

We explored using Propositional Logic for Knowledge Representation and Reasoning.

Propositional Logic has limitations in representing knowledge. First-order logic (FOL) have more representation power.

FOL represents the world as

- Objects
- Relationships between Objects
- Attributes of objects

Syntax & Semantics of FOL

Sentences in natural languages have *nouns*, which refer to *objects*.

Sentences in FOL have *objects*.

Objects can be People, Places, Numbers, etc.

Sentences in natural languages have *verbs*, which represent, along with adjectives & verbs, *relations* between objects.

Sentences in FOL have *functions*.

Relations can "Father of", "Part of", etc.

Relations can also describe object properties!

Relations describing properties: red, round, large, etc.

Example: Squares neighboring the Wumpus are smelly!

Objects:

- Squares
- Wumpus

Relations:

- Neighboring
- Smelly (property of square)

Atomic Sentence

Represents an object, relation or property.

- Richard
- John
- Crown
- Person(Richard)
- Person(John)
- King(John)
- LeftLeg(Richard)
- LeftLeg(John)
- Brother(Richard, John)
- Brother(John, Richard)
- OnHead(Crown, John)

Fig 8.2, Russell & Norvig's Textbook

Contain Logical Connectives

- $King(Richard) \lor King(John)$
- $\neg King(Richard) \Rightarrow King(John)$

crown

Fig 8.2, Russell & Norvig's Textbook

Quantifiers

Very powerful feature of FOL. Allows for expressing general rules.

Fig 8.2, Russell & Norvig's Textbook

Quantifiers

Universal Quantifier ∀: For All

Every King is a Person

 $\forall x \, King(x) \Rightarrow Person(x)$

For all x, if x is a king, then x is a person.

Fig 8.2, Russell & Norvig's Textbook

Quantifiers

Existential Quantifier

∃: There Exists

There is a crown on King John's head

 $\exists x \ Crown(x) \land OnHead(x, John)$

There exists an x, such that x is a crown, and it is on John's head.

Fig 8.2, Russell & Norvig's Textbook

Nesting Quantifiers

Quantifier order changes the meaning

 $\forall x \exists y \ Loves(x, y)$

For all x, there exists a y where x loves y.

Everybody Loves Somebody.

 $\exists y \ \forall x \ Loves(x,y)$

There exists a y, such that all x loves y.

There is someone who is loved by everyone.

Equality

To imply that two symbols represent the same object

Father(John) = Henry

Unique-Names Assumption

No two distinct objects are represented with the same symbol

By default, two different symbols represent two different objects; unless otherwise specified by an equality.

Brother(John, Richard) ∧
Brother(Geoffry, Richard)

Closed-World Assumption

Atomic sentences that are not known to be true are considered false.

All natural sciences are based on the closed-world assumption!

First-Order Logic provides means to represent the world as objects with properties and relations among them, as well as representing rules that apply to the objects.