Lecture 12: Digital Logic Cont.

Announcements

- Project 3 due in a week
 - Due August IIth II:55pm
 - Due day before Final, so plan accordingly
 - No Extension
- Lectures until final:
 - Digital Logic (Chapter 4 in book)
 - Today: Kmaps and revisiting combinational circuits (decoders, multiplexers, and adders)
- Rest of lecture time / recitation today:
 - Questions on todays material and programming Assignment 3

Recap

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

Nor Gate

DeMorgan's Law

Converting AND to OR (and some NOT).

Α	В	\overline{A}	\overline{B}	$\overline{A}\cdot\overline{B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	0
			0		1
1			1		1
1	1	0	0	0	1

• In general,

•
$$(1)PQ = P + Q$$

• (2)
$$\overline{P+Q} = \overline{PQ}$$

6 Widely used logic gates

• Or Gate

Not Gate

Xor Gate

Can express any logic circuit with these as we have seen previously.

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

$$AB + BA$$

Nor Gate

$$\overline{A+B}$$

$$\overline{AB}$$

• 6 Widely used logic gates

Or Gate

Not Gate

Xor Gate

In fact...
You just need
these two

$$\overline{A+B}$$

$$\overline{AB}$$

- 6 Widely used logic gates
- And Gate

• Or Gate

Not Gate

Xor Gate

Nor Gate

 $\overline{A}\overline{B}$

Nand Gate

 \overline{AB}

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

- 6 Widely used logic gates
- And Gate

Or Gate

Not Gate

Xor Gate

Nor Gate

6 Widely used logic gates Xor Gate Side note: Or You just need this Nor Gate to do anything Nor Gate Or Gate Not Gate

Minterm

Α	В	С	minterm
0	0	0	m0 ĀĒŌ
0	0	1	m1 ĀBC
0	1	0	m2 ĀBŌ
0	1	1	m3 ĀBC
1	0	0	m4 ABC
1	0	1	m5 ABC
1	1	0	m6 ABC
1	1	1	m7 ABC

- A product term in which all variables appear once.
- Each minterm evaluates to 1 in exactly one case. All other case, it evalutes to 0.

Truth Table to Boolean Expression

sensor inputs				
Α	В	С	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

 Given expressions for each row, build a larger Boolean expression. This is called a sum-of-products (SOP) form.

$$Output = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

Truth Table to Boolean Expression

- Finally build the circuit
- However, SoP forms are usually not minimal. We must optimize.

Canonical Forms

- There are two canonical forms:
 - Sum of Products (SOP)

$$F = YZ + XYZ + XYZ$$

Product of Sums (POS)

$$F = (Y + Z)(X + Y + Z)(X + Y + Z)$$

Decoder

- n inputs, 2ⁿ outputs
- Exactly one output is 1 for a single possible input pattern

Decoder circuit

- n inputs, 2ⁿ outputs
- Exactly one output is 1 for a single possible input pattern

Internal of 2:4 Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Multiplexer (MUX)

- 2ⁿ inputs, n-bit selector, one output
 - Output equals one of the inputs, depending on the selector

Functions with Decoders and Multiplexers

• e.g.,
$$F = A\overline{C} + BC$$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	AB C	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

 OR minterms for which F should evaluate to I

Functions with Decoders and Multiplexers

• e.g.,
$$F = A\overline{C} + BC$$

Α	В	С	minterm	F
0	0	0	ABC	0
0	0	1	AB C	0
0	1	0	ĀBC	0
0	1	1	ABC	1
1	0	0	ABC	1
1	0	1	ABC	0
1	1	0	ABC	1
1	1	1	ABC	1

 Feed the value of F for each minterm in the input

Using Smaller mux:

- We can use 4-to-1 mux with a trick:
- Every two rows have same A and B value. The output F depends on the value C.

