Electrical Engineering

Electronics and Communication Engineering

(MCQ)

$$f = (A + B) (A + C) (A + \overline{C})$$
 is equivalent to $\longrightarrow (A + C \cdot \overline{C}) (\overline{A} + B)$
 $A + (B \cdot C \cdot \overline{C}) = A$
 $(A + B) \cdot (A + C) \cdot (A + \overline{C})$
 $(A + B) \cdot (A + C) \cdot (A + \overline{C})$

$$A + BC$$

B
$$A + B\bar{C}$$

$$\mathbf{C}$$
 0

MCQ)

A logic function is given as:

$$f(A, B, C) = \underline{BC} \left[A + \underline{BCD} + \overline{B}CD + \overline{A}B\overline{C} + \overline{A}\overline{B}\overline{C} \right]$$

is equivalent to

A
$$A\overline{B}CD$$

$$B$$
 $B\bar{C}$

$$C A \overline{B} + B \overline{C} + CD$$

D
$$AB\bar{C}D$$

$$(A+\overline{A}).(A+B\overline{c})$$

$$(A + B\overline{C} + B\overline{C}D + BCD + \overline{A}\overline{B}\overline{C})$$

$$B\overline{I}(A + B\overline{C} + \overline{B}CD + \overline{A}\overline{B}\overline{C})$$

$$= B\overline{C}$$

$$n=4$$
-variable $s \implies 16$ terms $\implies (2^{16}) \implies boolean function$
 $N=2^{n}$
 $2^{n} \implies 2^{n} \implies 2^$

A logic function $f(A, B, C) = (A + B)(\bar{B} + C)(A + C)$, then \bar{f} will be equal to

A
$$AB + \overline{B}C$$

B
$$\bar{A}\bar{B} + B\bar{C}$$

$$C \bar{A}\bar{B} + \bar{A}\bar{C}$$

D
$$AB + AC$$

Which of the following statement is true?

- A Dual function f^D is always equals to f.

B NAND is self dual in nature.
$$\times$$

NAND \leftarrow

AB

AB

AHB

Number of self dual function with 3-variables is 8.

$$2^{3} = 2^{4} = 16 \rightarrow \text{self dual function}$$

 $2^{3} = 2^{8} = 256 \rightarrow \text{total boolean function}$

Logical function $f(A, B, C, D) = AB + \bar{A}CD + \bar{B}CD$ is equivalent to

A
$$AB + \overline{B}C$$

B
$$AB + CD$$

$$C \bar{A}C + \bar{B}C$$

D
$$AB + B\bar{C}$$

(MCQ)

A logical function is given as:

$$f(A, B, C) = \bar{A}\bar{B} + \bar{A}BC + \bar{A}B\bar{C}$$

then which of the following statement is true?

$$f(A_1B_1C) = \overline{A}\overline{B} + \overline{A}BC + \overline{A}B\overline{C} = \overline{A}\left[\overline{B} + BC + B\overline{C}\right]$$

$$\overline{A}\overline{B} + \overline{A}B$$

$$= \overline{A}(\overline{B} + B)$$

$$= \overline{A}$$

B
$$f(A, B, C) = \overline{A} + \overline{C} \times f(AB, C) = \overline{A} \times$$

- (A, B, C) is a self dual function (A, B, C) = A
 - D None of the above

(MCQ)

Which of the following is true?

$$A \ \overline{A}B + A\overline{B} = (\overline{A} + \overline{B})(A + B)$$

$$\overline{AB\overline{CD}} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

$$C \overline{AB}.C = (A + \overline{C})(\overline{B} + \overline{C})$$

D None of these

Which of the following is true?

- A We can use '1' as enable input for OR gate
- B We can use '0' as enable input for AND gate
- C '0' as well as '1' can be used as enable input for XNOR gate
- D None of the these

(MCQ)

Which of the following relation is true?

$$A \oplus \overline{B} = \overline{A} \odot B$$

$$\overline{A \oplus \overline{B}} = A \odot B$$

$$\overline{A} \odot \overline{B} = A \oplus B$$

$$D \quad \overline{A} \oplus \overline{B} = A \oplus B$$

(MCQ)

A logical circuit is as given below:

$$\frac{A}{B} \longrightarrow \frac{A \oplus B}{A \oplus B}$$

ABBO(A+B)

Output y will be

$$A \rightarrow A+B$$

A
$$\bar{A} + B$$

B
$$\bar{A} + \bar{B}$$

$$C A \overline{B}$$

$$D A + B$$

$$A \oplus \overline{B} \oplus (\overline{A} + B) = A \oplus B \oplus (\overline{A} + B) = \overline{A} + \overline{B}$$

$$\begin{array}{ll}
A \oplus B = A \oplus B \oplus (\overline{A} + B) \\
\overline{A} \oplus B = \overline{A} \oplus B \oplus (\overline{A} + B)
\end{array}$$

(MGQ) (B,C)

A logic circuit has 4-input & 1-output line as shown:

Output y is '1' wherever number of zeroes on input side are odd, then output y can be expressed as:

Question (MCQ)

Pw

A logic circuit is as given below:

Which of the following is true?

- A Output y is \overline{AB} if control input = 0
- 1
- B Output y is $\overline{A + B}$ if control input = 1
- C Output y is $\overline{A \cdot B}$ if control input = 0
- D Output y is $\overline{A} \cdot B$ if control input = 1

Question (MCQ)

A logic circuit is as given below:

Which of the following is true?

- A Output is \bar{A} if n is even
- B Output is A if n is even
- C Output is \bar{A} if n is odd
- D Output is A if n is odd

Question (MCQ)

Pw

A logical circuit is as given below:

Output y is

- В
- C A
- \mathbf{D}

(NAT)

A logical expression is given as:

$$f(A,B,C,D) = \overline{A} + AB[ABC + \overline{B}C + AB\overline{C} + C\overline{D}]$$

$$AB \cdot (AB + \overline{B}C + C\overline{D}) = AB$$

The minimum number of 2-input NAND gate required to implement above

logic function will be \geq __.

$$= \overline{A} + (A \cdot B)$$

$$= (\overline{A} + A) (\overline{A} + B)$$

$$= (\overline{A} + B)$$

$$A \cdot \overline{B}$$

Question (NAT)

A logical expression is given as:

 $f(A, B, C) = (\bar{A} + B) (A + \bar{B})$, the minimum number of 2-input NAND gate required to implement above logical function is _5__.

$$= AOB \qquad \left(\overline{A} + \overline{B}\right)(A + B) = AOB$$

(NAT)

A logical expression is given as:

 $f(A, B, C) = \overline{A} + ABC$ then minimum number of 2-input NAND gate required to implement above logical function is 2.

$$= (\overline{A} + A) \cdot (\overline{A} + (BC))$$

$$f = \overline{A} + BC$$

$$\overline{f} = \overline{A} \cdot (\overline{BC}) = \overline{A \cdot P} \Rightarrow (\overline{A} + N)$$

$$P = \overline{BC} \rightarrow (\overline{NAN})$$

(NAT)

A logical function is given as:

 $f(A, B) = A \oplus (A\overline{B})$ If we implement this logical function using 2-input NAND gate, the minimum number of NAND gate required is _2__.

$$= \frac{1}{A} \frac{A \cdot B}{A \cdot B} + A \cdot A \cdot B$$

$$= A \cdot B + A \cdot A \cdot B$$

$$= A \cdot B$$

Thank you

Seldiers!

