OpenIntro Statistics

Rodrigo Martins March 29, 2015

CHAPTER 1 - INTRODUCTION TO DATA

Exercise 1.1

Of the 224 patients in the treatment group, 45 had a stroke by the end of the first year. Using these two numbers, compute the proportion of patients in the treatment group who had a stroke by the end of their first year.

Table 1: Events - 0 to 30 days period

	no event	stroke
control	214	13
treatment	191	33
TOTAL	405	46

```
pander(s365, "Eventsp - 0 to 365 days period", emphasize.strong.rows = 3)
```

Table 2: Eventsp - 0 to 365 days period

	no event	stroke
control	199	28
${f treatment}$	179	45
TOTAL	378	73

ANSWER:

• Proportion of patientes who had a stroke in treatment group:

```
round(45/224,3); paste((round(45/224,3)*100),'%',sep="")
## [1] 0.201
```

[1] "20.1%"

• Proportion of patientes who had no stroke in treatment group :

```
round(179/224,3); paste((round(179/224,3)*100),'%',sep="")
```

- ## [1] 0.799
- ## [1] "79.9%"
 - Proportion of patientes who had stroke in control group :

```
round(28/227,2); paste((round(28/227,3)*100),'%',sep="")
```

- ## [1] 0.12
- ## [1] "12.3%"
 - Proportion of patientes who had no stroke in control group :

```
round(199/227,2); paste((round(199/227,3)*100),'%',sep="")
```

- ## [1] 0.88
- ## [1] "87.7%"

Exercise 1.2

We consider a publicly available data set that summarizes information about the 3,143 counties in the United States, and we call this the county data set. This data set includes information about each county: its name, the state where it resides, its population in 2000 and 2010, per capita federal spending, poverty rate, and five additional characteristics. How might these data be organized in a data matrix?

ANSWER:

```
setwd("/Volumes/E-Books and articles/e-Books & articles/R/OpenIntro Statistics/openintroData")
load("county.rda")
library(pander)
panderOptions("table.split.table", 110)
pander(summary(county), "county summary")
```

Table 3: county summary (continued below)

name	state	pop2000	pop2010	fed_spend
Washington County: 30	Texas: 254	Min.: 67	Min.: 82	Min.: 0.000
Jefferson County: 25	Georgia: 159	1st Qu.: 11210	1st Qu.: 11104	1st Qu.: 6.964
Franklin County: 24	Virginia: 134	Median: 24608	Median: 25857	Median: 8.669
Jackson County: 23	Kentucky: 120	Mean: 89623	Mean: 98233	Mean: 9.991
Lincoln County: 23	Missouri: 115	3rd Qu.: 61766	3rd Qu.: 66699	3rd Qu.: 10.857
Madison County: 19	Kansas: 105	Max. :9519338	Max. :9818605	Max. :204.616
(Other):2999	(Other): 2256	NA's :3	NA	NA's :4

poverty	homeownership	multiunit	income	med_income	smoking_ban
Min.: 0.0	Min.: 0.00	Min.: 0.00	Min.: 7772	Min.: 19351	comprehensive: 524
1st Qu.:11.0	1st Qu.:69.50	1st Qu.: 6.10	1st Qu.:19030	1st Qu.: 36952	none:1911

poverty	homeownership	multiunit	income	med_income	smoking_ban
Median :14.7	Median :74.60	Median: 9.70	Median :21773	Median : 42445	partial: 681
Mean $:15.5$	Mean : 73.26	Mean $:12.33$	Mean $:22505$	Mean: 44270	NA's: 27
3rd Qu.:19.0	3rd Qu.:78.40	3rd Qu.:15.90	3rd Qu.:24814	3rd Qu.: 49142	NA
Max. $:53.5$	Max. $:91.30$	Max. $:98.50$	Max. :64381	Max. :115574	NA
NA	NA	NA	NA	NA	NA

```
panderOptions("table.split.table", 100)
panderOptions("round", 4)
panderOptions("keep.trailing.zeros", TRUE)
pander(head(cbind(entry = 1:nrow(county), county), 5), "How to organize it in a data matrix")
```

Table 5: How to organize it in a data matrix (continued below)

entry	name	state	pop2000	pop2010	fed_spend	poverty
1	Autauga County	Alabama	43671	54571	6.068	10.6
2	Baldwin County	Alabama	140415	182265	6.140	12.2
3	Barbour County	Alabama	29038	27457	8.752	25.0
4	Bibb County	Alabama	20826	22915	7.122	12.6
5	Blount County	Alabama	51024	57322	5.131	13.4

homeownership	$\operatorname{multiunit}$	income	med _income	smoking_ban
77.5	7.2	24568	53255	none
76.7	22.6	26469	50147	none
68.0	11.1	15875	33219	none
82.9	6.6	19918	41770	none
82.0	3.7	21070	45549	none

