

Annie Kroo, March Saper, Paige Pfenninger

The Apollo Guidance Computer Context

- 1969 Moon Landing
- Two versions
 - Block 1: Used for unmanned missions
 - 4100 single three-input Nor gate
 - Block 2: Used to land on the moon
 - 2800 dual three-input nor gates
- Some of the first computers to use ICs
- Developed by MIT
 - Margaret Hamilton
 - "Rushed Job"
- Very few established standards new

The Apollo Guidance Computer

The Pieces

Flatpack ICs used in ACG

Microscopic view of Apollo NOR gate in chip

DSKY Interface

One's vs. Two's Complement

- Up until 1969 2's Complement not standard
- The AGC used 1's Complement
- One's Complement has two zeros
 - Positive Zero (0000)
 - Negative Zero (1111)
- Makes Arithmetic difficult

Decimal	Two's C.	One's C.		
-4	100	XXX		
-3	101	100		
-2	110	101		
-1	111	110		
0	000	111 & 000		
1	001	001		
2	010	010		
3	011	011		

Memory

Magnetic Core Memory

Core Rope Memory

"Software as hardware"

Little Old Lady Memory

Registers

32 Registers in MIPS

8 Registers in the AGC

- ☐ The eight registers all had very specific purposes and could only be used for one thing
- The A register (the accumulator) was used as both an input and an output to all mathematical operations
- ☐ The registers were stored in the first eight words of the erasable memory
 - ☐ There was no separate register file

Memory Addressing

- 16 bits were needed to fully address all memory locations
- The memory address was only 12 bits long

Need to use a combination of:

- 12 bit memory address
- 5 bit fixed memory bank
- 3 bit erasable memory bank
- 1 bit super bank

Get the entire memory address from one of the registers

CHART 3
ADDRESS SELECTION LOGIC

CHART 3 continued

A XCODE = 1 *>BZF
XCODE = 0 *>TCF

$$B_{15-13} = 1$$
?

 $B_{15-13} = 0$

TC <*

D Y XCODE = 0 ?

NO

**B₁₅₋₁₃ **0

**CHANNEL

 $B_{15-10} \longrightarrow CHANNEL SELECTION LOGIC$
 $B_{0-1} \longrightarrow S$ RECISTER

F = ERASABLE F *FIXED B *B-REG S *S-REG

$$A \longrightarrow \begin{bmatrix} B_{15-13} & F \end{bmatrix} \longrightarrow SELECTION, NO 1/4 CODE \longrightarrow \begin{bmatrix} B_{12} & 1 \end{bmatrix} \longrightarrow S$$
 $B_{15-13} = 0$

OP-CODE

 B

- Instruction format: 3-bit op code and 12-bit address
- Block 1 had 11 instructions
 - And with these 11 instructions we made it into space!
- Many instructions have analogs to what we saw with MIPS
 - Implementations of addition, subtraction, jump etc.
- But there were a few funky ones too

INDEX instruction

 Adds the data retrieved at the address specified by the instruction to the following instruction

Example Program	I	Memory	Actual Execution			
(Instr, Addr)):	K	Some Constant	INDEX K			
INDEX K MASK L			MASK L + Some Constant			

Three potential results:

- Indexing the data if no 12-bit overflow
- Changing the instruction type if 12 to 14-bit overflow
- "Extending" an instruction if 15-bit overflow. Works if "some constant" = 10011111111111
 - Additional EXTEND instruction actually implements INDEX d'3071

Fun Instruction: CCS

- Used for conditional jumps and loop control
- Compares a value in memory to a known constant and increments the program counter by 1, 2, 3, or 4 depending on the result
- If there was no way for an instance of CCS to result in a jump of 1 or 2, this created "holes" in the memory.
 - A "CCS-Holes" task force was assigned to find these holes and use that memory space for constants

Our Simulation

Block Diagram of Our Implementation

It Works!

EXPECTED RESULT					ACTUAL RESULT					
regZ	regB	regA	regLP	regQ	regZ	regB	regA	regLP	regQ	PASS:
	AD				11	AD			X	
12	AD				12	AD			X	
13	AD				13	AD				
14					14					
	MSK					MSK				
16	XCH				16	XCH				
17	EXT				17	EXT				
18	SUB				18	SUB				
19	EXT				19	EXT			Х	
20	DIV				20	DIV				
	EXT					EXT				
	MP					MP				
	CS					CS				
24	TC			24	24	TC			24	
	AD			24		AD			24	

Overall: PASS

