The AC is a lie - ICPC Library

Contents

1	Stri	ng Algorithms
	1.1	KMP
	1.2	KMP Automaton
	1.3	Trie
	1.4	Aho-Corasick
	1.5 1.6	Algoritmo de Z
	1.0	Suffix Array
2	Date	a Structures
_	2.1	BIT 2D Comprimida
	2.2	Iterative Segment Tree
	2.3	Iterative Segment Tree with Lazy Propagation
	2.4	Segment Tree with Lazy Propagation
	2.5	Persistent Segment Tree
	2.6	Treap
	2.7	Sparse Table
	2.8	Policy Based Structures
	2.9	Color Updates Structure
	2.10	Centroid Decomposition
	2.11	Li Chao Tree
3	Gra	ph Algorithms
	3.1	Dinic Max Flow
	3.2	Euler Path and Circuit
	3.3	Articulation Points/Bridges/Biconnected Components
	3.4	SCC - Strongly Connected Components / 2SAT
	3.5	LCA - Lowest Common Ancestor
	3.6	Heavy Light Decomposition
	3.7	Sack
	3.8	Min Cost Max Flow
	3.9	Hungarian Algorithm - Maximum Cost Matching
4	1 / f _ 4	J. 10
4	Mat	
	4.1	Discrete Logarithm
	4.2	Extended Euclides
	4.3	Matrix Fast Exponentiation
	$4.4 \\ 4.5$	FFT - Fast Fourier Transform
	$\frac{4.5}{4.6}$	
	$4.0 \\ 4.7$	Miller and Rho
	4.1	Determinant using word
5	Geo	metry 10
0	5.1	Geometry
	5.2	Convex Hull
	5.3	Closest Pair
	5.4	Delaunay Triangulation
	5.5	Java Geometry Library
6	Dyn	amic Programming 21
·	6.1	Convex Hull Trick
	6.2	Divide and Conquer Optimization
	6.3	Knuth Optimization
	0.0	
7	Miss	cellaneous 23
•	7.1	LIS - Longest Increasing Subsequence
	7.2	Ternary Search
	7.3	Random Number Generator
	7.4	Submask Enumeration
	7.5	Java Fast I/O
		Java Fast I/O

```
      2
      Math
      2

      3
      Geometry
      2

      4
      Mersenne's Primes
      2
```

1 String Algorithms

1.1 KMP

```
string p, t;
int b[ms], n, m;
void kmpPreprocess() {
  int i = 0, j = -1;
  b[0] = -1;
  while(i < m) {</pre>
    while(j \ge 0 \&\& p[i] != p[j]) j = b[j];
    b[++i] = ++j;
void kmpSearch() {
  int i = 0, j = 0, ans = 0;
  while(i < n) {</pre>
    while (j \ge 0 \&\& t[i] != p[j]) j = b[j];
    i++; j++;
    if(j == m) {
      //ocorrencia aqui comecando em i - j
      ans++;
      j = b[j];
  return ans;
```

1.2 KMP Automaton

```
const int limit =
vector<vector<int>>> build_automaton(string s) {
    s += '#'; //tem que ser diferente de todos os caracteres
    int n = (int) s.size();
    vector<vector<int>> ans(n, vector<int>(limit));
    vector<int> fail(n);
    for (int i = 0; i < n; i++) {</pre>
        for (int j = 0; j < limit; j++) {</pre>
            if (i == 0) {
                if (s[i] == j + 'a') {
                    ans[i][j] = i + 1;
                    ans[i][j] = 0;
            } else {
                if (s[i] == j + 'a') {
                    ans[i][j] = i + 1;
                } else {
                    ans[i][j] = ans[fail[i - 1]][j];
```

```
}
if (i == 0) {
    continue;
}
int j = fail[i - 1];
while (j > 0 && s[i] != s[j]) {
    j = fail[j - 1];
}
fail[i] = j + (s[i] == s[j]);
}
return ans;
}
```

1.3 Trie

```
int trie[ms][sigma], terminal[ms], z;
void init() {
 memset(trie[0], -1, sizeof trie[0]);
  z = 1:
int get_id(char c) {
  return c - 'a';
void insert(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      memset(trie[z], -1, sizeof trie[z]);
      trie[cur][id] = z++;
    cur = trie[cur][id];
  terminal[cur]++;
int count(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      return false;
    cur = trie[cur][id];
  return terminal[cur];
```

1.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms];
queue<int> q;
```

```
void buildFailure() {
  q.push(0);
  while(!q.empty()) {
    int node = q.front();
    q.pop();
    for(int pos = 0; pos < sigma; pos++) {</pre>
      int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      if(v == -1) {
        v = f;
      } else {
        fail[v] = f;
        q.push(v);
        // juntar as informacoes da borda para o V ja q um match em V
            implica um match na borda
        terminal[v] += terminal[f];
int search(string &txt) {
  int node = 0;
  int ans = 0;
  for(int i = 0; i < txt.length(); i++) {</pre>
    int pos = get_id(txt[i]);
    node = trie[node][pos];
    // processar informacoes no no atual
     ans += terminal[node];
  return ans;
```

1.5 Algoritmo de Z

```
string s;
int fz[ms], n;

void zfunc() {
   fz[0] = n;
   for(int i = 1, l = 0, r = 0; i < n; i++) {
      fz[i] = max(0, min(r-i, fz[i-l]));
      while(s[fz[i]] == s[i+fz[i]]) ++fz[i];
      if(i + fz[i] > r) {
        l = i;
        r = i + fz[i];
    }
}
```

1.6 Suffix Array

```
namespace SA {
  typedef pair<int, int> ii;

vector<int> buildSA(string s) {
  int n = (int) s.size();
  vector<int> ids(n), pos(n);
```

```
vector<ii> pairs(n);
    for (int i = 0; i < n; i++) {
      ids[i] = i;
      pairs[i] = ii(s[i], -1);
    sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
      return pairs[a] < pairs[b];</pre>
    });
    int on = 0;
    for (int i = 0; i < n; i++) {
      if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
      pos[ids[i]] = on;
    for(int offset = 1; offset < n; offset <<= 1) {</pre>
      //ja tao ordenados pelos primeiros offset caracteres
      for (int i = 0; i < n; i++) {
        pairs[i].first = pos[i];
        if (i + offset < n) {
          pairs[i].second = pos[i + offset];
        } else {
          pairs[i].second = -1;
      sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
        return pairs[a] < pairs[b];</pre>
      int on = 0;
      for (int i = 0; i < n; i++) {
        if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
        pos[ids[i]] = on;
    return ids;
  vector<int> buildLCP(string s, vector<int> sa) {
    int n = (int) s.size();
    vector<int> pos(n), lcp(n, 0);
    for(int i = 0; i < n; i++) {
      pos[sa[i]] = i;
    int k = 0:
    for(int i = 0; i < n; i++) {
      if (pos[i] + 1 == n) {
        \mathbf{k} = 0;
        continue;
      int j = sa[pos[i] + 1];
      while(i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      lcp[pos[i]] = k;
      k = \max(k - 1, 0);
    return lcp;
};
```

2 Data Structures

2.1 BIT 2D Comprimida

```
// by TFG
#include <vector>
#include <utility>
#include <algorithm>
typedef std::pair<int, int> ii;
struct Bit2D {
public:
  Bit2D(std::vector<ii> pts) {
    std::sort(pts.begin(), pts.end());
    for(auto a : pts) {
      if(ord.empty() || a.first != ord.back())
        ord.push_back(a.first);
    fw.resize(ord.size() + 1);
    coord.resize(fw.size());
    for(auto &a : pts)
      std::swap(a.first, a.second);
    std::sort(pts.begin(), pts.end());
    for(auto &a : pts) {
      std::swap(a.first, a.second);
      for(int on = std::upper_bound(ord.begin(), ord.end(), a.first) -
           ord.begin(); on < fw.size(); on += on & -on) {
        if(coord[on].empty() || coord[on].back() != a.second);
          coord[on].push_back(a.second);
    for(int i = 0; i < fw.size(); i++) {</pre>
      fw[i].assign(coord[i].size() + 1, 0);
  void upd(int x, int v, int v) {
    for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx < fw.size(); xx += xx & -xx) {
      for(int yy = std::upper bound(coord[xx].begin(), coord[xx].end()
          , y) - coord[xx].begin(); yy < fw[xx].size(); yy += yy & -yy
        fw[xx][yy] += v;
  int gry(int x, int y) {
    int ans = 0;
    for(int xx = std::upper bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx > 0; xx -= xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          , y) - coord[xx].begin(); yy > 0; yy -= yy & -yy) {
        ans += fw[xx][yy];
    return ans;
```

```
}
private:
   std::vector<int> ord;
   std::vector<std::vector<int>> fw, coord;
};
```

2.2 Iterative Segment Tree

```
int n, t[2 * ms];
void build() {
  for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1 | 1]; // Merge
void update(int p, int value) { // set value at position p
  for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; //
      Merae
int query(int 1, int r) {
  int res = 0;
  for(1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
   if(1&1) res += t[1++]; // Merge
    if(r&1) res += t[--r]; // Merge
  return res;
// If is non-commutative
S query(int 1, int r) {
  S resl, resr;
  for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
  if (1&1) resl = combine(resl, t[1++]);
  if (r&1) resr = combine(t[--r], resr);
  return combine(resl, resr);
```

2.3 Iterative Segment Tree with Lazy Propagation

```
struct LazyContext {
  int v;

LazyContext(int v = 0) : v(v) { }

  void reset() {
  v = 0;
  }

  void operator += (LazyContext o) {
  v += o.v;
  }
};

struct Node {
  int sz, v;

