EXERCISES 2.6

Limits

In Problems 1–16 compute the given complex limit.

$$1. \lim_{z \to 2i} \left(z^2 - \bar{z} \right)$$

3.
$$\lim_{z \to 1-i} (|z|^2 - i\bar{z})$$

5.
$$\lim_{z \to \pi_i} e^z$$

7.
$$\lim_{z \to 2+i} (e^z + z)$$

9.
$$\lim_{z \to 2-i} (z^2 - z)$$

11.
$$\lim_{z \to e^{i\pi/4}} \left(z + \frac{1}{z} \right)$$

13.
$$\lim_{z \to -i} \frac{z^4 - 1}{z + i}$$

15.
$$\lim_{z \to z_0} \frac{(az+b) - (az_0+b)}{z-z_0}$$

17.
$$\lim_{z \to \infty} \frac{z^2 + iz - 2}{(1+2i)z^2}$$

19.
$$\lim_{z \to i} \frac{z^2 - 1}{z^2 + 1}$$

21.
$$\lim_{z \to \infty} \frac{z^2 - (2+3i)z + 1}{iz - 3}$$

$$2. \lim_{z \to 1+i} \frac{z - \bar{z}}{z + \bar{z}}$$

4.
$$\lim_{z \to 3i} \frac{\operatorname{Im}(z^2)}{z + \operatorname{Re}(z)}$$

6.
$$\lim_{z \to i} z e^z$$

8.
$$\lim_{z \to i} \left(\log_e \left| x^2 + y^2 \right| + i \arctan \frac{y}{x} \right)$$

10.
$$\lim_{z \to i} (z^5 - z^2 + z)$$

12.
$$\lim_{z \to 1+i} \frac{z^2+1}{z^2-1}$$

14.
$$\lim_{z \to 2+i} \frac{z^2 - (2+i)^2}{z - (2+i)}$$

16.
$$\lim_{z \to -3 + i\sqrt{2}} \frac{z + 3 - i\sqrt{2}}{z^2 + 6z + 11}$$

18.
$$\lim_{z \to \infty} \frac{iz+1}{2z-i}$$

20.
$$\lim_{z \to -i/2} \frac{(1-i)z+i}{2z+i}$$

22.
$$\lim_{z \to i} \frac{z^2 + 1}{z^2 + z + 1 - i}$$

Continuity

In Problems 23–30, show that the function f is continuous at the given point.

23.
$$f(z) = z^2 - iz + 3 - 2i$$
; $z_0 = 2 - i$

24.
$$f(z) = z^3 - \frac{1}{z}$$
; $z_0 = 3i$

25.
$$f(z) = \frac{z^3}{z^3 + 3z^2 + z}$$
; $z_0 = i$

26.
$$f(z) = \frac{z-3i}{z^2+2z-1}$$
; $z_0 = 1+i$

27.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1 \\ 3, & |z| = 1 \end{cases}$$
; $z_0 = 1$

28.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z^2 + z + 1}, & |z| \neq 1\\ \frac{-1 + i\sqrt{3}}{2}, & |z| = 1 \end{cases}$$
; $z_0 = \frac{1 + i\sqrt{3}}{2}$

29.
$$f(z) = \bar{z} - 3\operatorname{Re}(z) + i; \ z_0 = 3 - 2i$$

30.
$$f(z) = \frac{\operatorname{Re}(z)}{z + iz} - 2z^2$$
; $z_0 = e^{i\pi/4}$

In Problems 31–36, show that the function f is discontinuous at the given point.

31.
$$f(z) = \frac{z^2 + 1}{z + i}$$
; $z_0 = -i$

32.
$$f(z) = \frac{1}{|z|-1}$$
; $z_0 = i$

33.
$$f(z) = Arg(z); z = -1$$

34.
$$f(z) = Arg(iz); z_0 = i$$

35.
$$f(z) = \begin{cases} \frac{z^3 - 1}{z - 1}, & |z| \neq 1 \\ 3, & |z| = 1 \end{cases}$$
; $z_0 = i$ 36. $f(z) = \begin{cases} \frac{z}{|z|}, & z \neq 0 \\ 1, & z = 0 \end{cases}$; $z_0 = 0$

36.
$$f(z) = \begin{cases} \frac{z}{|z|}, & z \neq 0 \\ 1, & z = 0 \end{cases}$$
; $z_0 = 0$