Asymmetric Learning Model With Wage Rigidity and Costly Firings

Nathan Mather

University of Michigan

2019

Introduction

- Analyze an asymmetric learning model as it relates to wages and tenure
- Incorporate sticky wages
- Incorporate fixed firing costs
- Basic model set up is similar to Acemoglu and Pischke
- Scaled back to focus on wage evolution
- Simplifying in certain ways allows adding other unexplored complexity

Outline

- Outline of basic model structure
- Equilibrium under flexible wages
- Equilibrium under sticky wages
- Equilibrium under sticky wages and various firing costs
- Implications
- Thoughts moving forward

Model Environment

My Model

- ▶ Workers have ability $\theta \in [0,1]$
 - ightharpoonup Produce θ per period
- Workers supply labor inelastically
- ightharpoonup exogenously separate at rate δ
- Employers receive a good signal g w.p. θ and a bad signal b w.p. $1-\theta$
- Employers offer wages each period (no long term contracts).
 - All firms can condition on employment status
 - Current employer can also condition wage on signal
- Outside firms see employment status and history (resume)
- ► There are many identical firms
 - Zero profit condition
- Downward wage rigidity
- Fixed cost to fire employee

Variable Definitions

Variable	Meaning
θ	Ability
g	Good Signal
b	Bad Signal
e	Employed Signal
f	Fired Signal
F _C	Fixed Cost to Firing
δ	Exogenous separation rate
<i>w</i> ₁	Period 1 Wage
Wg	Wage After Good Signal
w _b	Wage After Bad Signal
W _U	Wage for unemployed worker
π	Profits

Time Line

- period 1 wage offers
- Workers produce output
- workers exogenously separate
- Workers send signal of ability
- Employers decide who to fire
- Employers offer period 2 wages conditional on signals
- Outside Firms offer wages conditional on resume
- Workers take the best offer and work for one more period
- Workers retire

Flexible Wages

► Let *Q* denote the fraction of workers that don't separate but then quit.

$$w_u(Q) = (\delta E[\theta] + QE[\theta] \text{worker quit}])/(\delta + Q)$$

 Employers will not pay more than the expected output of a worker, giving

$$w_b = \mathrm{E}[\theta|b]$$

lacktriangle This implies that all bad signal employees quit since if $\delta>0$

$$\mathrm{E}[heta|b] < rac{\delta \mathrm{E}[heta] + (1-\delta) p(b) (\mathrm{E}[heta|b])}{\delta + (1-\delta) p(b)} = \min w_u(Q)$$

Where the Right hand side is the lowest possible w_u since here $Q = (1 - \delta)p(b)$

Flexible Wages

► If all bad signal employees quit than anyone still employed is identified as high ability. Giving

$$w_g = \mathrm{E}[\theta|g]$$

This gives

$$w_u = \frac{\delta \mathrm{E}[\theta] + (1 - \delta) p(b) (\mathrm{E}[\theta|b])}{\delta + (1 - \delta) p(b)}$$

And a first period wage

$$w_1 = \mathrm{E}[\theta]$$

Sticky Wages

- Now employers can't cut their low signal worker's wages.
- We know $w_1 > \mathrm{E}[\theta|b]$ because if it weren't profits would be positive
- This implies employers fire bad signal workers
- Wage outcomes are identical to flexible model but with workers fired rather than quitting

Low firing costs

- ► A low firing cost will not alter firms decision to fire bad signal employees
- Now that hiring an employee means I may have to pay a cost to fire them, their marginal benefit is decreased and so their wage offer is lower

$$w_1 = \mathrm{E}[\theta] + (1 - \delta)p(b)F_C$$

Firms continue to do this as long as

$$w_1 - \operatorname{E}[\theta|b] > F_C$$

$$\implies \operatorname{E}[\theta] + (1 - \delta)\rho(b)F_C - \operatorname{E}[\theta|b] > F_C$$

$$\implies f_C < \frac{\operatorname{E}[\theta] - \operatorname{E}[\theta|b]}{1 + \rho(b)(1 - \delta)}$$

Clarifying Equilibrium wages

An Aside

To clarify the wage offers in the next section, first consider this numerical example:

 \triangleright $w_u = 1$

$E[\theta]$	EQ Wage offer
3	2.5
2	2

- ▶ If the "raiding" firm offers $w = 2 + \epsilon$ to all employed workers, they get only those with $E[\theta] = 2$ for a loss
- If they offer $w = 2.5 + \epsilon$ they get workers with average $E[\theta] = 2.5$ for a loss
- ► These are the lowest wages the firm can offer and still retain their employees
- In general, it means employers pay a worker the expected ability of all workers less than and equal to their own ability

