mmyau Solutions Manual

Charles Yang

Last updated: May 26, 2022

Contents

1 Math on the Complex Plane	វ
Solutions to Chapter 1	5
Solutions to Chapter 2	7
Solutions to Chapter 3	S
Solutions to Chapter 4	11
II Linear Algebra	13
Solutions to Chapter 5	15
Solutions to Chapter 5.4	17
Solutions to Chapter 6	19
Solutions to Chapter 7	21
III Advanced Topics	23
Solutions to Chapter 8	25
Solutions to Chapter 9	27
Solutions to Chapter 10	29
Solutions to Chapter 11	31

ii	CONTENTS
Solutions to Chapter 12	33
Solutions to Chapter 13	35
IV Miscellaneous Topics	37
Solutions to Chapter 14	39
Solutions to Chapter 15	41
V Appendices	43

CONTENTS 1

2 CONTENTS

Part I Math on the Complex Plane

Solution 1.1.1 (a) I'm too lazy to compute these rn

Note that they do not equal.

Solution 1.1.2 Too lazy, but follows from commutation in reals.

Solution 1.1.3 (a) Let z = a + ib. Then, $z^* = a - ib$ and $(z^*)^* = a - (-ib) = a + ib = z$.

(b) (i) too lazy

Solution 1.2.1

$$e^{-i\theta} = \cos\theta - i\sin\theta$$

Thus, they are conjugates.

Solution 1.2.2 just do it

Solution 1.3.1

$$Re(z) = \frac{z + z^*}{2}$$
 $Im(z) = \frac{z - z^*}{2}$

Solution 1.3.2 (a) Let z = a + ib where $a, b \in \mathbb{R}$. Substituting and cancelling,

$$z = z^*$$

$$a + ib = a - ib$$

$$ib = -ib$$

$$b = -b$$

b = 0

thus,

 $z = a \in \mathbb{R}$

(b) We have

$$(z^*z)^* = (z^*)^*z^* = zz^* = z^*z$$

by commutativity. Thus, since z^*z is its on conjugate, it must be purely real.

Solution 1.3.3

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Solution 1.3.4 (a) too lazy

Solution 1.3.5 (a) i don't want to

Solution 1.3.6 [1, i, -1, -i]

Solution 1.3.7 $\boxed{1, \frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -1, -\frac{1}{2} - i\frac{\sqrt{3}}{2}, \frac{1}{2} - i\frac{\sqrt{3}}{2}}$

Solution 2.1.1 literally just do what I said

Solution 2.1.2 again, just do what I said.

Part II Linear Algebra

Part III Advanced Topics

Part IV Miscellaneous Topics

Part V Appendices