Očitavanje senzorskih podataka korištenjem računala Raspberry Pi 3

3. travnja 2017.

Sadržaj

1	UVOd
2	Raspberry Pi 2.1 Sklopovlje
3	Senzori 3.1 Akcelerometri 3.1.1 ADXL345 3.1.2 MMA8451 3.1.3 LIS3DH 3.2 Mikrofoni 3.2.1 placeholder
4	Pregled dostupnih programskih okvira
5	Primjeri 5.1 Programski kôd
6	Zaključak
7	Literatura

1 Uvod

Ovaj će seminarski rad obraditi problematiku korištenja računala Raspberry Pi 3 za prikupljanje podataka sa senzora. Ukratko će se opisati sklopovska arhitektura računala Raspberry Pi 3 te pripadajuća programska podrška, uz nekoliko primjera korištenja.

Kao vrlo pristupačno malo računalo, Raspberry Pi je vrlo popularan kao ugradbeno računalo, a budući da ugradbena računala vrlo često za svoj rad koriste raznolike senzore, za ovaj će rad biti ključno razumjeti osnovne principe povezivanja senzora i računala, uzimajući u obzir sklopovski i programski aspekt. Shodno tome, bit će izložen kratak opis jednog akcelerometra, u funkciji senzora za mjerenje vibracija, te jednog mikrofona, poglavito u funkciji senzora glasnoće.

Ukratko će se opisati neke od dostupnih biblioteka i programskih okvira namijenjenih za rad sa senzorima, s naglaskom na već spomenute akcelerometre i mikrofone. Konačno, bit će pokazan i jednostavan primjer programskog koda za očitavanje podataka sa senzora uz prateći primjer vizualnog prikaza senzorskih podataka.

2 Raspberry Pi

Raspberry Pi je serija malih računala razvijanih od strane zaklade Raspberry Pi Foundation. Odlikuju ih niska cijena, dobre performanse s obzirom na cijenu, pristupačnost i lako korištenje te male fizičke dimenzije. Programska je podrška otvorena i vrlo dobro dokumentirana, a zajednica ljudi koji koriste Raspberry Pi je velika, pristupačna i konstruktivna.

U trenutku pisanja su dostupni Raspberry Pi 1, 2 i 3, te minijaturni Raspberry Pi Zero. U nastavku će rada riječ biti o Raspberry Pi 3 inačici, koja se vidi na Slici 1, a bit će oslovljena kao "RPi3".

Slika 1: Raspberry Pi 3B.

2.1 Sklopovlje

Glavni čipovi Glavne procesne jedinice nalaze se u čipu Broadcom BCM2837, koji je na slici označen crvenim pravokutnikom. Riječ je o tzv. *System-on-Chip* (SoC) čipu koji sadrži:

- CPU 64-bitni ARMv8 Cortex A53 s četiri jezgre na 1.2 GHz,
- GPU VideoCore IV na 400 MHz.

Taj je SoC spregnut s **radnom memorijom** s druge strane tiskane pločice. Riječ je o LPDDR2 SDRAM memoriji, s kapacitetom od 1 GB.

Za bežičnu je komunikaciju zadužen procesor osnovnog pojasa (engl. baseband processor) BCM43438, također od tvrtke Broadcom, koji podržava WiFi i Bluetooth 4.1 protokole. Smješten

je na stražnjoj strani pločice, a spregnut je s antenom na prednjoj strani. Nije zgorega napomenuti da je Raspberry Pi 3 prva inačica ovog računala koja ima ugrađeno sklopovlje za bežičnu komunikaciju.

Konačno, SMSC LAN9514 (na slici uokviren plavom bojom) vrši funkciju USB čvora i Ethernet upravljača. Povezan je s procesorom jednom USB vezom, pa sa svakim od četiri USB priključka, te s Ethernet priključkom procesor komunicira preko te USB veze.

Ulazno-izlazni priključci Kao i svako drugo računalo, i RPi3 bi bio prilično beskoristan bez mogućnosti komunikacije s vanjskim svijetom. Naravno, na njemu postoji mnoštvo ulazno-izlaznih sučelja, a način na koji su ona izvedena je uvelike zaslužan za takvu popularnost ovog računala. Za ovaj seminar najvažniji priključci označeni su na Slici 1, a u nastavku je dan pregled tih sučelja:

- Četiri USB 2.0 priključka [narančasti pravokutnik]
- Jedan Ethernet priključak [žuti pravokutnik]
- Jedan **microUSB** priključak samo za napajanje, ne i za komunikaciju [ljubičasti pravokutnik]
- Četrdeset ulazno-izlaznih pinova opće namjene (**GPIO** *General Purpose Input/Output*) [zeleni pravokutnik]
- Ulaz za *microSD* karticu (s druge strane pločice)
- Audio priključak i HDMI izlaz
- Poseban priključak za službenu Raspberry Pi kameru
- Poseban *display* priključak

Od posebne su važnosti za ovaj rad GPIO pinovi. Oni, su, naime, ključni za komunikaciju sa senzorima koji će biti razmotreni kasnije u radu. Omogućuju najčešće korištene *low-level* protokole za sklopovsku komunikaciju: **I**²**C**, **TTL** i **SPI**. Naravno, sadrže i pinove za napajanje i uzemljenje sklopova, kao i pinove namijenjene za korisničku definiciju ponašanja.

