

WHY DATA SCIENCE?

Data Science is the art and science of knowledge extraction from data. Given the Data,

- 1. What does it mean/imply to have these observations?
- 2. What are the Patterns and anomalies hidden in the data.
- 3. What stories does it tell? The ecosystem behind the data.
- 4. What should we expect in the future from the data.

DATA SET

- 1. Attacks Data.
- 2. Alliance Chat.
- 3. User Data.
- 4. Date: 2013/10/25 to 2013/12/18

AGENDA

- 1. Measuring User Performance
- 2. Classification of Users as Spenders and Non Spenders.
- 3. Relationships between User Expenditure Vs Performance & Social Interaction.
- 4. Text Processing of Alliance Chats.
- 5. User Choices of Alliances, Knights and Geo Politics.
- 6. Location Vs User Performance.
- 7. IDEAS

PURPOSE:

- Gauge User proficiency and Alliance proficiency.
- Help the poor performers. (Boosts, Training, Easy Mode)
- Challenge the Strong ones. (Medals, Challenging Rounds, Tough Modes).
- Establish the Leaderboard for Users/Alliances/Knights.

PROCEDURE: User Performance is computed for each match.

It is then averaged across matches. It is defined by the following scores.

- Defense Score
- Attack Score
- Knight Attack Score
- Knight Defense Score

- Winning Count
- Losing Count
- Draw Count

 $User\ Performance = Wincount - LostCount + 0.5 \times DrawCount + DefenceScore + AttackScore + KnightAttackScore + KnightDefenceScore$

MIGHT SCORE:

 $Defender SOMight = \sum_{i=1}^{Army Size}$

Might of the Defense Troop $\times \#$ of members

Army Size

Defender S0MightLost =

Might of the Defense Troop died × # of members died

LOOT SCORE:

 $LOOTSCORE = LOOTGOLD \times 10 + LOOTFOOD \times 5 + LOOTWOOD \times 3 + LOOTORE \times 2 + LOOTSTONE$

DEFENSE SCORE: It is a comprehensive score measuring User's defending capabilities. It is defined by the following:

- Ratio Of Wall strength to Rounds fought (+).
- SOMight of Defending User (+).
- SOMightLost by Defending User (-15%).
- S1MightLost of Attacking Enemy (+).
- S1Boosts taken by Attacking Enemy (+10%).

- SOBoost taken by Defending User (-1%).
- Enemy's Combat level (+ 10%).
- Defending User's Combat level (+).
- Enemy's Loot Score(-15%).

ATTACK SCORE: It is a comprehensive score measuring User's attacking capabilities. It is defined by the following:

- Ratio Of Wall strength to Rounds fought (-).
- S1Might of Attacking User (+).
- S1MightLost by Attacking User (-15%).
- SOMightLost of Defending Enemy (+).
- SOBoosts taken by Defending Enemy (+10%).

- S1Boost taken by Attacking User (-1%).
- Enemy's Combat level (+ 10%).
- Defending User's Combat level (+).
- Loot Score(+).
- Experience (+).

$$AttackScore = log \begin{cases} S1Might - \left(\frac{Wall}{Rounds}\right) + LootScore - (S1Boost) \times 0.01 - 0.15 \times (S1MightLost) \\ +0.1 \times (S0Boost + S0CombatLevel) + S0MightLost + S1CombatLevel + XP \end{cases}$$

1. Best Performing Users

Userid	Defense Score	Attack Score	Win Count	Lost Count	Draw Count	User Performance
100218	326.8772	4955.199	17688	151	150	23271.08
6344024	1278.306	12549.81	7518	75	155	21576.12
3765281	3674.813	4366.809	12027	257	1026	21351.62

2. Best Defending Users

Userid	Defense Score	Attack Score	WinCount	LostCount	DrawCount	User Performance
1492912	15060.61	-4192.5	1391	92	1896	14247.11
25609	10325.44	1959.227	1046	335	102	13767.67
9114900	8671.873	0	0	0	4226	12897.87

Stationary Defenders?

<u>PSEUDO WARRIORS</u> They wage wars with an intent of only collecting resources.

Distribution of Total Loot Vs Index of Attacking Users

SUPERVISED LEARNING:

- Training Set: Set of m input data, X (set of Independent variables) and its Output data, Y (Dependent variable).
- Hypothesis/Classifier H: A mapping function between the Input and the Output.
- Learning Algorithm: The Algorithm by which we obtain the hypothesis H to map the input to Output.
- Continuous Output: Regression Problem.
- Discrete Output: Classification Problem.

