Packing I" using dyn. prg.

We will use the same approach as in Section 3.2.

Since all items in I" have size at least \$\frac{1}{2}, at most \$\frac{1}{2}\$ items fit into each bin.

There are at most $N = \lceil n/k \rceil$ different item sizes $S_1, S_2, ..., S_N$ in I''

Let \mathcal{C} be the set of possible bin configurations. Note that $|\mathcal{C}| \leq (\frac{2}{6})^N$.

for the dyn. prg. we will use an N-dimensional table B with n_i+1 rows in the i'th dimension, where n_i is the number of items of size s_i in I''. B[m_i , m_z , ..., m_N] will be the minimum number of bins required to pack m_i items of size s_i , $| \leq i \leq N$.

Ex:

$$C = 0.4$$
 $T = 0.6, 0.5, 0.4, 0.4, 0.3, 0.1, 0.1$

Choosing $k = 3$, we obtain

 $T' = 0.6, 0.5, 0.4, 0.4, 0.3$
 $T' = 0.6, 0.6, 0.6, 0.4, 0.4$
 $S_1 = 0.6, S_2 = 0.4$
 $N_1 = 3, N_2 = 2$
 $B = \{(0,1), (0,2), (1,0), (1,1)\}$

$$B[3,2] = 1 + \min_{\{m_1,m_2\} \in \mathcal{B}} \{B[3-m_1, 2-m_2]\}$$

= $1 + \min_{\{B[3,1], B[3,0], B[2,2], B[2,1]\}}$

Running time

 $k = \lfloor \varepsilon \cdot \text{size}(I) \rfloor \geqslant \lfloor \varepsilon \cdot n' \cdot \frac{\varepsilon}{\lambda} \rfloor \geqslant n' \cdot \frac{\varepsilon^{\lambda}}{4}$, where n' = |I'|, since all items in I' have size at least $\frac{\varepsilon}{\lambda}$.

 $N \leq \left\lceil \frac{n^{1}}{k} \right\rceil \leq \left\lceil \frac{4}{\epsilon^{2}} \right\rceil$

Table size $\leq (n')^N \leq n^N$

Time per entry $O(|\mathcal{E}|) \subseteq O((\frac{2}{\mathcal{E}})^N)$

Running time $O((\frac{2}{\epsilon})^N n^N) \subseteq O((\frac{2n}{\epsilon})^{\lceil \frac{n}{\epsilon} \rceil})$ not July poly. time

Hence, $\{A_{\epsilon}\}$ is an Asymptotic poly. time approx. Scheme (APTAS)

This proves:

Theorem 3.12: There is an APTAS for Bin Packing