

Watershed

Time limit: 1000 ms Memory limit: 256 MB

We have been asked to evaluate the drainage of a rectangular region in a nearby town. To do so, we will model the region using a rectangular grid of 1 meter square cells. We have recorded the elevation of each cell, and our model assumes the following:

- · Each cell initially contains 1 liter of water.
- Water will flow from cells with higher elevations to adjacent cells with lower elevation. Two cells are adjacent if they share a border, and therefore a cell can have at most 4 adjacent cells.
- When a cell has more than one adjacent cell with lower elevation, the water is equally split between these adjacent cells.
- No water will flow into or out of the rectangular region.
- If water cannot flow out of a cell, we will put a drain in the cell.

What is the maximum amount of water that will be collected by a drain.

Standard Input

The first line contains two space-separated integers n and m, giving the number of rows and columns in the rectangular region.

The next n lines give the elevations in each of the cells of the grid. Each line will contain m integers.

Standard Output

Output the maximum number of liters of water that can flow through a drain. Your output should be within 10^{-4} of the exact answer.

Constraints and notes

- $1 \leq n$
- 1 < m
- $1 \le n \times m \le 10^5$

Each elevation value will be a non-negative integer less than or equal to 10^9 .

Input	Output	Explanation
3 3 3 3 3	9.000000	All of the cells drain towards the center square, so the total volume
2 1 2		of water collected by the drain is
3 2 3		liters.
3 3	1.000000	Since all cells are at the same
3 3 3		elevation, no cell drains into
3 3 3		another one. Therefore, the
3 3 3		maximum water collected by any drain is 1 liter.
4 5	10.375000	The table below shows the
1 2 3 4 3		direction that water flows from
2 3 4 5 4		each cell

3 4 5 4 3 4 4 3 2 1

Based on this flow, the table below shows the contribution of each cell to the drianage in the top left corner.

1	1	1	1/2	0
1	1	1	3/8	0
1	1	1/2	0	0
1	0	0	0	0

Note that some cells have their flow split in multiple directions. For example, the lowest cell with an elevation of 5 has its flow split 4 ways, 2 of which flow towards the upper left corner. Thus, it contributes 1/2 liter to the top left corner. The other cell with

Input	Output	Explanation

elevation 5 also has its flow split 4 ways. 1/4 of the flow goes to the left and eventually to the top left corner. Another 1/4 of the flow goes up, and then splits again, with 1/2 of the 1/4 going to the left and making its way to the top left corner. Thus, this cell contributes 3/8 liter to the top left cell.