Boolesche Algebra

Parameter	Kursinformationen
Veranstaltung:	Digitale Systeme / Eingebettete Systeme
Semester:	Wintersemester 2025/26
Hochschule:	Technische Universität Freiberg
Inhalte:	Boolesche Algebra, Axiome, Schaltfunktionen und technische Realisierung
Link auf GitHub:	https://github.com/TUBAF-IfI- LiaScript/VL EingebetteteSysteme/blob/master/02 BoolscheAlgebr a.md
Autoren:	Sebastian Zug & André Dietrich & Fabian Bär

Fragen an die Veranstaltung

- Nennen Sie die Axiome der Booleschen Algebra.
- Erläutern Sie das Dualitätsprinzip der Booleschen Algebra.
- Wie viele Schaltfunktionen existieren für 2 Eingangsvariablen?
- Nennen Sie 3 Beispiele, wie eine Schaltfunktion technisch umgesetzt werden kann.
- Welcher Unterschied besteht zwischen der DNF und der KDNF?
- Welcher Unterschied besteht zwischen der DNF und der KNF?
- Geben Sie das de Morgansche Gesetz wieder.

Abstraktionsebenen Problemorientierte Sprache Ebene 6 Anwendungssoftware Ebene 5 Assemblersprache Ebene 4 Betriebssystem Systemsoftware Ebene 3 Instruktionsset Maschinensprache Ebene 2 Mikroarchitektur Automaten, Speicher, Logik Ebene 1 Digitale Logik HIER SIND WIR! Ebene 0 E-Technik, Physik Analoge Phänomene

Digital vs. Analog

Frage: Was bedeutet der Übergang von der Ebene der physikalischen Phänomene (0) auf die Ebene der digitalen Logik (2)?

Ein Digitalsignal ist ein Signal, welches durch diskrete Werte repräsentiert wird und dessen zeitliche Entwicklung durch diese beschrieben wird. Es kann aus einem Analogsignal heraus abgeleitet werden, das einen zeitlich-kontinuierlichen Verlauf einer physikalischen Größe repräsentiert:

- Temperatur im Tagesverlauf
- ullet Spannungswert am IC innerhalb der letzten n Nanosekunden
- ...

Die Umwandlung eines Analogsignals in ein Digitalsignal geschieht durch Quantisierung und Abtastung, welche zu definierten Zeitpunkten erfolgt. Digitale Werte sind üblicherweise als Binärzahlen kodiert. Ihre Quantisierung wird somit in Bits angegeben.

Die Abtastung und Bildung des Digitalsignals erfolgt üblicherweise in konstanten Zeitintervallen, allerdings ist dies nicht zwingend notwendig.

Exkurs: Kontrastprogramm - Analoge Rechner

Die Eingabe erfolgte durch Verbinden der Komponenten mittels Programmierschnüren, Steckern und Rechenimpedanzen (Widerstände für die Summatoren und Integratoren) auf der Programmiertafel.

Wem jetzt gleich die Parallelität zu der Stecker-basierten Programmierung des ENIAC einfällt ... Vorsicht, dieser war ein Digitalrechner!

Zur Auswertung stand zur Verfügung:

- 6-Strahl-Oszilloskop OPD 280 U
- X-Y-Schreiber BAK 5 T
- Digitalvoltmeter

	Analoge Hardware	Digitale Hardware
Vorteile	Multiplikation und Addition einfach realisierbar	unempfindlich gegen Störungen (Rauschen)
	vergleichsweise schnell	einfacher Entwurf
		beliebig hohe Präzision möglich
Nachteile	Temperaturabhängigkeit	vergleichsweise hoher Energieverbrauch
	nichtlineare Bauteile	
	Präzision nur bei ca. 6 - 8 Bit	
	Langzeitspeicherung von Daten schwierig	

Digitaltechnik ermöglicht eine einfache Realisierung robuster Hardware.

