Simulação por Eventos Discretos

Aplicação à simulação de tráfego

Sistemas de Telecomunicações MIEEC - Área de Telecomunicações

> 4° Ano - 2° Semestre FEUP – 2018-19

> > MJL, MPR, RLC

Simulação por eventos discretos — princípios

- ◆ Aplicável a sistemas de estados discretos
 - as mudanças de estado são determinadas por eventos
 - anima-se o sistema analisando o efeito dos sucessivos eventos no estado do sistema
- Processo de simulação
 - inicialização
 - » relógio, contadores e outras variáveis a 0
 - » determinam-se os instantes de eventos futuros

fila de eventos

- (instanteDeOcorrência, tipoDeEvento, ...)
- ordenada por ordem crescente do tempo

avanço do tempo

- » avança-se o tempo para o próximo evento ←
- » processa-se o evento, actualizando o estado do sistema
- » actualizam-se os contadores e outras variáveis
- » determina-se a ocorrência de futuros eventos -

fim da simulação

- » guardam-se os contadores e outras variáveis para análise
- repetição da simulação
 - » novas amostras independentes aumentam a confiança dos resultados

Simulação do processo de Poisson

- Chegada de clientes
 - $-\lambda$ taxa de chegada de clientes (s⁻¹)
 - eventos e_c chegada de um cliente

processamento de um evento k → determina-se a ocorrência de um novo evento (neste caso, o seguinte k+1)

- intervalo entre chegada de clientes (c) com distribuição exponencial
 - » geração de uma distribuição exponencial x a partir de uma distribuição uniforme u

» normalização para a média de intervalos entre chamadas $E(c)=1/\lambda$

$$c = -\frac{1}{\lambda} \ln(u)$$

- Sistema de perda: caso geral
 - M fontes de tráfego independentes
 - » taxa de chegada de chamadas de cada fonte livre λ
 - » intervalo entre inícios de chamadas c

$$c = -\frac{1}{\lambda} \ln(u)$$

- N servidores (canais)
 - » duração média das chamadas $-d_m$
 - » taxa de libertação de chamadas μ
 - » duração das chamadas d

$$d = -\frac{1}{\mu} \ln(u) = -d_m \ln(u)$$

- geração e processamento de eventos
 - » *M* processos de geração de tráfego (um por cada fonte)
 - e_i início de chamada
 - e_f fim de chamada de uma dada fonte para um dado canal
 - » fila única de eventos (nº constante = M)
 - evento_início=(tempo, tipo de evento, 0, 0)
 - evento_fim=(tempo, tipo de evento, fonte, canal)

- Sistema de perda: situação de Erlang-B
 - tráfego oferecido constante (número de fontes M → ∞)
 - » taxa (total) de chegada de chamadas λ
 - » intervalo entre inícios de chamadas -c

$$c = -\frac{1}{\lambda} \ln(u)$$

- N servidores (canais)
 - » duração média das chamadas $-d_m$
 - » taxa de libertação de chamadas $-\mu$
 - » duração das chamadas d

$$d = -\frac{1}{\mu} \ln(u) = -d_m \ln(u)$$

- geração e processamento de eventos
 - » um único processo de geração de tráfego
 - e_i início de chamada para uma dada saída
 - e_f fim de chamada
 - » fila única de eventos (nº variável $\leq N+1$)
 - evento_início=(tempo, tipo de evento, 0)
 - evento_fim=(tempo, tipo de evento, canal)

- ♦ Fila de espera M/M/1 de comprimento N (situação de Erlang-C quando $N \to \infty$)
 - chegada de clientes
 - » taxa de chegada de clientes λ
 - » intervalo entre chegada de clientes c

$$c = -\frac{1}{\lambda} \ln(u)$$

- » taxa de serviço de clientes μ
- » tempo de serviço de clientes -s

$$s = -\frac{1}{\mu} \ln(u)$$

 $e_{c1} e_{c2} e_{p1} e_{c3} e_{p2}$

- geração e processamento de eventos
 - » um único processo de geração de tráfego
 - e_c chegada de um cliente
 - e_p partida de um cliente
 - » fila única de eventos (nº variável $\leq N+1$)
 - evento_início=(tempo, tipo de evento)
 - evento_fim=(tempo, tipo de evento)

◆ Intervalos de Confiança - exemplo

Estimador do valor médio μ

$$M(n) = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

Estimador do desvio padrão σ

$$S(n) = \sqrt{\frac{\sum_{i=1}^{n} [X_i - M(n)]^2}{n-1}}$$

Estimador do erro padrão da média σ_M

$$S_M(n) = \frac{S(n)}{\sqrt{n}}$$

Intervalo de confiança para μ a $(1-\alpha)\times 100\%$

$$I_C(1-\alpha) = M(n) \pm z_{1-\alpha/2} S_M(n)$$

Limite de confiança	$\mathcal{Z}_{1-lpha_2^{\prime}}$
80%	1.28
90%	1.65
95%	1.96
98%	2.33
99%	2.58

10 amostras	$<$ idealmente $n \ge 30$
1.20	
1.50	
1.68	M(10)=1.34
1.89	
0.95	S(10)=0.41
1.49	
1.58	$S_M(10)=0.13$
1.55	
0.50	
1.09	

Intervalo de confiança para a média (μ) a 90%

$$I_C(1-\alpha) = M(n) \pm z_{1-\alpha/2} S_M(n)$$

$$I_C(90\%) = 1.34 \pm 1.65 \times 0.13 = 1.34 \pm 0.21$$

Modelo de simulação

♦ Sistema de perda: situação de Erlang-B

Modelo de simulação

♦ Fila de espera M/M/1 de comprimento N (situação de Erlang-C quando $N \to \infty$)

```
partidaCliente()
{
  actualiza contadores;
  se existem clientes na fila
      {
      calcula tempo de partida do cliente (t+s);
      insere o novo evento de partida ep na listaDosEventos;
    }
}
```