MA 225 Problem Set 1: logic 1

exercises These problems don't require you to write proofs.

- 1. We will show that although it's nice to have lots of connectives, we don't actually need them all.
 - (a) Express the following formulæ using only the symbols P, Q, \sim , and \wedge :

$$P \lor Q, P \Rightarrow Q, P \Leftrightarrow Q$$

$$P \lor Q :\sim (\sim P \land \sim Q)$$

$$P \Rightarrow Q :\sim (P \land \sim Q))$$

$$P \Leftrightarrow Q :\sim (\sim P \land Q) \land \sim (P \land \sim Q)$$

(b) Express the following formulæ using only the symbols P, Q, \sim , and \vee :

$$\begin{split} P \wedge Q, & P \Rightarrow Q, \ P \Leftrightarrow Q \\ P \wedge Q :\sim \left(\sim (P \vee Q) \vee \sim (P \vee \sim Q) \vee \sim (\sim P \vee Q) \right) \\ P \Rightarrow Q :\sim P \vee Q \\ P \Leftrightarrow Q :\sim \left((\sim P \vee Q) \vee \sim (P \vee \sim Q) \right) \end{split}$$

(c) Express the following formulæ using only the symbols $P,\,Q,\,\sim,$ and \Rightarrow

$$\begin{split} P \wedge Q, \ P \vee Q, \ P \Leftrightarrow Q \\ P \wedge Q :\sim (P \Rightarrow \sim Q) \\ P \vee Q : (\sim P \Rightarrow Q) \\ P \Leftrightarrow Q : (P \Rightarrow \sim Q) \Rightarrow \sim (\sim P \Rightarrow (\sim Q \Rightarrow P)) \end{split}$$

- (d) Explain why this means we only need \sim and one of \wedge , \vee , and \Rightarrow . Because we have shown above that we can represent each symbol with a single symbol
- 2. Define the connective \vee so that $P \vee Q$ is true exactly when exactly one of P and Q is true.
 - (a) Make a truth table for $P \vee Q$.

P	Q	$P \vee Q$	
True	True	False	
True	False	True	
False	True	True	
False	False	False	

- (b) Show that $P \subseteq Q$ is equivalent to $(P \vee Q) \wedge (\sim (P \wedge Q))$. \subseteq by definition means that while the logical statement means the statement has a single true statement, such as is possible with an or statement, it lacks the double truth as in a and statement. By making the statement as it is, it requires one of the arguments to be true but doesn't allow both.
- (c) Express $\sim (P \veebar Q)$ in terms of \sim , \vee , and \wedge . $\sim (\sim P \land Q) \land \sim (P \land \sim Q)$
- 3. Make a truth table for $P \vee Q \vee R$.

P	Q	R	$P \vee Q$	$(P \veebar Q) \veebar R$
True	True	True	False	True
True	True	False	False	False
True	False	True	True	True
True	False	Flase	True	True
False	True	True	True	False
False	True	False	True	True
False	False	True	False	True
False	False	False	False	False

- 4. For each of the following, identify the antecedent and the consequent. Then indicate whether the statement is true or false.
 - ++Antecedent++ -consequent-
 - -- The Nile River flows east -- only if ++ 64 is a perfect square ++.

This statement is false, as the statement suggests the Nile flow seast if 64 is a perfect square, which can be seen with 8++1+1=2++is sufficient for --3>6--.

This statement is false, as while 1+1=2, it states that this true fact is enough to determine 3>6, which is false.

If + +Euclid's birth day was April 2++, then--rectangle shave four sides.--

This statement is true, as it does not say that this is the only time when rectangles have four sides, and since they have four sides, this statement is true. + + If squares have three sides + +, then --triangles have four sides --.

This statement is true, as while triangles don't have four sides, this only applies when squares have three sides, which is false. --Fishbite--onlywhen++themoonisfull++.

This is false, as plenty of people catch fish during the day when the moon isn't even out. + + An indictment + + isnecessary for -- aconviction --.

This is true, as without an indictment, there would be nothing to convict the person of.

- (6) Consider each of the following sentences as you would understand them if you heard it on the street. Identify, for each sentence, the antecedent and the consequent.

 - (b) --The Dolphins will not make the play of fs--++unless the Bears win all the rest of their games++. The only way the Dolphins will make the play Of fs is given they win the rest of their games.
 - 1.1 neonity way in e2 of phonos with an econopia yo j j stog we have g with the rest years early in early with early with the same of the
 - (d) --Youwon'twinthelottery--++unlessyoubuyaticket++.Youneed to buyaticket in order to winthelottery.

- 6. In each of the previous problem's sentences, use a different conditional keyword to express the sentence. You may **not** use *if.* . . *then.* **Be sure your rephrasing agrees with your answer in the previous problem!**
- 7. Which of the following are tautologies? Which are contradictions? For each, give an explanation that uses a truth table **and** an explanation that does not use a truth table. (*Hint*. Try expressing in words what each says.)

(a)
$$(\alpha \wedge \gamma) \vee [(\sim \alpha) \wedge (\sim \gamma)]$$

	α	γ	$(\alpha \wedge \gamma) \vee [(\sim \alpha) \wedge (\sim \gamma)]$
	True	True	True
	True	False	False
	False	True	False
Ī	False	False	True

(b) $\sim [P \wedge (\sim P)]$

	P	$\sim [P \land (\sim P)]$	
ſ	True	True	
ſ	True	True	

(c) $(\Psi \wedge \Phi) \vee [(\sim \Psi) \vee (\sim \Phi)]$

Ψ	Φ	$(\Psi \wedge \Phi) \vee [(\sim \Psi) \vee (\sim \Phi)]$	
True	True	True	
True	False	True	
False	True	True	
False	False	True	

(d)
$$[A \wedge B] \vee [A \wedge (\sim B)] \vee [(\sim A) \wedge B] \vee [(\sim A) \wedge (\sim B)]$$

A	В	$[A \land B] \lor [A \land (\sim B)] \lor [(\sim A) \land B] \lor [(\sim A) \land (\sim B)]$
True	True	True
True	False	True
False	True	True
False	False	True

8. Submit part 4 of the worksheet Useful Logical Facts.

proofs Write a complete proof for each of the following statements.

1. \vee is associative.

Claim: \veebar is an associative operator

Proof: Let's consider the following truth table

1	2	3	4	5
P	Q	R	$P \vee (Q \vee R)$	$(P \vee Q) \vee R$
True	True	True	True	True
True	True	False	False	False
True	False	True	True	True
True	False	Flase	True	True
False	True	True	False	False
False	True	False	True	True
False	False	True	True	True
False	False	False	False	False

As we can see from Columns 4 and 5, the shift in brackets created an identical equation, therefore the equations $P \veebar (Q \veebar R) and (P \veebar Q) \veebar R$ are equal, and the operator \veebar is associative.

2. All the claims in the worksheet $Useful\ Logical\ Facts.$