Predicting Consumers' Purchase Decision by Clickstream Data: A Machine Learning Approach

經濟碩三 陳伯駒

Graduate Student Department of Economics National Taiwan University

2018/01/31

Outline

- Introduction
- Literature Review
- 3 Data Processing
- Model
- Result
- Conclusion

2 / 67

Motivation

- Main Question: 根據網站上訪客的瀏覽行為,分類出什麼類型的訪客可能會購買?
- Why do we want to answer this question?
 - ▶ 對電子商務而言, 訪客的回流率一般不高: 即使擁有很高的回流率, 最終真正會使用網站平台購買的人也不多。若能夠從瀏覽行為中準 確的預測訪客是否是潛在客戶,對廠商而言可以對此類訪客有進一 步動作(廣告、產品推薦)、進而加速交易的進行。
 - ▶ 從模型預測中,歸納出訪客在網站上的瀏覽 pattern,從中分析可能 的incentives。

Main Page

Main Page

Wine List

Wine Detail

Introduction

- Transaction process:
- 將商品加入「我的清單」(購物車)
- 2. 在購物車中, 點選「下一步」並「確認訂單」
- 3. 輸入配送地址及購買者資訊
- 4. 確認付款及配送
- 5. 送出訂單 (order-id)
- 不需加入會員也可以購買: 但加入會員有好處(coupon, EDM. VIPepaper)
- 購買酒或加入會員需填入個人資料(性別、年龄、居住地、信箱)

Literature Review

- Verheijden (2012). "Predicting Purchase Behavior throughout the Clickstream."
- Walter (2013). "Web-shop Order Prediction Using Machine Learning."
- Ricardo (2015). "Using Clickstream Data to Analyze purchase intention."
- Kumar & Guruprasad (2015). "Clustering of Web Usage Data using Hybrid K-means and PACT Algorithms."
- Gabadinho, Ritschard and Mueller (2011). "Analyzing and Visualizing State Sequences in R with TraMineR."

Literature Review

- Solberg (1996). "A Large-Scale Evaluation of Features for Automatic Detection of Oil Spills in ERS SAR Images."
- Lunardon (2014). "ROSE: A Package for Binary Imbalanced Learning."
- Menardi & Torelli (2014). "Training and assessing classification rules with imbalanced data."
- Chawla et al (2002). "SMOTE: synthetic minority over-sampling technique."

Data

- Consumers' browsing log file on the website.
- Duration: Jan.06.2015 to Jan.01.2017
- Unique visitors: 667,068
- Visits(# of unique session): 1,348,855
- Pages viewed: 4,983,067

Data

Terminology

- Unique visitors: someone who visits site
 - ▶ IP + user agent + cookie + email account
- Visits(sessions): group of interactions on site within given time duration(30 min)
- Pages viewed: request to load HTML of site

Composition of Page Type

Page Type	Frequency	Percent	Cum
list_wine	1,798,236	36.09	36.09
winedetail	1,217,020	42.42	60.51
main_wine	445,982	8.95	69.46
winery_intro	322,926	6.48	75.94
edm	236,998	4.76	80.70
spirit_detail	218,460	4.38	85.08
wine_cart1	129,780	2.60	87.68
wine_cart1_coupon	110,717	2.22	89.91
list_spirit	107,641	2.16	92.07
vipepaper	84,661	1.70	93.77
mem_login	39,264	0.79	94.55
wine_recommend	26,527	0.53	95.09
mem_member	24,832	0.50	95.58
main_spirit	22,488	0.45	96.04
spirit_variety	70	0.00	100.00
spirit_partial_pop	31	0.00	100.00
spirit_recommend	25	0.00	100.00
Total	4,983,067	100.00	

Browsing History - History Id

Reason of using history id as observation level instead of visitor id

- 1. 假設使用 visitor id 當做 observation level,對於那些購買很多次的 訪客, 無法有效分離出個別的瀏覽行為。
- 2. 資料結果使用上比較合乎預想。因為如果使用 visitor id, 所做出的 結果是根據每個訪客的瀏覽紀錄所得出的結論。
 - 直觀上: history id 就是把 visitor id 再切得更細!

