CS495 Optimiztaion

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab., Computer Science Department, Faculty of Computers and Information, Helwan University, Egypt.

February 28, 2019

Lectures follow: Boyd and Vandenberghe (2004)

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

Book and Stanford course: http://web.stanford.edu/ ~boyd/cvxbook/

Some examples from: Chong and Zak (2001)

Chong, E. K., & Zak, S. (2001). An introduction to optimization: Wiley-Interscience.

Course Objectives

- Developing rigorous mathematical treatment for mathematical optimization.
- Building intuition, in particular to practical problems.
- Developing computer practice to using optimization SW.

Prerequisites

Calculus (both single and multivariable) and Linear Algebra.

Chapter 1: Introduction Snapshot on Optimization

Contents

Contents

Theory

Convex sets

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5

	oduction		
1.1	Mathen	natical Optimization	
	1.1.1	Motivation and Applications	
	1.1.2	Solving Optimization Problems	
1.2	Least-So	puares and Linear Programming	
	1.2.1	Least-Squares Problems	
	1.2.2	Linear Programming	
1.3	Convex	Optimization	
1.4	Nonline	ar Optimization	1

iv

iv

12

3	Convex functions 4 3.1 Basic properties and examples 4 3.2 Operations that preserve convexity 4 3.3 The conjugate function 4 3.4 Quasiconvex functions 5 3.5 Log-concave and log-convex functions 5 3.6 Convexity with respect to generalized inequalities 5	48 49 50 51
4	Convex optimization problems 4.1 Optimization problems 6 4.2 Convex optimization 6 4.3 Linear optimization problems 6 4.4 Quadratic optimization problems 7 4.5 Geometric programming 7 4.6 Generalized inequality constraints 7 4.7 Vector optimization 7	69 70 71 72 73
5	Duality 5.1 The Lagrange dual function 5.2 5.2 The Lagrange dual problem 5.3 5.3 Geometric interpretation 5.5 5.4 Saddle-point interpretation 5.5 5.5 Optimality conditions 5.6 5.6 Perturbation and sensitivity analysis 5.7 5.7 Examples 5.8 5.8 Theorems of alternatives 5.9 5.9 Generalized inequalities 5.9	91 92 93 94 95 96
II	Applications 10s	9
6	Approximation and fitting 1 6.1 Norm approximation 11 6.2 Least-norm problems 11 6.3 Regularized approximation 11 6.4 Robust approximation 11 6.5 Function fitting and interpolation 11	12 13 14

7	Statistical estimation 142
	7.1 Parametric distribution estimation
	7.2 Nonparametric distribution estimation
	7.3 Optimal detector design and hypothesis testing
	7.4 Chebyshev and Chernoff bounds
	7.5 Experiment design
8	Geometric problems 160
	8.1 Projection on a set
	8.2 Distance between sets 162
	8.3 Euclidean distance and angle problems
	8.4 Extremal volume ellipsoids
İ	8.5 Centering
ł	8.6 Classification 166
	8.7 Placement and location
i	8.8 Floor planning 168
9	Algorithms 191 Unconstrained minimization 192 9.1 Unconstrained minimization 193 9.2 Descent methods 194 9.3 Gradient descent method 195 9.4 Steepest descent method 196 9.5 Newton's method 197
ł	9.6 Self-concordance
	9.6 Self-collocordance
10	Equality constrained minimization 226
10	10.1 Equality constrained minimization problems
	10.1 Equality constrained minimization problems
	10.4 Implementation
11	Interior-point methods 239
	11.1 Inequality constrained minimization problems
i	11.2 Logarithmic barrier function and central path

11.4	reasibility and phase rinethous
11.5	Complexity analysis via self-concordance
11.6	Problems with generalized inequalities
11.7	Primal-dual interior-point methods
11.8	Implementation

