Lasso regression

STAT 4710

Where we are

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Linear and logistic regression

Lecture 2: Regression in high dimensions

Lecture 3: Ridge regression

Lecture 4: Lasso regression

Lecture 5: Unit review and quiz in class

First, recall ridge regression:

$$\widehat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} \beta_j^2.$$

First, recall ridge regression:

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} \beta_j^2.$$

The penalty term biases coefficients toward zero, which reduces variance.

First, recall ridge regression:

$$\widehat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} \beta_j^2.$$

The penalty term biases coefficients toward zero, which reduces variance.

Another way to reduce variance is to use a different penalty:

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} |\beta_j|.$$

First, recall ridge regression:

$$\widehat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} \beta_j^2.$$

The penalty term biases coefficients toward zero, which reduces variance.

Another way to reduce variance is to use a different penalty:

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} |\beta_j|.$$

It turns out that changing the penalty in this way leads to $\widehat{\beta}_j^{\rm lasso}=0$ for many j.

The effect of the penalty parameter λ

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}))^2 + \lambda \sum_{j=1}^{p-1} |\beta_j|$$

- The larger λ is, the more of a penalty there is.
- For $\lambda = 0$, we get back ordinary least squares (if OLS solution exists)
- For $\lambda = \infty$, we get $\beta_1 = \cdots = \beta_{p-1} = 0$, leaving only the intercept (which is not penalized).

We should think of λ as controlling the flexibility of the lasso regression fit, like the degrees of freedom in a spline fit. However, larger λ means fewer degrees of freedom.

The bias-variance tradeoff for lasso regression

The bias-variance tradeoff for lasso regression

In practice, λ is chosen by cross-validation.

Lasso solution $\hat{\beta}^{\text{lasso}}$ is called sparse because $\hat{\beta}^{\text{lasso}}_j = 0$ for many j.

Lasso solution $\hat{\beta}^{\text{lasso}}$ is called sparse because $\hat{\beta}^{\text{lasso}}_{j} = 0$ for many j.

```
# A tibble: 97 x 2
                          coefficient
   variable
   <chr>
                                <dbl>
 1 pct.kids.nvrmarried
                             85.2
                             25.9
 2 pct.pop.underpov
 3 male.pct.divorce
                             22.8
 4 pct.people.dense.hh
                             10.0
 5 pct.kids2parents
                             -5.51
 6 pct.youngkids2parents
                             -0.821
 7 num.kids.nvrmarried
                              0.007<u>37</u>
 8 population
 9 household.size
10 race.pctblack
# ... with 87 more rows
```

Lasso solution $\hat{\beta}^{\text{lasso}}$ is called sparse because $\hat{\beta}^{\text{lasso}}_{j} = 0$ for many j.

Lasso is therefore a variable selection tool.

```
# A tibble: 97 x 2
                          coefficient
   variable
   <chr>
                                <dbl>
 1 pct.kids.nvrmarried
                             85.2
                             25.9
 2 pct.pop.underpov
 3 male.pct.divorce
                             22.8
 4 pct.people.dense.hh
                             10.0
 5 pct.kids2parents
                             -5.51
 6 pct.youngkids2parents
                             -0.821
 7 num.kids.nvrmarried
                              0.007<u>37</u>
 8 population
 9 household.size
10 race.pctblack
# ... with 87 more rows
```

Lasso solution $\hat{\beta}^{\text{lasso}}$ is called sparse because $\hat{\beta}^{\text{lasso}}_j = 0$ for many j.

Lasso is therefore a variable selection tool.

Sparse coefficient vectors are interpretable; they suggest which features are important.

```
# A tibble: 97 x 2
                          coefficient
   variable
   <chr>
                                <dbl>
 1 pct.kids.nvrmarried
                             85.2
                             25.9
 2 pct.pop.underpov
 3 male.pct.divorce
                             22.8
 4 pct.people.dense.hh
                             10.0
 5 pct.kids2parents
                             -5.51
 6 pct.youngkids2parents
                             -0.821
 7 num.kids.nvrmarried
                              0.007<u>37</u>
 8 population
 9 household.size
10 race.pctblack
# ... with 87 more rows
```

Lasso solution $\hat{\beta}^{\text{lasso}}$ is called sparse because $\hat{\beta}^{\text{lasso}}_j = 0$ for many j.

Lasso is therefore a variable selection tool.

Sparse coefficient vectors are interpretable; they suggest which features are important.

