento
- 3.2.4. Módulo de Entrenamiento
- 3.3. Subsistema de Control y actuación
- 3.3.1. Descripción general del subsistema
- 3.3.2. Características del prototipo físico
- 3.3.3. Módulo de potencia y sensado de tiempo real
- 3.3.4. Módulo de la computadora de abordo
- 3.3.5. Interfaces de comunicación
- 3.4. Subsistema de Inferencia y control autónomo

Capítulo 4 Análisis y discusión de resultados

analisis de resultados.

Capítulo 5

Conclusiones y recomendaciones

Apéndice A Código Fuente

Aún faltan cosas por decir.