1 Sample Spaces

Definition 1. An experiment is any process that can be repeated with a well-defined set of outcomes. Example: roll a die, toss a coin.

Sets: discrete/finite, discrete/infinite, continuous

Definition 2. A sample space is the set of all possible outcomes of an experiment. Example: $S = \{1, 2, 3, 4, 5, 6\}, S = \{H, T\}$

Definition 3. The union of A and B, $A \cup B$, is all elements in A or B.

Definition 4. The intersection of A and B, $A \cap B$, is all elements in both A and B.

Definition 5. A and B are mutually exclusive (disjoint) if $A \cap B = \emptyset$.

Definition 6. The complement of A, A^c , is the set of elements not in A: S-A.

2 Probability

Definition 7. The function P is a probability function if it satisfies:

- 1. $P(A) \in [0,1]$ for all $A \subseteq S$
- 2. P(S) = 1
- 3. If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$
- 4. If A_1, A_2, \ldots are disjoint, then $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

Lemma 1. $P(A^c) = 1 - P(A)$

Proof: $A \cup A^c = S$, $A \cap A^c = \emptyset$, so $P(S) = P(A \cup A^c) = P(A) + P(A^c) = 1$. Therefore, $P(A^c) = 1 - P(A)$.

2.1 Fair Dice Example

If we roll a fair die, $P(i) = \frac{1}{6}$ for i = 1, 2, ..., 6. $P(\{1, 2\} \cup \{3, 4\} \cup \{5, 6\}) = P(\{1\}) + P(\{2\}) + \cdots + P(\{6\}) = 6 \cdot P(\{1\}) \Rightarrow P(\{1\}) = \frac{1}{6}$ Note: If all elements in S are equally likely, $P(A) = \frac{\# \text{ in } A}{\# \text{ in } S}$

2.2 Card Example

Roll a fair dice, find P(sum = 5).

$\mid A \mid$	B	Total
1	4	5
2	3	5
3	2	5
4	1	5

There are 26 people, find P(at least 2 same birthday). 1 - P(0 different)

Lemma 2 (Addition Rule). $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

If disjoint: $P(A \cup B) = P(A) + P(B) - 0 = P(A) + P(B)$

Proof: $P(A \cup B^c) + P(A \cap B^c) + P(B \cap A^c) = P(A \cup B)$

Prove: If $A \subseteq B$, then $P(A) \leq P(B)$

If $A \subseteq B$, $B^c \cap A = \emptyset$

 $B = A \cup (A^c \cap B)$ (disjoint union), so $P(B) = P(A) + P(A^c \cap B)$

Because $P(\cdot)$ is non-negative, $P(B) \geq P(A)$

3 Counting

Example 2.8 3.1

Given A, B, C:

- a) none occur: $A^c \cap B^c \cap C^c$ (only A occurs: $A \cap B^c \cap C^c$)
- b) all three occur: $A \cap B \cap C$ (exactly one occurs: $(A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)$)
- c) at least one occurs: $A \cup B \cup C$ $((A^c \cap B \cap C) \cup (A \cap B^c \cap C))$

$$P(A) = 0.3, P(B) = 0.7, P(A \cap B) = 0.1, WANTED$$

 $P(A \cup B) = 0.3 + 0.7 - P(A \cap B) = 0.9 - 0.5 = 0.4$
Blue/green/red
 $P(A \cup B) = 0.5 + 0.7 = P(A \cap B) = 0.9$

$$P(A \cup B) = 0.5 + 0.7 = P(A \cap B) = P(A \cap B) = 0.3$$

3.2 Counting Example

Choose a card at random: $P(A) = \frac{3}{7}$, $P(A \cap \text{red}) = \frac{15}{70} = \frac{3}{14}$, $P(A \cup \text{red}) = \frac{4}{7}$ Choose two at random without replacement (conditional probability): if the first card has an A, find $P(\text{second} = A) = \frac{2}{69}$, $P(\{2^{\text{nd}} = A\} \mid \{1^{\text{st}} = A\}) = \frac{1}{51} = \frac{1}{17}$ One card: $P(\text{red} \mid A) = \frac{15}{30} = 0.5$ $P(\text{red} \mid A) = \frac{P(\text{red} \cap A)}{P(A)} = \frac{3/7}{1} = \frac{3}{7}$

