Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

LÓGICA MATEMÁTICA

Curso académico 2019-2020

Autor: Javier López

Versión Febrero 2020

Fe de errores

Este texto está sacado integramente de los apuntes que he tomado en clase. Por ello, es más que probable, encontrar en él erratas y errores. Todos ellos pueden ser comunicados a través del foro del campus virtual de la asignatura y serán subsanados lo antes posible o, en su defecto, añadidos a esta lista para que se tengan en cuenta.

- En el *ejemplo III*, *el apartado* (□) no lo tengo escrito en mis apuntes y por tanto la solución no es de Luis.
- Recomiendo revisar el ejemplo V, caso 4.

Lógica de proposiciones

Definición 1. Diremos que una **proposición** es un enunciado que puede ser verdadero o falso. Nunca será una proposición cualquier enunciado que expresa duda o sentimientos. Tampoco lo serán aquellos enunciados que no tengan sentido lógico.

Un ejemplo de lo que no es proposición sería

 $p \equiv$ "Juan se cae"

 $q \equiv$ "Yo me río"

 $\varphi \equiv$ Juan se cae y yo me río

Conectivas lógicas. Son los símbolos que utilizamos para formalizar las proposiciones. Estos son

¬ → negación
$$\wedge$$
 → conjunción \vee → disyunción \rightarrow → implicación \rightarrow → implicación \perp → falso \top → cierto

Definición 2. Se denomina **formalizar** una proposición, a escribirla mediante conectivas lógicas.

Ejemplo I: Formalizar las siguientes frases

- 1. Si llueve se suspende el partido.
- 2. Solo si llueve se suspende el partido.

tomando como proposiciones $p \equiv$ "Llueve" y $q \equiv$ "se suspende el partido".

- (1) $p \rightarrow q$
- (2) $q \rightarrow p$

Definición 3. Llamaremos **formula** a una cadena de símbolos.

Definición 4. Denotamos el conjunto de todos los símbolos de proposición como

$$SP = \{p, q, \ldots\}$$

que es un conjunto numerable (no necesariamente finito).

Definición 5. Al conjunto formado por SP y las conectivas lógicas se le denomina **alfabeto** y lo denotamos como

$$A = SP \cup \{\neg, \land, \lor \rightarrow, \leftrightarrow, \top, \bot, (,)\}$$

denotamos por A* al conjunto de cadenas de símbolos de A

$$A^* = \{ \varepsilon, a_1, a_2, \dots, a_n : a_n \ge 0, a_i \in A, 1 \le j \le n \}$$

donde ε es la cadena vacía.

Ejemplo II: Dado el vocabulario $A = \{a, b\}$ su conjunto de cadena de símbolos será el conjunto

$$A^* = \{ \varepsilon, a, b, ab, ba, aaa, aab, \ldots \}$$

Definición 6. Dado SP un conjunto de símbolos de proposición, tomamos el alfabeto A_{SP} y definimos PROP_{SP} como el menor subconjunto de A_{SP}^* que verifica

- 1. $SP \subseteq PROP_{SP}$
- 2. Si $\varphi \in PROP_{SP}$, entonces $(\neg \varphi) \in PROP_{SP}$
- 3. Si $\varphi, \psi \in PROP_{SP}$, entonces $(\varphi \square \psi) \in PROP_{SP}$, donde

$$\square \in \{\land, \lor \rightarrow, \leftrightarrow\}$$

Veamos como se construye esta definición. Sean

$$P_0 = \mathrm{SP}$$

$$P_{n+1} = P_n \cup \{ (\neg \varphi), \ (\varphi \square \psi) : \square \in \{ \land, \lor \to, \leftrightarrow \}, \ \varphi, \psi \in P_n \}$$

$$P = \bigcup_{i \ge 0}$$

veamos como P cumple las propiedades 1, 2 y 3 de la definición anterior. De forma trivial se verifica que $PROP_{SP} \subseteq P$ y nos faltaría por demostrar la inclusión en el otro sentido.

Demostración. Sea $\varphi \in P$ entonces $\exists k$ tal que $\varphi \in P_k$ y aplicamos inducción sobre k para ver que $\varphi \in PROP_{SP}$.

