

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

General purpose & High capacitance Class 2, X5R

4 V TO 50 V

100 pF to 100 μF

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes X5R series chip capacitors with leadfree terminations.

<u>APPLICATIONS</u>

PCs, Hard disk, Game PCs Power supplies **DVD** players Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

XXXX X X X5R X BB XXX (2) (3)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

PHYCOMP BRAND ordering codes

GLOBAL PART NUMBER (preferred), PHYCOMP CTC (for North America) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

I2NC CODE

PHYCOMP CTC code (for north america)

● Example: 06032B225M5B20D

0603	2B	225	М	5	В	2	0	D
Size code	Temp. Char.	Capacitance in pF	Tolerance	Voltage	Termination	Packing	Marking	Range identifier
0201 0402 0603 0805 1206 1210 1812	2B = X5R	$101 = 100 \text{ pF}$; the third digit signifies the multiplying factor: $0 = \times 1$ $1 = \times 10$ $2 = \times 100$ $3 = \times 1,000$ $4 = \times 10,000$ $5 = \times 100,000$ $6 = \times 1,000,000$ $7 = \times 10,000,000$	$M = \pm 20\%$	4 = 4 V 5 = 6.3 V 6 = 10 V 7 = 16 V 8 = 25 V 9 = 50 V		2 = 180 mm 7" Paper/PE 3 = 330 mm 13" Paper/PE B = 180 mm 7" Blister F = 330 mm 13" Blister P = Bulk case	0 = no marking	D = Class 2 MLCC

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION

Table I For outlines see fig. 2

	C I TO Oddines	<u> </u>	- 000	L ₂ / L ₃	(mm)	L ₄ (mm)
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03 ^(I)	0.3 ±0.03 ⁽¹⁾		0.10	0.20	0.20
	0.6 ±0.05 ⁽²⁾	0.3 ±0.05 ⁽²⁾	-		0.20	0.20
	1.0 ±0.05 ⁽¹⁾	0.5 ±0.05 ^(I)				
0402	1.0 ±0.15 ⁽²⁾	0.5 ±0.15 ⁽²⁾		0.20	0.30	0.40
	1.0 ±0.20 ⁽³⁾	0.5 ±0.20 ⁽³⁾	_			
	1.6 ±0.10 ⁽¹⁾	0.8 ±0.10 ⁽¹⁾				
0603	1.6 ±0.15 ⁽²⁾	0.8 ±0.15 ⁽²⁾		0.20	0.60	0.40
	1.6 ±0.20 ⁽³⁾	0.8 ±0.20 ⁽³⁾				
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾	Refer to table 2 to 4	0.25	0.75	0.55
	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾	Lable 2 to 4	0.25	0.75	0.55
	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾				
1206	$3.2 \pm 0.30^{(2)}$	1.6 ±0.20 ⁽²⁾		0.25	0.75	1.40
	3.2 ±0.30 ⁽³⁾	1.6 ±0.30 ⁽²⁾	_			
1210	3.2 ±0.20 ⁽¹⁾	2.5 ±0.20 ⁽¹⁾		0.25	0.75	1.40
1210	$3.2 \pm 0.40^{(2)}$	$2.5 \pm 0.30^{(2)}$		0.25	0.75	1.40
1812	4.5 ±0.20 ⁽¹⁾	3.2 ±0.20 ⁽¹⁾	•	0.25	0.75	2.20
1012	4.5 ±0.40 ⁽²⁾	3.2 ±0.40 ⁽²⁾		0.25	0.75	2.20

OUTLINES

- 1. Dimensions for size 0201, C < 1 μ F; 0402, C < 4.7 μ F; 0603, C < 4.7 μ F; $0805 \text{ to } 1812, C \le 100 \text{nF}$
- 2. Dimensions for size 0201, C \geq 1 μ F; 0402, C \geq 4.7 μ F; 0603, 10 μ F (6.3V) \geq C \geq 4.7 μF ; 0805 to 1812, C > 100 nF
- 3. Dimensions for size 0402, C \geq 10 μ F; 0603, C \geq 10 μ F(10V); 1206, C \geq 100 μ F

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 2 Sizes from 0201 to 0402

CAP.	Last 2-digit	0201	0102					0402					
	of 12NC	4 V	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
100 pF	09												
150 pF	12												
220 pF	14												
330 pF	16						0.3±0.03						
470 pF	18												
680 pF	21												
1.0 nF	23					0.3±0.03							
1.5 nF	25												
2.2 nF	27												
3.3 nF	29		0.3±0.03	0.3±0.03	0.3±0.03								
4.7 nF	32												
6.8 nF	34												
10 nF	36												
15 nF	39												
22 nF	41												
33 nF	43												
47 nF	45												
68 nF	47										0.5±0.05	0.5±0.05	0.5±0.05
100 nF	49												
150 nF	52								0.5±0.05	0.5±0.05			
220 nF	54	0.3±0.03	0.3±0.03	0.3±0.03									
330 nF	56												
470 nF	58	0.3±0.03	0.3±0.03								0.5±0.05	0.5±0.05	0.5±0.05
680 nF	61												
Ι.0 μF	63	0.3±0.05	0.3±0.05								0.5±0.05	0.5±0.05	
2.2 µF	67												
4.7 µF	72								0.5±0.15				
10 μF	76							0.5±0.20	0.5±0.20				