NOTE: Cannot attach a measure of statistical significance to the selected variables.

```
# A tibble: 97 x 2
                          coefficient
   variable
   <chr>
                                <dbl>
 1 pct.kids.nvrmarried
                             85.2
                             25.9
 2 pct.pop.underpov
 3 male.pct.divorce
                             22.8
 4 pct.people.dense.hh
                             10.0
 5 pct.kids2parents
                             -5.51
 6 pct.youngkids2parents
                             -0.821
 7 num.kids.nvrmarried
                              0.007<u>37</u>
 8 population
 9 household.size
10 race.pctblack
# ... with 87 more rows
```

Lasso trace plot (compared to ridge)

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$.

E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\text{arg min}} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\text{arg min}} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

In this simple case, $\widehat{\beta}_{j}^{\mathrm{OLS}} = Y_{j}$ and

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\text{arg min}} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

In this simple case, $\widehat{\beta}_{j}^{\mathrm{OLS}} = Y_{j}$ and

$$\widehat{\beta}_{j}^{\text{lasso}} = \begin{cases} Y_{j} - \lambda/2, & \text{if } Y_{j} \geq \lambda/2 \\ 0, & \text{if } |Y_{j}| \leq \lambda/2 \\ Y_{j} + \lambda/2, & \text{if } Y_{j} \leq -\lambda/2 \end{cases}$$

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \end{bmatrix}$

E.g.
$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

In this simple case, $\widehat{\beta}_i^{\text{OLS}} = Y_i$ and

$$\widehat{\beta}_{j}^{\text{lasso}} = \begin{cases} Y_{j} - \lambda/2, & \text{if } Y_{j} \geq \lambda/2 \\ 0, & \text{if } |Y_{j}| \leq \lambda/2 \\ Y_{j} + \lambda/2, & \text{if } Y_{j} \leq -\lambda/2 \end{cases}$$

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \end{bmatrix}$

E.g.
$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

In this simple case, $\widehat{\beta}_i^{\text{OLS}} = Y_i$ and

$$\widehat{\beta}_{j}^{\text{lasso}} = \begin{cases} Y_{j} - \lambda/2, & \text{if } Y_{j} \geq \lambda/2 \\ 0, & \text{if } |Y_{j}| \leq \lambda/2 \\ Y_{j} + \lambda/2, & \text{if } Y_{j} \leq -\lambda/2 \end{cases}$$

 $\widehat{\beta}$ lasso obtained by soft-thresholding OLS estimate.

Suppose that
$$n = p$$
 and $X_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$, i.e. $Y_j = \beta_j + \epsilon_j$. E.g. $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \end{bmatrix}$

E.g.
$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Consider fitting lasso regression without intercept:

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \sum_{j=0}^{p-1} (Y_j - \beta_j)^2 + \lambda \sum_{j=0}^{p-1} |\beta_j|.$$

In this simple case, $\widehat{\beta}_i^{\text{OLS}} = Y_i$ and

$$\widehat{\beta}_{j}^{\text{lasso}} = \begin{cases} Y_{j} - \lambda/2, & \text{if } Y_{j} \geq \lambda/2 \\ 0, & \text{if } |Y_{j}| \leq \lambda/2 \\ Y_{j} + \lambda/2, & \text{if } Y_{j} \leq -\lambda/2 \end{cases}$$

plasso obtained by soft-thresholding OLS estimate.

LASSO = Least Angle Shrinkage and Selection Operator.

Feature scaling and standardization

Like for ridge regression, feature scaling matters for the lasso;

Feature standardization is recommended before running the lasso.

Linear regression coefficients for correlated features tend to be unstable.

Linear regression coefficients for correlated features tend to be unstable.

Lasso coefficients are also unstable for correlated features.

Linear regression coefficients for correlated features tend to be unstable.

Lasso coefficients are also unstable for correlated features.

For example, consider the linear regression

$$y = \beta_1 X_1 + \beta_2 X_1 + \epsilon,$$

where we've accidentally added the same feature twice.

Linear regression coefficients for correlated features tend to be unstable.

Lasso coefficients are also unstable for correlated features.

For example, consider the linear regression

$$y = \beta_1 X_1 + \beta_2 X_1 + \epsilon,$$

where we've accidentally added the same feature twice.

• Linear regression is undefined because (β_1, β_2) and $(\beta_1 - c, \beta_2 + c)$ give the same RSS for each c.

Linear regression coefficients for correlated features tend to be unstable.

Lasso coefficients are also unstable for correlated features.

For example, consider the linear regression

$$y = \beta_1 X_1 + \beta_2 X_1 + \epsilon,$$

where we've accidentally added the same feature twice.

- Linear regression is undefined because (β_1, β_2) and $(\beta_1 c, \beta_2 + c)$ give the same RSS for each c.
- The lasso penalty does not help "break the tie." In practice, lasso often chooses one of the two features arbitrarily.

Linear regression coefficients for correlated features tend to be unstable.

