8.17. PROBLEMS 323

Observe that the matrix P_{π} has a single 1 on every row and every column, all other entries being zero, and that if we multiply any 4×4 matrix A by P_{π} on the left, then the rows of A are permuted according to the permutation π ; that is, the $\pi(i)$ th row of $P_{\pi}A$ is the ith row of A. For example,

$$P_{\pi}A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} a_{41} & a_{42} & a_{43} & a_{44} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix}.$$

Equivalently, the *i*th row of $P_{\pi}A$ is the $\pi^{-1}(i)$ th row of A. In order for the matrix P_{π} to move the *i*th row of A to the $\pi(i)$ th row, the $\pi(i)$ th row of P_{π} must have a 1 in column i and zeros everywhere else; this means that the *i*th column of P_{π} contains the basis vector $e_{\pi(i)}$, the vector that has a 1 in position $\pi(i)$ and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 8.10. Given any permutation $\pi: [n] \to [n]$, the permutation matrix $P_{\pi} = (p_{ij})$ representing π is the matrix given by

$$p_{ij} = \begin{cases} 1 & \text{if } i = \pi(j) \\ 0 & \text{if } i \neq \pi(j); \end{cases}$$

equivalently, the jth column of P_{π} is the basis vector $e_{\pi(j)}$. A permutation matrix P is any matrix of the form P_{π} (where P is an $n \times n$ matrix, and $\pi : [n] \to [n]$ is a permutation, for some $n \ge 1$).

Remark: There is a confusing point about the notation for permutation matrices. A permutation matrix P acts on a matrix A by multiplication on the left by permuting the rows of A. As we said before, this means that the $\pi(i)$ th row of $P_{\pi}A$ is the ith row of A, or equivalently that the ith row of $P_{\pi}A$ is the $\pi^{-1}(i)$ th row of A. But then observe that the row index of the entries of the ith row of PA is $\pi^{-1}(i)$, and not $\pi(i)$! See the following example:

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} a_{41} & a_{42} & a_{43} & a_{44} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix},$$

where

$$\pi^{-1}(1) = 4$$

$$\pi^{-1}(2) = 3$$

$$\pi^{-1}(3) = 1$$

$$\pi^{-1}(4) = 2.$$

Prove the following results