Browsing History - History_Id

Data

Table: Order Conversion among History Record

	Register	Total	
	no	yes	
Order Sent			
no	664,068	2,105	666,173
yes	4,320	2,263	6,583
Total	668,388	4,368	672,756

Data

Table: Browsing Information

	Mean	S.D	Min	Max	Skewness	Kurtosis	Obs.
Duration (min)	10,290.48	1,462,931	0	8.31E+08	419.203	198,312.6	672,756
Page	5.48	57.94	1	29851	412.856	209,010.2	672,756

- Duration is the total time spent on website before an order sent.
- Page is the total viewed pages on website before an order sent.

Basic Conception

- Dealing the classification problem
- Train "Machine" (computer) to "Learn" how to classify correctly.
- Supervised learning(監督式學習) v.s Unsupervised learning(非監督式 學習)

Why choosing ML?

- High-Dimensional, nonparametric method
- Non-necessary requirement for assumption of relation between X & Y, especially for a non-polynomial model.
- High predictive power

Term

- Training Set: 用來學習的數據集,建立一種分類方式來訓練模型。
- Testing Set: 用來測試訓練模型之分類能力的數據集。
- Validation Set: 用來做 Cross-Validation(交叉驗證) 的數據集。

Term

Figure: Visualization of train/test split and cross-validation

k-folds Cross Validation

- It is used to qualify the model, instead of choosing the model.
- 初始的 train set 被分成 k 個子樣本,其中某一個子樣本會被當作驗 證模型的數據集,剩下的 k-1 個樣本數據集會被拿來訓練。
- 上述動作重複 k 次以後,最後平均 k 次的 Accuracy rate,來衡量模型最終的精準率。
- k-folds CV 可以有效地避免 overfitting 與 under-fitting 的學習狀態發生,最終得到的結果直觀上也較有說服性。

Training Set & Testing Set

- Random sample 80% of whole data as the training set.
- Training Set: 538,205. Testing Set: 134,551. Total: 672,756.
- 10-folds cross validation.

Features: X, Classification: Y

- Y: whether the history-id send the order(Binary)
- X: possible features that may affect the classification of Y, here we use the vector: (DP, VP, cluster, reg – state, month)
 - dur: Duration spent on website before purchase session
 - pages: Pages viewed on website before purchase session
 - cluster: cluster result for the page-type sequence before purchase session
 - reg-state: whether this visitor is registered until the purchase session
 - month: the month which the order is sent.

Decision Tree

- 演算法 (CART) 中,一開始 Training Set 中所有的樣本都會在第一 個根節點 (node)、計算各屬性所提供的資訊量後,挑選最好的屬性 當作分節點, 並反覆地將樣本分開來。
- 若以下條件發生,則會停止分裂:
 - 1. 所有的屬性皆被使用完畢。
 - 2. 選取某個屬性後,發生某個分支完全沒有樣本被歸在裡面的情況。

Decision Tree

parameters tuned in code

- Complexity parameter(複雜性參數): 主要功用是修剪樹,決定樹 某個節點要不要分裂的閾值:直觀上如果 cp(閾值) 越大,樹越不容 易分裂、分枝越少; 反之 cp 越小, 樹越容易分裂、分之越多。
- Rule: if any split does not increase the overall prediction rate of model by at least "cp".
- 當複雜度過高時,可能會發生 over-fitting 的問題,若要建立一棵 能精準分類、又不會過度擬合的樹需要調整一個最適的 cp。(透過 cross-validation 來修正 cp)

Random Forest: 一群隨機產生出來的分類器 (樹)

Random:

- 1. 假設 Train Set 的大小為 N, 對於森林中的每棵樹而言, 採 bootstrap 的方式從訓練集抽取 N 個樣本作分類 (重複且放回地抽出 N 個,因 此每棵樹的訓練集可能不一樣)。
- 2. 假設每個樣本的特徵屬性維度為 M,則指定一個 m << M、隨機地從 M 個特徵中選取 m 個屬性子集。每棵樹進行分裂時,從這 m 個屬性 裡挑選最好的進行分裂。
- Forest: 由 T 棵決策樹所構成,而每棵決策樹都是一種分類器。輸 入一個樣本後,T個分類器會有T個分類結果,這些分類器進行簡 單多數決的投票選出最終的分類結果。

