Technika cyfrowa - Sprawozdanie nr 2

Bartomiej Słupik – Przemysław Węglik – Błażej Nowicki

Jan Chyczyński

19 kwietnia 2022

1 Zadanie 2a

Zadanie polega na zaprojektowaniu i zbudowaniu asynchronicznego przerzutnika RS przy pomocy dwóch bramek NAND.

1.1 Idea

Układ docelowy powinien posiadać wyjścia Q i \overline{Q} , oraz wejścia S i R oraz działać zgodnie z tabelą prawdy przedstawioną poniżej.

Rysunek 1: Schemat ideowy przerzutnika RS

S	R	\overline{Q}	Q_+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	0	1

Tabela 1: Tabela prawdy przerzutnika RS

Zauważmy, że w tabeli nie pojawia się stan S=R=1. Jest to tzw. stan zakazany, zatem zakładamy, że nie zachodzi.

1.2 Rozwiązanie teoretyczne

Szukamy funkcji logicznej określającej stan kolejnej iteracji Q_+ w zależności od stanu poprzedniego:

$$Q_{+} = Q_{+}(S, R, Q) \tag{1}$$

W celu znalezienia tej funkcji posłużono się tabelą Karnough:

Rysunek 2: Tabela Karnough zastosowana w celu znalezienia funkcji logicznej przerzutnika RS

Następnie przekształcono funkcję $Q_+,$ aby zapisać ją przy pomocy funkcji NAND:

Rysunek 3: Przekształcenia wzoru funkcji logicznj do postaci złożonej z funkcji NAND

Na podstawie wzoru funkcji sporządzono schemat układu, który został przedstawiony na poniższym rysunku:

Rysunek 4: Schemat przerzutnika RS. Wejścia \overline{S} i \overline{R} są aktywne w stanie niskim.

1.3 Testy w programie Multisim

Aby przetestować zaprojektowany układ, zbudowano następujący układ testowy w programie Multisim, który porównuje działanie układu z rzeczywistym przerzutnikiem RS:

Rysunek 5: Schemat układu testowego.

Generator słów bitowych ustawiono na następującą sekwencję, która testuje przejścia między wszystkimi możliwymi stanami:

Rysunek 6: Sekwencja słów bitowych na wejściu układu testowego.

Na analizatorze stanów logicznych zaobserwowano następujące dane:

Rysunek 7: Sekwencja słów bitowych na wejściu układu testowego.

Ciągły stan wysoki na wyjściach bramek XNOR sprawdzających równoważność układów dowodzi poprawności działania przerzutnika.

1.4 Wnioski

- 1. Przerzutnik RS jest prostym ukłądem, który sprawdza się, gdy mamy pewność, że układ sterujący nim nie poda na wejściu stanu zabronionego S=R=1. Jeśli przerzutnikiem steruje wprost użytkownik, lepiej zastosować przerzutnik JK, który jest odporny na niekontrolowane zachowanie.
- 2. Przerzutnik RS można zastosować do budowy rejestrów przesuwnych.
- 3. Przerzutnik RS można zastosować w celu uniknięcia "efektu skakania" przycisków i przełączników mechanicznych.
- 4. Przerzutnik RS znajduje zastosowanie w układach czasowych, m. in. timerze NE555