

Université Ibn Zohr

Faculté Polydisciplinaire Ouarzazate

Modélisation Exercices et examens corrigés

Filière Sciences Mathématiques et Informatiques (Semestre 6)

Par

Abdelkrim El MOUATASIM Professeur Habilité

Années Universitaires : 2015–2021

Première partie Exercices corrigés

Exercice I.1 Soit $X \subset \mathbb{R}^n$ et $f: X \longrightarrow \mathbb{R}$ avec $f \in C^1/X$. Démontrer que si f est une fonction convexe sur X, alors $(\nabla f(x) - \nabla f(y))^T(x - y) \ge 0$ pour toute paire de points $x, y \in X$.

Corrigé:

Puisque f est convexe, alors l'inégalité de gradient s'applique :

$$f(x) \geq f(y) + \nabla f(y)^T (x - y) \Leftrightarrow f(x) - f(y) \geq \nabla f(y)^T (x - y)$$

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) \Leftrightarrow f(y) - f(x) \geq \nabla f(x)^T (y-x)$$

donc

$$0 \ge \nabla f(y)^T (x - y) + \nabla f(x)^T (y - x)$$

ои

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0.$$

Exercice I.2 $f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2$,

Utilisons les cond. d'opt. pour identifier les minima locaux.

Corrigé:

$$\nabla f(x_1, x_2) = \begin{pmatrix} x_1 + \cos x_2 \\ -x_1 \sin x_2 \end{pmatrix}.$$

Le gradient s'annule pour

$$- x_k^* = ((-1)^{k+1}, k\pi)^T, k \in \mathbf{Z},$$

$$- \bar{x}_k = (0, \frac{\pi}{2} + k\pi)^T, k \in \mathbf{Z},$$

$$- \bar{x}_k = (0, \frac{\pi}{2} + k\pi)^T, \ k \in \mathbf{Z},$$

$$\nabla^{2} f(x_{1}, x_{2}) = \begin{pmatrix} 1 & -\sin x_{2} \\ -\sin x_{2} & -x_{1}\cos x_{2} \end{pmatrix}.$$

$$\nabla^{2} f(x_{k}^{*}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \nabla^{2} f(\bar{x}_{k}) = \begin{pmatrix} 1 & (-1)^{k+1} \\ (-1)^{k+1} & 0 \end{pmatrix}.$$

- x_k^* vérifie les conditions suffisantes d'optimalité pour tout k
- \bar{x}_k ne vérifie les conditions nécessaires d'optimalité pour aucun k.

Exercice I.3 Soit la fonction

$$f(x) = \sum_{i=1}^{n} 2x_i^2 - 2\sum_{i=1}^{n-1} x_i x_{i+1}.$$

- 1. Misé f sous forme de carrés.
- 2. Écrire f sous la forme x^TAx , avec A symétrique.
- 3. Calculer le gradient $\nabla f(x)$ et le Hessien de f.
- 4. Donner l'approximation de gradient.
- 5. Calculer les valeurs propres de A.
- 6. Étudier la convexité de f.

Corrigé:

1.

$$f(x) = x_1^2 + (x_1 - x_2)^2 + \dots + (x_{n-1} - x_n)^2 + x_n^2$$

2.

$$f(x) = x^{T}A$$

$$avec A = \begin{pmatrix} 2 & -1 & & \\ -1 & \ddots & & \\ & & -1 & 2 \end{pmatrix}$$

3.

$$\nabla f(x) = 2Ax$$

et

$$H(f) = 2A$$

4. On pose $g = \nabla f(x)$ donc pour $1 \le i \le n$

$$g_i \approx \frac{f(x_1,\ldots,x_i+h,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_n)}{h}$$

5.

$$\lambda_i = 2 - 2\cos\frac{2i\pi}{n+1}, \quad \forall i \in [1, n]$$

6. Toutes les valeurs propres de A sont positives, donc la fonction f est convexe.

Exercice I.4 Trouver l'optimum de

$$f(x, y) = 4x^2 - xy + y^2 - x^3$$

Corrigé: On a:

$$\frac{\partial f}{\partial x} = 8x - y - 3x^2 \qquad \frac{\partial f}{\partial y} = -x + 2y$$
$$\frac{\partial^2 f}{\partial x^2} = 8 - 6x \qquad \frac{\partial^2 f}{\partial y^2} = 2 \qquad \frac{\partial^2 f}{\partial x \partial y} = -1$$

En résolvant l'équation : $\nabla f(x) = 0$. Donc les points candidats sont : $P_1 = (0;0;0)$ et $P_2 = (\frac{5}{2}; \frac{5}{4}; \frac{125}{16})$. La matrice Hessienne est définie par :

$$Hf(x) = \begin{pmatrix} 8 - 6x & -1 \\ -1 & 2 \end{pmatrix}$$

Alors

$$Hf(P_1) = \left(\begin{array}{cc} 8 & -1 \\ -1 & 2 \end{array} \right)$$

Comme $\Delta_1 = 8 > 0$ et $\Delta_2 = 15 > 0$, donc P_1 est un minimum.

Et

$$Hf(P_2) = \begin{pmatrix} -7 & -1 \\ -1 & 2 \end{pmatrix}$$

Comme $\Delta_2 = -7 < 0$ et $\Delta_2 = -15 < 0$, donc P_2 est un point-selle.

Exercice I.5 Considérer le problème suivant

$$\min f(x) = x^2 - \frac{1}{2}x$$

- 1. Résoudre le problème avec la méthode de Newton en considérant le point initial $x^0=3$
- 2. Trouver un intervalle contenant le point où s'annule en utilisant 3 itérations de la méthode de bisection.

Corrigé:

1. On a:

$$x_1 = x_k - f'(x_0)/f''(x_0) = 3 - 11/4 = 1/4$$

et $f'(x_1) = 0$ stop.

Méthode de la bissection : $f'(x) = x^3 + x^2 - 3x - 3 = 0$								
x_1	x_2	x_m	$f'(x_1)$	$f'(x_2)$	$f'(x_m)$	Err.abs		
1.0	2.0	1.5	-4.0	3.0	-1.875	0.5		
1.5	2.0	1.75	-1.875	3.0	+0.171 87	0.25		
1.5	1.75	1.625	-1.875	0.171 87	-0.943 35	0.125		
1.625	1.75	1.6875	-0.943 35	0.171 87	-0.409 42	0.0625		
1.6875	1.75	1.718 75	-0.409 42	0.171 87	-0.124 78	0.03125		

2.

Itération 1 :

On a f'(0)f'(1) = (-1/2)(3/4) < 0 donc on pose a = 0 et b = 1.

Itération 2:

c = 1/2 f'(c) = 1/2 > 0 donc on pose a = 0 et b = 1/2.

Itération 3 :

 $c = 1/4 \ et \ f'(c) = 0. \ Stop.$

Exercice I.6 Soit $f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 - \frac{3}{2}x^2 - 3x$.

Utilisé la méthode de la bi-section pour déterminé le optimum de f.

Corrigé:

Si x est l'optimum de f donc $f'(x) = x^3 + x^2 - 3x - 3 = 0$. Dans l'intervalle $[x_1 = 1, x_2 = 2]$ il y a une racine car est continue et f'(1)f'(2) = -4 * 3 < 0. On connait les racines pour ce cas : $f'(x) = (x^2 - 3)(x + 1) = 0$, on a trois racines réels : $r_1 = -1$, $r_2 = -\sqrt{3}$, $r_3 = \sqrt{3}$

1.
$$x_m = \frac{x_1 + x_2}{2} = 1.5 \text{ et } f'(x_m) = -1.875$$

2. Puisque $f'(x_m)f'(x_2) < 0$ alors $x_1 = x_m = 1.5$ et $x_2 = 2$

3.
$$x_m = \frac{x_1 + x_2}{2} = 1.75 \text{ et } f'(x_m) = 0.17187$$

4. Puisque $f'(x_1)f'(x_m) = -1.875 * 0.17187 < 0$ alors $x_1 = 1.5$ et $x_2 = x_m = 1.75$

5.
$$x_m = \frac{x_1 + x_2}{2} = 1.625 \ alors \ f'(x_m) = -0.94335$$

6. Puisque $f'(x_m)f'(x_2) = -0.94335 * 0.17187 < 0$ la racine se trouve donc dans l'intervalle réduit $[x_1 = 1.625, x_2 = 1.75]$

7.
$$x_m = \frac{x_1 + x_2}{2} = 1.6875 \ alors \ f'(x_m) = -0.40942$$

8. Puisque $f'(x_m)f'(x_2) = -0.40942 * 0.17187 < 0$ la racine se trouve donc dans l'intervalle réduit $[x_1 = 1.6875, x_2 = 1.75]$.

Et ainsi de suite...

On voit clairement que l'intervalle devient de plus petit

 $(|x_2 - x_1|)$ et que l'on se dirige vers 1.732050($\simeq r_3 = \sqrt{3}$).

Puisque $f'(r_3) = 0$ et $f''(r_3) > 0$ donc r_3 est un minimum local de f.

On voit aussi que la méthode a certain désavantager (lenteur en particulier, et comment on s'arrête?): critéres d'arrêts

1. L'erreur absolue : $|r - x_m| \simeq \frac{|x_1 - x_2|}{2} < \epsilon_{abs}$

2. L'erreur relative : $\frac{|r-x_m|}{|r|} \simeq \frac{|x_1-x_2|}{|x_m|} < \epsilon_{rel}$

3. On peut arrêter l'algorithme si $|f'(x_m)| < \epsilon_f$

Exercice I.7 *Soit* $f(x) = -\exp(-x) - \frac{1}{2}x^2$

Utilisé la méthode de Newton pour déterminé le minimum de f.

