Cercetări operaționale 3

Cristian Niculescu

Curs 3 1

Algoritmul simplex primal

Fie problema

$$\begin{cases} \inf(c^T x) \\ Ax = b \\ x \ge 0 \end{cases}, \text{ unde } A \in \mathcal{M}_{m,n}(\mathbb{R}), rangA = m < n.$$
 (1)

Reamintim că $P = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$ este domeniul admisibil al problemei (1).

Presupunem $P \neq \emptyset$.

Definiție. Fie B, bază a problemei (1) (adică bază a sistemului Ax = b). B se numește bază primal admisibilă a problemei (1) $\iff B^{-1}b \ge 0$.

Observație. Fie B, bază a problemei (1). B este bază primal admisibilă a problemei (1) \iff soluția de bază asociată lui $B, \left\{ \begin{array}{l} x^B = B^{-1}b \\ x^R = 0 \end{array} \right.$, este soluție admisibilă a problemei (1).

Fie $B = (a^{j_1}, a^{j_2}, ..., a^{j_m})$, bază primal admisibilă a problemei (1).

Forma explicită a sistemului Ax = b în raport cu baza B este $x^B = B^{-1}b - B^{-1}Rx^R.$

Notații.
$$\mathcal{B} = \{j_1, j_2, ..., j_m\}, \ \mathcal{R} = \{1, 2, ..., n\} \setminus \mathcal{B}, \ \overline{x}^B = B^{-1}b, \ y_j^B = B^{-1}a^j, j = \overline{1, n}.$$

$$\implies x^B = \overline{x}^B - \sum_{i \in \mathcal{R}} y_j^B x_j \implies x_i = \overline{x}_i^B - \sum_{i \in \mathcal{R}} y_{ij}^B x_j, i \in \mathcal{B}.$$

Notații. $c_B = (c_{j_1}, c_{j_2}, ..., c_{j_m})^T, \ c_R = (c_j)_{j \in \mathcal{R}}$.

Fie
$$x \in P$$
.
$$c^{T}x = c_{B}^{T}x^{B} + c_{R}^{T}x^{R} = c_{B}^{T}\left(\overline{x}^{B} - \sum_{j \in \mathcal{R}} y_{j}^{B}x_{j}\right) + \sum_{j \in \mathcal{R}} c_{j}x_{j} = c_{B}^{T}\overline{x}^{B} - \sum_{j \in \mathcal{R}} \left(c_{B}^{T}y_{j}^{B} - c_{j}\right)x_{j}.$$

$$\mathbf{Notații.} \ \overline{z}^{B} = c_{B}^{T}\overline{x}^{B}, \ z_{j}^{B} = c_{B}^{T}y_{j}^{B}, j = \overline{1, n}.$$

$$\Longrightarrow c^{T}x = \overline{z}^{B} - \sum_{j \in \mathcal{R}} \left(z_{j}^{B} - c_{j}\right)x_{j}.$$

$$\Rightarrow c^T x = \overline{z}^B - \sum_{j \in \mathcal{R}} \left(z_j^B - c_j \right) x_j.$$

 \overline{z}^B este valoarea funcției obiectiv pentru soluția de bază asociată bazei B. $z = c^T x$ este valoarea funcției obiectiv pentru $x \in P$.

Testul de optim (TO). Fie B, bază primal admisibilă a problemei (1). Dacă $z_i^B - c_j \leq 0, \forall j \in \mathcal{R}$, atunci soluția de bază asociată lui B este soluție optimă a problemei (1).

Demonstraţie.
$$\forall x \in P \implies x_j \ge 0, \forall j \in \mathcal{R}$$
 $z_j^B - c_j \le 0, \forall j \in \mathcal{R}$ \Rightarrow

Demonstrație. $\begin{cases} \forall x \in P \implies x_j \geq 0, \forall j \in \mathcal{R} \\ z_j^B - c_j \leq 0, \forall j \in \mathcal{R} \end{cases} \implies c^T x = \overline{z}^B - \sum_{j \in \mathcal{R}} \left(z_j^B - c_j \right) x_j \geq \overline{z}^B, \forall x \in P \stackrel{\text{Observație}}{\Longrightarrow} \text{ soluția de bază asociată}$

lui B este soluție optimă a problemei (1).

Testul de optim infinit (TOI). Fie B, bază primal admisibilă a problemei (1). Dacă $\exists k \in \mathcal{R}$ astfel încât $z_k^B - c_k > 0$ și $y_k^B \leq 0$, atunci problema (1) are optim infinit.

