CSE2001, Fall 2006

Problem Session 4 (Pumping Lemma for RLs)

Problem 1

Prove that $L = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

Proof:

Assume that L is regular. Let p be the pumping length guaranteed by the Pumping Lemma. Take $w = 0^p 10^p 1$. Clearly, $w \in L$, and $|w| \ge p$. We need to show that for any partition w = xyz, with $|xy| \le p$, and $y \ne \varepsilon$, there exists $i \ge 0$, such that $xy^iz \notin L$.

Let k = |y|. Note that $0 < k \le p$. Then, $xy^0z = 0^{p-k}10^p1 \notin L$, because if it were in L, then for some string u, we must have $0^{p-k}10^p1 = uu$, which implies that u ends with 1, and so p - k = p, which is impossible because $k \ne 0$.

Problem 2

Prove that $L = \{w \mid w = w^R, w \in \{0, 1\}^*\}$ is not regular (This is the language of binary palindromes).

Proof:

Assume that L is regular. Let p be the pumping length guaranteed by the Pumping Lemma. Take $w = 0^p 10^p$. Clearly, $w \in L$, and $|w| \ge p$. We need to show that for any partition w = xyz, with $|xy| \le p$, and $y \ne \varepsilon$, there exists $i \ge 0$, such that $xy^iz \notin L$.

Let k = |y|. Note that $0 < k \le p$. Then, $xy^0z = 0^{p-k}10^p \notin L$, because if it were in L, then $0^{p-k}10^p = (0^{p-k}10^p)^R = 0^p10^{p-k}$, and so p - k = p, which is impossible because $k \ne 0$.

Problem 3

Prove that $L = \{ww^R \mid w \in \{0, 1\}^*\}$ is not regular.

Proof:

Assume that L is regular. Let p be the pumping length guaranteed by the Pumping Lemma. Take $w = 0^p 110^p$. Clearly, $w \in L$, and $|w| \ge p$. We need to show that for any partition w = xyz, with $|xy| \le p$, and $y \ne \varepsilon$, there exists $i \ge 0$, such that $xy^iz \notin L$.

Let k = |y|. Note that $0 < k \le p$. Then, $xy^0z = 0^{p-k}110^p \notin L$, because either it has an odd length, or if it has an even length, then k is at least 2, and so the first half will contain two 1's, while the second half will contain none.

Problem 4

Prove that $L = \{w \mid \#_0(w) \neq \#_1(w), win\{0,1\}^*\}$ is not regular. So, this is the language of all strings with non-equal number of 0's and 1's.

Proof 1:

Assume that L is regular. Let p be the pumping length guaranteed by the Pumping Lemma. Ok, now we need to figure out the string w. Remember that we need to be able to find i for any partition of w into xyz, such that $y \neq \varepsilon$, and $|xy| \leq p$

- Lets try $w = 0^p 1^{p+1}$. If |y| = 1, then we're good: take i = 2, then $xy^iz = 0^{p+1}0^{p+1} \notin L$. However, if |y| = 2, then $xy^2z = 0^{p+2}0^{p+1}$, so we "skipped" p+1, and now we have more 0s than 1s. Ok, let fix it ...
- Take $w = 0^p 1^{p+2}$. Then if |y| = 1, $xy^3z \notin L$, and if |y| = 2, $xy^2z \notin L$. Great. But what if |y| = 3? Then even for i = 2 we will have more 0's than 1's. Ok, maybe we should take $0^p 1^{p+3}$? This will work for |y| = 1, and |y| = 3 (take i = 2). But now it won't work for |y| = 2, because we can only get p + 2 or p + 4 0's, again "skipping" p + 3.

So, looks like we need to take something that will be divisible both by 3 and by 2. This way it will work for |y|=3, and still work |y|=2. Ok, take 6, so we have $w=0^p1^{p+6}$. Let's check: if |y|=1, $xy^7z\notin L$, if |y|=2, $xy^4z\notin L$, and if |y|=3, $xy^3z\notin L$.

- But, now |y| = 4 won't work. So we need to do the same thing: take $0^p 1^{p+k}$, where k is divisible by 1,2,3,and 4. That number is 4! (well, 12 will work too, but the factorial will give us a general solution).
- Continuing this reasoning, we realize that to cover all possible values of |y|, which are $1, 2, 3, \ldots, p$, we have to take the string $w = 0^p 1^{p+p!}$.

Now, let's finish the proof. Take $w = 0^p 1^{p+p!}$. Clearly, $w \in L$, and $|w| \ge p$. We need to show that for any partition w = xyz, with $|xy| \le p$, and $y \ne \varepsilon$, there exists $i \ge 0$, such that $xy^iz \notin L$.

Let k = |y|. Note that $0 < k \le p$. Then, $xy^iz = 0^{p+(i-1)k}1^{p+p!}$. We need to show that for any $0 < k \le p$, we can find i such that $0^{p+(i-1)k}1^{p+p!} \notin L$, i.e. such that p+(i-1)k=p+p!. Solving this equality for i gives us $i=\frac{p!}{k}+1$. i has to be an integer, and it is indeed an integer because p! is divisible by any number between 1 and p.

Proof 2 (much easier):

• $L_1 = \{0^n 1^n \mid n \ge 0\}$ is not regular (saw this in the class).

CSE2001, Fall 2006 3

• $L_2 = \{w \mid \#_0(w) = \#_1(w)\}$ is not regular because $L_1 = L_2 \cup 0^*1^*$, and so if L_2 were regular, then L_1 had to be regular too (because regular languages are closed under union).

• $L = \overline{L_2}$, and so L is not regular, as otherwise L_2 would be regular too (because regular languages are closed under complement).