PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-134412

(43)Date of publication of application: 23.05.1995

(51)Int.CI.

G03F 7/038 G03F 7/004 G03F 7/029 H01L 21/027

(21)Application number: 05-282824

(22)Date of filing:

05-282824 11.11.1993 (71)Applicant:

TOKYO OHKA KOGYO CO LTD

(72)Inventor:

KOBAYASHI MASAICHI YAMAZAKI HIROYUKI HARADA YOICHIRO TANAKA HATSUYUKI

TANAKA HATSUYUKI NAKAYAMA TOSHIMASA

(54) NEGATIVE TYPE RADIATION SENSITIVE RESIST COMPOSITION

(57)Abstract:

PURPOSE: To obtain a resist compsn. having high resolution and high sensitivity, capable of giving a resist pattern having a satisfactory profile shape and suitable for use in the production of a semiconductor device or in the working of a transparent electric conductive film for a liq. crystal display.

CONSTITUTION: A resin compsn. consisting of an alkali-soluble resin and alkoxymethylated amino resin is blended with a triazine compd. represented by formula I or a combination of the triazine compd. with a triazine compd. represented by formula II to obtain the objective radiation sensitive resist compsn. In the formula I, each of R1 and R2 is 1-3C alkyl. In the formula II, Z is 4-alkoxy-phenyl, 4-alkoxynaphthyl, 2-(3,5-dialkoxyphenyl)ethenyl, 2-(2-furyl)- ethenyl, 2-(5-alkyl-2-furyl)ethenyl, 3,4-methylenedioxyphenyl or 2-(3,4- methylenedioxyphenyl) ethenyl.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] (A) the resinous principle which consists of alkali fusibility resin and alkoxy methylation amino resin — receiving — (B) (b) general formula [** 1]

$$R \cdot O \longrightarrow CH = CH \longrightarrow N \longrightarrow N$$

$$R \cdot O \longrightarrow CC1_3$$

$$CC1_3$$

They are the triazine compound expressed with (R1 and R2 in a formula being the alkyl group of carbon numbers 1-3, respectively, and differing even if they are mutually the same) or the triazine compound of a ** (b) component, and a (b) general formula [** 2].

$$z \stackrel{\text{CC1}_{3}}{\underset{\text{CC1}_{3}}{\bigvee}}$$

Z in [type A 4-alkoxy phenyl group, a 4-alkoxy naphthyl group, 2-(3, 5-dialkoxy phenyl) ethenyl radical, 2-(2-furil) ethenyl radical, 2-(5-alkyl-2-furil) ethenyl radical, The negative-mold radiation sensitivity resist constituent characterized by blending what combined the triazine compound expressed with] which is 3 and 4-methylenedioxyphenyl radical or 2-(3, 4-methylenedioxyphenyl) ethenyl radical.

[Claim 2] (A) The negative-mold radiation sensitivity resist constituent according to claim 1 which has the blending ratio of coal of the alkali fusibility resin in a component, and alkoxy methylation amino resin in the range of 60:40 thru/or 99:1 by the weight ratio.

[Claim 3] (A) The negative-mold radiation sensitivity resist constituent according to claim 1 or 2 in the range whose loadings of the (B) component to a component are 0.5 – 15 % of the weight.

[Translation done.]

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-134412

(43)公開日 平成7年(1995)5月23日

(51) Int.Cl. ⁶ G 0 3 F	7/038 7/004 7/029	識別記号 5 0 5 5 0 3	庁内整理番号	FΙ	技術表示箇所
H01L	21/027		7352-4M		21/30 502 R 未請求 請求項の数3 OL (全 7 頁)
(21)出願番号	+	特顧平5-282824 平成5年(1993)111	H 11 E	(71)出願人	000220239 東京応化工業株式会社 神奈川県川崎市中原区中丸子150番地
(22)出願日		平成 5 年(1993)11)		(72)発明者	小林 政一 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内
				(72)発明者	山崎 浩幸 神奈川県川崎市中原区中丸子150番地 東 京応化工業株式会社内
				(72)発明者	原田 庸一郎 神奈川県川崎市中原区中丸子150番地 東 京応化工業株式会社内
				(74)代理人	弁理士 阿形 明 (外1名) 最終頁に続く

