Эффект Холла

Александр Крупин

9 ноября 2020 г.

1 Оборудование, цель работы

<u>Цель работы</u>: Изучение эффекта Холла для полупроводника в слабом магнитном поле.

Оборудование:

- Полупроводниковый образец,
- Необходимые измерительные приборы,
- Электромагнит,
- Блоки питания.

2 Основная часть

2.1 Удельная электрическая проводимость образца

Во-первых, найдем сопротивление образца R_{56} из вольт-амперной характеристики (рис. 1), построенной для двух направлений тока в отсутствии магнитного поля. (Кстати, заметим, что при больших токах, значения на графике заметно различаются. Я подозреваю, что в этом, как минимум, участвует чувствительность (R = R(T) проводников к температуре. С увеличением температуры сопротивление падает и напряжение вместе с ним).

Получаем: $R_{56} = (680 \pm 10)$ Ом $(\delta R_{56} = 1.5\%)$

Во-вторых, вычислим удельную электрическую проводимость σ , используя геометрические характеристики образца (см. рис. 4).

$$\sigma = \frac{1}{\rho} = \frac{d}{R_{56} \cdot bc} = \frac{0.96}{680 \cdot 0.51 \cdot 0.10} = 0.03 \,\, \frac{1}{\mathrm{Om} \cdot \mathrm{cm}} \pm 1.5\%$$

2.2 Холловская разность потенциалов

Установим ток в образце $I_+=5$ мА. Измерим разность потенциалов между контактами 3-4 (см. рис. 4 или 5) при выключенном магнитном поле и при $B_+=2000~\Gamma c$:

$$\Delta\varphi|_{B=0}=0.08$$
 B; $\Delta\varphi|_{B_{+}=2000~\Gamma\mathrm{c}}=0.156$ B

Следовательно, оценка величины холловской разности потенциалов:

$$U_H = 0.156 - 0.08 = 0.076 \text{ B}$$

 $U_{H} > 0$, значит имеем дело с дырочной проводимостью.

Рис. 1: U_+ – это U при I>0; U_- – это U при I<0

2.3 Зависимость $U_{34}^B(B)\big|_{I=const}$

Для определения коэффициента Холла R, ($[R] = \text{cm}^3 \cdot \text{Kл}^{-1}$) нам потребуется следующая формула:

$$U_H = \frac{R}{c} I B_z = U_{34}^B - U_{34} \tag{1}$$

Из формулы (1) и содержимого рисунка (2) получаем:

I, MA	2	5	8
C, MM	1	1	1
$RI/c \cdot 10^{-6}$, B/ Γc	16	38	58
$R \cdot 10^{-4}$, см ³ · Кл ⁻¹	8	7,6	$7,\!25$

	$I_+=2$, MA		$I_+ =$	5, мА	$I_+ = 8$, mA		
$B, \Gamma c$	U_{B_+} , MB	U_{B}, MB	U_{B_+} , MB	U_{B}, MB	U_{B_+} , MB	U_{B} , mB	
0	36	36	82	82	120	120	
400	42	31	95	69	140	100	
700	47	25	100	55	160	81	
1050	53	19	120	42	180	61	
1390	59	13	130	29	200	42	
1680	64	8	140	16	220	22	
1990	69	3	160	4	240	4	
2260	74	1	170	-7	250	-13	
2580	79	-6	180	-18	270	-32	
2800	83	-10	190	-26	280	-46	
3000	86	-13	200	-34	290	-55	

Таблица 1: Данные к рисунку 2.

Рис. 2

2.4 Зависимость $U_H(I)|_{B=const}$

Из формулы (1) и содержимого рисунка (3) получаем:

По результатам этого и предыдущего пунктов заметим, что разброс значений коэффициента Холла R значительный (от 7,3 до 8,8 $10^4 \cdot \mathrm{cm}^3 \cdot \mathrm{Kn}^{-1}$). Для дальнейших вычислений возьмем $\langle R \rangle = 8.2 \cdot 10^4 \ \mathrm{cm}^3 \cdot \mathrm{Kn}^{-1}$.

$B, \Gamma c$	1000	2000
C, MM	1	1
$RB/c \cdot 10^{-6}, \text{Om}$	8,7	17,3
$R \cdot 10^{-4}$, см ³ · Кл ⁻¹	8,7	8,65

Из рисунка (3) находим: $\mathbf{R_{34}} = \mathbf{19,4} \ \mathbf{Om} \pm \mathbf{2}\%$ Теперь мы можем оценить смещение контактов Δx_{34} :

$$\Delta x_{34} = bcR_{34}\sigma = 0.51 \cdot 0.1 \cdot 19.4 \cdot 0.03 = 0.03 \text{ cm} = \mathbf{0.3 \text{ mm} \pm 3.5}\%$$

Сделаем еще ряд оценок.

Холловская подвижность: $\mu_H = \sigma R \approx 0.03 \cdot 8.2 \cdot 10^4 = 2.46 \cdot 10^3 \frac{\text{см}^2}{\text{Кл-Ом}}$

Оценка слабого поля (Гс = 10^{-4} Тл): $\mu_H B_z \approx 0.25 \frac{M^2}{\text{Kл} \cdot \text{OM}} \cdot 0.3 \frac{\text{B} \cdot \text{c}}{M^2} \ll 1$

Угол Холла при $B_+=2000$ Гс: $\Theta\approx \mu_H B_z\approx 0.075$

Концентрация носителей зарядов ($\gamma\approx 1.18$ – холл-фактор; q – эл. заряд): $n=\frac{\gamma}{Rq}\approx\frac{1.18}{8.2\cdot 1.6}\cdot 10^{15}\approx 0.09\cdot 10^{15}~{\rm cm}^{-3}$

I(MA)	0	1	2	3	4	5	6	7	8
$U_{34} \; ({\rm MB})$	$I_+ =$	20	38	55	71	87	102	116	130
B=0	$I_{-} =$	-21	-41	-63	-85	-108	-132	-155	-179
$U_{34}^{B} (\mathrm{MB})$	$I_+ =$	29	56	82	109	132	157	177	196
B = 1000	$I_{-} =$	-30	-60	-91	-122	-152	-187	-215	-243
$U_H = U_{34}^B - U_{34}$	$I_+ =$	9	18	27	38	45	55	61	66
(MB)	$I_{-} =$	-9	-19	-28	-37	-44	-55	-60	-64
$U_{34}^{B} (\mathrm{MB})$	$I_+ =$	38	74	109	142	176	207	236	263
B = 2000	$I_{-} =$	-40	-78	-117	-156	-198	-238	-277	-314
$U_H = U_{34}^B - U_{34}$	$I_+ =$	18	36	54	71	89	105	120	133
(мВ)	$I_{-} =$	-19	-37	-54	-71	-90	-106	-122	-135

Таблица 2: Данные к рисунку 3.

Рис. 3

3 Вывод

Нам удалось довольно подробно исследовать эффект Холла (классический), включая численные оценки, которые согласуются со здравым смыслом. Неудовлетворительной выглядит оценка основной величины для этой работы – коэффициента Холла. Что могло повлиять?

Во-первых, данные для зависимостей (2.3) и (2.4) снимались в разное время, как обсуждалось ранее образец чувствителен к внешним условиям, к тому же неизбежно возникали систематические ошибки разного характера.

Во-вторых, наш теоретический подсчет базируется на простых представлениях об этом эффекте, нужно учитывать, что на деле все немного сложнее.

Рис. 4: a=19.9 мм; b=5.1 мм; c=1 мм; d=9.6 мм

Рис. 5