

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name:	Mobile No:

Roll Number: Branch:

1 a.

	Prediction	o Outcome
Label	81	27
True	27	201

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	Outcome
Label	83	25
True	12	216

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	n Outcome
Label	82	26
True	9	219

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

	Classification
K	Accuracy (in %)
1	0.839
3	0.890
5	0.896

Inferences:

- 1. The highest classification accuracy is obtained with K =.5
- 2. Increasing the value of K increases the prediction accuracy.
- 3. Increasing the value of K increases the prediction accuracy because we predict from larger amount of conclusions.
- 4. As the classification accuracy increases with the increase in value of K the number of diagonal elements increase.
- 5. Reason for increase in diagonal elements is with the increase of accuracy more no.s of positive and negative values will be predicted correctly.
- 6. As the classification accuracy increases with the increase in value of K , the number of off-diagonal elements decrease .
- 7. This is because with increase in accuracy there will be less false prediction.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction	Outcome
Label	104	4
True	9	219

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	o Outcome
Label	105	3
True	7	221

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	n Outcome
Label	104	4
True	7	221

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	0.961
3	0.970
5	0.967

Inferences:

- 1. Data normalization increases classification accuracy.
- 2. Because in knn classification we measure Euclidian distance which get more accurate with normalization
- 3. The highest classification accuracy is obtained with K = 2.
- 4. Accuracy initially increases with K but then decreases
- 5. increasing the value of K increases/decreases the prediction accuracy.
- 6. As the classification accuracy increases/decreases with the increase in value of K the number of diagonal elements increase.
- 7. With more accuracy more values will be predicted correctly and hence add up to diagonal elements
- 8. State the reason for increase/decrease in off-diagonal elements.

Note: Dummy values have been filled in the confusion matrix. Replace it with values obtained by you.

3

	Prediction	n Outcome
Label	74	15
True	2	133

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 93.992%.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Me	ean
		Class 0	Class 1
1.	X_Minimum	285.061	731.24
2.	X_Maximum		
3.	Y_Minimum		
4.	Y_Maximum	1649336.19	1511122.61
5.	Pixels_Areas	7622.655	567.684
6.	X_Perimeter	384.657	52.212
7.	Y_Perimeter	255.35	44.927
8.	Sum_of_Luminosity	835433.60	59982.029
9.	Minimum_of_Luminosity	55.061	95.166
10.	Maximum_of_Luminosity	137.11	130.192
11.	Length_of_Conveyer	1384.028	1480.023
12.	TypeOfSteel_A300		
13.	TypeOfSteel_A400		
14.	Steel_Plate_Thickness	40.179	101.229
15.	Edges_Index	0.13	0.383
16.	Empty_Index	0.457	0.422
17.	Square_Index	0.603	0.513
18.	Outside_X_Index	0.107	0.019
19.	Edges_X_Index	0.552	0.614
20.	Edges_Y_Index	0.527	0.842
21.	Outside_Global_Index	0.307	0.622
22.	LogOfAreas	3.599	2.287
23.	Log_X_Index	2.041	1.217
24.	Log_Y_Index	1.83	1.323
25.	Orientation_Index	-0.3	0.15
26.	Luminosity_Index	-0.102	-0.12
27.	SigmoidOfAreas	0.916	0.541

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Covariance matrix for class 0

	X_Mini mum	X_Maxi mum	Y_Mini mum	Y_Maxi mum	Pixels_ Areas	X_Peri meter	Y_Perim eter						TypeOf Steel_A		Edges_I ndex	Empty_I ndex	Square_ Index		Edges_ X_Index	Edges_Y Index	Outside Global	LogOfAr eas	Log_X_I ndex	Log_Y_I ndex	Orientat ion Ind		-
X Minimum	70682		-9E+07		-708835		-22963	_			_							-9.2509	_	-	-					27.761	
X Maximum																											
Y Minimum	58002		-8E+07		-365274	-18028	-13109	-4E+07					-3.4691					-1.5999				-87.664		-37.19	28.16		
Y Maximum	-9E+07	-8E+07	2E+12	2E+12		4E+07	1E+08	-4E+09				-2493.8		-224331		18850			-12532		-116709				-121797	-64931	
Pixels_Areas	-9E+07	-8E+07	2E+12	2E+12	4E+08		1E+08		-7E+06					-224343		18877					-116669		139396		-121730	-64946	
X Perimeter	-708835	-365274	4E+08	4E+08	8E+07	5E+06	8E+06	7E+09	-161145			-17.866			-538.34			245.74									635.4
	-34840	-18028	4E+07	4E+07	5E+06	333154	507708	4E+08	-7868.7	211.1	1040.4	-0.9017	0.9017	-4.2205	-26.265	34.427	15.574	11.993	-63.899	-21.828	36.827	177	74.346	147.77	55.789	-15.758	31.33
Y_Perimeter	-22963	-13109	1E+08	1E+08	8E+06	507708	851311	6E+08	-6297.6	870.03	-614.44	-0.565	0.565	-11.986	-17.818	35.659	-6.2354	7.1171	-55.932	1.8796	48.484	152.89	46.477	163.31	77.489	-17.474	20.48
Sum_of_Luminosity	-8E+07	-4E+07	-4E+09	-3E+09	7E+09	4E+08	6E+08	7E+11	-2E+07	-179222	2E+06	-2015.7	2015.7	-32870	-58811	56062	47317	28177	-120352	-63220	47455	369489	172825	262100	75932	-26436	6930
Minimum_of_Luminosity	6515.1	4210.8	-7E+06	-7E+06	-161145	-7868.7	-6297.6	-2E+07	1567.6	491.28	-135.35	-0.0027	0.0027	-2.2418	4.776	-2.1281	1.3296	-1.6575	4.2475	5.2214	4.6234	-24.323	-14.189	-11.818	3.9902	4.9996	-7.35
Maximum_of_Luminosity	3109.9	2536.1	-8E+06	-8E+06	-3709.5	211.1	870.03	-179222	491.28	388.42	-6.2211	-0.1131	0.1131	-5.4813	2.3782	-0.4632	2.1855	-0.421	0.254	1.9959	4.238	-7.0727	-5.1211	-2.1444	4.34	3.136	-3.164
Length_of_Conveyer	2381.1	2209.9	-9E+06	-9E+06	12622	1040.4	-614.44	2E+06	-135.35	-6.2211	2531.7	0.7769	-0.7769	29.072	1.1807	0.5429	4.0316	-0.2604	-2.7068	-0.0898	5.4426	1.1839	-0.7654	2.4166	5.0988	-0.4979	0.112
TypeOfSteel_A300	3.7882	3.4691	-2493.8	-2494	-17.866	-0.9017	-0.565	-2015.7	-0.0027	-0.1131	0.7769	0.0026	-0.0026	0.1021	-0.0002	-0.0007	0.0003	-0.0002	0.0005	0.0011	0.0018	-0.002	-0.0017	-0.0008	0.0015	-0.0008	0.000
TypeOfSteel_A400	-3.7882	-3.4691	2493.8	2494	17.866	0.9017	0.565	2015.7	0.0027	0.1131	-0.7769	-0.0026	0.0026	-0.1021	0.0002	0.0007	-0.0003	0.0002	-0.0005	-0.0011	-0.0018	0.002	0.0017	0.0008	-0.0015	0.0008	-0.000
Steel_Plate_Thickness	141.15	148.27	-224331	-224343	-178.25	-4.2205	-11.986	-32870	-2.2418	-5.4813	29.072	0.1021	-0.1021	4.8397	-0.0172	-0.0146	-0.0019	0.0052	0.0138	0.0301	0.0475	-0.0369	-0.0302	-0.011	0.041	-0.0409	0.011
Edges_Index	39.125	29.804	-60533	-60542	-538.34	-26.265	-17.818	-58811	4.776	2.3782	1.1807	-0.0002	0.0002	-0.0172	0.0346	-0.0115	0.0082	-0.0068	0.0185	0.0267	0.0271	-0.096	-0.0611	-0.0436	0.0263	0.021	-0.032
Empty_Index	-18.026	-9.7743	18850	18877	537.55	34,427	35.659	56062	-2.1281	-0.4632	0.5429	-0.0007	0.0007	-0.0146	-0.0115	0.0168	0.0024	0.0059	-0.0181	-0.0144	0.0011	0.055	0.0344	0.0367	0.0014	-0.0054	0.017
Square_Index	12.745		-79612	-79632			-6.2354		1.3296			0.0003			0.0082					0.001		-0.0049	-0.025	0.0204			
Outside_X_Index	-9.2509		4085	4087.4		11.993	7.1171		-1.6575		-0.2604				-0.0068	0.0059		0.0055	-0.002		-0.0106	0.0323				-0.0044	
Edges_X_Index	26.024		-12532	-12568		-63.899		-120352		0.254				0.0138		-0.0181	-0.036			0.0266		-0.105				0.0059	
Edges_Y_Index	39.056		-44847	-44832		-21.828	1.8796		5.2214		-0.0898				0.0267	-0.0144		-0.0082					-0.0686	-0.051			-0.034
Outside_Global_Index	44 122		-116709			36.827	48.484		4.6234				-0.0011			0.00144		-0.0106		0.0339			-0.0753		0.0234		
LogOfAreas	-132 52	-87.664				177			-24.323					-0.0369		0.0011				-0.1091		0.4962					
Log_X_Index		-54.246				74.346					-0.7654				-0.0611	0.0334	-0.025			-0.0686		0.4902					
Log Y Index						147.77						-0.0017					0.0204			-0.051		0.2561					0.069
Orientation Index	-59.002			70211					-11.818						-0.0436	0.0367											
Luminosity_Index	42.468			-121730		55.789	77.489		3.9902	4.34		0.0015			0.0263	0.0014		-0.0107				-0.0516			0.1335		
SigmoidOfAreas	27.761		-64931	-64946		-15.758			4.9996		-0.4979					-0.0054		-0.0044		0.018			-0.0502		0.0325		-0.0
SigniologiAreas	-45.436	-33.868	91950	91961	635.42	31.339	20.489	69307	-7.354	-3.1645	0.1123	0.0001	-0.0001	0.0119	-0.0325	0.0173	-0.0126	0.0084	-0.029	-0.0347	-0.0305	0.1454	0.0879	0.0699	-0.0286	-0.03	0.054

