MN-2 August 2010 QE

MN-2 page 1 of 1

The Si p^+ -n step-junction diode pictured below with a cross-sectional area A and maintained at room temperature has the following special properties:

- (1) $W_N \ll L_P$, where W_N is the total width of the *n*-region and L_P is the hole diffusion length is the quasineutral *n*-region.
- (2) For all biases of interest, x_n , the *n*-side depletion width, is less than W_N .
- (3) $\Delta p_n = 0$ at $x = W_N$.

Part A

Complete the following steps to obtain an $I-V_A$ expression for the diffusion current (the ideal diode current) expected from the diode.

- (10%) (a) Given special property #1, write down the simplest form of the minority carrier diffusion equation that must be solved to obtain $\Delta p_n(x)$ in the quasineutral *n*-region.
- (10%) (b) What is the general solution to the part (a) equation?
- (10%) (c) Write down the boundary conditions that must be applied to determine the specific $\Delta p_n(x)$ solution for the problem at hand.
- (30%) (d) Invoking appropriate simplifications, complete the derivation of the diffusion current (the ideal-diode current) expected from the diode.

Part B

The diode pictured above is subsequently illuminated such that G_L electron-hole pairs/cm³-sec are generated uniformly throughout the diode.

- (15%) (a) Derive an expression for the additional current, I_{La} , flowing in the diode because of photogeneration in the depletion region.
- (25%) (b) Derive an expression for the additional current, I_{Lb} , flowing in the diode because of photogeneration in the quasineutral n-region. NOTE: Photogeneration in the quasineutral n-region perturbs the minority carrier distribution in the region.

