Networks in R - Project 3 - R Package Dependencies

Project Description

The network chosen for the project is the set of R packages built from two subsets

- the base packages
- the packages available on CRAN

with dependencies between them. The network data was gathered by using the 01_build_net.R script.

There are four types of links between packages

- "Depends". Directive attempts to ensure that a function from another package is available by attaching the other package to the main search path (i.e. the list of environments returned by search()). Which sometimes can lead to collisions with names. It's not recommended type of dependency).
- "Imports". Packages listed here must be present for your package to work. In fact, any time your package is installed, those packages will, if not already present, be installed on your computer (devtools::load_all() also checks that the packages are installed). However, it does not mean that it will be attached along with your package. The best practice is to explicitly refer to external functions using the syntax package::function().
- "Suggests". Your package can use these packages, but doesn't require them. You might use suggested packages for example datasets, to run tests, build vignettes, or maybe there's only one function that needs the package. Packages listed in Suggests are not automatically installed along with your package.
- "Enhances". Packages listed here are "enhanced" by your package. Typically, this means you provide methods for classes defined in another package (a sort of reverse Suggests). But it's hard to define what that means, so I don't recommend using Enhances.

The "Suggests" and "Enhances" relations are out of scope for the project as they don't impose hard dependency i.e. a package may work without them. Further, we consider only the "Depends" and "Imports" relations and consider them equal from our research's point of view.

The motivation is to investigate into what are the most 'powerful' R packages in terms of their relations to the rest of packages.

Data Format

The network data is saved in two formats:

- the GML format in the r packages.gml file.
- the Pajek format in the r_packages.net file.

Basic Network Characteristics

The nodes represent web pages, each page describes some Wikipedia social norm. The links are the HTTP reference from one page to another.

It's a directed graph by its nature, no weights assigned to the links.

Property	Value	
Vertices	12014	
Edges	44474	

Property	Value
Directed	Yes
Weighted	No
Average degree	7.4
Diameter	24
Acyclic	No
Edge density	0.000308153487403795
Average Path Length	7.42077189595423
Transitivity (global)	0.00329920190110913

Interesting to note there are isolated packages i.e. without any relations to any other packages, their percentage is

[1] 13.3

Top Nodes

The most popular packages in terms of others depending on them, the

The first 50 nodes with the largest number of in-degree. The high number of total degree for a node is expectedly provided by incoming dependecies.

## [1] Page Name	Туре	In-degree Out-degree		Total Degree
## [1]				
## [1] stats	base	2812	7	2819
## [1] methods	base	2263	4	2267
## [1] utils	base	1721	0	1721
## [1] graphics	base	1503	0	1503
## [1] Rcpp	CRAN	1213	0	1213
## [1] MASS	CRAN	1144	6	1150
## [1] ggplot2	CRAN	1129	3	1132
## [1] grDevices	base	913	3	916
## [1] dplyr	CRAN	693	6	699
## [1] Matrix	CRAN	665	13	678
## [1] parallel	base	652	4	656
## [1] plyr	CRAN	551	1	552
## [1] mvtnorm	CRAN	481	20	501
## [1] stringr	CRAN	485	4	489
## [1] magrittr	CRAN	441	2	443
## [1] survival	CRAN	429	2	431
## [1] httr	CRAN	413	10	423
## [1] jsonlite	CRAN	417	5	422
## [1] sp	CRAN	404	2	406
## [1] lattice	CRAN	393	0	393
## [1] data.table	CRAN	379	8	387
## [1] foreach	CRAN	351	5	356
## [1] grid	base	351	1	352
## [1] reshape2	CRAN	346	4	350
## [1] igraph	CRAN	341	4	345
## [1] shiny	CRAN	279	2	281
## [1] tibble	CRAN	263	10	273
## [1] tidyr	CRAN	256	3	259

##	[1]	doParallel	CRAN	240	6	246
##	[1]	RColorBrewer	CRAN	242	3	245
##	[1]	coda	CRAN	226	3	229
##	[1]	raster	CRAN	229	0	229
##	[1]	XML	CRAN	219	2	221
##	[1]	Z00	CRAN	214	0	214
##	[1]	RCurl	CRAN	192	7	199
##	[1]	scales	CRAN	192	4	196
##	[1]	purrr	CRAN	193	1	194
##		nlme	CRAN	176	6	182
##	[1]	lubridate	CRAN	178	2	180
##	[1]	gridExtra	CRAN	174	4	178
##	[1]	numDeriv	CRAN	172	3	175
##	[1]	xm12	CRAN	169	3	172
##	[1]	ape	CRAN	170	0	170
##		rgl	CRAN	168	1	169
##		tools	base	166	0	166
##	[1]	splines	base	163	1	164
##		tcltk	base	158	4	162
##	[1]	boot	CRAN	161	1	162
##	[1]	digest	CRAN	156	0	156
##	[1]	mgcv	CRAN	153	2	155

The most dependent packages (sorted in the descending order of out-degree)

## [1] Page Name	Type	In-degree Out-degree		Total Degree	
## [1]					
## [1] ggnetwork	CRAN	3	40	43	
## [1] dHSIC	CRAN	1	39	40	
## [1] seriation	CRAN	11	37	48	
## [1] Tcomp	CRAN	0	36	36	
## [1] uqr	CRAN	0	32	32	
## [1] dagR	CRAN	0	31	31	
## [1] merror	CRAN	0	30	30	
## [1] sisVIVE	CRAN	0	30	30	
## [1] pumilioR	CRAN	0	29	29	
## [1] qboxplot	CRAN	0	29	29	

Components

The nodes along the first found path of the diameter distance.

