PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-067680

(43) Date of publication of application: 16.03.2001

(51)Int.Cl.

G11B 7/085

(21)Application number : 11-238548

(71)Applicant: HITACHI LTD

(22)Date of filing:

25.08.1999

(72)Inventor: IMAGAWA SEIJI

SUZUKI MOTOYUKI

ONO HIROAKI

(54) ACTUATOR CONTROLLER AND OPTICAL DISK DEVICE USING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To inexpensively perform stable pull-in operation even when an external vibration occurs by directly detecting a speed of an objective lens in the focus direction caused with the external vibration and the speed in the tracking direction and operating an actuator controller so as to reduce respective speeds. SOLUTION: A focusing back electromotive voltage detection means 12 detects a back electromotive voltage generated on a focus actuator 3, and a focusing speed control means 13 generates a focus speed control signal so as to reduce the speed of the objective lens 2 in the direction vertical to a disk surface 1 based on the detection result to send it to a second focusing switching means 14. Further, a tracking back electromotive voltage

detection means 22 detects the back electromotive voltage generated on a tracking actuator 4, and generates a tracking speed control signal so as to reduce the speed of the objective lens in the disk radial direction based on the detection result to output it to a first tracking switching means 20.

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the optical disk unit which used an actuator control device and this, and relates to the actuator control device which enables the focal level-luffing-motion actuation and tracking level-luffing-motion actuation which were excellent in stability also at the time of extraneous vibration generating, and the optical disk unit using this by having the function in which the focus of the objective lens especially produced by extraneous vibration and the rate of the direction of tracking are detected, and this is reduced.

[0002]

[Description of the Prior Art] In the optical disk unit, control of a focus and tracking is performed by driving the actuator (moving part of an actuator) with which the objective lens was attached to a direction perpendicular to the field of an optical disk, and radial [of an optical disk]. The actuator consists of a moving coil, a permanent magnet, etc. like the loudspeaker, and an objective lens runs by the moving coil and one.

[0003] This objective lens and moving coil are supported with the mechanical spring or the magnetic spring, if vibration joins an optical disk unit from the exterior, an objective lens may vibrate, and the serious failure for drawing-in actuation of a focus and tracking etc. may occur.

[0004] A motion of the objective lens by extraneous vibration is oppressed, there are an approach using an acceleration sensor as an approach of raising earthquake-proof ability, an approach using a state observer, etc., and the technique indicated by JP,9-147374,A and JP,10-134365,A, for example is mentioned as a well-known example.

[0005] By the approach using the above-mentioned acceleration sensor, direct detection of the acceleration by which equipment is swayed can be carried out, and the shake of the objective lens by vibration can be reduced by adding the detected signal to the driving signal of an actuator. Moreover, by having the equivalence model of an actuator in an observer, indirectly, the approach using a state observer can detect the shake of an objective lens, and can reduce the shake of the objective lens by vibration by adding the detected signal to the driving signal of an actuator. Also in which technique, a control system with earthquake-proof high ability can be acquired, and the dependability of equipment can be raised.

[0006]

[Problem(s) to be Solved by the Invention] However, the approach using the above-mentioned acceleration sensor serves as cost quantity in order to add new components. Moreover, attaching an acceleration sensor in the body of an objective lens has many impossible things from problems, such as a tooth space and weight. Therefore, an error produces vibration detected by the acceleration sensor attached in equipment, and vibration by which an objective lens is actually swayed.

[0007] On the other hand, by the approach using a state observer, since the error by modeling arises, at the time of mass production, each adjustment is needed.

[0008] The purpose of this invention is controlling to carry out direct detection of the rate of the

direction of a focus of the objective lens produced by extraneous vibration, and the rate of the direction of tracking, and to reduce the rate of each direction, and is to offer the control device of the actuator which performs cheaply level-luffing-motion actuation which was excellent in stability also at the time of extraneous vibration generating, and the optical disk unit using this.

[0009]

[Means for Solving the Problem] In order to attain the above-mentioned purpose, the control unit of the actuator of this invention carries out direct detection of the rate of the direction of a focus of the objective lens produced by extraneous vibration, and the rate of the direction of tracking as mentioned above, and it operates so that each rate may be reduced. For this reason, the control unit of the actuator of this invention The focal actuator which drives an objective lens, and a sweep control signal generating means to control actuation of a focal actuator so that an objective lens moves at the rate of predetermined, A focal control signal generating means to control actuation of a focal actuator so that the focus of an objective lens suits on a disk, A switching means for focuses to change and output the output of a sweep signal generation means, and the output of a focal control signal generating means, A reverse electromotive voltage detection means to detect the reverse electromotive voltage generated in a focal actuator, A speed-control means to control a focal actuator to reduce the rate of the direction of a focus, A means to calculate the output of a speed-control means, and the output of the switching means for focuses, The focal actuator driving means which drives a focal actuator, The band limit filter for focuses, and the tracking actuator which drives an objective lens, the focus of an objective lens -- a predetermined truck -- location **** -- with a tracking control signal generating means to control a tracking actuator like The delivery device to which it is wide range and an objective lens is moved, and the delivery motor which drives a delivery device, A delivery motor control signal generation means to control a delivery motor, and a reverse electromotive voltage detection means to detect the reverse electromotive voltage generated in a tracking actuator, A speed-control means to control to reduce the passing speed of the direction of tracking of an objective lens, A switching means for tracking to change and output the output of a tracking control signal generating means, and the output of a speed-control means, It has the tracking actuator driving means which drives a tracking actuator, a delivery motorised means to drive a delivery motor, and a band limit filter for tracking. Moreover, it restricts into sweep actuation of the focus which does not perform feedback control of an actuator, or the seek operation of tracking, and a switching means is operated so that the speed can be controlled in an objective lens. Furthermore, when an objective lens may collide with a movable range edge by sweep working, vibration, etc., a switching means is operated so that the speed may not be controlled. By having the above means, direct detection of the rate of the direction of a focus of the objective lens produced by extraneous vibration and the rate of the direction of tracking can be carried out, the rate of each direction can be reduced, and the earthquake-proof ability at the time of the level luffing motion of focal control and tracking control can be improved. Therefore, the dependability of equipment can be improved. [0010]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained using a drawing. <u>Drawing 1</u> is drawing showing the configuration of the actuator control unit of the optical disk unit concerning 1 operation gestalt of this invention.

[0011] In drawing 1 1 an objective lens and 3 for a disk and 2 A focal actuator, 4 a delivery device and 6 for a tracking actuator and 5 A detector, A focal error signal detection means and 8 7 A focal control signal generating means, A focal jump signal generation means and 10 9 A focal sweep signal generation means, The 1st switching means for focuses and 12 11 The reverse electromotive voltage detection means for focuses, The speed-control means for focuses and 14 13 The 2nd switching means for focuses, 15 a focal actuator driving means and 17 for an adder and 16 A tracking error signal detection means, A tracking control signal generating means and 19 18 A delivery control signal generating means, The 1st switching means for tracking and 21 20 The 2nd switching means for tracking, The reverse electromotive voltage detection means for tracking and 23 22 The speed-control means for tracking, For a delivery motorised means and 26, as for a spindle motor and 30, a delivery motor and 29 are [24 / a tracking actuator driving means and 25 / a disk rotational-speed detector and

31 disk roll control means.

