Folgen

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \epsilon > 0 \; \exists n_0 \in \mathbb{N}$ $\forall n \geq n_0 : |a_n - a| < \epsilon$
- Existiert $a \in \mathbb{R}$ Grenzwert $\Rightarrow (a_n)$ konvergent, sonst (a_n) divergent

Satz 2.3 - Rechenregeln für Grenzwerte $\ (a_n)_{n\in\mathbb{N}},\ (b_n)_{n\in\mathbb{N}}$ reelle Folgen, $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$
- $a_n \leq b_n$ für fast alle $n \in \mathbb{N} \to a \leq b$
- Einschließungskriterium $a = \overline{b}$, c reelle Folge und $a_n < c_n < b_n$ für fast alle $n \in \mathbb{N} \Rightarrow (c_n)_{n \in \mathbb{N}}$ konvergiert gegen a

Spezialfall des Einschließungskriteriums:

 $(x_n)_{n\in\mathbb{N}}Folge, x\in R, (y_n)_{n\in\mathbb{N}}$ Nullfolge, sodass $|x_n-x_n|$ $|x| \leq y_n$ für fast alle $n \Rightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert gegen x

Satz 2.4 - Eigenschaften konvergenter Folgen Sei a_n konvergente reelle Folge

- (a_n) beschränkt
- (an) besitzt genau einen Grenzwert

 $(-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Def: 2.5 - Uneigentliche Konvergenz $(a_n)_{a\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty\Leftrightarrow \forall K>0\exists n_0\in\mathbb{N}\forall n\geq n_0$: $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty$ \Leftrightarrow

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz $(b_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n \in \mathbb{N}} (b_n)_{n \in \mathbb{N}} = \infty$, $(a_n)_{n \in \mathbb{N}}$ reelle Folge,

- $\lim_{n\to\infty}a_n=a, a\in\mathbb{R}\cup\{\infty,-\infty\}$ • $a \neq -\infty \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
 - $a \neq 0 \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
 - $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
 - $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
 - $a \notin \{\infty, -\infty\} \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen 0

Def 2.7 - Monotone Folgen $(a_n)_{n\in\mathbb{N}}$ reelle Folge heißt

- monoton wachsend, falls $a_{n+1} \geq a_n \forall n \in \mathbb{N}$
- streng monoton wachsend, falls $a_{n+1} > a_n \forall n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n \forall n \in \mathbb{N}$
- streng monoton fallend, falls $a_{n+1} < a_n \forall n \in \mathbb{N}$

Satz 2.8 - Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ reelle Folge, wachsend und nach oben beschränkt $\Rightarrow (a_n)_{n \in \mathbb{N}}$ konvergent und $\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n := \sup\{a_n : n \in \mathbb{N}\}\$

Def 2.9 Häufungspunkt $a \in \mathbb{R}$ Häufungspunkt \Leftrightarrow $\exists (a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$, die gegen a konvergiert.

Satz von Bolzano-Weierstraß Jede beschränkte reelle Folge $(an)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat also mindestens einen Häufungspunkt.

Def 2.11 - Limes superior, limes inferior $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschänkt ⇒ größter (kleinster) Häufungspunkt: Limes superior (inferior)

Komplexe und mehrdimensionale Folgen

Def 3.1 Grenzwert komplexer Folgen $z \text{ GW von } (z_n) \Leftrightarrow \forall \epsilon > 0$ $0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : |z_n - z| < \epsilon$ $\exists GW \Leftarrow z_n \text{ konvergent}$

Konvergenz $(z_n)_{n\in\mathbb{N}} = a_n + ib_n : \lim_{n\to\infty} z_n =$ $\lim_{n\to\infty} a_n + i \lim_{n\to\infty} b_n$

Grenzwert $\lim_{n\to\infty} v_n = v \Leftrightarrow \lim_{n\to\infty} ||v_n - v||_2 = 0$

Reihen

Def 2.2 - **Folgen Grenzwert in** \mathbb{R} *a* Grenzwert von $(a_n) \Leftrightarrow$ $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall b \geq n_0 : |a_n - a| < \epsilon$

