Formale Syntax: HPSG o6. Lexikon und Lexikonregeln

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Iena

Stets aktuelle Fassungen: https://github.com/rsling/VL-HPSG
Basiert teilweise auf Folien von Stefan Müller: https://hpsg.hu-berlin.de/~stefan/Lehre/S2021/hpsg.html
Grundlage ist Stefans HPSG-Buch: https://hpsg.hu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html.de

Stefan trägt natürlich keinerlei Verantwortung für meine Fehler und Missverständnisse!

Übersicht

Formale Syntax: HPSG | Plan

- Phrasenstruktur und Phrasenstrukturgrammatiken
- Merkmalstrukturen und Merkmalbeschreibungen
- Komplementation und Grammatikregeln
- Verbsemantik und Linking (Semantik 1)
- 5 Adjunktion und Spezifikation
- 6 Lexikon und Lexikonregeln
- Konstituentenreihenfolge und Verbbewegung
- 8 Nicht-lokale Abhängigkeiten und Vorfeldbesetzung
- Quantorenspeicher (Semantik 2)
- Unterspezifikationssemantik (Semantik 3)

```
https://rolandschaefer.net/archives/2805
https://github.com/rsling/VL-HPSG/tree/main/output
https://hpsg.hu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html
```

Einleitung

Struktur des Lexikons und Lexikonregeln

Lexikalistische Theorien lösen so viel wie möglich im Lexikon

- Welche Information ist bei Wörtern wirklich idiosynkratisch (= individuell)?
- Wie kann man Generalisierungen im Lexikon erfassen (Typen)?
- Wie helfen Typhierarchien, die sehr komplexen Lexikoneinträge zu strukturieren.
- Wie funktionieren Lexikonregeln für das Passiv?
- Wie modelliert man Flexion und Wortbildung in HPSG? (Kapitel 19)

Müller (2013: Kapitel 6)

Welche Informationen sind wirklich idiosynkratisch?

- Buch
 - PHON und book-rel
 - Ansonsten neutrales Zählsubstantiv
- Zement
 - PHON und cement-rel
 - Ansonsten maskulines Stoffsubstantiv
- zerlegen
 - PHON und disassemble-rel
 - Ansonsten schwaches transitives telisches Agens/Patiens-Verb
- sehen
 - PHON und see-rel
 - Und die Stammformen
 - Ansonsten transitives atelisches Agens/Thema-Verb

Nomen-Typen I

Was entspricht der traditionellen Wortklasse Nomen?

Wir schreiben jetzt reine Typangaben in AVMs ohne eckige Klammern.

Die Typen *noun* und *nom-obj* sind dann anderswo in der Hierarchie zu spezifizieren.

Hier nur der Illustration halber. Alle Werte haben wiederum Typen.

$$\begin{bmatrix} noun \\ CAS & case \end{bmatrix} \begin{bmatrix} nom\text{-}obj \\ IND & index \\ RESTR & \left\langle \begin{bmatrix} nom\text{-}psoa \\ INST & index \end{bmatrix} \right\rangle \end{bmatrix}$$

Nomen-Typen II

Achtung! Die Aussagen auf der letzten Folie zu nom-obj gelten z.B. nicht für Pronomina.

Pronomina führen keine REL ein. Substantive sind dafür immer dritte Person.

$$\begin{bmatrix} count\text{-}appellative\text{-}noun\text{-}sign \\ cat|subcat & \left\langle \begin{bmatrix} cat|\text{head} & det \end{bmatrix} \right\rangle \\ \\ cont & \begin{bmatrix} nom\text{-}obj \\ \\ IND & \boxed{1} \begin{bmatrix} \text{PER} & 3 \end{bmatrix} \\ \\ RESTR & \left\langle \begin{bmatrix} nom\text{-}psoa \\ INST & \boxed{1} \end{bmatrix} \right\rangle \end{bmatrix} \end{bmatrix}$$

Für Feminina gilt zusätzlich:

Mehrfachvererbung

Aus Typen, die Teilinformationen kodieren, werden terminale spezifische Typen gebildet.

