Bakery Sales Prediction

Team "Room 2"

Sascha Mahmood Kacper Nyka David Schubert

Agenda

- Variablen Sascha
- Konfidenzintervalle Sascha
- Optimierung Lineares Modell Kacper
- Missing Value Imputation Sascha
- Neuronales Netz Sascha
- Worst Fail / Best Improvement David

Variablen

Temperatur Warengruppe_2 Warengruppe_3 Warengruppe_4 Warengruppe_5 Warengruppe_6 summer autumn StartOfMonth

Variablen Temperatur

Temperatur Warengruppe_2 Warengruppe_3 Warengruppe_4 Warengruppe_5 Warengruppe_6 summer autumn StartOfMonth

```
sommer_stats = df.groupby("summer")["Umsatz"].describe()
autumn_stats = df.groupby("autumn")["Umsatz"].describe()
som_stats = df.groupby("StartOfMonth")["Umsatz"].describe()
```

	count	mean	std	min	25%	50%	1
summer							
0	1078.0	213.887366	169.528471	18.483993	100.870030	166.415130	
1	1106.0	291.055932	187.592710	36.344812	137.241356	270.581136	
		75%	max				
summer		7 3 70	mux.				
0	284.085	577 1879.46	51831				
1	372.196	978 930.80	01703				

Variablen Herbstferien

Temperatur Warengruppe_2 Warengruppe_3 Warengruppe_4 Warengruppe_5 Warengruppe_6 summer autumn StartOfMonth

```
sommer_stats = df.groupby("summer")["Umsatz"].describe()
autumn_stats = df.groupby("autumn")["Umsatz"].describe()
som_stats = df.groupby("StartOfMonth")["Umsatz"].describe()
```

33	count	mean	std	min	25%	50%	١
autumn							
0	1858.0	261.585410	190.517597	18.483993	116.226568	222.681159	
1	326.0	203.842795	121.042849	23.097747	105.223297	161.846654	
		75%	max				
autumn							
0	337.967	097 1879.46	1831				
1	286.661	081 704.51	3358				

```
Temperatur Warengruppe_2 Warengruppe_3 Warengruppe_4 Warengruppe_5 Warengruppe_6 summer autumn StartOfMonth
```

```
sommer_stats = df.groupby("summer")["Umsatz"].describe()
autumn_stats = df.groupby("autumn")["Umsatz"].describe()
som_stats = df.groupby("StartOfMonth")["Umsatz"].describe()
```

	count	mean	std	min	25%	١
StartOfMonth						
0	1765.0	255.574847	186.053668	23.097747	115.775782	
1	419.0	241.978131	169.185213	18.483993	102.953506	
		50%	75%	max		
StartOfMonth						
0	215.929	339 332.71	3957 1879.46	1831		
1	191.050	544 315.20	1717 930.80	1703		

Konfidenzintervalle Sommerferien und Monatsanfang

Lineares Modell

```
OLS Regression Results
Dep. Variable:
                                Umsatz
                                          R-squared:
                                                                            0.737
                                         Adj. R-squared:
Model:
                                                                             0.733
Method:
                         Least Squares
                                         F-statistic:
                                                                             188.1
                     Mon, 24 Jun 2024
                                         Prob (F-statistic):
Date:
                                                                             0.00
                              21:45:08
                                         Log-Likelihood:
Time:
                                                                          -13018.
No. Observations:
                                   2184
                                         AIC:
                                                                        2.610e+04
Df Residuals:
                                   2151
                                         BTC:
                                                                        2.6290+04
Df Model:
Covariance Type:
                             nonrobust
```

Modellübersicht:

- R-squared: 0.737 (73,7% der Varianz in der abhängigen Variable wird durch das Modell erklärt)
- Adjusted R-squared: 0.733
- F-statistic: 188.1 mit einem p-Wert von 0.00, was auf eine hohe statistische Signifikanz des Gesamtmodells hinweist

Zusammenfassend

- Das Modell erklärt einen erheblichen Teil der Varianz im Umsatz, und viele der Haupt- und Wechselwirkungseffekte sind signifikant.
- Allerdings gibt es Hinweise auf
 Multikollinearität und eine starke Abweichung der Residuen von der Normalverteilung, was die Ergebnisse beeinflussen könnte.

