Problemas de relación entre atributos: asociación

Maria-Amparo Vila vila@decsai.ugr.es

Grupo de Investigación en Bases de Datos y Sistemas de Información Inteligentes https://idbis.ugr.es/ Departamento de Ciencias de la Computación e Inteligencia Artificial

Universidad de Granada

Octubre 2014

Problemas más importantes de DM

Modelización de dependencias

- *Objetivo:* Describir dependencias significativas entre las variables incluidas en la base de datos Los modelos de dependencias pueden ser:
 - Cualitativas o cuantitativas (dependencias funcionales y análisis de regresión)
 - Dependencias parciales o completas

Cuando se trata de variables cuantitativas, y se espera la existencia de una relación $y=f(x_1,..x_n)$ tenemos un **modelo predictivo** normalmente de análisis de regresión

Cuando no se tiene conocimiento previo, las variables son más generales y se buscan asociaciones entre valores tenemos un **modelo** descriptivo

Planteamiento del problema

- *Objetivo*: Descubrir "reglas" en lógica proposicional (pero cualificadas probabilísticamente) que involucren algunos valores de ciertos atributos.
- · Es un modelo descriptivo
- · Los datos serán, en principio nominales o intervalares.
- · El formato de los datos es más general que una base de datos relacional. Se trabaja en una base de datos de *transacciones*

Planteamiento del problema

Ejemplo: "cesta de la compra"

Cliente1:	lechePascualE , azúcar1Kg , pepinos , cinta_8mm
Cliente2:	lechePascualE , azúcar1Kg , ternera

Se buscarán asociaciones del tipo:

El 90% de los clientes que compran azúcar, compran leche El 80% de los clientes que compran algún disco de JL Guerra, compran un disco de Gloria Stefan

Definición formal de reglas de asociación (Agrawal y otros, 1993)

- I conjunto de items
- T conjunto de transacciones, $T \subseteq \wp(I)$
- Regla de asociación en T:

$$A \Rightarrow C \ \forall A, C \subset I \ A \cap C = \emptyset$$

- Otro ejemplo interesante: Análisis de textos
 - o I: términos en un documento
 - o T: conjunto de textos
 - $\circ \{amor, dolor\} \Rightarrow \{muerte\}$

Asociación significa coocurrencia, no causalidad

Bases de datos Relacional y transaccional

Definición de Base de datos Transaccional

- · Base de datos donde cada "fila" o registro tiene dos partes:
- 1. La identificación de registro
- 2. Un conjunto de items (itemset)

Si de partida tenemos una BDR, habrá que transformarla en una BDT, es inmediato si consideramos que los items posibles son **todos** los posibles valores de los atributos

Bases de datos Relacional y transaccional

Ejemplo de transformación BD relacional- BD transaccional

BDR:

DNI	Nombre	Altura	Peso	Dirección
5	JC	186	87	Gr
6	Р	175	70	Ma

BDT:

- 5 NombreJC , Altura186 , Peso87 , DireccGr
- 6 NombreP , Altura175 ,Peso70 , DireccMa

Bases de datos Relacional y transaccional

Ejemplo de transformación BD transaccional- BD relacional

lechePascualE, azúcar1Kg, pepinos, cinta_8mm Cliente1 BDT: Cliente2

lechePascualE, azúcar1Kg, ternera

↓ Recodificación

Lact3, Ultr5, Fruta9, Otros15 Cliente1: BDT:

Cliente2: Lact3, Ultr5, Carne2

↓ Transformación

IDCL Lact Ultr Pesc Otros Fruta Carne BDR: Cliente1: 3 5 9 null null 15 Cliente2: 3 5 2 null null null

los algoritmos que extraen reglas de asociación siempre se diseñan para que trabajen directamente sobre BDT

Medidas de valoración de una regla de asociación

• Soporte de un itemset I_0 en T

$$supp(I_0) = \frac{|\{\tau \in T \mid I_0 \subseteq \tau\}|}{|T|}$$

Número de veces que ocurre en una base de datos/número total de transacciones

• Soporte de una R.A.:

$$Supp(A \Rightarrow C) = supp(A \cup C)$$

Soporte del conjunto total de items involucrados en ella

Confianza de una R.A.:

$$Conf(A \Rightarrow C) = \frac{supp(A \cup C)}{supp(A)}$$

Proporción entre la frecuencia común, y la del consecuente

Medidas de valoración de una regla de asociación

Ejemplo de medidas

Α	В	С	D
a0	b1	c1	d1
a1	b1	c1	d2
a2	b1	c1	d3
a3	b1	c1	d4
a4	b2	c3	d5
a5	b2	c3	d6
a6	b1	c1	d4

Soporte:

Soporte de una regla:

Confianza:

$$supp(b1, c1) = 5/7$$

$$supp(b1, c1, d4) = 2/7$$

$$supp((b1, c1) \to d5) = 0$$

$$supp((b2, c3) \Rightarrow d5) = 1/7$$

$$conf((b1, c1) \Rightarrow d4) = \frac{2/7}{5/7} = 2/5$$

$$conf((b2, c3) \Rightarrow d5) = \frac{1/7}{1/7} = 1$$

Medidas de valoración de una regla de asociación

- La confianza de una regla mide su calidad
- El soporte mide la *cantidad* de tuplas que soportan la inducción.
- Se suelen imponer dos umbrales:
 - o Umbral de Soporte minsup (5% p.e) Todo conjunto de items X tal que $supp(X) \geq minsup$ se denomina itemset frecuente
 - Toda regla $A \Rightarrow C$ es frecuente si $supp(A \Rightarrow C) \geq minsup$
 - Umbral de Confianza minconf (70% p.e)

Problemas asociados a las reglas de asociación

- 1. Extracción de reglas con soporte y confianza mayores que los umbrales (minsupp y minconf)
 - Algoritmos de Minería de reglas: A priori y variantes
- 2. Interpretación de las reglas (puede haber una explosión combinatoria)
 - ♦ Otras medidas de calidad: factor de certeza etc..
 - Otros tipos de reglas más complejas que impliquen causalidad
 - Mecanismos de agrupamiento de items en conceptos más complejos (P.E. no leche pascual, sino leche o producto lácteos) (Reglas de asociación difusas)
 - Uso de otros tipos de conjuntos para generar reglas en lugar de itemset frecuentes (item sets cerrados)
 - ♦ Mecanismo de Minería de segundo nivel (agrupamiento de reglas) etc.

Generación de reglas de asociación

Problema

Dada una base de datos transaccional obtener todas las reglas con soporte y confianza mayores que minsupp y minconf

Enfoque inicial: fuerza bruta

- Listar todas las posibles reglas
- Calcular los soportes y confianza
- Eliminar los que no verifique los umbrales

El costo es computacionalmente prohibitivo incluso para conjuntos pequeños

Generación de reglas de asociación

Ejemplo

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Ejemplos de reglas:

```
\{\text{Milk,Diaper}\} \rightarrow \{\text{Beer}\}\ (\text{s=0.4, c=0.67}) \\ \{\text{Milk,Beer}\} \rightarrow \{\text{Diaper}\}\ (\text{s=0.4, c=1.0}) \\ \{\text{Diaper,Beer}\} \rightarrow \{\text{Milk}\}\ (\text{s=0.4, c=0.67}) \\ \{\text{Beer}\} \rightarrow \{\text{Milk,Diaper}\}\ (\text{s=0.4, c=0.67}) \\ \{\text{Diaper}\} \rightarrow \{\text{Milk,Beer}\}\ (\text{s=0.4, c=0.5}) \\ \{\text{Milk}\} \rightarrow \{\text{Diaper,Beer}\}\ (\text{s=0.4, c=0.5}) \\ \{\text{Milk}\} \rightarrow \{\text{Milk}\} \rightarrow \{\text{Milk}\}\ (\text{S=0.4, c=0.5}) \\ \{\text{Milk}\} \rightarrow \{\text{Milk}\} \rightarrow \{\text{Milk}\}\ (\text{Milk}\} \rightarrow \{\text{Milk}\}\ (\text{Milk}) \\ \{\text{Milk}\} \rightarrow \{\text{Milk}\}\ (\text{Milk}) \\ (\text{Milk}) \rightarrow \{\text{Milk}\}\ (\text{Milk}) \\ \{\text{Milk}\} (\text{Milk}) \\ (\text{Milk}) \\ \{\text{Milk}\} (\text{Milk}) \\ (\text{Milk}) \\ \{\text{Milk}\} (\text{Milk}) \\ (\text{Milk})
```

Observaciones

- Todas las reglas son particiones binarias del mismo itemset {Milk, Diaper, Beer}
- Las reglas que se originan a partir del mismo itemset tiene igual soporte pero distinta confianza
- Se pueden separar las tareas de buscar itemset frecuentes y reglas fiables Algoritmo Apriori

Algoritmo Apriori: principios básicos

Estrategia divide y vencerás:

- 1. En primer lugar, se calculan aquellas reglas 'frecuentes' (con un soporte mayor que un umbral minsupp).
- 2. En segundo lugar, se ve cuales de esas reglas tienen una confianza mayor que el umbral mincon f.

El primer paso es, con diferencia, el más costoso. Se basa en:

La regla $A \Rightarrow B$ es frecuente, si y solo si par $A \cup B$ es frecuente

- El problema de encontrar reglas de asociación se divide en:
- 1. Encontrar itemsets frecuentes (soporte alto). Se plantean k-itemsets (itemsets con k items)
- 2. A partir de ellos, obtener reglas con confianza alta

