Algorithm Design & Analysis (CS3383)¹

Unit 0: Asymptotic Review

Rasoul Shahsavarifar

January 7, 2019

Outline

Short Intro.

Asymptotics

The view from 10000m

Definitions

Examples

Case Analysis

First Analysis, then Design!

Unlike the order in the course title,

- First, we learn some concepts which helps to analyze an algorithm.
- ▶ Then, we learn different algorithm design techniques.

First Analysis, then Design!

Unlike the order in the course title,

- First, we learn some concepts which helps to analyze an algorithm.
- ▶ Then, we learn different algorithm design techniques.

Why do we analyze Algorithms?

From all correct algorithms, we want to be able to pick those that are the best:

- Least time or fewest number of steps
- Least use of other resources (such as space)
- Possibly easiest to implement or use based on some other criteria.

First Analysis, then Design!

Unlike the order in the course title,

- First, we learn some concepts which helps to analyze an algorithm.
- ▶ Then, we learn different algorithm design techniques.

Why do we analyze Algorithms?

From all correct algorithms, we want to be able to pick those that are the best:

- Least time or fewest number of steps
- Least use of other resources (such as space)
- Possibly easiest to implement or use based on some other criteria.
- ➤ Since speed is fun, one of the usual criterion is time: of those that work, which one is the fastest?
- We want to be able to make our choice without implementing, since implementation can be expensive.

U 7 1 0 7 1 = 7 1 = 7 9 0

Unit prereqs

- O and Ω (CS2383)
- limits, derivatives (calculus)
- induction (CS1303)
- working with inequalities
- monotone functions

Asymptotic Analysis

Question: Does Asymptotic Analysis always works perfectly?

Asymptotic Analysis

Question: Does Asymptotic Analysis always works perfectly?

Given: Two algorithms with $10000n\log n$, and $5n\log n$ time complexities.

Task: Designing a software that deal with inputs with the size of at most 1000.

Asymptotic Analysis

Question: Does Asymptotic Analysis always works perfectly?

Given: Two algorithms with $10000n \log n$, and $5n \log n$ time complexities.

Task: Designing a software that deal with inputs with the size of at most 1000.

But,

In general, asymptotic analysis is the best available way to analyze an algorithm.

Contents

Short Intro

Asymptotics

The view from 10000m

Definitions Examples

Case Analysis

• f = O(g)

• $f = \Omega(g)$

Linear versus Quadratic

Exponential versus Polynomial

Contents

Short Intro

Asymptotics

The view from 10000m

Definitions

Examples

Case Analysis

O-notation (upper bounds):

O-notation (upper bounds):

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

O-notation (upper bounds):

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ functions, not values

O-notation (upper bounds):

Example:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ funny, "one-way" equality

Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

for all n \ge n_0 \}
```


Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```

EXAMPLE: $2n^2 \in O(n^3)$

Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

for all n \ge n_0 \}
```

EXAMPLE: $2n^2 \in O(n^3)$

(Logicians: $\lambda n.2n^2 \in O(\lambda n.n^3)$, but it's convenient to be sloppy, as long as we understand what's *really* going on.)

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:
$$f(n) = n^3 + O(n^2)$$

means
 $f(n) = n^3 + h(n)$
for some $h(n) \in O(n^2)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

```
Example: n^2 + O(n) = O(n^2)

means

for any f(n) \in O(n):

n^2 + f(n) = h(n)

for some h(n) \in O(n^2).
```


Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

```
\Omega(g(n)) = \{ f(n) : \text{ there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}
```


Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

$$\Omega(g(n)) = \{ f(n) : \text{ there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$$

EXAMPLE:
$$\sqrt{n} = \Omega(\lg n)$$
 ($c = 1, n_0 = 16$)

Θ-notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Θ-notation (tight bounds)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

EXAMPLE:
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

o-notation and ω-notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like \leq and \geq .

```
o(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{there is a constant } n_0 > 0 \\ \text{such that } 0 \le f(n) < cg(n) \\ \text{for all } n \ge n_0 \}
```

EXAMPLE:
$$2n^2 = o(n^3)$$
 $(n_0 = 2/c)$

o-notation and ω-notation

O-notation and Ω -notation are like \leq and \geq . *o*-notation and ω -notation are like \leq and \geq .

$$\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{there is a constant } n_0 > 0 \\ \text{such that } 0 \le cg(n) < f(n) \\ \text{for all } n \ge n_0 \}$$

EXAMPLE:
$$\sqrt{n} = \omega(\lg n)$$
 $(n_0 = 1 + 1/c)$

Contents

Short Intro

Asymptotics

The view from 10000m

Definitions

Examples

Case Analysis

Working with asymptotic notation (board)

- brute force algebra
- bounding with constants
- little o

Case Analysis

Cool example! (board)

Consider different inputs (2D objects) for a triangulation algorithm.

- ► Worst Case(s)
- ► Best Case(s)
- Average Case: over all inputs, according to the input distribution

Case Analysis

Cool example! (board)

Consider different inputs (2D objects) for a triangulation algorithm.

- ► Worst Case(s)
- ► Best Case(s)
- Average Case: over all inputs, according to the input distribution

Randomized Algorithms

► Expectation: over all internal random choices, according to the distribution of random choices

Analysis of bubble sort(board)

```
Input: integer array A[1..n]
Output: sorted array A
continue \leftarrow \mathsf{True}
while continue do
    continue \leftarrow \mathsf{False}
    for i = 1 to n - 1 do
         if A[i] > A[i+1] then
            temp \leftarrow A[i]
             A[i] \leftarrow A[i+1]
            A[i+1] \leftarrow temp
            continue \leftarrow \mathsf{True}
```