Classification, reduction and stability of toric principal bundles

Jyoti Dasgupta

(Joint work with Indranil Biswas, Arijit Dey, Bivas Khan and Mainak Poddar)

IISER Pune
IISc-IISER Joint Math Symposium 2021

September 18, 2021

Jyoti Dasgupta, IISER Pune

Classification, reduction and stability of toric principal bundles

Principal bundles

- Let *G* denote a complex linear algebraic group.
- A principal G-bundle $\pi: \mathcal{E} \to X$ is a variety \mathcal{E} with a right G-action, the action being free, such that π is G-equivariant, where X is being given the trivial G-action.

Principal bundles

- Let *G* denote a complex linear algebraic group.
- A principal G-bundle $\pi: \mathcal{E} \to X$ is a variety \mathcal{E} with a right G-action, the action being free, such that π is G-equivariant, where X is being given the trivial G-action.
- Further, the bundle is assumed to be locally trivial in the étale topology. This means that, for every point $x \in X$, there exists a neighbourhood U and an étale morphism $U' \to U$ such that when $\mathcal E$ is pulled back to U', it is trivial as a G-bundle.

Examples of Principal Bundles

■ Let X be a variety. Then for an algebraic group G, we have the trivial principal G-bundle $X \times G \to X$ with the G-action on the second factor by right multiplication.

Examples of Principal Bundles

- Let X be a variety. Then for an algebraic group G, we have the trivial principal G-bundle $X \times G \to X$ with the G-action on the second factor by right multiplication.
- Let Y be an algebraic variety with free right G-action by a reductive group G and let the geometric quotient $Y \to Y/G$ exists. Then $Y \to Y/G$ is a principal G-bundle.

Examples of Principal Bundles

- Let X be a variety. Then for an algebraic group G, we have the trivial principal G-bundle $X \times G \to X$ with the G-action on the second factor by right multiplication.
- Let Y be an algebraic variety with free right G-action by a reductive group G and let the geometric quotient $Y \to Y/G$ exists. Then $Y \to Y/G$ is a principal G-bundle.
- Let $\mathcal{P} \to X$ be a principal G-bundle and let $f: Y \to X$ be any morphism. Then the pullback bundle $f^*(\mathcal{P}) := \mathcal{P} \times_X Y \to Y$ is a principal G-bundle over Y.

Toric Variety

Definition 1

A toric variety is a normal variety X such that

- (1) a torus $T \cong (\mathbb{C}^*)^n$ is a Zariski dense open subset of X, and
- (2) the natural action of T on itself extends to an action of T on X.

Toric Variety

Definition 1

A toric variety is a normal variety X such that

- (1) a torus $T\cong (\mathbb{C}^*)^n$ is a Zariski dense open subset of X, and
- (2) the natural action of T on itself extends to an action of T on X.

Example 2

- \blacksquare $(\mathbb{C}^*)^n$, \mathbb{C}^n , \mathbb{P}^n .
- Projectivization of direct sum of line bundles on a toric variety.
- Blow up of a toric variety at an invariant subvariety.

$$\Phi: (\mathbb{C}^*)^2 \longrightarrow \mathbb{P}^2$$

$$(t_1,t_2) \mapsto \left[t_1^6 t_2^0 : t_1^4 t_2^0 : t_1^6 t_2^1\right] = \left[1: t_1: t_2\right]$$
Closure of the "mage of Φ is \mathbb{P}^2 .

Jyoti Dasgupta, HSER Pune

• F	- or simplicit	y, we will assı	ume that X is	complete and	I nonsingular.	

- lacksquare For simplicity, we will assume that X is complete and nonsingular.
- Then X can be written as the union of affine toric varieties $X = \cup_{\sigma \in \Xi^*} X_{\sigma}$, where $X_{\sigma} \cong \mathbb{C}^n$.

