

Stokes Structure and Direct Image of Irregular Singular \mathcal{D} -Modules

Hedwig Heizinger

Abstract: In this paper we will present a way of examining the Stokes structure of certain irregular singular \mathcal{D} -modules, namely the direct image of exponentially twisted regular singular meromorphic connections, in a topological point of view. This topological description enables us to compute Stokes data for an explicit example concretely.

1 Introduction – Preliminaries

Recently there was a lot of progress in proving an irregular Riemann-Hilbert correspondence in higher dimensions. Sabbah introduced the notion of *good* meromorphic connections and proved an equivalence of categories in this case [Sab13], which was extended to the general case by Mochizuki [Moc09] and Kedlaya [Ked10]. Furthermore d’Agnolo/Kashiwara proved an irregular Riemann-Hilbert correspondence for all dimensions using subanalytic sheaves [DK].

Nevertheless it is still difficult to describe the Stokes phenomenon for explicit situations and to calculate Stokes data concretely. In their recent article, Hien/Sabbah developed a topological way to determine Stokes data of the Laplace transform of an elementary meromorphic connection [HS]. The techniques used by Hien/Sabbah can be adapted to other situations. Hence in this article we will present a topological view of the Stokes phenomenon for the direct image of an exponentially twisted meromorphic connection \mathcal{M} in a 2-dimensional complex manifold. Namely we will consider the following situation:

Let $X = \Delta \times \mathbb{P}^1$ be a complex manifold, where Δ denotes an open disc in $0 \in \mathbb{C}$ with coordinate t . We denote the coordinate of \mathbb{P}^1 in 0 by x and the coordinate in ∞ by $y = \frac{1}{x}$. Let \mathcal{M} be a regular singular holonomic \mathcal{D}_X -module. We have the following projections:

$$\begin{array}{ccc} & \Delta \times \mathbb{P}^1 & \\ p \swarrow & & \searrow q \\ \Delta & & \mathbb{P}^1 \end{array}$$

Let \overline{D} denote the singular locus of \mathcal{M} , which consists of $\{0\} \times \mathbb{P}^1 =: D$, $\Delta \times \{\infty\}$ and some additional components. We will distinguish between the components

- $S_{i \in I}$ ($I = \{1, \dots, n\}$), which meet D in the point $(0, \infty)$ and
- $\tilde{S}_{j \in J}$ ($J = \{1, \dots, m\}$), which meet $\{0\} \times \mathbb{P}^1$ in some other point.

Furthermore we will require the following conditions on \overline{D} :

Assumption 1.1: Locally in $(0, \infty)$ the irreducible components S_i of the divisor \overline{D} achieve the following conditions:

- $S_i : \mu_i(t)y = t^{q_i}$, where μ_i is holomorphic and $\mu_i(0) \neq 0$.
- For $i \neq j$ either $q_i \neq q_j$ or $\mu_i(0) \neq \mu_j(0)$ holds.

Assumption 1.2: The irreducible components \tilde{S}_j intersect D in pairwise distinct points. Moreover we assume \tilde{S}_j to be smooth, i.e. locally around the intersection point they can be described as

$$\tilde{S}_j : \mu_j(t)x = t^{q_j}.$$

We want to examine $p_+(\mathcal{M} \otimes \mathcal{E}^q)$. This is a complex with $\mathcal{H}^k p_+(\mathcal{M} \otimes \mathcal{E}^q) = 0$ for $k \neq -1, 0$. Furthermore one can show that even $\mathcal{H}^{-1} p_+(\mathcal{M} \otimes \mathcal{E}^q) = 0$ on Δ^* (cf. [Sab08], p. 161), i.e. it is only supported in 0. Therefore, we will consider $\mathcal{H}^0 p_+(\mathcal{M} \otimes \mathcal{E}^q)$. We will assume Δ small enough such that 0 is the only singularity of the \mathcal{D}_Δ -module $\mathcal{H}^0 p_+(\mathcal{M} \otimes \mathcal{E}^q)$ and we denote its germ at 0 by

$$\mathcal{N} := (\mathcal{H}^0 p_+(\mathcal{M} \otimes \mathcal{E}^q))_0.$$

In the following we will take a closer look at the Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_{\leq \psi})$ (Chapter 2), which is associated to the \mathcal{D}_Δ -module \mathcal{N} by the irregular Riemann-Hilbert correspondence

as mentioned above. We will use an isomorphism

$$\Omega : \mathcal{L}_{\leq \psi} \xrightarrow{\cong} \mathcal{H}^1 R\tilde{p}_* \mathrm{DR}^{mod D} (\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}} \otimes \mathcal{E}^{-\psi})$$

(proved by Mochizuki) to develop a topological description for $\mathcal{L}_{\leq \psi}$.

In Chapter 3 we will use this topological perspective to present a way of determining Stokes matrices for an explicit example, where the singular locus of a meromorphic connection \mathcal{M} of rank r only consists of two additional irreducible components, namely $(S_1 : y = t)$ and $(\tilde{S}_1 : x = 0)$. We will describe the Stokes-filtered local system \mathcal{L} (which in this case will be of exponential type) in terms of linear data, namely a set of linear Stokes data of exponential type, defined as follows:

Let $\Phi = \{\phi_i \mid i \in I\}$ denote a finite set of exponents ϕ_i of pole order ≤ 1 and let $\theta_0 \in \mathbb{S}^1$ be a generic angle, i. e. it is no Stokes direction with respect to the ϕ_i s. We get a unique ordering of the exponents $\phi_0 <_{\theta_0} \phi_1 <_{\theta_0} \dots <_{\theta_0} \phi_n$ and the reversed ordering for $\theta_1 := \theta_0 + \pi$.

Definition 1.3 ([HS11], Def 2.6): The *category of Stokes data of exponential type* (for a set of exponents Φ ordered by θ_0) has objects consisting of two families of \mathbb{C} -vector spaces (G_{ϕ_i}, H_{ϕ_i}) and two morphisms

$$\bigoplus_{i=0}^n G_{\phi_i} \xrightarrow{S} \bigoplus_{i=0}^n H_{\phi_i} \quad \bigoplus_{i=0}^n H_{\phi_{n-i}} \xrightarrow{S'} \bigoplus_{i=0}^n G_{\phi_{n-i}}$$

such that

1. S is a block upper triangular matrix, i. e. $S_{ij} : G_{\phi_i} \rightarrow H_{\phi_j}$ is zero for $i > j$ and S_{ii} is invertible (thus S is invertible and $\dim G_{\phi_i} = \dim H_{\phi_i}$)
2. S' is a block lower triangular matrix, i. e. $S'_{ij} : H_{\phi_{n-i}} \rightarrow G_{\phi_{n-j}}$ is zero for $i < j$ and S'_{ii} is invertible (thus S' is invertible)

A morphism consists of morphisms of \mathbb{C} -vector spaces $\lambda_i^G : G_{\phi_i} \rightarrow G'_{\phi_i}$ and $\lambda_i^H : H_{\phi_i} \rightarrow H'_{\phi_i}$, which are compatible with the corresponding diagrams.

The correspondence between Stokes-filtered local systems of exponential type and linear Stokes data is stated in the following theorem. For a proof we refer to [HS11], p. 12/13.

Theorem 1.4: *There is an equivalence of categories between the Stokes-filtered local systems of exponential type and Stokes data of exponential type.*

By associating the Stokes-filtered local system to a set of Stokes data via this equivalence of categories and using the isomorphism Ω we will finally get an explicit description of the Stokes

data in our concrete example. It is stated in the following

Theorem 1.5: *Fix the following data:*

- $L_0 = \mathbb{V} \oplus \mathbb{V}$, $L_1 = \mathbb{V} \oplus \mathbb{V}$
- $S_0^1 = N_\pi = \begin{pmatrix} -1 & 1 - ST^{-1} \\ 0 & -ST^{-1} \end{pmatrix}$, $S_1^0 = (\mu_0^\pi \circ \mu_\pi^0) \cdot N_0 = \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \cdot \begin{pmatrix} -TS^{-1} & 0 \\ 1 - TS^{-1} & -1 \end{pmatrix}$

where \mathbb{V} is the generic stalk of the local system attached to \mathcal{M} and S, T denote the monodromies around the strict transforms of the irreducible components \tilde{S}_1, S_1 in the singular locus of \mathcal{M} and U denotes the monodromy around the component $\{0\} \times \mathbb{P}^1$. Then

$$(L_0, L_1, S_0^1, S_1^0)$$

defines a set of Stokes data for $\mathcal{H}^0 p_+ (\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})$.

2 Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_{\leq \psi})$

In [Rou07] Roucaïrol examined the formal decomposition of direct images of \mathcal{D} -modules in the situation presented above. She determined the exponential factors as well as the rank of the corresponding regular parts appearing in the formal decomposition of \mathcal{N} . In our case this leads to the following result:

Theorem 2.1 ([Rou07], Thm 1): *Let \mathcal{M} be a regular singular \mathcal{D}_X -module with singular locus \overline{D} which achieves the previous assumptions 1.1 and 1.2. Then $\hat{\mathcal{N}} := (\mathcal{H}^0 p_+ (\mathcal{M} \otimes \mathcal{E}^q))_0^\wedge$ decomposes as*

$$\hat{\mathcal{N}} = R_0 \oplus \bigoplus_{i \in I} (R_i \otimes \mathcal{E}^{\psi_i(t)})^\wedge,$$

where R_0, R_i ($i \in I$) are regular singular \mathcal{D}_Δ -modules and $\psi_i(t) = \mu_i(t) t^{-q_i}$. Moreover we have:

- $\text{rk}(R_i) = \dim \Phi_{P_i}$ where Φ_{P_i} denotes the vanishing cycles of $\text{DR}(e^+ \mathcal{M})$ at the intersection point P_i of (a strict transform of) S_i with the exceptional divisor after a suitable blow up e .
- $\text{rk}(R_0) = \sum_{j \in J} \dim \Phi_{\tilde{P}_j}$, where $\Phi_{\tilde{P}_j}$ denotes the vanishing cycles of $\text{DR}(\mathcal{M})$ at the intersection point \tilde{P}_j of \tilde{S}_j with D .

