Package 'EMpeaksR'

March 29, 2023

Type Package
Title Conducting the Peak Fitting Based on the EM Algorithm
Version 0.3.1
Description The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080 14686996.2019.1620123="">, <doi:10.1080 (1)="" (2)="" 27660400.2021.18994="" a="" advantages:="" age="" amount="" and="" are="" at="" automatic="" be="" between="" calculation="" can="" converged="" data="" during="" e-step="" easily="" efficiently="" estimates="" gaussian="" high="" investigation="" iterative="" large="" local="" m-step,="" mixture="" model="" of="" optimal="" package="" parameters="" peak="" performed.<="" processed="" shift="" solution.="" speed;="" stable="" support="" th="" the="" this="" to="" two="" with=""></doi:10.1080></doi:10.1080>
License MIT + file LICENSE
Language en-US
Encoding UTF-8
RoxygenNote 7.1.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Tarojiro Matsumura [aut, cre]
Maintainer Tarojiro Matsumura <matsumura-tarojiro@aist.go.jp></matsumura-tarojiro@aist.go.jp>
Repository CRAN
Date/Publication 2023-03-29 13:40:02 UTC
R topics documented:
show_dsgmm_curve 2 show_gmm_curve 4 show_lmm_curve 6 show_pvmm_curve 8

2 show_dsgmm_curve

```
        show_pvmm_lback_curve
        10

        spect_em_dsgmm
        12

        spect_em_gmm
        15

        spect_em_lmm
        17

        spect_em_pvmm
        19

        spect_em_pvmm_lback
        21

        Index
        25
```

Description

Visualization of the result of spect_em_dsgmm().

Usage

Arguments

Details

Perform a visualization of fitting curve estimated by Doniach-Sunjic-Gauss mixture model.

Value

Show the fitting curve and variation of the parameters.

show_dsgmm_curve 3

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

```
#generating the synthetic spectral data based on three component Doniach-Sunjic-Gauss mixture model.
                  \leftarrow seq(0, 100, by = 0.5)
true_mu
                  <- c(20, 50, 80)
true_sigma
                  <-c(3, 3, 3)
true_alpha
                  <- c(0.1, 0.3, 0.1)
                  <- c(0.4, 0.6, 0.1)
true_eta
true_mix_ratio <- rep(1/3, 3)</pre>
                   <- 4
degree
#trancated Doniach-Sunjic-Gauss
truncated_dsg <- function(x, mu, sigma, alpha, eta) {</pre>
                    ((eta*(((gamma(1-alpha)) /
                    ((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
                    cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
                    (\operatorname{sqrt}(2*\log(2))*\operatorname{sigma})))) + (1-\operatorname{eta})*\operatorname{dnorm}(x, \operatorname{mu}, \operatorname{sigma})) /
                    sum( ((eta*(((gamma(1-alpha)) /
                    ((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
                    cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
                    (\operatorname{sqrt}(2*\log(2))*\operatorname{sigma})))) + (1-\operatorname{eta})*\operatorname{dnorm}(x, \operatorname{mu}, \operatorname{sigma})))
}
y <- c(true_mix_ratio[1]*truncated_dsg(x = x,</pre>
                                              mu = true_mu[1],
                                              sigma = true_sigma[1],
                                              alpha = true_alpha[1],
                                              eta = true_eta[1])*10^degree +
        true_mix_ratio[2]*truncated_dsg(x = x,
                                              mu = true_mu[2],
                                              sigma = true_sigma[2],
                                              alpha = true_alpha[2],
                                              eta = true_eta[2])*10^degree +
        true_mix_ratio[3]*truncated_dsg(x = x,
                                              mu = true_mu[3],
                                              sigma = true_sigma[3],
                                              alpha = true_alpha[3],
                                              eta = true_eta[3])*10^degree)
plot(y^x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
```

