Introducción a la Lógica y la Computación - Estructuras de orden - Práctico 1: Relaciones.

2024

Villar Pedro

- (1) Determine si la relación dada es una relación de equivalencia sobre $\{1, 2, 3, 4, 5\}$. Si la relación es de equivalencia, indique las clases de equivalencia.
 - (a) $\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1)\}$
 - (b) $\{(1,1),(2,2),(3,3),(4,4)\}$
 - (c) $\{(x,y)|1 \le x \le 5, 1 \le y \le 5\}$

Solución

Recordemos la definición:

Una relación es de equivalencia si satisface las propiedades de reflexividad, simetría y transitividad.

- (a) La relación es de equivalencia. Las clases de equivalencia son $\{1,3\},\{2\},\{4\},\{5\}$. Prueba: la relación es reflexiva ya que $(x,x) \in R$ para todo $x \in \{1,2,3,4,5\}$, la relación es simétrica ya que si $(x,y) \in R$ entonces $(y,x) \in R$ y la relación es transitiva ya que si $(x,y) \in R$ y $(y,z) \in R$ entonces $(x,z) \in R$.
- (b) La relación no es de equivalencia. Prueba: la relación no es simétrica ya que $(1,3) \in R$ pero $(3,1) \notin R$.
- (c) La relación no es de equivalencia. Prueba: la relación no es simétrica ya que $(1,2) \in R$ pero $(2,1) \notin R$.
- (2) Determine si las siguientes relaciones sobre Z son reflexivas, simétricas, antisimétricas o transitivas:
 - (a) $(x,y) \in R \text{ si } x^2 = y^2$
 - (c) $(x,y) \in R \text{ si } x \geq y$
 - (b) $(x,y) \in R \text{ si } x > y$
 - (d) $(x,y) \in R \text{ si } x \neq y$

Solución

- (a) La relación es reflexiva, simétrica y transitiva. Prueba: la relación es reflexiva ya que $x^2 = x^2$ para todo $x \in \mathbb{Z}$, la relación es simétrica ya que si $x^2 = y^2$ entonces $y^2 = x^2$ y la relación es transitiva ya que si $x^2 = y^2$ y $y^2 = z^2$ entonces $x^2 = z^2$.
- (c) La relación es reflexiva, antisimétrica y transitiva. Prueba: la relación es reflexiva ya que $x \ge x$ para todo $x \in \mathbb{Z}$, la relación es antisimétrica ya que si $x \ge y$ y $y \ge x$ entonces x = y y la relación es transitiva ya que si $x \ge y$ y $y \ge z$ entonces $x \ge z$.
- (b) La relación es irreflexiva, antisimétrica y transitiva. Prueba: la relación es irreflexiva ya que $x \not< x$ para todo $x \in \mathbb{Z}$, la relación es antisimétrica ya que si x > y y y > x entonces x = y y la relación es transitiva ya que si x > y y y > z entonces x > z.
- (d) La relación es irreflexiva, simétrica y transitiva.

Prueba: la relación es irreflexiva ya que $x \neq x$ para todo $x \in \mathbb{Z}$, la relación es simétrica ya que si $x \neq y$ entonces $y \neq x$ y la relación es transitiva ya que si $x \neq y$ y $y \neq z$ entonces $x \neq z$.

(3) Utilizando las respuestas del ejercicio (2) determine para cada caso si la relación es de equivalencia y/o de orden. Recuerde que una relación de orden debe ser reflexiva, antisimétrica, y transitiva.

Solución

- (a) La relación es de equivalencia.
 - Prueba: la relación es reflexiva ya que $x^2 = x^2$ para todo $x \in \mathbb{Z}$, la relación es simétrica ya que si $x^2 = y^2$ entonces $y^2 = x^2$ y la relación es transitiva ya que si $x^2 = y^2$ y $y^2 = z^2$ entonces $x^2 = z^2$.
- (c) La relación es de orden.
 - Prueba: la relación es reflexiva ya que $x \ge x$ para todo $x \in \mathbb{Z}$, la relación es antisimétrica ya que si $x \ge y$ y $y \ge x$ entonces x = y y la relación es transitiva ya que si $x \ge y$ y $y \ge z$ entonces $x \ge z$.
- (b) La relación no es de orden ni de equivalencia.
 - Prueba: la relación no es reflexiva ya que $x \not< x$ para todo $x \in \mathbb{Z}$, la relación es antisimétrica ya que si x > y y y > x entonces x = y pero no es reflexiva, la relación es transitiva ya que si x > y y y > z entonces x > z pero no es reflexiva.
- (d) La relación no es de orden ni de equivalencia.
 - Prueba: la relación no es reflexiva ya que $x \neq x$ para todo $x \in \mathbb{Z}$, la relación es simétrica ya que si $x \neq y$ entonces $y \neq x$ pero no es reflexiva, la relación es transitiva ya que si $x \neq y$ y $y \neq z$ entonces $x \neq z$ pero no es reflexiva.
- (4) Sea A un conjunto y f una función definida en A. Probar que la relación $\{(x,y) \in A \times A | f(x) = f(y)\}$ es una relación de equivalencia sobre A. Comparar con 2 a.

