CSC 525: Computer Networks

Why Network Topology?

- Business analysis
 - Comparison with competitors
 - Selecting a provider or peer
- Scientific curiosity
 - Understand the structure and the evolution of large-scale, complex networks such as the Internet.
- Input to research studies
 - Network design, routing protocols, simulations ...
- Interesting research problem in its own right
 - How to measure/infer the topology and its properties.

Network Topology

- A topology is a set of nodes and links.
- A node or link may represent different network entities, resulting in topologies of different granularity.
 - Switch
 - Router
 - PoP (Point of Presence)
 - AS (Autonomous System)
 - ISP

PoP (Point of Presence)

- Inter-PoP links
 - Long distances
 - High bandwidth
- Intra-PoP links
 - Short cables between racks or floors
 - Aggregated bandwidth
- Links to other networks
 - Wide range of media and bandwidth

Hub-and-Spoke

- Single hub node
 - Common in enterprise networks
 - Main location and satellite sites
 - Simple design and trivial routing
- Problems (especially when the network is large)
 - Single point of failure
 - Bandwidth limitations
 - High delay between sites
 - Costs to backhaul to hub

Simple Alternatives

- Dual hub-and-spoke
 - Higher reliability
 - Higher cost
 - Good building block

- Reduce backhaul cost
- Aggregate the bandwidth
- Shorter site-to-site delay

Backbone Networks

- Backbone networks
 - Multiple Points-of-Presence (PoPs)
 - Lots of communication between PoPs
 - Need to accommodate diverse traffic demands
 - Need to limit propagation delay
 - Take a great effort to design and provision the network, considering the financial costs, the projected traffic volume, and technical properties to ensure good quality of service.

Telstra

EBone

Abilene

20.99 umat.ppt tmb http://www.takom.arison.aadu/map.html

Connectivity at The University of Arizona

Topology Measurement

- Active Probing
 - E.g., traceroute probes
 - Better control on what to measure and when to measure.
 - Security concerns
 - Miss transient changes.
- Passive Collection
 - E.g, BGP monitoring
 - Always at work, receive all changes.
 - Only see what the routing protocol presents
 - Deployment is more difficult.

Traceroute

- Measuring the forwarding path
- Time-To-Live field in IP packet header
 - Source sends a packet with a TTL of *n*
 - Each router along the path decrements the TTL
 - "TTL exceeded" sent back when TTL reaches 0
- Traceroute exploits this TTL behavior

Send packets with TTL=1, 2, 3, ... and record source of "TTL exceeded" mesg

Example Output

Hop number, IP address, DNS name

No response

from router`

•	•
1 169.229.62.1	inr-daedalus-0.CS.Berkeley.EDU
2 169.229.59.225	soda-cr-1-1-soda-br-6-2
3 128.32.255.169	vlan242.inr-202-doecev.Berkeley.EDU
4 128.32.0.249	gigE6-0-0.inr-666-doecev.Berkeley.EDU
5 128.32.0.66	qsv-juniperucb-gw.calren2.net
6 209.247.159.109	POS1-0.hsipaccess1.SanJose1.Level3.net
7 *	? No name resolution
8 64.159.1.46	?
9 209.247.9.170	pos8-0.hsa2.Atlanta2.Level3.net
10 66.185.138.33	pop2-atm-P0-2.atdn.net
11 *	?
12 66.185.136.17	pop1-atl-P4-0.atdn.net
13 64.236.16.52	www4.cnn.com

Measure ISP topology from Many Angles

Where to Get Sources and Dests?

- Source machines
 - Get accounts in many places
 - Good to have a lot of friends
 - Use an infrastructure like PlanetLab
 - Good to have friends who have lots of friends
 - Use public traceroute servers (http://www.traceroute.org)
 - Be nice to others
- Destination addresses to traceroute
 - Walk through the IP address space
 - One (or a few) IP addresses per prefix
 - Learn destination prefixes from public BGP tables
 - http://www.route-views.org

Problem with Traceroute

- Missing responses
 - Routers might not send "Time-Exceeded"
 - Firewalls may drop the probe packets
 - "Time-Exceeded" reply may be dropped
- Alias resolution
 - Mapping multiple interfaces to the same router
- Misleading IP addresses
 - How to map routers to an AS
- Angry operators who think this is an attack
 - Common problem with active probing
- It'll miss transient topological changes between probes.

