Toward Visual Knowledge Discovery and Analytics

Srinivasan Parthasarathy
The Ohio State University

srini@cse.ohio-state.edu

Knowledge Discovery Process

Information Visualization and KDD

- Why? [Fayyad et al 2000, Sneidermann 2008]
 - Human in the loop
 - Efficient and effective knowledge discovery

Roles for Visualization in KDD

- 1. As a basic method to visualize data and information
 - This has been the focus of much of the work to-date
- 2. As an approach to lend transparency to the knowledge discovery process
- As a mechanism to validate patterns unearthed by discovery process
- 4. As a method to tightly integrate with the discovery process to enable visual-exploration
 - 2, 3, and 4 will be discussed next

Case Study I Analyzing Scientific Simulation Data

Visualization Role: Pattern Validation and Verification

Acknowledgements: <u>S. Mehta, H. Yang</u>, R. Machiraju (Viz), and J. Wilkins (Phy)

Motivation

- Defect structures affect properties/performance of materials
 - Silicon chips, Titanium Alloys etc.
- Understanding the evolution of defect structures is important
 - Formation of elongated defects, cracks etc.
- Analyze from large scale Molecular Dynamics Simulations
 - Used for many other problems (e.g. protein folding)

Challenges and Objectives

Challenges

- Large data (GB/TB range)
- Dynamic time-varying data
- Noisy data (thermal noise)

Objectives

- Characterization of Defects (detection, classification)
- Characterization of Interactions and Evolution (spatio-temporal patterns)
- Need to enable real-time steering and verification

Role for Visualization

- Verification of defect structures and class labels
- Visualization of spatio-temporal interactions

Framework Details

Verification Objectives

- Goal is to help validate results
 - Need to limit number of defects presented to user
 - Cannot possibly show all
 - Need to limit corridor of uncertainty
 - → more effective classification
 - Need to efficiently identify best way to visualize data
 - Need to support multiple views

Limiting the Corridor of Uncertainty

2 stage classifier – first stage narrows down candidate classes second stage performs and exact match

Build accurate classifier -- use biased sampling to display mostly defects one is uncertain about (e.g. new defects).

Data	#Frame	Sz (GB)	#Atoms	#Def	#Unique
Two I	512,000	4	128	350,000	2841
Three I	200,200	6	512	320,000	1,543
Four I	297,000	11	1,024	410,000	3,261

Verification: Basic Strategies

Ball and Stick Model

- Pros: Efficient, simple
- Cons: Hard to visualize in large lattices, does not model uncertainty

Electron Density Maps

- Pros: Efficient, simple, models uncertainty
- Cons: Requires viewing by slicing, interactivity constraints

Verification: Isosurface Modeling

- Pros: Enables viewing through layers.
- Cons: requires finding the right iso-value, higher complexity.
- Computing iso-value
 - Should cleanly show and differentiate defect and base atoms
 - Relied on domain (electron density scalar field)
 - Found isovalue ~ 450 electron density to be the best (middle)

Verification: Volume Rendering with Transfer Functions

- Pros: Enables viewing through material, models uncertainty.
- Cons: Complexity, constructing transfer function
- Transfer function with a small Gaussian near 450

Take Home Message

- Visualization can help validate patterns extracted and promote computational steering
- Can also help visual analytics
 - Spatio-temporal visual analysis (not discussed)
- Generalizations
 - Feature Mining and Visualization for Fluid Flow Simulations
 - Aircraft Wing Modeling
 - Respiratory Systems (e.g. to study impact of Anthrax)
- Impact: New scientific discoveries, better understanding of underlying phenomenon.

