情報処理工学第7回

藤田 一寿

公立小松大学保健医療学部臨床工学科

■ 真理値表から論理回路を作る

- 前述のやり方では困ることがある.
 - ・ 式の簡単化に行き詰まる.
 - 入力が多く真理値表が複雑になっている.

ORの真理値表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$
$$= \overline{A} \cdot B + A \cdot (\overline{B} + B)$$
$$= \overline{A} \cdot B + A$$

ORの真理値表を論理式にうまく変換できていない…

ORの真理値表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$
$$= \overline{A} \cdot B + A \cdot (\overline{B} + B)$$
$$= \overline{A} \cdot B + A$$

ORの真理値表を論理式にうまく変換できていない…

ORの真理値表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = \overline{A} \cdot B + A \cdot \overline{B} + \underline{A} \cdot B$$

$$= \overline{A} \cdot B + A \cdot \overline{B} + \underline{A} \cdot B + A \cdot B$$

$$= (A + \overline{A}) \cdot B + A \cdot (B + \overline{B})$$

$$= A + B$$

論理式の公式をうまく駆使すればORの論理式が導けるが…

簡単な方法はないのか?

ORの真理値表

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

$$= \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B + A \cdot B$$

$$= (A + \overline{A}) \cdot B + A \cdot (B + \overline{B})$$

$$= A + B$$

論理式の公式をうまく駆使すればORの論理式が導けるが…

簡単な方法はないのか?
カルノー図を使うとうまくいく

■カルノ一図

• 論理式を簡略化するための表

ORの真理値表

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

В	A	0	1
(0	0	1
1	L	1	1

■カルノ一図

• 論理式を簡略化するための表

■カルノ一図

• 論理式を簡略化するための表

ORの真理値表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

カルノ一図

A	0	1
0	0	1
1	1	1

赤い部分が入力青い部分が出力

赤い線で囲まれた出力が1になる部分について考えてみる.

$$\overline{A} \cdot B + A \cdot B = B \cdot (A + \overline{A}) = B$$

Aが消えてBだけになった!!

$$\overline{A} \cdot B + A \cdot B = B \cdot (A + \overline{A}) = B$$

赤い線で囲まれた部分では、AはOと1、Bは1となる。 AはOと1の値になる場合、AとAの否定の足し算が出てくる ため、Aが消えてBのみとなった。

赤い点線で囲まれた部分について考えてみる.

$$A \cdot \bar{B} + A \cdot B = A \cdot (B + \bar{B}) = A$$

前述のように考えると, Bは0と1となっているため, B が消えた。

赤い線で囲まれた部分から導かれた論理式と、赤い点線で囲まれた部分から導かれた論理式を足すと答えとなる.

$$Y = A + B$$

なぜ、赤い線と赤い点線の両方で囲まれたA・Bを 2回使ってよいのか? それはA・B = A・B + A・Bと変換できるためで ある。

■ 3つ以上入力がある場合のカルノー図

- ・入力が3つ以上の場合でも、2つのときと同じやり方で行う。
- ただし、表の中の数値の並び方に注意する.

真理值表

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

AB C	00	01	11	10
0	0	0	1	0
1	0	1	1	1

例

• 次の真理値表で表す出力をする論理式を求めよ. ただし、Yを出力とする.

真理值表

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

AB	00	01	11	10
C		_		
0	0	0	1	0
1	0	1	1	1

C AB	00	01	11	10
0	0	0	1	0
1	0	1	1	1

演習 演習

・次の真理値表から論理回路を作れ、ただし、カルノー図を用いよ、

真理值表

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Α	В	C	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

演習

・次の真理値表から論理回路をつくれ、ただし、カルノー図を用いよ、

真理值表

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

■ 中間試験

- 第8回(11月16日)講義の後半に実施
- 時間は30分
- 範囲は第1回から第7回の講義で取り扱った内容
- 国家試験,ME2種の過去問を改変したものを出題
- 持ち込みあり

- 不合格となった学生がいた場合は、再試の連絡を掲示板する.
- 定期試験ができると国家試験もできるようになるので頑張ろう.