Joint system and entanglement

Ryuhei Mori

Tokyo Institute of Technology

9, Oct., 2020

Joint system

- System = Set of states & set of measurements
- Joint system = "Product" of systems.
- Joint system of a system of a coin (two-dimentional classical system) and a system of a dice (six-dimentional classical system) is twelve-dimentional classical system.
- What is a joint system of quantum systems?

Tensor product of linear spaces

For linear product spaces V and W over a field F (usually $\mathbb R$ or $\mathbb C$), a tensor space $V\otimes W$ is a linear space spanned by $v\otimes w$ for all $v\in V$, $w\in W$.

- $\forall c \in F$, $\forall v \in V$, $\forall w \in W$, $c(v \otimes w) = (cv) \otimes w = v \otimes (cw)$.
- $\forall u, v \in V, \forall w \in W, (u+v) \otimes w = u \otimes w + v \otimes w.$
- $\forall v \in V$, $\forall w, y \in W$, $v \otimes (w + y) = v \otimes w + v \otimes y$.

Let $(e_i)_i$ be an orthonormal basis of V and $(f_j)_j$ be an orthonormal basis of W. Since $v \otimes w = (\sum_i v_i e_i) \otimes (\sum_j w_j f_j) = \sum_{i,j} v_i w_j (e_i \otimes f_j)$ This implies $\dim(V \otimes W) = \dim(V) \dim(W)$.

If V and W are inner product spaces, $V \otimes W$ is also a inner product space defined by

$$\langle v \otimes w, u \otimes y \rangle = \langle v, u \rangle \langle w, y \rangle.$$

Vector representation in tensor product

Let $V := \mathbb{C}^n$, $W := \mathbb{C}^m$.

$$e_i := egin{bmatrix} 0 & 1 & & & & & & \ dots & i & 1 & & & \ 0 & i-1 & & & & \ 1 & i & i & \in \mathbb{C}^n, & & f_j := egin{bmatrix} 0 & j & 1 & & & \ 0 & j-1 & & & \ 1 & j & & & \ j+1 & \in \mathbb{C}^m & & \ 0 & & & & \ 0 & & & \ \end{pmatrix}$$

$$e_i\otimes f_j=egin{bmatrix} 0\ dots\ 0\ 1\ 0\ (i,j-1)\ (i,j+1)\ dots\ (n,m) \end{pmatrix}\in\mathbb{C}^n\otimes\mathbb{C}^m$$

Vector representation in tensor product

Let $V := \mathbb{C}^n$, $W := \mathbb{C}^m$.

$$e_i\otimes f_j=egin{bmatrix} 0\ dots\ 0\ 1\ 0\ (i,j-1)\ (i,j)\ (i,j+1) \end{bmatrix}\in\mathbb{C}^n\otimes\mathbb{C}^m\ (n,m)$$

$$v \otimes w = \left(\sum_{i} v_{i} e_{i}\right) \otimes \left(\sum_{j} w_{j} f_{j}\right) = \sum_{i,j} v_{i} w_{j} (e_{i} \otimes f_{j})$$

$$= \begin{bmatrix} \vdots \\ v_{i} w_{j} \\ \vdots \end{bmatrix} (i,j) = \begin{bmatrix} v_{1} w \\ v_{2} w \\ \vdots \\ v_{n} w \end{bmatrix} \in \mathbb{C}^{n} \otimes \mathbb{C}^{m}$$

Linear spaces

• $\mathcal{L}(V, W)$: A linear space spanned by linear maps from a linear space V to a linear space W.

• $\mathcal{L}(V) := \mathcal{L}(V, V)$.

• $\mathcal{H}(V)$: A real linear space spanned by Hermitian operators acting on a complex linear space V.

Tensor product of linear maps

$$\mathcal{L}(V,X)\otimes\mathcal{L}(W,Y)\cong\mathcal{L}(V\otimes W,X\otimes Y)$$

since the both sides are complex linear spaces with dimension

$$\dim(V)\dim(W)\dim(X)\dim(Y)$$
.

