	In his Name	
	Physics Quiz 1	SY: 2020/2021
		Duration 1 Session
Al-Mahdi Schools		Grade /10

Ch. 1 : Energy Grade 12 LS Date: 22 /9 /2022

Exercise 1: Non conservation of mechanical energy

A solid (S) of mass m=300~g, is launched with a speed $\overrightarrow{V_0}$ along an inclined plane making an angle α with respect to the horizontal as shown in figure of Document-1. The mechanical energy ME and the kinetic potential energy KE of the system [(S); Earth] are represented as a function of the position x in Document-2. The zero level of the gravitational potential energy is the horizontal plane passing through O. Given $g=10~m/s^2$.

- 2) What is, graphically the values of the kinetic energy of the system for x = 2 m and at t = 0?
- 3) Calculate the gravitational potential energy for x = 2 m and at t = 0.
- **4)** Deduce the value of the angle α .
- **5**) Represent the graph of the function of GPE as x on the QUESTION sheet.
- 6) The non-conservation of the mechanical energy is due to a force of friction between (S) and the support. Calculate the value of this force supposed constant.

Document - 1

Document - 2

Exercise 2: Launching a cart on a rail

A cart (C) of mass m = 100 g is launched from position A with a speed $\overrightarrow{V_0}$ ($V_0 = 5$ m/s) on a rail situated in a vertical plane as shown in the figure of Document-3. The cart passes through B then continues along a circular path of radius R = 2 m. (C) reaches M with a speed V_M . M is at height h_M from the horizontal plane passing through B and A which is taken as the zero level of the gravitational potential energy. Take g = 10 m/s².

Document-3

I- Frictional forces are neglected along the track ABM

- 1) Calculate the mechanical energy of the system [Earth; (C)] at the instant of launching the cart.
- 2) The speed at B is $V_B = V_A = 5 m/s$. Justify.
- 3) Show that the expression of the gravitational potential energy of the cart. at any point on the circular path is: $GPE = R(1 cos\theta)$.
- 4) Deduce the speed of the cart at the point M, knowing that $\widehat{BOM} = \theta = 20^{\circ}$.
- 5) Calculate the maximum value θ_m corresponding to the maximum position reached by the cart on the circular part.

II-Frictional forces are NOT neglected along the track AB

In reality, friction along the track AB (AB = 4m) exists and the cart reaches B with speed $V_B = \sqrt{20} \ m/s$. Calculate, using the kinetic energy theory, the magnitude of the friction force considered constant.