Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux (Université de Lorraine)

Simon-Raphael Fischer

Singular Foliations

Remarks (Based on the following work)

S.-R. F. and Camille Laurent-Gengoux, *Classification of neighborhoods around leaves of singular foliations*, arXiv:2401.05966, (2024).

Singular Foliations:

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
-

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold M is a submodule of $\mathfrak{X}_c(M)$ so that

- it is involutive.
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a submodule of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a submodule of $\mathfrak{X}_c(M)$ so that

- it is involutive, i.e. $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U,

$$X=\sum f_iX^i.$$

First step towards a classification

Camille Laurent-Gengoux and Leonid Ryvkin, The holonomy of a singular leaf, Selecta Mathematica 28, no. 2, 45, 2022.

Theorem (\mathcal{F} -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{I}, \tau_{I'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inner(\tau_I)$.

Example of a transverse foliation τ in \mathbb{R}^d :

Remarks

- Inner (τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_I and fix the origin

Diagram drawn by Camille Laurent-Gengoux.

Other example: Regular foliation

Recovering the ordinary definition

Foliation	Connection
Regular	Flat lift
Singular	Family of possibly curved lifts

Remarks

Inner(τ_I): Trivial.

 $\operatorname{\mathsf{Sym}}(au_l)$: We essentially need the image of a group morphism $\pi_1(L) \to \operatorname{\mathsf{Diff}}(\mathbb{R}^d,0)$.

We guess:

$$\mathscr{F} = \left\{ egin{aligned} \mathsf{Some} \ \mathsf{map} \ \pi_1(L) & \to \mathsf{Diff} \left(\mathbb{R}^d, 0\right) \ (\mathsf{at} \ \mathsf{I}) \\ \mathsf{Bundle} \ \mathsf{structure} \ \mathsf{by} \ \tau_\mathsf{I}, \mathsf{Inner}(\tau_\mathsf{I}), \mathsf{Sym}(\tau_\mathsf{I}), \ldots \right\} \end{aligned}$$

Thus, we want to classify \mathcal{F} with given L and τ_l (for a fixed $l \in L$).

Danger

But $Sym(\tau_I)$ and $Inner(\tau_I)$ are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

Thus: We assume that τ_I is a formal singular foliation.

We guess:

$$\mathscr{F} = \left\{ egin{aligned} \mathsf{Some} \ \mathsf{map} \ \pi_1(L) & \to \mathsf{Diff} \left(\mathbb{R}^d, 0\right) \ (\mathsf{at} \ \mathsf{I}) \\ \mathsf{Bundle} \ \mathsf{structure} \ \mathsf{by} \ \tau_\mathsf{I}, \mathsf{Inner}(\tau_\mathsf{I}), \mathsf{Sym}(\tau_\mathsf{I}), \ldots \right\} \end{aligned}$$

Thus, we want to classify \mathcal{F} with given L and τ_l (for a fixed $l \in L$).

Danger

But $Sym(\tau_I)$ and $Inner(\tau_I)$ are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

Thus: We assume that τ_I is a formal singular foliation.

Our aim

Remarks (Our assumptions)

- τ_I a formal singular foliation.
- *L* a manifold (connected immersed submanifold of *M*).

Remarks (Avoiding formal setting)

Either

add real-analyticity conditions to the classification,

or also

• assume embedded L and real-analytic \mathcal{F} .

Our aim

Remarks (Our assumptions)

- τ_I a formal singular foliation.
- *L* a manifold (connected immersed submanifold of *M*).

Remarks (Avoiding formal setting)

Either

add real-analyticity conditions to the classification,

or also

lacksquare assume embedded L and real-analytic \mathcal{F} .

Multiplicative Yang-Mills

connections

Remarks (\mathcal{F} -connection)

For $\phi \in \operatorname{Sym}(\tau_I)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then, on the normal bundle $\pi \colon \mathcal{T} \to L$,

$$\begin{aligned} \mathsf{PT}_{\gamma}(\phi \cdot p) &= \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi) \cdot \mathsf{PT}_{\gamma}(p) \\ \mathsf{PT}_{\gamma_0}(p) &= \varphi \cdot p \end{aligned}$$

for all $p \in \mathcal{T}_I$, $\phi \in \text{Sym}(\tau_I)$, and for some $\varphi \in \text{Inner}(\tau_I)$.

Remarks (Sym-connection)

For $\phi \in \operatorname{Sym}(\tau_I)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi \circ \phi') = \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \circ \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi')$$
$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma_0}(\phi) = \varphi \circ \phi \circ \varphi^{-1}$$

for all $\phi, \phi' \in \text{Sym}(\tau_I)$, and for some $\varphi \in \text{Inner}(\tau_I)$.

