Как пересчитать вещественные числа (неформально)?

```
1. Номер вещественного числа — первое упоминание в литературе, т.е. \langle j, y, n, p, r, c \rangle: j — гёделев номер названия научного журнала (книги); y — год издания; n — номер; p — страница; r — строка; c — позиция
```

2. Попробуете предъявить число x, не имеющее номера? Это рассуждение сразу даст номер.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Пример

Формальная арифметика, исчисление предикатов, исчисление высказываний — счётно-аксиоматизируемые.

Элементарная подмодель

Определение

 $\mathcal{M}'=\langle D',F_n',P_n' \rangle$ — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1, ..., x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1, ..., x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} . Но пусть $D' = \{0\}$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

- 1. Построим D_0 множество всех значений, которые упомянуты в языке теории.
- 2. Будем последовательно пополнять D_i : $D_0 \subseteq D_1 \subseteq D_2 \dots$, следя за мощностью. $D' = \cup D_i$.
- 3. Покажем, что $\langle D', F_n, P_n \rangle$ требуемая подмодель.

Начальный D_0

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Очевидно, $|D_0| \le |T|$.

Пополнение D

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y, x_1, ..., x_n)$ при $y, x_i \in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\theta(y')]$.

Всего добавили не больше $|T| \cdot |D_k|$.

$$|\cup D_i| \leq |T| \cdot |D_k| \cdot |\aleph_0| = \max(|T|, |\aleph_0|)$$

\mathcal{M}' — элементарная подмодель

Индукцией по структуре формул $au\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.
 - 2.3 $\tau \equiv \exists y. \varphi(y, x_1, \dots, x_n)$ аналогично.

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке.

Аксиома выбора

Аксиома выбора

Аксиома (Аксиома выбора)

Из любого семейства дизъюнктных непустых множеств $\{A_i\}$ можно выбрать непустую трансверсаль — множество S, что $S \cap A_i = \{x_i\}$. Иначе, $S \in \times \{A_i\}$.

Теорема (Аксиома выбора)

Пусть $\{A_i\}$ — семейство непустых множеств. Тогда существует $f:\{A_i\} o \cup A_i$, причём $\forall a.a\in\{A_i\} o f(a)\in a$

Доказательство.

По семейству A_i рассмотрим семейство множеств $X(A_i)$: $X(A_i) = \{\langle A_i, a \rangle \mid a \in A_i \}$, если $A_i \neq A_j$, то $X(A_i) \cap X(A_j) = \emptyset$, тогда $\exists f.f \in \times \{X(A_i)\}$.

Обратное утверждение также легко показать.

Аксиома выбора: альтернативные формулировки

Теорема (Лемма Цорна)

Если задано $\langle M, (\preceq) \rangle$ и для всякого линейно-упорядоченного $S \subseteq M$ выполнено $\mathrm{upb}_M S \in M$, то в M существует максимальный элемент.

Теорема (Теорема Цермело)

На любом множестве можно задать полный порядок.

Теорема

У любой сюръективной функции существует частичная обратная.

Теорема

Аксиома выбора ⇒ лемма Цорна: без доказательства

Начальный отрезок

Определение

Будем говорить, что $\langle S, (\prec_S) \rangle$ — начальный отрезок $\langle T, (\prec_T) \rangle$, если:

- \triangleright $S \subset T$;
- ▶ если $a, b \in S$, то $a \prec_S b$ тогда и только тогда, когда $a \prec_T b$;
- ▶ если $a \in S$, $b \in T \setminus S$, то $a \prec_T b$.

Будем записывать это как $S \prec T$.

Теорема

Если множество начальных отрезков X линейно упорядочено, то в нём есть наибольший элемент.

Доказательство.

Пусть $M = \bigcup \{T | \langle T, (\prec) \rangle \in X\}$ и $(\prec)_M = \bigcup \{(\prec) | \langle T, (\prec) \rangle \in X\}$. Раз все элементы X сравнимы, значит, любые два отношения порядка не противоречат друг другу (одно – продолжение

Лемма Цорна \Rightarrow теорема Цермело

Пусть выполнена лемма Цорна и дано некоторое X. Покажем, что на нём можно ввести линейный порядок.

