Chapter 3 Lexical Analysis

Zhen Gao gaozhen@tongji.edu.cn

Scanner

- Lexical analysis is the foundation of compilation
- The program that performs lexical analysis is called a lexical analyzer (or scanner)
- Lexical analysis tasks
 - Scan the source program left to right, character by character
 - □ Recognize and generate a token stream from the input string

Outline

- 3.1 Requirements for Scanner
- 3.2 Design of Scanner
- 3.3 Regular Expressions and Finite Automata
- 3.4 Automatic Generation of Scanner

Functions of a Scanner

_

Token Representation

(token type, attribute value)

- □ Token type: information needed by syntax analysis
- Attribute value: information usually needed by other compilation stages, also called token value

Example: In int i, j;, i and j, tokens are "identifier", and their attribute values are the "symbol table entries"

Token

- Token: Usually encoded as integers
- Encoding usually depend on processing convenience
 - □ Identifiers: single category
 - Constants: by type (int, real, boolean)
 - □ Keywords: one per keyword
 - □ Operators: one per symbol or by common traits
 - Delimiters: one per symbol

Attribute Value

- Attribute values reflect the features or characteristics of a token
 - Identifiers: value is a pointer to its symbol table entry or internal string
 - Constants: value is a pointer to its constant table entry or in binary form
 - □ Keywords, Operators, Delimiters: one token per item; no separate attribute value needed

Example: Code segment: while (i>=j) i--;

<while< th=""><th>e , - ></th></while<>	e , - >
< (, - >
< id	, ptr-i>
< >=	, - >
< id	, ptr-j> —
<)	, - >
< id	, ptr-i>
<	>
< ;	, - >

Symbol Table						
No	ID	Addr	type	•••		
				•		
224	j	AF80	INT			
227	i	DF88	INT			

FORTRAN Compilation Example

- IF (5·EQ·M) GOTO 100
- the FORTRAN Scanner outputs the following token sequence:

```
(34, _)
(2, _)
(20, binary of '5')

EQ
(6, _)
M
(26, 'M')
)
(16, _)
GOTO
(30, _)
(19, binary of '100')
```


- Completely Independent: Scanner is a separate pass; reads the whole source; output goes to Parser
 - □ Advantage: Simple, clear, organized structure
- Relatively Independent: Scanner is a subroutine called by Parser as needed
 - □ Advantage: No intermediate files; more efficient

Outline

- 3.1 Requirements for Scanner
- 3.2 Design of Scanner
- 3.3 Regular Expressions and Finite Automata
- 3.4 Automatic Generation of Scanner

Token Recognition: Lookahead

Keyword Recognition

Example: Two valid sentences in standard FORTRAN:

Structure of Scanner

Source **Preprocessing: Handle** Program blanks, tabs, carriage returns, newlines, and The input string is remove comments. usually stored in a buffer, called the Input Buffer Preprocessing input buffer Subroutine Scanning Buffer Scanner Tokens **Set Two Pointers** Forward Start **Divide Buffer into** Pointer Pointer Two Parts

Regular Grammar

- In most programming languages, lexical rules for tokens can be described by regular grammars:
 - □ < Identifier> → letter | < Identifier> letter | < Identifier> digit
 - □ <Integer> → digit | <Integer> digit
 - □ <Operator> → + | | * | / ...
 - □ <Delimiter> → ; | , | (|) ...

State Transition Diagram

String Recognition

- □ A state transition diagram can accept (recognize) certain strings.
- □ Path: sequence of edge labels from start state to a final state.
- \square A string β is **accepted** if there exists a path generating β .
- If no such path exists, the string β is not accepted.

State Transition Diagram

- Language Recognized by a State Transition Diagram
 - Let **L(TG)** be the set of strings accepted by a state transition diagram **TG**.

