5

EXPRESAR DE FORMA ALGEBRAICA CIERTAS SITUACIONES

Nombre:	Curso:	Fecha:	

EXPRESIÓN ALGEBRAICA

Una expresión algebraica es un conjunto de números y letras unidos con los signos de las operaciones matemáticas.

EJEMPLO

Expresión escrita	Expresión algebraica	
La suma de dos números menos dos	x + y - 2	
El triple de un número más cinco	$3 \cdot x + 5$	
El cuadrado de un número más una unidad	$X^2 + 1$	

ACTIVIDADES

- 1 Escribe estos enunciados como expresión algebraica.
 - a) El doble de un número b.
 - b) El doble de la suma de dos números m y n.
 - c) El cuadrado de un número x más 4 unidades.
 - d) El producto de tres números a, b y c.
 - e) El doble de un número y más 3 unidades.
- 2 Relaciona cada enunciado con su expresión algebraica.

a) El doble de un número más dos unidades.	<i>x</i> − 5
b) Un número disminuido en cinco unidades.	X 3
c) La tercera parte de un número.	$2 \cdot x + 2$
d) El cubo de un número.	x + 10
e) El doble de un número.	2 <i>x</i>
f) Un número aumentado en diez unidades.	χ^3
g) La diferencia de dos números.	x + 1
h) El número siguiente a un número entero.	x - y

3 Si x es la edad de Juan, expresa en lenguaje algebraico.

Lenguaje usual	Lenguaje algebraico
Los años que tenía el año pasado	
Los años que tendrá dentro de un año	
La edad que tenía hace 5 años	
La edad que tendrá dentro de 5 años	
Los años que faltan para que cumpla 70 años	

5

EXPRESAR DE FORMA ALGEBRAICA CIERTAS SITUACIONES

Nombre: Curso: Fecha:

4 Inventa un enunciado para estas expresiones algebraicas.

a)
$$n+1 \longrightarrow$$

b)
$$a + b \longrightarrow$$

c)
$$\frac{b}{2}$$
 \longrightarrow

d)
$$2 \cdot (m - n) \rightarrow$$

e)
$$x^3 - 1 \longrightarrow$$

f)
$$2 \cdot x + 1 \longrightarrow$$

VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

El **valor numérico** de una expresión algebraica es el número que se obtiene al sustituir las letras por números y realizar las operaciones que se indican.

EJEMPLO

Halla el valor numérico de la expresión algebraica 3x + 2 para x = 1.

Sustituimos x por 1 en la expresión algebraica y realizamos las operaciones:

$$x = 1 \rightarrow 3 \cdot 1 + 2 = 3 + 2 = 5$$

El valor numérico de 3x + 2, para x = 1, es 5.

5 Halla el valor numérico de la expresión algebraica 2x + 1 para estos valores:

Valor	Sustitución	Operación	Valor numérico
x = 0	2 · 0 + 1	$2 \cdot 0 + 1 = 0 + 1$	1
x = 2			
x = -1			
x = -2			

6 Calcula el valor numérico de estas expresiones para los valores que se indican.

Va	lores	x + y	2x-3y	$(x+y)^2$
x = 1	y = 0	1 + 0 = 1	$2 \cdot 1 - 3 \cdot 0 =$	$(1 + 0)^2 = 1^2 =$
x = -1	<i>y</i> = 2			
x = 1	y = -2			
x = -2	<i>y</i> = 3			
x = -1	y = -1			

DISTINGUIR Y OPERAR CON MONOMIOS

Nombre: Curso: Fecha:

MONOMIOS

Un **monomio** es una expresión algebraica formada por productos de números y letras. A los números se les denomina **coeficientes**, y a las letras con sus exponentes, **parte literal**.

EJEMPLO

Monomio	3 <i>x</i>	—5 <i>ab</i>	$-5x^3$	$\frac{3}{5}x$
Coeficiente	3	-5	-5	<u>3</u> 5
Parte literal	Х	ab	X ³	x

ACTIVIDADES

1 Completa las tablas.

Monomio	Coeficiente	Parte literal
X	1	Х
-3 <i>xy</i>	-3	
$-5xy^2$		
$\frac{1}{3}x^2y$)

Monomio	Coeficiente	Parte literal
$\frac{2}{3}a^2b$		
−2 <i>xyz</i>		
$-3b^2c$		
$-\frac{5}{7}xyz^2$)

GRADO DE UN MONOMIO

El **grado de un monomio** es el número que resulta de sumar todos los exponentes de su parte literal.

