Password Authenticated Key Exchange: From Two Party Methods to Group Schemes

Stephen Melczer, Taras Mychaskiw, and Yi Zhang

Introduction

- 1. Classical Two Party PAKEs
 - 1.1 Background and Security Properties
 - **1.2** J-PAKE
 - 1.3 Dragonfly
 - 1.4 PAK/PPK
- 2. Extension to Group Setting (GPAKEs)
 - 2.1 Fairy-Ring Dance
 - 2.2 Examples of GPAKEs
- 3. Timings
- 4. Conclusion

PART 1 Classical Two Party PAKEs

Password Authenticated Key Exchange (PAKE)

PAKEs allow two parties sharing a *short/weak* password to establish a shared key

Cannot broadcast password directly – would need to be protected (expensive)

Instead, modern PAKEs use zero- $knowledge\ proof$ of password in protocol

First Protocol: EKE (Bellovin and Merrit 1992)

Pick prim. root $\alpha \in \mathbb{Z}_p$

Alice		Bob
randomly choose $x_a \in \mathbb{Z}_p^*$	$\underline{\qquad \qquad } [\alpha^{x_a}]_s$	
	$[\alpha^{x_b}]_s$	randomly choose $x_b \in \mathbb{Z}_p^s$

Alice and Bob share $K = \alpha^{x_a \cdot x_b}$.

First Protocol: EKE (Bellovin and Merrit 1992)

Pick prim. root $\alpha \in \mathbb{Z}_p$

Alice and Bob share $K = \alpha^{x_a \cdot x_b}$.

Uses password directly \implies many insecurities found

First Protocol: EKE (Bellovin and Merrit 1992)

Pick prim. root $\alpha \in \mathbb{Z}_p$

Alice and Bob share $K = \alpha^{x_a \cdot x_b}$.

Uses password directly \implies many insecurities found

Ex: Decypher $[\alpha^{x_a}]_{s'}$ – rule out s' if output in $[p, 2^n - 1]$

Desired Security Properties

Offline dictionary attack resistance

Don't leak info which can be used in brute force search

Forward secrecy for established keys

Past keys secure if password disclosed Implies passive attacker w/ password cannot compute key

Known session security

All secrets of one session reveals nothing about others

Online dictionary attack resistance

Attacker can only test one password per protocol execution

Setup Let $G = \langle g \rangle$ be an order q subgroup of \mathbb{Z}_p^* Alice picks $x_1 \in_R [0, q-1]$ and $x_2 \in_R [1, q-1]$ Bob picks $x_3 \in_R [0, q-1]$ and $x_4 \in_R [1, q-1]$

Setup Let $G = \langle g \rangle$ be an order q subgroup of \mathbb{Z}_p^* Alice picks $x_1 \in_R [0, q-1]$ and $x_2 \in_R [1, q-1]$ Bob picks $x_3 \in_R [0, q-1]$ and $x_4 \in_R [1, q-1]$

Rd 1 Alice sends g^{x_1}, g^{x_2} and ZKPs of x_1 and x_2 to Bob Bob sends g^{x_3}, g^{x_4} and ZKPs of x_3 and x_4 to Alice [Alice and Bob verify ZKPs and $g^{x_2}, g^{x_4} \neq 1$]

Setup Let $G = \langle g \rangle$ be an order q subgroup of \mathbb{Z}_p^* Alice picks $x_1 \in_R [0, q-1]$ and $x_2 \in_R [1, q-1]$ Bob picks $x_3 \in_R [0, q-1]$ and $x_4 \in_R [1, q-1]$

Rd 1 Alice sends g^{x_1}, g^{x_2} and ZKPs of x_1 and x_2 to Bob Bob sends g^{x_3}, g^{x_4} and ZKPs of x_3 and x_4 to Alice [Alice and Bob verify ZKPs and $g^{x_2}, g^{x_4} \neq 1$]

Rd 2 Alice sends $A = g^{(x_1+x_3+x_4)x_2 \cdot s}$ and ZKP of x_2s Bob sends $B = g^{(x_1+x_2+x_3)x_4 \cdot s}$ and ZKP of x_4s

Setup Let $G = \langle g \rangle$ be an order q subgroup of \mathbb{Z}_p^* Alice picks $x_1 \in_R [0, q-1]$ and $x_2 \in_R [1, q-1]$ Bob picks $x_3 \in_R [0, q-1]$ and $x_4 \in_R [1, q-1]$

Rd 1 Alice sends g^{x_1}, g^{x_2} and ZKPs of x_1 and x_2 to Bob Bob sends g^{x_3}, g^{x_4} and ZKPs of x_3 and x_4 to Alice [Alice and Bob verify ZKPs and $g^{x_2}, g^{x_4} \neq 1$]

