

IEL – protokol k projektu

Tomáš, Souček xsouce15

19. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	6
3	Příklad 3	9
4	Příklad 4	11
5	Příklad 5	14
6	Shrnutí výsledků	15

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
I	1115	55	485	660	100	340	575	815	255	225

Pro začátek jsem si zjednodušil paralelně zapojené rezostory R_3 a R_4 do jednoho a vypočítal odpor nového rezistoru:

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4}$$

$$R_{34} = \frac{100 \cdot 340}{100 + 340} = 72,2727 \ \Omega$$

V dalším kroku se nebízelo zjednodušení sériově zapojených rezistorů R_2, R_{34} a zároveň jsem si vyznačil uzly, které použiji v následujícím kroku:

$$R_{234} = R_2 + R_{34} = 660 + 77,2727 = 737,2727 \Omega$$

Nyní bylo pro zjendodušení potřeba využít metodu trojúhelník-hvězda. Zároveň jsem spojil zdroje napětí, jelikož byly sériově zapojené:

$$R_A = \frac{R_1 \cdot R_{234}}{R_1 + R_{234} + R_5} = \frac{485 \cdot 737, 2727}{1797, 2727} = 198, 9554 \ \Omega$$

$$R_B = \frac{R_1 \cdot R_5}{R_1 + R_{234} + R_5} = \frac{485 \cdot 575}{1797, 2727} = 155, 1656 \ \Omega$$

$$R_C = \frac{R_{234} \cdot R_5}{R_1 + R_{234} + R_5} = \frac{77, 2727 \cdot 575}{1797, 2727} = 235, 8750 \ \Omega$$

$$U_{ekv} = U_1 + U_2 = 115 + 55 = 170 V$$

Dále jsem pokračoval ve zjednodušení sériově zapojených rezistorů R_B, R_7 a R_C, R_6 :

$$R_{B7} = R_B + R_7 = 155, 1656 + 255 = 410, 1656 \Omega$$

$$R_{C6} = R_C + R_6 = 235,8750 + 815 = 1050,8751 \ \Omega$$

Rezistory R_{B7} a R_{C6} jsou zapojeny paralelně, zjednoduším je:

$$R_{B7C6} = \frac{R_{B7} \cdot R_{C6}}{R_{B7} + R_{C6}} = \frac{410,1656 \cdot 1050,8751}{410,1656 + 1050,8751} = 295,0176~\Omega$$

Nakonec stačilo všechny rezistory sečíst do jednoho. Tohle můžu udělat, protože všechny 3 rezistory jsou sériově zapojené. Tím pádem mi vznikne nový rezistor R_{ekv} . Znám celkový odpor i celkové napětí, tedy můžu vypočítat celkový proud pomocí Ohmova zákona:

$$R_{ekv} = R_a + R_{B7C6} + R_8 = 198,9554 + 295,01769 + 225 = 718,9731 \Omega$$

$$I_{ekv} = \frac{U_{ekv}}{R_{ekv}} = \frac{170}{718,9731} = 0,2364 A$$

Teď mohu vypočítat požadované hodnoty U_{R_6} a I_{R_6} . Tyto hodnoty zjistím tak, že budu postupně zpětně dopočítávat všechny neznámé veličiny:

$$U_{R8} = R_{R8} \cdot I_{ekv} = 53,2008 \ V$$

 $U_A = R_A \cdot I_{ekv} = 47,0426 \ V$
 $U_{B7C6} = R_{B7C6} \cdot I_{ekv} = 69,7564 \ V$

Kontrola správnosti výpočtů (I. Kirchoffův zákon):

$$U_{ekv} = U_{R8} + U_{R_{B7C6}} + U_{R_A}$$

$$U_{ekv} = 53,2008 + 47,0426 + 69,7564$$

$$U_{ekv} = 169,9998 V$$

$$170\approx 169,9998$$

Dále jsem zjistil proud protékající větvěmi:

$$U_{R_{B45}} = U_{R_{C6}} = U_{R_{B45C6}}$$

$$I_{R_{B7}} = \frac{U_{R_{B7C6}}}{R_{B7}} = \frac{69,7564}{410,1656} = 0,1700 A$$

$$I_{R_{C6}} = \frac{U_{R_{B7C6}}}{R_{C6}} = \frac{69,7564}{1050,8750} = 0,0663 A$$

Kontrola (II. Kirchoffův zákon):

$$I_{ekv} - I_{R_{B7}} - I_{R_{C6}} = 0$$
$$0,2364 - 0,1700 - 0,0663 \approx 0$$

Hledané U_{R_6} a I_{R_6} zjistím z následujících rovnic:

$$U_{R_6} = I_{R_{C6}} \cdot R_6 = 0,0663 \cdot 815 =$$
54,0991 V
$$I_{R_6} = U_{R_6} \cdot R_6 = \frac{54,0991}{815} =$$
0,0663 A

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
Ε	250	150	335	625	245	600	150

Obvod jsem dle zadání řešil Théveninovou větou. Nejdříve jsem si překreslil obvod bez rezistoru R_3 a postupným zjendodušováním jsem si vypočítal R_i :

Následně jsem nahradil zdroj zkratem:

Rezistory R_4 a R_5 jsou zapojené sériově - zjednodušil jsem je tedy na výsledný rezistor R_{45} . Dále jsem si schéma překreslil do tvaru, aby bylo lépe poznat zapojení:

$$R_{45} = R_4 + R_5$$

$$R_{45} = 245 + 600 = 845 \ \Omega$$

Paralelně zapojené rezistory R_1 a R_{45} jsem si zjednodušil do R_{145} a to samé provedl s rezistory R_2 a R_6 :

$$R_{145} = \frac{R_1 \cdot R_{45}}{R_1 + R_{45}} = \frac{150 \cdot 845}{150 + 845} = 127,3869 \ \Omega$$

$$R_{26} = \frac{R_2 \cdot R_6}{R_2 + R_6} = \frac{335 \cdot 150}{335 + 150} = 103,6084 \ \Omega$$

Nyní už jen stačilo zapojit rezistory R_{145} a R_{26} sériově a následně je zapojit do okruhu s R_3 :

$$R_i = R_{145} + R_{26} = 127,3869 + 103,6084$$

$$R_i = 230,9951 \ \Omega$$

Ve chvíli, kdy jsem znal R_i , byla potřeba zjistit napětí U_i na hledaném rezistoru. Viz schéma

Pro výpočet napětí jsem si vytvořil smyčku, pomocí které jsem dopočítal potřebné hodnoty:

Vznikla mi tedy rovnice:

$$U_{R1} + U_i - U_{R2} = 0$$

Abych mohl vypočítat U_i musel jsem si nejdříve vypočítat U_{R1} a U_{R2} . Pro výpočet jsem zvolil metodu napěťového děliče:

$$U_{R1} = U \cdot \frac{R_1}{R_1 + R_{45}} = 250 \cdot \frac{150}{150 + 845} = 37.6884 \ V$$

$$U_{R2} = U \cdot \frac{R_2}{R_2 + R_6} = 250 \cdot \frac{335}{335 + 150} = 172,6804 \ V$$

Z rovnice smyčky jsem si vyjádřil hledané U_i a zároveň doplnil známé hodnoty:

$$U_i = U_{R2} - U_{R1}$$

$$U_i = 172,6804 - 37,6884 = 134,992 V$$

Pro výpočet proudu v maximálně zjednodušeném obvodu jsem použil vzorec:

$$I_{R3} = \frac{U_i}{R_i + R_3}$$

$$I_{R3} = \frac{134,992}{230,9951 + 625} = \mathbf{0,1577}$$
 A

Ve chvíli kdy jsem znal I_{R3} a R_3 , dalo se lehce vypočítat U_{R3} pomocí Ohmova zákona:

$$U_{R3} = I_{R3} \cdot R_3 = 0,1577 \cdot 652 = 98,5635$$
 V

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	110	0.85	0.75	44	31	56	20	30

Na základě metody uzlových napětí si sestavím rovnice proudů (II. Kirchoffův zákon). Zvnikli mi 3 rovnice se 3 neznámými, tj. s neznámými proudy U_A, U_B, U_C . Neznámá napětí vypočítám, a poté dopočítám proud I_{R_4} a napětí U_{R_4} :

$$I_{R1} + I_{R3} - I_{R2} = 0$$

$$I_1 - I_{R3} - I_{R5} = 0$$

$$I_2 + I_{R5} - I_{R4} - I_1 = 0$$

Z výše uvedených rovnic jsem si vyjádřil jednotlivé proudy:

$$I_{R1} = \frac{U - U_A}{R_1}$$

$$I_{R2} = \frac{U_A}{R_2}$$

$$I_{R3} = \frac{U_B - U_A}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

 $I_{R5} = \frac{U_B - U_C}{R_5}$

Do původní rovnice jsem si dosadil jednotlivé vyjádřené proudy:

$$\frac{U - U_A}{R_1} + \frac{U_B - U_A}{R_3} - \frac{U_A}{R_2} = 0$$

$$I_1 - \frac{U_B - U_A}{R_3} - \frac{U_B - U_C}{R_5} = 0$$
$$I_2 + \frac{U_B - U_C}{R_5} - \frac{U_C}{R_4} - I_1 = 0$$

Dosadil jsem do všech tří rovnic známé hodnoty:

$$\frac{110 - U_A}{44} + \frac{U_B - U_A}{56} - \frac{U_A}{31} = 0$$
$$0,85 - \frac{U_B - U_A}{56} - \frac{U_B - U_C}{30} = 0$$
$$0,75 + \frac{U_B - U_C}{30} - \frac{U_C}{20} - 0,85 = 0$$

Nyní jsem si rovnici mírně upravil. Zbavil jsem se zlomků a převedl rovnici do tvaru, aby se dala vyjádřit v matici:

$$1391 \cdot U_A - 341 \cdot U_B + 0 \cdot U_C = 47740$$
$$15 \cdot U_A - 43 \cdot U_B + 28 \cdot U_C = -714$$
$$0 \cdot U_A + 2 \cdot U_B - 5 \cdot U_C = 6$$

Nyní jsem si rovnice převedl do matice:

$$\left(\begin{array}{ccc|c}
1391 & -341 & 0 & 47740 \\
15 & -43 & 28 & -714 \\
0 & 2 & -5 & -6
\end{array}\right)$$

Upravil matici tak, aby vznikla jednotková matice vlevo:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 44,7393 \\
0 & 1 & 0 & 36.0577 \\
0 & 0 & 1 & 15,7998
\end{array}\right)$$

Výsledné hodnoty napětí jsou tedy:

$$U_A = 44,7393 V$$

 $U_B = 36.0577 V$
 $U_C = 15,7998 V$

Měl jsem zjisit napětí a proud na rezistoru R_2 a vím, že uzel U_A obsahuje pouze rezistor R_2 , z toho tedy vyplívá, že $U_A = U_{R2}$. Proud procházející rezistorem R_2 jsem vypočítal pomocí Ohmova zákona:

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{44,7393}{31} = 1,4432 A$$

Výsledky tedy jsou:

$$I_{R2} = 1,4432$$
 A $U_{R2} = 44,7393$ V

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
\mathbf{E}	50	30	14	13	130	60	100	65	90

$$\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 90 = 180 \cdot \pi = 565,4866Rad$$

$$L_1 = 0,13 \ H$$

$$L_2 = 0,06 \ H$$

$$C_1 = 0,0001 \ F$$

$$C_2 = 0,000065 \ F$$

Nyní jsem mohl dopočítat reaktance:

$$X_{C_1} = \frac{1}{\omega \cdot C_1} = \frac{1}{565,4866 \cdot 0,0001} = 17,6838 \ \Omega$$

$$X_{C_2} = \frac{1}{\omega \cdot C_2} = \frac{1}{565,4866 \cdot 0,000065} = 27,2059 \ \Omega$$

$$X_{L_1} = \omega * L_1 = 565,4866 \cdot 0.13 = 73,5132 \ \Omega$$

$$X_{L_2} = \omega * L_2 = 565,4866 \cdot 0.06 = 33,9291 \ \Omega$$

Následně dopočítat impedance cívek a kondenzátorů:

$$Z_{C_1} = -j \cdot X_{C_1} = -17,6838j$$

 $Z_{C_2} = -j \cdot X_{C_2} = -27,2059j$
 $Z_{L_1} = j \cdot X_{L_1} = 73,5132j$

$$Z_{L_2} = j \cdot X_{L_2} = 33,9291j$$

Smyčky jsem si určil tak, jak jsou na obrázku níže a podle nich sestavil rovnice pro proudy I_A , I_B , I_C :

$$I_A \cdot R_1 + U_1 + Z_{L_2} \cdot (I_A - I_C) + Z_{C_1} \cdot (I_A - I_B) = 0$$

$$I_B \cdot Z_{L_1} + Z_{C_1} \cdot (I_B - I_A) + R_2 \cdot (I_B - I_C) = 0$$

$$I_C \cdot Z_{C_2} + R_2 \cdot (I_C - I_B) + Z_{L_2} \cdot (I_C - I_A) + U_2 = 0$$

Rovnice jsem si upravil - vytknul I_A , I_B , I_C a hodnoty napěťí U_1 a U_2 přesunul na pravé strany rovnic. Následně jsem si rovnice převedl do matice:

$$\begin{pmatrix}
R_1 + Z_{L_2} + Z_{C_1} & -Z_{C_1} & Z_{L_2} & -U_1 \\
-Z_{C_1} & Z_{L_1} + Z_{C_1} + R_2 & -R_2 & 0 \\
-Z_{L_2} & -R_2 & Z_{C_2} + R_2 + Z_{L_2} & -U_2
\end{pmatrix}$$

$$\begin{pmatrix} 14+16,2453j & 17,6838j & -33,9291j & -50\\ 17,6838j & 13+55,8294j & -13 & 0\\ -33,9291j & -13 & 13+6,7232j & -30 \end{pmatrix}$$

po úpravách jsem dostal matici:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0,8401 + 0,8787j \\
0 & 1 & 0 & 0,1434 - 0,4404j \\
0 & 0 & 1 & 0,8395 - 1,3181j
\end{array}\right)$$

Výsledné hodnoty proudů jsou tedy:

$$I_A = 0.8401 + 0.8787j$$

$$I_B = 0,1434 - 0,4404j$$

$$I_C = 0,8395 - 1,3181j$$

Dopočítal jsem si proud procházející L_2 :

$$I_{L_2} = I_A - I_C = 0,0006 - 0,4421j A$$

Napětí $\left|U_{C_{2}}\right|$ jsem dopočítal pomocí Ohmova zákonu:

$$\begin{split} U_{L_2} &= Z_{L_2} \cdot I_{L_2} = 0,2035 - 15,0001 j \ V \\ &| \boldsymbol{U_{L_2}}| = \sqrt{Re(u_{C_2})^2 + Im(u_{C_2})^2} = \textbf{15,0014} \ \ \mathbf{V} \\ \varphi_{\boldsymbol{L_2}} &= \arctan \frac{Im(u_{L_2})}{Re(u_{L_2})} = \arctan \frac{15,0001}{0,2035} = \textbf{1,557} \ \mathbf{rad} = \textbf{89,222} \ ^{\circ} \end{split}$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
F	22	30	15	10

Shrnutí výsledků

Příklad	Skupina	Výsledk	y
1	E	$U_{R6} = 54,0992 \ \Omega$	$I_{R6} = 0,0663A$
2	Е	$U_{R3} = 98,5636 \ \Omega$	$I_{R3} = 0,1577 \ A$
3	С	$U_{R2} = 44,7393 \ V$	$I_{R2} = 1,4432 A$
4	E	$ U_{L_2} = 15,0014 V$	$\varphi_{L_2} = 89,222$ °
5	F	$i_L =$	