Assignment 1 - MVP's

LINDI LI GEWEI CAO 3460570 3461232

December 2022

§ 1 Intrudction

blabla

§ 2 Reproducing Kernel Hilbert Space

§ 2.1 WHAT IS KERNEL

In the simplest form of machine learning, in order to predict x, the algorithm collects the samples in the training set χ that are similar to x, and then take the weighted value of these samples as the predict value of x. Here comes the questions:

- How to measure the similarity between samples?
- How to weight the value of each sample?

In general, the higher the similarity of the sample to our point of interest x, the more the sampling weights. We set $y_i \in \mathbb{R}$ as dependent variable, and x_i as a $1 \times D$ vector x_i in \mathbb{R}^D . Assume that (y_i, x_i) where i = 1, ..., N is i.i.d. To evaluate the similarity between two observations, a kernel is defined as a function of two input patterns $k(x_i, y_i)$, mapping onto a real-valued output. For example, the Gaussian kernel is

$$k(x_i, x_j) = e^{\frac{\|x_i - x_j\|}{\sigma^2}},$$

where $||x_i - x_j||$ is the Euclidean distance between x_i and x_j , and $\sigma^2 \in \mathbb{R}^+$ is the bandwidth of the kernel function.

We now define that $k: \chi \times \chi \to \mathbb{R}$ is a kernel if

- k is symmetric: k(x, y) = k(y, x).
- k is positive semi-definite, meaning that $\sum_i \sum_j \alpha_i \alpha_j k(x_i, x_j) \ge 0, \forall \alpha_i, \alpha_j \in \mathbb{R}, x \in \mathbb{R}^{\mathbb{D}}, D \in \mathbb{Z}^+$.

From the similarity-based point of view, the use of kernels for regression can be described in two stages. We first set a target function y = f(x) and assume that in a space of functions, there exists a function that can estimate y = f(x) well. The target function is represented by

$$f(x) = \sum_{i=1}^{N} c_i k(x, x_i),$$

In the second stage, we utilize regularization to simplify the function. To achieve this purpose, Hilbert space and reproducing kernel Hilbert space will be introduced below.

§ 2.2 HILBERT SPACE

Recall that an inner product $\langle a, b \rangle$ can be

- a usual dot product: $\langle a, b \rangle = a'b = \sum_i a_i b_i$.
- a kernel product: $\langle a, b \rangle = k(a, b) = \psi(a)'\psi(b)$, where $\psi(a)$ may have infinite dimensions.

We define a Hilbert space an inner product space that....

§ 3 Gaussian Process and Bayesian Perspective

§ 3.1 Definition

We have data $\mathbf{D} = \{(x_i, y_i)\}_{i=1}^M$, and assume that mean of y is 0.

Task: find the distribution of $f^*(x)$.

Assume that the true form of prediction function is: $y_i = f(x_i) + \epsilon_i$ and $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$. Here we have a M dimensional dependent variable \mathbf{y} , and a $M \times N$ dimensional independent variable \mathbf{X} , where M is the number of observations, and N is the dimension of \mathbf{x} , i.e. $\mathbf{x}_i \in \mathbb{R}^N$. The function $f(\mathbf{x}_i) : \mathbb{R}^N \to \mathbb{R}$ takes vector $\mathbf{x}_i \in \mathbb{R}^N$. Let $\mathbf{K}_{X,X} = k(\mathbf{x},\mathbf{x}^T)$ which is the matrix of $k(\mathbf{x}_i,\mathbf{x}_i)$. Thus, \mathbf{K} is a $M \times M$ matrix.

The assumption of Gaussian Process is as following:

For a given vector \mathbf{y} , and its corresponding data \mathbf{X} , where vector $\mathbf{y} \in \mathbb{R}^M$ and \mathbf{X} is $M \times N$ matrix. In addition, for \mathbf{y} and \mathbf{X} data, the error term $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma^\epsilon)$, and $\Sigma^\epsilon = diag(\sigma_1^2, \sigma_2^2, \sigma_3^2, \dots, \sigma_M^2)$. Meanwhile we have arbitrary $n \times N$ matrix \mathbf{Z} and predicted value $f^*(\mathbf{z}) \in \mathbb{R}^n$, where $\mathbf{z} = (\mathbf{z_1}, \mathbf{z_2}, \mathbf{z_3}, \dots, \mathbf{z_n})^T$.

