Математический анализ, 3 семестр

Коченюк Анатолий

23 января 2022 г.

Глава 1

Анализ нескольких переменных. Функциональные ряды. Теория меры, Криволинейные интегралы.

литература – Виноградов, Виноградов-Громов

1.1 Вспоминаем

$$O \subseteq \mathbb{R}^n$$
 – открытое, $f: O \to R, f \in C^{N+1}(O), N \in \mathbb{N}$

[a,x] – замкнутый отрезок $\subset O, a \neq x \implies \exists x \in (a,x)$:

$$f(x) = \sum_{k=0}^{N} \frac{d_a^k f(x-a)}{k!} + \frac{d_c^k f(x-a)}{(N+1)!}$$

Тейлоровский многочлен порядка N

 $T_{N,a,f}$

Определение 1. $\alpha \in \mathbb{Z}_+^n$ – пространство мультииндексов

$$\alpha = (\alpha_1, \alpha_2 \dots \alpha_n)$$

$$|\alpha| = \alpha_1 + \ldots + \alpha_n$$

$$\alpha! = \alpha_1 \cdot \ldots \cdot \alpha_n$$

$$f_{(a)}^{(\alpha)} = \frac{\partial^{|\alpha|} f}{\partial^{\alpha_n} x_n ... \partial^{\alpha_1} x_1}$$

$$h = (h_1, \dots, h_n)$$
 $d_a^k f(h) = \sum_{\substack{\alpha \in (Z_+)^n \ |\alpha| = k}} \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha}$

1.2 Полиномиальная форма Ньютона

$$N \in \mathbb{N}$$
 $x = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$(x_1 + \ldots + x_n)^N = \sum_{\substack{\alpha \in (\mathbb{Z}_+)^n \\ |\alpha| = N}} \frac{N!}{\alpha!} x^{\alpha}$$

Доказательство. $p(x) = (x_1 + x_2 + ... + x_n)^N$

$$p'_{x_1} = N(x_1 + \ldots + x_n)^{N-1} = p'_{x_2} = \ldots = p'_{x_n}$$

$$p^{\alpha} = N(N-1)...(N-|\alpha|+1)(x_1+...+x_n)^{N-|\alpha|}$$

$$|\alpha| \leqslant N + 1 \implies p^{(\alpha)} \equiv 0$$

$$|\alpha| < N \implies p^{(\alpha)}(0) = 0$$

Неноль получается, только если $|\alpha| = N$ $p^{(\alpha)}(0) = N!$

Если подставить, то получим:

$$\sum \frac{N!}{\alpha!} x^{\alpha} \quad h = x - a = x - 0$$

1.3 Оценка однородных многочленов

Определение 2. $\sum\limits_{\substack{\alpha\in (Z_+)^n\\ |\alpha|=N}}^n b_\alpha x^\alpha$ – однородный многочлен степени N

В более широком смысле $b_{\alpha} \in \mathbb{R}^m$

 $\forall t \in \mathbb{R} \quad p\left(tx\right) = t^N p(x),$ т.е. однородный многочлен является однородной функцией.

Утверждение 1.
$$\Box$$
 $p(x)=\sum\limits_{\substack{\alpha\in (Z_+)^n\\|\alpha|=N}}\frac{N!}{\alpha!}C_{\alpha}x^{\alpha}\quad C_{\alpha}\in\mathbb{R}^m, \Box$ $M:\|C_{\alpha}\|\leqslant$

Тогда $||p(x)|| \leq M \left(\sqrt{n}||x||\right)^N$

Доказательство.
$$\|p(x)\| \leqslant \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{\alpha!} |x^{\alpha}| \underbrace{\|C_{\alpha}\|}_{\leqslant M} \leqslant M \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{\alpha!} \underbrace{|x^{\alpha}|}_{|x_1|^{\alpha_1} \dots |x_n|^{\alpha_n}} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|x_1|^{\alpha_1} \dots |x_n|^{\alpha_n}} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \frac{N!}{n!} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_+)^n \\ |\alpha| = N}} \underbrace{|x^{\alpha}|}_{|\alpha| = N} = \sum_{\substack{\alpha \in (Z_$$

$$M \cdot (|x_1| + \ldots + |x_n|)^N \le M (\sqrt{n} ||x||)^N$$

$$\sum\limits_{k=1}^{n}|x_k|\cdot 1\leqslant \sqrt{\sum\limits_{k=1}^{n}x_k^2}\cdot \sqrt{\sum\limits_{k=1}^{n}1}=\|x\|\sqrt{n}$$
 — неравенство Коши, что сумма скаларяных произведений меньше произведения норм

Формула Тейлора-Лагранжа на отображения буквально не переносится $f \in$ $C^1(O)$ $f(x) - f(a) = d_c f(x-a)$

для отображений нарушается

$$f(t) = {\cos t \choose \sin t} a = 0, \text{ "x"} = 2\pi \quad f(x) - f(a) = 0$$

$$f'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$$

Теорема 1. Открытое
$$O\subseteq\mathbb{R}^n, n,m\in\mathbb{N}$$
 $N\in\mathbb{Z}_+,f\in C^{N+1}\left(O\to\mathbb{R}^m\right)$

$$[a, x] \in O, a \neq x$$

Тогда $f(x) - T_{N,a,f}(x)$ – остаточный член, который оценивается так:

$$||f(x) - T_{N,a,f}(x)|| \le \frac{1}{(N+1)!} \sup_{x \in (a,x)} ||d_c^{N+1} f(x-a)||$$

$$\sum_{\substack{\alpha \in (\mathbb{Z}_+)^n \\ |\alpha| \leqslant N}} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha}$$

Отступление

 $f,g:O\to\mathbb{R}^m$, дифференцируемые в O

$$d\langle f, g \rangle = \langle df, g \rangle + \langle f, dg \rangle$$

$$d\langle f, g\rangle(h) = \langle df(h), g\rangle + \langle f, dg(h)\rangle$$

$$d^{2} \langle f, g \rangle = \langle d^{2} f, g \rangle + 2 \langle df, dg \rangle + \langle f, d^{2} g \rangle$$

$$d^N\left\langle f,g\right\rangle =\sum\limits_{k=0}^N C_N^k\left\langle d^kfd^{N-k}g\right\rangle$$
 (проверка как в одномерном случае)

Тогда, если $v \in \mathbb{R}^m, v = const$

$$d^N\left\langle f,v\right\rangle =\left\langle d^Nf,v\right\rangle$$

Доказательство теоремы 1. Если $v \in \mathbb{R}^m, v$ – фиксирована

$$g(x) = \langle f(x), v \rangle : O \to \mathbb{R}, g \in C^{N+1}(O \to \mathbb{R})$$

 $g(x)-T_{N,a,g}(x)=rac{1}{(N+1)!}d_c^{N+1}g(x-a)$ по уже установленной теореме Тейлора-Лагранжа для функций

$$T_{N,a,g}(x) = \sum_{k=0}^{N} \frac{\langle d^k f, v \rangle (x-a)}{k!}$$

$$\left\langle f(x) - \sum_{k=0}^{N} \frac{d^k f(x-a)}{k!}, v \right\rangle = \frac{1}{(N+1)!} \underbrace{\left\langle d_c^{N+1} f(x-a), v \right\rangle}_{\leqslant \|d_c^{N+1} f \dots \| \|v \|}$$

| левая часть|
$$\leqslant \underbrace{\frac{1}{(N+1)!} \sup_{c \in [a,x]} \|d_c^{N+1} f(x-a)\|}_{\text{не зависит от выбора } v} \cdot \|v\|$$

Если мы возьмём v остаточным членом, то мы получим оценку остаточного члена, не зависящую от v

$$v = f(x) - \sum_{k=0}^{N} \frac{d^k f(x-a)}{k!}$$

$$\|v\|^{2} \leqslant \frac{1}{(N+1)!} \sup \dots \|v\|$$
 (сократили на $\|v\|$)

$$||f - T_{N,a,f}|| \leq \frac{1}{(N+1)!} \sup \dots$$

1.5 Частный случай: формула конечных приращений

$$O\subseteq\mathbb{R}^{n},f\in C^{1}\left(O
ightarrow\mathbb{R}^{m}
ight),\left[a,x
ight]\subseteq O\quad a
eq x$$
, тогда

$$||f(x) - f(a)|| \le \sup_{c \in [a,x]} ||d_c f|| ||x - a||$$

Следствие 1. Пусть $f \in C^1(O \to \mathbb{R}^m)$, где O – открытое множество. Пусть K – выпуклый компакт, $K \subseteq O$. Тогда

$$\forall a, b \in K \quad ||f(b) - f(a)|| \le \sup_{c \in K} ||d_c f|| ||b - a||$$

1.6 Об оценке нормы дифференциала

$$p(x) = \sum_{\substack{\alpha \in (\mathbb{Z}_+)^n \\ |\alpha| \neq N}} \frac{N!}{\alpha!} C_{\alpha} x^{\alpha} \quad \forall \alpha \, ||C_{\alpha}|| \leqslant M$$

$$||p(x)|| \leqslant M \left(\sqrt{n}||x||\right)^N$$

$$d_c^N f = \sum_{\alpha \mid \frac{N!}{\alpha!}} \underbrace{\frac{f^{(\alpha)}}{N!}}_{=C_{\alpha}} x^{\alpha}$$

$$M = \max_{\substack{\alpha \in (Z_+)^n \\ c \in [a,x] \\ |\alpha| = N}} \left\| \frac{f^{\alpha}(x)}{N!} \right\| \implies \left\| d_c^N f(x-a) \right\| \leqslant M \left(\sqrt{n} \|x-a\| \right)^N$$

Пусть $O \subseteq \mathbb{R}^n$ открыто, $f \in C^1(O \to \mathbb{R}^m)$

K – компактно в $O \implies f$ липшецево на K, т.е.

$$\exists C \in \mathbb{R} : ||f(x') - f(x'')|| \leqslant C||x' - x''|| \ \forall x', x'' \in K$$

Следует из формулы конечных приращений и оценки дифференциала и теоремы Вейерштрасса: $\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n}\in C(K)$

$$\implies \exists x_1 : \|\frac{\partial f}{\partial x_i}(x)\| \leqslant C_1 \forall x \in K$$

$$M = C_1, \implies \forall x', x'' \in K \quad \|d_c f(x' - x'')\| \leqslant M(\sqrt{n}\|x' - x''\|) \quad C = M\sqrt{n}$$

1.7 Экстремум функции нескольких переменных

Определение 3. $\supset O \subseteq \mathbb{R}^n$ $f: O \to \mathbb{R}$

 $a\in O$ a называется точкой (локального) максимума, если \exists окрестность $V_a: \forall x\in V_a\cap O$ $f(x)\leqslant f(a)$

Экстремум – максимум или минимум

Утверждение 2 (Необходимое условие экстремума (безусловного)). Пусть $E \subseteq \mathbb{R}^n$ f, такое что $E \to \mathbb{R}$. $a \in \operatorname{Int} E$ — точка локального экстремума для f, f дифференцируема в точке a. Тогда

$$d_a f = \mathbb{O}\left(\iff \nabla f = \mathbb{O}\iff \frac{\partial f}{\partial x_1}(a) = 0, \dots, \frac{\partial f}{\partial x_n}(a) = 0\right)$$

Доказательство. Пусть a — точка максимума. Фиксируем $h \in \mathbb{R}^n$ $g(t) = f(a+th), t \in \mathbb{R}$. Для g точка 0 это точка максимума. Существует окрестность

нуля $V'(0): \forall t \in V'(0) \quad g(t) \geqslant g(0) = f(a), \ g$ дифференцируема в 0 как композиция, 0 — внутренний для $D(g) \Longrightarrow g'(0) = 0.$

$$g(t) = f(\varphi(t)).$$

$$g'(t) = f'(\varphi(t)) \cdot \varphi'(t).$$

$$0 = \langle \nabla f, h \rangle = \begin{pmatrix} f'_{x_1}, \dots, f'_{x_n} \end{pmatrix} \begin{pmatrix} h_1 \\ \dots \\ h_n \end{pmatrix}.$$

1.8 Квадратичные формы

Если Q(x) допускает представление в виде $Q(x) \equiv \sum_{i,j=1}^{n} c_{ij} x_i x_j, \quad c_{i,j} \in \mathbb{R}$. Тогда Q(x) называется квадратичной формой в \mathbb{R}^n .

Замечание. Любая квадратичная форма есть однородная функция степени 2.

Замечание. Не умаляя общности, матрицу коэффициентов c_{ij} можно считать симметричной. Если это не так, можно перейти в такой форме $c'_{ij} = c'_{ji} = \frac{c_{ij} + c_{ji}}{2}$.

Определение 4. Квадратичная форма Q(x) в \mathbb{R}^n называется положительноопределённой (положительной) (Q > 0), если

$$\forall x \in \mathbb{R}^n \setminus \{0\} \quad Q(x) > 0.$$

неотрицательно определённой, если неравенство нестрогое.

$$Q \geqslant 0$$
 ... $Q < 0, Q \leqslant 0$

неопределённая, если $Q \ge 0$ $\exists x^1 x^2 \in \mathbb{R}^n : Q(x^1) > 0, Q(x^2) < 0$

Пример. 1.
$$n = 2 Q(x) = 2x_1^2 - 3x_2^2 \ge 0$$

$$Q(x) = 2x_1^2 + 3x_2^2 > 0$$

$$Q(x) = Ax_1^2 + 2Bx_1^2x_2^2 + Cx_2^2$$
, если $B^2 - AC$, то форма знакопеременная

Если
$$A \geqslant 0$$
 $B^2 - AC \leqslant 0$, то $Q \geqslant 0$

$$A \leqslant 0 \dots$$

Лемма 1. $\supset Q(x)$ – положительная квадратичная форма в \mathbb{R}^n

Тогда
$$\exists \gamma > 0 : \forall x \in \mathbb{R}^n$$
 $Q(x) \geqslant \gamma ||x||^2$

Доказательство. $\gamma = \min_{\|x\|=1} Q(x) = Q(x_0) > 0 \quad \|x_0\| = 1$

$$\forall x \in \mathbb{R}^n \setminus \{0\} \, Q(x) = Q\left(\|x\| \frac{x}{\|x\|}\right) = \|x\|^2 \cdot Q\left(\frac{x}{\|x\|}\right) \geqslant \gamma \|x\|^2$$

Утверждение 3 (Достаточое условие экстремума). $\Box f: E \to \mathbb{R}, \quad \underline{a \in \operatorname{Int} E}, d_a f = 0 \quad \exists d_a^2 f$

Тогда, если $d_a^2 f > 0$ (положительная квадратичная форма как функция дифференциалов dx_1, \ldots, dx_n), то a это точка минимума (строгого)

Если $d_a^2 f < 0 \dots$

Если $d_a^2 f \ge$, то a <u>не</u> точка экстремума

Это не все случаи, есть нестрогие, в которых ДУЭ не применимо

Пример. $f(x,y) = x^4 - y^4$

$$q(x,y) = x^4 + y^4$$

для f точка (0,0) не точка экстремума, а для g – да

$$\nabla f = (4x^3, -4y^3) = 0 \iff (x, y) = (0, 0)$$

Доказательство. ДУЭ. Пеано в точке а:

$$f(x) = f(a) + d_a f(x - a) + \frac{1}{2} d_a^2 f(x - a) + o\left(\|x - a\|^2\right)$$

$$f(x) - f(a) = \frac{1}{2}d_a^2 f(x - a) + \underbrace{\varepsilon(x)}_{\to 0, x \to a} ||x - a||$$

Если Q>0, то по лемме $\exists \gamma>0: Q(x-a)\geqslant \gamma \|x-a\|^2$

Т.к. $\varepsilon(x) \to 0, x \to a$, то $\exists V(a): |\varepsilon(x)| < \frac{\gamma}{8} \forall x \in V(a) \implies \forall x \in V(a) - f(a) \geqslant \frac{1}{2} \gamma \|x - a\|^2 - \frac{\gamma}{8} \|x - a\|^2 = \|x - a\|^2 \left(\frac{3}{8}\gamma\right) > 0 \quad x \neq a \implies a$ – точка строгого минимума

Q < 0, рассмотреть -f

 $Q \gtrless 0 \implies \exists h_+, h_- \in \mathbb{R}^n: Q\left(h_+\right) > 0 \quad Q\left(h_-\right) < 0,$ не умаляя общности $\|h_+\| = \|h_-\| = 1$

$$\delta = \min\{|Q(h_{+})|, |Q(h_{-})|\}$$

Т.к. $\varepsilon(x) \to 0, x \to a$, то \exists окрестность $V_r(a) : |\varepsilon(x)| < \frac{\delta}{4}$

$$|t| < r$$
 $f(a + th_{+}) - f(a) = \frac{1}{2}t^{2}Q(x_{+}) + \varepsilon(x)t^{2} \geqslant \frac{1}{2}t^{2} \cdot \delta - \frac{\delta}{4}t^{2} = t^{2}\frac{\delta}{4} > 0$

 $|Q(h_{-})| \geqslant \delta$

$$Q(h_{-}) = -|Q(h_{-})| \leqslant -\delta$$

$$f(a+th_{-})-f(a)\leqslant -\frac{\delta}{2}tse+\frac{\delta}{4}t^2\leqslant -\frac{\delta}{2}t^2<0$$

Таким образом в любой окрестности точки a-f(x)-f(a) знакопеременная

1.9 Практика. Теорема о существовании

Теорема 2 (Теорема о неявной функции). F(x,y,z)=0

 $(x_0,y_0,z_0): F(x_0,y_0,z_0)=0$ $F_z'(x_0,y_0,z_0)\neq 0$ и все функции непрерывны в (x_0,y_0,z_0)

 $\Longrightarrow \exists z=z(x,y)\quad z_0=z(x_0,y_0)\quad F(x,y,z(x,y))=0$ в окрестности (x_0,y_0)

Пример. $x^2 + y^2 - 1 = 0$

$$F(x,y)$$
 $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ $y = \sqrt{1-x^2}$

$$F_y' = 2y$$
 $F_y'(x_0, y_0) = \sqrt{2} \neq 0$

$$y = y(x)$$
 $y_0 = y(y_0)$ $x^2 + y^2(x) - 1 = 0$

Рис. 1.1: exex

F(x,y,z)И все условия выполняются. как найти $\frac{\partial}{\partial x}z(x,y)$

$$F(x, y, z(x, y)) = 0$$

$$\frac{\partial}{\partial x}F(x,y,z(x,y))=0$$

$$\begin{cases} F'_x + F'_z \cdot \frac{\partial z(x,y)}{\partial x} = 0 \\ F'_y + F'_z \cdot \frac{\partial z(x,y)}{\partial y} = 0 \end{cases}$$

Отсюда выражается

Определение 5. Многозначная функция f – соответствие $x\mapsto f(x)$ – множество

Пример.
$$x \mapsto \pm \sqrt{1-x^2} = \{\sqrt{1-x^2}, -\sqrt{1-x^2}\}$$

 $x^{\frac{1}{2}}=y$ $x=y^2$ – задаёт неявную функцию y(x)

Рис. 1.2: $x = y^2$

Пусть y(x) – многозначная функция. Тогда выбор единственного $y \in y(x)$ для $\forall x$ задаёт явную функцию (однозначная функция)

Каждый такой выбор задаёт однозначную функцию называемую ветвью. Ветви могут быть непрерывными, например в $x=y^2$ бесконечность ветвей. Чтобы уточнить, нужно проговаривать непрерывная ветвь. дифференцируемая ветвь и т.д.

Пример.
$$x^2 + y^2 = x^4 + y^4$$

Задаёт многозначную функцию. Определить для каких x она будет 1-, 2-, 3-, 4-значной

1.10 Лекция 2

$$d_a^2 f \longleftrightarrow \begin{pmatrix} f_{x_1 x_1}''(a) & f_{x_1 x_2}''(a) & f_{x_1 x_3}''(a) & \dots \\ f_{x_2 x_1}''(a) & f_{x_2 x_2}''(a) & f_{x_2 x_3}''(a) & \dots \\ f_{x_2 x_1}''(a) & f_{x_2 x_2}''(a) & f_{x_2 x_3}''(a) & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

Теорема 3 (Критерий Сильвестра). • Если все главные миноры положительны, то соответствующая квадратичная форма положительна (a — точка минимума).

- Если $\Delta_1 < 0$ $\Delta_2 > 0$ $\Delta_3 < 0 \dots$, то квадратичная форма отрицательна (a точка максимума)
- $\Delta_k \neq 0$, и не реализуется ни первый случай, ни второй, то квадратичная форма неопределённая (т.е. экстремума нет)

Замечание.
$$Q(h)=d_a^2f(h).$$
 $Q(h)=\langle A\cdot h,h\rangle$ $A=\left(f_{x_ix_j}''\right)_{ij}$

Задача 1.
$$z = x^2 - xy + y^2 - 2x + y$$
 – исследовать на экстремум

Доказательство. Необходимое условие экстремума $z_x'=0 \quad z_y'=0.$

$$z'_x = 2x - y - 2$$
 $z'_y = -x + 2y + 1$

(x,y)=(1,0), других нет, потому что определитель хороший.

Достаточное условие экстремума: $z''_{xx}=2,\quad z''_{xy}=-1,\quad z''_{yy}=2.$ $\begin{bmatrix} d^2_{(1,0)}f\end{bmatrix}\longleftrightarrow\begin{pmatrix} 2&-1\\-1&2\end{pmatrix}.$

 $\Delta_1=2>0$ $\Delta_2=2*2-(-1)^2=3>0$, таким образом (1,0) — строгий минимум.

Замечание.
$$d_{(1,0)}^2f=2dx^2+2(-1)dxdy+2dy^2=dx^2+dy^2+(dx-dy)^2>0,$$
 если $\begin{pmatrix} dx\\dy \end{pmatrix}
eq \begin{pmatrix} 0\\0 \end{pmatrix}.$

$$d^2 f > 0$$

Задача 2 (без привлечения d^2f). $z=x^2y^3(6-x-y)$ – исследовать на экстремум.

$$\begin{cases} 0 = z'_x = y^3 (6x^2 - x^3 - yx^2)'_x = y^3 (12x - 3x^2 - 2yx) = xy^3 (12 - 3x - 2y) \\ 0 = z'_y = x^2 (6y^3 - xy^3 - y^4)'_y = x^2 (18y^2 - 3xy^2 - 4y^3) = x^2 y^2 (18 - 3x - 4y) \end{cases}$$

Либо
$$x=0$$
, либо $y=0$, либо
$$\begin{cases} 3x+2y=12\\ 3x+4y=18 \end{cases} -(2,3).$$

$$\{(0,t)\}_{\{t<0\}\cup\{t>6\}}$$
 – максимум (нестрогий)

$$\{(0,t)\}_{\{t\in(0,6)\}}$$
 — максимум (нестрогий)

(0,6) – не экстремум

По теореме Больцано-Вейерштрасса существует $(x_{\pm},y_{\pm})\in K$

$$f\left(x_{+}, y_{+}\right) = \max_{K} f$$

$$f\left(x_{-},y_{-}\right)=\min_{K}f$$

из распределения знаков следует, что точки границы – точки минимума. Тогда $(x_+, y_+) \in \text{Int } K$, значит (x_+, y_+) удовлетворяет необходимому условии экстремума. Такая точка у нас одна $(x_+, y_+) = (2, 3)$.

1.11 Экстремумы и замена переменных

Определение точки экстремума непосредственно переносится на случай метрических пространств

Лемма 2. Пусть (X, ρ_X)), (Y, ρ_y) — метрические пространства и $f: X \to \mathbb{R}$. Пусть g(b) = a - g непрерывна в точке b. a — точка максимума (минимума) для f. Тогда b — точка максимума (минимума) для $f \circ g$.

Доказательство. По условию a — точка локального максимума, т.е. существует окрестность $U(a) \subseteq X: \quad f(x) \leqslant f(a) \ \forall x \in U(a)$. По определению непрерывности существует окрестность $V(b) \subseteq Y$:

$$g(y) \in U(a) \forall y \in V(b) \implies f(g(y)) \leqslant f(a) = f(g(b)).$$

Следствие 2. Если в условии леммы g – гомеоморфизм X на Y, то a – точка максимума (минимума) для $f \circ g$.

Рис. 1.3: kartinkalemmi

Следствие 3. Если g – локальный гомеоморфизм (существует окрестность V(b), такая что в точке b сужение $g|_{V(b)}$ – гомеоморфизм на образ (g(V(b)))), то сохраняется вывод предыдущего следствия.

Задача 3. $z=xy\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}$ (a,b>0) — исследовать на экстремум.

