インターネットの基本 その 1

情報ネットワーク工学入門

只木進一 (理工学部)

情報通信ネットワークの要素

- ■通信路
 - ■データが流れる媒体はアナログ
 - ■電話線、イーサ-ケーブル、光ケーブル、 無線
- ▶交換機能
 - ■通信路を相互接続
- ■通信プロトコル(protocols)
 - ■通信の各段階における手順・約束

10Base-5 イーサネット

http://tech.mattmillman.com/projects/10base5/

電話の接続

電話交換手

電話接続の課題

- ■回線の占有
 - ■話していなくても、回線を占有し、他の 通信の妨げになる
- ■電話交換機による回線接続
 - ■階層構造が固定的

クロスバ交換機

https://www.youtube.com/watch?v=qEbHP7YyhX0

インターネットの仕組み

- ▶パケット通信
 - ■データを小さく切る
 - ■回線を共有
- ▶階層構造を持ったプロトコル
 - ▶障害への対応
- 開放的システム
- ▶アドレス空間

■ Packet

- a small paper or cardboard container in which goods are packed for selling
- a small object wrapped in paper or put into a thick envelope so that it can be sent by mail, carried easily or given as a present

プロトコル(protocol)

- ▶外交儀礼
- ■データ通信のための取り決め
 - ▶手順、方法、データ形式などなど

- ▶情報通信をモデル化
 - ■通信開始手順
 - ●データ送信

protocol

- a system of fixed rules and formal behavior used at official meetings, usually between governments
- a set of rules that control the way data is sent between computers

コミュニケーションの階層モデル

OSI参照モデルとTCP/IP

OSI

TCP/IP

アプリケーション層 セッション層

トランスポート層

ネットワーク層

データリンク層

物理層

アプリケーション層

トランスポート層

インターネット層

物理層

情報通信における仮想化・ 抽象化

- ●情報通信の操作・手順を仮想化・抽象 化する
 - ■通信相手の指定、通信路の確保、データの送信
- ■操作・手順を適切な大きさの塊に
- ▶方法とその実装を分離
 - ▶実装方法が変化しても操作が不変

情報通信における階層化

- ■通信には多様な部品・機能が関与
 - ▶物理的回線、電子機器、制御ソフトウェ アなどなど
- ■必然的にマルチベンダー(multivendor)化
 - ■様々な企業が関与
 - ■適切に階層化して役割を定める

情報通信における階層化

- ■機能の階層化・抽象化
 - ▶物理的通信(信号処理)
 - ■媒体の選択、接続手順
 - ■データ送受信
 - ▶論理的接続手順
 - ●データ形式
 - ●データ処理
 - ▶アプリケーション

階層化と通信プロトコル

- ▶各層が自律して必要な機能を果たす
 - ▶通信制御サービス:データ通信と制御
- ●各層がそれぞれの上位層・下位層の機能を信頼する

階層化の利点

- ▶上位層(例えばアプリケーション)は、下位層(ネットワーク)が正しく動作していることを前提とする。
- ▶下位層は、定められた機能のみを実装 し、上位層が何をしようとしているか に関知しない。
- ▶各層の機能要件を明確にできる。

カプセル化とパケット capsulation and packetization

- ■データのカプセル化
 - ●データを封筒に入れて表書きを付ける
 - ■データの先頭にヘッダを付ける
 - ▶表書き・ヘッダにデータ制御情報を

ヘッダ

データ

▶各階層対応した形式

例:IPデータグラム

	0	4	8	12	16	20	24	28	32
	version HDL Type of Service			Total Length					
	Identification			flag	fragment offset				
	Time-1	me-To-Live Protocol Header checksum							
$\sqrt{}$	Source IP Address								
	Destination IP Address								
	Options						р	adding	
	IP Data								

- ■データは小さく切る:パケット化
- ■データが大きいと
 - ▶小さなデータを送る際に非効率
 - ▶送信失敗時にやり直しコストが大きい
- MTU (Maximum Transmission Unit)
 - ■イーサーネットでは1500Byteが標準

TCP/IP階層モデル

TCP: Transmission Control Protocol IP: Internet Protocol

→ネットワークの物理実装になるべく依存せず、各コンピュータ・通信装置が稼働するように設計

アプリケーション層

トランスポート層

インターネット層

ネットワークIF層

層	説明	例	
アプリケーション層	個々のアプリケー ション	SMTP, HTTP	
		T 0 D	
トランスポート層	データのpacket化	TCP UDP	
インターネット層	packetの配送	IP, ARP	
ネットワークIF層	通信のための物理 的実装に対応	Ethernet	