The Virtual Learning Environment for Computer Programming

Nombre de bessons (parelles de nodes germans amb el mateix valor) X88638_ca

Implementeu una funció **RECURSIVA** que, donat un arbre binari d'enters, retorna el nombre de parelles de nodes bessons, és a dir, que son germans (comparteixen el mateix node pare) i tenen el mateix valor. Aquesta és la capcelera:

```
// Pre:
// Post: Retorna el nombre de parelles de nodes de t que tenen el mateix node p
int numTwins(BinTree<int> t);
```

Aquí tenim un exemple de paràmetre d'entrada de la funció i la corresponent sortida:

Fixeu-vos que l'enunciat d'aquest exercici ja ofereix uns fitxers que haureu d'utilitzar per a compilar: main.cc, BinTree.hh, numTwins.hh. Us falta crear el fitxer numTwins.cc amb els corresponents includes i implementar-hi la funció anterior. Només cal que pugeu numTwins.cc al jutge.

Entrada

La primera linia de l'entrada descriu el format en el que es descriuen els arbres, o bé IN-LINEFORMAT o bé VISUALFORMAT. Després venen un nombre arbitrari de casos. Cada cas consisteix en una descripció d'un arbre un arbre binari d'enters. Fixeu-vos en que el programa que us oferim ja s'encarrega de llegir aquestes entrades. Només cal que implementeu la funció abans esmentada.

Sortida

Per a cada cas, la sortida conté el corresponent resultat de la funció. Fixeu-vos en que el programa que us oferim ja s'encarrega d'escriure aquest resultat. Només cal que implementeu la funció abans esmentada.

	 2 		 2 		 0 			2			0
 		 1	 	 		 					
 2	1 										
			 1 	1 	 						
	 2 		 		- 2 						
 1		 	 1	 1		- 2	1				
						 2		 			
				 1 		 			- 0		
		 2 		_ '		 1 				- 	
	 		 2 		 		 1 		 2 		 2
 	1	 	 	 		 		 1		- 1	
 0	1 	 0									
		 	-								

Exemple de sortida 1	С
	3
4	0
0	0
1	3
0	1

Exemple d'entrada 2

Exemple de sortida 2

```
INLINEFORMAT

0(1(0(2,2(0,0(2,))),0(0(,0(0,)),2(2(,2),))),0,2(0(2(,1(2,)),),0(0,1)))

1(0(1,2),1(0(2,0(,0(1,))),1(1,)))

1(2(2(0,0),1(2,1)),1(2,0)),2(2(0,2),0(0(,0(,0)),)))

1(2(2(1,),1),1(1(2(,0(,1)),1(0(,2),)),0(2(0(2,0),)))

0(0,)

2(2(0(2(0,),2(1,2)),2(0(2,0),)),2(1,1))

1(2,)

1(1(0(2(1,0),0(1,)),2(,2(1,2))),0)

1(2(1(2(0(0,),2(0,0)),1(0(2,2),1(,1))),0)

1(0,0(2,0))
```

Observació

La vostra funció i subfuncions que creeu han de treballar només amb arbres. Heu de trobar una solució **RECURSIVA** del problema. Avaluació sobre 10 punts:

• Solució lenta: 5 punts.

• solució ràpida: 10 punts.

Entenem com a solució ràpida una que és correcta, de cost lineal i capaç de superar els jocs de proves públics i privats. Entenem com a solució lenta una que no és ràpida, però és correcta i capaç de superar els jocs de proves públics.

Informació del problema

Autor: PRO2

Generació: 2024-02-22 19:57:51

© *Jutge.org*, 2006–2024. https://jutge.org