Covariance matrix for class 1

A	В	С	D	E	F	G	н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	٧	X	Υ	Z	AA	AB .
	X_Minimum	X_Maximu '	Y_Minimum	Y_Maximu m	Pixels_Area	X_Perimet er	Y_Perimet er				Length_of_ Convever			Steel_Plate Thickness											Drientatio n Index		
X Minimum	259850.0075	257093.9577	116322877.6	116319422.6	-108178.7691		-4534.67636	-11143359.7	-951.823278	-1271.6454	11924.55184	_		-2632.051308							_				-7.9225987	/_	
X Maximum	257093.9577	258659.883	134056676.1	134053472.3	-37918.81391	-3334.43771		-3681264.498	-1138.2766	-1271.6404	11200.64775		-23.675743	-2812.580666					6.35486		-8.1544		-2.3286	-24.34		-9.43195	
Y_Minimum	116322877.6	134056676.1	3.45005E+12		283390856.3	17647756.35		28989356104	-3455420.5	-360599.27	-4976242.019		-156364.68	-36475421.25	37415			13024.92		-27259	-80188		67484.5	-64026	-129745.76		-23240
Y_Maximum	116319422.6	134053472.3	3.45005E+12		283450218.6	17650376.1	1461527.299	28995467841	-3455883.07	-360704 42	-4976981.311	156361	-156360.86			-19482	432.54	13025.11		-27258	-80180		67488.3	-64008	-129732.13		-23230
Pixels_Areas	-108178.7691	-37918.81391	283390856.3	283450218.6	3861950.94		109980.3937	401265771.8	-14200.6572		-24199.88807						-98.887		-91.541						43.7033491		
X_Perimeter	-5394.437705	-390.1609618	17647756.35	17650376.1				16371117.53			-1588.897656		0.39776214	291,9555338			-7.5039		-4.7654	-8.4057			21.8805				
Y_Perimeter	-4534.676359	-3021650976	1458293.234	1461527,299	109980.3937	4986.715559			-566.294623	-48.405513	-1080.508614		3.80739944	455.9438211		2.80255	-6.9535		-8.6399	-18636					11.0490339		
Sum_of_Luminosity	-11143359.7	-3681264.498	28989356104	28995467841	401265771.8	16371117.53	11401566.26	41955304743	-1307025.16	320682.091	-2739601,778	-883.04	883.041173	410738.0965	-2999	3625.93	-10439	5468.395	-9306	-9947.7	2853.31	63118.1	33003.2	33381.4	3664.59415	-1983.36	21875.2
nimum_of_Luminosi	-951.8232783	-1138.276598	-3455420.504	-3455883.071	-14200.65718	-530.098482	-566.294623	-1307025.159	783.1401496	372.07941	-961.1125523	-3.5608	3.560808	-214.8208485	126054	0.70863	0.62012	-0.1286	0.49108	-10029	-2.5134	-5.1218	-11253	-3.4568	-2.9065472	3.966339	-1.9926
ximum_of_Luminosi	-1271.645381	-1083.610253	-360599.2656	-360704.4187	1670.518887	155.6800339	-48.4055126	320682.0907	372.0794096	453.343985	-429.1640567	-1.1333	1.13326632	-207.067559	0.70607	0.06723	-0.3989	0.132993	0.86146	-12098	-2.2414	-0.9315	1.14022	-1977	-3.2126129	2.972325	-0.6765
_ength_of_Conveyer	11924.55184	11200.64775	-4976242.019	-4976981.311	-24199.88807	-1588.89766	-1080.50861	-2739601.778	-961.112552	-429.16406	23315.68721	31.0875	-31.087453	1497.498075	-1.2592	-4.0573	3.0107	-0.75399	6.08813	2.09962	-0.7786	-7.8243	-2.4015	-8.5893	-5.0711032	-4.92738	-5.6304
TypeOfSteel_A300	29.67574293	32.61471008	156364.6793	156360.8628	1.351969557	-0.39776214	-3.80739944	-883.0411729	-3.560808	-1.1332663	31.08745295	0.23538	-0.2353776	0.95174169	0.0097	-0.0103	0.02039	0.001878	0.04098	-0.0045	-0.057	-0.0425	0.00926	-0.06	-0.077711	-0.01879	-0.0368
