Calculus I Derivatives basics

Todor Milev

2019

Outline

- Tangents
- Derivatives
 - Other Notations
 - The Derivative as a Function
 - Velocities
 - Differentiability
 - How Can a Function Fail to be Differentiable?
 - Higher Derivatives
- Differentiation Formulas
 - Power Functions
- Balls, spheres, circles, disks and differentiation

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Tangents 4/31

The Tangent Problem

- A tangent is a line that touches a curve.
- Moreover, a tangent should have the same "direction" as the curve at the point of contact.
- For a circle, a tangent is a line that intersects the circle at exactly one point.
- For more general curves, this definition isn't good enough.
- The line / intersects the curve at exactly one point, but it doesn't look like a tangent.
- The line t does look like a tangent, but it intersects the curve at two points.

Tangents 5/31

X	m_{PQ}	X	m_{PQ}
2		0	
1.5		0.5	
1.25		0.75	
1.1		0.9	
1.01		0.99	

• Find the tangent to $y = x^2$ at (1, 1).

- Tangent has equation y 1 = m(x 1), where m is its slope.
- If we know the slope, we know the line.
- If we know two points, we can find the slope. We know one point, P; we need another point.

2019

Tangents 5/31

Χ	m_{PQ}	X	m_{PQ}
2	3	0	
1.5		0.5	
1.25		0.75	
1.1		0.9	
1.01		0.99	

• Find the tangent to $y = x^2$ at (1,1).

- Tangent has equation y 1 = m(x 1), where m is its slope.
- If we know the slope, we know the line.
- If we know two points, we can find the slope. We know one point, P; we need another point.
- Choose a nearby point $Q = (x, x^2)$ on the parabola and find the slope m_{PQ} of the secant line PQ.

Tangents 5/31

Χ	m_{PQ}	Х	m_{PQ}
2	3	0	1
1.5	2.5	0.5	1.5
1.25	2.25	0.75	1.75
1.1	2.1	0.9	1.9
1.01	2.01	0.99	1.99

• Find the tangent to $y = x^2$ at (1, 1).

- Tangent has equation y 1 = m(x 1), where m is its slope.
- If we know the slope, we know the line.
- If we know two points, we can find the slope. We know one point, P; we need another point.
- Choose a nearby point $Q = (x, x^2)$ on the parabola and find the slope m_{PQ} of the secant line PQ.
- The closer x is to 1, the closer m_{PQ} is to 2.
- This suggests the slope of the tangent should be 2.

Tangents 6/31

- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) f(a)}{x a}$.
- As x approaches a, the point Q approaches P.

Definition (Non-vertical tangent line)

Let P = (a, f(a)). Suppose the limit $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists. Define the tangent to y = f(x) at P to be the line passing through P with slope m, in other words, the line with equation y - f(a) = m(x - a).

Note. Even if the limit does not exist a reasonable notion of a tangent line may still exist.

Find an equation for the tangent line to the parabola $y = x^2$ at the point P = (1, 1).

Here
$$a = 1$$
 and $f(x) = x^2$.
 $m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$

$$= \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

$$= \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$
Point-slope form: $y - 1 = 2(x - 1)$, or

finally y = 2x - 1.

Tangents 8/31

- There is an equivalent expression for the slope of the tangent.
- Again let x tend to a.

Tangents 8/31

- There is an equivalent expression for the slope of the tangent.
- Again let x tend to a.
- However, think in terms of h = x a.
- Then x = a + h and the slope of the secant line PQ is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- The limit can now be written in terms of the quantity h.

Tangent slope - equivalent expression:

$$m=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}.$$

Find an equation for the tangent line to the hyperbola $y = \frac{3}{y}$ at the point (3, 1).

Point-slope form: $y - 1 = -\frac{1}{3}(x - 3)$, or finally $y = -\frac{x}{3} + 2$.

Here
$$a = 3$$
 and $f(x) = \frac{3}{x}$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$

$$= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$$

$$= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{h}$$

$$= \lim_{h \to 0} -\frac{1}{3+h} = -\frac{1}{3}$$

9/31

Tangents 10/31

Example (Tangent line to a polynomial)

Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).

Here
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$.

$$m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$$

$$= \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x + 4)}{x - 2}$$

$$= \lim_{x \to 2} (x + 4) = 6$$
.

The tangent line: y - 9 = 6(x - 2), or finally y = 6x - 3.

Derivatives 11/31

Derivatives

Definition (Derivative)

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

- Slope=f'(a) The two alternative formulas result in equivalent definitions.
 - Equivalent formulation. The derivative f'(a) is the slope of the tangent line to y = f(x) at (a, f(a)), provided that tangent line exists and is non-vertical.

