

Electric resistivity tomography inversion guided by passive microtremor data for the detection of karst cavities

Daopu Wang* Dikun Yang¹ Zhentao Yang¹ Qingguo Feng¹ Guihua Long² Qingcheng Wang³

- 1. Southern University of Science and Technology, Shenzhen, Guangdong, China
- 2. Shenzhen Municipal Engineering Corp, Shenzhen, Guangdong, China
- 3. Shenzhen Tagen Group Co.,LTD, Shenzhen, Guangdong, China

2023.08.29

Biography

Education

Southern University of Science and Technology

Shenzhen, China

Master of Science in Earth and Space Science

Sep. 2022 - Jun. 2025 (expect)

GPA: 3.56/4.0

Yangtze University

Wuhan, China

Bachelor of Geophysics

Sep. 2018 - Jun. 2022

GPA: 3.73/5.0

Honors & Awards

2023 3st Prize, Geophysical knowledge competition for university student Hefei, China

2021 2st Prize, Geophysical knowledge competition for university student

Winner, National Inspiration performances 2019

Hefei, China

Hefei, China

Specialty

Urban Near-Surface Geophysical exploration.

Introduction

Pipelines, Groundwater extraction...

Calcite, Dolomite

 $CaCO_3+H_2O+CO_2-->Ca(HCO_3)_2$

Introduction

Pingshan-Dapeng Line (Shenzhen, China)

Metro tunnels

(Pingshan Station section)

Karst cavity hazard in Pingshan

Burial depth	10.9 - 73.2 m
Cavity height	0.4 - 21.4 m
Cavity filling	Clay, Gravel soil

Surveys

SUSTech

ERT (electric)

Pole - Pole

- 40 electrodes
- 5-m spacing

ANT (passive seismic)

SmartSolo 16HR 3C

Sample rate: 100Hz

Number of stations: 84

Station distance: 2.5 m

Acquisition time: 30min

Surveys

Apparent resistivity pseudo-section

Observed potential difference data plot

Original seismic signals

Passive seismic waveforms

$$\varphi(m) = \|W_d(d_{obs} - f(m))\|^2 + \gamma \|W_m(m - m_0)\|^2$$

$$\boldsymbol{W}_{m} = \left(\alpha_{s}\boldsymbol{I}, \alpha_{x}\boldsymbol{W}_{x}^{T}, \alpha_{z}\boldsymbol{W}_{z}^{T}\right)^{T}$$

W_m model weighting matrix

 α_s , α_x , α_z Weighting coefficients

 m_0 Reference and initial model

Methods

Passive seismic waveforms

HVSR

The prominent resonant frequency in the H/V spectrum is used to obtain the thickness of the sediment

$$HVSR = \frac{H(\omega)}{V(\omega)} \qquad h = af_*^b$$

 f_* resonance frequency h soil layer thickness

Extract the dispersion curves

$$I(w,k) = \int_0^{+\infty} C(r, \omega) J_0(kr) r dr$$
 F-J Method

(Wang et al., 2019)

 $C(r,\omega)$ Cross-correlation function in frequency $J_0(kr)$ Bessel function

S-wave velocity

$$f(V_S) = \sum_{i} \sum_{j} weight_j (c_{ij}^S - c_{ij}(V_S))^2$$

(Chen et al., 2019)

i Frequence

j Order of the dispersion curve

 c_{ij}^{s} Measured phase velocity

 c_{ij} Theoretical phase velocity

Methods

Electrical/seismic structure

Normalized HVSR image

Resistivity Results

Shear wave velocity image

Mapping resistivity

HVSR

-10--20--30-40 50 60 70 80 90 100 110 120 130 140 150 VS

Inverted results

$$\rho = V_s$$

$$\frac{V_s + 33.289}{1.995}$$

(Reference model)

 α_{s}

(Initial model)

(Reference model)

$$\rho = \frac{V_s + 33.289}{1.995}$$

Conclusions

Conclusions:

- ERT combined with ANT successfully delineated the low resistivity anomalies at 25m and 100m, 150m along the survey line
- Alternative initial and reference models from seismic can help us more thoroughly explore the model space in the electrical resistivity inversion
- Information from the velocity image can help improve the resolution at depth in ERT inversion (bottom depth of cavities)
- Uncertainties and non-uniqueness in seismic models should be considered in the future

THANKS!

Q & A?