SEQUENCE LISTING

```
<110> Xenon Genetics, Inc.
     Warner-Lambert Company, LLC
      Novel Therapeutic Target for Treating Vascular Diseases,
      Dyslipidemias and Related Disorders
      760050-100
<130>
<140>
<141>
<150> US/60/391,878
<151> 2002-06-27
<160> 32
<170> PatentIn version 3.0
 <210>
       1
       501
 <211>
       DNA
 <212>
 <213> Homo sapiens
 agtagetete etgataaaag accaecaace atgggetagg tetggeeagt ttacagaaag
                                                                        60
 cacacactgt gtgcctttat gtcctagaaa gatcttttga tatacaggac ctaaatggaa
                                                                       120
 tacattccac cccaaaataa acatgggtca tacatgcata tttattcaat acacatatgt
                                                                       180
 caggaccatc ttcataaata ttcatagctc ctcctataat ctgttaaata tgtgtgtgtg
                                                                       240
 tgcgtgtgtg tgtgtgtgt tgtgtgtgtg tatagtttgt ttgttttgag agggagtctt
                                                                       300
 getetgttge ceaggetgga gtgeageagt geaateteaa eteactataa ettecacete
                                                                       360
 caggiticaag caatteteat gieteageeg agtagetggg accaeagtea catgeeacea
                                                                       420
 ctcttggcta atttttttt ttttttttg agacggagtc tcgctctgtc acccaggcta
                                                                       480
                                                                       501
 gagtgcagtg gcgcgatctt g
  <210>
        600
  <211>
        DNA
  <212>
  <213> Homo sapiens
  gctgctgcct ggatgaactt caagtgttcc ttctcctgtt ccctgctaca tcttagattt
                                                                         60
  tacagtgtgt ccttggctaa aggcagcctg ggcacactgc agtgccctgg tgtaacggac
                                                                        120
  agccatgggc cttgcacttg aactagggtc tggccccagg actgtgacat gctcaccctg
                                                                        180
  agccccgggt tetectetga gaaatgctgg ggtcacctge tttgaggget gttettagta
                                                                        240
  tgaagcaaga gcacagtaag acaaaagact acagagccga cacacacaca cacacaca
                                                                        300
  cacacacaca cacacaca cagagtagtg cattccagaa caatatactc atttcattt
                                                                        360
  cctgttgtca ttcagagagg cgagtgcact gggagccaca aaagtgcaat gttgcaaaga
                                                                        420
  cttttccaaa acaggatgcg taatggctgc tgtggccact gctggcggtg tgtggggata
                                                                        480
  cetgggtage ageaggeeac cagagagtgt geatceetce ttetgtgete tgeagtgggg
                                                                        540
  ctcatttttc tgggccaggt tcttgcctgc ctgcaatcct cctctgatga cggagttacc
                                                                        600
```

- <210> 3 <211> 4333
- <212> DNA
- <213> Homo sapiens

<400> 3 atgtccttcc ggggccacgc agaaagtgcc gccgctttgg ccactcagag cccccgggcc 60 geggtegteg tacgeetgaa ggegggtegt geeggeggee getetagtet eegeeteege 120 180 teaggeeggt ceteegggge tteteaatgg ttteeeggtg geeteteaat ggtttteeeg geggeeettg egeegaegee aggagaette eggagettgg tgaegteaeg agegagettt 240 300 tetacccaaa tacgcggcgg gggaataggc tcgagggcgg tgagcagtga caattgctag gcggagacag tgcagggaag agagacctta gaaaggatca ggactggcgg gaggtattta 360 actgaaagga atatctgctt cactgttgca accaaaccag atgcettett ccacttcacc 420 480 agaccaagga gatgacctgg agaactgcat tttaagattt tctgacctgg atttaaaaga 540 tatgagtett attaateeca geageagtet taaageagaa ttagatggea gtacaaaaaa 600 gaaatactcg tttgcaaaga aaaaggcctt tgcccttttt gtcaaaacca aagaagttcc aacaaaaagg agtittgaat gtaaagaaaa attgtggaaa tgctgtcggc agctattcac 660 720 agaccaaacc agcatccata gacatgtggc aacacaacat gctgatgaaa tttatcacca 780 gacagettet attttaaage aactggetgt gacattgage aceteaaaga gtetttegte 840 tgcagatgaa aagaaccctt taaaagagtg ccttccacat agccatgacg tgtctgcttg geteeetgat ataagetget ttaaceetga tgagetgata agtggeeagg geagtgaaga 900 960 aggggaggtg ctcctttatt actgctacca tgacctggag gatccccaat ggatctgtgc ctggcagaca gctctgtgtc agcacctgca cctcacaggc aagattcgaa ttgctgcaga 1020 aggaatcaat gggacagttg gtggaagcaa attggctacc agactttatg tggaagtcat 1080 gettteette ceattgitta aggatgacet gigtaaagat gattitaaga ceagcaaagg 1140 aggageteae tgttttecag aattgegtgt tggtgtattt gaagaaateg tgeecatggg 1200 gatcagecec aaaaagatet ectacaagaa geetggaate catttateee caggtgaatt 1260 tcataaagaa gtagaaaagt ttttatctca ggcaaatcaa gaacaaagtg atactatcct 1320 tettgattge agaaacttet atgaaagcaa aataggacga ttecaagget gettageece 1380 agacatcagg aaattcagtt acttccctag ctacgttgac aaaaatctag aacttttcag 1440 agagaagaga gtgctgatgt actgtaccgg gggcatccgc tgtgagcggg gttcagccta 1500 cetcaaagce aagggagtgt gcaaggaggt gttccagete aagggtggca tecacaagta 1560 cetggaagag tttcctgatg gettttacaa agggaagttg tttgtttttg atgaacgeta 1620 tgctctgtcc tacaacagtg atgtggtgtc agagtgttca tactgtggag cccgctggga 1680 ccagtataaa ctctgctcta ctccccagtg ccgccagctc gttttgacct gccctgcctg 1740 tcaaggacaa ggattcacag cctgttgtgt cacatgtcaa gacaagggga gcaggaaagt 1800 ttcaggccct atgcaagaca gctttaaaga ggaatgcgag tgcacagccc gacggccacg 1860 catacetagg gaactettge ageatgtgeg acageetgtg ageeeagage cagggeetga 1920 tgctgatgag gatgggccag tgcttatgtg agcagcacct ttggcatttt cccaggccct 1980 cggtaaaagt aggtttgggg tgactataca gagaaagcat ggcaagactg cagaaacaga 2040 gaaateggga actteagtte tggeegetge cacegtggea geegtetaca etteacageg 2100 ggaggggagg agtcacgttg tctaccactt acctgagaca ttctgatttg gatgatgcta 2160 gagcacagaa aataggtgag ctgcatggga tcccaaagct gctgagggat agagcctgag 2220 cctggtggcc acagcatatg ccctttctgt tccatgcagc tggggctgtt agtagtcatt 2280 gecettgtca geagacette taccetggtg geaaacacat gaaagetgtg geeetgggag 2340 tggcctccta aaacaagcca cttaggtcat ctgccatcta cccttaacct ctgtctctcg 2400 cetgagggga atetgcaage tgtgcattgg gettacetee tgettttgta gaaataacea 2460 tectttggta tacatggagg atagttecag aacgeetgag tatacaaaaa eccaatgeat 2520 actcaagtcc cacagtgggc cctacagaac ccacgtatgt gataaatcag ccctccatgt 2580 acgcaggttt cgcccctgc caatactgta ttttcaacct gtatggttga aaaaaatcca 2640 tatataagtg cagccatgca gttcaaaccc atattgttca agggtcaact gtatagttta 2700 ttgaacagcc acacccattc ctttacacat gatctatggc agagttgaat agttgcaaca 2760 gacactatgt ggcctgcaaa atcggaaatt tttactgtct ggccttttac agaaaagttt 2820 gecagecect gatetagace ageageteat etgatagagg cagaggtgge ettaaagatg 2880 tggccttctt cattttctgt tggtttggtt tcgtttctat gagagatttc ctctgatagc 2940 tetgetttcc ccagcactta ctctctgagc ttttaaatgt tetetctggg agettcatat 3000 aagctcggtg acatttgagc cacagttttt agatcagcac ctggaataca tgacacattc 3060 3120 ttactgaggt catccagcac tgccatggtg gctgcccagt cttctggcca gtgtgccagg cacatgtccc tgtcacacag gttccaagaa acacatacgc agccatgcat agaccaacag 3180 atttaatatt atattgcagt tttcagcgat gcagaatgca gctgcaattg tgttttaagg 3240 agaagccaaa tggggatggt tgtccctgca acatggtgcc actcctgggc catgtgcagc 3300 ctcagtggac actcttccat agegetgagg ccctggcccc gcctccagtt accctgtact 3360 geceactgee ttacagttea gtgegeagge etteacettt teateaceag cetetetget 3420 cagtgetetg gagttettga cettgteett tateatgaga tttgetgaaa teaetaatga 3480 aaataactcc caaaagcaac aaacaaaaat attagtttaa ctggcactgt ggtatattaa 3540 aaggcacaag ggcattgtgg cttaacactt ttgctggatc ccaagagacg cacatgatgt 3600