Corrigé:

	<i>Méthode de Newton</i> : $f'(x) = e^{-x} - x$							
n	x_n	$ e_n $	$\left \frac{e_{n+1}}{e_n} \right $					
0	0.000 0000	$0.5671 * 10^{+0}$	$0.1183 * 10^{+0}$					
1	0.500 0000	$0.6714 * 10^{-1}$	$0.1239 * 10^{-1}$					
2	0.566 3110	$0.8323 * 10^{-3}$	$0.1501 * 10^{-3}$					
3	0.567 1432	$0.1250 * 10^{-6}$	$\simeq 0$					
4	0.567 1433	$0.4097 * 10^{-9}$						

On remarque la convergence très rapide de cette méthode.

Exercice I.8 Soit le problème

$$\min f(x, y) = \frac{1}{2}(x^2 + y^2)$$

Considérer la solution initiale $x^0 = 2$, $y^0 = -1$. Exécuter 3 itérations de la méthode du gradient.

Corrigé:

1.

$$\nabla f(x,y) = (x,y)^T$$

Itération 1 : étape 0 : $X_0^T = (2, -1), \ k = 0, \ \delta = 10^{-2}$

étape 1 : $\nabla f(X_0)^T = (2, -1) \neq (0, 0)$

étape 2 : $t_0 = \arg\min_{t \geq 0} f(X_0 - t\nabla f(X_0)) = 1$

Itération 2 :

étape 0 :
$$X_1^T = X_0^T - t_0 \nabla f(X_0)^T = (2, -1) - 1(2, -1) = (0, 0)$$

étape 1 : $\nabla f(X_1)^T = (0,0)$ stop

$$X_*^T = X_1 = (0,0) \ et \ f^* = f(X_*) = 0.$$

Exercice I.9 *Considérons le problème (P) suivant :*

$$\max f(x_1, x_2) = \ln(x_1 + 1) + x_2$$

$$s.c.\ 2x_1 + x_2 \le 3$$
,

$$x_1 \ge 0, x_2 \ge 0.$$

Utilisé les conditions KKT pour résoudre le problème (P).

Corrigé:

Nous pouvons donc considérer qu'il n'y a qu'une seule contrainte avec

$$g_1(x_1, x_2) = 2x_1 + x_2,$$

 $et b_1 = 3.$

Nous associons à cette contrainte un multiplicateur $u_1 \ge 0$, et pour les contraintes de nonnégativité $u_2 \ge 0$, $u_3 \ge 0$, nous avons alors les conditions suivantes :

$$\frac{1}{x_1^* + 1} - 2u_1 + u_2 = 0,$$

$$1 - u_1 + u_3 = 0,$$

$$2x_1^* + x_2^* - 3 \le 0,$$

$$u_1(2x_1^* + x_2^* - 3) = 0,$$

$$-x_1 \le 0,$$

$$-x_2 \le 0,$$

$$u_2x_1 = 0,$$

$$u_3x_2 = 0.$$

Nous obtenons $u_1 \ge 1$. *Puisque*

$$1 - 2u_1(x_1^* + 1) + u_2 = 0$$

et $x_1^* \ge 0$, nous en déduisons $u_2 \ge 1$

Par conséquent, $x_1^* = 0$. Puisque $u_1 \neq 0$, nous avons

$$2x_1^* + x_2^* - 3 = 0,$$

et par conséquent $x_2^* = 3$. Dès lors, $u_1 = 1, u_2 = 1, u_3 = 0$. Les conditions KKT sont donc satisfaites en un seul point : (0,3).

Exercice I.10 *Soit (P) le problème :*

$$\begin{cases} \min f(x) = x_1^2 + x_2^2 \\ s.c. & x_1 + 2x_2 + 3x_3 - x_4 = 6 \\ x_1 + 3x_2 + 2x_3 + 5x_4 = 4 \\ x \ge 0 \end{cases}$$

Utilisé la méthode de gradient réduit avec $x^0 = (2, 2, 1, 0)^t$.

Corrigé:

$$Ici A = \begin{pmatrix} 1 & 2 & 3 & -1 \\ 1 & 3 & 2 & 5 \end{pmatrix}$$

$$Choisissons B = \{1, 3\}, \ N = \{2, 4\}. \ Alors A_B = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}, A_N = \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix}, x_B \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}, x_N \begin{pmatrix} x_2 \\ x_4 \end{pmatrix}$$

$$(A_B \ A_N) \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x_2 \\ x_4 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 + 3x_3 + 2x_2 - x_4 \\ x_1 + 2x_3 + 3x_2 + 5x_4 \end{pmatrix}$$

On exprime x_1 en fonction de x_2 , x_4 , on obtient

$$g(x_2, x_4) = (-5x_2 - 17x_4)^2 + x_2$$

et

$$(\frac{\partial g}{\partial x_2} \ \frac{\partial g}{\partial x_4}) = (52x_2 + 170x_4 \ 170x_2 + 578x_4).$$

$$A_B^{-1} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}$$

Effections le changement de base $B' = \{2,3\}$, $N' = \{1,4\}$ $A_B^{-1}A_{\{2\}} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} p = 5 \neq 0$ et donc $A_{B'} = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$ est inversible $(A_B^{-1}A_{B'})^{-1} = \begin{pmatrix} \frac{1}{5} & 0 \\ \frac{1}{5} & 1 \end{pmatrix}$ et $A_{B'}^{-1} = \begin{pmatrix} \frac{1}{5} & 0 \\ \frac{1}{5} & 1 \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \frac{-2}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{-2}{5} \end{pmatrix}$ Pour $B = \{1,3\}$, on $A = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} + A_B^{-1}A_N \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = A_B^{-1}b$ soit $\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} + \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$ soit encore $\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} + \begin{pmatrix} 5 & 17 \\ -1 & -6 \end{pmatrix} \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

Les pivots des colonnes A_2 et A_4 (relatifs à x_3) sont -1 et -6. S'ils étaient nuls on aurait 0 = 2. On voit que la condition de non-dégénérescence n'est pas nécessaire puisqu'ici $A_B^{-1}b$ a une composante (celle associée à x_1) nulle et pourtant on peut effectuer les changements de base $B - \{1\} + \{2\}$ et $B - \{1\} + \{4\}$, les pivots (5 et 17) étant non nuls.

Exercice I.11

$$\begin{cases} \min f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 - 2x_1 - 3x_4 \\ s.c. & 2x_1 + x_2 + x_3 + 4x_4 = 7 \\ x_1 + x_2 + 2x_3 + x_4 = 6 \\ x \ge 0 \end{cases}$$

Utilisé la méthode de gradient réduit avec $x^0 = (2, 2, 1, 0)^t$.

Corrigé:

Soient $x^0 = (2, 2, 1, 0)^t$, x_1 et x_2 les variables de base et $B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ la base. On $a : \nabla f(x^0) = (2, 4, 2, -3)^T$

$$r(x^0) = (2,4,2,-3) - (2,4) \left(\begin{array}{ccc} 1 & -1 \\ -1 & 2 \end{array} \right) \left(\begin{array}{ccc} 2 & 1 & 1 & 4 \\ 1 & 1 & 2 & 1 \end{array} \right) = (0,0,-8,-1),$$

par conséquent, $d_3 = 8$ et $d_4 = 1$.

On a:

$$d_B = B^{-1}Nd_N = (5, -22)^T$$

et
$$\mu \le \mu_{\max} = \min_{j \in B, d_j < 0} \{ -\frac{x_j^k}{d_j} \} = \frac{1}{11}.$$

On vérifie que le minimum de la fonction $f(x^0 + \mu d)$ pour $\mu \in [0, \frac{1}{11}]$ est obtenu pour $\mu = \frac{1}{11}$. La variable x_2 quitte alors la base pour y être remplacée par x_3 ou x_4 , au choix.

Exercice I.12 On considère le problème d'optimisation sous contraintes suivante :

$$\begin{cases} \min & x_1^2 + x_2^2 \\ s.c. & x_1 + x_2 \ge 1 \\ & x_1 \ge 0, x_2 \ge 0 \end{cases}$$
 (P)

(P) revient à le pb d'optimisation avec contraintes d'égalité

$$\begin{cases} \min & x_1^2 + x_2^2 \\ s.c. & x_1 + x_2 + x_3 = 1 \\ & x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

Choisissons le point initial $P_0 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ et $B = \{3\}$, $N = \{1,2\}$ pour démarré la méthode de gradient réduit.

Corrigé:

Itération 1.

On a $x_3 = -1 + x_1 + x_2$. On en déduit $g(x_1, x_2) = f(x_1, x_2, -1 + x_1 + x_2)$, $\frac{\partial g}{\partial x_N} = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}) = (2x_1, 2x_2)$ et $r(P_0) = (4\ 0)$. La direction de déplacement est $\begin{pmatrix} -4\\0\\-4 \end{pmatrix}$.

$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} -4 \\ 0 \\ -4 \end{pmatrix} \ge 0 \Rightarrow \begin{cases} \alpha \le \frac{1}{2} \\ \alpha \le \frac{1}{4} \end{cases} \Rightarrow \alpha_{\max} = \frac{1}{4}$$

Le minimum de $f(2-4\alpha,0,1-4\alpha)$ sous la contrainte $0 \le \alpha \le \frac{1}{4}$ est atteint en $\alpha_1 = \frac{1}{4}$.