Demonstrație. Fie $\alpha \in \mathbb{R}_+$ și $x(\alpha) \in \mathbb{R}^n$ definit astfel:

$$x_i(\alpha) = \begin{cases} \overline{x}_i^B - \alpha y_{ik}^B, i \in \mathcal{B} \\ \alpha, i = k \\ 0, i \in \mathcal{R} \setminus \{k\} \end{cases}$$

Arătăm că $\forall \alpha \geq 0, x(\alpha)$ este soluție a sistemului Ax = b, verificând forma explicită $x_i^B = \overline{x}_i^B - \sum_{j \in \mathcal{R}} y_{ij}^B x_j, i \in \mathcal{B}$:

$$\overline{x}_i^B - \sum_{j \in \mathcal{R}} y_{ij}^B x_j(\alpha) = \overline{x}_i^B - y_{ik}^B \alpha = x_i(\alpha), \forall i \in \mathcal{B}.$$

Arătăm că
$$x_i(\alpha) \ge 0, \forall i \in \{1, 2, ..., n\}$$
: $\forall i \in \mathcal{B}, x_i(\alpha) = \underbrace{\overline{x}_i^B}_{\ge 0} - \underbrace{\alpha}_{\ge 0} \underbrace{y_{ik}^B}_{\le 0} \ge 0;$

 $x_k(\alpha) = \alpha \ge 0;$

 $\forall i \in \mathcal{R} \setminus \{k\}, x_i(\alpha) = 0 \ge 0.$

$$\begin{array}{l}
(A \in \mathcal{K} \setminus \{h\}, x_i(\alpha) = 0 \ge 0. \\
\implies x(\alpha) \in P, \forall \alpha \ge 0 \\
c^T x(\alpha) = \overline{z}^B - \sum_{j \in \mathcal{R}} (z_j^B - c_j) x_j(\alpha) = \overline{z}^B - \underbrace{(z_k^B - c_k)}_{>0} \alpha \implies \lim_{\alpha \to \infty} c^T x(\alpha) = -\infty
\end{array}$$

 $\inf_{x \in P} c^T x = -\infty \implies \text{problema (1) are optim infinit.}$

Lema substituţiei (LS). Fie $A = (a^1, a^2, ..., a^n) \in \mathcal{M}_n(\mathbb{R})$ inversabilă, $b \in \mathbb{R}^n \setminus \{0\}, \ \widetilde{A} = (a^1, ..., a^{r-1}, b, a^{r+1}, ..., a^n), \ c = A^{-1}b.$

1) \widetilde{A} este inversabilă $\iff c_r \neq 0$.

2) Dacă $c_r \neq 0$, atunci $\widetilde{A}^{-1} = E_r(\eta)A^{-1}$, unde $E_r(\eta)$ se obține din I_n înlocuind coloana e^r cu $\eta = \left(-\frac{c_1}{c_r}, ..., -\frac{c_{r-1}}{c_r}, \frac{1}{c_r}, -\frac{c_{r+1}}{c_r}, ..., -\frac{c_n}{c_r}\right)^T$.

Demonstrație. $c = A^{-1}b \implies b = Ac \implies b = \sum_{i=1}^{n} a^{j}c_{j}$.

1) (
$$\Longrightarrow$$
) Reducere la absurd. Presupunem $c_r = 0 \Longrightarrow b = \sum_{\substack{j=1 \ j \neq r}}^n a^j c_j \Longrightarrow$

o coloană a lui A este combinație liniară de celelalte $\implies A$ neinversabilă, contradicție.

 (\Leftarrow) Reducere la absurd. Presupunem \tilde{A} neinversabilă

$$\Rightarrow \exists \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R} \text{ nu toate } 0 \text{ astfel încât } \sum_{\substack{j=1\\j\neq r}}^n a^j \alpha_j + \alpha_r b = 0.$$

Dacă $\alpha_r = 0$, cum $a^1, ..., a^n$ sunt liniar independente $\implies \alpha_j = 0, \forall j = \overline{1, n}$, contradicție. Deci $\alpha_r \neq 0$.

$$\hat{\text{Inlocuim }} b \implies \sum_{\substack{j=1\\j\neq r}}^{n} a^{j} \alpha_{j} + \alpha_{r} \sum_{j=1}^{n} a^{j} c_{j} = 0 \implies \sum_{\substack{j=1\\j\neq r}}^{n} (\alpha_{j} + \alpha_{r} c_{j}) a^{j} + \alpha_{r} c_{r} a^{r} = 0.$$

$$a^1, ..., a^n$$
 sunt liniar independente $\implies \alpha_r c_r = 0 \stackrel{\alpha_r \neq 0}{\Longrightarrow} c_r = 0$, contradicție.
2) $b = \sum_{\substack{j=1 \ j \neq r}}^n a^j c_j + a^r c_r, c_r \neq 0 \implies a^r = \frac{1}{c_r} b + \sum_{\substack{j=1 \ j \neq r}}^n \left(-\frac{c_j}{c_r} \right) a^j \implies a^r = \widetilde{A} \eta.$

 $\forall j \in \{1,2,...,n\} \setminus \{r\}, a^j = \widetilde{A}e^j,$ unde $e^j \in \mathbb{R}^n$ având componenta j1 și celelalte componente 0.

$$\implies A = \widetilde{A}E_r(\eta) \stackrel{\widetilde{A}^{-1} \cdot |\cdot| \cdot A^{-1}}{\Longrightarrow} \widetilde{A}^{-1} = E_r(\eta)A^{-1}.$$

Teorema de schimbare a bazei (TSB). Fie B, bază primal admisibilă pentru problema (1), $k \in \mathcal{R}$ astfel încât $z_k^B - c_k > 0$ şi $y_k^B \nleq 0$. Fie $r \in \mathcal{B}$ astfel încât $\frac{\overline{x}_r^B}{y_{rk}^B} = \min_{\substack{y_{ik}^B > 0}} \frac{\overline{x}_i^B}{y_{ik}^B}$. Atunci:

a) matricea B obținută din B înlocuind coloana a^r cu a^k este bază primal admisibilă pentru problema (1);

b)
$$\overline{z}^{\widetilde{B}} \leq \overline{z}^{B}$$
.

