

JEDNOSTKI MIAR

Wielkość	jednostka układu SI		jednostka z poza układu SI		relacje między jednostkami	
	nazwa	symbol	nazwa	symbol		
Długość	Metr	m	Stopa	ft	1 ft	= 0,3048 m
Czas	Sekunda	S			1 min	= 60s
GZUS					1 h	= 60 min = 3600 s
Masa	Kilogram	kg				
Siła	Niuton	N	Kilogram siła	KG	1 KG	= 9,81 N
Energia, Praca	Dżul	J	Kaloria	cal	1 cal	= 4,19 J
	Paskal	Pa			1 bar	= 10 ⁵ Pa
Ciśnienie	Bar	bar	Atmosfera	atm	1 at	= 0,981 bar
			Słup wody	mmH ₂ 0	1 mmH ₂ 0	= 10 ⁻⁴ at
Gęstość		kg/m³		g/cm³	1 g/cm³	$= 10^3 \text{ kg/m}^3$
Мос	Wat	W	Koń mechaniczny	KM	1 KM	= 0,7355 kW
Wydajność		m³/h		l/min	1 m³/h	= 16,67 l/min
Prędkość przepływu		m/s		km/h	1 m/s	= 3,6 km/h
Temperatura	Kelwin	K	Stopnie Celsjusza	₀ C	1ºC	= 1K +273,16
Poziom dźwięku	Decybel	dB				

Przy obliczeniach inżynierskich w przybliżeniu można przyjmować następujące przeliczniki:

1KG = 10N 1 at = 1 bar 0,1 m³/s = 1001/s

1KM \approx 0,75kW 1mbar \approx 10 mmH₂0 \approx 100 Pa

RELACJE MIĘDZY JEDNOSTKAMI CIŚNIENIA

Pa	kPa	MPa	mbar	bar	mm H ₂ 0	m H ₂ O	mm Hg
100			1		10		
160			1,6		16		
250			2,5		25		
400			4		40		
600			6		60		
1000	1		10		100		7,5
1600	1,6		16		160		12
2500	2,5		25		250		19
4000	4		40		400		30
6000	6		60		600		45
10000	10		100	0,1	1000	1	75
	16		160	0,16	1600	1,6	120
	25		250	0,25	2500	2,5	188
	40		400	0,4	4000	4	300
	60		600	0,6	6000	6	450
	100	0,1	1000	1	10000	10	750
	160	0,16		1,6		16	
	250	0,25		2,5		25	
	400	0,4		4		40	
	600	0,6		6		60	
		1		10		100	
		1,6		16			
		2,5		25			
		4		40			
		6		60			
		10		100			
		16		160			
		25		250			
		40		400			
		60		600			
		100		1000			
		160		1600			
		250		2500			
		400		4000			

www.venture.pl 495

PODSTAWOWE ZASADY DOBORU WENTYLATORÓW

Do podstawowych parametrów technicznych stosowanych przy doborze wentylatora należy zaliczyć:

- V wydajność wentylatora
- ${f v}$ prędkość przepływu przetłaczanego medium
- p ciśnienie
- T temperatura przetłaczanego czynnika
- skład przetłaczanego medium
- L poziom dźwięku

Wymagana prędkość przepływu zależy od wymagań technologicznych lub też od rodzaju przetłaczanego medium.

Poniższe tabele przedstawiają przykładowe wielkości (wg. zaleceń Norm Europeiskich):

- a współczynnika **k** w zależności od rodzaju pomieszczeń,
- a ilości zapotrzebowania na powietrze $\mathbf{V}_{\mathbf{k}}$ w zależności od rodzaju wykonywanej pracy,
- a wymaganych prędkości przepływu czynnika ${\bf v}$ w zależności od rodzaju procesu technologicznego i rodzaju przetłaczanego medium.

