Part III – Introduction to Discrete Analysis (Ongoing course, rough)

Based on lectures by Professor W. T. Gowers Notes taken by Bhavik Mehta

Michaelmas 2018

Contents

1	The discrete Fourier transform	2
	1.1 Roth's Theorem	3

1 The discrete Fourier transform

Let N be some fixed positive integer. Write ω for $e^{\frac{2\pi i}{N}}$, and \mathbb{Z}_N for $\mathbb{Z}/N\mathbb{Z}$.

Definition (Discrete Fourier transform). Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $r \in \mathbb{Z}_N$, define $\hat{f}(r)$ to be

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \omega^{-rx}.$$

Notation. From now on, we shall use notation $\mathbb{E}_{x \in \mathbb{Z}_N}$ for $\frac{1}{N} \sum_{x \in \mathbb{Z}_N}$, where the subscript is omitted when it is clear from context.

Notice we can write

$$\hat{f}(r) = \mathop{\mathbb{E}}_{x} f(x) e^{-\frac{2\pi i r x}{N}},$$

highlighting the similarity with the usual Fourier transform.

If we write ω_r for the function $x \mapsto \omega^{rx}$, and $\langle f, g \rangle$ for $\mathbb{E}_x f(x) \overline{g(x)}$, then $\hat{f}(r) = \langle f, \omega_r \rangle$. Let us write $||f||_p$ for $(\mathbb{E}_x |f(x)|^p)^{\frac{1}{p}}$ and call the resulting space $L_p(\mathbb{Z}_N)$.

Important convention. We use *averages* for the 'original functions' in 'physical space' and *sums* for their Fourier transforms in 'frequency space'

Lemma 1 (Parseval's identity). If $f, g : \mathbb{Z}_N \to \mathbb{C}$, then $\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$.

Proof.

$$\begin{split} \langle \hat{f}, \hat{g} \rangle &= \sum_{r} \hat{f}(r) \overline{\hat{g}(r)} \\ &= \sum_{r} (\underbrace{\mathbb{E}}_{x} f(x) \omega^{-rx}) \overline{(\underbrace{\mathbb{E}}_{y} g(y) \omega^{-ry})} \\ &= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y} f(x) \overline{g(y)} \sum_{r} \omega^{-r(x-y)} \\ &= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y} f(x) \overline{g(y)} \Delta_{xy} \\ &= \underbrace{\mathbb{E}}_{x} f(x) \underbrace{\mathbb{E}}_{y} \overline{g(y)} \Delta_{xy} \\ &= \underbrace{\mathbb{E}}_{x} f(x) \underline{\mathbb{E}}_{y} \overline{g(y)} = \langle f, g \rangle \end{split}$$

where

$$\Delta_{xy} = \begin{cases} N & x = y \\ 0 & x \neq y. \end{cases}$$

Definition (Convolution). The convolution $\widehat{f * g}(x)$ is defined to be

$$\mathbb{E}_{y+z=x} f(y)g(z) = \mathbb{E}_{y} f(y)g(x-y).$$

Lemma 2 (Convolution identity).

$$\widehat{f*g}(r) = \widehat{f}(r)\widehat{g}(r).$$

Proof.

$$\widehat{f * g}(r) = \underbrace{\mathbb{E}}_{x} f * g(x)\omega^{-rx}$$

$$= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y+z=x} f(y)g(z)\omega^{-rx}$$

$$= \underbrace{\mathbb{E}}_{x} \underbrace{\mathbb{E}}_{y+z=x} f(y)g(z)\omega^{-ry}\omega^{-rz}$$

$$= \underbrace{\mathbb{E}}_{x} f(y)\omega^{-ry} \underbrace{\mathbb{E}}_{z} g(z)\omega^{-rz} = \hat{f}(r)\hat{g}(r).$$

Lemma 3 (Inversion formula).

$$f(x) = \sum_{r} \hat{f}(r)\omega^{rx}$$

Proof.

$$\sum_{r} \hat{f}(r)\omega^{rx} = \sum_{r} \mathbb{E}_{y} f(y)\omega^{r(x-y)}$$

$$= \mathbb{E}_{y} f(y) \sum_{r} \omega^{r(x-y)}$$

$$= \mathbb{E}_{y} f(y)\Delta_{xy} = f(x).$$

Further observations:

- If f is real-valued, then $\hat{f}(-r) = \mathbb{E}_x f(x)\omega^{rx} = \overline{\mathbb{E}_x f(x)\omega^{-rx}} = \overline{\hat{f}(r)}$.
- If $A \subset \mathbb{Z}_n$, write A (instead of \mathbb{I}_A or χ_A) for the characteristic function of A. Then $\hat{A}(0) = \mathbb{E}_x A(x) = \frac{|A|}{N}$, the density of A.
- Also, $\|\hat{A}\|_2^2 = \langle \hat{A}, \hat{A} \rangle = \langle A, A \rangle = \mathbb{E}_x A(x)^2 = \mathbb{E}_x A(x) = \frac{A}{N}$.

Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $\mu \in \mathbb{Z}_N$ with $(\mu, N) = 1$, define $f_{\mu}(x)$ to be $f(\mu^{-1}x)$. Then

$$\hat{f}_{\mu}(r) = \mathbb{E}_{x} f_{\mu}(x) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x/\mu) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x) \omega^{-r\mu x}$$

$$= \hat{f}(\mu r).$$

1.1 Roth's Theorem

Theorem 4. For every $\delta > 0$, there exists N such that if $A \subseteq \{1, ..., N\}$ is a set of size at least δN then A must contain an arithmetic progression of length 3.

This is the k=3 case of Szemerédi's theorem.

Basic strategy: show that if A has density $\geq \delta$ and no arithmetic progression of length 3, then there is a long arithmetic progression $P \subseteq \{1, \ldots, N\}$ such that

$$|A \cap P| \ge (\delta + c(\delta))|P|.$$

In particular, we have that $|P| \to \infty$ as $N \to \infty$. The proof we give will produce a bound $\frac{C}{\log \log N}$, but this is not the best known. If the bound was reduced to $\frac{1}{\log N}$, this produces a combinatorial proof of the fact that there are arbitrarily long arithmetic progressions in the primes. The best known bound is $\frac{(\log \log N)^4}{\log N}$ by Thomas Bloom. In the other direction, **add the bound**.