Álgebra II. Hoja de ejercicios 5: Localización, anillos locales, anillos noetherianos Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Sean R un anillo conmutativo, $U \subseteq R$ un subconjunto multiplicativo $y \phi \colon R \to R[U^{-1}]$ el homomorfismo canónico de localización.

- 1) Para un ideal primo $\mathfrak{p} \subset R$ tal que $\mathfrak{p} \cap U = \emptyset$ compruebe directamente que el ideal $\mathfrak{p}R[U^{-1}] \subset R[U^{-1}]$ (es decir, que $\mathfrak{p}R[U^{-1}] \neq R[U^{-1}]$ y $\frac{r}{u} \cdot \frac{s}{v} \in \mathfrak{p}R[U^{-1}]$ implica $\frac{r}{u} \in \mathfrak{p}R[U^{-1}]$ o $\frac{s}{v} \in \mathfrak{p}R[U^{-1}]$).
- 2) Para un ideal primo $\mathfrak{q} \subset R[U^{-1}]$ compruebe directamente que $\phi^{-1}(\mathfrak{q}) \cap U = \emptyset$ (use la definición original de ideales primos).

Ejercicio 2. He aquí una generalización de las ideas que hemos ocupado para caracterizar los ideales en $R[U^{-1}]$. Para un homomorfismo de anillos $f: R \to S$ e ideales $I \subseteq R$, $J \subseteq S$ definamos

$$I^e := f(I) S \subseteq S$$
, $J^c := f^{-1}(J) \subseteq R$

(el ideal I^e se llama la **extensión** de I y el ideal J^c se llama la **contracción** de J). Verifique las siguientes propiedades de estas operaciones:

- 1) Si $I_1 \subseteq I_2$, entonces $I_1^e \subseteq I_2^e$.
- 2) Si $J_1 \subseteq J_2$, entonces $J_1^c \subseteq J_2^c$.
- 3) $(J_1 \cap J_2)^c = J_1^c \cap J_2^c$.
- 4) $I \subseteq I^{ec}$, $J \supseteq J^{ce}$. Encuentre ejemplos cuando las inclusiones son estrictas.
- 5) $I^c = I^{cec}$, $I^e = I^{ece}$.

Ejercicio 3. Sea $n = p_1^{k_1} \cdots p_s^{k_s}$. Describa los ideales primos en el anillo

$$\mathbb{Z}\left[\frac{1}{n}\right] := \left\{\frac{a}{n^k} \mid a \in \mathbb{Z}, \ k = 0, 1, 2, 3, \ldots\right\}.$$

Anillos locales

Ejercicio 4. Sea R un anillo local y sea \mathfrak{m} su único ideal maximal. Demuestre que para cualquier $x \in R$ se cumple $x \in R^{\times}$ o $1 - x \in R^{\times}$.

Ejercicio 5. Demuestre que un anillo es local si y solo si todos los elementos no invertibles en R forman un ideal.

Ejercicio 6. *Sea k un cuerpo.*

- 1) Demuestre que el anillo de series formales k[X] es local y su ideal maximal es (X). Indicación: véase el ejercicio anterior.
- 2) Demuestre que si R es un anillo local con ideal maximal \mathfrak{m} , entonces R[X] es también local con ideal maximal $\mathfrak{m} + (X)$.
- 3) Use la parte anterior para probar que $k[X_1, \ldots, X_n]$ es local y su ideal maximal es (X_1, \ldots, X_n) .

Ejercicio 7. Demuestre que si R es un anillo local, entonces el cociente R/I por cualquier ideal $I \subseteq R$ es también un anillo local.

Anillos noetherianos

Ejercicio 8. Sea R un anillo conmutativo noetheriano y $U \subseteq R$ un subconjunto multiplicativo. Demuestre que la localización $R[U^{-1}]$ es también un anillo noetheriano.

Ejercicio 9. *Se dice que un anillo es artiniano** *si toda cadena* descendente *de ideales*

$$R \supseteq I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$$

se estabiliza. Note que $\mathbb Z$ es un anillo noetheriano, pero no es artiniano.

^{*}Еміl Artin (1898–1962), algebrista y teórico de números alemán.