- For simplicity, we will assume that *X* is complete and nonsingular.
- Then X can be written as the union of affine toric varieties $X = \cup_{\sigma \in \Xi^*} X_{\sigma}$, where $X_{\sigma} \cong \mathbb{C}^n$.
- Each X_{σ} contains a unique T-fixed point denoted by x_{σ} . Ξ^* may be identified with the set of T-fixed points of X.

- lacksquare For simplicity, we will assume that X is complete and nonsingular.
- Then X can be written as the union of affine toric varieties $X = \cup_{\sigma \in \Xi^*} X_{\sigma}$, where $X_{\sigma} \cong \mathbb{C}^n$.
- Each X_{σ} contains a unique T-fixed point denoted by x_{σ} . Ξ^* may be identified with the set of T-fixed points of X.
- We identify the open orbit O in X with T. Let $x_0 \in O$ correspond to $1_T \in T$.

■ The study of torus equivariant vector bundles on toric varieties was initiated by Kaneyama (1975, '88) and Klyachko (1989).

- The study of torus equivariant vector bundles on toric varieties was initiated by Kaneyama (1975, '88) and Klyachko (1989).
- Kaneyama proved the existence of an equivariant splitting for any torus equivariant vector bundle over \mathbb{P}^n of rank r < n. This is closely related to the Hartshorne conjecture on the splitting of any rank two vector bundle over \mathbb{P}^n for $n \ge 7$.

- The study of torus equivariant vector bundles on toric varieties was initiated by Kaneyama (1975, '88) and Klyachko (1989).
- Kaneyama proved the existence of an equivariant splitting for any torus equivariant vector bundle over \mathbb{P}^n of rank r < n. This is closely related to the Hartshorne conjecture on the splitting of any rank two vector bundle over \mathbb{P}^n for $n \ge 7$.
- Klyachko used the stability of toric vector bundles in his proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices.

- The study of torus equivariant vector bundles on toric varieties was initiated by Kaneyama (1975, '88) and Klyachko (1989).
- Kaneyama proved the existence of an equivariant splitting for any torus equivariant vector bundle over \mathbb{P}^n of rank r < n. This is closely related to the Hartshorne conjecture on the splitting of any rank two vector bundle over \mathbb{P}^n for $n \ge 7$.
- Klyachko used the stability of toric vector bundles in his proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices.

Goal: Study "toric principal bundles" over toric varieties.

Toric principal bundles

Let G denote a complex linear algebraic group. Let X be a toric variety with dense torus T, then a principal G-bundle $\pi: \mathcal{E} \to X$ is said to be a toric principal bundle if \mathcal{E} is endowed with a lift of T-action on X.

Moreover, the T-action on \mathcal{E} must commute with the G-action.

Equivariant trivialization over affine toric variety:

For any $\sigma \in \Xi^*$, set $\mathcal{E}_{\sigma} := \mathcal{E}|_{X_{\sigma}}$. A section $s_{\sigma} : X_{\sigma} \to \mathcal{E}_{\sigma}$ is called a distinguished section if

$$ts_{\sigma}(x) = s_{\sigma}(tx) \cdot \rho_{\sigma}(t), \ \forall x \in X_{\sigma}, \ \forall t \in T$$

where $\rho_{\sigma}: T \longrightarrow G$ is a homomorphism of algebraic groups.

Equivariant trivialization over affine toric variety:

For any $\sigma \in \Xi^*$, set $\mathcal{E}_{\sigma} := \mathcal{E}|_{X_{\sigma}}$. A section $s_{\sigma} : X_{\sigma} \to \mathcal{E}_{\sigma}$ is called a distinguished section if

$$ts_{\sigma}(x) = s_{\sigma}(tx) \cdot \rho_{\sigma}(t), \ \forall x \in X_{\sigma}, \ \forall t \in T$$

where $\rho_\sigma: T \longrightarrow G$ is a homomorphism of algebraic groups.

 \mathcal{E}_{σ} is trivial and admits a distinguished section.

Classification of distinguished sections

Let s_{σ} be a distinguished section with associated homomorphism ρ_{σ} .

