Sulla sinergia tra apprendimento automatico e filtri di Bloom

Candidato: Giacomo Fumagalli

Relatore: Prof. Dario Malchiodi Correlatore: Prof. Marco Frasca

Filtro di Bloom - Introduzione

- Un filtro di Bloom [1] è una struttura dati probabilistica, basata su funzioni di hash, spesso utilizzata per verificare l'appartenenza di un elemento a un dato insieme.
- Per definizione, un filtro di Bloom può generare solamente falsi positivi.
- Le operazioni che caratterizzano questa struttura dati sono inserimento e verifica dell'appartenenza di un elemento.

Filtro di Bloom - Operazioni

Figura: Esempio dell'operazione di inserimento.

Figura: Esempio dell'operazione di verifica dell'appartenenza.

LBF e SLBF - Introduzione

- Negli anni sono state sviluppate diverse varianti del filtro Bloom, al fine di aumentare ulteriormente l'efficienza della struttura originale. Esempi di queste varianti sono il filtro di Bloom appreso, o learned Bloom filter [3] (LBF), e il sandwiched learned Bloom filter [4] (SLBF).
- Sia LBF che SLBF si caratterizzano per l'utilizzo di un classificatore, al fine di ridurre lo spazio occupato dalla struttura.
- Un LBF (g, τ, B) è caratterizzato da un classificatore g, una soglia τ e un filtro di Bloom B, chiamato filtro di backup.
- Un $SLBF(B_0, g, \tau, B)$ è caratterizzato da un filtro di Bloom iniziale B_0 , un classificatore g, una soglia τ e un filtro di backup B.

LBF e SLBF - Controllo dell'appartenenza

Figura: Verifica dell'appartenenza in un filtro di Bloom.

Figura: Verifica dell'appartenenza in un I BF.

Figura: Verifica dell'appartenenza in un SLBF.

Esperimenti - Introduzione

- Punto di partenza del tirocinio è l'articolo 'An Empirical Analysis of the Learned Bloom Filter and its Extensions' [2], l'obiettivo principale degli esperimenti effettuati è il confronto delle prestazioni dei filtri di Bloom appresi costruiti usando classificatori differenti da quelli dell'articolo.
- Il problema considerato è di classificazione di URL.
- Nello specifico, gli esperimenti effettuati si dividono in due categorie:
 - esperimenti volti a misurare le performance dei classificatori nel problema considerato;
 - esperimenti volti a confrontare le performance dei filtri di Bloom appresi costruiti utilizzando le due tipologie di classificatore.

Esperimenti - Prestazioni dei classificatori

- Esperimenti volti a valutare le prestazioni dei classificatori nel problema di classificazione di URL.
- Si dividono in:
 - Valutazione delle prestazioni della rete ricorrente:
 - grandezza dell'insieme d'addestramento,
 - sbilanciamento del dataset.
 - Valutazione delle prestazioni del percettrone:
 - selezione del modello.
- I risultati hanno evidenziato delle prestazioni migliori da parte del percettrone.

Esperimenti - Analisi dei filtri appresi

- Esperimenti volti ad analizzare empiricamente i filtri di Bloom appresi costruiti usando le due tipologie di classificatore.
- Per entrambe le tipologie di filtro, vengono valutati:
 - Tasso empirico di falsi positivi della struttura.
 - Tasso di falsi negativi del classificatore.
 - Taglia della struttura.
- Vengono valutati diversi valori per la soglia τ variando il rapporto f_{τ}/f .

Risultati - Analisi empiriche LBF

Figura: Tasso empirico di falsi positivi al variare di au

Figura: Tasso di falsi negativi al variare di au

Risultati - Analisi empiriche SLBF

Figura: Tasso empirico di falsi positivi al variare di τ .

Figura: Tasso di falsi negativi al variare di τ .

Risultati - Spazio occupato

Figura: Spazio occupato dai LBF al variare di τ .

Figura: Spazio occupato dai SLBF al variare di τ .

Risultati - Confronto tra LBF e SLBF

Bibliografia I

- [1] B. Bloom. "Space/time trade-offs in hash coding with allowable errors". In: Commun. ACM 13 (1970), pp. 422–426.
- [2] Celine Liang Jason Ma. "An Empirical Analysis of the Learned Bloom Filter and its Extensions". In: (2020).
- [3] Tim Kraska et al. *The Case for Learned Index Structures*. 2018. arXiv: 1712.01208 [cs.DB].
- [4] Michael Mitzenmacher. "A Model for Learned Bloom Filters, and Optimizing by Sandwiching". In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS'18. Montréal, Canada: Curran Associates Inc., 2018, pp. 462–471.