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

CAPACITANCE RANGE & THICKNESS FOR X5R

CAP.	Last 2-digit of	0603				0805			
	12NC	6.3 V	10 V	16 V	25 V	6.3 V	10 V	16 V	25 V
10 nF	36								
15 nF	38								
22 nF	41								
33 nF	43								
47nF	45								
68 nF	47								
100 nF	49								
150 nF	52								
220 nF	54								
330 nF	56								
470 nF	58								
680 nF	61	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1			0.05 + 0.1	1.25±0.2
Ι.0 μF	63					0.05.10.1	0.05 1.0 1	0.85±0.1 1.25±0.2	
2.2 µF	67					0.85±0.1 1.25±0.2	0.85±0.1 1.25±0.2	-	0.85±0.1 1.25±0.2
4.7 µF	72			0.8±0.15					
ΙΟ μF	76	0.8±0.15	0.8±0.2					1.25±0.2	1.25±0.2
22 µF	81	0.8±0.2					1.25±0.2		
47 µF	85					1.25±0.2			
100 µF	89								

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

Table 4 Sizes from 1206 to 1812

43

56

67

72

33 nF

330 nF

2.2 µF

 $4.7~\mu F$

7 18

CAPACITANCE RANGE & THICKNESS FOR X5R

CAP.	Last 2-digit of I2NC	1206 6.3 V	10 V	16 V	25 V	1210 6.3 V	10 V	16 V	25 V	1812 6.3 V
I0 nF	36									
15 nF	38									
22 nF	41									

47nF	45
68 nF	47
100 nF	49
150 nF	52
220 nF	54

470 nF	58								
680 nF	61								
1.0 μF	63	1.15.10.1	1.15.10.1	1.15.10.1	1.15.10.1				
		1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1				

					1.6±0.2	19+02	1.9±0.2	1.9±0.2	1.9±0.2	
ΙΟ μΕ	76	17103	17102	1.6±0.2		1,7±0,2	1,7±0,2	1.7±0.2	1,7±0.2	
22 µF	81	1.6±0.2	1.6±0.2			0.5.00	2.5±0.2	2.5±0.2	2.5±0.3	
47 μF	85					2.5±0.2 ⁻				2.5±0.2
100 μF	89	1.6±0.3				2.5±0.3				3.2±0.3

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

THICKNESS CLASSES AND PACKING QUANTITY

_	_			_
	la	h	Р	5

lable 5		T40514/0711	Ø180 MM	/ 7 INCH	Ø330 MM	/ 13 INCH	
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1204	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1206	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
1000	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000			
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.25 ±0.2 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			
		·		-			

ELECTRICAL CHARACTERISTICS

X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 6						
DESCRIPTION						VALUE
Capacitance range						10 nF to 100 μF
Capacitance tolerance						±10% and ±20%
Dissipation factor (D.F.)						
	6.3 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	1210 ≥ 22 μF		≤ 7%
			0201 ≥ 12 nF;	0402 ≥ 330 nF;	$0603 \ge 2.2 \ \mu F;$	≤ 10%
			0805 ≥ I μF;	1206 ≥ 22 μF;	1210 ≥ 100 μF	
			1206 ≥ 100 μF			≤ 15%
	10 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0805 ≥ I μF;	1206 ≥ 6.8 μF	≤ 7%
			0201 ≥ 100 nF;	0402 ≥ 330 nF;	0603 ≥ I μF;	≤ 10%
			$0805 \ge 2.2 \ \mu F;$	1206 ≥ 10 μF;	1210 ≥ 10 μF	
	16 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0603 ≥ 680 nF;	0805 ≥ I µF	≤ 7%
			0402 ≥ 330 nF;	0603 ≥ 2.2 μF;	0805 ≥ 10 μF	≤ 10%
			1206 ≥ 10 µF;	1210 ≥ 10 μF		
	≥ 25 V					≤ 3.5%
		Exception:	0402 ≥ 27 nF;	0603 ≥ 220 nF;	0805 ≥ 2.2 μF;	≤ 5%
			1206 ≥ 4.7 μF;	1210 ≥ 10 μF		
			0402 ≥ 180 nF			≤ 7%
			0402 ≥ 470 nF;	1206 ≥ 10 μF	0805 ≥ 4.7 µF	≤ 10%
Insulation resistance after	· I minute	at U _r (DC)		R _{ins} ≥ 10 G	Ω or $R_{ins} \times C_r \ge 500$ se	conds whichever is less

