```
# Data analysis and visualization
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
# Preprocessing and evaluation
from sklearn.model_selection import train_test_split
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler
(X_train , y_train), (X_test , y_test) = tf.keras.datasets.boston_housing.load_data(
                                                  path = 'boston_housing_npz',
                                                   test_split = 0.2,
                                                   seed = 42
                                              )
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/boston_housing.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/boston_housing.npz</a>
     57026/57026 [===========] - 0s Ous/step
# Checking the data shape and type
(X_train.shape, type(X_train)), (X_test.shape, type(X_test)), (y_train.shape, type(y_train)), (y_test.shape, type(y_test)
     (((404, 13), numpy.ndarray),
      ((102, 13), numpy.ndarray),
      ((404,), numpy.ndarray),
      ((102,), numpy.ndarray))
# Converting Data to DataFrame
X_train_df = pd.DataFrame(X_train)
y_train_df = pd.DataFrame(y_train)
# Preview the training data
X_train_df.head(10)
              a
                    1
                          2
                              3
                                     4
                                           5
                                                 6
                                                              8
                                                                    9
                                                                        10
                                                                                11
                                                                                      12
                       4.05 0.0 0.510 6.416 84.1 2.6463
      0.09178
                  0.0
                                                            5.0 296.0 16.6 395.50
                                                                                     9.04
      1 0.05644 40.0
                       6.41 1.0 0.447 6.758 32.9 4.0776
                                                            4.0 254.0 17.6
                                                                            396.90
                                                                                     3.53
      2 0.10574
                  0.0 27.74 0.0 0.609 5.983 98.8
                                                   1.8681
                                                            4.0 711.0 20.1
                                                                            390.11 18.07
      3 0.09164
                  0.0 10.81 0.0 0.413 6.065
                                               7.8 5.2873
                                                            4.0 305.0 19.2 390.91
                                                                                     5.52
      4 5.09017
                  0.0 \quad 18.10 \quad 0.0 \quad 0.713 \quad 6.297 \quad 91.8 \quad 2.3682 \quad 24.0 \quad 666.0 \quad 20.2 \quad 385.09 \quad 17.27
      5 0.10153
                  0.0 12.83 0.0 0.437 6.279 74.5 4.0522
                                                            5.0 398.0 18.7 373.66 11.97
      6 0.31827
                  0.0
                       9.90
                             0.0 0.544 5.914 83.2 3.9986
                                                            4.0
                                                                304.0 18.4
                                                                            390.70 18.33
      7 0.29090
                  0.0 21.89 0.0 0.624 6.174 93.6 1.6119
                                                            4.0 437.0 21.2 388.08 24.16
      8 4.03841
                  0.0 18.10 0.0 0.532 6.229 90.7 3.0993 24.0 666.0 20.2 395.33 12.87
      9 0.22438 0.0 9.69 0.0 0.585 6.027 79.7 2.4982 6.0 391.0 19.2 396.90 14.33
# View summary of datasets
X_train_df.info()
print('_'*40)
y_train_df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 404 entries, 0 to 403
     Data columns (total 13 columns):
          Column Non-Null Count Dtype
      0
          0
                  404 non-null
                                  float64
                  404 non-null
                                  float64
      1
          1
                                  float64
      2
          2
                  404 non-null
      3
          3
                  404 non-null
                                  float64
      4
          4
                  404 non-null
                                  float64
      5
          5
                  404 non-null
                                  float64
      6
          6
                  404 non-null
                                  float64
      7
                  404 non-null
                                  float64
                  404 non-null
                                  float64
                  404 non-null
                                  float64
                  404 non-null
                                  float64
      10
         10
                  404 non-null
                                  float64
```

```
12 12 404 non-null float64 dtypes: float64(13)
```

memory usage: 41.2 KB

dtypes: float64(1)
memory usage: 3.3 KB

```
# distribution of numerical feature values across the samples
X_train_df.describe()
```

	0	1	2	3	4	5	6	7	8	9	10
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000
mean	3.789989	11.568069	11.214059	0.069307	0.554524	6.284824	69.119307	3.792258	9.660891	408.960396	18.481931
std	9.132761	24.269648	6.925462	0.254290	0.116408	0.723759	28.034606	2.142651	8.736073	169.685166	2.157322
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.137000	1.000000	187.000000	12.600000
25%	0.081960	0.000000	5.190000	0.000000	0.452000	5.878750	45.475000	2.097050	4.000000	281.000000	17.400000
50%	0.262660	0.000000	9.690000	0.000000	0.538000	6.210000	77.500000	3.167500	5.000000	330.000000	19.100000
75%	3.717875	12.500000	18.100000	0.000000	0.624000	6.620500	94.425000	5.118000	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

	0	1	2	3	4	5	6	7	8	9	10
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000
mean	0.042528	0.115681	0.394210	0.348815	0.521905	0.681970	0.241618	0.376560	0.423589	0.625737	0.897607
std	0.102650	0.242696	0.253866	0.239522	0.138678	0.288719	0.194973	0.379829	0.323827	0.229502	0.232131
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000850	0.000000	0.173387	0.137860	0.444098	0.438466	0.087361	0.130435	0.179389	0.510638	0.944992
50%	0.002881	0.000000	0.338343	0.314815	0.507569	0.768280	0.184767	0.173913	0.272901	0.691489	0.985892
75%	0.041717	0.125000	0.646628	0.491770	0.586223	0.942585	0.362255	1.000000	0.914122	0.808511	0.997252
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

```
# Reserve data for validation
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42)
X_train.shape, X_val.shape, y_train.shape, y_val.shape
```

```
((363, 12), (41, 12), (363,), (41,))
```

```
# Set random seed
tf.random.set_seed(42)
# Building the model
model = tf.keras.Sequential([
 tf.keras.layers.Dense(units=10, activation='relu', input_shape=(X_train.shape[1],), name='Dense_1'),
 tf.keras.layers.Dense(units=100, activation='relu', name='Dense_2'),
 tf.keras.layers.Dense(units=1, name='Prediction')
1)
# Compiling the model
model.compile(
   loss = tf.keras.losses.mean_squared_error,
   optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.01),
   metrics = ['mse']
)
# Training the model
history = model.fit(
   X_train,
   y_train,
   batch_size=32,
   epochs=50.
   validation_data=(X_val, y_val)
)
    Epoch 1/50
    12/12 [==============] - 1s 33ms/step - loss: 308.4484 - mse: 308.4484 - val_loss: 146.9222 - val_mse: 146.9222
    Epoch 2/50
                       =========] - 0s 9ms/step - loss: 95.1682 - mse: 95.1682 - val loss: 92.9939 - val mse: 92.9939
    12/12 [====
    Epoch 3/50
    12/12 [====
                       =========] - 0s 7ms/step - loss: 62.2104 - mse: 62.2104 - val_loss: 68.8015 - val_mse: 68.8015
    Epoch 4/50
    12/12 [====
                   Epoch 5/50
    12/12 [===:
                   Epoch 6/50
    Epoch 7/50
                     ==========] - 0s 9ms/step - loss: 32.9990 - mse: 32.9990 - val_loss: 35.6852 - val_mse: 35.6852
    12/12 [====
    Epoch 8/50
    Epoch 9/50
    12/12 [====
                         =======] - 0s 8ms/step - loss: 28.8039 - mse: 28.8039 - val_loss: 30.4692 - val_mse: 30.4692
    Epoch 10/50
    12/12 [=====
                         =========] - 0s 8ms/step - loss: 28.7124 - mse: 28.7124 - val_loss: 38.0187 - val_mse: 38.0187
    Epoch 11/50
    12/12 [=====
