M.E. MECH. ENGG. 1ST YR. 2ND SEM. EXAM., 2018 THEORY OF PLASTICITY

Full Marks 100

Answer any five

Duration= 3 hr

1. For an elastic-perfectly plastic material under tension, use "radial return" algorithm to determine the stress (σ) and the tangent stiffness matrix (C_t) for a strain increment

 $\Delta \varepsilon = \begin{bmatrix} \xi & -\nu \xi & -\nu \xi & 0 & 0 & 0 \end{bmatrix}^T$, where $\xi = 0.0006$. Additionally determine the total strain over the solution and the plastic strain increment for the step.

The stress from the last converged substep is $\sigma^0 = [80 \quad 0 \quad 0 \quad 0 \quad 0]^T$.

The material properties (symbols in their usual meanings) are E = 200 GPa, v = 0.3, $\sigma_y = 200$ MPa.

- 2. Two cylinders, one solid and another hollow, with $r_i = 25mm$ and $r_o = 35mm$, are in an interference fit of 1mm. Determine the stress distribution for both cylinders in radial and tangential directions. Given E = 200GPa and $\sigma_y = 200MPa$. The material shows elastic-perfectly plastic behavior.
- 3. From the basic equations of plane strain deformation in plasticity, derive Henky's first and second theorems.
- 4. Following questions carry equal marks
 - a. Derive the instability criteria of a thin pressure vessel under plastic deformation.
 - b. Determine the instability pressure for thin pressure vessel with the following constitutive relation-

$$\bar{\sigma} = 1000(1 - \exp(-20\bar{\varepsilon}))$$

- 5. Following questions carry equal marks
 - a. Derive Hill's criteria for maximum dissipation.
 - b. Write down the expressions for the equivalent stress and strain for von-Mises criteria and determine the components of the plastic strain rate if stress $\sigma = [120\ 50\ 50\ 35\ 25\ 60]^T \text{MPa}$ and equivalent plastic strain rate $\lambda = 0.002/s$.
- 6. Following questions carry equal marks
 - a. Show that the stress invariants remain constants over change of coordinates.
 - b. Write short notes on the following
 - i. Green's strain
 - ii. True strain
 - iii. Strain hardening
 - iv. Deviatoric stress
 - v. Slip lines.