一、填空:
1. 消息认证中认证符的产生有哪两大类和和
2. 消息认证码和杂凑函数的算法都是公开的,其根本区别是
3. MAC 与加密算法的区别在于
4. 某 MAC 算法输出长度为 64bit,认证密钥为 160bit,则对 MAC 的穷搜索攻击至少需要 氧
5. 采用先 hash 再对称加密的方法对消息进行认证,设密钥为 k ,hash 函数为 H ,加密算法为 E ,
认证的消息为 M ,则在考虑和不考虑消息保密性的条件下,认证消息分别可表示为
6. 杂凑函数的单向性是指
7. 已知杂凑函数的数出值为 m 比特,则第 I 类生日攻击的复杂度为, 第 II 类生日攻击的复
杂度为
8. MD5 算法的分组长度为
有给定消息摘要的消息的复杂度为以大于 0.5 的概率用穷搜索攻击找出具有相同消息
摘要的两个不同消息的复杂度为
9. SHA 算法的分组长度为输出长度为,轮数为所以用穷搜索攻击寻找具
有给定消息摘要的消息的复杂度为以大于 0.5 的概率用穷搜索攻击找出具有相同消息
摘要的两个不同消息的复杂度为
10. 假设消息的长度为 x,则 MD5、SHA-1、SHA-3 对消息的填充算法分别是
11. MD5 以 little-endian 方式存储数据,那么十六进制数 20347AB1 的实际存储是
12. HMAC 需要调用次 hash 运算,其输出长度由决定。
13. 对于一个长度为 n 的 MAC 码算法 $C_K(M)$,随机选取两个消息 $M \setminus M'$,当 $Pr[C_K(M) = C_K(M')] = _$
时, $C_K(M)$ 是均匀分布的。
二、选择:每一项有1个或多个选项是正确的
1. 以下哪些属性是消息认证能够完成的().
A.真实性; B.完整性; C.时间性和顺序性; D 不可否认性; E 保密性
2. 设杂凑函数 $H()$ 的输出长度为 m 比特,已知 $H(x)$,找到 $y≠x$ 满足 $H(y)=H(x)$ 的复杂度,
找到 y≠x 满足 H(y)=H(x)的概率大于 0.5 则复杂度为
A. $O(2^{m})$ B. $O(2^{m-1})$ C. $O(2^{m/2})$ D. $O(2^{m}-1)$
3. E _K [M H(M)]提供了哪些安全服务
A. 保密性 B. 完整性 C. 认证性 D. 不可否认性
4. M SK(H(M))提供了哪些安全服务, 其中 SK 是签名私钥
A. 保密性 B. 完整性 C. 认证性 D. 不可否认性

A. HMAC B. $E_K[M H(M)]$ C. $E_{K1}[M C_{K2}(M)]$	D. $M SK(H($	(M)		
6. SHA-3 标准算法是 A. MD5 B. Keccak C	C. HMAC	D. Sponge		
7. 杂凑函数的单向性是指				
A. 已知 h ,求使得 $H(x)=h$ 的 x 在计算上是不可行的				
B. 已知 x ,找出 $y(y \neq x)$ 使得 $H(y)=H(x)$ 在计算上是不可	可行的			
C. 找出任意两个不同的输入 x 、 y ,使得 $H(y)=H(x)$ 在证	计算上是不可	行的		
8. 下面哪种对消息的认证方式所能提供的安全服务最多_				
A. HMAC(M) B. $E_K[M H(M)]$ C. $E_{K1}[M C_{K2}(M)]$)] D. $E_K[A]$	M SK(H(M))	J	
三、判断: (正确的划"√",错误的划"×",以下同)				
1. 采用消息认证码 MAC 认证消息可以实现消息完整性认	证和消息源	人证	()
2. 杂凑码是消息中所有比特的函数,因此提供了一定的错	皆误检测能力		()
3. 带密钥的杂凑函数可以作为一种消息认证码			()
4. 数据认证算法采用 DES-CBC 模式,所以算法是可逆的	Ī		()
5. MD5 算法已经被破译,因此用于构造 HMAC 时也是不	安全的		()
四、简答与计算:				
1. 什么是第Ⅰ类生日攻击和第Ⅱ类攻击				
2. 采用数据认证算法对消息进行认证,如果消息为 100bi	t,则应该怎	洋对消息填 3	乞?	

3. 数据认证算法和 DES 的 CBC 模式的区别是什么?

 $5. E_K(M||(H(M||S)))$ 的安全性和下列哪个相当

- 4. 对消息认证码的攻击和对对称密钥算法的攻击在难度上有什么区别?
- 5. 试分析先加密再认证的 MAC 认证方式是否有被替换的可能,为什么,对安全有危害吗? (一般没有危害,因为消息源认证是在双方共享密钥的条件下进行的,如果替换为别的密钥,收方可以检 测出来,这和先加密再签名的问题不同)
- 6. 简述用杂凑函数来实现消息认证的三大类基本方式
- 7. Alice 要给 Bob 发送消息 M,为同时提供对 M 的保密性和认证性保护,试分别给出用消息认证码的实现方法和使用先 hash 再对称加密的实现方法表达式,并比较这两种方法的优劣。
- 8. 试分析加密密钥和认证密钥分开在安全性上的不同
- 9. HMAC 算法如何进行预计算?
- 10. 试描述迭代型杂凑函数的一般结构以及 SHA-3 算法的 sponge 结构
- 五、证明题:

1. 试证:对于基于 DES-CBC 的数据认证算法,如果仅将第一个分组 D_1 取反,密钥 k 取反,则最后输出的 MAC 也取反。

六、综合题

- 1. A 要向 B 发送消息 M, 设共享密钥为 k, 消息认证码算法记为 $C_k($), 试回答下列问题:
 - (1) 若仅关心 M 的认证性,则 A 发送的消息可表示为?
 - (2) 若同时关心保密性和认证性,该怎么办?
 - (3) 如果采用的消息认证算法为数据认证算法标准,试述该算法的过程
- 2. 某用户 A 想要给用户 B 发送一个消息 m,如果要对消息 m 的保密性与认证性进行保护,有四种方法,采用数据认证算法、先 hash 再加密、先签名再加密、HMAC
 - (1) 请分别给出这几种方法下认证消息 m 的表达式。所需符号和算法自行定义和选取。
 - (2) 其中安全性最强的和最弱的分别是哪一种方法,为什么