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Fuerza bruta Ejemplo

100	A ₁	B_2	C_0
200	A_2^1	B_1^2	C_1
300	A_2^2	B_2	C_1
400	A_3^2	B_1^2	C_2
		1	
	Ao	1	Co
500 600	A_4	B_1	C_2 C_2

	k =	1
	A_1	1
	A_2	3
	A_3^-	1
	A_4	1
	B_1	4
1	B_2	2
İ	C_0	1
İ	C_1	2
- 1	Co	3

k = 2	2		
A_1B_1	0	A_3C_1	0
A_1B_2	1	A_3C_2	1
A_1C_0	1	A_4B_1	1
A_1C_1	0	A_4B_2	0
A_1C_2	1	A_4C_0	0
A_2B_1	2	A_4C_1	0
A_2B_2	1	A_4C_2	1
A_2C_0	0	B_1C_0	0
A_2C_1	2	B_1C_1	1
A_2C_2	1	B_1C_2	3
A_3B_1	1	B_2C_0	1
A_3B_2	0	B_2C_1	1
A_3C_0	0	B_2C_2	0

k = 3			
$A_1B_1C_0$	0	$A_3B_1C_0$	0
$A_1B_1C_1$	0	$A_3B_1C_1$	0
$A_1B_1C_2$	0	$A_3B_1C_2$	1
$A_1B_2C_0$	1	$A_3B_2C_0$	0
$A_1B_2C_1$	0	$A_3B_2C_1$	0
$A_1B_2C_2$	0	$A_3B_2C_2$	0
$A_2B_1C_0$	0	$A_4B_1C_0$	0
$A_2B_1C_1$	1	$A_4B_1C_1$	0
$A_2B_1C_2$	1	$A_4B_1C_2$	1
$A_2B_2C_0$	0	$A_4B_2C_0$	0
$A_2B_2C_1$	1	$A_4B_2C_1$	0
$A_2B_2C_2$	0	$A_4B_2C_2$	0
		///~	-///

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Solución

Usar la propiedad "a priori"

Todo subconjunto de un itemset frecuente es frecuente, luego si un itemset **no es frecuente**, ningún conjunto que lo contenga lo será Si I no es frecuente, y $I' \subseteq I$ then I' no es frecuente Esto nos dá una estrategia de poda

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Descripción del algoritmo

- 1. Hacer k=0, sean C_k el conjunto de k-itemsets candidatos de la base de datos, L_k conjunto de k-itemset frecuentes. $C_0 = \emptyset$ y $L_0 = \emptyset$
- 2. Hacer k = k + 1
- 3. Calcular C_k añadiendo ordenadamente los elementos de los itemsets de $L_{(k-1)}$ a los (k-1)-itemsets de $L_{(k-1)}$ para formar k-itemsets
- 4. Calcular el soporte de los elementos de C_k . Si hay elementos frecuentes generar L_k e ir a 2. En caso contrario parar

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Aplicando la propiedad "a priori" Ejemplo

r					
100	A_1	B_2	C_0		
200	A_2	B_1^-	C_1		
300	A_2	B_2	C_1		
400	A_3	B_1	C_2		
500	A_4	B_1	C_2		
600	A_2	B_1	$C_2^{\overline{2}}$		

C_1
A_1
A_2
C_1
C_2

 $L_{\,1}\,(\text{1-Itemsets frecuentes})$

-1(
Itemset	Soporte			
$\{A_2\}$	3			
$\{B_1\}$	4			
$\{B_2\}$	2			
$\{C_1\}$	2			
$\{C_2\}$	3			

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Aplicando la propiedad "a priori": Construimos C_2 , cogiendo pares de items de L_1 . En general:

$$L_{k-1} \longrightarrow C_k$$

 $C_2 = 2$ -Itemsets candidatos a ser frecuentes = apriori_gen (L_1)

$$L_1 = \begin{array}{|c|c|c|}\hline & \text{Itemset} & \text{Soporte} \\\hline \{A_2\} & 3 \\ \{B_1\} & 4 \\ \{B_2\} & 2 \\ \{C_1\} & 2 \\ \{C_2\} & 3 \\ \end{array}$$

$$C_2 =$$

C_2				
Itemset				
$\{A_2B_1\}$	$\{B_1C_1\}$			
$\{A_2B_2\}$	$\{B_1C_2\}$			
$\{A_2C_1\}$	$\{B_2C_1\}$			
$\{A_2C_2\}$	$\{B_2C_2\}$			
$\{B_1B_2\}$	$\{C_1C_2\}$			

C_2 c	onteos
Iten	nset
$\{A_2B_1\}\ 2$	$\{B_1C_1\}\ 1$
$\{A_2B_2\}\ 1$	$\{B_1C_2\}\ 3$
$\{A_2C_1\}$ 2	$\{B_2C_1\}$ 1
$\{A_2C_2\}\ 1/$	$\{B_2C_2\}\ 0$
$\{B_1B_2\} = 0$	$\{C_1C_2\}\ 0$

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Aplicando la propiedad "a priori":

La obtención de L_k a partir de C_k (con conteos) es inmediata:

 L_2 (2-Itemsets frec.)

Itemset	Soporte
$\{A_2B_1\}$	2
$\{B_1^2C_2^1\}$	3
$\{A_2C_1\}$	2

 L_2 contiene los 2-itemsets frecuentes de r

$$L_2 \longrightarrow C_3$$

 L_2 (2-Itemsets frec.)

