MATH221 Mathematics for Computer Science

Outline Solutions to Tutorial Sheet Week 11

Autumn 2017

- 1. (i) $f = \{(1, a), (1, b)\}$ is not a function as the domain is not A and it takes two different values at 1.
 - (ii) $f = \{(1, a), (2, b), (3, c), (4, a)\}$ is a function which is not one-to-one as f(1) = f(4) = a and is not onto as the values d, e are not taken.
 - (iii) $f = \{(1, a), (2, b), (3, c), (4, d)\}$ is a function which is one-to-one as $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Note that no function $f \subseteq A \times B$ can be onto.
 - (iv) $f = \{(a,1), (b,2), (c,3), (d,4), (e,1)\}$ is a function which is onto as all values in A are taken. Note that no function $f \subset B \times A$ can be one-to-one by the pigeonhole principle.
 - (iv) $f = \{(1,2), (2,3), (3,4), (4,1)\}$ is a function which is one-to-one and onto but is not the identity function (in fact it is a permutation).
 - (vi) $R = \{(1,2)\}$ is not reflexive, symmetric or transitive.
 - (vii) $R_1 = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3)\}$ is reflexive but not symmetric and not transitive as $(1,2), (2,3) \in R_1$ but $(1,3) \notin R_1$. $R_2 = \{(1,2), (2,1)\}$ is symmetric, but not reflexive and not transitive as $(1,2), (2,1) \in R_2$ but $(1,1) \notin R_2$. $R_3 = \{(1,1)(1,3)\}$ is not reflexive and not symmetric but is transitive as $(1,1), (1,3) \in R_3$ and $(1,3) \in R_3$.
 - (viii) $R_1 = \{(1,1), (2,2), (3,3), (4,4), (3,4), (4,3), (3,1), (1,3)\}$ is reflexive and symmetric but is not transitive as $(4,3), (3,1) \in R_1$ but $(4,1) \notin R_1$. $R_2 = \{(1,1), (2,2), (3,3), (4,4)(3,4)\}$ is relexive and transitive but not symmetric. $R_3 = \{(2,2)\}$ is symmetric and transitive but is not reflexive.
 - (ix) $R = A \times A$ is reflexive, symmetric and transitive. For any $x \in A$ we have [x] = A.
- **2.** (i) Suppose that $f(x_1) = f(x_2)$. Then

$$x_1^2 + 1 = x_2^2 + 1 \iff x_1^2 = x_2^2 \iff x_1 = x_2 \lor x_1 = -x_2.$$

Since the domain of f is $[0,\infty)$, f is one-to-one. Note that there is no $x\in [0,\infty)$ for which $f(x)=x^2+1=0$. Therefore, f is not onto. If, instead we define $f:[0,\infty)\to [1,\infty)$ then f is one-to-one and onto and so $f^{-1}:[1,\infty)\to [0,\infty)$ can be defined by $f^{-1}(y)=\sqrt{y^2-1}$.

- (ii) Since -1,1 belong to the domain of f and f(1)=f(-1)=1, f is not one-to-one. For each $y\geq 0$, $\sqrt[4]{y}\in\mathbb{R}$, satisfies $f(\sqrt[4]{y})=y$. Hence f is onto. If, instead we define $f:[0,\infty)\to[0,\infty)$ then f is one-to-one and onto and so $f^{-1}:[0,\infty)\to[0,\infty)$ can be defined by $f^{-1}(y)=\sqrt[4]{y}$.
- (iii) The function is one-to-one as the graph of f satisfies the horizontal line test (also $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$). The function is onto as every horizontal line meets the graph (also given $y \in \mathbb{R}$ there is $x = \sqrt[3]{y}$ such that f(x) = y). Hence the function has an inverse $f : \mathbb{R} \to \mathbb{R}$ given by $f^{-1}(y) = \sqrt[3]{y}$.
- (iv) Let $x_1, x_2 \in (0, 1)$ such that $f(x_1) = f(x_2)$. Then we have

$$\frac{x_1}{1-x_1} = \frac{x_2}{1-x_2} \iff x_1(1-x_2) = x_2(1-x_1) \iff x_1 - x_1x_2 = x_2 - x_1x_2 \iff x_1 = x_2.$$

Hence f is one-to-one. To show that f is onto, observe that for each $y \in (0, \infty)$, $x := \frac{y}{1+y} \in (0,1)$, the domain of f, such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1 - \frac{y}{1+y}} = y.$$

Since f is one-to-one and onto it has a unique inverse. Now $f = \{(x, x/(1-x)), x \in (0,1)\} \subset (0,1) \times (0,\infty)$, so $f^{-1} = \{(x/(1-x), x) : x \in (0,1)\}$. Let y = x/(1-x) then $y \in (0,\infty)$

1

and x = y/(1+y), hence we may write $f^{-1}\{(y,y/(1+y)) : y \in (0,\infty)\}$. Also observe that the function $g:(0,\infty)\to (0,1)$ satisfies

$$(g \circ f)(x) = g(f(x)) = \frac{f(x)}{1 + f(x)} = \frac{\frac{x}{1 - x}}{1 + \frac{x}{1 - x}} = x, \quad \forall x \in (0, 1).$$

Hence g is the inverse of f.

3.

- (i) The function $\cos: \mathbb{R} \to \mathbb{R}$ is not one-to-one as $\cos(0) = \cos(2\pi)$ and not onto as the value 2 is not taken. If we restrict the domain to $[0,\pi]$ then $\cos: [0,\pi] \to [-1,1]$ is one-to-one (passes horizontal line test) and onto (every horizontal line cuts the graph of \sin , see also right-angled triangle argument in (ii) below, suitably adapted for \cos) and hence the inverse $\arccos: [-1,1] \to [0,\pi]$ can be defined.
- (ii) The function $\tan: \mathbb{R} \to \mathbb{R}$ is not one-to-one as $\tan(0) = \tan(2\pi)$ but it is onto (given $y \in (0, \infty)$ create a suitable right-angled triangle with adjacent side length 1 and the opposite side length y, then fix picture appropriately for $y \in (-\infty, 0]$). If we restrict the domain to $(-\pi/2, \pi/2)$ then $\tan: (-\pi/2, \pi/2) \to \mathbb{R}$ is one-to-one and onto and hence the inverse $\arctan: \mathbb{R} \to (-\pi/2, \pi/2)$ can be defined.
- (iii) The function $\exp: \mathbb{R} \to \mathbb{R}$ is not onto as the value -1 is not taken. If we restrict the range to $(0,\infty)$ then $\exp: \mathbb{R} \to (0,\infty)$ is one-to-one (passes horizontal line test) and onto (every horizonal line cuts the graph of \exp) and hence the inverse $\ln: (0,\infty) \to \mathbb{R}$ can be defined.