# Diagrammatic rewriting modulo isotopies

# Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

joint work with Philippe Malbos

SYCO 2

Glasgow, 18 December 2018

# (Diagrammatic) Rewriting modulo (isotopies)

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

joint work with Philippe Malbos

SYCO 2

Glasgow, 18 December 2018

- I. Introduction and motivations
- II. Double groupoids
- III. Polygraphs modulo
- IV. Coherence modulo

# I. Introduction and motivations

Algebraic rewriting = applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.

- Algebraic rewriting = applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- ► Computation of syzygies (relations among relations) **Exemple.** For the group  $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$ , the Jacobi identity

$$[x^{y}, [y, z]][y^{z}, [z, x]][z^{x}, [x, y]] = 1$$

is such a syzygy, with  $[x, y] = xyx^-y^-$  and  $x^y = y^-xy$ .

- Algebraic rewriting = applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- ► Computation of syzygies (relations among relations) **Exemple.** For the group  $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$ , the Jacobi identity

$$[x^{y}, [y, z]][y^{z}, [z, x]][z^{x}, [x, y]] = 1$$

is such a syzygy, with  $[x, y] = xyx^-y^-$  and  $x^y = y^-xy$ .

► For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14.

- Algebraic rewriting = applying rewriting methods to study intrinseque properties of algebraic structures presented by generators and relations.
- ► Computation of syzygies (relations among relations) Exemple. For the group  $\mathbb{Z}^3 = \langle x, y, z \mid [x, y] = 1, [y, z] = 1, [z, x] = 1 \rangle$ , the Jacobi identity

$$[x^{y}, [y, z]][y^{z}, [z, x]][z^{x}, [x, y]] = 1$$

is such a syzygy, with  $[x, y] = xyx^-y^-$  and  $x^y = y^-xy$ .

- ► For monoids or categories, Squier's theorem gives a generating family for syzygies from a finite convergent presentation, Guiraud-Malbos '09, Gaussent-Guiraud-Malbos '14.
- ▶ If a group  $G = \langle X \mid R \rangle$  is presented as a monoid  $M = \langle X \coprod \overline{X} \mid R \cup \{xx^- \stackrel{\alpha_X}{\Rightarrow} 1, x^- x \stackrel{\overline{\alpha_X}}{\Rightarrow} 1\}$ , the confluence diagram



is an artefact induced by the algebraic structure and should not be considered as a syzygy.

 Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - ► Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - ► Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - ► Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - ► Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.

#### Main questions:

Coherence theorems;

- •
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - ► Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - ► Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.

#### Main questions:

Coherence theorems;

- •
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - ► Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - ► Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.

#### Main questions:

Coherence theorems:

- ~
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- Structural rules of these algebras make the study of local confluence complicated.

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - ► Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.
- ► Main questions
  - Coherence theorems;

- $\checkmark$
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- ▶ Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

$$\bigcap$$
 = | =  $\bigcup$ 

$$\bigcap$$
  $J = \frac{1}{2} = \bigcup$ 

- Objective: Study diagrammatic algebras arising in representation theory using algebraic rewriting.
  - Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;
  - Temperley-Lieb algebras in statistichal mechanics;
  - Brauer algebras and Birman-Wenzl algebras in knot theory.
- Main guestions:
  - Coherence theorems;

- $\checkmark$
- Categorification constructive results;
- Computation of linear bases for these algebras by rewriting.
- ► Structural rules of these algebras make the study of local confluence complicated.

#### Example: Isotopy relations

- We use rewriting modulo.
  - ▶ Algebraic axioms are not rewriting rules, but taken into account when rewriting.



- ► Rewriting system *R*:
  - Coherence results in n-categories.

Globular

- ► Rewriting system *R*:
  - Coherence results in n-categories.

Globular

▶ In rewriting modulo, we consider a rewriting system R and a set of equations E.

- ► Rewriting system *R*:
  - Coherence results in n-categories.

#### Globular

- ▶ In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:

- ► Rewriting system *R* 
  - Coherence results in n-categories.

#### Globular

- ▶ In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - ► Rewriting with R modulo E, Huet '80



- ► Rewriting system *R*:
  - Coherence results in n-categories.

Globular

- ▶ In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - ► Rewriting with R modulo E, Huet '80



Cubical

- ► Rewriting system *R*:
  - Coherence results in n-categories.

#### Globular

- $\triangleright$  In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - ► Rewriting with R modulo E, Huet '80



Cubical

 $ightharpoonup ER_E$ : Rewriting with R on E-equivalence classes

- ► Rewriting system *R* 
  - Coherence results in n-categories.

