

ASR6601

Datasheet

Version 1.7.0

Issue Date 2023-09-13

Copyright © 2023 ASR

About This Document

This document introduces the specifications of LPWAN SoC ASR6601.

Intended Readers

This document is mainly for engineers who use this chip to develop their own platform and products, for instance:

- PCB Hardware Development Engineer
- Software Engineer
- Technical Support Engineer

Included Chip Models

The product models corresponding to this document are as follows.

Model	Flash	SRAM	Processor	Package	Frequency
ASR6601SE	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CB	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz
ASR6601SER	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CBR	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz

Copyright Notice

© 2023 ASR Microelectronics Co., Ltd. All rights reserved. No part of this document can be reproduced, transmitted, transcribed, stored, or translated into any language in any form or by any means without the written permission of ASR Microelectronics Co., Ltd.

Trademark Statement

ASR and ASR Microelectronics Co., Ltd. are trademarks of ASR Microelectronics Co., Ltd.

Other trade names, trademarks, and registered trademarks mentioned in this document are the property of their respective owners and are hereby declared.

Disclaimer

ASR does not give any warranty of any kind and may make improvements and/or changes in this document or in the product described in this document at any time.

This document is only used as a guide, and no contents in the document constitute any form of warranty. Information in this document is subject to change without notice.

All liability, including liability for infringement of any proprietary rights caused by using the information in this document, is disclaimed.

ASR Microelectronics Co., Ltd.

Address: 9F, Building 10, No. 399 Keyuan Road, Zhangjiang High-tech Park, Pudong New Area,

Shanghai, 201203, China

Homepage: http://www.asrmicro.com/

Revision History

Date	Version	Release Notes
2020.09	V1.0.0	First Release.
2020.09	V1.0.1	Updated ASR6601CB QFN48 pin assignment.
2020.10	V1.0.2	Added Section 3.3.
2020.12	V1.1.0	 Updated the contents and section order of Chapter 2. Added Section 2.3, Section 3.1.3 and Section 3.2.3.
2021.02	V1.2.0	Updated Section 1.5.Added Chapter 2.
2021.07	V1.3.0	Updated the descriptions about CPU.
2021.10	V1.4.0	Added some notes at the end of Section 3.4.
2021.11	V1.4.1	Corrected a typo.
2023.01	V1.5.0	Added Section 3.5: ESD Ratings.
2023.04	V1.6.0	Updated Table 3-4.
2023.09	V1.7.0	Added chip models of ASR6601SER and ASR6601CBR and Section 3.6: RSTN Characteristics.

Table of Contents

1.	Over	view	1
	1.1	General	1
	1.2	Key Features	1
	1.3	Block Diagram	2
	1.4	Specification	3
	1.5	Applications	3
	1.6	Part Number Information	
2.	Syst	em Description	6
	2.1	Power Supply	6
	2.2	Boot Mode	7
3.	Elect	trical Characteristics	8
	3.1	Absolute Maximum Rating	8
	3.2	Recommended Operating Range	8
	3.3	TRX Performance	
	3.4	Power Consumption Characteristics	
	3.5	ESD Ratings	
	3.6	RSTN characteristics	10
4.	Pack	age and Pin Definition	
	4.1	ASR6601 QFN68	12
		4.1.1 ASR6601 QFN68 Pin Definition	12
		4.1.2 ASR6601 QFN68 Pin Assignment	14
		4.1.3 ASR6601 QFN68 Mechanical Parameters	15
	4.2	ASR6601 QFN48	16
		4.2.1 ASR6601 QFN48 Pin Definition	16
		4.2.2 ASR6601 QFN48 Pin Assignment	
		4.2.3 ASR6601 QFN48 Mechanical Parameters	19
	4.3	GPIO Function MUX Table	20

List of Tables

Table 1-1 General Specifications of ASR6601 SoC	 3
Table 1-2 Part Number Information	
Table 2-1 Boot Mode Configuration	 7
Table 3-1 Absolute Maximum Rating	
Table 3-2 Recommended Operating Range	 8
Table 3-3 TRX Performance	 8
Table 3-4 Power Consumption Characteristics	 g
Table 3-5 ESD Ratings	 10
Table 4-1 ASR6601 QFN68 Pin Definition	 12
Table 4-2 ASR6601 QFN48 Pin Definition	16
Table 4-3 GPIO Function MUX Table -I	20
Table 4-4 GPIO Function MUX Table –II	21

List of Figures

Figure 1-1 ASR6601 SoC and ASR6601 LPWAN Module	2
Figure 2-1 LPWAN SoC Power Grid	6
Figure 3-1 ASR6601CB/SE RSTN Circuit	10
Figure 3-2 ASR6601CBR/SER RSTN Circuit	11
Figure 4-1 Pin Assignment of ASR6601 QFN68	14
Figure 4-2 Package Outline Drawing of ASR6601 QFN68	15
Figure 4-3 Pin Assignment of ASR6601 QFN48	18
Figure 4-4 Package Outline Drawing of ASR6601 QFN48	19