[AnalogRechner] Wuselig, Deutsch: Analogrechner MEDA 42TA Aritma Prag, Tschechoslowakei, um 1970, https://commons.wikimedia.org/wiki/File:Analogrechner_MEDA_42TA-DSC4445.jpg_Link

Pegel

Digitalisierung: Aufteilung des kontinuierlichen Spektrums in erlaubte und verbotene Bereiche

Verschiedene Standards definieren unterschiedliche Spannungspotentiale für einen High- und einen Low-Pegel. Dazwischen befindet sich der verbotene Bereich.

Frage: Warum ist der undefinierte Bereich des Einganges schmaler als der des Ausganges?

Motivation

Nehmen wir folgende einfache Schaltung an:

Wir betrachten den Schalter mit seinen 2 Zuständen als Input und die Glühlampe als Output. Das Übergangsverhalten wird ignoriert.

Input	Output
Schalter geschlossen	Lampe leuchtet
Schalter offen	Lampe leuchtet nicht

Für zwei Schalter (Inputs) lassen sich darauf aufbauend zwei grundlegende Schaltungsmuster entwerfen:

Reihenschaltung Parallelschaltung Die Lampe leuchtet, wenn der erste und der zweite Schalter geschlossen werden Parallelschaltung Lampe leuchtet, wenn der erste oder der zweite Schalter geschlossen. wird.

Es gibt verschiedene Lösungen, um die Lampe mit drei geschlossenen Schaltern zum Leuchten zu bringen. Wie viele? Wieviele Kombinationen von Schalterbelegungen sind möglich?

Wir brauchen eine Abstraktion, um die Abbildung von digitalen Eingängen E auf einen digitalen Ausgang A repräsentieren und analysieren zu können.

Dazu beschreiben wir die Wirkung des elektrischen Stromes

- Stromfluss / kein (oder ein sehr geringer) Stromfluss
- Spannung / keine (oder eine sehr geringe) Spannung

... aus Sicht der Logik anhand von Zuständen

- an / aus
- wahr / falsch
- 1/0
- 0/1

Wie aber können logische Grundverknüpfungen identifiziert werden? Auf welchem Wege lassen diese sich praktisch realisieren?

Boolesche Algebra

Historische Entwicklung:

- Aristoteles (384-322 v.Chr.) begründet "Syllogistik" Lehre von den logischen Schlussformen
- Später bilden die Stoiker die Syllogistik als Aussagenlogik weiter aus. Im Mittelalter → Scholastik
- George Boole (1815-1864) 1854 mathematische Formalisierung in "An Investigation of the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities".
- Claude Shannon (1916-2001) hat im Rahmen seiner Masterarbeit "On the Symbolic Analysis of Relay and Switching Circuits (1940)", gezeigt, dass man die Boolesche Algebra zur Beschreibung von Schaltkreisen anwenden kann.

Claude Shannon [Shannon]

Problem: Gibt es ein Verfahren:

- um die Äquivalenz zweier Schaltungen formal nachzuweisen?
- um Schaltungen auf einfache Weise zu transformieren?
- um minimale Schaltungen zu entwerfen?

Lösung: Boolesche Algebra basierend auf den Vorarbeiten von G. Boole aus dem Jahre 1854

- zwei Werte: 0 und 1
- drei Boolesche Operationen: +, · sowie "not"
- vier Axiome

Die Boolesche Algebra basiert nach <u>Huntington</u> auf einer Trägermenge $B\{0,1\}$ (Zuständen) mit zwei Verknüpfungen auf B für deren Element $a\in B,b\in B$ und $c\in B$ gilt:

Axiom	Definition
Kommutativität	$a+b=b+a$ $a\cdot b=b\cdot a$
Distributivität	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ $a + (b \cdot c) = (a+b) \cdot (a+c)$
Existenz eines neutralen Elements	$0 + a = a$ $1 \cdot a = a$
Existenz von Komplementen	$a+\overline{a}=1 \ a\cdot\overline{a}=0$

