

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES

2020 CORRIGÉ – BARÈME

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE		
Mathématiques 1	R	Durée de l'épreuve :	3 heures	
Triatricination 1	ь	Date de l'épreuve :	29 mai 2020	

Question 1

[10+6+6=22 points]

1.
$$P(z) = z^3 - 2(1+i)z^2 + \alpha z + \beta$$

(a)
$$P(-3i) = 0 \iff (-3i)^3 - 2(1+i)(-3i)^2 + \alpha(-3i) + \beta = 0$$

 $\iff 27i + 18(1+i) - 3\alpha i + \beta = 0$
 $\iff 3i\alpha - \beta = 18 + 45i$ (1)

$$P(3+2i) = 22i - 14$$

Schéma de Horner:

On déduit :
$$(3+2i)\alpha + \beta = -19+10i$$
 (2)

$$(1) + (2) \implies (3+5i)\alpha = -1+55i$$

$$\iff \alpha = \frac{-1+55i}{3+5i}$$

$$\iff \alpha = \frac{(-1+55i)\cdot(3-5i)}{9+25}$$

$$\iff \alpha = \frac{-3+5i+165i+275}{34}$$

$$\iff \alpha = 8+5i$$

Dans (1):
$$\beta = 3i \cdot (8+5i) - 18 - 45i = -33 - 21i$$

Finalement:
$$P(z) = z^3 - 2(1+i)z^2 + (8+5i)z - 33 - 21i$$
 [4]

(b)
$$P(-3i) = 0$$

Schéma de Horner:

Donc
$$P(z) = (z + 3i) \cdot \underbrace{(z^2 + (-2 - 5i)z - 7 + 11i)}_{Q(z)}$$

Posons
$$Q(z) = 0$$

$$\Delta = (-2 - 5i)^2 - 4 \cdot (-7 + 11i)$$

$$= 4 + 20i - 25 + 28 - 44i$$

$$= 7 - 24i$$

Soit x + yi une r.c.c. de Δ , $(x; y) \in \mathbb{R}^2$

$$\begin{cases} x^2 - y^2 = 7 \\ 2xy = -24 \\ x^2 + y^2 = \sqrt{7^2 + (-24)^2} \end{cases} \iff \begin{cases} x^2 - y^2 = 7 \\ 2xy = -24 \\ x^2 + y^2 = 25 \end{cases}$$
 (1)

$$(1) + (3):$$
 $2x^2 = 32 \iff x = -4 \lor x = 4$

$$(3) - (1):$$
 $2y^2 = 18 \iff y = -3 \lor y = 3$

Par (2) on déduit que x et y sont de signes contraires.

Les r.c.c. de 7 - 24i sont : 4 - 3i et -4 + 3i.

les racines de Q sont :

$$z_1 = \frac{2+5i+4-3i}{2} = 3+i$$
 et $z_2 = \frac{2+5i-4+3i}{2} = -1+4i$

Finalement, l'ensemble des racines de P est :

$$E_R = \{-3i; 3+i; -1+4i\}$$

(c) Soit
$$A(-3i)$$
, $B(3+i)$ et $C(-1+4i)$.

$$AB = |z_B - z_A| = |3 + 4i| = \sqrt{3^2 + 4^2} = 5$$

$$AC = |z_C - z_A| = |-1 + 7i| = \sqrt{(-1)^2 + 7^2} = \sqrt{50} = 5\sqrt{2}$$

$$BC = |z_C - z_B| = |-4 + 3i| = \sqrt{(-4)^2 + 3^2} = 5$$

AB = BC, donc le triangle ABC est isocèle en B.

De plus :
$$AC^2 = AB^2 + BC^2$$

Par la réciproque du théorème de Pythagore on conclut que le triangle ABC est aussi rectangle en B.

2.
$$\omega = \frac{i\overline{z} - 2}{2 - iz}, \quad z \in \mathbb{C} \setminus \{-2i\}$$

Posons
$$z = x + yi$$
, $(x; y) \in \mathbb{R}^2 \setminus \{(0; -2)\}$

$$\omega = \frac{i(x-yi)-2}{2-i(x+yi)}$$

$$= \frac{[(y-2)+xi] \cdot [(y+2)+xi]}{[(y+2)-xi] \cdot [(y+2)+xi]}$$

$$= \frac{(y-2)(y+2)-x^2+[x(y-2)+x(y+2)]i}{(y+2)^2+x^2}$$

$$=\frac{y^2-x^2-4+2xyi}{(y+2)^2+x^2}$$

(a)
$$\omega \in \mathbb{R} \iff 2xy = 0 \quad \land \quad (x;y) \neq (0;-2)$$

 $\iff (x = 0 \lor y = 0) \quad \land \quad (x;y) \neq (0;-2)$

 \mathbb{E} est la réunion des axes de coordonnées privée du point A(-2i).