show_gmm_curve

```
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
mu_init
          <- c(20, 40, 70)
sigma_init <- c(4, 3, 2)
alpha_init <- c(0.3, 0.2, 0.4)
eta_init
              <- c(0.5, 0.4, 0.3)
#Coducting calculation
SP\_ECM\_DSG\_res <- spect\_em\_dsgmm(x = x,
                                 y = y,
                                 mu = mu_init,
                                 sigma = sigma_init,
                                 alpha = alpha_init,
                                 eta = eta_init,
                                 mix_ratio = mix_ratio_init,
                                 conv.cri = 1e-2,
                                 maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_dsgmm_curve(SP_ECM_DSG_res,
                 Х,
                 mix_ratio_init,
                 mu_init,
                 sigma_init,
                 alpha_init,
                 eta_init)
#Showing the result of spect_em_dsgmm()
print(cbind(c(mu_init),
            c(sigma_init),
            c(alpha_init),
            c(eta_init),
            c(mix_ratio_init)))
print(cbind(SP_ECM_DSG_res$mu,
            SP_ECM_DSG_res$sigma,
            {\tt SP\_ECM\_DSG\_res\$alpha},
            SP_ECM_DSG_res$eta,
            SP_ECM_DSG_res$mix_ratio))
print(cbind(true_mu,
            true_sigma,
            true_alpha,
            true_eta,
            true_mix_ratio))
```

show_gmm_curve 5

Description

Visualization of the result of spect_em_gmm().

Usage

```
show_gmm_curve(spect_em_gmm_res, x, y, mix_ratio_init, mu_init, sigma_init)
```

Arguments

```
spect_em_gmm_res
data set obtained by spect_em_gmm()

x measurement steps

y intensity

mix_ratio_init initial values of the mixture ratio of the components

mu_init initial values of the mean of the components

sigma_init initial values of the standard deviation of the components
```

Details

Perform a visualization of fitting curve estimated by Gaussian mixture model.

Value

Show the fitting curve and variation of the parameters.

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

```
#generating the synthetic spectral data based on three component Gausian mixture model.
                \leftarrow seq(0, 100, by = 0.5)
Х
true_mu
                <- c(35, 50, 65)
true_sigma
                <-c(3, 3, 3)
true_mix_ratio <- rep(1/3, 3)</pre>
                <- 4
degree
y <- c(true_mix_ratio[1] * dnorm(x = x, mean = true_mu[1], sd = true_sigma[1])*10^degree +
      true_mix_ratio[2] * dnorm(x = x, mean = true_mu[2], sd = true_sigma[2])*10^degree +
      true_mix_ratio[3] * dnorm(x = x, mean = true_mu[3], sd = true_sigma[3])*10^degree)
plot(y^x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
```

show_lmm_curve

show_lmm_curve

Visualization of the result of spect_em_lmm

Description

Visualization of the result of spect_em_lmm().

Usage

```
show_lmm_curve(spect_em_lmm_res, x, y, mix_ratio_init, mu_init, gam_init)
```

Arguments

```
spect_em_lmm_res
```

data set obtained by spect_em_lmm()

x measurement steps

y intensity

mix_ratio_init initial values of the mixture ratio of the components

mu_init initial values of the mean of the components

gam_init initial values of the scale parameter of the components

Details

Perform a visualization of fitting curve estimated by Lorentz mixture model.

Value

Show the fitting curve and variation of the parameters.

