Homework 4 - Solutions

```
In [2]: import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

Part 1: Classification of handwritten digits

```
In [19]: 'Obtain the MNist dataset'
    from sklearn.datasets import fetch_openml
    mnist = fetch_openml('mnist_784',version=1)
    X,y=mnist['data'],mnist['target']
    X.shape
Out[19]: (70000, 784)
```

There are 70,000 images, and each image has 784 features. This is because each image is 28×28 pixels, and each feature simply represents one pixel's intensity, from 0 (white) to 255 (black).

Let's take a peek at one digit from the dataset. All we need to do is grab an instance's feature vector, reshape it to a 28×28 array, and display it using imshow()

```
In [3]: some_digit = X[0]
    some_digit_image = some_digit.reshape(28,28)
    plt.imshow(some_digit_image,cmap = 'binary')
    plt.axis('off')
    plt.show()
```


This looks like a 5, and indeed that's what the label tells us

```
In [38]: y[0]
Out[38]: '5'
```

Note that the label is a string. Let's cast y to an integer

```
In [20]: y = y.astype(np.uint8)
y = y[:,None] #keep y as a column vector
```

The following figure shows a few more images from the MNIST dataset

```
In [40]: plt.figure(figsize=(10,10))
    for i in range(100):
        digit = X[i]
        digit_image = digit.reshape(28,28)
        plt.subplot(10,10,i+1)
        plt.imshow(digit_image,cmap = 'binary')
        plt.axis('off')
```


The MNIST dataset is already split into a training set (the first 60000 images) and a test set (the last 10000 images)

Assignments

80

The goal is to train a linear model to classify digits as either five or not-five.

```
Part 1: Build (0,1) vectors y 5 train and y 5 test, where their ith entries are given by
                                      \begin{cases} 1 & \text{if digit } i \text{ is a five} \\ 0 & \text{if digit } i \text{ is not a five.} \end{cases}
   In [23]: | y_5_train = np.zeros((len(y_train),1))
              y 5 train[y train==5]=1
   In [24]: def linregression_SGD(X,y,n_epochs,s):
                   m,n = X.shape
                   theta = np.random.randn(n,1) #random initialization
                   MSE = np.zeros(n_epochs)
                   for epoch in range(n epochs):
                        if epoch in [20*i for i in range(10)]: #print epoch every 20 iteration
                            print(epoch)
                       for i in range(m):
                            random_row = np.random.randint(m)
                            xi = X[None, random_row] #keep xi as a row vector
                            yi = y[random row]
                            gradient = 2*xi.T@(xi@theta-yi)
                            theta = theta - s*gradient
                       MSE[epoch] = np.linalg.norm(X@theta-y)/len(y)
                   return theta, MSE
   In [26]: s = 1e-3
              n iterations = 200
              theta,MSE = linregression_SGD(X_train,y_5_train,n_iterations,s)
              0
              20
              40
              60
```

Part 2: Use the training set to train a linear model that predicts the vector y_5_train. Use Stochastic Gradient Descent to train the model. Use appropriate regularization as needed.

```
In [28]: y_5_test = np.zeros((len(y_test),1))
y_5_test[y_test==5]=1
In [29]: y_5_test_predicted = X_test@theta
```

Part 3: Use your linear model to classify all the digits in the test set. Use the rule:

classify digit
$$i$$
 as a
$$\begin{cases} 5 & \text{if predicted y_5_test}[i] > 0.5\\ \text{not a 5} & \text{if predicted y_5_test}[i] \leq 0.5 \end{cases}$$

How many digits are misclassified?

Part 2: an example from Biology

The following dataset contains cancer gene-expression levels (16,063 genes, 144 samples) from *Multiclass* cancer diagnosis using tumor gene expression signatures (Golub et all, 2001)

Out[3]:

	0	1	2	3	4	5	6	7	8	9	 16053	16054	1605
0	-73.0	-69.0	-48.0	13.0	-86.0	-147.0	-65.0	-71.0	-32.0	100.0	 -134.0	352.0	-67.(
1	-16.0	-63.0	-97.0	-42.0	-91.0	-164.0	-53.0	-77.0	-17.0	122.0	 -51.0	244.0	-15.(
2	4.0	-45.0	-112.0	-25.0	-85.0	-127.0	56.0	-110.0	81.0	41.0	 14.0	163.0	-14.(
3	-31.0	-110.0	-20.0	-50.0	-115.0	-113.0	-17.0	-40.0	-17.0	80.0	 26.0	625.0	18.0
4	-33.0	-39.0	-45.0	14.0	-56.0	-106.0	73.0	-34.0	18.0	64.0	 -69.0	398.0	38.0

5 rows × 16063 columns

Cancer classes are labelled as follows:

- 1. breast
- 2. prostate
- 3. lung
- 4. collerectal
- 5. lymphoma
- 6. bladder
- 7. melanoma
- 8. uterus
- 9. leukemia
- 10. renal
- 11. pancreas
- 12. ovary
- 13. meso
- 14. cns