  Node() { // neutral element
```

```
v = 0; sz = 0;
  Node(int i) { // init
       v = i; sz = 1;
  Node (Node &1, Node &r) { // merge
        sz = 1.sz + r.sz;
        v = 1.v + r.v;
  void apply(LazyContext lazy) {
 v += lazy.v * sz;
};
Node tree[2*ms];
LazyContext lazy[ms];
bool dirty[ms];
int n, h, a[ms];
void init() {
   h = 0;
    while((1 << h) < n) h++;
    for (int i = 0; i < n; i++) {
        tree[i + n] = Node(a[i]);
    for (int i = n - 1; i > 0; i--) {
        tree[i] = Node(tree[i + i], tree[i + i + 1]);
        lazy[i].reset();
        dirty[i] = 0;
void apply(int p, LazyContext &lc) {
    tree[p].apply(lc);
    if(p < n) {
        dirty[p] = true;
        lazy[p] += lc;
void push(int p) {
    for (int s = h; s > 0; s--) {
        int i = p >> s;
        if(dirty[i]) {
            apply(i + i, lazy[i]);
            apply(i + i + 1, lazy[i]);
            lazy[i].reset();
            dirty[i] = false;
void build(int p) {
    for (p /= 2; p > 0; p /= 2) {
        tree[p] = Node(tree[p + p], tree[p + p + 1]);
        if(dirty[p]) {
            tree(p).apply(lazy(p));
```

```
Node query(int 1, int r) {
    if(l > r) return Node();
    1 += n, r += n+1;
   push(1);
    push(r - 1);
    Node lp, rp;
    for (; 1 < r; 1 /= 2, r /= 2) {
        if(l & 1) lp = Node(lp, tree[l++]);
        if(r \& 1) rp = Node(tree[--r], rp);
    return Node(lp, rp);
void update(int 1, int r, LazyContext lc) {
    if(l > r) return;
    1 += n, r += n+1:
    push(1);
    push(r - 1);
    int 10 = 1, r0 = r;
    for (; 1 < r; 1 /= 2, r /= 2) {
        if(1 & 1) apply(1++, 1c);
        if(r & 1) apply(--r, lc);
    build(10);
    build(r0 - 1);
```

2.4 Segment Tree with Lazy Propagation

```
int arr[4 * ms], seq[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  lazv[idx] = 0;
 if(1 == r) {
   seg[idx] = arr[l];
 build(left, 1, mid); build(right, mid + 1, r);
  seg[idx] = seg[left] + seg[right]; // Merge
void propagate(int idx, int 1, int r) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(lazy[idx]) {
   seg[idx] += lazy[idx] * (r - l + 1); // Aplicar lazy no seg
   if(1 < r)  {
     lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazy[2*idx+2] += lazy[idx]; // Merge de lazy
   lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int 1 = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  propagate(idx, l, r);
```

2.5 Persistent Segment Tree

```
struct PSEGTREE{
 private:
   int z, t, sz, *tree, *L, *R, head[112345];
    void _build(int 1, int r, int on, vector<int> &v) {
      if(1 == r){
        tree[on] = v[1];
       return;
      L[on] = ++z;
      int mid = (1+r) >> 1;
      _build(l, mid, L[on], v);
      R[on] = ++z;
      _build(mid+1, r, R[on], v);
      tree[on] = tree[L[on]] + tree[R[on]];
    int _upd(int ql, int qr, int val, int l, int r, int on) {
      if(1 > qr \mid | r < ql) return on;
      int curr = ++z;
      if(1 >= q1 \&\& r <= qr) {
        tree[curr] = tree[on] + val;
        return curr:
      int mid = (1+r) >> 1;
      L[curr] = \_upd(ql, qr, val, l, mid, L[on]);
      R[curr] = \_upd(ql, qr, val, mid+1, r, R[on]);
      tree[curr] = tree[L[curr]] + tree[R[curr]];
      return curr;
    int _query(int ql, int qr, int l, int r, int on){
      if(1 > qr || r < ql) return 0;
      if(1 >= ql && r <= qr) {
        return tree[on];
      int mid = (1+r) >> 1;
```

```
return _query(ql, qr, l, mid, L[on]) + _query(ql, qr, mid+1, r,
          R[on]);
  public:
    PSEGTREE (vector<int> &v) {
      tree = new int[1123456];
      L = new int[1123456];
      R = new int[1123456];
      build(v);
    void build(vector<int> &v) {
     t = 0, z = 0;
     sz = v.size();
     head[0] = 0;
      _build(0, sz-1, 0, v);
    void upd(int pos, int val, int idx) {
      head[++t] = \_upd(pos, pos, val, 0, sz-1, head[idx]);
    int query(int 1, int r, int idx){
      return _query(l, r, 0, sz-1, head[idx]);
};
```

2.6 Treap

```
typedef struct item * pitem;
struct item {
        int prior, value, cnt;
        bool rev;
        pitem 1, r;
};
int cnt (pitem it) { return it ? it->cnt : 0; };
void upd_cnt (pitem it) {
        if (it) it->cnt = cnt(it->1) + cnt(it->r) + 1;
void push (pitem it) {
        if (it && it->rev) {
               it->rev = false;
                swap (it->1, it->r);
                if (it->1) it->1->rev ^= true;
                if (it->r) it->r->rev ^= true;
void merge (pitem & t, pitem l, pitem r) {
        push (1), push (r);
        if (!1 || !r) t = 1 ? 1 : r;
        else if (l->prior > r->prior)
                merge (1->r, 1->r, r), t = 1;
        else
                merge (r->1, 1, r->1), t = r;
        upd_cnt (t);
```

```
void split (pitem t, pitem & l, pitem & r, int key) {
        if (!t) return void( l = r = 0 );
        push (t);
        int cur_key = cnt(t->1);
        if (kev <= cur kev)</pre>
                split (t->1, 1, t->1, key), r = t;
                split (t->r, t->r, r, key - (1 + cnt(t->1))), l = t;
        upd_cnt (t);
void reverse (pitem t, int 1, int r) {
       pitem t1, t2, t3;
        split (t, t1, t2, 1);
        split (t2, t2, t3, r-1+1);
        t2->rev ^= true;
        merge (t, t1, t2);
        merge (t, t, t3);
pitem unite (pitem l, pitem r) {
        if (!l || !r) return l ? l : r;
        if (l->prior < r->prior) swap (l, r);
        pitem lt, rt;
        split (r, 1->key, lt, rt);
        1 -> 1 = unite (1 -> 1, 1t);
        1->r = unite (1->r, rt);
        return 1;
```

2.7 Sparse Table

```
template < class Info t>
class SparseTable {
private:
  vector<int> log2;
  vector<vector<Info_t>> table;
  Info_t merge(Info_t &a, Info_t &b) {
public:
  SparseTable(int n, vector<Info t> v) {
   log2.resize(n + 1);
    log2[1] = 0;
    for (int i = 2; i <= n; i++) {
      log2[i] = log2[i >> 1] + 1;
    table.resize(n + 1);
    for (int i = 0; i < n; i++) {</pre>
      table[i].resize(log2[n] + 1);
    for (int i = 0; i < n; i++) {
      table[i][0] = v[i];
    for (int i = 0; i < log2[n]; i++) {
      for (int j = 0; j < n; j++) {
        if (j + (1 << i) >= n) break;
```

```
table[j][i + 1] = merge(table[j][i], table[j + (1 << i)][i]);
}

int get(int 1, int r) {
  int k = log2[r - 1 + 1];
  return merge(table[l][k], table[r - (1 << k) + 1][k]);
}
};</pre>
```

2.8 Policy Based Structures

2.9 Color Updates Structure

```
struct range {
 int 1, r;
 int v;
 range(int 1 = 0, int r = 0, int v = 0) : l(1), r(r), v(v) {}
 bool operator < (const range &a) const {
    return 1 < a.1;
};
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
 vector<range> ans;
 if(1 >= r) return ans;
 auto it = ranges.lower_bound(1);
 if(it != ranges.begin()) {
   if(it->r>1) {
      auto cur = *it;
     ranges.erase(it);
     ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
```

```
it--;
if(it->r > r) {
    auto cur = *it;
    ranges.erase(it);
    ranges.insert(range(cur.l, r, cur.v));
    ranges.insert(range(r, cur.r, cur.v));
}

for(it = ranges.lower_bound(l); it != ranges.end() && it->l < r; it
    ++) {
    ans.push_back(*it);
}
ranges.erase(ranges.lower_bound(l), ranges.lower_bound(r));
ranges.insert(range(l, r, v));
return ans;
}

int query(int v) { // Substituir -1 por flag para quando nao houver
    resposta
    auto it = ranges.upper_bound(v);
if(it == ranges.begin()) {
    return -1;
}
it--;
return it->r >= v ? it->v : -1;
}
```

2.10 Centroid Decomposition

```
//Centroid decomposition1
void dfsSize(int v, int pa) {
  sz[v] = 1;
  for(int u : adj[v]) {
    if (u == pa || rem[u]) continue;
    dfsSize(u, v);
    sz[v] += sz[u];
int getCentroid(int v, int pa, int tam) {
  for(int u : adj[v]) {
    if (u == pa || rem[u]) continue;
    if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void decompose(int v, int pa = -1) {
  //cout << v << ' ' << pa << '\n';
  dfsSize(v, pa);
  int c = getCentroid(v, pa, sz[v]);
  //cout << c << '\n':
  par[c] = pa;
  rem[c] = 1;
  for(int u : adj[c]) {
    if (!rem[u] && u != pa) decompose(u, c);
  adj[c].clear();
```

