Corrigé de l'épreuve de physique Concours Mathématiques et Physique Session Juin 2013

LIGNE BIFILAIRE

1ère partie : Etude d'une ligne bifilaire en régime continu (40/100)

I-1	Ligne	bifilaire	ouverte	: él	ectrostatique	(23/)	(00)
-----	-------	-----------	---------	------	---------------	-------	------

Q	Réponse	Barème
1-	$div\overline{E}(M) = \frac{\rho(M)}{\varepsilon_0} \leftrightarrow \oint _{\Sigma} \overline{E}(M) \cdot d\overline{S}_M = \frac{Q_{\text{int} \acute{e}rieur \Sigma}}{\varepsilon_0}$	1
	$\overrightarrow{rot}\overrightarrow{E}(M) = \overrightarrow{0} \leftrightarrow \oint_{C} \overrightarrow{E}(M) \cdot \overrightarrow{d\ell}_{M} = 0$	1
	$\vec{E}(M) = -\overrightarrow{gradV}(M)$	0,5
2-	Le champ électrique à l'intérieur d'un conducteur en équilibre électrostatique est nul.	0,5
	Soit M un point appartenant au volume du conducteur en équilibre électrostatique on a $\vec{E}(M) = -\overrightarrow{gradV}(M) = \vec{0}$ donc $\forall M$ on a $V(M) = C^{te}$	0,5
	Pour un conducteur en équilibre électrostatique les charges sont situées à sa surface en	
	effet : $div\vec{E}(M) = \frac{\rho(M)}{\varepsilon_0}$ avec $\vec{E}(M) = \vec{0}$ donc $\rho(M) = 0$	0,5
3-a)	$a \langle \langle d \langle \ell \rangle \rangle$: les deux cylindres sont infinis (pas d'effet de pointe) et très éloignés l'un de l'autre donc les densités surfaciques de charge sont uniformes.	1
3-b)	Les cylindres (C ₁) et (C ₂) sont en influence totale $\Rightarrow Q_2 = -Q_1$ avec	
,	$Q_{1} = \iint \sigma_{1} dS_{1} = \sigma_{1} 2 \pi a \ell$ $Q_{2} = \iint \sigma_{2} dS_{2} = \sigma_{2} 2 \pi a \ell$ $donc \sigma_{2} = -\sigma_{1}$	1
3-c)	$ \left. \begin{array}{l} Q_1 = \int \lambda_1 \ d\ell_1 = \lambda_1 \ \ell \\ Q_1 = \sigma_1 \ 2 \ \pi \ a \ \ell \end{array} \right\} \Rightarrow \lambda_1 = 2 \ \pi \ a \ \sigma_1 $	1
	De même $Q_2 = \int \lambda_2 \ d\ell_2 = \lambda_2 \ \ell = -Q_1 \Rightarrow \lambda_2 = -\lambda_1 = -\lambda_c$	0,5
4 ->	· ·	
4-a)	λ_1 étant uniforme donc la distribution de charge est invariante par rotation autour de $(O_1 z)$ et par translation le long de $(O_1 z)$ donc \vec{E}_1 ne dépend que de la variable r_1 .	0,5
	Puisque λ_1 est uniforme alors $(M, \vec{u}_r, \vec{u}_z)$ plan de symétrie	
	Puisque λ_1 est uniforme et le cylindre (C_1) est infini alors $(M, \vec{u}_r, \vec{u}_\theta)$ plan de symétrie	
	\vec{E}_1 étant un vrai vecteur alors il appartient à l'intersection de ces deux plans de symétrie donc \vec{E}_1 est radial $\Rightarrow \vec{E}_1 = E_1(r_1) \vec{u}_r$.	1
4-b)	La surface de Gauss Σ est un cylindre d'axe (O_1z) , de hauteur h et de rayon $r_1 \rangle a$.	
	$\iint_{\Sigma} \vec{E}_{1}(\mathbf{M}) \cdot d\vec{S}_{\Sigma} = \Phi_{lat\acute{e}ral} + \underbrace{\Phi_{bases}}_{car \vec{E}_{1} \perp d\vec{S}_{bases}} = \iint_{S_{lat\acute{e}ral}} E_{1}(r_{1}) \vec{u}_{r} \cdot dS_{lat\acute{e}ral} \vec{u}_{r} = E_{1}(r_{1}) 2 \pi r_{1} h$	
	$Q_{\text{int }\Sigma} = \int_{-h}^{0} \lambda_{1} d\ell_{1} = \lambda_{1} h \text{ donc } E_{1}(r_{1}) 2 \pi r_{1} h = \frac{\lambda_{1} h}{\varepsilon_{0}} \Rightarrow E_{1}(r_{1}) = \frac{\lambda_{c}}{2 \pi \varepsilon_{0}} \frac{1}{r_{1}}$	2
4-c)	$\overrightarrow{E}_{1}(\mathbf{M}) = -\overrightarrow{grad}V_{1}(\mathbf{M}) \Rightarrow E_{1}(r_{1}) = -\frac{dV_{1}}{dr_{1}} \Rightarrow V_{1}(\mathbf{M}) = -\frac{\lambda_{1}}{2 \pi \varepsilon_{0}} \int \frac{dr_{1}}{r_{1}} = -\frac{\lambda_{c}}{2 \pi \varepsilon_{0}} \ln(r_{1}) + K_{1}$	1,5

