metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis[3,3'-(piperazine-1,4-diyl)dipropanaminium] di- μ_2 -sulfido-bis[disulfidogermanate(IV)]

Nian-Nian Wang,^a Chao Xu,^a Taike Duan,^a Qun Chen^b and Qian-Feng Zhang^{a,b*}

^aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangq(@ahut.edu.cn

Received 5 May 2012; accepted 3 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.039; wR factor = 0.113; data-to-parameter ratio = 23.9.

In the title compound, $(C_{10}H_{26}N_4)_2[Ge_2S_6]$, the dimeric $[Ge_2S_6]^{4-}$ anion formed by two edge-sharing GeS_4 tetrahedral units lies around an inversion centre. The average terminal and bridging Ge-S bond lengths are 2.162 (7) and 2.267 (15) Å, respectively. The inorganic anions and organic cations are organized into a three-dimensional network by numerous $N-H\cdots S$ hydrogen bonds.

Related literature

For background to main group metal-chalcogenide compounds, see: Bedard *et al.* (1999); Nellis *et al.* (1995); Blachnik & Fehlker (2001); Zheng *et al.* (2002, 2005). For related structures, see: Jia *et al.* (2005); Xu *et al.* (2012).

$$2\begin{bmatrix} H_{3}N & H_{2} & H_{2} \\ H_{2} & H_{2}C & N \end{bmatrix}^{2+}\begin{bmatrix} S & Ge \\ S & S \end{bmatrix}^{4}$$

Experimental

Crystal data

 $(C_{10}H_{26}N_4)_2[Ge_2S_6]$ $V = 1722.99 (11) Å^3$ $M_r = 742.24$ Z = 2 Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\alpha = 12.0111 (4) Å$ $\mu = 2.13 \text{ mm}^{-1}$ T = 296 K C = 18.9777 (7) Å C = 18.9777 (7) Å

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997) $T_{\min} = 0.498$, $T_{\max} = 0.727$

16480 measured reflections 3950 independent reflections 3194 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.113$ S = 1.073950 reflections 165 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.15 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N3-H3B\cdots S2^{i}$	0.89	2.48	3.278 (3)	149
N3−H3 <i>C</i> ···S3	0.89	2.34	3.225 (3)	170
$N3-H3A\cdots S2^{ii}$	0.89	2.61	3.440 (3)	157
$N3-H3A\cdots S3^{ii}$	0.89	2.83	3.366 (3)	120
$N4-H4C\cdot\cdot\cdot S2^{iii}$	0.89	2.53	3.408 (4)	169
$N4-H4B \cdot \cdot \cdot S2^{iv}$	0.89	2.34	3.228 (4)	178
$N4-H4A\cdots S3^{v}$	0.89	2.39	3.275 (4)	173

Symmetry codes: (i) x, y+1, z; (ii) $-x+1, y+\frac{1}{2}, -z+\frac{1}{2}$; (iii) x-1, y, z; (iv) -x, -y, -z; (v) x-1, y-1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Program for New Century Excellent Talents in Universities of China (grant No. NCET-08-0618).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2485).

References

Bedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1999). Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.

Blachnik, R. & Fehlker, A. (2001). Z. Kristallogr. 216, 215-221.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881.

Nellis, D. M., Ko, Y., Tan, K., Koch, S. & Parise, J. (1995). J. Chem. Soc. Chem. Commun. pp. 541-542.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.

Zheng, N., Bu, X. & Feng, P. (2005). *Chem. Commun.* pp. 2805–2806. Zheng, N., Bu, X., Wang, B. & Feng, P. (2002). *Science*, **298**, 2366-2369.

