MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 29th January, 2015 D1 - Lecture 11

Recall:

Two vectors $v, w \in \mathbb{R}^n$ are orthogonal if $v^T w = 0$

A set of vectors $\{v_1, v_2, \dots\} \subseteq \mathbb{R}^n$ is an **orthogonal set** if $v_i \neq 0$ for all i and $v_i^T v_j = 0$ for all $i \neq j$.

Every orthogonal set in \mathbb{R}^n is a linearly independent set.

Subspaces V and W of \mathbb{R}^n are orthogonal, $V \perp W$, if every vector in V is orthogonal to every vector in W.

If $V \perp W$ are orthogonal subspaces of \mathbb{R}^n , then dim $V + \dim W \leq n$.

Further, we can enlarge W to W', such that $V \perp W'$ and dim $V + \dim W' = n$.

Fundamental Theorem of Orthogonality - 1 $A: m \times n$ matrix, then row space of A is orthogonal to N(A), and C(A) is orthogonal to $N(A^T)$.

Orthogonal Complements

Definition. Let W be a subspace of \mathbb{R}^n . Its **orthogonal** complement $W^{\perp} = \{ v \in \mathbb{R}^n \mid v^T w = 0 \text{ for all } w \in W \}$.

Ex: W^{\perp} is a subspace of \mathbb{R}^n ,

i.e. $v_1, v_2 \in W^{\perp}$ and $c_1, c_2 \in \mathbb{R} \implies (c_1v_1 + c_2v_2) \in W^{\perp}$.

Theorem (Fundamental Theorem of Orthogonality - 2)

Let A be an $m \times n$ matrix.

- 1. Orthogonal complement of row space of A = N(A).
- 2. Orthogonal complement of column space of A = left nullspace $N(A^T)$.

F.T.O.-1:
$$C(A^T) \perp N(A) \Rightarrow N(A) \subset C(A^T)^{\perp}$$
.

F.T.O.-2:
$$\Longrightarrow N(A) = C(A^T)^{\perp}$$
.

Theorem: (Orthogonal Complement)

 $W \subseteq \mathbb{R}^n$: subspace \Rightarrow dim $W + \dim W^{\perp} = n$.

Proof. Let v_1, \ldots, v_r be a basis of W. Let A be a matrix with rows v_1, \ldots, v_r . Then rank(A) = r and W is row space of A. $W^{\perp} = N(A)$ is of dimension n - r. This proves the theorem.

Observation. $W+W^{\perp}=\mathbb{R}^n$ and $W\cap W\perp=0$. Hence every $v\in\mathbb{R}^n$ can be uniquely expressed as v=w+w', where $w\in W$ and $w'\in W^{\perp}$.

Therefore, if B is a basis of W and B' is a basis of W^{\perp} , then $B \cup B'$ is a basis of \mathbb{R}^n .

Some Consequences.

Let A be $m \times n$ of rank(A) = r. Then

- 1. $C(A^T)^{\perp} = N(A) \Rightarrow \dim(C(A^T)) = r \text{ and } \dim(N(A)) = n r.$
- 2. $C(A)^{\perp} = N(A^{T}) \Rightarrow \dim(C(A)) = r \text{ and } \dim(N(A^{T})) = m r.$
- 3. $C(A^T) \cap N(A) = 0$ and $\mathbb{R}^n = C(A^T) + N(A)$.

Similarly $C(A) \cap N(A^T) = 0$ and $\mathbb{R}^m = C(A) + N(A^T)$.

4. Every $x \in \mathbb{R}^n$ can be written uniquely as $x = x_r + x_n$, where $x_r \in C(A^T)$, $x_n \in N(A)$. Hence $Ax = Ax_r \in C(A)$.

The matrix A transforms its row space into its column space.

Orthogonal basis are good

Question. If
$$v = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, then $\mathcal{B} = \{v, w\}$ is a

basis of \mathbb{R}^2 . How to write $\begin{pmatrix} a & b \end{pmatrix}^T \in \mathbb{R}^2$ as a linear combination of v and w?

For this, we need to solve the system $c_1v + c_2w = (a \ b)^T$ by Gaussian eliminationq.

