Artificial Intelligence

Lecture 8 - Constraint Satisfaction Problems

Lecturers:

HUST

Dr.Le Thanh Huong
Dr.Tran Duc Khanh
Dr. Hai V. Pham
School of SOICT

1

Constraints Satisfaction Problems (CSPs)

- CSPs example
- Backtracking search
- Problem structure
- Local search for CSPs

CSP

- Standard search problems
 - □ State is a "black-box"
 - Any data structure that implements initial states, goal states, successor function
- CSPs
 - State is composed of variables X_i with value in domain D_i
 - Goal test is a set of constraints over variables

3

Example: Map Coloring

- Variables
 - WA, NT, Q, NSW, V, SA
- Domain
 - $D_i = \{red, green, blue\}$
- Constraint
 - Neighbor regions must have different colors
 - WA /= NT
 - WA /= SA
 - NT /= SA
 - _

Example: Map Coloring

- Solution is an assignment of variables satisfying all constraints
 - □ WA=red, and
 - NT=green, and
 - □ Q=red, and
 - □ NSW=green, and
 - □ V=red, and
 - □ SA=blue

5

Constraint Graph

- Binary CSPs
 - Each constraint relates at most two variables
- Constraint graph
 - Node is variable
 - Edge is constraint

Varieties of CSPs

- Discrete variables
 - □ Finite domain, e.g, SAT Solving
 - Infinite domain, e.g., work scheduling
 - Variables is start/end of working day
 - Constraint laguage, e.g., StartJob₁ + 5 <= StartJob₃
 - Linear constraints are decidable, non-linear constraints are undecidable
- Continuous variables
 - e.g., start/end time of observing the universe using Hubble telescope
 - Linear constraints are solvable using Linear Programming

7

Varieties of Constraints

- Single-variable constraints
 - □ e.g., SA /= green
- Binary constraints
 - □ e.g., SA /= WA
- Multi-variable constraints
 - Relate at least 3 variables
- Soft constraints
 - □ Priority, e.g., red better than green
 - Cost function over variables

Example: Cryptarimetic

- Variables
 - F,T,O,U,R,W, X₁,X₂,X₃
- Domain
 - **□** {0,1,2,3,4,5,6,7, 8,9}
- Constraints
 - □ Alldiff(F,T,O,U,R,W)
 - $O+O = R+10*X_1$
 - $X_1+W+W=U+10^*X_2$
 - $X_2+T+T=O+10^*X_3$
 - $X_3=F$

9

Real World CSP

- Assignment
 - □ E.g., who teach which class
- Scheduling
 - □ E.g., when and where the class takes place
- Hardware design
- Spreadsheets
- Transport scheduling
- Manufacture scheduling

CSPs by Standard Search

- State
 - Defined by the values assigned so far
- Initial state
 - The empty assignment
- Successor function
 - Assign a value to a unassigned variable that does not conflict with current assignment
 - Fail if no legal assignment
- Goal test
 - All variables are assigned and no conflict

11

CSP by Standard Search

- Every solution appears at depth d with n variables
 - Use depth-first search
- Path is irrelevant
- Number of leaves
 - □ n!dⁿ
 - Two many

Backtracking Search

- Variable assignments are commutative, e.g.,
 - □ {WA=red, NT =green}
 - □ {NT =green, WA=red}
- Single-variable assignment
 - Only consider one variable at each node
 - dⁿ leaves
- Backtracking search
 - Depth-first search+ Single-variable assignment
- Backtracking search is the basic uninformed algorithm for CSPs
 - □ Can solve n-Queen with n = 25

1.

Backtracking Search Algorithm

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp) function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

Backtracking Search Algorithm

Improving Backtracking Search

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Choosing Variables

- Minimum remaining values (MRV)
 - Choose the variable with the fewest legal values
- Degree heuristic
 - Choose the variable with the most constraints on remaining variables

17

Choosing Values

- Least constraining value (LCV)
 - Choose the least constraining value
 - the one that rules out the fewest values in the remaining variables
- Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Backtracking Example

Backtracking Example

23

Improving Backtracking Efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - □ In what order should its values be tried?
 - □ Can we detect inevitable failure early?

Most Constrained Variable

Most constrained variable:
 choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic

25

Most Constraining Variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least Constraining Value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

 Combining these heuristics makes 1000 queens feasible

2

Forward Checking (Haralick and Elliott, 1980)

 $\begin{aligned} & \text{Variables: } U = \{u1,\,u2,\,\dots\,,\,un\} \\ & \text{Values:} \quad & V = \{v1,\,v2,\,\dots\,,\,vm\} \end{aligned}$

Constraint Relation: R = {(ui,v,uj,v') | ui having value v is compatible with uj having label v'}

If (ui,v,uj,v') is not in R, they are incompatible, meaning if ui has value v, uj cannot have value v'.

Forward Checking

Forward checking is based on the idea that once variable ui is assigned a value v, then certain future variable-value pairs (uj,v') become impossible.

Instead of finding this out at many places on the tree, we can rule it out in advance.

29

Data Structure for Forward Checking

Future error table (FTAB)

One per level of the tree (ie. a stack of tables)

	v1	v2	 vm	
u1				
u2				
:				
un				

What does it mean if a whole row becomes 0?

At some level in the tree, for future (unassigned) variables u ${\sf FTAB}(u,v) = \ 1 \ \text{if it is still possible to assign v to u} \\ 0 \ \text{otherwise}$

Forward Checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

33

Forward Checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Forward Checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

3

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Arc Consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed value y of Y

37

Arc Consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed value y of Y

Iterative Algorithms for CSPs

- Hill-climbing, Simulated Annealing can be used for CSPs
 - Complete state, e.g., all variables are assigned at each node
- Allow states with unsatisfiable constraints
- Operators reassign variables
- Variable selection
 - Random
- Value selection by min-conflicts heuristic
 - Choose value that violates the fewest constraints
 - i.e., hill climbing with h(n) = total number of violated constraints

39

Example: 4-Queens

- State: 4 queens in four columns (4*4 = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSPs representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

4

Exercice

- Solve the following cryptarithmetic problem by combining the heuristics
 - Constraint Propagation
 - Minimum Remaining Values
 - Least Constraining Values

TWO + TWO FOUR

Exercice

- \bigcirc O+O = R+10*X₁
- $X_1+W+W=U+10*X_2$
- $X_2+T+T=O+10^*X_3$
- □ X₃=F

- Choose X_3 : domain $\{0,1\}$
- Choose X₃=1: use constraint propagation F/=0
- Choose $X_2 \!\!: X_1$ and $X_2 \!\!:$ have the same remaing values Choose $X_2 \!\!=\! 0$
- Choose X_1 : X_1 has Minimum remaining values (MRV)
- Choose X₁=0
- Choose O. O must be even, less than 5 and therefore has MRV (T+T=O du 1 và O+O=R+10*0)
- Choose O=4
- R=8
- T=7 11.
- Choose U: U must be even, less than 9
- U=6: constraint propagation
- W=3