

# Machine Learning I & II

Hi! PARIS DataBootcamp 2025







**Intermediate Track** 

### Agenda of the course

### Machine Learning I (9:00AM-10:30PM)

- Introduction to Machine Learning
- Data Preprocessing (+ demo)

### Machine Learning II (10:45PM-12:15PM)

- Model Training (+ demo)
- Model Evaluation (+ demo)
- Improve the performance of your model (+ demo) → if time





**Introduction to Machine Learning** 



"Machine Learning is the field of study that gives computers the ability to learn without explicitly being programmed."

Arthur Samuel, Pioneer of AI in the 1950's







# "Machine Learning is the field of study that gives computers the ability to learn without explicitly being programmed."

Arthur Samuel, Pioneer of AI in the 1950's



- In Machine Learning, algorithms make autonomious decisions
- Contains Deep Learning, a subfield focused on neural networks







Algorithms learn how to make decisions by <u>analyzing large amounts of</u> <u>data</u>, that can be stored in different formats







Algorithms learn how to make decisions by <u>analyzing large amounts of</u> data, that can be stored in different formats

Machine Learning →
structured data



Deep Learning → unstructured data







**Model training:** A model is given many examples and improves its results by adjusting its parameters







**Model training:** A model is given many examples and improves its results by adjusting its parameters



**Decision tree** 



**Neural networks** 





### **Feature vs Target variables**





Feature variables: Attributes of the data used to make predictions.

Shouldn't include the desired output (target).





### **Feature vs Target variables**





Feature variables: Attributes of the data used to make predictions.

Shouldn't include the desired output (target).



**Target variable**: Output variable that the model aims to predict.

- Data is considered "labeled" when the target is available.
- Data is "unlabeled" when it isn't.







Build a Machine Learning model that can predict whether a passenger survived (or not) the titanic

The dataset is **structured** 



| Survived | Pclass | Name                                                 | Sex    | Age  | SibSp | Parch | Ticket              | Fare    |
|----------|--------|------------------------------------------------------|--------|------|-------|-------|---------------------|---------|
| 0        | 3      | Braund, Mr. Owen<br>Harris                           | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  |
| 1        | 1      | Cumings, Mrs. John<br>Bradley (Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 |
| 1        | 3      | Heikkinen, Miss.<br>Laina                            | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  |
| 1        | 1      | Futrelle, Mrs.<br>Jacques Heath (Lily<br>May Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 |









4. · ·

| Survived | Pclass | Name                                                 | Sex    | Age  | SibSp | Parch | Ticket              | Fare    |
|----------|--------|------------------------------------------------------|--------|------|-------|-------|---------------------|---------|
| 0        | 3      | Braund, Mr. Owen<br>Harris                           | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  |
| 1        | 1      | Cumings, Mrs. John<br>Bradley (Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 |
| 1        | 3      | Heikkinen, Miss.<br>Laina                            | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  |
| 1        | 1      | Futrelle, Mrs.<br>Jacques Heath (Lily<br>May Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 |

The target variable is available → <u>Labeled dataset</u>



Target





#### Target



Model training



0 (Died)





X 0 (Died)

Machine Learning model











Step 1: Training



Step 2: Final prediction







### **Continuous vs Categorical data**





Continuous data: Numerical data that can take any value within a defined range

Examples: Weight, price, temperature



<u>Categorical data</u>: Data with a finite number of possible values/categories

- Categories are ordinal or nominal
- Examples: Yes/No, 0/1,....





### **Continuous vs Categorical data**



|   | Gender | Height | Weight | Index | Status          |
|---|--------|--------|--------|-------|-----------------|
| 0 | Male   | 174    | 96     | 4     | Obesity         |
| 1 | Male   | 189    | 87     | 2     | Normal          |
| 2 | Female | 185    | 110    | 4     | Obesity         |
| 3 | Female | 195    | 104    | 3     | Overweight      |
| 4 | Male   | 149    | 61     | 3     | Overweight      |
| 5 | Male   | 189    | 104    | 3     | Overweight      |
| 6 | Male   | 147    | 92     | 5     | Extreme Obesity |
| 7 | Male   | 154    | 111    | 5     | Extreme Obesity |
| 8 | Male   | 174    | 90     | 3     | Overweight      |
| 9 | Female | 169    | 103    | 4     | Obesity         |