show_Imm_curve 7

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

```
#generating the synthetic spectral data based on three component Lorentz mixture model.
                \leftarrow seq(0, 100, by = 0.5)
Χ
true_mu
                <- c(35, 50, 65)
               <-c(3, 3, 3)
true_gam
true_mix_ratio <- rep(1/3, 3)</pre>
degree
                <- 4
#Normalized Lorentz distribution
dCauchy <- function(x, mu, gam) {
    (dcauchy(x, mu, gam)) / sum(dcauchy(x, mu, gam))
y \leftarrow c(true_mix_ratio[1] * dCauchy(x = x, mu = true_mu[1], gam = true_gam[1])*10^degree +
      true_mix_ratio[2] * dCauchy(x = x, mu = true_mu[2], gam = true_gam[2])*10^degree +
       true_mix_ratio[3] * dCauchy(x = x, mu = true_mu[3], gam = true_gam[3])*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
mu_init
               <- c(20, 40, 70)
              <- c(2, 5, 4)
gam_init
#Coducting calculation
SP_ECM_L_res <- spect_em_lmm(x, y, mu = mu_init, gam = gam_init, mix_ratio = mix_ratio_init,
                             conv.cri = 1e-2, maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_lmm_curve(SP_ECM_L_res, x, y, mix_ratio_init, mu_init, gam_init)
#Showing the result of spect_em_lmm()
print(cbind(c(mu_init), c(gam_init), c(mix_ratio_init)))
print(cbind(SP_ECM_L_res$mu, SP_ECM_L_res$gam, SP_ECM_L_res$mix_ratio))
print(cbind(true_mu, true_gam, true_mix_ratio))
```

8 show_pvmm_curve

show_pvmm_curve

Visualization of the result of spect_em_pvmm

Description

Visualization of the result of spect_em_pvmm().

Usage

```
show_pvmm_curve(spect_em_pvmm_res, x, y, mix_ratio_init, mu_init, sigma_init, eta_init)
```

Arguments

spect_em_pvmm_res

data set obtained by spect_em_pvmm()

x measurement steps

y intensity

mix_ratio_init initial values of the mixture ratio of the components

mu_init initial values of the mean of the components

sigma_init initial values of the standard deviation of the components

eta_init initial values of the mixing ratio of Gauss and Lorentz distribution

Details

Perform a visualization of fitting curve estimated by Pseudo-Voigt mixture model.

Value

Show the fitting curve and variation of the parameters.

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

show_pvmm_curve 9

```
#generating the synthetic spectral data based on three component Pseudo-Voigt mixture model.
               <- seq(0, 100, by = 0.5)
               <- c(35, 50, 65)
true_mu
             <- c(3, 3, 3)
true_sigma
true_eta <- c(0.3, 0.8, 0.5)
true_mix_ratio <- rep(1/3, 3)</pre>
degree
#Normalized Pseudo-Voigt distribution
  truncated_pv <- function(x, mu, sigma, eta) {</pre>
    (eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma)) /
      sum(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma))
  }
y <- c(true_mix_ratio[1]*truncated_pv(x = x,</pre>
                                      mu = true_mu[1],
                                      sigma = true_sigma[1],
                                      eta = true_eta[1])*10^degree +
       true_mix_ratio[2]*truncated_pv(x = x,
                                      mu = true_mu[2],
                                      sigma = true_sigma[2],
                                      eta = true_eta[2])*10^degree +
       true_mix_ratio[3]*truncated_pv(x = x,
                                      mu = true_mu[3],
                                      sigma = true_sigma[3],
                                      eta = true_eta[3])*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
         <- c(20, 40, 70)
mu_init
sigma_init
              <- c(2, 5, 4)
eta_init
             <- c(0.5, 0.4, 0.3)
#Coducting calculation
SP\_ECM\_PV\_res <- spect\_em\_pvmm(x = x,
                               y = y,
                               mu = mu_init,
                               sigma = sigma_init,
                               eta = eta_init,
                               mix_ratio = mix_ratio_init,
                               conv.cri = 1e-2,
                               maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_pvmm_curve(SP_ECM_PV_res, x, y, mix_ratio_init, mu_init, sigma_init, eta_init)
```

```
#Showing the result of spect_em_pvmm()
print(cbind(c(mu_init), c(sigma_init), c(eta_init), c(mix_ratio_init)))
print(cbind(SP_ECM_PV_res$mu, SP_ECM_PV_res$sigma, SP_ECM_PV_res$eta, SP_ECM_PV_res$mix_ratio))
print(cbind(true_mu, true_sigma, true_eta, true_mix_ratio))
```

Description

Visualization of the result of spect_em_pvmm_lback().

