Politechnika Świętokrzyska Wydział Elektrotechniki, Automatyki i Informatyki Bezpieczeństwo Infrastruktury Sieciowej **Projekt** Skład zespołu: Dawid Jaszczyk, Diana Nowak, Dawid Bujak Grupa 1ID24A Data: 10.10.2023

Temat: Projekt infrastruktury sieciowej prywatnej

przychodni lekarskiej (parter i piętro)

Repozytorium: https://github.com/Dawol1/PrzychodniaBIS

Spis treści

1.	Cel projektu	4
2.	Harmonogram prac	4
3.	Założenia sieci	4
4.	Opis zagrożeń	6
5.	Podział na podsieci	6
6.	·	
7.		
	Radius	
	DNS	
	Firewall	
	ACL	
	Logowanie do R1	22
	SSH	22
	NTP	23
	AAA	24
	Port Monitor	24
	RIP	25
	OSPF	25
	STP	
	Etherchannel	
Sp	pis ilustracji	
Ry	rsunek 3.1 Schemat sieci	5
Ry	sunek 6.1 DHCP R1	15
•	rsunek 6.2 DHCP R2	
•	rsunek 6.3 DHCP R3	
•	rsunek 7.1 Radius	
•	sunek 7.2 Syslog	
•	sunek 7.3 DNS - konfiguracja	
•	sunek 7.4 Uruchomiona strona	
	sunek 7.5 Sprawdzenie działania firewall	
•	sunek 7.6 Efekt działania firewall	
•	rsunek 7.7 ACL - ta sama podsieć	
	sunek 7.8 ACL - inna podsieć	
	sunek 7.9 ACL - drukarka w tej samej podsieci	
-	rsunek 7.10 ACL - drukarka w innej podsieci	
•	rsunek 7.11 Zabezpieczenie dostępu	
Ry	rsunek 7.12 SSH	22

Rysunek 7.13 NTP - konfiguracja	23
Rysunek 7.14 NTP - sprawdzenie	23
Rysunek 7.15 AAA	24
Rysunek 7.16 Port monitor - konfiguracja	24
Rysunek 7.17 Port monitor - sprawdzenie działania	25
Rysunek 7.18 Konfiguracja RIP	25
Rysunek 7.19 Konfiguracja OSPF	25
Rysunek 7.20 STP	26
Rysunek 7.21 EtherChannel	26

1. Cel projektu

W ramach projektu z zajęć "Bezpieczeństwo infrastruktury sieciowej" należy przygotować projekt sieci organizacji w programie Cisco Packet Tracer. Sieć ta musi odzwierciedlać prawdziwą topologię organizacji, czyli fizyczne odzwierciedlenie sprzętu komputerowego, połączeń oraz konfiguracji. Sieć musi zawierać także kilka protokołów zabezpieczających ją.

2. Harmonogram prac

Data	Planowane wykonane czynności
10.10.2023	Ustalenie tematu projektu oraz jego zakresu, a
	także harmonogramu.
14.11.2023	Określnie wymagań, jakie mogą czekać
	wykreowaną sieć. Gotowy schemat
	infrastruktury sieciowej w programie Cisco
	Packet Tracer. Przydzielenie sieci, podsieci,
	zaadresowanie urządzeń, konfiguracja serwera
	DHCP, konfiguracja poziomów dostępowych na
	urządzeniach sieciowych, dynamiczne protokoły
	routingu. Weryfikacja z wymagania projektu
	oraz z harmonogramem.
19.12.2023	Dalszy rozwój projektu. Konfiguracja różnych
	usług, m.in. Syslog, NTP, AAAA, listy ACL,
	VLANY, RIP, OSPF. Weryfikacja z wymagania
	projektu oraz z harmonogramem.
16.01.2023	Weryfikacja działania skonfigurowanego
	projektu sieci, a także weryfikacja z
	wymaganiami i harmonogramem. Prezentacja
	oraz obrona gotowego projektu.

