Büyük O Notasyonu (Big O Notation)

Algoritma Analizi Nedir

- Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla karşılaştırmak isteyebilirsiniz.
- Burada teknik olarak değerlendirilecek başlıca iki başlık söz konusudur.
- Birincisi algoritmaların bellek kullanım miktarı, ikincisi ise algoritmaların hesaplama yapmak için harcadığı süredir.
- Mesela bir algoritma aynı işi yapan diğer bir algoritmadan daha hızlı çalışmasına rağmen çoğu bilgisayar için bellek aşımı gerçekleştiriyorsa bu pek uygun olmayacaktır.

Algoritma Analizi Nedir

- Elbette diğer algoritmalarla karşılaştırma yapmak yerine, bir algoritmanın tek başına analizi de yapılabilir.
- Bunun için algoritmalar tek tek çalıştırılıp üzerinde hız ve bellek testi yapılabilir.
- Ama bu işlem hem zaman açısından sıkıntı yaratır hem de elde edilen veriler donanımsal ve sistemsel değişikliklerden dolayı bilimsel olmaz.(Bu gibi işlemleri performans testi olarak da düşünebiliriz).

Algoritma Analizi Nedir

- Bu durumda matematiksel olarak ifade edebileceğimiz, donanımsal ve sistemsel bağımlılığı olmayan bir yönteme ihtiyacımız olacaktır.
- Bu yöntemle algoritmamıza girdi olarak verilen verilerin miktarına bağlı olarak sonuçlar üretiriz.
- İşte elde edilen bu sonuçlar ilgili algoritmanın *karmaşıklığı* olarak tanımlanır.
- Bir algoritmanın karmaşıklığı performansını etkiler ama karmaşıklık ile performans farklı kavramlardır.

- O notasyonu ilk olarak 1894 yılında Alman matematikçi Bachmann tarafından kullanılmış ve Landau tarafından da yaygınlaştırılmıştır.
- Bu yüzden adına Landau notasyonu veya Bachmann–Landau notasyonu da denmektedir.
- Algoritmanın en kötü durum analizini yapmak için kullanılan notasyondur. Matematiksel olarak şöyle tanımlanır:

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

 $|f(x)| < C^*|g(x)|$ dir ve $f(x) \in O(g(x))$ şeklinde gösterilir. Burada C ve k sabit sayılardır ve x'ten bağımsızdırlar.

$$|5x^3 - 2x^2 + 3| \le 5x^3 + |2x^2| + 3$$

 $\le 5x^3 + 2x^3 + 3x^3$
 $\le 10x^3$
 $\le 10|x^3|$

Burada k = 1 (x'in 1'den büyük olduğu tüm durumlarda) ve C = 10 olarak alınmıştır.

- Sabit zamanlı ifadeler O(1) ile gösterilirler. Örnek, atama işlemleri.
- if else ifadelerinde, ifadenin if veya else bloğundaki hangi ifade karmaşıklık olarak daha büyükse O fonksiyonu o değeri döndürür. (Çünkü biliyorsunuz ki O fonksiyonu her zaman en kötü durumu analiz eder) Yani bunu şöyle ifade edebiliriz:

Maks (if ifadesinin çalışma zamanı, else ifadesinin çalışma zamanı)

Örneğin if bloğu içi O(1) else bloğunun içi O(n) ise if – else bloğu O(n) olarak ele alınır.

```
//aṣaĕidaki if-else ifadesi O(n)'dir
if (ifade)
{
//birinci ifade O(1) olsun
```

```
}
else
{
    //ikinci ifade O(n) olsun
}
```

Bir döngü ifadesinin içindeki bir ifade, döngünün dönme sayısı kadar çalışacağı için,
 eğer döngü N kez dönüyorsa ve döngü içindeki ifadenin çalışma zamanı C ise, toplam çalışma zamanı N*C'dır.

```
//aşağıdaki for döngüsü O(C.N)'dir.

for (int i = 0; i < N; i++)
{
    //buradaki ifade C zamanda çalışsın
}
```

• İç içe döngülerde içteki döngü N kez, dıştaki döngü ise K kez dönüyorsa ve iç döngünün içindeki ifadenin çalışma zamanı C ise, toplam çalışma zamanı N*K*C'dir.

