

La poule qui chante Etude de marché

Hello! Je suis Lokman

Je suis data analyst pour La poule qui chante...

Le contexte

La poule qui chante est une entreprise française qui commercialise de la viande de volaille, elle souhaite s'étendre à l'internationale.

Ma mission

Trouver le ou les pays les plus propices à cette expansion en considérant plusieurs facteurs

Ma méthode

Je vais faire le tour du monde !

Ol Tour du monde

1. Population

La Chine :

1,4 Milliard d'habitant en 2017

1. Population

2. Croissance démographique

L'Inde :

- 1,35 Milliards d'habitants en 2017
- Augmentation de la population de 9% entre 2010 et 2017

Population
 Croissance démographique

3. Disponibilité alimentaire

Le Brésil :

- 208 Millions d'habitants en 2017
- Augmentation de la population de 7% entre 2010 et 2017
 - 55kg par personne par an

1. Population

Croissance démographique
 Disponibilité alimentaire

4. PIB par habitant

Les Etats Unis:

- 329 Millions d'habitants en 2017
- Augmentation de la population de 6% entre 2010 et 2017
 - 50kg par personne par an
 - 60 000\$ de PIB par habitant

1. Population

2. Croissance démographique3. Disponibilité alimentaire4. PIB par habitant

5. Importation

Le Mexique:

- 122 Millions d'habitants en 2017
- Augmentation de la population de 8% entre 2010 et 2017
 - 33kg par personne par an
 - 20 000\$ de PIB par habitant
- 972 000 tonnes de viande de volaille importées par an

Population
 Croissance démographique
 Disponibilité alimentaire
 PIB par habitant

5. Importation

6. Dépendance à l'importation

L'Arabie Saoudite :

- 34 Millions d'habitants en 2017
- Augmentation de la population de 14% entre 2010 et 2017
 - 38kg par personne par an
 - 47 000\$ de PIB par habitant
 - 744 000 tonnes de viande de volaille importées par an
 - 1,37 points d'indice de dépendance à l'importation

1. Population

- 2. Croissance démographique
 3. Disponibilité alimentaire
 4. PIB par habitant
 5. Importation
- 6. Dépendance à l'importation

7. Stabilité

Le Japon :

- 126 Millions d'habitants en 2017
- Stagnation de la population entre
 2010 et 2017
 - 18kg par personne par an
 - 41 000\$ de PIB par habitant
- 1 000 000 de tonnes de viande de volaille importées par an
- 0,48 points d'indice de dépendance à l'importation
- 1,11 points d'indice de stabilité politique

Population
Croissance démographique
Disponibilité alimentaire
PIB par habitant
Importation
Dépendance à l'importation
Stabilité


```
rror_mod = modifier_ob.
mirror object to mirror
irror_mod.mirror_object
peration == "MIRROR_X":
urror_mod.use_x = True
rror mod.use = False | |
operation == "MIRROR Y"
rror_mod.use_x = False =
rror_mod.use_y = True
rror_mod.use_z = False
peration == "MIRROR Z"
rror_mod.use_x = False
rror_mod.use_y = False
rror_mod.use_z = True
election at the end -ad
ob.select= 1
er_ob.select=1
ntext.scene.objects.action
"Selected" + str(modified
irror_ob_select = 0
                                      -0
bpy.context.selected_obje
ata.objects[one.name].se
Int("please select exact)
- OPERATOR FLASSES
types.Operator):
X mirror to the selected
ror X"
           linct it not
```

O2 Clustering

Un peu de théorie :

Les méthodes de clustering sont un type d'analyse de données qui vise à regrouper des données en groupes ou « clusters ». Ces groupes partagent des caractéristiques communes et se distinguent des autres.

Classification Ascendante Hiérarchique

La Classification Ascendante Hiérarchique (CAH) consiste à regrouper des données en un certain nombre de groupes hiérarchiques selon des critères prédéfinis.

Algorithme K-means

La méthode K-Means est une méthode couramment utilisée de clustering, qui se concentre sur les groupes de données qui partagent le même centre.

