Machine Learning HW5

ML TAs ntu-ml-2022-spring-ta@googlegroups.com

Outline

- 1. Machine translation
- 2. Workflow
- 3. Training tips
- 4. Requiements
- 5. Report
- 6. JudgeBoi Guide
- 7. Regulation and Grading policy

Machine Translation

Machine Translation

In this homework, we'll translate English to Traditional Chinese e.g.

● Thank you so much, Chris. -> 非常謝謝你, 克里斯。

Since sentences are with different length in different languages, the seq2seq framework is applied to this task.

Training datasets

- Paired data
 - TED2020: TED talks with transcripts translated by a global community of volunteers to more than 100 language
 - We will use (en, zh-tw) aligned pairs
- Monolingual data
 - More TED talks in traditional Chinese

Evaluation

source: Cats are so cute

target: <mark>貓</mark>咪真<mark>可愛</mark>

output: <mark>貓</mark>好<mark>可愛</mark>

BLEU

Modified n-gram precision (n = 1~4)

Brevity penalty: penalizes short hypotheses

$$\mathrm{BP} = \left\{ egin{array}{ll} 1 & \mathrm{if} \ c > r \ e^{(1-r/c)} & \mathrm{if} \ c \leq r \end{array}
ight.$$

- o c is the hypothesis length, r is the rerference length
- The BLEU socre is the geometric mean of n-gram precision, miltiplied by brevity penalty

Workflow

Workflow

Preprocessing

Training Testing

Workflow

1. Preprocessing

- a. download raw data
- b. clean and normalize
- c. remove bad data (too long/short)
- d. tokenization

2. Training

- a. initialize a model
- b. train it with training data

3. Testing

- a. generate translation of test data
- b. evaluate the performance

Training tips

Training tips

- Tokenize data with sub-word units
- Label smoothing regularization
- Learning rate scheduling
- Back-translation

Tokenize

- Tokenize data with subword units.
 - Reduce the vocabulary size
 - Alleviate the open vocabulary problem
 - example
 - _put _your s el ve s _in _my _po s ition _.
 - Put yourselves in my position.

Label smoothing

- Label smoothing regularization
 - When calculating loss, reserve some probability for incorrect labels
 - Avoids overfitting

Leaning rate scheduling

- Learning rate scheduling
 - o Increasing the learning rate linearly for the first warmup_steps training steps, and decreasing it thereafter proportionally to the inverse square root of the step number.
 - Stabilizing training for transformers in early stages

Back translation

Using monolingual data for creating synthetic translation data

- 1. Train a translation system in the **opposite direction**
- 2. Collect monolingual data in target side and apply machine traslation
- 3. Use translated and original monolingual data as additional parallel data to train stronger translation systems

Back translation

Some points to note about back-translation

- 1. Monolingual data should be in the same domain as the parallel corpus
- 2. The performance of the backward model is critical
- 3. Increase model capacity since the data amount is increased

Requirements

Baselines

Baseline	Public score Estimated time(kaggle		
Simple	14.58	1 hour	
Medium	18.04	1 hour 40 mins	
Strong	25.20	~3 hours	
Boss	29.13	> 12hours	

Baseline Guide

- Simple Baseline: Train a simple RNN seq2seq to acheive translation
- Medium Baseline: Add learning rate scheduler and train longer
- Strong Baseline: Switch to Transformer and tuning hyperparameter
- Boss Baseline: Apply back-translation

Simple Baseline

Train a simple RNN seq2seq to acheive translation

Running the sample code should pass the baseline

Medium Baseline

Add learning rate scheduler and train longer

```
lrate = d_{model}^{-0.5} \cdot \min(step\_num^{-0.5}, step\_num \cdot warmup\_steps^{-1.5})  \begin{tabular}{ll} def & get\_rate(d\_model, & step\_num, & warmup\_step): \\ & \# & TODO: & Change & lr & from & constant & to & the \\ equation & shown & above \\ & lr & = & 0.001 \\ & return & lr \\ \end{tabular}
```

```
config = Namespace(
    .
    .
    .
    # maximum epochs for training
    max_epoch=15, # medium: → 30
    start_epoch=1,
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
```

Strong Baseline

Switch to Transformer and tuning hyperparameter

```
encoder = RNNEncoder(args, src_dict, encoder_embed_tokens)
decoder = RNNDecoder(args, tgt_dict, decoder_embed_tokens)

→ # encoder = TransformerEncoder(args, src_dict, encoder_embed_tokens)
# decoder = TransformerDecoder(args, tgt_dict, decoder_embed_tokens)
```

Boss Baseline

Apply back-translation

1. Train a backward model by switching languages

```
source_lang = "zh",
target_lang = "en",
```

- 2. Translate monolingual data with backward model to obtain synthetic data
 - a. Complete TODOs in the sample code
 - b. All the TODOs can be completed by using commands from earlier cells
- 3. Train a stronger forward model with the new data
 - a. If done correctly, ~30 epochs on new data should pass the baseline

Links

Colab sample code

Kaggle sample code

<u>JudgeBoi</u>

Report

Report Overview

- Problem 1
 - Visualize the similarity between different pairs of positional embedding and briefly explain the result.
- Problem 2
 - Clip gradient norm and visualize the changes of gradient norm in different steps. Circle two places with gradient explosion.

Problem 1: Visualize Positional Embedding

Given a (N x D) positional embeding lookup table, you aim to get a (N x N) "similarity matrix" by calculating similarity between different pairs of embeddings in the table.

You need to **visualize the similarity matrix and briefly explain the result**.

