REAL – TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

NALAIYATHIRAN PROJECT BASED LEARNING ON

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTERPRENEURSHIP

A PROJECT REPORT

Submitted by

M.RAMESH

M.KARTHIK KISHORE

R.ROOPAN KUMAR

M. SANJAY

P.A.IITHKANNAN

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING, RAMANATHAPURAM
ANNA UNIVERSITY::CHENNAI 600 025

NOVEMBER 2022

REAL – TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

Submitted by

M.RAMESH

M.KARTHIK KISHORE

R.ROOPAN KUMAR

M. SANJAY

P.AJITHKANNAN

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING, RAMANATHAPURAM ANNA UNIVRSITY::CHENNAI 600 025 NOVEMBER 2022

REAL – TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

Submitted by

M.RAMESH (913019106009)

M.KARTHIK KISHORE (913019106005)

R.ROOPAN KUMAR (913019106010)

M. SANJAY (913019106012)

P.AJITHKANNAN (913019106003)

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING, RAMANATHAPURAM

ANNA UNIVRSITY::CHENNAI 600 025

NOVEMBER 2022

BONAFIDE CERTIFICATE

Certified that this project report titled "Real-Time River Water Quality Monitoring and Control System by NALAIYATHIRAN PROJECT BASED LEARNING Program", is the bonafide work of RAMESH M(913019106009), KARTHIK KISHORE M (913019106005), ROOPAN KUMAR R(913019106010),SANJAY M (913019106012), AJITHKANNAN P(913019106003) who carried out the work under faculty mentor and industry mentor supervision, for the partial fulfillment of the requirements for the award of the degree of BACHELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATION ENGINEERING.

Certified further that to the best of my knowledge and belief, the work reported here in does not form part of any other thesis or dissertation on the basis of which a degree or an award was conferred on a nearlier occasion.

DECLARATION

I, hereby declare that the Project work entitled "Real-Time River Water Quality Monitoring and Control System by NALAIYATHIRAN PROJECT BASED LEARNING PROGRAM" submitted to the IBM November 2022 in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATION ENGINEERING, is the report of the original project work done by us under the guidance of Mr. (Faculty Mentor), Department of ELECTRONICS AND COMMUNICATION ENGINEERING, University College of Engineering, Ramanathapuram.

NAME

RAMESH M

(Team Leader)

I certify that the declaration made by the above candidate is true.

SIGNATURE FACULTY MENTOR
Department of Electronics and
Communication Engineering
University College of Engineering

Ramanathapuram-623 513

TABLE OF CONTENTS

S.NO	TITLE	PAGE NO
1.	INTRODUCTION	8
	1.1 Project Overview	9
	1.2 Purpose	9
2.	LITERATURE SURVEY	10
	2.1 Existing problem	11
	2.2 References	11
	2.3 Problem Statement Definition	12
3.	IDEATION & PROPOSED SOLUTION	13
	3.1 Empathy map canvas	14
	3.2 Ideation & Brainstorming	15
	3.3 proposed Solution	19
	3.4 Problem Solution Fit	20
4.	REQUIREMENT ANALYSIS	21
	4.1 Functional Requirement	22
	4.2 Non- Functional Requirements	22
5.	PROJECTDESIGN	23
	5.1 Data Flow Diagram	24
	5.2 Solution & Technical Architecture	25
	5.3 User Stories	30
6.	PROJECT PLANNING & SCHEDULING	32
	6.1 Sprint Planning and Estimation	33

	6.2 Sprint Delivery schedule	51
	6.3 Reports from JIRA	54
7.	CODING AND SOLUTIONING	55
	7.1 Feature 1	56
	7.2 Feature 2	56
	7.3 Feature 3	56
8.	TESTING	57
	8.1 Test Cases	58
	8.2 User Acceptance Testing	58
9.	RESULTS	60
	9.1 Performance Metrics	61
10.	ADVANTAGES AND DISADVANTAGES	62
11.	CONCLUTION	62
12.	FUTURE SCOPE	63
13.	APPENDIX	63

