MODELARE ŞI SIMULARE

LABORATOR NR. 8 - SISTEME TERMICE (1), SIMULINK (7)

- 8.1 Se consideră o sferă cu raza r=0.01 m, scufundată într-un vas cu apă fierbinte. Se cunoaște coeficientul de transfer de căldură prin convectie $h=350\,W/(m*\,^\circ\text{C})$. Se cunosc densitatea bilei, căldura sa specifică și conductivitatea sa termică: $\rho=7850\frac{kg}{m^3}$, $c=440\frac{J}{kg*\,^\circ\text{C}}$, $k=43\frac{W}{m*\,^\circ\text{C}}$. Temperatura apei este $T_f=100\,^\circ\text{C}$ și temperatura inițială a sferei este $T_0=25\,^\circ\text{C}$.
- a. Determinați dacă temperatura sferei poate fi considerată uniformă.
- b. Determinați modelul dinamic pentru temperatura sferei în funcție de temperatura apei $(T(t)=f\left(T_f(t)\right)$.
- c. Pe baza modelului de la pct. b, construiți modelul Simulink corespunzător.

a. Numărul BIOT

$$N_B = \frac{hL}{k}$$

L = dimensiune reprezentativă a obiectului (volumul/aria expusă la convecţie)

Conditia ca sistemul sa poata fi tratat ca unul cu parametri concentrati este:

 $N_B < 0.1$ (plăci, cilindri, sfere)

Care este valoarea lungimii (dimensiunii) reprezentative pentru sferă, cub? Lungimea caracteristică a sferei:

$$L_{c} = \frac{V_{\text{body}}}{A_{\text{surface}}} = \frac{\frac{4}{3}\pi r^{3}}{4\pi r^{2}} = \frac{1}{3}r = \frac{0.01}{3}$$

Numărul Biot (N_B sau Bi):

$$Bi = \frac{hL_c}{k} = \frac{350(0.01)}{43(3)} = 2.71 \times 10^{-2} < 0.1$$

Deci sfera dată poate fi tratată ca un sistem cu parametri concentrați.

CONSERVAREA ENERGIEI

$$\frac{\mathrm{d}U}{\mathrm{d}t} = q_{\mathrm{hi}} - q_{\mathrm{ho}}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\rho V c T) = \rho V c \frac{\mathrm{d}T}{\mathrm{d}t}$$

$$q_{\rm hi} = \frac{T_{\rm f} - T}{R}$$

$$q_{\text{ho}} = 0.$$

$$\rho Vc (dT/dt) = (T_f - T)/R$$

$$\rho Vc = C$$

$$RC\frac{\mathrm{d}T}{\mathrm{d}t} + T = T_{\mathrm{f}}$$

CAPACITANTA TERMICA, REZISTENTA TERMICA, MODELUL DINAMIC

1
$$C = \rho Vc = 7850 \left(\frac{4}{3}\right) (\pi) (0.01)^3 (440) = 14.47 \text{ J/°C}$$

$$R = \frac{1}{hA} = \frac{1}{350(4)(\pi)(0.01)^2} = 2.27^{\circ} \text{Cs/J}$$

$$32.85 \frac{\mathrm{d}T}{\mathrm{d}t} + T = T_{\mathrm{f}}$$

$$\frac{dT}{dt} = \frac{1}{32.85}(100 - T)$$

- 8.2 Se dă o casă cu pereţi realizaţi din două straturi, cu capacitaţile termice cunoscute, C_1 şi C_2 . Temperaturile în cele două straturi sunt uniforme, T_1 şi T_2 . Se cunosc temperaturile din casă şi din exterior, T_i şi T_0 . Cele două straturi schimbă căldura cu aerul prin convecţie, iar rezistenţele termice sunt R_1 şi R_3 , respectiv. Rezistenţa termică a interfeţei dintre straturi este R_2 .
- a. Deduceți modelul dinamic al sistemului;
- b. Deduceţi reprezentarea pe stare a sistemului, dacă ieşirile sunt T₁ şi T₂.

