VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

MACHINE LEARNING

Submitted by

BASANAGOUDA V B (1BM19CS034)

in partial fulfilment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF

ENGINEERING

(Autonomous Institution under VTU) BENGALURU-560019 May-2022 to July-2022

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019
(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "MACHINE LEARNING" carried out by **BASANAGOUDA V B(1BM19CS034)**, who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfilment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2022. The Lab report has been approved as it satisfies the academic requirements in respect of a **Machine Learning - (20CS6PCMAL)** work prescribed for the said degree.

Dr. Kayarvizhy NAssociate Professor
Department of CSE
BMSCE, Bengaluru

Dr. Jyothi S NayakProfessor and Head
Department of CSE
BMSCE, Bengaluru

,

Index Sheet

SI.	Experiment Title	Page No.
No.		
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.	4
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.	5-6
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	6-9
4	Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs	9-11
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets	12-13
6	Apply k-Means algorithm to cluster a set of data stored in a .CSV file.	13-14
7	Write a program to construct a Bayesian network considering training data. Use this model to make predictions	15-17
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm	18-20
9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.	20-21
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.	21-26

Machine Learning

Lab1:

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

Program:

```
import pandas as pd
import numpy as np
data = pd.read csv('lab1.csv')
concepts=np.array(data)[:,:-1]
target=np.array(data)[:,-1]
def search(con,tar):
  for i,val in enumerate(tar):
    if val=="yes":
       specifichyp=con[i].copy()
       break
  for i,val in enumerate(con):
     if tar[i]=="yes":
       for x in range(len(specifichyp)):
          if val[x]!=specifichyp[x]:
            specifichyp[x]="?"
          else:
            pass
  return specifichyp
print(search(concepts, target))
Output:
    ['sunny' 'warm' '?' 'strong' '?' '?']
```

Lab2:

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
Program:
import numpy as np
import pandas as pd
data=pd.read csv('data.csv')
concepts=np.array(data)[0:,:-1]
target=np.array(data)[0:,-1]
def candidate elimination(con,tar):
  s hyp=con[0].copy()
  g hyp=[["?" for i in range(len(s hyp))] for i in range(len(s hyp))]
  for i,val in enumerate(con):
     if tar[i]=="yes":
       for x in range(len(s hyp)):
          if val[x]!=s hyp[x]:
            s hyp[x]="?"
            g hyp[x][x]="?"
     if tar[i] == "no":
       for x in range(len(s hyp)):
          if val[x]!=s hyp[x]:
            g_hyp[x][x]=s_hyp[x]
          else:
            g_hyp[x][x]="?"
  indices=[i for i,val in enumerate(g hyp) if val==["?","?","?","?","?","?"]]
  for i in indices:
    g hyp.remove(["?","?","?","?","?","?"])
```

```
return s_hyp,g_hyp

s_final,g_final=candidate_elimination(concepts,target)

print(s_final)

