### CS:E4830 Kernel Methods in Machine Learning

Lecture 6 : Kernel Support Vector Machines

Rohit Babbar

7th April, 2021

#### Some Announcements

- Assignment 2 will be released this week
- There will be no lecture next week
- Next upcoming session Optional tutorial session tomorrow at 16:00

Kernel SVMs 7th April, 2021

#### Course outline so far

- Introduction to kernel methods
  - Kernel Definition and examples
  - Reproducing Kernel Hilbert Spaces
  - Representer Theorem and Kernel Least Squares
- Introductory learning theory
  - Generalization
  - Empirical risk minimization
- Convex optimization Introduction
  - Convexity and Duality
- Algorithms Supervised
  - Kernel Support Vector Machines
  - Logistic regression
  - Kernel methods for large-scale problems
- Algorithms Unsupervised
  - PCA and k-means
  - Kernel variants

Kernel SVMs 7th April, 2021

## Supervised learning setup

#### Binary classification

- ullet Input  ${\mathcal X}$ , can be in various forms such as images or text documents
- ullet Output  $\mathcal{Y}=\{-1,+1\}$  binary classification. Other formulations include :
  - One-hot encoded binary vector for multi-class classification Cifar10
  - Multi-label classification Wikipedia
- Training set  $S = (x_i, y_i)_{i=1}^N$  consists of samples that are sampled independently and identically from an unknown joint distribution P over  $\mathcal{X} \times \mathcal{Y}$
- The goal is to build a classifier f to predict the label  $\hat{y}$  for a test instance x.

Kernel SVMs 7th April, 2021

## Hinge Loss Function and Kernel SVM

Kernel SVM solves the following optimization problem :

$$\min_{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \ell_{hinge}(y_i f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$$

where  $\mathcal{H}$  is a reproducing kernel Hilbert space

• Hinge loss is a function  $\mathbb{R} \mapsto \mathbb{R}_+$ :

$$\ell_{hinge}(u) = max(1-u,0) = \left\{ egin{array}{ll} 0 & ext{if } u \geq 1 \ 1-u & ext{otherwise} \end{array} 
ight.$$

Kernel SVMs 7th April, 2021

## Hinge Loss and Others



Figure: z = yf(x) in the above graph

#### Convex Upper Bounds on 0-1 loss

- Hinge Loss (in blue) is given by max(1 yf(x), 0)
- Logistic Loss is given by  $\frac{1}{\log 2} \log(1 + \exp(-yf(x)))$

Kernel SVMs 7th April, 2021

## Machine Learning Supervised Methods (lecture 5)

#### Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows non-separable data by using the relaxed the margin constraints

$$\begin{aligned} \textit{Minimize} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{m} \sum_{i=1}^m \xi_i \\ \textit{w.r.t variables } \mathbf{w}, \boldsymbol{\xi} \\ \text{Subject to } y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i \geq 1 - \xi_i \\ \text{for all } i = 1, \dots, m. \\ \xi_i \geq 0, \text{for all } i = 1, \dots, m. \end{aligned}$$



- The sum (or average) of slack variables appear as a penalty in the objective
- The coefficient C > 0 controls the balance between model complexity (low C) and empirical error (high C)

12

7th April, 2021 Kernel SVMs

## From Representer Theorem

• For the following optimization

$$f_{\mathcal{H}} := \arg\min_{f} \frac{1}{N} \sum_{i=1}^{N} \ell_{hinge}(y_i, f(x_i)) + \lambda \theta(||f||_{\mathcal{H}}^2)$$

where  $\ell_{hinge}(.,.)$  is the hinge loss function and  $\theta:[0,\infty)\mapsto\mathbb{R}$  is non-decreasing function, and  $\mathcal{H}$  is an RKHS

 Even though the above problem is potentially an infinite dimensional optimization problem, Representer Theorem states its solution can be expressed in the following form

$$f(.) = \sum_{j=1}^{N} \boldsymbol{\alpha}_{j} k(., x_{j})$$

where  $\alpha_i \in \mathbb{R}$ , i.e. it is linear combination of kernel evaluations at training points

