Let $O \subseteq \mathbb{C}$ be open and connected and let $f \in H(O)$. If $\{z \in O \mid f(z) = 0\}$ has a limit point, then f(z) = 0 for all $z \in O$.

SOLUTION: Note that since $f \in H(O)$, f is infinitely differentiable. Suppose, for the sake of contradiction, that f(z') > 0 for some $z' \in O$. Then by a problem on a previous PSET, we have that for any $z \in O$, there exists some $n_z \in \mathbb{N}$ such that $f^{(n_z)}(z) \neq 0$. Let $z_0 \in O$ such that z_0 is a limit point of the vanishing set. Then by Cauchy's theorem, there is some r > 0 such that if $z \in D_r(z_0)$, then

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n = \sum_{n=1}^{\infty} a_n (z - z_0)^n.$$

Let k be the smallest derivative such that $f^k(z_0) = a_k \neq 0$. Then we have that

$$f(z) = a_k(z - z_0)^k + \sum_{k=1}^{\infty} a_n(z - z_0)^n = a_k(z - z_0)^k + O((z - z_0)^{k+1}).$$

Note that the second term goes to 0 as $z \to z_0$. Let $(z_n) \in \{z \in O \mid f(z) = 0\}$ such that $z_n \to z_0$. Without loss of generality, we can take $z_n \neq z_0$, and thus since $|z_0 - z_n| < r$ for large n, we have that

$$|f(z_n)| = |a_k||(z_n - z_0)|^k \neq 0,$$

which is a contradiction to the fact that $f(z_n) = 0$. Thus, we must have that f(z) = 0 for all $z \in O$.

Let $(a_k) \in \mathbb{C}$ and $(b_i) \in \mathbb{C}$ and define

$$c_n := \sum_{k+j=n} a_k b_j, \quad n \ge 2.$$

If $\sum_{k=1}^{\infty}|a_k|<\infty$ and $\sum_{j=1}^{\infty}|b_j|<\infty$, then $\sum_{n=2}^{\infty}|c_n|<\infty$ and

$$\sum_{n=2}^{\infty} c_n = \sum_{k=1}^{\infty} a_k \sum_{j=1}^{\infty} b_j.$$

SOLUTION: Let

$$A = \sum_{k=1}^{\infty} |a_k| < \infty, \quad B = \sum_{j=1}^{\infty} |b_j| < \infty.$$

Then

$$\sum_{n=2}^{N} |c_n| = \sum_{k=1}^{N-1} \sum_{j=1}^{N-k} |a_k| |b_j| = \sum_{k=1}^{N} |a_k| \sum_{j=1}^{N-k} |b_j| \to \sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{\infty} |b_k| = AB < \infty.$$

Thus, $\sum |c_n|$ converges. Moreover, we have that

$$\begin{split} \left| \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} a_k \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} b_j - \sum_{n=2}^{N} c_n \right| &= \left| \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} a_k \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} b_j - \sum_{n=2}^{N} \sum_{j+k=n} a_k b_j \right| \\ &= \left| \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} a_k b_j - \sum_{j=1}^{N-1} a_1 b_j + \sum_{j=1}^{N-2} a_2 b_j + \dots + a_{N-1} b_1 \right| \\ &= \left| \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} a_k b_j - \sum_{k=1}^{N-1} \sum_{j=1}^{N-k} a_k b_j \right| \\ &= \left| \sum_{j=\lfloor \frac{N}{2} + 1 \rfloor}^{N-1} b_j \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} a_k - \sum_{k=\lfloor \frac{N}{2} + 1 \rfloor}^{N-1} a_k \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} b_j \right| \\ &\leq \sum_{j=\lfloor \frac{N}{2} + 1 \rfloor}^{N-1} |b_j| \sum_{k=1}^{N} |a_k| + \sum_{k=\lfloor \frac{N}{2} + 1 \rfloor}^{N-1} |a_k| \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} |b_j| \\ &\leq \sum_{j=\lfloor \frac{N}{2} + 1 \rfloor}^{\infty} |b_j| \sum_{k=1}^{\infty} |a_k| + \sum_{k=\lfloor \frac{N}{2} + 1 \rfloor}^{\infty} |a_k| \sum_{j=1}^{\infty} |b_j| \end{split}$$

