

IUT GEII – Outils Mathématiques et Logiciels (OML1)

Fonctions numériques à variable réelle et usuelles du GEII (partie II)

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF) 2021 – 2022

Thèmes

- 1. Dérivée d'une fonction
 - Définition
 - Dérivées usuelles
 - Règles de dérivation
 - Dérivées de quelques fonctions composées
 - Dérivée seconde et dérivée d'ordre n
- 2. Tableau de variation

Dérivée d'une fonction

- · Soit une fonction f(x) monotone sur un intervalle I
- · Sur cet intervalle, on définit entre les points d'abscisses x_0 et $x_1 = x_0 + h$ le taux de variation par le quotient :

$$\frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$

- · Si $h \to 0$, d'où $x_0 + h \to x_0$ et la droite D tend vers la tangente T à la courbe
- \cdot Dans ce cas-là, le taux de variation tend vers le coefficient directeur de la tangente T à la courbe

· On appelle dérivée en un point A, la valeur que prend le taux de variation quand $h \to 0$. On note cette dérivée :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- · On dit qu'une fonction est dérivable en un point donné x_0 si $f'(x_0)$ est finie
- · En utilisant l'expression précédente du taux de variation pour toute valeur de $x_0 \in I$, on détermine la dérivée de toute fonction :

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

· On notera la dérivée de f par rapport à x comme : $f'(x) = \frac{df(x)}{dx}$

Exemples.

1.
$$f(x) = x^2$$
:

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x$$

Exemples. (continuation)

$$2. f(x) = x^n \ \forall n \in \mathbb{N}$$
:

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{x^n + a_1 h x^{n-1} + a_2 h^2 x^{n-2} + \dots + a_{n-1} h^{n-1} x + h^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{h(a_1 x^{n-1} + a_2 h x^{n-2} + \dots + a_{n-1} h^{n-2} x + h^{n-1})}{h}$$

$$= \lim_{h \to 0} a_1 x^{n-1} + a_2 h x^{n-2} + \dots + a_{n-1} h^{n-2} x + h^{n-1}$$

$$= a_1 x^{n-1}$$

· Grâce au triangle du Pascal, on a $a_n = n$, d'où on obtient $f'(x) = nx^{n-1}$

Exemples. (continuation)

$$3. f(x) = \cos(x)$$

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \cos(x)}{h} - \lim_{h \to 0} \frac{\sin(x)\sin(h)}{h}$$

$$= \cos(x)\lim_{h \to 0} \frac{[\cos(h) - 1]}{h} - \sin(x)\lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= -\sin(x)$$

Dérivées usuelles

f(x)	f'(x)	f(x)	f'(x)	f(x)	f'(x)
$x^n \ \forall n \in \mathbb{Z}$	nx^{n-1}	e^x	e^x	arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = -x^{-2}$	sin(x)	cos(x)	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-1/2}$	cos(x)	$-\sin(x)$	arctan(x)	$\frac{1}{1+x^2}$
ln(x)	$\frac{1}{x}$		$1 + \tan^2(x)$		

Dérivées usuelles

f(x)	f'(x)	f(x)	f'(x)	f(x)	f'(x)
$x^n \ \forall n \in \mathbb{Z}$	nx^{n-1}	e^x	e^x	arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = -x^{-2}$	sin(x)	cos(x)	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-1/2}$	cos(x)	$-\sin(x)$	arctan(x)	$\frac{1}{1+x^2}$
ln(x)	$\frac{1}{x}$		$1 + \tan^2(x)$		

Exercice. Calculer la dérivée de $f(x) = \sqrt[n]{x}$ pour $n \in \mathbb{N}$, et appliquer la formule pour le cas n = 3

Piste. On peut récrire la fonction f comme $f(x) = x^{1/3}$, d'où on obtient

$$f'(x) = \frac{df(x)}{dx} = \frac{d}{dx} \left[x^{1/3} \right] = \frac{1}{3} x^{1/3 - 1} = \frac{1}{3} x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}}$$

Règles de dérivation

· Soient deux fonctions f(x) et g(x) et $a \in \mathbb{R}$. Les règles suivantes peuvent être établies :

Opération	Dérivée	
af(x)	af'(x)	
f(x) + g(x)	f'(x) + g'(x)	
$f(x) \cdot g(x)$	f'(x)g(x) + f(x)g'(x)	
$\underline{f(x)}$	$\underline{f'(x)g(x)-f(x)g'(x)}$	
g(x)	$g^2(x)$	
f(g(x))	f'(g(x))g'(x)	

