MATH 8510, Abstract Algebra I

Fall 2016

Exercises 13-1

Collbrators: Dazhou Zhu, Xiaoyuan Liu

Name: Shuai Wei

Exercise 1. Let R be a commutative ring with identity.

(a) Let $A, B \subseteq R$ and set I = (A)R and J = (B)R. Prove that I + J is generated by $A \cup B$.

Proof. (1) If $A = B = \emptyset$, we have $A \cup B = \emptyset$ and $I = J = \{0\}$.

$$I + J = \{0\} = (\emptyset)R = (A \cup B)R.$$

So I + J is generated by $A \cup B$.

(2) If $A = \emptyset$ and $B \neq \emptyset$, we have

$$A \cup B = B$$

and

$$I + J = (\emptyset)R + (B)R = \{0\} + (B)R = (B)R = (A \cup B)R.$$

So I + J is generated by $A \cup B$.

(3) Assume $A \neq \emptyset$ and $b \neq \emptyset$. Since $(A)R = I \leq R$ and $(B)R = J \leq R$, we have

$$I + J \leq R$$
.

Since $A \subseteq A \cup B$,

$$I = (A)R \subseteq (A \cup B)R$$
.

Similarly,

$$J \subseteq (A \cup B)R$$
.

By the definition of I + J, we have

$$I + J \subseteq (A \cup B)R. \tag{1}$$

Since R is CRW1,

$$(A \cup B)R = \{ \sum_{i=1}^{\text{finite}} c_i r_i \mid c_i \in A \cup B, r_i \in R \}.$$

Let $x \in (A \cup B)R$, then $\exists N \in \mathbb{N}$ and $c_i \in A \cup B$ and $r_i \in R$ for $i = 1, 2, \dots, N$ such that

$$x = \sum_{i}^{N} c_i r_i.$$

Without loss of generality, assume $\exists c_i \in A$ for some integer i between 1 and N.

Rearrange $\{c_i r_i, i = 1, \dots, N\}$ such that $c_i \in A$ for $i = 1, \dots, M$ and $c_i \in B$ for $i = M + 1, \dots, N$, where $M \in \mathbb{N}$ and $1 \leq M \leq N$.

$$x = \sum_{i}^{M} c_i r_i + \sum_{i=M+1}^{N} c_i r_i$$
$$\in (A)R + (B)R$$
$$= I + J.$$

So

$$(A \cup B)R \subseteq I + J. \tag{2}$$

Thus, by (1) and (2), we have

$$I + J = (A \cup B)R.$$

Therefore, I + J is generated by $A \cup B$.

(4) Prove that if I and J are finitely generated ideals of R, then I+J is also finitely generated.

Proof. Assume the ideal I of R is finitely generated by the set $A = \{a_1, a_2, \cdots, a_m\}$, where $a_1, \cdots, a_m \in R$, and the ideal J of R is finitely generated by the set $B = \{b_1, b_2, \cdots, b_n\}$, where $b_1, \cdots, b_m \in R$. Then

$$I = (a_1, \cdots, a_m)R = (A)R$$

and

$$J = (b_1, \cdots, b_n)R = (B)R.$$

By part (a), we have I+J is generated by $A\cup B$. Since $A\cup B$ is a finite set, I+J is finitely generated. \square

Exercise 2. Let R be a non-zero commutative ring with identity, and let $z \in R$. Assume that z is not nilpotent. Use the following steps to prove that there is a prime ideal of R that does not contain z.

(a) Set $\Sigma := \{I \leq R \mid 1, z, z^2, \dots \notin I\}$, partially ordered by inclusion. Prove that $\Sigma \neq \emptyset$ and that every chain in Σ has an upper bound in Σ . Use Zorn's Lemma to conclude that Σ has a maximal element K.

Proof. Let $I = \{0\}$, then $I \leq R$. Since z is not nilpotent, $z^n \neq 0$, $\forall n \in \mathbb{Z}^{\geq 0}$. So $z^n \notin I, \forall n \in \mathbb{Z}^{\geq 0}$. Thus, $I \in \Sigma$ and then $\Sigma \neq \emptyset$. Next we show every chain in Σ has an upper bound in Σ . Let \mathcal{C} be a chain in Σ .

