CRIPTOLOGÍA

A PARTIR DE AHORA VEREMOS UNA CODIFICACIÓN DONDE EL OBJETIVO ES EL GARANTIZAR EL SECRETO O PRIVACIDAD DE LOS MENSAJES, DE HANTIDA QUE SOLO LA PERSONA A LA QUE SON ENVIADOS, SU RECEPTOR LEGAL, PUEDA CONOCERLOS.

SI EL CANAL DE TRANSMISION EMPLEADO ES INSEGURO, ES
PECIR SUSCEPTIBLE DE SER INTERVENIDO O ESPLADO POR TERCERAS
PERSONAS, LA SOLUCIÓN ES DISFRAZAR EZ MENSAJE MEDIANTE UN
CÓDIGO SECRETO.

LA CRIPTOLOGIÁ ES LA CIENCIA QUE ESTUDIA LOS CRIPTOSIS-TEMAS (Ó SISTEMAS CRIPTOGRÁFICOS Ó CÓDIGOS SECRETOS) DENTRO DE ELLA HAY DOS PARTES

- · CRIPTOGRAFÍA: DISEÑO E IMPLEMENTACIÓN DE LOS CRIPTOSISTEMAS
- · CRIPTORNÁLISIS: QUE PRADA DE ROMPERLOS

LA CRIPTOLOGIA TIENE UNA HISTORIA MILENARIA, PERO SO'LO DESDE LOS 70'S PASA DE SER UN CONJUNTO DE REGLAS COMPÍRICAS ("TRUQUITOS") A SER UNA CIENCIA.

ES UNA DISCIPCINA QUE NO PARA DE CRECER Y DUE IMPULSA EL DESARROLLO DE OTROS CAMPOS MATEHÁTICOS

HISTORICAMENTE LA CRIPTOGRAFIA ESTA LIGADA A LA NECESI-DAD DE MANTENER SECRETAS COMUNICACIONES ENTRE COBSIER-NOS Y/O MILITORES. EJ! MÁQUINA ENGHA

YA DO ES ALGO PROPIO DE GOTSIETRNOS, MILITARES O GRANDES COMPAÑÍAS. BHORA SE USA PARA PROFEGER DATOS PERSONALES, CONTROL DE ACCESO (RANCOS, MARJEMAS CRE'LITO), FIRMA DIGITAL,...

ALGUNOS EJEMPLOS USO CRIPTOGRAFIA

PROTOCOLOS AUTENTIFICACION

-AUTENTIFICACION DE MENSAJE: GARANTIZA MENSAJE NO 141 S/100

- AUTENTIFICACION USUARIO:

· FIRMA DIGITAL

PASSWORD USUARIO

· DESAFIO RESPUESTA : USUARIO DEMUESTRA TENER UNA PIEZA SECRETA DE INFORMACION

PROTOCOLOS COMPARTIR SECRETOS

PRUEBAS CONOCIMIENTO CERO: CONVENCER A OTRO DE QUE SE POSEE CIERTA INFORMACIÓN SIN REVELARIA

TRANSACCIONES ELECTRÓNICAS SEGURAS

ELECCIONES ELECTRÓNICAS COMPUTACIÓN MULTI-PARTE

EVE QUIENE INFERIR PROCESO COMUNICACION:

- · QUIERE COND CER CONTENIDO COMUNICACION
- · SUPLANTAR PERSONALIDAD
- · MODIFICAR MENSAJE
- OMOS FINES MALÉVOLOS

LA CRIPTO ORNEIA PROPORCIONA MÉTODOS PARA QUE UN CANAL INSTOURO SE CONVIENTA EN UN CANAL EN EN EL QUE SE PUEDA CONFIAR,

CRIPTOANALISIS! BUSCA ROMPER LA SEAURIDAD

INGREDIENTES DE UN CRIPTOSISTEMA:

- CONJUNTO M, CONJUNTO DE MENSAJES ORIGINALES O
 MENSAJES EN CLARO. NORMALMENTE M=A*, ES
 DECIR 10S MENSAJES MEM SON SUCESIONES FINITAS
 DE SIMBOLOS DE UN CIERTO ALFABETO
- CONJUNTO FINITO X, LLAMADO CONJUNTO DE CLAVES
 O LLAVES
- CON SUNTO DE MENSAJES CIFRADOS C, NORMALHENTE C.- A*
- APLICACION DE CIFRADO O ENCRIPTACION C: $\mathcal{M}_X \mathcal{K} \longrightarrow \mathcal{C}$
- -UNA APLICACION DE DESCIFRADO d: Cx W -> M

-UN CONJUNTO DE NODOS O USUARIOS N JUNTO CON UN SUBCONJUNTO Lando CONJUNTO DE LÍNEAS DE TRANSMISION.

UN ELEMENTO DE L ES CE, ZZENXN, DONNE E ES EL EMISOR Y Z EL RECEPTOR

- PARA CADA LÍNEA E=Ce, 2) EL, UNA CIAVE KEEK

DE CIFRADO Y UNA CLAVE KEEK DE DESCIFRADO

TALES QUE d(CCM, ke), ke) = M

PARA ENVIAR C UN MENSAJE A Z, CON L=(e,z) EL

C CIFRA EL MENSAJE CALCULANDO: C(M, Ke) EC

EL NODO Z RECUPERA EL MENSAJE EN CLARO CAL
CULANDO d(CCM, Ke), Ke) = M

CLAVE PRIVADA Y PÚBLICA

- · CLAVE PRIVADA: PODOS SISTEMAS CRIPTOGRÁFICOS CLÁSICOS
- O CLAVE PUBLICA! APARECEN 70'S CON LA IMPLANTA-(10N TELECOMUNICA CIONES E INFORMÁTICA

CLAVE PRIVADA

LOS USUARIOS DEL SISTEMA, NORMALMENTE POCOS E

IDEACMENTE DOS, COMPARTEN Y GUARDAN EN SECRETO

UNA PAREJA DE CLAVES DE CIFRADO Y DESCIFRADO

(K, K').

NORMALMENTE SI CONOCES K PUEDES CALCULAR FA'-CILMENTE K' (Y VICEVERSA)

CIFRADO Y DESCIFRADO

 $d(c(m,\kappa), \kappa') = m$

PARA CUALQUIER MENSAJE EN CLARO M

COMO EL CACULO DE UNA CLAVE A PARTIR DE OTRA ES SENCILLO, NO SUPONE PERDIDA GENERALI-DAD SUPONER QUE SE TRATA DE LA HISMA CLAVE K=K'. Y POR ESO ESTOS SISTEMAS SE LLAMAN DE CLAVE PRIVADA O SIMETRICOS

LA CLAVE K ES CONDCIDA POR DILCE Y BOB

Y DETRE PERMANECER SECRETA PARA LOS DEMÁS.

DE MANERA QUE AUNQUE EVE INTERCEPTE EL

MENSAJE C CM, K) Y CONOZCA LAS APLICÁCIO
NES DE CIFRADO Y DESCIFRADO, NO PUEDA

RECUPERAR M

CLAVE PUBLICA & ASIMETRICA L=N×N y CADA USUARIO U DEL SISTEMA TIENE UN PAR DE CLAVES (Ceu, du)

- CHES PUTSLICA, Y ES LA QUE USA CUALQUIER OTRO USUARIO DEL SISTEMA PARA ENVIAR UN MENSAJE CIFRADO A U.
- · du ES SO'LO CONDCIDA POR EL USUARIO UL Y ES LA QUE USA PARA DESCIFRAR LOS MENSAJES QUE RECIBE
- LAS CLAVES USADAS EN LA LÍNEA l=(a,b) SON LAS DEL USUARIO le, Ke=le y Ke=da.

CONDICIÓN:

AUN CONOCIDA EN SEA IMPOSIBLE EN LA PRÍOTICA EL CALCULO DE LA CLAVE PRIVADA du

ESTO SE INTERPRETA EN TÉRMINOS DE COMPLEJIDAD COMPUTACIONAL DEL CALCULO DE du A PARTIR DE EN Y DE LA CANTIDAD DE DARES DE MENSAJES EN CLARO Y CIFRADO QUE TENGA EL CRIPTOANA-LISTA.

