6.1

Let X be a binomial random variable, $x \sim Binom(n,p)$. Show that the MLE of p is $\hat{p} = \frac{X}{n}$

6.2

Prove Proposition 6.1.2.

6.3

Suppose a random sample with $X_1=5, X_2=9, X_3=9, X_4=10$ is drawn from a distribution with $pdf=f(x;\theta)=\frac{\theta}{(2\sqrt{(x)}e^{-\theta\sqrt{(x)})}}, x>0.$ Use maximum liklihood to find an estimate of θ .

6.4

Let X_1, X_2, \dots, X_n be a random sample from the distribution with pdf = $f(x; \theta) = \frac{x^3 e^{-x/\theta}}{6\theta^4}$. Calculate the maximum likelihood estimate of θ .

6.5

Recall Theorm 6.1.3 where we found the maximum liklihood estimates for μ and sigma for a random sample $X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$.

- a.) Suppose, instead, μ is unknown but σ is *known*. Find the maximum liklihood estimate of μ .
- b.) Now suppose σ is unknown and μ is known. Find the MLE of σ

6.6