Kernel SVMs 7th April, 2021

## Implications of Representer Theorem

Representer Theorem allows us to look for the solutions of the following form:

$$f(.) = \sum_{j=1}^{N} \alpha_{j} k(., x_{j})$$

- Implications
  - The desired function just involves kernel computation on training points only via  $k(.,x_i)$  in the above solution
  - It reduces the problem of finding  $f \in \mathcal{H}$  which could be infinite dimensional to a finite dimensional problem
    - ullet We just need to find the coefficients of the finite linear combination  $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_N$
  - Also, we can reforumlate the original objective function in the new form (more in next slides)

Kernel SVMs 7th April, 2021

## Reformulating the Objective using Representer Theorem - I

• Recall the original objective :

$$f_{\mathcal{H}} := \arg\min_{f} \frac{1}{n} \sum_{i=1}^{N} \ell(y_i, f(x_i)) + \lambda \theta(||f||_{\mathcal{H}})$$

• For the *i*-th **training point**,

$$f_{\mathcal{H}}(x_i) = \sum_{j=1}^{N} \boldsymbol{\alpha}_j k(x_i, x_j) = [K\boldsymbol{\alpha}]_i$$

which is the *i*-th element of the matrix-vector product Klpha

Kernel SVMs 7th April, 2021

## Reformulating the Objective using Representer Theorem - II

• Rewriting the regularization term :

$$\begin{split} ||f||_{\mathcal{H}}^2 &= \langle f(.), f(.) \rangle \\ &= \left\langle \sum_{i=1}^N \alpha_i k(., x_i), \sum_{i=1}^N \alpha_i k(., x_i) \right\rangle \text{ (using representer theorem)} \\ &= \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j k(x_i, x_j) \text{ (evaluation of dot product)} \\ &= \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \text{ (writing in matrix notation)} \end{split}$$

Kernel SVMs 7th April, 2021

# Reformulating the Objective using Representer Theorem - III

Using the above substitutions, the original (potentially intractable) objective

$$f_{\mathcal{H}} := rg \min_f rac{1}{N} \sum_{i=1}^N \ell(y_i, f(x_i)) + \lambda heta(||f||_{\mathcal{H}})$$

translates to an equivalent (tractable) form below

$$\arg\min_{\boldsymbol{\alpha}\in\mathbb{R}^N}\frac{1}{N}\sum_{i=1}^N\ell(y_i,[K\boldsymbol{\alpha}]_i)+\lambda\theta(\boldsymbol{\alpha}^TK\boldsymbol{\alpha})$$

Kernel SVMs 7th April, 2021

Using Representer theorem, the problem can be reformulated as

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \ell_{hinge} (y_i [K\boldsymbol{\alpha}]_i) + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\}$$

Kernel SVMs 7th April, 2021 13 / 30

Using Representer theorem, the problem can be reformulated as

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \ell_{hinge}(y_i[K\boldsymbol{\alpha}]_i) + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\}$$

• The above optimization problem is convex (Why?)

Kernel SVMs 7th April, 2021 13 / 30

Using Representer theorem, the problem can be reformulated as

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \ell_{hinge}(y_i[K\boldsymbol{\alpha}]_i) + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\}$$

- The above optimization problem is convex (Why?)
- However, it is non-smooth optimization problem (Why?)

Kernel SVMs 7th April, 2021 13 / 30

Using Representer theorem, the problem can be reformulated as

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \ell_{hinge}(y_i[K\boldsymbol{\alpha}]_i) + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\}$$

- The above optimization problem is convex (Why?)
- However, it is non-smooth optimization problem (Why?)