Acta Cryst. (2012). E68, m1046 [doi:10.1107/S1600536812030334]

Bis[3,3'-(piperazine-1,4-diyl)dipropanaminium] di- μ_2 -sulfido-bis[disulfido-germanate(IV)]

Nian-Nian Wang, Chao Xu, Taike Duan, Qun Chen and Qian-Feng Zhang

Comment

Since Bedard reported the first porous metal chalcogenide open framework in 1999 (Bedard *et al.*, 1999), a series of binary and ternary metal chalcogenide open-frameworks have been synthesized (Nellis *et al.*, 1995; Zheng *et al.*, 2005). Among the various synthetic methods, hydrothermal technique is the best choice for preparing related compounds due to gentle reaction conditions. Moreover, organic amines are often used as templates in the hydrothermal reactions. Therefore, amines with different structures play an important role for templating effect in the construction of open-frameworks (Zheng *et al.*, 2002). In this paper, we report the hydrothermal synthesis and crystal structure of an amine-templated thiogermanate, $[bappH_2]_2[Ge_2S_6]$ (bapp = 1,4-bis(3-aminopropyl)piperazine).

The title compound crystallizes in the monoclinic space group $P2_1/c$ with a dimeric anion of $[Ge_2S_6]^4$ located around inversion centre and with diprotonated 1,4-bis(3-aminopropyl)- piperazine in general position (Fig. 1). The dimeric $[Ge_2S_6]^4$ - anion is constructed by two edge-sharing tetrahedral GeS_4 units forming a planar Ge_2S_2 quadrilateral with the four terminal sulfur atoms lying on a perpendicular plane. The S—Ge—S angles in tetrahedral GeS_4 unit are in the ranges from 93.82 (3) to 114.12 (4)°. The average bond length of Ge— S_t (terminal bond) of 2.162 (7) Å is obviously shorter than that of Ge— S_b (bridging bond) [2.267 (15) Å]. The bond length values are similar to those found in the other thiogermanates (Jia *et al.* 2005; Xu *et al.*, 2012). The two terminal amine groups of 4-bis(3-aminopropyl)piperazine are protonated to balance negative charges of the dimeric anion. The $[Ge_2S_6]^4$ - anions and $[bappH_2]^{2+}$ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).

Experimental

GeO₂ (104.6 mg, 1.0 mmol) and S powder (128.0 mg, 4.0 mmol) in the distilled water (4.8550 g) were mixed with 1,4-bis(3-aminopropyl)piperazine (2.5640 g) in a 23 mL Teflon-lined stainless steel autoclave to and stirred for 20 min. The vessel was sealed and heated to 190°C for 6 d and then cooled to room temperature. Colorless flake crystals were obtained and air dried. The yield based on GeO_2 is about 45%. Analysis, calculated for $C_{20}H_{52}N_8S_6Ge_2$: C 32.4, H 7.06, N 15.1%; found C 32.2, H 6.98, N 14.8 %.

Refinement

All C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. N-bound H atoms were located from a difference Fourier map but for final refinement they were were positioned geometrically with N—H = 0.89 Å and $U_{iso}(H) = 1.5U_{eq}(N)$].

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The structure of the title compound, showing displacement ellipsoids at the 50% probability level. Atoms with the A label were generated by the symmetry operation -x+1, -y+1, -z.

Figure 2Packing diagram of the title compound. Dashed lines donote hydrogen bonds.

Bis[3,3'-(piperazine-1,4-diyl)dipropanaminium] di- μ_2 -sulfido-bis[disulfidogermanate(IV)]

Crystal data

 $(C_{10}H_{26}N_4)_2[Ge_2S_6]$ F(000) = 776 $M_r = 742.24$ $D_{\rm x} = 1.431 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Cell parameters from 6783 reflections a = 12.0111 (4) Å $\theta = 2.5 - 27.0^{\circ}$ b = 7.7759 (3) Å $\mu = 2.13 \text{ mm}^{-1}$ c = 18.9777 (7) ÅT = 296 K $\beta = 103.569 (1)^{\circ}$ Block, colourless $V = 1722.99 (11) \text{ Å}^3$ $0.38\times0.29\times0.16~mm$ Z = 2