LINEAR REGRESSION

- The hypothesis is a linear function of input X.
- Training set consists of m pairs of X and Y.
- X, a set of independent variables. $X = \{x_1, x_2, \dots, x_n\}$
- Y, a continuous dependent variable. $Y = \{y\}$
- Hypothesis, $h_{\theta}(x) = \sum_{i=0}^{n} \theta_i x_i = \Theta^T X$
- θ_i 's : weights updated using training set till convergence.
- Cost : squared error between Y and $h_{\theta}(x)$.

Fig 1. Linear Regression Model. We can make an intuitive assessment that increase in *Ad spend* also increases *Sales*. Using the straight line, we may also be able to predict.

LOGISTIC REGRESSION

- For a binary output variable, $Y = \{0,1\}$ we use sigmoid function $g(z) = \frac{1}{1+e^{-z}}$ to smoothly transition between 0 and 1.
- The <u>log likelihood of the outcome</u> Y is modeled as a linear combination of the input X.
- Logistic Hypothesis, $h_{\theta}(x) = \frac{1}{1 + e^{-\Theta^T X}}$
- $p(y=1|X;\theta)=h_{\theta}(x)$;
- $p(y = 0 | X; \theta) = 1 h_{\theta}(x)$
- $\overline{p(y|x;\theta) = (h_{\theta}(x))^{y} * (1 h_{\theta}(x))^{1-y} }$

- Likelihood = $P(Y|X;\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)};\theta)$
- Cost: Log (Likelihood)

DECISION TREES

- Classification tree models recursively partition the data space one variable at a time.
- Choosing the next variable to split the data is based on Information measures entropy for Recursive Partition (rpart) Trees in R.
- They Fit a simple prediction within each of the rectangular partitions.
- Assumption: decision boundaries are parallel to axes.

KABAM Kingdoms of Cam

II. CLASSIFICATION OF USERS (SPENDERS OR NOT)

Support Vector Machines

- They separate the data using a (Hyperplane) with maximum Margin.
- Margin is the closest distance between data points & decision surface.
- The decision surface is specified by a subset of the data, the **Support Vectors**.
- They use Kernels to map the data into higher dimension to make it linearly separable.

Support Vector Machines *kernels*

FEATURES SET

- User Performance: User scores, Match Results, Alliance association, match frequencies.
- Alliance Performance: Alliance Scores, Match results.
- Knight Performance: Knight Scores, Match results, match frequencies.
- User Social: User Sentiments, User subjectivity, chat counts.
- User Delight: Loots, Boosts, Mights, Wall Strengths & XPs.

TRAINING DATA: Feature Set of 4000 Users from total of 5387 User data.

TEST DATA: Feature Set of 1387 User Data.

Number of Features: ~44

FEATURES SET

- User Performance: User scores, Match Results, Alliance association, match frequencies.
- Alliance Performance: Alliance Scores, Match results.
- Knight Performance: Knight Scores, Match results, match frequencies.
- User Social: User Sentiments, User subjectivity, chat counts.
- User Delight: Loots, Boosts, Mights, Wall Strengths & XPs.

TRAINING DATA: Feature Set of 4000 Users from total of 5387 User data.

TEST DATA: Feature Set of 1387 User Data.

Number of Features: ~44

Metrics Of Evaluation:

- Precision: Ratio of correctly classified positives to number of items classified as "positive".
- Recall or True Positive rate: Ratio of correctly classified positives to total number of positives.
- Accuracy: Ratio of correctly classified items(+ve and -ve) to the total number of items.
- Specificity: Ratio of correctly classified negatives to total number of negatives.
- Fall Out or False Positive rate or: Ratio of correctly classified negatives to number of items classified as "negative".
- Mutual Info: Amount of information shared between the test truth & test predictions.
- F1 Score: Weighted average of Precision and Recall.
- Area Under the ROC Curve: Area of region under the curve between Recall and Fall Out.

KABAM

II. CLASSIFICATION OF USERS (SPENDERS OR NOT)

RESULTS

Metric	Formula	Logistic Regression	Recursive Partition	Support Vector Machines
Precision	TP/(TP+FP)	85.94%	85.33%	81.45%
True Positive Rate or Recall	TP/(TP+FN)	77.44%	80.86%	89.06%
Accuracy	TP + TN/(TP + TN + FP + FN)	77.72%	79.09%	80.24%
F1 Score	$\frac{2*Precision*Recall}{Precision+Recall}$	81.015%	83.034%	85.085%
Specificity	TN/(FP+TN)	71.19%	76.03%	65.03%
False Positive Rate or Fall-Out	FP/(FP+TN)	28.80%	23.96%	34.97%

RESULTS

Metric	Formula	Logistic Regression	Recursive Partition	Support Vector Machines
Mutual Information (Test Prediction, Test truth)	$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) p(y)} \right),$	0.1528	0.1619	0.1113
Area Under the Curve	Area under the ROC curve	0.8433	0.7844	0.7347

<u>AIM</u>

To study the Performances and Social Interaction of high spending users in the Game of Kingdom of Camelot.

