Single Image Super Resolution

https://arxiv.org/pdf/1712.06116v2.pdf

February 15, 2021

1 Image Degradation Model

$$y = (x \otimes k) \downarrow_s + n \tag{1}$$

where \boldsymbol{y} is the low-resolution (LR) image, $(\boldsymbol{x} \otimes \boldsymbol{k})$ is convolution between high-resolution (HR) image \boldsymbol{x} and blur kernel $\boldsymbol{k}, \downarrow_s$ is downsampling operation with scale factor s, and \boldsymbol{n} is additive while Gaussian noise with standard deviation σ

2 SISR using MAP

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \frac{1}{2\sigma^2} \|(\boldsymbol{x} \otimes \boldsymbol{k}) \downarrow_s -\boldsymbol{y}\|^2 + \lambda \Phi(\boldsymbol{x})$$
(2)

estimate HR image x using LR image y, use regularisation term $\Phi(x)$ to constrain the solution since SISR has ill-posed nature.

We can write this more generally as

$$\hat{\boldsymbol{x}} = \mathcal{F}(\boldsymbol{y}, \boldsymbol{k}, \sigma, \lambda; \Theta) \tag{3}$$

By taking λ common, we can absorb λ into σ to get

$$\hat{\boldsymbol{x}} = \mathcal{F}(\boldsymbol{y}, \boldsymbol{k}, \sigma; \Theta) \tag{4}$$

So, the goal of SISR is to learn $\hat{x} = \mathcal{F}(y, k, \sigma; \Theta)$, rather than $\hat{x} = \mathcal{F}(y; \Theta)$ Here, the complexity arises that y, k, σ each have different dimensions.

3 Dimensionality Stretching

- 1. Blur kernel is vectorised: $p \times p \longrightarrow p^2 \times 1$
- 2. Project vectorised blur kernel into t-dimensional space using PCA
- 3. Concat noise σ to t dimensional vector to get vector v of size (t+1)
- 4. Strech \boldsymbol{v} into degradation maps \mathcal{M} of size $W \times H \times (t+1)$, where all the elements of *i*-th map are \boldsymbol{v}_i

4 Model

- 1. Concat LR image and degrarion maps to get the input of size $W \times H \times (C+t+1)$ for the network
- 2. Each layer in network has 3 operations: "Conv + BN + ReLU"
- 3. Last layer: only "Conv"
- 4. sub-pixel convolution layer, to convert multiple HR subimages of size $W\times H\times s^2C$ into a single image of size $sW\times sH\times C$