Problem: Consider an autonomous tilted mass-spring-damper system with first order actuator dynamics

$$m\dot{x} = -c\dot{x} - kx + mg\sin(\phi) - \tilde{u} + u_d$$

$$\dot{u} = -au + \mu$$

Also,

$$e = x_d - x \tag{1}$$

$$r = \dot{e} + \alpha e \tag{2}$$

$$\tilde{u} = u_d - u \tag{3}$$

and the parametric errors are,

$$\tilde{\theta} = \theta - \hat{\theta} \tag{4}$$

$$\tilde{a} = a - \hat{a} \tag{5}$$

where,

$$\theta = \begin{bmatrix} m \\ c \\ k \end{bmatrix}, \hat{\theta} = \begin{bmatrix} \hat{m} \\ \hat{c} \\ \hat{k} \end{bmatrix}$$

(a) let

$$\zeta = \begin{bmatrix} e \\ r \\ \tilde{u} \\ \tilde{\theta} \\ \tilde{a} \end{bmatrix}$$

and consider the Lyapunov candidate

$$V(\zeta) = \frac{1}{2}e^2 + \frac{1}{2}mr^2 + \frac{1}{2}\tilde{u}^2 + \frac{1}{2}\tilde{\theta}^T\Gamma^{-1}\tilde{\theta} + \frac{1}{2\gamma_a}\tilde{a}^2$$

i. What are the bounds of $V(\zeta)$ using the Rayleigh Ritz theorem.

$$\min\left\{\frac{1}{2}, \frac{1}{2}m, \frac{1}{2}, \frac{1}{2}min(\Gamma^{-1}), \frac{1}{2\gamma_a}\right\}\zeta^2 \leq V(\zeta) \leq \max\left\{\frac{1}{2}, \frac{1}{2}m, \frac{1}{2}, \frac{1}{2}max(\Gamma^{-1}), \frac{1}{2\gamma_a}\right\}\zeta^2 \tag{6}$$

Now, multiplying by (-1) we get,

$$-min\left\{\frac{1}{2}, \frac{1}{2}m, \frac{1}{2}, \frac{1}{2}min(\Gamma^{-1}), \frac{1}{2\gamma_a}\right\}\zeta^2 \ge -V(\zeta) \ge -max\left\{\frac{1}{2}, \frac{1}{2}m, \frac{1}{2}, \frac{1}{2}max(\Gamma^{-1}), \frac{1}{2\gamma_a}\right\}\zeta^2$$

Now, Dividing by $max\bigg\{\frac{1}{2},\frac{1}{2}m,\frac{1}{2},\frac{1}{2}max(\Gamma^{-1}),\frac{1}{2\gamma_a}\bigg\}$ throughout, we get

$$\frac{-1}{\max\left\{\frac{1}{2}, \frac{1}{2}m, \frac{1}{2}, \frac{1}{2}max(\Gamma^{-1}), \frac{1}{2\gamma_a}\right\}} V(\zeta) \ge -\zeta^2$$

ii)

$$\dot{e} = -\dot{r}$$

$$\ddot{e} = -\ddot{x}$$

$$m\ddot{e} = -m\ddot{x}$$

Substituting the value of $m\ddot{x}$

$$\begin{split} m\ddot{e} &= -(-c\dot{x} - kx + mg\sin(\phi) - \tilde{u} + u_d) \\ m\ddot{e} &= c\dot{x} + kx - mg\sin(\phi) + \tilde{u} - u_d \\ \dot{r} &= \ddot{e} + \alpha\dot{e} \\ m\dot{r} &= m\ddot{e} + m\alpha\dot{e} \\ \\ m\dot{r} &= c\dot{x} + kx - mg\sin(\phi) + \tilde{u} - u_d + m\alpha\dot{e} \\ \\ Y\theta &= \begin{bmatrix} (\alpha\dot{e} - g\sin(\phi)) & \dot{x} & x \end{bmatrix} \begin{bmatrix} m \\ c \\ k \end{bmatrix} \end{split}$$

