1. For each of the following utility functions, find the MRS.

A)
$$x_1 x_2$$
. $MRS = -\frac{\frac{\partial (x_1 x_2)}{\partial x_1}}{\frac{\partial (x_1 x_2)}{\partial x_2}} = -\frac{x_2}{x_1}$

B)
$$(2x_1)^3 x_2$$
. $MRS = -\frac{\frac{\partial \left((2x_1)^3 x_2\right)}{\partial x_1}}{\frac{\partial \left((2x_1)^3 x_2\right)}{\partial x_2}} = -\frac{3x_2}{x_1}$

C)
$$(2x_1)^2 (2x_2)^2$$
. $MRS = -\frac{\frac{\partial ((2x_1)^2 (2x_2)^2)}{\partial x_1}}{\frac{\partial ((2x_1)^2 (2x_2)^2)}{\partial x_2}} = -\frac{x_2}{x_1}$

D)
$$\sqrt{x_1^2 - 3x_2}$$
. $MRS = -\frac{\frac{\theta(\sqrt{x_1^2 - 3x_2})}{\theta x_1}}{\frac{\theta(\sqrt{x_1^2 - 3x_2})}{\theta x_2}} = \frac{2x_1}{3}$. Note that the MRS is positive.

This is because the preferences are not monotonic. Utility is decreasing in x_2 .

$$\text{E) } \ln\left[\left(2x_1^3\right)\left(2x_2^3\right)\right]. \ MRS = -\frac{\frac{\partial\left(\ln\left[\left(2x_1^3\right)\left(2x_2^3\right)\right]\right)}{\partial x_1}}{\frac{\partial\left(\ln\left[\left(2x_1^3\right)\left(2x_2^3\right)\right]\right)}{\partial x_2}} = -\frac{x_2}{x_1}$$

F)
$$x_1 + x_1 x_2$$
. $MRS = -\frac{\frac{\partial (x_1 + x_1 x_2)}{\partial x_1}}{\frac{\partial (x_1 + x_1 x_2)}{\partial x_2}} = -\frac{x_2 + 1}{x_1}$

Note that A,C,E have the same MRS. They represent the same preferences.

- 2. Sketch a few indifference curves of the following utility functions.
- A) $min\{x_1, x_2\}$
- B) $min\{x_1, 2x_2\}$
- C) $max\{x_1, 2x_2\}$
- D) $x_1 + x_1 x_2$
- E) $x_1^2 x_2^2$

- 3. At prices $p_1 = 1$ and $p_2 = 2$ with income m = 10, what bundle of goods is optimal for the following utility functions?
- A) $x_1 + 2x_2$. Any bundle such that $x_1 + 2x_2 = 10$.
- B) x_1x_2 . (5, 2.5)
- C) $x_1 + ln(x_2) \cdot (9, \frac{1}{2})$
- D) $min\{x_1, x_2\}.\ \left(\frac{10}{3}, \frac{10}{3}\right)$
- E) $min \{2x_1, x_2\}.$ (2, 4)