Data collection

Bruker APEXII CCD area-detector Absorption correction: multi-scan diffractometer (SADABS; Sheldrick, 1997)
Radiation source: fine-focus sealed tube $T_{\min} = 0.498$, $T_{\max} = 0.727$ Graphite monochromator 16480 measured reflections phi and ω scans 3950 independent reflections 3194 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.021$	$k = -10 \rightarrow 6$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$	$l = -22 \rightarrow 24$
$h = -15 \rightarrow 15$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ Hydrogen site location: inferred from $wR(F^2) = 0.113$ neighbouring sites S = 1.07H-atom parameters constrained 3950 reflections $w = 1/[\sigma^2(F_0^2) + (0.0586P)^2 + 1.3201P]$ 165 parameters where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ 0 restraints $\Delta \rho_{\text{max}} = 1.15 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\min} = -0.36 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Ge1	0.53261 (3)	0.44178 (4)	0.080248 (14)	0.04128 (12)	
S1	0.38171 (8)	0.59109 (12)	0.01275 (4)	0.0541 (2)	
S2	0.47606 (9)	0.19876 (11)	0.11556 (4)	0.0606(3)	
S3	0.63552 (8)	0.59389 (11)	0.16645 (4)	0.0565 (2)	
N1	0.1088 (3)	0.4905 (5)	0.1532(2)	0.0769 (10)	
N2	-0.0300(3)	0.1852 (5)	0.1210(3)	0.1023 (15)	
N3	0.4526(3)	0.8528 (4)	0.20970 (15)	0.0630 (8)	
H3A	0.4580	0.8401	0.2570	0.094*	
Н3В	0.4769	0.9572	0.2013	0.094*	
H3C	0.4956	0.7738	0.1948	0.094*	
N4	-0.3627(4)	-0.0949(5)	0.0505(2)	0.0782 (10)	
H4A	-0.3673	-0.1851	0.0785	0.117*	
H4B	-0.3923	-0.1222	0.0043	0.117*	
H4C	-0.4016	-0.0072	0.0630	0.117*	
C6	0.1475 (5)	0.3408 (7)	0.1201 (5)	0.121 (2)	
H6A	0.2301	0.3319	0.1362	0.145*	
H6B	0.1284	0.3547	0.0679	0.145*	
C7	0.0954 (5)	0.1827 (7)	0.1388 (5)	0.146 (3)	
H7A	0.1227	0.1621	0.1903	0.175*	
H7B	0.1207	0.0875	0.1134	0.175*	
C8	-0.0710(4)	0.3401 (7)	0.1474 (4)	0.0981 (16)	
H8A	-0.0559	0.3348	0.1999	0.118*	
H8B	-0.1532	0.3475	0.1288	0.118*	