Random Forest

parameters tuned in code

- mtry: 對於每棵樹、個別的分裂點 node, 從所有變數中隨機挑選 m 個來選擇分裂 (因此選擇過的 feature 在後續分裂點也可能被選到), 停止的準則為隨機所選取的屬性中都無法將樣本繼續分類的情況。 隨機森林的分類效果與另外下列兩個因素有關:
 - 森林中任兩棵樹的相關係越大、錯誤率越大。
 - 森林中每棵樹個別的分類能力越強、整體森林錯誤率越小。

減少挑選的 m(feature set 不盡相同、隨機性強)、樹之間的相關性 與個別樹分類能力都會降低;增加選取的 m(feature set 都一樣、隨 機性弱),兩者也會同時提升,因此 m 的選取是一種 trade-off,需 要選一個使錯誤率降到最低的 *m*。

Random Forest

parameters tuned in code

• ntree: 欲生成之決策樹木個數 T(韓信點兵、多多益善)。 樹的數目越多、對於預測率會越準(產生越多分類器進行投票),但 樹的數目若太多將增加無意義的運算時間, 且在樹木生長到一定的 數目時,袋外錯誤率會趨於穩定,因此只須選擇一個合適的生長數 目: 亦即使袋外錯誤率趨於穩定的成長數目即可 (nTree 夠大即可)。

Sequence Clustering

- R packages: WeightedCluster & TraMineR
- Observation Level: history-id, identification of browsing history.

Weighted Cluster & TraMineR

- 先將相類似的 sequence, aggregate 起來後再做分類。(避免運算過於龐大)
- 使用 LCP 運算,造出每個數列之間的distance matrix。
- LCP(Longest Common Prefix) distance: one of the measure similarity/distance between distances, which is based on the length of the longest common prefix. 直覺上,兩個數列重複部分的長度越長、之間的距離就越短。
- $\sqrt{2^{31}} \approx 46,340$

Distribution of Pages Viewed for order-sent history

Table: Summary of Viewed Pages for Order-Sent History_id

Variable	Mean	Std. Dev.	min	Max	N
Number of Viewed Pages	83.59	108.01	2	1,592	6,583

Distribution of Pages Viewed for order-sent history

Distribution of transaction time

Rule

- 1. drop if mon>2(因大部分有購買的 history 紀錄都在本月及上個月之 間完成,我們也假設說一個人會不會購買、在他前幾個月前的紀錄 比較會影響。)
 - ▶ order==0: 抓一開始進入網站後 2 個月內的瀏覽紀錄。
 - ▶ order==1: 抓完成送出訂單當下那個月及前一個月份 (總共 2 個月) 的瀏覽紀錄。
- 2. 對於 order==0: drop if obs<2(因 order==1 最少看 1 頁) or 1000 以上的頁面。
- 3. keep if page-type=winelist, wine-detail, mainwine .
- 4. observation level: each purchase history

結論: 沒有被納入歸類的 history-id 為: 只有看 1 頁紀錄的 + 頁面組成 不包含「Main-Wine、Wine-Detail、Wine-List」,直覺上來想這些瀏覽紀 錄比較不是我們所關心的,因其代表進來只看1頁就離開,或是整個瀏 覽紀錄都跟產品酒的頁面無關。

Total: 229,574. Unique: 41,433 (< 46,340 ~ $\sqrt{2^{31}}$

Imbalanced Data Modification

- Imbalanced label data: 有購買紀錄的 history-d 佔全部的比例過低。
- Hazard of unbalanced data in machine learning:
 The machine learning model could make the classification that predict the whole history-id are un-order-sent and still get a high accuracy rate.

Re-sampling Method

- Over-Sampling: Randomly duplicating the samples from the minority so as to match the number of sample in each class. 缺點: If the features are few, overfitting problem occurs.
- Under-Sampling: Randomly selecting the samples from majority so as to match the number of sample in each class 缺點: Potentially losing relevant information from the left-out samples, which may lead to under-fitting.

