I concetti del Modello Relazionale - Parte 2

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei, Ostiglia

26 novembre 2024

Introduzione

Dal modello concettuale è possibile ottenere il **modello logico dei dati**. In altre parole, si definisce la struttura degli archivi per organizzare i dati.

In particolare si andranno a definire le "tabelle" che si sevono utilizzare e che quindi devono essere create.

Regole di Derivazione

Cosa importante è definire che qui la parola "relazione" viene usanta in quanto siamo davanti al modello relazione, ecco che si devono trasformare le entità e relazioni del modello E/R nelle relazioni del modello relazionale.

N.B. Fare ben attenzione ai nomi e alla collocazione degli stessi in base al concetto.

Le principali regole per la derivazione delle relazioni dal modello E/R (quindi per creare le relazioni, modello relazionale, dal modello concettuale, modello E/R, sono):

- 1. Ogni **entità** diventa una relazione, intesa quindi come una tabella del modello relazionale.
- Ogni attributo di un'entità diventa un attributo della relazione.
- 3. Ogni **attributo della relazione** eredita le caratteristiche dell'attributo dell'entità.
- 4. L'identificatore unico di un'entità diventa la chiave primaria della relazione derivata.

Associazioni/Relazioni nel modello E/R

- L'associazione/relazione **uno a uno** diventa un'unica relazione contenente gli attributi delle entità associate.
- L'associazione/relazione uno a molti viene rappresentata aggiungendo l'identificatore dell'entità "a uno" come chiave esterna nella relazione dell'entità "a molti".
- ▶ L'associazione/relazione molti a molti genera una nuova relazione con gli identificatori delle due entità e gli attributi dell'associazione.

Chiave Esterna

La **chiave esterna** (FK, foreign key) è un attributo che identifica univocamente una riga in un'altra tabella.

Esempio

Immaginiamo di avere due tabelle:

- ► **Studenti** (ID_Studente, Nome, Cognome)
- ► Corsi (ID_Corso, Nome_Corso, ID_Studente)

In questo caso, ID_Studente nella tabella Corsi è una **chiave esterna** che fa riferimento alla chiave primaria ID_Studente nella tabella Studenti.

Questo permette di associare ogni corso a uno studente specifico.

Passaggio Pratico dal Modello E/R al Modello Logico

Vediamo con un approccio quello che deve essere fatto per passare dal modello E/R visto al modello relazionale, dicasi anche modello logico in quando da una rappresentazione dei dati del database.

- ► Uno a uno: una relazione unica che contiene gli attributi di entrambe le entità.
- ▶ Uno a molti: aggiunta della chiave primaria dell'entità "a uno" nella tabella dell'entità "a molti".
- Molti a molti: creazione di una terza relazione che contiene le chiavi primarie di entrambe le entità e gli attributi dell'associazione.

Esempio Uno a Uno: Persona e Passaporto

Descrizione: Ogni persona ha un solo passaporto e ogni passaporto è associato a una sola persona. La relazione è rappresentata in una tabella unica che combina gli attributi di entrambe le entità.

ID	Nome	Cognome	ID_Passaporto	Data_Emissione
1	Mario	Rossi	P123	2023-01-01
2	Luisa	Bianchi	P124	2023-02-15
3	Carlo	Verdi	P125	2023-03-20

Tabella: Tabella Persone_Passaporti (Unica relazione tra Persona e Passaporto)

Esempio Uno a Molti: Dipartimento e Impiegato

Descrizione: Ogni dipartimento può avere molti impiegati, ma ciascun impiegato appartiene a un solo dipartimento. La relazione è rappresentata con una chiave esterna nella tabella degli impiegati.

ID_Dipartimento	Nome_Dipartimento
10	Risorse Umane
20	IT
30	Marketing

Tabella: Tabella Dipartimenti

ID_Impiegato	Nome	Cognome	ID_Dipartimento
1	Anna	Verdi	10
2	Marco	Bianchi	20
3	Sara	Rossi	20

Tabella: Tabella Impiegati (con chiave esterna ID_Dipartimento)

Esempio Molti a Molti: Studenti e Corsi

Descrizione: Ogni studente può iscriversi a molti corsi e ogni corso può avere molti studenti. Viene creata una tabella di associazione per rappresentare la relazione, quindi con due chiavi esterne, una per ogni tabella che si unisce.

ID_Studente	Nome	Cognome
101	Luca	Neri
102	Giulia	Rosa
103	Fabio	Blu

Tabella: Tabella Studenti

ID_Corso	Nome_Corso	Descrizione
C1	Matematica	Corso di base
C2	Informatica	Introduzione alla programmazione
C3	Storia	Storia moderna

Tabella: Tabella Corsi

Esempio Molti a Molti: Studenti e Corsi

ID_Studente	ID_Corso	Data_Iscrizione
101	C1	2023-09-01
101	C2	2023-09-05
102	C1	2023-09-03
103	C3	2023-09-02

Tabella: Tabella Studenti_Corsi (con chiavi esterne ID_Studente e ID_Corso). La Data_Iscrizione è un nuovo attributo, probabilmente presente nella relazione esistente.

N.B. Nel passaggio dall'entità alla relazione il nome viene convertito al **plurale** per rappresentare il fatto che la relazione, vista come un insieme, contiene tutte le istanze dell'entità.

