patoLogic solves

STARBATTLE QUACKLACTICA

Creating and Solving Battle Star Games With Quanutm Annealig

Diogo Cruz, Duarte Magano, Óscar Amaro, Sagar Pratapsi MIT IQuHACK 2021

An Addictive Puzzle

Two not Touch, or Star Battle, is a game regularly published in the puzzle section of the New York Times.

Example

This one is considered an easy one:

Our Challenge

Given an $N \times N$ grid divided into N regions:

, find a distribution of stars that satisfies the constraints of the Two Not Touch:

Create Puzzle

Assume that we are given a puzzle which is solvable:

Import generate_problem
Grid = function(n)

We generate such a input with a classical algorithm (for now!).

Challenge:

Solve S Not Touch with Quantum Annealing!

Solution Constraints

Our solution needs to satisfy the following constraint:

- ullet Each row contains exactly ${\cal S}$ stars
- ullet Each column contains exactly ${\cal S}$ stars
- ullet Each delimited region contains exactly S stars
- All stars must be neighbour-free

We call these region constraints

QUBO Variables

Our variables are

$$x_{ij} \in \{0,1\}$$

 $i, j \in \{1, ..., N\}$

The variable x_{ij} is 1 if the cell (i,j) has a star and 0 otherwise.

Encoding Region Constraints

Let $R = \{(i_1, j_1), (i_2, j_2) \dots\}$ be a region (line, column, or other delimited region).

We impose that R only has S stars by including the term

$$H += \left(S - \sum_{(i,j)\in R} x_{ij}\right)^2$$

Encoding Neighbour Constraints

We impose that a star on cell (i,j) does not have a neighbour star by including term

$$H += x_{ij} \left(\sum_{(i',j') \text{ neighbour to } (i,j)} x_{i'j'} \right)$$

QUBO Hamiltonian

We use

$$H = \sum_{R} \left(S - \sum_{(i,j) \in R} x_{ij} \right)^{2} + \sum_{(i,j)} x_{ij} \left(\sum_{(i',j') \text{ neighbour to } (i,j)} x_{i'j'} \right)$$

Input:

Reverse Challenge:

Generate Solvable Puzzle with Quantum Annealing

Annealing in Two Parts

Given N,

- 1. Generate distribution of stars such that
 - Each row and each column contains exactly S stars.
 - All stars are neighbour free
- 2. Generate *N* regions such that
 - Each region contains exactly S stars
 - Each regions is connected

These regions will form a valid puzzle.

QUBO for Star Distribution

This is the same Hamiltonian as to solve the problem, but without the delimited regions contraints

$$H = \sum_{i} \left(S - \sum_{j} x_{ij} \right)^{2} + \sum_{j} \left(S - \sum_{i} x_{ij} \right)^{2}$$
$$+ \sum_{(i,j)} x_{ij} \left(\sum_{(i',i') \text{ neighbour to } (i,i)} x_{i'j'} \right)$$

Region generation is a more difficult problem!

QUBO Variables

Our variables are

$$x_{ij}^c \in \{0,1\}$$

 $i, j, c \in \{1, ..., N\}$

The variable x_{ij}^c is 1 if the cell (i,j) belongs to region c and 0 otherwise.

Each cell (i, j) belongs to a unique region

$$H += \left(1 - \sum_{c} x_{ij}^{c}\right)^{2}$$

Each region c has S stars

$$H += \left(S - \sum_{(i,j) \in stars} x_{ij}^{c}\right)^{2}$$

How to enforce connectiveness?

We can favour neighbour cells of the same colour

$$H += \sum_{(i,j)} \left(x_{ij}^c \left(x_{i+1j}^c + x_{ij+1}^c + x_{i-1j}^c + x_{ij-1}^c \right) - 2.5 \right)^2$$

This does not provide guarantees – it is compatible with very small regions...

So, we add the additional condition that each region c should have N cells

$$H += \left(N - \sum_{(i,j)} x_{ij}^c\right)^2$$

QUBO for Region Generation

We use the Hamiltonian

$$H = \sum_{(i,j)} \left(1 - \sum_{c} x_{ij}^{c} \right)^{2} + \sum_{c} \left(S - \sum_{(i,j) \in stars} x_{ij}^{c} \right)^{2} + \sum_{(i,j)} \left(x_{ij}^{c} \left(x_{i+1j}^{c} + x_{ij+1}^{c} + x_{i-1j}^{c} + x_{ij-1}^{c} \right) - 2.5 \right)^{2} + \sum_{c} \left(N - \sum_{(i,j)} x_{ij}^{c} \right)^{2}$$

Puzzles with N = 12

Puzzles with N = 12