#### Globular

- $\triangleright$  In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - ► Rewriting with R modulo E, Huet '80



Cubical

► ERE: Rewriting with R on E-equivalence classes

$$\begin{array}{ccc}
u & \stackrel{E^RE}{\longrightarrow} v \\
\downarrow E \psi & & \psi E \\
u' & \stackrel{P}{\longrightarrow} v'
\end{array}$$

- ► Rewriting system *R* 
  - Coherence results in n-categories.

#### Globular

- $\triangleright$  In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - Rewriting with R modulo E, Huet '80



Cubical

► ERE: Rewriting with R on E-equivalence classes



▶ Rewriting with any system S such that  $R \subseteq S \subseteq {}_{E}R_{E}$ , Jouannaud - Kirchner '84.

- ► Rewriting system *R* 
  - Coherence results in n-categories.

#### Globular

- ▶ In rewriting modulo, we consider a rewriting system R and a set of equations E.
- 3 paradigms of rewriting modulo:
  - ► Rewriting with R modulo E, Huet '80



Cubical

► ERE: Rewriting with R on E-equivalence classes

- $\begin{array}{ccc}
  u & \stackrel{E^RE}{\longrightarrow} v \\
  \downarrow E \downarrow & & \downarrow E \\
  u' & \stackrel{R}{\longrightarrow} v'
  \end{array}$
- ▶ Rewriting with any system S such that  $R \subseteq S \subseteq {}_{E}R_{E}$ , Jouannaud Kirchner '84.
- ► Main interest and results for ER.

$$\begin{array}{ccc}
u & \stackrel{E^R}{\longrightarrow} v \\
E^{\downarrow} & & \downarrow \\
u' & \stackrel{R}{\longrightarrow} v
\end{array}$$

# II. Double groupoids

► We introduce a cubical notion of coherence, related to *n*-categories enriched in double groupoids.

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ► A double category is an internal category ( $C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C$ ) in Cat. Ehresmann '64

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ▶ A double category is an internal category ( $C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C$ ) in Cat. Ehresmann '64

 $(C_0)_0$ 

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ► A double category is an internal category  $(C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C)$  in Cat. Ehresmann '64

$$(\mathsf{C}_0)_0 \\ (\mathsf{C}_0)_1 \\ \downarrow \\ (\mathsf{C}_0)_0$$

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ► A double category is an internal category  $(C_1, C_0, \partial_-^{\mathbf{C}}, \partial_+^{\mathbf{C}}, \circ_{\mathbf{C}}, i_{\mathbf{C}})$  in Cat. Ehresmann '64

$$\begin{array}{ccc} (C_0)_0 & (C_0)_0 \\ (C_0)_1 & & \bigvee (C_0)_1 \\ (C_0)_0 & (C_0)_0 \end{array}$$

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ► A double category is an internal category ( $C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C$ ) in Cat. Ehresmann '64

$$\begin{array}{c} (C_0)_0 \stackrel{(C_1)_0}{\Longrightarrow} (C_0)_0 \\ (C_0)_1 \downarrow & & \downarrow (C_0)_0 \\ (C_0)_0 \stackrel{\triangleright}{\Longrightarrow} (C_0)_0 \end{array}$$

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ▶ A double category is an internal category ( $C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C$ ) in Cat. Ehresmann '64

$$\begin{array}{c|c} (C_0)_0 & \xrightarrow{(C_1)_0} (C_0)_0 \\ (C_0)_1 \downarrow & \downarrow & \downarrow \\ (C_0)_0 & \xrightarrow{(C_1)_0} (C_0)_0 \end{array}$$

- We introduce a cubical notion of coherence, related to n-categories enriched in double groupoids.
- ► A double category is an internal category ( $C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C$ ) in Cat. Ehresmann '64

$$\begin{array}{c|c} (C_0)_0 & \xrightarrow{(C_1)_0} (C_0)_0 \\ (C_0)_1 \downarrow & \downarrow & \downarrow (C_0)_1 \\ (C_0)_0 & \xrightarrow{(C_1)_0} (C_0)_0 \end{array}$$

► There are point cells, horizontal cells and vertical cells respectively pictured by



► There are square cells



There are square cells



► There are square cells



Compositions



► There are square cells

Compositions



for all  $x_i, y_i, z_i$  point cells,  $f_i$ ,  $g_i$  horizontal cells,  $e_i, e'_i$  vertical cells and A, A', B square cells.

$$\begin{array}{ccc} x_1 & \xrightarrow{f_1} & x_2 \\ e_1 \downarrow & & \downarrow A & \downarrow e_2 \\ y_1 & --g_1 \rightarrow & y_2 \end{array}$$

$$\begin{array}{ccc}
x_1 & \xrightarrow{f_1} & x_2 \\
e_1 & & & \downarrow A & \downarrow e_2 \\
y_1 & -g_1 \rightarrow & y_2 & & \downarrow h \\
y_1 & \xrightarrow{g_1} & y_2 & & \downarrow A' & \downarrow e_2' \\
z_1 & & & \downarrow A_1 \rightarrow & z_2
\end{array}$$





► These compositions satisfy the middle four interchange law:



▶ Double groupoid = double category  $(C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C)$  in which  $C_1$  and  $C_0$  are groupoids.



