1 Conditional Expectation

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $(X_i)_{i \in I}$ be a collection of random variables defined on this space. Then we define $\sigma(X_i : i \in I) \subseteq \mathcal{F}$ to be the smallest σ -algebra such that all of the X_i are measurable, i.e

$$\sigma(X_i : i \in I) = \sigma(X_i^{-1}(B) : i \in I, B \in \mathcal{B}(\mathbb{R})).$$

Definition. If $B \in \mathcal{F}$ has $\mathbb{P}(B) > 0$ then we define

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

for any $A \in \mathcal{F}$. Furthermore, if X is an integrable random variable we define

$$\mathbb{E}[X|B] = \frac{\mathbb{E}[X\mathbb{1}(B)]}{\mathbb{P}(B)}.$$

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say a σ -algebra \mathcal{G} is countably generated if there exist $(B_i)_{i \in I}$ pairwise disjoint (with I countable) such that $\bigcup_{i \in I} B_i = \Omega$ and $\mathcal{G} = \sigma(B_i : i \in I)$.

Let X be an integrable random variable and \mathcal{G} a countably generated σ -algebra. We want to define $X' = \mathbb{E}[X|\mathcal{G}]$. So define

$$X'(\omega) = \mathbb{E}[X|B_i]$$
 whenever $\omega \in B_i$.

Or equivalently,

$$X'(\omega) = \sum_{i \in I} \mathbb{E}[X|B_i] \mathbb{1}(\omega \in B_i)$$

where we use the convention that $\mathbb{E}[X|B_i] = 0$ if $\mathbb{P}(B_i) = 0$. Then X' is indeed \mathcal{G} -measurable (note \mathcal{G} is the set of $\bigcup_{j \in J} B_j$ for $J \subseteq I$).

Note that for any $G \in \mathcal{G}$ we have $\mathbb{E}[X\mathbb{1}(G)] = \mathbb{E}[X'\mathbb{1}(G)]$. Also

$$\mathbb{E}[|X'|] \le \mathbb{E}\left[\sum_{i \in I} \mathbb{E}[|X||B_i]\mathbb{1}(B_i)\right] = \sum_{i \in I} \mathbb{E}[|X||B_i]\mathbb{P}(B_i) = \mathbb{E}|X| < \infty$$

so X' is integrable.

Theorem (Monotone convergence theorem). Let $(X_n)_{n\geq 1}$ be a sequence of non-negative random variables with $X_n \uparrow X$ as $n \to \infty$ almost-surely. Then $\mathbb{E}X_n \uparrow \mathbb{E}X$ as $n \to \infty$.

Proof. See Part II Probability & Measure.

Theorem (Dominated convergence theorem). Let $(X_n)_{n\geq 1}$ be a sequence of random variables with $X_n \to X$ as $n \to \infty$ almost-surely and $|X_n| \leq Y$ almost-surely for some Y integrable. Then $\mathbb{E}X_n \to \mathbb{E}X$ as $n \to \infty$.

Proof. See Part II Probability & Measure.

Definition (L^p) . Let $p \in [1, \infty]$ and f be a measurable function. Define the L^p -norm

$$||f||_p = (\mathbb{E}[|f|^p])^{1/p} \text{ for } p \in [1, \infty)$$
$$||f||_{\infty} = \inf\{\lambda : |f| \le \lambda \text{ a.e}\}.$$

Furthermore write $f \sim g$ if f = g almost everywhere. Then define the L^p -space $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) = \{f : ||f||_p < \infty\} / \sim$.

Theorem (\mathcal{L}^2 is a Hilbert space). $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert space with inner product $\langle U, V \rangle = \mathbb{E}[UV]$. For a closed subspace \mathcal{H} , if $f \in \mathcal{L}^2$ there exists a unique $g \in \mathcal{H}$ with $||f - g||_2 = \inf\{||f - h||_2 : h \in \mathcal{H}\}$ and $\langle f - g, h \rangle = 0$ for all $h \in \mathcal{H}$. g is called the orthogonal projection of f on \mathcal{H} .

Proof. See Part II Probability & Measure.

Theorem (Conditional expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra, $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Then there exists an integrable random variable Y satisfying

- (a) Y is \mathcal{G} -measurable;
- (b) for all $A \in \mathcal{G}$, $\mathbb{E}[X\mathbb{1}(A)] = \mathbb{E}[Y\mathbb{1}(A)]$.

Moreover Y is unique, in the sense that if Y' also satisfies (a) and (b), then Y = Y' almost-surely. We call Y a version of the conditional expectation of X given \mathcal{G} . We write $Y = \mathbb{E}[X|\mathcal{G}]$ almost-surely. If $\mathcal{G} = \sigma(Z)$ for a random variable Z, then we write $\mathbb{E}[X|Z] = \mathbb{E}[X|\mathcal{G}]$.

