Sztochasztikus Petri-hálók

Teljesítmény és megbízhatóság modellezés

Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Motiváció

- Eddig: Funkcionális, logikai viselkedés modellezés
 - Biztonsági, élőségi jellegű követelmények
 - Állapotok vagy átmenetek bekövetkezése, elérhetősége
- Bővítés: Extra-funkcionális, kvantitatív modellezés
 - Teljesítmény követelmények
 - Megbízhatósági (szolgáltatásbiztonsági) követelmények
- Ezen követelmények jellemzői
 - Időbeliség (pl. feldolgozási idők, válaszidők, határidők)
 - Valószínűségek (pl. hiba, üzenetvesztés valószínűsége)
- Informatikai rendszerek modelljei
 - Diszkrét állapottér
 - Folytonos idő

Egy példa

Egyszerű Petri-háló modell:

• Időzítéseket is tartalmazó modell:

Hány orvos elég az elfogadható kiszolgáláshoz?

Milyen modelleket alkalmazunk majd?

Leképzések

Valószínűségekkel jellemezhetően bekövetkező jelenségek modellezése, az idő paraméter függvényében Mérnöki modellek

Magasabb szintű formalizmusok: SPN, GSPN, DSPN

Alapszintű matematikai formalizmusok:
Sztochasztikus folyamat, CTMC

Milyen modelleket alkalmazunk majd?

Petri-hálók kiterjesztései időzítések és valószínűségek tekintetében Leképzések

Mérnöki modellek

Magasabb szintű formalizmusok: SPN, GSPN, DSPN

Alapszintű matematikai formalizmusok:
Sztochasztikus folyamat, CTMC

Sztochasztikus Petri-hálók

- Alapkoncepció: Az idő modellezése
 - Az időt a tranzíciók tüzeléséhez kötjük: a tüzeléssel leírható tevékenység, történés, állapotváltozás idejét modellezzük
- Egy Petri-hálót sztochasztikusnak nevezünk, ha
 - Minden tranzíciójához tüzelési időt (késleltetést) rendelünk
 - A tüzelési késleltetés véletlen: valószínűségi változóval írható le, egy adott eloszlás szerint adja meg a késleltetési időt
 - A tüzelési késleltetés statisztikailag független a többi tranzíció késleltetési idejétől
- Sztochasztikus Petri-háló osztályok áttekintése
 - Sztochasztikus Petri-háló (SPN)
 - Általánosított sztochasztikus Petri-háló (GSPN)
 - Determinisztikus és sztochasztikus Petri-háló (DSPN)

Sztochasztikus Petri-hálók (SPN)

- SPN: Stochastic Petri Net
- Az egyszerű Petri-hálók kiterjesztése
 - A tranzíciókhoz véletlen tüzelési késleltetést rendelünk:
 A késleltetés negatív exponenciális valószínűségi eloszlásfüggvénnyel jellemezhető
 - Jelölés: Egy T_i tranzíció d_i késleltetési idejéhez tartozó negatív exponenciális eloszlás paramétere λ_i (poz. valós szám)
 - Ez alapján:

$$P\left\{d_{i} \leq t\right\} = 1 - e^{-\lambda_{i}t} \qquad P\left\{d_{i} > t\right\} = e^{-\lambda_{i}t}$$

- Grafikus jelölés
 - Tranzíciók mint üres téglalapok
 - Neg. exp. eloszlás paramétere: tranzíció tüzelési gyakorisága, "rátája"

A tüzelési szemantika változása

- Engedélyezettség feltétele: Nem változik
 - Minden bemenő él végén lévő helyen legalább annyi token van, mint amennyi az él súlya
- Tüzelési szabály: Egy tranzíció tüzelhet egy t+d időpillanatban, ha
 - a t időpontban engedélyezetté vált,
 - éppen d késleltetési időt sorsolt a hozzá tartozó eloszlásfüggvény szerint, és
 - a [t, t+d) időtartományban folyamatosan engedélyezett volt (közben nem vesztette el engedélyezettségét)
- Tüzelés után, az új jelölésben az engedélyezetté váló tranzíciók új késleltetéseket sorsolnak

Mi történik, ha több tranzíció engedélyezett?