1. Overview

1.1 General

ASR6601 is a general LPWAN Wireless Communication SoC, with integrated RF Transceiver, Modem and a 32-bit RISC MCU. The MCU uses Arm China STAR-MC1 Processor, with 48 MHz operation frequency. The RF Transceiver has continuous frequency coverage from 150 MHz to 960 MHz. The Modem supports LoRa modulation for LPWAN use cases and (G)FSK modulation for legacy use cases. The Modem also supports BPSK modulation in TX and (G)MSK modulation in TX and RX. The LPWAN Wireless Communication Module designed with ASR6601 provides ultra-long range and ultra-low power communication for LPWAN applications.

ASR6601 can achieve a high sensitivity to -148 dBm and the maximum transmit power is up to +22 dBm. This makes the chip suitable to be used in long-range LPWAN with high efficiency. The total chip package is of very small size, QFN 6 mm x 6 mm/QFN 8 mm x 8 mm.

1.2 Key Features

- Small footprint: QFN48, 6 mm x 6 mm or QFN68, 8 mm x 8 mm
- Frequency Range: 150 MHz ~ 960 MHz
- Maximum Power: +22 dBm constant RF output
- High sensitivity: -148 dBm
- Programmable bit rate up to 62.5 Kbps in LoRa modulation mode
- Programmable bit rate up to 300 Kbps in (G)FSK modulation mode
- Preamble detection
- Embedded memories (up to 256 KB of Flash memory and 64 KB of SRAM)
- Up to 42 configurable GPIOs: 3 x I2C, 1 x I2S, 4 x UART, 1 x LPUART, 1 x SWD, 3 x SPI, 1 x QSPI and 2 x WDG
- 4 x GPtimer, 2 x Basic Timer, 2 x LP timer and 1 x Sys Ticker
- 48 MHz Arm China STAR-MC1 Processor
- 4-channel DMA engine x 2
- Embedded 12-bit 1 Msps SAR ADC
- Embedded 12-bit DAC
- 32.768 KHz External Watch Crystal Oscillator
- 32 MHz External Crystal Oscillator for RF Transceiver

- 24 MHz External Crystal Oscillator for SoC (optional)
- Embedded internal 4 MHz RC oscillator
- Embedded internal High frequency (48 MHz) RC oscillator
- Embedded internal Low frequency (32.768 KHz) RC oscillator
- Embedded internal PLL to generate 48 MHz clock
- Embedded 3 x OPA
- Embedded 2 x Low Power Comparator
- Embedded LCD driver
- Embedded LD, TD, VD and FD
- Supports AES, DES, RSA, ECC, SHA and SM2/3/4

1.3 Block Diagram

Figure 1-1 shows the block diagram of ASR6601 SoC and ASR6601 LPWAN Module.

Figure 1-1 ASR6601 SoC and ASR6601 LPWAN Module

1.4 Specification

Table 1-1 shows the general specifications of ASR6601 SoC.

Table 1-1 General Specifications of ASR6601 SoC

Item	Description			
SoC Name	ASR6601			
Operation Conditions:				
Tomporatura	● Storage: -55 ~ +125 °C			
Temperature	Operating: -40 ~ +85 ℃			
I lo mai alito c	Storage: 5 ~ 95% (Non-Condensing)			
Humidity	Operating: 10 ~ 95% (Non-Condensing)			
Dimension	8x8x0.9 mm/6x6x0.9 mm			
Package	QFN 68 Pin Type/QFN 48 Pin Type			

1.5 Applications

ASR6601 LPWAN chip enables new generation of IoT applications.

- Smart meters
- Supply chain and logistics
- Building automation
- Agricultural sensors
- Smart cities
- Retail store sensors
- Asset tracking
- Streetlights
- Parking sensors
- Environmental sensors
- Healthcare
- Smoke sensors
- Safety and security sensors
- Remote control applications

1.6 Part Number Information

There are four part numbers of ASR6601: ASR6601CB, ASR6601CBR, ASR6601SE, and ASR6601SER. The key feature differences among the four part numbers of ASR6601 are listed below. ASR6601SE and ASR6601SER can support more analog functions with more GPIOs.

