Name: Tasnimul Hasnat

ID: 190041113

TASK 1

The task is to create a tablespace and a user and assign that tablespace to that user. Then create 3 tables to that tablespace.

Create another tablespace and assign T4 to that new tablespace.

Code:

create tablespace newtable

datafile 'C:\Users\CSE.CSE-L1-PC-08\Desktop\temp\ooo\table.dbf' size 50m

extent management local autoallocate;

```
SQL> create tablespace newtable
2 datafile 'C:\Users\CSE.CSE-L1-PC-08\Desktop\temp\ooo\table.dbf' size 50m
3 extent management local autoallocate;
Tablespace created.
```

create user ork

identified by csel13

default tablespace newtable;

```
SQL> create user ork
2 identified by csel13
3 default tablespace newtable
4;
User created.

SQL> |
```

```
create table T1(
    idl int primary key,
     namel varchar(20)
 ) tablespace newtable;
create table T2(
    id2 int primary key,
     name2 varchar(20)
 ) tablespace newtable;
create table T3(
    id3 int primary key,
     name3 varchar(20)
 ) tablespace newtable;
create tablespace newtable2
datafile 'C:\Users\CSE.CSE-L1-PC-
08\Desktop\temp\ooo\table2.dbf' size 50m
```

extend management local autoallocate;

12 alomanikarama

```
create table T4(
      id4 int primary key,
      name4 varchar(20)
 ) tablespace newtable2;
SQL> create tablespace newtable2
 2 datafile 'C:\Users\CSE.CSE-L1-PC-08\Desktop\temp\ooo\table2.dbf' size 50m 3 extent management local autoallocate;
Tablespace created.
SQL> create table T4(
 2 id4 int primary key,
3 name4 varchar(20)
 4 ) tablespace newtable2;
Table created.
SQL> select * from emp;
          ID NAME
                                      PHNNUMBER
           1 alo
                                      01234567893
           2 alom
                                     01234567990
           3 aloma
                                     01235567990
           4 aloman
                                     01235566990
           5 alomani
                                     01405566990
           6 alomanik
                                     01505566990
           7 alomanika
                                     01605566990
           8 alomanikar
                                    01705566990
           9 alomanikar
                                     01805566990
          10 alomanikara
                                     01405666990
          11 alomanikaram
                                     01405666994
          ID NAME
                                     PHNNUMBER
```

01405666993

TASK 2

The task is to create a table of employees and populate it with their name, SSN and phone number. Then from that table I have to find those employees whose phone number end with 990.

create table emp(

```
id int primary key,
    name varchar2(20),
    phnNumber varchar(11),
    constraint ckh_phn check( phnNumber like '01%' and
length(phnNumber)=11)
);

SQL> create table emp(
    id int primary key,
        name varchar2(20),
        phnNumber varchar(11),
        constraint ckh_phn check( phnNumber like '01%' and length(phnNumber)=11)
        6 );

Table created.
```

To query those numbers ending with 990 we use the like operator and regex % to find the numbers which satisfies the condition.

SQL> select * from emp where phnNUmber like '%990'; ID NAME PHNNUMBER 2 alom 01234567990 3 aloma 01235567990 4 aloman 01235566990 5 alomani 01405566990 01405566990 01505566990 6 alomanik 01605566990 01705566990 01805566990 7 alomanika 8 alomanikar 9 alomanikar 01405666990 10 alomanikara 9 rows selected.

TASK 3

The task is to show left outer join, right outer join, natural join and Cartesian join.

So I have created two tables student and department.

```
SQL> create table department(
2 id int primary key,
3 name varchar2(6),
4 budget int);
Table created.
```

```
SQL> create table student(
   2 id int primary key,
   3 name varchar2(36),
   4 dept_id int,
   5 foreign key (dept_id) references department(id)
   6 );
Table created.
```

The student table has to have a foreign key referencing dept_id from the department table.

Also I have inserted appropriate values into the tables.

Left Outer Join:

select
student.id,student.name,department.name,student.dept_id
from student left outer join department
on student.dept_id = department.id;

```
SQL> select student.id, student.name, department.name, student.dept_id
  2 from student
 3 left outer join department
 4 on student.dept_id = department.id;
        ID NAME
                                                 NAME
                                                            DEPT_ID
         1 alo
                                                 CSE
                                                                  1
                                                 EEE
         5 alomana
                                                                  2
         2 alom
                                                 EEE
         4 aloman
                                                 MPE
         3 aloma
                                                 MPE
```

Right Outer Join:

select

student.id,student.name,department.id,department.name,department.budget

from student right outer join department on student.dept_id = department.id;

Natural Join:

select * from student natural join department;

Cartesian Product:

select * from student,department;

SQL> select * from student,department;								
ID	NAME	DEPT_ID	ID NAME					
BUDGET								
1 600	alo	1	1 CSE					
2 600	alom	2	1 CSE					
3 600	aloma	3	1 CSE					
ID	NAME	DEPT_ID	ID NAME					
BUDGET								
4 600	aloman	3	1 CSE					
5 600	alomana	2	1 CSE					

ID	NAME.	DEPT_ID	ID	NAME ———
BUDGET				
4 i 600	aloman	3	1	CSE
5 6 600	alomana	2	1	CSE
1 700		1	2	EEE
ID I	NAME	DEPT_ID	ID	NAME
BUDGET				***
2 a 700		2	2	EEE
3 a 700	aloma	3	2	EEE
4 ; 700	aloman	3	2	EEE
ID	NAME	DEPT.	_ID	ID NAME
BUDGET				1,000
5 700	alomana		2	2 EEE
1 500	alo		1	3 MPE
2 500	alom		2	3 MPE
ID	NAME	DEPT.	_ID	ID NAME
BUDGET				-23-167
3 500	aloma		3	3 MPE
4 500	aloman		3	3 MPE
5 500	alomana		2	3 MPE

ID	NAME	DEPT_ID	ID	NAME
BUDGET				
1 200	alo	1	4	CEE
2 200	alom	2	4	CEE
3 200	aloma	3	4	CEE
ID	NAME	DEPT_ID	ID	NAME
BUDGET				
4 200	aloman	3	4	CEE
5 200	alomana	2	4	CEE