Height and Weight are continuous

Gender, Index and Status are categorical





### **Main types of Machine Learning**









### **Main types of Machine Learning**



#### **Supervised Learning**



- Knowledge of the values to predict
- Model learns using labeled data (examples)

#### **Unsupervised Learning**



- No prior knowledge on what to predict
- Let the model discover groupings / patterns on its own
- unlabeled data





### **Supervised Learning**



1. Classification: Task of predicting a categorical target



Spam classification (Spam, ham)



Object classification (Dog, not dog)





### **Supervised Learning**



### 2. Regression: Task of predicting a continuous target



Income prediction (based on a happiness score)



Weather forecasting (based on historical data)





### **Supervised Learning**



### Regression





Fahrenheit

#### Classification



Will it be hot or cold tomorrow?



Fahrenheit





### **Unsupervised Learning**



#### 1. Clustering: Group data together based on distances/similarities





Recommend movies to similar users





### **Unsupervised Learning**



2. <u>Dimension reduction</u>: Represent data in a lower number of features to simplify visualization and interpretability







### **Machine Learning in practice**



In practice, Machine Learning is more then building algorithms. Models need clean and properly formated data to generate good results.



Covered in this course







### **What is Data Preprocessing**



**Data Preprocessing** is the process of transforming data it into a clean and suitable format for training.

### **Examples**

- Categorical Encoding (for categorical variables)
- Feature Scaling (for continuous variables)
- Feature Selection (not covered today)





### **Ordinal vs Nominal variables**



- Ordinal: Categorical variable whose categories have an inherent order/hierarchy
- Nominal (unordered): Categorical variable whose categories have have no hierarchy





### **Ordinal vs Nominal variables**











Categorical encoding means converting categorical variables into numerical values that can be understood and processed by a model.











Label Encoding

Replace categories by numerical values (0,1,2,...)

Each class gets attributed a numerical value within the same column



| Grades |  |  |  |
|--------|--|--|--|
| Α      |  |  |  |
| В      |  |  |  |
| С      |  |  |  |
| D      |  |  |  |
| Fail   |  |  |  |



| Grades | Encoded |
|--------|---------|
| Α      | 4       |
| В      | 3       |
| С      | 2       |
| D      | 1       |
| Fail   | 0       |

Grades is an ordinal categorical variables







### One-Hot Encoding

Create a new binary variable (0 or 1) for each class

Each class has its own column with 0 or 1





| New York | Boston | Chicago | California | New Jersey |
|----------|--------|---------|------------|------------|
| 1        | 0      | 0       | 0          | 0          |
| 0        | 1      | 0       | 0          | 0          |
| 0        | 0      | 1       | 0          | 0          |
| 0        | 0      | 0       | 1          | 0          |
| 0        | 0      | 0       | 0          | 1          |

Places is a nominal categorical variables



The variable is 1 if the place is New York, else 0







#### **Important notions:**

- Label Encoding should only be used on <u>ordinal feature variables</u>
- One-Hot Encoding can lead to a <u>huge increase in the number of</u> columns when the number of classes is large.





### **Feature scaling**



Feature scaling means scaling numerical variables to a similar range of values



#### Why is it useful?

- Improve a model's performance
- Decrease training time
- Not useful for every model (usually distance-based ones)





### **Feature scaling**



### Normalization (MinMax Scaling)

Scale values to a specific range, usually between 0 and 1

| Age | Normalized Age |
|-----|----------------|
| 44  | 0.80952381     |
| 27  | 0              |
| 30  | 0.142857143    |
| 38  | 0.523809524    |
| 40  | 0.619047619    |

| Salary | Normalized<br>Salary |  |  |  |
|--------|----------------------|--|--|--|
| 73000  | 0.838709677          |  |  |  |
| 47000  | 0                    |  |  |  |
| 53000  | 0.193548387          |  |  |  |
| 62000  | 0.483870968          |  |  |  |
| 57000  | 0.322580645          |  |  |  |

