

AD-A081 161 TEXAS A AND M UNIV COLLEGE STATION INST OF STATISTICS F/G 12/1
TIME SERIES ANALYSIS METHODS AND APPLICATIONS: BIBLIOGRAPHY OF --ETC(U)
JAN 80 E PARZEN N00014-78-C-0599
UNCLASSIFIED TR-N-11 NL

1 OF 3
AD
ADBI 161

LEVEL

TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77843

Institute of Statistics
Project No. 77-141

Unclassified

REPORT DOCUMENTATION PAGE

REPORT NUMBER		1. GOVT ACCESSION NO.	2. TYPE OF REPORT & PERIOD COVERED
Technical Report No. N-11			Technical
4. TITLE (and subtitle)		5. PERFORMING ORGANIZATION REPORT NUMBER	
Time Series Analysis Methods and Applications: Bibliography of Books in English			
7. AUTHOR(S)		6. CONTACT OR GRANT NUMBER	
Emanuel Parzen		R00014-78-C-0599 ✓	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. REPORT DATE	
Texas A&M University Institute of Statistics College Station, TX 77843		January 1980	
11. CONTROLLING OFFICE NAME AND ADDRESS		13. NUMBER OF PAGES	
Office of Naval Research Code 436 Arlington, VA 22217		260	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		14. SECURITY CLASSIFICATION	
		Unclassified	
16. DISTRIBUTION STATEMENT (or see Remarks)		15. SECURITY CLASSIFICATION DECISION	
		No Declassification Decision	
Approved for public release; distribution unlimited.			

17. DISTRIBUTION STATEMENT (if one different from Block 10, if different from Remarks)

NA

18. SUPPLEMENTARY NOTES

NA

Accession For

NFIS GRANT

DDC TAB

Unannounced

Justification

Texas A & M Research Foundation

Project No. 3838

"Multiple Time Series Modeling and Time

Series Theoretic Statistical Methods:

Sponsored by the Office of Naval Research

Professor Emanuel Parzen, Principal Investigator

Approved for public release; distribution unlimited.

DO

1/27/80

Edition of 1 Nov 68 Obsolete

S/N 0102-LP-010-0481

Unclassified

Security Classification of This Page from Date Entered

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.

THE COPY FURNISHED TO DDC CONTAINED A

SIGNIFICANT NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

347380

ADAO81161

DTIC
SELECTED
S FEB 28 1980

12 279

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

Time Series Analysis Methods and Applications:

Bibliography of Books in English

by

Emanuel Parzen

Introduction

This bibliography, together with a recent report by Parzen entitled "Time Series Analysis Methods and Applications: Increased Interdisciplinary Interaction Could Stimulate Research Breakthroughs", have been prepared to help planning for future directions of research and education in statistical time series analysis methods and applications.

This bibliography provides a list of books available in English, and reproduces from each book its title page and table of contents. It also includes prefaces and references from many books.

This bibliography should not be regarded as an exhaustive list. To expedite its preparation, the current list includes only books which were easily available at this time. Since it is hoped to prepare a supplementary list, suggestions for additions to the list are welcome.

For their invaluable assistance, I would like to thank my secretary, Nan Mitchell, and the students enrolled in my Fall 1979 time series course.

- 1938 - Wold, Herman
A Study in the Analysis of Stationary Time Series.
- 1941 - Davis, Harold T.
The Analysis of Economic Time Series.
- 1949 - Wiener, Norbert
Extrapolation, Interpolation, and Smoothing of Stationary Time Series
- 1957 - Grenander, Ulf, and Rosenblatt, Murray
Statistical Analysis of Stationary Time Series.
- 1957 - Quenouille, M.H.
The Analysis of Multiple Time-Series.
- 1958 - Blackman, R.B., and Tukey, J.W.
The Measurement of Power Spectra
- 1960 - Hannan, E.J.
Time Series Analysis
- 1962 - Yaglom, A.M.
An Introduction to the Theory of Stationary Random Functions.
- 1963 - Brown, Robert Goodell
Smoothing, Forecasting and Prediction of Discrete Time Series.
- 1963 - Whittle, P.
Prediction and Regulation by Linear Least-Square Methods.
- 1964 - Granger, C.W.F., and Hatanaka, M.
Spectral Analysis of Economic Time Series.
- 1964 - Gregg, J.V.; Hossell, C.H., and Richardson, J.T.
Mathematical Trend Curves: an Aid to Forecasting.
- 1966 - Simpson, Stephen Milton Jr.
Time-Series Computations in FORTRAN and FAP.
- 1967 - Albert, Arthur E., and Gardner, Leland A. Jr.
Stochastic Approximation and Nonlinear Regression.
- 1967 - Harris, Bernard
Spectral Analysis of Time Series.
- 1967 - Ivakhnenko, A.G., and Lapa, V.G.
Cybernetics and Forecasting Techniques.
- 1967 - Merriam, Daniel F.
Computer Applications in the Earth Sciences: Colloquium on Time-Series Analysis.

- 1967 - Parzen, Emanuel
Time Series Analysis Papers.
- 1967 - Robinson, Enders A.
Statistical Communication and Detection.
- 1967 - Rozanov, Yu.A.
Stationary Random Processes.
- 1968 - Jenkins, Gwilym M., and Watts, Donald G.
Spectral Analysis and its Applications.
- 1968 - Robinson, Enders A.
Multichannel Time Series Analysis with Digital Computer Programs.
- 1969 - Fishman, George S.
Spectral Methods in Econometrics
- 1970 - Astrom, Karl J.
Introduction to Stochastic Control Theory.
- 1970 - Box, George E.P., and Jenkins, Gwilym M.
Time Series Analysis Forecasting and Control.
- 1970 - Brillinger, David R.
Time Series Data Analysis and Theory.
- 1970 - Hannan, E.J.
Multiple Time Series.
- 1971 - Anderson, T.W.
The Statistical Analysis of Time Series.
- 1971 - Bendat, Julius S., and Piersol, Allan G.
Random Data: Analysis and Measurement Procedures.
- 1973 - Kendall, Sir Maurice
Time-Series.
- 1973 - Nelson, Charles R.
Applied Time Series Analysis for Managerial Forecasting.
- 1974 - Chatfield, C.
The Analysis of Time Series: Theory and Practice.
- 1976 - Koopmans, L.H.
The Spectral Analysis of Time Series.
- 1975 - Kanasevitch, E.R.
Time Sequence Analysis in Geophysics.
- 1976 - Bloomfield, Peter
Fourier Analysis of Time Series: An Introduction.
- 1976 - Claerbout, Jon F.
Fundamentals of Geophysical Data Processing.
- 1976 - Fuller, Wayne A.
Introduction to Statistical Time Series.
- 1976 - Gilchrist, Warren
Statistical Forecasting.
- 1976 - Kashyap, R.L., and Rao, A.
Dynamic Stochastic Models from Empirical Data.
- 1976 - Mehra, Raman K., and Lainiotis, Dimitri G.
System Identification.
- 1976 - Montgomery, Douglas C., and Johnson, Lynwood A.
Forecasting and Time Series Analysis.
- 1976 - Pindyck, Robert S., and Rubinfeld, Daniel L.
Econometric Models and Economic Forecasts.
- 1977 - Granger, C.W.J., and Newbold, Paul
Forecasting Economic Time Series.
- 1977 - Kallath, Thomas
Linear Least-Squares Estimation.
- 1978 - Childers, Donald G.
Modern Spectrum Analysis.
- 1978 - Findley, David F.
Applied Time Series Analysis.
- 1978 - Ostrom, Charles W. Jr.
Time Series Analysis: Regression Techniques.
- 1978 - Otnes, Robert K., and Enochson, Loren
Applied Time Series Analysis.
- 1979 - Robinson, Enders A., and Silvia, Manuel T.
Digital Foundations of Time Series Analysis.
- 1979 - Silvia, Manuel T., and Robinson, Enders A.
Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas.
- 1979 - Neriote, Marc, Grether, David M., and Carvalho, José L.
Analysis of Economic Time Series.

1938

A STUDY IN THE ANALYSIS OF
STATIONARY TIME SERIES

BY

HERMAN WOLD

SECOND EDITION

WITH AN APPENDIX BY

PETER WHITTLE

ALMQVIST & WIKSELL
STOCKHOLM

PREFACE.

In a sequence of fundamental memoirs, G. U. S. YULE, the eminent English statistician, has proposed certain methods of time series analysis which are of an essentially wider scope than the classical methods used in the search for periodicities. The basis of the new methods is a concept of flexible periodicity which in an ideal case reduces to the classical, functionally rigid periodicity. The importance and the broad applicability of the new ideas has been stressed particularly in subsequent discussion of the nature of business cycles.

In the recent rapid development of the theory of probability, the production of A. KHINTCHINE and A. KOLMOGOROFF represents a genuine discontinuity. A firm, axiomatic foundation has been obtained for the theory; other important results belong to the theory of random processes, i. e. hypothetical models for the analysis of time series. In accordance with the great diversity of time series, the main types of random process are of quite different structure.

In the theory of probability, the approaches of G. U. YULE fall under the heading of the stationary random process as defined and studied by A. KHINTCHINE. The present work might be described as a trial to subject the fertile methods of empirical analysis proposed by YULE to an examination and a development by the use of the mathematically strict tools supplied by the modern theory of probability. This statement, however, implies no valuation of the results and should be regarded rather as a tribute to my sources of inspiration and to the traditions of my milieu of study.

My most sincere thanks are due to my teacher, Professor HARALD CRAMÉR. His brilliant courses, distinguished by a spirit of realism combined with penetrating logic, have laid the foundation for my further work. As far as the present thesis is concerned, this is true not only in general but also in respect to particular parts thereof, as indicated by the references to his 1933 course on Time Series Analysis. I wish to evidence my deep gratitude to Professor Cramér also for the encouragement and interest shown me at all

PREFACE

times, and culminating in his detailed reading of the first version of the manuscript. Our subsequent discussions have caused a revision particularly of the treatment of questions of convergence in probability.

To the Royal Swedish Academy of Sciences I want to express my respectful gratitude for a generous grant covering a substantial part of the expenses for printing and numerical calculation.

I am greatly indebted to my friends and colleagues Mr. G. ELVING, Mr. W. FELLER and Mr. O. LUNDBERG for numerous stimulating discussions and for having read the manuscript and corrected many errors. I have also profited to a great extent by consultations with a large number of research workers in the different fields touched upon in the thesis. These obligations are, however, too comprehensive and indefinite to be expressed in detail.

Stockholm, July 1938.

H. W.

PREFACE TO THE SECOND EDITION.

Stationary processes having in the last 15 years been the subject of intensive research, important results have been obtained both regarding their theory and their many fruitful applications. In presenting a new edition of my thesis, the recent development is briefly dealt with in Appendices A-B (these replace Appendices A-B of the first edition, which were devoted to special topics), whereas the main text is left unaltered, except for a slight revision that makes use only of material available in 1938. I am greatly indebted to Dr. WHITTLE for writing Appendix 2, in which two main lines of progress are surveyed, viz. spectral theory and methods of statistical inference. The short Appendix 1 comments, by way of numbered foot notes, a few specific points in the main text.

The first edition had the dual form of an expository survey and a research report. It is hoped that the second edition may still serve as an introduction to the theory and the applications of stationary processes.

Uppsala. March 1953.

H. W.

Contents.

Introduction.

	Page
1. Remarks on the scope of the study	1
2. Principles of notation	8

	Page
CHAPTER I. A survey of hypotheses and methods proposed for the analysis of time series.	
3. Scope and disposition	13
4. Functional schemes	14
5. On applied harmonic analysis	17
6. On the linear difference equation	19
7. A purely probabilistic approach	21
8. A scheme of hidden periodicities	22
9. On the criticism of the scheme of hidden periodicities	25
10. Remarks on the schemes of linear regression	27
CHAPTER II. On the theory of the discrete stationary random process.	
11. Definition of the stationary processes	31
12. A theorem of A. KHINTCHINE	35
13. Some fundamental operations with random processes	35
14. On singular stationary processes	41
15. Some type cases of the discrete stationary process	47
16. On the normal stationary process	60
17. The autocorrelation coefficients as FOURIER constants	66
18. On linear approximation in a space of random variables	75
19. Linear autoregression analysis of the discrete stationary process	80
20. A canonical form of the discrete stationary process	84
CHAPTER III. On the theory of some special stationary processes.	
21. On the concept of stochastical difference equation	93
22. Some fundamentals concerning stochastical difference equations	96
23. On the stationary processes with finite dispersion and with no singular component	99
24. On the process of linear autoregression. General developments	103
25. On some special cases of linear autoregression	110
26. On the process of moving averages	121

CHAPTER IV. On the application of some stationary schemes.	Page
27. Preliminary remarks. Disposition	133
28. On the CRAIG effect	135
29. On earlier applications of the scheme of linear autoregression	140
30. Preliminary survey of methods	146
31. Some applications of the scheme of moving averages	150
32. Some applications of the scheme of linear autoregression	174

APPENDIX 1. Notes to the second edition 191

APPENDIX 2. by P. WHITTLE. Some recent contributions to the theory of stationary processes 196

List of references 229

Index 234

List of Theorems.

Theorem 1	Pag. 40	Theorem 7	Pag. 99
• 2	• 45	• 8	• 97
• 3	• 45	• 9	• 99
• 4	• 48	• 10	• 165
• 5	• 66	• 11	• 167
• 6	• 84	• 12	• 154

List of Graphs.

Fig. 1. Ordinarity and integrated periodograms	Pag. 16
• 2. Spectral functions of three autoregressive processes	113
• 3. Case distinction for spectral functions in second order autoregression	115
• 4. Spectral function with one maximum for $0 < \lambda < \pi$	116
• 5. Distribution of periodogram ordinates in first order autoregression	119
• 6. Correlograms for different types of stationary processes	147
• 7. Correlogram of BEVERAGE's wheat price index 1770-1869	152
• 8. Scatter diagrams for BEVERAGE's index series	163
• 9. Residual scatter for BEVERAGE's index series	166
• 10. Correlogram of Lake Väner level 1867-1936	172
• 11. Correlogram of rainfall 1867-1936 in Lake Väner basin	173
• 12. Myrdal's consumer price index 1840-1913	175
• 13. Adjustment paths in the nonconsecutive "upbranch"	181
• 14. Observed and fitted correlograms for MYRDAL's index series	192
• 15. Further correlograms for MYRDAL's index	183
• 16. Scatter diagrams for Myrdal's index series	185
• 17. Residual scatter for MYRDAL's index	186

• PREFACE

1941
THE ANALYSIS OF
ECONOMIC TIME SERIES

By

HAROLD T. DAVIS

The object of the present volume is to set forth in some detail the present status of the problem of analyzing and interpreting that very extensive set of data known as economic time series. This perplexing problem has engaged the attention of economists and statisticians for many years, but the extraordinary intensity with which it has been attacked during the past decade attests the importance which it has for modern economic development.

Since its beginning the laboratory of the Cowles Commission for Research in Economics has had as a major interest the investigation of the nature and action of stock price series. In the course of this investigation a number of interesting but difficult problems were encountered concerning the nature of economic time series in general, and the relation of these series to the basic postulates of economic theory in particular. To most of these questions only partial answers were discovered in the literature and in many cases these answers were not accompanied by careful statistical analyses. Therefore, it seemed to the author that a systematic treatise on the nature of economic series might fill a present need.

To one who works with statistical data it soon becomes apparent that the conclusions derived at the end of a process of analysis are intimately related to the postulates which underlie the tools employed in the investigation. The employment of a linear trend for the reference of residuals, or the graduation of a series of production data by means of the logistic curve, implies economic assumptions which must be carefully defined and subjected to realistic criticism. That is to say, conclusions mathematically derived are no better than the postulates upon which they rest. Hence it has seemed necessary to make a careful re-examination of the various mathematical devices which have been used in the study of economic data in order to appraise their weakness and their strength, and to define the range of their validity.

There is a perpetual fascination in economic time series, derived not only from their immense importance in the lives of all of us, but also from their statistical nature. Differing from the series encountered in the experiments of physical science, every economic time series possesses a large random element. But the series themselves are not random, in spite of some popular belief to the contrary, nor are

— iii —

THE PRINCPIAL PRESS, INC.
BLOOMINGTON, INDIANA
1941

1941

they sufficiently regular to satisfy most mathematical postulates. Hence, in many instances, the analysis must proceed from a description of the differences between random series and series that are not random. Correlations take the place of functions and serial relationships replace the more familiar functional equations of the exact sciences.

In the course of preparing so extensive a manuscript the author has become indebted to many people. Foremost among these is Mr. Alfred Cowles, president of the Cowles Commission, who for nearly a decade has liberally supported a scientific laboratory devoted to the investigation of problems in economic theory and economic statistics. His personal interest in these investigations and his own scientific contributions to the subject have been a source of inspiration and satisfaction to the author.

From Mr. Dickson H. Leavens, managing editor of *Econometrica* and research associate of the Cowles Commission, the author has received services too numerous to mention. Mr. Leavens assumed full editorial supervision of the manuscript and the planning of the charts is to be credited entirely to him.

During the preparation of the book the author received many suggestions from Dr. C. F. Roos, former research director of the Cowles Commission, and from Professor T. O. Yntema, the present research director. Their broad knowledge of economic problems was placed generously at his disposal.

A special debt of thanks is also due Professor Gerhard Tintner of Iowa State College, who read the entire proof carefully and offered many valuable suggestions. His exceptionally wide acquaintance with economic and statistical literature, especially that of European science, has made his criticism of great value.

To Mr. Herbert E. Jones, research associate of the Cowles Commission, the author is indebted for a number of essential contributions to the book. Mr. Jones undertook a thorough investigation of problems relating to the theory and application of serial correlation. In particular, he studied the properties of random series and then applied his analysis to the problem of determining the nature of the structural elements in economic time series. Much of the material in Chapters 3 and 4 is derived from his studies.