V(net)\$name[get.diameter(net)]

```
[1] "adhoc"
                      "ade4"
                                                 "corrplot"
                                    "methods"
                                                               "wavethresh"
##
    [6] "data.table" "reshape2"
                                    "jsonlite"
                                                 "checkmate"
                                                               "pls"
  [11] "httpuv"
                      "fastmatch"
                                    "kinship2"
                                                 "ddR"
                                                               "Rlibeemd"
## [16] "googleVis"
                      "sqldf"
                                    "tcltk"
                                                 "mosaic"
                                                               "move"
   [21] "BiasedUrn"
                      "mitools"
                                    "daewr"
                                                               "uuid"
                                                 "picante"
```

Degree

The degree distribution (in-degree, out-degree, total)

```
# Degree
net_deg_in <- degree(net, mode = "in")
net_deg_out <- degree(net, mode = "out")
net_deg_all <- degree(net, mode = "all")

par(mfrow = c(1,3))
hist(net_deg_in, breaks = 20, freq = T, main = "", xlab = "Degree (In)")
hist(net_deg_out, breaks = 20, freq = T, main = "", xlab = "Degree (Out)")
hist(net_deg_all, breaks = 20, freq = T, main = "", xlab = "Degree (All)")</pre>
```


Betweenness

```
net_bt = betweenness(net, v = V(net), directed = TRUE)
hist(net_bt, breaks = 30, freq = T, main = "", xlab = "Betweenness")
```



```
# net_eb <- cluster_edge_betweenness(net, directed = TRUE)
# plot_dendrogram(net_eb)</pre>
```

Eigen values

Identify key nodes using eigenvector centrality

```
net_ec <- eigen_centrality(net)
which.max(net_ec$vector)

## stats
## 10
->
```

Subnetworks

In trying to determine subnetworks with the we find there are hundrends of one node networks (isolated nodes) and one large subnetwork of 10406 nodes.

That's shown on the histogram below where x is ln of the size of each of those networks

Histogram of log(net_sn_len, 10)

"Do birds of a feather flock together?" (Communities)

TBC...

Determine communities using walktrap algorithm (igraph)

Randomization Tests

We generate 100 random graphs with the same node numbers and the edge density as our network, then compare the average path length of those generated networks with the average path length of our network on the frequency historgram.

TBC...

Calculate the proportion of graphs with an average path length lower than our observed sum(gr.apls < mean_distance(net))/1000

[1] 0.01

->

Visualization

The full network visualization without clustering is not informative. It's all full of nodes and lines.

A partial visualization was made in Gephi with manual configuration for nodes with more than 50 other packages depeding on them. The visual size of nodes reflects the number of in-degrees for that node. The color of node reflects which type ('base', 'CRAN') it belongs to.

This kind of visualization helps to understand what the most referenced packages are, and what are links between themselves.

image:

The partial visualization also saved as cran_dep_vis.pdf.

Ideas to Improve Report

- 1. Give graphs a more elegant look with ggplot2.
- 2. Dendrogram? Will it work for such a large network?
- 3. Try the hierarchical clustering.
- 4. Color the network according the last change date of a package (on the year level).
- 5. Add additional attribution for nodes like the last change date.
- 6. Provide more contexual interpretation of the network.

References

- 1. The Comprehensive R Archive Network (CRAN): link
- 2. DataCamp course "Network Analysis in R": link

Appendix A Technical Details of Report

This version of the report was built with:

```
devtools::session info()
## Session info ------
##
   setting value
   version R version 3.4.3 (2017-11-30)
##
            x86_64, mingw32
   system
##
   ui
            RTerm
##
   language en
   collate Russian_Russia.1251
##
##
  tz
            Europe/Moscow
            2018-01-12
##
   date
## Packages ------
##
   package
             * version date
                                 source
##
                      2017-12-13 CRAN (R 3.4.3)
   backports
               1.1.2
##
   base
             * 3.4.3
                      2017-12-06 local
##
               3.4.3
                      2017-12-06 local
   compiler
##
   datasets
            * 3.4.3
                      2017-12-06 local
               1.13.4
                      2017-11-09 CRAN (R 3.4.3)
##
  devtools
##
   digest
               0.6.13
                      2017-12-14 CRAN (R 3.4.3)
               0.10.1
   evaluate
##
                      2017-06-24 CRAN (R 3.4.3)
   graphics * 3.4.3
                      2017-12-06 local
##
   grDevices * 3.4.3
                      2017-12-06 local
   htmltools
              0.3.6
                      2017-04-28 CRAN (R 3.4.3)
##
##
  igraph
             * 1.1.2
                      2017-07-21 CRAN (R 3.4.3)
  knitr
               1.18
                      2017-12-27 CRAN (R 3.4.3)
##
               1.5
                      2014-11-22 CRAN (R 3.4.3)
   magrittr
##
   memoise
               1.1.0
                      2017-04-21 CRAN (R 3.4.3)
##
   methods
             * 3.4.3
                      2017-12-06 local
## pkgconfig
               2.0.1
                      2017-03-21 CRAN (R 3.4.3)
               0.12.14 2017-11-23 CRAN (R 3.4.3)
##
   Rcpp
##
               1.8
                      2017-11-17 CRAN (R 3.4.3)
   rmarkdown
   rprojroot
               1.3-1
                      2017-12-18 CRAN (R 3.4.3)
```

```
## stats * 3.4.3 2017-12-06 local

## stringi 1.1.6 2017-11-17 CRAN (R 3.4.2)

## stringr 1.2.0 2017-02-18 CRAN (R 3.4.3)

## tools 3.4.3 2017-12-06 local

## utils * 3.4.3 2017-12-06 local

## withr 2.1.1 2017-12-19 CRAN (R 3.4.3)

## yaml 2.1.16 2017-12-12 CRAN (R 3.4.3)
```