Предсказание землетрясений с использованием сверточных нейронных сетей

Роман Кайль, РТ

Задача: Зайцев Алексей, к.ф.-м.н.

Вход и выход задачи классификации

На входе:

• Teнзop [Batch_size × Height × Length × Time], в каждой ячейке которого амплитуда землетрясения в данном месте в каждом из Tbefore предыдущих дней.

На выходе:

 Карта [Height × Length], в каждой ячейке: индикатор, случалось ли землетрясение с амплитудой выше порога в промежуток времени [T + δc, T + Tc].

Особенности задачи

- Несбалансированные данные
- В среднем каждый день случается ~ 25.8 землетрясений с амплитудой
- > 2.5 по шкале Рихтера (изучаемый класс ~ 0.064% от выборки)
- Кол-во землетрясений с амплитудой больше порога еще меньше.

Данные – временной ряд

Методы

Convolution

Несколько блоков со свертками подряд

Один блок: Вся архитектура: in_channels -> 32 Convolution 32 -> 16 **Batch Normalization** 16 -> 8 8 -> 4**ReLU** 4 -> 2 **MaxPool** SoftMax

Результаты

Без maxpool:

Результаты

C maxpool:

Mean precision:

Архитектура Unet для решения задачи сегментации

1	4	1
1	4	3
3	3	1

1		1			
2	1	2	9	6	1
	4	6	29	30	7
Ť		10	29	33	13
Ť		12	24	16	4

		1			
1	6	9	2	1	2
7	30	29	6	4	4
13	33	29	10		
4	16	24	12		

	2	1	2	9	6	1	7
1	4	4	6	29	30	7	4
			10	29	33	13	
1			12	24	16	4	

1	6	9	2	1	2	1	6	9	2
7	30	29	6	4	4	7	30	29	6
13	33	29	10			13	33	29	10
4	16	24	12			4	16	24	12

Результаты

Weight: 100 Precision: 0.04

Weight: 10000 Precision: 0.006

Weight: 500 Precision: 0.025

Weight: 20000 Precision: 0.006

Weight: 2000

Precision: 0.0125

Weight: 50000 Precision: 0.0045

Выводы

- Нет большого смысла использовать дорогую по памяти и времени обучения UNET архитектуру, потому что она не дает сильно лучшего результата.
- Для предсказания землетрясений важнее смотреть на локальные признаки нежели на глобальную картину происходящего.

TODO List

- Обучить нейронные сети над тензорами из RTL фичей
- Попробовать больше архитектур (т.к. временной ряд, то можно попробовать LSTM)
- Попробовать применить подходы аугментации данных чтобы увеличить число примеров искомого класса