Idea

Generators of \mathcal{F} given by:

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, $\mathbb{H}(X)$ its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Fix $l \in L$, given τ and \mathbb{H} . Reconstruct \mathscr{F} .

$$\begin{split} [\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] &= \mathbb{H}([X, X']) + \dots \\ &= [\mathbb{H}(X), \mathbb{H}(X')] \\ &+ [\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}] + \overline{[\nu, \mu]} \end{split}$$

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$\begin{split} [\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] &= \mathbb{H}([X, X']) + \dots \\ &= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}} \\ &+ \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]} \end{split}$$

Idea (... $\in \tau$)

We need:

- 1. Lie algebra bundle au with structure au_I
- 2. A horizontal lift $\mathbb H$ into $\mathcal T$ satisfying

Curvature:
$$[\mathbb{H}(X),\mathbb{H}(X')]-\mathbb{H}([X,X'])\in au$$
 Connection: $[\mathbb{H}(X),\overline{\mu}]\in au$

Summary

Remarks

Connections

- preserve group bundle action,
- and their curvatures follow corresponding orbits.

The pair of connections may **not** be unique for a given \mathcal{F} !

Curved Yang-Mills gauge theories:

Classical Curved Lie group
$$G$$
 Lie group bundle $\mathscr G$

Motivation

What are Ehresmann connections, preserving $\mathscr{G} ext{-actions}?$

Definition (LGB actions)

A **left-action of** $\mathscr G$ **on** $\mathscr T$ is a smooth map $\mathscr G * \mathscr T := \mathscr G_{\pi_{\mathscr G}} \times_{\pi} \mathscr T \to \mathscr T$, $(g,p) \mapsto g \cdot p$, satisfying the following properties:

$$\pi(g \cdot p) = \pi(p),$$
 $h \cdot (g \cdot p) = (hg) \cdot p,$
 $e_{\pi(p)} \cdot p = p$

for all $p \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathcal{G}_{\pi(p)}$.

Connection on \mathcal{T} : Idea

Connection on \mathcal{T} : Revisiting the classical setup

If \mathcal{G} is trivial, and H a connection:

Connection on \mathcal{T} : Revisiting the classical setup

If \mathcal{G} is trivial, and H a connection:

Remarks (Integrated case)

Parallel transport $\mathsf{PT}^{\mathcal{T}}_{\gamma}$ in \mathcal{T} :

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g\cdot p) = g\cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p),$$

where $\gamma:I\to L$ is a base path

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p).$$

Recovering the ordinary definition

- 1. $\mathscr{G}\cong L\times \mathfrak{G}$
- 2. Equip $\mathcal G$ with canonical flat connection

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p).$$

Recovering the ordinary definition

- 1. $\mathscr{G} \cong L \times G$
- 2. Equip $\mathcal G$ with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi\colon \mathcal{T} \to L$ so that one has a commuting diagram

1. Ehresmann connection:

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p)$$

2. Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(p) = g_{\gamma_0} \cdot p$$

for some $g_{\gamma_0} \in \mathcal{G}^0_{\pi(p)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On $\mathcal G$ there is also the notion of multiplicative Yang-Mills connections, that is,

$$\begin{split} \mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) &= \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \\ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) &= g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1} \end{split}$$

Remarks

Compare this with the Maurer-Cartan form and its curvature equation!

Definition (Multiplicative YM connection, [S.-R. F.])

On $\mathcal G$ there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Remarks

Compare this with the Maurer-Cartan form and its curvature equation!

Remarks

On the Lie algebra bundle g we have a connection ∇ with

$$\nabla \left(\left[\mu, \nu \right]_{\mathcal{Q}} \right) = \left[\nabla \mu, \nu \right]_{\mathcal{Q}} + \left[\mu, \nabla \nu \right]_{\mathcal{Q}},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Consider the Atiyah sequence of a principal *G*-bundle *P*:

$$g := (P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\mathbb{H}} \mathsf{T}L$$

with splitting $\mathbb{H} \colon \mathrm{T} L \to \mathrm{T} P / G$, where \mathfrak{g} is the Lie algebra. Then

$$\nabla_X \nu = [\mathbb{H}(X), \nu]_{\mathsf{TP/G}},$$

$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{TP/G}} - \mathbb{H}([X, X']).$$

For the first equation: Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu. Non-abelian differentiable gerbes. Advances in Mathematics, 220(5):1357–1427, 2009.

Remarks

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla \left(\left[\mu, \nu \right]_{\mathcal{Q}} \right) = \left[\nabla \mu, \nu \right]_{\mathcal{Q}} + \left[\mu, \nabla \nu \right]_{\mathcal{Q}},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Consider the Atiyah sequence of a principal G-bundle P:

$$g := (P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\mathbb{H}} \mathsf{T}L$$

with splitting $\mathbb{H} \colon \mathrm{T} L \to \mathrm{T} P/G$, where \mathfrak{g} is the Lie algebra. Then

$$\nabla_X \nu = [\mathbb{H}(X), \nu]_{\mathsf{T}P/G},$$

$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{T}P/G} - \mathbb{H}([X, X']).$$

For the first equation: Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu. Non-abelian differentiable gerbes. *Advances in Mathematics*, 220(5):1357–1427, 2009.

Foliations and Yang-Mills

connections

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof. We have

$$[\mathbb{H}(X), \overline{\nu}] = \overline{\nabla_X \nu},$$

$$[\mathbb{H}(X), \mathbb{H}(X')] = \mathbb{H}([X, X']) + \overline{\zeta(X, X')},$$

where $\zeta \in \Omega^2(L; g)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; \mathcal{Q})$.