Le nouveau point est $P_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Sa coordonnée 3 est nulle. Il faut effectuer un changement de base. L'indice 1 est l'indice dans N associé à la coordonnée de P_1 la plus grande : on forme la nouvelle décomposition $B = \{1\}$ et $N = \{2,3\}$.

Itération 2.

On a
$$x_1 = 1 - x_2 + x_3$$
 d'où $g(x_2, x_3) = f(1 - x_2 + x_3, x_2, x_3)$, $\frac{\partial g}{\partial x_N} = (-\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_3}) = (-2x_1 + 2x_2 \ 2x_1)$ et $r(P_1) = (-2\ 2)$. $d_N = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ et $d_B = -2$ donc la direction de déplacement est $\begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \geq 0 \Rightarrow \begin{cases} \alpha \leq \frac{1}{2} \\ \alpha \leq 0 \end{cases} \Rightarrow \alpha_{\max} = \frac{1}{2}$$

Le minimum de $f(1-2\alpha,2\alpha,0)$ sous la contrainte $0 \le \alpha \le \frac{1}{2}$ est atteint en $\alpha_2 = \frac{1}{4}$.

Le nouveau point est $P_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$.

Itération 3.

Le gradient réduit en P_2 est $r(P_2) = (0 \ 1)$ donc $d_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. On arrête.

Vérifions que les conditions de Kuhn-Tucker sont satisfaites : ici $A=(1\ 1\ -1)$ soient $\mu=-\frac{\partial f}{\partial x_1}(\frac{1}{2},\frac{1}{2},0)A_1^{-1}=-2\times\frac{1}{2}=-1$ (car $A_1=1$), $\lambda_1=0$, $(\lambda_2\ \lambda_3)=r(P_2)=(0\ 1)$ $\frac{\partial f}{\partial x}(\frac{1}{2},\frac{1}{2},0)+\mu A-\lambda=0 \Leftrightarrow (2\times\frac{1}{2}\ 2\times\frac{1}{2}\ 0)-(1\ 1\ -1)-(0\ 0\ 0)$, donc vérifié. On aura remarqué que l'on a une écriture "transposée" des équations de Kuhn-Tucker. $\lambda\geq 0$ et les conditions de complémentarités $\lambda_1\times\frac{1}{2}=0$, $\lambda_2\times\frac{1}{2}=0$, $\lambda_3\times 0=0$ sont vérifiées. Remarque :

En partant du même point on obtient des cheminements différents selon le choix du B initial.

Si l'on choisit
$$B = \{1\}$$
 et $N = \{2,3\}$, on passe par les 3 points $P_1 = \begin{pmatrix} \frac{5}{4} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$, $P_2 = \begin{pmatrix} \frac{5}{3} \\ \frac{1}{5} \\ 0 \end{pmatrix}$, $P_3 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$ sans changer de base B .

Exercice I.13 Le tableau suivant donne l'évolution en fonction de l'année du budget publicitaire d'une entreprise, en dizaines de milliers dh.

années	1998	1999	2000	2001	2002	2003	2004	2005
rang x _i	1	2	3	4	5	6	7	8
budget y _i	2	2,2	2,5	3	3,2	3,5	3,7	4,2

- 1. Montrer que $\mathbf{cov}(X, Y) = \overline{XY} \overline{X}\overline{Y}$.
- 2. Calculer le coefficient de corrélation entre ces deux séries.
- 3. Déterminer une équation de la droite Δ d'ajustement par la méthode des moindres carrés, commenter la qualité de cet ajustement. (On donnera les résultats à 0,001 près).

10

4. On considère que cette droite permet un ajustement de cette série statistique. Calculer à partir de quelle année le budget devrait **dépasser** 60 000 dh.

Corrigé:

1. On a

$$\mathbf{cov}(X,Y) = \overline{(X - \bar{X})(Y - \bar{Y})}$$

donc

$$\mathbf{cov}(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{n} \\
= \frac{\sum (X_i Y_i - \bar{X}_i \bar{Y} - \bar{X} Y_i + \bar{X} \bar{Y})}{n} \\
= \frac{\sum (X_i Y_i) - \bar{Y} \sum_i X_i - \bar{X} \sum_i Y_i + n \bar{X} \bar{Y})}{n} \\
= \overline{XY} - \bar{X} \bar{Y}$$

2.

$$\mathbf{r}(X, Y) = \frac{\mathbf{cov}(X, Y)}{\sigma(X)\sigma(Y)} = \frac{1.63125}{2.29128*0.71578} = 0.99462$$

3. L'équation de la droite X = aY + b avec :

$$a = \frac{\mathbf{cov}(X, Y)}{\sigma(Y)^2} = 3.18389$$

et

$$b = (\bar{X}) - a(\bar{Y}) = b = -5.17109$$

donc X = 3.18389Y - 5.17109 On a $\mathbf{r}(X, Y) \approx 1$ donc la régression entre X et Y est fort.

4. Y = 6 donc X = 3.18389 * 6 - 5.17109 ≈ 14Alors à partir de l'année 2011 le budget devrait dépasser 60000dh.

Exercice I.14 Nous considérons l'ensemble $X = \{1, 2, 3, 6, 7, 8, 13, 15, 17\}$ à partir duquel nous souhaitons créer 3 clusters.

- 1. Appliqué l'algorithme kmeans ont choisissons arbitrairement pour centres de cluster les éléments $M_1 = 13$, $M_2 = 15$, $M_3 = 17$ associés respectivement aux clusters $C_1 = 13$, $C_2 = 15$, $C_3 = 17$.
- 2. Appliqué l'algorithme kmeans++ ont choisissons arbitrairement pour centre de cluster l'éléments $M_1 = 2$ associés au clusters $C_1 = 2$.

Corrigé:

Table 1 : Calcul des distances $D^2(x)$ séparant chaque élément de X à chaque centre $M_1 = 13$, $M_2 = 15$, $M_3 = 17$ et identification des clusters $C_1 = \{1, 2, 3, 6, 7, 8, 13\}$ de centre $M_1 = \frac{40}{7}$, $C_2 = \{15\}$ de centre $M_2 = 15$ et $C_3 = 17$ de centre $M_3 = 17$.

	х	$M_1 = 13$	$M_2 = 15$	$M_3 = 17$
	1	144	196	256
	2	121	169	225
1.	3	100	144	196
	6	49	81	121
	7	36	64	100
	8	25	49	81

Table 1 – Itération 1

x	$M_1 = \frac{40}{7}$	$M_2 = 15$	$M_3 = 17$
1	1089/49	196	256
2	676/49	169	225
3	361/49	144	196
6	4/49	81	121
7	81/49	64	100
8	256/49	49	81
13	2601/49	4	14

Table 2 – Itération 2

Table 2 : Calcul des distances $D^2(x)$ séparant chaque élément de X à chaque centre $M_1=\frac{40}{7},\ M_2=15,\ M_3=17$ et identification des clusters $C_1=\{1,2,3,6,7,8\}$ de centre $M_1=4.5,\ C_2=\{13,15\}$ de centre $M_2=14$ et $C_3=17$ de centre $M_3=17$.

X	$M_1 = 4.5$	$M_2 = 14$	$M_3 = 17$
1	12.25	169	256
2	6.25	144	225
3	2.25	121	196
6	2.25	64	121
7	6.25	49	100
8	12.25	36	81
13	72.25	1	14
15	110.25	1	4

Table 3 – Itération 3

Table 3 : Calcul des distances $D^2(x)$ séparant chaque élément de X à chaque centre $M_1 = 4.5$, $M_2 = 14$, $M_3 = 17$ et identification des clusters $C_1 = \{1, 2, 3, 6, 7, 8\}$ de centre $M_1 = 4.5$, $C_2 = \{13, 15\}$ de centre $M_2 = 14$ et $C_3 = 17$ de centre $M_3 = 17$.

Les centres issus du tableau 3 sont les mêmes que ceux issus du tableau 2. L'algorithme s'arrête donc et nous obtenons les 3 clustres suivants $C_1 = \{1, 2, 3, 6, 7, 8\}$ de centre $M_1 = 4.5$

$$C_2 = \{13, 15\}$$
 de centre $M_2 = 14$
 $C_3 = \{17\}$ de centre $M_3 = 17$

	x	1	3	6	7	8	13	15	17
2	D2()	1	1	1.0	25	26	101	1.00	225

	X	1	3	6	/	8	13	15	1/
2.	$D_2^2(x)$	1	1	16	25	36	121	169	225
	$P(M_2 = x)$	$\frac{1}{594}$	$\frac{1}{594}$	<u>16</u> 594	<u>25</u> 594	<u>36</u> 594	121 594	169 594	<u>225</u> 594

Table 4 – Itération 1

Tableau 4 : Calcul des distances $D_2^2(x)$ séparant chaque élément de X au premier centre égal à 2 et identification du deuxième centre $M_2 = 17$ correspondant à l'élément de X avec la plus forte probabilité.

