Aspectos Formais da Computação

Prof. Sergio D. Zorzo

Departamento de Computação - UFSCar

1º semestre / 2017

Aula 02

Introdução e Conceitos Básicos

Conjuntos, Relações e Funções Lógica Técnicas de Demonstração Indução

Teoria das Linguagens Formais

Originária da década de 1950 - desenvolver teorias relacionadas com as linguagens naturais

Hoje - importante para o estudo de linguagens artificiais em especial, para as linguagens da Ciência da Computação

Aspectos considerados:

Léxicos Sintáticos Semânticos

em linguagens de programação em modelos de sistemas biológicos em desenho de hardware relacionamentos com linguagens naturais

Sintaxe e Semântica

Historicamente

- o problema sintático foi reconhecido antes do problema semântico
- foi o primeiro a receber um tratamento adequado
- são de tratamento mais simples que os semânticos

Conseqüência

- grande ênfase à sintaxe
- ao ponto de levar à idéia de que questões das linguagens de programação resumiam-se às questões da sintaxe

Atualmente

 teoria da sintaxe possui construções matemáticas bem definidas e universalmente reconhecidas como as Gramáticas de Chomsky.

Sintaxe e Semântica

Linguagem de Programação (ou qq modelo matemático) pode ser vista livremente sem qualquer significado associado juntamente com uma interpretação do seu significado

Sintaxe

- trata das propriedades livres da linguagem ("forma") exemplo: verificação gramatical de programas

Semântica

fornece uma interpretação para a linguagem
 exemplo: um significado ou valor para um determinado programa

Consequências

- sintaxe basicamente manipula símbolos

não considera os correspondentes significados mas, para resolver qualquer problema real é necessário dar uma interpretação semântica aos símbolos

exemplo: "estes símbolos representam os inteiros"

Sintaticamente "errado"

não existe uma noção de programa "errado". neste caso, simplesmente não é um programa

Sintaticamente "Correto"

pode não ser o programa que o programador esperava escrever

Programa "Correto" ou "Errado"

deve considerar se modela adequadamente o comportamento desejado

Consequências

Limites entre Sintaxe e Semântica

nem sempre são claros

exemplo: ocorrência de um nome em um programa pode ser tratado como um problema sintático ou semântico

entretanto, para a maioria dos problemas relevantes a distinção entre sintaxe e semântica em linguagens artificiais é, em geral, óbvia

exemplo: um significado ou valor para um determinado programa

Abordagem Operacional, Axiomático ou Denotacional

Operacional

Autômato ou máquina abstrata

- estados
- instruções primitivas
- como cada instrução modifica cada estado

Máquina abstrata

- suficientemente simples
 não deve permitir dúvidas sobre seu funcionamento
- também é dito um Formalismo Reconhecedor análise de uma entrada para verificar se é reconhecida pela máquina

Principais máquinas

- Autômato Finito
- Autômato com Pilha
- Máquina e Turing

Axiomático

Associam-se regras às componentes da linguagem

Regras

permitem afirmar o que será verdadeiro após a ocorrência de cada cláusula considerando o que era verdadeiro antes da ocorrência

Formalismos axiomáticos

- Gramáticas Regulares
- Gramáticas Livre do Contexto
- Gramáticas Sensíveis ao Contexto
- Gramáticas Irrestritas

Denotacional

Domínio (sintático)

permite a caracterização do conjunto de palavras admissíveis na linguagem

tratam-se de funções, as quais são, em geral composicionais (horizontalmente) - o valor denotado por uma construção é especificado em termos dos valores denotados por suas subcomponentes

Formalismo Denotacional

Expressões Regulares
 é simples inferir (gerar) os elementos da linguagem

Denominado como um Formalismo Gerador

Linguagens Regulares

Origens: Formalismos Autômato Finito e Expressões Regulares

- estudos biológicos de redes de neurônios
- circuitos de chaveamentos

Mais recentemente

- analisadores léxicos (parte de um compilador / identifica e codifica as unidades básicas de uma linguagens como variáveis, números, etc)
- editores de textos
- sistemas de pesquisa e atualização em arquivos
- linguagens de comunicação homem-máquina (como protocolos de comunicação)

Linguagens Livre do Contexto

Formalismos

Gramáticas Livre do Contexto

Autômato com Pilha

Ênfase do estudo - analisadores sintáticos

historicamente desenvolvimento de analisadores sintáticos era um problema complexo, de difícil depuração e com eficiência relativamente baixa

 hoje, considerando o conhecimento já adquirido relativo às Linguagens Livre do Contexto desenvolvimento de um analisador sintático é simples (assim como a sua depuração) - somente uma pequena percentagem do tempo de processamento de um compilador é gasto em tal atividade.

