Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Segmentation
- Approcci classici
- Deep Learning for Segmentation

Crediti

- Slides adattate da vari corsi e libri
 - Computational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Computer Vision (S. Lazebnik), CS Illinois Edu
 - Computer Vision (I. Gkioulekas) CS CMU Edu

Segmentation

- Gruppi di pixel che formano regioni omogenee
 - Superfici
 - Oggetti
 - Parti di oggetti
- Separazione Foreground/background
- Semantic segmentation
- Instance segmentation

Separazione foreground-background

• Separazione di oggetti dallo sfondo

Semantic segmentation

Instance segmentation

Cosa rende buona una segmentazione?

Ground truth

Cosa rende buona una segmentazione?

- Ground truth
 - Non necessariamente!

Superpixel segmentation

- Raggruppamenti a granularità grossa
 - Bottom-up
 - Non supervisionato
 - veloce
 - Oversegmentation
 - Ci basta che le regioni siano uniformi

Multiple segmentation

• Istanze multiple, etichettatura tramite consenso

Approccio

• Data un'immagine $I(\vec{x})$ caratterizzata da

$$\vec{F}(\vec{x}) = \begin{pmatrix} \vec{x} \\ I(\vec{x}) \\ \vec{L}(\vec{x}) \end{pmatrix}$$

- $\vec{L}(\vec{x})$ è un insieme di features locali
 - Ad esempio la risposta a filtri passa-banda
- Trovare i raggruppamenti di \vec{x}

Tecniche

- Non supervisionati, Bottom-up
 - Region-based
 - Edge-detection
 - Clustering
 - Graph-based
- Supervisionati, top-down
 - CRFs
 - Deep Learning

Thresholding e Morfologia

- Su immagini in scala di grigio
 - Thresholding:

•
$$\theta(I,t) = \begin{cases} 1 & I > t \\ 0 & \end{cases}$$

- *B* structuring element
 - (un filtro binario di dimensione S)
- C = I * B
 - Convoluzione di «conteggio»
- Erosion

•
$$A \ominus B = \theta(C, S)$$

Dilation

•
$$A \oplus B = \theta(C, 1)$$

- Opening
 - $(A \ominus B) \oplus B$
- Closing
 - $(A \oplus B) \ominus B$

Thresholding

- Su immagini in scala di grigio
 - Thresholding:

•
$$\theta(I,t) = \begin{cases} 1 & I > t \\ 0 & \end{cases}$$

- Determinazione della soglia ottimale
 - Otzu algorithm, basato sulla massimizzazione della varianza inter-segmento
- Soglie multiple
 - Partizionamento
 - neighborhood

Edge Detection

- Metodi basati sull'individuazione di cambiamenti di intensità
 - Image smoothing per la riduzione del rumore
 - Detection di edge points
 - Individuazione di potenziali candidati, tramite filtri laplaciani o di gradiente
 - Thresholding, canny edge detection
 - Edge localization
 - Selezione dai candidati
 - Edge linking

Watershed segmentation

- Linee spartiacqua
 - Aumentiamo progressivamente e uniformemente il «livello dell'acqua»
 - Quando due bacini si fondono, marchiamo i pixel di separazione
 - Le linee spartiacqua sono costruite su tali linee
- Applicato sul gradiente

Clustering

- Raggruppiamo sulla base delle affinità di $\vec{F}(\vec{x})$
 - Esempi: k-means (Mixture of Gaussians)

$$p(\vec{F}(\vec{x})|M) = \sum_{k} \pi_{k} p(\vec{F}(\vec{x})|\vec{m}_{k}, \Sigma_{k})$$

- La segmentazione è stabilita dai parametri $\{\pi_k, \overrightarrow{m}_k, \Sigma_k\}_{k=1...K}$
 - numero di segmenti stabilito da penalized likelihood
- Segmento di appartenenza:

$$c(\vec{x}) = argmax_k p(\vec{F}(\vec{x})|\vec{m}_k, \Sigma_k)$$

Clustering

- La qualità del clustering dipende dalla veridicità delle assunzioni
 - Distribuzioni gaussiane

Mean-Shift

- Variante non-parametrica al clustering
- Utilizza Kernel-density estimation
 - $f(x) = 1/M \sum K(x x_i)$
- Ogni punto è associato al minimo locale più vicino
 - Utilizzando gradient ascent, si può convergere
 - Calcolo ottimizzato:

$$y_{k+1} = \frac{\sum_{i} x_{i} K'(y_{k} - x_{i})}{\sum_{i} K'(y_{k} - x_{i})}$$

converge su kernel gaussiani o Epanechnikov

$$K_G(r;h) = \exp(-r^2/2h)$$
 $K_E(r;h) = \max(0.1 - r/h)$

Mean Shift

Graph-based segmentation

Un grafo pesato indiretto connesso

- Nodi = pixel
- archi = coppie di pixel vicini
- Pesi sugli archi = similarità dei nodi

Esempio

Felzenszwalb & Huttenlocher algorithm

- I pesi corrispondono alla dissimilarità nello spazio (x, y, r, g, b)
- L'algoritmo
 - Ogni vertice rappresenta una componente
 - Per ogni arco in ordine crescente di peso:
 - Se l'arco è tra vertici in due componenti A e B, fondi le componenti se il peso è minore della minima differenza interna intra-componente

$$Int(R) = \min_{e \in MST(R)} w(e) + k/|R|$$

Altri approcci: Graph-cut

• Si cerca il taglio ottimale cancellando gli archi che minimizzano il cut

$$Cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

$$NCut(A,B) = \frac{Cut(A,B)}{\sum_{i \in A,j \in V} w_{ij}} + \frac{Cut(A,B)}{\sum_{i \in B,j \in V} w_{ij}}$$