Then for any $g\in G$, $s_\sigma\cdot g$ is a distinguished section with associated homomorphism $g^{-1}\rho_\sigma g$.

Classification of distinguished sections

Let s_{σ} be a distinguished section with associated homomorphism ρ_{σ} . Then for any $g \in \mathcal{G}$, $s_{\sigma} \cdot g$ is a distinguished section with associated homomorphism $g^{-1}\rho_{\sigma}g$.

Suppose s_{σ} and s'_{σ} are two arbitrary distinguished sections for \mathcal{E}_{σ} with homomorphisms $\rho_{\sigma}, \, \rho'_{\sigma}$ respectively. Then,

- $\rho_{\sigma}(t)\beta_{\sigma}\alpha_{\sigma}^{-1}\rho_{\sigma}(t)^{-1}$ extends to
 - a G-valued function over X_{σ} .

JYOTI DASGUPTA, IISER PUNE

Classification, reduction and stability of toric principal bundles

Admissible collections

An admissible collection $\{\rho_{\sigma}, P(\tau, \sigma)\}$ consists of a collection of homomorphisms

$$\{\rho_{\sigma}: T \longrightarrow G \mid \sigma \in \Xi^*\}$$

and a collection of elements $\{P(\tau, \sigma) \in G \mid \tau, \sigma \in \Xi^*\}.$

 $\{\rho_{\sigma},\, \textit{P}(\tau,\,\sigma)\}$ satisfies the following conditions:

 $\{\rho_{\sigma},\,P(\tau,\,\sigma)\}$ satisfies the following conditions:

■ For $\tau, \sigma \in \Xi^*$, the function $t \mapsto \rho_\tau(t)P(\tau, \sigma)\rho_\sigma(t)^{-1}$ extends to a *G*-valued function over $X_\sigma \cap X_\tau \supset T$.

 $\{\rho_{\sigma},\,P(\tau,\,\sigma)\}$ satisfies the following conditions:

- For $\tau, \sigma \in \Xi^*$, the function $t \longmapsto \rho_{\tau}(t)P(\tau, \sigma)\rho_{\sigma}(t)^{-1}$ extends to a G-valued function over $X_{\sigma} \cap X_{\tau} \supset T$.
- $P(\sigma, \sigma) = 1_G.$

 $\{\rho_{\sigma},\,P(\tau,\,\sigma)\}$ satisfies the following conditions:

- For $\tau, \sigma \in \Xi^*$, the function $t \longmapsto \rho_{\tau}(t)P(\tau, \sigma)\rho_{\sigma}(t)^{-1}$ extends to a G-valued function over $X_{\sigma} \cap X_{\tau} \supset T$.
- $P(\sigma, \sigma) = 1_G.$
- For $\tau, \sigma, \delta \in \Xi^*$, the cocycle condition $P(\tau, \sigma)P(\sigma, \delta)P(\delta, \tau) = 1_G$ holds.

 $\{\rho_{\sigma},\, \textit{P}(\tau,\,\sigma)\}$ satisfies the following conditions:

- For $\tau, \sigma \in \Xi^*$, the function $t \longmapsto \rho_{\tau}(t)P(\tau, \sigma)\rho_{\sigma}(t)^{-1}$ extends to a G-valued function over $X_{\sigma} \cap X_{\tau} \supset T$.
- $P(\sigma, \sigma) = 1_G.$
- For $\tau, \sigma, \delta \in \Xi^*$, the cocycle condition $P(\tau, \sigma)P(\sigma, \delta)P(\delta, \tau) = 1_G$ holds.

Two admissible collections are said to be equivalent if they satisfy certain conjugacy relations and some extension conditions.

 $\{\rho_{\sigma},\,P(\tau,\,\sigma)\}$ satisfies the following conditions:

- For $\tau, \sigma \in \Xi^*$, the function $t \longmapsto \rho_{\tau}(t)P(\tau, \sigma)\rho_{\sigma}(t)^{-1}$ extends to a G-valued function over $X_{\sigma} \cap X_{\tau} \supset T$.
- $P(\sigma, \sigma) = 1_G.$
- For $\tau, \sigma, \delta \in \Xi^*$, the cocycle condition $P(\tau, \sigma)P(\sigma, \delta)P(\delta, \tau) = 1_G$ holds.

