حل تکلیف سری دوم درس ریاضی عمومی ۱

۱. همگرایی مطلق، مشروط یا واگرایی هر یک از سریهای زیر را تعیین کنید.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)(n+1)}$$
 (ب $\sum_{n=1}^{\infty} \frac{(-1)^n \Upsilon^n}{(\Upsilon n)^n}$ حددی ثابت است) $\sum_{n=1}^{\infty} \frac{\sin(n\pi a)}{n^{\Upsilon}}$ (الف

حل:

الف) این سری همگرای مطلق است زیرا:

$$\lim \frac{\left|\frac{(-1)^n}{(n+1)(n+1)}\right|}{\frac{1}{n^{\intercal}}} = \lim \frac{n^{\intercal}}{(n+1)(n+1)} = 1$$

از همگرائی
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)(n+1)}$$
 نتیجه می شود. $\sum_{n=1}^{\infty} \frac{1}{n!}$ نتیجه می شود.

ب) این سری همگرای مطلق است زیرا:

$$\lim \sqrt[n]{\left|\frac{(-1)^n \mathbf{r}^n}{(\mathbf{r}^n)^n}\right|} = \lim \frac{\mathbf{r}}{\mathbf{r}^n} = \circ$$

از آزمون ریشه همگرائی مطلق
$$\sum_{n=1}^{\infty} \frac{(-1)^n \mathbf{r}^n}{(\mathbf{r}n)^n}$$
 نتیجه می شود.

ج) این سری همگرای مطلق است زیرا:

$$\left|\frac{\sin(n\pi a)}{n^{\mathsf{Y}}}\right| \le \frac{\mathsf{1}}{n^{\mathsf{Y}}}$$

از همگرائی
$$\sum_{n=1}^{\infty} \frac{\sin(n\pi a)}{n^7}$$
 مطلق مگرائی مطلق تیجه می شود. $\sum_{n=1}^{\infty} \frac{1}{n^7}$

حل تکلیف سری دوم درس ریاضی عمومی ۱

۲. برای چه مقادیری از
$$\mathbb{R}$$
 سری $x\in\mathbb{R}$ سری $x\in\mathbb{R}$ همگرا است؟

حل:

$$\lim \frac{\left|\frac{n(n+1)(x-7)^{n+1}}{\mathsf{Y}^{n+1}(\mathsf{Y}^n+\mathsf{Y}^{\mathsf{Y}^n})^{\mathsf{Y}}}\right|}{\left|\frac{n(n-1)(x-7)^n}{\mathsf{Y}^n(\mathsf{Y}^n+\mathsf{Y}^{\mathsf{Y}^n})^{\mathsf{Y}}}\right|} = \lim \frac{(n+1)(\mathsf{Y}^n+\mathsf{Y}^n)^{\mathsf{Y}}|x-\mathsf{Y}^n|}{\mathsf{Y}^n(n-1)(\mathsf{Y}^n+\mathsf{Y}^n)^{\mathsf{Y}}} = \frac{|x-\mathsf{Y}^n|}{\mathsf{Y}^n(\mathsf{Y}^n+\mathsf{Y}^n)^{\mathsf{Y}^n}}$$

به این ترتیب برای $1 < \frac{|x-\Upsilon|}{\Upsilon}$ ، یعنی $x \in (1, \Delta)$ بنابر آزمون نسبت سری همگرای مطلق است.

$$\lim \frac{n(n-1)}{(\Upsilon n+1)^{\Upsilon}} = \frac{1}{\Upsilon} \neq \circ$$
 به ازای $\sum_{n=\circ}^{\infty} \frac{n(n-1)}{(\Upsilon n+1)^{\Upsilon}}$ است. در این حالت چون $x=\Delta$ سری به شکل $x=\Delta$ است. در این حالت چون $x=\Delta$ است.

