Análise de Complexidade de Tempo do Método Counting Sort

Eduardo Costa de Paiva eduardocspv@gmail.com Frederico Franco Calhau fredericoffc@gmail.com Gabriel Augusto Marson gabrielmarson@live.com

Faculdade de Computação Universidade Federal de Uberlândia

17 de dezembro de 2015

Lista de Figuras

2.1	Complexidade de tempo do método Counting Sort (Vetor Aleatório)	10
2.2	Complexidade de tempo do método Counting Sort com mínimos quadrados	
	(Vetor Aleatório)	11
2.3	Complexidade de tempo do método Counting Sort (Vetor Ordenado Crescente)	11
2.4	Complexidade de tempo do método Counting Sort com mínimos quadrados	
	(Vetor Ordenado Crescente)	12
2.5	Complexidade de tempo do método Counting Sort (Vetor Ordenado Decres-	
	cente)	12
2.6	Complexidade de tempo do método Counting Sort com mínimos quadrados	
	(Vetor Ordenado Decrescente)	13
2.7	Complexidade de tempo do método Counting Sort (Vetor Parcialmente Or-	
	denado Crescente)	13
2.8	Complexidade de tempo do método Counting Sort com mínimos quadrados	
	(Vetor Parcialmente Ordenado Crescente)	14
2.9	Complexidade de tempo do método Counting Sort (Vetor Parcialmente Or-	
	denado Decrescente)	14
2.10	Complexidade de tempo do método Counting Sort com mínimos quadrados	
	(Vetor Parcialmente Ordenado Decrescente)	15

Lista de Tabelas

3.1	Vetor Aleatório	16
3.2	Vetor Ordenado Crescente	16
3.3	Vetor Ordenado Decrescente	17
3.4	Vetor Parcialmente Ordenado Decrescente	17
3.5	Vetor Parcialmente Ordenado Crescente	17

Lista de Listagens

1.1	CountingSort.py	7
1.2	esteGeneric.py	8
1.3	nonitor.py	8
A.1	${ m estdriver.py}$	20

Sumário

Li	Lista de Figuras	
Li	sta de Tabelas	3
1	Introdução 1.1 Diretório	6 6 7
2	Gráficos	10
3	Tabelas	16
4	Análise	18
5	Citações e referências bibliográficas	19
\mathbf{A}	pêndice	20
A	Códigos extensos A.1 testdriver.py	20 20

Introdução

Este documento foi feito com o intuito de exibir uma análise do algoritmo Counting Sort com relação a tempo. Além disso, será feita uma comparação da curva de tempo do que se espera do algoritmo, ou seja, $O(n^2)$ com o caso prático.

1.1 Diretório

Dada a seguinte organização das pastas, utilizamos o arquivo testdriver.py, executando, uma função conveniente por vez. Para mais informações vá até ao apêndice.

OBS.: É necessário instalar o programa tree pelo terminal. Isso pode ser feito da seguinte maneira.

```
> sudo apt-get install tree
```

A seguir é mostrada a organização das pastas sendo que os diretórios significativas para o projeto são Codigos e Relatorio além do raíz:

```
tree --charset=ASCII -d
|-- Codigos
  |-- Bubble
       `-- <u>pycache</u>
    |-- Counting
        `-- __pycache__
    |-- Heap
    |-- Insertion
       `-- __pycache__
  |-- Merge
  | `-- __pycache__
   |-- Quick
      `-- <u>p</u>ycache__
    `-- Selection
       `-- ___pycache___
|-- Other
|-- __pycache__
```

```
`-- relatorio
    |-- imagens
      |-- Bubble
        |-- Counting
        |-- Insertion
        |-- Merge
        `-- Selection
    |-- Relatorio_Bubble
    |-- Relatorio_Counting
    |-- Relatorio_Insertion
    |-- Relatorio_Merge
    |-- Relatorio_Selection
    `-- Resultados
        |-- Bubble
        |-- Counting
        |-- Insertion
        |-- Merge
        |-- Quick
        `-- Selection
36 directories
```

1.2 Códigos de programas

Seguem os códigos utilizados na análise de tempo do algoritmo Counting Sort.