Para k=0, por la propiedad 1 de la definición se tienen que $\varphi\in PROP_{SP}$. Para $k\geq 0$

- (i) $\varphi \in P_{k-1}$
- (ii) $\psi \in P_{k-1}$ tal que $\varphi = (\neg \psi)$
- (iii) $\psi_1, \psi_2 \in P_{k-1}$ entonces $\varphi = (\psi_1 \square \psi_2)$

Inducción estructural

Supongamos que queremos probar una propiedad P que cumpla $P(\varphi), \forall \varphi \in PROP_{SP}$. Para ello vamos a usar una estructura basada en el método de inducción usual sobre $\mathbb N$ aplicado sobre las proposiciones. El método tiene la siguiente estructura

- (1) Demostrar la base inductiva. Lo haremos sobre las atómicas (i.e. SP, \bot , \top)
 - (AT) Se cumple $P(\varphi), \forall \varphi \in AT$.

Curso 19/20 3

- (2) **Paso inductivo**. Una vez que tenemos la propiedad P probada para el caso base, suponemos la cierta la hipótesis de inducción, es decir que se cumple $P(\varphi)$, y la utilizamos para los dos casos siguientes
 - $(\neg \varphi)$ Utilizando la h.i. demostraremos que se cumple $P((\neg \varphi))$.
 - (\square) Suponemos que φ_1 cumple P y que φ_2 cumple P, es decir, se verifican $P(\varphi_1)$ y $P(\varphi_2)$ y entonces hay que demostrar $P(\varphi_1 \square \varphi_2)$ con $\square \in \{\land, \lor \to, \leftrightarrow\}$. Dependiendo de la propiedad que queramos demostrar, podremos, o bien agrupar la conectivas lógicas en un sólo caso, o bien separarlas de forma en casos particulares.

Ejemplo III: Vamos a demostrar por inducción estructural la siguiente propiedad

P: Toda fórmula tiene el mismo número de paréntesis abiertos y cerrados

Para ello, vamos a denotar $|\varphi|_{(}$ al número de paréntesis abiertos de φ y, análogamente, denotamos $|\varphi|_{)}$ al número de paréntesis cerrados de φ .

(AT) Si $\varphi \in SP$ ó $\varphi = \bot$ ó $\varphi = \top$, en cualquiera de los casos no hay paréntesis, luego $|\varphi|_{\ell} = |\varphi|_{\ell}$ y por tanto se verifica

$$P(\varphi), \forall \varphi \in AT$$

 $(\neg \varphi)$ Sea $\varphi \in PROP_{SP}$ tal que se verifica $P(\varphi)$, es decir

$$|\varphi|_{(}=|\varphi|_{)}$$

ahora, el $|(\neg \varphi)|_{(} = |\varphi|_{(} + 1$ y analogamente $|(\neg \varphi)|_{)} = |\varphi|_{)} + 1$, luego por h.i. se tiene que

$$|(\neg \varphi)|_{1} = |(\neg \varphi)|_{0}$$

luego se verifica $P(\neg \varphi), \forall \varphi \in PROP_{SP}$.

 (\square) Sean $\varphi_1, \varphi_2 \in PROP_{SP}$, supongamos que

Se verifica
$$P(\varphi_1) \Rightarrow |\varphi_1|_{\ell} = |\varphi_1|_{\ell}$$

Se verifica
$$P(\varphi_2) \Rightarrow |\varphi_2|_{\ell} = |\varphi_2|_{\ell}$$

y veamos que ocurre con $P(\varphi_1 \square \varphi_2)$

$$|\varphi_1 \square \varphi_2|_{\mathfrak{C}} = |\varphi_1|_{\mathfrak{C}} + |\varphi_2|_{\mathfrak{C}} + 1$$

$$|\varphi_1 \square \varphi_2|_1 = |\varphi_1|_1 + |\varphi_2|_1 + 1$$

y, por h.i. se tiene que

$$|\varphi_1 \square \varphi_2|_{)} = |\varphi_1 \square \varphi_2|_{(}$$

finalizando así la demostración.

Definición 7. Sea A un alfabeto y $\omega \in A^*$ decimos que ω' es **prefijo** de ω si $\exists \omega''$ tal que

$$\omega = \omega' \omega''$$

con, $\omega = a_1 \dots a_n$, entonces $\exists k, 0 \le k \le n$ tal que $\omega' = a_1 \dots a_k$. Diremos que ω' es **prefijo propio** si $\omega' \ne \varepsilon$ y $\omega' \ne \omega$.