Table 1-2 Part Number Information

Model		ASR6601CB	ASR6601CBR	CBR ASR6601SE ASR6601			
	Core	48-MHz Arm C	hina STAR-MC1 P	rocessor			
MCU	Flash	128 KB		256 KB			
	SRAM	16 KB		64 KB			
	Frequency Range	150 MHz ~ 960 MHz					
	Modulation Mode	Supports LoRa	/(G)FSK/BPSK/(G	MSK modulation	1		
	Protocol	LoRaWAN, Lin	kWAN				
Wireless	LoRa TX Output	Un to 122 dDm					
Communication	Power	Up to +22 dBm					
Communication	LoRa RX	-148 dBm					
	Sensitivity	-146 UBIII					
	LoRa TX Current	<90 mA at +17	dBm, 108 mA at +	·22 dBm			
	LoRa RX Current	<9 mA					
Standby Power		0.9 uA without	0.9 μA without RF/MCU Retention, with RTC				
	Consumption						
Electrical	Electrical Stop3 Power		MCU Retention	1.6 µA with RF/	MCU Retention		
Characteristics	Consumption	and RTC		and RTC			
	Operating Voltage	1.7 V~3.7 V (Typ.: 3.3 V)					
	Temperature	Storage: -55 ~ +125 ℃; Operating: -40 ~ +85 ℃					
	GPIO	26 (Configurab	e)	42 (Configurabl	e)		
	LCD	/		Configurable			
				8 x COM, 27 x SEG			
	UART	4		4			
	SPI	3		3			
Peripherals	I2C	3		3			
1 onphoraio	I2S	1		1			
	ADC	5		4			
	QSPI	0		1			
	DAC	1		1			
	LPUART	1		1 (Rx Only)			
	SWD	1		1			
Security	SM2/3/4	1	YES				
Cecurity	AES	HW		HW			
Package		QFN48, 6 x 6 x 0.9 mm QFN68, 8 x 8 x 0.9 mm			0.9 mm		

III Note:

Manual.

- 1. Compared to the ASR6601SE (ASR6601CB), the new part number ASR6601SER (ASR6601CBR) changes only in the RSTN pin function; the RSTN pin number remains the same. All other pins are the same as those of previous part numbers.
- 2. For the ASR6601SER (ASR6601CBR), the reset signal on the RSTN pin only resets main domain, and the Aon domain and Aonr domain keeps running. For the ASR6601SE (ASR6601CB), the reset signal on the RSTN pin will restart the whole chip, with the same function as power-on reset.
 As for the definition of the main domain, the Aon domain and the Aonr domain, please refer to Section 4.2: Power Supply Architecture in ASR6601 Reference
- 3. For the software reference design, the ASR6601SER (ASR6601CBR) can only be supported by the SDK v2.0.0 or the later versions. For more details, please refer to the SDK release note.

2.

System Description

2.1 Power Supply

ASR6601 has several separated power supply pins. With these separated power supply pins, the interference from digital parts of SoC to RF blocks is reduced.

ASRR6601 Power Grid is shown in the Figure 2-1:

- **VDD_IN**: The power supply for the PA in the RF transmitter.
- VBAT_RF: The power supply for the RF TRX, excluding the PA.
- **VDCC_RF**: The low power supply for RF TRX, which must be connected to VREG pin of SoC through the PCB.
- **VBAT_ESD0**: Power supply for digital IO.
- **VBAT_ESD1**: Power supply for digital IO.
- VBAT_ESD2: Power supply for digital IO.
- VBAT_ESD3: Power supply for digital IO.
- **VBAT DCC**: The power supply for DCDC.
- **VBAT_ESD_RTC**: The power supply for IOs in RTC domain.
- **VBAT_RTC**: The power supply for analog blocks in RTC domain.
- VBAT_ANA: The power supply for analog blocks.

Figure 2-1 LPWAN SoC Power Grid

2.2 Boot Mode

The boot mode can be configured by the levels of BOOT0 pin and the data in the Flash.

Table 2-1 Boot Mode Configuration

DebugLevel	UseFlashBoot0	FlashBoot0	BOOT0 pin	FlashBoot1	MainFlashEmpty	Boot Config
2	x	x	x	X	x	Boot from Flash Main
<2	0	x	0	X	0	Boot from Flash Main
<2	0	Х	0	Х	1	Boot from Bootloader
<2	0	Х	1	1	x	Boot from Bootloader
<2	0	Х	1	0	x	Boot from Sys SRAM
<2	1	1	x	X	0	Boot from Flash Main
<2	1	1	x	x	1	Boot from Bootloader
<2	1	0	х	1	х	Boot from Bootloader
<2	1	0	Х	0	х	Boot from Sys SRAM

- DebugLevel, UseFlashBoot0, FlashBoot0 and FlashBoot1 is the information area of the Flash, they can be modified according to the application.
 MainFlashEmpty is determined by the data of address 0 in the flash Main area. If the data in the address 0 of Flash Main area is 0xFFFFFFFF, the value of MainFlashEmpty is 1, otherwise the value of MainFlashEmpty is 0. BOOT0 pin is GPIO02 in the package.
- The boot mode is selected according to the configurations when the system is in these status: first powered up, exit the Standby mode or reset.

3. Electrical Characteristics

Electrical Characteristics include absolute maximum rating, recommended operating range, TRX performance, power consumption characteristics, ESD ratings and RSTN characteristics for the SoC and module.