Figure:  $\ell_{\text{hinge}}(.)$  is the function in blue, z = yf(x) in the above graph

Kernel SVMs 7th April, 2021

## Another Equivalent Reformulation

• The optimization problem on the previous slide is equivalent (even though not immediately obvious) to the following, if we re-write it in terms of slack variables  $\xi_i \in \mathbb{R}$  for  $i=1,\ldots,N$ 

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N, \boldsymbol{\xi} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \boldsymbol{\xi}_i + \lambda \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{\alpha} \right\} \text{such that } \boldsymbol{\xi}_i \geq \ell_{\textit{hinge}}(y_i [\boldsymbol{K} \boldsymbol{\alpha}]_i)$$

Kernel SVMs 7th April, 2021 1

## Another Equivalent Reformulation

• The optimization problem on the previous slide is equivalent (even though not immediately obvious) to the following, if we re-write it in terms of slack variables  $\xi_i \in \mathbb{R}$  for  $i=1,\ldots,N$ 

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N, \boldsymbol{\xi} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \boldsymbol{\xi}_i + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\} \text{such that } \boldsymbol{\xi}_i \geq \ell_{\textit{hinge}} (y_i [K \boldsymbol{\alpha}]_i)$$

• In the above formulation, the objective is smooth but not the constraints

Kernel SVMs 7th April, 2021

## Another Equivalent Reformulation

• The optimization problem on the previous slide is equivalent (even though not immediately obvious) to the following, if we re-write it in terms of slack variables  $\xi_i \in \mathbb{R}$  for  $i=1,\ldots,N$ 

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^N, \boldsymbol{\xi} \in \mathbb{R}^N} \left\{ \frac{1}{N} \sum_{i=1}^N \boldsymbol{\xi}_i + \lambda \boldsymbol{\alpha}^T K \boldsymbol{\alpha} \right\} \text{such that } \boldsymbol{\xi}_i \geq \ell_{hinge}(y_i [K \boldsymbol{\alpha}]_i)$$

- In the above formulation, the objective is smooth but not the constraints
- Recall the definition of hinge loss from first slide

$$\ell_{hinge}(u) = max(1-u,0) \iff \left\{ egin{array}{ll} 0 & ext{if } u \geq 1 \\ 1-u & ext{otherwise} \end{array} 
ight.$$

• Using above, the N constraints  $(\xi_i \ge \ell_{hinge}(y_i[K\alpha]_i))$  can be replaced by 2N constraints to make the problem smooth as follows :

$$oldsymbol{\xi}_i \geq \ell_{\mathit{hinge}} ig( y_i [\mathcal{K} oldsymbol{lpha}]_i ig) \iff \left\{ egin{array}{l} oldsymbol{\xi}_i \geq & 0 \ oldsymbol{\xi}_i \geq & 1 - y_i [\mathcal{K} oldsymbol{lpha}]_i \end{array} 
ight.$$

Kernel SVMs 7th April, 2021

#### **SVM** Primal Formulation

#### **SVM** Primal Formulation

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}, \boldsymbol{\xi} \in \mathbb{R}^{N}} \left\{ \frac{1}{n} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} + \lambda \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} \right\}$$

such that

$$\begin{cases} 1 - y_i [K\alpha]_i - \xi_i \le 0 & \text{for } i = 1, \dots, N \\ -\xi_i \le 0 & \text{for } i = 1, \dots, N \end{cases}$$

Putting in the standard convex optimization problem framework where the inequality constraints should in the less than  $(\leq)$  form

Kernel SVMs 7th April, 2021

## Lagrangian

• The Lagrangian of the problem is :

$$L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} + \lambda \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} + \sum_{i=1}^{N} \boldsymbol{\mu}_{i} [1 - y_{i} [K \boldsymbol{\alpha}]_{i} - \boldsymbol{\xi}_{i}] - \sum_{i=1}^{N} \boldsymbol{\nu}_{i} \boldsymbol{\xi}_{i}$$

- $oldsymbol{\mu}, oldsymbol{
  u} \in \mathbb{R}^N$ ,  $oldsymbol{\mu} \geq 0$  and  $oldsymbol{
  u} \geq 0$
- Note that constraints have moved to the Lagrangian.

