

Introduction to Reactivity and Reactor Control

Larry Foulke
Adjunct Professor
Director of Nuclear Education Outreach
University of Pittsburgh

Learning Objectives

- Define k-effective (k_{eff}) and reactivity, and describe their importance in reactor dynamic behavior.
- Describe the units used to represent reactivity.
- Write the time dependent neutron balance and describe what can happen to neutrons in a reactor.
- Describe the important role of delayed neutrons.
- Describe the inherent reactivity effects in a nuclear reactor.
- Describe the natural phenomena and designed systems that can change reactivity.

Learning Objectives

- Describe the signals from process measurements are used to control the reactor.
- Identify and discuss steady state, heat balance relationships in a pressurized water reactor.
- Discuss and critique alternative philosophies for reactor control.
- Understand and illustrate the effects of fission product buildup on reactivity and core kinetics.
- Differentiate among critical, supercritical, and subcritical conditions in a reactor.

Inherent Reactivity Effects

External Reactivity Effects by Protection and Control Systems

Signals for Protection and Control

Concepts for Control Steady State Operation

In steady state, all heat terms are equal given no losses.

Concepts for Control Important Relationships

Two balance equations must be satisfied for the reactor to be steady-state:

1.
$$\rho_{Total} = 0$$

$$2. \dot{Q}_{RX} = \dot{Q}_{S/G} = \dot{Q}_{BoP}$$

The following three equations can be used to calculate each of the above Q terms:

$$\dot{Q}_{Rx} = \dot{m}_{RCP} C_p (T_H - T_C)$$

$$Q_{S/G} = UA(T_{ave} - T_{Steam})$$

$$\dot{Q}_{BoP} = \dot{m}_{FeedWater} (h_{steam} - h_{FeedWater})$$

Concepts for Control One-line Drawing of a PWR

Response Curves

Constant Tav Program

Advantages:

- Least amount of external control
- Preferred by reactor
- •Small pressurizer (minimum expansion of coolant volume as power changes)

Disadvantages

Drop off of steam temperature and pressure

FIG. 8-4. Variations in temperatures and pressure as a function of power output for constant-average-temperature program with fixed coolant flow.

Response Curves

Constant Th Program

Advantages:

 Least stressful to materials

<u>Disadvantages</u>

- Huge drop off of steam temperature and pressure
- Poorest turbine efficiency
- •Requires external reactivity control

FIG. 8-6. Variations in temperatures and pressure as a function of power output for constant-outlet-temperature program.

Response Curves

Constant Tsteam Program

Advantages:

- •Best turbine efficiency
- Preferred by turbine

<u>Disadvantages</u>

- Need large pressurizer volume to accommodate coolant expansion
- Requires external reactivity control

Reactor Physics 101

What Can Happen to Neutrons?

- 1. Fission
 - a. Energy Release
 - i. prompt
 - ii. delayed
 - b. Fission Products
 - c. More Neutrons
 - i. prompt neutrons
 - ii. delayed neutrons
- 2. Capture
- 3. Scatter
- 4. Leak

Nuclear Fission

Fission Fragment

Neutron

Neutrons emitted during fission can cause additional fission events, creating a selfsustaining chain reaction.

Neutron Balance

Accumulation = Production — Absorption — Leakage

If Accumulation:

= 0	Critical	Steady State	Static
> 0	Supercritical	Increasing	Kinetic/ Dynamic
< 0	Subcritical	Decreasing	Kinetic/ Dynamic

Effective multiplication and reactivity

$$k_{eff} = \frac{\text{neutron production rate}}{\text{neutron destruction rate}}$$

Let $P = \text{production rate} = \nu F$ where F = fission rateand $\nu = \text{number of neutrons per fission}$

Let A = absorption rate (loss)

Let L = leak rate (loss)

Then
$$k_{eff} = \frac{P}{A + L}$$

Effective multiplication and reactivity

STATES OF CRITICALITY

$$k_{e\!f\!f}$$
 = 1 Critical $k_{e\!f\!f}$ > 1 Supercritical $k_{e\!f\!f}$ < 1 Subcritical

DEFINITION OF REACTIVITY, ρ

$$\rho = \frac{k_{eff} - 1}{k_{eff}} = \frac{\Delta k}{k} = \frac{\frac{P}{A + L} - 1}{\frac{P}{A + L}} = \frac{P - A - L}{P} = \frac{net \ neutron \ production}{neutron \ production}$$

$$\rho = 0$$
 Critical

$$\rho$$
 > 0 Supercritical

$$\rho$$
 < 0 Subcritical

Criticality

States of criticality

$$k_{\rm eff} = 1$$
 Critical (ρ =0)
 $k_{\rm eff} > 1$ Supercritical (ρ >0)
 $k_{\rm eff} < 1$ Subcritical (ρ <0)

- No reactor can be constantly critical
 - Fuel depletion
 - Fission product buildup
 - Temperature changes

