

From English P.O. =
$$100 \cdot e^{\left(\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}}\right)}$$

$$t_p = \frac{\pi}{\omega_n \cdot \sqrt{1-\zeta^2}}$$

$$t_r \cdot \omega_n \approx \frac{1}{\sqrt{1-\zeta^2}} \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{-\zeta}\right)$$

$$t_{s,2\%} = 4\tau = \frac{4}{\zeta \cdot \omega_n}$$

$$t_r \cdot \omega_n \approx \frac{1}{\sqrt{1-\zeta^2}} \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{-\zeta} \right)$$

$$t_{s,2\%} = 4\tau = \frac{4}{\zeta \cdot \omega_n}$$

$$\omega_n \approx \frac{1}{t_r \cdot \sqrt{1 - \zeta^2}} \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{-\zeta} \right)$$

System Type Number n	0	1	2
Step Input $R(s) = 1/s$	Error = 1/(1+K)	0	0
Ramp Input $R(s) = 1/s^2$	$Error = \infty$	Error = 1 / K	0
Acceleration Input, 1/s ³	$Error = \infty$	$Error = \infty$	Error = 1 / K

$$q = \frac{\Delta h}{R}$$

$$q_{in} - q_{out} = C \frac{dh}{dt}$$

Common Inputs	f(t), Time Domain	F(s), Laplace Domain	
Unit Step	1(t), t > 0	$\frac{1}{s}$	
Unit Ramp	t	$\frac{1}{s^2}$	
Common Transform Pairs	f(t), Time Domain	F(s), Laplace Domain	
1 st Order Step Response	$\frac{1}{a} \cdot \left(1 - e^{-at}\right)$	$\frac{1}{s\cdot(s+a)}$	
2 nd Order Step Response	$1 - \frac{e^{-\zeta \cdot \omega_n \cdot t}}{\sqrt{1 - \zeta^2}} \cdot \sin(\omega_d \cdot t + \phi)$ $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$	

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s \cdot F(s)$$

Table of Physical System Relationships									
System	Inductance	Capacitance	Resistance	Effort	Flow	Item			
Mechanical -	Mass, m	Springs, k	Damper, b	Force, F	Velocity, v	Variable			
Translationa	Kg	N/m	N/m/s	N	m/s	Metric Units			
1	slugs	lb/in	lb/in/s	lbf	in/s	English Units			
	F = m dv/dt	F = k x	F = b v	Momentum	$x = \int v dt$	Equation			
	$E = \frac{1}{2} \text{ m v}^2$	$E = \frac{1}{2} k x^2$	$P = b v^2$	$m v = \int F dt$	P = F v	Energy/Power			
Mechanical -	Inertia, J	Spring, k	Damper, b	Torque, T	\angle Velocity, ω	Variable			
Rotational	$N-m-s^2$	N-m/rad	N-m-s	N-m	rad/s	Metric Units			
	lb-in-s ²	lb-in/rad	lb-in-s	lbf-in	rad/s	English Units			
	$T=J_{\alpha}$	$T = k \theta$	$T = b \omega$	Momentum	$\theta = \int \omega dt$	Equation			
	$E = \frac{1}{2} J_{\omega}^{2}$	$E = \frac{1}{2} k \theta^2$	$P = b \omega^2$	$J_{\omega} = \int T dt$	$P = T \omega$	Energy/Power			
Electrical	Inductance, L	Capacitance, C	Resistance, R	Volts	Current, I	Variable			
	Henries, H	Farads, F	Ohms, Ω	V	Amps, A	Metric Units			
	V = L di/dt	$V = 1/C \int i dt$	V = R i	Flux Linkage	$q = \int i dt$	Equation			
	$E = \frac{1}{2} L i^2$	$E = \frac{1}{2} C V^2$	$P = 1/R V^2$	$L i = \int V dt$	P = V i	Energy/Power			
Hydraulic	Fluid Inertia	Capacitance	Orifice	Pressure, p	Flow Rate, Q	Variable			
Pneumatic	$N s^2 / m^5$	m ³ /Pa (linear)	$(m^3/s)/(N/m^2)^{1/2}$	Pascal, Pa	m^3/s	Metric Units			
	$lbf s^2 / in^5$	in ³ /psi (linear)	$(in^3/s)/(psi)^{1/2}$	psi, lb/in ²	in ³ /s	English Units			
	P = I dQ/dt	$p = 1/C \int Q dt$	$Q = K_V \sqrt{P}$	Momentum	$q = \int Q dt$	Equation			
	$E = \frac{1}{2} I Q^2$	$E = \frac{1}{2} C p^2$	P = p Q	$Q I = \int p dt$	Power = $p Q$	Energy/Power			
Thermal	N/A	Capacitance	Resistance, R _f	Temperature, T	Heat flow rate, q	Variable			
		J/K	K/W	Kelvin, K	Watts, W	Metric Units			
		lb-in/R	R/Btu	Rankine, R	Btu/s	English Units			
		$\Delta T = 1/C \int q dt$	$q=1/R_{\rm f}\Delta T$	Momentum	Heat Energy =	Equation			
		E = C T	$P=1/R_{\rm f}\Delta T$	not used	1/C∫q dt	Energy/Power			