Recitation 8

Bayesian Methods

Vishakh

CDS

March 23, 2022

Announcement

- HW 4 is due on Friday night + HW 5 will be out and due in 2 weeks
- HW 3 grades are out today
- ullet Midterm grades potentially in the next week + a few pending Regrade requests

Agenda

- Announcement
- Recap: MLE
- Bayesian Methods
- Questions

• Observed data $\mathcal{D} = \{x_{1...n}, y_{1...n}\}$

Vishakh (CDS)

- Observed data $\mathcal{D} = \{x_{1...n}, y_{1...n}\}$
- ullet Compute likelihood of the data as a function of parameter(s) heta

$$L_{\mathcal{D}}(\theta) = \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

- Find that value of $\theta \in \Theta$ which maximizes the likelihood \to MLE
 - MLE is the ERM of NLL loss

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

Vishakh (CDS) Recitation 8

- Observed data $\mathcal{D} = \{x_{1...n}, y_{1...n}\}$
- ullet Compute likelihood of the data as a function of parameter(s) heta

$$L_{\mathcal{D}}(\theta) = \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

- Find that value of $\theta \in \Theta$ which maximizes the likelihood $\to \mathsf{MLE}$
 - MLE is the ERM of NLL loss

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

• And we make predictions on new points x' as:

$$\hat{f}(x') = p(y|x'; \hat{\theta}_{MLE})$$

4 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

- Observe that $\hat{\theta}_{MLF}$ is very dependent on the observed data
- Can we do better? What if you have an intuition/belief about the parameter θ before observing the data \mathcal{D} ?

5 / 20

Bayesian Methods

- Ingredients:
 - Parameter space ⊖.
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbb{R}$.

Bayesian Methods

- Ingredients:
 - Parameter space Θ.
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbb{R}$.
- The prior $p(\theta)$ represents your belief about the parameter without seeing the data

Bayesian Methods

- Ingredients:
 - Parameter space ⊖.
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbb{R}$.
- The prior $p(\theta)$ represents your belief about the parameter without seeing the data
- ullet And you update this belief based on observing the data ${\cal D}$ with Bayes rule
- Posterior $p(\theta|D) \propto p(\mathcal{D}|\theta)p(\theta)$ or $p(\theta|D) \propto L_{\mathcal{D}}(\theta)p(\theta)$
- From this distribution, we can get point estimates or take actions

Vishakh (CDS) Recitation 8 Mar

6/20

Bayesian Decision Theory

- Ingredients:
 - Parameter space ⊖.
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbb{R}$.
- The **posterior risk** of an action $a \in A$ is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$

= $\int \ell(\theta, a)p(\theta \mid \mathcal{D}) d\theta.$

• It's the expected loss under the posterior.

Bayesian Decision Theory

- Ingredients:
 - Parameter space ⊖.
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbb{R}$.
- The **posterior risk** of an action $a \in A$ is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$

= $\int \ell(\theta, a)p(\theta \mid \mathcal{D}) d\theta.$

- It's the expected loss under the posterior.
- A Bayes action a* is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

ullet Suppose you've already seen data ${\cal D}$

Vishakh (CDS)

ullet Suppose you've already seen data ${\mathcal D}$ i.e. you know the posterior

- ullet Suppose you've already seen data ${\mathcal D}$ i.e. you know the posterior
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

 This is an average of all conditional densities in our family, weighted by the posterior.

8 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

- ullet Suppose you've already seen data ${\mathcal D}$ i.e. you know the posterior
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

- This is an average of all conditional densities in our family, weighted by the posterior.
- May not have closed form.
- Numerical integral may be hard to compute.

8 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

MAP Estimator

• Instead, we resort to making predictions using the simpler MAP estimator for θ from the posterior

$$\hat{ heta}_{MAP} = rg\max_{ heta} p(heta \mid \mathcal{D})$$

We can also predict y by

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y \mid x; \theta = \hat{\theta}_{MAP})$$

MAP Estimator vs Posterior Predictive Distribution

 How do we predict by posterior predictive distribution given a new data point?

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y \mid x, \mathcal{D}) = \underset{y}{\operatorname{arg max}} \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

Different to the MAP estimator:

$$\hat{ heta}_{MAP} = rg\max_{ heta} p(heta \mid \mathcal{D})$$

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y \mid x; \theta = \hat{\theta}_{MAP})$$

• In general, the predictions from two methods are different.