```
void dfsSize(int v, int par) {
  sz[v] = 1;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   dfsSize(u, v);
   sz[v] += sz[u];
int getCentroid(int v, int par, int tam) {
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void setDis(int v, int par, int nv, int d) {
  dis[v][nv] = d;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   setDis(u, v, nv, d + 1);
void decompose(int v, int par, int nv) {
  dfsSize(v, par);
  int c = getCentroid(v, par, sz[v]);
  ct[c] = par;
  removed[c] = 1;
  setDis(c, par, nv, 0);
  for(int u : adj[c]) {
   if (!removed[u]) {
      decompose(u, c, nv + 1);
```

2.11 Li Chao Tree

//Centroid decomposition2

```
// by luucasv
typedef long long T;
const T INF = le18, EPS = 1;
const int BUFFER_SIZE = le4;

struct Line {
   T m, b;

   Line(T m = 0, T b = INF): m(m), b(b) {}
   T apply(T x) { return x * m + b; }
};

struct Node {
   Node *left, *right;
   Line line;
   Node(): left(NULL), right(NULL) {}
```

```
};
struct LiChaoTree {
 Node *root, buffer[BUFFER_SIZE];
 T min_value, max_value;
  int buffer pointer;
  LiChaoTree (T min_value, T max_value): min_value (min_value),
      max_value(max_value + 1) { clear(); }
  void clear() { buffer_pointer = 0; root = newNode(); }
  void insert_line(T m, T b) { update(root, min_value, max_value, Line
  T eval(T x) { return query(root, min_value, max_value, x); }
  void update(Node *cur, T l, T r, Line line) {
    T m = 1 + (r - 1) / 2;
    bool left = line.apply(1) < cur->line.apply(1);
    bool mid = line.apply(m) < cur->line.apply(m);
    bool right = line.apply(r) < cur->line.apply(r);
    if (mid) {
      swap(cur->line, line);
    if (r - 1 <= EPS) return;</pre>
    if (left == right) return;
    if (mid != left) {
      if (cur->left == NULL) cur->left = newNode();
      update(cur->left, 1, m, line);
    } else {
      if (cur->right == NULL) cur->right = newNode();
      update(cur->right, m, r, line);
  T query(Node *cur, T l, T r, T x) {
    if (cur == NULL) return INF;
    if (r - 1 <= EPS) {
      return cur->line.apply(x);
    T m = 1 + (r - 1) / 2;
    T ans:
    if (x < m) {
      ans = query(cur->left, 1, m, x);
      ans = query(cur->right, m, r, x);
    return min(ans, cur->line.apply(x));
  Node* newNode() {
      buffer[buffer pointer] = Node();
      return &buffer[buffer_pointer++];
};
```

3 Graph Algorithms

3.1 Dinic Max Flow

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
```

```
int copy_adj[ms], fila[ms], level[ms];
void clear() { // Lembrar de chamar no main
 memset(adj, -1, sizeof adj);
 z = 0;
void add(int u, int v, int k) {
 to[z] = v;
  ant[z] = adj[u];
 wt[z] = k;
  adj[u] = z++;
  swap(u, v);
 to[z] = v;
 ant[z] = adj[u];
 wt[z] = 0; // Lembrar de colocar = 0
  adj[u] = z++;
int bfs(int source, int sink) {
 memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
 while(front < size) {</pre>
  v = fila[front++];
  for(int i = adj[v]; i != -1; i = ant[i]) {
    if(wt[i] && level[to[i]] == -1) {
    level[to[i]] = level[v] + 1;
    fila[size++] = to[i];
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
  if(v == sink) return flow;
  int f;
  for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
  if(wt[i] && level[to[i]] == level[v] + 1 &&
    (f = dfs(to[i], sink, min(flow, wt[i])))) {
    wt[i] -= f;
    wt[i ^ 1] += f;
    return f;
  return 0;
int maxflow(int source, int sink) {
  int ret = 0, flow;
  while(bfs(source, sink)) {
 memcpy(copy_adj, adj, sizeof adj);
  while((flow = dfs(source, sink, 1 << 30))) {</pre>
    ret += flow:
  return ret;
```

3.2 Euler Path and Circuit

```
int pathV[me], szV, del[me], pathE, szE;
int adj[ms], to[me], ant[me], wt[me], z, n;

// Funcao de add e clear no dinic

void eulerPath(int u) {
  for(int i = adj[u]; ~i; i = ant[u]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE[szE++] = i;
  }
  pathV[szV++] = u;
}
```

3.3 Articulation Points/Bridges/Biconnected Components

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], z, n;
int idx[ms], bc[me], ind, nbc, child, st[me], top;
// Funcao de add e clear no dinic
void generateBc(int edge) {
  while(st[--top] != edge) {
    bc[st[top]] = nbc;
  bc[edge] = nbc++;
int dfs(int v, int par = -1) {
  int low = idx[v] = ind++;
  for(int i = adj[v]; i > -1; i = ant[i]) {
    if(idx[to[i]] == -1) {
      if(par == -1) child++;
      st[top++] = i;
      int temp = dfs(to[i], v);
      if(par == -1 && child > 1 || ~par && temp >= idx[v]) generateBc(
          <u>i</u>);
      if(temp >= idx[v]) art[v] = true;
      if(temp > idx[v]) bridge[i] = true;
      low = min(low, temp);
    } else if(to[i] != par && idx[to[i]] < low) {</pre>
      low = idx[to[i]];
      st[top++] = i;
  return low:
void biconnected() {
  ind = 0;
  nbc = 0;
  top = -1;
  memset (idx, -1, sizeof idx);
```

```
memset(art, 0, sizeof art);
memset(bridge, 0, sizeof bridge);
for(int i = 0; i < n; i++) if(idx[i] == -1) {
  child = 0;
  dfs(i);
}</pre>
```

3.4 SCC - Strongly Connected Components / 2SAT

```
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st:
int dfs(int u) {
  if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u):
  for(int v : g[u]) {
   low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    while(st.top() != u) {
      int v = st.top();
      idx[v] = 0;
      low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat() {
 memset (idx, -1, sizeof idx);
 z = 1; ncomp = 0;
  for (int i = 0; i < n; i++) dfs(i);
  for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
  return true;
// Operacoes comuns de 2-sat
// v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

3.5 LCA - Lowest Common Ancestor

```
int par[ms][mlg+1], lvl[ms];
vector<int> g[ms];
```

```
void dfs(int v, int p, int 1 = 0) { // chamar como dfs(root, root)
    lvl[v] = 1;
    par[v][0] = p;
    for(int k = 1; k <= mlg; k++) {
        par[v][k] = par[par[v][k-1]][k-1];
    }
    for(int u : g[v]) {
        if(u != p) dfs(u, v, 1 + 1);
    }
}

int lca(int a, int b) {
    if(lvl[b] > lvl[a]) swap(a, b);
    for(int i = mlg; i >= 0; i--) {
        if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
    }
    if(a == b) return a;
    for(int i = mlg; i >= 0; i--) {
        if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
    }
    return par[a][0];
}
```

3.6 Heavy Light Decomposition

```
// HLD + Euler Tour by adamant
int sz[ms], par[ms], h[ms];
int t, in[ms], out[ms], rin[ms], nxt[ms];
void dfs_sz(int v = 0, int p = -1) {
 sz[v] = 1;
  for(int i = 0; i < q[v].size(); i++){}
   int &u = q[v][i];
    if(u == p) continue;
   h[u] = h[v]+1, par[u] = v;
    dfs_sz(u, v);
    sz[v] += sz[u];
    if(g[v][0] == p || sz[u] > sz[g[v][0]]) {
      swap(u, q[v][0]);
void dfs hld(int v = 0, int p = -1) {
  in[v] = t++;
  rin[in[v]] = v;
  for(int i = 0; i < g[v].size(); i++) {</pre>
   int &u = q[v][i];
   if(u == p) continue;
   nxt[u] = u == q[v][0] ? nxt[v] : u;
    dfs_hld(u, v);
  out[v] = t;
int up(int v) {
  return (nxt[v] != v) ? nxt[v] : (~par[v] ? par[v] : v);
```

```
int getLCA(int a, int b) {
    while(nxt[a] != nxt[b]) {
        if(h[a] == 0 || h[up(a)] < h[up(b)]) swap(a, b);
        a = up(a);
    }
    return h[a] < h[b] ? a : b;
}

int queryUp(int a, int p = 0) {
    int ans = 0;
    while(nxt[a] != nxt[p]) {
        ans += query(in[nxt[a]], in[a]);
        a = par[nxt[a]];
    }
    ans += query(in[p], in[a]);
    return ans;
}

int queryPath(int u, int v) {
    int lca = getLCA(u, v);
    return queryUp(u, lca) + queryUp(v, lca) - queryUp(lca, lca);
}</pre>
```

3.7 Sack

```
void solve(int a, int p, bool f) {
  int big = -1:
  for(auto &b : adj[a]){
    if(b != p \&\& (big == -1 || en[b] - st[b] > en[big] - st[big]))
      biq = b;
  for(auto &b : adj[a]){
   if(b == p || b == big) continue;
    solve(b, a, 0);
  if("big) solve(big, a, 1);
  add(cnt[v[a]], -1);
  cnt[v[a]]++;
  add(cnt[v[a]], +1);
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    for(int i = st[b]; i < en[b]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]++;
      add(cnt[ett[i]], +1);
  for(auto &q : Q[a]){
    ans[q.first] = query(mx-1)-query(q.second-1);
  if(!f){
    for(int i = st[a]; i < en[a]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]--;
      add(cnt[ett[i]], +1);
```

