

Winning Space Race with Data Science

Warawut Chumthong July 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

The following methodologies were used to analyze data:

Data Collection: Utilizing web scraping and the SpaceX API.

Exploratory Data Analysis (EDA): Including data wrangling, data visualization, and interactive visual analytics.

Machine Learning: For predictive modeling.

Summary of all results

Data Collection: Valuable data was successfully gathered from public sources.

Exploratory Data Analysis (EDA): Key features for predicting the success of launches were identified.

Machine Learning Prediction: The best model was determined for predicting which characteristics are most important for optimizing this opportunity, utilizing all the collected data.

Introduction

The objective is to assess the feasibility of the new company, Space Y, in competing with SpaceX.

Desirable Outcomes:

Cost Estimation: Identify the most effective method to estimate the total cost of launches by predicting the success rates of rocket first-stage landings.

Optimal Launch Locations: Determine the most advantageous locations for conducting launches.

Methodology

- Executive Summary
- Data collection methodology:
 - Data from Space X was obtained from 2 sources:
 - Space X API (https://api.spacexdata.com/v4/rockets/)
 - WebScraping (https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches)
 - Perform data wrangling
 - Collected data was enriched by creating a landing outcome label based on outcome data after summarizing and analyzing features
 - Perform exploratory data analysis (EDA) using visualization and SQL
- Perform predictive analysis using classification models

Data Collection

Data sets were collected from Space X API (https://api.spacexdata.com/v4/rockets/)

and from Wikipedia (https://en.wikipedia.org/wiki/List_of_Falcon/_9 /_and_Falcon_Heavy_launches), using web scraping technics.

Data Collection – SpaceX API

- SpaceX offers a public API from
- where data can be obtained and
- then used;
- This API was used according to the
- flowchart beside and then data is
- persisted.

Data Collection - Scraping

- Data from SpaceX launches
- can also be obtained from
- Wikipedia;
- Data are downloaded from
- Wikipedia according to the
- flowchart and then persisted.

Data Wrangling

- Initially some Exploratory Data Analysis (EDA) was performed on the dataset.
- Then the summaries launches per site, occurrences of each orbit and occurrences of mission outcome per orbit type were calculated.
- Finally, the landing outcome label was created from Outcome column.

EDA with Data Visualization

 To explore data, scatterplots and barplots were used to visualize the relationship between pair of features: • Payload Mass X Flight Number, Launch Site X Flight Number, Launch Site X Payload Mass, Orbit and Flight Number, Payload and Orbit

Results

- Exploratory data analysis results:
- Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA;
- The average payload of F9 v1.1 booster is 2,928 kg;
- The first success landing outcome happened in 2015 fiver year after the first launch;
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- Almost 100% of mission outcomes were successful;
- Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- The number of landing outcomes became as better as years passed.

Flight Number vs. Launch Site

- According to the plot above, it's possible to verify that the best launch site nowadays is CCAF5 SLC 40, where most of recent launches were successful;
- In second place VAFB SLC 4E and third place KSC LC 39A;
- It's also possible to see that the general success rate improved over time.

Payload vs. Launch Site

- Payloads over 9,000kg (about the weight of a school bus) have excellent success rate;
- Payloads over 12,000kg seems to be possible only on CCAFS SLC 40 and KSC LC 39A launch sites.

Success Rate vs. Orbit Type

The biggest success rates happens to orbits:

- ES-L1;
- GEO;
- HEO; and
- SSO.

Followed by:

- VLEO (above 80%); and
- LFO (above 70%).

Flight Number vs. Orbit Type

- Apparently, success rate improved over time to all orbits;
- VLEO orbit seems a new business opportunity, due to recent increase of its frequency.

Payload vs. Orbit Type

- Apparently, there is no relation between payload and success rate to orbit GTO;
- ISS orbit has the widest range of payload and a good rate of success;
- There are few launches to the orbits SO and GEO.

Launch Success Yearly Trend

- Success rate started increasing in 2013 and kept until 2020;
- It seems that the first three years were a period of adjusts and improvement of technology.

