Package 'LogRegEquiv'

October 12, 2022

Version 0.1.5
Date 2022-02-21
Title Logistic Regression Equivalence
Description Tools for assessing equivalence of similar Logistic Regression models.
Author Guy Ashiri-Prossner
Maintainer Guy Ashiri-Prossner <guy.ashiri@mail.huji.ac.il></guy.ashiri@mail.huji.ac.il>
Encoding UTF-8
RoxygenNote 7.1.1
License MIT + file LICENSE
Imports stats
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
Depends R (>= 2.10)
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2022-02-21 15:40:02 UTC
Date/1 abilitation 2022 02 21 15.40.02 010
R topics documented:
beta_equivalence
brier_score
descriptive_equiv
individual_predictive_equiv
performance_equiv
ptg_stud_data
ptg_stud_f_test
ptg_stud_f_train
ptg_stud_m_test

brier_score

Index 10

beta_equivalence	beta_equivalence function	

Description

This function takes two logistic regression models M_A, M_B , sensitivity level δ_{β} and significance level α . It checks whether the coefficient vectors are equivalent.

Usage

```
beta_equivalence(model_a, model_b, delta, alpha)
```

Arguments

model_a	logistic regression model M_A
model_b	logistic regression model M_B
delta	equivalence sensitivity level δ_{β} . This could either be a scalar or a vector with length matching the number of coefficients.
alpha	significance level α

Value

```
equivalence are the coefficient vectors equivalent? (boolean) test_statistic Equivalence test statistic critical value a level-\alpha critical value ncp non-centrality parameter p_value P-value
```

Description

This function takes a observations vector y and matching predictions vector π . It returns the Brier score for the predictions. Unless specified otherwise, input containing NAs will result with an NA.

Usage

```
brier_score(y, pi, na.rm = FALSE)
```

descriptive_equiv 3

Arguments

y the obsrevations vector
pi the predictions vector
na.rm ignore NA? (optional)

Value

```
The Brier score \frac{1}{N} \sum_{i=1}^{N} (y_i - \pi_i)^2
```

Examples

```
brier_score(rbinom(10,1,seq(0.1, 1, 0.1)), seq(0.1, 1, 0.1))
```

descriptive_equiv

descriptive_equiv function

Description

This function takes two datasets X_A, X_B , regression formula, significance level α and sensitivity level δ_β (either vector or scalar). It builds a logistic regression model for each of the datasets and then checks whether the obtained coefficient vectors are equivalent, using the beta_equivalence function.

Usage

```
descriptive_equiv(data_a, data_b, formula, delta, alpha = 0.05)
```

Arguments

data_a	dataset X_A for model M_A
data_b	dataset X_B for model M_B
formula	logistic regression formula
delta	equivalence sensitivity level δ_{eta}
alpha	significance level α (defaults to 0.05)

Value

```
equivalence the beta_equivalence function output model_a logistic regression model M_A model_b logistic regression model M_B
```

4 performance_equiv

```
individual_predictive_equiv
                         individual_predictive_equiv function
```

Description

This function takes two logistic regression models M_A, M_B , test data, significance level α and allowed flips ratio r. It checks whether the models produce equivalent log-odds for the given test set and returns various figures.

Usage

```
individual_predictive_equiv(model_a, model_b, test_data, r = 0.1, alpha = 0.05)
```

Arguments

model_a	logistic regression model M_A
model_b	logistic regression model \mathcal{M}_{B}
test_data	testing dataset
r	ratio of allowed 'flips' (defaults to 0.1)
alpha	significance level α (defaults to 0.05)

Value

```
equivalence Are models M_A, M_B producing equivalent log-odds for the given test data? (boolean)
test_statistic The test statistic
critical_value a level-\alpha critical value the test
xi_bar Mean \xi value for the test
delta_theta Calculated equivalence parameter
p_value P-value
```

```
performance_equiv
                        performance_equiv function
```

Description

This function takes two logistic regression models M_A, M_B , test data, significance level α and acceptable score degradation δ_B . It checks whether the models perform equivalently on the test set and returns various figures.

performance_equiv 5

Usage

```
performance_equiv(
  model_a,
  model_b,
  test_data,
  dv_index,
  delta_B = 1.1,
  alpha = 0.05
)
```

Arguments

```
model_a logistic regression model M_A model_b logistic regression model M_B test_data testing dataset dv_index column number of the dependent variable delta_B acceptable score degradation (defaults to 1.1) alpha significance level \alpha (defaults to 0.05)
```

Value

6 ptg_stud_data

ptg_stud_data

Student Performance Data Set

Description

Data from a student achievement in secondary education of two Portuguese schools. Full attribute description could be found in the source webpage.

Usage

ptg_stud_data

Format

An object of class data. frame with 649 rows and 31 columns.

Details

The data used is taken from the Student Performance Data. The original data consists of 30 covariates (13 binary, 11 ordinal, 4 categorical, 2 numerical) and a numerical output variable indicating the students final grade in Portuguese Language course.

The data was split by gender (F/M) $n_f = 383, n_m = 266$. The target variable G3 was converted to binary, final_fail which indicates the cases where G3 < 10.

Next, each sub-population was divided into training and testing data, using a 4:1 ratio.

Source

https://archive.ics.uci.edu/ml/datasets/student+performance

References

P. Cortez and A. Silva. Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7.

See Also

http://www3.dsi.uminho.pt/pcortez/student.pdf

ptg_stud_f_test 7

ptg_stud_f_test

Student Performance Data Set - female testing data

Description

Student Performance Data Set - female testing data

Usage

```
ptg_stud_f_test
```

Format

An object of class data. frame with 77 rows and 30 columns.

See Also

```
ptg_stud_data
```

 $ptg_stud_f_train$

Student Performance Data Set - female training data

Description

Student Performance Data Set - female training data

Usage

```
ptg_stud_f_train
```

Format

An object of class data. frame with 306 rows and 30 columns.

See Also

```
ptg_stud_data
```

8 ptg_stud_m_train

ptg_stud_m_test

Student Performance Data Set - male testing data

Description

Student Performance Data Set - male testing data

Usage

```
ptg_stud_m_test
```

Format

An object of class data. frame with 53 rows and 30 columns.

See Also

```
ptg_stud_data
```

ptg_stud_m_train

Student Performance Data Set - male training data

Description

Student Performance Data Set - male training data

Usage

```
ptg_stud_m_train
```

Format

An object of class data. frame with 213 rows and 30 columns.

See Also

```
ptg_stud_data
```

sigmoid 9

 ${\tt sigmoid}$

 $Sigmoid\ function$

Description

This function takes a number θ and returns its respective sigmoid probability $\frac{e^{theta}}{1+e^{theta}}$. This is used in logistic regression to model P(y=1|x).

Usage

sigmoid(theta)

Arguments

theta

the linear predictor

Value

the sigmoid probability

Examples

sigmoid(0)

Index

```
* Brier-score
    brier_score, 2
* datasets
    ptg_stud_data, 6
    ptg_stud_f_test, 7
    ptg_stud_f_train, 7
    ptg_stud_m_test, 8
    ptg\_stud\_m\_train, 8
beta_equivalence, 2
brier_score, 2
{\tt descriptive\_equiv}, {\tt 3}
individual\_predictive\_equiv, 4
performance_equiv, 4
ptg_stud_data, 6
ptg_stud_f_test, 7
ptg_stud_f_train, 7
ptg_stud_m_test, 8
ptg\_stud\_m\_train, \\ 8
sigmoid, 9
```