3. Założenia sieci

Naszym tematem projektowanej topologii sieci jest przychodnia medyczna. W tej organizacji zakładamy, że sprzęt komputerowy czy sieciowy będzie rozmieszczony na parterze oraz 1 piętrze. Topologia przedstawia się następująco:

Rysunek 3.1 Schemat sieci

Mamy tutaj podział na 2 piętra.

Parter:

- Księgowość
 - o **SO**
 - o PCO
 - o PC1
 - o Printer0
- Baza danych/archiwum
 - o Server0
 - o **S1**
 - o S9
- Gabinet1
 - o **S2**
 - o PC3
 - o PC4
 - o Printer1
- Obsługa klienta / rejestracja
 - o S3
 - o PC5
 - o PC6
 - PC7
 - o Printer2
- R0

Pierwsze piętro:

- Administracja
 - o R3
 - o **S6**
 - o **S7**
 - o \$8
 - o PC2

- Gabinet 2
 - o **S4**
 - o Laptop0
 - o Laptop1
 - o Printer3
- Gabinet 3
 - o **S5**
 - o Laptop2
 - o Laptop3
 - o Printer4
- R1
- R3

Pomiędzy parterem a pierwszym piętrem występuje łączenie poprzez routery.

4. Opis zagrożeń

Jak każda infrastruktura, tworzony projekt też będzie podatny na przeróżne zagrożenia.

Pierwszym potencjalnym zagrożeniem jest dostęp osób z zewnątrz do serwera a tym samym do danych medycznych.

Drugim potencjalnym zagrożeniem są ataki DDoS, którą mogą obciążyć całą sieć, spowolnić ją lub nawet doprowadzić do awarii.

Kolejnym potencjalnym zagrożeniem jest nieautoryzowany dostęp pracowników. Nie każdy pracownik musi mieć dostęp do wszystkiego, a jedynie do niezbędnych zasobów. Należy więc zadbać o to, aby uprawnienia były odpowiednio nadane. W sieci przewidywane są także komputery dla pacjentów, które szczególnie trzeba zabezpieczyć przed ewentualną niechcianą ingerencją.

Innym potencjalnym zagrożeniem jest ryzyko przechwycenia danych pacjentów, ze względu na brak szyfrowania komunikacji.

Jeszcze innym zagrożeniem jest nieautoryzowany dostęp. Brak odpowiednich mechanizmów uwierzytelniania i autoryzacji może prowadzić do nieautoryzowanego dostępu do danych pacjentów.

Wszystkie zagrożenia są dosyć niebezpieczne i mogą być fatalne w skutkach. Należy więc zadbać o prawidłowe zabezpieczenie, co pozwoli na ich wyeliminowaniem lub zminimalizowanie.

5. Podział na podsieci

W projektowanej sieci zastosowaliśmy następujący podział:

Parter

o Adres sieci: 192.168.1.0

o Maska: 255.255.255.0

Podział na podsieci:

• Obsługa klienta / rejestracja

o Adres sieci: 192.168.1.0

o Maska: 255.255.255.248

Księgowość

o Adres sieci: 192.168.1.8

Maska: 255.255.255.248

• Baza danych / archiwum

o Adres sieci: 192.168.1.24

o Maska: 255.255.255.248

• Gabinet 1

o Adres sieci: 192.168.1.16

o Maska: 255.255.255.248

• Połączenie pomiędzy routerami

o Adres sieci: 192.168.1.32

o Maska: 255.255.255.252

• Połączenie pomiędzy routerami

o Adres sieci: 192.168.1.36

o Maska: 255.255.255.248

• Pierwsze piętro

o Adres sieci: 192.168.2.0

o Maska: 255.255.255.0

Podział na podsieci:

• Gabinet 1

o Adres sieci: 192.168.2.0

o Maska: 255.255.255.248

Księgowość

o Adres sieci: 192.168.2.8

o Maska: 255.255.255.248

Połączenie pomiędzy routerami

o Adres sieci: 192.168.2.16

o Maska: 255.255.255.248

Administracja

o Adres sieci: 192.168.2.24

o Maska: 255.255.258

6. Konfiguracja urządzeń

Server0

Brama: 192.168.1.25Serwer DNS: 0.0.0.0

FastEthernet0

Adres:192.168.1.26Maska: 255.255.255.252

- Uruchomiony serwer DNS: strona.pl na adresie 192.168.1.26
- Uruchomiony firewall możliwość dostępu do strony ale brak możliwości pingowania serwera
- Uruchomione AAA, serwer Radius