Доказательство. z(x,y) = -z(-x,y) = -z(x,-y)

z — нечётная по x и по y. Значит достаточно рассматривать функцию только в первой четверти.

$$\begin{cases} x = a\rho\cos\alpha \\ y = b\rho\sin\alpha \end{cases}$$

$$(\rho, \varphi) \to (x, y)$$

$$(0,1) imes(0,rac{\pi}{2}) o$$
 Int K – гомеоморфизм $\left(arphi=rctgrac{y}{x}\quad r=\sqrt{x^2+y^2}
ight)$

$$z(\rho,\varphi) = ab\rho^2\cos\varphi\sin\varphi\sqrt{1-\rho^2} \stackrel{\rho^2=t}{=} \tfrac{ab}{2}\sin2\varphi t \cdot \sqrt{1-t}$$

Необходимое условие экстремума:
$$\begin{cases} \frac{2}{ab}z'_{\varphi} = 0 = 2\cos2\varphi \cdot t\sqrt{1-t} \\ \frac{2}{ab}z'_{t} = 0 = \sin2\varphi\left(\sqrt{1-t} - \frac{1}{2}\frac{t}{\sqrt{1-t}}\right) = \frac{\sin2\varphi(2(1-t)-t))}{2\sqrt{1-t}} \end{cases}$$

$$\begin{cases} \cos 2\varphi \cdot t\sqrt{1-t} = 0 \\ \sin 2\varphi \cdot \frac{(2-3t)}{\sqrt{1-t}} = 0 \end{cases} \iff \begin{cases} \cos 2\varphi = 0 & \varphi \in (0, \frac{\pi}{2}) \\ 3t = 4 \end{cases} \iff \begin{cases} \varphi = \frac{\pi}{4} \\ t = \frac{2}{3} \end{cases} \iff \begin{cases} x = a \cdot \frac{4}{9} \cdot \frac{1}{\sqrt{2}} = \frac{2\sqrt{2}b}{9} \\ y = b \cdot \frac{4}{9} \cdot \frac{1}{\sqrt{2}} = \frac{2\sqrt{2}b}{9} \end{cases}$$

Задача 4. $f: \underbrace{O}_{\subseteq \mathbb{R}^n} \to \mathbb{R}$

$$E = \{\varphi_1(x) = 0, \dots, \varphi_n(x) = 0\}$$

Исследование f_E на экстремум называется задачей об условном экстремуме

Пример. f(x,y) = x + y $E = \{x + 2y = 1\}$

Доказательство. x = 1 - 2y

$$f = 1 - 2y + y = 1 - y$$

$$\widetilde{f}(x,y) = x^2 + y^2$$
 $E = \{x + y = 1\}$

Пример. $f = Ax^2 + 2Bxy + Cy^2$ $E = \{x^2 + y^2 = 1\}$

$$\begin{cases} x = \cos \varphi \\ y = \sin \varphi \end{cases}$$

1.12 Дифференцирование обратного отображения

 $x \in \mathbb{R}, y \in \mathbb{R}$

$$f(x) = y$$

 $x \in \mathbb{R}^n$ $y \in \mathbb{R}^n$ f(x) = y $A \cdot x = y$, A = [f] – линейна

f(x) = y имеет единственное решение $\forall y \in \mathbb{R}^n \iff \det A \neq 0$

Теорема 4 (об обратной функции для случая одной переменной). $f:(A,B)\to\mathbb{R}, f\in C^1((A,B)), a\in (A,B), f'(a)\neq 0$, тогда существует окрестность V(a):

- 1. $\forall x \in V(a) \quad f'(x) \neq 0$ локальная новорожденность производной
- 2. $f|_{(A.B)}$ инъекция. локальная обратимость
- 3. f(V(a)) откр. локальная открытость отображения
- 4. $(f|_{V(a)})^{-1}$ дифференцируема в точке f(a) и $((f|_{V(a)})^{-1})' = \frac{1}{f'(a)}$ дифференцируемость локально обратного

Определение 6. $f:(X,\Omega_X)\to (Y,\Omega_Y)$

Если для любого $O\in\Omega_X$ $f(O)\in\Omega_Y,$ то f называется открытым отображением

Пример. $f(x) = x^2$ не открытое на $(-1,1) \to [0,1)$, но открыто на $(-1,0) \cup (0,1)$, потому что нет точек, где f'(x) = 0

доказательство теоремы. По следствию теоремы Дарбу, если f'(a) > 0 (< 0), то существует окрестность $V(a) : \forall x \in V(a) \quad f'(x) > 0 (< 0)$

 $\sqsupset f'(x)>0$ всюду на V(a), то f строго возрастает, значит $f|_{V(a)}$ – инъекция

$$V(a) = (a - \delta, a + \delta) \implies f(a - \delta, a + \delta) = (f(a - \delta), f(a + \delta))$$

4 = теоремы о дифференцируемости обратимой функции

Теорема 5 (об обратном отображении). Пусть $\underbrace{O}_{\text{открытое}} \subseteq \mathbb{R}^n \quad f:O \to$

 \mathbb{R}^n и $\forall x \in O$ $d_x f$ – обратим (якобиан не обращается в ноль в O)

Тогда f – открытое отображение

Доказательство. См. доказательства утверждения 3 в теореме о дифференцировании обратного отображения в книжке Виноградов-Громов. ■

Теорема 6 (теорема об обратном отображении). $n \in \mathbb{N}, O$ – открытое, $O \subseteq \mathbb{R}^n$

 $f \in C^1(O \to \mathbb{R}^n)$ $a \in O$. Пусть $d_a f$ обратим ($\iff \mathcal{J}_a f \neq 0$) , тогда существует окрестность V(a) :

- 1. $\forall x \in V(a) \quad d_x f$ обратим локальная новорожденность производной
- 2. $f|_{(A,B)}$ инъекция. локальная обратимость
- 3. f(V(a)) откр. локальная открытость отображения
- 4. $\left(f|_{V(a)}\right)^{-1}$ дифференцируема в точке f(a) и $d_{f(a)}\left(f|_{V(a)}\right)^{-1}=(d_af)^{-1}$ дифференцируемость локально обратного

Лемма 3. Пусть $n \in \mathbb{N}, O \subseteq \mathbb{R}^n$ открыто, $f: O \to \mathbb{R}^n, f \in C^1(O), a \in O$ и $d_a f$ обратим. Тогда $\forall \sigma > 0$ существует окрестность V(a):

1. $\forall x \in V(a)$

$$||d_x f - d_a f|| < \sigma$$

2. $\forall p, q \in V(a)$

$$||f(p) - f(a) - d_a f(p-q)|| \le C_1 ||p-q||$$

3. $\forall p, q \in V(a)$

$$C_3 \|p - q\| \le \|f(p) - f(q)\| \le C_2 \|p - q\|$$

, такое свойство называется билипшецевость.

Здесь конкретно
$$C_2 = \|d_a f\| + \sigma$$
 $C_3 = \frac{1}{\|(d_a f)^{-1}\|} - \sigma$

Доказательство. $f \in C^1(a) \implies$ существует окрестность V(a): 1 верно

$$\triangleleft F(x) = f(x) - d_a f(x) : O \to \mathbb{R}^n$$

$$d_x F(h) = d_x f(h) - d_a f(h), \quad F \in C^1(O)$$

$$\|f(p) - f(q) - d_a d(p - q)\| = \|F(p) - F(q)\| \leqslant \underbrace{\sup_{c \in V(a)} \|d_c F\|}_{c \in V(a)}$$
 по теореме о

конечных приращениях, т.к. V(a) выпуклое

$$\|d_c F\| = \|\underbrace{d_C f - d_a f}_{<\sigma}\|$$

 $\forall p, q \in V(a)$

$$\begin{split} \|f(p)-f(q)\| &\leqslant \sup_{c \in V(a)} \|d_c f\| \|p-q\| \\ \|d_c f\| &= \|d_a f + (d_c f - d_a f)\| \leqslant \|d_a f\| + \underbrace{\|d_c f - d_a f\|}_{<\sigma_{\mathrm{B} \ \mathrm{Chily} \ 1}} \leqslant C_2 \\ \|f(p)-f(q)\| &= \|d_a f(p-1) - (f(p)-f(q)-d_a f(p-q))\| \geqslant \underbrace{\|d_a f(p-q)\|}_{\geqslant \frac{1}{\|(d_a f)^{-1}\|} \|p-q\|} - \underbrace{\|f(p)-f(q)-d_a f(p-q)\|}_{\leqslant C_1 \|p-q\|} \\ C_3 \|p-q\| &\blacksquare \end{split}$$

доказательство (часть) теоремы об обратном отобржаении. Существует $(d_x f)^{-1} \iff \mathcal{J} f \neq 0$, но $\mathcal{J} f \in C (O \to \mathbb{R}) \underset{\text{по неперывности}}{\Longrightarrow}$ существует окрестность $V(a): \forall x \in V(a)$ $\mathcal{J}_x f! + 0 \Longrightarrow 1$

$$C_0=rac{1}{\|(d_af)^{-1}\|},\quad \sigma=rac{C_0}{4},$$
 применим лемму к такому σ

Не умаляя общности $V(a)\subseteq V_0(a)$. Т.к. $\sigma < C_0 \quad \forall p,q \in V(a)$ в силу неравенства 3 из леммы $f(p)\neq f(q)$ ($f|_{V(a)}$ – инъекция. $\Longrightarrow f|_{V(a)}$ – биекция на f(V(a)), т.е. $g=f|_{V(a)}$ обратимо и $4 \Longleftrightarrow$ правило дифференцирования обратного отображения

1.13 Практика

Теорема 7. $f(x_1, x_2, ..., x_n)$ дифференцируема в точке Р f достигает экстремума в точке $P \implies \frac{\partial f}{\partial x_i}(P) = 0$

$$d^{2}f = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{2}f$$

$$H(f) = \begin{pmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}} & \frac{\partial^{2}}{\partial x_{1}\partial x_{2}} & \dots \\ \vdots & \ddots & \ddots \end{pmatrix}$$

Теорема 8. Если H(f) положительно определена в точке P, то P- точка минимума. Если она отрицательно определена, то это точка максимума.

$$d^{2}f = \frac{\partial^{2} f}{\partial x_{1}^{2}} (dx_{1})^{2} + \frac{\partial^{2} d}{\partial x_{1} \partial x_{2}} + \dots = \lambda_{1} (dy_{1})^{2} + \dots + \lambda_{n} (dy_{n})^{2}$$

$$f(dx_{1} \dots dx_{n}) = f(0) + \underbrace{= 0}_{} f'(0) dx + d^{2} f + o()$$

$$f(dx_{1} \dots dx_{n}) - f(0) = d^{2} f + o()$$

$$x^{T} Ax > 0 \forall x \neq 0 \text{ def} \iff$$

$$(x_1 \dots x_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \dots \\ & & & & & \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1 \dots x_n) \begin{pmatrix} \sum a_{1i} x_i \\ \sum a_{2i} x_i \\ \vdots \end{pmatrix} = \sum a_{ji} x_j x_i$$

- квадратичная форма

Пусть Q – квадратичная форма. $Q=\sum a_{ji}x_{j}x_{i}$, где $a_{ij}=a_{ji}\forall i,j$ $Q=x^{T}Ax$, где $A^{T}=A$

Такая матрица A называется матрицей квадратичной формы Q

$$x = Cy \quad Q = (Cy)^T A Cy = y^T \underbrace{B}_{} (C^T A C) y = \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2 \quad B = \begin{pmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & 0 & 0 \end{pmatrix}$$

Утверждение 4. Симметричная матрица подобна диагональной матрице.

Доказательство. $A = A^T$

Пример.
$$\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 & 0 \end{pmatrix}$$

1. Докажем, что существует собственный вектор.

Пусть
$$Q = x^T A x = \sum_{ij} a_{ij} x_i x_j$$

Рассмотрим Q на сфере $x_1^2 + \ldots + x_n^2 - 1 = 0$

Qдиффрец
нируема на сфере \implies достигает максимума в точке
 (v_1,\ldots,v_n)

Q, максимум с ограничением F=0, то $\triangleleft \mathcal{L}:=Q-\lambda F$

У \mathcal{L} частные производные равны 0 в максимуме

$$rac{\partial}{\partial x_1}Q=rac{\partial}{\partial x_i}\left(\sum_j a_{ij}x_ix_j+\sum_{k
eq i}a_{kj}x_kx_j
ight)=\sum_j aijx_j+\sum_j a_{ji}x_j=1\sum a_{ij}x_j$$
 $rac{\partial F}{\partial x_i}=2x_i$ $rac{\partial}{\partial x_i}\mathcal{L}=2\sum_j a_{ij}x_j-\lambda 2xi=0 orall i$ для $x_j=v_j$

 $Av = \lambda v \implies v$ – вещественный собственный вектор

Так мы для симметричной матрицы нашли вещественный собственный вектор

2. Достроим наш вектор v до базиса $(v, e_2, e_3, \ldots, e_n)$

Запишем
$$A$$
 в этом базисе:
$$\begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}$$
. Дальше делаем по индук-

ции

Следовательно существует базис из собственных векторов, где на диагонали стоят собственные числа

Итого, любую квадратичную форму Q можно заменой переменных свести к каноническому виду $Q=\sum\limits_i\lambda_iy_i^2$

1.14 Лекция

Макаров, Подкорытов: Гладкие отображения и функции

Теорема 9 (Об открытом отображении). $\Box O \subseteq \mathbb{R}^n$ – открыток, $f \in C^1(O \to \mathbb{R}^n)$, $\forall a \in O \ d_a f$ обратим. Тогда f(O) – открыто.

Пример. $x=(x_1,\ldots,x_n)$ $f(x)=x_1$ — необратимое, схлопывает шар и там нет открытости

Доказательство. \square σ : в лемме: $C_3>0, \sigma=\frac{1}{2}\frac{1}{\|(d_af)^{-1}\|}$ δ — это половины от " δ из леммы"

$$||f(p) - f(q)|| \geqslant C_3 ||p - q|| \quad \forall p, q \in B_{\delta}[a]$$

$$r = \frac{1}{2}C_3 \cdot \delta$$
 ?: $B_r(b) \subset f(O) \iff \forall y \in B_r(b) \exists x \in O : f(x) = y$

$$\sphericalangle \varphi(x) = \|f(x) - y\| \in C * (O \to \mathbb{R}$$

$$\varphi(a) = \|f(a) - y\| = \|b - y\| \leqslant r$$

Если
$$\|x-a\| = \delta$$
, то $\varphi(x) = \|f(x)-b\| = \|f(x)-f(a)+f(a)-y\| \geqslant \underbrace{\|f(x)-f(a)\|}_{\geqslant C_3\|x-a\|=2r} - \underbrace{\|f(a)-y\|}_{< r} > 2r-r=r$

По теореме Вейерштрасса $\varphi(x)$ достигает на $B_{\delta}[a]$ своего минимума

Из оценки $\varphi(x)$ следует, что $\min B_{\delta}[a]\varphi$ Достигается внутри шара

 $\psi(x)=\varphi^2(x)=\|f(x)-y\|^2.$ У функции $\psi(x)$ экстремумы в тех же точках, что и у $\varphi(x)$

Необходимое условие экстремума $\exists x_* \in B_\delta(a): f_{x_*}\psi = \mathbb{O}$

$$\varphi(x) = \langle f(x) - y, f(x) - y \rangle$$

$$d\psi_{x_*} = 2\left\langle \underbrace{d(f(x) - y)}_{d_{x_*}f}, f(x) - y \right\rangle$$

Т.к. df обратим в $B_{\delta}(a) \implies f(x_*) - y = 0 \implies f(x_*) = y_0$

Теорема 10 (теорема об обратном отображении). \square открытое $O\subseteq \mathbb{R}^n$ $f\in C^1(O\to\mathbb{R}^n), a\in O, d_af$ обратим

Тогда существует окретстность V(a) :

 $I \ \forall x \in V(a) \ d_x f$ обратим

II $f_{V(a)}$ – инъекуий (т.е. обратимо как отображение из V(a) в f(V(a))

III f(V(a)) – открыто

IV
$$(f_{V(a)})^{-1} \in C^1(f(V(a)) \to \mathbb{R}^n)$$

 $(f|_{V(a)})'(f(a)) = (f')(a)$ (или $d(f_{V(a)})^{-1} = (d_a f)^{-1}$

$$||B - A|| < \varepsilon \quad ||B^{-1} - A^{-1}|| < \varepsilon C(A)$$

$$\|(d_af)^{-1}-(d_xf)^{-1}\| непрерывно зависит от $x$$$

второе объяснение: элементы матрицы $(d_x f)^{-1}$ – результат арифметических действий над частными производными отображения $f; f \in C^1(O) \implies$ элементы $[(d_x f)^{-1}] \in C(0)$

По аналогичным рассуждения, если в условии теоремы $f \in C^r (O \to \mathbb{R})$, то локально обратное также из C^r

Определение 7. $\exists r \in Z_{+}$ $O \subseteq \mathbb{R}^{n}, O$ – открытое, $f \in C^{r}\left(O \to \mathbb{R}^{n}\right)$

f Называется диффеоморфизмом класса C^{r} , если:

- 1. f биекция на f(O)
- 2. f(O) открытое
- 3. обратное отображение $f^{-1} \in C^r (f(O) \to O)$

Определение 8. r, O $-||-, a \in O$ f называется локальным диффеоморфизмом в точке a, если существует такая окрестность V(a), что $f_{V(a)}$ – гомеоморфзим

Пример. $y = e^x$ – диффеоморфизм (глобальный)

 $y=x^2$ – локальный диффеорморфизм отдельно либо на положительных, либо на отрицательных числах

 $y=\sin x$ – локальный диффеоморфизм в точках не вида $\frac{\pi}{2}+\pi k$

Теорема 11 (Об обратном отображении "на языке диффеоморфизмов"). Открытое $O \subseteq \mathbb{R}^n, f \in C^r (O \to \mathbb{R}^n)$

- 1. Если $a \in O$ $d_a f$ обратим, тогда f локальный диффеоморфизм в точке a класса C^r
- 2. Если f инъекция и d_axf Обратим всюду в O, то f глобальный диффеоморфизм

Пример.
$$f(x,y) = \begin{pmatrix} e^y \cos x \\ e^y \sin x \end{pmatrix}$$

$$f' = \begin{pmatrix} -\sin x e^y & e^y \cos x \\ \cos x e^y & e^y \sin x \end{pmatrix}$$

$$\det f' = e^{2y}(-1) \neq 0$$

$$f(0,y) = f(2\pi k)$$

В каждой точке невырожденный дифференциал, но глобальный инъективности нет

Пример (Важные примеры локальных диффеоморфизмов). 1. Полярные координаты $\phi(r,\varphi) = (r\cos\varphi, r\sin\varphi)$

$$\phi: [0, +\infty) \times \mathbb{R} \to \mathbb{R}^2$$

$$\phi' = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

 $\det \phi = \cos \varphi \cdot r \cos \varphi - \sin \varphi \ (-r \sin \varphi) = r > 0$ в O, значит ϕ – локальный ддиффеоморфзм в O класса C^∞

но не глобальный! $\phi(r,\varphi+2\pi k)\equiv\phi(r,\varphi)$

 $O_1=(0,+\infty) imes\left(-rac{\pi}{2},rac{\pi}{2}
ight)$ ϕ – инъекция d в $O_1\implies\phi$ глобальный диффеоморфизм в O_1

$$r = \sqrt{x^2 + y^2}$$
 $\varphi = \operatorname{arctg} \frac{y}{x}$

2. Цилиндрические координаты.

$$x = r\cos\varphi$$
 $y = r\sin\varphi$ $z = t$

$$\phi' = \begin{pmatrix} x'_r & x'_\varphi & x'_t \\ & \nabla y & \\ & \nabla z \end{pmatrix} = \begin{pmatrix} \cos \varphi & -r\sin \varphi & 0 \\ \sin \varphi & r\cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} = r$$

Таким образом ϕ – локальный диффеорморфизм в области $(0,+\infty)\times\mathbb{R}\times\mathbb{R}$

глобальный диффеоморфизм в областях $(0,+\infty)\times (-\pi,\pi)\times x\mathbb{R}$ И $(0,+\infty)\times (0,2\pi)\times \mathbb{R}$

$$x^2 + y^2 = R \quad r = |R|$$

$$x^2 + y^2 = z^2 C \leftrightarrow r^2 = Ct^2 \quad \pm r = \widetilde{C} = t$$

3. Сферические координаты

меряем широту и долготу.
$$\begin{cases} x = r\cos\varphi\cos\psi\\ y = r\sin\varphi\cos\psi\\ z = r\sin\psi \end{cases}$$

$$(r, \varphi, \psi) \to (x, y, z) \quad C^{\infty} : \mathbb{R}^3 \to \mathbb{R}_3$$

$$|\psi| = \begin{pmatrix} \cos\varphi\cos\psi & -r\sin\varphi\cos\psi & -r\cos\varphi\sin\psi \\ \sin\varphi\cos\psi & r\cos\varphi\cos\psi & -r\sin\varphi\sin\psi \\ \sin\psi & 0 & r\cos\psi \end{pmatrix} = r^2\cos\psi \begin{pmatrix} \sin^2\psi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\sin\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ \cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\psi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi \begin{pmatrix} \cos\varphi & -\cos\varphi \\ -\cos\varphi & -\cos\varphi \end{pmatrix} + \cos^2\varphi \end{pmatrix} + \cos^2\varphi + \cos^$$

 ϕ локальный диффеоморфизм в $(0,+\infty)\times\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

глобальный в
$$(0,+\infty) \times (-\pi,\pi) \times \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

$$x^2 + y^2 + z^2 = R^2 \leftrightarrow r = R$$

Задача 5. Записать уравнение сферы $(x-a)^2 + (y-b)^2 + (z-c)^2 = R$ в сферических координатах

$$x^2 + y^2 = Cz^2$$
 тоже.

Задача 6. В области x > 0, y > 0 $u = \frac{y}{x}$ v = xy

$$\psi:(x,y)\to(u,v)$$

Вопросы:

- (a) $\psi(O) = ?$
- (b) явялется ли ψ диффеоморфизмом или локальным диффеоморфизмом
- (c) Выписать явно функции для обратного к ψ или локально обратного

1.15 Теорема о неявном отображении

Если у нас есть явное выражение x=g(y), то можно явно исследовать функцию от одной переменной $f_E=f\left(h(y),y\right)$

Определение 9. Говорят, что уравнение f(x,y)=0 неявно задаёт функцию y=g(x) или x=h(y), если условия F(x,y)=0 и $\begin{cases} x\in D(g) \\ y=g(x) \end{cases}$ равносильны.

