Introduction to Sigstore: cryptographic signatures made easier

PyCon France 2023

Maya Costantini

Software Engineer, Red Hat

\$whoami

@MayaCostantini

hachyderm.io/@mayacostantini

@mayaCostantini

Software Engineer, Red Hat

Passionate about Python & Open Source contributor

Machine-Learning Python package compromised in supply chain attack

by Cedric Pernet in Developer and on January 4, 2023, 12:00 PM EST

A nightly build version of a machine-learning framework dependency has been compromised. The package ran malicious code on affected Home > News > Security > SolarWinds reports \$3.5 million in expenses from supply-chain attack

SolarWinds reports \$3.5 million in expenses from supply-chain attack

By Sergiu Gatlan

March 2, 2021

12:42 PM

The Week in Security: PyPI hit by 'Lolip0p' info-stealing attack, ransomware targets ship fleet

Software Supply Chain Security | January 19, 2023

Increase in Software Supply Chain attacks (2019-2022)

Source: https://securityboulevard.com

Why are signatures important?

Attackers play on developer expectations of systematic build reproducibility to find vulnerable links in a Software Supply Chain

What code signing can do about it:

- Ensure the authenticity and integrity of software
- Cryptographically bind an artifact to its authors public identities

GPG: an outdated signing standard?

OpenPGP (<u>RFC4880</u>) is considered as the current standard for signing software. But it presents some important disadvantages:

- Complex to master and administrate
- User confusion about key creation and exchange schemes
- Compatibility issues between versions
- Problems of keys storage, distribution and revocation

What software maintainers and consumers need

- Sign different kinds of artifacts at scale
- Ease of use: no need for a professional knowledge of cryptographic schemes or of Public Key Infrastructure standards
- Avoid risks linked to private key compromise
- A strong tie between a project signature and its maintainer identities
- Easier auditing in case of compromise

Project Sigstore

A new standard for signing, verifying and protecting software

"Become to cryptographic signatures what Let's Encrypt is to HTTPS"

Securely sign and verify OCI-compliant artifacts (container images, binaries, files, SBOMs...)

Store the signing materials in a tamper-resistant public Transparency Log for audit and verification

Sigstore landscape and open source adoption

How does it work? Sigstore subprojects

sigstore

cosign

Supports container signing, verification, and storage in an OCI registry

rekor

Provide an immutable tamper resistant ledger of metadata generated within a software projects supply chain

A free-to-use certificate authority for issuing code signing certificates for an OpenID Connect (OIDC) identity, such as an email address.

How does it work? Sigstore's keyless signing flow

How does it work? The Sigstore Trust model

Rekor's Transparency log is backed by a **Merkle Tree**

It is immutable, append-only, and cryptographically verifiable

The log is monitored to detect eventual inconsistencies

How does it work? The Sigstore Trust model

- Fulcio also makes use of an immutable, append-only and cryptography verifiable Certificate Transparency Log to store signing certificates
- Certificates issued by Fulcio are ephemeral: users can verify they were valid during the time when the artifact was signed
- Short-lived certificates avoid revocation and facilitate **auditability** instead

How does it work? The Sigstore Trust model

Sigstore in the Python ecosystem

A Python language client: <u>sigstore-python</u> to integrate Sigstore into your Python project

- Sign files and blobs from the command line using a "keyless" workflow, interactively or with ambient credentials
- Sign artifacts in a GitHub CI workflow with the sigstore-python GitHub Action
- Integrate sigstore-python natively into a Python project using the library public API, stable since v1.0.0

Sigstore adoption by the Python community

Sigstore's Python client is now used to sign releases of CPython

```
$ python -m sigstore verify identity \
   --certificate Python-3.11.0.tgz.crt \
   --signature Python-3.11.0.tgz.sig \
   --cert-identity pablogsal@python.org \
   --cert-oidc-issuer https://accounts.google.com \
   Python-3.11.0.tgz
```


python.org/download/sigstore/

Demo: sign your project with the sigstore-python GitHub Action

Generate checksums file GitHub CI workflow with repository content hashes Sign checksums file with sigstore-python - name: Sign project with sigstore-python Verify the checksums match the uses: sigstore/gh-action-sigstore-python@v1.1.0 repository content id: sigstore-python with: Verify the signature with GitHub-specific inputs: checksums-\${{ steps.date.outputs.date }}.txt claims: - Workflow identity - Triggering event - Repository name Commit and push verification materials to the repository

Join the Sigstore community and get involved

sigstore.dev/community

https://links.sigstore.dev/slack-invite

Sigstore YouTube channel

sigstore https://blog.sigstore.dev/

Thank you! Questions?

Find the slides for this talk: