

Wrap-Up

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 60, Research 1

Summary: Why Use a DBMS?

- DBMS: serving large data sets to large, heterogeneous user groups
- Quality of service
 - (optimized) query language = fast & flexible access to large data assets
 - Concurrent access
 - Data independence
- Efficiency
 - scalability; reduced application development time
- Information integration
 - Uniform data administration; concise information modelling
- Safety
 - Data integrity & security; Crash recovery

"Big Data": Definition

4V definition [Doug Laney / Gartner & IBM]:

- Volume
- Velocity
- Variety
- Veracity

Databases, by definition, always were made for Big Data

plus more in blogs: Value, Verisimilitude, Variability, Visualization, ...

...or simply: "Data too big to transport"

DB Ranking by Deployments

356 systems in ranking, June 2020

	goo systems in running, sums 2020						
	Rank				Score		
Jun 2020	May 2020	Jun 2019	DBMS	Database Model	Jun 2020	May 2020	Jun 2019
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🔞	1343.59	-1.85	+44.37
2.	2.	2.	MySQL	Relational, Multi-model 🛐	1277.89	-4.75	+54.26
3.	3.	3.	Microsoft SQL Server ☐	Relational, Multi-model 🛐	1067.31	-10.99	-20.45
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🛐	522.99	+8.19	+46.36
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	437.08	-1.92	+33.17
6.	6.	6.	IBM Db2 ☐	Relational, Multi-model 🛐	161.81	-0.83	-10.39
7.	7.	7.	Elasticsearch 🚹	Search engine, Multi-model 👔	149.69	+0.56	+0.86
8.	8.	8.	Redis 🖽	Key-value, Multi-model 👔	145.64	+2.17	-0.48
9.	9.	1 11.	SQLite [1]	Relational	124.82	+1.78	-0.07
10.	1 11.	10.	Cassandra 🚹	Wide column	119.01	-0.15	-6.17
11.	4 10.	4 9.	Microsoft Access	Relational	117.18	-2.72	-23.83
12.	12.	12.	MariaDB 🚹	Relational, Multi-model 🛐	89.79	-0.30	+4.59
13.	13.	13.	Splunk	Search engine	88.08	+0.33	+3.46
14.	14.	14.	Hive	Relational	78.65	-2.89	-0.40
4							

DB Ranking by Dev'ers, Stackoverflow

- 1. MySQL
- 2. PostgreSQL
- 3. Microsoft SQL Server
- 4. SQLite
- 5. MongoDB
- 6. Redis
- 7. MariaDB
- 8. Oracle
- 9. Firebase
- 10. Elasticsearch

Gartner Market Share Ranking

"No One Size Fits All"

- General insight today: no singular data modeling paradigm (eg, sets)
 can match all requirements in semantics & performance
- Ex: SAP HANA: four main-memory storage engines
 - column-store, for OLAP-dominant & mixed workloads
 - row-store, for OLTP-dominant workloads
 - graph engine
 - text engine

http://martinfowler.com/bliki/PolyglotPersistence.html

- M. Stonebraker et al. "One size fits all": an idea whose time has come and gone. ICDE, 2005
- F. Färber et al.: The SAP HANA Database An Architecture Overview. IEEE Data Eng. Bull., 35(1):28–33, 2012
- V. Sikka et al. Efficient transaction processing in SAP HANA database: the end of a column store myth. SIGMOD, 2012

Course Plot – or: why did I take it?

- How to design databases, and how to search them
- How to design (Internet) services

What industry expects a CS graduate to know

- Database services revisited
- Practice: set up a Web service
 - LAMP = Linux, Apache, MySQL, PHP

Your entry point to the DB [admin] world

Check also database videos, such as this one

Must-Haves for IT Job Interviews

- "47% of the job ads analyzed expect economics knowledge. Also, communication skills are emphasized.
- Currently database skills are at the top of the IT companies' wish list, every 3rd IT job ad requires them. Further, Business Intelligence, Enterprise Resource Planning, and Service-Oriented Architectures are an asset. Additionally, relevant hands-on experience, e.g., in project work, plays an important role."
 - -- Thomas Reher, Executive Board member, PPI AG

But, Mind You:

- Chances are you won't use classroom knowledge as is
 - Diversity of technology, requirements, enterprise setups, ...
- ...then why did we do it??
 - Grasp the concepts
 - Whatever gossip says SQL is like English: y'all just need to know (at least basics)
 - Able to immerse into any DB & Web services technology rapidly

