INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

- Exercises for Week 7 -

Our main reference is Chapter 6 of Rudin's book:

• W. Rudin. Functional analysis. Second. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424

There, you can find even more interesting exercises.

1. From last week

Exercise 1.1. Show that, if $A \in \mathcal{D}'(\Omega)$ has finite order N, then A extends as a continuous linear operator from $\mathcal{D}(\Omega)$ to $C^N(\Omega)$.

2. Derivatives

Exercise 2.1. Show that, if $\alpha \in \mathbb{N}^n$, the function $\phi \mapsto D^{\alpha}\phi$ is a continuous linear operator $\mathcal{D}(\Omega) \to \mathcal{D}(\Omega)$.

Exercise 2.2. Let $f \in C^N(\Omega)$ and $\phi \in \mathcal{D}(\Omega)$. Show that, for every $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq N$,

(1)
$$\int_{\Omega} D^{\alpha} f(x) \phi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) D^{\alpha} \phi(x) dx.$$

In other words, $D^{\alpha}A_f = A_{D^{\alpha}f}$.

Exercise 2.3. Show that, if $A \in \mathcal{D}'(\Omega)$, then $D^{\alpha}D^{\beta}A = D^{\alpha+\beta}A = D^{\beta}D^{\alpha}A$ for all $\alpha, \beta \in \mathbb{N}^n$.

Exercise 2.4. Show the following proposition:

Proposition 2.1. Let $\Omega \subset \mathbb{R}^n$ be open and $f \in C(\Omega)$ a continuous function. Suppose that, for every $j \in \{1, \ldots, n\}$, there is a continuous function $g_j \in C(\Omega)$ such that $D^j A_f = A_{g_j}$, i.e., $D^j f = g_j$ in distributional sense. Then $f \in C^1(\Omega)$ and $D^j f = g_j$.

Exercise 2.5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function with bounded variation. For instance, the Cantor staircase function. Show that $\mathrm{D}A_f = A_\mu$, where $\mu \in \mathrm{Rad}(\mathbb{R})$ is the measure defined by

(2)
$$\mu([a,b)) = f(b) - f(a)$$

for all $a, b \in \mathbb{R}$ with a < b. For instance, if f is the Cantor staircase function, then we know that, for almost every $x \in \mathbb{R}$, f is differentiable at x and f'(x) = 0. However, $DA_f \neq 0$.

Hint: see
$$[1, \S 6.14]$$
.

Exercise 2.6 (Generalized Leibniz Rule). Show that, if $u \in \mathcal{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$, then, for every $\alpha \in \mathbb{N}^n$,

(3)
$$D^{\alpha}(fu) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} f \cdot D^{\alpha - \beta} u.$$

Hint: First of all, understand this formula when u is a smooth function. Then consider the case $|\alpha| = 1$ (just one derivative).

3. Support

Exercise 3.1. Let $A \in \mathcal{D}'(\Omega)$ and \mathcal{U} an open cover of Ω . Show that, if $\bar{A} \in \mathcal{D}'(\Omega)$ is such that $\bar{A} = A$ on ω , for every $\omega \in \mathcal{U}$, then $\bar{A} = A$.

Exercise 3.2. Show the following statement: if $A \in \mathcal{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$ are such that spt $A \subset \{f = 1\}$, then fA = A.

Exercise 3.3. Show the following statement: if $A \in \mathcal{D}'(\Omega)$ and $f \in C^{\infty}(\Omega)$, then $\operatorname{spt}(fA) \subset \operatorname{spt}(f) \cap \operatorname{spt}(A)$. Is equality true?

Hint for question: Try with
$$A = \delta_0$$
.

4. Convolution

Exercise 4.1 (Young's inequality). Show that, if $f \in L^1(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then $f * g \in L^p(\mathbb{R}^n)$ and $||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}$.

Hint. By Hölder inequality, with $\frac{1}{p} + \frac{1}{p'} = 1$, $\int |f(y)g(y-x)| \, \mathrm{d}y = \int |f(y)|^{1/p'} \cdot |f(y)|^{1/p}|g(y-x)| \, \mathrm{d}y \le (\int |f(y)| \, \mathrm{d}y)^{1/p'} \cdot (\int |f(y)||g(y-x)|^p \, \mathrm{d}y)^{1/p}$. Therefore, $\int (f*g(x))^p \, \mathrm{d}x \le (\int |f(y)| \, \mathrm{d}y)^{p/p'} \cdot \int \int |f(y)||g(y-x)|^p \, \mathrm{d}y \, \mathrm{d}x \le (\int |f(y)| \, \mathrm{d}y)^{p/p'} \cdot \int |g(y)|^p \, \mathrm{d}y \cdot \int |f(y)| \, \mathrm{d}y$.