(54) 【発明の名称】 ネガ型放射線感応性レジスト組成物

(57)【要約】

【構成】 (A) アルカリ可溶性樹脂とアルコキシメチル化アミノ樹脂から成る樹脂成分に対し、(B) 下配一般式(I) で表わされるトリアジン化合物、又はこのものと下記一般式(II)で表わされるトリアジン化合物とを組み合わせたものを配合して成るネガ型放射線感応性レジスト組成物である。

【化1】

$$R^{1}O \longrightarrow CH = CH \longrightarrow N$$

$$N \longrightarrow CC1_{s}$$

$$CC1_{s}$$

$$CC1_{s}$$

$$CC1_{s}$$

 $z = \begin{pmatrix} N & CC1, \\ N & CC1, \end{pmatrix}$

 $[R^1$ 、 R^2 は炭素数 $1 \sim 3$ のアルキル基、2 は 4 -アル

コキシフェニル基、4 - アルコキシナフチル基、2 - (3,5 - ジアルコキシフェニル) エテニル基、2 - (2 - フリル) エテニル基、2 - (5 - アルキル - 2 - フリル) エテニル基、3,4 - メチレンジオキシフェニル基又は2 - (3,4 - メチレンジオキシフェニル) エテニル基]

【効果】 高い解像性及び高い感度を有し、かつ良好なプロファイル形状のレジストパターンを与えることができ、半導体デバイスの製造や液晶表示用の透明導電膜の加工などに好適に用いられる。

【特許請求の範囲】

【請求項1】 (A) アルカリ可溶性樹脂とアルコキシメチル化アミノ樹脂から成る樹脂成分に対し、(B) (イ) 一般式

【化1】

$$R \circ O \longrightarrow CH = CH \longrightarrow N \longrightarrow CC1$$

$$R \circ O \longrightarrow CC1$$

(式中の R^1 及び R^2 はそれぞれ炭素数 $1\sim3$ のアルキル基であり、それらはたがいに同一でも異なっていてもよい)で表わされるトリアジン化合物、又は該(イ)成分のトリアジン化合物と(ロ)一般式

【化2】

$$z \stackrel{\mathsf{N}}{\longrightarrow} N$$

[式中の2は4-アルコキシフェニル基、4-アルコキ 20シナフチル基、2-(3,5-ジアルコキシフェニル) エテニル基、2-(5-アルキル・2-フリル) エテニル基、2-(5-アルキル・2-フリル) エテニル基、3,4-メチレンジオキシフェニル 基又は2-(3,4-メチレンジオキシフェニル エテニル基である] で表わされるトリアジン化合物とを組み合わせたものを配合したことを特徴とするネガ型放射線感応性レジスト組成物。

【請求項2】 (A) 成分中のアルカリ可溶性樹脂とアルコキシメチル化アミノ樹脂との配合割合が重量比で60:40ないし99:1の範囲にある請求項1記載のネガ型放射線感応性レジスト組成物。

【請求項3】 (A)成分に対する(B)成分の配合量が0.5~15重量%の範囲にある請求項1又は2記載のネガ型放射線感応性レジスト組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なネガ型放射線感応性レジスト組成物、さらに詳しくいえば、半導体デバイスの製造、液晶表示用の透明導電膜の加工など電子工業分野における微細加工に適した高い解像性及び高い感度を有し、しかも良好なプロファイル形状のレジストバターンを与えうるネガ型放射線感応性レジスト組成物に関するものである。

[0002]

【従来の技術】近年、半導体デバイスにおける高密度化、高集積度化の進歩は著しく、その微細加工技術における解像性は、サブミクロン領域まで要求されるようになってきている。そして、半導体デバイスの製造分野において主流となっているリソグラフィー技術に関しても、0.5μm以下の微細加工が必要とされ、これに応50

えるために、短波長の紫外線であるDeep UV、i 線及びg線などの単波長を発光する光源や、エキシマレ ーザー、KrFレーザー(波長248nm)が使用され 始めているほか、電子線やエックス線に感応するレジス トの開発も進められている。

【0003】このような放射線に適合するネガ型レジスト組成物について、トリクロロメチル化トリアジン化合物を光重合開始剤又は光酸発生剤として用いた種々の研究が近年積極的になされており、例えばエチレン性不飽和基をもつ単量体(特開昭54-74887号公報)、エチレン性不飽和二重結合を少なくとも1個有する付加重合可能な化合物(特開昭54-151024号公報)、フリーラジカル又は酸により重合する単量体(特開昭60-105667号公報)などの重合性モノマー成分との組合せによるレジスト組成物、クレゾールノボラック樹脂、アルコキシメチル化メラミン樹脂(特開平2-146044号公報)、ボリヒドロキシスチレン(特開平4-136858号公報)などの架橋可能な樹脂成分との組合せによるレジスト組成物が提案されている。

【0004】しかしながら、これらのレジスト組成物においては、それから得られるレジストパターンの断面形状がスソを引きプロファイル形状が悪くなりやすく、高解像性が得られない上に、Deep UV、i線、g線、エキシマレーザー、電子線、エックス線などの放射線に対して実用的な感度を有していないという欠点があり、また比較的昇華性の高いトリアジン化合物が現像後のポストペーク時に昇華し、処理室内壁に結晶状態で付着して、これが被処理基板表面上に落下することにより、エッチング時にエッチング不良を起こしパターン形成の異常の原因となっていた。

【0005】このように、特に0.5μm以下の微細加工に対応できる前記した各種放射線を利用したリソグラフィー技術において用いられる感光剤としてのトリクロロメチル化トリアジン化合物を含有するネガ型レジスト組成物については、まだ実用的なものは得られていないのが実情である。

【0006】このため、半導体デバイスや液晶表示素子の製造分野においては、エッチング不良を起こさず、解像性及びレジストパターンのプロファイル形状に優れ、かつ各種放射線に対する感度の高いネガ型放射線感応性レジスト組成物の開発が強く望まれている。

[0007]

【発明が解決しようとする課題】本発明は、このような 要望にこたえるため、各種放射線に対して感応し、高解 像性でレジストパターンのプロファイル形状に優れると ともに、エッチング不良を起こすことなく、良好なパタ ーン形成が実現できる感度の高いネガ型放射線感応性レ ジスト組成物を提供することを目的としてなされたもの である。

[0008]

【課題を解決するための手段】本発明者らは、微細加工 用として好適なネガ型放射線感応性レジスト組成物を開 発すべく鋭意研究を重ねた結果、アルカリ可溶性樹脂と アルコキシメチル化アミノ樹脂とから成る樹脂成分に、 特定のトリアジン化合物を配合することにより、その目*

【0009】すなわち、本発明は、(A)アルカリ可溶性樹脂とアルコキシメチル化アミノ樹脂から成る樹脂成分に対し、(B)(イ)一般式(I)

【化3】

$$R \circ O \longrightarrow CH = CH \longrightarrow N$$

$$N = V$$

$$V = V$$

(式中の R^1 及び R^2 はそれぞれ炭素数 $1\sim3$ のアルキル基であり、それらはたがいに同一でも異なっていてもよい)で表わされるトリアジン化合物、又は該(イ)成分のトリアジン化合物と(ロ)一般式(II)

【化4】

$$Z \stackrel{N}{\longrightarrow} N \qquad (11)$$

CCls [式中の2は4-アルコキシフェニル基、4-アルコキ 20シナフチル基、2-(3,5-ジアルコキシフェニル) エテニル基、2-(5-アルキル-2-フリル) エテニル基、2-(5-アルキル-2-フリル) エテニル基、3,4-メチレンジオキシフェニル基又は2-(3,4-メチレンジオキシフェニル) エテニル基である] で表わされるトリアジン化合物とを組み合わせたものを配合したことを特徴とするネガ型放射線感応性レジスト組成物を提供するものである。

