集群性能评估

- 一、压力测试
 - 目标
 - 当前流程
 - 痛点
 - 风险点
 - 报告
- 采集指标
- 关注指标
- 待优化项
- 参考文档
- 二、集群性能评估
 - 目标
 - 数据对象
 - 数据源
 - 统计指标
 - * 本担
- 三、其他
 - 可靠性
 - 验证方式
 - 自动化脚本

一、压力测试

目标

通过自动化压测与模拟压测,确定系统链路流向以及服务单机性能,进而评估促销目标容量与系统稳定性趋势。

当前流程

促销模拟压测

序 号	内容	执行人	备注
1	单机QPS预 估	性能评估dev	"leipin." C
!	压测容量预 估	容量评估dev	
3	通知SRE扩容	压测dev	χ6
1	通知占用 LIVETEST	压测dev	在seatalk群 " livetest对比环境 使用协调 "中通知需要占用LIVETEST分支与开关,及其时间段
5	更新 LIVETEST分 支	业务组PIC	22-11-10e
91	修改 LIVETEST开 关	业务组PIC	修改appid=sls_api&env=LIVE&cluster={cid}_livetest集群下, ssc.sls.mutable_application namespace中, UseNorma lConfigOnDailyVersionCompare 为 true
7	检查开关是 否一致	压测dev	检查压测系统中各熔断值是否配置正确+是否生效
3	增量加压	压测dev	加压的过程中,需要各项目组压测PIC同步观察关键指标,如有明显流量/负载上涨,及时沟通上报。 观察项: 1. 关联中间件(MySQL、Codis)和第三方依赖(Spex等)的入口QPS/延迟/错误率/CPU负载指标[Grafana+CAT] 2. 压测服务的错误率/CPU/MEM/Latency等负载指标
9	产出压测报告	压测dev/大 促系统	-6

痛点

场景	现象	原因	改进
日常压测	1. 压测链路放大比与线上偏差 大	livetest的流量融合了流量回放引入的流量,导致 压测流量接口比例与历史大促有一定差异	放大一定比例的日常压测流量,不再只压单机,减少流量回放的影响
	へ 2. 压测单机QPS预估不准	流量放大的压测方式会导致缓存高命中的现象, 压出的性能往往要优于线上真实性能	将压测性能与线上FCST性能进行对比,以线上性能为准
		livetest点线迁移等开关配置与live不一致	短期方案:
₽ ₇ .		压测代码与线上代码差别较大的代码中合进去很 多陈年优化代码	 周二上午新增一次自动化压测 [已知每周三是日常版本发版窗口,周二LIVETEST流量回放强占用,配置与代码与上线后保持一致] 每天日常压测之前从apollo和jenkins/dms拉数据,确认开关与代码是否与线上一致。是:标记本次压测为有效压测;反之无效。
		HOBE SEWI.	长期方案:
		iilos, MEID	隔离流量回放与自动化压测环境
模拟	促销规模不一致时,接口比例差	用户行为不一致	根据不同量级的促销备份多种接口比例
压测	异较大,对服务性能影响较大 	NEIL	压测平台支持一键更新接口比例

风险点

现象	改进
大规模压测可能会对外部依赖造成较大压力	大规模压测之前预估对第三方依赖(spex、coreserver等)的压力,并邮件/seatalk同步
	将依赖方的上限配置为压测任务的熔断值?