3.1 Absolute Maximum Rating

Table 3-1 Absolute Maximum Rating

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	-0.3		3.9	V
Digital Input Voltage Level	Vin	-0.3		3.9	V
RF Input Power	Pin			+10	dBm

3.2 Recommended Operating Range

Table 3-2 Recommended Operating Range

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	1.7	3.3	3.7	V
RF Input Power	Pin			+10	dBm

3.3 TRX Performance

Table 3-3 TRX Performance

Parameter	Symbol	Conditions	Тур.	Max.	Unit
RX Sensitivity	RXS_L	LoRa, BW_L=125 KHz, SF=12 at 470 MHz	-138		dBm
	RXS_LB	LoRa, BW_L=125 KHz, SF=12, RX boost mode at 470 MHz	-139		dBm
TX Max Output Power	TXOP	Maximum TX output power with VBAT=3.3 V	22		dBm

3.4 Power Consumption Characteristics

Table 3-4 Power Consumption Characteristics

Parameter	Symbol	Conditions	Тур.	Max.	Unit
	IDD_Standby	Without RF/MCU Retention, with RTC	0.9		μΑ
SoC Core Supply Current on VBAT for Different Mode	IDD Others	With RF/MCU Retention and RTC (ASR6601SE/ ASR6601SER)	1.6		μΑ
	IDD_Stop3	With RF/MCU Retention and RTC (ASR6601CB/ ASR6601CBR)	1.3		μΑ
(VBAT=3.3 V)	IDD_Stop0	SoC Stop0 mode	125		μA
	IDD_LPrun	SoC Low-power Run mode	45		μA
	IDD_Run	SoC Run mode	3.7		mA
	IDD_OFF	All TRX blocks off	50		nA
	IDD_SL	TRX configuration retained	150		nA
	IDD_RX_L	RX LoRa 125 KHz with DCDC	4.6		mA
	IDD_RX_LB	RX Boosted LoRa 125 KHz with DCDC	5.1		mA
		Pout = +22 dBm	103		mA
		Pout = +20 dBm	91		mA
		Pout = +17 dBm	80		mA
SoC TRX Supply	IDD_TX (470	Pout = +14 dBm	71		mA
Current on VBAT	MHz)	Pout = +10 dBm	55		mA
in Different Mode		Pout = +20 dBm (TX OPT1)	81		mA
(VBAT=3.3 V)		Pout = +17 dBm (TX OPT2)	58		mA
,		Pout = +14 dBm (TX OPT3)	48		mA
		Pout = +22 dBm	112		mA
		Pout = +20 dBm	105		mA
		Pout = +17 dBm	86		mA
	IDD_TX (868	Pout = +14 dBm	80		mA
	MHz)	Pout = +10 dBm	67		mA
		Pout = +20 dBm (TX OPT1)	87		mA
		Pout = +17 dBm (TX OPT2)	62		mA
		Pout = +14 dBm (TX OPT3)	51		mA

Notes:

- IDD_Standby and IDD_Stop3 are tested at 25 degrees and the RCO32K is used as the RTC clk.
- 2. The XO32K block operates either in its normal mode or low-power mode. Through the proper design of XO32K PCB routing, the XO32K can work in its low-power mode, and in this case, the IDD current with the XO32K clk is as low as that with the RCO32K clk. For more details, please refer to ASR6601 Hardware Design Guide. Otherwise, the XO32K block shall only work in the normal mode, and the current will increase about 500nA compared with the low-power mode.
- SoC Core Supply Current refers to the power consumption of the Arm China STAR-MC1
 processor and SoC TRX Supply Current refers to the power consumption of the LPWAN
 RF Transceiver.

3.5 ESD Ratings

Table 3-5 ESD Ratings

Parameter	Symbol	Value	Unit	Test Condition / Ref.Standard
V Floatractatic Discharge	НВМ	±2000	V	JESD22-A114-F / JS-001
V _(ESD) Electrostatic Discharge	CDM	±800	V	JESD22-C101E / JS-002

3.6 RSTN characteristics

For ASR6601CB/ASR6601SE RSTN, the reset signal on RSTN pin restarts the whole chip including the main domain, the Aon domain and the Aonr domain, with the function as power-on reset.

With a slow rise or fall of the signal on the NRST pin when the VBAT is ready, a particular unwanted internal reset timing is generated, which will make the chip enter safe mode and erase the flash. The reference design of NRST is as below,

Figure 3-1 ASR6601CB/SE RSTN Circuit

Note:

- 1. The parallel resistance value is recommended to be 4.7K~10K, and the parallel capacitance value is recommended to be 300pF~10nF.
- 2. Different VDD power-on timings and unwanted reset timing must be avoided, or risks will arise. For more details, please refer to ASR6601 Hardware Design Guide.

For ASR6601CBR/ASR6601SER RSTN, the reset signal on RSTN pin only resets the main domain, which is different from the ASR6601CB/ASR6601SE RSTN.

