# RELATIONAL ALGEBRA

# RELATIONAL ALGEBRA

- There are two types of operations in RDBMS
  - Retrieval
  - Update
- The set of operations for specifying **retrieval requests** (or **queries**) in relational model is called Relational Algebra.
- A sequence of relational algebra operations forms a **relational algebra expression**.

# COMPANY DATABASE CONSIDERED IN EXAMPLES

#### **EMPLOYEE**



# SELECT OPERATION (UNARY OPERATION)

- This operation selects a subset of tuples from a relation that satisfy a selection condition.
- $\circ$  Select is denoted by :  $\sigma_{\langle \text{selection condition} \rangle}(R)$

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **DEPARTMENT**

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |
|----------------|---------|-----------|----------------|
| Research       | 5       | 333445555 | 1988-05-22     |
| Administration | 4       | 987654321 | 1995-01-01     |
| Headquarters   | 1       | 888665555 | 1981-06-19     |

#### DEPT\_LOCATIONS

| Dnumber | Dlocation |  |
|---------|-----------|--|
| 1       | Houston   |  |
| 4       | Stafford  |  |
| 5       | Bellaire  |  |
| 5       | Sugarland |  |
| 5       | Houston   |  |

# **EXAMPLES: SELECT OPERATION**

- Select the employees whose department number is 4:
  - $\sigma_{DNO=4}$  (EMPLOYEE)
- Select all the projects in department 5
- Select the employees whose salary is greater than \$35,000

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |
|----------------|---------|-----------|----------------|
| Research       | 5       | 333445555 | 1988-05-22     |
| Administration | 4       | 987654321 | 1995-01-01     |
| Headquarters   | 1       | 888665555 | 1981-06-19     |

#### WORKS\_ON

| Essn      | <u>Pno</u> | Hours |
|-----------|------------|-------|
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |

#### DEPT\_LOCATIONS

| <u>Dnumber</u> | Dlocation |  |  |
|----------------|-----------|--|--|
| 1              | Houston   |  |  |
| 4              | Stafford  |  |  |
| 5              | Bellaire  |  |  |
| 5              | Sugarland |  |  |
| 5              | Houston   |  |  |
|                |           |  |  |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

| Essn      | _Dependent_name | Sex | Bdate      | Relationship |
|-----------|-----------------|-----|------------|--------------|
| 333445555 | Alice           | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore        | М   | 1983-10-25 | Son          |
| 333445555 | Joy             | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner           | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael         | М   | 1988-01-04 | Son          |
| 123456789 | Alice           | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth       | F   | 1967-05-05 | Spouse       |

# **SELECT OPERATION**

- Selection condition is a Boolean expression specified on the attributes of relation R
  - It can include boolean operators AND, OR, NOT applied on relational operators <, > <=,>=,!=,=
- Select  $\sigma$  is commutative:

$$\sigma_{\text{condition}1>}(\sigma_{\text{condition}2>}(R)) = \sigma_{\text{condition}2>}(\sigma_{\text{condition}1>}(R))$$

• Cascade of Select operations

$$\sigma_{<\text{cond1}>}(\sigma_{<\text{cond2}>} \ (\sigma_{<\text{cond3}>}(R)) = \sigma_{<\text{cond1}>\ AND\ <\ cond2>\ AND\ <\ cond3>}(R)))$$

# σ<sub>(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)</sub> (EMPLOYEE).

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |

# PROJECT OPERATION (UNARY OPERATION)

- This operation selects a subset of columns from the existing relation.
- Project operation is denoted by  $\pi_{\text{<attribute list>}}R$
- It removes duplicate tuples, the result of project is set of tuples
- Example:
  - RESULT $\leftarrow \pi_{\text{LNAME, FNAME, SALARY}}$  (EMPLOYEE)
  - DN $\leftarrow \pi_{\text{DNAME, DNUMBER}}$  (DEPARTMENT)

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | E     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

| Lname   | Fname    | Salary |
|---------|----------|--------|
| Smith   | John     | 30000  |
| Wong    | Franklin | 40000  |
| Zelaya  | Alicia   | 25000  |
| Wallace | Jennifer | 43000  |
| Narayan | Ramesh   | 38000  |
| English | Joyce    | 25000  |
| Jabbar  | Ahmad    | 25000  |
| Borg    | James    | 55000  |

# PROJECT OPERATION

- Project operation is *not* commutative
- $\pi_{< \text{list}1>}$  ( $\pi_{< \text{list}2>}$  (R) ) =  $\pi_{< \text{list}1>}$  (R) as long as <list2> contains the attributes in <list1>
- No of Tuples in the result of projection  $\pi_{< list>}(R)$ 
  - less or equal to the number of tuples in R
  - If the list of attributes includes a *key* of R, then the no of is *equal* to the no of tuples in R

# RELATIONAL ALGEBRA EXPRESSIONS

- We may want to apply several relational algebra operations one after the other
  - We can write the operations as a single relational algebra expression by nesting the operations, or
  - 2. We can apply one operation at a time and create **intermediate result relations**.

