

# Simulação de Parcerias Entre Agentes Autônomos

## Jaime Simão Sichman, Luciano Menasce Rosset, Luis Gustavo Nardin

Universidade de São Paulo luciano.rosset@usp.br

# **Objetivos**

Explorar o uso de computação de alta performance, a partir da plataforma Repast for High Performance Computing [2], para a simulação do modelo desenvolvido por Nardin e Sichman [1].

## Métodos/Procedimentos

Desenvolvimento da versão em C++ do modelo anteriormente criado por Nardin em NetLogo [3] — chamado de *Trust and Coalition*, ou *T&C* — com o auxílio do pacote Repast HPC. O uso do pacote facilita a implementação do processamento em paralelo, para tornar as simulações mais eficientes e possibilitar o uso do supercomputador Blue Gene/P.

### Resultados

Analisando as métricas resgatadas durante as simulações, principalmente o numero médio de agentes por coalizão e o número de coalizões normalizado pela população, não observa-se mudanças no comportamento do sistema em ambientes que diferem apenas nas quantidades de agentes e na topologia do *grid* (plano ou toroidal), como mostrado na tabela 1.

| População | Topologia                      |                            |                                |                            |
|-----------|--------------------------------|----------------------------|--------------------------------|----------------------------|
|           | Plano                          |                            | Toro                           |                            |
|           | Tamanho médio<br>das coalizões | Coalizões<br>normalizadas* | Tamanho médio<br>das coalizões | Coalizões<br>normalizadas* |
| 484       | 10,34                          | 0,0894                     | 11,03                          | 0,0849                     |
| 1024      | 10,74                          | 0,0863                     | 10,87                          | 0,0960                     |
| 16384     | 11,03                          | 0,0846                     | 11,09                          | 0,0843                     |
| 102400    | 11,03                          | 0,0847                     | 11,07                          | 0,0844                     |

<sup>\*</sup>Número de coalizões normalizado pela população.

Tabela 1: Comparação entre diferentes ambientes para o modelo *T&C*.

Em contrapartida, a dinâmica das simulações é fortemente influenciada pela topologia da vizinhança (*Moore* e *von Neumann*), como mostram os gráficos da figura 1.



Figura 1: Comparação das dinâmicas para ambientes de 16384 agentes, *grid* plano e vizinhanças *Moore* (esquerda) e *von Neumann* (direita).

#### Conclusões

Os resultados sugerem que dentre os três parâmetros analisados, apenas o conceito de vizinhança causa mudanças na dinâmica do modelo T&C. Um possível motivo é o comportamento do sistema depender apenas do que os agentes enxergam, sendo que o tamanho da população ou a topologia do *grid* não mudam este fator.

# Referências Bibliográficas

[1] L. G. Nardin and J. S. Sichman. Simulating the impact of trust in coalition formation: A prelimi- nary analysis. Advances in Social Simulation, Post-Proceedings of the Brazilian Workshop on Social Simulation, páginas 33–40, 2011.

[2] N. Collier and M. North. Repast SC++: A platform for large-scale agent-based modeling. In D. Werner, K. Kurowski, and B. Schott, editors, Large-Scale Computing Techniques for Complex System Simulations, volume 1 of Wiley Series on Parallel and Distributed Computing. John Wiley & Sons, 2012.

[3] U. Wilensky. NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, 1999.