This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-204661

(43)公開日 平成7年(1995)8月8日

(51) Int.Cl.*

識別記号

FΙ

技術表示箇所

C02F 1/58

庁内整理番号 ZAB F

審査請求 未請求 請求項の数3 OL (含	E	0	贝/
-----------------------	---	---	----

(21)出讀書号

(22)出版日

特顯平6-4416

平成6年(1994)1月20日

(71)出職人 592150354

日本省科莱品株式会社 山口県下関市長門町2番11号

(72) 発明者 永田 聴

山口県下関市後田町 3 - 2 - 33 - 102

周場 孝夫 (72) 発明者

山口県下関市清末西町1-1-46

(72) 発明者 常川 勝由

山口県下関市山の田西町 3 -27

(74)代理人 弁理士 小堀 益

(54) [発明の名称] グルタルアルデヒド廃液処理剤及びそれを用いた廃液処理方法

(57)【要約】

【目的】 殺菌消毒剤グルタルアルデヒドを医療施設内 で排水処理する場合の排水処理微生物への悪影響を軽減 する.

【構成】 アミノ酸及び/又はアミノ酸のアルカリ金属 塩からなるグルタルアルデヒド廃液処理剤。この廃液処 理剤を、グルタルアルデヒド廃液に添加混合することに よって、残存グルタルアルデヒドを不活化する廃液処理 方法。

【効果】 本廃液処理剤は、グルタルアルデヒド製剤の 水溶液に溶解し易く、無害、無臭であり、即時にグルタ ルアルデヒドを不活化し、排水処理微生物(活性汚泥) の活性を損なうことが防止できる。また、反応が進むに 従つて褐色に呈色することから処理の確認が容易であ る。従って、医療施設内でのグルタルアルデヒド製剤の 処理に好適である。

【特許請求の範囲】 【請求項1】 アミノ酸及び/又はアミノ酸のアルカリ 金属塩からなるグルタルアルデヒド廃液処理剤。

【請求項2】 アミノ酸、又はそのアルカリ金属塩が、 常温で水に溶解し易いグリシン、アラニン、アルギニ ン、プロリン、グルタミン酸ナトリウムの群から選ばれ た1つ又は2つ以上であることを特徴とする請求項1記 載のグルタルアルデヒド廃液処理剤。

【請求項3】 グルタルアルデヒド廃液に、アミノ酸及 び/又はアミノ酸のアルカリ金属塩からなる製剤を添加 混合することによって残存グルタルアルデヒドを不活化 することを特徴とする廃液処理方法。

【発明の詳細な説明】

【産業上の利用分野】本発明は、殺菌消毒剤グルタルア ルデヒドを医療施設内で排水処理する際に、医療施設付 設の曝気槽内、又は公共下水処理施設内の排水処理微生 物に悪影響を及ぼすことを軽減する廃液処理剤及びそれ を用いた廃液処理方法に関する。

【従来の技術】医療施設においては、各種の院内感染を 子防する見地から殺菌消毒剤が使用されている。最近は 特に医療方法の高度化、各種薬剤の開発に伴い、院内の 完全消毒及び各種医療器具類の完全滅菌が不可欠の条件 になってきている。特に各種耐性菌の出現、また各種ウ イルスによる感染は患者の重篤な症状を来し、その治療 が極めて困難な事態も少なくない。そのため院内におけ る殺菌消毒の操作及び殺菌消毒剤の選定は極めて重要な

[0003] 殺菌消毒剤グルタルアルデヒドは、各種グ 問題である。 ラム陽性・陰性菌、結核菌、真菌はもちろん、他の化学 的消毒剤では殺菌が困難であった細菌芽胞にも強い殺菌 力を示し、さらに各種ウイルスをはじめ院内感染の原因 となるあらゆる病原性微生物の消毒に病院、歯科医院で