Kernel SVMs 7th April, 2021

## Computing derivatives w.r.t §

• The lagrangian of the problem is :

$$L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} + \lambda \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} + \sum_{i=1}^{N} \boldsymbol{\mu}_{i} [1 - y_{i} [K \boldsymbol{\alpha}]_{i} - \boldsymbol{\xi}_{i}] - \sum_{i=1}^{N} \boldsymbol{\nu}_{i} \boldsymbol{\xi}_{i}$$

#### Lagrangian wrt $\xi$

•  $L(\alpha, \xi, \mu, \nu)$  is a linear function in  $\xi$ . What is its minimum value

Kernel SVMs 7th April, 2021

## Computing derivatives w.r.t $\boldsymbol{\xi}$

• The lagrangian of the problem is :

$$L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} + \lambda \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} + \sum_{i=1}^{N} \boldsymbol{\mu}_{i} [1 - y_{i} [K \boldsymbol{\alpha}]_{i} - \boldsymbol{\xi}_{i}] - \sum_{i=1}^{N} \boldsymbol{\nu}_{i} \boldsymbol{\xi}_{i}$$

#### Lagrangian wrt $\xi$

- $L(\alpha, \xi, \mu, \nu)$  is a linear function in  $\xi$ . What is its minimum value
- Its minimum value is  $-\infty$ , except when it is constant,

$$abla_{\boldsymbol{\xi}} L(\alpha, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \frac{1}{N} - \boldsymbol{\mu} - \boldsymbol{\nu} = \mathbf{0}$$

equivalently,

$$rac{\mathbf{1}}{N} = oldsymbol{\mu} + oldsymbol{
u}$$

Kernel SVMs 7th April, 2021

## Computing derivatives w.r.t $\alpha$

• The lagrangian of the problem is :

$$L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} + \lambda \boldsymbol{\alpha}^{T} K \boldsymbol{\alpha} + \sum_{i=1}^{N} \boldsymbol{\mu}_{i} [1 - y_{i} [K \boldsymbol{\alpha}]_{i} - \boldsymbol{\xi}_{i}] - \sum_{i=1}^{N} \boldsymbol{\nu}_{i} \boldsymbol{\xi}_{i}$$

#### Lagrangian wrt lpha

•  $L(\alpha, \xi, \mu, \nu)$  is a convex quadratic function in  $\alpha$ . To find the optimal value, set the gradient to  $\mathbf{0}$  (the zero vector) :

$$\nabla_{\alpha}L = \mathbf{0}$$

ullet The optimal solution  $oldsymbol{lpha}^*$  is given by

$$\boldsymbol{\alpha}_i^* = \frac{y_i \boldsymbol{\mu}_i}{2\lambda}$$

Kernel SVMs 7th April, 2021

## Lagrange Dual Function and Dual Problem

#### Lagrange Dual Function

• The Lagrange dual function as obtained by substituting the optimal values (as obtained in previous two slides) is given by :

$$q(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{\alpha} \in \mathbb{R}^N, \boldsymbol{\xi} \in \mathbb{R}^N} L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu})$$

$$= \begin{cases} \sum_{i=1}^N \boldsymbol{\mu}_i - \frac{1}{4\lambda} \sum_{i=1}^N \sum_{j=1}^N y_i y_j \boldsymbol{\mu}_i \boldsymbol{\mu}_j K(x_i, x_j) & \text{if } \boldsymbol{\mu} + \boldsymbol{\nu} = \frac{1}{N} \\ -\infty & \text{otherwise} \end{cases}$$

#### Lagrange Dual Problem

The Lagrange dual problem is

$$\max q(oldsymbol{
u},oldsymbol{\mu})$$
 such that  $oldsymbol{\mu}\geq 0,oldsymbol{
u}\geq 0$ 

Kernel SVMs 7th April, 2021

#### Closer Look At The Dual Problem

• The Lagrange dual problem is

$$\max q(oldsymbol{
u},oldsymbol{\mu})$$
 such that  $oldsymbol{\mu}\geq 0,oldsymbol{
u}\geq 0$ 

- If  $0 \le \mu_i \le 1/N$  for all i, then the dual function takes finite values. Also, the value of  $\nu_i$  is fixed at  $\nu_i = 1/N \mu_i$  in this case.
- The dual problem is therefore given by

$$\max_{\mathbf{0} \leq \boldsymbol{\mu} \leq 1/N} \sum_{i=1}^{N} \boldsymbol{\mu}_{i} - \frac{1}{4\lambda} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \boldsymbol{\mu}_{i} \boldsymbol{\mu}_{j} K(x_{i}, x_{j})$$