- ▶ Пусть $S = \{\langle P, (\prec) \rangle \mid P \subseteq X, (\prec)$ полный порядок $\}$. Например, для $X = \{0,1\}$ множество
 - $S=\{\langle\varnothing,\varnothing\rangle,\langle\{0\},\varnothing\rangle,\langle\{1\},\varnothing\rangle,\langle X,0\prec 1\rangle,\langle X,1\prec 0\rangle\}$ Введём порядок на S: положим $\langle P,(\prec_{p})\rangle<\langle Q,(\prec_{q})\rangle$, если
- $P\subseteq Q$, $a\prec_p b$ тогда и только тогда, когда $a\prec_q b$, при $a,b\in P$, $a\prec_q b$ при $a\in P,b\in Q\setminus P$.
- ▶ Заметим, что $\langle\varnothing,\varnothing\rangle<\langle\{0\},\varnothing\rangle$, но $\langle X,0\prec 1\rangle$ несравним с $\langle X,1\prec 0\rangle$.
- ▶ Любое линейно-упорядоченное подмножество $\langle T, (<) \rangle$ (где $T \subseteq S$) имеет верхнюю грань (она же максимальный элемент): $\langle \cup T, \cup (\prec) \rangle$ (например, для $\{\langle \varnothing, \varnothing \rangle, \langle \{0\}, \varnothing \rangle, \langle X, 0 \prec 1 \rangle\}$ это $\langle X, 0 \prec 1 \rangle$.
- ▶ По лемме Цорна тогда есть $\langle R, \Box \rangle = \max S$. Заметим, что R = X, потому что иначе пусть $a \in X \setminus R$. Тогда положив $M = \langle R \cup \{a\}, (\prec_R) \cup \{x \prec a \mid x \in R\} \rangle$ получим, что M

тоже вполне упорядоченное (и потому $M \in S$), значит, R

Теорема Цермело \Rightarrow существование обратной \Rightarrow аксиома выбора

Теорема

Теорема Цермело \Rightarrow у сюрьективных функций существует частичная обратная.

Доказательство.

Рассмотрим сюрьективную $f:A\to B$. Рассмотрим семейство $R_b=\{a\in A\mid f(a)=b\}$. Построим полный порядок на каждом из R_b . Тогда $f^{-1}(b)=\min R_b$.

Теорема

Существует частичная обратная у сюръективных функций \Rightarrow существует трансверсаль у дизъюнктных множеств.

Доказательство.

Пусть дано семейство дизъюнктных множеств $\{A_i\}$. Рассмотрим $f: \cup A_i \to \{A_i\}$, что $f(a) = \cup \{A_i \in \{A_i\} \mid a \in A_i\}$. Поскольку A_i дизъюнктны, $f(a) = A_i$ при всех a. Тогда

 $f^{-1}(\Lambda_i) \subset \Lambda_i$ Torna $\{f^{-1}(\Lambda_i)\} \subset \times \{\Lambda_i\}$

Зачем нужна аксиома выбора?

Определение

Пределом функции f в точке x_0 по Коши называется такой y, что

$$\forall \varepsilon \in \mathbb{R}^+.\exists \delta. \forall x. |x-x_0| < \delta \rightarrow |f(x)-y| < \varepsilon$$

Определение

Пределом функции f в точке x_0 по Гейне называется такой y, что для любой $x_n \to x_0$ выполнено $f(x_n) \to y$.

Предел по Гейне влечёт предел по Коши

Теорема

Пусть
$$\lim_{x\to x_0} f(x) = y$$
 по Гейне, тогда $\forall \varepsilon. \exists \delta. \forall x. |x_\delta - x_0| < \delta \to |f(x_\delta) - y| < \varepsilon.$

Доказательство.

Пусть не так. То есть, $\exists \varepsilon. \forall \delta. \exists x_\delta. |x_\delta - x_0| < \delta \ \& |f(x_\delta) - y| \ge \varepsilon.$ Фиксируем ε и возьмём $\delta_n = \frac{1}{n}$ и $p_n = x_{\delta_n}$. $p_n \to x_0$, так как $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$, по определению предела по Гейне $f(p_n) \to y$, но по предположению $|f(p_n) - y| \ge \varepsilon.$

Пояснение

Для применения предела по Гейне нужна p_n — как множество. $\langle p_1, p_2, p_3, \dots \rangle$?

