DUNE PDELab Tutorial 00

An Introduction to the Finite Element Method

Peter Bastian

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 205, D-69120 Heidelberg

August 31, 2021

Motivation

- Start with an introduction to the finite element method (FEM) for solving Poisson's equation with piecewise linear "P₁" finite elements
- "Hello World!" for any numerical partial differential equation (PDE) solver framework!
- ► Gives necessary background for dune-grid module
- Implement the method in PDELab (Wednesday)

Challenges for PDE Software

Many different PDE applications

- Multi-physics
- Multi-scale
- ▶ Inverse modeling: parameter estimation, optimal control
- Uncertainty quantification

Many different numerical solution methods

- ▶ No single method to solve all equations!
- ▶ Different mesh types, mesh generation, mesh refinement
- Higher-order approximations (polynomial degree)
- Error control and adaptive mesh/degree refinement
- Iterative solution of (non-)linear algebraic equations

High-performance Computing

- Single core performance: Often bandwidth limited
- Parallelization through domain decomposition
- Robustness w.r.t. to mesh size, model parameters, processors
- Dynamic load balancing

⇒ One software to do it all!

Flexibility Requires Abstraction!

- ▶ DUNE/PDELab is based on an abstract formulation of the numerical scheme based on residual forms
- ▶ In order to implement a scheme it requires to put it to that form!
- ► Although you might be familiar with the FEM, you might not be familiar to the notation used here
- When you have mastered the abstraction you can solve complex problems with reasonable effort
- ▶ Important feature: Orthogonality of concepts:
 - ightharpoonup Dimension $d = 1, 2, 3, \dots$
 - Linear and nonlinear
 - Stationary and Instationary
 - Scalar PDE and systems of PDEs
 - Uniform and adaptive mesh refinement of different types
 - Sequential and parallel

All that will be handled in the course!

Introduction to the Finite Element Method

Strong Formulation of the PDE Problem

We solve Poisson's equation with inhomogeneous Dirichlet boundary conditions:

$$-\Delta u = f \qquad \text{in } \Omega, \tag{1a}$$

$$u = g$$
 on $\partial \Omega$, (1b)

- $lackbox{}{\Omega}\subset\mathbb{R}^d$ is a polygonal domain in d-dimensional space
- ▶ A function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ solving (1a), (1b) is called strong solution
- ► Inhomogeneous Dirichlet boundary conditions could be reduced to *homogeneous* ones: we will not do this!
- Proving existence and uniqueness of solutions of strong solutions requires quite restrictive conditions on f and g

Weak Formulation of the PDE Problem

Suppose u is a strong solution and take any test function $v \in C^1(\Omega) \cap C^0(\overline{\Omega})$ with v = 0 on $\partial\Omega$ then:

$$\int_{\Omega} (-\Delta u) v \, dx = \underbrace{\int_{\Omega} \nabla u \cdot \nabla v \, dx}_{=:a(u,v)} = \underbrace{\int_{\Omega} fv \, dx}_{=:l(v)}.$$

Question: Is there a vector space of functions V with $V_g=\{v\in V:v=g \text{ on }\partial\Omega\}$ and $V_0=\{v\in V:v=0 \text{ on }\partial\Omega\}$ such that the problem

$$u \in V_g$$
: $a(u, v) = l(v) \quad \forall v \in V_0$ (2)

has a unique solution?

Answer. Yes, $V = H^1(\Omega)$. This u is called weak solution.

Advantage: Weak solutions do exist under less restrictive conditions on the data.

The Finite Element Method

- ► The finite element method (FEM) is one method for the numerical solution of PDEs
- Others are the finite volume method (FVM) or the finite difference method (FDM)
- The FEM is based on the weak formulation derived above
- Its basic idea is to replace the space V by a finite-dimensional space $V_h!$
- ► The construction of these finite-dimensional spaces needs some preparations . . .