A natural choice of an isomorphism is

$$\mathcal{L}(V,X) \otimes \mathcal{L}(W,Y) \longrightarrow \mathcal{L}(V \otimes W, X \otimes Y)$$
$$A \otimes B \longmapsto (v \otimes w \mapsto A(v) \otimes B(w)).$$

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \dots & A_{1m}B \\ A_{21}B & A_{22}B & \dots & A_{2m}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{n1}B & A_{n2}B & \dots & A_{nm}B \end{bmatrix}$$

Tensor product of Hermitian maps

$$\mathcal{H}(V) \otimes \mathcal{H}(W) \cong \mathcal{H}(V \otimes W)$$

since the both sides are real linear spaces with dimension

$$\dim(V)^2\dim(W)^2.$$

A natural choice of an isomorphism is

$$\mathcal{H}(V) \otimes \mathcal{H}(W) \longrightarrow \mathcal{H}(V \otimes W)$$
$$A \otimes B \longmapsto (v \otimes w \mapsto A(v) \otimes B(w)).$$

Joint quantum system

A quantum system on a complex linear space V:

- Set of states = $\{\omega \in V \mid \omega \in C_{\succeq 0}, Tr(\omega) = 1\}.$
- Set of binary measurements = $\{e \in V \mid e \in C_{\succ 0}, I e \in C_{\succ 0}\}$.

For a quantum systems on V and W, a joint system is a quantum system on $V\otimes W$.

A useful formula.

$$Tr(A \otimes B) = \sum_{i,j} \langle i | \otimes \langle j | A \otimes B | i \rangle \otimes | j \rangle$$
$$= \sum_{i,j} \langle i | A | i \rangle \langle j | B | j \rangle$$
$$= Tr(A)Tr(B)$$

Examples: two-qubit system

Examples of states

- $|0\rangle\langle 0|\otimes |1\rangle\langle 1|=|01\rangle\langle 01|$
- $\frac{1}{2}(|0\rangle\langle 0|\otimes |0\rangle\langle 0| + |0\rangle\langle 0|\otimes |1\rangle\langle 1|) = |0\rangle\langle 0|\otimes \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|) = |0\rangle\langle 0|\otimes \frac{1}{2}I$.
- $\frac{1}{2}(|1\rangle\langle 1|\otimes|0\rangle\langle 0|+|0\rangle\langle 0|\otimes|1\rangle\langle 1|)$.
- $\frac{1}{2}(|0\rangle \langle 0| \otimes |0\rangle \langle 0| + |0\rangle \langle 1| \otimes |0\rangle \langle 1| + |1\rangle \langle 0| \otimes |1\rangle \langle 0| + |1\rangle \langle 1| \otimes |1\rangle \langle 1|) = |\Phi\rangle \langle \Phi| \text{ for } |\Phi\rangle := \frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle).$

Separable states & entangled states

A quantum state ρ in a joint system is said to be separable if

$$\rho = \sum_{i} p_{i} \rho_{1}^{i} \otimes \rho_{2}^{i}$$

for some probability distribution p and quantum states $\{\rho_1^i\}$ and $\{\rho_2^i\}$ for subsystems.

If a quantum state is not separable, the state is said to be entangled state.

In general, it is difficult to determine whether given state is separable or entangled.

Pure separable states

Lemma

A pure state $|\psi\rangle \in V \otimes W$ is separable if and only if there exist pure states $|\varphi\rangle \in V$ and $|\phi\rangle \in W$ such that $|\psi\rangle = |\varphi\rangle |\phi\rangle$.

Proof.

$$\begin{aligned} |\psi\rangle \langle \psi| &= \sum_{i} p_{i} \rho_{i} \otimes \sigma_{i} \\ &= \sum_{i} p_{i} \left(\sum_{j} \lambda_{i,j} |\varphi_{i,j}\rangle \langle \varphi_{i,j}| \right) \otimes \left(\sum_{k} \gamma_{i,k} |\phi_{i,k}\rangle \langle \phi_{i,k}| \right) \\ &= \sum_{\ell} q_{\ell} |\varphi_{\ell}\rangle \langle \varphi_{\ell}| \otimes |\phi_{\ell}\rangle \langle \phi_{\ell}| \end{aligned}$$

$$egin{aligned} 1 &= \mathsf{Tr}\left(\ket{\psi}ra{\psi}\left(\sum_{i} \pmb{p}_{i}
ho_{i}\otimes\sigma_{i}
ight)
ight) \ &= \sum_{\ell} \pmb{q}_{\ell}\ket{ra{\psi}}\left(\ket{arphi_{\ell}}\ket{\phi_{\ell}}\ket{
ho}_{\ell}
ight)
brace^{2} \iff \ket{\psi} = \mathsf{e}^{i heta_{\ell}}\ket{arphi_{\ell}}\ket{\phi_{\ell}}\ket{\phi_{\ell}} \end{aligned}$$

