CS3205: Introduction to Computer Networks

Assignment 3

Mandala Tejesh - CS19B062 April 27, 2022

1 Simulation of TCP Congestion control algorithm

Probability of successfully receiving acknowledgement for a packet before timeout P_s . Congestion window size is plotted against update number for the following parameter combinations:

$$K_i \in \{1, 4\}$$
 $K_m \in \{1, 1.5\}$ $K_n \in \{0.5, 1\}$ $K_f \in \{0.1, 0.3\}$ $P_s \in \{0.99, 0.9999\}$

1.1 Probability of successful acknowledgement $P_s = 0.99$

Figure 1: Dip on timeout is inversely proportional to K_f

Figure 2: Congestion window size change with change in K_n

As observed in Figure 2, congestion window size rapidly increases in linear phase when K_n is higher.

Figure 3: Congestion window size change with change in K_i

As shown in Figure 3, during the exponential growth phase of the congestion window size, if K_m is greater, CW rapidly increases as observed in Figure 3(b).

Figure 4: Congestion window size change with change in K_i

As shown in Figure 4, higher K_i initializes the congestion window size to a higher value, apart from this, no significant difference is observed in these plots.

1.2 Probability of successful acknowledgement $P_s = 0.9999$

The plots obtained for $P_s = 0.9999$ are mostly similar because transmission success is very high.

Figure 5: CW grows more rapidly during exponential phase when K_m is higher

As observed in Figure 5, threshold is crossed in 320 updates when $K_m = 1.5$ whereas it took 480 updates when $K_m = 1$

Number of segments to be transmitted is varied and the following plots are obtained:

Figure 6

1.3 Conclusion

- Most of the updates are in linear growth phase since CW rapidly increases in the exponential phase.
- On timeout, CW decrease is inversely proportional to K_f , if it is too small then a huge penalty is imposed for even a single packet loss which might affect the performance.

1.4 Other Plots

All the remaining combinations of the plots are as follows:

