Human Protein Recognition and Predicting Home Values

Mike Crumley

Project Overviews

- Human Protein Recognition
 - Recognize presence/non-presence of 28 protein structures from microscopic cell images
 - Multi-class, multi-label classification
 - ► Software: Keras (R, on top of TensorFlow)
 - ▶ Metric: Macro F₁ score

- Predicting House Prices
 - Predict the sale price of a home using 78 predictors
 - Regression
 - Software: R (various packages)
 - ▶ Metric: root mean square logarithmic error

• Training data: 31,072 RGB images (512×512)

• Test data: 11,702 images

Protein Recognition: Metric

For a single protein structure:

$$F_1 = \left(\frac{\mathsf{precision}^{-1} + \mathsf{recall}^{-1}}{2}\right)^{-1}$$

precision = fraction of images predicted to contain the structure which actually contained it

recall = fraction of images containing the structure which were predicted to be so

For the entire multi-class problem:

$$\overline{F_1} = \left(\frac{\overline{\mathsf{precision}}^{-1} + \overline{\mathsf{recall}}^{-1}}{2}\right)^{-1}$$

Protein Recognition: Metric

Important notes about F_1 :

- Penalizes false negatives more than false positives
- A baseline classifier for F₁ predicts all structures to be present in all images. A baseline macro F₁ score for this project is

$$F_{1,B} = .1103$$

Baseline scores for individual structures depend heavily on their prevalence; they range from .0007 to .586.

• It is non-differentiable, and can't be used as a loss function (though something close to it can be).

Protein Recognition: Convolutional Networks

Convolutional networks are the thing to do for image recognition.

An example of a convolutional neural network in Keras:

Protein Recognition: Convolutional Networks

Layer (type) 		Param #
	(None, 503, 503, 16)	
max_pooling2d_1 (MaxPooling2D)		0
conv2d_2 (Conv2D)	(None, 91, 91, 32)	51232
max_pooling2d_2 (MaxPooling2D)		0
conv2d_3 (Conv2D)	(None, 20, 20, 64)	18496
max_pooling2d_3 (MaxPooling2D)		0
conv2d_4 (Conv2D)	(None, 8, 8, 128)	73856
max_pooling2d_4 (MaxPooling2D)	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
	(None, 256)	524544
dense_2 (Dense)	(None, 1)	257
Total params: 673,201 Trainable params: 673,201 Non-trainable params: 0		

Protein Recognition: Special Considerations

- Highly standardized laboratory images
- Extreme rarity of some structures
- Poor correlation between structures
- Typical loss functions (binary crossentropy, categorical cross entropy)
 can be very poorly aligned with the F₁ metric, especially for rare
 structures
- Validation/testing will suffer from rarity. Beware of over-fitting to validation.

Protein Recognition: Two Approaches

- Training 28 individual binary classification models and ensembling the results. Advantages:
 - Can artificially balance individual classes, allowing networks to see more examples of rare structures
 - Low correlation between structures partially justifies this
 - Can tailor network architecture/optimizer for each individual structure
 - Possibly lower network complexity (my GPU is not impressive)
 - Learn more
- Training a single model to predict all 28 protein structures simultaneously. Advantages:
 - Easier and quicker
 - Can use a custom loss to train directly for macro F₁
 - ► Low-mid level representations learned by a network may be useful for many structures

Possible tools to combat rarity of structures:

- Custom loss function (penalize false negatives more than false positives)
- Data augmentation (geometric transformations to generate more training images)
- Artificial class balancing (allow network to see a higher proportion of structure-containing images)

```
# custom loss/metrics -----
f1.loss = function(y_true, y_pred)
  tp = k_mean(y_true*y_pred)
  fp = k_mean((1-y_true)*y_pred)
 fn = k mean(y_true*(1-y_pred))
  f1 = 2*tp/(2*tp+fn+fp+k epsilon())
  return((1-f1))
F1.macro.fcn.hard = function(y_true, y_pred)
  y_pred_hard = tf$floor(2*y_pred/(1+k epsilon()))
  tp = tf$diag part(k dot(k transpose(v true).v pred hard))
  fn = tf$diag_part(k_dot(k_transpose(y_true),1-y_pred_hard))
  fp = tf$diag part(k dot(k transpose(1-v_true),v_pred_hard))
  prec = tp/(tp+fp+k epsilon())
  rec = tp/(tp+fn+k_epsilon())
  F1 = 2*(k mean(prec)*k mean(rec))/(k mean(prec)*k mean(rec)*k epsilon())
  return(F1)
F1 macro_metric_hard <- custom metric("Hard_F1", F1.macro.fcn.hard)
```

```
# image data generators for training ------
train datagen rare = image data generator(
 featurewise center = FALSE.
 samplewise_center = FALSE,
 featurewise std normalization = FALSE.
 samplewise std normalization = FALSE.
 zca_whitening = FALSE,
 zca_epsilon = 1e-06,
 rotation_range = 45,
 width_shift_range = .2,
 height shift range = .2,
 brightness range = NULL.
 shear range = 0.
 zoom range = 0,
 channel shift range = 0.
 horizontal_flip = TRUE,
 vertical_flip = TRUE,
 rescale = 1/255,
train_datagen_notrare = image data generator(
 rescale = 1/255.
 rotation range = 25.
 width_shift_range = .1,
 height shift range = .1.
 shear range = 0.
 zoom range = 0,
 horizontal_flip = TRUE,
 vertical flip = TRUE.
)
```

```
# image data generators for validation ----
validate_datagen_rare = image data generator(
 featurewise center = FALSE.
 samplewise center = FALSE.
 featurewise_std_normalization = FALSE,
 samplewise std normalization = FALSE.
 zca_whitening = FALSE,
 zca_epsilon = 1e-06,
 rotation range = 10.
 width_shift_range = .05,
 height shift range = .05,
 brightness range = NULL,
 shear range = 0.
 zoom_range = 0,
 channel_shift_range = 0,
 horizontal flip = TRUE.
 vertical flip = TRUE.
 rescale = 1/255
validate_datagen_notrare = image data generator(
 rescale = 1/255,
 horizontal flip = TRUE.
 vertical_flip = TRUE
```

```
# image data generators for testing ------

test_datagen_rare = image_data_generator(
    horizontal_flip = TRUE,
    vertical_flip = TRUE,
    rescale = 1/255
)

test_datagen_notrare = image_data_generator(
    rescale = 1/255
)
```

```
# custom training generator for artificial class balancing -----
biased rgb train generator = function()
  function()
   rand.numbers = runif(batch size)
   present_indices = which(rand.numbers < training.bias[structure])</pre>
   notpresent indices = setdiff(1:batch size, present indices)
   training array = array(dim = c(batch size, resolution, 3))
   label_array = array(dim = c(batch_size), 0)
   for (i in present_indices)
      training_array[i, , , ] = generator_next(train_generator_present)
    for (i in notpresent_indices)
      training array[i, , , ] = generator next(train generator notpresent)
   label array[present indices] = 1
   return(list(training array, label array))
```

```
# train a bunch of models on 28 structures ------

train.existing.models = function(
    model.folder.name,
    structures = protein.names,
    resolution = c(512,512),
    training.bias = default.training.bias,
    batch_size = 20,
    steps_per_epoch = 20,
    epochs = 20,
    save.history.name = "history.Rda",
    validation_steps = 100)
{
    ...
}
```



```
# score a trained model on test data, summarize, find optimal thresholds -----
F1.score = function(
    model.folder.name,
    structures = protein.names,
    num_present_to_score = 1000,
    num_notpresent_to_score = 1000,
    resolution = c(512,512),
    save.name = "F1_summary.Rda",
    adjust.thresholds = TRUE)
{
...
}
```

```
# find best models for each structure -----
find.best.ensemble(
   model.folder.names,
   adjust.thresholds = TRUE )
{
    ...
}
```

```
# retrain best models on entire training set ------

train.existing.models.full = function(
    model.folder.name,
    structures = protein.names,
    resolution = c(512,512),
    training.bias = default.training.bias,
    batch_size = 20,
    steps_per_epoch = 20,
    epochs = 80,
    save.history.name = "history.Rda")
{
    ...
}
```

```
# make a submission file to kaggle ------
kaggle.submission = function(
  model.folder.name,
  resolution = c(512,512),
  adjust.thresholds = TRUE,
  save.name = "kaggle.submission.csv")
{
    ...
}
```

Kaggle score: .24 Macro F_1 .

Not good:

tubule organizing center: vgg_16_pretrained_nut

Not good:

House Prices: Overview

- To predict: Sale price of a home
- 78 predictors (square footage, bedrooms, neighborhood, etc.)
- Training data: 1460 homes (price known)
- Test data: 1459 homes (price unknown)

House Prices: Metric

Root mean square logarithmic error:

$$RMSLE^2 = rac{1}{N} \sum_{i=1}^{N} \left(\log(1 + \hat{y}_i) - \log(1 + y_i) \right)^2$$

House Prices: Data Exploration

House Prices: Data Exploration

House Prices: Data Exploration

House Prices: Special Considerations

- Incomplete, redundant, and poorly formatted data
- Sale price is log-normally distributed
- Some predictors will be more informative than others
- Lots of models could possibly work here

House Prices: Data Cleanup

Steps taken to make the data usable:

- Data orthogonalization
- Level condensing
- Rank-deficiency correction
- Outlier removal

House Prices: Results

CV RMSLE	Test RMSLE	Notes
0.0988	0.13	all predictors used
0.0908	0.1264	Forward subset selection identified 199 possible predictor
		subsets; CV was performed on each; lowest CV achieved
		with 83 predictors; this was submitted for test RMSLE
0.0989	0.1294	lowest CV achieved with 195 out of 199 principal compo-
		nents; this was submitted for test RMSLE
0.098	0.12419	Examined 150 values of λ from 10^{10} to 10^{-5} ; lowest CV
		achieved at $\lambda = .01$; this was submitted for test RMSLE
0.09587	0.12641	Lowest CV achieved at $\lambda = .0001913724$; this was sub-
		mited for test RMSLE
0.203		Didn't bother submitting, CV error too high
0.1261	0.1528	500 trees grown (OOB error optimized long before that)
0.1234	0.1506	9 predictors at a time considered, 500 trees grown (OOB
		error optimized long before that)
	0.0908 0.0989 0.098 0.09587 0.203	0 0.0988 0.13 0.0908 0.1264 0.0989 0.1294 0.098 0.12419 0.09587 0.12641 0.203 0.1261 0.1528

House Prices: A Cool Graph

Thank you!