One card:
$$P(\text{red} \mid A) = \frac{15}{30} = 0.5$$

$$P(\text{red} \mid A) = \frac{P(\text{red} \cap A)}{P(A)} = \frac{3/7}{1} = \frac{3}{7}$$

Conditional Probability

Definition 8. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Choose two without replacement: $P(\text{both blue}) = P(\{1^{\text{st blue}} \cap 2^{\text{nd blue}}\}) = P(\text{blue})P(2^{\text{nd blue}})$ 1st blue)

$$=\frac{14}{70} \cdot \frac{13}{69} = \frac{182}{4830} = \frac{14}{70} = \frac{1}{5}$$

 $=\frac{14}{70}\cdot\frac{13}{69}=\frac{182}{4830}=\frac{14}{70}=\frac{1}{5}$ Choose 5 without replacement: $P(\text{at least one is blue})=1-P(\text{no blue})=1-\frac{56\cdot55\cdots}{70\cdot69\cdots}$

Example: Two buckets - 11 blue/1 green, 2 blue/3 green. Choose one from bucket one and move to bucket 2, choose 1 from bucket 2:

2

$$P(1^{\text{st}} \text{ blue} \cap 2^{\text{nd}} \text{ blue}) = \text{WORK}$$

$$P(1^{\text{st}} \text{ green } \cap 2^{\text{nd}} \text{ blue}) = \frac{1}{4}$$

$$P(2^{\text{nd}} \text{ blue}) = \frac{6}{12}$$

4.1 Total Probability - Given Events

Total probability: Given
$$A_1, A_2, \ldots, A_n$$
 with $A_i \cap A_j = \emptyset$ $(i \neq j)$ and $\bigcup A_i = S$, then $P(B) = \sum_{i=1}^n P(B \cap A_i) = \sum_{i=1}^n P(A_i)P(B \mid A_i)$

5 Conditional Probability (continued)

Find $P(1^{\text{st}} \text{ blue} \mid 2^{\text{nd}} \text{ blue}) = \frac{P(1^{\text{st}} \text{ blue} \cap 2^{\text{nd}} \text{ blue})}{P(2^{\text{nd}} \text{ blue})} = \frac{4/4}{5/12} = 0.6$ See setup for total probability.

Theorem 1 (Bayes' Theorem).

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \cap A)P(A)}{\sum_{all \ k} P(B \mid A_k)P(A_k)}$$

5.1 Medical Test Example

A test is 95% accurate: $P(\{+\} \mid \text{disease}) = 0.95$, $P(\{-\} \mid \text{not disease}) = 0.95$ If P(disease) = 0.01, find P(test+):

$$0.01 \cdot 0.95 = (0.01)(0.95) + (1.00)(0.05) = 0.059$$

$$\begin{split} &P(\text{disease} \mid +) = \frac{P(\text{is} + \cap)}{P(+)} = \frac{(0.01)(0.95)}{0.059} = 0.16 \\ &\text{Roll a die until you get a 6:} \\ &P(\{3\}) + P(\{4\}) + P(\{5\}) = \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right) \\ &\text{Geometric sequence:} \ a + ar + ar^2 + \dots = \frac{a}{1-r} \ \text{if} \ |r| < 1 \\ &a = \frac{1}{6}, \ r = \frac{5}{6}, \ \text{so} \ \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) = \frac{a \cdot r^2}{1-r} = \frac{(1/6)(5/6)^2}{1/6} = \frac{25}{36} \\ &\text{Question 2 if} \ r \geq 1 \\ &P \ \text{if} \ A \subseteq B, \ \text{then} \ P(A) \leq P(B) \end{split}$$

