Woven Thermal Protection System (WTPS) - a Novel Approach to Meet NASA's Most Demanding Missions

Mairead Stackpoole NASA Ames Research Center

HEEET Team Members: Adam Beerman, Tane Boghozian, Jose Chavez-Garcia, Don Ellerby, Peter Gage, Matt Gasch Greg Gonzales, Cole Kazemba, Milad Mahzari Keith Peterson, Carl Poteet, Dinesh Prahbu, and Ethiraj Venkatapathy

MS&T, Oct 12-16, 2014, Pittsburgh, PA

Outline

- Heritage TPS Challenges
- WTPS Evolution
- ➤ Intro. to HEEET (Heatshield for Extreme Entry Environment Technology) Project
- Downselected HEEET Architecture
- Benefits of HEEET Architecture
- Aerothermal Testing Summary
- Heatshield Components and Technology Maturation Challenges
- > Summary

TPS Challenges for Venus, Saturn, Neptune, Uranus, Jupiter and High Speed Sample Return Missions

Science and Mission Design goals

- Maximize science payload,
- Minimize mission risk, cost
- Missions currently baseline "heritage like" Carbon Phenolic
 - CP is very capable, robust, flight proven
 - CP enabled Pioneer-Venus & Galileo
- Carbon Phenolic is mission enabling, but trajectory constraining

Missions with CP + normal payloads result in:

- Steeper trajectories, extreme g loads
- Heat-flux, pressures exceed test capability

Historical TPS Mass Fraction

by Heat Flux and Pressure

For typical Entry Systems Missions

- at high heat fluxes, CP is an efficient TPS.
- below ~ 2,000 W/cm², PICA and other ablators perform well.
- There is no efficient TPS option in the gap!

Sustainability Challenges with State of the Art TPS

Tape-wrapped & chop-molded carbon phenolic

- Challenges for using traditional CP
 - Heritage CP used for entry no longer available (Avtex)
 - New CP material would need to be certified
 - Chop-molded CP has not be used for NASA application since 1980s

Sustainability and Life Cycle Costs

AVCOAT

PICA MSL

What is the 3D Woven TPS concept?

An approach to the design and manufacturing of **ablative** TPS by the combination of weaving precise placement of fibers in an optimized 3D woven manner and then adding a polymeric matrix if needed

- Ability to design TPS for a specific mission
- Tailor material composition by weaving together different types of fibers (e.g. carbon, ceramic, glass, polymeric)
- One-step process for making a mid-density dry woven TPS
- Ability to infiltrate woven structure with a polymeric resin to meet more demanding thermal requirements
- WTPS leverages a sustainable weaving technology (not NASA-unique)

Large Application Space Possible

- Many ablative TPS options possible and have been manufactured
 - Dry-woven to fully resin infused systems
 - Density ranging from 0.3 g/cc 1.4 g/cc
- Current HEEET activity has downselected to a dual layer system to meet specific mission needs for extreme entry (Venus, Saturn, outer planets, sample return)
 - Depending on mission needs many other options are possible

HEEET Background

(Heatshield for Extreme Entry Environment Technology)

- ➤ HEEET is an technology development project to advance 3-D woven resin infused TPS materials (ablators) that can be tailored to SMD robotic missions without constraining the mission or limiting the science.
- Recommended science missions include:
 - Venus probes and landers
 - Saturn and Uranus probes
 - ◆ High speed sample return missions

	OML Shape	Diameter	Nose Radius	TPS Thickness
Saturn	45º spherecone	~1m (40")	~7.0"	~2.5"
Venus	45º spherecone	~3.5 m (140")	~25"	~1.5"
Earth Sample Return	45º spherecone	~1m (40")	~7.0"	~1.5"

HEEET Material

- Recession and insulating layers are woven together in 3D
 - Mechanically interlocked (Z fibers)
- Weaving results in orthotropic material
 - Properties vary in Warp, Fill and Through-The-Thickness (TTT) (X,Y and Z)
- Single uniform resin infusion (vacuum assisted infusion)
- Weave architecture and resin infusion level downselected during HEEET Formulation (FY13)