# **EXAMPLE: SEQUENCE OF OPERATIONS**

- To retrieve the first name, last name, and salary of all employees who work in Department 5
- Result of sequence of operations:
  - $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO}=5}(\text{EMPLOYEE}))$
- Using intermediate relation:
  - D5  $\leftarrow$   $\sigma_{DNO=5}(EMPLOYEE)$
  - RESULT  $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$  (D5)
- Renaming of attributes
  - D5  $\leftarrow$   $\sigma_{DNO=5}(EMPLOYEE)$
  - R (FirstName, LastName, Salary)  $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$  (D5)

# EXAMPLE OF APPLYING MULTIPLE OPERATIONS AND RENAME

(a)

| Fname    | Lname   | Salary |
|----------|---------|--------|
| John     | Smith   | 30000  |
| Franklin | Wong    | 40000  |
| Ramesh   | Narayan | 38000  |
| Joyce    | English | 25000  |

 $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO}=5}(\text{EMPLOYEE}))$ 

 $D5 \leftarrow \sigma_{DNO=5}(EMPLOYEE)$ 

R (First\_name,Last\_name,Salary)  $\leftarrow \pi_{\text{Fname,Lname,Salary}}$  (D5)

(b)

**TEMP** 

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                 | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|------------|------------|-------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789  | 1965-01-09 | 731 Fondren, Houston,TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston,TX    | М   | 40000  | 888665555 | 5   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble,TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX  | F   | 25000  | 333445555 | 5   |

R

| First_name | Last_name | Salary |
|------------|-----------|--------|
| John       | Smith     | 30000  |
| Franklin   | Wong      | 40000  |
| Ramesh     | Narayan   | 38000  |
| Joyce      | English   | 25000  |

Figure 6.2

Results of a sequence of operations.

(a)  $\pi_{\text{Fname, Lname, Salary}}(\sigma_{\text{Dno=5}}(\text{EMPLOYEE})).$ 

(b) Using intermediate relations and renaming of attributes.

### RENAME OPEARATION

- $\circ$  Rename operator is denoted by  $\rho$  (rho)
- Rename operation  $\rho$  can be expressed as:
  - $\rho_{S}(R)$  rename the *relation* to S
  - $\rho_{(B1, B2, ..., Bn)}(R)$  rename the *attributes* to B1, B2, .....Bn
  - $\rho_{S (B1, B2, ..., Bn)}(R)$  rename both relation to S, and attributes to B1, B1, ....Bn
- Example:
  - ρ<sub>RESULT (First\_Name,Last\_Name, DNO)</sub>(D5)

# Union (Binary Operation)

- The result of  $R \cup S$ , is a relation that includes all tuples that are either in R or in S or in both R and S
- Duplicate tuples are eliminated
- The two relations R and S must be "type compatible" (or Union compatible)
  - R and S must have same number of attributes
  - Each pair of corresponding attributes must have same or compatible domains

### UNION EXAMPLE

To retrieve the social security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5

$$\begin{split} DEP5\_EMPS \leftarrow \sigma_{DNO=5} & (EMPLOYEE) \\ RESULT1 \leftarrow \pi_{SSN} & (DEP5\_EMPS) \\ RESULT2 & (SSN) \leftarrow \pi_{SUPERSSN} & (DEP5\_EMPS) \\ RESULT \leftarrow RESULT1 \cup RESULT2 \end{split}$$

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **RESULT1**

| Ssn       |
|-----------|
| 123456789 |
| 333445555 |
| 666884444 |
| 453453453 |

#### **RESULT2**

| Ssn       |
|-----------|
| 333445555 |
| 888665555 |

#### **RESULT**

| Ssn       |
|-----------|
| 123456789 |
| 333445555 |
| 666884444 |
| 453453453 |
| 888665555 |

# INTERSECTION AND SET DIFFERENCE (BINARY OPERATIONS)

- INTERSECTION operation: the result of  $R\cap S$ , is a relation that includes all tuples that are in both R and S
- SET DIFFERENCE operation: the result of R-S, is a relation that includes all tuples that are in R but not in S
- Two relations R and S must be "type compatible"

# RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY

- Both  $\cup$  and  $\cap$  are *commutative* operations
  - $R \cup S = S \cup R$ , and  $R \cap S = S \cap R$
- Both  $\cup$  and  $\cap$  can be treated as n-ary operations
  - $R \cup (S \cup T) = (R \cup S) \cup T$
  - $(R \cap S) \cap T = R \cap (S \cap T)$
- Minus operation is not commutative
  - $R S \neq S R$

# EXAMPLE TO ILLUSTRATE THE RESULT OF UNION, INTERSECT, AND DIFFERENCE

#### (a) STUDENT

| Fn      | Ln      |
|---------|---------|
| Susan   | Yao     |
| Ramesh  | Shah    |
| Johnny  | Kohler  |
| Barbara | Jones   |
| Amy     | Ford    |
| Jimmy   | Wang    |
| Ernest  | Gilbert |

#### **INSTRUCTOR**

| Fname   | Lname   |
|---------|---------|
| John    | Smith   |
| Ricardo | Browne  |
| Susan   | Yao     |
| Francis | Johnson |
| Ramesh  | Shah    |

(b)

| Fn      | Ln      |
|---------|---------|
| Susan   | Yao     |
| Ramesh  | Shah    |
| Johnny  | Kohler  |
| Barbara | Jones   |
| Amy     | Ford    |
| Jimmy   | Wang    |
| Ernest  | Gilbert |
| John    | Smith   |
| Ricardo | Browne  |
| Francis | Johnson |
|         |         |

| (c) | Fn     | Ln   |
|-----|--------|------|
|     | Susan  | Yao  |
|     | Ramesh | Shah |

| (d) | Fn      | Ln      |
|-----|---------|---------|
|     | Johnny  | Kohler  |
|     | Barbara | Jones   |
|     | Amy     | Ford    |
|     | Jimmy   | Wang    |
|     | Ernest  | Gilbert |

| e) | Fname   | Lname   |
|----|---------|---------|
|    | John    | Smith   |
|    | Ricardo | Browne  |
|    | Francis | Johnson |

#### Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT − INSTRUCTOR. (e) INSTRUCTOR − STUDENT.

### CARTESIAN PRODUCT

- The result of Cartesian product of two relations R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm) is given as: Result(A1, A2, . . ., An, B1, B2, . . ., Bm)
- $\circ$  Let  $|R| = n_R$  and  $|S| = n_S$ , then  $|R \times S| = n_R * n_S$
- R and S may NOT be "type compatible"
- Cross Product is a meaningful operation only if it is followed by other operations

### Example (not meaningful):

 $\begin{array}{l} F \leftarrow \sigma_{\text{ SEX='F'}}(EMPLOYEE) \\ EN \leftarrow \pi_{\text{ FNAME, LNAME, SSN}}(F) \\ E\_DP \leftarrow EN \times DEPENDENT \end{array}$ 

#### **Problem:**

Retrieve a list of each female employee's dependents

### Example (meaningful):

 $\begin{array}{l} {\rm A\_DP} \leftarrow \sigma_{\rm ~SSN=ESSN}(\textbf{E\_DP}) \\ {\rm R} \leftarrow \pi_{\rm ~FNAME,~LNAME,~DEPENDENT\_NAME}({\rm A\_DP}) \end{array}$ 

#### **DEPENDENT**

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

#### Figure 6.5

The CARTESIAN PRODUCT (CROSS PRODUCT) operation.



#### FEMALE EMPS

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                 | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|-------------------------|-----|--------|-----------|-----|
| Alicia   | J     | Zelaya  | 999887777 | 1968-07-19 | 3321 Castle, Spring, TX | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX  | F   | 25000  | 333445555 | 5   |

#### EN

#### MPNAMES

| Fname    | Lname   | Ssn       |
|----------|---------|-----------|
| Alicia   | Zelaya  | 999887777 |
| Jennifer | Wallace | 987654321 |
| Joyce    | English | 453453453 |

# E\_DP

#### **EMP DEPENDENTS**

| CIVIF_DE | PENDEN  | 13        |           |                |     |            |  |
|----------|---------|-----------|-----------|----------------|-----|------------|--|
| Fname    | Lname   | Ssn       | Essn      | Dependent_name | Sex | Bdate      |  |
| Alicia   | Zelaya  | 999887777 | 333445555 | Alice          | F   | 1986-04-05 |  |
| Alicia   | Zelaya  | 999887777 | 333445555 | Theodore       | М   | 1983-10-25 |  |
| Alicia   | Zelaya  | 999887777 | 333445555 | Joy            | F   | 1958-05-03 |  |
| Alicia   | Zelaya  | 999887777 | 987654321 | Abner          | М   | 1942-02-28 |  |
| Alicia   | Zelaya  | 999887777 | 123456789 | Michael        | М   | 1988-01-04 |  |
| Alicia   | Zelaya  | 999887777 | 123456789 | Alice          | F   | 1988-12-30 |  |
| Alicia   | Zelaya  | 999887777 | 123456789 | Elizabeth      | F   | 1967-05-05 |  |
| Jennifer | Wallace | 987654321 | 333445555 | Alice          | F   | 1986-04-05 |  |
| Jennifer | Wallace | 987654321 | 333445555 | Theodore       | М   | 1983-10-25 |  |
| Jennifer | Wallace | 987654321 | 333445555 | Joy            | F   | 1958-05-03 |  |
| Jennifer | Wallace | 987654321 | 987654321 | Abner          | М   | 1942-02-28 |  |
| Jennifer | Wallace | 987654321 | 123456789 | Michael        | М   | 1988-01-04 |  |
| Jennifer | Wallace | 987654321 | 123456789 | Alice          | F   | 1988-12-30 |  |
| Jennifer | Wallace | 987654321 | 123456789 | Elizabeth      | F   | 1967-05-05 |  |
| Joyce    | English | 453453453 | 333445555 | Alice          | F   | 1986-04-05 |  |
| Joyce    | English | 453453453 | 333445555 | Theodore       | М   | 1983-10-25 |  |
| Joyce    | English | 453453453 | 333445555 | Joy            | F   | 1958-05-03 |  |
| Joyce    | English | 453453453 | 987654321 | Abner          | М   | 1942-02-28 |  |
| Joyce    | English | 453453453 | 123456789 | Michael        | М   | 1988-01-04 |  |
| Joyce    | English | 453453453 | 123456789 | Alice          | F   | 1988-12-30 |  |
| Joyce    | English | 453453453 | 123456789 | Elizabeth      | F   | 1967-05-05 |  |
|          |         |           |           |                |     |            |  |

