Project instructions

Bayesian Computation

Guillaume Dehaene

Objectives

The objectives of the project are the following:

- Make sure you implement the methods presented in the class.
- Have you experiment with how to model a dataset.
- Look at real data.

It's possible to deviate from the standard project outline by discussing precisely with me what you want to do:

- I will send you a "contract" by email detailing the modified project instructions.
- You will have to respect this contract.

Guillaume Dehaene

Steps of the project (1/3)

You need to do the following:

- Choose a dataset:
 - Analyzable with simple models:
 - Linear regression.
 - Linear classification.
 - Mixture of Gaussians.
 - Possible sources: Kaggle, classical datasets, SSC datasets (hyperlink).
 - Choose something that interests you if possible:
 - Finance.
 - Soccer.
 - League of legends / Dota.

Steps of the project (2/3)

- Implement a variety of models and approximation methods
 - At least three qualitatively different models (model = prior + likelihood).

For example, for a model analyzable with a linear regression

- Gaussian prior + Gaussian noise (very basic model).
- Sparsity-inducing prior + Gaussian noise (parameters are probably sparse).
- Gaussian prior + student noise (possible outliers in the data).
- At least three qualitatively different approximation methods including Metropolis-Hastings E.g.
 - Metropolis-Hastings.
 - Importance sampling.
 - Gaussian Variational approximation.
- Make your code readable! You will have to submit it!

Guillaume Dehaene Project instructions

Steps of the project (3/3)

- Comparison of the models and methods:
 - Which model generalizes bests?
 - How much time does each approximation method require?
 - Which method do you feel was the best for your problem and why?
- Presentation

Presentation

You should answer the following questions:

- What important features does you data have? (1-2 slides).
- What models did you use and what do they bring you? (from 1 slide to 1 slide per model)
- What approximations did you use? How do they work (briefly)? (1 slide per approximation)
- Result of the comparisons.
- Which method is the best on your problem?
 What features of your problem matter here?

General advice

- Come to the exercise sessions so that you can implement the methods here.
- Seek a lot of feedback about your project.
- Do not start working on the project in week 10.
- Work in groups but do not copy your code.
- You should implement all approximation methods yourself.
 I will check your code for this.
- COME TO ALL THE EXERCISE SESSIONS.