# R Survey Cheat Sheet

David J. Barney\* 1/26/2019

## Reading & Exploring Data

To read in your data:

```
# Comma delimited format
dat <- read.csv("~/your/file/path")
# Tab delimited format
dat <- read.table("~/your/file/path")
# Stata (.dta) format
library(haven)
dat <- read_dta("~/your/file/path")</pre>
```

To view observations or summaries of a variable:

```
# Print the top few observations of a variable
head(dataframe$vector)
# Print the bottom few observations of a variable
tail(dataframe$vector)
# Print all observations of a variable
print(dataframe$vector)
# Access a summary of a variable or model
summary(dataframe$vector)
summary(model)
```

To learn the structure or format of your data:

```
# Access the type / storage mode of the data
typeof(dataframe$vector)
# Access the structure of the data
str(dataframe)
str(dataframe$vector)
# Access the length of a vector (e.g. the number of observations)
length(dataframe$vector)
# Access the attributes and metadata of an object
attributes(dataframe)
attributes(dataframe$vector)
```

All of the examples in this guide will use the 2016 CCES loaded in .dta format. To replicate,

```
library(haven)
cces16 <- read_dta("../../Data/2016 CCES/CCES16_Common_OUTPUT_Feb2018_VV.dta")</pre>
```

<sup>\*</sup>davidjbarney@gmail.com

### Manipulating Data

#### **Recoding Data**

To recode values in base R:

```
#Create a new vector to work with
cces16$ban_ar <- cces16$CC16_330d
#Attitudes toward gun control
#Call all values for "oppose" and replace with zero
cces16$ban_ar[cces16$ban_ar==2] <- 0
#Call all values for skipped / not asked and replace with missing
cces16$ban_ar[cces16$ban_ar==8] <- NA
cces16$ban_ar[cces16$ban_ar==9] <- NA</pre>
```

To collapse categories of an ordinal variable in base R:

```
#Create a new vector to work with
cces16$pid <- cces16$pid7
#Recode values to missing
cces16$pid[cces16$pid==98] <- NA
cces16$pid[cces16$pid==99] <- NA
cces16$pid[cces16$pid==8] <- NA
#Collapse the categories
cces16$pid[cces16$pid==2] <- 1
cces16$pid[cces16$pid==3] <- 1
cces16$pid[cces16$pid==4] <- 2
cces16$pid[cces16$pid==5] <- 3
cces16$pid[cces16$pid==6] <- 3
cces16$pid[cces16$pid==7] <- 3</pre>
```

To cut a continuous variable into an ordinal one in base R:

To flip the direction of coding in base R:

```
#Flip the coding
cces16$pid_reverse <- 4 - cces16$pid</pre>
```

To apply labels to factor levels of a recoded variable:

#### **Merging Data**

To merge data that have one common vector with the same name:

```
#Load the supplemental data
cces16s <- read.csv("../../Data/2016 CCES Supplementary/CC16_Candidates_By_Race.csv")
#Merge the primary and supplemental data by respondent state
cces16c <- merge(cces16, cces16s)</pre>
```

To merge data that have a common vector with different names:

## **Descriptive Statistics**

#### **Summary Statistics**

To summarize a variable:

```
summary(cces16$age)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
     18.00
##
           33.00
                     49.00
                             47.88
                                     61.00
                                              99.00
To call specific summary statistics:
#Mean
mean(cces16$age)
## [1] 47.88014
#Standard deviation
sd(cces16$age)
## [1] 16.83279
#Minimum
min(cces16$age)
## [1] 18
#Maximum
max(cces16$age)
## [1] 99
#Range
range(cces16$age)
## [1] 18 99
#Quantiles
quantile(cces16$age)
## <Labelled double>
##
     0% 25% 50% 75% 100%
##
     18 33 49 61
##
```

```
## Labels:
## value
              label
##
    9998
           Skipped
    9999 Not Asked
##
```