EJEMPLO

Monomio	Grado	Explicación
-3x	1	El exponente de x es 1 (x^1)
4 <i>a</i> ² <i>y</i>	3	La suma de los exponentes de a^2y^1 es $2 + 1 = 3$
$-5x^2y^3$	5	La suma de los exponentes de x^2y^3 es $2 + 3 = 5$

Calcula el grado de los siguientes monomios.

a)
$$-5x^2 \rightarrow \text{Grado} =$$

c)
$$\frac{2}{3}a^5b \rightarrow \text{Grado} =$$

e)
$$-yx \rightarrow \text{Grado} =$$

b)
$$7x^2y \longrightarrow \text{Grado} =$$

d)
$$zx^2 \longrightarrow \text{Grado} =$$

f)
$$-x \longrightarrow \text{Grado} =$$

5

DISTINGUIR Y OPERAR CON MONOMIOS

Nombre:	Curso	: Fecha	

Completa la siguiente tabla.

Monomio	Coeficiente	Parte literal	Grado
-3x	-3	X	1
-2a³b			
-2ab			
XYZ			
7ab²c³			
6y²z			

MONOMIOS SEMEJANTES

Dos o más **monomios** son **semejantes** cuando tienen la misma parte literal.

EJEMPLO

5x; 2x son monomios semejantes, porque tienen la misma parte literal (x).

 $3xy^2$; $-xy^2$ son monomios semejantes, porque tienen la misma parte literal (xy^2).

 x^2y^3 ; xy^2 no son monomios semejantes.

4 Escribe dos monomios semejantes para cada monomio.

Monomio	Monomios semejantes
-5x	
-ab	
$-2yx^3$	
$-3y^2Z^3$	
$\frac{2}{3}a^2b$	
5 <i>xy</i>)

SUMA Y RESTA DE MONOMIOS

- La suma y resta de monomios solo se puede realizar cuando los monomios son semejantes.
- Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal.

EJEMPLO

$$2x + x = (2 + 1)x = 3x$$

 $2x + y \rightarrow \text{La suma se deja indicada, porque no son monomios semejantes.}$

DISTINGUIR Y OPERAR CON MONOMIOS

Nombre: Curso: Fecha:

5 Realiza las siguientes operaciones.

a)
$$a + a + a + a =$$

b)
$$2x^2 + x^2 + x^2 =$$

c)
$$5mn - mn - 4mn =$$

d)
$$5x - 3x - x =$$

e)
$$-5x^3 - 3x^3 =$$

f)
$$p - 2p + 5p =$$

6 Completa los huecos con monomios semejantes y calcula.

c)
$$2x^3 + =$$

d)
$$+ 2xy + = =$$

7 Escribe un monomio semejante al que se indica y calcula.

a)
$$7x - \boxed{} =$$

b)
$$-x^2 =$$

$$-4x^2y =$$

8 Reduce las siguientes expresiones algebraicas.

a)
$$6x^2 + 4x - 2x^2 - x$$

Sumamos y restamos los monomios semejantes y calculamos el resultado:

$$\underbrace{6x^2 - 2x^2}_{4x^2} + \underbrace{4x - x}_{3x}$$

b)
$$5x^2 - 2x + 3x^2 - x =$$

c)
$$ab - ab + 7ab + 4ab - 2ab =$$

d)
$$3ab^3 - 2ab + 5ab^3 - ab + 4ab =$$

e)
$$-10xy - 5xy + 2xy + 4x - 8y + 2y + 2x =$$

MULTIPLICACIÓN DE MONOMIOS

El **producto de dos o más monomios** es otro monomio cuyo coeficiente es el producto de los coeficientes y cuya parte literal es el producto de las partes literales.