Proof: The formal decomposition and the statement about the rank of the R_i is exactly Roucaïrol's theorem applied to our given situation. With the same arguments as in Roucaïrol's proof one can also show that $\text{rk}(R_0) = \sum_{j \in J} \dim \Phi_{\tilde{P}_j}$. □

Identify $\mathbb{S}^1 = \{\vartheta \mid \vartheta \in [0, 2\pi)\}$ and denote $\mathcal{P} := x^{-1}\mathbb{C}[x^{-1}]$. Let us recall the following definition of a Stokes-filtered local system.

Definition 2.2 ([Sab13], Lemma 2.7): Let \mathcal{L} be a local system of \mathbb{C} -vector spaces on \mathbb{S}^1 . We will call $(\mathcal{L}, \mathcal{L}_\leq)$ a *Stokes-filtered local system*, if it is equipped with a family of subsheaves $\mathcal{L}_{\leq \phi}$ (indexed by $\phi \in \mathcal{P} := x^{-1}\mathbb{C}[x^{-1}]$) satisfying the following conditions:

1. For all $\vartheta \in \mathbb{S}^1$, the germs $\mathcal{L}_{\leq \phi, \vartheta}$ form an exhaustive increasing filtration of \mathcal{L}_ϑ
2. $gr_\phi \mathcal{L} := \mathcal{L}_{\leq \phi}/\mathcal{L}_{< \phi}$ is a local system on \mathbb{S}^1 (where $\mathcal{L}_{< \phi, \vartheta} := \sum_{\psi < \vartheta, \phi} \mathcal{L}_{\leq \psi, \vartheta}$)
3. $\dim \mathcal{L}_{\leq \phi, \vartheta} = \sum_{\psi \leq \vartheta, \phi} \dim gr_\psi \mathcal{L}_\vartheta$

Assume that \mathcal{M} (and therefore the direct image \mathcal{N} defined above) is a meromorphic connection. Let \mathcal{L}' denote the local system on Δ^* corresponding to the meromorphic connection \mathcal{N} . Moreover let $\pi : \tilde{\Delta} \rightarrow \Delta, (r, e^{i\vartheta}) \mapsto r \cdot e^{i\vartheta}$ be the real oriented blow up of Δ in the singularity 0 and $j : \Delta^* \hookrightarrow \tilde{\Delta}$. Consider $j_* \mathcal{L}'$ and restrict it to the boundary $\partial\tilde{\Delta}$. We get a local system on $\mathbb{S}^1 \cong \partial\tilde{\Delta}$ and define $\mathcal{L} := j_* \mathcal{L}'|_{\mathbb{S}^1}$. For $\phi \in \mathcal{P}$ define

$$\mathcal{L}_{\leq \phi} := \mathcal{H}^0 \text{DR}_{\partial\tilde{\Delta}}^{mod\,0}(\mathcal{N} \otimes \mathcal{E}^{-\phi}) \quad \text{and} \quad \mathcal{L}_{< \phi} := \mathcal{H}^0 \text{DR}_{\partial\tilde{\Delta}}^{<0}(\mathcal{N} \otimes \mathcal{E}^{-\phi}),$$

where $\text{DR}^{mod\,0}$ resp. $\text{DR}^{<0}$ denotes the moderate (resp. rapid decay) de Rham complex. According to the equivalence of categories between germs of a $\mathcal{O}_\Delta(*0)$ -connection and Stokes-filtered local systems stated by Deligne/Malgrange (cf. [Mal91]), $(\mathcal{L}, \mathcal{L}_\leq)$ forms the Stokes-filtered local system associated to \mathcal{N} .

Moreover by the Hukuhara-Turrittin-Theorem (cf. [Sab07], p. 109) the formal decomposition of \mathcal{N} can be lifted locally on sectors to $\partial\tilde{\Delta} = \mathbb{S}^1$. Thus to determine the filtration \mathcal{L}_\leq , it is enough to consider the set of exponential factors (respectively their polar part) appearing in the formal decomposition, since the moderate growth property of the solutions of an elementary connection $\mathcal{R} \otimes \mathcal{E}^\phi$ ($\phi \in \mathcal{P}$) only depends on the asymptotical behavior of e^ϕ . We denote the set of exponential factors of the formal decomposition of \mathcal{N} by $\mathcal{P}_\mathcal{N} := \{\psi_i \mid i \in I_0\}$ whereby $I_0 := I \cup \{0\}$ and $\psi_0 := 0$.

Definition 2.3: For $\vartheta \in \mathbb{S}^1$ we define the following ordering on \mathcal{P} : $\phi \leq_\vartheta \psi \Leftrightarrow e^{\phi-\psi} \in \mathcal{A}^{mod\,0}$.

Remark 2.4: 1. For $\psi_i, \psi_j \in \mathcal{P}_\mathcal{N}$ appearing in the formal decomposition of \mathcal{N} we can determine $\vartheta \in \mathbb{S}^1$, such that $\psi_i \leq_\vartheta \psi_j$ (cf. [Sab13], ex. 1.6):

$$\psi_i \leq_\vartheta \psi_j \Leftrightarrow \psi_i - \psi_j \leq_\vartheta 0 \Leftrightarrow \mu_i(t)t^{-q_i} - \mu_j(t)t^{-q_j} \leq_\vartheta 0.$$

There exists a finite set of $\vartheta \in \mathbb{S}^1$, where ψ_i and ψ_j are not comparable, i.e. neither

$\psi_i \leq_{\vartheta} \psi_j$ nor $\psi_j \leq_{\vartheta} \psi_i$ holds. We call these angles the *Stokes directions* of (ψ_i, ψ_j) .

2. For $\vartheta_0 \in \mathbb{S}^1$ not being a Stokes direction of any pair (ψ_i, ψ_j) in $\mathcal{P}_{\mathcal{N}}$ we get a total ordering of the ψ_i s with respect to ϑ_0 : $\psi_0 <_{\vartheta_0} \dots <_{\vartheta_0} \psi_n$.

Corollary 2.5: For $\vartheta \in \mathbb{S}^1$ we get the following statement:

1. $\psi = 0$:

$$\dim (\mathcal{L}_{\leq 0})_{\vartheta} = \sum_{j \in J} \Phi_{\tilde{P}_j} + \sum_{\{i | \psi_i \leq_{\vartheta} 0\}} \Phi_{P_i}$$

$$2. \psi \neq 0, \vartheta \in \left(\frac{\frac{\pi}{2} + \arg(-\mu(0))}{q}, \frac{\frac{3\pi}{2} + \arg(-\mu(0))}{q} \right) \text{ mod } \frac{2\pi}{q}.$$

$$\dim (\mathcal{L}_{\leq \psi})_{\vartheta} = \sum_{j \in J} \Phi_{\tilde{P}_j} + \sum_{\{i | \psi_i \leq_{\vartheta} \psi\}} \Phi_{P_i}$$

$$3. \psi \neq 0, \vartheta \in \left(\frac{-\frac{\pi}{2} + \arg(-\mu(0))}{q}, \frac{\frac{\pi}{2} + \arg(-\mu(0))}{q} \right) \text{ mod } \frac{2\pi}{q}.$$

$$\dim (\mathcal{L}_{\leq \psi})_{\vartheta} = \sum_{\{i | \psi_i \leq_{\vartheta} \psi\}} \Phi_{P_i}$$

Proof: This is a direct consequence of the formal decomposition and the fact that for $\psi \neq 0$ we have

$$\begin{aligned} 0 \leq_{\vartheta} \psi &\Leftrightarrow -\mu(t)t^{-q} \leq_{\vartheta} 0 \Leftrightarrow \arg(-\mu(0)) - q\vartheta \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \\ &\Leftrightarrow \vartheta \in \left(\frac{\frac{\pi}{2} + \arg(-\mu(0))}{q}, \frac{\frac{3\pi}{2} + \arg(-\mu(0))}{q} \right) \text{ mod } \frac{2\pi}{q} \end{aligned}$$

□

2.1 Topological description of the stalks

As before we assume that \mathcal{M} is a meromorphic connection with regular singularities along its divisor. Our aim is to determine the Stokes structure of \mathcal{N} by using a topological point of view, i. e. we will develop a topological description of the Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_{\leq})$. Therefore we will use the following theorem:

Theorem 2.6 ([Moc], Cor. 4.7.5): *There is an isomorphism*

$$\Omega : \mathcal{L}_{\leq \psi} := \mathcal{H}^0 \text{DR}_{\tilde{\Delta}}^{mod 0} (\mathcal{N} \otimes \mathcal{E}^{-\psi}) \rightarrow \tilde{\mathcal{L}}_{\leq \psi} := \mathcal{H}^1 R\tilde{p}_* \text{DR}_{\tilde{X}(D)}^{mod D} (\mathcal{M} \otimes \mathcal{E}^{\frac{1}{q}} \otimes \mathcal{E}^{-\psi})$$

Here $\tilde{X}(D)$ denotes the real-oriented blow up of X along the divisor component D , $\text{DR}^{\text{mod } D}(\mathcal{M})$ denotes the moderate de Rham complex of a meromorphic connection \mathcal{M} on X and $\tilde{p}: \tilde{X}(D) \rightarrow \tilde{\Delta}$ corresponds to the projection p in the real-oriented blow up space $\tilde{X}(D)$ along D .

Theorem 2.6 is a special case of [Moc], Cor. 4.7.5. In the following we will develop a topological view of the right hand side of the above isomorphism, which enables us to describe the Stokes-filtered local system $(\mathcal{L}, \mathcal{L}_\leq)$ more explicitly.

First let us examine the behavior of $\tilde{\mathcal{L}}_{\leq \psi}$ with respect to birational maps.