Projects based on Traceroute

- Skitter/Ark
 - Global Internet topology
 - http://www.caida.org/tools/measurement/skitter/
- Rocketfuel
 - Individual ISP topology
 - http://www.cs.washington.edu/research/networkin g/rocketfuel/

AS Graph

- Node: Autonomous System
- Link: between two ASes that speak BGP to each other
 - May correspond to multiple physical links or BGP sessions.

How to Discover a Node or Link?

- Consult the Registration Databases
 - WHOIS (IP, AS number, domain name, etc.)
 - Often out-of-date and/or incomplete
- Convert from traceroute results
 - Be careful of many pitfalls in converting IP addr to AS #.
- Extract from BGP routing data
 - Collect AS paths seen from routing data
 - Extract all the nodes and links
 - AS path "7018 1 88" implies that Nodes: 7018, 1, and 88, and links: (7018, 1) and (1, 88)
 - AS Path != Router Path

Public BGP Collectors

Sample BGP Table

Network	Next Hop	Metric LocPrf Weight	Path
* 3.0.0.0/8	205.215.45.50	0	4006 701 80 i
*	167.142.3.6	0	5056 701 80 i
*	157.22.9.7	0	715 1 701 80 i
*	195.219.96.239	0	8297 6453 701 80 i
*	195.211.29.254	0	5409 6667 6427 3356 701 80 i
*>	12.127.0.249	0	7018 701 80 i
*	213.200.87.254	0	3257 701 80 i
* 9.184.112.0/20	205.215.45.50	0	4006 6461 3786 i
*	195.66.225.254	0	5459 6461 3786 i
*>	203.62.248.4	0	1221 3786 i
*	167.142.3.6	0	5056 6461 6461 3786 i

Try it at home:

- telnet route-views.routeviews.org
- show ip bgp

Internet AS Topology Graph

(from CAIDA)

Power Laws

- Some (macroscopic) topological properties can be expressed in the form $y \propto x^a$
 - Faloutsos, Faloutsos, Faloutsos [1999]
 - Changed our view of Internet topology
 - Earlier work assume some random network topologies.
- The power laws hold over time.
- Power laws are common in many large-scale self-organizing systems

Degree Distribution

Power-Law 2 (degree exponent)

Given a graph, the CCDF, D_d , of an degree, d, is proportional to the degree to the power of a constant, \mathcal{D} :

$$D_d \propto d^{\mathcal{D}}$$

Degree Rank, Eigenvalue

Power-Law 1 (rank exponent) Given a graph, the degree, d_v , of a node v, is proportional to the rank of the node, r_v , to the power of a constant, \mathcal{R} :

$$d_v \propto r_v^{\mathcal{R}}$$

Power-Law 3 (eigen exponent) Given a graph, the eigenvalues, λ_i , are proportional to the order, i, to the power of a constant, \mathcal{E} :

$$\lambda_i \propto i^{\mathcal{E}}$$

Implications

- The majority of nodes have small degrees.
- A non-trivial number of nodes has very large degrees.

- Very resilient against random failures/attacks.
- Vulnerable to targeted attacks.
 - Really?

The B-A model

- How did the power-law emerge?
 - Modelling the micro behavior => macro properties.
- Incremental growth
 - Starts with m_0 nodes, each step adds one new node with mlinks.
- Preferential Attachment
- Attach to node i with probability $\Pi(k_i) = k_i/\sum_j k_j$ Result in power law topology $P(k) = \frac{2m^2}{k^3}$

No Topology is Complete

- Limited collection of paths
 - Some links might never be traversed
 - Especially links low in the AS hierarchy
 - and backup links
- Example: paths observed from two tier-1 ISPs miss a lower-tier peer link

Research Questions

- Collecting Topology
 - Where to put additional monitors?
 - How (in)complete the observed topology is?
 - How much does the missing part affect research results?
- Characterizing Topology
 - Static properties
 - Degree, tier hierarchy, graphic properties, etc.
 - Dynamic properties
 - How fast the topology changes, and what's the trend?
- Modeling Topology Evolution
 - Economic, technological, and operational factors behind the topology evolution.