Arithmétique : DS du 24 octobre 2019

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

– EXERCICE 1. On considère l'anneau $A = \mathbb{F}_2[X]/(X^4 + X^2 + X + 1)$. Combien le groupe (A^*, \times) contient-il d'éléments? Est-ce un groupe cyclique?

- EXERCICE 2.

- a) Que pouvez-vous dire de la décomposition en facteurs irréductibles de X^{27} X sur \mathbb{F}_3 ? En déduire le nombre de polynômes irréductibles unitaires de degré 3 dans $\mathbb{F}_3[X]$.
- b) Le polynôme $X^3 X + 1$ est-il irréductible dans $\mathbb{F}_3[X]$? Est-il primitif?
- EXERCICE 3. Soit $P(X) = X^5 X 1$ dans $\mathbb{F}_5[X]$. Soit x la classe de X dans l'anneau $A = \mathbb{F}_5[X]/(X^5 X 1)$.
 - a) Que valent x^5, x^{25}, x^{125} ? Plus généralement, quelles sont les valeurs prises par x^{5^n} dans A pour tous les entiers n?
 - b) En déduire que $X^5 X 1$ est irréductible dans $\mathbb{F}_5[X]$.
- EXERCICE 4. On rappelle que le polynôme $X^2 + X + 1$ est irréductible sur \mathbb{F}_2 .
 - a) Montrer que le polynôme $X^2 + X + 1$ est irréductible sur \mathbb{F}_8 .
 - b) Quels sont les entiers m pour les quels le polynôme X^2+X+1 est irréductible sur \mathbb{F}_{2^m} ?
 - c) Montrer que dans le corps \mathbb{F}_{64} il existe un élément α tel que $\alpha^2 + \alpha + 1 = 0$ et un élément β tel que $\beta^3 + \beta + 1 = 0$.
 - d) Montrer que le polynôme minimal de $\alpha\beta$ est $X^6 + X^4 + X^2 + X + 1$.
 - e) Quel est l'ordre de $\alpha\beta$ dans \mathbb{F}_{64} ? Le polynôme $X^6+X^4+X^2+X+1$ est-il primitif?