Lecture 3: WHILE3ADDR, Control-Flow Graphs and Intro to Data-Flow Analysis

17-355/17-665/17-819: Program Analysis
Rohan Padhye
September 4, 2025

* Course materials developed with Jonathan Aldrich and Claire Le Goues

Review: While abstract syntax

```
egin{array}{ll} S & 	ext{statements} \ a & 	ext{arithmetic expressions (AExp)} \ x,y & 	ext{program variables (Vars)} \ n & 	ext{number literals} \ b & 	ext{boolean expressions (BExp)} \end{array}
```

```
S ::= x := a b ::= true a ::= x op_b ::= and | or | skip | false | n <math>op_r ::= < | \le | = | S_1; S_2 | not b | a_1 op_a a_2 | | > | \geqslant | op_a ::= + | - | * | / while <math>b do S | a_1 op_r a_2 |
```

WHILE syntax

- Abstract representation that corresponds well to concrete syntax
- Useful for recursive or inductive reasoning
- Sometimes challenging to track how data and control flows in program execution order
- 3-address-code is commonly used by compilers to represent imperative language code.
 - AST -> 3-address transformation is straightforward.

WHILE3ADDR

•
$$W = X * y + Z$$

• if b then S1 else S2

- 1: if b then goto 4
 - 2: S2
 - 3: goto 5
 - 4: S1
 - 5: ...

WHILE3ADDR: An Intermediate Representation

Simpler, more uniform than WHILE syntax

Categories:

```
I \in Instructioninstructionsx, y \in Varvariablesn \in Numnumber literals
```

Syntax:

Exercise: Translate while b do S to While3Addr

Categories:

```
I \in Instructioninstructionsx, y \in Varvariablesn \in Numnumber literals
```

Syntax:

While3Addr Extensions (more later)

```
I ::= x := n \mid x := y \mid x := y \text{ op } z \mid \text{goto } n \mid \text{if } x \text{ op}_r \text{ 0 goto } n
             halt
             x := f(y)
             return x
             x := y.m(z)
             read x
             print x
             x := &p
             x := *p
             *p := x
             x := y.f
             x.f := y
```

WHILE3ADDR Semantics

Configuration (state) includes environment + program counter:

$$c \in E \times \mathbb{N}$$

• Evaluation occurs with respect to a global program that maps labels to instructions: $P \in \mathbb{N} \to I$

$$P \vdash \langle E, n \rangle \leadsto \langle E', n' \rangle$$

$$\frac{P(n) = x := m}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto m], n+1 \rangle} \; \textit{step-const}$$

$$\frac{P[n] = x := y}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto E(y)], n+1 \rangle} \ \textit{step-copy}$$

$$\frac{P(n) = x := y \text{ op } z \quad E(y) \text{ op } E(z) = m}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto m], n+1 \rangle} \text{ step-arith}$$

$$\frac{P(n) = \text{goto } m}{P \vdash \langle E, n \rangle \leadsto \langle E, m \rangle} \text{ step-goto}$$

$$\frac{P(n) = \text{if } x \text{ } op_r \text{ } 0 \text{ goto } m \quad E(x) \text{ } \mathbf{op_r} \text{ } 0 = true}{P \vdash \langle E, n \rangle \leadsto \langle E, m \rangle} \text{ } \textit{step-iftrue}$$

$$\frac{P(n) = \text{if } x \ op_r \ 0 \ \text{goto} \ m \quad E(x) \ \textbf{op}_{\textbf{r}} \ 0 = false}{P \vdash \langle E, n \rangle \leadsto \langle E, n+1 \rangle} \ \textit{step-iffalse}$$

Data-Flow Analysis

Computes universal properties about program state at specific program points. (e.g. will x be zero at line 7?)