EJEMPLO

$$\mathbf{3} \mathbf{x} \cdot \mathbf{2} \mathbf{x} = (3 \cdot 2) \cdot \mathbf{x} \cdot \mathbf{x} = 6 \mathbf{x}^2$$

$$4x \cdot (-2x^2) = [4 \cdot (-2)] \cdot x \cdot x^2 = -8x^3$$

9 Realiza estas multiplicaciones.

a)
$$4a \cdot 3a =$$

c)
$$-2x \cdot (-5x) =$$

e)
$$m \cdot m^2 =$$

b)
$$3x^2 \cdot 3x^2 =$$

d)
$$3x^2 \cdot (-3x^2) =$$

f)
$$\frac{2}{3}x \cdot \frac{3}{5}x^2 =$$

DISTINGUIR Y OPERAR CON MONOMIOS

Nombre:

Curso:

Fecha:

10 Calcula y reduce.

a)
$$4x \cdot (2x - 5) = 4x \cdot 2x - 4x \cdot 5 = 4 \cdot 2 \cdot x \cdot x - 4 \cdot 5 \cdot x = 8x^2 - 20x$$

b)
$$3 \cdot (2x + 3x^2) =$$

c)
$$2a \cdot (4a^3 - 3a^2) =$$

d)
$$(3 - ab + ab^2) \cdot 2a =$$

e)
$$2 \cdot (x^2 + 3x) - 2x =$$

f)
$$-3x \cdot (x^3 - 2x + 4) - 12x =$$

g)
$$-x^3 \cdot (-5x + 4 - 3x^2 - 10x) =$$

h)
$$-\frac{1}{3}x \cdot (-x^4 + 3x - 2x) + x^2 =$$

DIVISIÓN DE MONOMIOS

El cociente de dos monomios es otro monomio cuyo coeficiente es el cociente de los coeficientes y cuya parte literal es el cociente de las partes literales.

EJEMPLO

6x: **2x** =
$$\frac{6x}{2x} = \frac{6}{2} \cdot \frac{x}{x} = 3 \cdot 1 = 3$$
 10x³: **(-5x)** = $\frac{10}{-5} \cdot \frac{x^3}{x} = -2x^2$

10
$$x^3$$
: (-5 x) = $\frac{10}{-5} \cdot \frac{x^3}{x} = -2x^2$

11 Resuelve estas divisiones de monomios.

a)
$$8x^3:2x=$$

d)
$$a^4:a^2=$$

b)
$$(-12x^5)$$
: $(-12x^4)$ =

e)
$$(-14y^4)$$
: $(-2y^2) =$

c)
$$20m^4:15m^3=$$

f)
$$(-20z^5): 4z^4 =$$

12 Efectúa las siguientes operaciones.

a)
$$(7x^5:2x) + x =$$

b)
$$(6x^7: x^3) - (5x: x) =$$

c)
$$(8a^2b:4ab) + b^2 =$$

d)
$$3x(x + 1) - (4x^2 : x) =$$

e)
$$(12a^3b^2:3a^2b)-b=$$

f)
$$3 \cdot (4xy^2 : 2xy) - 2y =$$

g)
$$2x \cdot [(-2y^2x^3) : (-x^2y)] + x(x-1) =$$

Nombre:	Curso:	Fecha:	

POLINOMIOS

Un **polinomio** es la suma o resta de varios monomios no semejantes.

- Cada uno de los sumandos se llama **término** del polinomio.
- Los términos que no tienen parte literal se denominan **términos independientes**.
- El **grado de un polinomio** es el del monomio de mayor grado.

EJEMPLO

Polinomio	Términos	Término independiente	Grado de polinomio
$2x^3 - 3x - 1$	$2x^3$; $-3x$; -1	-1	3, que es el grado de $2x^3$
-2xy+9	−2 <i>xy</i> ; 9	9	2, que es el grado de $-2xy$
-5x	-5 <i>x</i>	No tiene	1, que es el grado de $-5x$

ACTIVIDADES

1 Completa esta tabla:

Polinomio	Términos	Término independiente	Grado de polinomio
$-2x^3+3x-5$			
5ab — 5ax²b			
$x^3 - 2x^2 - x - 3$			
6 <i>x</i> – 7			
5xy - 2y			
$\frac{2}{3}a^2b+1$			
$3xy + 5xy^2$			

- 2 Escribe un polinomio de grado 3 que tenga un término, otro con dos términos y un tercero con tres términos.
- 3 Indica el grado de los siguientes polinomios.

a)
$$-x + 3x^2 \rightarrow \text{Grado} =$$

c)
$$2x^5 - x \longrightarrow Grado =$$

b)
$$x^2y - 3x \longrightarrow \text{Grado} =$$

d)
$$-5x^4 - x^3 - 8 \rightarrow \text{Grado} =$$

Fecha: Nombre: Curso:

4 Halla el valor numérico del polinomio $x^2 - 2x + 1$ para los valores que se indican.

Valor	Valor numérico del polinomio
x = 0	$0^2 - 2 \cdot 0 + 1 = 0 - 0 + 1 = 1$
x = 1	
x = -2	

SUMA Y RESTA DE POLINOMIOS

Para **sumar polinomios** se suman los monomios semejantes. Para **restarla** se suma al primero el polinomio opuesto del segundo.