Remark. (b) could be replaced by $\mathbb{E}[XZ] = \mathbb{E}[YZ]$ for all Z bounded and \mathcal{G} -measurable.

Proof. First we show uniqueness. Suppose Y and Y' both satisfy (a) and (b) and let $A = \{Y > Y'\} \in \mathcal{G}$. Then

$$\mathbb{E}[Y\mathbb{1}(A)] = \mathbb{E}[Y'\mathbb{1}(A)] \Rightarrow \mathbb{E}[(Y - Y')\mathbb{1}(A)] = 0 \Rightarrow \mathbb{P}(Y > Y') = 0 \Rightarrow Y \leq Y' \text{ a.s.}$$
 and similarly $Y \geq Y'$ a.s.

Now we show existence. First assume $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Then $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathcal{L}^2(\mathcal{F})$. Hence

$$\mathcal{L}^2(\mathcal{F}) = \mathcal{L}^2(\mathcal{G}) \oplus \mathcal{L}^2(\mathcal{G})^{\perp}$$

so we can write X = Y + Z for $Y \in \mathcal{L}^2(\mathcal{G})$ and $Z \in \mathcal{L}^2(\mathcal{G})^{\perp}$. Define $\mathbb{E}[X|\mathcal{G}] = Y$, so Y is \mathcal{G} -measurable and for all $A \in \mathcal{G}$

$$\mathbb{E}[X\mathbbm{1}(A)] = \mathbb{E}[Y\mathbbm{1}(A)] + \underbrace{\mathbb{E}[Z\mathbbm{1}(A)]}_{=0} = \mathbb{E}[Y\mathbbm{1}(A)].$$

We claim that if $X \geq 0$ almost-surely, then $Y \geq 0$ almost-surely. Indeed, let $A = \{Y < 0\} \in \mathcal{G}$ so $0 \leq \mathbb{E}[X\mathbbm{1}(Y < 0)] = \mathbb{E}[Y\mathbbm{1}(Y < 0)] \leq 0$ which implies $\mathbb{P}(Y < 0) = 0$.

Assume now that $X \geq 0$ almost-surely. Define $X_n = X \land n \leq n$, so $X_n \in \mathcal{L}^2$ for all n. Let $Y_n = \mathbb{E}[X_n|\mathcal{G}]$. Then X_n is an increasing sequence and by the above claim, Y_n is also an increasing sequence almost-surely. Define $Y = \limsup_{n \to \infty} Y_n$, so Y is \mathcal{G} -measurable. Also $Y = \uparrow \lim_{n \to \infty} Y_n$ almost-surely. For any $A \in \mathcal{G}$ we have

$$\mathbb{E}[X\mathbb{1}(A)] = \lim_{n \to \infty} \mathbb{E}[X_n\mathbb{1}(A)] = \lim_{n \to \infty} \mathbb{E}[Y_n\mathbb{1}(A)] = \mathbb{E}[Y\mathbb{1}(A)]$$

by the Monotone Convergence Theorem.

Finally, for general X write $X = X^+ - X^-$ and define $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}]$.

Remark. From the last proof we can see that we can define $\mathbb{E}[X|\mathcal{G}]$ for $X \geq 0$ without assuming integrability of X. It satisfies all the conditions apart from integrability.

Definition. Let $(\mathcal{G}_n)_{n\geq 1}$ be sub σ -algebras of \mathcal{F} . We call them *independent* if whenever $G_i \in \mathcal{G}_i$ and $i_1 < i_2 < \ldots < i_k$ we have

$$\mathbb{P}(G_{i_1}\cap\ldots\cap G_{i_k})=\prod_{j=1}^k\mathbb{P}(G_{i_j}).$$

For a random variable X and a σ -algebra \mathcal{G} , we say they are *independent* if $\sigma(X)$ is independent of \mathcal{G} .

Properties of conditional expectation

Let $X, Y \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra. Then

- 1. $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$ (take $A = \Omega$);
- 2. If X is \mathcal{G} -measurable then $\mathbb{E}[X|\mathcal{G}] = X$ almost-surely (X clearly satisfies the conditions);
- 3. If X is independent of \mathcal{G} , then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$ almost-surely;
- 4. If $X \geq 0$ almost-surely then $\mathbb{E}[X|\mathcal{G}] \geq 0$ almost-surely;
- 5. For $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}[\alpha X + \beta Y | \mathcal{G}] = \alpha \mathbb{E}[X | \mathcal{G}] + \beta \mathbb{E}[Y | \mathcal{G}]$ almost-surely;
- 6. $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$ almost-surely.