TypeOfSteel_A400	-29.67574293	-32.61471008	-156364.6793	-156360.8628	-1.351969557	0.397762142	3.807399444	883.0411729	3.560808002	1.13326632	-31.08745295	-0.2354	0.23537759	-0.95174169	-0.0097	0.01035	-0.0204	-0.00188	-0.041	0.00453	0.05699	0.04249	-0.0093	0.05996	0.07771097	0.018791	0.03683
teel_Plate_Thicknes	-2632.051308	-2812.580666	-36475421.25	-36474927.9	4833.067072	291.9555338	455.9438211	410738.0965	-214.820849	-207.06756	1497.498075	0.95174	-0.9517417	5125.563536	-1.5218	0.73824	-1.1786	-0.1359	-2.8403	1.98628	5.73755	3.13783	-1324	4.97351	7.374493	-1.74604	186507
Edges_Index	7.804720852	8.087398603	37414.99906	37413.68811	-33.46750604	-0.60031522	-1.53201386	-2998.960043	1.260536306	0.70607071	-1.259216121	0.0097	-0.0097002	-1.521782321	0.09148	-0.001	0.00872	0.000203	0.00459	-0.0035	-0.0161	-0.0091	0.0035	-0.0128	-0.0215925	0.006381	-0.0017
Empty_Index	-4.637730446	-3.23286886	-19483.89879	-19481.98446	33.16592548	3.708042027	2.802552218	3625.932952	0.708628129	0.0672281	-4.057277747	-0.0103	0.01034663	0.738238412	-0.001	0.01958	-0.0032	0.001026	-0.012	-0.01	-0.0083	0.02358	0.01979	0.02008	-0.0041598	0.002612	0.02223
Square_Index	16.25411704	12.3405555	438.1494723	432.5402423	-98.88709824	-7.5038786	-6.95354875	-10438.79882	0.620123515	-0.3989065	3.010699777	0.02039	-0.0203865	-1.178639973	0.00872	-0.0032	0.08082	-0.0028	0.02338	0.01384	-0.0156	-0.0528	-0.0184	-0.0363	-0.0241823	0.000779	-0.0284
Outside_X_Index	-2.207752115	0.937972439	13024.92363	13025.11041	51.49464345	3.645861078	1.103055338	5468.394678	-0.12859704	0.13299303	-0.753987351	0.00188	-0.0018783	-0.135897612	0.0002	0.00103	-0.0028	0.002298	0.00165	-0.0051	-0.0052	0.01123	0.01098	0.00123	-0.0082235	-0.00014	0.00439
Edges_X_Index	3.981843891	6.354862501	65784.75511	65776.6648	-91.54081341	-4.76539773	-8.63994904	-9306.013351	0.491079514	0.86145699	6.088133375	0.04098	-0.0409833	-2.840302618	0.00459	-0.012	0.02338	0.001651	0.06497	-0.0132	-0.0643	-0.0654	0.01067	-0.0849	-0.0995926	0.004356	-0.0445
Edges_Y_Index	3.033535936	-4.09565128	-27259.06639	-27257.83588	-92.01048076	-8.40572548	-1.86356806	-9947.677177	-1.00287196	-1.2097725	2.099622592	-0.0045	0.00452688	1.986277282	-0.0035	-0.01	0.01384	-0.00507	-0.0132	0.04651	0.06329	-0.0232	-0.0547	0.02315	0.08367077	-0.00762	-0.0157
lutside_Global_Inde	-0.749381207	-8.154434716	-80188.26901	-80179.9869	33.43873475	-2.70250503	6.613401643	2853.310794	-2.51335554	-2.2414295	-0.778633591	-0.057	0.05698849	5.737549503	-0.0161	-0.0083	-0.0156	-0.00523	-0.0643	0.06329	0.22489	0.04151	-0.0743	0.10804	0.22563789	-0.01612	0.01807
LogOfAreas	-38.7466573	-23.16531419	18896.91936	18916.66407	609.5825765	34.55241658	27.97262199	63118.13488	-5.12180304	-0.931531	-7.824302724	-0.0425	0.0424888	3.137833784	-0.0091	0.02358	-0.0528	0.011227	-0.0654	-0.0232	0.04151	0.26397	0.11113	0.17299	0.06952865	-0.01913	0.14396
