SGD and GD Revisited

David Rosenberg

New York University

December 3, 2016

Terminology

Iterative Optimization Methods

Iterative Optimization (Generic Version)

- Pick some starting point $x^{(0)} \in \mathbb{R}^d$.
- ② For k = 0, 1, ...
 - **1** Choose a **step** or **search direction** $v^{(k)}$.
 - **2** Choose a **step size** $t^{(k)}$.
 - 3 Set $x^{(k+1)} = x^{(k)} + t^{(k)}v^{(k)}$
 - Despite the names,
 - $v^{(k)}$ is **not** generally a unit vector.
 - $t^{(k)}$ is **not** $||x^{(k+1)} x^{(k)}||$ (unless $||v^{(k)}|| = 1$).

Descent Directions

Definition

A [one-sided] directional derivative of f at x in the direction v is

$$f'(x;v) = \lim_{h \downarrow 0} \frac{f(x+hv) - f(x)}{h}.$$

[Note: Can be $\pm \infty$, e.g. for discontinuous functions.]

Definition

v is a descent direction for f at x if f'(x; v) < 0.

Descent Directions

• If f is differentiable, then

$$f'(x, v) = \nabla f(x)^T v.$$

So if f is differentiable, then v is a descent direction at x iff

$$\nabla f(x)^T v < 0.$$

• Newton step is a descent direction for strictly convex functions:

$$v_{\text{newton}} = -\left[\nabla^2 f(x)\right]^{-1} \nabla f(x)$$

- Much faster convergence close to the optimum.
- Computing/storing inverse Hessian is too much in high dimensions.
- Quasi-Newton methods approximate Newton step, without Hessian (e.g. L-BFGS).

Descent Method

Definition

An iterative optimization method is a **descent method** if every step is a descent direction.

• Equivalently, we have a descent method if

$$f(x^{(k+1)}) < f(x^{(k)}),$$

except when $x^{(k)}$ is optimal.

• Is SGD a descent method?

Stochastic Gradient Descent

Gradient Descent

Gradient Descent

- Initialize x = 0
- repeat
 - $x \leftarrow x \eta \nabla f(x)$

"Noisy" Gradient Descent

"Noisy" Gradient Descent (not a standard name)

- Initialize x = 0
- repeat
 - $x \leftarrow x \eta v$

Where ν is some estimate of $\nabla f(x)$

- In minibatch SGD, we have $\mathbb{E}v = \nabla f(x)$.
- With large batches, we get better estimates. (Var(v) decreases.)

SGD on Regularized Empirical Risk

Our typical objective function is of the form

$$J(w) = \lambda \Omega(w) + \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} h_i(w)$$

where

$$h_i(w) = \lambda \Omega(w) + \ell(f_w(x_i), y_i).$$

- SGD on *J*(*w*):
 - Choose $i \in \{1, ..., n\}$ uniformly at random
 - Approximate approximate $\nabla J(w)$ by $\nabla h_i(w)$.
- Step is unbiased for gradient:

$$\mathbb{E}_{i \sim \mathsf{Unif}(1,\ldots,n)} \nabla h_i(w) = \nabla J(w)$$

SGD on Risk

• Suppose $(x, y) \sim P_{X \times Y}$ and objective is the expected loss:

$$J(w) = \mathbb{E}\ell(f_w(x), y).$$

- SGD on *J*(*w*):
 - Choose $(x, y) \sim P_{X \times Y}$.
 - Approximate $\nabla_w J(w)$ by $\nabla_w \ell(f_w(x), y)$.
- Step is unbiased for gradient:

$$\mathbb{E}_{(x,y)\sim P_{\mathfrak{X}\times \mathfrak{Y}}}\nabla_{w}\ell(f_{w}(x),y) = \nabla_{w}\mathbb{E}\ell(f_{w}(x),y)$$

- To implement this, need fresh samples from $P_{X \times Y}$.
- If we're resampling from training set, $(x,y) \sim \hat{P}_{X \times Y}$ we get back SGD.

Convergence Rates

Does SGD Catch Up to GD?

Loss on ridge regression for GD and SGD with various stepsizes

- Why doesn't SGD catch up to batch GD?
- Short answer: It does, just takes a very long time.

Convergence Rates for Gradient Descent

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, and

• ∇f is **Lipschitz continuous** with constant L > 0, that is:

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$
 for all x, y

Theorem

Gradient descent with fixed step size $t \leq 1/L$ satisfies

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|^2}{2tk}.$$

- So GD has convergence rate O(1/k).
- To get $f(x^{(k)}) f(x^*) \le \varepsilon$, need $O(1/\varepsilon)$ iterations.
- Same rate with backtracking line search.

Convergence Rates for GD with Strong Convexity

Definition

A differentiable function f is strongly convex if there is some d > 0 for which

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{d}{2} ||y - x||^2 \text{ all } x, y.$$

(e.g. ridge regression because of the ℓ_2 regularization term)

Theorem

Under same Lipschitz condition as before and strong convexity, GD with fixed step size or with backtracking line search satisfies

$$f(x^{(k)}) - f(x^*) \le c^k \frac{L}{2} ||x^{(0)} - x^*||^2,$$

where 0 < c < 1.

Convergence Rates for GD with Strong Convexity

Theorem

Under same Lipschitz condition as before and strong convexity, GD with fixed step size or with backtracking line search satisfies

$$f(x^{(k)}) - f(x^*) \le c^k \frac{L}{2} ||x^{(0)} - x^*||^2,$$

where 0 < c < 1.

- So with strong convexity, GD converges at rate $O(c^k)$. (exponentially fast!)
- To get $f(x^{(k)}) f(x^*) \le \varepsilon$, need $O(\log[1/\varepsilon])$ iterations.
- Called "linear convergence" because looks linear on semi-log plot.

SGD vs GD on Log Scale

- Shows linear convergence for "Full" GD; sublinear for others.
- Note: logarithmic y-axis

SGD is Slow Close to the Optimum – Does it Matter?

• TRON is a 2nd order method (very fast close to the optimum)

