## **Quasi-Newton methods**



Pierre Ablin, Alexandre Gramfort pierre.ablin@inria.fr

Master 2 datascience, université Paris-Saclay Optimisation for datascience

#### **Framework**

Objective: solve

$$\min_{x \in \mathbb{R}^p} f(x)$$

where f is **twice differentiable** (the Hessian matrix exists).

Not seen in the course:

- Prox-Newton methods for the twice differentiable + proximable penalty case
- ightharpoonup Constrained methods (x is constrained to a subset of  $\mathbb{R}^p$ )
- Stochastic quasi-Newton methods (when f is a sum)

These slides are mostly based on the excellent and very well written  $\it Numerical\ Optimization$  by Nocedal and Wright. Notations are the same as in the slides, but: in Numerical optimization,  $\it B$  is the Hessian and  $\it H$  is the inverse Hessian, not in these slides.

## **Overview**

So far, you have seen first order methods:

- Gradient descent
- Accelerated gradient descent
- Coordinate descent

Today: second order methods!

- Newton's method
- DFP and BFGS

These methods are widely used and are state-of-the-art for some large scale smooth problems (e.g.  $\ell_2$  logistic regression).

## Differential calculus in $\mathbb{R}^p$ 101

 $f: \mathbb{R}^p \to \mathbb{R}$  twice differentiable

**Gradient**: 
$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}(x), \cdots, \frac{\partial f}{\partial x_p}(x)\right] \in \mathbb{R}^p$$

**Hessian**: 
$$\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x^i \partial x^j}(x)\right]_{ij} \in \mathbb{R}^{p \times p}$$

Second order Taylor expansion  $(\langle a, b \rangle = a^{\top}b)$ :

$$f(x+\varepsilon) = f(x) + \langle \varepsilon, \nabla f(x) \rangle + \frac{1}{2} \langle \varepsilon, \nabla^2 f(x) \varepsilon \rangle + o(||\varepsilon||^2)$$
$$f(x+\varepsilon) = f(x) + \sum_{i=1}^{p} \varepsilon_i \frac{\partial f}{\partial x^i}(x) + \frac{1}{2} \sum_{i=1}^{p} \varepsilon_i \varepsilon_j \frac{\partial^2 f}{\partial x^i \partial x^j}(x) + o(||\varepsilon||^2)$$

## Hessian 101

 $f: \mathbb{R}^p \to \mathbb{R}$  twice differentiable

$$\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x^i \partial x^j}(x)\right]_{ij} \in \mathbb{R}^{p \times p}$$

- f is convex iff  $\nabla^2 f(x)$  is positive for all x ( $\nabla^2 f(x) \succeq 0$ )
- f is  $\mu$  strongly convex iff  $\forall x, \ \nabla^2 f(x) \succeq \mu I_p$
- f is L-smooth iff  $\forall x, \ \nabla^2 f(x) \leq L \cdot I_p$

#### Newton's method

Start at a point  $x_0$ .

For an iterate  $x_t$ , second order Taylor expansion:

$$f(x_t + \varepsilon) \simeq f(x_t) + \langle \varepsilon, \nabla f(x_t) \rangle + \frac{1}{2} \langle \varepsilon, \nabla^2 f(x_t) \varepsilon \rangle = Q_{x_t}(\varepsilon)$$

## Exercise:

Can you minimize the right hand side with respect to  $\varepsilon$ ?

