Programming AssignmentAditya Saini, 2018125, Group-2, ECE

Sampled Voice

After executing the code over the given range of frequencies, I took sampling frequency as **6000 Hz** taking into account the timing and accuracy of the results.

Bandwidth

Bandwidth is the maximum frequency component of the signal that doesn't contain any noise. So taking the amplitude threshold to be **0.1**, the bandwidth id calculated. The calculated bandwidth comes out to be **3.131118932457638** for the taken frequency range.

Graphs

Q1 & 2)

Time domain sketch of recorder audio

Fourier transform sketch of the audio

Q5)

Inverse Fourier Transform of the original

Q6)

Fourier transform when frequency greater than 0.8*bandwidth are removed

Inverse Fourier transform of the above signal

Inference from Q6: Removing the frequencies outside 80% of bandwidth results in reduction of noise and clarity in sound.

Q7)

Inverse Fourier Transform of the signal

Inference from Q7: Only taking the amplitude response into account, the sound comes out a lot "echoey" than the original. The amplitudes are higher at the extremes and lower in the middle.