Bibliography

11.3

Chapter 1

Introduction

Mathematical Optimization 1.1

Definition 1 A mathematical optimization problem $| \bullet |$ minimize $f_0 \equiv \text{maximize} - f_0$. or just optimization problem, has the form (Boyd and *Vandenberghe*, 2004):

minimize
$$f_0(x)$$

subject to: $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$,
 $x = (x_1, ..., x_n) \in \mathbf{R}^n$, (optimization variable)
 $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$, (objective (cost/utility) function)
 $f_i : \mathbf{R}^n \mapsto \mathbf{R}$, (inequality constraints (functions))
 $h_i : \mathbf{R}^n \mapsto \mathbf{R}$, (equality constraints (functions))
 $\mathcal{D} : \bigcap_{i=1}^m \mathbf{dom} f_i \cap \bigcap_{i=1}^p \mathbf{dom} h_i$ (feasible set)
 $= \{x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0\}$
 $x^* : \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$ (solution)

- $f_i \le 0 \equiv -f_i \ge 0$.
- 0s can be replaced of course by constants b_i , c_i
- unconstrained problem when m = p = 0.

Example 2:

minimize subject to: $x < 2 \land x > 1$.

 $x^* = 1$.

If the constraints are relaxed, then $x^* = 0$.

 $\underset{x}{\text{minimize}} f_0(x)$

subject to: $f_i(x) \le 0$, i = 1, ..., m

$$h_i(x) = 0, i = 1, \dots, p,$$

 $x = (x_1, \dots, x_n) \in \mathbf{R}^n$, (optimization variable)

 $f_0: \mathbf{R}^n \mapsto \mathbf{R}$, (objective (cost/utility) function)

 $f_i: \mathbf{R}^n \mapsto \mathbf{R}$, (inequality constraints (functions)) $h_i: \mathbf{R}^n \mapsto \mathbf{R}$, (equality constraints (functions))

$$\mathcal{D}: \bigcap_{i=1}^{m} \mathbf{dom} \, f_i \, \cap \bigcap_{i=1}^{p} \mathbf{dom} \, h_i \qquad (feasible \, set)$$

$$= \left\{ x \mid x \in \mathbf{R}^n \ \land \ f_i(x) \le 0 \ \land \ h_i(x) = 0 \right\}$$

 $x^*: \left\{x \mid x \in \mathcal{D} \ \land \ f_0(x) \leq f_0(z) \ \forall z \in \mathcal{D}\right\} \quad \ (solution)$

Example 3 (Chong and Zak, 2001, Ex. 20.1, P. 454):

minimize $(x_1 - 1)^2 + x_2 - 2$

subject to: $x_2 - x_1 = 1$ $x_1 + x_2 \le 2$.

No global minimizer: $\partial z/\partial x_2 = 1 \neq 0$. However, $z|_{(x_2-x_1=1)} = (x_1-1)^2 + (x_1-1)$, which attains a minima at $x_1 = 1/2$.

x * = (1/2, 3/2)'. (Let's see animation)

1.1.1 Motivation and Applications

- *optimization problem* is an abstraction of how to make "best" possible choice of $x \in \mathbb{R}^n$.
- *constrains* represent trim requirements or specifications that limit the possible choices.
- *objective function* represents the *cost* to minimize or the *utility* to maximize for each x.

Examples:

sessment.

	Any problem	Portfolio Optimization	Device Sizing	Data Science
$x \in \mathbf{R}^n$	choice made	investment in capitals	dimensions	parameters
f_i, h_i	firm requirements /conditions	overall budget	engineering constraints	regularizer
f_0	cost (or utility)	overall risk	power consumption	error

• Amazing variety of practical problems. In particular, data science: two sub-fields: construction and as-

- The construction of: Least Mean Square (LMS), Logistic Regression (LR), Support Vector Machines (SVM), Neural Networks(NN), Deep Neural Networks (DNN), etc.
- Many techniques are for solving the optimization problem:
 - Closed form solutions: convex optimization problems
- Numerical solutions: Newton's methods, Gradient methods, Gradient descent, etc.
- "Intelligent" methods: particle swarm optimization, genetic algorithms, etc.

Example 4 (Machine Learning: construction):

Let's suppose that the best regression function is $Y = \beta_0 + \beta_1 X$, then for the training dataset (x_i, y_i) we need to minimize the MSE.