Two admissible collections are said to be equivalent if they satisfy certain conjugacy relations and some extension conditions.

Theorem 1 (D, Khan, Biswas, Dey, Poddar (2021))

The isomorphism classes of T-equivariant principal G-bundles on X are in one-to-one correspondence with the "equivalence classes" of admissible collections $\{\{\rho_{\sigma}, P(\tau, \sigma)\}\}$.

■ Let \mathcal{E} be a T-equivariant principal G-bundle over X.

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .
- For each $\sigma \in \Xi^*$, take a distinguished section $s_\sigma : X_\sigma \to \mathcal{E}$ such that $s_\sigma(x_0) = e$.

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .
- For each $\sigma \in \Xi^*$, take a distinguished section $s_\sigma : X_\sigma \to \mathcal{E}$ such that $s_\sigma(x_0) = e$.

Let $\Phi \in \operatorname{Aut}_{\mathcal{T}}(\mathcal{E})$ and $\Phi(e) = e \cdot g$ for some $g \in G$.

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .
- For each $\sigma \in \Xi^*$, take a distinguished section $s_\sigma : X_\sigma \to \mathcal{E}$ such that $s_\sigma(x_0) = e$.

Let $\Phi \in \operatorname{Aut}_{\mathcal{T}}(\mathcal{E})$ and $\Phi(e) = e \cdot g$ for some $g \in G$.

■ By continuity of Φ and density of O in X, Φ is determined by $\Phi|_{\mathcal{E}_O}$.

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .
- For each $\sigma \in \Xi^*$, take a distinguished section $s_\sigma : X_\sigma \to \mathcal{E}$ such that $s_\sigma(x_0) = e$.

Let $\Phi \in \operatorname{Aut}_{\mathcal{T}}(\mathcal{E})$ and $\Phi(e) = e \cdot g$ for some $g \in G$.

- By continuity of Φ and density of O in X, Φ is determined by $\Phi|_{\mathcal{E}_O}$.
- By T-equivariance, $\Phi|_{\mathcal{E}_O}$ is determined by $\Phi|_{\mathcal{E}_{x_0}}$.

Automorphisms of ${\mathcal E}$

- Let \mathcal{E} be a T-equivariant principal G-bundle over X.
- Let $e \in \mathcal{E}_{x_0}$, the fiber of \mathcal{E} at x_0 .
- For each $\sigma \in \Xi^*$, take a distinguished section $s_\sigma : X_\sigma \to \mathcal{E}$ such that $s_\sigma(x_0) = e$.

Let $\Phi \in \operatorname{Aut}_{\mathcal{T}}(\mathcal{E})$ and $\Phi(e) = e \cdot g$ for some $g \in G$.

- By continuity of Φ and density of O in X, Φ is determined by $\Phi|_{\mathcal{E}_O}$.
- By T-equivariance, $\Phi|_{\mathcal{E}_O}$ is determined by $\Phi|_{\mathcal{E}_{x_0}}$.
- $\Phi|_{\mathcal{E}_{x_0}}$ is determined by $\Phi(e)$ using G-equivariance.

Consider the map $\xi: \operatorname{Aut}_{\mathcal{T}}(\mathcal{E}) \to \mathcal{G}$, uniquely determined by the relation

$$\Phi(e) = e \cdot \xi(\Phi), \text{ for all } \Phi \in \mathsf{Aut}_{\mathcal{T}}(\mathcal{E}).$$

This map is an injective homomorphism.

Consider the map $\xi: \operatorname{Aut}_{\mathcal{T}}(\mathcal{E}) \to G$, uniquely determined by the relation

$$\Phi(e) = e \cdot \xi(\Phi), \text{ for all } \Phi \in \mathsf{Aut}_{\mathcal{T}}(\mathcal{E}).$$

This map is an injective homomorphism.

