Quantum Computation

October 16, 2018

CONTENTS	2
Contents	
0 Introduction	3
1 1	4

7

2 The hidden subgroup problem (HSP)

3

0 Introduction

 ${\it asdasd}$

Exercise classes: Sat 3 Nov 11am MR4, Sat 24 Nov 11am MR4, early next term

Thursday 8 November lecture is moved to Saturday 10 November 11am (still MR4).

—Lecture 2—

1 1

Recall that we have an oracle U_f for $f: \mathbb{Z}_M \to \mathbb{Z}_N$ periodic, with period r, A = M/r. We want to find r in O(poly(m)) time where $m = \log M$.

The quantum algorithm

Work on state space $\mathcal{H}_M \otimes \mathcal{N}$ with basis $\{|i\rangle|k\rangle\}_{i\in\mathbb{Z}_M,k\in\mathbb{Z}_N}$.

- Step 1. Make state $\frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}|i\rangle|0\rangle$. Step 2. Apply U_f to get $\frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}|i\rangle|f(i)\rangle$. Step 3. Measure the 2nd register to get a result y. By Born rule, the first register collapses to all those i's (and only those) with f(i) equal to the seen y, i.e. $i = x_0, x_0 + r, ..., x_0 + (A-1)r$, where $0 \le x_0 < r$ in 1st period has f(m) = y. Discard 2nd register to get $|per\rangle = \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} |x_0 + jr\rangle$.

Note: each of the r possible function values y occurs with same probability 1/r, so $0 \le x_0 < r$ has been chosen uniformly at random.

If we now measure $|per\rangle$, we'd get a value $x_0 + jr$ for uniformly random j, i.e. random element (x_0^{th}) of a random period (j^{th}) , i.e. random element of \mathbb{Z}_m , so we could get no information about r.

• Step 4. Apply quantum Fourier transform mod M (QFT) to $|per\rangle$. Recall the definition of QFT: $QFT: |x\rangle \to \sum_{y=0}^{M-1} \omega^{xy} |y\rangle$ for all $x \in \mathbb{Z}_M$ where $\omega = e^{2\pi i/M}$ is the Mth root of unity. The existing result is that QFT mod M can be implemented in $O(M^2)$ time.

Then we get

$$QFT|per\rangle = \frac{1}{\sqrt{MA}} \sum_{j=0}^{A-1} \left(\sum_{y=0}^{M-1} \omega^{(x_0+jr)y} |y\rangle \right)$$
$$= \frac{1}{\sqrt{MA}} \sum_{y=0}^{M-1} \omega^{x_0y} \left[\sum_{j=0}^{A-1} \omega^{jry} \right] |y\rangle \ (*)$$

where we group all the terms with the same $|y\rangle$ together. One good thing is that the sum inside the square bracket is a geometric series, with ratio $\alpha = \omega^{ry} = e^{2\pi i r y/M} = (e^{2\pi i/A})^{y}.$

Hence term inside bracket = A if $\alpha = 1$, i.e. $y = kA = k\frac{M}{r}$, k = 0, 1, ..., (r - 1), and equals 0 otherwise when $\alpha \neq 1$. Now

$$QFT|per\rangle = \sqrt{\frac{A}{M}} \sum_{k=0}^{r-1} \omega^{x_0 k \frac{M}{r}} |k \frac{M}{r}\rangle$$

The random shift x_0 now appears only in phase, so measurement probabilities are now independent of $x_0!$

Measuring $QFT|per\rangle$ gives a value c, where $c=k_0\frac{M}{r}$ with $0 \le k_0 \le r-1$ chosen uniformly at random. Thus $\frac{k_0}{r} = \frac{c}{M}$, note that c, M are known, r is unknown (what we want), and k_0 is unknown but uniformly random.

So note that if we are lucky and get a k_0 that is coprime to r then we could just simplify $\frac{c}{M}$ to get r. Obviously we cannot be always lucky every time, but by theorem in number theory, the number of integers < r coprime to rgrows as $O(r/\log\log r)$ for large r, so we know probability of k_0 coprime to r is $O(\frac{1}{\log \log r}).$

Then by some probability calculation we know that O(1/p) trials are enough to achieve $1 - \varepsilon$ probability of success.

So after Step 4, cancel c/M to the lowest terms a/b, giving r as denominator b (if k_0 is coprime to r). Check b value by computing f(0) and f(b), since b=r iff f(0) = f(b).

