UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

30 Aprilie 2022

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui _____

Prenumele

DISCIPLINA: Fizică F

VARIANTA A

1. Pentru o bară cilindrică de oțel cu lungimea nedeformată L_0 , aria secțiunii transversale S și modulul lui Young E, constanta de elasticitate are expresia: (9 pct.)

a)
$$k = \frac{S}{E \cdot L_0}$$
; b) $k = \frac{E \cdot S}{L_0}$; c) $k = \frac{E \cdot L_0}{S}$; d) $k = \frac{E}{S \cdot L_0}$; e) $k = \frac{S \cdot L_0}{E}$; f) $k = \frac{L_0}{E \cdot S}$.

2. Printr-un rezistor la bornele căruia este aplicată o tensiune de 100 V trece o sarcină electrică de 1 mC. Căldura degajată de rezistor în acest proces este: (9 pct.)

3. Randamentul unui plan înclinat cu un unghi de 60° este de 75%. Coeficientul de frecare la alunecare pe planul înclinat este: (9 pct.)

a)
$$\frac{\sqrt{2}}{2}$$
; b) $\frac{1}{2}$; c) $\frac{\sqrt{3}}{2}$; d) $\sqrt{3}$; e) $\sqrt{2}$; f) $\frac{\sqrt{3}}{3}$.

4. Grupul de rezistori din figura de mai jos conține n ochiuri de rețea și este alcătuit din rezistori identici R, fiecare având rezistența egală cu $\left(\sqrt{3}+1\right)\Omega$, cu excepția rezistorului notat cu X din ultimul ochi.

Valoarea rezistenței rezistorului X pentru care rezistența echivalentă între punctele A și B nu depinde de numărul de ochiuri este: (9 pct.)

a)
$$\left(\sqrt{3}+1\right)\Omega$$
; b) 3Ω ; c) 2Ω ; d) 1Ω ; e) $2\left(\sqrt{3}-1\right)\Omega$; f) $\left(\sqrt{3}-1\right)\Omega$.

5. Fie configurația de rezistori identici din figura de mai jos. Rezistența fiecărui rezistor este $5,5~\Omega$.

Rezistența echivalentă între punctele A și B este: (9 pct.)

- a) 1 Ω ; b) 2 Ω ; c) 5,5 Ω ; d) 4 Ω ; e) 3 Ω ; f) 6 Ω .
- 6. Un gaz ideal monoatomic efectuează o transformare în care densitatea sa variază după legea $\rho = a \cdot \frac{V}{T}$, unde a este o constantă pozitivă. Raportul dintre lucrul mecanic efectuat de gaz în această transformare și variația energiei sale interne este: (9 pct.)
 - a) 2; b) $\frac{2}{3}$; c) $\frac{1}{3}$; d) 1; e) $\frac{1}{2}$; f) $\frac{3}{2}$.
- Un rezistor cu rezistența de 15 Ω este conectat la bornele unei baterii cu tensiunea electromotoare de 1,5 V. Dacă intensitatea curentului prin circuit este de 75 mA, rezistența internă a bateriei este: (9 pct.)
 - a) 10Ω ; b) $3 k\Omega$; c) $5 k\Omega$; d) 5Ω ; e) 3Ω ; f) 20Ω .
- 8. Se amestecă 3 moli de gaz ideal monoatomic cu 2 moli de gaz ideal biatomic și cu un mol de gaz ideal triatomic. Se cunosc exponenții adiabatici pentru gazul ideal monoatomic $\gamma_m = 5/3$, pentru gazul ideal biatomic $\gamma_b = 7/5$ și pentru gazul ideal triatomic $\gamma_t = 4/3$. Exponentul adiabatic al amestecului este: (9 pct.)
 - a) $\frac{37}{25}$; b) $\frac{13}{7}$; c) $\frac{7}{5}$; d) $\frac{22}{15}$; e) $\frac{3}{2}$; f) $\frac{43}{31}$.
- 9. Un autoturism cu puterea de 150 kW accelerează pe un drum orizontal atingând viteza maximă de 240 km/h. Atunci când viteza autoturismului este de 30 m/s, accelerația sa este de 1 m/s². Neglijând frecarea cu aerul, masa autoturismului este: (9 pct.)
 - a) 2,5 t; b) 5000 kg; c) 1750 kg; d) 1,5 t; e) 2250 kg; f) 2750 kg.
- 10. Un mobil se deplasează uniform accelerat pornind din repaus. El parcurge o distanță de 36 metri în primele 12 secunde ale mişcării. Viteza corpului după 10 secunde de la începutul mişcării este: (9 pct.)
 - a) 1 m/s; b) 6 m/s; c) 5 m/s; d) 4 m/s; e) 3 m/s; f) 2 m/s.