projekt

"radio3"

autor: Robert Jaremczak, SQ6DGT

wersja: 1.1 – robocza aktualizacja: 2017-04-09

1 Protokół komunikacyjny

Komunikacja z urządzeniem polega na wymianie ramek w trybie master/slave przez port szeregowy, emulowany za pomocą interfejsu USB. Urządzenie pracuje w trybie slave i wysyła ramki tylko w odpowiedzi na żądania pochodzące z zewnątrz, samodzielnie nie inicjuje transmisji.

Standardowe parametry transmisji szeregowej:

prędkość: 115200 bit/s

bity danych: 8bity stopu: 1

kontrola parzystości: wyłączona

1.1 Struktura ramki

Ramka zawiera sekwencję pól:

długość [B]	nazwa opis			
2	neader format ramki i kod komendy			
02	payload_length wartość określająca ilość danych do przesłania			
065804	payload_content dane do przesłania			
1	crc8	liczba kontrolna wyliczona algorytmem CRC8		

z których nie każde musi wystąpić. Zależy to od ilości dodatkowych danych, które mają być przesłane. W każdym przypadku ramka rozpoczyna się nagłówkiem, którego struktura jest następująca:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	frame_type							fa	me_cc	mmai	nd				

Kolejnym elementem występującym zawsze jest pole **frame_command** czyli rodzaj żądania. Maksymalna ilość danych, która może zostać przesłana w pojedynczej ramce to 65804 bajty. W zależności od ilości danych do przesłania wybierany jest odpowiedni rodzaj ramki.

frame_type	payload_length (ilość danych)	payload_content (dane)
ilość danych	brak	0 – 13 bajtów
14	ilość danych – 14	14 – 269 bajtów
15	ilość danych – 270	270 – 65804 bajtów

Ten sposób konstruowania ramki ma na celu zminimalizowanie narzutu w przypadku krótkich komunikatów. Pole crc8 jest wyliczane dla wszystkich

bajtów ramki włącznie z nagłówkiem za pomocą standardowego wielomianu X^8+X^5+X^4+X^0. Pola o długości większej niż jeden bajt są konstruowane w konwencji *little-endian*, czyli młodszy bajt jest wysyłany jako pierwszy.

1.2 przykład 1: ramka PING

frame type: 0 - brak danych do przesłania

frame_command: 0 - żądanie PING payload_length: to pole nie występuje payload_content: to pole nie występuje wysłane bajty: **00 00 CRC8** (3 bajty)

1.3 przykład 2: ramka DEVICE_HARDWARE_REVISION

frame type: 0x1 – ilość dodatkowych bajtów wynosi 1

frame command: 0x003 – taki jest kod żądania

payload_length: to pole nie występuje, długość zakodowana w frame_type

payload content: jeden bajt określający wersję sprzętu (np. 2)

wysłane bajty: **10 03 02 CRC8** (4 bajty)

1.4 przykład 3: ramka SWEEP_RESPONSE

Zakładamy, że przesłano 1000 próbek (2 bajty na próbkę)

frame_type: 0xF - ponieważ ilość danych przekracza 270 bajtów

frame command: 0x041 - kod żądania

payload_length: 2 bajty długości zawierające liczbe: 2014 - 270 = 1744

payload content: 12 bajtów parametrów + 2002 bajty próbek

wysłane bajty: **FO 41 DO 06 ... CRC8** (2019 bajtów)

1.5 wyliczanie pola kontrolnego wg CRC8

Wykorzystany jest standardowy algorytm CRC8 z domyślnym wielomianem $X^8+X^5+X^4+X^0$. Przykładowe obliczenie:

bajty: 1A 1B 2F FF 01 23

crc8: A5

kalkulator CRC8: http://tomeko.net/online_tools/crc8.php?lang=pl

2 Zaimplementowane żądania

Program sterujący wysyła ramkę z żądaniem do urządzenia, które odsyła odpowiedź. Jeżeli ramka nie zawiera dodatkowych danych w opisie występuje tylko kod komendy. Jeśli dane występują są opisane w formacie nazwa_pola[długość w bajtach]. Każdorazowo format ramki jest odpowiednio dobrany w zależności od całkowitej ilości danych do przesłania.