- NP-Hard
- Soluzione tramite rilasciamento continuo

Probabilistic Graphical Model

- Formulazione probabilistica
 - p(x, y) con y label e x punto nell'immagine
- Idea: formulare una funzione di costo che dipenda dalla quantità di «energia» individuata nell'etichettatura dei punti

$$E(Y|X) = \sum_{i} \phi(y_{i}|x_{i};\theta) + \sum_{i,j} \psi(y_{i},y_{j}|x_{i},x_{j};\theta)$$
Unary potential (local data term): score for pixel i and label c_{i} (context or smoothing term)

Dependencies, random fields

Naive Bayes:

$$p(y|x) = \frac{\prod_{i} p(x_{i}|y)p(y)}{\sum_{\overline{y}} \prod_{i} p(x_{i}|\overline{y})p(\overline{y})} \to p(y = 1|x) = \frac{1}{1 + \exp\left\{-\log\frac{p(y = 1)}{1 - p(y = 0)} - \sum_{i} \log\frac{p(x_{i}|y = 1)}{p(x_{i}|y = 0)}\right\}}$$

Dependencies, random fields

• Logistic regression:

$$p(y = 1|x) = \frac{1}{1 + \exp\{w_0 + \sum_i w_i x_i\}}$$

Hidden Markov Models

- Joint likelihood
 - $p(Y,X) = \prod_t p(x_t|y_t)p(y_t|y_{t-1})$
- Estensione «markoviana» di Naive Bayes
- Inferenza
 - Qual è l'insieme *Y* di etichette ottimale?
 - Qual è la probabilità $p(y_i|X)$?

Hidden Markov Models

$$\log p(Y, X) = \sum_{t} \{\log p(x_t|y_t) + \log p(y_t|y_{t-1})\}\$$

Conditional Random Field

$$E(Y|X) = \sum_{i} \phi(y_{i}|x_{i};\theta) + \sum_{i,j} \psi(y_{i},y_{j}|x_{i},x_{j};\theta)$$

$$Pairwise \ potential \ (local \ data \ term): \ score \ for \ pixel \ i \ pixels \ term)$$

$$and \ label \ c_{i}$$

$$p(Y|X) = \frac{1}{Z} \exp\{E(Y|X)\}$$

Conditional Random Field

Conditional Random Field

Conditional Random Fields

•
$$\phi(y_i|x_i;\theta) = -\log p(y_i|x_i;\theta)$$

•
$$\psi(y_i, y_j | x_i, x_j; \theta) = w_{ij} \mathbf{1}_{y_i \neq y_j}$$

•
$$w_{ij} = \exp\left\{-\frac{|F(x_i) - F(x_j)|^2}{\sigma}\right\}$$

$$E(Y|X) = \sum_{i} \phi(y_i, x_i; \theta) + \sum_{i,j} \psi(y_i, y_j, x_i, x_j; \theta)$$

$$= \sum_{i} U_{nary \ potential} \phi(y_i, x_i; \theta) + \sum_{i,j} \psi(y_i, y_j, x_i, x_j; \theta)$$

$$= \sum_{i} \psi(y_i, y_i, x_i; \theta)$$

$$= \sum_{i} \psi(y_i, y_i, x_i; \theta)$$

$$= \sum_{i} \psi(y_i, x_i; \theta)$$

$$= \sum_{i} \psi(y$$

Conditional Random Fields

- $p(Y|X) = \frac{1}{Z(X)} \exp\{E(Y|X)\}$
 - $E(Y|X) = \sum_{i} \phi(y_i|x_i;\theta) + \sum_{i,j} \psi(y_i,y_j|x_i,x_j;\theta)$
 - $Z(X) = \sum_{Y} \exp\{E(Y|X)\}$ è una costante di normalizzazione
- Inferenza
 - Qual è il labeling Y ottimale?
 - Qual è la probabilità $p(y_i|X)$?

Inferenza e CRF

- Un problema combinatorio
 - Qual è il labeling *Y* ottimale?
 - Qual è la probabilità $p(y_i|X)$?
 - ...
- Exact inference
 - esponenziale
- Approximate inference
 - Belief Propagation
 - MCMC
 - Variational Inference

Message Passing/Variational Inference

- Mean-field variational inference
- Approssimiamo p(Y|X) con $q(Y) = \prod_i q(y_i)$
 - Troviamo la forma di $\mathbf{q}(\mathbf{Y})$ che minimizza la divergenza di Kullback-Leibler con p(Y|X)

$$D_{KL}(q||p) \approx -E_{Y\sim q}[E(Y|X)] - E_{Y\sim q}[\log q(Y)]$$

Soluzione ottimale:

$$q(y_i = l) = \frac{1}{Z_i} \exp\left\{-\phi(y_i = l, x_i; \theta) - \sum_{j \in N(i)} \sum_{l'} q(y_j = l') \psi(y_i = l, y_j = l', x_i, x_j; \theta)\right\}$$

Message Passing/Variational Inference

- Inizializza q(Y)
- Itera

$$q(y_i = l) = \frac{1}{Z_i} \exp \left\{ -\phi(y_i = l, x_i; \theta) - \sum_{j \in N(i)} \sum_{l'} q(y_j = l') \psi(y_i = l, y_j = l', x_i, x_j; \theta) \right\}$$

Fino a convergenza

CRF e graph cuts

- Semi-supervisionato
 - Esplicita $\phi(y_i, x_i; \theta)$ per alcuni punti specifici

Graph cuts

Graph cuts

