Assignment 2 (Data Structures and Algorithms)

By Saurabh Kumar (SC22B146)

Part 1

1.1 A list of vertices is provided below, and the table contains a set of edges and the corresponding edge weights. Draw the undirected graph represented by the information provided.

Vertices, V = { A, B, C, D, E, F, G, H, I }

Edges, E =

Edge	Weight
(A, B)	10
(B, C)	20
(C, D)	30
(D, E)	10
(E, F)	20
(F, A)	30
(A, D)	15
(B, E)	5
(C, F)	1
(G, H)	100
(H, I)	150
(I, G)	200

- 1.2 Answer the following questions about the graph you constructed in question 1.1.
- . Is the graph connected or not? Why?
- · How many connected components are there in the graph?

Solo The graph is <u>not</u> connected because there doesn't exist a path from a particular vertex to all other vertices (e.g., from A to I).

There are two connected components in the graph.

1.3 Construct a minimum spanning forest of the graph you constructed in question 1.1. Use Kruskal's algorithm and show the steps you followed in constructing the MST.

som for the 1st connected component:

Edges in ascending order of their weights:

Edge	Weight	A ccepted
(C, F)	1	yes
(B.E)	5	Yes
(A,B)	lo	yes
(a'E)	lo	Yes
(a,A)	15	1 \(\foats\)
(B.C)	20	yos
(E .F)	۷٥	No
(c·p)	30	√20
(FA)	30	Ŋo

Steps: Draw the least weighted edge, i.e. (c,F).

The draw the second least weighted (B,F).

Do this until we reach a edge which forms a loop (A,D). This edge shouldn't be added