

Figure 37.36: A four stage illustration of how the xy-plane is wrapped around the unit sphere centered at (0,0,1). When finished all of the sphere is covered except the point (0,0,2).

where K is compact in E. Then, because each K is compact and thus closed in E (since E is Hausdorff), E - K is open, and every V_i is an open subset of E. Furthermore, the family, $(V_i)_{i \in (I - \{i_0\})}$, is an open cover of K_0 . Since K_0 is compact, there is a finite open subcover, $(V_j)_{j \in J}$, of K_0 , and thus, $(U_j)_{j \in J \cup \{i_0\}}$ is a finite open cover of E_{ω} .

Let us show that E_{ω} is Hausdorff. Given any two points, $a, b \in E_{\omega}$, if both $a, b \in E$, since E is Hausdorff and every open set in \mathcal{O} is an open set in \mathcal{O}_{ω} , there exist disjoint open sets, U, V (in \mathcal{O}), such that $a \in U$ and $b \in V$. If $b = \omega$, since E is locally compact, there is some compact set, K, containing an open set, U, containing a and then, U and $V = (E - K) \cup \{\omega\}$ are disjoint open sets (in \mathcal{O}_{ω}) such that $a \in U$ and $b \in V$.

The space E is a subspace of E_{ω} because for every open set, U, in \mathcal{O}_{ω} , either $U \in \mathcal{O}$ and $E \cap U = U$ is open in E, or $U = (E - K) \cup \{\omega\}$, where K is compact in E, and thus, $U \cap E = E - K$, which is open in E, since K is compact in E and thus, closed (since E is Hausdorff). Finally, if E is not compact, for every compact subset, K, of E, E - K is nonempty and thus, for every open set, $U = (E - K) \cup \{\omega\}$, containing ω , we have $U \cap E \neq \emptyset$, which shows that $\omega \in \overline{E}$ and thus, that $\overline{E} = E_{\omega}$.

37.6 Second-Countable and Separable Spaces

In studying surfaces and manifolds, an important property is the existence of a countable basis for the topology. Indeed this property, among other things, guarantees the existence of triangulations of manifolds, and the fact that a manifold is metrizable.