Nullfolge $\lim_{n\to\infty} (a_n) \to 0$

Rechenregeln Grenzwerte

- $(a_n + b_n) \rightarrow a + b$
- $(a_n \cdot b_n) \rightarrow a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b}) \rightarrow \frac{a}{b}$
- Einschließungskriterium: $a = b \wedge a_n \leq c_n \leq$ b_n für fast alle $n \in \mathbb{N} \Rightarrow c_n \to a$

Eigenschaften konvergenter Folgen (a_n) beschränkt \Rightarrow $\{a_n : n \in \mathbb{N}\}$ beschrn $kt \land \exists ! \text{ ein GW}$

 $\begin{array}{ll} \mbox{Uneigentliche Konvergenz} & (a_n)_{n \in \mathbb{N}} \mbox{ divergent} \Rightarrow (a_n)_{n \in \mathbb{N}} \\ \mbox{konvergiert uneig. gg. } \infty \Leftrightarrow \forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : \end{array}$ $a_n > \tilde{K}$

Rechenregeln uneig. Konvergenz

- $a \neq -\inf \Rightarrow (a_n + b_n)_{n \in \mathbb{N}} \to \infty$
- a ≠ 0 ⇒ (a_n · b_n)_{n∈N} konvergiert
- $a \notin \{-\infty, \infty\} \vee (a_n)_{n \in \mathbb{N}}$ beschränkt $(\frac{a_n}{b})_{n\in\mathbb{N}}\to 0$

Monotone Folge (a_n) monoton wachsend, falls $a_{n+1} \geq$ $a_n \forall n \in \mathbb{N}$. (Äquivalent für $>, <, \le$)

Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ monoton wachsend \wedge nach oben beschränkt $\Rightarrow \lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n = \sup \{a_n : n \in \mathbb{N}\}\$

Teilfolge, Häufungspunkte $(a_n)_{a\in\mathbb{N}}$ reelle Folge:

- $(n_k)_{k\in\mathbb{N}}$ streng monoton wachsend in \mathbb{N} \Rightarrow $(a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$
- $a \in \mathbb{R}$ Häufungspunkt von $(a_n)_{n \in \mathbb{N}} \Leftrightarrow \exists$ Teilfolge, die gg. a konvergiert

Bozano-Weierstraß Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat min. einen Häufungspunkt

Limes superior, Limes inferior $(a_n)_{n\in\mathbb{N}}$ reelle Folge: $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschränkt \to Bez. größter (kleinster) Häufungspunkt: Limes superior (inferior)

Komplexe und mehrdimensionale Folgen

Grenzwert komplexer Folgen $z \text{ GW von } (z_n) \Leftrightarrow \forall \epsilon >$ $0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : |z_n - z| < \epsilon.$ Existiert $z \Leftarrow (z_n)$ konvergent.

Konvergenz komplexer Folgen

- $z_n = a_n + ib_n$ konvergiert $\Leftrightarrow a_n$ und b_n kon-
- z_n konvergent $\Rightarrow \lim_{n \to \infty} z_n = \lim_{n \to \infty} a_n + i$.

 $\mbox{ Grenzwert } \mbox{ mehrdimensionaler } \mbox{ Folgen } \lim_{n \to \infty} v_n \ = \ v \ \Leftrightarrow \$ $\lim_{n \to \infty} \|v_n - v\|_2 = 0 \Leftrightarrow \lim_{n \to \infty} \|v_n - v\|_{\infty} = 0$

Konvergenz $(s_n)_{n\in\mathbb{N}}$ konvergent gg. $s\in\mathbb{C}\Leftrightarrow \text{Folge der}$ Natürliche Exponentialfunktion $exp(z):=\sum_{k=1}^{\infty}\frac{z^k}{k!}$ Partialsummen gg. s konvergiert

& Minorantenkriterium b_n $\sum_{k=0}^{\infty}b_k;(b_k)_{k\in\mathbb{N}} \text{ relle Folge}; a_s:=\sum_{k=0}^{\infty}a_k, |(a_n)_{n\in\mathbb{N}}|\leq$