5-a)	Le potentiel crée par (C_2) seul est : $V_2 = -\frac{(-\lambda_c)}{2\pi \varepsilon_0} \ln(r_2) + K_2$. D'après le principe de	
	superposition le potentiel crée par (C ₁) et (C ₂) est : $V(M) = V_1 + V_2 = \frac{\lambda_c}{2\pi \varepsilon_0} \ln \left(\frac{r_2}{r_1}\right) + K$.	1
5-b)	$V_{C1} = V(H_1) = V(r_1 = a, r_2 = d - a) = \frac{\lambda_c}{2 \pi \varepsilon_0} \ln\left(\frac{d - a}{a}\right) + K$ $\Rightarrow V_{C1} - V_{C2} = \frac{\lambda_c}{a} \ln\left(\frac{d - a}{a}\right)$	2
	$\begin{vmatrix} V_{C1} = V(H_1) = V(r_1 = a, r_2 = a - a) = \frac{1}{2\pi \varepsilon_0} \ln \left(\frac{a}{a} \right) + K $ $V_{C2} = V(H_2) = V(r_1 = a - a, r_2 = a) = \frac{\lambda_c}{2\pi \varepsilon_0} \ln \left(\frac{a}{a - a} \right) + K $ $\Rightarrow V_{C1} - V_{C2} = \frac{\lambda_c}{\pi \varepsilon_0} \ln \left(\frac{a}{a} - 1 \right)$	
5-c)	$C_{ligne\ bifilaire} = \frac{Q_1}{V_{\text{C1}} - V_{\text{C2}}} = \frac{\lambda_c\ \ell}{V_{\text{C1}} - V_{\text{C2}}} = \frac{\pi\ \varepsilon_0\ \ell}{\ln\left(\frac{d}{a} - 1\right)} \Rightarrow C = \frac{C_{ligne\ bifilaire}}{\ell} = \frac{\pi\ \varepsilon_0}{\ln\left(\frac{d}{a} - 1\right)}$	1
	$C = \frac{\pi .8,84.10^{-12}}{\text{Ln}\left(\frac{1,5}{0,3} - 1\right)} = 22.10^{-12} \text{F.m}^{-1} = 20 \text{pF.m}^{-1}$	1
6-a)	M appartient à l'axe (O_1x) et il est situé entre O_1 et O_2 donc $r_1 = x$ et $r_2 = d - x$ d'où	
	$V(M) = \frac{\lambda_c}{2\pi \varepsilon_0} \ln\left(\frac{d-x}{x}\right) + K$	1
6-b)	(C ₁) et (C ₂) sont infinis et uniformément chargés donc la distribution est invariante par translation le long de (O ₁ z) : $V(M \in (xO_1z)) = V(M \in (O_1x)) = \frac{\lambda_c}{2\pi \varepsilon_0} \ln\left(\frac{d-x}{x}\right) + K$	0,5
	$\vec{E}(M) = -\vec{gradV}(M) = -\frac{dV}{dx} \vec{u}_x = \frac{\lambda_c}{2 \pi \varepsilon_0} \left(\frac{1}{x} + \frac{1}{d - x} \right) \vec{u}_x$	1,5
6-c)	Au voisinage des cylindriques c.à.d. en $x = a$ ou $x = d - a$ on a	
	$\ \overrightarrow{E}\ = \frac{\lambda_c}{2\pi\varepsilon_0} \left(\frac{1}{a} + \frac{1}{d-a} \right) \text{ et } V_{\text{C1}} - V_{\text{C2}} = \frac{\lambda_c}{\pi\varepsilon_0} \ln\left(\frac{d}{a} - 1\right) \Rightarrow \ \overrightarrow{E}\ = \frac{V_{\text{C1}} - V_{\text{C2}}}{2\text{Ln}\left(\frac{d}{a} - 1\right)} \left(\frac{1}{a} + \frac{1}{d-a} \right)$	1
	$\ \overline{E}\ = \frac{90.10^3}{2 \operatorname{Ln} \left(\frac{25}{1,2} - 1\right)} \left(\frac{1}{1,2} + \frac{1}{25 - 1,2}\right) \cdot 10^2 = 1,17 \cdot 10^6 \text{ V.m}^{-1} = 1,17 \text{ MV.m}^{-1}$	1
	Il ne faut pas s'approcher des lignes de haute tension.	0,5
	The street of th	7,0

II- Ligne bifilaire court-circuitée : magnétostatique (17/100)

Q	Réponse	Barème
7-	$\overrightarrow{rotB}(M) = \mu_0 \ \overrightarrow{j}(M) \leftrightarrow \oint_{\Gamma} \overrightarrow{B}(M) \cdot \overrightarrow{d\ell}_{M} = \mu_0 \ I_{enlace \Gamma}$	1
	$div \overrightarrow{B}(M) = 0 \leftrightarrow \oint_S \overrightarrow{B}(M) \cdot \overrightarrow{dS}_M = 0$	1
	$\overrightarrow{B}(M) = \overrightarrow{rot} \overrightarrow{A}(M)$	0,5
8-a)	Le courant est uniforme donc la distribution de courant est invariante par rotation autour de (O_1z) et par translation le long de (O_1z) donc \overrightarrow{B}_1 et \overrightarrow{A}_1 ne dépendent que de la variable r_1 .	0,5
	Puisque le courant est uniforme alors $(M, \vec{u}_r, \vec{u}_z)$ plan de symétrie. \vec{B}_1 est un pseudo	