汎用されている。 【0004】このグルタルアルデヒドの使用後、廃液が 排水され、医療施設付設の曝気槽内で大量に活性汚泥法 で処理される際、排水処理微生物を殺菌、また不活化す るなど活性汚泥の処理能力に悪影響を与えることが従来 の同題であった。従来、このグルタルアルデヒド使用後 40 廃液を排水する場合、医療機関が浄化槽に対して高い意 識をもっているところは、一般に希釈して流すのが普通

[0005] 殺菌消毒関連の文献には、例えば「デンタ である。 ルダイアモンド (Dental Diamond) 」No. 227 (' 92. Oct.) 増刊号 "消毒の最前線" (デンタルダ イアモンド社) p. 179に、「グルタルアルデヒド剤* $OHC - (CH_2)_3 - CHO + RNH_2 \rightarrow OHC - (CH_2)_3 - CH = NR$

* をはじめとする濃厚な滅菌、消毒剤を直接排出する場合 は、十分に希釈した後に廃棄すべきである。」と記載さ れている。また、"歯科医院のための院内感染防止マニ ュアル"池田、篠崎編(' 93.) 医学情報社p. 25 によれば、グルタルアルデヒド製剤実用液の廃棄方法と して「使用済みのグルタラール(グルタルアルデヒド) 製剤の廃棄は、2%グルタラール製剤1リットルに対し て、水200リットルで希釈して廃棄します(希釈

【0006】ほかに、2%グルタラール製剤1リットル 法)。 に対して、酸性亜硫酸ナトリウム45gで中和して廃棄 10 する方法があります(中和法)。*廃棄は、他の殺菌消 毒剤と同様に、院内用水で希釈されるか生活廃水と混在 して不活化されるので、特に問題はないと考えられてい ます。」という記載がある。

[0007]何れも水で大量に希釈して排水すれば特に 問題はないという考えであって、これがほぼ医療施設全 体の指針となって現在に至っているのが実情ということ ができる。

20 [0008] 【発明が解決しようとする課題】この殺菌消毒剤グルタ ルアルデヒドが医療機関で殺菌消毒に汎用された後、医 療廃棄物として化学的に無処理のまま大量に排水されて 活性汚泥法で処理されることは、重要な排水処理微生物 を殺滅し、また不活化するなど、活性汚泥の処理能力に 重大な影響を与えることが従来の廃棄方法の大きな同題

[0009] 本発明が解決すべき課題は、排水する前 点である。 に、グルタルアルデヒド使用後の医療廃棄物における残 存グルタルアルデヒドの不活性化を行うことにある。

[0010]

【課題を解決するための手段】本発明者は上記事情に鑑 み鋭意検討を重ねた結果、医療施設内で使用済みの殺菌 消毒剤であるグルタルアルデヒド製剤を廃棄する際に、 アミノ基を有する化合物であるアミノ酸及び/又はアミ ノ酸のアルカリ金属塩を添加するとグルタルアルデヒド の有する殺菌力を不活化させ得る事実を応用して、本発 明をなすに至った。

【0011】即ち、グルタルアルデヒドとアミノ基をも つアミノ酸又はアミノ酸のアルカリ金属塩を反応させる と、下記一般式に示されるような反応が行われる。これ を応用してグルタルアルデヒドの有する殺菌力を不活化 させ、排水中に廃棄した際、医療施設付設の排水処理施 設内の排水処理微生物への悪影響を軽減することが可能 である。

[0012]

(化1)

グルタルアルテヒド アミノ酸

3

【0013】以下、本発明につきさらに詳細に説明する と、本発明のグルタルアルデヒド廃液処理剤としてはも っとも簡単なアミノ酸であるグリシンを選択する。

【0014】グルタルアルデヒドとグリシンの反応は下* $OHC-(CH_2)_3-CHO + NH_2-CH_3-COOH \rightarrow OHC-(CH_2)_3-CH=N-CH_3-COOH$

グリシン グルタルアルデヒド

*記一般式に示すとおりである。 [0015] 【化2】

【0.016】グリシンのグルタルアルデヒド使用後廃液 への添加量は、含有するグルタルアルデヒド1モルに対 して 2 倍モルが好ましく、さらに 2 倍モル以上添加すれ 10 ば最適である。

