

MSML610: Advanced Machine Learning

Probability Distributions

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

Interesting RVs

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Bernoulli

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Bernoulli distribution: definition

• The Bernoulli distribution

$$X \sim \text{Bernoulli}(p)$$

represents flipping a coin that has probability $0 \le p \le 1$ of coming up heads:

$$\Pr(X=1)=p$$

$$\Pr(X=0)=1-p$$

Bernoulli distribution: PDF

• The PDF can be written in terms of a function:

$$f_X(x) = \Pr(X = x) = p^x (1 - p)^{1-x} \text{ for } x \in \{0, 1\}$$

Bernoulli distribution: mean and variance

- Given $X \sim \text{Bernoulli}(p)$
- Mean: $\mathbb{E}[X] = p$ Variance: $\mathbb{V}[X] = p(1-p)$

Binomial

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Binomial distribution: definition

The Binomial distribution

$$X \sim \text{Binomial}(n, p)$$

represents the number of heads when tossing n times a coin with probability of heads p:

$$Pr(X = x) = Pr(getting x heads), 0 \le x \le n$$

Binomial distribution: PDF

• The PDF is

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x \in \{0, ..., n\}$$

- In fact one can evaluate this probability as the sum of the probability of all possible events, since they are all mutually exclusive:
 - Each event has probability $p^{x}(1-p)^{n-x}$ (because it is a Bernoulli trial)
 - There are $\binom{n}{x}$ possible ways of choosing a set of x objects (in this case heads) out of n identical objects (the binomial coefficient)

Relationship between Binomial and Bernoulli variables

• A Binomial variable $Y \sim \text{Binomial}(n, p)$ can be written as sum of n IID Bernoulli variables $X_i \sim \text{Bernoulli}(p)$:

$$Y = \sum_{i=1}^{n} X_i$$

Mean and variance of Binomial distribution

By using the relationship between Binomial and Bernoulli variables

$$X \sim \mathsf{Binomial}(n, p) = \sum_{i=1}^{n} X_i$$

- Mean: $\mathbb{E}[X] = np$
- Variance: $\mathbb{V}[X] = np(1-p)$

Example of binomial distribution (7 girls)

- A friend has 8 children, 7 of which are girls
- What's the probability of this event, if each birth is independent and each gender has 50%-50%?
- Solution
- We can look at that as 8 configurations (boy in *i*-st position) out of 2^8 , which is $\frac{1}{2^5}$
- Using binomial distribution, head is girl then

$$\Pr = \binom{8}{7} (1/2)^7 (1/2) = \frac{1}{2^5}$$

- What's the probability of having at least 7 girls?
- It is the probability of having 7 or 8 girls, i.e.

$$\Pr = \binom{8}{7} (1/2)^7 (1/2) + \binom{8}{8} (1/2)^8 = (\binom{8}{7} + \binom{8}{8}) (1/2)^8 = \binom{9}{8} (1/2)^8 = \binom{9}{8$$

Gaussian

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Gaussian distribution

- Aka Normal
- A variable is Gaussian

$$X \sim N(\mu, \sigma^2)$$

has a PDF in the form:

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• MEM: note that we use the variance σ^2 to avoid square roots coming from std dev

Gaussian distribution: parameters

- Given $X \sim N(\mu, \sigma^2)$
- Mean: $\mathbb{E}[X] = \mu$
- Variance $\mathbb{V}[X] = \sigma^2$

A standard Gaussian

ullet = a Gaussian $\sim \mathcal{N}(0,1)$, indicated with Z

Area under the center of a Gaussian curve

- Consider a Gaussian $N(\mu, \sigma^2)$
- The area under the center of the curve is:
 - $\Pr(|X \mu| \le \sigma) = 68\%$
 - $\Pr(|X \mu| \le 2\sigma) = 95\%$
 - $\Pr(|X \mu| \le 3\sigma) = 99\%$
- MEM: 68-95-99

Area under 2 tails of a Gaussian curve

- Consider a Gaussian $N(\mu, \sigma^2)$
- \bullet The area under each tail can be derived from the 68-95-99 numbers by considering the difference with 100%
- The area under the two tails is:
 - $Pr(|X \mu| \ge \sigma) = 100 68\% = 32\%$
 - $Pr(|X \mu| \ge 2\sigma) = 100 95\% = 5\%$
 - $Pr(|X \mu| \ge 3\sigma) = 100 99\% = 1\%$
- MEM: 68-95-99

Area under 1 tail of a Gaussian

- The area under each tail can be derived from the 68-95-99 numbers by dividing by 2 the difference with 100%
 - $Pr(X > \mu + \sigma) = 16\%$
 - $Pr(X > \mu + 2\sigma) = 2.5\%$
 - $Pr(X > \mu + 3\sigma) = 0.5\%$

