

Предсказание временных рядов

Понизяйкин Владислав

tg: @ArChanDD

Ушаков Михаил

tg: @MuwecTb

Главное - не теряйтесь!

тг-канал курса

github-репозиторий

Что вас ждет

- 2 Лекции
- 2 Практики
- 1 Kaggle-соревнование

Глава 1 Кто такие временные ряды и что с ними делать?

1. Котировки Акций

2. Численность населения Санкт-Петербурга

3. Миграционный прирост

4. Изменение температуры в Москве

Определение

Временной ряд - это данные, последовательно собранные в регулярные промежутки времени.

Определение

Временной ряд - это данные, последовательно собранные в регулярные промежутки времени.

Задача: продолжить имеющийся временной ряд. Фактически, необходимо угадать функцию, которая его задает.

Пример (2)

Какая функция задает этот ряд?

Пример (2)

Какая функция задает этот ряд? $\exists mo \ y = x + sin(x)$

Пример с шумом

А если построить график y = x + sin(x) + U, где U имеет нормальное распределение N(0, 1)

Пример с шумом

А если построить график y = x + sin(x) + U, где U имеет нормальное распределение N(0, 1)

Что делать?

Получается, угадать функцию не выйдет?

Что делать?

Получается, угадать функцию не выйдет? Да, но ведь можно ее приблизить!

Что делать?

Очевидно, что y = x + sin(x) + U приближается y = x + sin(x)

Глава 2 Простые способы предсказать временной ряд

Какая модель тут будет считаться "наивной"?*

^{* &}quot;Naive Model" в словаре ML-щика - простая, банальная, почти всегда бесполезная, но почему-то существующая модель

Какая модель тут будет считаться "наивной"?*

Наивной моделью считаем ту, которая: y[i] = y[i - lag]

То есть, в качестве предсказанного нового значения она будет брать то, которое было *lag* позиций назад.

^{* &}quot;Naive Model" в словаре ML-щика - простая, банальная, почти всегда бесполезная, но почему-то существующая модель

Плюсы:

- Работает очень просто
- По сути ничего обучать не нужно

Минусы:

- Модель не способна предсказать что-то новое
- Ей не важен контекст ей важно только то, что было *lag* шагов назад

Посмотрим на изменение цены акций Visa Наивная модель не сработает Как нам определиться с трендом*? (хотя бы)

^{*} тренд - основная тенденция изменения чего-либо (в нашем случае целевого значения - цены)

Посмотрим на изменение цены акций Visa Наивная модель не сработает Как нам определиться с трендом*? (хотя бы)

^{*} тренд - основная тенденция изменения чего-либо (в нашем случае целевого значения - цены)

Посмотрим на изменение цены акций Visa Вопрос 2: как быстро растет цена?

^{*} тренд - основная тенденция изменения чего-либо (в нашем случае целевого значения - цены)

Посмотрим на изменение цены акций Visa Вопрос 2: как быстро растет цена?

^{*} тренд - основная тенденция изменения чего-либо (в нашем случае целевого значения - цены)

Дано: набор точек вида (х,у)

Задача: построить наиболее близкую к ним прямую вида y=kx+b

Дано: набор точек вида **(***x***,** *y***)**

Задача: построить наиболее близкую к ним прямую вида y=kx+b

Оптимизация: MSE (MHK)

Дано: набор точек вида **(***x***,** *y***)**

Задача: построить наиболее близкую к ним прямую вида y=kx+b

Оптимизация: MSE (MHK)

Удивительно, но для предыдущего примера все так же может работать хорошо!

Удивительно, но для предыдущего примера все так же может работать хорошо!

Почему получилось?

Преобразование координаты

Почему так вообще можно делать?

Потому что есть сезонность*

^{*} сезонность - явление повторения значения через определенный промежуток времени

А можно сделать лучше?

А можно сделать лучше? Добавим *экзогенные* переменные

Сделаем из
$$y = kx$$
 $y = \sum_{i=1}^n k_i x_i$

А можно сделать лучше? Добавим *экзогенные* переменные

Сделаем из
$$y=kx$$
 $\downarrow n$ $y=\sum_{i=1}^n k_i x_i$

Линейная регрессия 2

Плюсы:

• более точно

Минусы:

- очень много параметров
- делает только то, что видела

Глава 3 Moving Average & ARIMA

Стационарность

Что не так с этим графиком?

Стационарность

Что не так с этим графиком? Приведем его к стационарному виду

Теорема Волда

Каждый *слабо стационарный* временной ряд можно представить в виде *скользящего среднего* бесконечного порядка $MA(\infty)$

Такое представление называют представлением скользящим средним для временных рядов.

$$Y_t = \sum_{i=1}^\infty b_i \epsilon_{t-i} +
u_t$$

- Y_t рассматриваемый временной ряд
- ullet ϵ_{t-i} белый шум
- b_i коэфициенты скользящего среднего
- ullet детерминированная компонента (равна 0 если нет трендов

Коэффициенты $\boldsymbol{b_i}$ удовлетворяют условиям,

- ряд сходится абсолютно
- отсутствуют члены с j < 0
- не зависят от t

MA(d)

Очевидно, $MA(\infty)$ мы построить не можем, поэтому построим $\mathbf{MA(d)}$

Но как тогда найти коэффициенты ϵ_{t-i} ?

AR(p)

Для начала посмотрим на модель AR - авторегрессивная модель

$$Y_t = \sum_{j=1}^p Y_{t-j} lpha_j + \epsilon_t$$

Эта модель полагается только на предыдущие значения - зная, что предыдущие значения были **2,3,4**, модель предскажет 5 (как пример)

AR(p)

Для начала посмотрим на модель AR - авторегрессивная модель

$$Y_t = \sum_{j=1}^p Y_{t-j} lpha_j + \epsilon_t$$
 Она нам и нужна!

Эта модель полагается только на предыдущие значения - зная, что предыдущие значения были **2,3,4**, модель предскажет 5 (как пример)

Что делать дальше?

$$Y_t = \sum_{i=1}^p Y_{t-i} lpha_i + \sum_{j=1}^d b_j \epsilon_{t-j} + \mu_t + \epsilon_t$$

Помните что это?
$$Y_t = \sum_{i=1}^p Y_{t-i} \alpha_i + \sum_{j=1}^d b_j \epsilon_{t-j} + \mu_t + \epsilon_t$$
 А это откуда?

$$Y_t = \sum_{i=1}^p Y_{t-i} lpha_i + \sum_{j=0}^d b_j \epsilon_{t-j}$$

Окей, параметры модель найдет А что делать с р и d?

$$Y_t = \sum_{i=1}^p Y_{t-i} lpha_i + \sum_{j=0}^d b_j \epsilon_{t-j}$$

Окей, параметры модель найдет А что делать с р и d?

Лучший способ сейчас - угадать Если интересен более корректные подход:

• https://pythonpip.ru/examples/model-arima-v-python

Но ARMA работает только для стационарных рядов, как быть в общем случае?

ARIMA(p,q,d)

Надо просто сделать ряд стационарным и добавить что-то про тренд!

$$\Delta^q Y_t = c + \sum_{i=1}^p \Delta^q Y_{t-i} lpha_i + \sum_{j=0}^d b_j \epsilon_{t-j}$$

 Δ^q - операция взятия разности **q** раз подряд - сначала в самом ряду, потом в разностях, и тд.

ARIMA(p,q,d)

Вопросы?

