Exploring Predictive Markers for Diabetes Using Principal Component Analysis and Logistic Regression

```
rm(list=ls())
library(ggplot2)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggfortify)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(moments)
knitr::purl("model.rmd", "model.R", documentation = 2)
##
##
## processing file: model.rmd
## output file: model.R
## [1] "model.R"
diabetes <- read.csv("diabetes.csv", header=TRUE)</pre>
head(diabetes)
     diabetes gender age hypertension heart_disease smoking_history
## 1
            0 Female 80
                                                   1
                                                               never 25.19
## 2
            0 Female 54
                                    0
                                                   0
                                                             No Info 27.32
## 3
                Male 28
                                    0
                                                   0
                                                               never 27.32
                                    0
            0 Female 36
                                                   0
## 4
                                                             current 23.45
## 5
                Male 76
                                    1
                                                   1
                                                             current 20.14
                                     0
                                                               never 27.32
            0 Female 20
   HbA1c_level blood_glucose_level
## 1
            6.6
## 2
            6.6
                                  80
## 3
            5.7
                                 158
## 4
            5.0
                                 155
```

```
## 5
             4.8
                                  155
## 6
             6.6
                                   85
sapply(diabetes[c("age", "bmi", "HbA1c_level", "blood_glucose_level")], summary)
##
                 age
                          bmi HbA1c_level blood_glucose_level
## Min.
            0.08000 12.15000
                                   3.5000
                                                        80.000
## 1st Qu. 23.75000 23.10250
                                   4.8000
                                                       100.000
## Median 42.00000 27.32000
                                   5.8000
                                                       145.000
## Mean
           41.65328 26.89078
                                   5.6224
                                                       139.652
## 3rd Qu. 59.00000 28.93250
                                   6.2000
                                                       159.000
## Max.
           80.00000 63.48000
                                   9.0000
                                                       300.000
diabetes_numeric <- diabetes %>%
  select(c("age", "hypertension", "heart_disease", "bmi", "HbA1c_level", "blood_glucose_level"))
#Create a scatterplot matrix
pairs(diabetes_numeric, lower.panel = NULL)
             80 0.0 0.4 0.8 0.0 0.4 0.8
                                            20
                                                40
                                                    60
                                                                     100
                                                                         200
                                                                              300
                  hypertension
                                                                                  0.8
                               heart_disease
                                                                                  50
                                                          HbA1c level
                                                                              300
                                                                     100 200
#Create histograms for all features
par(mfrow=c(2,2)) # Set up 2x2 grid of plots
hist(diabetes$age, main="Age", xlab="Years")
hist(diabetes$bmi, main="BMI", xlab="Value")
hist(diabetes$HbA1c_level, main="HbA1c Level", xlab="mg/dL")
hist(diabetes*blood_glucose_level, main="Blood Glucose Level", xlab="mg/dL")
```


HbA1c Level

Blood Glucose Level

Sex Distribution

Diagnosed Diabetes

Diagnosed Hypertension

Diagnosed Heart Disease


```
#Test the skewness in diabetes data
age_skew <- skewness(diabetes$age)</pre>
cat("Skewness of age:", age_skew, "\n")
## Skewness of age: -0.01478161
cat("Absolute skewness of age:", abs(age_skew), "\n")
## Absolute skewness of age: 0.01478161
bmi_skew <- skewness(diabetes$bmi)</pre>
cat("Skewness of bmi:", bmi_skew, "\n")
## Skewness of bmi: 1.208401
cat("Absolute skewness of bmi:", abs(bmi_skew), "\n")
## Absolute skewness of bmi: 1.208401
hba1c_skew <- skewness(diabetes$HbA1c_level)
cat("Skewness of HbA1c level:", hba1c_skew, "\n")
## Skewness of HbA1c level: -0.08341524
cat("Absolute skewness of HbA1c level:", abs(hba1c_skew), "\n")
## Absolute skewness of HbA1c level: 0.08341524
glucose_skew <- skewness(diabetes$blood_glucose_level)</pre>
```