Demonstrație. a) Din lema substituției,

 \widetilde{B} inversabilă \iff $\left(B^{-1}a^k\right)_r \neq 0 \iff y^B_{rk} \neq 0.$

Dar $y_{rk}^B > 0 \implies \widetilde{B}$ inversabilă $\implies \widetilde{B}$ bază a problemei (1).

Arătăm că baza \widetilde{B} este primal admisibilă pentru problema (1):

Fie $\alpha \in \mathbb{R}_+$ şi $x(\alpha) \in \mathbb{R}^n$ definit astfel:

$$x_i(\alpha) = \begin{cases} \overline{x}_i^B - \alpha y_{ik}^B, i \in \mathcal{B} \\ \alpha, i = k \\ 0, i \in \mathcal{R} \setminus \{k\} \end{cases}$$

În demonstrația testului de optim infinit am arătat că $Ax(\alpha) = b, \forall \alpha \in \mathbb{R}_+.$ Fie $\alpha_0 = \frac{\overline{x}_r^B}{y_{rk}^B}$.

Arătăm că $x(\alpha) \in P, \forall \alpha \in [0, \alpha_0]$:

Este suficient de demonstrat că $x(\alpha) > 0, \forall \alpha \in [0, \alpha_0].$

Dacă
$$y_{ik}^B \le 0$$
, atunci $x_i(\alpha) = \underbrace{\overline{x}_i^B}_{>0} - \underbrace{\alpha}_{\ge 0} \underbrace{y_{ik}^B}_{<0} \ge 0$.

Dacă $y_{ik}^B > 0$, atunci

$$x_i(\alpha) \ge 0 \iff \overline{x}_i^B - \alpha y_{ik}^B \ge 0 \iff \alpha \le \frac{\overline{x}_i^B}{y_{ik}^B}.$$

Data
$$y_{ik} > 0$$
, attner $x_i(\alpha) \ge 0 \iff \overline{x}_i^B - \alpha y_{ik}^B \ge 0 \iff \alpha \le \frac{\overline{x}_i^B}{y_{ik}^B}$.

Dar $\alpha \in [0, \alpha_0]$ şi $\alpha_0 = \min_{\substack{y_{ik}^B > 0}} \frac{\overline{x}_i^B}{y_{ik}^B} \implies \alpha \le \frac{\overline{x}_i^B}{y_{ik}^B} \implies x_i(\alpha) \ge 0$.

$$x_k(\alpha) = \alpha \ge 0.$$

$$\forall i \in \mathcal{R} \setminus \{k\}, x_i(\alpha) = 0 \ge 0.$$

Deci
$$x(\alpha) \in P, \forall \alpha \in [0, \alpha_0] \implies x(\alpha_0) \in P$$

Deci $x(\alpha) \in P, \forall \alpha \in [0, \alpha_0] \implies x(\alpha_0) \in P.$ $x_r(\alpha_0) = \overline{x}_r^B - \alpha_0 y_{rk}^B = 0 \implies x_i(\alpha_0) = 0, \forall i \in (\mathcal{R} \cup \{r\}) \setminus \{k\} \implies$ componentele nenule ale lui $x(\alpha_0)$ corespund coloanelor lui $\widetilde{B} \implies x(\alpha_0)$ este soluția de bază asociată lui $\widetilde{B} \stackrel{x(\alpha_0) \in P}{\Longrightarrow} \widetilde{B}$ este bază primal admisibilă pentru problema (1).

b)
$$\overline{z}^{\widetilde{B}} = \overline{z}^B - \sum_{j \in \mathcal{R}} (z_j^B - c_j) x_j(\alpha_0) = \overline{z}^B - \underbrace{(z_k^B - c_k)}_{\geq 0} \underbrace{\alpha_0}_{\geq 0} \leq \overline{z}^B.$$

Comentariu. \widetilde{B} este cel puțin la fel de bună ca B din punctul de vedere al valorii funcției obiectiv.

Algoritmul simplex

Pasul inițial 0. Se determină o bază primal admisibilă B, se calculează $\overline{x}^B = B^{-1}b, \ \overline{z}^B = c_B^T \overline{x}^B, \ y_j^B = B^{-1}a^j, j = \overline{1,n}, \ z_j^B - c_j = c_B^T y_j^B - c_j, j = \overline{1,n}$ și se trece la pasul 1.

