### Tarea Método de Newton

#### Angel Caceres Licona

June 3, 2020

- 1 Considerar la función  $f(x) = x^2 4\cos(x), x \in \mathbb{R}$ ...
- 2 Graficar en el intervalo (1,2)



### 3 Código del programa

```
from math import *

def newtonIterationFunction(x):
    return x - ((x**2 - 4*cos(x)) / (2*x+4*sin(x)))

def function(x):
    return x**2 - 4*cos(x)

x = 1
    c = 1
    xold = 0
    fc = 1

for i in range(1000):
```

# 3.1 Usar el método de newton para localizar una aproximacion...

| n | $p_i$         | $E_i$              | $f(p_i)$          |
|---|---------------|--------------------|-------------------|
| 0 | 1.21640595224 | 1                  | -1.16120922347    |
| 1 | 1.20159918212 | 0.2164059522393    | 0.0915686905446   |
| 2 | 1.20153830038 | -0.0148067701169   | 0.000373428376449 |
| 3 | 1.20153829934 | -6.08817408994e-05 | 6.38189479041e-09 |

# 3.2 Aplicar el método de bisección, secante y falsa posicion con la misma tolerancia...

Para biseccion salieron 28 iteraciones. Para secante salieron 8 iteraciones. Para secante salieron 7 iteraciones.

### 4 Considere la funcion $-8e^{1-x} + \frac{7}{x}$

### 4.1 Grafique en el intervalo (0,2)



#### 4.2 Con el programa obtengo los siguientes resultados

|    | n | $p_i$          | $E_{i}$           | $f(p_i)$          |
|----|---|----------------|-------------------|-------------------|
| Г  | 0 | 0.55470744502  | 0.5               | 0.810229834399    |
| Γ  | 1 | 0.567540459004 | 0.05470744502     | 0.131690221821    |
| Γ  | 2 | 0.56813355775  | 0.0128330139839   | 0.00557743516944  |
|    | 3 | 0.568134762962 | 0.000593098746384 | 1.1287832983e-05  |
|    | 4 | 0.568134762967 | 1.20521197233e-06 | 4.64979166281e-11 |
| 11 |   |                |                   |                   |

# 4.3 Compare el resultado con biseccion, secante y punto fijo

Para biseccion obtuve 28 iteraciones Para secante obtuve 7 iteraciones Para falsa posicion obtuve 12 iteraciones

#### 4.4 Ahora la segunda raiz

| n | $p_i$         | $E_i$             | $f(p_i)$           |
|---|---------------|-------------------|--------------------|
| 0 | 1.60935506282 | 1.6               | -0.01549308875229  |
| 1 | 1.60938106752 | 0.00935506281674  | -4.2828011722e-05  |
| 2 | 1.60938106772 | 2.60047028984e-05 | -3.35051986156e-10 |

# 4.5 Compare el resultado con biseccion, secante y punto fijo

Para biseccion obtuve 26 iteraciones Para <br/>secante obtuve 5 iteraciones Para falsa posicion obtuve 6 iteraciones