【0010】本発明組成物に用いるアルカリ可溶性樹脂 としては、例えばノボラック樹脂、アクリル樹脂、スチ レンとアクリル酸との共重合体、ヒドロキシスチレンの 重合体及び共重合体、ポリα-メチルビニルフェノール などが挙げられ、中でもポリヒドロキシスチレン、ノボ ラック樹脂が好ましく、さらには、アルカリ可溶性ノボ ラック樹脂が最も好ましい。このアルカリ可溶性ノボラ ック樹脂については特に制限はなく、従来ポジ型ホトレ ジスト組成物において被膜形成用物質として慣用されて いるもの、例えばフェノール、クレゾール、キシレノー ルなどの芳香族ヒドロキシ化合物とホルムアルデヒドな どのアルデヒド類とを酸性触媒の存在下に縮合させたも 40 のなどが用いられる。このアルカリ可溶性ノポラック樹 脂としては、低分子領域をカットした重量平均分子量が 2000~20000、好ましくは3000~1500 0の範囲のものが好ましい。

【0011】本発明で好適に用いるアルカリ可溶性ノボラック樹脂は、例えばフェノール、m-クレゾールとp-クレゾール、2,5-キシレノール及び3,5-キシレノールの中から選ばれた少なくとも1種とをそれぞれ所定の割合で含有する混合フェノール性化合物とホルマリンとを、酸触媒の存在下で縮合反応させることにより

製造することができる。本発明においてレジストバターンのプロファイルの改良を考慮する場合には、m - クレゾール30重量%以上を用いたものが好適である。

【0012】一方、ポリヒドロキシスチレンについては、特に制限はなく、公知のものを用いることができるが、重量平均分子量3000~50000、好ましくは5000~30000の範囲のものが好適である。

【0013】本発明組成物において、(A)成分のもう 一方の樹脂成分であるアルコキシメチル化アミノ樹脂と しては、特にアルコキシメチル化メラミン樹脂やアルコ キシメチル化尿素樹脂、具体的にはメトキシメチル化メ ラミン樹脂、エトキシメチル化メラミン樹脂、プロポキ シメチル化メラミン樹脂、プトキシメチル化メラミン樹 脂、メトキシメチル化尿素樹脂、エトキシメチル化尿素 樹脂、プロポキシメチル化尿素樹脂、プトキシメチル化 尿素樹脂などが挙げられ、これらは単独で用いてもよい し、2種以上を組み合わせて用いてもよい。これらのア ルコキシメチル化アミノ樹脂は、例えば沸騰水溶液中で メラミン又は尿素とホルマリンを酸触媒下に反応させて 縮合物を得たのち、これをメチルアルコール、エチルア ルコール、プロピルアルコール、プチルアルコールなど の低級アルコール類でエーテル化させ、次いで反応液を 冷却して析出する樹脂を取り出すことにより、製造する ことができる。

【0014】前記アルコキシメチル化アミノ樹脂の中では、特にアルコキシメチル化メラミン樹脂は、常法により得られたメチロール化メラミンめメチロール基をエーテル化することにより得られるもので、メチロール基を平均2.5以上、好ましくは3.5以上エーテル化したものが好ましい。実用上は市販されているニカラックMx・750、ニカラックMx・706、ニカラックMx・706、ニカラックMx・706、ニカラックMx・708、ニカラックMx・40、ニカラックMx・31、ニカラックMs・11、ニカラックMw・22、ニカラックMw・30(以上、三和ケミカル社製)などを好ましく使用することができる。これらは単独でも、また2種以上を組み合わせて用いてもよい。

所定の割合で含有する混合フェノール性化合物とホルマ 【0015】次に、本発明組成物においては、(B)成 リンとを、酸触媒の存在下で縮合反応させることにより 50 分として、(イ)一般式(1)で表わされるトリアジン

