Devoir surveillé n°06: corrigé

SOLUTION 1.

- **1.** Une récurrence simple montre que $F_n > 0$ pour tout entier $n \in \mathbb{N}^*$. Soit un entier $n \geqslant 3$. Alors $F_n F_{n-1} = F_{n-2} > 0$ car $n-2 \in \mathbb{N}^*$.
- 2. On sait que $F_{n+1}=1\times F_n+F_{n-1}$. Or $n-1\geqslant 2$ donc $F_{n-1}< F_n$ d'après la première question. Par ailleurs, $F_{n-1}\geqslant 0$ donc F_{n-1} est le reste de la division euclidienne de F_{n+1} par F_n .
- 3. On trouve $\varphi = \frac{1+\sqrt{5}}{2}$.
- **4.** Tout d'abord, $F_2 = 1 \ge 1 = \varphi^0$. Puis

$$\phi = \frac{1 + \sqrt{5}}{2} \leqslant \frac{1 + \sqrt{9}}{2} = 2 = F_3$$

Supposons qu'il existe un certain $n \in \mathbb{N}$ tel que $F_{n+2} \geqslant \phi^n$ et $F_{n+3} \geqslant \phi^{n+1}$. Alors

$$F_{n+4} = F_{n+2} + F_{n+3} \geqslant \phi^n + \phi^{n+1} = \phi^n (1 + \phi) = \phi^n \cdot \phi^2 = \phi^{n+2}$$

Par récurrence double, $F_{n+2} \geqslant \phi^n$ pour $n \in \mathbb{N}$.

- **5.** On a donc $r_0 = 169$ et $r_1 = 104$ puis on trouve successivement $r_2 = 65$, $r_3 = 39$, $r_4 = 26$, $r_5 = 13$ et $r_6 = 0$. Ainsi N = 6 et $169 \land 104 = 13$.
- **6.** La question **2** permet de montrer par récurrence que $r_k = F_{n+1-k}$ lorsque $n+1-k \geqslant 2$. Notamment $r_{n-2} = F_3$ et $r_{n-1} = F_2$. Ensuite

$$F_3 = 2 = 2 \times F_2 + 0$$

de sorte que $r_n = 0$. Ainsi N = n et $F_{n+1} \wedge F_n = r_{N-1} = r_{n-1} = F_2 = 1$.

- 7. Pour tout $k \in [1, N-1]$, r_{k+1} est le reste de la division euclidienne de r_{k-1} par r_k donc $r_{k+1} < r_k$. Par ailleurs, a > b donc $r_0 > r_1$. La suite $(r_k)_{0 \le k \le N}$ est donc bien strictement décroissante.
- **8.** Comme $(a,b) \neq (0,0)$, $r_{N-1} = a \land b \neq 0$. Ainsi, $r_{N-1} \geqslant 1$. Par ailleurs, en notant q le quotient de la division euclidienne de r_{N-2} par r_{N-1} ,

$$r_{N-2} = qr_{N-1} + r_N = qr_{N-1}$$

On ne peut avoir q=0 car r_{N-2} n'est pas nul, ni q=1 car $r_{N-1}< r_{N-2}$ puisque r_{N-1} est le reste de la division euclidienne de r_{N-3} par r_{N-2} . Ainsi $q\geqslant 2$. Ainsi $r_{N-2}\geqslant 2r_{N-1}$.