PCT/US2003/020410

WO 2004/003159

- <210>
- <211> 516
- <212> PRT
- <213> Homo sapiens

<400> 4

Met Pro Ser Ser Thr Ser Pro Asp Gln Gly Asp Asp Leu Glu Asn Cys

Ile Leu Arg Phe Ser Asp Leu Asp Leu Lys Asp Met Ser Leu Ile Asn

Pro Ser Ser Leu Lys Ala Glu Leu Asp Gly Ser Thr Lys Lys

Tyr Ser Phe Ala Lys Lys Lys Ala Phe Ala Leu Phe Val Lys Thr Lys

Glu Val Pro Thr Lys Arg Ser Phe Glu Cys Lys Glu Lys Leu Trp Lys

Cys Cys Arg Gln Leu Phe Thr Asp Gln Thr Ser Ile His Arg His Val

Ala Thr Gln His Ala Asp Glu Ile Tyr His Gln Thr Ala Ser Ile Leu

Lys Gln Leu Ala Val Thr Leu Ser Thr Ser Lys Ser Leu Ser Ser Ala

Asp Glu Lys Asn Pro Leu Lys Glu Cys Leu Pro His Ser His Asp Val

Ser Ala Trp Leu Pro Asp Ile Ser Cys Phe Asn Pro Asp Glu Leu Ile 150

Ser Gly Gln Gly Ser Glu Glu Gly Glu Val Leu Leu Tyr Tyr Cys Tyr 170

His Asp Leu Glu Asp Pro Gln Trp Ile Cys Ala Trp Gln Thr Ala Leu

Cys Gln His Leu His Leu Thr Gly Lys Ile Arg Ile Ala Ala Glu Gly

Ile Asn Gly Thr Val Gly Gly Ser Lys Leu Ala Thr Arg Leu Tyr Val

	210						215						220						
Glu 225	Val	Me	et :	Leu	Ser	Phe 230	Pro	Let	1 P	he :	Lys	Asp 235	Asp	Leu	ı C	ys	Lys	As 24	ф 0
Asp	Phe	Г?	/S	Thr	Ser 245	Lys	Gly	Gly	γA	la	His 250	Cys	Phe	Pro	o G	lu	Leu 255	Ar	g
Val	Gly	Va		Phe 260	Glu	Glu	Ile	Va:	1 P	ro :65	Met	Gly	Ile	Sei	r P 2	ro :70	Lys	Ly	/s
Ile	Ser		yr 75	Lys	Lys	Pro	Gly	11 28	e H 0	lis	Leu	Ser	Pro	Gl; 28	y G 5	lu	Phe	H	is
Lys	Glu 290		al	Glu	Lys	Phe	Let 295	Se	rG	Sln	Ala	Asn	Glr 300	Gl	u (Sln	Ser	A	sp
Thr 305	Ile	. L	eu	Leu	Asp	Cys 310	Arç	, As	n I	?he	Tyr	Glu 315	Sei	. Ly	s :	Ile	Gly	А 3	rg 20
Phe	Glr	ı G	ly	Cys	Leu 325	Ala	Pro) As	p :	Ile	Arg 330	Г	Phe	e Se	r'	Tyr	Phe 335	P	ro
Ser	Ту	c V	al	Asp 340	Lys	Asr	Le	ı Gl	_u :	Leu 345	Phe	Arq	g Gl	а Ьу	s :	Arg 350	Va]	L	eu
		3	355		: Gl			36	50					3(,,				
	37	0			y Val		37	5					50	O					
385	5				ı Glı	39	0					39	5						100
					o Gl 40	5					41	U					47	-	
				42						42:)					10	U		
			435	5	n Cy			4	40					-					
	4 !	50			e Th		4	55					4	00					
46	5				r Gl	4	70					4	15						
					g A1	35					43	9 0					-		
Aı	g G	ln	Pr	o Va 50	al Se	er P	ro G	lu 1	Pro	G1 50	y P: 5	co A	sp A	la 1	Asp	51	.u A:	sp	Gly
P	co V	al	Le 51	u Me .5	et														

WO 2004/003159

PCT/US2003/020410 WO 2004/003159

526 <211> PRT <212>

<213> Mus musculus

<400> 5

Met Pro Ser Ser Thr Ser Pro Asp Glu Glu Asp Gly Leu Glu Thr Cys

Val Leu Lys Val Phe Asp Leu Asp Leu Lys Glu Ser Asn Leu Val Asn

Pro Ser Asn Ser Leu Lys Ala Glu Leu Asp Gly Ser Thr Lys Lys

Tyr Ser Phe Ala Lys Lys Lys Ala Phe Ala Leu Leu Val Lys Thr Lys

Gln Val Pro Ala Pro Ser Tyr Glu Phe Lys Gly Lys Arg Trp Arg Cys

Cys Gln Gln Leu Phe Ala Asp Gln Ile Ser Ile His Arg His Val Ala

Thr Gln His Ala Glu Asp Val Tyr Gln Gln Thr Ala Ser Leu Leu Lys 105

Gln Leu Thr Ala Ala Leu Ser Ala Ser Gln Ser Leu Thr Pro Thr Asp

Lys Arg Ser Ser Pro Lys Asp Cys Leu Thr Pro Ser Gln Glu Val Ser 135

Ala Trp Leu Pro Asp Val Ser His Val Ser Pro Gln Glu Leu Arg Ser 155 145

Gly Gln Val Thr Glu Glu Arg Glu Val Leu Leu Tyr Tyr Cys Tyr Cys

Asp Leu Glu Asp Pro His Trp Val Cys Ala Trp Gln Thr Ala Leu Cys

His His Leu His Leu Thr Gly Lys Ile Arg Ile Ala Thr Glu Gly Ile

Asn Gly Thr Val Gly Gly Ser Lys Val Ala Thr Arg Leu Tyr Val Glu

Val Met Leu Ser Cys Pro Leu Phe Lys Asp Tyr Leu Ser Glu Asp Asp

Phe Lys Ser Ser Lys Gly Gly Ser His Cys Phe Pro Glu Leu Arg Val 245

Gly Val Phe Glu Glu Ile Val Pro Met Gly Ile Ser Pro Ser Gln Val 270 265

Ser Tyr Lys Lys Pro Gly Ile His Leu Ser Pro Gly Glu Phe His Lys

Glu Ile Glu Lys Leu Leu Ser Gln Ser Ser Glu Glu Gln Gly Asn Thr 300 295

Ile Ile Leu 305	Asp Cys	Arg Asn 310	Phe Ty	r Glu	Ser Lys 315	Ile Gly	Arg	Phe 320
Gln Gly Cys	Leu Ala 325	Pro Asp	Ile Ar	g Lys 330	Phe Ser	Tyr Phe	Pro 335	Ser
Tyr Val Asp	Lys Asn 340	Leu Asp	Ile Ph	ne Arg 45	Gln Lys	Arg Val	Leu	Met
Tyr Cys Thr 355	Gly Gly	lle Arg	Cys G: 360	lu Arg	Gly Ser	Ala Tyr 365	Leu	Arg
Ala Lys Gly 370	Val Cys	Lys Glu 375	Val P	he Gln	Leu Lys	Gly Gly	Ile	His
Lys Tyr Leu 385	Glu Glu	n Phe Pro	Asp G	ly Phe	Tyr Lys 395	Gly Lys	Leu	Phe 400
Val Phe Asp	Glu Arg	g Phe Ala	a Leu A	la Tyr 410	Asn Se	s Ser Val	. Val 415	. Ser
Glu Cys Ser	Tyr Cys	s Gly Ala	a Pro T	rp Asp 125	Gln Ty:	r Lys Let 430	ı Cys	s Ser
Thr Pro Glr 435		g Gln Le	ı Val I 440	Leu Thr	Cys Se	r Ala Cya 445	s Glr	n Gly
Gln Gly Phe		a Cys Cy 45	s Val T	Thr Cys	Gln As 46	p Lys Gl O	y Gly	y Lys
Gln Ala Sei 465	r Gly Pr	o Ser Gl 470	n Asp S	Ser Phe	e Lys Gl 475	u Glu Cy	s Gl	u Cys 480
Thr Ala Arc	g Arg Hi 48	s Glu Se 5	r His Z	Arg Ası 490	n Ser Ar O	g His Se	r Hi 49	s Glu 5
Phe Ser Pr	o Cys Gl 500	u Pro Gl	y Pro	Gly Pro	o Gly Va	al Pro Hi 51	s Se .0	r Leu
Thr His Al 51		eu Ser Cy	s His 520	Val Gl	n Leu Gl	Lu Thr Va 525	ıl	
<400> 6 atgtccttc	no sapie	acgc aga	aaat cal	r accu	JUGGUC 4	CCCCGGCG		5
geggtegteg teaggeeggl geggeeette tetaceeaa geggagaea actgaaagg agaceaagg tatgagtet gaaatacte	cetecgy cycega tacgegy tycaggy a atatet	gggc ttc cgcc agg gcgg ggg gaag aga gctt cac cctgg aga	agactto aataggo gacctto tgttgca	c cggaq c tcgaq a gaaaq a accaa t ttta	gettgg t gggegg t ggatea g aaceag a agattt t	gacgtcac gagcagtg gactggcg tgccttct	g age a car g gar cc g at a gt	cgagcttt 240 attgctag 300 ggtattta 360 acttcacc 420 ttaaaaga 480 acaaaaaa 540

