

Design Resources: CLT Deflection

Author: Christian Slotboom

Version: 1.0

Date: 2025/05/11

Overview

The following document contains tables can be used to find the flexural deformation of a multi-span CLT panel, including shear deformation. The span tables have been created using the python libraries planesections and limitstates. See <u>Example 4.1</u> on the limitstates documentation for information on how the output tables have been made.

Deflection Modification table

The document contains threes tables, which can be used to get deflections in CLT panels. Table 1 gives the flexural deflection of prg-320 SPF(E1/V2) CLT panels, per kPa of load applied, for several spans between 1-3. Tables 2/3 give the ratio between total deflection (including shear deformation) and flexural deflection for panels with an arbitrary EI/GA ratio.

Assumptions:

- 1. The CLT spans are symmetrically loaded.
- 2. The output deflection is for the worst-case location in the span, as indicated in the tables notes

Using the Flexural Deflection Table:

The following steps should be used to find the flexural deflection of a CLT panel using Table 1:

- 1. Get sections flexural stiffness (EI), Shear stiffness (GA), and span length (L).
- 2. Select values. Linearly interpolate if the panel's El is different than the PRG panel.

Using the Deflection Modification Table:

The following steps should be used to modify the deflection of the CLT panel using span tables (Table 2):

- 1. Get sections flexural stiffness (EI), Shear stiffness (GA), and span length (L).
- 2. Calculate the deflection of the panel using flexural stiffness alone.
- 3. Find the ratio between EI and GA.
- 4. Using the tables, select an appropriate modification factor.
- 5. Multiply the flexural deformation by the shear deformation multiplication factor.

Examples:

Example 1: Flexural Deformation

A custom CLT panel that has three 3.5m spans and is subjected to a super-imposed dead load of 2.2kPa, and snow load of 2.1kPa. Determine the maximum flexural deflection of the CLT for the load combination 1.0S + 2.0D, if the section properties are given below:

1. Get Information

$$EI = 925 * 10^9 N * mm^2$$

$$L = 3500mm$$

2. Calculate Panel deflection

Using the tables, we have

$$q_d = q_{d,SDL} + q_{d,self} = 2.8kPa + 0.175m* 500 \\ \frac{kg}{m^3} * 9.81 \\ \frac{N}{kg} * \\ \frac{1kN}{1000N} \cong 3.7kPa$$

$$q_{SIS} = 1.0q_L + 2.0q_d = 1.0 * 2.4kPa + 2 * 3.7kPa = 9.8kPa$$

From the table at 3 spans and 3.5m

$$\lambda_{V2} = 1.17 \frac{mm}{kPa}$$

$$\lambda_{E1} = 0.95 \frac{mm}{kPa}$$

By linearly interpolating between EI values for E1 and V2

$$\lambda_{925} = \frac{0.95 - 1.17}{1088 * 10^9 \ Nmm^2 - 884 * 10^9 \ Nmm^2} * (925 * 10^9 \ Nmm^2 - 884 * 10^9 \ Nmm^2) =$$

$$\lambda_{925} \cong 1.13$$

Solving for deflection

$$u_{flex} = \lambda_{E1=8,3,3.5} * q_{sls} = 1.13 \frac{mm}{kPa} * 9.8 kPa = 11.1 mm$$

Example 2: Modifying Shear Deformation

A 175 E1 prg320 rated CLT panel that has two 6m spans is subjected to a super-imposed dead load of 2.8kPa, and live load of 2.4kPa from office occupancy. Determine the maximum deflection of the CLT, including shear deformation, for the load combination 1.0L + 2.0D:

1. Get Information

$$EI = 4166 * 10^9 N * mm^2$$

$$GA = 15 * 10^6 N$$

$$L = 6m$$

2. Calculate Panel deflection

Calcualte the dead load, a self weight of using 500kg/m³ is conservatively taken for E1 SPF.

$$q_d = q_{d,SDL} + q_{d,self} = 2.8kPa + 0.175m* 500 \\ \frac{kg}{m^3} * 9.81 \\ \frac{N}{kg} * \\ \frac{1kN}{1000N} \cong 3.7kPa$$

$$q_{sls} = 1.0q_L + 2.0q_d = 1.0 * 2.4kPa + 2 * 3.7kPa = 9.8kPa$$

A symmetrically loaded, two span CLT panel can be as a simple span cantilever. Deflections are calculated per unit m.