Ejemplo IV: Sea $A = \{a, b\}$ y $\omega = aababb$ entonces

• Si
$$k=0 \Rightarrow \omega'=\varepsilon$$

• Si
$$k = 1 \Rightarrow \omega' = a$$

• Si
$$k=2 \Rightarrow \omega'=aa$$

• Si
$$k = 3 \Rightarrow \omega' = aab$$

• Si
$$k=4 \Rightarrow \omega' = aaba$$

• Si
$$k = 5 \Rightarrow \omega' = aabab$$

• Si
$$k = 5 \Rightarrow \omega' = \omega$$

Ejemplo V: Sea φ' prefijo propio de φ , vamos a probar por inducción estructural la propiedad

P: El número de paréntesis cerrados de φ' es menor que el número de paréntesis abiertos. utilizando la notación del ejemplo (III).

(AT) Sea $\varphi \in SP$, supongamos $\varphi = p$ entonces, o bien $\varphi' = \epsilon$ o $\varphi' = p$ luego φ no tiene prefijos propios de modo que se cumple la propiedad. Si $\varphi = \bot$ o $\varphi = \top$ de nuevo $\varphi' = \epsilon$ o $\varphi' = \bot$ o $\varphi' = \top$ que no son prefijos propios, luego φ tampoco tiene prefijos.

$$P(\varphi), \forall \varphi \in AT$$

 $(\neg \varphi)$ Supongamos que φ' es prefijo propio de $(\neg \varphi)$, y supongamos que todo prefijo propio de φ cumple la propiedad.

(CASO 1) Si
$$\varphi' = ($$
, entonces $|\varphi'|_{\ell} = 1 > |\varphi'|_{\ell} = 0$

(CASO 2) Si
$$\varphi' = (\neg, \text{ entonces } |\varphi'|_{\ell} = 1 > |\varphi'|_{\ell} = 0$$

(CASO 3) Si $\varphi' = (\neg \varphi'')$, siendo φ'' prefijo de φ luego cumple la propiedad, si además le sumamos uno la cumple también.

(CASO 4) Si
$$\varphi' = (\neg \varphi, \text{ entonces } |\varphi'|_{\mathfrak{C}} = 1 = |\varphi'|_{\mathfrak{C}} = 0$$

(\square) Supongamos que todo prefijo propio de φ_1 , φ_2 cumple la propiedad. Hay que ver entonces, que los prefijos lo cumplen

$$(, (\varphi_1, \varphi_1, \varphi_1 \square, (\varphi_1 \square \varphi_2', (\varphi_1 \square \varphi_2))))$$

Se deja como ejercicio.

Definiciones recursivas

Supongamos que queremos definir una función

$$H: PROP_{SP} \to A$$

donde A puede tomar diferentes tipos de conjunto: \mathbb{N} , $\mathcal{P}(PROP_{SP})$,... para hacerlo de forma recursiva, vamos a necesitar las siguientes funciones auxiliares

Caso atómico

$$H_{\rm AT}:{\rm AT}\to A$$

dada por
$$H(\varphi) = H_{AT}(\varphi), \forall \varphi \in AT$$

- Paso recursivo: donde diferenciamos entre la negación y las conectivas binarias.
 - (i) Negación

$$H_{\neg}:A\to A$$

dada por

$$H|(\neg \varphi)| = H_{\neg}|(H(\varphi))|$$

(ii) Conectivas binarias

$$H_{\square}: A \times A \to A$$

dada por

$$H|(\varphi_1 \square \varphi_2)| = H_{\square}|(H(\varphi_1, \varphi_2))|$$

En los casos (i) e (ii) ni la entrada ni la salida de la función está formada por formulas.

Ejemplo VI: Si queremos definir de forma recursiva el número de paréntesis abiertos de una proposición

$$H_{\ell}: PROP_{SP} \to \mathbb{N}$$

se tendría

$$H_{\mathrm{AT}}(:\mathrm{AT}\to\mathbb{N}$$

dada por

$$H_{\mathrm{AT}}(\varphi) = 0, \forall \varphi \in \mathrm{AT}$$

la negación

$$\begin{array}{cccc} H_{\neg\,(}: & \mathbb{N} & \to & \mathbb{N} \\ & n & \longmapsto & n+1 \end{array}$$

finalmente, el resto de conectivas

$$H_{\square}(: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(n, m) \longmapsto n + m + 1$

Escribirlo así es un poco farragoso por lo que, generalmente, escribiremos las funciones haciendo uso del propio concepto de recursión

$$H_{\ell}(\varphi) = 0, \forall \varphi \in AT$$

$$H_{\neg \ell}((\neg \varphi)) = H_{\ell}(\varphi) + 1$$

$$H_{\square \ell}(\varphi_1 \square \varphi_2) = H_{\ell}(\varphi_1) + H_{\ell}(\varphi_2) + 1$$

además, en la escritura, se suprime la función auxiliar. **Ejemplo VII**: definiremos de forma recursiva el número de apariciones de \wedge en φ y lo denotamos como $|\varphi|^{\wedge}$.

$$(AT) |\varphi|^{\wedge} = 0, \forall \varphi \in AT$$

$$(\neg) \ |(\neg\varphi)|^{\wedge} = |\varphi|^{\wedge}$$

(□) Hay que diferenciar dos casos

$$|(\varphi_1 \square \varphi_2)|^{\wedge} = \begin{cases} |\varphi_1|^{\wedge} + |\varphi_2|^{\wedge} & \text{si } \square \in \{\vee, \to, \leftrightarrow\} \\ |\varphi_1|^{\wedge} + |\varphi_2|^{\wedge} + 1 & \text{si } \square = \wedge \end{cases}$$

Definición 8. Dadas dos fórmulas φ y ψ decimos que ψ es una **subformula** de φ si una parte de φ formada por símbolos consecutivos es idéntica a ψ .

Ejemplo VIII: dada la formula,

$$\varphi \equiv (p \lor (q \to (\neg r)))$$

observamos que esta formada por las subformulas siguientes

$$p, q, r(\neg r), (q \rightarrow (\neg r)), \varphi$$

Ejemplo IX: Creamos una función recursiva que devuelva las diferentes subformulas de una formula dada.

$$SUB : PROP_{SP} \to \mathcal{P}(PROP_{SP})$$

dada por

(AT)
$$SUB(\varphi) = {\varphi}, \forall \varphi \in AT$$

$$(\neg)$$
 SUB $((\neg\varphi)) = \{(\neg\varphi)\} \cup SUB(\varphi)$

$$(\Box) \operatorname{SUB}((\varphi_1 \Box \varphi_2)) = \operatorname{SUB}(\varphi_1) + \operatorname{SUB}(\varphi_2) \cup \{(\varphi_1 \Box \varphi_2)\}\$$

Proposición 1. El esquema de definición recursiva da como resultado una única función. Esto es, dadas

$$\begin{split} H_{AT}:AT &\to A \\ H_{\neg}:A &\to A \\ H_{\square}:A \times A &\to A \end{split}$$

existe una única función $H: PROP_{SP} \rightarrow A$ que verifica

$$H(\varphi) = H_{AT}(\varphi), \forall \varphi \in AT$$

$$H((\neg \varphi)) = H_{\neg}(H(\varphi))$$

$$H((\varphi_1 \square \varphi_2)) = H_{\square}(H(\varphi_1, \varphi_2))$$

Eliminación de paréntesis

Como en la aritmética básica, cuando escribimos una operación podemos utilizar las reglas de prioridad, asociatividad, etc. para escribir el menor número de paréntesis posible. Así por ejemplo en

$$(((2 \cdot 3) + 5) - (3 \cdot 2)) = 2 \cdot 3 + 5 - 3 \cdot 3$$

la idea es, por tanto, dar una serie de reglas para poder hacer lo mismo con nuestras formulas de proposición.

Reglas de eliminación de paréntesis

- 1. Elminación de paréntesis externos. No aportan información.
- 2. **Prioridad entre conectivas**. En la siguiente lista, las conectivas, aparecen de más prioridad a menos

$$(+)$$
 \neg , \wedge , \vee , \rightarrow , \leftrightarrow $(-)$

3. **Asociatividad**. Adoptamos el convenio de asociar por la izquierda. De este modo si tenemos $p \to q \to r$ daremos como asociación válida

$$(p \to q) \to r$$

siendo, por tanto, errónea

$$p \to (q \to r)$$

Esto mismo se aplica para \leftrightarrow . En los casos de \vee y \wedge no se presenta problema pues son asociativas.

Valoraciones: Tablas de verdad

Todo lenguaje se subdivide en

- 1. Sintaxis: reglas de formación de las frases o fórmulas.
- 2. Semántica: significado de las frases o fórmulas.

de este modo, se conforma un lenguaje formal.

Definición 9. Denotaremos por BOOL al conjunto formado por dos elementos¹

$$BOOL = \{Verdadero, Falso\} = \{V, F\} = \{T, F\} = \{1, 0\}$$

con los que vamos a valorar las fórmulas.

Para dar un sentido más formal a la idea de *valorar*, vamos a construir una serie de aplicaciones sobre el conjunto BOOL en la siguiente definición.

