Molecular Biology 101

Networks

The Dynamics of Cells

- all cells in an organism have the same genomic data, but the genes expressed in each vary according to cell type, time, and environmental factors
- there are networks of interactions among various biochemical entities in a cell (DNA, RNA, protein, small molecules) that carry out processes such as
 - metábolism
 - intra-cellular and inter-cellular signaling
 - regulation of gene expression

Overview of the E. coli Metabolic Pathway Map

image from the KEGG database

The Metabolic Pathway for Synthesizing the Amino Acid Alanine

Gene Regulation Example: the lac Operon

this protein regulates the transcription of LacZ, LacY, LacA

these proteins metabolize lactose

Gene Regulation Example: the lac Operon

lacl represses transcription of the lac operon

Gene Regulation Example: the lac

lactose is present ⇒ it binds to the protein encoded by lacl changing its shape; in this state, the protein doesn't bind upstream from the lac operon; therefore the lac operon can be transcribed

Gene Regulation Example: the lac Operon

- this example provides a simple illustration of how a cell can regulate (turn on/off) certain genes in response to the state of its environment
 - an operon is a sequence of genes transcribed as a unit
 - the lac operon is involved in metabolizing lactose
 - it is "turned on" when lactose is present in the cell
 - the lac operon is regulated at the transcription level
- the depiction here is incomplete; for example, the level of glucose in the cell also influences transcription of the lac operon