## **Answer**

Minimize 
$$Q_{x_t}(\varepsilon) = f(x_t) + \langle \varepsilon, \nabla f(x_t) \rangle + \frac{1}{2} \langle \varepsilon, \nabla^2 f(x_t) \varepsilon \rangle$$
 w.r.t  $\varepsilon$ 

## It all depends on $\nabla^2 f(x_t)!$

▶ If  $\nabla^2 f(x_t) \succ 0$ ,  $\triangleleft f$  is locally strongly convex  $\odot$ 

$$\to \varepsilon^* = -[\nabla^2 f(x_t)]^{-1} \nabla f(x_t)$$

▶ Otherwise,  $x_t$  is a saddle / concave point 2 (impossible if convex)

ightarrow No minimum

## Newton's Method (preliminary version.)

Newton's method iterates:

$$p_t = -[\nabla^2 f(x_t)]^{-1} \nabla f(x_t)$$
$$x_{t+1} = x_t + p_t$$

## **Exercises:**

- ▶ Show that it converges in one step on a quadratic problem.
- Does it always converge?
- Is it a guaranteed descent method? What if the problem is convex?

# Newton's Method converges in one step on a quadratic problem...

because the second order Taylor expansion is exact in this case. Does not depend on the conditionning (unlike gradient descent).

It does not require the problem to be convex, Newton's method finds the stationnary points ( $\nabla f = 0$ ).

Attracted to saddle points!

# Does it always converge? Guaranteed descent?

## No!

Cf code example...

 $Q_{x_t}$  is not a majorizing function, for some f (even convex):

$$f(x_t + \varepsilon) \not< f(x_t) + \langle \varepsilon, \nabla f(x_t) \rangle + \frac{1}{2} \langle \varepsilon, \nabla^2 f(x_t) \varepsilon \rangle$$

#### How to fix it?

#### Guaranteed descent: for $\alpha$ small:

$$f(x_t + \alpha p_t) \simeq f(x_t) + \alpha \langle \nabla f(x_t), p_t \rangle$$
.

 $p_t$  is a descent direction if and only if  $\boxed{\langle \nabla f(x_t), p_t \rangle < 0}$ . Recall that  $p_t = -[\nabla^2 f(x_t)]^{-1} \nabla f(x_t)$ . Safe condition for guaranteed descent:  $\nabla^2 f(x_t) \succ 0$  (sufficient but not necessary). Regularization:  $\nabla^2 f(x_t) + = \lambda I_p$  for  $\lambda$  large enough.

Use a line-search to guarantee convergence

## Newton's Method (final version.)

Note: unless there is an ambiguity,  $g_t = \nabla f(x_t)$ .

- ▶ Compute  $H_t = \nabla^2 f(x_t)$  and regularize it if it is not positive.
- ▶ Set  $p_t = -H_t^{-1}g_t$
- Find  $\alpha_t$  statisfying Wolfe conditions using line-search
- $x_{t+1} = x_t + \alpha_t p_t$

Theorem[Convergence]: If the set  $\{x \in \mathbb{R}^p | f(x) \leq f(x_0)\}$  is compact, and  $||H_t|| \times ||H_t^{-1}||$  is bounded,  $\lim_{t \to +\infty} \nabla f(x_t) = 0$ .

Theorem[Quadratic rate]: Assume that  $x^* \in \mathbb{R}^p$  is such that  $\nabla f(x) = 0$  and  $\nabla^2 f(x) \succ 0$ . Then, Newton's method starting close enough from  $x^*$  will converge to  $x^*$  at a quadratic rate:

$$||x_{t+1} - x^*|| = O(||x_t - x^*||^2)$$

#### Drawbacks of Newton's method

Quadratic convergence is an interesting property, but most of the time, Newton's method is **too costly**!

- $\blacktriangleright$  Computing the Hessian is p times more costly in time and memory than the gradient  $\mbox{\textcircled{\tiny 9}}$
- ▶ If the problem is non-convex, regularization is hard and costly
- ▶ Then, need to compute  $H_t^{-1}\nabla f(x_t) \to O(p^3)$
- ▶ What if p = 10000?

Quasi-Newton methods: try to mimic Newton's direction without the computational load.