- Az a tranzíció tüzel, amelynek hamarabb letelik a sorsolt késleltetési ideje
 - Engedélyezett tranzíciók versenyben vannak
 - A sorsolt idők alapján (valószínűségi) döntés van
- Az engedélyezetten maradó tranzíciók helyzete egyikük tüzelése után:
 - A tüzeléskor új jelölés alakul ki
 - Mik lesznek ekkor az új késleltetések?
 - A késleltetési idő exponenciális eloszlása miatt fennáll az "emlékezetnélküliség" (Markov-tulajdonság)
 - A tüzelésig hátralévő idő statisztikailag független az engedélyezetté válás óta eltelt időtől
 - Az engedélyezett tranzíciók tüzelésig hátralévő ideje ugyanúgy exponenciális eloszlású marad

Elérhetőségi gráf: Konkurens tranzíciók

- Ha T₁ tüzel d₁≥0 késleltetéssel, akkor mi lesz T₂ tüzelésének késleltetési ideje az új jelölésben?
 - $-\lambda_2$ paraméterű exponenciális eloszlású marad, az eredeti eloszlásfüggvény Markov-tulajdonsága miatt

Elérhetőségi gráf: Konfliktusban lévő tranzíciók

- Mi lesz az m₀ jelölés tartási ideje?
 - Késleltetések minimuma (két exp. eloszlásfüggvényű valószínűségi változó minimuma) határozza meg
 - Tétel: Ez is exp. eloszlásfüggvényű, $\lambda_1 + \lambda_2$ paraméterrel
 - Tehát a tartási idő exponenciális eloszlásfüggvénnyel jellemezhető, aminek paramétere $\lambda_1 + \lambda_2$
 - A tartási idő várható értéke $1/(\lambda_1 + \lambda_2)$

Általánosítás

- Ha n számú, λ_1 , λ_2 , ..., λ_n paraméterű tranzíció engedélyezett egy m jelölésben, akkor
 - Az m jelölés tartási idejét jellemző exponenciális eloszlás paramétere:

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n$$

Az m jelölés elhagyásának várható ideje:

$$\frac{1}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$$

 Annak a valószínűsége, hogy a λ₁ paraméterű tranzíció tüzel először:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$$

Jellemzők összefoglalása az SPN-re

- Az új jelölés kialakulásához szükséges idő exponenciális eloszlású
 - Konfliktusban lévő vagy konkurens tranzíciók esetén is
- Az SPN időzítéssel ellátott elérhetőségi gráfja egy folytonos idejű Markov-lánc (CTMC)
 - Struktúrája független a tranzíciók paramétereinek értékétől
 - Állapotátmeneti gyakoriság: a tüzelő tranzíció λ paramétere
 - A CTMC megoldási módszerei használhatók az SPN analíziséhez
- Az analízis eredményei
 - Állandósult állapotbeli (aszimptotikus) megoldás (biztosan létezik, ha az SPN korlátos és megfordítható):
 - Jelölések állandósult állapotbeli valószínűsége
 - Tokenek számának várható értéke egy-egy helyen
 - Tranzíciók tüzelési gyakorisága
 - Tranziens megoldás:
 - Jelölések valószínűségi időfüggvényei

Példa: M/M/1 sor

- Egy szerver szolgál ki sorban álló kéréseket
- Exponenciális eloszlásfüggvénnyel jellemezhető:
 - Kérések beérkezésének időközei
 - Kiszolgálási idő

- Meghatározható (különféle paraméterek mellett):
 - Szerver kihasználtsága
 - Várakozók számának alakulása

Példa: Komponens meghibásodás és javítás

- Komponens állapotok
 - Hibamentes U vagy hibás D állapot
- Állapotok változása
 - Gyakorlati tapasztalat elektronikai komponensekre:
 A hibamentes állapot tartási ideje exponenciális eloszlással jellemezhető a tipikus használati tartományban
 - Az exp. eloszlásfüggvény paramétere: Meghibásodási gyakoriság, λ
 - A javítási időt is exp. eloszlásúnak tekintik (egyszerűsítés)
 - Az exp. eloszlásfüggvény paramétere: Javítási tényező, μ
- A modell:

Példa: Megbízhatósági modellezés

- Két szerverből (A, B) álló rendszer:
 - Bármelyik szerver meghibásodhat
 - A szerverek külön-külön vagy együtt is javíthatók
- Rendszerszintű állapotok: Mely szerverek jók (AB, A, B, N)
- Állapotátmenetek (exponenciális eloszlású időzítés):
 - Az A szerver meghibásodása:
 - A B szerver meghibásodása:
 - Egy szerver javítása:
 - Teljes rendszer javítása:

λ_A meghibásodási gyakoriság

λ_B meghibásodási gyakoriság

μ₁ javítási tényező (gyakoriság)

μ₂ javítási tényező (gyakoriság)

Példa: Modell egyszerűsítés azonos paraméterű konkurens tranzíciókra

- Jelölésfüggő paraméterek időzített tranzíciókhoz
 - Modellezési erőt nem növel
 - Bemenő élhez kapcsolódó hely jelölésétől függhet az exponenciális eloszlásfüggvény paramétere

- Két (vagy több) azonos típusú szerver
- Egy-egy szerver meghibásodási tényezője λ
 - Azaz λ paraméterű exp. eloszlásfüggvény alapján sorsolható idő eltelte után hibásodik meg
 - A szerverek függetlenül hibásodhatnak meg
- A hiba detektálási ideje δ paraméterű exp. eloszlásfüggvénnyel jellemezhető
 - Egyszerre több szerver hibája is detektálható
- A hiba javítási ideje μ paraméterű exp. eloszlásfüggvénnyel jellemezhető
 - Egyszerre több szerver is javítható (nem csak egy szerelő van)

Az SPN modell:

• Az elérhetőségi gráf: (healthy, faulty, repair) jelölésre

• Az elérhetőségi gráf mint CTMC: (healthy, faulty, repair)

További sztochasztikus Petri-háló osztályok

Általánosított sztochasztikus Petri-hálók

- GSPN: Generalized Stochastic Petri Net
- Kiterjesztések SPN-hez képest
 - Azonnali tranzíciók
 - Logikai függőségek modellezésére
 - Prioritások azonnali tranzíciók között
 - Konfliktusok feloldására
 - Tiltó élek
 - Őrfeltételek
 - Egyszerűsítés (élek helyett predikátumok)
- Az elérhetőségi gráf továbbra is CTMC
 - Eltűnő (vanishing) jelölések
 - Adott ideig fennálló (tangible) jelölések

GSPN formális definíció

GSPN=(P, T, I, O, m_0 , H, Π , L, G)

- H⊆P×T tiltó élek
- Π : $T \rightarrow Z$ prioritások
 - Időzített tranzíciók: 0 a prioritás
 - Azonnali tranzíciók: >0 a prioritás;
 ez alapján végezhető konfliktusfeloldás közöttük
- L: T→R⁺ a tranzíciók paraméterei
 - Időzített tranzíciók esetén: A késleltetési idő sorsolásához a negatív exp. valószínűségi eloszlásfüggvény paramétere
 - Azonnali tranzíciók esetén: Súlyok az azonos prioritású, konfliktusban lévő engedélyezett tranzíciók közötti választáshoz
- G: T→Boole-fv tranzíciókhoz rendelt őrfeltételek
 - Az adott átmenet engedélyezetté válásához igaznak kell lennie
 - A jelöléseken értelmezett, pl. [m(P)>2], ahol m(P) a P hely jelölése

GSPN példa

- Több processzor (proc)
 - Adott gyakoriságú kommunikációs igény (access)
- Közös buszon (bus) két kommunikációs egység (cm1, cm2)
 - Adott valószínűséggel cm1 vagy cm2 használata
- Elemezhető:
 - Várakozók átlagos száma az egyes kommunikációs egységekre
 - Busz kihasználtság (foglaltság)
 - Kommunikációs egységek kihasználtsága

- ...