X	1	3	6	7	8	13	15
$D_2^2(x)$	1	1	16	25	36	121	169
$D_{17}^{2}(x)$	256	196	121	100	81	16	4
$P(M_3 = x)$	<u>1</u> 99	<u>1</u> 99	16 99	2 <u>5</u>	<u>36</u> 99	16 99	<u>4</u> 99

Table 5 – Itération 2

Tableau 5 : Calcul des distances $D_2^2(x)$ séparant chaque élément de X au premier centre égal à 2, $D_{17}^2(x)$ séparant chaque élément de X au deuxième centre égal à 17 et identification du troisième centre $M_3 = 8$ correspondant à l'élément de X avec la plus forte probabilité.

Tableau 6 : Calcul des distances séparant chaque élément de X à chaque centre $M_1 = 2$,

	x	$M_1 = 2$	$M_2 = 17$	$M_3 = 8$
	1	1	256	49
	3	1	196	25
	6	16	121	4
	7	25	100	1
1	13	121	16	25
1	15	169	4	49

Table 6 – Phase 2

 $M_2 = 17$ et $M_3 = 8$ et identification des clusters $C_1 = \{1, 2, 3\}$ de centre $M_1 = 2$, $C_2 = \{13, 15, 17\}$ de centre $M_2 = 15$ et $C_3 = \{6, 7, 8\}$ de centre $M_3 = 7$.

Exercice I.15 Considérer le problème de produire une boîte de volume maximale avec une pièce de carton de superficie spécifiée c > 0. Dénotons les dimensions des côtés de cette boîte par x, y et z. Le problème peut se formuler comme suit :

$$\begin{cases} \max & xyz \\ s.c. & yx + yz + xz = \frac{c}{2} \end{cases}$$

Déterminer les dimensions optimales en utilisant les conditions de Kuhn-Tucker (KKT).

Corrigé: KKT:

$$-yz + \lambda_1(y+z) - \lambda_2 = 0 \quad (1)$$

$$-xz + \lambda_1(x+z) - \lambda_3 = 0 \quad (2)$$

$$-xy + \lambda_1(x+y) - \lambda_4 = 0 \quad (3)$$

$$xy + yz + xz = \frac{C}{2} \quad (4)$$

$$x\lambda_2 = y\lambda_3 = z\lambda_3 = 0 \quad (5)$$

(1)+(2)+(3):

$$-(xy + yz + zx) + 2\lambda_1(x + y + z) = \lambda_2 + \lambda_3 + \lambda_4$$

$$\lambda_1(x+y+z) = \frac{\lambda_2 + \lambda_3 + \lambda_4}{2} + \frac{C}{4} > 0 \Rightarrow \lambda_1 > 0$$

 $Si~x=0, alors~(3)~devient~\lambda_1 z=\lambda_3$

$$\Rightarrow \lambda_1 yz = y\lambda_3 = 0$$

$$\Rightarrow y = 0 o u z = 0$$

d'après (4) impossible.

Donc $x \neq 0$, de même $y \neq 0$ et $z \neq 0$

$$\Longrightarrow \lambda_2 = \lambda_3 = \lambda_4 = 0$$

On multiplie:

- (1) par x et (2) par y et on soustrait $\Rightarrow x y = 0$
- (1) par x et (3) par z et on soustrait $\Rightarrow x z = 0$
- (2) par Y et (3) par z et on soustrait $\Rightarrow u z = 0$

$$Donc\ (4) \Longrightarrow x = y = z = \sqrt{\frac{C}{6}}$$

Deuxième partie Examens corrigés

Année Universitaire: 2016–2017

Examen session principale

Exercice II.1 Soit $f: \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$ et convexe sur \mathbb{R}^n . soit $x^* \in \mathbb{R}^n$, $d \in \mathbb{R}^n$ une direction, et $\alpha > 0$ un scalaire. Soit $\bar{x} = x^* + \alpha d$.

Démontrer que si $\nabla f(\bar{x})^T d < 0$, alors d est une direction de descente au point x^* .

Corrigé:

Utilisent l'inégalité de gradient

$$f(x^*) \ge f(\bar{x}) + \nabla f(\bar{x})^T (x^* - \bar{x})$$
$$= f(\bar{x}) - \alpha \nabla f(\bar{x})^T d$$
$$> f(\bar{x})$$

Utilisent la définition de la fonction convexe $x \in [x^*, \bar{x}]$ *est de la forme*

$$x = \theta x^* + (1 - \theta)\bar{x} \tag{1}$$

et si $\theta \neq 1$ on a

$$f(x) = f(\theta x^* + (1 - \theta)\bar{x}) \le \theta f(x^*) + (1 - \theta)f(\bar{x}) < f(x^*)$$

Également, en peut écrire (1)

$$x = \theta x^* + (1 - \theta)(x^* + \alpha d) = x^* + (1 - \theta)\alpha d$$

Donc pour $0 \le \theta 1$ *,*

$$f(x^*) > f(x^* + (1 - \theta)\alpha d)$$

 \Rightarrow d est une direction de descente.

Exercice II.2 *Modèle statistique simple*

Utiliser la méthode des moindres carrés pour estimer les paramètres de la droite de régression Y = aX + b qui approche le mieux les n couples (X_i, Y_i) .

Corrigé:

Soit $(X_i)_{1 \le i \le n}$ et Y_i deux séries statistiques. On cherche à savoir s'il est raisonnable de prévoir Y_i en fonction de X_i , avec par exemple une relation linéaire $Y_i = a + bX_i$. Pour cela on minimise $f(a,b) = \sum (a+bX_i - Y_i)^2$ par rapport à a et b, ce qui donne les équations :

$$\begin{cases} \frac{\partial f}{\partial a} = 0 &= 2\sum_{i=1}^{n} (a + bX_i - Y_i) \\ \frac{\partial f}{\partial b} = 0 &= 2\sum_{i=1}^{n} X_i (a + bX_i - Y_i) \end{cases}$$

équivalentes à :

$$\begin{cases} a \sum_{i=1}^{n} + b \sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} Y_{i} \\ a \sum_{i=1}^{n} X_{i} + b \sum_{i=1}^{n} X_{i}^{2} = \sum_{i=1}^{n} X_{i} Y_{i} \end{cases}$$

Donc

$$a = \frac{cov(X, Y)}{v(X)}, \ et \ b = m(Y) - am(X).$$

Exercice II.3 On considère le problème de programme non-linéaire HS48 suivant :

$$\min z = (x_1 - 1)^2 + (x_2 - x_3)^2 + (x_4 - x_5)^2$$

$$s.c. \ x_1 + x_2 + x_3 + x_4 + x_5 = 5$$

$$x_3 - 2(x_4 + x_5) = -3$$

$$x_i \ge 0, \ i = 1, \dots, 5.$$

Compléter deux itérations de la méthode du gradient réduit pour résoudre le problème HS48, on partira du point $X^0 = (2, 1.5, 0, 1.5, 0)^T$

Corrigé:

— 1^{re} itération :

$$\begin{split} X_B^0 &= (x_1, x_4), \, X_N^0 = (x_2, x_3, x_5), \\ &\Rightarrow r_N(X^0) = (1, -\frac{9}{2}, -6)^T, \, d_N = (-1, \frac{9}{2}, 6)^T \, et \, d_B = (-\frac{23}{4}, -\frac{15}{4})^T \\ \alpha_{max} &= 0.3478 \Rightarrow \alpha_1 = 0.1807 \end{split}$$

$$\Rightarrow X^1 = (0.9607, 1.3193, 0.8134, 0.822, 1.084)^T$$

 -2^{me} itération :

$$X_B^1 = (x_1, x_4), X_N^1 = (x_2, x_3, x_5),$$

 $\Rightarrow d = (0.856, -0.63, -0.1509, -0.5638, -0.4884)^T$
 $\Rightarrow \alpha_2 = 0.159$
 $\Rightarrow X^2 = (0.868, 1.162, 0.9794, 1.0559, 0.9338)^T$

Examen session rattrapage

Exercice II.4 Soit la fonction $f = \frac{1}{2}x^TDx - b^Tx$ où $x, b \in \mathbb{R}^n$ et D est une matrice $n \times n$.

1. Démontrer que si x^TDx est convexe sur \mathbb{R}^n , alors f est aussi convexe sur \mathbb{R}^n .

2. Démontrer que si tout les valeurs propre de D sont positive, alors f est convexe sur \mathbb{R}^n .

Corrigé:

- 1. La fonction $g(x) = -b^T x$ est linéaire donc convexe. En effet $-b^T (\alpha x + (1 \alpha)y) = -\alpha b^T x (1 \alpha)b^T y$ Puisque $x^T Dx$ est convexe, alors f(x) est une combinaison linéaire de deux fonction convexe avec un poids $\frac{1}{2}$ pour $x^T Dx$ et 1 pour $-b^T x$. Donc f est convexe.
- 2. Si tout les valeurs propre de D positive donc D est semi défini positive $\Rightarrow x^T Dx$ est convexe d'après Q_1 f est convexe.

Exercice II.5 1. Montrer que en partant du point $X^0 = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ ($\alpha \neq 0$ quelconque), la méthode de Newton converge.

2. Appliquer la méthode de Newton avec le pas optimale en partant de $X^0 = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ pour calculer X^1 . Que constate-t-on?