Insulating Layer

Substructure

3-D Woven Dual Layer

Benefits of HEEET Dual Layer Architecture 🐯

- Areal Mass Trade Studies Completed for:
 - ◆ Saturn Probes
 - Venus
 - Uranus small probes
 - ◆ Sample Return Missions
- All trades indicate substantial TPS mass savings over heritage carbon phenolic with zero margin sizing and using a preliminary HEEET response model

Sample Return Mission Trade Studies (V = 15 km/s, M = 50 kg, Dia. = 0.8 m): TPS Areal Mass and Thickness

- 3-D WTPS allows for robustness and mass efficiency
- Mass savings of ~40% over CP

Aerothermal Testing

Arcjet Design Space & HEEET Test History

Piecewise testing approach used across available ground test facilities to qualify/ verify TPS performance

Testing Approach

Test Coupon Design

- Drew upon heritage Pioneer Venus / Galileo test configurations to design test article geometries where applicable
- Utilized modern CFD capabilities to refine test article configurations, position within test facilities and estimate arc heater settings
- LHMEL testing utilized heritage Carbon Phenolic test techniques used to qualify material for Shuttle solid rocket motors to test for failure modes

Facility Capability Enhancement

- IHF 3-inch nozzle design and fabrication was supported by NASA's SMD Baseline Material Tested for Comparison to HEEET
- Test articles included fully dense tape wrap and chop molded carbon phenolic

LHMEL: Failure Mode Testing

Model ID	Description	Density (g/cm³)	Duration (sec)
HEEET 2		0.88	30
CMCP 3	1000 W/cm ²	1.45	30
TWCP 3		1.45	30
HEEET 6		0.88	15
CMCP 1	2000 W/cm ²	1.45	15
TWCP 1		1.45	15
HEEET 40	5000 W/cm ²	0.89	6-7
HEEET 20		0.89	5
CMCP 4	8000 W/cm ²	1.45	5
TWCP 4		1.45	5

LHMEL: Failure Mode Testing Post-Test: 8000 W/cm², 5 sec.

HEEET Acreage

No surface spallation, delamination or cracks

Tape Wrap CP

Ply lift and sub-surface cracking

Chop Molded CP

Ply lift and sub-surface cracking

Post-Test

IHF 3" Nozzle 1" Flat Face Stagnation Acreage HEEET Stag. Heat-Flux ~5000 W/cm² @ 5 atm

4 HEEET models tested

Exploratory test to confirm facility operability with new nozzle configuration

MAKE FROM CIRCUMFERENTIALLY-WRAPPED CARBON PHENOLIC TUBING.

- Failure mode test
- Uniform Recession observed for HEEET material

HEEET Heatshield Components

- 4 Basic Heatshield Components
 - Acreage Material
 - Seam Design/Material
 - Panel to Carrier Structure
 Attachment
 - Carrier Structure
- Building and Testing of 1m
 Prototype (engineering test unit)
 is culmination of Manufacturing,
 AI&P (assemble, integration and
 production) and Design/Analysis
 activities

- 45° Sphere cone assumed for Venus and Saturn
- Nose is separate molded part

Technology Maturation Challenges

- System/Manufacturing
 - Seam Design
 - Scalable architecture
 - Forming gores and nose
- Integration
 - Aeroshell sub-structure
 - back shell
- Flight System design tools development and verification
 - Thermal response an example of design tool needed
 - Arc jet testing at relevant scales
 - Prototype Test Unit

Summary

- HEEET woven material options are viable alternatives to heritage carbon phenolic
- Facility upgrades have widened the envelope for ground-based testing capabilities allowing more extreme conditions to be tested
- HEEET team is committed to delivering a mature technology by 2017
 - Successful formulation activities (testing, system studies and planning) and community advocacy has resulted in mission infusion opportunities for upcoming Discovery and New Frontier Missions
 - Team is working challenges in maturing the technology and on-going studies and progress will be reported to the community

Acknowledgements

- This work was performed under the STMD/GCDP funded Heatshield for Extreme Entry Environment (HEEET) Program Program funding provided by Space Technology and Science Mission Directorates
- The HEEET team is very grateful to the staff at AEDC, NASA Ames and LHMEL for excellent test support
- This work is supported by personnel at multiple NASA centers (ARC, LaRC and JSC)
- We also acknowledge our industrial partner Bally Ribbon Mills