COMPUTER ORGANIZATION

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

CITA	1ESTER	

Subject Code	15CS34	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS - 04

Course objectives:

This course will enable students to

- Understand the basics of computer organization: structure and operation of computers and their peripherals.
- Understand the concepts of programs as sequences or machine instructions.
- Expose different ways of communicating with I/O devices and standard I/O interfaces.
- Describe hierarchical memory systems including cache memories and virtual memory.
- Describe arithmetic and logical operations with integer and floating-point operands.
- Understand basic processing unit and organization of simple processor, concept of pipelining and other large computing systems.

Module -1	Teaching	
	Hours	
Basic Structure of Computers: Basic Operational Concepts, Bus Structures, Performance		
- Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.	10Hours	
Machine Instructions and Programs: Memory Location and Addresses, Memory	Torrours	
Operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly		
Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional		
Instructions, Encoding of Machine Instructions		
Textbook 1: Ch 1: 1.3, 1.4, 1.6.1, 1.6.2, 1.6.4, 1.6.7. Ch 2: 2.2 to 2.10, 2.12		
Module -2		
Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware,		
Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device	10 Hours	
Requests, Exceptions, Direct Memory Access, Buses, Interface Circuits, Standard I/O	10 Hours	
Interfaces – PCI Bus, SCSI Bus, USB.		
Textbook 1: Ch 4: 4.1, 4.2: 4.2.1 to 4.2.5, 4.4 to 4.7.		
Module – 3		
Memory System: Basic Concepts, Semiconductor RAM Memories, Read Only Memories,		
Speed, Size, and Cost, Cache Memories – Mapping Functions, Replacement Algorithms,	10 Hours	
Performance Considerations, Virtual Memories, Secondary Storage.	10 Hours	
Textbook 1: Ch 5: 5.1 to 5.4, 5.5.1, 5.5.2, 5.6, 5.7, 5.9		
Module-4		

Arithmetic: Numbers, Arithmetic Operations and Characters, Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed Operand Multiplication, Fast Multiplication, Integer Division, Floating-point Numbers and Operations.

10 Hours

Textbook 1: Ch 2: 2.1, Ch 6: 6.1 to 6.7

Module-5

Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Micro programmed Control. Embedded Systems and Large Computer Systems: Examples of Embedded Systems, Processor chips for embedded applications, Simple Microcontroller. The structure of General-Purpose Multiprocessors.

10 Hours

Textbook 1: Ch 7: 7.1 to 7.5, Ch 9:9.1 to 9.3, Ch 12:12.3

Course outcomes:

After studying this course, students will be able to:

- Acquire knowledge of
 - The basic structure of computers & machine instructions and programs, Addressing Modes, Assembly Language, Stacks, Queues and Subroutines.
 - Input/output Organization such as accessing I/O Devices, Interrupts.
 - Memory system basic Concepts, Semiconductor RAM Memories, Static memories, Asynchronous DRAMS, Read Only Memories, Cache Memories and Virtual Memories.
 - Some Fundamental Concepts of Basic Processing Unit, Execution of a Complete Instruction, Multiple Bus Organization, Hardwired Control and Micro programmed Control.
 - Pipelining, embedded and large computing system architecture.
- Analyse and design arithmetic and logical units.
- Apply the knowledge gained in the design of Computer.
- Design and evaluate performance of memory systems
- Understand the importance of life-long learning

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Problem Analysis
- 3. Life-Long Learning

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

Reference Books:

1. William Stallings: Computer Organization & Architecture, 9th Edition, Pearson, 2015.