Eigenvalues of Schrödinger operators perturbed by dissipative barriers

Alexei Stepanenko

PhD supervisors: Jonathan Ben-Artzi and Marco Marletta

Cardiff University

October 2020

Introduction

Let T_0 be a linear operator.

In this talk we are concerned with perturbations of \mathcal{T}_0 of the form

$$T_n := T_0 + i\gamma s_n \tag{1}$$

where

- \bullet $\gamma > 0$,
- s_n are T_0 -compact, bounded, self-adjoint operators,
- $s_n \stackrel{\mathrm{s}}{\to} I$ (strong convergence as $n \to \infty$).

 $(i\gamma s_n)$ is called a sequence of dissipative barriers for T_0

Dissipative barrier for Schrödinger operators on the half-line

$$T_n = -\frac{d^2}{dx^2} + q + i\gamma\chi_{[0,n]} \quad \text{on } L^2(0,\infty)$$
 (2)

Aim: Understand the eigenvalues of operators perturbed by dissipative barriers for *large* n.

Structure of the talk

Talk based on: Spectral Inclusion and Pollution for a Class of Dissipative Perturbations, S. (2020) arXiv:2006.10097

Part I: Dissipative Barrier Method

Motivation from numerical analysis.

Part II: Abstract Results

• Based on enclosures for the limiting essential spectrum.

Part III: 1D Schrödinger Operators

• More precise results (convergence rates, inclusion for essential spectrum and structure of spectral pollution).

Spectral inclusion and pollution

Let H and H_n , $n \in \mathbb{N}$ be operators on a Hilbert space.

• (H_n) is said to be *spectrally inclusive* for H in some $\Omega \subseteq \mathbb{C}$

$$\forall \lambda \in \sigma(H) \cap \Omega : \exists \lambda_n \in \sigma(H_n), \ n \in \mathbb{N} : \lambda_n \to \lambda \text{ as } n \to \infty.$$

• The *limiting spectrum* of (H_n) is defined by

$$\sigma((H_n)) = \{\lambda \in \mathbb{C} : \exists I \subseteq \mathbb{N} \text{ infinite, } \exists \lambda_n \in \sigma(H_n), n \in I \text{ with } \lambda_n \to \lambda\}.$$

• The set of *spectral pollution* for (H_n) with respect to H is defined by

$$\sigma_{\text{poll}}((H_n)) = \{\lambda \in \sigma((H_n)) : \lambda \notin \sigma(H)\}.$$

- (H_n) is spectrally exact for H in Ω if:
 - **1** (H_n) is spectrally inclusive for H in Ω ,
 - ② No spectral pollution in Ω , i.e. $\sigma_{\text{poll}}((H_n)) \cap \Omega = \emptyset$.

Notation:

Essential spectrum: $\sigma_e(H)$, Eigenvalues of finite multiplicity: $\sigma_d(H)$.

Computing eigenvalues in spectral gaps

- Consider a self adjoint, semi-bounded T_0 , such that the essential spectrum $\sigma_e(T_0)$ has a band gap spectrum.
- Suppose we want to numerically compute the eigenvalues in the spectral gaps.

Computing eigenvalues in spectral gaps

- Consider a self adjoint, semi-bounded T_0 , such that the essential spectrum $\sigma_e(T_0)$ has a band gap spectrum.
- Suppose we want to numerically compute the eigenvalues in the spectral gaps.
- Numerically discretise T_0 (e.g. finite section method, finite element).
- Problem: In general, there may be spectral pollution in the gaps.

Dissipative barrier method

Idea

'Pre-condition' T_0 by adding dissipative barrier:

$$T_n = T_0 + i\gamma s_n$$

where $\gamma>0$ and s_n are T_0 -compact operators such that $s_n\stackrel{\mathrm{s}}{\to} I$.

• T_n approximates the *shifted operator* $T_0 + i\gamma$,

$$T_n \xrightarrow{s} T_0 + i\gamma$$
 as $n \to \infty$.

• $\sigma_d(T_0)$ is encoded in $\underbrace{\sigma_d(T_0 + i\gamma)}_{\text{shifted eigenvalues}} = \sigma_d(T_0) + i\gamma$.

Dissipative barrier method (cont.)

