

یادگیری عمیق

مدرس: محمدرضا محمدی بهار ۱۴۰۲

یادگیری بازنمایی

Representation Learning

یادگیری بازنمایی مقابلهای (Contrastive)

یادگیری بازنمایی مقابلهای (Contrastive)

یک فرمولاسیون برای یادگیری مقابلهای

,

• میخواهیم با استفاده از آموزش یک کدگذار، ویژگیهای مربوط به تصویر مرجع و تصویر منفی مرجع و تصویر منفی دور باشند

 $\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$

 x^+ reference x^+ positive

 x^- negative

 x^{-}

یک فرمولاسیون برای یادگیری مقابلهای

• تابع ضرر برای حالتی که یک نمونه مثبت و N-1 نمونه منفی داشته باشیم:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$
 $x_1^ x_2^ x_3^-$

...

یک فرمولاسیون برای یادگیری مقابلهای

- تابع ضرر برای حالتی که یک نمونه مثبت و N-1 نمونه منفی داشته باشیم:
 - شبیه به Softmax و Crossentropy
 - به نام ضرر InfoNCE شناخته می شود

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

SimCLR

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

- از فاصله کسیونوسی به عنوان تابع امتیاز استفاده می کند
 - نمونههای مثبت با استفاده از دادهافزایی تولید میشوند

• از شبکه Projection Network) g برای نگاشت ویژگیها به فضایی که مقایسه انجام شود استفاده می کند

Maximize agreement Representation → $ilde{oldsymbol{x}}_j$ $ilde{oldsymbol{x}}_i$

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = oldsymbol{z}_i^ op oldsymbol{z}_j/(\|oldsymbol{z}_i\|\|oldsymbol{z}_j\|)$ # pairwise similarity end for **define** $\ell(i,j)$ **as** $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

SimCLR

SimCLR

= classification label for each row

Mathad	A malaita atauma	Label fraction							
Method	Architecture	1% To	10% op 5						
Supervised baseline	ResNet-50	48.4	80.4						
Methods using other label-propagation:									
Pseudo-label	ResNet-50	51.6	82.4						
VAT+Entropy Min.	ResNet-50	47.0	83.4						
UDA (w. RandAug)	ResNet-50	-	88.5						
FixMatch (w. RandAug)	ResNet-50	-	89.1						
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2						
Methods using representa	Methods using representation learning only:								
InstDisc	ResNet-50	39.2	77.4						
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8						
PIRL	ResNet-50	57.2	83.8						
CPC v2	ResNet-161(*)	77.9	91.2						
SimCLR (ours)	ResNet-50	75.5	87.8						
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2						
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6						

Table 7. ImageNet accuracy of models trained with few labels.

SimCLR: یادگیری نیمهنظارتی ـ

• یادگیری بازنمایی توسط تمام تصاویر ImageNet انجام شده است

• سپس، با درصد کمی از نمونههای دارای برچسب تنظیم دقیق شده است

Projection Linear None None Projection output dimensionality

Projection Head :SimCLR

- نگاشت خطی و غیرخطی باعث بهبود یادگیری بازنمایی شدهاند
 - توضيح احتمالي:
- هدف یادگیری مقابلهای ممکن است اطلاعات مفید را برای کارهای پاییندستی (downstream) حذف کند
- فضای بازنمایی z به گونهای آموزش داده شده است که نسبت به تبدیل دادهها نامتغیر باشد
- با حذف g، اطلاعات بیشتری را میتوان در فضای نمایش h حفظ کرد

Batch Size :SimCLR

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch. 10

- اندازه دسته و همچنین تعداد دوره اثر زیادی در عملکرد بازنماییهای آموخته شده دارند
- اندازه دسته بزرگ نیاز به حافظه بسیار زیاد در زمان آموزش ایجاد می کند

یادگیری مقابلهای تکانهای (MOCO)