1. INTRODUCTION

1.1 PROJECT OVERVIEW:

These days drinking water is the most valuableand significant for every single individual and potable water usage faces new difficulties in constant operation. Monitoring various aspectsof the River Water Quality leads to a clear understanding of the aspects that should be considered for a healthy life and to avoid unsanitary waterusing Internet of Things (IOT) should allow for the integration of real time monitoring and controlling of water quality. The suggested system utilizes Internet of Things (IOT) through using sensors such as (PH, temperature and turbidity). Using a web application to immediately alert the people to check the status of water. The IOT based Real-time river water quality monitoring and control system being proposed via this report with micro controller mixed with different sensors and a Wi-Fi module producing live data is sent to cloud o that people or authorities can get the data easily. Using IBM Cloud services to store and using various types of codes to execute the system process. Real-time river water quality monitoring and control system is used to monitor and control the quality of water pH level, Temperature to get the proper quality of good water.

1.2 PURPOSE:

The main aim of our project is to monitor and control the quality of water in river water quality monitoring is used to alert us to current ongoing and emerging problems; To determine compliance with drinking water standards and to protects other beneficial uses of water and also helpful for people to drink good water.

2. LITERATURE SURVEY

2.1 EXISTING PROPLEM:

- 1. Mixing of water like drainage, chemical wastage.
- **2.** Death of animals in river water.
- **3.** When people throw plastics and in the river, it causes river water pollution.
- **4.** Oilspilled, fertilizers, human wastes are the existing problems in the river water.

2.2 REFERENCES:

1. TITLE: IOT Based real time river water quality monitoring system

AUTHOR DETAILSSubhasish, Abhjitpathak,
Mohammadshahadathossain

: Mohammad salahuddinchowdury, Talha bin emran, Karalandersson, Mohd.manjuralam, Nurulabsar,

YEAR 2019

2. TITLE: Smart water quality monitoring system with cost effective using IOT

AUTHOR DETAILS: Sathishpasika, Saitejagandha

YEAR 2020

3. TITLE : Smart water quality monitoring system for Real time applications

AUTHOR DETAILS: Tha. Sugapriya, S. Rakshya, K. Ramyadevi, M. Ramya,

YEAR 2018

4. TITLE : Real time monitoring of water quality

AUTHOR DETAILS: Mohanabarathy.R, Sindhuparvathi.M, Priyanka.K,

YEAR 2019

5. TITLE : Real time water quality monitoring system

AUTHOR DETAILS: Yashwanthgowda K.N, Vaishali.c, sumalatha S.T and spoorth G.B

YEAR 2020

6. TITLE : Smart water quality and monitoring of motor in bore well by IOT

AUTHOR : Nandhinimurugaiyan, Elakkiyasakthivel, Madhumithalavakumar,

YEAR 2020

2.3 PROBLEM STATEMENT DEFINITION:

REAL-TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

01.	I AM	Manufacturer			
02.	I'm trying to	Detect the water quality monitoring and			
		control system in river			
03.	But	Using different types of sensor is a major			
		problem in this system			
04	Because	If any one of the sensor are damaged or			
		not working doesn't detect the system			
		properly.			
05.	Which makes me feel	This leads people to drink and use			
		unsanitary water			

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

Brainstorm

Write down any ideas that come to mind that address your problem statement.

TIP You can select a sticky note and hit the pencil (switch to sketch] icon to start drawing!

AJITH KANNAN

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

⊕ 20 minutes

The water quality is sensed by using sensors and the quality of water is intimated to the user by SMS By using remote monitoring technology it provide remote value control

Add customizable tags to sticky notes to make it easier to find, browse, organize, and categorize important ideas as themes within your mural.

3.3 PROPOSED SOLUTION:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
01.	Problem Statement (Problem to be solved)	The major problem of the real time projects are timing. Because of late detection of water quality problems.
02.	Idea / Solution description	To setting up internet connection in rural areas for quick detection of water quality through mobile application or SMS alert.
03.	Novelty / Uniqueness	Timely detection of water quality can keep the water in good condition.
04.	Social Impact / Customer Satisfaction	People can drink clean water and use it effectively.
05.	Business Model (Revenue Model)	It benefits for mergers to sell in medium cost to buffers and also helpful in the society.
06	Scalability of the Solution	Need more type of sensors and others components high cost is required.

