

Amplificadores operacionais - filtros ativos

Prof. Alceu André Badin

Tipos de filtros ideias

Filtros ativos

• Adicionar capacitores aos circuitos amp-op fornece controle externo das frequências de corte. O filtro ativo do amp-op tem ganho de frequências de corte controlável.

- Filto passa-baixas
- o Filtro passa-altas
- o Filtro passa-banda ou passa-faixa
- **oFiltro rejeita-banda ou rejeita-faixa**

• A frequência de corte superior e o ganho de tensão são dados por:

$$f_{OH} = \frac{1}{2\pi R_1 C_1}$$

$$A_{v} = 1 + \frac{R_{f}}{R_{1}}$$

Filtro passa-baixas, segunda ordem

• O roll-off pode ser maior se adicionadas mais redes RC.

Filtro passa-baixas, segunda ordem

 $f_c = 100Hz$

Filtro passa-altas

• A frequência de corte é determinada por:

$$f_{OL} = \frac{1}{2\pi R_1 C_1}$$

Prof. Alceu A. Badin

UTFPR/DAELT

Filtro passa-altas

Filtro passa-banda

• Há duas frequências de corte: a superior e a inferior.

Prof. Alceu A. Badin

UTFPR/DAELT

Parâmetros de frequência de um ampop

- Um amp-op é amplificador com ampla largura de banda.
- •Os fatores seguintes afetam a largura da banda do amp-op:
- o Ganho

Taxa de inclinação

Ganho e largura de banda

- A alta resposta em frequência do amp-op é limitada por seus circuitos internos. O gráfico mostrado é para um ganho de malha aberta $(A_{OL} \text{ ou } A_{VD})$. Isso significa que o amp-op está operando com o mais alto ganho possível sem resistor com realimentação.
- No modo de malha aberta, um amp-op tem uma largura de banda estreita. A largura da banda aumenta no modo de malha fechada, mas o ganho é inferior.

Ganho e largura de banda

Closed-Loop Gain	R_2/R_1	$f_{3 \text{ dB}} = f_{t}/(1 + R_{2}/R_{1})$
+1000	999	1 kHz
+100	99	10 kHz
+10	9	100 kHz
+1	0	1 MHz
– 1	1	0.5 MHz
-10	10	90.9 kHz
-100	100	9.9 kHz
-1000	1000	$\simeq 1 \text{ kHz}$