TABELA 1. Współczynnik k dla pomieszczeń przemysłowych

Typ pomieszczenia	ilość wymian powietrza na godzinę		
	[1/h]		
Kotłownie	20 ÷ 30		
Lakiernie	10 ÷ 15		
Sklepy elektryczne, z tworzywami itp.	10 ÷ 15		
Maszynownie	20 ÷ 30		
Zakłady, warsztaty	3 ÷ 6		
Zakłady Hutnicze	30 ÷ 60		
Zakłady Pralnicze	30 ÷ 60		
Malarnie	30 ÷ 60		
Magazyny, składnice	3 ÷ 6		
Spawalnie	15 ÷ 30		
Pomieszczenia montażowe	4 ÷ 8		
Piekarnie	20 ÷ 30		

TABELA 3. Współczynnik V, w zależności od rodzaju wykonywanej pracy

Typ pracy	zapotrzebowanie powietrza		
	V _k [(m³/h)/osobę]		
Praca biurowa osoby niepalące	20 ÷ 25		
Praca biurowa osoby palące	30 ÷ 35		
Lekkie prace fizyczne	45		
Cięższe prace fizyczne	60		

TABELA 4. Predkość przepływu v w zależności od rodzaju procesu technologicznego

Proces technologiczny	prędkość	
	v [m/s]	
Wyciągi kuchenne domowe	0,15 ÷ 0,2	
Wyciągi kuchenne w zakł. usług.	0,2 ÷ 0,25	
Odciągi ze zbiorników	0,25 ÷ 0,5	
Odciągi odłuszczania	0,25 ÷ 0,5	
Odciągi spawalnicze, galwanizacyjne	0,5 ÷ 1	
Odciągi z kabin malarskich	0,7 ÷ 1	
Odciągi w młynach itp	2,5 ÷ 10	

WYDAJNOŚĆ WENTYLATORA

W przypadku typowej wentylacji wymagana wydajność V [m³/h] określana jest na podstawie:

- **A.** Objętości wentylowanego pomieszczenia $\mathbf{V}_{\mathbf{p}}$ [m³] i przyjętej ilości wymian powietrza w ciągu godziny \mathbf{k} [1/h]:
- **B.** zapotrzebowania powietrza w zależności od potrzeb osób przebywających w określonym pomieszczeniu oraz rodzaju wykonywanej pracy **V**_v [(m³/h)/osobę]:
- C. Prędkości przepływu czynnika **v** [m/s]:

 $V = V_p \cdot k$

 $V = V_{\nu} \cdot n$

gdzie: n - ilość osób.

 $V = v \cdot S$

gdzie: S - pole powierzchni, przez które przepływa czynnik.

TABELA 2. Współczynnik k dla pomieszczeń użyteczności publicznej

Typ pomieszczenia	ilość wymian powietrza na godzinę		
	[1/h]		
Banki	3 ÷ 4		
Kawiarnie, bary itp.	10 ÷ 12		
Stołówki	5 ÷ 10		
Kina, Teatry	5 ÷ 8		
Pomieszczenia konferencyjne	8 ÷ 12		
Sale tańca	6 ÷ 8		
Garaże	6 ÷ 8		
Sale gimnastyczne	6 ÷ 12		
Salony piękności	10 ÷ 15		
Sale operacyjne	4 ÷ 6		
Pomieszczenia kuchenne	15 ÷ 30		
Laboratoria	8 ÷ 12		
Pralnie	15 ÷ 30		
Pomieszczenia socjalne (łazienki, WC)	15 ÷ 30		
Biblioteki	3 ÷ 5		
Biura	4 ÷ 8		
Ciemnie fotograficzne	10 ÷ 15		
Studia nagrań	10 ÷ 12		
Restauracje	6 ÷ 10		
Sale szkolne	2 ÷ 4		

TABELA 5. Prędkość przepływu v w zależności od rodzaju przetłaczanego medium

Rodzaj transportowanego medium	prędkość		
	v [m/s]		
Kurz	9		
Maka	13		
Odpady szlifiersko-metalowe	15		
Wióry drzewne	18		
Ciężkie odpady	20 ÷ 25		

Bardziej zaawansowane obliczenia doboru ilości wymienianego powietrza oparte są na fizycznych procesach wymiany ciepła i masy (wilgoć + masa powietrza).