• Let $\lambda_0 \in \sigma_d(T_0)$. Assume: (T_n) is spectrally exact for $T_0 + i\gamma$ in an open set $U \subset \mathbb{C}$ such that $U \cap \sigma(T_0 + i\gamma) = \{\lambda_0 + i\gamma\}$.

Proposed algorithm for computing $\lambda_0 \in \sigma_d(T_0)$

- **1** Add dissipative barrier $T_n = T_0 + i\gamma s_n$. For large n:
 - T_n has an eigenvalue λ_n near $\lambda_0 + i\gamma$.
 - All eigenvalues of T_n in U are near $\lambda_0 + i\gamma$.
- ② Numerically compute $\lambda_n \in \sigma_d(T_n) \setminus \mathbb{R}$.
 - ▶ This can be done reliably since s_n is T_0 -compact.¹

¹Essential numerical range for unbounded linear operators, Bögli, Marletta & Tretter (2020)

Expanding dissipative barriers

The dissipative barrier method motivates the question:

Question

How does $\sigma(T_n)$ behave as $n \to \infty$, in relation $\sigma(T_0 + i\gamma)$?

• Since s_n are T_0 -compact, by Weyl's theorem,

$$\sigma_{e}(T_{n}) = \sigma_{e}(T_{0}) \subseteq \mathbb{R}.$$

• Then, since $\sigma(T_0 + i\gamma) \subseteq i\gamma + \mathbb{R}$

$$\sigma_e(T_n) = \sigma_e(T_0) \subseteq \sigma_{\text{poll}}((T_n)).$$

Limiting essential spectrum

Assumption 1

Let T_0 be self-adjoint. Let s_n such that $s_n \stackrel{\mathrm{s}}{\to} I$ and $||s_n|| \leqslant C$. As before, $T_n := T_0 + i\gamma s_n$.

Definition (Limiting essential spectrum)

$$\sigma_e((T_n)) = \left\{ \lambda \in \mathbb{C} : \frac{\exists I \subseteq \mathbb{N} \text{ infinite, } \exists u_n \in D(T_n), n \in I \text{ with } \\ \|u_n\| = 1, \ u_n \rightharpoonup 0, \ \|(T_n - \lambda)u_n\| \rightarrow 0 \right\}.$$

Bad Set:

$$\mathrm{Bad}((T_n)) := \sigma_e((T_n)) \cup \sigma_e((T_n^*))^*$$

Theorem (Immediate corollary of Bögli, 2018)

Suppose Assumption 1 holds.

- If $\lambda \in \sigma_d(T_0 + i\gamma)$ is such that $\lambda \notin \operatorname{Bad}((T_n))$, then there exists $\lambda_n \in \sigma_d(T_n)$, $n \in \mathbb{N}$, such that $\lambda_n \to \lambda$.
- \circ $\sigma_{\text{poll}}((T_n)) \subseteq \text{Bad}((T_n))$

Limiting essential numerical range

Definition (Limiting essential numerical range)

$$W_{e}((T_{n})):=\left\{\lambda\in\mathbb{C}:\frac{\exists I\subseteq\mathbb{N}\text{ infinite},\ \exists u_{n}\in D(T_{n}),n\in I\text{ with }\\\|u_{n}\|=1,\ u_{n}\rightharpoonup0,\ \langle(T_{n}-\lambda)u_{n},u_{n}\rangle\rightarrow0\right\}.$$

Proposition (Bögli, Marletta and Tretter, 2020)

 $W_e((T_n))$ is convex with $\operatorname{Bad}((T_n)) \subseteq W_e((T_n))$.

- $W_e((T_n))$ easily computed.
- $W_e((T_n))$ gives no info on spectral inclusion for eigenvalues of $T_0 + i\gamma$ in the gaps of $\sigma_e(T_0 + i\gamma)$.

Enclosures for limiting essential spectra

Theorem 1a (S., 2020)

Suppose Assumption 1 holds. If $s_n = s_n^2$ for all n, then $\mathrm{Bad}((T_n)) \subseteq \Gamma_a$ where,

$$\Gamma_{\text{a}} := \Big\{\lambda \in \mathbb{C} : \Im(\lambda) \in [0,\gamma], \; \mathrm{dist}(\Re(\lambda),\sigma_{\text{e}}(T_0)) \leqslant \sqrt{\Im(\lambda)(\gamma-\Im(\lambda))} \Big\}.$$

Example of s_n satisfying hypothesis of Th. 1a (T_0 operator on $L^2(0,\infty)$):

Enclosures for limiting essential spectra (cont.)