Derivatives 12/31

Example

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number a.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{(a+h)^2 - 8(a+h) + 9 - (a^2 - 8a + 9)}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{a}^2 + 2ah + h^2 - \cancel{8}\cancel{a} - 8h + \cancel{9} - (\cancel{a}^2 - \cancel{8}\cancel{a} + \cancel{9})}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$$

$$= \lim_{h \to 0} \frac{\cancel{h}(2a+h-8)}{\cancel{h}}$$

$$= \lim_{h \to 0} (2a+h-8) = 2a-8.$$

Derivatives 13/31

Example

Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).

- The slope of the tangent is the derivative f'(3).
- From the previous example, f'(a) = 2a 8.
- Therefore $f'(3) = 2 \cdot 3 8 = -2$.
- Point-slope form: y (-6) = -2(x 3).
- Slope *y*-intercept form: y = -2x.

Derivatives Other Notations 14/31

Other Notations for Derivative

If y = f(x) is a function, there are many ways to write its derivative.

$$f'(x) = y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x) = Df(x) = D_x f(x)$$

- d/dx are called differentiation operators because they indicate the operation of differentiation, which is the process of calculating the derivative.
- dy/dx is called Leibniz notation; it means the same as f'(x).
- If we want to indicate the value of the derivative dy/dx in Leibniz notation at a point a, we write

$$\frac{dy}{dx}\Big|_{x=a}$$
 or $\frac{dy}{dx}\Big|_{a}$ or $\frac{dy}{dx}\Big|_{a}$

Derivatives The Derivative as a Function 15/31

The Derivative as a Function

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Change the point of view by letting the number a vary.
- Replace *a* with the variable *x* to get:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- f' is regarded a function in its own right, called the derivative of f.
- The domain of f' is $\{x|f'(x) \text{ exists }\}.$
- The domain of f' may be smaller than the domain of f.

The graph of a function f appears below. Use it to sketch the graph of the derivative f'.

- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
 - Where the slope of the tangent to f is −1, f' is −1.
- Where the slope of the curve is negative, f' is negative.
- Where the slope of the curve is positive, f' is positive.

If $f(x) = x^3 - x$, find formula for f'(x).

find formula for
$$f'(x)$$
.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - (x+h) - (x^3 - x)}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2 - 1)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1)$$

$$= 3x^2 - 1$$

Derivatives Velocities 18/31

Velocities

Example

Suppose a ball is dropped from the upper deck of the CN Tower, 450m above the ground. What is the velocity of the ball after 5 seconds?

- We need to know what "instantaneous" velocity is.
- Let f(x) denote the displacement of an object at time x.

Slope of secant = average velocity

Slope of tangent
= instantaneous velocity

Derivatives Velocities 19/31

Example

Suppose a ball is dropped from the upper deck of the CN Tower, 450m above the ground. What is the velocity of the ball after 5 seconds?

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h}$$

$$= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h}$$

$$= \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h}$$

$$= \lim_{h \to 0} 4.9(2a + h) = 9.8a$$

Therefore the velocity after 5s is v(5) = 9.8(5) = 49m/s.

Derivatives Differentiability 20/31

Definition (Differentiable at a point)

A function f is differentiable at a if f'(a) exists.

Definition (Differentiable on an interval)

A function f is differentiable on an open interval (a, b) (allowing $a = -\infty, b = \infty$) if it is differentiable at every number in the interval.

Where is the function f(x) = |x| differentiable?

- Suppose x > 0.
- Then |x| = x.
- If |h| < x it follows that x + h > 0.
- Then for |h| < x we have |x + h| = x + h.

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h} = 1$$

2019

Therefore f is differentiable for any x > 0.

Where is the function f(x) = |x| differentiable?

- Suppose *x* < 0.
- Then |x| = -x.
- If |h| < |x| it follows that x + h < 0.
- Then |x + h| = -(x + h).

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) + x}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h} = -1$$

Therefore f is differentiable for any x < 0.

Where is the function f(x) = |x| differentiable?

If f'(0) exists, then

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|0+h| - |0|}{h}.$$

Does this limit exist?

$$\lim_{h \to 0^+} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

Therefore *f* is not differentiable at 0.

$$f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$$

2019

Derivatives Differentiability 22/31

Theorem (Differentiability Implies Continuity)

If f is differentiable at a, then f is continuous at a.

Proof.

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(a) + \lim_{x \to a} [f(x) - f(a)]$$

$$= \lim_{x \to a} f(a) + \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)$$

$$= \lim_{x \to a} f(a) + \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$$

$$= \lim_{x \to a} f(a) + f'(a) \cdot 0$$

$$= f(a)$$

Therefore *f* is continuous at *a*.

How Can a Function Fail to be Differentiable?

Derivatives Higher Derivatives 24/31

Higher Derivatives

- Let f be a differentiable function.
- Suppose f' is also differentiable.
- Call the derivative of f' by f''. Call the derivative of f'' by f''' (if it exists) and so on.
- f'' is called second derivative, f''' -third derivative, and so on.
 - f' measures the rate of change of f.
 - Therefore f" measures the rate of change of the rate of change of f, and so on for the other derivatives.
 - Suppose f measures distance traveled per unit time.
 - f' the rate of change of distance is called velocity.
 - f'' the rate of change of velocity is called acceleration.