OPORY UKŁADU WENTYLACYJNEGO

W urządzeniach wentylacyjnych powietrze lub inne medium dostarczane jest do pomieszczeń oraz usuwane kanałami o przekroju okrągłym lub prostokątnym. Z ogólnego prawa Bernoulliego przyjmuje się, że suma strat ciśnienia Δp_{st} w kanałach wyraża się wzorem:

$$\left(p_{1s} + \frac{\rho \cdot v_1^2}{2}\right) - \left(p_{2s} + \frac{\rho \cdot v_2^2}{2}\right) = \Delta p_{st} \qquad p_{d1} = \frac{\rho \cdot v_1^2}{2} \qquad p_{d2} = \frac{\rho \cdot v_2^2}{2}$$

$$(p_{1s} + p_{d1}) - (p_{2s} + p_{d2}) = \Delta p_{st}$$

Ciśnienie $\mathbf{p_s}$ nazywamy statycznym i wywiera ono nacisk na ścianki kanału równoleałe do kierunku ruchu.

Ciśnienie p_d nazywamy dynamicznym i jest ono związane z określoną prędkością przepływu przetłaczanego medium.

Suma ciśnienia \mathbf{p}_{s} i ciśnienia \mathbf{p}_{d} określana jest jako ciśnienie całkowite \mathbf{p}_{c} :

$$p_c = p_s + p_d$$

Z równania powyższego wynika, że w trakcie przepływu przez kanały następuje spadek ciśnienia całkowitego powodując jego straty. Całkowitą stratę ciśnienia w kanale lub sieci wyrażamy sumą strat liniowych $\Delta p_{_{\! +}}$ (opory tarcia) oraz strat lokalnych Δp_m (miejscowych):

 p_{c1} - $p_{c2} = \Delta p_{s1}$

$$\Delta p_t + \Delta p_m = \Delta p_{st}$$

Straty związane z oporami liniowymi dla przewodu o stałym przekroju są zwykle wyrażane wzorem:

$$p_t = I \cdot R_t \: lub \: p_t = I \cdot \left(\frac{\lambda}{4 \cdot R_h} \right) \cdot \left(\frac{\rho \cdot v^2}{2} \right)$$

I - długość przewodu [m],

czyli:

- R. opór jednostkowy (Pa/m),
- promień hydrauliczny [m],
- bezwymiarowy współczynnik tarcia zależny od liczby Reynoldsa i szorstkości kanału,
- v średnia prędkość przepływu powietrza [m/s],
- p gęstość powietrza (kg/m3).

Promień hydrauliczny jest równy stosunkowi powierzchni przekroju poprzecznego kanału do jego obwodu: $R_h = F/U$ dla przekroju kołowego $R_h = d/4$ Dla kanałów o przekroju kołowym jednostkowe opory tarcia zamieszczane są w formie tabel lub wykresów. Aby wyznaczyć opór jednostkowy dla przekroju prostokątnego należy dla niego wyznaczyć tzw. średnicę równoważną wg. zależności:

$$d_r = \frac{2 \cdot a \cdot b}{a + b}$$

 $\mathbf{d}_{\mathbf{r}}$ - średnica równoważna dla kanału prostokątnego,

a następnie odczytać opór jednostkowy z tabeli lub wykresu tak jakby byłby to kanał o przekroju okrągłym o średnicy d

Opory lokalne wyraża się w funkcji ciśnienia dynamicznego:

$$\Delta p_m = \xi \cdot \frac{\rho \cdot V^2}{2}$$

ξ - współczynnik oporu miejscowego wyznaczany doświadczalnie

Wymagana wielkość ciśnienia zależna jest od łącznych oporów jakie stanowią elementy w instalacji wentylacyjnej (kanały, czerpnie, filtry, itp.) lub też od wymagań technologicznych.