Определение 10. $F: E \to \mathbb{R}$ $D \subseteq E$

F задаёт y=g(x) или x=h(y) в D, если

$$\begin{cases} F(x,y) = 0 \\ (x,y) \in D \end{cases} \iff \begin{cases} x \in D(g) \\ y = g(x) \end{cases}$$

$$\begin{cases} F_1\left(x_1,\ldots,x_k,y_1,\ldots,y_m\right)=0\\ \vdots\\ F_m\left(x_1,\ldots,x_k,y_1,\ldots,y_m\right)=0 \end{cases} \iff F(x,y)=0 \quad \begin{cases} x=(x_1,\ldots,x_k)\\ y=(y_1,\ldots,y_m)\\ F-(F_1,\ldots,F_m) \end{cases}$$

"
$$y = g(x)$$
"
$$\begin{cases} y_1 = g_1(x_1, \dots, x_k) \\ \vdots \\ y_m = g_m(x_1, \dots, x_k) \end{cases}$$

Теорема 12 (Теорема о неявном отображении). \square O – открытое в $\mathbb{R}^{k+m}, F \in C^1 \left(O \to \mathbb{R}^k\right)$

$$(a,b) \in O$$
 $(a = (a_1, \ldots, a_k), b = (b_1, \ldots, b_k))$ и

- 1. F(a,b) = 0
- 2. $\det F_y'(a,b) \neq 0$

$$F_y' = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \dots & \frac{\partial F_1}{\partial y_m} \\ \dots & \dots & \dots \\ \frac{\partial F_m}{\partial y_1} & \dots & \frac{\partial F_m}{\partial} \end{pmatrix}$$

Тогда:

- I Существует открытое множество $U \times V$ в \mathbb{R}^{k+m} , где U окрестность a, а V окрестность b: в $U \times V$ уравнение F(x,y) = 0 неявно задаёт единственную функцию y = g(x)
- II g дифференцируема в точке a

III
$$g'(x) = -(F'_y(a,b))^{-1} \cdot F'_x(a,b)$$

1.16 Практика

$$f(x_1, x_2, \dots, x_n) \quad \varphi_1, \dots, \varphi_n$$

$$S = \left\{ (x_1, \dots, x_n) \mid \begin{cases} \varphi_1(x_1, \dots, x_n) = 0 \\ \vdots \\ \varphi_n(x_1, \dots, x_n) = 0 \end{cases} \right\}$$

Задача – найти экстремум f на S

Теорема 13 (Необходимое условие). Пусть для $\begin{vmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_m}{\partial x_1} & \cdots & \frac{\partial \varphi_m}{\partial x_n} \end{vmatrix}$ ранга m

 $L := f + \sum \lambda_i \varphi_i$

Тогда x^* – условный экстремум, если $\begin{cases} \varphi_i(x^*) = 0 \forall i=1,\ldots,m \\ \frac{\partial f}{\partial x_i}(x^*) = 0 \forall i=1,\ldots,n \end{cases}$

$$f(x) - f(P) = (x - P)^T D^2 f(x - P) + o(...)$$

В случае поиска на поверхности, рассматриваем касатальные к поверхности, если она гладкая

Теорема 14 (Достаточное условие). Пусть $f, \varphi_i = C_2(x^* \in U)$

$$\sum_{k} \frac{\partial \varphi_i(x^*)}{\partial x_k} dx_k = 0 \quad \forall i \quad \sum_{k} (dx_k)^2 > 0$$

 $d^2\Lambda(x^*)$ знакоопределна для dx_k , то x^* – экстремум

Если ≥ 0, то экстремума нет

1.17 Лекция

Теорема 15 (О неявном отображении). $F(x,y) = \mathbb{O} \iff \begin{cases} F_1(x_1,\ldots,x_k,y_1,\ldots,y_m) = 0 \\ \vdots \\ F_m(x_1,\ldots,x_k,y_1,\ldots,y_m) = 0 \end{cases}$

$$x = (x_1, \dots, x_k), y = (y_1, \dots, y_m), F = (F_1, \dots, F_m)$$

Если $F \in C^r(O), O$ – открытое в \mathbb{R}^{k+m}

 $(r \in \mathbb{Z}^+)$

1.
$$F(x^0, y^0) = 0$$

2.
$$F_y'(x^0, y^0)$$
 – обратима $(\det F_y' \neq 0)$

Тогда \exists открытое U_{x_0} и V_{y_0} и $g:U_{x_0}\to V_{y_0}$:

$$I \begin{cases} (x,y) \in U_{x_0} \times V_{y_0} \\ F(x,y) = 0 \end{cases} \iff \begin{cases} x \in U_{x_0} \\ y = g(x) \end{cases}$$

II $g \in C^r(U_{x_0})$

III
$$g'(X) = (F'_y(x,y))^{-1} \cdot F'(x,y)$$

Определение 11 (Уточнение определения функции (отображения), заданной уравнением неявно). $\supset D \subseteq R^k \quad g:D \to \mathbb{R}^m$ Скажем, что отображение g задаётся уравнением

1.
$$F(x^0, y^0) = 0$$

2.
$$F_y'(x^0, y^0)$$
 – обратима $(\det F_y' \neq 0)$

неявно, если

$$F(x, g(x)) = 0 \quad \forall x \in D$$

(аналогично для x = h(y))

Пример. $x^2 + y^2 + z^2 = a^2$ a > 0

$$\begin{split} z &= \sqrt{a^2 - x^2 - y^2} \quad z = -\sqrt{a^2 - x^2 - z^2} \quad y = \sqrt{a^2 - x^2 - z^2} \quad \dots \\ \begin{cases} z'_x &= ? \\ z''_{xy} &= ? \end{cases} \\ x^2 + y^2 + z(x,y) &\equiv a^2 \\ g(x,y) &= z(x,y) \quad F(x,y,z) = x^2 + y^2 + z^2 - a^2 \\ F'_z &= 2z \neq 0 \iff x^2 + y^2 < a^2 \\ 2\left(x + z \cdot z'_x\right) &= 0 \implies z'_x = -\frac{x}{z} \\ 0 + z'_y \cdot z'_x + z \cdot z''_{xy} &= 0 \qquad z'_y = -\frac{y}{z} \implies z''_{xy} = -\frac{z'_y \cdot z'_x}{z} = -\frac{xy}{z^3} = -\frac{xy}{\sqrt{a^2 - x^2 - y^2}} \end{split}$$

Примеры нарушения условия 2 теоремы

Пример.
$$x = y^3$$
 $F(x,t) = x - y^3$ $F'_y = -3y^2 = 0$ $y = 0$

Пример.
$$(x^2+y^2)^2=x^2-y^2$$

$$\begin{cases} x=r\cos\varphi\\ y=r\sin\varphi \end{cases}$$
 $r^4=r^2\left(\cos^2\varphi-\sin^2\varphi\right)$ $r=\sqrt{\cos2\varphi}$

Рис. 1.4: lemniscat

$$F(x,y) = (x^2 + y^2)^2 - (x^2 - y^2)$$

$$F'_y = 2(x^2 + y^2) \cdot 2y + 2y = 2y(2(x^2 + y^2) + 1)$$

$$F'_y = 0 \iff y = 0$$

 $\int g(x) = y$ – функция, график которой – график F в І-ІІІ четвертях

$$\begin{cases} y = r(\varphi)\sin\varphi \\ x = r(\varphi)\cos\varphi \end{cases}$$

$$\varphi = \frac{\pi}{4}$$

$$x_{\varphi}' = r' \cos \varphi + r \sin \varphi$$

$$x'(\frac{\pi}{4} = \frac{\sqrt{2}}{2}(r'+r) = \frac{\sqrt{2}}{2} \left(\underbrace{\frac{-\sin 2\varphi}{\sqrt{\cos 2\varphi}}}_{\text{He onp. IIpH}\varphi = \frac{\pi}{4}} + \sqrt{\cos 2\varphi}\right)$$

Замечание. Если $f\in C\left([a,b]\right)$ и $\exists\lim_{x\to a+}f'(a),$ то $\exists f'(a),$ и $f'(a)=\lim_{x\to a+}f'(x)$

Пример. $y(x) = x^2 \sin \frac{1}{x}$

$$\varphi \in \left(0, \frac{\pi}{4}\right)$$

$$y'_x = \frac{y'_{\varphi}}{x'_{\varphi}} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi} = \frac{\left(-\frac{\sin2\varphi}{\sqrt{\cos2\varphi}} \cdot \sin\varphi + \sqrt{\cos2\varphi} \cdot \cos\varphi\right)}{-\frac{\sin\varphi}{\sqrt{\cos2\varphi}} \cdot \cos\varphi - \sqrt{\cos2\varphi}\sin\varphi} \to \frac{-\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = 1 \implies y'_x(x_{\varphi = \frac{\pi}{4}})$$

$$y'_{\perp}(0) = 1$$

1.18 Поверхности в \mathbb{R}^n (k-мерные)

Способы задания поверхности:

1. Поверхность уровня

$$F:\mathbb{R}^m\to\mathbb{R}\quad C\in\mathbb{R}$$

$$\{x \in D(F): F(x) = C\}$$
 – линия уровня C

$$F: D$$
 – открытое $\subseteq \mathbb{R}^n \to \mathbb{R}^k$ $F = (F_1, \dots, F_k), C \in \mathbb{R}^k$

$$(x \in D(F) : F(x) = C)$$
 – поверхность уровня C

Определение 12. $\ \ \, \exists \ f:O o \mathbb{R}^m \quad O$ – открытое в $\mathbb{R}^k \quad k,n\in \mathbb{N}$

f называется регулярным в O,если f Дифференцируема в O и в каждой точке $x\in O$ — f'(x) Имеет максимальный ранг $({\rm rang}\,f'(x)={\rm min}(k,n))$

Определение 13. \square $C\in\mathbb{R}^m$ $F\in C^r(O\to\mathbb{R}^m), O$ – открытое в \mathbb{R}^n $r\in\mathbb{Z}_+$

F регулярно в O, тогда поверхность уровня C называется r-гладкой (класса C^r) n-m-мерной поверхностью

Пример. $x^2 + y^2 + z^2 = a^2, a > 0$

$$F(x, y, z) = a^2$$
 $m = 1$ $n = 3$ $F' = (2x, 2y, 2z)$

S - 3 - 1 = 2-мерная поверхность

2 Поверхности-графики

$$\exists \ q: D \subseteq \mathbb{R}^k \to \mathbb{R}^m \quad k < n \quad n = k + m$$

$$\Gamma_q = \{(x, y) : x \in D, y = g(x)\} \in \mathbb{R}^n$$

Если D Ограничено в \mathbb{R}^k $g \in C^r(D \to \mathbb{R}^m)$, то говорят о графике отображения гладкости r (класса C^r)

Пример. Сфера – объединение бесконечно гладких графиков

3 Параметрическое задание

$$\Phi:D\subseteq\mathbb{R}^k\to\mathbb{R}^n$$

Если D — открытое, $\Phi \in C^r(D)$ и Φ Регулярна в D, то $\Phi(D)$ — k-мерная поверхность с параметризацией класса C^r (параметризованной поверхности)

Пример.
$$S \cap \{x>0,y>0,z>0\} = \left\{ egin{aligned} x=a\cos\varphi\cos\psi \ (x,y,z):y=a\sin\varphi\cos\psi \ \varphi,\psi\in(0,\frac{\pi}{2}\} \ z=a\sin\psi \end{aligned} \right.$$

$$\Phi: (\varphi, \psi) \to (x, y, z)$$

Теорема 16 (О способах задания гладких поверхностей). $\exists \ r \in \mathbb{Z}_+, m, k \in \mathbb{N} n = m+k$

 $S \subseteq \mathbb{R}^n$ $a \in S$. Следующие утверждения равносильны:

- 1. \exists окрестность $U_a:U_a\cap S-k$ -мерный график класса C^r
- 2. \exists окрестность $U_a:U_a\cap S$ k-мерная поверхность уровня класса C^r
- 3. \exists окрестность $U_a:U_a\cap S-k$ -мерная поверхность класса C^r заданная параметрически

Доказательство.

$$1\implies 2$$
 $U_a\cap S=\{(x,y):x\in D\quad y=g(x)\}$ (посе перенумерации, если требуется)

$$= \{(x,y) : F(x,y) = 0\}$$
 $F = y - g(x)$

F определена на $D \times \mathbb{R}^m$ $F: D \times \mathbb{R}^m \subseteq \mathbb{R}^n \to \mathbb{R}^m$ $F \in C^r(D \times R^m)$

 $F_u' = E_m \quad F'$ содержит E как минор \implies ранг F' максимальный

$$2 \implies 1 \ F(x,y) = C \quad C \in \mathbb{R}^m \quad F: O \subseteq \mathbb{R}^n \to \mathbb{R}^m$$

$$U_a \cap S = \{(x, y) : (2)\}$$

F' имеет максимальный ранг =m. С точностью до нумерации координат можно считать, что $\det F_y'(a) \neq 0$. В некоторой окрестности $\det F_y'(x,y) \neq 0 \implies$ по теореме о неявной функции y=g(x)

$$1 \implies 3 \ S \cap U_a = \{(x, g(x)) : x \in D\}$$

$$\Phi: x \in D \subseteq \mathbb{R}^k \to (x, g(x)) \in \mathbb{R}^n$$

$$\Phi' = egin{bmatrix} E_k \\ g'_{1x_1} & g'_{1x_k} \end{bmatrix} \implies \operatorname{rang} \Phi' = k \implies \Phi$$
 - регулярна в D

$$3\implies 1$$
 $S\cap U_a=\left\{(x,y)=\Phi(u):u\in D$ – открытое в $\mathbb{R}^k\right\}$ $\Phi\in C^r(D),\operatorname{rang}\Phi'=k$ – максимальный

Не умаляя общности
$$\det \Phi_x' \neq 0$$
 $\widetilde{\Phi}(n) = \begin{bmatrix} \Phi_1(u) \\ \vdots \\ \Phi_k(u) \end{bmatrix}$ $\Phi(n) = \begin{bmatrix} \Phi_1(u) \\ \vdots \\ \Phi_n(u) \end{bmatrix}$

$$\det \begin{bmatrix} \nabla \Phi_1 \\ \vdots \\ \nabla \Phi_k \end{bmatrix} \neq 0$$

$$\widetilde{\Phi'} = egin{bmatrix}
abla \Phi_1 \\
\vdots \\
abla \Phi_k \end{bmatrix}$$
 — обратима

$$\Psi = \widetilde{\Phi}^{-1} \quad \widetilde{\Phi} : (u_1, u_2, \dots, u_k) \to (x_1, \dots, x_k)$$

$$(x,y)=\Phi(u)=\left(\widetilde{\Phi}(u),\widetilde{\widetilde{\Phi}}(u)=(x,\widetilde{\widetilde{\Phi}}(\Psi(x))
ight)\in C^r$$
 по теореме об обратном отображении $u=\Psi(x)$ $\Phi(u)=\Phi(\Psi(x))$

Определение 14. r-гладках k-мерная поверхность – поверхность, для которой справедливо одно из утверждений 1-3 предыдущей теоремы

Пример.
$$\gamma(t) = \begin{bmatrix} \gamma_1(t) \\ \vdots \\ \gamma_n(t) \end{bmatrix} : [a,b] \to \mathbb{R}^n$$

 $\gamma|_{(a,b)}$ $\gamma \in C^r(a,b)$

 $\operatorname{rang} \gamma'$ максимален $\iff \gamma'(t) \neq 0$

Пример. в
$$\mathbb{R}^n$$
 $D = \{\langle v_1, x \rangle + v_2 = 0\}$, где $v_1, v_2 \in \mathbb{R}^n$

 $F'=v_1$. Если $v_1\neq 0$, то S-n-1-мерная поверхность (гиперплоскость, гперпространство в \mathbb{R}^n)

1.19 Условный экстремум функций нескольких переменных

$$f: E \subseteq \mathbb{R}^n \to \mathbb{R} \quad E_0 \subseteq E$$

Условный экстремум f на $E_0 \equiv$ экстремум $f|_{E_0}$

$$\Box E_0 = \left\{ x \in \mathbb{R}^n : \begin{cases} F_1(x) = 0 \\ \vdots \\ F_m(x) = 0 \end{cases}, m \in \mathbb{N}, m \leqslant n \right\}$$

Эти уравнения называются уравнениями связи, функции F_i называются функциями связи

Экстремум $F|_{E_0} \equiv$ условный экстремум F при условии \langle система уравнений \rangle

Теорема 17 (Необходимое условие условного экстремума, геометрическая формулировка).
 $\supset O$ – открыток $\subseteq \mathbb{R}^n$
 $f, F_1, \ldots, F_m \in C^1(O \to$ \mathbb{R}), m < n и $F = (F_1, \ldots, F_m)$ – регулярно в O. \square а – точка локального условного экстремума для f относительно F(x) = 0

Тогда в точке a ∇f представимо в виде линейной комбинации $\nabla_a F_1, \dots, \nabla F_m$ $(\nabla_1 f \in \mathcal{L}_{in} \{ \nabla_a F_1, \dots, \nabla_a f_m \} \}$

 \mathcal{A} оказательствунай 1: m=n-1

От противного : rang
$$\begin{bmatrix} f'(a) \\ F'_1(a) \\ \vdots \\ F'_m(a) \end{bmatrix} < n \quad \left(\Longleftrightarrow \det \begin{bmatrix} f'(a) \\ F'_1(a) \\ \vdots \\ F'_{n-1}(a) \end{bmatrix} \right) = 0 \iff f'(a), \ldots, F'_{n-1}(a)$$
 – линейно зависимы
$$\Longrightarrow \exists \lambda_0, \ldots, \lambda_{n-1} : \quad \lambda_0 f'(a) + \sum_{k=0}^\infty \lambda_k F'_k(a) = 0$$

Если бы $\lambda_0=0 \implies \{F_k'(a)\}_{k=1}^{n-1}$ – линейно зависимо rang $(F_k'(a))_{k=1}^{n-1} < n-1$ – не максимально

Значит
$$\lambda_0 \neq 0 \implies f'(a) = -\sum \frac{\lambda_k}{\lambda_0} F'_k(a)$$

Если неверно, что определитель матрицы производных этого столбца функций равен нулю, то по теореме об обратном отображении $h(U_a)$ —

открытое множество
$$\implies \exists \delta_0 > 0: \quad \forall \delta \in (0, \delta_0) \quad \begin{bmatrix} f(a) \pm \delta \\ F_1(a) \\ \vdots \\ F_{n-1}(a) \end{bmatrix} \in h(u_n)$$

Противоречие – x – точка условного локального экстремума

$$m=1,\dots,n-2$$
 F' — максимального ранга $\lessdot \widetilde{h}(a)=egin{bmatrix} f(x) \\ F_1(x) \\ \vdots \\ F_m(x) \end{bmatrix}$ Предположим, что
$$\widetilde{h'(x)} < m+1$$

C точностью до нумерации координат $h'_{x_1,\dots,x_{m+1}}(a) \neq 0$

$$h(x) = \begin{bmatrix} \widetilde{h}(x) \\ x_{m+2} \\ \vdots \\ x_n \end{bmatrix} \quad h'(a) = \begin{bmatrix} h'_{x_1,\dots,x_{m+1}} & \cdots \\ \mathbb{O} \\ E_{n-(m+1)} \end{bmatrix} (a) \implies \exists \text{ окрестность}$$
 $U_a \quad h|_{U_a}$

$$a\overline{h} \to \begin{bmatrix} f(a) \\ 0 \\ \vdots \\ 0 \\ a_{m+2} \\ \vdots \\ a_n \end{bmatrix}.$$
 Т.к. h – открытое, то $\exists \sigma > 0 : \forall y \in \mathbb{R}^n : \|y - b\| < \sigma \implies$
$$y \in h(U_a)$$

$$\begin{cases} f(a) \pm \frac{b}{2} \\ 0 \\ \vdots \\ o \\ a_{m+2} \\ \vdots \\ a_n \end{cases} \implies \exists x \in U_a : f(x) = y \quad F_1(x) = \ldots = F_m(x) = 0$$

$$f(x)f(a) \pm \frac{b}{2}$$

Противоречие, ранг не меньше максимального

1.20 Практика

u — непрерывная функция на компакте — достигает наибольшего и наименьшего значения

1.21 Лекция. Дополнение : теорема об открытом отображении (общение)

Теорема 18. $\exists \ k,n\in\mathbb{N} \quad k\leqslant n \quad O$ – открытое $\in\mathbb{R}^n \quad F:O\to\mathbb{R}^k,$ регулярная $(\in C^1)$ ранг матрицы Якоби =k

Тогда F является открытом отображением.

Случай n = k был установлен.

Доказательство. n < k

1. F – проекция.

$$F(x_1, x_2, \dots, x_n) = (x_{i_1}, \dots, x_{i_k})$$

– очевидно открытое

Рис. 1.5: очевидно

$$x,a \in \mathbb{R}^n \quad \|x-a\| < r \implies \|F(x)-F(a)\| \leqslant \|x-a\| < r$$
, t.e. $B_{r(a)} \overset{F}{\to} B_r\left(F(a)\right)$

2.
$$F$$
 – регулярно. $F' = \begin{bmatrix} \nabla F_1 \\ \vdots \\ \nabla F_k \end{bmatrix}$, матрица $n \times k$

После удаления n-k столбцоы возникает ненулевой минор . Не умаляя общности удаляем последние столбцы (иначе перенумеруем перемен-

ные
$$x_1, \ldots, x_n$$
 $\implies F'_{(x_1, \ldots, x_n)} = \begin{bmatrix} F'_{1x_1} & \ldots & F'_{1x_k} \\ \ldots & \ldots & \ldots \\ F'_{kx_1} & \ldots & F'_{kx_k} \end{bmatrix}$ $\det F'_{(x_1, \ldots, x_n)} \neq 0$

$$\triangleleft \phi(x) = (F_1, F_2, \dots, F_k, xk + 1, \dots, x_n)^T$$

$$\phi'(x) = \begin{bmatrix} F'_{(x_1,\dots,x_k)} & F'_{(x_{k+1},\dots,x_n)} \\ 0 & E_{n-k} \end{bmatrix}$$

 $\det \phi'(x) = \det F'_{(x_1,\dots,x_k)} \cdot \det (E_{n-k}) \neq 0$ ϕ регулярно в некоторой окрестности фиксированной точки $\Longrightarrow F = \pi \circ \phi$ – открытое в точке a в силу произвольности $a \Longrightarrow F$ – окткрыто

Теорема 19 (Необходимое условие условного экстремума (геометрическая формулировка)). $\exists k, n \in \mathbb{N} \quad k < n \quad O$ – открытое в \mathbb{R}^n

$$f,F_1,\ldots,F_k\in C^1(O o\mathbb{R}),\quad F=(F_1,\ldots,F_k)$$
 – регулярно в O $E=\{x\in O|F(x)=0\}\,,a\in E$

Если a – точка условного экстремума для f Относительно

$$F(x) = 0$$

, TO

$$\nabla_a f \in \mathcal{L}in\left\{\nabla_a F_1, \dots, \nabla_a F_k\right\}$$

В частности, если k=1, то условие $\iff \nabla_a f$ – коллинеарен $\nabla_a F$

Пример. Найти наибольшее и наименьшее значение функции

$$f(x,y) = (x^2 + (y-1)^2)\sqrt{x^2 + y^2 - 2y}$$

на криволинейном треугольнике - границе множества

$$D = \{(x,y) \mid (x+1)^2 + y^2 \ge 1, \quad (x-1)^2 + y^2 \ge 1, x^2 + y^2 \le 2 \quad y \ge 0\}$$

$$r = x^2 + (y - 1)^2$$

$$f = \underbrace{r \cdot \sqrt{r+1}}_{g(r)}$$

$$\nabla f = g'(r) \cdot \nabla r$$

при $r = \sqrt{2} - 1$ касание окружности уровня границы окружности

Подозрительные точки: вершины. точки T_1, T_2, T_3 : $f(T_1) = f(T_2) = f(T_3)$

$$g'(r)=\sqrt{r+1}+rac{r}{2\sqrt{r+1}}=rac{2(r+1)+r}{2\sqrt{r+1}}=rac{3r+2}{2\sqrt{r+1}}$$
 не обращается в ноль при $r\geqslant 0$

K – граница D, компакт \implies max, min достижимы

т.к.
$$g(r)$$
 стремится вверх и $r(T_1)=r(T_2)=r(T_3)< g(V_1)=g(V_2)=g(V_3) \Longrightarrow \min_k g=g(T_1) \max_k g=g(V_1)$

 $\ensuremath{\mathcal{L}orazame\xspace}$. Не умаляя общности a – точка глобального условного экстремума для f относительно F(x)=0

Замечание. Если $v, v^1, \dots, v^k \in \mathbb{R}^k$ и набор v, v^1, v^k – линейно зависим, а v^1, \dots, v^k – ЛНЗ, то $v \in \mathcal{L}in\left\{v^1, \dots, v^k\right\}$

$$\implies \exists \lambda_1, \lambda_1, \dots, \lambda_k : \quad \lambda v + \underbrace{\sum_{j=1}^k \lambda_j v_j}_{\neq 0} = 0 \implies \lambda \neq 0 \implies v = -\sum_{j=1}^k \frac{\lambda_j}{\lambda} v_j$$

Рис. 1.6: krivoyPrimer

По замечанию достаточно проверить, что $\{\nabla_a f, \nabla_a F_1, \dots, \nabla_a F_k\}$ – линейно зависим, т.е. $\widetilde{F} = (f, F_1, \dots, F_k)^T$ – не регулярна в точке a.

От противного: пусть \widetilde{F} – регулряна в точке a, тогда существует окрестность $U(a):\widetilde{F}$ – регулярно в U(a)

По теореме об открытом отображении \widetilde{F} – открыто в $U(a) \Longrightarrow \exists \varepsilon > 0$: $\widetilde{F}(U(a)) \supset B_{\varepsilon}\left(\widetilde{F}(a)\right) \quad \widetilde{F}(a) = (f(a), F_1(a), \dots, F_k(a)) = (f(a), 0, \dots, 0) \quad F_i(a) = 0$, т.к. a – точка, удовлетворяющая формулам связи.

$$y_{\pm} = \left(f(a) \pm \frac{\varepsilon}{2}, 0, \dots, 0 \right)$$

 $\|y_{\pm} - \widetilde{F}(a)\| = \frac{\varepsilon}{2} \implies y_{\pm} \in B_{\varepsilon}\left(\widetilde{F}(a)\right) \subseteq \widetilde{F}(U(a)) \implies \exists x_1 \in U(a) : \widetilde{F}(x_{\pm}) = y_{\pm} \iff f(x_1) = f(a) \pm \frac{\varepsilon}{2} \quad F_1(x_{\pm}) = \dots = F_k\left(x_{\pm}\right) \implies x_{\pm} \in E?!! \implies$ точка a не экстремум, что противоречит нашем предположению

1.22 Функция Лагранжа

Определение 15 ("большая" функция Лагранжа).
$$\begin{aligned} & f\left(x_{1},\ldots,x_{n}\right) \\ & F_{1}\left(x_{1},\ldots,x_{n}\right) = 0 \\ & \ldots \\ & F_{k}\left(x_{1},\ldots,x_{n}\right) = 0 \end{aligned}$$

$$\mathcal{L}\left(x,\lambda\right) = f(x) - \sum_{j=1}^{k} \lambda_{i}F_{j}(x) \quad \lambda = (\lambda_{1},\ldots,\lambda_{k})$$

$$\nabla_{a}f = \sum_{j=1}^{k} \lambda_{j}\nabla_{a}F_{j}$$

Теорема 20 (Необходимое условие условного экстремума через дифференациал функции Лагранжа). В условиях последней теоремы
$$\exists \lambda_1^*, \dots, \lambda_k^* \in \mathbb{R}$$
 $\mathrm{d}_{(a,\lambda^*)}\mathcal{J}=0$
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x_1}\left(a,\lambda^*\right) = f'_{x_1}(a) - \sum\limits_{j=1}^k \lambda_j F'_{jx_1}(a) \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial x_n}\left(a,\lambda^*\right) = f'_{x_n}(a) - \sum\limits_{j=1}^k \lambda_j^* F'_{jx_n}(a) \\ \frac{\partial \mathcal{L}}{\partial \lambda_1}\left(a,\lambda^*\right) = 0 = F_1(a) \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial \lambda_k}\left(a,\lambda^*\right) = 0 = F_k(a) \end{cases}$$
 \Leftrightarrow
$$\begin{cases} \nabla f = \sum\limits_{j=1}^k \lambda_j \nabla_a F_j \end{cases}$$

Задача 7. Найти максимум и минимум квадратичной формы на сфере

$$Q(x) = \sum_{ki,j=1}^{n} q_{ij} x_i x_j$$

– \forall квадратичная форма в \mathbb{R}^n

$$x = (x_1, \ldots, x_n)$$

Продолжаем $[Q] = (q_{ij})_{i,j=1}^n$ – симметричная

$$S = \{x \in \mathbb{R}^n : ||x|| = 1\} \iff \sum_{i=1}^n x_i^2 = ||x||^2 = 1$$

$$F(x) = ||x||^2 - 1$$

$$\mathcal{L}(x,\lambda) = Q(x) - \lambda F(x)$$

 $\nabla F = 2x \; (F \; \text{регулярно всюду в} \; \mathbb{R}^n \setminus \{0\})$

<...>

Вывод: $\max_{x \in S} Q(x) = \max \{\lambda : \lambda_i - \text{собственные числа } Q\}$

 $\exists E \subseteq \mathbb{R}^n \quad f \in C (\operatorname{Cl} E \to \mathbb{R}).$ Тогда $\sup_E f = \sup_{\operatorname{Cl} E}$

 \mathcal{A} оказательство. $A=\sup_E f$ $B=\sup_{\operatorname{Cl} E} f$ \Longrightarrow $B\geqslant A$ как sup по большему множеству.