$$u_{flex} = \frac{qL^4}{185EI} * 1m = \frac{9.8*kPa*(6000mm)^4}{185*4166*10^9 N*mm^2} * 1000mm \cong \frac{16.5mm}{m}$$

Note, deflection could also be calculated using Table 1

3. Calculate the ratio of EI / GA

$$r = \frac{EI}{GA} = \frac{4166*10^9 Nmm^2}{15*10^6 N} \cong 277 * 10^3 mm^2$$

- 4. Select a Modification factor
 - @6000mm, and two spans, we have

$$\lambda_{250} = 1.18, \ \lambda_{300} = 1.22$$

By linearly interpolating

$$\lambda_{277} \cong 1.2$$

- 5. Calculate deflection
 - @6000mm, and two spans, we have

$$u_{total} = u_{flex} * \lambda_{277} = 16.5mm * 1.2 = 20mm$$

Table 1: Flexural Deflection Table (m)

Span	Panel	EI	GA	EI/GA					Deflect	ion (mr	n/kPa a	pplied))			
		10 ⁹	106	10 ³					S	pan Lei	ngth (m	1)				
		Nmm ²	N	mm ²	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
One	V2 105	884	7.2	0.123	0.24	0.58	1.19	2.21	3.77	6.04	9.21	13.5	19.1	26.3	35.4	46.6
	E1 105	1088	7.4	0.149	0.19	0.47	0.97	1.80	3.06	4.91	7.48	11.0	15.5	21.4	28.7	37.9
	V2 175	3388	14	0.236	0.06	0.15	0.31	0.58	0.98	1.58	2.40	3.52	4.98	6.86	9.23	12.2
	E1 175	4166	14	0.285	0.05	0.12	0.25	0.47	0.80	1.28	1.95	2.86	4.05	5.58	7.50	9.89
am o him	V2 245	8338	22	0.389			0.13	0.23	0.40	0.64	0.97	1.42	2.01	2.77	3.73	4.91
	E1 245	10300	22	0.470			0.10	0.19	0.32	0.52	0.79	1.16	1.64	2.26	3.03	4.00
	V2 315	16723	29	0.581				0.12	0.20	0.32	0.49	0.71	1.01	1.39	1.87	2.46
	E1 315	20536	29	0.702				0.10	0.16	0.26	0.40	0.58	0.82	1.13	1.52	2.01
Two	V2 105	884	7.2	0.123	0.10	0.24	0.50	0.92	1.57	2.51	3.83	5.61	7.94	10.9	14.7	19.4
	E1 105	1088	7.4	0.149	0.08	0.19	0.40	0.75	1.27	2.04	3.11	4.56	6.45	8.89	12.0	15.8
	V2 175	3388	14	0.236			0.13	0.24	0.41	0.66	1.00	1.46	2.07	2.85	3.84	5.06
	E1 175	4166	14	0.285			0.11	0.20	0.33	0.53	0.81	1.19	1.68	2.32	3.12	4.11
	V2 245	8338	22	0.389				0.10	0.17	0.26	0.40	0.59	0.84	1.15	1.55	2.04
	E1 245	10300	22	0.470					0.13	0.22	0.33	0.48	0.68	0.94	1.26	1.66
	V2 315	16723	29	0.581						0.13	0.20	0.30	0.42	0.58	0.78	1.02
	E1 315	20536	29	0.702						0.11	0.16	0.24	0.34	0.47	0.63	0.83
Three	V2 105	884	7.2	0.123	0.12	0.30	0.63	1.17	1.99	3.19	4.87	7.13	10.1	13.9	18.7	24.6
	E1 105	1088	7.4	0.149	0.10	0.25	0.51	0.95	1.62	2.59	3.95	5.79	8.20	11.3	15.2	20.0
	V2 175	3388	14	0.236		0.08	0.16	0.30	0.52	0.83	1.27	1.86	2.63	3.63	4.88	6.43
	E1 175	4166	14	0.285			0.13	0.25	0.42	0.68	1.03	1.51	2.14	2.95	3.97	5.23
	V2 245	8338	22	0.389				0.12	0.21	0.34	0.51	0.75	1.06	1.46	1.97	2.60
	E1 245	10300	22	0.470				0.10	0.17	0.27	0.42	0.61	0.87	1.19	1.60	2.11
	V2 315	16723	29	0.581					0.11	0.17	0.26	0.38	0.53	0.73	0.99	1.30
	E1 315	20536	29	0.702						0.14	0.21	0.31	0.43	0.60	0.80	1.06