	vecteur donc il est perpendiculaire au plan de symétrie donc $\vec{B}_1 = B_1(r_1) \vec{u}_{\theta}$.	1
	Puisque le courant est uniforme et le cylindre (C_1) est infini alors $(M, \vec{u}_r, \vec{u}_\theta)$ plan	1
	d'antisymétrie. \vec{A}_1 est un vrai vecteur donc il est perpendiculaire au plan	
	d'antisymétrie donc $\vec{A}_1 = A_1(r_1) \vec{u}_z$.	
8-b)	Le contour d'Ampère est un cercle orienté, d'axe $(O_1 z)$ et de rayon $r_1 \rangle a$.	
	$ \oint_{\Gamma} \overrightarrow{B}_{1} \cdot \overrightarrow{d\ell}_{\Gamma} = \oint_{\Gamma} B_{1}(r_{1}) \overrightarrow{u}_{\theta} \cdot (+ d\ell \overrightarrow{u}_{\theta}) = B_{1}(r_{1}) 2\pi r_{1} $ $ \Rightarrow B_{1}(r_{1}) 2\pi r_{1} = \mu_{0} I \Rightarrow B_{1}(r_{1}) = \frac{\mu_{0} I}{2\pi r_{1}} $	2
8-c)	$\vec{B}_{1}(M) = \vec{rot} \vec{A}_{1}(M) \Rightarrow B_{1}(r_{1}) = -\frac{dA_{1}(r_{1})}{dr_{1}} \Rightarrow A_{1}(r_{1}) = -\frac{\mu_{0} I}{2 \pi} \int \frac{dr_{1}}{r_{1}} = -\frac{\mu_{0} I}{2 \pi} \ln(r_{1}) + K_{1}$	1
9-a)	Soit M un point appartenant à l'axe (Oy) donc $r_1 = r_2$	
	Les courants sont uniformes et les cylindres sont infinis alors $(O, \vec{u}_x, \vec{u}_y)$ est un plan	
	d'antisymétrie donc $\vec{A}(r_1 = r_2)$ est porté par \vec{u}_z .	
	Les courants sont uniformes $(O, \vec{u}_y, \vec{u}_z)$ est un plan d'antisymétrie donc $\vec{A}(r_1 = r_2)$ est	
	porté par \vec{u}_x .	
	$\vec{A}(r_1 = r_2)$ ne peut pas être porté à la fois par \vec{u}_x et \vec{u}_z donc $\vec{A}(r_1 = r_2) = \vec{0}$.	1,5
9-b)	Le potentiel vecteur crée par (C ₂) seul est : $\vec{A}_2 = \left[-\frac{\mu_0(-I)}{2\pi} \ln(r_2) + \vec{K}_2 \right] \vec{u}_z$. D'après le	
	principe de superposition le potentiel vecteur crée (C_1) et (C_2) est :	1
	$\vec{A}(M) = \vec{A}_1 + \vec{A}_2 = \left[\frac{\mu_0 I}{2\pi} \ln\left(\frac{r_2}{r_1}\right) + K'\right] \vec{u}_z.$	
	Puisque $\vec{A}(r_1 = r_2) = \vec{0} \Rightarrow \vec{K} = 0 \Rightarrow \vec{A}(M) = \frac{\mu_0 I}{2 \pi} \ln \left(\frac{r_2}{r_1}\right) \vec{u}_z$	
10-a)	M appartient à l'axe (O_1x) et il est situé entre O_1 et O_2 donc $r_1 = x$ et $r_2 = d - x$	1
	d'où $\vec{A}(M) = \frac{\mu_0 I}{2 \pi} \ln \left(\frac{d - x}{x} \right) \vec{u}_z$.	1
10-b)	(C ₁) et (C ₂) sont infinis et les courants uniformes donc la distribution est invariante	0,5
	par translation le long de $(O_1 z)$: $\vec{A}(M \in (xO_1 z)) = \vec{A}(M \in (O_1 x)) = \frac{\mu_0 I}{2\pi} \ln \left(\frac{d - x}{x}\right) \vec{u}_z$	0,5
	$\vec{B}(M) = \overrightarrow{rot} \vec{A}(M) = \vec{\nabla} \wedge \vec{A}(M) = \frac{\partial}{\partial x} \vec{u}_x \wedge A(M) \vec{u}_z = -\frac{dA}{dx} \vec{u}_y = \frac{\mu_0}{2 \pi} \left(\frac{1}{x} + \frac{1}{d-x} \right) \vec{u}_y.$	1
10-c)	$\Phi = \iint_{S} \overrightarrow{B}(M) \cdot \overrightarrow{dS} = \iint \frac{\mu_{0} I}{2 \pi} \left(\frac{1}{x} + \frac{1}{d - x} \right) \overrightarrow{u}_{y} \cdot dx \ dz \ \overrightarrow{u}_{y}$	
	$\Phi = \frac{\mu_0 I}{2 \pi} \int_{-\ell}^0 dz \int_a^{d-a} \left(\frac{1}{x} + \frac{1}{d-x} \right) dx = \frac{\mu_0 I}{2 \pi} \ell \ln \left(\frac{x}{d-x} \right) \Big _a^{d-a} = \frac{\mu_0 \ell}{\pi} \ln \left(\frac{d-a}{a} \right) I$	2
10-d)	$\Phi = L_{ligne\ bifilaire}\ I \Rightarrow L = rac{L_{ligne\ bifilaire}}{\ell} = rac{\Phi}{\ell\ I} = rac{\mu_0}{\pi}\ lnigg(rac{d}{a}-1igg)$	1
	$L = \frac{4 \cdot \pi \cdot 10^{-7}}{\pi} \ln \left(\frac{1,5}{0,3} - 1 \right) = 5,5.10^{-7} \text{ H.m}^{-1} = 0,55 \mu\text{H.m}^{-1}$	1