If we take an orthogonal basis for
$$\mathbb{R}^2$$
, e.g. $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, then to solve $c_1v + c_2w = (a \ b)^T$, $v^T(c_1v + c_2w) = v^T(a \ b)^T \Rightarrow c_1 = v^T(a \ b)/v^Tv = (a+b)/2$. Similarly, $c_2 = w^T(a \ b)/w^Tw = (-a+b)/2$.

Orthogonal basis: How?

Let W be a subspace of \mathbb{R}^n with basis $B = \{w_1, w_2\}$. It is good to have an orthogonal basis of W.

Question. How to find an orthogonal basis of W?

Question. How to find the orthogonal projection of $v \in \mathbb{R}^n$ onto the line spanned by $w \in \mathbb{R}^n$, denoted by $\operatorname{proj}_w v$.

$$\operatorname{proj}_w v = kw$$
 for some $k \in \mathbb{R}$.

$$w^{T}(v - \operatorname{proj}_{w}v) = 0$$

$$w^{T}(v - kw) = 0$$

$$w^{T}v - kw^{T}w = 0$$

$$k = \frac{w^{T}v}{w^{T}w}$$

Thus the orthogonal projection of v on the line Span(w) is

$$\operatorname{proj}_{w} v = \frac{w^{T} v}{w^{T} w} w$$

Example. If
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, then find the orthogonal

projection of b on the line spanned by a.

The projection is given by

$$\operatorname{proj}_{a}b = \frac{a^{T}b}{a^{T}a}a$$

Now
$$a^T b = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 6$$
 and $a^T a = 1 + 4 + 9 = 14$.

Therefore

$$\operatorname{proj}_{a}b = \frac{6}{14} \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

Linear Least square with one variable

Hooke's Law states that displacement x of the spring is directly proportional to the load (mass) applied, that is, m = kx.

Student A performs experiments to calculate spring constant k. The data collected says for loads 4, 7, 11 pounds applied, the displacement is 3, 5, 8 inches respectively. Hence we have the following system.

$$\begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix} k = \begin{pmatrix} 4 \\ 7 \\ 11 \end{pmatrix} \qquad (ak = b).$$

Clearly the data is inconsistent. If we allow for various errors, how to give an estimate of the spring constant.

Linear Least square with one variable

One method is to choose k that minimizes average error E given by $E^2 = (3k-4)^2 + (5k-7)^2 + (8k-11)^2.$

For minimum, $dE^2/dx = 0$.

$$\Rightarrow 2[(3k-4)3+(5k-7)5+(8k-11)8]=0$$

$$\Rightarrow (9+25+64)k - (4.3+7.5+11.8) = 0,$$

$$\Rightarrow a^T a k = a^T b$$

$$\Rightarrow k = a^{T}b/a^{T}a = 135/98.$$

The least square solution to the problem ax = b in one unknown is denoted by $\hat{x} = a^T b/a^T a$.

Thus the value of $\hat{k} = 135/98$ minimizes the error.

Linear Least square with several variable

Suppose system Ax = b is inconsistent, i.e. $b \notin C(A)$.

We want to find \hat{x} which minimizes the least square error E.

The error E = ||Ax - b|| is the distance from b to $Ax \in C(A)$.

We want the least square solution \hat{x} which minimizes E. This is same as finding the vector $p = A\hat{x}$ in the column space C(A) which is closest to b.

Thus p must be the orthogonal projection of b onto the column space C(A).

The error vector $e = b - A\hat{x}$ must be perpendicular to C(A). Since $C(A)^{\perp} = \text{left null space } N(A^T)$,

$$A^{T}(b - A\hat{x}) = 0 \text{ or } A^{T}A\hat{x} = A^{T}b$$

Therefore, to find \hat{x} , we need to solve $A^T A \hat{x} = A^T b$.

Example: Find the least square solution to the system

$$\begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} x = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \quad (Ax = b)$$

We need to solve $A^T A \hat{x} = A^T b$, i.e.

$$\begin{pmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} \hat{x} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 6 & -11 \\ -11 & 22 \end{pmatrix} \hat{x} = \begin{pmatrix} -4 \\ 11 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -11 & | & -4 \\ -11 & 22 & | & 11 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & -11 & | & -4 \\ 0 & 22 - (121/6) & | & 11 - (44/6) \end{pmatrix}$$
$$\frac{11/6 \hat{x_2} = 11/3}{6 \hat{x_1} - 22 = -4} \implies \hat{x_1} = 3.$$