Corrigé:

1.
$$X^{1} = (\frac{2}{3}\alpha, 0)^{T}, X^{2} = ((\frac{2}{3})^{2}\alpha, 0)^{T}$$

$$\Rightarrow X^{k} = ((\frac{2}{3})^{k}\alpha, 0)^{T} \xrightarrow{k \to \infty} 0$$

2. Direction de Newton en X^0 est $-(\frac{1}{3}\alpha, 0)^T$

$$X^{1}(t) = X^{0} - t(\frac{1}{3}\alpha, 0)^{T}$$

$$\Rightarrow g(t) = f(X(t)) = \frac{(\alpha - \frac{t}{3}\alpha)^4}{4} \ge 0 \ g(t) \ atteint \ son \ minimum \ en \ t = 3 \ X^1 = X(3) = (0,0)^T \ minimum \ atteint.$$

Exercice II.6 On considère le problème d'optimisation non-linéaire (P1) suivant :

$$\min z = (x_1 - 1)^2 + (x_2 - x_3)^2 + (x_4 - x_5)^2$$

$$s.c. \ x_1 + x_2 + x_3 + x_4 + x_5 = 5$$

$$x_2 - 2(x_4 + x_5) = -3$$

$$x_i \ge 0, \ i = 1, \dots, 5.$$

Soit $X^0 = (2, 0, 1.5, 0, 1.5)^T$ le point initial, pour résoudre le problème (P1) par la méthode du gradient réduit.

- 1. Donner les bases possible.
- 2. Compléter une itération de l'algorithme. Donner la base de deuxième itération.
- 3. Vérifier que le point $X^* = (1, 1, 1, 1, 1)^T$ vérifie les conditions de Kuhn-Tucker.

Corrigé :

- 1. $B_1 = \{x_1, x_5\}$ et $B_2 = \{x_3, x_5\}$
- 2. $Si\ B = B_1\ on\ trouve\ X^1 = (0.961, 0.834, 1.319, 1.084, 0.822)^T\ et\ B = B_1$ $Si\ B = B_2\ on\ trouve\ X^1 = (2.108, 0.648, 0.42, 0.648, 1.176)^T\ et\ B = B_2$
- 3. $d_N = 0 \Rightarrow X^*$ vérifier les conditions de KKT.

Année Universitaire: 2017–2018

Examen session principale

Exercice II.7 Soit $X \in \mathbb{R}^n$ est un ensemble convexe et si la fonction $f: X \longrightarrow \mathbb{R}$ est strictement convexe sur X. On pose qu'il existe un point minimum local x^* .

- 1. Démontrer que x* est un minimum global.
- 2. Démontrer que le minimum est unique.

Corrigé:

1. La preuve se fait par contradiction en supposant qu'il existe un point $\hat{x} \in X$ tel que $f(\hat{x}) < f(\bar{x})$. Puisque f est convexe, $f(\theta \hat{x} + (1 - \theta)\bar{x}) \le \theta f(\hat{x}) + (1 - \theta)f(\bar{x}) < \theta f(\bar{x}) + (1 - \theta)f(\bar{x}) = f(\bar{x})$ pour tout $\theta \in (0, 1]$. Or pour $\theta > 0$ suffisamment petit,

$$x(\theta) = \theta \hat{x} + (1 - \theta)\bar{x} \in B\epsilon(\bar{x}) \cap X.$$

Ainsi $f(x(\theta)) < f(\bar{x})$ où $x(\theta) \in B\epsilon(\bar{x}) \cap X$, contredisant que \bar{x} est un minimum local de f sur X.

2. Soit donc $x^* \in K$ tel que $f(x^*) \le f(x)$, $\forall x \in K$. Supposons qu'il existe $y^* \ne x^*$ tel que $f(y^*) \le f(x)$, $\forall x \in K$. Formons pour $\lambda \in]0,1[$ le vecteur

$$u = \lambda y^* + (1 - \lambda)x^*.$$

D'après la stricte convexité de f et puisque nécessairement $f(y^*) = f(x^*)$ on a

$$f(u) < \lambda f(y^*) + (1 - \lambda) f(x^*) = f(x^*),$$

ce qui contredit le fait que x^* soit un minimum. On a donc $x^* = y^*$.

Exercice II.8 Considérer le problème de déterminer le point de la droite $a_1x + a_2y = b$ le plus proche de l'origine. Nous faisons l'hypothèse que $a_1 \neq 0$ ou $a_2 \neq 0$.

- 1. Formuler ce problème comme un problème d'optimisation.
- 2. Écrire les conditions d'optimalité KKT pour ce problème.
- 3. Déterminer une solution optimale de ce problème.

4. Les conditions KKT sont-elle suffisantes pour ce problème? Justifier votre réponse.

Corrigé:

1.

$$\min z = x^2 + y^2$$

$$s.c. a_1x + a_2y = b$$

2.

$$L(x, y, z) = x^2 + y^2 - \lambda(a_1x + a_2y - b)$$
$$2x - a_1\lambda = 0$$
$$2y - a_2\lambda = 0$$
$$a_1x + a_2y = b(*)$$

3.
$$x = \frac{a_1 \lambda}{2}$$
 et $y = \frac{a_2 \lambda}{2}$ d'après (*) $\lambda = \frac{2b}{a_1^2 + a_2^2}$ donc $x = \frac{a_1 b}{a_1^2 + a_2^2}$ et $y = \frac{a_2 b}{a_1^2 + a_2^2}$

4. On a le problème d'optimisation convexe donc les conditions de KKT sont suffisantes.

Exercice II.9 On considère le programme nonlinéaire (P) suivant :

$$\min z = x_1^2 - x_1 x_2 + 6x_2^2 - 12x_2 + 2x_3^2$$

$$s.c. \ x_1 - x_2 = -3$$

$$x_1 - x_3 = 1$$

$$x_1, \ x_2, x_3 \ge 0.$$

- 1. Résoudre le problème (P) avec la méthode du gradient réduit, on partira du point $X^0 = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$
- 2. Vérifier que le point trouver vérifie les conditions de Kuhn-Tucker (KT).

Corrigé:

1.
$$d^0 = (-49, -49, -49)^T$$
 et $\alpha^0 = \alpha_{\text{max}} = \frac{1}{49}$
 $donc \ X^1 = X^0 + \alpha^0 d^0 = (1, 4, 0)^T$ et $d_N = 0$ stop.

2. on a
$$\frac{\partial f}{\partial x} + UA - \lambda = (-2,35,0) + (2,-35,33) - (0,0,33) = (0,0,0), \ \lambda_i X_i^1 = 0, \lambda_i \ge 0$$
 donc X^1 vérifie les conditions de Kuhn-Tucker (KT).

Examen session rattrapage

Exercice II.10 *Modèle statistique multiple*

Considérer le problème d'estimer les paramètres de la régression

$$Y = \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3$$

qui approche le mieux les n triples (X_1^i, X_2^i, Y^i) .

- 1. Quelle méthode que on peut utiliser?
- 2. Formuler ce problème comme un problème d'optimisation.
- 3. Écrire les conditions d'optimalité pour ce problème.

Corrigé:

1. La méthode des moindres carrés.

2.
$$F(\alpha_1, \alpha_2, \alpha_3) = \min \sum_{i=1}^{n} (y_i - (\alpha_1 x_i^1 + \alpha_2 x_i^2 + \alpha_3 x_i^3))^2$$
.

3.
$$\frac{\partial F(\alpha)}{\partial \alpha_i} = 0$$
, $i = 1, 2, 3$.

Exercice II.11 On considère le problème (P) d'optimisation sous contraintes suivante :

$$\min z = x_1^2 + x_2^2$$
s.c. $x_1 + x_2 \ge 1$
 $x_1, x_2 \ge 0$.

- 1. Résoudre le problème (P) avec la méthode du gradient réduit, on partira du point $X^0 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$
- 2. Vérifier que le point trouver vérifie les conditions de Kuhn-Tucker (KT).

Corrigé:

1. Iteration 1:

$$X^0 = (0, 2, 1)^T \ donc \ B = \{3\} \ et \ N = \{1, 2\} \Rightarrow d^0 = (0, -4, -4)^T \ et \ \alpha^0 = \alpha_{\max} = \frac{1}{4} \ donc \ X^1 = X^0 + \alpha^0 d^0 = (0, 1, 0)^T$$

Iteration 2:

$$X^2 = (0.5, 0.5, 0)^T$$
 et $d_N = 0$ stop.

2. on a $\frac{\partial f}{\partial x} + UA - \lambda = (0,0,0)$, $\lambda_i X_i^2 = 0$, $\lambda_i \ge 0$ donc X^2 vérifie les conditions de Kuhn-Tucker (KT).

Année Universitaire: 2018–2019

Examen session principale

Exercice II.12 Soit la fonction $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ suivante $f(x, y) = x^3 + y^2 + 2xy$. Soit un ensemble $X \in \mathbb{R}^2$ suivant : $X = \{(x, y) : x \ge 1, y \le -1\}$.

- 1. Démontrer que X est un ensemble convexe ou identifier un contre exemple pour démontrer qu'il ne l'est pas.
- 2. Démontrer que f est convexe sur X ou identifier un contre exemple pour démontrer qu'il ne l'est pas.

Corrigé:

1.

Soit
$$X = \{(x, y) : x \ge 1, y \le -1\}$$
, et $(x^1, y^1) \in X$, $(x^2, y^2) \in X$ on a

$$\alpha x^1 + (1 - \alpha)x^2 \ge \alpha + (1 - \alpha) = 1$$

$$\alpha y^{1} + (1 - \alpha)y^{2} \le -\alpha - (1 - \alpha) = -1$$

donc X est un ensemble convexe.

