Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012

an den Realschulen in Bayern

Mathematik I

Name:		Vorname:	
Klasse:	Platzziffer:		Punkte:

Aufgabe A 1

Nachtermin

A 1.0 Die Pfeile
$$\overrightarrow{OP}_n(\phi) = \begin{pmatrix} -2 \cdot \cos \phi + 6 \\ \cos^2 \phi \end{pmatrix}$$
 und $\overrightarrow{OQ}_n(\phi) = \begin{pmatrix} -4 \\ \cos \phi + 3 \end{pmatrix}$ mit $O\left(0 \mid 0\right)$ spannen für $\phi \in [0^\circ; 180^\circ]$ Dreiecke OP_nQ_n auf.

A 1.1 Berechnen Sie die Koordinaten der Pfeile $\overrightarrow{OP_1}$ und $\overrightarrow{OQ_1}$ für ϕ = 120° und $\overrightarrow{OP_2}$ und $\overrightarrow{OQ_2}$ für ϕ = 165°. Runden Sie auf eine Stelle nach dem Komma. Zeichnen Sie sodann die Dreiecke OP_1Q_1 und OP_2Q_2 in das Koordinatensystem zu 1.0 ein.

2 P

A 1.2 Zeigen Sie rechnerisch, dass für den Flächeninhalt A der Dreiecke OP_nQ_n in Abhängigkeit von ϕ gilt: $A(\phi) = (9 + \cos^2\phi)$ FE . Ermitteln Sie sodann den minimalen Flächeninhalt mit dem zugehörigen Winkelmaß ϕ .

A 2.0 Gegeben sind die Funktion f mit der Gleichung $y = -2,5^{x-4}-1,5$ mit $\mathbb{G} = \mathbb{R} \times \mathbb{R}$ und die Gerade g mit der Gleichung y = 2 mit $\mathbb{G} = \mathbb{R} \times \mathbb{R}$.

A 2.1 Punkte $A_n\left(x\mid 2\right)$ auf der Geraden g und Punkte $B_n\left(x\mid -2,5^{x-4}-1,5\right)$ auf dem Graphen zu f haben dieselbe Abszisse x. Die Punkte A_n und B_n bilden zusammen mit Punkten C_n auf der Geraden g Dreiecke $A_nB_nC_n$. Es gilt: $\overline{A_nC_n}=3$ LE . Zeichnen Sie den Graphen zu f sowie das Dreieck $A_1B_1C_1$ für x=-2 und das Dreieck $A_2B_2C_2$ für x=6 in das Koordinatensystem zu 2.0 ein.

A 2.2 Zeigen Sie, dass für die Länge der Strecken $[A_nB_n]$ in Abhängigkeit von x gilt: $\overline{A_nB_n}(x) = (2,5^{x-4}+3,5)$ LE

1 P

2 P

A 2.3 Im Dreieck $A_3B_3C_3$ verhalten sich die Seitenlängen $\overline{A_3B_3}$ zu $\overline{A_3C_3}$ wie 2:1. Berechnen Sie den zugehörigen Wert für x.

2 P

A 2.4 Im Dreieck $A_4B_4C_4$ gilt: $\ll C_4B_4A_4 = 15^\circ$. Berechnen Sie den Flächeninhalt des Dreiecks $A_4B_4C_4$. Runden Sie auf zwei Stellen nach dem Komma.

2 P

A 2.5 Begründen Sie, dass es unter den Dreiecken A_nB_nC_n kein gleichschenkliges Dreieck gibt.

2 P

A 3.0 Das gleichschenklig-rechtwinklige Dreieck ABC mit der Basis [AC] ist die Grundfläche eines geraden Prismas ABCDEF. Der Punkt D liegt senkrecht über dem Punkt A. Es gilt: AB = 6 cm und AD = 3 cm.

In der Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$; [AB] liegt auf der Schrägbildachse.

A 3.1 Punkte P_n liegen auf der Strecke [CF]. Die Winkel CAP_n haben das Maß ϕ mit $\phi \in]0^\circ; 19,47^\circ]$. Die Punkte P_n sind die Spitzen von Pyramiden $ABCP_n$.

Zeichnen Sie die Pyramide $ABCP_1$ für $\overline{CP_1} = 1$ cm in das Schrägbild zu 3.0 ein und zeigen Sie sodann, dass für die Höhe der Pyramiden ABCP_n in Abhängigkeit von φ gilt: $\overline{CP}_{n}(\varphi) = 8,49 \text{ cm} \cdot \tan \varphi$.

2 P

A 3.2 Das Volumen der Pyramide ABCP₂ beträgt 7 cm³. Berechnen Sie das zugehörige Winkelmaß φ. Runden Sie auf zwei Stellen nach dem Komma.

2 P

- A 3.3 Für die Höhe der Pyramide ABCP₃ gilt: $\overline{CP_3} = 0, 5 \cdot \overline{CF}$. Kreuzen Sie an, welchen Anteil das Volumen der Pyramide ABCP3 am Volumen des Prismas ABCDEF besitzt.

