Universidad Carlos III de Madrid

1er curso Grado en Telemática

Electrónica Digital

12 de Marzo de 2009

Apellidos	Nombre
Tests (2 puntos) Elegir solo una respuesta como buena, señalándola claramente con una X.	
Cada respuesta correcta puntúa 0,2 puntos. Cada respuesta errónea puntúa – 0,2/3 puntos.	
Las respuestas no contestadas no puntúan.	
4 T DOD 1 1 / 0101 0111	

1. La suma en BCD de los números 0101 y 0111 es:

1100 0001 0011 0001 0010 1000 0010

2.- La representación de números negativos mediante signo-magnitud resulta poco útil ya que:

Requiere utilizar bits negativos

No representa todos los números negativos

Es lenta

Requiere circuitos diferentes para suma y resta

3.- Si A = 1010 1010 y B = 0100 1010 son dos números de 8 bits en complemento a 2:

A > B A = -B A = B A < B

4. Un codificador con prioridad resuelve el problema:

de que la entrada sea asíncrona de que varias entradas puedan darse simultáneamente de que la entrada no sea un código binario no resuelve ningún problema

5. Un demultiplexor y un decodificador con entrada enable:

son el mismo circuito son circuitos similares son circuitos diferentes no implementan funciones lógicas

6. (A+B)(A+C) es lo mismo que:

BC AB+AC A+BC AB+ BC

7.- Para multiplicar por cuatro un número binario basta con:

Añadirle un cero a la derecha
Añadirle dos ceros a la izquierda
Añadirle dos ceros a la derecha
Cambiar ceros por unos y sumar uno

8.- Se dice que un código es de paridad impar si:

El número de unos de cada palabra código es par El número de unos de cada palabra código es impar Si puede corregir errores

Si puede detectar errores

9.- Una función de cuatro variables puede realizarse con:

Un decodificador 4:16 y lógica adicional Un multiplexor 16:1 Un multiplexor 8:1 y un inversor Todas son ciertas

10.- Cuantos minitérminos tiene una función de cinco variables:

32 16 64

8

Cuestión 1 (0,5 puntos)

Pasar el número decimal 100,1 a binario y hexadecimal

Cuestión 2 (0,5 puntos)

Pasar el número decimal negativo - 100 a binario en complemento a 2 con 8 bits

Cuestión 3 (2 puntos)

Realizar con el multiplexor 4:1 de la figura y lógica adicional, la función:

$$f = \sum_{4} (5, 7, 8, 11, 12, 13, 14, 15)$$

Cuestión 4 (1 punto)

Demostrar la siguiente igualdad (sugerencia, añada términos utilizando la ley de absorción)

$$a + \overline{a} \cdot b = a + b$$

Cuestión 5 (1 punto)

En dos registros A y B de 8 bits de un ordenador (que representa los números negativos en complemento a 2) tenemos los valores A = -15 y B = -28 ¿Cual será el resultado de la operación A - B?

Cuestión 6 (1 punto)

Implementar un sumador de 4 bits, con entradas A (a3, a2, a1, a0), B (b3, b2, b1, b0) y salida S (s4, s3, s2, s1, s0) con 4 sumadores totales (Full Adder), completando la figura.

Identificar y nombrar claramente todos los terminales en el circuito

¿Cual es el inconveniente básico de este tipo de sumador?

Cuestión 7 (2 puntos)

En el circuito de la figura se supone que siempre esta pulsado uno y solo uno de los pulsadores P3, P2, P1 y P0

Escribir la tabla de verdad de las señales A y B

Escribir la expresión algebraica simplificada de las señales A y B.

Escribir la expresión algebraica de Z en función de A, B ,a y b

Escribir la expresión algebraica simplificada de Z en función de P3, P2, P1 y P0