 $B\leqslant A.$ От противного: существует последовательность $\{y_k\}_{k=1}^{\infty}\subseteq f\left(\operatorname{Cl} E\right)$

$$y_k \to B \implies \exists \{x_k\} \subseteq \operatorname{Cl} E$$
 и $f(x_k) = y_k$

$$\forall k \in \mathbb{N} \exists \widetilde{x}_k \subseteq E \quad \|\widetilde{x}_k - x_k\| < \frac{1}{k}$$

<..> вернёмся к этому доказательству позже

Утверждение 5. \sqsupset E – замкнутое множество в \mathbb{R}^n $f\in C(E)$ и $\lim_{\|x\|\to\infty}f=L$

Тогда

$$\sup_{E} f \times f(E) \cup \{L\}$$

Доказательство. По определению супремума существует $\{y_j\}_{j=1}^{\infty} \subseteq f(E): y_j' \to \sup_E f \implies \exists$ последовательность $\{x_j\} \subseteq E: f(x_j) = y_j$. В силу обощённого принципа Больцано-Вейерштрасса \exists подпоследовательность $\{x_{j_i}\}_{i=1}^{\infty}: x_{j_i} \to x_* \in \hat{\mathbb{R}}_r$:

- 1. Если $x_* = \infty$ $\underbrace{fx_{j_i}}_{j_L} = y_{j_i} \underset{i \to \infty}{\to} \sup_E f$. Теорема о пределе композции
- 2. $x_* \neq \infty$ x_* предельная точка для E, E замкнуто $\Longrightarrow x_* \in E$ Т.к. f непрерывно на E

$$f(x_*) = \lim_{i \to \infty} f(x_{j_i} = \lim_{i \to \infty} y_{j_i} = \sup_E f \implies \sup_E f \subseteq f(E)$$

1.24 Касательные пространства к поверхностям

 $\exists S$ – гладкая k-мерная поверхность пространства $\mathbb{R}^n \quad q \in S$

вектор $\tau \in \mathbb{R}^n$, для которого существует гладкий путь $\gamma:[a,b] \to S$ и существует $c \in [a,b]: \gamma'(c)=\tau$ называется касательным в S в точке q

$$\gamma(c) = q$$

 $\operatorname{Tq} S$ – набор всех касательных векторов к S в точке q

 $\supset \phi$ — гладка локальная параметризация S вблизи a (\exists окрестность U(0) в \mathbb{R}^n и \exists Окрестность $V(q):\Phi(U(0))=V(q)\cap S$ $\Phi(0)=q)$

$$\gamma^1(t)=(t,0,\dots,0)^T \quad \gamma^2(t)=(0,t,0,\dots,0)^T \quad \gamma^j:[0,1]\to\mathbb{R}^k \quad \widetilde{\gamma}^j=\phi(\gamma^j)$$
гладкий путь в S

$$au^j = \left(\widetilde{\gamma}^j\right)_t' = \Phi' \cdot \left(\gamma^j\right)' = j$$
-ый столбец Φ'

 au^1,\dots, au^k – канонические касательные векторам

Утверждение 6. ТрS – линейное пространство

Локально S также задаётся системой уравнений:

$$\begin{cases} F_1(x)=0\\ \vdots\\ F_{n-k}(x)=0 \end{cases} \qquad \exists \ \tau \in Tq(S) \quad \tau=\gamma'(c), \ \text{где } \gamma:[a,b] \to S \quad \gamma(c)=q$$

1.25 Лекция

Замечание. $\exists \subseteq \mathbb{R}^n \quad f \in C \left(\operatorname{Cl} E \to \mathbb{R} \right)$

Тогда $A := \sup_E f = \inf_{\operatorname{Cl} E} f =: B$

Доказательство. Очевидно $A \leqslant B$. $B \leqslant A$?

$$\exists x \in \operatorname{Cl} E \implies \exists \{x_j\}_{j=1}^{\infty} \subseteq E : x_j \to x, j \to \infty$$

$$\forall j \in \mathbb{N} \quad f(x_j) \leqslant A, j \to \infty$$

$$f(x) = f\left(\lim_{j \to \infty} x_j\right) = \lim_{j \to \infty} f(x_j) \leqslant A$$

Перейдём к супремуму по $x:x\in\operatorname{Cl} E\implies B\leqslant A$

Рис. 1.7: poverh

S-гладкая, k-мерная поверхность. $\gamma:[a,b]\to S$ — гладкий путь в S

$$\gamma'(c)$$
 для $c \in [a,b]$ $\gamma(c) = p$

$$u = (u_1, u_2, \dots, u_n)$$

 $\phi'_{u_1}(q) \quad \phi'_{u_k}(q) \in \operatorname{Tp} S$ – какнонические касательные векторы

$$\phi'_{u_j}(q) = d_q \phi(e_j)$$

S локально задана как поверхность уровня

 \exists окрестность U(p):

$$S \cap (U(p)) = \{x \in U(p) : F_1(x) = 0, \dots, F_{n-k}(x) = 0\}$$

$$F = (F_1, \dots, F_{n-k})$$
 – регулярно в $U(p)$

$$\forall \tau \in \operatorname{Tp} S \quad \forall j = 1, \dots, n - k \quad \tau \perp \nabla_p F_j$$

Утверждение 7. Если s -гладкая k-мерная поверхность (в \mathbb{R}^n), $p \in S$, то Тр S – линейное подпространство \mathbb{R}^n

Рис. 1.8: skpoverh

Доказательство. Если $v_1,v_2\in\operatorname{Tp} S$ $c_1,c_2\in\mathbb{R} \implies v=c_1v_1+c_2v_2\in\operatorname{Tp} S$ Дополним набор $\nabla_p F_1,...,\nabla_p F_{n-k}$ до базиса ортогонального дополнения к $v\in\mathbb{R}^n$

Добавляем $h^1 \dots, h^{k-1} \quad \forall j \quad g^j \perp v$

$$\zeta$$
 систему $n-1$ уравнений
$$\begin{cases} F_1(x)=0\\ \vdots\\ F_{n-k}(x)=0\\ \langle x-p,h^1\rangle=0\\ \vdots\\ \langle x-p,h^{k-1}\rangle=0 \end{cases}$$

Матрица
$$\begin{bmatrix} \nabla_p F_1 \\ \vdots \\ \nabla_p F_{n-k} \\ h^1 \\ \vdots \\ h^{k-1} \end{bmatrix}$$
 имеет максимальный ранг \implies система задёт (локаль-

но) гладкую n - (n - 1) = 1-мерную поверхность

По теореме о способах задания поверхности \exists параметризация $\gamma:t\in(\alpha,\beta)\to\Gamma$ $0\in(\alpha,\beta)]quad\gamma(0)=p$

$$\gamma' \perp \nabla_p F_1, \dots, \nabla_p F_{n-k}, h_1, \dots, h_{k-1}$$

 $\implies \gamma'(0)$ коллинеарна v

$$\sphericalangle \widetilde{\gamma}(t) = \gamma(\Theta t) \quad \Theta \in \mathbb{R} \setminus \{0\}$$

$$\widetilde{\gamma}'(t) = \Theta \gamma'(\Theta t)$$

$$\widetilde{\gamma'}(0) = \Theta \cdot \gamma'(0)$$

Подбор $\Theta \implies \Theta \cdot \gamma'(0) = v$

Следствие 4. $\dim \operatorname{Tp} S = k$

Т.к. канонические касательные линейно независимы, $\in \operatorname{Tp} S, \implies \dim \operatorname{Tp} S \geqslant k$

C другой стороны $\dim (\operatorname{Tp} S)^{\perp} \geqslant n - k$ (т.к. $\nabla_p F_j \in (\operatorname{Tp} S)^{\perp})$

$$v \in \operatorname{Tp} S \iff \begin{cases} \langle \nabla_p F_1, v \rangle = 0 \\ \langle \nabla_p F_{n-k}, v \rangle = 0 \end{cases} \iff \begin{cases} \frac{\partial F_1}{\partial x_1}(p)(v_1) + \ldots + \frac{\partial F_1}{\partial x_n}(p)v_n = 0 \\ \ldots \\ \frac{\partial F_{n-k}}{\partial x_1}(p)(v_1) + \ldots + \frac{\partial F_{n-k}}{\partial x_n}(p)v_n = 0 \end{cases} \iff \begin{cases} \frac{\partial F_1}{\partial x_1}(p)(v_1) + \ldots + \frac{\partial F_1}{\partial x_n}(p)v_n = 0 \\ \ldots \\ \frac{\partial F_{n-k}}{\partial x_1}(p)(v_1) + \ldots + \frac{\partial F_{n-k}}{\partial x_n}(p)v_n = 0 \end{cases}$$

Можно считать, что дифференциалы dx_1, \ldots, dx_n на касательном пространстве связаны системой возникающей при формальном дифференцировании системы F(x)=0

$$d_p F = 0 \quad \begin{cases} \frac{\partial F_1}{\partial x_1}(p) dx_1 + \dots + \frac{\partial F_1}{\partial x_n}(p) dx_n = 0\\ \dots\\ \frac{\partial F_{n-k}}{\partial x_1}(p) dx_1 + \dots + \frac{\partial F_{n-k}}{\partial x_n}(p) dx_n = 0\\ dx_i(v) = v_i \end{cases}$$

Следствие 5. $\operatorname{Tp} S = d_q \Phi\left(\mathbb{R}^k\right)$

Оба объекты линейные подмножества \mathbb{R}^n размерности k и содержат $d_q\Phi(e_1),\dots,d_q\Phi(e^k)$

Пример.
$$x^2 + y^2 + z^2 = R^2$$
 $S_2(\mathbb{R})$

уравнение касательного пространства $2\left(xdx,ydy,zdz\right)=0$

$$v \in T_{(x,y,z)}S_2(\mathbb{R}) \iff xv_1, yv_2, zv_3 = 0$$

 $\operatorname{Tp} S$ – касательное линейное пространство

 $\operatorname{Lp} S$ – афинное касательное пространство $\operatorname{Lp} S = \operatorname{Tp} S + P$

$$x \in \operatorname{Lp} S$$
 $x - p \in \operatorname{Tp} S$

$$\operatorname{Lp} S = \{ x \in \mathbb{R}^n : d_p F(x - P) = 0 \}$$

$$d_p F(x-p) = 0 \iff \begin{cases} \frac{\partial F_1}{\partial x_1}(p)(x_1 - p_1) + \dots + \frac{\partial F_1}{\partial x_n}(p)(x_n - p_n) = 0\\ \dots\\ \frac{\partial F_{n-k}}{\partial x_1}(p)(x_1 - p_1) + \dots + \frac{\partial F_{n-k}}{\partial x_n}(p)(x_n - p_n) = 0 \end{cases}$$

Если k = n-1, то Тр S и Lp S называются касательными (гипер)плоскостями

Касательная гиперплоскость к графику функции?

$$S = \Gamma_f = \{(x_1, \dots, x_{n-1}, y) \in \mathbb{R}^n, \quad (x_1, \dots, x_{n-1} \in O \subseteq \mathbb{R}^{n-1})\} \quad y = f(x_1, \dots, x_{n-1})$$

$$f \in C^1(O)$$

$$F(x_1,\ldots,x_{n-1},y)=f(x_1,\ldots,x_{n-1})-y$$

$$\triangleleft F$$
 в $O \times \mathbb{R}$

$$\nabla_{p,y}F = \left(f'_{x_1}(p), \dots, f'_{x_{n-1}}(p), -1\right)$$

$$x \in \operatorname{Lp}\Gamma_f \iff f'_{x_1}(p)(x_1 - p_1) + \ldots + f'_{x_{n-1}}(p)(x_{n-1} - p_{n-1}) - (y - p_y) = 0$$

$$y = f(p_1, ..., p_{n-1}) + \langle \nabla_{p_1, ..., p_{n-1}} f, (x - p_x) \rangle$$

Утверждение 8 (Достаточное условие условного экстремума). $\supset O$ – открытое в \mathbb{R}^n $f, F_1, \ldots, F_{n-k} \in C^2 (O \to \mathbb{R})$ $F = (F_1, \ldots, F_{n-k}), p$ – решение системы

$$F(x) = 0$$

 \Box в точке p выполнено необходимое условие условного экстремума для f относительно F(x) = 0. $L(x_1, ..., x_n) = \mathcal{L}(x_1, ..., x_n, \lambda_1^*, ..., \lambda_{n-k}^*)$

Тогда:

• Короткий вариант

Если $d_n^2 L > 0$, то p – условный минимум

Если $d_p^2 L < 0$, то p – условный максимум

Из $d_p^2 L \geqslant 0$, то HE следует, что p не точка условного экстремума

• Подробный вариант:

Если $d_p^2 L|_{\mathrm{Tp}\,S}>0,$ то p – точка условного минимума

Если $d_p^2 L|_{\mathrm{Tp}\,S} < 0$, то p – точка условного максимума

Если $d_p^2 L|_{\mathrm{Tp}\,S} \gtrless$, то p – седловая точка (условного экстремума нет)

Пример. $f(x,y) = x^2 + y^2$ на x + y = 1. найти условный экстремум.

1-ый способ:
$$y = 1 - x$$
 $g(x) = f(x, 1 - x) = x^2 + (1 - x)^2 = 2x^2 - 2x + 1$

g(x) имеет минимум в точке $x=\frac{1}{2}$ (глобальный) $\Longrightarrow f(x,y)$ имеет условный (глобальный) минимум в точке $(\frac{1}{2},\frac{1}{2})$

2-ой способ: $\mathcal{J}\left(x,y,\lambda\right)=x^2+y^2-\lambda\left(x+y-1\right)$

$$\begin{cases} 0 = \mathcal{J}'_x = 2x - \lambda \\ 0 = \mathcal{J}'_y = 2y - \lambda \\ x + y = 1 \end{cases} \implies \begin{cases} x = y = \frac{1}{2} \\ \lambda = 2x = 1 \end{cases}$$

$$L(x,y) = x^2 + y^2 - (x+y-1)$$

$$L'' \iff \begin{bmatrix} 2 & 0 \\ 0^2 & \end{bmatrix}$$

 $d^2L>0$ по короткому $p=\left(\frac{1}{2},\frac{1}{2}\right)$ – условный минимум

Наводящие соображения по достаточному условию условного экстремума:

1.
$$S=\{x\in O \mid F(x)=0\}$$
. Исседуется $f|_S$
$$\mathcal{L}(x)=f(x)-\sum \lambda_k F_k(x)$$

$$L=\mathcal{L}(x,\lambda^*)$$

 $L|_S=f_L,$ таким образом условный экстремум $f\leftrightarrow$ условный экстремум L

 ϕ — локально гомеомофризм

p – точка условного экстремума для $L|_S\iff Д$ ля $L\circ \phi$ точка $\phi^{-1}(p)=q$ – безусловный экстремум

 $d^2(L\circ\phi)\leftrightarrow d_p^2L(d_q\phi)+d_pL\left(d_q^2\phi\right)$ – одномерная формула

1.26 О задача отыскания наибольшего и наименьшего значения функции на множестве.

K – компакт, $f \in C(K)$

 f_k не имеет экстремума на $K\setminus K^*\implies \max_K f=\max_{K^*} f, \min ...$

Если $K=S_1\cup\ldots\cup S_N,$ где S_1,\ldots,S_N – поверхности различных размерностей, $S_j\cap S_k\neq 0$

 $(S_j)_*$ – множество точек, в которых выполняется НУУЭ (необходимое условие условного экстремума) относительно $x\in S_j$ (либо нарушается ранг системы, задающей нашу поверхность S_j)

 $K_* = (S_1)_* \cup \ldots \cup (S_N)_*$ – если это конечное множество, то можно их уже просто сравнить

Пример. Найти наибольшее и наименьшее значение функции f(x,y,z) на компактном множестве K ограниченном поверхностями z=1 и $z=x^2+y^2$

$$S_0 = \text{Int } K$$
 $S_1 = \{z = 1, x^2 + y^2 < 1\}$ $S_2 = \{(x, y, z) : z = x^2 + y^2, x^2 + y^2 < 1\}$ $S_3 = \{(x, y, z) : z = 1, x^2 + y^2 = 1\}$

на S_0 необходимое условие безусловного экстремума:

$$dF = 0 \iff \begin{cases} 0 = f'_x = y \\ 0 = f'_y = x + z \\ 0 = f'_z = y \end{cases} \implies \begin{cases} y = 0 \\ z = -x \end{cases} \quad (x, 0, -x) \quad f(x, 0, -x) = 0$$

$$\operatorname{Ha} S_1 \quad g(x,y) := f\left(x,y,1\right) = y(x+1) \quad \begin{cases} g_x' = 0 = y \\ g_y' = 0 = x+1 \\ x^2 + y^2 < 1 \end{cases} \quad \Longleftrightarrow \quad (-1,0)?? \quad \emptyset$$

на
$$S_2$$
 $f(x,y,z) = xy + y(x^2 + y^2) = x^2y + xy + y^3 = h(x,y)$ $x^2 + y^2 < 1$

Рис. 1.9: paraplane

$$\begin{cases} h'_x = 0 = 2xy + y \\ h'_y = 0 = x^2 + x + 2y^2 \\ x^2 + y^2 < 1 \end{cases}$$

на S_3 $f=(xy+y)_{x^2+y^2=1}=\sin\varphi\left(\cos\varphi+1\right)=\varkappa(\varphi)$ $\varphi\in[-\pi,\pi]$

$$\varkappa'(\varphi) = \cos \varphi (\sin \varphi) - \sin^2 \varphi$$
$$= \cos^2 \varphi + \cos \varphi - (1 - \cos^2 \varphi)$$
$$= 2\cos^2 \varphi + \cos \varphi - 1$$
$$= 2t^2 + t - 1 =: \mu(t)$$

 $(2t^2 + t)' = 4t + 1$

$$\varkappa(t=-1) = 0 \quad \varkappa(t=\frac{1}{2} = \pm \frac{\sqrt{3}}{2} \left(\frac{1}{2} + 1\right) = \pm \frac{3\sqrt{3}}{4}$$

Подозрительные значения: $0, \pm \frac{\sqrt{12}}{72} \pm \frac{3\sqrt{3}}{4}$

$$\max_K f = \frac{3\sqrt{3}}{4} \quad \min_K f = -\frac{3\sqrt{3}}{4}$$

Пример. Найти $\sup_E f\quad E=\left\{(x,y,z)\in\mathbb{R}^3\quad x,y,z>0\right\}$ $f(x,y,z)=(x+2y+3z)e^{-(x+y+z)}$

$$\begin{split} g(t) &= t e^{-t} \\ f(x,y,z) \leqslant (3x+3y+3z) e^{(x+y+z)} &= 3g(t) \leqslant 3 \cdot \sup_{t \geqslant 0} g(t) = \frac{3}{e} \\ f(0,0,1) &= 3 \cdot e^{-1} = \frac{3}{e} \leqslant \sup_{\text{Cl}\, E} f \implies \sup_{\text{Cl}\, E} f = \sup_{E} f = \frac{3}{e} \end{split}$$

1.27 Функциональная последовательности и ряды

$$\exists \subseteq \mathbb{R}^n \quad f: E \to \mathbb{R} \text{ (или } f: E \to \mathbb{C})$$
 $\{f_k(x)\}_{k=1}^{\infty} \; ; \quad f_k: E \to \mathbb{C}$

Определение 16. Говорят, что функциональная последовательность $\{f_k(x)\}$ сходиться к f(x) поточечно на множестве E, если $\forall x_0 \in E$ числовая последовательность $\{f_k(x_0)\}$ сходиться к $f(x_0)$

Примеры:

1.
$$f_k(x) = x^k$$
 $E = [0, 1]$ $f(x) = \begin{cases} 0, x \in [0, 1) \\ 1, x = 1 \end{cases}$

Определение 17 (Поточечная сходимость). $d_k(x) \to f(x)$ на $E \iff \forall x \in E \forall \varepsilon > 0 \exists N = N(\varepsilon, x) > 0: \forall k \geqslant N \quad f_k(x) - f(x) < \varepsilon$

Определение 18 (Равномерная сходимость). $\Box f, f_k : E \to \mathbb{C}$. Говорят, что $\{f_k\}$ сходится к f равномерно, если

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall k \geqslant N \forall x \in E \quad |f_k(x) - f(x)| < \varepsilon$$

Замечание. $\rho_k = \sup_E |f_k(x)|$, то $d_k(x) \rightrightarrows f(x)$ на $\iff \rho_k \to 0$ при $k \to \infty$

Доказательство.

$$\implies \forall k \geqslant n \implies \rho_k \leqslant \varepsilon \implies \rho_k \to 0$$
 при $k \to \infty$ $\iff \rho_k \to 0 \implies \forall \varepsilon > 0 \exists N : \forall k \geqslant N \ 0 \leqslant \rho_k < \varepsilon \implies \forall x \in E \ |f_k(x) - f(x)| \leqslant \rho_k < \varepsilon$

Пример. $f_k(x) = x^k$ $\rho_k = \sup_{x \in [0,1]} |f_k(x) - f(x)| = \max \left\{ \sup_{x \in [0,1)} |f_k - f|, |f_k(0) - f(0)| \right\} = \sup_{x \in [0,1)} |f_k(x) - f(x)| = \sup_{[0,1]} x^k = \sup_{[0,1]} x^k = 1$ $\rho_k \equiv 1 \not\to 0 \implies f_k \not \rightrightarrows f(x)$ на E

Замечание. $f_k \not\rightrightarrows f$ и на [0,1)

$$E_\delta = [0,\delta], \delta < 1$$
 $\rho_k = \sup_{x \in [0,\delta]} |f_k(x) - f(x)| = \sup_{x \in [0,\delta]} x^k = \delta^k \implies \rho_k \to 0, k \to \infty \implies f_k \rightrightarrows f$ на E_δ

Замечание. Если $\forall j\in\mathbb{N}$ $f_k\rightrightarrows f$ на E_j , то из этого не слудет, что $f_k\rightrightarrows f$ на $\bigcup\limits_{j=1}^\infty E_j$, но это становится верным при конечном количестве E

1.28 Практика

1.29 Лекция

Замечание. Если $f_n \rightrightarrows f$ на E, то $f_n \to f$ поточечно.

$$\exists X$$
 – любое множество. $\ell_{\infty}(X) = \{f : X \to \mathbb{R}(\to \mathbb{C}) : f$ – ограничена $\}$

Определение 19.
$$||f|| = \sup_{x \in X} |f(x)|$$

 $\|\cdot\|_{\infty}$ – отклонение, равномерная норма, Чебышёвская норма

Проверим, что она норма:

- 1. 0 только на f = 0
- 2. $\|\alpha f\| = |\alpha| \|f\|$
- 3. $||f + g|| \le ||f|| + ||g||$

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le \sup_{\widetilde{x} \in X} |f(\widetilde{x})| + \sup \dots = ||f|| + ||g||$$

The $\forall x \in X \quad |f(x) + g(x)| \le ||f|| + ||g||$

Переходим к $\sup_{x \in X} \implies \|f + g\| \leqslant \|f\| + \|g\|$

 ℓ_{∞} – нормированное пространство.

$$f_n \rightrightarrows f$$
 на $X \iff \sup_{x \in X} |f_n(x) - f(x)| \to 0 \iff \|f_n - f\|_\infty \to 0$ при $n \to \infty$

Утверждение 9. $\ell_{\infty}(X)$ является полным нормированным пространством (т.е. в $\ell_{\infty}(X)$ из сходимости в себе следует сходимость)

Доказательство. $\triangleleft \{f_n\}$ – сходится в себе в $\ell_\infty(X)$

$$\implies \forall \varepsilon \exists N : \forall n, m \geqslant N \quad ||f_n - f_m|| < \varepsilon \quad \sup_{x \in X} |f_n(x) - f_m(x)| = ||f_n - f_m|| \le \varepsilon$$

$$\iff \forall n, m \geqslant N \quad \forall x \in X \quad |f_n(x) - f_m(x)| \leqslant \varepsilon$$

Значит $\forall x \in X$ числовая последовательность $\{f_n(x)\}$ – сходится в себе

Т.к. $\mathbb{R}(\mathbb{C})$ — полное пространство \implies $\forall x \in X \exists \lim_{n \to \infty} f_n(x) = f(x)$, т.о. возникает $f: X \to \mathbb{R}$

1. Почему она ограничена? $\square N = N(\varepsilon)$ для $\varepsilon = 1$

$$\forall n \geqslant N \quad ||f_n(x)|| \leqslant ||f_N|| + 1$$

$$\begin{split} \|f_n-f_N\| \leqslant 1 \forall n \geqslant N \implies \|f_n\| = \|f_N+f_n-f_N\| \leqslant \|f_N\| + \|f_n-f_N\| \leqslant \|f_N\| + 1 = C \end{split}$$

$$\forall x \in X \quad \|f(x)\| \leqslant C$$
 при $n \to \infty$

 $\|f(x)\|\leqslant C,$ переходим к супремуму по x и получаем $\|f\|\leqslant C$

2.
$$||f_n - f|| \to 0$$
 $b \to \infty$?

