colour patterns for polychromatic four-colourings of rectangular subdivisions

Herman Haverkort o Maarten Löffler o Elena Mumford Matthew O'Meara o Jack Snoeyink o Bettina Speckmann

smell-all

see-all

feel-all

hear-all

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms are rectangles with four doors, one in every corner

All rooms have exactly one guard of each type

All rooms have exactly one guard of each type

Can guards always be selected and placed so that this is true?

- Given: a rectangular building subdivided into rectangular rooms (all rooms have four doors, one in each corner)
 - guards in k colours.

Can we put one guard at each door, such that each room's four guards have k different colours?

- Given: a rectangular building subdivided into rectangular rooms (all rooms have four doors, one in each corner)
 - guards in k colours.

Can we put one guard at each door, such that each room's four guards have k different colours?

k = 3? Yes (Dinitz, Katz, and Krakovski, EuroCG 2007)

Given: • a rectangular building subdivided into rectangular rooms (all rooms have four doors, one in each corner)

• guards in k colours.

Can we put one guard at each door, such that each room's four guards have k different colours?

k = 3? Yes (Dinitz, Katz, and Krakovski, EuroCG 2007)

k = 5? No, obviously

- Given: a rectangular building subdivided into rectangular rooms (all rooms have four doors, one in each corner)
 - guards in k colours.

Can we put one guard at each door, such that each room's four guards have k different colours?

k = 3? Yes (Dinitz, Katz, and Krakovski, EuroCG 2007)

k=4? That's the question (Dinitz, Katz, and Krakovski, EuroCG 2007)

k = 5? No, obviously

- Given: a rectangular building subdivided into rectangular rooms (all rooms have four doors, one in each corner)
 - guards in k colours.

Can we put one guard at each door, such that each room's four guards have k different colours?

k = 3? Yes (Dinitz, Katz, and Krakovski, EuroCG 2007)

k=4? Yes (Dimitrov, Horev, and Krakovski, next talk, based on Guenin)

Our results:

- simple, efficient algorithm for sliceable subdivisions
- simple, efficient algorithm for one-sided subdivisions

k = 5? No, obviously

two-sided museum

wall has doors on both sides

one-sided museum

each wall has doors on at most one side

boundary is descending staircase

Visit rooms in order s.t. ● inner walls on boundary of any prefix form desc. staircase;

• every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

Visit rooms in order s.t. • inner walls on boundary of any prefix form desc. staircase;

• every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

Proof: there is always a next room to go to, until reaching last = right back room

2 possibilities

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

Visit rooms in order s.t. • inner walls on boundary of any prefix form desc. staircase;

every room has a door to the next room

Visit rooms in order s.t. • inner walls on boundary of any prefix form desc. staircase;

• every room has a door to the next room

Proof: there is always a next room to go to, until reaching last = right back room

16 combinations in 4 groups:

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

Proof: there is always a next room to go to, until reaching last = right back room

16 combinations in 4 groups:

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

- Visit rooms in order s.t. inner walls on boundary of any prefix form desc. staircase;
 - every room has a door to the next room

each room has feel-all at entrance and see-all at exit, or the other way around

These paths do not share doors

→ every room has four doors: two on each path

guarding one-sided museums

guarding one-sided museums

each room has feel-all and see-all on one path, and hear-all and smell-all on the other path

each room has feel-all and see-all on one path, and hear-all and smell-all on the other path (building of n rectangles guarded in O(n) time)

Is there a path through all rectangles, such that:

- we can alternate two colours along that path, and
- guard the rooms with the remaining two colours at the remaining doors?

Is there a path through all rectangles, such that:

- we can alternate two colours along that path, and
- guard the rooms with the remaining two colours at the remaining doors?

floor plan obtained by recursively subdividing rooms by parallel wall

non-sliceable museum

subdivision of red area cannot be obtained by slicing

Two different solutions for each part

Two different solutions for each part

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

Two different solutions for each part

Some combinations can be matched

If matching is possible depends on pattern on corners.

Two different solutions for each part

Two different solutions for each part

If matching is possible depends on pattern on corners.

Algorithm:

- 1. compute bottom-up which partial solutions can be matched;
- 2. choose the solution for every subproblem top-down.

O(n) time, given the slicing decomposition

this is the last slide

Got linear-time algorithms for guarding sliceable or one-sided museums

Guarding non-sliceable two-sided museums seems difficult (but possible: stay for the next talk!)

Herman Haverkort o Maarten Löffler o Elena Mumford Matthew O'Meara o Jack Snoeyink o Bettina Speckmann SMELL-ALL-SEE-ALL-FEEL-ALL-HEAR-ALL SECURITY LTD