Theorem 1b (S., 2020)

If $0 \leqslant s_n \leqslant 1$ for all n and:

$$\forall (u_n) \subset D(T_0) \text{ s.t. } ||u_n||, ||T_0u_n|| \leqslant C, \quad \Im \langle s_n u_n, T_0u_n \rangle \to 0,$$

then $\operatorname{Bad}((T_n)) \subseteq \Gamma_b := \sigma_e(T_0) \times i[0, \gamma].$

Example of s_n satisfying hypothesis of Th. 1b (T_0 operator on $L^2(0,\infty)$):

Spectral exactness near shifted eigenvalues

Corollary

If Assumption 1 and the hypothesis of either Th. 1a or Th. 1b holds then (T_n) is spectrally exact in an open neighbourhood U of any $\lambda \in \sigma_d(T_0 + i\gamma)$.

¹Corollary for hypothesis of 1a is also proved in: Spectral enclosure and superconvergence for eigenvalues in gaps, Hinchcliffe and Strauss (2016)

Numerical illustration

$$T_0 := -\frac{\mathsf{d}^2}{\mathsf{d} x^2} + i \chi_{[0,X]}$$

$$T_R := T_0 + i\chi_{[0,R]}$$

$$\sigma_e(T_R) = [0, \infty)$$

$$\sigma_e(T_0+i\gamma)=i+[0,\infty)$$

$$\Gamma_{\gamma} := [0, \infty) \times i[0, 1]$$

10

Schrödinger operators on the half line

Consider

$$T_0\psi = -\psi'' + q\psi$$
 on $L^2(0,\infty)$

where $q \in L^1_{loc}([0,\infty);\mathbb{C})$ and T_0 is endowed with a Dirichlet boundary condition,

$$\psi(0) = 0.$$

• Fix $\gamma \in \mathbb{C} \setminus \{0\}$. Consider the perturbed operators

$$T_R := T_0 + i\gamma\chi_{[0,R]} \qquad (R \in \mathbb{R}_+).$$

Key fact: The solution space of the Schrödinger equation $-\psi''+q\psi=\lambda\psi$ is a two-dimensional vector space.

Asymptotic properties of solutions

Assumption 2

For any $\lambda \in \mathbb{C} \setminus \sigma_{\mathsf{e}}(T_0)$, the solution space of $-\psi'' + q\psi = \lambda \psi$ is spanned by solutions $\psi_{\pm}(\cdot, \lambda)$ admitting the decomposition

$$\psi_{\pm}(x,\lambda) = e^{\pm ik(\lambda)x} \tilde{\psi}_{\pm}(x,\lambda)$$
$$\psi'_{+}(x,\lambda) = e^{\pm ik(\lambda)x} \tilde{\psi}^{d}_{+}(x,\lambda)$$

such that

- **1** $k: \mathbb{C}\backslash \sigma_e(T_0) \to \mathbb{C}$ analytic with $\Im k > 0$
- ② $\tilde{\psi}_{\pm}(x,\cdot)$ and $\tilde{\psi}_{\pm}^{d}(x,\cdot)$ analytic on $\mathbb{C}\backslash\sigma_{e}(T_{0})$.

Example

- $\mathbf{0}$ $q \in L^1(0,\infty)$ by the Levinson asymptotic theorem.
- 2 q eventually, real periodic by Floquet theory.

Eigenvalue approximation and spectral pollution

- Let $(R_n) \subset \mathbb{R}_+$ be any sequence such that $R_n \to \infty$.
- We shall later introduce a '1D bad set': $\operatorname{Bad}_{1D}((T_{R_n})) \subseteq \mathbb{C}$.

Theorem 2 (S., 2020)

Suppose that Assumption 2 holds. Then,

• Let λ be an eigenvalue of $T_0 + i\gamma$ such that $\lambda \notin \operatorname{Bad}_{1D}((T_{R_n}))$. There exists $\lambda_n \in \sigma(T_n)$, $n \in \mathbb{N}$, and constants $C_0, \beta > 0$ such that

$$|\lambda - \lambda_n| \leqslant Ce^{-\beta R_n}$$

for large enough n.