9. On procède par récurrence double. On note \mathcal{P}_k l'assertion $\ll r_{N+1-k} \geqslant F_k \gg r_k$. Tout d'abord $r_{N-1} \geqslant 1 = F_2$ et $r_{N-2} \geqslant 2r_{n-1} \geqslant 2 = F_3$ donc \mathcal{P}_2 et \mathcal{P}_3 sont vraies. Supposons qu'il existe $k \in [\![2,N-2]\!]$ tels que \mathcal{P}_k et \mathcal{P}_{k+1} soient vraies. Alors $r_{N+1-k} \geqslant F_k$ et $r_{N-k} \geqslant F_{k+1}$. En notant q le reste de la division euclidienne de r_{N-1-k} par r_{N-k} , on a

$$r_{N-1-k} = qr_{N-k} + r_{N+1-k}$$

A nouveau, q ne peut être nul puisque $r_{N+1-k} < r_{N-1-k}$. Ainsi $q \ge 1$ (q est entier) donc

$$r_{N-1-k} \ge r_{N-k} + r_{N-1-k} \ge \phi^k + \phi^{k+1} = \phi^k (1+\phi) = \phi^k \cdot \phi^2 = \phi^{k+2}$$

Ainsi \mathcal{P}_{k+2} est vraie. Finalement, par récurrence double finie, \mathcal{P}_k est vraie pour tout $k \in [2, N]$.

10. En particulier, lorsque $k=N,\,b=r_1\geqslant F_N\geqslant \phi^{N-2}$ (question 4). Par croissance de ln, $\ln(b)\geqslant (N-2)\ln(\phi)$. Or $\phi>1$ donc $\frac{\ln(b)}{\ln(\phi)}\geqslant N-2$. Puisque la partie entière d'un réel est le plus grand entier supérieur à ce réel et que N-2 est entier, $N-2\leqslant \left|\frac{\ln(b)}{\ln(\phi)}\right|$, ce qui donne le résultat voulu.

REMARQUE. Le résultat démontré est le théorème de Lamé. Le nombre de divisions euclidiennes utilisées dans l'algorithme d'Euclide est N−1. Le théorème de Lamé donne donc une majoration de ce nombre de divisions. Cette majoration est optimale comme le montre la question **6**. ■

SOLUTION 2.

- **1.** La fonction f est continue et strictement croissante sur \mathbb{R}_+^* . De plus, $\lim_{0^+} f = -\infty$ et $\lim_{+\infty} f = +\infty$ donc f est une bijection de $]0, +\infty[$ sur $]-\infty, +\infty[$, c'est-à-dire de \mathbb{R}_+^* sur \mathbb{R} .
- 2. f^{-1} est de même sens de variation que f, c'est-à-dire strictement croissante. Puisque $\lim_{0^+} f = -\infty$ et $\lim_{+\infty} f = +\infty$, $\lim_{-\infty} f^{-1} = 0^+$ et $\lim_{+\infty} f^{-1} = +\infty$.

Remarque. Plus rigoureusement, f^{-1} est strictement croissante donc elle admet des limites en $-\infty$ et $+\infty$. De plus,

$$\begin{split} &\lim_{+\infty} f^{-1} = \inf_{\mathbb{R}} f^{-1} = 0 \\ &\lim_{+\infty} f^{-1} = \sup_{\mathbb{R}} f^{-1} = +\infty \end{split}$$

- 3. Soit $n \in \mathbb{N}^*$. Alors n admet un unique antécédent par f dans \mathbb{R}_+^* car f est une bijection de \mathbb{R}_+^* sur \mathbb{R} . Ainsi l'équation f(x) = n admet une unique solution sur \mathbb{R}_+^* .
- **4.** La question précédente montre en fait que $x_n = f^{-1}(n)$. Puisque f^{-1} est croissante, pour tout $n \in \mathbb{N}^*$, $f^{-1}(n) \leqslant f^{-1}(n+1)$ i.e. $x_n \leqslant x_{n+1}$. La suite (x_n) est donc croissante.
- **5.** Puisque $\lim_{n\to\infty} f^{-1} = +\infty$ et que $x_n = f^{-1}(n)$ pour tout $n \in \mathbb{N}^*$, $\lim_{n\to+\infty} x_n = +\infty$.
- **6.** Pour tout $n \in \mathbb{N}^*$, $n = x_n + \ln(x_n)$. Or $\ln(u) = o(u)$ et $\lim_{n \to +\infty} x_n = +\infty$ donc $\ln(x_n) = o(x_n)$. Ainsi $x_n + \ln(x_n) = x_n + o(x_n)$ ou encore $x_n + \ln(x_n) = x_n$. Finalement, $x_n = x_n = x_n$.
- 7. Soit $n \in \mathbb{N}^*$.