Linguagens Enumeráveis Recursivamente e Sensíveis ao Contexto

Formalismos

- Máquina de Turing e variações/restrições
- Gramáticas Irrestritas e Sensíveis ao Contexto

Exploram

limites da capacidade de desenvolvimento de reconhecedores ou geradores de linguagens

ou seja

estuda a solucionabilidade do problema da existência de algum reconhecedor ou gerador para determinada linguagem.

Hierarquia de Classes de Linguagens

Hierarquia de Chomsky

classifica as diversas classes de linguagens em uma ordem hierárquica (inclusão própria)

Linguagens Recursivamente Enumeráveis ou do Tipo 0

Linguagens Sensíveis ao Contexto ou do Tipo 1

Linguagens Livre de Contexto ou do Tipo 2

Linguagens Regulares ou do Tipo 3

Conjuntos, Relações e Funções

Conjuntos

Conjunto é uma coleção de zero ou mais objetos distintos, denominados *Elementos do conjunto*.

Notações

$$a \in A$$
, $a \notin A$

$$A \subseteq B \text{ ou } B \supseteq A$$

A está contido em B / A é subconjunto de B / B contém A

$$A \subseteq B \text{ ou } B \supset A$$

A está contido propriamente em B / A é subconjunto próprio de B / B contém propriamente A

$$A = B$$

$$A \subseteq B e B \subseteq A$$

Conjuntos

```
número de elementos
 finito
 infinito
conjunto finito
  pode ser denotado por extensão. Ex: {a, b, c}
conjunto vazio
  sem elementos (ou seja, com zero elementos) { } ou ∅
conjunto (finito ou infinito) denotado por compreensão
  \{a \mid a \in A \in p(a)\} ou
  \{a \in A \mid p(a)\}\ ou
  { a | p(a) }
```

Exemplos

```
a \in \{b, a\} e c \notin \{b, a\};
\{a, b\} = \{b, a\}, \{a, b\} \subseteq \{b, a\} \in \{a, b\} \subseteq \{a, b, c\};
Os seguintes conjuntos são infinitos
  N conjuntos dos números naturais
  Z conjuntos dos números inteiros
  Q conjuntos dos números racionais
  I conjuntos dos números irracionais
  R conjuntos dos números reais
\{1, 2, 3\} = \{x \in N \mid x > 0 \text{ e } x < 4\}
N = \{ x \in Z \mid x \ge 0 \};
conjunto dos números pares
\{y \mid y = 2x e x \in N\}
```

Operações sobre Conjuntos

União

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Intersecção

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Diferença

$$A - B = \{x \mid x \in A \in x \notin B\}$$

Complemento

definida em relação a um conjunto fixo U denominado universo

$$A' = \{x \mid x \in U \ e \ x \notin A \}$$

Conjunto das Partes

$$2^A = \{S \mid S \subseteq A\}$$

Produto Cartesiano

$$A \times B = \{ (a, b) \mid a \in A \in b \in B \}$$
 (notação usual de $A \times A : A^2$)

Operações sobre Conjuntos

Par ordenado

elemento de um produto cartesiano denotado na forma (a, b) não deve ser confundido com o conjunto {a, b} a ordem é importante /as duas componentes são distinguidas conceito é generalizado para n-upla ordenada (n componentes) **Exemplo**: universo N, A = $\{0, 1, 2\}$ e B = $\{2, 3\}$ $A \cup B = \{0, 1, 2, 3\}$ $A \cap B = \{2\}$ $A - B = \{0, 1\}$ $A' = \{ x \in N \mid x > 2 \}$ $2^{B} = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$ $A \times B = \{(0, 2), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3)\}$

Algumas Propriedades

Suponha universo U e conjuntos A, B e C

idempotência da união e intersecção

$$A \cup A = A$$

$$A \cap A = A$$

associatividade da união e intersecção

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

• comutatividade da união e intersecção

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

distributividade da união e intersecção

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Algumas Propriedades

Suponha universo U e conjuntos A, B e C

• relativamente ao complemento

$$(A')' = A$$

$$A \cup A' = U$$

$$A \cap A' = \emptyset$$

• leis de Morgan

$$(A \cup B)' = A' \cap B'$$

 $(A \cap B)' = A' \cup B'$

Relações

Relação

subconjunto de um produto cartesiano

$$R \subseteq A \times B$$

Notações

A é denominado domínio

B é denominado contra-domínio ou codomínio

aRb denota (a, b) \in R

relação em $A: R \subseteq A \times A$ domínio e o contra-domínio coincidem normalmente denotada por (A, R)