Repeating $K = O(\log \log r)$ times gives r with any desired probability.

Further insights into utility of QFT here:

Write $R = \{0, r, 2r, ..., (A-1)r\} \subseteq \mathbb{Z}_M$. $|R\rangle = \frac{1}{\sqrt{A}} \sum_{k=0}^{A-1} |kr\rangle$, and $|per\rangle =$ $|x_0+R\rangle=\frac{1}{\sqrt{A}}\sum_{k=0}^{A-1}|x_0+br\rangle$ where x_0 is the random shift that caused problem

For each $x_0 \in \mathbb{Z}_M$, consider mapping $k \to k + x_0$ (shift by x_0) on \mathbb{Z}_M , which is a 1-1 invertible map.

So linear map $U(x_0)$ on \mathcal{H}_M defined by $U(x_0):|k\rangle \to |k+x_0\rangle$ is unitary, and $|x_0 + R\rangle = U(x_0)|R\rangle.$

Since $(\mathbb{Z}_M, +)$ is abelian, $U(x_0)U(x_1) = U(x_0 + x_1) = U(x_1)U(x_0)$ i.e. all $U(x_0)$'s commute as operators on \mathcal{H}_M .

So we have orthonormal basis of common eigenvectors $|\chi_k\rangle_{k\in\mathbb{Z}_M}$, called *shift* invariant states.

 $U(x_0)|\chi_k\rangle = \omega(x_0,k)|\chi_k\rangle$ for all $x_0,k\in\mathbb{Z}_M$ with $|\omega(x_0,k)|=1$. Now consider

 $|R\rangle$ written in $|\chi\rangle$ basis, $|R\rangle = \sum_{k=0}^{M-1} a_k |\chi_k\rangle$ where a_k 's depending on r (not x_0). Then $|per\rangle = U(x_0)|R\rangle = \sum_{k=0}^{M-1} a_k \omega(x_0, k)|\chi_k\rangle$, and measurement in the χ -basis has $prob(k) = |a_k \omega(x_0, k)|^2 = |a_k|^2$ which is independent of x_0 , i.e. giving information about r!

—Lecture 3—

Recall last time we had \mathcal{H}_M : shift operations $U(x_0)|y\rangle = |y+x_0\rangle$ for $x_0, y \in$

 \mathbb{Z}_M , which all permute, so have a common eigenbasis (shift invariant states)

 $\{|\chi_k\rangle\}_{k\in\mathbb{Z}_M},\ U(x_0)|x_k\rangle=\omega(x_0,k)|\chi_k\rangle.$ Measurement of $|x_0+R\rangle=\frac{1}{\sqrt{A}}\sum_{l=0}^{A-1}|x_0+l_r\rangle=U(x_0)|R\rangle$ in $|\chi\rangle$ basis has output distribution independent of x_0 , therefore gives information about r.

Introduce QFT as the unitary mapping that rotates χ -basis to standard basis, i.e. define $QFT|\chi_k\rangle = |k\rangle$. So QFT followed by measurement implements χ -basis

Explicit form of $|\chi_k\rangle$ eigenspaces (!): consider

$$|\chi_k\rangle = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l\rangle$$

Then

$$\begin{split} U(x_0)|\chi_k\rangle &= \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l+x_0\rangle \\ &= \frac{1}{\sqrt{M}} \sum_{\tilde{l}=0}^{M-1} e^{-2\pi i k (\tilde{l}-x_0)/M} |\tilde{l}\rangle \text{ where } \tilde{l} = l+x_0 \\ &= e^{2\pi i k x_0/M} \cdot |\chi_k\rangle \end{split}$$

i.e. these are the shift invariant staets, eigenvalues $\omega(x_0,k)=e^{2\pi i k x_0/M}$.

Matrix of QFT: So

$$[QFT^{-1}]_{lk} = \frac{1}{\sqrt{M}}e^{-2\pi i lk/M}$$

(componets of $|\chi_k\rangle = QFT^{-1}|k\rangle$ as k^{th} column). So

$$[QFT]_{kl} = \frac{1}{\sqrt{M}}e^{2\pi i lk/M}$$

as expected.

2 The hidden subgroup problem (HSP)

Let G be a finite group of size |G|. Given (oracle for) function $f: G \to X$ (X is some set), and promise that there is a subgroup K < G such that f is constant on (left) cosets of K in G, and f is distinct on distinct cosets.