State Transition Diagram

Final State

 Most programming languages' tokens can be recognized using a state transition diagram.

letter or

digit

Start State

(c) Integer Recognition

Example: All Tokens and Their Internal Representations in a Small Language

Tokens	Token Type	Mnemonic Symbol	Attribute Value
DIM	1	\$DIM	-
IF	2	\$IF	-
DO	3	\$DO	-
STOP	4	\$STOP	-
END	5	\$END	-
Identifier	6	\$ID	Internal String
Constant	7	\$INT	Binary Form
=	8	\$ASSIGN	-
+	9	\$PLUS	-
*	10	\$STAR	-
**	11	\$POWER	-
•	12	\$COMMA	-
(13	\$LPAR	-
)	14	\$RPAR	-

State Transition Diagram Recognizing All Tokens of a Small Language

Letter or

Space

Conventions (Restrictions)

- ✓ Keywords: reserved words
- ✓ Reserved words are treated as identifiers and recognized using a reserved word table
- ✓ If there is no operator or delimiter between keywords, identifiers, or constants, add a space

Simulating a DFA

```
s = s0;
c = nextChar();
while ( c != eof ) {
    s = move(s, c);
    c = nextChar();
}
if ( s is in F ) return " yes ";
else return "no ";
```

Function: Recognize whether a string is a valid token

- 3.1 Requirements for Scanner
- 3.2 Design of Scanner
- 3.3 Regular Expressions and Finite Automata
- 3.4 Automatic Generation of Scanner

Learning Approach

Lexical rules

- → Regular expressions
- → Automata (NFA → DFA → Minimized DFA)
 - → Scanner

- To better use state transition diagrams for constructing scanner and discussing automatic generation of scanners, the concept of the diagram needs to be formalized
 - □ Regular expressions and regular sets
 - Deterministic Finite Automata (DFA)
 - Non-deterministic Finite Automata (NFA)
 - □ Equivalence of regular expressions and finite automata
 - Minimization of DFA

Regular Expressions and Regular Sets

- Recursive definition of regular expressions and sets over alphabet ∑:
 - \square ε and φ are regular expressions over Σ , representing the sets {ε} and Ø
 - □ Any symbol $a \in \sum$ is a regular expression representing the set $\{a\}$
 - □ Combination rules:
 - $\bullet \quad U \mid V \rightarrow union \ L(U) \cup L(V)$
 - U · V → concatenation L(U) L(V)
 - U* → Kleene star (L(U))*
 - □ Generation rule: Only expressions obtained by finite applications of the above rules are regular expressions over ∑

Operators in Regular Expressions

- \square "|" \rightarrow read as "or"
- □"." → read as "concatenation"
- □ "*" → read as "closure"
- □ Operator precedence: * >. > |
- □ Concatenation operator "." can often be omitted; parentheses can be omitted if no ambiguity arises
- ☐ Two regular expressions are equivalent (U =V) if they represent the same regular set

Examples of Three Operations

```
Example 1. if L = \{001,10,111\}, M = \{\epsilon,001\},
      L \cup M = \{ \epsilon, 10, 001, 111 \}
Example 2. if L = \{001,10,111\}, M = \{\epsilon,001\},
      LM = { 001, 10, 111, 001001, 10001, 111001}
Example 3. if L = \{ 0, 11 \},
      L^* = \{ \epsilon, 0, 11, 00, 011, 110, 1111, 000, 0011, 0110, 
      01111, 1100, 11011, 11110, 111111, ... }
```

Example1 : Let $\sum = \{a, b\}$

Regular Expressions

Regular Sets

$$L(a|b)(a|b) = L(a|b) \cdot L(a|b)$$

$$(a|b)(a|b) = (L(a) \cup L(b)) \cdot (L(a) \cup L(b))$$

$$= \{a,b\} \cdot \{a,b\} = \{aa,ab,ba,bb\}$$

$$L(ba^*) = L(b)L(a^*) = L(b)(L(a))^*$$

$$= \{b\}\{a\}^* = \{b\}\{\epsilon,a,aa,aaa,...\}$$

$$= \{b,ba,baa,baaa,...\}$$

Regular Sets

Example Regular expression for "identifier"

Example Regular expression for "integer"

Algebraic Laws of Regular Expressions

■ Let **U**, **V**, **W** be regular expressions:

(1) U|V=V|U

(2) U|(V|W)=(U|V)|W

(3) U(VW)=(UV)W

(4) U(V|W)=UV|UW

(5) (V|W)U=VU|WU

(6) $\varepsilon U = U \varepsilon = U$

Commutative Law

Associative Law

Associative Law

Distributive Law

Distributive Law

- Write Regular Expressions
 - □(1) Binary strings ending with 01
 - □(2) Decimal integers divisible by 5