Propriedades das Relações

Considere A um conjunto e R uma relação em A

Reflexiva

se, para todo a \in A, aRa

Simétrica

se aRb, então bRa

Antissimétrica

se aRb e bRa, então a=b

Transitiva

se aRb e bRc, então aRc

Importante:

uma relação pode *não ser simétrica nem* antissimétrica: não são noções complementares

uma relação pode ser simultaneamente simétrica e antissimétrica

Propriedades das Relações

```
Exemplo - conjunto não vazio A
(N, \leq) e (2^A, \subseteq)
   reflexivas
   antissimétricas
   transitivas
(Z, <) e (2^A, \subset)
   transitivas
\{(1,2), (2,1), (2,3)\}
 não é reflexiva
 não é simétrica
 não é antissimétrica
 não é transitiva
```

Relação de Ordem (R em A)

Relação de Ordem

se é transitiva

Relação de Ordem Parcial

se é reflexiva, antissimétrica e transitiva

Relação de Ordem Total

se é uma relação de ordem parcial e para todo a, $b \in A$, ou aRb ou bRa

Exemplo: considere um conjunto não vazio A

- relação de ordem (N, ≤), (2^A, ⊆), (Z, <), (2^A, ⊂)
- relação de ordem parcial (N, ≤), (2^A, ⊆)
- relação de ordem total (N, ≤)

Relação de Equivalência

se for reflexiva, simétrica e transitiva

Importante:

cada relação de equivalência induz um particionamento em classes de equivalência (particionamento do conjunto em subconjuntos disjuntos e não vazios)

Exemplo

```
R = { (a, b) \in \mathbb{N}^2 | a MOD 2 = b MOD 2}
(MOD: resto da divisão inteira)
```

R induz um particionamento de N subconjuntos dos pares (resto zero) subconjuntos dos ímpares (resto um)

Fecho de uma Relação R em relação a um propriedade P denotado por FECHO-P(R)

menor relação que contém R e que satisfaz às propriedades em P

```
Fecho Transitivo P = \{transitiva\}
denotado por R+ = FECHO-P(R)
definido como segue
se (a, b) \in R, então (a, b) \in R +
se (a, b) \in R+ e (b, c) \in R+, então (a, c) \in R+
os únicos elementos de R+ são os construídos como acima
```

Fecho Transitivo e Reflexivo P = {transitiva, reflexiva} denotado por R*, é tal que: $R^* = R + \cup \{ (a, a) \mid a \in A \}$

Funções

Função Parcial

```
relação f ⊆ A×B tal que
 se (a, b) \in f e (a, c) \in f, então b = c
 cada elemento do domínio está relacionado com, no
  máximo, um elemento do contradomínio
notação f: A → B
f(a) = b denota (a, b) \in f
     f está definida para a
     b é imagem de a
\{b \in B \mid existe a \in A \text{ tal que } f(a) = b\}
     conjunto imagem de f
     denotado por f(A) ou Img(f)
```

Funções

Função (Total) ou Aplicação

função parcial f: A → B onde

para todo a \in A existe b \in B tal que f(a) = b

ou seja, é uma função parcial, definida para todos os elementos do domínio

Exemplos

Adição nos naturais

ad: $N \times N \rightarrow N$ tq ad(a, b) = a + b

ad é uma função (total)

Divisão nos inteiros

div: $Z \times Z \rightarrow Z$ tq div(a, b) = a/b

div é uma função parcial (não é definida para (a, 0) \in Z×Z)

Funções

Composição de Funções

Sejam f: A → B e g: B → C funções
g• f: A → C tal que
(g• f)(a) = g(f(a))
aplicação da função f ao elemento a e, na seqüência, da função g à imagem f(a)

Exemplo

```
ad: N \times N \to N
quadrado: N \to N tq quadrado(a) = a^2
quadrado• ad: N^2 \to N
(quadrado•ad)(3, 1) = quadrado(ad(3, 1)) = quadrado(4) = 16
```

Tipos de Funções função f: A → B é

Injetora

se, para todo $b \in B$, existe no máximo um $a \in A$ tal que f(a) = b

se cada elemento do contra-domínio é imagem de, no máximo, um elemento do domínio