3.4 PROBLEM SOLUTION FIT:

1.CUSTOMER SEGMENT (S):	6. CUSTOMER CONSTRAINTS:	5. AVAILABLE SOLUTOINS	
People and Industrial companies are our customers. We take this ideas to customers.	The customer constraints are network connection, No cash and available devices to built the system	The solution of water quality monitoring and quality systems using robot to detect the problem and using sensors to identify the problem to the user by SMS.	
2.JOBS – TO – BE DONE / PROBLEM:	9. PROBLEM ROOT CAUSE:	7. BEHAVIOUR	
Timing and Internet issues are the major problem in the system. Because me detect the water quality problems late.	Timing and Internet connection is the real reason that problem exists.	Our customer address the problem, Sometimes they drink and use unsanitary water. This leads to health Problems.	
3. TRIGGERS: Water problem triggers the customers to act in various ways.	10. YOUR SOLUTION: Using different types of sensors like PH sensor, turbidity sensor, temperature sensor to monitoring the water and display the conditions in	8. CHANNELS OF BEHAVIOUR: 8.1 ONLINE: They can't interact with the physical components. They complaint the problem through online easily.	
EMOTIONS: FORE/AFTER: The emotions are strated, anger, fear and glected	.CD sensor	8.2 OFFLINE: They take the decision immediately in offline and solved it quickly.	

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT:

Following are the functional requirements of the proposed solution.

FR NO:	Functional requirements	Sub Requirement (Story / Sub - task)		
FR – 1	User identification	The user has to identify whether the water conditions are good or bad then take the sample water to identify the water quality.		
FR – 2	User detection	The user has to detect the quality of the river water using different types of sensors and measure the PH value.		

4.2 Non - Functional Requirements:

Following are the non - functional requirements of the proposed solution.

FR NO	Non – Functional	Description		
	Requirement			
NFR – 1	Usability	The sensors are used to monitor the		
		quality of water for people and to drink		
		the water in good condition.		
NFR – 2	Security	Using a web application to		
		immediately alert the user not to drink		
		the water keeps them safe from health		
		problems.		
NFR – 3	Reliability	The system is more reliable. It is		
		simple to detect the quality of various		
		types of water and is helpful for people		
		to drink good water.		

5. PROJECTDESIGN

5.1 DATA FLOW DIAGRAM:

Flow:

- a. We start collecting data from cloud services and collect a bunch of data from sensors.
- b. Save data in the form of numpy arrays.
- c. We then implement arduino UNO without.
- d. The number of sensor for the models determined by us, if we increase the number of sensors, the accuracy increases.
 - e. But it requires much more time for implementing more sensors.
- f. Once detection is done, we can use this model for real time water quality detection and simultaneously used to detect PH value of water and temperature of the water.

5.2 Solution & Technical Architecture:

1. Customer Segment:

People and Industrial Companies are our customers. We take these ideas from industrial companies to people. They need this system to detect the water quality and monitoring.

2. Jobs to be done / problems:

Timing is the major problem in this system. Because of late detection cause severe water problems. They didn't use the water after detect the water problems late.

3. Triggers:

Water problems triggers the customers to act in various ways like, they complaint about water problems to government and protest take place.

4. Emotions:

The emotions are very frustrated, anger, fear and neglected. It makes the people so depressed

5. Available Solutions:

The solution of water quality monitoring and control systems using SMS to detect the problem quick in manner. Using different types of sensors to detect the water quality problems.

6. Customer constraints:

The customer constraints are network connections to make the system difficult and to build this system we need sensor to handle good.

7. Behavior:

Our customer addresses the problem, sometime the drink and use unsanitary water. This leads to health problems and it affects their children in future.

8. Channels of Behavior:

Online:

They can't interact with the physical components and complaint the problems through online easily.

Offline:

They take the decision immediately offline and solved it quickly. After detecting the problem, they find their way to executing the system.

9. Problem root cause:

Timing is the real reason that this problem exists.

10. Your solution:

Using different types of sensors like PH sensor, turbidity sensor to monitoring the water and display the conditions in LCD. Additionally, SMS alerts for water conditions are good or bad.

Technical architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2.