#### **ACTUAL DEPENDENTS**

| Fname    | Lname   | Ssn       | Essn      | Dependent_name | Sex | Bdate      |  |
|----------|---------|-----------|-----------|----------------|-----|------------|--|
| Jennifer | Wallace | 987654321 | 987654321 | Abner          | М   | 1942-02-28 |  |

#### RESULT

| Fname    | Lname   | Dependent_name |
|----------|---------|----------------|
| Jennifer | Wallace | Abner          |



# JOIN(BINARY OPERATION)

- JOIN denoted by ⋈ combine related tuples from various relations
- JOIN combines CARTESIAN PRODECT and SELECT into a single operation
- General form of a join operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is:

# EXAMPLE OF JOIN OPERATION

• Retrieve the name of the manager of each department.

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

# $DEPT\_MGR \leftarrow DEPARTMENT \quad \underset{MGRSSN=SSN}{\swarrow} EMPLOYEE$

• The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN

#### DEPT\_MGR

| Dname          | Dnumber | Mgr_ssn   | <br>Fname    | Minit | Lname   | Ssn       |  |
|----------------|---------|-----------|--------------|-------|---------|-----------|--|
| Research       | 5       | 333445555 | <br>Franklin | Т     | Wong    | 333445555 |  |
| Administration | 4       | 987654321 | <br>Jennifer | S     | Wallace | 987654321 |  |
| Headquarters   | 1       | 888665555 | <br>James    | E     | Borg    | 888665555 |  |

# COMPLETE SET OF RELATIONAL OPERATIONS

- The set of operations including
  - SELECT σ,
  - PROJECT  $\pi$ ,
  - UNION  $\cup$ ,
  - DIFFERENCE ,
  - RENAME  $\rho$ , and
  - CARTESIAN PRODUCT X

is called a *complete set* because any relational algebra expression can be expressed using these.

- For example:
  - $R \cap S = (R \cup S) ((R S) \cup (S R))$
  - R  $> S = \sigma_{\text{sjoin condition}}$  (R X S)

# SOME PROPERTIES OF JOIN

- Consider the following JOIN operation:
  - R(A1, A2, ..., An)  $\searrow$  S(B1, B2, ..., Bm) R.Ai=S.Bj
  - Result is a relation Q with degree n + m attributes:
    - $\circ$  Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
  - Relation Q has one tuple for each combination of tuples—r from R and s from S, but *only if they* satisfy the join condition r[Ai]=s[Bj]
  - If R has  $n_R$  tuples, and S has  $n_S$  tuples, then no of tuples in join result  $< n_R * n_S$ .

### THETA-JOIN

• The general case of JOIN operation is called a Theta-join: R S

theta

- *Theta* is a boolean expression on the attributes of R and S; for example:
  - R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)
- Theta can have any comparison operators  $\{=,\neq,<,\leq,>,\geq,\}$

# **EQUI-JOIN**

• EQUIJOIN is a join condition that involves only equality operator = .

### • Example:

- DEPT\_MGR  $\leftarrow$  DEPARTMENT  $_{\text{MGRSSN=SSN}}$  EMPLOYEE
- Retrieve a list of each female employee's dependents

$$F \leftarrow \sigma_{\text{SEX='F'}}(\text{EMPLOYEE})$$

$$EN \leftarrow \pi_{\text{FNAME, LNAME, SSN}}(F)$$

$$E\_DP \leftarrow EN \longrightarrow DEPENDENT$$

SSN=ESSN

# ISSUE WITH EQUIJOIN OPERATION

#### **DEPT\_MGR**

| Dname          | Dnumber | Mgr_ssn   | <br>Fname    | Minit | Lname   | Ssn       |  |
|----------------|---------|-----------|--------------|-------|---------|-----------|--|
| Research       | 5       | 333445555 | <br>Franklin | Т     | Wong    | 333445555 |  |
| Administration | 4       | 987654321 | <br>Jennifer | S     | Wallace | 987654321 |  |
| Headquarters   | 1       | 888665555 | <br>James    | E     | Borg    | 888665555 |  |

- Superfluous column
- Result of EQUIJOIN always have one or more pairs of attributes that have identical values in every tuple.

# NATURAL JOIN OPERATION

- NATURAL JOIN operation (denoted by \*) is created to get rid of the superfluous attribute in an EQUIJOIN condition.
- The two join attributes, or each pair of corresponding join attributes must *have the same name* in both relations
  - If this is not the case, a renaming operation is applied first.