Nazwa hosta: R1Adres: 192.168.1.25

o Typ: Radius

o Hasło/klucz: cisco

Użytkownicy

Nazwa: userHasło: cisco

- Uruchomiony serwer Syslog
- Uruchomiony serwer NTP

Klucz: 1Hasło: cisco

PC0

Brama: 192.168.1.9

• Serwer DNS: 192.168.1.26

FastEthernet0

Adres:192.168.1.10Maska: 255.255.255.248

PC2

• Brama: 192.168.1.9

• Serwer DNS: 192.168.1.26

FastEthernet0

Adres:192.168.1.11Maska: 255.255.258.248

Printer0

• Brama: 192.168.1.9

Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.1.10

o Maska: 255.255.255.248

S0

VLAN1

Adres:192.168.1.13Maska: 255.255.258.248

Konfiguracja ssh

Nazwa : userHasło: haslo

- Konfiguracja Port Monitor z portów FastEthernet3/1 i FastEthernet1/1 na port FastEthernet2/1.
- Hasło: haslo

Printer0

• Brama: 192.168.1.25

• Serwer DNS: 192.168.1.26

FastEthernet0

Adres:192.168.1.16Maska: 255.255.258.248

S1

VLAN1

Adres:192.168.1.27Maska: 255.255.258.248

Konfiguracja ssh

Nazwa : userHasło: haslo

Hasło: haslo

S2

VLAN1

Adres:192.168.1.22Maska: 255.255.258.248

Konfiguracja ssh

Nazwa : userHasło: haslo

Hasło: haslo

PC3

Brama: 192.168.1.17Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.1.18

o Maska: 255.255.255.248

PC4

- Brama: 192.168.1.17
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.19
 - o Maska: 255.255.258

Printer1

- Brama: 192.168.1.17
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.20
 - o Maska: 255.255.258

S3

- VLAN1
 - o Adres:192.168.1.6
 - o Maska: 255.255.255.248
- Konfiguracja ssh
 - o Nazwa: user
 - o Hasło: haslo
- Hasło: haslo

Printer1

- Brama: 192.168.1.1
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.5
 - o Maska: 255.255.255.248

PC5

- Brama: 192.168.1.1
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.2
 - o Maska: 255.255.255.248

PC6

- Brama: 192.168.1.1
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.3
 - o Maska: 255.255.255.248

PC7

- Brama: 192.168.1.1
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.1.4
 - o Maska: 255.255.255.248
- Zabroniony dostęp przez ACL (brak możliwość komunikacji z siecią, komputer dla pacjentów)

R1

- Ethernet0/0
 - o Adres:192.168.1.1
 - o Maska: 255.255.255.248
- Ethernet0/1
 - o Adres:192.168.1.9
 - o Maska: 255.255.255.248
- Ethernet0/2
 - o Adres:192.168.1.25
 - o Maska: 255.255.255.252
- Ethernet0/3
 - o Adres:192.168.1.17
 - o Maska: 255.255.255.248
- Ethernet0/4
 - o Adres:192.168.1.33
 - o Maska: 255.255.255.252
- Routing statyczny
 - o 192.168.2.0/24 przez port 192.168.1.34
- RIP
 - 0 192.168.1.0
- OSPF
 - 0 192.168.1.0
- ACL
 - o Numer listy: 1
 - Zabroniona komunikacja dla PC7 (komputer dla pacjentów)
 - Standard IP access list 1
 - o 10 deny host 192.168.1.4 (16 match(es))
 - 20 permit any (16 match(es))
 - Numer listy : 2
 - Zabroniona komunikacja z drukarkami poza tymi, które znajdują się w danej podsieci
 - Standard IP access list 2
 - o 10 deny host 192.168.1.12 (3 match(es))
 - 20 deny host 192.168.1.20 (7 match(es))
 - o 30 deny host 192.168.1.5
 - o 40 deny host 192.168.2.4
 - o 50 deny host 192.168.2.12