Finite Element Mesh

▶ A mesh consists of ordered sets of vertices and elements:

$$\mathcal{X}_h = \{x_1, \dots, x_N\} \subset \mathbb{R}^d, \quad \mathcal{T}_h = \{T_1, \dots, T_M\}$$

- ▶ Simplicial element: $T = \text{convex_hull}(x_{T,0}, \dots, x_{T,d})$
- Conforming: Intersection is subentity
- ▶ Local to global map : g_T : $\{0, ..., d\} \rightarrow \mathcal{N}$

$$\forall T \in \mathcal{T}_h, 0 \le i \le d : g_T(i) = j \Leftrightarrow x_{T,i} = x_i.$$

▶ Interior and boundary vertex index sets: $\mathcal{I}_h = \mathcal{I}_h^{int} \cup \mathcal{I}_h^{\partial\Omega}$, $\mathcal{I}_h^{int} = \{i \in \mathcal{I}_h : x_i \in \Omega\}, \mathcal{I}_h^{\partial\Omega} = \{i \in \mathcal{I}_h : x_i \in \partial\Omega\}$

Reference Element and Element Transformation

- \hat{T}^d is the reference simplex in d space dimensions
- ▶ The mesh \mathcal{T}_h is called *affine* if for every $T \in \mathcal{T}_h$ there is an affine linear map $\mu_T : \hat{T} \to T$,

$$\mu_T(\hat{x}) = B_T \hat{x} + a_T$$

with

$$\forall i \in \{0,\ldots,d\} : \mu_T(\hat{x}_i) = x_{T,i}$$

Piecewise Linear Finite Element Space

► The idea of the *conforming* FEM is to solve the weak problem in *finite-dimensional* function spaces:

$$u_h \in V_{h,g}$$
: $a(u_h, v) = I(v) \quad \forall v \in V_{h,0}$.

► A particular choice is the space of *piecewise linear* functions

$$V_h(\mathcal{T}_h) = \{ v \in C^0(\overline{\Omega}) : \forall T \in \mathcal{T}_h : v|_T \in \mathbb{P}_1^d \}$$

where
$$\mathbb{P}_1^d = \{ p : \mathbb{R}^d \to \mathbb{R} : p(x) = a^T x + b, a \in \mathbb{R}^d, b \in \mathbb{R} \}$$

- ▶ One can show dim $V_h = N = \dim \mathcal{X}_h$ and $V_h \subset H^1(\Omega)$
- Lagrange basis functions:

$$\Phi_h = \{\phi_1, \dots, \phi_N\}, \quad \forall i, j \in \mathcal{I}_h : \phi_i(x_j) = \delta_{i,j}$$

► Test and Ansatz spaces:

$$V_{h,0} = \{ v \in V_h : \forall i \in \mathcal{I}_h^{\partial \Omega} : v(x_i) = 0 \},$$

$$V_{h,g} = \{ v \in V_h : \forall i \in \mathcal{I}_h^{\partial \Omega} : v(x_i) = g(x_i) \} = v_{h,g} + V_{h,0}$$

Examples of Finite Element Functions

Here in two space dimensions:

Due to their shape they are often called hat functions

Finite Element Solution

Inserting a basis representation $u_h = \sum_{i=1}^{N} (z)_i \phi_i$ results in

$$a(u_h, v) = I(v) \quad \forall v \in V_{h,0} \quad \text{(discrete weak problem)},$$

$$\Leftrightarrow a\left(\sum_{j=1}^{N}(z)_{j}\phi_{j},\phi_{i}\right)=I(\phi_{i})\quad \forall i\in\mathcal{I}_{h}^{int}\quad \text{(insert basis, linearity)},$$

$$\Leftrightarrow \sum_{j=1}^{N} (z)_{j} a(\phi_{j}, \phi_{i}) = I(\phi_{i}) \quad \forall i \in \mathcal{I}_{h}^{int} \quad \text{(linearity)}.$$

Together with the condition $u_h \in V_{h,g}$ expressed as

$$u_h(x_i) = z_i = g(x_i) \quad \forall i \in \mathcal{I}_h^{\partial \Omega}$$

this forms a system of linear equations

$$Ax = b$$

where

$$(A)_{i,j} = \left\{ egin{array}{ll} \mathsf{a}(\phi_j,\phi_i) & i \in \mathcal{I}_h^{int} \ \delta_{i,j} & i \in \mathcal{I}_h^{\partial\Omega} \end{array}
ight., \quad (b)_i = \left\{ egin{array}{ll} l(\phi_i) & i \in \mathcal{I}_h^{int} \ g(\mathsf{x}_i) & i \in \mathcal{I}_h^{\partial\Omega} \end{array}
ight..$$