They are obtained by selecting unique occurrences of "launch_site" values from the dataset.

All Launch Site Names

Launch_Sites

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
	04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Launch Site Names Begin with 'CCA'

Total Payload Mass(Kgs) Customer

45596 NASA (CRS)

Total Payload Mass

22

Payload Mass Kgs Customer Booster_Version

2534.666666666665

MDA F9 v1.1 B1003

Average Payload Mass by F9 v1.1

MIN(DATE)

01-05-2017

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Payload	Booster_Version				
JCSAT-14	F9 FT B1022				
JCSAT-16	F9 FT B1026				
SES-10	F9 FT B1021.2				
SES-11 / EchoStar 105	F9 FT B1031.2				

Total Number of Successful and Failure Mission Outcomes

Mission_Outcome	Total
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payloa d

Booster_Version	Payload	PAYLOAD_MASSKG_
F9 B5 B1048.4	Starlink 1 v1.0, SpaceX CRS-19	15600
F9 B5 B1049.4	Starlink 2 v1.0, Crew Dragon in-flight abort test	15600
F9 B5 B1051.3	Starlink 3 v1.0, Starlink 4 v1.0	15600
F9 B5 B1056.4	Starlink 4 v1.0, SpaceX CRS-20	15600
F9 B5 B1048.5	Starlink 5 v1.0, Starlink 6 v1.0	15600
F9 B5 B1051.4	Starlink 6 v1.0, Crew Dragon Demo-2	15600
F9 B5 B1049.5	Starlink 7 v1.0, Starlink 8 v1.0	15600
F9 B5 B1060.2	Starlink 11 v1.0, Starlink 12 v1.0	15600
F9 B5 B1058.3	Starlink 12 v1.0, Starlink 13 v1.0	15600
F9 B5 B1051.6	Starlink 13 v1.0, Starlink 14 v1.0	15600
F9 B5 B1060.3	Starlink 14 v1.0, GPS III-04	15600
F9 B5 B1049.7	Starlink 15 v1.0, SpaceX CRS-21	15600

2015 Launch Records

substr(Date,7,4)	substr(Date, 4, 2)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Mission_Outcome	Landing _Outcome
2015	01	F9 v1.1 B1012	CCAFS LC- 40	SpaceX CRS-5	2395	Success	Failure (drone ship)
2015	04	F9 v1.1 B1015	CCAFS LC- 40	SpaceX CRS-6	1898	Success	Failure (drone ship)

Rank Landing
Outcomes Between
2010-06-04 and
2017-03-20

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
19- 02- 2017	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
18- 10- 2020	12:25:57	F9 B5 B1051.6	KSC LC-39A	Starlink 13 v1.0, Starlink 14 v1.0	15600	LEO	SpaceX	Success	Success
18- 08- 2020	14:31:00	F9 B5 B1049.6	CCAFS SLC- 40	Starlink 10 v1.0, SkySat- 19, -20, -21, SAOCOM 1B	15440	LEO	SpaceX, Planet Labs, PlanetIQ	Success	Success
18- 07- 2016	04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
18- 04- 2018	22:51:00	F9 B4 B1045.1	CCAFS SLC- 40	Transiting Exoplanet Survey Satellite (TESS)	362	HEO	NASA (LSP)	Success	Success (drone ship)

All launch sites

Classification Accuracy

• The model with the highest classification accuracy are Logistic_Reg,SVM,KNN Classifier, which has accuracies over than 83.3%.

Show the confusion matrix of the best performing model with an explanation

Confusion Matrix

Conclusions

- • Different data sources were analyzed, refining conclusions along the
- process;
- • The best launch site is KSC LC-39A;
- Launches above 7,000kg are less risky;
- • Although most of mission outcomes are successful, successful landing
- outcomes seem to improve over time, according the evolution of
- processes and rockets;
- Decision Tree Classifier can be used to predict successful landings and
- increase profits

