TD de programmation linéaire

– Pr.Abdelaziz QAFFOU –

Exercice 1

Un agriculteur veut allouer 150 hectares de surface irrigable entre culture de tomates et celles de piments. Il dispose de 480 heures de main d'oeuvre et de $550m^3$ d'eau. Un hectare de tomates demande 2 heures de main d'oeuvre, $4m^3$ d'eau et donne un bénéfice net de 1000 DH. Un hectare de piments demande 5 heurs de main d'oeuvre, $3m^3$ d'eau et donne un bénéfice net de 2000 DH. Le bureau du périmètre irrigué veut protéger le prix des tomates et ne lui permet pas de cultiver plus 100 hectares de tomates.

L'agriculteur veut savoir quelle est la meilleure allocation de surface cultivable. Donner le modèle linéaire de ce problème sans le résoudre.

Correction 1

Soient x et y les surfaces allouées (en hectare) respectivement aux tomates et aux piments.

La fonction économique est : max z = 1000x + 2000y

s/c

Totale de la surface irrégable : $x + y \le 150$ Heures demain d'oeuvre : $2x + 5y \le 480$

 m^3 d'eau : $4x + 3y \le 550$

 $x \le 100$

 $x, y \ge 0$

D'où le modèle linéaire est :

$$\max z = 1000x + 2000y$$
s.c.
$$\begin{vmatrix} x + y \le 150 \\ 2x + 5y \le 480 \\ 4x + 3y \le 550 \\ x \le 100 \\ x \ge 0 \\ y \ge 0 \end{vmatrix}$$

Exercice 2

Une entreprise veut déménager son matériel composé de 450 machines de trois types : M_1 , M_2 et M_3 . Elle décide de louer des camions. La société de location dispose de trois sortes de véhicules : V_1 , V_2 et V_3 dont les tarifs sont respectivement de 500, 800 et 1200 Dirhams pour un voyage.

Les camions V_1 peuvent chacun transporter 1 machine M_1 , 4 machines M_2 et 10 machines M_3 . Pour des raisons techniques la place d'une machine d'un type donné ne peut être utilisée pour une machine d'un autre type. Chaque camion V_2 peut transporter 2 machines M_1 , 6 machines M_2 et 20 machines M_3 . Alors que les véhicules V_3 a pour capacité maximum : 4 machines M_1 , 20 machines M_2 et 24 machines M_3 .

On veut transporter en un seul convoi 30 machines M_1 , 120 machines M_2 et 300 machines M_3 . L'entreprise veut déterminer le nombre de véhicules à louer pour minimiser le coût total de transport.

Donner le modèle linéaire de ce problème sans le résoudre.

Correction 2

Soient x_1 , x_2 et x_3 respectivement les nombres de véhicules V_1 , V_2 et V_3 à louer.

La fonction objective est : min $z = 500x_1 + 800z_1 + 1200x_3$

s/c:

Machines $M_1: x_1 + 2x_2 + 4x_3 \ge 30$ Machines $M_2: 4x_1 + 6x_2 + 20x_3 \ge 120$ Machines $M_3: 10x_1 + 20x_2 + 24x_3 \ge 300$

 $x_1, x_2, x_3 \ge 0$

D'où le programme linéaire est :

min
$$z = 500x_1 + 800x_2 + 1200x_3$$

s.c. $\begin{vmatrix} x_1 + 2x_2 + 4x_3 \ge 30 \\ 4x_1 + 6x_2 + 20x_3 \ge 120 \\ 10x_1 + 20x_2 + 24x_3 \ge 300 \\ x_1 & \ge 0 \\ x_2 & \ge 0 \\ x_3 \ge 0 \end{vmatrix}$

Exercice 3

Un industriel doit livrer trois biens A, B et C à raison de 6 unités de A, 11 unités de B et 23 unités de C. Il dispose de deux facteurs de productions X et Y. L'emploi d'une unité de X permet de réaliser une unité de A, une de B et une de C. Une unité de Y permet de réaliser une unité de A, deux de B et cinq de C. Le prix du facteur X est de 1000 DH l'unité, celui du facteur Y de 4000 DH.

Quelle quantité de chaque facteur l'industriel doit-il utiliser pour satisfaire la demande à un coût minimal? (Modéliser ce problème sous forme d'un programme linéaire).

Correction 3

Soient x et y les quantités des deux facteurs de productions X et Y.

