

AD-A116 789

EIC LABS INC NEWTON MA
THERMAL DECOMPOSITION OF DIMETHOXYMETHANE ELECTROLYTE SOLUTION. (U)
JUN 82 J S FOOS, V MELTZ
N00014-77-C-0155

F/B 10/3
NL

UNCLASSIFIED TR-8

1 of 1
AD-A
100-242

END
DATE
FILED
08-82
DTIC

AD A116789

(12)

OFFICE OF NAVAL RESEARCH

Contract No. N00014-77-C-0155

Task No. NR 359-638

TECHNICAL REPORT NO. 8

THERMAL DECOMPOSITION OF DIMETHOXYMETHANE
ELECTROLYTE SOLUTION

by

J. S. Foos and V. Meltz

Prepared for Publication

in the

Journal of the Electrochemical Society

EIC Laboratories, Inc.
67 Chapel Street
Newton, Massachusetts 02158

June 1982

DTIC
ELECTE
S JUL 12 1982 D
D

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

82 07 12 014

FILE COPY
DUPLICATE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TECHNICAL REPORT NO. 8	2. GOVT ACCESSION NO. AD-A116 780	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) THERMAL DECOMPOSITION OF DIMETHOXYMETHANE ELECTROLYTE SOLUTION	5. TYPE OF REPORT & PERIOD COVERED Technical Report	
7. AUTHOR(s) J. S. Foos and V. Meltz	6. PERFORMING ORG. REPORT NUMBER N00014-77-C-0155	
9. PERFORMING ORGANIZATION NAME AND ADDRESS EIC Laboratories, Inc. 67 Chapel Street Newton, Massachusetts 02158	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 359-638	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research/Chemistry Program Arlington, Virginia 22217	12. REPORT DATE June 1982	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 16	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Submitted for Publication in the Journal of the Electrochemical Society.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Lithium Battery, Organic, Electrolyte, Analysis		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The electrolyte solution prepared from LiAsF ₆ and dimethoxymethane (DMM) has been investigated for use in secondary lithium batteries. Storage tests were conducted at 70°C. In the presence of Li the best samples of electrolyte were stable to Li for more than one month. In the absence of Li, the electrolyte solution decomposed within days with loss of DMM, and formation of methyl formate and dimethyl ether in a 1:2 ratio. The products were identified and product ratio determined using IR and proton		

Abstract (continued)

NMR spectroscopy. A chain reaction mechanism is proposed for the decomposition which postulates oxygen-stabilized carbocation intermediates. Because the reaction may be impurity initiated and is quenched by Li metal, the importance of purification and storage of electrolyte with Li, is emphasized.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

THERMAL DECOMPOSITION OF DIMETHOXYMETHANE
ELECTROLYTE SOLUTION

J. S. Foos* and V. Meltz
EIC Laboratories, Inc., 67 Chapel Street, Newton, MA 02158

INTRODUCTION

Ethereal solutions of LiAsF₆ have shown promise for use as electrolytes in lithium batteries. Solution of LiAsF₆ in 2-methyltetrahydrofuran (2Me-THF) and in ether blends with diethylether (DEE) have demonstrated the ability to cycle lithium in high efficiency in Li/TiS₂ laboratory cells (1,2).

The ability of 2Me-THF electrolyte to cycle Li well is reflected in the superior thermal stability toward Li in storage tests at 70°C (3). Tetrahydrofuran (THF) electrolyte, which reacts with Li on storage, appears to react with Li in Li/TiS₂ cells when it is used as a component of a blend with a less reactive ether (4). Although the reactivity observed in the above tests has been attributed to reaction with Li, many ether electrolytes also react at elevated temperatures (100°C) in the absence of Li (5). The reaction observed in LiAsF₆ solutions is a dark brown coloration frequently accompanied by a white precipitate. In the case of DEE/LiAsF₆ electrolytes, ethylene is formed (along with H₂ in the presence of Li) (2). The reaction products were identified as containing As, implicating the AsF₆⁻ as a reactive species. The Li ion was implicated as a necessary catalytic species (4). In some cases, Li metal was found to suppress decomposition (5).