Theorem 2 (D, Khan, Biswas, Dey, Poddar (2021))

 $Aut_T(\mathcal{E})$, the group of T-equivariant automorphisms of \mathcal{E} , is given by

$$Aut_T(\mathcal{E}) = \{g \in G \mid \text{ for all } \sigma \in \Xi^*, \ \rho_\sigma(t)g\rho_\sigma(t)^{-1} \text{ extends to } X_\sigma \}.$$

Consider the map $\xi: \operatorname{Aut}_{\mathcal{T}}(\mathcal{E}) \to G$, uniquely determined by the relation

$$\Phi(e) = e \cdot \xi(\Phi), \text{ for all } \Phi \in \mathsf{Aut}_{\mathcal{T}}(\mathcal{E}).$$

This map is an injective homomorphism.

Theorem 2 (D, Khan, Biswas, Dey, Poddar (2021))

 $Aut_T(\mathcal{E})$, the group of T-equivariant automorphisms of \mathcal{E} , is given by

$$Aut_T(\mathcal{E}) = \{g \in G \mid \text{ for all } \sigma \in \Xi^*, \ \rho_{\sigma}(t)g\rho_{\sigma}(t)^{-1} \text{ extends to } X_{\sigma} \}.$$

In general, we have the inclusions

$$Z(G) \subseteq \operatorname{Aut}_{\mathcal{T}}(\mathcal{E}) \subseteq G$$
.

For $X = \mathbb{P}^m \times \mathbb{P}^n$ and $G = GL(m+n,\mathbb{C})$, we have $Z(G) \neq \operatorname{Aut}_T(\mathcal{E})$, where \mathcal{E} is the tangent frame bundle of X.

■ Let H be a closed subgroup of the complex linear algebraic group G and let $\phi: H \hookrightarrow G$ denote the inclusion map.

- Let H be a closed subgroup of the complex linear algebraic group G and let $\phi: H \hookrightarrow G$ denote the inclusion map.
- Let $\mathcal{E}_H \to X$ be a toric principal H-bundle with admissible collection $\{\rho_\sigma, P(\tau, \sigma)\}$.

- Let H be a closed subgroup of the complex linear algebraic group G and let $\phi: H \hookrightarrow G$ denote the inclusion map.
- Let $\mathcal{E}_H \to X$ be a toric principal H-bundle with admissible collection $\{\rho_\sigma, P(\tau, \sigma)\}$.
- Then the associated bundle $\mathcal{E}_H \times_H G$ is a toric principal G-bundle with admissible collection $\{\phi \circ \rho_\sigma, \phi(P(\tau, \sigma))\}$.

- Let H be a closed subgroup of the complex linear algebraic group G and let $\phi: H \hookrightarrow G$ denote the inclusion map.
- Let $\mathcal{E}_H \to X$ be a toric principal H-bundle with admissible collection $\{\rho_\sigma, P(\tau, \sigma)\}$.
- Then the associated bundle $\mathcal{E}_H \times_H G$ is a toric principal G-bundle with admissible collection $\{\phi \circ \rho_\sigma, \phi(P(\tau, \sigma))\}$.

Let \mathcal{E}_G be a toric principal G-bundle over X. \mathcal{E}_G is said to admit an equivariant reduction of structure group to $H \leq G$ if there exists a toric principal H-bundle \mathcal{E}_H such that the toric principal G- bundle $\mathcal{E}_H \times_H G$ is equivariantly isomorphic to \mathcal{E}_G .

Equivariant Levi reduction

Let G be reductive. A Levi subgroup of G is the centralizer in G of some torus in G.

Equivariant Levi reduction

Let G be reductive. A Levi subgroup of G is the centralizer in G of some torus in G.

