Dark Radiation with Baryon Acoustic Oscillations from DESI 2024 $_{0}$ and the H_{0} tension $_{0}$

Itamar J. Allali,^{1,*} Alessio Notari,^{2,3,†} and Fabrizio Rompineve^{4,5,‡}

¹Department of Physics, Brown University, Providence, RI 02912, USA 1

²Departament de Física Quàntica i Astrofisíca & Institut de Ciències del Cosmos (ICCUB), 2

Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. 2

³ Galileo Galilei Institute for theoretical physics, 2

Centro Nazionale INFN di Studi Avanzati Largo Enrico Fermi 2, I-50125, Firenze, Italy 2

⁴Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain 3

⁵Institut de Física d'Altes Energies (IFAE) and The Barcelona Institute of Science and Technology (BIST), 3

Campus UAB, 08193 Bellaterra (Barcelona), Spain 3

We investigate the presence of extra relativistic degrees of freedom in the early Universe, contributing to the effective number of neutrinos $N_{\rm eff}$, as $\Delta N_{\rm eff} \equiv N_{\rm eff} - 3.044 \geq 0$, in light of the recent measurements of Baryon Acoustic Oscillations (BAO) by the DESI collaboration. We analyze one-parameter extensions of the Λ CDM model where dark radiation (DR) is free streaming or behaves as a perfect fluid, due to self-interactions. We report a significant relaxation of upper bounds on $\Delta N_{\rm eff}$, with respect to previous BAO data from SDSS+6dFGS, when additionally employing Planck data (and supernovae data from Pantheon+), setting $\Delta N_{\rm eff} \leq 0.39$ (95% C.L.) for free streaming DR, and a very mild preference for fluid DR, $\Delta N_{\rm eff} = 0.221^{+0.018}_{-0.018}$ (\$\leq 0.46, 95\% C.L.). Applying constraints from primordial element abundances leads to slightly tighter constraints on $\Delta N_{\rm eff}$, but they are avoided if DR is produced after Big Bang Nucleosynthesis (BBN). For fluid DR we estimate the tension with the SH₀ES determination of H_0 to be around $(2.3-2.8)\sigma$ level, and for free-streaming DR the tension is below 3σ if production occurs after BBN. This lesser degree of tension motivates a combination with SH₀ES in these cases, resulting in a $4.4\sigma - 5\sigma$ evidence for dark radiation with $\Delta N_{\rm eff} \simeq 0.6$ and large improvements in χ^2 over Λ CDM, $-18 \lesssim \Delta \chi^2 \lesssim -25$.

I. Introduction 5

Modern cosmological datasets are among the most 6 powerful probes of physics beyond the Standard Model SM), even when this has negligible interactions with 6 SM particles. This is particularly true if new physics is in the form of light degrees of freedom that remain ultra-relativistic throughout the cosmological evolution, until after the epoch of recombination. Their additional contribution to the energy density impacts the packground expansion and density perturbations in the early Universe, when the Cosmic Microwave Background (CMB) is produced (see [1, 2] and [3]). Finding evidence for such dark radiation (DR), or alternatively constraining its presence to unprecedented levels, is one of the main targets of active and future cosmological surveys [4-9], and has a potentially groundbreaking 6 impact on fundamental physics. 6

The aim of this Letter is to assess the status of DR 7 in light of the new measurements of Baryon Acoustic 7 Oscillations (BAO) from galaxies and quasars [10] at 7 redshifts $0.3 \lesssim z \lesssim 1.5$ and from the Lyman- α forest [11] 7 by the Dark Energy Spectroscopic Instrument [12] 7 (DESI). 7

BAO data from previous galactic surveys [13–15] 8 have so far provided the most stringent constraints on 8

the Planck satellite [16] (Big Bang Nucleosynthesis and 8 measurements of primordial element abundances provide 8 an alternative probe, though one with possibly larger 8 uncertainties, see e.g. the discussion in [17], and [18] 8 for a recent update). In terms of the customary 8 parameterization of the abundance of DR, given by 8 the effective number of neutrino species, i.e. $\Delta N_{\rm eff} \equiv \rho_{\rm DR}/\rho_{\nu}$, where ρ_{ν} is the energy density of a single 8 neutrino species, the DESI collaboration has recently 8 reported $\Delta N_{\rm eff} \leq 0.40$ (95% C.L.) [12] for free streaming 8 species. Interestingly, this is a significant relaxation 8 (95% C.L., with fixed sum of neutrino masses $\Sigma m_{\nu} = 0.06$ eV). Both these results were obtained allowing for 8 $\Delta N_{\rm eff} < 0$ in the prior. 8

DR, when combined with CMB measurements from 8

While the $\Delta N_{\rm eff}$ parameterization effectively captures a vast landscape of particle physics scenarios, the specific microphysical origin of DR can lead to different imprints on cosmological observables. Perhaps the simplest model dependence arises between the case where DR is free streaming (some well motivated examples are: the QCD axion with a small mass [19–27] and relic gravitational waves, see also [28] for other candidates), and the possibility that it behaves as a perfect fluid with equation of state parameter w=1/3 (see e.g. the discussion of [3]). This latter case applies to a self-interacting gas of relativistic particles (as can arise e.g. in dark sector models with gauge interactions [29–31]), see [32–37] for investigations with previous data, and to scalar fields that start oscillating in quartic potentials well

^{*} itamar_allali@brown.edu 1

[†] notari@fqa.ub.edu

[‡] frompineve@ifae.es

before recombination. A different simple scenario that 9 is captured by $\Delta N_{\rm eff}$ is one where the abundance of neutrinos differs from the prediction of the SM, as can be 9 the case if neutrinos or photons are slightly reheated by 9 a dark sector after their decoupling (i.e. at temperatures 9 below MeV). 9

The first aim of this work is thus to provide the stateof-the-art constraints on such simplest DR scenarios, 10 also accounting for data from additional cosmological 10 observations, such as measurements of the Hubble 10 diagram from supernovae [38] and of primordial element 10 abundances. These can then be used by particle 10 physicists to determine bounds on microphysical models. 10

Our findings then lead to the second aim of our 11 work. We indeed interestingly find that the new BAO 11 data allow for larger abundances of DR in all cases of 11 study, which motivates a reassessment of whether such 11 simple one parameter extensions of the Λ CDM model can 11 reconcile the value of the Hubble expansion parameter 11 H_0 inferred from fitting to cosmological datasets, with 11 the larger value measured from supernovae [39] (see also 11 [40-42] for other measurements).

II. Models and datasets 17

We limit our study to the following three simple realizations of DR, all effectively captured by a single parameter $\Delta N_{\rm eff} \equiv N_{\rm eff} - 3.044$, where the latter contribution comes from SM neutrinos: 18

- Free-streaming: these species, assumed to be massless, have large anisotropic stress [1] that produces a phase shift in CMB anisotropies. 19
- Fluid: there is no anisotropic stress, thus the perturbation equations are the Euler and continuity equations of perfect adiabatic fluid with $w=c_s^2=1/3$ [43]. The extra species is still assumed to be massless. 19
- Neutrinos: we allow for the SM neutrino 19 temperature to differ from that predicted by the SM (both larger or smaller), while keeping the free-streaming nature of neutrinos.

The first two models have exactly the same background 20 evolution, and differ only at the level of perturbations. 20 While strictly speaking the species are described as 20 massless, the $\Delta N_{\rm eff}$ parametrization effectively captures any scenario where the mass is somewhat below 0.05 eV. 20

The third model differs at both levels, since SM 21 neutrinos have a non-negligible mass around and after 21 recombination. Throughout our work, we take neutrinos 21 to be degenerate in mass and temperature and impose 21 the prior $m_{\nu} \geq 0.06$ eV from neutrino oscillations. 21 We therefore always add m_{ν} as an additional free 21 cosmological parameter to the Λ CDM model. For the 21

first two models above, the neutrino sector is not altered 21 with respect to the SM prediction, and thus a prior 21 $\Delta N_{\rm eff} \geq 0$ is imposed. 2 21

We perform Bayesian searches using CLASS [44, 22]
45] to solve for the cosmological evolution and 22
MontePython [46, 47] to collect Markov Chain Monte 22
Carlo (MCMC) samples. We obtain posteriors and 22
figures using GetDist [48]. We consider the following 22
datasets in our searches: 22

- P18: Planck 2018 high-\ell and low-\ell TT, TE, EE 23 and lensing data [17]; 23
- +DESI: BAO measurements from DESI 2024 [12]; 23
- +SDSS+6dFGS. BAO measurements from 23 6dFGS at z=0.106 [13], SDSS MGS at z=0.15 [14] (BAO smallz), and CMASS 23 and LOWZ galaxy samples of BOSS DR12 at z=0.38, 0.51, and 0.61 [49]. We use this only in alternative to DESI BAO data; 23
- +Pantheon_Plus. The Pantheon+ supernovae compilation [38]. We use the Pantheon_Plus 23 likelihood in MontePython; 23
- +Y_{He}, **D/H**: measurements of the abundance of primordial elements from [50] for Helium and [51] for Deuterium. The theoretical prediction for Y_{He} at BBN is determined using [52] and PArthenope v 1.10, as implemented in the likelihood bbn in MontePython;
- $+\mathbf{H_0}$: the latest measurement of the intrinsic 23 SNIa magnitude $M_b = -19.253 \pm 0.027$ from the 23 SH₀ES collaboration [39]. We add this only in combination with Pantheon+ data, as consistently implemented in the Pantheon-Plus_SH0ES 23 likelihood in MontePython. 23