Learning Approach

Lexical rules

- → Regular expressions
- → Automata (NFA → DFA → Minimized DFA)
 - → Scanner

Equivalence of Regular Expressions and Finite Automata

- Regular expressions and finite automata are equivalent
 - □ For any FA M, there exists a regular expression V such that L(V) = L(M)
 - □ For any regular expression V, there exists an FA M such that L(M) = L(V)

NFA → Regular Expression(State Elimination Method)

(1) Add X node and Y node to ensure a unique start state and a unique final state

(2) Repeatedly eliminate states and merge edges using the rules, until only X and Y remain → the regular expression on the edge from X to Y is the result

*

State Elimination Method

$$0 - \frac{(a|b)^*(aa|bb)(a|b)^*}{7}$$

Quiz

NFA → Regular Expression

*

Regular Expression → **NFA** (Thompson's Algorithm)

Basic Rules:

1 For ε , construct as ε 2 For ϕ , construct as ε 3 For a, construct as ε

Induction:

1 For R|S, construct as-

2 For RS, construct as

3 For R*, construct as

*

■ Example : Given regular expression 1*0(0|1)*, construct an equivalent NFA.

Exercise

(alb) * abb(alb) *

Learning Approach

Lexical rules

- → Regular expressions
- → Automata (NFA → DFA → Minimized DFA)
 - → Scanner

Finite Automaton (FA)

- **■** Finite State Machine (FSM)
 - □ A machine or control structure designed to automatically imitate a predetermined sequence of operations or respond to an encoded instruction
 - □ Widely applied in many fields
 - □ An important tool in computer science and engineering

State + Input + Rules → State Transition

Model of FA

- FA can be understood as a controller
- It reads characters on an input tape

*

Example

```
Input (Characters): 0 \ 0 \ 1 \ 0
```

Controller

Deterministic Finite Automaton (DFA)

- A DFA is a 5-tuple: $M = (S, \Sigma, \delta, s_0, F)$
 - □ S: finite set of states; each element is a state
 - Σ: finite input alphabet;
 - $\square \delta$: transition function: $\mathbf{S} \times \Sigma \to \mathbf{S}$
 - $\square s_0$: start state, $s_0 \in S$
 - □ F: set of final states, F ⊆ S

State Transition Matrix of a DFA

- A DFA can be represented by a state transition matrix
 - □ **Rows**: represent the states.
 - □ **Columns**: represent the input symbols.
 - \Box **Matrix entries**: represent the value of δ(s, a), i.e., the next state when the automaton is in state s and reads input symbol a.

Example: DFA M= ($\{0,1,2,3\}$, $\{a,b\}$, δ , $\{0,1,2,3\}$)

where

$$\delta(0,a)=1 \delta(0,b)=2$$

$$\delta(1,a)=3 \delta(1,b)=2$$

$$\delta(2,a)=1 \delta(2,b)=3$$

$$\delta(3,a)=3 \delta(3,b)=3$$

State	а	b
0	1	2
1	3	2
2	1	3
3	3	3

- A DFA can also be represented as a deterministic state transition diagram
 - \square States \rightarrow nodes in the diagram.
 - □ Transitions → directed edges labeled with input symbols.
 - No Ambiguity → For each state and input symbol, there is exactly one outgoing edge

状态	a	b
0	1	2
1	3	2
2	1	3
3	3	3

*

Extended Transition Function δ'

- δ': the transition function that handles an input string (not just one symbol)
 - **□** Definition:
 - δ' : $S \times \Sigma^* \rightarrow S$
 - For any state $s \in S$:
 - \Box $\delta'(s, \epsilon) = s$
 - □ If ω is a string and a is a symbol, then: δ'(s, ωa) = δ(δ'(s, ω), a)
- For a DFA:

 - \Box That is, for a single symbol, δ and δ' are the same.

