数理方程学习指导

第一章综合复习

数理方程 08 班制作,仅供学习交流使用

本章概述

本章的主要内容

偏微分方程的基本概念 常见偏微分方程的通解的求解 偏微分方程特解的求解 数理方程的建立过程 三类常见方程的书写及其对应的物理意义 定解条件的个数、物理意义 行波法求解一维无界区域波动方程问题 延拓法求解一维半无界区域波动方程问题 通解法求解定解问题 叠加原理及其应用 齐次化原理及其应用

本章的学习目标

掌握基本概念,如方程的阶、线性方程、齐次方程等 理解对方程分类的标准和求解方程的方法的适用条件是对应的 掌握对于偏微分方程的分类,并且熟练掌握三类偏微分方程通解的求解方法 理解数理方程的建立过程,对于微元法要有基本的了解 熟练掌握三类方程的书写,以及方程中元素对应的物理意义 熟练掌握定解问题的构成原则,定解条件的个数确定方法,定解条件的物理 意义

熟练掌握行波法的使用条件,以及应用于求解定解问题的具体操作

掌握延拓法在求解一维半无界区域波动方程问题中的应用,了解延拓法的思想以及奇、偶延拓的选择原因

了解通解法求解定解问题的步骤

理解叠加原理的意义及其应用

熟练掌握齐次化原理在求解非齐次发展方程中的应用

课程的学习方法

熟练掌握基本概念,并且能够对定解问题进行分类 熟练掌握求解定解问题的方法及其使用条件 对比不同方法在求解问题时的求解过程,明确方法选择

本章重点例题

可化为可直接积分类型的偏微分方程的通解求解:

$$u_{xy} + u_y = 0$$

解: 令 u u = H, 则原方程化为:

$$\frac{\partial H}{\partial x} + H = 0 \Longrightarrow \frac{dH}{H} = -dx$$

上式两边积分得到:

$$\ln H = -x + g_1(y) \Longrightarrow H = h(y)e^{-x}, (\sharp h(y) = e^{g_1(y)})$$

即

$$\frac{\partial u}{\partial y} = h(y)e^{-x} \Longrightarrow u = f(y)e^{-x} + g(x). \quad \left(\ \, \sharp \, \forall f(y) = \int h(y) dy \right)$$

应用变量代换求解偏微分方程通解:

$$u_{xx} + 2u_{xy} - 3u_{xy} = 0$$

解:利用变量代换将方程转化为可以直接积分求解的偏微分方程。

$$\left(\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} - 3\frac{\partial^2}{\partial y^2}\right)u(x,y) = 0$$

亦即

$$\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} + 3\frac{\partial}{\partial y}\right) u(x, y) = 0$$

引入变量代换 $x = x(\xi, \eta), y = y(\xi, \eta)$, 使

$$\frac{\partial}{\partial \xi} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \xi} = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) A$$

$$\frac{\partial}{\partial \eta} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \eta} = \left(\frac{\partial}{\partial x} + 3\frac{\partial}{\partial y}\right) B$$

其中,A、B为任意常数。可令

$$\begin{cases} x = \xi + \eta \\ y = -\xi + 3\eta \end{cases}$$

邦

$$\begin{cases} \xi = \frac{3x - y}{4} \\ \eta = \frac{x + y}{4} \end{cases}$$

则方程变为

$$\begin{cases} \xi = \frac{3x - y}{4} \\ \eta = \frac{x + y}{4} \end{cases}$$
$$\frac{\partial^2}{\partial \xi \partial \eta} u(\xi, \eta) = 0$$

此时已经完成转化目标,直接积分即可得到方程的解。

$$u(\xi,\eta) = f_1(\xi) + f_2(\eta)$$

其中, $f_1(\xi)$ 和 $f_2(\eta)$ 分别为 ξ 和 η 的任意函数。

定解条件的书写:

设有一根长为l 的均匀细杆, 细杆的侧表面与周围介质没有热交换, 内部有密度为g(t,x)的热源. 已知杆的初始温度为 $\varphi(x)$, 杆的右端绝热, 左端与周围介质有热交换, 则杆内温 度分布 u(t,x) 的定解问题为

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(t, x) \left(f(t, x) = \frac{g(t, x)}{\varphi}, 0 < x < l, t > 0 \right) \\ u(0, x) = \varphi(x) \\ \left(hu - k \frac{\partial u}{\partial x} \right) \Big|_{x=0} = h(0)\theta(t, 0) \\ \frac{\partial u}{\partial x} \Big|_{x=l} = 0 \end{cases}$$

行波法求解一维无界区域弦振动问题:

$$\begin{cases} u_{tt} = a^2 u_{xx} & (-\infty < x < +\infty, t > 0) \\ u(0, x) = \varphi(x), u_t(0, x) = \phi(x)(-\infty < x < +\infty) \end{cases}$$

利用上述变量代换法可以求得一维齐次波动方程的通解为

$$u = f(x - at) + g(x + at)$$

由所给的初始条件,就有

$$\begin{cases} u(0,x) = f(x) + g(x) = \varphi(x) \\ u_t(0,x) = -af'(x) + ag'(x) = \phi(x) \end{cases}$$

积分可得

$$-f(x) + g(x) = \frac{1}{a} \int_0^x \psi(\xi) d\xi + c$$

联立上式,解得

$$f(x) = \frac{\varphi(x)}{2} - \frac{1}{2a} \int_0^x \phi(\xi) d\xi - \frac{c}{2}$$
$$g(x) = \frac{\varphi(x)}{2} + \frac{1}{2a} \int_0^x \phi(\xi) d\xi + \frac{c}{2}$$
$$u(t, x) = f(x - at) + g(x + at)$$

于是,我们得到了

$$u(t,x) = f(x-at) + g(x+at)$$

$$= \varphi(x-at) + \varphi(x+at)$$

$$= \frac{\varphi(x-a)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \phi(\xi) d\xi$$

一维半无界区域的弦振动方程的处理:

首先我们的想法很明确,即基于对行波法求解一维无界区域弦振动方程的理解,进行转化。有两类转化目标,即借鉴思想和直接转化为可处理的问题。这道例题的法一和法二分别是这两种思路的应用。

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 (0 < x < \infty, t > 0) \\ u(x, 0) = \varphi(x) \\ u_t(x, 0) = \psi(x) \\ u_x(0, t) = 0 \end{cases}$$

解: 法一

泛定方程的通解为

$$u(x,t) = f_1(x+at) + f_2(x-at)$$

故有

$$f_1(x) + f_2(x) = \varphi(x)$$

进而可得,

$$af_1(x) - af_2'(x) = \psi(x)$$

即

$$f_1(x) - f_2(x) = \frac{1}{a} \int_0^x \psi(\xi) d\xi + C$$

其中, $C = f_1(0) - f_2(0)$.

$$f_1(x) = \frac{1}{2}\varphi(x) + \frac{1}{2a} \int_0^x \psi(\xi) d\xi + \frac{C}{2}$$

$$f_2(x) = \frac{1}{2}\varphi(x) - \frac{1}{2a} \int_0^x \psi(\xi) d\xi - \frac{C}{2}$$

以上二式均是在 $0 \le x < \infty$ 的前题下推得的. 因为 x + at 总是大于, 等于零的, 故有

$$f_1(x+at) = \frac{1}{2}\varphi(x+at) + \frac{1}{2a} \int_0^{x+at} \psi(\xi) d\xi + \frac{C}{2}$$

至于 x - at 就不一定大于零了。

(1) 若 $x - at \ge 0$, 则有

則有
$$f_2(x-at) = \frac{1}{2}\varphi(x-at) - \frac{1}{2a}\int_0^{x-at} \psi(\xi)d\xi - \frac{C}{2}$$

(2) 若 x-at<0,则上式不能用。但将边界条件代入通解得

$$f_1(at) + f_2(-at) = 0$$

令 x = at, 并对上式从 0 到 x 积分得

$$f_1(x) - f_2(-x) = C$$

即

$$f_1(x) - f_2(-x) = C$$

$$f_2(-x) = f_1(x) - C(x \ge 0)$$

故

$$f_2(x - at) = f_2[-(at - x)](at - x \ge 0)$$

$$= f_1(at - x) - C$$

$$= \frac{1}{2}\varphi(at - x) + \frac{1}{2a} \int_0^{at - x} \psi(\xi) d\xi - C$$

$$u(x,t) = \begin{cases} \frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi \\ x - at \ge 0 \\ \frac{1}{2} [\varphi(x+at) + \varphi(at-x)] + \frac{1}{2a} \left[\int_{0}^{x+at} \psi(\xi) d\xi + \int_{0}^{at-x} \psi(\xi) d\xi \right], x - at < 0 \end{cases}$$

