Math 697: MIDTERM

Problem 1 (General random walk on $\{0, \dots, N\}$) Let X_n be a Markov chain on the state space $\{0, \dots, N\}$ with a transition probabilities

$$p(0,0) = q_0, \ p(0,1) = p_0$$

$$p(j,j-1) = q_j, \ p(j,j) = r_j, \ p(j,j+1) = p_j, \ j = 1,\dots, N-1$$

$$p(N,N-1) = q_N, \ p(N,N) = p_N,$$

$$(1)$$

with $p_0 + q_0 = p_N + q_N = 1$ and $p_j + r_j + q_j = 1$ for $j = 1, \dots, N-1$ and we assume that $p_j > 0$ and $q_j > 0$ for all j.

1. Show that the Markov chain X_n satisfies detailed balance, i.e., show that there exists positive number $\nu(0), \dots, \nu(N)$ such that

$$\nu(i)p(i,j) = \nu(j)p(j,i).$$

Use this to give a formula for the stationary distribution for x_n in terms of the p_j 's, q_j 's and r_j 's.

2. Consider the following Markov chain. An urn contains N balls which are either white or black. At each step one picks a ball in the urn at random and it is replaced with probability p by a white ball and with probability 1-p by a black ball. Let X_n denotes the number of white balls after n steps. Compute the transition probabilities and the stationary distribution.

Problem 2 Let X_n be a positive recurrent Markov chain on the state space S with stationary distribution π . Consider the stochastic process $Y_n = (X_n, X_{n+1})$ with state space $S \times S$.

- 1. Show that Y_n is a Markov chain.
- 2. Compute the transition probabilities and the stationary distribution of Y_n .
- 3. Consider the Markov chain with state space 1, 2, 3 and transition probability

$$P = \begin{pmatrix} 1/2 & 1/6 & 1/3 \\ 1/2 & 1/4 & 1/4 \\ 2/3 & 1/3 & 0 \end{pmatrix}$$

Compute the long run proportion of steps for which $X_{n+1} \geq X_n$.

Problem 3 (Partially observed Markov chains) Let X_n be an irreducible Markov chain with a finite state space S and transition matrix P = (p(i,j)). Let T be a subset of states, $T \subset S$, $T \neq S$. Let ν_j , $j \geq 0$, denote the successive times at which the Markov chain visits one of the states in T, i.e.

$$\nu_0 = \inf \{ n \ge 0 : X_n \in T \} ,$$

$$\nu_1 = \inf \{ n > \nu_0 : X_n \in T \} ,$$

$$\vdots$$

Define a new stochastic process Y_j with state space T which is given by

$$Y_j = X_{\nu_i}$$
.

You can think of this process as follows: you can only observe X_n only if X_n is in one of the states in T. Moreover you don't have a watch and thus have no way to keep track of the time elapsed between successive visits to T.

- 1. Show Y_j is a Markov process.
- 2. Reordering the state if necessary we can assume that the transition matrix has the form as

$$P = \begin{array}{cc} T & \left(\begin{array}{cc} R & U \\ S & Q \end{array} \right)$$

Let $D = (d_{ij})$ be the transition matrix for the Markov chain Y_j , i.e. $d_{ij} = P\{Y_1 = j \mid Y_0 = i\}$ for $i, j \in T$. Compute the matrix D in terms of the matrix R, U, S, Q.

- 3. Suppose that the Markov chain X_n has a stationary distribution $\pi = (\pi(1), \dots, \pi(N))$. What is the stationary distribution for the Markov chain Y_n .
- 4. Compute

$$\lim_{k\to\infty}\frac{\nu_k}{k}.$$