Solution of Linear Systems

- Exact solvers based on Gaussian elimination
- ► This may become inefficent for *sparse* linear systems
- Iterative methods (hopefully) produce a convergent sequence

$$\lim_{k\to\infty}z^k=z$$

► A very simple example is *Richardson's* iteration:

$$z^{k+1} = z^k + \omega(b - Az^k)$$

requiring only matrix-vector products

 Another well known class of iterative solvers are Krylov methods requiring also only matrix-vector products

Three Steps to Solve the FE Problem

- 1. Assembling the matrix A. This mainly involves the computation of the matrix elements $a(\phi_j, \phi_i)$ and storing them in an appropriate data structure.
- 2. Assembling the right hand side vector b. This mainly involves evaluations of the right hand side functional $I(\phi_i)$.
- **3.** Alternatively: Perform a matrix free operator evaluation y = Az. This involves evaluations of $a(u_h, \phi_i)$ for all test functions ϕ_i and a given function u_h due to:

$$(Az)_i = \sum_{j=1}^N (A)_{i,j}(z)_j = \sum_{j=1}^N a(\phi_j, \phi_i)(z)_j$$
$$= a\left(\sum_{j=1}^N (z)_j \phi_j, \phi_i\right) = a(u_h, \phi_i)$$

We now discuss how these steps may be implemented

Four Important Tools

1. Transformation formula for integrals. For $T \in \mathcal{T}_h$:

$$\int_{\mathcal{T}} y(x) \, dx = \int_{\hat{\mathcal{T}}} y(\mu_{\mathcal{T}}(\hat{x})) |\det B_{\mathcal{T}}| \, dx.$$

2. Midpoint rule on the reference element:

$$\int_{\hat{\tau}} q(\hat{x}) dx \approx q(\hat{S}_d) w_d$$

(More accurate formulas are used later)

3. Basis functions via shape function transformation:

$$\hat{\phi}_0(\hat{x}) = 1 - \sum_{i=1}^d (\hat{x})_i, \quad \hat{\phi}_i(\hat{x}) = (\hat{x})_i, i > 0, \quad \phi_{T,i}(\mu_T(\hat{x})) = \hat{\phi}_i(\hat{x})$$

4. Computation of gradients. For any $w(\mu_T(\hat{x})) = \hat{w}(\hat{x})$:

$$B_T^T \nabla w(\mu_T(\hat{x})) = \hat{\nabla} \hat{w}(\hat{x}) \quad \Leftrightarrow \quad \nabla w(\mu_T(\hat{x})) = B_T^{-T} \hat{\nabla} \hat{w}(\hat{x}).$$

Assembly of Right Hand Side I

In computing $(b)_i$ only the following elements are involved:

$$C(i) = \{(T, m) \in T_h \times \{0, \dots, d\} : g_T(m) = i\}$$

Then

$$(b)_i = I(\phi_i) = \int_{\Omega} f \phi_i \, dx \qquad \text{(definition)}$$

$$= \sum_{T \in \mathcal{T}_h} \int_{T} f \phi_i \, dx \qquad \text{(use mesh)}$$

$$= \sum_{(T,m) \in C(i)} \int_{\hat{T}} f(\mu_T(\hat{x})) \hat{\phi}_m(\hat{x}) |\det B_T| \, dx \qquad \text{(localize)}$$

$$= \sum_{(T,m) \in C(i)} f(\mu_T(\hat{S}_d)) \hat{\phi}_m(\hat{S}_d) |\det B_T| w_d + \text{err.} \quad \text{(quadrature)}$$

Assembly of Right Hand Side II

- Now we need to perform these computations for all $i \in \mathcal{I}_h^{int}$!
- ► Collect *element-local* computations:

$$(b_T)_m = f(\mu_T(\hat{S}_d))\hat{\phi}_m(\hat{S}_d)|\det B_T|w_d \quad \forall m = 0, \dots, d$$

