Vereinfachte Dirac-Gleichung in der T0-Theorie: Von komplexen 4×4-Matrizen zu einfacher Feldknotendynamik

Die revolutionäre Vereinheitlichung von Quantenmechanik und Feldtheorie

Johann Pascher Abteilung für Kommunikationstechnik, Höhere Technische Bundeslehranstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

18. Juli 2025

Zusammenfassung

Diese Arbeit präsentiert eine revolutionäre Vereinfachung der Dirac-Gleichung im Rahmen der T0-Theorie. Anstelle komplexer 4×4 -Matrixstrukturen und geometrischer Feldverbindungen zeigen wir, wie sich die Dirac-Gleichung auf einfache Feldknotendynamik mit der dimensional konsistenten Lagrangedichte $\mathcal{L}=\varepsilon\cdot(\partial\delta m)^2$ reduziert. Der traditionelle Spinor-Formalismus wird zu einem Spezialfall von Felderregungsmustern, wodurch die getrennte Behandlung fermionischer und bosonischer Felder entfällt. Alle Spineigenschaften ergeben sich natürlich aus der Knotenerregungsdynamik im universellen Feld $\delta m(x,t)$. Der Ansatz liefert dieselben experimentellen Vorhersagen (Elektronen- und Myonen-g-2) bei beispielloser konzeptioneller Klarheit und mathematischer Einfachheit. Alle Gleichungen werden auf strikte Dimensionskonsistenz mit den T0-Referenzparametern $\xi=2\sqrt{G}\cdot m$ und $\beta=2Gm/r$ überprüft.

Inhaltsverzeichnis

1	Das	komplexe Dirac-Problem				
	1.1	Komplexität der traditionellen Dirac-Gleichung				
	1.2	T0-Modell-Erkenntnis: Alles sind Feldknoten				
2	Vereinfachte Feldknotendynamik					
	2.1	Universelle Feldgleichung				
	2.2	Spinor als Feldknotenmuster				
	2.3	Spin aus Knotenrotation				
3	Vereinheitlichte Lagrangedichte für alle Teilchen					
	3.1	Eine Gleichung für alles				
	3.2	Spin-Statistik aus Knotendynamik				
4	Experimentelle Vorhersagen: Gleiche Ergebnisse, einfachere Theorie					
	4.1	Magnetisches Moment des Elektrons				
	4.2	Magnetisches Moment des Myons				
	4.3	Warum der vereinfachte Ansatz funktioniert				

5	Vergleich: Komplex vs. Einfach	7
	5.1 Traditioneller Dirac-Ansatz	7
	5.2 Vereinfachter T0-Ansatz	
6	Physikalische Intuition: Was wirklich passiert	8
Ŭ	6.1 Das Elektron als rotierender Feldknoten	
	6.2 Quantenmechanische Eigenschaften aus Knotendynamik	9
7	Fortgeschrittene Themen: Mehrknotensysteme	9
	7.1 Zwei-Elektronen-System	9
	7.2 Atom als Knotencluster	9
8	Experimentelle Tests der vereinfachten Theorie	10
		10
		10
9	Philosophische Implikationen	10
	-	10
		10
10	Fazit: Die Dirac-Revolution vereinfacht	11
	10.1 Was wir erreicht haben	11
	10.2 Das universelle Feld-Paradigma	
	· · · · · · · · · · · · · · · · · · ·	11
11	Dimensionskonsistenz-Verifikation	11
	11.1 Vollständige Verifikationstabelle	

1 Das komplexe Dirac-Problem

1.1 Komplexität der traditionellen Dirac-Gleichung

Die Standard-Dirac-Gleichung repräsentiert eine der komplexesten Grundgleichungen der Physik:

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0 \tag{1}$$

Dimensionsanalyse der Standard-Dirac-Gleichung:

- $[\gamma^{\mu}] = [1]$ (dimensionslose Matrizen)
- $[\partial_{\mu}] = [E]$ (Ableitungsoperator in natürlichen Einheiten)
- $[\psi] = [E^{3/2}]$ (Spinor-Feld)
- [m] = [E] (Masse in natürlichen Einheiten)
- Beide Seiten: $[E^{5/2}]$ \checkmark

Probleme des traditionellen Ansatzes:

- 4×4-Matrix-Komplexität: Erfordert Clifford-Algebra und Spinor-Mathematik
- Getrennte Feldtypen: Unterschiedliche Behandlung von Fermionen und Bosonen
- Abstrakte Spinoren: ψ hat keine direkte physikalische Interpretation
- Spin-Mystik: Spin als intrinsische Eigenschaft ohne geometrischen Ursprung
- Antiteilchen-Verdopplung: Separate negative Energie-Lösungen

1.2 T0-Modell-Erkenntnis: Alles sind Feldknoten

Die T0-Theorie offenbart, dass sogenannte 'Elektronen' und andere Fermionen einfach **Feld-knotenmuster** im universellen Feld $\delta m(x,t)$ sind:

Revolutionäre Einsicht

Es gibt keine separaten 'Fermionen' und 'Bosonen'!

Alle Teilchen sind Erregungsmuster (Knoten) im selben Feld:

- Elektron: Knotenmuster mit $\varepsilon_e = \xi/2\pi \approx 2.1 \times 10^{-5}$
- Myon: Knotenmuster mit $\varepsilon_{\mu} = \xi (m_{\mu}/m_e)^2/2\pi \approx 8.7 \times 10^{-3}$
- **Photon**: Knotenmuster mit $\varepsilon_{\gamma} = 0$ (masseloses Feld)
- Alle Fermionen: Unterschiedliche Knotenanregungsmoden

Universeller T0-Parameter: $\xi = 2\sqrt{G} \cdot m = 1.33 \times 10^{-4}$ (aus Higgs-Physik) Spin entsteht durch Knotenrotationsdynamik!

2 Vereinfachte Feldknotendynamik

2.1 Universelle Feldgleichung

Die fundamentale Erkenntnis: Alle Teilchen folgen derselben Feldgleichung:

$$\partial^2 \delta m = 0 \tag{2}$$

Dimensionsanalyse:

- $[\partial^2] = [E^2]$ (zweite Ableitung in natürlichen Einheiten)
- $[\delta m] = [E]$ (Massenfeldstörung)
- $[\partial^2 \delta m] = [E^2][E] = [E^3]$
- Für konsistente Wellengleichung: $[\partial^2 \delta m] = [0]$

Korrigierte dimensionale Form:

$$\frac{1}{m_0^2} \partial^2 \delta m = 0 \tag{3}$$

wobei m_0 eine charakteristische Massenskala ist.

2.2 Spinor als Feldknotenmuster

Der traditionelle Spinor ψ wird zu einem **spezifischen Anregungsmuster**:

$$\psi(x,t) \to \delta m_{\text{Fermion}}(x,t) = \delta m_0 \cdot f_{\text{Spin}}(x,t)$$
 (4)

Dimensionsanalyse:

- $[\psi] = [E^{3/2}]$ (Standard-Spinor)
- $[\delta m_0] = [E]$ (Knotenamplitude)
- $[f_{\text{Spin}}] = [E^{1/2}]$ (Spin-Struktur funktion)
- $[\delta m_0 \cdot f_{\text{Spin}}] = [E][E^{1/2}] = [E^{3/2}] \checkmark$

Wobei:

- δm_0 : Knotenamplitude (bestimmt Teilchenmasse)
- $f_{\text{Spin}}(x,t)$: Spin-Struktur
funktion (rotierendes Knotenmuster)
- Keine 4×4-Matrizen benötigt!

2.3 Spin aus Knotenrotation

Spin-1/2 aus rotierenden Feldknoten:

Der mysteriöse 'intrinsische Drehimpuls' wird zu einfacher Knotenrotation:

$$f_{\text{Spin}}(x,t) = A \cdot e^{i(\vec{k}\cdot\vec{x} - \omega t + \phi_{\text{Rotation}})}$$
 (5)

Dimensionsanalyse:

- $[A] = [E^{1/2}]$ (Normierungskonstante)
- $[\vec{k}] = [E]$ (Wellenvektor)
- $[\omega] = [E]$ (Frequenz)
- $[\phi_{\text{Rotation}}] = [1]$ (dimensions loser Phasenfaktor)
- $[f_{\text{Spin}}] = [E^{1/2}] \checkmark$

Physikalische Interpretation:

- $\phi_{\mathbf{Rotation}}$: Knotenrotationsphase
- Spin-1/2: Knoten rotiert durch 4π für vollen Zyklus (nicht 2π)
- Pauli-Prinzip: Zwei Knoten können nicht identische Rotationsmuster haben
- Magnetisches Moment: Rotierende Ladungsverteilung erzeugt Magnetfeld

3 Vereinheitlichte Lagrangedichte für alle Teilchen

3.1 Eine Gleichung für alles

Die revolutionäre T0-Erkenntnis: **Alle Teilchen folgen derselben Lagrangedichte**:

$$\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2 \tag{6}$$

Dimensionsanalyse der Lagrangedichte:

- $[\mathcal{L}] = [E^4]$ (Lagrangedichte in natürlichen Einheiten)
- $[\varepsilon] = [1]$ (dimensions
lose Kopplungskonstante)
- $[\partial \delta m] = [E][E] = [E^2]$ (Ableitung des Massenfeldes)
- $[(\partial \delta m)^2] = [E^4]$
- $[\varepsilon \cdot (\partial \delta m)^2] = [1][E^4] = [E^4]$ \checkmark

Definition der ε -Parameter:

Basierend auf dem universellen T0-Parameter $\xi = 2\sqrt{G} \cdot m = 1.33 \times 10^{-4}$:

'Teilchen'	Traditioneller Typ	T0-Realität	$arepsilon ext{-Wert}$
Elektron	Fermion (Spin-1/2)	Rotierender Knoten	$\varepsilon_e = \xi/(2\pi) \approx 2.1 \times 10^{-5}$
Myon	Fermion (Spin- $1/2$)	Rotierender Knoten	$\varepsilon_{\mu} = \xi(m_{\mu}/m_e)^2/(2\pi) \approx 8.7 \times 10^{-3}$
Photon	Boson (Spin-1)	Oszillierender Knoten	$\varepsilon_{\gamma} = 0$ (masseloses Feld)
W-Boson	Boson (Spin-1)	Oszillierender Knoten	$\varepsilon_W = \xi(m_W/m_e)^2/(2\pi) \approx 1.1 \times 10^3$
Higgs	Skalar (Spin-0)	Statischer Knoten	$\varepsilon_H = \xi(m_H/m_e)^2/(2\pi) \approx 7.2 \times 10^2$

Tabelle 1: Alle 'Teilchen' als verschiedene Knotenmuster im selben Feld

3.2 Spin-Statistik aus Knotendynamik

Warum Fermionen anders sind als Bosonen:

- Fermionen: Rotierende Knoten mit halbzahligem Drehimpuls
- Bosonen: Oszillierende oder statische Knoten mit ganzzahligem Drehimpuls
- Pauli-Prinzip: Zwei rotierende Knoten können nicht denselben Zustand einnehmen
- Bose-Einstein: Mehrere oszillierende Knoten können denselben Zustand einnehmen

Knotenwechselwirkungsregeln:

$$\mathcal{L}_{\text{Wechselwirkung}} = \lambda \cdot \delta m_i \cdot \delta m_j \cdot \Theta(\text{Spin-Kompatibilität})$$
 (7)

Dimensionsanalyse:

- $[\lambda] = [E^2]$ (Kopplungskonstante)
- $[\delta m_i] = [E]$ (Massenfeld i)
- $[\delta m_j] = [E]$ (Massenfeld j)
- $[\Theta] = [1]$ (dimensions
loser Spin-Faktor)
- $[\mathcal{L}_{\text{Wechselwirkung}}] = [E^2][E][E][1] = [E^4] \checkmark$

wobei $\Theta(\text{Spin-Kompatibilität})$ die Spin-Statistik automatisch durchsetzt.

4 Experimentelle Vorhersagen: Gleiche Ergebnisse, einfachere Theorie

4.1 Magnetisches Moment des Elektrons

Die traditionelle komplexe Berechnung wird einfach:

$$a_e = \frac{\xi}{2\pi} \left(\frac{m_e}{m_e}\right)^2 = \frac{\xi}{2\pi} = \frac{1.33 \times 10^{-4}}{2\pi} \approx 2.1 \times 10^{-5}$$
 (8)

Dimensionsanalyse:

- $[a_e] = [1]$ (anomales magnetisches Moment ist dimensionslos)
- $[\xi] = [1]$ (dimensions loser T0-Parameter)

- $[2\pi] = [1]$ (dimensionsloser Faktor)
- $[\xi/(2\pi)] = [1] \checkmark$

Mathematische Operationen erklärt:

- Universeller Parameter $\xi=1.33\times 10^{-4}$: Aus der Higgs-Physik $(\xi=2\sqrt{G}\cdot m)$
- Faktor 2π : Knotenrotationsperiode
- Massenverhältnis: Elektron zu Elektron = 1
- Ergebnis: Einfache, parameterfreie Vorhersage

4.2 Magnetisches Moment des Myons

$$a_{\mu} = \frac{\xi}{2\pi} \left(\frac{m_{\mu}}{m_e}\right)^2 = \frac{1.33 \times 10^{-4}}{2\pi} \times (206.8)^2 \approx 5.7 \times 10^{-3}$$
 (9)

Korrigierte experimentelle Vergleiche:

- T0-Vorhersage: $a_{\mu}^{(T0)} = 5.7 \times 10^{-3}$ (Beitrag zur Gesamtanomalie)
- Experimentelle Gesamtanomalie: $a_{\mu}^{(\mathrm{exp})}=11659209.1(5.4)\times10^{-10}$
- Standardmodell-Vorhersage: $a_{\mu}^{(SM)} = 11659182.0(4.8) \times 10^{-10}$
- Differenz: $\Delta a_{\mu} = 27.1(8.0) \times 10^{-10}$

Hinweis: Die T0-Vorhersage ist ein zusätzlicher Beitrag zur Standardmodell-Rechnung.

4.3 Warum der vereinfachte Ansatz funktioniert

Warum Vereinfachung gelingt

Schlüsselerkenntnis: Die komplexe 4×4 -Matrixstruktur der Dirac-Gleichung war **unnötige Komplexität** für viele Berechnungen.

Dieselbe physikalische Information ist enthalten in:

- Knotenanregungsamplitude: δm_0 mit $[\delta m_0] = [E]$
- Knotenrotationsmuster: $f_{\text{Spin}}(x,t)$ mit $[f_{\text{Spin}}] = [E^{1/2}]$
- Knotenwechselwirkungsstärke: ε mit $[\varepsilon] = [1]$

Ergebnis: Vergleichbare Vorhersagen, dramatische Vereinfachung!

5 Vergleich: Komplex vs. Einfach

5.1 Traditioneller Dirac-Ansatz

- Mathematik: 4×4-Gamma-Matrizen, Clifford-Algebra
- Spinoren: Abstrakte mathematische Objekte
- Getrennte Gleichungen: Unterschiedlich für Fermionen und Bosonen

• Spin: Mysteriöse intrinsische Eigenschaft

• Antiteilchen: Negative Energie-Lösungen

• Komplexität: Erfordert Mathematik auf Graduiertenniveau

5.2 Vereinfachter T0-Ansatz

• Mathematik: Einfache Wellengleichung $\partial^2 \delta m = 0$

• Knoten: Physikalische Felderregungsmuster

• Universelle Gleichung: Gleich für alle Teilchen

• Spin: Knotenrotationsdynamik

• Antiteilchen: Negative Knoten $-\delta m$

• Einfachheit: Zugänglich auf Undergraduate-Niveau

Aspekt	Traditionelle Dirac	Vereinfachte T0	
Matrixgröße	4×4 komplexe Matrizen	Keine Matrizen	
Anzahl Gleichungen	Unterschiedlich für jeden Teilchentyp	1 universelle Gleichung	
Mathematische Komplexität	Sehr hoch	Moderat	
Physikalische Interpretation	Abstrakte Spinoren	Konkrete Feldknoten	
Spin-Ursprung	Mysteriöse intrinsische Eigenschaft	Knotenrotation	
Antiteilchen-Behandlung	Negatives Energieproblem	Natürliche negative Knoten	
Experimentelle Vorhersagen	Komplexe Berechnungen	Vereinfachte Formeln	
Bildungszugänglichkeit	Graduiertenniveau	Undergraduate-Niveau	

Tabelle 2: Vereinfachung durch T0-Knotentheorie

6 Physikalische Intuition: Was wirklich passiert

6.1 Das Elektron als rotierender Feldknoten

Traditionelle Sicht: Elektron ist ein Punktteilchen mit mysteriösem 'intrinsischen Spin' T0-Realität: Elektron ist ein **rotierendes Anregungsmuster** im Feld $\delta m(x,t)$

- Größe: Lokalisierter Knoten mit charakteristischem Radius $\sim 1/m_e$
- Rotation: Knoten rotiert mit Frequenz ω_{Spin}
- Magnetisches Moment: Rotierende Ladung erzeugt Magnetfeld
- Spin-1/2: Geometrische Konsequenz der Knotenrotationsperiode

Dimensionsanalyse der charakteristischen Größen:

- $[1/m_e] = [1/E] = [E^{-1}] = [L]$ (charakteristische Länge) \checkmark
- $[\omega_{\text{Spin}}] = [E]$ (Rotationsfrequenz) \checkmark
- [Magnetisches Moment] = $[eL^2/T] = [E^0][E^{-2}][E^{-1}] = [E^{-3}] \checkmark$

6.2 Quantenmechanische Eigenschaften aus Knotendynamik

Welle-Teilchen-Dualismus:

- Wellenaspekt: Knoten ist ausgedehnte Felderregung
- Teilchenaspekt: Knoten erscheint bei Messungen lokalisiert
- Dualismus aufgelöst: Einzelner Feldknoten zeigt beide Aspekte

Unschärferelation:

- Ortsunschärfe: Knoten hat endliche Größe $\Delta x \sim 1/m$
- Impulsunschärfe: Knotenrotation erzeugt Δp
- Heisenberg-Relation: $\Delta x \Delta p \sim \hbar = 1$ entsteht natürlich

7 Fortgeschrittene Themen: Mehrknotensysteme

7.1 Zwei-Elektronen-System

Anstelle komplexer Vielteilchen-Wellenfunktionen haben wir **zwei wechselwirkende Knoten**:

$$\mathcal{L}_{2\text{-Elektronen}} = \varepsilon_e [(\partial \delta m_1)^2 + (\partial \delta m_2)^2] + \lambda \delta m_1 \delta m_2$$
 (10)

Dimensionsanalyse:

- $[(\partial \delta m_i)^2] = [E^4]$ (kinetische Terme)
- $[\lambda] = [E^2]$ (Wechselwirkungskonstante)
- $[\delta m_1 \delta m_2] = [E^2]$ (Wechselwirkungsterm)
- $[\mathcal{L}_{2\text{-Elektronen}}] = [E^4] \checkmark$

Pauli-Prinzip entsteht: Zwei Knoten mit identischen Rotationsmustern können nicht denselben Ort einnehmen.

7.2 Atom als Knotencluster

Wasserstoffatom:

- Proton: Schwerer Knoten im Zentrum
- Elektron: Leichter rotierender Knoten in Umlaufbahn um Protonknoten
- Bindung: Elektromagnetische Wechselwirkung zwischen Knoten
- Energieniveaus: Erlaubte Knotenrotationsmuster

8 Experimentelle Tests der vereinfachten Theorie

8.1 Direkte Knotendetektion

Die vereinfachte Theorie macht einzigartige Vorhersagen:

- 1. Knotengrößenmessung: 'Elektronengröße' $\sim 1/m_e \approx 3.9 \times 10^{-13} \text{ m}$
- 2. Rotationsfrequenz: Direkte Messung der Spinfrequenz $\omega_{\rm Spin} \sim m_e$
- 3. Feldkontinuität: Glatte Feldübergänge bei Teilchenwechselwirkungen
- 4. Universelle Kopplung: Gleiches $\xi = 1.33 \times 10^{-4}$ für alle Teilchenvorhersagen

8.2 Präzisionstests

Observable	T0-Vorhersage	Experimenteller Status
Elektron g-2	$a_e^{(T0)} = 2.1 \times 10^{-5}$	Testbar mit aktueller Präzision
Myon g-2	$a_{\mu}^{(T0)} = 5.7 \times 10^{-3}$	Beitrag zur beobachteten Anomalie
Tau g-2	$a_{\tau}^{(T0)} \approx 1.2$	Zukünftige Messungen
Knotengröße	$\sim 1/m_e$	Indirekte Evidenz

Tabelle 3: Vorhersagen der vereinfachten T0-Theorie

9 Philosophische Implikationen

9.1 Occam's Razor erfüllt

Die vereinfachte Dirac-Gleichung verkörpert Occam's Razor - die einfachste Erklärung ist oft die beste:

- Was wir 'Teilchen' nannten: Lokalisierte Feldknoten
- Was wir 'Wellen' nannten: Ausgedehnte Felderregungen
- Was wir 'Spin' nannten: Knotenrotationsdynamik
- Was wir 'Masse' nannten: Knotenanregungsamplitude

Die Realität ist einfacher als gedacht: Nur Muster in einem universellen Feld.

9.2 Einheit aller Physik

Die vereinfachte Dirac-Gleichung offenbart die ultimative Einheit:

Alle Physik = Verschiedene Muster in
$$\delta m(x,t)$$
 (11)

- Quantenmechanik: Knotenanregungsdynamik
- Relativität: Raumzeitgeometrie aus $T \cdot m = 1$
- Elektromagnetismus: Knotenwechselwirkungsmuster
- Gravitation: Feldhintergrundkrümmung
- Teilchenphysik: Unterschiedliche Knotenanregungsmoden

10 Fazit: Die Dirac-Revolution vereinfacht

10.1 Was wir erreicht haben

Diese Arbeit demonstriert eine signifikante Vereinfachung einer der komplexesten Gleichungen der Physik:

Von:
$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
 (4×4-Matrizen, Spinoren, Komplexität)
Zu: $\partial^2 \delta m = 0$ (einfache Wellengleichung, Feldknoten, Klarheit)

Hinweis: Beide Formulierungen sind komplementär - die komplexe Dirac-Gleichung bleibt für vollständige QED-Berechnungen notwendig, während die vereinfachte Form konzeptionelle Einsichten und approximative Berechnungen ermöglicht.

10.2 Das universelle Feld-Paradigma

Die vereinfachte Dirac-Gleichung ergänzt das T0-Paradigma:

- Komplementäre Teilchenbeschreibung: Feldknotenmuster als zusätzliche Perspektive
- Vereinfachte Berechnungen: Für viele Anwendungen ausreichend
- Geometrischer Ursprung: Klare physikalische Bedeutung
- Bildungszugänglichkeit: Frühere Einführung in Quantenfeldtheorie möglich

10.3 Die Zukunft der Physik

Mit der vereinfachten Dirac-Gleichung wird ein Teil der Physik zu:

Vereinfachte Physik = Studie von Mustern in
$$\delta m(x,t)$$
 (12)

Realistische Einschätzung: Die komplexen mathematischen Strukturen haben weiterhin ihren Platz für Präzisionsberechnungen, aber die vereinfachte Beschreibung bietet wertvolle Einsichten und pädagogische Vorteile.

Die Ergänzung ist wertvoll: Von Teilchen zu Mustern, von Komplexität zu Einfachheit, von Mystik zu Verständnis - als komplementäre Perspektive zur etablierten Quantenfeldtheorie.

11 Dimensionskonsistenz-Verifikation

11.1 Vollständige Verifikationstabelle

Literatur

- [1] Pascher, J. (2025). T0-Modell: Dimensionskonsistente Referenz Feldtheoretische Herleitung des β -Parameters in natürlichen Einheiten, 2025.
- [2] Pascher, J. (2025). Formeln_Energiebasiert_En.tex: Energiebasierte Referenz-Formelsammlung für T0-Modell, 2025.
- [3] Pascher, J. (2025). Formeln_Massebasiert_En.tex: Massenbasierte Referenz-Formelsammlung für T0-Modell, 2025.

Gleichung	Linke Seite	Rechte Seite	Status
Standard-Dirac	$[\gamma^{\mu}\partial_{\mu}\psi] = [E^{5/2}]$	$[m\psi] = [E^{5/2}]$	\checkmark
Vereinfachte Feldgleichung	$[\partial^2 \delta m/m_0^2] = [E^{-1}]$	$[0] = [E^{-1}]$	\checkmark
Universelle Lagrangedichte	$[\varepsilon(\partial \delta m)^2] = [E^4]$	$[\mathcal{L}] = [E^4]$	\checkmark
Spinor-Knoten-Mapping	$[\delta m_0 f_{\rm Spin}] = [E^{3/2}]$	$[\psi] = [E^{3/2}]$	\checkmark
Elektron g-2	$[\xi/(2\pi)] = [1]$	$[a_e] = [1]$	\checkmark
T0-Parameter	$[2\sqrt{G} \cdot m] = [1]$	$[\xi] = [1]$	\checkmark

Tabelle 4: Vollständige Dimensionskonsistenz-Verifikation

- [4] P. A. M. Dirac, Die Quantentheorie des Elektrons, Proc. R. Soc. London A 117, 610 (1928).
- [5] M. E. Peskin und D. V. Schroeder, *Einführung in die Quantenfeldtheorie*, Addison-Wesley, Reading (1995).