Pasul 1 (testul de optim). Dacă $z_j^B - c_j \le 0, \forall j \in \mathcal{R}$, atunci $x^B = \overline{x}^B, \ x^R = 0$ este soluție optimă și \overline{z}^B este valoarea optimă, STOP. Altfel se trece la pasul 2.

Pasul 2 (testul de optim infinit). Dacă $\exists k \in \mathcal{R}$ astfel încât $z_k^B - c_k > 0$ şi $y_k^B \leq 0$, atunci problema are optim infinit, STOP. Altfel se trece la pasul

Pasul 3 (schimbarea bazei). Se alege $k \in \mathcal{R}$ astfel încât $z_k^B - c_k > 0$. Se alege $r \in \mathcal{B}$ astfel încât $\frac{\overline{x}_r^B}{y_{rk}^B} = \min_{\substack{y_{ik}^B > 0}} \frac{\overline{x}_i^B}{y_{ik}^B}$.

Se consideră baza \widetilde{B} obținută din B înlocuind coloana a^r cu a^k , se calculează $\overline{x}^{\tilde{B}}, \ \overline{z}^{\tilde{B}}, \ y_j^{\tilde{B}}, j = \overline{1, n}, \ z_j^{\tilde{B}} - c_j, j = \overline{1, n}$ şi se trece la pasul 1, înlocuind B cu

Alegerea lui k. Ar trebui ales k astfel încât $\overline{z}^B - \overline{z}^{\tilde{B}}$ să fie cât mai mare. Dacă alegem $j \in \mathcal{R}$ astfel încât $z_j^B - c_j > 0$ și apoi $i_j \in \mathcal{B}$ astfel încât $\frac{\overline{x}_{i_j}^B}{y_{i_jj}^B} = \min_{\substack{y_{i_j}^B > 0 \\ y_{ij}^B}} \frac{\overline{x}_i^B}{y_{ij}^B}, \text{ avem } \overline{z}^B - \overline{z}^{\widetilde{B}} = \left(z_j^B - c_j\right) \frac{\overline{x}_{i_j}^B}{y_{i_jj}^B}, \text{ deci ar trebui să alegem } k \in \mathcal{R}$ astfel încât $\left(z_k^B - c_k\right) \frac{\overline{x}_{i_k}^B}{y_{i_k k}^B} = \max \left\{ \left(z_j^B - c_j\right) \frac{\overline{x}_{i_j}^B}{y_{i_j j}^B} \middle| j \in \mathcal{R}, z_j^B - c_j > 0 \right\}$ și apoi $r = i_k$. Pentru simplitate se renunță la rapoarte \implies

Criteriul de intrare în bază. $k \in \mathcal{R}$ astfel încât

 $z_k^B - c_k = \max \left\{ z_j^B - c_j | j \in \mathcal{R}, z_j^B - c_j > 0 \right\}$ (arată indicele coloanei care intră în bază).

Criteriul de ieşire din bază. $r \in \mathcal{B}$ astfel încât $\frac{\overline{x}_r^B}{y_{rk}^B} = \min_{\substack{y_{ik}^B > 0}} \frac{\overline{x}_i^B}{y_{ik}^B}$ (arată indicele coloanei care iese din bază).

1.2 Formule de schimbare a bazei (FSB)

Fie \widetilde{B} , baza obținută din B înlocuind a^r cu a^k . (\widetilde{B} este bază conform lemei substituției deoarece $y^B_{rk} \neq 0$.)

Fie

$$\widetilde{\mathcal{B}} = (\mathcal{B} \cup \{k\}) \setminus \{r\},\tag{2}$$

$$\widetilde{\mathcal{R}} = (\mathcal{R} \cup \{r\}) \setminus \{k\}. \tag{3}$$

Pentru B:

$$x_i = \overline{x}_i^B - \sum_{j \in \mathcal{R}} y_{ij}^B x_j, \forall i \in \mathcal{B}, \tag{4}$$

$$z = \overline{z}^B - \sum_{j \in \mathcal{R}} \left(z_j^B - c_j \right) x_j. \tag{5}$$

Pentru \widetilde{B} :

$$x_{i} = \overline{x}_{i}^{\widetilde{B}} - \sum_{j \in \widetilde{\mathcal{R}}} y_{ij}^{\widetilde{B}} x_{j}, \forall i \in \widetilde{\mathcal{B}},$$

$$(6)$$

$$z = \overline{z}^{\widetilde{B}} - \sum_{j \in \widetilde{\mathcal{R}}} \left(z_j^{\widetilde{B}} - c_j \right) x_j. \tag{7}$$