#### Tabulations & Cross Tabulations

To tabulate a variable:

```
# Tabulate PID
prop.table(table(cces16$pid_reverse))
##
##
    Republican Independent
                               Democrat
     0.3336641
                 0.1679444
##
                              0.4983915
To cross-tabulate two variables:
# Tabulate PID by age categories
pidxage <- table(cces16$pid_reverse, cces16$agecats)</pre>
pidxage
##
##
                 35 and Under 36 to 50 Over 50
##
     Republican
                         4799 4470 11578
##
     Independent
                          3137
                                   2660
                                           4696
##
     Democrat
                         10427
                                   7059
                                          13653
prop.table(pidxage,2)
##
##
                 35 and Under 36 to 50
                                           Over 50
                    0.2613407 0.3150328 0.3868747
##
     Republican
##
     Independent
                    0.1708327 0.1874692 0.1569152
     Democrat
                    0.5678266 0.4974981 0.4562101
##
```

#### Summary Statistics by Group

To summarize variables by group in base R:

```
#Create a dataframe of the variables of interest
subgroup_vars <- c("age","pid")</pre>
subgroup_matrix <- as.matrix(cces16[subgroup_vars])</pre>
subgroup_df <- as.data.frame(subgroup_matrix)</pre>
aggregate(subgroup_df$age, list(subgroup_df$pid), mean)
##
     Group.1
## 1
           1 46.58152
## 2
           2 46.97732
## 3
           3 51.23725
To summarize variables by group with dplyr:
library(dplyr)
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
subgroup_means <- subgroup_df %>%
  group_by(pid) %>%
  summarise(mean = mean(age))
subgroup_means
## # A tibble: 4 x 2
       pid mean
##
##
     <dbl> <dbl>
## 1
       1 46.6
## 2
         2 47.0
        3 51.2
## 3
        NA 38.4
## 4
To visualize subgroup means with ggplot:
library(ggplot2)
pid_labels <- c("Democrat", "Independent", "Republican")</pre>
sg_bp <- ggplot(subgroup_means, aes(y=mean, x=pid)) +</pre>
  geom_bar(fill="lightskyblue",stat="identity") +
  #xlab("Partisanship") +
  ylab("Mean Age") +
  scale_x_discrete(name = "Partisanship",
                   limits=pid_labels)
sg_bp <- sg_bp + coord_cartesian(ylim=c(45,55))</pre>
sg_bp
```

## Warning: Removed 1 rows containing missing values (position\_stack).



#### Distributions

To plot a histogram of a variable's distribution using ggplot2:

```
#Histogram for age
library(ggplot2)
age_matrix <- as.matrix(cces16$age)
age_df <- as.data.frame(age_matrix)
ggplot(data = age_df, aes(x=age_df)) +
   geom_histogram(binwidth = 1) +
   xlab("Age of Respondent") +
   ylab("Frequency")</pre>
```

## Don't know how to automatically pick scale for object of type data.frame. Defaulting to continuous.



## Don't know how to automatically pick scale for object of type data.frame. Defaulting to continuous.



## Modeling

### **OLS** Regression

```
# Prepare Obama approval as the DV
cces16$0a <- cces16$CC16_320a
cces16$oa[cces16$oa=="5"] <- NA
cces16$oa[cces16$oa=="8"] <- NA
cces16$oa <- 5 - cces16$oa
# Fit the OLS model
olsfit <- lm(oa ~ pid + gender + age,</pre>
             data = cces16)
# Print the model summary
summary(olsfit)
##
## Call:
## lm(formula = oa ~ pid + gender + age, data = cces16)
## Residuals:
## <Labelled double>
##
        Min
                  1Q
                     Median
                                    ЗQ
                                            Max
## -2.58510 -0.41900 -0.21139 0.61911 2.95471
##
```

```
## Labels:
##
   value
                        label
##
            Strongly approve
##
            Somewhat approve
##
       3 Somewhat disapprove
##
        4 Strongly disapprove
##
                     Not sure
##
       8
                      Skipped
##
                    Not Asked
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6247560 0.0164018 281.967 < 2e-16 ***
              -1.0051598 0.0038097 -263.844 < 2e-16 ***
## pid
               0.0450371
                          0.0068463
                                        6.578 4.8e-11 ***
## gender
               -0.0069207 0.0002041
                                     -33.903 < 2e-16 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8351 on 60142 degrees of freedom
     (4454 observations deleted due to missingness)
## Multiple R-squared: 0.5542, Adjusted R-squared: 0.5542
## F-statistic: 2.493e+04 on 3 and 60142 DF, p-value: < 2.2e-16
Logistic Regression
## Logistic Regression
# Prepare preference for AR ban as DV
cces16$ban_ar <- cces16$CC16_330d
cces16$ban_ar[cces16$ban_ar==2] <- 0
cces16$ban_ar[cces16$ban_ar==8] <- NA
cces16$ban_ar[cces16$ban_ar==9] <- NA
# Fit the logit model
lfit <- glm(ban_ar ~ pid + agecats + gender,</pre>
          data=cces16, family = binomial())
# Print the model summary
summary(lfit)
##
## Call:
## glm(formula = ban_ar ~ pid + agecats + gender, family = binomial(),
       data = cces16)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                   3Q
                                           Max
## -2.2356 -0.9485
                    0.4895
                              0.8301
                                        1.7229
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
```

