

Spectral Bandits for Smooth Graph Functions

Tomáš Kocák Michal Valko Rémi Munos Branislav Kveton INRIA Lille - Nord Europe, France INRIA Lille - Nord Europe, France INRIA Lille - Nord Europe & Micro

INRIA Lille - Nord Europe & Microsoft Research NE

Technicolor, Palo Alto

SequeL - INRIA Lille

ICML 2014

Movie recommendation: (in each time step)

- Recommend movies to a single user.
- ▶ Good prediction after a few steps $(T \ll N)$.

Goal:

Maximize overall reward (sum of ratings).

Assumptions:

- ▶ Unknown reward function $f: V(G) \rightarrow \mathbb{R}$.
- Function f is smooth on a graph.
- Neighboring movies ⇒ similar preferences.

Smooth graph function

- ▶ Graph G with vertex set $V(G) = \{1, ..., N\}$ and edge set E(G).
- f_1, \ldots, f_N : Values of the function on the vertices of the graph.
- $w_{i,j}$: Weight of the edge connecting nodes i and j.
- Smoothness of the function:

$$S_G(f) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$$

- ▶ Smaller value of $S_G(f)$, smoother the function f is.
- Examples:
 - ▶ Complete graph: Only constant function has smoothness 0.
 - **Edgeless graph:** Every function has smoothness 0.
 - ▶ **Constant function:** Smoothness 0 for every graph.

Graph Laplacian

- \triangleright \mathcal{W} : $N \times N$ matrix of the edge weights $w_{i,j}$.
- ▶ \mathcal{D} : Diagonal matrix with the entries $d_i = \sum_i w_{i,j}$.
- $\mathcal{L} = \mathcal{D} \mathcal{W}$: Graph Laplacian.
 - ▶ Positive semidefinite matrix.
 - Diagonally dominant matrix.

Example:

$$\mathcal{L} = \left(\begin{array}{ccccc} 4 & -1 & 0 & -1 & -2 \\ -1 & 8 & -3 & -4 & 0 \\ 0 & -3 & 5 & -2 & 0 \\ -1 & -4 & -2 & 12 & -5 \\ -2 & 0 & 0 & -5 & 7 \end{array} \right)$$

Smoothness of the function and Laplacian

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$: Vector of function values.
- Let $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ be the eigendecomposition of the Laplacian.
 - **Diagonal matrix** Λ whose diagonal entries are eigenvalues of \mathcal{L} .
 - Columns of Q are eigenvectors of L.
 - Columns of Q form a basis.
- ho $lpha^*$: Unique vector such that $\mathbf{Q} lpha^* = \mathbf{f}$ Note: $\mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^*$

$$S_G(f) = \mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f} = \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha}^* = \|\boldsymbol{\alpha}^*\|_{\mathbf{\Lambda}} = \sum_{i=1}^N \lambda_i (\alpha_i^*)^2$$

Smoothness and regularization: Small value of

- (a) $S_G(f)$ (b) Λ norm of α^* (c) α_i^* for large λ_i

Problem structure

- ▶ Underlying graph structure encoded in the graph laplacian \mathcal{L} .
- **E**igendecomposition of graph laplacian $\mathcal{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$ where \mathbf{Q} is the matrix with eigenvectors in columns.
- ▶ the *i*-th row \mathbf{x}_i of the matrix \mathbf{Q} corresponds to the arm *i*.

Learning setting

- ▶ In each time step choose a node $\pi(t)$.
- ▶ Obtain noisy reward $r_t = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$. Note: $\mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* = f_{\pi(t)}$
 - ε_t is R-sub-Gaussian noise. $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \leq \exp(\xi^2 R^2/2)$
- Minimize cumulative regret

$$R_T = T \max_{\mathbf{a}} (\mathbf{x}_{\mathbf{a}}^{\mathsf{\scriptscriptstyle T}} \boldsymbol{\alpha}^*) - \sum_{t=1}^T \mathbf{x}_{\pi(t)}^{\mathsf{\scriptscriptstyle T}} \boldsymbol{\alpha}^*.$$

Solutions

Linear bandit algorithms

(Existing solutions)

▶ LinUCB

- (Li et al., 2010)
- ▶ Regret bound $\approx D\sqrt{T \ln T}$
- SupLinRel

- (Auer, 2002)
- ▶ Regret bound $\approx \sqrt{DT \ln T}$

Note: D is ambient dimension, in our case N, length of x_i .

