DoSA-3D User Manual

Solenoid Example

2022-06-30 zgitae@gmail.com

DoSA Structure

PC Requirement

> CPU: 4 Core and above

> RAM: 16GB and above

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Virtual Test

✓ Force : Magnetic force estimation

Work process

Product Design

Virtual Test

Analysis Model

Analysis Model

1. Model Shape

2. Product Specifications

A. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

B. Power

Voltage : 14.5V

(Example Files : DoSA-3D Install Directory > Samples > Solenoid)

New design

1. Toolbar > Click New Button

2. Design Name: "Solenoid_01"

3. Shape File (STEP): Select Solenoid.step

[Cautions for the Shape Model]

DoSA-3D still has the following functional limitations.

- A. Shape constraint
 - Coil central axis must coincide with Y axis.
 - The current is always applied in cylindrical form. (Polygon coils can cause some differences)
- B. Limited number of parts
 - Actions only support one part.
 - Only one coil is supported.
- C. Drawing Guide
 - https://solenoid.or.kr/data/Drawing Guide ENG.pdf

New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.

New design

8. Check the design creation.

Parts Design

Add a Coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.

Coil design

1. Input Coil specifications

✓ Inner Diameter: 9.6

✓ Outer Diameter: 21.6

✓ Coil Height : 16

✓ Copper Diameter: 0.27

2. Calculate the coil specification

✓ Click "Coil Design" button

3. Check the coil specification

Δ	Common Fields	
	Node Name	Coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
۵	Design Fields (optio	nal)
Δ	Design Fields (optio Coil Wire Grade	nal) Enameled_IEC_Grade_2
4		
4	Coil Wire Grade	Enameled_IEC_Grade_2
4	Coil Wire Grade Inner Diameter [mm]	Enameled_IEC_Grade_2 9.6
4	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm]	Enameled_IEC_Grade_2 9,6 21,6 16
4	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm]	Enameled_IEC_Grade_2 9,6 21,6 16
4	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm]	Enameled_IEC_Grade_2 9,6 21,6 16 0,27
4	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm]	Enameled_IEC_Grade_2 9,6 21,6 16 0,27 0,31072
4	Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm] Coil Temperature [*C]	Enameled_IEC_Grade_2 9,6 21,6 16 0,27 0,31072 20

1

3

Add an Armature

- 1. Toolbar > Click Steel button
- 2. Select "Armature" in the list box.
- 3. Click the OK button.

Armature setting

1. Armature setting

✓ Part Material : SUS_430

✓ Moving Parts: MOVING

Select the magnetic force calculation part

12000.00

H [A/m]

6000.00

18000.00

24000.00

30000.00

0.5

0.00

Add a core

- 1. Toolbar > Click Steel button
- 2. Select "Core" in the list box.
- 3. Click the OK button.

Core setting

1. Core settings

✓ Part Material : SUS_430

1

Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.

Case setting

1. Case Settings

✓ Part Material : SUS_430

1

Virtual Test

Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK Button

4. Setting of magnetic force test

✓ Voltage: 14.5

✓ B Rotation Angle : 45 ✓ Mesh Size Percent : 7

5. Click "Force Test" Button

Run the virtual test

- 6. Check the progress of magnetic force analysis.
- 7. Check the magnetic density and force. (The solving time is depend on you system specification)

Results of the virtual test

- 8. Check the full magnetic density.
- 9. Check the section magnetic density.

Tips

Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org