$$= \sum_{j=\lfloor \frac{N}{2}+1 \rfloor}^{\infty} |b_j| A + \sum_{k=\lfloor \frac{N}{2}+1 \rfloor}^{\infty} |a_k| B$$

$$= A \sum_{j=\lfloor \frac{N}{2}+1 \rfloor}^{\infty} |b_j| + B \sum_{k=\lfloor \frac{N}{2}+1 \rfloor}^{\infty} |a_k|$$

$$< A \frac{\epsilon}{2A} + B \frac{\epsilon}{2B}$$

$$= \epsilon$$

where the second to last inequality holds because both series absolutely converge and thus their tail ends can be arbitrarily small. Thus, for N large,

$$\sum_{n=2}^{N} c_n = \sum_{k=1}^{\lfloor \frac{N}{2} \rfloor} a_k \sum_{j=1}^{\lfloor \frac{N}{2} \rfloor} b_k \to \sum_{n=2}^{\infty} c_n = \sum_{k=1}^{\infty} a_k \sum_{j=1}^{\infty} b_k$$

Using the previous problem, prove that

$$e^{w+z} = e^w e^z.$$

SOLUTION: For $n \ge 1$, define

$$c_n := \sum_{k+j=n} \frac{1}{(n)!} \binom{n}{k} w^k z^j = \sum_{k=0}^n \frac{1}{(n)!} \binom{n}{k} w^k z^{n-j} = \frac{1}{(n)!} (w+z)^n.$$

Then note that

$$\frac{1}{n!} \binom{n}{k} = \frac{1}{n!} \frac{n!}{(n-k)!(k)!} = \frac{1}{(j)!(k)!}.$$

Thus, define

$$a_k := \frac{1}{k!} w^k, \quad b_k := \frac{1}{j!} z^j,$$

then

$$c_n = \sum_{k+j=n} a_k b_j.$$

By the previous problem, we have that

$$e^{z+w} = \sum_{n=0}^{\infty} \frac{1}{n!} (w+z)^n = \sum_{n=0}^{\infty} c_n = \sum_{k=0}^{\infty} a_n \sum_{j=0}^{\infty} b_n = \sum_{k=0}^{\infty} \frac{w^k}{k!} \sum_{j=0}^{\infty} \frac{z^j}{j!} = e^w e^z$$

Let $O \subseteq \mathbb{C}$ be open. Let $(f_n) \in H(O)$ such that $f_n \rightrightarrows f$ on every compact subset. Then $f \in H(O)$.

SOLUTION: Let $z \in O$. Since O is open, there exists some closed disk $\overline{D_r(z)} \subseteq \mathbb{C}$. Note that this disk is compact and connected. Thus, $f_n \rightrightarrows f$ on $\overline{D_r(z)}$. Since each f_n is continuous, then f is continuous on $\overline{D_r(z)}$. Define

$$D_z := D_{\frac{r}{2}}(z) \subset \overline{D_r(z)}$$

as an open disk. D_z is open and connected and f is continuous on D_z . Let γ be a closed path on D_z . Then γ is compact since it is closed and bounded, and thus $f_n \rightrightarrows f$ on γ , and so

$$\int_{\gamma} f_n(\zeta) d\zeta \to \int_{\gamma} f(\zeta) d\zeta.$$

By Cauchy's theorem, since γ is also a closed path on O and each $f_n \in H(O)$, then for every n,

$$\int_{\gamma} f_n(\zeta) d\zeta = 0 \implies \int_{\gamma} f(\zeta) d\zeta = 0.$$

Thus, by Problem 7 on the previous PSET, we have that $f \in H(D_z)$. Because this is true for every $z \in O$, then $f \in H(O)$.

