

A Markov Game Model for Valuing Player Actions in Ice Hockey

Kurt Routley, Oliver Schulte

School of Computing Science, Simon Fraser University, Vancouver-Burnaby Canada

Introduction

Our vision: sports analytics = branch of reinforcement learning.

- Fundamental question: which actions contribute to winning in what situation?
- Answer: learn an action-value function or Qfunction.

Motivation

Advantages over previous action-based analytics (plus-minus, Corsi, Fenwick).

- Context-Awareness. Action values depends on context = state.
- Example: Goals are worth more with tied scores than with a 2 goal lead.
- 2 goal lead.
 Lookahead. Actions can have medium-term
- impact.
 Example: Penalties can lead to goals but not immediately.

Related Work

- Expected Possession Value EPV: a Q-function for basketball [2]. Spatial-temporal model based on tracking data.
- Total Hockey Rating (THoR) [3] assigns a value to all ice hockey player actions. No context, fixed look-ahead window (20 sec).

Data Set

• 2.8M events, > 600K play sequences.

Period	Sequence Number	Event Number	Event
1	1	1	PERIOD START
1	1	2	faceoff(Home,Neutral)
1	1	3	hit(Away,Neutral)
1	1	4	takeaway(Home,Defensive)
1	1	5	missed_shot(Away,Offensive)
1	1	6	shot(Away,Offensive)
1	1	7	giveaway(Away,Defensive)
1	1	8	takeaway(Home,Offensive)
1	1	9	missed_shot(Away,Offensive)
1	1	10	goal(Home,Offensive)
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9

References

- 1. M. L. Littman. Markov games as a framework for multiagent reinforcement learning. In ICML, pp. 157-163, 1994.
- 2. Cervone, D.; D'Amour, A.; Bornn, L. & Goldsberry, K. POINTWISE: Predicting points and valuing decisions in real time with nba optical tracking data. In MIT Sloan, 2014.
- 3. M. Schuckers and J.Curro. Total hockey rating (THoR): A comprehensive statistical rating of national hockey league forwards and defensement based upon all on-ice events. In MIT Sloan, 2013.

Markov Game Model

A Markov Game Model [1] consists of 4 components:

State Space, Transition Graph + Probabilities, Rewards

- Players = Home, Away.
- **State** = (Goal Differential, ManPower Differential, Period, Action History within play sequence)
- Transition probababilities estimated from the number of observed occurrences.
- >1.3 M states with >0 occurrences.

State Transition Examples.

Rewards/Costs

Score Goal/Incur Penalty.

Value Iteration for Q-Learning

Since states encode action histories, the expected value of states is equivalent to learning a Q-function (V = Q).

$$Q_{i+1}(s) = R(s) + \frac{1}{occ(s)} \sum_{(s,s') \in E} \left(occ(s,s') \times Q_i(s')\right)$$

Applications of the Q-function

- Knowledge Discovery. Cervone et al. [2]: "We assert that most questions that coaches, players, and fans have ...can be phrased and answered in terms of EPV [i.e., the Qfunction]."
- Player ranking. Add up the total **impact** of a player's actions.

Player Impact Scores

The impact of an action in a state is defined by

$$impact(s,a) = Q(s*a) - Q(s)$$

The Q-Value Ticker for Colorado vs. St. Louis

Action Goal Impact Depends on Context

- Boxplot of action value for each state.
- * = THoR Action Values [3].
- Player Total Goal Impact (2013-2014 Season)
- Jason Spezza has high goal impact, low plus-minus.

Conclusion

- The Q-function is a powerful AI concept that captures much information about hockey dynamics (or other sports).
- Novel player ranking method based on reinforcement learning.
- The Q-impact of an action varies greatly with context, and medium-term ripple effects make a difference.
- Goal Impact scores correlate with points.