# NATURAL JOIN OPERATION

- Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and DEPT\_LOCATIONS, it is sufficient to write:
  - DEPT\_LOCS ← DEPARTMENT \* DEPT\_LOCATIONS
- Only attribute with the same name is DNUMBER
- An implicit join condition is created based on this attribute: DEPARTMENT.DNUMBER=DEPT\_LOCATIONS.DNUMBER

#### **DEPARTMENT**

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

#### **DEPT\_LOCATIONS**

| Dnumber | Dlocation |  |
|---------|-----------|--|
| 1       | Houston   |  |
| 4       | Stafford  |  |
| 5       | Bellaire  |  |
| 5       | Sugarland |  |
| 5       | Houston   |  |

# **EXAMPLE: NATURAL JOIN**

- Another example:  $Q \leftarrow R(A,B,C,D) * S(C,D,E)$ 
  - The implicit join condition includes *each pair* of attributes with the same name, "AND" together:
    - R.C=S.C AND R.D=.S.D
  - Result keeps only one attribute of each such pair:
    - $\circ$  Q(A,B,C,D,E)

# EXAMPLE OF NATURAL JOIN OPERATION

(a)

#### PROJ\_DEPT

| Pname           | <u>Pnumber</u> | Plocation | Dnum | Dname          | Mgr_ssn   | Mgr_start_date |
|-----------------|----------------|-----------|------|----------------|-----------|----------------|
| ProductX        | 1              | Bellaire  | 5    | Research       | 333445555 | 1988-05-22     |
| ProductY        | 2              | Sugarland | 5    | Research       | 333445555 | 1988-05-22     |
| ProductZ        | 3              | Houston   | 5    | Research       | 333445555 | 1988-05-22     |
| Computerization | 10             | Stafford  | 4    | Administration | 987654321 | 1995-01-01     |
| Reorganization  | 20             | Houston   | 1    | Headquarters   | 888665555 | 1981-06-19     |
| Newbenefits     | 30             | Stafford  | 4    | Administration | 987654321 | 1995-01-01     |

#### (b)

#### **DEPT\_LOCS**

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date | Location  |
|----------------|---------|-----------|----------------|-----------|
| Headquarters   | 1       | 888665555 | 1981-06-19     | Houston   |
| Administration | 4       | 987654321 | 1995-01-01     | Stafford  |
| Research       | 5       | 333445555 | 1988-05-22     | Bellaire  |
| Research       | 5       | 333445555 | 1988-05-22     | Sugarland |
| Research       | 5       | 333445555 | 1988-05-22     | Houston   |

Figure 6.7

Results of two NATURAL JOIN operations.

(a) PROJ\_DEPT ← PROJECT \* DEPT.

(b) DEPT LOCS ← DEPARTMENT \* DEPT LOCATIONS.

# DIVISION (BINARY OPERATION)

- The division operation is applied to two relations  $R(Z) \div S(X)$ , where  $X \subset Z$ .
- Let Y = Z X
  - We have  $Z = X \cup Y$  and Y is a set of attributes of R that are not the attributes of S.
- The result of DIVISION is a relation T(Y)
- For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with *every* tuple in S.

| K  |    |  |
|----|----|--|
| Α  | В  |  |
| a1 | b1 |  |
| a2 | b1 |  |
| аЗ | b1 |  |
| a4 | b1 |  |
| a1 | b2 |  |
| аЗ | b2 |  |
| a2 | b3 |  |
| аЗ | b3 |  |
| a4 | b3 |  |
| a1 | b4 |  |
| a2 | b4 |  |
| аЗ | b4 |  |

S

| Α  |
|----|
| a1 |
| a2 |
| а3 |

Т

| В  |
|----|
| b1 |
| b4 |

# EXAMPLE OF DIVISION

Retrieve all employees who work on all the project that *John Smith* works on

- Smith  $\leftarrow \sigma_{\text{fname='John' and lname='Smith'}}$  (Employee)
- Smith\_Pnos  $\leftarrow \pi_{Pno}$  (Works\_on  $\stackrel{\triangleright}{\bowtie}$  Smith)
- Ssn\_Pnos  $\leftarrow \pi_{Essn.Pno}$  (Works\_on)
- $SSNS(ssn) \leftarrow Ssn_Pnos \div Smith_Pnos$

#### SSN PNOS

| Essn      | Pno |
|-----------|-----|
| 123456789 | 1   |
| 123456789 | 2   |
| 666884444 | 3   |
| 453453453 | 1   |
| 453453453 | 2   |
| 333445555 | 2   |
| 333445555 | 3   |
| 333445555 | 10  |
| 333445555 | 20  |
| 999887777 | 30  |
| 999887777 | 10  |
| 987987987 | 10  |
| 987987987 | 30  |
| 987654321 | 30  |
| 987654321 | 20  |
| 888665555 | 20  |
|           |     |

