

Chapter 2. Basic Structures

2.2 Set Operations

Set Identities

- Identity: $A \cup \emptyset = A = A \cap U$
- Domination: $A \cup U = U$, $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A$, $A \cap A = A$
- Double complement: $\overline{(A)} = A$
- Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$,
 - $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Absorption: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- Complement: $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$

DeMorgan's Law for Sets

Exactly analogous to (and provable from)
 DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

- To prove statements about sets, of the form E₁ = E₂ (where the Es are set expressions), here are three useful techniques:
 - 1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
 - 2. Use set builder notation & logical equivalences.
 - 3. Use a membership table.
 - 4. Use a Venn diagram.

4

Method 1: Mutual Subsets

- Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in A$ and $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in A$ and $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. (Try it!)

Method 2: Set Builder Notation & Logical Equivalence

• Show $A \cap B = \overline{A} \cup \overline{B}$

$$\overline{A \cap B} = \{x \mid x \notin (A \cap B)\}$$

$$= \{x \mid \neg (x \in (A \cap B))\}$$

$$= \{x \mid \neg (x \in A \land x \in B)\}$$

$$= \{x \mid \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

def. of complement

def. of "does not belong"

def. of intersection

De Morgan's law (logic)

def. of "does not belong"

def. of complement

def. of union

by set builder notation

Method 3: Membership Tables

- Analog to truth tables in propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

■ Prove $(A \cup B) - B = A - B$.

A	В	$A \cup B$	$(A \cup B)$ -B		A– B		
1	1	1	0			0	
1	0	1	1			1	
0	1	1	0			0	
0	0	0	0			0	

Membership Table Exercise

■ Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	(A	$\cup B$	- C	A-C	B– C	A-C	C)U((B-C)
1 1 1	1		0		0	0		0	
1 1 0	1		1		1	1		1	
1 0 1	1		0		0	0		0	
1 0 0	1		1		1	0		1	
0 1 1	1		0		0	0		0	
0 1 0	1		1		0	1		1	
0 0 1	0		0		0	0		0	
0 0 0	0		0		0	0		0	

Method 4: Venn Diagram

• Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

Generalized Unions & Intersections

Since union & intersection are commutative and associative, we can extend them from operating on pairs of sets A and B to operating on sequences of sets A₁,..., A_n, or even on sets of sets, X = {A | P(A)}.

Generalized Union

- Binary union operator: A ∪ B
- *n*-ary union:

$$A_1 \cup A_2 \cup ... \cup A_n = ((...((A_1 \cup A_2) \cup ...) \cup A_n))$$

(grouping & order is irrelevant)

• "Big U" notation: $\bigcup_{i=1}^{n} A_i$

■ More generally, union of the sets A_i for $i \in I$:

 $\bigcup_{i\in I}A_i$

For infinite number of sets:

Generalized Union Examples

• Let $A_i = \{i, i+1, i+2,...\}$. Then,

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n$$

$$= \{1, 2, 3, \dots\} \cup \{2, 3, 4, \dots\} \cup \dots \cup \{n, n+1, n+2, \dots\}$$

$$= \{1, 2, 3, \dots\}$$

• Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Then,

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup A_3 \cup \cdots$$

$$= \{1\} \cup \{1,2\} \cup \{1,2,3\} \cup \cdots$$

$$= \{1,2,3,\ldots\} = \mathbf{Z}^+$$

- **B**inary intersection operator: $A \cap B$
- *n*-ary intersection:

$$A_1 \cap A_2 \cap ... \cap A_n \equiv ((...((A_1 \cap A_2) \cap ...) \cap A_n))$$

(grouping & order is irrelevant)

• "Big Arch" notation: $\bigcap_{i=1}^{n} A_i$

Generally, intersection of sets A_i for i∈I:

For infinite number of sets:

Generalized Intersection Examples

• Let $A_i = \{i, i+1, i+2,...\}$. Then,

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$$

$$= \{1, 2, 3, \dots\} \cap \{2, 3, 4, \dots\} \cap \dots \cap \{n, n+1, n+2, \dots\}$$

$$= \{n, n+1, n+2, \dots\}$$

• Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Then,

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap A_3 \cap \cdots$$
= $\{1\} \cap \{1,2\} \cap \{1,2,3\} \cap \cdots$
= $\{1\}$

Bit String Representation of Sets

- A frequent theme of this course are methods of representing one discrete structure using another discrete structure of a different type.
- For an enumerable universal set U with ordering x_1, x_2, x_3, \ldots , we can represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $b_i = 1$ if $x_i \in S$ and $b_i = 0$ if $x_i \notin S$.
- $E.g.\ U = N$, $S = \{2,3,5,7,11\}$, $B = 0011\ 0101\ 0001$.
- In this representation, the set operators
 "∪", "∩", "⁻" are implemented directly by bitwise
 OR, AND, NOT!

4

Examples of Sets as Bit Strings

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in increasing order, then

$$S_1 = \{1, 2, 3, 4, 5\} \Rightarrow B_1 = 11 \ 1110 \ 0000$$

 $S_2 = \{1, 3, 5, 7, 9\} \Rightarrow B_2 = 10 \ 1010 \ 1010$

- $S_1 \cup S_2 = \{1, 2, 3, 4, 5, 7, 9\}$ ⇒ bit string = 11 1110 1010 = $B_1 \vee B_2$
- $S_1 \cap S_2 = \{1, 3, 5\}$ ⇒ bit string = 10 1010 0000 = $B_1 \wedge B_2$
- $\overline{S}_1 = \{6, 7, 8, 9, 10\}$ ⇒ bit string = 00 0001 1111 = ¬ B_1