For the purposes of setting constraints, we will consider the combination $P18+DESI+Pantheon_Plus$ 24 to be our baseline dataset (comparing also to the case with +DESI exchanged for +SDSS+6dFGS). Weaker 24 bounds from P18+DESI alone are reported in App. B 1. 24 The $+Y_{He}$, D/H dataset is used to generate constraints when appropriate. And finally, the $+H_0$ dataset is used when interpreting the H_0 tension as a moderate statistical fluctuation. 24

This has however little impact on our results, as already discussed 21

² This differs from the choice of the DESI collaboration, the prior choice of which allows neutrinos to be colder than as predicted by the SM. 21

Parameter	P18+DES	$\mathbf{I} + \mathbf{Pantheo}$	n_Plus	$+\mathbf{Y}_{\mathrm{He}},\mathbf{D}$	/ H 35
	Free-streaming	Fluid	Neutrinos	Free-streaming	Fluid 9
$\Delta N_{ m eff}$	< 0.386	$0.221^{+0.088}_{-0.18}$	$0.06^{+0.17}_{-0.19}$	< 0.295	< 0.365
$H_0 \left[\mathrm{km/s/Mpc} \right]$	$68.79^{+0.60}_{-0.89}$ 14	$69.35^{+0.81}_{-1.1}$	$68.0^{+1.0}_{-1.2}$ 26	$68.62^{+0.53}_{-0.76}$	$68.97^{+0.65}_{-0.93}$
H_0 GT	3.53σ	2.81σ	3.43σ	3.79σ	3.31σ
H_0 IT	3.06σ	2.52σ	3.24σ	3.4σ	2.93σ

TABLE I: Marginalized posteriors for $\Delta N_{\rm eff}$ and H_0 . Two models for dark radiation are considered: free-streaming 27 and perfect fluid. We report results with our baseline dataset, and additionally adding measurements of primordial 27 abundances. We report upper bounds on $\Delta N_{\rm eff}$ at 95% C.L. for all models and datasets, except for the fluid model 27 fitted to the baseline dataset, where a 1 σ preference for dark radiation is found (the 95% C.L. upper bound is $\Delta N_{\rm eff}$ < 26 0.461). The corresponding tension with the SH₀ES measurement is also reported. Posteriors for all parameters are 26 reported in Appendices B 2 and B 5 for the baseline and +Y_{He}, D/H datasets, respectively. 26

III. New constraints on dark radiation 25

Let us first focus on the impact of the new BAO data from DESI on DR models. We fit the models of free-streaming and fluid DR to the baseline dataset, and compare this to the case where previous BAO data 26 are used instead of DESI BAO. Posteriors for $\Delta N_{\rm eff}$ and H_0 are shown in Fig. 1. One can immediately appreciate the qualitative difference in the results; for both free-streaming and fluid DR, the 1 and 2σ regions 26 of the posteriors extend to larger values of $\Delta N_{\rm eff}$, indicating that the DESI BAO data allow for larger abundances of DR. The new 95% C.L. constraints are reported in Table I, and show a significant relaxation of up to 20% for free-streaming DR with respect to 26 using +SDSS+6dFGS, see Appendix B7 (our 95% C.L. upper bound on $\Delta N_{\rm eff}$ agrees with [12], despite our different prior choice; the central value is however shifted to larger values than in [12], as expected). The situation is even more interesting for the fluid DR scenario: the 1d marginalized posterior for $\Delta N_{
m eff}$ is shifted to larger values, and a non vanishing abundance $\Delta N_{
m eff} pprox 0.2$ is now (very mildly) preferred at 1σ . We report further 26 posteriors in Table I. In particular, for the neutrino model we find that deviations of up to 6% from the SM abundance are allowed. In all our runs we find similar upper bounds $\frac{1}{26} m_{\nu} \leq 0.12 \sim 0.13 \text{ eV}$. Full posteriors for all models and cosmological parameters are reported 26 in Appendix B. 26

The DR abundance allowed by the new BAO data is 27 potentially independently constrained by observations of 27 light element abundances. We therefore examine the 27 impact of these measurements using the $+\mathbf{Y}_{\mathrm{He}}, \mathbf{D}/\mathbf{H}$ 27 dataset. We report the resulting upper bounds on 27 ΔN_{eff} in Table I. One can see that the mild preference 27 for $\Delta N_{\mathrm{eff}} > 0$ in the fluid case is erased by the 27 $+\mathbf{Y}_{\mathrm{He}}, \mathbf{D}/\mathbf{H}$ data. Constraints on ΔN_{eff} become significantly tighter for the free-streaming case as well. 32 27

FIG. 1: 1- and 2-d posterior distributions for H_0 and $\Delta N_{\rm eff}$ in dark radiation models, obtained using our baseline dataset. We compare our results with the new DESI BAO data (solid curves/shaded contours) 28 with those obtained with previous BAO data (dashed curves/contours). 28

Note that measurements of primordial elements exist, 27 which disagree with those that we have used (see e.g. [16, 27 53] for a summary). For instance, using [54] rather 27 than [50] would lead to significant evidence for $\Delta N_{\rm eff}$ (as 27 noted similarly for free streaming DR in [16, 55]). 27

We now move to H_0 , and highlight two interesting 29 effects of the new BAO data: first, larger values are 29 preferred, even in the absence of dark radiation. Second, 29 the alleviated constraints on $\Delta N_{\rm eff}$ allow for even larger values of H_0 , given the strong degeneracy between 29 these two parameters. For comparison, the SH₀ES measurement is shown by the gray shaded bands (1–29 and 2σ) in Fig. 1. Within the context of fluid DR, 29

We do not highlight here the results for neutrinos (see 27 however Appendix B 5), since modifying the neutrino abundance 27 can most plausibly be achieved after BBN. 27

34

34

34

34

FIG. 2: Measure of the tension (IT, Appendix A) in the determinations of H_0 from the P18+DESI+Pantheon_Plus dataset with respect to 30 the SH₀ES measurement, for models considered in this work. Results with previous BAO data are shown for comparison. 30

as can be also appreciated in Fig. 1. We report two 29 measures of tension in Table I: one based on a simple 29 Gaussian estimate (GT) which is commonly employed in the literature but leads to overestimates when the 29 posteriors are asymmetric, as in our case; the second 29 measure partially corrects for this by using the true 29 posterior distribution from our MCMC analysis (IT), as suggested in [56] and reviewed in Appendix A. We estimate the tension to be around 2.5σ within the fluid model, and around 3σ in the free-streaming scenario, 29 when we do not include constraints from primordial 29 elements (the tension is further lowered by $\sim 0.3\sigma$ 29 using P18+DESI alone, see App. B1). These results 29 represent a significant alleviation of the H_0 tension 29 within these models. Comparing to results obtained 29 with previous BAO data, we find that DESI reduces the 29 tension by $(0.5-1)\sigma$ depending on the model, see Fig. 2. The $\Delta \chi^2$ for all models and datasets considered here with 29 respect to Λ CDM is close to zero. 29

The Hubble tension 32

Our findings (especially for the fluid DR model) open 32 the possibility to interpret the Hubble tension as a mild to moderate statistical fluctuation within the context of 32 the Λ CDM + $\Delta N_{\rm eff}$ models presented above. 32

Additional constraints from primordial elements 33 from [50, 51] worsen the tension in all models. However, they are avoided if the dark radiation is produced after the epoch of BBN and sufficiently before recombination. 33 This specification does not introduce any additional 33 parameters, nor does it lead to a coincidence problem in contrast to models where a fluid is taken to undergo a transition around the epoch of recombination, such as [57–61]), since DR can still be produced in a redshift 33 range that spans around five orders of magnitude, 33 corresponding to $eV \lesssim T \lesssim 100 \text{ keV}$. 33

Beside the relevance of primordial element constraints, 34 a difference arises if DR is indeed produced after BBN, 34 compared to the previous case which implicitly assumed 34 production before BBN. In the latter case, DR alters 34 the theoretical prediction of Y_{He} , which then affects the number density of electrons at recombination $n_e(z) \propto$ $(1-Y_{\rm He})$ (see e.g. [62] for a recent discussion). Therefore, when considering the scenario where DR is produced 34 after BBN, we determine Y_{He} by setting $\Delta N_{\text{eff}} = 0$ at BBN. We compare the inferences made with our baseline dataset for both fluid and free-streaming DR produced after BBN in Table II. Interestingly, we find an additional 34 reduction of the H_0 tension (and relaxation of constraints 34 on $\Delta N_{\rm eff}$), and a $\gtrsim 1\sigma$ preference for fluid DR persists. 34

Having estimated the tension in DR models with 35 production after BBN to be around $(2.3 - 2.8)\sigma$ 35 compared to the ACDM model, we combine our baseline 35 dataset with the SH_0ES determination of H_0 . Results 35 are presented in the rightmost columns of Table II. Remarkably, we find evidence at the 5σ (4.5 σ) level 35 for fluid (free-streaming) DR, and a negligible residual 35 tension with SH₀ES. This is accompanied by a very 35 significant improvement in χ^2 with respect to the ΛCDM 35 model. We account for the additional parameter via the 35 Akaike Information Criterion (AIC) [63] (see also [64]) 35 $\Delta AIC \equiv \Delta \chi^2 + 2 \times (\# \text{ of added free parameters}) \text{ and } 35$ report $\Delta AIC \simeq -23(-19)$ for fluid (free-streaming) DR. 35

In all the models and combination of datasets used in 36 this work, we find posteriors for the matter clustering 36 parameter $S_8 \equiv \sigma_8 \Omega_m/0.3$ in agreement with the most 36 recent measurements from weak lensing surveys [65]. 36