print(g_final)
```

```
['sunny' 'warm' '?' 'strong' '?' '?']
[['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?']]
```

Lab3:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
Program:
```

```
import pandas as pd
import math
import numpy as np

data = pd.read_csv("3-dataset.csv")
features = [feat for feat in data]
features.remove("answer")

class Node:
    def __init__(self):
        self.children = []
        self.value = ""
        self.isLeaf = False
        self.pred = ""
```

```
def entropy(examples):
  pos = 0.0
  neg = 0.0
  for , row in examples.iterrows():
     if row["answer"] == "yes":
       pos += 1
     else:
       neg += 1
  if pos == 0.0 or neg == 0.0:
     return 0.0
  else:
     p = pos / (pos + neg)
     n = neg / (pos + neg)
     return -(p * math.log(p, 2) + n * math.log(n, 2))
definfo gain(examples, attr):
  uniq = np.unique(examples[attr])
  #print ("\n",uniq)
  gain = entropy(examples)
  #print ("\n",gain)
  for u in uniq:
     subdata = examples[examples[attr] == u]
     #print ("\n",subdata)
     sub e = entropy(subdata)
     gain -= (float(len(subdata)) / float(len(examples))) * sub e
     #print ("\n",gain)
  return gain
def ID3(examples, attrs):
  root = Node()
```

```
max gain = 0
max feat = ""
for feature in attrs:
  #print ("\n",examples)
  gain = info gain(examples, feature)
  if gain > max gain:
    max gain = gain
    max_feat = feature
root.value = max_feat
#print ("\nMax feature attr",max feat)
uniq = np.unique(examples[max_feat])
#print ("\n",uniq)
for u in uniq:
  #print ("\n",u)
  subdata = examples[examples[max feat] == u]
  #print ("\n",subdata)
  if entropy(subdata) == 0.0:
    newNode = Node()
    newNode.isLeaf = True
    newNode.value = u
    newNode.pred = np.unique(subdata["answer"])
    root.children.append(newNode)
  else:
    dummyNode = Node()
    dummyNode.value = u
    new attrs = attrs.copy()
    new attrs.remove(max feat)
    child = ID3(subdata, new_attrs)
    dummyNode.children.append(child)
```

```
root.children.append(dummyNode)
  return root
def printTree(root: Node, depth=0):
  for i in range(depth):
    print("\t", end="")
  print(root.value, end="")
  if root.isLeaf:
    print(" -> ", root.pred)
  print()
  for child in root.children:
    printTree(child, depth + 1)
  outlook
           overcast -> ['yes']
           rain
                     wind
                               strong -> ['no']
                               weak -> ['yes']
           sunny
                     humidity
                               high -> ['no']
                               normal -> ['yes']
```

Lab4:

Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Program:

```
import numpy as np
import matplotlib.pyplot as plt
def estimate coef(x, y):
  # number of observations/points
  n = np.size(x)
  # mean of x and y vector
  m_x = np.mean(x)
  m_y = np.mean(y)
  # calculating cross-deviation and deviation about x
  SS_xy = np.sum(y*x) - n*m_y*m_x
  SS xx = np.sum(x*x) - n*m x*m x
  # calculating regression coefficients
  b 1 = SS xy / SS xx
  b = 0 = m y - b 1*m x
  return (b_0, b_1)
def plot regression line(x, y, b):
  # plotting the actual points as scatter plot
  plt.scatter(x, y, color = "m",
         marker = "o", s = 30)
  # predicted response vector
  y pred = b[0] + b[1]*x
  # plotting the regression line
  plt.plot(x, y pred, color = "g")
```

```
# putting labels
   plt.xlabel('x')
   plt.ylabel('y')
   # function to show plot
   plt.show()
def main():
   # observations / data
   x = \text{np.array}([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
   y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12, 13, 15, 14])
   # estimating coefficients
   b = estimate coef(x, y)
   print("Estimated coefficients:\nb_0 = {} \
      \nb_1 = {} ".format(b[0], b[1]))
   # plotting regression line
   plot_regression_line(x, y, b)
if \underline{\hspace{0.5cm}} name \underline{\hspace{0.5cm}} == "\underline{\hspace{0.5cm}} main \underline{\hspace{0.5cm}} ":
   main()
```


Lab5:

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets

```
Program:
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.naive bayes import MultinomialNB
le=preprocessing.LabelEncoder()
clf = MultinomialNB()
data=pd.read_csv('NB.csv')
features=[feat for feat in data]
targetLabel=features[-1]
features.remove(features[-1])
features
diff values=[]
for f in features:
  for v in data[f]:
    if v not in diff_values:
       diff values.append(v)
diff_values
dataArray=np.array(data.iloc[:,0:-1])
dataArray
le.fit(diff values)
list(le.classes)
trans=[]
for d in dataArray:
```

```
trans.append(le.transform(d))
trans
target=data[targetLabel]
target
target=np.array(target)
tar=[]
for t in target:
  if t == "yes":
    tar.append(1)
  else:
     tar.append(0)
tar
clf.fit(trans,tar)
predicting=["sunny","cool","high","strong"]
pre array=le.transform(predicting)
pre_array=np.reshape(pre_array,(1,4))
pre_array
print(clf.predict(pre_array))
Output: [0]
Lab6:
Apply k-Means algorithm to cluster a set of data stored in a .CSV file.
Program:
# importing libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
# Importing the dataset
```

```
dataset = pd.read_csv('Kmeans_data.csv')
x = dataset.iloc[:, [3, 4]].values
#finding optimal number of clusters using the elbow method
from sklearn.cluster import KMeans
wcss list=[] #Initializing the list for the values of WCSS
#Using for loop for iterations from 1 to 10.
for i in range(1, 11):
  kmeans = KMeans(n clusters=i, init='k-means++', random state= 42)
  kmeans.fit(x)
  wcss list.append(kmeans.inertia)
mtp.plot(range(1, 11), wcss_list)
mtp.title('The Elobw Method Graph')
mtp.xlabel('Number of clusters(k)')
mtp.ylabel('wcss list')
mtp.show()
#training the K-means model on a dataset
kmeans = KMeans(n clusters=5, init='k-means++', random state= 42)
y predict= kmeans.fit predict(x)
#training the K-means model on a dataset
kmeans = KMeans(n clusters=5, init='k-means++', random state= 42)
y_predict= kmeans.fit_predict(x)
```


Lab7:

Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
Program:
import pgmpy.models
import pgmpy.inference
import networkx as nx
import pylab as plt
# Create a bayesian network
model = pgmpy.models.BayesianModel([('Burglary', 'Alarm'),
                      ('Earthquake', 'Alarm'),
                      ('Alarm', 'JohnCalls'),
                      ('Alarm', 'MaryCalls')])
# Define conditional probability distributions (CPD)
# Probability of burglary (True, False)
cpd burglary = pgmpy.factors.discrete.TabularCPD('Burglary', 2, [[0.001], [0.999]])
# Probability of earthquake (True, False)
cpd_earthquake = pgmpy.factors.discrete.TabularCPD('Earthquake', 2, [[0.002], [0.998]])
# Probability of alarm going of (True, False) given a burglary and/or earthquake
cpd_alarm = pgmpy.factors.discrete.TabularCPD('Alarm', 2, [[0.95, 0.94, 0.29, 0.001],
                                    [0.05, 0.06, 0.71, 0.999]
                            evidence=['Burglary', 'Earthquake'],
                            evidence card=[2, 2])
# Probability that John calls (True, False) given that the alarm has sounded
cpd john = pgmpy.factors.discrete.TabularCPD('JohnCalls', 2, [[0.90, 0.05],
                                    [0.10, 0.95],
                            evidence=['Alarm'],
                            evidence card=[2])
```

Probability that Mary calls (True, False) given that the alarm has sounded

cpd mary = pgmpy.factors.discrete.TabularCPD('MaryCalls', 2, [[0.70, 0.01],

```
[0.30, 0.99]],
                            evidence=['Alarm'],
                            evidence_card=[2])
# Add CPDs to the network structure
model.add cpds(cpd burglary, cpd earthquake, cpd alarm, cpd john, cpd mary)
# Check if the model is valid, throw an exception otherwise
model.check model()
# Print probability distributions
print('Probability distribution, P(Burglary)')
print(cpd_burglary)
print()
print('Probability distribution, P(Earthquake)')
print(cpd earthquake)
print()
print('Joint probability distribution, P(Alarm | Burglary, Earthquake)')
print(cpd alarm)
print()
print('Joint probability distribution, P(JohnCalls | Alarm)')
print(cpd john)
print()
print('Joint probability distribution, P(MaryCalls | Alarm)')
print(cpd_mary)
print()
# Plot the model
nx.draw(model, with labels=True)
plt.savefig('C:\\Users\\admin\\Desktop')
plt.close()
# Perform variable elimination for inference
# Variable elimination (VE) is a an exact inference algorithm in bayesian networks
infer = pgmpy.inference.VariableElimination(model)
```

```
# Calculate the probability of a burglary if John and Mary calls (0: True, 1: False)

posterior_probability = infer.query(['Burglary'], evidence={'JohnCalls': 0, 'MaryCalls': 0})

# Print posterior probability

print('Posterior probability of Burglary if JohnCalls(True) and MaryCalls(True)')

print(posterior_probability)

print()

# Calculate the probability of alarm starting if there is a burglary and an earthquake (0: True, 1: False)

posterior_probability = infer.query(['Alarm'], evidence={'Burglary': 0, 'Earthquake': 0})

# Print posterior probability

print('Posterior probability of Alarm sounding if Burglary(True) and Earthquake(True)')

print(posterior_probability)

print()
```


Lab8:

Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

```
Program:
# import libraries
# For plotting
import matplotlib.pyplot as plt
import seaborn as sns
sns.set style("white")
%matplotlib inline
#for matrix math
import numpy as np
#for normalization + probability density function computation
from scipy import stats
#for data preprocessing
import pandas as pd
from math import sqrt, log, exp, pi
from random import uniform
print("import done")
random seed=36788765
np.random.seed(random_seed)
Mean1 = 2.0 # Input parameter, mean of first normal probability distribution
Standard dev1 = 4.0 \# @param {type:"number"}
Mean2 = 9.0 # Input parameter, mean of second normal probability distribution
Standard dev2 = 2.0 \# @param {type:"number"}
# generate data
y1 = np.random.normal(Mean1, Standard dev1, 1000)
y2 = np.random.normal(Mean2, Standard dev2, 500)
```

```
data=np.append(y1,y2)
# For data visitalisation calculate left and right of the graph
Min graph = min(data)
Max graph = max(data)
x = \text{np.linspace}(\text{Min graph}, \text{Max graph}, 2000) \# \text{ to plot the data}
print('Input Gaussian \{:\}: \mu = \{:.2\}, \sigma = \{:.2\}'.format("1", Mean1, Standard dev1))
print('Input Gaussian \{:\}: \mu = \{::2\}, \sigma = \{::2\}'.format("2", Mean2, Standard dev2))
sns.distplot(data, bins=20, kde=False)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components = 2, tol=0.000001, max iter = 100)
gmm.fit(np.expand dims(data, 1)) # Parameters: array-like, shape (n samples, n features), 1
dimension dataset so 1 feature
Gaussian nr = 1
print('Input Gaussian \{:\}: \mu = \{:.2\}, \sigma = \{:.2\}'.format("1", Mean1, Standard dev1))
print('Input Gaussian \{:\}: \mu = \{::2\}, \sigma = \{::2\}'.format("2", Mean2, Standard dev2))
for mu, sd, p in zip(gmm.means .flatten(), np.sqrt(gmm.covariances .flatten()),
gmm.weights ):
  print('Gaussian \{:\}: \mu = \{:.2\}, \sigma = \{:.2\}, \text{ weight} = \{:.2\}'.\text{format(Gaussian nr, mu, sd, p)}
  g s = stats.norm(mu, sd).pdf(x) * p
  plt.plot(x, g s, label='gaussian sklearn');
  Gaussian nr += 1
sns.distplot(data, bins=20, kde=False, norm hist=True)
gmm sum = np.exp([gmm.score samples(e.reshape(-1, 1)) for e in x]) \#gmm gives log
probability, hence the exp() function
plt.plot(x, gmm sum, label='gaussian mixture');
plt.legend();
```

```
Input Gaussian 1: μ = 2.0, σ = 4.0
Input Gaussian 2: μ = 9.0, σ = 2.0
Gaussian 1: μ = 1.7, σ = 3.8, weight = 0.61
Gaussian 2: μ = 8.8, σ = 2.2, weight = 0.39

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib
is a deprecated function and will be removed in a futur 1 function with similar flexibility) or `histplot` (an warnings.warn(msg, FutureWarning)

008

gaussian sklearn
gaussian mixture

006

005

004

003

002

001
```

Lab9:

Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

Program:

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris=datasets.load_iris()

x = iris.data
y = iris.target

print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print('class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica')
print(y)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
```

```
#To Training the model and Nearest nighbors K=5

classifier = KNeighborsClassifier(n_neighbors=5)

classifier.fit(x_train, y_train)

#to make predictions on our test data

y_pred=classifier.predict(x_test)

print('Confusion Matrix')

print(confusion_matrix(y_test,y_pred))

print('Accuracy Metrics')

print(classification_report(y_test,y_pred))

Output:
```

Confusion	n Mat	rix			
[[18 0	0]				
[0 17	2]				
[0 1	7]]				
Accuracy	Metr	ics			
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	18
	1	0.94	0.89	0.92	19
	2	0.78	0.88	0.82	8
accuracy			0.93	45	
macro	avg	0.91	0.92	0.91	45
weighted	avg	0.94	0.93	0.93	45

Lab10:

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Program:

from numpy import *
from os import listdir
import matplotlib

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
  m,n = np1.shape(xmat)
  weights = np1.mat(np1.eye((m)))
  for j in range(m):
    diff = point - X[i]
    weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np1.shape(xmat)
  ypred = np1.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
#load data points
data = pd.read csv('tips.csv')
bill = np1.array(data.total bill)
tip = np1.array(data.tip)
#preparing and add 1 in bill
mbill = np1.mat(bill)
mtip = np1.mat(tip)
# mat is used to convert to n dimesiona to 2 dimensional array form
```

```
m= np1.shape(mbill)[1] # print(m) 244 data is stored in m
one = np1.mat(np1.ones(m))
X= np1.hstack((one.T,mbill.T)) # create a stack of bill from ONE
print(X)
#set k here
ypred = localWeightRegression(X,mtip,2)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='blue')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
import numpy as np
from bokeh.plotting import figure, show, output notebook
from bokeh.layouts import gridplot
from bokeh.io import push notebook
def local regression(x0, X, Y, tau):
  # add bias term
  x0 = np.r [1, x0]
  # Add one to avoid the loss in information
  X = np.c [np.ones(len(X)), X]
  # fit model: normal equations with kernel
  xw = X.T * radial kernel(x0, X, tau) # XTranspose * W
  beta = np.linalg.pinv(xw @ X) @ xw @ Y #@ Matrix Multiplication or Dot Product
  return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction
```

```
def radial kernel(x0, X, tau):
  return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
# Weight or Radial Kernal Bias Function
n = 1000
# generate dataset
X = np.linspace(-3, 3, num=n)
print("The Data Set (10 Samples) X:\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y:\n",Y[1:10])
# jitter X
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X:\n",X[1:10])
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot lwr(tau):
  # prediction through regression
  prediction = [local regression(x0, X, Y, tau) for x0 in domain]
  plot = figure(plot width=400, plot height=400)
  plot.title.text='tau=%g' % tau
  plot.scatter(X, Y, alpha=.3)
  plot.line(domain, prediction, line width=2, color='red')
  return plot
show(gridplot([[plot lwr(10.), plot lwr(1.)],
[plot lwr(0.1), plot lwr(0.01)]))
```

```
from numpy import *
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
  m,n = np1.shape(xmat)
  weights = np1.mat(np1.eye((m)))
  for j in range(m):
    diff = point - X[i]
    weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np1.shape(xmat)
  ypred = np1.zeros(m)
  for i in range(m):
     ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# load data points
```

```
data = pd.read_csv('tips.csv')
bill = np1.array(data.total bill)
tip = np1.array(data.tip)
#preparing and add 1 in bill
mbill = np1.mat(bill)
mtip = np1.mat(tip) \# mat is used to convert to n dimesiona to 2 dimensional array form
m = np1.shape(mbill)[1]
# print(m) 244 data is stored in m
one = np1.mat(np1.ones(m))
X= np1.hstack((one.T,mbill.T)) # create a stack of bill from ONE
#print(X)
#set k here
ypred = localWeightRegression(X,mtip,0.3)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='green')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
Output:
  12
  10
```