Let
$$G = GL(n, \mathbb{C}), m \le n$$
.
$$T = \left\{ \begin{pmatrix} * & & & \\ & \ddots & & \\ & * & & \\ & & 1 & \\ & & & \ddots & \\ & & & 1 \end{pmatrix} \right\}, C_G(T) = \left\{ \begin{pmatrix} & * & & & 0 \\ & \ddots & & \vdots \\ & & * & 0 \\ \hline & 0 & \cdots & 0 & A \end{pmatrix} \right\}.$$

Equivariant Levi reduction

Let G be reductive. A Levi subgroup of G is the centralizer in G of some torus in G.

Let
$$G = GL(n, \mathbb{C})$$
, $m \leq n$.

$$T = \left\{ \begin{pmatrix} * & & & & \\ & \ddots & & & \\ & & * & & \\ & & & 1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix} \right\}, \ C_G(T) = \left\{ \begin{pmatrix} * & & & & 0 \\ & \ddots & & \vdots \\ & & * & 0 \\ \hline & 0 & \cdots & 0 & A \end{pmatrix} \right\}.$$

Theorem 3 (D, Khan, Biswas, Dey, Poddar (2021))

 \mathcal{E}_G has an equivariant reduction of structure group to a Levi subgroup H of G if and only if

$$Z^0(H) \subseteq Aut_T(\mathcal{E}_G)$$
.

Equivariant splitting of a toric principal bundle

We say that \mathcal{E}_G splits equivariantly if it admits an equivariant reduction of structure group to a torus subgroup of G.

Equivariant splitting of a toric principal bundle

We say that \mathcal{E}_G splits equivariantly if it admits an equivariant reduction of structure group to a torus subgroup of G.

Theorem 4 (D, Khan, Biswas, Dey, Poddar (2021))

Let $\phi: G \to G'$ be an injective homomorphism of reductive algebraic groups. Let $\mathcal{E}_{G'} := \mathcal{E}_G \times_G G'$, where \mathcal{E}_G is a toric principal G-bundle on X. Suppose that $\mathcal{E}_{G'}$ is equivariantly split, then \mathcal{E}_G itself splits equivariantly.

Theorem 5 (D, Khan, Biswas, Dey, Poddar (2021))

Let G be a reductive subgroup of $\mathrm{GL}(r,\mathbb{C})$. Any toric principal G-bundle on \mathbb{P}^n splits equivariantly if r < n.

Theorem 5 (D, Khan, Biswas, Dey, Poddar (2021))

Let G be a reductive subgroup of $\mathrm{GL}(r,\mathbb{C})$. Any toric principal G-bundle on \mathbb{P}^n splits equivariantly if r < n.

Proof.

Let \mathcal{E}_G be a T-equivariant principal G-bundle on \mathbb{P}^n .

Theorem 5 (D, Khan, Biswas, Dey, Poddar (2021))

Let G be a reductive subgroup of $\mathrm{GL}(r,\mathbb{C})$. Any toric principal G-bundle on \mathbb{P}^n splits equivariantly if r < n.

Proof.

Let \mathcal{E}_G be a T-equivariant principal G-bundle on \mathbb{P}^n . Then we have that $\mathcal{E}_G \times_G GL(r,\mathbb{C})$ splits equivariantly since r < n by Kaneyama's result.

Theorem 5 (D, Khan, Biswas, Dey, Poddar (2021))

Let G be a reductive subgroup of $\mathrm{GL}(r,\mathbb{C})$. Any toric principal G-bundle on \mathbb{P}^n splits equivariantly if r < n.

Proof.

Let \mathcal{E}_G be a T-equivariant principal G-bundle on \mathbb{P}^n . Then we have that $\mathcal{E}_G \times_G GL(r,\mathbb{C})$ splits equivariantly since r < n by Kaneyama's result.

Then by Theorem 4, \mathcal{E}_G splits equivariantly.

Theorem 5 (D, Khan, Biswas, Dey, Poddar (2021))

Let G be a reductive subgroup of $\mathrm{GL}(r,\mathbb{C})$. Any toric principal G-bundle on \mathbb{P}^n splits equivariantly if r < n.

Proof.

