Programming for Biololgy Similarity Searching II –

Practical search strategies

Bill Pearson wrp@virginia.edu

CSHL Programming for Biology

1

Why is this material important?

- · You might be asked to find a homolog
- You might be asked to what your gene/protein does
 - Annotated homologs are missed because databases are large and redundant
 - Short domains and short exons are missed because the "standard" matrix needs long alignments
 - Sometimes, alignments include non-homologous regions

CSHL Programming for Biology

2

- Always search protein databases (possibly with DNA blastx, fastx)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
 - Less redundancy; higher sensitivity
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension

CSHL Programming for Biology

3

3

Review – Sequence Similarity - Conclusions

- <u>Homologous</u> sequences share a common ancestor, but most sequences are <u>non-</u> <u>homologous</u>
- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant

CSHL Programming for Biology

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. When to do something different (changing scoring matrices)
- 5. Is every aligned domain homologous?
- 6. (Tomorrow) more sensitive methods (PSI-BLAST, HMMER)

CSHL Programming for Biology

5

5

1. What question to ask?

- Is there an homologous protein (a protein with a similar structure)?
- Does that homologous protein have a similar function?
- Does XXX genome have YYY (kinase, GPCR, ...)?

Questions not to ask:

- Does this DNA sequence have a similar regulatory element (too short – never significant)?
- Does (non-significant) protein have a similar function/modification/antigenic site?

CSHL Programming for Biology

6

2. What program to run?

- What is your query sequence?
 - protein BLASTP (NCBI), SSEARCH (EBI)
 - protein coding DNA (EST) –
 BLASTX (NCBI), FASTX (EBI)
 - DNA (structural RNA, repeat family) –
 BLASTN (NCBI), FASTA (EBI)
- Does XXX genome have YYY (protein)?
 - TBLASTN YYY vs XXX genome
 - TFASTX YYY vs XXX genome
- Does my protein contain repeated domains?
 - LALIGN (UVa http://fasta.bioch.virginia.edu, EBI)

CSHL Programming for Biology

7

7

NCBI BLAST Server blast.ncbi.nlm.nih.gov NCBI National Center for Biotechnology Information BLAST ® Recent Results Saved Strategies Help **Basic Local Alignment Search Tool** BLAST+ 2.13.0 is here! Starting with this release, we are including the blastn_vdb and tblastn_vdb executables in the BLAST-**BLAST** finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Thu, 17 Mar 2022 12:00:00 EST Yes Yes Web BLAST **Nucleotide BLAST Protein BLAST** tblastn Always compare protein sequences Search CSHL Programming for Biology

3. What database to search?

- Search the smallest comprehensive database likely to contain your protein
 - vertebrates human proteins (40,000)
 - NCBI Landmark sequences (human, mouse, no rat)
 - Quest for Orthologs reference proteomes (1,000,000)

Search a richly annotated protein set (SwissProt: 500,00) Non-redundant protein sequence

- Always search NR
- Never Search "Gen

Non-redundant protein sequences (nr)

Non-redundant protein sequences (nr)

RefSeq Select proteins (refseq_select)
Reference proteins (refseq_protein)

Model Organisms (landmark)
UniProtKB/Swiss-Prot(swissprot)
Patented protein sequences(pataa)
Protein Data Bank proteins(pdb)
Metagenomic proteins(env_nr)
Transcriptome Shotgun Assembly proteins (tsa_nr)

CSHL Programming for Biology

- Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homology
 E() < 0.001 is significant in a single search

1. Search smaller (comprehensive) databases

- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

11

11

Homology inferences are reliable because similarity statistics are accurate (I) (we know how unrelated sequences behave)

Distributions of similarity scores in searches with 5 human enzymes. Open circles (_nh) show scores for non-homologs. Closed circles show homolog (_h) scores.

CSHL Programming for Biology

Why smaller databases are better - statistics

$$S' = \lambda S_{raw} - In K m n$$

$$S_{bits} = (\lambda S_{raw} - In K)/In(2)$$

$$P(S'>x) = 1 - exp(-e^{-x})$$

$$P(S_{bits} > x) = 1 - exp(-mn2^{-x})$$

$$E(S'>x ID) = P D$$

$$Bonferroni correction$$

P(B bits) = m n 2^{-B} P(40 bits)= 1.5x10⁻⁷ E(40 | D=4000) = 6x10⁻⁴ E(40 | D=500E6) = 75

CSHL Programming for Biology

13

13

Local similarity statistics

```
\begin{split} S' &= \lambda S_{raw} \text{ - In K m n} \quad \text{m: query length, n: subj length} \\ S_{bit} &= (\lambda S_{raw} \text{ - In K)/In(2)} \\ P(S'>x) &= 1 \text{ - exp(-e^-x')} \\ P(S'>x) &= e^{-x} \quad \text{(for P < 0.1)} \end{split}
```

$$P(S_{bits} > bits) = 1 - exp(-mn2^{-x})$$

 $P(S_{bits} > bits) = mn2^{-bits}$ (for P < 0.1)

$$E(S', S_{bits} | D) = PD$$

 $E(S_{bits} | D) = D mn2^{-bits}$ Bonferroni correction

dblength = D n $E(S_{bit}) = m dblength 2^{-bits} (BLAST)$

CSHL Programming for Biology

3. What database to search?

Database	Size	Bits (0.001)
Landmark	441 thousand	47
SwissProt	480 thousand	47
Refseq_Select	64 million	53
Refseq_Protein	234 million	55
NR (clustered)	242 million	55
NR	510 million	56

CSHL Programming for Biology

17

17

- Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homology
 E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension

CSHL Programming for Biology

19

19

Scoring matrices – shifting lookback (where do those bits come from?)