CONSERVAREA ENERGIEI PENTRU STRATUL EXTERIOR

$$\frac{dU}{dt} = q_{\rm hi} - q_{\rm ho}$$

$$\frac{dU}{dt} = C_1 \frac{dT_1}{dt}$$

$$q_{\rm hi} = \frac{T_{\rm o} - T_{\rm 1}}{R_{\rm 1}}$$

$$q_{\text{ho}} = \frac{T_1 - T_2}{R_2}$$

$$C_1 \frac{dT_1}{dt} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right) T_1 - \frac{1}{R_2} T_2 = \frac{1}{R_1} T_0$$

CONSERVAREA ENERGIEI PENTRU STRATUL INTERIOR

$$\frac{dU}{dt} = q_{hi} - q_{ho}$$

$$\frac{dU}{dt} = C_2 \frac{dT_2}{dt}$$

$$q_{\text{hi}} = \frac{T_1 - T_2}{R_2}$$

$$q_{\text{ho}} = \frac{T_2 - T_i}{R_3}$$

$$C_2 \frac{dT_2}{dt} - \frac{1}{R_2} T_1 + \left(\frac{1}{R_2} + \frac{1}{R_3} \right) T_2 = \frac{1}{R_3} T_1$$

$$\begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \begin{Bmatrix} \frac{dT_1}{dt} \\ \frac{dT_2}{dt} \end{Bmatrix} + \begin{bmatrix} \left(\frac{1}{R_1} + \frac{1}{R_2}\right) & -\frac{1}{R_2} \\ -\frac{1}{R_2} & \left(\frac{1}{R_2} + \frac{1}{R_3}\right) \end{bmatrix} \begin{Bmatrix} T_1 \\ T_2 \end{Bmatrix} = \begin{Bmatrix} \frac{1}{R_1} T_0 \\ \frac{1}{R_3} T_1 \end{Bmatrix}$$

b.

MODELUL PE STARE

1

$$\mathbf{x} = \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} T_1 \\ T_2 \end{cases}, \quad \mathbf{u} = \begin{cases} T_1 \\ T_0 \end{cases}, \quad \mathbf{y} = \begin{cases} T_1 \\ T_2 \end{cases}$$

2

$$\dot{x}_1 = \frac{dT_1}{dt} = -\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1}\right)T_1 + \frac{1}{R_2C_1}T_2 + \frac{1}{R_1C_1}T_0$$

$$\dot{x}_2 = \frac{dT_2}{dt} = \frac{1}{R_2 C_2} T_1 - \left(\frac{1}{R_2 C_2} + \frac{1}{R_3 C_2} \right) T_2 + \frac{1}{R_3 C_2} T_i$$

3

$$\begin{cases} \dot{x}_1 \\ \dot{x}_2 \end{cases} = \begin{bmatrix} -\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1}\right) & \frac{1}{R_2C_1} \\ \frac{1}{R_2C_2} & -\left(\frac{1}{R_2C_2} + \frac{1}{R_3C_2}\right) \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} + \begin{bmatrix} 0 & \frac{1}{R_1C_1} \\ \frac{1}{R_3C_2} & 0 \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases}$$

4

$$\begin{cases} y_1 \\ y_2 \end{cases} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{cases} u_1 \\ u_2 \end{cases}$$

Observatie:

Command	Description
eye(n)	Creates an $n \times n$ identity matrix.
eye(size(A))	Creates an identity matrix the same size as the matrix A.
ones(n)	Creates an $n \times n$ matrix of 1s.
ones(m,n)	Creates an $m \times n$ array of 1s.
ones(size(A))	Creates an array of 1s the same size as the array A.
zeros(n)	Creates an $n \times n$ matrix of 0s.
zeros(m,n)	Creates an $m \times n$ array of 0s.
zeros(size(A))	Creates an array of 0s the same size as the array A.

8.3 Se dă peretele cu structura de mai jos. Se iau în considerare capacitațile termice ale fiecărui strat. Se cere modelul dinamic (pe stare) si simularea acestui model in Simulink si in MATLAB.

$$R_a = \frac{R_1}{2}$$
 $R_b = \frac{R_1}{2} + \frac{R_2}{2}$ $R_c = \frac{R_2}{2} + \frac{R_3}{2}$ $R_d = \frac{R_3}{2} + \frac{R_4}{2}$ $R_e = \frac{R_4}{2}$

$$C_1 \frac{dT_1}{dt} = \frac{T_i - T_1}{R_a} - \frac{T_1 - T_2}{R_b}$$

$$C_2 \frac{dT_2}{dt} = \frac{T_1 - T_2}{R_b} - \frac{T_2 - T_3}{R_c}$$

$$C_3 \frac{dT_3}{dt} = \frac{T_2 - T_3}{R_c} - \frac{T_3 - T_4}{R_d} \qquad C_4 \frac{dT_4}{dt} = \frac{T_3 - T_4}{R_d} - \frac{T_4 - T_0}{R_e}$$