2.

$$Soit f(x, y) = x^3 + y^2 + 2xy$$

 \Rightarrow

$$\nabla f(x,y) = \begin{bmatrix} 3x^2 + 2y \\ 2y + 2x \end{bmatrix}, \quad \nabla^2 f(x,y) = \begin{bmatrix} 6x & 2 \\ 2 & 2 \end{bmatrix}$$

Mineurs principaux de $\nabla^2 f(x, y)$ *sont :*

$$a_{11} = 6x$$
, $a_{22} = 2$, $det(\nabla^2 f(x, y)) = 12x - 4$

puisque $x \ge 0$ donc

$$6x \ge 0$$
, $12x - 4 \ge 0$

 $\Longrightarrow \nabla^2 f(x,y)$ est semi-défini positive sur X,

 \implies f est convexe sur X.

Exercice II.13 Une firme aéronautique fabrique des avions qu'elle vend sur deux marchés étrangers. Soit q_1 le nombre d'avions vendus sur le premier marché et q_2 le nombre d'avions vendus sur le deuxième marché. Les fonctions de demande dans les deux marchés respectifs sont :

$$p_1 = 60 - 2q_1$$
, $p_2 = 80 - 4q_2$

où p₁ et p₂ sont les deux prix de vente. La fonction de coût total de la firme est

$$C = 50 + 40q$$

où q es le nombre total d'avions produits.

Il faut trouver le nombre d'avions que la firme doit vendre sur chaque marché pour maximiser son bénéfice.

Corrigé:

Comme $q = q_1 + q_2$, *la fonction de coût devient :*

$$C = 50 + 40q = 50 + 40q_1 + 40q_2$$

Le revenu total R s'obtient en multipliant le prix par la quantité sur chaque marché :

$$R = p_1 q_1 + p_2 q_2 = 60q_1 - 2q_1^2 + 80q_2 - 4q_2^2$$

On obtient le bénéfice B en calculant la différence entre le revenu et le coût :

$$B = R - C = 20q_1 - 2q_1^2 + 40q_2 - 4q_2^2 - 50.$$

Première condition d'optimalité:

$$\frac{\partial B}{\partial a} = 0 \Rightarrow (q_1; q_2) = (5, 5).$$

Deuxième condition d'optimalité :

La matrice Hessienne est :

$$H = \left[\begin{array}{cc} -4 & 0 \\ 0 & -8 \end{array} \right]$$

Par conséquent :

$$\delta_1 = -4 < 0$$
, $delta_2 = 32 > 0$

Donc (q_1, q_2) est un maximum. Le bénéfice maximum réalisé $B^* = 100$.

Quant aux prix, ils s'élèvent respectivement à :

$$p_1 = 50$$
, $p_2 = 50$

Exercice II.14 On considère le problème (P) d'optimisation sous contraintes suivant :

$$\min z = x_1^2 + x_2^2$$
s.c. $x_1 + x_2 \ge 1$
 $x_1, x_2 \ge 0$.

- 1. Transformer le problème (P) vers un problème d'optimisation avec contraintes d'égalité (P1).
- 2. Déterminer le point X^0 de problème (P1) associer au sommet $A = (1,0)^t$ de problème (P).
- 3. Résoudre le problème (P1) avec la méthode du gradient réduit, on partira du point X^0 . (1 *itération*)
- 4. Vérifier que le point trouver vérifie les conditions de Kuhn-Tucker (KT).

Corrigé:

On considère le problème (P) d'optimisation sous contraintes suivant :

1

$$\min z = x_1^2 + x_2^2$$
s.c. $x_1 + x_2 - x_3 = 1$
 $x_1, x_2, x_3 \ge 0$.

2.

 $A=(1,0)^t$ est un sommet de problème (P) donc $x_1=1,x_2=0$, donc $X^0=(1,0,x_3)$ d'après la contrainte $x_3=0$. $\Longrightarrow X^0=(1,0,0)$.

3.

On
$$a x_1 = 1 - x_2 + x_3 d'où g(x_2, x_3) = f(1 - x_2 + x_3, x_2, x_3),$$

$$\frac{\partial g}{\partial x_N} = \left(-\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \right. \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_3}) = \left(-2x_1 + 2x_2 \right. 2x_1)$$

et $r(P_1) = (-2\ 2)$. $d_N = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ et $d_B = -2$ donc la direction de déplacement est $\begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} \ge 0 \Rightarrow \begin{cases} \alpha \le \frac{1}{2} \\ \alpha \le 0 \end{cases} \Rightarrow \alpha_{\max} = \frac{1}{2}$$

Le minimum de f $(1 - 2\alpha, 2\alpha, 0)$ sous la contrainte $0 \le \alpha \le \frac{1}{2}$ est atteint en $\alpha_2 = \frac{1}{4}$.

Le nouveau point est $X^1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$.

4.

Le gradient réduit en X^1 est $r(X^1) = (0 \ 1)$ donc

$$d_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

 \implies le point courant X^1 vérifie les conditions de Kuhn-Tucker (d'après le théorème).

Examen session rattrapage

Exercice II.15 Un fabricant de postes de télévision produit q poste par semaine à un coût total de

$$C = 6q^2 + 80q + 5000.$$

C'est un monopoleur et son prix s'exprime par la relation p = 1080 - 4q.

- 1. Modélisé le problème pour maximiser le bénéfice.
- 2. Trouver le bénéfice net maximum.
- 3. Montrer que ce maximum est un maximum global.

Corrigé:

1. Le revenu total R s'obtient en multipliant le prix par la quantité :

$$R = (pq = 1080 - 4q)q = 1080q - 4q^2$$

On obtient le bénéfice B en calculant la différence entre le revenu et le coût :

$$B = R - C = 1080q - 4q^2 - (6q^2 + 80q + 5000) = -10q^2 + 1000q - 5000$$

Donc la modélisation optimal de problème est :

$$\max B(q)$$

2. Première condition d'optimalité:

$$\frac{\partial B}{\partial q} = 0 \Rightarrow q = 50.$$

Sa dérivée seconde est :

$$B^{''} = -20 < 0$$

Par conséquent, la fonction de bénéfice présente un maximum en x = 50.

- 3. Ce maximum est un maximum global car la fonction est une parabole (concave).
- **Exercice II.16** 1. Utiliser la méthode des moindres carrés pour estimer les paramètres de la droite y = ax + b qui approche le mieux les n couples (x_i, y_i) .
 - 2. Trouver la droite f(x) = ax + b qui approche le mieux les mesures :

$$f(0) = 0$$
, $f(1) = 1$, $f(3) = 2$, $f(4) = 5$.

Corrigé:

1. Soit $(x_i)_{1 \le i \le n}$ et y_i deux séries statistiques. On cherche à savoir s'il est raisonnable de prévoir y_i en fonction de x_i , avec par exemple une relation linéaire $y_i = ax_i + b$. Pour cela on minimise

$$f(a,b) = \sum (ax_i + b - y_i)^2$$

par rapport à a et b, ce qui donne les équations :

$$\begin{cases} \frac{\partial f}{\partial a} = 0 &= 2\sum_{i=1}^{n} x_i (ax_i + b - y_i) \\ \frac{\partial f}{\partial b} = 0 &= 2\sum_{i=1}^{n} (ax_i + b - y_i) \end{cases}$$

équivalentes à :

$$\begin{cases} b \sum_{i=1}^{n} x_i + a \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} b + a \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \end{cases}$$

On exprime b dans la seconde équation

$$b = \frac{\sum_{i=1}^{n} y_i}{n} - a \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\implies b = E(y) - aE(x)$$

On remplace b par sa valeur dans la 1^{er} équation pour obtenir a et on multiple par $\frac{1}{n}$ numérateur et dénominateur, on obtient

$$a = \frac{E(xy) - E(x)E(y)}{\sigma(x)^2}$$

tel que :

- E(x) est la moyenne arithmétique de x
- $\sigma(x)$ est l'écart type de x.
- 2. D'après la question 1

$$a = \frac{\frac{27}{4} - 4}{10} = \frac{11}{10}$$

et

$$b = 2 - \frac{11}{10} \times 2 = -\frac{2}{10}$$

donc

$$f(t) = \frac{11}{10}t - \frac{2}{10}$$

Exercice II.17 On considère le programme nonlinéaire (P1) suivant :

$$\min z = x_1^2 + 2x_2^2 - x_1x_3 + 6x_3^2 - 12x_3$$
s.c. $x_1 - x_3 = -3$

$$x_1 - x_2 = 1$$

$$x_1, x_2, x_3 \ge 0.$$

- 1. Résoudre le problème (P1) avec la méthode du gradient réduit, on partira du point $X^0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- 2. Vérifier que le point trouver vérifie les conditions de Kuhn-Tucker (KT).

Corrigé:

1.

