Zestaw 3

Zadanie 1. Niech A będzie zdarzeniem losowym takim, że $\mathbb{P}(A) > 0$ i niech X będzie zmienną losową taką, że $\mathbb{E}X < \infty$. Wykaż, że wtedy $\mathbb{E}(X|A) =$ $\frac{1}{\mathbb{P}(A)} \int_A X d\mathbb{P}$.

Zadanie 2. Niech $\{A_i\}_{i\in I}$ będzie przeliczalnym rozbiciem przestrzeni Ω i takim, $\dot{z}e$ dla dowolnego i $\mathbb{P}(A_i) > 0$. Wyka \dot{z} , $\dot{z}e$ wtedy $\mathbb{E}X = \sum_{i \in I} \mathbb{E}(X|A_i)\mathbb{P}(A_i)$.

Zadanie 3. Niech $\Omega = [0,1]$ i niech \mathbb{P} będzie miarą Lebesgue'a na tym odcinku. $Znajd\acute{z} \mathbb{E}(f|\mathcal{F}) \ je\acute{s}li$

- $f(x) = \sqrt{x}$ i \mathcal{F} jest generowane przez zbiory [0, 1/4) i [1/4, 1],
- $f(x) = -x \ i \mathcal{F} \ jest \ generowane \ przez \ zbiory [0, 1/4) \ i \ [1/3, 1].$

Zadanie 4. Niech zmienna losowa X będzie całkowalna z kwadratem. Określmy $Var(X|\mathcal{F}) = \mathbb{E}((X - \mathbb{E}(X|\mathcal{F}))|\mathcal{F}). \ Udowodnij, \ \dot{z}e$

$$VarX = \mathbb{E}(Var(X|\mathcal{F})) + Var(\mathbb{E}(X|\mathcal{F}))$$
$$(\mathbb{E}(X|\mathcal{F}))^{2} \leq \mathbb{E}(X^{2}|\mathcal{F})$$
$$VarX \geq Var(\mathbb{E}(X|\mathcal{F})).$$

Zadanie 5. Niech X_1, X_2, \ldots, X_n będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie i takim, że $\mathbb{E}X_1 < \infty$. Wyznacz $\mathbb{E}(X_1 | \sum_{i=1}^n X_i)$.

Zadanie 6. Niech X,Y będą niezależnymi zmiennymi losowymi o rozkładzie $\mathcal{N}(0,1)$. Wyznacz $\mathbb{E}(X|X^2+Y^2)$.

Zadanie 7. Niech $\{X_i\}$ będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie i takim, że $\mathbb{E}|X_i| < \infty$. Niech $S_n = \sum_{i=1}^n X_i$ i niech $\mathcal{F}_n =$ $\sigma(S_n, S_{n+1}, S_{n+2}, \dots)$. Wyznacz

- $\mathbb{E}(X_1|\mathcal{F}_n),$ $\mathbb{E}\left(\sum_{i=1}^n a_i X_i|\mathcal{F}_n\right), \ gdzie \sum_{i=1}^n a_i = 1.$

Zadanie 8. Niech Y będzie całkowalną zmienną losową i niech X, Z będą zmiennymi losowymi takimi, że (X,Y) jest niezależne od Z. Pokaż, że wtedy $\mathbb{E}(Y|X,Z) = \mathbb{E}(Y|X).$

Zadanie 9. Niech X, Y beda całkowalnymi z kwadratem zmiennymi losowymi. Udowodnij, że zachodzi

$$\mathbb{E}\left(X\mathbb{E}(Y|\mathcal{F})\right) = \mathbb{E}\left(Y\mathbb{E}(X|\mathcal{F})\right).$$

Zadanie 10. Niech X bedzie zmienna losowa o rozkładzie Poissona z parametrem λ . Znajdź warunkową wartość oczekiwaną tej zmiennej losowej pod warunkiem, że przyjmuje ona wartość parzystą.

Zadanie 11. Niech zmienne losowe X,Y maja ten sam rozkład. Przy jakim dodatkowym założeniu zachodzi

$$\mathbb{E}\left(\frac{X}{X+Y}\right) = \mathbb{E}\left(\frac{Y}{X+Y}\right)?$$

Przy tym założeniu oblicz tą wartość.

Zadanie 12. Niech X,Y będą zmiennymi losowymi o standardowym rozkładzie normalnym i kowariancji równej ρ . Znajdź $\mathbb{E}(X|Y)$.

Zadanie 13. Niech zmienne losowe X,Y będą określone na pewnej przestrzeni probabilistycznej w następujący sposób

 $\begin{array}{ll} -X(x)=2x^2, & Y(x)=1-|2x-1|,\\ -X(x)=2x^2, & Y(x)=1-\frac{1}{2}\,|3x-1|,\\ -X(x)=x^2, & Y(x)=2\mathbf{1}_{[0,1/2)}+x\mathbf{1}_{[1/2,1]}.\\ Znajdź\ \mathbb{E}(X|Y). \end{array}$

Zadanie 14. Niech $(\Omega = [0,1], \mathcal{F} = \mathcal{B}_{[0,1]}, \lambda)$ będzie przestrzenią probabilistyczną. Niech $Y(\omega) = \omega(1-\omega)$. Udowodnij, że dla dowolnej zmiennej losowej X określonej na tej przestrzeni zachodzi

$$\mathbb{E}(X|Y)(\omega) = \frac{X(\omega) + X(1-\omega)}{2}.$$