1-side Gaussian quantiles for $1, 2, 3\sigma$

- From the previous numbers we can get some approximated quantiles:
 - 1σ from μ corresponds to 68% + 16% = 84%
 - 2σ from μ corresponds to 95% + 2.5% = 97.5%
 - 3σ from μ corresponds to 99% + 0.5% = 99.5%
- Remember that α -quantile is defined as the value x_{α} such that $\Pr(X < x_{\alpha}) = \alpha$ (i.e., the area under the portion of the curve is α)
- These by definition are the 84%, 97.5% and 99.5% quantiles
 - $x_{0.84} = \mu + 1\sigma$
 - $x_{0.975} = \mu + 2\sigma$
 - $x_{0.995} = \mu + 3\sigma$

1-side Gaussian quantiles for 95%, 97.5%, 99%

- $x_{0.95} = \mu + 1.645\sigma$
- $x_{0.975} = \mu + 1.96\sigma$
- $x_{0.99} = \mu + 2.33\sigma$
- MEM: 1.645, 1.96, 2.33 for 95, 97.5, 99

1-sided and 2-sided quantiles for symmetric distributions

• For symmetric distributions the 1-sided and 2-sided quantiles are related by the relationship:

$$q_{2s}(\alpha)=q_{1s}(\frac{1+\alpha}{2})$$

1-sided and 2-sided quantiles for symmetric distributions: proof

- This proof holds for any symmetric around 0 PDF
- Consider that

$$CDF_{2s}(x) = CDF_{1s}(x) - CDF_{1s}(-x)$$

given the definition of CDF in terms of integral of a PDF

• Given the symmetry of the PDF it holds:

$$CDF_{1s}(-x) = 1 - CDF_{1s}(x)$$

Thus

$$CDF_{2s}(x) = 2 \cdot CDF_{1s}(x) - 1$$

- Now we need to express the 2-sided quantile in terms of 1-sided quantile where the quantile is the inverse of the corresponding CDF
- If f(x) = g(h(x)) with both g and h invertible, then

$$f^{-1}(x) = h^{-1}(g^{-1}(x))$$

• The inverse of y = 2x - 1 is x = (y + 1)/2 and the inverse of CDF_{1s} is q_{1s} , therefore

$$q_{2s}(x) = q_{1s}((x+1)/2)$$

What is the 95% percentile of a Gaussian?

- Given a Gaussian $X \sim N(\mu, \sigma^2)$, what is the 95% percentile?
- Solution
- The 95% percentile is by definition the value $x_{0.95}$ of the RV such that $\Pr(X \le x_{0.95}) = 0.95$
- This value is $\mu + 1.645\sigma$

Example of computing probabilities with Gaussian

- The daily ad-clicks for a company are approximately distributed as $X \sim N(\mu=1020,\sigma^2=50^2)$
- What's the probability of getting more than 1,160 clicks?
- Solution
- $Pr(X \ge 1160) = 1 F_X(1160) = 1 F_Z((1160 1020)/50) = 1 F_Z(2.8)$
- It's not very likely since $\Pr(Z \ge 2.33) = 1 \Pr(Z \le 2.33) = 1 99\% = 1\%$

Log-Normal

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Log-normal distribution

• A RV has a log-normal distribution

$$X \sim LN(\mu, \sigma^2)$$

if the log of the RV is Gaussian: $\log(X) \sim N(\mu, \sigma^2)$

• A log-normal RV assumes only positive values

Log-normal: mean and variance

- Given $X \sim LN(\mu, \sigma^2)$
- Mean: $\mathbb{E}[X] = \exp(\mu + \sigma^2)$
- Variance: $\mathbb{V}[X] = \exp(2\mu + \sigma^2)(\exp(\sigma^2) 1)$
- TODO: look at the PDF shape

Poisson

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Poisson distribution: interpretation

- A RV X ~ Poisson(λ) models counts or arrivals per unit of time
 It represents the probability of getting x arrivals in a unit of time
- It is a discrete and positive RV

Poisson distribution: PDF

• Its PDF is:

$$f_X(k) = \Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

where k is an integer ≥ 0

- MEM:
 - It is like a prob of occurrence of k events (λ^k)
 - Divided by the number of permutations (k!)
 - Finally $e^{-\lambda}$ is to get the area to 1
- The PDF starts at $e^{-\lambda}$, increases, and then decreases

Poisson distribution: mean and variance

- Mean: $\mathbb{E}[X] = \lambda$
- Variance: $\mathbb{V}[X] = \lambda$
- Thus to model something as a Poisson, mean and variance need to be equal
 - This assumption can be checked using the data

Poisson distribution for modeling rates

In practice we use Poisson scaled by the monitoring time

$$X \sim \text{Poisson}(\lambda T)$$

where T is the total monitoring time

Applying the expectation

$$\lambda = \frac{\mathbb{E}[X]}{T}$$

thus $\boldsymbol{\lambda}$ is the average count per unit time, i.e., the rate of occurrence

Example of use of Poisson distribution

- The number of people at the bus stop is Poisson with mean of 2.5 per hour
- What's the probability that 3 or fewer people take the bus in 4 hours?
- Solution
- $Pr(X \le 3)$ with $X \sim Poisson(2.5 \times 4)$

Poisson as approximation to the Binomial

ullet When $n\gg 1$ and $p\ll 1$ (i.e., many attempts of a unlikely event), then

$$\mathsf{Binomial}(n,p) \approx \mathsf{Poisson}(np)$$

$$Pr(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x} \approx \frac{(np)^{x} e^{-np}}{x!}$$