【0017】医療施設内で調製液を廃液処理する場合、 グルタルアルデヒドの定量は困難であり、最初の調製液 のグルタルアルデヒド含有濃度に対する 2倍モルのアミ ノ酸を投入する方法が実際的である。たとえば2%グル タルアルデヒド含有調製液1リットルに対してグリシン 30gを廃液中に投入することで目的が達せられる。 【0018】尚、過剰のアミノ酸は活性汚泥微生物の栄 養源となり、微生物を活性化するものの害にはならな

【0019】本目的に適用可能な処理剤としては非限定 的に以下のアミノ酸化合物が挙げられる。

【0020】(1)モノアミノモノカルボン酸であるグ リシン、アラニン、バリン、ノルバリン、ロイシン、ノ ルロイシン、イソロイシン、フェニルアラニン、チロシ ン、ジョードチロシン、スリナミン、トレオニン、セリ ン、プロリン、ヒドロキシプロリン、トリプトファン、 チロキシン、メチオニン、シスチン、システイン、αー アミノ酪酸。

【0021】(2)モノアミノジカルボン酸であるアス 30 パラギン酸、グルタミン酸、アスパラギン、グルタミ

【0022】(3)ジアミノモノカルボン酸であるリジ ン、ヒドロキシリジン、アルギニン、ヒスチジン等であ

【0023】尚、上記アミノ酸のアルカリ金属塩も適用 可能である。

【0024】更にこれらのアミノ酸、アミノ酸のアルカ リ金属塩のうち水溶性であり、安価であるほうが好都合 であり、その代表例としてグリシンが最適である。 【0025】本処理剤の使用方法は、次の工程からな

①使用済みのグルタルアルデヒド製剤中のグルタルアル デヒド1モルに対し、アミノ酸2倍モル以上を添加す る。(2%グルタルアルデヒド含有調製液1リットルに 対してグリシン30gを添加する。)

◎ゆっくりと撹拌して処理剤を完全に溶解させる。 ◎廃液が濃褐色に変化したところを目安として排水す

【0026】尚、アミノ酸以外に、同反応を引き起こす※50 グリシンを添加した溶液を活性汚泥と接触させた際の、

※他の化合物として1級アミン化合物が考えられるが、ア ミン化合物は独自の毒性、悪臭があるため廃液処理剤と しては不適である。

【0027】本発明のグルタルアルデヒド廃液処理剤に は排水処理微生物の活性化を促す物質として微生物活性 化助剤を配合しても良い。たとえば、オリゴ配糖体であ るサポニンは微生物の栄養源となり、その増殖を促進す る。また界面活性を有することから、水に難溶な油脂類 などの分解を増幅させることが知られている。

【0028】本発明のグルタルアルデヒド廃液処理剤 は、粉剤、液剤、錠剤等の剤形に調製することができ、 アミノ酸成分に加えて微生物活性化助剤の公知成分を本 発明の効果が損なわれない範囲で配合することができ

[0029]

【実施例】以下、実施例1~3により、本発明の効果を 説明するが、本発明は下記の実施例に限定されるもので はない.

【0030】〔実施例1〕

グリシンの溶解時間の測定:病院、歯科医院内でグルタ ルアルデヒド水溶液をグリシンで処理する際にかかる時 間を検討した。グルタルアルデヒド2%水溶液1リット ルに各種アミノ酸、アミノ酸のアルカリ金属塩を2倍モ ルとなるように添加し、完全に溶解するまでに要する時 間と薬液が濃褐色になるまでの時間を測定した。その結 果、各種アミノ酸、アミノ酸のアルカリ金属塩を2倍モ ル量添加した場合の溶解時間は平均で約60秒、濃褐色 になるまでの時間は平均で約8分であった。尚、溶解さ せる際には撹拌棒等で薬液をゆっくりと撹拌する必要が ある.