Recall:

Theorem (Fatou's Lemma). If $X_n \geq 0$ for all n almost-surely, then

$$\mathbb{E}[\liminf_{n\geq 1} X_n] \leq \liminf_{n\geq 1} \mathbb{E} X_n.$$

Proof. See Part II Probability & Measure.

Theorem (Jensen's Inequality). If X is integrable, $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, then

$$\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X]).$$

We consider any analogues of our convergence theorems for conditional expectation.

Theorem (Conditional Monotone Convergence Theorem). Suppose $X_n \geq 0$ for all n and $X_n \uparrow X$ almost-surely as $n \to \infty$. Let \mathcal{G} be a sub σ -algebra of \mathcal{F} . Then $\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$ almost-surely.

Remark. Note that $\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$ in the almost-sure sense, as these are random variables.

Proof. Let $Y_n = \mathbb{E}[X_n|\mathcal{G}]$ almost-surely. Then Y_n is increasing. Set $Y = \mathbb{E}[X_n|\mathcal{G}]$ $\limsup_{n>1} Y_n$. Since Y_n is \mathcal{G} -measurable, Y is \mathcal{G} -measurable. Also $Y=\uparrow$ $\lim_{n>1} \bar{Y_n}$ almost-surely. We need to show $\mathbb{E}[Y\mathbb{1}(A)] = \mathbb{E}[X\mathbb{1}(A)]$ for all $A \in \mathcal{G}$. This follows from the usual Monotone Convergence Theorem as

$$\mathbb{E}[Y \mathbb{1}(A)] = \lim_{n \ge 1} \mathbb{E}[Y_n \mathbb{1}(A)] = \lim_{n \ge 1} \mathbb{E}[X_n \mathbb{1}(A)] = \mathbb{E}[X \mathbb{1}(A)].$$

Theorem (Conditional Fatou's Lemma). Let $(X_n)_{n\geq 1}$ be a non-negative sequence of random variables. Then

$$\mathbb{E}[\liminf_{n\to\infty} X_n|\mathcal{G}] \leq \liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \text{ almost-surely.}$$

Proof. Note that $\inf_{k\geq n} X_k \uparrow \liminf_{n\to\infty} X_n$ so by the conditional MCT

$$\lim_{n\to\infty} \mathbb{E}[\inf_{k>n} X_k | \mathcal{G}] = \mathbb{E}[\liminf_{n\to\infty} X_n | \mathcal{G}].$$

We also have

$$\mathbb{E}[\inf_{k \geq n} X_k | \mathcal{G}] \leq \mathbb{E}[X_k | \mathcal{G}] \quad \forall k \geq n \text{ almost-surely}.$$

Which implies

$$\mathbb{E}[\inf_{k\geq n} X_k | \mathcal{G}] \leq \inf_{k\geq n} \mathbb{E}[X_k | \mathcal{G}] \quad \forall k \geq n \text{ almost-surely}$$

since k takes countable values (intersection of countable sets of full measure also has full measure). Now taking limits as $n \to \infty$ we are done.

Theorem (Conditional Dominated Convergence Theorem). Suppose $X_n \to X$ almost-surely, $|X_n| \leq Y$ almost-surely with Y integrable. Then $\mathbb{E}[X_n|\mathcal{G}] \rightarrow$ $\mathbb{E}[X|\mathcal{G}]$ almost-surely.

Proof. We apply the Conditional Fatou's Lemma. Indeed $-Y \leq X_n \leq Y$ so $X_n + Y \ge 0$ and $Y - X_n \ge 0$ for all n. By Conditional Fatou's Lemma

$$\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}] = \mathbb{E}[X+Y|\mathcal{G}] = \mathbb{E}[\liminf_{n \to \infty} (X_n + Y)] \le \liminf_{n \to \infty} \mathbb{E}[X_n|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]$$

and

$$\mathbb{E}[Y|\mathcal{G}] - \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[\liminf_{n \to \infty} (Y - X_n)|\mathcal{G}] \le \mathbb{E}[Y|\mathcal{G}] + \liminf_{n \to \infty} (-\mathbb{E}[X_n|\mathcal{G}]).$$

Hence $\limsup_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \leq \mathbb{E}[X|\mathcal{G}]$ and $\liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \geq \mathbb{E}[X|\mathcal{G}]$ almostsurely.

Theorem (Conditional Jensen's Inequality). Let X be integrable, $\varphi : \mathbb{R} \to \mathbb{R}$ a convex function such that $\varphi(X)$ is integrable or $\varphi(X) \geq 0$. Then $\mathbb{E}[\varphi(X)|\mathcal{G}] \geq$ $\varphi(\mathbb{E}[X|\mathcal{G}])$ almost-surely.