Finally, we have focused here on perhaps the simplest 37 DR scenarios, but it is conceivable that analogous 37 conclusions could apply to other scenarios that lead 37 to a similar evolution for the cosmological background, 37 for instance models with varying Newton constant, see 37

Discussion 45

The large improvements in the goodness-of-the-fit 46 which we find are of course driven by the SH_0ES_{46} measurement, and have been reported to a similar level 46 in the past for other models with previous BAO data. 46 Therefore, one may doubt the relevance of our results. 46 However, we would like to stress two crucial differences 46 with such previous findings. First, our results are 46 obtained by combining datasets that are in $\sim 2.5\sigma$ 46 tension with each other within the context of DR models 46 when production occurs only after BBN, especially for 46 the fluid DR case (removing Pantheon+ data further 46 reduces the tension to even $\sim 2\sigma$, see Appendix B1). 46 Second, the models under consideration are simple, one-46 parameter extensions of Λ CDM, with several possible 46 implementations in particle physics. 46

Perhaps the simplest example of DR production after 47 BBN, which can arise in a broad class of models, is a 47

	P18+DESI+Pantheon_Plus		$+H_{0}$ 35	
Parameter	Free-streaming DR	Fluid DR	Free-streaming DR	Fluid DR 34
$\Delta N_{ m eff}$	< 0.435	$0.26 (0.34)^{+0.11}_{-0.21}$	$0.63 \ (0.56) \pm 0.14$	$0.65 (0.73) \pm 0.13$
$H_0 [\mathrm{km/s/Mpc}]$	68.94 (68.41) ^{+0.63} _{-0.99} 4	$69.56 (69.82)_{-1.2}^{+0.85}$	$71.82 \ (71.65)^{+0.78}_{-0.77}$	$72.26 (73.0)^{+0.77}_{-0.78}$
H_0 GT	3.37σ	2.59σ	0.94σ	0.6σ
H_0 IT	2.84σ	2.28σ	0.94σ	0.6σ
$\Delta \chi^2$	~ 0	-0.4	-20.5	-24.7
ΔAIC	+2.0	+1.6	-18.5	-22.7

TABLE II: Marginalized posteriors for $\Delta N_{\rm eff}$ and H_0 for scenarios where dark radiation is produced after BBN. Two models are considered: free-streaming and fluid DR. We report results with our baseline dataset, and additionally adding the determination of H_0 from SH₀ES. The corresponding tension with the SH₀ES measurement is also reported, as well as two measures of goodness-of-fit compared to the Λ CDM model. Posteriors for all parameters are reported in Appendices B 8 and B 9. 38

for instance, [73, 74]. 47

Our work provides new state-of-the-art bounds on 48 dark radiation models, that partially relax constraints on beyond the SM physics and should prove important 48 for model building. 48

Remarkably, our findings also suggest that the new BAO data open the possibility to address the 4 Hubble tension with well-motivated minimal extensions 4 of Λ CDM model. 4

With a conservative perspective, the possibility that our findings are driven by a statistical fluctuation or underestimated systematic uncertainties in the DESI measurement (which exhibit some discrepancy with previous BAO data) should be kept in mind, and will be decisively clarified soon by upcoming data releases from DESI itself and Euclid, see e.g. [75], where the 1σ error on $\Delta N_{\rm eff}$ for the free streaming case from Euclid power spectrum and lensing measurements is forecasted to be 0.05.150

FIG. 3: 1- and 2-d posterior distributions for H_0 38 and $\Delta N_{\rm eff}$ in models with dark radiation produced after BBN. We compare our results obtained with our baseline dataset (solid curves/shaded contours) with those obtained by combining with the determination of H_0 from SH₀ES (dashed curves/contours). The 1-d H_0 posterior for Λ CDM with the baseline dataset is shown by the dotted curve. 38

massive particle, the abundance of which is negligible 47 [000918-M] and AGAUR 2021 SGR 000 in the pre-BBN era, and that decays to some light 47 grateful to the Physics Department of states after BBN (see e.g. [67–72]), with a decay rate $10^{-37} \text{ GeV} \leq \Gamma \leq 10^{-27} \text{ GeV}$. Other possibilities exist in the literature for the production of DR after BBN; see, 47 cluster and the INFN Florence cluster. 51

Acknowledgments

We thank Héctor Gil-Marín for help with DESI 51 data. The work of F.R. is supported by the grant 51 RYC2021-031105-I from the Ministerio de Ciencia e 51 Innovación (Spain). I.J.A. is supported by NASA grant 51 80NSSC22K081. The work of A.N. is supported by 51 the grants PID2019-108122GB-C32 from the Spanish 51 Ministry of Science and Innovation, Unit of Excellence 51 Maria de Maeztu 2020-2023 of ICCUB (CEX2019-51 000918-M) and AGAUR 2021 SGR 00872. A.N. is grateful to the Physics Department of the University 51 of Florence for the hospitality during the course of this 51 work. We acknowledge use of the Tufts HPC research 51 cluster and the INFN Florence cluster. 51

- [2] Z. Hou, R. Keisler, L. Knox, M. Millea, and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave 6 Background Damping Tail, Phys. Rev. D 87, 083008 6 (2013), arXiv:1104.2333 [astro-ph.CO].
- [3] D. Baumann, D. Green, J. Meyers, and B. Wallisch, Phases of New Physics in the CMB, JCAP 01, 007, 6 arXiv:1508.06342 [astro-ph.CO].
- [4] S. Aiola *et al.* (ACT), The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters, 6 JCAP **12**, 047, arXiv:2007.07288 [astro-ph.CO].
- [5] J. A. Sobrin et al. (SPT-3G), The Design and Integrated 6 Performance of SPT-3G, Astrophys. J. Supp. 258, 42 6 (2022), arXiv:2106.11202 [astro-ph.IM].
- [6] L. Amendola et al., Cosmology and fundamental physics 6 with the Euclid satellite, Living Rev. Rel. 21, 2 (2018), 6 arXiv:1606.00180 [astro-ph.CO].
- [7] v. Ivezić et al. (LSST), LSST: from Science Drivers to Reference Design and Anticipated Data Products, 4 Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astroph].
- [8] K. Abazajian et al. (CMB-S4), Snowmass 2021 CMB-S4 White Paper, (2022), arXiv:2203.08024 [astro-ph.CO].
- [9] P. Ade et al. (Simons Observatory), The Simons Observatory: Science goals and forecasts, JCAP 02, 056, 3 arXiv:1808.07445 [astro-ph.CO].
- [10] A. G. Adame et al. (DESI), DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars, (2024), 7 arXiv:2404.03000 [astro-ph.CO].
- [11] A. G. Adame *et al.* (DESI), DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest, 0 (2024), arXiv:2404.03001 [astro-ph.CO].
- [12] A. G. Adame *et al.* (DESI), DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic 4 Oscillations, (2024), arXiv:2404.03002 [astro-ph.CO].
- [13] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and O. F. Watson, The 6dF Galaxy Survey: Baryon Acoustic O. Oscillations and the Local Hubble Constant, Mon. Not. O. Roy. Astron. Soc. 416, 3017 (2011), arXiv:1106.3366 [astro-ph.CO].
- [14] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival,
 A. Burden, and M. Manera, The clustering of the SDSS 9
 DR7 main Galaxy sample I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449, 835 (2015), arXiv:1409.3242 [astro-ph.CO].
- [15] S. Satpathy et al. (BOSS), The clustering of galaxies in 8 the completed SDSS-III Baryon Oscillation Spectroscopic 8 Survey: On the measurement of growth rate using galaxy 8 correlation functions, Mon. Not. Roy. Astron. Soc. 469, 1369 (2017), arXiv:1607.03148 [astro-ph.CO].
- [16] N. Aghanim et al. (Planck), Planck 2018 results. VI. 23 Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
- [17] N. Aghanim et al. (Planck), Planck 2018 results. V. CMB 23 ph.CO].

 power spectra and likelihoods, Astron. Astrophys. 641, 23 [36] M. Archidiacono, D. C. Hooper, R. Murgia, S. Bohr, A5 (2020), arXiv:1907.12875 [astro-ph.CO].

 J. Lesgourgues, and M. Viel, Constraining Dark Matter-
- [18] T.-H. Yeh, J. Shelton, K. A. Olive, and B. D. Fields, Probing physics beyond the standard model: limits from BBN and the CMB independently and combined, JCAP 6 10, 046, arXiv:2207.13133 [astro-ph.CO].
- [19] M. S. Turner, Thermal Production of Not SO Invisible Axions in the Early Universe, Phys. Rev. Lett. 59, 2489 6 (1987), [Erratum: Phys.Rev.Lett. 60, 1101 (1988)].

