Topologia Geral

IMECC - Unicamp

Prova P3Junho **28th**, 2024

Name: Jaider Torres RA: 241343

- 1. Vamos provar que \mathbb{R} é paracompacto. Seja \mathcal{U} um cobrimento aberto de \mathbb{R} . Defina $B_0 = \emptyset$ e $B_m = B(0, m)$ o intervalo aberto de radio $m \in \mathbb{N}$ e centro 0. Para cada $m \in \mathbb{N}^{>0}$, $\overline{B}_m = B[0, m]$ é compacto já que é fechado e limitado. Assim, podemos escolher, para cada m, um recobrimento finito de \overline{B}_m . Denotando por \mathcal{C}_m os membros do recobrimento aberto de \overline{B}_m que intersectan \overline{B}_{m-1} , seja $\mathcal{C} = \bigcup_{m \geq 0} C_m$. Note que \mathcal{C} é um refinamento de \mathcal{U} pois cada elementos de \mathcal{C} já é um elemento de \mathcal{U} . Além disso, $\overline{\mathcal{C}}$ é um cobrimento aberto de \mathbb{R} pois para qualquer $x \in \mathbb{R}$ podemos encontrar $m \in \mathbb{N}$, digamos, m tal que $|x| \leq m < |x+1|$, e assim a vizinhança B_m contem x. A mesma vizinhança B_m de x é tal que intersecta só uma quantidade finita de vezes com membros de \mathcal{C} , no máximo os elementos de $\mathcal{C}_1 \cup \cdots \cup \mathcal{C}_m$. Logo, \mathcal{C} é um refinamento localmente finito do cobrimento arbitrário \mathcal{U} de \mathbb{R} . Portanto, \mathbb{R} é uma espaço topológico paracompacto.
- 2. a. Sejam $\alpha, \beta \in \mathcal{C}^0([0,1], X)$ laços basados em $x_0 \in X$, i.e., $\alpha(i) = \beta(i)$ para i = 0, 1. uma homotopia entre α e β é uma aplicação contínua $H : [0,1] \times [0,1] \to X$ tal que $H(t,0) = \alpha(t)$, $H(t,1) = \beta(t)$ e $H(0,s) = H(1,s) = x_0$ (o caminho constante).
 - b. Sejam α , $\beta \in \mathcal{C}^0(\mathtt{I}, \mathtt{X})$ dois laços basados em $\mathtt{x}_0 \in \mathtt{X}$ equivalentes modulo homotopia e $\mathtt{f} : \mathtt{X} \to \mathtt{Y}$ um homeomorfismo, onde $\mathtt{I} = [\mathtt{0},\mathtt{1}]$. Como α e β são contínuas, $\mathtt{f} \circ \alpha$, $\mathtt{f} \circ \beta \in \mathcal{C}^0(\mathtt{I}, \mathtt{Y})$ são dois laços basados em $\mathtt{y} = \mathtt{f}(\mathtt{x}_0) \in \mathtt{Y}$. Seja $\mathtt{H} : \mathtt{I} \times \mathtt{I} \to \mathtt{Y}$ definida por $\mathtt{H}(\mathtt{t},\mathtt{s}) = \mathtt{f} \circ \mathtt{H}(\mathtt{s},\mathtt{t})$, onde \mathtt{H} é uma homotopia entre α , $\beta \in \mathcal{C}^0(\mathtt{I},\mathtt{X})$. Como \mathtt{H} é continua e \mathtt{f} é um homeomorfismo, $\mathtt{f} \circ \mathtt{H}$ é continua e satisfaz $\mathtt{H}(\mathtt{t},\mathtt{0}) = \mathtt{f}(\mathtt{H}(\mathtt{t},\mathtt{0})) = \mathtt{f} \circ \alpha(\mathtt{t})$, $\mathtt{H}(\mathtt{t},\mathtt{1}) = \mathtt{f}(\mathtt{H}(\mathtt{t},\mathtt{1})) = \mathtt{f} \circ \beta(\mathtt{t})$ e $\mathtt{H}(\mathtt{i},\mathtt{s}) = \mathtt{f}(\mathtt{H}(\mathtt{i},\mathtt{s})) = \mathtt{y}$, para $\mathtt{i} = \mathtt{0}$, 1. Portanto \mathtt{H} é uma homotopia entre $\mathtt{f} \circ \alpha$ e $\mathtt{f} \circ \beta$, i.e., $\mathtt{f} \circ \alpha$ é homotópico a $\mathtt{f} \circ \beta$.
 - c. Seja $\alpha \in \mathcal{C}^0(\mathtt{I},\mathbb{S}^n)$ um laço não sobrejetor em \mathbb{S}^n basado em $x_0 \in \mathbb{S}^n$ e $\phi: \mathbb{S}^n \setminus \{y\} \to \mathbb{R}^n$ o homeomorfismo projeção estereográfica, onde $y \notin \mathtt{Im} \alpha$. Então $\phi \circ \alpha \in \mathtt{C}^0(\mathtt{I},\mathbb{R}^n)$ é um laço basado em $\phi(x_0) \in \mathbb{R}^n$ e como \mathbb{R}^n é simplesmente conexo para $n \geq 2$, existe uma homotopia $\mathtt{H} \in \mathtt{C}^0(\mathtt{I} \times \mathtt{I},\mathbb{R}^n)$ entre $\phi \circ \alpha$ e o laço constante $\phi(x_0) \in \mathcal{C}^0(\mathtt{I},\mathbb{R}^n)$. Então $\widetilde{\mathtt{H}} = \phi^{-1} \circ \mathtt{H}$ é uma homotopia entre α e o laço $x_0 \in \mathcal{C}^0(\mathtt{I},\mathbb{S}^n)$.

