TTP SmartCard-based ElGamal Cryptosystem using Threshold Scheme for Electronic Elections

Authors: Jordi Pujol-Ahulló, **Roger Jardí-Cedó**, Jordi Castellà-Roca
UNESCO Chair in Data Privacy
Universitat Rovira i Virgili (Spain)
Department of Computer Science Eng. & Maths

Summary

- What? Goals
- Why? Motivation
- Which? Protocol
- How? Implementation
- Results
- Conclusions and Future Work

What We Want? Goals

- Implementation (secure and efficient):
 - Multi-authority election scheme [Cramer, Genero and Schoenmakers, 97]
 - ElGamal cryptosystem
 - Shamir's Secret Sharing Scheme
- Using:
 - JavaCards (SmartCard)

Motivation

Because...

- Electronic elections employ typically asymmetric cryptosystems to encrypt votes.
- The corresponding secret key is a sensible piece of information.

We should...

 Enforce the security (secrecy and anonymity) of the eVoting systems.

By...

- Distributing the election key (private) into several shares.
- The secret sharing schemes are widely used in electronic elections.

Motivation

- In practice...
 - ...ElGamal cryptosystem is widely used to encrypt the votes
 - ...JavaCard (smartcard) is used to enhance security and usability
 - Smart-cards are Tamper-proof devices
 - They make easier the shares portability
 - ...The JavaCard API gives no support for EIGamal although smartcard HW may give support!
- So, there is no implementation combining
 - JavaCard, ElGamal and Threshold Scheme

Protocol

- Electoral board generation:
 - 1. Election of the electoral board (according to current law).
 - 2. ElGamal public key and shares generation according to Shamir proposal (from one out of the smartcards president of electoral board).
 - 3. Shares distribution
 - 1. Create a secure channel between the smart-cards
 - 2. Send each share to the corresponding smart-card
 - 4. Verification and storage of the shares
 - 1. Every smartcard has only its share.
- Voting:
 - 5. Votes encryption according to the corresponding protocol using the ElGamal public key.
- Tally:
 - 6. Distributed decryption of the votes, without reconstructing the private key.

Implementation

We have implemented this protocol defining...

- Big number library
 - Offers:
 - Big Number Storage
 - Modular arithmetic
 - ModPow via HW
 - ModMul via Binomial theorem (using ModPow)
- ElGamal API
 - Uses the Big number library
 - Offers encryption/decryption functionalities
- Multi-authority election scheme API
 - Uses Big number librtary and ElGamal API functionalities
 - Offers shares generation and private key reconstruction functionalities

Results

 Using JCOP v.2.2 72Kb of EEPROM memory

 Bear in mind that the results belong to the encryption and decryption operation

Conclusions and Future Work

- Efficiency
 - The SmardCard HW is used as much as possible to accelerate the modular operations the costs are acceptable
 - Some operations of the protocol are executed in the pc (i.e. Lagrange coefficients)
- Security
 - JavaCard is a tamper-proof device
 - Secure operations and communication channel
- As a future work, we are working in a Non-TTP solution with a distributed generations of the shares.

TTP SmartCard-based ElGamal Cryptosystem using Threshold Scheme for Electronic Elections

Thank you for your attention!

Any question?