• Types of variables in county

str(county)

```
3143 obs. of 11 variables:
## 'data.frame':
##
    $ name
                   : Factor w/ 1877 levels "Abbeville County",..: 83 90 101 151 166 227 237 250 298 320 ...
                   : Factor w/ 51 levels "Alabama", "Alaska", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
##
    $ state
   $ pop2000
                         43671 140415 29038 20826 51024 11714 21399 112249 36583 23988 ...
                          54571 182265 27457 22915 57322 10914 20947 118572 34215 25989 ...
##
   $ pop2010
                   : int
##
  $ fed_spend
                   : num
                          6.07 6.14 8.75 7.12 5.13 ...
## $ poverty
                   : num
                         10.6 12.2 25 12.6 13.4 25.3 25 19.5 20.3 17.6 ...
                         77.5 76.7 68 82.9 82 76.9 69 70.7 71.4 77.5 ...
## $ homeownership: num
                  : num 7.2 22.6 11.1 6.6 3.7 9.9 13.7 14.3 8.7 4.3 ...
## $ multiunit
## $ income
                   : num 24568 26469 15875 19918 21070 ...
## $ med income
                   : num 53255 50147 33219 41770 45549 ...
## $ smoking_ban : Factor w/ 3 levels "comprehensive",..: 2 2 2 2 2 2 2 3 2 1 ...
plot(fed_spend ~ poverty, county, xlim = c(0, 55), ylim = c(0, 32), xlab = "Poverty Rate (Percent)",
    ylab = "Federal Spending Per Capita", las = 1, yaxt = "n", pch = 19, col = "lightblue",
    cex = 0.8
axis(2, at = c(0, 10, 20, 30), las = 2)
text(45, 33, "32 countries with higher\nfederal spending are not shown", pos = 1)
points(fed_spend ~ poverty, county, type = "p", pch = 15, cex = 0.3)
points(fed_spend[county$name == "Owsley County"] ~ poverty[county$name == "Owsley County"],
```

```
county, type = "p", pch = 1, cex = 1.8, col = "red", lwd = 2)
segments(x0 = county$poverty[county$name == "Owsley County"], y0 = -1, x1 = county$poverty[county$name ==
    "Owsley County"], y1 = county$fed_spend[county$name == "Owsley County"] -
    0.8, lty = 2, col = "red")
segments(x0 = -2, y0 = county$fed_spend[county$name == "Owsley County"], x1 = county$poverty[county$name ==
    "Owsley County"] - 0.8, y1 = county$fed_spend[county$name == "Owsley County"],
    lty = 2, col = "red")
```


Figure 1: A scatterplot showing fed spend against poverty. Owsley County of Kentucky, with a poverty rate of 41.5% and federal spending of \$21.50 per capita, is highlighted.

Exercise 1.3

Data were collected about students in a statistics course. Three variables were recorded for each student: number of siblings, student height, and whether the student had previously taken a statistics course. Classify each of the variables as continuous numerical, discrete numerical, or categorical.

ANSWER:

- Number of siblings = mumerical, discrete.
- Student height = numerical, continuous.
- Statistics course (Y/N) = categorical.

Exercise 1.4

Consider the variables group and outcome (at 30 days) from the stent study in Section 1.1. Are these numerical or categorical variables?

ANSWER: Categorical.

```
library(pander)
pander(s30, "Events - 0 to 30 days period", emphasize.strong.rows = 3)
```

Table 7: Events - 0 to 30 days period

	no event	stroke
$\operatorname{control}$	214	13
treatment	191	33
TOTAL	405	46

```
pander(head(cbind(entry = 1:nrow(stent), stent[, 1:2]), 5), "Head of stent data")
```

Table 8: Head of stent data

entry	group	outcome
1	treatment	stroke
2	treatment	stroke
3	treatment	stroke
4	treatment	stroke
5	treatment	stroke

```
plot(homeownership ~ multiunit, county, ylim = c(0, 90), xlab = "Percent of Units in Multi-Unit Structures",
    ylab = "Percent of Homeownership", las = 1, xaxt = "n", yaxt = "n", pch = 19,
    col = "lightblue", cex = 0.8)
axis(1, at = c(0, 20, 40, 60, 80, 100), lab = paste0(seq(0, 100, by = 20), "%"),
    las = 1)
axis(2, at = c(0, 20, 40, 60, 80), lab = paste0(seq(0, 80, by = 20), "%"), las = 2)
points(homeownership ~ multiunit, county, type = "p", pch = 15, cex = 0.3)
```


Figure 2: A scatterplot of homeownership versus the percent of units that are in multi-unit structures for all 3,143 counties.

Exercise 1.5

Examine the variables in the email50 data set, which are described in Table 1.4 on page 4. Create two questions about the relationships between these variables that are of interest to you.

- Is the number of destinataries (to_multiple) related to spam messages?
- Is the number of dollar signs (dollar) related to spam messages?

```
setwd("/Volumes/E-Books and articles/e-Books & articles/R/OpenIntro Statistics/openintroData")
load('email50.rda')
library(pander)
panderOptions("table.split.table", 120)
panderOptions('keep.trailing.zeros', TRUE)
pander(head(email50,5),"Head - email50 data set")
```

Table 9: Head - email50 data set (continued below)

spam	$to_multiple$	$_{ m from}$	$^{\rm cc}$	$sent_email$	$_{ m time}$	image	attach	dollar
0	0	1	0	1	2012-01-04 05:19:16	0	0	0
0	0	1	0	0	2012-02-16 12:10:06	0	0	0
1	0	1	4	0	2012-01-04 07:36:23	0	2	0
0	0	1	0	0	2012-01-04 09:49:52	0	0	0
0	0	1	0	0	$2012\text{-}01\text{-}27\ 01\text{:}34\text{:}45$	0	0	9

Table 10: Table continues below

winner	inherit	viagra	password	num_char	line_breaks	format	re_subj
no	0	0	0	21705	551	1	1
no	0	0	0	7011	183	1	0
no	0	0	0	631	28	0	0
no	0	0	0	2454	61	0	0
no	0	0	1	41623	1088	1	0

exclaim_subj	urgent_subj	exclaim_mess	number
0	0	8	small
0	0	1	$_{ m big}$
0	0	2	none
0	0	1	small
0	0	43	small