Definición 10. Diremos que una valoración es una aplicación de la forma

$$v: SP \rightarrow BOOL$$

cuya extensión da lugar a

$$\widehat{v}: \operatorname{PROP}_{SP} \to \operatorname{BOOL} \varphi \mapsto \widehat{v}(\varphi)$$

que definiremos de forma recursiva

(AT)
$$\widehat{v}(\top) = V$$
, $\widehat{v}(\bot) = F$, $\widehat{v}(p) = v(p)$, si $p \in SP$

$$(\neg) \ \widehat{v}(\neg) = v_{\neg}(\widehat{v}(\varphi))$$

$$(\Box) \ \widehat{v}((\varphi \Box \psi)) = v_{\Box}(\widehat{v}(\varphi), \widehat{v}(\psi)) \ \text{con} \ \Box \in \{\land, \lor \to, \leftrightarrow\}$$

Estas funciones de valoración dan lugar a las tablas de verdad de cada una de las conectivas lógicas.

¹Durante este curso elegimos, generalmente, como notación para el conjunto $BOOL = \{V, F\}$.

	$p \wedge q$				$p \lor q$				$p \rightarrow q$				$p \leftrightarrow q$				$\neg p$		
q	$egin{array}{c c} v_\wedge & \\ \mathbf{V} & \\ \mathbf{F} & \end{array}$	р V V F	F F	q	$egin{array}{c} v_ee \ \mathbf{V} \ \mathbf{F} \end{array}$	р V V V	V F	q	$egin{array}{c} v_{ ightarrow} \ \mathbf{V} \ \mathbf{F} \end{array}$	р V V V	F V	q	$egin{array}{c} v_\leftrightarrow \ \hline {f V} \ {f F} \end{array}$	р V V V	F V	p	$egin{array}{c} v_{\neg} \ \mathbf{V} \ \mathbf{F} \end{array}$	F V	

Las aplicaciones son

$$v_{\square}: BOOL \times BOOL \rightarrow BOOL$$

si $\square \in \{\land, \lor \rightarrow, \leftrightarrow\}$ En el caso de la negación

$$v_{\neg}: BOOL \rightarrow BOOL$$

Donde encontremos matrices simétricas, podemos decir que ese operador es conmutativo. Los operadores que conmutan son: la disyunción y la conjunción.

Ejemplo X: utilizando las aplicaciones de la definición (10), vamos a valor la fórmula

$$\varphi = (q \lor r) \to (q \to r)$$

partiendo de las valoraciones

$$\begin{split} v(p) &= V, \quad v(q) = F, \quad v(r) = V \\ \widehat{v} &= v_{\rightarrow}(\widehat{v}(q \lor r), \widehat{v}(p \to q)) = v_{\rightarrow}(v_{\lor}(\widehat{v}(q), \widehat{v}(r)), v_{\rightarrow}(\widehat{v}(p), \widehat{v}(q)) = \\ &= v_{\rightarrow}(v_{\lor}(F, V), v_{\rightarrow}(V, F)) = v_{\rightarrow}(V, F) = F \end{split}$$

Es claro que no es un método muy óptimo si queremos ver todas las posibles valoraciones de las proposiciones que formen parte de la fórmula. Para ello se utiliza la tabla de verdad.

Ejemplo XI: Completar la tabla de verdad de la fórmula φ del ejemplo anterior. (Se deja como ejercicio).

Definición 11. Dada $v : SP \to BOOL$ valoración y $\varphi \in PROP_{SP}$, v satisface φ si y sólo si $\widehat{v}(\varphi) = V$; y denotamos $v \models \varphi$. En caso contrario, v no satisface φ , si $\widehat{v}(\varphi) = F$, denotamos $v \not\models \varphi$. Al símbolo \models se le denomina símbolo de satisficidad.

Clasificación de fórmulas

Definición 12. Según como sean las valoraciones de una fórmula, podemos clarificarlas en

- 1. Satisfactible. Existe alguna valoración v tal que $v \models \varphi$.
- 2. **Tautología**. Siempre es cierto, es decir, $\forall v$ se tiene que $v \models \varphi$.
- 3. Contingencia. φ se dice contingencia si es satisfactible, pero no tautología.
- 4. Contradicción. Siempre es falso, es decir, $\forall v$ se tiene que $v \not\models \varphi$.

Observación. Todas las valoraciones posibles que hay en una fórmula viene dado por 2^{ρ} donde ρ es el número de proposiciones que tiene la fórmula.