Az írásbeli vizsgán bizonyítással kért tételek

Tartalom

Az írás	sbeli vizsgán bizonyítással kért tételek	1
1.	A szuprémum elv	2
2.	A teljes indukció elve	3
3.	Archimedes-tétel	3
4.	A Cantor-féle közösrész-tétel	4
5.	Konvergens sorozat határértéke egyértelmű.	5
6.	A konvergencia és a korlátosság kapcsolata	6
7.	Műveletek nullsorozatokkal	7
8.	Konvergens sorozatok szorzatára vonatkozó tétel	8
9.	Konvergens sorozatok hányadosára vonatkozó tétel	9
10.	A közrefogási elv	10
11.	A határérték és a rendezés kapcsolata	11
12.	Monoton növő sorozat határértéke (véges és végtelen eset)	12
13.	Minden sorozatnak van monoton részsorozata.	13
14.	Végtelen sorokra vonatkozó összehasonlító kritériumok	14
15.	A Cauchy-féle gyökkritérium	15
16.	A D'Alembert-féle hányadoskritérium	16
17.	Abszolút konvergens sorok átrendezése.	17
18.	Hatványsorok konvergenciahalmaza intervallum	18
19.	A Cauchy-Hadamard-tétel	20
20.	Sorok téglány szorzata	21
21.	Függvények határértékének egyértelműsége	22
22.	A határértékre vonatkozó átviteli elv	22
23.	Monoton függvények határértéke	23
24.	Az összetett függvények folytonossága	24
25.	Korlátos és zárt intervalumon értelmezett folytonos függvény korlátos	24
26.	Weierstrass tétele	25
27.	A Bolzano-tétel	26

1. A szuprémum elv.

Tétel: A szuprémum elv. Legyen $H \subset \mathbb{R}$ és tegyük fel, hogy

- (i) $H \neq \emptyset$ és
- (ii) H felülről korlátos.

Ekkor

$$\exists \min \{ K \in \mathbb{R} \mid K \text{ fels \'o korl\'atja } H\text{-nak} \},$$

 $azaz \mathbb{R}$ minden nemüres, felülről korlátos részhalmazának felső korlátjai között van legkisebb.

Bizonyítás. Legyen

$$A:=H\quad \text{\'es}\quad B:=\big\{K\in\mathbb{R}\mid K \text{ fels\~o} \text{ korl\'atja H-nak}\big\}.$$

A feltételek miatt $A \neq \emptyset$ és $B \neq \emptyset$, továbbá

$$\forall a \in A \text{ és } \forall K \in B \text{ esetén } a \leq K.$$

A teljességi axiómából következik, hogy

$$\exists \, \xi \in \mathbb{R} : \ a \leq \xi \leq K \quad \forall \, a \in A \text{ \'es } \forall \, K \in B \text{ eset\'en}.$$

Erre a ξ -re az teljesül, hogy

- ξ felső korlátja H-nak, hiszen $a \leq \xi \quad \forall a \in A$ esetén;
- ξ a legkisebb felső korlát, u
i. ha K egy felső korlát (azaz $K \in B$), akkor $K \ge \xi$.

Ez pedig pontosan azt jelenti, hogy ξ a H halmaz legkisebb felső korlátja.

A fenti bizonyítás értelemszerű módosításával megkapjuk az előző tételnek az alsó korlátokra vonatkozó párját.

2. A teljes indukció elve.

Tétel: A teljes indukció elve. Tegyük fel, hogy minden n természetes számra adott egy A(n) állítás, és azt tudjuk, hogy

- (i) A(0) igaz,
- (ii) ha A(n) igaz, akkor A(n+1) is igaz.

Ekkor az A(n) állítás minden n természetes számra igaz.

Bizonyítás. Legyen

$$S := \{ n \in \mathbb{N} \mid A(n) \text{ igaz} \}.$$

Ekkor $S \subset \mathbb{N}$ és S induktív halmaz, hiszen $0 \in S$, és ha $n \in S$, azaz A(n) igaz, akkor A(n+1) is igaz, ezért $n+1 \in S$ teljesül, következésképpen S induktív halmaz. Mivel \mathbb{N} a legszűkebb induktív halmaz, ezért az $\mathbb{N} \subset S$ tartalmazás is fennáll, tehát $S = \mathbb{N}$. Ez pedig azt jelenti, hogy az állítás minden n természetes számra igaz.

3. Archimedes-tétel

Tétel: Az arkhimédészi tulajdonság. $Minden\ a > 0$ és $minden\ b\ valós\ számhoz\ létezik$ olyan $n\ természetes\ szám,\ hogy\ b < n\cdot a,\ azaz$

$$\forall a > 0 \text{ \'es } \forall b \in \mathbb{R} \text{ eset\'en } \exists n \in \mathbb{N}, \text{ hogy } b < n \cdot a.$$

Szemléletesen:

Bizonyítás. Indirekt módon. Tegyük fel, hogy

$$\exists a > 0 \text{ és } \exists b \in \mathbb{R}, \text{ hogy } \forall n \in \mathbb{N} : b \geq n \cdot a.$$

Legyen

$$H := \{ n \cdot a \in \mathbb{R} \mid n \in \mathbb{N} \}.$$

Ekkor $H \neq \emptyset$ és H felülről korlátos, hiszen $n \cdot a \leq b$ minden $n \in \mathbb{N}$ -re. A szuprémum elv \Longrightarrow

$$\exists \sup H =: \xi.$$

Ekkor ξ a legkisebb felső korlátja H-nak, tehát $\xi - a$ nem felső korlát. Ez azt jelenti, hogy

$$\exists n_0 \in \mathbb{N} : n_0 \cdot a > \xi - a \implies (n_0 + 1) \cdot a > \xi.$$

Ez viszont ellentmondás, mert ξ felső korlát, azaz $(n_0 + 1) \cdot a \leq \xi$.

Következmények:

$$1^o \ \forall \varepsilon > 0$$
-hoz $\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$.

 2^o Az $\mathbb N$ halmaz felülrő nem korlátos, azaz $\forall\,b\in\mathbb R$ számhoz $\exists\,n\in\mathbb N:\ b< n.$

4. A Cantor-féle közösrész-tétel

Tétel: A Cantor-tulajdonság. Ha minden n természetes számra adott az $[a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (n \in \mathbb{N}),$$

akkor

$$\bigcap_{n\in\mathbb{N}} [a_n, b_n] \neq \emptyset.$$

A Cantor-tulajdonságot úgy szoktuk szavakba foglalni, hogy egymásba skatulyázott korlátos és zárt intervallumok közös része nem üres. Ezt szemlélteti az alábi ábra:

Bizonyítás. A teljességi axiómát fogjuk alkalmazni. Legyen

$$A := \{a_n \mid n \in \mathbb{N}\} \quad \text{\'es} \quad B := \{b_n \mid n \in \mathbb{N}\}.$$

Belátjuk, hogy ekkor

(*) $a_n \leq b_m$ tetszőleges $n, m \in \mathbb{N}$ esetén.

Valóban,

- (i) ha $n \le m$, akkor $a_n \le a_m \le b_m$,
- (ii) ha m < n, akkor $a_n \le b_n \le b_m$.