$$x_{n+1} - x_n = (n+1 - \ln(x_{n+1}) - (n - \ln(x_n)) = 1 - \ln\left(\frac{x_{n+1}}{x_n}\right)$$

 $\text{Or } x_n \underset{n \to +\infty}{\sim} n \text{ et } x_{n+1} \underset{n \to +\infty}{\sim} n+1 \underset{n \to +\infty}{\sim} n \text{ donc } \frac{x_{n+1}}{x_n} \underset{n \to +\infty}{\sim} 1. \text{ Ainsi } \lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = 1 \text{ puis } \lim_{n \to +\infty} \ln \left(\frac{x_{n+1}}{x_n} \right) = 0. \text{ Finalement, } \lim_{n \to +\infty} x_{n+1} - x_n = 1.$

8. a. Soit $n \in \mathbb{N}^*$. Remarquons que $n - x_n = \ln(x_n)$ donc

$$u_n - 1 = \frac{\ln(x_n)}{\ln(n)} - 1 = \frac{\ln(x_n) - \ln(n)}{\ln(n)} = \frac{\ln(x_n/n)}{\ln(n)}$$

- $\begin{array}{ll} \textbf{b.} \ \ \text{On sait que} \ x_n \ \underset{n \to +\infty}{\sim} \ n \ \text{donc} \ \lim_{n \to +\infty} \frac{x_n}{n} = 1 \ \text{puis} \ \lim_{n \to +\infty} \ln(x_n/n) = 0. \ \text{Par ailleurs,} \ \lim_{n \to +\infty} \ln(n) = 0. \\ +\infty. \ \ \text{Par opérations,} \ \lim_{n \to +\infty} \frac{\ln(x_n/n)}{\ln(n)} = 0. \ \text{Ainsi} \ \lim_{n \to +\infty} u_n 1 = 0 \ \text{puis} \ \lim_{n \to +\infty} u_n = 1. \end{array}$
- c. La question précédente montre que $u_n \underset{n \to +\infty}{=} 1 + o(1).$ On en déduit successivement que

$$\frac{n-x_n}{\ln(n)} = 1 + o(1)$$

puis que

$$n - x_n = \lim_{n \to +\infty} \ln(n) + o(\ln(n))$$

ensuite que

$$x_n = n - \ln(n) + o(\ln(n))$$

et enfin que

$$\frac{x_n}{n} \underset{\scriptscriptstyle n \to +\infty}{=} 1 - \frac{ln(n)}{n} + o\left(\frac{ln(n)}{n}\right)$$

Puisque $\ln(1+u) = u + o(u)$ et que $\lim_{n\to+\infty} \frac{\ln(n)}{n} = 0$,

$$\ln(x_n/n) \underset{n \to +\infty}{=} -\frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

ou encore que

$$\ln(x_n/n) \sim \frac{-\ln(n)}{n}$$

Ainsi

$$1 - u_n = -\frac{\ln(x_n/n)}{\ln(n)} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

9. Puisque $u_n = \frac{n-x_n}{\ln(n)}$ pour $n \in \mathbb{N}^*$, la question précédente montre que

$$1 - \frac{n - x_n}{\ln(n)} = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

On déduit successivement que

$$\frac{x_n-n}{\ln(n)} \underset{_{n\to+\infty}}{=} -1 + \frac{1}{n} + o\left(\frac{1}{n}\right)$$

puis que

$$x_n - n \underset{\scriptscriptstyle n \rightarrow +\infty}{=} - ln(n) + \frac{ln(n)}{n} + o\left(\frac{ln(n)}{n}\right)$$

et enfin que

$$x_n \underset{n \to +\infty}{=} n - \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

SOLUTION 3.

