

一、填空:

1、(2002) 设随机变量 $X \sim N(\mu, \sigma^2)$, 且二次方程 $y^2 + 4y + X = 0$ 无实根的概率为 0. 5, 则 μ =

【解析】:

设事件 A 表示 "二次方程 $y^2 + 4y + X = 0$ 无实根",则 $A = \{16 - 4X < 0\} = \{X > 4\}$.

依题意,有 $P(A) = P\{X > 4\} = \frac{1}{2}$.

而 $P\{X > 4\} = 1 - P\{X \le 4\} = 1 - \Phi(\frac{4 - \mu}{\sigma}),$

 $\mathbb{P} \qquad \qquad 1 - \mathcal{D}(\frac{4 - \mu}{\sigma}) = \frac{1}{2}, \mathcal{D}(\frac{4 - \mu}{\sigma}) = \frac{1}{2}, \frac{4 - \mu}{\sigma} = 0 \Longrightarrow \mu = 4.$

2、(2004) 设随机变量 X 服从参数为 λ 的指数分布,则 $P\left\{X>\sqrt{DX}\right\}$ = ______.

分析:已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可。

【解析】: 由题设,知 $DX = \frac{1}{\lambda^2}$,于是 $P\{X > \sqrt{DX}\} = P\{X > \frac{1}{\lambda}\} = \int_{\frac{1}{\lambda}}^{+\infty} \lambda e^{-\lambda x} dx$

$$=-e^{-\lambda x}\bigg|_{\frac{1}{2}}^{+\infty}=\frac{1}{e}.$$

3、(2005) 从数 1, 2, 3, 4 中任取一个数, 记为 X , 再从 1, 2, ..., X 中任取一个数, 记为 Y , 则 $P\{Y=2\}=$ _______.

分析: 本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.

【解析】:
$$P{Y = 2} = P{X = 1}P{Y = 2|X = 1} + P{X = 2}P{Y = 2|X = 2}$$

$$+P\{X=3\}P\{Y=2|X=3\}+P\{X=4\}P\{Y=2|X=4\}$$

$$=\frac{1}{4}\times(0+\frac{1}{2}+\frac{1}{3}+\frac{1}{4})=\frac{13}{48}.$$

4、(2006)设随机变量 X 与 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则

$$P\left\{\max\left\{X,Y\right\}\leq 1\right\}=\underline{\hspace{1cm}}.$$

【解析】: 本题考查均匀分布,两个随机变量的独立性和他们的简单函数的分布。

事件 $\{\max\{X,Y\} \le 1\} = \{X \le 1, Y \le 1\} = \{X \le 1\} \cap \{Y \le 1\}$ 又根据X,Y相互独立,均服从均匀分

布,可以直接写出 $P\{X \le 1\} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$ 。

5、(2008) 设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X = EX^2\} =$ ______.

【解析】: 由己知, 有 EX = DX = 1, 所以 $E(X^2) = DX + E(X)^2 = 2$

所以
$$P\{X = EX^2\} = P\{X = 2\} = \frac{1}{2e}$$

6、(2013)设随机变量 Y 服从参数为 1 的指数分布,a 为常数且大于零,则 $P\{Y \le a+1 | Y>a\}$

=

【解析】:
$$f(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

$$P\{Y \le a+1 | Y > a\} = \frac{P\{Y > a, Y \le a+1\}}{P\{Y > a\}} = \frac{\int_{a}^{a+1} f(y) dy}{\int_{a}^{+\infty} f(y) dy} = \frac{e^{-a} - e^{-(a+1)}}{e^{-a}} = 1 - \frac{1}{e} \circ$$

二、选择:

1、(2002)设 X 和 Y 是相互独立的连续型随机变量,它们的密度函数分别为 $f_X(x)$ 和 $f_Y(x)$,分布函数分别为 $F_X(x)$ 和 $F_Y(x)$,则

- (A) $f_x(x) + f_y(x)$ 必为密度函数
- (B) $f_x(x) f_y(x)$ 必为密度函数
- (C) $F_x(x) + F_y(x)$ 必为某一随机变量的分布函数
- (D) $F_X(x) F_Y(x)$ 必为某一随机变量的分布函数.