Solutions

(Existing solutions)

(Li et al., 2010)

• Regret bound
$$\approx D\sqrt{T \ln T}$$

(Auer, 2002)

▶ Regret bound
$$\approx \sqrt{DT \ln T}$$

Note: D is ambient dimension, in our case N, length of x_i .

Spectral bandit algorithms

(Our solutions)

- ► SpectralUCB
 - Regret bound $\approx d\sqrt{T \ln T}$
- SpectralEliminator
 - Regret bound $\approx \sqrt{dT \ln T}$

Note: d is effective dimension, usually much smaller than D.

▶ **Effective dimension**: Largest *d* such that

$$(d-1)\lambda_d \leq \frac{T}{\ln(1+T/\lambda)}.$$

- \triangleright λ_i : *i*-th smallest eigenvalue of **Λ**.
- \triangleright λ : Regularization parameter of the algorithm.

Properties:

- ▶ d is small when the coefficients λ_i grow rapidly above time.
- ▶ *d* is related to the number of "non-negligible" dimensions.
- ▶ Usually *d* is much smaller than D in real world graphs.
- ► Can be computed beforehand.

Effective dimension vs. Ambient dimension

 $d \ll D$

Note: In our setting T < N = D.


```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                 \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
          \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                 \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
          \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                 \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
         \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                 \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
          \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                  \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
          \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{\alpha}} + \mathbf{c}_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_C, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_c + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
              Update the basis coefficients \hat{\alpha}:
                 \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9.
          \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^{\mathsf{T}} \mathbf{r}
                   c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
12:
                   \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \hat{\boldsymbol{lpha}} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}^{-1}} \right)
13:
14:
                   Observe the reward r.
15: end for
```


SpectralUCB regret bound

- d: Effective dimension.
- λ : Minimal eigenvalue of $\Lambda = \Lambda_{\mathcal{L}} + \lambda \mathbf{I}$.
- C: Smoothness upper bound, $\|\alpha^*\|_{\Lambda} < C$.
- $\mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\alpha}^{*} \in [-1, 1] \text{ for all } i.$

The **cumulative regret** R_T of **SpectralUCB** is with probability $1 - \delta$ bounded as

$$R_{\mathcal{T}} \leq \left(8R\sqrt{d\ln\frac{\lambda+\mathcal{T}}{\lambda} + 2\ln\frac{1}{\delta}} + 4\mathcal{C} + 4\right)\sqrt{d\mathcal{T}\ln\frac{\lambda+\mathcal{T}}{\lambda}}.$$

$$R_T \approx d\sqrt{T \ln T}$$

SpectralUCB analysis sketch

- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{\scriptscriptstyle T}}(\hat{\alpha} - \alpha^*)| \leq \|x\|_{\mathbf{V}_t^{-1}} \ \left(R \sqrt{2 \ln \left(\frac{|V_t|^{1/2}}{\delta |\mathbf{\Lambda}|^{1/2}} \right)} + C \right)$$

- ► Regret in one time step: $r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_{-}}^{\mathsf{T}}$
- Cumulative regret:

$$R_T = \sum_{t=1}^{T} r_t \le \sqrt{T \sum_{t=1}^{T} r_t^2} \le 2(c_T + 1) \sqrt{2T \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|}}$$

- ▶ Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - ▶ Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\alpha} - \alpha^*)| \leq \|x\|_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln \left(\frac{|V_t|^{1/2}}{\delta |\mathbf{\Lambda}|^{1/2}} \right)} + C \right)$$

- $\qquad \text{Regret in one time step: } r_t = \mathbf{x}_*^{\mathsf{T}} \alpha^* \mathbf{x}_\pi^{\mathsf{T}} t_t) \alpha^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$
- ► Cumulative regret:

$$R_T = \sum_{t=1}^{T} r_t \le \sqrt{T \sum_{t=1}^{T} r_t^2} \le 2(\frac{\mathbf{V}_T}{\mathbf{V}_T} + 1) \sqrt{2T \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|}}$$

