

Microsoft: DAT236x Deep Learning Explained

Help

Course > 6 | Text Classification with RNN and LSTM > Knowledge Checks > Knowledge Checks

Knowledge Checks

☐ Bookmark this page

DAT236x-M6-04

1/1 point (graded)

You have a dictionary that has 100 words. Consider two of those words: "sushi" and "sashimi". You create a one-hot encoding of these two words. Despite the words being very similar (both are popular Japanese food item), the use of one-hot encoding gives you a poor similarity Cosine similarity score. How can you better compare the two words? (There may be more than one correct answers)

- Change to 1-cosine_similarity
- Perform linear embedding
- Use other embedding techniques such as Word2Vec or GloVe

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

DAT236x-M6-05

1/1 point (graded)

You have a deep network which input is a one-hot encoded vector and the output is a softmax classification of the input. You have decided to create an embedding layer. Which three of the following options are possible ways to leveraging word embeddings?

☑ Use a l	inear embedding with randomly initialized embedding matrix
	an embedding matrix using Word2Vec or GloVe and initialize the linear dding layer
□ Save c	omputations, and have a fixed matrix of all ones as your embedding matrix
✓ Directl	y use the Word2Vec or GloVe embeddings as input to the next layer
Submit	You have used 1 of 2 attempts
✓ Correc	et (1/1 point)
	ded) dictionary that has 100 words. Consider two of those words: one being the 50th
11 point (gra ou have a c ord in the sashimi". Y	ded)
11 point (gra ou have a c ord in the sashimi". Y	ded) dictionary that has 100 words. Consider two of those words: one being the 50th vocabulary and the other being the 51st word. The two words are "sushi" and ou create a one-hot encoding of these two words. You then compute the Cosin
11 point (gra ou have a c ord in the sashimi". Y milarity be	ded) dictionary that has 100 words. Consider two of those words: one being the 50th vocabulary and the other being the 51st word. The two words are "sushi" and ou create a one-hot encoding of these two words. You then compute the Cosin
71 point (gra ou have a cord in the sashimi". Y milarity be	ded) dictionary that has 100 words. Consider two of those words: one being the 50th vocabulary and the other being the 51st word. The two words are "sushi" and ou create a one-hot encoding of these two words. You then compute the Cosin
/1 point (gra ou have a cord in the sashimi". Y milarity be	ded) dictionary that has 100 words. Consider two of those words: one being the 50th vocabulary and the other being the 51st word. The two words are "sushi" and ou create a one-hot encoding of these two words. You then compute the Cosin
/1 point (graph ou have a cord in the sashimi". Y milarity be	ded) dictionary that has 100 words. Consider two of those words: one being the 50th vocabulary and the other being the 51st word. The two words are "sushi" and ou create a one-hot encoding of these two words. You then compute the Cosin

DAT236x-M6-01

1/1 point (graded)

You have a dictionary that has 10 words. Consider the following sentence: "I love sushi very much". Which of the following option could be the one-hot encoded vector of the word "sushi"?

O 3
0 111
00100
00300
● 001000000 ✔
0003000000
Submit You have used 1 of 2 attempts
✓ Correct (1/1 point)
DAT236x-M6-02
1/1 point (graded) You have a dictionary that has 10 words, including all the 5 words from a sentence "I love sushi very much". What is the length of the one-hot encoded vector of the word "sushi", if

0 1

"sushi" is the third word in the dictionary?

3

© All Rights Reserved

© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 图ICP备17044299号-2