The RSTN is controlled by an external switch or one GPIO from other MCU, which can be configured to open drain output mode or push pull output mode. The reference design of RSTN pin is as below:

Figure 3-2 ASR6601CBR/SER RSTN Circuit

Notes:

- 1. If MCU GPIO is configured to open drain output mode, the serial resistor may not be used, but the pull-up resistor is a must, otherwise the high RSTN will be HIZ.
- 2. ASR6601SER (ASR6601CBR) can only be supported by the SDK v2.0.0 or the later versions. For more details, please refer to the SDK release note.

4. Package and Pin Definition

4.1 ASR6601 QFN68

Below are two models of the ASR6601 in QFN68 package, which share the same pin definition, pin assignment and mechanical parameters.

Model	Flash	SRAM	Processor	Package	Frequency
ASR6601SE	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601SER	256 KB	64 KB	32-bit 48 MHz Arm China STAR-MC1	QFN68, 8*8 mm	150 ~ 960 MHz

4.1.1 ASR6601 QFN68 Pin Definition

Table 4-1 ASR6601 QFN68 Pin Definition

Pin No.	Pin Name	Pin Type	Description	Power Domain (V)
1	VR_PA	Ю	Regulated power amplifier	3.3
			supply	
2	VDD_IN	Power	Input voltage for power	3.3
			amplifier, VR_PA	
3	GND_PLL	Ground	Ground for PLL	3.3
4	XTA	IO_IN	XO32M for RF input	1.8
5	ХТВ	IO_IN	XO32M for RF input	1.8
6	PWR_TCXO	IO_OUT	Output power for TCXO supply	1.8
7	VBAT_RF	Power	Supply for RF	3.3
8	VDCC_RF	Power	DCDC input for RF	1.55
9	GPIO01	Ю	General-purpose input/output	3.3
10	GPIO00	Ю	General-purpose input/output	3.3
11	GPIO03	Ю	General-purpose input/output	3.3
12	GPIO02	Ю	General-purpose input/output	3.3
13	VBAT_ESD0	Power	Power supply for IO	3.3
14	GPIO06	Ю	SWD_DATA	3.3
15	GPIO07	Ю	SWD_CLK	3.3
16	GPIO16	Ю	General-purpose input/output	3.3
17	GPIO17	Ю	General-purpose input/output	3.3
18	GPIO14	Ю	General-purpose input/output	3.3
19	GPIO15	Ю	General-purpose input/output	3.3
20	GPIO23	Ю	General-purpose input/output	3.3

Pin No.	Pin Name	Pin Type	Description	Power Domain (V)
21	GPIO25	Ю	General-purpose input/output	3.3
22	GPIO24	Ю	General-purpose input/output	3.3
23	GPIO27	Ю	General-purpose input/output	3.3
24	VBAT_ESD1	Power	Power supply for IO	3.3
25	GPIO26	Ю	General-purpose input/output	3.3
26	GPIO29	Ю	General-purpose input/output	3.3
27	GPIO28	Ю	General-purpose input/output	3.3
28	GPIO30	Ю	General-purpose input/output	3.3
29	GPIO31	Ю	General-purpose input/output	3.3
30	GND_DCC	Ground	DCC ground	3.3
31	DCC_SW	Power	DCC Switcher Output	1.55
32	VBAT_DCC	Power	Supply for DCC	3.3
33	VREG	Power	Regulated output voltage from the internal LDO/DCC	1.55
34	GPIO62	Ю	General-purpose input/output	3.3
35	GPIO60	Ю	General-purpose input/output	3.3
36	GPIO59	Ю	General-purpose input/output	3.3
37	VBAT_ESD_RTC	Power	Power supply for IO	3.3
38	GPIO58	Ю	General-purpose input/output	3.3
39	RSTN_PIN	IO_IN	External reset pin	3.3
40	XO32K_IN	IO_IN	XO32K for MCU input	1.2
41	XO32K_OUT	IO_IN	XO32K for MCU input	1.2
42	VBAT_RTC	Power	Power supply for Analog	3.3
43	VBAT_ANA	Power	Power supply for Analog	3.3
44	VREFP	IO_IN	Power supply for IO	3.3
45	GPIO13	Ю	General-purpose input/output	3.3
46	GPIO12	Ю	General-purpose input/output	3.3
47	GPIO11	Ю	General-purpose input/output	3.3
48	GPIO08	Ю	General-purpose input/output	3.3
49	GPIO05	Ю	General-purpose input/output	3.3
50	GPIO04	Ю	General-purpose input/output	3.3
51	VBAT_ESD2	Power	Power supply for IO	3.3
52	GPIO09	Ю	General-purpose input/output	3.3
53	GPIO45	Ю	General-purpose input/output	3.3
54	GPIO44	Ю	General-purpose input/output	3.3
55	GPIO10	Ю	General-purpose input/output	3.3
56	GPIO42	Ю	General-purpose input/output	3.3
57	GPIO41	Ю	General-purpose input/output	3.3
58	GPIO40	Ю	General-purpose input/output	3.3
59	VBAT_ESD3	Power	Power supply for IO	3.3

