Označenie

- 1. rand vráti náhodný real $y \in <0,1)$
- 2. grand(a, b) vráti náhodný real $y \in (a, b), a, b \in \mathcal{R}$
- 3. irand(i, j) vráti náhodné cele $y \in \langle i, j \rangle, i, j \in \mathbb{Z}$
- 4. brand "hodí mincou" a vráti 0 alebo 1.

Poznámka Pomocou hociktorej procedúry (1) – (4) je možné zostrojiť ostatné:

- grand(a,b) = a + (b-a) * rand
- $irand(i, j) = \lfloor grand(i, j + 1) \rfloor$
- brand = irand(0,1)

•

$$brand = \begin{cases} 0 & rand \text{vrát} iy < \frac{1}{2} \\ 1 & \text{inak} \end{cases}$$

procedure rand

vykonaj brand r-krat s vysledkami b_1, b_2, ... b_r (b_i \in $\{0,1\}$ \forall i) return y=0.b_1b_2...b_r (real.y\in<0,1) v bin. tvare). end;

Definícia Pravdepodobnostný algoritmus akceptuje jazyk $L \in \Sigma^*$ s chybou $\varepsilon(0 < \varepsilon < \frac{1}{2})$ ak $\forall x \in \Sigma^*$ platí: Pravdepodobnosť toho, že A akceptuje $x \notin L$ (zamietne $x \in L$) je $\leq \varepsilon$ (t.j. A akceptuje $x \in L$ (resp. zamietne $x \notin L$) s pravdepodobnosťou $\geq 1 - \varepsilon$).

Príklad Nech A používa brand.

Strom pravdepodobnostného výpočtu $A\ x$ vrcholy – volania $brand;\ a$ – akceptuj, z – zamietni.

Do konkrétneho listu s hĺbkou l saA dostane s pravdepodobnosťou $2^{-l} \Rightarrow A$ akceptuje s pravdepodobnosťou $2^{-2} + 2^{-3} + 2^{-4} = 7/16$, zamietne s $2^{-2} + 2^{-2} + 2^{-4} = \frac{9}{16}$.

Definícia (bounded-error probabilisic polynomial)

 $BPP = \{L \mid \exists \text{pravdepodobnostn\'y polynomiálny algoritmus akceptujúci s chybou} \leq \varepsilon (0 < \varepsilon < \frac{1}{2}) \}$

Veta $P \subseteq BPP \subseteq PSPACE$.

Dôkaz $P \subseteq BPP$ – zrejmé. Nech $L \in BPP$, nech A je pravdepodobnostný algoritmus akceptujúci L v polynomiálnom čase p(x) s chybou ε . Nech M je deterministický Turingov stroj s pamäťou p(n), ktorý na vstupe x:

- na jednej z pracovných pások postupne generuje všetky binárne postupnosti dĺžky $\leq p(n)$.
- ullet po vygenerovaní každdej postupnosti stroj M simuluje výpočet algoritmu A na vstupe x s hodnotami brand určenýmmi vygenerovanou postupnosťou, pričom existuje ignoruje postupnosti s nevhodným počtom volaní brand.
- \bullet M priebežne počíta pravdepodobnosť toho, že A akceptuje x.
- M akceptuje x, ak A akceptuje x s pravdepodobnosťou $\geq 1 \varepsilon$, inak M zamietne x. Z toho vyplýva, že $L \in PSPACE$.

Dôsledok

$$P \subseteq \left\{ \begin{array}{c} NP \\ BPP \end{array} \right\} \subseteq PSPACE$$

Poznámka

- \bullet nie je známe, či P=BPP alebo či BPP=PSPACE
- ullet nie je známy žiaden vzťah NP a BPP

Veta (o vylepšovaní) Nech A je pravdepodobnostný algoritmus akceptujúci $L \subseteq \Sigma^*$ v čase T(n) s chybou ε , $(0 < \varepsilon < \frac{1}{2})$. Potom $\forall \varepsilon' (0 < \varepsilon' < \varepsilon$ existuje pravdepodobnostný algoritmus A' akceptujúci L v čase O(T(n)) s chybou ε' .