Proposition 2.7: *Let $e: Z \rightarrow \Delta \times \mathbb{P}^1$ a birational map (i.e. a sequence of point blow-ups), $g(t, y) := \frac{1}{y} - \psi(t)$, $D_Z = e^{-1}(D)$. Then:*

$$\text{DR}_{\tilde{X}(D)}^{\text{mod } D} (\mathcal{M} \otimes \mathcal{E}^{g(t, y)}) \cong R\tilde{e}_* \text{DR}_{\tilde{Z}(D_Z)}^{\text{mod } D_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e})$$

Proof: We know that e is proper. Furthermore we assumed that \mathcal{M} is a meromorphic connection with regular singularities along D , i.e. particularly that $\mathcal{M} \otimes \mathcal{E}^{g(t, y)}$ is a holonomic \mathcal{D}_X -module and localized along D . Thus, using the fact that $e_+ (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e}) \cong \mathcal{M} \otimes \mathcal{E}^{g(t, y)}$, we can apply [Sab13], Prop. 8.9:

$$\begin{aligned} \text{DR}_{\tilde{X}(D)}^{\text{mod } D} (\mathcal{M} \otimes \mathcal{E}^{g(t, y)}) &\cong \text{DR}_{\tilde{X}(D)}^{\text{mod } D} (e_+ (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e})) \\ &\cong R\tilde{e}_* \text{DR}_{\tilde{Z}(D_Z)}^{\text{mod } D_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e}) \end{aligned}$$

□

Proposition 2.8: *Denote $D' := D \cup (\Delta \times \{\infty\})$. Let $D'_Z := e^{-1}(D')$ and $\overline{D}_Z := e^{-1}(\overline{D})$. If \overline{D}_Z is a normal crossing divisor, we have isomorphisms*

$$R\tilde{e}_* \text{DR}_{\tilde{Z}(D_Z)}^{\text{mod } D_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e}) \cong R\tilde{e}_* \text{DR}_{\tilde{Z}(D'_Z)}^{\text{mod } D'_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e})$$

and

$$R\tilde{e}_* \text{DR}_{\tilde{Z}(D_Z)}^{\text{mod } D_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e}) \cong R\tilde{e}_* \text{DR}_{\tilde{Z}(\overline{D}_Z)}^{\text{mod } \overline{D}_Z} (e^+ \mathcal{M} \otimes \mathcal{E}^{g(t, y) \circ e})$$

where \tilde{e} denotes the induced map in the particular blow up spaces.

Proof: Assume \overline{D}_Z a normal crossing divisor and consider the identity map $Z \xrightarrow{\text{Id}} Z$, which obviously induces an isomorphism on $Z \setminus \overline{D}_Z \rightarrow Z \setminus \overline{D}_Z$. We obtain ‘partial’ blow up maps

$$\widetilde{Id}_1: \widetilde{Z}(D'_Z) \rightarrow \widetilde{Z}(D_Z) \text{ and } \widetilde{Id}_2: \widetilde{Z}(\overline{D}_Z) \rightarrow \widetilde{Z}(D_Z)$$

which induce the requested isomorphisms. These are variants of Prop. 8.9 in [Sab13] (see also [Sab13], Prop. 8.7 and Rem. 8.8). \square

Corollary 2.9:

$$\mathcal{H}^1 \left(R\tilde{p}_* \mathrm{DR}^{mod D} \left(\mathcal{M} \otimes \mathcal{E}^{g(t,y)} \right) \right) \cong \mathcal{H}^1 \left(R(\widetilde{p \circ e})_* \mathrm{DR}^{mod(\star)} \left(e^+ \mathcal{M} \otimes \mathcal{E}^{g(t,y) \circ e} \right) \right)$$

where $\star = D_Z$ (resp. D'_Z , resp. \overline{D}_Z).

As $(\mathcal{L}, \mathcal{L}_{\leq})$ was defined on $\partial\widetilde{\Delta}$ we will restrict our investigation to the boundaries of the relevant blow up spaces, i.e. we consider $\partial\widetilde{\Delta}$, $\partial\widetilde{X}(D)$, $\partial\widetilde{Z}(D_Z)$, $\partial\widetilde{Z}(D'_Z)$ and $\partial\widetilde{Z}(\overline{D}_Z)$. We will take a closer look at the stalks:

Lemma 2.10: *Let $\vartheta \in \mathbb{S}^1$. There is an isomorphism*

$$\begin{aligned} (\mathcal{H}^1 \left(R(\widetilde{p \circ e})_* \mathrm{DR}^{mod(D_Z)} \left(e^+ \mathcal{M} \otimes \mathcal{E}^{g(t,y) \circ e} \right) \right))_{\vartheta} &\cong \\ &\mathbb{H}^1 \left((\widetilde{p \circ e})^{-1}(\vartheta), \mathrm{DR}^{mod(D_Z)} \left(e^+ \mathcal{M} \otimes \mathcal{E}^{g(t,y) \circ e} \right) \right) \end{aligned}$$

The same holds for D'_Z and \overline{D}_Z instead of D_Z .

Proof: $\widetilde{p \circ e}$ is proper, thus the claim follows by applying the proper base change theorem (cf. [Dim04], Th. 2.3.26, p. 41). \square

In the following we will consider

$$\mathcal{F}_{\psi} := \mathrm{DR}^{mod(D'_Z)} \left(e^+ \mathcal{M} \otimes \mathcal{E}^{g(t,y) \circ e} \right)$$

on the fiber $(\widetilde{p \circ e})^{-1}(\vartheta)$ in $\partial\widetilde{Z}(D'_Z)$, which in our case will be a 1-dimensional complex analytic space. Therefore we can assume \mathcal{F}_{ψ} to be a perverse sheaf, i.e. a 2-term complex $\mathcal{F}_{\psi} : 0 \rightarrow \mathcal{F}^0 \rightarrow \mathcal{F}^1 \rightarrow 0$ with additional conditions on the cohomology sheaves $\mathcal{H}^0(\mathcal{F}_{\psi})$ and $\mathcal{H}^1(\mathcal{F}_{\psi})$. Obviously $\mathcal{H}^i(\mathcal{F}_{\psi}) = 0$ for $i \neq 0, 1$ (cf. [Dim04], Ex. 5.2.23, p. 139).

Furthermore we can restrict \mathcal{F}_{ψ} to the set $B_{\psi}^{\vartheta} := \left\{ \zeta \in (\widetilde{p \circ e})^{-1}(\vartheta) \mid (\mathcal{H}^{\bullet}(\mathcal{F}_{\psi}))_{\zeta} \neq 0 \right\}$, which is an open subset of $(\widetilde{p \circ e})^{-1}(\vartheta)$. We denote the open embedding by $\beta_{\psi}^{\vartheta} : B_{\psi}^{\vartheta} \hookrightarrow (\widetilde{p \circ e})^{-1}(\vartheta)$. Thus by interpreting \mathcal{F}_{ψ} as a complex of sheaves on B_{ψ}^{ϑ} , we have to compute

$$\mathbb{H}^1 \left((\widetilde{p \circ e})^{-1}(\vartheta), \beta_{\psi}^{\vartheta}, \mathcal{F}_{\psi} \right) \cong \mathbb{H}_c^1 \left(B_{\psi}^{\vartheta}, \mathcal{F}_{\psi} \right).$$

2.1.1 Construction of a Resolution of Singularities

In the following sections we will construct a suitable blow up map e , such that we can describe $(\widetilde{p \circ e})^{-1}(\vartheta)$ and B_ψ^ϑ more concretely.

Lemma 2.11: *Let $g(t, y) = \frac{1}{y} - \psi(t)$. There exists a sequence of blow up maps e such that*

1. *$g \circ e$ holomorphic or good, i. e. $(g \circ e)(u, v) = \frac{1}{u^m v^n} \beta(u, v)$, whereby β holomorphic and $\beta(0, v) \neq 0$.*
2. *For all i the strict transform of S_i intersects D_Z in a unique point P_i .*

Proof: The divisor components S_i are given by $S_i : \mu_i(t)y = t^{q_i}$. Let $n := \max\{q_i\}$. We distinguish two cases:

1. $\psi = 0$, i. e. $g(t, y) = \frac{1}{y}$. After n blow ups in $(0, 0)$ we get an exceptional divisor D_Z with local coordinates

$$t = u_k v_k, y = u_k^{k-1} v_k^k \text{ and } t = u_{\tilde{n}}, y = \tilde{u}_n^n \tilde{v}_n$$

and $g \circ e$ is good or holomorphic in every point.

The intersection points P_i of the strict transform of $S_i : \mu_i(t)y = t^{q_i}$ is given by

$$P_i = \left(0, \frac{1}{\mu_i(0)} \right)$$

in the proper coordinates (i. e. (u_{q_i+1}, v_{q_i+1}) for $q_i < n$ and $(\tilde{u}_n, \tilde{v}_n)$ for $q_i = n$)

2. $\psi \neq 0$: ψ is given by $\psi(t) = \mu(t)t^{-q}$, so $g(t, y) = \frac{t^q - \mu(t)y}{yt^q}$. $(g \circ e)$ is good in every point except:

- $q < n, k = q + 1 : P = \left(0, \frac{1}{\mu(0)} \right)$ with local coordinates (u_{q+1}, v_{q+1})
- $q = n, k = n : P = \left(0, \frac{1}{\mu(0)} \right)$ with local coordinates $(\tilde{u}_n, \tilde{v}_n)$

Let $q < n$. After changing coordinates $u' = u_k, v' = v_k - \frac{1}{\mu(u_k v_k)}$ and after q blow-ups in $(0, 0)$, $(g \circ e)$ is good for every point of D_Z in local coordinates (u'_s, v'_s) and holomorphic for every point of D_Z in local coordinates $(\tilde{u}'_q, \tilde{v}'_q)$

Let $q = n$: After a change of coordinates $u' = \tilde{u}_n, v' = \tilde{v}_n - \frac{1}{\mu(\tilde{u}_n)}$ and n blow-ups in $(0, 0)$, $(g \circ e)$ is good for every point of D_Z in local coordinates (u'_s, v'_s) and holomorphic for every point of D_Z in local coordinates $(\tilde{u}'_n, \tilde{v}'_n)$. As before the intersection points P_i of the strict transform of $S_i : \mu_i(t)y = t^{q_i}$ with D_Z is given by

$$P_i = \left(0, \frac{1}{\mu_i(0)}\right)$$

in the suitable coordinates. Now let $q_i = q$ and $\mu_i(0) = \mu(0)$, i. e. we consider $S : \mu(t)y = t^q$ (Notice, that S corresponds to our given ψ !)

- $q < n$, i.e. $k := q + 1 \neq n$: $\bar{S} : u_k^{k-1}v_k^{k-1}(1 - \mu_i(u_kv_k)v_k) = 0$ and by coordinate transform we have: $\bar{S} : u_k^{k-1}v_k^{k-1}v' = 0$. As $v' = \tilde{u}'_q\tilde{v}'_q$ we get the unique intersection point $P = (0, 0)$.
- $q = n$: In the same way we get the intersection point $P = (0, 0)$.