#### SMITH PNOS

| Pno |
|-----|
| 1   |
| 2   |

#### **SSNS**

| Ssn       |  |  |
|-----------|--|--|
| 123456789 |  |  |
| 453453453 |  |  |

# RECAP OF RELATIONAL ALGEBRA OPERATIONS

**Table 6.1**Operations of Relational Algebra

| Operation            | Purpose                                                                                                                                                                                    | Notation                                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SELECT               | Selects all tuples that satisfy the selection condition from a relation $R$ .                                                                                                              | $\sigma_{< selection \ condition>}(R)$                                                                                                                                                     |
| PROJECT              | Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.                                                                                       | $\pi_{< 	ext{attribute list}>}(R)$                                                                                                                                                         |
| THETA JOIN           | Produces all combinations of tuples from $R_1$ and $R_2$ that satisfy the join condition.                                                                                                  | $R_1 \bowtie_{< \text{join condition}>} R_2$                                                                                                                                               |
| EQUIJOIN             | Produces all the combinations of tuples from $R_1$ and $R_2$ that satisfy a join condition with only equality comparisons.                                                                 | $R_1 \bowtie_{< \text{join condition}>} R_2$ ,  OR $R_1 \bowtie_{(< \text{join attributes 1}>),}$ $(< \text{join attributes 2}>)$ $R$                                                      |
| NATURAL JOIN         | Same as EQUIJOIN except that the join attributes of $R_2$ are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all. | $\begin{array}{c} R_1 *_{< \text{join condition}>} R_2, \\ \text{OR} \ R_1 *_{(< \text{join attributes 1}>),} \\ (< \text{join attributes 2}>) \ R_2 \\ \text{OR} \ R_1 * R_2 \end{array}$ |
| UNION                | Produces a relation that includes all the tuples in $R_1$ or $R_2$ or both $R_1$ and $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                     | $R_1 \cup R_2$                                                                                                                                                                             |
| INTERSECTION         | Produces a relation that includes all the tuples in both $R_1$ and $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                                       | $R_1 \cap R_2$                                                                                                                                                                             |
| DIFFERENCE           | Produces a relation that includes all the tuples in $R_1$ that are not in $R_2$ ; $R_1$ and $R_2$ must be union compatible.                                                                | $R_1 - R_2$                                                                                                                                                                                |
| CARTESIAN<br>PRODUCT | Produces a relation that has the attributes of $R_1$ and $R_2$ and includes as tuples all possible combinations of tuples from $R_1$ and $R_2$ .                                           | $R_1 \times R_2$                                                                                                                                                                           |
| DIVISION             | Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in $R_1$ in combination with every tuple from $R_2(Y)$ , where $Z = X \cup Y$ .                         | $R_1(Z) \div R_2(Y)$                                                                                                                                                                       |

# AGGREGATE FUNCTIONS

• Now we specify mathematical **aggregate functions** on collections of values from the database.

### • Examples:

- Retrieve the average or total salary of all employees
- Retrieve total number of employee tuples
- Functions applied to collections of numeric values include
  - SUM, AVERAGE, MAXIMUM, and MINIMUM.
  - COUNT function is used for counting tuples or values.

# AGGREGATE FUNCTION OPERATION

- Use of the Aggregate Functional operation F
  - $\mathscr{F}_{MAX \; Salary}$  (EMPLOYEE)
  - $\mathscr{F}_{MIN \; Salary} \; (EMPLOYEE)$
  - $\mathscr{F}_{\text{SUM Salary}}$  (EMPLOYEE)
  - $\mathscr{F}_{\text{COUNT SSN, AVERAGE Salary}}$  (EMPLOYEE)
    - o computes no of employees and their average salary
    - Note: count just counts the number of rows, without removing duplicates

### USING GROUPING WITH AGGREGATION

• Grouping can be combined with Aggregate Functions

### • Example:

- For each department, retrieve the DNO, COUNT SSN, and AVERAGE SALARY
- DNO \( \mathcal{F}\_{COUNT SSN, AVERAGE Salary} \) (EMPLOYEE)

### **EXAMPLE: AGGREGATE FUNCTIONS AND GROUPING**

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate                              | Address                          |   | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------------------------------|----------------------------------|---|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09                         | 731 Fondren, Houston, TX         | М | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08                         | 638 Voss, Houston, TX            | М | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19                         | 3321 Castle, Spring, TX          | F | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 291 Berry, Bellaire, TX |                                  | F | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15                         | 975 Fire Oak, Humble, TX         | М | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31                         | 5631 Rice, Houston, TX           | F | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29                         | 980 Dallas, Houston, TX          | М | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10                         | 937-11-10 450 Stone, Houston, TX |   | 55000  | NULL      | 1   |

The aggregate function operation.

(a)  $\rho_{R(Dno, No\_of\_employees, Average\_sal)}$  (Dno  $\mathfrak{I}_{COUNT\_Ssn, AVERAGE\_Salary}$  (EMPLOYEE)).

(b) Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE).

(c) \$\mathfrak{3}\text{ COUNT Ssn, AVERAGE Salary}\$ (EMPLOYEE).

R

| (a) | Dno | No_of_employees | Average_sal |
|-----|-----|-----------------|-------------|
|     | 5   | 4               | 33250       |
|     | 4   | 3               | 31000       |
|     | 1   | 1               | 55000       |

| c) | Count_ssn | Average_salary |
|----|-----------|----------------|
|    | 8         | 35125          |

| (b) | Dno | Count_ssn | Average_salary |  |  |
|-----|-----|-----------|----------------|--|--|
|     | 5 4 |           | 33250          |  |  |
|     | 4   | 3         | 31000          |  |  |
|     | 1   | 1         | 55000          |  |  |

8

## Examples of Queries in Relational ALGEBRA

Q1: Retrieve the name and address of all employees who work for the 'Research' department.