Agora, seja $\alpha \in \mathcal{C}^0(\mathtt{I}, \mathbb{S}^n)$ um laço sobrejetor basado em $\mathtt{x}_0 \in \mathbb{S}^n$. Seja $\mathcal{U} = \{\mathtt{U}_i\}$ o cobrimento aberto de \mathbb{S}^n dado por os meridianos abertos de \mathbb{S}^n , i.e., $\mathtt{U}_{i^+} = \{(\mathtt{x}_0, \cdots, \mathtt{x}_i, \ldots, \mathtt{x}_n) \in \mathbb{S}^n : \mathtt{x}_i > 0\}$ e $\mathtt{U}_{i^-} = \{(\mathtt{x}_0, \cdots, \mathtt{x}_i, \ldots, \mathtt{x}_n) \in \mathbb{S}^n : \mathtt{x}_i < 0\}$, para cada $\mathtt{i} = \mathtt{0}, \ldots, \mathtt{n}$. Como $\alpha \in \mathcal{C}^0(\mathtt{I}, \mathbb{S}^n)$, α induz um cobrimento aberto $\{\alpha^{-1}(\mathtt{U}_i) : \mathtt{U}_i \in \mathcal{U}\}$ sobre I. Como \mathbb{S}^n é um espaço métrico compacto pela métrica induzida pela métrica usual de \mathbb{R}^{n+1} , pelo Lema do numero de Lebesgue existe $\lambda \in \mathbb{R}^+$ correspondente ao cobrimento \mathcal{U} de \mathbb{S}^n tal que para cada $\mathtt{V} \subset \mathbb{S}^n$ com diam $\mathtt{V} = \sup_{\mathtt{x},\mathtt{y} \in \mathtt{V}} \mathtt{d}(\mathtt{x},\mathtt{y}) < \lambda$ satisfaz-se que $\mathtt{V} \subset \mathtt{U}_i$, para algum \mathtt{i} . Vamos escolher qualquer $\mathtt{x},\mathtt{y} \in \mathtt{V}$

Portanto, dado qualquer laço $\alpha \in \mathcal{C}^0(\mathtt{I}, \mathbb{S}^n)$ basado em $x_0 \in \mathbb{S}^n$, temos que α é homotópico a $x_0 \in \mathcal{C}^0(\mathtt{I}, \mathbb{S}^n)$ e logo $\Omega(\mathbb{S}^n, x_0) / \sim = \pi(\mathbb{S}^n) = 0$, onde $= \in \mathtt{Grp}$ é o grupo trivial.