[0012] Here, the speed-control means 13 for focuses and the speed-control means 23 for tracking have the band limit filter for focuses, and the band limit filter for tracking inside, respectively.

[0013] Next, the outline of each block of the focal system of <u>drawing 1</u> of operation and the relation during each block are explained.

[0014] The focal actuator 3 moves an objective lens 2 to the field and perpendicular direction of a disk 1 so that the light beam which carried out outgoing radiation from the objective lens 2 may connect a focus on the recording surface of a disk 1. The reflected light from a disk 1 is detected by the detector 6, and the detected signal is sent to the focal error signal detection means 7 and the tracking error detection means 17.

[0015] The focal error detection means 7 is sent to the focal control signal generating means 8 by making into a focal error signal the error which detected and detected the error of a focal distance based on the signal sent from the detector 6. A focal control signal is generated and the focal control signal generating means 8 sends the generated control signal to the 1st switching means 11 for focuses so that a focal error may be reduced based on a focal error signal.

[0016] Moreover, the focal jump signal generation means 9 generates the focal jump signal for moving a focus to another layer from a certain layer, when a disk 1 has two or more layers as a record playback side. The generated jump signal is sent to the 1st switching means 11 for focuses.

[0017] The focal sweep signal generation means 10 generates the focal sweep signal for moving an objective lens 2 in the direction perpendicular to the field of a disk 1 in the predetermined range, when performing a setup and adjustment of various parameters besides in the case of retracting focal control. The generated sweep signal is sent to the 1st switching means 11 for focuses.

[0018] Based on the external input signal a, the 1st switching means 11 for focuses makes alternative selection of the focal control signal and the focal jump signal which have been sent, and the focal sweep signal, and sends the selected signal to an adder 15.

[0019] The reverse electromotive voltage detection means 12 for focuses is constituted by the circuit shown in <u>drawing 4</u> R> 4, detects the reverse electromotive voltage produced in the focal actuator 3, and sends the detected reverse electromotive voltage to the speed-control means 13 for focuses. Based on the sent reverse electromotive voltage, the speed-control means 13 for focuses generates a focal speed control signal which reduces the rate of a direction perpendicular to the field of the disk 1 of an objective lens 2, and sends the generated speed control signal to the 2nd switching means 14 for focuses.

[0020] The 2nd switching means 14 for focuses sends the speed control signal which outputted and outputted the speed control signal in the predetermined period under sweep actuation to an adder 15 based on the external input signal b.

[0021] An adder 15 adds the output of the 1st switching means 11 for focuses, and the output of the 2nd switching means 14 for focuses, and sends an addition signal to the focal actuator driving means 16. The focal actuator driving means 16 drives the focal actuator 3 based on an addition signal.

[0022] Then, the detail of actuation of each block of a focal system is explained. The above-mentioned external input signal a is an external signal for changing the focal control action for positioning a focus on a disk side, the focal jump actuation in which a focus is positioned in another layer, and the sweep actuation for focal level luffing motion, parameter input, and adjustment. Therefore, the 1st switching means 11 for focuses changes a focal control signal, a focal jump signal, and a focal sweep signal corresponding to each actuation, and outputs them to an adder 15. <u>Drawing 2</u> shows the situation of change actuation with the focal control action (feedback (FB) control action) and sweep actuation by the external input signal (change signal) a as one example of change actuation of the 1st switching means 11 for focuses.

[0023] moreover, the case where it is at the sweep actuation time, and sweep signal level is less than the predetermined range as the above-mentioned external input signal b is shown in <u>drawing 2</u> -- the actuation of those other than Hi and a sweep, and a sweep -- even when it is working -- sweep signal level -- predetermined -- it is set to Lo in being out of range. Therefore, the 2nd switching means 14 for

focuses outputs a focal speed control signal to an adder 15 only during the sweep actuation whose sweep signal level is less than the predetermined range. Thus, the operating range of speed control will be restricted for malfunction arising, if an objective lens 2 moves to near the edge of the movable range and bumps into a stopper. therefore, the 2nd switching means 14 for focuses -- above -- a sweep -- it is working, and when sweep signal level is less than the predetermined range, it operates so that speed control may work. However, even if the movable range of an objective lens 2 is wide enough and vibration is added during sweep actuation, when an objective lens 2 cannot collide, it is not necessary to restrict the operating range of speed control.

[0024] The reverse electromotive voltage detection means 12 for focuses is constituted by the bridge circuit as shown in <u>drawing 4</u> R> 4. For said focal actuator and 41, as for the 2nd resistance and 43, in <u>drawing 4</u>, the 1st resistance and 42 are [3 / the 3rd resistance and 44] differential amplifier (difference-voltage-detector means).

[0025] Said focal actuator 3 and 1st resistance 41 are connected to a serial, the 2nd resistance 42 and the resistance 43 of the 3rd are connected to a serial, and to the list of the order of the focal actuator 3 and the 1st resistance 41, it is the list of the order of the 2nd resistance 42 and the 3rd resistance 43, and components 3 and 41 and components 42 and 43 are connected to juxtaposition. And the node of the 1st resistance 41 is connected with the focal actuator 3 at one input point of the differential amplifier 44, and the node of the 2nd resistance 42 and the 3rd resistance 43 is connected to the input edge of another side of the differential amplifier 44.

[0026] Here, when the resistance of R2 and the 3rd resistance 43 is set [the resistance of the focal actuator 3 / Rf and the resistance of the 1st resistance 41] to R3 for the resistance of R1 and the 2nd resistance 42, it is Rf/R1**R2/R3. By filling the relation of the (3) type above-mentioned (3) type, the reverse electromotive voltage produced in the focal actuator 3 is made detectable.

[0027] A model when the reverse electromotive voltage e occurs is shown in <u>drawing 5</u>. If output voltage of an actuator driver is made into Vin+ and Vin-, the electrical potential difference between the focal actuator 3 and the 1st resistance 41 is set to V1 and the electrical potential difference between the 2nd resistance 42 and the 3rd resistance 43 is set to V2 V1 and V2 V1=R1/and (Vin+-Vin--e) (R1+Rf), +Vin- (9) Formula V2=R2/and (Vin+-Vin-) (R2+R3), +Vin- ... It is expressed with the (10) type above-mentioned (9) type and (10) types, respectively.

[0028] (9) It is the output voltage Vout of the differential amplifier 44 from a formula and (10) types. Vout=V2-V1=R1/(R1+Rf) and It is expressed with (11) type above (11), and it is detecting Vout and the value proportional to the reverse electromotive voltage e is acquired.

[0029] in order [moreover,] to prevent the fall of maximum current which flows to the focal actuator 3 -- this operation gestalt -- Rf>=10 and R1 (1) type 10 and Rf<=R2 (2) .. set up the constant of each component so that the relation of a formula may be filled.

