Apprentissage par renforcement Cours 4: Policy Gradients

Sylvain Lamprier

UE RLD - Master DAC

2019

Méthodes Value-Based

Toutes les méthodes vues précédemment travaillaient sur des estimations de valeurs espérées selon la politique courante π :

$$V^{\pi}(s_t) = E_{\pi}[R_t|s_t = s]$$
 $Q^{\pi}(s,a) = E_{\pi}[R_t|s_t = s, a_t = a]$

Et une re-définition de la politique π selon ces valeurs (sélection greedy ici) :

$$\pi(s) = rg \max_{a' \in \mathcal{A}(s)} Q^{\pi}(s, a)$$

Les méthodes Policy-Gradients proposent de s'intéresser directement à la politique :

$$\pi_{\theta}(a|s) = P[a|s,\theta]$$

Dans ce cadre, la probabilité d'une trajectoire $au = (s_1, a_1, s_2, a_2, \dots, s_{|\tau|})$ est donnée par :

$$\pi_{ heta}(au) = P(s_1) \prod_{t=1}^{| au|-1} \pi_{ heta}(a_t|s_t) P(s_{t+1}|s_t,a_t)$$

L'objectif est de s'orienter plus probablement vers les trajectoires maximisant les récompenses :

$$\begin{array}{lll} \theta^* & = & \arg\max_{\theta} J(\theta) \\ & = & \arg\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=1}^{|\tau|-1} \mathcal{R}(s_t, a_t, s_{t+1}) \right] \\ & = & \arg\max_{\theta} \sum_{\tau} \pi_{\theta}(\tau) \mathcal{R}(\tau) \end{array}$$

Avantages des méthodes Policy-gradients :

- Convergence : Méthodes Value-based sujettes à de grosses oscillations durant l'apprentissage
 - L'action préférée peut changer radicalement pour une modification mineure des valeurs (même avec Bolzmann softmax selection)
 - ▶ Policy-gradients : mises à jour plus "smooth"
- Amélioration de la politique souvent plus simple que l'apprentissage des valeurs
- Policy gradients peuvent travailler avec un nombre d'actions infini

Possible intégration de récompenses d'exploration

Les méthodes Policy-gradients travaillent par montées de gradient successives :

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Problème : Comment calculer le gradient de $J(\theta)$...?

- ... qui correspond à une somme possiblement infinie sur l'ensemble des trajectoires?
- ... dont la probabilité des longues trajectoires tend vers 0 (avec passage au log impossible directement du fait de la somme externe)?

REINFORCE trick : Exploiter une propriété essentielle de la dérivée de la fonction log

$$\nabla_{x} f(x) = f(x) \frac{\nabla_{x} f(x)}{f(x)} = f(x) \nabla_{x} \log f(x)$$

Comment en tirer parti dans notre cas?

Log-derivative trick pour Policy gradients :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} [R(\tau)]$$

$$= \nabla_{\theta} \sum_{\tau} \pi_{\theta}(\tau) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} (\pi_{\theta}(\tau) R(\tau))$$

$$= \sum_{\tau} R(\tau) \nabla_{\theta} \pi_{\theta}(\tau)$$

$$= \sum_{\tau} \pi_{\theta}(\tau) R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} [R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$$

- Passage à des log-vraisemblances de trajectoires
- Possibilité d'échantillonner les trajectoires pour l'optimisation

On a alors à considérer $abla_{ heta} \log \pi_{ heta}(au)$ pour chaque trajectoire au :

$$\begin{array}{lcl} \nabla_{\theta} \log \pi_{\theta}(\tau) & = & \nabla_{\theta} \left[\log \left(P(s_1) \prod_{t=1}^{|\tau|-1} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t) \right) \right] \\ \\ & = & \nabla_{\theta} \left[\log P(s_1) + \sum_{t=1}^{|\tau|-1} \log \pi_{\theta}(a_t|s_t) + \log P(s_{t+1}|s_t, a_t) \right] \\ \\ & = & \sum_{t=1}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \end{array}$$

- Somme de gradients de log-probabilités
- Plus de problème d'arrondis à 0

Algorithme REINFORCE

On a alors:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim \pi_{ heta}(au)} \left[R(au) \sum_{t=1}^{| au|-1}
abla_{ heta} \log \pi_{ heta}(a_t | s_t)
ight]$$

