第三周作业参考

王睿、胡铁宁

2023年3月28日

目录

1	第三周作业	2
	1.1 3月21日布置的作业	2
	1.2 3月23日布置的作业	8
	·点说明	
	(i) 作业讲义部分题过程可能有省略。如对作业仍有疑问可以在群里或答疑课上讨	论。
(ii) 作业讲义会随时间更新 。	

- (iii) 请及时核对自己在 BB 系统里的分数,如有问题请向对应的助教反馈。
- (iv) 附录里的内容仅供有兴趣的同学参考,有可能涉及之后才会学习或课外的知识,不要求在现阶段掌握。
- (v) 讲义最好用电脑打开,文档内置了链接功能,复习或查看指定的作业很方便。

成绩说明:本周作业共 17 题 (每个小问算一题,证明有多个子问题算一题),目前打算 给 3 的容忍度。错 4-5 道题扣 0.5 分,错 6-7 道题扣 1 分,依此类推。对于一些不严格 的证明,助教也会酌情给分。也意味着作业得到满分不代表作业没有问题,请认真查看 自己的作业。

上述评分标准对每个助教都成立。

1 第三周作业

1.1 3月21日布置的作业

习题 1 (教材 P113 习题 6). 举出满足下列条件的 2 阶实方阵 A

(1)
$$\mathbf{A}^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
; (2) $\mathbf{A}^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; (3) $\mathbf{A}^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{H} \cdot \mathbf{A} \neq \mathbf{I}$

解. 假设 $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,代入计算即得

$$A^{2} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ca + dc & cb + d^{2} \end{pmatrix}$$

求解 4 个方程,即得

$$(1) \mathbf{A}^{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \emptyset$$

$$(2) \mathbf{A}^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \mathbf{A} = \pm \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

对

$$(3) \mathbf{A}^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{H} \mathbf{A} \neq \mathbf{I}$$

化简有

$$\begin{cases} a^{3} + 2abc + bcd = 1 \\ b(a^{2} + ad + bc + d^{2}) = 0 \\ c(a^{2} + ad + bc + d^{2}) = 0 \\ abc + 2bcd + d^{3} = 1 \end{cases}$$

若 b = 0 或 c = 0,则可推出 A = I,可知 $a^2 + ad + bc + d^2 = 0$,将 $bc = -(a^2 + ad + d^2)$ 代回第一行或第四行,有 $(a + d)^3 = -1$,保留 a, b 作为变量,可得

$$\mathbf{A} = \begin{pmatrix} a & b \\ -\frac{a^2 + a + 1}{b} & -1 - a \end{pmatrix}$$

习题 2 (教材 P113 习题 7). 计算下列方阵的 k 次方幂, $k \ge 1$:

$$(1) \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}; (2) \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; (3) \begin{pmatrix} 1 & a & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(4) \begin{pmatrix} 1 & 1 & & & & \\ 1 & \ddots & & & \\ & \ddots & 1 & & \\ & & & 1 \end{pmatrix}_{n \times n}; (5) \begin{pmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \cdots & a_{n}b_{n} \end{pmatrix}$$

解. (1) 计算矩阵的平方即得

$$\begin{pmatrix}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta
\end{pmatrix}$$

,使用归纳法很容易得到原矩阵的 k 次幂为

$$\begin{pmatrix}
\cos k\theta & \sin k\theta \\
-\sin k\theta & \cos k\theta
\end{pmatrix}$$

事实上这个矩阵对应了 2 维平面上的逆时针旋转 $-\theta$ (在日后基本不会涉及顺时针旋转),k 次幂对应旋转 k 次,相当于 1 次旋转了 $-k\theta$ 。

(2) 有一个非常取巧的方法,可以注意到 (2) 与 (1) 式形式相同,在 a,b 不同时为 0 时,

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \sqrt{a^2 + b^2} \begin{pmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{b}{\sqrt{a^2 + b^2}} \\ -\frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{pmatrix}$$

从而把 (2) 问题转化为 (1) 问题,而当 a = b = 0 时结果显然是零矩阵。当然还可以 使用

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a\mathbf{I} + b\mathbf{J}, \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

拆为单位阵和另一矩阵的和,且 IJ = JI = J。因此在计算 $(aI + bJ)^k$ 时只需计算 J^r ,写出 J^r 的前几项

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, J^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I, J^3 = (-I)J = -J, J^4 = (-I)^2 = I$$