3.8 Min Cost Max Flow

```
template <class flow_t, class cost_t>
class MinCostMaxFlow {
private:
  typedef pair<cost_t, int> ii;
  struct Edge {
    int to;
    flow t cap:
    cost_t cost;
    Edge(int to, flow_t cap, cost_t cost) : to(to), cap(cap), cost(
        cost) {}
  };
  int n;
  vector<vector<int>> adj;
  vector<Edge> edges;
  vector<cost_t> dis;
  vector<int> prev, id prev;
        vector<int> q;
        vector<bool> inq;
  pair<flow_t, cost_t> spfa(int src, int sink) {
    fill(dis.begin(), dis.end(), int(1e9)); //cost_t inf
    fill(prev.begin(), prev.end(), -1);
    fill(ing.begin(), ing.end(), false);
    q.clear():
    q.push_back(src);
    inq[src] = true;
    dis[src] = 0:
    for(int on = 0; on < (int) q.size(); on++) {
        int cur = q[on];
        ing[cur] = false;
        for(auto id : adj[cur]) {
                if (edges[id].cap == 0) continue;
                int to = edges[id].to;
                if (dis[to] > dis[cur] + edges[id].cost) {
                        prev[to] = cur;
                        id prev[to] = id;
                        dis[to] = dis[cur] + edges[id].cost;
                        if (!inq[to]) {
                                q.push_back(to);
                                inq[to] = true;
    flow_t mn = flow_t(1e9);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
     int id = id_prev[cur];
      mn = min(mn, edges[id].cap);
    if (mn == flow_t(1e9) || mn == 0) return make_pair(0, 0);
    pair<flow_t, cost_t> ans(mn, 0);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id_prev[cur];
      edges[id].cap -= mn;
      edges[id ^ 1].cap += mn;
      ans.second += mn * edges[id].cost;
```

```
return ans;
public:
  MinCostMaxFlow(int a = 0) {
    n = a;
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void init(int a) {
    n = a;
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void add(int from, int to, flow_t cap, cost_t cost) {
    adj[from].push_back(int(edges.size()));
                edges.push_back(Edge(to, cap, cost));
                adj[to].push_back(int(edges.size()));
                edges.push_back(Edge(from, 0, -cost));
  pair<flow_t, cost_t> maxflow(int src, int sink) {
    pair<flow_t, cost_t> ans(0, 0), got;
    while((got = spfa(src, sink)).first > 0) {
      ans.first += got.first;
      ans.second += got.second;
    return ans;
};
```

3.9 Hungarian Algorithm - Maximum Cost Matching

```
const int inf = 0x3f3f3f3f;

int n, w[ms][ms], maxm;
int lx[ms], ly[ms], xy[ms], yx[ms];
int slack[ms], slackx[ms], prev[ms];
bool S[ms], T[ms];

void init_labels() {
    memset(lx, 0, sizeof lx); memset(ly, 0, sizeof ly);
    for(int x = 0; x < n; x++) for(int y = 0; y < n; y++) {
        lx[x] = max(lx[x], cos[x][y]);
    }
}

void updateLabels() {
    int delta = inf;
    for(int y = 0; y < n; y++) if(!T[y]) delta = min(delta, slack[y]);
    for(int x = 0; x < n; x++) if(S[x]) lx[x] -= delta;
    for(int y = 0; y < n; y++) if(T[y]) slack[y] -= delta;
    for(int y = 0; y < n; y++) if(!T[y]) slack[y] -= delta;</pre>
```

```
slack[y] = lx[x] + ly[y] - cost[x][y];
    slackx[y] = x;
void augment() {
 if (maxm == n) return;
  int x, y, root;
  int q[ms], wr = 0, rd = 0;
 memset(S, 0, sizeof S); memset(T, 0, sizeof T);
  memset (prev, -1, sizeof prev);
  for (int x = 0; x < n; x++) if (xy[x] == -1) {
    q[wr++] = root = x;
    prev[x] = -2;
    S[x] = 1;
    break;
  for (int y = 0; y < n; y++) {
    slack[y] = lx[root] + ly[y] - w[root][y];
    slackx[y] = root;
  while(true) {
    while(rd < wr) {</pre>
      x = q[rd++];
      for (y = 0; y < n; y++) if (w[x][y] == 1x[x] + 1y[y] && !T[y]) {
        if(yx[y] == -1) break;
        T[y] = 1;
        q[wr++] = yx[y];
        addTree(yx[y], x);
      if(y < n) break;</pre>
    if(y < n) break;</pre>
    updateLabels();
    wr = rd = 0;
    for(y = 0; y < n; y++) if(!T[y] && !slack[y]) {
      if(yx[y] == -1)
        x = slackx[y];
        break;
      } else {
        T[y] = true;
        if(!S[yx[y]])
          q[wr++] = yx[y];
          addTree(yx[y], slackx[y]);
    if(y < n) break;</pre>
  if(y < n) {
    for (int cx = x, cy = y, ty; cx != -2; cx = prev[cx], cy = ty) {
      ty = xy[cx];
      yx[cy] = cx;
      xy[cx] = cy;
```

for(int y = 0; y < n; y++) if(lx[x] + ly[y] - w[x][y] < slack[y]) {

void addTree(int x, int prevx) {

S[x] = 1; prev[x] = prevx;

```
augment();
}

int hungarian() {
  int ans = 0; maxm = 0;
  memset(xy, -1, sizeof xy); memset(yx, -1, sizeof yx);
  initLabels(); augment();
  for(int x = 0; x < n; x++) ans += w[x][xy[x]];
  return ans;
}</pre>
```

4 Math

4.1 Discrete Logarithm

```
ll discreteLog(ll a, ll b, ll m) {
  // a^ans == b \mod m
  // ou -1 se nao existir
  11 \text{ cur} = a, \text{ on } = 1;
  for (int i = 0; i < 100; i++) {
    cur = cur * a % m;
  while (on \star on \leq m) {
    cur = cur * a % m;
 map<11, 11> position;
  for (11 i = 0, x = 1; i * i <= m; i++) {
    position[x] = i * on;
    x = x * cur % m;
  for (ll i = 0; i \le on + 20; i++) {
    if(position.count(b)) {
      return position[b] - i;
    b = b * a % m;
  return -1;
```

4.2 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
        swap(u, oldu);
```

```
swap(v, oldv);
}
return make_pair(oldu, oldv);
```

4.3 Matrix Fast Exponentiation

```
const 11 \mod = 1e9+7;
const int m = 2; // size of matrix
struct Matrix {
  11 mat[m][m];
  Matrix operator * (const Matrix &p) {
    Matrix ans;
    for(int i = 0; i < m; i++)</pre>
      for (int j = 0; j < m; j++)
        for (int k = ans.mat[i][j] = 0; k < m; k++)
          ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k][j]) %
    return ans;
};
Matrix fExp(Matrix a, ll b) {
 Matrix ans;
  for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
    ans.mat[i][j] = i == j;
  while(b) {
    if(b \& 1) ans = ans * a;
    a = a * a;
    b >>= 1;
  return ans;
```

4.4 FFT - Fast Fourier Transform

```
typedef double ld;
const ld PI = acos(-1);
struct Complex {
       ld real, imag;
        Complex conj() { return Complex(real, -imag); }
        Complex (ld a = 0, ld b = 0) : real(a), imag(b) {}
        Complex operator + (const Complex &o) const { return Complex(
            real + o.real, imag + o.imag); }
        Complex operator - (const Complex &o) const { return Complex(
            real - o.real, imag - o.imag); }
        Complex operator * (const Complex &o) const { return Complex(
            real * o.real - imag * o.imag, real * o.imag + imag * o.
            real); }
        Complex operator / (ld o) const { return Complex(real / o,
            imag / o); }
       void operator *= (Complex o) { *this = *this * o; }
        void operator /= (ld o) { real /= o, imag /= o; }
};
```

```
typedef std::vector<Complex> CVector;
                                                                                               a[i] = Complex(a[i].real, b[i].real);
const int ms = 1 \ll 22;
                                                                                      auto c = fft(a);
                                                                                      for (int i = 0; i < n; i++) {
int bits[ms];
Complex root[ms];
void initFFT() {
        root[1] = Complex(1);
        for(int len = 2; len < ms; len += len) {</pre>
                Complex z(cos(PI / len), sin(PI / len));
                for(int i = len / 2; i < len; i++) {</pre>
                                                                                      int n = (int) a.size();
                        root[2 * i] = root[i];
                                                                                      for(int i = 0; i < n; i++) {</pre>
                        root[2 * i + 1] = root[i] * z;
                                                                                      a = fft(a, true);
                                                                                      for(int i = 0; i < n; i++) {</pre>
void pre(int n) {
        int LOG = 0;
        while (1 << (LOG + 1) < n) {
                LOG++;
        for (int i = 1; i < n; i++) {
                bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
                                                                                      int n = (int) a.size();
                                                                                      CVector C[4];
                                                                                      for (int i = 0; i < 4; i++) {
CVector fft(CVector a, bool inv = false) {
                                                                                              C[i].resize(n);
        int n = a.size();
        pre(n);
                                                                                      for (int i = 0; i < n; i++) {
        if(inv) {
                std::reverse(a.begin() + 1, a.end());
        for (int i = 0; i < n; i++) {
                int to = bits[i];
                if(to > i) {
                                                                                      fft2in1(C[0], C[1]);
                        std::swap(a[to], a[i]);
                                                                                      fft2in1(C[2], C[3]);
                                                                                      for (int i = 0; i < n; i++) {
                                                                                              // 00, 01, 10, 11
        for(int len = 1; len < n; len *= 2) {</pre>
                                                                                              Complex cur[4];
                for (int i = 0; i < n; i += 2 * len) {
                         for (int j = 0; j < len; j++) {
                                 Complex u = a[i + j], v = a[i + j +
                                    len] * root[len + j];
                                 a[i + j] = u + v;
                                                                                      ifft2in1(C[0], C[1]);
                                 a[i + j + len] = u - v;
                                                                                      ifft2in1(C[2], C[3]);
                                                                                      for (int i = 0; i < n; i++) {
        if(inv) {
                for (int i = 0; i < n; i++)
                      a[i] /= n;
                                                                                                   0.5) * cut;
        return a:
                                                                                      return ans;
void fft2in1(CVector &a, CVector &b) {
        int n = (int) a.size();
        for (int i = 0; i < n; i++) {
```