Throughout the long and arduous calculations presented at many places in the book the laboratory staff of the Cowles Commission has played an indispensable role. The brunt of this work has been assumed by Mr. George Danson, research associate of the Cowles Commission and director of the computing laboratory. The author is especially

indebted to him. In this phase of the work numerous computations were made by Miss Emma Manning, Miss Anne M. Lescisin, Mr. Edward Morris, and Mrs. Martha Beischner Swanson. Miss Kathryn Withers did the arduous work of inking and lettering the charts and Miss Mary Jo Lawley helped in preparing the manuscript for the printer.

To the great experience of Professor Irving Fisher in monetary theory and to the statistical studies of Mr. Carl Snyder on economic trends and the theory of prices the author owes a special debt. From conversations with Professor Ragnar Frisch of Oslo, Norway, and from his writings, more particularly his studies of harmonic analysis, confluence analysis, and the dynamics of cycles, the author has derived many valuable suggestions. Professor J. W. Angell of Columbia University very kindly supplied the author with monetary data which would otherwise have been inaccessible to him.

The author would also like to acknowledge his appreciation of the critical advice received from Dr. John Smith, research associate of the Cowles Commission, who has brought to bear upon the analysis a broad knowledge of statistical sampling. His criticism has been particularly valuable in connection with some of the material in Chapter 5. From other colleagues in the research staff of the Cowles Commission many helpful suggestions have been received. Professor Francis McIntyre, Dr. Abraham Wald, Dr. Edward N. Chapman, and the late Mr. W. F. C. Nelson all brought unique experience to bear upon certain aspects of the problem.

During the preparation of the book a series of conferences on economic problems was held in Colorado Springs under the auspices of the Cowles Commission. Some 200 lectures were given at these conferences and the author received many valuable suggestions both from the lectures and from informal conferences with the speakers. The effects of this unusual experience will be noted in many parts of the book.

The appraisal of the author's debt would not be complete without mention also of the help received in two other statistical laboratories, one at Indiana University and the other at Northwestern University. In the operation of these laboratories the author has been particularly indebted to Dean Fernandus Payne of Indiana University and to Professor E. J. Moulton of Northwestern University, both of whom have taken a personal interest in the work. In both laboratories many of the author's students contributed generously of their time. Colleagues in the departments of both physics and astronomy gave generously of their information at various stages of the writing of the manuscript.

THE ANALYSIS OF ECONOMIC TIME SERIES

Finally, but not least, the author must acknowledge his debt to the Principia Press and to its editor, Professor J. R. Kantor, who has extended in every way his cordial co-operation. The manuscript has been put into type and printed by the Denton Printing Company of Colorado Springs, who have met all the unusual requests incidental to the production of a mathematical and statistical treatise with unfailing cheerfulness.

From these acknowledgments it will be apparent that the present work is in many respects a collaborative effort. Such virtues as the work may have are to be shared by those who have been mentioned here; unfortunately, the responsibility for the errors must be assumed only by the author himself.

H. T. DAVIS.

*Northwestern University
Evanston, Illinois
November, 1941*

TABLE OF CONTENTS

CHAPTER I HISTORY OF THE PROBLEM	
1. Time Series	1
2. Astronomical Time Series	1
3. Economic Time Series	4
4. Types of Time Series	7
5. Economic Crises and Their Significance	9
6. The Problem of Trends	15
7. The Evidence for Cycles	24
8. Harmonic Analysis	26
9. The Advantages and Limitations of Harmonic Analysis	23
10. The Erratic-Shock Theory of Economic Time Series	36
11. Historical Summary of Application of Harmonic Analysis	43
12. The Theory of Business Cycles	44
13. Mathematical Attempts to Account for Cycles	49
14. Historical Summary of the Theory of Serial Correlation	52
15. The Analysis of Random Series	56
16. The Present Status of the Problem	59

CHAPTER 2 THE TECHNIQUE OF HARMONIC ANALYSIS	
1. Harmonic Analysis	60
2. Fourier Series	61
3. The Theorems of Bessel and Parseval and Their Significance	64
4. The Technique of Harmonic Analysis	67
5. A Mathematical Example	71
6. The Effect of a Linear Trend in Harmonic Analysis	75
7. Applications to Economic Time Series	77
8. Other Methods of Harmonic Analysis	83
9. The Exact Determination of the Period	87
10. Orthogonal Functions	89
11. Minimizing by the Method of Least Squares	95
12. Relationship to the Theory of Multiple Correlation	97

CHAPTER 3 SERIAL CORRELATION ANALYSIS	
1. Introduction	102
2. Examples of Lag Correlation	104
3. Inverse Serial Correlation	111
4. The Lag-Correlation Function for a Harmonic Sum	119
5. The Lag-Correlation Function and Its Harmonic Sum for Statistical Data	122
6. Some Examples Useful in the Analysis of Economic Time Series—Continuous Spectra	123
7. Yule's Theory of Random Variation	129
8. Lag Correlation and Its Relation to Supply and Demand Curves	135

CHAPTER 4	THE THEORY OF RANDOM SERIES	
1. Definitions and Examples	-	-
2. Gouttereau's Constant	-	-
3. Yule's Theory	-	-
4. Generalization of Yule's Theory of the Differences of Random Series	-	-
5. Accumulated Random Series	-	-
6. Random Series Smoothed by a Moving Average	-	-
7. The Theory of Sequences and Reversals	-	-
8. An Application to Stock-Market Action	-	-
CHAPTER 5	THE DRAUGHTS OF FREEDOM IN ECONOMIC TIME SERIES	
1. Preliminary Definitions	-	-
2. Economic Time Series as a Problem in Inverse Probability	-	-
3. Significance Tests and the Problem of Degrees of Freedom	-	-
4. Schuster's Significance Test in Harmonic Analysis	-	-
5. Walker's Significance Test in Harmonic Analysis	-	-
6. R. A. Fisher's Test of Significance	-	-
7. Factor Analysis	-	-
8. The Method of Elementary Energies	-	-
9. Examples Illustrating the Method of Elementary Energies	-	-
CHAPTER 6	THE ANALYSIS OF TRENDS	
1. Introduction	-	-
2. Types of Trend	-	-
3. Technical Discussion of the Linear Trend	-	-
4. Extension of the foregoing Theory to Polynomial Trends	-	-
5. Formulas for the Correlation of Residuals from Polynomial Trends	-	-
6. Example of the Reduction of Series to their Random Elements	-	-
7. Economic Significance of the Example	-	-
8. Seasonal Variation	-	-
9. The Variate Difference Method and Its Application	-	-
10. The Logistic Trend	-	-
11. The Growth of Population	-	-
12. The Growth of Production	-	-
13. Frequency Distribution of Time Series	-	-
14. The Stability of Trends	-	-
15. General Critique of the Economic Significance of Trends	-	-
CHAPTER 7	PERIODGRAM ANALYSIS	
1. Introduction	-	-
2. The Constructed Sine-Cosine Series	-	-
3. Random Series	-	-
4. Random Series Smoothed with a Moving Average	-	-
5. Cumulated Random Series (Smoothed)	-	-
6. The Cowles Commission All Stocks Index (1880-1896)	-	-
7. The Dow-Jones Industrial Averages (1847-1913)	-	-
8. The Dow-Jones Industrial Averages (1914-1924)	-	-
9. The Dow-Jones Industrial Averages (1925-1934)	-	-
CHAPTER 8	THE EVIDENCE AND EXPLANATION OF CYCLES	
1. The Enumeration of Theories	-	-
2. The Maximizing of Profits as an Example of How Cycles May Be Expected to Arise	-	-
3. The Macrodynamic Theory of Cycles	-	-
4. The Interest Theory of Cycles	-	-
5. The Building Cycle and its Influence	-	-
6. Other Cycle Theories—Statistical Hysteresis	-	-
7. The Random-Shock Theory of Cycles—The Galvanometer Experiment	-	-
8. The Perturbation Theory of Cycles	-	-
9. The Resonance Theory of Crises	-	-
10. Generalization of the Perturbation Theory	-	-
11. Conclusions	-	-
CHAPTER 9	THE NATURE OF WEALTH AND INCOME	
1. The Nature of the Problem	-	-
2. The Nature of Wealth	-	-
3. The Nature of Income	-	-
4. The Distribution of Incomes—Pareto's Law	-	-
5. Income Data	-	-
6. The Pareto Distribution	-	-
7. The Statistical Verification of Pareto's Distribution	-	-
8. Formulas for the General Distribution Function	-	-
9. A New General Distribution Function	-	-
10. Theoretical Derivation of the Distribution Function	-	-
11. Statistical Verification	-	-
12. Relationships Between the Distribution of Income and Total Real Income	-	-
13. Curves of Concentration	-	-
14. The Generalized Law of Inequality	-	-
15. Application of the Pareto Distribution of Income to Political Events	-	-

TABLE OF CONTENTS

16. Conclusions - - - - - 440
 Selected Bibliography - - - - - 440

CHAPTER 10

THE DYNAMICS OF TRENDS FROM THE POINT OF VIEW OF THE EQUATION OF EXCHANGE

1. Historical Introduction - - - - - 441
2. The Variables in the Equation of Exchange - - - - - 447
3. Circulating Money (M) - - - - - 448
4. Circulating Deposits (M') - - - - - 451
5. The Velocity of Circulating Deposits (V') - - - - - 454
6. The Velocity of Circulating Money (V) - - - - - 461
7. Price (P) - - - - - 463
8. Trade (T) - - - - - 473
9. Snyder's Theory of Price - - - - - 476
10. The Statistical Test of Snyder's Theory - - - - - 478
11. Modifications of Snyder's Theory - - - - - 481
12. Gold and Silver and Their Relationship to the Level of Prices - - - - - 484
13. The Index of Trade from Spanish Treasure Data - - - - - 493
14. Conclusion - - - - - 495
- Selected Bibliography - - - - - 497

CHAPTER 11

FORECASTING ECONOMIC TIME SERIES

1. Introduction - - - - - 499
2. The Present Status of Forecasting Stock Prices - - - - - 501
3. The Standard Error of Forecast - - - - - 503
4. The Standard Error of Forecast for Linear Trends - - - - - 517
5. The Standard Error of Forecast for Harmonic Sums - - - - - 522
6. Forecasting Logistic Trends - - - - - 524
7. The Standard Error of Forecast for Polynomial Trends - - - - - 529
8. Moving-Periodogram Analysis - - - - - 530
9. The Method of Probable-Error Bands - - - - - 534
10. The Dow Theory of Forecasting - - - - - 538
11. General Considerations - - - - - 544

CHAPTER 12

INTERPRETATION AND CRITIQUE

1. Introduction - - - - - 546
 2. Probability Evidence for the Forty-Month Cycle - - - - - 546
 3. Probability Evidence for the Ten- and Twenty-Year Cycles - - - - - 550
 4. The Fifty-Year War Cycle - - - - - 552
 5. The Interaction of World Crises - - - - - 557
 6. The Theory of Jevons and Its Present Status - - - - - 561
 7. Economic Time Series and the Interpretation of History - - - - - 571
 8. General Summary - - - - - 576
-
- | | | | | | |
|---|---|---|---|---|-----|
| Table 1. Values of the Walker Probability Function, P_w | - | - | - | - | 583 |
| Table 2. Values of the Fisher Probability Function, P_p | - | - | - | - | 601 |
| Index of Names - | - | - | - | - | 609 |
| Index of Subjects - | - | - | - | - | 612 |

**EXTRAPOLATION,
INTERPOLATION,
AND SMOOTHING OF
STATIONARY
TIME SERIES**

With Engineering Applications

by Norbert Wiener

4

PREFACE

Largely because of the impetus gained during World War II, communication and control engineering have reached a very high level of development today. Many perhaps do not realize that the present age is ready for a significant turn in the development toward far greater heights than we have ever anticipated. The point of departure may well be the recasting and unifying of the theories of control and communication in the machine and in the animal on a statistical basis. The philosophy of this subject is contained in my book entitled *Cybernetics*.^{*} The present monograph represents one phase of the new theory pertaining to the methods and techniques in the design of communication systems; it was first published during the war as a classified report to Section D, National Defense Research Commission, and is now released for general use. In order to supplement the present text by less complete but simpler engineering methods two notes by Professor Norman Levinson, in which he develops some of the main ideas in a simpler mathematical form, have been added as Appendixes B and C. This material, which first appeared in the *Journal of Mathematics and Physics*, is reprinted by permission.

In the main, the mathematical developments here presented are new. However, they are along the lines suggested by A. Kolmogoroff (Interpolation und Extrapolation von stationären zufälligen Folgen, *Bulletin de l'Académie des sciences de l.U.R.S.S.*, Ser. Math. 5, pp. 3-14, 1941; cf. also P. A. Rosinajeff, Sur les problèmes d'interpolation et d'extrapolation des suites stationnaires. *Comptes rendus de l'académie des sciences de l.U.R.S.S.*, Vol. 30, pp. 13-17, 1941.) An earlier note of Kolmogoroff appears in the *Paris Comptes rendus* for 1939.

To the several colleagues who have helped me by their criticism, and in particular to President Karl T. Compton, Professor H. M. James, Dr. Warren Weaver, Mr. Julian H. Bigelow, and Professor Norman Levinson, I wish to express my gratitude. Also, I wish to give credit to Mr. Gordon Raisbeck for his meticulous attention to the proof-reading of this book.

Norbert Wiener

Cambridge, Massachusetts
March, 1949

THE M.I.T. PRESS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS

*Published by The M.I.T. Press, Cambridge, Massachusetts

477247

CONTENTS

INTRODUCTION	1
0.1 The Purpose of This Book	1
0.2 Time Series	1
0.3 Communication Engineering	2
0.4 Techniques of Time Series and Communication Engineering—Con-	2
trasted	3
0.41 The Ensemble	4
0.42 Correlation	4
0.43 The Periodogram	6
0.44 Operational Calculus	7
0.45 The Fourier Integral: Need of the Complex Plane	8
0.5 Time Series at a Communication Engineering—The Synthesis	8
0.51 Prediction	9
0.52 Filtering	9
0.53 Policy Problems	10
0.6 Permissible Operators: Translation Group in Time	11
0.61 Past and Future	12
0.62 Subclasses of Operators	12
0.7 Norms and Minimization	13
0.71 The Calculus of Variations	14
0.76 Ergodic Theory	15
0.81 Brownian Motion	20
0.9 Summary of Chapters	21
Chapter I RÉSUMÉ OF FUNDAMENTAL MATHEMATICAL NOTIONS	25
1.00 Fourier Series	25
1.01 Orthogonal Functions	31
1.02 The Fourier Integral	31
1.03 Laguerre Functions	35
1.04 More on the Fourier Integral; Realizability of Filters	36
1.1 Generalized Harmonic Analysis	37
1.18 Discrete Arrays and Their Spectra	43
1.2 Multiple Harmonic Analysis and Coherence Matrices	44
1.3 Smoothing Problems	45
1.4 Ergodic Theory	46
1.5 Brownian Motion	47
1.6 Poisson Distributions	51
1.7 Harmonic Analysis in the Complex Domain	52
Chapter II THE LINEAR PREDICTOR FOR A SINGLE TIME SERIES	56
2.01 Formulation of the Problem of the Linear Predictor	56
2.02 The Minimization Problem	57
2.03 The Factorization Problem	60

2.04	The Predictor Formula	64
2.1	Examples of Prediction	65
2.2	A Limiting Example of Prediction	65
2.3	The Prediction of Functions Whose Derivatives Possess Auto-correlation Coefficients	65
2.4	Spectrum Lines and Non-absolutely Continuous Spectra	71
2.5	Prediction by the Linear Combination of Given Operators	74
2.6	The Linear Predictor for a Discrete Time Series	76
2.7		78
3.0	Formulation of the General Filter Problem	81
3.1	Minimization Problem for Filters	81
3.2	The Factorization of the Spectrum	82
3.3	Prediction and Filtering	84
3.4	The Error of Performance of a Filter; Long- λ Filters	86
3.5	Filters and Ergodic Theory	90
3.6	Computation of Specific Filter Characteristics	91
3.7	Longing Filters	92
3.8	The Determination of Lag and Number of Meshes in a Filter	94
3.9	Detecting Filters for High Noise Level	95
3.91	Filters for Pulses	95
3.92	Filters Having Characteristics Linearly Dependent on Given Characteristics	97
3.93	Computation of Filter: Résumé	101

Chapter III THE LINEAR FILTER FOR A SINGLE TIME SERIES

4.0	Symbolism and Definitions for Multiple Time Series	104
4.1	Minimization Problem for Multiple Time Series	105
4.2	Method of Undetermined Coefficients	106
4.3	Multiple Prediction	109
4.4	Special Cases of Prediction	110
4.5	A Discrete Case of Prediction	111
4.6	General Technique of Discrete Prediction	112

Chapter IV THE LINEAR PREDICTOR AND FILTER FOR MULTIPLE TIME SERIES

5.0	The Problem of Approximate Differentiation	117
5.1	An Example of Approximate Differentiation	119
5.2	A Misleading Example of Approximate Differentiation	120
5.3	Interpolation and Extrapolation	121
5.4		122
5.5		123
5.6		124

Appendix A TABLE OF THE LAGUERRE FUNCTIONS

Appendix B THE WIENER RMS (ROOT MEAN SQUARE) ERROR CRITERION IN FILTER DESIGN AND PREDICTION (by Norman Levinson)	129
1. Linear Filters	130
2. Minimization of RMS Error	131

2.04	The Predictor Formula	64
2.1	Examples of Prediction	65
2.2	A Limiting Example of Prediction	65
2.3	The Prediction of Functions Whose Derivatives Possess Auto-correlation Coefficients	65
2.4	Spectrum Lines and Non-absolutely Continuous Spectra	71
2.5	Prediction by the Linear Combination of Given Operators	74
2.6	The Linear Predictor for a Discrete Time Series	76
2.7		78
3.0	Formulation of the General Filter Problem	81
3.1	Minimization Problem for Filters	81
3.2	The Factorization of the Spectrum	82
3.3	Prediction and Filtering	84
3.4	The Error of Performance of a Filter; Long- λ Filters	86
3.5	Filters and Ergodic Theory	90
3.6	Computation of Specific Filter Characteristics	91
3.7	Longing Filters	92
3.8	The Determination of Lag and Number of Meshes in a Filter	94
3.9	Detecting Filters for High Noise Level	95
3.91	Filters for Pulses	95
3.92	Filters Having Characteristics Linearly Dependent on Given Characteristics	97
3.93	Computation of Filter: Résumé	101
4.0	Symbolism and Definitions for Multiple Time Series	104
4.1	Minimization Problem for Multiple Time Series	105
4.2	Method of Undetermined Coefficients	106
4.3	Multiple Prediction	109
4.4	Special Cases of Prediction	110
4.5	A Discrete Case of Prediction	111
4.6	General Technique of Discrete Prediction	112
5.0	The Problem of Approximate Differentiation	117
5.1	An Example of Approximate Differentiation	119
5.2	A Misleading Example of Approximate Differentiation	120
5.3	Interpolation and Extrapolation	121
5.4		122
5.5		123
5.6		124

STATISTICAL ANALYSIS OF STATIONARY TIME SERIES

BY

BY

ULF GRENANDER

DOCENT, UNIVERSITY OF STOCKHOLM

and

MURRAY ROSENBLATT

ASSOCIATE PROFESSOR OF MATHEMATICS
INDIANA UNIVERSITY

The purpose of this book is two-fold. It is written in the terminology of the theoretical statistician because one of our objectives is to direct his attention to an approach to time series analysis that is essentially different from most of the techniques used by time series analysts in the past. The second objective is to present a unified treatment of methods that are being used increasingly in the physical sciences and technology. We hope that the book will be of considerable interest to research workers in these fields. Keeping the first objective in mind, we have given a rigorous mathematical discussion of three new topics in time series analysis. The existing literature in time series analysis is characterized with few exceptions by a lack of precision both in conception and in the mathematical treatment of the problems dealt with. To avoid this vagueness we have devoted more space to rigorous proofs than may appear necessary to some readers, but we believe that a study of the proofs will furnish valuable clues to the practical validity of the results, and be an important guide to intuition. We have tried to balance the formal proofs with intuitive remarks and comments on practical applications. While the regularity assumptions we have required, in many cases may seem restrictive, appropriately interpreted they give an indication of the range in which the methods are practically valid. We have made such interpretations in the comments accompanying the formal proofs.

