EECS 545: Machine Learning Lecture 3. Linear Regression (part 2)

Honglak Lee

Outline

- Linear regression review
- Regularized linear regression
- Review on probability
- Maximum likelihood interpretation of linear regression
- Locally-weighted linear regression

Regression, sum of square error

We want to find w that minimizes $E(\mathbf{w})$ over the training data.

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

M: dimension of feature, N: number of data

 $\phi_j(\mathbf{x}^{(n)})$: j-th feature of data

- Two ways to find w that minimizes E(w)
 - 1. Gradient descent
 - 2. Closed-form solution

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

1. Gradient Descent

$$\frac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi_k(\mathbf{x}^{(n)})$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^N \left(\mathbf{w}^\top \phi(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

2. Closed-form solution

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{M-1} w_j \phi_j \left(\mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$
$$= \frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}$$

$$\begin{array}{lll} \text{Recap} & \mathbf{w} \colon \mathsf{M} \; \mathsf{by} \; \mathbf{1} & \mathbf{w} = [w_0, w_1, \cdots, w_{M-1}]^\top \\ & \mathbf{y} \colon \mathsf{N} \; \mathsf{by} \; \mathbf{1} & \mathbf{y} = [y^{(1)}, y^{(2)}, \cdots, y^{(N)}]^\top \\ & \Phi \colon \mathsf{N} \; \mathsf{by} \; \mathsf{M} & \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix} \end{array}$$

Useful trick: Matrix Calculus

 Compute gradient and set gradient to 0 (condition for optimal solution)

Note: Least squared is a convex problem.

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = 0$$

Need to compute the first derivative in matrix form

Gradient via matrix calculus

Compute gradient and set to zero

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} \right)$$
$$= \Phi^{\top} \Phi \mathbf{w} - \Phi^{\top} \mathbf{y}$$
$$= \mathbf{0}$$

Solve the resulting equation (normal equation)

$$\Phi^{\top}\Phi\mathbf{w} = \Phi^{\top}\mathbf{y}$$
 $\mathbf{w}_{\mathrm{ML}} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}\mathbf{y}$

This is the Moore-Penrose pseudo-inverse: $\Phi^\dagger = (\Phi^\top \Phi)^{-1} \Phi^\top$ applied to: $\Phi \mathbf{w} \approx \mathbf{y}$

Back to curve-fitting examples

Polynomial Curve Fitting

$$h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_{M-1} x^{M-1} = \sum_{j=0}^{M-1} w_j x^j$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Q: How do we resolve the over-fitting problem?

Data Set Size: N = 15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Increasing data set size can help

Q. How do we choose the degree of polynomial?

Rule of thumb

- If you have a small number of data, then use low order polynomial (small number of features).
 - Otherwise, your model will overfit
- As you obtain more data, you can gradually increase the order of the polynomial (more features).
 - However, your model is still limited by the finite amount of the data available (i.e., the optimal model for finite data cannot be infinite dimensional polynomial).
- Controlling model complexity: regularization

Regularized Linear Regression

Back to Polynomial Coefficients

M=0 $M=1$ $M=3$ $M=9$
$w_0^{\star} \mid 0.19 0.82 \mid 0.31 0.38$
w_1^{\star} -1.27 7.99 232.3
w_2^{\star} -25.43 -5321.83
w_3^{\star} Underfitting 17.37 48568.3
w_3^{\star} Underfitting 17.37 48568.38 w_4^{\star} Good -231639.30 w_5^{\star} 640042.20
w_5^{\star} 640042.20
$\begin{bmatrix} w_6^{\star} \\ w_7^{\star} \end{bmatrix}$ -1061800.53
w_7^{\star} 1042400.13
w_8^{\star} -557682.99
w_9^{\star} 125201.43

 $h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_{M-1} x^{M-1}$ Coefficients are large!