Table-1: Components & Technologies:

s.no	Component	Description	Technology	
01.	User interface	Web UI, Mobile App.	HTML, CSS,	
			Python Script.	
02.	Application Logic-1	Available water resource to	Python Script.	
		detect and to search		
		location.		
03.	Application Logic-2	Statistical random values	IBM Watson STT	
		and graphical analysis.	service.	
04.	Application Logic-3	Alert message to the user.	IBM Watson	
			Assistant.	
05.	Database	Random values of PH level	MySQL, NoSQL.	
		turbidity and temperature		
		in river water.		
06.	Cloud Database	Database service on cloud	IBM Cloudant.	
		by the administrator.		
07.	File Storage	Storing the random values	IBM Block	
		to compare with threshold	storage.	
		value.		
08.	External API -1	Effective data generation.	IBM Watson API.	
09.	External API -2	Google sign-in.	Google API.	
10.	Machine Learning	To recognize file pattern	Object	
	Model	(here graphical mode of	recognition model	
		statistical data is	(IBM Watson and	
		generated).	node-RED).	
11.	Infrastructure	Software library	Cloud foundry	
	(Server/Cloud)	workspace.	(IBM Cloudant)	
			,adding.	

Table-2: Application Characteristics:

S.no	Characteristics	Description	Technology
01.	Open-source	The open-source tools we	Node-RED, IBM
	frameworks	utilised to create our	Cloudant, IBM
		project.	Watson IoT
			Platform.
02.	Security	Use of a login page with a	Password
	implementations	user's unique user name	protection in MIT
		and password on a web	app.
		interface optimized for	
		mobile devices and	
		computers with adjustable	
		screen sizes.	
03.	Scalable architecture	Optimised for mobile	Node-RED (Web
		devices and computers	UI).
		with adjustable screen	
		sizes.	
04.	Availability	Accessible to user's	Node-RED (Web
		through both a web UI and	UI), MIT app
		a mobile app.	(Mobile app).
05.	Danfannanaa	Give precise results and a	Node-RED (Web
	Performance	prompt warning in the	UI) , MIT app
		event of water	(Mobile app).
		contamination.	

User stories:

User	Function	User	User story/	Accepture	Priority	Release
type	al	story	task	criteria		
	require	number				
	ment					
Develop	System	USN-1	Collect data	I can collect data	High	Sprint-1
er	building		set	set		
		USN-2	Collecting	I can collect from	High	Sprint-2
			data from	sensor		
			sensor			
		USN-3	Implementi	I can implement	High	Sprint-3
			ng arduino	arduino UNO from		
			UNO from	data collection		
			data			
			collection			
		USN-4	Message	I can receive	High	Sprint-4
			alert to	message		
			people			

		USN-5	People identity the problem and resolve it by using mobile application	identify	Medium	Sprint-5
Customer	Adoption	USN-1	Adopting new technology for boosting production	I can adopt new technolo gy	Low	Sprint-1
	Detection	USN-2	Detect the quality of river water and PH value		High	Sprint-2

6 PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning and Estimation

Sprint 1

USN-1
As a user, I will register in ICTA academyand create IBM cloud account.

USN-2
As a user, I will access IBM cloud and launch the IBM Watson IOT platform

USN-3
As a user, I can create a device in the IOT IBM Watson platform for simulation

USN-4
As a user, I can simulate the device created

USN-5

As a user, I can get the values of temperature, PH and Turbidity, I can create a line chart with my output data

Sprint 2

USN-6
As a user, I can create NODE RED by app deployment

USN-7
As a user, I can get the API key through IBM Watson platform

USN-8
As a user, I can design the flow in NODE RED

USN-9
As a user, I can check for the gauge output

Sprint 3

USN-10
As a user, I can design the front end in MIT app inventor

USN-11
As a user, I can design the back end (blocks) in MIT app inventor

USN-12

As a user, I can develop the python script

```
python code48312.py - C:\Users\Administrator\AppData\Local\Programs\Python\Python37\python code48312.py (3.7.4)
                                                                                                                                                            - 0 X
File Edit Format Run Options Window Help
import json
 import wiotp.sdk.device
import time
 import random
 import ibmiotf.application
import ibmiotf.device
myConfig = {
    "identity": {
        "orgId": "bb0w3d",
        "typeId": "Sensor_River_UP",
        "deviceId":"1234"
     "auth": {
         "token": "123456780"
def myCommandCallback(cmd):
   print("Command received: %s" % cmd.data['command'])
   status=cmd.data['command']
   if status=="motoron":
       print ("motor is on")
   elif status == "motoroff":
       print ("motor is off")
    else :
       print ("please send proper command")
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
   turb=random.randint(1,100)
    ph=random.randint(0,15)
    temp=random.randint(-20,125)
    myData={'Turbidity':turb,'PHvalue':ph,'temperature':temp}
    client.publishEvent(eventId="status", msgFormat="json", data=myData, gos=0, onPublish=None)
    print("Published data Successfully: ", myData)
    time.sleep(20)
    client.commandCallback = myCommandCallback
client.disconnect()
                                                                                                                                                                   Ln: 1 Col: 0
```

