

On Transfer Learning using a MAC model variant

Vincent Marois

T.S. Jayram

Vincent Albouy

Tomasz Kornuta

Almaden Research Center

Younes Bouhadjar

Ahmet S. Ozcan

{vmarois, jayram, tkornut, byounes, asozcan}@us.ibm.com, {vincent.albouy}@ibm.com

Contributions

- We introduce a *simplified* variant of the MAC model [HM18], which achieves comparable accuracy while training *faster*.
- We evaluate the MAC model and the simplified variant on CLEVR & CoGenT, and show that, transfer learning with fine-tuning results in a 15 point increase in accuracy, matching the state of the art.
- We also demonstrate that *improper* fine-tuning can reduce a model's accuracy.

The MAC Model [HM18]

Figure 1: The MAC cell, based on [HM18].

- MAC network: a recurrent model performing sequential reasoning. At each step, it analyzes the question and shifts the attention over the image.
- Recurrent MAC cell: consists of a control unit, a read unit & a write unit. The control unit updates the control state c_i & drives the attention over the question words.
- ullet The read unit, guided by c_i extracts information from the image. The write unit uses this information to update the memory state m_i .

Simplified MAC Model (S-MAC)

The simplifications are based on two heuristics:

- Taking the MAC cell equations as a whole, consecutive linear layers (with no activation in-between) can be combined as one linear layer.
- We assume that dimension-preserving linear layers are invertible so as to avoid information loss. VM: To reformulate?

This allows, with a careful reorganization, to apply a single linear layer to the knowledge base (feature map extracted from the image) prior to all the reasoning steps and work with this projection throughout the reasoning steps.

MAC

S-MAC

Control unit: The question q is first made position-aware in each reasoning step using an *i*-dependent projection: $q_i = U_i^{[d \times 2d]} q + b_i^{[d]}$.

$$cq_{i} = W_{cq}^{[d \times 2d]}[c_{i-1}, q_{i}] + b_{cq}^{[d]}$$
 (c1)
 $ca_{is} = W_{ca}^{[1 \times d]}(cq_{i} \odot \mathbf{cw}_{s}) + b_{ca}^{[1]}$ (c2.1)
 $cv_{is} = \operatorname{softmax}(ca_{is})$ (c2.2)

$$\mathbf{c}_i = \sum_s cv_{is} \, \mathbf{cw}_s \tag{c2.3}$$

$$cq_i = W_{cq}^{[d \times d]} c_{i-1} + q_i$$
 (c1)

$$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s) \qquad (c2.1)$$

$$cv_{is} = \operatorname{softmax}(ca_{is}) \qquad (c2.2)$$

$$\mathbf{c}_i = \sum_s cv_{is} \, \mathbf{cw}_s \tag{c2.3}$$

Read and write units:

$$I_{ihw} = (W_m^{[d \times d]} \mathbf{m}_{i-1} + b_m^{[d]})$$

$$\odot (W_k^{[d \times d]} \mathbf{k}_{hw} + b_k^{[d]}) \qquad (r1)$$

$$I'_{ihw} = W_{I'}^{[d \times 2d]}[I_{ihw}, \mathbf{k}_{hw}] + b_{I'}^{[d]}$$
 (r2)
 $ra_{ihw} = W^{[1 \times d]}(\mathbf{c}_{i} \odot I'_{il}) + b^{[1]}$ (r3.1)

$$ra_{ihw} = W_{ra}^{[1\times d]}(\mathbf{c}_i \odot I'_{ihw}) + b_{ra}^{[1]} \quad (r3.1)$$

$$rv_{ihw} = \operatorname{softmax}(ra_{ihw}) \quad (r3.2)$$

$$\mathbf{r}_i = \sum r v_{ihw} \, \mathbf{k}_{hw} \tag{r3.3}$$

$$\mathbf{m}_i = W_{rm}^{[d \times 2d]}[\mathbf{r}_i, \mathbf{m}_{i-1}] + b_{rm}^{[d]} \qquad (w1)$$