Proof. We claim that $\varphi(x) = \sup_{i \in \mathbb{N}} (a_i x + b_i), \ a_i, b_i \in \mathbb{R}$.

Then $\varphi(X) = \sup_{i \in \mathbb{N}} (a_i X + b_i)$. So

$$\mathbb{E}[\varphi(X)|\mathcal{G}] \ge \sup_{n \ge 1} (a_i \mathbb{E}[X|\mathcal{G}] + b_i) \quad \forall i \in \mathbb{N} \text{ almost-surely.}$$

Note. We need the supremum in the claim to be over a countable set so we can preserve the almost-sue property of an inequality.

Corollary. For all $p \in [1, \infty)$ we have

$$||\mathbb{E}[X|\mathcal{G}]||_p \le ||X||_p.$$

Proof. Apply conditional Jensen $(x \mapsto x^p \text{ is convex})$.

Theorem (Tower property). Let X be integrable and $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ sub σ -algebras. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$
 almost-surely.

Proof. $\mathbb{E}[X|\mathcal{H}]$ is certainly \mathcal{H} -measurable so it remains to check

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbb{1}(A)] \quad \forall A \in \mathcal{H}.$$

But since $A \in \mathcal{G}$ whenever $A \in \mathcal{H}$ we have

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(A)] = \mathbb{E}[X\mathbb{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbb{1}(A)].$$

Proposition. Let $X \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra, Y bounded and \mathcal{G} -measurable. Then

$$\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$$
 almost-surely.

Proof. $Y\mathbb{E}[X\mathcal{G}]$ is certainly \mathcal{G} -measurable. Also for any $A \in \mathcal{G}$

$$\mathbb{E}[XY\mathbb{1}(A)] = \mathbb{E}[X \underbrace{(Y\mathbb{1}(A))}_{\text{bounded,}}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}](Y\mathbb{1}(A))].$$

Definition. Let \mathcal{A} be a collection of sets. It is called a π -system if whenever $A, B \in \mathcal{A}$ we have $A \cap B \in \mathcal{A}$.

Recall

Theorem (Uniqueness of extension). Let (E, \mathcal{E}) be a measurable space and let \mathcal{A} be a π -system generating \mathcal{E} . Let μ, ν be two measures on (E, \mathcal{E}) with $\mu(E) = \nu(E) < \infty$. If $\mu = \nu$ on \mathcal{A} . then $\mu = \nu$ on \mathcal{E} .

Proof. See Part II Probability & Measure.

Theorem. Let $X \in \mathcal{L}^1$, $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ sub σ -algebras. Assume $\sigma(X, \mathcal{G})$ is independent of \mathcal{H} . Then

$$\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$$
 almost-surely.

Proof. We need to show $\mathbb{E}[X\mathbb{1}(F)] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(F)]$ for all $F \in \sigma(\mathcal{G}, \mathcal{H})$. Define $\mathcal{A} = \{A \cap B : A \in \mathcal{G}, B \in \mathcal{H}\}$. This is a π -system generating $\sigma(\mathcal{G}, \mathcal{H})$. If $F = A \cap B$, $A \in \mathcal{G}, B \in \mathcal{H}$ then

$$\begin{split} \mathbb{E}[X\mathbbm{1}(A\cap B)] &= \mathbb{E}[\underbrace{X\mathbbm{1}(A)}_{\sigma(X,\mathcal{G})\text{measurable}} \mathbbm{1}(B)] \\ &= \mathbb{E}[X\mathbbm{1}(A)]\mathbb{P}(B) \\ &= \mathbb{E}[\underbrace{\mathbb{E}[X\mathbbm{1}(A)]\mathbb{P}(B)}_{\mathcal{G}} \mathbb{P}(B) \end{split}$$

$$= \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(A)\mathbb{1}(B)].$$

Assume $X \geq 0$. Define $\mu(F) = \mathbb{E}[X\mathbb{1}(F)]$ and $\nu(F) = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(F)]$ for $F \in \sigma(\mathcal{G}, \mathcal{H})$. Then $\mu = \nu$ on \mathcal{A} by the above and $\mu(\Omega) = \nu(\Omega) < \infty$. Therefore $\mu = \nu$ on $\sigma(\mathcal{G}, \mathcal{H})$.

Definition. We say $(X_1, \ldots, X_n) \in \mathbb{R}^n$ has the Gaussian distribution iff for all $a_1, \ldots, a_n \in \mathbb{R}$

$$a_1X_1 + \ldots + a_nX_n$$

has the Gaussian distribution in \mathbb{R} .

A process $(X_t)_{t \geq 0}$ is called a Gaussian process if $\forall t_1 < t_2 < \ldots < t_n$, the vector $(X_{t_1}, \ldots, X_{t_n})$ is a Gaussian random vector.