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \geqslant N \quad \|f_n - f)m\| \leqslant \varepsilon \implies \forall x \in X \quad |f_n(x) - f_m(x)|$$

$$\implies \forall x \in X \quad |f_n(x) - f(x)| \leqslant \varepsilon \iff ||f_n - f|| \leqslant \varepsilon$$

$$\implies \|f_n - f\| \to 0$$
 при $n \to \infty$

Если X – компакт, то $C(K) \leq \ell_{\infty}(K)$

Замечание. "Обычная" норма на C(K) это норма из $\ell_{\infty}(K)$

$$||f||_{C(K)} = \max_{x \in K} |f(x)|$$

Теорема 21. Критерий Коши-Больцано равномерной сходимости в себе для функциональных последовательностей.

$$\exists \{f_n\}_{n=1}^{\infty} : X \to \mathbb{C}(\mathbb{R})$$

Последовательность $\{f\}$ является равномерно сходящейся на $X \iff$ она равномерно сходится в себе, т.е.

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m \geqslant N \forall x \in X |f_n(x) - f_m(x)| < \varepsilon (\leqslant \varepsilon)$$

Пример.
$$X = \mathbb{R}$$
 $f_n = x + \frac{1}{n}$ $f(x) = x$ $f_n \Rightarrow f$, но $f_n(x)$ и $f(x) \notin \ell_\infty(\mathbb{R})$

Доказательство.

$$\Longrightarrow$$
 Если $f_n \rightrightarrows f$ на X , то для $\forall \varepsilon > 0 \exists N: \forall n \geqslant N \quad \|f_n - f\| < \frac{\varepsilon}{2}$ $\forall m \geqslant N \quad \|f_n - f_m\| \leqslant \|f_n - f\| + \|f_m - f\| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$

$$f(x)$$
 – поточечный предел для $\{f_n\}$

$$m->\infty$$
в условии теоремы $\implies \forall n\geqslant N \quad \forall x\in X \quad |f_n(x)-f(x)|<\varepsilon \implies f_n\rightrightarrows f$ на X

Определение 20. $\supset \{f_n\}: X \to \mathbb{R}(\mathbb{C})$ X – любое множество

Говорят, что $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на X, если последовательность частичных сумм равномерно сходится на X

Теорема 22 (Критерий Коши-Больцано равномерной сходимости для рядов.). $\supset f_n: X \to \mathbb{R}(\mathbb{C})$

Ряд $\sum\limits_{n=1}^{\infty}f_n(x)$ равномерно сходится на X

$$\iff \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \geqslant N \quad \forall p \in \mathbb{Z}_+ \quad \left(\sum_{k=n}^{n+p} f_k(x)\right) < \varepsilon$$

$$\iff \forall \varepsilon > 0 \exists N : \forall n \geqslant N \quad \forall p \in \mathbb{Z}_+ \quad \| \sum_{k=n}^{n+p} f_k \| < \varepsilon$$

Теорема 23 (Необходимое условие равномерной сходимости ряда). Если $\sum\limits_{n=1}^{\infty}f_n(x)$ равномерно сходится на X, то $f_n(x)\rightrightarrows 0$ на X

Пример (необходимое условие не является достаточным). $f_n(x) = \frac{1}{n}$. $f_n(x) \Rightarrow 0$ на \mathbb{R} , но $\sum f_n$ – расходится всюду

Замечание ("Популярный" алгоритм исследования функциональных рядов на равномерную сход Найти поточечный предел f(x) (Если нет поточечной сходимости хотя бы в одной точке, то нет и равномерной на X)

2. Выяснить $||f_n(x) - f(x)||_{\ell_{\infty}(X)} \to 0$?

Пример.
$$f_n(x) = x^n - x^{n+1}$$
 на $X = [0, 1]$

1.
$$\lim_{n \to \infty} f_n(x) = 0 = f(x)$$

2.
$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \max_{x \in [0,1]} f_n(x)$$

$$f_n(0) = f_n(1) = 0$$

$$f'_n(x) = nx^{n-1} - (n+1)x^n = 0$$

$$x \in (0,1) \implies x = \frac{n}{n+1}$$

$$||f_n - f|| = \max_{[0,1]} f_n = f_n\left(\frac{n}{n+1}\right) = \frac{n^n}{(n+1)^n} \left(1 - \frac{n}{n+1}\right) = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \cdot \frac{1}{n+1} \to 0$$

Т.о.
$$f_n \rightrightarrows 0$$
 на $[0,1]$

Пример. $f_n(x) = x^n$

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \forall x \in (-1,1) \left(\forall x \in \mathbb{C} : |X| < 1 \right)$$

 $f\not\rightrightarrows 0$ на $(-1,1)\implies$ нет равномерной схоимости ряда

Утверждение 10. \Box $E\subseteq X$ X – метрическое пространство

 $\sqsupset \{f_n\}_{n=1}^\infty \subseteq C(\operatorname{Cl} E)$, тогда $\{f_n\}$ равномерно сходится на $E \iff$ она равномерно сходится на замыкании.

Доказательство.

← Очевидно

 $\Longrightarrow \{f_n\}$ равномерно сходится на $E \iff \{f_n\}$ равномерно сходится в себе на $E \iff \forall \varepsilon > 0 \quad \exists N \in \mathbb{N}: \quad \forall n,m \geqslant N \quad \|f_n - f_m\|_{\ell_\infty(E)} \leqslant \varepsilon$

$$\iff \sup_{x \in E} |f_n - f_m| \leqslant \varepsilon$$

$$\iff \sup_{x \in \operatorname{Cl} E} |f_n(x) - f_m(x)| \leqslant \varepsilon$$

$$\iff \|f_n - f_m\|_{\ell_\infty(\operatorname{Cl} E)}$$

 $\iff \{f_n\}$ равномерно сходится в себе на Cl $E \iff f_n$ равномерно сходится на ClE

Теорема 24 (Признак Вейерштрасса равномерной сходимости ряда). $\exists \forall n \quad f_n(x): X \to \mathbb{R}(\mathbb{C}) \quad a_n \in \mathbb{R}$

$$\forall n \quad \forall x \in X \quad |f_n(x)| \leqslant a_n$$

и $\sum\limits_{n=1}^{\infty}a_n$ сходится. Тогда $\sum\limits_{n=1}^{\infty}f_n(x)$ сходится равномерно на X и абсолютно.

Эквивалентная формулировка: Если $\sum\limits_{n=1}^\infty \|f_n\|_{\ell_\infty(X)}$ сходится, то $\sum\limits_{n=1}^\infty f_n(x)$ сходится равномерно и абсолютно на X

Доказательство первой формулировки на основе критерия Коши. $\forall \varepsilon > 0 \quad \exists N: \forall n \geqslant N \quad \forall p \in \mathbb{Z}_+$

$$\sum_{k=n}^{n+p} a_k < \varepsilon$$

 $\geqslant \left|\sum_{k=n}^{n+p} f_k(x)\right| \implies$ ряд $\sum f_n(x)$ равномерно сходится в себе $\implies \sum f_n(x)$ сходится равномерно

Пример. $f_n(x) = \frac{(-1)^n}{n}$ – равномерно сходится на \mathbb{R} , но не абсолютно $f(x) = x^n$ – ряд сходится абсолютно (при $x \in [0,1)$), но не равномерно

Пример. $\sum\limits_{k=1}^{\infty} \frac{\sin kx}{k^p} \quad p>1 \quad \sum\limits_{k=1}^{\infty} \frac{\cos kx}{k^p}$ равномерно сходится на $\mathbb R$

$$\left| \frac{\sin kx}{k^p} \right| \leqslant \frac{1}{k^p} \quad \sum_{k=1}^{\infty} \frac{1}{k^p}$$
 сходится

Пример.
$$\sum_{n=1}^{\infty} \frac{nx}{n^5 + x^2}$$

$$n^5 + x^2 \geqslant 2\sqrt{n^5 x^2} = 2n^{\frac{5}{2}}|x|$$

При
$$x \neq 0$$
 $|f_n(x)| \leqslant \frac{1}{2n^{\frac{3}{2}}}$

$$x = 0$$
 $|f_n(0)| = |0| \leqslant \frac{1}{2n^{\frac{3}{2}}}$

$$a_n = \frac{1}{2n^{\frac{3}{2}}}$$

 $\sum a_n$ сходится, а значит по признаку Вейерштрасса исходный ряд сходится равномерно

1.30 Преобразование Абеля

$$A_0 \in \mathbb{R}$$
 $A_k = \sum_{j=1}^k a_j + A_0$ $a_k = A_k - A_{k-1}$

$$\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m} (A_k - A_{k-1}) b_k = \sum_{k=n}^{m} A_k b_k - \sum_{k=n}^{m} A_{k-1} b_k = \sum_{k=n}^{m-1} A_k (b_k - b_{k+1}) + A_m b_m - A_{n-1} b_n$$

Лемма 4. Если b_k монотонно зависит от k при любом x, то:

$$\left| \sum_{k=n}^{m} a_k(x) b_k(x) \right| \leqslant 4 \cdot \max_{k=n:m} \left| A_k(x) \right| \cdot \max \left\{ \left| b_n(x) \right|, \left| b_m(x) \right| \right\}$$

Доказательство. х фиксировано

$$\left| \sum_{k=n}^{m} a_k b_k \right| \leq \underbrace{\left| \sum_{k=n}^{m-1} A_k (b_k - b_{k+1}) \right|}_{\sum} + |A_m| |b_m| + |A_{n-1}| |b_n| \leq \sum + A_* b_* + A_* b_*$$

$$\sum_{k=n}^{\infty} \left| A_k ||b_k - b_{k+1}| \leqslant A_* \sum_{k=n}^{m-1} |b_k - b_{k+1}| = A_* \left| \sum_{k=n}^{m-1} (b_k - b_{k+1}) = A^* |b_n - b_m| \right| \leqslant 2A_* * b_k$$

Теорема 25 (Признак Дирихле равномерной сходимости функционального ряда). $\Box a_n: X \to \mathbb{C} \quad b_n: X \to \mathbb{R}$

Еспи.

- 1. Последовательность частичных сумм ряда $\sum\limits_{k=1}^{\infty}a_k(x)$ равномерно ограничена на X
- 2. $\{b_k(x)\}$ монотонна по k для каждого $x \in X$
- $3. b_k \rightrightarrows 0$ на X

, то $\sum\limits_{k=1}^{\infty}a_k(x)b_k(x)$ сходится равномерно на x

Замечание (Пояснение). 1.
$$\Longrightarrow \exists C \neq C(x,N) : \forall x \in X \quad \forall N \in \mathbb{N} \quad \left| \sum_{k=1}^N a_k(x) \leqslant C \right|$$

Доказательство. $A_0(x) = 0 \quad 0 < A_{**} = C$ из пояснения

Т.к.
$$b_n(x) \rightrightarrows 0$$
 на X , то $\forall \varepsilon > 0$ $\exists N : \forall n \geqslant N \ \forall x \in E \ |b_n(x)| \leqslant \frac{\varepsilon}{A_{\pi^*}}$

$$\implies b_* \leqslant \frac{\varepsilon}{A_{**}}$$

По лемме $\left|\sum_{k=n}^m a_k(x)b_k(x)\right| \leqslant 4\cdot A_{**}\cdot \frac{\varepsilon}{A_{**}} = 4\varepsilon \implies \sum a_k(x)b_k(x)$ сходятся в себе

Теорема 26 (Признак Абеля равномерной сходимости функционального ряда). $\Box a_n: X \to \mathbb{C}$ $b_n: X \to \mathbb{R}$

Если

- 1. $\sum_{k=1}^{\infty} a_k(x)$ сходится равномерно на X
- 2. $\{b_k(x)\}$ монотонна по k для каждого $x \in X$
- 3. b_k равномерно ограничена на X

, то $\sum\limits_{k=1}^{\infty}a_k(x)b_k(x)$ сходится равномерно на x

Замечание. 3. $\Longrightarrow \exists b_{**}: \forall x \in X \ \forall k \in \mathbb{N} \ |b_k(x)| \leqslant b_{**}$

Доказательство. $A_0(x) = -\sum_{k=1}^{\infty} a_k(x)$

 $A_j(x)=\sum\limits_{k=1}^j a_k\left(x
ight)+A_0(x)=-\sum\limits_{k=j+1}^\infty a_k(x)\rightrightarrows 0$, т.к. $\sum a_k(x)$ сходится равномерно $\implies orall arepsilon >0 \exists N: orall j\geqslant N \quad orall x\in X$

$$|A_j(x)| \leqslant \frac{\varepsilon}{4 \cdot h}$$

Тогда для $m\geqslant n>N$ $\left|\sum\limits_{k=n}^m a_k(x)b_k(x)\right|\leqslant 4\cdot\frac{\varepsilon}{4b_{**}}\cdot b_{**}=\varepsilon,$ значит ряд сходится в себе равномерно \Longrightarrow сходится равномерно

Пример. $x \in \mathbb{R}$

$$\sum_{k=1}^{N} e^{ikx} = \sum_{k=1}^{N} q^k = q \frac{1-q^N}{1-q}$$

 $\sqsupset q = e^{ix} \neq 1$

$$\left|\sum_{k=1}^N e^{ikx}\right| = \left|e^{ix} \cdot \frac{e^{iNx}-1}{e^{ix}-1}\right| = \left|\frac{e^{\frac{iNx}{2}}}{e^{\frac{ix}{2}}}\right| \cdot \left|\frac{e^{\frac{iNx}{2}-e^{\frac{-iNx}{2}}}}{e^{\frac{ix}{2}}-e^{-\frac{ix}{2}}}\right| = \left|\frac{\sin\frac{Nx}{2}}{\sin\frac{x}{2}}\right| \leqslant \frac{1}{\left|\sin\frac{x}{2}\right|}$$

$$\left|\sum_{k=1}^{N}\cos kx\right| = \left|\sum_{k=1}^{N} \Re r^{ikx}\right| \leqslant \frac{1}{\left|\sin\frac{x}{2}\right|}$$

$$\left| \sum_{k=1}^{N} \sin kx \right| = \left| \Im e^{ikx} \right| \leqslant \frac{1}{\left| \sin \frac{x}{2} \right|}$$

$$x \in [\delta, 2\pi - \delta] = E_{\delta} \quad \delta > 0$$

$$\frac{x}{2} \in \left[\frac{\delta}{2}, \pi - \frac{\delta}{2}\right] \implies \sin\frac{x}{2} \geqslant \sin\frac{\delta}{2}$$

$$A_{**} = \frac{1}{\sin \frac{\delta}{2}} \implies \forall x \in E_{\delta} \quad \forall N \in \mathbb{N} \quad \left| \sum_{k=1}^{N} \sin kx \right| \leqslant A_{**}$$

Пример. $\sum\limits_{k=1}^{\infty}\frac{\sin kx}{k^{p}}$ сходится на E_{δ} равномерно по признаку Дирихле при $0< p\leqslant 1$

$$a_k(x) = \sin kx$$
 $b_k = \frac{1}{k^p}$

Аналогично для $\sum\limits_{k=1}^{\infty} rac{\cos kx}{k^p}$

Задача 8. Исследовать на равномерную сходимость $\sum\limits_{k=1}^{\infty}\frac{\cos kx}{k}$ и $\sum\limits_{k=1}^{\infty}\frac{\sin kx}{k}$ на $[0,\delta]$

1.31 Равномерная сходимость и действия, связанные с предельным переходом

Теорема 27 (Теорема о повторном пределе для функциональных последовательностей). $\square D \subseteq X - X$ – метрическое пространство, $f, \{f_n\}: D \to \mathbb{C}$

 $x_0 \in D'$ – предельная точка. Пусть:

1.
$$\forall n \in \mathbb{N} \quad \exists \lim_{x \to x_0} f_n(x) = A_n \in \mathbb{C}$$

2.
$$f_n \rightrightarrows f$$
 на D

Тогда
$$\lim_{n\to\infty} \underbrace{\lim_{x\to x_0} f_n(x)}_{A} = \lim_{x\to x_0} \underbrace{\lim_{x\to x_0} f_n(x)}_{f(x)}$$

Оба конечны и равны между собой.

Теорема 28 (о повторном прелеле для функциональных рядов). $D\subseteq X, X$ — Метрическое пространство

$$\{f_n\}: D \to \mathbb{C} \sqsupset x_0 \in D'$$
 Пусть:

1.
$$\forall n \in \mathbb{N} \quad \lim_{x \to x_0} f(x) = A_n$$

2.
$$\sum_{n=1}^{\infty} f_n(x)$$
 равномерно сходится на D

Тогда
$$\sum_{n=1}^{\infty} \underbrace{\lim_{x \to x_0} f_n(x)}_{A_n} = \lim_{x \to x_0} \underbrace{\sum_{n=1}^{\infty} f_n(x)}_{S(x)}$$

Обе части конечны и равны между собой

Замечание. $S_n(x) = \sum_{k=1}^n f_k(x)$, теорема для рядов вытекает из теоремы для последовательностей.

Теоремы для последовательностей. 1. $\exists \lim_{n \to \infty} A_n \in \mathbb{C}$?

2. Итоговое равенство

Т.к. $f_n \rightrightarrows f$ на D, то $\{f_n\}$ равномерно сходится в себе на D ($\forall \varepsilon>0 \exists N=N(\varepsilon): \forall n,m\geqslant N \quad \forall x\in D \quad |f_n(x)-f_m(x)|)$

 $x \to x_0$, перейдём к пределу в этом неравенстве. $|A_n - A_m| \leqslant \varepsilon \forall n, m \geqslant N$

Значит последовательность чисел $\{A_n\}_{n=1}^\infty$ сходится в себе, $\mathbb C$ – полно

$$\exists A = \lim_{n \to \infty} A_n$$

$$A_n = \lim_{x \to c_0} f(x)?$$

$$|A - f(x)| = |A - A_n + A_n - f_n(x) + f_n(x) - f(x)| \le \le |A_n - A| + |f_n(x) - A_n| + |f_n(x) - f(x)| \le \varepsilon$$
?

T.K. $A_n \to A, n \to \infty$ $\exists N_1 : \forall n \geqslant N |A_n - A| < \frac{\varepsilon}{3}$

Т.к.
$$f_n \Rightarrow f \quad \exists N_2 : \forall n \geqslant N_2 \forall x \in D \quad |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{3}$$

$$N = \max N_1, N_2 \quad n = N$$

T.K.
$$\lim_{x \to x_0} f_n(x) = A_n$$
, to $\exists \delta > 0$: $\forall x \in D$: $0 < \rho(x, x_0) < \delta \quad |f_n(x) - A_n|$

$$\implies \forall x \in D: \quad 0 < \rho(x, x_0) < \delta \implies |f(x) - A| \leqslant \frac{\varepsilon}{3} \cdot 3 = \varepsilon$$

Следствие 6 (Для последовательностей). $\sqsupset D\subseteq X$ – м.п., $\left\{ f_{n}\right\} ,f:D\rightarrow\mathbb{C}$

 $f_n \rightrightarrows f$ на D.

Если $\{f_n\}$ непрерывны в точке x_0 , то и f непрерывна в x_0

Следствие 7 (Для рядов). $\Box D \subseteq X$ – м.п., $x_0 \in D', \{f_n\}_{n=1}^{\infty}, f: D \to \mathbb{C}$ и $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на D.

Если $\forall n \quad f_n(x)$ непрерывна в точке $x_0,$ то и $\sum\limits_{n=1}^{\infty} f_n(x)$ непрерывно в x_0

Для последовательностей. $x_0 \in D \implies \begin{cases} x_0 \in D' \implies \lim_{n \to \infty} \overline{\lim_{x \to x_0} f_n(x)} = \lim_{x \to x_0} \overline{\lim_{n \to \infty} f_n(x)} \\ x_0 - \text{изолированная} \end{cases}$

но если она изолирована, то в ней все функции непрерывны.

$$f(x_0) = \lim_{x \to x_0} f(x) \implies f$$
 – непрерывна

Следствие 8 (теорема Стокса-Зейделя). $D\subseteq X,\quad f_n,f:D\to\mathbb{C}\quad f_n\rightrightarrows f$ на D при $n\to\infty$ и $f_n\in C(D)\Longrightarrow f\in C(D)$

равномерный предел последовательности непрерывных функций непрерывных

Следствие 9. Сумма равномерно сходящегося ряда из непрерывных функций непрерывна

Теорема 29 (Дини). $\sqsupset K$ – компакт. $\{f(x)\}$ поточечно сходится к f(x) на K

 f_n, f – непрерывны $\in C(K)$

Если $\forall x \in K$ числовая последовательность $\{f_n(x)\}$ возрастает (по n).

