Tópicos de Matemática

Exame de recurso (22 de janeiro de 2018) -

__ duração: 2h30 ____

- 1. Considere as fórmulas proposicionais $\varphi : \neg (p \land q) \to (p \to q)$ e $\psi : \neg p \lor q$. Diga, justificando, se são verdadeiras ou falsas as afirmações que se seguem.
 - (a) As fórmulas φ e ψ são logicamente equivalentes.
 - (b) Qualquer que seja a fórmula proposicional σ o argumento

é válido.

2. Considerando que A é um subconjunto de $\mathbb R$ e que p representa a proposição

$$p: \exists_{x \in A} \forall_{y \in A} \ (y \neq 0 \rightarrow xy = 1),$$

dê exemplo de um conjunto A, com pelo menos dois elementos, onde: i. p seja falsa. ii. p seja verdadeira.

3. Considere os conjuntos

$$A = \{1, 5, \{1, 7\}, \emptyset\}, B = \{1, 7\}, C = \{1, 5, \{\emptyset\}\} \text{ e } D = \{n + 2 \mid n \in \mathbb{Z} \land n^2 \in B\}.$$

Determine $((A \setminus B) \setminus C) \times \mathcal{P}(D)$.

- 4. (a) Diga, justificando, se é verdadeira ou falsa a afirmação que se segue: Para quaisquer conjuntos $A, B \in C$, $(A \times B) \setminus (C \times C) = (A \setminus C) \times (B \setminus C)$.
 - (b) Sejam A, B e C conjuntos tais que $A \cap B = \emptyset$ e $C \subseteq A$. Mostre que se $A \cup B \subseteq C \cup D$, então $B \subseteq D$.
- 5. Prove, por indução nos naturais, que

$$5 + 5 \cdot 2 + 5 \cdot 3 + \ldots + 5 \cdot n = \frac{5n(n+1)}{2},$$

para qualquer $n \in \mathbb{N}$.

6. Considere a função $f: \mathbb{Z} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} 2n-1 & \text{se} \quad n \ge 3\\ n+1 & \text{se} \quad n \in \{0,1,2\}\\ -2n & \text{se} \quad n < 0 \end{cases}$$

- (a) Determine $f(\mathbb{Z}) \setminus f(\{-1,1,5\})$.
- (b) Dê exemplo de um subconjunto A de \mathbb{Z} tal que $f^{\leftarrow}(f(A)) \neq A$.
- (c) Diga se a função f é sobrejetiva. A função f é invertível? Justifique.
- 7. Sejam R e S as relações binárias em $\mathbb Z$ definidas por

$$(a,b) \in R$$
 se e só se $a = b+1$ ou $a = b-1$ e $S = \{(1,2), (4,3), (4,2), (7,5), (7,6)\}.$

- (a) Diga, justificando, se a relação R é simétrica e se é transitiva.
- (b) Determine $(S \circ S^{-1}) \cap R$.
- 8. Seja $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
 - (a) Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - i. Existe uma relação de equivalência ρ em A tal que $A/\rho = \{\{1, 2, 7, 9\}, \{4, 6\}, \{3, 5, 8, 10\}\}.$
 - ii. Existe uma relação de equivalência ρ em A tal que $[2]_{\rho} = \{1, 2, 5, 6\}$ e $[4]_{\rho} = \{2, 3, 4, 7\}$.
 - (b) Seja ρ a relação de equivalência definida em A por

 $x \rho y \Leftrightarrow x \in y$ têm o mesmo número de divisores naturais primos.

Determine $[2]_{\rho}$ e A/ρ .

9. Considere o c.p.o. (A, \leq) , onde $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ e \leq é a relação de ordem parcial definida pelo diagrama de Hasse

- (a) Indique, caso existam:
 - i. os elementos maximais e os elemento minimais de $A \setminus \{1,3\}$.
 - ii. os majorantes de $\{2,7\}$ e o supremo de $\{2,7\}$.
- (b) Dê exemplo de um subconjunto B de A tal que $(B,\leq_{|_B})$ seja um reticulado mas não seja uma cadeia.
- 10. Seja A um conjunto. Mostre que se A é numerável, então $A \sim B$, para todo o subconjunto infinito B de A.