Avem:

$$y_j^B = B^{-1}a^j, \forall j \in \overline{1, n}. \tag{8}$$

Dacă $j \in \mathcal{B} \implies a^j$ este coloană a lui $B \implies B^{-1}a^j$ este vector unitar \implies

$$y_{ij}^B = 1, \forall j \in \mathcal{B},\tag{9}$$

$$y_{ii}^B = 0, \forall j \in \mathcal{B}, i \in \mathcal{B} \setminus \{j\}. \tag{10}$$

$$j \in \mathcal{B} \implies z_j^B - c_j = c_B^T y_j^B - c_j = \sum_{i \in \mathcal{B}} c_i y_{ij}^B - c_j \stackrel{(9), (10)}{=} c_j - c_j = 0 \implies$$

$$z_i^B - c_j = 0, \forall j \in \mathcal{B}. \tag{11}$$

$$r \in \mathcal{B} \stackrel{(9)}{\Longrightarrow}$$

$$y_{rr}^B = 1. (12)$$

$$r \in \mathcal{B} \stackrel{(10)}{\Longrightarrow}$$

$$y_{ir}^{B} = 0, \forall i \in \mathcal{B} \setminus \{r\}. \tag{13}$$

$$r \in \mathcal{B} \stackrel{(4)}{\Longrightarrow} x_r = \overline{x}_r^B - \sum_{j \in \mathcal{R}} y_{rj}^B x_j = \overline{x}_r^B - \sum_{j \in \mathcal{R} \setminus \{k\}} y_{rj}^B x_j - y_{rk}^B x_k \stackrel{y_{rk}^B \neq 0}{\Longrightarrow}$$

$$x_k = \frac{\overline{x}_r^B}{y_{rk}^B} - \sum_{j \in \mathcal{R} \setminus \{k\}} \frac{y_{rj}^B}{y_{rk}^B} x_j - \frac{1}{y_{rk}^B} x_r \stackrel{(12)}{=} \frac{\overline{x}_r^B}{y_{rk}^B} - \sum_{j \in \mathcal{R} \setminus \{k\}} \frac{y_{rj}^B}{y_{rk}^B} x_j - \frac{y_{rr}^B}{y_{rk}^B} x_r \stackrel{(3)}{\Longrightarrow}$$

$$x_k = \frac{\overline{x}_r^B}{y_{rk}^B} - \sum_{j \in \widetilde{\mathcal{R}}} \frac{y_{rj}^B}{y_{rk}^B} x_j. \tag{14}$$

$$k \in \widetilde{\mathcal{B}} \stackrel{(6)}{\Longrightarrow} x_k = \overline{x}_k^{\widetilde{B}} - \sum_{j \in \widetilde{\mathcal{R}}} y_{kj}^{\widetilde{B}} x_j \stackrel{(14)}{\Longrightarrow}$$

$$\overline{x}_k^{\widetilde{B}} = \frac{\overline{x}_r^B}{y_{rk}^B},\tag{15}$$

$$y_{kj}^{\widetilde{B}} = \frac{y_{rj}^B}{y_{rk}^B}, \forall j = \overline{1, n}. \tag{16}$$

(15) și (16) sunt formulele de schimbare a bazei corezpunzătoare regulii "linia pivotului se împarte la pivot".

Fie
$$i \in \widetilde{\mathcal{B}} \setminus \{k\} \stackrel{(2)}{\Longrightarrow} i \in \mathcal{B} \setminus \{r\} \stackrel{(4)}{\Longrightarrow}$$

$$x_{i} = \overline{x}_{i}^{B} - \sum_{j \in \mathcal{R} \setminus \{k\}} y_{ij}^{B} x_{j} - y_{ik}^{B} x_{k} \stackrel{(14)}{=} \overline{x}_{i}^{B} - \sum_{j \in \mathcal{R} \setminus \{k\}} y_{ij}^{B} x_{j} - y_{ik}^{B} \left(\frac{\overline{x}_{r}^{B}}{y_{rk}^{B}} - \sum_{j \in \widetilde{\mathcal{R}}} \frac{y_{rj}^{B}}{y_{rk}^{B}} x_{j} \right) \stackrel{(3), (13)}{\Longrightarrow}$$

$$x_{i} = \left(\overline{x}_{i}^{B} - \frac{y_{ik}^{B} \overline{x}_{r}^{B}}{y_{rk}^{B}} \right) - \sum_{j \in \widetilde{\mathcal{R}}} \left(y_{ij}^{B} - \frac{y_{ik}^{B} y_{rj}^{B}}{y_{rk}^{B}} \right) x_{j} \stackrel{(6)}{\Longrightarrow}$$

$$\overline{x}_i^{\widetilde{B}} = \overline{x}_i^B - \frac{\overline{x}_r^B y_{ik}^B}{y_{rk}^B}, \forall i \in \mathcal{B} \setminus \{r\},$$

$$\tag{17}$$

$$y_{ij}^{\widetilde{B}} = y_{ij}^{B} - \frac{y_{ik}^{B} y_{rj}^{B}}{y_{rk}^{B}}, \forall i \in \mathcal{B} \setminus \{r\}, j \in \overline{1, n}.$$

$$(18)$$

$$(5), (14) \implies z = \overline{z}^B - \sum_{j \in \mathcal{R} \setminus \{k\}} \left(z_j^B - c_j \right) x_j - \left(z_k^B - c_k \right) \left(\frac{\overline{x}_r^B}{y_{rk}^B} - \sum_{j \in \widetilde{\mathcal{R}}} \frac{y_{rj}^B}{y_{rk}^B} x_j \right) \stackrel{r \in \mathcal{B}, (11)}{\Longrightarrow}$$

