CS 3313 Foundations of Computing:

Universal Turing Machine, Properties of RE Languages

http://gw-cs3313.github.io

1

© Narahari 2022

© Some slides courtesy of Hopcroft & Ullman

Recap...

- Turing Machine model
 - TM as an automaton/ acceptor of languages
 - TMs to compute functions
 - TM "programming" techniques
 - Storage in the state, Checking symbols, Subroutines...
- Modifications to the basic TM model
 - Multi-tape, Non-deterministic TMs
- Definition thus far: A turing machine computes one function
 - a special purpose computer ?
- Next...Turing machines that operate as General purpose "reprogrammable" turing machines...the Universal Turing Machine

Important: You should be reading the textbook (or other textbooks)

2

"General purpose Turing machine"

- A Turing machine that can "execute" (simulate) any Turing machine sent as input
- but input to a TM is a string.....therefore
 need to describe/encode a TM as a string
 a TM is a "function" therefore we are encoding a
 program!
- General purpose TM known as Universal Turing Machine (UTM)

Universal Turing Machine (UTM)

- Input to a universal Turing machine is a description of a Turing machine M and the input w
 - UTM will simulate the behavior of M on input w
 - UTM accepts if and only if M accepts w
- Input to TMs (and other automata models) are strings over some alphabet.....*Therefore input to UTM is a string that describes another turing machine M!*
 - First step: Design an unique encoding scheme to encode each TM M
- Once we have a way to encode, a collection of Turing machines = set of strings....i.e,. A language!
 - Machines and languages the same ????

Binary-Strings from TM's

- We restrict ourselves to TM's with input alphabet {0, 1}.
- Important result/Theorem: Given a Turing machine with tape alphabet Γ (consisting of k symbols) there is an equivalent turing machine with tape alphabet $\{0,1,B\}$
- One simple proof: If we have k tape symbols, then use a binary encoding (using m = log k bits) and use a m-track tape!!
- Every Turing machine has a finite number of states n
 - Without loss of generality, let these states be numbered $q_1,q_2,\ldots q_n$
 - wlog, let start state = q_1 and one final state q_2
 - If we have multiple final states then add transition to new final state q_2
- At each move the TM moves its tape head in direction D_1 =L or D_2 = R

6

Binary-Strings from TM's

- Assign positive integers to the three classes of elements involved in moves:
 - 1. States: q_1 (start state), q_2 (final state), q_3 , ... q_i ,... q_n
 - 2. Tape Symbols $X_1(0)$, $X_2(1)$, $X_3(blank)$, X_4 , ...
 - 3. Directions D_1 (L) and D_2 (R).
- Suppose $\delta(q_i, X_j) = (q_k, X_l, D_m)$
- Represent this transition rule by string 0ⁱ10^j10^k10^l10^m.
- Key point: since integers i, j, ... are all > 0, there cannot be two consecutive 1's in these strings.

Ex.: $\delta(q_2, X_1) = (q_4, X_3, D_2)$ encoded as:

7

8

The Turing Machine M as encoded as a Binary String <M>

- A Turing Machine is defined as $M=(Q, \Sigma, \Gamma, \delta, q_1, F)$
 - $F=\{q_2\}$ Tape movement $\{D_1=L, D_2=R\}$
 - $\delta(q_i, X_j) = (q_k, X_l, D_m)$ represented by string $0^i 10^j 10^k 10^l 10^m$.
- Set of all transitions is now a set of codes
- To represent the entire TM by one string, we need to look at *separators*: what strings can we use to separate the codes of each δ

Important: The textbook uses a different but equivalent encoding which switches the role of the 0's and 1's.