Mivel $A \neq \emptyset$ és $B \neq \emptyset$, ezért (*) miatt a teljességi axióma feltételei teljesülnek, így

$$\exists \xi \in \mathbb{R} : a_n \leq \xi \leq b_m \quad \forall n, m \in \mathbb{N} \text{ in dex re.}$$

Ha n = m, akkor azt kapjuk, hogy

$$a_n \le \xi \le b_n \iff \xi \in [a_n, b_n] \ \forall n \in \mathbb{N} \text{ eset\'en},$$

és ez azt jelenti, hogy

$$\xi\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset.$$

5. Konvergens sorozat határértéke egyértelmű.

Tétel: A határérték egyértelmű. Ha az $(a_n) : \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor a konvergencia definíciójában szereplő A szám egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy az (a_n) sorozatra (1) az A_1 és az A_2 számokkal is teljesül. Indirekt módon tegyük fel azt is, hogy $A_1 \neq A_2$. Ekkor $\forall \varepsilon > 0$ számhoz

$$\exists n_1 \in \mathbb{N}, \ \forall n > n_1 : \ |a_n - A_1| < \varepsilon \text{ és}$$

 $\exists n_2 \in \mathbb{N}, \ \forall n > n_2 : \ |a_n - A_2| < \varepsilon.$

Válasszuk itt speciálisan az

$$\varepsilon := \frac{|A_1 - A_2|}{2}$$

(pozitív) számot. Az ennek megfelelő n_1, n_2 indexeket figyelembe véve legyen

$$n_0 := \max\{n_1, n_2\}.$$

Ha $n \in \mathbb{N}$ és $n > n_0$, akkor nyilván $n > n_1$ és $n > n_2$ is fennáll, következésképpen

$$|A_1 - A_2| = |(A_1 - a_n) + (a_n - A_1)| \le |a_n - A_1| + |a_n - A_2| < \varepsilon + \varepsilon = |A_1 - A_2|,$$

amiből (a nyilván nem igaz) $|A_1 - A_2| < |A_1 - A_2|$ következne. Ezért csak $A_1 = A_2$ lehet.

6. A konvergencia és a korlátosság kapcsolata.

2. tétel. Ha az (a_n) sorozat konvergens, akkor korlátos is.

Bizonyítás. Tegyük fel, hogy (a_n) konvergens és $\lim (a_n) = A \in \mathbb{R}$. Válasszuk a konvergencia definíciója szerinti jelöléssel ε -t 1-nek. Ehhez a hibakorláthoz

$$\exists n_0 \in \mathbb{N}, \forall n > n_0 : |a_n - A| < 1.$$

Így

$$|a_n| = |(a_n - A) + A| \le |a_n - A| + |A| < 1 + |A| \quad (n > n_0).$$

Ha $n \leq n_0$, akkor

$$|a_n| \le \max\{|a_0|, |a_1|, \dots, |a_{n_0}|\}.$$

Legyen

$$K := \max\{|a_0|, |a_1|, \ldots, |a_{n_0}|, 1 + |A|\}.$$

Ekkor $|a_n| \leq K$ minden $n \in \mathbb{N}$ indexre, és ez azt jelenti, hogy az (a_n) sorozat korlátos.

Megjegyzés. Az állítás megfordítása nem igaz. Például a $((-1)^n)$ sorozat korlátos, de nem konvergens. A konvergenciának tehát a korlátosság szükséges, de nem elégséges feltétele.

7. Műveletek nullsorozatokkal

5. tétel: Műveletek nullasorozatokkal. $Tegyük fel, hogy \lim (a_n) = 0$ és $\lim (b_n) = 0$. Ekkor

 $1^{o}(a_n + b_n)$ is nullasorozat;

 2^o ha (c_n) korlátos sorozat, akkor $(c_n \cdot a_n)$ is nullasorozat;

 $3^{o} (a_n \cdot b_n)$ is nullasorozat.

Bizonyítás.

1º Mivel $\lim (a_n) = \lim (b_n) = 0$, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_1 \in \mathbb{N}$, hogy $\forall n > n_1 : |a_n| < \frac{\varepsilon}{2}$ és $\forall \varepsilon > 0$ -hoz $\exists n_2 \in \mathbb{N}$, hogy $\forall n > n_2 : |b_n| < \frac{\varepsilon}{2}$.

Legyen $n_0 := \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$|a_n + b_n| \le |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy $\lim (a_n + b_n) = 0$, azaz $(a_n + b_n)$ valóban nullasorozat.

 2^{o} A (c_{n}) sorozat korlátos, ezért

$$\exists K > 0: |c_n| < K \quad (n \in \mathbb{N}).$$

Mivel (a_n) nullasorozat, ezért

$$\forall \varepsilon > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n| < \frac{\varepsilon}{K},$$

követ kezésképpen minden $n > n_0$ indexre

$$|c_n \cdot a_n| < K \cdot \frac{\varepsilon}{K} = \varepsilon,$$

azaz $\lim (c_n \cdot a_n) = 0.$

 $\mathbf{3}^o$ Mivel minden konvergens sorozat korlátos, ezért a $\lim (b_n) = 0$ feltételből következik, hogy (b_n) korlátos sorozat. Az állítás tehát $\mathbf{2}^o$ közvetlen következménye.

8. Konvergens sorozatok szorzatára vonatkozó tétel

6. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozat konvergens. Legyen

$$\lim (a_n) = A \in \mathbb{R}$$
 és $\lim (b_n) = B \in \mathbb{R}$.

Ekkor

1º $(a_n + b_n)$ is konvergens és $\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B$,

2° $(a_n \cdot b_n)$ is konvergens és $\lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B$,

3° ha $b_n \neq 0 \ (n \in \mathbb{N})$ és $\lim (b_n) \neq 0$, akkor

$$\left(\frac{a_n}{b_n}\right)$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim (a_n)}{\lim (b_n)} = \frac{A}{B}$.

Bizonyítás.

Legyen (x_n) egy valós sorozat. Azt már tudjuk, hogy

(*) ha (x_n) konvergens, és $\alpha \in \mathbb{R}$ a határértéke \iff $(x_n - \alpha)$ nullasorozat.

1º A (*) állítás miatt elég azt megmutatni, hogy

$$((a_n + b_n) - (A + B))$$
 nullasorozat.

Ez nyilván igaz, mert

$$((a_n + b_n) - (A + B)) = (a_n - A) + (b_n - B),$$

és két nullasorozat összege is nullasorozat.

2º A (*) állítás miatt elég azt megmutatni, hogy $(a_n b_n - AB)$ nullasorozat.

$$|a_n b_n - AB| = |a_n b_n - Ab_n + Ab_n - AB| = |b_n (a_n - A) + A(b_n - B)| \le \underbrace{|b_n|}_{\text{o-sorozat}} \underbrace{|a_n - A|}_{\text{o-sorozat}} + \underbrace{|A|}_{\text{o-sorozat}} \underbrace{|b_n - B|}_{\text{o-sorozat}}.$$

Így (a_nb_n-AB) valóban nullasorozat, ezért az $(a_n\cdot b_n)$ szorzat-sorozat konvergens, és $A\cdot B$ a határértéke, azaz

$$\lim (a_n \cdot b_n) = A \cdot B = \lim (a_n) \cdot \lim (b_n).$$

9. Konvergens sorozatok hányadosára vonatkozó tétel

3º A bizonyításhoz először egy önmagában is érdekes állítást igazolunk.

Segédtétel. Ha $b_n \neq 0 \ (n \in \mathbb{N})$ és (b_n) konvergens, továbbá $B := \lim (b_n) \neq 0$, akkor az

$$\left(\frac{1}{|b_n|}\right)$$

reciprok-sorozat korlátos.

Ennek bizonyításához legyen $\varepsilon:=|B|/2$. Ekkor egy alkalmas $n_0\in\mathbb{N}$ küszöbindex mellett

$$|b_n - B| < \varepsilon = \frac{|B|}{2} \quad \forall n > n_0 \text{ index re.}$$

Így minden $n > n_0$ esetén

$$|b_n| = |B + b_n - B| \ge |B| - |b_n - B| > |B| - \frac{|B|}{2} = \frac{|B|}{2}.$$

Tehát

$$\left|\frac{1}{b_n}\right| < \frac{2}{|B|}, \quad \text{ha } n > n_0,$$

következésképpen az

$$\left| \frac{1}{b_n} \right| \le \max \left\{ \frac{1}{|b_0|}, \frac{1}{|b_1|}, \dots, \frac{1}{|b_{n_0}|}, \frac{2}{|B|} \right\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ számra teljesül, ezért az $(1/|b_n|)$ sorozat valóban korlátos. A segédtételt tehát bebizonyítottuk. \square

Most azt látjuk be, hogy az

$$\left(\frac{1}{b_n}\right) \ \ \text{sorozat konvergens} \ \ \text{\'es} \ \ \lim\left(\frac{1}{b_n}\right) = \frac{1}{B}.$$

10. A közrefogási elv.

- 2. tétel: A közrefogási elv. Tegyük fel, hogy az (a_n) , (b_n) és (c_n) sorozatokra teljesülnek a következők:
 - $\exists N \in \mathbb{N}, hogy \forall n > N : a_n \leq b_n \leq c_n$
 - az (a_n) és a (c_n) sorozatnak van határértéke, továbbá

$$\lim (a_n) = \lim (c_n) = A \in \overline{\mathbb{R}}.$$

Ekkor a (b_n) sorozatnak is van határértéke és $\lim (b_n) = A$.

Bizonyítás. Három eset lehetséges.

1. eset: $A \in \mathbb{R}$. Legyen $\varepsilon > 0$ tetszőleges valós szám. Ekkor $\lim (a_n) = \lim (c_n) = A \Longrightarrow$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon \text{ és}$$

$$\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : A - \varepsilon < c_n < A + \varepsilon.$$

Legyen $n_0 := \max\{N, n_1, n_2\}$. Ekkor $\forall n > n_0$ index re

$$A - \varepsilon < a_n \le b_n \le c_n < A + \varepsilon$$
.

Ez azt jelenti, hogy

$$|b_n - A| < \varepsilon$$
, ha $n > n_0$,

azaz a (b_n) sorozatnak is van határértéke és $\lim (b_n) = A$.

2. eset: $A = +\infty$. Tegyük fel, hogy P > 0 tetszőleges valós szám. Ekkor $\lim (a_n) = +\infty \Longrightarrow$ ∃ $n_1 \in \mathbb{N}$, hogy $\forall n > n_1 : a_n > P$.

Legyen $n_0 := \max\{N, n_1\}$. Ekkor $\forall n > n_0$ index re

$$P < a_n \le b_n$$

és ez azt jelenti, hogy $\lim (b_n) = +\infty$.

3. eset: $A = -\infty$. Tegyük fel, hogy P < 0 tetszőleges valós szám és tekintsük most a (c_n) sorozatot. Mivel $\lim_{n \to \infty} (c_n) = -\infty$, ezért P-hez

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : c_n < P.$$

Ha $n_0 := \max\{N, n_1\}$, akkor $\forall n > n_0$ indexre

$$P > c_n \ge b_n$$
.

Ez pedig azt jelenti, hogy $\lim (b_n) = -\infty$.

11. A határérték és a rendezés kapcsolata.

3. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határértéke és

$$\lim (a_n) = A \in \overline{\mathbb{R}}, \quad \lim (b_n) = B \in \overline{\mathbb{R}}.$$

Ekkor:

1º Ha $A < B \implies \exists N \in \mathbb{N}, hogy \forall n > N : a_n < b_n$.

2° $Ha \exists N \in \mathbb{N}, hogy \forall n > N : a_n \leq b_n \implies A \leq B$

Bizonyítás.

1º Négy eset lehetséges.

1. eset: $A, B \in \mathbb{R}$ és A < B, vagyis (a_n) és (b_n) konvergens sorozatok. Ekkor az

$$\varepsilon := \frac{B - A}{2} > 0$$

számhoz $\lim (a_n) = A \text{ miatt}$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon = \frac{A + B}{2},$$

továbbá $\lim (b_n) = B$ szerint

$$\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : B - \varepsilon = \frac{A+B}{2} < b_n < B + \varepsilon.$$

Így az $N := \max\{n_1, n_2\}$ köszöbindexszel azt kapjuk, hogy

$$a_n < \frac{A+B}{2} < b_n \ \forall n > N$$
indexre,

és ez az állítás bizonyításását jelenti.

2. eset: $A \in \mathbb{R}$ és $B = +\infty$. Mivel az (a_n) sorozat konvergens és $\lim (a_n) = A$, ezért $\varepsilon := 1$ -hez $\exists n_1 \in \mathbb{N}$, hogy minden $n > n_1$ indexre

$$A-1 < a_n < A+1$$
.

A $\lim (b_n) = +\infty$ feltételből pedig az következik, hogy az A+1 számhoz $\exists n_2 \in \mathbb{N}$, hogy minden $n > n_2$ indexre

$$A + 1 < b_n$$
.

Így $\forall n > N := \max\{n_1, n_2\}$ index esetén az

$$a_n < A + 1 < b_n$$

egyenlőtlenség teljesül.

3. eset: $A = -\infty$ és $B \in \mathbb{R}$ bizonyítása hasonló.

4. eset: $A = -\infty$ és $B = +\infty$ bizonyítása is hasonló.

 ${f 2^o}$ Indirekt módon bizonyítunk. Tegyük fel, hogy A>B. Ekkor az ${f 1^o}$ állítás szerint $\exists N\in\mathbb{N}$, hogy minden n>N indexre $b_n< a_n$, ami ellentmond a feltételnek.

 $\bf Megjegyz\acute{e}s. \;\;$ Figyeljük meg, hogy $\bf 1^o$ és $\bf 2^o$ "majdnem" egymás megfordításai.

Az ${f 1}^o$ állítás megfordítása nem igaz, azaz az $a_n < b_n$ feltételből nem következtethetünk az A < B egyenlőtlenségre. Tekintsük például az $a_n := -1/n$ és a $b_n := 1/n$ $(n \in \mathbb{N}^+)$ sorozatokat.

A 2^o állítás megfordítása sem igaz. Legyen például $a_n := 1/n$ és $b_n := -1/n$ $(n \in \mathbb{N}^+)$.

12. Monoton növő sorozat határértéke (véges és végtelen eset).

- 2. tétel. Minden (a_n) monoton sorozatnak van határértéke.
 - **1º** (a) $Ha(a_n) \nearrow és felülről korlátos, akkor <math>(a_n)$ konvergens és

$$\lim (a_n) = \sup \{a_n \mid n \in \mathbb{N}\}.$$

(b) Ha $(a_n) \setminus \text{\'es alulr\'ol korl\'atos, akkor } (a_n)$ konvergens és

$$\lim (a_n) = \inf \{ a_n \mid n \in \mathbb{N} \}.$$

 2^{o} (a) Ha $(a_n) \nearrow \acute{e}s$ felülről nem korlátos, akkor

$$\lim (a_n) = +\infty.$$

(b) $Ha(a_n) \searrow \acute{e}s$ alulról nem korlátos, akkor

$$\lim (a_n) = -\infty.$$

Megjegyzés. A tételben elég feltenni azt, hogy a sorozat egy küszöbindextől kezdve monoton, hiszen véges sok tag nem befolyásolja a határértéket. ■

Bizonyítás.

 $\mathbf{1}^o$ (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről korlátos. Legyen

$$A := \sup \{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R}.$$

Ez azt jelenti, hogy A a szóban forgó halmaznak a legkisebb felső korlátja, azaz

- $\forall n \in \mathbb{N} : a_n \leq A$ és
- $\forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N} : A \varepsilon < a_{n_0} \le A$.

Mivel a feltételezésünk szerint az (a_n) sorozat monoton növekedő, ezért az

$$A - \varepsilon < a_n < A$$

becslés is igaz minden $n > n_0$ indexre.

Azt kaptuk tehát, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n > n_0 : |a_n - A| < \varepsilon$.

Ez pontosan azt jelenti, hogy az (a_n) sorozat konvergens és $\lim (a_n) = A$.

- 1^{o} (b) Értelemszerű módosításokkal bizonyíthatjuk az állítást a monoton fogyó alulról korlátos sorozatokra.
 - 2^o (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről nem korlátos. Ekkor

$$\forall P \in \mathbb{R}\text{-hez } \exists n_0 \in \mathbb{N}: \ a_{n_0} > P.$$

A monotonitás miatt ezért egyúttal az is igaz, hogy

$$\forall n > n_0: a_n > P$$
.

és ez pontosan azt jelenti, hogy $\lim (a_n) = +\infty$.

2º (b) Értelemszerű módosításokkal bizonyíthatjuk az állítást a monoton fogyó alulról nem korlátos sorozatokra.

13. Minden sorozatnak van monoton részsorozata.

2. tétel: A Bolzano-Weierstrass-tétel. Minden, korlátos valós sorozatnak van konvergens részsorozata.

Bizonyítás. Először egy önmagában is érdekes, de főleg a következményei miatt fontos állítást igazolunk.

Segédtétel. Minden $a=(a_n)$ valós sorozatnak létezik monoton részsorozata, azaz létezik olyan $\nu=(\nu_n)$ indexsorozat, amellyel $a\circ\nu$ monoton növekedő vagy monoton csökkenő.

A segédtétel bizonyítása. Az állítás igazolásához bevezetjük a szóban forgó (a_n) sorozat csúcsának a fogalmát: Azt mondjuk, hogy $a_{n_0} \in \mathbb{N}$ az (a_n) sorozat csúcsa (vagy csúcseleme), ha

$$\forall n \geq n_0 \text{ indexre } a_n \leq a_{n_0}.$$

Két eset lehetséges.

1. eset. A sorozatnak **végtelen** sok csúcsa van. Ez azt jelenti, hogy

$$\exists \nu_0 \in \mathbb{N} : a_{\nu_0} \text{ csúcselem}, \text{ azaz } \forall n \geq \nu_0 : a_n \leq a_{\nu_0};$$

$$\exists\, \nu_0<\nu_1\in\mathbb{N}:\ a_{\nu_1}\ \mathrm{cs\'ucselem},\ \mathrm{azaz}\ \forall\, n\geq\nu_1:\ a_n\leq a_{\nu_1}\ (\leq a_{\nu_0})$$

:

Ezek a lépések folytathatók, mert végtelen sok csúcselem van. Így egy olyan $\nu_0 < \nu_1 < \nu_2 \cdots$ indexsorozatot kapunk, amelyre

$$a_{\nu_0} \geq a_{\nu_1} \geq a_{\nu_2} \geq \cdots$$

ezért a csúcsok (a_{ν_n}) sorozata (a_n) -nek egy monoton csökkenő részsorozata.

eset. A sorozatnak véges sok csúcsa van. Ez pedig azt jelenti, hogy

$$\exists\,N\in\mathbb{N},\ \, \forall\,n\geq N\,\,\text{eset\'en}\ \, a_n\ \, \text{m\'ar nem cs\'ucs}.$$

Így a csúcs definíciója szerint

$$\exists \nu_0 > N : a_{\nu_0} > a_N.$$

Mivel a_{ν_0} sem csúcselem, ezért

$$\exists \nu_1 > \nu_0 : a_{\nu_1} > a_{\nu_0} (> a_N).$$

Az eljárást folytatva most olyan $N < \nu_0 < \nu_1 < \nu_2 < \cdots$ indexsorozatot kapunk, amelyre

$$a_N < a_{\nu_0} < a_{\nu_1} < a_{\nu_2} < \cdots$$
.

Ebben az esetben tehát (a_{ν_n}) sorozat (a_n) -nek egy (szigorúan) monoton növekedő részsorozata.

14. Végtelen sorokra vonatkozó összehasonlító kritériumok.

7. tétel: Összehasonlító kritériumok. Legyenek $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok. Tegyük fel, hogy

$$\exists N \in \mathbb{N}: 0 \leq a_n \leq b_n \quad \forall n \geq N \text{ in dexre.}$$

Ekkor

1º Majoráns kritérium: ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ sor is konvergens.

2º Minoráns kritérium: ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

Bizonyítás. Az általánosság megszorítása nélkül feltehetjük, hogy $a_n \leq b_n$ minden $n \in \mathbb{N}$ esetén, hiszen véges sok tag megváltozásával egy sor konvergenciája nem változik. Jelölje (s_n) , illetve (t_n) a $\sum a_n$, illetve a $\sum b_n$ sorok részletösszegeiből álló sorozatokat. A feltevésünk miatt $s_n \leq t_n \ (n \in \mathbb{N})$. Ekkor a nemnegatív tagú sorok konvergenciáról szóló tétel szerint

- a) ha a $\sum b_n$ sor konvergens, akkor (t_n) korlátos, így (s_n) is az. Ezért a $\sum a_n$ sor is konvergens.
- b) ha $\sum a_n$ sor divergens, akkor (s_n) nem korlátos, így (t_n) sem az. Ezért a $\sum b_n$ sor is divergens.

15. A Cauchy-féle gyökkritérium.

8. tétel: A Cauchy-féle gyökkritérium. Tekintsük a $\sum a_n$ végtelen sort, és tegyük fel, hogy létezik az

$$A := \lim_{n \to +\infty} \sqrt[n]{|a_n|} \in \overline{\mathbb{R}}$$

határérték. Ekkor

 $\mathbf{1}^o\ 0 \leq A < 1$ esetén a $\sum a_n$ sor abszolút konvergens (tehát konvergens is),

 $2^{o} A > 1$ esetén a $\sum a_n$ sor divergens,

 3^{o} A = 1 esetén a $\sum a_n$ sor lehet konvergens is, divergens is.

Bizonyítás. Mivel $\sqrt[n]{|a_n|} \ge 0 \ (n \in \mathbb{N})$, ezért $A \ge 0$.

 $\mathbf{1^o}$ Tegyük fel, hogy $\boxed{0 \leq A < 1}$. Vegyünk egyA és 1 közötti qszámot!

$$\lim\left(\sqrt[n]{|a_n|}\right) \quad \Longleftrightarrow \quad \exists\, n_0\in\mathbb{N}, \quad n>n_0: \quad \sqrt[n]{|a_n|}< q, \quad \text{azaz} \\ |a_n|< q^n \quad \forall\, n>n_0.$$

Mivel $0 < q < 1 \implies \sum_{n=n_0} q^n$ mértani sor konvergens. A majoráns kritérium szerint $\sum |a_n|$ konvergens, vagyis a $\sum a_n$ végtelen sor abszolút konvergens (tehát konvergens is).

 $\mathbf{2}^o$ Tegyük fel, hogy A > 1. Vegyünk most egy 1 és A közötti q számot!

Mivel $A = \lim \left(\sqrt[n]{|a_n|} \right)$, ezért $\exists n_0 \in \mathbb{N}$, hogy ha $n > n_0$, akkor $\sqrt[n]{|a_n|} > q$, azaz $|a_n| > q^n > 1$. Ebből következik, hogy $\lim (a_n) \neq 0$, és így a $\sum a_n$ sor divergens.

 3^o Tegyük fel, hogy A = 1. Ekkor

- a $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1$;
- a $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$.

16. A D'Alembert-féle hányadoskritérium.

9. tétel: A d'Alembert-féle hányadoskritérium. Tegyük fel, hogy a $\sum a_n$ végtelen sor tagjai közül egyik sem 0 és létezik az

$$A := \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \in \overline{\mathbb{R}}$$

határérték. Ekkor

 $1^{\circ} \ 0 \le A < 1$ esetén a $\sum a_n$ sor abszolút konvergens (tehát konvergens is),

 $2^{o} A > 1$ esetén $a \sum a_n$ sor divergens,

 $3^{\circ} A = 1$ esetén a $\sum a_n$ sor lehet konvergens is, divergens is.

Bizonyítás. Világos, hogy $A \ge 0$.