La fonction objective est min z = 1000x + 4000y

s/c :

 $x + y \le 6$ (A) $x + 2y \le 11$ (B)

 $x + 5y \le 23$ (C)

 $x, y \ge 0$

D'où le programme linéaire est :

$$\min z = 1000x + 4000y$$
s.c.
$$\begin{vmatrix} x + & y \le 6 \\ x + 2y \le 11 \\ x + 5y \le 23 \\ x & \ge 0 \\ y \ge 0 \end{vmatrix}$$

Résoudre graphiquement le programme linéaire suivant :

min
$$z = x - y$$

s.c.
$$\begin{vmatrix} x - 3y \le 3 \\ -\frac{1}{2}x + y \le 4 \\ -2x + y \le 2 \\ x \ge 0 \\ y \ge 0 \end{vmatrix}$$

Correction 4

le point optimal graphiquement est de coordonnées :(4/3;14/3) et la valeur optimale est $z = -\frac{10}{3}$

Exercice 5

Résoudre graphiquement le programme linéaire suivant :

$$\max z = x + 3y$$
s.c.
$$\begin{aligned} x + y &\leq 14 \\ -2x + 3y &\leq 12 \\ 2x - y &\leq 12 \\ x &\geq 0 \\ y &\geq 0 \end{aligned}$$

Correction 5

le point optimal graphiquement est de coordonnées :(6;8) et la valeur optimale est z = 30

Exercice 6

Appliquez l'algorithme du Simplexe pour résoudre le problème linéaire suivant :

Correction 6

Forme standard:

Tableau initial:

		Variab	Variables hors base		bles de base	
		x_1	x_2	<i>x</i> ₃	χ_4	
	<i>x</i> ₃	1	2	1	0	3
	<i>x</i> ₄	2	1	0	-1	4
	-z	-1	-1	0	0	0

		Variables hors base		Variable		
		x_1	x_2	<i>x</i> ₃	χ_4	
	x_2	1/2	1	1/2	0	3/2
	x_4	372	0	-1/2	-1	5/2
	-z	-1/2	0	1/2	0	3/2

	Variables hors base		Variable	Variables de base			
	x_1	x_2	x_3	x_4			
x_2	0	1	2/3	1 73	2/3		
x_1	1	0	-1/3	-2/3	5/3		
-z	0	0	1/3	-1/3	7/3		

On est à l'optimum, la solution optimale est $x_1 = 3$, $x_2 = 0$, $x_3 = 0$ et $x_4 = 2$, la valeur optimale est z = 3.

Exercice 7

Résoudre les programmes suivants par la méthode du simplexe :

(1) max
$$z = x_1 + 2x_2$$

s.c. $\begin{vmatrix} x_1 + 3x_2 \le 21 \\ -x_1 + 3x_2 \le 18 \\ x_1 - x_2 \le 5 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{vmatrix}$

(2)
$$\min z = x_1 - 3x_2$$

s.c. $3x_1 - 2x_2 \le 7$
 $-x_1 + 4x_2 \le 9$
 $-2x_1 + 3x_2 \le 6$
 $x_1 \ge 0$
 $x_2 \ge 0$

Correction 7

Solution du problème de maximisation (1):

		Varia	bles hors base	Varia	bles de base	
		x_1	x_2	x_3	x_4	
	<i>x</i> ₄	0	3	2	1	2
	x_1	1	2	1	0	3
_	-z	0	1	1	0	3

On introduit des variables d'écart, ce qui conduit aux équations suivantes pour les contraintes du problème :

$$\begin{cases} x_1 + 3x_2 + x_3 = 21 \\ -x_1 + 3x_2 + x_4 = 18 \\ x_1 - x_2 + x_5 = 5 \\ \text{où } x_i \ge 0 \text{ pour } i = 1; 2 \end{cases}$$

Le premier tableau du simplexe s'écrit : La variable entrante est x_2 qui correspond à l'élément le

			Variables hors base		Var	Variables de base		
			x_1	x_2	<i>x</i> ₃	x_4	x_5	
Se	a)	x_3	1	3	1	0	0	21
/ariables	base	x_4	-1	3	0	1	0	18
Vari	de	<i>x</i> ₅	1	-1	0	0	1	5
			-1	-2	0	0	0	0

plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne de x_2 (colonne entrante) :

$$Min(\frac{21}{3}, \frac{18}{3}) = \frac{18}{3} = 6$$

Donc x_4 est la variable sortante. La ligne de x_4 sert de ligne pivot et on exécute une transformation du pivot autour de la valeur 3 (à l'intersection de la ligne de x_4 et de la colonne de x_2). On obtient le tableau suivant : Maintenant c'est x_1 qui entre et x_3 qui sort car :