(a) Suppose γ is a closed path in \mathbb{C} . Let O be the open, unbounded complement of γ . Prove the winding number is 0 for any $z \in O$.

SOLUTION: Without loss of generality up to a translation, we can assume that z = 0. Also assume $\gamma(t) : [a, b] \to O$. Then because we are in \mathbb{C} , we can write

$$\gamma(t) = \rho(t)e^{i\phi(t)},$$

where $\rho(t) = |\gamma(t) - 0|$ and $\phi(t)$ is the angle between 0 and $\varphi(t)$. Note that since $\gamma(t)$ is piecewise differentiable by assumption, then so are $\rho(t)$ and $\phi(t)$. Thus,

$$\int_{\gamma} \frac{d\zeta}{\zeta - 0} d\zeta = \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt$$

$$= \int_{a}^{b} \frac{\rho'(t)e^{i\phi(t)} + i\rho(t)\phi'(t)e^{i\phi(t)}}{\rho(t)e^{i\phi(t)}} dt$$

$$= \int_{a}^{b} \frac{\rho'(t)}{\rho(t)} dt + i \int_{a}^{b} \phi'(t) dt$$

Since both have primitives, we can evaluate them using FTC. Moreover, we know that since γ is closed, we must necessarily have $\rho(a) = \rho(b)$ and $\phi(a) = \phi(b) + 2\pi n$ for some $n \in \mathbb{Z}$ Thus,

$$\int_{\gamma} \frac{d\zeta}{\zeta - 0} d\zeta = \log(\rho(t)) \bigg|_a^b + i\phi(t) \bigg|_a^b = i2\pi n.$$

Thus,

$$\operatorname{Ind}_{\gamma}(0) = n.$$

Because it is clearly invariant over a translation, we have that

$$\operatorname{Ind}_{\gamma}(z) = n.$$

By problem 2 on PSET 2, since $\operatorname{Ind}_{\gamma}(z) \in \mathbb{Z}$ for all $z \in O$, we have that $\operatorname{Ind}_{\gamma}$ is constant over O. It suffices to show that n = 0. To see this, we note that as O is unbounded, we can see that

$$\lim_{z \to \infty} \operatorname{Ind}_{\gamma}(z) = \lim_{z \to \infty} \int_{\gamma} \frac{d\zeta}{\zeta - z} d\zeta = \lim_{z \to \infty} \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t) - z} dt = \int_{a}^{b} \lim_{z \to \infty} \frac{\gamma'(t)}{\gamma(t) - z} = 0.$$

Note that we can exchange limits because of the uniform convergence to 0 of the function within the integrand. Thus, $\operatorname{Ind}_{\gamma}$ is constant over O, we have that

$$\operatorname{Ind}_{\gamma}(z) = 0, \quad \forall z \in O.$$

(b) Let γ_d be the path as pictured below.

What is $\operatorname{Ind}_{\gamma}(i)$.

Solution: Clearly, $i \in O$, where O is the unbounded connected complement of γ . By part (a), we know that $\operatorname{Ind}_{\gamma_d}(i) = 0$.

(c) Let R > 1 and define γ_u as pictured below.

What is $\gamma_u(i)$?

SOLUTION: Consider that since the orientations cancel out the middle interval, we have that $\gamma_d + \gamma_u$ is the closed circle around 0 of radius R. We have seen in class that $\operatorname{Ind}_{C_R}(0) = 1$, where $C_R = \gamma_d + \gamma_u$ is the circle of radius R around 0. By a corollary of what we proved in the proof of part (a), we know that the winding number is also constant in the bounded complement of C_R , and since i is in this connected open bounded complement, then

$$1 = \operatorname{Ind}_{C_r}(i) = \operatorname{Ind}_{\gamma_u}(i) + \operatorname{Ind}_{\gamma_d}(i) = \operatorname{Ind}_{\gamma_u}(i)$$

(a) Prove that

$$\lim_{z \to i} \left(\frac{1}{z^2 + 1} - \frac{1}{2i(z - i)} \right)$$

exists.

