Restoring Negative Information in Few-Shot Object Detection

CODE: https://github.com/yang-yk/NP-RepMet We are HIRING INTERN! Please send your resume to fawe@microsoft.com

Introduction

Machine Learning VS Human Learning:

➤ Machine learning: learning from *many samples*

➤ Human learning: learning from few samples

Few-shot Learning:

Inspired by human learning, Few-shot Learning is defined as following. Using **prior knowledge**, Few-shot Learning can rapidly generalize to **new tasks** containing **only a few samples** with supervised information [1].

Figure 1. Distribution of dataset

- Base classes: **sufficient** samples and labels (*prior knowledge*)
- Novel classes: limited samples and labels (weak supervised information)
- New tasks: visual recognition (classification, detection, segmentation, etc.) on novel classes (generalize to new tasks)

Few-shot Detection:

Meta R-CNN [2]: *Extract positive information* of novel class through pre-trained backbone network.

RepMet [3]: Learn positive information of novel class through metric learning.

- ◆ Positive (foreground) information is extracted and utilized from support images.
- ◆ **Negative information** in support images is ignored in few-shot object detection.

NP-RepMet Few shot detection with Pos. and Neg.

Figure 2. Restoring negative information in few-shot object detection.

How to explore the limited information obtained from novel class support set?

 Utilize both positive and negative information for better few-shot detection performance.

How to distinguish positive and negative information?

- Positive information: Proposals with IoU > 0.7
- Negative information: Proposals with 0.2< IoU <0.3

How to combine positive and negative information in few-shot detection?

• Through **NP-RepMet** framework.

NP-RepMet Training:

Figure 3. NP-RepMet training.

Triplet Embedding Loss:

If P is a positive proposal:

$$L(E^p, P) = |\min_{i} d(E^p, R_{i*j}^p) - \frac{1}{2} (\min_{i} d(E^p, R_{i*j}^n) + \min_{i, i \neq i*} d(E^p, R_{ij}^p)) + \alpha|_{+}$$

- Minimize the distance from positive embedding vector E^P to its closest positive representative $R^p_{i^*i}$ of the same class;
- Maximize the distance from positive embedding vector E^P to its closest negative representative $R^n_{i^*i}$ of the same class;
- Maximize the distance from positive embedding vector E^P to its closest **positive** representative $R_{i,i}^p(i \neq i^*)$ of different classes.

If P is a negative proposal:

$$L(E^n, P) = |\min_{j} d(E^n, R_{i*j}^n) - \frac{1}{2} (\min_{j} d(E^n, R_{i*j}^p) + \min_{j, i \neq i*} d(E^n, R_{ij}^n)) + \alpha|_{+}$$

- Minimize the distance from negative embedding vector E^n to its closest negative representative $R_{i^*i}^n$ of the same class;
- Maximize the distance from negative embedding vector E^n to its closest positive representative $R^p_{i^*j}$ of the same class;
- Maximize the distance from negative embedding vector E^n to its closest negative representative $R_{i,j}^n (i \neq i^*)$ of different classes.

Figure 4. NP-RepMet test.

Combine Positive and Negative Information:

In the test process, a proposal generates two embedding vectors: **positive vector** E^P and negative vector E^n . For classification, we have

$$p_i(E^p, E^n) \propto \exp\left(-\frac{\min_j d(E^p, R_{ij}^p) - \beta \min_j d(E^n, R_{ij}^n) + 2\beta}{2\sigma^2}\right)$$

Yukuan Yang (Tsinghua university)
Fangyun Wei (Microsoft Research Asia)
Miaojing Shi (King's College London)

Guoqi Li(Tsinghua university)

Negative Representatives Selection:

After NMS, the number of negative proposals is much bigger than that of positive proposals.

Clustering-based hard negative selection

Select the most diverse ones from negative proposal candidates.

Results

ImageNet-LOC:

NP-RepMet results compared with RepMet under the same setting.

11.6% mAP improvement in 5-way 1-shot detection

Dataset	Method	1-shot	5-shot	10-shot
ImageNet-LOC	RepMet	56.9	68.8	71.5
(214 unseen animal classes)	Ours	68.5	75.0	76.3
(214 discent diffinal classes)	Ours	00.5	70.0	70.0
ImageNet-LOC			90.2	90.5

Pascal VOC:

Figure 5 .Detection results of RepMet (Top) and NP-RepMet (Bottom).

NP-RepMet results compared with Meta R-CNN under the same setting.

17.9% mAP improvement in 5-way 1-shot detection

 Method/Shot
 novel set 1
 novel set 2
 novel set 3

 YOLO-FR [10]
 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3

 Meta-Det [12]
 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

 Meta R-CNN [11]
 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

 RepMet [1]
 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

T-SNE visualization:

37.8 40.3 41.7 47.3 49.4 41.6 43.0 43.4 47.4 49.1 33.3 38.0 39.8 41.5 44.8

Figure 6. T-SNE visualization (a) T-SNE visualization of positive representatives (b) T-SNE visualization of negative representatives and corresponding proposals.

References

[1] Wang Y, Yao Q, Kwok J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys (CSUR), 2020, 53(3): 1-34.

[2] Yan X, Chen Z, Xu A, et al. Meta r-cnn: Towards general solver for instance-level low-shot learning, CVPR 2019.

[3] Karlinsky L, Shtok J, et al. Repmet: Representative-based metric learning for classification and few-shot object detection, CVPR 2019.