Serie Numeriche

Prima di passare alle serie, dobbiamo prima di tutto considerare le Successioni, che non sarebbero altro che delle funzioni con n come variabile:

```
a1, a2, a3,a4, ...., an e diciamo che a = n, quindi se n = [1,2,3,4,5] allora a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 5.
```

Adesso che abbiamo visto le successioni, vediamo le serie che con sono altro che una sommatoria tra le successioni, vediamo un esempio:

```
S0 = a0, S1 = a0 + a1, S2 = a0 + a1 + a2 ...... Sn = a0 + a1 + a2 + ... + an possiamo infine dire che S0 = \sum k = 0 \rightarrow 0 di ak, caso(n) Sn = \sum k = 0 \rightarrow n di ak, e tramite induzione forte il caso (n +1)
```

$$Sn+1 = \sum k = 0 \rightarrow n+1$$
 di ak === $Sn+1 = \sum k = 0 \rightarrow n$ di ak + a(n+1)

La serie converge se è sempre uguale a un numero finito o possibilmente finito, altrimenti se è uguale o tende ad aumentare / diminuire ogni volta che aumenta la n senza che ci sia una sorta di ripetizione tra risultati, allora si dice che diverge cioè se e $\sum k = 0 \rightarrow n$ di ak = un numero finito o diverso da $+\infty/-\infty$.

Ad esempio a = 1/(n+1) è divergente, perché seppur piano aumenta sempre il suo valore verso + ∞ , invece se a = 1 allora sappiamo che Sn = 1 qualsiasi sia la n e quindi è convergente.

Tipi di serie

- 1. Serie Geometriche
 - prendiamo una $x \in \mathbb{R}$ e consideriamo ak = x^k
 - se -1 < x < 1 allora la Sn è convergente per $(1-x^{n+1})$ / (1-x)
 - se x =< -1 allora la Sn non è convergente
 - se x >= 1 allora la Sn è divergente
- 2. Serie Armonica generalizzata
 - prendiamo una $x \in \mathbb{R}$ e consideriamo ak = 1 / k^x
 - se x > 1 allora la Sn è convergente
 - se x <= 1 allora la Sn è divergente

Serie a termini positivi

Le serie termini positivi rappresentano tutte una ak >= 0 ed inoltre non possono essere indeterminate/ non convergenti e di conseguenza se ak \rightarrow n != 0 e k \rightarrow + ∞ allora la serie sarà sicuramente divergente altrimenti dovremmo verificare se divergente o convergente.

Formula di Stirling

```
per il limite di k \rightarrow + \infty k! / (k^k * e^-k * (2*\pi*k)^(½)) = 1 Molto utile quando abbiamo nella ak un k^k.
```

Criterio per controllare la divergenza

Se abbiamo una generica ak e una Sn e sappiamo che Sn è convergente allora sappiamo che ak \rightarrow 0 per k \rightarrow + ∞ , altrimenti se ak \rightarrow n != 0 allora non sarà sicuramente convergente.

Criterio del confronto

condizioni :

- I' ak e bk devono essere >= 0
- 0 <= ak <= bk

soluzione:

- se \sum ak è divergente allora anche \sum bk sarà divergente (non vale il contrario)
- se \sum bk è convergente allora anche \sum ak sarà convergente (non vale il contrario)

Criterio del confronto asintotico

condizioni:

- ak ~ bk

soluzione:

- lim k → +∞ ak/bk = 1 allora la Sn di ak è convergente se Sn di bk è convergente

Criterio del rapporto

condizioni e consigli:

- utilizzarlo ogni volta che c'è il "!"/ fattoriale
- ak >= 0 ∀ k ∈ ℝ

soluzione:

- a(k+1) / ak es. k^k = (k+1)^(k+1)/ k^k per il limite di k → + ∞ = L
- se L = 1 allora non lo sappiamo, se L < 1 allora è convergente, else è divergente

Criterio della radice

condizioni:

- $ak \ge 0 \forall k \in \mathbb{R}$
- utilizzarlo ogni volta che c'è una x ^ k

soluzione:

- $(ak)^{\wedge} (1/k)$ es. $10^{\wedge}k = (10^{\wedge}k)^{\wedge}(1/k)$ per il limite di $k \to +\infty = L$
- se L = 1 allora non lo sappiamo, se L < 1 allora è convergente, else è divergente

Criterio di Leibniz

condizioni generali:

- $ak = (-1)^k * bk$
- -bk > 0
- per $k \rightarrow + \infty$ bk = 0
- bk decrescente cioè al crescere di k b(k) < b(k-1)
- es. (-1)^k / k bk= 1/k bk >0 per k \rightarrow + ∞ bk = 0 bk è decrescente soluzione:
 - mettiamo ak = |ak| quindi abbiamo (1) / k e quindi siamo sicuri che la serie converge semplicemente perchè se facciamo il limite è = 0, per vedere se converge assolutamente bisogna vedere se bk è convergente o divergente.

Serie Di Taylor per Serie

Serie più famose:

-
$$e^x = k = 0 \rightarrow + \infty \sum (x^k) / (k)!$$

-
$$\sin(x) = k = 0 \rightarrow + \infty \sum (-1)^{k} * x^{2k+1} / (2k+1)!$$

-
$$cos(x) = k = 0 \rightarrow + \infty \sum (-1)^{k} x^{(2k)} / (2k)!$$

- per -1 < x < 1 le prossime serie:

-
$$1/1-x = k = 0 \rightarrow + \infty \sum x^k$$

-
$$1/1+x = k = 0 \rightarrow + \infty \sum (-1)^{k} x^{k}$$

-
$$ln(1 + x) = k = 0 \rightarrow + \infty \sum (-1)^k + 1 * x^k + 1 / (k+1)$$

-
$$arctan(x) = k = 0 \rightarrow + \infty \sum (-1)^k * x^k(2k+1) / 2k+1$$

Come calcolare la derivata(n) di f(x0) attraverso la serie di taylor:

derivata n-esima di f(x0)

- per assegnare ad ak un valore dobbiamo trovare un k tale che abbiamo nella nostra formula di Taylor il valore x^n, trovata la k, risolviamo la formula con quella k e dividiamo tutto per x^n al fine di ottenere ak, e poi facciamo ak * n! = ..., se non esiste una k tale che ci sia una x^n dobbiamo ritornare 0 esempi:
 - $x^*e^x = sum x^(k+1) / k!$ e vogliamo la derivata 6-esima
 - $x^6 \rightarrow k = 5$ allora abbiamo $x^6 / 5! * 1/x^6 = 1/5!$
 - ak * 6! == 1/5! * 6! = 6

Serie di Potenze

Le serie di potenza sono simili alle serie di taylor e questo perché non riusciamo a individuare direttamente se converge o diverge o non converge.

Caratteristiche:

- Possono convergere e divergere allo stesso tempo in base alla x.
- Hanno questa struttura: ak * (x-x0)^k.
- x0 rappresenta il centro della serie.
- Hanno un R che rappresenta il Raggio di convergenza e può essere uguale a 0 \ L \ +∞.
- Sappiamo che |x-x0| < R e la convergenza è = a (x0-R,x0+R) ma calcoliamo le []

Come Calcolare R:

- di base sappiamo che esiste una R >= 0 t.c. |x-x0| < R che è convergente
- e sappiamo che esiste una R >= 0 t.c. |x-x0| > R che è divergente
- dobbiamo mettere ak nel modulo e fare o il criterio del rapporto o della radice
- otterremo L che se uguale a:
 - Ricordo che R = 1/L
 - L = + ∞ allora R = 0 e la serie potrebbe essere o convergente in x0 o solo divergente.
 - 0 < L < + ∞ e la serie ha un intervallo tale che (x0 R, x0 + R) è convergente ma dobbiamo anche controllare per x = x0 R e x = x0 + R.
 - L = 0 allora la serie è sempre convergente.

Come Calcolare [x0 - R, x0 + R]:

- Sappiamo che |x x0| < R quindi dobbiamo sostituire la x.
- x = x0 Rex = x0 + R
- Verificare le serie e se convergono per leibniz convergono.