Spatial Summarization of Image Collections

Diego A. Ballesteros Villamizar

ETH Zürich

December 2nd, 2015

Outline

FLID Results

2 New Baselines

Including Features

Recap

Model	Acc	σ_{Acc}	MRR	σ_{MRR}
Modular	16.42	2.42	44.47	1.40
$FLID\;(d=2)$	18.95	2.60	45.35	1.64
$FLID\;(d=5)$	24.50	4.14	48.73	2.85
$FLID\;(d=10)$	26.32	3.35	50.00	1.92
$FLID\ (d=20)$	26.75	2.18	50.20	1.53

Choosing d

Diversity Encoding (d=2)

Diversity Encoding (d = 5)

Diversity Encoding (d = 10)

Outline

FLID Results

2 New Baselines

Including Features

Proximity Model

Assuming a partial ordered sequence S of length k for geo-located items, the model defines a score $Q(i \mid S)$.

$$\forall i \notin S : Q(i \mid S) = \frac{1}{d(i, s_k)} \tag{1}$$

Where d(a,b) is the great-circle distance between items a and b, and s_k is the k_{th} element of the sequence.

The set of items to suggest for S is ordered descendingly according to $Q(i \vert S).$

Markov Model

As proposed by [Kurashima et al., 2010]. The probability of visiting a location given a location history $S = \langle s_1 \dots s_k \rangle$ can be modeled as:

$$P(s_{k+1} = i \mid s_1 \dots s_k) = P(s_{k+1} = i \mid s_k)$$
 (2)

Which can be estimated with maximum likelihood from the data as:

$$P(s_{k+1} = i \mid s_k) = \frac{N(l_{t+1} = i, l_t = s_k)}{N(l_t = s_k)}$$
(3)

Where $N(l_{t+1}=i,l_t=s_k)$ is the number of times that i was visited immediately after s_k , and $N(l_t=s_k)$ is the number of times that s_k was visited.

The set of items to suggest for S is ordered descendingly according to $P(i \mid S)$.

Results

The new baseline models were trained on the data and the same 10-fold evaluation was performed, the results are:

Model	Acc	σ_{Acc}	MRR	σ_{MRR}
Modular	16.42	2.42	44.47	1.40
$FLID\ (d=10)$	26.32	3.35	50.00	1.92
Markov	30.18	2.59	53.41	1.76
Proximity	11.61	0.99	33.99	0.99

Outline

FLID Results

2 New Baselines

Including Features

Definitions

- \boldsymbol{V} The set of locations, with cardinality $N = |\boldsymbol{V}|$.
- M The number of features that define each location.
 - *L* The number of latent concepts.
- X The feature matrix for the locations, $X \in \mathbb{R}^{N \times M}$.
 - $oldsymbol{a}$ The vector that defines the utility weight for each feature, $oldsymbol{a} \in \mathbb{R}^M.$
- $m{B}$ The matrix that defines the contribution of each feature to a latent concept, $m{B} \in \mathbb{R}^{M \times L}$.

FLID with Features

The FLID model with features is defined by:

$$P(S \mid \boldsymbol{a}, \boldsymbol{B}) = \frac{1}{Z} \exp \left(\sum_{i \in S} \boldsymbol{x}_i \boldsymbol{a} + \sum_{l=1}^{L} \left(\max_{i \in S} \boldsymbol{x}_i \boldsymbol{b}_l - \sum_{i \in S} \boldsymbol{x}_i \boldsymbol{b}_l \right) \right)$$
(4)

Where x_i is the *i*-th row of X, and b_l is the *l*-th column of B. This is analog to the previous model if we define u and W as:

$$egin{aligned} u &= Xa \ W &= XB \end{aligned}$$

NCE learning

To modify the NCE learning algorithm, it is just necessary to change the definition of the sub-gradient as follows:

$$\left(\nabla_{\boldsymbol{a}} \log \frac{1}{\hat{Z}} \tilde{P}\left(S \mid \boldsymbol{a}, \boldsymbol{B}\right)\right)_{m} = \sum_{i \in S} x_{i,m}$$
 (5)

$$\left(\nabla_{\boldsymbol{B}} \log \frac{1}{\hat{Z}} \tilde{P}\left(S \mid \boldsymbol{a}, \boldsymbol{B}\right)\right)_{m,l} = x_{i^*,m} - \sum_{i \in S} x_{i,m}$$
 (6)

Where $x_{i^*,m}$ in equation 6 is:

$$i^* = \operatorname*{argmax}_i \boldsymbol{b}_l \boldsymbol{x}_i$$

The subgradient for \hat{Z} is unchanged.

References

Kurashima, T., Iwata, T., Irie, G., and Fujimura, K. (2010). Travel route recommendation using geotags in photo sharing sites. In *Proceedings of the 19th ACM international conference on Information and knowledge management*, pages 579–588.