

AWS

AWS のネットワーク設計入門

アマゾン ウェブ サービス ジャパン株式会社 ソリューションアーキテクト 岡本 京 2017/5/31

自己紹介

▶ 岡本 京(おかもと ひろし)

- 所属と職種
 - アマゾン ウェブ サービス ジャパン株式会社 技術統括本部 ストラテジックソリューション部 ソリューション アーキテクト
- 経歴
 - プリセールスエンジニア(ネットワーク)→ AWS
- 好きなAWSサービス
 - Amazon VPC

Solutions Architect - Professional

DevOps Engineer - Professional

本セッションの内容

AWS上でシステムを構築するにあたり、ネットワーク面ではどのような検討や設計が必要なのかをお伝えします

機能の詳細や操作手順ではなく、考え方やデザインの説明にフォーカスさせて頂きます

• IPアドレスのサブネッティング、ルーティング、DNSなどの基本的な知識を前提とさせていただきます

目次

- ・はじめに
- プライベートネットワーク設計のステップ
- ユースケース別ネットワーク設計例
- 更なる活用に向けて
- まとめ

AWS上でのネットワーク設計のポイント

物理設計の 検討、構築が不要 マネージドサービスによる運用負荷の軽減

プログラマブルな 作成、管理、展開

AWSのネットワーク関連サービス

Amazon Virtual Private Cloud (VPC) AWS上にプライベートネットワークを構築

AWS Direct Connect (DX) AWSと自社拠点/DCの専用線接続

Amazon Route 53 パブリック/プライベートに対応したマネージドDNSサービス

AWSインフラストラクチャとネットワーク関連サービス

16のリージョン

- 42の**アベイラビリティゾーン(AZ)**で構成

VPCは リージョン内で稼働

53のDirect Connect ロケーション

- リージョンとお客様拠点の相互接続ポイント
- 日本は東京、大阪の2箇所

DXは DXロケーションで物理接続

77のエッジロケーション

- CDN (CloudFront) エッジサーバーなどが配置

Route 53は エッジロケーション内で稼働

設計をはじめましょう

AWS上でのネットワークの検討ポイントは 使いたいサービスによって異なります

AWSサービスのネットワーク観点での分類

プライベート IPアドレス空間上で 使用するサービス

- VPCを用いてアドレス空間を構成
- インスタンスの配置を お客様が意識して管理

例)

パブリック IPアドレス空間上で 使用するサービス

- 抽象度が高く、お客様は 構成を意識せずにサービ スを使用
- AWSマネジメントコン ソール、各APIエンドポ イントもここに存在

例)

S3

Lambda DynamoDB CloudWatch

システム要件とネットワーク関連サービスのマッピング

要件を実現するためのAWSサービスの選定/組み合わせは是非SAにご相談ください!

プライベートネットワーク設計のステップ

- 1. VPCの作成
- 2. サブネットの作成
- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

ステップ1. VPCの作成

- 使用するCIDRブロックを決定する
 - 大きさは /28 から /16
 - レンジはRFC1918を推奨
- 作成後は変更不可のため大きめに
 - ・ /16 が推奨
- オンプレミスや他VPCのレンジと重複させない
 - 相互接続する可能性を見越して

1. VPCの作成

- 2. サブネットの作成
- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

ステップ2. サブネットの作成

- VPCのCIDRブロックの範囲からIPアドレスレンジを切り出す
 - 必要なIPアドレス数を見積もる
 - /24 が標準的
- サブネット分割はルーティングポリシーに応じて行う
 - インターネットアクセスの有無
 - 拠点アクセスの有無など
- サブネットはAZの中に作成される
 - 高可用性のために2つ以上のAZの 使用を推奨

1. VPCの作成

2. サブネットの作成

- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

サブネットのサイズの検討

	サブネット マスク	/16 のVPC内に 作成可能なサブネット数	サブネットあたりの IPアドレス総数 2^(32-mask) -2	ホストに割り当て可能な IPアドレス数 総数 - 3
推奨	/18	4	16382	16379
	/20	16	4094	4091
	/22	64	1022	1019
	/24	256	254	251
	/26	1024	62	59
	/28	16384	14	11

• サブネットに割り当てられたIPアドレスのうち下記は割り当て不可

• .1: VPC ルータ(VPC内のインスタンスにルーティング機能を提供)

• .2: Amazon DNS サーバーのため予約

.3:将来用途のための予約

ステップ3. VPCコンポーネントの配置と ルーティング設定

- VPCコンポーネントを配置する
 - インターネットに疎通が必要な場合はIGW、社内に接続が必要な場合はVGWなど
- サブネット毎のルートテーブルを編集する
 - デフォルトでVPC内宛ての経路は 作成済み
 - IGWなどに向けた経路を作成
 - プライベートサブネットとパブ リックサブネットの大別