1. CountingSort.py: Disponível na Listagem 1.1.

```
Listagem 1.1: CountingSort.py
1 @profile
2 def countingSort(A):
    A = [int(x) for x in A]
    k = max(A)
    contador = [0] * (k+1) #Contador é o histograma
    B = [0] * len(A)
    n = len(A)
    for i in range(0, n):
        contador[A[i]] = contador[A[i]] + 1
9
10
    for i in range(1, len(contador)):
11
        contador[i] = contador[i] + contador[i-1]
12
13
    for j in range((n-1), -1, -1):
14
        B[contador[A[j]]-1] = A[j]
15
        contador[A[j]] = contador[A[j]]-1
16
17
    return B
18
19
    \#lista = [2,5,3,0,2,3,0,3]
20
    #print (countingSort(lista,5))
```

2. testeGeneric.py Disponível na Listagem 1.2

${f Listagem~1.2:~testeGeneric.py}$

```
1 ##adicionei - Serve para importar arquivos em outro diretório
2 ### A CADA NOVO MÉTODO MUDAR O IMPORT, A CHAMADA DA FUNÇÃO E O SYS.
     PATH
4 import sys
5 sys.path.append('/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final
     /Codigos/Radix')
6 sys.path.append('/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final
     ')
8 from monitor import *
9 from memoria import *
11 from RadixSort import *
12 import argparse
14 parser = argparse.ArgumentParser()
15 parser.add_argument("n", type=int, help="número de elementos no vetor
      de teste")
16 args = parser.parse_args()
18 v = criavet(args.n)
19 radix(v)
20
21
23 ## A EXECUÇÃO DESSE ARQUIVO EH ASSIM
24 ## NA LINHA DE COMANDO VC MANDA O NOME DO ARQUIVO E O TAMANHO DO
     ELEMNTO DO vetor
25 ##EXEMPLO testeBubble.py 10
26 ##ele gera um vetor aleatório (criavet) e manda pro bubble_sort
```

3. monitor.py Disponível na Listagem 1.3

Listagem 1.3: monitor.py

```
1 # Para instalar o Python 3 no Ubuntu 14 ou 15
2 #
3 # sudo apt-get install python3 python3-numpy python3-matplotlib
      ipython3 python3-psutil
4 #
5
6 from math import *
7 import gc
8 import random
9 import numpy as np
1.0
11
12 from tempo import *
14 # Vetores de teste
15 def troca(m, v, n): ## seleciona o nível de embaralhamento do vetor
      m = trunc(m)
16
17
      mi = (n-m)//2
18
      mf = (n+m)//2
      for num in range(mi, mf):
19
          i = np.random.randint(mi, mf)
20
          j = np.random.randint(mi, mf)
```

```
#print("i= ", i, " j= ", j)
           t = v[i]
23
           v[i] = v[j]
24
           v[j] = t
25
      return v
27
28
29 def criavet(n, grau=-1, inf=-1000, sup=1000):
30
      passo = (sup - inf)/n
      if grau < 0.0:
31
           v = np.arange(sup, inf, -passo)
32
           if grau <= -1.0:
33
               return v
34
           else:
35
               return troca(-grau*n, v, n)
36
      elif grau > 0.0:
^{37}
           v = np.arange(inf, sup, passo)
38
           if grau >= 1.0:
39
40
               return v
           else:
41
               return troca(grau*n, v, n)
42
      else:
43
           return np.random.randint(inf, sup, size=n)
44
           #return [random.random() for i in range(n)] # for bucket sort
46
47
48
49 #print(criavet(20))
50
51 #Tipo
                                                  grau
52 #aleatorio
                                                   0
53 #ordenado crescente
                                                   1
54 #ordenado decrescente
                                                  -1
                                                  0.5
55 #parcialmente ordenado crescente
56 #parcialmente ordenado descrescente
                                                 -0.5
57
58
59 def executa(fn, v):
      gc.disable()
61
      with Tempo(True) as tempo:
62
           fn(v)
      gc.enable()
```

4. testdriver.py Referenciado no apêndice A.

Gráficos

Seguem os Gráficos utilizadas no processo de análise do método Counting Sort: OBS.: Como o método Counting Sort não realiza comparações, não foi possível listar o gráfico de comparações.

1. Para um vetor aleatório

(a) Complexidade de tempo do método Counting Sort disponível na lista de imagens 2.1.

Figura 2.1: Complexidade de tempo do método Counting Sort (Vetor Aleatório)

- (b) Complexidade de tempo do método Counting Sort com mínimos quadrados disponível na lista de imagens 2.2.
- 2. Para um vetor ordenado crescente

Figura 2.2: Complexidade de tempo do método Counting Sort com mínimos quadrados (Vetor Aleatório)

(a) Complexidade de tempo do método Counting Sort disponível na lista de imagens 2.3.

Figura 2.3: Complexidade de tempo do método Counting Sort (Vetor Ordenado Crescente)

- (b) Complexidade de tempo do método Counting Sort com mínimos quadrados disponível na lista de imagens 2.4.
- 3. Para um vetor ordenado decrescente

Figura 2.4: Complexidade de tempo do método Counting Sort com mínimos quadrados (Vetor Ordenado Crescente)

(a) Complexidade de tempo do método Counting Sort disponível na lista de imagens 2.5.

Figura 2.5: Complexidade de tempo do método Counting Sort (Vetor Ordenado Decrescente)

- (b) Complexidade de tempo do método Counting Sort com mínimos quadrados disponível na lista de imagens 2.6.
- 4. Para um vetor parcialmente ordenado crescente

Figura 2.6: Complexidade de tempo do método Counting Sort com mínimos quadrados (Vetor Ordenado Decrescente)

(a) Complexidade de tempo do método Counting Sort disponível na lista de imagens 2.7.

Figura 2.7: Complexidade de tempo do método Counting Sort (Vetor Parcialmente Ordenado Crescente)

- (b) Complexidade de tempo do método Counting Sort com mínimos quadrados disponível na lista de imagens 2.8.
- 5. Para um vetor parcialmente ordenado decrescente

Figura 2.8: Complexidade de tempo do método Counting Sort com mínimos quadrados (Vetor Parcialmente Ordenado Crescente)

(a) Complexidade de tempo do método Counting Sort disponível na lista de imagens 2.9.

Figura 2.9: Complexidade de tempo do método Counting Sort (Vetor Parcialmente Ordenado Decrescente)

(b) Complexidade de tempo do método Counting Sort com mínimos quadrados disponível na lista de imagens 2.10.

Figura 2.10: Complexidade de tempo do método Counting Sort com mínimos quadrados (Vetor Parcialmente Ordenado Decrescente)

Tabelas

Seguem as tabelas utilizadas para a análise do método Counting Sort.

Tabela 3.1: Vetor Aleatório

Tamanho do Vetor	Tempo(s)
32	0.000924
64	0.001048
128	0.001275
256	0.001602
512	0.002296
1024	0.003892
2048	0.006807
4096	0.012659
8192	0.025144
16384	0.047915

Tabela 3.2: Vetor Ordenado Crescente

Tamanho do Vetor	$\overline{\text{Tempo}(s)}$
32	0.001087
64	0.001281
128	0.001409
256	0.001953
512	0.002287
1024	0.004282
2048	0.007226
4096	0.013225
8192	0.025477
16384	0.050537

Tabela 3.3: Vetor Ordenado Decrescente

Tamanho do Vetor	Tempo(s)
32	0.001238
64	0.001347
128	0.001692
256	0.001601
512	0.002410
1024	0.004015
2048	0.007246
4096	0.012888
8192	0.025990
16384	0.048788

Tabela 3.4: Vetor Parcialmente Ordenado Decrescente

Tamanho do Vetor	Tempo(s)
32	0.001269
64	0.001236
128	0.001449
256	0.001712
512	0.002419
1024	0.003892
2048	0.006918
4096	0.013007
8192	0.025498
16384	0.048699

Tabela 3.5: Vetor Parcialmente Ordenado Crescente

Tamanho do Vetor	Tempo(s)
32	0.001263
64	0.001182
128	0.001514
256	0.001999
512	0.002636
1024	0.004079
2048	0.006980
4096	0.013248
8192	0.025285
16384	0.050265

Análise

O Counting Sort é um dos algoritmos analisados em nosso trabalho que não utiliza de comparações para atingir seu objetivo. No entanto, ele possui algumas restrições para poder ser utilizado. Uma dessas restrições é de que os elementos do arranjo devem ser inteiros contidos em um determinado intervalo finito. Além disso, como se pode observar nos dados coletados, ele não é um algoritmo in-place, ou seja, utiliza memória adicional da ordem de $\theta(n)$.

Podemos observar que todas as curvas de todos os gráficos, exceto os de complexidade de tempo sem a interpolação dos mínimos quadrados (Gráficos 2.1,2.3,2.5,2.7,2.9), apresentaram uma correspondência forte com a curva da função F(x) = x, o que nos permite concluir que, dada a complexidade de tempo do algoritmo Counting Sort por G(x) então F(x) = c * G(x) sendo que c é uma constante maior que zero e $x > x_0$. Portanto, o Counting Sort é O(n).