Log_X_Index	-17.69682855	-2.328622991	67484.52158	67488.25554	313.5723351	21.88046254	9.792724565	33003.21435	-1.1252859	1.14022351	-2.401521936	0.00926	-0.009256	-1.323991809	0.0035	0.01979	-0.0184	0.01098	0.01067	-0.0547	-0.0743	0.11113	0.11319	0.01578	-0.0994845	0.000483	0.06186
Log_Y_Index	-24.53986805	-22.97467847	-64025.94289	-64008.22416	325.8134608	16.02187314	20.68831366	33381.37968	-3.45678551	-1.9769766	-8.589345266	-0.06	0.05995859	4.973512072	-0.0128	0.02008	-0.0363	0.001231	-0.0849	0.02315	0.10804	0.17299	0.01578	0.17393	0.16410323	-0.01757	0.10039
Orientation_Index	-7.922598673	-19.57774969	-129745.7598	-129732.1326	43.70334905	-3.73802206	11.04903391	3664.594154	-2.90654723	-3.2126129	-5.071103193	-0.0777	0.07771097	7.374493001	-0.0216	-0.0042	-0.0242	-0.00822	-0.0996	0.08367	0.22564	0.06953	-0.0995	0.1641	0.29593986	-0.02062	0.03893
Luminosity_Index	-9.224880651	-9.431951641	-16609.74067	-16611.29051	-30.48207785	-1.04301705	-1.6364724	-1983.358862	3.966338811	2.97232526	-4.927378756	-0.0188	0.01879117	-1.746035577	0.00638	0.00261	0.00078	-0.00014	0.00436	-0.0076	-0.0161	-0.0191	0.00048	-0.0176	-0.0206199	0.026311	-0.0086
SigmoidOfAreas	-22.96515837	-16.81293666	-23239.50842	-23230.0017	210.5371973	14.65662215	12.69680272	21875.15614	-1.99260504	-0.6764549	-5.630427402	-0.0368	0.03682815	1.865068786	-0.0017	0.02223	-0.0284	0.00439	-0.0445	-0.0157	0.01807	0.14396	0.06186	0.10039	0.03893198	-0.00861	0.10045

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

The accuracy from Bayes classifier came is 93.99%.

This is because, when solving a problem Bayes directly focusses on finding similarity between observations, K-NN does better because of its inherent nature to optimize locally.

- 2. The diagonal elements of the covariance matrix denote the variance of the attribute with itself, that is, how much is the data spread across the median. From looking at the diagonal elements, we can infer the dispersion of the attribute and have an idea about the range of values in the attribute.
- 3. The off-diagonal elements indicate the covariance between the two attributes-how the attributes vary with respect to each other.
- 2 attributes with maximum covariance are Y_maximum and Sum_of_Luminosity for both classes.

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	0.896
2.	KNN on normalized data	0.970
3.	Bayes	0.93992

Inferences:

1. KNN on normalized data- highest KNN- lowest

KNN
Bayes
KNN on normalized data

2. Ascending order

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Reason=

KNN performs better when data is normalized because, the attributes on a bigger scale can no longer overpower and influence the results in their favor. This happens because Euclidean Distance is the total absolute distance along various axes and doesn't consider for the different ranges. The Bayes classifier directly focusses on finding similarity between observations, K-NN does better because of its inherent nature to optimize locally. Also in the above example which involves just 2 clusters, KNN will give more accurate predictions than Bayes..