REINFORCE travaille par échantillonage de Monte-Carlo (Rollouts):

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Algorithme REINFORCE

$$abla_{ heta} J(heta) pprox rac{1}{M} \sum_{ au^{(i)} \sim \pi_{ heta}} \left[R(au^{(i)})
abla_{ heta} \log \pi_{ heta}(au^{(i)})
ight]$$

Intuition:

 Renforcement de la probabilité des trajectoires associées à des fortes récompenses

▶ Parallèle avec log-vraisemblance d'un ensemble de M trajectoires T

$$abla_{ heta} L(\mathcal{T}; heta) = rac{1}{M} \sum_{ au^{(i)} \in \mathcal{T}}
abla_{ heta} \log \pi_{ heta}(au^{(i)})$$

Algorithme REINFORCE

Malheureusement l'algorithme REINFORCE souffre d'une très forte variance

- ▶ Pour un même couple état-action et une même politique, les sommes de rewards retournées peuvent être très différentes
- ⇒ Convergence très lente

Reduction de la variance

- ► Exploitation de la structure temporelle
- Introduction d'une Baseline
- Facteur de Discount

Réduction de la variance : Causalité

Causalité : Les décisions à t n'affectent en rien les récompenses obtenues à t', avec t' $\!<\!t$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \right] \\ &= \sum_{\tau} \pi_{\theta}(\tau) \left[\left(\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{|\tau|} r_{t} \right) \right] \\ &= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{|\tau|} r_{t'} \right] + \nabla_{\theta} C(\theta) \\ &= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{|\tau|} r_{t'} \right] \end{split}$$

avec r_t le reward obtenu selon $\mathcal{R}(s_t, a_t, s_{t+1})$ dans au, car :

$$\nabla_{\theta} C(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=0}^{t-1} r_{t'} \right] = 0$$
 (1)

Preuve?

Réduction de la variance : Baseline

Introduction d'une baseline $b(s_t)$ pour réduire la variance

- ldée : retirer à $R_t(au)$ la moyenne des récompenses cumulées observées à partir de s_t
- Intuition : stabiliser le processus en ne conservant que l'avantage tiré de l'action choisie

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim \pi_{ heta}(au)} \left[\sum_{t=0}^{| au|-1}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) (R_t(au) - b(s_t))
ight]$$

avec
$$b(s_t) = \frac{1}{N} \sum_{\tau} R_t(\tau)$$
 et $R_t(\tau) = \sum_{t'=t}^{|\tau|-1} r_t'$.

On a le droit de faire çà car $\forall t \in \{0..T-1\}$, $b(s_t)$ ne dépend pas de $\pi_{\theta}(a_t|s_t)$:

$$\mathbb{E}_{\tau \sim \pi_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)b(s_t)] = \sum_{\tau_{0..t-1}} \pi_{\theta}(\tau_{0..t-1}) \sum_{s_t \in \mathcal{S}} P(s_t|s_{t-1}, a_{t-1})b(s_t) \nabla_{\theta} \sum_{a_t \in \mathcal{A}(s_t)} \pi(a_t|s_t) = 0$$

On garde alors une estimation non-biaisée.

Réduction de la variance : Baseline

Baseline optimale?

Pour toute trajectoire τ et tout instant $t \in \{0, |\tau| - 1\}$, la meilleure baseline est celle qui minimise la variance de $\nabla_{\theta} \log \pi_{\theta}^{t}(\tau)(R_{t}(\tau) - b(s_{t}))$, avec $\pi_{\theta}^{t}(\tau) = \pi_{\theta}(\tau_{t..|\tau|}|\tau_{0..t-1})$

