

KIMATHI UNIVERSITY COLLEGE OF TECHNOLOGY

UNIVERSITY EXAMINATIONS 2012/2013 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

SMA 2100: DISCRETE MATHEMATICS

15th AUGUST, 2012 DURATION: 2 HOURS

Instructions To Candidates

- 1. Answer Question One and any other Two Questions.
- 2. Show clearly the number of questions attempted.

Question One (30 Marks)

- a) Define the following terms:
 - i) universal set
 - ii) function
 - iii) real number (3 Marks)
- b) Let P and Q be the sets:

$$P = \{x : x = 4k, k \in \mathbb{N}, 0 < k < 5\} \text{ and } Q = \{1, 4, 9, 16, \ldots\}$$

Determine

- i) $P \cap Q$
- ii) P-Q
- iii) Q in set-builder form (6 Marks)
- c) (i) List the element of each of the following sets:

$$A = \{x : x^2 = 16 \text{ and } 2x = 6\}$$

$$B = \{x : x \neq x\}$$

$$B = \{x : x + 5 = 5\}$$
(3 Marks)

- (ii) Determine which of the sets \emptyset , $\{0\}$, $\{\emptyset\}$ are equal. (1 Mark)
- d) Given that A and B are sets such that n(U) = 22, $n(A^c) = 12$, n(B) = 14, $n(A^c \cap B^c) = 5$. Find $n(A \cap B^c)$ (3 Marks)

SMA 2100: Discrete Mathematics

Page **1** of **3**

- e) (i) Define a rational number
 - (ii) Prove that $\sqrt{2} + a$ is an irrational number where $a \in \mathbb{Q}$. (4 Marks)
- f) (i) Let $f: \mathbb{Z} \to \mathbb{Q}$ and $g: \mathbb{Z} \to \mathbb{Q}$

where
$$f(x) = \frac{1}{2x+1}$$
 and $g(x) = \frac{3}{x-2}$

Find which of the relations are functions.

(2 Marks)

(ii) The functions $f(x) = x^2 + 2$ and g(x) = x + 2 are defined from \mathbb{R} to \mathbb{R} .

Find
$$g \circ f$$
, $(g \circ f)(-2)$, and $f^{-1}(x)$ (3 Marks)

g) (i) Define the following terms:

Proposition

Predicate (2 Marks)

(ii) Let p = "misers like money" and

q = "my cousins are not greedy".Write the following in ordinary language as simply as possible:

$$p\Lambda q$$
, $p \rightarrow \sim q$, $p\Lambda \sim q$

(3 Marks)

Question Two (20 Marks)

a) Use set algebra to prove that

$$A \Delta (A \cap B) = A - B \qquad (6 \text{ Marks})$$

b) Use the set notation to prove that

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$
 (7 Marks)

c) A college soccer team is expected to: have clean boots, practice, and arrive on time. During a certain week 7 players had clean boots, 9 practiced and 9 arrived on time. Six had clean boots and practiced, while 6 had clean boots and arrived on time. Seven practiced and arrived on time. Two players did not obey any of the rules. Use a Venn diagram to determine how many obeyed all the three rules. (7 Marks)

Question Three (20 Marks)

a) Let $A = B = \{1, 2, 3, 4\}$ and f_1, f_2, \dots, f_4 be relations from A to B

If
$$f_1 = \{ (1, 2), (2, 3), (3, 4) \}$$

$$f_2 = \{ \ (\ 1, \, 4), \, (2, \, 1), \, (\ 3, \, 2), \, (4, \, 4) \ \}$$

$$f_3 = \{(\ 1,\ 2),\ (2,\ 3),\ (3,\ 4),\ (4,\ 1)\}$$

$$f_4 = \{ (1,4), (2,3), (3,2), (4,1) \}$$

Find which of the relations are:

- (i) functions (ii) injections
- (iii) surjections and (iv) bijections

(8 Marks)

b) Let the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \sqrt{(x-2)}$$
 and $g(x) = x^2 + 4$.

- c) Given $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = \frac{x}{2} + 3$, find g(x) and h(x) such that (hog)(x) = f(x). Use these results to determine the inverse of f(x). (4 Marks)
- d) Define $f: \mathbb{N} \to \mathbb{Z}$, $g: \mathbb{Z} \to \mathbb{Z}$ by f(x) = 2x 4 and $g(x) = x^2$
 - (i) Show that f is injective but not surjective.
 - (ii) Show that g is not injective.

(4 Marks)

Question Four (20 Marks)

- a) State the Axiom of mathematical induction (3 Marks)
- b) Proof by mathematical induction that:
 - (i) 3n + 2n 1 is divided by 4
 - (ii) $(1 \times 2) + (2 \times 3) + (3 \times 4) + ... + n(n+1) = n (n+1)(n+2)$ $(1 \times 2) + (2 \times 3) + (3 \times 4) + ... + n(n+1) = n (n+1)(n+2)$ (14 Marks)
- c) Prove that;

If a, b, m and n are integers and if $c \mid a$ and $c \mid b$ then $c \mid (ma + n b)$. (3 Marks)

Question Five (20 Marks)

- a) Consider the statement "If this car is made in Kenya then it is a good car" Write down a linguistic statement which is
 - (i) the negation
 - (ii) the converse
 - (iii) the contra positive of the statement

(3 Marks)

b) Show that the propositions

~ (p
$$\Lambda$$
 q) and (~ p Λ ~ q) are logically equivalent.

Write down the equivalent statement in the laws of sets

(6 Marks)

c) Construct the truth table for the proposition

$$(p \rightarrow q) \ OR \ (\ p \rightarrow \sim q)$$

Hence determine if the proposition is a contradiction, a tautology or logically indeterminate

(6Marks)

d) Prove that
$$A \subset B \Rightarrow A \cap B = A$$
 (5 Marks)