- 1. VPCの作成
- 2. サブネットの作成
- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

VPCコンポーネントの種類(抜粋)

VPC単位で配置するコンポーネント

カスタマーゲートウェイ (CGW) VPN接続

仮想プライベート ゲートウェイ (VGW) 拠点との接続

サブネット単位で配置するコンポーネント

VPCルータ

ルートテーブルに 基づいたルーティング (自動的に配置)

インスタンス単位で配置するコンポーネント

抽象化されたVPCコンポーネントを活用することで管理工数を削減、自動化を促進

ステップ4. インスタンスの配置

- 1. VPCの作成
- 2. サブネットの作成
- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

- サブネット、インスタンスのセキュリティポリシーを決定する
 - セキュリティグループとネット ワークACLの作成
- インスタンスを配置する
 - プライベートIPアドレスはデフォ ルトで自動割り当て
 - インターネットに直接アクセスさせるインスタンスにはパブリック IPアドレスを付与(動的 又は EIP)

VPCのセキュリティコントロール

セキュリティグループ	ネットワークACL
インスタンスに適用	サブネットに適用
ホワイトリスト型 Allowのみを指定可能 インバウンド/アウトバウンドに対応	ブラックリスト型 Allow/Denyを指定可能 インバウンド/アウトバウンドに対応
ステートフル 戻りのトラフィックは自動的に許可	ステートレス 戻りのトラフィックも明示的に許可設定する
全てのルールを適用	番号の順序通りに適用

- 例えば下記のような形で相補的に使用
 - セキュリティグループ:インスタンスレベルで必要な通信を許可、通常運用でメンテナンス
 - ネットワークACL:サブネットレベルでの不要な通信を拒否、メンテナンスは構築時など最小限に
- まずはセキュリティグループのインバウンド方向でデザイン

ステップ5. 名前解決の検討

- 自動割り当てのDNS名を活用する
 - AWSではIPアドレスでなくDNS 名を活用してアプリの設計を行 うことを推奨
 - VPCでは暗黙的にDNSが動作
 - インスタンスには自動でDNS名 が割り当てられる
- 独自DNS名を使用する
 - Route 53により独自DNS名を割り当て、管理することが可能

- 1. VPCの作成
- 2. サブネットの作成
- 3. VPCコンポーネントの配置とルーティング設定
- 4. インスタンスの配置
- 5. 名前解決の検討

ユースケース別ネットワーク設計例

- 1. 公開サービス基盤 管理拠点とVPN接続
- 2. 社内システム基盤 オンプレミスとハイブリッド運用

Webサービス基盤、管理用にVPNで拠点接続

Webサービス基盤、管理用にVPNで拠点接続

ポイント

パブリックサブネットは必要最低限に

プライベートサブネット

パブリックサブネット

Webサービス基盤、管理用にVPNで拠点接続

ポイント

- パブリックサブネットは必要最低限に
- 管理拠点とVPN接続

Webサービス基盤、管理用にVPNで拠点接続

ポイント

- パブリックサブネットは必要最低限に
- 管理拠点とVPN接続
- WebサイトのアセットをS3に保存しているのでVPCエンドポイントを活用

10.0.0.0/16

Webサービス基盤、管理用にVPNで拠点接続

local

172.16.1.0/24

インターネット

VPC

Endpoint vpce-ccc Amazon S3

名前解決フロー ユーザーアクセス VPC内 オンプレミスからVPC内

- ス基語 I用 ICVPN パブリックホストゾーン example.com
 - クライアント (ユーザー) Amazon DNS (VPC内) DNS キャッシュ クライアント + (VPC内) Web Server 1

クライアント

(管理者)

オンプレミス

DNS

キャッシュサーバー

- オンプレミスからVPC内の名前解決が必要な場合は、 VPC上に別途構築したDNSサーバーを通じてフォ ワーディングする
- VPC内のAmazon DNSはVPC内からの名前解決リク エストにのみ応答する仕様のため

Route 53とAWSサービスの連携を活用する

ユーザーアクセス
平常時
アプリケーション障害時

- ・ ALIASレコード
 - AWSのサービスエンドポイントのIPアドレスを 直接返答する仮想リソースレコード
 - CNAMEと比較してクエリ回数を削減できレスポンスが高速化
- ELBと連携したDNSフェイルオーバー
 - Route 53のヘルスチェック機能とELBが連携
 - アプリケーションの障害時にSorryページに切り替える場合などに活用可能
 - S3の静的Webサイトホスティング機能との組み合わせも有効