因此

$$(a\mathbf{I} + b\mathbf{J})^k = \sum_{r=0}^k C_k^r (a\mathbf{I})^r (b\mathbf{J})^{k-r}$$
$$= \sum_{r=0}^k C_k^r a^r b^{k-r} \mathbf{I} \mathbf{J}^{k-r} = \sum_{r=0}^k C_k^r a^r b^{k-r} \mathbf{I} \mathbf{J}^{k-r \bmod 4}$$

$$\begin{pmatrix} 1 & a & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

使用

$$\begin{pmatrix} 1 & a & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{I} + \mathbf{J}, \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \mathbf{J} = \begin{pmatrix} 0 & a & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

拆为单位阵和另一矩阵的和,且 IJ = JI = J。在计算 $(I + J)^k$ 时只需计算 J^r ,写出 J^r 的前几项

因此

$$(\mathbf{I} + \mathbf{J})^k = \sum_{r=0}^k C_k^r \mathbf{I}^r \mathbf{J}^{k-r} = \sum_{r=0}^k C_k^r \mathbf{I} \mathbf{J}^{k-r}$$

$$= C_k^{k-2} \mathbf{J}^2 + C_k^{k-1} \mathbf{J}^1 + C_k^k \mathbf{I} = \begin{pmatrix} 1 & ka & k & k(k-1)a \\ 0 & 1 & 0 & k \\ 0 & 0 & 1 & ka \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & & & \\ & 1 & \ddots & & \\ & & \ddots & 1 & \\ & & & 1 \end{pmatrix}$$

使用

$$\begin{pmatrix} 1 & 1 & & \\ & 1 & \ddots & \\ & & \ddots & 1 \\ & & & 1 \end{pmatrix}_{n \times n} = \boldsymbol{I}_{n \times n} + \boldsymbol{J}_{n \times n}, \boldsymbol{J} = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$$

拆为单位阵和另一矩阵的和,且 IJ = JI = J。在计算 $(I + J)^k$ 时只需计算 J^r ,写出 J^r 的前几项可以发现每次乘 J 相当于将 1 的斜线向右上移动一格,因此使用归纳法证明。记 J^r 的矩阵元为 $c_{r,ij}$,满足

$$c_{r,ij} = \begin{cases} 1, & j = i + r \\ 0, & \text{others} \end{cases}$$
 (1)

则 J^{r+1} 的矩阵元为 $c_{r+1,ij}$ 满足

$$c_{r+1,ij} = \sum_{k=1}^{n} c_{r,ik} c_{1,kj} = c_{r,i(i+r)} c_{1,(i+r)j} = \begin{cases} 1, & j = i+r+1 \\ 0, & \text{others} \end{cases}$$

因此对 r=1,式(1)成立,可由归纳法知对 J^r ,式(1)也成立;另一方面,当 $r \geq n$ 时,不存在 $i,j,\mathrm{s.t.}$ $j=r+i\leq n$,此时 J^r 的每个矩阵元都为 0,即知 $J^r=O,r\geq n$ 。回到本题,

$$(I+J)^{k} = \sum_{r=0}^{k} C_{k}^{r} I^{r} J^{k-r} = \sum_{r=0}^{k} C_{k}^{r} I J^{k-r}$$

$$= C_{k}^{k} I + C_{k}^{k-1} J^{1} + C_{k}^{k-2} J^{2} + \dots + C_{k}^{0} J^{k}$$

$$\begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & C_{k}^{0} \\ 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots \\ & 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & C_{k}^{0} \\ & & 1 & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & C_{k}^{k-2} \\ & & & \ddots & C_{k}^{k-1} \\ & & & 1 \end{cases}$$

$$= \begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots & C_{k}^{k-(n-1)} \\ 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & C_{k}^{k-2} \\ & & & \ddots & C_{k}^{k-1} \\ & & & & 1 \end{cases}$$

$$\begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots & C_{k}^{k-(n-1)} \\ & & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & C_{k}^{k-2} \\ & & & \ddots & C_{k}^{k-1} \\ & & & & 1 \end{cases}$$

$$\begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots & C_{k}^{k-(n-1)} \\ & & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & C_{k}^{k-2} \\ & & & \ddots & C_{k}^{k-1} \\ & & & & 1 \end{cases}$$

$$\begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots & C_{k}^{k-(n-1)} \\ & & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & 1 \end{cases}$$

$$\begin{cases} 1 & C_{k}^{k-1} & C_{k}^{k-2} & \cdots & \cdots & C_{k}^{k-(n-1)} \\ & & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & C_{k}^{k-1} \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ & &$$

$$\begin{pmatrix}
a_1b_1 & a_1b_2 & \cdots & a_1b_n \\
a_2b_1 & a_2b_2 & \cdots & a_2b_n \\
\vdots & \vdots & & \vdots \\
a_nb_1 & a_nb_2 & \cdots & a_nb_n
\end{pmatrix}$$

在上一次作业中,已经证明了

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix}$$

设

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \mathbf{B} = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

有

$$(\boldsymbol{A}\boldsymbol{B})^k = \boldsymbol{A}(\boldsymbol{B}\boldsymbol{A})^{k-1}\boldsymbol{B}$$

由于

$$\mathbf{B}\mathbf{A} = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i b_i$$

即可得

$$(AB)^{k} = A(BA)^{k-1}B = A\left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{k-1}B$$

$$= \left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{k-1}AB = \left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{k-1} \begin{pmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \cdots & a_{n}b_{n} \end{pmatrix}$$

同学作业点评 2.1. 在这道题中有不少同学计算了 k = 1, 2, 3 的情形后直接写出了答案, 这样不好, 而应该使用数学归纳法或者其他严谨的方法证明之.

习题 3 (教材 P114 习题 8). 设 A, B 都是 n 阶对称方阵, 且 AB = BA, 证明 AB 也是 对称方阵。

证明. 证明 AB 是对称方阵,就是证明 $(AB)^T = AB$,为此只需考虑

$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T = \boldsymbol{B}\boldsymbol{A} = \boldsymbol{A}\boldsymbol{B}$$

从左至右等号分别使用了矩阵转置的性质、A, B 自身对称、A, B 可交换。

习题 4 (教材 P114 习题 9). 证明:两个n 阶上(下)三角形方阵的乘积仍是上(下)三角形方阵。

证明. 对一个n阶上三角形方阵,矩阵元素满足

$$a_{ij} = \begin{cases} a'_{ij}, & j \ge i \\ 0, & j < i \end{cases}$$

设两个 n 阶上三角形方阵分别为 A, B, C = AB,则有

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=i}^{j} a_{ik} b_{kj} = \begin{cases} c'_{ij}, & j \ge i \\ 0, & j < i \end{cases}$$

因此 C = AB 也是上 n 阶上三角形方阵,下三角形方阵证明同理。

习题 5 (补充习题 1). 计算

$$\boldsymbol{J} = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$$

的幂 $J^t(t \ge 1)$, 并找出与 J 乘法可交换的所有矩阵.

证明. 我们在习题 7(4) 已经给出了证明,这里只给出结果。记 J^t 的矩阵元为 $c_{t,ij}$,满足

$$c_{t,ij} = \begin{cases} 1, & j = i + t \\ 0, & \text{others} \end{cases}$$

假设与 J 乘法可交换的矩阵为 A, 矩阵元为 a_{ij} , 满足

i = n 时,有

i=1 时,有

考虑到 $a_{ij} = a_{(i-1)(j-1)}$,以及矩阵最后一行除 a_{nn} 外均为 0,可知矩阵是上三角阵;同时,上三角的部分沿斜线元素的值相同。考虑 J^r 的形式,可知与 J 乘法可交换的矩阵 A 的充要条件是 A = f(J),f(J) 是关于 J 的矩阵多项式。

习题 6 (补充习题 2). 若有矩阵 $A = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$,以及矩阵 B,使得 $AB = \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix}$,求出这个矩阵 B (提示: 直接求解, 或者参考讲义中的注 4.2.25 (5) 中的处理方法, 或者利用教材中例 4.2.7 给出的公式)。

解. 直接求解相当于设 $\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$; 讲义中的注 4.2.25 (5) 是使用 Gauss 消元 法求解矩阵的逆,教材中例 4.2.7 给出的公式给出了求解二阶矩阵的方法,这里使用教材中给出的公式。

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

将 A 代入左边,有

$$\begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{1 \times 5 - (-2) \times (-2)} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

上述事实上需要先证明 A 是可逆矩阵,但另一方面,如果"恰好"找到了一个矩阵, 左乘右乘原方阵都为单位阵,那也可以知道它是原方阵的逆矩阵。由

$$\mathbf{AB} = \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix} \Rightarrow \mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix} = \begin{pmatrix} 7 & -8 & 1 \\ 4 & -5 & 1 \end{pmatrix}$$

1.2 3 月 23 日布置的作业

习题 7 (教材 P113 习题 2). 证明: 每个方阵都可以表示为一个对称矩阵和一个反对称矩阵之和的形式.