aacaaaaagg agttttgaat gtaaagaaaa attgtggaaa tgctgtcggc agctattcac 660 720 agaccaaacc agcatccata gacatgtggc aacacaacat gctgatgaaa tttatcacca gacagettet attttaaage aactggetgt gacattgage accteaaaga gtetttegte 780 840 tgcagatgaa aagaaccctt taaaagagtg ccttccacat agccatgacg tgtctgcttg 900 getecetgat ataagetget ttaaceetga tgagetgata agtggeeagg geagtgaaga aggggaggtg ctcctttatt actgctacca tgacctggag gatccccaat ggatctgtgc 960 ctggcagaca gctctgtgtc agcacctgca cctcacaggc aagattcgaa ttgctgcaga 1020 aggaatcaat gggacagttg gtggaagcaa attggctacc agactttatg tggaagtcat 1080 gctttccttc ccattgttta aggatgacct gtgtaaagat gattttaaga ccagcaaagg 1140 aggageteae tgttttecag aattgegtgt tggtgtattt gaagaaateg tgeecatggg 1200 gatcagecce aaaaagatet eetacaagaa geetggaate eatttateee eaggtgaatt 1260 tcataaagaa gtagaaaagt ttttatctca ggcaaatcaa gaacaaagtg atactatcct 1320 tottgattgc agaaacttct atgaaagcaa aataggacga ttccaaggct gcttagcccc 1380 agacatcagg aaattcagtt acttccctag ctacgttgac aaaaatctag aacttttcag 1440 1500 agagaagaga gtgctgatgt actgtaccgg gggcatccgc tgtgagcggg gttcagccta 1560 cctcaaagcc aagggagtgt gcaaggaggt gttccagctc aagggtggca tccacaagta cctggaagag tttcctgatg gcttttacaa agggaagttg tttgtttttg atgaacgcta 1620 tgctctgtcc tacaacagtg atgtggtgtc agagtgttca tactgtggag cccgctggga 1680 1740 ccaqtataaa ctctgctcta ctccccagtg ccgccagctc gttttgacct gccctgcctg tcaaggacaa ggattcacag cctgttgtgt cacatgtcaa gacaagggga gcaggaaagt 1800 tgcaggccct atgcaagaca gctttaaaga ggaatgcgag tgcacagccc gacggccacg 1860 catacctagg gaactettge ageatgtgeg acageetgtg ageeeagage cagggeetga 1920 tgctgatgag gatgggccag tgcttatgtg agcagcacct ttggcatttt cccaggccct 1980 cggtaaaagt aggtttgggg tgactataca gagaaagcat ggcaagactg cagaaacaga 2040 gaaatcggga acttcagttc tggccgctgc caccgtggca gccgtctaca cttcacagcg 2100 ggaggggagg agtcacgttg tctaccactt acctgagaca ttctgatttg gatgatgcta 2160 gagcacagaa aataggtgag ctgcatggga tcccaaagct gctgagggat agagcctgag 2220 cctggtggcc acagcatatg ccctttctgt tccatgcagc tggggctgtt agtagtcatt 2280 geeettgtea geagacette taccetggtg geaaacacat gaaagetgtg geeetgggag 2340 tggcctccta aaacaagcca cttaggtcat ctgccatcta cccttaacct ctgtctctcg 2400 cctgagggga atctgcaagc tgtgcattgg gcttacctcc tgcttttgta gaaataacca 2460 teetttggta tacatggagg atagtteeag aacgeetgag tatacaaaaa eecaatgeat 2520 actcaagtcc cacagtgggc cctacagaac ccacgtatgt gataaatcag ccctccatgt 2580 acgcaggttt cgcccctgc caatactgta ttttcaacct gtatggttga aaaaaatcca 2640 tatataagtg cagccatgca gttcaaaccc atattgttca agggtcaact gtatagttta 2700 ttgaacagcc acacccattc ctttacacat gatctatggc agagttgaat agttgcaaca 2760 gacactatgt ggcctgcaaa atcggaaatt tttactgtct ggccttttac agaaaagttt 2820 gccagccct gatctagacc agcagctcat ctgatagagg cagaggtggc cttaaagatg 2880 tggccttctt cattttctgt tggtttggtt tcgtttctat gagagatttc ctctgatagc 2940 tetgetttee ecageaetta etetetgage ttttaaatgt tetetetggg agetteatat 3000 aagctcggtg acatttgagc cacagttttt agatcagcac ctggaataca tgacacattc 3060 ttactgaggt catccagcac tgccatggtg gctgcccagt cttctggcca gtgtgccagg 3120 cacatgtece tgteacacag gttecaagaa acacataege agecatgeat agaceaacag 3180 3240 atttaatatt atattgcagt tttcagcgat gcagaatgca gctgcaattg tgttttaagg agaagccaaa tggggatggt tgtccctgca acatggtgcc actcctgggc catgtgcagc 3300 ctcagtggac actettecat agegetgagg ccctggeccc gectecagtt accetgtact 3360 gcccactgcc ttacagttca gtgcgcaggc cttcaccttt tcatcaccag cctctctgct 3420 3480 cagtgctctg gagttcttga ccttgtcctt tatcatgaga tttgctgaaa tcactaatga aaataactcc caaaagcaac aaacaaaaat attagtttaa ctggcactgt ggtatattaa 3540 aaggcacaag ggcattgtgg cttaacactt ttgctggatc ccaagagacg cacatgatgt 3600 taaaaagaga totggcagca gtactaatac tacatttcag tgtaatcatc ttggggtggt 3660 ttggccagga tttcccaatt ccttgatatc tggagtttct tcaccattgt ccggcatcct . 3720 gcggaggctt aatatacagg cgtaaggtca gcagcaattt gtctaataag tgatgagatc 3780 agtagctgaa gtctctaagc tgggccatta ctaaatacca tagccatgtt gatctggaaa 3840 tttatccctc tagtgtctta cctcacataa gccatttgcc cactgtgcaa tatagaaagg 3900 tgttttcaaa agtatttggc cgtagatttt cacatccatc ataaggttgg cattcaataa 3960 ggaaaaagtt ctaactccag tattaaattg tacataaatc ccaaatgttc ttaaagaaca 4020 ctcagggaca tgtttgttgc ctgggattgg taatgaaagg ttggtttttg aaacttgaaa 4080 tttcaccatt ggttttttc ctatcatttc tgcatatcca gcaaaaggaa tctcatgttg 4140 actoctggca gagttcagtg gcttcagtct gtctatctgt tctgagggga aaattgtgtt 4200 ctggatccag taatcaattt ggcaacttta atcgaggttt tcaaaattcc aaggagggtt 4260

aataaagaat gataatcagt tttatttgct aatagctaag acaaatttgt aataaagtgt 4320 tttataatac ttc 4333

<210 <211 <212 <213	> 5 > E	29 PRT Iomo	sapi	.ens											
<400 Leu 1	> 7 Lys	gly	Ile	Ser 5	Ala	Ser :	Leu	Leu	Gln 10	Pro .	Asn :	Gln	Met	Pro 15	Ser
Ser	Thr	Ser	Pro 20	Asp	Gln	Gly	Asp	Asp 25	Leu	Glu	Asn	Суз	Ile 30	Leu	Arg
Phe	Ser	Asp 35	Leu	Asp	Leu	Lys	Asp 40	Met	Ser	Leu	Ile	Asn 45	Pro	Ser	Ser
Ser	Leu 50	Lys	Ala	Glu	Leu	Asp 55	Gly	Ser	Thr	Lys	Lys 60	Lys	Tyr	Ser	Phe
Ala 65	Lys	Lys	Lys	Ala	Phe 70	Ala	Leu	Phe	Val	Lys 75	Thr	Lys	Glu	Val	Pro 80
Thr	Lys	Arg	Ser	Phe 85	Glu	Cys	Lys	Glu	Lys 90	Leu	Trp	Lys	Cys	Cys 95	Arg
Gln	Leu	Phe	Thr 100	Asp	Gln	Thr	Ser	Ile 105	His	Arg	His	Val	Ala 110	Thr	Gln
His	Ala	Asp 115	Glu	Ile	Tyr	His	Gln 120	Thr	Ala	Ser	Ile	Leu 125	Lys	Gln	Leu
Ala	Val		Leu	Ser	Thr	Ser 135	Lys	Ser	Leu	Ser	Ser 140	Ala	Asp	Glu	Lys
Asn 145		Leu	Lys	Glu	Cys 150	Leu	Pro	His	Ser	His 155	Asp	Val	Ser	Ala	Trp 160
Leu	Pro	Asp	Ile	Ser 165		Phe	Asn	Pro	Asp 170	Glu	Leu	Ile	Ser	Gly 175	Gln
Gly	Se	r Glu	Glu 180		Glu	Val	Leu	Leu 185		Tyr	Cys	Tyr	His 190	Asp	Leu
Glu	ı Ası	Pro 195		ı Trp) Ile	Cys	Ala 200	Trp	Gln	Thr	Ala	Leu 205	. Cys	Gln	His
Leu	Hi 21		Th:	r Gly	/ Lys	215	Arg	Ile	Ala	Ala	Glu 220	Gly	, Ile	Asn	Gly
Th: 225		l Gly	/ Gl	y Sei	Lys 230		ı Ala	Thr	Arg	235	ı Tyr	· Val	. Glu	ı Val	Met 240
Let	ı Se	r Phe	e Pr	o Le:		e Lys	s Asp	Asp	250	ı Cys	. Lys	: Asp	Asp	255	Lys
Th	r Se	r Ly	s Gl 26		y Ala	a His	в Суз	Phe 26	e Pro	o Glu	ı Lev	ı Arç	y Val 270) (1 G1	y Val