[0030] The band limit filter contained in the speed-control means 13 for focuses is set up so that the open-loop transfer function of focal speed control may serve as frequency characteristics as shown in drawing 6 among the block diagrams shown by drawing 1. With the main resonant frequency of an actuator, and the main resonant frequency of the vibration proofing foot prepared in earthquake-proof, the gain of an open-loop transfer function is set up so that it may be set to 0dB or more. It is for it being the main resonant frequency of an actuator and a vibration proofing foot that an objective lens 2 is most shaken by extraneous vibration at high speed, and this making speed control act effectively with this main resonant frequency. Moreover, the cut off frequency by the side of low-pass is set up more highly than the frequency of a sweep signal. This is for making it speed control not answer a sweep signal. Moreover, by cutting DC component of a control signal, also when offset voltage occurs in reverse *********, adjustment of offset becomes unnecessary. The cut off frequency by the side of a high region is set up in consideration of the earthquake-proof specification of equipment.

[0031] In this operation gestalt, the band limit filter for focuses contained in the speed-control means 13 for focuses When set a lower cut off frequency to omega 1, an upper cut off frequency is set to omega 2, the frequency of the sweep signal outputted from said sweep control signal generating means 10 is set to omegas and main resonant frequency of said focal actuator 3 is set to omegafc, omega s<omega

1<omega fc<omega 2 It carried out as [become / the relation of the (4) type above-mentioned (4) type], and the limit band is determined.

[0032] Next, the outline of each block of the tracking system of <u>drawing 1</u> of operation and the relation during each block are explained. Here, the block which is the same actuation as a focal system omits explanation.

[0033] The tracking actuator 4 moves an objective lens 2 to radial [of a disk 1], and positions a light beam in the truck on a disk. Moreover, the delivery device 5 is the range larger than the movable range of the tracking actuator 4, and moves pickup to radial [of a disk 1].

[0034] The tracking error signal detection means 17 is outputted to the tracking control signal generating means 18 based on the signal sent from the detector 6 by making into a tracking error signal the error which detected and detected the error a light beam and disk radial [based on trucks]. A tracking control signal is generated and the tracking control signal generating means 18 outputs the generated control signal to the 1st switching means 20 for tracking, and the delivery control signal generating means 19 so that a tracking error may be reduced based on a tracking error signal.

[0035] The delivery control signal generating means 19 performs two kinds of actuation based on the external input signal c. That is, in the case of the tracking control action which follows a truck, the delivery control signal generating means 19 outputs the follow-up control signal which generated and generated the follow-up control signal based on the tracking control signal to the 2nd switching means 21 for tracking. With this follow-up control signal, the delivery device 5 moves pickup so that the objective lens 2 driven with the tracking actuator 4 may be followed. Moreover, in the case of the seek operation which crosses many trucks comparatively, the delivery control signal generating means 19 generates the seeking control signal according to migration length, and outputs the generated seeking control signal to the 2nd switching means 21 for tracking.

[0036] The 2nd switching means 21 for tracking outputs the signal which chose and chose the follow-up control signal and the seeking control signal to the delivery motorised means 25 based on the external input signal c.

[0037] The reverse electromotive voltage detection means 22 for tracking is carrying out the same configuration as the reverse electromotive voltage detection means 12 for focuses shown in drawing 4, detects the reverse electromotive voltage produced in the tracking actuator 4, and outputs the detected reverse electromotive voltage to the speed-control means 23 for tracking. Based on the inputted reverse electromotive voltage, the speed-control means 23 for tracking generates a tracking speed control signal which reduces the disk radial rate of an objective lens, and outputs the generated speed control signal to the 1st switching means 20 for tracking.

[0038] Based on the external input signal c, in the case of the above-mentioned tracking control action, a tracking control signal is outputted to the tracking actuator driving means 24, and, in the case of the above-mentioned seek operation, the 1st switching means 20 for tracking outputs a speed control signal to the tracking actuator driving means 24.

[0039] In addition, <u>drawing 3</u> shows the situation of OFF 1 substitute actuation with the tracking control action (feedback (FB) control action) and seeking control action by the external input signal (change signal) c.

[0040] The tracking actuator driving means 24 drives the tracking actuator 4 based on the outputted signal.

[0041] Moreover, based on the output of the 2nd switching means 21 for tracking, the delivery motorised means 25 drives the delivery motor 26, and operates the delivery device 5.

[0042] Here, actuation of a tracking system is divided and explained to the mode of operation of equipment. A mode of operation can be divided roughly into the tracking control action which follows a truck, and the seek operation which crosses many trucks comparatively.

[0043] In the case of tracking control action, an objective lens 2 is mainly moved by the tracking actuator 4 using a tracking control signal. On the other hand, as for the case of seek operation, pickup is moved according to the delivery device 5, and actuation of the objective lens 2 by the tracking actuator 4 is not performed. If an objective lens 2 is swayed by extraneous vibration in this seek operation, the

tracking level-luffing-motion actuation at the time of seek operation being completed and shifting to tracking control action will become unstable. Then, the inside of seek operation performs tracking speed control by reverse ******.

[0044] The band limit filter contained in the speed-control means 23 for tracking is set up so that it may become the almost same property as the band limit filter contained in the speed-control means 13 for focuses. However, in tracking, in order not to perform sweep actuation, the cut off frequency by the side of low-pass is set up so that DC component of a control signal may be cut. The cut off frequency by the side of a high region is set up near the upper limit of a specification value in consideration of the earthquake-proof specification of equipment.

[0045] When the band limit filter for tracking contained in the speed-control means 23 for tracking set the lower cut off frequency to omega 3 with this operation gestalt, the upper cut off frequency was set to omega 4 and main resonant frequency of the tracking actuator 4 is set to omegate omega3<omega tc<omega 4 The limit band is determined as it became the relation of the (8) type above-mentioned (8) type.

[0046] In addition, although the reverse electromotive voltage detection means 22 for tracking is not illustrated, as stated also in advance, it consists of the same bridge circuits as the reverse electromotive voltage detection means 12 for focuses shown in drawing 4, and has become what transposed the focal actuator 3 in drawing 4 to the tracking actuator 4. Although not illustrated, it sets for the reverse electromotive voltage detection means 22 for tracking here. The focal actuator 3 of drawing 4 is used as the tracking actuator 4, resistance 41 of the 1st of drawing 4 is considered as the 4th resistance, and resistance 42 of the 2nd of drawing 4 is considered as the 5th resistance. The resistance 43 of the 3rd of drawing 4 as the 6th resistance When it replaced, respectively, and R4 and the 5th resistance are set to R5 and the 6th resistance is set to R6 for Rt and the 4th resistance, with this operation gestalt, the resistance of the tracking actuator 4 Rt>=10, R4 (5) type 10 and Rt<=R5 .. (6) type Rt/R4**R5/R6 ... The relation of the (7) type above-mentioned (5) type, (6) types, and (7) types is filled. [0047] Finally, the roll control of a disk is explained. A spindle motor 29 rotates a disk 1 and the disk rotational-speed detector 30 detects the rotation period of a revolving disk. The rotation period of the detected disk is sent to the disk roll control means 31. Based on the rotation period of a disk, the disk roll control means 31 is controlled so that a disk turns a predetermined rotation period, and it drives a spindle motor 29.

[0048] Actuation which was excellent in stability about focal control and the level-luffing-motion actuation at the time of tracking control initiation also at the time of extraneous vibration generating can be cheaply performed as mentioned above by controlling both actuators to reduce the rate which detected and detected the rate of the direction of a focus of an objective lens, and the direction of tracking using the reverse electromotive voltage generated with a focal actuator and a tracking actuator in this operation gestalt. Moreover, stabilization of operation is realizable by setting up the timing-and-control band of each speed control of operation. Therefore, the dependability of equipment can be improved cheaply.