- **1.** Soit $x \in [0, 1]$. Alors $\sqrt{x} \in [0, 1]$ donc $f(x) = 1 \sqrt{x} \in [0, 1]$.
- 2. On procède par récurrence. Tout d'abord, $u_0 \in [0, 1]$. Supposons que $u_n \in [0, 1]$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+1} = f(u_n) \in [0, 1]$ d'après la question précédente.
- 3. f est clairement décroissante sur [0, 1] à valeurs dans [0, 1]. On en déduit que f ∘ f est croissante sur [0, 1].
- **4.** Pour $x \in [0, 1]$,

$$f(x) = x$$

$$\iff \qquad \sqrt{x} = 1 - x$$

$$\iff \qquad x = (1 - x)^2 \qquad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \qquad x^2 - 3x + 1 = 0$$

Les racines du trinôme précédent sont $\frac{3-\sqrt{5}}{2}$ et $\frac{3+\sqrt{5}}{2}$. La première racine appartient à l'intervalle [0, 1] puisque $1 \leqslant \sqrt{5} \leqslant 3$ mais la seconde racine n'appartient pas à l'intervalle [0, 1] car $\sqrt{5} > 1$.

Finalement, l'unique point fixe de f sur [0, 1] est $\alpha = \frac{3-\sqrt{5}}{2}$.

- **5.** Puisque $20 \le 25$, $5 \le \frac{25}{4}$ puis $\sqrt{5} \le \frac{5}{2}$ puis $\alpha = \frac{3-\sqrt{5}}{2} \ge \frac{1}{4} = \mathfrak{u}_0$.
- 6. On procède par récurrence. Tout d'abord, $\mathfrak{u}_0\leqslant\alpha$. Supposons $\mathfrak{u}_{2\mathfrak{n}}\leqslant\alpha$ pour un certain $\mathfrak{n}\in\mathbb{N}$. Alors par croissance de $f \circ f$ sur [0, 1],

$$f\circ f(u_{2n})\leqslant f\circ f(\alpha)$$

c'est-à-dire

$$u_{2n+2} \leqslant \alpha$$

On en déduit que $u_{2n} \leq \alpha$ pour tout $n \in \mathbb{N}$.

7. On a $u_0 = \frac{1}{4}$ puis $u_1 = \frac{1}{2}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}}$. Puisque $8 \leqslant 9$, $\frac{1}{2} \leqslant \frac{9}{16}$ puis $\frac{1}{\sqrt{2}} \leqslant \frac{3}{4}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}} \geqslant \frac{1}{2}$ $\frac{1}{4} = u_0$.

Supposons maintenant que $u_{2n} \leqslant u_{2n+2}$ pour un certain $n \in \mathbb{N}$. Par croissance de $f \circ f$, $u_{2n+2} = f \circ f(u_{2n}) \leqslant g(u_{2n+2})$ $f\circ f(u_{2n+2})=u_{2n+4}.$ Par récurrence, on a donc $u_{2n}\leqslant u_{2n+2}$ pour tout $n\in\mathbb{N}.$ Ainsi (u_{2n}) est croissante. La suite (\mathfrak{u}_{2n}) est croissante et majorée par α donc elle converge.