EJEMPLO

$$A(x) = 2x^2 + 5$$

$$B(x) = x^3 - 5x^2 - 2x + 3$$

$$A(x) + B(x) = (2x^2 + 5) + (x^3 - 5x^2 - 2x + 3) =$$

$$= x^3 - 3x^2 - 2x + 8$$

$$\mathbf{A(x) - B(x)} = (2x^2 + 5) - (x^3 - 5x^2 - 2x + 3) =$$

$$= 2x^{2} + 5 - x^{3} + 5x^{2} + 2x - 3 =$$

$$= -x^{3} + 7x^{2} + 2x + 2$$

$$2x^2 + 5$$

$$\frac{x^3 - 5x^2 - 2x + 3}{2}$$

Opuesto
$$\rightarrow \frac{2x^2 + 5}{-x^3 + 5x^2 + 2x - 3}$$

Dados los polinomios $A(x) = 6x^2 - 8x + 1$ y $B(x) = -9x^2 - 2x + 7$, calcula.

a)
$$A(x) + B(x)$$

b)
$$A(x) - B(x)$$

b)
$$A(x) - B(x)$$
 c) $B(x) - A(x)$

Dados los polinomios $A(x) = x^3 - 3x + 2$, $B(x) = -2x^2 + 7x$ y $C(x) = -x^3 - 2$, calcula.

a)
$$A(x) + B(x) + C(x)$$

b)
$$A(x) + B(x) - C(x)$$

a)
$$A(x) + B(x) + C(x)$$
 b) $A(x) + B(x) - C(x)$ c) $A(x) - B(x) - C(x)$

Nombre: Curso:

7 Escribe los siguientes polinomios de forma reducida.

$$P(x) = 3x^3 + 2x^2 - 5x^3 + 4x^2 - 7x + 2x^3$$

$$Q(x) = -4x^2 - 5x^3 + 2x^2 - 6x + 2x^2 + 5x^3 - 1$$

$$R(x) = 2x^4 - 6x^3 + 4x + 2x^2 - 3x^3 + 8x - 2$$

$$P(x) = 3x^3 + 2x^2 - 5x^3 + 4x^2 - 7x + 2x^3 = 3x^3 - 5x^3 + 2x^3 + 2x^2 + 4x^2 - 7x = 6x^2 - 7x$$

8 Con los polinomios reducidos del ejercicio anterior, calcula.

a)
$$P(x) + Q(x)$$

h)
$$O(x) + R(x)$$

c)
$$Q(x) - R(x)$$

b)
$$Q(x) + R(x)$$
 c) $Q(x) - R(x)$ d) $P(x) - Q(x)$

Fecha:

MULTIPLICACIÓN DE POLINOMIOS

Para calcular el producto de dos polinomios se multiplica cada monomio del primer polinomio por cada monomio del segundo. A continuación, se reducen los monomios semejantes.

EJEMPLO

$$A(x) = x^3 - 5x^2 - 2x + 1$$

$$B(x)=2x^2+3x$$

$$x^3 - 5x^2 - 2x + 1$$

$$\times \qquad \qquad 2x^2 + 3x$$

$$3x^4 - 15x^3 - 6x^2 + 3x$$

$$2x^5 - 10x^4 - 4x^3 + 2x^2$$

$$A(x) \cdot B(x) \rightarrow 2x^5 - 7x^4 - 19x^3 - 4x^2 + 3x$$

2 Dados los polinomios $A(x) = -4x^3 + 6x^2 - 8x + 1$ y $B(x) = 2x^2 - 7$, calcula.

- a) $A(x) \cdot B(x)$
- b) $B(x) \cdot 3x$
- c) $A(x) \cdot x$
- d) $B(x) \cdot (-3x)$

Nombre:	Cur	so:	Fecha:

SACAR FACTOR COMÚN

Una aplicación de la propiedad distributiva es sacar factor común. Esta operación consiste en extraer como factor común el monomio que se repite en todos los términos.