PURPOSE

- The Gamers who spend money on games are our VIP customers.
- Are they struggling to have a feel-good experience while gaming?
- Do they need more training? more boosts?
- Are they feeling bored being the best and are not challenged enough to be excited?
- By Analyzing the alliance chats, We can get their impressions, ideas, likes and dislikes of our game.
- Do they want to sustain the relationship/business with us?
- Do they find their time and money are worth spent?
- Do they feel excited for our new games /levels/changes/.
- Are they encouraged to spend more and buy more games from us?

Entropy

Entropy is a measure of uncertainty of a random variable. It is a measure of the amount of information required on the average to describe the random variable. p(x) is the probability mass function of X.

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

Relative Entropy

The relative entropy is a non symmetric measure of the distance between two probability distributions. The relative entropy D(p||q) is a measure of the inefficiency of assuming that the distribution is q when the true distribution is p.

$$D(p||q) = \sum_{x \in X} p(x) \log \left(\frac{p(x)}{q(x)}\right)$$

Mutual Information

Consider two random variables X and Y with a joint probability distribution p(x,y) and the marginal probability p(x) and p(y). The Mutual Information I(X,Y) is the <u>relative entropy</u> between the joint probability distribution and the product distribution p(x)p(y).

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Correlation Coefficient (Pearson's r)

It is a measure of the strength and direction of the linear relationship between Random variables (X and Y). The values lies between +1 (positive correlation) and -1 (negative correlation). Value 0 is no linear correlation. \overline{X} is the mean of X_i . \overline{Y} is the mean of Y_i and Y_i , the number of items.

Pearson
$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

2 sample Kolgomorov Smirnoff Test

- It is a nonparametric test that compares the cumulative distributions of two data sets to check if the samples are from same distribution. (Null Hypo: = ,Alternate Hypo: ≠)
- Test Statistic $D = \max_{1 \le i \le N} \left(F(Y_i) \frac{i-1}{N}, \frac{i}{N} F(Y_i) \right)$
- P value: p-value is the probability of obtaining a test statistic result at least as extreme or as close to the one
 that was actually observed, assuming that the null hypothesis is true

Correlation Coefficient 0.11859842

Kolgomorov-Smirnoff Test

P value<2.2e-16

Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 3.72616

RESULT

Weak relationship between Expenditure and Performance of the User

Correlation Coefficient 0.23367334

Kolgomorov-Smirnoff Test

P value<2.2e-16

Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 0.88868

RESULT

Weak relationship between the Expenditure and the Social interaction of the User.

AIM: Text processing of Alliance chats.

PURPOSE:

- Understanding User's messages gives essence of their game play strategies, idea, goals.
- It gives us their impressions on the game, on the alliances, on each other.
- We can see the sentiments of the User, Alliances and understand who likes and is happy about the games and who would is not happy.
- We can classify the Users geographically based on the language of communication.
- We can correlate the actions taken by the User to the communication they had.
- We can understand the Organization of the Alliances and their activities.
- We can recommend happy teams/alliances for an unhappy Users.
- We can understand the subjectivity of their language. This is useful to understand their personality.
 People who are more objective vs people who are more subjective.

LINGO

- Users tend to use short form English words called as Lingo.
- "peopl clse 2 my hart alw get D 1st msg 4 D dy.. gud mornin" which means "People close to my heart always get the first message for the day. Good Morning"
- Words from http://transl8it.com/largest-best-top-text-message-list/

CAPTURING EMOTICONS

- Shorter symbols express more meaning and context.
- The messages are selectively parsed for the emoticons such as :-)
- The Challenge: Lingo and emoticons evolve over time. Symbol "~:\". This means an Elvis

DETECT LANGUAGE

- Use *Chromium compact language detector* from Google package for python.
- Gramar issues- "where too?" "stupid keyboard" "how you been"
- Gibberish "yourrrrrrr greaaaaaaatt"
- Parts of Speech Tagging.
- Using **TextBlob** Package in python.

Number of Alliance Chat Messages vs Languages

SPOKEN LANGUAGES

SPOKEN LANGUAGE

SENTIMENT ANALYSIS

- A basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence, or feature/aspect level.
- Polarity is a real value between +1(positive), 0(neutral) & -1(negative).
- **TextBlob** package in Python.
- Uses a Native Bayes Classifier for Sentiments.