The problem: determine the *hidden subgroup* K (e.g. output a set of generators, or sample uniformly from K).

We want to solve in time $O(poly(\log |G|))$ (an efficient algorithm) with any constant probability $1 - \varepsilon$.

Examples of problems that can be cast(?) as HSPs:

(i) periodicity: $f: \mathbb{Z}_M \to X$, periodic with period r. Let $G = (\mathbb{Z}_m, +)$, the hidden subgroup is $K = \{0, r, 2r, ...\} < G$, cosets $x_0 + K = \{x_0, x_0 + r, x_0 + 2r, ...\}$. The period r is generator of K.

(ii) discrete logarithm: for prime p, $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$ with multiplication mod p. $g \in \mathbb{Z}_p^*$ is a generator (or primitive root mod p). If powers generate all of \mathbb{Z}_p^* , $\mathbb{Z}_p^* = \{g^0 = 1, g^1, ..., g^{p-2}\}$, then also $g^{p-1} \equiv 1 \pmod{p}$ (easy number theory). Fact: the generator always exists if p is prime. So any $x \in \mathbb{Z}_p^*$ can be written $x = g^y$ for some $y \in \mathbb{Z}_{p-1}$, write $y = \log_q x$ called the discrete log of x to base g.

Discrete log problem: given a generator g and $x \in \mathbb{Z}_p^*$, compute $y = \log_g x$ (classically hard).

To express as HSP, consider $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$: $f(a,b) = g^a x^{-b} \mod p = g^{a-yb} \mod p$.

Then check: $f(a_1, b_1) = f(a_2, b_2)$ iff $(a_2, b_2) = (a_1, b_1) + \lambda(y, 1)$ where $\lambda \in \mathbb{Z}_{p-1}$.

So if $G = \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$, $K = \{\lambda(y,1) : \lambda \in \mathbb{Z}_{p-1}\} < G$. Then f is constant and distinct on the cosets of K in G, and generator (y,1) gives $y = \log_a x$.

(iii) graph problems (G non-abelian now): consider undirected graph $A = \{V, E\}$, |V| = n, with at most one edge between any two vertices. Label vertices by $[n] = \{1, 2, ..., n\}$.

Introduce the permutation group \mathcal{P}_n of [n]. Define Aut(A) to be the group of automorphisms of A, which is a subgroup of \mathcal{P}_n , containing exactly the permutations $\pi \in \mathcal{P}_n$ such that for all $i, j \in [n]$, $(i, j) \in E \iff (\pi(i), \pi(j)) \in E$, i.e. the labelled graph $\pi(A)$ obtained by permuting labels of A by π is the same labelled graph as A.

Associated HSP: Take $G = \mathcal{P}_n$. Let X be set of all labelled graphs on n vertices. Given A, consider $f_A : \mathcal{P}_n \to X$ by $f_A(\pi) = \pi(A)$, A with labels permuted by π . The associated hiiden subroup is Aut(A) = K.

Application: if we can sample uniformly from this K, then we can solve graph isomorphism problem (GI): two labelled graphs A, B are isomorphic if there is 1-1 map $\pi: [n] \to [n]$ such that for all $i, j \in [n], i, j$ is an edge in A iff $\pi(i), \pi(j)$ is an edge in B, i.e. A and B are the same graph but just labelled differently.

[—]Lecture 4—

Let's come back to the graph isomorphism problem.

Problem: given A, B, decide if $A \cong B$ or not. This can be expressed as a non-abelian HSP (on example sheet), no known classical polynomial time algorithm. However it is in NP, but it is not believed to be NP-complete.

Recent result (2017): a quasi-poly time classical algorithm (L.Babai).

Quantum algorithm for finite abelian HSP: Write group (G, +) additively.

Construction of shift invariant states and FT for G:

Let's introduce some representation theory for abelian group G. Consider mapping $\chi: G \to \mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \cdot)$ satisfying $\chi(g_1 + g_2) = \chi(g_1)\chi(g_2)$, i.e. χ is a group homomorphism. Such χ 's are called *irreducible* representations of G. We have the following properties (without proof), which we'll call Theorem A later when we refer to it:

(i) any value $\chi(g)$ is a $|G|^{th}$ root of unity (so $\chi: G \to S^1 =$ unit circle in \mathbb{C});

(ii) (Schur's lemma, orthogonality): If χ_i and χ_j are representations, then $\sum_{g \in G} \chi_i(g) \bar{\chi}_j(g) = \delta_{ij} |G|$;

(iii) there are always exactly |G| different representations χ (well, this is a special case of general representation theory).

