SUTM SUTM SUTM

SUTM SUTM SUTM

MTUR

5 U-

SCHOOL OF COMPUTING Faculty of Engineering

MTU & MTU &

TUTM & WILL

- IITM & UTM

SUTM SUTM SUTM

SUTM SUT

TU & MTU &

TU & MTU &

TU & MTU &

TU & MTU &

SUTM SUT

- TTT

FINAL EXAM SEMECTOR UNIVERSITI TEKNOLOGI MALAYSIA

TUTW & MTU & MTU

SUBJECT CODE : SECP 3223

: DATA ANALYTICS PROGRAMMING **SUBJECT NAME**

TM &

: 3 HOURS TIME

TUTM & WTU

DATE

INSTRUCTION TO THE STUDENTS:

- 1. Answer all questions in Jupyter Notebook.
- 2. Save your answer notebook as Name_MatricNo.
- 3. There are two (2) submissions time as follow:

i. Interim Submission at 11.30am
ii. Final Submission at 1.10pm
10 minutes are given for each submission. Please upload your answer file (*ipynb* format) in S UTM S UTM SUTM SUTM designated folder in e-Learning.

	TM & UTM	MTU 5 UTM	TM & UTM	TU 5 UT
5	NAME	5 UID	5 UIM	2 Dim
- T	IC NO. / MATRIC NO	O. TITM & UTM	UTM & UTM	TIM & UT

(This question paper consists of 9 pages including this page)

QUESTION 1 [25 MARKS]

- (a) Create a function name **verbing** which receive a string as the parameter. Upon receiving a string: (7 marks)
 - if its length is at least 3: add 'ing' to its end.
 - Unless it already ends in 'ing', in which case add 'ly' instead.
 - If the string length is less than 3, leave it unchanged.
 - Return the resulting string.

Mrs.

Mrs.

TIM O

S UTM S UTM

TUTM &

Test your code with these strings. You should get the outputs as follow:

Table 1

String	Expected Output	Ñ.F.
Hail	Hailing 6	
Swimming	Swimmingly	
Do TIM	Do	-7777

(b) Convert the following code to list comprehension.

(3 marks)

Non-

- ITM & UTM

JUT

TU O

TU O

TUTM & UT

TU & MTU &

TU & MTU

TITE

```
cords = [ ]
for x in range(4):
    for y in range(2):
        coordinate = (x, y)
        cords.append(coordinate)
print(cords)
```

(c) Given a paragraph as follows:

- ITM & UTM

On most computer systems, localhost resolves to the IP address 10.100.11.121, which is the most commonly used IPv4 loopback address, and to the IPv6 loopback address. The localhost IP address is 192.168.11.10.

Using regular expression, write the python code that can find all the network IP address and replace it to 179.01.10.1. (5 marks)

(d) Using Numpy:

5 UTM

SUTM SUTI

TUI & MIU &

(i) Create a 10x10 array with random values and find the minimum, maximum and average values. (5 marks)

MTU

MTU

JUT

TUE

- TTT

(ii) Create an 8×8 matrix and fill it with a checkerboard pattern. Output is shown in Figure 1. (5 marks)

Figure 1: Output with a checkerboard pattern

QUESTION 2 [25 MARKS]

Given a dataset (Tallest Building.csv) that contains the list of the world's tallest buildings.

- (a) Read the dataset and save into a data frame named *tallest*. Display the first 8 rows of the data frame. (2 marks)
- (b) Find the number of rows and columns in *tallest*. (1 mark)
- (c) Find which columns have missing values and how many of them? (1 mark)
- (d) Is there any duplicated data? <u>Permanently</u> remove the duplicate data if any. (2 marks)
- (e) <u>Permanently</u> delete all rows which contains at most three-observation data. (3 marks)
- (f) For missing data in column *Height (meters)*: (5 marks)
 - (i) Get the row index of all missing values in Height (meters) and save in a list named missing_Height
 - (ii) Fill in the missing value with conversion of feet value in Height (feet) which having the index in *missing_Height*. The conversion rate is 1 feet = 0.3 meters.

- IITM 5 UTM

^{**}Ignore any warning given by the Python

TUTM &

- (5 marks)
- (g) For missing data in column *City*:

 (i) Get the row in the column of For missing data in column *City*: (5 marks)

 (i) Get the row index of all missing values in City and save in a list named *missing_City*
 - (ii) Fill in the missing value with the value in Country which having the index in SUTM SUT

Show that there are no missing values in tallest. (h)

(1 mark)

- TUTM Create a function named *eliminate_ref*. This function will receive an array and perform these (5 marks)
- find whether there is any reference attached to any string in the array given. like [5] as shown in Figure 2. Commonly, any references can be detected by a square bracket containing a number WTU & MTU SUTM SUT