11.74

29.03

28.61 <2e-16 \*\*\*

<2e-16 \*\*\*

<2e-16 \*\*\*

<2e-16 \*\*\*

## (Intercept)

## agecatsOver 50

## agecats36 to 50 0.30957

## pid

1.08299

-1.05779

0.66148

0.03785

0.02638

0.02279

0.01104 -95.85

#### **Ordinal Logistic Regression**

```
## Ordinal Logistic Regression
# Convert Obama approval to a factor
cces16$oaf <- factor(cces16$oa)</pre>
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
       select
# Fit the ordinal logit model
olfit <- polr(oaf ~ pid + gender + age,</pre>
             data = cces16, Hess = TRUE)
# Print the model summary
summary(olfit)
## Call:
## polr(formula = oaf ~ pid + gender + age, data = cces16, Hess = TRUE)
## Coefficients:
            Value Std. Error t value
       -2.01316 0.0121435 -165.781
## pid
## gender 0.14036 0.0167348
                              8.387
## age
         -0.01447 0.0005025 -28.794
##
## Intercepts:
                Std. Error t value
      Value
## 1 2 -5.2717 0.0459 -114.8740
## 2|3 -4.3865
                   0.0436 -100.6132
## 3|4
       -2.6727
                   0.0406 -65.7525
##
## Residual Deviance: 116936.77
## AIC: 116948.77
## (4454 observations deleted due to missingness)
```

#### Multinomial Logistic Regression

```
## Multinomial Logistic Regression
## Create a 2012 vote choice factor variable
cces16$vc <- cces16$CC16_326</pre>
cces16$vc[cces16$vc=="4"] <- NA
cces16$vc[cces16$vc=="5"] <- NA
cces16$vc <- factor(cces16$vc,</pre>
                   levels = c(1,2,3),
                   labels = c("Obama", "Romney", "Other"))
library(nnet)
# Fit the multinomial logit model
mlfit <- multinom(vc ~ pid + agecats + gender,</pre>
                 data=cces16)
## # weights: 18 (10 variable)
## initial value 51855.598637
## iter 10 value 23914.700591
## iter 20 value 18733.374011
## final value 18733.298819
## converged
# weights: 27 (16 variable)
# Print the model summary
summary(mlfit)
## multinom(formula = vc ~ pid + agecats + gender, data = cces16)
##
## Coefficients:
##
       (Intercept)
                          pid agecats36 to 50 agecatsOver 50
## Romney -6.432394 2.776238 0.5026041 1.0392971 -0.1359982
           -4.064238 1.497458
                                   0.1057551
                                                  -0.2319235 -0.7827882
## Other
## Std. Errors:
      (Intercept)
                            pid agecats36 to 50 agecats0ver 50
                                                                   gender
## Romney 0.08088099 0.02171768 0.05035074 0.04370033 0.03297672
## Other 0.11463718 0.03257481
                                     0.07268663
                                                    0.06687796 0.05765850
## Residual Deviance: 37466.6
## AIC: 37486.6
```

## survey Package

All examples in this section require the survey package:

```
library(survey)

## Loading required package: grid

## Loading required package: Matrix

## Loading required package: survival
```

```
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
```