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

The normalized values of Age and Salary are between 0 and 1





### **Feature scaling**



2 Standardisation (Standard Scaler)

Scale a variable to a normal distribution, with a 0 mean and 1 standard deviation

| input | standardized |  |  |  |
|-------|--------------|--|--|--|
| 0     | -1.46385     |  |  |  |
| 1     | -0.87831     |  |  |  |
| 2     | -0.29277     |  |  |  |
| 3     | 0.29277      |  |  |  |
| 4     | 0.87831      |  |  |  |
| 5     | 1.46385      |  |  |  |

$$x_{new} = \frac{x - \mu}{\sigma}$$

The standardized input follows a normal distribution





#### **Normalization vs Standardisation**



#### 1. Normalization

- Better for variables without a normal distribution
- More sensitive to outliers

#### 2. Standardisation

- Better for variables that have close to a normal distribution
- Less sensitive to outliers

The best way to choose is to try both and compare results





## **Normalization vs Standardisation**













## **Normalization vs Standardisation**







#### Standardisation



#### **Normalization**







## **Training vs test data**



A dataset is split into a <u>training</u> and a <u>test\_set</u> to evaluate a model on new/unseen data







## **Training vs test data**



Data preprocessing **should be applied separately to each set** to prevent information in the training data to "leak" to the test data



Data preprocessing is only applied to the feature variables (X)!





# **Data Preprocessing with Scikit-learn**



Demo of how to use scikit-learn for data preprocessing

https://scikit-learn.org/stable/modules/preprocessing.html







## **Supervised Learning models**



Most supervised learning models have variants for Regression and Classification (but not all).

| Models              | Classification | Regression |
|---------------------|----------------|------------|
| Linear Regression   | No             | Yes        |
| Logistic Regression | Yes            | No         |
| K nearest neighbors | Yes            | Yes        |
| Decision Trees      | Yes            | Yes        |
| Random Forest       | Yes            | Yes        |
| Boosting            | Yes            | Yes        |







Find the best **linear equation** (or line) that describes the relationship between the features and target variable







Find the best **linear equation** (or line) that describes the relationship between the features and target variable



Feature (X): Income

Target (Y): Happiness score (0 to 10)







Find the best **linear equation** (or line) that describes the relationship between the features and target variable



**Linear equation** 

$$Y = a + X * b$$







Find the best **linear equation** (or line) that describes the relationship between the features and target variable



#### **Linear equation**

Happiness Score = **a** + Income \* **b** 







Find the best **linear equation** (or line) that describes the relationship between the features and target variable



Find optimal parameters by minimizing distances with the estimated line







Estimate the probability that an observation belongs to two possible classes (binary classification)







Estimate the probability that an observation belongs to two possible classes









Logistic Regression is an adaptation of Linear Regression for binary classification tasks

$$Y = a + X * b$$
  $\sigma(z) = \frac{1}{1 + \exp(-z)}$ 

Linear regression Sigmoid function







Logistic Regression is an adaptation of Linear Regression for binary classification tasks

$$Y = a + X * b$$
  $\bigoplus$   $\sigma(z) = \frac{1}{1 + \exp(-z)}$   $\Longrightarrow$   $P(Y = 0)$  Linear regression Sigmoid function Probability of the target being 0







Final predictions are made by setting a threshold value (usually 0.5)

$$P(Y=0) \ge 0.5$$
  $\longrightarrow$  The model predicts 0

$$P(Y=0) < 0.5 \implies$$
The model predicts 1





# K nearest neighbors (KNN)



Predict the output of an observation using the data points that are closest to it (in its <u>neighborhood</u>)







# K nearest neighbors (KNN)



Predict the output of an observation using the data points that are closest to it (in its <u>neighborhood</u>)

**k** indicates how many points belong to a neighborhood

→ "hyperparameter" that must be chosen







# K nearest neighbors (KNN)



## **Final prediction:**

- Regression: Compute the mean value of neighbor points
- Classification: Assign the most commonly found class in the neighborhood









Build a decision tree that makes predictions by **splitting data into homogenous groups** (group points with similar caracteristics)







Build a decision tree that makes predictions by **splitting data into homogenous groups** (group points with similar caracteristics)

→ The model splits data using binary decision rules









#### **Example of a decision rule:**

What gender is the passenger?







#### **Example of a decision rule:**

- Gender = Male: left split
- Gender = Female: right split









Continue till you reach the end of the tree (**leaf node**)







88

How does the tree stop splitting?