```
a[i] = (c[i] + c[(n-i) % n].conj()) * Complex(0.5, 0);
                b[i] = (c[i] - c[(n-i) % n].conj()) * Complex(0, -0.5)
void ifft2in1(CVector &a, CVector &b) {
                a[i] = a[i] + b[i] * Complex(0, 1);
               b[i] = Complex(a[i].imag, 0);
                a[i] = Complex(a[i].real, 0);
std::vector<long long> mod mul(const std::vector<long long> &a, const
    std::vector<long long> &b, long long cut = 1 << 15) {</pre>
        // TODO cut memory here by /2
                C[0][i] = a[i] % cut;
                C[1][i] = a[i] / cut;
                C[2][i] = b[i] % cut;
                C[3][i] = b[i] / cut;
                for (int j = 0; j < 4; j++) cur[j] = C[j/2+2][i] * C[j
                for(int j = 0; j < 4; j++) C[j][i] = cur[j];</pre>
        std::vector<long long> ans(n, 0);
                // if there are negative values, care with rounding
                ans[i] += (long long) (C[0][i].real + 0.5);
                ans[i] += (long long) (C[1][i].real + C[2][i].real +
                ans[i] += (long long) (C[3][i].real + 0.5) * cut * cut
std::vector<int> mul(const std::vector<int> &a, const std::vector<int>
```

```
&b) {
   int n = 1:
  while (n - 1 < (int) a.size() + (int) b.size() - 2) n += n;
  CVector poly(n);
  for (int i = 0; i < n; i++) {
           if(i < (int) a.size()) {
                   poly[i].real = a[i];
           if(i < (int) b.size()) {
                   poly[i].imag = b[i];
  poly = fft(poly);
  for(int i = 0; i < n; i++) {</pre>
           poly[i] *= poly[i];
  poly = fft(poly, true);
   std::vector<int> c(n, 0);
  for(int i = 0; i < n; i++) {</pre>
           c[i] = (int) (poly[i].imag / 2 + 0.5);
  while (c.size() > 0 && c.back() == 0) c.pop back();
  return c;
```

4.5 NTT - Number Theoretic Transform

```
long long int mod = (11911 << 23) + 1, c root = 3;</pre>
namespace NTT {
  typedef long long int 11;
  11 fexp(ll base, ll e) {
   11 \text{ ans} = 1:
    while(e > 0) {
      if (e & 1) ans = ans * base % mod;
      base = base * base % mod;
      e >>= 1;
    return ans;
  11 inv mod(ll base) {
    return fexp(base, mod - 2);
  void ntt(vector<ll>& a, bool inv) {
    int n = (int) a.size();
    if (n == 1) return;
    for (int i = 0, j = 0; i < n; i++) {
      if (i > j) {
        swap(a[i], a[j]);
      for(int 1 = n / 2; (j = 1) < 1; 1 >>= 1);
    for(int sz = 1; sz < n; sz <<= 1) {</pre>
      11 delta = fexp(c_root, (mod - 1) / (2 * sz)); //delta = w_2sz
      if (inv) {
```

```
delta = inv_mod(delta);
      for (int i = 0; i < n; i += 2 * sz) {
        11 w = 1;
        for (int j = 0; j < sz; j++) {
          11 u = a[i + j], v = w * a[i + j + sz] % mod;
          a[i + j] = (u + v + mod) % mod;
          a[i + j] = (a[i + j] + mod) % mod;
          a[i + j + sz] = (u - v + mod) % mod;
          a[i + j + sz] = (a[i + j + sz] + mod) % mod;
          w = w * delta % mod;
    if (inv) {
      ll inv_n = inv_mod(n);
      for(int i = 0; i < n; i++) {</pre>
        a[i] = a[i] * inv_n % mod;
    for (int i = 0; i < n; i++) {
      a[i] %= mod;
      a[i] = (a[i] + mod) % mod;
  void multiply(vector<ll> &a, vector<ll> &b, vector<ll> &ans) {
    int lim = (int) max(a.size(), b.size());
    int n = 1;
    while (n < lim) n <<= 1;
    n <<= 1;
    a.resize(n);
    b.resize(n);
    ans.resize(n);
    ntt(a, false);
    ntt(b, false);
    for (int i = 0; i < n; i++) {
      ans[i] = a[i] * b[i] % mod;
    ntt(ans, true);
} ;
```

4.6 Miller and Rho

```
typedef long long int l1;
bool overflow(l1 a, l1 b) {
   return b && (a >= (l1l << 62) / b);
}

ll add(l1 a, l1 b, l1 md) {
   return (a + b) % md;
}

ll mul(l1 a, l1 b, l1 md) {
   if (!overflow(a, b)) return (a * b) % md;
   ll ans = 0;
   while(b) {
    if (b & 1) ans = add(ans, a, md);
}</pre>
```

```
a = add(a, a, md);
    b >>= 1:
  return ans;
11 fexp(ll a, ll e, ll md) {
 ll ans = 1;
  while(e) {
    if (e & 1) ans = mul(ans, a, md);
   a = mul(a, a, md);
   e >>= 1;
  return ans;
11 my_rand() {
 ll ans = rand();
 ans = (ans << 31) \mid rand();
 return ans;
11 gcd(ll a, ll b) {
  while(b) {
   11 t = a % b;
   a = b;
   b = t;
  return a;
bool miller(ll p, int iteracao) {
 if(p < 2) return 0;
 if(p % 2 == 0) return (p == 2);
 11 s = p - 1;
  while(s % 2 == 0) s >>= 1;
  for(int i = 0; i < iteracao; i++) {</pre>
    11 a = rand() % (p - 1) + 1, temp = s;
    11 \mod = fexp(a, temp, p);
    while (temp != p - 1 && mod != 1 && mod != p - 1) {
     mod = mul(mod, mod, p);
      temp <<= 1:
    if(mod != p - 1 && temp % 2 == 0) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 || miller(n, 10)) return n;
  if (n % 2 == 0) return 2;
  while(1) {
   11 x = my_rand() % (n - 2) + 2, y = x;
    11 c = 0, cur = 1;
    while (c == 0) {
      c = my_rand() % (n - 2) + 1;
    while(cur == 1) {
     x = add(mul(x, x, n), c, n);
      y = add(mul(y, y, n), c, n);
      y = add(mul(y, y, n), c, n);
```

```
cur = gcd((x >= y ? x - y : y - x), n);
}
if (cur != n) return cur;
}
```

4.7 Determinant using Mod