Pin No.	Pin Name	Pin Type	Description	Power Domain (V)
60	GPIO37	Ю	General-purpose input/output	3.3
61	GPIO33	Ю	General-purpose input/output	3.3
62	GPIO32	Ю	General-purpose input/output	3.3
63	GPIO36	Ю	General-purpose input/output	3.3
64	GPIO35	Ю	General-purpose input/output	3.3
65	GPIO34	Ю	General-purpose input/output	3.3
66	RFI_P	Ю	RF receiver input	3.3
67	RFI_N	Ю	RF receiver input	3.3
68	RFO	Ю	RF transmitter output	3.3

4.1.2 ASR6601 QFN68 Pin Assignment

Figure 4-1 Pin Assignment of ASR6601 QFN68

4.1.3 ASR6601 QFN68 Mechanical Parameters

Figure 4-2 Package Outline Drawing of ASR6601 QFN68

4.2 ASR6601 QFN48

Below are two models of the ASR6601 in QFN48 package, which share the same pin definition, pin assignment and mechanical parameters.

Model	Flash	SRAM	Processor	Package	Frequency
ASR6601CB	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz
ASR6601CBR	128 KB	16 KB	32-bit 48 MHz Arm China STAR-MC1	QFN48, 6*6 mm	150 ~ 960 MHz

4.2.1 ASR6601 QFN48 Pin Definition

Table 4-2 ASR6601 QFN48 Pin Definition

Pin No.	Pin Name	Pin Type	Description	Power Domain (V)
1	VR_PA	Ю	Regulated power amplifier supply	3.3
2	VDD_IN	Power	Input voltage for power amplifier, VR_PA	3.3
3	GND_PLL	Ground	Ground for PLL	3.3
4	XTA	IO_IN	XO32M for RF input	1.8
5	XTB	IO_IN	XO32M for RF input	1.8
6	PWR_TCXO	IO_OUT	Output power for TCXO supply	1.8
7	VBAT_RF	Power	Supply for RF	3.3
8	VDCC_RF	Power	DCC input for RF	1.55
9	GPIO01	Ю	General-purpose input/output	3.3
10	GPIO00	Ю	General-purpose input/output	3.3
11	GPIO03	Ю	General-purpose input/output	3.3
12	GPIO02	Ю	General-purpose input/output	3.3
13	GPIO06	Ю	SWD_DATA	3.3
14	GPIO07	Ю	SWD_CLK	3.3
15	VBAT_ESD0	Power	Power supply for IO	3.3
16	GPIO16	Ю	General-purpose input/output	3.3
17	GPIO17	Ю	General-purpose input/output	3.3
18	GPIO14	Ю	General-purpose input/output	3.3
19	GPIO15	Ю	General-purpose input/output	3.3
20	GND_DCC	Ground	DCC ground	3.3
21	DCC_SW	Power	DCC Switcher Output	1.55
22	VBAT_DCC	Power	Supply for DCC	3.3
23	VREG	Power	Regulated output voltage from the internal LDO/DCC	1.55
24	GPIO62	Ю	General-purpose input/output	3.3

Pin No.	Pin Name	Pin Type	Description	Power Domain (V)
25	GPIO60	Ю	General-purpose input/output	3.3
26	GPIO59	Ю	General-purpose input/output	3.3
27	GPIO58	Ю	General-purpose input/output	3.3
28	RSTN_PIN	IO_IN	External reset pin	3.3
29	XO32K_IN	IO_IN	XO32K for MCU input	1.2
30	XO32K_OUT	IO_IN	XO32K for MCU input	1.2
31	VBAT_RTC	Power	Power supply for Analog	3.3
32	VBAT_ANA	Power	Power supply for Analog	3.3
33	GPIO11	Ю	General-purpose input/output	3.3
34	GPIO08	Ю	General-purpose input/output	3.3
35	GPIO05	Ю	General-purpose input/output	3.3
36	GPIO04	Ю	General-purpose input/output	3.3
37	GPIO09	Ю	General-purpose input/output	3.3
38	GPIO47	Ю	General-purpose input/output	3.3
39	VBAT_ESD3	Power	Power supply for IO	3.3
40	GPIO45	Ю	General-purpose input/output	3.3
41	GPIO44	Ю	General-purpose input/output	3.3
42	GPIO10	Ю	General-purpose input/output	3.3
43	GPIO37	Ю	General-purpose input/output	3.3
44	GPIO33	Ю	General-purpose input/output	3.3
45	GPIO32	Ю	General-purpose input/output	3.3
46	RFI_P	Ю	RF receiver input	3.3
47	RFI_N	Ю	RF receiver input	3.3
48	RFO	Ю	RF transmitter output	3.3

