

Institutt for matematiske fag

Eksamensoppgåve i TMA4120 Matematikk 4K

Oppgåve 1 Bruk Laplacetransformen til å løyse initialverdiproblemet

$$y'(t) + y(t) = e^{-t}\cos t - 5u(t-1),$$
 $y(0) = 0.$

der u er Heaviside/enhetsstegsfunksjonen.

Oppgåve 2 Fourier-cosinusrekka til funksjonen $f(x) = \sin(\pi x)$ på intervallet [0,1] er

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n)^2 - 1} \cos(2n\pi x).$$

Skisser summen av rekka på intervallet [-2, 2].

Bruk Fourier-cosinusrekka til å rekne ut summen av rekka

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}.$$

Oppgåve 3 Gjeve initialverdiproblemet

$$u_t(x,t) + 3u_x(x,t) + 5u(x,t) = 0,$$
 $x \in \mathbb{R}, t > 0,$
 $u(x,0) = g(x), x \in \mathbb{R},$

der funksjonane g(x) og u(x,t) er slik at dei Fouriertransformerte eksisterer og $\lim_{x\to+\infty}u(x,t)=0.$

Bruk Fouriertransformen til å finne løysinga u(x,t).

Hint:
$$\mathcal{F}[f(x-a)] = e^{-iaw}\hat{f}(w)$$
.

Oppgåve 4 La funksjonen f(z) vere gjeven ved

$$f(z) = \frac{z^2 - 4}{z(1 - z^2)}.$$

a) Rekn ut linjeintegrala

$$\oint_{|z|=\frac{1}{2}} f(z) dz$$
 og $\oint_{|z-1|=\frac{11}{10}} f(z) dz$,

der begge sirklane er orienterte mot klokka.

- b) Finn begge Laurentrekkene til f(z) som har sentrum i z=0.
- c) Ei av Laurentrekkene til f(z) med sentrum i z=1 konvergerar i punktet z=i. Kva er (det største) konvergensområdet til denne rekka?

Oppgåve 5 La r > 0 og S_r vere halvsirkelen med parametrisering $z(t) = re^{it}$ for $0 \le t \le \pi$. Bevis at

$$\lim_{r\to 0}\int_{S_r}\left(\frac{3}{z^2+4}+\frac{7}{z}\right)dz=7\pi i \qquad \text{og} \qquad \lim_{r\to \infty}\int_{S_r}\frac{z+i}{1+z^4}\,dz=0.$$

Oppgåve 6 La funksjonen u(x,y) vere løysinga av randverdiproblemet

$$u_{xx}(x,y) + u_{yy}(x,y) = \sin x,$$
 $0 < x < \pi, \quad 0 < y < \pi,$
 $u(0,y) = 0 = u(\pi,y),$ $0 < y < \pi,$
 $u(x,0) = 0 = u(x,\pi),$ $0 < x < \pi.$

a) Kva for randverdiproblem løyser funksjonen

$$v(x,y) = u(x,y) + \sin x?$$

Grunngi svaret.

b) Rekn ut løysinga u(x, y).

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$