

ECE-332:437 DIGITAL SYSTEMS DESIGN (DSD)

Fall 2016 - Lecture 4

Nagi Naganathan September 15, 2016

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Combinatorial Building Blocks

Combinational Building Blocks

- Multiplexers
- De-Multiplexers
- Decoders
- Encoders

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux → 3 select inputs
 - N inputs → log₂(N) selects
 - Like a rail yard switch

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ..., I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

Mux Internal Design

i0 (1*i0=i0)
i1 i0 (0+i0=i0)
a

2x1 mux

4x1 mux

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3
- Use 4x1 mux

Muxes Commonly Together – N-bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) – each is 8-bits wide
 - Choose which to display on D using two inputs x and y
 - Pushing button sequences to the next item
 - Use 8-bit 4x1 mux

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

S	D_1	D_0	Y	S	Υ
0	0	0	0	0	D_0
0	0	1	1	1	D_1°
0	1	0	0		•
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

Multiplexer Implementations

Logic gates

Sum-of-products form

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Logic using Multiplexers

• Using the mux as a lookup table

$$Y = AB$$

Logic using Multiplexers

Reducing the size of the mux

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$\mathbf{Y} = \overline{\mathbf{S}}\mathbf{I}_0 + \mathbf{S}\mathbf{I}_1$$

The circuit:

Decoder Circuits

S

Landbling Circuits

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - 1-to-2-line Decoder
 - 2 Enabling circuits
 - 2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2 × 2 AND-OR circuit:
 - 1-to-2-line decoder
 - 2×2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - n-to- 2^n -line decoder
 - $2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

■ 2-to-2²-line decoder

 $^{22} \times 2$ AND-OR

Multiplexer Width Expansion

Select "vectors of bits" instead of "bits"

• Use multiple copies of $2^n \times 2$ AND-OR in

parallel

Example: 4-to-1-line quad multiplexer

Other Selection Implementations

Three-state logic in place of AND-OR

 Gate input cost = 14 compared to 22 (or 18) for gate implementation

Combinational Logic Implementation

- Multiplexer Approach 1
- Implement m functions of n variables with:
 - Sum-of-minterms expressions
 - An m-wide 2^n -to-1-line multiplexer
- Design:
 - Find the truth table for the functions.
 - In the order they appear in the truth table:
 - Apply the function input variables to the multiplexer inputs S_{n-1}, \ldots, S_0
 - Label the outputs of the multiplexer with the output variables
 - Value-fix the information inputs to the multiplexer using the values from the truth table (for don't cares, apply either 0 or 1)

Examples of Multiplexers – 2-1

Encoder vs Decoder

Encoders vs. Decoders

Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

Logic Using Decoders

OR minterms

Decoder Example

- New Year's Eve Countdown Display
 - Microprocessor counts from 59 down to 0 in binary on 6-bit output
 - Want illuminate one of 60 lights for each binary number
 - Use 6x64 decoder
 - 4 outputs unused

Decoder Applications

- Selecting different banks of memory
- Selecting different devices
- Instruction decoding

BCD To 7 segment

- BCD are 4 bit
- Design a decoder to drive 7 segment LED

Seven Segment Display

Activation of LEDs

- 0: a,b,c,d,e,f
- 1: b,c
- 2:a,b,g,e,d
- 3:a,b,g,c,d
- 4:f,g,b,c

- 5:a,f,g,c,d
- 6:a,f,g,c,d,e
- 7:a,b,c
- 8:a,b,c,d,e,f,g
- 9:a,b,c,d,f,g

Decoder Expansion - Example 1

Result

Decoder Expansion - Example 2

- 7-to-128-line decoder
 - Number of output ANDs = 128
 - Number of inputs to decoders driving output ANDs
 = 7
 - Closest possible split to equal
 - 4-to-16-line decoder
 - 3-to-8-line decoder
 - 4-to-16-line decoder
 - Number of output ANDs = 16
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - 2 2-to-4-line decoders
 - Complete using known 3-8 and 2-to-4 line decoders

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Binary Encoder

Binary Encoder

8-to-3 binary encoders

10	I1	I2	I3	I 4	15	I 6	I 7	Y2	Y1	$\mathbf{Y0}$
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Figure 6-45

Binary encoder: (a) general structure; (b) 8-to-3 encoder.

Figure 6-46

A system with 2^n requestors, and a "request encoder" that indicates which request signal is asserted at any time.

Encoder Example

- A decimal-to-BCD encoder
 - Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoder Example (continued)

- Input D_i is a term in equation A_j if bit A_j is 1 in the binary value for i.
- Equations:

$$A_3 = D_8 + D_9$$

 $A_2 = D_4 + D_5 + D_6 + D_7$
 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_0 = D_1 + D_3 + D_5 + D_7 + D_9$

• $F_1 = D_6 + D_7$ can be extracted from A_2 and A_1

Priority Encoder

- If more than one input value is 1, then the encoder just designed does not work.
- One encoder that can accept all possible combinations of input values and produce a meaningful result is a priority encoder.
- Among the 1s that appear, it selects the most significant input position (or the least significant input position) containing a 1 and responds with the corresponding binary code for that position.

Priority Encoder (Mano)

■ TABLE 3-8
Truth Table of Priority Encoder

	Inj	outs	Outputs			
D ₃	D ₂	D ₁	D ₀	A ₁	Α ₀	V
0	0	0	0	Х	Х	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Priority Encoder Example

■ Priority encoder with 5 inputs (D₄, D₃, D₂, D₁, D₀) - highest priority to most significant 1 present - Code outputs A2, A1, A0 and V where V indicates at least one 1 present.

No. of Min-	Inputs				Outputs				
terms/Row	D4	D3	D2	D1	D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

Xs in input part of table represent 0 or 1; thus table entries correspond to product terms instead of minterms.

Priority Encoder Example (continued)

 Could use a K-map to get equations, but can be read directly from table and manually optimized if careful:

$$\begin{aligned} \mathbf{A}_2 &= \mathbf{D}_4 \\ \mathbf{A}_1 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \mathbf{D}_2 = \overline{\mathbf{D}}_4 \mathbf{F}_1, \ \mathbf{F}_1 &= (\mathbf{D}_3 + \mathbf{D}_2) \\ \mathbf{A}_0 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \overline{\mathbf{D}}_2 \mathbf{D}_1 = \overline{\mathbf{D}}_4 (\mathbf{D}_3 + \overline{\mathbf{D}}_2 \mathbf{D}_1) \\ \mathbf{V} &= \mathbf{D}_4 + \mathbf{F}_1 + \mathbf{D}_1 + \mathbf{D}_0 \end{aligned}$$

Priority Encoder (Mano)

Timing

- Delay between input change and output changing
- How to build fast circuits?

Output Timing Constraints

- Propagation delay: t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)

Propagation & Contamination Delay

- Propagation delay: $t_{pd} = \max$ delay from input to output
- Contamination delay: $t_{cd} = \min$ delay from input to output

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

Glitches

• When a single input change causes an output to change multiple times

Glitch Example

• What happens when A = 0, C = 1, B falls?

$$Y = \overline{A}\overline{B} + BC$$

Glitch Example (cont.)

Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (see Chapter 3)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

Timing Hazard

- We have studied steady-state behavior
 - Assuming inputs have been stable for a long time
- The transient behavior of circuits may differ
 - A circuit's output may produce a pulse, called a glitch
- A hazard is said to exist when a circuit has a possibility of producing a glitch

Static and Dynamic Hazard

Static-1: circuit may produce a 0 glitch when we expect a steady
 1 at the output

A pair of inputs combinations

both give a 1 output

differ in only one input variable

May produce a momentary 0 output when the transition takes place

- Static-0: circuit may produce a 1 glitch when we expect a steady 0 at the output
 - Properly designed AND-OR circuits do not have static-0 hazards
- A dynamic hazard is the possibility of an output changing more than once as the result of a single input transition

Static-1 Hazard

- Input combination differ in only one input variable
- Both give 1 output and there's a possibility of momentary 0
- AND-OR
- X,Y,Z = 111 and X,Y,Z=110

Figure 4-38 Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram.

Static-0 Hazard

- Input combination differ in only one input variable
- Both give 0 output and there's a possibility of momentary 1
- OR-AND combination
- W,X,Y=000 and Z is changed

Figure 4-39

Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.

Figure 4-40

Karnaugh map for the circuit of Figure 4-38: (a) as originally designed; (b) with static-1 hazard eliminated.

Static-1 Hazard

- Properly designed AND-OR has no Static-0 Hazard but may have Static-1 Hazard
- X,Y,Z=111, X,Y,Z=110
- Output could glitch to 0 before the other input combination goes to 1
- Add an extra term consensus term

Figure 4-41
Circuit with static-1 hazard eliminated.

Figure 4-42

Karnaugh map for another sum-of-products circuit:(a) as originally designed; (b) with extra product terms to cover static-1 hazards.

Dynamic Hazard

- Dynamic Hazards do not occur in a properly designed two level AND-OR or OR-AND circuits
- Finding Hazards are hard
- Hazard analysis is needed only in asynchronous sequential circuits and not needed in synchronous circuits as the outputs are not looked at until the clock edge

Figure 4-43 Circuit with a dynamic hazard.