DOCUMENT SUPPLÉMENTAIRE AU TP 3

Fait par Rémi Ligez (remi.ligez@umontreal.ca)

Corollaire 2.11

À la page 48 des notes du chapitre 2, on dit :

Pour tout $i \ge 0$, il existe une fonction qui n'est pas calculable par un programme RÉPÉTER avec une profondeur de boucle i, mais qui est calculable par un programme avec une profondeur de boucle i+1.

Montrons que pour tout $i \geq 0$, la fonction B_{i+2} n'est pas calculable par un programme RÉPÉTER avec une profondeur de boucle i, mais elle est calculable avec un programme RÉPÉTER avec une profondeur de boucle i+1.

Aux pages 33 et 34 des notes du chapitre 2, on a montré que pour tout $i \ge 0$, la fonction B_{i+1} est calculable par un programme RÉPÉTER avec profondeur de boucle i. Ce qui montre que la fonction B_{i+2} est calculable par un programme RÉPÉTER avec profondeur de boucle i+1.

Il reste donc à montrer que B_{i+2} n'est pas calculable avec un programme RÉPÉTER avec profondeur de boucle i.

Regardons le cas i = 0. Il faut donc montrer que B_2 n'est pas calculable avec un programme RÉPÉTER avec profondeur de boucle 0. Utilisons le théorème 2.10 (page 42 des notes du chapitre 2) sur les programmes RÉPÉTER P de profondeur de boucle 0 qui ont L lignes de codes et qui prennent un seul registre en entrée.

$$\mathcal{M}(P, r_1) \le B_1^{< L>}(r_1)$$

où $\mathcal{M}(P, r_1)$ est la valeur maximale de tous les registres après l'exécution de P.

Regardons ce qui se passe lorsqu'on donne en entrée 2L dans le registre r_1 .

$$\mathcal{M}(P, 2L) \leq B_1^{< L>}(2L)$$

$$= 2L + 2L \qquad (1)$$

$$= 2(2L)$$

$$< 2(2L) + 3$$

$$= B_2(2L)$$

(1) car $B_1(x) = x + 2$ donc on additionne L fois 2 à 2L.

On a donc:

$$\mathcal{M}(P, 2L) < B_2(2L)$$

Donc, tous les programmes RÉPÉTER P à L lignes de code avec profondeur de boucle 0 qui ont 2L en entrée ne peuvent pas produire un entier supérieur ou égal à $B_2(2L)$ dans ses registres. Donc, B_2 n'est pas calculable par un programme RÉPÉTER avec une profondeur de boucle 0.

<u>Pour i ≥ 0 .</u> Il faut donc montrer que B_{i+2} n'est pas calculable avec un programme RÉPÉTER avec profondeur de boucle i. Utilisons le théorème 2.10 (page 42 des notes du chapitre 2) sur les programmes RÉPÉTER P de profondeur de boucle i qui ont L lignes de codes et qui prennent un seul registre en entrée.

$$\mathcal{M}(P, r_1) \le B_{i+1}^{< L>}(r_1)$$

où $\mathcal{M}(P, r_1)$ est la valeur maximale de tous les registres après l'exécution de P.

Regardons ce qui se passe lorsqu'on donne en entrée 3L dans le registre r_1 .

$$\mathcal{M}(P,3L) \leq B_{i+1}^{< L>}(3L)$$

$$\leq B_{i+1}^{< L>}(4L-2) \qquad (1)$$

$$\leq B_{i+1}^{< L>}(2(2L-1))$$

$$< B_{i+1}^{< L>}(B_2^{< 2L-1>}(1)) \qquad (2)$$

$$\leq B_{i+1}^{< L>}(B_{i+1}^{< 2L-1>}(1)) \qquad (3)$$

$$= B_{i+1}^{< L+2L-1>}(1)$$

$$= B_{i+1}^{< 3L-1>}(1)$$

$$\leq B_{i+1}^{< 3L+1>}(1) \qquad (4)$$

$$= B_{i+2}(3L)$$

- (1) L \geq 2 parce que les programmes P avec une profondeur de boucle d'au moins 1 ont au moins 2 lignes de codes et parce que $B_i^{< k>}(x)$ est croissante en x (Fait 2 à la page 41 des notes du chapitre 2).
- (2) $2k < B_2^{< k>}(1)$ (Fait 4 à la page 41 des notes du chapitre 2) donc $2(2L-1) < B_2^{< 2L-1>}(1)$ et parce que $B_i^{< k>}(x)$ est (strictement) croissante en x (Fait 2 à la page 41 des notes du chapitre 2).
- (3) $i+1 \ge 2$ parce que $i \ge 1$. On utilise aussi que $B_i^{< k>}(x)$ est croissante en x et en i (Fait 2 à la page 41 des notes du chapitre 2).
- (4) $B_i^{\langle k \rangle}(x)$ est croissante en k (Fait 2 à la page 41 des notes du chapitre 2).

On a donc:

$$\mathcal{M}(P,3L) < B_{i+2}(3L)$$

Donc, tous les programmes RÉPÉTER P à L lignes de code avec profondeur de boucle i qui ont 3L en entrée ne peuvent pas produire un entier supérieur ou égal à $B_{i+2}(3L)$ dans ses registres. Donc, B_{i+2} n'est pas calculable par un programme RÉPÉTER avec une profondeur de boucle i.

On peut donc en conclure que la fonction d'Ackermann n'est pas calculable avec un programme RÉPÉTER.