CONDICIONES DIFFIE-HELLMAN:

(DE 1976, ANTES DE CONOCER NINGÚN EJEMPLO)

- -COLCULO CLAVES PUTSLICA Y PRIVADA DEBE SER COMPUTA-CIONALMENTE SENCILLO
- PROCESO CIFRADO DEBE SER COMPUTACIONALMENTE SENCINO
- PROCESO DESCIFICADO, CONOCIENDO LA CLAVE PRIVADA,
 DETSE SER COMPUYACIONALMENTE SENCILLO
- OBTENER CLAVE PRIVADA A PARTIR DE 21 PÚBLICA,
 DETSE SER UN PROBLEMA "COMPUTACIONALMENTE IMPOSIBLE"
- OBTENER MENSAJE EN CLARD, CONOCIDO EL MENSAJE CIFRADO Y LA CLAVE PUBLICA, DEDE SER COMPUTACIONAL-MENTE IMPOSIBLE.

CRIPTOANALISIS

OBJETIVO ES DESCUBRIR CONTENIDO MENSAJE CIFRADO, Y A SER POSIBLE MÉTODO Y CLAVE UTILIZADA TAMBIEN PUEDE INTERFERIR E INVERVENIR EL SISTEMA

MARIEN POEDE INTERFERIR E INTERVENIR EL SISTEMA DE COMONICACIÓN FALSEKNDO MENSAJES E IDENTIDADES

ANTIQUAMENTE, SE PODIA MANTENER SECRETO EL SISTEMA DE CIFRADO. AHORA NO ES POSIBLE, SE NECESITAN NÉTOS ESTANDARIZADOS Y POR TANTO CONOCIDOS ADEMAS SE QUIERE "VENDER" 20 SECURIDAD.

TIPOS DE ATAQUES A) ATAQUES PASIVOS

A PARTIR DE UN TEXTO CIFRADO T INTENTA DESCUBRIR EL MENSAJE EN CLARO M. Y A SER POSIBLE DE LA CLAVE DE CIFRADO. TIPOS:

- TEXTO CIFRADO CONOCIDO: SE CONOCE SOLO T
- TEXTO CLARO CONOCIDO: SE CONOCE UNA PRETE DE MYT
- TEXTO CLARD ELEGIDO: CRIPTOANALISTA PUEDE ELEGIR UN TEXTO EN CLARO Y CONDICER SU CIFRADO

B) ATAQUES ACTIVOS:

CRIPTO ANALISTA INTENTA

- SUSTITUIR PERSONALIBAD USUARIOS
- FALSEAR MENSAJES

SEGURIBAD

- SEGURIDAD PERFECTA: ES IRROMPIBLE AUN CUANDO EC CRIPTOANALISTA TIENE TIEMPO Y RECURSOS ILLMITADOS EJ: VERNAM Y BB84 CLANAZ CUÁNTICO)
- SE GURIDAD CONDICIONAL: ES SEGURO HASTA QUE SE DESA-RROLLEN NUEVOS O MEJORES ME 40 DOS
- -SEQURIDAD PROBABLE: SISTEMAS QUE NO SE HAN ROTO PERO NO PODEMOS DEMOSTRAR MATEMÁTICAMENTE SU SEGURIDAD, EJ: DES
- SEQURIDAD COMPUTACIONAL: SISTEMAS BASADOS EN LA COMPLEJIDAD COMPUTACIONAL MATEMÁTICAMENTE PROBLOD BEL SISTEMA. EJ: RSA

SEQURIDAD PERFECTA: INICIADA POR SHANNON EN 1949, BASABA EN LA ENTROPIÁ DEL LEN-QUAJE Y TEORIA DE INFORMACION

ROBUSTEZ DEPENDE TAMBIÉN DEL ESPIDUAJE O DE UN MAL DISENO