2 Oliv		Category	Structure	Country	City	Hei (mete	
5 UTM	TITM	Building[5]	Burj Khalifa	United Arab Emirates	Dubai	816	TTT
MTT	0	Compliant tower	Petronius	United States	Gulf of Mexico	640	1 80
30		Self-supporting tower[6]	Tokyo Skytree	Japan	Tokyo	816 640 634	
	UTM	Guyed steel lattice mast	KVLY-TV mast	United States	Blanchard, North Dakota	629	= UT
S UTM	0	I beneath a laid	UTM	" UTM		5 UTM	5 UT
		Elevator test tower	H1 Tower	China	Guangzhou	273	
	- 1	Wind turbine	Haliade-X Prototype	Netherlands	Rotterdam	270	
MTU	2 ULW	Solar power tower	Mohammed bin Rashid Al Maktoum Solar Park	United Arab Emirates	Saih Al-Dahal	262 248	I & UL
90		Crane	LR 13000[8]	Germany	Germany	248	
		Jackup rig	Noble Lloyd Noble[9]	Liberia	Liberia	214	
TIM &	TUTM &	Cooling tower	Kalisindh Thermal Power Station	India	Jhalawar	198 192	UT
UTM		Monument	Gateway Arch	United States	St. Louis, Missouri	192	7
		support tower	Tower 2 of Ha Long Queen Cable Car[11]	Vietnam	Vietnam	189	
	MTT	Water tower	Main tower of Kuwait Towers	Kuwait	Kuwait City	187	TIT
S UTM	80.	5	Figure 2: Reference atta	-411. MY	Kuwan Gity	S UTN	TU 5 UT
		. 6	. (

Figure 2: Reference attached to string

- ITM & UTM

- IITM & UTM

TITM & UTM

TIT

^{**}Ignore any warning given by the Python

(ii) If there is any reference attached, replace the word with the original word but without TU & MTU & the reference. Set *inplace=True* when performing the *replace* method.

Test your function using these codes

```
eliminate_ref(tallest['Category'])
tallest
```

0	eli	minate_ref(t	allest['Structure	'])		9	
	45	lest	own in Figure 3.		UTM & UTM		
UTM S	The outpu	t should be as sh	own in Figure 3.	TUTM 8		TTU &	J. C
	. 6	Category	Structure	Country	City	Hei <u>ç</u> (mete	
MTI	UTM	Building	Burj Khalifa	United Arab Emirates	Dubai	816.	1 ē
U		Compliant tower	Petronius	United States	Gulf of Mexico	640.	
	- N 6	Self-supporting tower	Tokyo Skytree	Japan	Tokyo	634.	
UTM 8	ULM	Guyed steel lattice mast	KVLY-TV mast	United States	Blanchard, North Dakota	629.	A E
		Hyperboloid structure	Canton Tower	China	Guangzhou	604.	
	UTM	Clock tower	Abraj Al Bait	Saudi Arabia	Mecca	601.	
3 5	A.I.m.	Moveable object	Troll A platform	Norway	North Sea	472. 458.	. 6
UTM		Mast radiator	Lualualei VLF transmitter	United States	Lualualei, Hawaii	458.	à.
		MTT	ATT.		MTm		
	MITT	Elevator test tower	H1 Tower	China	Guangzhou	273.	
MTM-	O.z.	Wind turbine	Haliade-X Prototype	Netherlands	Rotterdam	270.	N E
UTM 8		Solar power tower	Mohammed bin Rashid Al Maktoum Solar Park	United Arab Emirates	Saih Al-Dahal	262.	
	. 75	Crane	LR 13000	Germany	Germany	248.	
4	UTM	Jackup rig	Noble Lloyd Noble	Liberia	Liberia	214.	1
UTM 8		Cooling tower	Kalisindh Thermal Power Station	India	Jhalawar	198.	1 6
		Monument	Gateway Arch	United States	St. Louis, Missouri	192.	
-	UTM	Aerial tramway support tower	Tower 2 of Ha Long Queen Cable Car	Vietnam	Vietnam	189.	- 15
UTM 8		Water tower	Main tower of Kuwait Towers	Kuwait	Kuwait City	189.	1
		New	Figure 3: The string	without refere	ence		

SUTM SUTM SUTM Figure 3: The string without reference

THE S UTM S UTM

TITM & UTM

TITE

TU & MTU

TU & MTU &

SUTM SUTM SUTM TITM & UTM

21

TU & MTU &

TU & MTU &

SUTM SUT

SUTM SUT

SUTM SUT

SUTM SUT

TIT

S UTM

TUTM &

TIM &

Given two dataset (Death Male.xlsx and Death Female.xlsx) that contains the data of recorded S UTM S UTM SUTM SUT death in five states in Malaysia from 2011 to 2018.