Let \mathcal{E}_G be a T-equivariant principal G-bundle on \mathbb{P}^n . Then we have that $\mathcal{E}_G \times_G GL(r,\mathbb{C})$ splits equivariantly since r < n by Kaneyama's result.

Then by Theorem 4, \mathcal{E}_G splits equivariantly.

This theorem has an alternative proof using certain results of Biswas and Parameswaran.

Why study (semi)stability

 \bullet (X, H) be a polarized nonsingular projective variety of dimension n.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- lacksquare Vector bundle on X.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \blacksquare \mathcal{E} vector bundle on X.
- $\blacksquare \ \deg \, \mathcal{E} := c_1(\mathcal{E}) \cdot H^{n-1} \text{, slope } \mu(\mathcal{E}) := \tfrac{\deg \, \mathcal{E}}{\operatorname{rank} \, \mathcal{E}}.$

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \mathcal{E} vector bundle on X.
- lacksquare deg $\mathcal{E}:=c_1(\mathcal{E})\cdot H^{n-1}$, slope $\mu(\mathcal{E}):=rac{\deg\mathcal{E}}{\operatorname{rank}\mathcal{E}}.$

Definition 3 (μ -stability or Mumford-Takemoto stability)

 ${\mathcal E}$ is said to be (semi)stable if for any coherent subsheaf ${\mathcal F}$ of ${\mathcal E}$ with

$$0 < rank \mathcal{F} < rank \mathcal{E}$$
, we have $\mu(\mathcal{F})(\leq) < \mu(\mathcal{E})$.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \mathbf{E} vector bundle on X.
- lacksquare deg $\mathcal{E}:=c_1(\mathcal{E})\cdot H^{n-1}$, slope $\mu(\mathcal{E}):=rac{\deg\mathcal{E}}{\operatorname{rank}\mathcal{E}}.$

Definition 3 (μ -stability or Mumford-Takemoto stability)

 \mathcal{E} is said to be **(semi)stable** if for any coherent subsheaf \mathcal{F} of \mathcal{E} with 0 < rank $\mathcal{F} < r$ ank \mathcal{E} , we have $\mu(\mathcal{F})(\leq) < \mu(\mathcal{E})$.

Example 4

Line bundles are stable.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \mathcal{E} vector bundle on X.
- lacksquare deg $\mathcal{E}:=c_1(\mathcal{E})\cdot H^{n-1}$, slope $\mu(\mathcal{E}):=rac{\deg\mathcal{E}}{\operatorname{rank}\mathcal{E}}.$

Definition 3 (μ -stability or Mumford-Takemoto stability)

 \mathcal{E} is said to be (semi)stable if for any coherent subsheaf \mathcal{F} of \mathcal{E} with 0 < rank $\mathcal{F} < r$ ank \mathcal{E} , we have $\mu(\mathcal{F})(\leq) < \mu(\mathcal{E})$.

Example 4

- Line bundles are stable.
- Tensor product of semistable bundles is again semistable.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \mathbf{E} vector bundle on X.
- lacksquare deg $\mathcal{E}:=c_1(\mathcal{E})\cdot H^{n-1}$, slope $\mu(\mathcal{E}):=rac{\deg\mathcal{E}}{\operatorname{rank}\mathcal{E}}.$

Definition 3 (μ -stability or Mumford-Takemoto stability)

 \mathcal{E} is said to be **(semi)stable** if for any coherent subsheaf \mathcal{F} of \mathcal{E} with 0 < rank $\mathcal{F} < r$ ank \mathcal{E} , we have $\mu(\mathcal{F})(\leq) < \mu(\mathcal{E})$.

Example 4

- Line bundles are stable.
- Tensor product of semistable bundles is again semistable.
- Dual of a semistable bundle is semistable.