During the investigation of various ethers for use as electrolytic solvents in lithium batteries, dimethoxymethane (DMM) was chosen for testing (6). Storage tests at 70°C were conducted with solutions of LiAsF₆ in DMM in the presence and absence of Li. The visual results with this ether are similar to those previously reported for other ethers.

However, dramatic differences were observed for ether reactivity which are detected only through analysis of the reaction products. The simple structure of DMM and its decomposition products allow the use of NMR spectroscopy in determining the stoichiometry of its decomposition reaction. A mechanism for the decomposition is proposed based on the identity of the reaction products and the ratio in which they are produced.

EXPERIMENTAL

General

All purification procedures subsequent to distillation and storage test preparations were conducted at ambient temperature under Ar atmosphere in a Vacuum-Atmospheres Corp. dry box equipped with a Model He-493 Dri-Train.

Materials

The DMM (Aldrich) was dried with MgSO₄, followed by molecular sieves. The solvent was then distilled from Na benzophenone ketyl. The lithium hexafluoroarsenate (LiAsF₆) (U.S. Steel Agri-Chemicals, electrochemical grade) was used as-received. Lithium foil (15 mil) was obtained from Foote Mineral Company sealed under Ar.

Activated neutral alumina (Woelm 200 neutral, activity grade Super 1) was used as-received and exposed only to the dry box atmosphere. Approximately 1 g desiccant per 5 ml solvent was used in a given purification procedure.

The electrolytes for storage tests were prepared using LiAsF₆ with cooling using Cu shot previously cooled in dry ice. The solvents, if treated with alumina, were passed through a column of activated alumina and the first 10% discarded.

Storage Tests

Generally, the stability tests were conducted by storing a sample of electrolyte (3-10 ml) at 70°C in the absence or presence of Li (1-2 cm²). The sample was contained in screw-cap test tubes with Teflon-lined screw caps. The threads of the test tube were wrapped with Teflon tape.

The DMM electrolyte storage test which was analyzed by NMR spectroscopy was conducted in a 5 mm (0.8 mm wall) NMR tubes. The sample was placed in the tube in the dry box and then attached a vacuum line. The sample was outgassed in three freeze-thaw cycles and then the tube sealed under vacuum while the sample was frozen in liquid nitrogen (LN₂).

Analyses

The test tube storage samples were analyzed by IR spectroscopy (Beckman Acculab 5) using a 10 cm gas cell (at ~20 torr). The sample was first frozen (LN₂) and then quickly fitted with an adapter which could be attached to a vacuum line. The sample was then allowed to warm and aliquots collected in the IR cell.

The proton NMR analyses were done using a JEOL FX-90Q spectrometer (Biomeasure Inc., Hopkinton, MA). The sample in a 5 mm NMR tube was supported in a 10 mm NMR tube using a Teflon spacer. This outer tube contained the deuteriochloroform for the deuterium lock and the tetramethylsilane (TMS) external standard. The chemical shifts are reported as ppm downfield from TMS. To determine the effect of the external TMS on chemical shift values, spectra of DMM solvent were run with internal and external TMS. The chemical shifts were δ 3.26(6H) and δ 4.47(2H) with internal TMS; and δ 2.74(6H) and δ 3.95(2H) with external TMS, giving a change of -0.52 ppm with external TMS.

RESULTS

Stability tests were carried out with solutions of 1.5M LiAsF₆ in DMM at 70°C with and without Li metal. The samples containing Li showed relatively little reaction, with the best samples showing no reaction after 30 days. The most stable samples appeared to be those prepared from distilled solvent which was subsequently treated with alumina (DA).

In contrast, when samples were stored without Li, the (DA) samples turned dark in 5 to 7 days. Samples which had not been treated with alumina (D) remained colorless from 11 to 17 days. In either case it is clear that the DMM electrolyte solution is stabilized by Li.

IR Analysis

A sample of DMM electrolyte that had turned dark due to storage at 70°C was analyzed by IR spectroscopy. This analysis was done by slowly warming the cooled sample which was attached to a vacuum line. Aliquots of

the vapor which were collected in the vacuum line were then analyzed in an IR gas cell. Surprisingly the sample was found to contain little or no DMM. The IR spectra contained only absorptions which are attributed to methyl formate, dimethyl ether, and combination of the two. The methyl formate absorptions were identical to those obtained from an authentic sample (Eastman). The dimethyl ether absorptions were identical to a published spectrum (7).