SpectralUCB analysis sketch

- Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq \|x\|_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln \left(\frac{|V_t|^{1/2}}{\delta |\boldsymbol{\Lambda}|^{1/2}} \right)} + C \right)$$

- $\blacktriangleright \text{ Regret in one time step: } r_t = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha}^* \mathbf{x}_\pi^{\mathsf{T}} /_{t}) \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$
- Cumulative regret:

$$R_T = \sum_{t=1}^T r_t \le \sqrt{T \sum_{t=1}^T r_t^2} \le 2(\frac{1}{c_T} + 1)\sqrt{2T \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|}}$$

Upperbound for $ln(|\mathbf{V}_t|/|\mathbf{\Lambda}|)$

$$\ln \frac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \leq \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} \leq 2d \ln \left(\frac{\lambda + T}{\lambda}\right)$$


```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
  9:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
  9:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
  9:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
           V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
  9:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
  9:
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{\mathbf{V}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
  9:
10:
                   V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \right] \right\}
14:
15: end for
```



```
1: Input:
  2: N, T, \{\Lambda_{\mathcal{L}}, \mathbf{Q}\}, \lambda, \beta, \{t_i\}_{i=1}^{J}
  3: Run:
  4: A_1 \leftarrow \{x_1, \dots, x_N\}
  5: for i = 1 to J do
            V_{t_i} \leftarrow \gamma \Lambda_{\mathcal{L}} + \lambda I
  7:
              for t = t_i to min(t_{i+1} - 1, T) do
  8:
                    Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
                         \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
  9:
10:
                    V_{t+1} \leftarrow V_t + x_t x_t^T
11:
              end for
12:
              Eliminate the arms that are not promising:
                   \hat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
13:
                   A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \hat{\alpha}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \hat{\alpha}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \right] \right\}
14:
15: end for
```


SpectralEliminator regret bound

- d: Effective dimension.
- ▶ λ : Minimal eigenvalue of $\Lambda = \Lambda_{\mathcal{L}} + \lambda \mathbf{I}$.
- ▶ *C*: Smoothness upper bound, $\|\alpha^*\|_{\Lambda} \leq C$.
- $t_i = 2^{j-1}$: Beginning of the phase j.
- $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$ for all i.
- ▶ $β = 2R\sqrt{14\ln(2N\log_2 T/\delta)} + C$: Parameter of the elimination.

The **cumulative regret** R_T of **SpectralEliminator** is with probability $1 - \delta$ bounded as

$$R_T \leq \frac{4}{\ln 2} \left(2R \sqrt{14 \ln \frac{2K \log_2 T}{\delta}} + C \right) \sqrt{dT \ln \left(1 + \frac{T}{\lambda} \right)}.$$

$$R_T \approx \sqrt{dT \ln T}$$

SpectralEliminator analysis sketch

- ▶ Derivation of the confidence ellipsoid for $\hat{\alpha}$ with probability 1δ .
 - Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|x^{\mathsf{T}}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*)| \leq \|x\|_{\mathbf{V}_t^{-1}} \left(R \sqrt{2 \ln \left(\frac{|V_t|^{1/2}}{\delta |\boldsymbol{\Lambda}|^{1/2}} \right)} + C \right)$$

Using Azuma-Hoeffding inequality

Note: phases are independent

$$R_T \leq \sum_{i=0}^J (t_{j+1} - t_j) \big[\langle \mathbf{x}^* - \mathbf{x}_t, \hat{\boldsymbol{\alpha}}_j \rangle + (\|\mathbf{x}^*\|_{\mathbf{V}_j^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_j^{-1}}) \beta \big]$$

- ▶ Bound $\langle \mathbf{x}^* \mathbf{x}_t, \hat{\alpha}_i \rangle$ for each phase
- ▶ No bad arms: $\langle \mathbf{x}^* \mathbf{x}_t, \hat{\alpha}_j \rangle \leq (\|\mathbf{x}^*\|_{\mathbf{V}_i^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_i^{-1}})\beta$
- ▶ By algorithm: $\|\mathbf{x}\|_{\mathbf{V}_{i}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}} \|\mathbf{x}_{s}\|_{\mathbf{V}_{s-1}^{-1}}^{2}$

Synthetic experiment

Real world experiment

Improving the running time: reduced eigenbasis

- Reduced basis: We only need first few eigenvectors.
- ▶ **Getting** J **eigenvectors:** $\mathcal{O}(Jm \log m)$ time for m edges
- Computationally less expensive, comparable performance.