High firing costs

- ► If the fixed costs become sufficiently large, it is clear that firms will not fire any employees
- ► Firms must pay their employees enough to keep them from getting "raided"

$$w_g = E[\theta|e] = E[\theta]$$

$$w_b = w_1$$

Unemployed workers get their expected output

$$w_u = E[\theta]$$

High firing costs

▶ This gives a first period wage through the zero profit condition

$$w_1 = \mathrm{E}[\theta] + (1 - \delta)(\rho(g)(\mathrm{E}[\theta|g] - \mathrm{E}[\theta]) + \rho(b)(\mathrm{E}[\theta|b] - w_1))$$

lacksquare using the following fact: $p(g)\mathrm{E}[heta|g]+p(b)\mathrm{E}[heta|b]=\mathrm{E}[heta]$

$$\implies w_1 = \mathrm{E}[\theta] + (1-\delta)(\mathrm{E}[\theta] - p(g)\mathrm{E}[\theta] - p(b)w_1)$$

Next, using

$$E[\theta] - \rho(g)E[\theta] = \rho(b)E[\theta]$$

$$\implies w_1 = E[\theta] + (1 - \delta)\rho(b)(E[\theta] - w_1)$$

$$\implies w_1 + (1 - \delta)\rho(b)w_1 = E[\theta] + (1 - \delta)\rho(b)E[\theta]$$

$$\implies w_1 = E[\theta]$$

ightharpoonup all workers get paid $\mathrm{E}[heta]$

High firing costs: stability

This equilibrium will be stable whenever it is more costly to fire an employee then to keep them at this wage.

$$F_C > w_1 - \mathrm{E}[\theta|b] = \mathrm{E}[\theta] - \mathrm{E}[\theta|b]$$

Mixed Equilibrium

Now consider the case between the two extremes.

$$F_C \in \left[rac{\mathrm{E}[heta] - \mathrm{E}[heta|b]}{1 + p(b)(1 - \delta)}, \mathrm{E}[heta] - \mathrm{E}[heta|b]
ight]$$

In this case employers will fire a fraction of their bad signal workers δ_F until they are indifferent between firing and keeping them

$$F_C = w_1 - E[\theta|b]$$

► Good signal employees need to be paid the expected output of an average worker employee in period 2

$$w_g(\delta_F) = rac{
ho(g)\mathrm{E}[heta|g] +
ho(b)(1-\delta_F)\mathrm{E}[heta|b]}{
ho(g) +
ho(b)(1-\delta_F)}$$

Mixed Equilibrium

bad signal employees are paid the lowest wage possible $w_b = w_1$ and unemployed get their expected output

$$w_{u} = \frac{\delta \mathrm{E}[\theta] + (1 - \delta)\delta_{F}\mathrm{E}[\theta|b]}{\delta + (1 - \delta)\delta_{F}}$$

by the zero profit condition we get the first period wages

$$w_1 = \mathrm{E}[\theta] + (1 - \delta) \bigg(p(g) \Big(\mathrm{E}[\theta|g] - w_g(\delta_F) \Big) - p(b) F_C \bigg)$$

Mixed Equilibrium

- lacktriangle We have two equations for w_1 with the only unknown being δ_F
- ► I have solved for it, but it not very intuitive or generally helpful. Can use it to solve numeric examples.

$$\delta_{F} = \frac{p(g) \left[\frac{\mathrm{E}[\theta] - F_{C} - (1 - \delta)p(b)F_{C} - \mathrm{E}[\theta|b]}{(1 - \delta)p(g)} \right]}{p(b) \left[\mathrm{E}[\theta|b] - \frac{\mathrm{E}[\theta] - F_{C} - (1 - \delta)p(b)F_{C} - \mathrm{E}[\theta|b]}{(1 - \delta)p(g)} + \mathrm{E}[\theta|g] \right]}$$

What Next

- vThree period version is not intuitive.
- I have made progress solving general numeric examples, but unsure how useful this is
- More than two signal levels seems promising
 - ▶ I expect I will also need to resort to numeric examples
- A continuous signal or just employers fully learning workers continuous ability measure
 - I started this and do not think there is a general solution. (Depends on θ distribution)
- Promotions
- An Acemoglu and Pischke type utility shock

Questions and Concerns

- ► How to apply model to data?
- Are numerical examples and graphs useful?
- Trouble fitting this into literature
- ► Are the assumptions reasonable?

The End

Thank You