Paper / Subject Code: 50902 / Digital Logic Design and Analysis

(Time: 3 Hours)	(Marks:80)
N.B. (1) Question No. 1 is compulsory	3, 60, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 60, 6
(2)Assume suitable data if necessary	Y 20 00 00 00 00 00 00 00 00 00 00 00 00
(3)Attempt any three questions from remaining questions	
1 Attempt ant 5	
(a) Convert (451.43) $_{10}$ into octal, binary and hexadecimal and base 7.	(4)
(b) Subtract using 1's and 2's complement method $(73)_{10} - (49)_{10}$	(4)
(c) Perform (52) ₁₀ - (68) ₁₀ in BCD using 9's complement.	(4)
(d) State De Morgan's theorem. Prove OR-AND configuration is equivalent to	80 F 20 P
NOR-NOR configuration.	(4)
(e) Encode the data bits 111010001using Hamming code.	(4)
(f) Explain SOP and POS and solve the following using K-Map	
F(A,B,C,D)=πM(1,3,5,6,7,10,11)+d(2,4)	(4)
(g) Explain lockout condition. How can it be avoided	(4)
2 (a) Reduce equation using Quine McCluskey method and realize circuit using basic gates.	(10)
$F(A,B,C,D) = \sum m (1,5,6,12,13,14) + d(2,4)$	
(b) Design 4-bit BCD subtractor using IC 7483.	(10)
3 (a) Implement the following using only one 8:1 Mux.	(5)
$F(A,B,C,D) = \sum_{i=1}^{n} (0,2,4,6,8,10,12,14)$	
(b) Design a Full Subtractor using only NAND gates.	(5)
(c) Design a logic circuit to convert 4-bit gray code to its corresponding BCD code	. (10)
4(a) Compare different logic families with respect to fan in, fan out, speed,	
Propogation delay and power dissipation.	(5)
(b) Implement 3 bit binary to gray code converter using Decoder.	(5)
(c) Explain 4 bitbidirectional shift register.	(10)
5 (a) Design mod 13 synchronous counter using T flipflop	(10)
(b) Convert SR flipflop to JK flipflop and D flipflop.	(10)
6 Write short note on (any four):-	(20)
(a) ALU	
(b) 3 bit Up/Down Asynchronous Counter	
(c) Octal to Binary Encoder	
(d) 4-bit Universal shift register	
(e) VHDL	