Phe	Glu	Glu 275	Ile	Val	Pro	Met	Gly 280	Ile	Ser	Pro	Lys	Lys 285	Ile	Ser	Tyr
Lys	Lys 290	Pro	Gly	Ile	His	Leu 295	Ser	Pro	Gly	Glu	Phe 300	His	Lys	Glu	Val
Glu 305	Lys	Phe	Leu	Ser	Gln 310	Ala	Asn	Gln	Glu	Gln 315	Ser	Asp	Thr	Ile	Leu 320
Leu	Asp	Cys	Arg	Asn 325	Phe	Tyr	Glu	Ser	Lys 330	Ile	Gly	Arg	Phe	Gln 335	Gly
Cys	Leu	Ala	Pro 340	Asp	Ile	Arg	Lys	Phe 345	Ser	Tyr	Phe	Pro	Ser 350	Tyr	Val
Asp	Lys	Asn 355	Leu	Glu	Leu	Phe	Arg 360	Glu	Lys	Arg	Val	Leu 365	Met	Tyr	Cys
Thr	Gly 370	Gly	Ile	Arg	Cys	Glu 375	Arg	Gly	Ser	Ala	Tyr 380	Leu	Lys	Ala	Lys
Gly 385	Val	Cys	Lys	Glu	Val 390	Phe	Gln	Leu	Lys	Gly 395	Gly	Ile	His	Lys	Tyr 400
Leu	Glu	Glu	Phe	Pro 405	Asp	Gly	Phe	Tyr	Lys 410	Gly	Lys	Leu	Phe	Val 415	Phe
Asp	Glu	Arg	Tyr 420	Ala	Leu	Ser	Tyr	Asn 425	Ser	Asp	Val	Val	Ser 430	Glu	Cys
Ser	Tyr	Cys 435		Ala	Arg	Trp	Asp 440		Tyr	Lys	Leu	Cys 445	Ser	Thr	Pro
Gln	Cys 450		Gln	Leu	Val	Leu 455	Thr	Cys	Pro	Ala	Cys 460		Gly	Gln	Gly
Phe 465		Ala	Cys	Cys	Val 470		Суз	Gln	Asp	Lys 475		Ser	Arg	Lys	Val 480
Ala	Gly	Pro	Met	Gln 485		Ser	Phe	Lys	Glu 490		Cys	Glu	Cys	Thr 495	Ala
Arg	Arg	Pro	Arg 500		Pro	Arg	Glu	Leu 505		Gln	His	Val	Arg 510	Gln	Pro
Val	. Ser	Pro 515		Pro	Gly	Pro	Asp 520		Asp	Glu	a Asp	Gly 525	Pro	Val	Leu
Met	:								•						
<21 <21	10> 11> 12> 13>	8 4334 DNA Homo		oiens	3										
ato gco tca	ggtc	gtcg	tace	geete	gaa g ggc t	gcgg	gtco	gt go gg ti	ceggo	egge	g gct	ctaq	gtct	ggtt	cegggee ceteege ctteeeg gagettt

300 tctacccaaa tacgcggcgg gggaataggc tcgagggcgg tgagcagtga caattgctag gcggagacag tgcagggaag agagacctta gaaaggatca ggactggcgg gaggtattta 360 420 actgaaagga atatctgctt cactgttgca accaaaccag atgccttctt ccacttcacc 480 agaccaagga gatgacctgg agaactgcat tttaagattt tctgacctgg atttaaaaga 540 tatgagtett attaateeea geageagtet taaageagaa ttagatggea gtacaaaaaa 600 quaatactcq tttgcaaaga aaaaggcctt tgcccttttt gtcaaaacca aagaagttcc 660 aacaaaaagg agttttgaat gtaaagaaaa attgtggaaa tgctgtcggc agctattcac 720 agaccaaacc agcatccata gacatgtggc aacacaacat gctgatgaaa tttatcacca gacagettet attttaaage aactggetgt gacattgage accteaaaga gtetttegte 780 tgcagatgaa aagaaccctt taaaagagtg ccttccacat agccatgacg tgtctgcttg 840 gctccctgat ataagctgct ttaaccctga tgagctgata agtggccagg gcagtgaaga 900 aggggaggtg ctcctttatt actgctacca tgacctggag gatccccaat ggatctgtgc 960 ctggcagaca gctctgtgtc agcacctgca cctcacaggc aagattcgaa ttgctgcaga 1020 1080 aggaatcaat gggacagttg gtggaagcaa attggctacc agactttatg tggaagtcat 1140 qctttccttc ccattgttta aggatgacct gtgtaaagat gattttaaga ccagcaaagg 1200 aggageteae tgtttteeag aattgegtgt tggtgtattt gaagaaateg tgeecatggg gatcagcccc aaaaagatct cctacaagaa gcctggaatc catttatccc caggtgaatt 1260 1320 tcataaagaa gtagaaaagt ttttatctca ggcaaatcaa gaacaaagtg atactatcct 1380 tettgattge agaaacttet atgaaageaa aataggaega tteeaagget gettageece 1440 agacatcagg aaattcagtt acttccctag ctacgttgac aaaaatctag aacttttcag 1500 agagaagaga gtgctgatgt actgtaccgg gggcatccgc tgtgagcggg gttcagccta cctcaaagcc aagggagtgt gcaaggaggt gttccagctc aagggtggca tccacaagta 1560 cctggaagag tttcctgatg gcttttacaa agggaagttg tttgtttttg atgaacgcta 1620 tgctctgtcc tacaacagtg atgtggtgtc agagtgttca tactgtggag cccgctggga 1680 1740 ccagtataaa ctctgctcta ctcccccagt gccgccagct cgttttgacc tgccctgcct gtcaaggaca aggattcaca gcctgttgtg tcacatgtca agacaagggg agcaggaaag 1800 tttcaggccc tatgcaagac agctttaaag aggaatgcga gtgcacagcc cgacggccac 1860 gcatacctag ggaactcttg cagcatgtgc gacagcctgt gagcccagag ccagggcctg 1920 atgctgatga ggatgggcca gtgcttatgt gagcagcacc tttggcattt tcccaggccc 1980 tcggtaaaag taggtttggg gtgactatac agagaaagca tggcaagact gcagaaacag 2040 agaaatcggg aacttcagtt ctggccgctg ccaccgtggc agccgtctac acttcacagc 2100 gggaggggag gagtcacgtt gtctaccact tacctgagac attctgattt ggatgatgct 2160 agagcacaga aaataggtga gctgcatggg atcccaaagc tgctgaggga tagagcctga 2220 gcctggtggc cacagcatat gccctttctg ttccatgcag ctggggctgt tagtagtcat 2280 2340 tgcccttgtc agcagacctt ctaccctggt ggcaaacaca tgaaagctgt ggccctggga gtggcctcct aaaacaagcc acttaggtca tctgccatct acccttaacc tctgtctctc 2400 gcctgagggg aatctgcaag ctgtgcattg ggcttacctc ctgcttttgt agaaataacc 2460 2520 atcctttggt atacatggag gatagttcca gaacgcctga gtatacaaaa acccaatgca tactcaagtc ccacagtggg ccctacagaa cccacgtatg tgataaatca gccctccatg 2580 tacgcaggtt tcgcccctg ccaatactgt attttcaacc tgtatggttg aaaaaaatcc 2640 atatataagt gcagccatgc agttcaaacc catattgttc aagggtcaac tgtatagttt 2700 attgaacagc cacacccatt cctttacaca tgatctatgg cagagttgaa tagttgcaac 2760 agacactatg tggcctgcaa aatcggaaat ttttactgtc tggcctttta cagaaaagtt 2820 tgccagcccc tgatctagac cagcagctca tctgatagag gcagaggtgg ccttaaagat 2880 gtggccttct tcattttctg ttggtttggt ttcgtttcta tgagagattt cctctgatag 2940 ctctgctttc cccagcactt actctctgag cttttaaatg ttctctctgg gagcttcata 3000 taagctcggt gacatttgag ccacagtttt tagatcagca cctggaatac atgacacatt 3060 cttactgagg tcatccagca ctgccatggt ggctgcccag tcttctggcc agtgtgccag 3120 gcacatgtcc ctgtcacaca ggttccaaga aacacatacg cagccatgca tagaccaaca 3180 gatttaatat tatattgcag ttttcagcga tgcagaatgc agctgcaatt gtgttttaag 3240 gagaagccaa atggggatgg ttgtccctgc aacatggtgc cactcctggg ccatgtgcag 3300 cctcagtgga cactcttcca tagcgctgag gccctggccc cgcctccagt taccctgtac 3360 tgcccactgc cttacagttc agtgcgcagg ccttcacctt ttcatcacca gcctctctgc 3420 tcagtgctct ggagttcttg accttgtcct ttatcatgag atttgctgaa atcactaatg 3480 3540 aaaataactc ccaaaagcaa caaacaaaaa tattagttta actggcactg tggtatatta aaaggcacaa gggcattgtg gcttaacact tttgctggat cccaagagac gcacatgatg 3600 3660 ttaaaaagag atctggcagc agtactaata ctacatttca gtgtaatcat cttggggtgg tttggccagg atttcccaat tccttgatat ctggagtttc ttcaccattg tccggcatcc 3720 tgcggaggct taatatacag gcgtaaggtc agcagcaatt tgtctaataa gtgatgagat 3780 cagtagctga agtctctaag ctgggccatt actaaatacc atagccatgt tgatctggaa 3840 atttatccct ctagtgtctt acctcacata agccatttgc ccactgtgca atatagaaag 3900

WO 2004/003159

gtgttttcaa	aagtatttgg	ccgtagattt	tcacatccat	cataaggttg	gcattcaata	3960
aggaaaaagt	tctaactcca	gtattaaatt	gtacataaat	cccaaatgtt	cttaaagaac	4020
actcagggac	atgtttgttg	cctgggattg	gtaatgaaag	gttggttttt	gaaacttgaa	4080
atttcaccat	tggtttttt	cctatcattt	ctgcatatcc	agcaaaagga	atctcatgtt	4140
gactcctggc	agagttcagt	ggcttcagtc	tgtctatctg	ttctgagggg	aaaattgtgt	4200
tctggatcca	gtaatcaatt	tggcaacttt	aatcgaggtt	ttcaaaattc	caaggagggt	4260
taataaagaa	tgataatcag	ttttatttgc	taatagctaa	gacaaatttg	taataaagtg	4320
ttttataata	cttc					4334

