Thursday, October 6, 2022 5:23 PM

LECTURE 14 - MATH 630 J

DEFINITION: Let (X,5, µ) be a measure space. We say that the measure u is complete if

$$\forall (\mu(A) = 0 \Rightarrow \forall B \in S)$$

$$A \in S$$

THEOREM (Completion of a measure)

Let (X, 5, µ) be a measure space and put

N= {ACX:] ACF and M(F)=0 }

be the 6-algebra generated by $S \cup N$.

Then there exists exactly one measure $M:S \rightarrow \mathbb{R}$, such that M(F) = M(F), i.e. M is a unique extension of M to S. $F \in S$

COMMENT: The measure is collect the completion of u to 5 and 3 is called completion of 6-algebra 5.

PROOF: Notice that

(a) if $A \in \mathcal{N}$ and $B \subset A$ then $B \in \mathcal{N}$

(b) if $2 \text{ Ans} \subset \mathcal{N} = 0$ An $\in \mathcal{N}$. Indeed, An $\in \mathcal{N}$ means $\exists f_n \in \mathcal{S}$ $s. + \mu(f_n) = 0$ Au c + n = 1, 2, ...Put F = 0 F_n , 0 Au c + 1 and 0 $\mu(F) = \mu(\widetilde{\bigcup}F_n) \in \sum_{n=1}^{\infty} \mu(F_n) = 0$

We define the following equivalence relation for E, F < X, by

EXFED EXECUTED I transitivity?

observe that

(i) E, &F, and E, &F, F2

(ii) $E_n \mathring{s} F_n$, n=1,2,... then $UE_n \mathring{s} UF_n$ and $U=1 \mathring{s} U = 1$

If $\xi E_n \zeta c S$ is such that $\mu(E_n E_n) = 0$ for $m \neq n$ $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ $F_{n}:=\overline{E}_{n} \cdot (\overline{E}_{n} \cdot \overline{E}_{n-1}) \quad W_{2}$ $= \left(...(\overline{E}_{n} \cdot (\overline{E}_{n} \cdot \overline{E}_{1})) \cdot ... \cdot (\overline{E}_{n} \cdot \overline{E}_{n-1})\right)$ $\int_{n=1}^{\infty} E_n = \int_{n=1}^{\infty} F_n,$ $\mathcal{L}(\mathcal{L}_n) = \mu(\mathcal{L}_n) = \sum_{n=1}^{\infty} \mu(\mathcal{E}_n) = \sum$ To conclude $F_n \approx E_n$ $F_n \in S$ $\mu(F_n \cap F_m) = 0$ $n \neq n$ $\pi(\bigcup_{n=1}^{\infty} F_n) = \mu(\bigcup_{n=1}^{\infty} F_n) = \sum_{n=1}^{\infty} \mu(F_n) = \sum_{n=1}^{\infty} \mu(F_n)$ OUTER MEASURE Example: For a given set ACIR's one can define the number $\mu^*(A) = cuf \left\{ \sum_{n=1}^{\infty} |I_n| : A \subset \bigcup_{n=1}^{\infty} I_n \right\}$ interval 1 [] = [[(b:-ai) The idea of bolivies fruitely many ontends In covering A leads of the so-celled Jordan Conter) measure of A on no other beaut countrable covers by In lead to Lebesque (outer) measure of A \mathbb{R}^{3} \mathbb{R}^{3} Example