□

2.1.2 Topology of $(\widetilde{p \circ e})^{-1}(\vartheta)$

D'_Z is a normal crossing divisor, so locally at a crossing point D'_Z has the form $\{uv = 0\}$ and at a smooth point D'_Z has the form $\{u = 0\}$. Thus we can describe $\partial\tilde{Z}(D'_Z)$ in local coordinates:

- real blow up with respect to $\{u = 0\}$: $\zeta = (0, \theta_u, |v|, \theta_v)$ (with $v = |v| \cdot e^{i\theta_v}$)
- real blow up with respect to $\{uv = 0\}$: $\zeta = (0, \theta_u, 0, \theta_v)$

Now we take the fiber of $\vartheta \in \mathbb{S}^1$, i. e. we consider $(\widetilde{p \circ e})^{-1}(\vartheta)$. For every fixed $|v|$ we have a bijection $\{(0, \theta_u, |v|, \theta_v)\} \leftrightarrow \mathbb{S}^1$, thus, following the nomenclature of C. Sabbah, we can interpret $(\widetilde{p \circ e})^{-1}(\vartheta)$ as a system of pipes, which furthermore is homeomorphic to a disc ([Sab13], p. 203)

Note, that for all i the strict transform of the divisor component S_i intersects the real blow up divisor $(\widetilde{p \circ e})^{-1}(\vartheta)$ in a unique point P_i .

Remark 2.12:

1. Also the irreducible components \tilde{S}_j intersect $(\widetilde{p \circ e})^{-1}(\vartheta)$ in distinct points \tilde{P}_j . This follows directly from Assumption 1.2.
2. According to Assumption 1.1 we have ($q_i \neq q_j$ or $\mu_i(0) \neq \mu_j(0)$ for $i \neq j$). This induces $P_i \neq P_j$.
3. Every intersection point P_i, \tilde{P}_j may be interpreted as a 'leak' in the system of pipes $(\widetilde{p \circ e})^{-1}(\vartheta)$ (see [Sab13], p. 204). Thus topologically we can think of $(\widetilde{p \circ e})^{-1}(\vartheta)$ as a disc with singularities, which come from the intersection with \tilde{S}_j and \overline{S}_i .

$$\psi = 0 \quad \psi \neq 0$$

2.1.3 Explicit Description of B_ψ^ϑ

Remember the definition of $B_\psi^\vartheta := \left\{ \zeta \in (\widetilde{p \circ e})^{-1}(\vartheta) \mid (\mathcal{H}^\bullet \mathcal{F}_\psi)_\zeta \neq 0 \right\}$. Obviously we have:

$$\zeta \in B_\psi^\vartheta \Leftrightarrow (\mathcal{H}^\bullet \mathcal{F}_\psi)_\zeta \neq 0 \Leftrightarrow e^{(g \circ e)} \in \mathcal{A}_\vartheta^{\text{mod } D'_Z} \text{ near } \zeta$$

(The second equivalence follows by considering $\text{DR}^{\text{mod } \overline{D}_Z} \left(e^+ \mathcal{M} \otimes \mathcal{E}^{g(t,y) \circ e} \right)$, whereof we know that it has cohomology in degree 0 at most (cf. Proposition 2.8 and Lemma 3.2).) Thus we need to take a closer look at the exponent $g \circ e$. Therefore we use the following Lemma (cf. [Sab13], 9.4):

Lemma 2.13: Let u, v local coordinates of the divisor D_Z , such that $f(u, v)$ holomorphic or good, i. e.

$$f(u, v) = \frac{1}{u^m v^n} \beta(u, v), \quad \text{whereby } \beta \text{ holomorphic and } \beta(0, v) \neq 0.$$

Then $e^{f(u, v)} \in \mathcal{A}_\vartheta^{\text{mod } D_Z}$ around a given point $\zeta \in (\widetilde{p \circ e})^{-1}(\vartheta)$ if and only if

$$f \text{ holomorphic in } \zeta \text{ or } \arg(\beta(0, v)) - m\theta_u - n\theta_v \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \text{ mod } 2\pi.$$

Lemma 2.14:

1. Let $S_i : \mu_i(t)y = t^{q_i}$, $\psi_i(t) = \mu_i(t)t^{-q_i}$ with $\mu_i(0) \neq 0$ and P_i the corresponding intersection point. Then we have: $P_i \in B_\psi^\vartheta \Leftrightarrow \psi_i \leq_\vartheta \psi$.

2. Let \tilde{P}_j the intersection points of \tilde{S}_j with $(\widetilde{p \circ e})^{-1}(\vartheta)$. Then we have: $\left\{ \tilde{P}_j \mid j = 1, \dots, J \right\} \subset B_\psi^\vartheta \Leftrightarrow 0 \leq_\vartheta \psi$.

Proof: This follows by examining goodness condition of $g \circ e$ near the intersection points and by Remark 2.4 \square

Definition 2.15: For abbreviation we define the following sets:

- $\mathcal{P}^\vartheta := \{\tilde{P}_j \mid j = 1, \dots, J\} \cup \{P_i \mid i = 1, \dots, I\} \subset (p \circ e)^{-1}(\vartheta)$
- $\mathcal{P}_\psi^\vartheta := \mathcal{P}^\vartheta \cap B_\psi^\vartheta$

Lemma 2.16: Let $\psi = 0$. Then the fundamental group $\pi_1(B_0^\vartheta \setminus \mathcal{P}_0^\vartheta)$ is a free group of rank $\#\mathcal{P}_0^\vartheta$.

Proof: This follows from the fact, that B_0^ϑ emerges from glueing the following sets of points:

- $M_1 = \{\zeta = (0, \theta_{u_1}, |v_1|, \theta_{v_1}) \mid v_1 \neq 0\}$
- $M_2 = \{\zeta = (0, \theta_{u_1}, 0, \theta_{v_1}) \mid \theta_{v_1} \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)\}$
- $M_3 = \{\zeta = (0, \theta_{u_k}, |v_k|, \theta_{v_k}) \mid \theta_{v_k} \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)\}$
- $M_4 = \{\zeta = (0, \theta_{\tilde{u}_n}, |\tilde{v}_n|, \theta_{\tilde{v}_n}) \mid \theta_{\tilde{v}_n} \in \left(\frac{\pi}{2} - n\vartheta, \frac{3\pi}{2} - n\vartheta\right)\}$

Since M_1 contains the \tilde{P}_j 's and M_2, M_3, M_4 are simply connected and contain the relevant P_i 's, this shows the claim. \square

Lemma 2.17: Let $\psi \neq 0$, i.e. ψ is given by $\psi(t) = \mu(t)t^{-q}$. Then $\pi_1(B_\psi^\vartheta \setminus \mathcal{P}_\psi^\vartheta)$ is a free group of rank $\#\mathcal{P}_\psi^\vartheta$.

Proof: Explicitely we have to prove:

1. For $\vartheta \in \left(\frac{\frac{\pi}{2} + \arg(-\mu(0))}{q}, \frac{\frac{3\pi}{2} + \arg(-\mu(0))}{q}\right)$ mod $\frac{2\pi}{q}$: $\pi_1(B_\psi^\vartheta \setminus \mathcal{P}_\psi^\vartheta)$ is a free group of rank $\#\{\tilde{P}_j\} + \#\{P_i \mid P_i \in B_\psi^\vartheta\}$
2. For $\vartheta \notin \left(\frac{\frac{\pi}{2} + \arg(-\mu(0))}{q}, \frac{\frac{3\pi}{2} + \arg(-\mu(0))}{q}\right)$ mod $\frac{2\pi}{q}$: $\pi_1(B_\psi^\vartheta \setminus \mathcal{P}_\psi^\vartheta)$ is a free group of rank $\#\{P_i \mid P_i \in B_\psi^\vartheta\}$

For $k \leq q$ we have: $\zeta = (0, \theta_{u_k}, |v_k|, \theta_{v_k}) \in B_\psi^\vartheta \Leftrightarrow \arg(-\mu(0)) - q\vartheta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$. This explains the sub-division into the two cases above. As in the previous lemma B_ψ^ϑ consists of glueing simply connected sets (additionally taking the sets of the branching part into account). \square

Descriptively, this means, that there are no other holes' in B_ψ^ϑ than the singularities P_i , which arise from the intersection with S_i and possibly – depending on the choice of ϑ if $\psi \neq 0$ – the singularities \tilde{P}_j , which arise from the intersection with \tilde{S}_j .

Remark, that an open interval of the boundary of B_ψ^ϑ lies in B_ψ^ϑ ! This holds because for $k = n$ we have

$$(0, \vartheta, 0, \theta_{\tilde{v}_n}) \in B_\psi^\vartheta \Leftrightarrow \theta_{\tilde{v}_n} \in \left(\frac{\pi}{2} - n\vartheta, \frac{3\pi}{2} - n\vartheta \right)$$

both if $q < n$ and if $q = n$.

2.1.4 Dimension of $\mathbb{H}_c^1(B_\psi^\vartheta, \mathcal{F}_\psi)$

Proposition 2.18: *On $B_\psi^\vartheta \setminus \mathcal{P}_\psi^\vartheta$ the perverse sheaf \mathcal{F}_ψ has cohomology in degree 0 at most.*

Proof: We know that $e^+ \mathcal{M}$ has regular singularities along the divisor and that $\mathcal{E}^{g(t,y)}$ is good or even holomorphic. Moreover the divisor is normal crossing except possibly at the intersection points P_i, \tilde{P}_j . Thus we can apply [Sab13], Corollary 11.22. \square

Lemma 2.19 ([Sab], Prop 1.1.6): *Let Δ be an open disc and Δ' an open subset of the closure $\overline{\Delta}$, consisting of Δ and a connected open subset of $\partial\overline{\Delta}$. Let C be a finite set of points in Δ . Let \mathcal{M} be a regular singular $\mathcal{D}_{\Delta'}$ -module and consider a perverse sheaf \mathcal{F} with singularities in $c \in C$ only. Then $\mathbb{H}_c^k(\Delta', \mathcal{F}) = 0$ for $k \neq 1$ and $\dim \mathbb{H}_c^1(\Delta', \mathcal{F})$ is equal to the sum of the dimensions of the vanishing cycle spaces at $c \in C$.*

Proof: For a proof we refer to [Sab]. \square

As a direct consequence we see:

Theorem 2.20: *For $\vartheta \in \mathbb{S}^1$ we have $\dim (\mathcal{L}_{\leq \psi})_\vartheta = \dim (\tilde{\mathcal{L}}_{\leq \psi})_\vartheta$.*