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 1. $G = \operatorname{Inn}(\tau_I)$
- 2. P a principal G-bundle, equipped with an ordinary connection

Fix a point $I \in L$ with transverse model (\mathbb{R}^d, τ_I) :

- 1. $G = \operatorname{Inn}(\tau_I)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3. $\mathscr{G} := (P \times G) / G$, the inner group bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 1. $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3. $\mathscr{G} := (P \times G) / G$, the inner group bundle
- 4. $\mathcal{T} := (P \times \mathbb{R}^d) / G$, the **normal bundle**

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 1. $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3. $\mathscr{G} := (P \times G) / G$, the inner group bundle
- 4. $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the **normal bundle**

Remarks

- \blacksquare Think of the induced connection on $\mathcal T$ as the $\mathcal F\text{-connection}.$
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 1. $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3. $\mathscr{G} := (P \times G) / G$, the inner group bundle
- 4. $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the **normal bundle**

Remarks

- \bullet Think of the induced connection on $\mathcal T$ as the $\mathcal F\text{-connection}.$
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Proof. Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all $[p,g] \in \mathcal{G}$ and $[p,v] \in \mathcal{T}$, and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}ig([p,v]ig) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Proof.

Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all $[p,g] \in \mathcal{G}$ and $[p,v] \in \mathcal{T}$, and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}ig([p,v]ig) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

The reconstructed foliation is independent of the choice of connection on P.

Proof.

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\tau = \overline{\mathrm{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Generators take this already into account; recall

$$\mathbb{H}(X) + \overline{\nu}$$

with $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(Ad(P))$.

The reconstructed foliation is independent of the choice of connection on P.

Proof.

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\quad \tau = \overline{\mathsf{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Generators take this already into account; recall:

$$\mathbb{H}(X) + \overline{\nu}$$

with $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(Ad(P))$.

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_I)
- Principal Inner (τ_I) -bundles P over L

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_l)
- Principal $\operatorname{Inner}(\tau_I)/\operatorname{Inner}(\tau_I)_{\geq 2}$ -bundles P over L

Remarks

P is now finite-dimensional

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_l)
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Remarks

P is now finite-dimensional!

Dangei

Formal setting is here very important! Especially here is where one has to think about real-analytic conditions for the general case.

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_I)
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Remarks

P is now finite-dimensional!

Danger

Formal setting is here very important! Especially here is where one has to think about real-analytic conditions for the general case.

Examples

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, τ_l)
- Principal Inner (τ_l) /Inner (τ_l) >2-bundles P over L

Corollary

L simply connected and τ_l is made of vector fields vanishing quadratically at 0. Then the unique singular foliation is the trivial one, i.e. the trivial product of $(L, \mathfrak{X}(L))$ and (\mathbb{R}^d, τ_l) .

Corollary by Camille Laurent-Gengoux and Leonid Ryvkin, The neighborhood of a singular leaf, *Journal de l'École Polytechnique*, Math. 8, 1037 - 1064, 2021.

Examples

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_I)
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Corollary ([C. L.-G., S.-R. F.])

L contractible. Then the unique singular foliation is the trivial one.

Examples

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, au_I)
- Principal $\operatorname{Inner}(\tau_l)/\operatorname{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Corollary ([C. L.-G., S.-R. F.])

L simply connected. Then ${\mathscr F}$ is the trivial foliation if and only if it admits a flat ${\mathscr F}$ -connection.

Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$, $M = T\mathbb{S}^2$. Let us consider two possible τ_l :

Name	Concentric circles	Spirals
Generator	$x\partial_y - y\partial_x$	$x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$
Picture of the leaves		
$Inner(\tau_l)/Inner(\tau_l)_{\geq 2}$	\mathbb{S}^1	\mathbb{R}

Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$, $M = T\mathbb{S}^2$. Let us consider two possible τ_l :

Name	Concentric circles	Spirals
Generator	$x\partial_y - y\partial_x$	$x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$
Picture of the leaves		
$Inner(\tau_l)/Inner(\tau_l)_{\geq 2}$	\mathbb{S}^1	\mathbb{R}
Foliation	©	©

Thank you! ©

Total classification

Remarks

Inner (τ_I) is a normal subgroup of Sym (τ_I) , thus we have a quotient:

$$\mathsf{Inner}(\tau_I) \longrightarrow \mathsf{Sym}(\tau_I) \longrightarrow \mathsf{Out}(\tau_I)$$

Theorem ([C. L.-G., S.-R. F.])

The following are equivalent:

- Singular foliations with leaf L and transverse model (\mathbb{R}^d, τ_l) ,
- 1. a group morphism Ξ : $\pi_1(L)$ \longrightarrow $Out(\tau_l)$, and
 - 2. a finite-dimensional principal $H/\operatorname{Inner}(\tau_l)_{\geq 2}$ -bundle, with H a subgroup of $\operatorname{Sym}(\tau_l)$ containing $\operatorname{Inner}(\tau_l)$.