
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=11; day=25; hr=16; min=13; sec=19; ms=585;]

Validated By CRFValidator v 1.0.3

Application No: 10583415 Version No: 3.0

0

Input Set:

Output Set:

Started: 2009-11-13 09:17:41.643 **Finished:** 2009-11-13 09:17:44.386

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 743 ms

Total Warnings: 15

No. of SeqIDs Defined: 15

Actual SeqID Count: 15

Total Errors:

Error code		Error Description	on								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)

SEQUENCE LISTING

<110>	MEYER, ROMAN SCHUTZ, MICHAEL GRALLERT, HOLGER GRASSL, RENATE MILLER, STEFAN	
<120>	ENDOTOXIN DETECTION METHOD	
<130>	DEBE:067US	
<140>	10583415	
<141>	2009-11-13	
<150>	PCT/DE2004/002778	
<151>	2004-12-20	
<150>	DE 103 60 844.3	
<151>	2003-12-20	
<160>	15	
<170>	PatentIn version 3.3	
<210>	1	
<211>	78	
<212>	DNA	
<213>	artificial sequence	
<220>		
	Synthetic primer	
<400>	1	
	reta gtcatatggc tagctggagc cacccgcagt tcgaaaaagg cgccagtaat	60
aatacat	catc aacacgtt	78
<210>	2	
<211>	54	
<212>	DNA	
<213>	artificial sequence	
<220>		
	Synthetic primer	
<400>	2	
	aaag cttgtcgacg gatcctatca ttcttttacc ttaattatgt agtt	54
<210>	3	
<211>	78	
<212>	DNA	

<213> artificial sequence

```
<223> Synthetic primer
gaaggaacta gtcatatggc ttgttggagc cacccgcagt tcgaaaaagg cgccagtaat
                                                                    78
aatacatatc aacacgtt
<210> 4
<211> 78
<212> DNA
<213> artificial sequence
<220>
<223> Synthetic primer
<400> 4
gaaggaacta gtcatatggc tagctggagc cacccgcagt tcgaaaaagg cgcctgtaat
                                                                    78
aatacatatc aacacgtt
<210> 5
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 5
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
                                  10
Thr Tyr Gln
<210> 6
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 6
Met Ala Cys Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
              5
                                  10
```

<220>

```
<210> 7
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 7
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Cys Asn Asn
                       10
Thr Tyr Gln
<210> 8
<211> 539
<212> PRT
<213> artificial sequence
<220>
<223> Synthetic peptide
<400> 8
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
1 5
                    10
Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val Lys Phe Asp Pro
   20 25 30
Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val Gln Ala Ala Ile
 35
          40
Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro Asp Ala Ser Ser
 50 55 60
Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln Glu Val Ile Asp
                       75
65
      70
Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr Leu Ala Thr Arg
           85
                         90
```

Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly Leu Thr Arg Tyr
100 105 110

	sp Asp Glu 15	Ala Ile	Ala Gly 120	Val Asn	Asn Glu		Ile
Thr Pro A	la Lys Phe	Thr Val	Ala Leu	Asn Asn	Val Phe	e Glu Thr	Arg
Val Ser Th	hr Glu Ser	Ser Asn 150	Gly Val	Ile Lys 155	Ile Sei	s Ser Leu	Pro 160
Gln Ala Le	eu Ala Gly 165	Ala Asp	Asp Thr	Thr Ala	Met Thi	Pro Leu 175	Lys
Thr Gln G	ln Leu Ala 180	Val Lys	Leu Ile 185	Ala Gln	Ile Ala	a Pro Ser 190	Lys
	la Thr Glu 95	Ser Glu	Gln Gly 200	Val Ile	Gln Let 205		Val
Ala Gln A	la Arg Gln	Gly Thr 215	Leu Arg	Glu Gly	Tyr Ala	a Ile Ser	Pro
Tyr Thr Pl 225	he Met Asn	Ser Thr 230	Ala Thr	Glu Glu 235	Tyr Lys	s Gly Val	Ile 240
Lys Leu G	ly Thr Gln 245	Ser Glu	Val Asn	Ser Asn 250	Asn Ala	a Ser Val 255	Ala
Val Thr G	ly Ala Thr 260	Leu Asn	Gly Arg 265	Gly Ser	Thr Thi	Ser Met 270	Arg
_	al Lys Leu 75	Thr Thr	Thr Ala	Gly Ser	Gln Sei 285		Asp
Ala Ser Se 290	er Ala Leu	Ala Trp 295	Asn Ala	Asp Val	Ile His	s Gln Arg	Gly
Gly Gln Th	hr Ile Asn	Gly Thr 310	Leu Arg	Ile Asn 315	Asn Thi	Leu Thr	Ile 320
Ala Ser G	ly Gly Ala 325	Asn Ile	Thr Gly	Thr Val	Asn Met	Thr Gly	Gly