- Half of ML field is construction: NN, SVM, etc.
- In DNN it is an optimization problem of millions of parameters.
- Let's see animation.
- Where are Probability, Statistics, and Linear Algebra here? Let's re-visit the chart.
- Is the optimization problem solvable:
 - closed form? (LSM)
 - numerically and guaranteed? (convex and linear)
 - numerically but not guaranteed? (non-convex):
 - * numerical algorithms, e.g., GD,
 - * local optimization,
 - * heuristics, swarm, and genetics,
 - * brute-force with exhaustive search

$$\underset{\beta_o,\beta_1}{\text{minimize}} \sum_{i} (\beta_o + \beta_1 x_i - y_i)^2$$

1.1.2 Solving Optimization Problems

- A solution method for a class of optimization problems is an algorithm that computes a solution.
- Even when the *objective function* and constraints are smooth, e.g., polynomials, the solution is very difficult.
- There are three classes where solutions exist, theory is very well developed, and amazingly found in many practical problems:

Linear ⊂ Quadratic ⊂ Convex ⊂ Non-linear (not linear and not known to be convex!)

• For the first three classes, the problem can be solved very reliably in hundreds or thousands of variables!

1.2 Least-Squares and Linear Programming

1.2.1 Least-Squares Problems

A *least-squares* problem is an optimization problem with no constraints (i.e., m = p = 0), and an objective in the form:

minimize
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 = ||A_{k \times n} x_{n \times 1} - b_{k \times 1}||^2$$
.

The solution is given in **closed form** by:

$$x = (A'A)^{-1}A'b$$

- Good algorithms in many SC SW exist; it is a very mature technology.
- Solution time is $O(n^2k)$.
- Easily solvable even for hundreds or thousands of variables.
- More on that in the Linear Algebra course.
- Many other problems reduce to typical LS problem:
 - Weighted LS (to emphasize some observations)

$$\underset{x}{\text{minimize}} f_0(x) = \sum_{i=1}^k w_i (a_i' x - b_i)^2.$$

- Regularization (to penalize for over-fitting)

minimize
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 + \rho \sum_{i=1}^n x_i^2$$
.

1.2.2 Linear Programming

A linear programming problem is an optimization problem with objective and all constraint functions are linear: $f_0(x) = C'x$ minimize

\overline{x}	J (()	
subject to:	$a_i'x \le b_i,$	$i=1,\dots,m$
	$h_i'x = g_i,$	$i=1,\ldots,p,$

- No closed form solution as opposed to LS.
- Very robust, reliable, and effective set of methods for numerical solution; e.g., Dantzig's simplex, and interior point.
- Complexity is $\simeq O(n^2m)$.
- Similar to LS, we can solve a problem of thousands of variables.
- Example is *Chebyshev minimization* problem:

$$\min_x \inf e_0(x) = \max_{i=1,\dots,k} |a_i'x - b_i|,$$
 • The objective is different from the LS: minimize the maximum error. **Ex:**

- After some tricks, requiring familiarity with optimization, it is equivalent to a LP:

subject to: $a_i'x - t \leq b_i$ $i = 1, \ldots, k$ $-a_i'x - t \leq -b_i$

1.3 Convex Optimization

A *convex optimization* problem is an optimization problem with objective and all constraint function are convex:

$$\begin{aligned} & \underset{x}{\text{minimize}} & & f_0(x) \\ & \text{subject to:} & & f_i(x) \leq 0, & & i = 1, \dots, m \\ & & h_i(x) = 0, & & i = 1, \dots, p, \\ & & & f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y), & & \alpha + \beta = 1, & & 0 \leq \alpha, \ 0 \leq \beta, & & 0 \leq i \leq m \\ & & h_i(x) = a_i' x + b_i & & 0 \leq i \leq p \end{aligned}$$

- The LP and LS are special cases; however, only LS has closed-form solution.
- Very robust, reliable, and effective set of methods, including *interior point methods*.
- Complexity is almost: $O(\max(n^3, n^2m, F))$, where F is the cost of evaluating 1st and 2nd derivatives of f_i and h_i .
- Similar to LS and LP, we can solve a problem of thousands of variables.
- However, it is not as very mature technology as the LP and LS yet.
- There are many practical problems that can be re-formulated as convex problem **BUT** requires mathematical skills; but once done the problem is solved. **Hint:** realizing that the problem is convex requires more mathematical maturity than those required for LP and LS.

