Fenwick Tree / Binary Indexed Tree

Joy Mukherjee

IIT Bhubaneswar

Use: Range Query

- Prefix Sum(A, i) (0 ≤ i < n)
- = A[0] + A[1] + ... + A[i]
- Range Sum(A, i, j) $(-1 < i \le j < n)$
- = A[i] + A[i+1] + ... + A[j]
- Find prefix sum in an array for an index
 - What is the prefix sum for 2?
 - 6
 - What is the prefix sum for 4?
 - 8
- Given a range [start, end], find the sum in an array in the given range?
 - What is the range sum from 2 to 4 in the array?
 - 6
 - What is the range sum from 0 to 3 in the array?
 - 6

Problem

- Query:
- 1 Prefix Sum(a, i) /
- 2 Range Sum(A, i, j)
- Given an array A of n integers, and q queries, what is the time complexity to answer all the q queries?
- Time Complexity =O(qn)

- Input:
- n = 6
- -1 3 4 0 2 1
- q = 4
- 12
- 235
- 13
- 214

-1	3	4	0	2	1
0	1	2	3	4	5

- Output:
- 6
- 3
- 6
- 9

Solution

- 1. Maintain an 1-D array R, where R[i] stores the sum from A[0] to A[i]
- 2. Each query takes O(1) time, if A[] is not updated
 - Time to prepare R[] is O(n)
 - Space complexity O(n)
 - If A[] is updated frequently, then R[] need to be reconstructed every time for each update.

Solution

- Query:
- 1 Prefix Sum(A, i) /
- 2 Range Sum(A, i, j)
- Given an array A of n integers, and q queries, what is the time complexity to answer all the q queries?
- RangeSum(a, i, j) =
- R[j]-R[i-1] if $i \ge 1$
- R[j]
- Time Complexity =O(q + n)

		3		U			
Ī	0	1	2	3	4	5	

- Input:
- n = 6
- -1 3 4 0 2 1
- q = 4
- 12
- 235
- 13
- 2 1 4

- Output:
- 6
- 3
- 6
- 9

Problem

- Query:
- 1 Prefix Sum(A, i) /
- 2 Range Sum(A, i, j)/
- 3 Update(A, i, x)
- Given an array A of n integers, and q queries, what is the time complexity to answer all the q queries?

- Input:
- n = 6
- -1 3 4 0 2 1

Α

-1

0

- q = 5
- 12
- 235
- 318
- 13
- 33-4
- 214

• Output:

4

2

-4

0

3

2

4

5

- 6
- 3
- 11
- 10

Issues

- q queries
- No of update queries = q/2 O(qn) Every time we have to update R[]
- No of range queries = q/2 O(q)
- Every update to A[i] asks for the update in R[i], R[i+1], ..., R[n-1]
- Time complexity = O(qn)

Benefit: FT/BIT

• O(n) space is required to maintain the Fenwick tree

O(nlogn) time to construct the Fenwick tree

Each search/update takes O(log n) time

• To execute q queries, O(nlogn + qlog n) time is needed.

Two's Complement (x)

- Given an integer x
- p = Binary(x)
- If x < 0 then Prepend 1 to p
- Else Prepend 0 to p
- q = 1's Complement of p
- (Flip the bits 0 -> 1 and 1-> 0)
- r = 2's Complement of x
- = 1's complement of p + 1

- 11
- p = 01011
- q = 10100
- r = q + 1 = 10100 + 1 = 10101 (Ans)

Get Parent in FT/BIT

- A[n]: A[0] to A[n-1]
- FT[n+1]
- For each index i from 1 to n, find out i's parent index.
- Parent(1011) = 1010
- Parent(1010) = 1000
- Parent(1000) = 0000
- To find the parent, we reset the rightmost set bit.
- BIT[13] = 1101 = [12, 12] = A[12]
- BIT[14] = 1110 = [12, 13] = A[12]+A[13]
- BIT[28] = 11100 = [24, 27] = A[24] + ... + A[27]

Get Parent in FT/BIT

Size of BIT = Size of original array + 1
Flip the rightmost 1 to get parent

Get Parent (x) 1010

1. Two's Complement of x 0101 + 1 = 0110

2. AND with x 0010

3. Subtract from x 1010 - 0010

4. P = x - (x & (-x)) 1000

What each node of FT/BIT contains?

Α	3	2	-1	6	5	4	-3	3	7	2	3	
			•				6					
BIT	0	3	5	-1	10	5	9	-3	19	7	9	3
		_			_						10	

BIT		Start Index of A	End Index of A	Sum
0	0			0
1	0 + 20	0	0	3
2	0 + 21	0	1	5
3	$2^1 + 2^0$	2	2	-1
4	$0 + 2^2$	0	3	10
5	$2^2 + 2^0$	4	4	5

BIT		Start Index of A	End Index of A	Sum
6	$2^2 + 2^1$	4	5	9
7	$2^2 + 2^1 + 2^0$	6	6	-3
8	0 + 2 ³	0	7	19
9	$2^3 + 2^0$	8	8	7
10	$2^3 + 2^1$	8	9	9
11	$2^3 + 2^1 + 2^0$	10	10	3

How to decide the start index of BIT[x]?

- If x is an integer in the form 2^k , then the start index is 0.
 - $x = 0 + 2^k$
 - BIT[x] = Summation of A[0] to A[$2^k 1$]

- Otherwise x can be written as $2^k + 2^m + 2^p$ such that k > m > p
 - BIT[x] = Summation of A[$2^k + 2^m$] to A[$2^k + 2^m + 2^p 1$]

Fenwick Tree

Prefix sum(A, 6)

Go to index 7 and sum up all the integers from the node up to the root (-3+9+10+0=16)

Prefix sum(BIT[], x)

```
int PrefixSum(BIT[], x) {
       int sum = 0;
      X++;
      while(x > 0) {
             sum += BIT[x];
            x = (x & (-x));
      return sum;
```

Range Sum(A, 5, 9) = Prefix sum(A, 9) - Prefix sum(A, 4)

Go to index 10 and sum up all the integers from the node up to the root

- Go to index 5 and sum up all the integers from the node up to the root (28 - 15 = 13)

Range sum(BIT[], x, y)

```
int RangeSum(BIT[], x, y) {
    if(x > 0)
        return PrefixSum(BIT, y) - PrefixSum(BIT, x-1);
    return PrefixSum(BIT, y);
}
```

Get Next (x)

- 1. Two's Complement (x)
- 2. AND with x
- 3. ADD to x

$$N = x + (x & (-x))$$

Х	Binary	2's Complement	AND	ADD	Next(x)
1	00001	11111	00001	00010	2
2	00010	11110	00010	00100	4
3	00011	11101	00001	00100	4
4	00100	11100	00100	01000	8
5	00101	11011	00001	00110	6
6	00110	11010	00010	01000	8
7	00111	11001	00001	01000	8
8	01000	11000	01000	10000	16
9	01001	10111	00001	01010	10
10	01010	10110	00010	01100	12
11	01011	10101	00001	01100	12

3. ADD to original number

ConstructFenwickTree(n, A[], BIT[])

```
ConstructFenwickTree(n, A[], BIT[]) { // n is size of A
         int i;
         for(i = 0; i <= n; i++)
                 BIT[i] = 0;
        for(i = 0; i < n; i++) {
                 int x = i+1;
                 while(x \le n) {
                          BIT[x] += A[i];
                          x += (x & (-x));
```

Update Fenwick Tree

Update(n, A[], BIT[], i, p)

```
Update(n, A[], BIT[], i, p) { // Set A[i] = p
      int x = i+1;
      int netChange = p - A[i];
      while(x \le n) {
             BIT[x] += netChange;
             x += (x & (-x));
      A[i] = p;
```