

Meta Structure: Computing Relevance in Large Heterogeneous Information Networks

Zhipeng Huang*, Yudian Zheng*, Reynold Cheng*, Yizhou Sun#, Nikos Mamoulis*, Xiang Li*

*The University of Hong Kong, #Northeastern University

Heterogeneous Information Networks

HIN: directed graph with multiple node types and edge types.

Relevance Computing on HIN

Meta Path [1]: a sequence of node types and edge types.

Meta Path Instance: a path of HIN conforming to the pattern.

Relevance Measures:

PathCount [1]: the number of meta path instances.

PathSim [1]: a normalized version of PathCount.

PCRW [2]: the probability of the random walk.

Our Main Contribution

Meta Structure: an extension of meta path.

Meta Structure Instance: a subgraph of HIN.

Advantages:

- More expressive and flexible than meta path.
- Support more complex relationships.

Structure-based Relevance

StructCount: no. of meta structure instances.

SCSE: prob. of a "successful" subgraph expansion.

BSCSE: StructCount + SCSE.

Efficiency

i-LTable: a lookup table for storing the search results of a given meta structure at the i-th layer.

key	Value
<icdm, social=""></icdm,>	<pei, 1.0=""></pei,>
	<pei, 0.5=""></pei,>
<kdd, mining=""></kdd,>	<han, 0.5=""></han,>
<vldb, efficient=""></vldb,>	<han, 1.0=""></han,>
<vldb, privacy=""></vldb,>	<yang, 1.0=""></yang,>
<aaai, efficient=""></aaai,>	<yang, 1.0=""></yang,>

Effectiveness

We propose the meta structure, which expresses complex relations between two objects in HINs.

We design 3 relevance measures based on meta structures, which are more effective than those based on meta paths.

References

[1] Yizhou Sun, et al. "Pathsim: Meta path-based top-k similarity search in heterogeneous information networks." VLDB'11 (2011).

[2] Changping Meng, et al. "Discovering Meta-Paths in Large Heterogeneous Information Networks" WWW'15 (2015).