Itemset	Soporte
$\{A_2B_1\}$	2
$\{B_1^2C_2^1\}$	3
$\{A_2C_1\}$	2

Algoritmo Apriori: encontrar k-Itemsets frecuentes

Aplicando la propiedad "a priori"

Ahora se construye $C_3=3$ -Itemsets candidatos a ser frecuentes, a partir de L_2 . La función se denomina *apriori_gen*

$$C_3 = \operatorname{apriori_gen}(L_2)$$

Estrategia de poda en apriori_gen:

No generar en C_k un k-itemset tal que algún (k-1)-itemset contenido en él, no pertenezca a L_{k-1}

Algoritmo Apriori: Generación de Reglas

Una vez obtenidos los itemsets frecuentes, se generan las reglas de asociación.

Supongamos que $A_1B_3C_2$ es frecuente.

También lo será $A_1B_3, \cdots, A_1, \cdots$

Por lo tanto, todas las reglas

$$A_1B_3 \Rightarrow C_2, C_2 \Rightarrow B_3, \cdots$$

tienen soporte alto.

Algoritmo Apriori: Generación de Reglas

Idea básica

Estrategia de poda (ahora entra en juego el umbral de confianza)

$$\begin{split} &conf(A_1B_3\Rightarrow C_2) = \frac{\text{num tuplas con } A_1B_3C_2}{\text{num tuplas con } A_1B_3} > \\ &> \frac{\text{num tuplas con } A_1B_3C_2}{\text{num tuplas con } A_1} = conf(A_1\Rightarrow B_3C_2) \Longrightarrow \\ &\Longrightarrow \text{Si } conf(A_1B_3\Rightarrow C_2) < \epsilon \Longrightarrow conf(A_1\Rightarrow C_2B_3) < \epsilon \end{split}$$

Primero se generan reglas con un sólo consecuente, y se va aumentando el número de consecuentes. El soporte de cada itemset está ya calculado en los \mathcal{C}_k

Algoritmo Apriori

Resumiendo

- Al principio, se imponen umbrales de soporte y confianza.
- Estrategia divide y vencerás:
 - Cálculo de los itemsets frecuentes.
 Operación costosa.
 Estrategias de poda usando el soporte
 - Cálculo de las reglas de asociación Apenas lleva tiempo Estrategias de poda usando la confianza

Algoritmo Apriori: Mejoras y alternativas

- Utilizar una relación auxiliar. En esta nueva relación se almacena el identificador de cada registro, junto con los itemsets frecuentes que contiene.
- Utilización de una tabla Hash.
- Alternativas de exploración del retículo de subconjuntos
- Alternativas basadas en la exploración de árboles

Reglas de asociación: problemas

Filtraje de reglas no interesantes

Problema

Número de reglas generado excesivo: varios miles como mínimo.

Soluciones

- Guiado por el usuario.
 - 1. El usuario establece a priori las reglas que él considera interesantes y el sistema las compara con las obtenidas.
 - 2. El usuario visualiza las reglas y selecciona la parte de ellas que le interesa
- Sin ayuda del usuario.
 - Ordenar las reglas según un grado de interés calculado con procedimientos estadísticos.
 - Usando medidas de bondad alternativas mucho más restrictivas, por lo que, obviamente, salen menos reglas

Reglas de asociación: problemas

Visualización de reglas

Tipos de técnicas

- técnicas basadas en tablas
- Técnicas basadas en matrices 2D.
- Técnicas basadas en grafos
- Técnicas basadas en coordenadas paralelas

Reglas de asociación

Visualización de reglas

Ejemplo de tablas

	Body	Implies	Head	Supp (%)	Conf (%)	F	G	Н	
1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4				
2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05				
3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04				
4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84				
5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04				
6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34				
7	order qty(x) = '0.00~100.00'	==>	revenue(x) = '0.00~500.00'	28.45	34.54				
8	order gty(x) = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67				
9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45				
10	order_qty(x) = '0.00~100.00'	==>	cost(x) = 0.00~1000.00'	59.17	71.86				
11	order_qty(x) = '0.00~100.00'	==>	product_line(x) = Tents'	13.52	16.42				
12	order qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88				
13	product line(x) = Tents'	==>	order gty(x) = 0.00~100.00*	13.52	98.72				
14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94				
15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39				
16	revenue(x) = 10.00~500.00*	==>	cost(x) = '0.00~1000.00'	28.45	100				
17	revenue(x) = '0.00~500.00'	==>	order qty(x) = '0.00~100.00'	28.45	100				
18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75				
19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100				
20	revenue(x) = '500.00~1000.00'	==>	order gty(x) = 0.00~100.00*	19.67	96.14				
21	1								
22									
23	cost(x) = 10.00~1000.00'	==>	revenue(x) = 10.00~500.00' AND order_qty(x) = 10.00~100.00'	28.45	40.4				
24	cost(x) = 10.00~1000.00'	==>	revenue(x) = 10.00~500.00' AND order_qty(x) = 10.00~100.00'	28.45	40.4				
25	cost(x) = 10.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				Ι,
26	cost(x) = 10.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93				
29 27	cost(x) = 0.00~1000								

Reglas de asociación

Visualización de reglas

Ejemplo de gráfico 2D

Reglas de asociación

Visualización de reglas

Ejemplo de grafos

Inconvenientes con la confianza

• Propiedades para medidas de cumplimiento (Piatetsky-Shapiro, 1991):

P1
$$ACC(A \Rightarrow C) = 0$$
 cuando $Supp(A \Rightarrow C) = supp(A) \ supp(C)$.