- \bullet (X, H) be a polarized nonsingular projective variety of dimension n.
- \mathcal{E} vector bundle on X.
- lacksquare deg $\mathcal{E}:=c_1(\mathcal{E})\cdot H^{n-1}$, slope $\mu(\mathcal{E}):=rac{\deg\mathcal{E}}{\operatorname{rank}\mathcal{E}}.$

Definition 3 (μ -stability or Mumford-Takemoto stability)

 \mathcal{E} is said to be **(semi)stable** if for any coherent subsheaf \mathcal{F} of \mathcal{E} with 0 < rank $\mathcal{F} < r$ ank \mathcal{E} , we have $\mu(\mathcal{F})(\leq) < \mu(\mathcal{E})$.

Example 4

- Line bundles are stable.
- Tensor product of semistable bundles is again semistable.
- Dual of a semistable bundle is semistable.
- Tangent bundle of projective space is stable.

Equivariant stability of toric vector bundles

Definition 5

An equivariant vector bundle $\mathcal E$ on a toric variety X is said to be **equivariantly (semi)stable** with respect to an equivariant ample line bundle H if for any equivariant coherent subsheaf $\mathcal F$ of $\mathcal E$ with $0 < \operatorname{rank} \mathcal F < \operatorname{rank} \mathcal E$, we have $\mu(\mathcal F)(\leq) < \mu(\mathcal E)$.

Equivariant stability of toric vector bundles

Definition 5

An equivariant vector bundle $\mathcal E$ on a toric variety X is said to be **equivariantly (semi)stable** with respect to an equivariant ample line bundle H if for any equivariant coherent subsheaf $\mathcal F$ of $\mathcal E$ with $0 < \operatorname{rank} \mathcal F < \operatorname{rank} \mathcal E$, we have $\mu(\mathcal F)(\leq) < \mu(\mathcal E)$.

Theorem 6 (Kool (2011), Biswas, Dey, Genc, and Poddar (2018))

Let $\mathcal E$ be an equivariant vector bundle on a nonsingular projective toric variety X. Then $\mathcal E$ is (semi)stable if and only if it is equivariantly (semi)stable.

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

lacktriangledown for every proper parabolic subgroup $P\subsetneq G$ and

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

- lacktriangle for every proper parabolic subgroup $P\subsetneq G$ and
- every equivariant reduction \mathcal{E}_P of \mathcal{E}_G over any T-invariant open subset $U \subset X$ with $codim(X \setminus U) \geq 2$, and

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

- lacksquare for every proper parabolic subgroup $P\subsetneq G$ and
- every equivariant reduction \mathcal{E}_P of \mathcal{E}_G over any T-invariant open subset $U \subset X$ with $codim(X \setminus U) \geq 2$, and
- for every nontrivial character $\chi: P \longrightarrow \mathbb{C}^*$ which is dominant with respect to some Borel subgroup of G contained in P,

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

- lacktriangle for every proper parabolic subgroup $P\subsetneq G$ and
- every equivariant reduction \mathcal{E}_P of \mathcal{E}_G over any T-invariant open subset $U \subset X$ with $codim(X \setminus U) \geq 2$, and
- for every nontrivial character $\chi: P \longrightarrow \mathbb{C}^*$ which is dominant with respect to some Borel subgroup of G contained in P,

the associated line bundle $\mathcal{E}_P(\chi)$ has non-positive (respectively, negative) degree.

Definition 6

An equivariant principal G-bundle \mathcal{E}_G over a toric variety X is called equivariantly semistable (respectively, equivariantly stable) if

- for every proper parabolic subgroup $P \subsetneq G$ and
- every equivariant reduction \mathcal{E}_P of \mathcal{E}_G over any T-invariant open subset $U \subset X$ with $codim(X \setminus U) \geq 2$, and
- for every nontrivial character $\chi: P \longrightarrow \mathbb{C}^*$ which is dominant with respect to some Borel subgroup of G contained in P,

the associated line bundle $\mathcal{E}_P(\chi)$ has non-positive (respectively, negative) degree.

Theorem 7 (D, Khan, Biswas, Dey, Poddar (2021))

Let \mathcal{E}_G be a T-equivariant principal G-bundle on a projective toric variety X. Then \mathcal{E}_G is stable if and only if \mathcal{E}_G is equivariantly stable.

