Short Scan Using XCIST

October 7, 2025

1 Introduction

This document explains how to perform short-scan reconstruction using XCIST. XCIST supports two reconstruction modes: $fdk_equiAngle$ and $helical_equiAngle$. $fdk_equiAngle$ is used for axial scans, where the patient table remains stationary (table speed = 0). $helical_equiAngle$ is used for helical scans, where the patient table moves continuously (table speed \neq 0). The table speed can be configured in the protocol.cfg file, while the reconstruction type is specified in the protocol.cfg file.

```
protocol.scanTypes = [1, 1, 1, 1]  # flags for airscan, offset scan, phantom scan, prep

# Table and gantry protocol.scanTrajectory = "Gantry_Helical"  # name of the function that defines protocol.viewSperRotation = 500  # total numbers of view in scan protocol.startViewId = 0  # index of the first view in the scan protocol.startViewId = 0  # number of views averaged for air scan protocol.startViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.startangle = 0  # gantry rotation protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.startangle = 0  # gantry rotation protocol.offsetViewCount = 1  # number of views averaged for air scan protocol.startangle = 0  # gantry rotation direction (1-CW, -1 CCW, seen from table foot-end) protocol.startIngle = 0  # start z-position of table protocol.startIngle = 0  # start z-position of table protocol.startIngle = 0  # start z-position of table protocol.spectrumGallback = "Spectrum"  # name of function that reads and models the X-ray spectrum protocol.spectrumFilename = "xcist_kVp120 tar7_bin1.dat" # name of the spectrum file in units of photons/sec/marea/ma? protocol.spectrumScaling = 1;  # Is the spectrum file in units of photons/sec/marea/ma? protocol.spectrumScaling = 1;  # scaling factor, works for both mono- and poly-chromatic spectra protocol.filterCallback = "Xray_Filter"  # name of function to compute additional filtration - materials and thicknesses (in mm) protocol.dutyRatio = 1
```

2 Running Short Scan

The easiest way to do short scan is setting the value of protocol.viewCount to be less than protocol.viewsPerRotation, in protocol.cfg file. For example, if you set protocol.viewsPerRotation = 100 and protocol.viewCount = 50, that's equivalent to "half scan".

```
protocol.scanTypes = [1, 1, 1, 1]  # flags for airscan, offset scan, phantom scan, prep

# Table and gantry
protocol.scanTrajectory = "Gantry_Helical"  # name of the function that defines
protocol.viewSPerRotation = 100  # total numbers of view per rotation
protocol.viewSerRotation = # total number of views in scan
protocol.startViewId = 0  # index of the first view in the scan

# protocol.startViewId = protocol.startViewId + protocol.viewCount - 1 # index of the last view in the scan
```

2.1 Running Short Scan - Axial Scanning

To run short scan with axial scanning mode, you need to set recon.reconType = 'fdk_equiAngle' in recon.cfg. However, the default code doesn't allow you to do short scan in axial scan mode (It will gives you index error). So we have to modify the source code fdk_equiAngle.py in the XCIST package.

Run pip show gecatsim in Anaconda Prompt:

```
(base) C:\Users\Botao>pip show gecatsim
Name: gecatsim
Version: 1.5.4
Summary: Simulation toolkit for X-ray based cancer imaging
Home-page: https://github.com/xcist/documentation/wiki
Author: Mingye Wu, Paul FitzGerald, James Jobin, Jiayong Zhang, Nandan Reddy, Anupama Debnath, Brion Sarachan, Bruno De
Man
Author-email: Mingye.Wu@gehealthcare.com
License: BSD 3-Clause License
Location: C:\Users\Botao\anaconda3\Lib\site-packages
Requires: matpLottib, nampy, ≤cipy, tqdm
Required-by:
```

This should give you the location of where the package is installed at. Then go to gecat-sim\reconstruction\pyfiles. Open fdk_equiAngle.py.

At line 138, replace Dg = Dgy with Dg = np.append(Dgy, np.zeros((YL, ZL, ProjScale - cfg.protocol.viewCount)), axis=2):

What this does is it pads the missing section from a short scan (pretending it's a full scan but fill the missing section with 0), and then reconstructs using pre-defined view counts.

Running the main script with protocol.viewsPerRotation = 100 and protocol.viewCount = 50. You should get the result shown below:

2.2 Running Short Scan - Helical Scanning

Running Short Scan with Helical Scanning mode is much easier. Simply set recon.reconType = 'helical_equiAngle' in recon.cfg. You don't need to modify anything, but the table speed must be non-zero otherwise the recon result will be pure dark image.