Тогда $f_n \rightrightarrows f$ равномерно на K

Замечание. Теорема верна для случая убывания $\{f_n(x)\}$ по n

Теорема 30 (Дани для рядов). $\Box f_n, S \in C(K)$ $S(x) = \sum\limits_{n=1}^\infty f_n(x)$ — ряд сходится на K и $\forall n \in \mathbb{N} \forall x \in X$ $f_n(x) \geqslant 0$ \Longrightarrow ряд сходится равномерно

Доказательство. НУО $\{f_n\}$ убывающая, f(x) = 0 (иначе рассмотреть $f_n(x) - f(x)$)

$$\forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \ \forall x \in K \quad |f_n(x) - f(x)| \leqslant \varepsilon?$$

По условию $f_n(x) \to f(x)$ поточечно. Фиксируем $\varepsilon>0 \quad \exists N(x)=N\left(\varepsilon,x\right): |f_n(x)-f(x)|<\varepsilon \quad \forall n\geqslant N$

$$U_x = \{\widetilde{x} \in K : |f_n(\widetilde{x}) - f(\widetilde{x})| < \varepsilon\}$$
 – открытая окрестность точки x

 $\{U_x\}_{x\in K}$ – открытое покрытие компакта K – \exists конечное подпокрытие $\{U_{x_1},\dots,U_{x_m}\}$ – $N=\max{\{N(x_1),\dots,N(x_m)\}}$

 $\forall x \in X \exists \text{ Homep } i : x \in U_i$

$$n \geqslant N$$
 $x \in K$ $f_n(x) \leqslant f_N(x) \leqslant f_{N(x_i)}(x) < \varepsilon$

Пример. $f_n(x) = nx \left(q - x^2 \right)^n \to 0$ поточечно на [0, 1]

$$\int_0^1 f(x) = \int_0^1 nx \left(1 - x^2\right)^n dx = \begin{vmatrix} y = 1 - x^2 \\ dy = -2x dx \end{vmatrix} = \frac{-n}{2} \int_1^0 y^n dy = \frac{n}{2} \frac{y^{n+1}}{n+1} \Big|_0^1 = \frac{n}{2(n+1)} \to \frac{1}{2}$$

$$0 = \int_0^1 \lim_{n \to \infty} f_n(x) \neq \lim_{n \to \infty} \int_0^1 f_n(x) dx = \frac{1}{2}$$

Теорема 31 (Об интегрировании предела функциональной последовательности). $\Box f_n \in C([a,b]) \quad f_n \rightrightarrows f$ на [a,b]. Тогда

$$\lim_{n \to \infty} \in_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$$

Теорема 32 (Об интегрировании функционального ряда). $\supset f_n \in C([a,b])$ и $\sum\limits_{n=1}^{\infty} f_n$ сходится равномерно на [a,b]. Тогда ряд допускает почленное интегрирование:

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx$$

Доказательство.
$$S(x) = \sum_{n=1}^{\infty} f_n(x) \in C([a,b])$$
 $S_n(x) = \sum_{k=1}^{n} f_k(x)$

$$\forall \varepsilon > 0 \quad \int_a^b S(x) dx = \lim_{n \to \infty} \int_a^b S_n(x) dx$$

Т.к.
$$S_n \rightrightarrows S(x)$$
, то для $\frac{\varepsilon}{b-a} \exists N : |S(x) - S_n(x)| \leqslant \frac{\varepsilon}{b-a} \forall n \geqslant N$

$$\left| \int_a^b S(x) dx - \int_a^b S_n(x) dx \right| = \left| \int_a^b \left(S(x) - S_n(x) \right) dx \right| \leqslant \int_a^b \left| S(x) - S_n(x) \right| dx \leqslant \varepsilon$$

Теорема 33. $\supset \langle a, b \rangle \subseteq \mathbb{R}$ – промежуток

 $\Box f_n: \langle a, b \rangle \to \mathbb{R}, \Pi$ усть:

- 1. $\exists x^0 \in \langle a, b \rangle$: $\{f_n(x^0)\}$ сходится
- 2. $\{f_n'(x)\}$ сходится равномерно на $\langle a,b\rangle$ к g(x)

Тога $\{f_n(x)\}$ сходится равномерно на $\langle a,b\rangle$,

Если $f(x) = \lim_{n \to \infty} f_n(x)$, то f(x) дифференцируема на $\langle a,b \rangle$ и f'(x) =

$$\lim_{n \to \infty} f'_n(x) \quad \left(\left(\lim_{n \to \infty} f_n(x) \right)' = \lim_{n \to \infty} f'_n(x) \right)$$

Теорема 34 (Для рядов). $\Box f_n$ дифференцируема на $\langle a,b\rangle$ $f_n:\langle a,b\rangle\to\mathbb{R}$. Пусть:

- 1. $\exists x_0 \in \langle a, b \rangle$ $\sum_{n=1}^{\infty} f_n(x^0)$ сходится
- 2. $\sum\limits_{n=1}^{\infty}f_n'(x)$ сходится равномерно на $\langle a,b\rangle$

Тогда $\sum_{n=1}^{\infty}f_{n}\left(x\right)$ сходится равномерно на $\langle a,b\rangle$, его сумма дифферецнируема на $\langle a,b\rangle$ и

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x) \quad \forall x \in \langle a, b \rangle$$

Доказательство. Для случая функций класса C^1

$$\forall n \in \mathbb{N} \quad f_n = \int_{x_0}^x f_n'(t)dt + f_n(x_0)$$

$$f(x) = \int_{x_0}^{x} g(t)dt + \lim_{n \to \infty} f_n(x_0)$$

При фиксированном x по предыдущей теореме $\int_{x_0}^x f'(t)dt \to \int_{x_0}^x g(t)dt$

$$|f_n(x) - f(x)| \le \int_{x_0}^x |f'_n(t) - g(t)| dt + \left| f_n(x_0) - \lim_{n \to \infty} f_n(x_0) \right|$$

По теореме Барроу f(x) дифференцируема на $\langle a,b\rangle$ и $\lim_{n\to\infty} f_n(x)=f'(x)=g(x)=\lim_{n\to\infty} f'_n(x)$

1.32 Степенные ряды

$$\sum\limits_{n=0}^{\infty}C_{n}\left(x-a\right) ^{n}$$
 – вещественый степенной ряд

$$\{C_n\} \subseteq \mathbb{R} \quad a \in \mathbb{R}$$

 $\sum\limits_{n=0}^{\infty}C_{n}\left(z-a\right) ^{n}$ – комплексный степенной ряд

Лемма 5. $\exists \{x_n\}, \{y_n\}$ – вещественный неотрицательные

Если
$$\exists \lim_{n \to \infty} x_n$$
, то $\overline{\lim_{n \to \infty}} (x_n, y_n) = \lim_{n \to \infty} x_n \cdot \overline{\lim_{n \to \infty}} y_n$

Доказательство. 1. Если $x_n \to 0 \implies x_n y_n$ – б.м. $\implies \overline{\lim_{n \to \infty} x_n y_n} = 0 = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n$

2.
$$x_n \equiv x(const)$$
 $y = \overline{\lim_{n \to \infty}} y_n = \lim_{k \to \infty} y_{n_k}$

$$x \cdot \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} x y_{n_k}$$

$$x \cdot y \leqslant \overline{\lim xy}$$

С другой стороны Если xy_{n_k} – \forall подпоследовательность $xy_n...$

 $\pi = 3 \rightarrow \pi$

1.33 Здесь должна была быть лекция

1.34 ...

$$S(z) = \sum_{k=0}^{\infty} C_k (z - a)^k$$

 $a\in\mathbb{C}, C_k\in\mathbb{C}\quad \forall z\in B_R(a)\implies C_k=rac{S^{(k)}(a)}{k!}$ однозначно задаются коэффициенты

Пример.
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0 \\ 0 \end{cases}$$
 $f \in C(\mathbb{R})$

$$\triangleleft f'(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = \lim_{y \to \infty} \frac{y}{e^{y^2}} = 0$$

$$f'_{x\neq 0}(x) = f(x) \cdot \left(\frac{2}{x^3}\right) = 2\frac{e^{-\frac{1}{x^2}}}{x^3} \to 0, x \to 0$$

$$f''(x) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{2e^{-\frac{1}{2^2}}}{x^3 x} = \lim_{y \to +\infty} \frac{2y^4}{e^{y^2}} = 0, \dots$$

$$C_k = \frac{f^{(k)}(0)}{k!} = \frac{0}{k!} = 0$$

Ряд Тейлора $\equiv 0$ $\qquad f\left(z\right)=S(z)$ лишь при x=0

Пример.
$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k \quad |z| < 1$$

$$\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k} \qquad |-x^2| < 1 \quad |x| < 1$$

Определение 21. $Hol(O)=\{f:O\to\mathbb{C}, \forall z\in O\ \exists f'(z_0)\},\ \text{т.е.}\ f-\mathbb{C}$ -дифференцируема, O-открытое в \mathbb{C}

Теорема 35. Если $f \in Hol\left(B_R(a)\right), a \in \mathbb{C}, R \in (0, +\infty] \implies \exists$ единственный набор $\{C_k\}_{k=0}^{\infty} \subseteq \mathbb{C}$:

$$\forall z \in B_R(a) \quad f(z) = \sum_{k=0}^{\infty} C_k (z-a)^k$$

$1.35 \quad \exp, \cos, \sin, \cosh, \sinh$

Определение 22.
$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!} = (*)$$

$$\forall x \in \mathbb{R} \quad e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$R = \lim_{n \to \infty} \frac{|C_n|}{|C_{n+1}|} = \lim_{n \to \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \lim_{n \to \infty} n + 1 = +\infty$$

(*) сходится на C

$$\left(\sum_{k=0}^{\infty}\frac{z^k}{k!}\right)=\sum_{k=1}^{\infty}\frac{\left(z^k\right)'}{k!}=\sum_{k=1}^{\infty}\frac{z^{k-1}}{(k-1)!}=\sum_{j=0}^{\infty}\frac{z^j}{j!}\implies e^z\in Hol(\mathbb{C})$$

Определение 23.
$$\cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

$$\sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

Оба ряда сходятся $\forall z \in \mathbb{C}$

$$e^{iz} = \sum_{k=0}^{\infty} \frac{(iz)^k}{k!}$$

$$= \sum_{j=0}^{\infty} \frac{(iz)^{2j}}{(2j)!} + \sum_{j=0}^{\infty} \frac{(iz)^{2j+1}}{(2j+1)!}$$

$$= \cos z + i \sin z$$

.

$$\begin{split} e^{iz} &= \cos z + i \sin z \\ e^{-iz} &= \cos z - i \sin z \\ \cos z &= \frac{e^{iz} + e^{-iz}}{2} \\ \sin z &= \frac{e^{iz} - e^{-iz}}{2i} \operatorname{ch} z \\ &= \frac{e^z + e^{-z}}{2} \\ \sin z &= \frac{e^z - e^{-z}}{2} \\ \cos z &= \operatorname{ch}(iz) \\ \sin z &= \frac{sh(iz)}{i} \\ \operatorname{ch} z &= \cos(\frac{t}{i}) = \cos(iz) \\ \operatorname{sh} z &= i \sin\left(\frac{z}{i}\right). \end{split}$$

Теорема 36 (единственности для \mathbb{C} -дифференцируемых функций). \Box $f,g\in Hol(O)$ \Box $E\subseteq O\subseteq C: E'\cap O\neq\emptyset$ O – область (закнутое связное)

Если
$$f|_E = g|_E \implies f \equiv g$$
 (в O)

$$\forall x_1, x_2 \in \mathbb{R} \quad e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2}.$$

Если фиксировать $x_1 \in \mathbb{R}$ $f(z) = e^{x_1 + z} = g(z) = e^{x_1} e^z$

Всё это сохраняется на $\mathbb C$

По аналогичным причинам все формулы для арифметических действий и тригонометрических функций сохраняются

$$\sin\left(\alpha+\beta\right)$$

$$\sin\alpha+\sin\beta$$

$$\cos z\equiv\sin\left(\frac{\pi}{2}-z\right)$$

$$\sin z\equiv\cos\left(\frac{\pi}{2}-z\right)$$

$$\cos(it)=\mathrm{ch}(-t)=\mathrm{ch}\,t\quad\sin(it)=\frac{\mathrm{sh}(-t)}{i}=i\,\mathrm{sh}\,t$$

$$\sin,\cos\text{ неограниченные функции}$$

$$e^z=\cos(-iz)+i\sin(-iz)$$

$$e^{z+2\pi k\cdot i}=e^z.$$

Пример.
$$\cos z=2$$
 $z=x+iy\iff \begin{cases} \sin x \operatorname{sh} y=0 \\ \cos x \operatorname{ch} y=2 \end{cases} \iff \begin{cases} x=2\pi k, k\in\mathbb{Z} \\ y=\pm \left(\operatorname{ch}_{[0,+\infty)}\right)^{-1}(2) \end{cases}$ e^z не имеет корней на $\mathbb C$

Определение 24.
$$Ln(A)=\{z: e^z=A\}=\{\ln |A|+iArg\ z\}$$

$$\ln z=\ln |z|+i\arg z \quad \arg z\in (-\pi,\pi]$$

Замечание. Все корни косинуса и синуса лежат на вещественной прямой $(1+z)^p=e^{p\ln(1+z)}\in Gol\left(B_1(0)\right)$

 $z = x \in (-1,1) \quad (1+z)^p$ совпадает с прежним определением.

Равенство выше продолжает степенную функцию с (-1,1) в $B_1(0)$

$$\sum_{k=0}^{\infty} \binom{p}{k} z^k = (1+z)^p \quad \forall z: |z| < 1 \quad \binom{n}{k} = \begin{cases} 1, k=0 \\ \frac{p(p-1)\dots(p-k+1)}{k!}, \in \mathbb{N} \end{cases}$$

$$\left| \frac{\binom{p}{k+1}}{\binom{p}{k}} \right| = \frac{p-k}{k+1} = \frac{|k-p|}{|k+1|} = \frac{k-p}{k+1} < 1 \implies \sum_{k=0}^{\infty} \binom{p}{k}$$
— сходиться по признаку Лейбница.

$$\binom{\frac{1}{2}}{k} = \frac{(-1)^k (2k-1)!!}{2^k k!}$$

 $e^z = A \quad A$

$$\begin{split} &\sqrt{1+x}=1+\sum_{k=1}^{\infty}\frac{(2k-3)!!}{(2k)!!}x^k\\ &\binom{-\frac{1}{2}}{k}=(-1)^k\frac{(2k-1)!!}{(2k)!!}\\ &\frac{1}{\sqrt{1+x}}=1+\sum_{k=1}^n(-1)^k\frac{(2k-1)!!}{(2k)!!}x^k\\ &(\operatorname{arctg} x)'=\frac{1}{1+x^2}\quad x\in\mathbb{R}\\ &\frac{1}{1+x^2}=\frac{1}{1-(-x^2)}=\sum_{k=0}^{\infty}(-1)^kx^{2k}\\ &\operatorname{arctg} x=\int_0^x\operatorname{arctg} x'(t)dt=\int_0^x\sum_{k=0}^{\infty}(-1)^lt^{2k}dt=\sum_{k=0}^{\infty}(-1)^k\int_0^xt^{2x}dt=\sum_{k=0}^{\infty}(-1)^k\frac{x^{2k+1}}{2k+1}\\ &\forall x\in[-1,1]\quad \operatorname{arctg} x=\sum_{k=0}^{\infty}(-1)^k\frac{x^{2k+1}}{2k+1}=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\dots\\ &\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots\right)\\ &\operatorname{arcsin}'x=\frac{1}{\sqrt{1-x^2}}\operatorname{npm}|x|<1\\ &\frac{1}{\sqrt{1-x^2}}=1+\sum_{k=1}^{\infty}(-1)^k\frac{(2k-1)!!}{(2k)!!}(-x^2)^k=\sum_{k=1}^{\infty}\frac{(2k-1)!!}{(2k)!!}x^{2k}\\ &\operatorname{arcsin} x=\sum_{k=0}^{\infty}\frac{(2k+1)!!}{(2k)!!}\frac{x^{2k+1}}{(2k+1)^2}=x+\frac{x^3}{6}+\frac{3}{40}x^5+\dots \end{split}$$

1.36 Вещественная аналитичность

 $O \subseteq \mathbb{R}$ O – область

 $f:O\to\mathbb{R}$ f называется (вещественно) аналитичной, если $\forall a\in O\ \exists B_R(a)\quad (R>0)\ \exists \, (C_k)_{k=0}^\infty\subseteq\mathbb{R}: \forall x\in B_R(a)$

$$f(x) = \sum_{k=0}^{\infty} C_k (x - a)^k$$

Определение 25 (Комплексная аналитичность). $O\subseteq \mathbb{C}$ O – открытое, $f:O\to \mathbb{C}$

$$f$$
 — \mathbb{C} -аналитична \iff $\exists a\in O\ \exists B_R(a),\ R>0\ \exists (C_{k=0}^\infty): \forall z\in B_R(a)$ $f(z)=\sum\limits_{k=0}^\infty C_k(t-a)^k$

Замечание. Если $\left\{f^{(k)}(x)\right\}_{k=1}^\infty$ равномерно ограничено на $\langle a,b\rangle$, тогда функция $f\in C^\infty\left(\langle a,b\rangle\right)$

1.37 Системы множеств

X — множеств. 2^X — $\{A: A\subseteq X\}$. Вместа множества множеств говорят система множеств.

Определение 26. Система множеств – множества некоторых подмножеств множества X

 $\mathfrak{A},\mathfrak{B}\subset 2^X$

Определение 27. $\supset X$ – множество. $\mathfrak{P} \subseteq 2^X$

 $\mathfrak P$ называется полукольцом, если:

- 1. $\emptyset \subseteq \mathfrak{P}$
- $2. A, B \in \mathfrak{P} \implies A \cap B \in \mathfrak{P}$
- 3. $A,B\in\mathfrak{P}\implies \exists C_1,\ldots,C_L\in\mathfrak{P}: \quad A\backslash=\coprod_{l=1}^LC_l$ дизъюнктное объединение

Замечание. Вместо (3) можно требовать

$$3 A, B \in \mathfrak{P}, B \subseteq A \implies \exists$$
 диз. $\{C_1, \ldots, C_L\} : A \setminus B = \coprod_{l=1}^L C_l$

 $A \setminus B = A \setminus (A \cap B)$, последнее принадлежит \mathfrak{P} по 2

Пример. 1. 2^X

- 2. $\{\emptyset\}$
- 3. $\mathfrak{P}_{1\pi} = \{[a,b) : a,b \in \mathbb{R}, a \leqslant b\}$ одномерные ячейки
- 4. $\mathfrak{P}_{1\pi} = \{\langle a, b \rangle : a, b \in \mathbb{R}, a \leqslant b\}$ промежутков

Утверждение 11 (О произведение полуколец). $\Box X, Y$ – множества. $\mathfrak{P}_X, \mathfrak{P}_Y$ – полукольца. Тогда $\mathfrak{P}_X \times \mathfrak{P}_Y = \{A \times B : A \in \mathfrak{P}_X, B \in \mathfrak{P}_Y\}$ – полукольцо на $X \times Y$

Доказательство. 1. верно. $\emptyset \times \emptyset$

2.
$$\Box A \times B, C \times D \in \mathfrak{P}_X \times \mathfrak{P}_Y \implies (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

3.
$$\exists A \times B \supseteq C \times D \implies C \subseteq A, B \subseteq D$$

$$A \setminus C = \prod D_i \quad C \setminus D = \prod E_i$$

$$D_0 = C, E_0 = D \implies A = \coprod_{i=0}^I D_i, D = \coprod_{j=0}^J E_j$$

$$A \times B = (\coprod D_i) \times (\coprod E_j) = \coprod (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} \sum_{j=0...I} (D_i \times E_j) = D_0 \times E_0 \coprod_{i=0...I} (D_i \times E_j) = D_0 \times E_0 \times E_0 = D_0 \times E_0 = D_$$

Определение 28. $\sqsupset X$ – множество. $\mathfrak{A} \subseteq 2^X$. \mathfrak{A} называется σ –алгеброй, если:

1.
$$a \in \mathfrak{A} \implies A^C \in \mathfrak{A}$$

2. $\{A_i\}$ не более, чем счётный набор элементов $\mathfrak{A} \implies \bigcap_i A_i \in \mathfrak{A}$

Утверждение 12. \square X – .. множество, $\mathfrak{A} \neq \emptyset$ – σ -алгебра $\subseteq 2^X$. Тогда:

- 1. $A, B \in \mathfrak{A} \implies A \setminus B \in \mathfrak{A}$
- 2. $\{A_i\}$ не более, чем счётное. $\{A_i\}\subseteq\mathfrak{A}\implies\bigcup_i A_i\in\mathfrak{A}$
- 3. 21 есть полукольцо

Доказательство. 1. $A \setminus B = A \cap (B^C) \in \mathfrak{A}$

$$2. \ \left(\bigcup_i A_i\right)^{CC} = \left(\bigcap_i A_i^C\right)^C \in \mathfrak{A}$$

3.
$$\mathfrak{A} \neq \emptyset \implies \exists A \in \mathfrak{A} \implies A \setminus A = \emptyset \in \mathfrak{A}$$

 Π ример. $\mathfrak{A} = \left\{ A$ — нбчс или A^C нбчс $\right\}$

Если хотя бы одно A_i нбчс, то их пересечение тоже нбчс

Если все нещётны, значит дополнения к ним нбчс. $\left(\bigcap_i A_i\right)^{CC} = \left(\bigcup_i A_i^C\right)^C$

Задача 9. 1. $\mathfrak{A} = \{B - \text{огр или } B^C - \text{огр }\}, X - \text{метрическое пространство. Является ли это сигма-алгеброй$

Утверждение 13. $\supset X$ – множество $\mathfrak{A} \subseteq 2^X$

Тогда существует наименьшая по включению σ -алгебра, содержащая ${\mathfrak A}$

Доказательство. $\mathfrak{A}_* = \bigcap_{\mathfrak{A}\supseteq \mathfrak{A}_0} \mathfrak{A}$ – пересечение таких σ -алгебра

В пересечние входит $2^X,$ в каждое входит \emptyset

Она наименьшая, потому что наименьшая входит в пересечение

Лемма 6. Пересечение σ -алгебр – σ -алгебра

Определение 29. Если $\mathfrak{A}_0\subseteq 2^X \implies$ наименьшая σ -алгебра, содержащая \mathfrak{A}_0 называется борелевской оболочкой системы \mathfrak{A}_0

Определение 30. $E \in \mathfrak{B}\left(\Omega\right)$

 Ω – стандартная (Евклидова) топология в \mathbb{R}^n

E – борелевское множество.

 F_{σ} - множество – счётное объдинение замкнутых

 G_{δ} -множество – счётное пересечение открытых

Пример.
$$\{(\cdot)\} = \bigcap\limits_{k=1}^{\infty} B_K\left(\cdot\right) \implies$$
 тип G_{δ}

в \mathbb{R} $Q - F_{\sigma}$

 $(F_{\sigma})_{\delta}$ $F_{\sigma\delta\sigma\ldots}$

Теорема 37. $\supset O$ – открытое в \mathbb{R}^n

Тогда $O = \coprod_{j=1}^{\infty} P_j \quad \{P_j\}$ — кубические ячейки со стороной $\frac{1}{2^k}$

Определение 31. $\supset X$ – множество, $\mathfrak{P} \subseteq 2^X, \mathfrak{P}$ – полукольцо

 $\mu:\mathfrak{P}\to [0,+\infty]$ называется объёмом (мерой) на $\mathfrak{P},$ если:

- 1. $\mu(\emptyset) = 0$
- 2. \forall конечного (счётного) дизъюнктного объединения семейства $\{P_j\}\subseteq \mathfrak{P}: P=\prod P_i\in \mathfrak{P}$

$$\mu(P) = \sum_{j} \mu(P_j)$$

конечная аддитивность объема, счётная аддитивность меры

Замечание. Из счётной следует конечная, любая мера является объёмом.

Пример. X – любое множество. $\mathfrak{P}=2^X$

$$\delta_a(A) = \begin{cases} 1, a \in A \\ 0, a \notin A \end{cases}$$

Если μ – мера на полукольце \mathfrak{P} – $\mathfrak{P}\subseteq 2^X$

f(x) – ступенчатая функция, т.е. $\exists \{E_1, \dots, E_N\} \in \mathfrak{P}$:

$$f(x) = \sum_{j=1}^{N} c_j \chi_{E_j} \quad \chi_A(p) = \begin{cases} 1 & , p \in A \\ 0 & , p \notin A \end{cases}$$

$$\int_{X} f d\mu = \sum_{j=1}^{N} c_{j} \int_{X} \chi_{E_{j}} d\mu \quad \int_{X} \chi_{E_{j}} d\mu = \mu \left(E_{j} \right)$$

Пример. $\int_{\mathbb{R}} f(x)d\delta_0 = \int_{\{0\}} f(x)d\mu + \int_{\mathbb{R}\setminus\{0\}} f(x)d\delta_0 = \chi_{\{0\}}\cdot f(0) + 0 = f(0) \cdot \delta_0\left(\{0\}\right) = f\left(0\right)$

Пример. $\mathfrak{P}=2^{\mathbb{N}}\ni A$

$$\mu(A) = \begin{cases} \#(A), \text{если конечно} \\ +\infty \end{cases}$$

Замечание. Условие $\mu(\emptyset)$ вытекает из конечной аддитиности, если $\exists A \in \mathfrak{P}: \quad \mu(A) < +\infty$

$$(\implies \mu(A) = \mu\left(A \coprod \emptyset\right) = \mu(A) + \mu(\emptyset) \implies 0 = \mu(\emptyset))$$

 $\mu(P) \equiv +\infty$ – счётная аддитивность есть, а $\mu(\emptyset) = +\infty$

Теорема 38 (Элементарные свойства объёмов и мер). \sqsupset μ – объём (мера) на полукольце $\mathfrak{P}\subseteq 2^X$

- 1. Если $\{P_j\}\subseteq \mathfrak{P}$ конечный (счётный) набор $P\in \mathfrak{P}$ $\coprod P_j\subseteq P\implies \sum_i \mu(p_j)\leqslant \mu(P)$ усиленная монотонность
- 2. $\{P_i\}\subseteq \mathfrak{P}$ конечный (счётный) набор $P\in \mathfrak{P}$ $P\subseteq \bigcup_j P_j \implies \mu(P)\leqslant \sum_j \mu(P_j)$ конечная (счётная) полуаддитивность
- 68 ГЛАВА 1. АНАЛИЗ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ФУНКЦИОНАЛЬНЫЕ РЯДЫ. ТЕОРИЯ МЕРЫ, КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ.