Proof: This follows from Corollary 2.5 and Lemma 2.19. \square

Remark 2.21: In an analogous way we can determine \mathcal{L} on \mathbb{S}_1 . First let us recall that $\mathcal{L} = j_* \mathcal{L}'$, whereby \mathcal{L}' denotes the local system associated to $\mathcal{N} := \mathcal{H}^0 p_+ (\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})$. Consider a small circle \mathbb{S}_ϵ^1 around $0 \in \Delta$. Then we have

$$\mathcal{L}|_{S^1} \cong \mathcal{L}'|_{S_\epsilon^1}$$

On \mathbb{S}_ϵ^1 we can identify $\mathcal{L}' = \mathcal{H}^0 \mathrm{DR}_{\Delta}^{mod 0}(\mathcal{N})$ (since the growing condition *mod 0* is irrelevant

outside of $\partial\tilde{\Delta}$). Furthermore in this situation, the isomorphism

$$\Omega : \mathcal{H}^0 \text{DR}_{\tilde{\Delta}}^{mod\,0}(\mathcal{N})_{|\mathbb{S}_\epsilon^1} \xrightarrow{\cong} \mathcal{H}^1 R\tilde{p}_* \text{DR}^{mod\,D}(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})_{|S_\epsilon^1}$$

holds (analogously to Theorem 2.6). Now as before we can describe the right hand side in topological terms. Since $\mathcal{E}^{\frac{1}{y}}$ is a good (or even holomorphic) connection, we know that $\text{DR}^{mod\,D}(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})$ has cohomology in degree zero at most and thus corresponds to a sheaf. By taking the stalk at a point $\rho \in \mathbb{S}_\epsilon^1$ we get

$$(\mathcal{H}^0 \text{DR}_{\tilde{\Delta}}^{mod\,0}(\mathcal{N}))_\rho \cong H_c^1(\tilde{p}^{-1}(\rho), \text{DR}^{mod\,D}(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})).$$

$\tilde{p}^{-1}(\rho)$ corresponds to the projective line with a real blow up in the point ∞ (denoted by \mathbb{S}_∞^1). We can interpret this space as a disc with boundary \mathbb{S}_∞^1 . Furthermore by choosing ϵ small enough, we know that every irreducible component S_i resp. \tilde{S}_j of $SS(\mathcal{M})$ meets the (inner of the) disc in exactly one point (P_i resp. \tilde{P}_j).

The sheaf is supported everywhere away from the boundary, on the boundary its supported on an open hemicycle of \mathbb{S}_∞^1 (i.e. the points where it fulfills the moderate growth condition). Thus the dimension of $H_c^1(\tilde{p}^{-1}(\rho), \text{DR}^{mod\,D}(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}}))$ depends on the dimension of the vanishing cycle spaces in the points P_i and \tilde{P}_j :

$$\dim H_c^1(\tilde{p}^{-1}(\rho), \text{DR}^{mod\,D}(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})) = \dim \sum_{i \in I} \Phi_{P_i} + \sum_{j \in J} \Phi_{\tilde{P}_j}.$$

We will use this topological description in the following chapter, supply it to the explicit example and determine a set of linear Stokes data.

3 Proof of Theorem 1.5: Explicit example for the determination of Stokes data

As already mentioned in the introduction, we will consider the following explicit example: Let $X = \Delta \times \mathbb{P}^1$ and \mathcal{M} a meromorphic connection on X of rank r with regular singularities along its divisor. Let the singular locus $SS(\mathcal{M})$ be of the following form: $SS(\mathcal{M}) = \{t \cdot y \cdot (t - y) \cdot x = 0\}$. Denote the irreducible components $(S_1 : y = t)$ and $(\tilde{S}_1 : x = 0)$.

The following chapter is devoted to prove Theorem 1.5 and thereby determine a set of Stokes data to $\mathcal{H}^0 p_+ (\mathcal{M} \otimes \mathcal{E}_y^\frac{1}{t})$.

3.1 Stokes-filtered local system

According to Theorem 2.1, $\hat{\mathcal{N}} = \mathcal{H}^0 p_+ (\mathcal{M} \otimes \mathcal{E}_y^\frac{1}{t})^\wedge$ can be decomposed to:

$$\hat{\mathcal{N}} \cong R_0 \oplus (R_1 \otimes \mathcal{E}_t^\frac{1}{t})$$

whereby $rk(R_0) = rk(R_1) = r$. Now we will describe the Stokes structure via the isomorphism Ω (Theorem 2.6). Ω identifies $(\mathcal{L}_{\leq \psi})_\vartheta \cong H^1((\widetilde{p \circ e})^{-1}(\vartheta), \beta_{\psi,!}^\vartheta \mathcal{F}_\psi)$.

Lemma 3.1: *There exists a sequence of point blow ups $e : Z \rightarrow X$, such that*

1. *the singular support of \mathcal{M} becomes a normal crossing divisor*
2. *for both $\psi = 0$ and $\psi = \frac{1}{t}$ the exponent $g \circ e$ is holomorphic or good in every point.*

Proof: The following blow up of the divisor satisfies the requested conditions:

(i. e. a point-blow-up in $(t, y) = 0$ and a second point-blow-up in $(\tilde{u}_1, \tilde{v}_1) = (0, 1)$) □

We will denote the resulting normal crossing divisor by \overline{D}_Z . The fiber over ϑ with respect to the blow up along \overline{D}_Z is homeomorphic to a closed disc with two ‘holes’. We will denote it by $\overline{A} \times \{\vartheta\}$.

Lemma 3.2: $\mathrm{DR}^{\mathrm{mod} \overline{D}_Z}(e^+ \mathcal{M} \otimes \mathcal{E}^{g \circ e})$ has cohomology in degree 0 at most.

Proof: Since \overline{D}_Z is normal crossing and $g \circ e$ is good or holomorphic (Lemma 3.1) the claim follows by [Sab13], Prop. 8.15 and Cor. 11.22. \square

Consider the map $\kappa : \tilde{Z}(\overline{D}_Z) \rightarrow \tilde{Z}(D_Z)$. Restricting it to a fiber $\kappa_\vartheta : \overline{A} \times \{\vartheta\} \rightarrow (\widetilde{p \circ e})^{-1}(\vartheta)$, it is just the identity except at the points \tilde{P}_1 and P_1 , where it describes the “collapse” of the real blow ups of \tilde{P}_1 and P_1 back to these points. $\mathrm{DR}^{\mathrm{mod} \overline{D}_Z}(e^+ \mathcal{M} \otimes \mathcal{E}^{g \circ e})$ has cohomology in degree 0 at most and therefore corresponds to a local system \mathcal{G}_ψ . Then $\mathrm{DR}^{\mathrm{mod} D_Z}(e^+ \mathcal{M} \otimes \mathcal{E}^{g \circ e})$ corresponds to the perverse sheaf \mathcal{F}_ψ given by $0 \rightarrow \kappa_* \mathcal{G}_\psi \rightarrow 0 \rightarrow 0$. Let $\mathcal{G}_\psi^\vartheta$ the restriction to the support $\kappa^{-1}(B_\psi^\vartheta)$ in the fiber $\overline{A} \times \{\vartheta\}$ and $\overline{\beta}_\psi^\vartheta : \kappa^{-1}(B_\psi^\vartheta) \hookrightarrow \overline{A} \times \{\vartheta\}$ the open inclusion. Because of Proposition 2.8 we have:

$$H^1(\overline{A} \times \{\vartheta\}, \overline{\beta}_\psi^\vartheta, \mathcal{G}_\psi^\vartheta) \cong H^1((\widetilde{p \circ e})^{-1}(\vartheta), \beta_{\psi,!}^\vartheta \mathcal{F}_\psi^\vartheta)$$

Furthermore we denote by \mathcal{K} the local system on $\tilde{Z}(\overline{D}_Z)$ corresponding to the pullback connection $e^+ \mathcal{M}$ of rank $\mathrm{rk}(\mathcal{M})$ (see Cor. 8.3 in [Sab13]) and by \mathcal{K}^ϑ its restriction to $\overline{A} \times \{\vartheta\}$. Then obviously $\overline{\beta}_\psi^\vartheta, \mathcal{G}_\psi^\vartheta$ equals $\overline{\beta}_{\psi,!}^\vartheta \overline{\beta}_\psi^{\vartheta-1} \mathcal{K}^\vartheta$ for all ψ . For brevity we will write $\overline{\beta}_{\psi,!}^\vartheta \mathcal{K}^\vartheta$ instead of $\overline{\beta}_{\psi,!}^\vartheta \overline{\beta}_\psi^{\vartheta-1} \mathcal{K}^\vartheta$ in the following. Thus it is enough to examine $(\mathcal{L}_{\leq \psi})_\vartheta \cong H^1(\overline{A} \times \{\vartheta\}, \overline{\beta}_{\psi,!}^\vartheta \mathcal{K}^\vartheta)$. With the blow up e constructed in the proof of Lemma 3.1 we can determine the open subset $B_\vartheta^\psi \subset (\widetilde{p \circ e})^{-1}(\vartheta)$ and we receive the following pictures, which show $(\widetilde{p \circ e})^{-1}(\vartheta)$ (resp. $\overline{A} \times \{\vartheta\}$) and the subsets $B_0^\vartheta, B_{\frac{1}{t}}^\vartheta$. One can see very clearly that by passing the Stokes directions $\pm \frac{\pi}{2}$, the relation of the subsets B_0^ϑ and $B_{\frac{1}{t}}^\vartheta$ changes from $B_0^\vartheta \subset B_{\frac{1}{t}}^\vartheta$ to $B_{\frac{1}{t}}^\vartheta \subset B_0^\vartheta$ and vice versa.

In this situation we can compute the first cohomology groups $H^1(\overline{A} \times \{\vartheta\}, \overline{\beta}_{\psi,!}^{\vartheta} \mathcal{K}^{\vartheta})$ in another way, namely by using Čech cohomology.

Therefore consider the following curves $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in \overline{A} :

Then for $\vartheta_0 \in [0, \frac{\pi}{2})$ the closed covering $\mathfrak{A} = A_1 \cup A_2 \cup A_3$ of \overline{A} defines a Leray covering of $\beta_{\psi,!}^{\vartheta_0} \mathcal{K}^{\vartheta_0}$ and for $\beta_{\psi,!}^{\vartheta_1} \mathcal{K}^{\vartheta_1}$, whereby $\vartheta_1 := \vartheta_0 + \pi$. This can be proved easily by using the exact sequence of Chapter 3.3.4 and doing the same calculations for the restriction to the intersections α_k .