$$z = \left(\overline{z}^B - \frac{\overline{x}_r^B \left(z_k^B - c_k \right)}{y_{rk}^B} \right) - \sum_{j \in \widetilde{\mathcal{R}}} \left(\left(z_j^B - c_j \right) - \frac{y_{rj}^B \left(z_k^B - c_k \right)}{y_{rk}^B} \right) x_j \stackrel{(7)}{\Longrightarrow}$$

$$\overline{z}^{\widetilde{B}} = \overline{z}^B - \frac{\overline{x}_r^B \left(z_k^B - c_k \right)}{y_{nk}^B},\tag{19}$$

$$z_j^{\tilde{B}} - c_j = (z_j^B - c_j) - \frac{y_{rj}^B (z_k^B - c_k)}{y_{rk}^B}, \forall j \in \overline{1, n}.$$
 (20)

(17), (18), (19) și (20) sunt formulele de schimbare a bazei corespunzătoare regulii dreptunghiului.

1.3 Tabelul simplex

Primul tabel:

			c_1		c_{j}		c_n
	VB	VVB	x_1		x_j		x_n
c_B	x^B	\overline{x}^B	y_1^B		y_j^B		y_n^B
	z	\overline{z}^B	$z_1^B - c_1$		$z_j^B - c_j$		$z_n^B - c_n$

[&]quot;VB" este prescurtare de la "variabile de bază".

Coloanele variabilelor de bază sunt vectori unitari cu 1 pe linia variabilei respective și 0 în rest.

$$z_j^B - c_j = 0, \forall j \in \mathcal{B}.$$

 $z_j^B - c_j = 0, \forall j \in \mathcal{B}.$ $\overline{x}^B = B^{-1}b$ (îl ştim de când am verificat că B este primal admisibilă).

$$y_j^B = B^{-1}a_j, \forall j \in \mathcal{R}.$$

$$y_j^B = B^{-1}a_j, \forall j \in \mathcal{R}.$$
 $\overline{z}^B = c_B^T \overline{x}^B \text{ (produs scalar)}.$
 $z_j^B - c_j = c_B^T y_j^B - c_j, \forall j \in \mathcal{R}.$
Tabelul pentru baza B :

VB	VVB		x_j	 x_k	
:	:		•	 •	
x_i	\overline{x}_i^B		y_{ij}^B	 y_{ik}^B	
:	:		:	 :	
x_r	\overline{x}_r^B		y_{rj}^B	 y_{rk}^B	
			•		
:	:	•••	:	 :	•••
z	\overline{z}^B		$z_j^B - c_j$	 $z_k^B - c_k$	

 y_{rk}^B se numeşte pivot.

[&]quot;VVB" este prescurtare de la "valorile variabilelor de bază".

Linia lui x_r se numește linia pivotului.

Coloana lui x_k se numește coloana pivotului.

Pentru baza B, obținută din B înlocuind a^r cu a^k , pe coloana VB, în locul lui x_r apare x_k :

VB	VVB	 x_j	 x_k	
:	:	 :	 :	
x_i	$\overline{x}_i^{\widetilde{B}}$	 $y_{ij}^{\widetilde{B}}$	 0	
:	:	 :	 :	
x_k	$\overline{x}_k^{\widetilde{B}}$	 $y_{kj}^{\widetilde{B}}$	 1	
:	:	 :	 :	
z	$\overline{z}^{\widetilde{B}}$	 $z_i^{\widetilde{B}} - c_j$	 0	

Coloana pivotului devine vector unitar.

Coloanele celorlalte variabile de bază rămân vectori unitari.

Linia pivotului se împarte la pivot.

Pentru celelalte elemente:

Regula dreptunghiului:

Se formează un dreptunghi având în vârfurile unei diagonale valoarea de calculat și pivotul.

noua valoare $\,=\,$ vechea valoare $\,-\,$ produsul elementelor din vârfurile celeilalte diagonale

2 Seminar 3

1) Să se rezolve cu algoritmul simplex primal:

Sa se rezolve cu algorithmu simplex primar.

$$\begin{cases}
& \inf \left(-x_1 - 2x_2\right) \\
-x_1 + x_2 + x_3 = 4 \\
x_1 + x_2 + x_4 = 8
\end{cases}$$

$$x_j \ge 0, j = \overline{1, 4}$$
Rezolvare.
$$A = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} a^3, a^4 \end{pmatrix} = I_2 \text{ (matricea unitate de ordinul 2)} \implies$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

$$B^{-1}b = I_2 \begin{pmatrix} 4 \\ 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \ge 0 \implies B \text{ primal admisibilă.}$$

 $\mathcal{B} = \{3, 4\}; \mathcal{R} = \{1, 2\}.$

Pe coloana VB (variabile de bază) sunt variabilele corespunzătoare coloanelor bazei, în ordinea în care acestea sunt în bază, apoi z.