Criticality Control

States of criticality

$$k_{\rm eff} = 1$$
 Critical (ρ =0)
 $k_{\rm eff} > 1$ Supercritical (ρ >0)
 $k_{\rm eff} < 1$ Subcritical (ρ <0)

- In order to keep an operating nuclear reactor critical we will need to "adjust" terms in the neutron balance
- Neutron balance controls
 - Production
 - Absorption
 - Leakage

Reactivity Units

Units for Reactivity:

- mk (1 mk = 0.001)
- pcm (1 pcm = 0.00001)
- Δρ (given as number without units)
- \(\Delta k \extrm{/}{k}\) (given as number without units)
- $\delta k/k$ (same as $\Delta k/k$)
- %Δk/k (Δk/k x 100)
- $\$ = \Delta \rho / \beta$

Energy Released During Fission

Neutron Balance with Delayed Neutrons

Neutron **B**alance

$$\frac{dn(t)}{dt} = \left(1 - \beta\right)P(t) + \sum_{i=1}^{I} \lambda_i C_i(t) - A(t) - L(t)$$

Precursor**B**alance

$$\frac{dC_{i}(t)}{dt} = \beta P(t) - \lambda_{i}C_{i}(t)\hat{E}for\hat{E} = 1,L,I$$

where $\hat{\mathbf{E}}\beta = fraction$ $\hat{\mathbf{E}}$ of $\hat{\mathbf{E}}$ neutrons $\hat{\mathbf{E}}$ delayed

- Nuclear Reactor
 - Production
 - Determined by the total fissile content of the core.
 - Initial fuel loading.
 - Absorption
 - Leakage

- Nuclear Reactor
 - Production
 - Absorption
 - Cladding, Structure, Coolant
 - Control Rods
 - Soluble Neutron Absorbers
 - Burnable Neutron Absorbers
 - Fission-Product Absorbtion
 - Leakage

- Nuclear Reactor
 - Production
 - Absorption
 - Modern reactor designs
 - Moveable control rods (CR) to change power level and maintain steady state operation.
 - Movable safety rods (SR) to quickly shut down reactor and ensure $k_{\rm eff} < 1$.
 - Soluble boron in reactor coolant (PWR only) to "shim" $k_{\rm eff}$.
 - Fixed burnable absorbers (boron or gadolinium) that deplete during operation.
 - Leakage

- Nuclear Reactor
 - Production
 - Absorption
 - Leakage
 - Primarily determined by reactor design
 - Modern reactor designs:
 - Use a cylindrical core shape to reduce surface-tovolume ratio while still allowing easy access to fuel
 - Include a material (usually water) surrounding the core to reflect escaping neutron back into the active fuel region of the core

- Reactor Criticality Requirements
 - Operation Modes
 - Power Reactors (Startup / Steady-State / Shutdown)
 - All reactors have emergency shutdown (SCRAM or TRIP) capability
 - Routine adjustments to reactor criticality are required
 - Account for power fluctuations and feedback effects
 - Fuel depletion, density changes of moderator
 - Small frequent adjustments: control rods (in PWR)
 - Larger, planned, adjustments: soluble boron (in PWR)
 - BWR reactors use control rods and coolant flow feedback to adjust criticality.

PWR (W & B&W) Control Rod "Spider"

AP600 Core Design

AP600 Assembly Design

Simplified AP600 Assembly Model

- Simplified 2-D model of an AP600 quarter assembly.
- Contains UO₂ fuel, boron control rods, and B4C burnable absorber rods.
- Reflecting boundary conditions on all sides.

Quarter-Assembly, Control Rods Withdrawn

k = 1.1630

33

Quarter-Assembly, Control Rods Inserted

k = 0.93287

Control Rod Worth Example

Axial Flux w/ Control Rods

Delta I - Power Shape Distortion

- $\Delta I = Upper Power Lower Power$
- Want to keep the axial power shape well conditioned
- We move control rods to control the axial power shape
 - Prevent axial power peaks

Radial Flux w/ Control Rods

PWR Reactivity Control

- Routine Control Rod Adjustment for Critical
 - Full Safety/Control Rod Insertion [Scram/Trip]
 - Overpower
 - Other Parameters Out of Range
- Intermediate / Long-Term
 - Soluble Poison Boric Acid
 - Minimize Control Rod Use
 - ~25% Group-1 Bite at Full Power
 - Decreased w/ Burnup
 - Changed w/ Steady Power Change
 - Burnable Poison [Shim] Rods

PWR Protective System

- SCRAM / TRIP
 - Full-Length CR Mounted to Drives w/ Electromagnets
 - Loss-of-Current → Full Insertion
- REACTIVITY INVENTORY
 - Control Rods
 - Negative Feedback Defects
 - Shutdown Margin Several %∆k/k
 - Stuck Rod Criterion Highest Worth
 - Over Core Lifetime

