Tutorial 2 - Lecture catch up, including finding things with The Unix Shell

find

- powerful search function
- searches for files, not inside files
- when would this be useful?

\$() extends the utility of find

If we wanted to use Unix to count the number of lines in each of the .pdb files in the data-shell/molecules directory. We could...

wc -l \$(find . -type file)

Why does this work?

grep

- powerful search function
- searches inside files or any information passed via stdin
- by default considers entire lines containing matches

grep application

Copy and paste contents of DNA.txt from Lecture 3 directory on Sakai into nano and save as DNA.txt

Challenge: Building a simple gene finder - use Unix to count the number of start codons (ATG), and therefore potential genes, in the DNA sequence contained in DNA.txt

sed

grep is to find, as sed is to find and replace

The **sed** utility reads the specified files, or the *standard input* if no files are specified, modifying the input as specified by a list of **commands**. The input is then written to the *standard output*.

Each line of a file, except the newline character is copied into a **pattern space** where it is acted on by **sed** commands.

Two of the most common and straightforward uses of sed are:

- sed 's/pattern/replacement/flags'
 - common flags: N replace the Nth occurrence, g replace all occurrences, not just first (default)
- sed 'y/string1/string2/'
 - each character in string1 is replaced by the corresponding character in string2; this is a multi-version of tr

Challenge: Imagine we wanted to visualize all of our matches to the start codon ATG in DNA.txt. How would we use sed to do this?

Challenge: use sed, along with tr and rev, to create the reverse complement of the sequence contained in DNA.txt