Claims

1. A compound of formula (1):

wherein

is a single or double bond;

A is phenylene or heteroarylene;

m is 0, 1, or 2;

n is 0, 1, or 2;

R¹ is independently selected from halo, nitro, cyano, hydroxy, carboxy, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, sulphamoyl, N-C₁₋₄alkylsulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, -S(O)_bC₁₋₄alkyl (wherein b is 0, 1, or 2), C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, hydroxyC₁₋₄alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, and trifluoromethoxy; or

when n is 2, the two R¹ groups, together with the carbon atoms of A to which they are attached, may form a 4- to 7-membered ring, optionally containing 1 or 2 heteroatoms independently selected from O, S, and N, and optionally being substituted with one or two methyl groups;

 R^4 is independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, and C_{1-4} alkanoyl;

R² is hydrogen, hydroxy, or carboxy;

R³ is selected from hydrogen, hydroxy, C₁₋₄alkoxy, C₁₋₄alkanoyl, carbamoyl, C₃₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), cyano(C₁₋₄)alkyl, aryl, heterocyclyl, C₁₋₄alkyl (optionally substituted with 1 or 2 R⁸ groups), and groups of the formulae B and B'

9530511.1 79

wherein y is 0 or 1, t is 0, 1, 2, or 3 and u is 1 or 2;

provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen;

 R^8 is independently selected from hydroxy, $C_{1\text{-4}alkoxy}C_{1\text{-4}alkoxy}$, hydroxy $C_{1\text{-4}alkoxy}$, 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof, aryl, heterocyclyl, $C_{3\text{-7}cycloalkyl}$, $C_{1\text{-4}alkanoyl}$, $C_{1\text{-4}alkoxy}$, $C_{1\text{-4}alkyl}S(O)_b$ - (wherein b is 0, 1, or 2), arylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), -N(OH)CHO, -C(=N-OH)NH2, -C(=N-OH)NHC_{1\text{-4}alkyl}, -C(=N-OH)N(C_{1\text{-4}alkyl})_2, -C(=N-OH)NHC_{3\text{-6}cycloalkyl}, -C(=N-OH)N(C_{3\text{-6}cycloalkyl})_2, -COCOOR^9, -C(O)N(R^9)(R^{10}), -NHC(O)R^9, -C(O)NHSO_2(C_{1\text{-4}alkyl}), -NHSO_2R^9, (R^9)(R^{10})NSO_2-, -COCH_2OR^{11}, (R^9)(R^{10})N-, and -COOR^9;

 R^9 and R^{10} are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted with 1 or 2 R^{13}), C_{3-7} cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), cyano(C_{1-4})alkyl, trihalo(C_{1-4})alkyl, aryl, heterocyclyl, and heterocyclyl(C_{1-4} alkyl); or

 R^9 and R^{10} together with the nitrogen to which they are attached form a 4- to 6-membered ring where the ring is optionally substituted on carbon with 1 or 2 substituents independently selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, C_{1-4} alkoxy, and heterocyclyl, or the ring may be optionally substituted on two adjacent carbons with -O- CH_2 -O- to form a cyclic acetal wherein one or both of the hydrogens of the -O- CH_2 -O- group may be replaced by a methyl; R^{13} is selected from hydroxy, halo, trihalomethyl, and C_{1-4} alkoxy; and R^{11} is independently selected from hydrogen, C_{1-4} alkyl, and hydroxy C_{1-4} alkyl; or a pharmaceutically acceptable salt or prodrug thereof.

