Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты Ткачук С. А. и Чуб Д. О.	Работа выполнена
Преподаватель <u>Громова Н. Р.</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.05

Исследование колебаний физического маятника

1. Цель работы

Изучение характеристик затухающих колебаний физического маятника

2. Задачи, решаемые при выполнении работы

- 1. Измерение периода затухающих колебаний
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени
- 3. Определение зависимости периода колебаний от момента инерции физического маятника
- 4. Определение преобладающего типа трения
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях

3. Объект исследования

Физический маятник

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы

Период колебаний (\bar{t} - среднее время колебаний, N - количество колебаний)

$$T = \frac{\bar{t}}{N} \quad (1)$$

Зависимость логарифма отношения амплитуд от времени (A_0 - амплитуда в начальный момент времени, A - амплитуда, β - коэффициент затухания, t - время)

$$ln\frac{A}{A_0} = -\beta t \qquad (2)$$

Время затухания колебаний (β - коэффициент затухания)

$$\theta = \frac{1}{\beta} \quad (3)$$

Расстояние центра груза от оси вращения (l_1 - расстояние от оси вращения до первой риски, l_0 - расстояние между соседними рисками, n - номер риски, b - размер груза вдоль спицы)

$$R = l_1 + (n-1)l_0 + \frac{b}{2}$$
 (4)

Момент инерции грузов ($m_{\rm rp}$ - масса груза, $R_{\rm верx}$ - расстояние центра верхнего груза от оси вращения, $R_{\rm бок}$ - расстояние центра бокового груза от оси вращения)

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HMW}^2 + 2R_{\rm 60K}^2)$$
 (5)

Полный момент инерции физического маятника ($I_{\rm rp}$ - момент инерции грузов, I_0 - момент инерции ступицы и крестовины)

$$I = I_{\rm rp} + I_0 \qquad (6)$$

Период колебаний маятника (I - полный момент инерции, m - масса маятника, l - расстояние между точкой подвеса и центром масс)

$$T = 2\pi \sqrt{\frac{I}{mgl}} \quad (7)$$

Приведенная длина физического маятника (l - полный момент инерции, m - масса маятника, l - расстояние между точкой подвеса и центром масс)

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l$$
 (8)

6. Приборы

Таблица 1: Средства измерения

Наименование средства измерения	Предел измерений	Цена деления	Погрешность
Секундомер	500 с	0,01 c	5 мс
Шкала	60°	1°/дел.	1°

Таблица 2: Параметры установки

1	Масса каретки	(47,0 ± 0,5) г
2	Масса шайбы	(220,0 ± 0,5) г
3	Масса грузов на крестовине	(408,0 ± 0,5) г
4	Расстояние от оси до первой риски	(57,0 ± 0,5) мм
5	Расстояние между рисками	$(25,0 \pm 0,2)$ мм
6	Диаметр ступицы	$(46,0 \pm 0,5)$ мм
7	Диаметр груза на крестовине	$(40,0 \pm 0,5)$ мм
8	Высота груза на крестовине	$(40,0 \pm 0,5)$ мм

7. Схема установки

Рис. 1: схема установки: 1 - шкала, 2 - груз, 3 - рукоятка сцепления, 4 - передняя крестовина

8. Результаты измерений и их обработки

Время 10 колебаний маятника:

$$t_1 = 17,99$$

$$t_2 = 18,09$$

$$t_3 = 18,24$$

По результатам измерений рассчитаем среднее время десяти колебаний \bar{t} и период колебаний T по формуле (1):

$$\bar{t} = 18,11$$

$$T = \frac{\bar{t}}{N} = \frac{18,11}{10} = 1,811$$

Таблица 2

. аотинда —		,		,	
Амплитуда отклонения Время	25°	20°	15°	10°	5°
t ₁ , c	17,87	29,04	49,04	67,03	85,23
t ₂ , c	18,55	34,66	50,85	68,83	86,82
t ₃ , c	17,02	29,71	47,53	65,61	83,38
ī, c	17,81	31,14	49,14	67,16	85,14

По данным **Таблицы 2** построим график зависимости амплитуды колебаний от времени A(t)

Рис. 2: График зависимости A(t)

Главную роль в затухании колебаний играет вязкое трение. Оно возникает в результате взаимодействия между маятником и воздухом.

Построим график, соответствующий формуле (2):

$$ln\frac{A}{A_0} = -\beta t$$

Аппроксимируем его прямой линией по методу наименьших квадратов и найдем коэффициент затухания β и время затухания θ :

$$y = -0.0231x + 0.3205$$

Рис. 3: График зависимости $ln\frac{A}{Aa}(t)$

$$\beta = 0.0231$$

По формуле (3):

$$\theta = \frac{1}{\beta} = \frac{1}{0.0231} = 43,29 \text{ c}$$

Таблица 3

Положение боковых грузов	t ₁	t ₂	t ₃	ī	Т
1 риска	16,37	16,37	16,27	16,34	1,63
2 риски	17,42	17,29	17,30	17,34	1,73
3 риски	18,27	18,24	18,12	18,21	1,82
4 риски	19,55	19,41	19,58	19,51	1,95
5 рисок	21,11	20,74	20,88	20,91	2,09
6 рисок	22,32	22,25	22,39	22,32	2,23

Для каждого положения грузов вычислим расстояния центров верхнего ($R_{\rm верх}$), нижнего ($R_{\rm нижн}$) и боковых ($R_{\rm бок}$) грузов от оси вращения по формуле (4):

$$R = l_1 + (n-1)l_0 + \frac{b}{2}$$

Результаты занесем в Таблицу 4

Рассчитаем моменты инерции грузов по формуле (5):

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HWW}^2 + 2R_{\rm 60K}^2)$$

Вычислим полный момент инерции физического маятника по формуле (6):

$$I = I_{rp} + I_0$$

 I_0 - момент инерции ступицы и крестовины, равный $8\cdot 10^{-3}~{
m H\cdot m}$. Результаты занесем в **Таблицу 4**

Построим график $T^2(I)$. Аппроксимируем его прямой линией по методу наименьших квадратов $T^2=81{,}3051I+0{,}0716$

Рис. 4: График зависимости $T^2(I)$

По угловому коэффициенту графика найти произведение ml (формула 7):

$$T = 2\pi \sqrt{\frac{I}{mgl}}$$

$$T^2 = 4\pi^2 \frac{I}{mgl}$$

$$\frac{4\pi^2}{mgl} = 81,3051$$

$$ml = \frac{4\pi^2}{81,3051g} = \frac{4\cdot 3,14^2}{81,3051\cdot 9,81} = 0,05 \text{ кг} \cdot \text{м}$$

Предполагая, что основная масса маятника сосредоточена в грузах на спицах, вычислим расстояние от оси вращения до центра масс $l_{\rm reop}$

Считаем что $m=4m_{\rm rp}$

$$l_{
m reop} = rac{ml}{4m_{
m rp}} = rac{0.05}{4 \cdot 0.408} = 0.306$$
 м

По периодам колебаний из **Таблицы 3** рассчитаем приведенную длину маятника $l_{\rm пр\, эксп}$. Результаты занесем в **Таблицу 4**.

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}$$
$$T^2 = 4\pi^2 \frac{I}{mgl} = 4\pi^2 \frac{l_{\rm np}}{g}$$

$$l_{\rm np} = \frac{T^2 g}{4\pi^2}$$

Вычислим по формуле (8) теоретические значения приведенной длины $l_{\rm пр\, Teop}$, используя величину $l_{\rm Teop}$. Результаты занесем в **Таблицу 4**.

 $l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l$

Таблица 4

Риски	1	2	3	4	5	6	
$R_{ m Bepx}$		0,077					
$R_{ m huжh}$		0,202					
R_{for}	0,077	0,102	0,127	0,152	0,177	0,202	
$I_{ m rp}$	0,024	0,028	0,032	0,038	0,045	0,052	
I	0,032	0,036	0,040	0,046	0,053	0,060	
$l_{ m np}$ эксп	0,66	0,75	0,82	0,95	1,09	1,24	
$l_{ m np\ Teop}$	0,64	0,72	0,81	0,93	1,06	1,22	

9. Вывод и анализ результатов работы

В данной работе мы изучили характеристики затухающих колебаний физического маятника, измерили экспериментально период затухающих колебаний, построили график зависимости колебаний от времени и периода колебаний от момента инерции, а так же определили тип трения (вязкое). С помощью теоретических и экспериментальных данных смогли вывести приведенную длину маятника.