Case Study II Clinical Diagnosis of Keratoconus

Visualization Role: Transparent Knowledge Discovery

Acknowledgements: M. Twa, K. Marsolo, M. Bullimore (Opt)

Case Study: Keratoconus

- Progressive, degenerative, noninflammatory disease.
 - A leading cause of blindness and corneal transplant.
- Early detection is difficult & important
 - Has implications for eye surgery and control-of-disease
 - Initial Symptoms: Minor fluctuations in corneal shape
- Diagnosis procedure
 - Video-keratography exam
 - Manual analysis of results by clinician
- Challenges to detection
 - Voluminous data
 - one image is 1000s of data points representing corneal surface
 - spatial and temporal (longitudinal)
 - Features of interest small in scale to mean shape
 - Leads to variance in prognosis

Late stage Keratoconus

Normal (clinically ideal)

Desiderata for Clinical Diagnosis

- Should be <u>accurate</u> and ideally interoperable
 - Can we use mathematical modeling?

Should be interpretable

- Can we visualize the decision making process effectively?
- To a clinician very important
- They do not like black box models!
- Should be <u>responsive</u>
 - Modeling step and discovery process can potentially be expensive

Synopsis of Approach

Modeling Corneal Shape with Zernike

- Hyper-geometric radial basis functions
 - Each term (mode) in the series represents a 3D geometric surface.
 - Orthogonal building blocks
 - Lower order → basic shape
 - Higher order → local harmonics
 - Compact representation
 - Anatomic correspondence to clinical concepts

Key Ideas

- Model data using Zernike and variant (Pseudo Zernike)
- Use coefficients derived as features
- Train classifier
 - Decision Trees work great
- Data
 - 254 Patient Records
 - Normal (119)
 - Diseased (99)
 - Post-LASIK (36)

- Accuracy > 91% (with more information >95%)
- Decision trees are relatively easy to understand but can we do better in terms of lending transparency to the process?

Visualization of Results

- Task: Visualize results to provide decision support for clinicians.
 - Give intuition as to why a group of patients are classified the way they are.
 - Contrast an individual patient with others in the same group

How?

- Modes of Zernike/Pseudo-Zernike polynomial correspond to specific features of the cornea.
- Can use as building blocks.

Patient-Specific Decision Surface

- 1. Treat each path through the decision tree as a 'rule.'
- 2. Cluster training data by rule.

For each patient:

- 1. Compute patient surface
- Compute cluster surface → average coefficient values for all patients in cluster.
- 3. Compute patient "rule surface"

 → keep the 'rule coefficients',
 set others to zero.
- 4. Compute cluster "rule surface"
- 5. Compute deviation bar chart
 → relative error from rule
 mean coefficients

Visualization: Strongest Rules

Take Home Message

- Visualization as a mechanism that lends transparency to the discovery process.
- Generalizations
 - The idea of rule-surfaces can be exploited for other problems where features are extracted from orthogonal generative models
 - E.g. Wavelet, FFT features etc.
- Impact: Clinical trials new treatment protocols – improving quality of life

Case Study III: Analyzing Interaction Networks

Visualization Role: Exploratory data analysis

Acknowledgements: **S. Asur, D. Ucar, V. Satuluri, X. Yang, N. Wang** (NUS), S. Mehta (IBM) K. Tan (NUS), A. Tung (NUS)

Problem Domain(s)

- Interaction Networks
 - Nodes represent entities
 - Edges represent interactions among entities
 - Examples Abound:
 - Biological Networks
 - Collaboration/Friendship networks
 - Challenges
 - Community Discovery
 - Scale
 - Dynamic Nature
 - Visualization

Questions & Challenges

- How to extract modular structure?
 - common functional proteins, stable collaboratories etc.
- What characterizes stability of groups over time?
- What are the behavioral characteristics of nodes and communites:
 - Which nodes are influential, which are bridging, which are sociable, which are followers?
- What are the inter-relationships among communities?
- Challenges:
 - How to visualize?
 - Scalability (time, display)

