VISUALIZATION OF GEOCHEMICAL MODELING RESULTS BY R

Zsuzsanna Szabó

Department of Geochemistry and Laboratory Geological and Geophysical Institute of Hungary

What is geochemical modeling?

Rock: naturally occurring solid aggregate of minerals

Montaron & Han 2009

Modeling of chemical reactions between rock and porewater (if I keep it simple)

Thermodynamic vs. kinetic geochemical models Final, equilibrium state Considers the speed of reactions

Reactive transport models: geochemical reactions while fluid flows through the pore space

Examples for application:

- Migration of contaminants in the subsurface
- Improving estimates of elemental and nutrient fluxes
- Magma transport in the Earth
- Oil and gas exploration and production
- Building material degradation underground
- o CO₂ geological storage (CCS)

Steefel et al. 2005

What is geochemical modeling?

Rock: naturally occurring solid aggregate of minerals

Montaron & Han 2009

Modeling of chemical reactions between rock and porewater (if I keep it simple)

Thermodynamic vs. kinetic geochemical models Final, equilibrium state Considers the speed of reactions

Reactive transport models: geochemical reactions while fluid flows through the pore space

Examples for application:

- Migration of contaminants in the subsurface
- Improving estimates of elemental and nutrient fluxes
- Magma transport in the Earth
- Oil and gas exploration and production
- Building material degradation underground
- CO₂ geological storage (CCS)

Steefel et al. 2005

Power plant → CO₂ capture

CO₂ geological storage

PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations

Thermodynamic mixing models

One of the disaster/worst-case scenarios at a potential CO₂ geological storage site:

CO₂ leaks into shallower drinking water aquifer

What happens at different leakage levels?

Leakage Scenarios

1D reactive transport models with kinetic geochemical reactions

CO₂ saturated water in eq.

Effect of injected CO₂ on storage rock:

- What minerals dissolve?
- How it changes the solution composition?
- What minerals precipitate?
- Potentially, how it changes the porosity and physical properties of the rock?

PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations

Thermodynamic mixing models

One of the disaster/worst-case scenarios at a potential CO₂ geological storage site:

CO₂ leaks into shallower drinking water aquifer

What happens at different leakage levels?

Leakage Scenarios

1D reactive transport models with kinetic geochemical reactions

CO₂ saturated water in eq.

Effect of injected CO₂ on storage rock:

- What minerals dissolve?
- How it changes the solution composition?
- What minerals precipitate?
- Potentially, how it changes the porosity and physical properties of the rock?

Why R is used for figure production?

Personal choice...

Microsoft Excel???

PHREEQC USER_GRAPH???

Flexibility is low
No possibility for making animations

Saving the figures is difficult

Applied R packages

dplyr

reshape2

ggplot2

animation

Thermodynamic mixing

CO₂ leaks into shallower drinking water aquifer

dplyr select

reshape2 melt ggplot2 ggplot

129

min_toPlot<-melt(min, id=c('step'))
names(min_toPlot)[2]<-"változó"
plotMIN<-ggplot(min_toPlot)
plotMIN<-plotMIN+geom_line(aes(x = step, y = value, colour = változó,</pre>

131 plotMIN<-plotMIN+geom_line(aes(x = ste
132 linetyp</pre>

linetype = változó))

	step	Albite	Calcite	Chlorite(14A)	Dolomite	Goethite	K- feldspar	Kaolinite	Quartz
1	1	5.5549	3.1017	1.8123	0.82822	4.6454	4.2774	6.3562	149.76
2	2	5.5549	3.1007	1.8121	0.82922	4.6454	4.2774	6.3564	149.76
3	3	5.5549	3.0997	1.8119	0.83022	4.6454	4.2774	6.3566	149.76
4	4	5.5549	3.0987	1.8117	0.83122	4.6454	4.2774	6.3568	149.76
5	5	5.5549	3.0977	1.8115	0.83222	4.6454	4.2774	6.3570	149.76
6	6	5.5549	3.0967	1.8113	0.83322	4.6454	4.2774	6.3572	149.76
7	7	5.5549	3.0957	1.8111	0.83422	4.6454	4.2774	6.3574	149.76
8	8	5.5549	3.0947	1.8109	0.83522	4.6454	4.2774	6.3576	149.76
9	9	5.5549	3.0937	1.8107	0.83621	4.6454	4.2774	6.3578	149.76
10	10	5.5549	3.0927	1.8105	0.83721	4.6454	4.2774	6.3580	149.76
11	11	5.5549	3.0917	1.8103	0.83821	4.6454	4.2774	6.3582	149.76
12	12	5.5549	3.0907	1.8101	0.83921	4.6454	4.2774	6.3584	149.76
13	13	5.5549	3.0897	1.8099	0.84021	4.6454	4.2774	6.3586	149.76
14	14	5.5549	3.0887	1.8097	0.84121	4.6454	4.2774	6.3588	149.76
15	15	5.5549	3.0877	1.8095	0.84221	4.6454	4.2774	6.3590	149.76
16	16	5.5549	3.0867	1.8093	0.84321	4.6454	4.2774	6.3592	149.76
17	17	5.5549	3.0857	1.8091	0.84421	4.6454	4.2774	6.3594	149.76
18	18	5.5549	3.0847	1.8089	0.84521	4.6454	4.2774	6.3596	149.76
19	19	5.5549	3.0837	1.8087	0.84621	4.6454	4.2774	6.3598	149.76
Showing	Showing 1 to 20 of 1 000 entries								