## **Quasi-Newton's methods**

Uses an approximation of the Hessian:

$$\begin{cases}
\mathsf{Compute} \ H_t \\
p_t = -H_t^{-1} g_t \\
x_{t+1} = x_t + \alpha_t p_t
\end{cases} \tag{1}$$

Or of the inverse of the Hessian:

$$\begin{cases}
\mathsf{Compute} \ B_t \\
p_t = -B_t g_t \\
x_{t+1} = x_t + \alpha_t p_t
\end{cases} \tag{2}$$

Rest of the class: How do you find good Hessian / Inverse Hessian approximations?

**Important note**: In practice  $B_t/H_t$  are never stored as  $p \times p$  matrices, but in an intermediate form that takes less memory and simplifies the computation of  $H_t^{-1}g_t$ .

## **Exercise**

$$x_{t+1} = x_t - \alpha_t B_t \nabla f(x_t) \tag{3}$$

For a  $p \times p$  matrix C, define  $y = C^{-1}x$ , and  $\tilde{f}(y) = f(Cy)$ .

- ▶ What are the gradient, Hessian of  $\tilde{f}$ ?
- ▶ Show that the update (3) corresponds to a gradient descent move on  $\tilde{f}$  for a specific C.

So: Quasi-Newton methods can be seen as **gradient descent** + **variable metric**.

## **Secant condition**

 $B_t$  or  $H_t$  are **updated** after each step, using the knowledge gained after a step.

Key idea: The change in  $\nabla f$  provides information about  $\nabla^2 f$  along the search direction!

#### **Exercise**

Show that:

$$g_{t+1} = g_t + \nabla^2 f(x_{t+1})(x_{t+1} - x_t) + o(||x_{t+1} - x_t||)$$

**notation:**  $y_t = g_{t+1} - g_t$ ,  $s_t = x_{t+1} - x_t$ 

Secant condition: Impose  $\begin{cases} H_{t+1}s_t = y_t \\ or \\ B_{t+1}y_t = s_t \end{cases}$ 

 $\rightarrow$  Constrains  $H_{t+1}$  in the search direction.

## Iterative update of $B_t$ or $H_t$

What else do we want from  $B_t/H_t$ ?

- Symmetry
- ▶ Positivity ( $B_tg_t$  or  $H_t^{-1}g_t$  should be descent direction)

**Idea**: Start from  $H_0/B_0=\lambda I_p$ , and update:

$$H_{t+1}/B_{t+1} = H_t/B_t + \Delta_t$$
, such that  $H/G$  remains positive.

Important efficiency constraint: computing  $H_t^{-1}g_t$  or  $B_tg_t$  should be quick.

 $\rightarrow$  Perform small rank (1 or 2) updates

## Broyden / SR1 method

Rank one update on  $H_t$ :

$$H_{t+1} = H_t + \sigma v v^{\top}, \ \sigma = \pm 1$$

## **Exercise**

Recall the secant condition :  $H_{t+1}s_t = y_t$ . Derive the formula for  $\sigma, v$  accordingly.

## Broyden / SR1 method

Rank one update on  $H_t$ :

$$H_{t+1} = H_t + \sigma v v^{\top}, \ \sigma = \pm 1$$

#### **Exercise**

Recall the secant condition :  $H_{t+1}s_t = y_t$ . Derive the formula for  $\sigma, v$  accordingly.

**SR1 updates**: 
$$H_{t+1} = H_t + \frac{(y_t - H_t s_t)(y_t - H_t s_t)^{\top}}{(y_t - H_t s_t)^{\top} s_t}$$

Sherman-Morisson formula: 
$$B_{t+1} = B_t + \frac{(s_t - B_t y_t)(s_t - B_t y_t)^\top}{(s_t - B_t y_t)^\top y_t}$$

## Important theorem

Let f a quadratic function with Hessian  $A \succ 0$ . Starting from any p.s.d. matrix  $B_0$ , the sequence of Hessians produced by the SR1 method with **perfect** line-search (i.e.

 $\alpha_t = \arg\min_{\alpha} f(x_t + \alpha p_t)$ ) verifies:

$$H_p = A$$

Consequently, SR1 converges in at most p+1 iterations.

