A project on Machine learning.

LIFE EXPECTANCY PREDICTION

RAKESH KANTA KANDIPATI

17NE1A0545

TIRUMALA ENGINEERING COLLEGE

INDEX

INTRODUCTION

- 1.1 Overview
- 1.2 Purpose

LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 Proposed solution

THEORITICAL ANALYSIS

- 3.1 Block diagram
- 3.2 Hardware / Software designing

EXPERIMENTAL INVESTIGATIONS

FLOWCHART

RESULT

ADVANTAGES & DISADVANTAGES

APPLICATIONS

CONCLUSION

FUTURE SCOPE

BIBILOGRAPHY

APPENDIX

INTRODUCTION

1.1 Overview

The project tries to create a model based on data provided by the World Health Organization (WHO) to evaluate the life expectancy for different countries in years.

The data originates from here: https://www.kaggle.com

1.2 Purpose

To predict life expectancy of various countries. Get the knowledge of life in various countries and take a measure in developing the range of life span in their countries.

The development of all categories which affects life span is done by this prediction. By this all countries get to know their countries life span in average.

By this they get to know

Why the life span is like this?

What makes to increase the life span?

By this the people life span get increased and get a chance to survive more days than the one in past.

LITERATURE SURVEY

2.1 Existing problem

To create a model based on data provided by the World Health Organization (WHO) to evaluate the life expectancy for different countries in years.

The data offers a timeframe from 2000 to 2015. The data originates from here: https://www.kaggle.com

2.2 Proposed solution

The output algorithms have been used to test if they can maintain their accuracy in predicting the life expectancy for data they haven't been trained.

The algorithms have been used:

Linear Regression

Decision Tree Regression

Random Forest Regression

THEORITICAL ANALYSIS

3.1 Block diagram

3.2 Software designing

Using the following services of IBM:

• Watson studio

Node-red flow

EXPERIMENTAL INVESTIGATIONS

FLOWCHART

RESULT

Life Expectancy

Life Expectancy	64.85999999999999
Country* Afghanistan	
Year* 2015	
Status * Developing	
Adult Mortality*	
infant deaths *	
Alcohol * 0.01	
percentage expenditure 71.27962	ż
Hepatitis B *	
Measles * 1154	

SUBMIT	CANCEL
Schooling * 10.1	
ncome composition of reso 0.479	ources*
thinness 5-9 years * 17.3	
thinness 1-19 years * 17.2	
Population* 33736494	
GDP* 584.2592	
HIV/AIDS* 0.1	
Diphtheria * 65	
Total expenditure * 8.16	
Polio * 6	
under-five death * 83	
19.1	
BMI*	

ADVANTAGES & DISADVANTAGES

- The development of all categories which affects life span is done by this prediction.
- By this all countries get to know their countries life span in average.

APPLICATIONS

In predicting the life span of a person living in particular country gives:

• Information to the new person entering to the country

CONCLUSION

After comparing all the algorithms we can conclude the Lasso and the Elastic Net Regression offer which are the same:

- Best Parameters: {'alpha': 0, 'max_iter': 10}
- R square on the test data of 92%
- MAE of 1.83
- MSE of 6.05

FUTURE SCOPE

Used in various factors for the welfare of country.

Such as medical, population ministry, etc...

In all ways for developing the country the strength for country was the efficient population. So, by this the peoples life span increases and GDP also increases.

We can fix the following measures:

- Producing the products basing on it
- Jobs vacancy calculation
- Government schemes

BIBILOGRAPHY

The following sources have been used:

- https://www.kaggle.com/kumarajarshi/life-expectancywho/data
- Introduction to Machine Learning with Python by Andreas C.
 Müller & Sarah Guido
- Labs of the course
- stack overflow
- Lectures of the course
- https://www.coursera.org/learn/machine-learning
- IBM videos

APPENDIX