【0031】次いでガスクロマトグラフを用いて処理後 の薬液を下記条件により定量した。その結果、グルタル アルデヒドはまったく検出されなかった。

【0032】ガスクロマトグラフ定量条件

検出器:水素イオン化検出器

カラム:内径3mm、長さ2mmのガラス管にポリエチ レングリコールポリマーを149~177μmの酸処理 及びジメチルクロルシラン処理したガスクロマトグラフ 用ケイソウ土に10%の割合で被覆したものを充填す 3.

カラム温度:150℃付近の一定温度

【0033】 〔実施例2〕 グルタルアルデヒド水溶液に

活性汚泥への影響を評価した。

【0034】実験1

30℃の恒温水槽内に設置した、活性汚泥の入った曝気 相にグルタルアルデヒドが6モル/m3、3モル/ m³、1、5モル/m³、0.75モル/m³となるよ うに添加混合した。この溶液にブドウ糖を1.5g/リ ットルとなるように添加した際のTOC(全有機炭素 量) 変化を測定した。結果を図1に示す。

【0035】また、t=20分における各濃度のグルタ ルアルデヒド添加した際のTOCの変化速度と、グリシ 10 ン及び酸性亜硫酸ナトリウムをグルタルアルデヒドに対 して2倍モルとなるように添加した際のTOCの変化速 度を求め、グルタルアルデヒドを含まない時の速度で規 格した値をRとして図2に示す。

【0036】図1に示されるようにグルタルアルテヒド 0.75モル/m³以上の添加では活性汚泥中のTOC はグルタルアルデヒド無添加と比較してかなり高い値を 示し、さらに3モル/m³以上添加すると120分後で もTOCは減少しなかった。よってグルタルアルデヒド **廃液を不活化せずに排水処理した場合、活性汚泥中の排 20** 水処理微生物に悪影響を及ぼすと考えられる。

【0037】図2に示されるように未処理のグルタルア ルデヒドの場合、1.5モル/m³の濃度で、ブドウ糖 の分解速度は半減しているが、グリシン、酸性亜硫酸ナ トリウムで処理すると分解処理速度に及ぼす影響は小さ くなった。なお、酸性亜硫酸ナトリウムを添加した場合 よりグリシンを添加した場合の方が影響が小さかったこ とから、グルタルアルデヒド廃液処理剤としてはグリシ ンが適当と考えられる。

【0038】実験2

活性汚泥をホモジナイザーで均質化し、細菌を分散させ たのち沪遏した。沪過液1ミリリットルをグルタルアル デヒド6モル/m³ 水溶液100ミリリットルに入れ た。また同様の水溶液に含有するグルタルアルデヒドに 対して等倍モル、2倍モルとなるグリシンを添加し、活 性汚泥の沪過液1ミリリットルを添加した。添加後、各 時間接触させた。これらの被検液のうち1ミリリットル を感受性測定用の寒天培地で培養し、48時間後に細菌 数を測定した。

【0039】尚、コントロールとして食塩水のみに活性 40 汚泥の沪過液を添加した被検液も同様に培養し、細菌数 を測定した。結果を図3に示す。

【0040】図3に示されるようにグリシン無添加のグ ルタルアルデヒド水溶液中では、細菌数は2分後に10 Oce 11/ミリリットル以下に減少しているのに対し て、グリシンを2倍モル添加した水溶液中では120分 間接触した場合に1/2減少したが、グリシンを等モル 添加した場合より細菌数の減少率はかなり低かった。

6

【0041】以上の結果から殺菌消毒剤グルタルアルデ ヒドの使用後廃液にグリシンをグルタルアルデヒドの不 活化のための廃液処理剤として含有するグルタルアルデ ヒドに対して 2倍モルとなるように添加すると、排水処 理した際に医療施設付設の曝気槽内の排水処理微生物へ の悪影響を軽減できることが示唆された。

