Artificial Intelligence Nanodegree Program

Project#2: Build a Forward-Planning Agent

March 11th, 2022

(1) Planning Graph Implementation

→ my_planning_graph.py

(2) Heuristic Implementation

→ my_planning_graph.py

(3) Experimental Results & Report

(a) Analyze the results as a function of domain size, search algorithm, and heuristic.

The number of Search Algorithm is defined as below:

- 1 [["breadth first search", breadth first search, ""],
- 2 ['depth first graph search', depth first graph search, ""],
- 3 ['uniform_cost_search', uniform_cost_search, ""],
- 4 ['greedy_best_first_graph_search',greedy_best_first_graph_search, 'h_unmet_goals'],
- 5 ['greedy_best_first_graph_search',greedy_best_first_graph_search, 'h_pg_levelsum'],
- 6 ['greedy_best_first_graph_search',greedy_best_first_graph_search, 'h_pg_maxlevel'],
- 7 ['greedy best first graph search', greedy best first graph search, 'h pg setlevel'],
- 8 ['astar_search', astar_search, 'h_unmet_goals'],
- 9 ['astar search', astar search, 'h pg levelsum'],
- 10 ['astar search', astar search, 'h pg maxlevel'],
- 11 ['astar_search', astar_search, 'h_pg_setlevel']

The search complexity, search time and the optimality as a function of domain size, search algorithm, and heuristic are shown below.

At first, the chart and table includes data for all search & heuristic combinations for air cargo problems 1 and 2 are shown in the following table and graphs.

problem:	search:	Actions	Expansions	Goal Tests	New Nodes	Time[sec]
1	1	20	43	56	178	0.0019821
1	2	20	21	22	84	0.0014562
1	3	20	60	62	240	0.0031644
1	4	20	7	9	29	0.000539
1	5	20	6	8	28	0.067607
1	6	20	6	8	24	0.045845
1	7	20	6	8	28	0.1876847
1	8	20	50	52	206	0.0041256
1	9	20	28	30	122	0.1641107
1	10	20	43	45	180	0.1729627
1	11	20	33	35	138	0.4482229
2	1	72	3343	4609	30503	0.7303307
2	2	72	624	625	5602	0.891381
2	3	72	5154	5156	46618	1.0463211
2	4	72	17	19	170	0.0064692
2	5	72	9	11	86	1.3747275
2	6	72	27	29	249	2.0938031
2	7	72	9	11	84	5.8654908
2	8	72	2467	2469	22522	0.9359811
2	9	72	357	359	3426	45.6525362
2	10	72	2887	2889	26594	275.793292
2	11	72	1037	1039	9605	448.818569

Before I go to the problem 3 and 4, I selected the following search algorithms:

- One uninformed search:
 - I should select one from No.1, 2, 3.

Action number and Time are not so different, but No.2 has the least Expansions, Goal Tests and New Nodes. It will be better to run with more complicated problems, so <u>I chose No.2 from uninformed search algorithm</u>.

- Two heuristics with greedy best first search:
 - I should select two from No.4, 5, 6, 7.
 - No.4 is much faster than others in problem 1 and 2, so <u>I chose No.4</u>.

There are not so difference between No. 5, 6, 7 in problem 1, but No.5 is faster than No.6, 7 in problem 2, so <u>I chose No.5</u>.

- Two heuristics with A*:
 - I should select two from No.8, 9, 10, 11.

No.10, 11 are much slower than No.8, 9, so I chose No.8, 9.

The chart and table includes data for selected search & heuristic combinations for air cargo problems 3 and 4 are shown in the following table and graphs.

problem:	search:	Actions	Expansions	Goal Tests	New Nodes	Time
3	2	88	408	409	3364	0.301508
3	4	88	25	27	230	0.01062
3	5	88	14	16	126	3.462759
3	8	88	7388	7390	65711	2.5370707
3	9	88	369	371	3403	102.795644
4	2	104	25174	25175	228849	1541.16226
4	4	104	29	31	280	0.0312994
4	5	104	17	19	165	7.9906463
4	8	104	34330	34332	328509	22.5568907
4	9	104	1208	1210	12210	465.553544

(b) Report answers all required questions

I answer the following 3 questions which are written in the rubric.

- Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?
- → I think it's No.4 (greedy_best_first_graph_search, h_unmet_goals) because it's the fastest algorithm in a very restricted domain (project 1, 2).
- Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)
- → I think it's No.4 (greedy_best_first_graph_search, h_unmet_goals) because it's the fastest algorithm in a very large domain (project 3, 4).
- Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?
- → I think it's Greedy Best First Graph Search (No.4, 5) because it not only is fastest but also has smallest Expansions, Goal Tests, New Nodes compared with other algorithms.

It's intuitively understandable as I learned in the Lesson as below.