RESEARCH\_DEPT ← σ DNAME='Research' (DEPARTMENT)

RESEARCH\_EMPS ← (RESEARCH\_DEPT → DNUMBER = DNO EMPLOYEE)

RESULT  $\leftarrow \pi$  fname, lname, address (RESEARCH EMPS)

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  |   | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|---|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

#### DEPT\_LOCATIONS

| Dnumber | Dlocation |  |  |
|---------|-----------|--|--|
| 1       | Houston   |  |  |
| 4       | Stafford  |  |  |
| 5       | Bellaire  |  |  |
| 5       | Sugarland |  |  |
| 5       | Houston   |  |  |

# Examples of Queries in Relational Algebra

Q6: Retrieve the names of employees who have no dependents.

ALL\_EMPS  $\leftarrow \pi \text{ ssn}(\text{EMPLOYEE})$ 

888665555 1937-1

EMPS\_WITH\_DEPS(SSN)  $\leftarrow \pi \text{ ESSN}(DEPENDENT)$ 

EMPS\_WITHOUT\_DEPS ← (ALL\_EMPS - EMPS\_WITH\_DEPS)

RESULT  $\leftarrow \pi$  LNAME, FNAME (EMPS\_WITHOUT\_DEPS \* EMPLOYEE)

#### **EMPLOYEE**

James

Borg

|   | Fname    | Minit | Lname   | Ssn       | Bdate              | Address                  | Sex | Salary | Super_ssn | Dno |
|---|----------|-------|---------|-----------|--------------------|--------------------------|-----|--------|-----------|-----|
|   | John     | В     | Smith   | 123456789 | 1965-01-09         | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
|   | Franklin | Т     | Wong    | 333445555 | 1955-12-08         | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
|   | Alicia   | J     | Zelaya  | 999887777 | 1968-01-19         | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
|   | Jennifer | s     | Wallace | 987654321 | 1941-06-20         | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
|   | Ramesh   | K     | Narayan | 666884444 | 1962-09-15         | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
|   | Joyce    | Α     | English | 453453453 | 1972-07-01         | FCO1 Disc Harrison TV    | _   | 05000  | 222445555 |     |
|   | Ahmad    | V     | Jabbar  | 987987987 | 1969-0 <b>DE</b> I | PENDENT                  |     |        |           |     |
| ш |          |       |         |           |                    |                          |     |        |           |     |

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

# Examples of Queries in Relational ALGEBRA

Q5: Retrieve the names of all employees with two or more dependents.

 $T1(Ssn, No\_of\_dependents) \leftarrow Essn \mathscr{F}_{COUNT Dependent\_name}(DEPENDENT)$ 

 $T2 \leftarrow \sigma_{\text{No_of_dependents} > 1}(T1)$ 

RESULT  $\leftarrow \pi_{\text{LNAME, FNAME}}$  (T2 \* EMPLOYEE)

#### **EMPLOYEE**

|   | Fname    | Minit | Lname   | Ssn       | Bdate      | Bdate Address S          |   | Salary | Super_ssn | Dno |
|---|----------|-------|---------|-----------|------------|--------------------------|---|--------|-----------|-----|
|   | John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М | 30000  | 333445555 | 5   |
|   | Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М | 40000  | 888665555 | 5   |
|   | Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F | 25000  | 987654321 | 4   |
|   | Jennifer | s     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F | 43000  | 888665555 | 4   |
|   | Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М | 38000  | 333445555 | 5   |
|   | Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F | 25000  | 333445555 | 5   |
|   | Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas Houston TX    | M | 25000  | 987654321 | 1   |
| Ш | James    | E     | Borg    | 888665555 | DEPEND     | DENT                     |   |        |           |     |

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

### **OUTER JOIN OPERATION**

- In INNER JOIN, tuples without a *matching* are eliminated from the join result
  - Tuples with null are also eliminated
  - This amounts to loss of information.
- OUTER joins operations are used when we want to keep
  - all the tuples in R in the join result, or
  - all tuples in S in the join result, or
  - all tuples in both relations R and S in the join result

### LEFT OUTER JOIN

- List the employees name and the department name that they manage. If they don't manage one, then indicate this with a null value.
- Temp ← (Employee Ssn=Mgr\_Ssn Department)
- Result  $\leftarrow \pi_{\text{Fname, Minit, Lname, Dname}}(\text{Temp})$

#### **RESULT**

| Fname    | Minit | Lname   | Dname          |
|----------|-------|---------|----------------|
| John     | В     | Smith   | NULL           |
| Franklin | Т     | Wong    | Research       |
| Alicia   | J     | Zelaya  | NULL           |
| Jennifer | S     | Wallace | Administration |
| Ramesh   | K     | Narayan | NULL           |
| Joyce    | Α     | English | NULL           |
| Ahmad    | V     | Jabbar  | NULL           |
| James    | E     | Borg    | Headquarters   |