证明. 设 A 为方阵. 我们取 $B = \frac{1}{2}(A + A^{T}), C = \frac{1}{2}(A - A^{T})$. 于是 $B^{T} = \frac{1}{2}(A^{T} + A) = B, C^{T} = \frac{1}{2}(A^{T} - A) = -C$,并且 A = B + C. 即我们将 A 表示成了一个对称矩阵和一个反对称矩阵之和的形式.

习题 8 (教材 P114 习题 14). 设方阵 A 满足 $I - 2A - 3A^2 + 4A^3 + 5A^4 - 6A^5 = \mathbf{0}$. 证明:I - A 可逆. 并求 $(I - A)^{-1}$.

证明. 根据题目条件的形式, 我们可以构造多项式 $f(x) = -6x^5 + 5x^4 + 4x^3 - 3x^2 - 2x + 1$. 通过带余除法¹, 我们可以得到 $f(x) = (-x+1) \left(6x^4 + x^3 - 3x^2 + 2\right) - 1$. 然后在上式中用 A 代入 x, 可得 $f(A) = (-A+I) \left(6A^4 + A^3 - 3A^2 + 2I\right) - I = 0$. 故 $I = (-A+I) \left(6A^4 + A^3 - 3A^2 + 2I\right)$. 这就说明了 I-A 可逆, 并且 $(I-A)^{-1} = 6A^4 + A^3 - 3A^2 + 2I$. \square

同学作业点评 8.1. 有一些同学在将 A 代入多项式时没有把常数项 2 变成 2I, 应避免这种"低级错误".

习题 9 (教材 P114 习题 15(1)). 求解矩阵方程:

$$X \begin{pmatrix} -2 & -2 & 1 \\ 1 & 4 & -3 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 3 \\ -3 & 2 & 5 \\ -1 & 5 & 4 \end{pmatrix}.$$

解.由于我们更习惯把未知数放在右边做乘法,故令 $Y = X^{T}$ 并对方程两边进行转置 2 :

$$\begin{pmatrix} -2 & 1 & 1 \\ -2 & 4 & -1 \\ 1 & -3 & 1 \end{pmatrix} \mathbf{Y} = \begin{pmatrix} 2 & -3 & -1 \\ -1 & 2 & 5 \\ 3 & 5 & 4 \end{pmatrix}.$$

令上式中 Y 左边的矩阵为 A, 等号右边的矩阵为 B. 受到老师讲义注 4.2.25 (5) 中处理方法的启发, 我们可以进行如下操作: 对矩阵 (A,B) 经过一系列初等行变换转化为约化标准形 (实际上我们做的题中 A 通常可逆, (A,B) 可以化为 (I,C) 的形式) 再写出解来. 这道题具体过程如下, 但不标注初等行变换的具体方式.

$$\begin{pmatrix}
-2 & 1 & 1 & 2 & -3 & -1 \\
-2 & 4 & -1 & -1 & 2 & 5 \\
1 & -3 & 1 & 3 & 5 & 4
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -3 & 1 & 3 & 5 & 4 \\
-2 & 1 & 1 & 2 & -3 & -1 \\
-2 & 4 & -1 & -1 & 2 & 5
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -3 & 1 & 3 & 5 & 4 \\
0 & -5 & 3 & 8 & 7 & 7 \\
0 & -2 & 1 & 5 & 12 & 13
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -3 & 1 & 3 & 5 & 4 \\
0 & 1 & -\frac{3}{5} & -\frac{8}{5} & -\frac{7}{5} & -\frac{7}{5} \\
0 & 0 & -\frac{1}{5} & \frac{9}{5} & \frac{46}{5} & \frac{51}{5}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & -3 & 0 & 12 & 51 & 55 \\
0 & 1 & 0 & -7 & -29 & -32 \\
0 & 0 & 1 & -9 & -46 & -51
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & -9 & -36 & -41 \\
0 & 1 & 0 & -7 & -29 & -32 \\
0 & 0 & 1 & -9 & -46 & -51
\end{pmatrix}.$$

于是解得
$$\mathbf{Y} = \begin{pmatrix} -9 & -36 & -41 \\ -7 & -29 & -32 \\ -9 & -46 & -51 \end{pmatrix}$$
,即原矩阵方程有唯一解 $\mathbf{X} = \begin{pmatrix} -9 & -7 & -9 \\ -36 & -29 & -46 \\ -41 & -32 & -51 \end{pmatrix}$. 在计算结

東之后 不妨把结果同代一下验证是否正确

事实上, 这就是用增广矩阵解线性方程组的推广, 同学们在掌握计算的同时也要理解原理. □

¹这里并没有展示带余除法的详细过程,但同学们一定要熟练掌握.

