Information-rich platforms for natural product antibiotic drug discovery and microbial characterization

> Chase Clark Postdoctoral Research Associate Computation and Informatics in **Biology and Medicine Training** Program Jason Kwan Lab School of Pharmacy University of Wisconsin-Madison

CG.....

Education:

B.S. in Biochemistry from Berry College (Bonner)

Ph.D. in Pharmacognosy from UIGC (F31)

SCIENCES COLLEGE

Current:

Postdoctoral Research Associate
Computation and Informatics in Biology and Medicine
Program (T15)

Education:

B.S. in Biochemistry from Berry College (Bonner)

Ph.D. in Pharmacognosy from UIC (F31)

SCIENCES COLLEGE OF PHARMACY

UIC

Current:

Postdoctoral Research Associate
Computation and Informatics in Biology and Medicine
Program (T15)

Previous:

Deerland Probiotics & Enzymes Head of Method Development

R&D Tech

- New product development
- Technical support for sales team
- Troubleshooting QC and production/manufacturing

Enzyme USP / FCC assays

HPLC analysis

Bioavailability testing

FTIR/Raman identity testing of raw materials Preservatives, Allergens, Western Blot testing

capabilities

Application development / formulation support

Education:

B.S. in Biochemistry from Berry College (Bonner)

Ph.D. in Pharmacognosy from Ulfic (F31)

SCIENCES COLLEGE OF PHARMACY

UIC

Current:

Postdoctoral Research Associate

Computation and Informatics in Biology and Medicine

Program (T15)

Previous:

Enzyme USP / FCC assays

HPLC analysis

Bioavailability testing

FTIR/Raman identity testing of raw materials Preservatives, Allergens, Western Blot testing capabilities

Application development / formulation support

- New product development
- Technical support for sales team
- Troubleshooting QC and production/manufacturing

"Drugs"

"Natural Products"

"Specialized Metabolites"

"Drugs" "Natural Products" "Specialized Metabolites"

Over 60% of current anticancer drugs are derived in one way or another from natural sources

2 VCR R = CHO

5 Docetaxel (TaxotereTM) R₁ = R₂ = H **6** Cabazitaxel R₁ = R₂ = CH₃

7 CPT $R_1 = R_2 = R_3 = H$ **8** Topotecan $R_1 = OH$; $R_2 = CH_2NH(CH_3)_2$; $R_3 = H$

9 Irinotecan
$$R_1 =$$

$$R_2 = H$$

$$R_3 = CH_2CH_3$$

10 Belotecan $R_1 = R_2 = H$; $R_3 = (CH_2)_2NHCH(CH_3)_2$ **11** Cositecan $R_1 = R_2 = H$; $R_3 = (CH_2)_2Si(CH_3)_3$

12 SN-38 R₁ = OH; R₂ = H; R₃ = CH₂CH₃

Natural products from plants

- Cragg, Gordon M, and John M Pezzuto. "Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents." Medical principles and practice: international journal of the Kuwait University, Health Science Centre vol. 25 Suppl 2, Suppl 2 (2016): 41-59. doi:10.1159/000443404
- Cragg, G M et al. "The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents." Journal of natural products vol. 56,10 (1993): 1657-68. doi:10.1021/np50100a001
- Stierle, A et al. "The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia." *Journal of natural products* vol. 58,9 (1995): 1315-24. doi:10.1021/np50123a002

19 Cytarabine

20 Trabectedin (ET743; Yondelis®)

Natural products from marine organisms

Cragg, Gordon M, and John M Pezzuto. "Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents." *Medical principles and practice : international journal of the Kuwait University, Health Science Centre* vol. 25 Suppl 2,Suppl 2 (2016): 41-59. doi:10.1159/000443404

20 Trabectedin (ET743; Yondelis®)

Supply issue can be a huge problem

Cragg, Gordon M, and John M Pezzuto. "Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents." *Medical principles and practice : international journal of the Kuwait University, Health Science Centre* vol. 25 Suppl 2,Suppl 2 (2016): 41-59. doi:10.1159/000443404

The Threat of Antibiotic Resistance in the United States

Antibiotic resistance—when germs (bacteria, fungi) develop the ability to defeat the antibiotics designed to kill them-is one of the greatest global health challenges of modern time.

