Quentin **Moreno-Gelos**

PROFILE

Data Scientist and Physicist with a strong focus on data analysis and visualization. Expertise in developing theoretical models and analyzing complex datasets generated from simulations. Passionate about collaborating on data-driven projects and open-source initiatives.

CONTACT DETAILS

- @ moreno_quentin@numericable.fr
- +33 628 480 516
- Portfolio

PERSONAL INFORMATION

Citizenship: French
Family: Single without children
Languages: French(native),
English(fluent), Spanish(Basic)

PROGRAMMING LANGUAGES

Python/SQL/Fortrang5

ANALYSIS & VISUALIZATION TOOLS

 Pandas/Dask/ Dash/Matplotlib/PowerBI

COMMUNICATION TOOLS

HTML/Git/LaTeX

MACHINE LEARNING

 Regression/Classification/ Clustering techniques

SCIENTIFIC EXPERTISE

- Plasma Instabilities
- Shock formation
- Laser plasma interaction
- Kinetic Particle-in-cell code
- Magneto-hydrodynamic code

EXPERIENCE

POSTDOCTORAL FELLOW at ELI-beamlines

2019.01-2023.12

- Conducted theoretical studies on radiative and adiabatic shocks relevant to laboratory astrophysics.
 - Designed analytical self-similar models to enhance understanding of shock dynamics.
 - Executed Magneto-Hydrodynamic Adaptive Mesh Refinement (AMR) simulations using supercomputing resources (Sunrise).
 - Developed data visualization tools for AMR simulations using Matplotlib to effectively communicate results.
 - Analyzed extensive datasets to validate analytical models against numerical simulations and inform decision-making processes.
 - Collaborated with interdisciplinary teams to design and implement complex laboratory experiments validating theoretical predictions.
 - Published findings in peer-reviewed journals and presented at international conferences.
- Conducted numerical analysis to support various research projects.
- Supervised a first-year master's student for 3 months.

PHD STUDENT at Bordeaux University. 2

2015.10-2018.12

- Conducted theoretical studies on plasma instabilities leading to collisionless shocks in laboratory astrophysics.
 - Designed analytical models to explore plasma collisionless shock formation.
 - Executed Particle-In-Cell (PIC) simulations simulations using supercomputing resources (CINES).
 - Developed data visualization tools for PIC simulations using Matplotlib to effectively communicate results.
 - Analyzed extensive datasets to validate analytical models against numerical simulations and inform decision-making processes.
 - Collaborated with interdisciplinary teams to design and implement complex laboratory experiments for model validation.
 - Published findings in peer-reviewed journals and presented at international conferences.
- Course examiner at Bordeaux University
 - Gained teaching experience across Bachelor's and Master's levels.

PUBLICATIONS

- ⋄ Independent studies employing data analysis techniques across a diverse array of topics: Portfolio

EDUCATION AT BORDEAUX UNIVERSITY

DOCTORAL DEGREE: Astrophysics, plasma and nuclear **2015–2018** Thesis title: *Non-relativistic collisionless shocks in Laboratory Astrophysics*.

MASTER'S DEGREE: Theoretical physics

2013-2015

Astrophysics, Statistical physics, numerical methods