aula 22 Texturas IC/UFF – 2017

Aura



# Texturas: Texture mapping – permite dar a uma face plana um aparência bem complexa!

Edwin Catmull em 1974, em sua tese de doutorado, foi o primeiro a adicionar detalhes de textura na superfície de modelos 3D por mapeamentos

Fazer um texture map em uma superfície é como aplicar uma folha de papel auto adesivo nela "contact" para lhe dar um aspecto semelhante a textura do desenho deste papel!



#### Edwin Earl "Ed" Catmull (1945, .....)

Americano formado em ciência da computação e atualmente presidente da Pixar e Disney Animation.

Tem feito diversas contribuições a CG.

Em 2001, recebeu um **Oscar** "for significant advancements to the field of motion picture rendering".

Em 2006, foi premiado com a IEEE von Neumann medal pelas suas contribuições na *modelagem em CG, animação e rendering*.



#### Texture mapping pode ser: Paramétrico ou não-Paramétrico:

Pode ser fixo (em tamanho ou orientação ) ou se deformar com o objeto







Não-Paramétrico: parece que se usou FORMA COMO CORTADOR SOBRE UM TECIDO OU MATERIAL

#### Paramétrico

#### se deforma com o objeto

Parece que A TEXTURA É do material DO OBJETO! TEM A MESMA deformação QUE ELE NA CENA OU NA ANIMAÇÃO!



#### Aplicar um texture map é

Associar às coordenadas da face, as coordenadas do mapa de textura 2D: chamadas coordenadas UV.

#### ESPAÇO DE TEXTURA (u,v)

As texturas são definidas em um sistema cartesiano

normalizado [0,1]x[0,1]

E depois usadas para
"encapar" nossos objetos,
De modo que quando
A superfície de mover
ela vá junto!



#### O mapa de textura é uma imagem

Essa imagem deve ser convertida para [0,1]x[0,1] e depois para as coordenadas onde será mapeada

 $(u_{tex}, v_{tex})$  entre os valores: ([0..  $w_{tex}$ ], [0..  $ht_{ex}$ ])



Ray intersection



Mapping to abstract texture coords



Mapping to texture pixel coords

### Reamostrando pelo uso de interpolação bilinear quando necessário



$$T(a,b) = T[i + \Delta x, j + \Delta y]$$

$$= (1 - \Delta x)(1 - \Delta y) T[i, j] + \Delta x (1 - \Delta y) T[i + 1, j]$$

$$+ (1 - \Delta x) \Delta y T[i, j + 1] + \Delta x \Delta y T[i + 1, j + 1]$$

## Os mapas podem fazer mais que apenas mudar os tons

Podem mudar a **geometria da superfície** em que serão mapeados, por exemplo:

Se a superfície poder ser descrita como função de um para metro u: Q(u)

Sua normal, será geralmente também uma função: N(u)

Assim:

#### Displacement mapping (emboss)

Teremos assim uma nova superfície:



#### Bump map

Continuando com essa ideia pode-se pensar em modificar a normal da superfície (depois de fazer os tratamentos de hiddens, apenas na hora de produzir seu shading).

$$\tilde{\mathbf{N}} = \text{normal}[\tilde{\mathbf{Q}}(u)]$$

### **Multitexturing** ocorre quando mais de um mapeamento é aplicado na face ao mesmo tempo.

Alterações na imagem final ao ser adicionada Da fase de rendending, como:

Textura para cor difusa textura do bump map





imagem final





## Mesma textura em fase plana

Como:

displacement map

+

bump map







#### Sobre uma fase cilíndrica

Displacement map



Displacement map

+

bumpmap



#### Sistemas de coordenadas envolvidos:



Forward mapping

Forwards x backwards mapping

#### Mapeamento direto e inverso

Dado um ponto da tela (pixel) queremos saber a que ponto do objeto ele corresponde (inverso),

e

dado um ponto do objeto, queremos saber a que ponto da textura ele corresponde (direto)

#### Mapeamento em 2 partes

1- textura em uma forma intermediaria mais simples (cubo – projeções ortográficas, cilindro de altura h e raio r, esfera de raio r)



## Ideia da projeção em diferentes direções





Campo visual



#### Mapeamento em 2 partes

2- da superfície mais simples para o objeto real, usando as normais (da intermediária para o objeto e do objeto para a intermediária)





#### Problemas nas texturas

De objetos não convexos como o

The Utah Teapot – simbolo do OpenGL

Criado por Martin Newell na University of Utah em 1975. http://www.computerhistory.org/

Tem sido usado como modelo 3D por 40 anos para verificar modelos de iluminação, cor, realismo, etc.