- ▶ Double groupoid = double category  $(C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C)$  in which  $C_1$  and  $C_0$  are groupoids.
- ▶ *n*-category enriched in double groupoids = *n*-category  $\mathcal{C}$  such that any homset  $\mathcal{C}_n(x,y)$  is a double groupoid.



- ▶ Double groupoid = double category  $(C_1, C_0, \partial_-^C, \partial_+^C, \circ_C, i_C)$  in which  $C_1$  and  $C_0$  are groupoids.
- ▶ *n*-category enriched in double groupoids = *n*-category  $\mathcal{C}$  such that any homset  $\mathcal{C}_n(x,y)$  is a double groupoid.
- ▶ Horizontal (n+1)-category will be the (n+1)-category of rewritings; vertical (n+1)-category is the (n+1)-category of modulo rules.

► A double *n*-polygraph is a data  $(P^{\nu}, P^{h}, P^{s})$  made of:

- ▶ A double *n*-polygraph is a data  $(P^v, P^h, P^s)$  made of:
  - two (n+1)-polygraphs  $P^{\nu}$  and  $P^{h}$  such that  $P_{k}^{\nu} = P_{k}^{h}$  for  $k \leq n$ ,

$$P_{n+1}^v \Longrightarrow P_n^* \lessapprox P_{n+1}^h$$

- A double *n*-polygraph is a data  $(P^v, P^h, P^s)$  made of:
  - two (n+1)-polygraphs  $P^{\nu}$  and  $P^{h}$  such that  $P_{k}^{\nu} = P_{k}^{h}$  for  $k \leq n$ ,



- A double *n*-polygraph is a data  $(P^{\nu}, P^{h}, P^{s})$  made of:
  - two (n+1)-polygraphs  $P^{\nu}$  and  $P^{h}$  such that  $P_{k}^{\nu} = P_{k}^{h}$  for  $k \leq n$ ,
  - ▶ a 2-square extension  $P^s$  of the pair of (n+1)-categories  $((P^v)^*, (P^h)^*)$ , that is a set equipped with four maps  $\partial_{+,n}^{\mu}$ , with  $\mu \in \{v, h\}$ , making  $\Gamma$  a 2-cubical set.



- A double *n*-polygraph is a data  $(P^v, P^h, P^s)$  made of:
  - two (n+1)-polygraphs  $P^{\nu}$  and  $P^{h}$  such that  $P_{k}^{\nu} = P_{k}^{h}$  for  $k \leq n$ ,
  - ▶ a 2-square extension  $P^s$  of the pair of (n+1)-categories  $((P^v)^*, (P^h)^*)$ , that is a set equipped with four maps  $\partial_{\pm,n}^{\mu}$ , with  $\mu \in \{v, h\}$ , making  $\Gamma$  a 2-cubical set.



► A double (n+2,n)-polygraph is a double n-polygraph whose square extension  $P^s$  is defined on  $((P^v)^\top,(P^h)^\top)$ .

- A double *n*-polygraph is a data  $(P^v, P^h, P^s)$  made of:
  - two (n+1)-polygraphs  $P^{\nu}$  and  $P^{h}$  such that  $P_{k}^{\nu} = P_{k}^{h}$  for  $k \leq n$ ,
  - ▶ a 2-square extension  $P^s$  of the pair of (n+1)-categories  $((P^v)^*, (P^h)^*)$ , that is a set equipped with four maps  $\partial_{+,n}^{\mu}$ , with  $\mu \in \{v, h\}$ , making  $\Gamma$  a 2-cubical set.



- ▶ A double (n+2,n)-polygraph is a double n-polygraph whose square extension  $P^s$  is defined on  $((P^v)^\top, (P^h)^\top)$ .
- A double *n*-polygraph (resp. double (n+2,n)-polygraph)  $(P^v,P^h,P^s)$  generates a free (n-1)-category enriched in double categories (resp. in double groupoids), denoted by  $(P^v,P^h,P^s)^{\top \!\!\!\!\top}$ .

