Acidity of Carboxylic Acids

Draw some examples of carboxylic acids. Why are they acidic? What is a typical pK_a ?

For each of the following carboxylic acids, change the structure slightly so that the acid becomes *more acidic*. Explain why that change is effective.

For each of the following carboxylic acids, change the structure slightly so that the acid becomes *less acidic*. Explain why that change is effective.

Reading: Section 20.1 and 20.4

Carboxylic Acid Derivatives

Draw some examples of each of the following carboxylic acid derivatives (CADs):
Ester (and lactone)
Amide (and lactam)
Acid halide
Acid anhdyride
Nitrile

Some Syntheses of Carboxylic Acids & Nitriles

You already know some ways of making carboxylic acids. What are they?

Here's another way to make a carboxylic acid. Can you draw the mechanism?

You also know some ways to make nitriles. What are they? Why are they special?

Frontier Orbitals of Carboxylic Acids & Derivatives

For each of the following species, identify the HOMO and LUMO and predict how the molecule will react with an acid, with a base, with a nucleophile, and with an electrophile. Explain your reasoning in each case.

$$\bigvee_{OH}$$

$$\bigcup_{H}^{O}$$

Reading: Section 20.7

Reactivity of Carboxylic Acids & Derivatives

Explain the following relative order of reactivity, which is observed whenever these CADs react with **nucleophiles**.

more reactive

Reading: Section 21.7

Converting Between Carboxylic Acid Derivatives

One carboxylic acid derivative can be converted into another by **nucleophilic acyl substitution**. There are two types of mechanisms; draw curved-arrow mechanisms for each.

Nucleophilic acyl substitution under acidic conditions:

Nucleophilic acyl substitution under **basic conditions**:

Converting Between Carboxylic Acid Derivatives: Some Problems

The nucleophile must be *nucleophilic enough*The electrophile must be *electrophilic enough*The incoming nucleophile must be a *worse leaving group*than the outgoing one.

Making Carboxylic Acids from Other CADs

Rule 1: Any carboxylic acid derivative can be hydrolyzed to a carboxylic acid

Draw complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c|c}
0 & H^{+} & 0 \\
NR_{2} & H_{2}O, \Delta
\end{array}$$
OH

Acid halides & anhydrides react directly with water.

Esters require (mild) acid or base catalysis.

Amides and nitriles require strong acid/base and heat.

Rule 2: Acid Chlorides can only be made from Carboxylic Acids

Draw complete curved-arrow mechanisms for the following reactions:

$$\sim$$
 OH \sim Cl

Rule 3: Acid Chlorides be turned into any other CAD

Draw complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c|c}
O & R-NH_2 & O \\
\hline
Cl & pyridine & H
\end{array}$$

Transesterification:

Le Chatelier's Principle at work

Nitriles:

"Masked" 1° Amides

Provide a complete curved-arrow mechanism for the following reaction:

$$H_3C-C \equiv N$$
 $\xrightarrow{H^+}$ H_3C OH OH

Nitriles can be synthesized by dehydration of primary amides:

$$H_3C$$
 NH_2 P_2O_5 $H_3C-C\equiv N$

Putting it Together: Interconverting Between CADs

Esters are Special: Other Mechanisms of Formation/Hydrolysis

Draw a complete curved-arrow mechanism for the following reaction:

Here are several other reactions involving ester formation or "hydrolysis;" identify the types of mechanisms, and – on your own! – do the curved-arrow mechanisms.

Reading: Section 20.8

Irreversible Addition to CADs: Reduction of Esters & Acids with LiAlH₄

Provide complete curved-arrow mechanisms for the following reactions:

Irreversible Addition to CADs: Reduction Amides and Nitriles with LiAlH₄

Provide complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c|c}
0 \\
N \\
R
\end{array}
\qquad
\begin{array}{c}
1. \text{ LiAlH}_4 \\
\hline
2. \text{ H}^{\dagger} \text{ w/up}
\end{array}
\qquad
\begin{array}{c}
N \\
H
\end{array}$$

$$H_3C-C\equiv N$$
 $\frac{1. \text{LiAlH}_4}{2. \text{H}^+ \text{w/up}}$ $H_3C \nearrow NH_2$

Test Yourself Now!

Provide a complete curved-arrow mechanism for the following reaction:

$$\begin{array}{c|c}
 & 1. \text{ LiAlH}_4 \\
 & 2. \text{ H}^+ \text{ w/up} \\
\hline
 & 3. \text{ H}_2\text{SO}_4
\end{array}$$

Irreversible Addition to CADs:

Organometallic Reagents

Provide complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c|c}
\hline
 & O \\
\hline
 & OR \\
\hline
 & 2. \text{ H}^+ \text{ w/up}
\end{array}$$