<210> 9 <211> 488 <212> PRT <213> Homo sapiens <400> 9 Leu Lys Gly Ile Ser Ala Ser Leu Leu Gln Pro Asn Gln Met Pro Ser Ser Thr Ser Pro Asp Gln Gly Asp Asp Leu Glu Asn Cys Ile Leu Arg Phe Ser Asp Leu Asp Leu Lys Asp Met Ser Leu Ile Asn Pro Ser Ser Ser Leu Lys Ala Glu Leu Asp Gly Ser Thr Lys Lys Lys Tyr Ser Phe Ala Lys Lys Lys Ala Phe Ala Leu Phe Val Lys Thr Lys Glu Val Pro Thr Lys Arg Ser Phe Glu Cys Lys Glu Lys Leu Trp Lys Cys Cys Arg Gln Leu Phe Thr Asp Gln Thr Ser Ile His Arg His Val Ala Thr Gln 105 His Ala Asp Glu Ile Tyr His Gln Thr Ala Ser Ile Leu Lys Gln Leu Ala Val Thr Leu Ser Thr Ser Lys Ser Leu Ser Ser Ala Asp Glu Lys 135 Asn Pro Leu Lys Glu Cys Leu Pro His Ser His Asp Val Ser Ala Trp Leu Pro Asp Ile Ser Cys Phe Asn Pro Asp Glu Leu Ile Ser Gly Gln 170 Gly Ser Glu Glu Gly Glu Val Leu Leu Tyr Tyr Cys Tyr His Asp Leu Glu Asp Pro Gln Trp Ile Cys Ala Trp Gln Thr Ala Leu Cys Gln His 200 Leu His Leu Thr Gly Lys Ile Arg Ile Ala Ala Glu Gly Ile Asn Gly 210 215 Thr Val Gly Gly Ser Lys Leu Ala Thr Arg Leu Tyr Val Glu Val Met 225 230 235

Leu Ser Phe Pro Leu Phe Lys Asp Asp Leu Cys Lys Asp Asp Phe Lys Thr Ser Lys Gly Gly Ala His Cys Phe Pro Glu Leu Arg Val Gly Val Phe Glu Glu Ile Val Pro Met Gly Ile Ser Pro Lys Lys Ile Ser Tyr Lys Lys Pro Gly Ile His Leu Ser Pro Gly Glu Phe His Lys Glu Val Glu Lys Phe Leu Ser Gln Ala Asn Gln Glu Gln Ser Asp Thr Ile Leu Leu Asp Cys Arg Asn Phe Tyr Glu Ser Lys Ile Gly Arg Phe Gln Gly Cys Leu Ala Pro Asp Ile Arg Lys Phe Ser Tyr Phe Pro Ser Tyr Val Asp Lys Asn Leu Glu Leu Phe Arg Glu Lys Arg Val Leu Met Tyr Cys Thr Gly Gly Ile Arg Cys Glu Arg Gly Ser Ala Tyr Leu Lys Ala Lys Gly Val Cys Lys Glu Val Phe Gln Leu Lys Gly Gly Ile His Lys Tyr Leu Glu Glu Phe Pro Asp Gly Phe Tyr Lys Gly Lys Leu Phe Val Phe Asp Glu Arg Tyr Ala Leu Ser Tyr Asn Ser Asp Val Val Ser Glu Cys Ser Tyr Cys Gly Ala Arg Trp Asp Gln Tyr Lys Leu Cys Ser Thr Pro Pro Val Pro Pro Ala Arg Phe Asp Leu Pro Cys Leu Ser Arg Thr Arg Ile His Ser Leu Leu Cys His Met Ser Arg Gln Gly Glu Gln Glu Ser Phe Arg Pro Tyr Ala Arg Gln Leu 485

<210> 10 <211> 21

<212> DNA

<213> Artificial

<220>

<223> expression primer

<400> 10

ctgtgtcagc acctgcacct c

PCT/US2003/020410

WO 2004/003159

<210>	11						
<211>	20						
	DNA	61 1 3					
<213>	Artı	ficial					
<220>							
	expr	ession prim	er				
1220	JP.	COOLOII PLAM		•			
<400>	11						
atcccca	atgg	gcacgatttc					20
401.05	10						
<210> <211>	12 22						
<211>							
<213>		ficial		•			
\Z_13/	111 61	.110141					
<220>							
	expr	ession prim	er				
	_	_					
<400>	12						
tttccaq	gaat	tgcgtgttgg	tg				22
<210>	13						
<211>							
<212>							
<213>		ficial					
				·			
<220>							
<223>	expr	ression prim	ner				
<400>	13						20
tggatg	ccac	ccttgagctg					20
<210>	14						
<211>	4888	3	•				
<212>	DNA	•					
<213>	Mus	musculus					
<400>							60
			agggagggct				120
			ttagcagttg cccccgtag				180
caccact	teaca	tttaagaagt	catatgaccc	tracaarate	acatagtasa	taatcgagat	240
atcasa	cttc	gaacctaaac	ccttcggttc	taaagtttt	tcttgcctta	accetttgga	300
cctaac	acta	acagetecaa	gtgtgttctt	gaaaggcaat	aatggtgcaa	caaaacaaaa	360
tttatq	qcaa	cacaacgacg	tecttgeegg	cgaccatcaa	aactgacatg	agaattaata	420
			actttcttat				480
			ttagtgacct				540
			gtggcaggtg				600
			tcttttcctg				660
			ctggtccact				720
			cacgtgcggt				780
			gtcggatttg				840 900
			agcagggagg				960
cogage	cayc	ageeteeett	tggggctccc gcgagcccgg	cctcaattat	cacccccacc	cagtagggag	1020
accasa	agea	cttaccatco	ttctcgtagc	tataccacct	ccaccacata	ctacttacta	1080
atacac	agcc	gatctgagtt	gctagccgcc	tgcaacccca	gaaccatcaa	getgeeggee	1140
J - J - 5 -		3		-			

ggccggtgcg cggtcagcgg cgaggcgcgc ggactgagcg gcgcgcaggc gcactcgctt 1200 1260 acgacgcctg ccggaagcgc gtgcagaggg gcaccggatg ggctccgcag tggaaggccg gegtetgeaa gtecaattge ggeegeetee teeggettte cacceeggge cettetggae 1320 1380 agcgagctaa attatccggg ccgcagcgat cccgcctcgg ctttatacag gcccggcggg attttcccgg cggccctgc gccgacgact taggagactt ccggagaaag gtgacggctc 1440 1500 agggactete tgcgcacgcg cgcgccgggg ggcgtggget cgagggcggg gagcagcgcc 1560 aagttggtga agggagaccc aggaaaggcc tagggtttgc gggtaggtgt tctctctttc 1620 tetetegeca tecegetgta gaegeetegg gagaeetgag eggggaggag ggeaageeae 1680 tttcagcggt agggaatcca ggcccgtccg gctgaatctg ctcactgtag tcctactgcc tacttctccc agctgacgga cgccccagct actgatcggt gtggttccaa ttgttctatt 1740 1800 cctctqcacq tqtacaqtat qtqqacqtcc tctqccctqt qatqqacacc aaactqtctt 1860 qtccatqqtc taqcccaaac ttttccttca qtcttacctq ttacaqtaaa tqqccqtttc 1920 ggtagtttgc ttaaatccaa gaatttaggg aggagtcatt agctccttca cttcctgtgt 1980 tacagtttat ccactaacac tgcctgctat actctgagag caagtctagt caaacttatt tactatgett aaaactette acagacttaa agcaatattt tatgtatttg taagtetgta 2040 2100 catcatcctg gaactggagt ttcagactct ctgtgagcaa ggaggagagt gcgcgggagc ggggtggggg tgctgaatcc cgggtcttct gctagagcag taagcactct taaccagtga 2160 gccatcttgc catctttccg gctctacttc tctttgttta ttttaaagat tatcgttttt 2220 ctattctttt catttattta ttcgtacatg caagcaatcc atctttccag gaatttccac 2280 tgcgaattcc aaactatggc ttcttgggtt ctgttcccgt cattgtgtgt aaaccaccat 2340 gttcttctgc taaagtccag cttgttcaca ttttaggaat caagacttat tttctttatc 2400 tgttggtctc tgctctgaaa tttacatgac taactgtcag ggacctacag agttatttct 2460 ctgactcctc aactcttgct ttatttcatt cagcaagtac tatattgtat taattaacat 2520 ttgtcaccgt ctgtacatgg gacaacgaga cggtgttcag gatactgaag ccctaagtga 2580 2640 ccctctcagg aatgatcaca ggtactgtag tctgacggac ttaatagcaa agggcgagtg 2700 gtacaaatta tcactcatcc tttgctattg aggacagatt atccagagta agactttgga agagtectee aagaaaggat tttaatatat teteatetgg eteeagttge etgaaatgag 2760 ccaattcgag ccagatgaga atatattaaa aatgggttta ttgggaatct gctctcaggt 2820 2880 gagttcactg accgctacca ggattgagac cagggaagtc actatgggga tgggggggggagga 2940 ggagggaaga acacaggagc aaagaaagaa gggaaggagg cccaacaagg aggccaaaag 3000 gtctggattg tatagagagg agcctctggg ggaaggttca gggttgggac agggtatacc 3060 agatagggac tatgggatac tgggagaacc tgaagaccat gtctgctttg atatgtaaaa 3120 tatgcacctt ggtccaaggt tagaaaccaa accttaacca ttactaaatc agataagaag 3180 tgagtgtagt tcaaagtgga ttgctgactt tcaaaggatg gcaaagcatt gggcctggta 3240 tagtggcccc gaattctaga agtagaggca aggggaatct taaatttagg attactagaa 3300 cctcaaggcc agcccctact atatagcaag acccagactc agaaaaatta atttaaaaac 3360 taggggttgg cccaggcagc atacaccagc tgataggagg ccccagacac atatatagca 3420 gaggactgtg tggtctggcc ttagtgaggg aagatgcacc taaccctcaa gaaacttgag 3480 gccccaggga gtggggcat tctcttgggc aggggacaga gaaggtgtgg gatgaggaac 3540 agagggcaga ctggaaggtg gataaagact agactgtaaa aaagattcaa gaataaaatt 3600 ttcttaattt tgttggaaaa aaaaaatagg ggttggcaag atggctctgt gggcaaaccc 3660 ctgccactca agcctgacaa tacaacgtgt gtttgatccc tggagcctgt gcagatatgg 3720 aactggcagg catctcggca caaqtagcca cagaagtaaa tcaaatgtaa caaagaagac 3780 tgcattggtt atagtgtatc cattttggta agatttggcc acagtagcaa tttggaaatt 3840 ttggctctga gatttgagaa caaaagaaac aaagctacag aaacactgga gttggttgat 3900 ttgggaagte catagtgett ttetgetete atgtgetgee etgtgttttg tttteeeetg 3960 qcttacttcc taqttcatqt ttctttgaaq atqaqtqcta ttgcctcaga agggctcttc ctgtgtatga ggagcccttc cacttgcctc cttactccac tcattttcct ttqaaatatt 4020 4080 taaaaaaaaa aaagaaaaga aaagaaaagt caactcaaat caatgtatcg gcttaccttt 4140 cctagtagat tgtaaactta agaggataga ctttttccta ttgcatttac tgctctattc 4200 ctggtgtgta gaagagagcc tggtagagca tagttgtcac ataaatacac tgtggagtga gcgaggggac gaacggagag cttggggtag gaggctactg gtcatttcat gagtccatta 4260 gcttcatgtc tgcttcaaga agtaaccaaa gagctgattg ctatattctc ttttgcttac 4320 gtctcagaag atacttgtct gcaaggaacc tgtcccactg ataaagccag atgccttctt 4380 ccacttcacc agacgaagag gatggcctgg agacctgtgt tttaaaggtt tttgatctgg 4440 4500 atttaaaaga atcaaatctt gttaatccca gcaacagtct caaagcagag ttagatggca 4560 gcacaaagaa aaaatactcg tttgcaaaga aaaaggcctt tgcccttttg gtcaaaacca aacaagttcc agcaccctct tatgaattta agggaaaacg gtggcgatgt tgtcagcagc 4620 tgtttgcaga ccagatcagc atccacagac atgtggccac acagcatgct gaagacgtgt 4680 4740 accaqcagac tgcgtctctt ctgaagcagc tgactgcagc attgagtgcc tcacagagcc 4800 ttacqcccac agacaaaagg agctccccca aagactgtct cactcctagt caggaggtgt