Example. Let (X,Y) be a Gaussian vector in \mathbb{R}^2 . We want to compute $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)]$. Let $X' = \mathbb{E}[X|Y]$. Since X' is $\sigma(Y)$ -measurable it follows X' is a measurable function of Y. So are looking for f Borel such that $\mathbb{E}[X|Y] = f(Y)$ almost-surely. Let f(y) = ay + b for some $a, b \in \mathbb{R}$ to be determined.

Since $\mathbb{E}[X'] = \mathbb{E}[X]$ we have $a\mathbb{E}Y + b = \mathbb{E}X$. Also

$$\mathbb{E}[XY] = \mathbb{E}[X'Y] \implies \mathbb{E}[(X - X')Y] = 0$$

$$\implies \operatorname{Cov}(X - X', Y) = 0$$

$$\implies \operatorname{Cov}(X, Y) = a\operatorname{Var}(Y)$$

so we have determined a, b. We need to check that for any Z bounded and $\sigma(Y)$ -measurable we have $\mathbb{E}[(X-X')Z]=0$. Write Z=g(Y) and note $\mathrm{Cov}(X-X',Y)=0$, implying X-X' is independent of Y. Therefore $\mathbb{E}[(X-X')g(Y)]=\mathbb{E}[X-X']\mathbb{E}[g(Y)]=0$.

Example. Let (X,Y) be a random vector in \mathbb{R}^2 with joint density function $f_{X,Y}(x,y)$. Let $h:\mathbb{R}\to\mathbb{R}$ be a Borel function such that h(X) is integrable. We want to compute $\mathbb{E}[h(X)|Y]$. Note

$$\mathbb{E}[h(X)g(Y)] = \int_{\mathbb{R}^2} h(x)g(x)f_{X,Y}(x,y)dxdy$$

and write

$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$$

for the density of Y. So (using the convention 0/0 = 0)

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x) \frac{f_{X,Y}(x,y)}{f_{Y}(y)} dx \right) g(y) f_{Y}(y) dy$$

define

$$\varphi(y) = \begin{cases} \int_{\mathbb{R}} h(x) \frac{f_{X,Y}(x,y)}{f_{Y}(y)} dx & \text{if } f_{Y}(y) > 0 \\ 0 & \text{otherwise} \end{cases}.$$

Then $\mathbb{E}[h(X)|Y] = \varphi(Y)$ almost-surely.

2 Martingales

2.1 Discrete-time Martingales

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A filtration is a sequence of increasing sub σ -algebras of \mathcal{F} , $(\mathcal{F}_n)_{n\geq 0}$, $\mathcal{F}_n\subseteq \mathcal{F}_{n+1}$. We call $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ a filtered probability space.

If $X = (X_n)_{n \geq 0}$ is a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, define $\mathcal{F}_n^X = \sigma(X_k : k \leq n)$, the natural filtration associated with X. We say X is adapted to a filtration (\mathcal{F}_n) if X_n is \mathcal{F}_n -measurable for all n. X is integrable if X_n is integrable for all n.

Definition. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ be a filtered probability space. We say an integrable adapted process $X=(X_n)_{n\geq 0}$ is called a

 \bullet martingale if

$$\mathbb{E}[X_n|\mathcal{F}_m] = X_m$$
 almost-surely $\forall n \geq m$.

• super-martingale if

$$\mathbb{E}[X_n|\mathcal{F}_m] \leq X_m$$
 almost-surely $\forall n \geq m$.

• *sub-martingale* if

$$\mathbb{E}[X_n|\mathcal{F}_m] \geq X_m$$
 almost-surely $\forall n \geq m$.

Remark. If X is a martingale with respect to (\mathcal{F}_n) , then it is also a martingale with respect to the natural filtration (\mathcal{F}_n^X) .

Example. Let (ξ_i) be a sequence of iid random variables with $\mathbb{E}[\xi_1] = 0$. Let $X_n = \xi_1 + \ldots + \xi_n$, $X_0 = 0$. This is a martingale. We have

$$\mathbb{E}[X_n|\mathcal{F}_{n-1}] = \xi_1 + \ldots + \xi_{n-1} + \mathbb{E}[\xi_n|\mathcal{F}_{n-1}] = \xi_1 + \ldots + \xi_{n-1}$$

by independence.

Example. Let (ξ_i) be a sequence of iid random variables with $\mathbb{E}[\xi_1] = 1$. Let $X_n = \prod_{i=1}^n \xi_i, X_0 = 1$. This is a martingale.