1.4 Nonlinear Optimization

A *non-linear optimization* problem is an optimization problem with objective and constraint functions are non-linear **BUT** not known to be convex (**so far**). Even simple-looking problems in 10 variables can be extremely challenging. Several approaches for solutions:

Local Optimization: starting at initial point in space, using differentiablity, then navigate

- does not guarantee global optimal.
- affected heavily by initial point.
- depends heavily on numerical algorithm and their parameters.
- More art than technology.
- In contrast to convex optimization, where a lot of art and mathematical skills are required to formulate the problem as convex; then numerical solution is straightforward.

Global Optimization: the true global solution is found; the compromise is complexity.

- The complexity goes exponential with dimensions.
- Sometimes it is worth it when: the cost is huge, not in real time, and dimensionality is low.

Role of Convex Optimization:

- Approximate the non-linear function to a convex one, finding the exact solution, then using it as a starting point for the original problem. (Also does not guarantee optimality)
- Setting bounds on the global solution.

Evolutionary Computations: Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), etc.

Example 5 (Nonlinear Objective Function) : (Chong and Zak, 2001, Ex. 14.3)

$$f(x,y) = 3(1-x)^{2}e^{-x^{2}-(y+1)^{2}} - 10e^{-x^{2}-y^{2}}\left(-x^{3} + \frac{x}{5} - y^{5}\right) - \frac{1}{3}e^{-(x+1)^{2}-y^{2}}$$

Part I

Theory

Chapter 2

Convex sets

2.1 Affine and convex sets

2.1.1 Lines and line segments

Definition 6 (line and line segment) Suppose $x_1 \neq x_2 \in \mathbb{R}^n$. Points of the form

$$y = \theta x_1 + (1 - \theta)x_2$$

= $x_2 + \theta(x_1 - x_2)$,

where
$$\theta \in \mathbf{R}$$
, form the line passing through x_1 and x_2 .

- As usual, this is a definition for high dimensions taken from a proof for $n \le 3$.
 - We have done it many times: angle, norm, cardinality of sets, etc.
 - if $0 \le \theta \le 1$ this forms a line segment.

2.1.2 Affine sets

 $\forall x_1, x_2 \in C \text{ and } \theta \in \mathbf{R}, \text{ we have } \theta x_1 + (1 - \theta) x_2 \in \mathbf{R}^n.$ In other words, C contains any linear combination of any two points in C provided the coefficients sum to one.

Examples: what about line, line segment, circle, disk, strip?

Definition 7 (Affine sets) A set $C \subset \mathbb{R}^n$ is affine if the line through any two distinct points in C lies in C. I.e.,

Examples. What about fine, fine segment, energy disk, strip:

Corollary 8 Suppose C is an affine set, and $x_1, ..., x_k \in C$, then C contains every general affine combination of the form $\theta_1 x_1 + ... + \theta_k x_k$, where $\theta_1 + ... + \theta_k = 1$. **Proof.** trivial by induction or by summation (same)

Definition 9 (Subspace from Linear Algebra) a set $V \subset \mathbf{R}^n$ of vector (here points) is a subspace if it is closed under sums and scalar multiplication. I.e., $\forall v_1, v_2 \in V$ and $\forall \alpha, \beta \in \mathbf{R}$ we have $\alpha v_1 + \beta v_2 \in V$. Hint: Vimp this implies that $\mathbf{0} \in V$.

Corollary 10 If C is affine set and $x_0 \in C$, then the set $V = C - x_0 = \{x - x_0 | x \in C\}$ is a subspace; and then the dimension (rank) of C is defined to be the same as the dimension (rank) of V.

Proof. Suppose $v_1, v_2 \in V$; then $v_1 + x_0, v_2 + x_0 \in C$.

$$c = \alpha v_1 + \beta v_2 + x_0$$

= $\alpha (v_1 + x_0) + \beta (v_2 + x_0) + (1 - \alpha - \beta) x_0 \in C$

Then $c - x_0 = \alpha v_1 + \beta v_2 \in V$; and hence V is a subspace.

- This is true for any x_0 .
- *affine* is a *subspace* plus offset.
- every subspace is affine but not the vice versa.
- subspace is a special case of affine.

Example 11

2.1.3 Affine dimension and relative interior

2.1.4 Convex sets

2.1.5 Cones

Part II Applications

Part III Algorithms

Bibliography

Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge: Cambridge University Press.

Chong, E. K. and Zak, Stanislaw, H. (2001), An Introduction to Optimization, Wiley-Interscience, 4th ed.