ctgcttggct tcctgatgtg agccatgtta gcccccagga gctgaggagt ggccagggtg 4860 acgaggaagg agaggtgctc ctgtatta 4888 <210> 15 <211> 7551 <212> DNA <213> Homo sapiens <400> 15 gagagacaaa cgttagtaga taaaatttac tcaatttaaa atgtctgtta tgggtttttt 60 tettacattg acageatetg etaacgttta eegeetetta agegttggea aatgataaaa 120 catcattgtt gctgatgtgt attacctcat ttaaccttca caaaaaccag aagatataaa 180 tatcattact tctgtattac agactaaagt ttaaggagat ttcataacct ggacaagatc 240 accaagtaaa tggtagggtc tggctttgaa cctaaaccct ctggttccaa agtctcatct 300 cttaaccact actatacact ctcttcaaaa aacaatacac taaaatgtta acaatagaat 360 tactctaagt tttacttttt tggtgtgtgg atttgtgttt ttgaccgatt gtaaggctta 420 tgtgtaatat aagcatcttt tttttgttgt tgttaaaact agaattattc catctttatg 480 aaggcaacac tgatctccac gagcacaatc atccaaacgg agatgggaac ccctgttcta 540 acteteteaq aggeetgaag ttagttttet ageactetet eteacacaag ggaaatgege 600 ttacggccag ttcaaaatct gcagtaacct gtgtctgttt attagggacc tcttgggcgc 660 aggtaagaca atattettte cetgeagett gaaagaagtg aaateaaegg ataaceaeta 720 780 ttccgagccc ttttcaggtg cagctttgaa ggttaaaacg agacactagg accagtgggt 840 ccctaagagg cggcagcaca gacacaggtg tgcttccctg ctccgtggtt ttacggacga 900 960 aattetgaag cateettaga gaccaagggt ctacccatgg ggttcaccag geettettte ccgaggatcg gcccttgact caaagaactg gggcggggga gaagtcgctt tctagaagcc 1020 georgaecae acegecaeca tatteteete ttteceteeg eggeteeceg caegtteeeg 1080 gggagaagag cttccagtct cttccgtgga cacccaaaga cgccgagcct cggctcccaa 1140 1200 ccgggagcgg cctccgtggc cgggccgcag gcactcaccg tcgttctcgt cgctgtgccg ccgccgcgac atgctgccct ccggtgcgcc gcggaaccga gaggccaggc ggtaagcgct 1260 gcaggaactg totggccgct ggccgacgca aggacagctg caaggcgcgc ggatgggccg 1320 1380 gcacgcaggc gcactagctc gccacggccc cggaagcgca ggagaggccg ccgggtgggg ctaggegetg egacageegg egtgaggaag etcagtggge taegaaegte tggeaeacat 1440 gcaaccgccc cctcgggctg cctccgcctg ccggctactt ctttctcccg ccttccgctc 1500 tatgtccttc cggggccacg cagaaagtgc cgccgctttg gccactcaga gcccccgggc 1560 cgcggtcgtc gtacgcctga aggcgggtcg tgccggcggc cgctctagtc tccgcctccg 1620 ctcaggccgg tcctccgggg cttctcaatg gtttcccggt ggcctctcaa tggttttccc 1680 ggcggccctt gcgccgacgc caggagactt ccggagcttg gtgacgtcac gagcgagctt 1740 1800 ttctacccaa atacgcggcg ggggaatagg ctcgagggcg gtgagcagtg acaattgcta 1860 ggcggagaca gtgcagggaa gagagacctt agaaaggatc aggactggcg ggtatgtgct 1920 catctactcc cactttccgg cttttgccgc cttgggaaaa gtgggaggag aggttgggcc 1980 aageteggea tgeggggtgg ggeetgggeg ggaggeggtg cegeaegtge egeceettgg 2040 tatggaaagg ccggccctga cgcgagcgtg cggctccggg cttgccggct ggccgtcatt 2100 ttccttaagt tgtttgctta ggaaggaaca aatgattgtt ttagtaatct gttttcaagg 2160 gttattgggt acctatatgc ctgtgtgtga gcgtcccctc ccctgatgtc tttatgagca 2220 ccatactggc ttatctgctt tgtccatggc catctgaaat ttcactctcc cggcctaatt 2280 ctccttcggt cttacccatt tcagtaaatg acgtcatccg tcggccgctt aatccaaaaa 2340 tttagagtct ttcttagctc ttttccctct ttttacataa caattatctg taaaccctgc 2400 ctgctctgct ttcaacacaa atccagaatc agatcgtgtt actgctttgt ttaaaagtct cctatgacgg ccgggcgggg tagctaacgc ttgtaatcct aacacttatg ggaggccgac 2460 qcqqqcqqat ccqcttqaqc ctaqqaqttc aagacccacc tgqgcaacaa ggcgaacacc 2520 2580 qtctttacag qaaaaaaaaa aaaattaqct qagcctagtg tttggcgcct gtagtcccag ttactcqaqq qqaqqqttqq qqqccqaqqt qqqagqatcc cttgagccca ggaggtcgag 2640 2700 aatgcagtga gcggtgatcg cacactgcac tecagectgg gcaacaaagt gagaccgtgt 2760 caaaaaaaaa aaqtctccta cqactttcca ttgcacactc catgccatgg cctgtggggt tctacttctc ctcactgtac tccaaccact ctttctgttc ttacaataag tcaagcttgt 2820 tcttatttta ggaacttata ctatttcctt tacctgaagg tctctggttc taaatctgcg 2880 tggctggctc ttggtcactt aggtctcagc tcaaatgtca ggtccttagt gaggccttct 2940 ttggttaccc aatcactgtt ttatttcatt caacgaatat tatatttatt agcatttagc 3000 acctcctagg tgccaggcag agttctgaat gctgaggatg tagaggtgaa caaaggaaaa 3060

				cctcttagtg		6780
				ttgtagtgtg		6840
caagatttgg	ccacagtagc	gattttgaca	tttcttctgg	catattacag	tggggctgtc	6900
				ctgaaattaa		6960
gaagaaagtg	tttataactg	aaggtgctgg	cacacatctt	gattgatttg	ggttgtacct	7020
gttgcttttc	tggtattatt	taccctaatg	actgcatggc	tcgctcccta	attcaggttt	7080
				tctgtgttcg		7140
				ctttacacca		7200
				actggaatgt		7260
				cagtgcttag		7320
gacttcgagt	cgttcctaag	taaatactat	tgatttagta	agtaaatgga	tggttagctt	7380
				tcatattttc		7440
caaagaatag	catggctgct	tctttcttat	ttatattcta	ggaggtattt	aactgaaagg	7500
aatatctgct	tcactgttgc	aaccaaacca	gatgccttct	tccacttcac	С	7551