C9	-0.0168(4)	0.4974 (6)	0.1262 (4)	0.0932 (15)	
H9A	-0.0357	0.5077	0.0738	0.112*	
H9B	-0.0466	0.5979	0.1459	0.112*	
C10	0.1646 (4)	0.6473 (6)	0.1389(3)	0.0880 (13)	
H10A	0.1219	0.7451	0.1504	0.106*	
H10B	0.1631	0.6528	0.0876	0.106*	
C11	0.2881 (4)	0.6607 (6)	0.1822(2)	0.0713 (10)	
H11A	0.2915	0.6441	0.2334	0.086*	
H4N	0.3338	0.5716	0.1669	0.086*	
C12	0.3349 (4)	0.8321 (5)	0.1708 (2)	0.0725 (11)	
H12A	0.3294	0.8485	0.1195	0.087*	
H12B	0.2888	0.9201	0.1865	0.087*	
C13	-0.0732(7)	0.0324 (9)	0.1558 (5)	0.151(3)	
H13A	-0.0359	-0.0697	0.1430	0.182*	
H13B	-0.0489	0.0458	0.2079	0.182*	
C14	-0.1959(7)	0.0022 (10)	0.1373 (3)	0.129(3)	
H14A	-0.2341	0.1056	0.1479	0.155*	
H14B	-0.2130	-0.0889	0.1680	0.155*	
C15	-0.2442(5)	-0.0463(8)	0.0594(3)	0.1042 (18)	
H15A	-0.2385	0.0503	0.0281	0.125*	
H15B	-0.2012	-0.1416	0.0461	0.125*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge1	0.0602(2)	0.03395 (18)	0.02960 (17)	0.00094 (13)	0.01036 (13)	0.00344 (11)
S1	0.0626 (5)	0.0634 (5)	0.0388 (4)	0.0157 (4)	0.0166(3)	0.0086(3)
S2	0.0973 (7)	0.0428 (4)	0.0406 (4)	-0.0147 (4)	0.0140 (4)	0.0072(3)
S3	0.0768 (6)	0.0487 (5)	0.0396 (4)	-0.0091 (4)	0.0046 (4)	-0.0021(3)
N1	0.066(2)	0.0546 (18)	0.111(3)	0.0014 (16)	0.0225 (19)	-0.0006(19)
N2	0.076(2)	0.062(2)	0.152 (4)	-0.0009(19)	-0.008(3)	-0.010(3)
N3	0.099(2)	0.0472 (16)	0.0448 (15)	-0.0004 (16)	0.0211 (15)	-0.0012 (12)
N4	0.102(3)	0.068(2)	0.066(2)	-0.0073(19)	0.0226 (19)	-0.0058(17)
C6	0.077(3)	0.074(3)	0.216 (7)	0.006(3)	0.040(4)	-0.035(4)
C7	0.078(3)	0.062(3)	0.271 (10)	0.010(3)	-0.014(5)	-0.027(4)
C8	0.068(3)	0.083(3)	0.138 (5)	-0.008(2)	0.012(3)	-0.011(3)
C9	0.073(3)	0.066(3)	0.136 (5)	0.013(2)	0.014(3)	0.002(3)
C10	0.088(3)	0.068(3)	0.109 (4)	0.005(2)	0.026(3)	0.013(3)
C11	0.074(2)	0.075(3)	0.066(2)	0.000(2)	0.0193 (19)	-0.001(2)
C12	0.101(3)	0.058(2)	0.056(2)	0.014(2)	0.014(2)	-0.0031 (18)
C13	0.147 (6)	0.091 (4)	0.185 (8)	-0.047(4)	-0.022 (6)	0.026 (5)
C14	0.157 (6)	0.136 (5)	0.086 (4)	-0.068(5)	0.012 (4)	0.015 (4)
C15	0.107 (4)	0.128 (5)	0.079(3)	-0.018(3)	0.025(3)	0.004(3)

Geometric parameters (Å, °)

Ge1—S3	2.1573 (9)	С7—Н7В	0.9700
Ge1—S2	2.1669 (9)	C8—C9	1.485 (7)
Ge1—S1	2.2770 (9)	C8—H8A	0.9700
S1—Ge1 ⁱ	2.2564 (8)	C8—H8B	0.9700