- [20] E. W. Kolb and M. S. Turner, *The Early Universe*, 6 Vol. 69 (1990).
- [21] Z. G. Berezhiani, A. S. Sakharov, and M. Y. Khlopov, Primordial background of cosmological axions, Sov. J. 6 Nucl. Phys. 55, 1063 (1992).
- [22] S. Chang and K. Choi, Hadronic axion window and the 7 big bang nucleosynthesis, Phys. Lett. B 316, 51 (1993), arXiv:hep-ph/9306216.
- [23] E. Masso, F. Rota, and G. Zsembinszki, On axion 4 thermalization in the early universe, Phys. Rev. D 66, 4 023004 (2002), arXiv:hep-ph/0203221.
- [24] R. Z. Ferreira, A. Notari, and F. Rompineve, Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB, Phys. 6 Rev. D 103, 063524 (2021), arXiv:2012.06566 [hep-ph].
- [25] A. Notari, F. Rompineve, and G. Villadoro, Improved 9 Hot Dark Matter Bound on the QCD Axion, Phys. Rev. 9 Lett. 131, 011004 (2023), arXiv:2211.03799 [hep-ph].
- [26] F. D'Eramo, R. Z. Ferreira, A. Notari, and J. L. Bernal, Hot Axions and the H₀ tension, JCAP 11, 014, 9 arXiv:1808.07430 [hep-ph].
- R. Z. Ferreira and A. Notari, Observable Windows for the QCD Axion Through the Number of Relativistic Species, 9
 Phys. Rev. Lett. 120, 191301 (2018), arXiv:1801.06090 [hep-ph].
- [28] D. Baumann, D. Green, and B. Wallisch, New Target for Cosmic Axion Searches, Phys. Rev. Lett. 117, 171301 (2016), arXiv:1604.08614 [astro-ph.CO].
- [29] Z. Chacko, Y. Cui, S. Hong, and T. Okui, Hidden dark matter sector, dark radiation, and the CMB, Phys. Rev. 0 D 92, 055033 (2015), arXiv:1505.04192 [hep-ph].
- M. A. Buen-Abad, G. Marques-Tavares, and 6 M. Schmaltz, Non-Abelian dark matter and 6 dark radiation, Phys. Rev. D 92, 023531 (2015), 6 arXiv:1505.03542 [hep-ph].
- [31] Z. Chacko, Y. Cui, S. Hong, T. Okui, and Y. Tsai, Partially Acoustic Dark Matter, Interacting Dark 7 Radiation, and Large Scale Structure, JHEP 12, 108, 7 arXiv:1609.03569 [astro-ph.CO].
- [32] F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger, and C. Pfrommer, 9 ETHOS—an effective theory of structure formation: 9 From dark particle physics to the matter distribution of the Universe, Phys. Rev. D 93, 123527 (2016), 9 arXiv:1512.05344 [astro-ph.CO].
- [33] J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz, 4 Evidence for dark matter interactions in cosmological 4 precision data?, JCAP 02, 037, arXiv:1507.04351 [astroph.CO].
- [34] C. Brust, Y. Cui, and K. Sigurdson, Cosmological 4 Constraints on Interacting Light Particles, JCAP 08, 4 020, arXiv:1703.10732 [astro-ph.CO].
- [35] M. A. Buen-Abad, M. Schmaltz, J. Lesgourgues, and T. Brinckmann, Interacting Dark Sector and Precision 9 Cosmology, JCAP 01, 008, arXiv:1708.09406 [astro-ph.CO].
- [36] M. Archidiacono, D. C. Hooper, R. Murgia, S. Bohr, J. Lesgourgues, and M. Viel, Constraining Dark Matter- 0 Dark Radiation interactions with CMB, BAO, and Lyman-α, JCAP 10, 055, arXiv:1907.01496 [astro-ph.CO].
- [37] N. Blinov and G. Marques-Tavares, Interacting radiation after Planck and its implications for the Hubble Tension, 23 JCAP 09, 029, arXiv:2003.08387 [astro-ph.CO].
- [38] D. Scolnic et al., The Pantheon+ Analysis: The Full 23

- Data Set and Light-curve Release, Astrophys. J. 938, 26 113 (2022), arXiv:2112.03863 [astro-ph.CO].
- [39] A. G. Riess et al., A Comprehensive Measurement of 11 the Local Value of the Hubble Constant with $1~{\rm km~s}^-$ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and 11 [55] N. Schöneberg, J. Lesgourgues, and D. C. Hooper, The the SH0ES Team, Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO].
- [40] K. C. Wong et al., H0LiCOW XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension 23 between early- and late-Universe probes, Mon. Not. Roy. Astron. Soc. 498, 1420 (2020), arXiv:1907.04869 [astroph.CO].
- [41] D. Scolnic, A. G. Riess, J. Wu, S. Li, G. S. Anand, R. Beaton, S. Casertano, R. I. Anderson, from Standardized TRGB and Type Ia Supernova 10 Measurements, Astrophys. J. Lett. 954, L31 (2023), arXiv:2304.06693 [astro-ph.CO].
- [42] W. L. Freedman, Measurements of the Hubble Constant: 10 Tensions in Perspective, Astrophys. J. 919, 16 (2021), arXiv:2106.15656 [astro-ph.CO].
- [43] C.-P. Ma and E. Bertschinger, Cosmological perturbation 6 theory in the synchronous and conformal Newtonian 6 gauges, Astrophys. J. 455, 7 (1995), arXiv:astroph/9506072.
- [44] J. Lesgourgues, The Cosmic Linear Anisotropy Solving 6 System (CLASS) I: Overview, (2011), arXiv:1104.2932 [astro-ph.IM].
- [45] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear 8 Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07, 034, arXiv:1104.2933 [astro-ph.CO].
- [46] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, Conservative Constraints on Early Cosmology: an 8 illustration of the Monte Python cosmological parameter 8 inference code, JCAP **02**, 001, arXiv:1210.7183 [astroph.CO].
- [47] T. Brinckmann and J. Lesgourgues, MontePython 3: 9 boosted MCMC sampler and other features, Phys. 9 Dark Univ. 24, 100260 (2019), arXiv:1804.07261 [astroph.CO].
- [48] A. Lewis, GetDist: a Python package for analysing Monte 9 Carlo samples, (2019), arXiv:1910.13970 [astro-ph.IM].
- [49] S. Alam et al. (BOSS), The clustering of galaxies in 9 the completed SDSS-III Baryon Oscillation Spectroscopic 9 Survey: cosmological analysis of the DR12 galaxy 9 sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].
- [50] E. Aver, K. A. Olive, and E. D. Skillman, The effects of 6 He I $\lambda 10830$ on helium abundance determinations, JCAP 6 **07**, 011, arXiv:1503.08146 [astro-ph.CO].
- [51] R. J. Cooke, M. Pettini, and C. C. Steidel, One Percent Astrophys. J. 855, 102 (2018), arXiv:1710.11129 [astroph.CO].
- [52] L. E. Marcucci, G. Mangano, A. Kievsky, and M. Viviani, Implication of the proton-deuteron radiative capture for 23 [70] O. E. Bjaelde, S. Das, and A. Moss, Origin of Delta N.eff 6 Big Bang Nucleosynthesis, Phys. Rev. Lett. 116, 102501 (2016), [Erratum: Phys.Rev.Lett. 117, 049901 (2016)], arXiv:1510.07877 [nucl-th].
- [53] E. Aver, D. A. Berg, K. A. Olive, R. W. Pogge, J. J. Salzer, and E. D. Skillman, Improving helium abundance 9 determinations with Leo P as a case study, JCAP 03, 9 027, arXiv:2010.04180 [astro-ph.CO].
- [54] Y. I. Izotov, T. X. Thuan, and N. G. Guseva, A 4

- new determination of the primordial He abundance 6 using the He i $\lambda 10830$ Å emission line: cosmological implications, Mon. Not. Roy. Astron. Soc. 445, 778 (2014), arXiv:1408.6953 [astro-ph.CO].
- BAO+BBN take on the Hubble tension, JCAP 10, 029, 10 arXiv:1907.11594 [astro-ph.CO].
- [56] M. Raveri and C. Doux, Non-Gaussian estimates of 6 tensions in cosmological parameters, Phys. Rev. D 104, 6 043504 (2021), arXiv:2105.03324 [astro-ph.CO].
- Poulin, T. L. Smith, T. Karwal, and 7 Kamionkowski, Early Dark Energy Can Resolve 7 [57]The Hubble Tension, Phys. Rev. Lett. (2019), arXiv:1811.04083 [astro-ph.CO].
- S. Dhawan, and X. Ke, CATS: The Hubble Constant 10 [58] F. Niedermann and M. S. Sloth, New early dark energy, 25 Phys. Rev. D **103**, L041303 (2021), arXiv:1910.10739
 - [59] M. Gonzalez, M. P. Hertzberg, and F. Rompineve, 9 Ultralight Scalar Decay and the Hubble Tension, JCAP 9 10, 028, arXiv:2006.13959 [astro-ph.CO].
 - [60] I. J. Allali, M. P. Hertzberg, and F. Rompineve, Dark sector to restore cosmological concordance, Phys. Rev. D 9 **104**, L081303 (2021), arXiv:2104.12798 [astro-ph.CO].
 - [61] D. Aloni, A. Berlin, M. Joseph, M. Schmaltz, and N. Weiner, A Step in understanding the Hubble tension, 11 Phys. Rev. D **105**, 123516 (2022), arXiv:2111.00014 [astro-ph.CO].
 - [62] F.-Y. Cyr-Racine, F. Ge, and L. Knox, Symmetry of 9 Cosmological Observables, a Mirror World Dark Sector, 9 and the Hubble Constant, Phys. Rev. Lett. 128, 201301 9 (2022), arXiv:2107.13000 [astro-ph.CO].
 - [63] H. Akaike, A new look at the statistical model 7 identification, IEEE Transactions on Automatic Control **19**, 716 (1974).
 - [64] A. R. Liddle, Information criteria for astrophysical model 11 selection, Mon. Not. Roy. Astron. Soc. 377, L74 (2007), arXiv:astro-ph/0701113.
 - [65] T. M. C. Abbott et al. (Kilo-Degree Survey, Dark Energy 7 Survey), DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys, Open J. Astrophys. 6, 2305.17173 (2023), arXiv:2305.17173 [astro-ph.CO].
 - [66] G. Ballesteros, A. Notari, and F. Rompineve, H_0 tension: ΔG_N vs. $\Delta N_{\rm eff}$, JCAP 11, 024, arXiv:2004.05049 [astro-ph.CO].
 - [67] K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami, and F. Takahashi, Increasing effective number of 8 neutrinos by decaying particles, JCAP 05, 008,8 arXiv:hep-ph/0703034.
 - [68] W. Fischler and J. Meyers, Dark Radiation Emerging 4 After Big Bang Nucleosynthesis?, Phys. Rev. D 83, 4 063520 (2011), arXiv:1011.3501 [astro-ph.CO].
- Determination of the Primordial Deuterium Abundance, 10 [69] D. Hooper, F. S. Queiroz, and N. Y. Gnedin, Non-Thermal Dark Matter Mimicking An Additional 6 Neutrino Species In The Early Universe, Phys. Rev. D 6 85, 063513 (2012), arXiv:1111.6599 [astro-ph.CO].
 - as a Result of an Interaction between Dark Radiation 6 and Dark Matter, JCAP 10, 017, arXiv:1205.0553 [astro-6] ph.CO].
 - [71] K. Choi, K.-Y. Choi, and C. S. Shin, Dark radiation and 6 small-scale structure problems with decaying particles, 6 Phys. Rev. D 86, 083529 (2012), arXiv:1208.2496 [hepphl.
 - [72] J. Hasenkamp and J. Kersten, Dark