EJEMPLO

Expresión	Factor común	Sacar factor común
5x + 5y	5	$5 \cdot (x + y)$
$7x^2-3x$	X	$x \cdot (7x - 3)$
$5x^2-5x$	5 <i>x</i>	$5 \cdot x(x-1)$
$3x^2 - 12x + 15x^3$	3 <i>x</i>	$3x\cdot(x-4+5x^2)$

10 Extrae factor común en las siguientes expresiones.

a)
$$3b + 4b$$

c)
$$15x^4 - 5x^2 + 10x$$

c)
$$15x^4 - 5x^2 + 10x$$
 e) $12x^2 - 3x^2 + 9x^3$

b)
$$3a + 6b + 12$$

d)
$$6x^2y + 4xy^2$$

f)
$$10xy^2 - 20xy + 10x^2y$$

11 Simplifica las fracciones, sacando factor común en el numerador y en el denominador.

a)
$$\frac{10x^3 + 10x}{5x} = \frac{10x \cdot (x^2 + 1)}{5x} = \frac{2 \cdot \cancel{5}\cancel{x}(x^2 + 1)}{\cancel{5}\cancel{x}} = \frac{2 \cdot (x^2 + 1)}{1} = 2 \cdot (x^2 + 1)$$

b)
$$\frac{6x^4y^2}{-3x^3y^2} =$$

c)
$$\frac{a^3b^3}{a^3b} =$$

d)
$$\frac{12m^3}{12m} =$$

e)
$$\frac{4-6a}{6a^2-9a^3}=$$

f)
$$\frac{x^2y^2 - x^3y^2}{x^2y^2} =$$

APLICAR LAS IGUALDADES NOTABLES

Nombre: Curso: Fecha:

IGUALDADES NOTABLES

Las **igualdades notables** son ciertas igualdades cuya aplicación resulta muy útil para abreviar cálculos con expresiones algebraicas.

Las principales igualdades notables son:

- Cuadrado de una suma: $(a + b)^2 = a^2 + 2ab + b^2$
- Cuadrado de una diferencia: $(a b)^2 = a^2 2ab + b^2$
- Suma por diferencia: $(a + b) \cdot (a b) = a^2 b^2$

CUADRADO DE UNA SUMA

El **cuadrado de una suma** es igual al cuadrado del primer sumando más el doble producto del primero por el segundo, más el cuadrado del segundo.

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$\frac{a^2 + ab}{a^2 + 2ab + b^2}$$

ACTIVIDADES

1 Calcula.

a)
$$(x + 5)^2 =$$

c)
$$(2 + x)^2 =$$

b)
$$(a + 2b)^2 =$$

d)
$$(xy + 1)^2 =$$

CUADRADO DE UNA DIFERENCIA

El **cuadrado de una diferencia** es igual al cuadrado del primer sumando menos el doble producto del primero por el segundo, más el cuadrado del segundo.

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$\frac{x \quad a-b}{-ba+b^2}$$

$$\frac{a^2 - ab}{a^2 - 2ab + b^2}$$

a - b

2 Calcula.

a)
$$(x-1)^2 =$$

c)
$$(2a - 3b)^2 =$$

b)
$$(a - 6b)^2 =$$

d)
$$(5 - 3x)^2 =$$

APLICAR LAS IGUALDADES NOTABLES

Nombre:

Curso:

Fecha:

SUMA POR DIFERENCIA

El producto de una **suma por diferencia** es igual a la diferencia de los cuadrados.

$$(a+b)\cdot(a-b)=a^2-b^2$$

$$\frac{1}{a^2+0-b^2}$$

3 Calcula.

a)
$$(x + 5) \cdot (x - 5) =$$

c)
$$(7 + x) \cdot (7 - x) =$$

b)
$$(2a + b) \cdot (2a - b) =$$

d)
$$(5a + 1) \cdot (5a - 1) =$$

4 Expresa en forma de igualdad notable.

a)
$$x^2 + 2x + 1 =$$

d)
$$4x^2 - 4x + 1 =$$

b)
$$x^2 + 10x + 25 =$$

e)
$$9a^2 - 30ab + 25b^2 =$$

c)
$$x^2 - 16 =$$

f)
$$4x^2 - 36 =$$

5 Simplifica las fracciones, utilizando las igualdades notables.

a)
$$\frac{x^2-4}{x^2-4x+4} =$$

b)
$$\frac{x^2 - 10x + 5^2}{x^2 - 25} =$$