SUBJECTIVITY ANALYSIS

- The linguistic expression of somebody's opinions, sentiments, emotions, evaluations, beliefs, speculations (private states which are personal to themselves).
- The following "I love my food" has a positive subjectivity while. "sunny weather" has zero subjectivity.
- *TextBlob* package in python.

 $User\ delight = abslog(sum\ of\ User\ Sentiment\ *\ sum\ of\ subjectivity\ *\ count\ of\ comments)$ $Abslog\ finds\ -log\ ||num||\ for\ -ve\ numbers;\ Log\ (num+1)\ for\ others.$

1. Happiest Users

UserID	Sentiment	subjectivity	count	Delight
1493831	2508.977	10743.93	29136	11.895
578124	2148.754	7827.686	21083	11.549
3765281	2309.957	6930.6	20577	11.517

2. Happiest Alliances

AllianceID	sum(SI.sentiment)	sum(SI.subjectivity)	count	Delight
21114 2	9831.675	58812.22	169784	13.991
22587 21	10858.63	39995.48	136743	13.773
8647 2	9369.567	39571.57	144412	13.728

 $Feel\ Good\ = Win-Lost+abslog(Sentiment+sum\ of\ subjectivity+count\ of\ comments)$

1. Happiest Users (Feel Good)

User id	Subjectivity	Sentiment	Count	Win Count	Lost Count	FEEL GOOD
100218	202.3972	46.14497	755	17688	151	17540.69
3765281	5627.079	2071.066	21567	12027	257	11775.16
1888783	266.7217	117.4101	981	8069	202	7870.94

2. Disappointed Users (Feel Good)

User id	Subjectivity	Sentiment	Count	Win Count	Lost Count	FEEL GOOD
8648066	144.0611	42.18857	1211	19	574	-551.16
2773733	27.03306	8.68584	194	378	760	-378.94
1098040	401.2151	88.81813	1495	40	324	-280.00

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

• AIM: We want to understand the How users make their choices in the Alliances, Knights and Organized politics.

PURPOSE:

- Understanding User's choices on Alliances, gives us their user behavior on what they prefer to do.
- It helps understand their strategies and customization to prepare for the war.
- We can get to know them better and helps us understand their decision criteria.
- We can take advantage using their behavior and apply predictive analytics.
- Observing the level of partnerships between the Alliances helps us to create partner alert system which could alert trouble /victory for the partner alliances.
- We can recommend Knights for the Troops based on the Knights past performance.
- We can advise the Alliance to be more cohesive rather than adhesive or vice versa.
- We could recommend new Friends/partners to a common enemy.

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

Number of Alliance associated	None	One	Two	>2
Percentage of Users	66%	28%	4%	0.5%

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

Number of Alliances supported	One	Two	Three	> Three
Percentage of Knights	69.44%	21%	6%	3.56%

Kingdoms of Camelot

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

Number of Knights Equipped	One	Two	Three	> Three
Percentage of Alliances	69.44%	21%	6%	3.56%

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

INSIGHTS ON RIVALRY:

- No fights amongst the members of the same alliance.
- Users and Alliances have their rival and archenemies with whom they keep fighting again and again.

No	S0UserID	S1UserID	Match Count
1	25112	2486380	19256
2	21536	6745138	2691
3	9114900	1508200	2114

No	SOAllianceID	S1AllianceID	Match count
1	336 1	20118 1	20230
2	8647 2	21114 2	5103
3	336 1	516 1	4558

Match Marathons: Relentless fighting on a single day till their moms shout at them.

No	SOUserid	S1UserID	Date	Match Count
1	25112	2486380	10/26/2013	19152
2	7452322	1458478	11/1/2013	785
3	5573073	7384945	11/15/2013	658

No	SOAlliance	S1Alliance	Date	Match Count
1	336 1	20118 1	10/26/2013	19160
2	19527 21	15805 21	12/15/2013	752
3	22211 21	23227 21	11/15/2013	702

We should celebrate the valor of these fighters with Rival leaderboards and trophies.

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

OBSERVATIONS ON KNIGHTS:

Presence or Absence of Knights:

Is a knight necessary?

Categories	Match Side	Matches with No Knights	Matches with Knights	% of Matches with No Knights	% of Matches with Knights
Total	Defending	2929282	123014	96%	4%
Matches	Attacking	21	3052275	99.99%	0.00%

Internal or External Knights:

• how the users prefer a Knight from the same alliance to a Knight from a different alliance.