- from particle decay: cosmological constraints and 21375 T. Brinckmann, D. C. Hooper, M. Archidiacono, opportunities, JCAP 08, 024, arXiv:1212.4160 [hep-ph].

 J. Lesgourgues, and T. Sprenger, The promising future of
- [73] R. Z. Ferreira, A. Notari, O. Pujolas, and F. Rompineve, Gravitational waves from domain walls in Pulsar Timing 214 Array datasets, JCAP 02, 001, arXiv:2204.04228 [astro-ph.CO].
- [74] D. Aloni, M. Joseph, M. Schmaltz, and N. Weiner, Dark Radiation from Neutrino Mixing after Big Bang 215 Nucleosynthesis, Phys. Rev. Lett. 131, 221001 (2023), 215 arXiv:2301.10792 [astro-ph.CO].
- T. Brinckmann, D. C. Hooper, M. Archidiacono, J. Lesgourgues, and T. Sprenger, The promising future of 216 a robust cosmological neutrino mass measurement, JCAP 216 01, 059, arXiv:1808.05955 [astro-ph.CO].
- [76] I. J. Allali, F. Rompineve, and M. P. Hertzberg, Dark sectors with mass thresholds face cosmological datasets, 217 Phys. Rev. D 108, 023527 (2023), arXiv:2305.14166
 [astro-ph.CO].

Appendix 52

A. Tension Measures 53

For the assessment of tension between the H_0 measurement of the SH₀ES collaboration and the inferences made in this work, we define the following metrics. First, the commonly used measure of "Gaussian tension" (GT) is defined as 54

$$GT = \frac{|\mu_m - \mu_{\rm MC}|}{\sqrt{\sigma_m^2 + \sigma_{\rm MC}^2}}$$
 \$54

where μ_m and μ_{MC} are the mean values of H_0 determined by the SH₀ES collaboration and by our MCMC analyses, respectively. σ_m^2 is the variance for the SH₀ES measurement. For the variance of the MCMC inference σ_{MCMC}^2 we take the upper 1σ error derived from our marginalized posteriors on H_0 . Since the posteriors for H_0 we derive are not symmetric, there is not a clear choice of whether to average the upper and lower σ , or to take the value that is on the side of the distribution closest to the SH₀ES measurement (upper). In this work, we take σ_{MC} to always be the upper derived σ such that we do not underestimate the tension. 56

To address the non-gaussian nature of our inferred posteriors, we employ also the measure which we term the 57 "integrated tension" (IT) [56, 76], defined via 57

$$\int_{-\infty}^{\infty} \mathcal{P}_{\text{MC}}(h) \frac{1}{2} \left(\underbrace{1 \pm \text{erf}}_{0} \left(\frac{h - \mu_{m}}{\sqrt{2}\sigma_{m}} \right) \right) dh = \int_{-\infty}^{17} \frac{51}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$
(A2)

To understand this formula, let us examine each side. The left hand side is the integral over the cross-correlation of the two posterior distributions, namely the posterior distribution derived from our MCMC $\mathcal{P}_{MC}(h)$, and the posterior from the SH₀ES measurement. In Eq. (A2), we have already integrated the SH₀ES posterior, assuming it to be purely gaussian, and therefore all that remains are the mean and standard deviation μ_m and σ_m . Using the posterior distribution from a given MCMC, the left hand side constitutes a probability (understood as the probability of measuring the SH₀ES value given the posterior from MCMC). Then, the right hand side of Eq. (A2) equates this probability with the integral over a gaussian (with mean= 0 and variance= 1), and one solves for the upper limit of the integral IT which gives this same probability. For example, if the left hand side of Eq. (A2) gives a probability of 68%, then we obtain the measure of tension to be $IT = 1\sigma$. 59

B. Detailed Posteriors 60

We present in the following sections the detailed posteriors we obtain when evaluating the several models discussed 61 in this work against several combinations of datasets. Appendices B 1 to B 7 present tables and plots of posteriors for 61 the models: ΛCDM, Free-streaming dark radiation, Fluid dark radiation, and Neutrinos. The title of each section gives 61 the combination of data explored in that section. Then, Appendix B 8 and Appendix B 9 explore the posteriors with 61 a variety of datasets on the models of dark radiation produced after BBN for fluid and free-streaming, respectively. 61

1. P18+DESI 23

Parameter	$\Lambda \mathrm{CDM}$	Free-streaming DR	Fluid DR	Neutrinos 26
$100\omega_b$	$2.249\ (2.248)^{+0.013}_{-0.013}$	$2.262 (2.264)^{+0.016}_{-0.016}$	$2.272 (2.274)^{+0.017}_{-0.019}$	$2.256 (2.25)^{+0.019}_{-0.017}$
ω_{cdm}	$0.11811 \ (0.11823)^{+0.00087}_{-0.00086}$	$0.1208 \ (0.1212)^{+0.0015}_{-0.0024}$	$0.1224 (0.1205)^{+0.0021}_{-0.0031}$	$0.1193 (0.1176)^{+0.0024}_{-0.0028}$
$\ln 10^{10} A_s$	$3.054 (3.057)^{+0.014}_{-0.016}$	$3.062 (3.055)^{+0.015}_{-0.017}$	$3.052 (3.041)^{+0.015}_{-0.016}$	$3.058 (3.057)^{+0.015}_{-0.018}$
$ n_s $	$0.9689 \ (0.9689)^{+0.0036}_{-0.0036}$	$0.9748 (0.9742)^{+0.0047}_{-0.0057}$	$0.9712 (0.9678)^{+0.0039}_{-0.0039}$	$0.9713 (0.9715)^{+0.0064}_{-0.0065}$
$ au_{reio}$	$0.0608 (0.0608)^{+0.0070}_{-0.0081}$	$0.0614 \ (0.0595)^{+0.0072}_{-0.0083}$	$0.0619 (0.053)^{+0.0072}_{-0.0084}$	$0.0615 (0.0641)^{+0.0067}_{-0.0087}$
$\Delta N_{ m eff}$	_	< 0.395	$0.25 (0.13)^{+0.11}_{-0.18}$	$0.12 (0.062)^{+0.16}_{-0.16}$
$\sum m_{\nu}$	< 0.119	< 0.124	< 0.127	< 0.116 65
$H_0 \left[\text{km/s/Mpc} \right]$	$68.09 (68.18)^{+0.43}_{-0.40}$	$69.10 (68.91)_{-0.95}^{+0.66}$	$69.75 (69.19)_{-1.2}^{+0.87}$	$68.5 (68.4)^{+1.1}_{-0.99}$
S_8	$0.813 \ (0.818)^{+0.010}_{-0.010}$	$0.814 \ (2.483)^{+0.011}_{-0.011}$	$0.812 \ (0.809)^{+0.010}_{-0.010}$	$0.816 \ (0.807)^{+0.011}_{-0.010}$
H_0 GT	4.4σ	3.2σ	2.43σ	3.0σ
H_0 IT	4.12σ	2.81σ	2.17σ	3.08σ

TABLE III: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI**. All upper bounds are reported at 95% C.L., for any case where the 1 σ lower bound is overlapping with our priors. 26

FIG. 4: One and two-dimensional posterior distributions for various model parameters for the ΛCDM, Free-streaming 35 DR, Fluid DR, and Neutrino models, fitting to the dataset: P18+DESI 35