The reader is assumed to have a knowledge of statistics and basic probability theory equivalent to that contained in H. Cramér, *Mathematical Methods of Statistics*. The statistical techniques suggested in this monograph use concepts and relations from the theory of stochastic processes. However, we shall develop the results we need in the two first chapters. The reader who is not familiar with the mathematical techniques used in this book may find it easier to skip some of the more difficult proofs during a first reading. This is especially true with respect to Chapters 2, 4, 6 and 7. A deeper understanding of the results (and their limitations) will be obtained by returning to these proofs later.

The early attempts to formulate a theory for the statistical analysis of time series made use of a rather simple model. The observed series y_t was considered as the sum of a component m with no stochastic element in it,

and a disturbance x_i , where the x_i 's are supposed to be independent and identically distributed. As an example consider the case

$$m_t = \sum_{r=1}^p A_r \cos(rt\theta_r - \varphi_r)$$

and let x_i be normally distributed with mean m and variance σ^2 , where the constants are not specified. A typical problem would then be to estimate one or several of these parameters. A more general and flexible approach to this subject was based upon the assumption, made explicitly or not, that the underlying stochastic process was one of the so-called *finite parameter schemes*. These include the *moving average*

$$x_i = a_0 \xi_i - a_1 \xi_{i-1} - \dots - a_p \xi_{i-p}$$

and the *autoregressive scheme*, defined as a solution of the difference equation

$$b_0 x_{i+p} - b_1 x_{i+p-1} + \dots - b_p x_i = \xi_i.$$

Here $\{\xi_i\}$ is a sequence of identically and independently distributed stochastic variables and $\{a_i\}$, $\{b_i\}$ are constants. Modified processes with a nonrandom trigonometric or polynomial regression m , superimposed, $n_i = x_i - m_i$, were also considered. The nonnegative integer p is called the *order* of the scheme.

These schemes have been important in the development of methods for the statistical analysis of time series. They have been used with a varying degree of success to describe many types of phenomena encountered in application. From the discussion in Chapter 1 it will be apparent that by using these schemes, it is possible to approximate a large and important class of stationary processes, viz. the so-called *linear processes* (see 1.6). For this to be possible p must take large rather than small values and parameter involved in the scheme must be adjusted adequately.

During the last ten years a good deal of work has been devoted to the construction of tests, estimates and confidence intervals appropriate for these schemes. We have described a few of the more important of these results in Chapter 3. In spite of the ingenuity and great theoretical interest of some of these methods, their practical applicability seems to be limited severely by the assumption that the process is a low (usually zero, first or second) order finite parameter scheme. After surveying a good deal of the applied literature devoted to statistical analysis of time series met with in practice, we have come to the following conclusion.

Only in a few special cases (some of which will be discussed later on in this book) does it seem reasonable to assume on *a priori* grounds that the process is a low order finite parameter scheme. Referring to what has been said above, we can still approximate the process by a scheme of sufficiently high order and we can then use one of the methods developed to test the fit. This procedure is legitimate, however, only if we take into consideration the power of the test; usually this power will be rather small for moderate sample sizes. Hence, when we lack information concerning the structure of the process, we will have to develop methods more generally valid. If this is not possible, we should hesitate to make quantitative statistical statements, which would be based on seemingly objective methods, hiding perhaps the weak points in the argument and giving the research worker an illusory feeling of security.

At first it may seem impossible to construct methods of inference valid for the large classes of stationary processes we have in mind. Indeed, leaving the finite parameter schemes, we now deal with classes of probability distributions characterized by an infinite number of parameters. From the finite sample we obtain information concerning these parameters. This is the same problem that is encountered in the study of *nonparametric hypotheses*, although in the present context we will have to be prepared to tackle even more complex analytical difficulties.

It may be of interest to mention the two sources of ideas that we have found most useful. The first is the applied literature, especially papers dealing with statistical questions in the natural sciences and engineering. The statistician intending to do research work in this field will benefit by getting in touch with the wealth of statistical research presented in the main journals in these fields. Some of these journals are listed in our bibliography. Second, some knowledge of the modern theory of probability is indispensable, particularly the theory of stochastic processes. A complete and rigorous exposition of this subject is Doob: *Stochastic Processes*. This can be supplemented with Blanc-Lapierre and Forlet: *Théorie des Fonctions Aléatoires*, where some of the emphasis is on applications to physics.

Results have only occasionally been put in the form of theorems. This is to emphasize that they should not be considered as parts of a rigid system that can be used immediately. In the practical applications, modifications and extensions will usually be needed.

The nonparametric approach we have spoken of has been used quite recently in various fields of the physical sciences and technology although in a somewhat disguised form. On closer scrutiny, one can see that some of the basic problems dealt with in these fields are concerned with estima-

tion of the spectrum of time series, detection of signals, and other statistical problems of the type discussed in this book. The success of these methods in these concrete contexts seems to be due to the fact that in these fields people know a good deal about the structure of the random phenomena studied and so have been able to devise appropriate and relevant techniques. This can be contrasted with the rather mechanical methods of time series analysis used by theoretical statisticians in the past. The power of these new techniques is to be attributed to their nonparametric character. We have especially profited from reading the many stimulating papers in the current engineering literature. Many such papers can be found in the bibliography and we strongly advise the interested reader to examine some of these. They are especially valuable because of the problems they pose.

The basic probability model considered in this monograph is that of a stochastic process (or sequence of random variables)

$$y_t = x_t + m_t, \quad E y_t = m_t, \quad t = \dots, -1, 0, 1, \dots$$

with mean value $m_t = \sum_{r=0}^p c_r q_t^{(r)}$ and known regression vectors $q_t = (\dots, q_t^{(r)}, \dots)$. The residuals x_t are assumed to be a stationary stochastic process, that is, a process whose probability distribution is invariant under time shifts. This means that x_t is a stable random mechanism. In particular, it then follows that the covariance sequence

$$\text{cov}(y_t, y_{t-\tau}) = E x_t x_{t-\tau} = r_{t-t\tau}$$

depends only on the time difference $t - \tau$. Such a model fits data arising over moderate lengths of time in studies of random noise, problems in turbulence and oceanography. The model is also used in small scale investigations in meteorology. The covariances r_τ are Fourier-Stieltjes coefficients

$$r_\tau = \int_{-\pi}^{\pi} e^{i\tau\hat{z}} dF(\hat{z})$$

of a bounded nondecreasing function $F(\hat{z})$. The function $F(\hat{z})$ is called the spectral distribution function of the process and knowledge of the spectrum is equivalent to knowledge of the covariance sequence. It turns out to be much more convenient statistically to deal with the spectrum rather than the covariance sequence.

The framework of the problems considered is as follows. A time series y_1, \dots, y_n , a partial realization of the process $\{y_t\}$, is observed and we wish to draw inferences from the observations about the structure of the

process $\{y_t\}$. Problems of estimation and testing with respect to the regression coefficients are considered. A typical example would be that of a linear regression. Then there would be two regression vectors

$$q^{(1)} = (\dots, 1, 1, \dots)$$

$$q^{(2)} = (\dots, 1, 2, \dots, t, \dots)$$

corresponding to the regression coefficients c_1, c_2 of the regression $m_t = c_1 + c_2 t$. Problems of estimation and testing with respect to the spectral distribution function and spectral density (derivative of the spectral distribution function) are discussed. Confidence bands for the spectral distribution function and spectral density are set up. It turns out that many of the results have an asymptotic nonparametric character, that is, many of the limit theorems (asymptotic distribution theory, etc.) obtained do not depend on the spectrum. The approach is quite different from most of the earlier work in time series analysis and is much more general in scope.

In Chapter 1 the basic probability theory required is introduced. The concepts of stationarity and spectrum are discussed and illustrated by examples drawn for the most part from physical fields.

In the second chapter the linear problems of prediction, interpolation and filtering are discussed under the assumption that the spectrum is known. Usually the spectrum is not known unless there is a good deal of prior experience in dealing with problems arising in the same experimental context. Much of the remainder of the book is concerned with the statistical estimation of the spectrum when it is not known.

In Chapter 3, the earlier work on statistical analysis of time series is surveyed. The earlier work is especially concerned with very special finite parameter models. The new techniques proposed differ in that they deal with infinite dimensional models that cover all the special models considered before and thus provide a uniform approach. The power of the new techniques lies in their great generality. The first three chapters serve as an introduction. The remaining chapters deal with the new techniques and their application.

Estimation of the spectral density is considered in Chapter 4. Two types of estimates are discussed in some detail. The first family of estimates, called spectrograph estimates in the book, are well suited for computation on a digital computer while the second class of estimates are the natural ones to build into analogue computer. The bias and asymptotic variance of these estimates are considered. It turns out that any good estimate of the spectral density is biased. The mean square error of an estimate is a

convenient measure of how good the estimate is and it is discussed in detail in the case of some special estimates.

The chapter on applications, Chapter 5, considers the model of a stationary process as it arises in several applied fields where it has been found useful. Aspects of the study of random noise, turbulence and storm-generated ocean waves are developed with this in mind.

The asymptotic distribution of a class of estimates of the spectral distribution function is developed in Chapter 6. Confidence bands are set up for the spectral distribution function and one- and two-sample tests are discussed. These results have an asymptotic nonparametric character. Remarks are made about the distribution theory of estimates of the spectral density.

Examples of spectral analysis of artificially generated time series are included in this chapter.

Chapter 7 deals with regression analysis. Linear unbiased estimates of the regression coefficients are discussed. The least squares (computed under the assumption the residuals are independent) and Markov (minimum variance unbiased estimate) estimates are compared. Conditions under which the least squares estimate is as good as the Markov estimate asymptotically are given. These conditions are satisfied, for example, for polynomial or trigonometric regression. It looks as if these asymptotic results on estimation of regression coefficients are approximately valid for moderate and perhaps even small samples.

The last chapter discusses assorted problems on the maxima and zeros of time series as well as prediction when the spectrum is not known but is estimated from the time series.

The reader will notice that almost all the examples discussed in the text are chosen from the physical sciences. This is so simply for the reason that some of the most natural and successful applications of stationary stochastic processes have been in these fields.

Something should be said about the limitations of the methods presented in this monograph. As is apparent, we have studied only processes with stationary residuals. It is well known that equilibrium conditions are simpler to analyze than evolution, and the methods presented probably cannot be extended to the nonstationary case without essential changes. Furthermore, we have dealt only with discrete time, although in many of the problems we discuss, this is highly unnatural. In some cases the results can be extended to the case of a continuous time parameter (see Grenander [1] for a general outline of how this can be done) but in other cases (e.g., the problems studied in Chapter 7) unsolved problems arise, some of them of considerable analytical

interest. These questions should be studied further. Very little attention is paid to vector processes although they arise in a number of important applications. Here, too, an extension seems possible and desirable (see Grenander and Rosenblatt [6] and Rosenblatt [1], [2]).

Finally, only large sample methods are considered. Because time series analysis deals with dependent observations (this reduces the amount of information obtained) and with probability distributions belonging to very wide classes, the sample size at which the asymptotic results start giving useful approximations may be fairly large. It is, of course, important to find out at what sample size such results give realistic approximations. This question deserves closer attention, perhaps via numerical methods.

If the reader is disturbed enough by these limitations to extend the methods of analysis, then this monograph will have served one of its main purposes: to stimulate research in time series analysis which will lead to practically useful and theoretically sound methods.

Each chapter of the book is divided into numbered sections. Section 6.2 refers to section 2 of Chapter 6. The numbered formulas are started *ad initium* at the beginning of each section. Formula (2) mentioned in the text of section 6.2 refers to formula (2) of that same section. Formula (6.1.2) mentioned in the text of section 6.2 refers to formula (2) of section 6.1. Some problems have been given in the book, partly with the object of providing the reader with exercise and partly with the object of leading the reader on to derive results that supplement and extend the theory given in the text.

CONTENTS

CHAPTER 1. Stationary Stochastic Processes and Their Representations	
1.0 Introduction	21
1.1 What Is a Stochastic Process?	21
1.2 Continuity in the Mean	24
1.3 Stochastic Set Functions of Orthogonal Increments	25
1.4 Orthogonal Representations of Stochastic Processes	27
1.5 Stationary Processes	29
1.6 Representations of Stationary Processes	33
1.7 Time and Ensemble Averages	42
1.8 Vector Processes	44
1.9 Operations on Stationary Processes	49
1.10 Harmonizable Stochastic Processes	59
CHAPTER 2. Statistical Questions when the Spectrum is Known (Least Squares Theory)	
2.0 Introduction	61
2.1 Preliminaries	61
2.2 Prediction	65
2.3 Interpolation	82
2.4 Filtering of Stationary Processes	85
2.5 Treatment of Linear Hypotheses with Specified Spectrum	86
CHAPTER 3. Statistical Analysis of Parametric Models	
3.0 Introduction	91
3.1 Periodogram Analysis	91
3.2 The Variate Difference Method	94
3.3 Effect of Smoothing of Time Series (Slutzky's Theorem)	95
3.4 Serial Correlation Coefficients for Normal White Noise	97
3.5 Approximate Distributions of Quadratic Forms	101
3.6 Testing Autoregressive Schemes and Moving Averages	106
3.7 Estimation and the Asymptotic Distribution of the Coefficients of an Autoregressive Scheme	111
3.8 Discussion of the Methods Described in this Chapter	115
	17

CHAPTER 4. Estimation of the Spectrum

4.0	Introduction	117
4.1	A General Class of Estimates	117
4.2	An Optimum Property of Spectrograph Estimates	123
4.3	A Remark on the Bias of Spectrograph Estimates	129
4.4	The Asymptotic Variance of Spectrograph Estimates	131
4.5	Another Class of E-estimates	137
4.6	Special Estimates of the Spectral Density	145
4.7	The Mean Square Error of Estimates	153
4.8	An Example from Statistical Optics	155

CHAPTER 5. Applications

5.0	Introduction	158
5.1	Derivations of Spectra of Random Noise	158
5.2	Measuring Noise Spectra	160
5.3	Turbulence	163
5.4	Measuring Turbulence Spectra	171
5.5	Basic Ideas in a Statistical Theory of Ocean Waves	174
5.6	Other Applications	177

CHAPTER 6. Distribution of Spectral Estimates

6.0	Introduction	179
6.1	Preliminary Remarks	179
6.2	A Heuristic Derivation of a Limit Theorem	182
6.3	Preliminary Considerations	185
6.4	Treatment of Pure White Noise	188
6.5	The General Theorem	190
6.6	The Normal Case	195
6.7	Remarks on the Nonnormal Case	198
6.8	Spectral Analysis with a Regression Present	202
6.9	Alternative Estimates of the Spectral Distribution Function	204
6.10	Alternative Statistics and the Corresponding Limit Theorems	207
6.11	Confidence Band for the Spectral Density	208
6.12	Spectral Analysis of Some Artificially Generated Time Series	214

CHAPTER 7. Problems in Linear Estimation

7.0	Preliminary Discussion	226
7.1	Estimating Regression Coefficients	231
7.2	The Regression Spectrum	233
7.3	Asymptotic Expression for the Covariance Matrices	235

BIBLIOGRAPHY

- DAVIS, R. C. [1]: On the detection of sure signals in noise. *J. Appl. Phys.*, **25** (1954), 76-82.
- DE FINETTI, B. [1]: La prévision: ses lois logiques, ses sources subjectives. *Ann. Inst. H. Poincaré*, **7** (1937), 1-68.
- DIANANDA, P. H. [1]: Some probability limit theorems with statistical applications. *Trans. Camb. Phil. Soc.*, **49** (1953), 239-246.
- DIXON, W. J. [1]: Further contributions to the problem of serial correlation. *Ann. Math. Statistics*, **15** (1944), 119-144.
- DOOB, J. L. [1]: Heuristic approach to the Kolmogoroff-Smirnov theorems. *Ann. Math. Statistics*, **20** (1949), 393-403.
- [2]: *Stochastic Processes*. New York, 1952.
- DURBIN, J. and WATSON, G. S. [1]: Exact tests of serial correlation using non-circular statistics. *Ann. Math. Statistics*, **22** (1951), 466-451.
- ERLIND, J. R. and JENSEN, J. [1]: Estimation of the spectral density. To be published.
- FEJÉR, L. [1]: Lebesguesche Konstanten und divergente Fourierreihen. *J. reine angew. Math.*, **128** (1910), 22-53.
- FISHER, R. A. [1]: Tests of significance in harmonic analysis. *Proc. Roy. Soc. London, Ser. A*, **125** (1929), 54-59.
- GOLDMAN, S. [1]: *Frequency Analysis, Modulation and Noise*. New York, 1948.
- GOLDBECK, H. [1]: *Classical Mechanics*. Cambridge, Mass., 1950.
- GRENANDER, U. [1]: Stochastic processes and statistical inference. *Ark. Mat.*, **1** (1950), 195-277.
- [2]: On empirical spectral analysis of stochastic processes. *Ark. Mat.*, **1** (1951), 503-531.
- [3]: On Toeplitz forms and stationary processes. *Ark. Mat.*, **1** (1951), 555-571.
- [4]: On the estimation of regression coefficients in the case of an autocorrelated disturbance. *Ann. Math. Statistics*, **25** (1954), 252-272.
- [5]: Recent trends in time series analysis, to appear in the *Sankhyā*.
- GRENANDER, U. and ROSENBLATT, M. [1]: On spectral analysis of stationary time series. *Proc. Nat. Acad. Sci. U.S.A.*, **38** (1952), 519-521.
- [2]: Statistical spectral analysis of time series arising from stationary stochastic processes. *Ann. Math. Statistics*, **24** (1953), 537-558.
- [3]: An extension of a theorem of G. Segö and its application to the study of stochastic processes. *Trans. Am. Math. Soc.*, **76** (1954), 112-126.
- [4]: Comments on statistical spectral analysis. *Skand. Aktuarietidskr.*, **36** (1953), 182-202.
- [5]: Regression analysis of time series with stationary residuals. *Proc. Nat. Acad. Sci. U.S.A.*, **40** (1954), 812-816.
- [6]: Some problems in estimating the spectrum of a time series. To be published in *Proc. Third Berkeley Symposium on Math. Stat. and Probability*.
- GRETZMACHER, M. [1]: Eine neue Methode der Klanganalyse. *Z. Technische Physik*, **8** (1927), 506-519.
- HALMOS, P. R. [1]: *Measure Theory*. New York, 1950.
- [2]: *Finite Dimensional Vector Spaces*. Princeton, 1942.

