Problemas de Enzimologia

Série 2

- 1. Deduza a expressão para a equação da isoterma de Langmuir, para o caso de um receptor com um único site de ligação, quando a concentração do ligando é muito superior à do receptor.
- 2. No estudo da ligação de um ligando a um receptor R obtiveram-se os seguintes resultados para a variação da concentração do complexo em função do tempo, para 3 diferentes concentrações de ligando L:

	[RL] (µM)		
Tempo(s)	[L]=0.001M	[L]=0.05 M	[L]=0.2 M
0	0.00	0.00	0.00
2	1.83	2.44	4.06
4	3.32	4.29	6.47
6	4.54	5.68	7.90
8	5.54	6.74	8.75
10	6.35	7.53	9.26
12	7.02	8.14	9.56
14	7.56	8.59	9.74
16	8.01	8.94	9.84
18	8.37	9.20	9.91
20	8.67	9.39	9.95
22	8.91	9.54	9.97
24	9.11	9.65	9.98
26	9.27	9.74	9.99
28	9.41	9.80	9.99

Determine a constante K_d para o equilíbrio de dissociação.

3. Considere os seguintes dados para fracção de ocupação B de um determinado receptor em função da concentração de ligando L:

[L] (µM)	В	
10	0.33	
20	0.50	
30	0.60	
40	0.67	
50	0.71	
60	0.75	
70	0.78	
80	0.80	
90	0.82	
100	0.83	

Determine a constante K_d para o equilíbrio de dissociação.