Therefore,

$$m\dot{r} = Y\theta + \tilde{u} - u_d \tag{7}$$

and we know the Lyapunov candidate is,

$$V(\zeta) = \frac{1}{2}e^2 + \frac{1}{2}mr^2 + \frac{1}{2}\tilde{u}^2 + \frac{1}{2}\tilde{\theta}^T\Gamma^{-1}\tilde{\theta} + \frac{1}{2\gamma_a}\tilde{a}^2$$

$$\dot{V}(\zeta) = e\dot{e} + mr\dot{r} + \tilde{u}\dot{\tilde{u}} + \tilde{\theta}^T \Gamma^{-1}\dot{\tilde{\theta}} + \frac{1}{\gamma_a}\tilde{a}\dot{\tilde{a}}$$

$$\dot{V}(\zeta) = e(r - \alpha e) + r(Y\theta + \tilde{u} - u_d) + \tilde{u}(\dot{u_d} - \dot{u}) - \tilde{\theta}^T \Gamma^{-1} \dot{\hat{\theta}} - \frac{1}{\gamma_a} \ddot{a} \dot{\hat{a}}$$

since,

$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$

and

$$\dot{\tilde{a}} = -\dot{\hat{a}}$$

Now, Designing $u_d = e + \beta r + Y \hat{\theta}$, we get

$$\dot{V}(\zeta) = er - \alpha e^2 + r(Y\theta + \tilde{u} - (e + \beta r + Y\hat{\theta})) + \tilde{u}(\dot{u}_d - \dot{u}) - \tilde{\theta}^T \Gamma^{-1} \dot{\hat{\theta}} - \frac{1}{\gamma_a} \tilde{a} \dot{\hat{a}}$$

Simplifying further and cancelling some terms we get,

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + rY\tilde{\theta} + r\tilde{u} + \tilde{u}(\dot{u}_d - \dot{u}) - \tilde{\theta}^T \Gamma^{-1}\dot{\hat{\theta}} - \frac{1}{\gamma_a}\tilde{a}\dot{a}$$

Now, we know

$$u_d = e + \beta r + Y\hat{\theta}$$

Therefore,

$$\dot{u_d} = \dot{e} + \beta \dot{r} + Y \dot{\hat{\theta}} + \dot{Y} \dot{\hat{\theta}}$$

and we know,

$$\dot{u} = -au + \mu$$

Therefore, substituting $\dot{u_d}$ and \dot{u} in $\dot{V}(\zeta)$, we get

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + rY\tilde{\theta} + r\tilde{u} + \tilde{u}((\dot{e} + \beta \dot{r} + Y\dot{\hat{\theta}} + \dot{Y}\hat{\theta}) - (-au + \mu)) - \tilde{\theta}^T \Gamma^{-1}\dot{\hat{\theta}} - \frac{1}{\gamma_a}\tilde{a}\dot{\hat{a}}$$

Now, Designing $\mu = \dot{u_d} + \hat{a}u + r + s\tilde{u}$, we get

$$\mu = \dot{e} + \beta \dot{r} + Y \dot{\hat{\theta}} + \dot{Y} \hat{\theta} + \hat{a}u + r + s\tilde{u}$$

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + rY\tilde{\theta} + r\tilde{u} + \tilde{u}((\dot{e} + \beta \dot{r} + Y\dot{\hat{\theta}} + \dot{Y}\dot{\hat{\theta}}) + au - (\dot{e} + \beta \dot{r} + Y\dot{\hat{\theta}} + \dot{Y}\dot{\hat{\theta}} + \dot{Y}\dot{\hat{\theta}} + \dot{a}u + r + s\tilde{u}) - \tilde{\theta}^T \Gamma^{-1}\dot{\hat{\theta}} - \frac{1}{\gamma_a}\tilde{a}\dot{a}$$

since,

$$\tilde{a} = a - \hat{a}$$

Simplifying further and cancelling some terms we get,

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + rY\tilde{\theta} - s\tilde{u}^2 + \tilde{u}\tilde{a}u - \tilde{\theta}^T \Gamma^{-1}\dot{\hat{\theta}} - \frac{1}{\gamma_a}\tilde{a}\dot{\hat{a}}$$
(8)