▶ Define restriction matrix $R_T : \mathbb{R}^N \to \mathbb{R}^{d+1}$ with

$$(R_Tx)_m = (x)_i \quad \forall \ 0 \leq m \leq d, \ g_T(m) = i,$$

► Then

$$b = \sum_{T \in \mathcal{T}} R_T^T b_T.$$

Assembly of Global Stiffness Matrix I

In computing $(A)_{i,j}$ only the following elements are involved:

$$C(i,j) = \{ (T, m, n) \in \mathcal{T}_h \times \{0, \dots, d\} : g_T(m) = i \land g_T(n) = j \}$$

Then

 $(T,m,n)\in C(i,j)$

$$(A)_{i,j} = a(\phi_j, \phi_i) = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx \qquad \text{(definition)}$$

$$= \sum_{T \in \mathcal{T}_h} \int_{T} \nabla \phi_j \cdot \nabla \phi_i \, dx \qquad \text{(use mesh)}$$

$$= \sum_{(T,m,n) \in C(i,j)} \int_{\hat{T}} (B_T^{-T} \hat{\nabla} \hat{\phi}_n(\hat{x})) \cdot (B_T^{-T} \hat{\nabla} \hat{\phi}_m(\hat{x})) |\det B_T| \, d\hat{x} \qquad \text{(localize)}$$

$$= \sum_{(T,m,n) \in C(i,j)} (B_T^{-T} \hat{\nabla} \hat{\phi}_n(\hat{S}_d)) \cdot (B_T^{-T} \hat{\nabla} \hat{\phi}_m(\hat{S}_d)) |\det B_T| w_d. \qquad \text{(quadrature)}$$

Assembly of Global Stiffness Matrix II

- Now we need to perform these computations for *all* matrix entries!
- ▶ Define the $d \times d + 1$ matrix of shape function gradients

$$\hat{G} = \left[\hat{\nabla}\hat{\phi}_0(\hat{S}_d)), \dots, \hat{\nabla}\hat{\phi}_d(\hat{S}_d)\right].$$

and the matrix of transformed gradients

$$G = B_T^{-T} \hat{G}$$

▶ Define the *local stiffness matrix*

$$A_T = G^T G |\det B_T| w_d$$
.

► Then

$$A = \sum_{T \in \mathcal{T}_h} R_T^T A_T R_T.$$

Matrix-free Operator Evaluation

- ightharpoonup Similar considerations apply for the operation y = Az
- Pick out the coefficients on the element T:

$$z_T = R_T z$$

▶ Perform the *element-local computation*:

$$y_T = |\det B_T| w_d G^T G z_T$$

Accumulate the results:

$$Az = \sum_{T \in \mathcal{T}_b} R_T^T y_T.$$

Implementation Summary

► All necessary steps in the solution procedure have the following general form:

- 1: **for** $T \in \mathcal{T}_h$ **do** \triangleright loop over mesh elements $z : z_T = R_T z$ \triangleright load element data
- 3: $q_T = \text{compute}(T, z_T) \Rightarrow \text{element local computations}$
- 4: Accumulate (q_T) \triangleright store result in global data structure
- 5: end for
- ▶ PDELab provides a generic assembler that performs all these steps, except (3) which needs to be supplied by the implementor of a FEM
- ► All these concepts carry over to
 - ► Nonlinear problems
 - ► Time-dependent problems
 - Systems of PDEs
 - ► High-order methods
 - Other schemes such as FVM, nonconforming FEM
 - Parallel computations

Residual Forms

► The FEM based on the weak formulation formulation may equivalently be written as

Find
$$u_h \in U_h$$
 s.t.: $r_h^{\text{Poisson}}(u_h, v) = 0 \quad \forall v \in V_h$.

where $r^{\text{Poisson}}(u_h, v) = a(u_h, v) - l(v)$ is the **residual form**

- This residual form is affine linear in u_h and linear in v
- A nonlinear PDE results in a residual form r(u, v) that is nonlinear in its first argument
- Residual forms are always linear in the second argument due to linearity of the integral
- PDELab uses the concept of a residual form as its main abstraction!