2^{ème} partie : Etude d'une ligne bifilaire en régime variable (60/100) I- Mise en équation et solution générale (23/100)

Q	Réponse	Barème
1-	$div\vec{E} = 0$; $\overrightarrow{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$; $div\vec{B} = 0$; $\overrightarrow{rot}\vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$	2
	$\overrightarrow{E}(M,t) = -\overrightarrow{gradV}(M,t) - \frac{\partial \overrightarrow{A}(M,t)}{\partial t}$; $\overrightarrow{B}(M,t) = \overrightarrow{rot}\overrightarrow{A}(M,t)$	1
2-	A partir de l'équation de Maxwell-Ampère : $\overrightarrow{rotB} = \varepsilon_0 \ \mu_0 \ \frac{\partial \overrightarrow{E}}{\partial t} \Rightarrow$	1,5
	$\vec{\nabla} \wedge B(z,t) \vec{u}_y = -\frac{\partial B}{\partial z} \vec{u}_x = \varepsilon_0 \ \mu_0 \ \frac{\partial E}{\partial t} \vec{u}_x \Rightarrow -\mu_0 \ \frac{\partial i}{\partial z} = \varepsilon_0 \ \mu_0 \ \frac{1}{\varepsilon_0} \frac{\partial \lambda_c}{\partial t} \Rightarrow -\frac{\partial i}{\partial z} = \frac{\partial \lambda_c}{\partial t}$	
3-	A partir de l'équation de Maxwell-Faraday : $\overrightarrow{rotE}(M,t) = -\frac{\partial \overrightarrow{B}(M,t)}{\partial t} \Rightarrow$	1,5
	$\vec{\nabla} \wedge E(z,t) \vec{u}_x = \frac{\partial E}{\partial z} \vec{u}_y = -\frac{\partial B}{\partial t} \vec{u}_y \implies \frac{1}{\varepsilon_0} \frac{\partial \lambda_c}{\partial z} = -\mu_0 \frac{\partial i}{\partial t} \implies \frac{\partial \lambda_c}{\partial z} = -\varepsilon_0 \mu_0 \frac{\partial i}{\partial t}$	
4-	$\vec{E}(M,t) = -\overrightarrow{gradV}(M,t) - \frac{\partial \vec{A}(M,t)}{\partial t} \Rightarrow \int_{c_1}^{c_2} \vec{E} \cdot \vec{d\ell} = -\int_{c_1}^{c_2} \overrightarrow{gradV} \cdot \vec{d\ell} - \int_{c_1}^{c_2} \frac{\partial \vec{A}}{\partial t} \cdot \vec{d\ell}$	
	Dans le plan (xOz) et pour z donné on a $d\ell = dx \vec{u}_x \Rightarrow$ $\int_{CL}^{C2} \frac{\partial \vec{A}}{\partial t} \cdot \vec{d\ell} = \int_{CL}^{C2} \frac{\partial A}{\partial t} \vec{u}_z \cdot dx \vec{u}_x = 0 \; ; \int_{CL}^{C2} \overline{grad} V \cdot \vec{d\ell} = \int_{CL}^{C2} dV = V_{C2} - V_{C1} = -u(z,t) \text{ et}$	
		1,5
	$\int_{C1}^{C2} \overrightarrow{E} \cdot \overrightarrow{d\ell} = \frac{\lambda_c(z,t)}{2 \pi \varepsilon_0} \int_a^{d-a} \left(\frac{1}{x} + \frac{1}{d-x} \right) dx = \frac{\lambda_c(z,t)}{\pi \varepsilon_0} \ln \left(\frac{d-a}{a} \right)$	
	Donc $u(z,t) = \frac{\lambda_c(z,t)}{\pi \ \varepsilon_0} \ln\left(\frac{d-a}{a}\right)$ puisque $C = \frac{\pi \ \varepsilon_0}{\ln\left(\frac{d-a}{a}\right)} \Rightarrow u(z,t) = \frac{\lambda_c(z,t)}{C}$	
5-	$-\frac{\partial i}{\partial z} = \frac{\partial \lambda_c}{\partial t} avec u(z,t) = \frac{\lambda_c(z,t)}{C} \Rightarrow -\frac{\partial i}{\partial z} = C \frac{\partial u}{\partial t}$	1
	$ \begin{vmatrix} \frac{\partial \lambda_c}{\partial z} = -\varepsilon_0 & \mu_0 & \frac{\partial i}{\partial t} \\ u(z,t) = \frac{\lambda_c(z,t)}{C} \end{vmatrix} \Rightarrow \frac{C}{\partial z} \frac{\partial u}{\partial z} = -\varepsilon_0 & \mu_0 & \frac{\partial i}{\partial t} \\ L & C = \varepsilon_0 & \mu_0 \end{vmatrix} \Rightarrow \frac{\partial u}{\partial z} = -L \frac{\partial i}{\partial t} $	1
6-a)	$-\frac{\partial i}{\partial z} = C \frac{\partial u}{\partial t} \Rightarrow \frac{\partial^2 i}{\partial z^2} = -C \frac{\partial^2 u}{\partial z \partial t} = -C \frac{\partial}{\partial t} \frac{\partial u}{\partial z}$ $\frac{\partial u}{\partial z} = -L \frac{\partial i}{\partial t}$ $\Rightarrow \frac{\partial^2 i}{\partial z^2} - L C \frac{\partial^2 i}{\partial t^2} = 0$	1
	Equation d'Alembert $v = \frac{1}{\sqrt{L C}}$	0,5 0,5
	$\sqrt{L} C$ v a la dimension d'une vitesse	0,5
6-b)	$\frac{\partial u}{\partial z} = -L \frac{\partial i}{\partial t} \Rightarrow \frac{\partial^2 u}{\partial z^2} = -L \frac{\partial^2 i}{\partial z \partial t} = -L \frac{\partial}{\partial t} \frac{\partial i}{\partial z} \\ -\frac{\partial i}{\partial z} = C \frac{\partial u}{\partial t} $ $\Rightarrow \frac{\partial^2 u}{\partial z^2} - L C \frac{\partial^2 u}{\partial t^2} = 0$	1