$$\begin{split} \frac{dV\!AR\left[\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)(R_{t}(\tau)-b(s_{t}))\right]}{db} &= \frac{d\mathbb{E}\left[\left(\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)(R_{t}(\tau)-b(s_{t}))\right)^{2}\right]}{db} \\ \text{car} : \frac{d\mathbb{E}\left[\left(\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)(R_{t}(\tau)-b(s_{t}))\right)\right]^{2}}{db} &= 0 \text{ (estimateur sans biais)} \\ \frac{d\mathbb{E}\left[\left(\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)(R_{t}(\tau)-b(s_{t}))\right)^{2}\right]}{db} &= 2b(s_{t})\mathbb{E}\left[\left(\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)\right)^{2}\right] \\ &- 2\mathbb{E}\left[\left(\nabla_{\theta}\log\pi_{\theta}^{t}(\tau)\right)^{2}R_{t}(\tau)\right] \end{split}$$

$$\Rightarrow \ b(s_t) = \frac{\mathbb{E}\left[\left(\nabla_\theta \log \pi_\theta^t(\tau)\right)^2 R_t(\tau)\right]}{\mathbb{E}\left[\left(\nabla_\theta \log \pi_\theta^t(\tau)\right)^2\right]} \ \text{(=moyenne empirique pondérée} \\ \text{par la magnitude des gradients)}$$

En pratique on utilise le plus souvent la moyenne empirique classique

Réduction de la variance : Discount

Jusqu'alors on a considéré $R(au) = \sum\limits_{t=0}^{| au|-1} r_t$

Mais on peut aussi intégrer un facteur de discount comme dans les méthodes

Value-based :
$$R(au) = \sum_{t=0}^{| au|-1} \gamma^t r_t$$

On a alors:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{M} \sum_{\tau^{(i)} \sim \pi_{\theta}} \left[\sum_{t=0}^{|\tau^{(i)}|-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{(i)}|\mathbf{s}_{t}^{(i)}) \gamma^{t} \left(\sum_{t'=t}^{|\tau^{(i)}|-1} \gamma^{t'-t} \mathbf{r}_{t'} - b(\mathbf{s}_{t}^{(i)}) \right) \right]$$

avec
$$b(s_t) = rac{1}{M} \sum\limits_{ au^{(i)}} \sum\limits_{t'=t}^{| au^{(i)}|-1} \gamma^{t'-t} r_{t'}$$

Certaines approches retirent le facteur γ^t :

$$abla_{ heta} J(heta) pprox rac{1}{M} \sum_{ au^{(i)} \sim \pi_{ heta}} \left[\sum_{t=0}^{| au^{(i)}|-1}
abla_{ heta} \log \pi_{ heta}(a_t^{(i)}|s_t^{(i)}) \left(\sum_{t'=t}^{| au^{(i)}|-1} \gamma^{t'-t} r_{t'} - b(s_t^{(i)})
ight)
ight]$$

c'est juste un scale qui ne change pas les rapports entre actions selon un état (du moins dans la version tabulaire)

Algorithme Vanilla REINFORCE

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b

for iteration= $1, 2, \dots$ do

Collect a set of trajectories by executing the current policy

At each timestep in each trajectory, compute

the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and

the advantage estimate $\hat{A}_t = R_t - b(s_t)$.

Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$

end for

Version deep:

- $lacksymbol{b} b(s_t) = V_\phi(s_t)$, avec V_ϕ un réseau de neurones
- ▶ Descente de gradient plutôt que minimisation à chaque itération : $|_{\tau^{(i)}|-1}$

$$\phi \leftarrow \phi + \epsilon \sum_{\tau^{(i)}} \sum_{t=0}^{\lceil \tau \cdot \gamma \rceil - 1} (R_t^{(i)} - V_\phi(s_t^{(i)})) \nabla_\phi V_\phi(s_t^{(i)})$$

Les méthodes Actor-Critic sont à la jonction des méthodes

- ► Policy-Based (Actor) : apprennent à prendre des décisions
- Value-Based (Critic) : émettent des avis sur les possibles décisions

 $Actor = \pi$

Critic = récompenses estimées - baseline

Méthodes Policy Gradient (sans baseline) :

$$\nabla_{\theta} \textit{J}(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(\textit{a}_{t}|\textit{s}_{t}) \sum_{t'=t}^{|\tau|} \gamma^{t'-t} \textit{r}_{t'} \right]$$

Méthodes Actor-Critic (sans baseline) :

$$abla_{ heta}J(heta) = \sum_{ au} \pi_{ heta}(au) \left[\sum_{t=0}^{| au|-1}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) Q^{\pi}(s_t,a_t)
ight]$$