Tyr Ile Gln Gly Lys Arg Val Val Thr Gln Asn Glu Ile Asp Arg Thr 340 345 350 Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp Ser Leu Pro Ser 355 360 365 Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser Ala Ser Asp Cys 370 375 380 Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly Gly Ser Ser Ser 385 390 395 400 Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val Arg Gly Ser Gly 405 410 415 Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly Asn Asp Gln Phe 420 425 430 Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly Tyr Val Gly Glu 435 440 445 Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala Gly Gly Phe Gly 450 455 460 Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg Arg Ser Asn Phe 465 470 475 480 Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg Ser Tyr Phe Thr 485 490 495 Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg Asn Ser Arg Tyr 505 500

Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu

Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr Arg Pro Trp Asn 515 520 525

<210> 9 <211> 527 <212> PRT

<213> artificial sequence

530 535

<223> Synthetic peptide

<400> 9

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val 1 5 10 15

Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30

Gln Ala Ala Ile Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro 35 40 45

Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln 50 55 60

Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly
85 90 95

Leu Thr Arg Tyr Ser Thr Asp Asp Glu Ala Ile Ala Gly Val Asn Asn 100 105 110

Glu Ser Ser Ile Thr Pro Ala Lys Phe Thr Val Ala Leu As
n As
n Val 115 120 125

Phe Glu Thr Arg Val Ser Thr Glu Ser Ser Asn Gly Val Ile Lys Ile 130 135 140

Thr Pro Leu Lys Thr Gln Gln Leu Ala Val Lys Leu Ile Ala Gln Ile 165 170 175

Ala Pro Ser Lys Asn Ala Ala Thr Glu Ser Glu Gln Gly Val Ile Gln
180 185 190

Leu Ala Thr Val Ala Gln Ala Arg Gln Gly Thr Leu Arg Glu Gly Tyr
195 200 205

Ala	Ile 210	Ser	Pro	Tyr	Thr	Phe 215	Met	Asn	Ser	Thr	Ala 220	Thr	Glu	Glu	Tyr
Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly	Gly 275	Asp	Ala	Ser	Ser	Ala 280	Leu	Ala	Trp	Asn	Ala 285	Asp	Val	Ile
	290					295					300	-		Asn	
305					310					315				Val	320
				325					330					Asn 335	
			340					345					350	Ala	
		355		-		-	360		-		_	365		Tyr	
	370					375					380			Phe	
385					390					395				Asn	400
	_			405					410					415 Gly	
11511	172Þ	CIII	420	σ±y	пль	110	1119	425	Ο±y	vai	Стў	~y δ	430	Стў	υ±y

Tyr Val Gly Glu Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala

435 440 445

Gly Gly Phe Gly Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg 450 455 460

Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 475 480

Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg \$485\$

Asn Ser Arg Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 500 505 510

Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 525

<210> 10

<211> 527

<212> PRT

<213> artificial sequence

<220>

<223> Synthetic peptide

<400> 10

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val 1 5 10 15

Lys Phe Asp Pro Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val 20 25 30

His Ala Ala Ile Ala Ala Ile Ser Pro Ala Gly Val As
n Gly Val Pro 35 $\,$ 40 $\,$ 45

Asp Ala Ser Ser Thr Thr Lys Gly Ile Leu Phe Ile Pro Thr Glu Gln 50 55 60

Glu Val Ile Asp Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Ser Tyr Pro Asn Ala Thr Glu Thr Val Tyr Gly