<210> 16 <211> 488 <212> PRT <213> Homo sapiens

<400> 16

Leu Lys Gly Ile Ser Ala Ser Leu Leu Gln Pro Asn Gln Met Pro Ser 1 10 15

Ser Thr Ser Pro Asp Gln Gly Asp Asp Leu Glu Asn Cys Ile Leu Arg
20 25 30

Phe Ser Asp Leu Asp Leu Lys Asp Met Ser Leu Ile Asn Pro Ser Ser 35 40 45

Ser Leu Lys Ala Glu Leu Asp Gly Ser Thr Lys Lys Lys Tyr Ser Phe 50 55 60

Ala Lys Lys Lys Ala Phe Ala Leu Phe Val Lys Thr Lys Glu Val Pro 65 70 75 80

Thr Lys Arg Ser Phe Glu Cys Lys Glu Lys Leu Trp Lys Cys Cys Arg 85 90 95

Gln Leu Phe Thr Asp Gln Thr Ser Ile His Arg His Val Ala Thr Gln 100 105 110

His Ala Asp Glu Ile Tyr His Gln Thr Ala Ser Ile Leu Lys Gln Leu 115 120 125

Ala Val Thr Leu Ser Thr Ser Lys Ser Leu Ser Ser Ala Asp Glu Lys 130 135 140

Asn Pro Leu Lys Glu Cys Leu Pro His Ser His Asp Val Ser Ala Trp 145 150 155 160

Leu Pro Asp Ile Ser Cys Phe Asn Pro Asp Glu Leu Ile Ser Gly Gln
165 170 175

Gly Ser Glu Glu Glu Val Leu Leu Tyr Tyr Cys Tyr His Asp Leu 180 185 190

Glu Asp Pro Gln Trp Ile Cys Ala Trp Gln Thr Ala Leu Cys Gln His 195 200 205

WO 2004/003159

Leu His Leu Thr Gly Lys Ile Arg Ile Ala Ala Glu Gly Ile Asn Gly Thr Val Gly Gly Ser Lys Leu Ala Thr Arg Leu Tyr Val Glu Val Met Leu Ser Phe Pro Leu Phe Lys Asp Asp Leu Cys Lys Asp Asp Phe Lys Thr Ser Lys Gly Gly Ala His Cys Phe Pro Glu Leu Arg Val Gly Val 265 Phe Glu Glu Ile Val Pro Met Gly Ile Ser Pro Lys Lys Ile Ser Tyr Lys Lys Pro Gly Ile His Leu Ser Pro Gly Glu Phe His Lys Glu Val 295 Glu Lys Phe Leu Ser Gln Ala Asn Gln Glu Gln Ser Asp Thr Ile Leu 310 315 Leu Asp Cys Arg Asn Phe Tyr Glu Ser Lys Ile Gly Arg Phe Gln Gly 325 Cys Leu Ala Pro Asp Ile Arg Lys Phe Ser Tyr Phe Pro Ser Tyr Val 345 Asp Lys Asn Leu Glu Leu Phe Arg Glu Lys Arg Val Leu Met Tyr Cys Thr Gly Gly Ile Arg Cys Glu Arg Gly Ser Ala Tyr Leu Lys Ala Lys 375 Gly Val Cys Lys Glu Val Phe Gln Leu Lys Gly Gly Ile His Lys Tyr Leu Glu Glu Phe Pro Asp Gly Phe Tyr Lys Gly Lys Leu Phe Val Phe Asp Glu Arg Tyr Ala Leu Ser Tyr Asn Ser Asp Val Val Ser Glu Cys Ser Tyr Cys Gly Ala Arg Trp Asp Gln Tyr Lys Leu Cys Ser Thr Pro Pro Val Pro Pro Ala Arg Phe Asp Leu Pro Cys Leu Ser Arg Thr Arg 450 Ile His Ser Leu Leu Cys His Met Ser Arg Gln Gly Glu Gln Glu Ser 470 475 Phe Arg Pro Tyr Ala Arg Gln Leu 485

<210> 17

<211> 529

<212> PRT

<213> Homo sapiens

<400> 17

Leu Lys Gly Ile Ser Ala Ser Leu Leu Gln Pro Asn Gln Met Pro Ser Ser Thr Ser Pro Asp Gln Gly Asp Asp Leu Glu Asn Cys Ile Leu Arg Phe Ser Asp Leu Asp Leu Lys Asp Met Ser Leu Ile Asn Pro Ser Ser Ser Leu Lys Ala Glu Leu Asp Gly Ser Thr Lys Lys Lys Tyr Ser Phe Ala Lys Lys Lys Ala Phe Ala Leu Phe Val Lys Thr Lys Glu Val Pro Thr Lys Arg Ser Phe Glu Cys Lys Glu Lys Leu Trp Lys Cys Cys Arg Gln Leu Phe Thr Asp Gln Thr Ser Ile His Arg His Val Ala Thr Gln His Ala Asp Glu Ile Tyr His Gln Thr Ala Ser Ile Leu Lys Gln Leu 120 Ala Val Thr Leu Ser Thr Ser Lys Ser Leu Ser Ser Ala Asp Glu Lys 135 Asn Pro Leu Lys Glu Cys Leu Pro His Ser His Asp Val Ser Ala Trp 150 155 Leu Pro Asp Ile Ser Cys Phe Asn Pro Asp Glu Leu Ile Ser Gly Gln 165 170 Gly Ser Glu Glu Gly Glu Val Leu Leu Tyr Tyr Cys Tyr His Asp Leu 180 185 Glu Asp Pro Gln Trp Ile Cys Ala Trp Gln Thr Ala Leu Cys Gln His 200 Leu His Leu Thr Gly Lys Ile Arg Ile Ala Ala Glu Gly Ile Asn Gly 215 Thr Val Gly Gly Ser Lys Leu Ala Thr Arg Leu Tyr Val Glu Val Met Leu Ser Phe Pro Leu Phe Lys Asp Asp Leu Cys Lys Asp Asp Phe Lys 245 Thr Ser Lys Gly Gly Ala His Cys Phe Pro Glu Leu Arg Val Gly Val 265 Phe Glu Glu Ile Val Pro Met Gly Ile Ser Pro Lys Lys Ile Ser Tyr 275 Lys Lys Pro Gly Ile His Leu Ser Pro Gly Glu Phe His Lys Glu Val 295 Glu Lys Phe Leu Ser Gln Ala Asn Gln Glu Gln Ser Asp Thr Ile Leu 305 310 320 Leu Asp Cys Arg Asn Phe Tyr Glu Ser Lys Ile Gly Arg Phe Gln Gly

	325	330	335
Cys Leu Ala Pro 340		Phe Ser Tyr Phe Pro S 345 3	er Tyr Val 50
Asp Lys Asn Leu 355	Glu Leu Phe Arg (Glu Lys Arg Val Leu M 365	let Tyr Cys
Thr Gly Gly Ile 370	Arg Cys Glu Arg (Gly Ser Ala Tyr Leu L 380	ys Ala Lys
Gly Val Cys Lys 385	Glu Val Phe Gln : 390	Leu Lys Gly Gly Ile H 395	is Lys Tyr 400
Leu Glu Glu Phe	Pro Asp Gly Phe 9	Tyr Lys Gly Lys Leu P 410	he Val Phe 415
Asp Glu Arg Tyr 420		Asn Ser Asp Val Val S 425 4	er Glu Cys 30
Ser Tyr Cys Gly 435	Ala Arg Trp Asp (Gln Tyr Lys Leu Cys S 445	er Thr Pro
Gln Cys Arg Gln 450	Leu Val Leu Thr (Cys Pro Ala Cys Gln G 460	ly Gln Gly
Phe Thr Ala Cys 465	Cys Val Thr Cys (Gln Asp Lys Gly Ser A 475	arg Lys Val 480
Ser Gly Pro Met	Gln Asp Ser Phe 3	Lys Glu Glu Cys Glu C 490	Cys Thr Ala 495
Arg Arg Pro Arg 500	_	Leu Leu Gln His Val A 505 5	arg Gln Pro 510
Val Ser Pro Glu 515	Pro Gly Pro Asp 5	Ala Asp Glu Asp Gly F 525	Pro Val Leu
Met			
<210> 18 <211> 555 <212> DNA <213> Homo sap	iens		
<400> 18 aaggcgcgcg gatg	ggccgg cacgcaggcg	cactageteg ceaeggeee	cc ggaagcgcag 60
gagaggccgc cggg acgaacgtct ggca tttctcccgc cttc cactcagagc cccc ctctagtctc cgcc cctctcaatg gttt gacgtcacga gcga	tggggc taggcgctgc cacatg caaccgccc cgctca tgtccttccg gggccg cggtcgtcgt tccggt cggcccttgc gcttt ctaccaaat	gacagcegge gtgaggaag ctegggetge eteegeetg gggceaegea gaaagtgee acgcetgaag gegggtegt eteegggget teteaatgg gegaegeea ggagaette acgeggeggg ggaatagge	gc tcagtgggct 120 gc cggctacttc 180 gc cggctttggc 240 gc ccggcggccg 300 gt ttcccggtgg 360 gc ggagcttggt 420 gt cgagggcggt 480
gagcagtgac aatt gactggcggg tatg		gcagggaaga gagacctta	ng aaaggatcag 540 555