化合物、又は該(イ)成分のトリアジン化合物と(ロ)一般式(II)で表わされるトリアジン化合物とを組み合わせたものが用いられる。

【0016】前記(イ)成分の一般式(I)で表わされ るトリアジン化合物としては、例えば2 - [2 - (3, 4 - ジメトキシフェニル) エテニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、2 -[2-(3-メトキシ-1-エトキシフェニル) エテニ ル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、2 - [2 - (3 - メトキシ - 4 - プロポ 10 キシフェニル) エテニル] - 4, 6 - ピス (トリクロロ メチル) - 1, 3, 5 - トリアジン、2 - [2 - (3 -エトキシ・4・メトキシフェニル) エテニル] - 4、6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジ ン、2-[2-(3,4-ジエトキシフェニル)エテニ ル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、2 - [2 - (3 - エトキシ - 4 - プロポ キシフェニル) エテニル] - 4, 6 - ピス (トリクロロ メチル) -1, 3, 5 - トリアジン、2 - [2 - (3 -プロポキシ・4・メトキシフェニル) エテニル]・4, 6-ビス(トリクロロメチル)-1,3,5-トリアジ ン、2 - [2 - (3 - プロポキシ - 4 - エトキシフェニ ル) エテニル] -4, 6-ピス(トリクロロメチル) -1, 3, 5 - トリアジン、2 - [2 - (3, 4 - ジプロ ポキシフェニル) エテニル] - 4, 6 - ピス (トリクロ ロメチル)・1,3,5-トリアジンなどを挙げること ができる。これらのトリアジン化合物は単独で用いても よいし、また2種以上を組み合わせて用いてもよい。

【0017】一方、前記(イ)成分のトリアジン化合物 と、所望に応じて組み合わせて用いられる(ロ)成分の 前記一般式(II)で表わされるトリアジン化合物とし ては、例えば2-(4-メトキシフェニル)-4,6-ピス(トリクロロメチル)-1,3,5-トリアジン、 2 - (4 - エトキシフェニル) - 4, 6 - ピス (トリク ロロメチル) - 1, 3, 5 - トリアジン、2 - (4 - プ ロポキシフェニル) - 4, 6 - ピス (トリクロロメチ ル) - 1, 3, 5 - トリアジン、2 - (4 - プトキシフ エニル) - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5-トリアジン、2-(4-メトキシナフチル)-4, 6-ピス (トリクロロメチル) -1, 3, 5-トリ アジン、2 - (4 - エトキシナフチル) - 4, 6 - ビス (トリクロロメチル) - 1, 3, 5 - トリアジン、2 -(4-プロポキシナフチル) - 4, 6-ピス (トリクロ ロメチル) - 1, 3, 5 - トリアジン、2 - (4 - プト キシナフチル) - 4, 6 - ピス(トリクロロメチル) -1, 3, 5 - トリアジン、2 - (4 - メトキシ - 6 - カ ルポキシナフチル) - 4、6 - ピス(トリクロロメチ ル) -1, 3, 5 - トリアジン、2 - (4 - メトキシ -6-ヒドロキシナフチル)-4,6-ピス(トリクロロ メチル) - 1, 3, 5 - トリアジン、2 - [2 - (2 - 50

