Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1	Introduction	Introduction of AI, introduction of Machine Learning, Significance of AI and ML, Application areas, model pipelining	3
2	Mathematical Formulation	Matrices and its operations, Overview of probability theory, Bayes networks, Independece, I-Maps, Undirected graphical models, Bayesian and Markov networks	5
3	Models and Learning	Learning, Types of learning, Local models; Exact inference, Clique trees, Belief propagation, Tree construction, applications solving problems	6
4	Optimization and Inference	Introduction to optimization, Approximate inference: sampling, Markov chains, MAP inference, Inference in temporal models; Learning graphical models	6
5	Estimation	Parameter estimation, Bayesian networks and shared parameters, structure learning, Partially observed data, Dimension reduction: PCA, LDA	8
6	Decision making	Gradient descent, Expected Maximization, Hidden variables, HMM, Undirected models, Undirected structure learning, Causalty, Utility functions, Decision problem, Expected utility	8
7	Classification and Segmentation	KNN, SVM, NN and its types, K-means, FCM, Introduction to Deep learning for classification and segmentation	6
Total number of Lectures			42
Evaluation CriteriaComponentsMaximum MarksT120T220End Semester Examination35TAAttendance (15Marks), Assignment/Quiz/Mini-project (10Marks)Total100			

Project based learning: Each student in a group of 2-3 will extract data from real-world domains using data from standard repositories that are globally recognized. For conducting application-based

research, the students are encouraged to analyze social/political/financial/disease related data and generate underlying networked structure based on the algorithms of AI.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Michael Negnevitsky, Artificial Intelligence, Person Publication, Third Edition, 2011	
2.	Toshinori Munakata, Fundamentals of the New Artificial Intelligence, Springer, Second Edition, 2008	
3.	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. <i>Mathematics for machine learning</i> . Cambridge University Press, 2020	
4.	Valliappa Lakshmanan, Martin Görner, Ryan Gillard - Practical Machine Learning for Computer Vision_ End-to-End Machine Learning for Images, O'Reilly Media, Inc., 2021	
5.	Laurence Moroney - AI and Machine Learning for On-Device Development_ A Programmer's Guide, O'Reilly Media, Inc., 2021	