Systèmes des Télécommunications

Examen (Options ITR et SSI)

Remarques:

1. Documents non autorisés

2. Durée: 1h15

Exercice 1:

Cocher les affirmations vraies :

☐ Si un signal est à énergie finie, alors sa puissance est nulle.

 \Box Le produit d'un signal x(t) par l'impulsion de Dirac $\delta(t-t_0)$ revient à décaler le signal x(t) de t_0 .

☐ Un signal périodique est, toujours, déterministe, l'inverse est aussi vrai.

 \square L'échantillonnage pourrait être obtenu par simple multiplication du signal d'origine x(t) par l'impulsion de Dirac $\delta(t)$.

☐ Plus le nombre de niveaux de quantification augmente, plus la valeur du bruit de quantification diminue.

☐ On peut réaliser une quantification non uniforme à partir de la quantification uniforme sans changer le nombre de bit de codage.

 \Box Le pas de quantification uniforme est d'autant plus grand que le nombre de bit de codage est grand.

☐ Dans le cas de la quantification non uniforme, la période d'échantillonnage Te

☐ L'opération de codage consiste à coder, directement en binaire, la valeur des échantillons prélevés.

☐ Pour la loi A à 13 segments, la quantification est <u>toujours</u> uniforme à l'intérieur de chaque segment.

Exercice 2:

Soit un signal x(t) périodique de période T₀, tel que : $\mathbf{x}(\mathbf{t}) = |\mathbf{t}| \text{ si } t \in \left[-\frac{T_0}{2}, \frac{T_0}{2}\right]$

- 1. Tracer l'allure du signal x(t).
- 2. Donner la Décomposition en série de fourrier du signal x(t). En déduire l'expression de la fondamentale du signal
- 3. Montrer que le signal pourrait être écrit sous l'expression suivante :

$$x(t) = X_0 + \sum_{n=1}^{\infty} X_n \cos(2\pi n \frac{t}{T_0} + \varphi_n)$$

Déterminer X_0 , X_n et φ_n , on s'arrête à n=7.

4. En déduire le tracé du spectre d'amplitude et celui de phase correspondant.

Exercice 3:

On se propose d'échantillonner un signal acoustique s(t), de bande $[0, f_m]$, par un train d'impulsions rectangulaires r(t), de hauteur $=\frac{1}{\tau}$, de largeur τ , et de période $T_e=\frac{1}{F_e}=\frac{1}{2f_m}$.

- 1. Déterminer l'expression du spectre R(f) de ce train d'impulsions r(t).
- 2. Montrer que le spectre $S_e(f)$ du signal échantillonné $s_e(t)=s(t).r(t)$ pourrait être écrit sous la forme suivante :

$$S_e(f) = K \sum_n \alpha(n, \tau, T_e) \beta(n, f, T_e)$$

Préciser les limites de la sommation ainsi que l'expression des différents termes de l'équation.

3. Tracer l'allure du spectre $S_e(f)$ pour $f_m=3.4kHz$ et $\frac{\tau}{T_c}=0.4$

A.U: 2010-2011

Pr. A. FAQIHI