- HANNAN, E. J. [1]: Exact tests for serial correlation. *Biometrika* 1955, Vol. 42.
- HARDY, G. H. [1]: On the mean value of the modulus of an analytic function. *Proc. London Math. Soc., Ser. 2*, 14 (1915), 269-277.
- HARDY, G. H., LITTLEWOOD, J. E., and POLYA, G. [1]: *Inequalities*. Cambridge, 1932.
- HERGLOTZ, G. [1]: Über Potenzreihen mit positivem reellen Teil im Einheitskreis. *Ber. Verh. Kgl. Sachs. Ges. Wiss., Leipzig, Math. Phys. Kl.*, 63 (1911), 501.
- HONGER, J. L., Jr., and LEHMANN, E. L. [1]: Some applications of the Cramér-Rao inequality. *Proc. Second Berkeley Symposium on Math. Stat. and Probability*, 1951, pp. 13-22.
- HOEFFDING, W., and ROBBINS, H. [1]: The central limit theorem for dependent random variables. *Duke Math. J.*, 15 (1948), 773-780.
- HOPP, E. [1]: *Ergodentheorie*. Ergebnisse der Math. und ihrer Grenzgebiete, Vol. 5, 1937.
- HSEU, P. L. [1]: On the asymptotic distributions of certain statistics used in testing the independence between successive observations from a normal population. *Ann. Math. Statistica*, 17 (1946), 350-354.
- JAMES, H. M., NICHOLS, N. B., and PHILLIPS, R. S. [1]: *Theory of Seismomechanics*. New York, 1947.
- KAC, M. [1]: Probability methods in analysis and number theory. *Bull. Amer. Math. Soc.*, 55 (1949), 641-665.
- [2]: On the average number of real roots of a random algebraic equation. *Bull. Amer. Math. Soc.*, 49 (1943), 314-320.
- KARHUNEN, K. [1]: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. *Ann. Acad. Sci. Fenniae, I. Math.-Physica*, 37 (1947), 79 pp.
- [2]: Über die Struktur stationärer zufälliger Funktionen. *Arch. Mat.*, 1 (1949), 141-160.
- KENDALL, M. G. [1]: *The Advanced Theory of Statistics*. London, Vol. I (1943) and Vol. II (1946).
- KOLMOGOROFF, A. [1]: *Grundbegriffe der Wahrscheinlichkeitstheorie*. Ergebnisse der Math., Vol. 2, 1933.
- [2]: Stationary sequences in Hilbert space. (In Russian.) *Bull. Math. Univ. Moscow*, Vol. 2, No. 6 (1941), 40 pp.
- KOOPMANS, T. [1]: Serial correlation and quadratic forms in normal variables. *Ann. Math. Statistica*, 13 (1942), 14-33.
- [2], ed.: *Statistical Inference in Dynamic Economic Models*. Cowles Commission for Research in Economics, Monograph No. 16, New York, 1950.
- LAMB, H. H. [1]: *Hydrodynamics*. Cambridge, 1924.
- LAWSON, J. L., and UHLENBECK, G. E. [1]: *Threshold Signals*. M.I.T. Radiation Lab. Series, Vol. 24, New York, 1950.
- LEHMANN, E. L., and SCHEFFE, H. [1]: Completeness, similar regions, and unbiased estimation. *J. Sankhyā*, 10 (1950), 305-340.
- LEIPSKY, R. B. [1]: Distributions of the serial correlation coefficient in a circularly correlated universe. *Ann. Math. Statistics*, 18 (1947), 810-817.
- LIEPMAN, H. W. [1]: Aspects of the turbulence problem. Survey report. *Z. angew. Math. Physik*, 3 (1952), 321-342.
- LOEVE, M. [1]: Fonctions aléatoires du second ordre. Supplement to P. Lévy: *Processus stochastiques et mouvement brownien*, Paris, 1948.
- MADOW, W. G. [1]: Note on the distribution of the serial correlation coefficient. *Ann. Math. Statistics*, 16 (1945), 305-310.
- MANN, H. B., and WALD, A. [1]: On the statistical treatment of linear stochastic difference equations. *Econometrica*, 11 (1943), 173-220.
- MARUYAMA, G. [1]: The harmonic analysis of stationary stochastic processes. *Mem. Fac. Sci. Kyushu Univ. Ser. A*, 4 (1949), 45-106.
- MCCOMBIE, C. W. [1]: Fluctuation theory in physical measurements. *Reports on Progress in Physics*, 16 (1953), 266-320.
- MORAN, P. A. P. [1]: The oscillatory behaviour of moving averages. *Proc. Cambridge Phil. Soc.*, 46 (1950), 272-280.
- [2]: Some theorems on time series I. *Biometrika*, 34 (1947), 281-291.
- Paley, R. E.A., and Wiener, N. [1]: *Fourier Transforms in the Complex Domain*. New York, 1934.
- PATZEN, E. [1]: On consistent estimates of the spectrum of a stationary time series. To be published.
- PIERSON, W. J., Jr. [1]: *Wind Generated Gravity Waves*. Advances in Geophysics, Vol. 2. Academic Press, New York, 1955.
- PIERSON, W. J., Jr., NEUMANN, G., and JAMES, R. W. [1]: *Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics*. Hydrographic Office Publication No. 603 (1956).
- QUEENSTVILLE, M. H. [1]: Approximate tests of correlation in time series. *J. Roy. Statist. Soc., Ser. B*, 11 (1949), 68-84.
- RICE, S. O. [1]: Mathematical analysis of random noise. *Bell System Tech. J.*, 23 (1944), 282-332; 24 (1945), 46-156.
- ROSENBLATT, M. [1]: On estimation of regression coefficients of a vector-valued time series with a stationary disturbance. *Ann. Math. Stat.*, 27 (1956), 99-121.
- [2]: On some regression problems in time series analysis. To be published in *Proc. Third Berkeley Symposium on Math. Stat. and Probability*.
- [3]: A central limit theorem and a strong mixing condition. *Proc. Nat. Acad. Sci. U.S.A.*, 42 (1956), 43-47.
- RUBIN, H. [1]: On the distribution of the serial correlation coefficient. *Ann. Math. Statist.*, 16 (1945), 211-215.
- RUDNICK, P. [1]: The detection of weak signals by correlation methods. *J. Appl. Phys.*, 24 (1953), 128-131.
- SCHEFFE, H. [1]: Statistical inference in the nonparametric case. *Ann. Math. Statist.*, 15 (1943), 305-332.
- SIEGERT, A. J. F. [1]: On the evaluation of noise samples. *J. Appl. Phys.*, 23 (1952), 737-742.
- SLUTSKY, E. [1]: The summation of random causes as the source of cyclic processes. *Econometrica*, 5 (1937).
- SOMMERFIELD, A. J. W. [1]: *Partial Differential Equations of Physics*. New York, 1949.
- SPETTER, L. M. [1]: Errors in power spectra due to finite sample. *J. Appl. Phys.*, 25 (1954), 653-659.

INDEX

- STONE, W. M. [1]: On the statistical theory of detection of a randomly modulated carrier. *J. Appl. Phys.*, **24** (1953), 925-939.
- STOER, J. and BATES, M. [1]: *The Analysis of a Narrow Bandpass Filter for Measuring Power Spectra*. DSM-58-A.M. Bell Aircraft Corporation, Buffalo N.Y., 1953.
- SZEGÖ, G. [1]: Beiträge zur Theorie der Toeplitz'schen Formen. *Math. Z.*, **6** (1920), 167-202; **9** (1921), 167-190.
- THIEDE, H. [1]: Schallvorgänge mit kontinuierlichem Frequenzspektrum. *Elekt. Nachr. Techn.*, **13** (1936).
- TINTNER, G. [1]: *The Variate-Difference Method*. Bloomington, Indiana, 1940.
- TITCHMARSH, E. C. [1]: *The Theory of Functions*. Oxford, 1932.
- TOLMAN, R. C. [1]: *The Principles of Statistical Mechanics*. Oxford, 1946.
- TUKEY, J. W. [1]: Measuring noise color. Unpublished manuscript.
- ÜBEROI, M. S. and KOVASZNAI, L. G. [1]: On mapping and measurement of random fields. *Quart. Appl. Math.*, **10** (1952), 375-393.
- WHITTAKER, E. T. and WATSON, G. N. [1]: *A Course of Modern Analysis*. Cambridge, 1935.
- WHITTLE, P. [1]: *Hypotheses Testing in Time Series Analysis*. Uppsala, 1951.
- WIENER, N. [1]: *The Extrapolation, Interpolation and Smoothing of Stationary Time Series*. New York, 1949.
- WINTER, A. [1]: *Spektraltheorie der unendlichen Matrizen*. Leipzig, 1929.
- WISE, J. [1]: The autocorrelation function and the spectral density function. *Biometrika* 1955, Vol. 42.
- WOLD, H. [1]: *A Study in the Analysis of Stationary Time Series*. Uppsala, 1938.
- [2]: A large-sample test for moving averages. *J. Roy. Statist. Soc., Ser. B*, **11** (1949), 297-305.
- [3]: in association with JUREEN, L.: *Demand Analysis. A Study in Econometrics*. Uppsala, 1952.
- WOODWARD, P. M. [1]: *Probability and Information Theory, with Applications to Radar*. New York, 1953.
- Absorbing barrier, 196.
- Amplitude distortion, 51.
- Anemometer, hot wire, 171.
- Autoregressive scheme, 36.
- Average, time and space, 42.
- Boundary value, 288.
- Brownian movement, 22.
- Campbell's theorem, 44.
- Confidence bands, 195.
- Continuity equation, 167.
- Continuity in mean, 24.
- Correlation coefficient, circular, 98.
- serial, 97.
- Covariance function, 24.
- spectral representation of, 27.
- Decomposition of stationary processes, canonical, 76.
- Eddy, 166.
- Eigenvalues of circulant, 105.
- of Toeplitz matrix, 103.
- Electric network, 50.
- Equipartition theorem, 159.
- Ergodic theorem, 43.
- Ergodic process, 44.
- Estimate, asymptotically efficient, 235.
- consistent, 90.
- linear, 86.
- Markov (minimum variance), 87.
- of the spectrum, 117.
- Fluid flow, incompressible, 164.
- Hadamard gap condition, 181.
- Harmonic oscillator, 39.
- Heterodyne principle, 161.
- Identifiability, 114.
- Integral, Hellinger, 90.
- stochastic, 24, 26.
- Interpolation, error of, 83.
- Invariance, rotational, 47.
- Isomorphism, 65.
- Kernel, Dirichlet, 213.
- Féjer, 207, 213.
- Langevin equation, 39.
- Limit theorem, central, 180.
- Linear hypotheses, 86.
- Linear manifold, 62.
- Linear scheme, 36, 38.
- Liouville's theorem, 32.
- Matrix, circular, 98.
- covariance, 25.
- Toeplitz, 103.
- Mean square error, of spectral estimates, 153.
- of regression coefficient estimates, 230.
- Mean value function, 24.
- Model of random phases, 30.
- Models, finite parameter, 91.
- infinite parameter, 116.
- Moving average, testing of, 109.
- Noise, coherent, 46.
- random, 158.
- shot, 41.
- thermal, 159.
- white, 37.
- pure white, 42.
- Nyquist's law, 159.
- Ocean waves, 174.
- Operator, linear, 49.
- nonlinear, 51.
- projection, 63.
- translation, 44.
- Parameter, continuous and discrete, 25.
- vector, 47.

THE ANALYSIS OF MULTIPLE TIME-SERIES

M. H. QUENOUILLE
M.A., Sc.D., F.R.S.E.

BEING NUMBER ONE OF
GRIFFIN'S STATISTICAL
MONOGRAPHS & COURSES

EDITED BY

ALAN STUART, D.Sc.(Econ.)

Second Impression

1968
HAFNER PUBLISHING COMPANY
NEW YORK

PREFACE

This monograph arose from research into the theory of multiple time-series. Originally, in the initial stages of research, it was planned to publish one or more papers on this subject, but it soon became clear that much more than this was required. To cover the subject in any detail would tax the space of any statistical journal over a long period and still result in a piecemeal presentation. It was consequently decided to publish the results of this research in a more readily available and complete form.

In its present form, the first of a series of short monographs published by Charles Griffin and Co., this publication is intended to provide an outline of one approach to the problems of analysing multiple time-series. It is hoped that the advanced student or research worker will find summarised here the answers to many of the problems encountered in this field, as well as a record of some of the gaps still remaining in the theory.

My thanks are due to Mr. J. Durbin and Dr. M. G. Kendall for criticism of the text and encouragement in publication, and to the Ford Foundation, whose grant jointly to the Institute of Statistics, University of North Carolina, and the Research Techniques Unit of the London School of Economics enabled this research to be carried out.

M. H. QUENOUILLE

—
529637

CONTENTS

PREFACE	3
1. INTRODUCTION	5
1.1 Problems in the analysis of multiple time-series	6
1.2 Notation	
2. SPECIFICATION	7
2.1 Types of scheme	7
2.2 Formulae for covariances	8
2.3 Identities between variables	8
2.4 Identities between covariances and correlations	9
2.5 Calculation of covariances	11
2.6 Oscillatory schemes	12
2.7 Markoff schemes	13
2.8 Other identities between covariances	15
2.9 Degenerate schemes	18
2.10 Schemes with correlated residuals	19
2.11 Canonical variables	20
3. IDENTIFICATION	22
3.1 The identification problem	22
3.2 The reversing factor	24
3.3 The transforming factor	
4. PRELIMINARY INVESTIGATION	26
4.1 Artificial series	32
4.2 Use of determinants	35
4.3 Matrix quotients and their latent roots	35
4.4 Partial correlations	38
5. PRACTICAL COMPLICATIONS	43
5.1 Types of difficulties	43
5.2 Incorrect inclusion or exclusion of variables	46
5.3 Superposed error and serially-correlated error terms	47
5.4 Other types of scheme	50
5.5 Corrections for mean and trends of specified types	53
5.6 End corrections	54
5.7 Stochastic trends	57
5.8 Some non-stationary time-series	62
5.9 Moving summation and cyclic movements	62
5.10 Pivotal elimination of variables	62
6. ESTIMATION	65
6.1 General considerations	65
6.2 Markoff scheme for one variable	66
6.3 Markoff scheme for several variables in large samples	70
6.4 Latent roots and vectors of Markoff schemes	72
6.5 Prediction for Markoff schemes	77
6.6 Schemes of higher orders	78
6.7 Moving-average schemes	79
6.8 Autoregressive schemes with moving-average residuals	80
6.9 Continuous schemes	80
6.10 Identification	81
6.11 Restrictions on the coefficients	81
7. SIGNIFICANCE AND GOODNESS-OF-FIT TESTS	83
7.1 Statistical requirements	83
7.2 Partitioning the partial correlation test	84
7.3 Canonical components	84
7.4 Goodness-of-fit tests	
8. PRACTICAL EXAMPLES: U. S. HOG SERIES	88
8.1 Construction of series	88
8.2 Preliminary investigation	91
8.3 Trend elimination	94
8.4 Partial correlation tests	96
8.5 Summary and discussion	100
LIST OF SYMBOLS	103
REFERENCES	105

1. INTRODUCTION

1.1 Problems in the analysis of multiple time-series—The difficulties in interpreting regression or correlation analysis when applied to the investigation of time-series were first emphasized by G. U. Yule (1921, 1926, 1927). In his early fundamental papers, he points out the impossibilities of interpreting the correlations between time-series without reference to the internal structure or nature of the series.