Rd 2 Alice sends $A = g^{(x_1+x_3+x_4)x_2 \cdot s}$ and ZKP of x_2s Bob sends $B = g^{(x_1+x_2+x_3)x_4 \cdot s}$ and ZKP of x_4s

They share

$$K = \underbrace{(B/g^{x_2x_4s})^{x_2}}_{\text{Computable by Alice}} = g^{(x_1+x_3)x_2x_4s} = \underbrace{(A/g^{x_2x_4s})^{x_4}}_{\text{Computable by Bob}}.$$

Satisfies all 4 desired properties (under DDH and CDH assumptions)

Only two rounds of communication

No explicit key confirmation (only implicit)

Not patented

Setup Let Q be a cyclic subgroup of \mathbb{Z}_p^* with prime order q.

Alice picks $r_A, m_A \in_R \mathbb{Z}_q^*$

Bob picks $r_B, m_B \in_R \mathbb{Z}_q^*$

Setup Let Q be a cyclic subgroup of \mathbb{Z}_p^* with prime order q.

Alice picks $r_A, m_A \in_R \mathbb{Z}_q^*$ Bob picks $r_B, m_B \in_R \mathbb{Z}_q^*$

Rd 1 Alice sends $s_A = r_A + m_A \mod q$ and $E_A = \pi^{-m_A} \mod p$ Bob sends $s_B = r_B + m_B \mod q$ and $E_B = \pi^{-m_B} \mod p$ [Alice and Bob check that $s_A \neq s_B$ or $E_A \neq E_B$]

Setup Let Q be a cyclic subgroup of \mathbb{Z}_p^* with prime order q.

Alice picks $r_A, m_A \in_R \mathbb{Z}_q^*$ Bob picks $r_B, m_B \in_R \mathbb{Z}_q^*$

Rd 1 Alice sends $s_A = r_A + m_A \mod q$ and $E_A = \pi^{-m_A} \mod p$ Bob sends $s_B = r_B + m_B \mod q$ and $E_B = \pi^{-m_B} \mod p$ [Alice and Bob check that $s_A \neq s_B$ or $E_A \neq E_B$]

Rn 2 Alice computes $ss = (\pi^{s_B} E_B)^{r_A} = \pi^{r_A r_B}$

Bob computes $ss = (\pi^{s_A} E_A)^{r_B} = \pi^{r_A r_B}$

Alice sends $H(ss|E_A|s_A|E_B|s_B)$

Bob sends $H(ss|E_B|s_B|E_A|s_A)$

Each member confirms the hashes.

Setup Let Q be a cyclic subgroup of \mathbb{Z}_p^* with prime order q.

Alice picks $r_A, m_A \in_R \mathbb{Z}_q^*$ Bob picks $r_B, m_B \in_R \mathbb{Z}_q^*$

Rd 1 Alice sends $s_A = r_A + m_A \mod q$ and $E_A = \pi^{-m_A} \mod p$ Bob sends $s_B = r_B + m_B \mod q$ and $E_B = \pi^{-m_B} \mod p$ [Alice and Bob check that $s_A \neq s_B$ or $E_A \neq E_B$]

Rn 2 Alice computes $ss = (\pi^{s_B} E_B)^{r_A} = \pi^{r_A r_B}$ Bob computes $ss = (\pi^{s_A} E_A)^{r_B} = \pi^{r_A r_B}$ Alice sends $H(ss|E_A|s_A|E_B|s_B)$ Bob sends $H(ss|E_B|s_B|E_A|s_A)$ Each member confirms the hashes.

They share:

$$K = H(ss|E_A \times E_B|(s_A + s_B) \mod q)$$

No formal security proofs, but claims resistance to offline dictionary attacks

Only two rounds of communication

Very fast compared to other protocols

PAK/PPK

 ${\bf Desciption\ of\ protocol}$

Security properties

PART 2 Extension to Group Setting

The Fairy-Ring Dance

Desciption of general procedure

How pairwise + group keys are constructed

Description of J-PAKE+

Uses 3 rounds as J-PAKE does not have explicit key confirmation

Dragonfly +

 ${\bf Description\ of\ Dragonfly} +$

PPK+

 ${\bf Description\ of\ PPK+}$

PART 3 Timings

Specifications

- ▶ All protocol benchmarks were implemented in Java 1.6 and run on a server (3GHz AMD processor, 6GB of RAM) running Ubuntu 12.04.
- Benchmarks measured latency, the amount of work each device would have to do in the group excluding communication.

Results

Conclusion

It is possible to transfer PAKEs into GPAKEs while preserving round efficiency

SPEKE+ is very slow

J-PAKE+ is a bit slow, but proven secure (under CDH)

PPK is faster but weaker security proof

Dragonfly is fastest, but no security proof (despite IEEE 802.11-2012 standard)