N1—C10	1.448 (6)	C9—H9A	0.9700
N1—C6	1.450 (6)	C9—H9B	0.9700
N1—C9	1.476 (6)	C10—C11	1.522 (6)
N2—C8	1.435 (7)	C10—H10A	0.9700
N2—C7	1.465 (7)	C10—H10B	0.9700
N2—C13	1.509 (8)	C11—C12	1.482 (6)
N3—C12	1.442 (5)	C11—H11A	0.9700
N3—H3A	0.8900	C11—H4N	0.9700
N3—H3B	0.8900	C12—H12A	0.9700
N3—H3C	0.8900	C12—H12B	0.9700
N4—C15	1.443 (7)	C13—C14	1.451 (10)
N4—H4A	0.8900	C13—H13A	0.9700
N4—H4B	0.8900	C13—H13B	0.9700
N4—H4C	0.8900	C14—C15	1.504 (8)
C6—C7	1.460 (8)	C14—H14A	0.9700
C6—H6A	0.9700	C14—H14B	0.9700
C6—H6B	0.9700	C15—H15A	0.9700
C7—H7A	0.9700	C15—H15B	0.9700
S3—Ge1—S2	114.15 (3)	N1—C9—C8	110.6 (4)
S3—Ge1—S1 ⁱ	111.71 (4)	N1—C9—H9A	109.5
S2—Ge1—S1 ⁱ	112.13 (4)	C8—C9—H9A	109.5
S3—Ge1—S1	112.70 (4)	N1—C9—H9B	109.5
S2—Ge1—S1	110.66 (4)	C8—C9—H9B	109.5
S1 ⁱ —Ge1—S1	93.82 (3)	Н9А—С9—Н9В	108.1
Ge1 ⁱ —S1—Ge1	86.18 (3)	N1—C10—C11	113.1 (4)
C10—N1—C6	112.7 (4)	N1—C10—H10A	109.0
C10—N1—C9	112.6 (4)	C11—C10—H10A	109.0
C6—N1—C9	106.5 (4)	N1—C10—H10B	109.0
C8—N2—C7	110.4 (4)	C11—C10—H10B	109.0
C8—N2—C13	109.1 (6)	H10A—C10—H10B	107.8
C7—N2—C13	109.2 (5)	C12—C11—C10	109.7 (4)
C12—N3—H3A	109.5	C12—C11—H11A	109.7
C12—N3—H3B	109.5	C10—C11—H11A	109.7
H3A—N3—H3B	109.5	C12—C11—H11X C12—C11—H4N	109.7
C12—N3—H3C	109.5	C10—C11—H4N	109.7
H3A—N3—H3C	109.5	H11A—C11—H4N	109.7
H3B—N3—H3C	109.5	N3—C12—C11	112.7 (3)
C15—N4—H4A	109.5	N3—C12—C11 N3—C12—H12A	109.1
C15—N4—H4B		N3—C12—H12A C11—C12—H12A	109.1
	109.5		
H4A—N4—H4B	109.5	N3—C12—H12B	109.1
C15—N4—H4C	109.5	C11—C12—H12B	109.1
H4A—N4—H4C	109.5	H12A—C12—H12B	107.8
H4B—N4—H4C	109.5	C14—C13—N2	117.1 (6)
N1—C6—C7	111.8 (5)	C14—C13—H13A	108.0
N1—C6—H6A	109.3	N2—C13—H13A	108.0
C7—C6—H6A	109.3	C14—C13—H13B	108.0
N1—C6—H6B	109.3	N2—C13—H13B	108.0
C7—C6—H6B	109.3	H13A—C13—H13B	107.3

H6A—C6—H6B	107.9	C13—C14—C15	114.5 (7)
C6—C7—N2	114.2 (5)	C13—C14—H14A	108.6
C6—C7—H7A	108.7	C15—C14—H14A	108.6
N2—C7—H7A	108.7	C13—C14—H14B	108.6
C6—C7—H7B	108.7	C15—C14—H14B	108.6
N2—C7—H7B	108.7	H14A—C14—H14B	107.6
H7A—C7—H7B	107.6	N4—C15—C14	108.9 (5)
N2—C8—C9	112.9 (5)	N4—C15—H15A	109.9
N2—C8—H8A	109.0	C14—C15—H15A	109.9
C9—C8—H8A	109.0	N4—C15—H15B	109.9
N2—C8—H8B	109.0	C14—C15—H15B	109.9
C9—C8—H8B	109.0	H15A—C15—H15B	108.3
H8A—C8—H8B	107.8		

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> ····S2 ⁱⁱ	0.89	2.48	3.278 (3)	149
N3—H3 <i>C</i> ···S3	0.89	2.34	3.225 (3)	170
N3—H3A···S2 ⁱⁱⁱ	0.89	2.61	3.440(3)	157
N3—H3 <i>A</i> ···S3 ⁱⁱⁱ	0.89	2.83	3.366 (3)	120
N4—H4 <i>C</i> ···S2 ^{iv}	0.89	2.53	3.408 (4)	169
N4—H4 <i>B</i> ···S2 ^v	0.89	2.34	3.228 (4)	178
N4—H4A···S3 ^{vi}	0.89	2.39	3.275 (4)	173

Symmetry codes: (ii) x, y+1, z; (iii) -x+1, y+1/2, -z+1/2; (iv) x-1, y, z; (v) -x, -y, -z; (vi) x-1, y-1, z.