Linear Layer Physics

Richard Fitzpatrick

September 24, 2021

1 Introduction

The analysis is based on A. Cole, and R. Fitzpatrick, *Drift-magnetohydrodynamical model of error-field penetration in tokamak plasmas*, Phys. Plasmas **13**, 032503 (2006).

2 Fundamental Quantities

Linear layer width - $\delta_{
m linear}$

Layer stability index - Δ

Poloidal mode number - m

Toroidal mode number - n

Plasma major radius - R_0

Plasma minor radius - r

Toroidal magnetic field-strength - B_0

Magnetic shear - s

Electrostatic potential - Φ

Poloidal magnetic flux - ψ

Magnitude of electron charge - e

Electron mass - m_e

Electron number density - n_e

Electron temperature - T_e

Ion mass - m_i

Ion number density - n_i

Ion temperature - T_i

Parallel electrical resistivity - η_{\parallel}

Perpendicular particle diffusivity - D_{\perp}

Perpendicular energy diffusivity - χ_E

Perpendicular momentum diffusivity - χ_{ϕ}

3 Derived Quantities

Safety-factor - q = m/n

Scale length - $l = R_0 q/s$

Electron pressure - $p_e = n_e T_e$

Ion pressure - $p_i = n_i T_i$

Alfvén velocity - $v_A = B_0/\sqrt{\mu_0\,n_e\,m_i}$

Alfvén time - $\tau_A = l/v_A = m\,\tau_H$

Hydromagnetic time - $\tau_H = R_0/(n s v_A)$

Resistive time - $\tau_R = \mu_0 \, r^2/\eta_\parallel$

Particle/energy confinement time - $\tau_E = r^2/[D_{\perp} + (2/3)\chi_E]$

Effective momentum confinement time - $\tau_M = (R_0 q)^2 / \chi_\phi$

Ion sound radius - $\rho_s = \sqrt{m_i T_e}/(e B_0)$

 $\mathbf{E} \times \mathbf{B}$ frequency - $\omega_E = d\Phi/d\psi$

Electron diamagnetic frequency - $\omega_{*e} = (T_e/e) d \ln p_e/d\psi$

Ion diamagnetic frequency - $\omega_{\ast\,i} = -(T_i/e)\,d\ln p_i/d\psi$

 $\mathbf{E} \times \mathbf{B}$ velocity - $v_E = (r/q) \, \omega_E$

Electron diamagnetic velocity - $v_{*e} = (r/q) \, \omega_{*e}$

Ion diamagnetic velocity - $v_{*i} = (r/q) \, \omega_{*i}$

4 Non-dimensional Quantities

Lundquist number - $S = \tau_R/\tau_H$

Magnetic Prandtl number - $P_M = \tau_R/\tau_M$

Energy confinement number - $P_E = \tau_R/\tau_E$

5 Layer Theory Quantities

$$\left(\frac{k}{\eta}\right)^{1/3} = S^{1/3} \, \frac{l}{r}$$

$$\tau = -\frac{\omega_{*i}}{\omega_{*e}}$$

$$c_{\beta}^2 = P_E$$

$$P = P_M$$

$$D = \frac{5}{3} S^{1/3} \frac{\rho_s}{r}$$

$$Q_E = S^{1/3} \, n \, \omega_E \, \tau_H$$

$$Q_{e,i} = -S^{1/3} \, n \, \omega_{*e,i} \, \tau_H$$

$$\Delta = \frac{\delta}{r} \tau_R i n (\omega_E - \omega_{*i})$$

$$\hat{\Delta} = \left(\frac{\eta}{k}\right)^{1/3} \frac{l}{r} \Delta$$

6 Constant- ψ Layer Physics

Layer equation:

$$\frac{d^{2}Y}{dp^{2}} - \left[\frac{-Q_{E}(Q_{E} - Q_{i}) + i(Q_{E} - Q_{i})(P_{M} + P_{E})p^{2} + P_{M}P_{E}p^{4}}{i(Q_{E} - Q_{e}) + \{P_{E} + i(Q_{E} - Q_{i})D^{2}\}p^{2} + (1 + \tau)P_{M}D^{2}p^{4}} \right]p^{2}Y = 0.$$

Suppose that small-p behavior of solution that is well-behaved as $p \to \infty$ is

$$Y(p) = Y_0 [1 - c p + \mathcal{O}(p^2)].$$

Layer width is

$$\frac{\delta_{\text{linear}}}{r} = \frac{\pi |c|}{S^{1/3}}.$$

Large-p limit of layer equation is

$$\frac{d^2Y}{dp^2} - C \, p^2 Y = 0,$$

where

$$C = \frac{P_E}{(1+\tau) D^2}.$$

Note that require $\tau > -1$, otherwise matching procedure fails. Solutions are

$$p^{1/2} I_{1/4} \left(\frac{C^{1/2} p^2}{2} \right), \quad p^{1/2} K_{1/4} \left(\frac{C^{1/2} p^2}{2} \right).$$

Should need to integrate to $p \sim C^{-1/4}$.