The recognition of this fact led to a more intensive investigation of the manners in which time-series may be generated. Here again, the pioneer work of Yule in considering the stochastic development of series produced a change from the classical more determinate approach, causing statisticians (see references 1-4, 10-12, 23-25) to give much attention to the problems of recognizing, testing, and estimating the structures of time-series.

Because of the complexity of the analysis involved, the greater part of recent work has concentrated upon the analysis of individual time-series, although, in the field of economics in particular, the need for structures involving multiple time-series has become increasingly apparent. A number of discussions (see references 5, 13, 15, 22) of various aspects of the analysis of multiple time-series may be found in the literature, but there still exist numerous gaps both in the theory and between the theory and its application in practice.

It is the intention of this monograph to fill some of these gaps and to present a unified account of methods available for the analysis of multiple time-series. In doing this, the following problems are considered:

- (1) In what ways may the generation of several interdependent time-series be specified and what are the correlation properties of the various specified schemes? (Chapter 2).
- (2) If the correlation properties of several series are known exactly, how far is it possible to determine their method of generation? (Chapter 3).
- (3) How is the answer to (2) changed if the correlations are subject to sampling variations? (Chapter 4).
- (4) What are the most likely manners in which a scheme may be incorrectly specified and how will this affect the analysis? (Chapter 5).
- (5) How may the parameters of any scheme be estimated (Chapter 6) and hypotheses concerning any fitted schemes tested? (Chapter 7).
- (6) How well do these methods work when applied to actual practical series? (Chapter 8).

s_i Vector giving coefficients of canonical variable for reverse scheme. Equal to $\mathbf{G}^{-1}(D)\mathbf{v}_i(D - D_i)$; or, for Markoff schemes, row later: vector of \mathbf{W}_i corresponding to D_i .
 σ Standard deviation of $\epsilon_{t,i}$.

t Time variable indicating position of observation.

\mathbf{t}_i Vector giving coefficients of canonical variable. Equal to $\mathbf{F}^{-1}(D)\mathbf{x}_i(D - D_i)$; or, for Markoff schemes, row latent vector of \mathbf{U}_i corresponding to D_i^{-1} .
 \mathbf{u}_i Standardized coefficients, $-a_i/a_0$, of $\mathbf{F}^{-1}(D)_i = \Sigma_{\alpha_i} D_i$. Column vector satisfying $\mathbf{F}^{-1}(D_i)\mathbf{u}_i = 0$. For Markoff schemes, column latent vector of \mathbf{U}_i corresponding to D_i^{-1} .

\mathbf{U}_i Matrices of standardized coefficients, $-\mathbf{A}_0^{-1}\mathbf{A}_i$.
 \mathbf{v}_i Column vector satisfying $\mathbf{F}^{-1}(D_i)\mathbf{v}_i = 0$.
 \mathbf{w}_i Column vector satisfying $\mathbf{G}^{-1}(D_i)\mathbf{w}_i = 0$. For Markoff schemes, column latent vector of \mathbf{W}_i corresponding to D_i .

\mathbf{W}_i Matrices of standardized coefficients $-\mathbf{B}_0^{-1}\mathbf{B}_i$ for reverse scheme $\mathbf{G}^{-1}(D) = \Sigma B_i D^{-i}$.
 $x_{i,t}$ Observation in i th series at time t .

\mathbf{x}_i Vector of observations, $\mathbf{x}_{i,r}$.
 $y_{i,t}$ Linear combinations of the observations taken at time t .

REFERENCES

- (1) BARTLETT, M. S. (1935). Some aspects of the time-correlation problem in regard to tests of significance. *J.R.S.S.*, **98**, 536.
- (2) BARTLETT, M. S. (1946). On the theoretical specification of sampling properties of autocorrelated time-series. *J.R.S.S.*, (B), **8**, 27.
- (3) BARTLETT, M. S. (1936). *Stochastic processes*. Cambridge University Press.
- (4) BARTLETT, M. S. and DIASANDA, P. H. (1950). Extensions of Quenouille's test for autoregressive schemes. *J.R.S.S.*, (B), **12**, 1C8.
- (5) BARTLETT, M. S. and RAJARAKSHAN, D. V. (1953). Goodness-of-fit tests for simultaneous autoregressive series. *J.R.S.S.*, (B), **15**, 107.
- (6) DAVIDS, H. E. (1956). The approximate distribution of serial correlation coefficients. *Ekonika*, **43**.
- (7) DURBIN, J. and WATSON, G. S. (1951). Testing for serial correlation in least squares regression. *II. Biometrika*, **38**, 159.
- (8) FRAZER, R. A., DUNCAN, W. J. and COLLAR, A. R. (1947). *Elementary matrices*. Cambridge University Press.
- (9) JESKINS, G. M. (1956). Tests for hypotheses in the linear autoregressive model. *II. Biometrika*, **43**.
- (10) KENDALL, M. G. (1945). On the analysis of oscillatory time-series. *J.R.S.S.*, **108**, 93.
- (11) KENDALL, M. G. (1946). *Contributions to the study of oscillatory time-series*. Cambridge University Press.
- (12) KENDALL, M. G. (1949). Tables of autoregressive series. *Biometrika*, **36**, 267.
- (13) KOOPMANS, T. C., RUBIN, H., LEIPNIK, R. B., et al. (1950). *Statistical inference in dynamic economic models*. John Wiley and Sons, New York.
- (14) MAXWELL, H. B. and WALD, A. (1943). On the statistical treatment of linear stochastic difference equations. *Econometrica*, **11**, 173.
- (15) PHILLIPS, A. W. (1954). Stabilization policy in a closed economy. *Econ. Jour.*, **64**, 254.
- (16) QUENOUILLE, M. H. (1947). A large-sample test for the goodness-of-fit of autoregressive schemes. *J.R.S.S.*, **110**, 123.
- (17) QUENOUILLE, M. H. (1949). Approximate tests of correlation in time-series. *J.R.S.S.*, (B), **11**, 68.
- (18) QUENOUILLE, M. H. (1952). *Associated measurements*. Butterworth, London.
- (19) RAO, S. R. and SONI, K. S. (1951). The applicability of large sample tests for moving average and autoregressive schemes to series of short length. Part II. *Sankhyā*, **11**, 239.
- (20) STUART, A. (1953). A paradox in statistical estimation. *Biometrika*, **42**, 527.
- (21) WHITTLE, P. (1952). Tests of fit in time series. *Biometrika*, **39**, 309.
- (22) WHITTLE, P. (1953). The analysis of multiple stationary time series. *J.R.S.S.*, (B), **15**, 125.
- (23) WOLD, H. (1938). *Analysis of stationary time-series*. Uppsala.
- (24) WOLD, H. (1953). *Demand analysis*. John Wiley and Sons, New York.
- (25) WOLD, H. (1954). *Random normal deviates*. Cambridge University Press.
- (26) YULE, G. U. (1921). On the time correlation problem. *J.R.S.S.*, **84**, 497.
- (27) YULE, G. U. (1926). Why do we sometimes get nonsense correlations between time-series, etc? *J.R.S.S.*, **89**, 1.
- (28) YULE, G. U. (1927). On a model of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers. *Phil. Trans. A*, **226**, 267.

1958
THE MEASUREMENT
OF
POWER SPECTRA

From the Point of View of Communications Engineering

By

R. B. BLACKMAN

MEMBER OF THE TECHNICAL STAFF
BELL TELEPHONE LABORATORIES, INC.

and

J. W. TUKEY

MEMBER OF THE TECHNICAL STAFF
BELL TELEPHONE LABORATORIES, INC.
AND PROFESSOR OF MATHEMATICS
PRINCETON UNIVERSITY

If this account appears to be intended principally for communications engineers it is only because an adequate understanding of how (power*) spectrum analysis works seems to demand some aspects of a communications engineering approach. (Even some of our colleagues, interested in digital computation, or in statistical techniques, rather than in communications engineering, have reluctantly come to agree with this statement.) This account is intended for all who know *what* they want to accomplish by spectral measurement and analysis (though perhaps nothing of *how* to accomplish it), and are concerned with how to do it, or with how to think about doing it, or with why it should be done in one way rather than another. Considerable mathematical detail is given, but as a guide and background to practice, rather than either for its own sake, or for the sake of rigor.

This account was written as an extended journal article, and not as an introduction to the beauties of spectral analysis. Thus, there is no discussion of why one might want to estimate (power) spectra, and no catalog of the wondrous results thus obtained. We cannot refrain, however, from quoting one wondrous result (from a letter from Walter E. Munk to one of the authors): "... we were able to discover in the general wave record a very weak low-frequency peak which would surely have escaped our attention without spectral analysis. This peak, it

* The use of the adjective "power" comes from a habit of language of communications engineers which we need not discuss here.

iii

DOVER PUBLICATIONS, INC.
NEW YORK

Table of Contents

ii

-25-

Preface.....

PART I—GENERAL DISCUSSION

1. Introduction.....
2. Autocovariance Functions and Power Spectra.....
3. The Practical Situation.....

CONTINUOUS RECORDS OF FINITE LENGTH

4. Fundamentals.....
5. Two-Parameter Window Pairs.....
6. Covariability of Estimates—Basic Results.....
7. Covariability of Estimates—Approximate Forms.....
8. Variability—Equivalent Widths.....
9. Chi-Square—Equivalent Degrees of Freedom.....
10. Direct Analog Computation—Gated Data Windows.....
11. Distortion, Noise, Heterodyne Filtering and Prewhitening.....

EQUALLY SPACED RECORDS

12. Aliasing.....
13. Transformation and Windows.....
14. Variability and Covariability.....
15. Preventing.....
16. Detection, Filtering and Separation.....
17. Smoothing by Groups.....
18. Pilot Estimation.....
19. Very Low Frequencies.....

ANALYSIS IN PRACTICE

20. Practical Analysis of an Equally Spaced Record.....
21. Sample Computing Formulas.....

PLANNING FOR MEASUREMENT

22. Choice of Frequency Response.....
23. Duration of Data Required.....
24. Amount of Digital Data Handling Required.....
25. Quality of Measurement and Handling.....
26. Example A.....
27. Example B.....
28. Example C.....

APPENDIX A. FUNDAMENTAL FOURIER TECHNIQUES

- A.1 Fourier Transformation.....
- A.2 Some Transform Pairs.....
- A.3 Convolution.....
- A.4 Windows.....
- A.5 Realistic Pairs from Unrealistic Pairs.....
- A.6 Some Trigonometric Identities.....

TABLE OF CONTENTS

iii

PART II—DETAILS AND DERIVATIONS

22. Gaussian Processes and Moments.....
23. Autocovariance Functions and Power Spectra for Perfect Information.....
24. The Practical Situation.....

DETAILS FOR CONTINUOUS ANALYSIS

- B.1 Power Spectrum Estimation from a Continuous Record of Finite Length.....
- B.2 Particular Pairs of Windows.....
- B.3 Covariability of Power Density Estimates—Basic Result.....
- B.4 Covariability of Estimates—Various Approximations.....
- B.5 Equivalent Widths.....
- B.6 Equivalent Widths.....
- B.7 Covariability of Estimates—Various Approximations.....
- B.8 Equivalent Widths.....
- B.9 Equivalent Degrees of Freedom.....
- B.10 Filtering and Analysis Computation.....
- B.11 Prewhiting.....

DETAILS FOR EQUI-SPACED ANALYSIS

- B.12 Aliasing.....
- B.13 Transformation and Windows.....
- B.14 Variability and Covariability.....
- B.15 and 16. Transverser Filtering.....
- B.17 Smoothing and Decimation Procedures.....
- B.18 Modified Pilot Estimation, Cascade Estimation.....
- B.19 Rejection Near Zero Frequency.....
- B.20 (Omitted).....
- B.21 Sample Computing Formulas.....

DETAILS FOR PLANNING

- B.22 (Omitted).....
 - B.23 Duration Requirements, Formulas.....
 - B.24 Digital Requirements, Formulas.....
 - B.25 (Omitted).....
 - B.26 (Omitted).....
 - B.27 (Omitted).....
 - B.28 Analysis of Example C.....
- Index of Notations.....
- Glossary of Terms.....
- Acknowledgment.....
- References.....
- Bibliography.....
- General Index.....

i 1571553

turns out, is almost certainly due to a swell from the Indian Ocean, 10,000 miles distant. Physical dimensions are: 1 mm high, \approx kilometer long." Except rather summarily, later in this preface, we do not treat and distinguish the many sorts of Fourier methods which are available. All in all, our account has quite limited aims.

GROUPS OF READERS

We can, we feel, recognize four large groups of readers, as far as attitudes and backgrounds are concerned. There will be a group of communications engineers, to whom the sort of Fourier analysis we use will be relatively familiar, but whose statistical background may be quite limited. There will be a group of digital computermen whose clients have, or threaten to have, data on which spectral calculations will be required. Their background in the communications engineering approach is quite likely to be limited, as will be, perhaps, their background in statistics. There will be a group of statisticians without special background in this sort of time series analysis, to whom the communications engineering approach is very strange, and who wonder why "cosines have anything to do with things that are not periodic." There will, we hope, be a fourth group of readers who have, or know how to get, data they wish to analyze, and who may well lack background in all three fields: communications engineering, computer techniques, and statistics.

We say to the members of each group: "Though it may seem to you that it is not so, we have tried to consider you in writing this account. Matters are not simple, but we could have easily made them more complex." If we had been willing to try to write this account for some one group, or, more particularly, for some one part of one group, we should perhaps have been able to simplify its organization. It will be important for each reader to understand the structure actually used in this account, and to recognize that material complementary to that in Section x is to be sought in Section B.y. And *nice versa*. That, if Section y expresses statistical aspects, the communications engineering aspects are likely to be found in Section B.y. And *nice versa*. That, if Section z expresses the more formal aspects of a topic, the more verbal aspects are likely to be found in Section B.z. And *nice versa*.

QUESTIONS OF ORIENTATION

There are three sorts of questions which are likely to bother many readers at the beginning — questions to which answers are needed to set these readers on the right road.

(1) What are the different kinds of Fourier analysis? How are they to be distinguished? (What kinds of data are appropriately treated by these various methods? How can I tell which to use?)

(2) Why do cosines appear in the analysis of aperiodic phenomena? Isn't this unnatural?

(3) What other sorts of spectral analysis are there? How are they related to those discussed here?

We shall try to answer these questions briefly in the remainder of this preface.

THE DIFFERENT KINDS OF FOURIER ANALYSIS

There are four ways of distinguishing among Fourier techniques, corresponding to questions which can be answered in a "yes or no" fashion. The first two are:

(1) Is the phenomenon treated periodic? (Or, equivalently, are all of the frequencies involved in the phenomenon integral multiples of a single frequency?)

(2) If the phenomenon is aperiodic, are the frequencies involved discrete (distinct) or continuous?

When we recognize that measured values will reflect not only the phenomenon studied but also measurement errors, and, usually, other sources of fluctuation, we see that the data will always be aperiodic. Thus, to the combination of these two questions there are but three essentially distinct answers, which may be phrased as follows:

(a) Phenomenon aperiodic, frequencies continuous, data aperiodic,

(b) Phenomenon aperiodic (but "almost periodic" in the mathematical sense), frequencies discrete but not harmonically related, data aperiodic.

(c) Phenomenon periodic, frequencies discrete and harmonically related, data aperiodic.

A third way of distinguishing among Fourier techniques corresponds to the question

(3) Are the times involved discrete (and equi-spaced) or continuous? As explained in Sections 13 and 14 for one case, the practical distinction between discrete and continuous time is negligible (although there may be differences of mathematical theory). The answer to this question is usually not important.

A fourth way of distinguishing among Fourier techniques corresponds to the question

(4) Are the data analyzed thought of as unique, or as a statistical sample?

The answer to this question is exceedingly important, even though it might not seem that this should be the case.

Either of the answers to (4) can be combined with answer (a), or (b) or (c), to (1) and (2), making six possible such combinations. We have thus six pairs of kinds of Fourier analysis, the two kinds in a pair differing only in whether time is continuous or discrete.

In three of these pairs we wish to treat the data as a statistical sample. The text discusses in detail the pair corresponding to answer (a) to questions (1) and (2).

No especial development of theory or practice seems to have yet occurred for the other two statistical-sample pairs. Data which one might possibly suppose to fall under one of these pairs are usually analyzed by the methods described in the text, just as if they fell under the first pair. This practice makes more sense when we realize that no finite amount of data can determine whether a function is aperiodic, almost periodic, or periodic. A seemingly aperiodic function *might* start to repeat exactly with a period of, say, three times the length of the available record. A seemingly periodic function may suddenly cease repeating at a point just outside the available record. And the inevitable concealment of fine detail by measurement noise (by fluctuations and errors of measurement) blurs such distinctions even more completely.

There remain three pairs of kinds of Fourier analysis, in all of which we wish to treat the given data as coming from a unique function.

Probably the simplest pair involves periodic phenomena, arising, for example, in connection with seasonal (or daily) fluctuations in climate, weather, or economic series, or in connection with physical phenomena related to an angular orientation (in a plane). In practice a very important distinction must be made between cases in which

- the periodic phenomenon dominates the data, irregularities (fluctuations or errors) of measurement or recording being negligible,

- (ii) the periodic phenomenon must be sought among substantial irregularities, and
- (iii) the periodic phenomenon is to be separated from both irregularities and slow trends.

In the uncomplicated case (i), almost any method of analysis will be satisfactory if its arithmetic is kept simple. Such methods are discussed, often under the heading of "empirical harmonic analysis", in books on numerical computation (especially in Theodore R. R. Running's *Empirical Formulas*).

Methods of analysis for case (ii) may have to be more subtle. The outstanding reference is Chapter XVI, "Periodicities and Harmonic Analysis in Geophysics" by Julius Bartels on pp. 345-365 (Volume 2) of *Geomagnetism* by Sidney Chapman and Julius Bartels, Oxford University Press (1940, second edition 1951). (Consideration should also be given to the techniques developed by the Labrouste; see references 41, 42, 43 in the text.)

In case (iii) situations, the use of methods appropriate to case (i) situations may be very dangerous.

For case (iii) we have a choice. Most case (ii) methods are applicable with but little change and provide relatively reliable answers. Rather specific methods are widely used in economics, where usually, and probably wisely, the periodic parts are not expressed in Fourier form. Such methods are discussed in many texts in economic statistics.

(The most complete summary of the classical Fourier series and periodogram approaches seems to be that of Karl Stumpf, *Grundlagen und Methoden der Periodenforschung*, Springer, Berlin, 1937; Edwards, Ann Arbor, 1945, who also provided convenient tables, *Tafeln und Tafelungen zur harmonischen Analyse und Periodogrammrechnung*, Springer, Berlin, 1939. Note that Stumpf's first graph, on page 45 of *Grundlagen und Methoden der Periodenforschung*, illustrates aliasing. A number of related topics are treated in Cornelius Lanczos, *Applied Analysis*, Prentice-Hall, Englewood Cliffs, 1956).

The next pair involves almost periodic phenomena, which are of frequent occurrence in geophysics (lunar and solar tides, etc.) and occurs, as an approximation, in such astronomical problems as variable-star light curves. For the rare instances in which the periodic terms are well separated in intensity and the irregular background is small, excellent use can be made of the treatment in Whittaker and Robinson's *Calculus of Observations*. The best reference, however, is the Bartels chapter already mentioned.

There remains one pair of Fourier analysis, in which the data is thought of as unique and aperiodic. The only natural exercise for bringing cosines into such situations is a desire to study the effect of one or more linear time-invariant transformations. For a theoretical problem, the theory and practice of Fourier integrals stand ready at hand. For a data analysis problem, very little help is available, since the Fourier integral transform always involves more parameters than we can hope to estimate from any finite amount of data. In practice, then, we must approximate this pair of kinds of analysis by some other pair. If we treat the data as a sample rather than unique, we come to the pair treated in the text. If we treat the phenomenon as periodic, or almost periodic, rather than aperiodic, we come to one of the pairs just discussed above. Some such shift is essential.

In practical data analysis, of course, we must always be prepared to approximate wisely. A pressure wave representing human speech, for example, is not precisely periodic, but many short stretches of it are so nearly periodic that a periodic analysis is often very fruitful. Equally important with a willingness to approximate (far enough, but not too far) is a willingness to take a statistical view whenever the data represents at most "something like" the situation of eventual concern. (It is indeed very rare in practice that the data under analysis represent the identical situation about which conclusions are to be drawn.)

WHY COSINES FOR APERIODIC PHENOMENA?

It is surely natural, once a statistical view is taken, to study averages, first of linear expressions and then of quadratic expressions. It is also natural to begin by studying situations which are independent of clock-setting in the sense that whatever started to happen at one (clock) time could equally likely have started at any other (clock) time. (Such situations are termed stationary, in technical language.) The average values of all linear expressions can then be described by one number (because the average values of all individual values are all the same).

Average values of quadratic expressions are more complicated. To describe them we have to specify, not just a single number, but a single function. (If time is discrete, this function can often be specified by an infinite sequence of numbers.) There are many choices of such bases, each of which will serve to describe the average values of all quadratic expressions. All bases contain the same information, but some code it

in more secret (hard to read) ways than others. The power spectrum itself, the autocorrelation function (or, better, the autocovariance function), and the average values of $[X(t + \tau) - X(t)]^2$ (as a function of τ), are only three among many choices. Exact and complete knowledge of the values of any choice, of course, determines the values of each of the others. However, approximate knowledge of the power spectrum does not determine the others very well, nor does approximate knowledge of either function of lag determine the power spectrum very well. Frequency and time correspond to very different forms of coding — small, obvious errors in terms of either one may correspond to a nearly nonsensical message in terms of the other.

It is natural for the statistician to say "So what, I wanted to use the autocovariance function anyway. All that you have told me merely encourages me to forget cosines and power spectra." To this view, there are two counter-arguments of importance, one general, the other statistical.

Whether it be called a stochastic process, a noise, or a signal, we are very likely to want to know what will happen when it is subjected to a time-invariant linear transformation; when, otherwise expressed, it is passed through a linear, time-invariant filter. If we are thinking of it statistically, we are almost certainly concerned with averages of simple expressions for the output. (The natural basis for the averages of linear expressions, the average value at any time, will, of course, be multiplied by the voltage transfer function of the filter, evaluated at zero frequency.) The output values, expressed in terms of any basis for the averages of quadratic expressions, will be linearly expressible in terms of the corresponding input values, and may be regarded as the result of a linear transformation on the values describing the input. However, some linear transformations are simpler than others. Surely the diagonal transformations are the simplest. The transformation expressing the effect of any filter at all, as seen in terms of the values appearing in the power spectrum description, is diagonal. The transformations corresponding to the various lag functions are almost never diagonal, no matter how simple the filter.

Thus, if we desire convenience in handling average values of quadratic (or general second-degree) expressions, (i) we will use some basis purely for compactness, (ii) among all bases we will select the power spectrum basis because of its much simpler transformation properties. Simplicity alone forces us to consider cosines in connection with aperiodic stochastic processes. This is the general reason.

REFERENCES (PARTS I AND II)

The statistical reason lies in the joint behavior of sampling fluctuations. Suitably spaced estimates of (smoothed) power spectral density fluctuate in a rather thoroughly independent manner. On the other hand, estimates of functions of lag (be they autocorrelations, auto-covariances, or average values of $(X(t+\tau) - X(t))^2$) have fluctuations which are so far from independence as to frequently fool almost anyone who examines tables or graphs of their values. From this point of view, also, the power spectrum has important advantages. All in all, there is little hope of escaping cosines.

RELATED TYPES OF SPECTRAL ANALYSIS

Estimation of spectra of single functions or of single series (which is the only subject discussed in the text) is not the only form of spectral analysis. When two or more concurrent series are available (originating from related phenomena), cross-spectra can be calculated, two for each pair of series. (The theory has been discussed by Goodman, Ref. 1 in the text.) Such analyses provide opportunities for studying such problems as: the behavior of certain linear transformations (by studying cross-spectra between input and output); the two-dimensional structure of atmospheric turbulence (by studying cross-spectra between vertical and horizontal components of wind velocity); the direction of arrival of ocean waves (by studying cross-spectra of records at different locations); and the gust structure of the atmosphere well away from the ground (by using cross-spectra between airplane accelerations and control positions to determine what these accelerations would have been with the controls locked). Besides the rather technical account by Goodman, brief introductions are given by Press and Tukey (cited in the bibliography) and in a paper by Tukey "An Introduction to Probability and Statistics, Almquist and Wiksell, Stockholm, 1958.

February 1958.
Bell Telephone Laboratories, Inc.,
Murray Hill, New Jersey,
and
Center for Advanced Study in the Behavioral Sciences, Inc.,
Stanford, California.

- N. R. Goodman, *On the Joint Estimation of the Spectra, Crosspectrum and Quadrature Spectrum of a Two-Dimensional Stationary Gaussian Process*, Scientific Paper No. 10, Linguistics Laboratory, New York University, 1957, (Ph.D. Thesis, Princeton University).
- G. J. Taylor, *Statistical Theory of Turbulence*, Proc. Roy. Soc. (London), A151, pp. 421-478, 1935.
- S. O. Rice, *Mathematical Analysis of Random Noise*, B.S.T.J., 22, pp. 292-332, July, 1943; 23, pp. 46-156, Jan. 1952. (This article also appears in *Selected Papers on Noise and Stochastic Processes*, edited by N. Wax, Dover Publ., New York, 1954, pp. 133-294.)
- J. W. Tukey, *The Sampling Theory of Power Spectrum Estimates*, in *Symposium on Applications of Autocorrelation Analysis to Physical Problems*, Woods Hole, June 13, 1949, NAVFAC-NUS-P-725, Office of Naval Research.
- M. S. Bartlett, *Periodogram Analysis and Continuous Spectra*, Biometrika, 37, pp. 1-16, 1950.
- W. Marks and W. J. Pierson, *The Power Spectrum Analysis of Ocean-Wave Records*, Trans. Am. Geophysical Union, 23, pp. 834-844, 1952.
- H. Press and J. C. Houboldt, *Some Applications of Generalized Harmonic Analysis to Gust Loads on Airplanes*, J. Aero. Sciences, 22, pp. 17-26, 1955.
- H. A. Panofsky, *Meteorological Applications of Power Spectrum Analysis*, Bull. Am. Meteorological Soc., 36, pp. 153-166, 1955.
- C. P. Wadsworth, E. A. Robinson, J. G. Bryan and P. M. Hurley, *Detection of Reflections on Seismic Records by Linear Operators*, Geophysics, 18, pp. 359-365, 1953. (Also see later report, Geophysical Analysis Group, M.I.T.)
- M. S. Bartlett and J. Melville, *On the Efficiency of Procedures for Smoothing Periodograms from Time Series with Continuous Spectra*, Biometrika, 42, pp. 143-159, 1955.
- M. S. Bartlett, *An Introduction to Stochastic Processes*, Cambridge Univ. Press, Cambridge, England, 1955.
- U. Grenander and M. Rosenblatt, *Statistical Analysis of Stationary Time Series*, Wiley, New York, 1957.
- J. W. Tukey and C. P. Winsor, *Note on Some Chi-Square Normalizations*, Memorandum Report 2, Statistical Research Group, Princeton, 1949.
- G. Greyer, *Numerical Filters for Discrimination Against Trivial Periodicities*, Trans. Am. Geophysical Union, 35, pp. 1973-1981, 1955.
- H. R. Sewell, *The Principles of Time Series Analysis Applied to Ocean Wave Data*, Proc. Nat. Acad. Sciences, 35, pp. 515-525, Sept., 1949.
- H. R. Sewell and G. P. Wadsworth, *A New Development in Ocean Wave Research*, Science, 109, pp. 271-274, 1950.
- D. Prouwer, *A Study of Changes in the Rate of Rotation of the Earth*, Astronomical J., 57, pp. 129-116, 1952.
- Browne, pp. 135, 138.
- G. A. Campbell and R. M. Foster, *Fourier Integrals for Practical Applications*, B.S.T.J. 7, pp. 639-707, 1928; also Van Nostrand, New York, 1952.
- E. A. Guillemin, *Introductory Circuit Theory*, Wiley, New York, 1933, p. 257.
- L. Schwartz, *Theorie des Distributions*, Vols. I and II, Hermann et Cie, Paris, 1950. (See also Halszka, Friedman, and Cramer, noted in Bibliography.)
- E. A. Guillemin, *The Mathematics of Circuit Analysis*, Wiley, 1959, pp. 485-501.
- H. Nyquist, *Certain Topics in Telegraph Transmission Theory*, Trans. A.I.E.E., pp. 617-644, April, 1928.
- J. M. Whittaker, *Interpolatory Function Theory*, Cambridge Univ. Press, Cambridge, England, 1935, Chapter IV.
- W. H. Bennett, *Methods of Solving Noise Problems*, Proc. I.R.E., 44, 1956.
- R. W. Hammings and J. W. Tukey, *Measuring Noise Color*, unpublished memorandum.
- C. L. Dolph, *A Curved Distribution for Broadcast Arrays Which Optimizes the Relationship between Beam Width and Side Lobe Level*, Proc. I.R.E., 35, pp. 333-338, 1946.
- P. Jeunon, *Quelques recherches sur les statistiques dans les spectres optimisés*, P. R. Phys. Soc. (London), 63B, pp. 625-639, 1959.
- P. Boughan, B. Dossier, and P. Jeunon, *Determination des fonctions pour*

- Pamélioration des figures de diffraction dans le spectroscope, C. R. Acad. Sci. Paris, **223**, pp. 661-663, 1946.
30. L. Isserlis. On a Formula for the Product-Moment Coefficient of Any Order of a Normal Frequency Distribution in Any Number of Variables, Biometrika, **12**, pp. 134-159, 1919.
31. H. Hotelling. Relations Between Two Sets of Variates, Biometrika, **28**, pp. 321-337, 1935.
32. H. E. Railliet. Transversal Filters, Proc. I.R.E., **28**, pp. 302-310, 1940.
33. H. Wold. A Study in the Analysis of Stationary Time Series, 2nd Edition, Almqvist and Wiksell, Stockholm, 1951.
34. Daniel B. DeLury. Values and Integrals of the Orthogonal Polynomials up to $n = 25$. Toronto University Press, 1950.
35. Ronald A. Fisher and Frank Yates. Statistical Tables for Biological, Agricultural and Medical Research, Edinburgh, Oliver and Boyd, 4th Ed., 1953, especially Table XXVII.
36. William E. Milne. Numerical Calculus, Princeton University Press, 1949.
37. Cornelius Lanczos. Tables of Chebyshev Polynomials $S_n(x)$ and $C_n(x)$, Nat'l. Bur. Std. App. Math. Series 9, Washington, Govt. Print. Off., 1952, (especially pp. xiv to xvii).
38. Cornelius Lanczos. Trigonometric Interpolation of Empirical and Analytical Functions, J. Math. Phys., **27**, pp. 125-159, 1938.
39. Robert C. Mennieck. Trigonometric Approximations for Power Series, J. Assoc. Comp. Machinery, **4**, pp. 487-504, 1957.
40. J. C. P. Miller. Two Numerical Tables of Powers of Chebyshev Polynomials, Proc. Roy. Soc. Edinb., **62**, pp. 24-20, 1946.
41. H. Labrouste and Y. Labrouste. Harmonic Analysis by Means of Linear Combinations of Ordinates, J. Terr. Magnetism, **41**, 1936.
42. H. Labrouste and Y. Labrouste. Analyse spectrographique résultant de la superposition de sinusoides. Mem. Acad. Sci. Inst. France, **64**, No. 5, 1941. See also Ann. de l'Inst. de France du Génie de l'Université de Paris, **7**, pp. 190-207; **9**, pp. 1-27; **11**, pp. 63-101; **14**, pp. 77-91, for much of this material.)
43. H. Labrouste and Y. Labrouste. Méthode de Y. Labrouste pour la recherche des périodes, Ciel et Terre, **60**, pp. 75-86, 1950.
- B. Friedman. Principles and Techniques of Applied Mathematics, Wiley, New York, 1956, Chapter 3.
- I. Halperin. Introduction to the Theory of Distributions, University of Toronto Press, Toronto, 1952.
- B. Mazeiky. Extension of the Power Spectrum Methods of Generalized Harmonic Analysis to Determine Non-Gaussian Probability Functions of Random Input Disturbances and Output Responses of Linear Systems, J. Aero-Nautical Sciences, **21**, pp. 145-153, March, 1954.
- H. A. Pandey and L. van der Horst. Spectra and Cross-Spectra of Velocity Components in the Mesometeorological Range, Quart. J. Roy. Meteorol. Soc., **81**, pp. 602-605, 1955.
- H. A. Pandey and R. A. McCormick. The Vertical Momentum Flux at Brookhaven at 105 Metres, Geophys. Res. Papers (U.S.A.F., Cambridge Research Center), No. 19, pp. 219-220, 1952.
- H. Press and J. W. Tukey. Power Spectral Methods of Analysis and Their Application to Problems in Airplane Dynamics, Flight Test Manual, N.A.T.O. Advisory Group for Aeronautical Research and Development, IV-C, pp. 1-41, June, 1956. Reprinted as Bell System Monograph No. 2606.)

BIBLIOGRAPHY

- In addition to the articles cited in the text, the reader's attention is called to the additional titles below.
- P. Boujor, B. Dussier and P. Jequinet. Application des raies spectrales au moyen d'écrans absorbents. J. Recherches C.N.R.S., No. 11, pp. 49-69, 1950.
- P. A. Clavier. Some Applications of the Laurent-Schwarz Distribution Theory to Network Problems, Proceedings of the Symposium on Modern Network Synthesis, II, Polytechnic Institute of Brooklyn, 1955.
- L. Couzinat. La Méthode de H. Labrouste pour la recherche des périodes, Ciel et Terre, **60**, pp. 75-86, 1950.
- B. Friedman. Principles and Techniques of Applied Mathematics, Wiley, New York, 1956, Chapter 3.
- I. Halperin. Introduction to the Theory of Distributions, University of Toronto Press, Toronto, 1952.
- B. Mazeiky. Extension of the Power Spectrum Methods of Generalized Harmonic Analysis to Determine Non-Gaussian Probability Functions of Random Input Disturbances and Output Responses of Linear Systems, J. Aero-Nautical Sciences, **21**, pp. 145-153, March, 1954.
- H. A. Pandey and L. van der Horst. Spectra and Cross-Spectra of Velocity Components in the Mesometeorological Range, Quart. J. Roy. Meteorol. Soc., **81**, pp. 602-605, 1955.
- H. A. Pandey and R. A. McCormick. The Vertical Momentum Flux at Brookhaven at 105 Metres, Geophys. Res. Papers (U.S.A.F., Cambridge Research Center), No. 19, pp. 219-220, 1952.
- H. Press and J. W. Tukey. Power Spectral Methods of Analysis and Their Application to Problems in Airplane Dynamics, Flight Test Manual, N.A.T.O. Advisory Group for Aeronautical Research and Development, IV-C, pp. 1-41, June, 1956. Reprinted as Bell System Monograph No. 2606.)

1960

Time Series Analysis

E. J. HANNAN

Department of Statistics,
Australian National University,
Canberra

The analysis of time series is usually studied after a course in the classical part of statistical theory has been completed. For that reason this book assumes a knowledge of mathematics and statistics approximately up to the level of Cramer's text *Mathematical Methods of Statistics*. In the author's experience, even then, the student has difficulty, especially with the spectral theory. This is due to the unavoidable introduction of infinite dimensional vector spaces. A heuristic introduction to the spectral theory has therefore been given early in the first chapter, which reduces the discussion to one concerning finite dimensional vector spaces. Proper proofs of the main theorems of the spectral theory are given later in the chapter and in the appendix, and throughout the book this is done for most of the results which are cited.