- a. Sejam X um espaço topológico e $\pi: X \to Y$ sobrejetora. Denote τ_Y^{Quot} a topologia quociente e $\tau_Y = \{U \subset Y: \pi^{-1}(U) \in \tau_X\}$. Note que τ_Y é de fato uma topologia em Y pois $Y, \emptyset \in \tau_Y$, se $\{V_i\}_{i \in I} \subset \tau_Y$ é uma coleção arbitraria, então $\cup_{i \in I} \pi^{-1}(V_i) \in \tau_X$ e $\cup_{i \in I} V_i \in \tau_Y$, e se I é finito, então $\cap_{i \in I} \pi^{-1}(V_i) \in \tau_X$ e $\cap_{i \in I} V_i \in \tau_Y$. Pela definição de τ_Y^{Quot} , temos que $\tau_Y \subseteq \tau_Y^{Quot}$. Também, por definição, a fim de que $V \in \tau_Y^{Quot}$, f tem que ser continua com respeito a esta topologia e portanto $\pi^{-1}(V) \in \tau_X$. Assim, $V \in \tau_Y$ e temos a inclusão $\tau_Y^{Quot} \subseteq \tau_Y$.
- b. Suponhamos que $f: X \to Y$ é aberta. Como f é sobrejetora, podemos considerar a topologia quociente $\tau_Y^{\text{Quot}} = \{V \subset Y: f^{-1}(V)\}$. Pela definição de topologia quociente, $\tau_Y \subseteq \tau_Y^{\text{Quot}}$, onde τ_Y é a topologia de Y. Vamos provar que $\tau_Y^{\text{Quot}} \subset \tau_Y$. Seja $V \in \tau_Y^{\text{Quot}}$. Como f é continua com respeito a τ_Y^{Quot} pela definição, $f^{-1}(V) \in \tau_X$. Como f é aberta, $f(f^{-1}(V))$ é aberto com respeito a τ_Y . Logo $f(f^{-1}(V)) = V \in \tau_Y$ e assim $\tau_Y^{\text{Quot}} \subset \tau_Y$. Portanto $\tau_Y^{\text{Quot}} = \tau_Y$ e Y é um espaço quociente de X.
- c. Note que \sim é uma relação de equivalência em $\mathbb R$ pois é simétrica e reflexa, e se $x \sim y$ e $y \sim z$, então $x-y=n_1$ e $y-z=n_2$, i.e., $x-z=n_3$ e $x\sim z$. Considere o homomorfismo sobrejetor de grupos aditivos $f:\mathbb R\to\mathbb S^1$ dado por $f(x)=e^{2\pi ix}$. Note que $\ker f=\{x\in\mathbb R:e^{2\pi ix}=1\}=\mathbb Z$ e assim $\mathbb R/\mathbb Z=\mathbb R/\sim$. Portanto, existe $\overline f:\mathbb R/\sim\stackrel{\sim}{\longrightarrow}\mathbb S^1$ definida por $x+\mathbb Z\mapsto e^{2\pi ix}$. Seja $p:\mathbb R\to\mathbb R/\sim$ a projeção natural e consideremos em $\mathbb R/\sim$ a topologia quociente. Considerando a topologia subespaço em $\mathbb S^1$, temos que f é continua pois é a composição de funções contínuas. Como f = $\overline f\circ p$, então $\overline f$ debe ser continua. Além disso, note que $\mathbb R/\sim=p([0,1])$ e portanto é compacto pois p é contínua. Como $\overline f$ é contínua, $\mathbb R/\sim$ é compacto e $\mathbb S^1$ é Hausdorff, $\overline f$ é um homeomorfismo pois, dado $F\subset X$ fechado (e logo compacto), $(\overline f^{-1})^{-1}(F)=\overline f(F)$ é compacto, i.e., fechado pela propriedade Hausdorff de Y. Portanto, $\mathbb R/\mathbb Z=\mathbb R/\sim\cong\mathbb S^1$.
- d. Note que si $U \subset \mathbb{R}$ é aberto, então

$$p^{-1}(p(U)) = \bigcup_{a \in \mathbb{Z}} (a + U)$$

é a união das traslações por números inteiros de U, que é aberto. Isso implica que p é aberta. Além disso, dado $m < \frac{1}{2}$, tomando $\epsilon = \frac{m}{2}$, temos que $\mathbb{Z} \cap (B_{\epsilon}(n) - \{n\}) = \emptyset$ para cada $n \in \mathbb{Z}$ e assim \mathbb{Z} é discreto em \mathbb{R} . Logo, como p é aberta e \mathbb{Z} é discreto, temos que

$$p^{-1}(p(B_{\varepsilon}(x))) = \bigcup_{a \in \mathbb{Z}} (a + B_{\varepsilon}(x))$$
 (1)

é a união disjunta dos abertos respetivo a translações de $B_{\epsilon}(x)$, para cada $x \in \mathbb{R}$. Assim, para cada $y \in \mathbb{S}^1$, dada uma vizinhança $U_y \in \tau_{\mathbb{S}^1}$ suficientemente pequena, temos que $\mathbf{f}^{-1}(U_y)$ é a união disjunta de abertos (pois $\mathbf{f} = \overline{\mathbf{f}} \circ \mathbf{p}$, onde $\overline{\mathbf{f}}$ é o homeomorfismos do item anterior). Do item anterior temos que $\mathbf{f} = \overline{\mathbf{f}} \circ \mathbf{p}$ é continua e sobrejetora. Resta provar que cada um dos membros $V_y \subset R$ que compõem $\mathbf{f}^{-1}(U_y)$ é homeomorfo com U_y . Mas, \mathbf{f}_{V_y} é um homeomorfismo entre V_y e U_y pois V_y é mapeado injetiva e sobrejetivamente em \mathbb{R}/\sim . Em total, \mathbf{f} é continua, sobrejetora, para cada ponto $y \in \mathbb{S}^1$ existe uma vizinhança tal que sua imagem inversa pela \mathbf{f} é uma união disjunta de abertos e sua restrição a cada um dos abertos é um homeomorfismo com a respetiva vizinhança.

Portanto, R = (R, f) é um espaço de cobertura de S^1 .