²当然也可以不转置,可以思考这样又应该怎样解.

同学作业点评 9.1. 有同学先计算了 A 的逆, 然后计算 $A^{-1}B$, 这样也是可行的: 在这里 的方法中做初等行变换的计算会更复杂, 而若先求逆矩阵则还须多算一个矩阵乘法, 同 学们可以自行对这两种方法进行取舍. 但是还有同学把 X 的 9 个分量全部设出来计算, 这样会过于繁琐.

习题 10 (教材 P114 习题 18). 求所有满足 $A^2 = O, B^2 = I, \overline{C}^T C = I$ 的 2 阶复方阵 A, B, C

解. 本题的做法和最终表达结果是多样的, 此处只展示一种.

(i) 设
$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$$
. 则由 $\mathbf{A}^2 = \mathbf{O}$ 可得
$$\begin{cases} a_1^2 + a_2 a_3 = 0, \\ a_1 a_2 + a_2 a_4 = 0, \\ a_1 a_3 + a_3 a_4 = 0, \\ a_2 a_3 + a_4^2 = 0, \end{cases}$$
, 即
$$\begin{cases} a_1^2 + a_2 a_3 = 0, \\ a_2(a_1 + a_4) = 0, \\ a_3(a_1 + a_4) = 0, \\ a_2 a_3 + a_4^2 = 0. \end{cases}$$

如果 $a_1 + a_4 \neq 0$, 则可知 $a_2 = 0$, $a_3 = 0$, 那么上面的方程组化简为 $\begin{cases} a_1 & \circ, \\ a_2 = 0, \\ a_3 = 0, \end{cases}$ 因此

A = 0.

如果 $a_1 + a_4 = 0$, 则前面的方程组可以化简为 $\begin{cases} a_1^2 + a_2 a_3 = 0, \\ a_1 = -a_4. \end{cases}$ 若 $a_2 \neq 0$, 则可设 $a_2 = a, a_1 = \lambda a$, 于是 $a_4 = -\lambda a, a_3 = -\lambda a^2$. 此时 $\mathbf{A} = \begin{pmatrix} \lambda a & a \\ -\lambda^2 a & -\lambda a \end{pmatrix}$. 若 $a_2 = 0$, 则易

知 A = 0.

综上, 我们得到 $\mathbf{A} = \begin{pmatrix} \lambda a & a \\ -\lambda^2 a & -\lambda a \end{pmatrix} = a \begin{pmatrix} 1 \\ -\lambda \end{pmatrix} \begin{pmatrix} \lambda & 1 \end{pmatrix}$, 其中 $\lambda, a \in \mathbb{C}$.

(ii) 设
$$\mathbf{B} = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$$
,则由 $\mathbf{B}^2 = \mathbf{I}$ 可得
$$\begin{cases} b_1^2 + b_2 b_3 = 1, \\ b_1 b_2 + b_2 b_4 = 0, \\ b_1 b_3 + b_3 b_4 = 0, \\ b_2 b_3 + b_4^2 = 1, \end{cases}$$
 即
$$\begin{cases} b_1^2 + b_2 b_3 = 1, \\ b_2(b_1 + b_4) = 0, \\ b_3(b_1 + b_4) = 0, \\ b_1^2 = b_2^2. \end{cases}$$

如果 $b_1 + b_4 \neq 0$, 则上面的方程组可以化简为 $\begin{cases} b_1^2 + b_2 b_3 = 1, \\ b_2 = 0, \\ b_3 = 0, \end{cases}$ 于是不难得到

$$\mathbf{A} = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}.$$

如果 $b_1 + b_4 = 0$,则前面的方程组可以化简为 $\begin{cases} b_1^2 + b_2 b_3 = 1, \\ b_1 + b_4 = 0. \end{cases}$ 令 $b_1 = b$,则 $b_4 = -b_1$. 若 $b_3 = 0$,则易知 A 具有形式 $\pm \begin{pmatrix} 1 & b'' \\ 0 & -1 \end{pmatrix}$, $b'' \in \mathbb{C}$. 若 $b_3 \neq 0$,则令 $b_3 = b'$,易解得 $A = \begin{pmatrix} b & \frac{1-b^2}{b'} \\ b' & -b \end{pmatrix}$,其中 $b, b' \in \mathbb{C}$, $b' \neq 0$.

