MATH3075/3975 Financial Derivatives

School of Mathematics and Statistics University of Sydney

Semester 2, 2020

Tutorial sheet 6

Background: Section 2.2 – Single-Period Market Models.

Exercise 1 Consider a single-period three-state market model $\mathcal{M} = (B, S)$ with the dates 0 and T = 1. We assume that there are two assets: the savings account B with the initial value $B_0 = 1$ and a risky stock with the initial price $S_0 = 4$. The risk-free simple interest rate r equals 10%. Assume that the stock price S_1 satisfies $(S_1(\omega_1), S_1(\omega_2), S_1(\omega_3)) = (8, 5, 3)$ and the real-world probability \mathbb{P} satisfies $\mathbb{P}(\omega_1) = 0.3$, $\mathbb{P}(\omega_2) = 0.3$, $\mathbb{P}(\omega_3) = 0.4$.

- (a) Show directly that the model $\mathcal{M} = (B, S)$ is arbitrage free, that is, no arbitrage opportunities exist in this model. Do not use here the FTAP (Theorem 2.2.1), but refer instead to Definition 2.2.3 in Course Notes.
- (b) Consider the call option with the expiry date T=1 and strike price K=4. Examine the existence of a replicating strategy for this option.
- (c) Find explicitly the class of all attainable contingent claims.
- (d) Find the class \mathbb{M} of all martingale measures $\mathbb{Q} = (q_1, q_2, q_3)$ on the space $\Omega = (\omega_1, \omega_2, \omega_3)$ for the model \mathcal{M} .
- (e) Find all expected values

$$\mathbb{E}_{\mathbb{Q}}\left(\frac{(S_1-4)^+}{1+r}\right)$$

where \mathbb{Q} ranges over the class \mathbb{M} of all risk-neutral probability measures for the model \mathcal{M} .

(f) (MATH3975) Find the superhedging price for X, that is, the minimal initial endowment x for which there exists a portfolio (x, ϕ) such that the inequality

$$V_1(x,\phi)(\omega) \ge (S_1(\omega) - 4)^+$$

holds for every $\omega \in \Omega$.

Exercise 2 Consider a single-period market model $\mathcal{M} = (B, S)$ on the sample space $\Omega = \{\omega_1, \omega_2, \omega_3\}$. Assume that the savings account equals $B_0 = 1$, $B_1 = 1.1$ and the stock price equals $S_0 = 5$ and

$$S_1 = (S_1(\omega_1), S_1(\omega_2), S_1(\omega_3)) = (7.7, 5.5, 4.4).$$

The real-world probability \mathbb{P} is such that $\mathbb{P}(\omega_i) > 0$ for i = 1, 2, 3.

- (a) Find the class \mathbb{M} of all martingale measures for the model \mathcal{M} . Is this market model complete?
- (b) Show that the claim $X = (X(\omega_1), X(\omega_2), X(\omega_3)) = (5.5, 3.3, 2.2)$ is attainable and compute its arbitrage price $\pi_0(X)$ using the replicating strategy for X.
- (c) Consider the contingent claim Y = (3, 1, 0). Show that the expected value

 $\mathbb{E}_{\mathbb{Q}}\left(\frac{Y}{B_1}\right)$

does not depend on the choice of a martingale measure $\mathbb{Q} \in \mathbb{M}.$ Is this claim attainable?

(d) Consider the contingent claim Z = (4.4, 0, -3.3). Find the range of arbitrage prices

$$\pi_0(Z) = \mathbb{E}_{\mathbb{Q}}\left(\frac{Z}{B_1}\right)$$

where $\mathbb{Q} \in \mathbb{M}$. Is this claim attainable?

(e) Find the unique martingale measure $\widetilde{\mathbb{Q}}$ for the extended model $\widetilde{\mathcal{M}} = (B, S^1, S^2)$ in which $S^1 = S$ and the risky asset S^2 is defined as the claim Z traded at its initial price $\pi_0(Z) = -0.5$, that is, $S_0^2 = -0.5$ and $S_1^2 = Z$. Is the market model $\widetilde{\mathcal{M}}$ complete?

Exercise 3 (MATH3975) Let $\Omega = \{\omega_1, \omega_2\}$. We consider a single-period model $\mathcal{M} = (S^1, S^2)$ with two **risky assets** with prices S^1 and S^2 given by $S_0^1 = s_0 > 0$, $S_0^2 = z_0 > 0$ and

$$S_1^1(\omega_i) = s_i, \quad S_1^2(\omega_i) = z_i$$

for i = 1, 2 where $0 < s_1 < s_2$ and $0 < z_1 < z_2$. There are two traded assets, S^1 and S^2 , so the wealth of a strategy ϕ equals $V_t(\phi) = \phi_t^1 S_t^1 + \phi_t^2 S_t^2$ for t = 0, 1.

It should be stressed that the existence of the savings account B is **not** postulated. Hence the process B should not be used at all in your solution.

- (a) Under which assumptions on the (relative) values of s_0, s_1, s_2, z_0, z_1 and z_2 the model $\mathcal{M} = (S^1, S^2)$ is arbitrage-free? To answer this question in terms of some inequalities satisfied by s_0, s_1, s_2, z_0, z_1 and z_2 , examine the relative wealth $\hat{V}(\phi) = \frac{V(\phi)}{S^2}$.
- (b) Assume that s_0, s_1, s_2, z_0, z_1 and z_2 are such that the model $\mathcal{M} = (S^1, S^2)$ is arbitrage-free. Check whether the model $\mathcal{M} = (S^1, S^2)$ is complete.
- (c) Assume that s_0, s_1, s_2, z_0, z_1 and z_2 are such that the model $\mathcal{M} = (S^1, S^2)$ is arbitrage-free. Find the price and the replicating strategy for the contingent claim $X = (S_1^1 S_1^2)^+$ with maturity date T = 1. Was it necessary to assume here that the model is complete?
- (d) Find the price of the contingent claim with the payoff $Y = (S_1^2 S_1^1)^+$ using part (c) and a suitable version of the put-call parity relationship.