▶ A 2-square extension  $P^s$  of  $((P^v)^T, (P^h)^T)$  is acyclic if for any square



▶ A 2-square extension  $P^s$  of  $((P^v)^\top, (P^h)^\top)$  is acyclic if for any square

$$S = (P^{\nu})^{\top}, (P^{h})^{\top}$$
 is acyclic if for a
$$S = (P^{\nu})^{\top} \bigvee_{i} \frac{(P^{h})^{\top}}{\bigvee_{i} A} \bigvee_{i} (P^{\nu})^{\top}$$

there exists a square (n+1)-cell A in  $(P^v, P^h, P^s)^{\top\!\!\!\top}$  such that  $\partial(A) = S$ .

▶ A 2-square extension  $P^s$  of  $((P^v)^T, (P^h)^T)$  is acyclic if for any square

$$S = (P^{\nu})^{\top} \bigvee_{\cdot} \frac{(P^{h})^{\top}}{\bigvee_{(P^{h})^{\top}}} \bigvee_{\cdot} (P^{\nu})^{\top}$$

there exists a square (n+1)-cell A in  $(P^v, P^h, P^s)^{\top \top}$  such that  $\partial(A) = S$ .

- A 2-fold coherent presentation of an *n*-category **C** is a double (n+2, n)-polygraph  $(P^{\nu}, P^{h}, P^{s})$  such that:
  - ▶ the (n+1)-polygraph  $P^{\vee} \coprod P^{h}$  presents C;
  - ► P<sup>s</sup> is acyclic

▶ A 2-square extension  $P^s$  of  $((P^v)^\top, (P^h)^\top)$  is acyclic if for any square

$$S = (P^{\nu})^{\top} \bigvee_{\vdots} \frac{(P^{h})^{\top}}{\bigvee_{(P^{h})^{\top}}} \bigvee_{\vdots} (P^{\nu})^{\top}$$

there exists a square (n+1)-cell A in  $(P^v, P^h, P^s)^{\top\!\!\!\top}$  such that  $\partial(A) = S$ .

- A 2-fold coherent presentation of an *n*-category **C** is a double (n+2,n)-polygraph  $(P^{\nu}, P^{h}, P^{s})$  such that:
  - ▶ the (n + 1)-polygraph  $P^{v} \coprod P^{h}$  presents C;
  - ► P<sup>s</sup> is acyclic
- **Example:** Let E be a convergent (n+1)-polygraph and C the n-category presented by E.

▶ A 2-square extension  $P^s$  of  $((P^v)^T, (P^h)^T)$  is acyclic if for any square

$$S = (P^{\nu})^{\top} \bigvee_{i \in P^{h}} \frac{(P^{h})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{\nu})^{\top}} \cdot \frac{(P$$

there exists a square (n+1)-cell A in  $(P^v, P^h, P^s)^{\top\!\!\!\top}$  such that  $\partial(A) = S$ .

- A 2-fold coherent presentation of an *n*-category **C** is a double (n+2, n)-polygraph  $(P^{\nu}, P^{h}, P^{s})$  such that:
  - ▶ the (n+1)-polygraph  $P^{\nu} \coprod P^{h}$  presents C;
  - ► P<sup>s</sup> is acyclic
- ▶ Example: Let E be a convergent (n+1)-polygraph and C the n-category presented by E. Cd(E) := square extension of  $(E^\top, 1)$  containing squares

$$\begin{array}{ccc}
& = & \\
& & \downarrow \\
e_1 \star_{n-1} e_1' & & \downarrow \\
& & \downarrow \\
& & \downarrow \\
& & \downarrow \\
e_2 \star_{n-1} e_2'
\end{array}$$

for a choice of confluence diagram of any critical branching  $(e_1, e_2)$  of E.

▶ A 2-square extension  $P^s$  of  $((P^v)^T, (P^h)^T)$  is acyclic if for any square

$$S = (P^{\nu})^{\top} \bigvee_{i \in P^{h}} \frac{(P^{h})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{h})^{\top}} \cdot \frac{(P^{\nu})^{\top}}{(P^{\nu})^{\top}} \cdot \frac{(P$$

there exists a square (n+1)-cell A in  $(P^v, P^h, P^s)^{\top\!\!\!\top}$  such that  $\partial(A) = S$ .

- A 2-fold coherent presentation of an *n*-category **C** is a double (n+2, n)-polygraph  $(P^{\nu}, P^{h}, P^{s})$  such that:
  - ▶ the (n+1)-polygraph  $P^{\vee} \coprod P^{h}$  presents C;
  - ► P<sup>s</sup> is acyclic
- ▶ Example: Let E be a convergent (n+1)-polygraph and C the n-category presented by E. Cd(E) := square extension of  $(E^{\top}, 1)$  containing squares

$$\begin{array}{ccc}
\cdot & \xrightarrow{-} & \cdot \\
e_1 \star_{n-1} e_1' & & & \downarrow e_2 \star_{n-1} e_2' \\
\cdot & & & & \vdots \\
& & & & & \vdots
\end{array}$$

for a choice of confluence diagram of any critical branching  $(e_1, e_2)$  of E.

