CHEM E 325 Energy and Entropy

Thermodynamic Properties and Data

Description	Equations
Pressure (kinetic theory)	$P = \frac{F}{A}$
Ideal gas law	PV = nRT Pv = RT
Quality	$q=rac{n_v}{n_l+n_v}$
Fraction	$x_A = f^{lpha} x_A^{lpha} + (1-f^{lpha}) x_A^{eta}$
Lever rule for intensive properties	$v_{ m total} = v_v q + v_l (1-q)$
Gibbs phase rule	$\mathcal{F}=2+c-p-r$
Mole fraction	$x_i = rac{n_i}{\sum_j n_j}$

Intermolecular Interactions

| Intermolecular potentials

Description	Equations
Keesom potential (dipole-dipole)	$\Gamma_{ij}=-rac{2}{3}rac{\mu_i^2\mu_j^2}{r_{ij}^6k_BT}$
Debye potential (dipole-induced dipole)	$\Gamma_{ij} = -rac{lpha_i \mu_j^2}{r_{ij}^6}$
London dispersion potential (induced dipole-induced dipole)	$\Gamma_{ij} = -rac{3}{2}rac{lpha_ilpha_j}{r_{ij}^6}rac{1}{rac{1}{I_i}+rac{1}{I_j}}$
Lennard-Jones potential	$\Gamma = 4arepsilon \left[\left(rac{\sigma}{r} ight)^{12} - \left(rac{\sigma}{r} ight)^6 ight]$
Equilibrium intermolecular distance	$r(\Gamma_{ m min})=r(arepsilon)=2^{1/6}\sigma=1.12\sigma$

| Molecular dynamics simulation

Description	Equations
Nondimensionalized distance	$"r" = rac{r}{\sigma}$
Nondimensionalized temperature	$"T" = \frac{k_BT}{\varepsilon}$
Nondimensionalized pressure	$"P" = rac{\sigma^3}{arepsilon} P$
Nondimensionalized energy	" E " $= \frac{U}{arepsilon}$
Nondimensionalized time	$"t" = \frac{t}{\sigma\sqrt{m/\varepsilon}}$
Kinetic energy and temperature	$\mathrm{KE}=nT$
ldeal gas pair potential energy	PE = 0

Description	Equations
Condensed phase interaction potential energy (with normalized energy unit of $arepsilon$)	${ m PE} = -N_{ m inter}$
Amount of interactions	$N_{ m inter}=rac{1}{2}$ (# molecules)(# neighbors)

Equation of States

| van der Waals EOS

Description	Equations
van der Waals EOS in terms of ${\cal P}$	$P = \frac{RT}{v - b} - \frac{a}{v^2}$
van der Waals EOS in terms of \emph{v}	$v^3-\left(rac{RT}{v-b} ight)v^2+rac{a}{P}v-rac{a}{P}b=0$
van der Waals parameter a	$a=rac{27}{64}rac{(RT_c)^2}{P_c}$
van der Waals parameter b	$b=rac{RT_c}{8P_c}$
Molar potential energy	$e_p = -rac{a}{v}$
Pressure at zero kinetic energy	$P = -rac{a}{v^2}$
Reduced temperature	$P=-rac{a}{v^2}$ $T_r=rac{T}{T_c}$
Reduced pressure	$P_r = rac{P}{P_c}$
Compressibility factor	$z = rac{v_{ m real}}{v_{ m ideal}} = rac{Pv}{RT}$
Potential energy	$e_p = u_{ m real}(T,P) - u_{ m ideal}(T,P=0)$
Internal energy departure function	$rac{e_p}{RT_c} = rac{u_{ m real} - u_{ m ideal}}{RT_c}$
Internal energy departure function in van der Waals EOS	$rac{e_p}{RT_c} = -rac{27P_r}{64T_rz}$

Lee-Kesler EOS

Description	Equations
Lee-Kesler compressibility factor	$z=z^{(0)}+\omega z^{(1)}$
Acentric factor	$\omega=-1-\log_{10}(P_r^{ m sat}(T_r=0.7))$
General departure function in Lee-Kesler EOS	$\mathrm{dep} = \mathrm{dep}^{(0)} + \omega \; \mathrm{dep}^{(1)}$
Internal energy and enthalpy departure function	$rac{u_{ m real}-u_{ m ideal}}{RT_c} = rac{h_{ m real}-h_{ m ideal}}{RT_c} + T_r(1-z)$

First Law of Thermodynamics

System Type	First Law of Thermodynamics
Isolated system	$\Delta U=0$

System Type	First Law of Thermodynamics
Closed system	$\Delta U = Q + W$
Open system	$rac{dU}{dt} = \sum\limits_{ m in} \dot{n}_i h_i - \sum\limits_{ m out} \dot{n}_i h_i + \sum \dot{Q_i} + \dot{W_s}$
Open system in steady state	$0 = \sum\limits_{ ext{in}} \dot{n}_i h_i - \sum\limits_{ ext{out}} \dot{n}_i h_i + \sum \dot{Q}_i + \dot{W_s}$
Description	Equations
Work	$W = \int P \ dV$
Enthalpy	H=U+PV
Constant volume molar heat capacity	$c_v = \left(rac{\partial u}{\partial T} ight)_v$
Constant pressure molar heat capacity	$c_P = \left(rac{\partial h}{\partial T} ight)_P$
	$\langle 01 \rangle_P$

Second Law of Thermodynamics

System Type	Second Law of Thermodynamics
Isolated system $S_{ m gen} \geq 0$	$\Delta S = S_{ m gen}$
Closed system $S_{ m gen} \geq 0$	$\Delta S = \int rac{\delta Q}{T} + S_{ m gen}$
Open system $\dot{S}_{ m gen} \geq 0$	$rac{dS}{dt} = \sum_{ ext{in}} \dot{n}_i s_i - \sum_{ ext{out}} \dot{n}_i s_i + \sum rac{\dot{Q}_i}{T_i} + \dot{S}_{ ext{gen}}$
Open system in steady state $\dot{S}_{ m gen} \geq 0$	$0 = \sum\limits_{ ext{in}} \dot{n}_i s_i - \sum\limits_{ ext{out}} \dot{n}_i s_i + \sum rac{\dot{Q}_i}{T_i} + \dot{S}_{ ext{gen}}$

| Counting configurations

Description	Equations
Ergotic hypothesis	$ f =\langle f angle$
Equal probability postulate	$P_j=rac{1}{\Omega}$
Entropy	$S=k_B \ln \Omega$
Permutability N_A distinguishable particles in N sites	$\Pi = rac{N!}{(N-N_A)!}$
Multiplicity N_A indistinguishable particles in N sites	$\Omega = rac{N!}{N_A!(N-N_A)!}$
Multiplicity N_A, N_B, \ldots indistinguishable particles in N sites	$\Omega = rac{N!}{N_A!N_B!N_C!\cdots}$
Stirling approximation	$\lim_{a o\infty}\ln(a!)=a\ln(a)-a$
Entropy of N sites with fraction \boldsymbol{x} activated	$S=k_BN[-x\ln(x)-(1-x)\ln(1-x)]$

| Fundamental properties

Description	Equations
Molar entropy ${\cal C}$ = constant	$s = R \ln(v u^{3/2}) + \mathcal{C}$
Molar internal energy ${\cal C}$ = constant	$u=\mathcal{C}v^{-2/3}\exp\left(rac{2}{3}rac{s}{R} ight)$
	$T=\left(rac{\partial u}{\partial s} ight)_v$
Pressure	$P=-\left(rac{\partial u}{\partial v} ight)_s$
Fundamental property relation	du=Tds-Pdv
Reversible heat at constant v	$\Delta u = q = \int T \ ds$
Reversible work at constant s	$w = -\int P \; dv$

| Entropy generation

Description	Equations
Reversible process	$s_{ m gen}=0$
Irreversible process (caused by temperature gradient)	$s_{ m gen}>0$

First and Second Law Analysis

| Isothermal/Isoenergetic process

Isoenergetic process ($\Delta u=0 \implies \Delta T=0$) of ideal gas has similar analysis.

Description	Equations
Condition ★ Ideal gas	$\Delta T=0$
Internal energy change	$\Delta u=0$
Enthalpy change	$\Delta h=0$
First law	$\Delta u = q + w = 0$
Work (changing volume)	$w=-\intrac{RT}{v}dv=-RT\ln\left(rac{v_2}{v_1} ight)$
Work (changing pressure)	$w = \int rac{RT}{P} dP = RT \ln \left(rac{P_2}{P_1} ight)$
Heat	q = -w
Entropy change	$\Delta s = \int rac{\delta q}{T} = rac{q}{T} = -rac{w}{T}$
Entropy change (changing volume)	$\Delta s = R \ln \left(rac{v_2}{v_1} ight)$
Entropy change (changing concentration)	$\Delta s = -R \ln \left(rac{c_2}{c_1} ight)$

| Adiabatic process

Description	Equations
Condition ★ Ideal gas	q = 0
First law	$\Delta u = w$
Enthalpy change	$\Delta h = \Delta u + R \Delta T$
Work (changing volume)	$w=-\intrac{RT}{v}dv=-RT\ln\left(rac{v_2}{v_1} ight)$
Work (changing pressure)	$w = \int rac{RT}{P} dP = RT \ln \left(rac{P_2}{P_1} ight)$
Entropy change	$\Delta s = 0$

| Isochoric process

Description	Equations
Condition ★ Ideal gas	$\Delta v = 0$
Work	w = 0
Internal energy change	$\Delta u = \int c_v \; dT$
First law	$q=\Delta u$
Entropy change	$\Delta s = \int rac{\delta q}{T} = \int rac{du}{T} = \int rac{c_v}{T} \; dT$