Proton NMR Analysis

In order to positively identify the products, to assess the stoichiometry of the reaction, and to search for minor products; the decomposition was repeated in an NMR tube. A sample of 1.5M LiAsF₆/DMM was sealed in a 5 mm NMR tube which was stored at 70°C. At time intervals, the sample was removed and analyzed by proton NMR spectroscopy. The initial and final spectra are shown in Figure 1. At the top of Figure 1 is the spectrum of fresh DMM/LiAsF₆ electrolyte with peaks at δ4.19 (s,2H) and δ2.96 (s,6H). At the bottom is the spectrum showing a small amount of residual DMM along with methyl formate [δ7.59 (d,J<1 Hz,1H) and δ3.25 (m,J<1 Hz,3H)] and dimethyl ether [δ2.81 (s, 6H)].

The chemical shifts for DMM methyl formate, and dimethyl ether observed above are listed in Table 1. This table also shows that when authentic methyl formate is added to DMM electrolyte solution, the chemical shift values of the methyl formate are near those attributed to the methyl formate in the storage test. It can be noted that as the amount of DMM in the sample decreases, the chemical shifts decrease in value. At the end of

the experiment, methyl formate and dimethyl ether were present in a 1:2 ratio as determined from integration of the NMR absorptions. The experiment is summarized in Table 2.

This experiment establishes that the decomposition gives almost exclusively 1 mole of methyl formate and 2 moles of dimethyl ether. The balanced equation for this reaction is shown in Equation 1.

Table 2 shows that the brown color may be associated with the beginning of the decomposition of DMM. In contrast, a sample of LiAsF₆/2Me THF electrolyte solution which had turned brown as a result of storage at 70°C, showed no trace of 2Me-THF decomposition when analyzed by proton NMR spectroscopy.

DISCUSSION

The dark coloration is typically observed when LiAsF₆-ether solutions are stored at elevated temperatures. This coloration is not observed in storage tests with LiClO₄ (5) implying that the color is associated with the salt not the ether. Additionally, it has been observed that the time of onset of color depends on the purification technique used in preparing solvent, e.g., DMM/LiAsF₆ (DA) reacts more rapidly than DMM/LiAsF₆ (D). These observations imply that the color is a result of decomposition of AsF₆⁻ and that this decomposition is affected by impurities remaining after solvent purification or due to solvent decomposition. The decomposition products of AsF₆⁻ would be expected to be acidic and/or strongly oxidizing.

The polymerization of dioxolane is rapid in the presence of LiAsF₆, due to the influence of the AsF₆⁻ anion (9). This polymerization presumably operates in a cationic mechanism.

The above considerations imply that a cationic mechanism might be used to explain the decomposition of DMM to methyl formate and dimethyl ether. The observation that the presence of Li metal retards the decomposition reaction is consistent with this hypothesis.

Treatment of DMM with an oxidizing agent would be expected to give an oxygen stabilized cation, especially in the absence of strong nucleophile (10). It is important to note that the prominent nucleophiles in the DMM-LiAsF₆ solution are the AsF₆⁻ anion, which would be poorly nucleophilic (the anion of a strong acid), and the ether itself. The expected cation, I, would be stabilized by presence of two oxygen atoms, Equation 2.

Alternately, the cation I could also be formed from acidic impurities. The instability of acetals like DMM is well known in acidic aqueous solution. In the absence of H₂O, an additional molecule of solvent might be expected to react with an acid-base (ether) complex, Equation 3, to give the dimethyl ether cation (II).

This cation would undoubtedly exist in solution in the form of an oxonium ion formed with a molecule of solvent (11). However, it also might react

with DMM via hydride transfer to give the same stabilized intermediate, I, described above, see Equation 4:

A similar reaction was used to form the 1,3-dioxolan-2-ylum ion (II), (Equation 5):

The cation I, although relatively stable, may decompose by methyl transfer to a solvent molecule, forming an oxonium ion (III). This oxonium ion could in turn decompose (with a hydride transfer), regenerating the cation I. These reactions are shown in Equations 6 and 7 and constitute the propagation steps of a chain reaction.