... Фиксируем ε и рассмотрим

$$X_\delta=\{x_\delta\mid |x_\delta-x_0|<\delta\ \&\ |f(x_\delta)-y|\geq arepsilon\}.$$
 Возьмём $\delta_n=rac{1}{n}$ и $x_1\in X_1$.

... То есть, по семейству непустых множеств $\{X_\delta\}$ по аксиоме выбора построим $p:\{X_\delta\} o \cup X_\delta$, что $p(X_\delta)\in X_\delta$, и построим

Предел по Коши влечёт предел по Гейне

Теорема

Пусть
$$\lim_{x\to x_0} f(x) = y$$
 и дана $x_n \to x_0$. Тогда $f(x_n) \to y$.

Доказательство.

Фиксируем $\varepsilon > 0$.

- ▶ (определение предела по Коши) существует δ , что $\forall x. |x x_0| < \delta \rightarrow |f(x) y| < \varepsilon$.
- ▶ (сходимость x_n к x_0) найдётся N, что $\forall n.n > N \to |x_n x_0| < \delta$.
- ▶ (предыдущие два пункта) $\forall n.n > N \rightarrow |f(x_n) y| < \varepsilon.$

Почему здесь не требуется аксиома выбора? Потому что нам нужен δ из единственного множества $\{\delta\in\mathbb{R}\mid \forall x.|x-x_0|<\delta\to|f(x)-y|<\varepsilon\}$. То же про N. Аксиома выбора для конечного семейства множеств доказуема в ZF.

Равенство и функции

Пример

Пусть $A_0=\{0,1,3,5\}$ и $A_1=\{3,5,1,0,0,5,3\}$. Верно ли, что $A_0=A_1$? Да, так как $\forall x.x\in\{0,1,3,5\}\leftrightarrow x\in\{3,5,1,0,0,5,3\}$.

Теорема

Если $f:A\to B$, также $a,b\in A$ и a=b, то f(a)=f(b).

Доказательство.

Пусть $F \subseteq A \times B$ — график функции f.

Легко показать, что если a=b и $y_1=y_2$, то $\langle a,y_1\rangle=\langle b,y_2\rangle$.

По определению функции,

 $\forall x. \forall y_1. \forall y_2. \langle x, y_1 \rangle \in F \& \langle x, y_2 \rangle \in F \to y_1 = y_2.$

Также, если $f(a)=y_1$, $f(b)=y_2$, то $\langle a,y_1\rangle\in F$ и $\langle b,y_2\rangle\in F$.

Тогда: $\langle a, y_1 \rangle = \langle b, y_1 \rangle = \langle b, y_2 \rangle = \langle a, y_2 \rangle$, то есть $f(a) = y_2 = f(b)$.

Теорема Диаконеску

Теорема

Если рассмотреть ИИП с ZFC, то для любого Р выполнено $\vdash P \lor \neg P$.

Доказательство.

Рассмотрим $\mathcal{B} = \{0, 1\}, A_0 = \{x \in \mathcal{B} | x = 0 \lor P\}$ и

$$A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}. \ \{A_0, A_1\}$$
 — непустое семейство

$$A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}$$
. $\{A_0, A_1\}$ — непустое семнепустых множеств, и по акс. выбора существует

непустых множеств, и по акс. выбора существует
$$f: \{A_0, A_2\} \to \{A_1, A_2, A_3\} \to \{A_1, A_2, A_3\}$$

$$\{A_0,A_1\} o \cup A_i$$
, что $f(A_i)\in A_i$. (Если P , то $A_0,A_1\}=\{\mathcal{B}\}$).

$$\{A_0,A_1\}=\{\mathcal{B}\}.$$

$$\{A_0, A_1\} = \{\mathcal{B}\}\$$
.
 $\vdash f(A_0) \in A_0 \& f(A_1) \in A_1$

непустых множеств, и по акс. выбора существует
$$f:\{A_0,A_1\} \to \cup A_i$$
, что $f(A_i) \in A_i$. (Если P , то $A_0=A_1$ и

$$A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}. \ \{A_0, A_1\}$$
 — непустое семейство непустых множеств, и по акс. выбора существует

что
$$f(A_i) \in A_i$$
. (Если P , то $A_0 = A_1$ и

г.:
$$\{A_0,A_1\} o \cup A_i$$
, что $f(A_i) \in A_i$. (Если P , то $A_0 = A_1$ и $\{A_0,A_1\} = \{\mathcal{B}\}$).

$$f(A_0) \in A_0 \& f(A_1) \in A_1$$
 $f(A_i) \in f(A_0) \in \mathcal{B} \& f(A_0) = 0 \lor P) \& (f(A_1) \in \mathcal{B} \& f(A_1) = 1 \lor P)$ Опр. $f(A_0) = 0 \& f(A_1) = 1) \lor P$ Удал

$$\{A_0, A_1\} = \{\mathcal{B}\}$$
).
 $\vdash f(A_0) \in A_0 \& f(A_1) \in A_1$

$$\vdash f(A_0) \in A_0 \& f(A_1) \in A_1$$

$$f(A_0) \in A_0 \& f(A_1) \in A_1$$

$$= (f(A_1) \in B_1, f(A_1) = 0 \lor B_1) \& (f(A_1) \in B_1, f(A_1) = 1 \lor A_1)$$

$$\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$$
 Удал $\vdash P \lor f(A_0) \neq f(A_1)$ Пере

$$\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$$

$$\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$$

$$P \lor f(A_0) \neq f(A_1)$$

$$P \lor f(A_0) \neq f(A_1)$$

$$\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$$

$$\vdash P \lor f(A_0) \neq f(A_1)$$

$$\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$$

 $\vdash P \lor f(A_0) \neq f(A_1)$

$$\vdash P \lor f(A_0) \neq f(A_1)$$

$$\vdash P \to A_0 = A_1$$

$$\vdash P \lor f(A_0) \neq f(A_1)$$

$$\vdash P \to A_0 = A_1$$

Опре

Teope $\vdash f(A_0) \neq f(A_1) \rightarrow \neg P$ Конт

П - - -

Слабые варианты аксиомы выбора

Теорема (конечного выбора)

Если
$$X_1 \neq \varnothing, \ldots, X_n \neq \varnothing$$
, $X_i \cap X_j = \varnothing$ при $i \neq j$, то $\times \{X_1, \ldots, X_n\} \neq \varnothing$.

Доказательство.

- ▶ База: n=1. Тогда $\exists x_1.x_1 \in X_1$, поэтому $\exists x_1.\{x_1\} \in \times \{X_1\}$.
- ▶ Переход: $\exists v.v \in \times \{X_{1,n}\} \to \exists x_{n+1}.x_{n+1} \in X_{n+1} \to v \cup \{x_{n+1}\} \in \times (X_{1,n} \cup \{X_{n+1}\})$

Аксиома (счётного выбора)

Для счётного семейства непустых множеств существует функция, каждому из которых сопоставляющая один из своих элементов

Аксиома (зависимого выбора)

если $\forall x \in E.\exists y \in E.xRy$, то существует последовательность $x_n: \forall n.x_nRx_{n+1}$

Аксиома конструктивности: V=L

Определение

Универсум фон Неймана V- все наследственные фундированные множества.

Конструктивный универсум $L = \bigcup_a L_a$, где:

$$L_a = \left\{ egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} eta \ \{\{x \in L_b \mid arphi(x,t_1,\ldots,t_k)\} \mid arphi - \phi$$
ормула, $t_i \in L_b\}, & a = b' \ igcup_{b < a}(L_b), & a - \pi \rho e_a \end{array}
ight.$

При наличии аксиомы фундирования можно показать, что $V = \bigcup_2 V_2$, где:

$$V_{a}=\left\{egin{array}{ll} arnothing, & a=0\ \mathcal{P}(V_{b}), & a=b'\ igcup_{b< a}(V_{b}), & a-$$
предельный

Аксиома конструктивности: V = L, то есть все фундированные множества задаются формулами.