Citações e referências bibliográficas

Apêndice A

Códigos extensos

A.1 testdriver.py

Listagem A.1: testdriver.py

```
1 # coding = utf-8
2 import subprocess
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import sys , shutil
8 ##PRA CADA NOVO METODO TEM QUE MUDAR
9 #Sys.path()
11 ## PARA CADA VETOR NOVO OU NOVO METODO TEM QUE MUDAR
12 #Para o executa_teste a chamada das funções e o shutil.move()
13 #para os plots
                        a chamada das funções e o savefig
15 sys.path.append('/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/
     Codigos/Counting') ## adicionei o código de ordenação
16 sys.path.append('/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/
     relatorio/Resultados/Counting') ## adicionei o resultado do
     executa_teste
17
18
  def executa_teste(arqteste, arqsaida, nlin, intervalo):
      """Executa uma sequência de testes contidos em arqteste, com:
20
         arqsaida: nome do arquivo de saída, ex: tBolha.dat
21
         nlin: número da linha no arquivo gerado pelo line_profiler contendo
22
               os dados de interesse. Ex: 14
23
         intervalo: tamanhos dos vetores: Ex: 2 ** np.arange(5,10)
24
25
      f = open(arqsaida, mode='w', encoding='utf-8')
26
      f.write('#
                            tempo(s)\n')
27
28
      for n in intervalo:
29
          cmd = ' '.join(["kernprof -l -v", "testeGeneric.py", str(n)])
30
          str_saida = subprocess.check_output(cmd, shell=True).decode('utf-8
31
              ')
          linhas = str_saida.split('\n')
32
```

```
#for i in linhas:
33
               print(i)
34
          #print (linhas)
35
          unidade_tempo = float(linhas[1].split()[2])
36
          tempo_total = float(linhas[3].split()[2])
          #lcomp = linhas[nlin].split()
38
39
40
          #print ("unidade tempo: ",unidade_tempo )
          #print("lcomp: ",lcomp)
41
          #print("tempo total",tempo_total)
42
43
          #num_comps = int(lcomp[1])
44
          str_res = '{:>8} {:13.6f}'.format(n, tempo_total)
45
          print(str res)
46
          f.write(str_res + '\n')
47
      f.close()
48
      shutil.move("tCounting_vetor_parcialmente_ordenado_decrescente.dat", "
49
          /home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/relatorio/
          Resultados/Counting/
         tCounting_vetor_parcialmente_ordenado_decrescente.dat")
50
51 executa_teste("testeGeneric.py", "
     tCounting_vetor_parcialmente_ordenado_decrescente.dat", 46, 2 ** np.
     arange(5,15))
52
53 def executa_teste_memoria(arqteste, arqsaida, nlin, intervalo):
      """Executa uma sequência de testes contidos em arqteste, com:
54
         arqsaida: nome do arquivo de saída, ex: tBolha.dat
55
         nlin: número da linha no arquivo gerado pelo line profiler contendo
56
               os dados de interesse. Ex: 14
57
         intervalo: tamanhos dos vetores: Ex: 2 ** np.arange(5,10)
58
      f = open(argsaida, mode='w', encoding='utf-8')
60
      f.write('#
                   n comparações
                                         tempo(s)\n')
61
62
      for n in intervalo:
63
          cmd = ' '.join(["kernprof -l -v ", "testeGeneric.py", str(n)])
64
65
          str_saida = subprocess.check_output(cmd, shell=True).decode('utf-8
66
67
          linhas = str_saida.split('\n')
68
          for i in linhas:
              print(i)
70
71
          print ("Linhas:", linhas[1])
72
          unidade_tempo = float(linhas[1].split()[2])
74
7.5
76
77
          str_res = '{:>8} {:>13} {:13.6f}'.format(n, n, n)
          print (str_res)
78
          f.write(str_res + '\n')
79
80
      f.close()
      #shutil.move("tSelection_memoria.dat", "/home/gmarson/Git/
81
         AnaliseDeAlgoritmos/Trabalho_Final/relatorio/Resultados/Selection/
         tSelection_memoria.dat")
83 #executa_teste_memoria("testeGeneric.py", "tSelection_memoria.dat", 14, 2
```

```
** np.arange(5,15))
84
85 def plota_teste1(arqsaida):
       n, c, t = np.loadtxt(arqsaida, unpack=True)
86
       #print("n: ",n,"\nc: ",c,"\nt: ",t)
87
       #n eh o tamanho da entrada , c eh o tanto de comparações e t eh o
88
          tempo gasto
       plt.plot(n, n ** 2, label='$n^2$') ## custo esperado bubble Sort