DNS名	タイプ	值	ルーティング ポリシー	フェイルオーバー レコードタイプ
www.example.com	Α	Alias <elbのdns名></elbのdns名>	Failover	Primary
www.example.com	Α	Alias <s3静的webサイトのdns名></s3静的webサイトのdns名>	Failover	Secondary

例2. 社内システム基盤

オンプレミスから移行しハイブリッドで運用

例2. 社内システム基盤

オンプレミスから移行しハイブリッドで運用

ポイント

• DXパートナー様のサービスにより閉域 網とAWSリージョンを専用線接続

例2. 社内システム基盤

オンプレミスから移行しハイブリッドで運用

ポイント

- DXパートナー様のサービスにより閉域 網とAWSリージョンを専用線接続
- プライベートサブネットのサーバーが インターネットに接続するためにNAT ゲートウェイを利用

オンプレミスからVPC内

VPC内からオンプレミス

クライアント オンプレミス (オンプレミス) DNS

※オンプレミス環境とAWS環境を別のドメインで運用 する場合の例

- プライベートホストゾーンはAmazon DNSからのみ 参照可能
- Amazon DNSにはフォワーディング設定はできない
- VPCのDHCPオプションセットによりEC2インスタン スには任意のDNSサーバーを設定可能

プライベートホストゾーン example2.com

キャッシュサーバ-

更なる活用に向けて

VPCピア接続 (VPC Peering)

- 2つのVPC間でルーティング
- 異なるAWSアカウントの VPCとも接続可能
- 同一リージョン内のみ
- CIDRの重複は不可
- 直接ピア接続しているVPC にのみルーティング

共通機能VPCをハブとした大規模AWS環境の構成例

ポイント

- VPCのハブアンドスポーク構成
- ハブVPCに共通機能やVPCコンポーネントを集約
- ・ハブVPCのプロキシサーバにより スポークVPCと拠点/インター ネットとを通信可能とする

共通機能VPCをハブとした大規模AWS環境の構成例

通信内容の可視化: VPC Flow Logs

- ネットワークトラフィックをキャ プチャし、CloudWatch Logsへ Publish
- セキュリティグループとネット ワークACLのルールで accepted/rejectされたトラ フィックログを取得
- Elasticsearch Service上のKibana などでグラフィカルな表示、分析 も可能

version

IPv6にも対応済み

	IPv4	IPv6	
アドレス体系	32bit	128bit	
VPCでの利用	デフォルトで適用	オプトイン (自動適用ではなく任意)	
CIDRブロックサイズ	16~28bitで選択 自分で任意のアドレスを設定可能	56bit固定 Amazon保有のprefixから自動で56bit CIDRが アサインされる(選べない)	
サブネット ブロックサイズ	16~28bitで選択	64bit固定	
パブリックIP/ プライベートIP	それぞれ存在 (NATを介してパブリックIPをプライマリプライ ベートIPにMAP)	パブリックのみ (プライベートにするにはEgress-only Internet Gatewayを利用)	
インスタンスタイプ	全てのインスタンスタイプ	M3、G2を除く全ての現行世代の インスタンスタイプでサポート	
アマゾン提供DNS	プライベートIP、Elastic IPに対する それぞれのDNSホスト名を受信	提供されるDNSホスト名はなし	
閉域接続	VPN、DirectConnect	DirectConnectのみ	

まとめ

- AWSでは、ネットワークの設計、調達、構築、運用の工数を削減 し、やりたいことに集中できる
- VPC, Direct Connect, Route 53を活用するとシステム要件に 沿ったネットワーク環境を構築可能
- まずは1つのシステムを稼働してみましょう。
 - すぐに始められます!
 - VPC作成ウィザードで数クリックで作成
 - 無料利用枠の活用 (VPC自体はそもそも無料)
 - https://aws.amazon.com/jp/free/

ご参考資料/情報

- サービス毎の詳細説明資料 VPC, DX, Route 53
 - https://aws.amazon.com/jp/aws-jp-introduction/#networking
 - 機能、ステップバイステップの実機操作解説など
 - 「クラウド 活用資料集」で検索するとトップに表示されます

- AWS 専用線アクセス体験ラボ sponsored by Intel®
 - https://aws.amazon.com/jp/dx labo/
 - Direct Connectの接続を無料で体験学習できます!

本セッションのFeedbackをお願いします

受付でお配りしたアンケートに本セッションの満足度やご感想などをご記入くださいアンケートをご提出いただきました方には、もれなく素敵なAWSオリジナルグッズをプレゼントさせていただきます

アンケートは受付、パミール3FのEXPO展示会場内にて回収させて頂きます