6 Homework

6.1 Roll 2 dice

Find P(sum = 6): $S' = \{2, 3, 4, \dots, 12\}$, $S_Y = \{0, 1, 2, \dots\}$ Roll 2 dice: Find P(exactly 4 green) $n = 10, k = 4, p = \frac{10}{50} = 0.2, P(4 \text{ green}) = \binom{10}{4}(0.2)^4(0.8)^6$ Binomial pdf (n, p, k): $n\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Choose 5 without replacement:

6.2 Discrete Random Variables

Example 1. Roll 2 dice: $X = sum \ of \ two \ rolls, \ Y = \# \ of \ 6s$ $S_X = \{2, 3, 4, ..., 12\}, \ S_Y = \{0, 1, 2\}$ Example: Roll 1 dice, let $X = (1^{st} \ roll), \ Y = \# \ of \ \{S_X = \{2, 3, 4, ..., 12\}, \ S_Y = \{0, 1, 2, 3\}$

Theorem 2. A random variable X is a function from a sample set to the real numbers (with an associated probability distribution).

Example: Roll two dice: $X = \text{sum of two rolls}, Y = \# \text{ of } \{S_X = \{2, 3, 4, ..., 12\}, S_Y = \{0, 1, 2, 3\}$

Theorem 3. Associated with a random variable is a probability density function (pdf) which gives the probability of all elements.

Theorem 4. The cumulative distribution function (cdf) for X is: $F_X(x) = P(X \le x)$

Binomial Distribution

Definition 9. $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n$ where n = # of trials, k = # of successes, p = P(success in one trial), $\binom{n}{k} = number of ways choosing$ k out of n

Example 2. 50 red, 40 red, 10 green

Choose 10 with replacement: Find
$$P(\text{exactly 4 green})$$
 $n=10,\ k=4,\ p=\frac{10}{50}=0.2,\ P(4\ \text{green})=\binom{10}{4}(0.2)^4(0.8)^6$

Binompdf (n, p, k): $n\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Choose 5 without

Discrete Random Variables 8

Example 3. Roll 2 dice, find P(sum = 5)Choose 10 with replacement: Find P(exactly 4 green) $n = 10, k = 4, p = \frac{10}{50}, p = 0.2$ $P(4 \text{ green}) = \binom{10}{4} (0.2)^4 (0.8)^6$

9 Continuous Random Variables

Example 4. Choose a number at random from the interval [0, 100] in \mathbb{R} :

$$P(X \le 50) = 0.5, \ P(X \le 10) = \frac{1}{10}, \ P(X \le 1) = \frac{1}{100}, \ P(X = 0) = 0$$

 $P(X \le V_1) = \int_0^{V_1} p_{2-x} dx = \frac{x^2}{2} \Big|_0^{V_1} = \frac{V_1}{4}$

Example 5.
$$P_X(x) = 2x$$
, $0 \le x \le 1$
 $P(X \le V_1) = P(X \le V_1) = \int_0^{V_1}$

Definition 10. For $P_X(x)$ to be a pdf, we need: $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Find the cdf
$$F_X(x) = P(X \le x) = \int_{-\infty}^x 2x dx = x^2 \Big|_0^x = x^2$$
 for $0 \le x \le 1$