PUNKT PRACY WENTYLATORA

Charakterystyka wentylatora określa zależność ciśnienia od wydajności wentylatora przy określonej prędkości obrotowej. Spręż wentylatora pc składa się z sumy dwóch ciśnień:

1. ciśnienia dynamicznego wynikającego z prędkości przepływu przez wentylator \mathbf{p}_{d} :

$$\Delta p_d = \frac{\rho \cdot v^2}{2}$$

2. różnicy ciśnienia statycznego jakie jest w stanie wytworzyć wentylator pomiędzy włotem i wylotem z wentylatora Dps. Przy doborze wentylatora należy określić punkt pracy wentylatora w zależności od wymagań układu wentylacyjnego. Dla punktu tego, przy założonej wydajności, ciśnienie wentylatora powinno być co najmniej równe ciśnieniu związanemu z oporami układu wentvlacvineao.

Moc wewnętrzną wentylatora w punkcie pracy można obliczyć na podstawie noniższego wzoru:

$$N_i = \frac{V \cdot \Delta pc}{\eta_i}$$

V - wydajność wentylatora w punkcie pracy [m³/s] ηi - sprawność wewnętrzna wentylatora

Obliczając na tej podstawie niezbędną moc silnika należy uwzględnić przyrost mocy wynikający z tolerancji wykonania wentylatora, tolerancji pomiarów i sprawności układu przeniesienia napędu.

WYKRES 1. Przykład charakterystyk wentylatorów i doboru wielkości wentylatora

OGÓLNY SCHEMAT DOBORU WENTYLATORA

- 1. Określenie wydajności i sprężu wentylatora
- 2. Określenie punktu pracy
- 3. Dodatkowe parametry pracy wentylatora, np. temperatura, skład przetłaczanego medium itp.
- 4. Określenie typu wentylatora, np. osiowy, promieniowy itp.
- 5. Wybór wentylatora spełniającego powyższe wymagania na podstawie charakterystyk i danych katalogowych
- 6. Określenie figury wentylatora, kierunku przepływy przetłaczanego medium
- 7. Wybranie dodatkowego wyposażenia: regulatory, przepustnice, króćce, zlacza itp.

497 www.venture.pl

AKUSTYKA

Dźwięk jest falą płaską powodującą w ośrodku, w którym się rozchodzi drganie cząsteczek zgodnie z ruchem harmonicznym. W powietrzu dźwięk powoduje harmoniczne miejscowe zmiany ciśnienia. Dźwięk jako fala przenosi ze sobą również energię. Poziom dźwięku najczęściej określany jest na podstawie dwóch wielkości:

1. poziomu ciśnienia akustycznego Lp wyrażanego relacją ciśnienia akustycznego **p1** do ciśnienia wzorcowego **p0** = 2·10-5 Pa wg. zależności:

$$L_p = 10 \cdot \lg \left(\frac{p_1}{p_0} \right)$$

którego zmiany w funkcji zmian odległości z **I1** do **I2** od źródła dźwięku określa zależność:

$$L_{p2} = L_{p1} + 20 \cdot \lg \left(\frac{I_1}{I_2} \right)$$

2. poziomu mocy akustycznej **Lw** wyrażanej relacją mocy akustycznej **L1** do mocy wzorcowej **L0** = 10-12 W wg. zależności:

$$L_w = 10 \cdot \lg \left(\frac{L_1}{L_2}\right)^2$$

Dźwięk składa się z fal różnej częstotliwości dlatego często poziom dźwięku określa się w postaci spektrum z rozdziałem na zakresy częstotliwości. Średnie ciśnienie lub moc akustyczna z kilku pomiarów określana jest na podstawie zależności:

L = 10 · Ig
$$\left[\frac{1}{n} \sum_{i=1}^{n} (10^{0.1 \cdot Ln}) \right]$$

W katalogu zamieszczone poziomy ciśnienia lub mocy akustycznej dotyczą skali dB(A). Skala dB(A) bardziej odzwierciedla przenoszony dźwięk w postaci hałasu gdyż uwzględnia częstotliwości słyszalne w zakresie od 16 do 20000 Hz. Urządzenie do pomiaru hałasu z założenia wyposażone jest w odpowiedni filtr uwzględniający skalę dB(A). Wynik pomiaru podawany jest w skali dB(A).