By (iii), we can label χ 's as χ_g for $g \in G$. For example, $\chi(g) = 1$ for all $g \in G$ is always an irreducible representation (the trivial representation), labelled χ_0 ; Then by orthogonality (ii) for any $\chi \neq \chi_0$ gives $\sum_{g \in G} \chi(g) = 0$.

Shift invariant states: in space $\mathcal{H}_{|G|}$ with basis $\{|g\rangle\}_{g\in G}$, introduce *shift operators* U(k) for $k\in G$ defined by $U(k):|g\rangle\to|g+k\rangle$. Clearly these all commute, so there is simultaneous eigenbasis:

For each χ_k , $k \in G$, consider state $|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \bar{\chi}_k(g) |g\rangle$. Then theorem A(ii) implies these form orthonormal basis, and $U(g)|\chi_k\rangle = \chi_k(g)|\chi_k\rangle$.

Proof.

$$U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{h \in G} \chi_k (h)|h + g\rangle$$

$$\stackrel{h' = h + g}{=} \frac{1}{\sqrt{|G|}} \sum_{h' \in G} \chi_k (h^{\bar{i}} - g)|h'\rangle$$

This implies that

$$\chi_k * -g) = (\chi_k(g))^{-1} = \chi_k(g),$$

$$\chi_k(h^{-1} - g) = \chi_k(h')\chi_k(-g) = \chi_k(h')\chi_k(g)$$

So

$$U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} = \sum_{h' \in G} \chi_k(g)\bar{\chi}_k(h')|h'\rangle = \chi_k(g)|\chi_k\rangle$$

So $|\chi_k\rangle$'s are common eigenspaces, called *shift-invariant states*. Introduce (define) Fourier transform QFT for group G as the unitary that

 $\begin{array}{l} QFT|\chi_g\rangle=|g\rangle \text{ for all } g\in G.\\ \text{In } |g\rangle-\text{basis matrices, } k^{th} \text{ column of } (QFT^{-1})=\text{components of } |\chi_k\rangle, \text{ i.e. } \frac{1}{\sqrt{|G|}}\bar{\chi_k}(g)=[QFT^{-1}]_{gk}.\\ \text{So } [QFT]_{kg}^{\dagger}=\frac{1}{\sqrt{|G|}}\chi_k(g), \text{ and so } QFT|g\rangle=\frac{1}{\sqrt{|G|}}\sum_{k\in G}\chi_k(g)|k\rangle. \end{array}$

Example. $G = \mathbb{Z}_M$. Check $\chi_a(b) = e^{2\pi i a b/M}$, $a, b \in \mathbb{Z}_M$ is a representation. Similarly, for $G = \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}$, $(a_1, ..., a_r) = g_1, (b_1, ..., b_r) = g_2$ where $g_1, g_2 \in G$,

$$\chi_{g_1}(g_2) \stackrel{def}{=} e^{2\pi i \left(\frac{a_1b_1}{M_1} + \dots + \frac{a_rb_r}{M_r}\right)}$$

is a representation of G. And we get

$$QFT_G = QFT_{M_1} \otimes ... \otimes QFT_{M_r}$$

on $\mathcal{H}_{|G|} = \mathcal{H}_{M_1} \otimes ... \otimes \mathcal{H}_{M_r}$.

This is exhaustive, since by classification theorem, every finite abelian group G is isomorphic to a direct product of the form $G \cong \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}$. Furthermore, we can insist that M_i are prime powers $p_i^{s_i}$, where p_i are not necessarily distinct.

Quantum algorithm for finite abelian HSP:

Let $f: G \to X$, hidden subgroup K < G. We have cosets $K = 0 + K, g_2 + K, ..., g_m + K$, where m = |G|/|K|. State space as usual, with basis $\{|g\rangle, |x\rangle\}_{g \in G, x \in X}$.

- make the state $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |0\rangle$;
- Apply oracle U_f , get $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$;

measure second register to see a value $f(g_0)$.

Then first register gives coset state (remember the function is constant on each coset). $|g_0 + K\rangle = \frac{1}{\sqrt{|K|}} \sum_{k \in K} |g_0 + K\rangle = U(g_0)|K\rangle$.

Apply QFT and measure to obtain result $g \in G$.