Ces deux définitions du gradient sont équivalentes (Preuve)

Forme générale des Policy Gradients [Sch+15] :

Policy gradient methods maximize the expected total reward by repeatedly estimating the gradient $g := \nabla_\theta \mathbb{E}\left[\sum_{t=0}^\infty r_t\right]$. There are several different related expressions for the policy gradient, which have the form

$$g = \mathbb{E}\left[\sum_{t=0}^{\infty} \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)\right],\tag{1}$$

where Ψ_t may be one of the following:

- ∑_{t=0}[∞] r_t: total reward of the trajectory.
- 2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t .
- 3. $\sum_{t'=t}^{\infty} r_{t'} b(s_t)$: baselined version of previous formula.
- 4. $Q^{\pi}(s_t, a_t)$: state-action value function.
 - 5. $A^{\pi}(s_t, a_t)$: advantage function.
 - 6. $r_t + V^{\pi}(s_{t+1}) V^{\pi}(s_t)$: TD residual.

The latter formulas use the definitions

$$V^{\pi}(s_t) := \mathbb{E}_{\substack{s_{t+1:\infty}, \\ a_{t+\infty}}} \left[\sum_{l=0}^{\infty} r_{t+l} \right] \qquad Q^{\pi}(s_t, a_t) := \mathbb{E}_{\substack{s_{t+1:\infty}, \\ a_{t+1:\infty}}} \left[\sum_{l=0}^{\infty} r_{t+l} \right]$$
 (2)

$$A^{\pi}(s_t, a_t) := Q^{\pi}(s_t, a_t) - V^{\pi}(s_t), \quad \text{(Advantage function)}. \tag{3}$$

Fonction d'avantage : A(s, a) = Q(s, a) - V(s)

batch actor-critic algorithm:

 \Rightarrow 1. sample $\{s_i, a_i\}$ from $\pi_{\theta}(a|s)$ (run it on the robot)

2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums

3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \hat{\mathbf{a}}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$

4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$

■ 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
 - 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
 - 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}'_i) \hat{V}^{\pi}_{\phi}(\mathbf{s}_i)$
 - 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
 - 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
 - 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Online Actor-Critic

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ works best with a batch (e.g., parallel workers) 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$ 4. $\nabla_{\theta}J(\theta) \approx \nabla_{\theta}\log \pi_{\theta}(\mathbf{a}|\mathbf{s})\hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$

- \blacksquare 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

synchronized parallel actor-critic

get
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$$
update $\theta \leftarrow$
get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$
update $\theta \leftarrow$

asynchronous parallel actor-critic

Asynchronous Advantage Actor-Critic (A3C)