Утверждение 14. Если $\mathfrak{P} \subseteq 2^X$ – полукольцо, то:

1. $P\in\mathfrak{P}$ $P_1,\ldots,P_N\in\mathfrak{P},$ то $\exists\,\{Q_1,\ldots,Q_L\}$ – диъюнктный набор $\subseteq P$:

$$\P \setminus \left(\bigcup_{n=1}^{N} P_n\right) = \coprod_{l=1}^{L} Q_L$$

2. Если $P_1, \ldots, P_N \in \mathfrak{P}$, то существует Q_{nl}

$$\bigcup_{n=1}^{N} P_{n} = \prod_{n=1}^{N} \prod_{l=1}^{L_{n}} Q_{nl}$$

Точнее диз. $\{Q_{nl}\}_{\substack{n=1...N\\l=1..L_N}}$ и $\forall l=1..L_N\quad Q_{nl}\subseteq P_n$

Доказательство. 1. По индукции по N. Если N=1 утверждение верное по 3-й аксиоме полукольца.

$$N \to N+1$$

$$P\setminus\left(\bigcup_{n=1}^{N+1}P_n\right)=\left(P\setminus\bigcup_{n=1}^N\right)\setminus P_{N+1}=\text{ по индукционному предположению}$$

$$=\left(\coprod_{l=1}^LQ_l\right)\setminus P_{N+1}=$$

$$=\coprod_{l=1}^L\left(Q_l\setminus P_{N+1}\right)=\coprod_{e=1}^L\coprod_{j=1}^{J_l}Q_{ej}$$

2. $\bigcup_{i=1}^{N} P_n = P_1 \vee (P_2 \setminus P_1) \vee (P_3 (p_1 \cup P_2)) \vee \dots \vee (P_N \setminus (P_1 \cup P_2 \cup \dots \cup P_{N-1}))$

Доказательство. 1. $\sum_{n} \mu(P_n) \leqslant \mu(O)$

$$\forall N \quad \sum\limits_{n=1}^{N} \mu(P_n) \leqslant \mu(P)$$
 если $\coprod_{n=1}^{N} P_n \leqslant P$

В силу теоремы о свойствах полукольца $\exists \{Q_1,\ldots,Q_L\}$ – диз, $\subseteq \mathfrak{P} : P \setminus \prod P_n = Q_l$

$$(\coprod P_n) \coprod (\coprod Q_l) = P$$

мера левой части
$$=\sum\limits_{n=1}^{N}\mu(P_n)+\sum\limits_{l=1}^{L}\mu(Q_l)=\mu(P)$$
 2. $\cup P_j=P_1\coprod(P_2\setminus P_1)\coprod\dots$ $\coprod P_i\cap P=P$
$$B_j=(P_j\setminus (P_1\cup\dots\cup P_{j-1}))\cap P=\coprod\widetilde{Q}_{jl}\cap P=\coprod\left(\widetilde{Q}_{jl}\cap P\right)\cap P$$
 $P=\coprod_j\coprod_{l=1}^{L}Q_{jl}$ $\mu(P)=\sum_j\sum_{l=1}^{L}\mu(Q_{jl})\leqslant +\mu(P_J)$

Утверждение 15. $\nu(A \times B) = \nu(A) \cdot \nu(B)$

Теорема 39. Классический объём ν_n есьть мера не \mathcal{P}_n (т.е. ν_n – счётно-аддитивна)

Доказательство. По теореме о свойствах объёмов $\coprod_{k=1}^{\infty} P_k \subseteq P \implies \sum_{k=1}^{\infty} \nu(P_k) \leqslant \nu(P)$

Если $P, P_k \in \mathcal{P}$ и $P = \coprod_{k=1}^{\infty} P_k \implies \mu_n(P) = \sum_{k=1}^{\infty} \mu_n(P_k) A$. Неравенство \leqslant происходит из прошлого абзаца

Свойство в другую сторону называется счётной полуаддитивностью

$$\sphericalangle \varepsilon > 0$$
 $P = \prod_{j=1}^n [a_j,b_j)$ $\sphericalangle K = \prod_{j=1}^n [a_j,\widetilde{b}_j]$ $\widetilde{P} = \prod_{j=1}^n [a_j,\widetilde{b}_j)$, где $\widetilde{b}_j \in (a_j,b_j)$: $\nu(\widetilde{P}) > \nu(P) - \frac{\varepsilon}{2}$

$$\widetilde{P}_k = [\widetilde{a}_j, b_j) \quad \widetilde{a}_j < a_j \quad \nu_k(\widetilde{P}_k) < \nu(P_k) + \frac{\varepsilon}{2}$$

 $O_k=\prod(a_j,b_j)$ $P_k\subseteq O_k\subseteq \widetilde{P}_k$ $\widetilde{P}\subseteq K\subseteq P=\bigcup P_k\subseteq \cup_k O_k$, т.о. $\{O_k\}_{k=1}^\infty$ образует открытое покрытие компакта K, а значит можно выбрать конечное подпокрытие $\{O_1,\ldots,O_N\}$ – покрытие K

$$\widetilde{P}\subseteq K\subseteq \cup_{k=1}^N O_k\subseteq \cup_{k=1}^N \widetilde{P}_k.$$
 В силу конечной аддитивности $\nu_n(\widetilde{P})\leqslant \sum\limits_{k=1}^N \nu_n(\widetilde{P}_k)\leqslant \sum\limits_{k=1}^\infty \nu_n(\widetilde{P}_k)\leqslant \sum\limits_{k=1}^\infty \left(\nu(P_k)+\frac{\varepsilon}{2^{k+1}}\right)=\sum\limits_{k=1}^\infty \nu_n(P_k)+\frac{\varepsilon}{2}$

$$\nu_n(P) \leqslant \sum_{k=1}^{\infty} \nu_n(P_k) + \varepsilon \quad \varepsilon \to 0 \qquad \nu_n(P) \leqslant \sum_{k=1}^{\infty} \nu_n(P_k)$$

Определение 32. λ_n – стандартное продолжение ν_n (с \mathcal{P}_n)

 \mathcal{A}_n – область определения мер λ_n

 $E \in \mathcal{A}_n \stackrel{\mathrm{def}}{\Longleftrightarrow} E$ — измеримо по Лебегу

$$\mathcal{N} = \{\}$$

• • •

Определение 33. Если H – гиперплоскость, параллельная координатному подпространству.

$$H = \{x \in \mathbb{R}^n : x_i = c\}$$

$$\implies \lambda_n(H) = 0$$

Доказательство. $H = \bigcup_j H_j \quad H_j = H \cap [-j, j]^n$

H.y.o
$$j = n$$
. $H = \mathbb{R}^{n-1} \times \{c\}$

$$H_j = [-j, j)^{n-1} \times \{c\} = \bigcap_{l=1}^{\infty} [-j, j)^{n-1} \times [c, c + \frac{1}{2}) \implies \lambda_n(H_j) = \lim_{l \to \infty} \lambda_n(H_{jl}) = 0$$

Замечание. μ – полная мера. A – измеримо, e – нуль-множество. $B\triangle A\subseteq e\implies B$ измеримо и $\mu(A)=\mu(B)=\mu(A\cap B)$

$$(A \cap B) = A \setminus (A \setminus B)$$
 – измеримо $B = (A \cap B) \prod (B \setminus A)$

Утверждение 16. $\Pi=\langle a_1,b_1\rangle \times \langle a_2,b_2\rangle \times \ldots \times \langle a_n,b_n\rangle \quad -\infty \leqslant a_k,b_k \leqslant +\infty$

$$\implies \Pi \in \mathcal{A} \ \text{и} \ \lambda_n(\Pi) = \prod (b_k - a_k)$$

Утверждение 17. λ_n – σ -конечная мера, $\mathbb{R}^n = \bigcup_{N=1}^{\infty} [-N,N)^n \quad \lambda\left([-N,N]^n\right) = (2N)^n < +\infty$

Утверждение 18. $\forall E \subseteq \mathbb{R}^n \quad \nu_{n*}(E) = \inf \{ \lambda_n(G) : G - \text{откр. }, E \subseteq G \}$

В частности, если $E \in \mathcal{A}_n$

$$\lambda_n(E) = \inf \{\lambda_n(G) : G - \text{откр. }, E \subseteq G\}$$

Утверждение 19. $\forall E\in \lambda_n(E)=\sup\{\lambda_n(F): F$ – замкн, $F\subseteq E\}=\sup\{\lambda_n(K): K$ – комп , $K\subseteq E\}$

Утверждение 20. $\forall E \in \mathcal{A}_n \exists$ окр $E \subseteq G$:

1.38 Много чего

1.39 Продолжение

Утверждение 21. E – измеримо, то

$$\lambda_n(E) = \inf \{\lambda_n(G) : E \subseteq G, G - \text{otkp.} \}$$

Следствие 10. $\forall \varepsilon > 0 \forall$ (измерим) $E \in \mathcal{A}_n \quad \exists$ откр $G: \quad G \supset E$

$$\lambda_n\left(G\setminus E\right)<\varepsilon$$

Доказательство. Если $\lambda_n(E)<+\infty \implies \exists$ откр. $G\supset E: \lambda_n(G)<\lambda_n(E)+\varepsilon \qquad \lambda_n(G)=\lambda_n(E)+\lambda_n(G\setminus E)$

$$G = E \coprod (G \setminus E)$$

Если $\lambda_n(E) = +\infty$

$$E_k = E \cap B_0(k)$$

$$\bigcup_{k=1}^{\infty} = E \cap \left(\coprod_{x=1}^{\infty} B_0(k) \right) = E$$

$$\lambda_n\left(E_k\right) \leqslant \lambda_n\left(B_0\left(k\right)\right) < +\infty$$

 $\forall k$ по 1) \exists откр $G_k \supset E_k$: $\lambda_n (G_k \setminus E_k) < \frac{\varepsilon}{2^{k+1}}$

$$G = \bigcup_{k=1}^{\infty} G_k$$
 – откр $G \supset \bigcup_{k=1}^{\infty} E_k = E$

$$\lambda_{n}\left(G\setminus E\right)=\lambda_{n}\left(\bigcup_{k=1}^{\infty}G_{k}\setminus E\right)\leqslant\sum_{k=1}^{\infty}\lambda_{n}\left(G_{k}\setminus E\right)\leqslant\sum_{k=1}^{\infty}\lambda_{n}\left(G_{k}\setminus E_{k}\right)\leqslant\sum_{k=1}^{\infty}\frac{\varepsilon}{2^{k+1}}<\varepsilon$$

Следствие 11. $\forall \varepsilon > 0 \forall E \in \mathcal{A} \quad \exists$ замкн. $F \subseteq E$:

$$\lambda_n\left(E\setminus F\right)<\varepsilon$$

 $M E \in \mathcal{A} \implies \lambda_n(E) = \sup \{\lambda_n(F) : F \subseteq E, F = \overline{F}\}$

Доказательство. $\lambda_n(E) = \lambda_n(F) + \underbrace{\lambda_n(E \setminus F)}_{\leq \varepsilon}$

 $\forall \varepsilon > 0$ для E^C \exists откр. $G: G \supset E^C$ и $\lambda_n\left(G \setminus E^C\right) < \varepsilon$

 $F = G^C$ – замкн, $F \subseteq E$ – $G \setminus E^C = G \cap (E^{\mathbb{C}}) = G \cap E$

 $E \setminus F = E \cap (F^C) = E \cap G$

Определение 34. $\square \mu$ – мера на \mathcal{A} – \mathcal{A} – $\mathcal{A} \subseteq 2^X$

 (X, \mathcal{A}, μ) – пространство с мерой

Х – топологическое пространство

Определение 35. Если $\forall E \in \mathcal{A}$

 $\mu(F) = \sup \big\{ \mu(F) : \quad F = \overline{F} \quad F \subseteq E \big\} = \inf \big\{ \mu(G) : G - \text{откр} \ , E \subseteq G \big\}$

, то мера называется регулярной.

Пример. $E = \mathbb{Q} \cap [0,1]$ $\mu = \lambda_1$

$$\lambda_1(E) = 0 \quad F = \overline{F} \quad F \supset E \implies \overline{F} \supset \overline{E} = [0, 1]$$

 \forall замкн $F: \quad F \supset E \quad \lambda_n\left(F\right) \geqslant \lambda_n\left([0,1]\right) = 1$

Следствие 12. $\forall E \in \mathcal{A} \quad \exists F_{\sigma}$ – множество $F \quad G_{\sigma}$ – множество G:

$$F \subseteq E \subseteq G$$
 и $\lambda_n (G \setminus F) = 0$

, т.е.

 \exists множества меры нуль e_1, e_2 :

$$E = F \cup e_1$$
 и $E = G \setminus e_2$

Доказательство. $\forall k$ \exists замкн F_k и откр G_k : $F_k \subseteq E \subseteq G_k$ и λ_n $(G_k \setminus E) < \frac{1}{2k}$ λ_n $(E \setminus F_k) < \frac{1}{2k}$

$$\implies \lambda_n (G_k \setminus F_k) \leqslant \frac{1}{2k} + \frac{1}{2k} = \frac{1}{k}$$

$$G = \bigcap_{k=1}^{\infty} G_k \qquad F = \bigcup_{k=1}^{\infty} F_k$$

$$\lambda_n (G \setminus F) \leqslant \lambda_n (G_k \setminus F_k) < \frac{1}{k} \quad \forall k$$

$$\implies \lambda_n (G \setminus F) = 0$$

$$e_1 = E \setminus F \subseteq G \setminus F$$

Следствие 13. $\forall E \in \mathcal{A} \quad \exists$ возрастающая последовательность компактов $\{K_j\} \quad K_{j+1} \supset K_j \quad \forall j$:

$$E = igcup_{j=1}^{\infty} K_j \cup e$$
 и e меру нуль $(\lambda_n(e) = 0)$

Доказательство. $\square \{F_k\}$ – из следствия 2, замкнутые, $E = \bigcup_{k=1}^{\infty} \cup e_2$

$$F_k = \bigcup_{j=1}^{\infty} F_{kj}$$
 $F_{kj} = F \cap \overline{B_j(0)}$ – комп.

$$\bigcup_{k=1}^{\infty}F_k=\bigcup_{k=1}^{\infty}\bigcup_{j=1}^{\infty}=\bigcup_{l=1}^{\infty}F_l$$
 – объединение компактов

Теорема 40 (сохранение измеримости при гладком отображении). $\supset \phi \in C^1 (O \subseteq \mathbb{R}^n \to \mathbb{R}^n)$ O – откр Если $E \subseteq G$ и $E \in \mathcal{E}$ Тогда $\forall E \subseteq G$

$$\Phi(E) \in \mathcal{E}$$

$$\forall e \subseteq G \text{ if } \lambda_n(e) = 0 \implies \lambda_n\left(\Phi\left(e\right)\right) = 0$$

Доказательство. $E \in \mathcal{E}$ $E = \bigcup_{j=1}^{\infty} K_j \cup e$

 $\Phi(E) = \bigcup\limits_{j=1}^{\infty} \cup \Phi(e)$ — объединение объединение компактов и множества меры ноль

переходя ко второму: По теореме о представлении открытых множеств $\exists \{P_k\}_{k=1}^{\infty}$ – последовательность кубических ячеек

$$G = \cup P_k \quad \forall k \ \overline{P_k} \subseteq G$$

1. $e\subseteq P_{k_0}$ для некоторого k_0 . Гладкое отображение на компакте $\Longrightarrow \Phi$ липшецево на $\overline{P},$ т.е. $\exists C: \ \forall x,y\in \overline{P} \quad \|\Phi(x)-\Phi(y)\|\leqslant C\cdot \|x-y\|$

$$\langle \varepsilon > 0 \quad \exists$$
 откр $G: \quad G \geqslant e$ и $\lambda_n(G) < \varepsilon$

По теореме о представлении открытого \exists последовательность кубических ячеек $\{Q_j\}_{j=1}^\infty$ $G=\coprod_{j=1}^\infty Q_j$ \Longrightarrow $e\subseteq\bigcup_{j=1}^\infty (Q_j\cap P)$ \Longrightarrow

$$\Phi(e) \subseteq \bigcup_{j=1}^{\infty} \Phi\left(Q_j \cap P\right)$$

$$\operatorname{diam}\left(\Phi\left(Q_{j}\cap P\right)\right)\leqslant C\quad\operatorname{diam}\left(Q_{j}\cap P\right)\leqslant C\operatorname{diam}\left(Q_{j}\right)=C\sqrt{n}\left(\lambda_{n}\left(Q_{j}\right)\right)$$

Лемма 7 (об единственности меры на \mathcal{A}). \square μ, ν — две регулярные меры на \mathcal{A}_n

Если \forall кубических ячеек Q

$$\mu(Q) = \nu(Q)$$

, то μ и ν совпадают (на \mathcal{A}_n)

Доказательство. Точно верно на открытых, т.к. открытые можно выразить через кубические ячейки.

Для компакта верно, потому что $K = B \setminus (B \setminus K)$

Следствие 14. Если $\Phi:\mathbb{R}^m\to\mathbb{R}^n$ – инъекция и $\forall E\in\mathcal{A}_m$ — $\Phi\left(E\right)\in\mathcal{E}$ и $\exists c\geqslant 0$ — \forall кубической ячейки Q

$$\lambda_n \left(\Phi(Q) \right) = C \lambda_m(Q)$$

Тогда $\forall E \in \mathcal{A}_n$

$$\lambda_n \left(\Phi(E) \right) = C \lambda_m(E)$$

Доказательство. $\mu = c\lambda_n \quad \nu = \lambda n \left(\Phi(E) \right) \forall E \in \mathcal{A}_n$

Первая очевидно мера, вторая мера, потому что Ф биекция

Определение 36. T(x)=x+v – сдвиг на $v-x,v\in\mathbb{R}^n$

^{*}Там много возни с ячейками*

Утверждение 22. Мера Лебега инвариантна относительно любого сдвига.

Доказательство. $\Phi(x) = T_v(x)$

$$\lambda \left(\Phi(Q) \right) = \lambda_n \left(T_v \left(Q \right) \right)$$

Ячейка передвинется поточечно, длины рёбер не изменятся,

A тогда по лемме $\lambda_n\left(T(E)\right) = \lambda_n(E)$

Определение 37. $D: \mathbb{R}^n \to \mathbb{R}^n$ называется диагональным (относительно стандартного базиса) если в этом базисе, если она представляется как диагональная матрица.

Утверждение 23. Если $l_1, \ldots, l_n > 0$ – числа на диагонали, то

$$\lambda_n (D(Q)) = l_1 l_2 \dots l_n \lambda_n(Q)$$

$$\implies \lambda_n (D(E)) = l_1 l_2 \dots l_n \lambda_n(E)$$

Замечание (Напоминание). $U: \mathbb{R}^n \to \mathbb{R}^n$ – линейное, сохраняет скалярное произведение $\langle Ux, Uy \rangle = \langle x, y \rangle$ называется ортогональным

Или по-другому:

- 1. U ортогонально
- $2. \ U$ изометрия
- 3. $U^{-1} = U^T$

Утверждение 24. \forall линейного $A:\mathbb{R}^n\to\mathbb{R}^n: \det A\neq 0$ \exists ортогональные операторы U_1,U_2 и диагональный $D=diag\,(l_1,\ldots,l_n)$ $l_i>0$:

$$A = U_2 D U_1$$

$$\langle A^T A x, x \rangle = \langle A x, A x \rangle = ||A x||^2 \geqslant 0 = 0 \iff x = 0$$

Тогда он приводится к диагональному виду. $A^TA=Q\widetilde{D}Q^{-1}$ Q – ортогональный, $\widetilde{D}=diag\left(m_1,\ldots,m_n\right)$ $m_i>0$ – диагональный

$$D = diag\left(\sqrt{m_1}, \dots, \sqrt{m_n}\right) \quad D \cdot D = \widetilde{D}$$

$$\begin{split} &U_1 = Q^{-1} \quad U_2 = AU_1^{-1}D^{-1} \\ &U_2U_2^T = \left(AU_1^{-1}D^{-1}\right)\left(AU_1^{-1}D^{-1}\right)^T = AU_1^{-1}D^{-1}D^{-1T}U_1^{-1T}A^T = AQ\widetilde{D}^{-1}QA^T = \\ &\widetilde{D} = Q^TA^TAQ \quad \widetilde{D}^{-1} = Q^TA^{-1}A^{-1T}Q \\ &= AQQ^TA^{-1}(A^T)^{-1}QQ^TA^T = Id \end{split}$$

Теорема 41. $\sqsupset L$ – лин из $\mathbb{R}^n \to \mathbb{R}^n$ Тогда $\forall E \in \mathcal{A}$

$$\lambda_N(L(E)) = |\det[L]| \cdot \lambda_n(E)$$

(a) L=U ортогональное

$$C = \frac{\lambda_n(U(Q_*))}{\lambda_n(Q_*)} = \lambda_n \left(U(Q_*) \right) \qquad Q_* = [0, 1]^n$$

 $\supset Q$ – произвольная кубическая ячейка.

$$Q = b \cdot Q_* + a = T_a \left(bQ_* \right)$$

$$U(x+y) = U(x) + U(y)$$

$$U\left(T_{u}(x)\right) = T_{U(u)}\left(U(x)\right)$$
 или $U \cdot T_{u} = T_{U(u)} \cdot U$

$$\lambda_{n}\left(U(Q)\right) = \lambda_{n}\left(U\left(T_{a}\left(bQ_{*}\right)\right)\right) = \lambda_{n}\left(T_{U(a)}U\left(bQ_{*}\right)\right) = \lambda_{n}\left(bU\left(Q_{*}\right)\right) = b^{n}\lambda_{n}\left(U\left(Q_{*}\right)\right) = b^{n}C = \lambda_{n}(Q)C$$

$$\lambda_n \left(UQ \right) = C\lambda_n \left(Q \right)$$

Тогда по лемме $\lambda_n\left(Q(E)\right) \equiv C \cdot \lambda_n(E) \quad \forall E \in \mathcal{A}_n$

$$E = B_R(0)$$
 $\lambda_n(B) = \lambda_n(U(B)) = C\lambda_n(B) \implies C = 1 \implies \forall$ ортогональное преобразование сохраняет меру.

2. $\det L = 0 \implies L\left(\mathbb{R}^n\right)$ подпространство размерности k < n в \mathbb{R}^n

$$X = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_{k+1} = \dots = x_n = 0\}$$

$$\lambda_n(X) = 0 \quad \exists v^1, \dots v^k$$
 – базис в $L(\mathbb{R}^n)$

$$v^{k+1},\ldots,v^n$$
 – базис $(L(\mathbb{R}^n))^{\perp}$

$$e^k = (0, 0, \dots, 1, \dots, 0) - 1$$
 на k месте

 $A:e^k o v^k;\quad A:X o L\left(\mathbb{R}^n
ight)$ – гладкое отображение, которое переводит множество меры ноль в множество меры ноль $\lambda\left(L\left(\mathbb{R}^n
ight)
ight)$

1.40 Измеримые множества

 $\Box (X, \mathcal{A}, \mu)$ – пространство с мерой

Определение 38. $\exists E \subseteq X \quad f: E \to \overline{R}$

f называется измеримой на множестве $E \quad (f \in S(E)),$ если $\forall a \in \mathbb{R}$ измеримы ($\in \overline{\mathcal{A}})$:

- $E\{f < a\}$
- $E\{f > a\}$
- $E\{f \leqslant a\}$
- $E\{f \geqslant a\}$

Здесь $E\{f < a\} = \{x \in R: \quad f(x) < a\}$

Замечание. Если $S(E) \neq 0$, то $E \in \mathcal{E}$

$$E = E\{f < a\} \cup E\{f \geqslant a\}$$

Утверждение 25. $\supset E \in \mathcal{A}$ $f: E \to \overline{R}$. Следующие утверждения равносильны:

- 1. $\forall a \in \mathbb{R} \quad E\{f > a\} \in \mathcal{A}$
- 2. $\forall a \in \mathbb{R} \quad E\{f \leqslant a\} \in \mathcal{A}$
- 3. $\forall a \in \mathbb{R} \quad E\{f < a\} \in \mathcal{A}$
- 4. $\forall a \in \mathbb{R} \quad E\{f \geqslant a\} \in \mathcal{A}$

Кстати, эти множества называется множествами Лебега, если вы ещё не наслышаны о нём.

Замечание. E Неизмеримо $f(x) \equiv +\infty$ $E\left\{f < a\right\} = \emptyset \in \mathcal{A}$ $E\left\{f > a\right\} = E \not\in \mathcal{A}$

Доказательство.

$$1 \implies 2 E\{f \leqslant a\} = E \setminus E\{f > a\}$$

$$2 \implies 3 \ E\{f < a\} = \bigcup_{k=1}^{\infty} E\{f \leqslant a - \frac{1}{k}\}$$

$$4 \implies 2 E\{\}$$

Утверждение 26. $E \subseteq X$, то

$$E \in \mathcal{A} \iff \chi_E$$
 измерима на X

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Замечание.
$$\forall x \in \mathbb{R} \quad X\left\{\chi_{E_0} < a\right\} = egin{cases} X & a>1 \\ X\setminus E_0 & 0 < a \leqslant 1 \\ \emptyset & a \leqslant 0 \end{cases}$$

$$X \setminus E_0 \in \mathcal{A} \iff E_0 \in \mathcal{A}$$

Утверждение 27.
$$f \in S(E)$$
 $E_0 \in \mathcal{A}$ $E_0 \subseteq E \implies f \in S(E_0)$

Доказательство.
$$\forall a \in \mathbb{R} \ E_0 \{f < a\} = E \{f < a\} \mathbb{N} E_0$$

Утверждение 28. Если
$$\forall k \in \mathbb{N} \quad f \in S(E_k), E = \bigcup_{k=1}^\infty E_k \implies f \in S(E)$$

Замечание. $\forall a \in \mathbb{R}$

$$E\left\{f < a\right\} = (\cup E_k)\left\{f < a\right\}$$
$$= \bigcup_{k=1}^{\infty} \left(E_k\left\{f < a\right\}\right) \in \mathcal{A}$$

Пример. Примеры измеримых:

$$\begin{aligned} 1. & \ f \equiv C \implies f = C \\ & X \left\{ f < a \right\} = \begin{cases} X & C < a \\ \emptyset & C \geqslant a \end{cases} \\ & \ f \in S(X) \quad \forall E \in \mathcal{A} \implies f \in S(E) \\ 2. & \chi_{E_0} \in S(E) \forall E | in \mathcal{A} \end{aligned}$$

Утверждение 29. Если
$$d \in S(E)$$
 $f: E \to \overline{\mathbb{R}}$, тогда $f^{-1}(\langle a, b \rangle) \in \mathcal{A}$

Доказательство.

$$f^{-1}((a,b)) = \{x \in E : f(x) \in (a,b)\}\$$

= $E\{f < b\} \cap E\{f > a\} \in A$

Утверждение 30. Если $\mathcal{A} = \mathcal{A}_n$ – сигма-алгебра измеримых по Лебегу множеств, $E \in \mathcal{A}_n$

$$f \in C(E) \implies f \in S(E)$$

Доказательство. $E\left\{f < a\right\} = f^{-1}\left([-\infty,a)\right)$ – открытое в $E \implies E\left\{f < a\right\} = E \cap O, O$ – открытое в $\mathbb{R} \in \mathcal{A}_n$

Утверждение 31. $\Box \mu$ – полная, $\mu(e) = 0$

Тогда $\forall f: e \to \overline{\mathbb{R}} \implies f$ измерима на E

Доказательство.
$$\begin{cases} e \, \{f < a\} \subseteq e \\ \mu - \text{полная} \end{cases} \implies e \, \{f < a\} \in \mathcal{A} \implies f \in S(e) \end{cases}$$

Определение 39. $\supset (X, A, \mu)$ – пространство с мерой

P(x) – утверждение зависящее от $x \in E$.