USN-13
As a user, I can get the output of the program with the parameters

```
*Python 3.7.4 Shell*
                                                                                                                                                         - 0 X
File Edit Shell Debug Options Window Help
Published data Successfully: {'Turbidity': 13, 'PHvalue': 2, 'temperature': 111}
Published data Successfully: {'Turbidity': 52, 'PHvalue': 14, 'temperature': 57}
Published data Successfully: {'Turbidity': 46, 'PHvalue': 0, 'temperature': -8}
Published data Successfully: {'Turbidity': 41, 'PHvalue': 2, 'temperature': 121}
Published data Successfully: {'Turbidity': 81, 'PHvalue': 6, 'temperature': 97}
Published data Successfully: {'Turbidity': 32, 'PHvalue': 1, 'temperature': 2}
Published data Successfully: {'Turbidity': 60, 'PHvalue': 11, 'temperature': 43}
Published data Successfully: {'Turbidity': 97, 'PHvalue': 4, 'temperature': 55}
Published data Successfully: {'Turbidity': 71, 'PHvalue': 1, 'temperature': 116}
Published data Successfully: {'Turbidity': 42, 'PHvalue': 13, 'temperature': 71}
Published data Successfully: {'Turbidity': 61, 'PHvalue': 12, 'temperature': 59}
Published data Successfully: {'Turbidity': 81, 'PHvalue': 6, 'temperature': -15}
Published data Successfully: {'Turbidity': 52, 'PHvalue': 5, 'temperature': 69}
Published data Successfully: {'Turbidity': 29, 'PHvalue': 4, 'temperature': 12}
Published data Successfully: {'Turbidity': 26, 'PHvalue': 6, 'temperature': 14}
Published data Successfully: ('Turbidity': 88, 'PHvalue': 15, 'temperature': 23)
Published data Successfully: {'Turbidity': 22, 'PHvalue': 15, 'temperature': 27}
Published data Successfully: ('Turbidity': 50, 'PHvalue': 15, 'temperature': 9)
Published data Successfully: {'Turbidity': 9, 'PHyalue': 6, 'temperature': -8}
Published data Successfully: {'Turbidity': 54, 'PHvalue': 9, 'temperature': 96}
Published data Successfully: ('Turbidity': 56, 'PHyalue': 6, 'temperature': 71)
Published data Successfully: {'Turbidity': 64, 'PHvalue': 4, 'temperature': 52}
Published data Successfully: {'Turbidity': 94, 'PHvalue': 0, 'temperature': 101}
Published data Successfully: {'Turbidity': 89, 'PHvalue': 14, 'temperature': 49}
Published data Successfully: {'Turbidity': 72, 'PHvalue': 14, 'temperature': 110}
Published data Successfully: {'Turbidity': 21, 'PHvalue': 14, 'temperature': 12}
Published data Successfully: {'Turbidity': 36, 'PHvalue': 8, 'temperature': 70}
Published data Successfully: {'Turbidity': 93, 'PHvalue': 5, 'temperature': 92}
Published data Successfully: {'Turbidity': 93, 'PHvalue': 1, 'temperature': 52}
Published data Successfully: {'Turbidity': 91, 'PHvalue': 13, 'temperature': 3}
Published data Successfully: {'Turbidity': 4, 'PHvalue': 10, 'temperature': -20}
Published data Successfully: {'Turbidity': 88, 'PHvalue': 4, 'temperature': 84}
Published data Successfully: {'Turbidity': 27, 'PHvalue': 9, 'temperature': 110}
Published data Successfully: {'Turbidity': 54, 'PHvalue': 10, 'temperature': 35}
Published data Successfully: {'Turbidity': 83, 'PHvalue': 11, 'temperature': 125}
Published data Successfully: {'Turbidity': 85, 'PHvalue': 0, 'temperature': 11}
Published data Successfully: {'Turbidity': 47, 'PHvalue': 5, 'temperature': 110}
Published data Successfully: ('Turbidity': 48, 'PHvalue': 9, 'temperature': 95)
Published data Successfully: {'Turbidity': 1, 'PHvalue': 13, 'temperature': 19}
Published data Successfully: {'Turbidity': 100, 'PHyalue': 13, 'temperature': 13}
Published data Successfully: {'Turbidity': 78, 'PHvalue': 8, 'temperature': 122}
Published data Successfully: {'Turbidity': 38, 'PHvalue': 11, 'temperature': 65}
Published data Successfully: {'Turbidity': 15, 'PHvalue': 8, 'temperature': 62}
                                                                                                                                                               Ln: 17 Col: 0
```