89
90
       plt.plot(n, c, 'ro', label='selection sort')
91
       # Posiciona a legenda
92
       plt.legend(loc='upper left')
93
94
       # Posiciona o título
95
       plt.title('Análise de comparações do método da seleção')
96
97
       # Rotula os eixos
98
       plt.xlabel('Tamanho do vetor (n)')
99
100
       plt.ylabel('Número de comparações')
101
       plt.savefig('relatorio/imagens/Selection/
102
          selection_plot_1_ordenado_descresente.png')
       plt.show()
103
104
105
106
107 def plota_teste2(arqsaida):
       n, t = np.loadtxt(arqsaida, unpack=True)
108
       plt.plot(n, n , label='n')
109
       plt.plot(n, t, 'ro', label='counting sort')
110
111
       # Posiciona a legenda
112
       plt.legend(loc='upper left')
113
114
       # Posiciona o título
115
       plt.title('Análise da complexidade de \ntempo do método Counting Sort'
116
          )
117
118
       # Rotula os eixos
119
       plt.xlabel('Tamanho do vetor (n)')
       plt.ylabel('Tempo(s)')
120
121
       plt.savefig('relatorio/imagens/Counting/
122
          counting plot 2 parcialmente ordenado decrescente.png')
       plt.show()
123
124
126 def plota_teste3(arqsaida):
       n, t = np.loadtxt(arqsaida, unpack=True)
127
128
       # Calcula os coeficientes de um ajuste a um polinômio de grau 2 usando
129
       # o método dos mínimos quadrados
130
       coefs = np.polyfit(n, t, 2)
131
       p = np.poly1d(coefs)
132
133
       plt.plot(n, p(n), label='$n$')
134
       plt.plot(n, t, 'ro', label='counting sort')
135
136
       # Posiciona a legenda
```

```
plt.legend(loc='upper left')
138
139
       # Posiciona o título
140
       plt.title('Análise da complexidade de \ntempo do método Counting Sort
141
          com mínimos quadrados')
142
       # Rotula os eixos
143
144
       plt.xlabel('Tamanho do vetor (n)')
145
       plt.ylabel('Tempo(s)')
146
       plt.savefig('relatorio/imagens/Counting/
147
          counting_plot_3_parcialmente_ordenado_decrescente.png')
       plt.show()
148
149
150 #plota_teste1("/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/
      relatorio/Resultados/Selection/tSelection_vetor_ordenado_descresente.
      dat")
151 plota_teste2("/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/
      relatorio/Resultados/Counting/
      tCounting_vetor_parcialmente_ordenado_decrescente.dat")
152 plota_teste3("/home/gmarson/Git/AnaliseDeAlgoritmos/Trabalho_Final/
      relatorio/Resultados/Counting/
      tCounting_vetor_parcialmente_ordenado_decrescente.dat")
153
154
155 def plota_teste4(arqsaida):
       n, c, t = np.loadtxt(arqsaida, unpack=True)
156
157
158
       # Calcula os coeficientes de um ajuste a um polinômio de grau 2 usando
       # o método dos mínimos quadrados
159
       coefs = np.polyfit(n, c, 2)
160
       p = np.poly1d(coefs)
161
162
       plt.plot(n, p(n), label='$n^2$')
163
       plt.plot(n, c, 'ro', label='bubble sort')
164
165
       # Posiciona a legenda
166
       plt.legend(loc='upper left')
167
168
169
       # Posiciona o título
       plt.title('Análise da complexidade de \ntempo do método da bolha')
170
171
       # Rotula os eixos
172
       plt.xlabel('Tamanho do vetor (n)')
173
       plt.ylabel('Número de comparações')
174
175
       plt.savefig('bubble4.png')
176
       plt.show()
177
178
179 def plota_teste5(arqsaida):
180
       n, c, t = np.loadtxt(arqsaida, unpack=True)
181
       # Calcula os coeficientes de um ajuste a um polinômio de grau 2 usando
182
       # o método dos mínimos quadrados
183
       coefs = np.polyfit(n, c, 2)
184
       p = np.poly1d(coefs)
185
186
       # set_yscale('log')
187
       # set_yscale('log')
188
```

```
plt.semilogy(n, p(n), label='$n^2')
189
       plt.semilogy(n, c, 'ro', label='bubble sort')
190
191
       # Posiciona a legenda
192
       plt.legend(loc='upper left')
193
194
       # Posiciona o título
195
       plt.title('Análise da complexidade de \ntempo do método da bolha')
196
197
       # Rotula os eixos
198
       plt.xlabel('Tamanho do vetor (n)')
199
       plt.ylabel('Número de comparações')
200
201
       plt.savefig('bubble5.png')
202
       plt.show()
203
```