This form documents the artifacts associated with the article (i.e., the data and code supporting the computational findings) and describes how to reproduce the findings.

Part 1: Data

This paper	does n	not involve	analysis o	f external	data	(i.e.,	no	data	are	${\it used}$	or	the	only	data	are
generated b	y the a	uthors via	simulation	in their c	ode).										

☑ I certify that the author(s) of the manuscript have legitimate access to and permission to use the data used in this manuscript.

Abstract

Availability

 \square Data **are** publicly available.

☐ Data **cannot be made** publicly available.

If the data are publicly available, see the *Publicly available data* section. Otherwise, see the *Non-publicly available data* section, below.

Publicly available data

- ☐ Data are available online at: Michael W. McCracken's website (https://research.stlouisfed.org/econ/m ccracken/fred-databases/). We used the May 2022 version of FRED-MD.
- □ Data are available as part of the paper's supplementary material: We include FRED-MD_2022-05_preprocessed.csv (pre-processed data) and FRED-MD_2022-05.csv (raw data).
- □ Data are publicly available by request, following the process described here:
- □ Data are or will be made available through some other mechanism, described here:

Non-publicly available data

Description

File format(s)

- \boxtimes CSV or other plain text.
- □ Software-specific binary format (.Rda, Python pickle, etc.): pkcle
- □ Standardized binary format (e.g., netCDF, HDF5, etc.):
- \square Other (please specify):

Data dictionary

- \square Provided by authors in the following file(s):
- ☐ Data file(s) is(are) self-describing (e.g., netCDF files)
- ☑ Available at the following URL: https://research.stlouisfed.org/econ/mccracken/fred-databases/.

Additional Information (optional)

Part 2: Code

Abstract

The main scripts are lassoVAR.R and sqrtLassoVAR.R, which include functions designed to estimate a VAR by weighted Lasso, post-Lasso and sqrt-Lasso going equation by equation. The basic inputs are a time series

dataset (expecting: time as rows, series as columns) and the number of lags used in the autoregression (default: one). To get the weighted lasso, call fit <- lasso_var(data = data, q = 1, post = FALSE), with post-Lasso arising from post = TRUE (default). The call for sqrt-Lasso is analogous. The basic outputs are the estimated coefficients (a matrix) and intercepts (a vector; included by default), which are extracted as fit\$that and fit\$intr, respectively. These scripts call upon the (helper) functions in helper_functions.R. The main and helper functions are used in the simulation study and empirical illustration in the paper. The simulations are executed via runSim_v03.R, which calls on simData.R for the different simulation designs. The empirical illustration is conducted via FRED-MD_forecasting_v02.R.

Description

$\operatorname{Code} \ \operatorname{format}(\mathbf{s})$
 Script files □ R □ Python □ Matlab □ Other: □ Package
 □ R □ Python □ MATLAB toolbox □ Other:
□ Reproducible report □ R Markdown □ Jupyter notebook □ Other:
☐ Shell script ☐ Other (please specify):
Supporting software requirements
Version of primary software used R version 4.4.1.
Libraries and dependencies used by the code For calling main functions: glmnet (4.1.8), MASS 7.3.60.2), Matrix (1.7.0), stats (4.4.1).
For simulating data: Matrix (1.7.0), mytnorm (1.3.2).
For parallel computing in simulation study/empirical illustration: doRNG $(1.8.6)$, doParallel $(1.0.17)$, for each $(1.5.1)$.
Supporting system/hardware requirements (optional)
The simulations and empirical illustration were run on a Linux server with $88~\mathrm{CPUs}$ and $125~\mathrm{GB}$ of RAM.
Parallelization used
 □ No parallel code used ⋈ Multi-core parallelization on a single machine/node - Number of cores used: The main functions lassoVAR.R and sqrtLassoVAR.R involve no parallelization. The simulations and empirical illustration were run on a Linux server with 88 CPUs and 125 GB of RAM. □ Multi-machine/multi-node parallelization - Number of nodes and cores used:

License ⊠ MIT License (default) \square BSD \square GPL v3.0 \square Creative Commons □ Other: (please specify) Additional information (optional) Part 3: Reproducibility workflow **Simulations** 1. Run the main simulations: • Execute runSim v03.R to run the simulations described in Section 6. (Execute from the root directory. Use setwd("..") to back up, if necessary.) • Save the workspace manually if not using Linux (via save.image(...)). 2. Run the mark-up dependence simulations: • Execute markupDependence_v01.R (from the root) to run the Supplementary Appendix H simulations investigating mark-up dependence. 3. Generate figures: • Run createFigs_v07.R to produce Figure 6.1 and Figure H.1. • Run markupDependenceFigs_v02.R to produce Figure H.2. **Empirical Illustration** 1. (Optional) Pre-process the raw FRED-MD dataset (using Matlab): • Run FREDMD preprocess.m, which calls upon prepare missing.m, and remove outliers.m in sequence. 2. Conduct the forecasting exercise: • Execute FRED-MD_forecasting_v02.R. (Execute from the root directory. Use setwd("../..") to back up, if necessary.) • The script will load the pre-processed data from application/FRED/data and save the workspace automatically (if in Linux). 3. Generate figures: Run FRED-MD_figures_v02.R to produce both parts of Figure 7.1. Scope The provided workflow reproduces: ☐ Any numbers provided in text in the paper ☐ The computational method(s) presented in the paper (i.e., code is provided that implements the method(s)) \boxtimes All tables and figures in the paper □ Selected tables and figures in the paper, as explained and justified below: Location The workflow is available: ☐ As part of the paper's supplementary material. ☐ In this Git repository:

 \square Other (please specify):

Format(s)
 □ Single master code file □ Wrapper (shell) script(s) □ Self-contained R Markdown file, Jupyter notebook, or other literate programming approach □ Text file (e.g., a readme-style file) that documents workflow □ Makefile □ Other (more detail in <i>Instructions</i> below)
Instructions
Expected run-time
Approximate time needed to reproduce the analyses on a standard desktop machine:
Not feasible to run on a desktop machine, as described here: The simulations and empirical illustration were run on a Linux server with 88 CPUs and 125 GB of RAM. In this environment, the runtimes for the main simulations, mark-up dependence simulations, and empirical illustration are approximately 35 hours, 3.5 hours, and 4 hours, respectively.
Additional information (optional)
Notes (optional)