OGÓLNE ZALECENIA MONTAŻOWE

Aby zminimalizować spadek sprawności wentylatora (wentylatory kanałowe) spowodowany turbulentnym przepływem powietrza zalecany jest za i przed wentylatorem montaż prostego odcinka kanału lub tłumika. Minimalna długość prostego kanału powinna wynosić:

I = D - po stronie ssawnej,

I = 3D - po stronie tłocznej.

Średnicę równoważną dla kanałów o przekroju prostokątnym oblicza się z zależności:

$$D = 4 \frac{a - b}{a + b}$$

Na tych odcinkach nie powinno się instalować filtrów.

- a wielkość przekroju kanałów wentylacyjnych powinna być nie mniejsza niż przekroje na włocie i wyłocie z wentylatora. Zapobiega to nie wskazanemu dławieniu wentylatora.
- a celem odizolowania drgań pochodzących od wentylatorów zalecany jest montaż złącz przeciwdrganiowych pomiędzy wentylatorem a kanałami wentylacyjnymi,
- a celem ograniczenia przenoszenia drgań na inne konstrukcje zaleca się montaż wentylatorów z zastosowaniem zamocowań tłumiących drgania.
- przed uruchomieniem wentylatora należy zapoznać się z instrukcją obsługi lub z DTR w której należy szczególną uwagę zwrócić na:
 - sposób podłączenia elektrycznego z uwzględnieniem ewentualnych dodatkowych zabezpieczeń,
 - 2. sposób rozruchu wentylatora.

PODSTAWOWE PRAWA WENTYLATOROWE

Parametry techniczne wentylatorów są przedstawiane dla następujących stałych wielkości:

gęstości powietrza ρ =1,2 kg/m³, temperatury t = 20°C

ciśnienia powietrza \mathbf{p} =1013 hPa, oraz przyjętej stałej prędkości obrotowej wirnika \mathbf{n} = const obr/min.

Dla określenia parametrów technicznych przy innych wartościach w/w wielkości należy parametry przeliczyć wg. zależności zamieszczonych w poniższej tabeli:

Proces technologiczny	zmiana temperatury	zmiana obrotów silnika	zmiana średnicy wirnika
	z T1 do T2 [K]	z n1 do n2 (obr/min)	z D1 do D2 [mm]
Wydajność [m3/h]		$V_2 = V_1 \cdot \left(\frac{I_2}{I_1} \right)$	$V_2 = V_1 \cdot \left(\frac{D_2}{D}\right)^3$
Cisnienie całkowice [Pa]	$p_2 = p_1 \left(\frac{\lambda_1}{\lambda_2} \right) = p_1 \left(\frac{T_1}{T_2} \right)$	$V_2 = V_1 \cdot \left(\frac{N_2}{N_1} \right)$	$p_2 = p_1 \cdot \left(\frac{D_2}{D_1}\right)^2$
Moc absorbowana [W]	$P_2 = P_1 \left(\frac{\lambda_1}{\lambda_2} \right) = P_1 \left(\frac{T_1}{T_2} \right)$	$P_2 = P_1 \cdot \left(\frac{n_2}{n_1} \right)^3$	$P_2 = P_1 \cdot \left(\frac{D_2}{D_1}\right)^5$
Hałas [dB]		$Lp_2 = Lp_1 + 50 \cdot lg\left(\frac{n_2}{n_1}\right)$	$Lp_2 = Lp_1 + 70 \cdot lg\left(\frac{D_2}{D_1}\right)$