- Set a max tree depth
- Set a <u>miniumum number of</u> <u>points</u> in a leaf/final node

→ "hyperparameters" that must be chosen







#### **Final prediction**

 Regression: Compute the average value in a leaf node to make a prediction

Classification: Assign the majority class to the new data point









Build multiple <u>decorrelated trees</u> than aggregate final results to make a prediction on a new data point







Build multiple <u>decorrelated trees</u> than aggregate final results to make a prediction on a new data point

→ Prevent overfitting with regular Decision Trees















**Step 1**: Generate bootstrap samples Bootstrap sampling

Labelled training set

subsample
1 subsample
2 subsample
3 n

→ Boostraping means resampling multiple times the original data















Step 2: Build trees using the bootstrap samples

Building the trees on a random set of features









Step 3: Each tree makes its own prediction













#### **Final prediction**

- Regression: Compute the average value of each tree predictions
- Classification: Apply a majority vote between each class predicted









**Build multiple trees <u>sequentially</u>** by adapting from previous errors, instead of building them independently







**Build multiple trees <u>sequentially</u>** by adapting from previous errors, instead of building them independently

→ Any weak learner can be used, not only decision trees







**Weak learners** are models that perform slightly better than a random guess (with a 50% accuracy)











 $X_1$ 





# Focus on the previous errors





Each new learner focuses on the mistakes made by the previous ones.



$$\widehat{y}_{\mathrm{boost}}(\mathbf{x}) {=} \mathrm{sign} \! \left( \textstyle \sum_{b=1}^{3} \alpha^{(b)} \widehat{y}^{(b)}(\mathbf{x}) \right)$$













# **Different types of Boosting**



- AdaBoost: Adjust the weights of training data
- Gradient Boosting: Correct residual errors
- Extreme Gradient Boosting (XGBoost): Fast implementation of Gradient Boosting

# XGBoost





# **Summary of Supervised models**



| Models              | Complexity | Hyperparameters                                                                                                                                                                       |
|---------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear Regression   | Low        | None                                                                                                                                                                                  |
| Logistic Regression | Low        | C: regularization strength                                                                                                                                                            |
| K nearest neighbors | Low        | • n_neighbors: number of neighbors (k)                                                                                                                                                |
| Decision Trees      | Medium     | <ul> <li>max_depth: depth of the tree</li> <li>min_samples_leaf: min number of points in a leaf node)</li> </ul>                                                                      |
| Random Forest       | High       | <ul> <li>Same as Decision Tree</li> <li>n_estimators: Number of trees</li> <li>max_features: Number of features for building trees</li> </ul>                                         |
| Boosting            | High       | <ul> <li>Same as Decision Tree + n_estimators</li> <li>learning rate: Scale each trees contribution</li> <li>Subsample: Fraction of samples used to build individual trees</li> </ul> |





# Other supervised models (classification)



- Support Vector Machine (SVM): Find the line that best separates classes by maximizing the margin between them.
- Neural networks (MLP): Layers of "neurons" that process input data by adjusting weights, mimicking the way the human brain works.







Neural Network





# **Model training with Scikit-learn**



Demo of how to use scikit-learn for model training

https://scikit-learn.org/stable/supervised\_learning.html









 Evaluation in Machine Learning is performed by comparing the predicted values of a model with true values







Evaluation is done on the <u>test data</u>. This ensure the model is <u>reliable</u> on data it hasn't seen during training.













Training features and target (train split)



Machine Learning model











#### **Accuracy**

Ratio of correct predictions to the total number of predictions

$$Accuracy = \frac{Nbr\ of\ correct\ predictions}{Total\ nbr\ of\ predictions}$$

- → Accuracy is always between 0 and 1
- → Reflects the overall performance of a model







#### **Example of Accuracy**

Our classification model predicts two classes (0 and 1) Let's test its performance on **119 new observations** 

- 105 are correct predictions
- 14 are incorrect predictions
- → Accuracy = 105/119 = 0.88 (88%)







#### **Example of Accuracy**

Now let's study its performance separatly on each predicted class









#### **Example of Accuracy**

Now let's study its performance separatly on each predicted class



Accuracy can be misleading if the target classes are not in the same proportion







#### **Confusion Matrix**

Summarize the performance of a classifier for each predicted class

#### **Predicted label**

Positive (1)

Positive (1)

Positive (1)