Exercice. calculer la dérivée de $h(x) = 5x \sin(x)$

Règles de dérivation

· Soient deux fonctions f(x) et g(x) et $a \in \mathbb{R}$. Les règles suivantes peuvent être établies :

Opération	Dérivée	
af(x)	af'(x)	
f(x) + g(x)	f'(x) + g'(x)	
$f(x) \cdot g(x)$	f'(x)g(x) + f(x)g'(x)	
$\underline{f(x)}$	$\underline{f'(x)g(x)-f(x)g'(x)}$	
g(x)	$g^2(x)$	
f(g(x))	f'(g(x))g'(x)	

Exercice. calculer la dérivée de $h(x) = 5x \sin(x)$

Solution.

- · Si on dénote f(x) = x et $g(x) = \sin(x)$, on obtient f'(x) = 1 et $g'(x) = \cos(x)$
- · D'où la dérivée de h(x) = 5f(x)g(x) est donnée par :

$$h'(x) = 5[f'(x)g(x) + f(x)g'(x)] = 5[\sin(x) + x\cos(x)]$$

Dérivées de quelques fonctions composées

· De manière récurrente, la dérivée $f'(x) = \frac{df(x)}{dx}$ de la fonction apparaît dans l'expression finale de la fonction étudiée, par exemple :

$$g(x) = f^{n}(x)$$

$$g'(x) = \frac{dg(x)}{dx} = \frac{d}{dx}[f^{n}(x)] = nf^{n-1}(x)\frac{df(x)}{dx} = nf^{n-1}(x)f'(x)$$

Dérivées de quelques fonctions composées

Fonction $g(x)$ Dérivée de la fonction $g'(x)$ $f''(x) \qquad nf^{n-1}(x)f'(x)$ $\sqrt{f(x)} \qquad \frac{1}{2f(x)}f'(x)$ $\frac{1}{f(x)} \qquad -\frac{1}{f^2(x)}f'(x)$ $\ln f(x) \qquad \frac{1}{f(x)}f'(x)$ $e^{f(x)} \qquad e^{f(x)}f'(x)$ $\sin(f(x)) \qquad \cos(f(x))f'(x)$			
$ \frac{f(x)}{f(x)} - \frac{f^2(x)}{f'(x)} $ $ \ln f(x) \qquad \qquad \frac{1}{f(x)}f'(x) $ $ e^{f(x)} \qquad \qquad e^{f(x)}f'(x) $	Fonction $g(x)$	Dérivée de la fonction $g'(x)$	
$ \frac{f(x)}{f(x)} - \frac{f^2(x)}{f'(x)} $ $ \ln f(x) \qquad \qquad \frac{1}{f(x)}f'(x) $ $ e^{f(x)} \qquad \qquad e^{f(x)}f'(x) $	$f^n(x)$	$nf^{n-1}(x)f'(x)$	
$ \frac{f(x)}{f(x)} - \frac{f^2(x)}{f'(x)} $ $ \ln f(x) \qquad \qquad \frac{1}{f(x)}f'(x) $ $ e^{f(x)} \qquad \qquad e^{f(x)}f'(x) $	$\sqrt{f(x)}$	$\frac{1}{2f(x)}f'(x)$	
$f(x) \qquad f^{2}(x) \qquad f'(x)$ $\ln f(x) \qquad \frac{1}{f(x)} f'(x)$ $e^{f(x)} \qquad e^{f(x)} f'(x)$ $\sin(f(x)) \qquad \cos(f(x)) f'(x)$	1	$-\frac{1}{x}f'(x)$	
$ \begin{array}{ccc} \ln f(x) & & & & \\ e^{f(x)} & & & & \\ e^{f(x)}f'(x) & & \\ \sin(f(x)) & & & \cos(f(x))f'(x) \end{array} $, ,	$f^2(x)^{j}$	
$e^{f(x)} \qquad e^{f(x)}f'(x)$ $\sin(f(x)) \qquad \cos(f(x))f'(x)$		$\overline{f(x)}f'(x)$	
sin(f(x)) $cos(f(x))f'(x)$	C	$e^{f(x)}f'(x)$	
	sin(f(x))	$\cos(f(x))f'(x)$	