```
// by zchao1995
// Determinante com coordenadas inteiras usando Mod
11 mat[ms][ms];
11 det (int n) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      mat[i][j] %= mod;
  ll res = 1;
  for (int i = 0; i < n; i++) {
    if (!mat[i][i])
      bool flag = false;
      for (int j = i + 1; j < n; j++) {
        if (mat[j][i]) {
          flag = true;
          for (int k = i; k < n; k++) {
            swap (mat[i][k], mat[j][k]);
          res = -res;
          break;
      if (!flag) {
        return 0;
    for (int j = i + 1; j < n; j++) {
      while (mat[j][i]) {
        11 t = mat[i][i] / mat[j][i];
        for (int k = i; k < n; k++) {
          mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
          swap (mat[i][k], mat[j][k]);
        res = -res;
    res = (res * mat[i][i]) % mod;
  return (res + mod) % mod;
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
                                                                                 double b, double c, double d) {
                                                                                 return abs(a * x + b * y + c * z - d) / sgrt(a * a + b * b + c * c
struct PT {
                                                                                     );
        double x, v;
        PT (double x = 0, double y = 0) : x(x), y(y) {}
        PT operator + (const PT &p) { return PT(x + p.x, y + p.y); }
                                                                             // Determina se as linhas a - b e c - d sao paralelas ou colineares
        PT operator - (const PT &p) { return PT(x - p.x, y - p.y); }
                                                                             bool linesParallel(PT a, PT b, PT c, PT d) {
        PT operator * (double c) { return PT(x * c, y * c); }
                                                                                 return abs(cross(b - a, c - d)) < eps;</pre>
        PT operator / (double c) { return PT(x / c, y / c); }
        bool operator <(const PT &p) const {</pre>
                                                                             bool linesCollinear(PT a, PT b, PT c, PT d) {
                if(fabs(x - p.x) >= eps) return x < p.x;</pre>
                                                                                 return linesParallel(a, b, c, d) && abs(cross(a - b, a - c)) < eps
                return fabs(y - p.y) \Rightarrow eps && y < p.y;
                                                                                      && abs(cross(c - d, c - a)) < eps;
        bool operator == (const PT &p) const {
                return fabs (x - p.x) < eps && fabs (y - p.y) < eps;
                                                                             // Determina se o segmento a - b intersecta com o segmento c - d
                                                                             bool segmentsIntersect(PT a, PT b, PT c, PT d) {
};
                                                                                 if(linesCollinear(a, b, c, d)) {
double dot(PT p, PT g) { return p.x * g.x + p.v * g.v; }
                                                                                    if(dist2(a, c) < eps | | dist2(a, d) < eps | | dist2(b, c) < eps | 
                                                                                          || dist2(b, d) < eps) return true;</pre>
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double dist(PT p, PT q) {return hypot(p.x-q.x, p.y-q.y); }
                                                                                    if(dot(c - a, c - b) > 0 & dot(d - a, d - b) > 0 & dot(c - b)
                                                                                         d - b > 0 return false;
double cross(PT p, PT q) { return p.x * q.v - p.v * q.x; }
                                                                                     return true:
// Rotaciona o ponto CCW ou CW ao redor da origem
PT rotateCCW90(PT p) { return PT(-p.y, p.x); }
                                                                                 if(cross(d - a, b - a) * cross(c - a, b - a) > 0) return false;
PT rotateCW90(PT p) { return PT(p.y, -p.x); }
                                                                                 if(cross(a - c, d - c) * cross(b - c, d - c) > 0) return false;
PT rotateCCW(PT p, double t) {
                                                                                 return true;
   return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t)
                                                                             // Calcula a intersecao entre as retas a - b e c - d assumindo que uma
                                                                                  unica intersecao existe
// Projeta ponto c na linha a - b assumindo a != b
                                                                            // Para intersecao de segmentos, cheque primeiro se os segmentos se
PT projectPointLine(PT a, PT b, PT c) {
                                                                                 intersectam e que nao paralelos
   return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
                                                                            PT computeLineIntersection(PT a, PT b, PT c, PT d) {
                                                                                b = b - a; d = c - d; c = c - a;
                                                                                 assert(cross(b, d) != 0); // garante que as retas nao sao
// Projeta ponto c no segmento a - b
                                                                                     paralelas, remover pra evitar tle
PT projectPointSegment(PT a, PT b, PT c) {
                                                                                 return a + b * cross(c, d) / cross(b, d);
   double r = dot(b - a, b - a);
   if(abs(r) < eps) return a;</pre>
   r = dot(c - a, b - a) / r;
                                                                            // Calcula centro do circulo dado tres pontos
   if(r < 0) return a;</pre>
                                                                             PT computeCircleCenter(PT a, PT b, PT c) {
   if(r > 1) return b;
                                                                                b = (a + b) / 2;
   return a + (b - a) * r;
                                                                                 c = (a + c) / 2;
                                                                                 return computeLineIntersection(b, b + rotateCW90(a - b), c, c +
                                                                                     rotateCW90(a - c));
// Calcula distancia entre o ponto c e o segmento a - b
double distancePointSegment(PT a, PT b, PT c) {
   return dist(c, projectPointSegment(a, b, c));
                                                                             // Determina se o ponto p esta dentro do triangulo (a, b, c)
                                                                             bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
                                                                              if(cross(b-a, c-b) < 0) swap(a, b);
// Determina se o ponto c esta em um segmento a - b
bool ptInSegment(PT a, PT b, PT c) {
                                                                              11 x = cross(b-a, p-b);
 bool x = min(a.x, b.x) <= c.x && c.x <= max(a.x, b.x);
                                                                               11 y = cross(c-b, p-c);
 bool y = min(a.v, b.v) \le c.v \le c.v \le max(a.v, b.v);
                                                                               11 z = cross(a-c, p-a);
  return x && y && (cross((b-a),(c-a)) == 0); // testar com eps se for
                                                                              if (x > 0 \& \& v > 0 \& \& z > 0) return true;
       double
                                                                               if(!x) return ptInSegment(a,b,p);
                                                                               if(!y) return ptInSegment(b,c,p);
                                                                               if(!z) return ptInSegment(c,a,p);
                                                                              return false;
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz =
double distancePointPlane(double x, double y, double z, double a,
```

```
// Determina se o ponto esta num poligono convexo em O(lgn)
bool pointInConvexPolygon(const vector<PT> &p, PT q) {
 PT pivot = p[0];
  int x = 1, y = p.size();
  while (y-x != 1)
    int z = (x+y)/2;
    PT diagonal = pivot - p[z];
    if(cross(p[x] - pivot, q - pivot) * cross(q-pivot, p[z] - pivot)
        >= 0) v = z;
    else x = z;
  return ptInsideTriangle(q, p[x], p[y], pivot);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos
    estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
// Eh possivel converter num teste exato usando inteiros e tomando
    cuidado com a divisao
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p, PT g) {
 bool c = 0;
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    if((p[i].y \le q.y \& q.y < p[j].y || p[j].y \le q.y \& q.y < p[i].y
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
          i].v))
      c = !c;
  return c;
// Determina se o ponto esta na borda do poligno
bool pointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)
    if(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q), q) < i
      return true;
    return false;
// Calcula intersecao da linha a - b com o circulo centrado em c com
    raio r > 0
vector<PT> circleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ans;
 b = b - a;
  a = a - c;
  double x = dot(b, b);
  double y = dot(a, b);
  double z = dot(a, a) - r * r;
  double w = y * y - x * z;
  if (w < -eps) return ans;</pre>
  ans.push_back(c + a + b * (-y + sqrt(w + eps)) / x);
  if (w > eps)
    ans.push_back(c + a + b \star (-y - sqrt(w)) / x);
  return ans:
// Calcula intersecao do circulo centrado em a com raio r e o centrado 5.2 {
m Convex\ Hull}
```

```
em b com raio R
vector<PT> circleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ans;
  double d = sqrt(dist2(a, b));
  if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ans;
  double x = (d * d - R * R + r * r)/(2 * d);
  double y = sqrt(r * r - x * x);
  PT v = (b - a) / d;
  ans.push_back(a + v * x + rotateCCW90(v) * y);
  if (v > 0)
    ans.push_back(a + v * x - RotateCCW90(v) * y);
  return ans:
// Calcula a area ou o centroide de um poligono (possivelmente nao-
    convexo)
// assumindo que as coordenadas estao listada em ordem horaria ou anti
    -horaria
// O centroide eh equivalente a o centro de massa ou centro de
    gravidade
double computeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i + 1) % p.size();
    area += p[i].x * p[j].y - p[j].x * p[i].y;
  return area / 2.0;
double computeArea(const vector<PT> &p) {
  return abs(computeSignedArea(p));
PT computeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poliquo listada em ordem CW ou CCW eh simples (nenhuma
    linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for (int k = i + 1; k < p.size(); k++) {
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == 1 \mid | j == k) continue;
      if (segmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
  return true;
```

```
vector<PT> convexHull(vector<PT> p)) {
  int n = p.size(), k = 0;
  vector<PT> h(2 * n);
  sort(p.begin(), p.end());
  for(int i = 0; i < n; i++) {
    while(k >= 2 && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  for(int i = n - 2, t = k + 1; i >= 0; i--) {
    while(k >= t && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  h.resize(k);
  return h;
}</pre>
```

5.3 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while(k < i && p[k].x < p[i].x - d) {
        ptsInv.erase(swapCoord(p[k++]));
    }
  for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
        it != ptsInv.end() && it->x <= p[i].y + d; it++) {
        d = min(d, dist(p[i] - swapCoord(*it), PT(0, 0)));
    }
    ptsInv.insert(swapCoord(p[i]));
}
return d;
}</pre>
```

