

Mathématiques		ING 2 -GI
2017 - 2018	Rattrapage de statistiques	30/01/18 (2 h)

Calculatrice autorisée. 4 feuilles manuscrites R/V autorisées.

Exercice 1. QCM:

Indiquer, sur votre copie, la ou les lettres correspondant à la bonne ou aux bonnes réponses.

- 1. Le but d'un test de l'analyse de la variance, ANOVA, est de comparer :
 - A) des effectifs
 - B) des moyennes
 - C) des variances
 - D) des probabilités
- 2. Pour juger des qualités de deux estimateurs d'un paramètre θ , on compare :
 - A) leur biais
 - B) leur fonction de densité
 - C) leur risque quadratique

Exercice 2. Intervalle de confiance :

Une clinique a proposé une nouvelle opération chirurgicale, et a connu 40 échecs sur 200 tentatives. On note p le pourcentage de réussite de cette nouvelle opération.

- 1. Donner une estimation ponctuelle de p.
- 2. Donner un intervalle de confiance pour p de niveau de confiance 0,95.
- 3. Combien d'opérations la clinique devrait-elle réaliser pour connaître le pourcentage de réussite avec une précision de plus ou moins 1 %, au niveau de confiance 0, 95 ?

 On conservera la même estimation de la variance que précédemment.

Exercice 3. Test d'hypothèses et risques :

- 1. Donner la définition des risques de première et seconde espèce α et β , dans la théorie des tests statistiques.
- 2. Un test d'hypothèses, portant sur la moyenne μ d'une loi normale d'écart-type $\sigma=5$, est effectué pour départager :

$$H_0: \qquad \mu = \mu_0 = 12;$$

 $H_1: \qquad \mu = \mu_1 = 15.$

En se basant sur la moyenne observée \overline{x} d'un échantillon de taille n=25, on décide d'appliquer la règle de décision suivante :

si
$$\overline{x} < 14$$
, on décide H_0
si $\overline{x} \ge 14$, on décide H_1

- 3. Représenter graphiquement la région critique et les risques α et β .
- 4. Calculer α et β .
- 5. Quel devrait être l'effectif de l'échantillon pour que $\alpha = \beta = 0,01$? Déterminer alors la région d'acceptation de H_0 .

Exercice 4. khi-deux:

On s'interroge sur l'indépendance de deux variables : la catégorie socioprofessionnelle et le style d'éducation familiale.

On suppose que la population a été répartie en 3 catégories socioprofessionnelles (CSP), et on distingue entre éducation faible, souple ou rigide.

On dispose pour décider des tableaux de contingence observés et théoriques suivants :

Distribution observée :

	CSP1	CSP2	CSP3	Total
Faible	9	8	6	23
Souple	40	21	8	69
Rigide	10	22	31	63
Total	59	51	45	155

Distribution théorique :

	CSP1	CSP2	CSP3	Total			
Faible	8,75	7,57	6,68	23			
Souple	26,26	22,70	20,03	69			
Rigide	23,98	20,73	18,29	63			
Total	59	51	45	155			

- 1. Préciser sous quelle hypothèse, (H_0) , est obtenue la distribution théorique.
- 2. Expliquer comment est obtenue l'une des valeurs intérieures du tableau théorique (par exemple 22, 70).
- 3. La variable de décision de ce test est la distance du khi-deux dont la valeur ici est de : D = 18, 47. Expliquer comment est calculée cette distance.
- 4. Quelle est la loi suivie par D sous l'hypothèse (H_0) ?
- 5. Effectuer le test à l'aide de la valeur de D et de la table de la loi adéquate, et conclure quant à l'indépendance des deux variables qui nous intéressent.

Exercice 5. RLM:

Afin d'étudier l'impact des publicités télé, radio et presse sur les ventes d'une marque de chaussures, une régression linéaire multiple a été effectuée pour expliquer la variable Sales(Ventes) par les variables TV, Radio et Newspaper. Les résultats obtenus grâce au logiciel R, sont regroupés dans le tableau suivant :

```
Call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = ventes)
Residuals:
    Min
             1Q Median
                             30
                                     Max
-8.8277 -0.8908
                0.2418 1.1893
                                2.8292
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                   9.422
                                            <2e-16 ***
             2.938889
                        0.311908
             0.045765
                        0.001395
                                   32.809
                                            <2e-16 ***
TV
                                            <2e-16 ***
Radio
             0.188530
                        0.008611
                                  21.893
            -0.001037
                        0.005871
                                              0.86
Newspaper
                                  -0.177
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972,
                                Adjusted R-squared:
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

- 1. Pouvez-vous retrouver la taille de l'échantillon grâce à ces résultats?
- 2. Donner la formule permettant de prédire la variable Sales en fonction des autres.
- 3. Donner une interprétation de la valeur de \mathbb{R}^2 .
- 4. Que dit la p-valeur de la dernière ligne concernant la validité de ce modèle? Justifier votre réponse.
- 5. La ligne concernant la variable TV permet d'effectuer un test sur le coefficient de cette variable dans le modèle.
 - Préciser les hypothèses de ce test, et sa conclusion en justifiant vos réponses.
- 6. Quel changement peut-on apporter pour améliorer le modèle?