On the complexity of zero gap MIP*

Seyed Sajjad Nezhadi

with Hamoon Mousavi and Henry Yuen

$MIP_0^* = \Pi_2$

Exactly computing the value of an entangled non-local game is harder than solving the Halting problem

Previously it was known to be undecidable [Slofstra '17]

Tsirelson's problem has a negative answer for 3 players i.e. commuting correlations \neq tensor product correlations Showing $\Pi_2 \subseteq MIP_0^*[2]$ refutes Connes' Embedding Problem

Complexity Landscape of Entangled Multi-prover Interactive Proofs

Non-local Games

A non-local game \mathcal{G} is played between a verifier and multiple entangled cooperating provers who cannot communicate with each other once the game starts.

The verifier samples questions for the provers and the provers attempt to respond according to a quantum entangled strategy \mathcal{S} that maximize their winning probability.

The probability of wining a game \mathcal{G} with strategy \mathcal{S} is denoted $\omega^*(\mathcal{G},\mathcal{S})$

The maximum winning probability of a game \mathcal{G} is denoted $\omega^*(\mathcal{G}) := \sup_{\mathcal{S}} \omega^*(\mathcal{G}, \mathcal{S})$

$$\omega^*(\mathcal{G}) = 1$$
 does not mean that $\exists \mathcal{S} . \omega^*(\mathcal{G}, \mathcal{S}) = 1$

MIP*

 $MIP^*[k]$ consists of languages $L \subseteq \{0,1\}^*$ for which there exists a k-prover uniform family of games $\{\mathcal{G}_x\}$

If
$$x \in L$$
 then $\omega^*(\mathcal{G}_x) = 1$

If
$$x \notin L$$
 then $\omega^*(\mathcal{G}_x) < \frac{1}{2}$
Constant Gap

$$MIP* = \bigcup MIP*[k]$$

$$k \ge 2$$

MIP_0^*

 MIP_0^* consists of languages $L \subseteq \{0,1\}^*$ for which there exists a uniform family of games $\{\mathcal{G}_x\}$

If
$$x \in L$$
 then $\omega^*(\mathcal{G}_x) = 1$

If
$$x \notin L$$
 then $\omega^*(\mathcal{G}_x) < 1$
Zero Gap

Similarly
$$MIP_0^* = \bigcup_{k \ge 2} MIP_0^*[k]$$

The problem of deciding if a non-local game \mathcal{G} has perfect winning probability is complete for MIP_0^*

Arithmetical Hierarchy

All classes in the Arithmetical Hierarchy are provably distinct In particular Π_2 strictly contains both RE and coRE

Recursively Enumerable

RE consists of languages $L \subseteq \{0,1\}^*$ for which there exists a Turing Machine \mathcal{M}

If
$$x \in L$$
 then $\mathcal{M}(x)$ accepts

If $x \notin L$ then $\mathcal{M}(x)$ runs forever

The Halting problem is complete for RE

RE consists of languages $L \subseteq \{0,1\}^*$ that can be defined as

Decidable
$$L = \{x \in \{0,1\} * | \exists n . P(x,n)\}$$

Π_2

 Π_2 consists of languages $L \subseteq \{0,1\}^*$ for which there exists a Turing Machine \mathcal{M}

If $x \notin L$ then $\mathcal{M}(x)$ accepts given an oracle for the Halting problem

If $x \in L$ then $\mathcal{M}(x)$ runs forever

 Π_2 consists of languages $L \subseteq \{0,1\}^*$ that can be defined as

$$L = \{x \in \{0,1\}^* \mid \forall n . \exists m . P(x,n,m)\}$$

Number of quantifiers corresponds to level of Arithmetical Hierarchy

$$MIP_0^* \subseteq \Pi_2$$

 $\omega^*(\mathcal{G}) = 1$

Decidable

$$\forall \epsilon \; \exists \mathcal{S} \; \omega^*(\mathcal{G}, \mathcal{S}) > 1 - \epsilon$$

The non-local game *G* can be played perfectly

For any constant gap ϵ there exists an MIP^* strategy \mathcal{S} for the game \mathcal{S} that succeeds with probability greater than $1-\epsilon$

$\Pi_2 \subseteq MIP_0^*[3]$

 $coRE \subseteq MIP_0^*[3]$

Fitzsimons et al. '19

Protocol Compression

MIP*[2] = RE

Ji et al. '20

Halting Protocol

Given a family of non-local games $\{\mathcal{G}_n\}$ there exists an efficiently computable family of games $\{\mathcal{G}_n^\#\}$ such that:

$$\omega^*(\mathcal{G}_n^{\#}) \ge \frac{1}{2} + \frac{1}{2}\omega^*(\mathcal{G}_n)$$

$$\omega^*(\mathcal{G}_n) < 1 \implies \omega^*(\mathcal{G}_n^{\#}) < 1$$

The runtime of verifiers for $\{\mathcal{G}_n^{\#}\}$ is *polylogarithmic* in the runtime of verifiers for $\{\mathcal{G}_n^{\#}\}$

$$coRE \subseteq MIP_0^*$$

Using compression we can circumvent having to enumerate over all $n \in \mathbb{N}$

Family of games \mathcal{G}_n $\sim \sim$ Reject if $\neg P(n)$ Otherwise play the compressed game $\mathcal{G}_{n+1}^\#$

NOT RECURSIVE!