(b)
$$\omega \in i\mathbb{R} \iff y^2 - x^2 - 4 = 0 \quad \land \quad (x;y) \neq (0;-2)$$

$$\iff \frac{-x^2}{4} + \frac{y^2}{4} = 1 \quad \land \quad (x;y) \neq (0;-2)$$

 \mathbb{F} est une hyperbole équilatère de centre O(0), d'axe focal (Oy) privée du sommet A(-2i). [6]

3. (a)
$$z^6 + z^3 + 1 = 0$$
 (1)

(b)

Posons $z^3 = Z$, $Z \in \mathbb{C}$.

L'équation (1) s'écrit : $Z^2 + Z + 1 = 0 \land Z = z^3$.

Résolution de $Z^2 + Z + 1 = 0$: $\Delta = -3 = 3i^2$

Les solutions sont : $Z_1 = \frac{-1 - \sqrt{3}i}{2} \wedge Z_2 = \frac{-1 + \sqrt{3}i}{2}$

Or $z^3 = Z$, donc les solutions de l'équation (1) sont les racines cubiques complexes de Z_1 et celles de Z_2 .

$$Z_1 = \frac{-1 - \sqrt{3}i}{2} = \operatorname{cis}\left(-\frac{2\pi}{3}\right) \qquad \qquad Z_2 = \frac{-1 + \sqrt{3}i}{2} = \operatorname{cis}\left(\frac{2\pi}{3}\right)$$
Les racines cubiques complexes de Z

sont données par :

Les racines cubiques complexes de Z_1 Les racines cubiques complexes de Z_2 sont données par :

$$x_k = \operatorname{cis}\left(\frac{-\frac{2\pi}{3} + 2k\pi}{3}\right), \text{ où } k \in \{0; 1; 2\} \qquad y_k = \operatorname{cis}\left(\frac{\frac{2\pi}{3} + 2k\pi}{3}\right), \text{ où } k \in \{0; 1; 2\}$$

$$y_k = \operatorname{cis}\left(\frac{2\pi}{3} + 2k\pi\right)$$
, où $k \in \{0; 1; 2\}$

Ainsi, l'ensemble de solution de l'équation (1) est :

$$S_{\mathbb{C}} = \left\{ \operatorname{cis}\left(-\frac{2\pi}{9}\right); \operatorname{cis}\left(\frac{4\pi}{9}\right); \operatorname{cis}\left(\frac{10\pi}{9}\right); \operatorname{cis}\left(\frac{2\pi}{9}\right); \operatorname{cis}\left(\frac{8\pi}{9}\right); \operatorname{cis}\left(\frac{14\pi}{9}\right) \right\}$$

[6]

Question 2

[3+8+2+7=20 points]

1.
$$\left(\frac{\sqrt{5}}{4x^2} - \frac{2x}{\sqrt{5}} \right)^{13} = \sum_{k=0}^{13} C_{13}^k \cdot (-1)^k \cdot \left(\frac{\sqrt{5}}{4x^2} \right)^{13-k} \cdot \left(\frac{2x}{\sqrt{5}} \right)^k$$
$$= \sum_{k=0}^{13} C_{13}^k \cdot (-1)^k \cdot (\sqrt{5})^{13-2k} \cdot 2^{-26+3k} \cdot x^{-26+3k}$$

Le terme en x est obtenu pour $-26 + 3k = 1 \iff k = 9$.

Il vaut :
$$C_{13}^9 \cdot (-1) \cdot (\sqrt{5})^{-5} \cdot 2x = -\frac{286\sqrt{5}}{25}x$$
 [3]

- 2. $\sharp \Omega = C_{32}^5 = 201376$.
 - (a) événement A: on tire exactement deux dames et deux coeurs.
 - on tire la dame de coeur, une autre dame parmi les 3 restantes, un autre coeur parmi les 7 restants et 2 autres cartes parmi les 21 cartes ni dame ni coeur;
 - on tire deux dames « non coeur », deux coeurs « non dame » et une autre carte parmi les 21 cartes ni dame ni coeur.