Dynamic Analysis Framework

- Community Detection
 - •MLR-MCL (KDD'09)
 - Viewpoints (KDD'09)
 - Graph Partitioning (Metis)
 - CSV (SIGMOD'08)
- Event detection (KDD'07, TKDD'09)
 - Entity Driven Events
 - Community Driven Events
 - Composing Behavioral Measures
 - Stability, Sociability, Influence

Visual Analysis and Inference

Visualization Challenges

- What to show?
 - Raw network, Coarsened view, Exploratory nugget (e.g. density plots), Event-driven view
- How to show it?
 - Layout and interface challenges
- How do we handle dynamism?
 - Efficiency
 - Mental Map/Cognitive Correspondence

Visualization: Overview First (Coarsened View)

Zoom and Filter

Event View (Importance of Ranking)

Split: Details on Demand (ironic example ©)

Merge (Philosophy + Logic)

Dynamic Details (Sociability+ Influence)

Density (CSV) Plots

- Computing density plots efficiently was identified by SIGMOD keynote on Extreme Visualization as an important grand challenge problem
- Density Plots
 - Can help quickly localize dense subgraphs hidden within a large graph
 - The challenge is to compute them efficiently

Connectivity measurement

Connectivity measurement is closely related to clique (fully connected sub-graph) size.

The connectivity between two vertices in a graph (η_{max}) is defined to be the biggest clique in the graph such that both are members of the clique

 $\eta_{max}(a, d) = 0$ $\eta_{max}(a, c) = 4$

The "connectivity" of a vertex (ζ_{max}) is similarly defined as the biggest clique it can participate.

$$\zeta_{max}(a) = 5$$

The algorithmic challenge is to approximate these efficiently [SIGMOD 2008]

CSV algorithm on a synthetic graph

From graph to plot

- unvisited
- neighbors
- visiting
- visited

Visit every vertex accordingly to produce a plot.

Peaks represent cohesive sub-graphs.

SMD: Stock Market Data

DIP: Database of interacting proteins

Handling Dynamism: Layout

- Surprisingly there are no good strategies here.
- Design tenets
 - Must maintain cognitive correspondence (mental map)
 - Must have similar "energy profile" to a stand-alone static approach
- Basic Dynamic Layout Strategy
 - Identify and localize changes to graph (e.g quad-tree/R-tree)
 - Compute dirty nodes/regions/bounding boxes
 - Ideally limit re-computation of layout to within bounding boxes that are dirty (guarantees mental map)
 - Produce final output

Dynamic Layout Strategy

Original Graph G

Delete Nd 4, Propogating Updates Housing within an R-tree

Refined Graph G'

Static Layout of G' for comparitive purposes

Dynamic Graph Layout: Early Results

- Enron Dataset
- Energy profile of Static (from scratch layout) very similar to our dynamic variant
- Dynamic variant maintains better mental map (not shown)
- Dynamic variant is also more efficient (up to 40% more efficient)

Concluding Remarks

- Visualization is an important facet of the knowledge discovery process
 - Transparency, validation, exploratory, data analysis are some of the roles
 - Central to discovery of actionable and interpretable patterns
- Potential for significant impact
 - Science, Engineering and Medicine
- Under represented in the field inspite of unquestioned utility
- Key challenges: pixel wall, scalability & integration

Exciting area to work in!

General thoughts on Interdisciplinary Collaboration

- Steep learning curve
 - Need to learn domain language
 - Express results in domain language
- Patience, patience, patience
 - Communities are inertia bound
 - Often difficult to make headway
- Potential for incredible rewards
 - Scientific/medical implications
- Good working relationship
 - Among collaborators is an absolute must equal partners

Thanks for your attention Questions?

- More details from:
 - <u>srini@cse.ohio-state.edu</u>
 - http://www.cse.ohio-state.edu/~srini
 - http://dmrl.cse.ohio-state.edu
- Most of these results can be found from the above sites
- Acknowledgements:
 - A number of NSF and DOE grants
 - A fantastic bunch of students and collaborators