BREVET DE TECHNICIEN SUPERIEUR CONCEPTION DE PRODUITS INDUSTRIELS SESSION 2007

ETUDE DE PRODUITS INDUSTRIELS

SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS

ELEVATEUR DE SUJET DE MANEGE

CORRIGE

Ce dossier comporte X pages.

PREMIERE PARTIE

Question 1 : sur le document réponse DR1 et sur feuille de copie.

Question 2 : sur les documents réponses DR2 et DR3.

Question 3 : sur le document réponse DR4.

Question 4 : sur feuille de copie.

Question 5 : sur feuille de copie.

Question 6 : sur le document réponse DR4.

CORRIGE Document travail 1

Objectif 2 : Vérifier la capacité du groupe hydraulique à fournir la pression nécessaire pour soulever la charge.

Question 7 : sur feuille de copie.

$$\Delta Ec(E/Rg) = \frac{1}{2}.masseE.(Vfinale^2 - Vinitiale^2) = 217.5 \times 0.15^2 = 4.893 Joules$$

Question 8 : sur feuille de copie.

$$\sum W_{t1}^{t2}(\overline{E} \to E/Rg)$$
 = Travail du poids de E = $-\|\vec{P}\|$ × déplacement vertical de E = $-4267,35 \times 0,0075 = -32 Joules$

Question 9 : sur feuille de copie.

$$\gamma_{tige/corps} = \frac{Vf - Vi}{t} = \frac{49}{0.1} = 490 mm/s^2; dep. tige/corps = \frac{1}{2}. \gamma_{tige/corps}.t^2 = 245 \times 0.1^2 = 2.45 mm$$

$$\sum W_{t1}^{t2} (Ei \leftrightarrow Ej) = Travail\ v\acute{e}rin = + \left\| \overrightarrow{M}_{6 \to 2} \right\| \times dep. tige/corps = + \left\| \overrightarrow{M}_{6 \to 2} \right\| \times 0.00245$$

Question 10 : sur feuille de copie.

$$\Delta Ec(E/Rg) = \sum W_{t1}^{t2}(\overline{E} \to E/Rg) + \sum W_{t1}^{t2}(Ei \leftrightarrow Ej)$$

$$4,893 = -32 + \left\| \overrightarrow{M}_{6\to 2} \right\| \times 0,00245 \Rightarrow \left\| \overrightarrow{M}_{6\to 2} \right\| = \frac{4,893 + 32}{0.00245} = 15058,37 Newton$$

Question 11: sur feuille de copie

$$Pcentrale = \frac{Pv\acute{e}rin}{taux\ de\ ch} = \frac{F}{S \times taux\ de\ ch} = \frac{15060}{\pi \times 20^2 \times 0.9} = 13,316N/mm^2 = 133,2bars.$$

DEUXIEME PARTIE

Question 12: sur feuille de copie.

L'arrêt d'urgence est déclenché à 6 secondes.

Question 13: sur feuille de copie et DR5.

$$\begin{split} N_{\textit{man\`ege/sol}} &= 5 \textit{trs/min} \Rightarrow \omega_{\textit{man\`ege/sol}} = \frac{\pi.5}{30} = 0,5236 \textit{rad/s} \; ; \; \left\| \overrightarrow{\textit{yn}_{\textit{S/sol}}} \right\| = \omega_{\textit{man\`ege/sol}}^2 \times \textit{rayon} \; ; \\ rayon &= \sqrt{X^2 + Z^2} = \sqrt{121,31^2 + 2784,58^2} = 2787,22 \; \textit{mm} \; ; \; \left\| \overrightarrow{\textit{yn}_{\textit{S/sol}}} \right\| = 0,274 \times 2787,11 = 764,1 \; \textit{mm/s}^2 \; ; \end{split}$$
 Question 14 : sur feuille de copie et DR5.

$$\left\| \overrightarrow{\Gamma GS/sol} \right\| = \sqrt{\overrightarrow{\gamma n_{GS/sol}}^2 + \overrightarrow{\gamma n_{GS/sol}}^2} = 7000 \ mm/s^2 \Rightarrow \left\| \overrightarrow{\gamma n_{GS/sol}} \right\| = \sqrt{\left\| \overrightarrow{\Gamma GS/sol} \right\|^2 - \overrightarrow{\gamma n_{GS/sol}}^2};$$

$$\left\| \overrightarrow{\gamma n_{GS/sol}} \right\| = \sqrt{7000^2 - 764,1^2} = 6958,17 \ mm/s^2$$

Question 15: sur le DR5.