<210> 19 <211> 237

PCT/US2003/020410

WO 2004/003159

<212> <213>	DNA Homo	sapiens					
aaccaga agattti	atgc ctg	ttctaggagg cttcttccac acctggattt atggcagtac	ttcaccagac aaaagatatg	caaggagatg agtcttatta	acctggagaa atcccagcag	ctgcatttta cagtcttaaa	60 120 180 237
<210> <211> <212> <213>	20 339 DNA Homo	o sapiens					
gagttti cagcate tatttta aaagaa	tgaa ccat aaag ccct	ttgcaggcct tgtaaagaaa' agacatgtgg caactggctg ttaaaagagt tttaaccctg	aattgtggaa caacacaaca tgacattgag gccttccaca	atgctgtcgg tgctgatgaa cacctcaaag tagccatgac	cagctattca atttatcacc agtctttcgt	cagaccaaac agacagcttc ctgcagatga	60 120 180 240 300 339
<210> <211> <212> <213>	21 143 DNA Home	o sapiens					
accatg	acct	ttatagtggc ggaggatccc aggcaaggta	caatggatct	aagaagggga gtgcctggca	ggtgeteett gacagetetg	tattactgct tgtcagcacc	60 120 143
<210><211><211><212><213>	22 148 DNA Hom	o sapiens					
caaatt	ggct	tctcagattc accagacttt gatgatttta	atgtggaagt	agaaggaatc catgctttcc	aatgggacag ttcccattgt	ttggtggaag ttaaggatga	60 120 148
<210> <211> <212> <213>	23 128 DNA Hom						
<400> gtttct tgtatt tggtat	tgaa	ggctagacca gaaatcgtgc	gcaaaggagg ccatggggat	agctcactgt cagccccaaa	tttccagaat aagatctcct	tgcgtgttgg acaagaagcc	60 120 128
<210><211><211><212><213>	24 141 DNA Hom						

<400> 24 tttggtttgg tttttatctc tatgaaagca	aggcaaatca	agaacaaagt	ccaggtgaat gatactatcc	ttcataaaga ttcttgattg	agtagaaaag cagaaacttc	60 120 141
<210> 25 <211> 181 <212> DNA <213> Homo	sapiens					
<400> 25 tgctcctatg ttacttccct gtactgtacc c	agctacgttg	acaaaaatct	agaacttttc	agagagaaga	gagtgctgat	60 120 180 181
<210> 26 <211> 161 <212> DNA <213> Homo	sapiens					
gtacctggaa	gagtttcctg	tgtgcaagga atggctttta gtgatgtggt	caaagggaag	ctcaagggtg ttgtttgttt t	gcatccacaa ttgatgaacg	60 120 161
<210> 27 <211> 2697 <212> DNA <213> Homo	sapiens					
<400> 27						
	ccccagagtg	ttcatactgt	ggagcccgct	gggaccagta	taaactctgc	60
tctactcccc	agtgccgcca	gctcgttttg	acctgccctg	cctgtcaagg	acaaggattc	120
acagcctgtt	gtgtcacatg	tcaagacaag	gggagcagga	aagtttcagg	ccctatgcaa	180 240
gacagcttta	aagaggaatg	cgagtgcaca	gcccgacggc	cacgcatacc	tagggaactc	300
ttgcagcatg	tgcgacagcc	tgtgageeea	ttttaaaaaa	coctocctaa	tgaggatggg aagtaggttt	360
gagataacta	tacadadaaa	gcatggca	actgcagaaa	cagagaaatc	gggaacttca	420
attetaacca	ctaccaccat	ggcagccgtc	tacacttcac	agcgggaggg	gaggagtcac	480
gttgtctacc	acttacctga	gacattctga	tttggatgat	gctagagcac	agaaaatagg	540
tgagctgcat	gggatcccaa	agctgctgag	ggatagagco	: tgagcctggt	ggccacagca	600
tatgcccttt	ctgttccatg	cagctggggc	tgttagtagt	cattgccctt	gtcagcagac	660 720
cttctaccct	ggtggcaaac	acatgaaagc	tgtggccctg	ggagtggcct	cctaaaacaa	780
gccacttagg	tcatctgcca	tctaccctta	totageet	. etegeetgag	gggaatctgc ggtatacatg	840
aagetgtgea	ccagaacgc	taaatataca	aaaacccaat	gcatactcaa	gtcccacagt	900
gaggatagtt	gaacccacgt	atgtgataaa	tcagccctcc	atgtacgcag	gtttcgcccc	960
ctgccaatac	tgtattttca	acctgtatgg	ttgaaaaaa	tccatatata	agtgcagcca	1020
tocaottcaa	acccatattg	ttcaagggto	: aactgtatag	, tttattgaac	agccacaccc	1080
attcctttac	acatgatcta	tggcagagtt	gaatagttgo	aacagacact	atgtggcctg	1140
caaaatcgga	aatttttact	gtctggcctt	ttacagaaaa	gtttgccago	ccctgatcta	1200 1260
gaccagcagc	tcatctgata	gaggcagagg	tttoototos	tagetetgeet	tcttcatttt ttccccagca	1320
ctgttggttt	ggttttgtt	. cracyayaya	: taggaagette	atataagete	ggtgacattt	1380
gagggagag	ttttagatca	gcacctggaa	tacatgacac	attettacte	aggtcatcca	1440
gcactgccat	ggtggctgcc	cagtettete	gccagťgtgc	caggcacato	tccctgtcac	1500

WO 2004/003159

acaggttcca a	agaaacacat a	acqcaqccat	gcatagacca	acagatttaa	tattatattg	1560
cagttttcag c	gatgcagaa	tgcagctgca	attgtgtttt	aaggagaagc	caaatgggga	1620
tggttgtccc t	gcaacatgg	tgccactcct	gggccatgtg	cagcctcagt	ggacactctt	1680
ccatagcgct c	gaggccctgg (ccccgcctcc	agttaccctg	tactgcccac	tgccttacag	1740 1800
ttcagtgcgc a	aggeetteae	cttttcatca	ccagcctctc	tgctcagtgc	ctoggagtte	1860
ttgaccttgt c	cctttatcat	gagatttgct	gaaatcacta	ttassagga	caagggaatt	1920
caacaaacaa a qtqqcttaac a	aatattagt	gatogoaaga	gaggggata	atattaaaaa	gagatctggc	1980
agcagtacta a	actitigety a	tcactctaaya	catcttqqqq	tagtttagcc	aggatttccc	2040
agcagtacta a	tatctacact	ttetteacca	ttatccaaca	tectacagaa	gcttaatata	2100
caggcgtaag	ntcagcagca	atttgtctaa	taaqtqatqa	gatcagtagc	tgaagtctct	2160
aagctgggcc a	attactaaat	accatagcca	tgttgatctg	gaaatttatc	cctctagtgt	2220
cttacctcac a	ataagccatt	tgcccactgt	gcaatataga	aaggtgtttt	caaaagtatt	2280
tggccgtaga 1	ttttcacatc	catcataagg	ttggcattca	ataaggaaaa	agttctaact	2340
ccagtattaa a	attgtacata	aatcccaaat	gttcttaaag	aacactcagg	gacatgtttg	2400
ttgcctggga i	ttggtaatga	aaggttggtt	tttgaaactt	gaaatttcac	cattggtttt	2460
tttcctatca	tttctgcata	tccagcaaaa	ggaatctcat	gttgactcct	ggcagagttc	2520
agtggcttca	gtctgtctat	ctgttctgag	gggaaaattg	tgttctggat	ccagtaatca	2580 2640
atttggcaac	tttaatcgag	gttttcaaaa	ttccaaggag	ggttaataaa	gaatgataat	2697
cagttttatt	tgctaatagc	taagacaaat	ttgtaataaa	gigililala	acacete	2051
<210> 28						
<211> 300						
<212> DNA						
<213> Homo	sapiens					
						•
<400> 28		,			++-+-+	60
gtgcttttct	ctttaggtta	cgagacagta	caatagaagg	agtatgctcg	tececattet	120
ttcactgagt tataaaataa	caccatatga	catastaga	totagracto	casatettee	acatattage	180
tcacttgaga	gaatgttaca	ctaatcaaca	gatcactgtg	tttttagtaa	atctggaatt	240
gtaagattaa	cacttcatac	cacatagaga	aataaagttg	ttgctctcac	aggtgggctg	300
gcaagaccaa			, ,	•		
<210> 29						
<211> 813						
<212> DNA			•			
<213> Homo	sapiens					
<400> 29						
	acctagggag	totocaagga	ggtgttccag	ctcaagggtg	gcatccacaa	60
gtacctggaa	gagtttcctg	atggctttta	caaagggaag	ttgtttgttt	ttgatgaacg	120
ctatactcta	tcctacaaca	gtgatgtggt	gtcaggtagg	tcagcacagg	ctcagagccc	180
aaactgaaat	gaagcacatt	gtcagttcac	tattctagaa	aaatgacaca	gggaagacag	240
accaatactc	attactgage	actgaataag	cagggaaaat	aagtacattg	tgccaccatt	300
ttcccagctg	tggagctgag	agaaccctag	cccaggagtc	aggaggcctg	ggttgggatc	360
ctggcttcac	cattgctagc	tggacaagcc	cattaacatg	gggatcatct	cacctgccct	420 480
gcctgcctgt	ctacctgcca	agagctgtac	tactgggcta	attcagggct	cttaacctgg	480 540
aattggtaca	tagatttcag	ggattctgtg	aatttggatg	gaaaaataat ++++c>+	tgtatctttg	600
ttttcaataa	cacctcacta	aaatgaagca	tatattasat	accettcece	aggcaacaaa atactttcat	660
gtaccagttg	anttante	catatetes	aatagtattt	atactcatca	ctgcttcaaa	720
atcatgttct	ttattaggg	caccactase	agttgatata	taatgtgtta	ataaatggca	780
catattatta	tatattacag	attttgaaaa	aga	ــــــ ر	2.5	813
2902204024		· 	•			

<210> 30 <211> 5 <212> DNA <213> Artificial

ctttga		5
<210> <211> <212> <213>	31 18 DNA Artificial	
<220> <223>	expression primer	
<400> ccaagg	31 gagt gtgcaagg	18
<210> <211> <212> <213>	25	
<220> <223>	expression primer	
<400> cctttg	32 ytaaa agccatcagg aaact	25