

Escuela de Ingeniería y Arquitectura Universidad Zaragoza

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Tema 8 – Escrituras

P. Ibáñez, J.L. Briz, V. Viñals, J. Alastruey, J. Resano Arquitectura y Tecnología de Computadores Departamento de Informática e Ingeniería de Sistemas

Guión del tema

- Escritura en acierto: inmediata y retardada
- Escritura en fallo:
 reserva de contenedor y carga de bloque
- Ejemplo: inicialización de matriz

Políticas de Escritura en Acierto

- Se escribe al mismo tiempo en Cache y Memoria Principal
- Frecuencia de escrituras en Mp muy alta = frecuencia de escrituras de CPU

¿tráfico con Mp?

- Sólo se escribe en Cache
 - Incoherencia con Mp
 - Actualizar Mp al expulsar bloque sucio
 - 1 bit por bloque: D = sucio/limpio
 - Frecuencia de escrituras en Mp baja = frecuencia de reeemplazo de bloques sucios

Tablas de tráfico CB vs. WT

■ CB

	CPU	Мс	Мр
rh			
rm			
wh		(S);	7
wm		?	

WT

•			
	CPU	Mc	Мр
rh			
rm		- 3 +	000
wh			
wm		?	

- El tráfico está relacionado con el consumo de energía.
- Pero en cuanto a prestaciones, no existe una relación clarísima ...

Políticas de escritura en fallo

		¿Qué hago con el bloque x?		
		Cargar x en Mc	No cargar x en Mc	
		Fetch on write-miss	No Fetch on write-miss	
¿Qué hago con el bloque víctima u?	Reemplazo u write Allocate	[1º acción reemplazo] 2º leer bloque x de Mp 3º escribir palabra x' en Mc	[1º acción reemplazo] 2º escribir palabra x' en Mc bit validez/palabra	
		AF = convencional	ANF = write validate	
	No Reemplazo u	NO es posible	Escribir palabra x' en Mp sin traer nada a Mc	
	No write Allocate		NANF = write around	

■ Las 3 posibilidades pueden funcionar con write-back o write-through

Tablas de tráfico Convencional (i)

Tablas de tráfico Write Around (ii)

Tablas de tráfico Write Validate (iii)

Ejemplo: inicialización de matriz

- Medida de prestaciones: tráficos CPU-Mc-Mp
 - 4 elementos por bloque

```
for (i = 0; i < max; i++)
  for (j = 0; j < max; j++)
    A[i][j] = 0;</pre>
```

Calculad tráficos de

- CB+AF
- WT+NANF
- CB+ANF