フリル) エテニル] - 4, 6 - ピス (トリクロロメチ ル) -1, 3, 5 - トリアジン、2 - [2 - (5 - メチ ル・2 - フリル) エテニル] - 4, 6 - ピス (トリクロ ロメチル) - 1, 3, 5 - トリアジン、2 - [2 - (5 - エチル - 2 - フリル) エテニル] - 4, 6 - ピス (ト リクロロメチル) - 1, 3, 5 - トリアジン、2 - [2 - (5 - プロピル - 2 - フリル) エテニル] - 4, 6 -ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、 2 - [2 - (3, 5 - ジメトキシフェニル) エテニル) - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - ト リアジン、2-[2-(3-メトキシ-5-エトキシフ ェニル) エテニル] - 4, 6 - ピス (トリクロロメチ ル) -1, 3, 5 - トリアジン、2 - [2 - (3 - メト キシ・5 - プロポキシフェニル) エテニル] - 4, 6 -ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、 2 - [2 - (3 - エトキシ - 5 - メトキシフェニル) エ テニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5-トリアジン、2-[2-(3, 5-ジエトキシ フェニル) エテニル] - 4, 6 - ピス (トリクロロメチ ル) -1, 3, 5-トリアジン、2-[2-(3-エト キシ・5・プロポキシフェニル) エテニル] -4,6-ピス (トリクロロメチル) - 1, 3, 5 - トリアジン、 2 - [2 - (3 - プロポキシ - 5 - メトキシフェニル) エテニル] - 4, 6 - ビス (トリクロロメチル) - 1, 3, 5 - トリアジン、2 - [2 - (3 - プロポキシ - 5 - エトキシフェニル) エテニル] - 4, 6 - ピス (トリ クロロメチル) - 1, 3, 5 - トリアジン、2 - [2 -(3, 5 - ジプロポキシフェニル) エテニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジ ン、2 - (3, 4-メチレンジオキシフェニル) - 4, 6-ビス(トリクロロメチル)-1,3,5-トリアジ ン、2-[2-(3,4-メチレンジオキシフェニル)

【0018】前記(ロ)成分のトリクロロメチル化トリアジン化合物の中で特に好ましいのは、2 - (4 - メトキシフェニル) - 4,6 - ピス(トリクロロメチル) - 1,3,5 - トリアジン、2 - [2 - (5 - メチル - 2 - フリル)エテニル] - 4,6 - ピス(トリクロロメチル) - 1,3,5 - トリアジン、2 - (3,4 - メチレンジオキシフェニル) - 4,6 - ピス(トリクロロメチル) - 1,3,5 - トリアジンであり、これらは(イ)成分のトリアジン化合物と任意の割合で組合わされて用いられる。

エテニル] - 4, 6 - ピス (トリクロロメチル) - 1,

3,5-トリアジンなどが挙げられる。これらのトリア

ジン化合物は1種用いてもよいし、2種以上を組み合わ

せて用いてもよい。

【0019】該(イ)成分と(ロ)成分との有利な組合せとしては、(1)(イ)成分に対し、2-(4-アルコキシフェニル)-4,6-ピス(トリクロロメチル)-1,3,5-トリアジンを組み合わせたもの、(2)

(イ) 成分に対し、2 - (3, 4 - メチレンジオキシフ ェニル) - 4, 6 - ピス (トリクロロメチル) - 1, 3,5-トリアジンを組み合わせたもの、(3)(イ) 成分に対し、2-[2-(5-アルキル-2-フリル) エテニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3. 5 - トリアジンを組み合わせたもの、(4)(イ) 成分に対し、2-[2-(5-アルキル-2-フリル) エテニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジンと2 - (3, 4 - メチレンジオキシ フェニル) - 4, 6 - ピス(トリクロロメチル) - 1, 3.5-トリアジンとを組み合わせた3成分から成るも の、及び(5)(イ)成分に対し、2-(3,4-メチ レンジオキシフェニル) - 4, 6 - ピス (トリクロロメ チル) - 1, 3, 5 - トリアジンと2 - (4 - アルコキ シフェニル) - 4, 6 - ピス (トリクロロメチル) -1, 3, 5 - トリアジンとを組み合わせた 3 成分から成 るものを挙げることができるが、これらの組合せの中で (4) 及び(5) の3成分から成るもの、特に(4) の 3成分から成るものが好適である。また、(イ)成分の 配合割合は、トリアジン化合物全体量に対して重量基準 で50%以上含まれているのが好ましいが、(ロ)成分 に2-(3,4-メチレンジオキシフェニル)-4,6 - **ビ**ス(トリクロロメチル) - 1, 3, 5 - トリアジン を用いた場合には、(イ)成分とこれの合計量がトリア ジン化合物全重量に対し、50%以上であればよい。

