

Applications of Derivatives

Calculus & Analytical Geometry MATH- 101 Instructor: Dr. Naila Amir (SEECS, NUST)

Objectives

Extreme Values of functions.

Rolle's theorem

The Mean Value theorem.

Monotonic Functions and The First Derivative Test

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 4

• Sections: 4.1, 4.2, 4.3

Extreme Values of Functions

Extreme Values of Functions

- Extreme Values of a function occur when the function changes from increasing to decreasing or from decreasing to increasing.
- In particular, we have two types of minimum or maximum values.
- We say that f(x) has an absolute (or global) maximum at x = c if $f(x) \le f(c)$ for every x in the domain we are working on.
- We say that f(x) has a **relative** (or local) maximum at x = c if $f(x) \le f(c)$ for every x in some open interval around x = c.
- We say that f(x) has an absolute (or global) minimum at x = c if $f(x) \ge f(c)$ for every x in the domain we are working on.
- We say that f(x) has a **relative (or local) minimum** at x = c if $f(x) \ge f(c)$ for every x in some open interval around x = c.

Critical Points

- An interior point of the domain of a function f where f' is zero (stationary point) or undefined (singular point) is a critical point.
- Hence the only domain points where a function f can possibly have an extreme value (local or global) are:
 - (1) Endpoints of an interval.
 - (2) Stationary Points: f'(c) = 0.
 - (3) Singular Points: f'(c) does not exist.

Finding absolute extrema on [a, b]

- 1. Find all critical numbers for f(x) in (a, b).
- 2. Evaluate f(x) for all critical numbers in (a, b).
- 3. Evaluate f(x) for the endpoints a and b of the interval [a,b].
- 4. The largest value found in steps 2 and 3 is the absolute maximum for f on the interval [a,b] and the smallest value found is the absolute minimum for f on [a,b].

EXAMPLE:

Find the absolute maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-2,3].

Solution: We evaluate the function at the critical points and endpoints and take the largest and smallest of the resulting values. The first derivative

$$f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3\sqrt[3]{x}}$$

has no zeros but is undefined at the interior point x = 0. The values of f at this one critical point and at the endpoints are:

Critical point value:

$$f(0) = 0$$
, (Absolute minimum)

Endpoint values:

$$f(-2) = (-2)^{2/3} = \sqrt[3]{4}$$

 $f(3) = (3)^{2/3} = \sqrt[3]{9}$. (Absolute maximum)

If \mathbf{f} is a function that is continuous on [a,b] and differentiable on (a,b), and f(a)=f(b), then there is a number $c\in [a,b]\ni f'(c)=0$.

"is an element of" \times "such that"

Rolle's Theorem Mean Value Theorem

Rolle's Theorem

Recall the Theorem on Local Extrema

If f(c) is a local extremum, then either f is not differentiable at c or f'(c) = 0. We will use this to prove

Rolle's Theorem

Let a < b.

- 1. If f(x) is continuous on the closed interval [a,b],
- 2. If f(x) is differentiable on the open interval (a,b),
- 3. and f(a) = f(b), then there is a c in (a, b) with f'(c) = 0.

That is, under these hypotheses, f(x) has a horizontal tangent somewhere between a and b.

Rolle's Theorem

Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

EXAMPLE: Horizontal tangents of a cubic polynomial

The polynomial function

$$f(x) = \frac{x^3}{3} - 3x$$

is continuous at every point of [-3, 3] and is differentiable at every point of (-3, 3). Since f(-3) = f(3) = 0, Rolle's Theorem says that f' must be zero at least once in the open interval between a = -3 and b = 3. In fact, $f'(x) = x^2 - 3$ is zero twice in this interval, once at $x = -\sqrt{3}$ and again at $x = \sqrt{3}$.

Mean Value Theorem

Let a < b.

- 1. If f(x) is continuous on the closed interval [a,b],
- 2. If f(x) is differentiable on the open interval (a, b) then there is a c in (a, b) with

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

That is, under appropriate smoothness conditions the slope of the curve at some point between a and b is the same as the slope of the line joining (a, f(a)) to (b, f(b)).

Geometrically, the Mean Value Theorem says that somewhere between A and B the curve has at least one tangent parallel to chord AB.

Example:

We illustrate The Mean Value Theorem by considering $f(x) = x^3$ on the interval [1,3]. f is a polynomial and so continuous everywhere. For any x we see that $f'(x) = 3x^2$. So f is continuous on [1,3] and differentiable on (1,3). Thus,

$$\frac{f(b) - f(a)}{b - a} = f'(c) \Longrightarrow 3c^2 = \frac{f(3) - f(1)}{3 - 1} = \frac{27 - 1}{2} = 13.$$

So we seek a c in [1,3] with $3c^2 = 13$.

$$\Rightarrow 3c^2 = 13 \Rightarrow c^2 = \frac{13}{3} \Rightarrow c = \pm \sqrt{\frac{13}{3}}.$$

But
$$-\sqrt{\frac{13}{3}} \notin [1,3]$$
. Thus, $c = \sqrt{\frac{13}{3}}$.

