1.4

INFINITE SERIES of POSITIVE TERMS

Recall:

Let $\{s_n\}$ be the sequence of partial sums

defining the infinite series $\sum_{n=1}^{\infty} u_n$

Then for
$$n \ge 2$$
, $s_n = s_{n-1} + u_n$.

Remark:

If $u_n > 0$, $\forall n$, then the sequence of partial sums is increasing.

Theorem.

An infinite series of positive terms is convergent if and only if the sequence of partial sums has an upper bound.

Show: Use the theorem above to show that

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 is convergent.

PROOF. In
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
, $s_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$

Now,

$$s_n = \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}$$

$$\leq \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 2} + \dots + \frac{1}{1 \cdot 2 \cdot 2 \cdot \dots \cdot 2}$$

$$= 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} = 2$$

PROOF. (cont.)

That is,
$$s_n \leq 2$$

Thus,

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 is convergent.

Tests for Convergence for Infinite Series of Positive Terms:

1. Direct Comparison Test

2. Limit Comparison Test

3. Integral Test

Direct Comparison Test

Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms.

This series

 \clubsuit converges if there is a convergent series $\sum_{n=1}^{\infty} c_n$ with $a_n \le c_n$ for all $n \in N$.

 \clubsuit diverges if there is a divergent series $\sum_{n=1}^{\infty} d_n$ with $a_n \ge d_n$ for all $n \in N$.

1.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$$

1. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$ Recall: $-1 \le \sin n \le 1$ Thus, $\sin^2 n \le 1$

Define
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$$
 and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$.

By the remark given above, $a_n \leq b_n$.

But, $\sum_{n=1}^{\infty} b_n$ is convergent.

So,
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$$
 is also convergent.

2.
$$\sum_{n=1}^{\infty} \frac{7}{n+\sqrt{n}}$$
 Recall: $\sqrt{n} \le n$ whenever $n \ge 1$

Define
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{7}{n+\sqrt{n}}$$
 and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{7}{2n}$.

By the remark given above, $a_n \ge b_n$.

But, $\sum_{n=1}^{\infty} b_n$ is divergent.

So,
$$\sum_{n=1}^{\infty} \frac{7}{n+\sqrt{n}}$$
 is also divergent.

Examples. Determine if the following series is/are convergent.

$$\sum_{n=1}^{\infty} \frac{2n+3}{n^3+1}$$

$$\sum_{n=1}^{\infty} \frac{1 + \cos n}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{3n}{n^2 - \sin^2 n}$$

$$\sum_{n=1}^{\infty} \left(\frac{n}{5n+1} \right)^n$$

$$\sum_{n=1}^{\infty} \frac{1}{5^n + 2n}$$

Limit Comparison Test

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be a series of positive

terms and
$$L = \lim_{n \to +\infty} \frac{a_n}{b_n}$$
.

 \bigstar If L>0, then both series converge or both series diverge.

Limit Comparison Test

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be a series of positive

terms and
$$L = \lim_{n \to +\infty} \frac{a_n}{b_n}$$
.

$$•$$
 If $L=0$ and $\sum_{n=1}^{\infty}b_n$ is convergent,

then
$$\sum_{n=1}^{\infty} a_n$$
 is also convergent.

Limit Comparison Test

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be a series of positive

terms and
$$L = \lim_{n \to +\infty} \frac{a_n}{b_n}$$
.

$$lacktriangle$$
 If $L=+\infty$ and $\sum_{n=1}^\infty b_n$ is divergent,

then
$$\sum_{n=1}^{\infty} a_n$$
 is also divergent.

1.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5}{n^5 + 7}$$
 Use:
$$\frac{n^2}{n^5} = \frac{1}{n^3}$$

Use:
$$\frac{n^2}{n^5} = \frac{1}{n^3}$$

Define
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{3n^2 + 5}{n^5 + 7}$$
 and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$.