综上, 我们得到 $\mathbf{B} = \pm \mathbf{I}$ 或 $\pm \begin{pmatrix} 1 & b'' \\ 0 & -1 \end{pmatrix}$ 或 $\begin{pmatrix} b & \frac{1-b^2}{b'} \\ b' & -b \end{pmatrix}$, 其中 $b, b', b'' \in \mathbb{C}, b' \neq 0$.

(iii) 令
$$\mathbf{C} = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}$$
, 于是由 $\overline{\mathbf{C}}^{\mathrm{T}} \mathbf{C} = \mathbf{I}$ 可得 $^3 \begin{cases} c_1 \overline{c}_1 + c_2 \overline{c}_2 = 1, \\ c_1 \overline{c}_3 + c_2 \overline{c}_4 = 0, \\ c_3 \overline{c}_1 + c_4 \overline{c}_2 = 0, \\ c_3 \overline{c}_3 + c_4 \overline{c}_4 = 1. \end{cases}$ 注意到上式中间两个式

子是等价的 (因为互为复共轭), 故这个方程组可以等价地转化为 $\begin{cases} |c_1|^2 + |c_2|^2 = 1, \\ c_1 \overline{c}_3 + c_2 \overline{c}_4 = 0, \\ |c_3|^2 + |c_4|^2 = 1. \end{cases}$

于是我们可以进行三角换元:

$$c_1 = (\cos \alpha) e^{i\theta_1}, \quad c_2 = (\sin \alpha) e^{i\theta_2}, \quad c_3 = (\cos \beta) e^{i\theta_3}, \quad c_4 = (\sin \beta) e^{i\theta_4},$$

其中, $\alpha, \beta \in [0, \pi/2], \theta_j \in [0, 2\pi), j = 1, 2, 3, 4.$

于是上面的方程组转化为

$$\cos\alpha\cos\beta \mathrm{e}^{\mathrm{i}(\theta_1-\theta_3)}+\sin\alpha\sin\beta \mathrm{e}^{\mathrm{i}(\theta_2-\theta_4)}=0,$$

即

$$\begin{cases} \theta_1 - \theta_3 = \theta_2 - \theta_4 + \pi + 2k\pi, \not\exists \psi k = -2, -1, 0, 1, \\ \cos \alpha \cos \beta - \sin \alpha \sin \beta = 0(\exists \psi \cos(\alpha + \beta) = 0). \end{cases}$$

从而
$$\theta_4 = -\theta_1 + \theta_2 + \theta_3 + (2k+1)\pi$$
, $\beta = \pi/2 - \alpha$. 因此 $\mathbf{C} = \begin{pmatrix} \cos \alpha e^{i\theta_1} & \sin \alpha e^{i\theta_2} \\ \sin \alpha e^{i\theta_3} & -\cos \alpha e^{i(-\theta_1 + \theta_2 + \theta_3)} \end{pmatrix} = \begin{pmatrix} e^{i\theta_1} & 0 \\ 0 & e^{i\theta_3} \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i(\theta_2 - \theta_1)} \end{pmatrix}$, 其中, $\alpha \in [0, \pi/2]$, $\theta_j \in [0, 2\pi)$, $j = 1, 2, 3$.

同学作业点评 10.1. 这道题的难点在于计算,如果善于观察并合理地选取未知数会使计算变得更简单. 有许多同学遗漏情况,应当对参数进行合适的分类讨论,尽量让每一步的转化都是等价的.

 $[\]overline{}$ 由于笔者眼花, 建立方程使用的是 \overline{c} \overline

习题 11 (教材 P114 习题 19). 证明: 不存在 n 阶复方阵 A,B. 满足 AB - BA = I.

证明. 我们使用反证法. 假设存在 n 阶复方阵 A, B, 满足 AB - BA = I. 取等式两边的迹 立即得到 $\operatorname{tr}(\mathbf{AB} - \mathbf{BA}) = \operatorname{tr}(\mathbf{I}) = n$. 而上式左边为零, 矛盾.

习题 12 (教材 P114 习题 20). 证明: 可逆上 (下) 三角形、准对角、对称、反对称方阵 的逆矩阵仍然分别是可逆上 (下) 三角形、准对角、对称、反对称方阵.