4.2.2 ASR6601 QFN48 Pin Assignment

Figure 4-3 Pin Assignment of ASR6601 QFN48

4.2.3 ASR6601 QFN48 Mechanical Parameters

Figure 4-4 Package Outline Drawing of ASR6601 QFN48

4.3 **GPIO Function MUX Table**

Table 4-3 GPIO Function MUX Table -I

GPIO No.	Fun=0	Fun=1	Fun=2	Fun=3
GPIO00	GPIO_PORTA_0	UART0_RXD	UART0_TXD	UART0_SIR_OUT
GPIO01	GPIO_PORTA_1	UART0_TXD	UART0_RXD	UART0_SIR_IN
GPIO02	GPIO_PORTA_2	UART0_CTS	I2S_DI	I2C0_SCL
GPIO03	GPIO_PORTA_3	UART0_RTS	I2S_DO	I2C0_SDA
GPIO04	GPIO_PORTA_4	UART1_RXD	UART1_TXD	UART1_SIR_OUT
GPIO05	GPIO_PORTA_5	UART1_TXD	UART1_RXD	UART1_SIR_IN
GPIO06	GPIO_PORTA_6	UART1_CTS	SWD	I2C1_SCL
GPIO07	GPIO_PORTA_7	UART1_RTS	SWC	I2C1_SDA
GPIO08	GPIO_PORTA_8	UART2_RXD	UART2_TXD	UART2_SIR_OUT
GPIO09	GPIO_PORTA_9	UART2_TXD	UART2_RXD	UART2_SIR_IN
GPIO10	GPIO_PORTA_10	UART2_CTS		I2C2_SCL
GPIO11	GPIO_PORTA_11	UART2_RTS		I2C2_SDA
GPIO12	GPIO_PORTA_12	UART3_RXD	UART3_TXD	UART3_SIR_OUT
GPIO13	GPIO_PORTA_13	UART3_TXD	UART3_RXD	UART3_SIR_IN
GPIO14	GPIO_PORTA_14	UART3_CTS		I2C0_SCL
GPIO15	GPIO_PORTA_15	UART3_RTS		I2C0_SDA
GPIO16	GPIO_PORTB_0	UART0_RXD	UART0_TXD	UART0_SIR_OUT
GPIO17	GPIO_PORTB_1	UART0_TXD	UART0_RXD	UARTO_SIR_IN
GPIO23	GPIO_PORTB_7	UART1_RTS		I2C2_SDA
GPIO24	GPIO_PORTB_8	UART2_RXD	UART2_TXD	UART2_SIR_OUT
GPIO25	GPIO_PORTB_9	UART2_TXD	UART2_RXD	UART2_SIR_IN
GPIO26	GPIO_PORTB_10	UART2_CTS	LPTIM1_IN2	I2C0_SCL
GPIO27	GPIO_PORTB_11	UART2_RTS	LPTIM1_OUT	I2C0_SDA
GPIO28	GPIO_PORTB_12	UART3_RXD	UART3_TXD	UART3_SIR_OUT
GPIO29	GPIO_PORTB_13	UART3_TXD	UART3_RXD	UART3_SIR_IN
GPIO30	GPIO_PORTB_14	UART3_CTS	QSPI_IO1	I2C1_SCL
GPIO31	GPIO_PORTB_15	UART3_RTS	QSPI_IO2	I2C1_SDA
GPIO32	GPIO_PORTC_0	UART0_RXD	UART0_TXD	UART0_SIR_OUT
GPIO33	GPIO_PORTC_1	UART0_TXD	UART0_RXD	UARTO_SIR_IN
GPIO34	GPIO_PORTC_2	UARTO_CTS		I2C2_SCL
GPIO35	GPIO_PORTC_3	UART0_RTS		I2C2_SDA
GPIO36	GPIO_PORTC_4	UART1_RXD	UART1_TXD	UART1_SIR_OUT
GPIO37	GPIO_PORTC_5	UART1_TXD	UART1_RXD	UART1_SIR_IN
GPIO40	GPIO_PORTC_8	UART2_RXD	UART2_TXD	UART2_SIR_OUT
GPIO41	GPIO_PORTC_9	UART2_TXD	UART2_RXD	UART2_SIR_IN
GPIO42	GPIO_PORTC_10	UART2_CTS		I2C1_SCL

GPIO No.	Fun=0	Fun=1	Fun=2	Fun=3
GPIO44	GPIO_PORTC_12	UART3_RXD	UART3_TXD	UART3_SIR_OUT
GPIO45	GPIO_PORTC_13	UART3_TXD	UART3_RXD	UART3_SIR_IN
GPIO47	GPIO_PORTC_15	UART3_RTS	LPUART_TX	I2C2_SDA
GPIO58	GPIO_PORTD_10	RTC_TAMPER	LPTIM_IN1	RTC_IO_OUT
GPIO59	GPIO_PORTD_11	RTC_WAKEUP0	LPTIM_ETR	LORA_RF_SWITCH
GPIO60	GPIO_PORTD_12	RTC_WAKEUP1	LPUART_RX	LORA_RF_SWITCH
GPIO62	GPIO_PORTD_14	LPTIM_IN2	LPUART_RX	LPTIM_ETR