Determinisztikus és sztochasztikus Petri-hálók

- DSPN: Deterministic and Stochastic Petri Net
- További kiterjesztések:
 - Determinisztikus késleltetéssel (tüzelési idővel) ellátott tranzíciók is lehetségesek
 - Konstans késleltetést jelent a tranzíció tüzeléséhez
 - Használható a determinisztikus idejű aktivitások modellezésére (pl. javítási idő a megbízhatósági modellezésben)
 - Jelölés: Befeketített vastag téglalap
- Az analízis hatékonyságának feltétele:
 - Egy jelölésben csak egy determinisztikus időzítésű tranzíció legyen engedélyezett
 - Ez esetben az elérhetőségi gráf Markovi analízissel vizsgálható marad

Általános időzített Petri-hálók (TPN)

- Általános eloszlásfüggvény adható a tranzíciók tüzelési idejének (késleltetésének) sorsolásához
- Általános esetben az elérhetőségi gráf nem CTMC
 - Struktúrája függ az eloszlások paramétereitől
 - Markovi analízissel nem vizsgálható
 - Speciális esetekre van csak analitikus megoldás
 - Szimulációval való megoldás szokásos
 - Nehéz, ha eltérő a késleltetések nagyságrendje
- Nem triviális a késleltetések újrasorsolásának szemantikája egy-egy új jelölésben
 - Mivel az eloszlásfüggvény nem emlékezetnélküli, van jelentősége annak, hogy van-e és milyen az újrasorsolás

Az időzített tranzíciók általános szemantikája

- Hogyan történik a konfliktusfeloldás?
 - Előválasztás (preselection): A késleltetéstől független a döntés
 - Verseny (race): A sorsolt késleltetési idő dönt (modellekben gyakoribb)
- Mi történik tüzelés után egy-egy új jelölés kialakulásakor?
 - A modellezett tevékenység folytatódik, vagy újra kell kezdeni

Szemantika: Késleltetés sorsolása az új jelölésben	Tranzíció engedélyezett marad az új jelölésben	Tüzelése előtt az engedélyezettségét elvesztő tranzíció újra engedélyezetté válik
"Race with resampling"	Újrasorsolás az eredeti eloszlás szerint: "újrakezd"	Újrasorsolás az eredeti eloszlás szerint: "újrakezd"
"Race with enabling memory"	Újrasorsolás a maradék idő szerint: "folytatódik"	Újrasorsolás az eredeti eloszlás szerint: "újrakezd"
"Race with age memory"	Újrasorsolás a maradék idő szerint: "folytatódik"	Újrasorsolás a maradék idő szerint: "folytatódik"

További kiterjesztés: Reward függvények

- Cél: Haszon (vagy költség, ha negatív) függvények megadása
- Ráta jellegű reward (rate reward):
 - Jelöléseken értelmezett, haszon/időegység értéket ad meg
 - Pl.: Ha jó a szerver, 300 Ft/óra haszon, egyébként 200 Ft/óra kötbér: if (m(healthy)>0) then ra=300 else ra=-200
 - A haszon számítása: Adott időintervallumra a reward ráta idő szerinti integrálásával
- Impulzus jellegű reward (impulse reward):
 - Egy-egy tranzíció tüzeléséhez adja meg a haszon/tüzelés értéket
 - Példa: Egy-egy javítás költsége 500 Ft:

```
if (fire(Repair)) then ri=-500
```

 A haszon számítása: Adott időintervallumra a tüzelések száma alapján összegezhető

Stochastic Reward Network: Möbius

Stochastic Reward Network: Möbius

Összefoglalás

- Háttér: Sztochasztikus folyamatok és modellek
 - Folytonos idejű Markov-láncok
- Petri-háló kiterjesztések
 - SPN: negatív exponenciális eloszlásfüggvény szerint időzített tranzíciók
 - -GSPN: azonnali tranzíciók is
 - DSPN: determinisztikus időzítésű tranzíciók is
 - TPN: általános eloszlásfüggvény szerint időzített tranzíciók
- Reward (haszon) függvények

Mintapélda

Hibrid felhő infrastruktúra: A feladat

• Hogyan modellezhető a működés?

Hibrid felhő infrastruktúra: A modell

Hibrid felhő infrastruktúra: A modell

Hibrid felhő infrastruktúra: A paraméterek

