# Gov 50: 15. Multiple Regression and Interpretation

Matthew Blackwell

Harvard University

# Roadmap

- 1. Multiple regression
- 2. Categorical independent variables

# 1/ Multiple regression

#### **Multiple predictors**

What if we want to predict Y as a function of many variables?

$$seat\_change_i = \alpha + \beta_1 approval_i + \beta_2 rdi\_change_i + \epsilon_i$$

#### Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
  - $\beta_1$  is the relationship between approval and seat\_change holding rdi\_change constant.
  - Statistical control in a cross-sectional study.

#### **Multiple regression in R**

- $\hat{\alpha}=$  -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$  1.53: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2=$  3.217: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

# **Least squares with multiple regression**

- · How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$Y_i - \widehat{Y}_i = \texttt{seat\_change}_i - \hat{\alpha} - \hat{\beta}_1 \texttt{approval}_i - \hat{\beta}_2 \texttt{rdi\_change}_i$$

Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = (Y_{i} - \hat{\alpha} - \hat{\beta}_{1} X_{i1} - \hat{\beta}_{2} X_{i2})^{2}$$

#### **Model fit with multiple predictors**

- $R^2$  mechanically increases when you add a variables to the regression.
  - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.
  - · Occam's razor: simpler models are preferred
- Adjusted  $R^2$ : lowers regular  $R^2$  for each additional covariate.
  - If the added covariates doesn't help predict, adjusted  $R^2$  goes down!

#### **Comparing model fits**

```
library(broom)
fit.app <- lm(seat change ~ approval, data = midterms)</pre>
glance(fit.app) |>
 select(r.squared, adj.r.squared, sigma)
## # A tibble: 1 x 3
## r.squared adj.r.squared sigma
##
  <dbl> <dbl> <dbl> <
## 1 0.450
                    0.418 16.9
glance(mult.fit) |>
 select(r.squared, adj.r.squared, sigma)
## # A tibble: 1 x 3
##
   r.squared adj.r.squared sigma
##
       <dbl> <dbl> <dbl>
## 1 0.468 0.397 16.7
```

#### **Predicted values from R**

We could plug in values into the equation, but R can do this for us. The {modelr} package gives some functions that allow us to predictions in a tidy way:

Let's use add\_predictions() to predict the 2022 results

```
library(modelr)

midterms |>
  filter(year == 2022) |>
  add_predictions(mult.fit)
```

#### **Predictions from several models**

The gather\_predictions() will return one row for each model passed to it with the prediction for that model:

```
midterms |>
  filter(year == 2022) |>
  gather_predictions(fit.app, mult.fit)
```

#### **Predictions from new data**

#### What about predicted values not in data?

```
tibble(approval = c(50, 75), rdi_change = 0) |>
gather_predictions(fit.app, mult.fit)
```

```
## # A tibble: 4 x 4
##
    model approval rdi_change pred
##
    <chr>
               <fdh>>
                    <fdb> <fdb>
  1 fit.app
                            0 - 25.6
                 50
                            0 9.92
##
  2 fit.app
              75
  3 mult.fit
                 50
                            0 - 40.9
## 4 mult.fit
                            0 - 2.79
                 75
```

# Predictions from augment()

We can also get predicted values from the augment() function using the newdata argument:

```
newdata <- tibble(approval = c(50, 75), rdi_change = 0)
augment(mult.fit, newdata = newdata)</pre>
```

```
## # A tibble: 2 x 3
## approval rdi_change .fitted
## <dbl> <dbl> <dbl> 
## 1 50 0 -40.9
## 2 75 0 -2.79
```

# 2/ Categorical independent variables

# Political effects of gov't programs



- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
  - Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
  - Program had support from most parties.
  - Was implemented in a nonpartisan fashion.
  - Would the incumbent presidential party be rewarded?

#### The data

- Randomized roll-out of the CCT program:
  - treatment: receive CCT 21 months before 2000 election
  - control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

| Name      | Description                                         |
|-----------|-----------------------------------------------------|
| treatment | early Progresa (1) or late Progresa (0)             |
| pri2000s  | PRI votes in the 2000 election as a share of adults |
|           | in precinct                                         |
| t2000     | turnout in the 2000 election as share of adults in  |
|           | precinct                                            |
|           |                                                     |

```
library(qss)
data("progresa", package = "qss")
cct <- as_tibble(progresa) |>
   select(treatment, pri2000s, t2000)
cct
```

```
## # A tibble: 417 x 3
##
     treatment pri2000s t2000
##
        <int> <dbl> <dbl>
##
   1
               40.8 55.8
##
   2
              22.4 31.2
##
   3
              38.9 47.0
##
              31.2 45.0
##
   5
              76.9 100
##
               23.9 37.4
   6
##
   7
               47.3 64.9
##
                 21.4 58.1
   8
##
                 56.5 71.3
                 36.6 51.2
## 10
## # i 407 more rows
```

#### **Difference in means estimates**

#### Does CCT affect turnout?

#### Does CCT affect PRI (incumbent) votes?

```
cct |> group_by(treatment) |>
  summarize(pri2000s = mean(pri2000s)) |>
  pivot_wider(names_from = treatment, values_from = pri2000s) |>
  mutate(ATE = `1` - `0`)
```

```
## # A tibble: 1 x 3

## '0' '1' ATE

## <dbl> <dbl> <dbl>

## 1 34.5 38.1 3.62
```