Usage

Arguments

```
spect_em_pvmm_lback_res
                  data set obtained by spect_em_pvmm_lback()
                  measurement steps
Χ
                  intensity
У
mu_init
                  initial values of the mean of the components
sigma_init
                  initial values of the standard deviation of the components
eta_init
                  initial values of the mixing ratio of Gauss and Lorentz distribution
mix_ratio_init initial values of the mixture ratio of the components
x_lower
                  lower limit of the measurement steps. Default is a minimum of x
x_upper
                  upper limit of the measurement steps. Default is a maximum of x
```

Details

Perform a visualization of fitting curve estimated by pseudo-Voigt mixture model with a linear background.

Value

Show the fitting curve and variation of the parameters.

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2023). High-throughput XPS spectrum modeling with autonomous background subtraction for 3 d 5/2 peak mapping of SnS. Science and Technology of Advanced Materials: Methods, 3(1), 2159753.

```
#generating the synthetic spectral data based on three component Pseudo-Voigt mixture model.
              \leftarrow seq(0, 100, by = 0.5)
Κ
               <- 3
               <- c(35, 50, 65)
true_mu
true_sigma
              <-c(3, 3, 3)
true_mix_ratio <- c(0.5/3, 0.5/3, 0.5/3, 0.5)
              <-c(0.4, 0.6, 0.1)
true_eta
degree
#Normalized Pseudo-Voigt distribution
  truncated_pv <- function(x, mu, sigma, eta) {</pre>
    (eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma)) /
      sum(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma))
y <- c(true_mix_ratio[1]*truncated_pv(x = x,</pre>
                                       mu = true_mu[1],
                                       sigma = true_sigma[1],
                                       eta = true_eta[1])*10^degree +
       true_mix_ratio[2]*truncated_pv(x = x,
                                       mu = true_mu[2],
                                       sigma = true_sigma[2],
                                       eta = true_eta[2])*10^degree +
       true_mix_ratio[3]*truncated_pv(x = x,
                                       mu = true_mu[3],
                                       sigma = true_sigma[3],
                                       eta = true_eta[3])*10^degree +
       true_mix_ratio[4]*(c(500*x + 15000) / sum(500*x + 15000))*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
              <- c(30, 40, 60)
mu_init
              <- c(4, 4, 4)
sigma_init
mix_ratio_init <- rep(1/(length(mu_init)+3), length(mu_init)+3)</pre>
eta_init <- c(1, 1, 1)
```

spect_em_dsgmm

```
#Coducting calculation
SP_ECM_PV_LBACK_res <- spect_em_pvmm_lback(x = x,</pre>
                                            y = y,
                                            mu = mu_init,
                                            sigma = sigma_init,
                                            eta = eta_init,
                                            mix_ratio = mix_ratio_init,
                                            x_{lower} = min(x),
                                            x_{upper} = max(x),
                                            conv.cri = 1e-2,
                                            maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_pvmm_lback_curve(spect_em_pvmm_lback_res = SP_ECM_PV_LBACK_res,
                      x = x,
                      y = y,
                      mix_ratio_init = mix_ratio_init,
                      mu_init = mu_init,
                      sigma_init = sigma_init,
                      eta_init = eta_init,
                      x_{lower} = min(x),
                      x_{upper} = max(x)
#Showing the result of spect_em_pvmm_lback()
print(cbind(SP_ECM_PV_LBACK_res$mu, SP_ECM_PV_LBACK_res$sigma, SP_ECM_PV_LBACK_res$eta,
            SP_ECM_PV_LBACK_res$mix_ratio[1:K]))
print(cbind(true_mu, true_sigma, true_eta, true_mix_ratio[1:K]))
```

spect_em_dsgmm

Spectrum adapted ECM algorithm by DSGMM

Description

Perform a peak fitting based on the spectrum adapted ECM algorithm by Doniach-Sunjic-Gauss mixture model.

Usage

```
spect_em_dsgmm(x, y, mu, sigma, alpha, eta, mix_ratio, conv.cri, maxit)
```

Arguments

x measurement stepsy intensity

mu mean of the components

sigma standard deviation of the components

spect_em_dsgmm 13

alpha asymmetric parameter of the component

eta mixing ratio of Gauss and Lorentz distribution

mix_ratio mixture ratio of the components
conv.cri criterion of the convergence

maxit maximum number of the iteration

Details

Peak fitting is conducted by spectrum adapted ECM algorithm.