Definition. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ be a filtered probability space. A *stopping time T* is a random variable $T: \Omega \to \mathbb{Z}_+ \cup \{\infty\}$ such that $\{T \leq n\} \in \mathcal{F}_n$ for all n

Note. T being a stopping time is equivalent to $\{T = n\} \in \mathcal{F}_n$ for all n.

Examples.

- Constant times are trivial stopping times;
- Suppose $(X_n)_{n\geq 0}$ is an adapted process taking values in \mathbb{R} . For $A\in\mathcal{B}$ define $T_A=\inf\{n\geq 0: X_n\in A\}$ (with the convention that $\inf\emptyset=\infty$). Then $\{T_A\leq n\}=\bigcup_{k\leq n}\{X_k\in A\}\in\mathcal{F}_n$, so T_A is a stopping time;
- In the setting above, let $L_A = \sup\{n \geq 0 : X_n \in A\}$. This is in general not a stopping time.

Proposition. Let $S, T, (T_n)$ be stopping times. Then $S \wedge T$, $S \vee T$, inf T_n , sup T_n , $\lim \inf T_n$ and $\lim \sup T_n$ are also stopping times.

Proof. Follows directly from the definition.

Definition. If T is a stopping time, we define

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t, \ \forall t \}.$$

If $(X_n)_{n\geq 0}$ is a process, write $X_T(\omega)=X_{T(\omega)}(\omega)$ whenever $T(\omega)<\infty$. We define the stopped process $X_t^T=X_{T\wedge t}$.

Proposition. Let S and T be stopping times and let X be an adapted process. Then

- 1. If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$;
- 2. $X_T \mathbb{1}(T < \infty)$ is \mathcal{F}_T -measurable;
- 3. X^T is adapted;
- 4. If X is integrable, then X^T is also integrable.

Proof.

- 1. Immediate from the definition;
- 2. Let $A \in \mathcal{B}(\mathbb{R})$. We need to show $\{X_T \mathbb{1}(T < \infty) \in \mathcal{A}\} \in \mathcal{F}_T$. Note that

$$\{X_T \mathbb{1}(T < \infty) \in A\} \cap \{T \le t\} = \bigcup_{s=0}^t \underbrace{\{X_s \in A\}}_{\in \mathcal{F}_s \subseteq \mathcal{F}_t} \cap \underbrace{\{T = s\}}_{\in \mathcal{F}_s} \in \mathcal{F}_t.$$

3. $X_t^T = X_{T \wedge t}$ is $\mathcal{F}_{T \wedge t}$ -measurable so \mathcal{F}_t -measurable by (1).

4. We have

$$\mathbb{E}[|X_t^T|] = \mathbb{E}[|X_{T \wedge t}|] = \sum_{s=0}^{t-1} \mathbb{E}[|X_s| \mathbb{1}(T=s)] + \mathbb{E}[|X_t| \mathbb{1}(T \geq t)]$$

$$\leq \sum_{s=0}^{t} \mathbb{E}[|X_s|] < \infty.$$

Theorem (Optional Stopping Theorem). Let (X_n) be a martingale.

- 1. If T is a stopping time, then X^T is also a martingale. In particular $\mathbb{E}[X_{T \wedge t}] = \mathbb{E}[X_0]$ for all t;
- 2. If $S \leq T$ are bounded stopping times then $\mathbb{E}[X_T | \mathcal{F}_S] = X_S$ almost-surely, and $\mathbb{E}[X_T] = \mathbb{E}[X_S]$;
- 3. If there exists an integrable random variable Y such that $|X_n| \leq Y$ for all n, and T is finite almost-surely then $\mathbb{E}[X_T] = \mathbb{E}[X_0]$;
- 4. If there exists M > 0 such that $|X_{n+1} X_n| \le M$ for all n, and T is a stopping time with $\mathbb{E}T < \infty$, then $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Proof.

1. We need to show that for all t we have

$$\mathbb{E}[X_{T \wedge t} | \mathcal{F}_{t-1}] = X_{T \wedge (t-1)}$$

almost-surely. Indeed

$$\mathbb{E}[X_{T \wedge t} | \mathcal{F}_{t-1}] = \mathbb{E}\left[\sum_{s=0}^{t-1} X_s \mathbb{1}(T=s) | \mathcal{F}_{t-1}\right] + \mathbb{E}[X_t \mathbb{1}(T \ge t) | \mathcal{F}_{t-1}]$$

$$= \sum_{s=0}^{t-1} X_s \mathbb{1}(T=s) + \mathbb{1}(T \ge t) X_{t-1}$$

$$= X_{T \wedge (t-1)}$$

using the fact that $\mathbb{1}(T \geq t)$ is \mathcal{F}_{t-1} -measurable;