For $\vartheta_0 \in [\frac{\pi}{2}, \pi)$ the following curves define a Leray covering for $\beta_{\psi,!}^{\vartheta_0} \mathcal{K}^{\vartheta_0}$ and $\beta_{\psi,!}^{\vartheta_1} \mathcal{K}^{\vartheta_1}$:

Thus we can conclude:

Lemma 3.3: *For every pair of angles $(\vartheta_0, \vartheta_1 := \vartheta_0 + \pi)$ of \mathbb{S}^1 the construction above defines a closed covering \mathfrak{A} of \overline{A} , such that \mathfrak{A} is a common Leray covering of $\beta_{\psi,!}^{\vartheta_i} \mathcal{K}^{\vartheta_i}$ ($i = 1, 2$ and $\psi = 0, \frac{1}{t}$). Consequently we get an isomorphism*

$$H^1(\overline{A} \times \{\vartheta_i\}, \overline{\beta}_{\psi,!}^{\vartheta_i} \mathcal{K}^{\vartheta_i}) \rightarrow \check{H}^1(\mathfrak{A}, \overline{\beta}_{\psi,!}^{\vartheta_i} \mathcal{K}^{\vartheta_i})$$

In the following lemma we will compute the cohomology groups concretely for $\vartheta = 0$ and $\vartheta = \pi$.

Lemma 3.4:

- $H^1(\overline{A} \times \{0\}, \overline{\beta}_{0,!}^0 \mathcal{K}^0) \cong \mathcal{K}_{x_1}^0$
- $H^1(\overline{A} \times \{0\}, \overline{\beta}_{0,!}^{\frac{1}{t}} \mathcal{K}^0) = H^1(\overline{A} \times \{0\}, \overline{\beta}_!^0 \mathcal{K}^0) \cong \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0$
- $H^1(\overline{A} \times \{\pi\}, \overline{\beta}_{\pi,!}^{\frac{1}{t}} \mathcal{K}^\pi) \cong \mathcal{K}_{x_4}^\pi$
- $H^1(\overline{A} \times \{\pi\}, \overline{\beta}_{\pi,!}^0 \mathcal{K}^\pi) = H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi) \cong \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi$

Proof: Just notice that $\check{C}^0 = 0$ and thus $\check{H}^1 = \check{C}^1$. □

3.2 Stokes data associated to \mathcal{L}

Using the functor constructed in [HS11] we can associate a set of Stokes data to the Stokes-filtered local system \mathcal{L} described above.

Construction 3.5: Fix two intervals

$$I_0 = (0 - \epsilon, \pi + \epsilon), \quad I_1 = (-\pi - \epsilon, 0 + \epsilon)$$

of length $\pi + 2\epsilon$ on \mathbb{S}^1 , such that the intersection $I_0 \cap I_1$ consists of $(0 - \epsilon, 0 + \epsilon)$ and $(\pi - \epsilon, \pi + \epsilon)$. Observe, that the intersections do not contain the Stokes directions $-\frac{\pi}{2}, \frac{\pi}{2}$. To our given local system \mathcal{L} we associate:

- a vector space associated to the angle 0, i.e. the stalk \mathcal{L}_0 . It comes equipped with the Stokes filtration.
- a vector space associated to the angle π , i.e. the stalk \mathcal{L}_π , coming equipped with the Stokes filtration.
- vector spaces associated to the intervals I_0 and I_1 , i.e. the global sections $\Gamma(I_0, \mathcal{L})$, $\Gamma(I_1, \mathcal{L})$
- a diagram of isomorphisms (given by the natural restriction to the stalks):

$$\begin{array}{ccc} & \Gamma(I_0, \mathcal{L}) & \\ a_0 \swarrow & & \searrow a'_0 \\ \mathcal{L}_0 & & \mathcal{L}_\pi \\ a_1 \swarrow & & \searrow a'_1 \\ & \Gamma(I_1, \mathcal{L}) & \end{array}$$

The filtrations on the stalks are opposite with respect to the maps $a'_0 a_0^{-1}$ and $a_1 a'^{-1}_1$, i.e.

$$\mathcal{L}_0 = \bigoplus_{\phi \in \{0, \frac{1}{t}\}} L_{\leq \phi, 0} \cap a'_0 a_0^{-1} (L_{\leq \phi, \pi}), \quad \mathcal{L}_\pi = \bigoplus_{\phi \in \{0, \frac{1}{t}\}} L_{\leq \phi, \pi} \cap a_1 a'^{-1}_1 (L_{\leq \phi, 0})$$

Furthermore we know, by using the isomorphisms Ω and Γ , that $\mathcal{L}_0 \cong \mathcal{K}_{x_1} \oplus \mathcal{K}_{x_3}$ whereby $\mathcal{L}_{\leq 0, 0} \cong \mathcal{K}_{x_1}$. Thus we have a splitting $\mathcal{L}_0 = G_0 \oplus G_{\frac{1}{t}}$ with $G_0 = \mathcal{L}_{\leq 0, 0}$. The same holds for \mathcal{L}_π : $\mathcal{L}_\pi = H_0 \oplus H_{\frac{1}{t}}$ with $H_{\frac{1}{t}} = \mathcal{L}_{\leq \frac{1}{t}, \pi}$.

Thus the set of data $(G_0, G_{\frac{1}{t}}, H_0, H_{\frac{1}{t}}, S_0^\pi, S_\pi^0)$ with:

- $\mathcal{L}_0 = G_0 \oplus G_{\frac{1}{t}}$ and $\mathcal{L}_\pi = H_0 \oplus H_{\frac{1}{t}}$
- $S_0^\pi : G_0 \oplus G_{\frac{1}{t}} \xrightarrow{a_0^{-1}} \Gamma(I_0, \mathcal{L}) \xrightarrow{a'_0} H_0 \oplus H_{\frac{1}{t}}$

$$\bullet \quad S_\pi^0 : H_{\frac{1}{t}} \oplus H_0 \xrightarrow{a_1^{-1}} \Gamma(I_1, \mathcal{L}) \xrightarrow{a'_1} G_{\frac{1}{t}} \oplus G_0$$

describes a set of Stokes data associated to the local system \mathcal{L} .

By exhaustivity of the filtrations on \mathcal{L}_ϑ ($\vartheta = 0, \pi$) the isomorphism Ω induces

$$\mathcal{L}_\vartheta \cong H^1(\overline{A} \times \vartheta, \overline{\beta}_! \mathcal{K}^\vartheta)$$

where $\overline{\beta}^\vartheta : B^\vartheta \hookrightarrow \overline{A} \times \vartheta$ corresponds to the $\overline{\beta}_\psi^\vartheta$ with $\psi \geq_\vartheta \phi$ for $\psi, \phi \in \Phi = \{0, \frac{1}{t}\}$ and $B^\vartheta := B_\psi^\vartheta \supset B_\phi^\vartheta$.

In the same way, for an open interval $I \subset \mathbb{S}^1$ let \mathcal{K}^I be the restriction of \mathcal{K} to $\overline{A} \times I$ and define $\overline{\beta}^I : B^I \hookrightarrow \overline{A} \times I$ the inclusion of the subspace B^I , which is the support of $\text{DR}^{mod D}(\mathcal{M} \otimes \mathcal{E}^\frac{1}{y})$ according to Remark 2.21. Notice that $\overline{\beta}|_{\overline{A} \times \vartheta} = \overline{\beta}^\vartheta$. Then, by the isomorphism Ω , we identify

$$\Gamma(I, \mathcal{L}) \cong H^1(\overline{A} \times I, \overline{\beta}_! \mathcal{K}^I).$$

With these isomorphisms we have restriction morphisms (according to the restrictions to the stalks)

$$\rho_\vartheta : H^1(\overline{A} \times I_0, \overline{\beta}_!^{I_0} \mathcal{K}^{I_0}) \xrightarrow{\cong} H^1(\overline{A} \times \vartheta, \overline{\beta}_!^\vartheta \mathcal{K}^\vartheta) \text{ for } \vartheta \in I_0$$

$$\rho'_\vartheta : H^1(\overline{A} \times I_1, \overline{\beta}_!^{I_1} \mathcal{K}^{I_1}) \xrightarrow{\cong} H^1(\overline{A} \times \vartheta, \overline{\beta}_!^\vartheta \mathcal{K}^\vartheta) \text{ for } \vartheta \in I_1$$

This yields to a new way of describing Stokes data associated to the local system \mathcal{L} :

Theorem 3.6: Fix the following data:

- vector spaces $L_0 := H^1(\overline{A} \times \{0\}, \overline{\beta}_!^0 \mathcal{K}^0)$ and $L_1 := H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi)$
- morphisms $\sigma_0^\pi := \rho_\pi \circ \rho_0^{-1}$ and $\sigma_\pi^0 := \rho'_0 \circ \rho'_\pi^{-1}$, with ρ_ϑ and ρ'_ϑ defined as above.

Then

$$(L_0, L_1, \sigma_0^\pi, \sigma_\pi^0)$$

defines a set of Stokes data for $\mathcal{H}^0 p_+(\mathcal{M} \otimes \mathcal{E}^\frac{1}{y})$.

Proof: The isomorphism $\Omega : \mathcal{L}_\vartheta \rightarrow H^1(\overline{A} \times \{\vartheta\}, \overline{\beta}_!^\vartheta \mathcal{K}^\vartheta)$ passes the filtrations on \mathcal{L}_0 and \mathcal{L}_π to L_0 and L_1 and therefore yields to a suitable graduation of $L_0 = \tilde{G}_0 \oplus \tilde{G}_{\frac{1}{t}} \cong \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0$ and $L_1 = \tilde{H}_{\frac{1}{t}} \oplus \tilde{H}_0 \cong \mathcal{K}_{x_4}^\pi \oplus \mathcal{K}_{x_2}^\pi$.

