Tabella delle derivate e delle primitive fondamentali

$F(x) = \int f(x) \mathrm{d}x$	f(x) = F'(x)	
x^n	nx^{n-1}	$n \in \mathbf{N}$
$\log_e x $	$\frac{1}{x}$	$x \in (-\infty, 0)$ oppure $x \in (0, +\infty)$
$\sqrt[m]{x^n}$	$\frac{n}{m\sqrt[m]{x^{m-n}}}$	$n, m \in \mathbf{N}_+ \text{ e } m \ge 2, x < 0 \text{ o } x > 0$
$\frac{1}{\sqrt[m]{x^n}}$	$\frac{-n}{m\sqrt[m]{x^{m+n}}}$	$n, m \in \mathbf{N}_+ \text{ e } m \ge 2, x < 0 \text{ o } x > 0$
x^{α}	$\alpha x^{\alpha-1}$	$\alpha \in \mathbb{R}, x > 0$
e x	e x	
a^x	$a^x \log_e a$	a > 0
$\log_a x $	$\frac{1}{x \log_e a} = \frac{1}{x} \log_a e$	$a > 0, a \neq 1, x > 0$ oppure $x < 0$
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	
$\cot x$	$-1 - \cot^2 x = \frac{-1}{\sin^2 x}$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	
$\arctan x$	$\frac{1}{1+x^2}$	
$\operatorname{arccotan} x$	$\frac{-1}{1+x^2}$	
$\sinh x$	$\cosh x$	
$\cosh x$	$\sinh x$	
$\tanh x$	$1 - \tanh^2 x = \frac{1}{\cosh^2 x}$	
$\operatorname{cotanh} x$	$1 - \coth^2 x = \frac{-1}{\sinh^2 x}$	
$\operatorname{settsinh} x$	$\frac{1}{\sqrt{1+x^2}}$	
$\operatorname{settcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$	x > 1
$\operatorname{setttanh} x$	$\frac{1}{1-x^2}$	-1 < x < 1
$\operatorname{settcotanh} x$	$\frac{1}{1-x^2}$	(x < -1) oppure $(x > 1)$
$\frac{1}{2}\log\left \frac{1+x}{1-x}\right $	$\frac{1}{1-x^2}$	$(x < -1) \ o \ (-1 < x < 1) \ o \ (x > 1)$