New National Estimate*

Each year, antibiotic-resistant bacteria and fungi cause at least an estimated:

Clostridioides difficile is related to antibiotic use and antibiotic resistance:

2,868,700

35,900 deaths

12,800 deaths

New Antibiotic Resistance Threats List

Updated urgent, serious, and concerning threats-totaling 18

5 urgent threats

2 new threats

Watch List with 3 threats

Antibiotic resistance remains a significant One Health problem, affecting humans, animals, and the environment. Data show infection prevention and control is saving lives—especially in hospitals—but threats may undermine this progress without continued aggressive action now.

Learn more: www.cdc.gov/DrugResistance/Biggest-Threats

Combinatorial Chemistry vs Natural Products

70 HTS campaigns
3 million compounds
19 Hits
5 Leads

65 HTS campaigns

2 million compounds

57 Hits

19 Leads

MERCK 3 million compounds

____ Gramnegative antibiotics with cellular activity

Combinatorial Chemistry vs Natural Products

70 HTS campaigns
3 million compounds
19 Hits
5 Leads

65 HTS campaigns

2 million compounds

57 Hits

19 Leads

MERCK 3 million compounds

O____ Gramnegative
antibiotics with
cellular activity

Bacteria (and fungi) as sources of antibiotics

DIFFERENT CLASSES OF ANTIBIOTICS - AN OVERVIEW

Are there more compounds to find in *Streptomyces?*

Are there more compounds to find in *Streptomyces?*

"...even if we accept the more conservative estimate, only about 3% of the existing compounds have been reported so far."

Are there more compounds to find in *Streptomyces?*

"...even if we accept the more conservative estimate, only about 3% of the existing compounds have been reported so far."

Problems:

- 1. Rediscovery of commonly occurring compounds
- 2. Only tested in limited assays

But... natural products aren't just found in

Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. Cell Press; 2014 Jul 17;158(2):412-421.

To think about...

- Where should we look for new bacterial NP? (rediscovery of known compounds a major issue)
 - New species of bacteria? New phyla?
 - Same species, different location/host organism?
- How to access enough NP from uncultured organisms?
 - Total synthesis can be slow isn't always an answer

Luo, Yunzi et al. "Recent advances in natural product discovery." *Current opinion in biotechnology* vol. 30 (2014): 230-7. doi:10.1016/j.copbio.2014.09.002

Postdoctoral Research Bioinformatics, Metagenomics

Artificial Intelligence for Natura Product Drug Discovery

27 September - 1 October 2021, Leiden, the Nether

Scientific Organizers Anna Hirsch, Helmholtz Institute for Pharmaceutical Research Gerard van Westen, Leiden University Marnix Medema, Wageningen University Roger Linington, Simon Fraser University Serina Robinson, ETH Zürich **Topics** Genome and Metabolome Mining Developments in Artificial Intelligence

Predicting Biological Activities of

Natural Products

Artificial Intelligence Approaches to Natural Product Drug Discovery

Nature Reviews Drug Discovery - submitted (58 authors)

Miller IJ, et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res. 2019 Jun 4;47(10):e57.

20 Trabectedin (ET743; Yondelis®)

Supply issue can be a huge problem

Cragg, Gordon M, and John M Pezzuto. "Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents." *Medical principles and practice : international journal of the Kuwait University, Health Science Centre* vol. 25 Suppl 2,Suppl 2 (2016): 41-59. doi:10.1159/000443404

PHOTO BY LAURA FLÓPEZ

Uncultured symbiont

Burkholderia gladioli

 $I \vee C + D$

Metagenomics revealed the biosynthetic gene cluster for lagriamide

Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio₂₇2020 Feb 25;11(1):e02430-19.

