

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa inżynierska

Sztuczna inteligencja na przykładzie symulacji komputerowej Artificial intelligence in computer simulation

Autor: Bartłomiej Konieczny

Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Mirosław Gajer

Oświadczam, świadomy(-a) odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

1.	Wstę	р		7
	1.1.	Cele p	oracy	7
	1.2.	Zawai	tość pracy	7
2.	Omó	wienie	literatury	9
3.	Ogól	ny rozo	lział teoretyczny	11
	3.1.	Podej	ścia do uczenia maszynowego	11
		3.1.1.	Uczenie nadzorowane	11
		3.1.2.	Uczenie nienadzorowane	12
		3.1.3.	Uczenie ze wzmocnieniem	12
		3.1.4.	Deep learning	12
	3.2.	Podsu	mowanie	12
	3.3.	Przyk	ład zastosowania algorytmów uczenia maszynowego	12

6 SPIS TREŚCI

1. Wstęp

W ostatniej dekadzie można zauważyć zwiększone zainteresowanie rozwiązaniami z dziedziny sztucznej inteligencji. Innowacyjne pomysły z użyciem tych algorytmów pozwalają nie tylko na interpretacje ogromnych ilości danych, których człowiek nie jest w stanie przetworzyć ale również, między innymi na rozwój autonomicznych pojazdów, jeżdżących bez nadzoru kierowcy.

Według [1] sztuczną inteligencją możemy nazwać "badanie i rozwój inteligentnych maszyn, w szczególności programów komputerowych".

Inteligentne zachowanie agenta możemy zdefiniować, gdy agent[2]

- dostosowuje swoje zachowanie do aktualnych warunków i celów,
- ma zdolność zmiany otoczenia i celów,
- uczy się z doświadczenia,
- wykonuje odpowiednie do swoich ograniczeń akcję.

Wykorzystując powyższe definicję, sztuczną inteligencje określamy jako dziedzinę naukową zajmującą się badaniem, rozwojem i implementacją programów i maszyn wykazujących cechy inteligencji, tzn. takie które ucząc się z doświadczenia, będąc zmiennym w stosunku do otaczającego ich otoczenia i warunków dążą do wykonania swoich celów uwzględniając obowiązujące je ograniczenia.

1.1. Cele pracy

Celem pracy jest opis i implementacja inteligentnego agenta. Agent wykorzystując algorytmy uczenia ze wzmacnianiem wyciąga wnioski z podejmowanych akcji i dostosowuje swoje zachowanie. W pracy zostanie wyjaśnione również inne rodzaje algorytmów uczenia ze wzmocnieniem.

1.2. Zawartość pracy

Symulacja graficzna przedstawiająca agenta w środowisku.

8 1.2. Zawartość pracy

2. Omówienie literatury

3. Ogólny rozdział teoretyczny

Uczenie maszynowe jest metodą analizy danych, która automatyzuje budowę modelu analitycznego na podstawie nauki z danych. W wielu zastosowaniach ich użycie jest znacznie bardziej efektywne od manualnego programowania, w wyniku czego uczenie maszynowe znalazło szerokie zastosowanie w informatyce i innych dziedzinach. W ostatniej dekadzie można zauważyć zwiększone użycie metod uczenia maszynowego[3].

3.1. Podejścia do uczenia maszynowego

- uczenie nadzorowane,
- uczenie nienadzorowane,
- uczenie ze wzmocnieniem,
- deep learning

3.1.1. Uczenie nadzorowane

Uczenie nadzorowane polega na wnioskowaniu funkcji z określonych danych treningowych. Wykorzystując dostarczone przykłady algorytmy potrafią estymować wartości danych, które mogą nie występować w podanym zbiorze wejściowym. Dzięki generalizowaniu z przykładów, metody uczenia nadzorowanego są w stanie wyznaczać przewidywane wartości na podstawie danych trenujących.

Ważną cechą danych trenujących w uczeniu nadzorowanym jest konieczność ich oznaczenia. Algorytm, aby móc szacować pożądane wartości funkcji, musi posiadać wiedzę o ich cechach.

Przykładem zastosowania algorytmów uczenia nadzorowanego jest system rozpoznawania niechcianych wiadomości w klientach pocztowych. Danymi wejściowymi są w tym przypadku kategoryzowane na pożądane lub niepożądane wiadomości e-mail. System generalizując podane mu przykłady jest w stanie zidentyfikować kolejne wiadomości i wykonać odpowiednią akcję, zależnie od preferencji użytkownika (może to być na przykład usunięcie lub przeniesienie do zdefiniowanego folderu).

