Lecture 06, Math 447

Marius Junge

University of Illinois at Urbana-Champaign

Sequences of Real Numbers

Thm I Every sequence has a monotone subsequence.

Def An element $k \in \mathbb{N}$ is called a *peak* if $\forall n \geq k$ $x_n \leq x_k$.

$$P = \{ n \in \mathbb{N} \mid n \text{ is a peak} \}.$$

 $\nearrow P$ has infinitely many elements A

 $\searrow P$ has finitely many elements B

Case B (corrected)

See 13:09 in re corrections.

P is finite (case B): \exists point past which there are no more peaks:

Let $N_0 \in \mathbb{N}$ such that $P \subseteq \{1, \ldots, N_0\}$.

Hence for $n > N_0$, n is not a peak.

This means $\forall n > N_0 \quad \exists_{k>n} \quad x_n < x_k$.

Now construct: $n_0 = N_0 + 1$. $\exists n_1 > n_0 \quad x_{n_0} < x_{n_1}$. $\exists n_2 > n_1 \quad x_{n_1} < x_{n_2}$.

Thus $n_k \nearrow : \forall k \quad x_{n_{k+1}} > x_{n_k} \implies (x_{n_k})$ is strictly increasing.

Case A

Case A: P is an infinite set, so we can enumerate it:

$$n_1 = \min P$$
, $n_2 = \min P \setminus \{n_1\}$, $n_{k+1} = \min P \setminus \{n_1, \ldots, n_k\}$.

Then n_k is an increasing sequence of natural numbers.

(In fact
$$P = \{n_k \mid k \ge 1\}.$$
)

$$\forall k \quad \forall m \geq n_k \quad x_m \leq x_{n_k} \quad (n_k \text{ is a peak!})$$

In particular,
$$\forall k \quad x_{\underbrace{n_{k+1}}} \leq x_{n_k}$$
 (taking $m = n_{k+1}$).

Therefore (x_{n_k}) is a decreasing subsequence.

Case B $\implies \exists$ strictly increasing subsequence

Case A $\implies \exists$ decreasing subsequence

timestamp: 14:31

Limits

Def 1) A sequence of real numbers *converges* to $x_0 \in \mathbb{R}$ if

$$\forall \epsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad \mathsf{dist}(x_n, x_0) < \epsilon.$$
 (We write $\lim_n x_n = x_0$.)

2) A sequence is called *convergent* if $\exists x_0 \mid \lim_n x_n = x_0$.

Recall $\sup\{x_n \mid n \in \mathbb{N}\} = \text{smallest line that sits on top of them:}$

Limit is similar.

Two-sided picture of sup.

For each ϵ there is a lablel st. everything after will be in the tube.

Bounded monotone ⇒ convergent

Prop 2 Every bounded monotone sequence is converging.

Proof WLOG assume (x_n) is increasing and bounded.

$$\overline{\text{Claim}} \, \overline{|} \, \sup_{n} x_n = \overline{\lim}_{n} x_n$$

Recall $\sup A = c$ if

$$\forall a \in A \quad a \leq c \quad \text{and} \quad \forall \epsilon > 0 \ \exists a \in A \quad c - \epsilon < a.$$

Proof (of claim): Let $S = \sup\{x_n \mid n \in \mathbb{N}\}$. Let $\epsilon > 0$.

By definition of S we have $1)\forall n \ x_n \leq S$.

2)
$$\exists n_0 \quad S - \epsilon < x_{n_0} \leq S$$
.

Since monotone, once in the tube you're "caught" forever.

Now consider $n \ge n_0$. Then we have $S - \epsilon < x_{n_0} \le x_n \le S$.

Hence
$$|x_n - S| < \epsilon$$
.

Bounded sequences

Thm II Every bounded sequence has a convergent subsequence.

<u>Proof</u> Let (x_n) be a bounded sequence. By Thm I there exists a monotone subsequence $(x_{n_k})_k$. By Prop 2 this is convergent.

We will use Thm II to prove a continuous function on a compact interval achieves a maximum.

Thm III Every bounded interval is sequentially compact. ("sequentially compact": every sequence has convergent subsequence.)

Intermission on continuous functions:

$$A \subset \mathbb{R}$$
 $f: A \to \mathbb{R}$; f is continuous at x_0 if $\forall \epsilon > 0$ $\exists \delta > 0$ $\forall y$ $|y - x_0| < \delta \implies |f(y) - f(x_0)| < \epsilon$.

timestamp: 40:46