Chem 1141 Fall 2014 Exam 4A

Name:							
Please write your full name, and which exam version (4A) you have on the scantron sheet.							
	box next to your correct	t section number.					
Section #:			☐ 2. (Thursday Lab, 4 – 6:50 pm)				
	☐ 3. (Monday Lab, 11☐ 5. (Wednesday Lab	• •	☐ 4. (Wednesday Lab, 11 – 1:50 pm)				
	Multiple Choice:		/30				
	Q11:		/10				
	Q12:		/10				
	Q13:		/10				
	Q14:		/10				
	-						
	•						
	•						
	BONUS:						
	TOTAL:		/100				

Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet. Choose the best response.

- Q1. Who is generally credited with creating the first periodic table?
 - a) Pauli
- b) Schrödinger
- c) Mendeleev
- d) Auf Bau
- e) Lewis

- The chemical equation corresponding to the electron affinity of sodium is: Q2.
 - a) $Na(s) \longrightarrow Na(s) + e^{-}$

 $Na(g) \longrightarrow Na^{+}(g) + e^{-}$

c) $Na(1) \longrightarrow Na^{-}(g) + e^{-}$

b) $Na(g) \longrightarrow Na^{+}(g)$ d) $Na(g) + e^{-} \longrightarrow Na^{-}(g)$

- e) $Na^{-}(g) \longrightarrow Na(g) + e^{-}$
- Q3. The molecular geometry about the oxygen atom in the following Lewis structure is predicted by VSEPR to be:

- a) linear
- b) trigonal planar
- c) bent
- d) see-saw
- e) tetrahedral
- What type of hybrid orbital is required for the carbon atom in the following Lewis structure? Q4.

a) sp

- b) sp^2
- c) sp^3

- d) sp³d
- e) sp^3d^2

- Which of the following bonds is non-polar covalent? Q5.
 - a) F—F
- b) H—Cl
- c) Li—Br
- d) Se—Br
- e) Na—Cl

- Which of these compounds does not follow the octet rule? Q6.
 - a) NF₃
- b) CF₄
- c) AsBr₃
- d) PF₅
- e) Cl₂

- Q7. The H—N—H bond angle in NH₃ is:
 - a) 180°
- b) 120°
- c) slightly more than 120°

- d) 109.5°
- e) slightly less than 109.5°
- Q8. One possible Lewis structure for the thiocyanate ion, SCN⁻ is:

The formal charge on the **nitrogen** atom is:

- a) 2-

c) 0

- d) 1+
- e) 2+

Q9. The number of pi bonds in the molecule below is:

a) 2

c) 6

d) 10

e) 15

Q10. Which of the following has the largest atomic radius?

a) F

b) N

c)O

d) S

e) P

Short Response.

Show all work to receive credit. Be sure to write complete sentences in your explanations!

Q11. [10 pts.] Acrylonitrile is used as the starting material for manufacturing acrylic fibers. Its Lewis structure is:

- a) How many sigma and pi bonds are there in this molecule? $_{---}\sigma$, $_{---}\pi$
- b) For the **bond** indicated above, list the types of atomic or hybrid orbitals that are overlapping to form

____ (left carbon atom) and _____ (right carbon atom). the bond:

- c) The **bond** indicated in part (b) is an example of a sigma or a pi bond? _____ (state which)
- d) What is the orbital **hybridization** of the **far left** carbon atom?
- e) Draw the orbital diagram for the carbon atom in part (d).

Q12. [10 pts.]	a) Rank the following	bonds in order of <u>increasin</u>	g bond length:

C—N, C=N, C=N

- b) Draw the Lewis dot structure for a nitrogen atom:
- c) What angle do **sp** hybrid orbitals make with one another?
- d) What is the tetrahedral bond angle?

Q13. [10 pts.] Determine the formal charge for each atom in the following three resonance structures for the [OCN] anion. Explain which one of these resonance structures is the most favored.

Structure 1	Structure 2	Structure 3		
 :o≡c—N:		•	· · · · · · · · · · · · · · · · · · ·	
· O=C-N ·	0—U—I	•	· 0—c=iv ·	

Formal Charges:	Formal Charges:	Formal Charges:
o	O	O
C	C	C
N	N	N

Most favored structure: _____

Explanation:

Q14. [10 pts.]	Predict the molecular geometry and polarity of SF ₄ . Your answer should include:
	☐ A valid Lewis structure ☐ A sketch of the geometry using line/dash/wedge notation
	☐ The value of the bond angle(s) written out
	☐ A clear explanation of why SF4 is polar or non-polar
Q15. [10 pts.]	Answer <u>two</u> of the following. Clearly indicate which two you want graded!
	a) What is meant by the term: effective nuclear charge, Z_{eff} ?
	Explain the trend in $Z_{ m eff}$ moving across the rows of the periodic table.
	b) What is ionization energy?
	Explain the trend in ionization energy moving across the rows of the periodic table.

c) How does the size of an ion (cation/anion) compare to the size of the neutral atom from which it is

d) Write out the ground-state electron configuration for a copper(I) ion.

formed? Explain your answer.

Q16. [10 pts.] Draw Lewis structures for the following compounds: $a) \ Br O_3^-$

b) SOCl2 (sulfur is central atom)

c) NO₂+

Q17. [10 pts.] Use bond energies to estimate ΔH^{o}_{rxn} for the combustion of two moles of acetylene:

$$2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(g)$$

Hint: Drawing the Lewis structures for each will help determine what types of bond are formed/broken.

BONUS: Is FBH₂ (boron is the central atom) polar or non-polar? Explain.

Periodic Table

	1																	18
	ΙA																	VIIIA
ſ	1	_																2
	H	2											13	14	15	16	17	He
ŀ	1.01	IIA 4	ľ										IIIA 5	IVA 6	VA 7	VIA 8	VIIA 9	4.00
	Li	Be											B	Č	Ń	ô	F	Ne
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
ı	11	12											13	14	15	16	17	18
	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
L	22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
L	39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63,55	65.39	69,72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
L	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
L	132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111							
	Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
L	(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							
								1 10 10 10										-70
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			^	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
Н—Н	436.4	С—С	347
Н—О	460	C=C	620
С—О	351	C≡C	812
C=O	745 (average)	0—0	142
C=O	799 (in CO ₂)	0=0	498.7
С—Н	414		

ILLUSTRATION FROM THE TEXTBOOK "CANNON-BALLS: A QUANTUM MECHANICAL TREATMENT."