Coloanele variabilelor de bază (aici x_3 şi x_4) sunt vectori unitari, cu 1 pe linia variabilei respective și 0 în rest.

Pe coloana VVB (valorile variabilelor de bază) sunt:

 $\overline{x}^B = B^{-1}b = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$ (a fost calculat când am verificat că B este primal admisibilă);

$$\overline{z}^B = c_B^T \overline{x}^B = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 8 \end{pmatrix} = 0.$$

Pe coloanele variabilelor secundare sunt:

pe coloana lui x_1 :

$$y_1^B = B^{-1}a^1 = I_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix};$$

$$z_1^B - c_1 = c_B^T y_1^B - c_1 = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} - (-1) = 1;$$
pe coloana lui x_2 :

pe coloana lui x_2 :

$$y_2^B = B^{-1}a^2 = I_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix};$$

$$z_2^B - c_2 = c_B^T y_2^B - c_2 = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - (-2) = 2.$$

Deoarece $B = I_2$, elementele din tabelul simplex, exceptând linia z sunt coeficienții problemei: pe coloana VVB sunt termenii liberi, iar pe coloana lui x_j sunt coeficienții lui $x_j, \forall j \in \mathcal{R}$.

Pentru a calcula mai uşor \overline{z}^B şi $z_i^B - c_i, j \in \mathcal{R}$, la primul tabel simplex se scrie în stânga c_B și deasupra lui x_j , c_j . Se face produsul scalar dintre c_B și vectorul de pe coloana respectivă şi se scade ce este deasupra.

	_		-1	-2]	
c_B	VB	VVB	x_1	$\overset{\downarrow}{x_2}$	x_3	x_4
0	$\leftarrow x_3$	4	-1	1	1	0
0	x_4	8	1	1	0	1
	z	0	1	2	0	0

Testul de optim: $z_j^B - c_j \leq 0, \forall j \in \mathcal{R}$ nu e îndeplinit deoarece, de exemplu $z_1^B - c_1 = 1 \nleq 0.$

Testul de optim infinit: $\exists k \in \mathcal{R} \text{ a. î. } z_k^B - c_k > 0 \text{ şi } y_k^B \leq 0$, nu e îndeplinit deoarece $y_1^B = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \nleq 0 \text{ şi } y_2^B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \nleq 0$.

Criteriul de intrare în bază: $k \in \mathcal{R}$ a. Î

$$z_k^B - c_k = \max\left\{z_j^B - c_j | j \in \mathcal{R}, z_j^B - c_j > 0\right\} \implies x_k$$
 intră în bază.

contenta de intrare in baza. $k \in \mathcal{K}$ a. 1. $z_k^B - c_k = \max \left\{ z_j^B - c_j | j \in \mathcal{R}, z_j^B - c_j > 0 \right\} \implies x_k \text{ intră în bază.}$ $\max \left\{ z_j^B - c_j | j \in \mathcal{R}, z_j^B - c_j > 0 \right\} = \max \left(z_1^B - c_1, z_2^B - c_2 \right) = \max \left(1, 2 \right) = 2 = z_2^B - c_2 \text{ (atins pe coloana lui } x_2 \text{)} \implies x_2 \text{ intră în bază. Se face semn că}$ x_2 intră în bază (o săgeată deasupra lui x_2).

Criteriul de ieșire din bază: $r \in \mathcal{B}$ a. î. $\frac{\overline{x}_r^B}{y_{rk}^B} = \min_{\substack{n^B > 0}} \frac{\overline{x}_i^B}{y_{ik}^B} \implies x_r$ iese din bază.

$$\min_{y_{i2}^B > 0} \frac{\overline{x}_i^B}{y_{i2}^B} = \min\left(\frac{\overline{x}_3^B}{y_{32}^B}, \frac{\overline{x}_4^B}{y_{42}^B}\right) = \min\left(\frac{4}{1}, \frac{8}{1}\right) = 4 = \frac{\overline{x}_3^B}{y_{32}^B} \text{ (atins pe linia lui } x_3\text{)}$$

 $\implies x_3$ iese din bază. Se face semn că x_3 iese din bază (o săgeată în stânga lui x_3 din coloana VVB).

Pivot: $y_{rk}^B = y_{32}^B = 1$. Se încercuiește pivotul. În noul tabel simplex:

Coloanele variabilelor de bază $(x_2 \sin x_4)$ sunt vectori unitari, cu 1 pe linia variabilei respective și 0 în rest.

Linia pivotului se împarte la pivot.

Regula dreptunghiului: se formează un dreptunghi care are în vârfurile unei diagonale valoarea de calculat și pivotul;

 $noua\ valoare = vechea\ valoare\ - \underbrace{\stackrel{\circ}{\text{produsul}}\,\overset{\circ}{\text{elementelor}}\,\overset{\circ}{\text{din}}\,\overset{\circ}{\text{varfurile}}\,\overset{\circ}{\text{celeilalte}}\,\overset{\circ}{\text{diagonale}}}$

Pe coloana VVB: $8 - \frac{4 \cdot 1}{1}$; $0 - \frac{4 \cdot 2}{1}$; pe coloana lui $x_1 : 1 - \frac{(-1) \cdot 1}{1}$; $1 - \frac{(-1) \cdot 2}{1}$; pe coloana lui $x_3 : 0 - \frac{1 \cdot 1}{1}$; $0 - \frac{1 \cdot 2}{1}$.