2 Spectral pollution of (T_{R_n}) with respect to $T_0 + i\gamma$ satisfies

$$\sigma_{\text{poll}}((T_{R_n})) \subseteq \sigma_e(T_0) \cup \text{Bad}_{1D}((T_{R_n})).$$

 $^{^1}$ Part ${f 1}$ of Theorem also proved, for *small enough* γ in: Eigenvalues in spectral gaps of differential operators, Theorem 10, Marletta and Scheichl (2012)

Eigenvalues as zeros

 Eigenvalues of linear operators can be expressed as zeros of analytic functions.

Example

$$\lambda$$
 eigenvalue of $T_0 \iff \psi_+(0,\lambda) = 0$

Lemma

 $\lambda \in \mathbb{C}$ with $\lambda \notin \sigma_e(T_0) \cup \sigma_e(T_0 + i\gamma)$ is an eigenvalues of T_R if and only if

$$f_R(\lambda) := \alpha_+(R,\lambda)e^{ik(\lambda-i\gamma)R} + \psi_+(0,\lambda-i\gamma)A(R,\lambda)e^{-ik(\lambda-i\gamma)R} = 0,$$

where

$$\begin{split} &A(R,\lambda) := \tilde{\psi}_{+}(R,\lambda)\tilde{\psi}_{-}^{d}(R,\lambda-i\gamma) - \tilde{\psi}_{+}^{d}(R,\lambda)\tilde{\psi}_{-}(R,\lambda-i\gamma) \\ &\alpha_{+}(R,\lambda) := \psi_{-}(0,\lambda-i\gamma)\Big(\tilde{\psi}_{+}(R,\lambda-i\gamma)\tilde{\psi}_{+}^{d}(R,\lambda) - \tilde{\psi}_{+}^{d}(R,\lambda-i\gamma)\tilde{\psi}_{+}(R,\lambda)\Big). \end{split}$$

• Proofs of theorems for 1D Schrödinger utilise f_R in combination with tools from complex analysis (e.g. Rouché's theorem).

The 1-D bad set

Definition (1D Bad set)

$$\operatorname{Bad}_{\operatorname{1D}}((T_{R_n})) := \left\{ \lambda \in \mathbb{C} \backslash (\sigma_e(T_0) \cup \sigma_e(T_0 + i\gamma)) : \operatorname{\mathsf{lim}} \operatorname{\mathsf{inf}}_{n \to \infty} |A(R_n, \lambda)| = 0 \right\}$$

Example

If $q \in L^1(0,\infty)$ then $\operatorname{Bad}_{1D}((T_{R_n})) = \emptyset$.

Example

If q is eventually real a-periodic and $R_n = x_0 + na$, then $\mathrm{Bad}_{1D}((T_{R_n}))$ consists of isolated points that can only accumulate to the band ends of $\sigma_e(T_0)$ or $\sigma_e(T_0 + i\gamma)$.

Furthermore, in this case we can prove:

$$\operatorname{Bad}_{1D}((T_{R_n})) \subset \sigma_e((T_{R_n})) \subseteq \operatorname{\mathsf{Bad}}((T_{R_n})). \tag{3}$$

Inclusion for the essential spectrum

Assumption 3

One of the following holds (ensuring analytic cont. of $\lambda \mapsto \psi_+(0,\lambda)$):

- $\mathbf{Q} \quad q \in L^1(0,\infty)$. q is dilation analytic with power decay for continuation.
- ② $q \in L^1(0,\infty)$. There exists a > 0 such that $\int e^{ax} |q(x)| dx < \infty$.
- \bullet T_0 is self-adjoint and q is eventually periodic.

Definition

Zeros of the analytic continuation of $\lambda \mapsto \psi_+(0,\lambda)$ are called *resonances* of T_0 .

Theorem 3 (S., 2020)

Suppose Assumptions 2 and 3 hold. If $\mu \in \operatorname{int} \sigma_{\mathsf{e}}(T_0 + i\gamma)$ such that μ is not a resonance, then there exists $\lambda_R \in \sigma_d(T_R)$, R > 0, and constant $C_0 > 0$ s.t.

$$|\lambda_R - \mu| \leqslant \frac{C_0}{R}$$
 (large enough R).