Example 6.
$$f_X(x) = 2e^{-2x}, x \ge 0$$

 $P(X \ge 1) \int_1^\infty 2e^{-2x} dx = -e^{-2x} \Big|_1^\infty = 0 + e^{-2}$

$$f_X(x) = cx^2 e^{x^3}, x \ge 0$$

Find
$$c$$
 so this is a pdf:

$$1 = \int_0^\infty cx^2 e^{x^3} dx = c \left(-\frac{1}{3} e^{-x^3} \right) \Big|_0^\infty = \frac{c}{3} (0 - (-1)) = \frac{c}{3}$$

$$P_X(x) = 3x^2 e^{-x^3}$$

Find c for pdf:
$$1 = \int_0^\infty cx e^{-2x} dx$$
$$u = -\frac{1}{2}e^{-2x}, dv = xdx$$
$$dv = 1, dv = e^{-x}$$

$$u = -\frac{1}{2}e^{-2x}, dv = xdx$$

$$dv = 1, dv = e^{-x}$$

$$c\left[-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}\right]\Big|_0^\infty = c \cdot \frac{1}{4} = 1, c = 4$$

$$f_X(x) = 2x, \ 0 \le x \le 1$$

If
$$y = 2x + 1$$
, find $P_Y(y)$

Go through:
$$F_Y(y) = P(Y \le y) = P(2x + 1 \le y) = P\left(x \le \frac{y-1}{2}\right)$$

$$= \int_0^{\frac{y-1}{2}} 2x dx = x^2 \Big|_0^{\frac{y-1}{2}} = \left(\frac{y-1}{2}\right)^2 = \frac{(y-1)^2}{4}, \ 1 \le y \le 3$$

$$f_Y(y) = \frac{d}{dy}(y-1)^2 = \frac{(y-1)}{2}$$
 pdf

Expected Value 10

Example 7. We have: 3, 2.5, 4, 3.5, 2, 5.5. Mean: $\frac{7.5}{20} = 3.75$ $2\left(\frac{3}{20}\right) + 3\left(\frac{8}{20}\right) + 5\left(\frac{2}{20}\right) = \sum_{i} n_{i} P(n_{i})$

Definition 11. The expected value of a random variable X is:

$$E(X) = \begin{cases} \sum_{x \in S} x \cdot P(X = x) & discrete \\ \int_{-\infty}^{\infty} x \cdot f_X(x) dx & continuous \end{cases}$$

Example 8.
$$P(X=x) = \frac{1}{10}, x = 1, 2, 3, 4$$
 $E(X) = \frac{1}{10}[1+2+3+4] = 3$ $P(X=1) = \frac{1}{10}$

Roll a die until the first 6, with # of rolls: Find E(X)

$$P(X=1) = \frac{1}{6}, P(X=2) = \left(\frac{5}{6}\right)\left(\frac{1}{6}\right), P(X=k) = \left(\frac{5}{6}\right)^{k-1}\left(\frac{1}{6}\right), k = 1, 2, \dots$$

$$E(X) = \sum_{k=1}^{\infty} k \cdot \left(\frac{5}{6}\right)^{k-1} \left(\frac{1}{6}\right)$$

$$\sum ar^k = \frac{a}{1-r}, \ a + 2ar + 3ar^2 + \dots = \frac{a}{(1-r)^2}, \ E(X) = \frac{1/6}{(1-5/6)^2} = 6$$

Binomial:
$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, 1, \dots, n$$

 $E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1 - p)^{n-k} = np$

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

Continuous Example 10.1

$$f_X(x) = 2x, \ 0 \le x \le 1$$

$$E(X) = \int_0^1 x(2x^2)dx = \frac{2}{3}$$

$$f_X(x) = 2e^{-2x}, x \ge 0$$

$$f_X(x) = 2e^{-2x}, x \ge 0$$

$$E(X) = \int_0^\infty x \cdot 2e^{-2x} dx \Rightarrow \hat{\lambda} = \frac{1}{2}$$

Toss a coin until the first T, if it's on 1st win 1

$$1 \cdot P(T \text{ on } 1^{\text{st}}) + 2 \cdot P(T \text{ on } 2^{\text{nd}}) + \dots = 2^n E(W_n) = 2\left(\frac{1}{2}\right) + 4\left(\frac{1}{4}\right) + \dots + 2^n \left(\frac{1}{2^n}\right) = \sum_{n=1}^{\infty} 1 = \infty$$

