0.1 有理系数多项式

定理 0.1 (整数系数多项式有有理根的必要条件)

设有n次整系数多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$
(1)

则有理数 $\frac{q}{p}$ 是 f(x) 的根的必要条件是 $p \mid a_n, q \mid a_0$, 其中 p, q 是互素的整数.

က

证明 将 $\frac{q}{n}$ 代入(1)式得

$$a_n \left(\frac{q}{p}\right)^n + a_{n-1} \left(\frac{q}{p}\right)^{n-1} + \dots + a_1 \left(\frac{q}{p}\right) + a_0 = 0,$$

将上式两边乘以 p^n 得

$$a_n q^n + a_{n-1} q^{n-1} p + \dots + a_1 q p^{n-1} + a_0 p^n = 0.$$

从而

$$q(a_nq^{n-1} + a_{n-1}q^{n-2}p + \dots + a_1p^{n-1}) = -a_0p^n.$$

于是 $q \mid a_0 p^n$, 又因为 (q, p) = 1, 所以 $q \mid a_0$. 同理可得 $p \mid a_n$.

定义 0.1 (本原多项式)

设多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是整系数多项式, 若 $a_n, a_{n-1}, \cdots, a_1, a_0$ 的最大公约数等于 1, 则称 f(x) 为本原多项式.

*

引理 0.1 (Gauss 引理)

两个本原多项式之积仍是本原多项式。

证明 设

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

是两个本原多项式. 若

$$f(x)g(x) = c_{m+n}x^{m+n} + c_{m+n-1}x^{m+n-1} + \dots + c_1x + c_0$$

不是本原多项式,则 $c_0, c_1, \cdots, c_{m+n}$ 必有一个公约素因子 p. 因为 f(x) 是本原多项式,故 p 不能整除 f(x) 的所有系数,可设 $p \mid a_0, p \mid a_1, \cdots, p \mid a_{i-1}$,但 p 不能整除 a_i . 同理,可设 $p \mid b_0, p \mid b_1, \cdots, p \mid b_{j-1}$,但 p 不能整除 b_j . 注意到

$$c_{i+j} = \cdots + a_{i-2}b_{i+2} + a_{i-1}b_{i+1} + a_ib_i + a_{i+1}b_{i-1} + \cdots,$$

p 可整除 c_{i+i} , p 也能整除右式除 a_ib_i 以外的所有项. 但 p 不能整除 a_i 和 b_i , 故 p 不能整除 a_ib_i , 引出矛盾.

完理 0.2

若整系数多项式 f(x) 在有理数域上可约,则它必可分解为两个次数较低的整系数多项式之积.

 \Diamond

证明 假设整系数多项式 f(x) 可以分解为两个次数较低的有理系数多项式之积:

$$f(x) = g(x)h(x),$$

g(x) 的各项系数为有理数,必有一个公分母记为 c, 于是 $g(x) = \frac{1}{c}(cg(x))$, 其中 cg(x) 为整系数多项式. 若把 cg(x) 中所有系数的最大公因数 d 提出来,则

$$g(x) = \frac{d}{c} \left(\frac{c}{d} g(x) \right),\,$$

 $\frac{c}{d}g(x)$ 是一个本原多项式. 这表明 $g(x) = ag_1(x)$,a 为有理数, $g_1(x)$ 为本原多项式. 同理, $h(x) = bh_1(x)$, 其中 b 为有理数, $h_1(x)$ 为本原多项式. 于是我们得到

$$f(x) = g(x)h(x) = abg_1(x)h_1(x).$$

由**Gauss** 引理知, $g_1(x)h_1(x)$ 是本原多项式. 若 ab 不是一个整数,则 $abg_1(x)h_1(x)$ 将不是整系数多项式,这与 f(x) 是整系数多项式相矛盾. 因此 ab 必须是整数,于是 f(x) 可以分解为两个次数较小的整系数多项式之积.

定义 0.2 (整系数多项式在整数环上可约)

我们通常称一个整系数多项式 f(x) 在整数环上可约, 若它可以分解为两个次数较低的整系数多项式之积.