Extended Transition Function δ'

Controller

$$\delta'(q_0, \varepsilon) = q_0$$
 $\delta'(q_0, 0) = \delta(q_0, 0) = q_2$
 $\delta'(q_0, 00) = \delta(q_2, 0) = q_0$
 $\delta'(q_0, 001) = \delta(q_0, 1) = q_1$
 $\delta'(q_0, 0010) = \delta(q_1, 0) = q_3$

*

Language Accepted by a DFA

Accepted string:

- □ A string is accepted if, after reading the entire input, the DFA ends in a final (accepting) state.
- □ Otherwise, the string is rejected.
- Language of a DFA: The set of all strings accepted by the DFA.

$$\Box L(M) = \{ \alpha \mid \delta'(s_0, \alpha) \in F \}$$

Special case:

 \square If $s_0 \in F$, then the empty string ε is accepted.

Simulating a DFA

```
s = s0;
c = nextChar();
while ( c != eof ) {
    s = move(s, c);
    c = nextChar();
}
if ( s is in F ) return " yes ";
else return "no ";
```

Exercise

- River Crossing Puzzle
 - □ A man needs to ferry a wolf, a goat, and a cabbage across a river.
 - The boat holds only the man + one item.
 - Wolf + goat alone → wolf eats goat.
 - Goat + cabbage alone → goat eats cabbage.
- Task
 - ☐ Use a finite automaton to describe the crossing method.

Non-deterministic Finite Automaton (NFA)

 Modify the DFA model so that in some state, for a given input, there can be multiple transitions to different states

That is, the automaton has the ability to make different choices in the same situation

Non-deterministic Finite Automaton (NFA)

■ An NFA M is a 5-tuple:

$$\square M = (S, \Sigma, \delta, S_0, F)$$

- S and Σ are defined as before
- δ : $S \times \Sigma \rightarrow 2^{S}$ (subset of states)
 - □ For a state s ∈ S and input symbol a:

•
$$\delta(s, a) = S' \subseteq S$$

- $S_0 \subseteq S$ is a non-empty set of start states
- \blacksquare **F** \subseteq **S** is the set of final states

NFA Represented by Transition Diagram and Transition Matrix

	0	1	
$\longrightarrow p$	{q}	φ	
\boldsymbol{q}	{q}	{q, r}	
* <i>r</i>	φ	φ	
l	I	I	
	0	1	
$\longrightarrow p$	<i>(p)</i>	1 {p, q}	
$\xrightarrow{p} q$			

Note:

Each entry in the transition matrix is a set of states Can include the empty set (Φ) , meaning some state—input combinations may have no transitions

Simulating a NFA

```
S = \epsilon - closure(s_0);
   c = nextChar();
3)
   while (c \models eof)
             S = \epsilon - closure(move(S, c));
4)
             c = nextChar();
5)
6)
     if (S \cap F := \emptyset) return "yes";
     else return "no";
```

NFA and DFA Comparison

Example: Construct an NFA that recognizes a language over {0,1}

L= $\{x000y \mid x,y \in \{0,1\}^*\}_{\circ}$

Corresponding DFA

NFA of (alb) * abb

DFA of (alb) * abb

*

NFA and DFA Comparison

Input Symbols

- □ In DFA: each state has a transition for every symbol in the alphabet
- In NFA: a state may have no transition for some symbols, or may allow ε-transitions

Transition States

- □ In DFA: the next state is **deterministic** (only one)
- In NFA: the next state is non-deterministic (can be multiple)

Extended Transition Function

- Difference from DFA:
 - $\square \delta: S \times \Sigma \to 2^S$
- Extended function:
 - $\square \delta' : S \times \Sigma^* \to 2^S$
 - $\square \delta'(s, \varepsilon) = \{s\}$
 - $\Box \delta'(s, \omega a) = \{ p \mid \exists r \in \delta'(s, \omega) \land p \in \delta(r, a) \}$
 - $\delta'(s, \omega a)$ is the union of all possible states reached by reading **a** from each state in $\delta'(s, \omega)$.
 - If $\delta'(s, \omega) = \{r_1, r_2, \dots, r_k\}$, then $\delta'(s, \omega a) = \bigcup \delta(r_i, a)$, where $\omega \in \Sigma^*, a \in \Sigma, r_i \in S$.