Regularized Least Squares (1)

• Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

With the sum-of-squares error function and a

quadratic regularizer, we get

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2} + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

New objective function

Definition (L2):
$$\|\mathbf{w}\|_{2}^{2} = \sum_{j=0}^{M-1} w_{j}^{2}$$

Effect of λ

L2 Regularization: $\ln \lambda = 0$

$$M = 9$$
 $\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$

L2 Regularization: $\ln \lambda = -18$

$$M = 9$$
 $\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$

"No" L2 Regularization:

(or when L2 regularization is too small)

$$\lambda = 0$$
(or $\ln \lambda \to -\infty$)

$$\boldsymbol{M} = \boldsymbol{9} \qquad \widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2} + \frac{\lambda}{2} \| \mathbf{w} \|_{2}^{2}$$

L2 Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Larger regularization

NOTE: For simplicity of presentation, we divided the data into training set and test set. However, it's **not** legitimate to find the optimal hyperparameter based on the test set. We will talk about legitimate ways of doing this when we cover model selection and cross-validation.

Polynomial Coefficients

(i.e., $\lambda = 0$)

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Good

Overfitting; Coefficients are large!

Underfitting

Regularized Least Squares (1)

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

 With the sum-of-squares error function and a quadratic regularizer, we get

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Closed-form solution:

$$\mathbf{w}_{\mathrm{ML}} = (\lambda \mathbf{I} + \Phi^{\top} \Phi)^{-1} \Phi^{\top} \mathbf{y}$$

Derivation

Objective function

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
$$= \frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

Compute the gradient and set it zero:

$$\nabla_{\mathbf{w}} \widetilde{E}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w} \right]$$

$$= \Phi^{\top} \Phi \mathbf{w} - \Phi^{\top} \mathbf{y} + \lambda \mathbf{w}$$

$$= (\lambda \mathbf{I} + \Phi^{\top} \Phi) \mathbf{w} - \Phi^{\top} \mathbf{y}$$

$$= 0$$

$$\mathbf{w}_{\mathrm{ML}} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} \mathbf{y}$$
v.s. Ordinary Least Square

Therefore, we get: $\mathbf{w}_{\mathrm{ML}} = (\boldsymbol{\lambda}\mathbf{I} + \boldsymbol{\Phi}^{\top}\boldsymbol{\Phi})^{-1}\boldsymbol{\Phi}^{\top}\mathbf{y}$

Regularized Least Squares (2)

• With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|^{q}$$

Note: In this lecture, we focus on q=2 (L2 regularization), but other values of q>0 can be used.

"L1 regularization"

Quadratic "L2 regularization"

plotting curves of (w_1, w_2) where $\sum_{j=1}^{M} |w_j|^q$ is a constant. (M=2)

Regularized Least Squares (3)

• Lasso tends to generate sparser solutions than a

Assuming a simple scenario of isotropic data covariance, the optimal solution to L2/L1 regularization is closest point to the original solution (center of the concentric circles) that touches the boundary of the L2/L1 constraint.

Summary: Regularized Linear Regression

- Simple modification of linear regression
- Regularization controls the tradeoff between "fitting error" and "complexity"
 - Small regularization results in complex models (but with risk of overfitting)
 - Large regularization results in simple models (but with risk of underfitting)

 It is important to find an optimal regularization that balances between the two.

Maximum Likelihood interpretation of least squares regression

Review on probability

Probability: Terminology

- Experiment: Procedure that yields an outcome
 - E.g., Tossing a coin three times:
 - Outcome: HHH in one trial, HTH in another trial, etc.
- Sample space: Set of all possible outcomes in the experiment, denoted as Ω (or S)
 - E.g., for the above example:
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, THT, TTH, TTT\}$
- Event: subset of the sample space Ω (i.e., an event is a set consisting of individual outcomes)
 - Event space: Collection of all events, called \mathcal{F} (aka σ -algebra)
 - E.g., Event that # of heads is an even number.
 - E = {HHT, HTH, THH, TTT}
- **Probability measure**: function (mapping) from events to probability levels. I.e., $P: \mathcal{F} \to [0, 1]$ (see next slide)
 - Probability that # of heads is an even number: 4/8 = 1/2.
- Probability space: (Ω, \mathcal{F}, P)

Law of Total Probability

$$P(A) \ge 0, \forall A \in \mathcal{F}$$

 $P(\Omega) \ge 1$

Law of total probability

$$P(A) = P(A \cap B) + P(A \cap B^C)$$
 $P(A) = \sum_i P(A \cap B_i)$ Discrete B_i $P(A) = \int P(A \cap B_i) dB_i$ Continuous B_i

Conditional Probability

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the **conditional probability** of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

From Wikipedia

Bayes' Rule

Using the chain rule we may see:

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

Rearranging this yields Bayes' rule:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Often this is written as:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}$$

Where B_i are a partition of Ω (note the bottom is just the law of total probability).

