

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : H01L 33/00	A1	(11) International Publication Number: WO 95/09444 (43) International Publication Date: 6 April 1995 (06.04.95)
(21) International Application Number: PCT/US94/10781		(81) Designated States: AM, AT, AT (Utility model), AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DE (Utility model), DK, ES, FI, FI (Utility model), GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).
(22) International Filing Date: 23 September 1994 (23.09.94)		
(30) Priority Data: 08/129,856 30 September 1993 (30.09.93) US		
(60) Parent Application or Grant (63) Related by Continuation US Filed on 08/129,856 (CON) 30 September 1993 (30.09.93)		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(71) Applicant (for all designated States except US): UNIVERSAL ELECTRONICS INC. [US/US]; 1864 Enterprise Parkway, Twinsburg, OH 44087 (US).		
(72) Inventor; and (75) Inventor/Applicant (for US only): MOORE, Herbert, J. [US/US]; 717 South Dawn Street, Anaheim, CA 92802 (US).		
(74) Agent: VIGIL, Thomas, R.; Vigil & Hanrath, 836 S. Northwest Highway, Barrington, IL 60010 (US).		

(54) Title: LED ASSEMBLY WITH ENHANCED POWER OUTPUT

(57) Abstract

The remote control includes a light emitting diode assembly (30) having enhanced power output. The diode assembly (30) comprises: a non-electrically conductive base (32); an elongate cathode lead (34) having a proximal portion (38), a distal portion (40) and a distal end (42), the proximal portion (38) having a first cross section and the distal portion (40) having a second cross-section; a light emitting diode chip (46) mounted on the distal end (42) of the cathode lead (34); an anode lead (36) having a cross section less than the cross section of the cathode lead (34); and, a bond wire (50) connecting the anode lead (36) to the light emitting diode chip (46). The proximal portion (38) of the cathode lead (34) and the anode lead (36) are mounted in the base (32).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Larvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

LED ASSEMBLY WITH ENHANCED POWER OUTPUT
BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates to a light emitting diode (LED) assembly which is designed for use in a remote control and which has enhanced power output. More specifically, the LED assembly includes a large cross section cathode lead on the end of which is mounted an light emitting diode chip. The cathode provides both electrical conduction and heat conduction for dissipating heat from the chip, i.e., it acts as a heat sink.

2. Description of the related art.

Heretofore, infrared (IR) light emitting diodes (LEDs) have been used in hand operated remote controls for many years to control consumer entertainment equipment. These hand held remote controls, such as the one described in the Darbee U.S. Patent No. 4,959,810, can be found in most living rooms and are increasingly finding their way into the lifestyle of the American family - controlling everything from entry into the family car to starting the washing machine.

As these hand held remote controls proliferate, more and more demands for excellence in performance are received from users. The performance improvements most often requested, are increases in the range at which the handset will control a given piece of equipment and wider control angles so the user need not point the handset accurately.

To achieve such performance increases, lenses and reflectors have been proposed, but the most viable technique available is to increase the infrared radiation from the light emitting diode. This can be achieved most easily by increasing the forward bias current through the diode. However, as diode forward current increases the diode chip dissipation also increases and it begins to heat up. Heating of the diode chip immediately causes the IR output to decrease and if allowed to continue, will eventually destroy the diode. If the heat can be removed from the chip at a fast enough rate, a stable operating point can be reached where high IR power output is achieved and the diode chip is not over-stressed.

Heretofore it has also been proposed in the nonanalogous laser art to provide heat sinks for laser light emitting

diodes. Several examples of the nonanalogous heat sink assemblies used in laser diode arrays are disclosed in the following nonanalogous U.S. Patents:

	U.S. Patent No.	Patentee
5	4,952,019	Evans et al.
	4,995,687	Nagai et al.
	5,007,700	Albares
	5,181,214	Berger et al.
10	5,195,102	Mc Lean et al.

As will be described in greater detail hereinafter, none of the prior art patents cited above disclose a light emitting diode assembly for use in a remote control where a light emitting diode chip is provided with a heat sink for conducting heat away from the light emitting diode chip thereby to enhance the power output and life of the diode chip. Furthermore, none of the prior art patents cited above disclose a light emitting diode assembly which includes a cathode lead having significant mass and cross-section and which mounts at the end thereof a light emitting diode chip with the cathode lead having significant mass and cross-section thereby to provide a heat sink mass for the diode chip.