2.1 PING

test połączenia, komunikat potwierdzający otrzymanie żądania.

żądanie				
frame_command	frame_command 0x000			
odpowiedź				
frame_command 0x000				

2.2 DEVICE_INFO

szczegółowe dane o urządzeniu

żądanie				
frame_command	0x001			
	odpowiedź			
frame_command	0x001			
name[16]	char[]: nazwa urządzenia			
buildId[32]	char[]: tekstowy identyfikator wersji oprogramowania			
hardwareRevision[1]	uint8_t: wersja sprzętu: 0 - wersja 1 i wcześniejsze 1 - wersja 2			
vfoType[1]	uint8_t: rodzaj zainstalowanego VFO: 0 – brak VFO 1 – DDS AD9850 2 – DDS AD9851			
baudRate	uint32_t: efektywna prędkość transmisji			

2.3 DEVICE_STATE

aktualny stan urządzenia

żądanie				
frame_command	0x002			
	odpowiedź			
frame_command	0x002			
timeMs[4]	uint32_t: liczba milisekund od włączenia zasilania			
vfoOut[1]	bool: przekierowanie wyjścia VFO 0 – bezpośrednio na zewnętrzne wyjście VFO 1 – na wejście modułu VNA			
vfoAmplifier[1]	bool: wzmacniacz sygnału VFO włączony wymagana wersja sprzętu: 2			
vfoAttenuator[1]	uint8_t: sterowanie sekcjami tłumika VFO 07 – każdy bit załącza odpowiednią sekcję tłumika wymagana wersja sprzętu: 2			

2.4 DEVICE_HARDWARE_REVISION

Ustawienie wersji sprzętu lub uruchomienie automatycznej detekcji

żądanie				
frame_command 0x003				
hardwareRevision[1]	uint8_t: określenie żądanej wersji sprzętu 0 – uruchomienie mechanizmu detekcji automatycznej 1 – wersja 1 i wcześniejsze			

	2 – wersja 2
	odpowiedź
PING	

2.5 VFO_GET_FREQ

pobierz aktualną częstotliwość VFO

żądanie			
frame_command 0x008			
odpowiedź			
frame_command 0x008			
frequency[4] uint32_t: częstotliwość w Hz			

2.6 VFO_SET_FREQ

ustawienie częstotliwości VFO

żądanie				
frame_command	0x009			
frequency[4]	uint32_t: częstotliwość w Hz			
odpowiedź				
PING				

2.7 LOGPROBE_DATA

Odczyt przetwornika A/C sondy logarytmicznej

żądanie			
frame_command 0x010			
odpowiedź			
frame_command 0x010			
value[2]	uint16_t: uśredniona wartość z przetwornika A/C		

2.8 LINPROBE_DATA

Odczyt przetwornika A/C sondy liniowej

żądanie			
frame_command 0x018			
odpowiedź			
frame_command 0x018			
value[2]	uint16_t: uśredniona wartość z przetwornika A/C		

2.9 VNAPROBE_DATA

Odczyt przetworników A/C z komparatora modułu VNA

żądanie		
frame_command	0x020	
	odpowiedź	

frame_command	0x020
gain[2]	uint16_t: uśredniona wartość z przetwornika A/C
phase[2]	uint16_t: uśredniona wartość z przetwornika A/C

2.10 FMETER_DATA

Odczyt z licznika częstotliwości

żądanie	
frame_command	0x028
odpowiedź	
frame_command	0x028
frequency[4]	uint32_t: liczba impulsów zliczona w ciągu sekundy

2.11 PROBES_DATA

Jednoczesny odczyt wartości A/C wszystkich sond

żądanie			
frame_command	0x030		
	odpowiedź		
frame_command	0x030		
logarithmic[2]	uint16_t: uśredniona wartość A/C sondy logarytmicznej		
linear[2]	uint16_t: uśredniona wartość A/C sondy liniowej		
vna_gain[2]	uint16_t: uśredniona wartość A/C wyjścia "gain"		
vna_phase[2]	uint16_t: uśredniona wartość A/C wyjścia "phase"		
frequency[4]	uint32_t: liczba impulsów zliczona w ciągu sekundy		

