Undecidability CSCI 338

Computability Hierarchy

A_{TM}

Claim: $A_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ accepts } \omega \}$ is undecidable.

Proof: Suppose A_{TM} is decidable. Let TM H be its decider:

$$H(\langle M, \omega \rangle) =$$
 {accept, if M accepts ω reject, if M does not accept ω

Make a new TM D:

D = on input $\langle N \rangle$, for TM N

- 1. Run H on $\langle N, \langle N \rangle \rangle$.
- 2. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

What happens with $D(\langle D \rangle)$? $D(\langle D \rangle) = \begin{cases} \text{accept, if } D \text{ does not accept } \langle D \rangle \\ \text{reject, if } D \text{ accepts } \langle D \rangle \end{cases}$

D accepts $\langle D \rangle$, so long as D does not accept $\langle D \rangle$.

 \Rightarrow TM D cannot exist \Longrightarrow TM H cannot exist \Longrightarrow A_{TM} is undecidable

Halting Problem

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ halts on } \omega \}$ is undecidable.

Proof: Suppose $HALT_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle M, \omega \rangle$$

- 1. Run H on $\langle M, \omega \rangle$.
- 2. If H rejects, reject (i.e. M does not halt on ω).
- 3. If H accepts, run M on ω until it halts.
- 4. If *M* accepts, <u>accept</u>. If *M* rejects, <u>reject</u>.

S is a decider for A_{TM} , which is a contradiction.

 $\therefore HALT_{TM}$ is undecidable.

Claim: **New_Problem** is undecidable.

Proof:

New_Problem: Problem we are trying to show is undecidable.

Claim: **New_Problem** is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

New_Problem: Problem we are trying to show is undecidable.

Claim: **New_Problem** is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

Build a TM *S* that decides *Old_Problem*:

New_Problem: Problem we are trying to show is undecidable.

Old_Problem: Problem we already know to be undecidable.

Claim: *New_Problem* is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

Build a TM *S* that decides *Old_Problem*:

```
S = on input ⟨?⟩
1. ...
:
```

New_Problem: Problem we are trying to show is undecidable.

Old_Problem: Problem we already know to be undecidable.

Claim: **New_Problem** is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

Build a TM *S* that decides *Old_Problem*:

```
S = \text{on input } \langle ? \rangle
1. ... Input depends on the input to Old_Problem.
```

New_Problem: Problem we are trying to show is undecidable. **Old_Problem**: Problem we already know to be undecidable.

Claim: **New_Problem** is undecidable.

Proof: Suppose *New_Problem* is decidable and let *H* be its decider.

Build a TM *S* that decides *Old_Problem*:

 $S = \text{on input } \langle ? \rangle$ 1. ... Input depends on the input to $Old_Problem$.

S is a decider for **Old_Problem**, which is a contradiction.

∴ *New_Problem* is undecidable.

New_Problem: Problem we are trying to show is undecidable. **Old_Problem**: Problem we already know to be undecidable.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof:

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

```
Claim: E_{TM}=\{\langle M\rangle: M \text{ is a TM and } L(M)=\emptyset\} is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM}: S=\text{ on input } \langle N,\omega\rangle 1.
```

```
Claim: E_{TM}=\{\langle M\rangle: M \text{ is a TM and } L(M)=\emptyset\} is undecidable. Proof: Suppose E_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM}: S=\text{on input }\langle N,\omega\rangle
1.
```

To show E_{TM} is undecidable, use it to decide A_{TM} .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1.

To show E_{TM} is undecidable, use it to decide A_{TM} .

$$L(?) \neq \emptyset \iff N \text{ accepts } \omega$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

$$N ext{ accepts } \omega \Leftrightarrow L(M_2) \neq \emptyset$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

$$N ext{ accepts } \omega \iff L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. ?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

$$N ext{ accepts } \omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>?</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

$$N ext{ accepts } \omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>?</u>.

If H accepts M_2 , then...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

N accepts
$$\omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>?</u>.

If H accepts M_2 , then $L(M_2) = \emptyset$, which means...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

N accepts
$$\omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>?</u>.

If H accepts M_2 , then $L(M_2) = \emptyset$, which means that N does not accept ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

$$N ext{ accepts } \omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>.

If H accepts M_2 , then $L(M_2) = \emptyset$, which means that N does not accept ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

$$N ext{ accepts } \boldsymbol{\omega} \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>.

If H rejects M_2 , then $L(M_2) \neq \emptyset$, which means that N does accept ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

N accepts
$$\omega \Leftrightarrow L(M_2) \neq \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If H rejects M_2 , then $L(M_2) \neq \emptyset$, which means that N does accept ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. If $x \neq \omega$, reject.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

$$L(M_2) = ??$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

$$L(M_2) = \{\omega\} \text{ or } \emptyset$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

$$L(M_2) = ??$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

$$L(M_2) = \Sigma^* \text{ or } \emptyset$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does not.

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does not.

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does not.

$$N$$
 accepts ω

$$\updownarrow$$

$$L(M_2) = \emptyset$$

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

$$L(M_2) = \emptyset \text{ or } \Sigma^*$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. Run N on ω and accept if N does not.

- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

$$L(M_2) = \emptyset \text{ or } \Sigma^*$$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>reject</u>. If *H* rejects, <u>accept</u>.

If N accepts ω , $L(M_2) = ?$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = ?$

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will...?

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, reject. If H rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject.

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, reject. If *H* rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject. So, using H to decide if $L(M_2) = \emptyset$ determines if N accepts ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, reject. If *H* rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject. So, using H to decide if $L(M_2) = \emptyset$ \Rightarrow S decides A_{TM} determines if N accepts ω .

Claim: $E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.

Proof: Suppose E_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \neq \omega$, reject. 2. If $x = \omega$ run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, reject. If *H* rejects, accept.

If N accepts ω , $L(M_2) = {\omega}$, H will reject, and S will accept. If N does not accept ω , $L(M_2) = \emptyset$, H will accept, and S will reject. So, using H to decide if $L(M_2) = \emptyset$ \Rightarrow S decides $A_{TM} \Rightarrow E_{TM}$ is undecidable. determines if N accepts ω .

When in doubt use $A_{TM}!!!$

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof:

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM *S* that decides ???:

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides ???: $A_{TM}?$ $HALT_{TM}?$ $E_{TM}?$

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides ???: A_{TM} ? $HALT_{TM}$? E_{TM} ?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

 $S = \text{on input } \langle N, \omega \rangle$ 1. ???

To show EQ_{TM} is undecidable, use it to decide A_{TM} .

Claim: $EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\}$ is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S=\text{on input }\langle N,\omega\rangle$ 1. ???

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's accepts some input?

Plan: ?

Claim: $EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\}$ is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S=\text{ on input }\langle N,\omega\rangle$ 1. ???

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's accepts some input? Plan: Make two TMs that...?

Claim: $EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\}$ is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides A_{TM} : $S=\text{ on input }\langle N,\omega\rangle$ 1. ???

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's accepts some input? Plan: Make two TMs that have the same language if and only if N accepts ω .

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_1 on input $\langle x \rangle$: $L(M_2) = 1$. 1. accept.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_1 on input $\langle x \rangle$: $L(M_2) = \Sigma^*$ 1. accept.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - <u>1.</u> ?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.
- 3. Run H on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, ???

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.
- 3. Run H on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.
- 3. Run H on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , then M_1 and M_2 have the same language (Σ^*). If N does not accept ω , then they have different languages. Thus S decides A_{TM} . (bad!)