[0049] In addition, in the operation gestalt mentioned above, although speed control is operating without distinguishing the time of the sweep actuation for focal level luffing motion, and the sweep actuation for various parameter setups or adjustment, this invention is not restricted to this. The same effectiveness is acquired, even if it does not operate sweep actuation for a setup or adjustment or makes it not output speed control to it with the switching means 14.

[0050]

[Effect of the Invention] As stated above, this invention can attain the desired end. That is, actuation which was excellent in stability also at the time of extraneous vibration generating can be cheaply performed about focal control and the level-luffing-motion actuation at the time of tracking control initiation by controlling the speed to both actuators so that the rate which detected and detected the rate of the direction of a focus of an objective lens and the direction of tracking may be reduced using the reverse electromotive voltage generated with a focal actuator and a tracking actuator. Moreover, stabilization of operation is realizable by setting up the timing-and-control band of each speed control of

operation. Therefore, the depen	dability of equipment can be improved cheaply.	
[Translation done.]		

G11B 7/085

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-67680 (P2001-67680A)

(43)公開日 平成13年3月16日(2001.3.16)

(51) Int.CL7

識別記号

FΙ

テーマコート*(参考)

G11B 7/085

C 5D117

審査請求 未請求 請求項の数12 OL (全 10 頁)

(21)出願番号	特顯平11-238548	(71)出題人	
			株式会社日立製作所
(22) 出願日	平成11年8月25日(1999.8.25)		東京都千代田区神田駿河台四丁目 6 番地
		(72)発明者	今川 御時
			神奈川県横浜市戸塚区吉田町292番地 株
			式会社日立製作所デジタルメディア開発本
		0 0 1	部内
		(72)発明者	鈴木 基之
			神奈川県横浜市戸堰区古田町292番地 株
			式会社日立製作所デジタルメディア開発本
			部内
		(74)代理人	100078134
		(14)1042	10010101
			弁理士 武 順次郎
			最終頁に続く

(54) 【発明の名称】 アクチュエータ制御装置およびこれを用いた光ディスク装置

(57)【要約】

【課題】 フォーカス制御およびトラッキング制御開始 時の引込み動作に関し、外部振動発生時にも安定性に優 れた動作を行う制御装置を、安価な装置として提供する こと.

【解決手段】 外部振動によって生じる対物レンズのフ ォーカス方向の速度およびトラッキング方向の速度を直 接検出し、各方向の速度を迅速するように制衍する。

【特許請求の範囲】

【請求項1】 ピックアップを用いたディスク装置のア クチュエータ制御装置であって、

対物レンズを駆動するフォーカスアクチュエータと、 前記対物レンズが所定の速度で移動するように前記フォ ーカスアクチュエータの動作を制御するスイープ制御信 号発生手段と、

前記対物レンズが前記ディスク上に焦点が合うように前 記フォーカスアクチュエータの動作を制御するフォーカ ス制御信号発生手段と、

前記スイープ信号発生手段の出力と前記フォーカス制御 信号発生手段の出力とを切り替えて出力するスイッチン グ手段と、

前記対物レンズの移動速度を検出する速度検出手段と、 該速度検出手段の出力に基づいて、前記対物レンズの移 **動速度を低減するように前記フォーカスアクチュエータ** の動作を制御する速度制御手段と、

該速度制御手段の出力と前記スイッチング手段の出力と を演算する演算手段と、

該演算手段の出力に基づいて前記フォーカスアクチュエ 20 ータを駆動するフォーカスアクチュエータ駆動手段と を、

有することを特徴とするアクチュエータ制御装置。 【請求項2】 請求項1記載において、

前記速度検出手段は、前記フォーカスアクチュエータに 発生する逆起電圧を検出する逆起電圧検出手段と、帯域 制限フィルタとを有することを特徴とするアクチュエー 夕制御装置。

【請求項3】 請求項2記載において、

前記逆起電圧検出手段は、第1の抵抗と、第2の抵抗 と、第3の抵抗とを有し、

前記第1の抵抗は前記フォーカスアクチュエータと直列 に接続され、前記第2の抵抗と前記第3の抵抗は互いに 直列に接続され、かつ、前記フォーカスアクチュエータ と前記第1の抵抗に対して、前記第2の抵抗と前記第3 の抵抗は並列に接続され、前記フォーカスアクチュエー タ、前記第1の抵抗の順である並びに対して、前記第2 の抵抗、前記第3の抵抗の順に配されてなるブリッジ回 路による電圧検出回路を構成し、

前記フォーカスアクチュエータ、前記第1の抵抗、前記 40 第2の抵抗、前記第3の抵抗の抵抗値をそれぞれR f、 R1、R2、R3とした場合、

 $Rf \ge 10 \cdot R1$ ……(1)式 $10 \cdot Rf \leq R2$ ……(2)式

Rf/R1 = R2/R3……(3)式

の関係を満たすことを特徴とするアクチュエータ制御装

【請求項4】 請求項2または3記載において、 前記帯域制限フィルタは、

数を ω 2、前記スイープ制御信号発生手段から出力され るスイープ信号の周波数をως、前記フォーカスアクチ ュエータの主共振周波数をωfcとした場合、

 $\omega s < \omega 1 < \omega f c < \omega 2$ ……(4)式 の関係となるように制限帯域を決定することを特徴とす るアクチュエータ制御装置。

【請求項5】 請求項1乃至4の何れか1つに記載にお いて、

前記速度制御手段は、前記スイープ制御信号発生手段の 10 信号が出力されている場合には速度制御信号を出力し、 前記スイープ制御信号発生手段の信号が出力されていな い場合には速度制御信号を出力しないことを特徴とする アクチュエータ制御装置。

【請求項6】 請求項5記載において、

前記速度制御手段は、前記スイープ制御信号発生手段の 信号が出力に基づいて、前記スイープ制御信号発生手段 の出力レベルが所定範囲外となった場合には、速度制御 信号を出力しないことを特徴とするアクチュエータ制御 装置。

【請求項7】 ピックアップを用いたディスク装置のア クチュエータ制御装置であって、

対物レンズを駆動するトラッキングアクチュエータと、 前記対物レンズの焦点が所定トラックに位置づくように 前記トラッキングアクチュエータを制御するトラッキン グ制御信号発生手段と、

前記対物レンズを広範囲で移動させる送り機構と、

該送り機構を駆動する送りモータと、

前記対物レンズの焦点が所定トラックに位置づくように 前記送りモータを制御する送りモータ制御信号発生手段 30 と、

前記対物レンズの移動速度を検出する速度検出手段と、 前記速度検出手段の出力に基づいて前記対物レンズの移 動速度を低減するように制御する速度制御手段と、

前記トラッキング制御信号発生手段の出力と前記速度制 御手段の出力とを切り替えて出力するスイッチング手段 と、

該スイッチング手段の出力に基づいて前記トラッキング アクチュエータを駆動するトラッキングアクチュエータ

前記送りモータを駆動する送りモータ駆動手段とを、有 することを特徴とするアクチュエータ制御装置。

【請求項8】 請求項7記載において、

前記速度検出手段は、前記トラッキングアクチュエータ に発生する逆起電圧を検出する逆起電圧検出手段と、帯 域制限フィルタとを有することを特徴とすアクチュエー 夕制御装置。