In this problem, we focus on the positional embeddings of the **decoder**

Problem 1: Similarity Matrix

	p1	p2	р3	p4	p5
р1	1	8.0	0.6	0.4	0.3
p2	0.8	1	0.8	0.6	0.4
рЗ	0.6	8.0	1	8.0	0.6
p4	0.4	0.6	0.8	1	0.8
р5	0.3	0.4	0.6	0.8	1

In the sence of encoding positional information, we expect that the similarity between the embedding of close positions is stronger.

Problem 1: Cosine Similarity

We recommend you to measure the similarity between two vectors by cosine similarity.

There is a pytorch implementation of cosine similarity. Check more detail in the following link.

https://pytorch.org/docs/stable/generated/torch.nn.functional.cosine_similarity.html

similarity =
$$\frac{x_1 \cdot x_2}{\max(\|x_1\|_2 \cdot \|x_2\|_2, \epsilon)}$$

Problem 1: Tips and Hint

You could get the positional embeddings of decoder by following codes

pos_emb = model.decoder.embed_positions.weights.cpu().detach()

Problem 2: Gradient Explosion

Problem 2: Clipping Gradient Norm

- 1. Set up a maximum norm value *max_norm*
- Collecting the gradient of each parameters to be a vector. Calculate the p-norm of the vector to be *Lnorm*
- 3. If *Lnorm* <= *max_norm*, do nothing. Otherwise calculate the scale factor *scale_factor* = *max_norm* / *Lnorm* and multiply each gradient by the scale factor.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 $\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$. $\|\boldsymbol{x}\|_2 := \sqrt{x_1^2 + \dots + x_n^2}$.

Problem 2: Visualize Gradient Norm

Step1: Apply clips gradient norm and set max_norm = 1.0.

Step2: Make a plot of "gradient norm v.s step".

Problem 2: Visualize Gradient Norm

Step3: Circle two places with gradient explosion (where the clip_grad_norm function take effect)

Problem 2: Overview

In this problem, you need to do

Plot the grad_norm

2. Circle two place with gradient explosion (if there is gradient explosion)

JudgeBoi Guide

Previously... Github Account Survey

We have kindly requested everyone to report your github username and ID.

IMPORTANT: You must take this survey in order to submit to JudgeBoi server.

Step 1: Register for Submission

Go to JudgeBoi to login.

Step 2: Sign-in with Github

- If you have not completed the Github account survey
 - You can log in
 - You will not be able to submit

fill in password >

Step 3: Submit your Results

You can now submit results to the server and view the leaderboard.

Step 4: Select your submissions

- You can select up to 2 submissions.
- If none of your submissions is chosen, we will use the submission with the best public score.
- If your selection is successful, you will see a message box as follows:

JudgeBoi Rules

- 5 submission quota per day, reset at midnight.
 - Users not in the <u>whitelist</u> will have no quota.
- Only *.txt file is allowed, filesize should be smaller than 700kB.
- The countdown timer on the homepage is for reference only.
- We do limit the number of connections and request rate for each IP.
 - If you cannot access the website temporarily, please wait a moment.
- The system can be very busy as the deadline approaches
 - o If this prevents uploads, we do not offer additional opportunities for remediation
- Please do not attempt to attack JudgeBoi.
- Every **Friday** from **6:00 to 9:00** is our system maintenance time.
- For any JudgeBoi issues, please post on NTUCOOL discussion
 - Discussion Link: https://cool.ntu.edu.tw/courses/11666/discussion-topics/91777

Regulations and Grading Policy

Grading

```
simple
             (public)
                               +0.5 pts
simple
             (private)
                               +0.5 pts
             (public)
medium
                              +0.5 pts
medium
              (private)
                               +0.5 pts
             (public)
                               +0.5 pts
strong
 strong
             (private)
                               +0.5 pts
             (public)
 boss
                               +0.5 pts
                               +0.5 pts
             (private)
 boss
code submission
                               +2 pts
 report
                               +4 pts
```

Total: 10 pts

Code Submission

- NTU COOL (4pts)
 - Compress your code and report into

<student ID>_hwX.zip

- * e.g. b06901020_hw1.zip
- * X is the homework number

- We can only see your last submission.
- Do not submit your model or dataset.
- If your code is not reasonable, your semester grade x 0.9.

Code Submission

- Your .zip file should include only
 - o **Code**: either .py or .ipynb
 - Report: .pdf (only for those who got 10 points)
- Example:

Report Submission

Answer the questions on GradeScope

Deadlines

2022/04/08 23:59 (UTC+8)

Grading -- Bonus

 If you got 10 points, we make your code public to the whole class.

 In this case, if you also submit a PDF report briefly describing your methods (<100 words in English), you get a bonus of 0.5 pt. (your report will also be available to all students)

Report template

Regulation

- You should NOT plagiarize, if you use any other resource, you should cite it in the reference. (*)
- You should NOT modify your prediction files manually.
- Do NOT share codes or prediction files with any living creatures.
- Do NOT use any approaches to submit your results more than 5 times a day.
- Do NOT search or use additional data or pre-trained models.
- Your final grade x 0.9 if you violate any of the above rules.
- Prof. Lee & TAs preserve the rights to change the rules & grades.

If any questions, you can ask us via...

- NTU COOL (recommended)
 - https://cool.ntu.edu.tw/courses/4793
- Email
 - ntu-ml-2021spring-ta@googlegroups.com
 - The title should begin with "[hwX]" (X is the homework number)
- TA hour
 - Each Friday during class