Evolutionary Computation Techniques for Constructing SAT-based Attacks in Algebraic Cryptanalysis

Artem Pavlenko¹, Alexander Semenov² and Vladimir Ulyantsev¹

¹ ITMO University, St. Petersburg, Russia ² Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia {alpavlenko, ulyantsev}@corp.ifmo.ru

Introduction

- Algebraic cryptanalysis is a way of breaking ciphers through solving systems of **algebraic equations** over finite fields. This system of equations can be simplified by guessing the values of some of its variables.
- An algebraic attack that uses some **guessed bit set** to simplify the system of cryptanalysis equations is called a guess-and-determine attack.
- Previously tabu search and simulated annealing have been used to construct a guess-and-determine attack [Semenov et al. 2018].
- We propose to apply **evolutionary algorithms** with additional heuristics for this purpose.

Highlights

- We use (1+1)-EA and GA to construct SAT-based guess-and-determine attacks on cryptographic ciphers.
- We propose a sample size **adaptation strategy** to increase the number of individuals that the algorithm processes during a fixed time budget.
- **Backdoors** have been found, some of them are better than those found earlier, but estimation of breaking time is still very long.

Evolutionary Algorithms Application to Backdoors Construction

10²⁰ 10¹⁹ 10¹⁸ 10¹⁶ 10¹⁴ 10¹³ 10¹² 10¹²

100

Evolutionary algorithm iteration

50

150

200

Dynamic adaptation of the sample size

	Tabu Search		EA (1+1)		GA (Elitism)	
	B	Estimation of breaking time (s)	B	Estimation of breaking time (s)	B	Estimation of breaking time (s)
Trivium-Toy 64/75	17	4.30e+07	21	3.19e+07	22	5.36e+07
Trivium-Toy 96/100	34	3.14e+12	33	1.28e+13	40	2.09e+12
Bivium 177/200	40	4.29e+12	32	2.60e+12	39	1.49e+12
ASG 72/76	8	5601.33	9	5604.8	8	6155.19
ASG 96/112	14	3.95e+06	13	6.76e+06	16	3.72e+06
ASG 192/200	47	1.14e+16	47	2.27e+18	44	2.84e+17

Experimental results

Solver:

EA (1+1):

GA (Elitism):

• SAT-solver – ROKK

probability 0.2

 time limit – 10 seconds for one SAT-instance

Algorithms details

standard bit mutation

• stagnation limit = 300

population size N = 10

standard bit mutation

uniform crossover with

Adaptation strategy:

- algorithm starts with Monte-Carlo
 sample size M = 10
- M is gradually increases to 1000 with the decrease of the fitness value