# Теорія Ймовірності

МП-31 Захаров Дмитро

Викладач: Півень О.Л.

Весняний семестр 2024 Контрольна робота 1

# § Bapiaнт 5 §

### Задача 1: Номер 1

**Умова.** У кімнаті 10 осіб, кожна з яких має номер від 1 до 10. Навмання вибираються 3 особи. Знайти ймовірність, що людина з більшим номером має номер 6.

#### Розв'язання.

Введемо ймовірнісний простір. Нехай елементарна подія — це трійка  $(n_1, n_2, n_3)$ , де  $n_1, n_2, n_3$  попарно різні та  $n_1, n_2, n_3 \in \{1, \dots, 10\}$ . Відповідна універсальна множина  $\Omega$  має вигляд:

$$\Omega = \{ (n_1, n_2, n_3) \in \{1, \dots, 10\}^3 : n_1 \neq n_2 \land n_2 \neq n_3 \land n_1 \neq n_3 \}$$
(1.1)

Нехай A — шукана подія, тобто

$$A = \{(n_1, n_2, n_3) \in \Omega : \max\{n_1, n_2, n_3\} = 6\}.$$
(1.2)

Скористаємось *класичним визначенням ймовірності*, тобто ймовірність події A знайдемо як:

$$\Pr[A] \triangleq \frac{|A|}{|\Omega|} \tag{1.3}$$

Отже, залишилось порахувати кількість елементів множин  $A, \Omega$ . Почнемо з  $\Omega$ . Уявімо 3 клітинки, на які ми ставимо числа від 1 до 10. На першу клітинку можемо поставити одне з 10 значень, на друге вже 9 (оскільки перше вже зайнято), а далі вже 8. Тому  $|\Omega| = 10 \cdot 9 \cdot 8 = 720$ .

Тепер подивимось на A. Нехай перша клітинка  $(n_1)$  зайнята числом 6, тобто  $n_1=6$ . На позиції  $n_2, n_3$  потрібно знайти кількість способів поставити числа  $\mathbf{дo}$  6, оскільки інакше  $\max\{n_1,n_2,n_3\}>6$ . Оскільки залишається 5 чисел від 1 до 5, то в якості  $n_2$  можемо поставити 5 чисел, а на третю клітинку  $n_3$  лише 4 числа. Тобто кількість способів дорівнює  $5\times 4=20$ . Але! Ми врахували лише випадок  $n_1=6$ . Аналогічно, якщо поставити  $n_2=6$  або  $n_3=6$ , то кількість способів так само 20 (при цьому елементи між випадками

 $n_i = 6$  не будуть повторюватись). Отже загальна кількість елементів  $|A| = 3 \times 20 = 60$ . Отже, шукана ймовірність:

$$\Pr[A] = \frac{60}{720} = \boxed{\frac{1}{12}} \tag{1.4}$$

Відповідь.  $\frac{1}{12}$ .

Коментар. При розв'язанні ми вважали, що трійки упорядковані, тобто наприклад  $(n_1,n_2,n_3)$  та  $(n_2,n_1,n_3)$  є різними варіантами. Якщо враховувати, що ці варіанти однакові, то  $|\Omega|=C_{10}^3=120$ , а  $|A|=C_5^2=10$ , звідки отримуємо ту саму ймовірність  $\Pr[A]=\frac{1}{12}$ . Отже, в цій задачі не важлива різниця між тим, чи вважати трійки упорядкованими чи ні.

# Задача 2: Номер 2

**Умова.** Три студенти складають іспит. Імовірність того, що перший студент складе іспит, дорівнює 0.95, другий – 0.9, третій – 0.85. Визначити ймовірність того, що тільки два студенти складуть іспит.

