high throughput screening

	NCT Number	Title	Authors	Description	Identifier	Dates
1	pubmed:36058261	Small-molecule MX-C2/3 suppresses non-small cell lung cancer progression via p53 activation	Liangping Li Wenqing Du Hui Wang Yufei Zhao Zetian Huang Yan Peng Shulan Zeng Guohai Zhang	p53 inactivation is a common feature in non-small cell lung cancer (NSCLC) resulting in NSCLC malignant transformation. Targeting serine 392 phosphorylation to restore p53 anticancer activity has proven to be an effective therapeutic strategy against NSCLC. A synthetic p53 activator, NA-17, has been developed that shows promise in preclinical models of NSCLC. However, NA-17 exhibits limited therapeutic efficacy in oncogene-driven tumors as well as relatively high toxicity to normal cells. It is	pmid:36058261 doi:10.1016/j.cbi.2022.110142	Sun, 04 Sep 2022 06:00:00 -0400
2	pubmed:36060092	Generation of dual-gRNA library for combinatorial CRISPR screening of synthetic lethal gene pairs	Shan Tang Xue Wu Jinghui Liu Qiongsi Zhang Xinyi Wang Shuai Shao Birkan Gokbag Kunjie Fan Xiaoqi Liu Fuhai Li Lijun Cheng Lang Li	Combinatorial CRISPR screening is useful for investigating synthetic lethality (SL) gene pairs. Here, we detail the steps for dual-gRNA library construction, with the introduction of two backbones, LentiGuide_DKO and LentiCRISPR_DKO. We describe steps for in vitro screening with 22Rv1-Cas9 and SaOS2-Cas9 cells followed by sequencing and data analysis. By introducing two backbones, we optimized the library construction process, facilitated standard pair-end sequencing, and provided options of	pmid:36060092 pmc:PMC9428847 doi:10.1016/j.xpro.2022.101556	Mon, 05 Sep 2022 06:00:00 -0400
3	pubmed:36060768	Study on microbial community of "green-covering" <i>Tuqu</i> and the effect of fortified autochthonous <i>Monascus purpureus</i> on the flavor components of light-aroma-type <i>Baijiu</i>	Liping Zhu Lanqi Li Qiang Yang Liang Chen Lei Zhang Gang Zhang Bin Lin Jie Tang Zongjie Zhang Shenxi Chen	"Green-covering" Tuqu (TQ), as one of Xiaoqu, is a special fermentative starter (also known as Jiuqu in Chinese) that originated in southern China and is characterized by a layer of green mold covering (Aspergillus clavatus) the surface and (sometimes) with a red heart. It plays a vital role in producing light-aroma-type Baijiu (LATB). However, to date, the microbiota that causes red heart of TQ remain largely unexplored, and it is still unclear how these microbiota influence on the quality of	pmid:36060768 pmc:PMC9434108 doi:10.3389/fmicb.2022.973616	Mon, 05 Sep 2022 06:00:00 -0400