On the level of graduated spaces $\Omega : G_0 \oplus G_{\frac{1}{t}} \rightarrow \tilde{G}_0 \oplus \tilde{G}_{\frac{1}{t}}$ (resp. $H_{\frac{1}{t}} \oplus H_0 \rightarrow \tilde{H}_{\frac{1}{t}} \oplus \tilde{H}_0$) is obviously described by a block diagonal matrix. Furthermore, by definition of ρ and ρ' , the maps σ_0^π and σ_π^0 can be read as $\sigma_0^\pi = \Omega \circ S_0^\pi \circ \Omega^{-1}$ and $\sigma_\pi^0 = \Omega \circ S_\pi^0 \circ \Omega^{-1}$. Since, according to the construction in 3.5, S_0^π is upper block triangular (resp. S_π^0 is lower block triangular) the same holds for σ_0^π (resp. σ_π^0). \square

3.3 Explicit computation of the Stokes matrices

The determination of the Stokes data thus corresponds to the following picture:

$$\begin{array}{ccc}
 & H^1(\overline{A} \times I_0, \overline{\beta}_!^{I_0} \mathcal{K}) & \\
 \cong \swarrow & & \searrow \cong \\
 H^1(\overline{A} \times \{0\}, \overline{\beta}_!^0 \mathcal{K}^0) & & H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi) \\
 \cong \swarrow & & \searrow \cong \\
 & H^1(\overline{A} \times I_1, \overline{\beta}_!^{I_1} \mathcal{K}) &
 \end{array}$$

In Lemma 3.4 we have already computed the cohomology groups for $\vartheta = 0$ and $\vartheta = \pi$ using the Leray covering \mathfrak{A} . Now for $l = 0, 1$ we fix a diffeomorphism $\overline{A} \times I_l \xrightarrow{\sim} \overline{A} \times I_l$ by lifting the vector field ∂_ϑ to $\overline{A} \times \mathbb{S}^1$ such that the lift is equal to ∂_ϑ away from a small neighborhood of $\partial\overline{A}$ and such that the diffeomorphism induces $B^{I_l} \xrightarrow{\cong} B^{\vartheta_{l+1}} \times I_l$ where $\vartheta_1 = \pi$ and $\vartheta_2 = 0$. It induces a diffeomorphism $\overline{A} \times \{\vartheta_l\} \xrightarrow{\cong} \overline{A} \times \{\vartheta_{l+1}\}$ and an isomorphism between the push forward of $\mathcal{K}^{\vartheta_l}$ and $\mathcal{K}^{\vartheta_{l+1}}$. Moreover it sends the boundary ∂B^{ϑ_l} to $\partial B^{\vartheta_{l+1}}$ (i. e. the boundaries are rotated in counter clockwise direction by the angle π). Via this diffeomorphism the curves $\alpha_i \subset \overline{A} \times \vartheta_l$ are sent to curves $\tilde{\alpha}_i \subset \overline{A} \times \vartheta_{l+1}$ and therefore induce another Leray covering $\tilde{\mathfrak{A}}$ of $H^1(\overline{A} \times \{\vartheta_{l+1}\}, \overline{\beta}_!^{\vartheta_{l+1}} \mathcal{K}^{\vartheta_{l+1}})$.

Explicitly, for $l = 0$ we get a Leray covering $\tilde{\mathfrak{A}}$ of $H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi)$ and, as in the previous chapter, we get an isomorphism $\tilde{\Gamma}_\pi : H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi) \rightarrow \check{H}^1(\tilde{\mathfrak{A}}, \overline{\beta}_!^\pi \mathcal{K}^\pi)$, which gives us:

$$H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi) \cong \mathcal{K}^\pi(\tilde{\alpha}_1) \oplus \mathcal{K}^\pi(\tilde{\alpha}_3) \cong \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi$$

Thus the above diffeomorphism leads to an isomorphism

$$\mu_0^\pi : \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0 \xrightarrow{\cong} \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi$$

Furthermore let us fix the following vector space $\mathbb{V} := \mathcal{K}_c^\pi$ to be the stalk of the local system \mathcal{K} at the point $c := (0, \pi, \frac{1}{2}, 0)$ (which is obviously a point in the fiber $\overline{A} \times \{\pi\}$). By analytic continuation we can identify every non-zero stalk \mathcal{K}_x^ϑ with \mathbb{V} for all ϑ .

Now consider the following diagram of isomorphisms:

$$\begin{array}{ccccc}
\mathcal{L}_0 & \xrightarrow{S_0^\pi} & \mathcal{L}_\pi & & \\
\downarrow \cong & & \downarrow \cong & & \\
H^1(\overline{A} \times \{0\}, \overline{\beta}_! \mathcal{K}^0) & \longrightarrow & H^1(\overline{A} \times \{\pi\}, \overline{\beta}_! \mathcal{K}^\pi) & & \\
\downarrow \Gamma_0 & & \nearrow \widetilde{\Gamma}_\pi & \downarrow \Gamma_\pi & \\
\mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0 & \xrightarrow{\mu_0^\pi} & \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi & \xrightarrow{\nu_\pi} & \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi \\
\downarrow & & \downarrow & & \downarrow \\
\mathbb{V} \oplus \mathbb{V} & \xrightarrow{Id} & \mathbb{V} \oplus \mathbb{V} & \xrightarrow{N_\pi} & \mathbb{V} \oplus \mathbb{V}
\end{array}$$

It remains to determine the map ν_π (respectively N_π). Therefore we will combine the coverings \mathfrak{A} and $\widetilde{\mathfrak{A}}$ of $\overline{A} \times \{\pi\}$ to a refined covering \mathfrak{B} . We get refinement maps $\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}$ and $\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}$ and receive the following picture:

Since \mathfrak{B} is again a Leray covering the refinement maps induce isomorphisms on the cohomology groups. Thus we will extend' the above diagram of isomorphisms in the following way:

$$\begin{array}{ccccc}
& & \check{H}^1(\mathfrak{A}, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) & \xrightarrow{\nu'_\pi} & \check{H}^1(\mathfrak{A}, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) \\
& \text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}} \uparrow & & & \uparrow \text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}} \\
H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^0 \mathcal{K}^0) & \xrightarrow{\cong} & \check{H}^1(\widetilde{\mathfrak{A}}, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) & & \check{H}^1(\mathfrak{A}, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) \xleftarrow{\cong} H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) \\
& \searrow \widetilde{\Gamma}_{\pi} & \cong \downarrow & & \nearrow \Gamma_{\pi} \\
& & \mathcal{K}_{x_1}^{\pi} \oplus \mathcal{K}_{x_3}^{\pi} & \xrightarrow{\nu_{\pi}} & \mathcal{K}_{x_2}^{\pi} \oplus \mathcal{K}_{x_4}^{\pi} \\
& & \cong \downarrow & & \cong \downarrow \\
& & \mathbb{V} \oplus \mathbb{V} & \xrightarrow{N_{\pi}} & \mathbb{V} \oplus \mathbb{V}
\end{array}$$

To determine the refinement maps on the first cohomology groups we have to consider the Čech complex for \mathfrak{B} .

We set the following index sets

- $I := \{1, 2, 3\}$ (indices corresponding to the covering $\mathfrak{A} = \bigcup_{i \in I} A_i$)
- $\widetilde{I} := \{1, 2, 3\}$ (corresponding to $\widetilde{\mathfrak{A}} = \bigcup_{i \in \widetilde{I}} \widetilde{A}_i$)
- $J := \{1, 2, 3, \dots, 11\}$ (corresponding to $\mathfrak{B} = \bigcup_{j \in J} B_j$)
- $K := I \times J$
- $J' := \{2, 3, 9, 10, 11\} \subset J$
- $K' = \{(1, 2), (1, 9), (1, 11), (2, 3), (2, 8), (2, 9), (2, 10), (2, 11), (3, 9), (3, 10), (3, 11), (4, 9), (4, 10), (4, 11), (5, 9), (5, 10), (6, 9), (8, 9), (9, 10), (10, 11)\} \subset K$

The Čech complex for \mathfrak{B} is given by:

$$\begin{array}{ccccccc}
\check{C}^0 & \xrightarrow{d_0} & \check{C}^1 & \xrightarrow{d_1} & \check{C}^2 & \xrightarrow{d_2} & \dots \\
\parallel & & \parallel & & & & \\
\bigoplus_{j \in J'} \check{H}^0(B_j, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) & & \bigoplus_{(i,j) \in K'} \check{H}^0(B_i \cup B_j, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi}) & & & &
\end{array}$$

To determine the map d_0 we will use the following identification of \check{C}^1 :

As above, by analytic continuation we can identify each component $\check{H}^0(B_i \cup B_j, \overline{\beta}_!^{\pi} \mathcal{K}^{\pi})$ with

$\mathbb{V}^{k(i,j)} := \bigoplus_{l=1}^{k(i,j)} \mathbb{V}$ where $k(i,j)$ denotes the number of connected components of $(B_i \cap B_j)$. $k(i,j) = 1$ for all $(i,j) \in J$ except for $(3,9)$ and $(6,9)$ where it is equal to 2. So we have an isomorphism

$$\check{C}^1 \cong \bigoplus_{(i,j) \in K'} \mathbb{V}^{k(i,j)}$$

Now if we take a section b_9 of B_9 , restrict it to a boundary component of B_9 (which is the intersection with one of the bordering B_i s) and identify it with \mathbb{V} , we have to take care about the monodromies S, T around the two leaks in $\overline{A} \times \{\pi\}$. The following picture shows, by restriction to which boundary component we receive monodromy.

Remark 3.7: If we follow S and T in the coordinates of $\overline{A} \times \{\vartheta\}$, we can also describe them in terms of monodromy around the divisor components: S can be described by a path $\gamma_S : [0,1] \rightarrow \overline{A} \times \{\vartheta\}, \tau \mapsto (0, \vartheta, 0, \tau \cdot 2\pi)$ in the coordinates $(|t|, \vartheta, |x|, \theta_x)$. If we look at this path in the (complex) blow up of the singular locus of \mathcal{M} , γ_S corresponds to the monodromy around \tilde{S}_1 . In the same way T is given by $\gamma_T : [0,1] \rightarrow \overline{A} \times \{\vartheta\}, \tau \mapsto (0, \vartheta, 0, \tau \cdot 2\pi)$ in the coordinates $(|\tilde{u}'_1|, \vartheta, |\tilde{v}'_1|, \theta_{\tilde{v}'_1})$ and it corresponds to the monodromy around the strict transform of S_1 . Note that S and T do not depend on ϑ .

Now one can write down easily the map d_0 of the Čech complex and the refinement maps $\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}$ respectively $\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}$ with respect to the above analytic continuation.

