Entregable WEKA

Laura Rodríguez Navas rodrigueznavas@posgrado.uimp.es

Abril 2020

Preparación de datos

Consideramos la base de datos Prostate definida sobre 12600 variables predictivas (todas numéricas) y una variable clase binaria {tumor, normal}. Está formada por 136 registros y en ella no existen valores desconocidos. Pero está ordenada en función de la variable clase {Tumor, Normal}. Como consecuencia, tenemos que aleatorizar la base de datos. Para ello se aplica un filtro a nivel de registro, concretamente de tipo no supervisado llamado Ramdomize. Usamos la semilla que viene por defecto (42).

A continuación, dividimos la base de datos en un conjunto de entrenamiento, con dos tercios de los registros, y un conjunto de test con un tercio de los registros. Para ello se aplica un filtro a nivel de registro y no supervisado llamado RemoveFolds. Como resultado hemos creado un conjunto de entrenamiento con 90 registros.

Observamos que la distribución de la variable clase en el conjunto de entrenamiento no es uniforme.

Clasificación

Se usan los clasificadores Naive Bayes y J48 (C4.5) en una validación cruzada de 5 carpetas (5cv) sobre el conjunto de entrenamiento de la base de datos.

Se han considerado dos parámetros de rendimiento para la evaluación de los resultados. Los parámetros examinados antes y después de la discretización y/o la selección de variables son Accuracy (registros clasificados correctamente) y Error Rate (registros no clasificados correctamente).

Clasificador	Acc. en %	ERR en %
Naive Bayes	52.2222	47.7778
J48 (C4.5)	82.2222	17.7778

Inicialmente y sin la aplicación de alguna mejora, podemos observar que el clasificador J48 (C4.5) clasifica correctamente mucho mejor los registros, en comparación con Naive Bayes. A partir de estos resultados, se puede pensar que se debe a la alta presencia de variables relevantes y redundantes en la base de datos, ya que sabemos que Naive Bayes es un algoritmo sensible en este caso.

Mejoras

Discretización

Primero se prueba un método supervisado a nivel de atributo basado en la entropía. Como resultado, los valores de Accuracy y Error Rate resultantes de la ejecución de los clasificadores después de esta discretización son:

Clasifiender	Antes	s Disc.	Despué	és Disc.
Clasificador	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$
Naives Bayes	52.2222	47.7778	82.2222	17.7778
J48 (C4.5)	82.2222	17.7778	87.7778	12.2222

A continuación, se prueban dos métodos no supervisados a nivel de atributo.

• Intervalos de igual amplitud. Es el método de discretización no supervisado más simple, que determina los valores mínimo y máximo del atributo discretizado y luego divide el rango en el número definido por el usuario de intervalos discretos de igual amplitud. La tabla siguiente contiene los valores de precisión y tasa de error que dependen del número de bins utilizados (2, 4, 5 y 10).

// of bing	Naives	Bayes	Bayes J48 (C4.5)	
# of bins	Acc. in $\%$	ERR in $\%$	Acc. in %	ERR in %
2	51.1111	48.8889	63.333	36.6667
4	54.4444	45.5556	72.2222	27.7778
5	57.7778	42.2222	68.8889	31.1111
10	71.1111	28.8889	73.3333	26.6667

• Intervalos de igual frecuencia. Es el método no supervisado que divide los valores ordenados en k intervalos para que cada intervalo contenga aproximadamente el mismo número de instancias de entrenamiento. Por lo tanto, cada intervalo contiene n/k (posiblemente duplicados) valores adyacentes. k es el parámetro predefinido por el usuario. Aquí k representa el número de bins. La tabla siguiente contiene los valores de precisión y tasa de error que dependen del número de bins utilizados (2, 4, 5 y 10).

// - £ 1-:	Naives Bayes		J48 (C4.5)	
# of bins	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$
2	65.5556	34.4444	71.1111	28.8889
4	65.5556	34.4444	80	20
5	70	30	84.4444	15.5556
10	72.2222	27.7778	70	30

Ninguno de los dos métodos no supervisados mejora los resultados del método supervisado, así que se escoge el método supervisado como mejor discretización, debido a la mejor selección de intervalos de forma supervisada y además sin la necesidad de hacer pruebas con distintos intervalos.

El mejor resultado es,

Clasificador	Antes	Antes Disc.		Después Disc.	
Clasificador	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$	
Naives Bayes	52.2222	47.7778	82.2222	17.7778	
J48 (C4.5)	82.2222	17.7778	87.7778	12.2222	

Selección de variables

Sabemos que la base de datos contiene muchos atributos, así que primero reduciremos el número de atributos para quedarnos con los 200 mejores y la variable clase, haciendo una selección invariada tipo ranker. Y si además discretizamos con el método supervisado utilizado anteriormente observamos que la clasificación con Naive Bayes mejora muchísimo. Contrariamente, el clasificador J48 (C4.5) empeora. Eso demuestra que al reducir el número de atributos, reducimos el número de variables relevantes y redundantes en la base de datos; que Naive Bayes es un algoritmo sensible en este caso y que J48 (C4.5) no lo es.

La siguiente tabla muestra el análisis anterior,

Clasificador	Sin	Disc.	Con	Disc.
	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$
Naives Bayes	52.2222	47.7778	80	20
J48 (C4.5)	91.1111	8.8889	85.5556	14.4444

Otra mejora que podemos hacer es una selección multivariada de tipo Filter, de método Cfs y voraz con el método de selección hacia delante (forward). En este caso la selección de atributos se ve ampliamente reducida a 18 atributos. También se prueba con discretización y sin discretización.

C1:61	Sin	Sin Disc.		Con Disc.	
Clasificador	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$	
Naives Bayes	58.8889	41.1111	96.6667	3.3333	
J48 (C4.5)	88.8889	11.1111	83.3333	16.6667	

Finalmente, probamos una selección multivariada de tipo Wrapper para cada clasificador, con el método de selección hacia delante (forward). También se prueba con discretización y sin discretización.

 \bullet Naive Bayes. La selección de atributos se reduce a 2 {67, 174}.

C1:61	Sin	Sin Disc.		Con Disc.	
Clasificador	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$	
Naives Bayes	83.3333	16.6667	82.2222	17.7778	

• J48 (C4.5). La selección de atributos se reduce a 3 {1, 52, 166}.

Clasificador	Sin	n Disc. Con I		Disc.
Clasificador	Acc. in $\%$	ERR in $\%$	Acc. in $\%$	ERR in $\%$
J48 (C4.5)	92.2222	7.7778	86.6667	13.3333