Itération 1 :

Puisque le point initial est
$$X^0 = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} donc B = \{1,3\}, N = \{2\},$$

$$A_N = \begin{pmatrix} 0 \\ -1 \end{pmatrix} et A_B = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} donc A_B^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$
on sait que

$$r_N(X) = 4x_2 - (2x_1 - x_3, -x_1 + 12x_3 - 12)A_B^{-1}A_N$$

$$\implies r_N(X^0) = 49 \ donc \ d_N = -49$$

$$\implies d_B = -A_B^{-1} A_N d_N^T = \begin{pmatrix} -49 \\ -49 \end{pmatrix}$$

$$\begin{pmatrix} -49 \\ \end{pmatrix}$$

$$donc d^0 = \begin{pmatrix} -49 \\ -49 \\ -49 \end{pmatrix} et \alpha_{\text{max}} = \frac{1}{49}.$$

On calcule le pas optimale α^0

$$\alpha^0 = \arg\min_{0 \le \alpha \le \alpha_{\max}} f(X^0 + \alpha d^0)$$

On pose
$$\phi(\alpha) = f(X^0 + \alpha d^0)$$

pour $\phi'(\alpha^*) = 0$ on a $\alpha^* = \frac{3855}{33614} > \alpha_{\text{max}}$
donc $\alpha^0 = \alpha_{\text{max}} = \frac{1}{49}$.

$$\Longrightarrow X^1 = X^0 + \alpha^0 d^0 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$$

Itération 2 :

 $On\ a\ r_N(X^1)=33\ et\ x_2=0\ donc\ d_N=0\ stop$

 X^1 est un solution optimal.

2. On a $\frac{\partial f}{partialx}(X^1) = (-2,35,0)^T$, on pose $u = -\frac{\partial f}{partialx_B}(X^1)A_B^{-1} = (35,-33)$ et $\lambda = r = (0,0,33)^T$

alors

$$\frac{\partial f}{partialx}(X^1) + uA - \lambda = 0$$

or $\lambda \geq 0$, $\lambda_i \cdot x_i = 0$, $AX^1 = b$

 $donc X^1$ vérifie les conditions de KKT.

Année Universitaire: 2019–2020

Examen session principale

Exercice II.18 Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, une fonction différentiable. Soit $x_0 \in \mathbb{R}^2$ et $d \in \mathbb{R}^2$, une direction non nulle telle que $||\nabla f(x_0) + d|| \le ||\nabla f(x_0)||$.

- 1. Montrer que d est une direction de descente de f en x_0 .
- 2. Trouver alors le pas optimal $\rho \in \mathbb{R}$ minimisant la fonction $\phi(\rho) = \|\nabla f(x_0) + \rho d\|$.
- 3. Exhiber une direction de descente qui n'appartient pas à vect $(-\nabla f(x_0))$ lorsque $\nabla f(x_0) \neq 0$.

Corrigé:

1. Puisque $\|\nabla f(x_0) + d\| \le \|\nabla f(x_0)\|$, on élève chacun des membres de l'inégalité au carré et on les développe. On obtient

$$\|\nabla f(x_0)\|^2 + 2 < \nabla f(x_0), d >_2 + \|d\|^2 \le \|\nabla f(x_0)\|^2$$

et par conséquent, $\langle \nabla f(x_0), d \rangle_2 \le -\frac{1}{2} ||d||^2 < 0$.

Par conséquent,

$$\frac{f(x_0+\epsilon d)-f(x_0)}{\epsilon}=<\nabla f(x_0), d>_2+o(\epsilon)\leq -\frac{1}{2}||d||^2+o(\epsilon).$$

Par conséquent, le second membre est strictement négatif si ϵ est assez petit et la conclusion s'ensuit.

- 2. Pour trouver le pas optimal, remarquons que le problème $\min_{\mathbb{R}} \phi$ est équivalent au problème $\min_{\mathbb{R}} \phi^2$. Or, $\phi^2(\rho) = \|\nabla f(x_0)\|^2 + 2\rho < \nabla f(x_0), d>_2 + \rho^2 \|d\|^2$, donc le minimum est atteint en $\rho^* = -\frac{\langle \nabla f(x_0), d>_2}{\|d\|^2}$ et vaut $\min_{\mathbb{R}} \phi^2 = \|\nabla f(x_0)\|^2 \frac{\langle \nabla f(x_0), d>_2}{\|d\|^2}$.
- 3. En particulier, tout vecteur de la forme $d = -\nabla f(x_0) + \epsilon u$, où u est un vecteur unitaire et $\epsilon \in]0, ||\nabla f(x_0)||[$ est une direction de descente.

Exercice II.19 *Soit* $f: \mathbb{R}^4 \longrightarrow \mathbb{R}$ *, la fonction définie par*

$$f(x_1, x_2, x_3, x_4) = (1 + x_4)^3 (x_1^2 + x_2^2 + x_3^2) + x_4^2.$$

1. Déterminer les points critiques de f.

2. Montrer que $f(0_{\mathbb{R}^4})$ est un minimum local. Est-ce un minimum global?

Corrigé:

1. Les points critiques de f sont les solutions de l'équation $\nabla f(x_1, x_2, x_3, x_4) = 0_{\mathbb{R}^4}$. Or,

$$\nabla f(x_1, x_2, x_3, x_4) = 0_{\mathbb{R}^4} \Leftrightarrow \begin{cases} 2(1 + x_4)^3 x_1 = 0 \\ 2(1 + x_4)^3 x_2 = 0 \\ 2(1 + x_4)^3 x_3 = 0 \\ 3(1 + x_4)^2 (x_1^2 + x_2^2 + x_3^2) + 2x_4 = 0. \end{cases}$$

Notons que $x_4 \neq -1$ sinon, la dernière équation fournit une contradiction. On en déduit que nécessairement $x_1 = x_2 = x_3 = 0$. Il vient $x_4 = 0$. L'unique point critique de f est donc $0_{\mathbb{R}^4}$.

2. Évaluons la matrice hessienne de f en $0_{\mathbb{R}^4}$. Notons $X=(x_1,x_2,x_3,x_4)$. On a

$$Hess f(X) = \begin{pmatrix} 2(1+x_4)^3 & 0 & 0 & 6x_1(1+x_4)^2 \\ 0 & 2(1+x_4)^3 & 0 & 6x_2(1+x_4)^2 \\ 0 & 0 & 2(1+x_4)^3 & 6x_3(1+x_4)^2 \\ 6x_1(1+x_4)^2 & 6x_2(1+x_4)^2 & 6x_3(1+x_4)^2 & 2+6(1+x_4)(x_1^2+x_2^2+x_3^2) \end{pmatrix}$$

et par conséquent, $Hess f(0_{\mathbb{R}^4}) = 2I_4$ est définie positive. On en déduit que $f(0_{\mathbb{R}^4}) = 0$ est un minimum local. Il n'est en revanche pas global car

$$f(1,0,0,t) = (1+t)^3 + t^2 \xrightarrow[t \to -\infty]{} -\infty$$

Exercice II.20 Soit $N \in \mathbb{N}^*$. On considère un nuage de points $\{(t_i, x_i)\}_{1 \le i \le N}$, et on cherche à mettre en? uvre une régression parabolique, autrement dit, on recherche la parabole P d'équation $y = at^2 + bt + c$, où a, b et c sont trois réels à déterminer, telle que la somme sur tous les indices i variant de 1 à N du carré de la distance du point (t_i, x_i) au point de même abscisse sur P soit minimale.

1. Écrire ce problème comme un problème de minimisation quadratique, c'est-à-dire un problème de la forme

$$\min_{X \in \mathbb{R}^N} J(X) = \frac{1}{2} < AX, X > - < b, X >, \quad (Q)$$

avec $A \in M_n(R)$, $b \in \mathbb{R}^n$. On devra donc expliciter n, A et b.

On utilisera la notation $S_k = \sum_{i=1}^{N} t_i^k$.

- 2. Discuter de l'existence des solutions d'un tel problème.
- 3. On suppose que la matrice A est définie positive. Démontrer que (Q) possède une unique solution.

Corrigé:

1. Le problème s'écrit

$$\min_{(a,b,c)\in\mathbb{R}^3} f(a,b,c) = \sum_{i=1}^N (x_i - at_i^2 - bt_i - c)^2.$$

Écrivons
$$J(X) = ||MX - k||^2$$
 avec $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, $M = \begin{pmatrix} t_1^2 & t_1 & 1 \\ \vdots & \vdots & \vdots \\ t_N^2 & t_N & 1 \end{pmatrix}$

et $k = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$. D'après la méthode des moindres carrés, on a

$$J(X) = \frac{1}{2} < Ax, X > - < b, X >$$

avec
$$n = 3$$
, $A = M^T M \in M_3(\mathbb{R})$ et $b = M^T k \in \mathbb{R}^3$. On calcule $A = \begin{pmatrix} S_4 & S_3 & S_2 \\ S_3 & S_2 & S_1 \\ S_2 & S_1 & N \end{pmatrix}$.

- 2. Ce problème est équivalent au problème de minimiser la distance euclidienne de k au sous espace vectoriel (de dimension finie) Im(M). C'est donc un problème de projection orthogonale, et il admet une solution.
- 3. Dans ce cas, on sait que HessJ(X) = A qui est définie positive. Par conséquent, J est strictement convexe, et J possède au plus un minimum dans \mathbb{R}^3 . Comme on a vu qu'elle en possède au moins un, on conclut à l'existence et l'unicité.

Exercice II.21 On souhaite résoudre numériquement le problème d'optimisation

$$\min_{(x,y)\in\mathbb{R}^2} f(x,y) = x^4 + y^4 - xy,$$

à l'aide d'une méthode de gradient à pas constant, noté $\rho > 0$. On appelle $(x_k, y_k)_{k \in \mathbb{N}}$ la suite des itérés obtenus.

- 1. Donner la relation de récurrence satisfaite par la suite $(x_k, y_k)_{k \in \mathbb{N}}$.
- 2. Quel critère d'arrêt numérique proposez-vous pour cet algorithme?

