Is initial economic damage from COVID-19 in Great Britain less widespread than in the United States?

Charles Rahal a,b,1 , Jennifer B. Dowd a,b , Aaron Reeves c,d , and Melinda C. Mills a,b

^aLeverhulme Centre for Demographic Science, Department of Sociology, University of Oxford; ^bNuffield College, University of Oxford; ^cDepartment of Social Policy and Intervention; ^dGreen Templeton College

This manuscript was compiled on November 27, 2020

10

11

13

15

17

21

22

23

24

27

30

31

32

34

Covid-19 | Inequality | Economic Loss | Employment Protection

olicy responses have the capacity to change the stratified trajectories of the pandemic. Polyakova et al. (2020) (1) juxtapose excess mortality and excess economic loss by age and region in the U.S in April 2020 to demonstrate how policies entail 'trade-offs' for different demographic groups. While the variance of the case fatality rate (CFR) across age may generalise internationally (2), economic losses vary substantially depending on policy choices. The U.S. responded to the pandemic-induced economic shock by implementing various initiatives, such as the Paycheck Protection Program (a small business loan) and the Employee Retention Tax Credit (for employers experiencing a decline in sales of over 50%), which work in conjunction with the US Federal Pandemic Unemployment Compensation program. Yet these policies are noticeably different from other countries – such as the UK's Job Retention Scheme – which explicitly subsidise wages for 'furloughed' workers. We extend (3) the work of Polyakova et al. to elucidate how this policy response differentially affected economic loss across demographic groups in Great Britain. We note that comparable excess mortality calculations are available elsewhere (4).

Taking the latest quarterly rolling regional labour market estimates by age (ONS series X01-X03, based on the Labour Force Survey), we construct seasonally adjusted employment-population ratios by age, gender, and geography. As per (1), we calculate employment-population ratios by dividing employment by the total population per age group per sex per region, where total population is the sum of the employed (X01), unemployed (X02), and economically inactive (X03). We then calculate forecasts for these ratios based on 'in-sample' data ending at January-March 2020 using an automatic ARIMA selection procedure for each series (max p=12, d=1, q=12, with optional constant and trends) (5). Economic loss conceptualised in this way is shown in Fig. 1 for July-September 2020. Here we report results from a later stage of the pandemic than (1), but our accompanying repository provides figures dating back to earlier periods.

We find a far smaller differential between the forecasted and the observed employment-population ratio during this period ($\sim 1\%$ compared to around $\sim 10\%$ in the US). This is not explained by different initial conditions (both countries had similar employment-population ratios pre- pandemic), differences in CFRs, nor the level of economic restrictions (indeed, if anything, the UK implemented stricter, more universal measures). Instead, we attribute this difference to the efficacy of the Job Retention Scheme. This analysis does not allow us to conclude whether one approach was better than another. Rather, our results empirically illustrate how different policies lead to diverse trade-offs, as also noted elsewhere (consider also Kurzarbeit, Germany and chômage partiel, France). Our work clarifies the need for internationally comparative research which conceptualises excess economic loss in various ways based on granular population level data (6), representative samples (7), and real-time surveys (8)(9).

42

43

44

45

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

70

71

72

73 74

75

76

78

80

81

82

83

References

- Polyakova M, Kocks G, Udalova V, Finkelstein A (2020) Initial economic damage from the COVID-19 pandemic in the United States is more widespread across ages and geographies than initial mortality impacts. Proceedings of the National Academy of Sciences.
- Dowd JB, et al. (2020) Demographic science aids in understanding the spread and fatality rates of COVID-19. Proceedings of the National Academy of Sciences 117(18):9696–9698.
- Christensen G, Freese J, Miguel E (2019) Transparent and Reproducible Social Science Research: How to Do Open Science. (University of California Press).
- Aburto JM, et al. (2020) Estimating the burden of COVID-19 on mortality, life expectancy and lifespan inequality in England and Wales: A population-level study. *Journal of Epidemiology* and Community Health, forthcoming.
- Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. Journal of Statistical Software 26(3):1–22.
- Chetty R, Friedman JN, Hendren N, Stepner M, Team TOI (2020) How Did COVID-19 and Stabilization Policies Affect Spending and Employment? A New Real-Time Economic Tracker Based on Private Sector Data, (National Bureau of Economic Research), Working Paper 27431.
- Benzeval M, et al. (2020) The Idiosyncratic Impact of an Aggregate Shock: The Distributional Consequences of COVID-19. Available at SSRN 3615691.
- Adams-Prassl A, Boneva T, Golin M, Rauh C (2020) Inequality in the impact of the coronavirus shock: Evidence from real time surveys. *Journal of Public Economics* 189:104245.
- 9. Rauh C, Boneva T, Adams-Prassl A, Golin M (2020) Furloughing. Fiscal Studies, forthcoming

ACKNOWLEDGMENTS. The authors are greatful to the British Academy (CR), the Leverhulme Trust and Nuffield College (CR, JBD, MCM), the ERC (MCM, AR) and the Wellcome Trust (AR).

C.R. performed the research and wrote the first draft, designed in conjunction with J.B.D.; J.B.D., A.R. and M.C.M. commented on and suggested revisions. All authors approved the final manuscript. The authors declare no conflicts of interest.

¹To whom correspondence should be addressed. E-mail: charles.rahal@sociology.ox.ac.uk. The replication package which powers this analysis can be found at qithub.com/oxforddemsci/excess-economics

Fig. 1. Excess Economic Loss in Great Britain, July-September 2020. Panel A. shows the employment-population ratio by sex from Feb-April 2013 until Jul-Sept 2020. Panel B. shows the observed and forecasted employment ratio by age and sex. Panel C. charts the excess economic loss across regions in Great Britain by sex. Panel D. illustrates the region by age range, where the size and color of the circle refer to the economic loss (red) or gain (blue). There are small instances of statistically insignificant positive gain. Panel D. contains pooled data for both males and females. Notes: M=Males, F=Females; Cls=Confidence Intervals, S.=South, N.=North, E.=East, W.=West, Yorks.=Yorkshire and the Humber. Data comes from the Office for National Statistics. All confidence intervals are at the 90% level.

2 | Rahal et al.