

数字逻辑 04 组合线路分析

卡诺图化简和组合线路基础

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

1.课程目标

1. 目标

- 1. 熟练掌握逻辑函数的卡诺图化简方法
- 2. 掌握组合线路分析方法

2.课程内容

任两个相邻单元可以形成一个圆, 消去一个变量

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				1
$\overline{A}B$				
AB		1	1	
$A\overline{B}$				1

$$F_1 = AB\overline{C}D + ABCD$$

$$= ABD$$
(1)

$$F_{2} = \overline{A}\overline{B}C\overline{D} + A\overline{B}C\overline{D}$$

$$= \overline{B}C\overline{D}$$
(2)

$$F = F_1 + F_2$$

$$= ABD + \overline{B}C\overline{D}$$
(3)

任四个相邻单元可以形成一个圆,消去两个变量

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$		1	1	
AB		1	1	
$A\overline{B}$				

$$F = AB\overline{C}D + ABCD + \overline{A}B\overline{C}D + \overline{A}BCD$$

$$= \overline{A}B(\overline{C}D + CD) + AB(\overline{C}D + CD) \qquad (4)$$

$$= BD$$

任八个相邻单元可以形成一个圆, 消去三个变量

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$		1	1	
$\overline{A}B$		1	1	
AB		1	1	
$A\overline{B}$		1	1	

$$F = D \tag{5}$$

几个概念

- 蕴涵项: F表示为积之和式,则任一乘积项称为蕴含项。
- 素项: 某蕴涵项不是其他蕴涵项的子集,则为素项。
- 实质素项:某一函数的素项所包含的至少一个最小项不是其他任何素项的 子集。

举例说明一下

$$F = \sum (0, 5, 7, 8, 9, 10, 14, 15) \tag{6}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	0			
$\overline{A}B$		5	7	
AB			15	14
$A\overline{B}$	8	9	11	10

$$A = \sum (0,8)$$

$$B = \sum (5,7)$$

$$C = \sum (7,15)$$

$$D = \sum (10,11,14,15)$$

$$E = \sum (8,9,10,11)$$

$$F = \sum (8,9)$$

$$G = \sum (10,11)$$

$$H = \sum (14,15)$$

卡诺图化简步骤

- 作出卡诺图,找出全部素项。
- ▶ 找出实质素项。
- ▼ 求出最简素项集(保证覆盖所有最简项)。

例 1 使用卡诺图化简逻辑函数

$$F(A, B, C) = \sum (0, 1, 2, 4, 5, 7)$$
 (7)

$$F = \overline{B} + AC + \overline{A}\overline{C}$$

例 2 使用卡诺图将下式化简为最简或与式

$$Y = \prod (4, 5, 6, 7, 9, 11) \tag{8}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$	4	5	7	6
AB				
$A\overline{B}$		9	11	

$$\overline{Y} = \sum (4, 5, 6, 7, 9, 11)$$

对其进行化简:
 $\overline{Y} = \overline{A}B + A\overline{B}D$
应用德摩根定理:
 $Y = (A + \overline{B})(\overline{A} + B + \overline{D})$

例 3 使用卡诺图进行化简

$$F(A,B,C,D) = \sum_{i} (0,2,3,5,6,8,9,10,11,12,13,14,15)$$
(9)

$$F = A + C\overline{D} + \overline{B}C + \overline{B}\overline{D} + B\overline{C}D$$

我们来总结一下

- 画出卡诺图
- 先画大圈,再画小圈,直到所有的内容都覆盖
- 根据每一个圈、写出化简后的表达式

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$				
AB	1	1	1	1
$A\overline{B}$	1	1	1	1

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1	1	1	1
$\overline{A}B$	1	1	1	1
AB				
$A\overline{B}$				

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1	1		
$\overline{A}B$	1	1		
AB	1	1		
$A\overline{B}$	1	1		

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$			1	1
$\overline{A}B$			1	1
AB			1	1
$A\overline{B}$			1	1

	$\overline{C}\overline{D}$	$\overline{C}D$		CI)	$C\overline{D}$
$\overline{A} \overline{B}$		1		1	1	
$\overline{A}B$		1	L	1	ı	
AB		1	L	1		
$A\overline{B}$		1		1		

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$				
$\overline{A}B$	1	1	1	1
AB	1	1	1	1
$A\overline{B}$				

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1			1
$\overline{A}B$	1			1
AB	1			1
$A\overline{B}$	1			1

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$	1	1	1	1
$\overline{A}B$				
AB				
$A\overline{B}$	1	1	1	1

四个连在一起的情况

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$		$\overline{C}\overline{D}$	$\overline{C}D$	CD
$\overline{A} \overline{B}$	1				$\overline{A} \overline{B}$	1	1	1
$\overline{A}B$	1				$\overline{A}B$			
AB	1				AB			
$A\overline{B}$	1				$A\overline{B}$			

 $C\overline{D}$

四个连在一起的情况

	$\overline{C}\overline{D}$		$\overline{C}D$		CD	$C\overline{D}$
$\overline{A} \overline{B}$		1	1			
$\overline{A}B$		1	1			
AB						
$A\overline{B}$						