- 60 permit any (23 match(es))
- Synchronizacja z serwerem NTP
- Username: userHasło: cisco
- Hasło do trybu enable: cisco

R2

- Ethernet0/0
 - o Adres:192.168.1.34
 - o Maska: 255.255.255.252
- Ethernet0/1
 - o Adres:192.168.2.1
 - o Maska: 255.255.255.248
- Ethernet0/2
 - o Adres:192.168.2.9
 - o Maska: 255.255.255.248
- Ethernet0/3
 - o Adres:192.168.2.17
 - o Maska: 255.255.255.248
- Routing statyczny
 - o 192.168.1.0/24 przez port 192.168.1.33
 - o 192.168.2.24/29 przez port 192.168.2.18
- RIP
- 0 192.168.1.0
- 0 192.168.2.0
- OSPF
 - o **192.168.1.0**
 - 0 192.168.2.0
- ACL
 - Numer listy: 1
 - Zabroniona komunikacja dla PC7 (komputer dla pacjentów)
 - Standard IP access list 1
 - o 10 deny host 192.168.1.4 (32 match(es))
 - 20 permit any (39 match(es))Numer listy: 2
 - Zabroniona komunikacja z drukarkami poza tymi, które znajdują się w danej podsieci
 - Standard IP access list 2
 - o 10 deny host 192.168.1.12
 - o 20 deny host 192.168.1.20
 - o 30 deny host 192.168.1.5
 - 40 deny host 192.168.2.4 (4 match(es))
 - o 50 deny host 192.168.2.12 (4 match(es))
 - o 60 permit any (16 match(es))
- Synchronizacja z serwerem NTP
- Username: user
- Hasło: cisco

Hasło do trybu enable: cisco

R3

- Ethernet0/0
 - o Adres:192.168.2.18
 - o Maska: 255.255.255.252
- Ethernet1/0
 - o Adres:192.168.2.25
 - o Maska: 255.255.258
- Routing statyczny
 - o 192.168.1.0/24 przez port 192.168.2.17
- RIP
- 0 192.168.2.0
- OSPF
 - 0 192.168.2.0
- Synchronizacja z serwerem NTP
- Username: user
- Hasło: cisco
- Hasło do trybu enable: cisco

S6

- VLAN1
 - o Adres:192.168.2.27
 - o Maska: 255.255.255.248
- Hasło: haslo

PC2

- Brama: 192.168.2.17
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.2.26
 - o Maska: 255.255.255.248

S4

- VLAN1
 - o Adres:192.168.2.5
 - o Maska: 255.255.255.248
- Hasło: haslo

Printer3

- Brama: 192.168.2.1
- Serwer DNS: 192.168.1.26
- FastEthernet0
 - o Adres:192.168.2.4
 - o Maska: 255.255.255.248

Laptop1

• Brama: 192.168.2.1

• Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.2.3

o Maska: 255.255.255.248

Laptop0

• Brama: 192.168.2.1

• Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.2.2

o Maska: 255.255.255.248

S5

VLAN1

o Adres:192.168.2.13

o Maska: 255.255.255.248

• Hasło: haslo

Printer4

• Brama: 192.168.2.9

• Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.2.12

o Maska: 255.255.255.248

Laptop2

• Brama: 192.168.2.9

• Serwer DNS: 192.168.1.26

FastEthernet0

o Adres:192.168.2.10

o Maska: 255.255.255.248

Laptop3

• Brama: 192.168.2.9

• Serwer DNS: 192.168.1.26

• FastEthernet0

o Adres:192.168.2.11

o Maska: 255.255.255.248

S7

• Hasło: haslo

STP

- Hasło: haslo
- STP

S9

- Hasło: haslo
- Etherchannel

DHCP

R1

```
ip dhcp pool rejestracja
  network 192.168.1.0 255.255.255.248
  default-router 192.168.1.1
  dns-server 192.168.1.26
ip dhcp pool ksiegowosc
  network 192.168.1.8 255.255.255.248
  default-router 192.168.1.9
  dns-server 192.168.1.26
ip dhcp pool gabinet1
  network 192.168.1.16 255.255.255.248
  default-router 192.168.1.17
  dns-server 192.168.1.26
```