【請求項9】 請求項8記載において、

前記逆起電圧検出手段は、第4の抵抗と、第5の抵抗 と、第6の抵抗とを有し、

下側のカットオフ周波数をω1、上側のカットオフ周波 50 前記第4の抵抗は前記トラッキングアクチュエータと直

列に接続され、前記第5の抵抗と前記第6の抵抗は互い に直列に接続され、かつ、前記トラッキングアクチュエ ータと前記第4の抵抗に対して、前記第5の抵抗と前記 第6の抵抗は並列に接続され、前記トラッキングアクチ ュエータ、前記第4の抵抗の順である並びに対して、前 記第5の抵抗、前記第6の抵抗の順に配されてなるブリ ッジ回路による電圧検出回路を構成し、

前記トラッキングアクチュエータ、前記第4の抵抗、前 記第5の抵抗、前記第6の抵抗の抵抗値をそれぞれR t、R4、R5、R6とした場合、 *10

ω3<ωtc<ω4

の関係となるように制限帯域を決定することを特徴とするアクチュエータ制御装置。

【請求項11】 請求項7乃至10の何れか1つに記載において、前記速度制御手段は、前記送りモータ制御信号発生手段の信号が出力され、かつ前記トラッキング制御信号発生手段の信号が出力されていない場合に、速度制御信号を出力し、前記トラッキング制御信号発生手段の信号が出力されている場合には、速度制御信号を出力しないことを特徴とするアクチュエータ制御装置。

【請求項12】 請求項1乃至11の何れか1つに記載 したアクチュエータ制御装置を用いたことを特徴とする ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アクチュエータ制御装置およびこれを用いた光ディスク装置に係り、特に、外部振動によって生ずる対物レンズのフォーカスおよびトラッキング方向の速度を検出しこれを低減するような機能を備えることにより、外部振動発生時にも安定 30性に優れたフォーカス引込み動作およびトラッキング引込み動作を可能とするアクチュエータ制御装置、およびこれを用いた光ディスク装置に関するものである。

[0002]

【従来の技術】光ディスク装置では、対物レンズが取付けられたアクチュエータ(アクチュエータの可動部)を、光ディスクの面と垂直な方向および光ディスクの半径方向に駆動することにより、フォーカスおよびトラッキングの制御を行っている。アクチュエータは、スピーカと同様に、ムービングコイル、永久磁石等で構成され 40 ており、対物レンズはムービングコイルと一体で動くようになっている。

【0003】この対物レンズおよびムービングコイルは、機械的なばねあるいは磁気的なばねで支持されており、光ディスク装置に外部から振動が加わると対物レンズが振動し、フォーカスおよびトラッキングの引き込み動作等に重大な障害が発生する場合がある。

【0004】外部振動による対物レンズの動きを抑圧して、耐震性能を高める方法としては、加速度センサを用いる方法、状態観測器を用いる方法などがあり、公知例※50

【請求項10】 請求項8または9記載において、前記 帯域制限フィルタは、下側のカットオフ周波数をω3、 上側のカットオフ周波数をω4、前記トラッキングアク チュエータの主共振周波数をωt cとした場合、

.....(8)式

(3)

※としては、例えば特開平9-147374号公報や、特開平10-134365号公報に開示された技術が挙げ られる。

【0005】上記加速度センサを用いる方法では、装置が揺らされている加速度を直接検出して、検出した信号をアクチュエータの駆動信号に加算することで、振動による対物レンズの揺れを低減することができる。また、状態観測器を用いる方法は、観測器中にアクチュエータの等価モデルを持つことで、間接的に対物レンズの揺れを検出して、検出した信号をアクチュエータの駆動信号に加算することで、振動による対物レンズの揺れを低減することができる。何れの手法においても、高い耐震性能を有した制御系を得ることができ、装置の信頼性を向上させることができる。

[0006]

【発明が解決しようとする課題】しかし、上記の加速度 センサを用いる方法は、新たな部品を加えることになる ためコスト高となる。また、対物レンズ本体に加速度セ ンサを取り付けることは、スペースや重量等の問題から 不可能なことが多い。したがって、装置に取付けた加速 度センサで検出した振動と、対物レンズが実際に揺らさ れる振動とは、誤差が生じる。

【0007】一方、状態観測器を用いる方法では、モデル化による誤差が生じるため、量産時には個々の調整が必要となる。

1008】本発明の目的は、外部振動によって生じる 対物レンズのファーカス方向の速度およびトラッキング 方向の速度を直接検出し、各方向の速度を低減するよう に制御することで、外部振動発生時にも安定性に優れた 引込み動作を、安価に行うアクチュエータの制御装置、 およびこれを用いた光ディスク装置を提供することにあ る。

[0009]

【課題を解決するための手段】上記した目的を達成するために、本発明のアクチュエータの制御装置は、上述のように、外部振動によって生じる対物レンズのフォーカス方向の速度およびトラッキング方向の速度を直接検出し、各速度を低減するように動作する。このため、本発明のアクチュエータの制御装置は、対物レンズを駆動す

るフォーカスアクチュエータと、対物レンズが所定の速 度で移動するようにフォーカスアクチュエータの動作を 制御するスイープ制御信号発生手段と、対物レンズがデ ィスク上に焦点が合うようにフォーカスアクチュエータ の動作を制御するフォーカス制御信号発生手段と、スイ ープ信号発生手段の出力とフォーカス制御信号発生手段 の出力とを切り替えて出力するフォーカス用スイッチン グ手段と、フォーカスアクチュエータに発生する逆起電 圧を検出する逆起電圧検出手段と、フォーカス方向の速 度を低減するようにフォーカスアクチュエータを制御す る速度制御手段と、速度制御手段の出力とフォーカス用 スイッチング手段の出力とを演算する手段と、フォーカ スアクチュエータを駆動するフォーカスアクチュエータ 駆動手段と、フォーカス用帯域制限フィルタと、対物レ ンズを駆動するトラッキングアクチュエータと、対物レ ンズの焦点が所定トラックに位置づくようにトラッキン グアクチュエータを制御するトラッキング制御信号発生 手段と、対物レンズを広範囲で移動させる送り機構と、 送り機構を駆動する送りモータと、送りモータを制御す る送りモータ制御信号発生手段と、トラッキングアクチ ュエータに発生する逆起電圧を検出する逆起電圧検出手 段と、対物レンズのトラッキング方向の移動速度を低減 するように制御する速度制御手段と、トラッキング制御 信号発生手段の出力と速度制御手段の出力とを切り替え て出力するトラッキング用スイッチング手段と、トラッ キングアクチュエータを駆動するトラッキングアクチュ エータ駆動手段と、送りモータを駆動する送りモータ駆 動手段と、トラッキング用帯域制限フィルタとを備え る。また、アクチュエータのフィードバック制御を行わ ないフォーカスのスイーブ動作やトラッキングのシーク 30 動作中に限り、対物レンズの速度制御を行えるようにス イッチング手段を操作する。さらに、スイープ動作中、 振動等で対物レンズが可動範囲端にぶつかる可能性があ る場合には、速度制御を行わないようにスイッチング手 段を操作する。以上の手段を備えることで、外部振動に よって生じる対物レンズのフォーカス方向の速度および (じトラッキング方向の速度を直接検出して各方向の速度を ・低減し、フェーカス制御およびトラッキング制御の引込