Dérivée seconde

· La dérivée seconde d'une fonction f(x) est donnée par la dérivée de f'(x)

$$f''(x) = \frac{d^2f(x)}{dx^2} = \frac{d}{dx} \left[\frac{df(x)}{dx} \right]$$

- · La dérivée et la dérivée seconde ont d'interprétations précises en physique
- · Soit $f(t)=t^3+t$ une fonction décrivant la position d'un objet à l'instant t donné. Les dérivées $\frac{df(t)}{dt}$ et $\frac{d^2f(t)}{dt^2}$ représenterons la vitesse et l'accélération associées à l'objet au même instant t

$$f'(t) = \frac{df(t)}{dt} = 3t^2 + 1$$
 (fonction vitesse)
$$f''(t) = \frac{d^2f(t)}{dt^2} = \frac{d}{dt} \left[\frac{df(t)}{dt} \right] = 6t$$
 (fonction accélération)

Dérivée d'ordre n

 \cdot Dans un cadre général, la dérivée d'ordre n donnée par :

$$f^{(n)}(x) = \frac{d^n f(x)}{dx^n} = \frac{d}{dx} \left[\cdots \left[\frac{df(x)}{dx} \right] \right]$$

Exercice. Calculer la dérivée d'ordre n = 5 de $f(x) = \sin(x)$.

Dérivée d'ordre n

 \cdot Dans un cadre général, la dérivée d'ordre n donnée par :

$$f^{(n)}(x) = \frac{d^n f(x)}{dx^n} = \frac{d}{dx} \left[\cdots \left[\frac{df(x)}{dx} \right] \right]$$

Exercice. Calculer la dérivée d'ordre n = 5 de $f(x) = \sin(x)$.

Solution.

$$f(x) = \sin(x)$$

$$f'(x) = \frac{df(x)}{dx} = \frac{d}{dx}[\sin(x)] = \cos(x)$$

$$f''(x) = \frac{df'(x)}{dx} = \frac{d}{dx}[\cos(x)] = -\sin(x)$$

$$f'''(x) = \frac{df''(x)}{dx} = \frac{d}{dx}[-\sin(x)] = -\cos(x)$$

$$f^{(iv)}(x) = \frac{df'''(x)}{dx} = \frac{d}{dx}[-\cos(x)] = \sin(x)$$

· Considérons $f(x) = x^3$.

$$f(x) = x^{3}$$

$$f'(x) = 3x^{2}$$

$$f''(x) = 6x$$

$$-1$$

$$-2$$

$$0.5$$

$$1$$

· Que peut-on observer ?

· Considérons $f(x) = x^3$.

- · Que peut-on observer?
- Que peut-on observer ?

 On observe que $f'(x) \ge 0$ pour tout x, et $f''(x) = \begin{cases} positive, & x > 0 \\ négative, & x < 0 \\ 0, & x = 0 \end{cases}$

Quelques remarques.

- La dérivée d'une fonction f'(x) permet d'étudier la *pente* de sa courbe représentative
 - · Si $f'(x) \ge 0 \ \forall x \in I$, la fonction est *croissante* dans l'intervalle I
 - · Si $f'(x) > 0 \ \forall x \in I$, la fonction est *strictement croissante* dans l'intervalle I
 - · Si $f'(x) \le 0 \ \forall x \in I$, la fonction est *décroissante* dans l'intervalle I
 - · Si $f'(x) < 0 \ \forall x \in I$, la fonction est *strictement décroissante* dans l'intervalle I
- La dérivée seconde f''(x) permet d'étudier la *concavité* de sa courbe représentative
 - · Si $f''(x) > 0 \ \forall x \in I$, la fonction a une *concavité positive* (\cup) dans l'intervalle I
 - · Si $f''(x) < 0 \ \forall x \in I$, la fonction a une *concavité négative* (\cap) dans l'intervalle I
 - · Les valeurs pour lesquelles f''(x)=0 sont les abscisses des points d'inflexion de la courbe (changement de concavité $\cup \to \cap$ ou $\cap \to \cup$)

Exemple. Dessiner la fonction

$$f(x) = \frac{3}{x - 2}$$

- · Tout d'abord, on peut étudier le domaine de définition : $D=\mathbb{R}-\{2\}$
- · On peut aussi étudier le signe de la fonction :

· En regardant les limites, on obtient :

$$\lim_{x \to -\infty} \frac{3}{x - 2} = \frac{3}{-\infty} = 0(-), \qquad \lim_{x \to \infty} \frac{3}{x - 2} = \frac{3}{\infty} = 0(+)$$

$$\lim_{x \to 2^{-}} \frac{3}{x - 2} = \frac{3}{0(-)} = -\infty, \qquad \lim_{x \to 2^{+}} \frac{3}{x - 2} = \frac{3}{0(+)} = \infty$$

Exemple (continuation).