## **DFP/BFGS** methods

Problems with SR1: not guaranteed positive (we may have  $\sigma=-1$ ) and denominator may vanish  $\to$  not enough to do a rank 1 update...

 $\rightarrow$  impose that  $H_{t+1}$  or  $B_{t+1}$  is the closest to  $H_t/B_t$  in some sense.

Davidon-Fletcher-Powell (DFP) method :

$$H_{t+1} = \underset{H}{\operatorname{arg\,min}} ||H - H_t|| \text{ s.t. } Hs_t = y_t$$

Broyden-Fletcher-Goldfarb-Shanno (BFGS method):

$$B_{t+1} = \operatorname*{arg\,min}_{B} ||B - B_t|| \text{ s.t. } By_t = s_t$$

(Note: the norm is the *weighted* norm  $||H|| = ||W^{1/2}HW^{1/2}||_F$ , where W is any matrix such that  $Wy_t = s_t$ )

## **DFP** method

$$H_{t+1} = \arg\min ||H - H_t|| \text{ s.t. } Hs_t = y_t$$

Leads to rank 2 updates on  $B_t$ :

$$B_{t+1} = B_t + \frac{s_t s_t^{\top}}{s_t^{\top} y_t} - \frac{B_t y_t y_t^{\top} B_t}{y_t^{\top} B_t y_t}$$

$$\tag{4}$$

#### DFP algorithm:

Start from  $x_0$ ,  $B_0 \succ 0$ , and iterate until convergence

- $ightharpoonup p_t = -B_t g_t$
- $x_{t+1} = x_t + \alpha_t p_t$  ( $\alpha_t$  found by line-search)
- ▶ Update  $B_t$  using eq.4

**Theorem**: With **optimal** line-search,  $B_t$  remains p.s.d.  $\odot$ 

## **Properties of DFP**

**Theorem**[DFP on a quadratic function]:Let f a quadratic function of Hessian  $A \succ 0$ . DFP on f satisfies  $B_p = A^{-1}$ , and therefore converges in p+1 iterations.

**Theorem**[Quadratic convergence] For a twice differentiable function f, under mild assumptions, DFP converges to a local minimum  $x^*$  of f. Further,  $\lim_{t\to\infty} B_t = \nabla^2 f(x^*)^{-1}$ . Therefore, the convergence is quadratic.

## **BFGS** method

$$B_{t+1} = \arg\min||B - B_t|| \text{ s.t. } Bs_t = y_t$$

Leads to rank 2 updates on  $\mathbf{H}_{\mathbf{t}}$ :

$$H_{t+1} = H_t + \frac{y_t y_t^{\top}}{y_t^{\top} s_t} - \frac{H_t s_t s_t^{\top} H_t}{s_t^{\top} H_t s_t}$$

$$(5)$$

#### BFGS algorithm:

Start from  $x_0$ ,  $H_0 \succ 0$ , and iterate until convergence

- $p_t = -H_t^{-1}g_t$
- $x_{t+1} = x_t + \alpha_t p_t$  ( $\alpha_t$  found by line-search)
- ▶ Update  $H_t$  using eq.5

#### **BFGS** method

$$H_{t+1} = H_t + \frac{y_t y_t^{\top}}{y_t^{\top} s_t} - \frac{H_t s_t s_t^{\top} H_t}{s_t^{\top} H_t s_t}$$

Exercise: Use Sherman-Morrison formula

$$\overline{(A+uv^\top)^{-1}}=A^{-1}-\tfrac{A^{-1}uv^\top A^{-1}}{1+v^\top A^{-1}u} \text{ to derive the updates for } B_{t+1}.$$

## **BFGS** method

$$H_{t+1} = H_t + \frac{y_t y_t^\top}{y_t^\top s_t} - \frac{H_t s_t s_t^\top H_t}{s_t^\top H_t s_t}$$

