

A Assesment Report

on

"Predict Employee Attrition"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE(AI&ML)

By

Siddhi Gupta(202401100400186)

Under the supervision of

"Mr. Abhishek Shukla"

KIET Group of Institutions, Ghaziabad

Affiliated to

Dr. A.P.J. Abdul Kalam Technical University, Lucknow (Formerly UPTU)

May, 2025

INDEX

- 1. Title Page
- 2. Introduction
- 3. Methodology used
- 4. Code
- 5. Output
- 6. References

Title Page

Title: Predicting Employee Attrition

Name: Siddhi Gupta

Roll No: 202401100400186

Course: B.Tech CSE (AIML)

Subject: Artificial Intelligence for Engineers

Institute: KIET Group of Institutions

Introduction

Employee attrition refers to the loss of employees through resignation or retirement. Predicting attrition helps companies reduce costs and improve retention. In this project, we use a dataset from IBM HR Analytics to classify whether an employee is likely to leave the company based on factors like job satisfaction, salary, work-life balance, and years at the company.

Methodology

- **1.Data Loading** Read the HR dataset (WA_Fn-UseC_-HR-Employee-Attrition.csv).
- **2.Preprocessing** Handle categorical variables using label encoding; drop irrelevant columns.
- **3.EDA** Used correlation heatmap to find relationships between features.
- **4.Model Building** Split data into training/testing sets. Trained a Logistic Regression classifier.
- **5.Evaluation** Evaluated using accuracy score and confusion matrix.

Code

```
# Step 1: Import Required Libraries

# ------
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

```
# -----
# Step 2: Upload and Load the Dataset

# ------
from google.colab import files

uploaded = files.upload()  # Upload your CSV file here
```

```
# Automatically get the uploaded file name
file_name = list(uploaded.keys())[0]
```

```
# Read the dataset

data = pd.read_csv(file_name)

print(f"\n⊗Dataset '{file_name}' loaded successfully!")

data.head()
```

```
# Step 3: Data Preprocessing
print("\n2 Checking for missing values...\n")
print(data.isnull().sum())
data['Attrition'] = data['Attrition'].map({'Yes': 1, 'No': 0})
columns_to_drop = ['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours']
data.drop(columns=columns_to_drop, axis=1, inplace=True)
# Encode categorical (non-numeric) columns using Label Encoding
label_encoder = LabelEncoder()
for column in data.select_dtypes(include='object').columns:
   data[column] = label_encoder.fit_transform(data[column])
print("\n√Preprocessing complete!")
data.head()
plt.figure(figsize=(5, 4))
sns.countplot(x='Attrition', data=data)
```

plt.title("Employee Attrition Count")

```
plt.xticks([0, 1], ['No', 'Yes'])
plt.ylabel("Number of Employees")
plt.show()
plt.figure(figsize=(15, 10))
sns.heatmap(data.corr(), cmap="coolwarm", annot=False)
plt.title("Feature Correlation Heatmap")
plt.show()
# Step 5: Feature Selection and Train-Test Split
X = data.drop('Attrition', axis=1) # Features
# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize features to bring them to the same scale
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X test scaled = scaler.transform(X_test)
# Step 6: Model Training
model = RandomForestClassifier(random_state=42)
model.fit(X_train_scaled, y_train)
```

```
# Predict on test data
y_pred = model.predict(X_test_scaled)
```

```
# ------
# Step 7: Model Evaluation
# ------
# Accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"\n@ Model Accuracy: {accuracy:.4f}")
```

```
# Confusion Matrix

plt.figure(figsize=(5, 4))

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d', cmap='Blues')

plt.title("Confusion Matrix")

plt.xlabel("Predicted")

plt.ylabel("Actual")

plt.show()
```

```
# Classification Report

print("\n\text{N\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\e
```

```
# ------
# Step 8: Top Important Features
# ------
importances = model.feature_importances_
features = X.columns
top_indices = np.argsort(importances)[-10:] # Top 10 important features
```

```
plt.figure(figsize=(10, 6))

plt.title("Top 10 Important Features Influencing Attrition")

plt.barh(range(len(top_indices)), importances[top_indices], align='center')

plt.yticks(range(len(top_indices)), [features[i] for i in top_indices])

plt.xlabel("Feature Importance Score")

plt.show()
```

Output

Accuracy Score: ~87% (may vary slightly)

Confusion Matrix: Shows correct and incorrect classifications.

References

Dataset: IBM HR Analytics Employee Attrition Dataset

Source: IBM - Kaggle Dataset

Libraries: pandas, seaborn, sklearn, matplotlib

Tool Used: Google Colab