The remaining chapters deal with statistical inference. The most general model considered is a univariate time series consisting of a time dependent mean plus a stationary component. A discussion of multivariate series was not possible because of the limited size of the book. The restriction to stationarity is necessary since a theory for evolutive series hardly exists, and almost all methods in use at present depend upon the reduction of the series to something approaching stationary form by elementary statistical devices.

This book was written while the author was a fellow at the Australian National University and arose out of a series of lectures delivered at the University of Western Australia. The author has learned much about this subject from discussion with Dr G. S. Watson and Dr P. Whittle, and to them, and most especially to Professor P. A. P. Moran, who introduced him to the subject, he expresses his gratitude.

E. J. HANNAN

viii

SCIENCE PAPERBACKS

and

METHUEN & CO LTD

Reprinted with minor corrections
1967

07
276
H 2.2
1907c

Contents

General Editor's Preface	page	vii
Author's Preface	page	viii
I. The Spectral Theory of Discrete Stochastic Processes		
1. Introduction and probability background	1	
2. Spectral theory of circularly defined processes	4	
3. Spectral theory in the general case	10	
4. Processes in continuous time	19	
5. Prediction theory	20	

II. Estimation of the Correlogram and of the Parameters of

Finite Parameter Schemes

1. Problems of inference in time series analysis	28
2. Ergodic theory	30
3. The correlogram	34
4. Estimating the parameters of finite parameter schemes	45

III. Estimation of the Spectral Density and Distribution

Functions

1. The periodogram	52
2. Consistent estimation of the spectral distribution and density functions	55
3. Some more practical considerations	69

IV. Hypothesis Testing and Confidence Intervals

1. Testing for a jump in the spectral function	76
2. Tests relating to autoregressive schemes	83
3. Tests of goodness of fit	93
4. Confidence intervals	104

216791

Contents	vi	Processes Containing a Deterministic Component	page
1. Introduction	108	1. The estimation of the regression coefficients	109
2. Testing the x_i for departure from independence	117	3. Testing the x_i for departure from independence	117
4. The removal of a trend by regression	122	4. The removal of a trend by regression	122
5. The effect of trend removal on the analysis of the residuals	133	5. The effect of trend removal on the analysis of the residuals	133
Appendix			
The spectral representation of x_t	139		
Bibliography	143		
Index	149		

142 *Time Series Analysis*

the function $g(\lambda)$, which is $g(\lambda)$ in the range $[-\pi, \pi]$ and zero outside of it (which evidently lies in \mathcal{M}), may be approximated uniformly by a function of the type $\sum_k g_k(i_k) \{e_{ik}(\lambda) - e_{ik-1}(\lambda)\}$ it is evident that the proof of the spectral representation formula for x_i carries over directly to give (4) its precise meaning.

Finally since $g(i_k) \{e_{ik}(\lambda) - e_{ik-1}(\lambda)\}$ may be made uniformly close to $g_{ik}(\lambda) - g_{ik-1}(\lambda)$ by choosing a fine enough decomposition of $[-\pi, \pi]$, it follows that

$$\sum_k e^{ik} \{e_{ik}(\lambda) - e_{ik-1}(\lambda)\} = \sum_k e^{ik} g(i_k)^{-1} \{g_{ik}(\lambda) - g_{ik-1}(\lambda)\}$$

converges, with n , to zero, in the mean with weighting $dF(\lambda)$. This implies in turn that

$$x_i = \int_{-\pi}^{\pi} e^{iw\lambda} g(\lambda)^{-1} dF(\lambda)$$

which justifies the substitutions made in section (1.3).

Bibliography

- ATTIKEN, A. C. [1] 'On least squares and the linear combination of observations', *Proc. Roy. Soc. Edinburgh*, **55** (1935) 42-48
 ANDERSON, R. L. [1] 'Distribution of the serial correlation coefficient', *Ann. Math. Statist.*, **13** (1942) i-13
 ANDERSON, R. L. and ANDERSON, T. W. [1] 'Distribution of the circular serial correlation for residuals from a fitted Fourier series', *Ann. Math. Statist.*, **21** (1950) 59-81
 ANDERSON, T. W. [1] 'On the theory of testing serial correlation', *Skand. Aktuarietidskr.*, **31** (1948) 88-116
 BARTLETT, M. S. [1] *Stochastic Processes*. Cambridge (1955)
 [2] 'On the theoretical specification and sampling properties of auto-correlated time series', *J.R. Statist. Soc. (Suppl.)*, **8** (1946) 27-41
 [3] 'Problèmes de l'analyse spectrale des séries temporelles stationnaires', *Publ. Inst. Statist. (Univ. de Paris)*, Vol. 3, Fasc. 3, 119-134
 [4] 'Periodogram analysis and continuous spectra', *Biometrika*, **37** (1950) 1-16
 [5] 'The problem in statistics of testing several variances', *Proc. Camb. Phil. Soc.*, **30** (1934) 164-169
 BARTLETT, M. S. and DIANANDA, P. H. [1] 'Extensions of Quenouille's test for autoregressive schemes', *J.R. Statist. Soc. B.*, **12** (1950) 108-115
 BARTLETT, M. S. and RAJALAKSHMAN, D. V. [1] 'Goodness of fit tests for simultaneous autoregressive series', *J.R. Statist. Soc. B.*, **15** (1953) 107-124
 BLACKMAN, R. B. and TUKEY, J. W. [1] 'The measurement of power spectra from the point of view of communications engineering Part 1', *Bell System Technical Journal*, **37** (1958) 185-282.
 'Part 2', *Bell System Technical Journal*, **37** (1958) 485-569

- 144 *Time Series Analysis*
- COURANT, R. and HILBERT, D. [1] *Methods of Mathematical Physics*, Vol. I, New York (1953)
- CRAMER, H. [1] *Mathematical Methods of Statistics*, Princeton (1946)
- [2] 'On the theory of stationary random processes', *Ann. of Math.*, **41** (1940) 215-230
- DANIELS, H. E. [1] 'The approximate distribution of serial correlation coefficients', *Biometrika*, **43** (1956) 169-185
- DIANANDA, P. H. [1] 'Some probability limit theorems with statistical applications', *Proc. Camb. Phil. Soc.*, **49** (1953) 239-246
- DIXON, W. J. [1] 'Further contributions to the problem of serial correlation', *Ann. Math. Statist.*, **15** (1944) 119-144
- DOOB, J. L. [1] *Stochastic Processes*, New York (1952)
- DURBIN, J. and WATSON, G. S. [1] 'Testing for serial correlation in least squares regression I', *Biometrika*, **37** (1950) 409-428
- [2] 'Testing for serial correlation in least squares regression II', *Biometrika*, **38** (1951) 159-177
- FELLER, W. [1] 'On the Kolmogorov-Smirnov theorems for empirical distributions', *Ann. Math. Statist.*, **19** (1948) 177-189
- FISHER, R. A. [1] 'Tests of significance in harmonic analysis', *Proc. Roy. Soc. A.*, **125** (1929) 54-59
- [2] 'On the similarity of the distributions found for the test of significance in harmonic analysis and in Steven's problem in geometrical probability', *Annals of Eugenics*, **10** (1940) 14-17
- GRENANDER, U. [1] 'On empirical spectral analysis of stochastic processes', *Ark. Mat.*, **1** (1951) 503-531
- [2] 'On the estimation of the regression coefficients in the case of an autocorrelated disturbance', *Ann. Math. Statist.*, **25** (1954) 252-272
- GRENANDER, U. and ROSENBLATT, M. [1] *Statistical Analysis of Stationary Time Series*, New York (1957)
- [2] 'Comments on statistical spectral analysis', *Skand. Aktuarietidskr.*, **36** (1953) 182-202
- [3] 'Statistical spectral analysis of time series arising from a stationary stochastic process', *Ann. Math. Statist.*, **24** (1953) 537-558
- HALMOS, P. R. [1] *Measure Theory*, New York (1950)
- [2] *Finite Dimensional Vector Spaces*, Princeton (1942)

Bibliography

- 145
- HANNAN, E. J. [1] 'Exact tests for serial correlation', *Biometrika*, **42** (1955) 133-142
- [2] 'Testing for serial correlation in least squares regression', *Biometrika*, **44** (1957) 57-66
- [3] 'The estimation of the spectral density after trend removal', *J.R. Statist. Soc., B*, **20** (1958)
- [4] 'The asymptotic powers of certain tests of goodness of fit for time series', *J.R. Statist. Soc. B*, **20** (1958) 143-151
- HART, B. I. [1] 'Tabulation of the probabilities for the ratio of mean square successive difference to the variance', *Ann. Math. Statist.*, **13** (1942) 207-214
- HILLE, E. and PHILLIPS, R. S. [1] *Functional Analysis and Semi Groups*, American Mathematical Society Colloquium Publications Vol. XXXI (1957)
- JENKINS, G. H. [1] 'An angular transformation for the serial correlation coefficient', *Biometrika*, **41** (1954) 261-265
- [2] 'Tests of hypotheses in the linear autoregressive model I. Null hypothesis distribution in the Yule scheme', *Biometrika*, **41** (1954) 405-419
- [3] 'Tests of hypotheses in the linear autoregressive model II. Null distributions for higher order schemes. Non-null distributions', *Biometrika*, **43** (1956) 186-199
- JOURETT, G. H. 'The comparison of means of sets of observations from sections of independent stochastic series', *J.R. Statist. Soc. B*, **17** (1955) 208-227
- KENDALL, M. G. [1] *Contributions to the Study of Oscillatory Time Series*, Cambridge (1946)
- [2] *The Advanced Theory of Statistics*, Vol. 1, London (1945); Vol. II, London (1946)
- [3] 'Tables of autoregressive series', *Biometrika*, **30** (1949) 267-289
- KOLMOGOROFF [1] *Foundations of the Theory of Probability*, New York (1950)
- [2] 'Sur l'interprétation et extrapolation des suites stationnaires', *C.R. Acad. Sci. Paris*, **208** (1939) 2043-2045
- LEIPNIK, R. B. [1] 'Distribution of the serial correlation coefficient in

- 146 *Time Series Analysis*
- a circularly correlated universe', *Ann. Math. Statist.*, **13** (1942) 80-87
- LITTLEWOOD, J. E. [1] *Theory of Functions*. Oxford (1944)
- LOMICKI, Z. A. and ZAREMBA, S. K. [1] 'On the estimation of autocorrelation in time series', *Ann. Math. Statist.*, **28** (1957) 140-158
- MORAN, P. A. P. [1] 'The statistical analysis of the Canadian lynx cycle I. Structure and Prediction', *Aust. J. Zoology*, **1** (1953) 163-173
- [2] 'A test for the serial independence of residuals', *Biometrika*, **37** (1950) 178-181
- MUNROE, M. E. [1] *Introduction to Measure and Integration*. Cambridge, Mass. (1953)
- NEUMANN, J. von [1] 'Distribution of the ratio of the mean square successive difference to the variance', *Ann. Math. Statist.*, **12** (1941) 367-395
- OGAWARA, M. [1] 'A note on the test of serial correlation coefficients', *Ann. Math. Statist.*, **22** (1951) 115-118
- OLKIN, I. and PRATT, J. W. [1] 'A multivariate Tchebycheff inequality', *Ann. Math. Statist.*, **29** (1958) 201-211
- PARZEN, E. [1] 'On consistent estimates of the spectrum of a stationary time series', *Ann. Math. Statist.*, **28** (1957) 329-348
- PITMAN, E. J. G. [1] 'The "closest" estimates of statistical parameters', *Proc. Camb. Phil. Soc.*, **33** (1937) 212-222
- QUEENOUE, M. H. [1] 'The joint distribution of serial correlation coefficients', *Ann. Math. Statist.*, **20** (1949) 561-571
- [2] 'A large sample test for the goodness of fit of autoregressive schemes', *J.R. Statist. Soc. A.*, **110** (1947) 123-129
- [3] *Associated Measurements*. London (1952)
- RJESZ, F. and SZ-NAGY, B. [1] *Functional Analysis*. London (1956)
- Royal Statistical Society Symposia on Time Series [1] 'Autocorrelation in time series', *J.R. Statist. Soc. (Suppl.)*, **8** (1946) 27-97
- [2] 'Spectral approach to time series', *J.R. Statist. Soc. B*, **19** (1957) 1-63
- [3] 'Analysis of geophysical time series', *J.R. Statist. Soc. A*, **120** (1957) 387-439

Bibliography

- 147
- SIMPSON, N. [1] 'Tables for estimating the goodness of fit of empirical distributions', *Ann. Math. Statist.*, **19** (1948) 279-281
- SOMMERFELD, A. J. W. [1] *Partial Differential Equations in Physics*. New York (1949)
- TITCHMARSH, E. C. [1] *Introduction to the Theory of Fourier Integrals*. Oxford (1937)
- [2] *The Theory of Functions*. Oxford (1932)
- WALD, A. [1] 'Asymptotic properties of the maximum likelihood estimate of an unknown parameter of a discrete stochastic process', *Ann. Math. Statist.*, **19** (1948) 40-46
- WALKER, A. M. [1] 'The asymptotic distribution of serial correlation coefficients for autoregressive processes with dependent residuals', *Proc. Camb. Phil. Soc.*, **50** (1954) 60-64
- WATSON, G. S. [1] 'On the joint distribution of the circular serial correlation coefficients', *Biometrika*, **43** (1956) 161-168
- [2] Serial Correlation in Regression Analysis. Thesis submitted to the Faculty of the North Carolina State College, 1951
- [3] Serial Correlation in Regression Analysis I, *Biometrika*, **42** (1955) 327-341
- WATSON, G. S. and HANNAN, E. J. [1] Serial Correlation in Regression Analysis II, *Biometrika*, **43** (1955) 436-448
- WHITTAKER, E. T. and WATSON, G. N. [1] *A Course of Modern Analysis*. Cambridge (1946)
- WHITTLE, P. [1] *Hypothesis Testing in Time Series Analysis*. Uppsala (1951)
- [2] 'Estimation and information in stationary time series', *Ark. Mat.*, **2** (1955) 423-434
- [3] 'The statistical analysis of a seismic record', *Sears Foundation Journal of Marine Research*, **13** (1954) 76-100
- [4] 'Tests of fit in time-series', *Biometrika*, **39** (1952) 309-318
- WOLD, H. [1] *A Study in the Analysis of Stationary Time Series*. Stockholm (1953)
- [2] 'A large sample test for moving averages', *J.R. Statist. Soc. B*, **11** (1949) 297-305

AN
INTRODUCTION
TO THE
THEORY OF

STATIONARY
RANDOM FUNCTIONS

A. M. YAGLOM
*Institute of Atmospheric Physics,
Academy of Sciences, U.S.S.R.*

Revised English Edition
Translated and Edited by
Richard A. Silverman

AUTHOR'S PREFACE TO
THE RUSSIAN EDITION

The basic aim of this monograph is to give a simple and at the same time mathematically rigorous treatment of the problem of extrapolating and filtering stationary random functions (both sequences and processes). The material stems from two sets of lectures given at Moscow State University, one for a group of graduate students in the Mechanics and Mathematics Department, and another for a seminar under the direction of E. B. Dynkin. In order to keep the presentation as elementary as possible, emphasis has been put on the simplest special case, where the spectral density is a rational function (in $e^{i\omega}$ for sequences, and in i , for processes). However, Chapter 8 contains a brief survey of the results obtained by A. N. Kolmogorov in his deep study of the general case.

Part I of the book is devoted to a rather complete presentation of the spectral theory of stationary random functions. This sophisticated theory, originating in A. Y. Khinchin's paper in the *Mathematische Annalen* (vol. 109, p. 604, 1934), is now the basis for almost all research on the subject. Part I should be of independent interest, aside from its connection with the theory of extrapolation and filtering, presented in Part 2.

The reader is assumed to have at his command little more than the rudiments of probability theory and complex variable theory. However, to understand Part 2, he will need to know the most elementary facts about the geometry of Hilbert space. The reader who is not familiar with this material may have to take certain statements on faith.

Frequent discussions with A. N. Kolmogorov have had a considerable influence on all my work in the field of

1962
PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey

random functions, and I have also profited greatly from conversations with A. M. Obukhov. While writing this monograph, I have received substantial help from A. S. Monin, which has enabled me to finish the work much sooner than would otherwise have been possible. A. N. Kolmogorov and A. M. Obukhov have both read the manuscript, making many valuable suggestions. I am delighted to take this occasion to express my sincere gratitude to these three colleagues.

1952

A. M. Y

AUTHOR'S PREFACE TO THE REVISED ENGLISH EDITION

The original version of this monograph was published a decade ago as a long review article in the Russian journal *Uspishi Matematicheskikh Nauk* (vol. 7, no. 5, 1952). At that time, no book specifically devoted to the mathematical theory of stationary random functions was available, either in Russian or in any other language, and it was my intention to remedy, at least partially, this gap in the literature. I also wanted to popularize, for as large an audience as possible, the theory of linear extrapolation and filtering of stationary sequences and processes, due to A. N. Kolmogorov and N. Wiener, a theory which is both of intrinsic mathematical interest and of great practical importance. This task seemed to me even more worthwhile for another reason: On the one hand, Kolmogorov's basic paper, containing complete proofs of his profound results in this field, had been published in a journal with a rather limited circulation (*Bulletin Moscow State University*, vol. 2, no. 6, 1941), while the

methods used in the paper are complicated and accessible only to students with an extensive mathematical background. On the other hand, Wiener's celebrated report, written during the war, had just appeared in book form at about this time, and it immediately acquired a reputation among engineers of being extraordinarily abstruse, whereas most mathematicians, unaccustomed to its heuristic level of rigor and engineering terminology, had great difficulty in understanding it. However, I had found that it was quite feasible to give a simple and entirely rigorous treatment of the problem of extrapolating and filtering stationary random functions, for the case of rational spectral densities. In fact, a recent article by S. Darlington (*Bell System Technical Journal*, vol. 37, p. 1221, 1958) advocates the same method as the most suitable approach for engineers encountering the subject for the first time.

