Непрерывные функции. Локальные свойства непрерывных функций.

Определение:

Пусть $a \in \mathbb{R}$, U(a)-окрестность точки а и $f: U(a) \to \mathbb{R}$. Функция непрерывна в точке a, если $\lim_{x \to a} f(x) = f(a)$

Локальные свойства функции — такие ее свойства, которые имеют место в сколь угодно малой окрестности точки ее определения.

Пусть $f_1, f_2, f: U(a) \to \mathbb{R}$ непрерывны в точке а. Тогда:

- 1) $\exists \varepsilon > 0 \exists c > 0 \forall x \in B_{\varepsilon}(a): |f(x)| \leq c$
- **2)** Сохранение знака: если f(a)>0, то $\exists E>0 \ \forall x \in B_E(a)$: f(x)>0
- **3)** Следующие функции непрерывны в точке а: f_1+f_2 , f_1*f_2 , f_1f_2 (если $f_2(x)\neq 0$ $\forall x\in U(a)$ и $f_2(a)\neq 0$)
- **4)** Если g: V(b)→ $\mathbb R$ непрерывна в точке b, f: U(a)→V(b) непрерывна в точке а и f(a)=b. Тогда gof: U(a)→ $\mathbb R$ непрерывна в точке а

Композиция конечного числа непрерывных функций непрерывна в области своего определения.