Notasyon	İsim	Açıklama
O(1)	Sabit	Algoritmadaki icra sayısı
		belliyse sabit bir değerle

gösterlir. Örneğin, bir sayının tek mi çift mi olduğunun bulunması.

Logaritmik	n değerinin büyüyen	
	değerlerine karşın	
	algoritmanız çok daha az	
	yavaşlıyorsa logaritmik bir	
	durum söz konusudur.	
	Örneğin, binary search ile	
	sıralı bir dizide değer	
	aramak.	
Lineer	n değerinin büyümesine	
	karşılık algoritmanın lineer	
	bir şekilde yavaşlaması söz	
	konusudur. Örnek, sırasız bir	
	listeden bir değeri bulmak.	

O(n logn)	Loglineer	Bir problemi alt problemlere	
		bölüp bağımsız olarak çözen,	
		daha sonra bu sonuçları	
		birleştiren algoritmalarda	
		görülür. Örnek, birliştirmeli	
		sıralama (merge sort)	
		algoritması.	
O(n^2)	Karesel	İç-içe döngüler ile verileri	
		ikişerli şekilde inceleyen	
		algoritmalarda görülür.	
		Örnek, seçmeli sıralama	
		(selection sort)	
O(2^n)	Üstel	Girilen veriye göre iki kat	
		yavaşlama görülen bu	
		algoritmalar hiç pratik	
		değildir. Örnek, seyyar satıcı	
		problemi.	

n	log n	n	$n \log n$	n^2	2"	n!
10	$3 \times 10^{-9} \text{ s}$	10^{-8} s	$3 \times 10^{-8} \text{ s}$	10^{-7} s	10 ⁻⁶ s	$3 \times 10^{-3} \text{ s}$
10^{2}	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$7 \times 10^{-7} \text{ s}$	10^{-5} s	$4 \times 10^{13} \text{ yr}$	*
10^{3}	$1(0 \times 10^{-8} \text{ s})$	10^{-6} s	$1 \times 10^{-5} \text{ s}$	10^{-3} s	*	*
10^{4}	$1(3 \times 10^{-8} \text{ s})$	10^{-5} s	$1 \times 10^{-4} \text{ s}$	10^{-1} s	*	*
105	$1(7 \times 10^{-8} \text{ s})$	10^{-4} s	$2 \times 10^{-3} \text{ s}$	10 s	*	*
106	$2 \times 10^{-8} \text{ s}$	10^{-3} s	$2 \times 10^{-2} \text{ s}$	17 min	*	*

n boyutlu problemin çeşitli algoritmalarla çözüm hızı

algoritma.org

```
Dizideki sayıların toplamını bulma
                            İşlem
                            sayısı
int Topla (int A[], int N)
 int topla = 0;
 for (i=0; i < N; i++) \{-----> N
   topla += A[i];-----
  } //Bitti-for
 return topla; -----
 //Bitti-Topla
                            Toplam: 1 + N + N + 1 = 2N + 2
```

- Çalışma zamanı: T(N) = 2N+2
 - N dizideki sayı sayısı

- Bilgisayar bilimlerinde bir algoritmanın incelenmesi sırasında sıkça kullanılan bu terim çalışmakta olan algoritmanın en kötü ihtimalle ne kadar başarılı olacağını incelemeye yarar.
- Bilindiği üzere bilgisayar bilimlerinde yargılamalar kesin ve net olmak zorundadır.
- Tahmini ve belirsiz karar verilmesi istenmeyen bir durumdur.
- Bir algoritmanın ne kadar başarılı olacağının belirlenmesi de bu kararların daha kesin olmasını sağlar.
- Algoritmanın başarısını ise çalıştığı en iyi duruma göre ölçmek yanıltıcı olabilir çünkü her zaman en iyi durumla karşılaşılmaz.