5.4 Delaunay Triangulation

```
bool ge(const ll& a, const ll& b) { return a >= b; }
bool le(const ll& a, const ll& b) { return a <= b; }
bool eq(const ll& a, const ll& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a >= b; }
bool lt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }
int sgn(const ll& a) { return a >= 0 ? a ? 1 : 0 : -1; }

struct pt {
    ll x, y;
    pt() { }
    pt(ll _x, ll _y) : x(_x), y(_y) { }
    pt operator-(const pt& p) const {
        return pt(x - p.x, y - p.y);
    }
    ll cross(const pt& p) const {
        return x * p.y - y * p.x;
    }
    ll cross(const pt& a, const pt& b) const {
```

```
return (a - *this).cross(b - *this);
    11 dot(const pt& p) const {
        return x * p.x + y * p.y;
    11 dot (const pt& a, const pt& b) const {
        return (a - *this).dot(b - *this);
    11 sqrLength() const {
        return this->dot(*this);
    bool operator == (const pt& p) const
        return eq(x, p.x) && eq(y, p.y);
};
const pt inf_pt = pt(1e18, 1e18);
struct OuadEdge {
    pt origin;
    QuadEdge* rot = nullptr;
    OuadEdge* onext = nullptr;
    bool used = false;
    OuadEdge* rev() const {
        return rot->rot;
    OuadEdge* lnext() const {
        return rot->rev()->onext->rot;
    QuadEdge* oprev() const {
        return rot->onext->rot;
    pt dest() const {
        return rev()->origin;
};
QuadEdge* make_edge(pt from, pt to) {
    QuadEdge* e1 = new QuadEdge;
    QuadEdge* e2 = new QuadEdge;
    QuadEdge* e3 = new QuadEdge;
    QuadEdge* e4 = new QuadEdge;
    e1->origin = from;
    e2->origin = to;
    e3->origin = e4->origin = inf_pt;
    e1->rot = e3;
    e2 - > rot = e4;
    e3 - > rot = e2;
    e4->rot = e1;
    e1->onext = e1;
    e2->onext = e2;
    e3 \rightarrow onext = e4;
    e4->onext = e3;
    return e1;
void splice(QuadEdge* a, QuadEdge* b) {
    swap(a->onext->rot->onext, b->onext->rot->onext);
    swap(a->onext, b->onext);
```

```
void delete_edge(QuadEdge* e) {
    splice(e, e->oprev());
    splice(e->rev(), e->rev()->oprev());
    delete e->rot;
    delete e->rev()->rot;
    delete e;
    delete e->rev();
QuadEdge* connect (QuadEdge* a, QuadEdge* b) {
    QuadEdge* e = make_edge(a->dest(), b->origin);
    splice(e, a->lnext());
    splice(e->rev(), b);
    return e;
bool left_of(pt p, QuadEdge* e) {
    return gt(p.cross(e->origin, e->dest()), 0);
bool right_of(pt p, QuadEdge* e) {
    return lt(p.cross(e->origin, e->dest()), 0);
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
    return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
           a3 * (b1 * c2 - c1 * b2);
bool in_circle(pt a, pt b, pt c, pt d) {
// If there is __int128, calculate directly.
// Otherwise, calculate angles.
#if defined(__LP64__) || defined(_WIN64)
    __int128 det = -det3<__int128>(b.x, b.y, b.sqrLength(), c.x, c.y,
                                   c.sqrLength(), d.x, d.y, d.
                                        sqrLength());
    det += det3<__int128>(a.x, a.y, a.sqrLength(), c.x, c.y, c.
        sqrLength(), d.x,
                          d.y, d.sqrLength());
    \det -= \det 3 < \inf 128 > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), d.x,
                          d.y, d.sqrLength());
    det += det3 < __int128 > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), c.x,
                          c.y, c.sqrLength());
    return det > 0;
#e1se
    auto ang = [](pt l, pt mid, pt r) {
        ll x = mid.dot(l, r);
        ll v = mid.cross(l, r);
        long double res = atan2((long double)x, (long double)y);
        return res;
    long double kek = ang(a, b, c) + ang(c, d, a) - ang(b, c, d) - ang
        (d, a, b);
    if (kek > 1e-8)
        return true:
    else
        return false:
#endif
```

```
pair<QuadEdge*, QuadEdge*> build_tr(int 1, int r, vector<pt>& p) {
    if (r - 1 + 1 == 2) {
        QuadEdge* res = make_edge(p[l], p[r]);
        return make pair(res, res->rev());
    if (r - 1 + 1 == 3) {
        QuadEdge *a = make\_edge(p[1], p[1 + 1]), *b = make\_edge(p[1 + 1])
            1], p[r]);
        splice(a->rev(), b);
        int sq = sqn(p[1].cross(p[1 + 1], p[r]));
        if (sq == 0)
            return make_pair(a, b->rev());
        QuadEdge* c = connect(b, a);
        if (sq == 1)
            return make_pair(a, b->rev());
        else
            return make pair(c->rev(), c);
    int mid = (1 + r) / 2;
    OuadEdge *ldo, *ldi, *rdo, *rdi;
    tie(ldo, ldi) = build_tr(l, mid, p);
    tie(rdi, rdo) = build tr(mid + 1, r, p);
    while (true) {
        if (left_of(rdi->origin, ldi)) {
            ldi = ldi->lnext();
            continue;
        if (right of(ldi->origin, rdi)) {
            rdi = rdi->rev()->onext;
            continue:
        break:
    QuadEdge* basel = connect(rdi->rev(), ldi);
    auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(),
        basel); };
    if (ldi->origin == ldo->origin)
        ldo = basel->rev();
    if (rdi->origin == rdo->origin)
        rdo = basel;
    while (true) {
        QuadEdge* lcand = basel->rev()->onext;
        if (valid(lcand)) {
            while (in_circle(basel->dest(), basel->origin, lcand->dest
                             lcand->onext->dest())) {
                OuadEdge* t = lcand->onext;
                delete_edge(lcand);
                lcand = t;
        OuadEdge* rcand = basel->oprev();
        if (valid(rcand)) {
            while (in_circle(basel->dest(), basel->origin, rcand->dest
                 (),
                             rcand->oprev()->dest())) {
                OuadEdge* t = rcand->oprev();
                delete_edge(rcand);
                rcand = t;
```

```
if (!valid(lcand) && !valid(rcand))
        if (!valid(lcand) ||
            (valid(rcand) && in circle(lcand->dest(), lcand->origin,
                                        rcand->origin, rcand->dest())))
            basel = connect(rcand, basel->rev());
        else
            basel = connect(basel->rev(), lcand->rev());
    return make_pair(ldo, rdo);
vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
    sort(p.begin(), p.end(), [](const pt& a, const pt& b) {
        return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
   });
   auto res = build_tr(0, (int)p.size() - 1, p);
   QuadEdge* e = res.first;
   vector<QuadEdge*> edges = {e};
   while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))
        e = e->onext;
    auto add = [&p, &e, &edges]() {
        QuadEdge* curr = e;
        do {
            curr->used = true;
            p.push_back(curr->origin);
            edges.push back(curr->rev());
            curr = curr->lnext();
        } while (curr != e);
    };
   add();
   p.clear();
   int kek = 0;
   while (kek < (int)edges.size()) {</pre>
        if (!(e = edges[kek++])->used)
            add();
   vector<tuple<pt, pt, pt>> ans;
    for (int i = 0; i < (int)p.size(); i += 3) {</pre>
        ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
    return ans;
```

5.5 Java Geometry Library

```
import java.util.*;
import java.io.*;
import java.awt.geom.*;
import java.lang.*;
//Lazy Geometry
class AWT{
    static Area makeArea(double[] pts){
        Path2D.Double p = new Path2D.Double();
        p.moveTo(pts[0], pts[1]);
        for(int i = 2; i < pts.length; i+=2){
            p.lineTo(pts[i], pts[i+1]);
        }</pre>
```

```
p.closePath();
  return new Area(p);
static double computePolygonArea(ArrayList<Point2D.Double> points) {
 Point2D.Double[] pts = points.toArray(new Point2D.Double[points.
      size()]);
  double area = 0;
  for (int i = 0; i < pts.length; i++) {</pre>
   int j = (i+1) % pts.length;
    area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
 return Math.abs(area)/2:
static double computeArea(Area area) {
  double totArea = 0;
 PathIterator iter = area.getPathIterator(null);
 ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>()
  while (!iter.isDone()) {
    double[] buffer = new double[6];
    switch (iter.currentSegment(buffer)) {
      case PathIterator.SEG MOVETO:
      case PathIterator.SEG LINETO:
        points.add(new Point2D.Double(buffer[0], buffer[1]));
      case PathIterator.SEG CLOSE:
        totArea += computePolygonArea(points);
        points.clear();
        break;
    iter.next();
  return totArea;
```

6 Dynamic Programming

6.1 Convex Hull Trick

```
typedef long double double_t;
typedef long long int ll;

class HullDynamic {
  public:
    const double_t inf = 1e9;

    struct Line {
        ll m, b;
        double_t start;
        bool is_query;

        Line() {}

        Line(ll _m, ll _b, double_t _start, bool _is_query) : m(_m), b(_b)
            , start(_start), is_query(_is_query) {}

        ll eval(ll x) {
```

```
return m * x + b;
  double t intersect(const Line& 1) const {
    return (double_t) (1.b - b) / (m - 1.m);
 bool operator< (const Line& 1) const {</pre>
    if (is query == 0) return m > 1.m;
    return (start < 1.start);</pre>
};
typedef set<Line>::iterator iterator_t;
bool has_prev(iterator_t it) {
 return (it != hull.begin());
bool has_next(iterator_t it) {
 return (++it != hull.end());
bool irrelevant(iterator t it) {
 if (!has_prev(it) || !has_next(it)) return 0;
 iterator_t prev = it, next = it;
 prev--;
 next++;
 return next->intersect(*prev) <= it->intersect(*prev);
void update_left(iterator_t it) {
 if (it == hull.begin()) return;
 iterator_t pos = it;
  --it;
 vector<Line> rem;
  while(has_prev(it)) {
    iterator_t prev = it;
    if (prev->intersect(*pos) <= prev->intersect(*it)) {
      rem.push_back(*it);
    } else {
     break:
    --it;
 double_t start = pos->intersect(*it);
 Line f = *pos;
  for (Line r : rem) hull.erase(r);
 hull.erase(f):
 f.start = start;
 hull.insert(f);
void update_right(iterator_t it) {
 if (!has_next(it)) return;
  iterator_t pos = it;
  ++it;
 vector<Line> rem:
  while(has_next(it)) {
    iterator_t next = it;
```

```
if (next->intersect(*pos) <= pos->intersect(*it)) {
        rem.push back(*it);
       break;
      ++it;
    double t start = pos->intersect(*it);
    Line f = *it;
    for (Line r : rem) hull.erase(r);
    hull.erase(f):
    f.start = start;
    hull.insert(f);
  void insert_line(ll m, ll b) {
    Line f(m, b, -inf, 0);
    iterator t it = hull.lower bound(f);
    if (it != hull.end() && it->m == f.m) {
      if (it->b <= f.b) {
      } else if (it->b > f.b) {
        hull.erase(it);
    hull.insert(f);
    it = hull.lower_bound(f);
    if (irrelevant(it)) {
      hull.erase(it);
      return;
    update_left(it);
    it = hull.lower_bound(f);
    update_right(it);
  11 get(l1 x) {
    Line f(0, 0, x, 1);
    iterator_t it = hull.upper_bound(f);
    assert(it != hull.begin());
    --it:
    return it->m * x + it->b;
private:
  set < Line > hull;
};
```