Question 16 : sur feuille de copie.

Les roulements fonctionnent de façon statique.

Question 17 : sur feuille de copie.

CORRIGE Document travail 2

Le palier A st le plus chargé. Les 16 Newton de charge axiale sont négligeables par rapport au 11000 Newton de charge radiale.

On peut donc considérer que Po = Fr. Donc Po = 11000 Newton.

On peut considérer que le roulement fonctionne dans des conditions normales, l'arrêt d'urgence étant exceptionnel. Donc on a un facteur fs = 1. Donc Co = 11000 Newton.

Un palier HPC UCF205 ne supporte en charge statique que 9930 Newton.

Le palier est sous dimensionné. En passant le diamètre à 30 mm, on pourrait adopter des palier UCF206 de capacité statique 11310 Newton.

TROISIEME PARTIE

Question 18 : sur feuille de copie et sur DR6.

Contrainte maxi = 349 Mpa.

Question 19 : sur feuille de copie.

$$s = \frac{\text{Re}}{\sigma_{\text{Maxi}}} = \frac{355}{349} = 1{,}017$$
 . Il est inférieur à celui recommandé par la norme.

Question 20 : sur feuille de copie.

Avec le DT6, on détermine le module maxi de l'action mécanique en M de 6 sur 2

$$\left\| \overrightarrow{M_{6 \to 2}} \right\|_{Maxi} = 15150 \ Newton \ .$$

Avec le DT4, on détermine les rayon de 20 et de 2 : R_{20} = 11 mm; R_2 = 12 mm.

Le contact est intérieur, on détermine le rayon de courbure relative $Rr: \frac{1}{Rr} = \frac{1}{11} - \frac{1}{12} \Rightarrow Rr = 132mm$.

On détermine la longueur de contact. Il y a deux zone de 8 mm de large, I = 16 mm.

On détermine le module d'élasticité équivalent . les matériaux étant identiques, E équivalent = E matériaux = 205000 Mpa

$$P \max \approx 0.418 \sqrt{\frac{15150 \times 205000}{(132 \times 16)}} \approx 506,89 Mpa$$

La pression calculée est plus de deux fois que la pression maxi indiquée.

Il y aura un matage important des surfaces de contact.

Question 21: sur le DR7.

Question 22 : sur feuille de copie.

Modéliser les modifications de formes du bras, refaire une étude avec le logiciel d'éléments finis.

CORRIGE Document travail 3

	point	extrait du plan DT 5	torseur statique	nom de la liaison	symbole
fonction technique 11	E F B	y z H27	$ \begin{bmatrix} XE & 0 \\ YE & 0 \\ 0 & 0 \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})} $	liaison linéaire annulaire d'axe z	x z
	А	y	$ \left\{ \begin{array}{c c} $	liaison rotule de centre A	x z
	С	y of z	(xc o)	liaison rotule de	x y
	D		YC 0		
	Н		ZC 0	centre C	Z
	J		C , x, x 'x		
fonction technique 12	М	Z	$ \left\{ \begin{array}{c c} XM & 0 \\ YM & 0 \\ 0 & 0 \end{array} \right\}_{u, v , z} $	liaison linéaire annulaire de centre M d'axe Z	y z
	L	z	O O YL ML ZL NL u, v,z	liaison pivot glissant d'axe Lu	x z
	К	z u	XK LK YK MK ZK 0 u, v,z	liaison pivot d'axe Kz	X Z

BTS CPI 2007 E51 DOCUMENT REPONSE 1

Question 2: Compléter le graphe des liaisons

Question 24 : Relever la valeur de la contrainte équivalente maximale et entourer la ou les zones correspondante.

Question 27 : Proposer des modifications de forme du bras.