${\bf 2.} \quad {\bf P18+DESI+Pantheon_Plus}$

Parameter	ΛCDM	Free-streaming DR	Fluid DR	Neutrinos 4
$100\omega_b$	$2.247 (2.251)^{+0.013}_{-0.013}$	$2.258 (2.246)_{-0.016}^{+0.015}$	$2.265 (2.257)_{-0.019}^{+0.017}$	$2.248 \ (2.256)^{+0.019}_{-0.018}$
ω_{cdm}	$[0.11844 (0.11856)^{+0.00084}_{-0.00086}]$	$0.1211 \ (0.1192)_{-0.0025}^{+0.0014}$	$0.1223 (0.1212)^{+0.0020}_{-0.0030}$	$0.1186 \ (0.1191)^{+0.0028}_{-0.0031}$
$\ln 10^{10} A_s$	$3.054 (3.061)_{-0.016}^{+0.015}$	$3.061 (3.039)^{+0.014}_{-0.017}$	$3.050 (3.055)^{+0.015}_{-0.015}$	$3.054 (3.052)_{-0.018}^{+0.017}$
$ n_s $	$0.9681 \ (0.9679)^{+0.0039}_{-0.0036}$	$0.9734 \ (0.9689)_{-0.0058}^{+0.0045}$	$0.9699 (0.9667)^{+0.0037}_{-0.0039}$	$0.9685 \ (0.9759)^{+0.0068}_{-0.0069}$
$ au_{reio}$	$0.0602 (0.0636)^{+0.0074}_{-0.0083}$	$0.0606 \ (0.0537)^{+0.0071}_{-0.0082}$	$0.0605 (0.0619)^{+0.0072}_{-0.0080}$	$0.0601 \ (0.0608)^{+0.0071}_{-0.0086}$
$\Delta N_{ m eff}$	_	< 0.386	$0.221 \ (0.128)^{+0.088}_{-0.18}$	$0.06 (0.143)^{+0.17}_{-0.19}$
$\sum m_{ u}$	< 0.123	< 0.137	< 0.132	< 0.127 13
$H_0 \left[\text{km/s/Mpc} \right]$	$67.93 (68.07)_{-0.38}^{+0.44}$	$68.79 (67.99)^{+0.60}_{-0.89}$	$69.35 (68.72)_{-1.1}^{+0.81}$	$68.0 \ (67.14)^{+0.97}_{-1.2}$
S_8	$0.817 \ (0.822)^{+0.010}_{-0.010}$	$0.818 \ (0.436)^{+0.010}_{-0.011}$	$0.8161 \ (0.825)^{+0.0099}_{-0.0099}$	$0.817 \ (0.821)^{+0.011}_{-0.011}$
M_b	$-19.424 \ (-19.421)_{-0.011}^{+0.013}$	$-19.396 \ (-19.426)_{-0.028}^{+0.017}$	$-19.381 \ (-19.4)_{-0.033}^{+0.024}$	$-19.422 \ (-19.448)_{-0.036}^{+0.030}$
H_0 GT	4.53σ	3.53σ	2.81σ	3.54σ
H_0 IT	3.93σ	3.06σ	2.52σ	3.22σ

TABLE IV: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Pantheon_Plus**. All upper bounds are reported at 95% C.L., 4 for any case where the 1σ lower bound is overlapping with our priors. 4

FIG. 5: One and two-dimensional posterior distributions for various model parameters for the ΛCDM, Free-streaming 4 DR, Fluid DR, and Neutrino models, fitting to the dataset: P18+DESI+Pantheon_Plus. 4

$3. \quad P18 + DESI + Pantheon_Plus + H_0$

Parameter	ΛCDM	Free-streaming DR	Fluid DR	Neutrinos 4
$100\omega_b$	$2.264 (2.275)^{+0.013}_{-0.013}$	$2.290 (2.289)^{+0.015}_{-0.015}$	$2.304 (2.307)_{-0.015}^{+0.015}$	$2.291\ (2.285)^{+0.014}_{-0.014}$
ω_{cdm}	$0.11682 (0.11669)^{+0.00083}_{-0.00083}$	$0.1263 (0.126)^{+0.0025}_{-0.0025}$	$0.1281 \ (0.1286)^{+0.0019}_{-0.0016}$	$0.1263 (0.1268)^{+0.0024}_{-0.0024}$
$\ln 10^{10} A_s$	$3.061 (3.07)_{-0.016}^{+0.015}$	$3.078 (3.079)^{+0.015}_{-0.017}$	$3.048 (3.042)^{+0.015}_{-0.016}$	$3.078 (3.065)_{-0.016}^{+0.016}$
n_s	$0.9723 (0.9732)^{+0.0037}_{-0.0036}$	$0.9871 \ (0.9867)_{-0.0050}^{+0.0049}$	$0.9746 \ (0.972)_{-0.0039}^{+0.0036}$	$0.9872 \ (0.9873)^{+0.0049}_{-0.0050}$
$ au_{reio}$	$0.0651 \ (0.0666)^{+0.0074}_{-0.0085}$	$0.0634 \ (0.0636)^{+0.0072}_{-0.0086}$	$0.0633 (0.0588)^{+0.0074}_{-0.0077}$	$0.0633 \ (0.0567)^{+0.0073}_{-0.0084}$
$\Delta N_{ m eff}$	_	$0.54 \ (0.52)^{+0.13}_{-0.13}$	$0.592 \ (0.611)^{+0.091}_{-0.060}$	$0.59 (0.619)^{+0.12}_{-0.13}$
$\sum m_{ u}$	< 0.099	< 0.126	< 0.131	< 0.118 13
$H_0 \left[\mathrm{km/s/Mpc} \right]$	$68.82 (68.98)_{-0.39}^{+0.37}$	$71.47 (71.39)^{+0.73}_{-0.76}$	$72.13 \ (72.25)^{+0.61}_{-0.41}$	$71.46 (71.79)_{-0.73}^{+0.73}$
S_8	$0.8017 (0.8045)^{+0.0096}$	$0.822 \ (0.824)^{+0.011}_{-0.011}$	$0.8095 (0.8086)^{+0.0097}_{-0.010}$	$0.821 \ (0.819)^{+0.011}_{-0.011}$
M_b	$-19.398 (-19.392)^{+0.011}_{-0.011}$	$-19.320 \ (-19.319)^{+0.021}_{-0.021}$	$-19.301 \ (-19.295)^{+0.017}_{-0.011}$	$\begin{bmatrix} -19.320 & (-19.311)^{+0.021}_{-0.021} \end{bmatrix}$
H_0 GT	3.82σ	1.23σ	0.75σ	1.24σ
H_0 IT	3.8σ	1.23σ	0.76σ	1.24σ
$\Delta \chi^2$	_	-19.1	-23.8	-17.5
ΔAIC	_	-17.1	-21.8	-15.5

TABLE V: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Pantheon_Plus+H₀**. All upper bounds are reported at 95% 4 C.L., for any case where the 1σ lower bound is overlapping with our priors. 4

FIG. 6: One and two-dimensional posterior distributions for various model parameters for the Λ CDM, Free-streaming 4 DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Pantheon_Plus+H₀.** 4

$\mathbf{4.}\quad \mathbf{P18} + \mathbf{DESI} + \mathbf{Y_{He}}, \mathbf{D/H}$

Parameter	$\Lambda \mathrm{CDM}$	Free-streaming DR	Fluid DR	Neutrinos 26
$100\omega_b$	$2.249 (2.24)_{-0.013}^{+0.013}$	$2.254 (2.25)^{+0.015}_{-0.017}$	$2.266 (2.271)^{+0.016}_{-0.018}$	$2.250 (2.23)_{-0.018}^{+0.017}$
ω_{cdm}	$0.11812 \ (0.11808)^{+0.00089}_{-0.00087}$	$0.1212 \ (0.1206)^{+0.0016}_{-0.0021}$	$0.1212 (0.1205)^{+0.0018}_{-0.0026}$	$0.1183 \ (0.1166)^{+0.0026}_{-0.0026}$
$\ln 10^{10} A_s$	$3.055 (3.051)^{+0.015}_{-0.015}$	$3.061 (3.06)^{+0.015}_{-0.017}$	$3.053 (3.061)^{+0.015}_{-0.01620}$	$3.055 (3.058)^{+0.016}_{-0.016}$
$ n_s $	$0.9689 \ (0.9676)^{+0.0036}_{-0.0035}$	$0.9743 \ (0.9754)_{-0.0057}^{+0.0050}$	$0.9707 (0.9723)^{+0.0039}_{-0.0039}$	$0.9693 (0.9629)^{+0.0064}_{-0.0062}$
$ au_{reio}$	$0.0610 \ (0.0587)^{+0.0071}_{-0.0082}$	$0.0605 (0.061)^{+0.0072}_{-0.0083}$	$0.0619 (0.0642)^{+0.0074}_{-0.0083}$	$0.0611 \ (0.0655)^{+0.0071}_{-0.0083}$
$\Delta N_{ m eff}$		$0.179 \ (0.136)^{+0.073}_{-0.15}$	$0.182 \ (0.148)^{+0.061}_{-0.17}$	$0.06 \ (-0.078)^{+0.16}_{-0.16}$
$\sum m_{ u}$	< 0.121	< 0.125	< 0.127	< 0.118 65
$H_0 \left[\text{km/s/Mpc} \right]$	$68.09 (68.17)_{-0.41}^{+0.42}$	$69.00 (68.86)^{+0.69}_{-0.93}$	$69.30 (69.39)_{-1.0}^{+0.71}$	$68.2 (67.2)_{=1.0}^{+1.0}$ 21
S_8	$0.814 \ (0.814)^{+0.010}_{-0.010}$	$0.817 \ (1.829)^{+0.010}_{-0.011}$	$0.813 \ (0.816)^{+0.011}_{-0.010}$	$0.814 \ (0.822)_{-0.011}^{+0.011}$
H_0 GT	4.42σ	3.23σ	2.97σ	3.37σ
H_0 IT	3.95σ	2.99σ	2.66σ	3.31σ

TABLE VI: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Y**_{He}, **D/H**. All upper bounds are reported at 95% C.L., for any case where the 1σ lower bound is overlapping with our priors. 26

FIG. 7: One and two-dimensional posterior distributions for various model parameters for the Λ CDM, Free-streaming 38 DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Y**_{He}, **D/H**. 38