Exercise: Use Sherman-Morrison formula

$$\overline{(A+uv^\top)^{-1}}=A^{-1}-\tfrac{A^{-1}uv^\top A^{-1}}{1+v^\top A^{-1}u} \text{ to derive the updates for } B_{t+1}.$$

$$B_{t+1} = (I_p - \rho_t s_t y_t^{\top}) B_t (I_p - \rho_t y_t s_t^{\top}) + \rho_t s_t s_t^{\top}, \ \rho_t = \frac{1}{y_t^{\top} s_t}$$

BFGS has the same properties as DFP:

- ightharpoonup Converges in p+1 iterations on a quadratic problem, and perfectly matches the Hessian at iteration p.
- Quadratic convergence in the general case.

#### BUT:

▶ Less sensitive than DFP to errors in the line-search → more efficient

#### L-BFGS method

- Limited memory of BFGS, proposed by Liu and Nocedal 89.
- ▶ Memory of size m. (usually m = 10)
- ▶ Does not store the full  $p \times p$  Hessian in memory, but the past m values of  $s_t$  and  $y_t$ .
- ▶ Memory loading linear in p.

Idea: Iterate the BFGS formula

$$B_{t+1} = (I_p - \rho_t s_t y_t^{\top}) B_t (I_p - \rho_t y_t s_t^{\top}) + \rho_t s_t s_t^{\top}, \ \rho_t = \frac{1}{y_t^{\top} s_t}$$

only m times.

## L-BFGS method

Notation: 
$$V_t = I_p - \rho_t y_t s_t^{\top}$$

$$B_{t+1} = V_t^{\top} B_t V_t + \rho_t s_t s_t^{\top}, \ \rho_t = \frac{1}{y_t^{\top} s_t}$$

At each iteration: Start from an initial inverse Hessian  $B_t^0$  (can vary, usually  $\lambda I_p$ ), and:

$$B_{t} = (V_{t-1}^{\top} \cdots V_{t-m}^{\top}) B_{t}^{0} (V_{t-m} \cdots V_{t-1})$$

$$+ \rho_{t-m} (V_{t-1}^{\top} \cdots V_{t-m+1}^{\top}) s_{t-m} s_{t-m}^{\top} (V_{t-m+1} \cdots V_{t-1})$$

$$+ \rho_{t-m+1} (V_{t-1}^{\top} \cdots V_{t-m+2}^{\top}) s_{t-m+1} s_{t-m+1}^{\top} (V_{t-m+2} \cdots V_{t-1})$$

$$\cdots$$

$$+ \rho_{t-1} s_{t-1} s_{t-1}^{\top}$$

These are just mathematical equations, which lead to an efficient recursive way of computing  $B_tg_t$  (the previous matrices are never computed!)

## Two loops recursion for L-BFGS

The following algorithm is an efficient recursion to compute  $B_tg_t$  witout explicitely computing  $B_t$ :

- ightharpoonup Set  $q=g_t$
- ightharpoonup For  $i=t-1,\cdots,t-m$ :

  - $q = q \alpha_i y_i$
- $ightharpoonup r = B_t^0 q$
- ▶ For  $i = t m, \dots, t 1$ :
  - $\beta = \rho_i y_i^\top r$
  - $r = r + (\alpha_i \beta)s_i$
- Return  $r = B_t g_t$

## Advantages of L-BFGS

- ▶ Low memory cost: only need to store  $(y_i)_{i \in [t-m,t-1]}$  and  $(s_i)_{i \in [t-m,t-1]} \to 2 \times m \times p$ .
- ▶ Computation of the descent direction is also  $O(m \times p)$
- On most problem, the limited memory is actually an advantage because it forgets the outdated landscape!
- ightharpoonup Can change of initial inverse Hessian guess  $B_t^0$  at each iteration (sometimes there are some very good approximations available)
- ▶ In most cases, L-BFGS is the superior Quasi-Newton method.

## Time to code!