2. A compound of claim 1, wherein

R³ is selected from hydrogen, hydroxy, C₁₋₄alkoxy, C₁₋₄alkanoyl, carbamoyl, C₃. ₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups, cyano(C₁₋₄)alkyl, phenyl, morpholino, morpholinyl, piperidino, piperidyl, pyridyl, pyranyl, pyrrolyl, imidazolyl, thiazolyl, thiadiazolyl, piperazinyl, isothiazolidinyl, 1,3,4-triazolyl, tetrazolyl, pyrrolidinyl, thiomorpholino, pyrrolinyl, homopiperazinyl, 3,5-dioxapiperidinyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolinyl, isoxazolyl, 4-oxopydridyl, 2-oxopyrrolidyl, 4-oxothiazolidyl, furyl, thienyl, oxazolyl, 1,3,4-oxadiazolyl, and 1,2,4-oxadiazolyl, tetrahydrothiopyranyl, 1-oxotetrahydrothiopyranyl, 1,1-dioxotetrahydrothiopyranyl, and C₁₋₄alkyl (optionally substituted with 1 or 2 R⁸ groups);

 R^9 and R^{10} are independently selected from hydrogen, hydroxy, C_{1-4} alkyl (optionally substituted with 1 or 2 R^{13} groups), C_{3-7} cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), cyano(C_{1-4})alkyl, trihalo C_{1-4} alkyl, aryl, heterocyclyl, and heterocyclyl(C_{1-4} alkyl); or

R⁹ and R¹⁰ together with the nitrogen to which they are attached form a 4- to 6-membered ring where the ring is optionally substituted on carbon with 1 or 2 substituents selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, and C₁. 4alkoxy, or the ring may be optionally substituted on two adjacent carbons with -O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the -O-CH₂-O-group may be replaced by a methyl;

 R^8 is independently selected from hydroxy, $C_{1-4}alkoxyC_{1-4}alkoxy$, hydroxy $C_{1-4}alkoxy$, 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof, aryl, heterocyclyl, C_{3-7} cycloalkyl, $C_{1-4}alkanoyl$, $C_{1-4}alkoxy$, $C_{1-4}alkylS(O)_b$ - (wherein b is 0, 1, or 2), C_{3-6} cycloalkylS(O)_b- (wherein b is 0, 1, or 2), arylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), -N(OH)CHO, -C(=N-OH)NH2, -C(=N-OH)NHC_{1-4}alkyl, -C(=N-OH)N(C_{1-4}alkyl)_2, -C(=N-OH)NHC_{3-6}cycloalkyl, -C(=N-OH)N(C_{3-6} cycloalkyl)_2, -COCOOR 9 , -C(O)N(R^9)(R^{10}), -NHC(O) R^9 , -C(O)NHSO₂(C_{1-4} alkyl), -NHSO₂ R^9 , (R^9)(R^{10})NSO₂-, -COCH₂OR¹¹, (R^9)(R^{10})N-, and -COOR 9 ;

R¹³ is selected from hydroxy, halo, trifluoromethyl, and C₁₋₄alkoxy; and R¹¹ is selected from hydrogen, C₁₋₄alkyl, and hydroxyC₁₋₄alkyl; or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

3. A compound of claim 1, wherein:

R³ is selected from cyanoC₁₋₄alkyl and C₁₋₄alkyl (optionally substituted with1 or 2 R⁸ groups);

 R^8 is independently selected from hydroxy, phenyl, 2,2-dimethyl-1,3-dioxolan-4-yl[[;]], 2,2-dimethyl-1,3-dioxan-5-yl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, triazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothienyl, C_{1-4} alkoxy, C_{1-4} alkanoyl, C_{1-4} alkylS(O)_b- (wherein b is 0, 1, or 2), - $C(O)N(R^9)(R^{10})$, - $COOR^9$, - $C(O)NHSO_2Me$, - $C(=N-OH)NH_2$, - $C(=N-OH)NHC_1$. 4alkyl, - $C(=N-OH)N(C_{1-4}$ alkyl)₂, and - $NHSO_2R^9$; and

 R^9 and R^{10} are independently selected from hydrogen, hydroxy, and C_{1-4} alkyl optionally substituted with R^{13} (wherein R^{13} is C_{1-4} alkoxy or hydroxy); or

