m1901q1s	Write your SID here —	→ <u> </u>		
School a MATHI CA	of Mathematics and Statistics 1901 DIFFERENTIAL LCULUS (ADV) MPLE QUIZ 1	Family Name: Other Names: Day/Time/Room: Signature:		
1 mark. Non working, if nee	40 minutes. Write your and appropriate the calculators cessary. Rough working will the end of the quiz. Please s	may be used. Use the land to be marked. Use a pen	blank spaces prov	vided for rough
The actual quiz will resemble this sample quiz, but not necessarily cover the same topics.				
1. Find th	$\text{the limit } M = \lim_{x \to 3} \frac{x^2 + 2x - 3}{x^2 - 3}$	- <u>15</u>		
		Answer	M =	
2. Find the one-sided limit $C = \lim_{\theta \to 0^-} \frac{\sin 3\theta}{5\theta}$				
		Answer	C =	

3. Express the product $(\sqrt{3} - i)^2 (1 + i)^3$ as a complex number in polar form $r \operatorname{cis} \theta$, with $-\pi < \theta \le \pi$.

Answer
$$...$$
 $r \operatorname{cis} \theta =$

4. What is the natural domain D of the function $f: D \to \mathbf{R}, x \mapsto \ln(x/3) + \sin^{-1}(5x/2)$? (Express your answer in interval notation.)

Answer
$$D =$$

- **5**. The discontinuity at x=3 of the function $g(x)=(\sin \pi x)/(x-3)$ is
 - (a) a jump discontinuity,
 - (b) a removable discontinuity,
 - (c) an infinite discontinuity,
 - (d) none of the above.

Answer
$$f^{-1}(x) =$$

7. Sketch the region in the complex plane that is governed by the inequality $|z-3-4i| \leq 2$.

Answer

8. The polynomial $P(x) = 2x^3 - x^2 - 26x - 45$ has a root on which one of the following intervals? (Use the Intermediate Value Theorem.)

(a) [4,5), (b) [3,4), (c) [2,3), (d) [1,2).

9. [2 marks] Solve the quadratic equation $z^2 - (2+3i)z - 8 - 6i = 0$, given that one of its two roots is real.

Answer 1 (the real root) \dots

$$z_1 =$$

Answer 2 (the non-real root) \dots

$$z_2 =$$

Answers:

- 1. M = 4/3
- **2.** C = 3/5 **3.** $r \operatorname{cis} \theta = 8\sqrt{2} \operatorname{cis}(5\pi/12)$ **4.** D = (0, 2/5]
- **5**. (b)

- 6. $f^{-1}(x) = \sqrt{e^x 4}$
- 7. Closed disc in first quadrant, centre 3 + 4i, radius 2
- **8**. (a)

9. $[2 \text{ marks}] z_1 = -2 \text{ and } z_2 = 4 + 3i$