Sobrejetora

se, para todo $b \in B$, existe pelo menos um $a \in A$ tal que f(a) = b

se todo elemento do contra-domínio é imagem de pelo menos um elemento do domínio

Bijetora

se é injetora e sobrejetora

se todo elemento do contra-domínio é imagem de exatamente um elemento do domínio

Tipos de Funções função f: A → B é

Injetora

Ex: inclusão: $N \rightarrow Z$ tq inclusão(a) = a é injetora

Sobrejetora

Ex: módulo: $Z \rightarrow N$ tq módulo(a) = |a| é sobrejetora

Bijetora

Ex: $Z \rightarrow N tq$

 $f(a) = 2a \text{ se } a \ge 0$

f(a) = |2a|-1 se a < 0 é bijetora

Cardinalidade de Conjuntos

é uma medida de seu tamanho definida usando funções bijetoras de um conjunto A, é representada por #A

Cardinalidade Finita

se existe uma bijeção de A com $\{1, 2, 3, ..., n\}$, $n \in \mathbb{N}$ #A = n

Cardinalidade Infinita

se existe uma bijeção entre A com um subconjunto próprio de A

Ex: $f: Z \rightarrow N$ tal que

 $f(a) = 2a \text{ se } a \ge 0 \text{ e } f(a) = |2a|-1 \text{ se } a < 0 \text{ é bijetora}$

N é subconjunto próprio de Z então Z é infinito

Nem todos os conjuntos infinitos possuem a mesma cardinalidade

Cardinalidade do conjunto dos números naturais N é denotado por \aleph_0 - \aleph_0 ("alef" zero)

Conjunto Contável ou Infinatamente Contável

se existe uma bijeção com um subconjunto infinito de N denominada *Enumeração de A*

Conjunto é contável

pode-se enumerar seus elementos como uma seqüência na forma a0, a1, a2, ... cardinalidade de qualquer conjunto contável é \aleph_0

Conjunto (Infinito) Não-Contável caso contrário

Exemplos

Z é um conjunto contável

R é não-contável - cardinalidade 2⁸0

Lógica - Lógica Booleana

o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas

Proposição

sentença declarativa

possui valor lógico (verdadeiro ou falso)

usualmente denotados por V e F

Proposição sobre U (conjunto universo U)

proposição cujo valor lógico depende de x ∈ U

p sobre U

induz uma partição de U em duas classes de equivalências

{x | p(x) é verdadeira}: conjunto verdade de p

{x | p(x) é falsa}: conjunto falsidade de p

Tautologia

se p(x) é V para qq x \in U

Contradição

se p(x) é F para qq x \in U

Ex: 3 + 4 > 5 é uma tautologia
para a proposição n! < 10 sobre N
{0, 1, 2, 3} é o conjunto verdade
{n∈N | n > 3} é o conjunto falsidade
A proposição n + 1 > n sobre N é uma tautologia
"2n é ímpar" sobre N é uma contradição

Operador em Lógica : função da forma op: Aⁿ → A

Operador Lógico ou Conetivo

operador sobre o conjunto das proposições P

Proposição Atômica ou Átomo

proposição que não contém conetivos

Tabela Verdade

descreve os valores lógicos de uma proposição em termos das possíveis combinações dos valores lógicos

Operadores Lógicos

Operador — Negação

Operador \wedge *E*

Operador ∨ *Ou*

Operador → Se-Então

Operador ↔ Se-Somente-Se

Técnicas de Demonstração

Teorema

proposição p → q prova-se ser uma tautologia

p: hipótese e q: tese (antes de iniciar uma demonstração devese identificar claramente quem é a hipótese e quem é a tese)

Corolário: teorema que é uma conseqüência quase direta de um outro já demonstrado, ou seja, cuja prova é trivial ou imediata

Lema: teorema auxiliar que possui um resultado importante para a prova de um outro

Ex: : \cap distribui-se sobre a \cup , ou seja,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

reescrita identificando a hipótese e a tese

se A, B e C são conjuntos quaisquer,

então
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Teorema na forma p ↔ q

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

• demonstra-se "ida" (→) e "volta" (←)

Ex:

A é contável sse existe uma função bijetora entre A e o conjunto dos números pares

• "ida" e "volta"

se um conjunto A é contável,

então existe uma função bijetora entre A e o conjunto dos números pares

e

se existe uma função bijetora entre A e o conjunto dos números pares,

então A é contável

Algumas técnicas para demonstrar um teorema $p \rightarrow q$

- direta
- contraposição
- redução ao absurdo
- indução

Prova Direta

Técnica

supor a hipótese é V a partir da hipótese provar que a tese é V

Ex:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

lembre-se que

$$X = Y \operatorname{sse} X \subseteq Y \operatorname{e} Y \subseteq X$$

 $X \subseteq Y$ sse todos os elementos de X tb. são elementos de Y é fácil verificar que