 $f_X(x) = \frac{1}{2}, x \ge 1$ Show this is a pdf:

$$1 = \int_{1}^{\infty} \frac{c}{x^{2}} dx = -\frac{c}{x} \Big|_{1}^{\infty} = 0 + 1 = 1 \checkmark$$

$$E(X) = \int_{1}^{\infty} x \left(\frac{1}{x^{2}}\right) dx = \ln(x) \Big|_{1}^{\infty} = \infty$$

11 Median

Definition 12. The median m is the number so that $P(X \le m^*) \ge 0.5$ and $P(X \ge m^*) \ge 0.5$.

Example 9.
$$P_X(x) = 3x^2, \ 0 \le x \le 1$$

$$0.5 = \int_0^{m^*} 3x^2 dx$$
, so $0.5 = x^3 \Big|_0^{m^*} = (m^*)^3$, thus $m^* = \sqrt[3]{0.5}$

Notation: $E(X) = \mu$, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (population mean vs sample mean)

Note 1.
$$E(g(x)) = \sum g(x)P(X=x)$$
 or $\int_{-\infty}^{\infty} g(x)P_X(x)dx$

Example 10. x = [-1, 1, 3]

$$E(X) = -0.3 + 0.4 + 0.9 = 1$$

$$E(\cos(x)) = \cos(-1)(0.3) + \cos(1)(0.2) + \cos(3)(0.3)$$

$$E(X) = \int_0^1 3x^3 dx, \ E(x^2) = \int_0^1 x^2 (3x^2) dx$$

12 Variance

Definition 13.

$$Var(X) = E[(X - \mu)^{2}] = \sigma^{2}$$
 1, 2, 5 $\Rightarrow \sigma^{2} = 2$ $Var = 4$

Theorem 5. $E[(X - \mu)^2] = Var(X) = E(X^2) - \mu^2$

Note 2. E(aX + b) = aE(X) + b

13 Variance Examples

Example 11 (Finite discrete dist.).
$$x = 1, 2, 3, 4, E(X) = \frac{1}{4}(1 + 2 + 3 + 4) = 2.5$$
 $Var(X) = \frac{1}{4}[(1 - 2.5)^2 + (2 - 2.5)^2 + (3 - 2.5)^2 + (4 - 2.5)^2] = 1.25$

Example 12 (Roll die).
$$E(X) = \frac{1}{6}(1+2+3+4+5+6) = 3.5$$
 $E(X^2) = \frac{1}{6}(1+4+9+16+25+36) = \frac{91}{6}$ $Var(X) = \frac{91}{6} - (3.5)^2 = \frac{35}{12}$

Example 13 (Binomial).
$$E(X) = np$$
, $Var(X) = np(1-p)$ Roll 600, $k \neq of$ 6's: $E(X) = 100$, $Var(X) = 600 \cdot \frac{1}{6} \cdot \frac{5}{6}$

14 Further Properties of Mean and Variance

Theorem 6 (Lemma). E(aX + bY) = aE(X) + bE(Y)

Useless: $\sigma = S(+) + EY + \sqrt{VAR}$

Definition 14. $\bar{X} = \frac{1}{n} \sum X_i$ where X_i are from a list with $E(X_i) = \mu$ $E(\bar{X}) = \frac{1}{n} \sum E(X_i) = \mu$

Note 3.
$$Var(\bar{X}) = E[(\bar{X} - \mu)^2] = E\left[\left(\frac{1}{n}\sum X_i - \mu\right)^2\right] = E\left[X^2\right] - \mu^2$$

Note 4. If X and Y are independent, Var(X) + Var(Y)

Var(aX + bY) if X and Y are independent: $a^2Var(X) + b^2Var(Y)$

 $\operatorname{Var}(X_1 + \cdots + X_n) = \operatorname{Var}(X_1) + \cdots + \operatorname{Var}(X_n)$ if X and Y are independent