Lasso coefficients are also unstable for correlated features.

For example, consider the linear regression

$$y = \beta_1 X_1 + \beta_2 X_1 + \epsilon,$$

where we've accidentally added the same feature twice.

- Linear regression is undefined because (β_1, β_2) and $(\beta_1 c, \beta_2 + c)$ give the same RSS for each c.
- The lasso penalty does not help "break the tie." In practice, lasso often chooses one of the two features arbitrarily.

Note: Coefficient instability doesn't necessarily translate into prediction instability.

Logistic regression with lasso penalty

Logistic regression with lasso penalty

Logistic regression can be penalized, just like linear regression!

Logistic regression with lasso penalty

Logistic regression can be penalized, just like linear regression!

Recall $\mathcal{L}(\beta)$, the logistic regression likelihood. We can view $-\log \mathcal{L}(\beta)$ as analogous to the linear regression RSS. Continuing the analogy, we can define

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ -\log \mathcal{L}(\beta) + \lambda \sum_{j=1}^{p-1} |\beta_j| \right\}.$$

Logistic regression with lasso penalty

Logistic regression can be penalized, just like linear regression!

Recall $\mathcal{L}(\beta)$, the logistic regression likelihood. We can view $-\log \mathcal{L}(\beta)$ as analogous to the linear regression RSS. Continuing the analogy, we can define

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ -\log \mathcal{L}(\beta) + \lambda \sum_{j=1}^{p-1} |\beta_j| \right\}.$$

Subtle point: While $\widehat{\beta}^{lasso}$ is trained based on a (penalized) log-likelihood, during cross-validation we should choose λ based on whatever measure of test error we care about (e.g. weighted misclassification error).

Least squares Ridge L	asso
-----------------------	------

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $
Penalty effect	N/A	Shrinkage	Shrinkage and selection

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $
Penalty effect	N/A	Shrinkage	Shrinkage and selection
Sparsity	No	No	Yes

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $
Penalty effect	N/A	Shrinkage	Shrinkage and selection
Sparsity	No	No	Yes
Correlated features	(Unstable)	Splits the credit (stable)	Chooses one arbitrarily (unstable)

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $
Penalty effect	N/A	Shrinkage	Shrinkage and selection
Sparsity	No	No	Yes
Correlated features	(Unstable)	Splits the credit (stable)	Chooses one arbitrarily (unstable)
Performs better when	n/p is large	Many features have small effects	Few features have large effects

	Least squares	Ridge	Lasso
Penalty	None	$\sum_{j=1}^{p-1} \beta_j^2$	$\sum_{j=1}^{p-1} \beta_j $
Penalty effect	N/A	Shrinkage	Shrinkage and selection
Sparsity	No	No	Yes
Correlated features	(Unstable)	Splits the credit (stable)	Chooses one arbitrarily (unstable)
Performs better when	n/p is large	Many features have small effects	Few features have large effects
Works when $p > n$	No	Yes	Yes

Elastic net regression

Get the benefits of ridge and lasso regression by combining the two penalties:

Penalty =
$$(1 - \alpha) \sum_{j=1}^{p} \beta_j^2 + \alpha \sum_{j=1}^{p} |\beta_j|$$

- When $\alpha = 0$, we get ridge regression
- When $\alpha = 1$, we get lasso regression
- When $0 < \alpha < 1$, we get ridge-like shrinkage as well as lasso-like selection

Elastic net gives sparse solutions as long as $\alpha > 0$.

How to choose α ? Can cross-validate over α and λ : First choose α to minimize CV error, then choose λ according to the one-standard-error rule.

• Penalized regression method encouraging coefficients to be sparse.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.
- Unlike ridge:

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.
- Unlike ridge:
 - Sets some coefficients exactly to zero, achieving variable selection.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.
- Unlike ridge:
 - Sets some coefficients exactly to zero, achieving variable selection.
 - Coefficient estimates unstable in the presence of correlated features.

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.
- Unlike ridge:
 - Sets some coefficients exactly to zero, achieving variable selection.
 - Coefficient estimates unstable in the presence of correlated features.
- Can be combined with ridge (elastic net).

- Penalized regression method encouraging coefficients to be sparse.
- Like ridge:
 - λ controls the degrees of freedom; *larger* λ gives *fewer* degrees of freedom.
 - Bias-variance trade-off: larger λ gives higher bias but lower variance.
 - Features need to be standardized.
 - Can be applied to logistic regression as well.
- Unlike ridge:
 - Sets some coefficients exactly to zero, achieving variable selection.
 - Coefficient estimates unstable in the presence of correlated features.
- Can be combined with ridge (elastic net).

Quiz practice