• $\delta(q_i, X_j) = (q_k, X_l, D_m)$ represented by string $l^i 0 l^j 0 l^k 0 l^l 0 l^m$

8

The Turing Machine M as encoded as a Binary String <M>

- A Turing Machine is defined as $M=(Q, \Sigma, \Gamma, \delta, q_1, F)$
 - $F= \{ q_2 \}$ Tape movement $\{D_1=L, D_2=R\}$
 - $\delta(q_i, X_j) = (q_k, X_l, D_m)$ represented by string $0^i 10^j 10^k 10^l 10^m$.
- Represent the TM by concatenating the codes for each of its moves, separated by 11.
 - That is: Code₁11Code₂11Code₃11 ...
- Start and end of the TM specified by 111
 - Ex: <M $> = 111010100010010110^{i}10^{i}10^{i}10^{k}10^{l}10^{m}11.....111$

9

Important Property: Enumeration

- Recall our discussions (from Lab review) that we can enumerate binary strings
 - Ex: we can convert binary strings to integers by prepending a 1 and treating the resulting string as a base-2 integer.
 - Recall we can convert binary strings to integers by prepending a 1 and treating the resulting string as a base-2 integer.
- Therefore, given an encoding <*M*> of a Turing machine we can talk of the *i-th* Turing Machine
- Note: if *i* makes no sense as a TM, assume the *i-th* TM accepts nothing.

Exercise: Encoding of Turing Machines

- M= ($\{q_1, q_2, q_3\}, \{0,1\}, \{0,1,B\}, \delta$, $q_1, \{q_2\}$)
- $\delta(q_1,1)=(q_3, 0, R)$
- $\delta(q_3,0) = (q_1, 1, R)$
- $\delta(q_3,1) = (q_2, 0, R)$
- $\delta(q_3, B) = (q_3, 1, L)$
- Question: Show the encoding of this Turing machine.

UTM: A Universal Turing Machine

- Input to the UTM is description of turing machine M and the input *w* to M.
- UTM simulates the behavior of M on input w
- Input: <*M*,*w*>
 - Encoding: Encode M and after the second set of 111, we place the input string w.
- What's happening here: Input to the UTM is a Program P (represented in binary) and the input to the program,

We want the UTM to execute the program M

12

11

Designing the UTM

■ Inputs are of the form:

Code for 111 M 111 w

- Note: A valid TM code never has 111, so we can split M from w.
- The UTM must accept its input if and only if M is a valid TM code *and* TM M accepts w.

13

14

The UTM - (2)

- The UTM will have several tapes.
- Tape 1 holds the input *M*, *w*
- Tape 2 holds the tape of M
 - Simulates the tape of M on input w
- Tape 3 holds the state of M
 - Recall that each state is encoded in unary
 - If M is in state k, then Tape 3 contains 0^k

14

The UTM - (3)

- Step 1: The UTM checks that M is a valid code for a TM.
 - E.g., all moves have five components, no two moves have the same state/symbol as first two components.
- If M is not valid, its language is empty, so the UTM immediately halts without accepting.

15

The UTM - (4)

- Step 2: The UTM examines M to see how many of its own tape squares it needs to represent one symbol of M.
 - Note: this can be skipped if we use the property that the input TM M has a tape alphabet $\{0,1,B\}$
- Step 3: Initialize Tape 2 to represent the tape of M with input w, and initialize Tape 3 to hold the start state.

16

The UTM - (5)

- Step 4: Simulate M.
 - Look for a move on Tape 1 that matches the state on Tape 3 and the tape symbol under the head on Tape 2.
 - How: key-value lookup !!!
 - If found, change the symbol and move the head marker on Tape 2 and change the State on Tape 3.
 - If M accepts, the UTM also accepts.

17

The Universal Turing Machine

- The UTM is also a Turing machine.....
- So what happens if we input code of U to the UTM?
 - <*U*, *w*>

18

• Cool fact: this is an encoding of itself!!!