Analyse en Composante Principale

Enfin, l'Analyse en Composantes Principales (ACP) est une méthode utilisée pour extraire des informations intéressantes à partir de grandes quantités de données. Elle réduit la dimension des données afin d'identifier les variables corrélées.

rror_mod = modifier_ob mirror object to mirror rror_mod.mirror_object peration == "MIRROR_X": urror_mod.use_x = True Lrror mod.use = False | | operation == "MIRROR Y" rror_mod.use_x = False rror_mod.use_y = True rror_mod.use_z = False peration == "MIRROR_Z" rror_mod.use_x = False rror_mod.use_y = False rror_mod.use_z = True election at the end -ad ob.select= 1 er ob.select=1 ntext_scene.objects.action "Selected" + str(modified irror_ob_select = 0 -0 bpy.context.selected_obje ata.objects[one.name],sel Int("please select exact OPERATOR FLASSES types.Operator): X mirror to the ror X" Linct it not

Classification Ascendante Hiérarchique

Classification Ascendante Hiérarchique Dendrogramme

Choix de découper nos individus en 5 classes distinctes (repère rouge)

Classification Ascendante Hiérarchique

Dendrogramme 5 classes

Affichage des 5 clusters obtenus

- Clusters déséquilibrés
 - Entre 1 et 93 pays
- L'Inde est un cluster

Analyse des classes

Visualisation des distributions en boxplot de chaque variable par classe

Classe 1

Pays très gros producteurs et exportateurs de viande de volaille

Classe 2

Pays riches stables qui consomment et importent de la viande de volaille en quantité

Classe 3

Pays qui consomment mais n'exportent et n'importent pas

Classe 4

Pays pauvres qui consomment peu mais dépendent beaucoup des importations

Classe 5

Inde, pays très peuplé producteur mais pas importateur

Classification Ascendante Hiérarchique Classement des pays

Création d'un score à partir des valeurs pondérées de chaque variable

	pays	score
0	Japon	59.705019
1	Mexique	54.530161
2	Allemagne	48.238815
3	Royaume-Uni de Grande-Bretagne et d'Irlande du	45.718630
4	Arabie saoudite	42.088397
5	Indonésie	39.959683
6	Émirats arabes unis	38.605685
7	France	35.672071
8	Pays-Bas (Royaume des)	34.765680
9	Fédération de Russie	34.746038
10	Afrique du Sud	34.682957
11	Chine - RAS de Macao	29.737881
12	Canada	27.351340
13	Koweït	26.904297
14	Espagne	24.918073
15	Belgique	24.110028
16	République de Corée	23.561802
17	Grenade	22.981591
18	Australie	22.507534
19	Italie	22.329417

```
rror_mod = modifier_ob.
mirror object to mirror
Lrror_mod.mirror_object
peration == "MIRROR_X":
Lrror_mod.use_x = True
rror mod.use = False | |
operation == "MIRROR Y"
rror_mod.use_x = False =
rror_mod.use_y = True
rror_mod.use_z = False
peration == "MIRROR Z"
rror_mod.use_x = False
rror_mod.use_y = False
rror_mod.use_z = True
election at the end ad
ob.select= 1
er_ob.select=1
ntext, scene.objects.action
"Selected" + str(modified
irror_ob_select = 0
                                      -0
bpy.context.selected_ob
ata.objects[one.name],sel
Int("please select exact)
- OPERATOR CLASSES
types.Operator):
X mirror to the selected
ror X"
           light is not
```

Algorithme K-means Algorithme K-means

Détermination de K

La recherche de K détermine le nombre de clusters de notre analyse

Coefficient de silhouette

Le coefficient de silhouette mesure la similarité de chaque point de données d'un cluster par rapport aux autres clusters.

Nous retenons la valeur la plus élevée dans une sélection entre 2 et 10, ici k=5

Méthode du coude

En traçant la courbe de l'inertie intra-classe en fonction de k, nous cherchons alors à identifier les étapes où l'on observe une rupture dans la décroissance de cette courbe.

Cette courbe ne nous renseigne pas car aucun coude se forme dans notre courbe

Algorithme K-means

Détermination de K

La recherche de K détermine le nombre de clusters de notre analyse

Coefficient de silhouette

Le coefficient de silhouette mesure la similarité de chaque point de données d'un cluster par rapport aux autres clusters.

Nous retenons la valeur la plus élevée dans une sélection entre 2 et 10, ici k=5

Méthode du coude

En traçant la courbe de l'inertie intra-classe en fonction de k, nous cherchons alors à identifier les étapes où l'on observe une rupture dans la décroissance de cette courbe.

Cette courbe ne nous renseigne pas car aucun coude se forme dans notre courbe

Analyse des classes

Visualisation des distributions en boxplot de chaque variable par classe

Classe k0

Pays qui consomment mais n'exportent et n'importent pas

Classe k1

Pays pauvres et instables qui n'importent et n'exportent pas

Classe k2

Pays très gros producteurs et exportateurs de viande de volaille

Classe k3

Pays riches et stables qui consomment et importent de la viande de volaille en quantité