Likelihood Functions

Why is Bayes' so useful in learning? Allows us to compute the posterior of **w** given data *D*:

$$p(\mathbf{w}|D) = \frac{p(D|\mathbf{w})p(\mathbf{w})}{p(D)} - Prior$$
 Prior

Bayes' rule in words: posterior
$$\infty$$
 likelihood \times prior $p(\mathbf{w}|D) \propto p(D|\mathbf{w})p(\mathbf{w})$

The likelihood function, $p(\mathbf{w} \mid D)$, is evaluated for observed data D as a function of \mathbf{w} . It expresses how parameter settings \mathbf{w} .

Maximum Likelihood Estimation (MLE)

- Maximum likelihood:
 - choose parameter setting **w** that maximizes likelihood function $p(D \mid \mathbf{w})$.
 - choose the value of w that maximizes the probability of observed data.
- Cf. MAP (Maximum a posteriori) estimation
 - Equivalent to maximizing $p(\mathbf{w}|D) \propto p(D|\mathbf{w})p(\mathbf{w})$
 - Can compute this using Bayes rule!
 - This will be covered in later lectures

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$\mathcal{N}(x|\mu,\sigma^2) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \, \mathrm{d}x = 1$$

Maximum Likelihood interpretation of least squares regression

MLE for Linear Regression

Assume a stochastic model:

$$y^{(n)} = \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \beta^{-1})$

This gives a likelihood function:

$$p(y^{(n)} \mid \phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)} \mid \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

• With input matrix Φ and output matrix y, the data likelihood is:

$$p(\mathbf{y} \mid \mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)} \mid \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Log-likelihood

Given data likelihood (prev. slide)

$$p(\mathbf{y} \mid \mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)} \mid \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Log likelihood:

$$\log p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \beta E_D(\mathbf{w})$$

where
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

Derivation?

Derivation of log-likelihood of p

From
$$p(y^{(n)} \mid \phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)} \mid \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

$$= \sqrt{\frac{\beta}{2\pi}} \exp\left(-\frac{\beta}{2} \left\| y^{(n)} - \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right\|^{2}\right)$$

Derive:
$$\log p(y^{(1)}, y^{(2)}, \dots, y^{(N)} \mid \Phi, \mathbf{w}, \beta)$$

$$= \log \prod_{n=1}^{N} \mathcal{N} \left(y^{(n)} \mid \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}), \beta^{-1} \right)$$

$$= \sum_{n=1}^{N} \log \left(\sqrt{\frac{\beta}{2\pi}} \exp \left(-\frac{\beta}{2} \left\| y^{(n)} - \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right\|^{2} \right) \right)$$

$$= \sum_{n=1}^{N} \left(\frac{1}{2} \log \beta - \frac{1}{2} \log 2\pi - \frac{\beta}{2} \left\| y^{(n)} - \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right\|^{2} \right)$$

$$= \frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \sum_{n=1}^{N} \frac{\beta}{2} \left\| y^{(n)} - \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right\|^{2}$$

Maximum likelihood estimation (MLE)

- Let's maximize the log-likelihood!
- Set the gradient of log-likelihood = 0 (Why?)

$$\nabla_{\mathbf{w}} \log p(y|\mathbf{\Phi}, \mathbf{w}, \beta) = \nabla_{\mathbf{w}} \left(\frac{N}{2} \log \beta - \frac{N}{2} \log 2\pi - \sum_{n=1}^{N} \frac{\beta}{2} \left\| y^{(n)} - \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right\|^{2} \right)$$
Constant

$$= \beta \sum_{n=1}^{N} \left(y^{(n)} - \underline{\mathbf{w}}^{\top} \phi(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)}) \right)$$

$$= \beta \left(\sum_{n=1}^{N} y^{(n)} \phi(\mathbf{x}^{(n)}) - \phi(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)})^{\top} \mathbf{w} \right) = 0$$