Categories	Match Side	Matches with Same Alliance Knight	Matches with External Alliance Knight	% of Matches with Internal Knight	% of Matches with External Knight
Total Matches	Defending	119341	3673	97.01%	2.98%
Total Matches	Attacking	3047421	4854	99.84%	0.15%

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

GEO POLITICS ON ALLIANCES:

Sharing of Knights: Friendship. The more the knights shared the lesser the distance between them.

For alliance A and alliance B,

Distance(A,B)=
$$\frac{1}{1+Number\ of\ knights\ shared\ between\ A\ \&\ B}$$

Categories	Match Side	Clustering Method	Number of clusters
Allianas	Defending	K means	12
Alliance	Attacking	K means	9

AIM:

To study the impact of the Location in the performance of Users.

PURPOSE:

- The Location in the Game of Kingdom of Camelot is chosen by the gamers to build their city
- Location choice is strategically made. It needs to be in a suitable position favorable for both attack and defense.
- It should have the right set of neighbors friends or enemies.
- We can perhaps suggest a suitable location for future gamers via recommendation.

Metrics Used Location & Performance Scores

- 1. Correlation Coefficient .
- 2. Mutual Information.
- 3. Kolmogorov Test of similarity in the distributions.

V. LOCATION VS PERFORMANCE —WIN COUNTS

Average	Stddev	Max	Min
7.773	72.788	6747	0

Correlation Coefficient *-0.00053*

Kolgomorov-Smirnoff Test
D=0.9985
P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 0.959954

RESULT

Weak relationship between Win count and Location of the User

V. LOCATION VS PERFORMANCE-LOSE COUNTS

Average	Stddev	Max	Min
7.773	14.449	1588	0

Correlation Coefficient 0.00884

Kolgomorov-Smirnoff Test

D=1

P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 2.934839

RESULT

Weak relationship between Lose count and Location of the User

Average	Stddev	Max	Min
19.922	92.928	5537	0

Correlation Coefficient 0. 01043

Kolgomorov-Smirnoff Test
D=0.9977
P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 3.16612

RESULT

Weak relationship between Draw Count and Location of the User

Average	Stddev	Max	Min
20.658	42.603	5912.72	-2.137

Correlation Coefficient 0.012533

Kolgomorov-Smirnoff Test
D=0.9999
P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 3. 686872

RESULT

Weak relationship between Defense Score and Location of the User

Average	Stddev	Max	Min
7.859	84.032	8133.341	-804.015

Correlation Coefficient 0.00131

Kolgomorov-Smirnoff Test
D=0.9982
P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 0.937399

RESULT

Weak relationship between Losecount and Location of the User

Average	Stddev	Max	Min
30.066	139.732	15145.08	0.693

Correlation Coefficient 0.00884

Kolgomorov-Smirnoff Test

D=1

P value<2.2e-16
Null hypo: both are from same distribution. Alternate hypo cant be rejected.

Mutual Information 2.934839

RESULT

Weak relationship between Losecount and Location of the User

VII. FUTURE IDEAS

- 1. The Pathway of the warrior. How does the gamer starts from the beginning to become a leader board winner. What are the strength of the opponents he faces, the might he gathers, the loot he collects, the troops he gather, win-lost curve.
- 2. Cluster the Users based on their pathway to becoming a Winner vs Otherwise.
- 3. Establish Winning Secret.
- 4. Relationship between mood and Performance. When Good/Bad warriors fight with Good /Bad Mood.
- 5. Which is best way to spend your might? How to form the best combination of troop for the fight.
- 6. Is might the only winner of war?
- 7. Relationship between Language spoken by the User Vs Performance.
- 8. Predict might results.
- 9. Predict loss of might /resources in a fight even before fighting??
- 10. Predict change of alliances for a User.

VII. FUTURE IDEAS

- 1. Summarize the communications in the messages to understand the crux. Build word cloud to see the top most discussed words/features of the game/qualities of the game/impression (both positive and negative) of the User on the Game.
- 2. Positive impact of external competitions/new special rounds/challenge rounds on the User's Performance.
- 3. Establish Performance improvement methodologies. Evaluate their Effectiveness.
- 4. How does the happiness/Delight of the Users varies with expenditure of money, Improvement of Scores; Winning matches.
- 5. Introduce more rivalries between string fighters .. Like You have a new challenge!

V.USERS CHOICES ON ALLIANCE, KNIGHTS AND GEO POLITICS

III. USER EXPENDITURE VS PERFORMANCE & INTERACTION

<u>AIM</u>

WHAT NEXT?

- 1. Does expenditure improve performance?
- 2. what are potential matches for today?
- 3. More Info on Score computation.?
- 4. Add distribution of Happiness.