$$C_4 \frac{dT_4}{dt} = \frac{T_3 - T_4}{R_d} - \frac{T_4 - T_0}{R_e}$$

$$\frac{d\mathbf{T}}{dt} = \mathbf{A}\mathbf{T} + \mathbf{B}\mathbf{u}$$

$$\mathbf{T} = \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} T_i \\ T_o \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & b_{42} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} b_{11} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & b_{42} \end{bmatrix}$$

$$a_{11} = -\frac{R_a + R_b}{C_1 R_a R_b} \qquad a_{12} = \frac{1}{C_1 R_b}$$

$$a_{21} = \frac{1}{C_2 R_b} \qquad a_{22} = -\frac{R_b + R_c}{C_2 R_b R_c} \qquad a_{23} = \frac{1}{C_2 R_c}$$

$$a_{32} = \frac{1}{C_3 R_c} \qquad a_{33} = -\frac{R_c + R_d}{C_3 R_c R_d} \qquad a_{34} = \frac{1}{C_3 R_d}$$

$$a_{43} = \frac{1}{C_4 R_d} \qquad a_{44} = -\frac{R_d + R_e}{C_4 R_d R_e}$$

$$b_{11} = \frac{1}{C_1 R_c} \qquad b_{42} = \frac{1}{C_4 R_c}$$

$$R_a = 0.018$$
 $R_b = 2.023$ $R_c = 2.204$ $R_d = 0.223$ $R_e = 0.019$

$$R_d = 0.223$$
 $R_e = 0.019$

$$C_1 = 8720$$
 $C_2 = 6210$ $C_3 = 6637$ $C_4 = 2.08 \times 10^4$

$$T_i(t) = 20$$

$$T_i(t) = 20$$

 $T_o(t) = 5 - 15t$ $0 \le t \le 3600 \text{ s}$

Diagrama Simulink arata ca mai jos. Iesirile se duc si intr-un port de iesire, dar si in spatiul de lucru Matlab. Astfel, ele pot fi vizualizate cu instructiunile Matlab corespunzatoare.

Cele 6 marimi vizualizate pe osciloscop:

Daca ni se cere sa determinam timpul dupa care $T_2>=11$ **si** $T_4<=-5$, diagrama Simulink trebuie completata astfel:

În Matlab (vezi codul .mlx complet postat pe Moodle):

```
% Rezistente si capacitante termice.
Ra = 0.018; Rb = 2.023; Rc = 2.204; Rd = 0.223; Re = 0.019;
C1 = 8720; C2 = 6210; C3 = 6637; C4 = 20800;
% Coeficientii matricilor.
a11 = -(Ra+Rb)/(C1*Ra*Rb); a12 = 1/(C1*Rb);
a21 = 1/(C2*Rb); a22 = -(Rb+Rc)/(C2*Rb*Rc); a23 = 1/(C2*Rc);
a32 = 1/(C3*Rc); a33 = -(Rc+Rd)/(C3*Rc*Rd); a34 = 1/(C3*Rd);
a43 = 1/(C4*Rd); a44 = -(Rd+Re)/(C4*Rd*Re);
b11 = 1/(C1*Ra); b42 = 1/(C4*Re);
% Matricile A si B.
A = [a11,a12,0,0; a21,a22,a23,0; 0,a32,a33,a34; 0,0,a43,a44];
B = [b11,0; 0,0; 0,0; 0,b42];
% Definim matricile C si D.
% lesirile sunt cele 4 temperaturi.
C = eye(4);
D = zeros(size(B));
% Cream modelul LTI.
sys = ss(A,B,C,D);
% Cream vectorul de timp (3600 secunde).
t = (0:1:3600);
% Cream vectorul de intrare.
u = [20*ones(size(t)); (5-15*ones(size(t)).*t/3600)];
% Raspunsul fortat.
[yforced,t] = lsim(sys,u,t);
% Raspunsul liber (conditii initiale).
[yfree,t] = initial(sys,[10,10,10,10],t);
% Afisam cele patru temperaturi si temperatura exterioara.
plot(t,yforced+yfree,t,u(2,:))
% Constantele de timp.
tau = (-1./real(eig(A)))/60
```

initial(sys,x0) calculates the unforced response of a state-space (ss) model sys with an initial condition on the states specified by the vector x0:

```
\dot{x} = Ax, \quad x(0) = x_0y = Cx
```

initial

Initial condition response of state-space model

Syntax

```
initial(sys,x0)
initial(sys,x0,Tfinal)
initial(sys,x0,t)
initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,Tfinal)
initial(sys1,sys2,...,sysN,x0,t)
[y,t,x] = initial(sys,x0)
[y,t,x] = initial(sys,x0,Tfinal)
[y,t,x] = initial(sys,x0,t)
```