	step 🗦	változó
992	992	Albite
993	993	Albite
994	994	Albite
995	995	Albite
996	996	Albite
997	997	Albite
998	998	Albite
999	999	Albite
1000	1000	Albite
1001	1	Calcite
1002	2	Calcite
1003	3	Calcite
1004	4	Calcite
1005	5	Calcite
1006	6	Calcite
1007	7	Calcite
1008	8	Calcite
1009	9	Calcite
1010	10	Calcite
1011	11	Calcite

Showing 992 to 1,011 of 8,000 entries

ó 🔍 value 🤄 5.5536 5.5536 5.5536 5.5536 5.5536 5.5536 5.5536 5.5535 5.5535 3.1017 3.1007 3.0997 3.0987 3.0977 3.0967 3.0957 3.0947 3.0937 3.0927 3.0917

Showing 1 to 20 of 1,000 entries

Thermodynamic mixing

CO₂ leaks into shallower drinking water aquifer

Thermodynamic mixing

CO₂ leaks into shallower drinking water aquifer

CO2 leak (mmol)

```
for (j in parameterList)
26 - {
    parameter<-i
28
    #making an empty dataframe, first column is step
    allData<-data.frame(step)
30
31
     for (i in files)
32
33 +
      theFileName<-i
34
      dataInFiles<-read.table(theFileName, header=TRUE, fill=TRUE, check.names=FALSE)
35
      #dataInFiles$step[1]<-0
36
      dataInFiles<-<u>filter(d</u>ataInFiles, step>=0)
37
      parameterData<-select(dataInFiles, one_of(parameter))</pre>
38
      names(parameterData)<-theFileName
39
      allData<-cbind(allData, parameterData)
40
41
42
    #figure name for given parameter
43
    figname<-paste0("variation_", parameter, ".png")</pre>
45
   #preparing the figure
46
   toplot<-melt(allData, id=c('step')) reshape2
                                                                                                                 model
   names(toPlot)[2]<-"model"
                                         ggplot2
    plot<-ggplot(toPlot)
    plot<-plot+geom_line(aes(x = step, y = value, colour = model,
    plot < -plot + labs(x = xName, y = parameter)
    ggsave(figname)
53
                                                                      2.4 -
            Model sensitivity visualization
               E.g. effect of temperature
```

1D reactive transport

CO₂ saturated water in eq.

cell time step

	sim ‡	state ‡	soln 🗘	dist_x ‡	time 🕆	step 👨	pH [‡]	pe ‡	K *
300	1	transp	95	94.5	10000	1	7.900041	-2.166457	0.010430075
301	1	transp	96	95.5	10000	1	7.900041	-2.166457	0.010430075
302	1	transp	97	96.5	10000	1	7.900041	-2.166457	0.010430075
303	1	transp	98	97.5	10000	1	7.900041	-2.166457	0.010430075
304	1	transp	99	98.5	10000	1	7.900041	-2.166457	0.010430075
305	1	transp	100	99.5	10000	1	7.898592	-2.622879	0.010430908
306	1	transp	1	0.5	20000	2	7.755056	-3.057924	0.008967509
307	1	transp	2	1.5	20000	2	7.888029	-3.178678	0.010759816
308	1	transp	3	2.5	20000	2	7.924789	5.458658	0.012217597
309	1	transp	4	3.5	20000	2	7.929688	5.458670	0.012249935
310	1	transp	5	4.5	20000	2	7.930659	5.453108	0.012242591
311	1	transp	б	5.5	20000	2	7.930708	5.396017	0.012242326
312	1	transp	7	6.5	20000	2	7.930708	5.396017	0.012242326
313	1	transp	8	7.5	20000	2	7.930708	5.396017	0.012242326
314	1	transp	9	8.5	20000	2	7.930708	5.396017	0.012242326
315	1	transp	10	9.5	20000	2	7.930708	5.396017	0.012242326
316	1	transp	11	10.5	20000	2	7.930708	5.396017	0.012242326
317	1	transp	12	11.5	20000	2	7.930708	5.396017	0.012242326
318	1	transp	13	12.5	20000	2	7.930708	5.396017	0.012242326

