Exercice 1 (Formule de Taylor) En appliquant la formule de Taylor, calculer les 5 premiers termes de la série de Taylor.

1. $f(x) = \exp(1 + 2x)$

2. $f(x) = \ln(2-x)$

3. $f(x) = \cos(2x)$

4. $f(x) = \frac{1}{3+x}$

5. $f(x) = 5x^2 + 2x + 3$

6. $f(x) = x^7 + 4x^3 + 5x + 2$

7. $f(x) = \exp(3 - 2x)$

8. $f(x) = \ln(1+5x)$

9. $f(x) = \sin(3x)$

10. $f(x) = \frac{1}{2-x}$

11. $f(x) = x^6 + 3x^4 + 2x^2 + 1$

12. $f(x) = x^4 + 2x^3 + 3x^2 + 4x + 5$

Exercice 2 (Calcul des coefficients de Fourier) Pour chaque fonction f ci-dessous, calculer les coefficients de Fourier, écrire sa série de Fourier et, en appliquant le théorème de Dirichlet, préciser la somme de la série. Les fonctions sont les suivantes:

1. dent de scie: f 2π -periodique (impaire) définie par:

 $f(x) = x \ pour \ tout \ x \in]-\pi;\pi[$

2. créneau: f 2π -periodique impaire avec:

 $f(x)=1\ pour\ x\in]0,\pi[$

3. triangle: $f 2\pi$ -periodique paire avec:

 $f(x) = x \ pour \ x \in [0, \pi]$

4. parabole: $f 2\pi$ -periodique (paire) avec:

 $f(x) = 1 - x^2 \ pour \ x \in [-\pi, \pi[$

5. triangle 2: f 2π -periodique paire avec:

$$f(x) = \frac{\pi}{2} - x \text{ pour } x \in [0; \pi]$$

6. créneau 2: f 2π -periodique (paire) avec:

$$f(x) = 1 \text{ pour } x \in]-\pi/2; \pi/2[$$

 $f(x) = -1 \text{ pour } x \in]\pi/2; 3\pi/2[$

7. dent de scie 2: f 2π -periodique (impaire) définie par

$$f(x) = \pi - x \text{ pour } x \in]0, 2\pi[$$

8. parabole 2: $f 2\pi$ -periodique impaire avec

$$f(x) = x^2 \ pour \ x \in [0, \pi[$$

Commandes SAGE: pour l'exercice 1

$$taylor(exp(3-2*x), x, 0, 5)$$

 $-4/15*x^5*e^3 + 2/3*x^4*e^3 - 4/3*x^3*e^3 + 2*x^2*e^3 - 2*x*e^3 + e^3$

taylor(ln(1+5*x), x, 0, 5)

 $625*x^5 - 625/4*x^4 + 125/3*x^3 - 25/2*x^2 + 5*x$

taylor(sin(3*x), x, 0, 5)

 $81/40*x^5 - 9/2*x^3 + 3*x$

taylor(1/(2-x), x, 0, 5)

 $1/64*x^5 + 1/32*x^4 + 1/16*x^3 + 1/8*x^2 + 1/4*x + 1/2$

taylor($x^6+3*x^4+2*x^2+1$, x, 0, 5)

3*x^4 + 2*x^2 + 1