Indian Institute of Information Technology Ranchi

Department of Electronics & Communication Engineering

	_
	\rightarrow
	2
	Ö
	-
	3. Tech 1
	(2)
	- 3
	٥.
	10
	E S
	100
	- 5 ·
	2
	66
	ter E
	7
	-
	12,
	2
	-
	3 %
	=
	6.0
	B. 20
7	2.
2	3
	10
	-
_	- =
=	=
=	75
Course Instructo	**
Ē	· V
2	3
=	- 3

Course Code: EC-2006/EI-2006

tor: Dr. Priyabrat Garanayak, Dr. Rajiv Kumar

Course Name: Signal and Systems

QUESTION PAPER

Max Marks: 100

Instructions:
(1). Number in [] indicates marks.

Duration: 3 Hrs.

Any mussing data can be assumed suitably
 Symbols have their usual meaning
 Non-Programmable Scientific Calculator are allowed

Section A: Answer any ten questions

Consider an aperiodic signal $x(t) = e^{-at}$, a > 0, for $t \ge 0$ and zero otherwise. Find the energy and the power of this signal and determine whether the signal is finite energy, finite power, or both Ŧ

9 (h) Plot the following signal:

$$y(t) = 3r(t+3) - 6r(t+1) + 3r(t) - 3u(t-3)$$

IS Fand the even and odd companent

 $x(t) = e^{-2t} \cos t$

Ŧ

Ŧ

Ξ

? (d) Evaluate the following integral.

 $f(t) = \int ((t-1)^3 - 3(t-6) + 1)\delta(t-3)dt$

Ĉ Show that the system described by the differential equation

Ŧ

$$\frac{dy(t)}{dt} + 4y(t) + 1 = x(t)$$

3 Check whether the following system is time-invariant

Ξ

=(+2+1-2+) (+-1) ニナラーとナモーノースナナナナ 13-21-1 -3+

$$y(t) = tx(t) + 5$$

Consider the Rectangular Pulse or gate function x(t) = u(t) - u(t-1) Obtain y(t) = -[4] $x(t) \cdot x(t)$, that is, the convolution of rectangular pulse with itself

Ξ

Find the Fourier transform of following function

 $\widehat{\Xi}$

9

Find the Fourier transform of y(t) = u(t) - u(t-1)

Discuss the properties of Fourier Transform.

(i) Obtain the Laplace transform of $x(t) = e^{-t} \cos 4t u(t)$

Ŧ Ξ

Obtain the inverse Laplace transform of $X(S) = \frac{1}{(r+1)(S+3)}$

Section B: Answer any three questions

(a) A contineous-time signal is shown in figure 1. Szerch each of the following signal 101

 $y_2(t) = -1 + 2x(t)$

11 = 2(2 - 1)

Figure 1: Signal x(t)

(b) Express the signals shown in figure 2 in terms of unit step functions

Calculate its derivative and sketch it. 6

17 8[n-1] + 2f[n-2] + 4ffn-3] + d[n-2] + \$ [-13 + 3 8 (n=2) } 58[n-13]+ 3[n-1] + 38[n-5] 68[n-3] + 58[n-4] + 36 [n-5]

Figure 2: The input signal x(t).

- (c) Write down the difference between the following

 Commonus-time and Discrete-time Signals
- Cauai and Non-Causal Systems
- (a) What is convolution" Explain LTI systems

121

×

Ξ

(b) If the durations of x(t) and h(t) are T_1 and T_2 , respectively, then the duration of y(t) = -|2| $x(t) \cdot h(t)$ is

If the areas under x(t) and h(t) are A_1 and A_2 , respectively, then the area under $y(t) = x(t) \cdot h(t)$ is

(c) Obtain the convolution of these two signals.

8

$$h(t) = e^{-2t}u(t)$$

(d) Consider x[n] and h[n] as shown in figure 3, respectively. (The signals are all zero outside [8] the ranges indicated.) Evaluate $y[n] = x[n] \cdot h[n]$

Figure 3: The input signal x[n] and impulse response h[n]

(a) What is the difference between Fourier series and Fourier transform?

Ξ

'n

(b) Given the periodic train of pulses shown in figure 4, obtain Fourier coefficients a_0, a_n . [8] and b_n Find the Fourier Series Expansion for the waveform.

Figure 4: Periodic train of pulses x(t)

(c) Determine the Fourier transform of the signum function, that is
$$\chi(t) = sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$$

(a) Obtain the Laplace Fransform of
$$x(t) = e^{-10t}u(t)$$
 and establish the ROC

E E

Ξ

8

(b) Determine the Laplace transform of
$$x(t) = tu(t-2)$$

(c) Find the initial and final values of
$$X(S) = \frac{4}{S} + \frac{S+8}{S^2+4S+10}$$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} - 4y = e^{-t}u(t)$$

Use the Laplace transform to solve the differential equation subject to

$$y(0) = 1, \frac{dy(0)}{dt} = 0.$$

End