RECAP

· A weak projective geometry Jb in Mis a canonical projective if

· Jb fully embodded in Mover b

. If hp(b) = hp(b'), b \(\delta\b'\) Hen Ib and Ib' are orthogonal. ie Ib \(\precedet\b'\) b, b'

2.5.2 Every co-ardinalismy geamely; s non-arthogonal to a commical projective geometry.

. A standard system of geometries for M is a O-det function

. Standard systems J: A > Meg and J': A' -> Meg are equitatent if there are a EA, a' EA' such that Ja & Ja', re O-Inked, x:a-ja' where a is a 0-det isomorphism of geometries Ia as Sa'

3 SMOOTH APPROXIMABILITY

3.1 ENVELOPES.

DEFINITION 3 1 1

Let M be Lie-coordinatized

1. A regular expansion of M is a smokine obtained by adjoining to M finishy many sets of Meg with the induced structure

2. A regular expansion is adequate if it contains a copy of each canonical projective which is non-orthogonal to a co-ordinalising geometry of M.

S. A approximation to a geometry of a green type 3 a thile or countable dimensional geometry of the same hype

4 A dinension Function m defined on equivalence classes of standard systems of geomeny with values isomorphism hytes of approximations to projective geometries of the gren type

$$J:A \rightarrow \{Ja:aeA\}$$
 $I:A' \rightarrow \{Sa:a'eA'\}$
 $I:A' \rightarrow \{Sa$

n chooses a dimension 4 If m is a dimension function then a m-envelope is

i) E is algebraically closed in M. (not Meg)

a subset & such that:

in) For CEMIÉ there is a standard system J: A -> mel and an element be An E for which aci (E,c) n Jb = aci (E) n Jb.

iii) For Ja standard system of glanemes defined on A: and beAnE, JbnE has the Jamorphism type gnen by m(5).

Example M' vector space oner 12 a titule field.

here a m-envelope 13 ~ subspace of appropriate dimension.

5. If m is a dimension function and E a m-envelope we write $dim_J(E) = \{m(J) \text{ it } E \text{ meets the domain of } J.$ (-1 otherwise.

Lemma 3.1.2. Let M be an adequate regular expansion of a Lie coordinatized structure. Suppose that E is algebraically closed, and satisfies (iii) with respect to the standard system of geometries J. Suppose that J' is an equivalent standard system of geometries and that J, J' are in \mathcal{M} (not just \mathcal{M}^{eq}). Then E satisfies (iii) with respect to J'.

iii) For Ja standard system of geometries defined on A: and beAnE, JbnE has the 3amorphism type gnen by m(5).

Proof:

EEM so re can work mm condition (iii) for 5' say it b'e En A' [5', A' -> Meg? then En Jbi has the smehne speained by m(J) an(J')

6 36 of geometries re have a: A'-)A so b' corresponds to an element be EnA Question: why is a (E) = E bea(E)nA

& takes EnJh to EnJ's, as it preserves type we nave $En J_b = m(J) = En J_b'$