COSC 341 - Tutorial 3

- 1. Show that the set of even natural numbers is countable.
- 2. Show that the set of even integers is countable.
- 3. Show that the set $\{f|f:\mathbb{N}\to\mathbb{N}\}$ of all functions from \mathbb{N} to \mathbb{N} is uncountable.
- 4. Show that the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} is uncountable.
- 5. Show that, for any set A, $|A| < |\mathcal{P}(A)|$.

Homework

- 1. Show that the set of total functions from \mathbb{N} to $\{0,1\}$ is uncountable.
- 2. We can define the set \mathbb{N} of natural numbers as:

$$0 \in \mathbb{N}$$

If $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$

We call this a *recursive* definition. Give recursive definitions of:

- (a) The set of even natural numbers $EN = \{2n|n \in \mathbb{N}\}\$
- (b) The set $P = \{1, 2, 4, 8, 16, \ldots\}$ of powers of 2 within $\mathbb N$