[0010]

【発明の実施の形態】以下、本発明の実施の形態を、図 面を用いて説明する。図1は、本発明の一実施形態に係 る光ディスク装置のアクチュエータ制御装置の構成を示 す図である。

み時の耐震性能を向上することができる。したがって、

装置の信頼性を向上することができる。

【0011】図1において、1はディスク、2は対物レ ンズ、3はフォーカスアクチュエータ、4はトラッキン グアクチュエータ、5は送り機構、6はディテクタ、7 はフォーカスエラー信号検出手段、8はフォーカス制御 信号発生手段、9はフォーカスジャンプ信号発生手段、

10はフォーカススイープ信号発生手段、11は第1の フォーカス用スイッチング手段、12はフォーカス用逆 起電圧検出手段、13はフォーカス用速度制御手段、1 4は第2のフォーカス用スイッチング手段、15は加算 器、16はフォーカスアクチュエータ駆動手段、17は トラッキングエラー信号検出手段、18はトラッキング 制御信号発生手段、19は送り制御信号発生手段、20 は第1のトラッキング用スイッチング手段、21は第2 のトラッキング用スイッチング手段、22はトラッキン グ用逆起電圧検出手段、23はトラッキング用速度制御 手段、24はトラッキングアクチュエータ駆動手段、2 5は送りモータ駆動手段、26は送りモータ、29はス ピンドルモータ、30はディスク回転速度検出器、31 はディスク回転制御手段である。

【0012】ここで、フォーカス用速度制御手段13と トラッキング用速度制御手段23は、それぞれ内部にフ ォーカス用帯域制限フィルタ、トラッキング用帯域制限 フィルタを有するものとなっている。

【0013】次に、図1のフォーカス系の各ブロックの 動作概要と、各ブロック間の関係について説明する。

【0014】フォーカスアクチュエータ3は、対物レン ズ2から出射した光ビームがディスク1の記録面上で焦 点を結ぶように、対物レンズ2をディスク1の面と垂直 方向に移動させる。ディスク1からの反射光はディテク タ6で検出され、検出された信号は、フォーカスエラー 信号検出手段7とトラッキングエラー検出手段17に送 sha.

【0015】フォーカスエラー検出手段7は、ディテク タ 6 から送られた信号に基づいて焦点距離の誤差を検出 し、検出した誤差をフォーカスエラー信号としてフォー カス制御信号発生手段8に送る。フォーカス制御信号発 生手段8は、フォーカスエラー信号に基づいて焦点誤差 を低減するようにフォーカス制御信号を生成して、生成 した制御信号を第1のフォーカス用スイッチング手段1 1に送る。

【0016】また、フォーカスジャンプ信号発生手段9 は、ディスク1が記録再生面として複数の層を持つ場合 に、ある層から別の層へ焦点を移動するするためのフォ ーカスジャンプ信号を生成する。生成されたジャンプ信 40 号は、第1のフォーカス用スイッチング手段11へ送ら ns.

【0017】フォーカススイープ信号発生手段10は、 フォーカス制御を引込ませる場合の他、各種パラメータ の設定や調整を行う場合に、対物レンズ2をディスク1 の面と垂直な方向に所定の範囲で移動させるためのフォ ーカススイープ信号を生成する。生成されたスイープ信 号は、第1のフォーカス用スイッチング手段11へ送ら れる。

【0018】第1のフォーカス用スイッチング手段11 50 は、外部入力信号aに基づいて、送られてきたフォーカ

ス制御信号とフォーカスジャンプ信号とフォーカススイ ープ信号を択一選択して、選択した信号を加算器15に

【0019】フォーカス用逆起電圧検出手段12は、図 4に示す回路によって構成されており、フォーカスアク チュエータ3に生じる逆起電圧を検出して、検出した逆 起電圧をフォーカス用速度制御手段13に送る。フォー カス用速度制御手段13は、送られてきた逆起電圧に基 づいて、対物レンズ2のディスク1の面と垂直な方向の 速度を低減するようなフォーカス速度制御信号を生成 し、生成した速度制御信号を第2のフォーカス用スイッ チング手段14へ送る。

【0020】第2のフォーカス用スイッチング手段14 は、外部入力信号bに基づいて、スイープ動作中の所定 期間で速度制御信号を出力し、出力した速度制御信号を 加算器15へ送る。

【0021】加算器15は、第1のフォーカス用スイッ チング手段11の出力と第2のフォーカス用スイッチン グ手段14の出力とを加算して、加算信号をフォーカス ュエータ駆動手段16は、加算信号に基づいて、フォー カスアクチュエータ3を駆動する。

【0022】続いて、フォーカス系の各ブロックの動作 の詳細について説明する。前述の外部入力信号aは、焦 点をディスク面上に位置づけるためのフォーカス制御動 作と、焦点を別の層へ位置づけるフォーカスジャンプ動 作と、フォーカス引込みや定数設定、調整のためのスイ ープ動作とを切り替えるための外部信号である。したが って、第1のフォーカス用スイッチング手段11は、各 プ信号、フォーカススイープ信号を切り替えて、加算器 15に出力する。図2は、外部入力信号(切替信号) a による、フォーカス制御動作 (フィードバック (FB) 制御動作)とスイーブ動作との切り替え動作の様子を、 第1のフォーカス用スイッチング手段11の切り替え動 作の1例として示している。

【0023】』た、前述の外部入力信号bは、図2に示 すように、スイーン動作時で、かつスイープ信号レベル が所定範囲以内である場合にHi、スイープ以外の動作 やスイープ動作中でもスイープ信号レベルが所定範囲外 40 2は、 である場合にはLoとなる。したがって、第2のフォー*

*カス用スイッチング手段14は、スイープ信号レベルが 所定範囲以内であるスイープ動作中だけ、フォーカス速 度制御信号を加算器15に出力する。 このように速度制 御の動作範囲を制限するのは、対物レンズ2が可動範囲 の端近くまで移動してストッパーにぶつかってしまう と、誤動作が生じるためである。したがって、第2のフ ォーカス用スイッチング手段14は、上述のようにスイ ープ動作中でスイープ信号レベルが所定範囲以内である 場合に、速度制御が働くように動作する。ただし、対物 10 レンズ2の可動範囲が十分広く、スイープ動作中に振動 が加わっても対物レンズ2がぶつかる可能性がない場合 には、速度制御の動作範囲を制限する必要はない。

【0024】フォーカス用逆起電圧検出手段12は、図 4に示すようなブリッジ回路によって構成される。 図4 において、3は前記フォーカスアクチュエータ、41は 第1の抵抗、42は第2の抵抗、43は第3の抵抗、4 4は差動アンプ (差電圧検出手段)である。