Kernel SVMs 7th April, 2021

## Rewriting in terms of Primal Variables

## Dual problem (from previous slide)

$$\max_{0 \le \mu \le 1/N} \sum_{i=1}^{N} \mu_i - \frac{1}{4\lambda} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \mu_i \mu_j K(x_i, x_j)$$

Since the primal variable  $\alpha$  and the dual variable  $\mu$  are related by  $\alpha_i = \frac{\mu_i y_i}{2\lambda}$ , it can be written in the form of primal variables as follows

#### writing in terms of primal variable lpha

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} 2 \sum_{i=1}^N \boldsymbol{\alpha}_i y_i - \sum_{i=1}^N \sum_{j=1}^N \boldsymbol{\alpha}_i \boldsymbol{\alpha}_j K(x_i, x_j)$$

such that

$$0 \le y_i \alpha_i \le \frac{1}{2\lambda N}$$
 for  $i = 1, \dots, N$ 

The above can be solved using a standard Quadratic program solver.

Kernel SVMs 7th April, 2021

## Back to Representer Theorem

• Once we have the  $\alpha$  from the previous slide, the decision function in RKHS is constructed using representer theorem:

$$f(.) = \sum_{j=1}^{N} \boldsymbol{\alpha}_{i} k(., x_{j})$$

- ullet However, if N is large, this might still be computationally expensive for prediction
- In order to tackle this, the complementarity conditions (next) motivate the idea of support vectors, which we see next.

Kernel SVMs 7th April, 2021

## Complementarity conditions at the optimum

(Check corresponding slide from previous Lecture on Complementary Slackness)

 These are given by the product of the dual variables and the corresponding constraint as follows:

$$\boldsymbol{\mu}_i[y_i f(x_i) + \boldsymbol{\xi}_i - 1] = 0$$
$$\boldsymbol{\nu}_i \boldsymbol{\xi}_i = 0$$

- Recalling that  $m{\mu}_i = rac{2\lambdam{lpha}_i}{y_i}$  and  $m{
  u}_i = rac{1}{N} rac{2\lambdam{lpha}_i}{y_i}$
- In terms of the primal variable  $\alpha$ , it is given by

$$\alpha_i[y_i f(x_i) + \xi_i - 1] = 0$$
$$\left(\alpha_i - \frac{y_i}{2\lambda N}\right) \xi_i = 0$$

#### Complementarity Conditions

$$\alpha_i[y_i f(x_i) + \xi_i - 1] = 0$$
$$\left(\alpha_i - \frac{y_i}{2\lambda N}\right) \xi_i = 0$$

#### Complementarity Conditions

$$\alpha_i[y_i f(x_i) + \xi_i - 1] = 0$$
$$\left(\alpha_i - \frac{y_i}{2\lambda N}\right) \xi_i = 0$$

• If  $\alpha_i = 0$ , then the second constraint is active :  $\xi_i = 0$ . This implies  $y_i f(x_i) \ge 1$  (Why?). (These are correctly classified points with some margin)

Kernel SVMs 7th April, 2021

#### Complementarity Conditions

$$\alpha_i[y_i f(x_i) + \xi_i - 1] = 0$$
$$\left(\alpha_i - \frac{y_i}{2\lambda N}\right) \xi_i = 0$$

- If  $\alpha_i = 0$ , then the second constraint is active :  $\xi_i = 0$ . This implies  $y_i f(x_i) > 1$  (Why?). (These are correctly classified points with some margin)
- If  $0 < y_i \alpha_i < \frac{1}{2\lambda N}$ , then both the constraints are active, i.e.,  $\xi_i = 0$  and  $y_i f(x_i) + \xi_i - 1 = 0$ . This leads to  $y_i f(x_i) = 1$ . (These are correctly classified points right at the margin)