Table 2: Deflection Modification Table in m

					She	ar Mod	ificatio	n Facto	r (unitle	ess)			
Span	EI/GA					S	pan Le	ngth (m)				
Эрип	m ²	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.
One	0.10	1.24	1.15	1.11	1.08	1.06	1.05	1.04	1.03	1.03	1.02	1.02	1.0
	0.15	1.36	1.23	1.16	1.12	1.09	1.07	1.06	1.05	1.04	1.03	1.03	1.03
	0.20	1.48	1.31	1.21	1.16	1.12	1.09	1.08	1.06	1.05	1.05	1.04	1.03
	0.25	1.60	1.38	1.27	1.20	1.15	1.12	1.10	1.08	1.07	1.06	1.05	1.0
	0.30	1.72	1.46	1.32	1.24	1.18	1.14	1.12	1.10	1.08	1.07	1.06	1.0
	0.35	1.84	1.54	1.37	1.27	1.21	1.17	1.13	1.11	1.09	1.08	1.07	1.0
	0.40	1.96	1.61	1.43	1.31	1.24	1.19	1.15	1.13	1.11	1.09	1.08	1.0
	0.50	2.20	1.77	1.53	1.39	1.30	1.24	1.19	1.16	1.13	1.11	1.10	1.09
	0.60	2.44	1.92	1.64	1.47	1.36	1.28	1.23	1.19	1.16	1.14	1.12	1.10
	0.70	2.68	2.08	1.75	1.55	1.42	1.33	1.27	1.22	1.19	1.16	1.14	1.12
Two	0.10	1.66	1.42	1.29	1.22	1.17	1.13	1.11	1.09	1.07	1.06	1.05	1.0
	0.15	1.99	1.64	1.44	1.32	1.25	1.20	1.16	1.13	1.11	1.09	1.08	1.0
	0.20	2.32	1.85	1.59	1.43	1.33	1.26	1.21	1.17	1.15	1.13	1.11	1.0
	0.25	2.64	2.06	1.73	1.54	1.41	1.33	1.27	1.22	1.18	1.16	1.13	1.1
	0.30	2.97	2.27	1.88	1.65	1.50	1.39	1.32	1.26	1.22	1.19	1.16	1.1
	0.35	3.29	2.48	2.03	1.76	1.58	1.46	1.37	1.31	1.26	1.22	1.19	1.10
	0.40	3.61	2.68	2.17	1.86	1.66	1.52	1.42	1.35	1.29	1.25	1.22	1.19
	0.50	4.25	3.10	2.46	2.08	1.83	1.65	1.53	1.44	1.37	1.31	1.27	1.2
	0.60	4.88	3.51	2.75	2.29	1.99	1.78	1.64	1.53	1.44	1.38	1.32	1.28
	0.70	5.50	3.92	3.04	2.51	2.16	1.91	1.74	1.61	1.52	1.44	1.38	1.3
Three	0.10	1.47	1.30	1.21	1.16	1.12	1.09	1.08	1.06	1.05	1.05	1.04	1.03
	0.15	1.71	1.46	1.32	1.23	1.18	1.14	1.11	1.09	1.08	1.07	1.06	1.0
	0.20	1.95	1.61	1.42	1.31	1.24	1.19	1.15	1.13	1.11	1.09	1.08	1.0
	0.25	2.19	1.76	1.53	1.39	1.30	1.23	1.19	1.16	1.13	1.11	1.10	1.08
	0.30	2.43	1.91	1.63	1.47	1.36	1.28	1.23	1.19	1.16	1.13	1.12	1.10
	0.35	2.66	2.07	1.74	1.54	1.42	1.33	1.27	1.22	1.18	1.16	1.14	1.1
	0.40	2.90	2.22	1.84	1.62	1.47	1.38	1.30	1.25	1.21	1.18	1.16	1.14
	0.50	3.38	2.52	2.06	1.78	1.59	1.47	1.38	1.31	1.26	1.22	1.19	1.1
	0.60	3.85	2.83	2.27	1.93	1.71	1.56	1.46	1.38	1.32	1.27	1.23	1.20
	0.70	4.32	3.13	2.48	2.09	1.83	1.66	1.53	1.44	1.37	1.31	1.27	1.2
Notes:		One s	pan:					Two S _I	pans				
		timin .	1 1 1	<u> </u>	.	 	-	dinna	1 1 1	vin	h	0	, , , , , , , , , , , , , , , , , , ,
		Three	spans	:									
				m)	viin								