 ${\bf 1^o}$ Legyen $0 \le A < 1$ és vegyünk egy olyan q számot, amire $0 \le A < q < 1$ teljesül. Ekkor

$$A:=\lim\left(\frac{|a_{n+1}|}{|a_n|}\right)\quad\Longrightarrow\quad\exists\,n_0\in\mathbb{N},\ \ \forall\,n>n_0:\ \ \frac{|a_{n+1}|}{|a_n|}< q,\ \ \operatorname{azaz}\ |a_{n+1}|< q|a_n|.$$

Ez azt jelenti, hogy

$$|a_{n_0+1}| < q|a_{n_0}|, \quad |a_{n_0+2}| < q|a_{n_0+1}|, \quad \dots \quad , \quad |a_n| < q|a_{n-1}|$$

minden $n > n_0$ esetén. Így

$$|a_n| < q|a_{n-1}| < q^2|a_{n-2}| < q^3|a_{n-3}| < \cdots < q^{n-n_0}|a_{n_0}| = q^{-n_0}|a_{n_0}|q^n = aq^n$$

ahol $a = q^{-n_0}|a_{n_0}|$ egy n-től független konstans. A $\sum aq^n$ mértani sor konvergens, mert 0 < q < 1. Ezért a majoráns kritérium szerint a $\sum |a_n|$ sor konvergens, vagyis a $\sum a_n$ végtelen sor abszolút konvergens (tehát konvergens is).

 ${f 2^o}$ Legyen ${f A}>{f 1}$ és vegyünk most egy olyan q számot, amire 1 < q < A teljesül. Ekkor

$$A:=\lim_{n\to +\infty}\frac{|a_{n+1}|}{|a_n|}\quad\Longrightarrow\quad \exists\, n_0\in\mathbb{N}, \forall\, n>n_0:\quad \frac{|a_{n+1}|}{|a_n|}>q,\quad \text{azaz}\quad |a_{n+1}|>q|a_n|>|a_n|.$$

Ebből következik, hogy $\lim (a_n) \neq 0$, így a $\sum a_n$ sor divergens.

- 3^o Tegy ük fel, hogy A = 1. Ekkor
 - $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n}{n+1} = 1$,
 - $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$.

17. Abszolút konvergens sorok átrendezése.

7. tétel. Ha a $\sum_{n=0}^{\infty} a_n$ végtelen sor abszolút konvergens, akkor tetszőleges $(p_n): \mathbb{N} \to \mathbb{N}$ permtációval képzett $\sum_{n=0}^{\infty} a_{p_n}$ átrendezése is abszolút konvergens, és

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Tehát egy abszolút konvergens sor bármely átrendezése is abszolút konvergens sor, és összege ugyanaz, mint az eredeti soré.

Bizonyítás. Legyen

$$s_n := \sum_{k=0}^n a_k$$
 és $\sigma_n := \sum_{k=0}^n a_{p_k}$ $(n \in \mathbb{N}).$

<u>1. lépés.</u> Igazoljuk, hogy a $\sum_{n=0} a_{p_n}$ sor abszolút konvergens. Valóban: mivel $\sum_{n=0} a_n$ abszolút konvergens, ezért minden $n \in \mathbb{N}$ -re

$$\sum_{k=0}^{n} |a_{p_k}| = |a_{p_0}| + |a_{p_1}| + \dots + |a_{p_n}| \le \sum_{k=0}^{+\infty} |a_k| = K < +\infty,$$

azaz a $\sum_{k=0}^{n} \left| a_{p_k} \right|$ $(n \in \mathbb{N})$ sorozat felülről korlátos; de nyilván monoton növekedő is, következésképpen a $\sum_{n=0}^{n} \left| a_{p_n} \right|$ sor konvergens. Így a $\sum_{n=0}^{n} a_{p_n}$ sor valóban abszolút konvergens.

2. lépés. Igazoljuk, hogy

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Legyen
$$A := \sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} s_n$$
 és $B := \sum_{n=0}^{+\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n$.

Tudjuk, hogy a $\sum_{n=0} |a_n|$ sor konvergens, így a Cauchy-kritérium szerint $\forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N}$, $\forall m > n \geq n_0$:

$$\left|a_{n+1}\right| + \left|a_{n+2}\right| + \cdot + \left|a_{m}\right| < \varepsilon.$$

Ezért $(n = n_0)$, ha $m > n_0$, akkor $\sum_{k=n_0+1}^{m} |a_k| < \varepsilon$.

Adott $\varepsilon > 0$ -ra tekintsük az $a_0, a_1, a_2, \ldots, a_{n_0}$ tagokat, és legyen N_0 olyan index, amire az $a_{p_0} + a_{p_1} + \cdots + a_{p_{N_0}}$ összeg már tartalmazza ezeket a tagokat. Ilyen N_0 nyilván létezik, és $N_0 \ge n_0$. Legyen $n > N_0$. Ekkor

$$\sigma_n - s_n = \underbrace{\left(a_{p_0} + a_{p_1} + \cdots + a_{p_{N_0}} + a_{p_{N_0+1}} + \cdots + a_{p_n}\right) - \left(a_0 + a_1 + \cdots + a_{n_0} + a_{n_0+1} + \cdots + a_n\right)}_{+ n_0 + 1} + \cdots + a_{n_0} + a_{n_0+1} + \cdots + a_{n_0+1}$$

sem tartalmazza az $a_0, a_1, a_2, \ldots, a_{n_0}$ tagokat. Így

$$\left|\sigma_n - s_n\right| \le \sum_{k=n_0+1}^m \left|a_k\right| < \varepsilon,$$

ahol $m := \max\{p_0, p_1, \dots, p_n\}$, hiszen $m \ge n > N_0 \ge n_0$. Ez azt jelenti, hogy $(\sigma_n - s_n)$ nullasorozat. Ezért

$$\sigma_n = (\sigma_n - s_n) + s_n \xrightarrow[n \to +\infty]{} 0 + A = A,$$

azaz

$$\sum_{n=0}^{\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} s_n = \sum_{n=0}^{\infty} a_n.$$

Ezzel a tételt bebizonyítottuk.

18. Hatványsorok konvergenciahalmaza intervallum.

1. tétel: Hatványsor konvergenciasugara. Tetszőleges $\sum_{n=0} \alpha_n(x-a)^n \ (x \in \mathbb{R})$ hatványsor konvergenciahalmazára a következő három eset egyike áll fenn:

 $\mathbf{1}^o \exists \ 0 < R < +\infty$, hogy a hatványsor $\forall \ x \in \mathbb{R} : \ |x-a| < R$ esetén abszolút konvergens és $\forall \ x \in \mathbb{R} : \ |x-a| > R$ pontban pedig divergens.

 2^{o} A hatványsor csak az x = a pontban konvergens. Ekkor legyen R := 0.

3° A hatványsor abszolút konvergens $\forall x \in \mathbb{R}$ esetén. Ekkor legyen $R := +\infty$.

R-et a hatványsor konvergenciasugarának nevezzük.

Bizonyítás. Az állítást elég a = 0 esetén igazolni.

Segédtétel. Tegyük fel, hogy a $\sum \alpha_n x^n$ hatványsor konvergens egy $x_0 \neq 0$ pontban. Ekkor $\forall |x| < |x_0|$ esetén a hatványsor abszolút konvergens x-ben.

A segédtétel bizonyítása. Mivel a $\sum \alpha_n x_0^n$ végtelen sor konvergens, ezért $\lim (\alpha_n x_0^n) = 0$, így az $(\alpha_n x_0^n)$ sorozat korlátos, azaz $\exists M > 0 : |\alpha_n x_0^n| \le M < +\infty \ (n \in \mathbb{N})$.

