Algebra I Examen Final (17-12-04)

Nombre y apellido:

Turno: Carrera:

1	2	3	4	5

- 1. Si $n \in \mathbb{N}$, probar que en el conjunto $\{n,n+1,\cdots,2n\}$ hay un cuadrado perfecto.
- 2. Sean $A=\{1,2,\cdots,15\}$ y $B=\{1,2,\cdots,27\}$. Calcular el número de funciones estrictamente crecientes $f:A\to B$ tales que f(2)>5.

Aclaración: f se dice estrictamente creciente si $i < j \Rightarrow f(i) < f(j)$.

- 3. Demostrar que existen infinitos pares $(x,y) \in \mathbb{Z}^2$ tales que x+y=196 y (x:y)=7.
- 4. Sea ω una raíz octava primitiva de 1. Caracterizar los $n \in \mathbb{N}$ tales que

$$\prod_{i=0}^{n} \omega^{12i} = 1.$$

5. Si $g \in \mathbb{R}[X]$, determinar los posibles valores de (g + X : Xg + 2). Para cada uno de los casos hallados, exhibir un polinomio g que lo satisfaga.

Nota. Justifique debidamente todas sus respuestas.