1 Getting Started

Overleaf (https://www.overleaf.com) is a great place to start. It is a web-based WYSIWYG (what-you-see-is-what-you-get) environment, and it provides some very useful tutorials.

2 Math stuff

Here's the source for the first question on your assignment 1:

Prove each of the following using the definitions of Big-Oh / Big-Omega / Big-Theta.

- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$ then $f \in \mathcal{O}(h)$, for all functions f, g, h in $\mathbb{N} \to \mathbb{R}^+$.
- If $f_1 \in \mathcal{O}(g_1)$ and $f_2 \in \mathcal{O}(g_2)$ then $f \in \mathcal{O}(g)$, where $f(n) = f_1(n) \cdot f_2(n)$, $g(n) = g_1(n) \cdot g_2(n)$, for all functions f_1 , f_2 , g_1 , g_2 in $\mathbb{N} \to \mathbb{R}^+$.
- $2^{2n} \notin \mathcal{O}(2^n)$.
- If $f_1 \in \mathcal{O}(g)$ and $f_2 \in \mathcal{O}(g)$ then $f_{\max} \in \mathcal{O}(g)$, where f_{\max} is defined by $f_{\max}(n) = \max(f_1(n), f_2(n))$, for all functions f_1, f_2, g in $\mathbb{N} \to \mathbb{R}^+$.

If we wanted a numbered list, we would have used the **enumerate** environment:

- 1. If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$ then $f \in \mathcal{O}(h)$, for all functions f, g, h in $\mathbb{N} \to \mathbb{R}^+$.
- 2. ...

3 Proof stuff

Here's one way to structure a proof:

Lemma 1. What to prove goes here.

${\it Proof.}$	And the proof	goes here.		

Lemma 2. What to prove goes here.

Proof. And the proof goes here. \Box

Theorem 1. What to prove goes here.

Proof. And the proof goes here. \Box

4 Trees and Graphs

My favourite way to draw a tree quickly:

A longer, but super flexible and customizable way:

Here's a graph:

And a more complicated graph:

