1. Introduction to Machine Learning

Shabana K M

PhD Research Scholar Computer Science and Engineering

IIT Palakkad 31 July 2021

intelligence demonstrated by machines

- intelligence demonstrated by machines
- Al systems develop the ability to rationalize and perform actions that have the best chance of achieving a specific goal

- intelligence demonstrated by machines
- Al systems develop the ability to rationalize and perform actions that have the best chance of achieving a specific goal
- traditional Al problems include reasoning, planning, learning, natural language processing

- intelligence demonstrated by machines
- Al systems develop the ability to rationalize and perform actions that have the best chance of achieving a specific goal
- traditional Al problems include reasoning, planning, learning, natural language processing
- autonomous vehicles, playing games, search engines, online assistants, image recognition in photographs, spam filtering

__Introduction

Introduction to ML

Machine Learning

study of computer algorithms that improve automatically through experience

study of computer algorithms that improve automatically through experience

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell
- **Example:** Classifying e-mails as spam or not

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell
- Example: Classifying e-mails as spam or not Here,
 - T predict whether an email is spam or not

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell
- Example: Classifying e-mails as spam or not Here,
 - T predict whether an email is spam or not
 - E collection of spam and non-spam mails

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell
- Example: Classifying e-mails as spam or not Here,
 - T predict whether an email is spam or not
 - E collection of spam and non-spam mails
 - P (i): accuracy of prediction percentage of correct predictions

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E " - Tom Mitchell
- Example: Classifying e-mails as spam or not Here,
 - T predict whether an email is spam or not
 - E collection of spam and non-spam mails
 - P (i): accuracy of prediction percentage of correct predictions
 - (ii): precision proportion of true spam mails among those classified as spam

Introduction to ML

Datasets for machine learning

Dataset

table with the data from which a machine learns

Dataset

- table with the data from which a machine learns
- contains features (columns) and observations (rows)

Features/Attributes

o columns in the dataset

- o columns in the dataset
- describes data of a single type

- o columns in the dataset
- describes data of a single type
- can be Qualitative (categorical) or Quantitative (numerical)

- columns in the dataset
- describes data of a single type
- can be Qualitative (categorical) or Quantitative (numerical)
- gender of a person, grades obtained in a test, etc. are qualitative

- o columns in the dataset
- describes data of a single type
- can be Qualitative (categorical) or Quantitative (numerical)
 - gender of a person, grades obtained in a test, etc. are qualitative
 - height, weight, temperature, etc. are quantitative

Data points/Observations

o rows in the dataset

Data points/Observations

- rows in the dataset
- also called instance or example

Data points/Observations

- rows in the dataset
- also called instance or example
- describes a single entity or observation

Data points/Observations

- rows in the dataset
- also called instance or example
- describes a single entity or observation
 - properties about that observation

Introduction

Introduction to ML

Some basic terminology

Algorithm

Introduction to ML

Some basic terminology

Algorithm

set of rules that a machine follows to achieve a particular goal

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Introduction to ML

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

Introduction to ML

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

also called learner

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

L Introduction

Introduction to ML

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

output from a machine learning algorithm

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

- output from a machine learning algorithm
- represents what was learned by a machine learning algorithm

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

- output from a machine learning algorithm
- represents what was learned by a machine learning algorithm
- learned program that maps inputs to predictions

Introduction to ML

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

- output from a machine learning algorithm
- represents what was learned by a machine learning algorithm
- learned program that maps inputs to predictions

Target or Label

Some basic terminology

Algorithm

- set of rules that a machine follows to achieve a particular goal
- can be considered as a recipe that defines the inputs, the output and all the steps needed to get from the inputs to the output

Machine learning algorithm

- also called learner
- procedure that is run on data to create a machine learning model

Machine learning model

- output from a machine learning algorithm
- represents what was learned by a machine learning algorithm
- learned program that maps inputs to predictions

Target or Label

■ the value predicted by a machine learning model

Types of machine learning algorithms

Supervised learning

work on data sets that include its desired outputs (or labels)

Types of machine learning algorithms

Supervised learning

work on data sets that include its desired outputs (or labels)

Unsupervised learning

 these algorithms detect patterns, mine rules and group data points without labels

Types of machine learning algorithms

Supervised learning

 work on data sets that include its desired outputs (or labels)

Unsupervised learning

 these algorithms detect patterns, mine rules and group data points without labels

Reinforcement learning

 algorithms attempt to learn actions that would maximize the reward by continuously interacting with the environment

Types of machine learning algorithms

Supervised learning

Supervised learning problems are categorized into:

Types of machine learning algorithms

Supervised learning

Supervised learning problems are categorized into:

- regression
- classification

Types of machine learning algorithms

Supervised learning

Supervised learning problems are categorized into:

- regression
- classification

Regression

Target value is continuous

Examples: forecasting stock prices, predicting house prices, etc.

Types of machine learning algorithms

Supervised learning

Supervised learning problems are categorized into:

- regression
- classification

Regression

Target value is continuous

Examples: forecasting stock prices, predicting house prices, etc.

Classification

Output is discrete

Supervised learning

Supervised learning problems are categorized into:

- regression
- classification

Regression

Target value is continuous

Examples: forecasting stock prices, predicting house prices, etc.

Classification

Output is discrete

 Binary classification - only two classes eg:- spam filtering, fraud detection, etc.

Supervised learning

Supervised learning problems are categorized into:

- regression
- classification

Regression

Target value is continuous

Examples: forecasting stock prices, predicting house prices, etc.

Classification

Output is discrete

- Binary classification only two classes eg:- spam filtering, fraud detection, etc.
- *Multi-class classification* three or more classes eg:- recognition of handwritten characters, object detection, etc.

Types of machine learning algorithms

Categorize these learning problems!

Given a picture of a male/female, predict his/her age based on given picture

Types of machine learning algorithms

Categorize these learning problems!

Given a picture of a male/female, predict his/her age based on given picture Regression

- **I** Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history

- **I** Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification

- Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image Classification

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image Classification
- 5 Recommend movies based on user ratings

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image Classification
- 5 Recommend movies based on user ratings Unsupervised

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image Classification
- 5 Recommend movies based on user ratings Unsupervised
- 6 Personalized recommendation of videos/music

- I Given a picture of a male/female, predict his/her age based on given picture Regression
- 2 For a bank, decide whether or not to give a loan to someone on the basis of his credit history Classification
- 3 Discover trends in news articles Unsupervised
- 4 Identify the numbers in a handwritten ZIP code, from a digitized image Classification
- 5 Recommend movies based on user ratings Unsupervised
- 6 Personalized recommendation of videos/music Reinforcement learning

In supervised learning, a dataset is comprised of input features and a target variable

In supervised learning, a dataset is comprised of input features and a target variable

In supervised learning, a dataset is comprised of input features and a target variable

In supervised learning, a dataset is comprised of input features and a target variable

We assume that there is an unknown underlying function that maps the input features to the target variable

In supervised learning, a dataset is comprised of input features and a target variable

We assume that there is an unknown underlying function that maps the input features to the target variable

■ This true function is referred to as the target function

In supervised learning, a dataset is comprised of input features and a target variable

We assume that there is an unknown underlying function that maps the input features to the target variable

- This true function is referred to as the target function
- A supervised learning algorithm tries to estimate the target function using historical or available observations

In supervised learning, a dataset is comprised of input features and a target variable

We assume that there is an unknown underlying function that maps the input features to the target variable

- This true function is referred to as the target function
- A supervised learning algorithm tries to estimate the target function using historical or available observations Function approximation!

Machine learning model

Given a set of input features $x=x_1,x_2,...,x_n$, machine learning algorithms learn a target function f that best maps the input features (x) to an output variable (y)

$$y = f(x)$$

Machine learning model

Given a set of input features $x = x_1, x_2, ..., x_n$, machine learning algorithms learn a target function f that best maps the input features (x) to an output variable (y)

$$y = f(x)$$

The learned function f along with its parameters form the ML model

Machine learning model

Given a set of input features $x = x_1, x_2, ..., x_n$, machine learning algorithms learn a target function f that best maps the input features (x) to an output variable (y)

$$y = f(x)$$

The learned function f along with its parameters form the ML model

Function parameters

 quantities with a constant value that influence the output of a function

Machine learning model

Given a set of input features $x = x_1, x_2, ..., x_n$, machine learning algorithms learn a target function f that best maps the input features (x) to an output variable (y)

$$y = f(x)$$

The learned function f along with its parameters form the ML model

Function parameters

- quantities with a constant value that influence the output of a function
- for instance, consider the function $f(x) = ax^2 + bx + c$. Here x is considered as the input and a, b and c are the parameters

Machine learning model

Given a set of input features $x = x_1, x_2, ..., x_n$, machine learning algorithms learn a target function f that best maps the input features (x) to an output variable (y)

$$y = f(x)$$

The learned function f along with its parameters form the ML model

Function parameters

- quantities with a constant value that influence the output of a function
- for instance, consider the function $f(x) = ax^2 + bx + c$. Here x is considered as the input and a, b and c are the parameters
- for each set of parameter values, we get a different function

Figure: Plotting the functions $2x^2 + 3x + 1$ (red) and $5x^2 + 4x + 1$ (blue)

■ Different machine learning algorithms make different assumptions about the form of the function being learned (eg;- linear, nonlinear, etc.) and how best to approximate it

- Different machine learning algorithms make different assumptions about the form of the function being learned (eg;- linear, nonlinear, etc.) and how best to approximate it
- The learning algorithm estimates or learns the function parameters (model parameters) from the data

- Different machine learning algorithms make different assumptions about the form of the function being learned (eg;- linear, nonlinear, etc.) and how best to approximate it
- The learning algorithm estimates or learns the function parameters (model parameters) from the data
- This is achieved by calculating the error between the predicted outputs and the expected outputs and adjusting the parameter values such that this error is minimized

- Different machine learning algorithms make different assumptions about the form of the function being learned (eg;- linear, nonlinear, etc.) and how best to approximate it
- The learning algorithm estimates or learns the function parameters (model parameters) from the data
- This is achieved by calculating the error between the predicted outputs and the expected outputs and adjusting the parameter values such that this error is minimized
- The learned model can then be used for making predictions for unseen observations

- Different machine learning algorithms make different assumptions about the form of the function being learned (eg;- linear, nonlinear, etc.) and how best to approximate it
- The learning algorithm estimates or learns the function parameters (model parameters) from the data
- This is achieved by calculating the error between the predicted outputs and the expected outputs and adjusting the parameter values such that this error is minimized
- The learned model can then be used for making predictions for unseen observations
- The more the data we have, the better the approximation of the target function

Approximating the target function is a hard task!!

- Approximating the target function is a hard task!!
- In reality, there is an error (e) that is independent of the input data x such that y = f(x) + e

- Approximating the target function is a hard task!!
- In reality, there is an error (e) that is independent of the input data x such that y = f(x) + e
- This error might be due to not having enough features to sufficiently characterize the best mapping from the given input x to the target variable y

- Approximating the target function is a hard task!!
- In reality, there is an error (e) that is independent of the input data x such that y = f(x) + e
- This error might be due to not having enough features to sufficiently characterize the best mapping from the given input x to the target variable y
- e is is called irreducible error because no matter how good we get at estimating the target function (f), we cannot reduce this error

- Approximating the target function is a hard task!!
- In reality, there is an error (e) that is independent of the input data x such that y = f(x) + e
- This error might be due to not having enough features to sufficiently characterize the best mapping from the given input x to the target variable y
- e is is called irreducible error because no matter how good we get at estimating the target function (f), we cannot reduce this error
- Approximating the target function could also become difficult due to the presence of noisy features

Introduction

Supervised learning

Training and Test datasets

Dataset is segmented into two types of samples:

Dataset is segmented into two types of samples:

- training data
- test data

Dataset is segmented into two types of samples:

- training data
- test data

A model is learned using the examples in the training data

Dataset is segmented into two types of samples:

- training data
- test data

A model is learned using the examples in the training data

The trained model is then applied to test data

Dataset is segmented into two types of samples:

- training data
- test data

A model is learned using the examples in the training data

The trained model is then applied to test data

Performance on test data provides a good measure of how well the learned model generalizes to unseen data

- data can be
 - structured data stored in rows and columns, such as spreadsheets

- data can be
 - structured data stored in rows and columns, such as spreadsheets
 - o unstructured text, audio, images, etc.

- data can be
 - structured data stored in rows and columns, such as spreadsheets
 - o unstructured text, audio, images, etc.
 - o semi-structured emails

- data can be
 - structured data stored in rows and columns, such as spreadsheets
 - o unstructured text, audio, images, etc.
 - o semi-structured emails
- the more the better!

- data can be
 - structured data stored in rows and columns, such as spreadsheets
 - o unstructured text, audio, images, etc.
 - o semi-structured emails
- the more the better!
- data usually requires
 - cleaning fixing incorrect data, dealing with missing values, etc.

- data can be
 - structured data stored in rows and columns, such as spreadsheets
 - o unstructured text, audio, images, etc.
 - o semi-structured emails
- the more the better!
- data usually requires
 - cleaning fixing incorrect data, dealing with missing values, etc.
 - preprocessing rescaling, discretization, etc.

- also called attributes or variables
 - measurable pieces of data used for analysis
 - appear as columns in structured data sets

- also called attributes or variables
 - measurable pieces of data used for analysis
 - appear as columns in structured data sets
- quality of features have a major impact on model performance

- also called attributes or variables
 - measurable pieces of data used for analysis
 - appear as columns in structured data sets
- quality of features have a major impact on model performance
- feature engineering generate new features from existing ones (eg:- BMI from height and weight)

- also called attributes or variables
 - measurable pieces of data used for analysis
 - appear as columns in structured data sets
- quality of features have a major impact on model performance
- feature engineering generate new features from existing ones (eg:- BMI from height and weight)
- feature selection choose features contributing the most to model performance

Model Selection

Model Selection

 selecting the best model from among a collection of candidate machine learning models for the task at hand

Model Selection

- selecting the best model from among a collection of candidate machine learning models for the task at hand
- need to select a model that generalizes well on unseen test data points

Model Selection

- selecting the best model from among a collection of candidate machine learning models for the task at hand
- need to select a model that generalizes well on unseen test data points

Learning

using the data to train the model

Model Selection

- selecting the best model from among a collection of candidate machine learning models for the task at hand
- need to select a model that generalizes well on unseen test data points

Learning

- using the data to train the model
- in other words, learning the model parameters from the dataset

Evaluation

measure the performance of the model

Evaluation

- measure the performance of the model
- models can be evaluated on multiple metrics
 - eg:- accuracy, precision, etc.

Evaluation

- measure the performance of the model
- models can be evaluated on multiple metrics
 - eg:- accuracy, precision, etc.
- right choice of an evaluation metric is crucial and often depends upon the problem being solved

References

- 1 https://en.wikipedia.org/wiki/Artificial_intelligence
- 2 https://people.cs.pitt.edu/~milos/courses/cs2750-Spring03/ lectures/class2.pdf
- 13 https://christophm.github.io/interpretable-ml-book/ terminology.html
- 4 https://machinelearningmastery.com/ neural-networks-are-function-approximators/
- 5 https:
 //developer.ibm.com/technologies/artificial-intelligence/
 articles/cc-models-machine-learning/

Thanks Google for the pictures!