The reactions described in Equations 2-4 are the initiation step.

This mechanism explains the products and stoichiometry observed. It also explains the reaction retarding effect of Li metal. It would be expected that cation intermediates would be rapidly reduced on Li to anions which might be insoluble but which would at least disrupt the propagation of the chain reaction, Equation 8:

Nucleophilic impurities such as H_2O would be expected to react rapidly with cations to disrupt the chain. Such reactions would be chain terminating steps.

An alternate mechanism for the reaction which might be proposed is the direct oxidation of DMM by AsF_6^- (or AsF_6^- decomposition product). It has been suggested that in the case of several ethers (not DMM) that the reactive agent may be AsF_5 produced from the thermal decomposition of LiAsF_6 (4,5). This corresponds to an initiation step of the chain mechanism. This reaction may become the principal route of decomposition if suitably catalyzed or in the presence of an ether less amenable than DMM to a chain reaction. This reaction sequence is shown in Equations 9a-c.

In our view, this mechanism fails to explain the observed DMM decomposition for several reasons. Thus, although a small amount of white precipitate is

observed, it is too little to be the LiF produced according to Equation 9a if that were the major reaction. Actually, the amount of LiAsF₆ in 1.5M LiAsF₆/DMM is insufficient to oxidize the DMM present by this reaction. The IR spectrum of the residual salt left after the decomposition of DMM in a storage test showed a strong peak remaining at 700 cm⁻¹, which corresponds to the AsF₆⁻ absorption. Significant oxidation by LiAsF₆ would not be expected in view of its apparent good thermal and solution stability (12).

In addition, no appreciable absorption was observed in the proton NMR spectra which could be attributed to the organofluorine compound in Equation 9b. We note too that the reaction in Equation 9c, an initiation step in the proposed chain, does not have the right stoichiometry to give the observed products.

A free-radical mechanism might be proposed as an alternative to the cation mechanism suggested above. However, we do not believe that this is credible. Cation intermediates of the type proposed are known to be stable species whereas similar free-radical species would be much less stable. Also, they would show coupling products.

CONCLUSIONS

It is observed that DMM electrolyte decomposes thermally to give dimethyl ether and methyl formate. Since methyl formate is unstable towards Li (13) it would be expected that this reaction would seriously degrade the performance of DMM/LiAsF₆ electrolyte in a Li cell. This decomposition reaction may occur during electrolyte preparation or during storage prior to filling the cell.

In the cell, in the presence of the Li negative, the decomposition could be minimized. However, in the bulk solution, away from the surface of the Li, some decomposition may be initiated by acidic, or oxidizing, impurities introduced during the construction of the cell. If a reaction in the cell, such as AsF_6^- decomposition, produces an acid or oxidizing agent, the effects of that reaction will be magnified by the DMM decomposition chain reaction.

More generally, this reaction is an illustration of a type of reaction that can occur only in certain specialized conditions. This condition includes the presence of a non-reactive, non-nucleophilic anion, i.e., AsF_6^- , which may stabilize the carbocation intermediates. Required as well is the absence of a reactive nucleophile other than the solvent itself. These conditions are seldom achieved in synthetic organic chemistry but are typical in Li battery electrolytes.