【0025】前記フォーカスアクチュエータ3と第1の 抵抗41とは直列に接続され、第2の抵抗42と第3の アクチュエータ駆動手段16に送る。フォーカスアクチ 20 抵抗43とは直列に接続され、また、フォーカスアクチ ュエータ3と第1の抵抗41の順の並びに対して、第2 の抵抗42と第3の抵抗43の順の並びで、素子3、4 1と素子42、43は並列に接続されている。そして、 フォーカスアクチュエータ3と第1の抵抗41の接続点 が、差動アンプ44の一方の入力点に接続され、第2の 抵抗42と第3の抵抗43の接続点とが、差動アンプ4 4の他方の入力端に接続されている。

【0026】ここで、フォーカスアクチュエータ3の抵 抗値をRf、第1の抵抗41の抵抗値をR1、第2の抵 動作に対応してフォーカス制御信号、フォーカスジャン 30 抗42の抵抗値をR2、第3の抵抗43の抵抗値をR3 としたとき、

> Rf/R1 = R2/R3……(3)式 上記(3)式の関係を満たすことにより、フォーカスア クチュエータ3に生じる逆起電圧を検出可能にする。 【0027】逆起電圧eが発生した場合のモデルを図5 に示す。アクチュエータドライバの出力電圧をVi n+、Vin-とし、フォーカバニ チュエータ3と第1 の抵抗41の間の電圧をVュとじ、第2の抵抗42と第 3の抵抗43の間の電圧をV2とすると、V1およびV

 $V1 = R1/(R1 + Rf) \cdot (Vin_{+} - Vin_{-} - e) + Vin_{-} \cdots (9)$ 式 $V2=R2/(R2+R3)\cdot(Vin_{+}-Vin_{-})+Vin_{-}$ ……(10)式

上記(9)式、(10)式でそれぞれ表される。

【0028】(9)式、(10)式より、差動アンプ4※

 $Vout=V2-V1=R1/(R1+Rf) \cdot e$ ……(11)式

※4の出力電圧Voutは、

上記(11)で表され、Voutを検出することで、逆 起電圧eに比例した値が得られる。

【0029】また、フォーカスアクチュエータ3に流れ る最大電流の低下を防ぐために、本実施形態では、

★R**f** ≥ 10 · R1 ……(1)式 ……(2)式 $10 \cdot Rf \leq R2$

の関係を満たすように、各素子の定数を設定する。 ★50 【0030】フォーカス用速度制御手段13に含まれる

帯域制限フィルタは、図1で示したブロック図のうち、 フォーカス速度制御の一巡伝達関数が、図6に示される ような周波数特性となるように設定する。一巡伝達関数 の利得は、アクチュエータの主共振周波数と耐震用に設 けられた防振脚の主共振周波数ではOdB以上となるよ うに設定する。これは、外部振動によって対物レンズ2 が最も高速で揺すられるのが、アクチュエータと防振脚 の主共振周波数であり、この主共振周波数で速度制御を 有効に作用させるためである。また、低域側のカットオ フ周波数はスイープ信号の周波数より高く設定する。こ 10 れは、速度制御がスイープ信号に応答しないようにする ためである。また、制御信号のDC成分をカットするこ とで、逆起検出回路でオフセット電圧が発生した場合に もオフセットの調整が不要となる。高域側のカットオフ 周波数は、装置の耐震仕様を考慮して設定する。

【0031】本実施形態においては、フォーカス用速度 制御手段13に含まれるフォーカス用帯域制限フィルタ は、下側のカットオフ周波数をω1とし、上側のカット オフ周波数を ω 2 とし、前記スイープ制御信号発生手段 10から出力されるスイープ信号の周波数をωsとし、 前記フォーカスアクチュエータ3の主共振周波数をωf cとしたとき、

 $\omega s < \omega 1 < \omega f c < \omega 2$ ……(4)式 上記(4)式の関係となるようして、制限帯域を決定し ている。

【0032】次に、図1のトラッキング系の各ブロック の動作概要と、各ブロック間の関係について説明する。 ここで、フォーカス系と同様な動作であるブロックは説 明を省略する。

【0033】トラッキングアクチュエータ4は、対物レ ンズ2をディスク1の半径方向に移動させて、光ビーム をディスク上のトラックに位置づける。また、送り機構 5は、トラッキングアクチュエータ4の可動範囲より広 い範囲で、ディスク1の半径方向にピックアップを移動 させる。

【0034】トラッキングエラー信号検出手段17は、 ディテクタ6から送られた信号で基づいて、光ビームと トラック中心とのディスク半径方向の誤差を検出し、検 出した誤差をトラッキングエラー信号として、トラッキ ング制御信号発生手段18に出力する。トラッキング制 40 御信号発生手段18は、トラッキングエラー信号に基づ いてトラッキング誤差を低減するようにトラッキング制 御信号を生成して、生成した制御信号を、第1のトラッ キング用スイッチング手段20と送り制御信号発生手段 19とに出力する。

【0035】送り制御信号発生手段19は外部入力信号 cに基づいて、2種類の動作を行う。すなわち、トラッ クを追従するトラッキング制御動作の場合には、送り制 御信号発生手段19は、トラッキング制御信号に基づい

のトラッキング用スイッチング手段21に出力する。こ の追従制御信号により送り機構5は、トラッキングアク チュエータ4によって駆動する対物レンズ2を追従する ようにピックアップを移動させる。また、比較的多数の トラックを横断するシーク動作の場合には、送り制御信 号発生手段19は、移動距離に応じたシーク制御信号を 生成し、生成したシーク制御信号を第2のトラッキング 用スイッチング手段21に出力する。

10

【0036】第2のトラッキング用スイッチング手段2 1は、外部入力信号 c に基づいて、追従制御信号とシー ク制御信号を選択して、選択した信号を送りモータ駆動 手段25に出力する。

【0037】トラッキング用逆起電圧検出手段22は、 図4に示したフォーカス用逆起電圧検出手段12と同様 な構成をしており、トラッキングアクチュエータ4に生 じる逆起電圧を検出して、検出した逆起電圧をトラッキ ング用速度制御手段23に出力する. トラッキング用速 度制御手段23は、入力された逆起電圧に基づいて、対 物レンズのディスク半径方向の速度を低減するようなト ラッキング速度制御信号を生成し、生成した速度制御信 号を第1のトラッキング用スイッチング手段20へ出力 する。

【0038】第1のトラッキング用スイッチング手段2 Oは、外部入力信号cに基づいて、前述のトラッキング 制御動作の場合は、トラッキング制御信号をトラッキン グアクチュエータ駆動手段24に出力し、前述のシーク 動作の場合は、速度制御信号をトラッキングアクチュエ ータ駆動手段24に出力する。

【0039】なお図3は、外部入力信号(切替信号) c による、トラッキング制御動作(フィードバック(F B) 制御動作)とシーク制御動作との切1替え動作の様 子を示している。

【0040】トラッキングアクチュエータ駆動手段24 は、出力されてきた信号に基づいて、トラッキングアク チュエータ4を駆動する。

【0041】また、送りモータ駆動手段25は、第2の トラッキング用スイッチング手段21の出力に整つる て、送りモータ26を駆動し、送り機構5を動作させ、スページー

【0042】ここで、トラッキング系の動作を、装置の 動作モードに分けて説明する.動作モードは、トラック を追従するトラッキング制御動作と、比較的多数のトラ ックを横断するシーク動作とに大別できる。