$5. \quad P18 + DESI + Y_{He}, D/H + Pantheon_Plus$

Parameter	ΛCDM	Free-streaming DR	Fluid DR	Neutrinos 4
$100\omega_b$	$2.247 (2.251)^{+0.014}_{-0.014}$	$2.254 (2.255)_{-0.014}^{+0.014}$	$2.260 (2.242)_{-0.016}^{+0.016}$	$2.249 (2.238)^{+0.015}_{-0.015}$
ω_{cdm}	$0.11845 (0.11833)^{+0.00084}_{-0.00084}$	$0.1203 \ (0.1196)^{+0.0013}_{-0.0020}$	$0.1213 \ (0.1187)_{-0.0024}^{+0.0016}$	$0.1191 \ (0.1183)^{+0.0015}_{-0.0025}$
$\ln 10^{10} A_s$	$3.053 (3.055)^{+0.014}_{-0.016}$	$3.059 (3.061)_{-0.017}^{+0.015}$	$3.052 (3.045)_{-0.015}^{+0.015}$	$3.055 (3.034)^{+0.015}_{-0.017}$
n_s	$0.9680 \ (0.9677)^{+0.0035}_{-0.0038}$	$0.9721 \ (0.9728)_{-0.0049}^{+0.0043}$	$0.9694 \ (0.9694)_{-0.0037}^{+0.0037}$	$0.9695 \ (0.9662)^{+0.0050}_{-0.0065}$
$ au_{reio}$	$0.0602 (0.0606)^{+0.0069}_{-0.0081}$	$0.0607 (0.0625)^{+0.0071}_{-0.0084}$	$0.0608 \ (0.058)^{+0.0071}_{-0.0082}$	$0.0599 (0.0519)^{+0.0070}_{-0.0082}$
$\frac{\Delta N_{\text{eff}}}{\sum m_{ u}}$	_	< 0.295	< 0.365	$0.087 (-0.007)^{+0.076}_{-0.15}$
$\sum m_{ u}$	< 0.121	< 0.125	< 0.131	< 0.130 13
$H_0 [\mathrm{km/s/Mpc}]$	$67.92 (68.09)^{+0.41}_{-0.41}$	$68.58 (68.89)_{-0.69}^{+0.55}$	$68.97 (68.0)_{-0.93}^{+0.65}$	$68.13 (67.53)^{+0.68}_{-0.96}$
S_8	$0.817 (0.817)^{+0.010}_{-0.0098}$	$0.819 \ (0.816)^{+0.010}_{-0.011}$	$0.816 \ (0.819)^{+0.010}_{-0.010}$	$0.817 (0.818)^{+0.010}_{-0.0097}$
M_b	$-19.424 (-19.421)^{+0.012}_{-0.012}$	$-19.404 \ (-19.393)_{-0.021}^{+0.016}$	$-19.392 \ (-19.423)_{-0.028}^{+0.020}$	$\begin{bmatrix} -19.418 & (-19.436)^{+0.020}_{-0.029} \end{bmatrix}$
H_0 GT	4.58σ	3.8σ	3.31σ	3.96σ
H_0 IT	3.79σ	3.42σ	2.93σ	3.68σ

TABLE VII: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and 4 Neutrino models, fitting to the dataset: **P18+DESI+Y**_{He}, **D/H+Pantheon_Plus**. All upper bounds are reported at 95% C.L., for any case where the 1σ lower bound is overlapping with our priors. 4

FIG. 8: One and two-dimensional posterior distributions for various model parameters for the ΛCDM, Free-streaming 4 DR, Fluid DR, and Neutrino models, fitting to the dataset: P18+DESI+Y_{He}, D/H+Pantheon_Plus. 4

$\textbf{6.} \quad P18 + DESI + Y_{He}, D/H + Pantheon_Plus + H_0 \\$

Parameter	ΛCDM	Free-streaming DR	Fluid DR	Neutrinos 4
$100\omega_b$	$2.264 (2.273)^{+0.013}_{-0.013}$	$2.285 (2.28)^{+0.014}_{-0.014}$	$2.295 (2.296)^{+0.015}_{-0.015}$	$2.287 (2.284)^{+0.015}_{-0.014}$
ω_{cdm}	$0.11685 (0.11643)^{+0.00081}_{-0.00081}$	$0.1248 \ (0.1238)_{-0.0019}^{+0.0019}$	$0.1260 \ (0.1256)^{+0.0024}_{-0.0024}$	$0.1244 \ (0.1229)^{+0.0023}_{-0.0023}$
$\ln 10^{10} A_s$	$3.060 (3.068)^{+0.015}_{-0.017}$	$3.076 (3.057)_{-0.017}^{+0.015}$	$3.051 (3.042)^{+0.015}_{-0.017}$	$3.075 (3.063)_{-0.017}^{+0.016}$
$ n_s $	$0.9723 \ (0.9721)_{-0.0036}^{+0.0035}$	$0.9849 \ (0.9825)^{+0.0048}_{-0.0047}$	$0.9742 \ (0.9747)_{-0.0037}^{+0.0037}$	$0.9844 \ (0.9832)_{-0.0049}^{+0.0050}$
$ au_{reio}$	$0.0647 (0.0677)^{+0.0073}_{-0.0084}$	$0.0635 \ (0.0557)^{+0.0071}_{-0.0087}$	$0.0636 \ (0.0604)^{+0.0070}_{-0.0087}$	$0.0639 \ (0.0615)^{+0.0074}_{-0.0084}$
$\Delta N_{ m eff}$	_	$0.45 (0.38)^{+0.10}_{-0.10}$	$0.48 (0.48)^{+0.11}_{-0.11}$	$0.49 (0.431)^{+0.12}_{-0.12}$
$\sum m_{ u}$	< 0.099	< 0.120	< 0.128	< 0.115 13
$H_0 \left[\text{km/s/Mpc} \right]$	$68.81 (69.12)_{-0.37}^{+0.37}$	$71.02 \ (70.59)^{+0.69}_{-0.67}$	$71.46 (71.78)_{-0.72}^{+0.74} $ $0.8090 (0.8007)_{-0.010}^{+0.0099}$	$70.95 \ (71.06)^{+0.70}_{-0.70}$
S_8	$0.8015 \ (0.8005)^{+0.0098}_{-0.0098}$	$0.817 (2.701)^{+0.010}_{-0.010}$	$0.8090 (0.8007)^{+0.0099}_{-0.010}$	$0.817 \ (0.807)^{+0.011}_{-0.011}$
M_b	$\begin{bmatrix} -19.398 & (-19.387)^{+0.011}_{-0.011} \end{bmatrix}$	$-19.332 \ (-19.341)_{-0.020}^{+0.019}$	$-19.321 (-19.31)^{+0.021}_{-0.021}$	$\begin{bmatrix} -19.335 & (-19.332)^{+0.020}_{-0.020} \end{bmatrix}$
H_0 GT	3.83σ	1.62σ	1.24σ	1.67σ
H_0 IT	3.84σ	1.62σ	1.24σ	1.67σ
$\Delta \chi^2$	_	-12.7	-17.7	-10.5
ΔAIC	_	-10.7	-15.7	-8.5

TABLE VIII: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+DESI+Y**_{He}, **D/H+Pantheon_Plus+H₀**. All upper bounds are reported at 95% C.L., for any case where the 1 σ lower bound is overlapping with our priors.

FIG. 9: One and two-dimensional posterior distributions for various model parameters for the Λ CDM, Free-streaming 4 DR, Fluid DR, and Neutrino models, fitting to the dataset: P18+DESI+Y_{He}, D/H+Pantheon_Plus+H₀.] 4

$7. \quad P18+SDSS+6dFGS+Pantheon_Plus$

Parameter	ΛCDM	Free-streaming DR	Fluid DR	Neutrinos 4
$100\omega_b$	$2.238 (2.253)^{+0.013}_{-0.013}$	$2.246 (2.248)^{+0.015}_{-0.015}$	$2.251 \ (2.252)_{-0.018}^{+0.016}$	$2.232 (2.23)^{+0.018}_{-0.018}$
ω_{cdm}	$0.11964 \ (0.11931)_{-0.00089}^{+0.00090}$	$0.1217 (0.1202)_{-0.0022}^{+0.0012}$	$0.1223 \ (0.1204)_{-0.0025}^{+0.0015}$	$0.1183 \ (0.1177)^{+0.0028}_{-0.0031}$
$\ln 10^{10} A_s$	$3.049 (3.053)_{-0.015}^{+0.013}$	$3.055 (3.049)_{-0.016}^{+0.014}$	$3.048 (3.048)_{-0.016}^{+0.014}$	$3.045 (3.051)^{+0.016}_{-0.016}$
n_s	$0.9652 (0.9653)^{+0.0036}_{-0.0037}$	$0.9691 \ (0.9698)_{-0.0053}^{+0.0039}$	$0.9666 \ (0.9656)^{+0.0038}_{-0.0038}$	$0.9621 \ (0.9615)^{+0.0069}_{-0.0068}$
$ au_{reio}$	$0.0572 (0.0578)^{+0.0067}_{-0.0075}$	$0.0570 \ (0.0563)^{+0.0069}_{-0.0078}$	$0.0577 \ (0.056)^{+0.0068}_{-0.0080}$	$0.0568 \ (0.0597)^{+0.0067}_{-0.0075}$
$\Delta N_{ m eff}$	_	< 0.312	< 0.285	$-0.04 \ (-0.061)^{+0.18}_{-0.18}$
$\sum m_{ u}$	< 0.152	< 0.174	< 0.169	< 0.146
$H_0 \left[\mathrm{km/s/Mpc} \right]$	$67.27 (67.78)^{+0.43}_{-0.43}$	$67.84 (67.79)_{-0.75}^{+0.58}$	$68.25 (67.83)_{-0.98}^{+0.69}$	$66.8 (66.9)^{+1.1}_{-1.1}$ 26
S_8	$0.827 (0.826)^{+0.011}_{-0.011}$	$0.826 (5.249)^{+0.012}_{-0.012}$	$0.826 \ (0.828)^{+0.011}_{-0.011}$	$0.826 \ (0.826)^{+0.011}_{-0.011}$
M_b	$-19.443 (-19.43)_{-0.013}^{+0.013}$	$-19.421 \ (-19.426)^{+0.015}_{-0.026}$	$-19.412 \ (-19.427)^{+0.021}_{-0.030}$	$\begin{bmatrix} -19.458 & (-19.455)^{+0.034}_{-0.035} \end{bmatrix}$
H_0 GT	5.12σ	4.37σ	3.83σ	4.19σ
H_0 IT	5.11σ	3.53σ	3.35σ	4.24σ

TABLE IX: Marginalized posteriors for various model parameters for the Λ CDM, Free-streaming DR, Fluid DR, and Neutrino models, fitting to the dataset: **P18+SDSS+6dFGS+Pantheon_Plus**. All upper bounds are reported at 4 95% C.L., for any case where the 1σ lower bound is overlapping with our priors.