State of the positive of the positiv







#### **Confusion Matrix**

Summarize the performance of a classifier for each predicted class









#### **Confusion Matrix**

Summarize the performance of a classifier for each predicted class

#### **Predicted label**









#### **Confusion Matrix**

Summarize the performance of a classifier for each predicted class

#### **Predicted label**

|              | Positive (1)             | Negative (0)            |                                  |                     |
|--------------|--------------------------|-------------------------|----------------------------------|---------------------|
| Positive (1) | <b>5</b> True positive   | <b>4</b> False negative | <br>$\frac{5}{5+4} = 0.55$       | Class 1<br>accuracy |
| Negative (0) | <b>10</b> False positive | 100<br>True negative    | <br>$\frac{10}{10 + 100} = 0.90$ | Class 0 accuracy    |







#### **Precision**

Proportion of predicted positives that were actually correct

$$\frac{TP}{TP + FP}$$

## **Recall**

Proportion of true positives that were correctly identified

$$\frac{TP}{TP + FN}$$

#### **Learn more about Precision and Recall**

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall







#### F1-score

Combine precision and recall into a single metric (harmonic mean)

$$F1 \, score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$







#### **Example of Precision and Recall**

Let's take the same example

#### **Predicted label**

|            |              | Positive (1)              | Negative (0)                |
|------------|--------------|---------------------------|-----------------------------|
| True label | Positive (1) | <b>5</b><br>True positive | <b>4</b><br>False negative  |
|            | Negative (0) | <b>10</b> False positive  | <b>100</b><br>True negative |







#### **Example of Precision and Recall**

#### **Predicted label**

|            |              | Positive (1)       | Negative (0)                |
|------------|--------------|--------------------|-----------------------------|
| True label | Positive (1) | 5<br>True positive | <b>4</b> False negative     |
|            | Negative (0) | 10 False positive  | <b>100</b><br>True negative |

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive} = \frac{5}{15} = 0.33$$

When the model predicts positive (1), it is correct 33% of the time







#### **Example of Precision and Recall**

#### **Predicted label**

|            |              | Positive (1)                | Negative (0)                |
|------------|--------------|-----------------------------|-----------------------------|
| True label | Positive (1) | <b>5</b> True positive      | <b>4</b><br>False negative  |
|            | Negative (0) | <b>10</b><br>False positive | <b>100</b><br>True negative |

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative} = \frac{5}{9} = 0.55$$

The model correctly identifies 55% of all positive classes







#### **Example of F1 score**

$$Precision = 0.33$$

$$Recall = 0.55$$

$$F1 score = \frac{2 \times Precision \times Recall}{Precision + Recall} = \mathbf{0.41}$$

The F1 score is significantly lower than accuracy (41% vs 88%)

The model has a hard time predicting class 1 correctly







#### **Precision and Recall Curve**



A « good model » has its curve pointing to the **top right of the graph** 

→ Tradeoff between Precision and Recall





# **Summary of evaluation methods**



| Metric                         | Туре           | Caracteristics                                     | Bounded   | Goal     |
|--------------------------------|----------------|----------------------------------------------------|-----------|----------|
| Accuracy                       | Classification | Overall performance of the model                   | Yes [0,1] | Maximise |
| Confusion Matrix               | Classification | Study the performance on all predicted classes     | х         | х        |
| Precision, Recall and F1 score | Classification | Focus on the performance on the positive class (1) | Yes [0,1] | Maximise |





# **Summary of evaluation methods**



| Metric                         | Type           | Caracteristics                                     | Bounded   | Goal     |
|--------------------------------|----------------|----------------------------------------------------|-----------|----------|
| Accuracy                       | Classification | Overall performance of the model                   | Yes [0,1] | Maximise |
| Confusion Matrix               | Classification | Study the performance on all predicted classes     | х         | х        |
| Precision, Recall and F1 score | Classification | Focus on the performance on the positive class (1) | Yes [0,1] | Maximise |

For regression models, metrics such as the **Mean Squared Error** or the **R2 score** are used instead





## **Model Evaluation with Scikit-learn**



Demo of how to use scikit-learn for model evaluation

https://scikit-learn.org/stable/modules/model\_evaluation.html







Improve the performance of a model

# Improve the performance of a model









# **Common reasons for low performances**



 Overfitting: The model has learned too closely on the training data and can't generalize to new data (test set)

→ This can lead to unstable predictions









## **Common reasons for low performances**



 Underfitting: The model hyperparameters you selected for training aren't optimal for your task







## **Common reasons for low performances**



• **Unbalanced data**: The classes to predict in the target variable aren't in the same proportion.