【0043】トラッキング制御動作の場合、トラッキン グ制御信号を用いて、主に対物レンズ2がトラッキング アクチュエータ4によって動かされる。一方、シーク動 作の場合は送り機構5によってピックアップが動かさ れ、トラッキングアクチュエータ4による対物レンズ2 の動作は行わない。このシーク動作中に外部振動によっ て追従制御信号を生成し、生成した追従制御信号を第2 50 て対物レンズ2が揺らされると、シーク動作が終了して

トラッキング制御動作に移行する際のトラッキング引込 み動作が不安定となる。そこで、シーク動作中は逆起検 出によるトラッキング速度制御を行う。

【0044】トラッキング用速度制御手段23に含まれ る帯域制限フィルタは、フォーカス用速度制御手段13 に含まれる帯域制限フィルタとほぼ同様な特性となるよ うに設定する。ただし、トラッキングではスイープ動作 を行わないため、低域側のカットオフ周波数は制御信号*

ω3<ωtc<ω4

上記(8)式の関係となるようにして、制限帯域を決定 10※制御は、フォーカス引込みのためのスイーブ動作時と、 している。

【0046】なお、トラッキング用逆起電圧検出手段2 2は、図示していないが、先にも述べたように、図4に 示したフォーカス用逆起電圧検出手段12と同様なブリ ッジ回路で構成されており、図4におけるフォーカスア クチュエータ3をトラッキングアクチュエータ4に置き 換えたものとなっている。ここで、図示しないが、トラ ッキング用逆起電圧検出手段22において、図4のフォ ーカスアクチュエータ3をトラッキングアクチュエータ 4とし、図4の第1の抵抗41を第4の抵抗とし、図4 の第2の抵抗42を第5の抵抗とし、図4の第3の抵抗 43を第6の抵抗として、それぞれ置き換え、トラッキ ングアクチュエータ4の抵抗値をRt、第4の抵抗値を R4、第5の抵抗値をR5、第6の抵抗値をR6とした とき、本実施形態では、

Rt≥10·R4(5)式 10 · Rt≤R5 ……(6)式 ……(7)式 Rt/R4≒R5/R6 上記(5)式、(6)式、(7)式の関係を満たすよう になっている。

【0047】最後に、ディスクの回転制御について説明 する。スピンドルモータ29はディスク1を回転させ、 ディスク回転速度検出器30は回転しているディスクの 回転周期を検出する。検出したディスクの回転周期はデ ィスク回転制御手段31に送られる。 ディスク回転制御 手段31は、ディスクの回転周期に基づいて、所定の回 転周期でディスクが回るように制御し、スピンパルモー タ29を駆動する。

【0048】以上のように本実施形態においては、フォ ーカスアクチュエータおよびトラッキングアクチュエー 40 タで発生する逆起電圧を用いて、対物レンズのフォーカ ス方向およびトラッキング方向の速度を検出し、検出し た速度を低減するように両アクチュエータを制御するこ とにより、フォーカス制御およびトラッキング制御開始 時の引込み動作に関して、外部振動発生時にも安定性に 優れた動作を、安価に行うことができる。また、各速度 制御の動作タイミングと制御帯域の設定を行うことで、 動作の安定化を実現できる。従って、安価に装置の信頼 性を向上することができる。

【0049】なお、上述した実施形態においては、速度※50 1 ディスク

*のDC成分をカットするように設定する。高域側のカッ トオフ周波数は、装置の耐震仕様を考慮して仕様値の上 限近傍に設定する。

【0045】本実施形態では、トラッキング用速度制御 手段23に含まれるトラッキング用帯域制限フィルタ は、下側のカットオフ周波数をω3とし、上側のカット オフ周波数をω4とし、トラッキングアクチュエータ4 の主共振周波数をwtcとした場合、

.....(8)式

各種パラメータ設定や調整のためのスイープ動作とを区 別せずに動作しているが、本発明はこれに限るものでは ない。設定や調整のためのスイーブ動作には速度制御を 動作させない、あるいはスイッチング手段14によって 出力しないようにしても、同様な効果が得られる。

[0050]

【発明の効果】以上述べたように本発明により、所期の 目的を達成することができる。すなわち、フォーカスア クチュエータおよびトラッキングアクチュエータで発生 20 する逆起電圧を用いて、対物レンズのフォーカス方向お よびトラッキング方向の速度を検出し、検出した速度を 低減するように両アクチュエータに対して速度制御を行 うことにより、フォーカス制御およびトラッキング制御 開始時の引込み動作に関して、外部振動発生時にも安定 性に優れた動作を、安価に行うことができる。また、各 速度制御の動作タイミングと制御帯域の設定を行うこと で、動作の安定化を実現できる。従って、安価に装置の 信頼性を向上することができる。

【図面の簡単な説明】

30 【図1】本発明の一実施形態に係る光ディスク装置のア クチュエータ制御装置の構成を示すブロック図である。 【図2】本発明の一実施形態に係る光ディスク装置のア クチュエータ制御装置における、フォーカス制御動作 (フィードバック制御動作)とスイープ動作の切り替え の様子を示す説明図である。

【図3】本発明の一実施形態に係る光ディスク装置のア クチュエータ制御装置における、トラッキング制御動作 (フィードバック制御動作)とシーク制御動作の切り替 えの様子を示す説明図である。

【図4】本発明の一実施形態に係る光ディスク装置のア クチュエータ制御装置における、フォーカス用逆起電圧 検出手段の構成例を示す回路図である。

【図5】図5において、逆起電圧が発生した場合のモデ ルを示す説明図である。

【図6】本発明の一実施形態に係る光ディスク装置のア クチュエータ制御装置における、フォーカス用速度制御 手段に含まれるフォーカス用帯域制限フィルタの周波数 特性を示す説明図である。

【符号の説明】

- 2 対物レンズ
- 3 フォーカスアクチュエータ
- 4 トラッキングアクチュエータ
- 5 送り機構
- 7 フォーカスエラー信号検出手段
- 8 フォーカス制御信号発生手段
- 10 フォーカススイープ信号発生手段
- 11 第1のフォーカス用スイッチング手段
- 12 フォーカス用逆起電圧検出手段
- 13 フォーカス用速度制御手段
- 14 第2のフォーカス用スイッチング手段
- 15 加算器

14

- 16 フォーカスアクチュエータ駆動手段
- 17 トラッキングエラー信号検出手段
- 18 トラッキング制御信号発生手段
- 19 送り制御信号発生手段
- 20 第1のトラッキング用スイッチング手段
- 21 第2のトラッキング用スイッチング手段
- 22 トラッキング用逆起電圧検出手段
- 23 トラッキング用速度制御手段
- 24 トラッキングアクチュエータ駆動手段
- 10 25 送りモータ駆動手段
 - 26 送りモータ

【図2】

【図3】

【図1】

【図4】

【図5】

[四5]

【図6】

[四6]

フロントページの続き

(72)発明者 小野 裕明

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所デジタルメディア開発本 部内 F ターム(参考) 5D117 BB06 DD03 EE03 EE20 FF07 FF17 FF19 FF26 FX06 FX07 GG02 GG06