THE LAPLACE-DE RAHM OPERATOR ON A RIEMANNIAN MANIFOLD

JEFFREY JIANG

In \mathbb{R}^2 , we know about the standard Laplace operator on $C^{\infty}(\mathbb{R}^2)$

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

In a more general setting, let (M, g) be a Riemannian manifold. We can define an analogous operator

$$\Delta = \operatorname{div}(\operatorname{grad} f)$$

In local coordinates (x^i) , we have that for $f \in C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$

$$\operatorname{grad} f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}$$

$$\operatorname{div} X = \frac{1}{\sqrt{\det g_{ij}}} \frac{\partial}{\partial x^i} \left((X^i \sqrt{\det g_{ij}}) \right)$$

Where g_{ij} is the symmetric matrix given by $g_{ij} = \langle \partial_i, \partial_j \rangle$ and g^{ij} is the inverse of g_{ij} . This gives the coordinate formula for

$$\Delta f = \frac{1}{\sqrt{g_{ij}}} \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{\det g_{ij}} \frac{\partial f}{\partial x^j} \right)$$

Which using the standard metric $g_{ij} = \delta_{ij}$ on \mathbb{R}^2 recovers the standard Laplacian. However, we want to generalize Δ to arbitrary differential forms, which requires us to construct a bit of machinery.

To do this, we first note that the metric g determines an inner product on each tangent space T_pM where $\langle v,w\rangle=g_p(v,w)$. From this, we can construct an inner product on the alternating tensors $\Lambda^k(T_pM)$, which will give us a smoothly varying inner product on $\Omega^K(M)$. To do this, we will use the fact that g determines a bundle isomorphism $TM\to T^*M$ via the mapping $(x,v)\mapsto (x,\langle v,\cdot\rangle)$.

Proposition 1.1. For a Riemannian manifold (M,g), there is a unique inner product on each $\Lambda^k(T_pM)$ characterized by the formula

$$\langle \omega^1 \wedge \ldots \wedge w^k, \eta^1 \wedge \ldots \wedge \eta^k = \det \left(\langle (\omega^i)^{\sharp}, (\eta^j)^{\sharp} \right) \rangle$$

Where \sharp is the index raising operator $\omega_i dx^i \mapsto g^{ij} \omega_i \frac{\partial}{\partial x^i}$.

Proof. We define the inner product locally in terms of an orthonomal frame E_i , and show that it is independent of the choice of frame. Let ε^i denote the coframe to E_i . We first claim that the set of ε^I where I is a strictly increasing multi-index of length k form an orthonormal basis. To see this, we compute

$$\langle \varepsilon^I, \varepsilon^J \rangle = \det (E_{i\nu}, E_{i\ell})$$

We note that this is 1 if and only if I = J, since then the matrix we are taking the determinant of is $\mathrm{id}_{\mathbb{R}^k}$, otherwise, I contains some i_k not in J, which implies the k^{th} row of the matrix is 0, so the determinant is 0. This then defines an inner product by extending linearly to arbitrary k-forms.

To show that this is independent of our choice of frame, let B_i be another orthonormal frame with coframe β^i . Then we know that $B_i = A_i^j E_j$ with smooth functions A_j^i forming an orthogonal matrix every point. We then compute

$$\langle \beta^{I}, \beta^{J} \rangle = \det \langle B_{i_{k}}, B_{j_{\ell}} \rangle$$

= $\det \langle A_{i_{k}}^{j} E_{j}, A_{j_{\ell}}^{p} E_{p} \rangle$

2 JEFFREY JIANG

Noting that $A_{i_k}^j E_j$ is just the i_k^{th} column of the matrix A, we have that this is equal to $\det\langle A_{i_k}, A_{j_\ell} \rangle$. Again, if I = J, this is just the identity matrix, but if $I \neq J$, there will be a row of zeroes in the matrix $\langle A_{i_k}, A_{j_\ell} \rangle$, so the determinant will be 0. This shows that $\langle \cdot, \cdot \rangle$ is uniquely characterized.

We can then use this inner product to produce an important operator. Recall that given a function $f \in C^{\infty}(M)$, we can define the integral of f over M by integrating the n-form fdV_g , which is a bundle homomorphism $\Omega^0(M) \to \Omega^n(M)$. We can generalize this to arbitrary k forms.

Proposition 1.2. *For every* $k \in \{0, ... n\}$ *, there exists a unique bundle homomorphism*

$$\star: \Omega^k(M) \to \Omega^{n-k}(M)$$

such that for any $\omega, \eta \in \Omega^k(M)$, we have that $\omega \wedge \star \eta = \langle \omega, \eta \rangle dV_g$ and dV_g is the Riemannian volume form.

Proof. We first prove uniqueness. Let ε^i be the coframe to an orthonomal basis E_i . Then for and increasing index set I of length k, we have that \star must satisfy

$$\varepsilon \wedge \star \varepsilon^I = dV_{\mathcal{S}}$$

Therefore, we must have that $\star \varepsilon^I = \pm \varepsilon^J$, where $I \cup J = \{1, \dots n\}$ and J is an increasing index and the sign are chosen such that when we permute I and J to be in increasing order, the sign chosen for $\star \varepsilon^I$ cancel the ones that come from the permutation, since otherwise, $\varepsilon \wedge \star \varepsilon^I = 0$. This uniquely characterizes \star on a basis, so it uniquely extends linearly to $\Omega^k(M)$.

One observation we make is that $\star\star \varepsilon^I = (-1)^{k(n-k)} \varepsilon^I$, which can be verified by shuffling the wedge products and carefully tracking signs. This extends to all k-forms, so $\star\star\omega = (-1)^{k(n-k)}\omega$. Another observation is that this determines a bundle isomorphism $\Omega^k(M) \to \Omega^{n-k}(M)$, since it maps an orthonormal basis to an orthonormal basis. The form $\star\omega$ is often referred to as the *Hodge dual* to ω .