$$I_{ihw} = \mathbf{m}_{i-1} \odot \mathbf{k}_{hw} \tag{r1}$$

$$I'_{ihw} = W_{I'}^{[d \times d]} I_{ihw} + b_{I'}^{[d]} + \mathbf{k}_{hw}$$
 (r2)

$$ra_{ihw} = W_{ra}^{[1 \times d]}(\mathbf{c}_i \odot I'_{ihw})$$
 (r3.1)
 $rv_{ihw} = \operatorname{softmax}(ra_{ihw})$ (r3.2)

$$rv_{ihw} = \text{softmax}(ra_{ihw})$$
 (r3.2)
 $\mathbf{r}_i = \sum rv_{ihw} \mathbf{k}_{hw}$ (r3.3)

$$\mathbf{m}_i = W_{rm}^{[d \times d]} \mathbf{r}_i + b_{rm}^{[d]} \tag{w1}$$

Model	Read Unit	Write Unit	Control Unit
MAC S-MAC	787,969 263,168	524,800 262,656	525,313 263,168
Reduction by [%]	67%	50%	50%

Table 1: Comparing the number of position-independent parameters between MAC & S-MAC cells.

The CLEVR & CoGenT datasets

Figure 2: How many objects are either small cylinders or red things? – Answer: 5.

- The authors [JHvdM+17] also introduced CLEVR-CoGenT, to evaluate how well a model can learn relations and compositional concepts.
- Similar to CLEVR, but with two conditions, as follows:

Dataset	Cubes	Cylinders	Spheres
CLEVR	0 1 1 1 1	any color	any color
CLEVR CoGenT-A		red / green / purple / cyan	any color
CLEVR CoGenT-B		gray / blue / brown / yellow	any color

Table 2: Colors/shapes combinations present in CLEVR, CoGenT-A and CoGenT-B datasets.

Experiments & Results

Model .	Training		Fine-tuning		Test		
	Dataset	Time [h:m]	Acc [%]	Dataset	Acc [%]	Dataset	Acc [%]
MAC	CLEVR	30:52	96.70	_	<u> </u>	CLEVR	96.17
S-MAC	CLEVR	28:30	95.82	_	_	CLEVR	95.29
	CoGenT-A	28:33	96.09	_	_	CoGenT-A	95.91
	CLEVR	28:30	95.82			CoGenT-A	95.47
						CoGenT-B	95.58
	CoGenT-A	28:33	96.09	_	_	CogenT-B	78.71
				CoGenT-B	96.85	CoGenT-A	91.24
						CoGenT-B	94.55
	CLEVR 28:3	28:30	95.82	CoGenT-B	97.67	CoGenT-A	92.11
		20.00	33132			CoGenT-B	92.95

Table 3: CLEVR & CoGenT accuracies for the MAC & S-MAC models.

- ullet Our experiments on zero-shot learning (CoGenT-A o CoGenT-B) show that both models have poor performance, in line with the other models in the literature.
- With fine-tuning, both MAC models match state-of-the-art accuracy (a 15pts increase).
- S-MAC presents a 10% speed-up in training time and comparable accuracy.
- Finetuning CLEVR-trained models on CoGenT-A or -B hurts their generalization capabilities.
- \rightarrow Zero-shot learning remains an interesting problem to solve.

Compositional generalization of the MAC model

Figure 3: There is a large gray thing that is on the right side of the big gray cylinder left of the large ball that is on the right side if the cyan rubber sphere; what is its shape?

- Asked about the shape of the leftmost gray cylinder, the model correctly finds it, (cf. visual attention map), and refers to it using its color (attention over the question words).
- Yet, predicts the shape as cube, as it never saw gray cylinders during training, but saw gray cubes.
- \rightarrow This indicates that MAC does not separate shape from color, but has a better understanding of colors (as found the object by its color).

References

[HM18]

Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine reasoning. International Conference on Learning Representations, 2018.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.

How to reproduce the experiments.

CLEVR Dataset.