命题 0.1

整系数多项式 f(x) 若在整数环上不可约,则在有理数域上也不可约.

证明 由定理 0.2即得.

例题 0.1 f(x) 是次数大于零的首一整系数多项式, 若 f(0), f(1) 都是奇数, 求证: f(x) 没有有理根. 证明 若 c 是偶数, 则上述左边为奇数, 不可能等于零. 若 c 是奇数, 令 c = 2b + 1, 其中 b 是整数, 可得

$$(2b+1)^n + a_{n-1}(2b+1)^{n-1} + \dots + a_1(2b+1) + a_0 = 0.$$

用二项式定理展开后将看到,上式左边是一个偶数加上 $1+a_{n-1}+\cdots+a_1+a_0$,故必是奇数,也不可能等于零.因此f(x)没有有理根.

命题 0.2

设 f(x) 是实系数多项式, 若对任意的有理数 c, f(c) 总是有理数, 求证: f(x) 是有理系数多项式.

注 证明与命题??

证明 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, 分别令 $x = 0, 1, 2, \dots, n$, 得到一个以 $a_n, a_{n-1}, \dots, a_1, a_0$ 为未知数, 由 n+1 个方程式组成的实系数线性方程组. 该方程组的系数行列式是一个非零的 Vandermonde 行列式, 故方程组必有唯一解, 且解为有理数. 因此 f(x) 是有理系数多项式.

例题 **0.2** 设 f(x) 是有理系数多项式,a, b, c 是有理数, 但 \sqrt{c} 是无理数. 求证: 若 $a + b\sqrt{c}$ 是 f(x) 的根, 则 $a - b\sqrt{c}$ 也 是 f(x) 的根.

证明 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, 则

$$f(a+b\sqrt{c}) = a_n(a+b\sqrt{c})^n + a_{n-1}(a+b\sqrt{c})^{n-1} + \dots + a_1(a+b\sqrt{c}) + a_0 = 0.$$

将 $(a+b\sqrt{c})^k$ 用二项式定理展开, 可设

$$f(a+b\sqrt{c}) = A + B\sqrt{c} = 0$$
,

其中 A, B 都是有理数. 因为 \sqrt{c} 是无理数, 故 A = B = 0. 因此

$$f(a - b\sqrt{c}) = A - B\sqrt{c} = 0,$$

П

即 $a-b\sqrt{c}$ 也是 f(x) 的根.

例题 0.3 设 f(x) 是有理系数多项式,a,b,c,d 是有理数, 但 \sqrt{c} , \sqrt{d} , \sqrt{cd} 都是无理数. 求证: 若 $a\sqrt{c} + b\sqrt{d}$ 是 f(x) 的根:

$$a\sqrt{c} - b\sqrt{d}$$
, $-a\sqrt{c} + b\sqrt{d}$, $-a\sqrt{c} - b\sqrt{d}$.

证明 令

$$g(x) = (x - (a\sqrt{c} + b\sqrt{d}))(x - (a\sqrt{c} - b\sqrt{d}))(x - (-a\sqrt{c} + b\sqrt{d}))(x - (-a\sqrt{c} - b\sqrt{d})),$$

则经计算可得

$$g(x) = x^4 - 2(a^2c + b^2d)x^2 + (a^2c - b^2d)^2.$$

注意到 g(x) 是一个有理数首一多项式,只要证明它不可约,便可由极小多项式式的充要条件得到 g(x) 是 $a\sqrt{c}+b\sqrt{d}$ 的极小多项式,从而由极小多项式的基本性质可知 g(x) | f(x),于是结论成立.显然 g(x) 没有有理系数的一次因式,只要证明它没有有理系数的二次因式即可. 经过简单的计算可知,在 g(x) 的一个一次因式中任取一个一次因式相乘都不是有理系数多项式,因此 g(x) 没有有理系数的二次因式.

例题 0.4 求以 $\sqrt{2} + \sqrt[3]{3}$ 为根的次数最小的首一有理系数多项式.