2.12 VFO_OUT_DIRECT

Przekierowanie wewnętrznego VFO bezpośrednio na wyjście VFO

żądanie		
frame_command	0x033	
odpowiedź		
PING		

2.13 VFO_OUT_VNA

Przekierowanie wewnętrznego VFO na wejścia modułu VNA

żądanie		
frame_command	0x034	
	·	odpowiedź
PING		

2.14 SWEEP_REQUEST

Wykonanie analizy z przemiataniem częstotliwości. Żądanie jest ignorowane jeśli poprzednie nie zostało jeszcze zakończone.

żądanie	
---------	--

frame_command	0x040 (SWEEP_REQUEST)	
freqStart[4]	uint32_t: częstotliwość początkowa	
freqStep[4]	uint32_t: krok częstotliwości	
numSteps[2]	uint16_t: liczba kroków do wykonania	
source[1]	uint8_t: źródło danych wejściowych 0 – sonda logarytmiczna 1 – sonda liniowa 2 – komparator VNA, wyjścia "gain" i "phase"	
avg.mode[1]	uint8_t: tryb uśredniania próbek i cykli przemiatania bity 0-3 - liczba próbek do uśredniania – 1 bity 4-7 - liczba cykli przemiatania – 1	
odpowiedź		
frame_command	0x041 (SWEEP_RESPONSE)	
state[1]	uint8_t: stan końcowy operacji przemiatania 0 – wykonano poprawnie 1 – przetwarzanie trwa 2 – żądanie nieprawidłowe	
freqStart[4]	uint32_t: częstotliwość początkowa wykonanej analizy	
freqStep[4]	uint32_t: krok częstotliwości	
numSteps[2]	uint16_t: liczba wykonanych kroków (0 – w razie błędu)	
source[1]	uint8_t: źródło danych wejściowych (patrz wyżej)	
data[0-4004]	uint16_t[]: tablica danych pobranych z wybranego źródła. Pojedynczy punkt pomiarowy zawiera 1 lub 2 słowa 16 bitowe z wartością/wartościami pobranymi z wybranego źródła danych pomiarowych. Maksymalna liczba kroków pomiarowych wynosi 1001 co daje maksymalnie 4004 bajty dla źródła: 2 (komparator VNA)	

2.15 VFO_TYPE

Określenie zainstalowanego typu VFO

żądanie		
frame_command	0x035	
vfoType[1]	uint8_t: rodzaj zainstalowanego VFO 0 – brak 1 – DDS z układem AD9850, moduł "gotronik" 2 – DDS z układem AD9851, moduł "gotronik"	
odpowiedź		
PING		

2.16 VFO_ATTENUATOR

Ustawienie tłumika sygnału VFO

żądanie		
frame_command	0x036	
vfoAttenuator[1]	uint8_t: 07 poziom tłumienia wymagana wersja sprzętu: 2	
odpowiedź		
PING		

2.17 VFO_AMPLIFIER

Sterowanie wzmacniaczem sygnału VFO

żądanie		
frame_command	0x037	
vfoAmplifier[1]	bool: włączenie wzmacniacza sygnału VFO wymagana wersja sprzętu: 2	
odpowiedź		
PING		

2.18 VNA_MODE

Przełączanie trybu pracy modułu analizatora VNA

żądanie	
frame_command	0x038
vnaMode[1]	uint8_t: tryb pracy 0 – sprzęgacz kierunkowy i komparator 1 – mostek pomiarowy i komparator wymagana wersja sprzętu: 2 wymagana wersja modułu VNA: 2
	odpowiedź
PING	

3 Typowe sekwencje komend

3.1 Sekwencja startowa

Sekwencja startowa powinna zostać wykonana zaraz po otwarciu portu szeregowego służącego do komunikacji z urządzeniem.

- wysłanie DEVICE_HARDWARE_REVISION
- wysłanie VFO_TYPE
- pobranie informacji o urządzeniu: DEVICE_INFO
- pobranie stanu urządzenia: DEVICE_STATE

jeśli wszystkie zwrócone dane są prawidłowe można rozpocząć pracę.