- **P2** $ACC(A\Rightarrow C)$ monótono creciente con $Supp(A\Rightarrow C)$ cuando el resto de parámetros no cambia.
- **P3** $ACC(A \Rightarrow C)$ monótono decreciente con supp(A) (o supp(C)) cuando el resto de parámetros no cambia.
- Confianza no verifica P1 y P3 para el caso de supp(C).

Inconvenientes con la confianza. Confianza y P1

i_1	i_2 i_3		i_4	
1	0	1	0	
0	0	0	0	
0	1	1	0	
0	1	1	1	
1	1	1	1	
1	1	1	1	

Itemset	Soporte
$\{i_1\}$	1/2
$\{i_2\}$	2/3
$\{i_1, i_2\}$	1/3

$$Conf(\{i_1\} \Rightarrow \{i_2\}) = \frac{supp(\{i_1,i_2\})}{supp(\{i_1\})} = \frac{1/3}{1/2} = 2/3 \neq 0.$$

Inconvenientes con la confianza. Confianza y P3

i_1	i_2 i_3		i_4
1	0	1	0
0	0	0	0
0	1	1	0
0	1	1	1
1	1	1	1
1	1	1	1

Itemset	Soporte
$\{i_1\}$	1/2
$\{i_4\}$	1/2
$\{i_1, i_4\}$	1/3

$$supp(\{i_4\}) = p(\{i_4\}) = 1/2$$

$$Conf(\{i_1\} \Rightarrow \{i_4\}) = p(\{i_4\}|\{i_1\}) = 2/3 > 1/2.$$

Inconvenientes con el soporte

- Principio clásico:: "cuanto mayor el soporte, mejor el itemset".
- ullet Sea C un itemset con soporte muy alto.
 - \circ Cualquier otro itemset A parece ser un buen predictor de C.
 - Problema: falta de variabilidad en C.
- Casos:
 - o $Conf(A \Rightarrow C) \leq supp(C)$ (dependencia negativa ó independencia) \Rightarrow una medida adecuada de cumplimiento descartaría la regla.
 - $\circ \ Conf(A\Rightarrow C)> supp(C)\Rightarrow$ el cumplimiento puede ser muy alto, no se descartaría!!
- No se suele chequear supp(C)>>

Consecuencias de utilizar soporte/confianza

- Se genera una gran cantidad de reglas dudosas $A \Rightarrow C$, incluyendo:
 - Reglas que verifican independencia/dependencia negativa.
 - \circ Reglas con falta de variabilidad en C.
- Ejemplo real (Brin y otros, 1997):
 - \circ "ha prestado servicio activo en el ejército \Rightarrow no ha servido en Vietnam" se cumple en la base de datos del censo de los EEUU con confianza 0.9.
 - Claro que, supp("no ha servido en Vietnam")=0.95 ⇒ Dependencia negativa.

EI LIFT

la medida de Implicación, también llamada Interés, o Lift

$$Lift(A,C) = \frac{conf(A \Rightarrow C)}{supp(C)} = \frac{supp(A \bigcup C}{Supp(A)supp(C)} = \frac{Prob(A,C)}{Prob(A)Prob(C)}$$

Ventajas

- $\forall A, CLift(A, C) \in [0, +\infty]$
- Pondera la confianza con respecto a lo probable que es C. Si A y C fuesen perfectamente independientes, prob(A,C) = prob(A)prob(C), luego Lift(A,C)=1. Por lo tanto, lift nos mide hasta qué punto ocurren conjuntamente A y C más o menos de lo esperado si fuesen independientes.

EI LIFT

Ventajas

- Un valor mayor de 1 indica que A tiene un efecto positivo en la aparición de C.
- Un valor menor de 1 indica que A tiene un efecto negativo en la aparición de C.
- Un valor cercano a 1 indica que A apenas tiene efecto en la aparición de C.

Inconvenientes

- No está acotada y probabilidades muy pequeñas en los items set dan valores muy grandes
- Es una medida simétrica (Lift(A,C)=Lift(C,A))

El factor de certeza

• El factor de certeza de $A \Rightarrow C$ (Shortliffe and Buchanan, 1975):

$$CF(A\Rightarrow C) = \left\{ \begin{array}{ll} \frac{Conf(A\Rightarrow C) - supp(C)}{1 - supp(C)} & \text{ si } Conf(A\Rightarrow C) > supp(C) \\ \frac{Conf(A\Rightarrow C) - supp(C)}{supp(C)} & \text{ si } Conf(A\Rightarrow C) < supp(C) \\ 0 & \text{ en otro caso} \end{array} \right.$$