Value

mu estimated mean of the components

sigma estimated standard deviation of the components

alpha estimated asymmetric parameter of the components

eta estimated mixing ratio of Gauss and Lorentz distribution

mix_ratio estimated mixture ratio of the components

it number of the iteration to reach the convergenceLL variation of the weighted log likelihood values

MU variation of mu
SIGMA variation of sigma
ALPHA variation of alpha
ETA variation of beta

MIX_RATIO variation of mix ratio

W_K decomposed component of the spectral data convergence message for the convergence in the calculation

cal_time calculation time to complete the peak fitting. Unit is seconds

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

14 spect_em_dsgmm

```
#generating the synthetic spectral data based on three component Doniach-Sunjic-Gauss mixture model.
                 \leftarrow seq(0, 100, by = 0.5)
Χ
                 <- c(20, 50, 80)
true_mu
               <- c(3, 3, 3)
true_sigma
                 <- c(0.1, 0.3, 0.1)
true_alpha
true_eta
                 <-c(0.4, 0.6, 0.1)
true_mix_ratio <- rep(1/3, 3)</pre>
degree
#trancated Doniach-Sunjic-Gauss
truncated_dsg <- function(x, mu, sigma, alpha, eta) {</pre>
                   ((eta*(((gamma(1-alpha)) /
                   ((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
                   cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
                   (\operatorname{sqrt}(2*\log(2))*\operatorname{sigma})))) + (1-\operatorname{eta})*\operatorname{dnorm}(x, \operatorname{mu}, \operatorname{sigma})) /
                   sum( ((eta*(((gamma(1-alpha)) /
                   ((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
                   cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
                   (\operatorname{sqrt}(2*\log(2))*\operatorname{sigma})))) + (1-\operatorname{eta})*\operatorname{dnorm}(x, \operatorname{mu}, \operatorname{sigma})))
}
y <- c(true_mix_ratio[1]*truncated_dsg(x = x,</pre>
                                            mu = true_mu[1],
                                            sigma = true_sigma[1],
                                            alpha = true_alpha[1],
                                            eta = true_eta[1])*10^degree +
        true_mix_ratio[2]*truncated_dsg(x = x,
                                            mu = true_mu[2],
                                            sigma = true_sigma[2],
                                            alpha = true_alpha[2],
                                            eta = true_eta[2])*10^degree +
        true_mix_ratio[3]*truncated_dsg(x = x,
                                            mu = true_mu[3],
                                            sigma = true_sigma[3],
                                            alpha = true_alpha[3],
                                            eta = true_eta[3])*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
              <- c(20, 40, 70)
mu_init
sigma_init
                <-c(4, 3, 2)
alpha_init
                <- c(0.3, 0.2, 0.4)
                <- c(0.5, 0.4, 0.3)
eta_init
#Coducting calculation
SP\_ECM\_DSG\_res <- spect\_em\_dsgmm(x = x,
                                     y = y,
```

spect_em_gmm 15

```
mu = mu_init,
                                 sigma = sigma_init,
                                 alpha = alpha_init,
                                 eta = eta_init,
                                 mix_ratio = mix_ratio_init,
                                 conv.cri = 1e-2,
                                 maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_dsgmm_curve(SP_ECM_DSG_res,
                 х,
                 у,
                 mix_ratio_init,
                 mu_init,
                 sigma_init,
                 alpha_init,
                 eta_init)
#Showing the result of spect_em_dsgmm()
print(cbind(c(mu_init),
            c(sigma_init),
            c(alpha_init),
            c(eta_init),
            c(mix_ratio_init)))
print(cbind(SP_ECM_DSG_res$mu,
            SP_ECM_DSG_res$sigma,
            SP_ECM_DSG_res$alpha,
            SP_ECM_DSG_res$eta,
            SP_ECM_DSG_res$mix_ratio))
print(cbind(true_mu,
            true_sigma,
            true_alpha,
            true_eta,
            true_mix_ratio))
```

spect_em_gmm

Spectrum adapted EM algorithm by GMM

Description

Perform a peak fitting based on the spectrum adapted EM algorithm by Gaussian mixture model.