Extended transition function

	0	1
<i>p</i>	<i>{q}</i>	φ
\boldsymbol{q}	{q}	{q, r}
* r	φ	ϕ

$$\delta'(p, \varepsilon) = \{p\}$$
 $\delta'(p, 0) = \{q\}$
 $\delta'(p, 01) = \{q, r\}$
 $\delta'(p, 010) = \{q\}$
 $\delta'(p, 0100) = \{q\}$
 $\delta'(p, 01001) = \{q, r\}$

Language Accepted by an NFA

- If after reading a string, the NFA enters a set of states that contains at least one final state in F, then the NFA accepts the string.
- For $M=(S, \Sigma, \delta, S_0, F)$, the language of M is: $L(M)=\{\alpha \mid \delta'(S_0, \alpha) \cap F \neq \emptyset\}$
- For any input string $\alpha \in \Sigma^*$:
 - □ If there exists a path from some start state S_0 to some final state in F
 - \Box And the concatenation of edge labels equals α (ε-transitions ignored)
 - \square Then α is accepted (recognized) by the NFA M.

Equivalence of NFA and DFA

- A DFA is a special case of an NFA → any language accepted by a DFA is also accepted by an NFA.
- Question: Can every language accepted by an NFA be accepted by some DFA?
 - □ Answer: Yes
- **Proof strategy**: For any NFA, construct a DFA that accepts the same language, where each DFA state corresponds to a **subset** of NFA states.

Example: Convert NFA to DFA

Regular expression $V = (a \mid b)^*(aa \mid bb) (a \mid b)^*$

1) use Subset Construction to create the state transition matrix

I	I_a	I_b
{X, 5, 1}	{5, 3, 1}	{5, 4, 1}
{5, 3, 1}	{5, 3, 1, 2, 6, Y}	{5, 4, 1}
{5, 4,1}	{5, 3, 1 }	{5, 4, 1, 2, 6, Y}
{5, 3, 1, 2, 6, Y}	{5, 3, 1, 2, 6, Y}	{5, 4, 1, 6, Y}
{5, 4, 1, 2, 6, Y}	{5, 3, 1, 6, Y}	{5, 4, 1, 2, 6, Y}
{5, 4, 1, 6, Y}	{5, 3, 1, 6, Y}	{5, 4, 1, 2, 6, Y}
{5, 3, 1, 6, Y}	{5, 3, 1, 2, 6, Y}	{5, 4, 1, 6, Y}

2) Rename the state subsets to get a new state transition matrix

I	I_a	I_b
{X, 5, 1}	{5, 3, 1}	{5, 4, 1}
{5, 3, 1}	{5, 3, 1, 2, 6, Y}	{5, 4, 1}
2 {5, 4,1 }	{5, 3, 1}	{5, 4, 1, 2, 6, Y}
$\{5, 3, 1, 2, 6, Y\}^3$	{5, 3, 1, 2, 6, Y}	{5, 4, 1, 6, Y}
{5, 4, 1, 6, Y} 4	{5, 3, 1, 6, Y}	{5, 4, 1, 2, 6, Y}
{5, 4, 1, 2, 6, Y} ⁵	{5, 3, 1, 6, Y}	{5, 4, 1, 2, 6, Y}
{5, 3, 1, 6, Y} 6	{5, 3, 1, 2, 6, Y}	{5, 4, 1, 6, Y}

S	a	b
0	1	2
1	3	2
2	1	5
3	3	4
4	6	5
5	6	5
6	3	4

3) Draw the state transition diagram

I	I _a	I_b
{X, 5, 1} 0	{5, 3, 1}	2 {5, 4, 1 }
{5,3,1}	{5, 3, 1, 2, 6, Y}	2 {5, 4, 1 }
{5, 4,1 }	{5, 3, 1 } 1	{5, 4, 1, 2, 6, Y} 5
$\{5,3,1,2,6,Y\}^{3}$	{5, 3, 1, 2, 6, Y}3	{5, 4, 1, 6, Y} 4
{5, 4, 1, 6, Y} 4	{5, 3, 1, 6, Y} 6	{5, 4, 1, 2, 6, Y} 5
{5, 4, 1, 2, 6, Y} 5	{5, 3, 1, 6, Y}	{5, 4, 1, 2, 6, Y§
{5, 3, 1, 6, Y} 6	{5, 3, 1, 2, 6, Y}	{5, 4, 1, 6, Y} 4

Proof of NFA and DFA Equivalence

(1) Modify the state-transition diagram of NFA M to obtain M' Introduce new start node X and new final node Y, with X, Y ∉ S