Legyen $|x| < |x_0|$. Ekkor

$$|\alpha_n x^n| = |\alpha_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n \le M \cdot \left| \frac{x}{x_0} \right|^n \quad (n \in \mathbb{N}).$$

A $\sum |\alpha_n x^n|$ végtelen sor tehát majorálható az $\left|\frac{x}{x_0}\right| < 1$ feltétel miatt konvergens $\sum M \left|\frac{x}{x_0}\right|^n$ geometriai sorral. Így a majoráns kritérium szerint a $\sum |\alpha_n x^n|$ sor konvergens, tehát a $\sum \alpha_n x^n$ végtelen sor abszolút konvergens. \square

A tétel bizonyítása. Tekintsük a $\sum \alpha_n x^n$ hatványsort. Ez x=0-ban nyilván konvergens, ezért KH $(\sum \alpha_n x^n) \neq \emptyset$, így

(1)
$$\exists \sup KH \left(\sum_{n=0}^{\infty} \alpha_n x^n \right) =: R \in \mathbb{R} \text{ és } R \geq 0.$$

A következő három eset lehetséges.

 1^{o} $0 < R < +\infty$. Legyen |x| < R tetszőleges. Ekkor a szuprémum definíciója szerint $\exists x_0 : |x| < x_0 < R$, hogy a $\sum \alpha_n x_0^n$ végtelen sor konvergens. A Segédtétel szerint tehát a $\sum \alpha_n x^n$ sor abszolút konvergens. Ha |x| > R tetszőleges, akkor az R szám definíciója és a Segédtétel szerint a $\sum \alpha_n x^n$ sor divergens.

 $\mathbf{2}^o$ R=0. Ekkor a $\sum \alpha_n x^n$ hatványsor az x=0 pontban nyilván konvergens. Ha |x|>0 tetszőleges, akkor $\exists x_0: 0 < x_0 < |x|$. Az R szám definíciója miatt ekkor a $\sum \alpha_n x_0^n$ végtelen sor divergens, így a Segédtétel szerint a $\sum \alpha_n x^n$ végtelen sor is divergens. A hatványsor tehát csak az x=a pontban konvergens.

3º $R = \infty$. Ha $x \in \mathbb{R}$ tetszőleges, akkor $\exists x_0 : |x| < x_0$, hogy a $\sum \alpha_n x_0^n$ sor konvergens, így a Segédtétel szerint a $\sum \alpha_n x^n$ sor abszolút konvergens. A hatványsor tehát $\forall x \in \mathbb{R}$ esetén abszolút konvergens.

Megjegyzések

- 1. Hamarosan konkrét példákat mutatunk arra, hogy a három eset mindegyike előfordulhat.
- A tétel állításait más alakban is megfogalmazhatjuk. Jelölje R a ∑ α_n(x−a)ⁿ hatványsor konvergenciasugarát.

 $\mathbf{1}^o \text{ Ha } 0 < R < +\infty$, akkor

$$(a-R,a+R)\subset \mathrm{KH}\left(\sum \alpha_n(x-a)^n\right)\subset [a-R,a+R].$$

$$\stackrel{\mathrm{divergens}}{\xrightarrow{a-R}} \stackrel{?}{\xrightarrow{a}} \xrightarrow{a+R}$$

Hamarosan konkrét példákat mutatunk arra, hogy a $a\pm R$ végpontokban konvergencia szempontjából minden lehetséges eset előfordulhat.

2º Ha
$$R=0$$
, akkor KH $(\sum \alpha_n(x-a)^n)=\{a\}$, például KH $(\sum n^n\cdot x^n)=\{0\}$.

3º Ha $R=+\infty$, akkor KH $(\sum \alpha_n(x-a)^n)=\mathbb{R}$ például, KH $\left(\sum \frac{1}{n^n}\cdot x^n\right)=\mathbb{R}$.

2. tétel: A Cauchy-Hadamard-tétel. Tekintsük a $\sum_{n=0}^{\infty} \alpha_n(x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim \left(\sqrt[n]{|\alpha_n|}\right) =: A \in \overline{\mathbb{R}}.$$

Ekkor $A \geq 0$, és a hatványsor konvergenciasugara

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right).$

Ez azt jelenti, hogy

1º ha $0 < R < +\infty$, akkor a hatványsor (abszolút) konvergens az (a-R, a+R) intervallum minden pontjában, és divergens az [a-R, a+R] intervallumon kívül eső pontokban;

 2^o ha R=0, akkor a hatványsor csak az x=a pontban konvergens;

 3^{o} ha $R = +\infty$, akkor a hatványsor az egész \mathbb{R} -en (abszolút) konvergens.

Bizonyítás. Rögzítsük tetszőlegesen az $x \in \mathbb{R}$ számot és alkalmazzuk a Cauchy-féle gyökkritériumot a $\sum \alpha_n (x-a)^n$ végtelen számsorra:

$$\lim_{n \to +\infty} \sqrt[n]{\left|\alpha_n (x-a)^n\right|} = \left(\lim_{n \to +\infty} \sqrt[n]{|\alpha_n|}\right) \cdot |x-a| = A \cdot |x-a|.$$

 $\mathbf{1}^o$ Tegyük fel, hogy $0 < A < +\infty$, vagyis $0 < R < +\infty$.

Ha $A \cdot |x-a| < 1$, azaz $|x-a| < \frac{1}{A} = R$, akkor a $\sum \alpha_n (x-a)^n$ végtelen számsor x-ben (abszolút) konvergens, és ez azt jelenti, hogy a $\sum \alpha_n (x-a)^n$ hatványsor (abszolút) konvergens az (a-R,a+R) intervallum minden pontjában.

Ha $A \cdot |x-a| > 1$, azaz $|x-a| > \frac{1}{A} = R$, akkor a $\sum \alpha_n (x-a)^n$ végtelen számsor divergens x-ben, és ez azt jelenti, hogy a $\sum \alpha_n (x-a)^n$ hatványsor divergens az [a-R,a+R] intervallumon kívül eső pontokban.

 $\mathbf{2}^o$ Ha $A = +\infty$, vagyis R = 0, akkor $(+\infty) \cdot |x - a| = +\infty > 1$ minden $x \in \mathbb{R} \setminus \{a\}$ esetén, ezért a $\sum \alpha_n (x - a)^n$ végt elen sor divergens. Ez pedig azt jelenti, hogy $\sum \alpha_n (x - a)^n$ hatványsor csak az x = a pontban konvergens.

3º Ha A=0, vagyis $R=+\infty$, akkor $0\cdot |x-a|=0<1$ minden $x\in\mathbb{R}$ esetén, ezért a $\sum \alpha_n(x-a)^n$ végtelen számsor minden $x\in\mathbb{R}$ pontban (abszolút) konvergens. Ez pedig azt jelenti, hogy a $\sum \alpha_n(x-a)^n$ hat ványsor az egész \mathbb{R} -en (abszolút) konvergens.

20. Sorok téglány szorzata.

• téglányszorzat:

• Cauchy-szorzat:

6. definíció. $A\sum_{n=0}a_n$ és $\sum_{n=0}b_n$ so mk

téglányszorzata a

$$\sum_{n=0} t_n, \quad t_n := \sum_{\max\{i,j\}=n} a_i b_j \quad (n = 0, 1, 2, \ldots),$$

• Cauchy-szorzata pedig a

$$\sum_{n=0}^{\infty} c_n, \quad c_n := \sum_{i+j=n}^{\infty} a_i b_j = \sum_{k=0}^{n} a_k b_{n-k} \quad (n=0,1,2,\ldots)$$

végtelen sor.

9. tétel. Tegyük fel, hogy a $\sum_{n=0} a_n$ és a $\sum_{n=0} b_n$ végtelen sorok konvergensek. Ekkor a $\sum_{n=0} t_n$ téglányszorzatuk is konvergens és

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n,$$

azaz konvergens sorok téglányszorzata is konvergens, és a téglányszorzat összege a két sor összegének szorzatával egyezik meg.