2.2 Programska podrška

Programska je podrška za RPi3, baš kao i sklopovlje, izvedena s ciljem jednostavnosti i fleksibilnosti korištenja. Budući da nije riječ o mikrokontroleru (poput, primjerice, popularnog Arduina), već o potpuno opremljenom računalu, očito je da RPi3 mora imati neki operacijski sustav (u nastavku: OS). On se u glavnini slučajeva nalazi na *microSD* kartici, koja ima ulogu sekundarne memorije. Ovdje kao najpopularniji OS za RPi u priču ulazi Raspbian.

Raspbian je besplatan i otvoren operacijski sustav baziran na distribuciji Linuxa zvanoj "Debian". Ono zbog čega je Raspbian toliko popularan jest činjenica da je taj **OS optimiziran upravo za Raspberry Pi sklopovlje.**² Drugim riječima, Raspbian je distribucija Linuxa koja:

- je vrlo jednostavna za instalaciju i dolazi potpuno opremljena za normalan računalni rad uključujući i **grafičko korisničko sučelje** (GUI Graphical User Interface)
- dolazi s već instaliranom programskom podrškom za komunikaciju sa specijaliziranim sklopovljem (poput GPIO pinova) primjerice, iz terminala, C-a ili Pythona.

¹Moguće je pokrenuti OS i s, primjerice, nekog USB tvrdog diska, ali to nadilazi temu ovog seminara.

²Ovo se može zaključiti i iz imena distribucije, koje je *portmanteau* pojmova "Raspberry Pi" i "Debian".

2.3 Primjeri korištenja

Uzevši u obzir ranije spomenute prednosti RPi3 računala - cijena, pristupačnost i dimenzije - RPi računala najčešće nađu svoju primjenu u dva konteksta:

- u edukativnim projektima (pristupačnost i cijena)
- u ugradbenim sustavima (male dimenzije i cijena)

U nastavku su ukratko izložena dva primjera korištenja RPi3 računala. Primjeri su relativno jednostavni, ali dobro ilustriraju moguće koncepte korištenja tog računala.

Pametna brava Pametne su brave koncept novijeg datuma, a označavaju autorizaciju ulaza osobe u neki prostor, i to ne koristeći (samo) klasični, mehanički ključ, nego korištenje kartica, lozinki, ili čak primjerice, prepoznavanja lica. Za implementaciju jedne takve brave može poslužiti bilo kakav mikrokontroler, i RPi3 bi svakako bio pretjeran za tako jednostavan zadatak, ali ono što bi moglo umanjiti taj overhead jest, primjerice, praćenje pristupa prostoru pomoću logova, udaljeno upravljanje bravom, ili agregiranje više neovisnih zadataka slične složenosti na jednom RPi-ju.

Računarska sekcija Kluba studenata elektrotehnike konkretno koristi Raspberry Pi 3 za agregiranje informacija o radu nekoliko servera, a u planu je spajanje NFC čitača (*Near-Field Communication* - tehnologija beskontaktne komunikacije poput one u studentskim iskaznicama i bankovnim karticama) na taj isti RPi3, kako bi se na taj način autenticiralo osobe koje žele ući u sekciju.

Kućni VPN i WiFi pristupna točka U kontekstu komunikacijskih mreža, VPN (Virtual Private Network) je protokol spajanja na mrežu koji omogućuje virtualno pristupanje mreži s drugog mjesta i prosljeđivanje svòg lokalnog prometa kroz taj "tunel" na način koji osigurava privatnost i sigurnost, kao i (do neke mjere) svojstva mreže (dozvole i zabrane, primjerice, ili simulacija lokalnog pristupa) kakva su na udaljenoj mreži na koju je korisnik VPN-om spojen. Takav se sustav relativno bezbolno može upogoniti upravo koristeći Raspberry Pi, umjesto da se samo za taj zadatak koristi neko (puno skuplje) računalo opće namjene.

Još jedna zanimljiva mogućnost koju pruža RPi3 (ali ne i ranije inačice - barem ne bez dodatnog sklopovlja) jest postavljanje pristupne točke za WiFi. Tako se može, u nedostatku kompletnijeg i trajnijeg rješenja, ostvariti *ad hoc* bežična mreža ili pojačivač signala.

- 3 Senzori
- 3.1 Akcelerometar Adafruit LIS3DH
- 3.2 Mikrofon placeholder

4 Pregled dostupnih programskih okvira

- 5 Primjeri
- 5.1 Programski kôd
- 5.2 Očitani podaci

6 Zaključak

7 Literatura

- Raspberry Pi službene stranice: https://www.raspberrypi.org/
- ADXL345: https://learn.adafruit.com/adxl345-digital-accelerometer
- MMA8451: https://learn.adafruit.com/adafruit-mma8451-accelerometer-breakout/wiring-and-test?view=all
- LIS3DH: https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout/downloads?view=all
- Zvučni senzori: https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-19-sound-sensor-sensor-kit-v2-0-for-b-plus.html