基礎 徹底 演習 問題プリント

式と証明 複素数と方程式②

[33]

3次方程式 $x^3+(a+2)x^2+ax-2a=0$ ……① がある。ただし、a は実数の定数とする。

- (1) 方程式①はaの値に関係なく実数解 $x = \mathbb{P}$ をもつ。
- (3) 方程式①が異なる 2 つの虚数解をもつとき, $\boxed{2 + \beta^2} < a < \boxed{ }$ である。 また,2 つの虚数解を a, β とすると, $\alpha^2 + \beta^2 = 3$ のとき, $\alpha = \boxed{ サシ }$ である。
- (4) a = サシ のときの方程式①の虚数解 α , β に対して, $\alpha^2 + \beta^2$ と $\alpha^2 \beta^2$ を解にもつ 2 次方程式の1つは x^2 スセ x + ソタ = 0 である。

ア	1	ウ	エ	オ	カ	キ	ク	ケ	コ	サ	シ	ス	セ	ソ	タ

年 組 番 名前

[34]

多項式 $f(x) = x^3 + bx^2 + (a+5)x + a - 7$ (ただし, a, b は実数の定数) があり、3 次方程式 f(x) = 0 は x = 1 を解にもつ。

- (1) $b \in a$ で表すと、b = **アイ** a + **ウ** である。
- (2) f(x) は、 $f(x) = (x <u>エ</u>){x^2 <u>オ</u>(a <u>カ</u>)<math>x a +$ **キ**} と因数分解できる。
- (3) 3次方程式 f(x) = 0 が虚数解をもつとき、a の値の範囲は $\boxed{ 27} < a < \boxed{ }$ である。また、f(x) = 0 の解がすべて正となるとき、a の値の範囲は $\boxed{ }$ サ $\leq a < \boxed{ }$ である。
- (4) 3次方程式 f(x)=0 の 3 つの解の和が 3 となるとき, x=1 以外の解は x= ス \pm t である。

ア	1	ウ	I	オ	カ	+	ク	ケ	コ	サ	シ	ス	セ