CS 228 : Logic in Computer Science

Krishna, S

Dealing with Equality

Assume φ is in Skolem Normal Form and uses "=". We define a equisatisfiable formula φ_E which does not use "=".

- ▶ Let τ be the signature of φ . Let E be a binary relation not in τ .
- Let φ_{\neq} be the sentence obtained by replacing all occurrences of $t_1 = t_2$ in φ with $E(t_1, t_2)$.
- ▶ Define φ_{ER} to be the sentence

$$\forall x \forall y \forall z (E(x,x) \land ((E(x,y) \leftrightarrow E(y,x)) \land (E(x,y) \land E(y,z) \rightarrow E(x,z)))$$

▶ For each relation R in τ , define φ_R as

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n ((\bigwedge_{i=1}^n E(x_i, y_i) \land R(x_1, \ldots, x_n)) \rightarrow R(y_1, \ldots, y_n))$$

▶ Let $\varphi_1 = \bigwedge_{R \in \tau} \varphi_R$

Dealing with Equality

▶ For each function f in τ , define φ_f as

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n ((\bigwedge_{i=1}^n E(x_i, y_i) \rightarrow E(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)))$$

- ▶ Let $\varphi_2 = \bigwedge_{f \in \tau} \varphi_f$
- ▶ Let $\psi_E = \varphi_{\neq} \wedge \varphi_{ER} \wedge \varphi_1 \wedge \varphi_2$
- ▶ Convert ψ_E to Prenex normal form to obtain φ_E in Skolem normal form

For any formula φ in Skolem normal form, φ is satisfiable iff φ_E is satisfiable

3/10

An Example

- $\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].$
 - φ is satisfiable : $\mathcal{A} = (\{0,1\}, f^{\mathcal{A}}(0) = 1, f^{\mathcal{A}}(1) = 0)$ and $\mathcal{A} \models \varphi$.

 - $\varphi_2 = \forall x \forall y [E(x,y) \rightarrow E(f(x),f(y)]$
 - ▶ Conjunct $\varphi_{\neq}, \varphi_2$ and φ_{ER} and convert to Prenex normal form
 - $\varphi_{E} = \forall x \forall y \forall z [(\neg E(f(x), x) \land E(f(f(x)), x)) \land (E(x, y) \rightarrow E(f(x), f(y))) \land E(x, x) \land (E(x, y) \land E(y, z) \rightarrow E(x, z))]$
 - ▶ By Herbrand's Theorem, φ_E has a Herbrand model $M = (\{c, f(c), f(f(c)), \dots, \}, E^M = \{(t, t') \in H(\varphi_E) \mid \text{the number of } f$'s in both t, t' have the same parity $\}$)
 - $ightharpoonup M \models \varphi_E$

Herbrand's Method

Given a FO sentence φ , is it satisfiable? Wlg, assume that φ is equality-free and is in Skolem normal form.

- ▶ Let $\varphi = \forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$
- ▶ Let $H(\varphi)$ be the Herbrand universe of φ
- Let $E(\varphi) = \{ \psi(t_1, \dots, t_n) \mid t_1, \dots, t_n \in H(\varphi) \}$ be the set obtained by substituting terms from $H(\varphi)$ for the variables x_1, \dots, x_n in φ
- φ is satisfiable iff $E(\varphi)$ is satisfiable

Herbrand's Method

- ▶ Assume φ is satisfiable. Then $\mathcal{A} \models \forall x_1, \dots, x_n \psi(x_1, \dots, x_n)$
- ▶ Then $\mathcal{A} \models \psi(t_1, \dots, t_n)$ where $t_1, \dots, t_n \in \mathcal{H}(\varphi)$
- ▶ Then $\mathcal{A} \models \varphi_i$ for all $\varphi_i \in \mathcal{E}(\varphi)$
- ▶ Hence, $E(\varphi)$ is satisfiable.

Herbrand's Method

- Assume $E(\varphi)$ is satisfiable. $E(\varphi)$ is a set of equality-free sentences.
- ▶ By Herbrand's Theorem, there is a Herbrand model M for $E(\varphi)$.
- ▶ The Herbrand signature for $E(\varphi)$ is the same as the Herbrand signature of φ .
- ► The universe of M is $H(\varphi)$. For $t_1, \ldots, t_n \in H(\varphi)$, $M \models \psi(t_1, \ldots, t_n)$
- ▶ Then $M \models \forall x_1 \dots x_n \psi(x_1, \dots, x_n)$
- ▶ Then $M \models \varphi$ and φ is satisfiable.
- φ is unsatisfiable iff $E(\varphi)$ is unsatisfiable.

Checking Unsatisfiability of φ

▶ $E(\varphi) = \{\varphi_1, \varphi_2, \dots\}$ is a set of quantifier free sentences, so it can be seen as a set of propositional logic formulae

Checking Unsatisfiability of φ

- ▶ $E(\varphi) = \{\varphi_1, \varphi_2, \dots\}$ is a set of quantifier free sentences, so it can be seen as a set of propositional logic formulae
- ▶ Since φ is in Skolem normal form, each formula $\varphi_i \in E(\varphi)$ is in CNF
- ▶ We know that $E(\varphi)$ is unsatisfiable iff $\emptyset \in Res^*(E(\varphi))$
- ▶ By Compactness Theorem of propositional logic, there is some finite subset $F = \{\varphi_1, \dots, \varphi_m\} \subseteq E(\varphi)$ such that $\emptyset \in Res^*(F)$
- ▶ So if $\emptyset \in Res^*(\{\varphi_1, \dots, \varphi_m\})$ for some finite m, we conclude φ is unsatisfiable

Checking Satisfiability of φ

- ▶ If $\emptyset \notin Res^*(\{\varphi_1, \dots, \varphi_m\})$, then we look at $Res^*(\{\varphi_1,\ldots,\varphi_m,\varphi_{m+1}\})$
- ▶ If $\emptyset \notin Res^*(\{\varphi_1, \dots, \varphi_{m+1}\})$, then we look at $Res^*(\{\varphi_1, ..., \varphi_{m+1}, \varphi_{m+2}\})$

• If φ is satisfiable, then this procedure will continue.

Wrapping Up

- We have a method to show that a FOL formula φ is unsatisfiable
- \blacktriangleright First, write φ in equality free Skolem normal form
- ▶ Check if $\emptyset \in Res^*(E(\varphi))$, this may take some time
- ► There is a more systematic resolution for FOL which we do not cover (this also uses Herbrand Theory)
- We also do not cover a direct undecidability proof for the satisfiability of FOL (at least now)