• In matrix form, $\beta(\Phi^{\top}\mathbf{y} - \Phi^{\top}\Phi\mathbf{w}) = 0$

$$\mathbf{w}_{\mathrm{ML}} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}\mathbf{y}$$

MLE solution is equivalent to OLS solution!

Locally-weighted Linear Regression

Locally weighted linear regression

• Main idea: When predicting $f(\hat{\mathbf{x}})$, give high weights for "neighbors" of $\hat{\mathbf{x}}$.

In locally weighted regression, points are weighted by proximity to the current $\hat{\mathbf{x}}$ in question using a kernel. A regression is then computed using the weighted points.

Regular linear regression vs. locally weighted linear regression

Regular linear regression

$$\sum_{n=1}^{N} \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2}$$

Locally weighted linear regression

$$\sum_{n=1}^{N} r^{(n)}(\widehat{\mathbf{x}}) \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2}$$

Linear regression vs. Locally-weighted Linear Regression

- A query point $\widehat{\mathbf{x}}$, training set $\left\{\left(\mathbf{x}^{(n)},y^{(n)}\right)\right\}_{n=1}^N$
- Linear regression
 - 1. Fit w to minimize $\sum_{n=1}^{N} (\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)})^2$
 - 2. Predict $\mathbf{w}^{\top} \phi(\widehat{\mathbf{x}})$
- Locally-weighted linear regression
 - 1. Fit w to minimize $\sum_{n=1}^{N} r^{(n)}(\widehat{\mathbf{x}}) \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)} \right)^2$
 - 2. Predict $\mathbf{w}^{\top} \phi(\widehat{\mathbf{x}})$

weights are dependent on the query $\,\widehat{\mathbf{x}}\,$ (i.e., need to solve the optimization for each query value)

Linear regression vs. Locally-weighted Linear Regression

- Locally-weighted linear regression
 - 1. Fit w to minimize $\sum_{n=1}^{N} r^{(n)}(\widehat{\mathbf{x}}) \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)} \right)^{2}$
 - 2. Predict $\mathbf{w}^{\top} \phi(\widehat{\mathbf{x}})$
- Remarks:

1. Standard choice:
$$r^{(n)}(\widehat{\mathbf{x}}) = \exp\left(-\frac{\left\|\phi(\mathbf{x}^{(n)}) - \phi(\widehat{\mathbf{x}})\right\|^2}{2\tau^2}\right)$$

2. Note that $r^{(n)}(\widehat{\mathbf{x}})$ depends on $\widehat{\mathbf{x}}$ (query point), and you solve linear regression for each query point $\widehat{\mathbf{x}}$

Gaussian kernel with kernel width au

3. The problem can be formulated as a modified version of least squares problem (HW#1)

Locally weighted linear regression

- Choice of kernel width τ matters
 - Requires hyper-parameter tuning

The estimator is minimized when kernel includes as many training points as can be accommodated by the model. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

Summary

- L_2 Regularized linear regression $\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)})^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$
 - Adding L₂ regularizer
 - Can be solved via closed form (simple modification of the original linear regression)
 - penalizes complex solutions (with high weights)
- Maximum likelihood interpretation of linear regression
 - Linear regression can be interpreted as performing MLE assuming the Gaussian noise distribution for targets
- Locally-weighted linear regression

Any feedback (about lecture, slide, homework, project, etc.)?

(via anonymous google form: https://forms.gle/99jeftYTaozJvCEF8)

Change Log of lecture slides:

https://docs.google.com/document/d/e/2PACX-1vRKx40eOJKACqrKWraio0AmlFS1_xBMINuWcc-jzpfo-ySj_gBuqTVdf Hy8v4HDmqDJ3b3TvAW1FVuH/pub