- 19. (a) Prove that if n is even, then n^2 is divisible by 4.
 - (b) Prove that if n is odd, then $n^2 1$ is divisible by 8.
- 20. Let A and B be non-empty subsets of \mathbb{R} , and let $A \subset B$. Prove that:
 - (a) if $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$,
 - (b) if $\inf A$ and $\inf B$ exist, then $\inf A \ge \inf B$.
 - (c) Let C and D be non-empty subsets of \mathbb{R} , and let $x \leq y$, for all $x \in C$ and $y \in D$. Then $\sup C \leq \inf D$.
- 21. Prove by induction the following equality: for all $n \in \mathbb{N}$, we have

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

22. Let

$$A = \left\{ \frac{1}{n^2 - n - 3} : n \in \mathbb{N} \right\}.$$

Compute, if they exist, the following quantities:

$$\inf A$$
, $\sup A$, $\max A$, $\min A$.

23. Suppose that $n, k \in \mathbb{N}$.

Let B be the set of k-element subsets of $\{1, \ldots, n\}$.

Let U be the set of (k+1)-element subsets of $\{1, \ldots, n+1\}$ containing the element n+1.

- (a) Determine the sets B and U and construct a bijection $B \longrightarrow U$ under the assumption that n = 4 and k = 2.
- (b) Construct a bijection $B \longrightarrow U$ for all $n, k \in \mathbb{N}$.
- (c) Express the cardinality |U| in terms of n and k.
- 24. Prove the following identity for all $r, m, n \in \mathbb{N}_0$ such that $r \leq m + n$:

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}.$$

Hint. Let A and B be sets such that |A| = m, |B| = n and $|A \cup B| = m + n$. For all r-element subsets $U \subset A \cup B$ we have that $A \cap U$ is an k-element subset of A and $B \cap U$ is an (r - k)-element subset of B where $k = |A \cap U|$.