Data and Computer Communications

Chapter 16 – High Speed LANs

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

High Speed LANs

Congratulations. I knew the record would stand until it was broken.

Yogi Berra

Introduction

- range of technologies
 - Fast and Gigabit Ethernet
 - Fibre Channel
 - High Speed Wireless LANs

Why High Speed LANs?

- speed and power of PCs has risen
 - graphics-intensive applications and GUIs
- see LANs as essential to organizations
 - for client/server computing
- now have requirements for
 - centralized server farms
 - power workgroups
 - high-speed local backbone

Ethernet (CSMA/CD)

- most widely used LAN standard
- developed by
 - Xerox original Ethernet
 - IEEE 802.3
- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
 - random / contention access to media

ALOHA

- developed for packet radio nets
- when station has frame, it sends
- > then listens for a bit over max round trip time
 - if receive ACK then fine
 - if not, retransmit
 - if no ACK after repeated transmissions, give up
- uses a frame check sequence (as in HDLC)
- frame may be damaged by noise or by another station transmitting at the same time (collision)
- any overlap of frames causes collision
- max utilization 18%

Slotted ALOHA

- time on channel based on uniform slots equal to frame transmission time
 - need central clock (or other sync mechanism)
- transmission begins at slot boundary
- frames either miss or overlap totally
- max utilization 37%
- both have poor utilization
- fail to use fact that propagation time is much less than frame transmission time

CSMA

- > stations soon know transmission has started
- so first listen for clear medium (carrier sense)
- if medium idle, transmit
- if two stations start at the same instant, collision
 - wait reasonable time
 - if no ACK then retransmit
 - collisions occur at leading edge of frame
- max utilization depends on propagation time (medium length) and frame length

Nonpersistent CSMA

- Nonpersistent CSMA rules:
 - 1. if medium idle, transmit
 - if medium busy, wait amount of time drawn from probability distribution (retransmission delay) & retry
- random delays reduces probability of collisions
- capacity is wasted because medium will remain idle following end of transmission
- nonpersistent stations are deferential

1-persistent CSMA

- 1-persistent CSMA avoids idle channel time
- 1-persistent CSMA rules:
 - 1. if medium idle, transmit;
 - if medium busy, listen until idle; then transmit immediately
- 1-persistent stations are selfish
- if two or more stations waiting, a collision is guaranteed

P-persistent CSMA

- a compromise to try and reduce collisions and idle time
- p-persistent CSMA rules:
 - if medium idle, transmit with probability p, and delay one time unit with probability (1–p)
 - 2. if medium busy, listen until idle and repeat step 1
 - 3. if transmission is delayed one time unit, repeat step 1
- issue of choosing effective value of p to avoid instability under heavy load

Value of p?

- have n stations waiting to send
- at end of tx, expected no of stations is np
 - if np>1 on average there will be a collision
- repeated tx attempts mean collisions likely
- eventually when all stations trying to send have continuous collisions hence zero throughput
- thus want np<1 for expected peaks of n</p>
 - if heavy load expected, p small
 - but smaller p means stations wait longer

CSMA/CD Description

- with CSMA, collision occupies medium for duration of transmission
- better if stations listen whilst transmitting
- CSMA/CD rules:
 - 1. if medium idle, transmit
 - 2. if busy, listen for idle, then transmit
 - 3. if collision detected, jam and then cease transmission
 - 4. after jam, wait random time then retry

CSMA/CD Operation

TIME t ₀		
A's transmission	n 🗁 🗖	
C's transmission	n	
Signal on bus		
TIME t_1		
A's transmission		
C's transmission	n	
Signal on bus		
TIME t ₂		
A's transmission	n 777777777777777777777777777777777777	
C's transmission		
Signal on bus	(// //////////////////////////////////	7777
TIME t_3		
A's transmission	n 📆 ///////////////////////////////////	
C's transmission	n	
Signal on bus	//. *********//////////////////////////	///////

Which Persistence Algorithm?

- > IEEE 802.3 uses 1-persistent
- both nonpersistent and p-persistent have performance problems
- 1-persistent seems more unstable than ppersistent
 - because of greed of the stations
 - but wasted time due to collisions is short
 - with random backoff unlikely to collide on next attempt to send

Binary Exponential Backoff

- for backoff stability, IEEE 802.3 and Ethernet both use binary exponential backoff
- stations repeatedly resend when collide
 - on first 10 attempts, mean random delay doubled
 - value then remains same for 6 further attempts
 - after 16 unsuccessful attempts, station gives up and reports error
- 1-persistent algorithm with binary exponential backoff efficient over wide range of loads
- but backoff algorithm has last-in, first-out effect

Collision Detection

- on baseband bus
 - collision produces higher signal voltage
 - collision detected if cable signal greater than single station signal
 - signal is attenuated over distance
 - limit to 500m (10Base5) or 200m (10Base2)
- on twisted pair (star-topology)
 - activity on more than one port is collision
 - use special collision presence signal

IEEE 802.3 Frame Format

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

10Mbps Specification (Ethernet)

	10BASE5	10BASE2	10BASE-T	10BASE-FP
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/on-off
Topology	Bus	Bus	Star	Star
Maximum segment length (m)	500	185	100	500
Nodes per segment	100	30	_	33
Cable diameter (mm)	10	5	0.4 to 0.6	62.5/125 μm

100Mbps Fast Ethernet

	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data ra te	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximu m segment length	100 m	100 m	100 m	100 m
Networ k span	200 m	200 m	400 m	200 m

