Particle spectrograph

Wave operator and propagator

(c) (c) c	Fundamental fields	Multiplicities
$\sigma_{0+}^{\#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$t_0^{\#1} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_1^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta}$	٣
$\tau_{1}^{\#1}{}^{\alpha} := 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	٣
$\sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	8
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	Е
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2^{-}}^{\#1}{}^{\alpha\beta\chi}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	3 $\eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha\delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\chi\beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_\phi\partial^\phi\partial_\epsilon\partial^\epsilon\sigma^{eta\delta}_{}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	2
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3\partial_{\delta}\partial_{\lambda}\partial_{\lambda}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	2 nab a ses so x	

Quadratic (free) action $S == \begin{cases} S == \\ \int \int \int \int \int_{\epsilon}^{\epsilon} \left(6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 3 \tau_3 \partial_{\beta} \omega_{\beta}^{\ \beta} + 6 \tau_3 \partial^{\prime} \omega^{\alpha \beta}_{\ \alpha} - 3 \tau_3 \partial_{\gamma} \omega_{\beta}^{\ \beta} \partial^{\prime} \omega^{\alpha \beta}_{\ \alpha} - 3 \tau_3 \partial_{\gamma} \omega_{\beta}^{\ \beta} + 4 \tau_3 \partial_{\gamma} \omega_{\beta}^{\ \beta} + 4 \tau_3 \partial_{\gamma} \psi_{\beta}^{\ \beta} + 2 \tau_2 \partial_{\gamma} \psi_{\beta}^{\ \beta} + 2 \tau_3 \partial_{\gamma} \omega_{\beta}^{\ \beta} - 2 \tau_3 \partial_{\gamma} \omega_{\beta}^{\ \beta} + 2 \tau_3$	$\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$
---	---

0 0 0

0 0

 $k^{2} (2r_{3} + r_{5}) + \frac{2}{3}$ $\frac{\sqrt{2} t_{2}}{3}$ $-\frac{1}{3} \bar{i} \sqrt{2} kt_{2}$

 $f_{1}^{#1}\alpha\beta$ $\frac{1}{3}\sqrt{2}kt_{2}$ $\frac{1}{3}\sqrt{2}kt_{2}$ 0 0 0 0 0

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#1} + \alpha$ $\omega_{1}^{#2} + \alpha$ $\omega_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

 $\omega_{0^{+}}^{\#1} \ f_{0^{+}}^{\#1} \ f_{0^{+}}^{\#2} \ \omega_{0^{-}}^{\#1}$

0 0 0 0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $f_{0+}^{#1} \dagger 0 0$

0 0 0

0 0 0

0 0 0 0

 $\begin{bmatrix}
 t_1^{\#1} + \alpha \beta \\
 \sigma_{1}^{\#1} + \alpha \\
 \sigma_{1}^{\#2} + \alpha \\
 \tau_{1}^{\#2} + \alpha \\
 \tau_{1}^{\#2} + \alpha
\end{bmatrix}$

(r₃+2)

Massive and massl	ess spectra

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$