Rysunek 6.1 DHCP R1

R2

```
ip dhcp pool gabinet2
  network 192.168.2.0 255.255.255.248
  default-router 192.168.2.1
  dns-server 192.168.1.26
ip dhcp pool gabinet3
  network 192.168.2.8 255.255.255.248
  default-router 192.168.2.9
  dns-server 192.168.1.26
clock timezone CST -6
!
```

Rysunek 6.2 DHCP R2

R3

```
ip dhcp pool administracja
  network 192.168.2.24 255.255.255.248
  default-router 192.168.2.25
  dns-server 192.168.1.26
  clock timezone CST -6
!
```

Rysunek 6.3 DHCP R3

7. Bezpieczeństwo sieci

Radius

Próbujemy z R2 połączyć się z serwerem

```
R2#
R2#
R2#
R2#ssh -1 user -v 2 192.168.1.25

Password:
R1#

Copy
Paste
```

Rysunek 7.1 Radius

Sprawdzanie działania serwera Syslog

Rysunek 7.2 Syslog

DNS

Na serwerze pod adresem strona.pl uruchomiona jest usługa DNS. Widnieje strona przychodni pod adresem 192.168.1.26 lub nazwą DNS, czyli strona.pl.

Rysunek 7.3 DNS - konfiguracja

Po wejściu na adres strona.pl widnieje taka strona.

Rysunek 7.4 Uruchomiona strona

Firewall

Na serwerze Server0 skonfigurowana jest usługa firewall. Oznacza to, że nikt nie może pingować sewera, jednak może korzystać z usług na nim uruchomionych, np. DNS.

Sprawdzamy więc poprawność. Z PC1 uruchamiamy stronę strona.pl.

Rysunek 7.5 Sprawdzenie działania firewall

A teraz spróbujmy użyć polecenia ping z PC1 do serwera.

Rysunek 7.6 Efekt działania firewall

Jak widać konfiguracja działa poprawnie.

ACL

Na routerach zostały skonfigurowane listy ACL.

Ograniczenie dotyczy PC7, który nie może pingować się poza podsiecią, w której się znajduje.

Ping do PC6 znajdującego się w tej samej podsieci.

```
₹ PC7
                                                                                                                               X
                                                     Attributes
  Physical
              Config Desktop Programming
   Command Prompt
                                                                                                                                       Х
   Cisco Packet Tracer PC Command Line 1.0
   C:\>ping 192.168.1.3
  Pinging 192.168.1.3 with 32 bytes of data:
  Reply from 192.168.1.3: bytes=32 time=20ms TTL=128
  Reply from 192.168.1.3: bytes=32 time<lms TTL=128 Reply from 192.168.1.3: bytes=32 time<lms TTL=128
   Reply from 192.168.1.3: bytes=32 time=12ms TTL=128
   Ping statistics for 192.168.1.3:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 20ms, Average = 8ms
   C:\>
```

Rysunek 7.7 ACL - ta sama podsieć

Ping do PC1 znajdującego się poza podsiecią.

```
Physical Config Desktop Programming Attributes

Command Prompt

C:\>
C:\>
C:\>
ping 192.168.1.11 with 32 bytes of data:

Reply from 192.168.1.1: Destination host unreachable.
```

Rysunek 7.8 ACL - inna podsieć

Jak widać lista ACL działa poprawnie.

Inną konfiguracją listy jest ograniczenie możliwości pingowania drukarki to tej samej podsieci. Oznacza to, że komputery mogą pingować drukarkę w tej samej podsieci, jednak drukarkę znajdującą się w innej podsieci już nie.

Wybierzmy dla przykładu Gabinet 2.

Pingujemy z Laptopa0 do Printer3.

