MATH 318 Formula Sheet

Probability Theory

Probability Function:

•
$$0 \le P \le 1$$

•
$$P(S) = 1$$

•
$$E_1 \cap E_2 = \emptyset \implies P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

•
$$P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2)$$

Conditional Probability:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Two events are said to be independent if:

$$P(E \cap F) = P(E)P(F)$$

Theorem 1. Let $F_1, F_2 \dots F_n$ be a partition of the sample space S. Assume $F_i \cap F_j = \emptyset$ for any $i \neq j$. Then for any event $E \subset S$,

1.
$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

2.
$$P(F_j|E) = \frac{P(E|F_j)P(F_j)}{\sum_{i=1}^{n} P(E|F_i)P(F_i)}$$
 (Bayes' Formula)

Random Variables

Memory-less Property:

$$P(X > m + n | X > n) = P(x > m)$$

Expectation Value:

$$\langle X \rangle = \sum_{i=0}^{\infty} x_i p(X = x_i) = \sum_{i=0}^{\infty} x_i p(x_i)$$

$$\langle X \rangle = \int_{-\infty}^{\infty} x f(x) \, dx$$

Cumulative Distribution Function:

$$F(x) = \int_{-\infty}^{x} f(t), dt$$

Law of the Unconscious Statistician:

$$\langle g(X) \rangle = \int_{-\infty}^{\infty} g(x) f(x) dx$$

Linearity of Expectation:

$$\langle aX + b \rangle = a \langle X \rangle + b$$

Moments:

n-th moment of
$$X = \begin{cases} \int_{-\infty}^{\infty} x^n f(x) dx \\ \sum_{i=1}^{\infty} x_i^n p(x_i) \end{cases}$$

Variance:

$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle = \langle X^2 \rangle - \langle X \rangle^2$$

Joint Continuity:

$$P((X,Y) \in C) = \iint_C f(x,y) dx dy$$

Marginal Distribution:

$$P(X \in A) = P(X \in A, Y \in \mathbb{R}) = \int_{A} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx$$

Independence:

If X, Y are independent, then

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$
$$\langle g(X)h(Y)\rangle = \langle g(X)\rangle \langle h(Y)\rangle$$

Covariance:

$$Cov(X, Y) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle) \rangle = \langle XY \rangle - \langle X \rangle \langle Y \rangle$$

Correlation Coefficient:

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} \in [-1,1]$$

Cauchy-Swartz Inequality:

$$|\langle XY \rangle|^2 \le \langle X^2 \rangle^2 \langle Y^2 \rangle^2$$

Sum of Random Variables:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$F_{X+Y}(a) = P(X + Y \le a) = \int_{-\infty}^{\infty} \int_{-\infty}^{x+y} f_{X+Y}(x, y) \, dx \, dy = \int_{-\infty}^{\infty} f_X(a - y) f_Y(y) \, dy$$

Characteristic Functions

Extracting Moments:
$$\frac{d^n}{dx^n}|_{t=0}\phi(t) = \langle i^n X^n \rangle$$

Inversion Theorem:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(t) e^{-itx} dt$$

Shifting:

$$\phi_{aX+b}(t) = e^{itb}\phi_X(at)$$

Convergence in Distribution:

$$\lim_{n \to \infty} F_n(x) = F(x) \ \forall x \text{ cont.} \iff X_n \xrightarrow{D} X$$

Reserved

Updated February 19, 2020 https://github.com/DonneyF/formula-sheets

Random Variables

Distribution	Mass/Density Function	Mean	Variance	Characteristic Function
Binomial (n, p)	$p(i) = \binom{n}{i} p^{i} (1-p)^{n-i}$	np	np(1-p)	$(1 - p + e^{it})^n$
· - ·	$p(k) = (1-p)^{k-1}p$	1/ <i>p</i>	$\frac{1-p}{p^2}$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$
$Poisson(\lambda)$	$p(i) = \frac{\lambda^i}{i!} e^{-\lambda}$	λ	λ	$e^{\lambda(e^{it}-1)}$
Uniform(a, b)	$p(i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$ $f(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ $f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{ita} - e^{itb}}{it(b-a)}$
Exponential(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$1/\lambda$ μ	$1/\lambda^2$	$\frac{\lambda}{\lambda - it}$
Normal (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{i\mu t-\sigma^2t^2/2}$