Another Optimization Approach: Karnaugh Maps

- K-maps are a graphical technique to view minterms and how they relate.
- Extremely useful to simplify boolean functions.
- The "map" is a diagram made up of squares, with each square representing a single minterm.
- Minterms resulting in a "I" are marked as "I", all others are marked "0"

2 Variable K-Map

- Input B values would be the columns
- Input A values would be the rows
- The resulting matrix is a map that shows every possible input combination and the resulting output

2 Variable K-Map

Α	В	Output	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Given truth table

2 Variable K-Map

Α	В	Output	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

$\mathbb{A}^{\mathbb{R}}$	0	1
0	0	1
1	0	1

Resulting K-map

Finding Commonality

- Its usefulness come from the fact that adjacent squares correspond to minterms that differ in only ONE variable.
- Combining 2ⁿ squares eliminate n variables.

Finding the "best" solution

- Grouping become simplified products.
- Both are "correct". "A+B" is preferred.

Simplify Example

Simplify Example

3 Variable K-Maps

- Note in higher maps, several variables occupy a given axis
- The sequence of Is and 0s follow a Gray Code Sequence.
- Grey code is a number system where two successive values differ only by I-bit

3 Variable K-Maps (Example 1)

3 Variable K-Maps (Example 2)

Out=
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$$

Out=
$$\overline{A}$$

3 Variable K-Maps (Example 3)

Out=
$$\overline{A}\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}BC$$

3 Variable K-Maps (Example 4)

Out= $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B$

Out=
$$\overline{A}$$
 + B

- Its usefulness come from the fact that adjacent squares correspond to minterms that differ in only ONE variable.
- Combining 2ⁿ squares eliminate n variables.

3 Variable K-Maps (Example 5)

Out=
$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$$

Up... up... and let's keep going

Out= $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$

Few more examples

Few more examples

Out=
$$\overline{A}\overline{B}\overline{C}\overline{D}$$
 + $\overline{A}\overline{B}\overline{C}D$ + $\overline{A}\overline{B}CD$ + $\overline{A}BCD$ + $\overline{A}BCD$ + $\overline{A}BCD$ + $\overline{A}BCD$

A _B CI		01	11	10
00	1	1	1	
01	1	1	1	
11	1	1	1	
10				

A _B C1		01	11	10
00	1	1	1	
01	1	1	1	
11	1	1	1	
10				

A _B C1		01	11	10
00	1	1	1	
01	넌		1	
11	1	1	1	
10				

Out=
$$\overline{AC}$$
 + \overline{AD} + \overline{BC} + \overline{BD}

Don't Care Conditions

- Let F = AB + AB
- Suppose we know that a disallowed input combo is A=1, B=0
- Can we replace F with a simpler function G whose output matches for all inputs we do care about?
- Let H be the function with Don't-care conditions for obsolete inputs

	Α	В	F	Н	G
	0	0	1	1	1
Inputs will	0	1	0	0	0
not occur	1	0	0	X	1
	1	1	1	1	1

$$G = AB + \bar{B}$$

- Both F & G are appropriate functions for H
- G can substitute for F for valid input combinations

Don't Cares can Greatly Simplify Circuits

$$f = \overline{CD} + \overline{CD}$$

Back to our earlier example.....

The K-map and the algebraic produce the same result.

Converting Circuits to all-NAND (NOR)

- Introduce NOT gates
 - Go from left to right
 - Introduce NOT gates in pairs (does not alter logic function)
 - Isolated NOT gates can be implemented as NAND (NOR)

Example

Put it all together.....

sensor
inputs

A	В	C	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 1. Express the truth table function in SOP (this example) or POS
- 2. Simplify the function using K-maps (this example) or boolean algebra

$$\overline{A}BC = 1$$
 $A\overline{B}C = 1$
 $AB\overline{C} = 1$
 $ABC = 1$

Output = $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

Put it all together....

Combinational Circuits

- What we've seen so far are combination circuits
- Realizes boolean functions (logical gates)
- Behavior is stateless
 - Outputs are function of inputs only

Decoder Circuits

Characteristic: for each input only one output is set

Converts n-bit input to m-bit output, where $n \le m \le 2^n$

"Standard" Decoder: i^{th} output = 1, all others = 0, where i is the binary representation of the input (ABC)

Decoder Example

Suppose each output has a numbered lamp

the number is visible if the lamp is on

Converts n-bit input to m-bit output, where $n \le m \le 2^n$

"Standard" Decoder: ith output = 1, all others = 0, where i is the binary representation of the input (ABC)