FEEDBACK EFFECTS

COEFFICIENTS OF REACTIVITY α

$$\alpha(\mathsf{T}_{\mathsf{i}}) = \frac{\partial \rho}{\partial \mathsf{T}_{\mathsf{i}}}$$

 $T_i \rightarrow T_f$ Fuel Temperature Coefficient [FTC]

T_m Moderator Temperature Coefficient [MTC]

f_v Moderator Void Coefficient [MVC]

d_m Moderator Density Coefficient [MDC]

$$feedback \hat{\mathbf{E}}reactivity = \Delta \rho_F = \sum_i \alpha(T_i) \Delta T_i = \sum_i \frac{\partial \rho}{\partial T_i} \Delta T_i$$

INTEGRATED SYSTEM RESPONSE

FEEDBACK LOOP

- $\Delta \rho_{\text{EXT}}$ Inserted
- Power Q_{Rx} from Kinetics Equations
- $\Delta T \& \Delta Density \rightarrow Feedback Reactivity <math>\Delta \rho_F$

$$\begin{array}{l} \bullet \quad \Delta \rho_{\text{EXT}} + \Delta \rho_{\text{F}} = \Delta \rho_{\text{TOTAL}} \\ \text{If } \Delta \rho_{\text{TOTAL}} < \Delta \rho_{\text{EXT}} \quad \rightarrow \text{Stabilization} \\ \text{If } \Delta \rho_{\text{TOTAL}} > \Delta \rho_{\text{EXT}} \rightarrow \text{Unstable} \quad \rightarrow \begin{array}{l} \text{Possible System} \\ \text{Damage,} \\ \text{If Uncompensated} \end{array}$$

Inherent Reactivity Effects

Negative Reactivity Feedback Effect

LXI

Fission Product Poisoning - Xenon

We get fission products from the fission process (the ashes of burning uranium)

- Hundreds of various fission products
- All chemical species
- All physical forms
- Some fission products have very large probability to absorb neutrons

When these fission products are present in the reactor, they can have a very strong effect on reactivity, ρ

Fission Products (the ashes) Released During Fission

Fission Product Poisoning - Xenon

- When a new reactor with fresh fuel starts up, poisoning by xenon is not evident until some Xe has formed.
- Xe builds up to an equilibrium level and absorbs neutrons.
- When the reactor is shut down, it goes through a peaking transient that can affect the ability to restart the reactor.

Fission Product Poisoning - Xenon

- Production of Xenon-135
- Produced in two ways:
 - As a daughter in a radioactive decay chain (from lodine-135,
 - As a direct yield from fission
- Lost in two ways:
 - By radioactive decay,
 - By absorption of a neutron to become Xe-136 (weak absorber)

¹³⁵Xe Production

FISSION PRODUCTS

XENON-135 Production (P) and Destruction

$$\left\{ \begin{array}{l}
 Rate \ of \ change \\
 of \ Xenon
 \end{array} \right\} = \left\{ P_{Xenon} + Decay_{Iodine} \right\} - \left\{ Burnup_{Xenon} + Decay_{Xenon} \right\}$$

$$\left\{ \begin{array}{l}
 Rate \ of \ change \\
 of \ Iodine
 \end{array} \right\} = \left\{ P_{Iodine} \right\} - \left\{ Decay_{Iodine} \right\}$$

The Transient Xenon Problem

Here it is in a picture:

But there are other things going on:

- 1. Production processes from fission which we represent as a valve whose opening is proportional to the flux (power) level.
- 2. Burnup loss goes to zero if power (flux) goes to zero.

Fission Product Poisoning - Xenon

Major Points to note:

- Xenon effects will be felt over relatively long time intervals (since Xe and I decay so slowly).
- 2. Production of Xenon is from Iodine decay and direct fission yield.
- 3. Iodine decays faster than Xenon

Effect of Xenon on Reactivity

What does this mean when we operate a reactor?

- 1. We start up a new reactor. It is xenon-free.
- 2. We go critical at low power (low flux) negligible xenon
- 3. We bring the reactor to high power
- 4. As xenon builds up, we have to withdraw control rods to stay critical

Xenon reactivity worth could be on the order of

$$\rho_{x_e} \approx -0.024 = -24 \, mk$$

¹³⁵Xe Behavior

¹³⁵Xe Behavior

OPERATIONAL IMPACTS

- LONG-TERM REACTIVITY CONTROL
 - Programmed Control Rod Motion
 - Change Power Level
 - Startup / Shutdown
 - Load Follow
 - Re-Start
 - Withdraw to Compensate Fuel Burnup
 - Damp Xenon Oscillations
 - Concern → Power Peaking

OPERATIONAL IMPACTS

- LONG-TERM REACTIVITY CONTROL
 - Soluble Poisons
 - Inject / Dilute to Match Power Level
 - Dilute to Compensate Fuel Burnup
 - Reduce Control Rod Use
 - Concern → Positive Coolant/Moderator Feedback

Inherent Reactivity Effects

External Reactivity Effects by Protection and Control Systems