MTU & WTU

MTUS

Task 1: (a)

SUTM SUTM SUTM

SUTM SUTM SUTM

SUTM SUTM SUTM

SUTM SUTM SUTM

- ITM 5 UTM

Read the Death Male.xlsx and store it in a DataFrame named death_male. Group the (i) data by *Year* and name the result as *dm_by_year* and plot a pie chart as shown in Figure 4. (4 marks) SUTM SUTM SUTM

Figure 4: Pie Chart for dm_by_year

Read the *Death Female.xlsx* and store it in a DataFrame named *death_female*. Group the data by State and name the result as df_by_state and plot an area chart as shown in (4 marks) Figure 5. SUTM SUTM

Figure 5: Area Chart for df by state

- SU(6) T TO THE WIU & MIU & MIU & SUTM SUTM SUTM Concatenate both death_male and death_female DataFrame and name the new (i) (1 mark) DataFrame as death.
 - (ii) Group the *death* by *State* and name the result as *by_state*. (2 marks)
 - Group the *death* by *Year* name the result as *by_year*. (2 marks) (iii)
 - Create a chart as shown in Figure 6 with figure size of 12 inches × 6 inches and save it as Death in 2011-2018.png with dpi value 200. (10 marks)

20

SUTM SUT

SUTM SUT

SUTM SUT

- TTT

Figure 6: Death from 2011 to 2018 by State and Year SUTM SUTM SUTM SUTM SUTM SUTM SUTM SUTM SUTM TIVE MINE MINE TUTM TUTM TUTM TUTM TUTM TUTM TIVE MIVE MIVE TITM & UTM TITM & UTM - TITM & UTM

Task 3: (c)

SUTM SUTM

TUTW & WITU & WITU

SUTM SUTM

SUTM SUTM SUTM

- IITM & UTM

Create a pivot table with the name *death_pivot* as shown in Figure 7. MTU & MTU & UTM (i)

(2 marks)

MTU

WTU

WTU

UTM

- ITM & UTM

TU & MTU &

SUTM SUT

SUTM SUT

TU & MTU &

- TTT

			-	24 - 1014			
	Number of death						
		State	Johor	Kedah	Kelantan	Melaka	Pahang
7.5	Gender	Year					
0	Female	2011	6875	5025	4400	1964	3080
		2012	7212	5209	4301	1987	3078
		2013	7335	5420	4407	2078	3184
		2014	7387	5613	4630	2009	3209
0		2015	7808	5941	4702	2181	3427
		2016	8250	6037	4698	2271	3531
		2017	8586	6283	4919	2431	3763
		2018	8733	6336	4984	2328	3721
10	Male	2011	9604	6844	5624	2642	4732
		2012	9989	7059	5589	2588	4713
		2013	10361	7096	5635	2669	4962
		2014	10517	7404	5958	2719	5092
-4		2015	11045	7733	6087	2778	5044
21		2016	11674	7734	6111	2915	5347
		2017	12076	8049	6284	3092	5498
		2018	12384	8216	6332	3079	5525
	N 6	I	Figure	e 7: A	pivot ta	able	DIN
o UT	Mr	_		_	5 U		

SUTM SUTM SUTM Create a plot as shown in Figure 8 below.

Figure 8: A plot based on death_pivot

The file named *Expenditure.xlsx* describes the expenditure (in dollars) on recreation per month by employees at a certain company, and their corresponding monthly incomes.

MTU & MTU & MTII -

(i) Using simple linear regression method, find the equation of the regression line.

(8 marks)

TU & MTU

- TTT

TITM & UTM

- Find the slope and interception values for the regression line. (1 mark)
- Then estimate the monthly income of an employee at this company who spends 5000 dollars per month on recreation. (1 mark)
- (b) Clustering Task:

SUTM SUTM

- ITM & UTM

Load the *Titanic.csv* into a DataFrame named *Titanic*. Below is the data dictionary for (1 mark) the dataset. TUTM

the dataset.		(1 mark)
I SUTM	Ta Ta	able 2
Variable	Definition	Key Key
survived	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, $2 = 2$ nd, $3 = 3$ rd
sex	Sex	0 = Male, 1 = Female
age	Age in years	= UTM
sibsp	Family Relations	0 = No family relation, $1 = $ Sibling, $2 = $ Spouse
parch	Family Relations	0 = No family relation, 1 = Parent, 2 = Child
fare	Passenger fare	Mar. Mar.
cabin	Cabin number	1 = Exist, -1 = Missing
embarked	Port of Embarkation	0 = Southampton, 1 = Cherbourg, 2 =
	MTI	Queenstown
	3.0	200

(ii) Perform dimensionality reduction to the dataset using the Principal Component Analysis (PCA) and next apply k-means clustering to the data. (9 marks) SUTM SUTM SUTM

SUTM SUTM SUTM