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
// Assume thread-specific parameter vectors \theta' and \theta'_{ij}.
Initialize thread step counter t \leftarrow 1
repeat
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_{ij} = \theta_{ij}
     t_{start} = t
     Get state st
     repeat
           Perform a_t according to policy \pi(a_t|s_t;\theta')
           Receive reward r_t and new state s_{t+1}
           t \leftarrow t + 1
          T \leftarrow T + 1
     until terminal s_t or t - t_{start} == t_{max}
     R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta_v') & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
     for i \in \{t - 1, ..., t_{start}\} do
           R \leftarrow r_i + \gamma R
           Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_n))
           Accumulate gradients wrt \theta'_v: d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v
     end for
     Perform asynchronous update of \theta using d\theta and of \theta_n using d\theta_n.
until T > T_{max}
```

[Mni+16])

(source

Actor-critic:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

+ lower variance (due to critic)
- not unbiased (if the critic is not perfect)

$$\text{Policy gradient:} \quad \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right)$$

+ no bias

- higher variance (because single-sample estimate)

can we use \hat{V}^{π}_{ϕ} and still keep the estimator unbiased?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

+ no bias

+ lower variance (baseline is closer to rewards)

$$\hat{A}_{\mathrm{C}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$$

+ lower variance

- higher bias if value is wrong (it always is)

 $\hat{A}_{\mathrm{MC}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t) + \text{no bias}$

- higher variance (because single-sample estimate)

Can we combine these two, to control bias/variance tradeoff?

bigger variance

cut here before variance gets too big!

smaller variance

$$\hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t) + \gamma^n \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

choosing n > 1 often works better!

Generalized Actor-Critic [Sch+15]

$$\begin{split} \hat{A}_t^{(1)} &:= \delta_t^V &= -V(s_t) + r_t + \gamma V(s_{t+1}) \\ \hat{A}_t^{(2)} &:= \delta_t^V + \gamma \delta_{t+1}^V &= -V(s_t) + r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2}) \\ \hat{A}_t^{(3)} &:= \delta_t^V + \gamma \delta_{t+1}^V + \gamma^2 \delta_{t+2}^V = -V(s_t) + r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V(s_{t+3}) \end{split}$$

$$\hat{A}_t^{(k)} := \sum_{l=0}^{k-1} \gamma^l \delta_{t+l}^V = -V(s_t) + r_t + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^k V(s_{t+k})$$

Comment choisir k?

$$\hat{A}_{t}^{GAE(\gamma,\lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}^{V}$$

- ► Similaire à TD(λ)
- $ightharpoonup \lambda$ est un hyper-paramètre à régler
- lacktriangle Décroissance exponentielle du poids des δ^V

$$\Rightarrow \lambda = 1: \hat{A}_t^{GAE(\gamma,\lambda)} = \hat{A}_t^{\infty}$$
 (Monte-Carlo)

$$\Rightarrow \lambda = 0 : \hat{A}_t^{GAE(\gamma,\lambda)} = \hat{A}_t^1 \text{ (TD(0))}$$

Traces d'éligibilité

$$\theta \leftarrow \theta + \alpha \frac{1}{M} \sum_{\tau^{(i)}} \sum_{t=0}^{|\tau^{(i)}|-1} \hat{A}_{t}^{GAE(\gamma,\lambda)} \nabla_{\theta} \pi_{\theta}(a_{t}|s_{t})$$

Comme pour $TD(\lambda)$, on peut définir des traces d'éligibilité pour faire les mises à jour de θ au fur et à mesure du processus :

$$e_0 \leftarrow 0$$

$$e_t \leftarrow \lambda \gamma e_{t-1} + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

Dont on peut se servir pour pondérer le passé et faire des mises à jour à chaque étape de la trajectoire :

$$\delta_t = r_t + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t)$$

$$\theta \leftarrow \theta + \alpha \delta_t e_t$$

Possible de faire la même chose pour ϕ :

$$\phi \leftarrow \phi + \alpha \frac{1}{M} \sum_{\tau^{(i)}} \sum_{t=0}^{|\tau^{(i)}|-1} \nabla_{\phi} (\hat{A}_{t}^{GAE(\gamma,\lambda)})^{2}$$

Generalized Actor-Critic