947.3

Optimierung des lineares Modell

Df Residuals:

Df Model: Covariance Type:

Dep. Variable: 0.834 R-squared: Model: Adj. R-squared: 0.832 OLS F-statistic: Least Squares Method: 638.4 Mon, 24 Jun 2024 Prob (F-statistic): Date: 0.00 Time: 21:55:17 Log-Likelihood: -404.47 No. Observations: AIC: 2184 844.9

OLS Regression Results

2166

nonrobust

Modellübersicht:

- R-squared: 0.834 Das Modell erklärt nun 83,4% der Varianz in log_Umsatz, was eine erhebliche Verbesserung darstellt.
- Adjusted R-squared: 0.832 Bestätigt die Verbesserung unter Berücksichtigung der Anzahl der Prädiktoren.
- **F-statistic:** 638.4, was auf eine hohe Gesamtbedeutung des Modells hinweist (p < 0.001).

- logarithmierter Umsatz als abhängige Variable scheint die Modellanpassung verbessert zu haben.
- Die Erklärungskraft ist gestiegen, die Residuen sind näher an einer Normalverteilung, und mehr abh. Variablen sind signifikant (wie summer und autumn).
- Multikollinearität bleibt aber immer noch ein Problem.

Missing Value Imputation

Neuronales Netz

Neuronales Netz DNN

Layer (type)	Output Shape	Param #	
batch_normalization_13 (BatchNormalization)	(None, 9)	36	
dense_44 (Dense)	(None, 10)	100	
dense_45 (Dense)	(None, 1)	11	

loss: 27.1396 - val_loss: 25.6048

Neuronales Netz DNN

Layer (type)	Output Shape	Param #	
batch_normalization_14 (BatchNormalization)	(None, 9)	36	
dense_46 (Dense)	(None, 10)	100	
dense_47 (Dense)	(None, 20)	220	
dropout_16 (Dropout)	(None, 20)	0	
dense_48 (Dense)	(None, 1)	21	

loss: 25.3988 - val loss: 22.5239

Neuronales Netz

DNN

dense_53 (Dense)

dropout_18 (Dropout)

dense_54 (Dense)

loss: 27.6795 - val_loss: 22.1171

Neuronales Netz LSTM

Layer (type)	Output Shape	Param #	
lstm (LSTM)	(None, 50)	10,400	
dropout_2 (Dropout)	(None, 50)	0	
dense_4 (Dense)	(None, 1)	51	

loss: 24.0814 - val_loss: 23.7407

Neuronales Netz MAPE

```
MAPE:
Complete:
0.2197135092107639
Warengruppe_1
0.28175252044391397
Warengruppe_2
0.1740325292019712
Warengruppe_3
0.24795247706370505
Warengruppe_4
0.2231292266943377
Warengruppe_5
0.16328691805379372
Warengruppe_6
0.42164649951711153
```

Neuronales Netz MAPE

Mit Temperatur

Ohne Temperatur

Worst Fail

Probleme:

- Multikollinearität
- Overfitting

```
import statsmodels.formula.api as smf
mod = smf.ols('Umsatz ~ summer * autumn * StartOfMonth * C(Warengruppe)', data=df).fit()
print(mod.summary())
```

- R-squared: 0.737
- Viele Wechselwirkungen nicht signifikant

Beispielhafte Koeffizienten:

- summer:C(Warengruppe)[T.2]:166.0978(p<0.0001)
- summer:C(Warengruppe)[T.6]:7.413e-14(p = 0.665)

Best Improvement

Ansatz:

- Vereinfachung des Modells
- Reduktion Interaktionsanzahl
- Fokus auf Hauptvariabeln

Vorher

```
summer:C(Warengruppe)[T.2]:166.0978 (p < 0.0001)
```

```
summer:C(Warengruppe)[T.6]:7.413e-14(p = 0.665)
```

```
mod = smf.ols('Unsatz ~ summer + autumn + StartOfMonth + C(Warengruppe) + summer:C(Warengruppe) + autumn:C(Warengruppe)', data=df).fit()
print(mod.summary())
```

R-squared: 0.733

Verbesserte Signifikanz der Koeffizienten.

Beispielhafte Koeffizienten:

Angepasst

```
summer:C(Warengruppe)[T.2]:165.9782(p < 0.0001)
```

```
summer:C(Warengruppe)[T.6]:3.503e-14(p = 0.163)
```

Vorteile

- Reduzierte Multikollinearität:
 - Entfernen unnötiger Wechselwirkungen
- Bessere Generalisierung:
 - Das vereinfachte Modell zeigte bessere Ergebnisse bei Validierungsdaten