 $\operatorname{Var}(\bar{X}) = \sigma^2$ where $\sigma^2 = \operatorname{Var}(X_i) = \frac{\sigma^2}{n}$ **Notation (if points equally likely):** $\sigma^2 = \frac{1}{n} \sum (X_i - \mu)^2 = \text{population variance}$ $s^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2 = \text{sample variance}$

PMF with respect to Y

15 The k-th Moment

Definition 15. The k-th moment of X is $E(X^k)$

Notation (if points equally likely): $\sigma^2 = \frac{1}{n} \sum (X_i - \mu)^2 = \text{population variance} = \text{standard}$ $s^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i - \bar{X})^2 = \text{sample var}$

16 Joint Densities

Example 14.
$$f_{X,Y}(x,y) = \frac{2}{3}xy, \ 0 \le x \le 1, \ 0 \le y \le 2, \ x+y > 1$$

 $Find \ E(XY) = \int \int (xy) \left[\frac{2}{3}xy\right] dy dx = \frac{2}{3} \int_0^1 \int_{1-x}^2 x^2 y^2 dy dx$
 $Find \ F(X) = \int_0^2 \frac{2}{3}xy dy = \frac{2}{3}xy \Big|_{y=0}^2 = \frac{2}{3}x(2) - \frac{2}{3}x(0) = \frac{4}{3}x, \ 0 \le x \le 1$
 $Expected \ f(x) \colon P(Y > X) = 1 - P(Y \le X) = 1 - \int_0^1 \int_0^x \frac{2}{3}xy dy dx$
 $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \ z = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$
 $Find \ E(XY) = \sum \sum (xy)P(X,Y) = (.5)(2)(.5) + 1.5$
 $E(Y) = 1(.3) + 1(.6) + 2(.1) = .5$
 $Find \ E(XY) = (.1)(.1) + (.2) + 2(.2) + 2(.3) + 2(.2) + 2(.3) = .6$

Definition 16. The covariance is the $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$

Are the sets $\{x = 13\}$ and $\{y = 13\}$ independent? $P(\{x = 13\} \cap \{y = 13\}) = P(\{x = 13\})P(\{y = 13\})$ $P(\{x = x\})$

Theorem 7. The random variables X and Y are independent if $P(X \in A \cap Y \in B) = P(X \in A)P(Y \in B)$ for all sets $A \in S_X$, $B \in S_Y$

If X and Y are independent, $E(XY) = E(X)E(Y) \Rightarrow Cov(X,Y) = 0$

Lemma: The continuous random variables X and Y are independent if $f_{XY}(x,y) = g(x)h(y)$ where $g(x) = kf_X(x)$ and $h(y) = \ell f_Y(y)$ for all $x \in S_X$, $y \in S_Y$

Example 15. $f_{XY}(x,y) = \frac{1}{33}xy$, $0 \le x \le 1$, $0 \le y \le 2$, x + y > 1 Are X and Y independent? NO - need 5 to be rectangle

Example 16.
$$f_{XY}(x,y) = d(x \cdot y), \ 0 \le x \le 2, \ 0 \le y \le 5$$
 $f_{XY}(x,y) = \frac{1}{(x+y)} p \ne h(x) g(y) \ NO$

Example 17.
$$f_{XY}(x,y) = e^{-(x+y)}, x \ge 0, y \ge 0$$

= $e^{-x} \cdot e^{-y} = g(x)h(y)$ YES

Example 18. If
$$Var f_X(x) = 4x^3$$
, $0 \le x \le 1$, $f_Y(y) = 3y^2$, $0 \le y \le 1$
Find $P(Y > X)$: If Y and Y are independent
 $f_{XY}(x,y) = 4x^3(3y^2) \Rightarrow$

$$\int_0^1 \int_x^1 (2x^3y^2) dy dx = \int_0^1 4x^3y^3 \Big|_x^1 dx$$
...