Hier nur beispielhafte Toy-Hierarhie. Eine größere Hierarchie weiter unten und später in Trale.

Verb-Typen

Verben an sich

CAT | HEADverbCONT | RESTRpsoa

Dativverben

$$\left[\mathsf{CAT} \big| \mathsf{SUBCAT} \ \left\langle \mathsf{NP}_{\mathsf{NOM}}, \mathsf{NP}_{\mathsf{DAT}} \right\rangle \right]$$

Agentivische Experiencerverben

$$\begin{bmatrix} \mathsf{CAT} | \mathsf{SUBCAT} & \left\langle \begin{bmatrix} \mathsf{CONT} | \mathsf{IND} & \mathbb{I} \end{bmatrix}, \begin{bmatrix} \mathsf{CONT} | \mathsf{IND} & \mathbb{2} \end{bmatrix} \right\rangle \\ \\ \mathsf{CONT} | \mathsf{RESTR} & \begin{bmatrix} \mathit{agens-exp-rel} \\ \mathsf{AGENS} & \mathbb{I} \\ \mathsf{EXP} & \mathbb{2} \end{bmatrix} \end{bmatrix}$$

Im Ergebnis:

Möglicher größerer Ausschnitt der Typhierarchie

Typen und "Wortarten"

Platitüde aus der Morphologie- oder Syntax-Einführung: Wortarten sind immer nur ein Konstrukt. Wir teilen Wörter grob so ein, wie wir es für die Grammatik brauchen.

- Solche Äußerungen treffen auf nicht-formalisierte Grammatiken zu.
- In der Formalisierung verschwinden diese Einschränkungen:
 - ▶ Typen erfassen Generalisierungen über Wörter und Wortformen.
 - Konkrete Wörter erben von diversen Typen und haben einen maximal spezifischen Typ.
 - ► Wörter bringen zusätzlich idiosynkratische Informationen mit.

 Frau ist ein noun-sign, det-sc, nominal-sem-sign/3 mit Frau als PHON-Wert.
 - Wortarten erfassen brutal vereinfacht Teilaspekte dieser Typhierarchie.
- Wortarten sind Konstrukte, Typen (und Typhierarchien) modellieren Realität.
- Wenn Sie sonst nichts aus dieser Vorlesung übrig behalten:
 Daran sollten Sie sich erinnern, wenn Sie Wortarten unterrichten.

Unäre Phrasen

Nichts verbietet unäre Projektionen in HPSG. Analog zu X-Bar-Syntax:

Aus Kontexten wie: Wir brauchen dringend Zement.

Wir brauchen solche Projektionen nicht.

$$\begin{bmatrix} \mathsf{PHON} & \left\langle \mathit{Zement} \right\rangle \\ \\ \mathsf{CAT} & \begin{bmatrix} \mathsf{HEAD} & \mathit{noun} \\ \\ \mathsf{SUBCAT} \left\langle \right\rangle \end{bmatrix} \end{bmatrix}$$

Das Wort kommt als NP aus dem Lexikon.

Unäre Syntaxregeln

Man kann aber unäre Regeln einführen und daran beliebige Funktionen aufhängen. Hypothetisches Schema, das ein Stoffsubstantiv zu einem sortalen Nomen macht.

(ein bisschen) Zement → (ein) Zement

$sortal-noun-unary-phrase \Rightarrow$

- Die einzige Tochter ist ein Stoffsubstantiv.
- Es kommt ein sortales Nomen heraus (CONT-Magie).
- Das sortale Nomen braucht einen Determinierer (im Gegensatz zum Stoffsubstantiv).
- PHON und HEAD bleiben gleich.
- Das könnten wir so machen und hätten damit eine Art syntaktischer Konversion.
- Probleme g\u00e4be es, wenn das Nomen bereits Adjunkte zu sich genommen hat.
- Man vermeidet solche Regeln möglichst in der Syntax.