		Variable	s hors base	Var	iables o	de base	
		x_1	x_2	<i>x</i> ₃	x_4	x_5	
e es	x_3	2	0	1	-1	0	3
ariables le base	x_2	-1/3	1	0	1/3	0	6
Vari de	<i>x</i> ₅	2/3	0	0	1/3	1	11
	•	-5/3	0	0	2/3	0	12

$$Min(\frac{3}{2}, \frac{11}{2/3}) = \frac{3}{2}$$

Un nouveau pivot autour du nombre 2 (à l'intersection de la ligne de x_3 et de la colonne de x_1) conduit au tableau suivant : Maintenant c'est x_4 qui entre et x_5 qui sort car :

$$Min(\frac{13/2}{1/6}, \frac{10}{2/3}) = \frac{10}{2/3} = 15$$

		Varial	Variables hors base		Variables de base			
		x_1	x_2	x_3	x_4	x_5		
S o	x_1	1	0	1/2	-12	0	3/2	
ariables le base	x_2	0	1	1/6	1/6	0	13/2	
Vari de	<i>x</i> ₅	0	0	-1/3	2/3	1	10	
		0	0	5/6	-1/6	0	29/2	

			Variables hors base		Variat			
			x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	
es	a	x_1	1	0	1/4	0	3/4	9
'ariables	base	x_2	0	1	1/4	0	-1/4	4
Vari	g	x_4	0	0	-1/2	1	3/2	15
, <u>, , , , , , , , , , , , , , , , , , </u>			0	0	3/4	0	1/4	17

Un nouveau pivot autour du nombre 2/3 (à l'intersection de la ligne de x_5 et de la colonne de x_4) conduit au tableau suivant : Ce tableau correspond à l'optimum car il n'y a plus de termes négatifs dans la dernière ligne. On obtient donc comme solution :

$$\begin{cases} x_1 = 9 \\ x_2 = 4 \\ x_3 = 0 \\ x_4 = 15 \\ x_5 = 0 \end{cases}$$

Solution du problème de minimisation (2) :

On transforme le problème en une maximisation en changeant le signe de la fonction objectif : Max $z = -x_1 + 3x_2$

On introduit ensuite les variables d'écart comme ceci :

$$\begin{cases} 3x_1 - 2x_2 + x_3 = 7 \\ -x_1 + 4x_2 + x_4 = 9 \\ -2x_1 + 3x_2 + x_5 = 6 \\ \text{où } x_i \ge 0 \text{ pour } i = 1; 2; 3; 4; 5 \end{cases}$$

Le tableau de départ pour la méthode du simplexe est donc : La variable entrante est x_2 qui corres-

		Variab	Variables hors base		Variables de base			
		x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅		
S o	<i>x</i> ₃	3	-2	1	0	0	7	
iables base	<i>x</i> ₄	-1	4	0	1	0	9	
Vari de l	<i>x</i> ₅	-2	3	0	0	1	6	
,		1	-3	0	0	0	0	

pond à l'élément le plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne de x_2 (colonne entrante) :

$$Min(\frac{9}{4}, \frac{6}{3}) = \frac{6}{3} = 2$$

Donc x_5 est la variable sortante. La ligne de x_5 sert de ligne pivot, on exécute une transformation du pivot autour de la valeur 3 (à l'intersection de la ligne de x_5 et de la colonne de x_2).

Cela conduit au tableau suivant : Cette fois la variable x_1 entre dans la base et la variable x_4 sort

			Variables hors base		Variables de base			
			x_1	x_2	<i>x</i> ₃	x_4	x_5	
es	e	<i>x</i> ₃	5/3	0	1	0	2/3	11
'ariables	base	<i>x</i> ₄	5/3	0	0	1	-4/3	1
Vari	de	x_2	-2/3	1	0	0	1/3	2
			-1	0	0	0	1	6

car:

$$Min(\frac{11}{5/3}, \frac{1}{5/3}) = \frac{3}{5}$$

Le pivot se fait autour de la valeur 5/3 (à l'intersection de la ligne de x_4 et de la colonne de x_1). On obtient alors le tableau suivant : Il n'y a plus de terme négatif dans la dernière ligne et on est donc

		Varia	bles hors base	Var			
		x_1	x_2	x_3	x_4	x_5	
e es	<i>x</i> ₃	0	0	1	-1	2	10
ariables le base	x_1	1	0	0	3/5	-4/5	3/5
Vari de	x_2	0	1	0	2/5	-1/5	12/5
		0	0	0	3/5	1/5	33/5

à l'optimum. La solution est :

$$\begin{cases} x_1 = 3/5 \\ x_2 = 12/5 \\ x_3 = 10 \\ x_4 = 0 \\ x_5 = 0 \end{cases}$$

La deuxième et la troisième contrainte sont saturées. Il ne faut pas oublier de rechanger le signe de la fonction objectif : la valeur à l'optimum est -33/5 (alors que la case inférieure droite du tableau indique 33/5 car ce tableau correspond à la maximisation de -z).