8. Soit $x \in [0, 1]$.

Or on a vu précédemment que α est la seule racine du trinôme $x^2 - 3x + 1$ dans l'intervalle [0, 1]. On en déduit que les points fixes de $f \circ f$ sur [0, 1] sont [0, 1] sont

9. f est continue sur [0,1] à valeurs dans [0,1] donc $f \circ f$ est continue sur [0,1]. De plus, $u_{2n+2} = f \circ f(u_{2n})$ et $u_{2n} \in [0,1]$ pour tout $n \in \mathbb{N}$ donc la suite (u_{2n}) converge vers un point fixe de $f \circ f$ sur [0,1], à savoir $0, \alpha$ ou 1. Or (u_{2n}) est croissante et majorée par α donc $u_0 \le u_{2n} \le \alpha$ pour tout $n \in \mathbb{N}$. Sa limite ℓ vérifie donc $u_0 \le \ell \le \alpha$. A fortiori, $0 < \ell \le \alpha$. Puisque ℓ est un point fixe de $f \circ f, \ell = \alpha$. Enfin, $u_{2n+1} = f(u_{2n})$ pour tout $n \in \mathbb{N}$ et f est continue sur [0,1] donc (u_{2n+1}) converge vers $f(\alpha) = \alpha$. Puisque les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers α , la suite (u_n) converge également vers α .

SOLUTION 4.

- 1. Clairement $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$. $1 = 1 + 0\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. Soit $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$. Il existe donc $(a,b,c,d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$. Alors $x y = (a c) + (b d)\sqrt{2}$ et $(a c, b d) \in \mathbb{Z}^2$ donc $x y \in \mathbb{Z}[\sqrt{2}]$. Également, $xy = (ac + 2bd) + (ad + bc)\sqrt{2}$ et $(ac + 2bd, ad + bc) \in \mathbb{Z}^2$ donc $xy \in \mathbb{Z}[\sqrt{2}]$. Ainsi $\mathbb{Z}[\sqrt{2}]$ est donc un sous-anneau de $(\mathbb{R}, +, \times)$.
- 2. **a.** Soit $x \in \mathbb{Z}[\sqrt{2}]$. L'existence d'un couple $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$ découle simplement de la définition de $\mathbb{Z}[\sqrt{2}]$. Soit maintenant $(c,d) \in \mathbb{Z}^2$ tel que

$$x = a + b\sqrt{2} = c + d\sqrt{2}$$

On a donc $(a-c)=(d-b)\sqrt{2}$. Si $d\neq b,\sqrt{2}$ serait rationnel. Ainsi b=d et par suite a=c. D'où l'unicité du couple (a,b).

b. Soit $(x,y) \in \mathbb{Z}[\sqrt{2}]$. Il existe donc $(a,b,c,d) \in \mathbb{Z}^4$ tel que $x=a+b\sqrt{2}$ et $y=c+d\sqrt{2}$. Alors

$$\overline{x \cdot y} = \overline{(a + b\sqrt{2})(c + d\sqrt{2})} = \overline{ac + 2bd + (ad + bc)\sqrt{2}} = ac + 2bd - (ad + bc)\sqrt{2}$$

$$\overline{x} \cdot \overline{y} = \overline{a + b\sqrt{2}c + d\sqrt{2}} = (a - b\sqrt{2})(c - d\sqrt{2}) = ac + 2bc - (ad + bc)\sqrt{2}$$

On a donc bien $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$.

- 3. a. Soient $x \in \mathbb{Z}[\sqrt{2}]$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Alors $N(x) = a^2 2b^2 \in \mathbb{Z}$.
 - **b.** Soit $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$. Alors, en utilisant que φ est un endomorphisme d'anneau

$$N(xy) = xy\overline{x \cdot y} = xy\overline{x} \cdot \overline{y} = x\overline{x}y\overline{y} = N(x)N(y)$$

c. Soit $x \in \mathbb{Z}[\sqrt{2}]$.

Supposons x inversible. Il existe donc $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. Ainsi N(xy) = N(1) = 1. D'après la question précédente, N(xy) = N(x)N(y) d'où N(x)N(y) = 1. Puisque N(x) et N(y) sont entiers, on a donc $N(x) = \pm 1$ i.e. |N(x)| = 1.