Usage

```
spect_em_gmm(x, y, mu, sigma, mix_ratio, conv.cri, maxit)
```

spect_em_gmm

Arguments

X	measurement steps
У	intensity
mu	mean of the components
sigma	standard deviation of the components
mix_ratio	mixture ratio of the components
conv.cri	criterion of the convergence
maxit	maximum number of the iteration

Details

Peak fitting is conducted by spectrum adapted EM algorithm.

Value

mu	estimated mean of the components
sigma	estimated standard deviation of the components
mix_ratio	estimated mixture ratio of the components
it	number of the iteration to reach the convergence
LL	variation of the weighted log likelihood values
MU	variation of mu
SIGMA	variation of sigma
MIX_RATIO	variation of mix_ratio
W_K	decomposed component of the spectral data
convergence	message for the convergence in the calculation
cal_time	calculation time to complete the peak fitting. Unit is seconds

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

spect_em_lmm 17

```
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
               <- c(20, 40, 70)
mu_init
sigma_init
             <- c(2, 5, 4)
#Coducting calculation
SP_EM_G_res <- spect_em_gmm(x, y, mu = mu_init, sigma = sigma_init, mix_ratio = mix_ratio_init,</pre>
                            conv.cri = 1e-2, maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_gmm_curve(SP_EM_G_res, x, y, mix_ratio_init, mu_init, sigma_init)
#Showing the result of spect_em_gmm()
print(cbind(c(mu_init), c(sigma_init), c(mix_ratio_init)))
print(cbind(SP_EM_G_res$mu, SP_EM_G_res$sigma, SP_EM_G_res$mix_ratio))
print(cbind(true_mu, true_sigma, true_mix_ratio))
```

spect_em_1mm

Spectrum adapted ECM algorithm by LMM

Description

Perform a peak fitting based on the spectrum adapted ECM algorithm by Lorentz mixture model.

Usage

```
spect_em_lmm(x, y, mu, gam, mix_ratio, conv.cri, maxit)
```

Arguments x

У	intensity
mu	mean of the components
gam	scale parameter of the components
mix_ratio	mixture ratio of the components
conv.cri	criterion of the convergence
maxit	maximum number of the iteration

measurement steps

Details

Peak fitting is conducted by spectrum adapted ECM algorithm.

18 spect_em_lmm

Value

estimated mean of the components mu estimated scale parameter of the components gam mix_ratio estimated mixture ratio of the components it number of the iteration to reach the convergence LL variation of the weighted log likelihood values MU variation of mu GAM variation of gam MIX_RATIO variation of mix ratio WK decomposed component of the spectral data message for the convergence in the calculation convergence calculation time to complete the peak fitting. Unit is seconds cal_time

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

```
#generating the synthetic spectral data based on three component Lorentz mixture model.
                <- seq(0, 100, by = 0.5)
Χ
                <-c(35, 50, 65)
true_mu
true_gam
                <-c(3, 3, 3)
true_mix_ratio <- rep(1/3, 3)</pre>
#Normalized Lorentz distribution
dCauchy <- function(x, mu, gam) {
    (dcauchy(x, mu, gam)) / sum(dcauchy(x, mu, gam))
y <- c(true_mix_ratio[1] * dCauchy(x = x, mu = true_mu[1], gam = true_gam[1])*10^degree +
      true_mix_ratio[2] * dCauchy(x = x, mu = true_mu[2], gam = true_gam[2])*10^degree +
       true_mix_ratio[3] * dCauchy(x = x, mu = true_mu[3], gam = true_gam[3])*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
```