### **OUTER JOIN OPERATION**

- Left outer join: keeps every tuple in R, denoted as R | S
  - if no matching tuple is found in S, then the attributes of S in the join result are filled with null values.
- **Right outer join:** keeps every tuple in S in the result of R S.
- Full outer join: keeps all tuples in both the left and the right relations. It is denoted by

### FULL OUTER JOIN VS CARTESIAN PRODUCT

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |  |
|----------------|----------------|-----------|----------------|--|
| Research       | 5              | 333445555 | 1988-05-22     |  |
| Administration | 4              | 987654321 | 1995-01-01     |  |
| Headquarters   | 1              | 888665555 | 1981-06-19     |  |





#### RESULT

Employee Ssn=Mgr\_Ssn Department

| Fname    | Minit | Lname   | Dname          |  |
|----------|-------|---------|----------------|--|
| John     | В     | Smith   | NULL           |  |
| Franklin | Т     | Wong    | Research       |  |
| Alicia   | J     | Zelaya  | NULL           |  |
| Jennifer | S     | Wallace | Administration |  |
| Ramesh   | K     | Narayan | NULL           |  |
| Joyce    | Α     | English | NULL           |  |
| Ahmad    | V     | Jabbar  | NULL           |  |
| James    | E     | Borg    | Headquarters   |  |

### **OUTER UNION OPERATIONS**

- The outer union operation take the union of tuples in two relations R(X, Y) and S(X, Z) that are **partially compatible**,
  - Only some of their attributes, say X, are type compatible.
  - The attributes that are type compatible are represented only once in the result
  - The attributes that are not type compatible from either relation are also kept in the result relation T(X, Y, Z).

### **OUTER JOIN EXAMPLE**

- An outer union can be applied to two relations STUDENT(Name, SSN, Department, Advisor) and INSTRUCTOR(Name, SSN, Department, Rank).
  - Tuples are matched based on having the same combination of values of the shared attributes— Name, SSN, Department.
  - If a student is also an instructor, both Advisor and Rank will have a value; otherwise, one of these two attributes will be null.
  - Result relation:

    STUDENT\_OR\_INSTRUCTOR (Name, SSN, Department, Advisor, Rank)

### RECURSIVE CLOSURE OPERATION

- This can't be specified in general using Relational Algebra
- Example: Retrieve all SUPERVISEES of an EMPLOYEE e at all levels that is,
  - all employees **e**` directly supervised by **e**;
  - all employees **e**`` directly supervised by each employee **e**`;
  - all employees e```directly supervised by each employee e``;
  - and so on.
- We can retrieve employees at each level and then take their union, however, we cannot specify a query such as
  - "retrieve the supervisees of 'James Borg' at all levels" without utilizing a looping mechanism.
- The SQL3 standard includes syntax for recursive closure.

### RECURSIVE CLOSURE OPERATION

(Borg's SSN is 888665555)

(SSN) (S

(SUPERSSN)

| SUPERVISION | SSN1      | SSN2      |
|-------------|-----------|-----------|
|             | 123456789 | 333445555 |
|             | 333445555 | 888665555 |
|             | 999887777 | 987654321 |
|             | 987654321 | 888665555 |
|             | 666884444 | 333445555 |
|             | 453453453 | 333445555 |
|             | 987987987 | 987654321 |
|             |           |           |

| RESULT 1 | SSN       |
|----------|-----------|
|          | 333445555 |
|          | 987654321 |

(Supervised by Borg)

| SSN       |
|-----------|
| 123456789 |
| 999887777 |
| 666884444 |
| 453453453 |
| 987987987 |
|           |

(Supervised by Borg's subordinates)

| RESULT | SSN       |
|--------|-----------|
|        | 123456789 |
|        | 999887777 |
|        | 666884444 |
|        | 453453453 |
|        | 987987987 |
|        | 333445555 |
|        | 987654321 |

# Example of Query Tree

Query: For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.



### **QUERY TREE**

- An internal data structure to represent a query
- Standard technique to estimate the work done in executing the query, and the optimization of execution
- Nodes stand for operations like selection, projection, join, renaming, division, ....
- Leaf nodes represent base relations
- A tree gives a good visual feel of the complexity of the query and the operations involved
- Algebraic Query Optimization consists of rewriting the query or modifying the query tree into an equivalent tree.

### RELATIONAL ALGEBRA OPERATORS

- Relational Algebra consists of several groups of operations
  - Unary Relational Operations
    - SELECT (symbol:  $\sigma$  (sigma))
    - PROJECT (symbol:  $\pi$  (pi))
    - RENAME (symbol: ρ (rho))
  - Relational Algebra Operations From Set Theory
    - UNION ( $\cup$ ), INTERSECTION ( $\cap$ ), DIFFERENCE (-)
    - CARTESIAN PRODUCT (x)
  - Binary Relational Operations
    - JOIN (several variations of JOIN exist)
    - DIVISION
  - Additional Relational Operations
    - OUTER JOINS, OUTER UNION
    - AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

### CHAPTER SUMMARY

- Relational Algebra
  - Unary Relational Operations
  - Relational Algebra Operations From Set Theory
  - Binary Relational Operations
  - Additional Relational Operations
  - Examples of Queries in Relational Algebra