- 1. Let \mathbb{Z} be the set of all integers. Define R on $\mathbb{Z} \times \mathbb{Z}$ such that $aRb \Leftrightarrow (a-b)$ is divisible by 5; $a,b \in \mathbb{Z}$. Show that R is an equivalence relation on \mathbb{Z} . Find the equivalence class of 3.
- 2. Let \mathbb{Z} be the set of all integers. Define R on $\mathbb{Z} \times \mathbb{Z}$ such that $aRb \Leftrightarrow (a+b)$ is even; $a,b \in \mathbb{Z}$. Show that R is an equivalence relation on \mathbb{Z} .

[Hint: For Transitivity,
$$aRb$$
, $bRc \Rightarrow (a+b)$, $(b+c)$ are even $\Rightarrow (a+b) + (b+c)$ is even $\Rightarrow (a+c) + 2b$ is even $\Rightarrow (a+c)$ is even $\Rightarrow aRc$]

3. Let \mathbb{N} be the set of all positive integers. Define R on $\mathbb{N} \times \mathbb{N}$ such that $aRb \Leftrightarrow \{|a-b|+2\}$ is a prime; $a,b \in \mathbb{N}$. Examine whether R is an equivalence relation on \mathbb{N} .

[Hint: Not Transitive. Take a = 1, b = 2, c = 3]

- 4. Using Warshall's algorithm, find the transitive closure of the relation $R = \{(1,2), (2,1), (2,3), (3,4)\}$ on the set $A = \{1,2,3,4\}$.
- 5. Using Warshall's algorithm, find the transitive closure of the relation $R = \{(1,4), (2,1), (2,3), (3,1), (3,4), (4,3)\}$ on the set $A = \{1,2,3,4\}$.
- 6. Using Warshall's algorithm, find the transitive closure of the relation *R* which is given by the following directed graph:

- 7. Let \mathbb{N} be the set of all positive integers. Define \leq on $\mathbb{N} \times \mathbb{N}$ such that $a \leq b \Leftrightarrow a$ divides b; $a, b \in \mathbb{N}$. Examine whether \leq is a partial order relation on \mathbb{N} .
- 8. Let \mathbb{Z} be the set of all integers. Define \leq on $\mathbb{Z} \times \mathbb{Z}$ such that for $a, b \in \mathbb{Z}$ $a \leq b \Leftrightarrow b = a^m$; for some $m \in \mathbb{N}$. Show that \leq is a partial order relation on \mathbb{Z} .
- 9. Let \mathbb{Z} be the set of all integers. Define \leq on $\mathbb{Z} \times \mathbb{Z}$ such that for $a, b \in \mathbb{Z}$ $a \leq b \Leftrightarrow a^3 b^3$ is non negative. Show that \leq is a partial order relation on \mathbb{Z} .