Vishakh (CDS) Recitation 8

MAP Estimator Vs MLE

MLE looks for the value that maximizes likelihood alone

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{arg max}} L_{\mathcal{D}}(\theta) = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^{n} p(y_i|x_i;\theta)$$

 MAP maximizes the posterior i.e. a combination of prior and likelihood

$$\hat{\theta}_{MAP} = \arg\max_{\theta} p(\theta \mid \mathcal{D}) = \arg\max_{\theta} L_{\mathcal{D}}(\theta) p(\theta)$$

Vishakh (CDS) Recitation 8 March 23, 2022 11 / 20

Question 1

Question 1. (From DeGroot and Schervish) Let θ denote the proportion of registered voters in a large city who are in favor of a certain proposition. Suppose that the value of θ is unknown, and two statisticians A and B assign to θ the following different (beta) prior PDFs $\xi_A(\theta)$ and $\xi_B(\theta)$, respectively:

$$\xi_A(\theta) = 2\theta$$
 for $0 < \theta < 1$,
 $\xi_B(\theta) = 4\theta^3$ for $0 < \theta < 1$.

In a random sample of 1000 registered voters from the city, it is found that 710 are in favor of the proposition.

• Find the posterior distribution that each statistician assigns to θ .

Vishakh (CDS)

Question 1: Background to Solution

Note that both prior distributions are from the Beta family. PDF of a Beta distribution:

$$f(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$$

13 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

Question 1: Background to Solution

Note that both prior distributions are from the Beta family. PDF of a Beta distribution:

$$f(x) \propto x^{\alpha-1} (1-x)^{\beta-1}$$

The Beta distribution is a conjugate prior for a binomial likelihood \rightarrow The posterior is also a Beta distribution.

Definition

A conjugate family of distributions for a certain likelihood satisfies the following property: if the prior belongs to the family, then the posterior also belongs to the family.

Refer Notes from DS-GA 1002

Vishakh (CDS) Recitation 8 March 23, 2022 13 / 20

Note that both prior distributions are from the Beta family. The Beta distribution is a conjugate prior when the likelihood is binomial.

• Likelihood of the observed data, 710 in-favour, 290 against:

$$f(x|\theta) = \theta^{710}(1-\theta)^{290}$$

14 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

Note that both prior distributions are from the Beta family. The Beta distribution is a conjugate prior when the likelihood is binomial.

Likelihood of the observed data, 710 in-favour, 290 against:

$$f(x|\theta) = \theta^{710}(1-\theta)^{290}$$

• Multiplying by the two priors ξ_A and ξ_B , we have

$$\xi_A(\theta|x) \propto f(x|\theta)\xi_A(\theta) \propto \theta^{711}(1-\theta)^{290}$$

and

$$\xi_B(\theta|x) \propto f(x|\theta)\xi_B(\theta) \propto \theta^{713}(1-\theta)^{290}$$
.

Vishakh (CDS) Recitation 8 March 23, 2022 14 / 20

• Multiplying by the two priors ξ_A and ξ_B , we have

$$\xi_A(\theta|x) \propto f(x|\theta)\xi_A(\theta) \propto \theta^{711}(1-\theta)^{290}$$

and

$$\xi_B(\theta|x) \propto f(x|\theta)\xi_B(\theta) \propto \theta^{713}(1-\theta)^{290}$$
.

• Thus the posteriors from A and B are both beta with parameters (712, 291) and (714, 291), respectively.

Vishakh (CDS) Recitation 8 March 23, 2022 15 / 20

Question 1

Question 1. (From DeGroot and Schervish) Let θ denote the proportion of registered voters in a large city who are in favor of a certain proposition. Suppose that the value of θ is unknown, and two statisticians A and B assign to θ the following different prior PDFs $\xi_A(\theta)$ and $\xi_B(\theta)$, respectively:

$$\xi_A(\theta) = 2\theta$$
 for $0 < \theta < 1$,
 $\xi_B(\theta) = 4\theta^3$ for $0 < \theta < 1$.

In a random sample of 1000 registered voters from the city, it is found that 710 are in favor of the proposition.

• Find the Bayes estimate of θ (minimizer of posterior expected loss) for each statistician based on the squared error loss function.

 Vishakh (CDS)
 Recitation 8
 March 23, 2022
 16 / 20

If the loss function is square loss, the minimizer $f^* = E[Y|X]$. (Why? Refer to the Recitation 6 - Midterm Review)

- We have found the two posteriors $\xi_A(\theta|x)$ and $\xi_B(\theta|x)$
- The posteriors from A and B are both beta with parameters (712, 291) and (714, 291), respectively.

Vishakh (CDS) Recitation 8 17/20

If the loss function is square loss, the minimizer $f^* = E[Y|X]$. (Why? Refer to the Recitation 6 - Midterm Review)

- We have found the two posteriors $\xi_A(\theta|x)$ and $\xi_B(\theta|x)$
- The posteriors from A and B are both beta with parameters (712, 291) and (714, 291), respectively.
- Thus minimizers of the posterior expected loss is the respective means are $\frac{712}{1003}$ and $\frac{714}{1005}$.
 - Recall the mean of a Beta distribution $\mathbb{E}[x; a, b] = \frac{a}{a+b}$

17/20

Vishakh (CDS) Recitation 8 March 23, 2022

Question 2

What would be the Maximum a Posteriori (MAP) estimator for λ for i.i.d. $\{x_1, x_2, \dots, x_N\}$ where $x_i \sim \exp(\lambda)$ with prior $\lambda \sim \text{Uniform}[u_0, u_1]$?