Note that np is the average number of successes in n attempts, since

$$p = \frac{n_{\text{success}}}{n} \implies np = n_{\text{success}}$$

so it is like considering successes as number of arrivals in a given period

 Poisson is simpler to compute since it has only one factorial, instead of two factorials like the Binomial

Chi-square

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Chi-square distribution

• We say that X is "chi-square with q degrees of freedom"

$$X \sim \chi_q^2$$

 \iff the RV

$$X = Z_1^2 + ... + Z_a^2$$

where $Z_1,...,Z_q$ are q independent standard Gaussians $\mathsf{N}(0,1)$

• MEM: χ_q^2 is the sum of q IID squared standard normals

Chi-square distribution: PDF properties

- X chi-square is always non-negative, i.e., $X \ge 0$
- Its PDF always from 0
- ullet For small q degrees of freedom, it has a peak < q (mode) and a long tail
- ullet For $q o \infty$ it is asymptotically Gaussian: χ^2_q

Chi-square

- The mean is equal to the number of degree of freedom: $\mathbb{E}[X] = q$
- It can be shown by its definition in terms of Gaussians

Student's t-distribution

- Interesting RVs
 - Bernoulli
 - Binomial
 - Gaussian
 - Log-Normal
 - Poisson
 - Chi-square
 - Student's t-distribution
- Probability inequalities

Student's t-distribution: definition in terms of Gaussians

• We say that T is "Student t-distribution with q degrees of freedom")

$$T \sim t_q$$

iff

$$T = \frac{Z}{\sqrt{\frac{Z_1^2 + \ldots + Z_q^2}{q}}}$$

where Z and $Z_1,...,Z_q$ are q+1 independent standard Gaussians $\mathsf{N}(0,1)$

- Note that at the denominator there is the square root of a chi-square
- MEM: it's the ratio between a standard normal Z and the norm of a vector of standard normals $\sqrt{Z_1^2 + ... + Z_q^2}$

Student's t-distribution: definition in terms of Chi-square

ullet Given a Student's t-distribution with q degrees of freedom $T \sim t_q$, then

$$T = \frac{Z}{\sqrt{\frac{X}{q}}}$$

where $Z \sim N(0,1), X \sim \chi_q^2$ and independent

Student's t-distribution: shape and properties

- A t-distribution is centered around zero
 - Its mean is equal to 0 (since it is symmetric with respect to 0)
- It has thicker tails than a normal distribution
- For large q the t-distribution converges to a normal distribution
- MEM: It's like a standard Gaussian with heavier tails

Probability inequalities

- Interesting RVs
- Probability inequalities

PAC statements

- = Probably Approximately Correct statement
- In practice there is an approximation that holds with a certain probability
- Many probability inequalities are PAC statements

Markov inequality

- Hypothesis
- Given X discrete or continuous RV
- X is a non-negative RV (i.e., $X \ge 0$, PDF is all after 0)
- X has finite mean: $\mathbb{E}[X] < \infty$
- Thesis
- The probability that X is larger than a certain value is bounded by the mean

$$\Pr(X \ge x) \le \frac{\mathbb{E}[X]}{x}$$

Markov inequality: geometric interpretation

- Given a RV $X \ge 0$ with a finite mean
- The "flipped CDF" $1-F_X(x)$ is dominated by an hyperbole passing by $(y,x)=(\mathbb{E}[X],1)$
- \bullet This is also related to the fact that a PDF needs to sum to 1 and thus needs to decrease at least like 1/n

Proof of Markov inequality

• TODO: Add

Chebyshev inequality

- Hypothesis
- Given X discrete or continuous RV
- X with finite mean μ and variance σ^2
- Thesis
- The probability that X is far from the mean is bound by the variance:

$$\Pr(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

Chebyshev inequality in terms of z-scores

- Hypothesis
- Given X discrete or continuous RV
- X with finite mean μ and variance σ^2
- Thesis
- Expressing the distance from the mean in terms of standard deviation $\varepsilon = k\sigma$:

$$\Pr(\frac{|X-\mu|}{\sigma} \ge k) \le \frac{1}{k^2}$$

• The probability that the z-score of a RV is far away from 0 at least a certain number k is bounded by $\frac{1}{k^2}$

Proof of Chebyshev inequality

• TODO: Add

Comparing Markov and Chebyshev inequalities

- Markov assumes $X \ge 0$
- Chebyshev makes no assumptions
- Both inequalities have a similar form:

$$\Pr(X \ge x) \le \frac{\mu}{x}$$

$$\Pr(|X - \mu| \ge x) \le \frac{\sigma^2}{x^2}$$

Hoeffding inequality

- ullet Given a Bernoulli RV with probability of success μ
- We want to estimate μ using N samples:

$$\nu = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Then

$$\Pr(|\nu - \mu| > \varepsilon) \le 2e^{-2\varepsilon^2 N}$$

• Since ν is bound in $[\mu-\varepsilon,\mu+\varepsilon]$, we want a small ε with a large probability