Numerical illustration (again)

 $T_R := T_0 + i\chi_{[0,R]}$

$$\sigma_e(T_R) = [0, \infty)$$

$$\sigma_e(T_0+i\gamma)=i+[0,\infty)$$

$$\Gamma_{\gamma} := [0, \infty) \times i[0, 1]$$

Thanks for listening!

References

Talk based on:

Spectral inclusion and pollution for a class of dissipative perturbations, S. (2020) arXiv:2006.10097

Spectral pollution

- Spectral pollution, Davies and Plum (2004)
- Spectral pollution and second-order relative spectra for self-adjoint operators, Levitin and Shargorodsky (2004)

Other works on dissipative barriers

- Eigenvalues in spectral gaps of differential operators, Marletta and Scheichl (2012)
- Spectral enclosure and superconvergence for eigenvalues in gaps, Hinchcliffe and Strauss (2016)
- Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers, S. (2020) arXiv:2010.05663
- On the eigenvalues of spectral gaps of matrix-valued Schrödinger operators, Aljawi and Marletta (2020)

Limiting essential spectra and essential numerical range

- 1 Local convergence of spectra and pseudospectra, Bögli (2018)
- 2 The essential numerical range for unbounded linear operators, Bögli, Marletta and Tretter (2020)

Computing resonances with non-self-adjoint perturbations

Scattering Resonances as Viscosity Limits, Zworski (2018)

Extra Slides

Numerical illustration 2: $T_R = -\frac{d^2}{dx^2} + \sin(x) + \frac{1}{4}\chi_{[0,R]}(x)$

Black dots: Finite difference approximation of $\sigma(T_R)$. First band: $B \approx [-0.3785, -0.3477]$. Shaded region: $B \times i\mathbb{R}$.

Sketch of proof of Theorem 1 (for real part)

- Let $\lambda \in \sigma_e((T_n))$. Focus on enclosing $\Re \lambda$.
- There exists $(u_n) \subset D(T_0)$ such that $||u_n|| = 1$, $u_n \to 0$ and $||(T_n \lambda)u_n|| = o(1)$.
- By direct computation,

$$\|(T_0 - \Re \lambda)u_n\|^2 = \gamma \Im \langle s_n u_n, T_0 u_n \rangle + o(1).$$

• If hypothesis 1 holds then

$$s_n^2 = s_n \quad \Rightarrow \quad \gamma \Im \langle s_n u_n, T_0 u_n \rangle = (\gamma - \Im(\lambda)) \Im(\lambda) + o(1)$$

$$\stackrel{(*)}{\Longrightarrow} \quad \operatorname{dist}(\Re \lambda, \sigma_e(T_0)) \leqslant \sqrt{(\gamma - \Im(\lambda)) \Im(\lambda)}$$

- If hypothesis **2** holds then $\Im \langle s_n u_n, T_n u_n \rangle = o(1)$ so $\Re \lambda \in \sigma_e(T_0)$.
- (*) Holds by *Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators*, Glazman, Th. 1.10.

Bounds for the magnitude and number of eigenvalues

- If $q \in L^1(0,\infty)$, then the eigenvalues of $T_R = -\frac{d^2}{dx^2} + q + i\gamma\chi_{[0,R]}$ are contained in a ball², $\forall \lambda \in \sigma_d(T_R) : \sqrt{|\lambda|} \leqslant \|q\|_{L^1}$.
- If one of the following holds:
 - \bigcirc q is compactly supported
 - ② q satisfies Naimark condition: $\exists a > 0 : \int e^{ax} |q(x)| dx < \infty$ then the number of eigenvalues of T_R is finite.
- Summary of results ³:

	$\sqrt{\cdot}$ magnitude	#, compact	#, Naimark
Application of literature	O(R)	$O(R^2)$	$O(R^4)$
Our results	$O\left(\frac{R}{\log R}\right)$	$O\left(\frac{R^2}{\log R}\right)$	$O\left(\frac{R^3}{(\log R)^2}\right)$

²A sharp bound on eigenvalues of Schrödinger operators on the half-line with complex-valued potentials, Frank, Laptev and Seiringer (2011)

³Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers, S. (2020)