

RPNG

FEJ2: A Consistent Visual-Inertial State Estimator Design

Chuchu Chen, Yulin Yang, Patrick Geneva, and Guoquan (Paul) Huang

Robot Perception and Navigation Group (RPNG)
University of Delaware, USA

Introduction

- Filter-based visual-inertial estimators
 - 4 d.o.f unobservable ideally (yaw + pos.)
 - linearizing at current state estimates causes information gains in unobs.
 - Covariance becomes overconfident (inconsistent)
- First-estimates Jacobian (FEJ)
 - Fixes Jacobians at first estimates to enforce 4 d.o.f (consistent)
 - Fixes Jacobians introduce unmodelled errors
- We propose <u>FEJ2</u>
 - Addresses the unmodelled errors of FEJ
 - Shown to improve performance

■ NEES is large since covariance is overconfident

Estimator Design

$$\mathbf{z} = \mathbf{h}(\mathbf{x}) + \mathbf{n}$$

$$\simeq \mathbf{h}(\hat{\mathbf{x}}) + \hat{\mathbf{H}}\tilde{\mathbf{x}} + \mathbf{n}$$

$$\simeq \mathbf{h}(\hat{\mathbf{x}}) + \bar{\mathbf{H}}\tilde{\mathbf{x}} + \mathbf{n}$$

$$= \mathbf{h}(\hat{\mathbf{x}}) + (\bar{\mathbf{H}} + \hat{\mathbf{H}} - \bar{\mathbf{H}})\tilde{\mathbf{x}} + \mathbf{n}$$

$$= \mathbf{h}(\hat{\mathbf{x}}) + \bar{\mathbf{H}}\tilde{\mathbf{x}} + (\hat{\mathbf{H}} - \bar{\mathbf{H}})\tilde{\mathbf{x}} + \mathbf{n}$$

$$= \mathbf{h}(\hat{\mathbf{x}}) + \bar{\mathbf{H}}\tilde{\mathbf{x}} + (\hat{\mathbf{H}} - \bar{\mathbf{H}})\tilde{\mathbf{x}} + \mathbf{n}$$

$$= \mathbf{h}(\hat{\mathbf{x}}) + \bar{\mathbf{H}}\tilde{\mathbf{x}} + \Delta \mathbf{H}\tilde{\mathbf{x}} + \mathbf{n}$$

$$\hat{\mathbf{r}} = \mathbf{z} - \mathbf{h}(\hat{\mathbf{x}}) \simeq \bar{\mathbf{H}}\tilde{\mathbf{x}} + \Delta \mathbf{H}\tilde{\mathbf{x}} + \mathbf{n}$$

$$\Delta \mathbf{U}^{\top}\hat{\mathbf{r}} = \Delta \mathbf{U}^{\top}\bar{\mathbf{H}}\tilde{\mathbf{x}} + \Delta \mathbf{U}^{\top}\Delta \mathbf{H}\tilde{\mathbf{x}} + \Delta \mathbf{U}^{\top}\mathbf{n}$$

$$\Rightarrow \mathbf{r}^{*} = \mathbf{H}^{*}\tilde{\mathbf{x}} + \mathbf{n}^{*}$$

<u>FEJ</u>

- Evaluate the measurement Jacobian at the first state estimate
- Assumes ΔH is <u>zero</u> to improve consistency
- Introduce unmodelled errors

FEJ2

- $\Delta \mathbf{H} = \hat{\mathbf{H}} \bar{\mathbf{H}}$ captures linearization point changes between the <u>first</u> and <u>best</u> state estimates
- Project onto the nullspace of ΔH to remove
- Keeps the <u>correct</u> unobservable subspace
- Better consistency than FEJ

Results and Conclusion

- Simulate inertial and bearing measurements under different VINS frameworks
- Monocular and stereo measurements
- Different measurement noise

Est.	RMSE Ori. (deg) mono / stereo	RMSE Pos. (m) mono / stereo	NEES Ori. mono / stereo	NEES Pos. mono / stereo
STD	0.412 / 0.344	0.130 / 0.109	23.874 / 15.447	4.911 / 4.874
OC	0.242 / 0.257	0.119 / 0.100	3.290 / 3.599	3.540 / 3.416
FEJ	0.242 / 0.256	0.120 / 0.100	3.284 / 3.438	3.617 / 3.322
FEJ2	0.238 / 0.238	0.118 / 0.095	3.150 / 3.324	3.443 / 2.965
STD	2.139 / 0.888	0.402 / 0.310	407.221 / 33.852	13.212 / 7.235
OC	0.716 / 0.723	0.301 / 0.300	3.964 / 4.395	5.051 / 4.839
FEJ	0.861 / 0.704	0.289 / 0.298	4.965 / 4.163	4.763 / 4.656
FEJ2	0.650 / 0.663	0.264 / 0.277	3.198 / 3.790	3.581 / 3.636
	STD OC FEJ FEJ2 STD OC FEJ	Est. mono / stereo STD	Est. mono / stereo mono / stereo STD 0.412 / 0.344 0.130 / 0.109 OC 0.242 / 0.257 0.119 / 0.100 FEJ 0.242 / 0.256 0.120 / 0.100 FEJ2 0.238 / 0.238 0.118 / 0.095 STD 2.139 / 0.888 0.402 / 0.310 OC 0.716 / 0.723 0.301 / 0.300 FEJ 0.861 / 0.704 0.289 / 0.298	Est. mono / stereo mono / stereo mono / stereo STD 0.412 / 0.344 0.130 / 0.109 23.874 / 15.447 OC 0.242 / 0.257 0.119 / 0.100 3.290 / 3.599 FEJ 0.242 / 0.256 0.120 / 0.100 3.284 / 3.438 FEJ2 0.238 / 0.238 0.118 / 0.095 3.150 / 3.324 STD 2.139 / 0.888 0.402 / 0.310 407.221 / 33.852 OC 0.716 / 0.723 0.301 / 0.300 3.964 / 4.395 FEJ 0.861 / 0.704 0.289 / 0.298 4.965 / 4.163

FEJ2 achieves better consistency and accuracy!

Summary

- Develop a novel consistent estimator design for VINS
- FEJ2 accurately models linearization errors of FEJ
- Theoretical proofs, simulations and real-world experiments show FEJ2 achieves better performance

Thank you!

ccchu@udel.edu