Set

$$I = \bigcup_{J \in \mathcal{C}} J.$$

Since (Σ, \subseteq) is a poset,

$$I \leq R$$
.

Suppose there exists at least one $z^n \in I$ for some $n \in \mathbb{Z}^{\geq 0}$.

Then $z^n \in J$ for some $J \in \mathcal{C} \subseteq \Sigma$.

Since $J \in \Sigma$, $z^n \notin J$, $\forall n \in \mathbb{Z}^{\geq 0}$.

So there is a contradiction.

Then

$$z^n \not\in I, \forall \ n \in \mathbb{Z}^{\geq 0}.$$

So

$$I \in \Sigma$$
.

Also

$$\forall J \in \mathcal{C}, J \subseteq I.$$

Thus, I is an upper bound for C in Σ .

By Zorn's lemma, Σ has a maximal element K.

- (b) Prove that K is prime as follows.
 - (1) Suppose that $r, s \in R K$ are such that $rs \in K$. Show that $K \subsetneq K + rR \leq R$ and $K \subsetneq K + sR \leq R$.

Proof. Since $0_R \in R$,

$$K = K + r0_R \subseteq K + rR.$$

Assume K = K + rR.

Since $1_R \in R$,

$$K + r = K + r1_R \subseteq K + rR = K.$$

By part (a), we already have $K \leq R$, so $r \in K$.

As a result, there is a contradiction since $r \in R - K$ by assumption. Therefore,

$$K \subsetneq K + rR. \tag{3}$$

Since R is CRW1, $rR = (r)R \le R$.

Also, $K \leq R$.

So

$$K + rR \le R. \tag{4}$$

By (3) and (4),

$$K \subsetneq K + rR \leq R.$$

Similarly,

$$K \subsetneq K + sR \le R$$
.

(2) Conclude that there are $m,n\in\mathbb{Z}^{\geq 0}$ such that $z^m\in K+rR$ and $z^n\in K+sR$.

Proof. Assume $z^m \notin K + rR, \forall m \in \mathbb{Z}^{\geq 0}$. Since $K + rR \leq R$, we have

$$K + rR \in \Sigma$$
.

Since K is the maximal element of Σ , $K+rR\subseteq K$. So there is a contradiction since $K\subseteq K+rR$. Thus, $\exists \ m\in\mathbb{Z}^{\geq 0}$ such that $z^m\in K+rR$. Similarly, $\exists \ n\in\mathbb{Z}^{\geq 0}$ such that $z^n\in K+sR$.

(3) Deduce that $z^{m+n} \in K$, derive a contradiction, and conclude that K is prime.

Proof. Since $z^m \in K + rR$ and $z^n \in K + sR$, there exists $k_1, k_2 \in K$ and $p_1, p_2 \in R$ such that $z^m = k_1 + rp_1$ and $z^n = k_2 + sp_2$. Then

$$(z^m)(z^n) =$$

Let $i = \sqrt{-1} \in \mathbb{C}$, and consider the following subrings of \mathbb{C} .

$$\mathbb{Z}[i] := \{ a + bi \mid a, b \in \mathbb{Z} \}$$

$$\mathbb{Q}[i] := \{ a + bi \mid a, b \in \mathbb{Q} \}$$

Prove that $\mathbb{Q}[i]$ is isomorphic to the field of fractions of $\mathbb{Z}[i]$.

Exercise 3. Let R be an integral domain and consider the ring homomorphism $\psi \colon \mathbb{Z} \to R$ given by $\psi(n) = n \cdot 1_R$. (You do not need to show that this is a well-defined ring homomorphism.)

- (a) Prove that $\operatorname{Ker}(\psi) = 0$ or $\operatorname{Ker}(\psi) = p\mathbb{Z}$ for some prime number $p \in \mathbb{Z}$.
- (b) Prove that if p is a prime number such that $Ker(\psi) = p\mathbb{Z}$, then R contains a finite field as a subring.
- (c) Prove that if R is a field and $Ker(\psi) = 0$, then R has a subring $Q \cong \mathbb{Q}$.