17 Further Properties of Mean and Variance

Lemma 3. E(aX + bY) = aE(X) + bE(Y)

Definition 17.
$$\bar{X} = \frac{1}{n} \sum X_i$$
 where X_i are from a list with $E(X_i) = \mu$ $E(\bar{X}) = \frac{1}{n} \sum E(X_i) = \mu$ Note: $Var(\bar{X}) = E[(\bar{X} - \mu)^2] = E[(X_i - \mu)]^2 = E[X^2] - \mu^2$

Note 5. If X and Y are independent, Var(X + Y) = Var(X) + Var(Y)

$$\operatorname{Var}(aX + bY)$$
 if X and Y are independent $= a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y)$
 $\operatorname{Var}(\bar{X})$ for X and Y independent: $\sigma^2 = \operatorname{Var}(X_i) = \frac{1}{n^2}[\sigma^2 + \dots + \sigma^2] = \frac{\sigma^2}{n}$
 $\operatorname{Var}(N) = 100\sigma^2(X) - 36\operatorname{Var}(Y) - 110\sigma^2(X) + 36\operatorname{Var}(Y)$ if X and Y are ind

Definition 18. The correlation coefficient is: $\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$, $-1 \le \rho \le 1$

PPP:

1.
$$-1 \le \rho \le 1$$

2.
$$\rho = \pm 1 \Leftrightarrow y = a + bx$$

- 3. $\rho = 0$ no linear association
- 4. ρ gives the percent of the variation in y due to the change in x

Example 19 (20).
$$X \sim Binom(n, p_x)$$
, $Y \sim Binom(m, p_y)$, $U = X + Y$
 $Find \ E(U)$, $Var(U)$
 $E(X) = np_x$, $E(Y) = mp_y$, $Var(X) = np_x(1 - p_x)$, $Var(Y) = mp_y(1 - p_y)$
 $E(U) = 4E(X) + 6E(Y) = 4np_x + 6mp_y$
 $Var(N) = 10\sigma^2(X) - 36 \ Var(Y) = 110p_x(1 - p_x) + 36mp_y(1 - p_y) \ if \ X \ and \ Y \ are \ ind$

18 The Poisson Distribution

Definition 19. The Poisson distribution is:
$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
 for $k \in \mathbb{N}$ (or $k = 0, 1, ...$) $E(X) = \lambda = Var(X)$

This usually gives the number of occurrences in a time interval. Something is Poisson if:

- 1. The occurrences in Δt happen simultaneously
- 2. For a short enough time frame, there are 0 or 1 occurrences
- 3. Occurrences are independent
- 4. The rate of occurrences is constant (only matters well if a Δt -age unit 2 small)

Example 20. A TV has 6 million pixels, where the probability that one is defective is $\frac{1}{2}$ mill. $\lambda = mean = 5$ A mill/2 mill = 2.5

$$P(3 \text{ are defective}) \approx e^{-2.5} \frac{(2.5)^3}{3!} = P(Poissonp(\lambda = 2.5, k)) = 0.2136$$

Find
$$P(X > 3)$$
: WORK = Poisson $p(\lambda = 2.5, k)$

Example 21. The number of people who walk into a store is Poisson with a mean of $\frac{50}{1 \text{ hour}}$. Find $P(\text{at least in one hour with Poissonp}(\lambda = 2.5, k))$ or P(3 in 10 mins)

$$\lambda = 3$$
, Poisson $p(\lambda = 5, k) = 0.104$

Note: If the number of occurrences is Poisson, then the time between occurrences is exponential: $P(X = k) = \lambda e^{-\lambda k}$ (ECN $\Rightarrow X$)

Example 22. The mean is 492 for two hours: $\lambda = 492$ (for 2 hours)

