ЩЕЛОЧНЫЕ И ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ МЕТАЛЛЫ ТИПЫ РЕАКЦИЙ

окислитель + восстановитель
(+ среда) - ОВР

ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

1) Na O + CO = Na CO

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

1) Fe + 2HCl = FeCl₂ + H₂

2) Fe + CuSO₂ = FeSO₂ + Cu

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

1) NaOH + HCl = NaCl + H,O

2) KCl + AgNO, = KNO, + AgI

ЩЕЛОЧНЫЕ МЕТАЛЛЫ Li, Na, K, Rb, Cs, Fr ОБЩИЕ СВЕДЕНИЯ

Нахождение: IA-группа ПС Электронная формула: ns¹ Степени окисления: 0, +1

НАХОЖДЕНИЕ В ПРИРОДЕ: только в составе соединений!

NaCl - поваренная/каменная соль

NaCl*KCl - сильвинит

 $KCl*MgCl_2*6H_2O$ - карналлит

 $KCl*MgSO_{\downarrow}*3H_{2}O$ - каинит

Na₂SO₄*10H₂O - мирабилит/ глауберова соль

NaNO₃ - чилийская селитра

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-белые металлы

очень мягкие

можно разрезать ножом!

пластичны

проводят теплоту и эл. ток

быстро окисляются

самовоспламеняются

под слоем керосина

химические свойства

При написании химических реакций учтите, что В ВОДНОМ РАСТВОРЕ ЩЕЛОЧНЫЕ МЕТАЛЛЫ РЕАГИРУЮТ В ПЕРВУЮ ОЧЕРЕДЬ С ВОДОЙ!!!

Например, реакции вытеснения (когда щелочной металл вытесняет менее активный из соли) проводят в основном в расплаве.

ДИЧАЙШЕ АКТИВНЫЕ!!!

Получают их электролизом расплавов хлоридов или гидроксидов: 2NaCl (эл.ток) = 2Na + Cl_2 , 4KOH (эл.ток) = 4K + O_2 + $2H_2O$

OKCИДЫ ЩЕЛОЧНЫХ METAЛЛOB Li₂O, Na₂O, K₂O, Rb₂O, Cs₂O, Fr₂O

твёрдые вещества

 $K + CuO(t) = K_0 + Cu$

основные оксиды

дико активные

обладают основными св-вами: реагируют с кислотными оксидами, с кислотами, с амфотерными оксидами и гидроксидами; реагируют с водой с образованием щелочей; взаимодействуют с кислородом с образованием пероксидов

ПЕРОКСИДЫ ЩЕЛОЧНЫХ МЕ окислительно-восстановительная двойственность (у себя в голове при написании р-й представляем их как Me₂O + O₂)

ГИДРОКСИДЫ ЩЕЛОЧНЫХ МЕТАЛЛОВ LiOH, NaOH, KOH, RbOH, CsOH, FrOH

ПРИМЕНЕНИЕ

промышленность промышленность

производство бумаги

ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ МЕТАЛЛЫ Ca, Sr, Ba, Ra,

а также Ве и Мо ОБЩИЕ СВЕДЕНИЯ

Нахождение: ПА-группа ПС Электронная формула: ns² Степени окисления: 0, +2

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-белые металлы

очень мягкие

можно разрезать ножом!

лёгкие

пластичные

проводят теплоту и эл. ток

быстро окисляются(не Mg!)

под слоем керосина

НАХОЖДЕНИЕ В ПРИРОДЕ:

только в составе соединений!

СаСО, - мел, мрамор, известняк, кальцит

CaSO, - ангидрит

СаЅО, *2Н,О - гипс

Са,(РО,), - фосфорит

MgSO, *7H,O - английская/ горькая соль

СаСО, *МдСО, - доломит

ПОЛУЧЕНИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

УЖАСНО АКТИВНЫЕ!!!

Получают их электролизом расплавов хлоридов, например: CaCl, (эл.ток) = Ca + Cl,

Аналогично суперактивным щелочным металлам многие реакции со щелочно-земельными металлами проводят в расплаве (из-за возможности взаимодействия с водой) и без доступа воздуха (из-за того, что они достаточно быстро окисляются).

ОКСИДЫ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ CaO, SrO, BaO, RaO, a также BeO и MgO

CaO, SrO, BaO, RaO - оксиды щелочно-земельных металлов - типичные основные оксиды; MgO - тоже основный оксид; BeO - амфотерный (!) оксид.

твёрдые вещества

основные оксиды

очень активные

обладают основными св-вами: реагируют с кислотными оксидами, с кислотами, с амфотерными оксидами и гидроксидами; реагируют с водой с образованием щелочей; взаимодействуют с кислородом с образованием пероксидов

ПЕРОКСИДЫ ШЗ МЕ

окислительно-восстановительная двойственность (у себя в голове при написании р-й представляем их как MeO + O₂)

ГИДРОКСИДЫ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ Ca(OH)₂, Sr(OH)₂, Ba(OH)₂, Ra(OH)₂, a также Be(OH)₂ и Mg(OH)₂

 $Ca(OH)_2$, $Sr(OH)_2$, $Ba(OH)_2$, $Ra(OH)_2$ - гидроксиды щелочно-земельных металлов - растворимые основания - щёлочи,

 $Mg(OH)_2$ - основание, HO уже нерастворимое (а значит, не щёлочь); $Be(OH)_2$ - вобще амфотерный (!) гидроксид.

твёрдые вещества

основания (щёлочи)

дико активные

обладают основными св-вами: реагируют с кислотными оксидами, с кислотами, с амфотерными оксидами, гидроксидами и Ме (Al, Zn, Be); растворяются в воде; взаимодействуют с неМе (Hal₂, S, P, Si), с солями и кислотами (РИО); разлагаются!

водные растворы окрашивают индикаторы!

Лакмус	Метилоранж	Фенолфталеин	
Красный	Розовый	Бесцветный	
Фиолетовый	Оранжевый	Бесцветный	
Синий	Желтый	Малиновый	

 $Ca(OH)_1 + HCl = CaCl_1 + H_1O$ Ca(OH), + CO, = CaCO, + H,OCa(OH), + SO, = CaSO, + H,O Ca(OH), + SO, = CaSO, + H,O $Ca(OH)_{,} + Fe(NO_{,})_{,} = Ca(NO_{,})_{,} + Fe(OH)_{,}$ Ca(OH), + Zn(t) = CaZnO, + H, $Ca(OH)_1 + Al + H_2O = Ca[Al(OH)_1]_1$ Ca(OH), + Cl, (t) = CaCl, + $Ca(ClO_3)$, + H, OCa(OH), + Cl, = CaCl, + Ca(ClO), + H, O $Ca(OH)_2 + S = CaS + CaSO_3 + H_0$ $Ca(OH)_2 + P + H_2O = Ca(H_2PO_2)_2 + PH_3$ Ca(OH), + Si + H, O = CaSiO, + H, $Ca(OH)_{,}(t) = CaO + H_{,}O$ $Mg(OH)_{1}(t) = MgO + H_{1}O$ $Be(OH)_{x}(t) = BeO + H_{x}O$ $Ca(OH)_{,} + H_{,}O + \phi \phi = малиновое окрашивание$ $Ca(OH)_{,} + H_{,}O + мо = жёлтое окрашивание$ Ca(OH), + H, O + лакмус = синее окрашивание