Solución

- Reflexividad: f(x) = f(x) para todo $x \in A$ por lo que $(x, x) \in R$ para todo $x \in A$.
- Simetría: Si f(x) = f(y) entonces f(y) = f(x) por lo que $(x, y) \in R$ implica $(y, x) \in R$.
- Transitividad: Si f(x) = f(y) y f(y) = f(z) entonces f(x) = f(z) por lo que $(x, y) \in R$ y $(y, z) \in R$ implica $(x, z) \in R$.

Por lo tanto, la relación es de equivalencia.

- (5) Utilizando como motivación con los ejercicios 2 b y 2c, responda:
 - (a) Sea R una relación irreflexiva y transitiva (relación de orden parcial estricto") sobre un conjunto A. Probar que $R \cup$ Igualdad A es una relación de orden parcial sobre A.
 - (b) ¿Cómo se podrá obtener una relación de orden parcial estricto a partir de una relación de orden parcial?

Solución

- (a) Sea R una relación irreflexiva y transitiva sobre un conjunto A. Para probar que $R \cup$ Igualdad A es una relación de orden parcial sobre A debemos probar que es reflexiva, antisimétrica y transitiva.
 - Reflexividad: x = x para todo $x \in A$ por lo que $(x, x) \in R \cup$ Igualdad A para todo $x \in A$.
 - Antisimetría: Si $(x, y) \in R \cup$ Igualdad $A \cup (y, x) \in R \cup$ Igualdad $A \in R \cup R \cup R \cup R$ entonces $(x, y) \in R \cup R \cup R \cup R$ o $x = y \cup R \cup R \cup R$ por lo que x = y.
 - Transitividad: Si $(x,y) \in R \cup$ Igualdad $A y (y,z) \in R \cup$ Igualdad $A \in R \cup$ Igualdad

Por lo tanto, $R \cup$ Igualdad $_A$ es una relación de orden parcial sobre A.

- (b) Para obtener una relación de orden parcial estricto a partir de una relación de orden parcial debemos eliminar la reflexividad. Es decir, si R es una relación de orden parcial sobre un conjunto A entonces R\ Igualdad A es una relación de orden parcial estricto sobre A.
- (6) Liste los pares de la relación de equivalencia sobre $\{1, 2, 3, 4\}$ definida por la partición dada. También señale las clases de equivalencia [1], [2], [3] y [4].

- (a) $\{1,2\},\{3,4\}$
- (b) $\{1\}, \{2\}, \{3\}, \{4\}$

Solución

- (a) La relación de equivalencia es $\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,4),(4,3)\}$. Las clases de equivalencia son $[1] = \{1,2\}$ y $[2] = \{3,4\}$.
- (b) La relación de equivalencia es $\{(1,1),(2,2),(3,3),(4,4)\}$. Las clases de equivalencia son $[1]=\{1\}$, $[2]=\{2\},[3]=\{3\}$ y $[4]=\{4\}$.
- (7) Sea R la relación "Fulano no es más viejo que Mengano" sobre un conjunto de personas A.
 - (a) De un ejemplo, puede ser ficticio, de un conjunto A de personas en los cuales esa relación no sea un orden parcial.
 - (b) Explique qué propiedad falla para que sea un orden parcial.

Solución

- (a) Sea $A = \{Fulano, Mengano\}$ y la relación $R = \{(Fulano, Mengano)\}$. La relación no es un orden parcial ya que no es reflexiva.
- (b) La propiedad que falla es la reflexividad. La relación no es reflexiva ya que Fulano no es más viejo que Mengano pero Mengano no es más viejo que Fulano.