Conclusion

- New spectral bandit setting (for smooth graph functions).
- ► SpectralUCB.
 - ▶ Regret bound $\approx d\sqrt{T \ln T}$
- ► SpectralEliminator
 - Regret bound $\approx \sqrt{dT \ln T}$
 - ▶ Side result: **LinearEliminator** with $\mathcal{O}(\sqrt{DT \ln T})$ regret for (contextual) linear bandits.
- ▶ Bounds scale with **effective dimension** $d \ll D$.
- ► **SpectralTS** (Thompson Sampling) AAAI 2014
 - ▶ Regret bound $\approx d\sqrt{T \ln N}$
 - ► Computationally more efficient.

Thank you!

Poster (T8)

Tomáš Kocák tomas.kocak@inria.fr

sequel.lille.inria.fr

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- ▶ Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ▶ Upperbound $\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x}$

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- ▶ Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ▶ Upperbound $\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x}$

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{x} = \mathbf{y}^{\mathsf{T}}\mathbf{\Lambda}^{-1}\mathbf{y} = \sum_{i=1}^{N} \lambda_{i}y_{i}^{2}$$

Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

Goal:

- ▶ Upperbound determinant $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$ for $\|\mathbf{x}\|_2 \leq 1$
- ▶ Upperbound $\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x}$

$$\mathbf{x}^{\scriptscriptstyle\mathsf{T}} \mathbf{A}^{-1} \mathbf{x} = \mathbf{x}^{\scriptscriptstyle\mathsf{T}} \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{\scriptscriptstyle\mathsf{T}} \mathbf{x} = \mathbf{y}^{\scriptscriptstyle\mathsf{T}} \mathbf{\Lambda}^{-1} \mathbf{y} = \sum_{i=1}^N \lambda_i y_i^2$$

- ▶ $\|\mathbf{y}\|_2 \le 1$.
- y is a canonical vector.
- ightharpoonup x = Qy is an eigenvector of A.

Corollary:

Determinant $|\mathbf{V}_T|$ of $\mathbf{V}_T = \mathbf{\Lambda} + \sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t^\mathsf{T}$ is maximized when all \mathbf{x}_t are aligned with axes.

$$\begin{split} |\mathbf{V}_T| &\leq \max_{\sum t_i = T} \prod (\lambda_i + t_i) \\ \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} &\leq \max_{\sum t_i = T} \sum \ln \left(1 + \frac{t_i}{\lambda_i}\right) \\ \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} &\leq \sum_{i=1}^d \ln \left(1 + \frac{T}{\lambda}\right) + \sum_{i=d+1}^N \ln \left(1 + \frac{t_i}{\lambda_{d+1}}\right) \\ &\leq d \ln \left(1 + \frac{T}{\lambda}\right) + \frac{T}{\lambda_{d+1}} \\ &\leq 2d \ln \left(1 + \frac{T}{\lambda}\right) \end{split}$$

$$\mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2 = S_G(f)$$

Proof:

$$\begin{aligned} \mathbf{f}^{\mathsf{T}} \mathcal{L} \mathbf{f} &= \mathbf{f}^{\mathsf{T}} \mathcal{D} \mathbf{f} - \mathbf{f}^{\mathsf{T}} \mathcal{W} \mathbf{f} = \sum_{i=1}^{N} d_{i} f_{i}^{2} - \sum_{i,j \leq N} w_{i,j} f_{i} f_{j} \\ &= \frac{1}{2} \left(\sum_{i=1}^{N} d_{i} f_{i}^{2} - 2 \sum_{i,j \leq N} w_{i,j} f_{i} f_{j} + \sum_{j=1}^{N} d_{i} f_{j}^{2} \right) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_{i} - f_{j})^{2} \end{aligned}$$

