

Modular Robots for Rapid Development and Deployment of Custom Automation

Robots enable a transition from hard to flexible automation

Hard automation (LEGO Factory – Billund, Denmark)

Soft automation (Pepperidge Farm Factory – Denver, Colorado)

Flexible automation (Tesla Factory – Fremont, California)

Robots are increasingly deployed in industrial settings...

Worldwide estimated operational stock of industrial robots

Source: IFR World Robotics 2015

... but complexity leads to standard configurations

"Industrial Robot" Google image search results

Current robots are highly capable, but have drawbacks

Low Multi-Task Versatility

Low Ease-of-use

High Price

Source: Bishop & Associates Inc.

Co-Bots widen appeal, but are overkill for many tasks

Rethink Robotics' Baxter

Franka Emika's Franka

Franka manipulator arm performing a pick-and-place task

Currently, custom robots are essentially hard automation

Trade-offs introduced by current starting points for automation options

Robots should capture benefits of all automation types + more

- Easy to use
- High production rate
- Low cost per produced unit

- Relatively fast development
- Flexible w.r.t. variations
- Suitable for batch production

- Fast development
- "Infinite" flexibility
 - Make "anything"

- Slow development
- High initial investment
- Inflexible

- High investment into "general purpose" equipment
- Relatively slow production rate

- High investment
- High cost per produced unit
- Relatively slow production rate

Hard Automation

Soft Automation

Flexible Automation

Modular robotic building blocks help fill this automation gap

Hard Automation:

Custom robots with low number of "targeted degrees-of-freedom"

Soft Automation:

Rapid development/deployment/integration

Flexible Mechanical Automation:

Agile-inspired hardware development

X-Series Industrial Smart Actuator

X-Series actuator

	X5-1	X5-4	X5-9
Dimensions	43 mm x 110 mm x 73 mm, 15 mm hollow bore		
Mass	315 g	335 g	360 g
Actuation	Peak torque: 2.5 Nm Cont. torque: 1.3 Nm Max speed: 95 rpm	Peak torque: 7 Nm Cont. torque: 4 Nm Max speed: 35 rpm	Peak torque: 13 Nm Cont. torque: 9 Nm Max speed: 15 rpm
Power	18-50 V DC Cont. current: 0.8 A @ 24 V Peak Current: 2.4 A @ 24 V		
Communication	1 kHz (100 Mbps Ethernet, dual port: Daisy-chainable)		
Sensing	Angular position (multi-turn absolute, +/- 4 turns) Angular velocity, Output torque 3-Axis accelerometer, 3-Axis gyro Temperature, Voltage, Current		
Angular resolution	0.005 deg		
Backlash	+/- 0.25 deg		
API Support	Matlab (Windows / Linux / OS X), Simulink (under consideration) ROS (Linux) C/C++ (Windows (planned) / Linux / OS X) Java (in development), Python (planned)		

On-demand custom robots in hours, not months

Twenty-four minute manipulator

Modular building blocks increase versatility, decrease cost

New task requires more reach

Bigger robot (\$ >40K) vs. Change link (\$ 40) New task requires more payload

Bigger robot (\$ >40K)
vs.
Gas spring assist (\$ 15)

Automated button press

Arm w/ force sensor (\$ 60K) vs. Targeted DoF (\$ <5K)

Robust building blocks enable focus on high-level integration

Collaborative vision-based bin picking project

Versatility, decentralization enables automation of novel tasks

Autonomous plant stalk inspection

Tensegrity-based manipulation

Legged robots

Modularity enables hands-on robot education

Carnegie Mellon University's 16-384: Robot Kinematics and Dynamics class

Conclusion

- Takeaway 1:
 - Modular robots enable customization and agile robot development
- Takeaway 2:
 - Robust robotic building blocks enable focus on high-level tasks
- Takeaway 3:
 - Modular robots allow targeted automation of diverse tasks

Modular robots decrease cost and increase appeal for automating new industries

