

OVERVIEW

- Background: exposed to different sounds every day
- Goal: to classify sounds automatically
- Challenge: compared to image, feature extraction
 for sound is not quite straightforward

OUR PROCESS FOLLOWS:

Data Exploration Model Training

Feature Extraction

Results Comparison

Data

- 1. **Source:** Urban Sound Dataset
- 2. Size: 1302 labeled sound recordings
- 3. Format: each recording is a way file
- 4. **Content:** 10 classes of sounds (air_conditioner, car_horn, children_playing, dog_bark, drilling, enginge_idling, gun_shot, jackhammer, siren, and street_music)
- 5. Usage: 30% of the data is regarded as test data

Waveplot

Feature Extraction

Tool: Librosa library in Python

Methods:1

- melspectro gram: Compute a Mel-scaled power
- mfcc: Mel-frequency cepstral coefficients
- chorma-stft: chromagram from a waveform/power spectrogram
- spectral_contrast: Compute spectral contrast, using method
- tonnetz: Computes the tonal centroid features (tonnetz)

Output: Matrix of 1102 rows, 193 columns

Accuracy Rate:

Accuracy for Each Class:

Length of Training Time:

Model	Accuracy Rate (%)	Training Time(s)
GBM	68.28	1200
LR	60.42	3.96
RF	66.47	37.09
XGB	74.61	13
SVM(linear)	50	1.62
SVM(rbf)	26	0.43
SVM(poly)	52	1

improvements

- Use a larger dataset on the official website which contains more than 8000 audio records with these 10 different classes. Intuitively, more data available, more accurate for model performs.
- Set up a more complex CNN with at least 10 layers, and with some other techniques, such as adding zero-padding or dropout layer to classify those audios.
- Try to use different combinations within those five kinds of features we extracted.
 We have assumed that perhaps some kinds of the features are much more
 outstanding than others. So why not try to ignore those "unuseful" features, at some
 points, reduce dimensions, and train the model on the subset of the features. The
 result could be exciting, or not.
- Try to extract other kinds of features.

THANKS

Any questions?

You can find our projects at https://github.com/TZstatsADS/fall2017-project5-grp4