Dôkaz Algoritmus A': A' akceptuje (zamietne) vstup x, ak spomedzi m náhodne vybraných výpočtov A na x (A' ich vyberie a simuluje) je počet akceptujúcich (zamietajúcich) väčší než počet zamietajúcich (akceptujúcich). m je nepárne číslo, t.j. $\frac{1}{2}(4(1-\varepsilon)\varepsilon)^{m/2} \leq \varepsilon'$. (Také m existuje, lebo $0 < 4(1-\varepsilon)\varepsilon = 4(\frac{1}{2}+\alpha)(\frac{1}{2}-\alpha) = 1-4\alpha^2 < 1$ pre $0 < \varepsilon < \frac{1}{2}$ a $O < \alpha'\frac{1}{2}-\varepsilon < \frac{1}{2}$). Pravdepodobnosť chyby A' na x je $\leq \frac{1}{2}(4(1-\varepsilon)\varepsilon)^{m/2}$, lebo:

Prípad 1 $x \in L$ Nech ε_x je pravdepodobnosť toho, že náhodne vybraný výpočet A na x je zamietajnúci, teda $O \le \varepsilon_x \le \varepsilon$ a $1 - \varepsilon_x =$ pravdepodobnosť toho, že náhodne vybraný výpočet A na x je akceptujúci.

Príklad Nech p je pravdepodobnosť toho, že postupnosť 5 náhodne vybraných výpoštov A na x je tvaru a, z, z, a, z (a – akceptujúci, z – zamietajúci):

$$p = (1 - \varepsilon_x)\varepsilon_x\varepsilon_x(1 - \varepsilon_x)\varepsilon_x = (1 - \varepsilon_x)^2\varepsilon_x^3$$

. $\binom{5}{2}$ = počet postupností dĺžky 5 s dvomi "a" a tromi "z". Teda $\binom{5}{2}(1-\varepsilon_x)^2\varepsilon_x^3$ = pravdepodobnosť toho, že postupnosť 5 náhodných výpočtov A na x obsahuje 2 akceptačné a 3 zamietajúce výpočty.

$$\sum_{j=0}^{\lfloor m/2\rfloor} {m \choose j} (1 - \varepsilon_x)^j \varepsilon_x^{m-j}$$

Pravdepodobnosť toho, že posledných m náhodne vybraných výpočtov A na x obsahuje $\leq \lfloor m/2 \rfloor$ akceptačných výpočtov (t.j. obsahuje viac zamietajúcich než zamietajúcich výpočtov) = pravdepodobnosť toho, že A' zamietne $x \in L$ = pravdepodobnosť chyby A' na $x \in L$.

Prípad 1a
$$\varepsilon_x = 0 \Rightarrow \sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j} (1 - \varepsilon_x)^j \varepsilon_x^{m-j} = 0 < \frac{1}{2} (4(1 - \varepsilon)\varepsilon)^{m/2}.$$

Prípad 1b
$$\varepsilon_{x} > 0 \Rightarrow 1 < \frac{1-\varepsilon_{x}}{\varepsilon_{x}} \text{ (lebo } O < \varepsilon_{x} \leq \varepsilon < \frac{1}{2} \Rightarrow \sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j} (1-\varepsilon_{x})^{j} \varepsilon_{x}^{m-j} \leq \sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j} (1-\varepsilon_{x})^{j} \varepsilon_{x}^{m-j} \underbrace{\left(\frac{1-\varepsilon_{x}}{\varepsilon_{x}}\right)^{m/2-j}}_{\geq 1} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m}/2 = \frac{1}{2}((2^{2})^{m/2})} (+-\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})}} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2^{m/2} = \frac{1}{2}((2^{2})^{m/2})}} (+\varepsilon_{x})^{m/2} = \underbrace{\sum_{j=0}^{\lfloor m/2 \rfloor} {m \choose j}}_{2$$

$$\begin{split} \varepsilon_x)^{m/2} \varepsilon_x^{m/2} &= \tfrac{1}{2} (2^2 (1 - \varepsilon_x) \varepsilon_x)^{m/2} \leq \tfrac{1}{2} (4 (1 - \varepsilon) \varepsilon)^{m/2} \\ \text{Posledná nerovnosť nie je triviálna:} \\ (1 - \varepsilon) \varepsilon &= (1 - \varepsilon_x) \varepsilon_x + \underbrace{(\varepsilon - \varepsilon_x)}_{\geq 0} \underbrace{(1 - \varepsilon - \varepsilon_x)}_{\geq 0} \geq (1 - \varepsilon_x) \varepsilon_x \end{split}$$

Príklad 2 $x \notin L$. Dôkaz je podobný prípadu 1. Pravdepodobnosť chyby A' na x je $\leq \frac{1}{2}(4(1-\varepsilon!\varepsilon)^{m/2})$ $\leq \varepsilon'$ \Rightarrow veta. výber m v A'

Dôsledok (dôkazu). Ak pre kaťdé n vykoná A' na každodm vstupe x dĺžky n práve 2n+1 náhodne vybraných výpočtov A na x, potom A' akceptuje $L\cap \Sigma^n$ v čase O(nT(n)) s chybou $\frac{1}{2}(\underbrace{4(1-\varepsilon)\varepsilon})^{n+\frac{1}{2}}$