中国科学技术大学

2020—2021学年第一学期期中试卷

	考试科目_	概率论与数	浬统计	得分		
	所在系	姓名		学号		
	考试时门	间: 2020年11月26	6日上午9:45—11:4	45; 使用简单计算	·	
填空	空判断选择题(每是	题3分,答题请写	写在试卷上):			
1	设一次试验中A ₂ 为				至少发生一次的 [‡] .	既率
2					P(B) = 0.6 及条件	牛概
3	设随机变量 X 和 (A) X 与Y一定 (C) X和Y未必犯	独立	(B) (X,Y)服从	(二元正态		
	设 $F_1(x)$ 与 $F_2(x)$ $bF_2(x)$ 是某一随 (A) $a = \frac{3}{5}$, (C) $a = -\frac{1}{2}$,	机变量的分布 $0 = -\frac{2}{5}$.	函数,在下列 $(B) a = \frac{2}{3},$	合定的各组数值 $b = \frac{2}{3}.$	为使 $F(x) = aF_1(x)$ I中应取	c) —
	设随机变量X 服 α ,若 $P\{ X < x$ (A) $u_{\frac{\alpha}{2}}$ (B) $u_{\frac{1-\alpha}{2}}$	$} = \alpha$,则 x 等	于		数 u_{α} 满足 $P\{X>\alpha\}$	u_{α}
6	设随机变量 X 服的概率为 $\frac{1}{2}$,则 μ			,且二次方程 <i>y</i> ²	$+4y + X = 0 \ \pm 3$	实根
7		$\frac{1}{2+1}$ (i = 1, 2, 3)			第 i 个零件是不有品的个数,则 $P(X)$	
8	设随机变量 <i>X</i> 系参数为			,,	π ,则 $\min\{X,Y\}$,	报从
9	设 $Var(X) = Var(X)$ 则 $\rho_{X,Y+Z} = \underline{\hspace{1cm}}$		4 Var(X),相差	关系数 $ ho_{X,Y}=-$	$1, \rho_{X,Z} = 1/2,$	
	设 $f(x)$ 和 $g(x)$ 为		i函数,则af(x	(b) + bg(x)也是概	既率密度函数的充品	要条

- 二. 假定某种病菌在全人口中的带菌率为10%, 又在检测时. 带菌者呈阳、阴性反应的概率为0.95 和0.05, 而不带菌者呈阳、阴性反应的概率则为0.01 和0.99.
 - (1). 现某人被测出呈阳性反应, 则该人确为带菌者的概率多少?
 - (2). 今某人又独立地检测两次,发现1次呈阳性反应, 1次呈阴性反应. 问在三次检测中2次阳性1次阴性的情况下, "该人为带菌者"的概率是多少?
- 三. 二维随机变量(X,Y) 的密度函数为:

$$f(x,y) = \begin{cases} Ae^{-(3x+4y)}, & (x > 0, y > 0) \\ 0, & \text{ 其他} \end{cases}$$

- (1) 试求系数A=?
- (2)X 与Y 是否独立?
- (3) 试求Z = X + Y 的密度函数 $f_Z(z)$;
- (4) 试求 $Var(X \mid X + Y = 1)$.
- 四. 在一家保险公司里有10000 个老人参加保险,每人每年付200元保险费,在一年内一个人死亡的概率为0.017,死亡时其家属可向保险公司领取10000元的保险金,问:
 - (1) 保险公司亏本的概率多大?
 - (2) 保险公司一年的利润不少于10万元且不超过20万元的概率多大?

以下两题选做一题, 只算一题得分

五. 设某两个风险(X,Y) 服从二元正态分布 $N(\mu, 2\mu, \sigma^2, 2\sigma^2, \sqrt{2}/4)$,某投资者购买了一个基于这两只风险和的金融衍生品(欧式看涨期权),即到期收益为

$$(X + Y - 3\mu)_{+} = \max\{X + Y - 3\mu, 0\}.$$

- (1) 求到期收益的均值 $\mathbb{E}[(X + Y 3\mu)_{+}].$
- (2) 求到期收益的方差 $Var[(X + Y 3\mu)_{+}].$

六. 记 U_1, \dots, U_n 为在 (0,1) 中均匀分布的独立随机变量. 对 0 < x < 1 定义

$$I(X \le x) = \begin{cases} 1, & X \le x, \\ 0, & X > x, \end{cases}$$

并记 $F_n(x) = \frac{1}{n} \sum_{k=1}^n I(U_k \le x), \ 0 \le x \le 1, \ \text{这是 } U_1, \cdots, U_n \ \text{的经验分布函数。 试求}$

- (1) $F_n(x)$ 的均值和方差.
- (2) $F_n(x)$ 与 $F_n(y)$ 的协方差(0 < x, y < 1).

附录 分布及分位数: $\Phi(0.77) = 0.78$, $\Phi(1.55) = 0.94$, $\Phi(2.32) = 0.99$