Now, Designing $\dot{\hat{\theta}} = \Gamma Y^T r$

Also, from equation (30), we have, $rY\tilde{\theta}$, which can also be written as (since r is a scalar):

$$rY\tilde{\theta} = (rY\tilde{\theta})^T = \tilde{\theta}^T Y^T r$$

Therefore,

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + \tilde{\theta}^T Y^T r - s\tilde{u}^2 + \tilde{u}\tilde{a}u - \tilde{\theta}^T \Gamma^{-1}\dot{\hat{\theta}} - \frac{1}{\gamma_a}\tilde{a}\dot{\hat{a}}$$

After substituting $\dot{\hat{\theta}}$, we get,

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 + \tilde{\theta}^T Y^T r - s\tilde{u}^2 + \tilde{u}\tilde{a}u - \tilde{\theta}^T \Gamma^{-1}(\Gamma Y^T r) - \frac{1}{\gamma_a} \tilde{a}\dot{a}$$

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 - s\tilde{u}^2 + \tilde{u}\tilde{a}u - \frac{1}{\gamma_a}\tilde{a}\dot{\hat{a}}$$

Now, Designing $\dot{\hat{a}} = \gamma_a \tilde{u} u$

Substituting, \hat{a} in \dot{V} , we get

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 - s\tilde{u}^2 + \tilde{u}\tilde{a}u - \frac{1}{\gamma_a}\gamma_a\tilde{u}\tilde{a}u$$

$$\dot{V}(\zeta) = -\alpha e^2 - \beta r^2 - s\tilde{u}^2$$

Therefore, we can say $\dot{V}(\zeta)$ is Negative Semi Definite. Since, $V(\zeta)$ is radially unbounded, we can say that the equilibrium points are globally stable.

Now, let's try Lasalle,

$$\dot{V}=0$$
 implies $e,r,\tilde{u}=0$

$$\dot{\hat{\theta}} = \Gamma Y^T r$$

since
$$r = 0$$
, $\dot{\hat{\theta}} = 0$

$$\dot{\tilde{\theta}} = -\dot{\hat{\theta}}$$
, therefore $\dot{\tilde{\theta}} = 0$

$$\tilde{\theta} = \theta - \hat{\theta}$$

But with these, we cannot imply $\tilde{\theta} = 0$. So, we cannot use Lasalle.

Now, let's try Barbalet's Lemma,

$$\dot{V}(\zeta) \le -\alpha e^2 - \beta r^2 - s\tilde{u}^2$$

$$\int_0^t \dot{V}(\zeta) \le \int_0^t -\alpha e^2 - \beta r^2 - s\tilde{u}^2$$

$$V(\zeta(t)) - V(\zeta(0)) \le -\int_0^t (\alpha e^2 + \beta r^2 + s\tilde{u}^2)$$

Therefore, multiplying by (-1), we get

$$V(\zeta(0)) - V(\zeta(t)) \ge \int_0^t (\alpha e^2 + \beta r^2 + s\tilde{u}^2)$$

Since, system is globally stable. Therefore,

$$V(\zeta(t)), V(\zeta(0)) \in L_{\infty}$$

so,

$$e, r, \tilde{u} \in L_2$$

Now,

$$r = \dot{e} + \alpha e$$

$$\dot{e} = r - \alpha e$$

since $V(\zeta(t))$ is bounded

$$e, r \in L_{\infty}$$

Therefore,

$$\dot{e} \in L_{\infty}$$

so, e is uniformly continuous.