Table 3: Deflection Modification Table in mm

	EI/GA				She	ar Mod	ificatio	n Facto	r (unitle	ess)			
Cnan	10 ³					Sı	oan Len	gth (mn	n)				
Span	mm ²	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500
One	100	1.24	1.15	1.11	1.08	1.06	1.05	1.04	1.03	1.03	1.02	1.02	1.02
	150	1.36	1.23	1.16	1.12	1.09	1.07	1.06	1.05	1.04	1.03	1.03	1.03
	200	1.48	1.31	1.21	1.16	1.12	1.09	1.08	1.06	1.05	1.05	1.04	1.03
	250	1.60	1.38	1.27	1.20	1.15	1.12	1.10	1.08	1.07	1.06	1.05	1.04
	300	1.72	1.46	1.32	1.24	1.18	1.14	1.12	1.10	1.08	1.07	1.06	1.05
	350	1.84	1.54	1.37	1.27	1.21	1.17	1.13	1.11	1.09	1.08	1.07	1.06
	400	1.96	1.61	1.43	1.31	1.24	1.19	1.15	1.13	1.11	1.09	1.08	1.07
	500	2.20	1.77	1.53	1.39	1.30	1.24	1.19	1.16	1.13	1.11	1.10	1.09
	600	2.44	1.92	1.64	1.47	1.36	1.28	1.23	1.19	1.16	1.14	1.12	1.10
	700	2.68	2.08	1.75	1.55	1.42	1.33	1.27	1.22	1.19	1.16	1.14	1.12
Two	100	1.66	1.42	1.29	1.22	1.17	1.13	1.11	1.09	1.07	1.06	1.05	1.05
	150	1.99	1.64	1.44	1.32	1.25	1.20	1.16	1.13	1.11	1.09	1.08	1.07
	200	2.32	1.85	1.59	1.43	1.33	1.26	1.21	1.17	1.15	1.13	1.11	1.09
	250	2.64	2.06	1.73	1.54	1.41	1.33	1.27	1.22	1.18	1.16	1.13	1.12
	300	2.97	2.27	1.88	1.65	1.50	1.39	1.32	1.26	1.22	1.19	1.16	1.14
	350	3.29	2.48	2.03	1.76	1.58	1.46	1.37	1.31	1.26	1.22	1.19	1.16
	400	3.61	2.68	2.17	1.86	1.66	1.52	1.42	1.35	1.29	1.25	1.22	1.19
	500	4.25	3.10	2.46	2.08	1.83	1.65	1.53	1.44	1.37	1.31	1.27	1.24
	600	4.88	3.51	2.75	2.29	1.99	1.78	1.64	1.53	1.44	1.38	1.32	1.28
	700	5.50	3.92	3.04	2.51	2.16	1.91	1.74	1.61	1.52	1.44	1.38	1.33
Three	100	1.47	1.30	1.21	1.16	1.12	1.09	1.08	1.06	1.05	1.05	1.04	1.03
	150	1.71	1.46	1.32	1.23	1.18	1.14	1.11	1.09	1.08	1.07	1.06	1.05
	200	1.95	1.61	1.42	1.31	1.24	1.19	1.15	1.13	1.11	1.09	1.08	1.07
	250	2.19	1.76	1.53	1.39	1.30	1.23	1.19	1.16	1.13	1.11	1.10	1.08
	300	2.43	1.91	1.63	1.47	1.36	1.28	1.23	1.19	1.16	1.13	1.12	1.10
	350	2.66	2.07	1.74	1.54	1.42	1.33	1.27	1.22	1.18	1.16	1.14	1.12
	400	2.90	2.22	1.84	1.62	1.47	1.38	1.30	1.25	1.21	1.18	1.16	1.14
	500	3.38	2.52	2.06	1.78	1.59	1.47	1.38	1.31	1.26	1.22	1.19	1.17
	600	3.85	2.83	2.27	1.93	1.71	1.56	1.46	1.38	1.32	1.27	1.23	1.20
	700	4.32	3.13	2.48	2.09	1.83	1.66	1.53	1.44	1.37	1.31	1.27	1.24
Notes:		One s	pan:					Two S	pans				

Three spans:

