

Heat transfer in e-motorbike's battery pack

Overview of model

This use-case example presents how to perform simulation of heat transfer in a e-motorbike's battery pack in Q-Bat software.

The model consists of 102 Li-ion 21700 cells (17s6p), terminals, connectors, holders and casing.

Current profile, boundary and initial conditions are selected to simulate e-motorbike riding in the city in India during a summer day.

Model assembly

- All components are aggregated in one assembly and contact regions between tchem are created.
- To simulate thermal pad the contact conductivity and the contact thickness are specifed.

Thermal model

- Heat generated uniformly across cell volume
- A domain of air inside the casing is modelled as a passive heat component with artificial deflation of its thermal conductance
- Robin boundary condition is assigned to the casing outer boundaries.

Electric circuit

- 17 cells connected in series and 6 cells in paralel
- Heat generation is set by specifying the electrical properties of the cell (capacity, voltage, resistance) and applied current load, that varies in time
- Cells are modelled as R circuits
- Heat is generated as uniform distribution in the cell

Prototype properties

 Material properties of the cells and heat comoponents are defined in an Excel spreadsheet

Part	rho	ср	λφ	λ r	λz
Cell	2700	1280	28.05	3.4	28.05
			λx	λγ	λz
Casing	1055	1300	0.185	0.185	0.185
Connector	890	385	397	397	397
Holder	1055	1300	0.185	0.185	0.185
Terminal	2690	901	238	238	238

Summary

The model consists:

- 9 prototypes,
- 229 components,
- 815 581 mesh elements,
- 614 contacts regions.

The simulation time is only **12 minutes**.

Learn more

- Q-Bat is a MATLAB-based product for real-time battery thermal simulation in 3D with CFD-like accuracy. Its main features are:
 - Near real-time execution
 - Accurate 3D data of battery temperature distribution
 - The capability of exporting the model to the Simulink
 - Fast model definition via dedicated GUI and TUI.
- To learn more:
 - QuickerSim https://emobility.quickersim.com/
 - Q-Bat product page
 https://www.mathworks.com/products/connections/product
 _detail/quickersim-q-bat.html
- For a free Q-Bat lite license, visit QuickerSim licensing website https://licensing.quickersim.com/
- To get full version trial write to <u>q-bat@quickersim.com</u>