| Isobaric process

Description	Equations
Condition ★ Ideal gas	$\Delta P=0$
Internal energy change	$\Delta u = \int c_v \; dT$
Enthalpy change	$\Delta h = \int c_p \ dT$
Work	$w=-P\Delta v$
Heat	$q=\Delta h$
Entropy change	$\Delta s = \int rac{\delta q}{T} = \int rac{dh}{T} = \int rac{c_p}{T} \; dT$

| Other processes

Equations
v_0 is constant, small
$\Delta u = \Delta h = \int c_p \ dT$
$\Delta h = \int c_p \ dT + v_0 (P_1 - P_0)$
$\Delta s = \int rac{c_p}{T} dT = c_p \ln \left(rac{T_1}{T_2} ight)$
$egin{aligned} \Delta h &= q \ \Delta s &= rac{q}{T} = rac{\Delta h}{T} \end{aligned}$

Process Efficiency

Description	Equations
Maximum work of heat engine	$W_{ m max} = Q_{ m in} \left(1 - rac{T_c}{T_h} ight)$
Minimum work of heat heat pump	$W_{ m max} = Q_{ m out} \left(1 - rac{T_c}{T_h} ight)$
Reversible work	$W_{ m rev} = Q_1 \left(1 - rac{T_c}{T_h} ight)$
Carnot efficiency	$\eta = rac{W_{ m rev}}{Q_1} = 1 - rac{T_c}{T_h}$
Ideal gas entropy	$\Delta s(T,v) = \int rac{c_v}{T} dT + R \ln \left(rac{v}{v_0} ight)$
Ideal gas entropy	$\Delta s(T,P) = \int rac{c_p}{T} dT - R \ln \left(rac{P}{P_0} ight)$
Lost work	$W_{ m lost} = T_c s_{ m gen}$
Exthalpy for multi-stream	$egin{aligned} \dot{E} &= \dot{W}_{ ext{rev}} \ &= \sum_{i}^{ ext{source}} \dot{n}_i (h_i - T_0 s_i) - \sum_{i}^{ ext{ground}} \dot{n}_i (h_i^\circ - T_0 s_i^\circ) \end{aligned}$
Exthalpy for single stream	$\dot{W}_{ m rev} = \Delta h - T_0 \Delta s$

Phase equilibrium

| Single component equilibrium

Description	Equations
Gibbs free energy (constant T,P)	G=H-TS
Helmholtz free energy (constant T,V)	F = A = U - TS
Entropy change of universe	$\Delta S_{ m univ} \geq 0$
Gibbs free energy change of spontaneous process	$\Delta G \leq 0$
Helmholtz free energy change of spontaneous process	$\Delta F \leq 0$
Thermal equilibrium	$T^{lpha}=T^{eta}$
Mechanical equilibrium	$P^{lpha}=P^{eta}$

Description	Equations
Chemical equilibrium	$g^{lpha}=g^{eta}$
Clausius-Clapeyron equation	$rac{d \ln P_{ m sat}}{d(1/T)} = -rac{1}{R} \Delta h_{ m vap}(T)$
	$\ln \left(rac{P_{ m sat}}{P_0} ight) = -rac{\Delta h_{ m vap}^{\circ}}{R} \left(rac{1}{T} - rac{1}{T_0} ight)$
Antoine equation	$\ln(P_{\mathrm{sat}}) = A - rac{B}{C+T}$

| Multicomponent equilibrium

Description	Equations
Partial molar properties	$ar{x}_i = \left(rac{\partial x}{\partial n_i} ight)_{ ext{others}, nj eq i}$
Partial molar gibbs free energy	$ar{g}_i = \left(rac{\partial G}{\partial n_i} ight)_{T,P,nj eq i}$
Partial molar gibbs free energy	$ar{g}_i = ar{h}_i - Tar{s}_i$
Entropy	$S = -\left(rac{\partial G}{\partial T} ight)_{P,nj}$
Volume	$V = \left(\frac{\partial G}{\partial P}\right)_{T,nj}$
Total derivative of gibbs free energy	$dG = -S \ dT + V \ dP + \sum_i ar{g}_i \ dn_i$
Chemical potential	$\mu_i = ar{g}_i$
Chemical equilibrium	$\mu_i^lpha = \mu_i^eta$
Raoult's law	$P_A=x_A^g P=x_A^l P_A^{ m sat}$
Condensation curve	$P = (P_A^{ m sat} - P_B^{ m sat}) x_A^l + P_B^{ m sat}$
Boiling curve	$P = rac{P_A^{ m sat}P_B^{ m sat}}{P_A^{ m sat} - (P_A^{ m sat} - P_B^{ m sat})x_A^g}$
Henry's law ★ Low pressure, dilute solution	$C_A=K_H(T)P_A$
Gibbs-Duhem Equations	$\sum \mu_i \ dn_i = 0 \ \sum n_i \ d\mu_i = 0$
Colligative property	$\mu_{ m solvent} = RT \ln(1-x_A) + \mu_{ m solvent}^\circ$