

MIDTERM PRESENTATION

TEAM EXPONENTIAL

Borislav Pavlov, Kim Young Oh, Park Geo Ryang, Kim Min Jae

OBJECTIVE

Stock-loss Prevention: Mobile Application with CNN-LSTM Model for Predicting Sharp Rises and Falls in Stock Price

INITIAL DESIGN

INITIAL DESIGN

CURRENT PROGRESS

SCHEDULE

	CONTENT		SCHEDULE											
PART		MONTH	9 10			11			12					
		WEEK	4	1	2	3	4	1	2	3	4	1	2	3
	Research on thesis													
Al	Use and modification of the AI model code													
	Apply explainable AI, GradCAM													
	performance improvement													
Mobile	Research a framework													
Application -	Research a Websocket													
Research &	Create initial wireframes													
Design	for the mobile application													
Mobile	Implement the initial design													
Application -	view of the application and state management													
Implementatio	Implement WebSocket													
n & Testing	service													
	Research													
Backend API	Implementation													
	Testing													

► MOBILE APPLICATION - React Native & TypeScript + Redux

- Screens navigation
- Redux setup for state management
- Authentication
- WebSocket Connection
- Real time stocks data handling

IDENTITY API - C# - ASP.NET 5

- Database Entities Setup with Initial Migration
- Endpoints for user registration and login
- JWT Token Generation and Validation
- Endpoint for token refreshing

STOCKS SERVICE - Python

- WebSocket connection for handling/sending messages by/to the mobile app
- ▶ WebSocket connection for retrieving real time stocks data Yahoo Finances API
- Retrieving historical data for stocks

AI MODEL - TBD

- Image dataset augmentation for CNN model
- Making CNN, LSTM, LSTM-CNN model in 1 epoch and 100 epochs.

WHAT IS DONE

MOBILE APPLICATION

- ► 1.Setting Alerts
- 2. Handling Notifications
- ▶ 3.Design of Screens

STOCKS SERVICE

- ▶ 1. Figure out how to store and retrieve alerts efficiently
- 2.Integrate Al Model
- 3.Send notifications
- ▶ 4.Integrate Redis

AI MODEL

- Find an indicator that can explain why a prediction was made, like a heatmap.
- Reducing the loss by adjusting the epoch.
- Find other Als that can replace complex code.

WHAT IS NEXT

CHALLENGES

- MOBILE APPLICATION
 - Automatic token refreshing
 - State management with redux is complicated
 - ► Handling of WebSocket messages
- STOCKS SERVICE
 - Supporting two socket connections:
 - ▶ Retrieving live stocks data on one thread
 - ► Handling mobile application messages on another thread and sending live data
 - ▶ Giving supported stocks for the first time is a little slow caching is needed
- AI MODEL
 - Overfitting
 - Adjusting hyperparameters ex) epochs
 - Searching the way to visualize
 - Performance is bad
 - ▶ Thinking about searching another models.

LIMITATIONS

MOBILE APPLICATION

▶ WebSocket might not be needed - e.g. refactor

STOCKS SERVICE

- ► Caching is needed for faster responses Redis will fix that
- ► Efficient querying is needed for getting alerts in the future Research methods for improving query performance on sql database e.g. indexing
- ▶ WebSocket might not be needed e.g. refactor

AI MODEL

Even though the original author's code was used as it is, the loss is large, so we are thinking about whether to find another model or use it as it is.

- Al Model Reference
 - Paper Citation
 - ► Kim T, Kim HY (2019) Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE 14(2): e0212320. https://doi.org/ 10.1371/journal.pone.0212320
 - Paper code
 - https://github.com/luanft/lstm-cnn-model
 - Dataset
 - tw_spydata_raw.csv from Figshare
 - https://figshare.com/articles/dataset/Forecasting_Stock_Prices_with_a_Feature_Fusion_LSTM-CNN_Model_Using_Different_Representations_of_the_Same_Data/7471568
 - ▶ SPY stock price data with minute-by-minute \rightarrow 98,310 datas
 - Time(minute) / Trade High Value / Trade Low Value / Trade Open Value / Trade Close Value / Trade Volume / Trade Count

	Α	В	С	D	E	F	G
1	Time	Trade High	Trade Low	Trade Open	Trade Close	Trade Volume	Trade Count
2	0	214.23	214.14	214.15	214.155	1022241	2274
3	1	214.38	214.14	214.15	214.3699	582984	1902
4	2	214.37	214.18	214.37	214.28	705964	1943
5	3	214.3	214.16	214.29	214.19	430066	1321
6	4	214.2	214.09	214.18	214.1	444761	1599
7	5	214.25	214.11	214.11	214.23	284215	1193
8	6	214.3	214.22	214.235	214.22	354142	1144

Dataset

Raw-dataset (before seperated) - 98,310 datas

	Α	A B C		D	E	F	G	
1	Time	Trade High	Trade Low	Trade Open	Trade Close	Trade Volume	Trade Count	
2	0	214.23	214.14	214.15	214.155	1022241	2274	
3	1	214.38	214.14	214.15	214.3699	582984	1902	
4	2	214.37	214.18	214.37	214.28	705964	1943	
5	3	214.3	214.16	214.29	214.19	430066	1321	
6	4	214.2	214.09	214.18	214.1	444761	1599	
7	5	214.25	214.11	214.11	214.23	284215	1193	
8	6	214.3	214.22	214.235	214.22	354142	1144	

- Processed-Dataset (after seperated)
 - ► Row-dataset to Train/Validation/Test dataset (ratio: 68,800/10,000/19,474)

► CSV Data split

Preprocessing Dataset

To create the model in this experiment, we incorporate a middle price by averaging the high and low prices, and we then fill the colors between the prices to provide more information to the CNN.

Architecture

▲ Full Model Architecture

▲ ST-LSTM Branch

- Hyperparameters & Evaluate
 - Hyperparameters

```
import easydict
train_args = easydict.EasyDict({
    "name":"train",
    "epoch":100,
    "batch_size":32,
    "learning_rate":0.003,
    "epsilon":0.1
})
```

* 100 Epochs are defualt

Evaluate

```
Istm_cnn_model.compile(
    optimizer=adam_optimizer, loss=tf.losses.MeanSquaredError(),
    metrics=['mape', tf.keras.metrics.RootMeanSquaredError(name='rmse'), RMAE]
)
```

- Metrics
 - MAPE: Mean Absolute Percentage Error
 - ► RMSE: Root Mean Square Error (main)
 - RMAE: Root Mean Absolute Error

- Input & Output (batch size : 32)
 - ► CNN
 - ▶ Input : High prices, low prices, volumes → 112 x 112 RGB images
 - ► Output: average_pooling2d_1 (AveragePoo (32, 1, 1, 512) 0 re_Iu_5[0][0]
 - LSTM
 - ► Input : Close prices, volumes → Logarithmic return
 - Output: flatten_3 (Flatten) (32, 512) 0 average_pooling2d_1[0][0]
 - ► Logarithmic return

Input

$$\begin{bmatrix} \log \frac{P_t}{P_{t-1}}, \log \frac{P_{t+1}}{P_t}, \cdots, \log \frac{P_{t+28}}{P_{t+27}} \\ \log \frac{V_t}{V_{t-1}}, \log \frac{V_{t+1}}{V_t}, \cdots, \log \frac{V_{t+28}}{V_{t+27}} \end{bmatrix} \\ \begin{bmatrix} \log \frac{P_{t+1}}{P_t}, \log \frac{P_{t+2}}{P_{t+1}}, \cdots, \log \frac{P_{t+29}}{P_{t+28}} \\ \log \frac{V_{t+1}}{V}, \log \frac{V_{t+2}}{V_{t+1}}, \cdots, \log \frac{V_{t+29}}{V_{t+28}} \end{bmatrix} \\ \begin{bmatrix} \log \frac{P_{t+33}}{P_{t+28}} \end{bmatrix}$$

