

Filtros Digitais

Processamento de Sinais Digitais

Arthur Cadore Matuella Barcella

05 de Maio de 2024

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1. Qu	ıestão 1:	3
	iestão 2:	
_	iestão 3:	
\sim	iestão 4:	
	iestão 5:	
	iestão 6:	

1. Questão 1:

Projete um filtro passa-baixas usando o método da amostragem em frequência que satisfaça a especificação a seguir:

- M = 200
- $\Omega p = 4 \frac{\text{rad}}{c}$
- $\Omega r = 4.2 \frac{\text{rad}}{s}$
- $\Omega s = 10.0 \frac{s}{c}$

2. Questão 2:

Projete um filtro passa-altas usando o método da amostragem em frequência que satisfaça a especificação a seguir:

- M = 52
- $\Omega p = 4 \frac{\text{rad}}{s}$ $\Omega r = 4.2 \frac{\text{rad}}{s}$
- $\Omega s = 10.0 \frac{\text{rad}}{s}$
- Agora aumente o número de amostras, mantendo a paridade e faça suas considerações.

3. Questão 3:

Projete um filtro passa-faixa usando o método da amostragem em frequência que satisfaça a especificação a seguir:

- M = 52
- Ω r1 = 2 $\frac{\text{rad}}{2}$
- Ω p1 = 3 $\frac{s}{\text{rad}}$
- Ω r2 = 7 $\frac{s}{\text{rad}}$
- Ω p2 = 8 $\frac{s}{\text{rad}}$
- $\Omega s = 20.0 \frac{\text{rad}}{\hat{s}}$
- Agora aumente o número de amostras, mantendo sua paridade e faça suas considerações.

4. Questão 4:

Projete um filtro rejeita-faixa usando o método da amostragem em frequência que satisfaça a especificação a seguir:

- M = 52
- Ω r1 = 2 $\frac{\text{rad}}{2}$
- Ω p1 = 3 $\frac{s}{\text{rad}}$
- Ω r2 = $7 \frac{\text{rad}}{2}$
- Ω p2 = 8 $\frac{s}{\text{rad}}$
- $\Omega s = 20.0 \frac{s}{c}$

5. Questão 5:

Projete um filtro passa-faixa tipo III usando o método da amostragem em frequência que satisfaça a especificação a seguir:

- M = 52

- M 32• $\Omega \text{ r1} = 2 \frac{\text{rad}}{s}$ $\Omega \text{ p1} = 3 \frac{\text{rad}}{s}$ $\Omega \text{ r2} = 7 \frac{\text{rad}}{s}$ $\Omega \text{ p2} = 8 \frac{\text{rad}}{s}$ $\Omega s = 20,0 \frac{\text{rad}}{s}$

6. Questão 6:

Projete um filtro passa-baixas usando o método da amostragem em frequência que satisfaça a especificação a seguir

- M = 53

- $\Omega p = 4 \frac{\text{rad}}{s}$ $\Omega r = 4.2 \frac{\text{rad}}{s}$ $\Omega s = 10.0 \frac{\text{rad}}{s}$