2. Suppose $S \leq T \leq n$ and let $A \in \mathcal{F}_S$. We need to show $\mathbb{E}[X_T \mathbb{1}(A)] = \mathbb{E}[X_S \mathbb{1}(A)]$. Note

$$X_T - X_S = (X_T - X_{T-1}) + \dots + (X_{S+1} - X_S)$$

$$= \sum_{k \ge 0} (X_{k+1} - X_k) \mathbb{1}(S \le k < T)$$

$$= \sum_{k=0}^{n} (X_{k+1} - X_k) \mathbb{1}(S \le k < T). \qquad (T \le n)$$

Hence

$$\mathbb{E}[X_T \mathbb{1}(A)] = \mathbb{E}[X_S \mathbb{1}(A)] + \sum_{k=0}^n \mathbb{E}[(X_{k+1} - X_k) \underbrace{\mathbb{1}(S \le k < T)\mathbb{1}(A)}_{\in \mathcal{F}_k}]$$
$$= \mathbb{E}[X_S \mathbb{1}(A)]$$

since $\mathbb{E}[X_{k+1}|\mathcal{F}_k] = X_k$ almost-surely. Taking expectations gives $\mathbb{E}[X_T] = \mathbb{E}[X_S]$;

- 3. Example Sheet;
- 4. Example Sheet.

Note. Analogous results follow if (X_n) is instead a sub/super-martingale.

Corollary. If X is a positive super-martingale, T is a stopping time, $T < \infty$ almost-surely, then $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$.

Proof. Fatou's lemma gives $\mathbb{E}[\liminf_t X_{T \wedge t}] \leq \liminf_t \mathbb{E}[X_{T \wedge t}] \leq \mathbb{E}[X_0].$

Example. Let $(\xi_i)_{i\geq 0}$ be iid with $\mathbb{P}(\xi_0=1)=\mathbb{P}(\xi_0=-1)=1/2$. Define $X_0=0$ and $X_n=\sum_{i=1}^n \xi_i$ for $n\geq 1$. Then $(X_n)_{n\geq 0}$ is a martingale. Define $T=\inf\{n\geq 0: X_n=1\}$. Then $\mathbb{P}(T<\infty)=1$ and for all t we have $\mathbb{E}[X_{T\wedge t}]=0$, while $\mathbb{E}[X_T]=1$. Hence (4) from the previous theorem tells us $\mathbb{E}T=\infty$.

Example. Consider a SRW on \mathbb{Z} , $X_0 = 0$, $X_n = \sum_{i=1}^n \xi_i$ with $(\xi_i)_{i \geq 1}$ iid taking values ± 1 with equal probability. Define $T_c = \inf\{n \geq 0 : X_n = c\}$ and set $T = T_{-a} \wedge T_b$. What is $\mathbb{P}(T_{-a} < T_b)$?

We have that $X_n^T = X_{T \wedge n}$ is a martingale by the optional stopping theorem. Furthermore $|X_{n+1} - X_n| = 1$ for all n. Need to check $\mathbb{E}[T] < \infty$: consider blocks

- ξ_1, \ldots, ξ_{a+b}
- $\xi_{a+b+1}, \dots, \xi_{2(a+b)}$
- $\xi_{2(a+b)+1}, \dots, \xi_{3(a+b)}$
- •

note that the probability the ξ_i in one of these blocks are all equal to either 1 or -1 is $2 \cdot 2^{-(a+b)}$. Hence $T \leq (a+b) \text{Geo}(2 \cdot 2^{-(a+b)})$ and $\mathbb{E}T \leq (a+b) 2^{a+b-1} < \infty$.

So applying the optional stopping theorem to T we have $\mathbb{E}[X_T] = \mathbb{E}[X_0] = 0$. Hence $-a\mathbb{P}(T_{-a} < T_b) + b\mathbb{P}(T_b < T_{-a}) = 0$ and $\mathbb{P}(T_{-a} < T_b) + \mathbb{P}(T_b < T_{-a})$, which gives $\mathbb{P}(T_{-a} < T_b) = \frac{b}{a+b}$.

Martingale convergence theoem

Theorem (Almost-sure martingale convergence theorem). Let X be a supermartingale bounded in \mathcal{L}^1 , i.e $\sup_{n\geq 0} \mathbb{E}|X_n| < \infty$. Then there exists a random variable $X_\infty \in \mathcal{L}^1(\mathcal{F}_\infty)$ where $\mathcal{F}_\infty = \sigma(\mathcal{F}_n : n \geq 0)$ such that $X_n \to X_\infty$ almost-surely as $n \to \infty$.

Before we can prove this we will need some preliminary results.

