

Fundamentals of Physics Informed Machine Learning

Yunchao Yang, PhD

Al Research Facilitator

UF Research Computing

yunchaoyang@ufl.edu

Interplay of Machine Learning and Physics

- Inspire new algorithms from physical insights: e.g. diffusion model
- human-understandable insights from Interpreting ML results

Machine Learning Physical sciences

- provide a scientific tool for discovering elusive patterns within physical sciences
- data-driven solution of complex science & engineering problems
- applications of machine learning techniques to physical sciences is growly rapidly

Machine learning/Deep Learning algorithms

TUNIVERSITY OF FLUKIDA

Physical systems and PDEs

The dynamic performance of a physical system is obtained by utilizing the physical laws of mechanical, electrical, fluid and thermodynamic systems. The physical systems are generally modeled with partial differential equations (PDE).

- most PDEs cannot be solved analytically in real applications
 - Heat equation $\frac{\partial u}{\partial t} = \Delta u$
 - Wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
 - Laplace's equation $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$
 - Poisson's equation $\nabla^2 \varphi = f$.
 - Burgers' equation $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}.$
 - Navier-Stokes equation $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \nu \nabla^2 \mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{g}$.

Bottleneck in Traditional Scientific Computing

Traditional numerical methods:

Numerical analysis and algebra

- Finite difference
- Finite Element
- Finite Volume
- Runge–Kutta methods

Complexity in Physics Number of Designs Geometry details Problem size Source: NVIDIA

limitations:

- Computationally Expensive
- Domain Discretization Techniques
- Not suitable for Data-assimilation or Inverse problems

The integration of Data, Deep Neural Networks, and Physical Laws - PINN

- Physics
 - Partial differential equations (PDE)
 - Governing equations
 - Conservation law
 - Boundary and initial conditions
- Neural Networks
 - Function approximation

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j \cdot x + \theta_j)$$

- Data
 - available observations

Physics-Informed Neural Networks (PINNs):
A deep learning framework for solving
forward and inverse problems involving
nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis, Journal of Computational Physics 378, 686-707

How about Black-box Deep Neural Networks?

- Scientific problems are often under-constrained
 - Complex, dynamic, and non-stationary relationships
 - A large number of variables with a small number of samples
- Standard methods for evaluating ML models (e.g., cross-validation) will fail
 - Easy to learn spurious relationships that look deceptively good on training and test datasets
 - But lead to poor generalization outside the available data
- Interpretability is an important end-goal (esp. in scientific problems)
 - How can we open the black-box of DNN results?
- Need to explain or discover the underlying mechanisms of process to
 - Form a basis for scientific advancements
 - Safeguard against the learning of non-generalizable patterns

Karpatne, DLPS, 2017

Problem setup

Parameterized, nonlinear PDE(s)

$$u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, \ t \in [0, T]; \quad (\cdot)_t = \frac{\partial (\cdot)}{\partial t}$$

- where u(t, x) denotes the latent (hidden) solution, N [·; λ] is a nonlinear operator parametrized by λ .
- The above setup covers a wide range of PDEs in applied mathematics, including conservation laws, diffusion, convection—diffusion, etc.

• For example: Burger's equations:

$$\mathcal{N}[u;\lambda] = \lambda_1 u u_x - \lambda_2 u_{xx} \text{ and } \lambda = (\lambda_1, \lambda_2); \quad (\cdot)_x = \frac{\partial (\cdot)}{\partial x} \quad (\cdot)_{xx} = \frac{\partial^2 (\cdot)}{\partial x^2}$$

Neural Networks = Function Approximation

Try to find a mapping function: $Y = f(X; \theta)$

- ♦ Polynomial: $a_1 + a_2x + a_3x^2 + \cdots$
- *Nonlinear: $1 + \frac{a_1 \tanh(a_2 x)}{a_3 x \tanh(a_4 x)}$
- ♦ Neural Network: $W_3\sigma(W_2\sigma(W_1x+b_1)+b_2)+b_3$.
 - Neural Networks are universal approximators which work well in high dimensions
 - \bullet Train the weights (W, b)

Introduction: PINNs

$$u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, \ t \in [0, T]; \quad (\cdot)_t = \frac{\partial (\cdot)}{\partial t}$$

- Data-driven solution
 - λ Given, the goal is to find NN(t, x) = u(t,x)
- Data-driven discovery of PDEs
 - Find $\frac{\lambda}{\lambda}$ that best describes observations u (t_i, x_j)