Aus dieser Definition lassen sich die zugehörigen Gesetze der booleschen Algebra ableiten:

Gesetz	Definition
Assoziativität	a + (b+c) = (a+b) + c = a+b+c $a \cdot (b \cdot c) = (a \cdot b) \cdot c = a \cdot b \cdot c$
Idempotenzgesetze	$a + a = a$ $a \cdot a = a$
Absorptionsgesetz	$a + (a \cdot b) = a$ $a \cdot (a + b) = a$
Doppelnegation	$a = \overline{\overline{a}}$
De Morgan'sche Regel	$\overline{a+b} = \overline{a} \cdot \overline{b} \ \overline{a \cdot b} = \overline{a} + \overline{b}$

Dualitätsprinzip der Booleschen Algebra ... Ersetzt man gleichzeitig in einem Axiom UND durch ODER und ODER durch UND sowie 1 durch 0 und 0 durch 1, so erhält man das zu diesem Axiom gehörige duale Axiom. Führt man diese Ersetzung in einem Theorem aus, so erhält man das zu diesem Theorem gehörige duale Theorem.

Form 1	Form 2
0+a=a	$1 \cdot a = a$
1 + a = 1	$0 \cdot a = 0$
a + a = a	$a \cdot a = a$
$a + \overline{a} = 1$	$a \cdot \overline{a} = 0$

Am Beispiel des Distributivgesetzes

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

Anwendung

Regeln zur Umformung Boolescher Gleichungen

- Unabhängige Auswertung: Jeder Ausdruck auf der linken oder rechten Seite einer Gleichung kann durch einen anderen ersetzt werden, der mit ihm identisch ist, d.h. man kann die Ausdrücke links und rechts unabhängig voneinander vereinfachen.
- Komplementbildung: Die rechte und die linke Seite einer Gleichung k\u00f6nnen gleichzeitig durch ihre Komplemente ersetzt werden.
- Erweiterung: Jede Seite einer Gleichung kann mit demselben Ausdruck oder mit einem äquivalenten Ausdruck durch den UND-Operator verknüpft werden. Dual dazu gilt, dass zu jeder Seite äquivalente Ausdrücke durch den ODER-Operator verknüpft werden können.

Anwendungsbeispiel 1

$$f(x_1,x_2,x_3) = x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3$$
 $= x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3$
 $= x_1 \cdot x_2 \cdot (\overline{x_3} + x_3) + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3$
 $= x_1 \cdot x_2 \cdot (\overline{x_3} + x_3) + x_1 \cdot x_3 \cdot x_2 + x_1 \cdot x_3 \cdot \overline{x_2}$
 $= x_1 \cdot x_2 \cdot (\overline{x_3} + x_3) + x_1 \cdot x_3 \cdot (x_2 + \overline{x_2})$
 $= x_1 \cdot x_2 \cdot (\overline{x_3} + x_3) + x_1 \cdot x_3 \cdot (x_2 + \overline{x_2})$
 $= x_1 \cdot x_2 \cdot (1) + x_1 \cdot x_3 \cdot (1)$
 $= x_1 \cdot x_2 + x_1 \cdot x_3$
 $(Neutrales Elementians Elementi$

Anwendungsbeispiel 2

$$f(w,x,y,z) = \overline{w}x\overline{y}\,\overline{z} + \overline{w}x\overline{y}z + wx\overline{y}\,\overline{z} + wx\overline{y}z$$

$$f(w,x,y,z) = \overline{w}x\overline{y}\,\overline{z} + \overline{w}x\overline{y}z + wx\overline{y}\,\overline{z} + wx\overline{y}z$$

$$= \overline{w}x\overline{y}\,(\overline{z}+z) + wx\overline{y}\,(\overline{z}+z) + w\overline{x}y\overline{z}$$