(2) Extend nodes and add edges according to the following rules

(2) Further transform M' into a DFA

- Let I be a subset of M"s states. The ε-CLOSURE(I) is defined as:
 - □ If $q \in I$, then $q \in \epsilon$ -CLOSURE(I)
 - \Box If $q \in I$, then any state q' reachable from q via any number of ε-transitions is also in ε-CLOSURE(I)
- Let I be a subset of M"s states and a ∈
 Σ. Define:
 - $\Box I_a = \varepsilon$ -CLOSURE(J)
 - □ where J is the set of all states reachable from any state in I via an a-transition

1) Construct the state transition matrix; Let $\Sigma = \{a, b\}$, create a table in the following form:

I	l _a	I _b
ε_CLOSURE({X})		

- 2) Treat each subset in the first column of the table as a **new state** and rename them
 - □ The subset in the first row, first column becomes the **DFA start** state
 - Any subset containing the original final state Y becomes a DFA final state
- 3) Draw the new DFA

Let $I=\{1\}$, $\varepsilon_CLOSURE(I)=\{1,2\}$

Let $I=\{1,2\}$, $I_a=\epsilon_CLOSURE\{5,4,3\}=\{5,6,2,4,7,3,8\}$

Quiz-Canvas

2) Lexical Analysis - Convert NFA to DFA using Subset Construction

Exercise

DFA State-Minimization

Definition

□ Minimizing a DFA M means finding a DFA M' with fewer states such that L(M) = L(M')

Terminology

- Equivalent states (s and t):
 - For any string α, if starting from s leads to a final state, then starting from t also leads to a final state, and vice versa
- □ Distinguishable states (s and t):
 - States s and t are not equivalent
 - Example: s reaches a final state on input α, but t does not
 - In particular, final and non-final states are distinguishable

- The minimization process partitions the state set of DFA M into disjoint subsets such that:
 - □ States in different subsets are distinguishable
 - □ States in the same subset are equivalent

DFA State-Minimization

Initial Partition

□ Divide the state set S into two subsets: $\prod = \{ I^{(1)}, I^{(2)} \}$, where $I^{(1)}$ is the set of final states. $I^{(2)}$ is the set of non-final states

Refinement

- □ Suppose the current partition is: $\square = \{I^{(1)}, I^{(2)}, ..., I^{(m)}\}$, For each subset $I^{(k)}$, check whether it can be further divided:
- \Box If $I^{(k)}$ is not contained in a single subset of \Box , split $I^{(k)}$
- \Box If $I^{(k)}_a$ spans N subsets, divide $I^{(k)}$ into N groups

Repeat

□ Keep refining until no further splitting occurs — i.e., the number of subsets in □ no longer increases.

```
Input: DFA M = (Q, \Sigma, \delta, q0, F)
1. Partition P = { F, Q \ F } // 接受态和非接受态
2. repeat
3. P \text{ old} = P
4. For each group G in P:
5.
           Split G into subgroups where states have different
           transitions under some symbol a \in \Sigma (according to P_old)
   Update P with these subgroups
6.
7. until P = P_old // 没有进一步划分
8. Construct minimized DFA M':
       - States = groups in P
       - Start state = group containing q0
       - Accept states = groups containing F
       - Transitions: \delta'([q], a) = [\delta(q, a)]
Output: Minimized DFA M'
```


Initial partition
$$\prod_0 = \{ I^{(1)}, I^{(2)} \}, I^{(1)} = \{3, 4, 5, 6\}, I^{(2)} = \{0, 1, 2\} \}$$

Examine $I^{(1)}_a = \{3, 6\} \subseteq \{3, 4, 5, 6\} \}$
 $I^{(1)}_b = \{4, 5\} \subseteq \{3, 4, 5, 6\} \}$
 $I^{(1)}$ Unchanged

Examine
$$I^{(2)}_{a} = \{1, 3\}$$
, Since $\{1\}_{a} = \{3\}$, $\{0, 2\}_{a} = \{1\}$
Split $\{0, 1, 2\}$ into $\{1\}$, $\{0, 2\}$
 $\prod_{1} = \{\{1\}, \{0, 2\}, \{3, 4, 5, 6\}\}$

