

Univerza na primorskem UP FAMNIT Študijsko leto 2020/2021

Algebra I 1. KOLOKVIJ – 19. NOVEMBER 2020 –

Čas pisanja: 90 minut. Maksimalno število točk: 50. Dovoljena je uporaba pisala, kalkulatorja in enega ročno napisanega lista formata A4 z definicijami in formulami (brez rešenih primerov). Pišite razločno in utemeljite vsak odgovor. Srečno!

1. V paralelogramu ABCD točka E deli diagonalo AC tako, da velja |AE|:|EC|=1:3 in točka F deli diagonalo BD tako, da velja |BF|:|FD|=3:1. Naj bo točka S presečišče daljic AF in ED. Izrazite vektor \vec{DS} z vektorjema $\vec{e}=\vec{AC}$ in $\vec{f}=\vec{BD}$.

(Namig: V paralelogramu se diagonali razpolavljata.)

(12 točk)

- 2. Dan imamo trikotnik ABC z oglišči A(-1,3,x+5), B(x,2,4) in C(3,x-1,3).
 - (a) Določite $x \in \mathbb{R}$ tako, da bo dolžina stranice c (t.j. \vec{BA}) enaka 3.

(6 točk)

- (b) Izračunajte ploščino trikotnika (če ste za x dobili več možnih rešitev upoštevajte največjo). (6 točk)
- 3. Dano imamo ravnino Π : x + y + z = 2 in premico $p = (1, 1, 0) + \lambda(-1, 1, -2)$.
 - (a) Določite koordinate točke, v kateri premica p prebada ravnino Π .

(3 točke)

(b) Določite kot med ravnino Π in premico p.

- (3 točke)
- (c) Zapišite vektorsko obliko enačbe premice q skozi točko T(2,1,-2), ki je vzporedna ravnini Π in pravokotna na premico p. (7 točk)
- 4. Naj bosta $\ell:\frac{x}{6}=\frac{y-3}{-2}=-z-5$ in $p=(1,7,-4)+\lambda(1,-3,3)$ premici v prostoru.
 - (a) Izračunajte razdaljo med premicama ℓ in p.

(6 točk)

(b) Zapišite splošno obliko enačbe ravnine Σ , ki vsebuje premico p in je vzporedna s premico ℓ . (7 točk)

University of primorska UP FAMNIT Academic year 2020/2021

Algebra I Midterm 1 – November 19, 2020 –

Time: 90 minutes. Maximum number of points: 50. You are allowed to use a pen, a calculator and one A4 hand-written piece of paper with definitions and formulas (and with no solved exercises). Write clearly, and justify all your answers. Good luck!

1. In a parallelogram ABCD the point E divides the diagonal AC so that |AE|:|EC|=1:3 and the point F divides the diagonal BD so that |BF|:|FD|=3:1. Let S be the point of intersection of line segments AF and ED. Express the vector \vec{DS} with vectors $\vec{e}=\vec{AC}$ and $\vec{f}=\vec{BD}$.

(Hint: The diagonals of a parallelogram bisect each other.)

(12 points)

- 2. Consider a triangle ABC defined by points A(-1,3,x+5), B(x,2,4) and C(3,x-1,3).
 - (a) Determine $x \in \mathbb{R}$ so that the length of the side c (i.e. \overrightarrow{BA}) equals 3. (6 points)
 - (b) Determine the area of the triangle (if you got more than one solution for x, use the largest one). (6 points)
- 3. We are given the plane Π : x + y + z = 2 and the line $p = (1, 1, 0) + \lambda(-1, 1, -2)$.
 - (a) Determine the point of intersection of Π and p.

(3 points)

(b) Determine the angle between Π and p.

(3 points)

- (c) Find the vector equation for the line q through the point T(2,1,-2) that is paralell to Π and orthogonal to p.
- 4. Let $\ell: \frac{x}{6} = \frac{y-3}{-2} = -z 5$ and $p = (1, 7, -4) + \lambda(1, -3, 3)$ be two lines in space.
 - (a) Determine the distance between ℓ and p.

(6 points)

(b) Find the general form equation of the plane Σ that contains p and is parallel to ℓ . (7 points)