FIG. 10: One and two-dimensional posterior distributions for various model parameters for the ΛCDM, Free-streaming 4 DR, Fluid DR, and Neutrino models, fitting to the dataset: P18+SDSS+6dFGS+Pantheon_Plus. 4

Parameter	P18+SDSS+6dFGS+Pantheon_Plus	$P18+DESI+Pantheon_Plus$	$P18+DESI+Pantheon_Plus+H_0$
$100\omega_b$	$2.251 \ (2.241)^{+0.015}_{-0.017}$	$2.266 (2.263)^{+0.015}_{-0.019}$	$2.299 (2.305)^{+0.015}_{-0.015}$
ω_{cdm}	$0.1228 (0.1219)^{+0.0018}_{-0.0028}$	$0.1229 (0.1254)^{+0.0023}_{-0.0024}$	$0.1291 \ (0.1303)^{+0.0028}_{-0.0028}$
$\ln 10^{10} A_s$	$3.047 (3.049)^{+0.015}$	$3.049 (3.041)_{-0.015}^{+0.015}$	$3.045 (3.053)^{+0.016}$
n_s 142	$\begin{array}{c} 0.9658 \; (0.9652)^{+0.0038}_{-0.0037} \\ 0.0575 \; (0.057)^{+0.0069}_{-0.0075} \end{array}$	$3.049 (3.041)^{+0.015}_{-0.015}$ $0.9689 (0.9666)^{+0.0037}_{-0.0037}$ $0.0607 (0.057)^{+0.0037}_{-0.0081}$	$\begin{array}{c} 0.9716 \ (0.9759) {}^{+0.0035}_{-0.0035} \\ 0.0627 \ (0.0679) {}^{+0.0073}_{-0.0083} \\ 0.65 \ (0.73) {}^{+0.13}_{-0.14} \end{array}$
$ au_{reio}$	$0.0575 \ (0.057)^{+0.0069}_{-0.0075}$	$0.0607 (0.057)^{+0.0071}_{-0.0081}$	$0.0627 (0.0679)^{+0.0073}_{-0.0083}$
$\Delta N_{ m eff}$	< 0.433	$0.26 \ (0.34)^{+0.11}_{-0.21} \ 117$	$0.65 (0.73)_{-0.14}^{+0.13}$
$\sum m_{ u}$	< 0.166	< 0.137	< 0.149
$H_0 [\mathrm{km/s/Mpc}]$	$68.39 (67.94)_{-1.1}^{+0.71} 0.826 (0.834)_{-0.011}^{+0.011}$	$69.56 (69.82)_{-1.2}^{+0.85} 0.815 (0.825)_{-0.011}^{+0.010}$	$72.25 (73.0)_{-0.79}^{+0.79} 0.809 (0.812)_{-0.011}^{+0.011}$
S_8	$0.826 (0.834)^{+0.011}_{-0.011}$	$0.815 \ (0.825)^{+0.010}_{-0.011}$	$0.809 \ (0.812)^{+0.011}_{-0.011}$
M_b	$-19.408 (-19.42)_{-0.033}^{+0.022}$	$-19.374 \ (-19.365)_{-0.037}^{+0.026}$	$-19.298 \; (-19.276)^{+0.024}_{-0.021}$
H_0 GT	3.69σ	$\frac{2.59\sigma}{127}$	0.6σ
H_0 IT	3.02σ	2.28σ 128	0.6σ
$\Delta \chi^2$	~ 0	-0.4	-24.7
$\Delta { m AIC}$	+2.0	+1.6	-22.7

TABLE X: Marginalized posteriors for various model parameters for the Fluid DR model where the DR is produced after BBN. The fit is shown for the datasets P18+SDSS+6dFGS+Pantheon_Plus, 122 P18+DESI+Pantheon_Plus, and P18+DESI+Pantheon_Plus+H₀. All upper bounds are reported at 95% C.L., for any case where the 1σ lower bound is overlapping with our priors.

FIG. 11: One and two-dimensional posterior distributions for various model parameters for the Fluid DR model where the DR is produced after BBN. The fit is shown for the datasets $P18+SDSS+6dFGS+Pantheon_Plus$, 122 $P18+DESI+Pantheon_Plus$, and $P18+DESI+Pantheon_Plus+H_0$.

9. Free-streaming Dark Radiation Produced After BBN 33

Parameter	$P18+SDSS+6dFGS+Pantheon_Plus$	$P18+DESI+Pantheon_Plus$	$oxed{f P18+f DESI+f Pantheon_f Plus+f H_0}$
$100\omega_b$	$\begin{array}{c} 2.245 \ (2.24)^{+0.015}_{-0.014} \\ 0.1219 \ (0.1218)^{+0.0014}_{-0.0024} \end{array}$	$\begin{array}{c} 2.257 \ (2.254)^{+0.015}_{-0.015} \\ 0.1214 \ (0.1193)^{+0.0016}_{-0.0027} \end{array}$	$2.288 (2.278)^{+0.014}_{-0.014}$
ω_{cdm}	$0.1219 \ (0.1218)_{-0.0024}^{+0.0014}$	$0.1214 \ (0.1193)^{+0.0016}_{-0.0027}$	$\begin{array}{c} 0.1278 & (0.1287) - 0.014 \\ 0.1278 & (0.1287) + 0.0026 \\ 3.077 & (3.071) + 0.014 \\ 0.9864 & (0.987) + 0.0047 \\ 0.0622 & (0.0584) + 0.0069 \\ 0.63 & (0.65) + 0.14 \\ \end{array}$
$\ln 10^{10} A_s$	$3.054 (3.041)^{+0.015}_{-0.016}$	$3.060 (3.059)^{+0.014}_{-0.017}$	$3.077 (3.071)^{+0.014}_{-0.017}$
n_s 4	$0.9688 \ (0.9676)^{+0.0043}_{-0.0050}$	$0.9731 \ (0.9732)_{-0.0055}^{+0.0045}$	$0.9864 \ (0.987)^{+0.0044}_{-0.0047}$
$ au_{reio}$	$\begin{array}{c} 3.054 \ (3.041) \begin{array}{c} -0.0024 \\ -0.016 \\ 0.9688 \ (0.9676) \begin{array}{c} +0.0043 \\ -0.0050 \\ 0.0568 \ (0.0493) \begin{array}{c} +0.0068 \\ -0.0079 \\ \end{array} \end{array}$	$\begin{array}{c} 3.060 \ (3.059)^{+0.014} \\ 0.9731 \ (0.9732)^{+0.0045} \\ 0.0602 \ (0.0623)^{+0.0051} \\ \end{array}$	$0.0622 (0.0584)^{+0.0069}_{-0.0084}$
$\Delta N_{ m eff}$	< 0.353	< 0.435	$0.63 (0.65)^{+0.14}_{-0.14}$
$\sum m_{ u}$	< 0.161	< 0.129	< 0.137
$H_0 [\mathrm{km/s/Mpc}]$	$68.03 (68.17)^{+0.57}_{-0.84}$	$68.94 (68.41)^{+0.63}_{-0.99}$	$71.82 \ (71.65)^{+0.78}_{-0.77}$
S_8	$0.830 \ (0.826)^{+0.011}_{-0.011}$	$0.821 \ (0.822)_{-0.011}^{+0.011}$	$0.823 \ (0.83)_{-0.011}^{+0.011}$
M_b	$-19.419 \; (-19.414)^{+0.017}_{-0.026}$	$-19.393 \ (-19.41)_{-0.030}^{+0.019}$	$-19.310 \ (-19.311)_{-0.022}^{+0.022}$
H_0 GT	4.22σ	3.37σ 41	0.94σ
H_0 IT	3.62σ	2.84σ 42	0.94σ
$\Delta \chi^2$	~ 0	+0.4	-20.5
$\Delta { m AIC}$	+2.0	+2.4	-18.5

TABLE XI: Marginalized posteriors for various model parameters for the Fluid DR model where the DR is produced after BBN. The fit is shown for the datasets $P18+DESI+Pantheon_Plus$ and $P18+DESI+Pantheon_Plus+H_0$. 26 All upper bounds are reported at 95% C.L., for any case where the 1σ lower bound is overlapping with our priors. 26

FIG. 12: One and two-dimensional posterior distributions for various model parameters for the free-streaming DR model where the DR is produced after BBN. The fit is shown for the datasets $P18+DESI+Pantheon_Plus$ and $P18+DESI+Pantheon_Plus+H_0$.