19 spect_em_pvmm

```
mu_init
                <- c(20, 40, 70)
gam_init
                <-c(2, 5, 4)
#Coducting calculation
SP_ECM_L_res <- spect_em_lmm(x, y, mu = mu_init, gam = gam_init, mix_ratio = mix_ratio_init,
                             conv.cri = 1e-2, maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_lmm_curve(SP_ECM_L_res, x, y, mix_ratio_init, mu_init, gam_init)
#Showing the result of spect_em_lmm()
print(cbind(c(mu_init), c(gam_init), c(mix_ratio_init)))
print(cbind(SP_ECM_L_res$mu, SP_ECM_L_res$gam, SP_ECM_L_res$mix_ratio))
print(cbind(true_mu, true_gam, true_mix_ratio))
```

spect_em_pvmm

Spectrum adapted ECM algorithm by PVMM

Description

Perform a peak fitting based on the spectrum adapted ECM algorithm by Pseudo-Voigt mixture model.

Usage

```
spect_em_pvmm(x, y, mu, sigma, eta, mix_ratio, conv.cri, maxit)
```

Arguments

х	measurement steps
У	intensity
mu	mean of the components
sigma	standard deviation of the components
eta	mixing ratio of Gauss and Lorentz distribution
mix_ratio	mixture ratio of the components
conv.cri	criterion of the convergence
maxit	maximum number of the iteration

Details

Peak fitting is conducted by spectrum adapted ECM algorithm.

20 spect_em_pvmm

Value

mu	estimated mean of the components
sigma	estimated standard deviation of the components
eta	estimated mixing ratio of Gauss and Lorentz distribution
mix_ratio	estimated mixture ratio of the components
it	number of the iteration to reach the convergence
LL	variation of the weighted log likelihood values
MU	variation of mu
SIGMA	variation of sigma
ETA	variation of beta
MIX_RATIO	variation of mix_ratio
W_K	decomposed component of the spectral data
convergence	message for the convergence in the calculation
cal_time	calculation time to complete the peak fitting. Unit is seconds

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

```
#generating the synthetic spectral data based on three component Pseudo-Voigt mixture model.
                \leftarrow seq(0, 100, by = 0.5)
Х
                <- c(35, 50, 65)
true_mu
true_sigma <- c(3, 3, 3)
true_eta <- c(0.3, 0.8, 0.5)
true_mix_ratio <- rep(1/3, 3)</pre>
degree
                <- 4
#Normalized Pseudo-Voigt distribution
  truncated_pv <- function(x, mu, sigma, eta) {</pre>
    (eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma)) /
      sum(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma))
y \leftarrow c(true_mix_ratio[1]*truncated_pv(x = x,
                                         mu = true_mu[1],
                                         sigma = true_sigma[1],
                                         eta = true_eta[1])*10^degree +
       true_mix_ratio[2]*truncated_pv(x = x,
                                         mu = true_mu[2],
```

spect_em_pvmm_lback 21

```
sigma = true_sigma[2],
                                      eta = true_eta[2])*10^degree +
       true_mix_ratio[3]*truncated_pv(x = x,
                                      mu = true_mu[3],
                                      sigma = true_sigma[3],
                                      eta = true_eta[3])*10^degree)
plot(y^x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
mu_init <- c(20, 40, 70)
sigma_init
               <- c(2, 5, 4)
eta_init
             <- c(0.5, 0.4, 0.3)
#Coducting calculation
SP\_ECM\_PV\_res <- spect\_em\_pvmm(x = x,
                              y = y,
                              mu = mu_init,
                               sigma = sigma_init,
                               eta = eta_init,
                               mix_ratio = mix_ratio_init,
                               conv.cri = 1e-2,
                               maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_pvmm_curve(SP_ECM_PV_res, x, y, mix_ratio_init, mu_init, sigma_init, eta_init)
#Showing the result of spect_em_pvmm()
print(cbind(c(mu_init), c(sigma_init), c(eta_init), c(mix_ratio_init)))
print(cbind(SP_ECM_PV_res$mu, SP_ECM_PV_res$sigma, SP_ECM_PV_res$eta, SP_ECM_PV_res$mix_ratio))
print(cbind(true_mu, true_sigma, true_eta, true_mix_ratio))
```

Description

Perform a peak fitting based on the spectrum adapted ECM algorithm by pseudo-Voigt mixture model with a linear background.

