

Réseaux, information et communication

Fiabilité - Débit
Théorème fondamental de Shannon
Codes correcteurs d'erreur
Codes linéaires

Yves Roggeman

FACULTÉ DES SCIENCES - DÉPARTEMENT D'INFORMATIQUE

Boulevard du Triomphe - CP212 B-1050 Bruxelles (Belgium)

Tél.: +32-2-650 5598

E-mail: yves.roggeman@ulb.ac.be

Fiabilité

- Code à répétition (canal binaire)
 - ▶ \mathbb{P} [erreur] par bit = $p \Rightarrow répéter n fois$

Décodage par majorité : $P_{err} = \sum_{k=\left[\frac{n}{2}\right]}^{n} {n \choose k} p^k (1-p)^{n-k} < \frac{(2p)^n}{n}$

- ► Fiabilité = 1 P_{err}
- ► Si $\lim_{n\to\infty} \mathbb{P}$ err = 0 si p < ½ (en fait p \neq ½ suffit)
 - Mais on ne transmet (presque) plus rien!
- Généralisation : code correcteur
 - Code bloc : K(S) = K ⊂ Cⁿ ; noter x et plus K(x)
 - Þ Décodage de y ∈ Cⁿ « reçu » (si y ∉ K(S)) :
 - Maximum de vraisemblance : $y \mapsto x : \max_{x \in S} \mathbb{P}[y|x]$

Débit d'un code

- Définition (« information <u>rate</u> »)
 - ► $R(K) = log_r |K| / L(K) = k/n (si |K| = r^k)$
 - Mesure de l'efficience, du rendement
 - Faux synonyme : « bande passante »
- Propriétés
 - $ightharpoonup 0 \le R(K) \le 1$
 - ▶ R(K) = 1 ⇔ Code bloc (Canal sans bruit)
- Exemple binaire : bit de parité
 - ► R = (n-1)/n = 1 1/n : n 🖊 , R 🖊 1, mais P_{err} 🖊 1

(2d) Théorème de Shannon

- Shannon's Fundamental Noisy Channel Theorem
- Énoncé (1948)
 - ► \forall canal binaire symétrique de capacité C > 0 \forall $\delta > 0$, \forall $\epsilon > 0$, \exists code K:

$$P_{err}(K) < \epsilon$$
 et $C - R(K) < \delta$

- Démonstration (Amiel Feinstein 1954)
 - **▶** Complexe ⇒ sketch :
 - Fixer n et $\delta' < \delta$: $\log_r |K| = k = n(C \delta') \in \mathbb{Q}$ (*i.e.* $R = C \delta'$)
 - $K = r^k$ mots <u>au hasard</u> parmi $r^n \Rightarrow \mathbb{P}_{err}(K) = var$. aléatoire
 - $\forall \delta, \forall \epsilon, \exists N : n > N \Rightarrow E[P_{err}] < \epsilon \text{ (partie difficile !)}$
 - $\Rightarrow \exists K_n : \mathbb{P}_{err}(K_n) \leq E[\mathbb{P}_{err}] < \varepsilon$

Conséquences

Remarques

- ► C = lim sup accessible pour R et fiable ≈ 100 %
- On peut y arriver « au hasard », mais on ne sait pas comment (thm existence)
- On ne connaît aucun aussi code « idéal » !
- Inverse (Jacob Wolfowitz 1959)
 - ▶ \forall n, $\exists \epsilon > 0$: $R(K_n) \ge C + \epsilon \Rightarrow \lim_{n \to \infty} \mathbb{P}_{err}(K_n) = 1$
 - i.e. ce K est tout à fait non fiable
 - ► Utilise inégalité de Fano : |X| = m, $P_{err} = E[P_{err}]$ $H(X|Y) \le H(P_{err}) + P_{err} \log_r(m-1)$

Distance de Hamming

- Définition (r quelconque)
 - ► \forall a, b ∈ \mathbb{C}^n : d(a, b) = # { i | a_i ≠ b_i }
 - Si r = 2 : d(a, b) = w(a ⊕ b) (i.e. poids)
- Propriétés
 - C'est une distance!
 - Donc : 3 propriétés :
 - $d(a, b) \ge 0$; $d(a, b) = 0 \Leftrightarrow a = b$
 - d(a, b) = d(b, a)
 - $d(a, b) + d(b, c) \ge d(a, c)$
 - ▶ $0 \le d(a, b) \le n$ et $d(a, b) \in \mathbb{N}$
- Poids de Hamming: w(a) = w(d(a, 0))