6-c)	La solution générale de l'équation différentielle vérifiée par $i(z,t)$ est de la forme :	0,5
	i(z,t) = f(z - v t) + g(z + v t) avec	
	f(z - v t): onde plane qui se propage selon $z > 0$ avec la célérité v	0,5
	$g(z + v t)$: onde plane qui se propage selon $z \langle 0$ avec la célérité v	0,5
7-a)	On applique les lois de l'électrocinétique dans l'approximation des régimes quasi stationnaire. Pour une ligne bifilaire ce n'est pas le cas car on n'a pas $\lambda \rangle \rangle \ell$ en effet $\lambda = \frac{c}{f} = \frac{3.10^8}{10^6} = 300 \text{ m} \langle \ell = 500 \text{ m}.$	1,5
7-b)	La tension aux bornes de la bobine est $u_L = L dz \frac{\partial i(z,t)}{\partial t}$	
	D'après la loi des mailles on a $u_L = u(z,t) - u(z+dt,t) = -\frac{\partial u(z,t)}{\partial z} dz$	2
	donc $L \frac{\partial i(z,t)}{\partial t} = -\frac{\partial u(z,t)}{\partial z}$	
	La tension aux bornes du condensateur est $u_C = \frac{q_C}{C dz} = u(z + dz, t) = u(z, t) + \frac{\partial u(z, t)}{\partial z} dz$	
	avec $i_C = \frac{\partial q_C}{\partial t}$ \Rightarrow au premier ordre on a $i_C = C dz \frac{\partial u_c}{\partial t} = C dz \frac{\partial u(z,t)}{\partial t}$	2
	D'après la loi des nœuds on a $i(z,t)=i_C+i(z+dz,t) \Rightarrow i_C=-\frac{\partial i(z,t)}{\partial z}dz$	
= - =	donc $C \frac{\partial u(z,t)}{\partial t} = -\frac{\partial i(z,t)}{\partial z}$	
8-a)	Injectant $\underline{i}(z,t)$ dans l'équation de propagation, écrite en notation complexe,	
	$\frac{\partial^2 \underline{i}}{\partial z^2} - LC \frac{\partial^2 \underline{i}}{\partial t^2} = 0 \Rightarrow -k^2 \underline{i}(z,t) - LC \left(-\omega^2 \underline{i}(z,t)\right) = 0 \Rightarrow \forall z \text{ et } \forall t \text{ on a } k = \omega \sqrt{LC}$	1
8-b)	$-\frac{\partial \underline{i}_{1}}{\partial z} = C \frac{\partial \underline{u}_{1}}{\partial t} \Longrightarrow -(-jk \underline{i}_{1}) = C(j\omega \underline{u}_{1}) \Longrightarrow \underline{u}_{1} = \frac{k}{C \omega} \underline{i}_{1} = \frac{\omega \sqrt{LC}}{C \omega} \underline{i}_{1} = \sqrt{\frac{L}{C}} \underline{i}_{1}$	1
	$-\frac{\partial \underline{i}_{2}}{\partial z} = C \frac{\partial \underline{u}_{2}}{\partial t} \Rightarrow -(+jk\underline{i}_{2}) = C(j\omega\underline{u}_{2}) \Rightarrow \underline{u}_{2} = -\frac{k}{C\omega}\underline{i}_{2} = \dots = -\sqrt{\frac{L}{C}}\underline{i}_{2}$	1

II- Ligne bifilaire adaptée : onde progressive (11,5/100)

9-	$\underline{u}(z=0,t) = Z \ \underline{i}(z=0,t) \Rightarrow$	0,5
	$Z_c (I_1 - I_2) = Z (I_1 + I_2) \Rightarrow \Rightarrow \frac{I_2}{I_1} = \frac{Z_c - Z}{Z_c + Z}$	1
	Coefficient de réflexion en amplitude de l'onde de courant	0,5
10-	L'onde de courant dans la ligne bifilaire est une OPPM selon $z > 0$ si $I_2 = 0$	0,5
	Si $I_2 = 0$ alors $Z = Z_c$: la ligne est dite adaptée car elle est terminée par une impédance égale à son impédance caractéristique.	0,5
	Pour une OPPM selon $z > 0$ on a $i(z,t) = I_1 \cos(\omega t - kz)$ et $u(z,t) = Z_c I_1 \cos(\omega t - kz)$	1
11-a)	$v_{\varphi} = \frac{\omega}{k}$ et $v_{g} = \frac{d\omega}{dk}$ avec $k = \omega \sqrt{LC} \Rightarrow v_{\varphi} = v_{g} = \frac{1}{\sqrt{LC}}$	1
11-b)	Un signal de forme quelconque est la superposition de signaux sinusoïdaux de pulsation ω différente. Puisque v_{φ} est indépendant de ω (milieu non dispersif) alors	