- Likelihood: $L(x_1, ..., x_N | \lambda) = \lambda^N e^{-\lambda(x_1 + ... + x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1+\cdots+x_N)$

19 / 20

Vishakh (CDS) Recitation 8 March 23, 2022

- Likelihood: $L(x_1, ..., x_N | \lambda) = \lambda^N e^{-\lambda(x_1 + ... + x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1+\cdots+x_N)$
- $\ell'(\lambda) =$

$$\frac{N}{\lambda}-(x_1+\cdots+x_N)$$

- Likelihood: $L(x_1, ..., x_N | \lambda) = \lambda^N e^{-\lambda(x_1 + ... + x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1 + \cdots + x_N)$
- $\ell'(\lambda) =$

$$\frac{N}{\lambda} - (x_1 + \dots + x_N) \begin{cases} > 0 & \text{if } 0 < \lambda < 1/\bar{x} = N/(x_1 + \dots + x_N), \\ = 0 & \text{if } \lambda = 1/\bar{x} \\ < 0 & \text{if } \lambda > 1/\bar{x} \end{cases}$$

Vishakh (CDS) Recitation 8

19 / 20

- Likelihood: $L(x_1, ..., x_N | \lambda) = \lambda^N e^{-\lambda(x_1 + ... + x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1 + \cdots + x_N)$
- $\ell'(\lambda) =$

$$\frac{N}{\lambda} - (x_1 + \dots + x_N) \begin{cases} > 0 & \text{if } 0 < \lambda < 1/\bar{x} = N/(x_1 + \dots + x_N), \\ = 0 & \text{if } \lambda = 1/\bar{x} \\ < 0 & \text{if } \lambda > 1/\bar{x} \end{cases}$$

• Prior: $p(\lambda) = \frac{1}{u_1 - u_0} \mathbb{1}_{[u_0, u_1]}(\lambda)$.

Vishakh (CDS)

- Likelihood: $L(x_1, ..., x_N | \lambda) = \lambda^N e^{-\lambda(x_1 + ... + x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1+\cdots+x_N)$
- $\ell'(\lambda) =$

$$\frac{N}{\lambda} - (x_1 + \dots + x_N) \begin{cases} > 0 & \text{if } 0 < \lambda < 1/\bar{x} = N/(x_1 + \dots + x_N), \\ = 0 & \text{if } \lambda = 1/\bar{x} \\ < 0 & \text{if } \lambda > 1/\bar{x} \end{cases}$$

- Prior: $p(\lambda) = \frac{1}{u_1 u_0} \mathbb{1}_{[u_0, u_1]}(\lambda)$.
- Posterior:

$$p(\lambda|x_1,\ldots,x_N) \propto L(x_1,\ldots,x_N|\lambda)p(\lambda) = \lambda e^{-\lambda(x_1+\cdots+x_N)}\mathbb{1}_{[u_0,u_1]}(\lambda)$$

- Likelihood: $L(x_1,...,x_N|\lambda) = \lambda^N e^{-\lambda(x_1+...+x_N)}$
- log-likelihood: $\ell(\lambda|x_1,\ldots,x_N) = N \ln \lambda \lambda(x_1 + \cdots + x_N)$
- $\ell'(\lambda) =$

$$\frac{N}{\lambda} - (x_1 + \dots + x_N) \begin{cases} > 0 & \text{if } 0 < \lambda < 1/\bar{x} = N/(x_1 + \dots + x_N), \\ = 0 & \text{if } \lambda = 1/\bar{x} \\ < 0 & \text{if } \lambda > 1/\bar{x} \end{cases}$$

- Prior: $p(\lambda) = \frac{1}{u_1 u_0} \mathbb{1}_{[u_0, u_1]}(\lambda)$.
- Posterior:

$$p(\lambda|x_1,\ldots,x_N) \propto L(x_1,\ldots,x_N|\lambda)p(\lambda) = \lambda e^{-\lambda(x_1+\cdots+x_N)}\mathbb{1}_{[u_0,u_1]}(\lambda)$$

Maximum value of posterior is attained at

$$\lambda = \begin{cases} u_0 & \text{if } u_0 > 1/\bar{x}, \\ 1/\bar{x} & \text{if } u_0 \leq 1/\bar{x} \leq u_1 \\ u_1 & \text{if } u_1 < 1/\bar{x}. \end{cases}$$

Takeaways

- In Bayesian methods, we have a prior that encodes our belief without the data
- We update the prior based on the observed data i.e. likelihood and get the posterior distribution
- What can we do with this distribution? MAP estimator, variance of distribution, mean/median/modes, conjugate priors etc.