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$

Para provar que A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$$

Prova Direta

Caso 1: $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

Suponha que $x \in A \cap (B \cup C)$

$$x \in A \cap (B \cup C) \Rightarrow \qquad x \in A \land x \in (B \cup C) \Rightarrow$$

$$x \in A \land (x \in B \lor x \in C) \Rightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \Rightarrow$$

$$x \in (A \cap B) \lor x \in (A \cap C) \Rightarrow x \in (A \cap B) \cup (A \cap C)$$

Portanto, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

Caso 2: (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)

Suponha que $x \in (A \cap B) \cup (A \cap C)$

$$x \in (A \cap B) \cup (A \cap C) \quad (x \in (A \cap B)) \vee (x \in A \cap C) \Rightarrow$$

$$(x \in A \land x \in B) \lor (x \in A \land x \in C) \Rightarrow x \in A \land (x \in B \lor x \in C) \Rightarrow x \in A \land x \in C) \Rightarrow x \in A \land (x \in B \lor x \in C) \Rightarrow x \in A \land (x \in$$

Portanto, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Logo, A
$$\cap$$
 (B \cup C) = (A \cap B) \cup (A \cap C)

Prova por Contraposição

Técnica

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

Ex:

 $n! > n + 1 \rightarrow n > 2$ pode-se, equivalentemente, demonstrar por contraposição que $n \le 2 \rightarrow n! \le n + 1$

prova de que $n \le 2 \rightarrow n! \le n + 1$? é suficiente testar para n = 0, n = 1 e n = 2

Prova por Redução ao Absurdo

Técnica

p → q ⇔ (p ∧ ¬q) → F
 supor a hipótese p
 supor a negação da tese ¬q
 concluir uma contradição (em geral, q ∧ ¬q

Prova por Contra-Exemplo

em uma demonstração por absurdo construção da contradição q \land \sqrt{q} apresentação de um contra-exemplo

Ex: 0 é o único elemento neutro da adição em N reescrevendo na forma de p → q se 0 é elemento neutro da adição em N, então 0 é o único elemento neutro da adição em N

Prova por Absurdo

```
suponha que 0 é o neutro da adição em N
   suponha que não é o único
   seja e esse elemento neutro da adição em N tq e ≠ 0
como 0 é neutro
 para qualquer n \in N tem-se que n = 0 + n
 em particular, para n = e, tem-se que e = 0 + e
como e é elemento
 para qualquer n \in N, tem-se que n = n + e
 em particular, para n = 0, tem-se que 0 = 0 + e
portanto
 como e = 0 + e = 0 = 0 + e, tem-se que e = 0
 contradição!!! pois foi suposto que e ≠ 0
Logo, é absurdo supor que o elemento neutro da adição em N
```


Prova por Indução

é usada com freqüência

é usada em proposições que dependem de N

Princípio da Indução Matemática

seja p(n) uma proposição sobre N

p(0) é V

se, para qualquer $k \in N$, $p(k) \rightarrow p(k + 1)$ então, para

qualquer $n \in N$, $p(n) \notin V$

Nomenclatura

p(0): base de indução.

p(k): hipótese de indução

 $p(k) \rightarrow p(k + 1)$: passo de indução

Prova por Indução

Técnica

demonstrar a base de indução p(0)
fixado um k, supor V a hipótese de indução p(k)
demonstrar o passo de indução
na realidade

o princípio da indução matemática pode ser aplicado a qualquer proposição que dependa de um conjunto para o qual exista uma bijeção com os naturais

Exemplo

para qualquer $n \in N$ tq $n \ge 0$, tem-se que $1 + 2 + ... + n = (n^2 + n)/2$

Base de Indução

Seja n = 0. Então:
$$(0^2 + 0)/2 = (0 + 0)/2 = 0/2 = 0$$

Portanto,
$$1 + 2 + ... + n = (n^2 + n)/2$$
 é Verdade para $n = 0$

Hipótese de Indução

Suponha que, para algum n fixo tq n ≥ 0

$$1 + 2 + ... + n = (n^2 + n)/2$$

Passo de Indução.

Prova para 1 + 2 + ... + n + (n + 1)

$$1 + 2 + ... + n + (n + 1) = (1 + 2 + ... + n) + (n + 1) =$$

$$(n^2 + n)/2 + (n + 1) = (n^2 + n)/2 + (2n + 2)/2 =$$

$$(n^2 + n + 2n + 2)/2 = ((n^2 + 2n + 1) + (n + 1))/2 =$$

$$((n + 1)^2 + (n + 1))/2$$

Portanto,
$$1 + 2 + ... + (n + 1) = ((n + 1)^2 + (n + 1))/2$$

Logo, para qq n \in N tq n \geq 0, tem-se que 1+2+... +n = (n² + n)/2