Furthermore let (a_2, a_4) be a base of $\check{H}^1(\mathfrak{A}, \overline{\beta}_! \mathcal{K}^\pi) \cong \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi \cong \mathbb{V} \oplus \mathbb{V}$ and $(\tilde{a}_1, \tilde{a}_3)$ a base of $\check{H}^1(\widetilde{\mathfrak{A}}, \overline{\beta}_! \mathcal{K}^\pi) \cong \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi \cong \mathbb{V} \oplus \mathbb{V}$. We receive two bases of $\check{H}^1(\mathfrak{B}, \overline{\beta}_! \mathcal{K}^\pi)$, namely $\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}(\tilde{a}_1, \tilde{a}_3)$ and $\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}(a_2, a_4)$. Thus ν' is determined by representing the base $\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}(\tilde{a}_1, \tilde{a}_3)$ in terms of $\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}(a_2, a_4)$.

As before we identify $\check{C}^1(\mathfrak{B}, \overline{\beta}_! \mathcal{K}^\pi) \cong \bigoplus \mathbb{V}^{k(i,j)}$ and we end up in solving the following equation for each $(i,j) \in K'$:

$$\left(\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}(\tilde{a}_1, \tilde{a}_3) \right)_{(i,j)} = \left(\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}(a_2, a_4) \right)_{(i,j)} \bmod im(d_0)$$

We get the following result:

$$\tilde{a}_1 = -a_2 + (1 - ST^{-1})a_4, \quad \tilde{a}_3 = -ST^{-1}a_4$$

and consequently the map N_π is given by the matrix

$$\begin{pmatrix} -1 & 1 - ST^{-1} \\ 0 & -ST^{-1} \end{pmatrix}$$

For calculating $S_\pi^0 : \mathcal{L}_\pi \rightarrow \mathcal{L}_0$, we will use exactly the same procedure, except that we have to take care about the continuation to the vector space \mathbb{V} .

First we fix another vector space $\mathbb{W} := \mathcal{K}_c^0$ where $c = (0, 0, \frac{1}{2}, 0) \in \overline{A} \times \{0\}$ and consider the following diagram:

$$\begin{array}{ccc} \mathcal{L}_\pi & \xrightarrow{S_\pi^0} & \mathcal{L}_0 \\ \cong \downarrow & & \downarrow \cong \\ H^1(\overline{A} \times \{\pi\}, \overline{\beta}_! \mathcal{K}^\pi) & \longrightarrow & H^1(\overline{A} \times \{0\}, \overline{\beta}_! \mathcal{K}^0) \\ \Gamma_\pi \downarrow & & \swarrow \widetilde{\Gamma}_0 \\ \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi & \xrightarrow{\mu_\pi^0} & \mathcal{K}_{x_2}^0 \oplus \mathcal{K}_{x_4}^0 \xrightarrow{\nu_0} \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0 \\ \downarrow & & \downarrow \\ \mathbb{W} \oplus \mathbb{W} & \xrightarrow{N_0} & \mathbb{W} \oplus \mathbb{W} \end{array}$$

As before, for the determination of the map ν_0 (respectively N_0) we combine the coverings \mathfrak{A} and $\widetilde{\mathfrak{A}}$ of $\overline{A} \times \{0\}$ to the refined covering \mathfrak{B} and get the refinement maps $\text{ref}_{\mathfrak{A} \rightarrow \mathfrak{B}}$ and $\text{ref}_{\widetilde{\mathfrak{A}} \rightarrow \mathfrak{B}}$ which induce isomorphisms on the cohomology groups.

We get:

$$N_0 = \begin{pmatrix} -TS^{-1} & 0 \\ 1 - TS^{-1} & -1 \end{pmatrix}$$

Now we extend ν_0 respectively N_0 to the vector space $\mathbb{V} \oplus \mathbb{V}$ by μ_π^0 (which does not affect N_0):

$$\begin{array}{ccccccc} \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi & \xrightarrow{\mu_\pi^0} & \mathcal{K}_{x_2}^0 \oplus \mathcal{K}_{x_4}^0 & \xrightarrow{\nu_0} & \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0 & \xleftarrow{\mu_\pi^0} & \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ \mathbb{V} \oplus \mathbb{V} & \xrightarrow{Id} & \mathbb{W} \oplus \mathbb{W} & \xrightarrow{N_0} & \mathbb{W} \oplus \mathbb{W} & \xleftarrow{Id} & \mathbb{V} \oplus \mathbb{V} \end{array}$$

Let us fix two isomorphisms Σ_0 and Σ_π , which we will call the standard identification of $H^1(\overline{A} \times \{0\}, \overline{\beta}_! \mathcal{K}^0)$, respectively $H^1(\overline{A} \times \{\pi\}, \overline{\beta}_! \mathcal{K}^\pi)$ with the vector space $\mathbb{V} \oplus \mathbb{V}$.

$$\Sigma_0 : H^1(\overline{A} \times \{0\}, \overline{\beta}_! \mathcal{K}^0) \xrightarrow{\Gamma_0} \mathcal{K}_{x_1}^0 \oplus \mathcal{K}_{x_3}^0 \xrightarrow{\mu_\pi^\pi} \mathcal{K}_{x_1}^\pi \oplus \mathcal{K}_{x_3}^\pi \rightarrow \mathbb{V} \oplus \mathbb{V}$$

$$\Sigma_\pi : H^1(\overline{A} \times \{\pi\}, \overline{\beta}_! \mathcal{K}^\pi) \xrightarrow{\Gamma_\pi} \mathcal{K}_{x_2}^\pi \oplus \mathcal{K}_{x_4}^\pi \rightarrow \mathbb{V} \oplus \mathbb{V}$$

Summarizing the previous calculations, we can now prove Theorem 1.5:

3.4 Conclusion: Proof of Theorem 1.5

At first remark that $\mu_0^\pi \circ \mu_\pi^0 : \mathcal{K}_x^\pi \oplus \mathcal{K}_y^\pi \rightarrow \mathcal{K}_x^0 \oplus \mathcal{K}_y^0 \rightarrow \mathcal{K}_x^\pi \oplus \mathcal{K}_y^\pi$ is the isomorphism arising from varying the angel ϑ via the path $\gamma_U : [0, 1] \rightarrow \mathbb{S}^1, \tau \mapsto \pi + \tau \cdot 2\pi$. This corresponds to the monodromy U around the divisor component $\{0\} \times \mathbb{P}^1$.

Furthermore from Theorem 3.6 we know that

$$\left(H^1(\overline{A} \times \{0\}, \beta_!^0 \mathcal{K}^0), H^1(\overline{A} \times \{\pi\}, \beta_!^\pi \mathcal{K}^\pi), \sigma_0^\pi, \sigma_\pi^0 \right)$$

defines a set of Stokes data. With the standard identifications of our vector spaces we get the following diagram:

Since Σ_0 and Σ_π respect the given filtrations of the vector spaces $H^1(\overline{A} \times \{0\}, \overline{\beta}_!^0 \mathcal{K}^0)$ and $H^1(\overline{A} \times \{\pi\}, \overline{\beta}_!^\pi \mathcal{K}^\pi)$, it follows that the induced filtrations on $\mathbb{V} \oplus \mathbb{V}$ are mutually opposite with respect to $S_0^1 = \Sigma_\pi \circ \sigma_0^\pi \circ \Sigma_0^{-1}$ and $S_1^0 = \Sigma_0 \circ \sigma_\pi^0 \circ \Sigma_\pi^{-1}$. Thus we conclude that (L_0, L_1, S_0^1, S_1^0) defines a set of Stokes data for $\mathcal{H}^0 p_+(\mathcal{M} \otimes \mathcal{E}^{\frac{1}{y}})$.

Acknowledgements: I want to thank Marco Hien for various helpful discussions.

References

[Dim04] Alexandru Dimca. *Sheaves in topology*. Springer-Verlag, Berlin, 2004.

[DK] Andrea D’Agnolo and Masaki Kashiwara. Riemann-hilbert correspondence for holonomic \mathcal{D} -modules. <http://arxiv.org/pdf/1311.2374v1.pdf>.

[HS] Marco Hien and Claude Sabbah. The local laplace transform of an elementary irregular meromorphic connection. <http://arxiv.org/pdf/1405.5310v1.pdf>.

[HS11] Claus Hertling and Claude Sabbah. Examples of non-commutative hodge structures. *J. Inst. Math. Jussieu*, 10(3):635–674, 2011.

[Ked10] Kiran S. Kedlaya. Good formal structures for flat meromorphic connections, I: surfaces. *Duke Math. J.*, 154(2):343–418, 2010.

[Mal91] Bernard Malgrange. *Équations Différentielles à Coefficients Polynomiaux*, volume 96 of *Progress in Mathematics*. Birkhäuser, 1991.

[Moc] Takuro Mochizuki. Holonomic \mathcal{D} -modules with betti structure. <http://arxiv.org/pdf/1001.2336v5.pdf>.

[Moc09] Takuro Mochizuki. Good formal structure for meromorphic flat connections on smooth projective surfaces. In *Algebraic analysis and around*, volume 54 of *Adv. Stud. Pure Math.*, pages 223–253. Math. Soc. Japan, Tokyo, 2009.

[Rou07] Céline Roucairol. Formal structure of direct image of holonomic \mathcal{D} -modules of exponential typed-modules of exponential type. *Manuscripta Math.*, 124(3):299–318, 2007.

[Sab] Claude Sabbah. Vanishing cycles and their algebraic computation. www.math.polytechnique.fr/cmat/sabbah/sabbah_notredame1305.pdf.

[Sab07] Claude Sabbah. *Isomonodromic deformations and Frobenius manifolds*. Springer, London, 2007.

[Sab08] Claude Sabbah. An explicit stationary phase formula for the local formal Fourier-Laplace transform. In *Singularities I*, volume 474 of *Contemp. Math.*, pages 309–330. Amer. Math. Soc., Providence, RI, 2008.

[Sab13] Claude Sabbah. *Introduction to Stokes structures*, volume 2060 of *Lecture Notes in Mathematics*. Springer, Heidelberg, 2013.

HEDWIG HEIZINGER
Lehrstuhl für Algebra und Zahlentheorie
Universitätsstraße 14
D-86195 Augsburg
Email: hedwig.heizinger@math.uni-augsburg.de