- b_s konvergiert $\Rightarrow a_s$ konvergiert absolut
- a_s divergiert ⇒ b_s divergiert

Quotientenkriterum $\sum_{k=0}^{\infty} a_k, a \neq 0$ für fast alle $k \in \mathbb{N} \wedge 1$ $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| := q \text{ existient } \Rightarrow (*)$

Wurzelkriterium $\sum_{k=0}^{\infty} a_k$; $a_k \in \mathbb{C}$: $q := \limsup_{k \to \infty} \sqrt[k]{|a_k|} \Rightarrow \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$

- $q < 1 \Rightarrow$ Reihe konvergiert absolut
- q > 1 ⇒ Reihe divergiert

Leibnitz-Kriterium $(a_n)_{n\in\mathbb{N}}$ relle, monoton fallende Null-

 $\text{folge} \Rightarrow \sum_{k=0}^{\infty} (-1)^k a_k \Rightarrow \forall n \in \mathbb{N} | \sum_{k=0}^{\infty} (-1)^k a_k - s_n | \leq a_k | \leq a_$

Umordnungssatz

- · Jede Umordnung einer konvergenten Reihe konvergiert gegen denselben Wert
- · Konvergiert eine Reihe aus reellen Summanden, aber nicht absolut $\Rightarrow \forall s \in \mathbb{R} \exists$ bijektive Abbildung $\mathbb{N} \to \mathbb{N}$: die umgeordnete Reihe konvergiert

 $\mbox{Potenzreihe} \quad P(z) := \sum_{k=0}^{\infty} c_k z^k; c_k \in \mathbb{C}; z \in \mathbb{C}$

Cauchy-Produkt

- Seien $\sum_{k=0}^{\infty} a_k$, $\sum_{k=0}^{\infty} b_k$ absolut konvergent $\in \mathbb{C}$ $(\sum_{k=0}^{\infty}a_k)(\sum_{k=0}^{\infty}b_k) \quad = \quad (\sum_{m=0}^{\infty}c_m) \quad \text{mit} \quad c_m \quad = \quad$ $(\sum_{k=0}^{m} a_k b_{m-k})$ mit c_k konvergent.
- Seien $\sum_{k=0}^{\infty} a_k z^k$, $\sum_{k=0}^{\infty} a_k z^k$ zwei Potenzrei- $\begin{array}{ll} & \underset{k=0}{\overset{k=0}{\text{mit}}} \text{Konvergenzradien} \quad R_a \quad \text{und} \quad R_b \quad \Rightarrow \\ (\sum\limits_{k=0}^{\infty} a_k z^k) (\sum\limits_{k=0}^{\infty} b_k z^k) = (\sum\limits_{m=0}^{\infty} c_m z^m) \text{ mit } c_m = \\ \end{array}$ $\sum^{m} a_k m_{m-k}$

Eigenschaften von exp $\forall z, w \in \mathbb{C}, x \in \mathbb{R}$

- $\exp(z + w) = \exp(z) \cdot \exp(w)$
- $\exp(-z) = \frac{1}{\exp(z)}, \exp(z) \neq 0 \land \exp(\overline{z}) = \exp(z)$
- $|e^{ix}| = 1$
- $\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$
- $|\exp(z) \sum_{k=0}^{n} \frac{z^k}{k!}| \le 2 \cdot \frac{|z|^{n+1}}{(n+1)!}$

Trigonometrische Funktionen $\cos(z) := \frac{e^{iz} + e^{-iz}}{2} =$

$$\sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

$$\sin(z) := \frac{e^{iz} - e - iz}{2i} = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}$$

Eigenschaften v. sin & cos $\forall z, w \in \mathbb{C}, x \in \mathbb{R}$

- $\exp(iz) = \cos(z) + i\sin(w)$
- $(\sin(z))^2 + (\cos(z))^2 = 1$
- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- cos(z + w) = cos(z) sin(w) sin(z) sin(w)
- $cos(x) = Re(e^{ix}) sin(x) = Im(e^{ix})$

	0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$
sin	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = 1$
cos	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{0}}{2} = 0$

1