- $CF(A \Rightarrow C) \in [-1, 1]$.
- Verifica P1, P2, P3.
- Verifica un buen conjunto de propiedades que lo hacen muy utilizado

El factor de certeza

Propiedades del factor de certeza

- 1. $CF(A \Rightarrow C) \leq Conf(A \Rightarrow C)$.
- 2. $CF(A \Rightarrow C) = Conf(A \Rightarrow C)$ iff supp(C) < 1 y $CF(A \Rightarrow C) = 1$.
- 3. Sea $CF(A \Rightarrow C) > 0$, supp(C) < 1 y supp(A) > 0. Entonces

$$CF(A \Rightarrow C) = 1 - \frac{1}{Conf(A \Rightarrow C)}$$
 (1)

4. Sea $CF(A \Rightarrow C) < 0$ y supp(C) > 0. Entonces

$$CF(A \Rightarrow C) = Lift(A \Rightarrow C) - 1$$

5. Sea $CF(A \Rightarrow C) < 0$. Entonces $CF(A \Rightarrow C) = CF(C \Rightarrow A)$

6. $CF(A \Rightarrow C)CF(C \Rightarrow A) > 0$

El factor de certeza

Propiedades del factor de certeza

- 1. Si $CF(A \Rightarrow C) = -CF(A \Rightarrow \neg C)$.
- 2. Si $CF(A \Rightarrow C) > 0$ entonces $CF(A \Rightarrow C) = CF(\neg C \Rightarrow \neg A)$.
- 3. El factor de certeza de todas las reglas válidas que involucran a A, C, $\neg A$ y $\neg C$ (8 reglas) toma solo 4 valores distintos, que se quedan en 2 si tomamos valor absoluto.

Resumen medidas alternativas

#	Measure	Formula	1
1	φ-coefficient	P(A,B)-P(A)P(B)	1
2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$	
_	. ,	$P(A_iB)P(\overline{A_iB})$ $P(A_j)-\max_k P(B_k)$	
3	Odds ratio (\alpha)	P(A,B)P(A,B)	
4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$	
5	Yule's Y	$\frac{P(A,B)P(AB)+P(A,B)P(A,B)}{\sqrt{P(A,B)P(AB)}} = \sqrt{\alpha-1}$ $\frac{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(A,B)}}{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}} = \sqrt{\alpha-1}$	
6	Kappa (κ)	$\begin{array}{l} P(A_iB)_P(\overline{A_iB}) = P(A_iP(B) - P(A_iP(B) \\ 1 - P(A)P(B) - P(A)P(B) \\ \sum_i \sum_j P(A_i,B_j) \log \frac{P(A_i,B_j)}{P(A_iP(B_j)} \end{array}$	
7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}) P(B_{j})}{P(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{i} P(B_{j}) \log P(B_{j}))}$	
8	J-Measure (J)	$\max \left(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(B A)}{P(B)})\right)$	
		$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$	
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2]\right)$	
		$-P(B)^2-P(\overline{B})^2$,	
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$	
		$-P(A)^2 - P(\overline{A})^2$	
10	Support (s)	P(A,B)	
11	Confidence (c)	max(P(B A), P(A B))	
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2}\right)$	
13	Conviction (V)	$\max \left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})} \right)$	
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$	
15	cosine (IS)	$\frac{P(A,B)}{P(A)P(B)} = \frac{P(A,B)}{P(A,B)} = \frac{P(A,B)}{\sqrt{P(A)P(B)}}$	
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)	
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$	
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$	
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(B)} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$	L
20	Jaccard (ζ)	P(A)+P(B)-P(A,B)	ľ
21	Klosgen (K)	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$	

Propiedades de otras medidas alternativas

Sym bol	Measure	Range	P1	P2	P 3	01	O 2	O 3	O3'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
s	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
- 1	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	01	No	Yes	Yes	Yes	No	No	No	Yes
К	Klos gen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\ldots 0\ldots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

Tratamiento de atributos continuos

Los atributos continuos no son directamente utilizables en reglas de asociación

Es necesario discretizar previamente

• Distintos tipos de reglas con atributos continuos

$$Edad \in [21,35) \land Salario \in [40k,60k) \rightarrow Compra$$

 $Salario \in [30k,60k) \land Compra \rightarrow Edad : \mu = 28, \sigma =$

- Solución= dicretización
 - Equidistante
 - Equiprobable
 - o Basado en clustering
 - Basado en Lógica difusa ⇒ Reglas de asociación difusas

Reglas de asociacion difusas

La idea básica es considerar intervalos difusos de los atributos continuos, caracterizados por etiquetas lingüísiticas **Ejemplos:**

Edad= {Niño, Joven, Maduro, Anciano} Salario ={ Alto, Medio, Bajo }

- Nuevos conceptos:
 - Item: par (Atributo, Etiqueta)
 - o Transacción difusa: subconjunto difuso de items asociado a una tupla.
 - \circ El item (At,L) está presente en la transacción asociada a la tupla t con grado L(t[At]).