Exercise 4.2. Show that, if $f, g \in C^0(\mathbb{R}^n)$, then

$$\operatorname{spt}(f * g) \subset \operatorname{spt}(f) + \operatorname{spt}(g).$$

Can you find a case where equality holds? And where equality does not hold?

 \Diamond

 \Diamond

Exercise 4.3. Show the relations

(5)
$$\tau_y \tau_z = \tau_{y+z};$$

(6)
$$(\tau_x \phi)^{\vee} = \tau_{-x} \check{\phi};$$

(7)
$$\tau_x(D^{\alpha}\phi)^{\vee} = (-1)^{|\alpha|}D^{\alpha}(\tau_x\check{\phi}).$$

Exercise 4.4. Show that, if $u \in \mathcal{D}'$ and $\phi \in \mathcal{D}$, then

(8)
$$u[\phi] = (u * \phi)(0).$$

April 2, 2025. Last git commit: 615ea09 in branch: master

Exercise 4.5. Show that, if $u \in \mathcal{D}'$ and $\phi \in \mathcal{D}$, then

(9)
$$\operatorname{spt}(u * \phi) \subset \operatorname{spt}(u) + \operatorname{spt}(\phi) = \{x + y : x \in \operatorname{spt}(u), \ y \in \operatorname{spt}(\phi)\}.$$

Exercise 4.6. Show that, if $u \in \mathcal{D}'$, $\phi \in \mathcal{D}$ and $v \in \mathbb{R}^n$, then

(10)
$$u * (\tau_v \phi) = \tau_v (u * \phi).$$

Exercise 4.7. Show that $\phi \mapsto u * \phi$ is linear.

Exercise 4.8. Show that $\delta_0 * \phi = \phi$ for every $\phi \in \mathcal{D}$. What is $\delta_v * \phi$?

5. Approximation of Lebesgue integral with Riemann sums

Exercise 5.1. In this exercise, you show that Riemann sums converge to the integral. Let $f: \mathbb{R}^n \to \mathbb{C}$ be a continuous and integrable function. (Integrable: $\int_{\mathbb{R}^n} |f(z)| \, \mathrm{d}z < \infty$). For h > 0, define

(11)
$$F_h = \sum_{z \in \mathbb{Z}^n} h^n f(hz).$$

Show that $\lim_{h\to 0} F_h = \int_{\mathbb{R}^n} f(z) dz$.

Exercise 5.2. [To do while listening to Paganini's Caprice No. 24]. Variation over Exercise 5.1: Let $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ be a uniformly continuous and integrable function. Define $F: \mathbb{R}^n \to \mathbb{C}$ by

(12)
$$F(x) = \int_{\mathbb{R}^n} f(x, z) \, \mathrm{d}z.$$

For h > 0 and $x \in \mathbb{R}^n$, define

(13)
$$F_h(x) = \sum_{z \in \mathbb{Z}^n} h^n f(x, hz).$$

Show that $F_h \to F$ uniformly in x as $h \to 0$.

6. Smooth approximation

Exercise 6.1. Let $\Omega \subset \mathbb{R}^n$ convex and $\phi \in C^1(\Omega)$ such that $L = \|\nabla \phi\|_{L^{\infty}} < \infty$ Show that, for every $x, y \in \Omega$, $|\phi(x) - \phi(y)| \le L|x - y|$.

Question: what happens if we drop the hypothesis of Ω being convex?

Exercise 6.2. In class, I have rushed the proof of the following proposition. Try give the proof yourself.

Proposition 6.1. Let $\{\rho_{\epsilon}\}_{{\epsilon}>0}$ be an approximation of the identity on \mathbb{R}^n , $\phi \in \mathscr{D}$ and $u \in \mathscr{D}'$. Then

- (14) $\lim_{\epsilon \to 0} \phi * \rho_{\epsilon} = \phi \ in \ \mathscr{D},$
- (15) $\lim_{\epsilon \to 0} u * \rho_{\epsilon} = u \text{ in } \mathscr{D}'.$
- (16)

 \Diamond

 \Diamond

 \Diamond

 \Diamond **Exercise 6.3.** Prove the following statement:

Proposition 6.2. The space $C^{\infty}(\mathbb{R}^n)$ is dense in \mathscr{D}' (with respect to the topology of \mathscr{D}').

 \Diamond

 \Diamond

Exercise 6.4. Show that, if $\Omega \subset \mathbb{R}^n$ is open, then the space $C^{\infty}(\Omega)$ is dense in $\mathscr{D}'(\Omega)$ (with respect to the topology of $\mathscr{D}'(\Omega)$).

Exercise 6.5. Is $\mathscr{D}(\Omega)$ dense in $\mathscr{D}'(\Omega)$? (Try at least for $\Omega = \mathbb{R}^n$). Hint: Take $A[\phi] = \int \phi \, dx$ and try to approximate A with functions in $C_c^{\infty}(\Omega)$.

References

[1] W. Rudin. Functional analysis. Second. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424.