 - $\Box \frac{1}{8} \qquad \Box \frac{1}{6} \qquad \Box \frac{1}{4} \qquad \Box \frac{1}{3} \qquad \Box \frac{1}{2} \qquad \Box \frac{3}{4}$

1 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012 an den Realschulen in Bayern

Mathematik I

Α	ufgabe B 1	Nachtermin	
B 1.0	Punkte $C_n(x \mid 0,8x)$ auf der Geraden g mit der Gleichung $y=0,8x$ (6) bilden für $x>0$ zusammen mit den Punkten $A(0\mid 0)$, B_n und D_n Drace $AB_nC_nD_n$ mit der Symmetrieachse g. Die Winkel B_nAC_n haben das Marchante M_n sind die Schnittpunkte der Diagonalen der Drachenvierecker Es gilt: $\overline{AM_n}:\overline{M_nC_n}=1:3$.	henvierecke aß 60°.	
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.		
B 1.1	Zeichnen Sie die Gerade g, die Drachenvierecke $AB_1C_1D_1$ für $x = AB_2C_2D_2$ für $x = 8$ sowie die Diagonalen $[B_1D_1]$ und $[B_2D_2]$ Diagonalenschnittpunkten M_1 und M_2 in ein Koordinatensystem. Für die Zeichnung: Längeneinheit 1 cm; $-2 \le x \le 12$; $-3 \le y \le 11$.		3 P
B 1.2	Bestätigen Sie durch Rechnung, dass für die Länge der Strecken	[AB _n] gilt:	
	$\overline{AB_n} = \frac{1}{2} \cdot \overline{AC_n} .$		2 P
B 1.3	Die Punkte C_n können auf die Punkte B_n abgebildet werden. Berechnen Sie die Koordinaten der Punkte B_n in Abhängigkeit von der der Punkte C_n . [Ergebnis: $B_n(0,60x -0,23x)$]	r Abszisse x	3 P
B 1.4	Bestimmen Sie rechnerisch die Gleichung des Trägergraphen h der Punk	A te B_n .	1 P
B 1.5	Das Drachenviereck $AB_3C_3D_3$ hat einen Flächeninhalt von 25 FE. Be die Koordinaten des Punktes C_3 .	rechnen Sie	3 P
B 1.6	Jedes Dreieck AB_nC_n und das zugehörige Drachenviereck $AB_nC_nD_n$ har einen gemeinsamen Umkreis, dessen Mittelpunkt U_n stets auf der Symg liegt. Das Drachenviereck $AB_4C_4D_4$ hat den Umkreismittelpunk Zeichnen Sie das Drachenviereck $AB_4C_4D_4$ mit dem zugehörigen Um Zeichnung zu 1.1 ein. Berechnen Sie sodann die Koordinaten des Punkter	metrieachse t $U_4(5 4)$. akreis in die	3 P
B 1.7	Begründen Sie, dass die Winkel D _n C _n B _n das Maß 60° haben.		2 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2 Nachtermin

B 2.0 Das gleichschenklige Trapez ABCD hat die parallelen Seiten [AD] und [BC] mit $\overline{AD} = 12 \text{ cm}$ und $\overline{BC} = 6 \text{ cm}$. Der Mittelpunkt der Seite [AD] ist der Punkt E, der Mittelpunkt der Seite [BC] ist der Punkt F. Es gilt: $\overline{EF} = 5 \text{ cm}$.

Das gleichschenklige Trapez ABCD ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Punkt F liegt. Es gilt: $\overline{FS} = 10 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Strecke [EF] auf der Schrägbildachse und der Punkt E links vom Punkt F liegen soll.

Für die Zeichnung gilt:
$$q = \frac{1}{2}$$
; $\omega = 45^{\circ}$.

2 P

B 2.2 Berechnen Sie das Maß des Winkels FES und die Länge der Strecke [ES].

[Ergebnis:
$$\angle$$
 FES = 63,43°; \overline{ES} = 11,18 cm]

2 P

B 2.3 Der Mittelpunkt der Strecke [EF] ist der Punkt L. Die Parallele zu [AD] durch den Punkt L schneidet die Strecke [AB] im Punkt G und die Strecke [DC] im Punkt H. Punkte M_n liegen auf der Strecke [ES]. Die Punkte M_n sind die Mittelpunkte der Strecken $[P_nQ_n]$ mit $P_n \in [DS]$ und $Q_n \in [AS]$. Es gilt: $P_nQ_n \parallel GH$.

Die Winkel M_nLE haben das Maß φ . Die Punkte G, H, P_n und Q_n bilden für $\varphi \in [0^\circ; 104, 04^\circ]$ gleichschenklige Trapeze GHP_nQ_n .

Zeichnen Sie das Trapez GHP₁Q₁ für $\varphi = 85^{\circ}$ in das Schrägbild zu 2.1 ein.

Begründen Sie sodann die obere Intervallgrenze für φ .

3 P

B 2.4 Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[LM_{_n}]$ in Abhängigkeit von ϕ gilt:

$$\overline{LM_{_{n}}}(\phi) = \frac{2,24}{\sin(63,43^{\circ} + \phi)} \text{ cm.}$$

Unter den Strecken [LM_n] hat die Strecke [LM₂] die minimale Länge.

Berechnen Sie das zugehörige Winkelmaß φ.

3 P

B 2.5 Zeigen Sie rechnerisch, dass für die Länge der Strecken $[P_nQ_n]$ in Abhängigkeit von ϕ gilt:

$$\overline{P_n Q_n}(\varphi) = \left(12 - \frac{2,68 \cdot \sin \varphi}{\sin \left(63,43^\circ + \varphi\right)}\right) cm.$$

4 P

3 P

B 2.6 Überprüfen Sie rechnerisch, ob das Trapez GHP_3Q_3 für $\phi = 70^\circ$ ein Rechteck ist.