(temperature characteristic/coefficient):

-55 °C to +85 °C

±15%

SOLDERING RECOMMENDATION

Table 7

METHOD	0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{ms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance
Dissipation Factor (D.F.) (I)		4.5.2	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for C} \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{ms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for C} \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for C} > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	In accordance with specification
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification
Temperature Characteristic		4.6	Class 2: Between minimum and maximum temperature X5R: -55 °C to +85 °C Normal Temperature: 20 °C	<general purpose="" series=""> ΔC/C Class 2: X5R: ±15% <high capacitance="" series=""> ΔC/C Class 2: X5R: ±15%</high></general>
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N

NOTE

 $I.\ The\ figure\ indicates\ typical\ inspection.\ Please\ refer\ to\ individual\ specifications.$

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Bond Strength of Plating on End Face	IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3 Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	No visible damage September
Resistance to Soldering Heat		4.9	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I minute Preheating: for size > 1206 : 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned <general purpose="" series=""> ΔC/C Class2: X5R: ±10% <high capacitance="" series=""> ΔC/C Class2: X5R: ±10%</high></general>
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds. I. Temperature: 235±5°C / Dipping time: 2 ±0.5 s 2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm	The solder should cover over 95% of the critical area of each termination

ı	0
ī	8

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Rapid Change of Temperature	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/-10 °C for I hour, then keep for 24 ±1 hours at _room temperature	No visual damage <general purpose="" series=""></general>
			The state of the s	ΔC/C
			5 cycles with following detail:	Class2:
			30 minutes at lower category temperature 30 minutes at upper category temperature	X5R: ±15%
				<high capacitance="" series=""></high>
			Recovery time 24 ±2 hours	Δ C/C
				Class2:
				X5R: ±15%
			-	D.F. meet initial specified value
				R _{ins} meet initial specified value
Damp Heat with U _r Load		4.13	I. Preconditioning, class 2 only: I50 +0/-10 °C /I hour, then keep for 24 ±1 hour at	No visual damage after recovery
,			room temp	<general purpose="" series=""></general>
			2. Initial measure:	Δ C/C
			Spec: refer to initial spec C, D, IR	Class2:
			3. Damp heat test:	X5R: ±15%
			500 ± 12 hours at 40 ± 2 °C;	D.F.
			90 to 95% R.H. I.0 U _r applied	Class2:
			4. Recovery:	X5R: ≤ 16V: ≤ 7%
			Class 2: 24 ±2 hours	≥ 25V: ≤ 5%
			5. Final measure: C, D, IR	R _{ins}
				Class2:
			P.S. If the capacitance value is less than the minimum	X5R: ≥ 500 M Ω or R _{ins} × C _r ≥ 25s
			value permitted, then after the other measurements have been made the capacitor shall be preconditioned	whichever is less
			according to "IEC 60384 4.1" and then the requirements	<high capacitance="" series=""></high>
			shall be met.	Δ C/C
				Class2:
				X5R: ±20%
				D.F.
				Class2:
				X5R: 2 × initial value max
				R _{ins}
				Class2:
				X5R: 500 M Ω or R _{ins} x C _r \geq 25s

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Endurance	IEC 60384- 21/22	4.14	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test: 	
Voltage Proof	IEC 60384-1	4.6	Specified stress voltage applied for 1 minute $U_r \le 100 \text{ V}$: series applied 2.5 U_r $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) $200 \text{ V} < U_r \le 500 \text{ V}$ series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V}$: 1.3 U_r l: 7.5 mA	No breakdown or flashover

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 16	Nov. 29, 2012	-	- Test condition updated
Version 15	Sep. 03, 2012	-	- Test condition updated
Version 14	May 16, 2012	-	- Product range updated
Version 13	May 02, 2012	-	- Product range updated
Version 12	Feb 10, 2012	-	- Product range updated
Version 11	Oct 21, 2011	-	- Product range updated
Version 10	Jun 21, 2011	-	- Product range updated
Version 9	Mar 23, 2011	-	- Product range updated
Version 8	Jan 25, 2011	-	- Rated voltage of 0201 extend to 50V
Version 7	Jan 05, 2011	-	- Product range updated
Version 6	Jul 27, 2010	=	- Dimension on 0603 and 1206 case size updated
Version 5	Apr 21, 2010	-	- The statement of "Halogen free" on the cover added
			- Dimension updated
Version 4	Jan 13, 2010	-	- Thickness updated
Version 3	Aug 17, 2009	-	- Dimension updated
Version 2	Jun 09, 2009	-	- Ordering code updated
Version I	May 15, 2009	-	- Product range updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X5R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: UP-X5R_X7R_HighCaps_6.3-to-25V_II, UY-X5R_X7R_HighCaps_6.3-to-25V_II
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen free compliant" added
			- Test method and procedure updated