【0020】本発明組成物における前記各成分の配合割合については、(A)成分のアルカリ可溶性樹脂とアルコキシメチル化アミノ樹脂とは、重量比が60:40ないし99:1、好ましくは75:25ないし98:2になるような割合で用いるのが望ましい。これらの樹脂成分の割合が前記範囲を逸脱すると、(B)成分を配合しても高性能のレジスト組成物が得られない。

【0021】また、(B)成分、すなわち、(イ)成分のトリアジン化合物単独、又は(イ)成分と(ロ)成分との組合せから成るトリアジン化合物は、前記の(A)成分に対して0.5~15重量%、好ましくは1~10重量%の範囲で配合される。この配合量が0.5重量%未満では本発明の目的が十分に達成されないし、15重量%を超えるとレジストのアルカリ水溶液に対する溶解性が悪くなり、現像性が低下するため好ましくない。

【0022】本発明組成物には、本発明の目的を損なわない範囲で、必要に応じて相容性のある添加物、例えばレジスト膜の性能などを改良するための付加的樹脂、可塑剤、安定剤、界面活性剤、現像した像をより一層可視的にするための着色料、また、より増感効果を向上させるための増感剤やハレーション防止用染料などの慣用の添加物を含有させることができる。

【0023】本発明組成物は、前記各成分を有機溶剤に溶解して、溶液の形で用いるのが有利である。このような有機溶剤としては、例えばアセトン、メチルエチルケ 50

トン、シクロヘキサノン、イソプチルメチルケトン、イソアミルメチルケトン、1, 1, 1 - トリメチルアセトンなどのケトン類; エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールモノアセテートのモノメチルエーテル、モノブロピルエーテル、モノブロピルエーテル、モノブロピルエーテル、モノブロピルエーテルスはモノフェニルエーテルなどの多価アルコール類及びその誘導体;ジオキサンのような環式エーテル類; 及び酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルピン酸メチル、パピン酸エチル、3 - エトキシプロピオン酸エチルなどのエステル類を挙げることができる。これらは単独でも、また2種以上を混合して用いてもよい。

【0024】次に、このようにして調製されたネガ型放射線感応性レジスト組成物の溶液を用いて、微細パターンを形成する方法について説明すると、まずシリコンウエハーのような基板上に、該レジスト組成物の溶液をスピンナーなどで塗布し、乾燥して放射線感応層を設けたのち、g線、i線、Deep UV、エキシマレーザー、エックス線をマスクを介して選択的に照射するか、電子線を走査して照射したのち、加熱処理を施し、次いで、例えば2~10重量%のテトラメチルアンモニウムヒドロキシドやコリンなどの有機アルカリ水溶液を用いて現像することにより非照射部分が選択的に溶解除去され、プロファイル形状に優れたレジストパターンを形成することができる。

[0025]

【発明の効果】本発明のネガ型放射線感応性レジスト組成物は、解像性及びプロファイル形状に優れたレジストパターンを形成しうるとともに、ポストベーク時の昇華したトリアジン化合物による処理室内壁の汚染の防止、さらに該付着物の被処理基板表面上への落下によるエッチング不良やパターン不良の改善が実現され、かつ各種放射線に対して高い感度を有するため、特に微細加工化の進む半導体のデバイスの製造に好適に用いられる。

[0026]

【実施例】次に実施例により本発明をさらに詳細に説明 するが、本発明はこれらの例によってなんら限定される ものではない。なお、各例中の昇華性度は次のようにし て評価されたものである。