85 90 95

Leu	Thr	Arg	Tyr 100	Ser	Thr	Asn	Asp	Glu 105	Ala	Ile	Ala	Gly	Val 110	Asn	Asn
Glu	Ser	Ser 115	Ile	Thr	Pro	Ala	Lys 120	Phe	Thr	Val	Ala	Leu 125	Asn	Asn	Ala
Phe	Glu 130	Thr	Arg	Val	Ser	Thr 135	Glu	Ser	Ser	Asn	Gly 140	Val	Ile	Lys	Ile
Ser 145	Ser	Leu	Pro	Gln	Ala 150	Leu	Ala	Gly	Ala	Asp 155	Asp	Thr	Thr	Ala	Met 160
Thr	Pro	Leu	Lys	Thr 165	Gln	Gln	Leu	Ala	Ile 170	Lys	Leu	Ile	Ala	Gln 175	Ile
Ala	Pro	Ser	Glu 180	Thr	Thr	Ala	Thr	Glu 185	Ser	Asp	Gln	Gly	Val 190	Val	Gln
Leu	Ala	Thr 195	Val	Ala	Gln	Val	Arg 200	Gln	Gly	Thr	Leu	Arg 205	Glu	Gly	Tyr
Ala	Ile 210	Ser	Pro	Tyr	Thr	Phe 215	Met	Asn	Ser	Ser	Ser 220	Thr	Glu	Glu	Tyr
Lys 225	Gly	Val	Ile	Lys	Leu 230	Gly	Thr	Gln	Ser	Glu 235	Val	Asn	Ser	Asn	Asn 240
Ala	Ser	Val	Ala	Val 245	Thr	Gly	Ala	Thr	Leu 250	Asn	Gly	Arg	Gly	Ser 255	Thr
Thr	Ser	Met	Arg 260	Gly	Val	Val	Lys	Leu 265	Thr	Thr	Thr	Ala	Gly 270	Ser	Gln
Ser	Gly	Gly 275	Asp	Ala	Ser	Ser	Ala 280	Leu	Ala	Trp	Asn	Ala 285	Asp	Val	Ile
Gln	Gln 290	Arg	Gly	Gly	Gln	Ile 295	Ile	Tyr	Gly	Thr	Leu 300	Arg	Ile	Glu	Asp
Thr 305	Phe	Thr	Ile	Ala	Asn 310	Gly	Gly	Ala	Asn	Ile 315	Thr	Gly	Thr	Val	Arg 320

Met Thr Gly Gly Tyr Ile Gln Gly Asn Arg Ile Val Thr Gln Asn Glu

325 330 335

Ile Asp Arg Thr Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp 340 345 350

Ser Leu Pro Ser Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser 355 360 365

Ala Ser Asp Cys Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly 370 380

Gly Asn Pro Ser Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val
385 390 395 400

Arg Gly Ser Gly Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly \$405\$

Asn Asp Gln Phe Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly 420 425 430

Tyr Val Gly Glu Val Gln Ile Gln Gln Met Ser Tyr His Lys His Ala \$435\$ \$440\$ \$445\$

Gly Gly Phe Gly Glu His Asp Asp Leu Gly Ala Phe Gly Asn Thr Arg 450 455 460

Arg Ser Asn Phe Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg 465 470 475

Ser Tyr Phe Thr Asn Asp Gly Tyr Glu Ile Asp Pro Glu Ser Gln Arg 485 490 495

Asn Ser Lys Tyr Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr 500 505 510

Arg Pro Trp Asn Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu 515 520 525

<210> 11

<211> 518

<212> PRT

<213> artificial sequence

<223> Synthetic peptide

<400> 11

Met Ser Asn Asn Thr Tyr Gln His Val Ser Asn Glu Ser Lys Tyr Val $1 \ 5 \ 5 \ 10 \ 15$

Lys Phe Asp Pro Val Gly Ser Asn Phe Pro Asp Thr Val Thr Thr Val 20 25 30

Gln Ser Ala Leu Ser Lys Ile Ser Asn Ile Gly Val Asn Gly Ile Pro 35 40 45

Asp Ala Ser Met Glu Val Lys Gly Ile Ala Met Ile Ala Ser Glu Gln 50 55 60

Glu Val Leu Asp Gly Thr Asn Asn Ser Lys Ile Val Thr Pro Ala Thr 65 70 75 80

Leu Ala Thr Arg Leu Leu Tyr Pro Asn Ala Thr Glu Thr Lys Tyr Gly 85 90 95

Leu Thr Arg Tyr Ser Thr Asn Glu Glu Thr Leu Glu Gly Ser Asp Asn 100 105 110

Asn Ser Ser Ile Thr Pro Gln Lys Leu Lys Tyr His Thr Asp Asp Val 115 120 125

Phe Gln Asn Arg Tyr Ser Ser Glu Ser Ser Asn Gly Val Ile Lys Ile 130 $$135\$

Thr Pro Leu Lys Thr Gln Lys Leu Ala Ile Lys Leu Ile Ser Gln Ile 165 170 175

Ala Pro Ser Glu Asp Thr Ala Ser Glu Ser Val Arg Gly Val Val Gln 180 185