Rocket Nozzle Equations

Ben Calow

September 14, 2025.

Contents

Nomenclature											2	
1	Thermodynamic Relations				[1]							3
	1.1	Isentropic	Flow R	lela	ation							3
	1.2	Isentropic	Total	То	Static	Temperat	ure Relat	ion				3
	1.3	Isentropic	Total	То	Static	Pressure	Relation					3
Re	feren	ıces										4

A C_f Vacuum thrust coefficient Speed of sound c_s Mass flow rate \dot{m} MMolar mass MaMach number mol%Mole percentage PPressure RGas constant R_s Specific gas constant TTemperature

vVelocity

Nozzle area ratio ϵ

Ratio of specific heats

Density ρ

Subscripts

Nomenclature

Ambient aChamber Exit Throat

Given Position x,yStagnation 0

1 Thermodynamic Relations [1]

1.1 Isentropic Flow Relation

$$\frac{T_x}{T_y} = \left(\frac{P_x}{P_y}\right)^{\frac{\gamma}{\gamma - 1}} \tag{1.1}$$

1.2 Isentropic Total To Static Temperature Relation

$$0 = \frac{T}{T_0} \left[1 + \frac{1}{2} (\gamma - 1) Ma^2 \right]$$
 (1.2)

1.3 Isentropic Total To Static Pressure Relation

$$0 = \frac{P}{P_0} \left[1 + \frac{1}{2} (\gamma - 1) Ma^2 \right]^{\frac{\gamma}{\gamma - 1}}$$
 (1.3)

References

[1] O. B. George P. Sutton, Rocket Propulsion Elements, 9th ed. Wiley, 2017.