UTMs, Computing, and General Purpose Computers

- An algorithm is equivalent to a Turing machine
- A UTM is a reprogrammable Turing machine....equivalent to a General Purpose Computer that can execute any algorithm/program
- So how about the von Neumann model of computer architecture:
 - Control Unit
 - · Instruction Set
 - Memory
 - A program is a set of Instructions in memory
 - Execution = instruction execution cycle

Random Access Machines (RAM) and TM

- RAM is the theoretical model of von Neumann machines
- Registers, Memory, Instructions
- Instructions are encoded in binary
 - Piece of cake after Architecture ©
- Memory organized as a set of locations
 - · Location has address, and each location has content
- Read/Write to Memory.....??
- Program counter contains address of instruction to be executed...
 - · Read content from this address
- Instruction processing cycle:
 - · Decode the instruction
 - Execute instruction

20

Store result back to registers or memory

Random Access Machines (RAM) and TM

- Memory organized as a set of locations
 - · Location has address, and each location has content
- How do we fetch contents from memory address x_i ? Name-Value (key-value) lookup!!!!
- How do we write content y_i to memory address x_i Insert into Name-Value stores !!!

Simulation of RAM on TM

- Write subroutine for each instruction
 - For LC3: Subroutine for Add, AND, NOT, Load (Read), Store(Write)
 - Conditional: easycheck symbol and branch to a state!
- Use a multi-tape TM to simulate a RAM.
- Tape 1 holds the memory
- v_i is contents in binary of the *i-th* word in memory
 - At all times, there will be a finite number of words used by the machine

•

$$\#0 * v_1 \# I * v_2 \# 2 * v_2 \# \# i * v_i \# ...$$

Tape 1....memory!

Simulation of RAM on TM (2)

- A computer has a finite number of registers....
- We use one tape to hold each register's contents
- Instruction to be fetched is stored in a program counter (location counter)....use on tape to hold the program counter
 - This contains the number of the word from which the next instruction is taken
- We may need to read/write data to memory...address is in Memory Address Register (MAR)...

Use one tape to hold the memory address register

Fetch Instruction, Decode, Execute (go to subroutine), Store result!

Taking stock of where we are now....

- Turing machine model and modifications
 - Non-deterministic TM equal in computer power to Deterministic
 - But equivalence of time efficiency (P=NP) unknown
- Concept and design of a Universal Turing machine a general purpose reprogrammable computer!
- Turing-Church Thesis: Any problem that can be solved on a computer can be solved on a Turing machine
 - This is not exactly how the thesis is stated!
- Question: Are there problems that are not solvable by a Turing machine
 - Are there problems for which no algorithms exist?

Problems

- Informally, a (decision) "problem" is a yes/no question about an infinite set of possible *instances*.
- Example 1: "Does graph G have a *Hamilton cycle* (cycle that touches each node exactly once)?
 - Each undirected graph is an instance of the "Hamilton-cycle problem."
- Example 2: "Is graph G *k*-colorable?
 - Each undirected graph, and value *k*, is an instance of the "graph coloring problem."

25

Problems – (2)

- Formally, a problem is a language.
- Each string encodes some instance.
- The string is in the language if and only if the answer to this instance of the problem is "yes."

26

Recall Definitions

 Recursive Language: A language L is recursive if there is a Turing machine that accepts the language and halts on all inputs

- Recursively Enumerable Language: if there is a Turing machine that accepts the language by halting when the input string is in the language
 - The machine may or may not halt if the string is not in the language

Decidable Problems

28

- A problem is *decidable* if there is an algorithm to answer it.
 - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
 - Put another way, "decidable problem" = "recursive language."
- Otherwise, the problem is *undecidable*.

28

Closure Properties of Recursive and RE Languages

- Next topic is Decidability
 - Review Lab notes on Math review diagonalization etc.
- First let's look at closure properties of these classes of languages
- <u>Both closed under union, concatenation, star, reversal, intersection, inverse homomorphism.</u>
- Recursive closed under difference, complementation.
- RE closed under homomorphism.
- Observe: To prove the closure properties we have to construct a Turing machine, i.e., an algorithm (!!!), to accept the language
 - Construction will be shown using a flowchart
 - Getting more and more like programming!

29