Reglas de asociacion difusas

• Una transacción difusa $\tilde{\tau}$ es un subconjunto difuso de I.

$$\tilde{\tau} \in \tilde{\wp}(I)$$

- Para cada $i \in I$, $\tilde{\tau}(i)$ es el grado de pertenencia de i a $\tilde{\tau}$.
- Sea $I_0 \subseteq I$. Entonces $\tilde{\tau}(I_0) = \min_{i \in I_0} \tilde{\tau}(i)$.
- Un **FT-set** T es un conjunto (crisp) de transacciones difusas.

$$T\subseteq \tilde{\wp}(I)$$

Reglas de asociacion difusas

EJEMPLO: Transacciones difusas en bases de datos relacionales

I={ (atributo, etiqueta difusa) }

Tupla $t_i \to \text{Transacción difusa } \tilde{\tau}_i$ $\tilde{\tau}_i((Atr, Lab)) = Lab(t_i[Atr])$ $\begin{aligned} \mathsf{Label}(\mathsf{Altura}) &= \{\mathsf{bajo},\,\mathsf{medio},\,\mathsf{alto},\,\mathsf{muy}\,\,\mathsf{alto}\} \\ \mathsf{Label}(\mathsf{Peso}) &= \{\mathsf{ligero},\,\mathsf{medio},\,\mathsf{pesado},\,\mathsf{muy}\,\,\mathsf{pesado}\} \end{aligned}$

	Peso	Altura	
t_1	70	170	
t_2	68	180	
t_3	60	175	
t_4 t_5	90	175	
t_5	50	195	

	$ ilde{ au}_1$	$ ilde{ au}_2$	$ ilde{ au}_3$	$ ilde{ au}_4$	$ ilde{ au}_5$
(Altura,bajo)	0	1	0	0	0
(Altura, medio)	0	0.8	1	0	1
(Altura,alto)	1	0	1	0.5	0.5
(Altura,m.alto)	0.5	0	0	1	0
(Peso,ligero)	0	0	0	0/	0
(Peso,medio)	1	1	0.5	0.5	0.25
(Peso,pesado)	0.5	1	1	/1	1
(Peso,m.pesado)	0	0	0 /	0	0.25

Reglas de asociacion difusas

- Una regla de asociación difusa es una regla de asociación en un FT-set T
- La R.A.D. $I_1 \Rightarrow I_2$ tiene máximo cumplimiento en T sii

$$\forall \tilde{\tau} \in T \quad \tilde{\tau}(I_1) \leq \tilde{\tau}(I_2)$$

• Una R.A. es un caso particular de R.A.D.

Reglas de asociacion difusas

EJEMPLOS

- (Altura,bajo) \Rightarrow (Peso,medio) presenta total cumplimiento en T
- (Altura,m.alto) ⇒ (Peso,m.pesado)) no.

	$ ilde{ au}_1$	$ ilde{ au}_2$	$ ilde{ au}_3$	$ ilde{ au}_4$	$ ilde{ au}_5$
(Altura,bajo)	0	1	0	0	0
(Altura, medio)	0	0.8	1	0	1
(Altura,alto)	1	0	1	0.5	0.5
(Altura,m.alto)	0.5	0	0	1	0
(Peso,ligero)	0	0	0	0	0
(Peso,medio)	1	1	0.5	0.5	0.25
(Peso,pesado)	0.5	1	1	1	1
(Peso,m.pesado)	0	0	0	0	0.25

Reglas de asociacion difusas

Medidas de calidad de una R.A.D.

- Sea Q un cuantificador relativo difuso.
- El soporte de la R.A.D. $I_1\Rightarrow I_2$ es la evaluación de la sentencia cuantificada Q de los T son $\tilde{\Gamma}_{I_1}\cap \tilde{\Gamma}_{I_2}$
- Confianza: evaluación de la sentencia Q de los $\tilde{\Gamma}_{I_1}$ son $\tilde{\Gamma}_{I_2}$
- En general usaremos el cuantificador Q_M caracterizado por $Q_M(x)=x$, $\forall x\in [0,1].$
- Propiedad: generaliza las medidas usuales de soporte y confianza en el caso crisp.

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

- Bases de datos reales
 - INTERVENCIONES en el Hospital Universitario S. Cecilio de Granada, entre Agosto del 97 y Agosto del 98. 15766 tuplas.
 - o URGENCIAS en el mismo hospital. 81368 tuplas.

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS URGENCIAS

Extracción de asociaciones entre valores de los atributos "Hora de Ingreso" y "Tipo de Asistencia".

Conjuntos de 2 items más frecuentes

2-Itemsets	Tuplas
[HINGRESO=22:45][CLASISTENCIA=CONSULTA]	11
[HINGRESO=11:00][CLASISTENCIA=CONSULTA]	9
[HINGRESO=20:15][CLASISTENCIA=CONSULTA]	9
[HINGRESO=21:10][CLASISTENCIA=CONSULTA]	9

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS URGENCIAS

Etiquetas difusas para Hora:

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS URGENCIAS Items para el atributo "Hora de Ingreso"

1-ItemsetsSoporte[HINGRESO=MAÑANA]0.267[HINGRESO=MEDIODIA]0.160[HINGRESO=TARDE]0.315[HINGRESO=NOCHE]0.179[HINGRESO=MADRUGADA]0.074

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS URGENCIAS Comparación de las metodologías clásica (sin agrupamiento) y difusa (agrupamiento mediante etiquetas).