From Squier's theorem,  $(E,\emptyset,\operatorname{Cd}(E))$  is a 2-fold coherent presentation of **C**.



# III. Polygraphs modulo

A n-polygraph modulo is a data (R, E, S) made of

A n-polygraph modulo is a data (R, E, S) made of

► an *n*-polygraph *R* of primary rules,

A n-polygraph modulo is a data (R, E, S) made of

- ► an *n*-polygraph *R* of primary rules,
- ▶ an *n*-polygraph E such that  $E_k = R_k$  for  $k \le n-2$  and  $E_{n-1} \subseteq R_{n-1}$ , of modulo rules,

A n-polygraph modulo is a data (R, E, S) made of

- ► an *n*-polygraph *R* of primary rules,
- ▶ an *n*-polygraph E such that  $E_k = R_k$  for  $k \le n-2$  and  $E_{n-1} \subseteq R_{n-1}$ , of modulo rules,
- ▶ S is a cellular extension of  $R_{n-1}^*$  such that  $R \subseteq S \subseteq {}_{E}R_{E}$ ,

A n-polygraph modulo is a data (R, E, S) made of

- ► an *n*-polygraph *R* of primary rules,
- ▶ an *n*-polygraph *E* such that  $E_k = R_k$  for  $k \le n-2$  and  $E_{n-1} \subseteq R_{n-1}$ , of modulo rules,
- ▶ S is a cellular extension of  $R_{n-1}^*$  such that  $R \subseteq S \subseteq {}_ER_E$ , where the cellular extension  ${}_ER_E$  is defined by

$$\gamma^{ER_E}: {}_{E}R_E \to \operatorname{Sph}_{n-1}(R_{n-1}^*)$$

where  $_{E}R_{E}$  is the set of triples (e,f,e') in  $E^{\top}\times R^{*(1)}\times E^{\top}$  such that



A n-polygraph modulo is a data (R, E, S) made of

- ► an *n*-polygraph *R* of primary rules,
- ▶ an *n*-polygraph *E* such that  $E_k = R_k$  for  $k \le n-2$  and  $E_{n-1} \subseteq R_{n-1}$ , of modulo rules,
- ▶ S is a cellular extension of  $R_{n-1}^*$  such that  $R \subseteq S \subseteq {}_ER_E$ , where the cellular extension  ${}_ER_E$  is defined by

$$\gamma^{ER_E}: {}_ER_E \to \operatorname{Sph}_{n-1}(R_{n-1}^*)$$

where  $_ER_E$  is the set of triples (e,f,e') in  $E^ op imes R^{*(1)} imes E^ op$  such that



and the map  $\gamma^{ER_E}$  is defined by  $\gamma^{ER_E}(e,f,e')=(\partial_{-,n-1}(e),\partial_{+,n-1}(e'))$ .



A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are n-cells of  $S^*$  with f non trivial and e is an n-cell of  $E^{\top}$ , such that:



A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are n-cells of  $S^*$  with f non trivial and e is an n-cell of  $E^{\top}$ , such that:

$$\begin{array}{ccc}
u & \xrightarrow{f} & u' \\
\downarrow & & \\
v & \xrightarrow{g} & v'
\end{array}$$

▶ It is local if f is an n-cell of  $S^{*(1)}$ , g is an n-cell of  $S^*$  and e an n-cell of  $E^{\top}$  such that  $\ell(g) + \ell(e) = 1$ .

A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are n-cells of  $S^*$  with f non trivial and e is an n-cell of  $E^{\top}$ , such that:

$$\begin{array}{c}
u \xrightarrow{f} u' \\
\downarrow e \\
v \xrightarrow{g} v'
\end{array}$$

- ▶ It is local if f is an n-cell of  $S^{*(1)}$ , g is an n-cell of  $S^*$  and e an n-cell of  $E^{\top}$  such that  $\ell(g) + \ell(e) = 1$ .
- ▶ It is confluent modulo E if there exists n-cells f', g' in  $S^*$  and e' in  $E^\top$ :



A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are n-cells of  $S^*$  with f non trivial and e is an n-cell of  $E^{\top}$ , such that:

$$\begin{array}{ccc}
u & \xrightarrow{f} & u' \\
\downarrow & \downarrow & \\
v & \xrightarrow{g} & v'
\end{array}$$

- ▶ It is local if f is an n-cell of  $S^{*(1)}$ , g is an n-cell of  $S^*$  and e an n-cell of  $E^{\top}$  such that  $\ell(g) + \ell(e) = 1$ .
- ▶ It is confluent modulo E if there exists n-cells f', g' in  $S^*$  and e' in  $E^\top$ :

► S is said confluent modulo E (resp. locally confluent modulo E) if any branching (resp. local branching) of S modulo E is confluent modulo E.