注 确定 **f(x)** 的 **6** 个根的方法: 原方程 $x - \sqrt{2} = \sqrt[3]{3}$ 的解为 $x = \sqrt{2} + \sqrt[3]{3}$. 但三次方程 $y^3 = 3$ 的所有根为 $y = \sqrt[3]{3}$, $\sqrt[3]{3}\omega$, $\sqrt[3]{3}\omega^2$ (其中 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ 是三次单位根), 因此原方程对应三个解:

$$x = \sqrt{2} + \sqrt[3]{3}, \quad \sqrt{2} + \sqrt[3]{3\omega}, \quad \sqrt{2} + \sqrt[3]{3\omega^2}.$$

在消去 $\sqrt{2}$ 的平方步骤中, 方程 $x^3 + 6x - 3 = (3x^2 + 2)\sqrt{2}$ 的两边平方后, 原方程中的 $\sqrt{2}$ 可以被替换为 $-\sqrt{2}$, 从而产生另一组解:

$$x = -\sqrt{2} + \sqrt[3]{3}, \quad -\sqrt{2} + \sqrt[3]{3\omega}, \quad -\sqrt{2} + \sqrt[3]{3\omega^2}.$$

解 本题即求 $\sqrt{2}+\sqrt[3]{3}$ 的极小多项式. 令 $x-\sqrt{2}=\sqrt[3]{3}$, 两边立方得到 $(x-\sqrt{2})^3=3$. 整理可得 $x^3+6x-3=(3x^2+2)\sqrt{2}$, 再两边平方可得, $\sqrt{2}+\sqrt[3]{3}$ 适合下列多项式:

$$f(x) = x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1.$$

由 f(x) 的构造过程,不难看出 f(x) 的 6 个根分别为 $\pm \sqrt{2} + \sqrt[3]{3}\omega, \pm \sqrt{2} + \sqrt[3]{3}\omega^2$. 其中 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. 因此, 我们有

$$f\left(x\right) = \left(x - \sqrt{2} - \sqrt[3]{3}\right)\left(x + \sqrt{2} - \sqrt[3]{3}\right)\left(x - \sqrt{2} - \sqrt[3]{3}\omega\right)\left(x + \sqrt{2} - \sqrt[3]{3}\omega\right)\left(x - \sqrt{2} - \sqrt[3]{3}\omega^2\right)\left(x + \sqrt{2} - \sqrt[3]{3}\omega^2\right).$$

通过简单的验证可知, 任取 f(x) 的 2 个一次因式相乘都不是有理系数多项式; 任取 f(x) 的 3 个一次因式相乘也都不是有理系数多项式, 因此 f(x) 是有理数域上的不可约多项式, 从而由极小多项式式的充要条件可知, f(x) 是 $\sqrt{2}+\sqrt[3]{3}$ 的极小多项式.

例题 **0.5** 求证: 有理系数多项式 $x^4 + px^2 + q$ 在有理数域上可约的充要条件是或者 $p^2 - 4q = k^2$, 其中 k 是一个有理数; 或者 q 是某个有理数的平方, 且 $\pm 2\sqrt{q} - p$ 也是有理数的平方.

证明 必要性: 若多项式 $x^4 + px^2 + q$ 在有理数域上可约, 考虑下列两种情况:

- $(1) x^4 + px^2 + q$ 有有理数根 t, 这时 t^2 是 $x^2 + px + q$ 的有理根, 因此其判别式 $p^2 4q$ 必是一个有理数的完全平方.
- (2) $x^4 + px^2 + q$ 无有理数根,则 $x^4 + px^2 + q$ 在有理数域上可分解为两个二次多项式的积. 设 $x^4 + px^2 + q = (x^2 + ax + b)(x^2 + cx + d)$,展开后比较系数可得

$$\begin{cases} a+c=0, \\ ad+bc=0. \end{cases}$$

若 a=0, 则 c=0, 这时将有 p=b+d, q=bd, 因此 $p^2-4q=(b-d)^2$. 若 $a\neq 0$, 则 b=d, 比较系数后可知 $p=2b-a^2$, $q=b^2$, 因此 $\pm 2\sqrt{q}-p=a^2$.