Esempio del libro: Uno ad Uno

Dallo schema si deriva la relazione Anagrafe con gli attributi dell'una e dell'altra entità:

Anagrafe (CodiceFiscale, Cognome, Nome, DataNascita, LuogoNascita, CodiceSanitario, CodiceATS, CodRegione)

Relazione	Attributo	Chiave	Formato	Dimensione
Anagrafe	CodiceFiscale	PK	carattere	16
	Cognome		carattere	30
	Nome		carattere	30
	DataNascita		data/ora	8
	LuogoNascita		carattere	20
	CodiceSanitario		carattere	8
	CodiceATS		carattere	4
	CodRegione		carattere	2

Esempio del libro: Uno a Molti

Contratti (<u>Codice</u>, Descrizione, StipendioBase, DataScadenza)

Dipendenti (Matricola, Cognome, Nome, Indirizzo, Qualifica, CodiceContratto)

CodiceContratto è chiave esterna (FK) associata alla chiave primaria Codice della tabella Contratti.

Relazione	Attributo	Chiave	Formato	Dimensione
Contratti	Codice	PK (Primaria)	numerico	3
	Descrizione		carattere	30
	StipendioBase		numerico	10
	DataScadenza		data/ora	8
Dipendenti	Matricola	PK (Primaria)	carattere	7
	Cognome		carattere	30
	Nome		carattere	25
	Indirizzo		carattere	30
	Qualifica		carattere	10
	CodiceContratto	FK (Esterna)	numerico	3

Figura: Relazioni: Contratti e Dipendenti, casistica "uno a Molti"

Esempio del libro: Molti a Molti

Si considerino le entità Studente, Materia e l'associazione Valutare di tipo molti a molti.

Il diagramma E/R mostra gli attributi delle due entità e dell'associazione. Si limiti il problema nel contesto di una specifica classe e di un solo anno scolastico.

Applicando le regole di derivazione si ottengono le relazioni definite dai seguenti schemi:

Studenti (Matricola, Cognome, Nome, Indirizzo, Telefono)

Materie (CodiceMateria, NomeMateria, NumeroOre)

Valutazioni (Matricola, CodiceMateria, Data, Voto)

CASO PARTICOLARE: Relazioni 1:1 con Partecipazione Facoltativa

Definizione: Una relazione 1:1 con partecipazione facoltativa si verifica quando una delle due entità può partecipare o meno alla relazione.

Esempio: Consideriamo l'associazione tra Docente e Classe in cui:

- Ogni classe ha un solo coordinatore (Docente).
- Non tutti i docenti sono coordinatori di una classe.

Rappresentazione Grafica

Figura: Esempio di relazione 1:1 con partecipazione facoltativa tra Docente e Classe. N.B. Nella parte del docente si vede che la linea è tratteggiata, quindi è opzionale. Infatti un docente può anche non essere coordinatore di classe.

N.B. Questa notazione non è quella che faremo noi per il corso di Informatica, in quanto dobbiamo utilizzare quelle a zampe di galline e la notazione per l'opzionale è il pallino vuoto con una barra venticale.

Approfondimento: Scelte di Modellazione

In presenza di una partecipazione facoltativa in una relazione 1:1, ci sono varie scelte di modellazione:

- Aggiungere una chiave esterna facoltativa: Se non tutti i Docenti sono coordinatori, la relazione può essere modellata come uno a molti, aggiungendo una chiave esterna CodiceDocente nella tabella Classi.
- Chiarire l'entità principale: Se l'associazione tra Docente e Classe è debole e serve solo per descrivere il ruolo di coordinatore, si può optare per una tabella aggiuntiva Coordinatori, contenente solo gli ID di Docente e Classe.
- ► Consolidare la relazione come obbligatoria in fase di analisi: Qualora fosse richiesto che ogni Classe abbia sempre un coordinatore e viceversa, si eliminerebbe la facoltatività, trasformando la relazione in una 1:1 obbligatoria.

Esempio Alternativo: Cittadino Italiano e Calciatore Nazionale

Scenario:

- Ogni Cittadino Italiano potrebbe essere un Calciatore Nazionale, ma la partecipazione è molto bassa.
- ► La relazione tra Cittadino Italiano e Calciatore Nazionale è 1:1 con partecipazione facoltativa, in cui solo pochi cittadini diventano calciatori della nazionale.

Soluzione di Modellazione:

- Creare due tabelle distinte: Cittadini e CalciatoriNazionali.
- Utilizzare ID_Cittadino come chiave primaria in entrambe le tabelle e come chiave esterna in CalciatoriNazionali, per identificare i calciatori che sono anche cittadini

Esempio: Cittadino Italiano e Calciatore Nazionale

Descrizione dello scenario:

- La tabella Cittadini contiene tutti i cittadini italiani.
- ► La tabella CalciatoriNazionali contiene solo i cittadini che sono anche calciatori della nazionale.
- ► ID_Cittadino è la chiave primaria in entrambe le tabelle ed è anche usata come chiave esterna in CalciatoriNazionali per identificare la partecipazione facoltativa.

ID _Cittadino	Nome	Cognome	Data_Nascita
1	Mario	Rossi	1995-05-10
2	Luisa	Bianchi	1988-11-22
3	Carlo	Verdi	1990-03-15
4	Anna	Neri	1992-07-28

Tabella: Tabella Cittadini

Esempio: Cittadino Italiano e Calciatore Nazionale

ID_Player	Ruolo	Squadra_Apparten.	Data_Nazionale
1	Attaccante	Roma	2021-09-01
3	Portiere	Juventus	2020-06-15

Tabella: Tabella CalciatoriNazionali (con chiave esterna ID_Cittadino)

Conclusioni Finali sul caso particolare

- ▶ Le relazioni 1:1 con partecipazione facoltativa permettono una modellazione più flessibile, adattandosi a situazioni reali in cui non tutti gli elementi di un'entità devono partecipare alla relazione.
- ▶ È importante analizzare il contesto per decidere se rendere la partecipazione facoltativa o obbligatoria.
- Nelle relazioni uno a uno, la scelta della chiave esterna può dipendere dall'importanza relativa delle due entità. La modellazione dovrebbe rispecchiare la logica e i requisiti del sistema.