$$\sharp A = 1 \cdot C_3^1 \cdot C_7^1 \cdot C_{21}^2 + C_3^2 \cdot C_7^2 \cdot C_{21}^1 = 5733$$

$$P(A) = \frac{\sharp A}{\sharp \Omega} = \frac{5733}{201376} = \frac{819}{28768} \approx 0,028 \quad (2,8\%)$$
[2]

(b) événement B : obtenir un « full » :

On choisit avec ordre les deux valeurs, puis sans ordre 3 cartes parmi 4 de la première valeur et 2 cartes parmi 4 de la deuxième valeur.

$$\sharp B = A_8^2 \cdot C_4^3 \cdot C_4^2 = 1344$$

$$P(B) = \frac{\sharp B}{\sharp \Omega} = \frac{1344}{201376} = \frac{6}{899} \approx 0,0067 \qquad (0,67\%)$$
[2]

(c) Soit n le nombre de mains à tirer. Il s'agit d'une expérience de Bernoulli, car les n mains sont indépendantes et équiprobables.

Soit X la variable aléatoire qui donne le nombre de « full » :

X suit une loi binomiale avec
$$p = \frac{6}{899}$$
 et $q = \frac{893}{899}$.

$$P(X \ge 1) \ge 0,95$$

$$\iff 1 - P(X = 0) \ge 0,95$$

$$\iff P(X = 0) \le 0,05$$

$$\iff \left(\frac{893}{899}\right)^n \le 0,05$$

$$\iff \ln\left(\frac{893}{899}\right)^n \le \ln(0,05)$$

$$\iff n \cdot \ln\left(\frac{893}{899}\right) \le \ln(0,05)$$

$$\iff n \ge \frac{\ln(0,05)}{\ln\left(\frac{893}{899}\right)}$$

$$\iff n \ge 447,36$$

Il faut au moins tirer 448 mains pour que la probabilité d'obtenir au moins un « full » soit supérieure ou égale à 95 %.

[4]

- 3. On coche au hasard 10 réponses dans le questionnaire.
 - (a) Les réponses sont cochées au hasard, donc X suit une loi binomiale avec n=10, p=0,25 et q=0,75.

[1]

(b)
$$P(X \ge 4) = \sum_{k=4}^{10} C_{10}^k \cdot 0, 25^k \cdot 0, 75^{10-k} \approx 0,224$$
 (22,4%)

4. Tableau donnant la somme des points lorsqu'on jette 2 dés :

	S	1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
-	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

$$P(S=12) = \frac{1}{36}$$

$$P(S \text{ est un nombre premier}) = \frac{15}{36}$$

$$P(S \neq 12 \text{ et } S \text{ n'est pas premier}) = \frac{5}{9}$$

(a) Loi de probabilité de X:

x_i	-6	-1	4	k-3	k+2	2k
$P(X=x_i)$	$\frac{25}{81}$	$\frac{25}{54}$	$\frac{25}{144}$	$\frac{5}{162}$	$\frac{5}{216}$	$\frac{1}{1296}$

$$P(X = -6) = \frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$$

$$P(X = -1) = 2 \cdot \frac{5}{9} \cdot \frac{5}{12} = \frac{25}{54}$$

$$P(X = 4) = \frac{5}{12} \cdot \frac{5}{12} = \frac{25}{144}$$

$$P(X = k - 3) = 2 \cdot \frac{1}{36} \cdot \frac{5}{9}$$

$$P(X = k + 2) = 2 \cdot \frac{1}{36} \cdot \frac{5}{12} = \frac{5}{216}$$

$$P(X = 2k) = \frac{1}{36} \cdot \frac{1}{36} = \frac{1}{1296}$$
[5]

(b)
$$E(X) = \sum_{k=1}^{6} x_i \cdot P(X = x_i)$$

 $= -6 \cdot \frac{25}{81} - \frac{25}{54} + 4 \cdot \frac{25}{144} + (k-3) \cdot \frac{5}{162} + (k+2) \cdot \frac{5}{216} + 2k \cdot \frac{1}{1296}$
 $= -\frac{5}{3} + \frac{1}{18} \cdot k$
 $E(X) = 0 \iff -\frac{5}{3} + \frac{1}{18} \cdot k = 0$
 $\iff k = 30$

Le jeu est équilibré lorsque E(X) = 0, donc si k = 30. [2]

Question 3 [3+7+8=18 points]

1. L est une parabole de foyer P(4;0) et de directrice $d \equiv x = -1$

$$\begin{split} M(x;y) \in \mathbb{L} &\iff \operatorname{dist}(M;P) = \operatorname{dist}(M;d) \\ &\iff \operatorname{dist}^2(M;P) = \operatorname{dist}^2(M;d) \\ &\iff (x-4)^2 + y^2 = (x+1)^2 \\ &\iff y^2 = 10x - 15 \\ &\iff y^2 = 10(x-\frac{3}{2}) \qquad \text{(\'equation cart\'esienne r\'eduite de } \mathbb{L}) \end{split}$$

Ainsi, le sommet de la parabole est $S(\frac{3}{2};0)$ et le paramètre vaut p=5.