# IV. Coherence modulo

#### Coherent confluence modulo

▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$ .

- ▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$
- ▶ A branching modulo E is  $\Gamma$ -confluent modulo E if there exist n-cells f', g' in  $S^*$ , e' in  $E^{\top}$



- ▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$ .
- ▶ A branching modulo E is  $\Gamma$ -confluent modulo E if there exist n-cells f', g' in  $S^*$ , e' in  $E^{\top}$  and an (n+1)-cell A in  $(E,S,E \times \Gamma \cup Peiff(E,S))^{\top\Gamma}$ , $\nu$ :

- ▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$ .
- ▶ A branching modulo E is  $\Gamma$ -confluent modulo E if there exist n-cells f', g' in  $S^*$ , e' in  $E^{\top}$  and an (n+1)-cell A in  $(E, S, E \times \Gamma \cup \text{Peiff}(E, S))^{\top \Gamma, \nu}$ :

•  $(E, S, -)^{\prod, \nu}$  is the free *n*-category enriched in double categories generated by (E, S, -), in which all vertical cells are invertible.

- ▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$ .
- ▶ A branching modulo E is  $\Gamma$ -confluent modulo E if there exist n-cells f', g' in  $S^*$ , e' in  $E^\top$ and an (n+1)-cell A in  $(E, S, E \times \Gamma \cup Peiff(E, S))^{\top \Gamma, \nu}$ :

- $(E,S,-)^{\prod,v}$  is the free *n*-category enriched in double categories generated by (E,S,-), in which all vertical cells are invertible.
- ▶ Peiff(E, S) is the 2-square extension containing the following squares for all  $e, e' \in E^{\top}$  and  $f \in S^*$

$$\begin{array}{c} u \star_{i} v \xrightarrow{f \star_{i} v} u' \star_{i} v \\ \downarrow^{\star_{i} e} \downarrow & \qquad \downarrow^{u' \star_{i} e} \\ u \star_{i} v' \xrightarrow{f \star_{i} v'} u' \star_{i} v' \end{array}$$

- ▶ We consider  $\Gamma$  a 2-square extension of  $(E^{\top}, S^*)$ .
- ▶ A branching modulo E is  $\Gamma$ -confluent modulo E if there exist n-cells f', g' in  $S^*, e'$  in  $E^{\top}$ and an (n+1) cell A in  $(E, S, E \times \Gamma \cup Peiff(E, S))^{\top \Gamma, \nu}$ .

- $(E, S, -)^{\prod, v}$  is the free *n*-category enriched in double categories generated by (E, S, -), in which all vertical cells are invertible.
- ▶ Peiff(E, S) is the 2-square extension containing the following squares for all  $e, e' \in E^{\top}$  and  $f \in S^*$

$$u \star_{i} v \xrightarrow{f \star_{i} v} u' \star_{i} v$$

$$\downarrow^{(\star_{i} e)} \qquad \qquad \downarrow^{u' \star_{i} e}$$

$$u \star_{i} v' \xrightarrow{f \star_{i} v'} u' \star_{i} v'$$



ightharpoonup E ightharpoonup is to avoid "redundant" elements in  $\Gamma$  for different squares corresponding to the same branching of 5 modulo E:





▶ S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - S is Γ-confluent modulo E;

- ▶ S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - ► S is  $\Gamma$ -confluent modulo E;
  - S is locally Γ-confluent modulo E;

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ► Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - ► S is Γ-confluent modulo E:
  - S is locally Γ-confluent modulo E;
  - S satisfies properties a) and b):

for any local branching of S modulo E.

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - S is Γ-confluent modulo E:
  - S is locally Γ-confluent modulo E;
  - S satisfies properties a) and b):

for any local branching of 5 modulo E.

S satisfies properties a) and b) for any critical branching of S modulo E.

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - S is Γ-confluent modulo E:
  - S is locally Γ-confluent modulo E;
  - S satisfies properties a) and b):

for any local branching of 5 modulo E.

- ► S satisfies properties a) and b) for any critical branching of S modulo E.
- For S = FR, property **b**) is trivially satisfied.

- ▶ S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - S is Γ-confluent modulo E;
  - S is locally Γ-confluent modulo E;
  - S satisfies properties a) and b):

for any local branching of 5 modulo E.

