Credit Card Default Prediction

Descriptive Statistics and Machine Learning

Content

What are the best client profiles?
And the worst?

Can we predict credit default?

• Predictive models.

Dataset

- Bank from Taiwan;
- 30,000 clients;
- Payments and bills during 6 months;
- Credit card limits;
- Personal Data (Gender, Marital Status, Age, Education)

Client Risk Profile

- Levels of Education seems not to affect the risk;
- Women are less likely to default than men;
- Customers with higher credit card limits have less probability of default;

Best Client Profile

Gender: Female

Marital Status: Single

Age: 31 – 40

Education: Bachelor degrees or higher

qualification

Worst Client Profile

Gender: Male

Marital Status: Married

Age: 51 - 60

Education: Bachelor degrees

Can we predict credit card default in order to avoid it?

Predictive Models

- Random Forest;
- Decision Tree;
- Logistic Regression;
- Support vector machines;
- KNN;
- Gaussian Process Classification;
- AdaBoostClassifier;
- BaggingClassifier;
- ExtraTreesClassifier;
- GradientBoostingClassifier;
- Neural Network Models;

Accuracy

Random Forest

It is possible to predict 72% of the people who are going to default.

Predictive Models Results

Limitations & Improvements

"We don't have better algorithms, we just have more data" – Peter Norvig (Google)

