Video Compression - Hw3

D11921B15 程煌倫

3. Write a program to convert among SDR, HDR PQ10 and HLG. Compare the color if no conversion is applied.

1. Format Conversion:

When converting among SDR, HDR PQ10, and HLG, their differences in dynamic range, color gamut, and brightness representation must be considered.

Commonalities

- Color Space: SDR, HDR PQ10, and HLG all use color spaces to represent colors. However, HDR formats (including PQ10 and HLG) support a broader color gamut and higher brightness range than SDR.
- Brightness Range: All formats are used to represent a range of brightness from darkest to brightest. SDR has a narrower range, whereas HDR (including PQ10 and HLG) provides a broader range of brightness and more detailed levels.

Conversion Principles

- SDR to HDR (PQ10 or HLG):
 - Involves expanding the limited dynamic range of SDR to the broader range of HDR.
 - Requires color mapping and brightness expansion to simulate the richer colors and brightness details in HDR.

HDR (PQ10 or HLG) to SDR:

- Needs tone mapping to reduce the dynamic range of HDR content to fit within the brightness range of SDR.
- This process may result in the loss of some details in highlights and shadows.

Conversion Between HDR PQ10 and HLG:

 PQ10 and HLG use different methods to encode brightness information. PQ10 is based on a perceptual quantization curve, while HLG is designed to be compatible with both SDR and HDR. The conversion involves remapping brightness values to adapt to different encoding methods of each format.

2. Characteristics and Applicable Scenarios of Various Formats:

SDR (Standard Dynamic Range)

- Characteristics: Traditional dynamic range used in standard televisions and computer monitors. Limited in color and brightness representation.
- Applicable Scenarios: Regular TV programs, standard computers, and mobile displays.

HDR PQ10 (High Dynamic Range with Perceptual Quantization)

- Characteristics: Offers a higher range of brightness and richer colors, based on a perceptual quantization curve to more effectively utilize the brightness range.
- **Applicable Scenarios**: High-quality movies, TV shows, especially in 4K and 8K ultra-high-definition content.

HLG (Hybrid Log-Gamma)

- Characteristics: Designed for broadcasting, compatible with both SDR and HDR. Performs like SDR in low brightness ranges and offers the advantages of HDR in higher brightness ranges.
- Applicable Scenarios: Live broadcasting, suitable for various types of displays, including traditional SDR and modern HDR screens.

3. Key Steps and Principles

- Tone Mapping (Tone Mapping):
 - **Purpose**: To compress the wide dynamic range of HDR into the narrower range of SDR.
 - Method: Using nonlinear mapping functions to reduce the overall brightness of the image while maintaining important details and contrast. Common methods include Reinhard and Filmic tone mapping.

Local Contrast Adjustment:

- Purpose: To maintain local details and contrast while compressing the dynamic range.
- **Method**: Analyzing the image locally and treating bright and dark areas differently to maintain local details. This may involve image segmentation or local histogram equalization.

Color Correction:

- Purpose: To adjust colors to fit within the color space of SDR.
- Method: Adjusting saturation and hue based on the differences between the color spaces of SDR and HDR, such as converting BT.2020 to BT.709.

Gamma Correction:

- Purpose: To adjust the brightness curve of the image to suit the characteristics of SDR displays.
- Method: Applying a gamma function to adjust the brightness levels, typically using a gamma value of 2.2 or 2.4.

4. HDR Image Creation and Tone Mapping Comparison

hdr.cpp / hdr.py: Creating and Tone Mapping HDR Images

• **Objective**: To create an HDR image from a series of images with different exposures and apply various tone mapping techniques to generate different styles of SDR (Standard Dynamic Range) images.

Steps:

- Read Images and Exposure Times: Retrieves a set of images and records the exposure time for each.
- Image Alignment: Aligns these images to prevent blurring during HDR composition.
- Camera Response Function (CRF) Calculation: Essential for correctly mapping tones in the HDR composition.
- **HDR Image Composition**: Combines images with different exposures into a single HDR image.
- Apply Different Tone Mapping Methods: Converts the HDR image into various styles of SDR images using different tone mapping algorithms.

Tone Mapping Methods:

- **Drago Method**: A logarithmic mapping-based tone mapping algorithm, aimed at maintaining details in the low-lit areas of the image.
- **Durand Method**: Focuses on edge preservation, aiming to reduce halo effects in the image while maintaining important details.
- **Reinhard Method**: Balances image contrast while maintaining natural colors and brightness.
- Mantiuk Method: Emphasizes perceptual adjustment of image contrast to maintain consistency with human eye perception in the real world.

Hdr-detailed.py: Converting a Single HDR Image to SDR

- Objective: To convert a single HDR image into an SDR image, including tone mapping, local contrast adjustment, color space conversion, and gamma correction.
 - Key Processes:
 - Tone Mapping (Tone Mapping): Compresses the high dynamic range of the HDR image to standard dynamic range using the Reinhard method.
 - Local Contrast Enhancement: Uses CLAHE (Contrast Limited Adaptive Histogram Equalization) to enhance local contrast in the image.
 - Color Space Conversion: Transforms the image from HDR to SDR color space.
 - **Gamma Correction**: Adjusts image brightness to improve overall visual perception.

5. Detailed Steps for HDR Image Creation

Step 1: Capturing Multiple Images at Different Exposures

- Use of Auto Exposure Bracketing (AEB): Captures multiple photos at different exposures, typically using exposure times of 1/30 sec, 0.25 sec, 2.5 sec, and 15 sec.
 - Types of Images:
 - **Underexposed Images**: Capture very bright parts of the image.
 - Correctly Exposed Images: Regular images taken based on the camera's lighting estimate.
 - Overexposed Images: Capture very dark parts of the image.

Step 2: Aligning Images

- **Importance of Alignment**: Unaligned images can cause significant artifacts in HDR composition.
- **Method**: Uses OpenCV's AlignMTB for alignment, converting images into median threshold bitmaps (MTB), unaffected by exposure time changes.

Step 3: Extracting Camera Response Function

- **Ease of Extraction**: Only 2 lines of code with OpenCV's CalibrateDebevec or CalibrateRobertson are required to find the CRF.
- **Importance of CRF**: It's crucial to understand the non-linear relationship between the camera's response and real-world brightness. CRF tells us the relationship between pixel values in the photo and actual world brightness.

- Without knowing the CRF, it's impossible to accurately merge differently exposed photos into a single HDR image.
- Challenge and Solution: Estimating CRF involves mathematical methods to transform pixel values into a linear relationship. This is often a challenge requiring optimization techniques to find the best estimate for CRF. The problem simplifies to a linear least squares problem and can be solved using tools like Singular Value Decomposition (SVD).