$$\lim_{t \to \infty} e(t) = 0$$

Now,

$$m\dot{r} = Y\theta + \tilde{u} - u_d$$

 θ is bounded $(\theta \in L_{\infty})$ so, $m \in L_{\infty}$

$$Y = [(\alpha \dot{e} - g \sin(\phi)) \ \dot{x} \ x]$$

Since, $e \in L_{\infty}$ and x_d is a constant.

$$x \in L_{\infty}$$

Since, $\dot{e} \in L_{\infty}$

$$\dot{x} \in L_{\infty}$$

Therefore,

$$Y \in L_{\infty}$$

Now,

$$u_d = e + \beta r + Y\hat{\theta}$$

$$\beta \in L_{\infty}$$

$$Y \in L_{\infty}$$

$$r, e = \in L_{\infty}$$

$$\dot{\hat{\theta}} = \Gamma Y^T r$$

Therefore,

$$\dot{\hat{\theta}} \in L_{\infty}$$

Since $\Gamma, Y, r \in L_{\infty}$

so, $u_d \in L_{\infty}$

$$\dot{r} \in L_{\infty}$$

Therefore, r is uniformly continuous.

$$\lim_{t\to\infty} r(t) = 0$$

since, $u = u_d - \tilde{u}$

and

$$u_d \in L_{\infty}, \, \tilde{u} \in L_{\infty}$$

Therefore,

$$u \in L_{\infty}$$

and since $u \in L_{\infty}$,

$$\dot{u} \in L_{\infty}$$

and since \dot{u} and $\dot{u_d} \in L_{\infty}$

$$\dot{\tilde{u}} \in L_{\infty}$$

Therefore, \tilde{u} is uniformly continuous.

$$\lim_{t\to\infty}\tilde{u}(t)=0$$

Therefore, through barablet's lemma, We can say e, r, \tilde{u} is converging to zero as time goes to ∞ .

We can also use, Lasalle - Yoshizawa's theorem to prove convergence.

$$\dot{V}(\zeta) \le -(\alpha e^2 + \beta r^2 + s\tilde{u}^2)$$

We can say,

$$\dot{V}(\zeta) < -(W)$$

where, $W=(\alpha e^2+\beta r^2+s\tilde{u}^2)$ is a continuous function. Then all solutions of W are uniformly globally bounded and W is a semi definite function. As W goes to zero, e,r,\tilde{u} also converge to zero as time goes to ∞ .

P4) b) i) Using the above results, Simulated the dynamics from 100 random values for x_d , x(t=0), $\hat{\theta}(t=0)$, and $\hat{a}(t=0)$ within the domain using the random function in the matlab keeping

$$\dot{x}(t=0) = 0$$

$$u(t=0) = 0$$

Used random values for m, c, k, a, ϕ using the rand function in the matlab for positive random values.

ii) Below are the resulting trajectories of Monte Carlo simulation for $e, r, \tilde{u}, \mu, \tilde{\theta}, \tilde{a}$

The trajectories are as follows $(\alpha, \beta, s = 0.1)$:

$$e \text{ for } t = 50, 100, 500$$

$$r \text{ for } t = 50, 100, 500$$

$$\tilde{u}$$
 for $t = 50, 100, 500$

$$\mu$$
 for $t = 50, 100, 500$

$$\tilde{\theta}$$
 for $t = 50, 100, 500$

$$\tilde{a}$$
 for $t = 50, 100, 500$

iii) The simulation matches our stability results. We showed convergence for e, r, \tilde{u} using barbalet's lemma and we can see the convergence in simulations as well for e, r, \tilde{u} . As it is a regulation problem, $\tilde{\theta}$ is not converging. But, it finds a value which helps us reach our goal. Therefore, we can see that μ, \tilde{a} are converging and we can conclude the equilibrium points are globally stable with $e, r, \tilde{u}, \mu, \tilde{a}$ converging to zero.