法二:

设想将半无限长的杆,延拓(拼接)成无限长的杆,并将原定解问题的初始条件看成无限

长杆的纵振动的初始条件在 $0 \le x < \infty$ 中的部分,即将原定解问題转化为

$$\begin{cases} u_n = a^2 u_{ns}(-\infty < x < \infty, t > 0) \\ u(x,0) = \Phi(x) = \begin{cases} \varphi(x), 0 \le x < \infty \\ f(x), -\infty < x \le 0 \end{cases} \\ u_t(x,0) = \Psi(x) = \begin{cases} \psi(x), 0 \le x < \infty \\ g(x), -\infty \le x < 0 \end{cases} \\ u_s(0,t) = 0 \end{cases}$$

则由 d'Alembert 公式立即可写出定解问题的解为

$$u(x,t) = \frac{1}{2} \left[\Phi(x+at) + \Phi(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+\alpha} \Psi(\xi) d\xi$$

其中, f(x) 和 g(x) 是未知的。

延拓的目标是要用延拓后的解来得到原问题的解,因此要让延拓后的解在原问题的定义域处的部分和原问题解相同。所以利用原问题的边界条件可以求得的 u(x,t) 在 $0 \le x < \infty$ 中的值即为原定解问题的解.

$$u_x(0,t) = \frac{1}{2} \left[\Phi'(0+at) + \Phi'(0-at) \right]$$
$$+ \frac{1}{2a} \left[\Psi(0+at) - \Psi(0-at) \right] = 0$$

即

$$\frac{1}{2} \left[\Phi'(\xi) + \Phi'(-\xi) \right] + \frac{1}{2a} [\Psi(\xi) - \Psi(-\xi)] = 0 (\xi \ge 0)$$

由此有 $\Phi(\xi) = \Phi(-\xi), \Psi(\xi) = \Psi(-\xi)$ 这说明满足边界条件的 Φ 和 Ψ , 均为偶函数。即

$$\Phi(x) = \begin{cases} \varphi(x), 0 \le x < \infty \\ \varphi(-x), -\infty < x < 0 \end{cases}$$

$$\Psi(x) = \begin{cases} \psi(x), 0 \le x < \infty \\ \psi(-x), -\infty < x < 0 \end{cases}$$

亦即

$$f(x) = \varphi(-x), g(x) = \psi(-x)$$

注意到 x + at 总于大于等于零的,于是有

$$\Phi(x + at) = \varphi(x + at)$$
$$\int_0^{x+at} \Psi(\xi) d\xi = \int_0^{x+ct} \psi(\xi) d\xi$$

而 x - at 有可能大于, 等于或小于零。

(1) 若 $x - at \ge 0$, 则

$$\Phi(x - at) = \varphi(x - at)$$
$$\int_{x-at}^{0} \Psi(\xi) d\xi = \int_{x-at}^{0} \psi(\xi) d\xi$$

(2) 若 x - at < 0, 则

$$\Phi(x - at) = \varphi[-(x - at)] = \varphi(at - x)$$

$$\int_{x-at}^{0} \Psi(\xi) d\xi = \int_{x-at}^{0} \psi(-\xi) d\xi \stackrel{n=-\xi}{=} - \int_{at-x}^{0} \psi(\eta) d\eta$$

即

$$\int_{x-at}^{0} \Psi(\xi) d\xi = \int_{0}^{at-x} \psi(\xi) d\xi$$

最后得到解:

$$u(x,t) = \begin{cases} \frac{1}{2} [\varphi(x+at) + \varphi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi \\ x - at \ge 0 \\ \frac{1}{2} [\varphi(x+at) + \varphi(at-x)] + \frac{1}{2a} \left[\int_{0}^{x+at} \psi(\xi) d\xi + \int_{0}^{at-x} \psi(\xi) d\xi \right], x - at < 0 \end{cases}$$