Derivatives Higher Derivatives 25/31

Notation for Higher Derivatives

	y = f(x)	Leibniz notation	y = f(x)
f'(x)	<i>y</i> ′	$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x}(x)$	$\frac{dy}{dx}$
<i>f</i> "(<i>x</i>)	<i>y</i> "	$\frac{\mathrm{d}^2 f}{\mathrm{d} x^2} = \frac{\mathrm{d}^2 f}{\mathrm{d} x^2}(x)$	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$
<i>f</i> '''(x)	y'''	$\frac{\mathrm{d}^3 f}{\mathrm{d} x^3} = \frac{\mathrm{d}^3 f}{\mathrm{d} x^3}(x)$	$\frac{\mathrm{d}^3 y}{\mathrm{d} x^3}$
	f"(x)	f'(x) y' f''(x) y''	$f'(x)$ y' $\frac{df}{dx} = \frac{df}{dx}(x)$ $f''(x)$ y'' $\frac{d^2f}{dx^2} = \frac{d^2f}{dx^2}(x)$

:

$$n^{th}$$
 derivative $f^{(n)}(x)$ $y^{(n)}$ $\frac{d^n f}{dx^n} = \frac{d^n f}{dx^n}(x)$ $\frac{d^n y}{dx^n}$

Note: Do not confuse the superscript in the notation for n^{th} derivative with exponent. The parenthesis indicate we mean derivatives rather than exponents.

If
$$f(x) = x^3 - x$$
, find $f''(x)$.

In a previous exercise we found that the first derivative is $f'(x) = 3x^2 - 1$.

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

$$= \lim_{h \to 0} \frac{3(x+h)^2 - 1 - (3x^2 - 1)}{h}$$

$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 1 - 3x^2 + 1}{h}$$

$$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$$

$$= \lim_{h \to 0} (6x + 3h) = 6x$$

Differentiation Formulas

Let c be a constant and consider the constant function f(x) = c. Let us calculate the derivative of f:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0.$$

Theorem (Derivative of a Constant Function)

$$\frac{d}{dx}(c)=0$$

Differentiation Formulas Power Functions 28/31

Power Functions

Now consider functions of the form $f(x) = x^n$, where n is a positive integer. For f(x) = x, the graph is the line y = x, which has slope 1. So

$$\frac{d}{dx}(x) = 1.$$

What about n = 2 and n = 3?

$$\frac{d}{dx}(x^{2}) \qquad \qquad \frac{d}{dx}(x^{3})$$

$$= \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} \qquad \qquad = \lim_{h \to 0} \frac{(x+h)^{3} - x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h} \qquad \qquad = \lim_{h \to 0} \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h} \qquad \qquad = \lim_{h \to 0} \frac{h(3x^{2} + 3xh + h^{2})}{h}$$

$$= \lim_{h \to 0} (2x+h) = 2x. \qquad \qquad = \lim_{h \to 0} (3x^{2} + 3xh + h^{2}) = 3x^{2}.$$

Differentiation Formulas Power Functions 29/31

Theorem (The Power Rule)

If n is a positive integer, then $\frac{d}{dx}(x^n) = nx^{n-1}$.

Proof.

Use this formula (which you can verify):

$$x^{n}-a^{n}=(x-a)(x^{n-1}+x^{n-2}a+\cdots+xa^{n-2}+a^{n-1}).$$

Let $f(x) = x^n$. Then

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$= \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})}{x - a}$$

$$= \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})$$

$$= a^{n-1} + a^{n-2}a + \dots + aa^{n-2} + a^{n-1} = na^{n-1}.$$

Example (Power Rule)

If
$$f(x) = x^5$$
,
Then $f'(x) = 5x^4$.

If
$$y = x^{1000}$$
,
Then $y' = 1000x^{999}$.

$$\text{If} \quad u=t^{22},$$
 Then
$$\frac{\mathrm{d}u}{\mathrm{d}t}=22t^{21}.$$

$$\frac{\mathsf{d}}{\mathsf{d}r}(r^3) = 3r^2.$$

The Relation between Ball Volume and Surface Area

There is a relationship between the surface area and the volume of a ball (in any dimension).

men-	Set of pts. at dist. $\leq r$ from origin	Inside measure name	Measure f-la	Boundary name	Boundary measure formula	Derivative of inside measure
3	ball	volume	$\frac{4}{3}\pi r^3$	sphere	$4\pi r^2$	$\frac{d}{dr}\left(\frac{4}{3}\pi r^3\right) = 4\pi r^2$
2	disk, circle	circle area	πr^2	circle (circum- ference)		$\frac{d}{dr}\left(\pi r^2\right) = 2\pi r$
1	•+ ^r • interval	length	2r	• • endpts.	2	$\frac{d}{dr}(2r)=2$