6.2 Divide and Conquer Optimization

```
int n, k;
11 dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao

void compute(int 1, int r, int opt1, int optr) {
   if(1>r) return;
   int mid = (1+r)/2;
   pair<11, int> best = {inf, -1}; // long long inf
   for(int k = opt1; k <= min(mid, optr); k++) {
      best = min(best, {dpold[k-1] + c[k][mid], k});
}</pre>
```

```
}
    dp[mid] = best.first;
    int opt = best.second;
    compute(1, mid-1, opt1, opt);
    compute(mid+1, r, opt, optr);
}

ll solve() {
    dp[0] = 0;
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of
        the dp
    for(int i = 1; i <= k; i++) {
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
    }
    return dp[n]; // return dp[k][n]
}</pre>
```

6.3 Knuth Optimization

7 Miscellaneous

7.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];

int lis() {
   int len = 1;
   lisArr[0] = arr[0];
   // bef[0] = -1;
   for(int i = 1; i < n; i++) {
        // upper_bound se non-decreasing
        int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
        len = max(len, x + 1);
        lisArr[x] = arr[i];
        // pos[x] = i;
        // bef[i] = x ? pos[x-1] : -1;</pre>
```

```
return len;
}

vi getLis() {
   int len = lis();
   vi ans;
   for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
      ans.push_back(arr[i]);
   }
   reverse(ans.begin(), ans.end());
   return ans;
}
```

7.2 Ternary Search

```
for (int i = 0; i < LOG; i++) {
  long double m1 = (A * 2 + B) / 3.0;
  long double m2 = (A + 2 * B) / 3.0;
  if(f(m1) > f(m2))
   A = m1;
  else
    B = m2;
ans = f(A);
//Z
while (B - A > 4) {
  int m1 = (A + B) / 2;
  int m2 = (A + B) / 2 + 1;
  if(f(m1) > f(m2))
   A = m1;
  else
    B = m2;
ans = inf:
for (int i = A; i \le B; i++) ans = min(ans, f(i));
```

7.3 Random Number Generator

7.4 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
    ... you can use s ...
    if (s==0) break;
}
```

7.5 Java Fast I/O

```
import java.util.*;
import java.io.*;
// https://www.spoj.com/problems/INTEST/
class Main{
  public static void main(String[] args) throws Exception{
    Reader s = new Reader();
    PrintWriter out = new PrintWriter (new BufferedOutputStream (System.
    int n = s.nextInt();
    int k = s.nextInt();
    int count=0;
    while (s.hasNext()) {
      int x = s.nextInt();
      if (x%k == 0)
      count++;
    out.printf("%d\n", count);
    out.close();
    s.close();
  // fast io
  static class Reader {
    final private int BUFFER_SIZE = 1 << 16;</pre>
    private DataInputStream din;
    private byte[] buffer;
    private int bufferPointer, bytesRead;
    public Reader() {
      din = new DataInputStream(System.in);
      buffer = new byte[BUFFER SIZE];
      bufferPointer = bytesRead = 0;
    public Reader(String file_name) throws IOException {
      din = new DataInputStream(new FileInputStream(file_name));
      buffer = new byte[BUFFER SIZE];
      bufferPointer = bytesRead = 0;
    public String readLine() throws IOException -
      byte[] buf = new byte[64]; // line length
      int cnt = 0, c;
      while ((c = read()) != -1) {
       if (c == ' \setminus n') break;
        buf[cnt++] = (byte) c;
      return new String(buf, 0, cnt);
    public int nextInt() throws IOException {
      int ret = 0;
      byte c = read();
      while (c <= ' ') c = read();</pre>
```

```
boolean neg = (c == '-');
  if (neg) c = read();
   ret = ret * 10 + c - '0';
  while ((c = read())) >= '0' \&\& c <= '9');
  if (neg) return -ret;
  return ret;
public long nextLong() throws IOException {
  long ret = 0;
 byte c = read();
  while (c <= ' ') c = read();</pre>
 boolean neg = (c == '-');
  if (neg) c = read();
    ret = ret * 10 + c - '0';
  } while ((c = read()) >= '0' && c <= '9');</pre>
  if (neg) return -ret;
  return ret;
public double nextDouble() throws IOException {
  double ret = 0, div = 1;
 byte c = read();
 while (c <= ' ')
 c = read();
 boolean neg = (c == '-');
  if (neg) c = read();
  do {
   ret = ret * 10 + c - '0';
  } while ((c = read()) >= '0' && c <= '9');</pre>
  if (c == '.') {
   while ((c = read())) >= '0' \&\& c <= '9') {
      ret += (c - '0') / (div *= 10);
  if (neg) return -ret;
  return ret;
private void fillBuffer() throws IOException {
 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
  if (bytesRead == -1) buffer[0] = -1;
public boolean hasNext() throws IOException {
  if (bufferPointer < bytesRead) return true;</pre>
  fillBuffer();
 if(buffer[0] == -1) return false;
 return true:
private byte read() throws IOException {
  if (bufferPointer == bytesRead) fillBuffer();
  return buffer[bufferPointer++];
```

```
public void close() throws IOException {
    if (din == null) return;
        din.close();
    }
}
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi, i = Grau[i] e Mi, j = -1 se
    houver aresta i-i ou O caso contrario, remove uma linha e uma
    coluna qualquer e o numero de spanning trees nesse grafo eh o det
    da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de
    vertices for pelo menos n
Trees:
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label
    do vizinho eh adicionado ao codigo ate ter 2 vertices
Flow:
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em
    um com as arestas de chegadas e um com as arestas de saida e uma
    aresta de peso 1 conectando o vertice com aresta de chegada com
    ele mesmo com arestas de saida
Konig's Theorem: minimum node cover = maximum matching se o grafo for
    bipartido, complemento eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices
    duplicados, onde aresta sai do vertice tipo A e chega em tipo B,
    entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B
    sempre que houver caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de
   vertices tal que nao existe caminho no grafo entre vertices desse
Hall's marriage: um grafo tem um matching completo do lado X se para
    cada subconjunto W de X,
    |W| \le |vizinhosW| onde |W| eh quantos vertices tem em W
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b onde a e b sao primos

Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
```

```
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4
    quadrados
Zeckendorf's: todo numero pode ser representado pela soma de dois
    numeros de fibonnacis diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n \in primo quando (n-1)! \mod n = n - 1
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser
    escrito como ax + by eh (x-1)(y-1)/2
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x e m tambem forem coprimos entao x^k % m = x^k (k \mod (m-1)) % m
Euler's theorem: x^(phi(m)) mod m = 1 onde phi(m) eh o totiente de
    euler
Chinese remainder theorem:
Para equacoes no formato x = a1 \mod m1, ..., x = an \mod mn onde todos
     os pares m1, ..., mn sao coprimos
Deixe Xk = m1*m2*..*mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = \text{somatorio com } k \text{ de } 1 \text{ ate } n \text{ de } ak*Xk*(Xk,mk^-1 \text{ mod mk})
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de <math>i=0 \rightarrow n-1 de Ci*C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q,
    prob de em todo ponto ter mais As do que Bs antes dele = (p-q)/(p+
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de
    possibilidades nos dois casos basta multiplicar por (p + q escolhe
Propriedades de Coeficientes Binomiais:
Somatorio de k = 0 -> m de (-1)^k * (n escolhe k) = (-1)^m * (n -1)
    escolhe m)
(N \text{ escolhe } K) = (N \text{ escolhe } N-K)
(N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
Somatorio de k = 0 \rightarrow n de (n escolhe k) = 2^n
Somatorio de m = 0 \rightarrow n de (m = scolhe k) = (n+1 = scolhe k + 1)
Somatorio de k = 0 \rightarrow m de (n+k \text{ escolhe } k) = (n+m+1 \text{ escolhe } m)
Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k)^2 = (2n \text{ escolhe } n)
Somatorio de k = 0 ou 1 \rightarrow n de k*(n escolhe k) = n * 2^(n-1)
Somatorio de k = 0 \rightarrow n de (n-k \text{ escolhe } k) = \text{Fib}(n+1)
Hockey-stick: Somatorio de i = r \rightarrow n de (i escolhe r) = (n + 1)
    escolhe r + 1)
Vandermonde: (m+n \text{ escolhe r}) = \text{somatorio de } k = 0 \rightarrow r \text{ de } (m \text{ escolhe } k
    ) \star (n escolhe r - k)
Burnside lemma: colares diferentes nao contando rotacoes quando m =
    cores e n = comprimento
(m^n + somatorio i = 1 - > n-1 de m^gcd(i, n))/n
Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X =
    P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n
Distribuicao geometrica onde continuamos ate ter sucesso, X =
    P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p
```

Linearity of expectation: Tendo duas variaveis $X \in Y$ e constantes a e b, o valor esperado de aX + bY = a*E[X] + b*E[X]

8.3 Geometry

Formula de Euler: V - E + F = 2

Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde
 a = lado oposto ao vertice a, incentro eh onde cruzam as
 bissetrizes, eh o centro da circunferencia inscrita e eh
 equidistante aos lados

Delaunay Triangulation: Triangulacao onde nenhum ponto esta dentro de nenhum circulo circunscrito nos triangulos

Eh uma triangulacao que maximiza o menor angulo e a MST euclidiana de um conjunto de pontos eh um subconjunto da triangulacao

8.4 Mersenne's Primes

Primos de Mersenne 2^n - 1
Lista de Ns que resultam nos primeiros 41 primos de Mersenne:
2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1.279; 2.203;
2.281; 3.217; 4.253; 4.423; 9.689; 9.941; 11.213; 19.937; 21.701;
23.209; 44.497; 86.243; 110.503; 132.049; 216.091; 756.839;
859.433; 1.257.787; 1.398.269; 2.976.221; 3.021.377; 6.972.593;
13.466.917; 20.996.011; 24.036.583;