Rysunek 7.9 ACL - drukarka w tej samej podsieci

Jak widać ping działa poprawnie. A teraz załóżmy, że z laptopa0 chcemy spingować Printer0 znajdującą się w Księgowości.

Rysunek 7.10 ACL - drukarka w innej podsieci

Jak widać ping jest nieosiągalny.

Tak samo ograniczenie analogicznie wygląda dla pozostałych drukarek.

Lista ACL 2 jak widać działa.

Logowanie do R1

Rysunek 7.11 Zabezpieczenie dostępu

Logowanie do R1 zabezpieczone jest nazwą user i hasłem cisco.

SSH

Na switchach zostały skonfigurowane SSH.

Rysunek 7.12 SSH

Danymi do logowania jest user oraz hasło haslo.

NTP

Skonfigurowany został również serwer NTP.

Rysunek 7.13 NTP - konfiguracja

Sprawdzenie konfiguracji

```
Rl#show ntp status
Clock is synchronized, stratum 2, reference is 192.168.1.26
nominal freq is 250.0000 Hz, actual freq is 249.9990 Hz, precision is 2**24
reference time is E7A8B931.00003D5 (17:32:33.981 UTC Wed Mar 29 2023)
clock offset is 0.00 msec, root delay is 1.00 msec
root dispersion is 57.06 msec, peer dispersion is 0.12 msec.
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is - 0.000001193 s/s system poll
interval is 4, last update was 2 sec ago.
R1#
```

Rysunek 7.14 NTP - sprawdzenie

AAA

Skonfigurowano również AAA.

Rysunek 7.15 AAA

Port Monitor

```
S0(config) #monitor session 1 source interface FastEthernet3/1
S0(config) #monitor session 1 source interface FastEthernet1/1
S0(config) #monitor session 1 destination interface FastEthernet2/1
S0(config) #
```

Wszystkie dane przychodzące do księgowości kopiowane są więc port FastEthernet2/1.

Rysunek 7.17 Port monitor - sprawdzenie działania

Jak widać konfiguracja działa poprawnie.

RIP

```
R2#show ip rip database
192.168.1.24/30
               auto-summary
192.168.1.24/30
   [1] via 192.168.1.33, 00:00:01, Ethernet0/0
192.168.1.32/30 auto-summary
192.168.1.32/30
                 directly connected, Ethernet0/0
192.168.2.0/29
                auto-summary
192.168.2.0/29
               directly connected, Ethernet1/0
192.168.2.8/29 auto-summary
192.168.2.8/29 directly connected, Ethernet2/0
192.168.2.16/29
                 auto-summary
192.168.2.16/29
                 directly connected, Ethernet3/0
192.168.2.24/29
                 auto-summary
192.168.2.24/29
    [1] via 192.168.2.18, 00:00:24, Ethernet3/0
R2#
```

Rysunek 7.18 Konfiguracja RIP

OSPF

R2#show ip ospf neighbor

Neighbor ID	Pri	State	Dead Time	Address	Interface
192.168.2.25	1	FULL/DR	00:00:39	192.168.2.18	Ethernet3/0
192.168.1.33	1	FULL/BDR	00:00:39	192.168.1.33	Ethernet0/0

STP

Zostały także uruchomione usługi portfast oraz BPDUGuard.

```
S7#show spanning-tree
VLAN0001
 Spanning tree enabled protocol rstp
         Priority 32769
Address 0002.1679.E298
 Root ID
           This bridge is the root
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0002.1679.E298
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
           Aging Time 20
Interface
              Role Sts Cost
                               Prio.Nbr Type
128.2 P2p
128.3 P2p
Fal/1
              Desg FWD 19
              Desg FWD 19
Fa2/1
```

Rysunek 7.20 STP

Etherchannel

```
S9#show etherchannel
            Channel-group listing:
Group: 1
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol:
S9#show etherchannel summary
Flags: D - down P - in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use
                   f - failed to allocate aggregator
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
Number of channel-groups in use: 1
Number of aggregators:
Group Port-channel Protocol
                           Ports
_____
1
     Pol(SU)
                          Fa2/1(P) Fa3/1(P)
S9#
```