Doob's upcrossing inequality

For a real sequence $(x_n)_{n\geq 0}$, for an interval [a,b] we want to count the number of times (x_n) crosses below a or above b. Define $T_0(x)=0$ and define for $k\geq 0$

$$S_{k+1}(x) = \inf\{n \ge T_k(x) : x_n \le a\}$$
 the $(k+1)$ st downcrossing $T_{k+1}(x) = \inf\{n \ge S_{k+1}(x) : x_n \ge b\}$ the $(k+1)$ st upcrossing.

Also let $N_n([a,b],x) = \sup\{k \geq 0 : T_k(x) \leq n\}$, the number of up crossings up to time N. Then as $n \to \infty$, $N_n([a,b],x) \uparrow N([a,b],x) = \sup\{k \geq 0 : T_k(x) < \infty\}$.

Lemma. Let $x = (x_n)_{n \geq 0}$ be a real sequence. Then x converges in $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm\infty\}$ if and only if for all a < b, $a, b \in \mathbb{Q}$ we have $N([a, b], x) < \infty$.

Proof. If x converges then suppose there is a < b with $N([a, b], x) = \infty$. Then

$$\liminf x_n \le a < b \le \limsup x_n$$

a contradiction.

Conversely, if x doesn't converge we have $\liminf x_n < \limsup x_n$ so there are a < b (with $a, b \in \mathbb{Q}$) with $\liminf x_n < a < b < \limsup x_n$ and hence $N([a, b], x) = \infty$.

Now we can prove

Theorem (Doob's upcrossing inequality). Let X be a supermartingale and a < b. Then for all n,

$$(b-a)\mathbb{E}[N_n([a,b],X)] \le \mathbb{E}[(X_n-a)^-].$$

Proof. We have $(T_k)_{k>0}$, $(S_k)_{k>0}$ stopping times. Then

$$\sum_{k=1}^{n} (X_{T_k \wedge n} - T_{S_k \wedge n}) = \sum_{k=1}^{N_n([a,b],X)} \underbrace{(X_{T_k} - X_{S_k})}_{\geq b-a} + \underbrace{(X_n - X_{S_{N_n+1}})\mathbb{1}(S_{N_n+1} \leq n)}_{\geq (X_n - a)\vee 0 = -(X_n - a)^-}.$$

Note $T_k \wedge n, S_k \wedge n$ are stopping times with $T_k \wedge n \geq S_k \wedge n$. Then by the optional stopping theorem $\mathbb{E}[X_{T_k \wedge n}] \leq \mathbb{E}[X_{S_k \wedge n}]$. So taking expectations we have

$$0 \ge (b-a)\mathbb{E}[N_n] - \mathbb{E}[(X_n - a)^-].$$

Now we are ready to prove

Theorem (Almost-sure martingale convergence theorem). Let X be a supermartingale bounded in \mathcal{L}^1 , i.e $\sup_{n\geq 0} \mathbb{E}|X_n| < \infty$. Then there exists a random variable $X_\infty \in \mathcal{L}^1(\mathcal{F}_\infty)$ where $\mathcal{F}_\infty = \sigma(\mathcal{F}_n : n \geq 0)$ such that $X_n \to X_\infty$ almost-surely as $n \to \infty$.

Proof. Let $a, b \in \mathbb{Q}$ be such that a < b. Then

$$\mathbb{E}[N_n([a,b],X)] \le (b-a)^{-1}\mathbb{E}[(X_n-a)^{-1}]$$

$$\le (b-a)^{-1}\mathbb{E}[|X_n|+a]$$

$$\le (b-a)^{-1}\left(\sup_{n\ge 0}\mathbb{E}[|X_n|]+1\right).$$

We know $N_n([a,b],X) \uparrow N([a,b],X)$ as $n \to \infty$, so by monotone convergence, $\mathbb{E}[N([a,b],X)] < \infty$. Set

$$\Omega_0 = \bigcap_{\substack{a < b \\ a, b \in \mathbb{Q}}} \{ N([a, b], X) < \infty \} \in \mathcal{F}_{\infty}$$

so $\mathbb{P}(\Omega_0) = 1$ as the intersection of almost-sure events. On Ω_0 , X converges by a previous lemma. Set

$$X_{\infty} = \begin{cases} \lim_{n \to \infty} X_n & \text{on } \Omega_0 \\ 0 & \text{on } \Omega \setminus \Omega_0 \end{cases}.$$

So X_{∞} is \mathcal{F}_{∞} -measurable, and $X_n \to X_{\infty}$ almost surely. Also

$$\mathbb{E}[|X_{\infty}|] = \mathbb{E}[\liminf_n |X_n|] \leq \liminf_n \mathbb{E}[|X_n|] < \infty$$

by Fatou.

Corollary. Let X be a positive super-martingale. Then X converges almost-surely.

Proof. $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leq \mathbb{E}[X_0]$. So apply the previous.