	les signaux sinusoïdaux se propagent avec la même vitesse v_{φ} ce ci entraine que le signal électrique ne se déforme pas au cours de sa propagation.	1
12-a)	Signal electrique ne se deforme pas au cours de sa propagation. $P(z,t) = u(z,t) \ i(z,t) = Z_c \ I_1^2 \cos^2(\omega t - kz)$	1
	$\left\langle P(z,t)\right\rangle = \frac{Z_c \ I_1^2}{2}$	0,5
12-b)	$w = \frac{1}{2}Li^{2} + \frac{1}{2}Cu^{2} = \frac{I_{1}^{2}}{2}(L + Z_{c}^{2}C)\cos^{2}(\omega t - kz)$ $Z_{c} = \sqrt{\frac{L}{C}}$ $\Rightarrow w(z,t) = I_{1}^{2}L\cos^{2}(\omega t - kz)$	1
	$\left\langle w(z,t)\right\rangle = \frac{I_1^2 L}{2}$	0,5
12-c)	$ \frac{\partial P}{\partial z} = 2 Z_c I_1^2 k \cos(\omega t - k z) \sin(\omega t - k z) k = \omega \sqrt{L C} \Rightarrow Z_c k = \sqrt{\frac{L}{C}} \omega \sqrt{L C} = L \omega $ $\Rightarrow \frac{\partial P}{\partial z} = 2 I_1^2 L \omega \cos(\omega t - k z) \sin(\omega t - k z) \frac{\partial W}{\partial t} = -2 I_1^2 L \omega \cos(\omega t - k z) \sin(\omega t - k z) \frac{\partial W}{\partial t} = -2 I_1^2 L \omega \cos(\omega t - k z) \sin(\omega t - k z) $	1
	$\frac{\partial P}{\partial z} + \frac{\partial w}{\partial t} = 0$ Cette relation illustre la conservation de l'énergie électrique dans la ligne bifilaire.	0,5
12-d)	$\frac{\langle P(z,t)\rangle}{\langle w(z,t)\rangle} = \frac{Z_c \ I_1^2/2}{I_1^2 \ L/2} = \frac{\sqrt{L/C}}{L} = \frac{1}{\sqrt{L \ C}}$	0,5
	Ce rapport représente la vitesse de propagation de l'énergie électrique qui est aussi la vitesse de groupe.	0,5

III- L	igne bifilaire ouverte : onde stationnaire (7/100)	0.5
13-a)	En $z=0$ la ligne est ouverte donc $Z = \frac{\underline{u}(z=0,t)}{\underline{i}(z=0,t)} \rightarrow \infty \Rightarrow i(z=0,t)=0$ nœud de courant	0,5
	$I_2/I_1 = -1$	0,5
13-b)	$\underline{i}(z,t) = I_1 \left(e^{-jkz} - e^{+jkz} \right) e^{j\omega t} = -2j I_1 \sin(kz) e^{j\omega t} = 2I_1 \sin(kz) e^{j(\omega t - \frac{\pi}{2})} \Rightarrow$	
	$i(z,t) = I_0 \sin(\frac{2\pi}{\lambda} z)\sin(\omega t)$ avec $I_0 = 2 A$ et $k = \frac{2\pi}{\lambda}$.	1
13-c)	Les nœuds de l'onde de courant sont tel que :	1
	$\sin\left(\frac{2\pi}{\lambda}z\right) = 0 \Rightarrow \frac{2\pi}{\lambda}z_{nocud} = n\pi \Rightarrow z_{nocud} = n\frac{\lambda}{2} \text{ avec } n \in \mathbb{Z}^- \text{ et } -\ell \le z_{nocud} \le 0$	
	Les ventres de l'onde de courant sont tel que :	
	$\sin\left(\frac{2\pi}{\lambda}z\right) = \pm 1 \Rightarrow \frac{2\pi}{\lambda}z_{ventre} = (2n-1)\frac{\pi}{2} \Rightarrow z_{ventre} = n\frac{\lambda}{2} - \frac{\lambda}{4} \text{avec} n \in \mathbb{Z}^- \text{et}$	1
	$-\ell \le z_{venire} \le 0$	
13-d)	$I_0 \sin(2\pi z/\lambda)$	
	-c 0	1

14-	$\frac{u(z,t) = Z_c I_1 \left(e^{-jkz} + e^{+jkz} \right) e^{j\omega t}}{\langle P(z,t) \rangle = 0} = 2 Z_c I_1 \cos(kz) e^{j\omega t} \Rightarrow u(z,t) = Z_c I_0 \cos(kz) \cos(\omega t)$	1
	$\langle T(2,t)\rangle = 0$ En moyenne la puissance électrique ne se propage pas en effet l'onde est stationnaire.	0,5 0,5

