Extra Credit Quiz - Jason Dorweiler

1. Using the method of contradiction proof that the product of a nonzero rational number and an irrational number is irrational.

Y is a rational number greater than zero and A is a irrational number. Using proof by contradiction $y*a = \frac{x}{z}$ where x,z are both integers making this a rational number. Since Y is also rational we can substitute $\frac{j}{k}$ where j,k are also integers. $\frac{j}{k}*a = \frac{x}{z}$. Then $a = \frac{x*k}{z*j}$ a ratio of integers which is a rational number. This contradicts our assumption that A was a irrational number.

2. Use proof by induction to show that $5^{2k} - 1$ is divisible by 4 for all k that belongs to N.

Basis: P(1): $5^{2*1}-1=24$, 24/4=6, basis step is divisible by 4. Inductive step: $5^{2(k+1)}-1=5^{2k+2}-1=25*5^{2k}-1$. Subtracting $5^{2k}-1$ gives: $25*5^{2k}-1-5^{2k}-1=24*25^k$ and adding $5^{2k}-1$ gives: $25*5^{2k}-1=24*25^k+5^{2k}-1$.

The right hand side gives us $24 * 25^k$ which is divisible by 4 for all $k \ge 1$ and $5^{2k} - 1$ which is divisible 4 from our hypothesis. Both right side terms are divisible by 4 so the left term is also divisible by 4. This proves the hypothesis.

3. Answer the following questions: 1) One state's lottery tickets consists of choosing six numbers out of fifty-four. How many different lottery tickets are there? 2) A committee of 8 people wishes to choose a chairperson, a vice-chairperson, and a treasurer. How many lists of such officers are possible?

a. I'm assuming order doesn't matter so C(54,6) = $\frac{54!}{6!*48!} = 2582765$ b. 8*7*6 = 336

- 4. Every Graph that has an Euler circuit is connected. True
- 5. An Euler circuit covers each vertex once but not more than once. False

6. Given a recursive denition of the sequence an, $n=1,\,2,\,3,\,\ldots$ if $a_n=n^2+1$ $a_{n+1}=(n+1)^2+1=n^2+2n+1+1=a_n+2n+1$

7. Compute the following sum: $\sum_{1}^{5} 4 * 3^{j}$

$$4 * \sum_{2}^{5} 3^{j} = 4 * \left[\sum_{0}^{5} 3^{j} - \sum_{0}^{1} 3^{j}\right] = 4 * \left[\frac{3^{6} - 1}{2} - \frac{3^{2} - 1}{2}\right] = 1440$$

8. Describe a graph model that represents a transit system in a large city. Should edges be directed or undirected? Should multiple edges be allowed? Should loops be allowed?

It would be a directed graph where each station is a node and each edge is the route connecting two stations. This graph could have multiple edges because a station could have many connections to another. There is no use for loops in this graph.

1