Bizonyítás. A bizonyítás alapja a sorozatoknál tanult műveletek és határátmenet felcserélhetőségére vonatkozó tétel. Jelölje A_n , B_n és T_n rendre a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ és $\sum_{n=0}^{\infty} t_n$ sorok n-edik részletösszegeit. Ekkor

$$T_n = \sum_{k=0}^n t_k = \sum_{k=0}^n \sum_{\max\{i,j\}=k} a_i b_j = \sum_{\max\{i,j\}\le n} a_i b_j = \left(\sum_{i=0}^n a_i\right) \cdot \left(\sum_{j=0}^n b_j\right) =$$

$$= A_n B_n \to \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right), \quad \text{ha } n \to +\infty.$$

Mivel a (T_n) sorozat konvergens, így a $\sum t_n$ végtelen sor is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \lim(T_n) = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right). \blacksquare$$

Megjegyzés. Az előző tétel Cauchy-szorzatra nem érvényes. Például a $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ konvergens sor önmagával vett Cauchy-szorzata divergens.

21. Függvények határértékének egyértelműsége.

2. tétel: A határérték egyértelmű. Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, akkor a 2. definícióban szereplő $A \in \overline{\mathbb{R}}$ egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy valamilyen $B \in \overline{\mathbb{R}}$ is eleget tesz a definíció feltételeinek és $A \neq B$. Ekkor

$$\exists \varepsilon > 0 : K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset.$$

Egy ilyen ε -hoz a határérték definíciója szerint

$$\exists \, \delta_1 > 0 : \, \forall \, x \in \big(K_{\delta_1}(a) \setminus \{a\} \big) \cap \mathcal{D}_f : \, f(x) \in K_{\varepsilon}(A),$$
$$\exists \, \delta_2 > 0 : \, \forall \, x \in \big(K_{\delta_2}(a) \setminus \{a\} \big) \cap \mathcal{D}_f : \, f(x) \in K_{\varepsilon}(B).$$

Legyen $\delta := \min \{\delta_1, \delta_2\}$. Ekkor

$$\forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f: \quad f(x) \in K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset.$$

Ellentmondásra jutottunk, és ezzel a határérték egyértelműségét igazoltuk.

22. A határértékre vonatkozó átviteli elv.

3. tétel: A határértékre vonatkozó átviteli elv. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f'$ és $A \in \overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \iff \begin{cases} \forall (x_n) \colon \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, & \lim_{n \to +\infty} x_n = a \text{ eset\'en} \\ \lim_{n \to +\infty} f(x_n) = A. \end{cases}$$

Bizonyítás.

Legyen (x_n) egy, a tételben szereplő sorozat és $\varepsilon > 0$ egy rögzített érték. Ekkor a $K_\delta(a)$ környezethez $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ x_n \in K_\delta(a)$. Így $f(x_n) \in K_\varepsilon(A)$ telejesül minden $n > n_0$ indexre, és ez azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke, és $\lim_{n \to +\infty} f(x_n) = A$.

Tegyük fel, hogy $\forall (x_n) \colon \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to +\infty} x_n = a$ esetén $\lim_{n \to +\infty} f(x_n) = A$. Megmutatjuk, hogy $\lim f = A$.

Az állítással ellentétben tegyük fel, hogy a $\lim_a f = A$ egyenlőség nem igaz. Ez részletesen azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall \delta > 0 \text{-hoz} \ \exists x_{\delta} \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x_{\delta}) \notin K_{\varepsilon}(A).$$

A $\delta = \frac{1}{n} \ (n \in \mathbb{N}^+)$ választással ez azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall n \in \mathbb{N}^+\text{-hoz} \ \exists x_n \in (K_{1/n}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x_n) \notin K_{\varepsilon}(A).$$

Ez az (x_n) sorozat nyilván a-hoz tart (hiszen $x_n \in K_{1/n}(a)$), de a függvényértékek $(f(x_n))$ sorozata nem tart A-hoz (hiszen $f(x_n) \notin K_{\varepsilon}(A)$), ami ellentmond a feltételünknek.

23. Monoton függvények határértéke.

<u>**Tétel.**</u> Legyen $(\alpha, \beta) \subset \mathbb{R}$ tetszőleges (korlátos vagy nem korlátos) nyílt intervallum. Ha az f függvény monoton (α, β) -n, akkor f-nek $\forall a \in (\alpha, \beta)$ pontban létezik a jobb oldali, illetve a bal oldali határértéke.

(a) Ha
$$f \nearrow (\alpha, \beta)$$
-n, akkor
$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \},$$

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}.$$

(b) Ha
$$f \searrow (\alpha, \beta)$$
-n, akkor
$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x > a \},$$

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}.$$

<u>Bizonyítás.</u> Tegyük fel, hogy $f \nearrow (\alpha, \beta)$ -n. A jobb oldali határértékre vonatkozó állítást igazoljuk.

Legyen $m:=\inf\big\{f(x)\ \big|\ x\in(\alpha,\beta),\ x>a\big\}$. Világos, hogy $m\in\mathbb{R}$. Az infimum definíciójából következik, hogy

(i)
$$m \le f(x) \quad \forall \ x \in (\alpha, \beta), \ x > a;$$

(ii) $\forall \varepsilon > 0$ -hoz $\exists x_1 \in (\alpha, \beta), \ x_1 > a: \ f(x_1) < m + \varepsilon.$

Így $m \le f(x_1) \le m + \varepsilon$. Mivel $f \nearrow (\alpha, \beta)$ -n, ezért

$$m \le f(x) \le f(x_1) < m + \varepsilon \ \forall \ x \in (a, x_1) \text{ pont ban.}$$

A $\delta := x_1 - a > 0$ választással tehát azt mutattuk meg, hogy

$$\forall \, \varepsilon > 0 \text{-hoz} \quad \exists \, \delta > 0, \quad \forall \, x \in (\alpha, \beta), \ \, a < x < a + \delta : \quad \underbrace{0 \leq f(x) - m < \varepsilon}_{f(x) \in K_{\varepsilon}(m)}.$$

Ez pedig azt jelenti, hogy f-nek a-ban van jobb oldali határértéke, és az m-mel egyenlő, azaz

$$\lim_{a \to 0} f = m = \inf \left\{ f(x) \mid x \in (\alpha, \beta), \ x > a \right\}.$$

A tétel többi állítása hasonlóan bizonyítható. ■

24. Az összetett függvények folytonossága.

8. tétel: Az összetett függvény folytonossága. Tegyük fel, hogy $f,g \in \mathbb{R} \to \mathbb{R}$, $g \in C\{a\}$ és $f \in C\{g(a)\}$. Ekkor $f \circ g \in C\{a\}$, azaz az összetett függvény "örökli" a belső-és a külső függvény folytonosságát.

Bizonyítás. A feltételek szerint $g(a) \in \mathcal{D}_f$, ezért $\mathcal{R}_g \cap \mathcal{D}_f \neq \emptyset$, így valóban beszélhetünk az $f \circ g$ összetett függvényről és $a \in \mathcal{D}_{f \circ g}$ is igaz, mert $\mathcal{D}_{f \circ g} \subset \mathcal{D}_g$.

Legyen $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ g} \subset \mathcal{D}_g$ egy olyan sorozat, amelyre $\lim (x_n) = a$. Ekkor g-re a 7. tételt alkalmazva azt kapjuk, hogy $\lim (g(x_n)) = g(a)$. Ugyanakkor $(g(x_n)): \mathbb{N} \to \mathcal{D}_f$, ezért f-re alkalmazva az átviteli elvet az adódik, hogy

$$\lim_{n \to +\infty} f(g(x_n)) = f(g(a)) = (f \circ g)(a).$$

Mivel ez utóbbi bármely $(x_n) \colon \mathbb{N} \to \mathcal{D}_{f \circ g}$, $\lim (x_n) = a$ sorozat esetén igaz, ezért ismét az átviteli elvből következik, hogy $f \circ g \in C\{a\}$.