Description-Level-Lexical Rules (DLR)

Lexikonregeln funktionieren ähnlich. Aber ihre Töchter sind immer Lexikoneinträge.

Deswegen erkläre ich in Schäfer (2018), dass Passiv lexikalisch ist. Vollständige Argumentation: Ackerman & Webelhuth (1998)

Lexikonregeln

Wir betrachten hier nur DLR-Lexikonregeln.

Alternativen s. Müller (2013: Kapitel 6).

- Es gibt keinen formalen Unterschied zwischen Morphologie und Syntax.
- Lexikonregeln sind Teil des Formalismus.
- Sie sind unäre Regeln, die auf Lexikoneinträge beschränkt sind.
- Die LEX-DTR ist der lexikalische Input.
- Alles, worüber die Regel nichts aussagt, wird übernommen.
- So funktionieren Passiv, Flexion, Wortbildung usw. in HPSG.
- Theorien wie HPSG sind Theorien des gesamten Sprachsystems inkl. Lexikon, sie sind keine reinen Syntaxen im engen Sinn.

Passiv mit Morphonolomagie

Um die Form kümmert sich f!

Die Funktion f baut die Form gekauft zu kauf usw. Und starke Verben?

Starke Verben

Wenn man nicht f noch mehr externes Wissen mitgeben will, muss man irgendwo die Information über die Stammallomorphie in stem-Typen repräsentieren.

Starke Verben:

```
\begin{bmatrix} \text{verb-stem-phon} \\ \text{pres-stem} & \left\langle \text{geb} \right\rangle \\ \text{pret-stem} & \left\langle \text{gab} \right\rangle \\ \text{part-stem} & \left\langle \text{geb} \right\rangle \end{bmatrix}
```

Alternativ die Information über das Ablautmuster für f hinterlegen:

```
\begin{bmatrix} \text{Stem} & \\ & \\ \text{PHON} & \begin{bmatrix} \text{Verb-ablaut-eae-phon} \\ & \\ & \end{bmatrix} \end{bmatrix}
```

Nomina:

Siehe Crysmann (2021) für richtige Morphologie in HPSG.

Plural von Nomina

Worin besteht Pluralbildung bei Nomina? – Formänderung und NUM:

- PHON ist hier f
 ür stem komplex.
- Die eigentliche Quantifikation macht der Quantor (Artikel/Determinierer).
- Der Quantor muss aber ein pluralischer (zwei, mehrere, ...) sein.
 Das wurde hier behelfsmäßig mit NUMFORM implementiert.

Verbflexion

Worin besteht Verbflexion? – Formänderung, Tempus, Person, Numerus(, Modus)

Vereinfachung für unsere Zwecke nach Müller (2013: 380).

Derivation mit -bar

Die Version in Müller (2013: 382) ist allgemeiner, aber dadurch schwerer nachvollziehbar.

Ein Beispiel

Beispielkontext: die durch mich lösbare Gleichung

Vorbereitung

Nächste Woche reden wir über Konstituentenstellung und V1-Sätze.

Sie sollten dringend vorher aus dem HPSG-Buch von Kapitel 9 die Seiten 129–148 lesen!

Das sind 20 Seiten. Etwas mehr als sonst, aber durchaus machbar.

Achtung! In der Woche darauf sind die Seiten 163–147 dran. Lesen Sie ggf. im Voraus!

Literatur I

Ackerman, Farrell & Gert Webelhuth. 1998. A Theory of Predicates. (CSLI Lecture Notes 76).

Crysmann, Berthold. 2021. Morphology. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-Pierre Koenig (Hrsg.), Head-Driven Phrase Structure Grammar: The Handbook, 947–999. Berlin.

Müller, Stefan. 2013. Head-Driven Phrase Structure Grammar: Eine Einführung. 3. Aufl. (Stauffenburg Einführungen 17). Tübingen: Stauffenburg Verlag.

Schäfer, Roland. 2018. Einführung in die grammatische Beschreibung des Deutschen. 3. Aufl. (Textbooks in Language Sciences 2). Berlin.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.