A Physical Interpretation

If we think of the number

$$\frac{f(b) - f(a)}{b - a}$$

as the average change in f(x) over [a,b] and f'(c) as an instantaneous change, then the Mean Value Theorem says that at some interior point the instantaneous change must equal the average change over the entire interval.

Example

If a car accelerating from zero takes $8 \sec$ to go 352 ft, its average velocity for the $8-\sec$ interval is $\frac{352}{8}=44\frac{ft}{sec}$. At some point during the acceleration, the Mean Value Theorem says, the speedometer must read

exactly 30 mph $\left(44\frac{ft}{sec}\right)$.

4.3 Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions

A function f(x) is **strictly increasing** on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.

A function f(x) is **strictly decreasing** on an interval I if $f(x_1) > f(x_2)$ Whenever $x_1 < x_2$.

How the Derivative is connected to Increasing/Decreasing Functions

- ➤ When the function is increasing, what is the sign (+ or -) of the slopes of the tangent lines? POSITIVE Slope
- ➤ When the function is decreasing, what is the sign (+ or -) of the slopes of the tangent lines? NEGATIVE Slope

First Derivative Test for Increasing and Decreasing Functions

Let f(x) be differentiable on the open interval (a, b)

If f'(x) > 0 for each value of x in an interval (a, b), then f(x) is increasing on (a, b).

If f'(x) < 0 for each value of x in an interval (a, b), then f(x) is decreasing on (a, b).

If f'(x) = 0 for each value of x in an interval (a, b), then f(x) is constant on (a, b).

Procedure for finding intervals on which a function is increasing or decreasing

If f(x) is a continuous function on an open interval (a,b). To find the open intervals on which f is increasing or decreasing:

- 1. Find the critical points of f(x) in (a,b).
- 2. Make a sign chart: The critical points, divide the x axis into intervals. Test the sign (+ or -) of the **derivative** inside each of these intervals.
- 3. If f'(x) > 0 in an interval, then f(x) is increasing in that interval.
- 4. If f'(x) < 0 in an interval, then f(x) is decreasing in that interval.

Example:

Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Solution: f(x) is continuous and Domain of f(x) is the set of all Real numbers.

1. Find the critical points: Calculate the derivative and determine where the derivative is 0 or undefined

$$f'(x) = 12x^{3} - 12x^{2} - 24x = 0$$

$$\Rightarrow 12x(x^{2} - x - 2) = 0$$

$$\Rightarrow 12x(x - 2)(x + 1) = 0$$

$$\Rightarrow x = 0, 2, -1$$

2. Find the sign of the derivative on each interval:

The function is increasing on:

$$(-1,0) \cup (2,\infty)$$

because the first derivative is positive on this interval.

The function is decreasing on:

$$(-\infty, -1) \cup (0,2)$$

because the first derivative is negative on this interval.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

a) If f'(x) changes sign from positive to negative at c, then f(x) has a local maximum at c.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

b) If f'(x) changes sign from negative to positive at c, then f(x) has a local minimum at c.

The First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f(x).

c) If f'(x) does not changes sign at c (i.e., f'(x) is positive on both sides of c or it is negative on both sides), then f(x) has no local maximum or minimum at c. minimum at c.

No Local Maximum or Minimum

The First Derivative Test

Determine the sign of the derivative of f(x) to the left and right of the critical point.

left	right	conclusion
+		f(c) is a relative maximum
_	+	f(c) is a relative minimum
No change		No relative extremum

Example: Find all the relative extrema of

$$f(x) = x^3 - 6x^2 + 1$$

$$\Rightarrow f'(x) = 3x^2 - 12x = 0$$

Stationary points: x = 0.4 Singular points: None

Example:

Find all the relative extrema of

$$f(x) = \sqrt[3]{x^3 - 3x}$$

$$\Rightarrow f'(x) = \frac{x^2 - 1}{\sqrt[3]{x^3 - 3x}}$$

Stationary points: $x = \pm 1$

Singular points: $x = 0, \pm \sqrt{3}$

Stationary points: $x = \pm 1$

Singular points: $x = 0, \pm \sqrt{3}$

Relative max.

$$f(-1) = \sqrt[3]{2}$$

Relative min.

$$f(1) = -\sqrt[3]{2}$$

$$f' + ND + 0 - ND - 0 + ND + f - \sqrt{3} - 1 0 1 / \sqrt{3}$$

Local max. $f(-1) = \sqrt[3]{2}$

$$f(x) = \sqrt[3]{x^3 - 3x}$$

Local min. $f(1) = -\sqrt[3]{2}$

Domain Not a Closed Interval

Example: Find the absolute extrema of $f(x) = \frac{1}{(x-2)}$ on $[3, \infty)$

Solution:
$$f(x) = \frac{1}{(x-2)}$$

$$\Rightarrow f'(x) = \frac{-1}{(x-2)^2}$$

Singular point: x = 2 (Not a critical point)

At end point: x = 3

$$f'(3) = \frac{-1}{(3-2)^2} < 0$$
 Decreasing

and

$$f(3) = 1$$

Absolute Max.

Practice Questions

Book: Thomas Calculus (11th Edition) by Georg B.Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

- **■** Chapter: 4
 - **■** Exercise: 4.2

$$Q # 1 - 11.$$

■ Exercise: 4.3

$$Q # 1 - 36.$$