1 Solvability by radicals and Galois theory I

Theorem 1.1. Let K be a field with char K = 0. Then $f \in K[t]$ is solvable by radicals \iff Gal $_K(f)$ is soluble.

Lemma 1.2. Let char K = 0 and R : K be a radical extension. Then there exists a tower K - R - N such that N : K is normal and radical.

Definition 1 (Cyclic extension). Let L be the splitting field of some polynomial f over K. If Gal(L:K) is a cyclic group, then L:K is a cyclic extension.

Lemma 1.3. Let char K = 0 and let n be a positive integer such that $t^n - 1$ splits over K, and let L : K be the splitting field extension for $t^n - a$ for some $a \in K$. Then Gal(L : K) is abelian.

Theorem 1.4. Let char K = 0 and L : K be Galois. Suppose there exists some extension M : L such that M : K is normal. Then Gal(L : K) is soluble.

Corollary 1. Let char K = 0. Then $f \in K[t]$ is SBR \implies Gal_K(f) is soluble.