USN-14
As a user, I can download MIT AI2 companion app in my mobile

Sprint 4

USN-15
As a user, I can create a Web UL

USN-16
As a user, I can check whether I can get the values of the parameters

USN-17
As a user, I can connect the Web UI with the mobile application through QR code.

USN-18

As a user, I can get values of the parameters in my mobile application

6.2 Sprint Delivery schedule

Product Backlog, SprintSchedule, and Estimation

Sprint	Functional Requirement (Epic)	User StoryNumb er	User Story /Task	Story Points	Priority	Team Members
Sprint-1		US-1	Creating IBM Cloud and using its services.	4	High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-1		US-2	Configure the IBM cloudservice and creatingIoT platform.	3	High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-1		US-3	IBM Watson IoT platform acts as the mediator toconnect the web application to IoT devices, hence Launching IBM Watson IoT platform.	3	Low	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-1		US-4	In order to connect the IoT device to the IBM Cloud, createa device in theIBM Watson IoTPlatform and get the devicecredentials.	3	Medium	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P

Sprint-2	US-1	Configure theconnection security andcreate API keys that are used in the NODE-RED service for accessing the IBM IoT Platform.		High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-2	US-2	Create a Node-RED service.		High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-3	US-1	Develop a python script to publish random sensor datasuch as temperature, turbidity andpH to the IBM IoT Platform.	4	High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-3	US-2	After developing python itcode, commands are received just print the statements which represent the control of the devices.	3	Medium	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-3	US-3	Publish datato the IBM Cloud.	4	High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-4	US-1	Create Web UI in Node-RED.		High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P
Sprint-4	US-2	Configure the Node-RED flow to receive data from the IBM IoT Platform and alsouse Cloudant DB nodes to store the received sensordata in Cloudant DB.		High	Ramesh M Karthik kishore M Roopan kumar R Sanjay M Ajithkannan P

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (ason Planned End Date)	Sprint ReleaseDate (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-daysprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's averagevelocity (AV) per iteration unit (story pointsper day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progressover time.

6.3 Reports from JIRA

7. CODING AND SOLUTIONING

7.1 Feature 1

PH, Temperature:

pH sensor: The pH of a solution is the measure of the acidity or alkalinity of that solution. The pH scale is a logarithmic scale whose range is from 0-14 with a neutral point being 7. Values above 7 indicate a basic or alkaline solution and values below 7 would indicate an acidic solution. It operates on 5v power supply and it is easy to interface with arduino. The normal range of pHis 6 to 8.5.

water temperature: Indicates how water is hot or cold. Therange of DS18B20 temperature sensor is digital type which gives accurate reading.

7.2 Feature 2

Turbidity:

Turbidity sensor: Turbidity is a measure of the cloudiness of water. Turbidity has indicated the degree at which the watr loses its transparency. It is considered as a good measure of the quality of water. Turbidity blocks out the light needed by submerged aquatic vegetation. It also can raise surface water temperature above normal because suspended particles near the surface facilitate the absorption of heat from sunlight. The measurement of turbidity is a key test of waterquality. Turbidity, as identified with a turbidity meter or sensor, is the measurement of water clarity.

7.3 Feature 3

To display the sensor values of PH, temperature and turbidity infront of the river. It shows the current status of the river to people and they didn't do anything.

8. TESTING

8.1 Test Cases

A test case is a document which has a set of test data, preconditions, expected results and postconditions, developed for a particular test scenario in order to verify compliance against a specific requirement.