充分性: 若 $p^2 - 4q = k^2$, 则

$$x^4 + px^2 + q = x^4 + px^2 + \frac{1}{4}(p+k)(p-k) = \left(x^2 + \frac{1}{2}(p+k)\right)\left(x^2 + \frac{1}{2}(p-k)\right).$$

因此多项式可约.

若
$$q = b^2$$
, $\pm 2\sqrt{q} - p = \pm 2b - p = a^2$, 则 $p = -a^2 \pm 2b$. 于是

$$x^4 + px^2 + q = x^4 + (-a^2 \pm 2b)x^2 + b^2 = (x^2 \pm b)^2 - a^2x^2$$

也可约.

定理 0.3 (Eisenstein 判别法)

设多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

是整系数多项式, $a_n \neq 0$, $n \geq 1$, p 是一个素数. 若 $p \mid a_i (i = 0, 1, \dots, n-1)$, 但 $p \nmid a_n$ 且 $p^2 \nmid a_0$, 则 f(x) 在有理数域上不可约.

证明 只需证明 f(x) 在整数环上不可约即可. 设 f(x) 可分解为两个次数较低的整系数多项式之积:

$$f(x) = (b_m x^m + b_{m-1} x^{m-1} + \dots + b_0)(c_t x^t + c_{t-1} x^{t-1} + \dots + c_0),$$

其中 m+t=n. 显然 $a_0=b_0c_0$, $a_n=b_mc_t$. 由假设 $p\mid a_0$, 故 $p\mid b_0$ 或 $p\mid c_0$. 又 $p^2\nmid a_0$, 故 p 不能同时整除 b_0 及 c_0 . 不妨设 $p\mid b_0$ 但 $p\nmid c_0$. 又由假设,p 不能整除 $a_n=b_mc_t$, 故 p 既不能整除 b_m 又不能整除 c_t . 因此不妨设 $p\mid b_0, p\mid b_1, \cdots, p\mid b_{j-1}$ 但 p 不能整除 b_j , 其中 $0< j\leq m< n$. 而

$$a_j = b_j c_0 + b_{j-1} c_1 + \dots + b_0 c_j,$$

根据假设, $p \mid a_i$,又p可整除上述右端除 $b_i c_0$ 外的其余项,而不能整除 $b_i c_0$ 这一项,引出矛盾.

例题 0.6 设 p_1, \dots, p_m 是 m 个互不相同的素数, 求证: 对任意的 $n \ge 1$, 下列多项式在有理数域上不可约:

$$f(x) = x^n - p_1 \cdots p_m.$$

证明 用 Eisenstein 判别法即可证明.(取 $p = p_i$ 即可)

例题 0.7 证明: $x^8 + 1$ 在有理数域上不可约.

证明 作代换 x = y + 1, 得

$$x^{8} + 1 = (y + 1)^{8} + 1 = y^{8} + 8y^{7} + 28y^{6} + 56y^{5} + 70y^{4} + 56y^{3} + 28y^{2} + 8y + 2.$$

显然 2 可整除除第一项外的所有系数, 但 4 不能整除常数项. 用 Eisenstein 判别法可知 $(y+1)^8+1$ 不可约, 故 x^8+1 也不可约.

例题 0.8 设 f(x) 是有理系数多项式, 已知 $\sqrt{2}$ 是 f(x) 的根, 证明: $\sqrt{2}\varepsilon$, $\sqrt{2}\varepsilon^2$, \cdots , $\sqrt{2}\varepsilon^{n-1}$ 也是 f(x) 的根, 其中 $\varepsilon = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$ 是 1 的 n 次根.

证明 显然 $\sqrt{2}$ 适合多项式 $x^n - 2$, 由 Eisenstein 判别法可知, $x^n - 2$ 在有理数域上不可约, 因此它是 $\sqrt{2}$ 的极小多项式. 最后由极小多项式的基本性质可得 $(x^n - 2) \mid f(x)$, 从而结论得证.