【0042】〔実施例3〕グルタルアルデヒド2%水溶 液1リットルに、含有するグルタルアルデヒドに対して 2倍モルとなるグリシン、アラニン、アルギニン、プロ リン、グルタミン酸ナトリウムからなる処理剤及び、2 倍モルとなるグリシン (30g) に更に微生物活性化助 剤としてサポニン製剤を5、10,20g配合した処理 剤を添加し、完全に溶解させたのち10分間静置した。 【0043】尚、グリシンに添加した微生物活性化助剤 は天然キラヤサポニン製剤を使用した。次いで各処理落 液10ミリリットルを下水処理場より採取した活性汚泥 100ミリリットルに添加し、30、60、90、12 0分後に1ミリリットルを一般細菌培養用の寒天培地、 プレイン・ハート・イン・フュージョン (Brain Heart In Fusion)で培養し24時間後に細菌の生育状況を観 察した。また処理液中の原生動物の様子を顕微鏡下で観 察した。

【0044】尚、排水処理剤無添加のグルタルアルデヒ 30 ド2%水溶液についても同様の試験を行なった。結果を 表1に示す。評価に際しては活性汚泥原液1ミリリット ルを培養(コントロール)して評価基準とした。原生動 物の様子も同様の基準を採用した。

【0045】評価基準は以下の通りである。

- : 多い

±:コントロールと同等

+:少ない

++:かなり少ない

+++:全滅

[0046]

【表1】

7					8	
廃液処理剤	対象	時間(分)				
		3 0	6 0	90	120	
グリシン	細菌	±	±	±	±	
	原生動物	±	±	±	±	
アラニン	細菌	±	±	±	<u> </u>	
	原生動物	±	±	±	±	
アルギニン	細菌	±	±	±	±	
	原生動物	±	±	±	±	
プロリン	細菌	±	±	±	±	
	原生動物	±	±	±	±	
グルタミン酸 ナトリウム	細菌	±	±	±	±	
	原生動物	±	±	±	±	
グリシン	細菌	-	1	±	±	
ナ サポニン製剤(20g)	原生動物	±	±	±	±	
グリシン	細菌	- '	_	±	±	
+ サポニン製剤(10g)	原生動物	±	±	±	±	
グリシン	細菌	-	· ±	±	±	
+ サポニン製剤 (5g)	原生動物	±	±	±	±	
無添加	細菌	.+	+	++	+++	
	原生動物	+	++	+++	+++	

【0047】表1の結果より、グルタルアルデヒド2% 水溶液にグルタルアルデヒド廃液処理剤としてアミノ 酸、アミノ酸のアルカリ金属塩を2倍モルとなるように 添加処理するとグルタルアルデヒドの有する殺菌力が不 30 活化されることが認められた。更に微生物活性化助剤の 天然キラヤサポニン製剤を添加すると、より効果的であ ることがわかった。

[0048]

【発明の効果】本発明のグルタルアルデヒド廃液処理剤 であるアミノ酸及び/又はアミノ酸のアルカリ金属塩は グルタルアルデヒド製剤の水溶液に溶解し易く、無害、 無臭であり、即時にグルタルアルデヒドを不活化し、排 水処理微生物(活性汚泥)の活性を損なうことが防止で*

*きる.

【0049】また、反応が進むに従つて褐色に呈色する ことから処理の確認が容易である。従って、本発明のグ ルタルアルデヒド廃液処理剤は医療施設内でのグルタル アルデヒド製剤の処理に好適である。

【図面の簡単な説明】

【図1】 グルタルアルデヒド含有活性汚泥によるブド ウ糖の分解の状況を示すグラフである。

【図2】 ブドウ糖の分解速度に及ぼすグルタルアルデ ヒド及び中和処理グルタルアルデヒドの阻害効果を示す グラフである.

【図3】 食塩水及びグルタルアルデヒド水溶液中の活 性汚泥生菌数を示すグラフである。

, Ļ 100 120 20 t (min)

Page 6 (EWarn, 09/28/2000, EAST Version: 1.01.0015)