25. Korlátos és zárt intervalumon értelmezett folytonos függvény korlátos.

1. tétel. Ha $f \in C[a,b]$, akkor f korlátos az [a,b] intervallumon.

Megjegyzés. A tételben lényeges feltétel az, hogy az f függvény egy korlátos és zárt intervallumon folytonos. Bármelyik feltételt elhagyva a tétel állítása nem marad igaz. Például az $f(x) := \frac{1}{x} \left(x \in (0,1] \right)$ függvény folytonos a korlátos (0,1] intervallumon, de f itt nem korlátos. Az $f(x) := x \left(x \in \mathbb{R} \right)$ függvény folytonos a $(-\infty, +\infty)$ intervallumon, de nem korlátos.

Bizonyítás. f korlátos [a, b]-n, ha

$$\exists\, K>0: \quad \forall\, x\in [a,b] \ \text{eset\'en} \ |f(x)|\leq K.$$

 $\underline{\text{Indirekt}}$ módon bizonyítunk: Tegyük fel, hogy f nem korlátos [a, b]-n, azaz

$$\forall\, K>0\text{-hoz}\ \exists\, x\in [a,b]:\ |f(x)|>K.$$

A $K = n \in \mathbb{N}$ választással azt kapjuk, hogy

(*)
$$\forall n \in \mathbb{N}\text{-hez } \exists x_n \in [a, b]: |f(x_n)| \ge n.$$

Az $(f(x_n))$ sorozat tehát nem korlátos.

Mivel $(x_n) \subset [a,b]$ korlátos sorozat, ezért ennek a Bolzano-Weierstrass-féle kiválasztási tétel szerint létezik (x_{n_k}) konvergens részsorozata. Legyen $\alpha := \lim (x_{n_k})$. Indirekt módon igazolható, hogy $\alpha \in [a,b]$. Ugyanakkor $f \in C\{\alpha\}$. Így a folytonosságra vonatkozó átviteli elv szerint létezik a

$$\lim (f(x_{n_k})) = f(\alpha)$$

véges határérték. Ebből következik az, hogy az $(f(x_{n_k}))$ sorozat korlátos, ami ellentmond (*)-nak. Ezzel a tétel állítását bebizonyítottuk.

26. Weierstrass tétele.

2. tétel: Weierstrass tétele.

$$Ha \ f \in C[a,b] \implies \begin{cases} f \text{-nek l\'eteznek abszol\'ut sz\'els\~o\'ert\'ekei, azaz} \\ \exists \ \alpha,\beta \in [a,b] : \\ f(\beta) \leq f(x) \leq f(\alpha) \ \ \big(\forall \ x \in [a,b] \big). \end{cases}$$

Bizonyítás. f folytonos [a,b]-n \Longrightarrow f korlátos [a,b]-n. Ezért

$$\exists \sup \{ f(x) \mid x \in [a, b] \} =: M \in \mathbb{R},$$
$$\exists \inf \{ f(x) \mid x \in [a, b] \} =: m \in \mathbb{R}.$$

Igazoljuk: az f függvénynek van abszolút maximumhelye, azaz $\exists \alpha \in [a,b] : f(\alpha) = M$.

A szuprémum definíciójából következik, hogy

$$\forall n \in \mathbb{N}, \exists y_n \in \mathcal{R}_f : M - \frac{1}{n} < y_n \le M.$$

Viszont:

$$y_n \in \mathcal{R}_f \implies \exists x_n \in [a, b] : f(x_n) = y_n \quad (\forall n \in \mathbb{N}).$$

Az így definiált $(x_n): \mathbb{N} \to [a,b]$ sorozat korlátos, ezért a Bolzano–Weierstrass-féle kiválasztási tétel miatt az (x_n) sorozatnak létezik (x_{n_k}) konvergens részsorozata. Jelölje α ennek a határértékét, azaz legyen

$$\alpha := \lim(x_{n_k}).$$

Indirekt módon belátható, hogy $\alpha \in [a, b]$. f folytonos [a, b]-n \Longrightarrow $f \in C\{\alpha\}$ $\stackrel{\text{átviteli}}{\Longrightarrow}_{\text{ely}}$

(*) miatt
$$\lim_{n_k \to +\infty} \underbrace{f(x_{n_k})}_{y_{n_k}} = f(\alpha).$$

Mivel

$$M - \frac{1}{n_k} < f(x_{n_k}) = y_{n_k} \le M \quad \text{(minden } n_k\text{-ra)},$$

ezért $\lim_{n_k\to+\infty}y_{n_k}=M$, így $f(\alpha)=M$. Megmutattuk tehát azt, hogy α az f függvénynek egy maximumhelye.

Hasonlóan bizonyítható az abszolút minimum létezése.

27. A Bolzano-tétel.

3. tétel: Bolzano tétele.

$$\begin{cases} \text{Tegy\"{u}k fel, hogy} \\ \text{(a) } f \in C[a,b], \\ \text{(b) } f(a) \cdot f(b) < 0 \\ \text{(f a k\'{e}t v\'{e}gpontban k\"{u}l\"{o}nb\"{o}z\~{o} el\~{o}jel\~{u})} \end{cases} \implies \begin{cases} \exists \ \xi \in (a,b), \\ ami \ z\'{e}rushelye \ az \ f \ f\"{u}ggv\'{e}nynek, \ azaz \\ f(\xi) = 0. \end{cases}$$

Bizonyítás. Tegyük fel, hogy

$$f(a) < 0 < f(b)$$
.

A ξ számot egymásba skatulyázott zárt intervallumsorozat közös pontjaként fogjuk definiálni. Legyen

f(b)

• f(b)

$$[x_0, y_0] := [a, b]$$
 $a b$

Az intervallumot megfelezzük. Legyen $z_0:=\frac{a+b}{2}.$ Három eset lehetséges:

1.
$$f(z_0) = 0$$
, ekkor $\xi := z_0$ zérushelye f -nek.

2.
$$f(z_0) > 0$$
 esetén legyen $[x_1, y_1] := [a, z_0]$

$$f(a) \bullet$$

3.
$$f(z_0) < 0$$
 esetén legyen $[x_1, y_1] := [z_0, b]$

Az $[x_1, y_1]$ intervallumot megfelezve is három eset lehetséges.

Az eljárást folytatjuk.

Vagy véges sok lépésben találunk olyan ξ -t, amelyre $f(\xi) = 0$, vagy nem. Az utóbbi esetben $\exists [x_n, y_n] \quad (n \in \mathbb{N})$ intervallumsorozat, amelyre

(i)
$$[x_{n+1}, y_{n+1}] \subset [x_n, y_n] \ (\forall n \in \mathbb{N}),$$

(ii)
$$f(x_n) < 0$$
, $f(y_n) > 0 \ (\forall n \in \mathbb{N})$

(iii)
$$y_n - x_n = \frac{b-a}{2^n} \ (\forall n \in \mathbb{N}).$$

A valós számok Cantor-tulajdonságából és (iii)-ből következik, hogy fenti egymásba skatulyázott intervallumsorozatnak pontosan egy közös pontja van. Legyen ez ξ , azaz

egyértelműen
$$\exists \; \xi \in \bigcap_{n \in \mathbb{N}} [x_n, y_n] \neq \emptyset.$$

A konstrukcióból következik, hogy

$$\xi = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n.$$

Mivel f folytonos ξ -ben, ezért

$$\lim_{n \to +\infty} f(x_n) = f(\xi) = \lim_{n \to +\infty} f(y_n).$$

$$\lim_{n \to +\infty} f(x_n) \le 0 \le \lim_{n \to +\infty} f(y_n),$$

azaz $f(\xi) \leq 0$ és $f(\xi) \geq 0$, ami csak úgy teljesülhet, ha $f(\xi) = 0$.

A bizonyítás hasonló, ha f(a)>0 és f(b)<0. \blacksquare