ACTIVITY 15

Algebraic Properties	0	00000000	120	01111000	-127	10000001
of Bitwise Operations	0	00000000	-120	10001000	-126	10000010
of Bitwise operations					-125	10000011
Commutativity	1	00000001	121	01111001	-124	10000100
• a b = b a	-1	11111111	-121	10000111	-123	10000101
• $a \oplus b = b \oplus a$					-122	10000110
• $a \& b = b \& a$	2	00000010	122	01111010	-121	10000111
A and aightivity	-2	11111110	-122	10000110	-120	10001000
Associativity • (a b) c						
$= a \mid (b \mid c)$	3	00000011	123	01111011	-16	11110000
• $(a \oplus b) \oplus c$	-3	11111101	-123	10000101	-15	11110001
$= a \oplus (b \oplus c)$					-14	11110010
• (a & b) & c	4	00000100	124	01111100	-13	11110011
= a & (b & c)	-4	11111100		10000100	-12	11110100
,					-11	11110101
Distributivity	5	00000101	125	01111101	-10	11110110
• a & (b c)	-5	11111011		10000011	-9	11110111
= (a & b) (a & c)						11111000
• a & (b ⊕ c)	6	00000110	126	01111110		11111001
$= (a \& b) \oplus (a \& c)$		11111010		10000010	-6	11111010
• a (b & c)						11111011
$= (a \mid b) & (a \mid c)$	7	00000111	127	01111111		11111100
Identities		11111001	-127	10000001		11111101
• a 0 = a					-2	11111110
• $a \oplus 0 = a$	8	00001000				11111111
• $a \& -1 = a$		11111000				00000000
T						00000001
Inverse $a \oplus a = 0$	9	00001001				00000010
• a ⊕ a = 0		11110111				00000011
Annihilator		-				00000100
• a & 0 = 0	10	00001010				00000101
		11110110				00000110
Cancellation						00000111
$ \neg (\neg a) = a$	11	00001011				00001000
Complement		11110101				00001001
• a ¬a = −1						00001010
 a & ¬a = 0 	12	00001100				00001011
11	-12	11110100			12	00001100
Idempotency • a & a = a						00001101
• a & a = a • a a = a	13	00001101				00001110
		11110011				00001111
Absorption						00010000
• $a \mid (a \& b) = a$	14	00001110				
• $a & (a b) = a$		11110010			120	01111000
DeMorgan's Laws						01111001
• $\neg(a \& b) = \neg a \mid \neg b$	15	00001111				01111010
• $\neg(a \mid b) = \neg a \otimes \neg b$		11110001				01111011
						01111100
Other Properties of 0, –1	16	00010000				01111101
• a -1 = -1		11110000				01111110
-0 = -1	•					01111111
• ¬-1 = 0					- - ;	_

1.	Multiply 15 × 10 using	the shift-and-ad	dd algorithm	Note: $15 = 1111_2$, $10 = 1010_2$, and $150 = 10010110_2$.			
2.	Zero out the AL registe	r using an XOR	c instruction.				
3.	Swap the values in AL and BL using the XOR Swap algorithm.						
		; AL =	BL =				
	mov al, 1001b						
	mov bl, 1100b	; 1001	1100				
		;					
		_ ;					
		;					
				he absolute value of the integer in EAX without using a			
5.	Suppose $a = 1111$ and b Compute the minimum			3 using a 4-bit two's complement representation. $((a-b) \gg^{s} 3))$			
6.	25,351 = 0110 0011 0000 0111 ₂ . What is the binary representation of 25,350?						
	What is the binary	representation	of 25,352?				
7.	Isolate the rightmost 1- mov al, 10110000b mov bl, al	· · · · · · · · · · · · · · · · · · ·					
8.	Verify that $5 + 7 = (5 \oplus$		« 1).				