Examine $\{0, 2\}_b = \{2, 5\}$, so, split $\{0, 2\}$ into $\{0\}, \{2\}$ $\prod_2 = \{\{0\}, \{1\}, \{2\}, \{3, 4, 5, 6\}\}$

Let state 3 represent the subset {3, 4, 5, 6}, Draw new DFA

$$\Pi_0 = \{\{1,2,3,4\},\{5,6,7\}\}$$

 $\{1,2,3,4\}_a = \{6,7,1,4\}$ is not contained in a single subset of Π_0 , \rightarrow need to split.

$$\{1,2\}_a = \{6,7\} \subseteq \{5,6,7\},$$

$${3,4}_a = {1,4} \subseteq {1,2,3,4},$$

$$\rightarrow \Pi_1 = \{\{1,2\}, \{3,4\}, \{5,6,7\}\}$$

 $\{3,4\}_a=\{1,4\}$, not contained in a single subset of Π_1

$$\rightarrow \Pi_2 = \{\{1,2\}, \{3\}, \{4\}, \{5,6,7\}\}\}$$

 $\{5,6,7\}_2 = \{7,4\},$

$$\rightarrow \Pi_3 = \{\{1,2\},\{3\},\{4\},\{5\},\{6,7\}\}\}$$

н

Quiz-Canvas

2) Lexical Analysis - DFA Stateminimization

Exericise

DFA State-Minimization

*

Learning Approach

Lexical rules

- → Regular expressions
- → Automata (NFA → DFA → Minimized DFA)
 - → Scanner

Wait a minute...

Equivalence of Regular Grammars and Finite Automata

More

Regular Grammar → Automata

Automata → Regular Grammar

Regular Grammars and Finite Automata

- If L(G) = L(M) → G and M are equivalent
 - □ Every right/left-linear grammar G → some finite automaton M
 - □ Every finite automaton M → some right/left-linear grammar G

Constructing NFA from Right-Linear Grammar

Given
$$G=(V_N, V_T, S, \pounds)_{\circ}$$

Treat each nonterminal in V_N as a state; add new final state $f \notin V_N$

Define M=
$$(V_N \cup \{f\}, V_T, \delta, S, \{f\})$$

- > Transition rules:
 - (a) If $A \rightarrow a$, then $\delta (A, a) = f$;
 - (b) If $A \to aA_1 | aA_2 | ... | aA_k$, then δ (A, a) = $\{A_1, ..., A_k\}$;

$$A \in V_N$$
, $a \in V_T \cup \{\epsilon\}$

*

Constructing NFA from Left-Linear Grammar

Example: Given left-linear grammar

$$G=(\{B,C,D\},\{0,1\},B, £),$$

 $B \rightarrow C0|0$

C →**B1**

D →**D**0|**D**1|**C**1|**B**0|1

Given $G=(V_N, V_T, S, £)$

- Treat each nonterminal in V_N as a state; add new state $q_0 \notin V_N$
- **Define M** = $(V_N \cup \{q_0\}, V_T, \delta, q_0, \{S\})$
- Transition rules $(a \in V_T \cup \{\epsilon\})$:
 - \Box (a) If $A \rightarrow a$, then $\delta(q_0, a) = A$
 - \square (b) If $A_1 \rightarrow Aa$, $A_2 \rightarrow Aa$, ... $A_k \rightarrow Aa$, then δ (A, a) = {A₁, ..., A_k}

Exercise

(1) Right-Linear Grammar → Equivalent FA

$$G=({A,B},{I,d},A,£),$$
 $A \rightarrow I \mid IB$
 $B \rightarrow I \mid d \mid IB \mid dB$

(2) Left-Linear Grammar → Equivalent FA

$$G=({A},{I,d},A, £),$$

 $A \rightarrow I \mid AI \mid Ad$

More

Regular Grammar → Automata

Automata → Regular Grammar

Automata -> Regular Grammar

Right-Linear Grammar

 $G=({A,B,C,D},{0,1},A, £),$

 $A \rightarrow 0|0B|1D$

B →**0D**|**1C**

 $C \rightarrow 0|0B|1D$

 $D \rightarrow 0D|1D$

Left-Linear Grammar

 $G=(\{B,C,D\},\{0,1\},B, £),$

 $B \rightarrow C0|0$

 $C \rightarrow B1$

 $D \rightarrow D0|D1|C1|B0|1$

Exercise

Generate the left-linear and right-linear grammars equivalent to the following DFA

