

DIGITAL VLSI DESIGN

Unit 2: Fabrication of MOSFETs & Circuit Design Process

Annapurna K Y

Electronics and Communication Engineering

DIGITAL VLSI DESIGN

Annapurna K YElectronics and Communication Engineering

Constant-voltage scaling of MOSFET dimensions, potentials, and doping densities

Quantity	Before Scaling	After Scaling
Dimensions	W, L, t_{ox}, x_j	reduced by $S(W'=W/S,)$
Voltages	V_{DD}, V_{T}	remain unchanged
Doping densities	N_A, N_D	increased by S^2 $(N_A' = S^2 \cdot N_A,)$

In constant-voltage scaling, all dimensions of the MOSFET are reduced by a factor of *S*, as in full scaling.

The power supply voltage and the terminal voltages, on the other hand, remain unchanged.

The doping densities must be increased by a factor of S^2 in order to preserve the charge-field relations.

MOSFET Scaling and Small-Geometry Effects

Effects of constant-voltage scaling upon key device characteristics

Quantity	Before Scaling	After Scaling
Oxide capacitance	C_{ox}	$C_{ox}' = S \cdot C_{ox}$
Drain current	I_D	$I_D' = S \cdot I_D$
Power dissipation	P	$P' = S \cdot P$
Power density	P/Area	$P'/Area' = S^3 \cdot (P/Area)$

$$I_{D'}(lin) = \frac{k_{n'}}{2} \cdot \left[2 \cdot (V_{GS'} - V_{T'}) \cdot V_{DS'} - V_{DS'}^2 \right]$$

$$= \frac{S \cdot k_n}{2} \cdot \left[2 \cdot (V_{GS} - V_{T}) \cdot V_{DS} - V_{DS}^2 \right] = S \cdot I_{D}(lin)$$

$$I_{D'}(sat) = \frac{k_{n'}}{2} \cdot (V_{GS'} - V_{T'})^2 = \frac{S \cdot k_n}{2} \cdot (V_{GS} - V_{T})^2 = S \cdot I_{D}(sat)$$

$$P' = I_D' \cdot V_{DS}' = (S \cdot I_D) \cdot V_{DS} = S \cdot P$$

THANK YOU

Annapurna K Y

Electronics & Communication Engineering

annapurnaky@pes.edu