Generalization

▶ More complicated discretization schemes:

$$\begin{split} r(u,v) &= \sum_{T \in \mathcal{T}_h} \alpha_T^V(R_T u, R_T v) + \sum_{T \in \mathcal{T}_h} \lambda_T^V(R_T v) \\ &+ \sum_{F \in \mathcal{F}_h^i} \alpha_F^S(R_{T_F^-} u, R_{T_F^+} u, R_{T_F^-} v, R_{T_F^+} v) \\ &+ \sum_{F \in \mathcal{F}_h^{\partial \Omega}} \alpha_F^B(R_{T_F^-} u, R_{T_F^-} v) + \sum_{F \in \mathcal{F}_h^{\partial \Omega}} \lambda_F^B(R_{T_F^-} v). \end{split}$$

▶ Instationary problems: Find $u_h(t) \in U_h$ s.t.:

$$d_t m_h(u_h(t), v; t) + r_h(u_h(t), v; t) = 0 \quad \forall v \in V_h$$

▶ Systems of PDEs: Find $u_h \in U_h = U_h^1 \times ... \times U_h^s$ s.t.:

$$r_h(u_h, v) = 0 \quad \forall v \in V_h = V_h^1 \times \ldots \times V_h^s$$

Implementation in DUNE/PDELab

The Duniverse

The PDE Problem Revisited

We solve Poisson's equation with inhomogeneous Dirichlet boundary conditions:

$$-\Delta u = f \qquad \text{in } \Omega$$
$$u = g \qquad \text{on } \partial \Omega$$

The weak formulation is

$$u \in V_g$$
: $a(u, v) = I(v)$ $\forall v \in V_0$

with

$$a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx$$
 and $I(v) = \int_{\Omega} f v \, dx$

and

$$V_0 = H_0^1(\Omega)$$

$$V_g = \{ v \in H^1(\Omega) : v = u_g + w \land u_g | \Gamma_D = g \land w \in V_0 \}$$

Generic Assembly Loop

```
1: for T \in \mathcal{T}_h do 
ightharpoonup \text{loop over mesh elements}
2: z_T = R_T z 
ightharpoonup \text{load element data}
3: q_T = \text{compute}(T, z_T) 
ightharpoonup \text{element local computations}
4: Accumulate(q_T) 
ightharpoonup \text{store result in global data structure}
5: end for
```

Only the computational kernels compute(T, z_T) need to be implemented by the user to implement the finite element method

Assembly of Right Hand Side

- Now we need to perform these computations for all $i \in \mathcal{I}_h^{int}$!
- ► Collect *element-local* computations:

$$(b_T)_m = f(\mu_T(\hat{S}_d))\hat{\phi}_m(\hat{S}_d)|\det B_T|w_d \quad \forall m = 0, \dots, d$$

▶ Define destriction matrix $R_T : \mathbb{R}^N \to \mathbb{R}^{d+1}$ with

$$(R_Tx)_m = (x)_i \quad \forall \ 0 \leq m \leq d, \ g_T(m) = i,$$

► Then

$$b = \sum_{T \in \mathcal{T}} R_T^T b_T.$$

Assembly of Global Stiffness Matrix

▶ Define the $d \times d + 1$ matrix of shape function gradients

$$\hat{G} = \left[\hat{\nabla}\hat{\phi}_0(\hat{S}_d)), \dots, \hat{\nabla}\hat{\phi}_d(\hat{S}_d))\right].$$

and the matrix of transformed gradients

$$G = B_T^{-T} \hat{G}$$

▶ Define the *local stiffness matrix*

$$A_T = G^T G |\det B_T| w_d$$
.

► Then

$$A = \sum_{T \in \mathcal{T}_b} R_T^T A_T R_T.$$

Matrix-free Operator Evaluation

- ightharpoonup Similar considerations apply for the operation y = Az
- \triangleright Pick out the coefficients on the element T:

$$z_T = R_T z$$

▶ Perform the *element-local computation*:

$$y_T = |\det B_T| w_d G^T G z_T$$

Accumulate the results:

$$Az = \sum_{T \in \mathcal{T}_b} R_T^T y_T.$$

Overview DUNE/PDELab Implementation

Files involved are:

- 1) File tutorial00.cc
 - ► Includes C++, DUNE and PDELab header files
 - Includes all the other files
 - Contains the main function
 - Creates a finite element mesh and calls the driver
- 2) File tutorial00.ini
 - Contains parameters controlling the execution
- 3) File driver.hh
 - Function driver setting up and solving the finite element problem
- 4) File poissonp1.hh
 - Class PoissonP1 realizing the necessary element-local computations

Now lets go to the code ...