15-	Antenne demi-onde (18,5/100)	
	$\lambda = \frac{2\pi c}{\omega} = \frac{c}{f} \text{ donc } \frac{\lambda}{2} = \frac{c}{2 f} = \frac{3.10^8}{2.99, 4.10^6} = 1,5 \text{ m}$	1
16-		
177	Les extrémités de l'antenne sont des nœuds de courant : $i\left(z=\frac{\lambda}{4},t\right)=i\left(z=-\frac{\lambda}{4},t\right)=0$	0,5
17-	La taille de l'antenne n'est pas négligeable devant λ par contre la taille du dipôle est négligeable devant λ	0,5
18-a)	$i(z,t) = \frac{\partial q(z,t)}{\partial t} = I_0 \cos(\frac{2\pi}{\lambda} z) \cos(\omega t) \Rightarrow q(z,t) = \frac{I_0}{\omega} \cos(\frac{2\pi}{\lambda} z) \sin(\omega t)$	1
18-b)	Soit un élément P_1P_2 de l'antenne de longueur $dz \langle \langle \lambda \rangle$, le courant circule de	
	P ₁ vers P ₂ donc upe charge da est transport 1 P ₂	
	P_1 vers P_2 donc une charge dq est transportée de P_1 vers P_2 d'où apparition P_2	
	d'une charge $-q(z,t)$ en P_1 et une charge $q(z,t)$ en P_2 d'où cet élément se	1
	comporte confine un dipole oscillant de moment disaleix (1)	
	$d\vec{p}(z,t) = q(z,t) \ \overline{P_1 P_2} = \frac{I_0}{\omega} \cos(\frac{2 \pi}{\lambda} z) \sin(\omega t) \ dz \ \vec{u}_z$	
9-a)	ω λ	1
9-a)	Tous les rayons PM sont parallèles donc θ et \vec{u}_{θ} sont indépendant de la position du	
	point l'au l'antenne d'ou le champ élémentaire crée par un élément de l'antenne est.	
	$d\vec{E}(M,t) = 1 \sin\theta d^2 \left(I_0 - 2\pi - \left(\frac{DM}{DM}\right)\right)$	
	$d\vec{E}(M,t) = \frac{1}{4 \pi \varepsilon_0 c^2} \frac{\sin \theta}{PM} \frac{d^2}{dt^2} \left(\frac{I_0}{\omega} \cos(\frac{2 \pi}{\lambda} z) \sin\left(\omega \left(t - \frac{PM}{c}\right)\right) dz \right) \vec{u}_{\theta}$	
		1
	Dans la zone de rayonnement $r \rangle \rangle \lambda \Rightarrow r \rangle \rangle z = OP$ donc $\frac{1}{PM} = \frac{1}{OM} = \frac{1}{r}$ d'ou	
	$\frac{1}{\sqrt{r}}\cos\theta$ $\frac{1}{\sqrt{r}}\cos\theta$ $\frac{1}{\sqrt{r}}\cos\theta$	
	$d\vec{E}(M,t) = -\frac{1}{4 \pi \varepsilon_0 c^2} \frac{\sin \theta}{r} I_0 \omega \cos \left(\frac{2 \pi}{\lambda} z\right) \sin \left(\omega t - \frac{2 \pi}{\lambda} PM\right) dz \vec{u}_{\theta}$	
9-b)	D'après le théorème de Malus HM = PM donc	
	$OM = OH + HM \Rightarrow r = z \cos\theta + PM \Rightarrow PM = r - z \cos\theta$	1
	P	
(0.1	O H	
)-c)	$d\vec{E} = -\frac{I_0 \omega}{4\pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \cos \left(\frac{2\pi}{\lambda} z\right) \sin \left(\omega t - \frac{2\pi}{\lambda} r + \frac{2\pi}{\lambda} z \cos \theta\right) dz \vec{u}_\theta \Rightarrow \vec{E} = \int d\vec{E}$	
	\overline{F}_{α} $= \int_{-\infty}^{\infty} ds \sin\theta \left[\frac{1}{2} \right] ds$	
	$\overline{E}(\mathbf{M},t) = -\frac{I_0 \omega}{4 \pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \left[\int_{-\lambda/4}^{\lambda/4} \cos \left(\frac{2 \pi}{\lambda} z \right) \sin \left(\omega t - \frac{2 \pi}{\lambda} r + \frac{2 \pi}{\lambda} z \cos \theta \right) dz \right] \vec{u}_{\theta}$	
	$\vec{E}(\mathbf{M},t) = -\frac{I_0 \omega}{4 \pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \frac{1}{2} \left[\int_{-\lambda/4}^{\lambda/4} \sin \left(\omega t - \frac{2 \pi}{\lambda} r + \frac{2 \pi}{\lambda} z (1 + \cos \theta) \right) dz + \right]$	
	$\lambda = \lambda^{-1/4}$	
	$\int_{-\lambda/4}^{\lambda/4} \sin\left(\omega t - \frac{2\pi}{\lambda}r + \frac{2\pi}{\lambda}z(1-\cos\theta)\right) dz \left \vec{u}_{\theta} \right $	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	$\vec{E} = \frac{I_0 \omega}{4\pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \frac{1}{2} \left[\frac{\cos \left(\omega t - \frac{2\pi}{\lambda} r + \frac{\pi}{2} (1 + \cos \theta)\right) - \cos \left(\omega t - \frac{2\pi}{\lambda} r - \frac{\pi}{2} (1 + \cos \theta)\right)}{\frac{2\pi}{\lambda} (1 + \cos \theta)} \right]$	+
	$\frac{\cos\left(\omega t - \frac{2\pi}{\lambda}r + \frac{\pi}{2}(1 - \cos\theta)\right) - \cos\left(\omega t - \frac{2\pi}{\lambda}r - \frac{\pi}{2}(1 - \cos\theta)\right)}{\frac{2\pi}{\lambda}(1 - \cos\theta)}\right]\vec{u}_{\theta}$	3