VB	VVB	$\overset{\downarrow}{x_1}$	x_2	x_3	x_4
x_2	4	-1	1	1	0
$\leftarrow x_4$	4	2	0	-1	1
z	-8	3	0	-2	0

 $z_1^B - c_1 = 3 \nleq 0 \implies \text{testul de optim nu este îndeplinit.}$ $y_1^B = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \nleq 0, z_3^B - c_3 = -2 \not\geqslant 0 \implies \text{testul de optim infinit nu este}$ îndeplinit.

 $\max(3) = 3$ pe coloana lui $x_1 \implies x_1$ intră în bază.

 $\min(\frac{4}{2}) = \frac{4}{2}$ atins pe linia lui $x_4 \Longrightarrow x_4$ iese din bază.

VB	VVB	x_1	x_2	x_3	x_4
x_2	6	0	1	$\frac{1}{2}$	$\frac{1}{2}$
x_1	2	1	0	$-\frac{1}{2}$	$\frac{1}{2}$
z	-14	0	0	$-\frac{1}{2}$	$-\frac{3}{2}$

 $z_3^B - c_3 = -\frac{1}{2} \le 0, z_4^B - c_4 = -\frac{3}{2} \le 0 \implies$ soluţie optimă este $x_1^* = 2, x_2^* = 6, x_3^* = 0, x_4^* = 0$, valoarea optimă este -14.

Metode de verificare:

- 1) baza este mereu primal admisibilă, adică valorile de pe coloana VVB, exceptând linia z sunt totdeauna ≥ 0 :
- $4, 8; 4, 4; 6, 2 \ge 0;$
- 2) valoarea funcției obiectiv \overline{z}^B nu crește de la un tabel la altul:
- $0 \ge -8 \ge -14$;
- 3) soluția de bază din orice tabel verifică ecuațiile problemei:

$$-0+0+4=4$$
;

$$0+0+8=8;$$

$$-0+4+0=4$$
;
 $0+4+4=8$:

$$-2+6+0=4$$
;

$$2+6+0=8$$
;

- 4) totdeauna pivotul este > 0: 1, 2 > 0;
- 5) calculând funcția obiectiv pentru soluția de bază din orice tabel, obținem valoarea \overline{z}^B corespunzătoare:

$$-0 - 2 \cdot 0 = 0;$$

$$-0 - 2 \cdot 4 = -8;$$

$$-2 - 2 \cdot 6 = -14$$
.

2) Să se rezolve cu algoritmul simplex primal:

$$\begin{cases} \inf(-x_1) \\ -x_1 + x_2 + x_3 = 3 \\ -x_2 + x_3 + x_4 = 6 \\ x_j \ge 0, j = \overline{1, 4} \end{cases}$$

Căutăm o bază primal admisibilă.

Fie
$$B = (a^3, a^4) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
.

$$det(B) = \left| \begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right| = 1.$$

$$B^T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$B^* = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

$$B^{-1} = \frac{1}{\det(B)}B^* = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

$$B^{-1}b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \ge 0 \implies B$$
 primal admisibilă.

$$\overline{x}^B = B^{-1}b = \begin{pmatrix} 3\\3 \end{pmatrix}.$$

$$y_1^B = B^{-1}a^1 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$
$$y_2^B = B^{-1}a^2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

$$y_2^B = B^{-1}a^2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

			-1	0		
c_B	VB	VVB	$\stackrel{\downarrow}{x_1}$	x_2	x_3	x_4
0	x_3	3	-1	1	1	0
0	$\leftarrow x_4$	3	1	-2	0	1
	z	0	1	0	0	0

 $z_1^B - c_1 = 1 \nleq 0 \implies \text{testul de optim nu este îndeplinit.}$ $y_1^B = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \nleq 0, z_2^B - c_2 = 0 \not> 0 \implies \text{testul de optim infinit nu este}$

 $\max(1) = 1$ atins pe coloana lui $x_1 \implies x_1$ intră în bază.

 $\min \left(\frac{3}{1}\right) = \frac{3}{1}$ atins pe linia lui $x_4 \implies x_4$ iese din bază.

VB	VVB	x_1	x_2	x_3	x_4
x_3	6	0	-1	1	1
x_1	3	1	-2	0	1
z	-3	0	2	0	-1

 $z_2^B - c_2 = 2 \nleq 0 \implies \text{testul de optim nu este îndeplinit.}$

 $\exists 2 \in \mathcal{R} \text{ astfel încât } z_2^B - c_2 = 2 > 0 \text{ și } y_2^B = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \leq 0 \implies \text{testul de optim}$ infinit este îndeplinit \implies problema are optim infinit.