Réciproquement soit $x \in \mathbb{Z}[\sqrt{2}]$ tel que |N(x)| = 1. Si N(x) = 1, alors $x\overline{x} = 1$ donc x est inversible (d'inverse \overline{x}). Si N(x) = -1, alors $x(-\overline{x}) = 1$ donc x est inversible (d'inverse $-\overline{x}$).

- **4. a.** Supposons $a \ge 0$ et $b \ge 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers naturels a et b est donc non nul. Ainsi $a \ge 1$ ou $b \ge 1$ et, dans les deux cas, $x \ge 1$.
 - **b.** Supposons $a \le 0$ et $b \le 0$. On ne peut avoir (a,b) = (0,0) car $0 \notin H$. Un des deux entiers a et b est donc non nul. Ainsi $a \le -1$ ou $b \le -1$ et, dans les deux cas, $x \le -1$.
 - c. Supposons $ab \le 0$. Alors $a(-b) \ge 0$. Les deux questions précédentes montrent que $|\overline{x}| \ge 1$. Puisque $|N(x)| = |x||\overline{x}| = 1, |x| \le 1$.
- **5. a.** Puisque x > 1, la question précédente montre qu'on ne peut avoir $a \le 0$ et $b \le 0$ ni $ab \le 0$. C'est donc que nécessairement a > 0 et b > 0.
 - **b.** $u \in H^+$ car u > 1 et N(u) = -1. Soient $x \in H^+$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. D'après la question précédente, $a \geqslant 1$ et $b \geqslant 1$ donc $x \geqslant u$. Ainsi u est un minorant de H^+ . u est donc le minimum de H^+ .
- **6. a.** Il suffit de poser $n = \lfloor \frac{\ln x}{\ln x} \rfloor$. On a alors

$$n \leqslant \frac{\ln x}{\ln u} < n + 1$$

ou encore

$$n \ln(u) \leq \ln(x) < (n+1) \ln u$$

car $\ln u > 0$. Puis par stricte croissance de l'exponentielle

$$u^n \leqslant x < u^{n+1}$$

b. Supposons $x \neq u^n$. Alors

$$u^n < x < u^{n+1}$$

puis

$$1 < \frac{x}{u^n} < u$$

car u>0. Or H et $u\in H$ donc $u^n\in H$. On sait également que $x\in H$ donc $\frac{x}{u^n}\in H$ car H est un groupe. Or $\frac{x}{u^n}>1$ donc $\frac{x}{u^n}\in H^+$. Or $\frac{x}{u^n}< u$, ce qui contredit la minimalité de u. On a donc prouvé que $x=u^n$.

7. On sait que $u \in H$ donc $u^n \in H$ pour tout $n \in \mathbb{Z}$ car H est un groupe. Puisque $-1 \in H$, on a également $-u^n \in H$ pour tout $n \in \mathbb{Z}$. Ainsi

$$\{\mathfrak{u}^{\mathfrak{n}},\mathfrak{n}\in\mathbb{Z}\}\cup\{-\mathfrak{u}^{\mathfrak{n}},\mathfrak{n}\in\mathbb{Z}\}\subset H$$

Soit maintenant $x \in H$. On sait que $0 \notin H$ donc $x \neq 0$.

- ▶ Si x > 1, alors $x \in H^+$ et il existe donc $n \in \mathbb{Z}$ tel que $x = u^n$ d'après la question précédente.
- ightharpoonup Si x = 1, alors $x = u^0$.
- ▶ Si 0 < x < 1, alors $\frac{1}{x} \in H^+$ donc il existe $n \in \mathbb{Z}$ tel que $\frac{1}{x} = u^n$ i.e. $x = u^{-n}$.
- ▶ Si x < 0, alors $-x \in H$ et -x > 0, et les cas précédents montrent l'existence d'un $n \in \mathbb{Z}$ tel que $-x = u^n$ i.e. $x = -u^n$.

On a donc prouvé que

$$H \subset \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$

Par double inclusion

$$H = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$