Now,
$$L = \lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{3n^2 + 5}{n^5 + 7} \cdot \frac{n^3}{1}$$

$$= \lim_{n \to +\infty} \frac{3n^5 + 5n^3}{n^5 + 7} = 3$$

1.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5}{n^5 + 7}$$

Now, L = 3 > 0.

and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent.

Thus,
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5}{n^5 + 7}$$
 is also convergent.

2.
$$\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$
 Use: $\frac{n}{n^2} = \frac{1}{n}$

Use:
$$\frac{n}{n^2} = \frac{1}{n}$$

Define
$$\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$
 and $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n}$.

Now,
$$L = \lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{1 + n \ln n}{n^2 + 5} \cdot \frac{n}{1}$$

$$= \lim_{n \to +\infty} \frac{n + n^2 \ln n}{n^2 + 5} = +\infty$$

$$2. \sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$

Now,
$$L=+\infty$$
 .

and
$$\sum_{n=2}^{\infty} \frac{1}{n}$$
 is divergent.

Thus,
$$\sum_{n=2}^{\infty} \frac{1 + n \ln n}{n^2 + 5}$$
 is also divergent.

Examples. Determine if the following series is/are convergent.

$$\sum_{n=1}^{\infty} \frac{4n+5}{n^2+2n+4}$$

$$\sum_{n=1}^{\infty} \frac{1}{5^n - 2n}$$

$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{\sqrt[3]{n^5 + n^3}}$$

Integral Test

Let f be a function which is

- 1. Continuous and positive-valued for all $x \ge 1$
- 2. Decreasing to zero

Then
$$\sum_{n=1}^{\infty} f(n)$$
 converges if and only if

the improper integral
$$\int_{1}^{+\infty} f(x)dx$$
.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0$$
 Let $f(x) = x^p$.

- i. f is continuous and positive-valued for all $x \ge 1$
- ii. f is decreasing to zero since $\lim_{x \to +\infty} \frac{1}{n^p} = 0$

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0$$
 Let $f(x) = x^p$.

CASE 1: p > 1

$$\int_{1}^{+\infty} f(x)dx = \int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{a \to +\infty} \int_{1}^{a} \frac{dx}{x^{p}} = \frac{-1}{1-p}$$

Thus, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0$$
 Let $f(x) = x^p$.

CASE 2: p = 1

$$\int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{dx}{x} = \lim_{\alpha \to +\infty} \int_{1}^{\alpha} \frac{dx}{x} = +\infty$$

Thus, $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0$$
 Let $f(x) = x^p$.

CASE 3: p < 1

$$\int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{dx}{x^{p}} = \lim_{a \to +\infty} \int_{1}^{a} \frac{dx}{x^{p}} = +\infty$$

Thus,
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is divergent if $p < 1$.

2.
$$\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$
 Let $f(x) = \frac{e^x}{1 + e^{2x}}$.

- i. f is continuous and positive-valued for all $x \ge 1$
- ii. f is decreasing to zero since $\lim_{x\to +\infty} \frac{e^x}{1+e^{2x}} = 0$

2.
$$\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$
 Let $f(x) = \frac{e^x}{1 + e^{2x}}$.

$$\int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{e^{x}}{1 + e^{2x}} dx$$

$$= \lim_{\alpha \to +\infty} \int_{1}^{\alpha} \frac{e^{x}}{1 + e^{2x}} dx = \frac{\pi}{2} - Arc \tan e$$

Thus,
$$\sum_{n=1}^{\infty} \frac{e^n}{1+e^{2n}}$$
 is convergent.

Examples. Determine if the following series is/are convergent.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \left(\sqrt{n} + 1 \right)}$$

$$\sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n\left(1+\ln^2 n\right)}$$

Remark: It is NOT NECESSARY that

$$\sum_{n=1}^{\infty} f(n) \text{ and } \int_{1}^{+\infty} f(x) dx \text{ are equal.}$$

Example.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \qquad \text{BUT} \qquad \int_{1}^{+\infty} \frac{dx}{x^2} = 1$$

