

LABORATÓRIO DE CIRCUITOS ELÉTRICOS III EXPERIÊNCIA 01

Circuito Trifásico: Carga Equilibrada em Y

1. Objetivos:

- Familiarizar ao aluno com o sistema trifásico.
- Verificar a circulação de correntes no neutro.

2. Introdução Teórica:

Como as tensões trifásicas são geradas:

As tensões trifásicas são geradas por uma fonte de tensão trifásica. Esta fonte é um gerador que possui três enrolamentos, que são separados e distribuídos ao longo da periferia do estator. Cada um dos enrolamentos irá compor uma fase do gerador.

A figura 1 mostra os enrolamentos de fase, onde, pode-se fazer a interligação dos enrolamentos de fase, através de ligações Y e Δ .

Figura 1- Gerador Trifásico

A principal característica de um circuito trifásico equilibrado é que a sua fonte é formada por um conjunto de tensões trifásicas equilibradas.

Este conjunto de tensões é composto por três tensões senoidais de mesmas amplitudes e frequências, mas que estão defasadas umas das outras em 120°. As fases são denominadas por a, b e c, tendo a fase a como referência.

A Figura 2 mostra as três tensões de fase, onde por eles serem equilibradas, a soma fasorial será zero.

Figura 2- Tensões Trifásicas

Diferenças da terminologia

- Tensão de fase: tensão em uma única fase, V_φ.
- Tensão de linha ou fase-fase: tensão entre duas fases: V_L.
- Corrente de fase: corrente fornecida (ou absorvida) por uma das fontes (ou cargas) monofásicas, I_φ.
- Corrente de linha corrente conduzida pelo condutor que conecta a fonte à carga, IL;
- Corrente de neutro corrente que circula pelo condutor de neutro, In.

Ligação em Y (estrela)

Para uma ligação em Y ou estrela, a corrente de linha e a corrente de fase tem o mesmo valor, tal como pode-se observar na Figura 3. A tensão de linha (E_L) ou de fase-fase será $\sqrt{3}$ vezes maior que a tensão de fase-neutro ou tensão de fase (V_{ϕ}).

Figura 3- Ligação em Y (estrela)

3. Material

- Barramento da Bancada energizada de forma trifásica;
- 3 reostatos de 230 ohms de 1,5 A ou maior.
- 1 voltímetro ferro móvel 400 V.
- 1 amperimetro HB ca. 0/5/25
- Multímetro digital Tektronix DM250;

4. Parte Experimental

4.1 Monte um circuito utilizando as três resistências, como é mostrada na Figura 4.

Figura 4 – Circuito trifásico

4.2 Meça as três correntes de (fase – neutro) das cargas e as três correntes de Linha:

Corrente de fase	Corrente de linha
$I_{AN} =$	$I_A =$
$I_{BN} =$	$I_B =$
$I_{CN} =$	$I_C =$

4.3 Meça a tensão V_{an} , V_{bn} , V_{cn} , V_{ab} , V_{ac} e V_{bc} . Verifique a relação entre as tensões de fasefase e a de fase-neutro.

Tensão de fase	Tensão de fase-fase ou linha
$V_{an} =$	$V_{ab} =$
$V_{bn} =$	$V_{ac} =$
$V_{cn} =$	$V_{bc} =$

5. No Relatório:

- 5.1 Desenhe os circuitos elétricos, como os instrumentos de medida incluídos, referente ao item anterior 4 (4.2 e 4.3). \rightarrow Desenhar medindo I_{AN} , V_{AB} , V_{AN}
- 5.2 Fazer os diagramas fasoriais das tensões e correntes de fase, usando $V_{\rm AN}$ como referência.

5.3 Resultados Analítico:

Com os valores encontrados no laboratório, monte o circuito e <u>determine</u> (poderá ser a mão em letra legível - tirar foto ou escanear) e preencha as tabelas do item 4.1 e 4.2.

5.4 Resultados de Programação:

Realize os scripts de acordo com o circuito da Figura 4 (item 4.1) e obtenha o solicitado no item 4.2 e 4.3 (auxiliasse com as equações do item 5.3). Gerar tabelas de resultados, similar as do item 4.2 e 4.3.

5.5 Resultados Simulação:

Realize a montagem do circuito da Figura 4 num simulador (bancada virtual) e faça as medições solicitadas no item 4.2 e 4.3.

- 5.6 Com os resultados das tabelas Experimentais:
 - a. Calcule o valor de cada resistor utilizado.
 - b. Verifique qual é a razão entre a tensão de linha e a tensão de fase para cada medida feita (exemplo: V_{AB}/V_{AN})
- 5.7 Compare os resultados Experimentais, Analíticos, Programação e de Simulação (comparação das tabelas), assim como os resultados do item 5.5 anterior, analise-los, mostre as diferencias e ressalte os erros mais grosseiros. Explique o porquê dessas diferenças.
- 5.8 Conclusões e comentários, procurando relacionar os valores obtidos com os valores teóricos esperados, tudo em base ao item anterior.

PREPARATÓRIO:

- (a) Pesquise sobre sistemas trifásico equilibrado e relate a sua pesquisa em no máximo duas páginas.
- (b) Monte o circuito da Figura 4 e determine o que é solicitado no item 4 → Parte experimental.
- (c) Num simulador de circuitos elétricos, realize o indicado do item 4 → Parte experimental.
- (d) Compare e comente os resultados obtidos em (b) e (c).

CUIDADOS GERAIS:

Após montar o circuito teste, verifique se as conexões estão fixas e seguras. Lembre os cuidados de segurança num laboratório de circuitos elétricos. Aguarde o professor verificar a montagem do circuito antes de ligar a fonte.