8.2 User Acceptance Testing

Defect analysis

resultion	Severity1	Severity2	Severity3	Severity4	Severity5
By Design	10	4	3	3	20
Duplicate	3	0	4	0	7
External	2	0	0	2	4
Fixed	7	3	5	7	22
Not	0	0	2	0	2
Reproduced					
Skipped	0	0	3	1	4
Won't Fix	0	7	3	1	11
total	22	14	20	14	70

Test case analysis

section	total	cases	Not	Fail
			tested	pass
Designing the circuit	3	0	1	2
Create a program suitable for the	4	0	0	4
circuit and also compile and				
execute the program				

Connect the output values to the	3	0	1	2
cloud services by using NODE				
RED				
	4	0	1	3
Make the data's store in IBM				
watson				
Connects the cloud data with the	4	0	2	2
authorities communication device				
Find report output	3	0	0	3

9. RESULTS

9.1 Performance Metrics

					NFT - Risk Asses	sment			
S.No	Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Volume Changes	Risk Score	Justification
1	Real Time River Water Quality monitoring and control system	New	Low	Low	Low	Downtime does not affect the performance much. The errors can be resolved within a short duration of time.	>5 to 10%	ORANGE	As the sensors senses the parameters continuously, there will not be any delay As th sensors are well protected, there is a low probability of physical damage.
					NFT - Detailed To	est Plan			
			S.No	Project Overview	NFT Test approach	ssumptions/Dependencies/Risk	Approvals/SignOff		
			í	Real Time River Water Quality monitoring and control system	LOAD TEST ENDURANCE TEST	The project is capable of dealing with large amount of data (i.e.) (oad. Congestion can be controlled and the system can operate efficiently.	Approved		
					End Of Test R	eport			
S.No	Project Overview	NFT Test approach	NFR - Met	Test Outcome	GO/NO-GO decision	Recommendations	Identified Defects (Detected/Closed/Open)	Approvals/SignOff	
1	Real Time River Water Quality monitoring and control system	LOAD TEST ENDURANCE TEST	YES	The parameter values of Temperature, pH,& Turbidity can be obtained continously and the alert messages whenever the water is not fit to use is sent to the authorities without any delay.	60	The rechargable sensors can be used during the manufacturing of this system.	Closed	Approved	

10. ADVANTAGES:

- a. The system is very cheap as the hardware and software dose not cost much.
 - b. User friendly and efficient.
 - c. It is helpful for people to drink good water.

DISADVANTAGES

- a. Drawback is high cost for smart sensors.
- b. It is working under internet, if it losses the net connection, it cannot be generate value for IBM service

11. CONCLUTION

- a. This Real time river water quality monitorning and control system monitors PH turbidity & temperature of water.
- b. The system can monitor river water quality automatically and it is low in cost and does not require people on duty.
- c. So the river water quality using IOT testing is likely to be more economical, connenient and fast. The system has good flexibility.

12. FUTURE SCOPE

The future scope of this project is monitoring environmental condition, drinking water quality, treatment and disinfection of waste water ect... this system could be implemented in various industial processes. The system can be modify into different needs of the user and its beneficial for user to view the conditions of water in mobile apps or sms. The standardization of the data format for the process will alsoprovide improved device consistency and execution time.

13. APPENDIX

SOURCE CODE:

```
import json
import wiotp.sdk.device
import time
import random
import ibmiotf.application
import ibmiotf.device
myConfig = {
  "identity": {
    "orgId": "bb0w3d",
    "typeId": "Sensor_River_UP",
    "deviceId":"1234"
   },
   "auth": {
     "token": "123456780"
   }
defmyCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
```

```
if status=="motoron":
    print ("motor is on")
  elif status == "motoroff":
    print ("motor is off")
  else:
    print ("please send proper command")
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
  turb=random.randint(1,100)
  ph=random.randint(0,15)
  temp=random.randint(-20,125)
  myData={'Turbidity':turb,'PHvalue':ph,'temperature':temp}
  client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0,
onPublish=None)
  print("Published data Successfully: ", myData)
  time.sleep(20)
  client.commandCallback = myCommandCallback
client.disconnect()
```

GITHUB: https://github.com/IBM-EPBL/IBM-Project-18702-1659688705

PROJECT DEMO: https://www.youtube.com/embed/AUqEUMIfT3E