【0027】昇華性度;得られたウエハーを、160℃で90秒間ペークし、処理室内壁にトリアジン化合物の結晶が認められるか否かを観察し、以下の基準で示した。

◎: 300枚ペーク後も結晶は認められない。

〇: 200~299枚ペーク後に結晶が認められる。

△: 100~199枚ペーク後に結晶が認められる。

×: 50~99枚ベーク後に結晶が認められる。

60 【0028】実施例1

m - クレゾールとp - クレゾールとを重量比で70:30 の割合で混合し、これにホルマリンを加え、シュウ酸触媒を用いて常法により縮合して得たクレゾールノボラック樹脂(重量半均分子量6000)25gとアルコキシメチル化メラミン樹脂であるニカラックMw - 30(三和ケミカル社製)を樹脂成分に対して3重量%(0.75g)とを乳酸エチル100gに溶解したのち、この溶液にクレゾールノボラック樹脂及びアルコキシメチル化メラミン樹脂の合計量に対して、 $2-[2-(3,4-ジメトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンを3重量%の割合で加えて溶解したものを孔径<math>0.2\mu m$ のメンプランフィルターを用いて加圧ろ過することによりレジスト溶液を得た。

【0029】次に、得られたレジスト溶液をヘキサメチルジシラザン雰囲気中に7分間放置することで表面処理した5インチシリコンウエハー上に、4000 rpmで20秒間スピンコートし、ホットプレート上で90℃で90秒間乾燥することにより、1.0μm厚レジスト層を形成した。次いで、形成されたレジスト層にg線用縮20小投影露光装置1505G7E(ニコン社製)により、*

* g線を選択的に露光したのち、110℃で90秒間加熱処理を行い、次いで、2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に23℃で約1分間浸せきすることにより、g線の非照射部分を溶解除去した後、このウエハーをホットプレート上において160℃で90秒間ペークしてレジストパターンを得た。このレジストパターンは、シリコンウエハー面から垂直に切り立った良好なプロファイル形状を有する0.50μmのレジストパターンであった。また同様の操作によりウエハー300枚を処理したが、処理室内壁にトリアジン化合物の結晶の析出はみられなかった。

【0030】 実施例2~9

アルコキシメチル化アミノ樹脂の混合割合を5重量% (1.25g)に、またトリアジン化合物の種類及び配合量を表1に示すように変えた以外は、実施例1と同様な操作を行い、それぞれのレジストのポストペーク時における昇華性度及び感度を求めた。その結果を表1に示す。

【0031】 【表1】

実施例	トリア	昇華性度	-0 -C:	
夫権が	種類	配合量(重量%)	升甲性及	感度 (ms)
2	T ₄	5	0	120
3	T 4 : T 2	5:5	0	8 0
4	T4: T1	5:5	0	110
5	T 4 : T 5	5:5	0	110
6	T4: T3: T2	3:3:4	0	100
7	T4: T5: T1	3:3:4	0	150
8	T4: T2: T1	5:3:2	0	100
9	T4: T3: T2	5:5:5	0	70

【0032】比較例1~5

アルコキシメチル化アミノ樹脂の混合割合を5重量% (1.25g)に、またトリアジン化合物の種類及び配合量を表2に示すように変えた以外は、実施例1と同様※ ※な操作を行い、それぞれのレジストのポストペーク時に おける昇華性度を求めた。その結果を表2に示す。

[0033]

【表2】

比較例	トリア			
TC #X Dil	種類	配合量(重量%)	昇華性度	
1	T 2	15	×	
2	T ₁	15	×	
3	T 2 : T 1	5 : 5	×	
4	T a : T a	5 : 5	Δ	
5	$T_a:T_1$	5:5	Δ	

【0034】表1及び表2において、 T_1 、 T_2 、 T_3 及び T_4 はそれぞれ次のとおりの意味を示す。

T1:2-(4-メトキシフェニル)-4,6-ビス (トリクロロメチル)-1,3,5-トリアジン T₂: 2 - [2 - (5 - メチル - 2 - フリル) エテニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジン

50 Ts: 2-(3, 4-メチレンジオキシフェニル) -

(7)

特開平7-134412

11

4, 6 - ビス (トリクロロメチル) - 1, 3, 5 - トリアジン

T₄: 2 - [2 - (3, 4 - ジメトキシフェニル) エテ

12 ニル] - 4, 6 - ピス (トリクロロメチル) - 1, 3, 5 - トリアジン

フロントページの続き

(72)発明者 田中 初幸

神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内

(72)発明者 中山 寿昌

神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内