Combination

Relationships

Exponentation by squaring 繰り返し二乗法 **Modular Division** Power of Matrix modによる割り算 行列累乗 Combination 組み合わせ計算

Contents

- 1. How to calculate ${}_{n}C_{r}$ with Pascal's triangle
- 2. How to calculate ${}_{n}C_{r}$ with definition

1. Combination with Pascal's triangle

$$_{n}C_{r} =_{n-1} C_{r-1} +_{n-1} C_{r}$$

1										$_0C_0$
1	1									$_1C_0$ $_1C_1$
1	2	1								$_{2}C_{0}$ $_{2}C_{1}$ $_{2}C_{2}$
1	3	3	1							$_{3}C_{0}$ $_{3}C_{1}$ $_{3}C_{2}$ $_{3}C_{3}$
1	4	6	4	1						$_{4}C_{0}$ $_{4}C_{1}$ $_{4}C_{2}$ $_{4}C_{3}$ $_{4}C_{4}$
1	5	10	10	5	1					$_5C_0$ $_5C_1$ $_5C_2$ $_5C_3$ $_5C_4$ $_5C_5$
1	6	15	20	15)	6	1				$_{6}C_{0}$ $_{6}C_{1}$ $_{6}C_{2}$ $_{6}C_{3}$ $_{6}C_{4}$ $_{6}C_{5}$ $_{6}C_{6}$
1	7	21	35	35)	21	7	1			$_{7}C_{0}$ $_{7}C_{1}$ $_{7}C_{2}$ $_{7}C_{3}$ $_{7}C_{4}$ $_{7}C_{5}$ $_{7}C_{6}$ $_{7}C_{7}$
1	8	28	56	70	56	28	8	1		$_{8}C_{0}$ $_{8}C_{1}$ $_{8}C_{2}$ $_{8}C_{3}$ $_{8}C_{4}$ $_{8}C_{5}$ $_{8}C_{6}$ $_{8}C_{7}$ $_{8}C_{8}$
1	9	36	84	126	126	84	36	9	1	${}_{9}C_{0} \ {}_{9}C_{1} \ {}_{9}C_{2} \ {}_{9}C_{3} \ {}_{9}C_{4} \ {}_{9}C_{5} \ {}_{9}C_{6} \ {}_{9}C_{7} \ {}_{9}C_{8} \ {}_{9}C_{9}$

Implementation

Many combinational problems ask a number modulo 1000000007

```
#define MOD 1000000007
#define MAX N 1000
long long comb[MAX_N][MAX_N];
void makeComb()
  comb[0][0] = 1;
  for (int i = 1; i < MAX_N; i++) {</pre>
    for (int j = 0; j <= i; j++) {
      if (j == 0 || j == i) comb[i][j] = 1;
      else comb[i][j] = (comb[i-1][j-1] + comb[i-1][j]) \% MOD;
// You can use comb[n][r].
```

Complexity

- Array size to make ${}_{n}C_{r}$: $n \times n$
 - \Rightarrow time complexity to initialize table is $O(n^2)$.
 - \Rightarrow time complexity to answer ${}_{n}C_{r}$ is O(1).
- $n < 10^3$: OK.
- ullet $n=10^4$: maybe MLE (Memory Limit Exceeded)

2. Combination with definition

$$_{n}C_{r}=rac{n!}{r!(n-r)!}$$

- *n* is big
 - $\Rightarrow n!$ and r!(n-r)!: overflow.
 - ⇒ need modulo operation
- need to (numer % MOD) and (denom % MOD)
 - ⇒ usual divition: X
 - ⇒ need the division in modular arthmetics

Implementation

- It is ok to use this code as library.
- If you want to know moddiv, please see the slide "mod"

The code is next page.

```
#define MAX N 2000000
long long fact[MAX_N];
void factInit() {
  fact[0] = 1;
  for (int i = 1; i < MAX_N; i++) {</pre>
    fact[i] = (i * fact[i - 1]) % MOD;
// Combination(binomial coefficients)
long long comb(int n, int r) {
  if (n < r || n < 0 || r < 0) return 0;
  return moddiv(fact[n], (fact[r] * fact[n - r]) % MOD);
```

Complexity

- The array size to make n!: n
 - \Rightarrow time complexity to initialize table is O(n).
- On moddiv(a, b), b^{p-2} is calculated.
 - On calculation of b^{p-2} , exponentation by squaring is used .
 - \Rightarrow time complexity to answer ${}_{n}C_{r}$ is $O(\log p)$.
- In sammary, time complexity to answer ${}_nC_r$ k times is $O(n+k\log p)$.

Addition: Permutation

$$_{n}P_{r}=rac{n!}{(n-r)!}$$

```
// Permutation
long long perm(int n, int r) {
  if (n < r || n < 0 || r < 0) return 0;
  return moddiv(fact[n], fact[n - r]);
}</pre>
```

• Time complexity to answer ${}_{n}P_{r}$ k times is $O(n+k\log p)$.

• If you don't have to answer ${}_{n}P_{r}$ many times, bellow is better.

$$_{n}P_{r}=n\cdot (n-1)\cdots (n-r-2)\cdot (n-r-1)$$

```
long long perm(int n, int r) {
  long long ret = 1;
  for (int i = n; i > n-r; i--) {
      (ret *= i) %= MOD;
    }
  return ret;
}
```

• Time complexity to answer ${}_{n}P_{r}$ one time is O(n).

Addition: Combination with repetitions

$$_{n}H_{r}=_{n+r-1}C_{r}$$

Remember that formula completely:

Example

Counting nonnegative integer solutions on linear Diophantine equation.

$$x_1 + x_2 + \cdots + x_n = r$$

- r balls
- n-1 bars
 - \Rightarrow pattern is $_{n+r-1}C_r$

Anyway, I wrote code (but I think you don't have to use it).

```
// Combination with repetitions
// (Homogeneous product, Multiset coefficients)
long long homo(int n, int r) {
  if (n == 0 && r == 0) return 1;
  return comb(n + r - 1, r);
}
```

Verify

This: https://yukicoder.me/problems/no/117

Exercises

• ABC034C: 経路

Statement: Japanese only but same as Project Eular No.15

Lattice paths

$$2 \leq H \leq 10^5$$
$$2 \leq W \leq 10^5$$

Input: H W

Output: the number of routes modulo 1000000007

• ABC110D: Factorization