Comparative Genome Assembly

-- and --

Lessons learned while building the first comparative genome assembler, AMOScmp

Adam M Phillippy

Center for Bioinformatics and Computational Biology

WGS assembly

- Overlap reads
 - identify reads with shared k-mers
 - calculate edit distance
- Layout reads
 - walk the overlap graph
 - hierarchically build contigs
- Generate consensus
 - multi-align read layouts

Limitations of WGS

- Algorithmically hard
 - Overlap reads
 - 70,000 choose 2 = 2.5 billion combinations
 - hard for large eukaryotic genomes
 - Layout reads
 - interpret the overlap graph
 - hard for low coverage projects (too few edges)
 - hard for repetitive projects (too many edges)

AMOScmp overview

- Pick a reference sequence
 - assembly template
- Align target reads to the reference
 - 2.5 billion \rightarrow 70,000 combinations
- Infer read relationships from alignments
 - if their mappings overlap, they must overlap
- Create read layout
 - fine tune the mappings
- Build a consensus

Picking a reference

- The closer the better
 - sequence similarity
 - high identity
 - structural similarity
 - similar repeat distributions
 - few rearrangements
- Preferably complete
 - non-contiguous reference
 - fragmented results
 - forced alignments
 - singletons

Mapping the reads

- Generate read to reference alignments
 - using MUMmer (nucmer)
- Pick the correct alignments
 - using modified LIS algorithm
 - allow fragmented mappings
 - allow multiple, equivalent mappings
- Select repeat copies
 - use mate information
 - "randomly" place leftovers

Longest Increasing Subsequence

- Problem
 - For a list of n integers, find the longest strictly increasing subsequence from left to right
 - -5 0 3 5 **1 2 4 8** 4 **9**
- Complexity
 - -O(n log n) via greedy set cover
 - $-O(n^2)$ via dynamic programming
 - O(l) for n < l / log l

LIS for alignments

- Alignments are not integers
 - $S_i = S_j + (len_i * idy_i) max(olapR_{ij}, olapQ_{ij})$
 - reward greater length and identity
 - force mutually consistent ordering
 - penalize overlap

LIS with repeats

Problem

 For a list of n integers, find a set of disjoint subsequences within a given length of the LIS

Repeat selection

Making the layout

- Locate all alignment breaks
- For each break, count yay and nay reads
 - scan across the reference from left to right
 - read heap contains all the spanning reads
 - count supporting, discounting, fuzzy
 - keep the majority and toss the minority OR toss everything
- Adjust for polymorphism
 - reads inside an insertion need to be handled separately
 - reads after an insertion need to be offset accordingly
- Worst case $O(cr \log r)$

Insertions

Rearrangement

Validating conflicts

Handling inserts

- Target
 - Streptococcus agalactiae 2603 V/R
- Reference
 - Streptococcus agalactiae NEM316
 - Streptococcus agalactiae 2603 V/R

2603 read placement

- NEM 316 reference
 - 29,456 alignments
 - ~23,000 after LIS
 - 26,099 total reads
 - 21,816 unique
 - 148 unique mate
 - 22 mate constraints
 - 443 random
 - 3670 unplaced

- Self reference
 - 34,846 alignments
 - ~26,000 after LIS
 - 26,099 total reads
 - 25,301 unique
 - 314 unique mate
 - 22 mate constraints
 - 442 random
 - 20 unplaced

2603 read layout

- NEM 316 reference
 - 312 conflicts
 - 34 accepted
 - 185 rejected
 - 93 unknown
 - 155 contigs

- Self reference
 - 138 conflicts
 - 0 accepted
 - 133 rejected
 - 5 unknown
 - 86 contigs

2603 assembly

П	vs 2603			•	vs. NEM 316	3	CelAsm		
		total			total			total	
Х	Ν	contig size	N50	Ν	contig size	N50	Ν	contig size	N50
1	604	1,001,743	0	527	839,315	0	585	903,184	0
2	619	1,593,364	2,294	586	1,393,287	1,479	657	1,488,287	1,595
3	443	1,856,394	5,707	450	1,640,231	4,179	506	1,812,266	4,981
5	243	2,043,842	14,915	277	1,829,976	10,395	293	2,046,730	12,458
7	144	2,100,541	27,364	198	1,891,527	18,142	189	2,110,396	21,926
9	86	2,119,579	42,679	155	1,919,237	24,239	130	2,132,490	33,953

	vs 2603			\	s NEM 316	6	CelAsm			LW
X	gaps	gap size	coverage	gaps	gap size	coverage	gaps	gap size	coverage	coverage
1	588	1,168,208	45.92	511	1,329,996	38.43	562	1,261,419	41.61	39.31
2	596	577,987	73.24	552	778,491	63.96	601	679,386	68.55	74.10
3	430	301,899	86.02	415	530,417	75.45	455	365,736	83.07	89.88
5	232	119,917	94.45	240	347,697	83.90	257	153,824	92.88	98.56
7	132	62,410	97.11	155	292,068	86.48	146	81,406	96.23	99.79
9	80	43,408	97.99	110	270,210	87.49	97	61,544	97.15	99.97

Benefits

- Low coverage projects
 - very thin overlaps permissible
 - larger contigs
 - higher assembly confidence
- High coverage projects
 - algorithmically simplified
 - fewer misassemblies
 - given a good reference and implementation
 - greatly reduced time and memory requirements
 - under 5 min / 100 MB for a 5 Mbp genome
 - more reads included in the assembly

Applications

- Low coverage projects
 - thin overlaps make for bigger contigs
 - allow for earlier SNP detection
- Environmental sequencing
 - hybrid assembly of multiple strains
- Short read sequencing
 - traditional algorithms fail for short reads
 - overlaps too short, coverage too deep, non-uniform coverage
- Assembly validation
 - self reference alignment breaks
 - tandem collapse
 - polymorphism

Open questions

- Hybrid assembly
 - conventional / comparative
 - who comes first?
- Read mapping
 - repeats increase runtime
 - sensitivity / specificity
 - exact matches only
- Layout
 - missing sequence
 - inexact repeat copies
 - identity cutoff
 - surrogates

- polymorphisms
 - query insertions
 - assembly separately
 - bambus
 - rearrangements / tandems
 - examine location

Mihai Pop, Adam Phillippy, Arthur L. Delcher, Steven L. Salzberg. "Comparative genome assembly." Briefings in Bioinformatics. 2004 Sep; 5(3):237-48.

Mihai Pop
Arthur Delcher
Steven Salzberg
Stefan Kurtz
NIH
Michael Schatz
Pawel Gajer