Internal 2:4 Decoder Design

2:4 Decoder from 1:2 Decoders

Can build 2:4 decoder out of two 1:2 decoders

(and some additional circuitry)

Hierarchical 3:8 Decoder

Encoder: Inverse of Decoder

Inverse of decoder: converts m bit input to n bit output (n <= m)

■ TABLE 3-7 Truth Table for Octal-to-Binary Encoder

			Outputs							
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Code Converter

- Frequently we have some form of code and want to convert to another form of code and back
 - Encoder converts sound of voice into electrical signals (your cell phone) and a decoder converts the signals back to voice (your friend cell phone)
- Other times we just want to convert some code into another
 - Decoder and encoder are used in cascade
 - e.g. seven segment display

Each segment (LED) is identified by the letters from a to g, and can be lit individually

(b) Numeric designation for display

Input Output

Va	W	Χ	Υ	Z	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
Χ	1	0	1	0	Χ	Χ	X	X	X	Χ	Χ
Χ	1	0	1	1	Χ	X	X	X	X	Χ	Χ
Χ	1	1	0	0	Χ	X	X	X	X	X	X
Χ	1	1	0	1	X	X	X	X	X	X	Χ
Χ	1	1	1	0	Х	Х	Х	X	X	Х	Χ
Χ	1	1	1	1	X	X	X	Χ	X	X	X

"lights up" when input

V = 4?

Output Input

	In	рι	ıt			it					
Va	W	Χ	Υ	Ζ	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	τ-	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
Χ	1	0	1	0	Χ	Χ	X	Χ	Χ	Χ	Χ
Χ	1	0	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	0	0	Χ	Χ	Χ	Χ	X	Χ	Χ
Χ	1	1	0	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Χ	1	1	1	0	Χ	X	Χ	Χ	X	Χ	Χ
Χ	1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ

We will do f, but you should be able to design a-e as well

Multiplexers (Muxes)

Combinational circuit that selects binary information from one of many inputs to one output

indicate (in binary) which input feeds to the output

Multiplexer example

Input is seen in the output according to selector

Internal Mux Organization

Mux Truth Table

2 ⁿ inputs								n-bi	t BCD v	1 output	
а	x	x	x	x	x	x	x	0	0	0	а
x	b	x	x	x	x	x	x	0	0	1	b
x	x	c	x	x	x	x	x	0	1	0	С
x	x	x	d	x	x	x	x	0	1	1	d
x	x	x	x	е	x	x	x	1	0	0	е
x	x	x	x	x	f	x	x	1	0	1	f
x	x	x	x	x	x	g	x	1	1	0	g
x	x	x	x	x	x	x	h	1	1	1	h

Demultiplexer (Demux)

Selector specifies which output receives the input

1 input	n-bit	BCD v	value				2^n o	utputs			
a	0	0	0	а	0	0	0	0	0	0	0
b	0	0	1	0	b	0	0	0	0	0	0
c	0	1	0	0	0	С	0	0	0	0	0
d	0	1	1	0	0	0	d	0	0	0	0
е	1	0	0	0	0	0	0	е	0	0	0
f	1	0	1	0	0	0	0	0	f	0	0
g	1	1	0	0	0	0	0	0	0	g	0
h	1	1	1	0	0	0	0	0	0	0	h

Addition: The Half Adder

Addition of 2 bits: A & B produces summand (S) and carry (C)

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$

 $C = AB$

But to do addition, we need 3 bits at a time (to account for carries)

+ 1011 <u>1001</u> 10101

The Full Adder

Takes as input 2 digits (A&B) and previous carry (P)

Р	Α	В	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

XOR:checker-board pattern

$$S = A \oplus B \oplus P$$

$$C = AB + AP + BP$$

5-bit Ripple Carry Adder

Computes a₄a₃a₂a₁a₀ + b₄b₃b₂b₁b₀

Note how computation ripples from left to right

- Each adder has depth 2 (input passes through 2 gates to reach output)
- Full adder that computes s_i cannot start its computation until previous full adder computes carry
- The longest depth in a k-bit ripple carry adder is 2k

Adder-Subtractor circuit

How to change the adder to add and subtract using same circuit?