	Clásico	Difuso
Tuplas	81368	81368
Items	47543	13
Itemsets en tabla	101958	53
Reglas potenciales	203916	106
Reglas con sop>0.02	0	12
Tiempo empleado	Interrumpido tras 1 hora	2m16s
Memoria empleada	>250Mb	350Kb

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS URGENCIAS

- Algunas reglas descubiertas:
 - ∘ [CLASISTENCIA=YESOS] \Rightarrow [HINGRESO=TARDE] sop: 0.022 FC: 0.48
 - [HINGRESO=MAÑANA] ⇒ [CLASISTENCIA=OBSERVACIÓN] sop: 0.128 FC: 0.43

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS INTERVENCIONES

Etiquetas difusas para Fecha:

Reglas de asociacion difusas: ejemplos de uso de B.D. reales

R.A. DIFUSAS EN LA BASE DE DATOS INTERVENCIONES

- Algunas reglas descubiertas:
 - [FECHA=ESTIVAL] \Rightarrow [SUSPENDIDA=N] sop=0.15 FC=0.319
 - [HTERMINO=MAÑANA] ⇒ [HCOMIENZO=MAÑANA] sop=0.41 FC=0.99
 - [HCOMIENZO=MAÑANA] ⇒ [HTERMINO=MAÑANA] sop=0.41 FC=0.5
 - [HCOMIENZO=MEDIODIA] \Rightarrow [HTERMINO=MEDIODIA] sop=0.13 FC=0.91

Reglas multinivel

Ejemplo de atributos jerárquicos

Escáner

Impresora

Reglas multinivel

Por qué utilizar jerarquias de conceptos?

- Porque las reglas que involucran artículos en los niveles más bajos puede que no tengan soporte suficiente como para aparecer en algún patrón frecuente.
- Porque las reglas a niveles bajos de la jerarquía son demasiado especificas.

 $leche desnatada \rightarrow pan blanco$

 $leche\ entera
ightarrow pan\ integral$ $leche\ desnatada
ightarrow pan\ integral$

indican una asociación entre pan y leche.

Reglas multinivel

Soluciones para el tratamiento multinivel

- Realizar un análisis previo y agregar los atributos de forma heurística
- Trabajar con un cubo de datos como datos de partida, siendo las dimensiones los atributos del problema:
 - 1. Se calculan las reglas a nivel más bajo
 - Se establecen medidas de especificidad adicionales para dar una medida calidad combinada
 - 3. Se eliminan las reglas muy específicas y se agregan los atributos involucrados mediante operaciones en el cubo de datos
 - 4. Se recalculan las reglas relativas a los atributos agregados
 - 5. La salida final es un conjunto de reglas a varios niveles

El proceso descrito se conoce como Olap Mining

Analisis de secuencias. Obtencion de patrones frecuentes

Problema

Ejemplo

Base de datos	Secuencia	Elemento (Transacción)	Evento (Item)
Clientes	Historial de compras de un cliente determinado	Conjunto de artículos comprados por un cliente en un instante concreto	Libros, productos
Web	Navegación de un visitante del sitio web	Colección de ficheros vistos por el visitante tras un único click de ratón	Página inicial, información de contacto, fotografía
Eventos	Eventos generados por un sensor	Eventos generador por un sensor en un instante t	Tipos de alarmas generadas
Genoma	Secuencia de ADN	Elemento de la secuencia de ADN	Bases A,T,G,C

Analisis de secuencias. Obtencion de patrones frecuentes

Definicion formal

- Sea I conjunto de items, sean A,B,... subconjuntos de I, definimos secuencia $S=< A_1,A_2,...A_n>$. Pueden existir distintas secuencias en el sistema.
- Dada una secuencia $S=< A_1, A_2, ...A_n>$ decimos que es **subsecuencia** de otra secuencia $T=< B_1, B_2, ...B_m>$ existe una sucesion de enteros $i_1 < i_2, ... < i_n$, tal que:

$$A_1 \subseteq B_{i_1}...A_n \subseteq B_{i_n}$$

Ejemplo

Secuencia	Subsecuencia	čincluida?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Sí
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Sí

Analisis de secuencias. Obtención de patrones frecuentes

- El soporte de una subsecuencia es la fraccion de esta subsecuencia que aparece en la base de datos
- Buscar patrones secuenciales es encontrar subsecuencias con un soporte \geqslant que MINSUPP
- Se pueden adaptar los algoritmos de búsqueda de itemsets frecuentes

Analisis de secuencias. Obtención de patrones frecuentes

Ejemplo

Analisis de secuencias. Obtención de patrones frecuentes

Ejemplo

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
C	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

MinSupp = 50%

Ejemplos de subsecuencias frecuentes:

< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%