Performances pour différents λ sur Cartpole :

- NoVF correspond à un MonteCarlo avec une baseline "moyenne glissante" ne dépendant pas de l'état courant
- lacksquare Pour les autres $\hat{A}_t^{GAE(\gamma,\lambda)}$ avec Value Function apprise selon TD(0)
- \Rightarrow Variance augmente lorsque λ augmente
- \Rightarrow Biais augmente lorsque λ diminue

Fonctions Compatibles

Soit le gradient :
$$\hat{g} = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) f_{\phi}(s_t, a_t) \right]$$
, avec f_{ϕ} une

fonction $S \times A \to \mathbb{R}$ de paramètres ϕ .

Le seul moyen de rendre ce gradient non biaisé (i.e., $\hat{g} = \nabla_{\theta} J(\theta)$) est d'utiliser une fonction f_{ϕ} compatible. Deux conditions à cela [Sut+00] :

- Pour tout s et a : $\nabla_{\phi} f_{\phi}(s, a) = \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$
- $\sum_{\tau} \pi_{\theta}(\tau) \left| \sum_{t=0}^{|\tau|-1} (Q^{\pi}(s_t, a_t) f_{\phi}(s_t, a_t) v_w(s_t)) \nabla_{\phi} f_{\phi}(s_t, a_t) \right| = 0$

avec
$$v_w(s)$$
 une fonction quelconque $\mathcal{S} \to \mathbb{R}$ de paramètres w . Soit π la fonction softmax : $\pi_{\theta}(a|s) = \frac{e^{h_{\theta}(s,a)}}{\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s,a')}}$, avec $h_{\theta}: S \times A \to \mathbb{R}$

Selon la 1ière condition, on a :

$$\begin{split} f_{\phi}(s,a) &= \phi \left[\nabla_{\theta} h_{\theta}(s,a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s) \nabla_{\theta} h_{\theta}(s,a') \right]^{I} \\ \text{Notons que} : & \sum_{a \in \mathcal{A}(s)} \pi(a|s) f_{\phi}(s,a) = 0. \text{ On peut alors voir } f_{w} \text{ comme une fonction} \\ \text{d'avantage} : & A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s). \end{split}$$

- \Rightarrow Pour l'estimation de w, la fonction v_w qui mininime la variance de l'estimation de f_{ϕ} est [Bha+09] $V^{\pi}(s)$
- \Rightarrow Estimation de $V^{\pi}(s)$ selon $v_w(s)$ et de $Q^{\pi}(s,a)$ selon $f_{\phi}(s,a) + v_w(s)$ par temporal difference

Preuve

Policy Gradients Optimization : Challenges

Règle de mise à jour des paramètres pour Policy Gradients :

policy gradient (steepest direction to maximize rewards)

$$g =
abla_{ heta} J(\pi_{ heta}) = \mathop{\mathbb{E}}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) A^{\pi_{ heta}}(s_t, a_t)
ight]$$
 $heta_{k+1} = heta_k + lpha_{ heta}$

take a gradient step in updating the policy

Malheureusement, cette mise à jour fait l'hypothèse que la surface de la fonction à optimiser est plate (méthode du premier ordre)

- Si on se déplace trop vite (α trop grand), on peut effectuer des mouvements catastrophiques
- Si on se déplace trop lentement (α trop petit), on risque d'apprendre trop lentement (et si l'exploration nous amène dans une zone plate avec politique qui fonctionne mal localement, on risque d'avoir du mal à en sortir).

En RL, pas de pas de gradient idéal sur l'ensemble du problème (risque d'exploding ou vanishing gradient)

Prévenir l'explosion des gradients

Huber Loss plutôt que Quadratic Loss pour l'apprentissage de V :

$$L_\delta(a) = egin{cases} rac{1}{2}a^2 & ext{for } |a| \leq \delta, \ \delta(|a| - rac{1}{2}\delta), & ext{otherwise}. \end{cases}$$

Exploration : Entropie

Fréquemment, la politique converge trop vite vers des situations sous-optimales

- \blacktriangleright $\pi(s_t)$ tend vers une politique déterministe rapidement
- ⇒ Plus d'exploration, boucles infinies possibles

Possibilité de rajouter un coût d'entropie permettant de maintenir l'exploration tant qu'il reste de l'incertitude :

$$\Delta \theta = \alpha \sum_{t=0}^{T} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}|s_{t})(R_{t} - b_{t}(s_{t})) + \beta \nabla_{\theta} H_{\theta}(s_{t})]$$
$$H_{\theta}(s_{t}) := -\sum_{\mathbf{a} \in \mathcal{A}} \pi_{\theta}(\mathbf{a}|s_{t}) \log \pi_{\theta}(\mathbf{a}|s_{t})$$

Policy Gradients Optimization : Challenges

Considérons la paramétrisation suivante :

$$\pi_{ heta}(extbf{a}) = \left\{ egin{array}{ll} \sigma(heta) & extbf{a} = 1 \ 1 - \sigma(heta) & extbf{a} = 2 \end{array}
