Assignment 1

(due on Fri Jan 29th at 11:59pm)

Rules:

- You do the assignment YOURSELF
- You may consult classmates for hints, but do not copy others' solutions
- Do not share full solution ideas
- Answers on Piazza should follow the same spirit (just hints)
- Mention your references
- 1. Let $M = (Q, \Gamma, \Sigma, \delta, q_0, q_{accept}, q_{reject}, \sqcup)$ be a Turing machine on the alphabet $\Sigma = \{0,1\}$, with the set of states Q, the tape alphabet Γ , and the transition function δ given in the table below:

	0	1	Ш
q_0	q_1 , \sqcup , R	q _{reject}	q_{accept}
q_1	$q_1,0,R$	$q_1, 1, R$	q_2 , \sqcup , L
q_2	q _{reject}	q_3 , \sqcup , L	q_{accept}
q_3	$q_{3},0,L$	q_3 , 1, L	q_0, \sqcup, R

- (a) Does M accept or reject 0011? Does M accept or reject 0101? [1 mark]
- (b) Describe the language which M decides. [2 marks]
- 2. Prove that multiplication is primitive recursive [4 marks]
- 3. Let A, B be two computable sets of natural numbers. Show that $A \cap B$ is also computable. You may appeal to the Church-Turing thesis. [2 marks]
- 4. If A is computable, prove that \bar{A} is also computable. [1 mark]