R⁹ and R¹⁰ together with the nitrogen to which they are attached form a 4- to 6-membered ring where the ring may be optionally substituted on carbon with 1 or 2 hydroxy groups or carboxy groups), or the ring may be optionally substituted on two adjacent carbons with –O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the –O-CH₂-O- group may be replaced by a methyl; or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

4. A compound of claim 1, wherein:

R³ is selected from cyano, C₁₋₄alkyl, and C₁₋₄alkyl (optionally substituted with 1 or 2 R⁸ groups);

 R^8 is independently selected from hydroxy, 2,2-dimethyl-1,3-dioxolan-4-yl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, tetrazolyl, C_{1-4} alkoxy, C_{1-4} alko

 R^9 and R^{10} are independently selected from hydrogen, hydroxy, and C_{1-4} alkyl optionally substituted with R^{13} (wherein R^{13} is C_{1-4} alkoxy or hydroxy); or

R⁹ and R¹⁰ together with the nitrogen to which they are attached form a 4- to 6-membered ring selected from piperidine, 4-hydroxypiperidine, pyrrolidine, 3,4-dihydroxypyrrolidine, and the dimethylacetal of 3,4-dihydroxypyrrolidine; or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

5. A compound of claim 1, wherein:

m is 1 and R⁴ is chlorine; or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

6. A compound of claim 1, wherein:

A is phenylene;

or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

7. A compound of claim 1, wherein:

A is heteroarylene;

or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

8. A compound of claim 1, wherein:

is a single bond;

or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

9. A compound of claim 1selected from:

5-chloro-*N*-[1-(methoxycarbonylmethyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1*H*-indole-2-carboxamide;

N-[1-(carboxymethyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-5-chloroindole-2-carboxamide;

5-chloro-*N*-(2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)-1*H*-indole-2-carboxamide;

5-chloro-*N*-[{2-oxo-1-[2-oxo-2-(pyridin-2-ylamino)ethyl]-1,2,3,4-tetrahydroquinolin-3-yl}-1*H*-indole-2-carboxamide;

5-chloro-*N*-{1-[2-(methylthio)ethyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-1*H*-indole-2-carboxamide;

5-chloro-*N*-{1-[2-(methylsulphinyl)ethyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-1*H*-indole-2-carboxamide;

5-chloro-*N*-{1-[2-(methylsulphonyl)ethyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-1*H*-indole-2-carboxamide;

5-chloro-*N*-{2-oxo-1-[2-oxo-2-(1,3,4-thiadiazol-2-ylamino)ethyl]-1,2,3,4-tetrahydroquinolin-3-yl}-1*H*-indole-2-carboxamide;

```
5-chloro-N-(1-{2-[(6-methylpyridin-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-{2-oxo-1-[2-oxo-2-(pyridin-3-ylamino)ethyl]-1,2,3,4-tetrahydroquinolin-
3-yl}-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(5-methyl-1,3,4-thiadiazol-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(5-ethyl-1,3,4-thiadiazol-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(4-cyano-1H-pyrazol-3-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(4-methyl-1,3-thiazol-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(6-chloropyridin-3-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(3-hydroxypyridin-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(2-oxo-1-{2-oxo-2-[(pyridin-2-ylmethyl)amino]ethyl}-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-{2-oxo-1-[2-oxo-2-(pyridin-4-ylamino)ethyl]-1,2,3,4-tetrahydroquinolin-
3-yl}-1H-indole-2-carboxamide;
5-chloro-N-(1-\{2-[(1-methyl-1H-pyrazol-5-yl)amino]-2-oxoethyl\}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(1,3-dimethyl-1H-pyrazol-5-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(2-oxo-1-{2-oxo-2-[(pyrazin-2-ylmethyl)amino]ethyl}-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(6-fluoropyridin-3-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(2-hydroxypyrimidin-4-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-{2-oxo-1-[2-oxo-2-(pyrimidin-4-ylamino)ethyl]-1,2,3,4-
tetrahydroquinolin-3-yl}-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(1-ethyl-1H-pyrazol-5-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
```