- ► S satisfies properties a) and b) for any critical branching of S modulo E.
- ▶ For  $S = {}_{E}R$ , property **b**) is trivially satisfied.

$$\begin{array}{c}
u \xrightarrow{f} v \\
e \downarrow \\
v'
\end{array}$$

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ► Theorem. [D.-Malbos '18] If ERE is terminating, the following assertions are equivalent:
  - ► S is  $\Gamma$ -confluent modulo E;
  - ▶ S is locally  $\Gamma$ -confluent modulo E;
  - S satisfies properties a) and b):

$$\mathbf{a}): \qquad \begin{matrix} u \overset{S^*(1)}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ u \overset{S^*(1)}{\Longrightarrow} w \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \overset{S^*}{$$

for any local branching of 5 modulo E.

- ► S satisfies properties a) and b) for any critical branching of S modulo E.
- For S = FR, property **b**) is trivially satisfied.

$$\begin{array}{c}
u \xrightarrow{f} v \\
e \downarrow \\
v' \xrightarrow{\cdots} v \\
e^{-} \cdot f
\end{array}$$

- ► S is  $\Gamma$ -confluent modulo E (resp. locally  $\Gamma$ -confluent modulo E) if any of its branching modulo E (resp. local branching modulo E) is  $\Gamma$ -confluent modulo E.
- ▶ Theorem. [D.-Malbos '18] If FRF is terminating, the following assertions are equivalent:
  - ► S is  $\Gamma$ -confluent modulo E;
  - S is locally Γ-confluent modulo E;
  - S satisfies properties a) and b):

$$\mathbf{a}): \qquad \begin{matrix} u \overset{S^*(1)}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ u \overset{S^*(1)}{\Longrightarrow} w \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \\ \downarrow & \downarrow & \downarrow & \downarrow \\ v \overset{S^*}{\Longrightarrow} v \overset{S^*}{\Longrightarrow} v' \overset{S^*}{$$

for any local branching of S modulo E.

- $\triangleright$  S satisfies properties a) and b) for any critical branching of S modulo E.
- For  $S = {}_{E}R$ , property **b**) is trivially satisfied.



#### Coherence modulo

▶ A set X of (n-1)-cells in  $R_{n-1}^*$  is E-normalizing with respect to S if for any u in X,\*

$$NF(S, u) \cap Irr(E) \neq \emptyset$$
.

- ▶ Theorem. [D.-Malbos '18] Let (R, E, S) be n-polygraph modulo, and  $\Gamma$  be a square extension of the pair of (n+1, n)-categories  $(E^\top, S^\top)$  such that
  - ► E is convergent,
  - S is Γ-confluent modulo E,
  - ▶ Irr(E) is E-normalizing with respect to S,
  - FR<sub>E</sub> is terminating,

then  $\Gamma \cup \operatorname{Cd}(E)$  is acyclic.

#### Coherent extensions

▶ A coherent completion modulo E of S is a square extension denoted by C(S) of the pair of (n+1,n)-categories  $(E^{\top},S^{\top})$  containing square cells  $A_{f,g}$  and  $B_{f,e}$ :





for any critical branchings (f,g) and (f,e) of S modulo E.

#### Coherent extensions

▶ A coherent completion modulo E of S is a square extension denoted by C(S) of the pair of (n+1,n)-categories  $(E^{\top},S^{\top})$  containing square cells  $A_{f,g}$  and  $B_{f,e}$ .





for any critical branchings (f,g) and (f,e) of S modulo E.

- ▶ Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
  - E is convergent.
  - 5 is confluent modulo E,
  - ► Irr(E) is E-normalizing with respect to S.
  - FR<sub>E</sub> is terminating,

Then  $\mathcal{C}(S) \cup \operatorname{Cd}(E)$  is acyclic.

#### Coherent extensions

▶ A coherent completion modulo E of S is a square extension denoted by C(S) of the pair of (n+1,n)-categories  $(E^{\top},S^{\top})$  containing square cells  $A_{f,g}$  and  $B_{f,e}$ .





for any critical branchings (f,g) and (f,e) of S modulo E.

- ▶ Corollary. [D.-Malbos '18] Let (R, E, S) be an n-polygraph modulo such that
  - E is convergent.
  - S is confluent modulo E,
  - ► Irr(E) is E-normalizing with respect to S.
  - ► ERE is terminating,

Then  $\mathcal{C}(S) \cup \operatorname{Cd}(E)$  is acyclic.