**Розв'язання.** Нехай подія  $A_i, i \in \{1, 2, 3\}$  полягає в тому, що i студент склав іспит. Логічно вважати ці події незалежними, причому за умовою

$$Pr[A_1] = 0.95, \ Pr[A_2] = 0.90, \ Pr[A_3] = 0.85.$$
 (2.1)

Запишемо подію E — тільки два студенти складають іспит. На мові множин, таку подію можна записати наступним чином:

$$E = (\overline{A}_1 \cap A_2 \cap A_3) \cup (A_1 \cap \overline{A}_2 \cap A_3) \cup (A_1 \cap A_2 \cap \overline{A}_3), \tag{2.2}$$

тобто або скали тільки студенти 2 та 3 (відповідно, при цьому студент 1 не склав), або склали тільки студенти 1 і 3, або тільки 1 та 2. Наша задача тепер – знайти  $\Pr[E]$ , що і буде відповіддю на поставлене питання.

По-перше помітимо, що події  $\overline{A}_1 \cap A_2 \cap A_3$ ,  $A_1 \cap \overline{A}_2 \cap A_3$  та  $A_1 \cap A_2 \cap \overline{A}_3$  є несумісними (доведення у **додатку 1**). Тому, можна записати (формально, користуючись адитивністю міри):

$$\Pr[E] = \Pr[\overline{A}_1 \cap A_2 \cap A_3] + \Pr[A_1 \cap \overline{A}_2 \cap A_3] + \Pr[A_1 \cap A_2 \cap \overline{A}_3]$$
 (2.3)

Далі помічаємо, що події  $\overline{A}_1, A_2, A_3$  є незалежними (аналогічно для випадків, де ми ставимо доповнення до іншої однієї події, дивись **додаток 2**). В такому разі, ми можемо записати:

$$\Pr[\overline{A}_1 \cap A_2 \cap A_3] = \Pr[\overline{A}_1] \cdot \Pr[A_2] \cdot \Pr[A_3]$$
 (2.4)

Нарешті помічаємо, що  $\Pr[\overline{A}_1] = 1 - \Pr[A_1]$ , тому остаточно:

$$\Pr[\overline{A}_1 \cap A_2 \cap A_3] = (1 - \Pr[A_1]) \cdot \Pr[A_2] \cdot \Pr[A_3]. \tag{2.5}$$

Аналогічна формула, якщо доповнювати іншу подію. Отже, залишається підставити числа:

$$\Pr[\overline{A}_1 \cap A_2 \cap A_3] = (1 - 0.95) \cdot 0.9 \cdot 0.85 = 0.03825 \tag{2.6}$$

$$\Pr[A_1 \cap \overline{A}_2 \cap A_3] = 0.95 \cdot (1 - 0.9) \cdot 0.85 = 0.08075 \tag{2.7}$$

$$\Pr[A_1 \cap A_2 \cap \overline{A}_3] = 0.95 \cdot 0.9 \cdot (1 - 0.85) = 0.12825 \tag{2.8}$$

Отже, остаточно отримуємо:

$$\Pr[E] = 0.03825 + 0.08075 + 0.12825 = \boxed{0.24725}.$$
 (2.9)

Відповідь. Ймовірність шуканої події дорівнює 0.24725.

 $\mathcal{A}o\partial amo\kappa$  1. Події  $\overline{A}_1 \cap A_2 \cap A_3$  та  $A_1 \cap \overline{A}_2 \cap A_3$  є несумісними, бо:

$$(\overline{A}_1 \cap A_2 \cap A_3) \cap (A_1 \cap \overline{A}_2 \cap A_3)$$

$$= (\overline{A}_1 \cap A_1) \cap (A_2 \cap \overline{A}_2) \cap (A_3 \cap A_3)$$

$$= \emptyset \cap \emptyset \cap A_3 = \emptyset \quad \Box$$
(2.10)

Аналогічно можна розглянути перетин будь-яких інших 2 подій або перетин усіх трьох.

