請細閱以下圖形,並將適當的圓形的定理填寫在第2頁的表格內。

時限:15 分鐘

Last updated: September 22, 2021

$$\angle AOB = \angle COD$$
, $\exists i \in \widehat{AB} = \widehat{CD}$

ON LAB, 若

則
$$AN = NB_o$$

x = 2y

y = x

AB=CD,則 x = y

若
$$AN = NB$$
,

若
$$x = y$$
, 則 $A \times B \times Q$ 和 P 共圓。

$$\widehat{AB} = \widehat{CD}$$
, and $AB = CD$

AB = CD, 若

則
$$OM = ON$$
。

x = y

若
$$\angle P + \angle R = 180^{\circ}$$

或
$$\angle Q + \angle S = 180^{\circ}$$
,

$$\widehat{AB}:\widehat{BC}=m:n$$

若
$$OM = ON$$
,

則
$$AB = CD_{\circ}$$

$$\angle P + \angle R = 180^{\circ}$$
,

$$\angle Q + \angle S = 180^{\circ}$$

若
$$y = x$$
,

則 P、Q、R和S共圓。

17.

 $AE \cdot EB = CE \cdot ED$

切綫PQ LOT

19. 若 PQ ⊥ OT,則 PQ 是圓在 T 點的切綫。

對於一個圓心是O的圓,若從一個外點T向圓作兩條切綫TP及TQ,則

(i)
$$TP = TQ$$

(ii) $\angle POT = \angle QOT$

(iii)
$$\angle PTO = \angle QTO$$

21

若 PQ 切圓於 A 點,而 AB 是 該圓的一任意弦,

則 $\angle BAP = \angle BCA$ 。

22 ∠BAP = ∠BCA, 則PA是圓 在A點的切綫。

1.	2.	3.
4.	5.	6.
7.	8.	9.
10.	11.	12.
13.	14.	15.
16.	17.	18.
19.	20.	21.
22.		總分

試卷完

Circle theorem test

Time allowed: 15 minutes

In each of the following figure, write down the abbreviation in the boxes on next page.

1.

If $\angle AOB = \angle COD$, then $\widehat{AB} = \widehat{CD}$

If $ON \perp AB$ then AN = NB

9.

2

If AB=CD, then x = y

If AN = NB then $ON \perp AB$

 $\angle ACB = 90^{\circ}$

If x = y, then A, B, Q, P are concyclic.

3.

If $\widehat{AB} = \widehat{CD}$, then AB = CD

If AB = CD then OM = ON

If $\angle P + \angle R = 180^{\circ}$ or $\angle Q + \angle S = 180^{\circ}$, then P, Q, R, S are concyclic.

$$\widehat{AB}:\widehat{BC}=m:n$$

If OM = ON, then AB = CD

 $\angle P + \angle R = 180^{\circ}$,

If y = x, then P, Q, R, S are concyclic.

17.

Intersection chords theorem

18

Tangent ⊥ radius

19. Converse tangent ⊥ radius

20

Tangent from ext. point

21

3.

22. Converse, \angle in alt. seg.

eq. arcs eq. chords

Class:	S
--------	---

eq. ∠s eq. arcs

NT ~	•			
No	•			

Class. S 1\all.		110
1.	2.	3.
4.	5.	6.
7.	8.	9.
10.	11.	12.
13.	14.	15.
16.	17.	18.
19.	20.	21.
22.		Total

eq. chords eq. ∠s

Circle theorem test answers

Mr. Francis Hung

4.	arcs ∝ ∠s	5. ⊥ from centre bisects chord	6.	line joining centre and mid-point of chord \bot
				chord
7.	eq. chords are eq. dist. from centre	8. chords eq. dist. from centre are eq.	9.	∠ at centre twice ∠ at ⊙ ce
10.	∠ in semi-circle	11. ∠s in the same seg.	12.	opp. ∠s cyclic quadrilateral
13.	ext. ∠, cyclic quad.	14. converse, ∠s in the same seg.	15.	opp. ∠s supp.
16.	ext. \angle = int. opp. \angle	17. $AE \times EB = CE \times ED$	18.	If PQ is a tangent at T and O is the centre,
				then OT \perp PQ
19.	If OT \perp PQ, and O is the centre, then PTQ	20. If T is an external point and O is the centre,	21.	If PA is a tangent at A,
	is a tangent at T	two tangents TP and TQ can be drawn.		then $\angle PAB = \angle ACB$
		$TP = TQ$, $\angle PTO = \angle QTO$, $\angle POT = \angle QOT$		
22.	If $\angle PAB = \angle ACB$, then PA is the tangent			
	at A.			