# **Binary independent variables**

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- When independent variable  $X_i$  is **binary**:
  - Intercept  $\hat{\alpha}$  is the average outcome in the X=0 group.
  - Slope  $\hat{\beta}$  is the difference-in-means of Y between X=1 group and X=0 group.

$$\hat{eta} = \overline{Y}_{\text{treated}} - \overline{Y}_{\text{control}}$$

 If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

## **Linear regression for experiments**

• Under randomization, we can estimate the ATE with regression:

```
cct |> group_by(treatment) |>
  summarize(pri2000s = mean(pri2000s)) |>
  pivot_wider(names_from = treatment, values_from = pri2000s) |>
 mutate(ATE = `1` - `0`)
## # A tibble: 1 x 3
## `0` `1` ATF
## <dbl> <dbl> <dbl>
## 1 34.5 38.1 3.62
lm(pri2000s ~ treatment, data = cct) |> coef()
## (Intercept) treatment
## 34.49 3.62
```

## **Categorical variables in regression**

- We often have categorical variables:
  - · Race/ethnicity: white, Black, Latino, Asian.
  - · Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a series of binary variables

| Unit     | Party       | Democrat | Republican | Independent |
|----------|-------------|----------|------------|-------------|
| 1        | Democrat    | 1        | 0          | 0           |
| 2        | Democrat    | 1        | 0          | 0           |
| 3        | Independent | 0        | 0          | 1           |
| 4        | Republican  | 0        | 1          | 0           |
| <u>:</u> | :           | :        | :          | :           |

• Then include all but one of these binary variables:

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \varepsilon_i$$

#### **Interpreting categorical variables**

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \varepsilon_i$$

- $\hat{\alpha}$ : average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$  coefficients: average difference between each group and the baseline.
  - $\hat{eta}_1$ : average difference in turnout between Republicans and Democrats
  - +  $\hat{eta}_2$ : average difference in turnout between Independents and Democrats

#### **CCES data**

# library(gov50data) cces\_2020

```
## # A tibble: 51,551 x 6
##
     gender race educ
                                  pid3 turnout self pres vote
##
                                  <fct>
     <fct> <fct> <fct>
                                                <dbl> <fct>
                                                   1 Donald J~
##
   1 Male White 2-year
                                  Repu~
   2 Female White Post-grad
##
                                  Demo~
                                                  NA <NA>
##
   3 Female White 4-year
                                  Tnde~
                                                   1 Joe Bide~
##
   4 Female White 4-year
                                  Demo~
                                                   1 Joe Bide~
##
   5 Male White 4-year
                                  Inde~
                                                   1 Other
##
   6 Male White Some college
                                  Repu~
                                                   1 Donald J~
##
   7 Male Black Some college
                                  Not ~
                                                  NA <NA>
##
   8 Female White Some college
                                  Inde~
                                                   1 Donald J~
                                                   1 Donald J~
##
   9 Female White High school gr~ Repu~
## 10 Female White 4-year
                                                   1 Joe Bide~
                                  Demo~
  # i 51,541 more rows
```

## Categorical variables in the CCES data

```
turnout_pred <- lm(turnout_self ~ pid3, data = cces_2020)
turnout_pred</pre>
```

```
##
## Call:
  lm(formula = turnout self ~ pid3, data = cces 2020)
##
  Coefficients:
##
       (Intercept)
                     pid3Republican pid3Independent
##
            0.9635
                            -0.0103
                                             -0.0394
##
         pid30ther
                       pid3Not sure
##
           -0.0066
                            -0.3331
```

# What R does internally with factor variables in lm

```
cces_2020 |> drop_na(turnout_self, pid3) |> select(pid3) |> pull() |>
head()
```

```
## [1] Republican Independent Democrat Independent
## [5] Republican Independent
## 7 Levels: Democrat Republican Independent ... not asked
```

```
model.matrix(turnout_pred) |>
  head()
```

| ## |   | (Intercept | ) pid3R | epublican | pid3Inde | pendent | pid30ther |  |
|----|---|------------|---------|-----------|----------|---------|-----------|--|
| ## | 1 |            | 1       | 1         |          | 0       | Θ         |  |
| ## | 3 |            | 1       | 0         |          | 1       | Θ         |  |
| ## | 4 |            | 1       | 0         |          | 0       | Θ         |  |
| ## | 5 |            | 1       | 0         |          | 1       | Θ         |  |
| ## | 6 |            | 1       | 1         |          | 0       | Θ         |  |
| ## | 8 |            | 1       | 0         |          | 1       | Θ         |  |
| ## |   | pid3Not su | re      |           |          |         |           |  |
| ## | 1 |            | 0       |           |          |         |           |  |
| ## | 3 |            | 0       |           |          |         |           |  |
| ## | 4 |            | 0       |           |          |         |           |  |
| ## | 5 |            | Θ       |           |          |         |           |  |
| ## | 6 |            | Θ       |           |          |         |           |  |