SUMMARY OF THE INVENTION

According to the invention there is provided, in a hand held remote control which emits infrared light signals for controlling the operation of a device to be controlled, a light emitting diode assembly having enhanced power output. The diode assembly comprises: a non-electrically conductive base; an elongate cathode lead having a proximal portion, a distal portion and a distal end, the proximal portion having a first cross-section and the distal portion having a second cross section; a light emitting diode chip mounted on the distal end of the cathode lead; an anode lead having a cross-section less than the cross-section of the cathode lead; and, a bond wire connecting the anode lead to the LED diode chip. The proximal portion of the cathode lead and the anode lead are mounted in the base.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a remote control having one or more light emitting diodes constructed according to the teachings of the present invention.

5 FIG. 2 is an enlarged perspective view of a light emitting diode constructed according to the teachings of the present invention.

FIG. 3 is a side elevational view of the diode shown in FIG. 2 and is taken along line 3-3 of FIG. 2.

10 FIG. 4 is a side elevational view of the light emitting diode shown in FIG. 3 and is taken along line 4-4 of FIG. 3.

FIG. 5 is a top plan view of the light emitting diode of the present invention and is taken along line 5-5 of FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 1, there is illustrated therein a remote control 10 which can be of the type disclosed in U.S. Patent No. 4,959,810, the disclosure of which is incorporated herein by reference.

The remote control 10 includes a key pad 12 having a plurality of keys thereon for operating the remote control 10. The remote control 10 is generally rectangular in shape and has a window 14 at one end 16. As shown, three light emitting diodes 21, 22 and 23 are mounted in the window 14.

Referring now to FIG. 2, at least one of (if not all) the diodes 21, 22 or 23 is a light emitting diode assembly 30 constructed according to the teachings of the present invention. The diode assembly 30 includes a non-electrically conductive base 32 mounting a cathode lead 34 and an anode lead 36. The cathode lead 34 has a proximal portion 38 with a first, generally rectangular cross section and a distal portion 40 with a second, varying and larger, generally rectangular cross section. The distal portion 40 flares or tapers outwardly to an outer distal end 42 having a cavity 44 formed therein. The cavity 44 has a smooth reflective surface and has a parabolic shape for reflecting infrared (IR) light in a wide area. A light emitting diode chip 46 is mounted in the cavity 44 as shown in FIG. 1.

The anode lead 36 also has a generally square cross section which is much smaller in area than the cross section of the cathode lead 34 and a distal end 48 thereof is connected by a bond wire 50 to the chip 46.

The proximal portion 38 of the cathode lead 34 has, in cross section, a length of 2.0 mm and a width of 1.0 mm and the distal portion 40 tapers to the distal end 42 which has, in cross section, a length of 2.0 mm and a width of 2.7 mm. The overall length of the cathode lead 34 is approximately 30 mm.

The cathode lead 34 is made of plated copper and, with the above dimensions, has a mass of approximately 5.6 grams. Typically the copper used has a mass of 8.96 gr/cm³.

As shown in FIG's. 2-4, a transparent or translucent globe-shaped or bulb-shaped cover or envelope 52 is mounted on the base 32 over the distal ends 42 and 48 of the cathode and

anode leads 34 and 36, respectively. The cover 52 includes a generally cylindrical portion 54 which extends upwardly to a top, generally semi-spherical portion 56.

From the foregoing description, it will be apparent that 5 the light emitting diode assembly 30 of the present invention has a number of advantages, some of which have been described above and others of which are inherent in the invention.

Also from the foregoing description it will be apparent that modifications can be made to the light emitting diode 10 assembly 30 without departing from the teachings of the invention.

Accordingly the scope of the invention is only to be limited as necessitated by the accompanying claims.