Wiele różnych algorytmów uczenia nadzorowanego zostało wykorzystanych by rozwiązać problem klasyfikacji wiadomości e-mail. Użyto między innymi algorytmów k-nearest neighbor[4], Na-

3.2. Podsumowanie

ive Bayes[5][**lakshmi2010spam**] czy Random Forest[6], jednak wiąże się to z kilkoma istotnymi wadami[7]:

- Wymagane oznaczenie danych testowych. Metody uczenia nadzorowanego wymagają, aby dane trenujące były oznaczone. W przypadku klasyfikacji wiadomości e-mail, koniecznie jest ich oznaczenie w zależności od tego czy są szkodliwe czy nie. Problem stwarza tutaj wielkość danych. Ilość wiadomości, która jest wymieniana w sieci jest bardzo duża. W związku z czym, żeby klasyfikacja miała sens, wymagane też jest oznaczenie sporej ilości przykładów, co nie zawsze jest możliwe i opłacalne do zrealizowania.
- Mała liczba danych testowych. W związku z niewielką (w stosunku do wszystkich możliwych) ilością danych trenujących, algorytm jest mało odporny na modyfikowane dane. Osoby rozsyłające niechciane wiadomości bardzo często będą zmieniać ich treść i strukturę, na taką, która nigdy nie pojawiła się wśród danych trenujących. Może mięc to negatywny wpływ na wynik działania algorytmu.

3.1.2. Uczenie nienadzorowane

Podobnie jak w uczeniu nadzorowanym, algorytmy uczenia nienadzorowanego wyznaczają funkcje na podstawie danych wejściowych, jednak są w stanie odkryć niewidoczne zależności między nimi. Konsekwencją wynikającą z charakterystyki danych trenujących jest niemożność określenia błędu lub poprawności rozwiązania. Celem działania algorytmu może być na przykład kategoryzowanie informacji (klasteryzacja).

3.1.3. Uczenie ze wzmocnieniem

3.1.4. Deep learning

3.2. Podsumowanie

3.3. Przykład zastosowania algorytmów uczenia maszynowego

Używając jako wejścia informacji dotyczących kwiatów irysów, w przedstawionej poniżej postaci, algorytmy uczenia nienadzorowanego są w stanie przewidzieć gatunek kwiatu (*setosa*, *versicolor*, *virginica*) na podstawie długości i szerokości płatka (*sepal*) i listka kielichu (*petal*).

Listing 3.1. Przykład danych dotyczących kwiatów irysa

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa

53	6.9	3.1	4.9	1.5 versicolor
54	5.5	2.3	4.0	1.3 versicolor
55	6.5	2.8	4.6	1.5 versicolor
56	5.7	2.8	4.5	1.3 versicolor
101	6.3	3.3	6.0	2.5 virginica
102	5.8	2.7	5.1	1.9 virginica
103	7.1	3.0	5.9	2.1 virginica
104	6.3	2.9	5.6	1.8 virginica

Bibliografia

- [1] John McCarthy. "What is artificial intelligence". W: *URL: http://www-formal. stanford. edu/jm-c/whatisai. html* (2007), s. 38.
- [2] Poole David L. i Mackworth Alan K. *Artificial Intelligence: Foundations of Computational Agents*. New York, NY, USA: Cambridge University Press, 2010. ISBN: 0521519004, 9780521519007.
- [3] Pedro Domingos. "A few useful things to know about machine learning". W: *Communications of the ACM* 55.10 (2012), s. 78–87.
- [4] Loredana Firte, Camelia Lemnaru i Rodica Potolea. "Spam detection filter using KNN algorithm and resampling". W: *Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing*. IEEE. 2010, s. 27–33.
- [5] Muhammad N Marsono, M Watheq El-Kharashi i Fayez Gebali. "Binary LNS-based naïve Bayes inference engine for spam control: noise analysis and FPGA implementation". W: *Computers & Digital Techniques, IET* 2.1 (2008), s. 56–62.
- [6] Irena Koprinska i in. "Learning to classify e-mail". W: *Information Sciences* 177.10 (2007), s. 2167–2187.
- [7] Wenjuan Li i in. "Towards designing an email classification system using multi-view based semisupervised learning". W: *Trust, Security and Privacy in Computing and Communications (Trust-Com)*, 2014 IEEE 13th International Conference on. IEEE. 2014, s. 174–181.