#### **Normais**



#### Superfícies planas:

Equação do plano:

$$ax+by+cz+d=0$$

Normal = (a,b,c)

Os por 3 pontos do plano: p0, p1, p2

$$\mathbf{n} = (p_2 - p_0) \times (p_1 - p_0)$$





#### Environment ou reflection map

Usa para modelar o ambiente em uma superfície, como espelho.

Funciona bem com apenas um objeto na cena, Dando uma ótima idéia de reflexão sem usar nenhum raio ou pode ser unido ao raytracing





## Mapas podem ser combinados em diversos níveis

Para produzir um grau de realismo na cena de maneira

simplificada



#### Shading

Modelo Phong



Texture map



Environment Mapping



#### detalhes

#### **Bump Mapping**



#### Lightmap

Mapeamento que contém a intensidade luminosa das faces. Útil em objetos que permanecem estáticos em games. Geralmente flat, sem incluir a idéia da direção da iluminação. Presentes na maioria dos plugins 3D



#### Procedural texture generation method

As texturas podem ser geradas por programação (procedures) e não apenas por captura de texturas já existentes

Geradores de padrões fractais são muitos úteis para isso!



#### Level of details (mip maps)

Alterado detalhes da textura com a distância ao observador

Também pode ser simulado com filtros

Que diminuem a resolução

"MIP" acronym of the phrase *multum in parvo* =

"much in little"









#### Sombras, refração, reflexão e efeitos específicos



#### Sombras,

podem ser consideradas por diversos métodos, de simples projeções, passando por texturas até os métodos globais (seção 7.3.6 do livro texto tem boa revisão do assunto)!



#### Sombras planas e projetadas:

#### Sombra=umbra e penumbra







#### **Cautics**

São padrões de luz (refletidas e refratadas) que parecem concentrar a luz em alguns pontos. Ocorrem em vidros, água, modelagens de ondas, piscinas e outras situações que concentramos raios luminosos

#### Refração

Quando o feixe de luz penetra em alguns materiais sua trajetória muda de ângulo de acordo com a diferença de densidade dos meios.

Lei da refração ou de Snell:

$$\frac{\operatorname{sen}\theta_{i}}{\operatorname{sen}\theta_{r}} = n_{21}$$

 $n_{21}$  é uma constante, chamada índice de refração

ou IR



#### Exemplo de alguns IR:







| Material                                    | IR     |
|---------------------------------------------|--------|
| Ar (em temperatura e pressão padrão ou STP) | 1,0003 |
| Água                                        | 1,33   |
| Álcool etílico                              | 1,36   |
| Vidro                                       | 1,66   |
| Plástico                                    | 1,51   |
| Vidro Denso                                 | 1,52   |
| Sal                                         | 1,53   |
| Quartzo                                     | 1,46   |
| Cristal                                     | 1,58   |
| Diamante                                    | 2,42   |

#### Transparência

$$I = t I_1 + (1-t) I_2, 0 \le t \le 1$$

onde,  $I_1$  é a superfície visível,  $I_2$  é a superfície imediatamente atrás da superfície visível, e t é o fator de transparência para  $I_1$ . Se  $I_2$  também é transparente, o algoritmo é aplicado recursivamente até encontrar uma superfície opaca ou o fundo da cena.



#### Há muito mais do que isso!

Vimos aqui apenas sobre um realismo fotográfico das imagens, mas há diversas outras formas e esse assunto esta sempre em constante evolução. Assim depois desta leve introdução continue na área! Você já tem a bagagem teórica que precisa para agora descobrir o resto sozinho!

Toon Shading

Stylistic rendering





#### Bibliografia:

- D. F. Rogers, J. A. Adams. Mathematical Elements for Computer Graphics, 2dn Ed., Mc Graw Hill, 1990
- E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus; Rio de Janeiro, 2003
- J.D.Foley, A.van Dam, S.K.Feiner, J.F.Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, 1990.
- A. H. Watt, F. Policarpo <u>The Computer</u> <u>Image</u>, Addison-Wesley Pub Co (Net); 1998
- https://noppa.oulu.fi/noppa/kurssi/521493s/luennot/521493S\_3-d\_graphics\_vi.pdf
- http://graphics.stanford.edu/papers/rad/

#### Bibliografia:

- D. F. Rogers, J. A. Adams. Mathematical Elements for Computer Graphics, 2dn Ed., Mc Graw Hill, 1990
- E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus; Rio de Janeiro, 2003
- J.D.Foley, A.van Dam, S.K.Feiner, J.F.Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, 1990.
- Y. Gardan. Numerical Methods for CAD, MIT press, Cambridge, 1985.
- A. H. Watt, F. Policarpo The Computer Image, Addison-Wesley Pub Co (Net); 1998
- https://noppa.oulu.fi/noppa/kurssi/521493s/luennot/521493S\_3-d\_graphics\_vi.pdf
- http://graphics.stanford.edu/papers/rad/