M Raissi, P Perdikaris, GE Karniadakis, Journal of Computational Physics 378, 686-707

PINN: Data-driven solution

• Rewrite the PDE as f(u; t, x) = 0

$$f(u; t, x) \doteq u_t + \mathcal{N}[u]$$
, along with $u = u_\theta(t, x)$

• Along with the above constraint (+ AD) this gives *Physics-informed neural* network parameterized by θ

$$\mathcal{L} = \mathcal{L}_{u} + \mathcal{L}_{f}$$

$$\mathcal{L}_{u} = \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} \left| u\left(t_{u}^{i}, x_{u}^{i}\right) - u^{i} \right|^{2}; \quad \mathcal{L}_{f} = \frac{1}{N_{f}} \sum_{i=1}^{N_{f}} \left| f\left(t_{f}^{i}, x_{f}^{i}\right) \right|^{2}$$

Data loss

Physical loss

PINN:Data-driven solution

Network architecture

- Losses:
 - Physical loss
 - Use automatic differentiation to calculate derivatives
 - Governing equation
 - Data loss
 - IC/BC
 - Labeled data ((observation), optional)

PINN: data-driven discovery of PDE

• Given noisy and incomplete measurements z of the state of the system, the data-driven discovery of PDE results in computing the unknown state u(t,x) and learning model parameter λ that best describe the observed data.

$$u_t+N[u;\lambda]=0,\quad x\in\Omega,\quad t\in[0,T]$$

- Define: $f:=u_t+N[u;\lambda]=0$
- Treat λ as a learnable parameter in the neural network
- This network is to approximate u(t,x). Then the parameters of u(t,x) and λ can be learned by minimizing the same loss function

$$L_{tot} = Lu + Lf$$

M Raissi, P Perdikaris, GE Karniadakis, Journal of Computational Physics 378, 686-707

PINN: data-driven discovery of PDE

Network architecture

- Losses:
 - Physical loss (with λ)
 - Use automatic differentiation to calculate derivatives
 - Governing equation
 - Data loss
 - IC/BC
 - Labeled data ((observation), optional)
- λ can be learned by minimizing losses during backpropagation

Code demo

PINN solution of 1D Burgers equation in PyTorch

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}$$
$$x \in [-1, 1]$$
$$t \in [0, 1]$$

IC/BC
$$t = 0, u = 0$$

 $x = -1, u = 0$
 $x = 1, u = 0$

Available PINN libraries

DeepXDE

NVIDIA Modulus

PyTorch or Tensorflow implementations

What is Modulus?

- Modulus is a PDE solver
 - Like traditional solvers such as Finite Element, Finite Difference, Finite Volume, and Spectral solvers, Modulus can solve PDEs

What is Modulus?

- Modulus is a solver for inverse problems
 - Many applications in science and engineering involve inferring unknown system characteristics given measured data from sensors or imaging.
 - By combining data and physics, Modulus can effectively solve inverse problems.

Modulus Resources

- Download Now: https://developer.nvidia.com/modulus-downloads
- Webpage: https://developer.nvidia.com/modulus
- Documentation: https://sw-docs-dgx-station.nvidia.com/deeplearning/modulus/index.html
- Developer Forum: https://forums.developer.nvidia.com/c/physics-simulation
- Demos:
 - Accelerating Extreme Weather Prediction with FourCastNet
 - Siemens Energy HRSG Digital Twin Simulation Using NVIDIA Modulus and Omniverse
 - Accelerating Scientific & Engineering Simulation Workflows with AI
 - Flow Physics Quantification in an Aneurysm Using NVIDIA Modulus
- Blogs:
 - Al and Machine Learning in Physics
 - Using NVIDIA Modulus and Omniverse Wind Farm Digital Twin for Siemens Gamesa (using NVIDIA Modulus and Omniverse)
 - Siemens Energy Taps NVIDIA to Develop Industrial Digital Twin of Power Plant in Omniverse and Modulus
 - Using Hybrid Physics-Informed Neural Networks for Digital Twins in Prognosis and Health Management
 - Using Physics-Informed Deep Learning for Transport in Porous Media

Recent progress of Physics informed Learning

- PINN family
 - sPINN
 - fPINN
 - xPINN
- Fourier Network
- Fourier Neural Operator
- Physics Informed Neural Operator (PINO)
- DeepONet (Deep Operator Networks)
- •

https://github.com/idrl-lab/PINNpapers