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1		
$\overline{A}B$				
AB				
$A\overline{B}$	1	1		

四个连在一起的情况

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$		$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \overline{B}$					$\overline{A} \overline{B}$	1			1
$\overline{A}B$	1			1	$\overline{A}B$				
AB	1			1	AB				
$A\overline{B}$					$A\overline{B}$	1			1

化简结果并不唯一

	$\overline{B}\overline{C}$	$\overline{B}C$	BC	ВC
\overline{A}		1	1	1
A	1	1		1

卡诺图化简的优势

- 简单,直观
- 能够得到最简形式

卡诺图化简的劣势

- 操作步骤繁琐,慢
- 适用于 4 个变量以下(五个变量以上会比较复杂)

基本概念

- 源极 (S)、栅极 (G)、漏极 (D)
- 栅极为高电位时,源极和漏极之间导通,为低阻抗
- 栅极为低电位时,源极和漏极之间截止,为高阻抗

与门

- A、B任一输入端为低电位,则 T₁ 和
 T₂必有一个截止状态,G₃点为高电位,
 T₃导通,输出 F为低电位。
- \blacksquare A、B 输入端均为为高电位,则 T_1 和 T_2 管均导通, G_3 点为低电位, T_3 截止,输出 F 为高电位。

或门

- A 或 B 为高电位时, T_1 或 T_2 有一个管导通, G_3 点位低电位, T_3 管截止,输出 F 为高电位。
- A 和 B 全为低电位时, T_1 、 T_2 管截止, G_3 点位高电位, T_3 管导通,输出 F 为低电位。

非门

- A 为高电位时, T_3 管导通,输出 F 为 低电位。
- ightharpoonup A 为低电位时, T_3 管截止,输出 F 为 高电位。

2. 组合线路分析 2.门电路的主要外特性参数

- 标称逻辑电平: 电路中表示 0、1 的理想电平值为标称逻辑电平
- ightharpoons 关门电平 V_{OFF} : 保证输出为标准低电平的最大输入低电平值(关门电平表示"0"的最大低电平值)
- 开门电平 V_{ON}: 保证输出为标准高电平的最小输入高电平值(开门电平表示"1"的最小高电平值)
- 扇入系数 N_R 是门电路允许的输入端数目,一般小于 8
- 扇出系数 N_C 是门电路能与下一级多少个输入端相连

与门

或门

非门

与非门

或非门

异或门

2. 组合线路分析 4.组合线路的分析方法

组合线路分析,就是确定给定组合线路的输出与输入之间的关系,进而判断该线路的 逻辑功能。

- 给定组合线路
- 列写逻辑表达式
- 列真值表
- 指出线路的逻辑功能
- 对线路的评价与改进

2. 组合线路分析 4.组合线路的分析方法

试用列写逻辑表达式法分析下面逻辑电路的功能。

1. 写出逻辑表达式 $F_1 = \overline{AB} = A\overline{B}$ $F_2 = A + \overline{B} = \overline{AB}$

2. 组合线路分析 4.组合线路的分析方法

试用列写逻辑表达式法分析下面逻辑电路的功能。

1. 写出逻辑表达式

$$F_1 = \overline{\overline{AB}} = A\overline{B}$$

 $F_2 = A + \overline{B} = \overline{AB}$
2. 写出真值表

Α	В	F_1	F_2
0	0	0	0
0	1	0	1
1	0	1	0
1	1	0	0

2. 组合线路分析 4.组合线路的分析方法

试用列写逻辑表达式法分析下面逻辑电路的功能。

3. 分析功能 电路的功能为判 A、B 的大小,A=B,*F*₁*F*₂ 为 00; A<B, *F*₁*F*₂ 为 01; A>B, *F*₁*F*₂ 为 10

3.课堂练习

1. 问题

使用卡诺图化简下列逻辑函数为最简积之和式

- $F = \sum (0, 1, 2, 4, 5, 7)$
- $F = \sum (2, 3, 6, 7, 8, 10, 12, 14)$

2. 答案

化简后的结果

$$\mathbf{F} = \overline{\mathbf{B}} + \mathbf{AC} + \overline{\mathbf{A}}\overline{\mathbf{C}}$$

$$\mathbf{F} = \overline{\mathbf{A}}\mathbf{C} + \mathbf{A}\overline{\mathbf{D}}$$

4.课堂讨论

1. 问题

在海大好声音的例子中,如果改变一下规则:如果学员要通过,必须要求两个以上的导师通过,并且其中至少要包含刘老师,根据学习过的编码规则和卡诺图化简原理,有什么方法能让最终的线路更加简单吗?

可以使用德摩根定理证明最大项和最小项表达式之间的关系吗?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

6.作业

1. 题目

使用卡诺图化简下列逻辑函数为最简积之和式(4分)

 $F = \sum (0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14)$

● 注意

- 1、先画出正确的卡诺图
- 2、在卡诺图上画圈后,依次写出表达式

问答环节