7th April, 2021

#### Complementarity Conditions

$$\alpha_i[y_i f(x_i) + \xi_i - 1] = 0$$
$$\left(\alpha_i - \frac{y_i}{2\lambda N}\right) \xi_i = 0$$

- If  $\alpha_i = 0$ , then the second constraint is active :  $\xi_i = 0$ . This implies  $y_i f(x_i) \ge 1$  (Why?). (These are correctly classified points with some margin)
- If  $0 < y_i \alpha_i < \frac{1}{2\lambda N}$ , then both the constraints are active, i.e.,  $\xi_i = 0$  and  $y_i f(x_i) + \xi_i 1 = 0$ . This leads to  $y_i f(x_i) = 1$ . (These are correctly classified points right at the margin)
- If  $\alpha_i = \frac{y_i}{2\lambda N}$ , then the second constraint is not active  $(\xi_i \ge 0)$  but the first one is active :  $y_i f(x_i) + \xi_i = 1$ . This implies that  $y_i f(x_i) \le 1$ . (These points may be correctly or incorrectly classified points)

Kernel SVMs 7th April, 2021

## Decision Hyperplanes



## Pictorial Depiction for $\alpha$ values



Figure: *n* in the figure above corresponds to *N* in our notation

Kernel SVMs 7th April, 2021

## Support Vectors

• From Representer theorem, the function evaluation at any  $x \in \mathcal{X}$  (the input space) is given by

$$f(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) = \sum_{i \in SV} \alpha_i k(x_i, x)$$

where SV is the set of support vectors i.e. those training points for which  $\alpha_i \neq 0$ 

- Hence the name Support Vector Machines
- ullet The above sparsity of  $oldsymbol{lpha} \in \mathbb{R}^{oldsymbol{N}}$  can be used for
  - Faster prediction since once needs to go over only the support vectors

Kernel SVMs 7th April. 2021

#### Another variant - C-SVM

Sometimes, instead of the regularization parameter  $\lambda$ , the SVM problem is written in the following form :

$$\min_{f \in \mathcal{H}} \left\{ C \sum_{i=1}^{N} (\ell_{hinge}(y_i[K\alpha]_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2 \right\}$$

Kernel SVMs 7th April, 2021 28 / 30

#### Another variant - C-SVM

Sometimes, instead of the regularization parameter  $\lambda$ , the SVM problem is written in the following form :

$$\min_{f \in \mathcal{H}} \left\{ C \sum_{i=1}^{N} (\ell_{hinge}(y_i[K\alpha]_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2 \right\}$$

• This is equivalent to the original formulation on the first slide(min<sub> $f \in \mathcal{H}$ </sub>  $\frac{1}{N} \sum_{i=1}^{N} \ell_{hinge}(y_i f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$ ) with  $C = \frac{1}{2N\lambda}$ 

Kernel SVMs 7th April, 2021

#### Another variant - C-SVM

Sometimes, instead of the regularization parameter  $\lambda$ , the SVM problem is written in the following form :

$$\min_{f \in \mathcal{H}} \left\{ C \sum_{i=1}^{N} (\ell_{hinge}(y_i[K\alpha]_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2 \right\}$$

- This is equivalent to the original formulation on the first slide(min<sub> $f \in \mathcal{H}$ </sub>  $\frac{1}{N} \sum_{i=1}^{N} \ell_{hinge}(y_i f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$ ) with  $C = \frac{1}{2N\lambda}$
- Using the Lagrangian formulation, the dual can be written as

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^N} 2 \sum_{i=1}^N \boldsymbol{\alpha}_i y_i - \sum_{i=1}^N \sum_{j=1}^N \boldsymbol{\alpha}_i \boldsymbol{\alpha}_j K(x_i, x_j)$$

such that

$$0 \le y_i \alpha_i \le C$$
 for  $i = 1, ..., N$  (also called box constraints)

Kernel SVMs 7th April, 2021

#### References

- Most of the material for this lecture is based on a similar course by Julien Mairal's at ENS Paris
- Further details (with somewhat different notation) on SVMs JST & Christianini book, Chapter 7

Kernel SVMs 7th April, 2021