                         ========] - 0s 5ms/step - loss: 23.2083 - mse: 23.2083 - val_loss: 45.0314 - val_mse: 45.0314
    Epoch 12/50
                       12/12 [=====
    Fnoch 13/50
    12/12 [=====
                          =======] - 0s 5ms/step - loss: 22.4063 - mse: 22.4063 - val_loss: 33.7716 - val_mse: 33.7716
    Epoch 14/50
    12/12 [=====
                                     - 0s 5ms/step - loss: 23.0061 - mse: 23.0061 - val_loss: 19.8987 - val_mse: 19.8987
    Epoch 15/50
    12/12 [====
                                   =] - 0s 6ms/step - loss: 22.7476 - mse: 22.7476 - val_loss: 19.6241 - val_mse: 19.6241
    Epoch 16/50
    12/12 [==
                                  ==] - 0s 5ms/step - loss: 21.5558 - mse: 21.5558 - val_loss: 22.3366 - val_mse: 22.3366
    Epoch 17/50
                         =============== l - 0s 6ms/step - loss: 22.3931 - mse: 22.3931 - val loss: 46.4523 - val mse: 46.4523
    12/12 [=====
    Epoch 18/50
    12/12 [====
                            =======] - 0s 7ms/step - loss: 23.5593 - mse: 23.5593 - val_loss: 18.2555 - val_mse: 18.2555
    Epoch 19/50
    12/12 [=====
                        =========] - 0s 7ms/step - loss: 19.2828 - mse: 19.2828 - val_loss: 17.9827 - val_mse: 17.9827
    Epoch 20/50
                                  ==] - 0s 5ms/step - loss: 22.7105 - mse: 22.7105 - val_loss: 20.5292 - val_mse: 20.5292
    12/12 [==:
    Epoch 21/50
    12/12 [====
                                 :==] - 0s 7ms/step - loss: 22.5749 - mse: 22.5749 - val_loss: 18.6884 - val_mse: 18.6884
    Epoch 22/50
    12/12 [=====
                           =======] - 0s 5ms/step - loss: 19.0899 - mse: 19.0899 - val_loss: 58.9656 - val_mse: 58.9656
    Epoch 23/50
                          ========] - 0s 6ms/step - loss: 22.1505 - mse: 22.1505 - val_loss: 17.7170 - val_mse: 17.7170
    12/12 [=====
    Epoch 24/50
    12/12 [=====
                         =========] - 0s 5ms/step - loss: 21.5239 - mse: 21.5239 - val_loss: 17.5552 - val_mse: 17.5552
    Epoch 25/50
                                  ==] - 0s 5ms/step - loss: 18.7696 - mse: 18.7696 - val_loss: 33.4806 - val_mse: 33.4806
    12/12 [====
    Epoch 26/50
                          ========] - 0s 5ms/step - loss: 21.0288 - mse: 21.0288 - val_loss: 37.7337 - val_mse: 37.7337
    12/12 [=====
    Epoch 27/50
    12/12 [==
                                :====] - 0s 5ms/step - loss: 19.4240 - mse: 19.4240 - val_loss: 27.9656 - val_mse: 27.9656
    Epoch 28/50
    12/12 [=====
                          ========] - 0s 7ms/step - loss: 18.7796 - mse: 18.7796 - val loss: 16.4296 - val mse: 16.4296
    Epoch 29/50
    12/12 [=====
                       ==========] - 0s 6ms/step - loss: 19.5165 - mse: 19.5165 - val_loss: 36.3188 - val_mse: 36.3188
```

```
# Preview the mean value of training and validation data
y_train.mean(), y_val.mean()

(22.235537, 24.89756)
```

```
# Evaluate the model on the test data
print("Evaluation on Test data \n")
loss, mse = model.evaluate(X_test, y_test, batch_size=32)
print(f"\nModel loss on test set: {loss}")
print(f"Model mean squared error on test set: {(mse):.2f}")
```

Plot the loss curves
pd.DataFrame(history.history).plot(figsize=(6, 4), xlabel="Epochs", ylabel="Loss", title='Loss Curves')
plt.show()

Start coding or generate with AI.