

Anonymization and Subsequent De-Anonymization of Letterboxd Ratings Data

Jordan Bass, Elijah Hansen, Albert Lu, Nicket Mauskar

Department of Computer Science, Northwestern University, Evanston, IL, USA

Introduction

Project Aims:

- Anonymization of sensitive microdata
- Build off Arvind Narayanan and Vitaly Shmatikov's work
- Our project aims to continue the exploration of data anonymization and deanonymization
- We hope to draw conclusions that link the hyperspecificity of modern online usage to possible privacy issues, such as unwanted identification

Results

Here are the results for average k-anonymity for the various anonymization techniques:

Control	Data Generalization	Data Swapping (one million swaps)	Synthetic Data (ten million swaps)	Improved Data Generalization
12.38	527.65	11.91	6.92	24030.73

Proof of Concept: For users 1-5 ['deathproof', 'superpulse', 'lilfilm', 'ianamurray', 'punchdrunklizzy'] (username in Letterboxd)

[138990, 72315, 24610, 83426, 60656] (user_id in MovieLens)

Methodology

Anonymization

Review_ID '	V	Movie_Title ▼	Rating	₩	User_ID ▼
5fc57c5d6758f	69	feast-2014	7		deathproof
5fc57c5d6758f	69	loving-2016	7		deathproof
5fc57c926758f	69	the-age-of-inno	6	·	kurstboy
5fc57c926758f69 alice-doesnt-la		9		kurstboy	
5fc57c966758f	58f69 the-hunger 7 davidehrl		davidehrlich		
5fc57c966758f	69	siberia-2020	4 davidehrlich		davidehrlich

Data Generalization via Binning of Ratings Data Masking of Usernames

Review_ID	₩	Movie_Title ▼	Rating	~	User_ID	~
5fc57c5d6758	f69	feast-2014	7-10			1
5fc57c5d6758	f69	loving-2016	7-10			1
5fc57c926758	f69	the-age-of-inno	4-6			2
5fc57c926758	f69	alice-doesnt-li	7-10			2
5fc57c966758	f69	the-hunger	7-10			3
5fc57c966758	f69	siberia-2020	4-6			3

Review_ID	∇	Movie_Title	∇	Rating	~	User_ID	~
5fc57c5d6758f69		feast-2014		7-10		1	
5fc57c5d6758	3f69	loving-2016		7-10			1
5fc57c926758	3f69	the-age-of-:	inno	4-6			2
5fc57c926758	3f69	alice-doesn	t-1:	7-10			4
5fc57c966758	3f69	the-hunger		7-10			3
5fc57c966758	3f69	siberia-2020	9	4-6			3
5fc57c926738	3f69	the-hunger-g	gam	0-3			2

De-Anonymization

We instantiate the scoring function as follows:

$$\mathsf{Score}(\mathsf{aux}, r') = \sum_{i \in \mathsf{supp}(\mathsf{aux})} \mathsf{wt}(i) (e^{\frac{\rho_i - \rho_i'}{\rho_0}} + e^{\frac{d_i - d_i'}{d_0}})$$

where $wt(i) = \frac{1}{\log |supp(i)|} (|supp(i)|)$ is the number of subscribers who have rated movie i), ρ_i and d_i are the rating and date, respectively, of movie i in the auxiliary information, and ρ'_i and d'_i are the rating and date in the candidate record r'. As explained in section 4,

-Narayanan and Shamtikov (2008)

 Altered deanonymization by filtering both datasets for more rare records

Data Swapping

Conclusion and Implications

- We quickly realized that when a dataset is properly anonymized, it is very hard for an attacker to deanonymize a sparse dataset with such a large size like MovieLens
- We also came to the conclusion that an algorithm like Scoreboard-RH would take nearly 38 years to complete when applied to our datasets
- Due to the combination of size and anonymization of the dataset, an algorithm would have to be very efficient in order to deanonymize

Implications for Future Work:

- Use MovieLens dataset as main dataset and IMDb as auxiliary
- Would need better hardware for parallel processing when executing deanonymization

References & Acknowledgements

Narayanan, Arvind, and Vitaly Shmatikov. "Robust De-Anonymization of Large Sparse Datasets." 2008 IEEE Symposium on Security and Privacy (Sp 2008), 2008, doi:10.1109/sp.2008.33.

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19. https://doi.org/10.1145/2827872.

Learner, Sam. "LETTERBOXD Movie Ratings Data." Kaggle, 22 Mar. 2022,

www.kaggle.com/datasets/samlearner/letterboxd-movie-ratings-data.