► CNN-LSTM Concatenation

Fully connected layers

(combined features \rightarrow 500 \rightarrow 100 \rightarrow 25 \rightarrow 1)

concatenate_1 (Concatenate)	(32, 541)	0	flatten_4[0][0] flatten_3[0][0]
flatten_5 (Flatten)	(32, 541)	0	concatenate_1[0][0]
dense_20 (Dense)	(32, 500)	271000	flatten_5[0][0]
dropout_15 (Dropout)	(32, 500)	0	dense_20[0][0]
dense_21 (Dense)	(32, 100)	50100	dropout_15[0][0]
dropout_16 (Dropout)	(32, 100)	0	dense_21[0][0]
dense_22 (Dense)	(32, 25)	2525	dropout_16[0][0]
dropout_17 (Dropout)	(32, 25)	0	dense_22[0][0]
dense_23 (Dense)	(32, 1)	26 =======	dropout_17[0][0]

Model Predict

```
from keras.models import load model
model = load model('CNN LSTM model epoch 1.h5', compile=False)
|model.summary()
test_dataset: tf.data.Dataset = load_lstm_cnn_dataset(
            WINDOW_SIZE, PREDICT_SIZE,
            create_bar_filled_line_fusion_chart,
            TEST SP500 DATA FILE, 'test'
test_dataset = test_dataset.cache(get_cache_file('test', 'lstm_cnn'))
test_dataset = test_dataset.batch(train_args.batch_size, drop_remainder=True)
test predict = model.predict(test_dataset)
print(type(test_predict))
print(test predict)
```

▲ Code for predict

- Predict with test dataset \rightarrow 19,474 datas
- 19,424 predict data for each epoch's model
- 50 differs between input data and output data
 - → Drop_remainder = True, then Batch caused the differs

```
[[207.37186]
[207.36519]
[207.37459]
[207.37128]
[207.38837]
              → Predict with model
[207.3983]
                     (epoch 1)
[[242.25653]
[242.25653]
[242.25653]
[242.25653]
              → Predict with model
[242.25653]
                   (epoch 100)
 [242.25653]
```

Measurement on results

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{1,i} - x_{2,i})^{2}}$$

$$RMAE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} |x_{1,i} - x_{2,i}|}$$

$$MAPE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{x_{2,i} - x_{1,i}}{x_{1,i}} \right|$$

We mainly focus on the root mean square error (RMSE) because the reference code use the sum of RMSE as a total loss

LSTM-CNN > Default epoch 100 case, val_RMSE is 9.2840

```
Epoch 97/100
3671 - val mape: 2.1306 - val rmse: 5.6892 - val RMAE: 2.2246
Epoch 98/100
1613 - val_mape: 1.5434 - val_rmse: 4.3774 - val_RMAE: 1.8222
Epoch 99/100
9389 - val_mape: 1.5324 - val_rmse: 4.3519 - val_RMAE: 1.8144
Epoch 100/100
1742 - val_mape: 2.0436 - val_rmse: 5.4931 - val_RMAE: 2.1717
Evaluating model
Metric score:
'RMAE': 2.8726494312286377.
'loss': 86,19175720214844,
'mape': 3.444488763809204,
'rmse': 9.283951759338379}
```

The best case is 54 epoch

The performance problem

Graph with [30min data] + [predict data after 30min]

TEAM ROLES

- ► Team Lead: Borislav Pavlov
- Al Algorithms:
 - ▶ Main Kim Young Oh, Kim Min Jae
 - Supported Borislav Pavlov, Park Geo Ryang
- Mobile Application + Additional Services
 - Main Borislav Pavlov, Park Geo Ryang
 - Supported Kim Young Oh, Kim Min Jae