证明. 设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为可逆方阵, 其逆矩阵为 $\mathbf{B} = (b_{ij})_{n \times n}$.

- (i) 如果 A 为可逆上三角形方阵. 我们对 n 归纳. 当 n = 1 时, 结论显然. 假设结论 对 n-1 阶可逆上三角方阵成立, 下面考虑 n 阶可逆上三角形方阵方阵的情形. 设 $A = \begin{pmatrix} A_1 & \alpha \\ \mathbf{0} & a_{nn} \end{pmatrix}, B = \begin{pmatrix} B_1 & \beta \\ \mathbf{0} & b_{nn} \end{pmatrix}, 其中 A_1, B_1 为 n-1 阶方阵. 于是由 <math>AB = I_n$ 可 得 $A_1B_1 = I_{n-1}$, 所以 B_1 是 A_1 的逆矩阵. 由归纳假设知 B_1 为上三角形矩阵, 从 而 B 是上三角形矩阵.
- (ii) 如果 A 为可逆下三角形方阵, 对 A 进行转置即可化归为 (i) 的结论.

(iii) 如果
$$A$$
 为准对角矩阵 4 ,则可设 $A = \operatorname{diag}(A_1, \cdots, A_r), B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & & \vdots \\ B_{r1} & B_{r2} & \cdots & B_{rr} \end{pmatrix}$,其中 B 的分块方式与 A 对应. 于是 $I_n = AB = \begin{pmatrix} A_1B_{11} & A_1B_{12} & \cdots & A_1B_{1r} \\ A_2B_{21} & A_2B_{22} & \cdots & A_2B_{2r} \\ \vdots & & \vdots & & \vdots \\ A_rB_{r1} & A_rB_{r2} & \cdots & A_rB_{rr} \end{pmatrix}$. 从

其中
$${m B}$$
 的分块方式与 ${m A}$ 对应. 于是 ${m I}_n = {m A}{m B} = egin{pmatrix} {m A}_1{m B}_{11} & {m A}_1{m B}_{12} & \cdots & {m A}_1{m B}_{1r} \\ {m A}_2{m B}_{21} & {m A}_2{m B}_{22} & \cdots & {m A}_2{m B}_{2r} \\ \vdots & \vdots & & \vdots \\ {m A}_r{m B}_{r1} & {m A}_r{m B}_{r2} & \cdots & {m A}_r{m B}_{rr} \end{pmatrix}$. 从

而 \mathbf{A}_k 可逆且 $\mathbf{A}_k \mathbf{B}_{kk} = \mathbf{I}, \mathbf{A}_k \mathbf{B}_{kl} = \mathbf{O}, k, l = 1, \cdots, r, k \neq l$. 在 $\mathbf{A}_k \mathbf{B}_{kl} = \mathbf{O}$ 两边左乘 A_{ι}^{-1} 即可得当 $k \neq l$ 时, $B_{kl} = O$. 因此 A^{-1} 仍为准对角矩阵.

- (iv) 当 $\bf A$ 为可逆对称方阵时,有 $({\bf A}^{-1})^{\rm T} = ({\bf A}^{\rm T})^{-1} = {\bf A}^{-1}$ 故 ${\bf A}^{-1}$ 也为可逆对称方阵.
- (v) 当 A 为可逆反对称方阵时,有 $(A^{-1})^{T} = (A^{T})^{-1} = -A^{-1}$ 故 A^{-1} 也为可逆反对称 方阵.

同学作业点评 12.1. 这是一道证明题. 通过作业反映的情况, 大部分同学的表现都不太 好 (尤其是前两个小问). 笔者认为, 一个好的证明应该使用通顺的语句、自洽的语言、清 晰的语义、恰当的数学符号进行书写,并且能够体现作者的思路.大家可以参考并模仿 各种数学书上证明写作的方式,

12

⁴这里默认对角块均为方阵.

习题 13 (补充习题 3). 设 A 为方阵, k 为某个正整数, 满足 $A^k = 0$. 若 $\lambda \in F = \mathbb{R}, A + \lambda I$ 是否可逆? 若可逆, 求出其逆矩阵: 若不可逆, 解释原因.

 \mathbf{m} . (i) 当 $\lambda = 0$ 时, 假如 \mathbf{A} 可逆, 则

$$(\mathbf{A}^{-1})^k \mathbf{A}^k = (\mathbf{A}^{-1})^{k-1} \mathbf{A}^{-1} \mathbf{A} \mathbf{A}^{k-1} = (\mathbf{A}^{-1})^{k-1} \mathbf{A}^{k-1} = \cdots = \mathbf{I}.$$

这与 $A^k = 0$ 矛盾. 因此 A 不可逆.

