

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1360524731

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

$y = 3x^2 + 2x + 4$ intersect at two distinct points.	

	equation of	the curve.						
•••••	•••••	••••••	•••••	••••••	••••••	••••••		
			•••••			•••••		
••••••	•••••		••••••	•••••		••••••	•••••	
••••••	•						•	
••••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
	•••••							•••••
••••••	••••••	••••••	••••••	•••••••	•••••••	••••••	•••••	••••••
•••••	•••••		•••••				•••••	•••••
	•••••		•••••					
•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		•••••					• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••					• • • • • • • • • • • • • • • • • • • •

3 In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).

(a)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

(b)

State, in terms of f, the equation of the graph shown with broken lines. [1]

(c)

State, in terms of f, the equation of the graph shown with broken lines.

[2]

.....

-,	Expand $(1+a)^5$ in ascending powers of a up to and including the term in a^3 .	[1]
		•••••
)	Hence expand $[1 + (x + x^2)]^5$ in ascending powers of x up to and including the term in simplifying your answer.	x^3 . [3]
	simplifying your unover.	Ľº.
		•••••

The diagram shows a cord going around a pulley and a pin. The pulley is modelled as a circle with centre O and radius 5 cm. The thickness of the cord and the size of the pin P can be neglected. The pin is situated 13 cm vertically below O. Points A and B are on the circumference of the circle such that AP and BP are tangents to the circle. The cord passes over the major arc AB of the circle and under the pin such that the cord is taut.

Calculate the length of the cord.	[6]

(a)	Find the rate at which the y-coordinate is increasing when $x = 1$.	[4]

•	
•	
•	• • • • • • • • •
•	
•	• • • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	• • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	• • • • • • • • •
•	• • • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	
•	
•	 •
•	
•	 •

-	()	C1 .1 .	$\tan \theta$	$\tan \theta$	2	F.4.7
′	(a)	Show that	$\frac{1+\cos\theta}{1+\cos\theta}$	$\frac{1-\cos\theta}{1-\cos\theta}$	$\frac{2}{\sin\theta\cos\theta}.$	[4]
		••••••	••••••••	••••••	•••••••••••	
		•••••	•••••••	••••••	••••••	
		•••••	••••••	••••••	•••••	
		•••••	•••••			
		••••••	••••••	••••••	••••••	
			•••••			
		•••••	••••••	•••••		
		•••••	••••••	•••••	•••••	

			uation $\frac{1}{1}$, 2000			U					
•••••	•••••	•••••	•••••		•••••	•••••			•••••		••••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••
			•••••					•••••			•••••	
•••••	••••••	•••••	••••••		••••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••
			•••••									
		••••			••••				•••••			
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••
•••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••
•••••			•••••								•••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••
•••••			•••••					•••••			•••••	
•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••
•••••												
•••••	••••••	••••••	•••••		•••••	••••••	••••••	•••••	•••••	••••••	••••••	•••••
•••••		•••••	•••••		•••••	•••••			•••••		•••••	•••••
	••••	••••			••••							

Given that the progression is geometric, find the sum to infinity.

It is now given instead that the progression is arithmetic.

Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.	
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.
	Find the sum of the first 16 terms when $\theta = \frac{1}{3}\pi$.

9 The functions f and	d g are defined by
------------------------------	--------------------

$$f(x) = x^2 - 4x + 3 \quad \text{for } x > c, \text{ where } c \text{ is a constant,}$$
$$g(x) = \frac{1}{x+1} \quad \text{for } x > -1.$$

(a)	Express $f(x)$ in the form $(x - a)^2 + b$.	[2]
It is	s given that f is a one-one function.	
(b)	State the smallest possible value of c .	[1]

It is now given that c = 5.

Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for gf(x) and state the range of gf.	
Find an expression for gf(x) and state the range of gf.	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for gf(x) and state the range of gf.	
Find an expression for $gf(x)$ and state the range of gf .	
Find an expression for $gf(x)$ and state the range of gf .	

LU	(a)	The coordinates of two points A and B are $(-1, 3)$ and $(5, 11)$ respectively.	
		Show that the equation of the perpendicular bisector of AB is $3x + 2y = 11$.	[4]
			•••••

F	Find an equation of the circle.	
		•••••
•		
•		•••••
•		
•		••••••
•		
•		•••••
•		•••••
•		
•		•••••
•		••••••
•		
•		•••••

11

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$.	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

10 0	e found.								
•••••	•••••••	••••••	••••••	••••••	••••••	•••••••	••••••	••••••	••••••
•••••				• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••
		•••••							
•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••									
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••	•••••
•••••									
•••••		•••••	••••••	••••••	••••••	•••••••••	•••••••	••••••	••••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
• • • • • •		•••••					•••••		
•••••		•	••••••	••••••	••••••	••••••	•••••	•••••	••••••
• • • • • •		•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
••••			••••	••••	••••			•••••	
• • • • • •		•••••		•••••	•••••				
• • • • • •		•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••
•••••									

Additional Page

must be clearly shown.	estion number(s)
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.