k_	Calcite =	dk_Calcite =	k_Albite =	dk_Albite =		
	1.469166	-0.005033613	5.724240	0.012239596		
	1.469166	-0.005033613	5.724240	0.012239596		
	1.469166	-0.005033613	5.724240	0.012239596		
	1.469166	-0.005033613	5.724240	0.012239596		
	1.469166	-0.005033613	5.724240	0.012239596		
	1.469471	-0.004729498	5.724139	0.012139064		
	2.246329	0.010024615	6.138284	0.003795477		
	1.457187	-0.010159492	5.737782	0.013166106		
	1.476924	0.007435821	5.733691	0.009563021		
	1.477130	0.007963739	5.733721	0.009481848		
	1.477278	0.008111208	5.733698	0.009458110		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
	1.477279	0.008112829	5.733698	0.009458019		
<						
Showing 300 to 319 of 9,246 entries						

1D reactive transport

Synthetic Model Example

CO₂ saturated water in eq.

d p l y r s e l e c t reshape 2 melt

ggplot2 ggplot animation saveVideo

```
stepn <- 0:50
16
    asvanyData <- allData %>% select(soln, time, step, sta
17
18
    gifnamemineral <- pasteO(theFileName, "_minerals.mp4")</pre>
19
20
21 - saveVideo({
22 -
      for(i in stepn){
23
        stepSubset <- asvanyData %>% filter(step==i) %>% s
        toGraph <- melt(stepSubset, id=c('soln'))
24
25
        linePlot <- ggplot(toGraph)</pre>
        linePlot <- linePlot + scale_y_continuous(limits =</pre>
26
        linePlot <- linePlot + geom_line(aes(x=soln, y=val
27
        linePlot <- linePlot + labs(title=paste("step", i)</pre>
28
        linePlot <- linePlot + labs(x="cell", y="concentra
29
30
        print(linePlot)
        ani.options(interval = 0.15)
31
33 }, video.name = gifnamemineral)
```


1D reactive transport

Synthetic Model Example

CO₂ saturated water in eq.

dplyr select reshape2 melt

```
ggplot2
ggplot
```

animation saveVideo

```
15 stepn <- 0:50
    asvanyData <- allData % % select(soln, time, step, sta
    gifnamemineral <- pasteO(theFileName, "_minerals.mp4")</pre>
    saveVideo(
      for(i in stepn){
        stepSubset <- asvanyData %>% filter(step==i) %>% s
        toGraph <- melt(stepSubset, id=c('soln'))
        linePlot <- ggplot(toGraph)</pre>
        linePlot <- linePlot + scale_y_continuous(limits =</pre>
        linePlot <- linePlot + geom_line(aes(x=soln, y=val
28
        linePlot <- linePlot + labs(title=paste("step", i)</pre>
        linePlot <- linePlot + labs(x="cell", v="concentra
        print(linePlot)
        ani.options(interval = 0.15)
    }, video.name = gifnamemineral)
```


Package phreeqc and ReacTran

phreeqc - R Interface to Geochemical Modeling Software
USGS, United States Geological Survey

ReacTran - Reactive transport modelling in 1D, 2D and 3D

NIOZ, Royal Netherlands Institute for Sea Research

time = 27.8 hr

rootSolve deSolve shape

"ReacTran contains routines that enable the development of reactive transport models in

- aquatic systems (rivers, lakes, oceans),
- porous media (floc aggregates, sediments,...) and
- idealized organisms (spherical cells, cylindrical worms,...)."

EASAC 2013 Carbon capture and storage

zsszabo86@gmail.com