Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Lecture 9 - Statistical tests II

 χ^2 -tests

- Goodness-of-fit test
- Independence test

Sum of k independent standard normal variables

Let $Z_i \sim N(0,1)$ be independent variables with standard normal distribution.

Then what is the distribution of $\sum_{i=1}^{k} Z_{i}^{2}$?

Sum of *k* independent standard normal variables

Let $Z_i \sim N(0,1)$ be independent variables with standard normal distribution.

Then what is the distribution of $\sum_{i=1}^{\kappa} Z_i^2$?

```
show.sum.Z.square <- function(k) {</pre>
  # shows the empirical distribution of the sum of
  # k independent standard normal variables
  Z \leftarrow rnorm(10^6); sum.Z.square \leftarrow Z^2
  while(k > 1) {
    Z <- rnorm(10^6); sum.Z.square <- sum.Z.square + Z^2</pre>
    k < - k - 1
  print(summary(sum.Z.square))
  plot(cut(sum.Z.square, 200))
```


Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test is a test for comparing a theoretical distribution with the observed data from a sample.

Example 1

Rolling a die – after 600 rolls you got the following distribution

Example 1

Rolling a die – after 600 rolls you got the following distribution

Question: Is the die fair? = Does it have the uniform distribution?

Example 1

Rolling a die – after 600 rolls you got the following distribution

Question: Is the die fair? = Does it have the uniform distribution?

Example 2

Our hypothesis is that our classifier accuracy is $78\,\%$. However, a test on $100\,$ randomly chosen instances gives the following result

```
correct error
81 19
```

Example 1

Rolling a die – after 600 rolls you got the following distribution

Question: Is the die fair? = Does it have the uniform distribution?

Example 2

Our hypothesis is that our classifier accuracy is $78\,\%$. However, a test on $100\,$ randomly chosen instances gives the following result

```
correct error
81 19
```

Question: Should we reject the hypothesis?

$\chi^{\mathbf{2}}$ Goodness-of-fit test

Pearson's χ^2 test is based on the following formula for Pearson's cumulative test statistic

$$X^{2} = \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

If the observed variables O_i have multinomial distribution, then Pearson's cumulative test statistic X^2 has χ^2_{m-1} distribution.

Then we compare the test statistic with χ^2 critical value $\chi^2_k(\alpha)$, which is defined by

$$\Pr\left\{X^2 > \chi_k^2(\alpha)\right\} = \alpha$$

Example based on real data

SENSES	estimated probabilities	test set observations
cord	9.2%	37
division	8.9%	51
formation	8.1%	52
phone	10.6%	44
product	53.5%	268
text	9.8%	48

Example based on real data

SENSES proba	bilities	test set observations
cord 9.2% division 8.9% formation 8.1% phone 10.6% product 53.5% text 9.8%		37 51 52 44 268 48

```
> x = c(37, 51, 52, 44, 268, 48)
> p = c(9.2, 8.9, 8.1, 10.6, 53.5, 9.8)/100
```