【解析】: 首先可以否定选项(A)与(C),因

$$\int_{-\infty}^{+\infty} [f_1(x) + f_2(x)] dx = \int_{-\infty}^{+\infty} f_1(x) dx + \int_{-\infty}^{+\infty} f_2(x) dx = 2 \neq 1,$$

$$F_1(+\infty) + F_2(+\infty) = 1 + 1 = 2 \neq 1.$$

对于选项(B),若
$$f_1(x) = \begin{cases} 1, -2 < x < -1, \\ 0, 其他, \end{cases}$$
 $f_2(x) = \begin{cases} 1, 0 < x < 1, \\ 0, 其他, \end{cases}$ 则对任何 $x \in (-\infty, +\infty)$,

 $f_1(x)f_2(x) \equiv 0$, $\int_{-\infty}^{+\infty} f_1(x)f_2(x)dx = 0 \neq 1$,因此也应否定(C),综上分析,用排除法应选(D).

2、(2004) 设随机变量 X 服从正态分布 N(0,1) 对给定的 $\alpha(0<\alpha<1)$, 数 u_{α} 满足 $P\{X>u_{\alpha}\}=\alpha$,

若 $P\{|X| < x\} = \alpha$,则x等于

(A)
$$u_{\frac{\alpha}{2}}$$

(B)
$$u_{1-\frac{\alpha}{2}}$$

(C)
$$u_{\frac{1-\alpha}{2}}$$

(D)
$$u_{1-\alpha}$$

【解析】: 由标准正态分布概率密度函数的对称性知, $P\{X<-u_{\alpha}\}=\alpha$,于是

$$1 - \alpha = 1 - P\{\big|X\big| < x\} = P\{\big|X\big| \ge x\} = P\{X \ge x\} + P\{X \le -x\} = 2P\{X \ge x\}$$

即有 $P\{X \ge x\} = \frac{1-\alpha}{2}$,可见根据定义有 $x = u_{\frac{1-\alpha}{2}}$, 故应选(C).

注: 本题 u_{α} 相当于分位数,直观地有

3、(2006) 设随机变量 X 服从正态分布 $N(\mu_1, \sigma_1^2)$, Y 服从正态分布 $N(\mu_2, \sigma_2^2)$,

且 $P\{|X - \mu_1| < 1\} > P\{|Y - \mu_2| < 1\}$ 则

(A)
$$\sigma_1 < \sigma_2$$

(B)
$$\sigma_1 > \sigma$$

(C)
$$\mu_1 < \mu_2$$

(D)
$$\mu_1 > \mu_2$$

【答案】: A 利用标准正态分布密度曲线的几何意义可得.

【解析】: 由题设可得

$$P\left\{\frac{\left|X-\mu_{1}\right|}{\sigma_{1}}<\frac{1}{\sigma_{1}}\right\}>P\left\{\frac{\left|Y-\mu_{2}\right|}{\sigma_{2}}<\frac{1}{\sigma_{2}}\right\},$$

则
$$2\Phi\left(\frac{1}{\sigma_1}\right) - 1 > 2\Phi\left(\frac{1}{\sigma_2}\right) - 1$$
,即 $\Phi\left(\frac{1}{\sigma_1}\right) > \Phi\left(\frac{1}{\sigma_2}\right)$.