```
In [4]: len(data train)
Out[4]: 144
In [5]: url1 = 'https://raw.githubusercontent.com/um-perez-alvaro/lin-regress/master/1
        4cancerlabels.ytrain'
        url2 = 'https://raw.githubusercontent.com/um-perez-alvaro/lin-regress/master/1
        4cancer.ytest'
        labels_train = pd.read_csv(url1, sep='\s+', header = None)
        labels_train = labels_train.T
        labels_test = pd.read_csv(url2,sep='\s+',header = None)
        labels test = labels test.T
        labels train.head(5)
Out[5]:
           0
         1 1
         3 1
         4 1
```

Assignments

The goal is to train a linear model to classify cancers as either leukemia or not-leukemia

Part 1: Build (0,1) vectors y leuk train and y leuk test, where their ith entries are given by

```
\begin{cases} 1 & \text{if cancer } i \text{ is leukemia} \\ 0 & \text{if cancer } i \text{ is not leukemia.} \end{cases} In [6]: \begin{cases} X_{\text{train}} = \text{data\_train.to\_numpy()} \\ y_{\text{train}} = \text{labels\_train.to\_numpy()} \\ y_{\text{train.shape}} \end{cases} Out[6]: (144, 1)
```

```
In [7]: y_leuk_train = np.zeros((len(y_train),1))
y_leuk_train[y_train==9]=1
```

Part 2: Use the training set to train a linear model that predicts the vector y_leuk_train. Add 1-norm regularization to your model. How many model coefficients are approximately equal to 0?

```
In [8]:
         'shrinkage function'
         def shrinkage(x,k):
             #return np.maximum(0, x-k)-np.maximum(0, -x-k)
             return x*np.maximum(0,1-k/np.abs(x))
In [9]: import scipy.linalg # SciPy Linear Algebra Library
         def Lasso_regression_ADMM(X,y,s,n_iterations,la):
             m,n = X.shape
             theta = np.zeros((n,1)) #or a random vector
             z = np.zeros((n,1))
             u = np.zeros((n,1))
             theta = np.random.rand(n,1)
             z = np.random.rand(n,1)
             u = np.random.rand(n,1)
             'lu decomposition'
             P,L,U = scipy.linalg.lu(X.T@X+s*np.identity(n))
             MSE = np.zeros(n iterations)
             for i in range(n iterations):
                 #theta-update:
                 q = X.T@y+s*(z-u)
                 q = P.T@q
                 q = scipy.linalg.solve triangular(L,q,lower=True)
                 theta = scipy.linalg.solve triangular(U,q)
                 #theta = np.linalq.solve(X.T@X+s*np.identity(n),q)
                 #z-update
                 z = shrinkage(theta+u,la/s)
                 #u-update
                 u = u+theta-z
                 MSE[i] = np.linalg.norm(X@theta-y)/m
             return MSE, theta
In [10]: s = 1
         la = 10 # if you use a smaller value, say, lambda = 1, the model will overfit
          the training set and will perform poorly on the test set
         n iterations = 10
         MSE, theta = Lasso_regression_ADMM(X_train,y_leuk_train,s,n_iterations,la)
         0
         1
         2
         3
         4
         5
         6
         7
         8
         9
```

```
In [11]: plt.semilogy(MSE) #it looks like one iteration is enough!
```

```
Out[11]: [<matplotlib.lines.Line2D at 0x2526d09bbc8>]
```



```
In [10]: 'plot absolute value of the coefficients'
    plt.semilogy(np.sort(np.abs(theta),axis=0),'rx')
```

Out[10]: [<matplotlib.lines.Line2D at 0x258ee521608>]

Part 3: Use your linear model to classify all the cancers in the test set. Use the rule:

```
classify cancer i as a \begin{cases} \text{leukemia} & \text{if predicted y\_leuk\_test}[i] > 0.5 \\ \text{not leukemia 5} & \text{if predicted y\_leuk\_test}[i] \leq 0.5 \end{cases}
```

How many cancers are misclassified?