

Eletrônica Digital II

Aula H – Contador Binário Síncrono

Prof. MSc. Bruno de Oliveira Monteiro

A diferença entre os contadores Assíncronos e Síncronos é que os contadores Síncronos possuem entradas de clock curto-circuitadas.

Desta forma, para que haja mudanças de estado, devemos então estudar o comportamento das entradas dos diversos Flip-Flops, para que tenhamos na saída as sequências desejadas.

Com isso devemos sempre montar a tabela da verdade.

J	K	Qf
0	0	Qa
0	1	0
1	O	1
1	1	Qa

T	Qf
0	Qa
1	Qa

D	Qf
0	O
1	1

Podemos montar um circuito genérico de um contador síncrono, onde depende da saída anterior e da saída final para gerar um sinal de entrada.

Se avaliarmos a tabela da verdade do FF-JK, podemos dizer que:

Qa	Qf	J	K
O	O	O	*
O	1	1	*
1	O	*	1
1	1	*	O

Se avaliarmos a tabela da verdade do FF-T e FF-D, podemos dizer que:

Qa	Qf	T
O	O	O
O	1	1
1	O	1
1	1	0

Qa	Qf	D
O	O	O
O	1	1
1	O	O
1	1	1

Passaremos a trabalhar agora com 3 novas tabelas:

Qa	Qf	J	K
0	O	O	*
O	1	1	*
1	O	*	1
1	1	*	O

Qa	Qf	T
O	O	O
O	1	1
1	O	1
1	1	O

Qa	Qf	D
0	O	0
O	1	1
1	O	O
1	1	1

Exemplo: Vamos montar um contador binário Síncrono, capaz de contar de 0 até 3 (0 - 1 - 2 - 3 - 0)

1° passo: Identificar quantos FFs serão necessários.

2° passo: Vamos montar uma tabela contendo os estados anteriores e estado final;

Estado Anterior (Qa)		Estado F	Estado Final (Qf)	
Q1	Q0	Q1	Q0	
	_	_	_	
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	0	0	

3°Passo: Vamos montar a tabela de alimentação das entradas dos FF-JK, de acordo com a tabela do Qa e Qf dos estados;

		1			
Estado A (Qa)	Anterior	Estado (Qf)	Final	FF-JK (FF-JK (0)
Q1	Q0	Q1	Q0	J K1	J0 K0
Ō	0	0	1	0 *	1 *
0	1	1	0	1 *	* 1
1	0	1	1	* 0	1 *
1	1	0	0	* 1	* 1

Q.	ŲΙ		K
O	0	0	*
O	1	1	*
1	O	*	1
1	1	*	O

4°Passo: Montar o Mapa de Karnaught de cada saída:

Estado Anterior (Qa)			Estado (Qf)	Estado Final (Qf)		-JK (1)		FF-JK (0)	
	Q1	Q0	Q1	Q0		J1	K1	J0 K	(0
	0	0	0	1		0	*	1 *	
	0	1	1	0		1	*	* 1	
	1	0	1	1		*	0	1 *	
	1	1	0	0		*	1	* 1	

Q1

5°Passo: Montar o circuito

Finalizou!

Esse circuito irá contar de 0 até 3 e retornar o processo!

$$K1 = Q0$$

$$K0 = 1$$

Exercícios:

a) Resolva o mesmo exercício anterior usando apenas FF-T;

Estado Anterior (Qa)		Estado Final (Qf)		FF-T (1)	FF-T (0)
Q1	Q0	Q1	Q0	T1	T0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

Qa	Qf	T
0	O	O
O	1	1
1	O	1
1	1	O

T0 = 1

Exercícios:

b) Resolva o mesmo exercício anterior usando apenas FF-D;

Estado Anterior (Qa)		Estado Final (Qf)		FF-D (1)	FF-D (0)
Q1	Q0	Q1	Q0	D1	D0
0	0	0	1	0	1
0	1	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0

Qa	Qf	D
O	O	0
O	1	1
1	O	0
1	1	1

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro

