

Курсовая работа

Расчет функции распределения электронов по энергиям в молекулярном газе, на примере C_4F_8

Выполнил студент 206 группы Бакаев Семён Юрьевич

Москва

2024

Научный руководитель: к.ф.-м.н. Чукаловский Александр Александрович

Цель работы

Расчет ФРЭЭ на примере молекулы C_4F_8 , обзор которой проводится на основе составленной ниже модели.

Кинетическое уравнение для электронов в слабо ионизированном газе, находящемся в поле.

Уравнение баланса

$$\frac{\partial f}{\partial t} + \left[\frac{\partial}{\partial x} (f v_{x}) + \dots + \frac{\partial}{\partial v_{x}} (f w_{x}) + \dots \right] = \left(\frac{df}{dt} \right)_{CT}$$

Итоговая система уравнений

$$\begin{cases} \frac{\partial n}{\partial t} = -\frac{\partial J}{\partial \varepsilon} + [Q^*(n) + Q_i(n) + Q_r(n) + Q_d(n) \\ f_1 = -\frac{eE_0}{m(\omega^2 + v_m^2)} \left\langle \frac{\partial f_0}{\partial v} \right\rangle (\omega \cos \omega t - v_m \sin \omega t) \end{cases}$$

Графики исследуемых сечений газа C_4F_8

График зависимости приведенной функции распределения от энергии

R	E/N, Td
1	30
5	66
10	111
15	155
20	200

Графики зависимости коэффициентов, характеризующих неупругие процессы, от приведенного поля

Заключение

- Изучена методика расчета ФРЭЭ;
- Рассмотрены основные процессы электронных столкновений в плазме молекулярного газа C4F8
- Проведен расчет ФРЭЭ с использованием пакета Bolsig+ для известного набора сечений для E/N в диапазоне 30-200Td
- Для рассмотренной системы, получены зависимости транспортных коэффициентов и констант скоростей процессов электронных соударений от приведенного поля

Спасибо за внимание