REFERENCES

1. G. L. Holleck, K. M. Abraham and S. B. Brummer in Proceedings of the Symposia on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, B. B. Owens and N. Margalit, eds., Vol. 80-4, The Electrochemical Society, Pennington, NJ, 384 (1980).
2. K. M. Abraham, J. L. Goldman and D. L. Natwig, J. Electrochem. Soc., submitted.
3. J. L. Goldman, R. M. Mank, J. H. Young and V. R. Koch, J. Electrochem. Soc., 127, 1461 (1980).
4. K. M. Abraham and J. L. Goldman, Prepared for publication in the Journal of Power Sources.
5. V. R. Koch, J. L. Goldman, J. T. Y. Maurand, and M. Mulvaney, Proceedings of the Symposium on Lithium Batteries, H. V. Venkatasetty, ed., Vol. 81-4, The Electrochemical Society, Pennington, NJ.
6. J. S. Foos, K. M. Abraham, J. McVeigh, J. L. Goldman, and V. Meltz, submitted for presentation at the Fall Meeting of the Electrochemical Society, Detroit, MI, October (1982).
7. Raman/IR Atlas of Organic Compounds, Ed. by B. Schroder and W. Meier, Verlag Chemie, Weinheim, West Germany (1977).
8. The Aldrich Library of NMR Spectra, Aldrich Chemical Co. (1974).
9. P. G. Glugla in Proceedings of the Symposia on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, B. B. Owens and N. Margalit, eds., Vol. 8-4, The Electrochemical Society, Pennington, NJ, 407 (1980).
10. V. D. Parker in Organic Electrochemistry, ed. by M. M. Baizer, Dekker, New York (1973) pp. 544-5.
11. P. Kubisa and S. Penczek, Makromol. Chem., 144, 169 (1971).
12. R. C. Cannon, C. C. Stone, and R. A. Wiesboeck, in Proceedings of the Symposia on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, B. B. Owens and N. Margalit, eds., Vol. 80-4, The Electrochemical Society, Pennington, NJ, p. 321 (1980).
13. R. D. Rauh and S. B. Brummer, Electrochimica Acta, 22, 85 (1977).

TABLE 1

OBSERVED CHEMICAL SHIFTS (ppm, δ) FOR DMM, METHYL FORMATE, AND DIMETHYL ETHER (vs. EXTERNAL TMS) IN 1.5M LiAsF₆/DMM STORAGE TEST, REFERENCE SAMPLE, AND DMM SOLVENT ONLY.

	1.5M LiAsF ₆ /DMM Storage Sample (70°C)			Reference Sample	
	Initial	35% Decomposed	90% Decomposed	DMM	Methyl Formate
				Added to 1.5M LiAsF ₆ /DMM	Solvent Only*
DMM	2.96(6H) 4.19(2H)	2.92(6H) 4.14(2H)	2.81(6H) 4.02(2H)	2.94(6H) 4.16(2H)	2.74(6H) 3.95(2H)
Methyl Formate	-	3.39(3H) - 7.70(1H)	3.25(3H) 7.59(1H)	3.41(3H) 7.75(1H)	- -
Dimethyl Ether	-	2.94(6H)	2.81(6H)	-	-

*The chemical shift difference between these values and literature values (3.40 and 4.58, Ref. 8) is primarily the result of -0.52 ppm change due to the placement of TMS external to the sample (see Experimental).

TABLE 2

VISUAL AND PROTON NMR SPECTROSCOPIC ANALYSIS OF LiAsF₆/DMM STORED AT 70°C.

<u>Time (days)</u>	<u>Color</u>	<u>Percent Decomposition*</u>
0	Clear-colorless	0
5	Clear-colorless	0
9	Dark brown	~35
16	Dark brown (white ppt)	~90

*Based on ratio of DMM to methyl formate.

FIGURE CAPTION

**Fig. 1. Proton NMR spectra. Top: Freshly prepared DMM/LiAsF₆.
Bottom: DMM/LiAsF₆ after 16 days at 70°C.**

DISTRIBUTION LIST

Office of Naval Research
Attn: Code 472
800 North Quincy Street
Arlington, VA 22217

ONR Branch Office
Attn: Dr. George Sandoz
536 South Clark Street
Chicago, IL 60605

ONR Area Office
Attn: Scientific Department
715 Broadway
New York, NY 10003

ONR Western Regional Office
1030 East Green Street
Pasadena, CA 91106

ONR Eastern/Central Regional Office
Attn: Dr. L. H. Peebles
Building 114, Section D
666 Summer Street
Boston, MA 02210

Director, Naval Research Laboratory
Attn: Code 6100
Washington, DC 20390

**The Assistant Secretary
of the Navy (RE&S)**
Department of the Navy
Room 4E736, The Pentagon
Washington, DC 20350

**Commander, Naval Air Systems
Command**
Attn: Code 310C (H. Rosenwasser)
Department of the Navy
Washington, DC 20360

Defense Technical Information Ctr
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Fred Saalfeld
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, DC 20375