Exercice 8

Une raffinerie de pétrole traite deux sortes de brut pour donner des produits finis avec les rendements suivants :

	Brut 1	Brut 2
Essence	25%	35%
Gasoil	30%	30%
Fuel	45%	35%

Les quotas de production imposent de fabriquer au plus 825 milliers de m^3 d'essence, 750 milliers de m^3 de gasoil et 1065 milliers de m^3 de fuel. La marge bénéficiaire laissée par le traitement du brut 1 est de 3 milliers d'euros par millier de m^3 et celle du brut 2 est de 4 milliers d'euros par millier de m^3 .

Calculer, par la méthode du simplexe, quelles quantités de chaque pétrole il faut traiter pour obtenir un bénéfice maximal.

Correction 8

On désigne par x_1 et x_2 les quantités de brut 1 et 2 qu'il faut traiter. La fonction objectif est la marge totale, qu'il faut maximiser :

Max
$$z = 3x_1 + 4x_2$$

Les contraintes de production s'expriment sous la forme suivante :

$$\begin{cases} 0,25x_1 + 0,35x_2 \le 825 \\ 0,30x_1 + 0,30x_2 \le 750 \\ 0,45x_1 + 0,35x_2 \le 1065 \\ x_1,x_2 \ge 0 \end{cases}$$

qui se simplifient sous la forme suivante :

$$\begin{cases} 5x_1 + 7x_2 \le 16500 \\ x_1 + x_2 \le 2500 \\ 9x_1 + 7x_2 \le 21300 \\ x_1, x_2 \ge 0 \end{cases}$$

Si on note x_3 , x_4 et x_5 les variables d'écart, les contraintes deviennent :

$$\begin{cases} 5x_1 + 7x_2 + x_3 = 16500 \\ x_1 + x_2 + x_4 = 2500 \\ 9x_1 + 7x_2 + x_5 = 21300 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Les tableaux du simplexe sont successivement :

Tableau $1: x_2$ entre et x_3 sort.

			Variables hors base		Vai	iables		
			x_1	x_2	<i>x</i> ₃	x_4	x_5	
Variables	de base	<i>x</i> ₃	5	7	1	0	0	16500
		x_4	1	1	0	1	0	2500
		<i>x</i> ₅	9	7	0	0	0	21300
	'		-3	-4	0	0	0	0

Tableau $2: x_1$ entre et x_4 sort.

<u>Tableau 3</u>: Il n'y a plus de terme négatif dans la dernière ligne et on est donc à l'optimum. La solution est:

$$\begin{cases} x_1 = 500 \\ x_2 = 2000 \\ x_3 = 0 \\ x_4 = 0 \\ x_5 = 2800 \end{cases}$$

		Variable	s hors base	Variab	es de	base	
		x_1	x_2	x_3	x_4	x_5	
e es	x_2	5/7	1	1/7	0	0	16500/7
ariables le base	x_4	2/7	0	-1/7	1	0	1000/7
Vari de	<i>x</i> ₅	4	0	-1	0	1	4800
		-1/7	0	4/7	0	0	66000/7

		Variables hors base		Variab				
			x_1	x_2	<i>x</i> ₃	x_4	x_5	
Variables	de base	x_2	0	1	1/2	-5/2	0	2000
		x_1	1	0	-1/2	7/2	0	500
		<i>x</i> ₅	0	0	1	-1/4	1	2800
			0	0	1/2	1/2	0	9500

La valeur à l'optimum est z=9500. La première et le deuxième contrainte sont saturées : les quotas imposés pour l'essence et le gasoil sont atteints. La troisième présente un écart de 140 (le tableau indique 2800 mais cette contrainte avait été divisée par 20 avant d'être insérée dans le tableau) : cela signifie que le quota de 1065 imposé sur le fuel n'est pas atteint et qu'on fabrique seulement 1065 - 140 = 925 milliers de m^3 de fuel.