$$\{(-1)^n rac{n(n-1)}{(\Upsilon n+1)^{\Upsilon}}\}$$
 است. در این حالت هم چون $\sum_{n=\circ}^{\infty} (-1)^n rac{n(n-1)}{(\Upsilon n+1)^{\Upsilon}}$ است. در این حالت هم چون $x=1$ سری به شکل مشابه، به ازای $x=1$ سری به شکل مشابه، به ازای $x=1$ سری به شکل مشابه، به ازای و تریدنباله ی فرد آن به $x=1$ همگرا است)، سری واگرا است.

$$\sum_{n=0}^{\infty} rac{n(n-1)(x-1)^n}{1}$$
 برای $x>0$ یا $x>0$ یعنی $x<1$ یا توجه به نتایج آزمون نسبت حد جمله عمومی سری $x<1$ یا برای ک

صفر نبوده، سری واگراست. خاصیت اخیر را می توانیم به صورت دقیق تر به شکل زیر نیز بیان کنیم.

$$a_n>$$
ه ، $|x- extsf{r}|> extsf{r}$ اگر قرار دهیم $a_n:=ig|rac{n(n- extsf{1})(x- extsf{r})^n}{ extsf{r}^n(extsf{r}n+ extsf{1})^{ extsf{r}}}ig|$ آنگاه با توجه به اینکه

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{\left|\frac{n(n+1)(x-\mathbf{r})^{n+1}}{\mathbf{r}^{n+1}(\mathbf{r}_{n+\mathbf{r}})^{\mathbf{r}}}\right|}{\left|\frac{n(n-1)(x-\mathbf{r})^n}{\mathbf{r}^n(\mathbf{r}_{n+1})^{\mathbf{r}}}\right|} = \lim \frac{(n+1)(\mathbf{r}_{n+1})^{\mathbf{r}}|x-\mathbf{r}|}{\mathbf{r}^{(n-1)}(\mathbf{r}_{n+1})^{\mathbf{r}}} = \frac{|x-\mathbf{r}|}{\mathbf{r}} > 1$$

به این ترتیب $a_n > a_n > a_n > a_n$ و در نتیجه برای هر $a_n > a_n > a_n > a_n$. پس $a_n > a_n > a_n$ در نتیجه در این حالت سری واگرا است.

. شعاع و بازه ی همگرایی سری توان
$$\sum_{n=\circ}^{\infty} \frac{(x-\sqrt{7})^{7n+1}}{7^n}$$
 را تعیین کنید.

حل:

$$\lim \frac{\left|\frac{(x-\sqrt{Y})^{Y_{n+Y}}}{Y^{n+1}}\right|}{\left|\frac{(x-\sqrt{Y})^{Y_{n+Y}}}{Y^{n}}\right|} = \frac{\left|x-\sqrt{Y}\right|^{Y}}{Y}$$

پس بنابر آزمون نسبت، سری توان برای
$$x=\frac{|x-\sqrt{\mathsf{Y}}|^\mathsf{Y}}{\mathsf{Y}}< 1$$
 همگرای مطلق است. برای پس بنابر آزمون نسبت، سری توان برای $x=\frac{|x-\sqrt{\mathsf{Y}}|^\mathsf{Y}}{\mathsf{Y}}< 1$ همگرای مطلق است. برای $x=\frac{|x-\sqrt{\mathsf{Y}}|^\mathsf{Y}}{\mathsf{Y}}=\sum_{n=1}^\infty -\sqrt{\mathsf{Y}}$ است. پس در این حالت واگرا است. $x=\frac{|x-\sqrt{\mathsf{Y}}|^\mathsf{Y}}{\mathsf{Y}}=\frac{|x-\sqrt{\mathsf{Y}}|^\mathsf{Y}}{\mathsf{Y}}$

برای
$$x=\mathsf{T}\sqrt{\mathsf{T}}$$
 سری به شکل $\mathsf{T}=\sum_{n=\circ}^\infty \frac{(\mathsf{T}\sqrt{\mathsf{T}}-\sqrt{\mathsf{T}})^{\mathsf{T}n+\mathsf{T}}}{\mathsf{T}^n}=\sum_{n=\circ}^\infty \mathsf{T}$ است. پس در این حالت هم واگرا است.