$$= \overline{w}x\overline{y}1 + wx\overline{y}1 + w\overline{x}y\overline{z}$$

$$= \overline{w}x\overline{y} + wx\overline{y} + w\overline{x}y\overline{z}$$

$$= x\overline{y}\,\overline{w} + x\overline{y}w + w\overline{x}y\overline{z}$$

$$= x\overline{y}\,(\overline{w}+w) + w\overline{x}y\overline{z}$$

$$= x\overline{y}1 + w\overline{x}y\overline{z}$$

$$= x\overline{y}1 + w\overline{x}y\overline{z}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

$$= x\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y} + w\overline{y}$$

Anwendungsbeispiel 3

$$egin{aligned} f(x_1,x_2) &= \overline{\overline{x_1}x_2(x_1+\overline{x}_1)} + x_1\overline{x_2x_1} \ f(x_1,x_2) &= \overline{\overline{x_1}x_2(x_1+\overline{x}_1)} + x_1\overline{x_2x_1} \ &= \overline{\overline{x}_1x_2} + x_1\overline{x_2x_1} \ &= \overline{x_1}x_2 + x_1\overline{x_2x_1} \ &= \overline{x_1}x_2 + x_1(\overline{x}_2+\overline{x}_1) \ &= \overline{x_1}x_2 + x_1\overline{x}_2 + x_1\overline{x}_1 \ &= \overline{x_1}x_2 + x_1\overline{x}_2 \end{aligned}$$

Schaltfunktionen

- ullet Funktionen $f:\{0,1\}^n o \{0,1\}^m$ mit $n,m \geq 1$ werden auch als Schaltfunktionen bezeichnet
- ullet Eine Schaltfunktion $f:\{0,1\}^n o \{0,1\}^m$ heißt eine n-stellige Boolesche Funktion
- ullet Jede Schaltfunktion $f:\{0,1\}^n o \{0,1\}^m$ kann durch m Boolesche Funktionen ausgedrückt werden
- Jede Boolesche Funktion lässt sich eindeutig beschreiben
 - o durch eine Wahrheitstabelle (auch Wahrheitstafel genannt)
 - durch einen booleschen Ausdruck (gebildet durch Boolesche Variablen und Operationen aus der Booleschen Algebra)
 - o ein Schaltwerk aus logischen Gattern
- Es gibt 2^{2^n} verschiedene n-stellige Boolesche Funktionen (also 16 zweistellige, 256 dreistellige, 65536 fünfstellige, ...)

Stellen Sie eine Wahrheitstafel für folgende Schaltfunktion auf:

$$egin{aligned} f(x_1,x_2,x_3)=&\overline{x}_1\cdot\overline{x}_2\cdot\overline{x}_3+\ &\overline{x}_1\cdot\overline{x}_2\cdot x_3+\ &x_1\cdot\overline{x}_2\cdot\overline{x}_3+\ &x_1\cdot x_2\cdot\overline{x}_3+\ &x_1\cdot\overline{x}_2\cdot\overline{x}_3 \end{aligned}$$

- Wie groß muss die Wahrheitstafel sein?
- Wie stellen Sie sicher, dass alle Einträge enthalten sind?

x_1	x_2	x_3	f	Term
0	0	0	1	$\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3$
0	0	1	1	$\overline{x}_1 \cdot \overline{x}_2 \cdot x_3$
0	1	0	0	
0	1	1	0	
1	0	0	1	$x_1\cdot \overline{x}_2\cdot \overline{x}_3$
1	0	1	1	$x_1 \cdot \overline{x}_2 \cdot x_3$
1	1	0	1	$x_1 \cdot x_2 \cdot \overline{x}_3$
1	1	1	0	

Und die Schaltfunktionen?

