Research Project

Michael Nelson

Let us state up front the theorem we wish to prove:

Theorem 0.1. Let X be a compact Hausdorff space, let C(X) be the space of continuous real-valued functions on X equipped with the supremum norm, and let ℓ be a linear functional on C(X). Then there exists a unique Baire measure μ on X such that

 $\ell(f) = \int_{\mathbf{X}} f \mathrm{d}\mu$

for all $f \in C(X)$.

Proposition 0.1. Let μ be a signed Baire measure in $\mathcal{M}(X)$. Define $\ell_{\mu} \colon \mathcal{C}(X) \to \mathbb{R}$ by

$$\ell_{\mu}(f) = \int_{X} f \mathrm{d}\mu$$

for all $f \in C(X)$. The map ℓ_{μ} is a bounded linear functional

Proof. Linearity of ℓ_{μ} follows from linearity of integration. To see that ℓ_{μ} is bounded, note that

$$\ell_{\mu}(f) = \int_{X} f d\mu$$

$$\leq \|f\|_{\infty} \mu(X)$$

for all $f \in C(X)$. Taking f to be the constant function 1, we see that $\|\ell_{\mu}\| = \mu(X)$.

Definition 0.1. Let X be a topological space. We say X is **extremally disconnected** if each open subset of X has open closure, that is, if U is an open subset of X, then \overline{U} is a clopen subset of X. Equivalently, every pair of disjoint open subsets of X have disjoint closures.

Theorem 0.2. Let X be a compact Hausdorff space, let C(X) be the space of continuous real-valued functions on X equipped with the supremum norm, and let ℓ be a linear functional on C(X). Then there exists a unique Baire measure μ on X such that $\ell = \ell_{\mu}$.

Proof. We first show existence.

Step 1: Suppose that *X* is equipped with the discrete topology.

0.1 Notation and Conventions

0.1.1 Category Theory

In this document, we consider the following categories:

- The category of all compact Hausdorff spaces and continuous maps between them, denoted **Comp**;
- The category of all Banach spaces and bounded linear maps between them, denoted **Ban**;

We will also be interested in the following functors:

• The functor M: **Comp** \to **Ban** defined as follows: given a compact Hausdorff space X, we set M(X) to be the Banach space of signed Baire measures on X, and given a continuous function $f: X \to Y$ between two compact Hausdorff spaces X and Y, we set $M(f): M(X) \to M(Y)$ to be the bounded linear map defined by

$$M(\mu) = \mu \circ f^{-1}$$

for all $\mu \in M(X)$.

• The functor $C: \mathbf{Comp} \to \mathbf{Ban}$ defined as follows: given a compact Hausdorff space X, we set C(X) be the Banach space of continuous real-valued functions on X equipped with the supremum norm, and given a continuous function $f: X \to Y$ between two compact Hausdorff spaces X and Y, we set $C(f) = f^{\#}$ where $f^{\#}: C(Y) \to C(X)$ is bounded linear map defined by

$$f^{\#}(g) = g \circ f$$

for all $g \in C(Y)$.

• The functor C^* : **Comp** \to **Ban** defined as follows: given a compact Hausdorff space X, we set $C^*(X) = C(X)^*$ to be the dual of C(X), and given a continuous function $f: X \to Y$ between two compact Hausdorff spaces X and Y, we set $C^*(f) = f^{\#}$ where $f^{\#}: C(X)^* \to C(Y)^*$ is the bounded linear map defined by

$$f^{\#}(\ell) = \ell \circ f^{\#}$$

for all $\ell \in C(X)^*$.

1 Introduction

Let X be a compact Hausdorff space. We denote by C(X) to be the space of real-valued continuous functions on X equipped with the supremum norm. Recall that if C is any collection of subsets of X, then we denote by $\sigma(C)$ to be the smallest σ -algebra which contains C. Suppose

$$C = \{f$$

 τ denotes the collection of all open subset of C, then $\sigma(\tau)$ is the Borel σ -

1.1 Baire σ -algebra

Definition 1.1. Let *X* be a compact Hausdorff space.

- 1. The **Borel** σ -algebra \mathcal{B}_X is the σ -algebra generated by all open sets subsets of X.
- 2. The **Baire** σ -algebra \mathcal{M}_X is the σ -algebra generated by all sets of the form $f^{-1}(U)$ where U is an open subset of $\mathbb C$ and where $f \in C(X)$. In particular, \mathcal{M}_X is the smallest σ -algebra which makes every $f \in C(X)$ measurable.
- 3. A measure μ is called a **Baire measure** if it satisfies the following conditions:
 - (a) The domain of μ contains \mathcal{M}_X ;
 - (b) $\mu(K) < \infty$ for all compact Baire measureable sets K.
 - (c) μ is inner regular, that is, for each Baire measurable set E, we have

 $\mu(E) = \sup \{ \mu(K) \mid K \text{ is a compact Baire measurable set such that } K \subseteq E \}$

(d) μ is outer regular, that is, for each Baire measurable set E, we have

$$\mu(E) = \inf \{ \mu(U) \mid U \text{ is an open Baire measurable set such that } E \subseteq U \}$$

We will prove the following form of the Riesz representation theorem:

Theorem 1.1. Let X be a compact Hausdorff space, let C(X) be the space of continuous real-valued functions on X equipped with the supremum norm, and let ℓ be a positive linear functional on C(X). Then there exists a unique Baire measure μ on X such that

$$\ell(f) = \int_X f \mathrm{d}\mu$$

for all $f \in C(X)$.

 \square

1.2 Banach Space of Signed Measures

2 Extra

Let X be a compact Hausdorff space. We denote by C(X) be the Banach space of continuous real-valued functions on X equipped with the supremum norm. As usual, we will denote by $C(X)^*$ to be the dual space of C(X). We also denote by M(X) to be the Banach space of signed Baire measures on X.