- تفاوتهای کلیدی با SimCLR:
- یک صف پویا از کلیدها (نمونه های منفی) نگهداری میشود
- محاسبه گرادیانها و بهروزرسانی تنها برای کدگذار query انجام می شود
- اندازه mini-batch از تعداد کلیدها جدا می شود؛ می تواند تعداد زیادی نمونه منفی را پشتیبانی کند
- کدگذار مربوط به کلیدها به صورت آهسته و با استفاده از قاعده بهروزرسانی تکانهای بهروز می شود:

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
                                     queue: dictionary as a queue of K keys (CxK)
                                      m: momentum
                                    # t: temperature
Generate N positive pairs by
                                    f_k.params = f_q.params # initialize
                                    for x in loader: # load a minibatch x with N samples
sampling data augmentation -
                                      x q = auq(x) # a randomly augmented version
                                       x_k = aug(x) # another randomly augmented version
functions
                                       q = f_q.forward(x_q) # queries: NxC
                                       k = f_k.forward(x_k) # keys: NxC
            Encode samples
                                       k = k.detach() # no gradient to keys
                                       # positive logits: Nx1
                                       l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
                                                                                        Use the running queue of
                                        negative logits: NxK
                                                                                        keys as the negative samples
                                       l_neg = mm(q.view(N,C), queue.view(C,K))
                                       # logits: Nx(1+K)
                                       logits = cat([l_pos, l_neg], dim=1)
                                                                                          InfoNCE loss
                                       # contrastive loss, Eqn.(1)
                                       labels = zeros(N) # positives are the 0-th
                                       loss = CrossEntropyLoss(logits/t, labels)
                                       # SGD update: query network
                                       loss.backward()
                                       update (f_q.params)
        Update f k through
                                        momentum update: key network
                                       f_k.params = m*f_k.params+(1-m)*f_q.params
        momentum
                                                                                                 Update the FIFO negative
                                       # update dictionary
                                       enqueue(queue, k) # enqueue the current minibatch
                                                                                                 sample queue
                                       dequeue(queue) # dequeue the earliest minibatch
```

MOCO V2

- یک ایده ترکیبی از SimCLR و MOCO:
- از SimCLR: نگاشت غیرخطی و دادهافزایی قوی
- از MOCO: بهروزرسانی مبتنی بر تکانه که اجازه آموزش با تعداد نمونه منفی زیاد بر روی حافظه محدود را میدهد

	unsup. pre-train				ImageNet	VOC detection		
case	MLP	aug+	cos	epochs	acc.	AP_{50}	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	\checkmark		200	67.3	82.5	57.2	63.9
(d)	✓	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

MOCO V2

- یک ایده ترکیبی از SimCLR و MOCO:
- از SimCLR: نگاشت غیرخطی و دادهافزایی قوی
- از MOCO: بهروزرسانی مبتنی بر تکانه که اجازه آموزش با تعداد نمونه منفی زیاد بر روی حافظه محدود را میدهد

		ImageNet							
case	MLP	aug+	cos	epochs	batch	acc.			
MoCo v1 [6]				200	256	60.6			
SimCLR [2]	✓	\checkmark	\checkmark	200	256	61.9			
SimCLR [2]	✓	\checkmark	\checkmark	200	8192	66.6			
MoCo v2	✓	✓	\checkmark	200	256	67.5			
results of longer unsupervised training follow:									
SimCLR [2]	√	√	√	1000	4096	69.3			
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1			

Table 2. **MoCo vs. SimCLR**: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224**×**224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

	unsup. pre-train				ImageNet	VOC detection		
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	\checkmark		200	67.3	82.5	57.2	63.9
(d)	✓	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

جانمایی کلمات (Word Embedding)

- جانمایی کلمات اطلاعات بیشتر را در ابعاد بسیار کمتری قرار میدهد
- این بردارها را می توان با استفاده از حجم زیادی از متن پیش آموزش داد و در مجموعه دادههای کوچک از آنها استفاده کرد

One-hot word vectors:

- Sparse
- High-dimensional
- Hardcoded

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

مدل زبان طبیعی