Schaltfunktionen mit einem Eingang

Die möglichen 4 Kombinationen einer Schaltfunktion mit einem Eingang lassen sich wie folgt gliedern:

Eingang	Nullfunktion	Identität	Negation	Einsfunktion
x = 0	0	0	1	1
x = 1	0	1	0	1
	f(x) = 0	f(x) = x	$f(x) = \overline{x}$	f(x) = 1

Schaltfunktionen mit zwei Eingängen

Die möglichen 4 Kombinationen einer Schaltfunktion mit einem Eingang lassen sich wie folgt gliedern:

Konjunktion == UND == AND

Eingang x	Eingang y	Nullfunktion	Konjunktion	
x = 0	y = 0	0	0	0
x = 0	y = 1	0	0	0
x = 1	y = 0	0	0	1
x = 1	y = 1	0	1	0
		f(x,y)= 0	$f(x,y) = x \cdot y$	$f(x,y) = x \cdot \overline{y}$

Disjunktion == ODER == OR Antivalenz == exklusives OR == XOR == \oplus

Eingang x	Eingang y			Antivalenz
x = 0	y = 0	0	0	0
x = 0	y = 1	1	1	1
x = 1	y = 0	0	0	1
x = 1	y = 1	0	1	0
		$rac{f(x,y)}{\overline{x}\cdot y}=$	f(x,y) = y	$egin{aligned} f(x,y) &= \ x\cdot \overline{y} + \overline{x} \cdot y \end{aligned}$

negiertes ODER == NOR == Peirce-Funktion

Eingang x	Eingang y	negiertes ODER	Äquivalenz	
x = 0	y = 0	1	1	1
x = 0	y = 1	0	0	0
x = 1	y = 0	0	0	1
x = 1	y = 1	0	1	0
		$rac{f(x,y)}{x+y}=$	$egin{aligned} f(x,y) &= \ x \cdot y + \overline{x} \cdot \ \overline{y} \end{aligned}$	$rac{f(x,y)}{\overline{y}}=$

negiertes UND == NAND == Sheffer-Funktion genannt

Eingang x	Eingang y		Implikation	negiertes UND
x = 0	y = 0	1	1	1
x = 0	y = 1	1	1	1
x = 1	y = 0	0	0	1
x = 1	y = 1	0	1	0
		$rac{f(x,y)}{\overline{x}} =$	$f(x,y) = \overline{x} + y$	$\frac{f(x,y)}{x\cdot y} =$

Exkurs: Technische Realisierung

Ein Gatter ist eine (elektrotechnische) "Black Box" mit einem, zwei oder mehreren Eingängen $A,B,C,...\in 0,1$ und genau einem Ausgang $Y\in 0,1$ zur Realisierung einer Funktion Y=f(A,B,C,...)

Und das exklusive ODER, hätten Sie eine Idee?

S_1	S_0	у
0	0	0
0	1	1
1	0	1
1	1	0

Realisierung einer XOR Funktion mit Relais ^[XOR]

Wir gehen bei der Frage der Schaltnetze in Vorlesung 04 nochmals auf die technische Realisierung ein.

Hausaufgaben

1. Geben Sie für die nachfolgend dargestellte Schaltung eine boolesche Funktion an. Bilden Sie diese in einer Wahrheitstafel ab.

- 2. Studieren Sie das Datenblatt eines AND Gates, welches Sie unter <u>Link</u> finden und beantworten Sie folgende Fragen:
 - Wie groß ist die maximale Verzögerung, mit der der Ausgang dem Eingang nachfolgt?
 - Was bedeuten die Kreuze in der Wahrheitstafel (Function table)?
 - Können Sie mit dem Gatter auch eine Negation des Eingangssignals realisieren?
- 3. Entwerfen Sie unter ausschließlicher Verwendung der Gatter UND, ODER und NICHT Schaltnetze, die die Ausgaben P und Q aus den Eingängen X,Y und Z generieren. Stellen Sie mithilfe von Wahrheitstabellen eine Beziehung zwischen P und Q her.

$$P = (X + \overline{Y}) (Y \oplus Z)$$
$$Q = \overline{Y}Z + XY\overline{Z}.$$