**Corollary**: Usual Squier's theorem. ( $E = \emptyset$ )

- ► Let *E* and *R* be two 3-polygraphs defined by:
  - ►  $E_0 = R_0 = \{*\},$

- ▶ Let *E* and *R* be two 3-polygraphs defined by:
  - ►  $E_0 = R_0 = \{*\},$
  - ►  $E_1 = R_1 = \{\land, \lor\},\$

► 
$$E_0 = R_0 = \{*\},$$

► 
$$E_1 = R_1 = \{ \land, \lor \}.$$

$$\triangleright$$
  $E_0 = R_0 = \{*\}.$ 

► 
$$E_1 = R_1 = \{\land, \lor\}.$$

$$ightharpoonup E_0 = R_0 = \{*\}.$$

▶ 
$$E_1 = R_1 = \{\land, \lor\}.$$

► 
$$E_0 = R_0 = \{*\},$$

▶ 
$$E_1 = R_1 = \{\land, \lor\}.$$

$$\blacktriangleright \ E_2 = \left\{ \overbrace{ \ \ }, \stackrel{\textstyle \longleftarrow}{ \ \ }, \stackrel{\textstyle \longleftarrow}{ \ \ }, \stackrel{\textstyle \longleftarrow}{ \ \ } \right\} \qquad R_2 = E_2 \coprod \left\{ \stackrel{\textstyle \nwarrow}{ \ \ }, \stackrel{\textstyle \longleftarrow}{ \ \ }\right\}$$

► 
$$E_0 = R_0 = \{*\},$$

▶ 
$$E_1 = R_1 = \{\land, \lor\}.$$

$$\blacktriangleright \ E_2 = \left\{ \overbrace{ \ \ }, \overbrace{ \ \ \ }, \ \overbrace{ \ \ }, \ \stackrel{\blacklozenge}{\downarrow} \right\} \qquad R_2 = E_2 \coprod \left\{ \overbrace{ \ \ \ \ \ }, \ \underset{ \ }{ \swarrow} \right\}$$

► Let *E* and *R* be two 3-polygraphs defined by:

► 
$$E_0 = R_0 = \{*\},$$

▶ 
$$E_1 = R_1 = \{\land, \lor\}.$$

Fact: E is convergent.

► If no rewriting modulo:



► If no rewriting modulo:



Not confluent!

- ► If rewriting modulo:
  - ▶ All branchings (ER, R) are those of the form (R, R).
  - $ightharpoonup \gamma$  does not overlap with  $\alpha_{\pm}$  and  $\beta_{\pm}$ .
  - ▶ Branchings between  $\alpha_{\pm}$  and  $\beta_{\pm}$  are confluent modulo E.

► If no rewriting modulo:



Not confluent!

- ► If rewriting modulo:
  - $\triangleright$  All branchings ( $_ER$ ,  $_R$ ) are those of the form ( $_R$ ,  $_R$ ).
  - $ightharpoonup \gamma$  does not overlap with  $\alpha_{\pm}$  and  $\beta_{\pm}$ .
  - ▶ Branchings between  $\alpha_{\pm}$  and  $\beta_{\pm}$  are confluent modulo E.
- ► ERE is terminating.
  - ► Termination order for E defined by characteristics of diagrams, compatible with R.

► If no rewriting modulo:



Not confluent!

- ► If rewriting modulo:
  - ▶ All branchings (ER, R) are those of the form (R, R).
  - $ightharpoonup \gamma$  does not overlap with  $\alpha_{\pm}$  and  $\beta_{\pm}$ .
  - ▶ Branchings between  $\alpha_{\pm}$  and  $\beta_{\pm}$  are confluent modulo E.
- ► ERE is terminating.
  - ► Termination order for E defined by characteristics of diagrams, compatible with R.
- ▶ Irr(E) is E-normalizing.
  - ► Any generating 2-cell in a source/target of an *R*-rewriting does not contain generating 2-cells of *E*.



► We proved a coherence result for polygraphs modulo.

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken E-normalization assumption ?

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken *E*-normalization assumption ?
  - ▶ Is any polygraph modulo Tietze-equivalent to an *E*-normalizing polygraph modulo?

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken *E*-normalization assumption ?
  - ▶ Is any polygraph modulo Tietze-equivalent to an *E*-normalizing polygraph modulo?
- Explicit a quotient of a square extension by all modulo rules

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken *E*-normalization assumption ?
  - ▶ Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken *E*-normalization assumption ?
  - ▶ Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:
  - Extend these results to linear polygraphs modulo.

- ▶ We proved a coherence result for polygraphs modulo.
  - ► How to weaken E-normalization assumption?
  - ▶ Is any polygraph modulo Tietze-equivalent to an E-normalizing polygraph modulo?
- Explicit a quotient of a square extension by all modulo rules
- Work in progress:
  - Extend these results to linear polygraphs modulo.
  - Obtain a basis theorem for higher dimensional linear categories with hypothesis of confluence modulo.

# THANK YOU FOR YOUR ATTENTION.