Summary

What is an algorithm?

- A sequence of unambiguous instructions for solving a well-defined problem. Algorithms are guaranteed to terminate if the input is valid.
- Algorithms are a subset of procedures, which aren't guaranteed to terminate.

Terms

- Finite
 - Terminates after a finite number of steps
- Definite
 - o Rigorously and unambiguously specified
- Inputs
 - Valid inputs are clearly specified
- Output
 - Can be proved to produce the correct output given a valid input
- Effective
 - Steps are sufficiently simple and basic

Notion of an Algorithm

- Each step of the algorithm must be unambiguous
- The range of inputs must be specified carefully.
- The same algorithm can be represented in different ways AND Several algorithms for solving the same problem may exist with different properties

Methodology of Algorithms

- 1. Understand the problem
- 2. Decide on computational means
- 3. Design an algorithm
- 4. Prove correctness
- 5. Analyze the algorithm
- 6. Code algorithm

Another representation of the above 6 steps:

Analyzing Algorithms

- Efficiency: time and space
- Simplicity
- Generality: range of inputs, special cases
- Optimality: no other algorithm can do better

Types of Algorithms

- Brute Force
 - Try all possibilities
- Decrease & Conquer
 - Solve large instance in terms of smaller instance

- Divide & Conquer
 - o Break problem into distinct subproblems
- Transform & Conquer
 - AKA Transformation
 - Covert problem to another one
- Trading Space & Time
 - Use additional data structures
- Dynamic Programming
 - o Break problem into overlapping subproblems
- Greedy
 - Repeatedly do what is best now

Formal Definitions - O, Ω & Θ

- Definition: f(n) ∈ O(g(n)) iff there exists positive constant c and non-negative integer n₀ such that ** f(n) <= c g(n)* for every n >=n₀
- Definition: $f(n) \in \Omega(g(n))$ iff there exist positive constant c and non-negative integer n_0 such that
 - \circ f(n) >= c g(n) for every $n >= n_0$
- Definition: $f(n) \in \Theta(g(n))$ iff there exist positive constants c_1 and c_2 and non-negative integer n_0 and non-negative integer n_0 such that
 - \circ $c_1 q(n) <= f(n) <= c_2 q(n)$ for every $n >= n_0$
- O(g(n)): functions that grow no faster than g(n)
- $\Omega(g(n))$: functions that grow at least as fast as g(n)
- $\Theta(g(n))$: functions that grow at same rate as g(n)
- O(g(n)): functions no worse than g(n)
- $\Omega(g(n))$: functions at least as bad as g(n)
- Θ(g(n)): functions as efficient as g(n)

O vs Θ

- O is an upper bound on performance
- Θ is a tight bound
 - It is the upper and lower bound

Brute Force

A straightforward approach usually directly based on problem statement and definitions

• Crude but often effective

- Simple
- Widely Applicable
- · Sometimes impractically slow
- Try all the possibilities until problem solved
- · Loop through each possibility, check if it solves problems

Pros and Cons of Brute Force

- Strengths
 - Wide applicability
 - Simplicity
 - Yields reasonable algorithm for some important problems and standard algorithms for simple computational tasks
 - A good yardstick for better algorithms
 - o Sometimes doing better is not worth the bother
- Weakness
 - Rarely produces efficient algorithms
 - Some brute force algorithms are infeasibly slow
 - Note as creative as some other design techniques

Exhaustive Search

- Definition
 - A brute force solution to the search for an element with a special property
 - Usually among combinatorial objects such a permutations or subsets
 - Suggests generating each and every element of the problem's domain
- Method
 - 1. Construct a way of listing all potential solutions to the problem in a systematic manner
 - 2. Evaluate all Solutions one by one (disqualifying infeasible ones) keeping track of the best one found so far
 - 3. When search ends, announce the winner

Comments on Exhaustive Search

- Exhaustive search algorithms run in a realistic amount of time only on very small instances
- In many cases there are much better alternatives!
- In some cases exhaustive search (or variation) is the only known solution
- and parallel solutions can speed it up

Master Theorem

If we have a recurrence of this form:

T(n) = aT(n/b) + f(n) and $f(n) \in \Theta(n^2)$ then:

• $T(n) \in \Theta(n^d)$ if $a < b^d$

- $T(n) \in \Theta(n^d \log n)$ if $a = b^d$
- $T(n) \in \Theta(n^{\log_b a})$ if $a > b^d$

Divide & Conquer

- Divide & Conquer is the best known algorithm design strategy:
 - 1. Divide instances of problem into two or more smaller instances
 - 2. Solve smaller instances recursively
 - 3. Obtain solution to original (larger) instance by combining these solutions

Decrease & Conquer

- Decrease by a constant
- Decrease by a constant factor
- Variable size decrease

Decrease by a Constant Factor

- 1. Reduce problem instance to smaller instance of the same problem and extend solution
- 2. Solve smaller instance
- 3. Extend solution of smaller instance to obtain solution to original problem
 - Also called inductive or incremental

Strengths and Weaknesses of Decrease & Conquer

Strengths

- Can be implemented either top down (recursively) or bottom up (without recursion)
- Often very efficient (possibly Θ(logn))
- Leads to a powerful form of graph traversal (breadth and depth first search)

Weakness

• Less widely applicable (especially decrease by a constant factor)

Transform and Conquer

The secret of life is to replace one worry with another

Charles M. Schultz

Different types of transformations:

- 1. Instance simplification = a more convenient instance of the same problem
 - Presorting
 - Gaussian elimination
- 2. Representation Change = a different representation of the same instance
 - Balanced search trees
 - Heaps and heapsort
 - o Polynomial evaluation by Horner's rule
 - Binary exponentiation
- 3. Problem reduction = a different problem altogether
 - Lowest Common Multiple
 - Reductions to graph problem
- Pre-sorting
 - Closest pair
 - Convex hull

Space Time

Boyer Moore & Horspool

- Text of length n and Pattern P[0 ... m-1]
- Shift table called T:
 - T(X) = m-1- rightmost index of x in P[0 ... m-2]
 - T(X) = m if x is not in position P[0 ... m-2]
- Horspool
 - When there is a mismatch, shift pattern T[c] places where c is the last character currently aligned against the pattern
- Boyer-Moore's Bad Character rule
 - When there's a mismatch, calculate from the back, k, number of characters that matched
 - Shift pattern max(T(c)-k,1) where c is the mismatched character