Isomorphism between $V \otimes W$ and $\mathcal{L}(W, V)$

We consider isomporphism ${\mathcal M}$ between $V\otimes W$ and ${\mathcal L}(W,V)$ defined by

$$\mathcal{M}: V \otimes W \to \mathcal{L}(W, V)$$
$$|i\rangle_{V} |i\rangle_{W} \mapsto |i\rangle_{V} \langle i|_{W}$$

where $(|i\rangle_V)_i$ and $(|j\rangle_W)_j$ are orthonormal basis of V and W, respectively.

$$\frac{\mathcal{M}(|\psi\rangle_{V}|\varphi\rangle_{W})}{=\mathcal{M}\left(\left(\sum_{i}\psi_{i}|i\rangle_{V}\right)\otimes\left(\sum_{j}\varphi_{j}|j\rangle_{W}\right)\right)}$$

$$=\sum_{i,j}\psi_{i}\varphi_{j}\mathcal{M}(|i\rangle_{V}|j\rangle_{W})$$

$$=\sum_{i,j}\psi_{i}\varphi_{j}|i\rangle_{V}\langle j|_{W}$$

$$=\left(\sum_{i}\psi_{i}|i\rangle_{V}\right)\left(\sum_{j}\varphi_{j}\langle j|_{W}\right)=|\psi\rangle_{V}\langle\varphi|_{W}^{*}$$

Determine the separability of pure state

$$\begin{split} |\psi\rangle \in V \otimes W \text{ is separable } &\iff |\psi\rangle = |\varphi\rangle \, |\phi\rangle \text{ for some } |\varphi\rangle \in V, |\phi\rangle \in W \\ &\iff \mathcal{M}(|\psi\rangle) = |\varphi\rangle \, \langle\phi| \text{ for some } |\varphi\rangle \in V, |\phi\rangle \in W \\ &\iff \mathcal{M}(|\psi\rangle) \text{ is rank } 1 \end{split}$$

$$\mathcal{M}\left(rac{1}{\sqrt{2}}\left(\ket{0}\ket{0}+\ket{1}\ket{1}
ight)
ight) \ =rac{1}{\sqrt{2}}\left(\ket{0}ra{0}+\ket{1}ra{1}
ight)=rac{1}{\sqrt{2}}I$$

$$\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)$$
 is entangled!

Scmidt decomposition

Theorem (Schmidt decomposition)

For any pure state $|\psi\rangle \in V \otimes W$, there exist orthonormal basis $(|v_i\rangle)_i$ of V and $(|w_i\rangle)_i$ of W, and positive real numbers $(\lambda_i)_i$ such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |v_{i}\rangle_{V} |w_{i}\rangle_{W}.$$

Proof.

Let $A = \mathcal{M}(|\psi\rangle)$. By the singular value decomposition,

$$A = \sum_{i} \lambda_{i} \left| s_{i} \right\rangle_{V} \left\langle t_{i} \right|_{W}$$

Since $|\psi\rangle = \mathcal{M}^{-1}(A)$,

$$|\psi\rangle = \sum_{i} \lambda_{i} |s_{i}\rangle_{V} |t_{i}\rangle_{W}^{*}.$$

The number of the terms in the decomposition is called the Schmidt rank.

Assignments

- **1** Show $A \otimes B \succeq 0$ for any $A \succeq 0$ and $B \succeq 0$.
- 2 Show the Schmidt decomposition of the following states

B
$$\frac{1}{2}(|00\rangle + i|01\rangle + |10\rangle + |11\rangle)$$

6
$$\frac{1}{2}(|00\rangle + i|01\rangle + i|10\rangle + |11\rangle)$$