· Ensuite, on calcul f'(x):

$$f'(x) = \frac{d}{dx} \left[\frac{3}{x-2} \right] = -\frac{3}{(x-2)^2}$$

· On regardant le signe de f'(x), on observe que f(x) < 0 pour tout x

$$\begin{array}{c|cccc} & x < 2 & x = 2 & x > 2 \\ \hline f(x) & - & \text{fi} & + \\ f'(x) & \searrow & \text{fi} & \searrow \\ \hline \end{array}$$

Exemple (continuation).

· On peut calculer f''(x) si c'est nécessaire :

$$f''(x) = \frac{d}{dx} \left[-\frac{3}{(x-2)^2} \right] = \frac{6}{(x-2)^3}$$

· En regardant le signe de f''(x), on obtient que :

$$f''(x)$$
 est
$$\begin{cases} \text{négative si } x < 2 \\ \text{fi si } x = 2 \\ \text{positive si } x > 2 \end{cases}$$

Remarque. Parce que $f''(x) \neq 0$ pour tout x, alors f(x) n'a pas des points d'inflexion

Exemple (continuation).

 \cdot Finalement, on sait que la fonction f doit satisfaire les conditions suivantes :

	x < 2	x = 2	<i>x</i> > 2
f(x)	_	fi	+
f'(x)	7	fi	\searrow
$f^{\prime\prime}(x)$	\cap	fi	\cup

$$\lim_{x \to -\infty} f(x) = 0(-), \quad \lim_{x \to \infty} f(x) = 0(+)$$
$$\lim_{x \to 2^{-}} f(x) = -\infty, \quad \lim_{x \to 2^{+}} f(x) = \infty$$

· Cette information nous laisse dessiner la fonction *f* :

Exercice. Dessiner la fonction

$$f(x) = \frac{e^x}{x^2 - 3x + 2}$$

Exercice. Dessiner la fonction

$$f(x) = \frac{e^x}{x^2 - 3x + 2}$$

Solution.

· Tout d'abord, on peut étudier le domaine de définition :

$$f(x) = \frac{e^x}{x^2 - 3x + 2} = \frac{e^x}{(x - 2)(x - 1)},$$

d'où on obtient que la fonction n'est pas définie pour x=1 et x=2, alors $D=\mathbb{R}-\{1,2\}$

· On peut aussi étudier le signe de la fonction :

· En regardant les limites, on obtient :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{x^2 - 3x + 2} = \frac{0}{\infty} = 0$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^x}{x^2 - 3x + 2} = \lim_{x \to \infty} \frac{e^x}{x^2} = \infty$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{e^x}{(x - 2)(x - 1)} = \frac{e^1}{0(+)} = \infty$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{e^x}{(x - 2)(x - 1)} = \frac{e^1}{0(-)} = -\infty$$

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} \frac{e^x}{(x - 2)(x - 1)} = \frac{e^2}{0(-)} = -\infty$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{e^x}{(x - 2)(x - 1)} = \frac{e^2}{0(+)} = \infty$$

Solution (continuation).

· Ensuite, on calcul f'(x)

$$f'(x) = \frac{d}{dx} \left[\frac{e^x}{x^2 - 3x + 2} \right] = \frac{e^x (x^2 - 3x + 2) - e^x (2x - 3)}{(x^2 - 3x + 2)^2}$$
$$= \frac{e^x (x^2 - 5x + 5)}{(x^2 - 3x + 2)^2}$$
$$= \frac{e^x \left(x - \frac{5 + \sqrt{5}}{2} \right) \left(x - \frac{5 - \sqrt{5}}{2} \right)}{(x - 1)^2 (x - 2)^2}$$

· En regardant le signe de la dérivée, on obtient :

Solution (continuation).

 \cdot Finalement, on sait que la fonction f doit satisfaire les conditions suivantes :

$$\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to 1^{-}} f(x) = \infty, \quad \lim_{x \to 1^{+}} f(x) = -\infty, \quad \lim_{x \to 2^{-}} f(x) = -\infty, \quad \lim_{x \to 2^{+}} f(x) = \infty$$

 \cdot Cette information nous laisse dessiner la fonction f (Exercice)

