Sprawozdanie MOBI – Tranzystor VeSFET

Piotr Mikołajczyk

1. Cel projektu

Celem projektu było opracowanie modelu tranzystora VeSFET . Na rysunku 1 przedstawiono strukturę tranzystora [1].

Rys. 1 Struktura tranzystora VeSFET

2. Dane wejściowe do obliczeń struktury

obliczonych

```
r = 50e-7; %[cm] promień bramki
tox = 4e-7; % [cm] grubość tlenku
h = 200e-7; %[cm]wysokość tranzystora
Nsub = 5e+17; %[cm^-3] koncentracja domieszek w podłożu
Npoly=5e+18; %[cm^-3] koncentracja domieszek w bramce
```

3. Zadania do wykonania

Proszę	zastosować		odpowiednie		wzory		zapewniające <u>ciągłość</u> model						przy
przejściu	z zakresu		don	dominacji		składowej		dyfuzyjnej		zakresu		dominacji	
składowej	unoszenia.		Prosz	zę do	brać	wzór	vzór n		efekty	ktywne nap		ęcie Uds	
nasycające	się do		Udsat	Udsat przy		wejściu		w zakres		nasycenia		tranzystora.	
Wykresy	weryfikacyjne			charakterystyk			orzejściowych			proszę	oroszę prz		tawić
zarówno		w skali		liniowej,		j	jak		i	loga	logarytmiczn		owej!
Proszę	też	przedsta	awić	wykresy	tro	anskond	lukta	cji	i r	odziny	cha	rakter	ystyk

Obliczone charakterystyki przejściowe proszę przedstawić na tle danych, na wspólnych rysunkach dla obu wartości UDS. (Podobnie transkonduktancje na jednym rysunku).

podstawie

opracowanego

modelu.

4. Charakterystyki

wyjściowych

Charakterystyki wykreślono przy wykorzystaniu równań z dokumentów [1] oraz [2].

na

Linią niebieską, ciągłą oznaczono dane z pliku P50o4s5p5.xls natomiast modele sporządzone w programie MATLAB, oznaczono linią ciągłą z kropkami. Stosowane jest to do każdego wykresu w niniejszym dokumencie.

Rys. 2 – Liniowa charakterystyka prądu wyłączenia dla zmiennego napięcia dren-źródło. (Ugs = 0 V)

Rys. 3 – Logarytmiczno-liniowa charakterystyka prądu wyłączenia dla zmiennego napięcia drenźródło. (Ugs = 0 V)

Rys. 4 – Liniowa charakterystyka przejściowa prądu drenu do napięcia bramka – źródło (Uds = 0.05 V)

Rys. 5 – Logarytmiczno-liniowa charakterystyka przejściowa prądu drenu do napięcia bramka - źródło. (Uds = 0.05 V)

Rys. 6 – Liniowa charakterystyka przejściowa prądu drenu do napięcia bramka – źródło (Uds = 0.8 V)

Rys. 7 – Logarytmiczno-liniowa charakterystyka przejściowa prądu drenu do napięcia bramka – źródło (Uds = 0.8 V)

Rys. 8 – Charakterystyka liniowa Trans konduktancji tranzystora : (gm ref 1 / model 1 (Uds = 0.05 V); gm ref 2 / model 2 (Uds = 0.8 V))

Rys. 9 – Charakterystyka liniowa Trans konduktancji tranzystora : (gm ref 1 / model 1 (Uds = 0.05 V); gm ref 2 / model 2 (Uds = 0.8 V))