2.
$$C \equiv y = -1 - \frac{4}{3}\sqrt{x^2 - 4x + \frac{25}{4}} \iff -\frac{3}{4}(y+1) = \sqrt{(x-2)^2 + \frac{9}{4}}$$

Conditions d'existence : $\underbrace{(x-2)^2 + \frac{9}{4} \geqslant 0}_{\text{toujours vérifié}} \land y \leqslant -1$

$$\forall y \in]-\infty;-1]$$

$$C \equiv \frac{9}{16}(y+1)^2 = (x-2)^2 + \frac{9}{4}$$

$$\iff -\frac{(x-2)^2}{\frac{9}{4}} + \frac{(y+1)^2}{4} = 1 \qquad (E)$$

(E) est l'équation d'une hyperbole $\mathbb H$ de centre $\Omega(2;-1)$ et d'axe focal d'équation x=2. $a=rac{3}{2}$ et b=2.

asymptotes :
$$\Delta_1 \equiv y = \frac{4}{3}x - \frac{11}{3}$$
 et $\Delta_2 \equiv y = -\frac{4}{3}x + \frac{5}{3}$

 \mathcal{C} est une demi-hyperbole; c'est la partie de \mathbb{H} située en-dessous de la droite d'équation y=-1.

[3]

[2]

3.
$$\Gamma \equiv 9x^2 + 4y^2 - 18x - 16y - 11 = 0$$

 $\iff 9(x-1)^2 + 4(y-2)^2 = 36$

 Γ est une ellipse de centre $\Omega(1;2)$

Posons:
$$\begin{cases} X = x - 1 \\ Y = y - 2 \end{cases}$$

Dans le repère $(\Omega; \overrightarrow{i}; \overrightarrow{j}), \Gamma \equiv 9X^2 + 4Y^2 = 36$ et P(3; 1).

Soit t la tangente à Γ au point $A(X_A; Y_A)$

$$t \equiv 9XX_A + 4YY_A = 36$$

$$P(3;1) \in t \iff 27X_A + 4Y_A = 36$$

$$\iff Y_A = 9\left(1 - \frac{3}{4}X_A\right)$$

$$A(X_A; Y_A) \in \Gamma \iff 9X_A^2 + 4Y_A^2 = 36$$

$$\iff 9X_A^2 + 4 \cdot 81\left(1 - \frac{3}{4}X_A\right)^2 = 36 \quad | : 9$$

$$\iff X_A^2 + 36 \cdot \left(1 - \frac{3}{2}X_A + \frac{9}{16}X_A^2\right) = 4$$

$$\iff \frac{85}{4}X_A^2 - 54X_A + 32 = 0$$

$$\Delta = (-54)^2 - 4 \cdot \frac{85}{4} \cdot 32 = 196$$

$$X_A = \frac{8}{5}, \text{ alors } Y_A = 9 \cdot \left(1 - \frac{3}{4} \cdot \frac{8}{5}\right) = -\frac{9}{5}$$
Si $X_A = \frac{16}{17}$, alors $Y_A = 9 \cdot \left(1 - \frac{3}{4} \cdot \frac{16}{17}\right) = \frac{45}{17}$
Par conséquent, il y a deux tangentes à Γ issues de P .
Dans le repère $(\Omega; \overrightarrow{i}; \overrightarrow{j})$:
$$t_1 \text{ passant par } A_1\left(\frac{8}{5}; -\frac{9}{5}\right)$$
:
$$t_2 \equiv \frac{2}{5}X - \frac{1}{5}Y = 1 \iff Y = 2X - 5$$

$$t_2 \text{ passant par } A_2\left(\frac{16}{17}; \frac{45}{17}\right)$$
:
$$t_1 \text{ passant par } A_1\left(\frac{13}{5}; \frac{1}{5}\right)$$
:
$$t_1 \text{ passant par } A_1\left(\frac{13}{17}; \frac{17}{17}\right)$$
:

 $t_2 \equiv y - 2 = -\frac{4}{5}(x - 1) + \frac{17}{5} \iff y = -\frac{4}{5}x + \frac{31}{5}$

[8]