	$\vec{E} = -\frac{I_0 \omega}{4\pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \frac{1}{2} 2 \sin \left(\omega t - \frac{2\pi}{\lambda} r \right) \frac{\lambda}{2\pi} \left[\frac{\sin \left(\frac{\pi}{2} + \frac{\pi}{2} \cos \theta \right)}{(1 + \cos \theta)} + \frac{\sin \left(\frac{\pi}{2} - \frac{\pi}{2} \cos \theta \right)}{(1 - \cos \theta)} \right] \vec{u}_{\theta}$	
	$\vec{E} = -\frac{I_0}{4\pi \varepsilon_0 c} \frac{\sin \theta}{r} \sin \left(\omega t - \frac{2\pi}{\lambda} r\right) \cos \left(\frac{\pi}{2} \cos \theta\right) \frac{2}{\sin^2 \theta} \vec{u}_{\theta}$	
20-	$\vec{E} = -\frac{I_0}{2\pi\varepsilon_0c}\frac{1}{r}\frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}\sin\left(\omega t - \frac{2\pi}{\lambda}r\right)\vec{u}_\theta$	
20	M est très éloigné donc l'onde est localement plane $\Rightarrow \vec{B} = \frac{\vec{u}_r \wedge \vec{E}}{a}$	0,5
	$\left\langle \overrightarrow{\Pi} \right\rangle = \left\langle \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0} \right\rangle = \left\langle \frac{\overrightarrow{E}}{\mu_0} \wedge \left(\frac{\overrightarrow{u}_r \wedge \overrightarrow{E}}{c} \right) \right\rangle = \frac{1}{\mu_0 c} \left\langle \left(\overrightarrow{E} \cdot \overrightarrow{E} \right) \overrightarrow{u}_r - \left(\overrightarrow{E} \cdot \overrightarrow{u}_r \right) \overrightarrow{E} \right\rangle = \frac{\left\langle E^2 \right\rangle}{\mu_0 c} \overrightarrow{u}_r \Rightarrow$ $\left\langle \overrightarrow{\Pi} \right\rangle = \frac{I_0^2}{8 \pi^2 \varepsilon_0^2 \mu_0 c^3} \frac{1}{r^2} \frac{\cos^2 \left(\frac{\pi}{2} \cos \theta \right)}{\sin^2 \theta} \overrightarrow{u}_r = \frac{I_0^2}{8 \pi^2 \varepsilon_0 c} \frac{1}{r^2} \frac{\cos^2 \left(\frac{\pi}{2} \cos \theta \right)}{\sin^2 \theta} \overrightarrow{u}_r$	1
21-a)	$8\pi^2 \varepsilon_0^2 \mu_0 c^3 r^2 \qquad \sin^2 \theta \qquad u_r - 8\pi^2 \varepsilon_0 c r^2 \qquad \sin^2 \theta \qquad u_r$	
	$P_{m} = \left\langle \iint_{S} \overrightarrow{\Pi}_{S} . \overrightarrow{dS} \right\rangle = \iint_{S} \left\langle \overrightarrow{\Pi}_{S} \right\rangle . \overrightarrow{dS} = \frac{I_{0}^{2}}{8 \pi^{2} \varepsilon_{0} c} \int_{0}^{\pi} \frac{\cos^{2} \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta} d\theta \int_{0}^{2\pi} d\varphi = \frac{1,22}{4 \pi \varepsilon_{0} c} I_{0}^{2}$	1,5
21-b) 22-	$P_m = \frac{R_r \ I_0^2}{2} \Rightarrow R_r = \frac{1,22}{2 \pi \varepsilon_0 c} = \frac{1,22}{2.\pi .8,84.10^{-12} .3.10^8} = 73 \Omega$ Pour l'antenne on a :	1
	$\left\ \left\langle \overrightarrow{\Pi} \right\rangle_{\text{max}} \right\ = \left\ \left\langle \overrightarrow{\Pi} (\theta = \frac{\pi}{2}) \right\rangle \right\ = \frac{I_0^2}{8 \pi^2 \varepsilon_0 c} \frac{1}{r^2} \Rightarrow D = \frac{4\pi r^2 I_0^2}{8 \pi^2 \varepsilon_0 c} \frac{1}{r^2} \frac{4\pi \varepsilon_0 c}{1,22 I_0^2} = \frac{2}{1,22} = 1,64$	1
	Pour un dipôle oscillant on a: $\vec{E} = -\frac{p_0 \omega^2}{4 \pi \varepsilon_0 c^2} \frac{\sin \theta}{r} \cos \left(\omega \left(t - \frac{r}{c}\right)\right) \vec{u}_{\theta}$ donc	
	$\left\langle \overrightarrow{\Pi} \right\rangle = \frac{\left\langle E^2 \right\rangle}{\mu_0 c} \vec{u}_r = \frac{\omega^4 p_0^2}{32 \pi^2 \varepsilon_0 c^3} \frac{\sin^2 \theta}{r^2} \vec{u}_r \Rightarrow \left\ \left\langle \overrightarrow{\Pi} \right\rangle_{\text{max}} \right\ = \left\ \left\langle \overrightarrow{\Pi} (\theta = \frac{\pi}{2}) \right\rangle \right\ = \frac{\omega^4 p_0^2}{32 \pi^2 \varepsilon_0 c^3} \frac{1}{r^2} \text{ et}$	3
-	$P_{m} = \frac{\omega^{4} p_{0}^{2}}{32 \pi^{2} \varepsilon_{0} c^{3}} \int_{0}^{\pi} \sin^{3}\theta d\theta \int_{0}^{2\pi} d\phi = \frac{\omega^{4} p_{0}^{2}}{12 \pi \varepsilon_{0} c^{3}} \Rightarrow D = \frac{4 \pi r^{2} \omega^{4} p_{0}^{2}}{32 \pi^{2} \varepsilon_{0} c^{3}} \frac{1}{r^{2}} \frac{12 \pi \varepsilon_{0} c^{3}}{\omega^{4} p_{0}^{2}} = \frac{3}{2} = 1,5$	
	1,64)1,5 donc l'antenne demi-onde est légèrement plus directive que le dipôle oscillant.	0,5