- Scoring matrices can set the evolutionary lookback time for a search
 - Lower PAM (PAM10/VT10 ... PAM/VT40) for closer (10% ... 50% identity)
 - Higher BLOSUM for higher conservation (BLOSUM50 distant, BLOSUM80 conserved)
- Shallow scoring matrices for short domains/short queries (metagenomics)
 - Matrices have "bits/position" (score/position), 40 aa at 0.45 bits/position (BLOSUM62) means 18 bit ave. score (50 bits significant)
- Deep scoring matrices allow alignments to continue, possibly outside the homologous region

CSHL Programming for Biology

Scoring matrices and alignment length Pam250 Pam40 12 -7 -10 -7 12 -8 -11 -9 -16 -12 -1 10 q_{ij} : homolog frequency wat PAM40, 250 $q_{R:N(40)} = 0.000435$ $p_R = 0.051$ $\lambda S_{i,j} = \log_b(\frac{q_{i,j}}{p_i p_j})$ $p_N = 0.043$ $q_{R:N(250)} = 0.002193$ $p_R p_N = 0.002193$ $\lambda_2 S_{ij} = \lg_2 (q_{ij}/p_ip_i) \lambda_e S_{ij} = \ln(q_{ij}/p_ip_i)$ $\lambda_2 S_{R:N(40)} = Ig_2 (0.000435/0.00219) = -2.333$ $\lambda_2 = 1/3$; $S_{R:N(40)} = -2.333/l_2 = -7$ $\lambda S_{R:N(250)} = Ig2 (0.002193/0.002193) = 0$ CSHL Programming for Biology

Empirical matrix performance (median results from random alignments)							
Matrix	target % ident	bits/position	aln len (50 bits)				
VT160 -12/-2	23.8	0.26	192				
BLOSUM50 -10/-2	25.3	0.23	217				
BLOSUM62* -11/-1	28.9	0.45	111				
VT120 -11/-1	27.4	1.03	48				
VT80 -11/-1	51.9	1.55	32				
PAM70* -10/-1	33.8	0.64	78				
PAM30* -9/-1	45.5	1.06	47				
VT40 -12/-1	72.7	2.76	18				
VT20 -15/-2	84.6	3.62	13				
VT10 /16/-2	90.9	4.32	12				
HMMs can be very "deep"							
Pearson (2013) Curr. Prot. Bioinformatics 3.5.1 CSHL Programming for Biology							

Scoring matrices, alignment length, and exon detection – bovine PCBP2										
		start			VT10	bits	BP62	Bits	PAM30	Bits
	name ex 1	Start 1	end 23	len 23	V I I U	58	+5	45	+5	57
	ex_1	24	31	8	=	30	-	<25	+5	19
	ex_2	32	42	11	_	36	+1	27	_	26
	ex_3	43	81	39	_	88	=	61	+5	95
	ex_4	82	125	44	_	96	_	66	=	104
	ex_6	126	168	43	_	96	+5	65	+7	106
	ex 7	169	197	29	=	69	+2	50	+2	70
	ex 8	198	228	31	=	76	+43	53	=	80
	ex 9	229	242	14	+4	40	+4	32	+2	37
	ex 10	243	266	24	+5	60	+87	45	+5	68
	ex_11	267	280	14	=	42	+38	32	=	43
	ex_12	281	297	17	=	49	+2	34	_	
	ex_13	298	354	57	=	120	=	78	+9	135
	ex_14	355	365	11	=	37	=	32	-	
VT10 BP62 qRegion: bits=71.5; Id=1.000; exon_8-8 qRegion: 191-292										
Shallow matrix (MD10) finds exon and exon boundaries			kon	Deep (sensitive) matrix (BP62) finds exon, but overextends exon boundaries						
The exon is present in cow, but not detected because it is sho										

Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- Shallow matrices set maximum look-back time
- Short alignments (domains, exons, reads) require shallow (higher information content) matrices

CSHL Programming for Biology

27

27

Effective Similarity Searching

- Always search protein databases (possibly with DNA blastx, fastx)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- Search smaller (comprehensive) databases
 - Less redundancy; better sensitivity
- 2. Change the scoring matrix for:
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - short sequences (exons, reads)
 - high identity (>50% alignments) to reduce over-extension

CSHL Programming for Biology

Homology, non-homology, and over-extension

- Sequences that share statistically significant sequence similarity are homologous (simplest explanation)
- But not all regions of the alignment contribute uniformly to the score
 - lower identity/Q-value because of non-homology (overextension) ?
 - lower identity/Q-value because more distant relationship (domains have different ages) ?
- Test by searching with isolated region
 - can the <u>distant domain (?)</u> find closer (significant) homologs?
- Similar (homology) or distinct (non-homology) structure is the gold standard
- Multiple sequence alignment can obscure over-extension
 - if the alignment is over-extended, part of the alignment is NOT homologous

CSHL Programming for Biology

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

3

31

workshop II – parsing blast results

Goto:

fasta.bioch.virginia.edu/mol_evol/pfb_python_matrices.html

Your goal is to reproduce a version of this table:

Matrix			evalue
VT160	29.7	67	2.1
BLOSUM50	34.0	121	1.2
BLOSUM62* -11/-1	31.2	90	0.37
VT80	66.7	50	1.8
VT40	72.7	11	1.3

CSHL Programming for Biology