 $\mathcal{A}odamo\kappa$  2. Під час розв'язку ми користувались тим фактом, що якщо  $A_1$  та  $A_2$  є незалежними, то і  $\overline{A}_1$  та  $A_2$  є незалежними. Дійсно,

$$\Pr[\overline{A}_1 \cap A_2] = \Pr[A_2 \cap (\Omega \setminus A_1)] = \Pr[(A_2 \cap \Omega) \setminus (A_1 \cap A_2)]$$

$$= \Pr[A_2 \setminus (A_1 \cap A_2)] = \Pr[A_2] - \Pr[A_2 \cap A_1 \cap A_2]$$

$$= \Pr[A_2] - \Pr[A_1 \cap A_2] = \Pr[A_2] - \Pr[A_1] \Pr[A_2]$$

$$= (1 - \Pr[A_1]) \Pr[A_2] = \Pr[\overline{A}_1] \Pr[A_2] \quad \Box$$
(2.11)

Hac 
ightarrow dodamky 2. Саме тому під час розв'язку ми могли записати  $\Pr[\overline{A}_1 \cap A_2 \cap A_3] = \Pr[\overline{A}_1] \Pr[A_2] \Pr[A_3]$ . Дійсно, якщо позначимо  $B := A_2 \cap A_3$ , то оскільки  $A_1$  та B незалежні, то  $\overline{A}_1$  та B теж незалежні і тому  $\Pr[\overline{A}_1 \cap B] = \Pr[\overline{A}_1] \Pr[B] = \Pr[\overline{A}_1] \Pr[A_2] \Pr[A_3]$ .

# Задача 3: Номер 3

**Умова.** На відрізок [-2,2] навмання кидають пару точок. Нехай x – координати однієї точки, y – іншої. Знайти ймовірність того, що  $(y-2x)(y+2x) \ge 0$ .



**Рис. 1:** Квадрат  $\Omega = [-2, 2] \times [-2, 2]$ , зображений синім кольором та область  $(y-2x)(y+2x) \ge 0$ , помічена червоним кольором.

**Розв'язання.** У якості універсальної множини маємо  $\Omega = [-2,2] \times [-2,2]$ . Лебігова міра цієї множини, очевидно,  $\lambda(\Omega) = 4 \times 4 = 16$ .

Нехай подія E полягає у тому, що  $(Y-2X)(Y+2X) \ge 0$ , де X,Y – величини (насправді випадкові з розподілу  $\mathcal{U}[-2,2]$ ), взяті навмання з відрізку [-2,2]. Тобто, формально:

$$E = \{(x,y) \in [-2,2]^2 : (y-2x)(y+2x) \ge 0\}$$
(3.1)

В такому разі, користуючись геометричним означенням ймовірності, нам потрібно знайти:

$$\Pr[E] = \frac{\lambda(E)}{\lambda(\Omega)}.$$
 (3.2)

Оскільки ми вже знаємо, що  $\lambda(\Omega)=16$ , то залишилось знайти  $\lambda(E)$ . Отже, як саме її знайти? По-перше помітимо, що геометрично, рівняння

$$(y - 2x)(y + 2x) = 0 (3.3)$$

задає на  $\mathbb{R}^2$  пару прямих y=2x та y=-2x. Тому,  $(y-2x)(y+2x)\geq 0$  відповідає деякій частині площини, що розділяється цими прямими: це або область "між" прямими, або "за" прямими. В нашому випадку — це область "між" прямими (для деталей, дивіться Рис. 1).

Також, з малюнку одразу видно, що обидві прямі перетинають верхню і нижню сторони квадрату  $\Omega = [-2,2] \times [-2,2]$  (це звичайно можна було вивести і аналітично), тобто сторони, що лежать на прямих  $y=\pm 2$ . Тоді відповідні x координати мають вигляд  $x=\pm 1$ . Отже, бачимо, що область E — це два рівнобічних трикутника з висотою 2 (сторона квадрата) і базою 2.

Тому площа кожного з трикутників  $\frac{2\times 2}{2}=2$ , а отже сумарна площа  $\lambda(E)=2\times 2=4$ . Тому відповідь:  $\Pr[E]=\frac{4}{16}=\boxed{\frac{1}{4}}$ . Відповідь. Ймовірність дорівнює 1/4.