U.S. Army Research Office
Attn: CRD-AA-IP
P. O. Box 12211
Research Triangle Park, NC 27709

Naval Ocean Systems Center
Attn: Mr. Joe McCartney
San Diego, CA 92152

Naval Weapons Center
Attn: Dr. A. B. Amster
Chemistry Division
China Lake, CA 93555

Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko
Port Hueneme, CA 93401

Department of Physics & Chemistry
Naval Postgraduate School
Monterey, CA 93940

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, DC 20380

Office of Naval Research
Attn: Dr. Richard S. Miller
800 North Quincy Street
Arlington, VA 22217

Naval Ship R&D Center
Attn: Dr. G. Bosmajian
Applied Chemistry Division
Annapolis, MD 21401

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, CA 91232

Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, PA 19112

Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco, CA 96503

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, MD 21402

Dr. Paul Delahay
Department of Chemistry
New York University
New York, NY 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, OH 41106

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, UT 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, CA 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, NJ 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, NJ 07974

Dr. T. Katan
Lockheed Missiles & Space
Company, Inc.
P. O. Box 504
Sunnyvale, CA 94088

Dr. Joseph Singer
Code 302/1
NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

Dr. S. B. Brummer
EIC Laboratories, Inc.
67 Chapel Street
Newton, MA 02158

Library
P. R. Mallory & Company, Inc.
Northwest Industrial Park
Burlington, MA 01803

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9-5NH
UNITED KINGDOM

Dr. Sam Perone
Department of Chemistry
Purdue University
West Lafayette, IN 47907

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514

Naval Ocean Systems Center
Attn: Technical Library
San Diego, CA 92152

Dr. C. E. Mueller
The Electrochemistry Branch
Materials Division, Research
& Technology Department
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910

Dr. G. Goodman
Globe Union, Inc.
5757 North Green Bay Avenue
Milwaukee, WI 53201

Dr. J. Boechler
Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, CA 94040

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, MI 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, NY 12181

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, WI 53706

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of
Technology
Cambridge, MA 02139

Larry E. Plew
Naval Weapons Support Center
Code 30736, Building 2906
Crane, IN 47522

Dr. Stanley Ruby
Department of Energy (STOR)
600 E Street
Washington, DC 20545

Dr. Aaron Wold
Brown University
Department of Chemistry
Providence, RI 02192

Dr. R. C. Chudacek
McGraw-Edison Company
Edison Battery Division
P. O. Box 28
Bloomfield, NJ 07003

Dr. A. J. Bard
University of Texas
Department of Chemistry
Austin, TX 78712

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, CA 92803

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, MD 20910

Dr. R. P. Van Duyne
Department of Chemistry
Northwestern University
Evanston, IL 60201

Dr. B. Stanley Pons
Department of Chemistry
University of Alberta
Edmonton, Alberta
CANADA T6G 2G2

Dr. Michael J. Weaver
Department of Chemistry
Michigan State University
East Lansing, MI 48824

Dr. R. David Rauh
EIC Laboratories, Inc.
67 Chapel Street
Newton, MA 02158

Dr. J. David Margerum
Research Laboratories Division
Hughes Aircraft Company
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDON

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
at Buffalo
Buffalo, NY 14214

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
at Buffalo
Buffalo, NY 14214

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, RI 02840

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, DC 20375

Dr. John F. Houlihan
Shenango Valley Campus
Pennsylvania State University
Sharon, PA 16146

Dr. M. G. Sceats
Department of Chemistry
University of Rochester
Rochester, NY 14627

Dr. Alan Bewick
Department of Chemistry
The University
Southampton, S09 5NH
UNITED KINGDOM

Dr. A. Himy
NAVSEA-5433
NC No. 4
2541 Jefferson Davis Highway
Arlington, VA 20362

Dr. John Kincaid
Department of the Navy
Strategic Systems Project Office
Room 901
Washington, DC 20376

M. L. Robertson, Manager
Electrochemical Power Sonics Division
Naval Weapons Support Center
Crane, IN 47522

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Dr. Bernard Spielvogel
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Dr. Denton Elliott
Air Force Office of Scientific
Research
Building 104
Bolling Air Force Base
Washington, DC 20332