Говорят, что P(X) почти везде на E, если $\exists e\subseteq E\quad \mu\,(=0)$ и P(X) верно для $\forall x\in E\setminus e$

Замечание. Если $f:E o\overline{\mathbb{R}}$ $E\subseteq\widetilde{E}$ $\mu\left(\widetilde{E}\setminus E\right)=0$

 μ полная $f\in S(E)$ и \widetilde{f} – продолжение на $\widetilde{E},$ тогда $\widetilde{f}\in S(E)$

Доказательство. $\widetilde{f}|_E$ измерима, $\widetilde{f}|_{\widetilde{E}\backslash E}$ измерима

$$\implies \widetilde{f}$$
измерима и на $E \cup \left(\widetilde{E} \setminus E\right) = \widetilde{E}$

Утверждение 32. Если f определена почти везде на E и измерима на $D(f)\subseteq E,$ то полагают f измеримой и на E (т.к. любое продолжение измеримо)

Теорема 42. $\supset (X, \mathcal{A}, \mu)$ – пространство с мерой

$$\sqsupset (f_k)_{k=1}^{\infty} \subseteq S(E)$$
, Тогда

- 1. $\sup_k f_k$, $\inf_k f_k \in S(E)$
- 2. $\limsup_{k\to\infty} f_k$, $\liminf_{k\to\infty} f_k \in S(E)$
- 3. Если существует поточечный $\lim_{k\to\infty}f_k(x)$ на E, то $\lim_{k\to\infty}f_k(x)\in S(E)$

Если μ — полная и $\lim_{k\to\infty} f_k(x)$ существует п.в. (почти везде), то $\lim_{k\to\infty} f_k(x) \in S(E)$

Доказательство. 1. $a \in \mathbb{R}$ $E\left\{\sup_{k} f_{k} \leqslant a\right\} = \bigcap_{k=1}^{\infty} E\left\{f_{k} \leqslant a\right\} \in \mathcal{A}$

$$E\left\{\inf_{k} f_{k} \geqslant a\right\} = \cap E\left\{f_{k} \geqslant a\right\} \in S(E)$$

2.
$$\widetilde{f}_k(x) = \sup_{i \ge k} \{f_i\} \in S(E)$$

 $\limsup_{k \to \infty} f_k = \inf_k \widetilde{f}_k \in S(E)$

Доказательство.

⇒ из теоремы

$$\iff \forall a \in \mathbb{R} \quad E\{f < a\} = \begin{cases} E\{f_{+} < a\} & a > 0 \\ E\{f_{-} : -a\} & a \leqslant 0 \end{cases}$$
$$f < a \iff -f > -a$$

 $2 |f| = \max\{f_+, f_-\}$

Определение 40. (X, \mathcal{A}, μ) – пространство с мерой

 $f:X\to\mathbb{R}$ называется ступенчатой (или простой), если:

- 1. $f \in S(X)$
- 2. f(X) конечно

Определение 41. (X, \mathcal{A}, μ) $E \in \mathcal{A}$

 $\{E_{\alpha}\}_{\alpha\in A}$ называется (измеримым) разбиением множества E,если:

1.
$$E = \coprod_{\alpha \in A} E_{\alpha}$$

2.
$$\forall \alpha \in A \quad E_{\alpha} \in \mathcal{A}$$

Определение 42.
$$\exists \mathcal{B} \subseteq 2^X \quad X \in \mathcal{B}$$

Пусть $\{E_{\alpha}\}_{\alpha\in A}$ – разиение X

Разбиение $\{E_{\alpha}\}_{\alpha\in A}$ вписано в $\mathcal{B},$ если

$$\forall \alpha \in A \forall B \in \mathcal{B}$$
 либо $E \subseteq B$ либо $E \cap B = \emptyset$

Пример.
$$X = \{1, 2, 3\}$$
 $B = \{X, \{2\}\}$

Разбиение $\{\{2\},\{2,3\}\}$

Лемма 8. Пусть $\mathcal{B} = \{X = D_0, D_1, \dots, D_m\} \subseteq \mathcal{A}$. Тогда существует конечное разбиение X, вписанное в \mathcal{B}

 \mathcal{L} оказательство. Индукция по m. \lfloor_* – вписанное разбиение

$$m = 0 \ \mathcal{B} = \{X\} \quad \mathcal{B}_* = \{X\}$$

 $m \to m+1 \ m \in \mathbb{Z}_+$

$$\mathcal{B} = \{X = D_0, D_1, \dots, D_{m+1}\}$$

 $\widetilde{\mathcal{B}} = \{X = D_0, D_1, \dots, D_m\}$ по индукционному предположению

$$\exists \widetilde{\mathcal{B}_*} = \{E_1, \dots, E_n\}: \quad \forall i = 1 \dots n \quad \forall j = 0, \dots, m$$

$$D_i \subseteq E_i$$
 либо $D_i \cap E_i = \emptyset$

$$\mathcal{B}_* = \left\{ E_1 \cap D_{m+1}, E_1 \cap D_{m+1}^C, \dots, E_n \cap D_{m+1}, E_n \cap D_{m+1}^C \right\}$$

 $(E_i\cap E_{m+1}^\pm)\cap (E_j\cap D_{m+1}^\pm)$ – не пересекается, если $i\neq j$ или $D_{m+1}^\pm=D_{m+1}^\mp$ правые и левые

$$(E_1\cap D_{m+1})\cup \left(E_1\cap D_{m+1}^C\right)\cup\ldots\cup=E_1\cup E_2\cup\ldots\cup E_n=X$$
 Если $\left(E_i\cap D_{m+1}^\pm\right)\bigcap_{1\leqslant j\leqslant m}D_j\subseteq E_i\cap D_j$ либо $E_i\subseteq D_j$, либо $E_i\cap D_j=\emptyset$

Утверждение 34 (критерий ступенчатых функций). (X, \mathcal{A}, μ)

Следующие утверждения равносильны:

- 1. f ступенчатая
- 2. \exists разбиение $\{E_1,\ldots,E_N\}$ пространства X и набор чисел $b_1,b_2,..,b_N$:

$$f(x) = \sum_{j=1}^{N} b_j \chi_{E_j}(x)$$

3. \exists набор измеримых множеств $\{D_1,\ldots,D_m\}$ в X и чисел c_1,\ldots,c_m :

$$f\left(x\right) = \sum_{k=1}^{m} c_k \chi_{D_k}$$

Доказательство.

 $I \implies II$ по условию функция f принимает конечное множество значений. Пусть это $b_1 < \ldots < b_N$

$$E_k = X \{ f = b_k \}$$
 – измеримо

$$X \{ f < b_{k+1} \} \cap X \{ f > b_{k-1} \}$$

$$X = \coprod E_k = \sum_{k=1}^N b_k \chi E_k(x) \dots$$

Утверждение 35. $\supset f,g$ – ступенчатые функции, $F:\mathbb{R} \to \mathbb{R}$ – произвольная функция

Тогда:

- 1. $F \circ f$ ступенчатая функция
- 2. f + g ступенчатая функция

Замечание. В частности $\forall \alpha \in \mathbb{R} \quad \alpha \cdot f$ – ступенчатая, |f| – ступенчатая

 \mathcal{A} оказательство. 1. По утверждению $f=\sum\limits_{j=1}^{N}b_{j}\chi_{E_{i}},$ где E_{1},\ldots,E_{N} — разбиение

$$F\circ f=\sum\limits_{j=1}^{N}F\circ (b_{j})\cdot \chi_{E_{j}}(x)$$
 – стуенчатая

2.
$$f = \sum_{j=1}^{N} b_j \chi_{E_j}$$
 $g = \sum_{k=1}^{K} \widetilde{b}_k \chi_{\widetilde{E}_k}$

Пусть $\{D_1,\ldots,D_M\}$ – разбиение X, вписанное в $\Big\{E_1,\ldots,E_N,\widetilde{E}_1,\ldots,\widetilde{E}_k,X\Big\}$, но не вписанное в $\Big\{E_1,\ldots,E_N,\widetilde{E}_1,\ldots,\widetilde{E}_k\Big\} \implies \chi_{E_j},\chi_{\widetilde{E}_j}$ постоянна на $D_m \quad \forall j,m$

$$f = \sum_{j=1}^{N} b_j \chi_{E_j} = \sum_{j=1}^{N} \sum_{m:D_m \subseteq E_j} b_j \chi_{D_m}$$
$$= \sum_{m=1}^{M} C_m \chi_{D_m}$$

Для $g = \sum\limits_{m=1}^{M} \widetilde{C}_k \chi_{D_m} \implies f + g = \sum\limits_{m=1}^{M} \left(C_m + \widetilde{C}_m \right) \chi_{D_m}$

Теорема 43 (теорема об аппроксимации измеримых функций). $\Box (X, \mathcal{A}, \mu)$ любое пространство с мерой

$$\Box f \in S(X), f \geqslant 0$$
 (всюду на X)

Тогда \exists возрастающая последовательность неотрицательных ступенчатых $\{f_i\}_{i=1}^\infty$

 $f_i(x) \to f(x)$ поточечно. А если f ограничена (на X), то $f_i \rightrightarrows f$ на X

Следствие 15. Если $f \in S(X)$, то f– последовательность ступенчатых $\{f_i\}$

$$\forall x \in X \quad \forall j \in \mathbb{N} \quad |f_i(x)| \leqslant |f_{i+1}(x)| \leqslant |f(x)|$$
 и $f_i(x) \to f(x)$, а если f ограничено, то $f_i \rightrightarrows f$

Доказательство следствия. Для $f_+, f_- = \exists$ последовательности ступенчатых функций $\left\{ (f_+)_j \right\} = f_{\pm_j M} = f_{\pm_{j+1}}$..

Рис. 1.10: approxmeasure

теоремы. $\forall n \in \mathbb{N} \quad \forall k = 0..n^2 - 1 \quad \Delta_k = \left[\frac{k}{n}, \frac{k+1}{n}\right) \quad \Delta_{n^2} = [n, +\infty)$

 $\{\Delta_0,\dots,\Delta_{n^2}\}$ — разбиение $[0,+\infty]$

 $E_k = f^{-1}\left(\Delta_k\right) \quad \left\{E_k
ight\}_{k=0}^{n^2}$ – разбиение X

 $g_n(x) = \sum_{k=0}^{n^2} \frac{k}{n} \chi_{E_k}(x) \quad \forall x \in X \implies k = 1 : n^2 : x \in E_k$

 $f(x) \in \Delta_k \implies \frac{k}{n} < f(x) \quad g_n(x) = \frac{k}{n}$

Если $k < n^2$, то $f(x), \frac{k+1}{n} = g_n(x) + \frac{1}{n}$

 $g_n(x)$ – ступенчатая. $f_n(x) = \max \{g_1(x), \dots, g_n(x)\}$ (упражнение проверить, что f_n ступенчатая. Делается аналогично сумме)

 $\forall n\in\mathbb{N}\quad g_n(x)\leqslant f(x).$ Перейдём к максимуму $f_n(x)\leqslant f(x)\quad f_n(x)\leqslant f_{n+1}(x)$

Если $f(x)=+\infty \implies \forall n\in\mathbb{N} \quad f(x)\in\Delta_{n^2} \implies x\in E_{n^2} \quad g_n(x)n; \quad f_n(x)=n\to+\infty, n\to+\infty=f(x)$

Если $f(x)<+\infty \implies$ НСНН n $f(x)\leqslant n \implies x\in E_{kn}$ для $k< n^2 \implies$ Для всех до статистически больших n

$$_n(x) \leqslant f(x) \leqslant g_n(x) + \frac{1}{n} \leqslant f_n(x) + \frac{1}{n}$$

 $\forall n \in \mathbb{N} \quad f_n(x) \leqslant f(x) \leqslant f_n(x) + \frac{1}{n}$

$$|f(x) - f_n(x)| = f(x) - f_n(x) \le f_n(x) + \frac{1}{n} - f_n(x) \le \frac{1}{n} \to 0, n \to \infty$$

Если f ограничено на X, то утверждение для больших n не зависит от X $\sup_{x\in X}|f(x)-f_n(x)|\leqslant \frac{1}{n}$ начиная с некоторого номера

Следствие 16. (X, A, μ)

 $f,g\in S(X)\quad F\in C\left(\mathbb{R}\to\mathbb{R}\right)$ – возрастающая . Тогда:

- 1. $F \circ f \in S(E)$
- 2. Если $f\pm g, f\cdot g, \frac{f}{g}$ определена на E, то соответствующая функция также измерима на E

Доказательство. 1. \exists последовательность ступенчатых $f_i(x) \to f(x)$ поточечно

$$F\left(f_{j}(x)\right) \to F\left(f(x)\right),$$
 если $f(x) < +\infty.$ Продолжим F на $\overline{\mathbb{R}}$: $F\left(\pm\infty\right) = \lim_{x \to +\infty} F(x) \implies F$ непрерывна из $\overline{\mathbb{R}} \to \overline{\mathbb{R}}$

2. $f_i \to f$ $g_i \to g$

 $f_j \pm g_j \to f \pm g$ по теореме об арифметических действиях над пределами

1.41 Интеграл по мере — определение и простейшие свойства

 $\supset (X, \mathcal{A}, \mu)$ – пространство с мерой

 $E \subseteq \mathcal{A}$

1. f – ступенчатая неторицательная функция. $f(x) = \sum\limits_{k=1}^k C_k \chi_k$, где $\{E_1, \dots, E_k\}$ – разбиение X

$$\int_{E} f d\mu = \int_{E} f(x) d\mu(x) = \sum_{k=1}^{K} C_{k} \mu(E_{k} \cap E)$$

2. $f \in S_{+}(E)$ – неотрицательная измеримая функция.

$$\int_E f d\mu = \sup \left\{ \int_E g d\mu : g$$
 – неотр, ступенча и $g(x) \leqslant f(x) \forall x \in E \right\}$

3. $f \in S(E)$ $(f: E \to \mathbb{R})$

 $\int_E f d\mu = \int_E f_+ d\mu - \int_E f_- d\mu$ – при условии, что сумма в правой части определена

Если оба интеграла справа конечны, то и результат конечен (и наоборот). Такие функции называются суммируемыми.

 $\mathcal{L}(\mu,E)$ — набор суммируемых функция по мере μ на множестве E функций

4. Если f = u + iv $u = \Re f$ $v = \Im f$

f измерима $\iff u,v$ измеримы

$$\int_E f d\mu = \int_E u d\mu + i \int_E v d\mu$$
, если $u,v \in \mathcal{L}(E,\mu)$

Утверждение 36. Определение интеграла корректно, интеграл монотонно зависит от функции

Доказательство. 1. Если $f=\sum\limits_{k=1}^K C_k\chi_{E_k}=\sum\limits_{j=1}^J b_j\chi_{D_j}$. $\{E_k\cap D_j\}_{k,j}$ – раз-

биение X, допустимое для f ($f|_{E_k} = C_k$ $f|_{D_j} = b_j$ $f_{E_k \cap D_j = C_k = b_j}$)

$$\int_{E} f d\mu = \sum_{k=1}^{K} C_{k} \mu \left(E_{k} \cap E \right) = \sum_{k=1}^{K} C_{k} \sum_{j=1}^{J} \mu \left(E_{k} \cap E \cap D_{j} \right) = \sum_{k,j} = C_{k} \mu \left(E_{k} \cap E \cap D_{j} \right)$$

$$\sum_{j=1}^{J} b_{j} \mu\left(D_{j} \cap E\right) = \sum_{j=1}^{J} b_{j} \sum_{k=1}^{K} \mu\left(D_{j} \cap E \cap E_{k}\right) = \sum_{k,j} b_{j} \mu\left(E_{k} \cap E \cap D_{j}\right)$$

$$c_k = f|_{E_k \cap E \cap D_j} = b_j \implies c_k = b_j$$

Если f,g — ступенчатые нетрицательные и $\forall x\in E$ $f(x)\leqslant g(x)\Longrightarrow \int_E dd\mu\leqslant \int_E gd\mu$

Существует общее допустимое разбиение для f и g, т.о

$$f = \sum_{k=1}^{K} C_k \chi_{E_k} \qquad g = \sum_{k=1}^{K} b_k \chi_{E_k}$$

$$x \in E_k \implies f(x) = c_k \leqslant g(x) = b_k$$

$$\int_{E} f d\mu = \sum_{k=1}^{K} c_{k} \mu \left(E_{k} \cap E \right) \leqslant \sum_{k=1}^{K} b_{k} \mu \left(E_{k} \cap E \right) = \int_{E} g d\mu$$

Значит интеграл из этого пункта обладает свойством конечной аддитивности.

2. Если $f \in S_+ - f$ – ступенчатая, равны ли интегралы в смыслах первого и второго пунктов

Если $g \in S_+$ ступенчатая и $g \leqslant f$ на $E \implies$ второе больше первого ..

3. Если $f \in S_+(E)$

$$f_+ = f \quad f_- = 0 \quad \int_E f_-$$

$$\int_E f = \int_E f_+ - \int_E f_- = \int_E f_+$$
 – во смысле второго пункта.

Монотонность интеграла из пункта 3. $f \leqslant g$

$$f_{+} = \max(f, 0) \leqslant \max(g, 0) = g_{+}$$

$$f_{-} = \max(-f, 0) \geqslant \max(-g, 0) = g_{-}$$

$$\int_E f_+ \leqslant \int_E g \quad \int_E f_-$$

Пример. $f_D = \chi_{\mathbb{Q}}$

1.
$$\int_{[0,1]} f_D d\lambda_1 = 1 \cdot \lambda (Q \cap [0,1]) = 0$$

2.
$$\int_{[0,1]} f_D = 1 \cdot \delta_0 (Q \cap [0,1]) = 1$$

Утверждение 37. $\Box e_0 \subseteq E \quad E_0, E \in \mathcal{A} \quad f_{E_0} = 0$ Тогда

$$\int_{E} f d\mu = \int_{E \setminus E_0} f d\mu$$

Существуют или нет одновременно. В случае существования равны.

Доказательство.
$$f = \sum\limits_{k=1}^K c_k \chi_{E_k} = \sum\limits_{k=1}^K c_k \chi_{E_k \cap (X \setminus E_0)} + o \cdot \chi_{E_0}$$

$$\int_{E} f = \sum_{k=1}^{K} c_k \cdot \mu \left(E_k \cap (X \setminus E_0) \cap E \right) + 0 = \sum_{k=1}^{K} c_k \mu \left(E_k \cap (X \setminus E_0 \cap (E \setminus E_0)) \right) =$$

$$\int_{E \setminus E_0} f$$

Замечание. Если f|E=0 $f\in S(E) \implies \int_E f d\mu = 0$

Следствие 17.
$$\int_E f = \int_X f \cdot \chi_E \quad \forall f \in S(E)$$

Следствие 18 (Монотонность интеграла неорицательной функции от множества.). Если $f \in S_+(X)$ $E_0 \subseteq E$

$$E_0, E \in \mathcal{A} \implies \int_{E_0} f \leqslant \int_E f$$

Доказательство.
$$\int_{E_0} f = \int_X f \cdot \chi_{E_0} \leqslant \int_X f \cdot \chi_E = \int_E f$$

Теорема 44 (Леви). $\sqsupset (X,\mathcal{A},\mu)$ – пространство с мерой. $E\in\mathcal{A}\quad \left\{ f_{j}\right\} _{j}\in S(E)\quad f:E\rightarrow\overline{\mathbb{R}}$

$$\forall x \in E \forall j \in \mathbb{N} \quad 0 \leqslant f_j(x) \leqslant f_{j+1}(x) \quad f = \lim_{j \to \infty} f_j$$

Тогда

$$\int f d\mu = \lim_{E} \int f_j d\mu$$

$$(f_j \geqslant 0 \quad f_i \uparrow f \implies \int_E \lim f d\mu = \lim \int_E f d\mu)$$

Доказательство. $\Box q \in (0,1)$ $\lhd \forall$ ступенч $g: 0 \leqslant g \leqslant 1$ на K

$$\forall j \in \mathbb{N} \quad E_j = \{x \in E : \quad f_j(x) \geqslant q \cdot g(x)\} \quad \bigcup_{j=1}^{\infty} E_j = E?$$

$$\forall x \in E \quad f(x) = 0 \implies f_j(x) = 0 \implies x \in E \forall j \in \mathbb{N}$$

Если
$$f(x)>0 \implies qg(x)< f(x)$$
. Т.к. $f_j\to f$ поточечно, то НСНН j_0 $f_j(x)><...> \blacksquare$

Утверждение 38. $\forall f, g \in S(E)$

$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

, если определена правая часть

Для ступенчатых – как выше с помощью общего разбиения

Если $f,g \in S_+$, по теореме об аппроксимации

$$\exists \{f_j\}_{j=1}^{\infty}, \{g_j\}_{j=1}^{\infty}$$
 ступенч, $\begin{cases} 0 \leqslant f_j \leqslant f_{j+1} \leqslant f \\ 0 \leqslant g_j \leqslant g_{j+1} \leqslant g \end{cases}$

$$\begin{cases} f_j \to f \\ g_j \to g \end{cases} \implies f_j + g_j \to f + g$$

$$\int_{E} (f+g) d\mu = \int_{E} \lim_{j \to \infty} (f_j + g_j) = \lim_{j \to \infty} \int_{E} (f_j + g_j) = \lim_{j \to \infty} \left(\int_{E} f_j d\mu + \int_{E} g_j d\mu \right) = \int_{E} f + \int_{E} g$$

$$f, g \in S(E)$$
 $f + g = h$

$$\int_E h_+ - \int_E h_- \overline{?} = \int_E f_+ - \int_E f_- + \int_E g_+ - \int_E g_-$$

$$\int_E h_+ + \int_E f_- + \int_E g_- = \int_E h_- + \int_E f_+ + \int_E g_+$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+$$

$$(h_{+} - h_{-}) = h = f + g = (f_{+} - f_{-}) + (g_{+} - g_{-})$$

Замечание. Если $\int_E f d\mu$ – конечен (функция суммируема), то f конечно почти везде на E

Доказательство. Достаточно доказать для $f \in S_+$

$$E_{\infty} = E\{f = +\infty\}$$

$$\forall N \quad N \cdot \mu(E_{\infty}) = \int_{E_{\infty}} f \leqslant \int_{E} f d\mu < +\infty \implies \mu(E_{\infty}) = 0$$

Утверждение 39. $\forall C \in \mathbb{C} \quad \forall f \in \mathcal{L}(E) \quad f : E \to \mathbb{C}$ или $f : E \to \overline{\mathbb{R}}$

$$\int_E C f d\mu = C \int_E d\mu$$

Доказательство. 1. C>0 – для частей суммируемых функций можем вынести положительное C

2.
$$C = -1 (-f)_{+} = f_{-} (-f)_{-} = f_{+}$$

3.
$$C=i$$
 $if=-v+iu$ $\int_E if=\int_E -v+i\int u=i\left(i\int_E v+\int u\right)=i\int_E f$

Теорема 45 (Нравенство Чебышёва). $f \in \mathcal{L}(E, \mu) \quad \forall t > 0$

$$\mu\left(E\left\{|F|\geqslant t\right\}\right)\leqslant\frac{1}{t}\int_{E}|f|d\mu$$

Замечание. Если $f \in S(E)$ $g \in \mathcal{L}\left(E,\mu\right)$ $|f| \leqslant g \implies f \in \mathcal{L}\left(E,\mu\right)$

Доказательство. $f_\pm < +|f| \leqslant g \implies \int_E f_\pm \leqslant \int_E g < +\infty \implies f \in \mathcal{L}(E,\mu)$

Замечание. $f\in\mathcal{L}\left(E,\mu
ight)\iff|F|\in\updownarrow\left(E,\mu
ight)\iff\int_{E}f_{\pm}<+\infty$

Доказательство.

⇐ Из предыдущего замечания

$$\implies \int_E f d\mu = \int_E f_+ + \int_E f_- d\mu < +\infty$$

Задача 10. μ – считающая мера на $\mathbb N$