Synthetic Data Generation

- ROSE: Using smooth bootstrap to create the articial samples from the feature space neighborhood around the minority class.
- SMOTE: Drawing artificial samples by choosing points that lie on the line connecting the rare observation to one of its nearest neighbors in the feature space.
- 直觀上,兩者的概念都是透過 minority 的 feature 間附近的距離、 人工合成新的數據(創造更多類似的 minority)。

Weighted Cluster & TraMineR

Clustering Quality Measure

- Point Biserial Correlation(PBC): Capacity of the clustering to reproduce the original distance matrix. (argMAX)
- Average Silhouette Width(ASW): Coherence of the assignments. A high coherence indicates high between groups distances and high intra group homogeneity. (argMAX)
- Hubert's C(HC): Gap between the current quality of clustering and the best possible quality for this distance matrix and number of groups. (argMin)

Weighted Cluster & TraMineR

Weighted Cluster & TraMineR

Decision Tree

Hyperparameter Tuning

optimal cp = 0.002736

Random Forest

Hyperparameter Tuning

optimal $m_{try} = 3$

Confusion Matirx

	Predicted:	Predicted:
	No	Yes
Actual:	True Negative(TN)	Falsa Dagitiya(FD)
No	True Negative(TN)	False Positive(FP)
Actual:	Falsa Nagativa(FN)	True Positive(TD)
Yes	False Negative(FN)	True Positive(TP)

- False Positive(FP): "錯誤地"把樣本歸類成"陽性"(所以代表樣本 其實為陰性)
- False Negative(FN): "錯誤地"把樣本歸類成"陰性"(所以代表樣本 其實為陽性)

Terminology from Confusion Matrix

- "Positive" class(陽性): 研究問題主觀上所關心的類別, 在本研究中 陽性類即為"有送出訂單的瀏覽紀錄": 相對地,沒有送出訂單的瀏 覽紀錄即為陰性類。
- Precision(準確率)= TP : 此模型預測樣本為陽性的準確率有多高?
- Sensitivity(敏感度)= TP : 此模型偵測到陽性類的機會有多大? 越 高就代表越敏感。
- Specifity(特異度)= TN : 此模型偵測到陰性類的機會有多大? 就 是對陰性類的敏感度。

Terminology from Confusion Matrix

- False Positive Rate= 1-Specifity: "錯誤地"把樣本歸類成"陽性"的 比率有多高?
- False Negative Rate= 1-Sensitivity: "錯誤地"把樣本歸類成"陰性" 的比率有多高?
- F1 score: Precision 與 Sensitivity 的調和平均數 (就是兩者平均的概 念)。
- Overall Accuracy(整體準確率)= TP+TN/L . 此模型對於陽性與陰性的整 體預測準確率有多高?

Receiver Operating Characteristic(ROC) curve and Area Under Curve(AUC)

- ROC curve 反映 Sensitivity(敏感度) 與 False Positive Rate(偽陽性 率) 兩者關係的綜合指標。直觀上 ROC curve 曲線上每一個點代表 著某一種 threshold(閾值) 下模型的感受性。
- 以一個使用 logistic regression 做二元分類的模型為例,模型最終會 預測每個樣本為陽性的機率。那麼如果設定一個閾值、假設是 0.8, 把為陽性機率大於 0.8 的才歸為陽性類、小於 0.8 的則歸為陰性類, 則在此閾值下即可算出一組 (Sensitivity, True Positive Rate)。
- x-axis: False Positive Rate
- y-axis: Sensitivity(True Positive Rate)

Receiver Operating Characteristic(ROC) curve and Area Under Curve(AUC)