#### Weighted Tabulations

```
## WITHOUT WEIGHTING
# Tabulate PID
prop.table(table(cces16$pid_reverse))
##
    Republican Independent
##
                               Democrat
     0.3336641
                 0.1679444
                              0.4983915
## WITHOUT WEIGHTING
# Tabulate PID by age categories
pidxage <- table(cces16$pid_reverse, cces16$agecats)</pre>
pidxage
##
##
                 35 and Under 36 to 50 Over 50
##
                          4799
                                   4470
                                          11578
     Republican
##
     Independent
                         3137
                                   2660
                                           4696
##
     Democrat
                         10427
                                   7059
                                          13653
prop.table(pidxage,2)
##
                 35 and Under 36 to 50
##
                                           Over 50
##
     Republican
                    0.2613407 0.3150328 0.3868747
##
     Independent
                    0.1708327 0.1874692 0.1569152
     Democrat
                    0.5678266 0.4974981 0.4562101
##
## WITH WEIGHTING
# Create a survey design dataframe
svy.cces16 <- svydesign(ids = ~1,</pre>
                        data = cces16,
                        weights = cces16$commonweight_vv)
# Weighted tabulation of PID
prop.table(svytable(~cces16$pid_reverse, design = svy.cces16))
## cces16$pid_reverse
## Republican Independent
                               Democrat
    0.3732446
                 0.1539131
                              0.4728423
## WITH WEIGHTING
# Weighted tabulation of PID by age categories
prop.table(svytable(~cces16$pid_reverse+cces16$agecats,
                    design = svy.cces16),2)
##
                     cces16$agecats
## cces16$pid_reverse 35 and Under 36 to 50
                                                Over 50
          Republican
                         0.3103759 0.3544857 0.4244888
                         0.1614909 0.1740768 0.1395962
##
          Independent
```

#### Weighted Models

```
## WITHOUT WEIGHTING
# Run a logit regression for attitudes toward gun control
fit <- glm(ban_ar ~ pid_reverse + agecats + gender,</pre>
           data=cces16, family = binomial())
summary(fit)
##
## Call:
## glm(formula = ban_ar ~ pid_reverse + agecats + gender, family = binomial(),
      data = cces16)
##
## Deviance Residuals:
      Min 10 Median
                                  30
                                          Max
## -2.2748 -0.9804 0.4639 0.7933
                                       1.6830
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
                                   0.03790 -52.69 <2e-16 ***
## (Intercept)
                         -1.99725
## pid_reverseIndependent 0.62226
                                     0.02510
                                               24.79
                                                       <2e-16 ***
## pid_reverseDemocrat
                       2.13318
                                     0.02241
                                               95.20 <2e-16 ***
## agecats36 to 50
                          0.32115
                                     0.02651
                                               12.11
                                                       <2e-16 ***
## agecatsOver 50
                          0.65539
                                     0.02286
                                               28.67
                                                       <2e-16 ***
                          0.85891
                                     0.01927
                                               44.58
## gender
                                                      <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 79067 on 62049 degrees of freedom
## Residual deviance: 65697 on 62044 degrees of freedom
     (2550 observations deleted due to missingness)
## AIC: 65709
##
## Number of Fisher Scoring iterations: 4
## WITH WEIGHTING
wfit <- svyglm(ban_ar ~ pid_reverse + agecats + gender,</pre>
              design=svy.cces16, family = binomial())
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(wfit)
##
## Call:
## svyglm(formula = ban_ar ~ pid_reverse + agecats + gender, design = svy.cces16,
##
       family = binomial())
## Survey design:
```

```
## svydesign(ids = ~1, data = cces16, weights = cces16$commonweight_vv)
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     ## pid_reverseIndependent 0.59609 0.03475 17.154 <2e-16 ***
## pid_reverseDemocrat 2.09675
                             0.03212 65.285 <2e-16 ***
## agecats36 to 50
                     0.30622
                             0.03701 8.274 <2e-16 ***
## agecatsOver 50
                    0.66999
                              0.03259 20.557
                                             <2e-16 ***
                      ## gender
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 0.9962514)
##
## Number of Fisher Scoring iterations: 4
```

## Creating Post-Stratification Weights

In progress.