مشابه حل مسئله دوم، تحقیق می شود که سری فوق برای
$$|x-\sqrt{7}|^7$$
 واگرا است.

به این ترتیب شعاع همگرائی
$$\sqrt{\mathsf{Y}}$$
 و بازه ی همگرایی $(\mathsf{Y},\mathsf{Y},\mathsf{Y})$ است.

حل تکلیف سری دوم درس ریاضی عمومی ۱

و
$$x^{\mathsf{r}} \geq \mathsf{l} + x^{\mathsf{r}}$$
 بشان دهید $x \in \mathbb{R}$ بشان دهید $x \in \mathbb{R}$ با نشان دهید تابع $x > \circ$ با ضابطه ی $x > 0$ با ضابطه ی $x > 0$ با ضابطه ی $x > 0$ با ضابطه ی $x = \mathbf{ln}(\mathsf{ln}$

حل: الف) مىدانيم
$$e^x = \sum_{n=\circ}^{\infty} \frac{x^n}{n!}$$
 در نتيجه

$$e^{x^{\mathsf{T}}} = \sum_{n=0}^{\infty} \frac{(x^{\mathsf{T}})^n}{n!} \ge \mathsf{T} + x^{\mathsf{T}}$$

ب) برای نشان دادن اینکه f در صفر پیوسته است لازم نشان دهیم $f(\circ)=\lim_{x\to \circ^-}f(x)=\lim_{x\to \circ^-}f(x)$ با استفاده $x = \circ$ از پیوستگی تابع نمایی در

$$\lim_{x \to \circ^{-}} f(x) = \lim_{x \to \circ^{-}} \frac{e^{x} - 1}{x + 1} = \lim_{x \to \circ} \frac{e^{x} - 1}{x + 1} = \frac{\circ}{1} = \circ = f(\circ)$$

با توجه به صعودی بودن تابع ln، از قسمت (الف) نتیجه می گیریم

$$\ln(e^{x^{\mathsf{T}}}) \ge \ln(\mathsf{1} + x^{\mathsf{T}})$$

در نتیجه $\ln(x^{7}+1)$ در نتیجه $x^{7} \geq \ln(x^{7}+1)$ در نتیجه $x^{7} \geq \ln(x^{7}+1)$ در نتیجه از قضیه ی فشار در نتیجه از تولیدی از نتیجه از تولیدی (فشردگی)،

$$\lim_{x \to \circ^+} f(x) = \lim_{x \to \circ^+} \frac{\ln(x^{\tau} + 1)}{x} = \circ = f(\circ)$$

 $\frac{e^c}{c} = c^{\mathsf{T}} - \mathbf{1}$ فجود دارد به طوری که c مثبت مثبت c فجود دارد به طوری که .۵

حل: تابع f با ضابطه x پیوسته است. داریم $f(x)=e^x-x^{oldsymbol{r}}+x$ حل: تابع f با ضابطه f با ضابطه و تابع بیوسته است. داریم

$$f(\circ) = 1 > \circ$$
 , $f(\Upsilon) = e^{\Upsilon} - \Upsilon^{\Upsilon} + \Upsilon < \circ$

در نتیجه بنا بر قضیه ی مقادیر میانی برای تابع پیوسته ی f بر بازه ی $[\,\circ\,,\,\mathsf{Y}\,]$ ، عدد $(\,\circ\,,\,\mathsf{Y}\,)$ وجود دارد به طوری که در نتیجه بنا بر قضیه ی مقادیر میانی برای تابع پیوسته ی $c\in(\,\circ\,,\,\mathsf{Y}\,)$ و جود دارد به طوری که $c\in(\,\circ\,,\,\mathsf{Y}\,)$ و جود دارد به طوری که $c\in(\,\circ\,,\,\mathsf{Y}\,)$ و با توجه به غیر صفر بودن $c\in(\,\circ\,,\,\mathsf{Y}\,)$

$$\frac{e^c}{c} = c^{\mathsf{Y}} - \mathsf{N}$$