Quiz-Canvas

2) Lexical Analysis - Regular Grammar and Automata

Outline

- 3.1 Requirements for Scanner
- 3.2 Design of Scanner
- 3.3 Regular Expressions and Finite Automata
- 3.4 Automatic Generation of Scanner

Automatic generation of Scanner: LEX

Lex 和 Yacc 从入门到精通

熊春雷

Automatic generation of Scanner: LEX

- LEX program = regular expressions + corresponding Actions
- Action: small code specifying what to do when a token is recognized

LEX source program

(1) Declarations / Auxiliary Definitions

Auxiliary Definitions of Regular Expression

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

r_i: regular expression

d_i: abbreviation for r_i

 r_i can use only characters from Σ and previously defined abbreviations d_1 , d_2 , ..., d_{i-1}

declarations

%%

translation rules

%%

auxiliary functions

(2) Translation rules

 P_i :a regular expression over $\sum \cup \{d_1, d_2, \dots, d_n\}$

A_i:action to be taken when token P_i is recognized; a small piece of code

*

Example: LEX program to recognize tokens of a small language

```
AUXILIARY DEFINITIONS
     letter→ A B ... Z
                                           Regular
     digit→ 0 | 1 | .... | 9
                                        Expression
RECOGNITION RULES /* 识别规则
                        {BFOKN (1, _ )}
     DIM
                        {RETURN (2, _ )}
    IF
                        {RETURN (3, )}
    DO
                        {RETURN (4, _ )}
    STOP
                        {RETURN (5, _ )}
    END
                        {RETURN (6, getSymbolTableEntryPoint() )}
6
    letter(letter | digit)*
                        {RETURN (7, getConstTableEntryPoint() )}
    digit (digit)*
                        {RETURN (8, _ )}
                        {RETURN (9, )}
                        {RETURN (10, )}
10
                        {RETURN (11, )}
     **
                        {RETURN (12, )}
12
                        {RETURN (13, )}
13
                        {RETURN (14, )}
14
```

M

Example: Declarations

Real constant without exponent

decimal →signedinteger . integer | signedinteger . | sign . Integer | Example: 123.456 | -45. | +.78

Real constant with exponent

exponential →(decimal | signedinteger) E signedinteger

Implementation of LEX

Method

 □ LEX compiler transforms a LEX source program into a scanner by constructing the corresponding DFA

Steps

- □ Construct an NFA M_i for each recognition rule P_i
- □ Introduce a new start state X, combine NFAs into NFA M
- □ Convert M to DFA using subset construction and simplify
- □ Transform the DFA into a Scanner

Notes

- Match the longest substring (longest match principle)
- If multiple longest substrings match, choose the earliest P_i (priority match principle)

Example. LEX program:

a { } abb { } a*bb* { }

N	FA	M	

State	а	b	Tokens
0137	247	8	
247	7	58	а
8		8	a*bb*
7	7	8	
58		68	a*bb*
68		8	abb

Longest match principle Priority match principle

Input: abbbabb

Output: abbb abb

Survey

- Algorithm 1 (Thompson's Algorithm)
 - □ Regular Expression → NFA
- Algorithm 2 (Subset Construction)
 - \square NFA \rightarrow DFA
- Algorithm 3 (State Equivalence)
 - □ DFA state-minimization
- Others:
 - □ Conversion between FA and regular grammar

Exercise

- P64, 12 (a)
 - $\square NFA \rightarrow DFA$
- P64 12(b)
 - □ DFA minimization
- P65, 15
 - □ Left- and right-linear grammar conversion

Dank u

Dutch

Merci

Спасибо

Russian

Gracias Spanish

감사합니다

Korean

Tack så mycket

Swedish

धन्यवाद

Hindi

תודה רבה

Hebrew

Obrigado

Arabic

Brazilian Portuguese

Dankon

Esperanto

Thank You!

7

ありがとうございます

Japanese

Trugarez

Breton

Danke German

Danish

Tak

Chinese

Grazie

Italian

நன்றி

Tamil

děkuji Czech ขอบคุณ

Thai

go raibh maith agat

Gaelic

*