Classe k4

Inde, pays très peuplé producteur mais pas importateur

Algorithme K-means

Classement des pays

Création d'un score à partir des valeurs pondérées de chaque variable

Comparaison avec le classement de la méthode précédente

Algorithme K-means

	pays	score
0	Japon	71.202769
1	Mexique	63.473552
2	Allemagne	54.947325
3	Royaume-Uni de Grande-Bretagne et d'Irlande du	50.621130
4	Fédération de Russie	46.025948
5	Arabie saoudite	42.775178
6	France	40.265552
7	Émirats arabes unis	38.345245
8	Afrique du Sud	37.919885
9	Pays-Bas (Royaume des)	35.624187
10	Canada	30.258330
11	Chine - RAS de Macao	29.603731
12	Espagne	27.839655
13	République de Corée	27.078680
14	Italie	26.563122
15	Koweït	25.404849
16	Australie	24.046061
17	Belgique	23.852227
18	Argentine	22.874467
19	Grenade	22.316505

Classification Ascendante Hiérarchique

	pays	score
0	Japon	59.705019
1	Mexique	54.530161
2	Allemagne	48.238815
3	Royaume-Uni de Grande-Bretagne et d'Irlande du	45.718630
4	Arabie saoudite	42.088397
5	Indonésie	39.959683
6	Émirats arabes unis	38.605685
7	France	35.672071
8	Pays-Bas (Royaume des)	34.765680
9	Fédération de Russie	34.746038
10	Afrique du Sud	34.682957
11	Chine - RAS de Macao	29.737881
12	Canada	27.351340
13	Koweït	26.904297
14	Espagne	24.918073
15	Belgique	24.110028
16	République de Corée	23.561802
17	Grenade	22.981591
18	Australie	22.507534
19	Italie	22.329417

```
rror_mod = modifier_ob.
mirror object to mirror
irror_mod.mirror_object
peration == "MIRROR_X":
Lrror_mod.use_x = True
rror mod.use = False | |
operation == "MIRROR_Y"
rror_mod.use_x = False =
rror_mod.use_y = True
rror_mod.use_z = False
peration == "MIRROR Z"
rror_mod.use_x = False
rror_mod.use_y = False
rror_mod.use_z = True
election at the end -ad
ob.select= 1
er ob.select=1
ntext.scene.objects.action
"Selected" + str(modified
irror_ob_select = 0
                                      -0
bpy.context.selected_ob
ata.objects[one.name].se
Int("please select exact
OPERATOR CLASSES
types.Operator):
X mirror to the selected
rror X"
            Linct it not
```

Analyse en Composantes Principales

Analyse en Composantes Principales

Le nombre de composantes à conserver est déterminé en analysant l'éboulis des valeurs propres obtenu à partir de l'analyse en composantes principales. Les valeurs les plus importantes sont celles qui expliquent le plus la variabilité.

Eboulis

lci, la variance est distribuée de manière équitable.

Composantes

Nombre de composantes sélectionnées : 4

Cercle de corrélations

Le cercle de corrélations permet de visualiser les coefficients de corrélation entre les variables et les 4 composantes principales appelées F1 F2 F3 et F4. Il permet aussi de repérer les variables corrélées entres elles.

F1 et F2

La production et l'exportation sont fortement corrélées sur les 2 premières composantes. La population et l'importation aussi à moindre mesure.

F3 et F4

L'importation et le PIB par habitant sont fortement correlées sur les 2 composantes suivantes.

Projection des individus par classe

Le but est de visualiser les individus dans un système à 2 dimensions pour mieux comprendre l'organisation des données. Il est possible d'évaluser la force des corrélations entre les individus et les variables à travers les composantes.

Classes CAH

Les classes 4 et 5 dépendent des composantes 0 et 1 & les classes 1 et 5 dépendent des composantes 2 et 3

Classes K-means

Les classes 4 et 1 dépendent des composantes 0 et 1 & les classes 3 et 4 dépendent des composantes 2 et 3

Projection des classes CAH

Projection des classes K-means

Projection des individus

Les USA, le Brésil ou la Chine dépendent des composantes F1 et F2 & la Chine, le Congo, ou le Mexique dépendent des composantes F3 et F4

O3 Conclusion

Plusieurs clusters géographiques ont été repérés

#1 Europe

le cluster le plus propice à une internationalisation est le cluster européen, avec en tête l'Allemagne et le Royaume Unis qui obtiennent un excellent score

#2 Moyen-Orient

Le cluster est composé de l'Arabie Saoudite et des Emirats Arabes Unis, c'est un cluster intéressant de par la proximité

#3 Asie

En Extrême Orient, nous avons un cluster composé du Japon qui obtient le score le plus élevé, et de la Corée du Sud

#4 Amérique du Sud

Enfin L'amérique du Sud composé du Mexique avec un excellent score et de l'Argentine

Merci! C'était Lokman

Data analyst pour La poule qui chante...