Code détecteur ou correcteur

- Distance minimale et poids d'un code
 - $^{\flat}$ d = d(K) = min { d(a, b) | a, b ∈ K, a ≠ b }
 - $^{>}$ w(K) = min { w(a) | a ∈ K, a ≠ 0 }
- Détecter
 - ▶ Reçu y ∉ K ⇒ il y a eu une erreur !
 - ▶ Thm : K détecte t erreurs $\Leftrightarrow t \leq d-1 < d(K)$
- Corriger
 - ► Thm : si p< ½, maximum de vraisemblance =</p>

$$y \mapsto x : d(x, y) = \min_{x \in K} d(x, y)$$

▶ Thm : K corrige t erreurs $\Leftrightarrow t \le |(d-1)/2| < d(K)/2$

Inégalités remarquables

- Correction maximale pour code A_r(n, d)
 - Rayons de recouvrement [c] et d'empilement [s]

$$s \le \lfloor (d-1)/2 \rfloor \le (d-1)/2 \le \lfloor d/2 \rfloor \le c$$

Corrige t erreurs : t ≤ s

Au maximum :
$$t = s = c \Rightarrow d = 2 \cdot t + 1$$

Borne de Richard W. Hamming (1950)

|
$$A_r(n,d)$$
| $\leq \frac{r^n}{V_{\lfloor (d-1)/2 \rfloor}}$ où $V_t = \sum_{i=0}^t \binom{n}{i} (r-1)^i$
Si |K| = r^k : $V_{\lfloor (d-1)/2 \rfloor} \leq r^{n-k}$

- Borne de Richard C. Singleton (1964)

$$|\mathbf{A}_{r}(\mathbf{n}, \mathbf{d})| \leq r^{n-d+1}$$

► Si
$$|K| = r^k$$
: $d \le n-k+1$

Code linéaire

- Propriétés / définition
 - Cⁿ = E = espace vectoriel sur le corps F
 - NB : $r = |F| = p^{\beta}$ où p est un nombre premier
 - Cas binaire : r = 2 ou C = F₂
 - Code K = sous-espace de E :
 - a, b \in K \Rightarrow (a + b) \in K
 - • $\lambda \in F$, $a \in K \Rightarrow \lambda \cdot a \in K$ (pas utile si $K = F_2$)
 - $K \neq \emptyset$ ou $0 \in K$
 - Dimensions : dim E = n, dim K = k
 - Paramètres : [n, k, d]_r

Matrice génératrice, de contrôle

- Matrice génératrice « G »
 - K est application linéaire injective :
 - $K : F^k \to F^n : x \mapsto x \cdot G \ (NB : x = vecteur-ligne)$
 - G = matrice k×n sur F, de rang k
- Matrice de contrôle « H »
 - Contrôle = application de noyau K(X)
 - Noyau : $Ker(P) = \{ y \in F^n \mid P(y) = 0 \}$
 - P: $F^n \to F^{n-k}$: $\tau y \mapsto H \cdot \tau y$, avec Ker(P) = K
 - H = matrice (n-k)×n, de rang (n-k)
 - Donc : $K(F^k) = K = \{y \in F^n \mid H^{\tau}y = 0\}$

Équivalence, Forme canonique

- Équivalence
 - G' ≡ G ⇔ ∃ U(k×k) inversible : G' = U·G
 - ► U = changement de base dans F^k
- Forme canonique (ou systématique)
 - $G = [1_k|P]$
 - P : « parité » ou « redondance » : $y = [x|\pi]$
 - n-k dernières coordonnées = somme de contrôle
 - $ightharpoonup
 ightharpoonup H = [-TP|1_{n-k}] (car G \cdot TH = 0_{k \times (n-k)})$
 - ► Tout code est = à un code canonique :
 - Construction du U par élimination de Gauß

Décodage par syndrome

- Syndrome : $\sigma(y) = H^{\tau}y$
 - ► NB : σ = vecteur-colonne \in F^{n-k}
 - ► Si $y = x + \varepsilon$ où $x \in K$, alors $\sigma(y) = H^{\tau} \varepsilon$
 - Si H = $[-^{\tau}P|1_{n-k}]$, y = $[y_k|y_{n-k}]$, $\sigma(y) = {^{\tau}y_{n-k}} {^{\tau}P} \cdot {^{\tau}y_k}$
 - Et $x \in K \Leftrightarrow x = [x_k | x_k \cdot P] \Leftrightarrow \sigma(x) = 0$
- Décodage
 - ► Table : $\sigma \mapsto \varepsilon \forall \sigma : d(\sigma, 0) \le t [\le r^{n-k} \text{ entrées}]$
 - ► Décodage : $y \mapsto \sigma(y) \mapsto \varepsilon \mapsto x = y \varepsilon$
 - $\bullet \sigma(y) = \sigma(y') \Rightarrow d(y, y') = d(x, x') \ge d > 2 \cdot t$
 - OK si t = c (= s), sinon ambiguïté pour $t < d(\sigma, 0) \le c$
 - Enjeu : remplacer table par algorithme