其中 $\Phi(x)$ 是标准正态分布的分布函数. 又 $\Phi(x)$ 是单调不减函数,则 $\frac{1}{\sigma_1} > \frac{1}{\sigma_2}$,即

 $\sigma_1 < \sigma_2$. 故选(A).

$$\frac{1}{2} - e^{-1}$$
 (D) $1 - e^{-1}$

【答案】: C

【解析】:
$$P\{x=1\} = F(1) - F(1-) = 1 - e^{-1} - \frac{1}{2} = \frac{1}{2} - e^{-1}$$
. 所以选 C

5、(2010) 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为[-1,3] 上均匀分布的概率密度,

 $f(x) = \begin{cases} af_1(x) & x \le 0 \\ bf_2(x) & x > 0 \end{cases}$ (a > 0,b > 0) 为概率密度,则 a,b 应满足

(A)
$$2a + 3b = 4$$

(B)
$$3a + 2b = 4$$

(C)
$$a+b=1$$

(D)
$$a+b=2$$

【答案】: A

【解析】: $\int_{-\infty}^{+\infty} f(x) dx = a \int_{-\infty}^{0} f_1(x) dx + b \int_{0}^{+\infty} f_2(x) dx = 1 \Rightarrow a\Phi(0) + b \int_{0}^{3} \frac{1}{4} dx = 1$ $\Rightarrow \frac{1}{2}a + \frac{3}{4}b = 1 \Rightarrow 2a + 3b = 4$ 所以选 A。

6、(2011) 设 $F_1(x)$, $F_2(x)$ 为两个分布函数,且连续函数 $f_1(x)$, $f_2(x)$ 为相应的概率密度,则必 为概率密度的是(

(A)
$$f_1(x) f_2(x)$$

(B)
$$2f_2(x)F_1(x)$$

(C)
$$f_1(x)F_2(x)$$

(D)
$$f_1(x)F_2(x) + f_2(x)F_1(x)$$

【解析】: 检验概率密度的性质: $f_1(x)F_2(x)+f_2(x)F_1(x) \ge 0$;

$$\int_{-\infty}^{+\infty} f_1(x) F_2(x) + f_2(x) F_1(x) dx = F_1(x) F_2(x) \Big|_{-\infty}^{+\infty} = 1 \text{ or } \Im f_1(x) F_2(x) + f_2(x) F_1(x)$$

为概率密度,故选(D)。

7、(2013) 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim N(5,3^2)$,

$$p_i = P\{-2 \le X_i \le 2\} (i = 1, 2, 3), \text{ } \emptyset$$

(A)
$$p_1 > p_2 > p_3$$

(B)
$$p_2 > p_1 > p_2$$

(A)
$$p_1 > p_2 > p_3$$
 (B) $p_2 > p_1 > p_3$ (C) $p_3 > p_1 > p_2$ (D) $p_1 > p_3 > p_2$

(D)
$$p_1 > p_3 > p_4$$

【答案】: (A)

【解析】:

$$p_1 = P\{-2 \le X_1 \le 2\} = \Phi(2) - \Phi(-2) = 2\Phi(2) - 1,$$

$$p_2 = P\{-2 \le X_2 \le 2\} = P\left\{\frac{-2 - 0}{2} \le \frac{X_2 - 0}{2} \le \frac{2 - 0}{2}\right\} = \Phi(1) - \Phi(-1) = 2\Phi(1) - 1,$$

$$p_3 = P\{-2 \le X_3 \le 2\} = P\left\{\frac{-2 - 5}{3} \le \frac{X_3 - 5}{3} \le \frac{2 - 5}{3}\right\} = \Phi(-1) - \Phi\left(-\frac{7}{3}\right) = \Phi\left(\frac{7}{3}\right) - \Phi(1),$$

由下图可知, $p_1 > p_2 > p_3$.

- 8、(2016) 设随机变量 $X\sim N\left(\mu,\sigma^2\right)\!\left(\sigma>0\right)$,记 $p=P\left\{X\leq\mu+\sigma^2\right\}$,则(
 - (A) p 随着 μ 的增加而增加
- (B) p 随着 σ 的增加而增加
- (C) p 随着 μ 的增加而减少
- (D) p 随着 σ 的增加而减少

【解析】:

$$p = P\left\{X \le \mu + \sigma^2\right\} = P\left\{\frac{X - \mu}{\sigma} \le \sigma\right\}$$
所以答案为 B.