报告

采集指标

目标集群	统计指标	统计方式	
服务	CPU	MAX, P95, AVG	
	MEM		
	LATENCY		
MySQL	Read QPS	MAX	
	Connection		
	Thread Running		2055-17-17 Dose
1	Slow Query		
Codis	QPS	MAX	
511	СРИ		
N/O	MEM		
关注指标			
场 性能景 指标		备	達

关注指标

场	性能 指标	计算方式	备注
汞	加加		

模拟 压测	单机 OPS	Target = 压测单机QPS * 线上压测差值系数	1. 模拟压测尽可能的压出各个服务均衡负载时的性能数据
1-1/13	4.5	压测单机QPS = QPS by instance / CPU负载*目标CPU负	2. 线上单机QPS取线上负载接近5核的真实性能数据,以评定压测性能数据与真实情况的
		载 (62.5% = 五核)	差距
			3. 由于FCST/大促时达到正常负载的服务较少,只能抽样计算差值系数,以估算其他无可
		差值系数 = (历史大促单机QPS or FCST单机QPS)/压测单机QPS	靠线上性能数据的服务的性能

待优化项

1. 单机QPS计算方式

参考文档

大促压测流程

二、集群性能评估

目标

结合压测负载数据与线上负载数据,评估各服务、中间件的集群性能与可承载容量。

数据对象

数据源

- 1. 大促模拟压测性能数据
- 2. 日常压测性能数据 <历史3天>
- 3. 历史大促峰值性能数据
- 4. 历史日常性能数据<FCST>

统计指标

2. 日常 3. 历史	模拟压测性的 压测性能数据 2大促峰值性的 2日常性能数据	居 <历史3天> 能数据		
目标集群	统计指标	统计方式	计算方式	Shobe DEWLY.
Service	单机QPS	MIN	1.参考数据源2-4,以大促模拟压测数据为准预估单机QPS指标。 2.标记出数据源中小于平均值30%的最小值,判定该指标是否异常。如果是,去除。 3.取剩余数据中的最小值作为各服务的单机QPS。	Weipin ling OMEL
MySQL	读QPS	取最坏情况	无限制,可以通过slave扩展,2w/slave	
	写QPS	65	5000	
Codis	QPS	6:5	大促前给SRE提单咨询	
Dependency	QPS		1. 大促前向下游同步SLS对其的预估压力 2. 咨询可承载最大能力	

	-	1	21	
EDENT!	流程			
	编号	步骤	说明	
	1	日常压测	● 每周二10:00-10:30增加一轮发版前得可信自动化压测● 标记可信/不可信压测数据	ipin.liu@shc.nk.tok
	2	模拟压测	根据预估流量和预估实例数进行1v1大促模拟压测	MELL
	3	计算差值系数	取1-3个CPU负载在4核左右的LIVE集群性能数据,与压测数据做对比,计算平均差值系数	
			差值系数 = sum(线上集群QPS/压测集群QPS)/ len(集群个数)	

4	计算单机数据	预估单机QPS = 压测单机QPS * 差值系数
5	核验单机数据	 取最近3次有效日常压测数据和1次一个月内有效的模拟压测数据 将预估单机QPS数据与上述数据源进行对比: 若预估数据 > 1.2 * mim(参考数据),表示本次压测性能明显提升,标记该数据为存疑数据,需人工复核各项数据源是否正常/近期是否有相关的业务变更/优化 若预估数据 < 0.8 * min(参考数据),表示本次压测性能明显恶化,标记该数据为存疑数据,需人工复核各项数据源是否正常/近期是否有相关的业务变更 其余数据为可信数据
6	人工校正	人工对不可信数据进行确认&校正
7	促销后验证数据 合理性	扫描线上服务的大促历史数据,拉取负荷在4-6核之间的集群负载数据,对预估QPS数据进行复盘

三、其他

可靠性

根据线上压测性能与大促模拟压测性能预估服务单机性能,参考日常压测性能、历史大促性能数据,甄别是否有性能差距在20%以上的服务。

如有,需要检查livetest开关、流量配比等压测配置并进行复压。

如果服务性能确实异常,需与业务组PIC确认性能变化原因。

验证方式

促销之后,记录线上历史负载数据,估算服务单机QPS,与压测结果进行对比,记录差异在30%以上的服务,复盘差异原因。

自动化脚本

生成性能结果并同步到容量评估文档中: api/report/static_evaluation/metric/performance/sync

具体入参含义参考测试用例中的注释: TestSyncPerfMetrics