• 理想目標: 找到某一個閾值、使得 TPR=1, FPR=0, 因此 ROC curve 越往"「"移動越好。

Thresholds for ROC curve

- 以 logistic regression 做二元分類為例, ROC curve 的可能閾值即為模型最終對樣本預測機率的組合 (陽性機率, 陰性機率)。假設總共有5個樣本、每個樣本最後被估計出來的 (陽性機率, 陰性機率)集合為 {(0.1,0.9),(0.2,0.8),(0.25,0.75),(0.6,0.4),(0.8,0.2)},則可能的閾值即為0,0.1,0.2,0.25,0.6,0.8,1。
- 每個閾值下都會有一組 (TPR, FPR)。閾值最大時, *TPR = FPR* = 0, 對應於圖中左下角原點 (0,0) 的位置; 閾值最小時, *TPR = FPR* = 1, 對應於右上角的點 (1,1)。
- 45°線即為 random select 的模型,所以每一種閾值下都是 TPR=FPR。

AUC: Area Under roc Curve

- 0.5 ≤ AUC ≤ 1,可以把 AUC 想像成偏離 45°線的程度,數值越高代表越偏離、越能夠最越好的分類。
- AUC = 1 代表是完美的分類器,至少存在一種閾值使得樣本能完全分類正確。
- 0.5 < AUC < 1 代表模型優於隨機猜測。
- AUC = 0.5 代表模型預測結果跟隨機猜測一樣。
- AUC < 0.5 代表模型比隨機預測能力還要差。

Model Evaluation AUC: Area Under roc Curve

AUC=I

AUC=0,8

AUC=0,5

Decision Tree

Confusion Matrix & Accuracy

Overall Accuracy: 92.35%, Sensitivity: 97.17%

Precision: 11.31%, F1 score: 20.25%

N=134,551	Predicted:	Predicted:
11-134,331	No	Yes
Actual:	122,945	10,260
No	122,943	10,200
Actual:	38	1,308
Yes	30	1,500

Decision Tree ROC Curve & AUC

Random Forest

Confusion Matrix & Accuracy

Overall Accuracy: 93.69%, Sensitivity: 92.86%

Precision: 12.96%, F1 score: 22.75%

N=134,551	Predicted:	Predicted:
11-134,331	No	Yes
Actual:	124,813	8,392
No	124,013	0,392
Actual:	96	1,250
Yes	90	1,250

Decision Tree ROC Curve & AUC

Random Forest

Learning Curve

Synthesized ROC Curve

Decision Tree

Variable Importance

Random Forest

Variable Importance

Conclusion

- Random Forest has higher overall predictive accuracy, precision and F1 score: Decision Tree has higher sensitivity.
- Both model has similar AUC of ROC curve, the value in Random Forest is slightly higher than the Decision Tree ones.
- Pages and Duration mainly contain the information of classification.

Further Work

- Extracting more features providing products' information.
- Feasible to store and compute larger matrix in R
- Applying other alternative classification models to verify the optimal prediction model.
- The model we implement may not be able to interpret the marginal effect; however, it's more like selecting a model which can predict the Y through X most precisely.

Decision Tree with Over-Sampling Method

N=134,551	Predicted:	Predicted:
N=134,331	No	Yes
Actual:	122,945	10,260
No	122,943	10,200
Actual:	38	1,308
Yes	30	1,500

Decision Tree with Under-Sampling Method

N=134,551	Predicted:	Predicted:
10-154,551	No	Yes
Actual:	122,945	10,260
No	122,943	10,200
Actual:	38	1,308
Yes	30	1,500

Decision Tree with ROSE-Sampling Method

N=134,551	Predicted:	Predicted:
11—154,551	No	Yes
Actual:	126,804	6,401
No	120,004	0,401
Actual:	215	1,131
Yes	213	1,131

Random Forest with Over-Sampling Method

N=134,551	Predicted:	Predicted:
11—154,551	No	Yes
Actual:	132,571	634
No	132,371	034
Actual:	864	482
Yes		

Random Froest with Under-Sampling Method

N=134,551	Predicted:	Predicted:
10-154,551	No	Yes
Actual:	122,223	10,982
No	122,223	10,902
Actual:	26	1,320
Yes	20	1,520

Random Forest with ROSE-Sampling Method

N=134,551	Predicted:	Predicted:
11-154,551	No	Yes
Actual:	121,329	11,876
No	121,329	11,070
Actual:	56	1,290
Yes	30	1,290