Méthode de dichotomie	$[a,b] a < e,b > e,f(e) = 0 -> w = \frac{a+b}{2}$ f(a)f(w) > 0?
Méthode	x_0 et x_1
de la sécante	$x_{n+2} = x_{n+1} - f(x_{n+1}) \left(\frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)} \right)$
Méthode	$x_{n+1} = g(x_n) \text{ où } g(x) = x + f(x)$
du point	Ou
fixe	$x_{n+1} = x_n + C.f(x_n)$ où $C = -\frac{1}{f'(x_1)} \mid x_1 \approx x_0$
Méthode	$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$
de Newton.	$F_{i}(x_{n})$

Méthode triangulaire descendant	$x_k = \frac{1 \to n}{b_k - \sum_{j=1}^n a_{kj} x_j}$	Méthode de Newton- Raphston	$X_1 = (x_1; y_1)$ $F(f(X_n); g(X_n)) \text{ et } J(f(X_n); g(X_n))$ $X_{n+1} = X_n - \frac{J}{F}$
Méthode triangulaire ascendante	$x_k = \frac{b_k - \sum_{j=k+1}^n a_{kj} x_j}{a_{kk}}$	Méthode de Jacobi	$x^{k+1} = F. x^k + d$ $F = -D^{-1}(L+U)$ $x_i^{k+1} = -\sum_{j=1 \text{ et } i \neq j}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}$
Méthode de Gauss	$m_{ik} = \frac{a_{ik}^{k-1}}{a_{kk}^{k-1}}, b_i^k = m_{ik}b_k^{k-1}$ $k \to n$ $a_{ij} = a_{ij}^{k-1} - m_{ik}a_{kj}^{k-1}$ $k \to n, \forall j$ $\Rightarrow \text{back-substitution}$	Méthode de Gauss- Seidel	$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}$

	2
Méthode de Vandermonde	$Point_{j} = P_{j} = a_{0} + a_{1}t_{j} + a_{2}t_{j}^{2} + a_{n}t_{j}^{n} 0 \le j \le n,$
	$\begin{pmatrix} 1 & \dots & t_1^n \\ 1 & \dots & t_j^n \\ 1 & \dots & t_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ \dots \\ a_n \end{pmatrix} = \begin{pmatrix} P_1 \\ P_j \\ P_n \end{pmatrix} \leftrightarrow Va = p$

Méthode des trapèzes	$\int_{a}^{b} f(x)dx \approx \frac{h}{2} (f_{0} + 2f_{1} + \dots + 2f_{n-1} + f_{n})$ $- \frac{h^{2}}{12} (b - a)f''(\varepsilon)$!!! $f(x_{i}) = f_{i}, x_{i} = a + ih$
Méthode de Simpson	$\int_{a}^{b} f(x)dx \approx \frac{h}{3} (f_0 + 4f_1 + 2f_2 + \dots + 4f_{n-1} + f_{n-2k \text{ entier}})$!!! $f(x_i) = f_i, x_i = a + ih$
Méthode de Romberg	$n = 1; 2; 4; 8 \to$ $S_{0(n)} = \frac{h}{2} (f_0 + 2f_1 + \dots + 2f_{n-1} + f_n)$ $m = 1 \to$ $S_{m(2n)} = \frac{(4^m S_{m-1}(2n) - S_{m-1}(n))}{(4^m - 1p)}$
Méthode des coefficients indéterminés	$\int_{-1}^{1} f(x)dx \approx w_0 f_0 + \dots + w_n f_n$!!! w_i sont donnés

Méthode d'Euler Explicite	$y_{k+1} = y_k + h. f(t_k, y_k)$
	$t_{k+1} = t_k + h$
Méthode d'Euler Implicite	$y_{k+1} = y_k + h.f(t_k, y_{k+1})$
,	$t_{k+1} = t_k + h$
	$z = y_k$
	Point fixe de Newton :
	$g = z - y_k - hf(t_{k+1}, z), \ g' = 1 - h\frac{\partial f}{\partial y}(t_{k+1}, z)$
	2
	$\Rightarrow z_n = z_{n-1} - \frac{g}{g'}$
	$\rightarrow y_{k+1} = z_n$
Méthode de Crank-Nicholson	Idem Euler implicite sauf :
	h_{CC}
	$g = z - y_k - \frac{n}{2}(f(t_k, y_k) + f(t_{k+1}, z)),$
	$g' = 1 - \frac{h}{2} \left(\frac{\partial f}{\partial y}(t_k, y_k) + \frac{\partial f}{\partial y}(t_{k+1}, z) \right)$
	$g' = 1 - \frac{1}{2} \left(\frac{\partial y}{\partial y} (t_k, y_k) + \frac{\partial y}{\partial y} (t_{k+1}, z) \right)$
	2 0y 0y
Máthadada IIa (DV2)	h
Méthode de Heun (RK2)	$y_{k+1} = y_k + \frac{n}{2} [f(t_k, y_k) + f(t_{k+1}, y_k + hf(t_k, y_k))]$
	2 0 ((((((((((((((((((
	,
Méthode de Runge-Kutta 4	$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
	Où
	$k_{1} = f(t_{n}, y_{n})$ $k_{2} = f(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{1})$ $k_{3} = f(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2})$
	b = f(t + h + h + h)
	$\kappa_2 - J(\iota_n + \frac{\pi}{2}, y_n + \frac{\pi}{2} \kappa_1)$
	h = f(t + h + h)
	$k_4 = f(t_n + h, y_n + hk_3)$
1	1

Méthode des différences finies	$u(x_1) = u_0, u(x_{n+1}) = u_f, x = [x_1 \ x' x_{n+1}], x' = x_2 \dots x_n].$
	$\frac{u_{j-1}-2u_j+u_{j+1}}{h^2} \approx u''$ et $\frac{u_{j+1}'-u_{j-1}}{2h} \approx u'$
	$si u_j = u(x_j).$
	Remplacer dans l'équation et résoudre via résolution matricielle.
Méthode du tir au but	$y_0 = y(0); \ y_f = y(L); yp_1 = C_1$
	Résolution $\rightarrow Y_i$
	$T_i = Y_{if} - y_f$
	$yp_2 = C_2$
	$yp_k = yp_{k-2} - \frac{yp_{k-2} - yp_{k-1}}{T_{k-2} - T_{k-1}} T_{k-2}$