100BASE-X

- uses a unidirectional data rate 100 Mbps over single twisted pair or optical fiber link
- encoding scheme same as FDDI
 - 4B/5B-NRZI
- two physical medium specifications
 - 100BASE-TX
 - uses two pairs of twisted-pair cable for tx & rx
 - STP and Category 5 UTP allowed
 - MTL-3 signaling scheme is used
 - 100BASE-FX
 - uses two optical fiber cables for tx & rx_
 - convert 4B/5B-NRZI code group into optical signals

100BASE-T4

- > 100-Mbps over lower-quality Cat 3 UTP
 - takes advantage of large installed base
 - does not transmit continuous signal between packets
 - useful in battery-powered applications
- can not get 100 Mbps on single twisted pair
 - so data stream split into three separate streams
 - four twisted pairs used
 - data transmitted and received using three pairs
 - two pairs configured for bidirectional transmission
- use ternary signaling scheme (8B6T)

100BASE-T Options

Full Duplex Operation

- traditional Ethernet half duplex
- using full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, giving a theoretical transfer rate of 200 Mbps
- stations must have full-duplex adapter cards
- and must use switching hub
 - each station constitutes separate collision domain
 - CSMA/CD algorithm no longer needed
 - 802.3 MAC frame format used

Mixed Configurations

- Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
- supporting older and newer technologies
 - e.g. 100-Mbps backbone LAN supports 10-Mbps hubs
 - stations attach to 10-Mbps hubs using 10BASE-T
 - hubs connected to switching hubs using 100BASE-T
 - high-capacity workstations and servers attach directly to 10/100 switches
 - switches connected to 100-Mbps hubs use 100-Mbps links
 - 100-Mbps hubs provide building backbone
 - connected to router providing connection to WAN

Gigabit Ethernet Configuration

Gigabit Ethernet - Differences

- carrier extension
 - at least 4096 bit-times long (512 for 10/100)
- frame bursting
- not needed if using a switched hub to provide dedicated media access

Gigabit Ethernet – Physical

10Gbps Ethernet

- growing interest in 10Gbps Ethernet
 - for high-speed backbone use
 - with future wider deployment
- alternative to ATM and other WAN technologies
- uniform technology for LAN, MAN, or WAN
- advantages of 10Gbps Ethernet
 - no expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
 - IP and Ethernet together offers QoS and traffic policing approach ATM
 - have a variety of standard optical interfaces

10Gbps Ethernet Configurations

10Gbps Ethernet Options

Fibre Channel - Background

- > I/O channel
 - direct point to point or multipoint comms link
 - hardware based, high speed, very short distances
- network connection
 - based on interconnected access points
 - software based protocol with flow control, error detection & recovery
 - for end systems connections

Fibre Channel

- combines best of both technologies
- channel oriented
 - data type qualifiers for routing frame payload
 - link level constructs associated with I/O ops
 - protocol interface specifications to support existing
 I/O architectures
- network oriented
 - full multiplexing between multiple destinations
 - peer to peer connectivity
 - internetworking to other connection technologies

Fibre Channel Requirements

- full duplex links with two fibers per link
- > 100 Mbps to 800 Mbps on single line
- support distances up to 10 km
- small connectors
- high-capacity utilization, distance insensitivity
- greater connectivity than existing multidrop channels
- broad availability
- multiple cost/performance levels
- carry multiple existing interface command sets for existing channel and network protocols

Fibre Channel Network

Fibre Channel Protocol Architecture

- FC-0 Physical Media
- FC-1 Transmission Protocol
- FC-2 Framing Protocol
- > FC-3 Common Services
- FC-4 Mapping

Fibre Channel Physical Media

	800 Mbps	400 Mbps	200 Mbps	100 Mbps
Single mode fiber	10 km	10 km	10 km	
50-µm multim ode fiber	0.5 km	1 km	2 km	
62.5-µm multim ode fiber	175 m	1 km	1 km	
Video coaxial cable	50 m	71 m	100 m	100 m
Mini ature coaxial cable	14 m	19 m	28 m	42 m
Shielded twisted pair	28 m	46 m	57 m	80 m

Fibre Channel Fabric

- most general supported topology is fabric or switched topology
 - arbitrary topology with at least one switch to interconnect number of end systems
 - may also consist of switched network
- routing transparent to nodes
 - when data transmitted into fabric, edge switch uses destination port address to determine location
 - either deliver frame to node attached to same switch or transfers frame to adjacent switch

Fabric Advantages

- scalability of capacity
- protocol independent
- distance insensitive
- switch and transmission link technologies may change without affecting overall configuration
- burden on nodes minimized

Alternative Topologies

- Point-to-point topology
 - only two ports
 - directly connected, so no routing needed
- Arbitrated loop topology
 - simple, low-cost topology
 - up to 126 nodes in loop
 - operates roughly equivalent to token ring
- topologies, transmission media, and data rates may be combined

Fibre Channel Applications

Fibre Channel Prospects

- backed by Fibre Channel Association
- various interface cards available
- widely accepted as peripheral device interconnect
- technically attractive to general high-speed LAN requirements
- must compete with Ethernet and ATM LANs
- cost and performance issues will dominate consideration of competing technologies

Summary

- High speed LANs emergence
- Ethernet technologies
 - CSMA & CSMA/CD media access
 - 10Mbps ethernet
 - 100Mbps ethernet
 - 1Gbps ethernet
 - 10Gbps ethernet
- Fibre Channel