9、(2018) 设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x),且 $\int_{0}^{2} f(x) dx = 0.6$

则 $P\{X<0\}=$ ()

- (A) 0.2 (B) . 0.3 (C). 0.4
- (D). 0.6

【答案】: A

由 f(1+x) = f(1-x) 可知,随机变量 X 的概率分布关于 X=1 对称,故由 $\int_{-1}^{2} f(x) dx = 0.6$ 可知答案为 A.

三、解答:

1、(2012) 已知随机变量 X,Y 以及 XY 的分布律如下表所示,

X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

求: (1) P(X = 2Y);

【解析】:

$$P(X = 2Y) = P(X = 0, Y = 0) + P(X = 2, Y = 1) = \frac{1}{4}$$

(2012) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3 \\ 0, & 其他, \end{cases}$,令随机变量 $Y = \begin{cases} 2, & X \leq 1 \\ X, 1 < X < 2 \\ 1, & X \geq 2 \end{cases}$

$$Y = \begin{cases} 2, & X \le 1 \\ X, 1 < X < 2 \\ 1, & X \ge 2 \end{cases}$$

- (I) 求Y的分布函数。
- (II) 求概率 $P\{X \leq Y\}$

【解析】:

(I) 设 y 的分布函数为 F(y) ,则

$$F(y) = P\{Y \le y\} = P\{Y \le y, X \le 1\} + P\{Y \le y, 1 < X < 2\} + P\{Y \le y, X \ge 2\}$$
$$= P\{2 \le y, X \le 1\} + P\{X \le y, 1 < X < 2\} + P\{1 \le y, X \ge 2\}$$

当 y < 1时, F(y) = 0,

当
$$1 \le y < 2$$
 时, $F(y) = P\{X \le y, 1 < X < 2\} + P\{X \ge 2\}$

$$= P\{1 < X \le y\} + P\{X \ge 2\}$$

$$= \int_{1}^{y} \frac{1}{9} x^{2} dx + \int_{2}^{3} \frac{1}{9} x^{2} dx$$

$$= \frac{1}{27} (y^{3} - 1) + \frac{1}{27} (3^{3} - 2^{3})$$

$$= \frac{1}{27} (y^{3} + 18)$$

当 $y \ge 2$ 时, $F(y) = P\{X \le 1\} + P\{1 < X < 2\} + P\{X \ge 2\} = 1$

所以
$$F_Y(y) = \begin{cases} 0, & y < 1 \\ \frac{1}{27}y^3 + \frac{2}{3}, 1 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

(II)
$$P(X \le Y) = 1 - P(X > Y) = 1 - P(y = 1) = 1 - \int_{2}^{3} \frac{1}{9} x^{2} dx = \frac{8}{27}$$

3、(2014) 设随机变量 X 的概率分布为 $P\{X=1\} = P\{X=2\} = \frac{1}{2}$, 在给定 X=i 的条件

下,随机变量Y 服从均匀分布U(0,i),i=1,2。求Y 的分布函数 $F_{Y}(y)$ 。

【解析】:

$$F_{v}(y) = P(Y \le y)$$

综上:
$$F_{y}(y) = \begin{cases} 0 & y < 0 \\ \frac{3}{4}y & 0 \le y < 1 \\ \frac{1}{2} + \frac{y}{4} & 1 \le y < 2 \\ 1 & y \ge 2 \end{cases}$$

4、(2015) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, x > 0, \\ & \text{对 } X \text{ 进行独立重复的} \\ 0, & x \leq 0. \end{cases}$

观测, 直到 2 个大于 3 的观测值出现的停止. 记 Y 为观测次数求 Y 的概率分布;

【解析】:

记
$$p$$
 为观测值大于 3 的概率,则 $p=P(X>3)=\int_3^{+\infty}2^{-x}\ln 2dx=\frac{1}{8}$,从而 $P\{Y=n\}=C_{n-1}^1p(1-p)^{n-2}$ $p=(n-1)(\frac{1}{8})^2(\frac{7}{8})^{n-2}$, $n=2,3,\cdots$ 为 Y 的概率分布。