Learning to play Smash Bros. with Deep RL

A Case Study

Outline

Environment Q lead Police

Methods

Q learning

Policy gradient

Training techniques

→ Results

The RL Environment

Environment simulated with the **Dolphin** emulator

Game state is read from RAM on each frame Player positions, velocities, action IDs, etc. mostly observable, except for frame delay

Actions space is big:

2 continuous control sticks, 7 buttons, 2 triggers simplify to (5 control stick positions) x (6 buttons) = 30 actions

Reward structure:

- +/- 1 for kills/deaths
- +/- 0.01 for damage dealt/taken

Given state s and action a, predict the expected future reward:

$$Q(s, a) = \mathbb{E}[R_1 + \lambda R_2 + \lambda^2 R_3 + ...]$$

Problem: very high variance from Monte Carlo estimate.

more timesteps → more random decisions → higher variance

Bellman's Equation

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \lambda \max_{a} Q_{\pi}(S_{t+1}, a)]$$

encapsulates future returns deterministic!

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \lambda \max_{a} Q_{\pi}(S_{t+1}, a)]$$

Two problems with this algorithm:

- Always taking the best action. How do you explore? Epsilon greedy?
- Small change to Q values → large change in policy

Epsilon-greedy exploration (like in DQN):

$$a_t = \begin{cases} \max_a Q_{\pi}(s_t, a) & \text{with probability } \epsilon \\ a \sim Uniform & \text{with probability } 1 - \epsilon \end{cases}$$

Epsilon-greedy exploration is slow

Turn values into a distribution instead:

$$a_i \sim Softmax(Q_{\pi}(s_t, a))$$

Intuition: don't take bad actions, take ambivalent actions

Bellman's Equation can be unstable due to max operator 1

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \lambda \max_{a} Q_{\pi}(S_{t+1}, a)]$$

always taking best action \rightarrow small change in Q \rightarrow take different action \rightarrow maybe see **different states**

SARSA takes **expectation** over policy

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \lambda Q_{\pi}(S_{t+1}, \pi(S_{n+1}))]$$

Methods: Policy Gradient

Actor-critic model

• similar to Asynchronous Methods for Deep Reinforcement Learning, Mnih et al

Trust Region Policy Optimization (TRPO)¹

- second-order method
- much more stable
- slightly better results

Exploration via entropy regularization

- penalize having a sharply spiked (low-entropy) action distribution
- i.e., encourage randomness

Asynchronous training

Smash only runs at ~120 fps (2x real)

Need millions of frames

Idea:

- lots of copies of agent
- lots of copies of emulator
- agents send experiences to trainer
- trainer sends new parameters to agents

Training

Start by playing in-game AI on hardest difficulty

- both Actor-Critic and SARSA win after < 1 day
- agents are subjectively OK, but not great

Self-Play

- play against a population of old versions of the bot (like AlphaGo)
- Actor-Critic beats Vlad or me after a couple of days
- we figured, maybe it's actually really good?

Vlad Goes to a Tournament

Opponent	Rank	Kills	Deaths
S2J	16	4	2
Zhu	31	4	1
Gravy	41	8	5
Crush	49	3	2
Mafia	50	4	3
Slox	51	6	4
Redd	59	12	8
Darkrain	61	12	5
Smuckers	64	8	5
Kage	70	4	1

Table 1: Some results against ranked SSBM players. Rankings from http://wiki.teamliquid.net/smash/SSBM_Rank. S2J is considered by some to be the best Captain Falcon player in the world.

Results

Better than top humans!

Loses to certain silly tactics

fixed by having more diversity in self-play population

Q-learning is not appropriate for self play

if the distributions are not stationary, it won't converge

Playing with delay is hard

- human reaction time is about 15-20 frames
- bot performance drops off after ~6 frames of delay

CONTRACTOR OF THE PERSON OF TH