ight.$$

⇒ Un changement mineur dans les paramètres peut modifier drastiquement la politique

Policy Gradients Optimization : Challenges

Proposition : Limiter les déplacements de la politique pour qu'elle ne varie pas au delà d'un seuil à chaque étape

Problèmes:

- Comment régler le seuil?
- Comment transposer ce seuil dans l'espace des paramètres?

Autre problème :

- PG souffre d'une forte variance
- On-Policy : Même politique pour sampler et apprendre
- ⇒ Chaque trajectoire utilisée une seule fois
- ⇒ Faible efficacité d'apprentissage (très grand nombre de trajectoires à échantillonner)

Importance Sampling

- ► Forte Variance ⇒ requiert un grand nombre de trajectoires à échantillonner à chaque étape
- Comment réduire le nombre d'échantillons de trajectoires?

importance sampling
$$\begin{split} E_{x \sim p(x)}[f(x)] &= \int p(x)f(x)dx \\ &= \int \frac{q(x)}{q(x)}p(x)f(x)dx \\ &= \int q(x)\frac{p(x)}{q(x)}f(x)dx \\ &= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right] \end{split}$$

$$\frac{\pi_{\theta'}(\tau)}{\pi_{\theta}(\tau)} = \frac{\prod_{t=1}^{T} \pi_{\theta'}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}$$

 \Rightarrow Échantillons passés peuvent encore servir. Soit $\pi_{\theta^{(i)}}(\tau^{(i)})$ la distribution ayant servi à échantillonner $\tau^{(i)}$:

$$\begin{array}{lcl} \nabla_{\theta} J(\theta) & \approx & \frac{1}{M} \sum_{\tau^{(i)}} \frac{\pi_{\theta}(\tau^{(i)})}{\pi_{\theta^{(i)}}(\tau^{(i)})} \left[R(\tau^{(i)}) \nabla_{\theta} \log \pi_{\theta}(\tau^{(i)}) \right] \\ \\ & \approx & \frac{1}{M} \sum_{\tau^{(i)}} \exp(\log \pi_{\theta}(\tau^{(i)}) - \log \pi_{\theta^{(i)}}(\tau^{(i)})) \left[R(\tau^{(i)}) \nabla_{\theta} \log \pi_{\theta}(\tau^{(i)}) \right] \end{array}$$

⇒ Off-Policy Policy Gradient (experience replay, target policy)

Importance Sampling

Importance Sampling permet de réutiliser d'anciennes trajectoires :

$$\nabla_{\theta'}J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'},\mathbf{a}_{t'}) \right) \right]$$
 Sample data from another policy from another policy

Malheureusement, l'estimation par IS de l'espérance de f(x) selon P en utilisant une distribution Q donnée possède une variance de :

$$\left| \frac{1}{N} \left(\underset{x \sim P}{\text{E}} \left[\frac{P(x)}{Q(x)} f(x)^2 \right] - \underset{x \sim P}{\text{E}} \left[f(x) \right]^2 \right) \right|$$

- \Rightarrow Si P trop différente de Q, la variance peut exploser
- ⇒ Si la politique de la trajectoire utilisée est trop différente de la politique courante : mises à jour très risquées
- ⇒ On ne peut pas utiliser les trop anciennes trajectoires (dépend du learning rate)

Sources

- Sergey Levine (UC Berkeley, Spring 2017)
- Daniel Takeshi: https://danieltakeshi.github.io/2017/03/28/ going-deeper-into-reinforcement-learning-fundamentals-o
- ► Jonathan Hui: https://medium.com/@jonathan_hui/ rl-deep-reinforcement-learning-series-833319a95530
- ► Lilian Weng: https://lilianweng.github.io/lil-log/ 2018/04/08/policy-gradient-algorithms.html
- Felix Yu: https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html
- Joshua Achiam :
 http://rail.eecs.berkeley.edu/deeprlcourse-fa17/
 f17docs/lecture_13_advanced_pg.pdf

References 1

- [Bha+09] Shalabh Bhatnagar et al. « Natural actor-critic algorithms ». In: Automatica 45.11 (2009), p. 2471-2482.
- [Gro+12] Ivo Grondman et al. « A survey of actor-critic reinforcement learning: Standard and natural policy gradients ». In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6 (2012), p. 1291–1307.
- [Mni+16] Volodymyr Mnih et al. « Asynchronous methods for deep reinforcement learning ». In: International conference on machine learning. 2016, p. 1928-1937.
- [Sch+15] John Schulman et al. « High-dimensional continuous control using generalized advantage estimation ». In: arXiv preprint arXiv:1506.02438 (2015).
- [Sut+00] Richard S Sutton et al. « Policy gradient methods for reinforcement learning with function approximation ». In: Advances in neural information processing systems. 2000, p. 1057–1063.

