4. Fehérje

A fehérjék óriás molekulák, amelyeknek egy része az élő szervezetekben végbemenő folyamatokat katalizálják. Egy-egy fehérje aminosavak százaiból épül fel, melyek láncszerűen kapcsolódnak egymáshoz. A természetben a fehérjék fajtája több millió. Minden fehérje húszféle aminosav különböző mennyiségű és sorrendű összekapcsolódásával épül fel.

Az alábbi táblázat tartalmazza az aminosavak legfontosabb adatait, a megnevezéseket és az őket alkotó atomok számát (az aminosavak mindegyike tartalmaz szenet, hidrogént, oxigént és nitrogént, néhányban kén is van):

Neve	Rövidítés	Betűjele	С	Н	О	N	S	
Glicin	Gly	G	2	5	2	1	0	
Alanin	Ala	A	3	7	2	1	0	
Arginin	Arg	R	6	14	2	4	0	
Fenilalanin	Phe	F	9	11	2	1	0	
Cisztein	Cys	C	3	7	2	1	1	
Triptofán	Trp	W	11	12	2	2	0	
Valin	Val	V	5	11	2	1	0	
Leucin	Leu	L	6	13	2	1	0	
Izoleucin	Ile	I	6	13	2	1	0	
Metionin	Met	M	5	11	2	1	1	
Prolin	Pro	P	5	9	2	1	0	
Szerin	Ser	S	3	7	3		0	
Treonin	Thr	T	4	9	3	1	0	
Aszparagin	Asn	N	4	8	3	2	0	
Glutamin	Gln	Q	5	10	3	2		
Tirozin	Tyr	Y	9	11	3	1	0	
Hisztidin	His	Н	6	9	2	3	0	
Lizin	Lys	K	6	14	2	2		
Aszparaginsav	Asp	D	4	7	4	1	0	
Glutaminsav	Glu	Е	5	9	4	1	0	

Készítsen programot feherje néven, ami megoldja a következő feladatokat! Ügyeljen arra, hogy a program forráskódját a megadott helyre mentse!

1. Töltse be az aminosav. txt fájlból az aminosavak adatait! A fájlban minden adat külön sorban található, a fájl az aminosavak nevét nem tartalmazza. Ha az adatbetöltés nem sikerül, vegye fel a fenti táblázat alapján állandóként az első öt adatsort, és azzal dolgozzon!

Az első néhány adat:

Informatika — emelt szint		Azonosító jel:								
<u> </u>	Határazza mag az aminagayak	ralatív malakulatömagát	ho o	azáı	2 of	omt	äma	 12	o h	

2. Határozza meg az aminosavak relatív molekulatömegét, ha a szén atomtömege 12, a hidrogéné 1, az oxigéné 16, a nitrogéné 14 és a kén atomtömege 32! Például a Glicin esetén a relatív molekulatömeg 2·12 + 5·1 + 2·16 + 1·14 + 0·32 = 75.

A következő feladatok eredményeit írja képernyőre, illetve az eredmeny. txt fájlba! A kiírást a feladat sorszámának feltüntetésével kezdje (például: 4. feladat)!

- 3. Rendezze növekvő sorrendbe az aminosavakat a relatív molekulatömeg szerint! Írja ki a képernyőre és az eredmeny. txt fájlba az aminosavak hárombetűs azonosítóját és a molekulatömeget! Az azonosítót és hozzátartozó molekulatömeget egy sorba, szóközzel elválasztva írja ki!
- 4. A bsa. txt a BSA nevű fehérje aminosav sorrendjét tartalmazza egybetűs jelöléssel. (A fehérjelánc legfeljebb 1000 aminosavat tartalmaz.) Határozza meg a fehérje összegképletét (azaz a C, H, O, N és S számát)! A meghatározásánál vegye figyelembe, hogy az aminosavak összekapcsolódása során minden kapcsolat létrejöttekor egy vízmolekula (H₂O) lép ki! Az összegképletet a képernyőre és az eredmeny. txt fájlba az alábbi formában írja ki:

Például: C 16321 H 34324 O 4234 N 8210 S 2231

(Amennyiben a bsa.txt beolvasása sikertelen, helyette tárolja a G,A,R,F,C betűjeleket tízszer egymás után és a feladatokat erre a "láncra" oldja meg!)

- 5. A fehérjék szekvencia szerkezetét hasításos eljárással határozzák meg. Egyes enzimek bizonyos aminosavak után kettéhasítják a fehérjemolekulát. Például a Kimotripszin enzim a Tirozin (Y), Fenilalanin (W) és a Triptofán (F) után hasít. Határozza meg, és írja ki képernyőre a Kimotripszin enzimmel széthasított BSA lánc leghosszabb darabjának hosszát és az eredeti láncban elfoglalt helyét (első és utolsó aminosavának sorszámát)! A kiíráskor nevezze meg a kiírt adatot, például: "kezdet helye:"!
- 6. Egy másik enzim (a Factor XI) az Arginin (R) után hasít, de csak akkor, ha Alinin (A) vagy Valin (V) követi. Határozza meg, hogy a hasítás során keletkező első fehérjelánc részletben hány Cisztein (C) található! A választ teljes mondatba illesztve írja ki a képernyőre!

45 pont