Then we assume **y** and $f^*(z)$ follow a (M+n) multivariate normal distribution(MVN):

$$\begin{bmatrix} f^*(\mathbf{z}) \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} \mu_{f^*(\mathbf{z})} \\ \mu_{\mathbf{y}} \end{bmatrix} & , \begin{bmatrix} \mathbf{K}_{Z,Z} & \mathbf{K}_{Z,X} \\ \mathbf{K}_{X,Z} & \hat{\mathbf{K}}_{X,X} \end{bmatrix} \end{pmatrix}$$
(1)

where $\hat{\mathbf{K}}_{X,X} = \mathbf{K}_{X,X} + \Sigma^{\epsilon}$.

Then given data y, X and Z, according to the conditional distributions of the multivariate normal distribution¹, we have the posterior distribution

$$f^*(z)|y, X, Z \sim \mathcal{N}(\mu_{f^*(z)} + K_{Z,X}\hat{K}_{X,X}^{-1}(y - \mu_v), K_{Z,Z} - K_{Z,X}\hat{K}_{X,X}^{-1}K_{X,Z})$$
(2)

§ 3.2 Intuition behind Gaussian Process

The idea behind this process is that, assume our interested function is f(x), $f(x) : \mathbb{R}^N \to \mathbb{R}$, and we have an arbitorary vector of independent variable $\mathbf{x} = (x_1, x_2, \dots, x_M)^T$, and for each x_i , $i = 1, 2, \dots, M$, $x_i \in \mathbb{R}^N$, then we can obtain a series of $f(\mathbf{x}) = (f(x_1), f(x_2), f(x_3), \dots, f(x_M))^T$. We assume that the series of $f(\mathbf{x})$ follows a multivariate normal distribution which is:

$$f(\mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}^T))$$
 (3)

This is the prior distribution of our function f(x), here we have a set of infinitely functions that follow this distribution, their mean is the function $\mu(x_i)$, and the variance of them is $k(x_i, x_i^T)$. This makes the distribution of f(x) to be called Gaussian Process (GP). Note that if we add a noise term $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma^{\epsilon})$, then our prior distribution of

¹https://statproofbook.github.io/P/mvn-cond

 $y = f(x) + \epsilon \sim \mathcal{N}(\mu(x), k(x, x^T) + \Sigma^{\epsilon})$ is also a Gaussian Process. Here we use kernel matrix to denote variance-covariance matrix because kernel value represents how near two data points in the space are, with this property we can obtain a smooth function.

Remind that our goal is to estimate the distribution of $f(x^*)$ given observed training data set $D = \{x_i, y_i\}_{i=1}^M$ and test data set $\{x_j^*\}_{j=1}^n$. Firstly we compare our nonparametric case to a parametric case. In a parametric case, assume the parameter θ determines the form of $f_{\theta}(\cdot)$, according to the Bayesian rule, $p(y^*|x^*, x, y) = \int_{\theta} p(y^*, \theta|x^*, x, y) d\theta = \int_{\theta} p(y^*|\theta, x^*) p(\theta|x, y) d\theta$, where y^* is the prediction of given data x^* , and its form of model is determined by parameter θ . Estimated θ value is determined by training data D. This is to say that we update our parameter θ by given D, and use $p(\theta|x, y)$ as a new prior probability, and based on this to predict posterior of y^* .

Therefore, back to our GP nonparametric case, θ could be substituted by function $f(\cdot)$. One can show that the joint distribution of $(f(x^*), y)^T$ follows a multivariate normal distribution as in the definition before, because of the assumption of GP and the property of MVN. With the joint distribution, we want to find posterior probability: $p(f(x^*)|x^*, x, y) = \int p(f(x^*)|f, x^*)p(f|x, y)df$, where p(f|x, y) is the posterior of $f(\cdot)$ given D, and is regarded as prior when estimating $p(f(x^*)|x^*, D)$, this process is called Bayesian updating. Fortunately, we do not need to take any integral in GP, becaus the posterior of $f(x^*)$ could be calculated by formula of conditional distribution in MVN as mentioned in former section.

§ 3.3 GAUSSIAN PROCESS IN RESEARCH PAPER

In our object paper, for given price data P,

§ 4 Empirical study

blabla