- Algoritma analizinde kullanılan en önemli iki ölçü hafıza ve zaman kavramlarıdır.
- Yani bir algoritmanın ne kadar hızlı çalıştığı ve çalışırken ne kadar hafıza ihtiyacı olduğu, bu algoritmanın performansını belirleyen iki farklı boyuttur.
- En iyi algoritma en hızlı ve en az hafıza ihtiyacı ile çalışan algoritmadır. İşte en kötü durum analizi olayın bu iki boyutu için de kullanılabilir.
- Yani en kötü durumdaki hafıza ihtiyacı ve en kötü durumdaki hızı şeklinde algoritma analiz edilebilir.

 Limit teorisindeki master teoremde büyük O ile gösterilen (big-oh) değer de bu en kötü durumu analiz etmektedir.

 Bu yüzden en kötü durum analizine, büyük O gösterimi (Big-O notation) veya algoritmanın sonsuza giderken nasıl değiştiğini anlatmak amacıyla büyüme oranı (growth rate) isimleri verilmektedir.

 Bir çok terimli fonksiyonun (polynomial function) big-o değerini hesaplamaya çalışalım.

 Örnek olarak fonksiyonumuz aşağıdaki şekilde olsun:

$$f(x) = 3x^4 + 2x^2 + 5$$

 Fonksiyonun üst asimtotik sınırı (asymptotic upper bound), her zaman için fonksiyona eşit veya daha yüksek değer veren ikinci bir fonksiyondur.

Bu durumda, yukarıdaki f(x) fonksiyonu için $O(x^4)$ denilmesinin anlamlı, herhangi bir sayı ile x^4 değerinin çarpımının, f(x) fonksiyonuna eşit veya daha yüksek üreteceğidir. Bu durum aşağıdaki şekilde gösterilebilir:

$$f(x) \le cx^4$$

 Gerçekten de bu değer denenirse, c=4 için aşağıdaki çizim elde edilebilir:

Yukarıdaki mavi renkte görülen fonksiyon $4x^4$ ve kırmızı renkte görülen fonksiyon da f(x) fonksiyonudur. Görüldüğü üzre x>1 için $4x^4$ fonksiyonu, f(x) fonksiyonundan büyüktür. Dolayısıyla tanımımıza x>1 koşulu eklenebilir.

Kısaca
$$f(x) = O(g(x))$$

tanımı,
$$f(x) \le c.g(x)$$

şeklinde yorumlanabilir. Buradaki c değeri herhangi sabit bir sayıdır ve sonuçta elde edilen değer eşit veya daha büyüktür.

- Büyük-O (Big-O) gösterimi ile kardeş olan bir gösterim de küçük-o (small-o) gösterimidir.
- Bu iki gösterim arasındaki temel fark küçük-o gösteriminde asimptotik üst sınır (asymptotic upper bound) fonksiyonunun tamamından büyük olmasıdır.
- Yani büyük-O gösterimindeki eşitlik durumu yoktur.
- f(x) = og(x) için

 $f(x) \le c g(x)$ şartı sağlanmalıdır.

Dolayısıyla f(x) = O(f(x)) tanımı doğru olurken f(x)=o(f(x)) tanımı hatalıdır.

Bazı örnekler aşağıda verilmiştir:

$$\sqrt{x}=o(x)$$

Yukarıda görüldüğü üzere x>1 için √x=o(x) doğrudur. Ancak x≥1 durumunda √x=O(x) yazılmalıdır.

$$log(x) = o(x)$$

 Yukarıdaki şekillerde krımızı ile gösterilen f(x) fonksiyonlarının small-o fonksiyonları mavi renk ile çizilmiştir.

Soru: H(n)=1+1/2+....+1/n ifadesinin algoritma karmaşıklığı nedir?

Cevap: bottom up approach kullanalim ve base line ile başlayalım:

$$H(1)=1$$

$$H(2) = 1 + 1/2$$

$$H(2) = H(1) + 1/2$$

$$H(3) = 1 + 1/2 + 1/3$$

$$H(3) = H(2) + 1/3$$

demek ki H(n) = H(n-1) + 1/n