# **Reduce overfitting**



#### K-Fold cross validation

Evaluate a model on K number of train/test splits (usually K=5)







# Hyperparameter tuning



#### **Grid Search**

Find the optimal hyperparameters of a model by testing every possible combination







# Improve the performance on unbalanced data



Most models have a hyperparameter called **class\_weight** to help with unbalanced data.

#### **class\_weight**: dict or 'balanced', default=None

Weights associated with classes in the form {class\_label: weight}. If not given, all classes are supposed to have weight one.

The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as  $n_samples / (n_classes * np.bincount(y))$ .

Note that these weights will be multiplied with sample\_weight (passed through the fit method) if sample\_weight is specified.





# Improve the performance on unbalanced data



Most models have a hyperparameter called **class\_weight** to help with unbalanced data.

#### class\_weight : dict or 'balanced', default=None

Weights associated with classes in the form {class\_label: weight}. If not given, all classes are supposed to have weight one.

The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as  $n_samples / (n_classes * np.bincount(y))$ .

Note that these weights will be multiplied with sample\_weight (passed through the fit method) if sample\_weight is specified.

When equal to « **balanced** », errors on the minority class will be penalized more heavily during training





# Thank you for listening! Do you have any questions?





# How does scaling improve performances?



- <u>Distance-based models</u>: Models that rely on distances to measure similarity between points and make predictions
- Numerical variables with a large range will contribute more to the decrease in distance → false sense of importance







## How to choose a model to train?



- What is the <u>business objective</u>, the end goal ?
  - Predict known values or discover unknown patterns ? (Supervised vs Unsupervised Learning)
  - Predict a continuous or categorical value ? (Regression vs Classification)









## How to choose a model to train?



- Size of the training data?
- Accuracy vs interpretability of the output ?
- Access to powerful computing ressources?





## **Evaluation for Classification models**



#### **Tradeoff between Precision and Recall**

Improving Precision tends to reduce Recall (and vice versa)









## **Mean squared error**:

Measure the distance between the predicted value and the true value

$$ext{MSE} = egin{pmatrix} ext{Mean} & ext{Error} & ext{Squared} \ ext{MSE} & ext{} &$$

→ Average errors of every predicted observation/point







## Root mean squared error:

Compute the square root of the mean squared error

$$RMSE = \sqrt{\sum_{i=1}^{n} rac{(\hat{y}_i - y_i)^2}{n}}$$
 Mean squared error

→ More intutive as it is the same unit as the original data







## Important information:

- A lower MSE and RMSE signals a better perforemance
- MSE and RMSE are not bounded between 0 and 1
- Should only be used to compare models trained on the same data







## R2 score

Measure the **goodness of fit** of a regression model (how well it explained the variations in the target variable Y)

R2 Squared = 
$$1 - \frac{SSr}{SSm}$$

SSr = Squared sum error of regression line

SSm = Squared sum error of mean line







## R2 score

Measure the **goodness of fit** of a regression model (how well it explained the variations in the target variable Y)

- → R2 is **bounded between 0 and 1** (not like MSE and RMSE)
- → A higher R2 signals a better model





# **Summary of evaluation methods**



| Metric                                            | Туре           | Caracteristics                                                      | Bounded   | Goal     |
|---------------------------------------------------|----------------|---------------------------------------------------------------------|-----------|----------|
| Accuracy                                          | Classification | Overall performance of the model                                    | Yes [0,1] | Maximise |
| Confusion Matrix                                  | Classification | Study the performance on all predicted classes                      | х         | х        |
| Precision, Recall and F1 score                    | Classification | Focus on the performance on the positive class (1)                  | Yes [0,1] | Maximise |
| Mean squared error,<br>Root mean squared<br>error | Regression     | Measure the distance between predictions and true values            | No        | Minimise |
| R2 score                                          | Regression     | Evaluate how well the features explain the variations of the target | Yes [0,1] | Maximise |





## **Random Search**



Try randomly chosen combinations of hyperparameters to find well performing (but not necessary optimal) ones





