EE2000 Logic Circuit Design

Lecture 1 – Solution for Exercises

Instructables.com

x	y	f
0	0	0
1	0	1
0	1	1
1	1	0

$$f = xy' + x'y$$

X	у	f
0	0	1
1	0	0
0	1	0
1	1	1

$$f = x'y' + xy$$

Given the Boolean function f(x, y, z) = xy' + x'z', draw the Logic Circuit and work out the truth table.

X	У	Z	xy'	x'z'	$\chi y' + \chi' Z'$
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	0	0

Question

• Which of the following has the same function as x + x'y?

- a) x + xy'
- b) x + y
- c) x' + y
- d) y

$$x + x'y = (x + x')(x + y)$$
 distributive
= $1 \cdot (x + y)$ complement
= $x + y$ identity

Simplify the following expression.

$$xyz' + xyz + xy'z + x'yz + x'y'z + x'y'z'$$

$$= xy(z' + z) + xy'z + x'yz + x'y'(z + z') \text{ complement}$$

$$= xy + xy'z + x'yz + x'y'$$

$$= x(y + y'z) + x'(y' + yz) \text{ simplification}$$

$$= x(y + z) + x'(y' + z)$$

$$= xy + x'y' + z(x + x') \text{ complement}$$

$$= xy + x'y' + z$$
5 literals; 3 terms

41

Simplify the following expression.

$$(x + y + z)(x + y + z')(x + y' + z)(x + y' + z')$$
 adjacency
= $(x + y)(x + y') = x$

1 literal; 1 term

Prove that the above Circuit (a) is equivalent to Circuit (b).

Solution by Boolean Algebra Simplification

$$AB + A(B + C) + B(B + C)$$

 $AB + AB + AC + BB + BC$
 $AB + AB + AC + B + BC$
 $AB + AC + B + BC$
 $AB + AC + B$
 $B + BC = B$
 $B + BC = B$
 $B + BC = B$
 $AB + BC = B$

$$f(w,x,y,z) = wxy' + w'y'z + wx'y' + xy'z + w'z$$

$$= wxy' + wx'y' + xy'z + w'z$$
 adsorption
$$= wy' + w'z + xy'z$$
 adjacency

Term 1	Term 2	Consensus Term
wy'	w'z	y'z

$$= wy' + w'z + xy'z + y'z$$
Add the consensus term
$$= wy' + w'z + y'z \text{ adsorption}$$

$$= wy' + w'z$$
Remove the

consensus term

- 1. Derive the Boolean functions to describe the operations of the logic circuit as shown.
- 2. Simplify the functions and draw the circuit.

$$F = AB$$
 $G = AB(B + C)'$
 $= ABB'C'$ deMorgan
 $= 0$ Complement
 $H = AB(B + C)' + D = D$