Top-Down Approaches

Natural Product Discovery

Bottom-Up Approaches

Bioinformatics tools

Native host

Heterologous host

Luo, Yunzi et al. "Recent advances in natural product discovery." *Current opinion in biotechnology* vol. 30 (2014): 230-7. doi:10.1016/j.copbio.2014.09.002

Knowledge graphs for drug discovery
Functional characterization of proteins and searching for similar BGCs

nextflow

Molecular Biology in < 1 minute

DNA -> RNA, RNA -> protein

		y mar y process	
DNA (nucleotides)	ATGTCCAACGCC	CGCGGCATCCTC	GGCGCCGTGCTC
RNA (nucleotides)	UTG TCC UUC GCC 	CGC GGC UTC CTC	GGC GCC GTG CTC
Proteins (amino acids)	MSNARATHLTRRGI 	KADVQAGDMDVSK 	AKSGPWTFKDDRG T
Protein have domains	MSNARATHLTRRGI 	KADVQAGDMDVSK	AKSGPWTFKDDRG T
Genes encode proteins			
Gene Cluster			

Polyketide synthases are large, multidomain proteins "Beads on a String"

Bayly, Carmen L, and Vikramaditya G Yadav. "Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects." *Molecules (Basel, Switzerland)*vol. 22,2 235. 5 Feb. 2017, doi:10.3390/molecules22020235

Vignette 1 Mapping MIBiG

Vignette 2

Looking for diazaquinomycin analogs

Mullowney, Michael W et al. "Diaza-anthracene Antibiotics from a Freshwater-Derived Actinomycete with Selective Antibacterial Activity toward *Mycobacterium tuberculosis.*" *ACS infectious diseases* vol. 1,4 (2015): 168-174. doi:10.1021/acsinfecdis.5b00005

Abstract

Tuberculosis is an infectious disease of global concern. Members of the diazaquinomycin (DAQ) class of natural products have shown potent and selective activity against frug-resistant Mycobacterium tuberculosis. However, poor solubility has prevented further development of this compound class. Understanding DAQ biosynthesis may provide a viable route for the generation of derivatives with improved properties. We have sequenced the genomes of two actinomycete bacteria that produce distinct DAQ derivatives. While software tools for automated biosynthetic gene cluster (BGC) prediction failed to detect DAQ BCCs, comparative genomics using MAUVE alignment led to the identification of putative BGCs in the marine Streptomyces sp. F001 and in the freshwater Micromonospora sp. B006. Deletion of the identificated daq BGC in strain B006 using CRISPR-Cas9 genome editing abolished DAQ production, providing experimental evidence for BGC assignment. A complete model for DAQ biosynthesis is proposed based on the genes identified. Insufficient knowledge of natural product biosynthesis is one of the major challenges of productive genome mining approaches. The results reported here fill a gap in knowledge regarding the genetic basis for the biosynthesis of DAQ antibiotics. Moreover, identification of the daq BGC shall enable future generations of improved derivatives using biosynthetic methods.

	Micromonospora
Genomes	226
Contigs/Scaffolds	34,856
Proteins	1,373,641
Non-Redundant Proteins	1,076,690
HMM Annotations	10,656,754
MMSEQS2	1,009,056
Bidirectional BLASTP (45.3 GB)	420,788,981
Database Creation (Real Duration)	4h 30m
Database Creation (CPU Hours)	133

	RefSeq
Genomes	266,668
Contigs/Scaffolds	23,941,594
Proteins	188,429,555
HMM models	25,648
HMM annotations	1,403,423,051
MMseqs2 (bug in MMseqs2)	188,327,165
Contigs to Proteins	971,298,319
Species	49,902
Genera	6,460

Teasers- What Next?

_neo4j

Louwen JJR, van der Hooft JJJ. Comprehensive Large-Scale Integrative Analysis of Omics Data To Accelerate Specialized Metabolite Discovery. mSystems. 2021 Aug 31;6(4):e0072621. doi: 10.1128/mSystems.00726-21. Epub 2021 Aug 24