反对称性。对任意 $f,g \in B^A$,若 $fRg \wedge gRf$,则对所有 $x \in A$,有 $f(x) \preccurlyeq g(x) \wedge g(x) \preccurlyeq f(x)$,从而有 f(x) = g(x)。由 x 的任意性知, f = g。所以 R 是反对称的。

这就证明了 R 是偏序关系。

(2) $\langle B^A, R \rangle$ 存在最大元当且仅当 $\langle B, \preccurlyeq \rangle$ 存在最大元。若 $\langle B, \preccurlyeq \rangle$ 中存在最大元 m,则常数函数 $f: A \to B, \forall x \in A, f(x) = m$ 就是 $\langle B^A, R \rangle$ 的最大元。

证明: 充分性。若 $\langle B, \preccurlyeq \rangle$ 存在最大元m,则取 $f: A \to B$,对所有 $x \in A$,令f(x) = m。显然,对任意 $g \in B^A$, $x \in A$,都有 $g(x) \preccurlyeq f(x) = m$,从而有gRf。因此, $\langle B^A, R \rangle$ 有最大元f。

必要性。反设 $\langle B, \preccurlyeq \rangle$ 不存在最大元,则对任意 $a \in A, f \in B^A$,必存在 $b \in B$,使得 $b \not\preccurlyeq f(a)$ (否则 f(a) 将成为 B 的最大元)。令 $g: A \to B, \forall x, g(x) = b$,则 $g(a) \not\preccurlyeq f(a)$,从而 $g \not R f$, f 不是最大元。由 f 的任意性知, $\langle B^A, R \rangle$ 无最大元。

七、

证明:充分性。若G为素数,则由Lagrange 定理知,G没有非平凡的子群。从而G是单群。

必要性。设 G 为单群。任取 G 中一个非单位元 $a \in G$ (本题应假定 G 是非平凡的,否则若 $G = \{e\}$,则 G 也是单群,但 |G| = 1,不是素数),则由于 $\langle a \rangle$ 是 G 的正规子群(因为 G 是 Abel 群,所以 G 的一切子群都是正规的),且 a 不是单位元,所以 $|\langle a \rangle| = |a| > 1$, $\langle a \rangle \neq \{e\}$ 。由单群 定义知,必有 $\langle a \rangle = G$ 。从而 $G = \{a^k \mid k \in \mathbb{Z}\}$ 是由 a 生成的循环群。假若 G 不是素数阶的,就 存在 $k \mid |G|, 1 < k < |G|$,而 $1 < |\langle a^k \rangle| = |a^k| = \frac{|G|}{k} < |G|$,从而 $\langle a^k \rangle$ 是 G 的一个非平凡的正规子群,矛盾。