- Add extra bit S to switch between addition and subtraction
- Add XOR gate at the second input to full-adder

- Addition: A + B
- Subtraction: A B = A + (complement of B + I)

Handling 2's Complement Overflow

Adding 2 positive numbers -->negative result

Adding 2 negative numbers positive result

Handling 2's Complement Overflow

- I. I carried in (c3), and 0 carried out (c4)
 - Only if a3 = 0 and b3 = 0
- 2. 0 carried in (c3), and I carried out (c4)
 - Only if a3 = 1 and b3 = 1

c4	c 3	c2	c1	c0
	a3	a2	a1	a0
	b3	b2	b1	b0
	s 3	s2	s1	s0

n bit two's comp: -2^n <> 2^n - 1
split into pos and neg
ranges and find smallest
and largest possible
results. show that they're
in range for twos comp.

a 3	b3	с3	с4	s3	overflow
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

sum of two pos is pos

sum of two negs is neg

Overflow Computation in Adder/Subtractor

For 2s complement, overflow if 2 most significant carries differ

Ripple Carry Adder Circuit Depth

Overflow

Have to wait for the carry to be computed

 $A_3A_2A_1A_0 + B_3B_2B_1B_0 = S_3S_2S_1S_0$

- Depth of a circuit is the longest (most gates to go through) path
- Overflow has depth 8
- S₃ has depth 7
- In general, S_i has depth 2i+1 in Ripple-Carry Adder

Carry Lookahead Adder (CLA)

Goal: produce an adder circuit of shorter depth

Mechanism: rewrite the carry function

$$C_{i+1} = a_ib_i + a_ic_i + b_ic_i$$

 $C_{i+1} = a_ib_i + c_i(a_i+b_i)$
 $C_{i+1} = g_i + c_i(p_i)$

Generates carry out $(c_{i+1}=1)$ if $a_i = b_i = 1$

carry generate

$$g_i = a_i b_i$$

Propagates carry in $(c_i = 1)$ If either $a_i = 1$ or $b_i = 1$

carry propagate

$$p_i = a_i + b_i$$

Now, look at g_i and p_i

They both use **only** a_i and b_i, neither depend on the carry. If we write the carry function in terms of g_i and p_i we might avoid waiting for the carry.

Carry Lookahead Adder (CLA)

Recursively define carries in terms of propagate and generate signals

$$C_{1} = g_{0} + C_{0}p_{0}$$

$$C_{2} = g_{1} + C_{1}p_{1}$$

$$= g_{1} + (g_{0} + C_{0}p_{0})p_{1}$$

$$= g_{1} + g_{0}p_{1} + C_{0}p_{0}p_{1}$$

$$C_{3} = g_{2} + C_{2}p_{2}$$

$$= g_{2} + (g_{1} + g_{0}p_{1} + C_{0}p_{0}p_{1})p_{2}$$

$$= g_{2} + g_{1}p_{2} + g_{0}p_{1}p_{2} + C_{0}p_{0}p_{1}p_{2}$$

We can compute carries in terms of a_i's, b_i's and c0.
This bits are available right away, we don't have to wait for them.

ith carry has i+1 product terms, the largest of which has i+1 literals

Carry circuit depth is 3 (SoP form)

If gates take 2 inputs, total circuit depth is $1 + \log_2(k)$ for k-bit addition

Carry Lookahead Adder (CLA)

$$C_0 = 0$$
 $S_0 = a_0 \oplus b_0 \oplus c_0$
 $C_1 = g_0 + c_0p_0$ $S_1 = a_1 \oplus b_1 \oplus c_1$
 $C_2 = g_1 + g_0p_1 + c_0p_0p_1$ $S_2 = a_2 \oplus b_2 \oplus c_2$
 $C_3 = g_2 + g_1p_2 + g_0p_1p_2 + c_0p_0p_1p_2$ $S_3 = a_3 \oplus b_3 \oplus c_3$
 $C_4 = g_3 + g_2p_3 + g_1p_2p_3 + g_0p_1p_2p_3 + c_0p_0p_1p_2p_3$ $S_4 = a_4 \oplus b_4 \oplus c_4$

Next Topic

Sequential circuits