9530511.1 84

```
5-chloro-N-(2-oxo-1-\{2-oxo-2-[(5-oxo-4,5-dihydro-1H-pyrazol-3-yl)amino]ethyl\}-
1,2,3,4-tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(4-hydroxypyrimidin-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroguinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(3-methylpyridin-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(6-chloropyridazin-3-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(1H-imidazol-2-ylmethyl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-\{2-[(1-methyl-1H-pyrazol-3-yl)amino]-2-oxoethyl\}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-{2-oxo-1-[2-oxo-2-(2H-tetrazol-5-ylamino)ethyl]-1,2,3,4-
tetrahydroquinolin-3-yl}-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(3-ethyl-1H-pyrazol-5-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(5-fluoropyridin-2-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl)-1H-indole-2-carboxamide;
N-(1-{2-[(6-bromopyridin-3-yl)amino]-2-oxoethyl}-2-oxo-1,2,3,4-tetrahydroquinolin-
3-yl)-5-chloro-1H-indole-2-carboxamide;
5-chloro-N-[1-(2-hydroxyethyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1H-indole-2-
carboxamide;
5-chloro-N-{1-[(2,2-dimethyl-1,3-dioxan-5-yl)methyl]-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl}-1H-indole-2-carboxamide;
5-chloro-N-{1-[3-hydroxy-2-(hydroxymethyl)propyl]-2-oxo-1,2,3,4-
tetrahydroquinolin-3-yl}-1H-indole-2-carboxamide;
5-chloro-N-[1-(2,3-dihydroxypropyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1H-
indole-2-carboxamide;
5-chloro-N-[1-(3-hydroxy-2-oxopropyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1H-
indole-2-carboxamide;
5-chloro-N-{1-[(2R)-2,3-dihydroxypropyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-
1H-indole-2-carboxamide;
5-chloro-N-(1-{2-[(methylsulfonyl)amino]ethyl}-2-oxo-1,2,3,4-tetrahydroquinolin-3-
yl)-1H-indole-2-carboxamide;
```

N-{1-[2-(acetylamino)ethyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-5-chloro-1*H*-indole-2-carboxamide;

5-chloro-*N*-(2-oxo-1-{2-[(trifluoroacetyl)amino]ethyl}-1,2,3,4-tetrahydroquinolin-3-yl)-1*H*-indole-2-carboxamide;

5-chloro-*N*-[1-(3-hydroxypropyl)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1*H*-indole-2-carboxamide;

N-{1-[(2*Z*)-2-amino-2-(hydroxyimino)ethyl]-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl}-5-chloro-1*H*-indole-2-carboxamide;

5-chloro-*N*-(6-fluoro-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)-1*H*- indole-2-carboxamide; and

5-chloro-*N*-[6-(methyloxy)-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl]-1*H*-indole-2-carboxamide;

or a pharmaceutically acceptable salt or an in-vivo hydrolysable ester thereof.

- 10. A pharmaceutical composition which comprises a compound of claim 1, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, in association with a pharmaceutically acceptable diluent or carrier.
- 13. A method for the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia, or obesity in a warmblooded animal, comprising administering a compound of claim 1, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 14. A method for the treatment of type 2 diabetes in a warm-blooded animal, comprising administering a compound of claim 1, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 15. A process for the preparation of a compound claim 1, which process comprises:

reacting an acid of the formula (2)

$$(R^4)_m$$
 OH

(2)

or an activated derivative thereof; with an amine of formula (3)

and thereafter if necessary

i) converting a compound of the formula (1) into another compound of the formula (1);

ii) removing any protecting groups; or

iii) forming a pharmaceutically acceptable salt or in vivo hydrolysable ester.

9530511.1 87