例题 0.9 设 f(x) 是次数大于 1 的奇数次有理系数不可约多项式, 求证: 若 x_1, x_2 是 f(x) 在复数域内两个不同的根,

则 $x_1 + x_2$ 必不是有理数.

证明 不妨设 f(x) 为首一多项式, 我们用反证法来证明结论. 设 $x_1 + x_2 = r$ 为有理数, 则有理系数多项式 f(x) 与 f(r-x) 有公共根 x_1 . 因为 f(x) 在有理数域上不可约, 故 f(x) 是 x_1 的极小多项式, 从而由极小多项式的基本性质可得 $f(x) \mid f(r-x)$. 注意到 f(x) 与 f(r-x) 次数相同, 首项系数相同, 从而有 f(r-x) = -f(x). 令 $x = \frac{r}{2}$, 则可得 $f\left(\frac{r}{2}\right) = 0$, 即 $\frac{r}{2}$ 是 f(x) 的一个有理根, 这与 f(x) 在有理数域上不可约相矛盾.

例题 0.10 设 $a_1, a_2, \dots, a_n \in \mathbb{Z}$ 两两不同, 证明:

- 1. $f(x) = (x a_1)(x a_2) \cdots (x a_n) 1$ 在 Q 上不可约;
- 2. $f(x) = (x a_1)^2 (x a_2)^2 \cdots (x a_n)^2 + 1$ 在 Q 上不可约.

证明

1. 若 f 在 \mathbb{Q} 上可约,则由定理 0.2知,存在 $p,q \in \mathbb{Z}[x]$ 使得

$$f = pq, 1 \le \deg p < \deg f, 1 \le \deg q < \deg f.$$

于是由 $f(a_i) = p(a_i)q(a_i) = -1, i = 1, 2, \dots, n$ 及 $p, q \in \mathbb{Z}[x]$ 知

$$p(a_i) + q(a_i) = 0, i = 1, 2, \dots, n.$$

但是

$$\deg(p+q) \leq \max\{\deg p, \deg q\} < \deg f = n,$$

我们有 p+q=0. 但是 f 首系数为 1, 所以 p,q 首系数符号相同, 这就是一个矛盾! 至此我们证明了 f 在 $\mathbb Q$ 上不可约.

2. 证法一:若 f 在 Q 上可约,则由定理 0.2知,存在 $p,q \in \mathbb{Z}[x]$ 使得

$$f = pq$$
, $1 \le \deg p < \deg g$, $1 \le \deg q < \deg f$.

由 $f(a_i) = p(a_i)q(a_i) = 1, i = 1, 2, \dots, n, f \ge 1$ 和 $p, q \in \mathbb{Z}[x]$ 及介值定理知

$$p(a_i) = 1, \forall i = 1, 2, \dots, n$$
 或者 $p(a_i) = -1, \forall i = 1, 2, \dots, n$.

不妨设前者发生, 此时 $q(a_i) = 1, \forall i = 1, 2, \dots, n$.

注意到 $\deg f = 2n, f'(a_i) = 0, i = 1, 2, \dots, n$, 故由 f' = p'q + pq' = p' + q' 知

$$p'(a_i) + q'(a_i) = 0, i = 1, 2, \dots, n.$$

又

$$\deg(p+q) < 2n, \begin{cases} p(a_i) + q(a_i) = 2\\ p'(a_i) + q'(a_i) = 0 \end{cases}, i = 1, 2, \dots, n,$$

又因为 p+q 和 $H \equiv 2$ 都是多项式且都满足上述插值条件, 所以由 Hermite 插值多项式的唯一性就有 $p+q \equiv 2$. 现在有 $1 \le f = p(2-p) \le 1$, 故 f = 1 而矛盾! 至此我们证明了 f 在 \mathbb{Q} 上不可约.