Decidable \sim $\forall n \in \mathbb{N}. P(n) \text{ is True}$

The game \mathcal{G}_1 can be played perfectly

Analysis

$$\omega^*(\mathcal{G}_n) = \omega^*(\mathcal{G}_{n+1}^{\#})$$

$$\omega^*(\mathcal{G}_n) < 1 \implies \omega^*(\mathcal{G}_n^{\#}) < 1$$

If $\neg P(3)$ by construction $\omega^*(\mathcal{G}_3) = 0$ then we can guarantee that $\omega^*(\mathcal{G}_1) < 1$

$$\omega^{*}(\mathcal{G}_{4}) \xrightarrow{} \omega^{*}(\mathcal{G}_{4}^{\#})$$

$$0 = \omega^{*}(\mathcal{G}_{3}) \xrightarrow{} \omega^{*}(\mathcal{G}_{3}^{\#}) < 1$$

$$1 > \omega^{*}(\mathcal{G}_{2}) \xrightarrow{} \omega^{*}(\mathcal{G}_{2}^{\#}) < 1$$

$$1 > \omega^{*}(\mathcal{G}_{1}) \xrightarrow{} \omega^{*}(\mathcal{G}_{4}^{\#})$$

Analysis

$$\omega^*(\mathcal{G}_n) = \omega^*(\mathcal{G}_{n+1}^{\#})$$

$$\omega^*(\mathcal{G}_n^{\#}) \ge \frac{1}{2} + \frac{1}{2}\omega^*(\mathcal{G}_n)$$

$$\begin{array}{c}
\vdots \\
\omega^*(\mathcal{G}_4) & \longrightarrow \omega^*(\mathcal{G}_4^{\#}) \\
\omega^*(\mathcal{G}_3) & \longrightarrow \omega^*(\mathcal{G}_3^{\#})
\end{array}$$

If $\forall n \in \mathbb{N}$. P(n) then we can guarantee:

$$\omega^*(\mathcal{G}_1) \ge \lim_{k \to \infty} \frac{\omega^*(\mathcal{G}_{k+1})}{2^k} + \sum_{i=1}^k \frac{1}{2^i} = 1$$

$$\frac{\omega^*(\mathcal{G}_3) + 1}{2} \le \omega^*(\mathcal{G}_2) \xrightarrow{} \omega^*(\mathcal{G}_2^{\#})$$

$$\frac{\omega^*(\mathcal{G}_2) + 1}{2} \le \omega^*(\mathcal{G}_1) \xrightarrow{} \omega^*(\mathcal{G}_1^{\#})$$

Halting Game

Given a Turing Machine ${\mathscr M}$ there exists an efficiently computable non-local game ${\mathscr G}^{{\mathscr M}}$

If
$$\mathcal{M}$$
 eventually halts then $\omega^*(\mathcal{G}^{\mathcal{M}}) = 1$

If \mathcal{M} runs forever then $\omega^*(\mathcal{G}^{\mathcal{M}}) < 1$

Halting Game

Therefore the corresponding Halting game $\mathcal{G}^{\mathcal{M}}$ decides the RE formula

Proof Overview

RE formula $\forall n \in \mathbb{N} . \exists m \in \mathbb{N} . P(n, m) \text{ is True} \qquad \forall n \in \mathbb{N} . \begin{pmatrix} m \leftarrow 0 \\ \text{While } \neg P(n, m) \text{:} \\ m \leftarrow m + 1 \end{pmatrix} \text{ Eventually Halts}$

Therefore if $\forall n \in \mathbb{N}$ the game $\omega^*(\mathcal{G}^{\mathcal{M}_n}) = 1$, then the Π_2^0 formula is accepted

Proof Overview

Using compression we can circumvent having to enumerate over all $n \in \mathbb{N}$

Family of games \mathcal{G}_n

Reject if the game $\mathcal{G}^{\mathcal{M}_n}$ is lost

Otherwise play the compressed game $\mathcal{G}_{n+1}^{\#}$

$$\forall n \in \mathbb{N}.\omega^*(\mathcal{G}^{\mathcal{M}_n}) = 1$$
 is True

The game \mathcal{G}_1 can be played perfectly

Proof Overview

Therefore every Π_2 formula can be decided by a corresponding MIP_0^* protocol

Open Questions

$$\Pi_2 \subseteq MIP_0^*[2]$$

Open Questions

$$MIP^{co} \stackrel{?}{=} coRE$$