SOLUTION: Since $z^2 + 1 = (z - i)(z + i)$, we can write

$$\lim_{z\to i}\left(\frac{1}{z^2+1}-\frac{1}{2i(z-i)}\right)=\lim_{z\to i}\left[\frac{1}{z-i}\left(\frac{1}{z+i}-\frac{1}{2i}\right)\right]=\lim_{z\to i}\frac{\frac{1}{z+i}-\frac{1}{2i}}{z-i}\to\frac{0}{0}.$$

We apply L'Hopital's rule:

$$\lim_{z \to i} \left(\frac{1}{z^2 + 1} - \frac{1}{2i(z - i)} \right) = \lim_{z \to i} \frac{\left(\frac{1}{z + i} - \frac{1}{2i} \right)'}{(z - i)'}$$

$$= \lim_{z \to i} \frac{-\frac{1}{(z + i)^2}}{1}$$

$$= \frac{1}{4}$$

(b) Call this limit L. Then, define

$$f(z) = \begin{cases} \frac{1}{z^2 + 1} - \frac{1}{2i(z - i)}, & z \neq i \\ L, & z = i \end{cases}$$

What is

$$\int_{\gamma_{\rm up}} f(z) \, dz?$$

SOLUTION: Note that γ_u is a closed path in $O := D_{R+1}(0) \subseteq \mathbb{C}$, which is open and convex in \mathbb{C} . Also observe that $f \in H(O)$ except for one point, z = i. Note that by part (a), f(z) is continuous at z = i.

We use Goursat's and Cauchy's theorem, which forgive functions which are holmorphic at all but one point, at which they are continuous, that states that since γ_u is closed in an open and convex set, then

$$\int_{\gamma_u} f(\zeta)d\zeta = 0$$

(c) Taking the limit of the integral in part (b) as $R \to \infty$, evaluate

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx.$$

SOLUTION: We have that

$$\int_{-R}^{R} \frac{1}{1+x^2} dx = \int_{-R}^{R} f(x) + \frac{1}{2i(x-i)} dx = \int_{-R}^{R} f(x) dx + \int_{-R}^{R} \frac{1}{2i(x-i)} dx$$

Denote the top arc of the half circle by γ_{arc} . Then we have by part (a) that

$$0 = \int_{\gamma_u} f(\zeta) d\zeta = \int_{[-R,R]} f(\zeta) d\zeta + \int_{\gamma_{\rm arc}} f(\zeta) d\zeta = \int_{-R}^{R} f(x) dx \implies \int_{-R}^{R} f(x) dx = -\int_{\gamma_{\rm arc}} f(\zeta) d\zeta$$

But we know that

$$\left| \int_{\gamma_{\text{arc}}} f(\zeta) d\zeta \right| \le \operatorname{arclength}(\gamma_{\text{arc}}) \max_{z \in \gamma_{arc}} (\left| \frac{1}{z^2 + 1} - \frac{1}{2i(z - i)} \right|)$$

$$\le \pi R \left(\frac{1}{R^2 + 1} + \frac{1}{|2(R - 1)|} \right)$$

$$\to 0$$

as $R \to \infty$. Thus, it suffices to compute

$$\frac{1}{2i} \int_{-R}^{R} \frac{1}{(x-i)} dx.$$

To do this, we will use Cauchy's residue formula, which states that

$$\int_{-R}^{R} \frac{1}{(x-i)} dx = 2\pi i \operatorname{res}_{i}(f) = 2\pi i \lim_{z \to i} \left[(x-i) \frac{1}{x-i} \right] = 2\pi i.$$

Thus,

$$\int_{-R}^{R} \frac{1}{1+x^2} dx = \int_{-R}^{R} \frac{1}{2i(x-i)} dx = 2\pi i \frac{1}{2i} = \pi.$$