CLAIMS

I Claim:

1. In a remote control of the type which emits infrared light signals for controlling the operation of a device to be controlled, an improved light emitting diode assembly having enhanced power output, said diode assembly comprising:
 - a non-electrically conductive base;
 - an elongate cathode lead having a proximal portion, a distal portion and a distal end, said proximal portion having a first cross-section and said distal portion having a second cross section;
 - said proximal portion being mounted in said base;
 - a light emitting diode chip mounted on said distal end of said cathode lead;
 - an anode lead mounted in said base and having a cross-section less than the cross-section of said cathode lead; and,
 - a bond wire connecting said anode lead to said diode chip.
2. The diode assembly of claim 1 wherein said distal end has a cavity therein in which said diode chip is mounted.
3. The diode assembly of claim 2 wherein said cavity has a reflective surface.
4. The diode assembly of claim 2 or 3 wherein said cavity has a parabolic shape.
5. The diode assembly of any of claims 1 to 4 further including a transparent or translucent cover received on said base and over said distal end of said cathode lead.
6. The diode assembly of claim 5 wherein said cover has a cylindrical portion mounted to said base and a hemispherical portion over said distal end of said cathode lead.
7. The diode assembly of any of claims 1 to 6 wherein said cathode lead distal portion flares outwardly from said proximal portion to said distal end.
8. The diode assembly of any of claims 1 to 7 wherein said second cross section of said cathode lead distal end portion is larger than said first cross section of said proximal portion.
9. The diode assembly of any of claims 1 to 8 wherein said second cross section of said cathode lead distal end is approximately 5.4 square millimeters.
10. The diode assembly of any of claims 1 to 9 wherein the

mass of said cathode lead is approximately 5.6 grams.

11. A light emitting diode assembly having enhanced power output, said diode assembly comprising:

a non-electrically conductive base;

5 an elongate cathode lead having a proximal portion, a distal portion and a distal end, said proximal portion having a first cross-section and said distal portion having a second cross section;

said proximal portion being mounted in said base;

10 a light emitting diode chip mounted on said distal end of said cathode lead;

an anode lead mounted in said base and having a cross-section less than the cross-section of said cathode lead; and,

15 a bond wire connecting said anode lead to said LED diode chip.

12. The diode assembly of claim 11 wherein said distal end has a cavity therein in which said diode chip is mounted.

13. The diode assembly of claim 12 wherein said cavity has a reflective surface.

20 14. The diode assembly of claim 12 or 13 wherein said cavity has a parabolic shape.

15. The diode assembly of any of claims 11, 12, 13 or 14 further including a transparent or translucent cover received on said base and over said distal end of said cathode lead.

25 16. The diode assembly of claim 15 wherein said cover has a cylindrical portion mounted to said base and a hemispherical portion over said distal end of said cathode lead.

17. The diode assembly of any of claims 11 to 16 wherein said cathode lead distal portion flares outwardly from said 30 proximal portion to said distal end.

18. The diode assembly of any of claims 11 to 17 wherein said second cross section of said cathode lead distal end portion is larger than said first cross section of said proximal portion.

35 19. The diode assembly of any of claims 11 to 18 wherein said second cross section of said cathode lead distal end is approximately 5.4 square millimeters.

20. The diode assembly of claim 11 to 19 wherein the mass of said cathode lead is approximately 5.6 grams.

FIG. 1**FIG. 2**

FIG. 3**FIG. 4****FIG. 5**

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 94/10781

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H01L33/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,4 659 170 (JAMES P. WITTKE) 21 April 1987 see column 2, line 21 - line 32; figure 1	11
Y	-----	1,2,5-8, 11,12, 15-18
Y	PATENT ABSTRACTS OF JAPAN vol. 10, no. 221 (E-424) 2 August 1986 & JP,A,61 056 472 (TOSHIBA CORP) 22 March 1986 see abstract	1,2,5-8, 11,12, 15-18

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

5 January 1995

24.01.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo pl.
Fax (+31-70) 340-3016

Authorized officer

De Laere, A

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 94/10781

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 11, no. 41 (E-478) (2488) 6 February 1987 & JP,A,61 207 085 (TOSHIBA CORP) 13 September 1986 see abstract ---	1,7,8, 11,17,18
A	PATENT ABSTRACTS OF JAPAN vol. 7, no. 158 (E-186) (1303) 12 July 1983 & JP,A,58 066 371 (TOKYO SHIBAURA DENKI K.K.) 20 April 1983 see abstract ---	1,7,8, 11,17,18
A	EP,A,0 456 343 (KULICKE AND SOFFA INDUSTRIES INC.) 13 November 1991 see column 3, line 43 - line 56; figure 3 -----	1-5,8, 11-15,18

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US 94/10781

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-4659170	21-04-87	NONE		
EP-A-0456343	13-11-91	US-A-	5083192	21-01-92