cat("Skewness of blood glucose level:", glucose_skew, "\n")

```
cat("Absolute skewness of blood glucose level:", abs(glucose_skew), "\n")
## Absolute skewness of blood glucose level: 0.7202705
knitr::purl("model.rmd", "model.R", documentation = 2)
## [1] "model.R"
data_select <- diabetes %>% select(age, bmi, HbA1c_level, blood_glucose_level)
data_scale <- scale(data_select)</pre>
#Create PCA model
pca_model <- prcomp(data_scale, scale. = TRUE)</pre>
pca_model
## Standard deviations (1, .., p=4):
## [1] 1.1860099 1.0077506 0.9517091 0.8197981
## Rotation (n x k) = (4 \times 4):
                                         PC2
                                                     PC3
                                                                 PC4
                              PC1
                       -0.6465562  0.2382414  -0.07648468  0.72066375
## age
## bmi
                       ## HbA1c_level
                       -0.3491517 -0.5545748 0.75368930 -0.04992315
## blood_glucose_level -0.3012649 -0.6864930 -0.65214921 -0.11255318
#PC1 is made up mostly of age, bmi. PC2 is made up mostly of A1c, blood glucose. PC3 is made up mostly
summary(pca_model)
## Importance of components:
                             PC1
                                           PC3
                                    PC2
                                                  PC4
##
## Standard deviation
                          1.1860 1.0078 0.9517 0.8198
## Proportion of Variance 0.3517 0.2539 0.2264 0.1680
## Cumulative Proportion 0.3517 0.6056 0.8320 1.0000
pca_var <- get_pca_var(pca_model)</pre>
#Contribution % of features to their respective PC
pca_var$contrib[,1]
##
                                                   HbA1c_level blood_glucose_level
                   age
                                       bmi
##
             41.803487
                                 36.929771
                                                     12.190691
                                                                          9.076051
pca_var$contrib[,2]
##
                                                   HbA1c_level blood_glucose_level
                                       bmi
                   age
##
              5.675898
                                 16.441513
                                                     30.755322
                                                                         47.127268
fviz_eig(pca_model, addlabels = TRUE)
```



```
9
```


knitr::purl("model.rmd", "model.R", documentation = 2)

```
## [1] "model.R"
```

#Create logistic regression model with outcome as response and first 2 principal components as predicto
model <- glm(diabetes~pca_scores\$PC1 + pca_scores\$PC2 + pca_scores\$PC3 + pca_scores\$PC4, data = diabete
summary(model)</pre>

```
##
## Call:
## glm(formula = diabetes ~ pca_scores$PC1 + pca_scores$PC2 + pca_scores$PC3 +
##
      pca_scores$PC4, family = binomial, data = diabetes)
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                             0.99410 -6.799 1.05e-11 ***
## (Intercept)
                 -6.75904
## pca_scores$PC1 -2.93566
                             0.51983 -5.647 1.63e-08 ***
## pca_scores$PC2 -3.43703
                             0.68916 -4.987 6.12e-07 ***
## pca_scores$PC3 2.23192
                             0.69052
                                       3.232 0.00123 **
## pca_scores$PC4 0.02427
                             0.30519
                                       0.080 0.93661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 283.627
##
                              on 499 degrees of freedom
## Residual deviance: 85.997 on 495 degrees of freedom
```

```
## AIC: 95.997
##

## Number of Fisher Scoring iterations: 9

#Create scatterplots similar to biplot with relationship to discrete/categorical features
autoplot(
    pca_model, #The PCA model object
    data = diabetes, #The dataset being plotted
    colour = 'diabetes', #The variable being used to color the points
    loadings=TRUE, #Indicates that the plot should also show the loadings
    size = 3, #The size of the points
    loadings.label = TRUE, #Indicates that the plot should label the loadings
    loadings.label.size=5 #The size of the loading labels
)
```



```
autoplot(
  pca_model,
  data = diabetes,
  colour = 'hypertension',
  loadings=TRUE,
  size = 3,
  loadings.label = TRUE,
  loadings.label.size=5
)
```



```
autoplot(
  pca_model,
  data = diabetes,
  colour = 'gender',
  loadings=TRUE,
  size = 3,
  loadings.label = TRUE,
  loadings.label.size=5
)
```



```
autoplot(
  pca_model,
  data = diabetes,
  colour = 'heart_disease',
  loadings=TRUE,
  size = 3,
  loadings.label = TRUE,
  loadings.label.size=5
)
```


[1] "model.R"