证法二:由命题 0.1可知,只要证明 f(x) 在整数环上不可约即可.用反证法,设 f(x) = u(x)v(x),其中 u(x),v(x) 都是次数小于 2n 的首一整数系数多项式.注意到 f(x) 没有实根,故 u(x),v(x) 也都没有实根,从而由实系数多项式虚根成对可知,u(x),v(x) 作为实数域上的函数都恒大于零.由于 f(x) 是 2n 次多项式,故 u(x) 和 v(x) 的次数至少有一个不超过 n,不妨设 u(x) 的次数不超过 n.

若 u(x) 的次数小于 n, 则由 $f(a_i) = 1$ 可得 $u(a_i)v(a_i) = 1$, 因此 $u(a_i) = 1$. 考虑非零多项式 u(x) - 1, 由上面的 分析可知它有 n 个不同的根 a_1, a_2, \dots, a_n , 这与它的次数小于 n 矛盾.

因此 u(x) 只能是 n 次首一多项式,于是 v(x) 也是 n 次首一多项式.另一方面,由于 $u(a_i)v(a_i)=1$,故 $u(a_i)=v(a_i)=\pm 1$ ($1 \le i \le n$).注意到 u(x)-v(x) 的次数小于 n 并且它有 n 个不同的根 a_1,a_2,\cdots,a_n ,因此 u(x)=v(x) 或 u(x)=-v(x). 今设 u(x)=v(x),则 $f(x)=u(x)^2+1$,即

$$(u(x) + h(x))(u(x) - h(x)) = 1.$$

因为u(x),h(x)都是整数系数多项式,故或者u(x)+h(x)=1,u(x)-h(x)=1;或者u(x)+h(x)=-1,u(x)-h(x)=-1,于是作差可得u(x)+h(x)=0,矛盾.因此结论得证.

例题 0.11 设 $f \in \mathbb{Z}[x]$ 是首 1 不可约的, 若 |f(0)| 不是完全平方数, 则 $f(x^2)$ 不可约.

 $\ge g(-x)g(x)$ 的奇数次项恰好抵消了.

证明 假设 $f(x^2)$ 可约, 则存在首 1 不可约 $g \in \mathbb{Z}[x]$, $1 \le \deg g < 2 \deg f$ 使得 $g(x)|f(x^2)$, 显然 $g(-x)|f(x^2)$. 若 g(x) = g(-x), 则 g 的每一项都是偶数次方, 因此 $g(x) = h(x^2)$, $h \in \mathbb{Z}[x]$. 现在 h(x)|f(x) 且 $1 \le \deg h < \deg f$, 这就和 f 不可约矛盾! 故 $g(x) \ne g(-x)$. 我们知道 g(-x), g(x) 都是不可约的, 所以 $g(-x)g(x)|f(x^2)$. 同样的再由 f 不可约可得

$$g(-x)g(x) = t(x^2)|f(x^2) \implies t|f \implies \deg t = \deg f \implies \deg g = \deg f$$

故 $f(x^2) = \pm g(x)g(-x)$, 从而 $|f(0)| = |g(0)|^2$, 这就是一个矛盾! 至此我们证明了 $f(x^2)$ 不可约.

例题 0.12 设 $n \in \mathbb{N}$, 证明多项式 $f(x) = \prod_{k=1}^{n} (x^2 + k^2) + 1$ 在 Q 上不可约.

证明 设 $f(0) = n!^2 + 1 = m^2, m \in \mathbb{N}$, 则有 (m - n!)(m + n!) = 1, 故由 $m + n! = 1, m - n! = 1 \Longrightarrow m = \frac{1}{2}$ 知矛盾! 因此 我们由例题 0.11知只需证明 $g(x) = \prod_{k=1}^{n} (x + k^2) + 1$ 在 \mathbb{Q} 上不可约. 若 $g = pq, p, q \in \mathbb{Z}[x]$, $1 \le \deg p, \deg q \le n - 1$. 注意到

$$1 = g(-k^2) = p(-k^2)q(-k^2), k = 1, 2, \dots, n,$$

我们有

$$p(-k^2) - q(-k^2) = 0, k = 1, 2, \dots, n.$$

现在我们知道 p=q. 但是 $g=p^2\geq 0$ 显然是个矛盾! 因此我们证明了 f 在 $\mathbb Q$ 上不可约.