- (ii) 当 $\lambda = -1$ 时,设多项式 $f(x) = x^k$ 并做带余除法: $f(x) = (x-1)(x^{k-1} + x^{k-2} + \dots + 1) + 1$. 在上式中用 A 代入 x 可得 $A^k = (A I)(A^{k-1} + A^{k-2} + \dots + I) + I = O$. 所以 $-(A I)(A^{k-1} + A^{k-2} + \dots + I) = I$, 故 $(A I)^{-1} = -(A^{k-1} + A^{k-2} + \dots + I)$.
- (iii) 当 λ 为一般的非零实数时,令 $\boldsymbol{B} = -\lambda^{-1}\boldsymbol{A}$,则 $\boldsymbol{B}^k = \boldsymbol{O}$,由 (ii) 可知 $(\boldsymbol{B} \boldsymbol{I})^{-1} = -\sum_{i=0}^{k-1} \boldsymbol{B}^i$,即 $(-\lambda^{-1}\boldsymbol{A} \boldsymbol{I})^{-1} = -\sum_{i=0}^{k-1} (-\lambda^{-1}\boldsymbol{A})^i$. 等号两边同乘 $-\lambda^{-1}$ 则可得 $(\boldsymbol{A} + \lambda \boldsymbol{I})^{-1} = \sum_{i=0}^{k-1} (-1)^i \lambda^{-i-1} \boldsymbol{A}^i$.

综上可得, 当 $\lambda=0$ 时, $A+\lambda I$ 不可逆; 而当 $\lambda\neq0$ 时, $A+\lambda I$ 可逆且 $(A+\lambda I)^{-1}=\sum_{i=0}^{k-1}(-1)^i\lambda^{-i-1}A^i$.

- 习题 14 (补充习题 4). (i) 给定列向量 $\mathbf{u} \in \mathbb{R}^n$, 假定 $\mathbf{u}^T \mathbf{u} = 1$. 对于 $\mathbf{P} = \mathbf{u}\mathbf{u}^T$ 以及 $\mathbf{Q} = \mathbf{I}_n 2\mathbf{P}$, 证明: (a) $\mathbf{P}^2 = \mathbf{P}$, (b) $\mathbf{P}^T = \mathbf{P}$, (c) $\mathbf{Q}^2 = \mathbf{I}_n$.
 - (ii) 在上面一小问中,变换 $x\mapsto Px$ 被称作一个投影,而 $x\mapsto Qx$ 被称作一个 House-holder 反射. 为了理解这一点,对于 $u=\begin{pmatrix} 0\\0\\1\end{pmatrix}$ 和 $x=\begin{pmatrix} 1\\5\\3\end{pmatrix}$,分别计算 Px 以及 Qx. 用几何的语言来解释 Qx 与 x 的关系.
- 解. (i) (a) 容易按照定义计算得到 $P^2 = (u^T u)^2 = u^T (u u^T) u = u^T u = P$.
 - (b) $\mathbf{P}^{\mathrm{T}} = (\mathbf{u}^{\mathrm{T}}\mathbf{u})^{\mathrm{T}} = \mathbf{u}^{\mathrm{T}}\mathbf{u} = \mathbf{P}.$
 - (c) $\mathbf{Q}^2 = (\mathbf{I}_n 2\mathbf{P})^2 = \mathbf{I}_n 4\mathbf{P} + 4\mathbf{P}^2 = \mathbf{I}_n$.
 - (ii) 对于 $\mathbf{u} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 和 $\mathbf{x} = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$, 容易计算得到 $\mathbf{P}\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$ 以及 $\mathbf{Q}\mathbf{x} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$. 用几何的语言

来解释如下: 设 u 是以原点 O 为起点, 点 U 为终点的单位向量, x 是以原点 O 为起点, 点 A 为终点的向量. 过点 A 作直线 OU 的垂线, 垂足为 N, 并将 ON 倍长至点 M(即向量 \overrightarrow{MA} 与向量 \overrightarrow{OA} 关于直线 AN 对称). 而 $P: x \mapsto \overrightarrow{ON}, Q: x \mapsto \overrightarrow{MA}$ 分别是被 u 诱导的投影和反射.

致谢

感谢各位助教对本文档的校对工作和内容补充,感谢申伊塃老师以及同学对助教工作的支持。