Find
$$\lambda$$
 (in 2 min): $\lambda = \frac{492}{60} \approx 8.0333$, $\lambda^{492}/60 = 8.0333$
Therefore Poisson $p(\lambda = 492/60, k) = 0.029$ or $P(E3; in 2 min) = Poisson $p(\lambda = 492/60, k) = 0.014$$

Find
$$P(E3; \text{ in } 2 \text{ min}) = \text{Poisson } p(\lambda = 492/60, k)$$

Example 23. 20000 People play, if
$$P(win) = \frac{1}{5000}$$
. Find $P(2 > People win)$ $\lambda = \frac{20000}{5000} = 4$, $1 - P(X \le 3) = 1 - PoissonCDF(4, 2) = 7(2)$

19 The Normal/Gaussian Distribution

Definition 20. Normal/Gaussian distribution: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$, $-\infty < x < \infty$, $-\infty < \mu < \infty$, $\sigma > 0$ Standard: $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$, human

Example 24. Find $P(2 \le (1.2)) = Normal\ CDF(2, 100000, 1.2) \cap \mu = 0 \Rightarrow P = 0.8849$ **Lemma:** If X is Normal with $\mu = 100, \ \sigma = 10$

Find $P(2 \le (1.2))$ If we take a sample of 100 $P(\bar{X} > 52) = Normal\ CDF(52, 100000, 50)$ Find a so: $P(\mu = k \le \mu) \Rightarrow inv\ Normal\ CDF(.75, 100, 10, center)$

HW 3

Bernoulli:
$$P(X = 1) = p, P(X = 0) = 1 - p$$

a) Find E(X) and Var(X)

$$E(X) = \sum x P(X = x)$$
 and $Var(X)$

b) Let
$$Y = X_1 + X_2 + \cdots + X_n$$
 when $X_i = \text{Bernoulli with } P(X_i = 1) = p$ and

$$E(Y) \cdot \sum x P(X = x)$$

$$Var(Y) = Var(X_1 + \cdots) = np(1-p)$$

$$Var(Y) = Var(2X_i) \Rightarrow Var(\bar{X}_i)^2$$

20 Central Limit Theorem

Given a sample $X_1, X_2, X_3, \dots X_n$ all from the same population taken independently, then $\bar{X} = \frac{1}{n} \sum X_i$ and the sum $\sum X_i$ are normal

No outliers or strong skewed normal converges under sample $E(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}) \Rightarrow \text{so } sd(\bar{X}) = \frac{\sigma}{\sqrt{n}}, \text{Var}(\bar{X}) = n\sigma^2$ For X we know $\mu = 50$, $\sigma = 8$

Find $P(\bar{X} > 52) =$? If we take a sample of 100 $P(\bar{X} > 52) =$ Normal CDF(52, 10000, 50, 30)

Find P(X > 52) = ? Find a $P(\mu \le k \le \mu) \Rightarrow a$ with $P(X \ge 52) = \text{Normal CDF}(52, 10000, 50, 30) = 0.0062$

Find a so that $P(\mu \le k \le \mu)$: inv Normal (1.75, 100, 10, center)

Example 25. X is normal with $\mu = 12$, $\sigma = 42$

$$Find\ P(X \le 150) = Normal\ CDF(10000, 130, 12, 41) = 0.0655$$

With a sample of 400: Find $P(10 \le \bar{X} \le 1(2)) = Normal\ CDF(112, 110, 112, 41/\sqrt{400})$

Example 26. Roll a dice 600 times, estimate $P(90 \le \# \text{ of } 6\text{ 's} \le 115)$: Mean = np = 106 variance = $np(1-p) = \frac{500}{6} \approx 71.27$

continuity correction: $P(\bar{X} < 70) \Rightarrow P(\bar{X} \le 70.5) \Rightarrow$

 $P(10 \le k \le 115) = P(90.52k \le 115) = Normal\ CDF(115, 90.5, 115.5, 70.5, 100.5)$

 $k < 100 \Rightarrow X \le 100.5, X \ge 100 \Rightarrow X \ge 99.5$