Corrigé:

1. f est C^{∞} car polynomiale et on a $\nabla f(x,y) = (4x^3 - y, 4y^3 - x)$. La relation de récurrence dans la méthode du gradient à pas constant s'écrit $X_{k+1} = X_k - \rho \nabla f(X_k)$, qui s'écrit ici

$$\begin{cases} x_{k+1} = x_k - \rho(4x_k^3 - y_k) \\ y_{k+1} = y_k - \rho(4y_k^3 - x_k). \end{cases}$$

2. On fixe tol > 0. Un critère raisonnable est de stopper l'algorithme lorsque

$$|x_{k+1} - x_k| + |y_{k+1} - y_k| < tol$$

ou encore lorsque

$$|4x_k^3 - y_k| + |4y_k^3 - x_k| < tol.$$

Examen session rattrapage

Exercice II.22 On définit la famille des $\{u_i\}_{i\in\{0,\dots,N+1\}}$ par $u_i=ih$, avec $h=\frac{1}{N+1}$ et $N\in\mathbb{N}^*$ donné. On se donne un nuage de points de \mathbb{R}^2 $(u_i,x_i)_{i\in\{0,\dots,N+1\}}$. On suppose par ailleurs que $x_0=0$ et $x_{N+1}=1$. Posons $x=(x_1,\dots,x_N)$. On appelle f(x), la longueur de la courbe affine par morceaux passant par les points (u_i,x_i) .

- 1. Calculer la distance entre deux points $A_{i+1} = (u_{i+1}, x_{i+1})$ et $A_i = (u_i, x_i)$.
- 2. Montrer que pour tout $x \in \mathbb{R}^N$, on a

$$f(x) = h \sum_{i=0}^{N} \sqrt{1 + (\frac{x_{i+1} - x_i}{h})^2}.$$

- 3. Montrer que f est coercive $(f(x) \ge ||x||_{\infty})$, et en déduire l'existence de la solution pour le problème min f(x).
- 4. Étudier la convexité de f, et en déduire l'unicité de la solution pour le problème $\min f(x)$.

Corrigé:

1.
$$d(A_{i+1}, A_i) = ||(u_{i+1}, x_{i+1}) - (u_i, x_i)||_2 = \sqrt{(u_{i+1} - u_i)^2 - (x_{i+1} - x_i)^2}$$

2.
$$f(x) = \sum_{i=0}^{N} \sqrt{(u_{i+1} - u_i)^2 + (x_{i+1} - x_i)^2} = \sum_{i=0}^{N} \sqrt{h^2 - (x_{i+1} - x_i)^2} = h \sum_{i=0}^{N} \sqrt{1 + (\frac{x_{i+1} - x_i}{h})^2}$$

3. Soit $k \in [1, N]$ et $x = (x_1, ..., x_N) \in \mathbb{R}^N$. On a successivement

$$f(x) = h \sum_{i=0}^{N} \sqrt{1 + (\frac{x_{i+1} - x_i}{h})^2} \ge h \sum_{i=0}^{k-1} \sqrt{1 + (\frac{x_{i+1} - x_i}{h})^2}$$

$$\ge h \sum_{i=0}^{k-1} \sqrt{(\frac{x_{i+1} - x_i}{h})^2} \ge h \sum_{i=0}^{k-1} |\frac{x_{i+1} - x_i}{h}|$$

$$\ge \sum_{i=0}^{k-1} |x_{i+1} - x_i| \ge |\sum_{i=0}^{k-1} (x_{i+1} - x_i)| \ge |x_k - x_0| \ge |x_k|,$$

d'après l'inégalité triangulaire f est donc coercive.

Puisque f est continue, coercive sur \mathbb{R}^N qui est fermé, le problème min f possède une solution.

4. Montrons que f est strictement convexe. Pour cela, remarquons d'abord que la fonction $g: x \mapsto \sqrt{1+x^2}$ est strictement convexe car sa dérivée seconde est donnée par $g''(x) = 1/(1+x^2)^{3/2}$ et est donc strictement positive sauf en 0.

Soit $(x, y) \in (\mathbb{R}^N)^2$ tel que $x \neq y$. ce qui signifie qu'il existe au moins un indice $j \in [1, N]$ tel que $x_j \neq y_j$. Par conséquent, il existe un rang $k \in [0, N]$ tel que $x_{k+1} - x_k \neq y_{k+1} - y_k$. En effet, si ce n'était pas le cas, puisque $x_0 = y_0 = 0$, on en déduirait successivement que $x_1 = y_1$, $x_2 = y_2$ et ainsi de suite jusqu'a $x_N = y_N$, et on aurait donc x = y. Par conséquent, pour tout $t \in [0, 1]$, on a

$$g(t(x_{k+1}-x_k)+(1-t)(y_{k+1}-y_k)) < tg(x_{k+1}-x_k)+(1-t)g(y_{k+1}-y_k).$$

Soit $t \in [0, 1]$. *En utilisant la stricte convexité de g, il vient :*

$$f(tx + (1 - t)y) = h \sum_{i=0}^{N} g(t(\frac{x_{i+1} - x_i}{h}) + (1 - t)(\frac{y_{i+1} - y_i}{h}))$$

$$= h \sum_{i=0, i \neq k}^{N} g(t(\frac{x_{i+1} - x_i}{h}) + (1 - t)(\frac{y_{i+1} - y_i}{h}))$$

$$+ hg(t(\frac{x_{k+1} - x_k}{h}) + (1 - t)(\frac{y_{k+1} - y_k}{h}))$$

$$< h \sum_{i=0, i \neq k}^{N} (tg(\frac{x_{i+1} - x_i}{h}) + (1 - t)g(\frac{y_{i+1} - y_i}{h}))$$

$$+ h(tg(\frac{x_{k+1} - x_k}{h}) + (1 - t)g(\frac{y_{k+1} - y_k}{h}))$$

$$= h \sum_{i=0}^{N} (tg(\frac{x_{i+1} - x_i}{h}) + (1 - t)g(\frac{y_{i+1} - y_i}{h}))$$

$$= tf(x) + (1 - t)f(y).$$

On en déduit que f est strictement convexe. On en déduit que le problème $\min f(x)$ admet au plus une solution.

En combine avec le résultat d'existence obtenu précédemment, il vient que ce problème possède une unique solution.

Exercice II.23 On se donne $n \in \mathbb{N}^*$, $b \in \mathbb{R}^n$ un vecteur et $A \in M_n(\mathbb{R})$ une matrice symétrique et semi-définie positive. On considère la fonction $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ définie par

$$f(x) = \epsilon ||x||^2 + \frac{1}{2} < Ax, x > - < b, x >, x \in \mathbb{R}^n.$$

I) $\epsilon > 0$,

- 1. Montrer que f est une fonction quadratique et calculer ∇f et $\nabla^2 f$.
- 2. Montrer que f est fortement convexe et en déduire l'existence et l'unicité d'un point de minimum de f sur \mathbb{R}^n ; on va noter par x^* ce point de minimum.
- 3. Écrire l'équation qui permet de trouver x^* .
- 4. Trouver x^* dans le cas particulier

$$n=2$$
, $\epsilon=\frac{1}{100}$, $b=\begin{pmatrix}0\\1\end{pmatrix}$, $A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$.

- II) $\epsilon = 0$, on va noter dans la suite par u^* l'unique point de minimum de f sur \mathbb{R}^n . Nous appliquons **la méthode de gradient à pas optimal** qui consiste à construire une suite $\{u^{(k)}\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$ par la relation de récurrence vue en cours, avec $u^{(0)}$ donnée.
 - 1. Montrer qu'on a

$$u^{(k+1)} - u^* = u^{(k)} - u^* - \rho_k A(u^{(k)} - u^*), \ \forall k \in \mathbb{N},$$

avec $\rho_k \in R$ le pas optimal.

2. Programmer cet algorithme de gradient à pas optimal sous Python.

Corrigé:

I)
$$\epsilon > 0$$
,

1. On a

$$f(x) = \epsilon ||x||^2 + \frac{1}{2} < Ax, x > - < b, x > = \epsilon < I_n x, x > + \frac{1}{2} < Ax, x > - < b, x >$$

forme quadratique,

$$\nabla f(x) = 2\epsilon I_n x + Ax - b, \ \forall x \in \mathbb{R}^n$$
$$\nabla^2 f(x) = 2\epsilon I_n + A, \ \forall x \in \mathbb{R}^n$$

2. $Si w \in \mathbb{R}^n$ arbitraire alors

$$<\nabla^2 f(x)w, w>=2\epsilon < I_n w, w>+< Aw, w>\geq 2\epsilon ||w||_2>0$$

donc f est fortement convexe.

Alors d'après le théorème on a l'existence et l'unicité d'un point minimum x^* .

3. x^* satisfait l'équation d'Euler $\nabla f(x^*) = 0$ donc

$$2\epsilon x^* + Ax^* = b$$

4.

$$\frac{2}{100} \left(\begin{array}{c} x_1^* \\ x_2^* \end{array} \right) + \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} x_1^* \\ x_2^* \end{array} \right) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

donc
$$x_1^* = 0$$
 et $x_2^* = 50$.

II)
$$\epsilon = 0$$
,

1. u^* satisfait $Au^* = b$ donc

$$u^{(k+1)} - u^* = u^{(k)} - u^* - \rho_k \nabla J(u^{(k)}) = u^{(k)} - u^* - \rho_k (Au^{(k)} - b) = u^{(k)} - u^* - \rho_k A(u^{(k)} - u^*).$$