Derivation of Linear Index Distribution

Initial Setup

For a sequence of length n, we want weights proportional to the position:

weights =
$$\{1, 2, 3, ..., n\}$$

Total Weight

Total weight is the sum of arithmetic sequence:

total_weight =
$$\frac{n(n+1)}{2}$$

Random Value Generation

Generate random value r in [0, total_weight):

$$r\in[0,\frac{n(n+1)}{2})$$

Finding the Index

To find index i, we need to solve:

$$\frac{i(i+1)}{2} = r$$

Multiply both sides by 2:

$$i^2 + i = 2r$$

Rearrange to standard quadratic form:

$$i^2 + i - 2r = 0$$

Using quadratic formula:

$$i = \frac{-1 \pm \sqrt{1 + 8r}}{2}$$

Since we need positive i, we take:

$$i = \frac{-1 + \sqrt{1 + 8r}}{2}$$