Rys. 10 – Liniowa charakterystyka wyjściowa tranzystora VeSFET

Rys. 11 – Logarytmiczno - Liniowa charakterystyka wyjściowa tranzystora VeSFET

Implementacja wzorów potrzebnych do wyliczenia powyższych charakterystyk wraz z przyjętymi współczynnikami dopasowania / strojnia modelu. Całość kodu do wglądu umieszczono w pliku "Załącznik 1".

```
function out = diffiusionCurrent(Vds, Vgs, Vth, nCoeff)
            %out = I0.*(C.Ws./C.L).*exp((Vgs-Vth)./(nCoeff.*C.V t)).*(1-
exp(-(Vds./C.V t)));
            out = C.I0.*(C.Ws./C.L).*(((C.coeff1*Vds +
C.coeff2).^{C.coeff3} + exp((Vgs-Vth)./(nCoeff.*C.V t))).* (1-exp(-vceff.*C.V t))
(Vds./C.V t)));
        end
        function out = driftCurrent1(Vds, Vgs, Vth, nCoeff)
            % 0.05 V
            %Vsat = Vgs - C.Vfb - 2.*C.coeff3 +
(C.eps si.*C.q.*C.Nsub./(Cd.^2)) .* (1 - sqrt(1 + (2.*(Cd.^2).*(Vgs -
C.Vfb))./(C.eps_si.*C.q.*C.Nsub)));
            %out = C.coeff7 * C.u_p * C.C_ox * C.Ws / C.L * (C.coeff10 *
(((Vgs+C.coeff8) - Vth).^ C.coeff9))
            temp arr = ones(1,length(Vgs));
            for i = 1:length(Vgs)
                if Vgs(i) >= 0.35
                      temp = C.coeff8 .* C.u p .* C.C ox .* C.Ws ./ C.L .*
(C.coeff10 .* (((Vgs(i)+C.coeff9) - Vth).^ C.coeff7)) ./ 2;
                 else
                      temp = C.IO .* exp(C.coeff12.*Vgs(i)+C.coeff13.*Vds-
Vth*(C.coeff14)./(nCoeff(i).*C.V t)) .* (1-exp(-(Vds./C.V t)));
                temp arr(i) = real(abs(temp));
                clear temp;
            end
            out = temp arr;
         end
        function out = driftCurrent2(Vds, Vgs, Vth, nCoeff)
            % 0.8 v
            Vsat = Vgs - C.Vfb - 2.*C.coeff3 +
(C.eps si.*C.q.*C.Nsub./(Cd.^2)) .* (1 - sqrt(1 + (2.*(Cd.^2).*(Vgs -
C.Vfb))./(C.eps si.*C.q.*C.Nsub)));
            temp arr = ones(1,length(Vgs));
            for i = 1:length(Vgs)
                if Vgs(i) >= 0.35
                    temp = C.coeff5 * C.u_p * C.C_ox * C.Ws / C.L *
(C.coeff11 * (((Vgs(i)+C.coeff6) - Vth).^ C.coeff4)) / 2;
                else
                    temp = C.IO .* exp(C.coeff15.*Vgs(i)+C.coeff16.*Vds-
\label{eq:thm:coeff} $$Vth*(C.coeff(1).*C.V t)) .* (1-exp(-(Vds./C.V t)));$
                temp arr(i) = real(abs(temp));
                clear temp;
            end
            out = temp arr;
        end
      %współczynnik dopasowania prądu wyłączenia
      coeff1 = 52;
      coeff2 = 16;
      coeff3 = 1.94;
      %Współczynniki dopasowania dla charakterystyki przejściowej dla Vds
      %0.05 V
      coeff4 = 1.87;
      coeff5 = 0.11;
      coeff6 = 0.44;
      coeff11 = 0.02;
      coeff12 = 28;
```

```
coeff13 = 117;
coeff14 = 0.001;

%Współczynniki dopasowania dla charakterystyki przejściowej dla Vds
%0.8 V
coeff7 = 3.1;
coeff8 = 0.79;
coeff9 = 0.91;
coeff10 = 0.00042;
coeff15 = 29;
coeff16 = 10;
coeff17 = 0.001;
```

Wnioski:

Przyjęte współczynniki są daleko od idealnych. Na charakterystykach ukazano miejsca nieciągłości co jest wynikiem bezpośrednio tychże współczynników. Widać że charakterystyki przyjętego modelu nie pokrywają się idealnie z danymi pomiarowymi. Są one jednak dobrym przybliżeniem pozwalającym zgrubnie oszacować parametry tranzystora. Tyczy się to jednak tylko dopasowania do konkretnych charakterystyk. Z charakterystyk wyjściowych zauważyć można, że model dla innych danych wejściowych jest nieprawidłowy. W celu uniwersalności modelu należałoby poświęcić czas na rozwój rzeczonego modelu, ponieważ działa on jedynie przy dokładnej kalibracji dla konkretnych danych.

- [1] Improved Simple DC Model of Vertical-Slit Field Effect Transistor (VeSFET) Andrzej Pfitzner
- [2] Mosfet Device Physics and Operation http://homepages.rpi.edu/~sawyes/Models_review.pdf