- About program state
 - About data store (e.g. variables, heap memory)
 - Not about control (e.g. termination, performance)
- At program points
 - Statically identifiable (e.g. line 7, or when foo() calls bar())
 - Not dynamically computed (E.g. when x is 12 or when foo() is invoked 12 times)
- Universal
 - Reasons about all possible executions (always/never/maybe)
 - Not about specific program paths (see: symbolic execution, testing)

Abstraction

$$\sigma \in Var \rightarrow L$$

$$\alpha: \mathbb{Z} \to L$$

Abstraction

$$\sigma \in Var \rightarrow L$$

$$\alpha: \mathbb{Z} \to L$$

Zero Analysis

$$L = \{Z, N, \top\}$$

$$\alpha_Z(0) = Z$$

$$\alpha_Z(n) = N$$
 where $n \neq 0$

A flow function maps values from σ to σ

f[I] -- flow across instruction I (think: "abstract semantics")

$$f_{Z}[x := 0](\sigma)$$
 =
 $f_{Z}[x := n](\sigma)$ =
 $f_{Z}[x := y](\sigma)$ =
 $f_{Z}[x := y \text{ op } z](\sigma)$ =
 $f_{Z}[\text{goto } n](\sigma)$ =
 $f_{Z}[\text{if } x = 0 \text{ goto } n](\sigma)$ =

A flow function maps values from σ to σ

f[I] -- flow across instruction I (think: "abstract semantics")

$$f_{Z}\llbracket x := 0 \rrbracket(\sigma) \qquad = \sigma[x \mapsto Z]$$

$$f_{Z}\llbracket x := n \rrbracket(\sigma) \qquad = \sigma[x \mapsto N] \text{ where } n \neq 0$$

$$f_{Z}\llbracket x := y \rrbracket(\sigma) \qquad = \sigma[x \mapsto \sigma(y)]$$

$$f_{Z}\llbracket x := y \text{ op } z \rrbracket(\sigma) \qquad = \sigma[x \mapsto \top]$$

$$f_{Z}\llbracket \text{goto } n \rrbracket(\sigma) \qquad = \sigma$$

$$f_{Z}\llbracket \text{if } x = 0 \text{ goto } n \rrbracket(\sigma) \qquad = \sigma$$

Specializing for Precision

$$f_Z[x := y - y](\sigma) =$$

$$f_Z[x := y + z](\sigma) =$$

Specializing for Precision

$$f_Z[x := y - y](\sigma) = \sigma[x \mapsto Z]$$

 $f_Z[x := y + z](\sigma) = \sigma[x \mapsto \sigma(y)] \text{ where } \sigma(z) = Z$

Exercise: Define another flow function for some arithmetic instruction and certain conditions where you can also provide a more precise result than T

Specializing for Precision

$$f_Z[\inf x = 0 \text{ goto } n]_T(\sigma) = f_Z[\inf x = 0 \text{ goto } n]_F(\sigma) =$$

Specializing for Precision

$$f_Z[\inf x = 0 \text{ goto } n]_T(\sigma) = \sigma[x \mapsto Z]$$

 $f_Z[\inf x = 0 \text{ goto } n]_F(\sigma) = \sigma[x \mapsto N]$

Exercise: Define a flow function for a conditional branch testing whether a variable x < 0

Control-flow Graphs

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

1: if x = 0 goto 4

 $2: y \coloneqq 0$

3: goto 6

 $4: y \coloneqq 1$

 $5: x \coloneqq 1$

6: $z \coloneqq y$

Nodes = Statements

Edges = (s1, s2) is an edge iff s1 and s2

can be executed consecutively
aka "control flow"

Control-flow Graphs

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

Nodes = Statements

Edges = (s1, s2) is an edge iff s1 and s2

can be executed consecutively
aka "control flow"

Common properties of CFGs:

- Weakly connected
- Only one entry node
- Only one exit (terminal) node

Example of Zero Analysis: Straightline Code

1: x := 0

2: y := 1

3: z := y

4: y := z + x

5: x := y - z

Example of Zero Analysis: Branching Code

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

Example of Zero Analysis: Branching Code

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

	x	y	\mathbf{Z}
P1	?	?	?
P2	Z_T, N_F	?	?
P3	N	\mathbf{Z}	?
P4	N	\mathbf{Z}	?
P5	Z	?	?
P6	Z	N	?
P7	N	N?	?
P8	N??	N??	N??

Example of Zero Analysis: Branching Code

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

Next Time

- Lattices
- Definition of a Data-Flow Analysis
- Solution of a Data-Flow Analysis
- Kildall's Algorithm