Table 4-4 GPIO Function MUX Table -II

GPIO No.	Fun=4	Fun=5	Fun=6	Fun=7	Analog
GPIO00	SSP0_CLK		GPTIM0_CH0	GPTIM0_ETR	
GPIO01	SSP0_NSS	I2S_MCLK	GPTIM0_CH1	GPTIM2_ETR	
GPIO02	SSP0_TX		GPTIM0_CH2	GPTIM2_CH0	
GPIO03	SSP0_RX		GPTIM0_CH3	GPTIM2_CH1	
GPIO04	SSP1_CLK	I2S_WS_IN	I2S_WS_OUT	GPTIM3_ETR	COM4/SEG23 ADC_IN3
GPIO05	SSP1_NSS	MCO	GPTIM0_CH0	GPTIM0_ETR	COMP0_INN COM5/SEG22 ADC_IN2
GPIO06	SSP1_TX		I2S_SCLK_IN	I2S_SCLK_OUT	
GPIO07	SSP1_RX			LPTIM_OUT	
GPIO08	SSP2_CLK		GPTIM1_CH0	GPTIM3_CH0	COMP0_INP SEG6 ADC_IN1
GPIO09	SSP2_NSS	COMP1_OUT	GPTIM1_CH1	GPTIM3_CH1	SEG14 DAC_OUT
GPIO10	SSP2_TX		GPTIM0_CH0	GPTIM0_ETR	COM3/SEG24 OPA0_OUT
GPIO11	SSP2_RX		GPTIM1_CH2	LPTIM_ETR	COMP0_OUT ADC_IN0
GPIO12	LPTIM1_ETR	EVENT_OUT	GPTIM1_CH3	LPTIM_IN2	SEG13 XO24M_IN
GPIO13	LPTIM1_IN1				SEG12 XO24M_OUT
GPIO14	LPTIM1_IN2	COMP0_OUT	GPTIM0_CH1		COM7/SEG20
GPIO15	LPTIM1_OUT	COMP1_OUT	GPTIM1_CH0	GPTIM3_CH0	COM6/SEG21
GPIO16	LPTIM1_ETR	I2S_MCLK	GPTIM1_CH1	GPTIM3_CH1	SEG0
GPIO17	LPTIM1_IN1	I2S_SCLK_IN	I2S_SCLK_OUT	LPTIM_IN1	SEG1
GPIO23	SSP0_RX				SEG2

GPIO No.	Fun=4	Fun=5	Fun=6	Fun=7	Analog
GPIO24	SSP1_CLK				SEG3
GPIO25	SSP1_NSS				SEG4
GPIO26	SSP1_TX				SEG5
GPIO27	SSP1_RX	MCO			SEG7
GPIO28	SSP2_CLK	QSPI_NSS	GPTIM1_CH0	GPTIM3_CH0	SEG8
GPIO29	SSP2_NSS		GPTIM1_CH1	GPTIM3_CH1	SEG9
GPIO30	SSP2_TX		GPTIM1_CH2	GPTIM3_ETR	SEG10
GPIO31	SSP2_RX		GPTIM1_CH3	GPTIM2_ETR	SEG11
GPIO32	QSPI_IO2				COMP1_OUT
GPIO33	QSPI_IO1				COMP1_INN
GPIO34	QSPI_IO3				SEG19 OPA2_OUT
GPIO35	QSPI_CLK				SEG18 OPA2_INN
GPIO36	QSPI_IO0	COMP0_OUT			SEG17 OPA2_INP
GPIO37	QSPI_NSS				COMP1_INP
GPIO40	QSPI_IO3	МСО		GPTIM1_ETR	COM0 OPA1_OUT
GPIO41	QSPI_CLK	EVENT_OUT		GPTIM2_CH1	COM1/SEG26 OPA1_INN
GPIO42	QSPI_IO0				COM2/SEG25 OPA1_INP
GPIO44	SSP0_CLK		GPTIM1_ETR		SEG16 OPA0_INN
GPIO45	SSP0_NSS		GPTIM1_CH0	GPTIM3_CH0	SEG15 OPA0_INP
GPIO47	SSP0_RX		GPTIM1_CH2	GPTIM2_CH0	ADC_IN7
GPIO58	LPTIM1_ETR	LPUART_RX	LORA_RF_SWITCH		
GPIO59	LPTIM1_IN2	LPUART_RTS			
GPIO60	LPTIM1_IN1	LPTIM_IN2			
GPIO62	LPTIM1_IN2	RTC_WAKEUP1			