Usage

```
spect_em_pvmm_lback(x, y, mu, sigma, eta, mix_ratio, x_lower, x_upper, conv.cri, maxit)
```

Arguments

x measurement steps

y intensity

mu mean of the components

sigma standard deviation of the components

eta mixing ratio of Gauss and Lorentz distribution

mix_ratio mixture ratio of the components

x_lower limit of the measurement steps. Default is a minimum of x x_upper upper limit of the measurement steps. Default is a maximum of x

conv.cri criterion of the convergence
maxit maximum number of the iteration

Details

Peak fitting is conducted by spectrum adapted ECM algorithm.

Value

mu estimated mean of the components

sigma estimated standard deviation of the components

eta estimated mixing ratio of Gauss and Lorentz distribution

mix_ratio estimated mixture ratio of the components

it number of the iteration to reach the convergenceLL variation of the weighted log likelihood values

MU variation of mu
SIGMA variation of sigma
ETA variation of beta
MIX_RATIO variation of mix_ratio

W_K decomposed component of the spectral data convergence message for the convergence in the calculation

cal_time calculation time to complete the peak fitting. Unit is seconds

References

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high-throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.

Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2023). High-throughput XPS spectrum modeling with autonomous background subtraction for 3 d 5/2 peak mapping of SnS. Science and Technology of Advanced Materials: Methods, 3(1), 2159753.

Examples

```
#generating the synthetic spectral data based on three component Pseudo-Voigt mixture model.
               \leftarrow seq(0, 100, by = 0.5)
X
Κ
               <- 3
true_mu
              <- c(35, 50, 65)
true_sigma <- c(3, 3, 3)
true_mix_ratio <- c(0.5/3, 0.5/3, 0.5/3, 0.5)
            <-c(0.4, 0.6, 0.1)
true_eta
degree
               <- 4
#Normalized Pseudo-Voigt distribution
  truncated_pv <- function(x, mu, sigma, eta) {</pre>
    (eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma)) /
      sum(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma))
y \leftarrow c(true_mix_ratio[1]*truncated_pv(x = x,
                                       mu = true_mu[1],
                                       sigma = true_sigma[1],
                                       eta = true_eta[1])*10^degree +
       true_mix_ratio[2]*truncated_pv(x = x,
                                       mu = true_mu[2],
                                       sigma = true_sigma[2],
                                       eta = true_eta[2])*10^degree +
       true_mix_ratio[3]*truncated_pv(x = x,
                                       mu = true_mu[3],
                                       sigma = true_sigma[3],
                                       eta = true_eta[3])*10^degree +
       true_mix_ratio[4]*(c(500*x + 15000) / sum(500*x + 15000))*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
              <- c(30, 40, 60)
mu_init
sigma_init
              <- c(4, 4, 4)
mix_ratio_init <- rep(1/(length(mu_init)+3), length(mu_init)+3)</pre>
eta_init
            <- c(1, 1, 1)
#Coducting calculation
SP\_ECM\_PV\_LBACK\_res <- spect\_em\_pvmm\_lback(x = x,
                                            y = y,
                                            mu = mu_init,
                                            sigma = sigma_init,
                                            eta = eta_init,
                                            mix_ratio = mix_ratio_init,
                                            x_{lower} = min(x),
                                            x_{upper} = max(x),
                                            conv.cri = 1e-2,
                                            maxit = 2000)
```

#Plot fitting curve and trace plot of parameters

Index

```
show_dsgmm_curve, 2
show_gmm_curve, 4
show_lmm_curve, 6
show_pvmm_curve, 8
show_pvmm_lback_curve, 10
spect_em_dsgmm, 12
spect_em_gmm, 15
spect_em_lmm, 17
spect_em_pvmm, 19
spect_em_pvmm_lback, 21
```