During the last decade, a number of interesting books on the theory of random functions have been published, many of which are cited in the bibliographies at the end of this volume. Nevertheless, it seems to me that my book, which, without sacrificing mathematical rigor, stresses the physical meaning of results rather than delving into logical subtleties, will be of interest to beginning mathematicians, as well as to physicists and engineers who actually deal with random functions in practice. However, despite the fact that the book treats only elementary aspects of the theory, the presentation of some topics in the Russian original was in danger of becoming out of date, because of subsequent advances in the field, on all levels. Therefore, the translator, Dr. R. A. Silverman, decided to "rejuvenate" the book, by adding new material in keeping with the present development of the subject (especially in Chapters 3 and 8, which have a survey character), by enlarging and modernizing the bibliography, by supplying numerous footnotes containing explanatory comments and references to recent work, etc. I myself have also made numerous improvements and additions, working from a copy of the manuscript sent to me by the translator in ample time for revision. Moreover, I have read through all the galley proofs, making sure that I approved of the final version. Thus,

viii AUTHOR'S PREFACE

in my opinion, the English edition of the book reflects the contemporary state of research in the theory of stationary random functions.

Of course, in a book of this size, it has been impossible to discuss all aspects of a theory which has progressed so rapidly, and it is inevitable that some important results are mentioned only in passing, or are not touched upon at all. However, it seemed to me that failure to include a discussion of the recent theory of generalized random processes would have been regrettable, since this theory greatly simplifies the treatment of some important topics. e.g., random processes with stationary increments. Moreover, the concept of a generalized random process is very "physical," and hence quite accessible to those readers for whom the book is primarily intended. Thus, I thought it advisable to write an elementary exposition of the theory of generalized random processes, expressed for the English edition, and I accordingly set: the translator, an outline which he expanded into the first appendix. In addition, Dr. D. B. Lowdenslager contributed a second appendix, containing a brief survey of some recent developments (mostly pertaining to extrapolation and filtering of multidimensional stationary random functions), with appropriate supplementary references. This appendix should also enhance the value of the book.

I am pleased that my book is appearing in a special series of Russian translations, since this will serve to bring it to the attention of many new readers. I would like to express my appreciation to the Prentice-Hall Publishing Company, to Dr. D. B. Lowdenslager, and especially to Dr. R. A. Silverman for his careful translation and painstaking effort to eliminate typographical errors in the Russian original, for helping me write Appendix I, and in general, for doing everything in his power to improve the English edition of the book.

1962

TRANSLATOR'S PREFACE

The present volume, the fourth in a new series of Russian translations under my editorship, has long been regarded as a classic presentation of a subject of great theoretical and practical interest. It has been a great pleasure to work with Professor Yaglom in preparing a revised English edition of his book. I would like to thank him for his kind words above, and for his indelible cooperation during a four-month period of heavy correspondence. Professor Yaglom has already described both his aims in writing the monograph, and the ways in which the English edition differs from the Russian original. Thus, at this point, I would only like to call attention to a few stylistic matters:

1. The system of references in "letter-number form" used in the main Bibliography is almost self-explanatory. For example, K9 refers to the ninth paper (or book) whose (first) author's surname begins with the letter K, where the entire Bibliography is arranged in alphabetical order, and in chronological order as well, whenever there are several papers by the same author.
2. The main Bibliography contains only items cited in the text, and the Supplementary Bibliography contains only items cited in the two appendices. It is not claimed that the bibliographies are exhaustive, especially as regards papers on applied topics.
3. Sections marked by asterisks, and also individual passages lying between asterisks, contain more advanced or detailed material, which can be omitted without loss of continuity. However, no attempt has been made to indicate such passages in Chapter 8, which is essentially a survey chapter.

A. M. Y.

1962

R. A. S.
ix

CONTENTS

xii CONTENTS

PART I THE GENERAL THEORY OF STATIONARY RANDOM FUNCTIONS Page 1.

INTRODUCTION Page 1.

PART II THEORY OF RANDOM FUNCTIONS Page 7.

1 BASIC PROPERTIES OF STATIONARY RANDOM FUNCTIONS Page 9. 1: Definition of a Random Function, 9. 2: Stationarity, 11. 3: Moments, The Correlation Function, 12. 4: The Ergodic Theorem, 16. 5: Differentiation and Integration of a Random Process, Properties of the Correlation Function, 22. 6: Complex Random Functions, Geometric Interpretation, 25.

2 EXAMPLES OF STATIONARY RANDOM FUNCTIONS Page 29. 7: Examples of Stationary Random Sequences, 29. 8: Examples of Stationary Random Processes, 31. 9: Spectral Representation of Stationary Processes, 36. 10: Spectral Representation of the Correlation Function, 43. 11: Spectral Representation of the Derivative and Integral of a Stationary Process, 51. 12: Spectral Representation of Stationary Sequences, 54. 13: Examples of Correlation Functions of Stationary Sequences, 56. 14: Examples of Correlation Functions of Stationary Processes, 61.

3 FURTHER DEVELOPMENT OF THE CORRELATION THEORY OF RANDOM FUNCTIONS Page 78. 15: The Multidimensional Case, 78. 16: Homogeneous Random Fields, 81. 17: Homogeneous and isotropic Random Fields, 84. 18: Processes with Stationary Increments, 86.

*1

PART II LINEAR EXTRAPOLATION AND FILTERING OF STATIONARY RANDOM FUNCTIONS Page 95.

4

LINEAR EXTRAPOLATION OF STATIONARY RANDOM SEQUENCES Page 97. 19: Statement of the Problem, 97. 20: Extrapolation When the Values of a Finite Number of Elements of the Sequence are Known, 100. 21: Extrapolation When the Entire Past of the Sequence is Known, 103. 22: Spectral Formulation of the Problem of Linear Extrapolation, 106. 23: Examples of Linear Extrapolation of Stationary Sequences, 110. 24: The Case of a General Rational Spectral Density in $e^{\lambda t}$, 121.

5

LINEAR FILTERING OF STATIONARY RANDOM SEQUENCES Page 126. 25: Filtering When the Values of a Finite Number of Elements of the Sequence are Known, 126. 26: Filtering When the Entire Past of the Sequence is Known, 129. 27: Examples of Linear Filtering of Stationary Sequences, 132. 28: The Case of a General Rational Spectral Density in $e^{\lambda t}$, 141.

6

LINEAR EXTRAPOLATION OF STATIONARY RANDOM PROCESSES Page 144. 29: Statement of the Problem, 144. 30: Transition to Functions of a Complex Variable, 150. 31: Examples of Linear Extrapolation of Stationary Processes, 153. 32: The Case of a General Rational Spectral Density in λ , 161.

7

LINEAR FILTERING OF STATIONARY RANDOM PROCESSES Page 167. 33: Statement of the Problem, 167. 34: Examples of Linear Filtering of Stationary Processes, 170. 35: The Case of a General Rational Spectral Density in λ , 176.

8

FURTHER DEVELOPMENT OF THE THEORY OF EXTRAPOLATION AND FILTERING Page 182. 36: General Theory of Extrapolation and Filtering of Stationary Random Sequences and Processes, 182. 37: Problems Related to Extrapolation and Filtering of Stationary Random Functions, 195.

CONTENTS xiii

APPENDIX I GENERALIZED RANDOM PROCESSES Page 207.

APPENDIX II SOME RECENT DEVELOPMENTS Page 214.

BIBLIOGRAPHY Page 217.

SUPPLEMENTARY BIBLIOGRAPHY Page 224.

NAME INDEX Page 227.

SUBJECT INDEX Page 231.

1963

Robert Goodell Brown

Arthur D. Little, Inc.

-41-

Preface

"These hieroglyphics have evidently a meaning. If it is a purely arbitrary one, it may be impossible for us to solve it. If, on the other hand, it is systematic, I have no doubt that we shall get to the bottom of it."

Adventure of the Dancing Men

In recent years, the rapid rise of technology in industry and in government has created both the need and the means for effective use of high-speed, internally programmed, digital computers. As computers are employed more and more to carry out the routine data-processing functions for a business, or for the Defense Department, there is a stronger and stronger pressure to develop means for handling all the steps in the problem routinely. No intermediate print-outs, that delay the processing, should be required. The information should be "untouched by human hands," from the original input to final output. As Sir Walter Scott wrote* in 1830, "The times have changed in nothing more than in the rapid conveyance of intelligence and communication."

**The Heart of Midlothian.*

Prentice-Hall, Inc. Englewood Cliffs, N.J.

Smoothings and Forecasting and Prediction of Discrete Time Series

In many applications, computers were first employed solely for routine data processing: the preparation of payrolls, maintenance of inventory lists, posting production progress, and recording of stock status. These applications require that information be printed out, either in summary or in detail, for someone to look at and make a decision for some sort of action. Operations research studies have made it possible to pass from the use of computers for bookkeeping to their use for control: production scheduling, stock replenishment, capital budgeting, air defense, and fire control systems. Each of these applications requires an estimate of what will happen in the future. Men with sufficient skill, judgment, and experience can do a reasonable job of predicting the future, given enough time and information. These men are frequently reluctant to admit that a computer can be taught to forecast well. A reluctance to exploit the speed, capacity, and flexibility of a computer has been noticed among pilots who were skeptical of bombsights and fire-control systems, and among stock analysts when first faced with a modern integrated data-processing system.

A computed forecast may not always be more accurate than a human prediction. It can be obtained so much faster and so much more cheaply, however, that it may be advantageous to sacrifice some accuracy if necessary. More frequently, the machine's forecasts, on the average, are more accurate than the conventional human predictions, by a measurable amount.

The scope of this book is limited to the current state of the art of programming digital computers to compute forecasts of discrete time series. The analysis of the entire control system that makes use of the forecast is beyond this book. We are concerned primarily with what the control engineers call the *open-loop* characteristics of one box that accepts current observations of the time series and delivers a forecast of the probability distribution from which future observations will be drawn. The analysis and development of these techniques has been kept sufficiently general that they can be applied to a very wide variety of integrated control systems.

Objective forecasts, of the type that can be programmed for a computer, are dependable and unemotional: their response to changes in the external environment can be studied in advance and systems can be designed from these studies; the computations are consistent and therefore controllable across a wide variety of problems. Since perhaps 80 to 95 per cent of the problems encountered are quite routine, they can be handled by the computer. Thus, the analyst has from five to twenty times as much effort available to spend on the exceptions that really do require his skill, judgment, and experience.

In 1959, the McGraw-Hill Book Company published my *Statistical Forecasting for Inventory Control* which reported the state of the art at that time, with special reference to inventory control applications. Research in

the problems of statisticians' forecasting has proceeded steadily since then, and much more powerful methods have been developed, particularly in the description of a time series by much more general classes of functions. Of especial interest to businesses with seasonal demand should be the class of trigonometric functions that make it possible to describe any cyclical process accurately and easily.

The organization of this book has been something of a problem to me. The objective of our research has been the development of practical methods that can be applied to real problems in the government and in business. Therefore, the primary results should be presented in a "How to" fashion that the men who are directly concerned with the problems can understand. On the other hand, these results stem from some intricate reasoning that can be carried out accurately only in the language of mathematics, and not everyone can speak that language fluently. The better the reader understands where the results came from, the surer he is of applying them correctly.

As each new topic is introduced, there is a non-technical summary of the major results to be obtained. Where possible, I have given a plausible argument that is intended to make the results seem reasonable. Numerical examples are also used to make a point clear. There are work sheets so that you can work out additional examples by hand. These work sheets can easily be converted to computer programs. With diligence and patience, almost anyone should be able to get a sufficient understanding of the procedures to apply them and to get the correct answer.

Complete mathematical derivations are also given, with the formulas and tables necessary to extend the range of coverage beyond the problems that can be illustrated by examples. A standard college background in mathematics should be sufficient for an understanding of the principal results in the more technical sections. Only a professional mathematician, however, will fully appreciate the results and be able to extend them to new areas. The topics of interest to the mathematician primarily are written in more technical language than that used in discussing the problems and procedures for dealing with them. Such sections also assume that the reader has a more advanced background. The text is larded with exercises to help stimulate thought about the problems.

Whenever you feel that you are getting in over your head, skip the material for a while, until the discussion becomes less theoretical. Occasionally, you will find that you must go back and work on an earlier section to get the material needed as a foundation for something later. The classroom teacher will find it advisable to skip some material and to cover the remainder in a sequence that suits the needs of the class.

A teaching sequence that has been successful is first to cover one complete, although elementary system based on Chapters 1, 4, 8, 22, 23, and 25,

followed by units on data (Chapters 2 and 3, Appendix A); time series models and the characteristics of smoothing systems (Chapters 4, 9, 10, 11 and Appendix B); general exponential smoothing and forecasting (Chapters 12, 15, and 16); Error Measurement (Chapters 19 and 20). At the end of the course, the class can take up special topics, such as probability models (Chapters 5, 13, and 17), the direct forecasts of Chapter 18, and optimum linear filters (Chapter 21).

A number of concepts are used in this book. The reader who is familiar with these concepts in other areas should have no difficulty. The reader who is aware that he is going to encounter new concepts should have no difficulty in getting a sufficient understanding of them from the context. Some of the following concepts are trivial, some are quite deep. I have found that they have created problems for people who are not aware that they are new to them: probability distribution, functions, least squares, simulations, systems analysis and design, transforms, and so on.

A number of formal manipulative techniques are also used freely in this book. The reader who wants to go deeply into the developments discussed here should have a good working knowledge of algebra, the calculus, mathematical statistics, and matrix algebra. If the reader knows something about computer programming, he will more fully appreciate the reasons for some of the development. It is not necessary, however, that he be a professional programmer. Two techniques are used in some depth: z-transforms and the regression analysis. Since these are not generally understood clearly, a brief review of the essential developments is included in the appendices.

Each of the six major parts of this book thoroughly discusses the alternative choices facing the systems designer in (1) deciding on the sources of the data to be used; (2, the model to represent the data; (3, the smoothing technique to estimate values for the model from the current data; (4) the forecast obtained from the model; (5) the measurement of error in the forecasts; (6) the applications of the forecast and error measurement to a particular decision problem. For a particular application, many of these alternatives may not be relevant. The teacher may therefore organize the material around a single thread that selects one alternative in each section, leading to a particular system for forecasting. When that system is well understood, he may then go back over some of the alternatives that might have been considered at each stage of the design.

Much of the work leading to this book has been carried out in the course of industrial assignments by the Operations Research Section at Arthur D. Little, Inc. During 1961 and 1962, the Bureau of Supplies and Accounts has supported basic mathematical research in the techniques of forecasting under Contract Nonr-3406(00). I should like to express my appreciation for the support and encouragement offered by Captain Ed Scofield, SC, USN, Commander Herb Mills, SC, USN, and Messrs. Randy Simpson and Jim Prichard.

I gratefully acknowledge the help of many colleagues and acquaintances who have made numerous comments and suggestions. Especial mention must be made of Professor G. E. P. Box of the University of Wisconsin, Professor Ronald A. Howard of MIT, Professor Sebastian Littauer of Columbia University, Mr. Warren Briggs of The R&D Corporation, and Messrs. Jim Loughney and Peter Woitach of IBM's Systems Research Institute. Dr. Robert Barringer, Michel Carré, Gordon Crook, Dr. James Dobbie, Dr. Ernest Foernzler, Frank Huiswilt, Mrs. Elizabeth Hutton, Dr. Richard Meyer, Lawrence Parker, Dr. Steian Peters, Peter Strong, and Miss Joan Sullivan at Arthur D. Little, Inc., have contributed greatly in suggesting novel ideas, developing proofs, and carrying out detailed examples. Miss Norma Moulton has coped admirably with the unenviable task of typing and retyping the manuscript.

The quotations at the beginning of the various sections are taken from Chris Kentera, Robert Carola and Norm Stanton of Prentice-Hall have made the work of publishing this book seem, to the author at least, a simple task and a great joy.

The quotations at the beginning of the various sections are taken from the Sherlock Holmes stories by Sir Arthur Conan Doyle, and are used by permission of Sir Arthur Conan Doyle's estate.

ROBERT G. BROWN

Blank

1 Introduction

Appendix

A Regression, Autocorrelation, and Spectral Analysis	387
B The z-Transform	403
C Samples of Time Series for Practice	413
D Mathematical Tables	435

Bibliography

Glossary of Mathematical Symbols

Index

Work Sheets

1 MOVING AVERAGES	100
2 EXPONENTIAL SMOOTHING	103
3 LEAST SQUARES	126
4 MANUAL LEAST SQUARES COMPUTATIONS	129
5 DOUBLE EXPONENTIAL SMOOTHING	131
6 TRIPLE EXPONENTIAL SMOOTHING	137
7 TRIPLE COEFFICIENT SMOOTHING	141
8 GENERAL EXPONENTIAL SMOOTHING	197
9 VECTOR SMOOTHING	204
10 INSTALLATION RATES	225
11 DEMAND-DURING-A-LEAD-TIME	252

"The emotional qualities are antagonistic to clear reasoning."

The Sign of the Four

You're driving an automobile. You glance at the gasoline gauge and decide to drive on past a service station. In that decision you have weighed your estimate of when you'll next pass another station and your estimate of the rate of consumption of gasoline, and decided that your present supply is greater than the consumption until the next replenishment opportunity. You can do these computations quite subjectively and can afford to carry a quarter tank of gasoline that is never used, just to be quite sure that even if you make a reasonable error you won't get into trouble.

A businessman may have to make similar decisions for each of thousands of items he keeps in stock. It is vitally important for him to be able to reduce his investment in unused stocks. Objective computations of the probabilities of consuming stock at various rates and objective computa-

The development of any new idea depends heavily on the ideas that preceded it. Wherever a remark in this book demands from a specific reference, a footnote gives the necessary details. This bibliography is intended as a general reading list for the student who wants to recapitulate for himself the ontogeny of current techniques of statistical forecasting.

Books marked with an asterisk (*) have particularly good bibliographies of journal articles.
I am deeply indebted to Mrs. Elizabeth J. Hutton for her patience, industry, and ingenuity in assembling these references.

Forecasting or Prediction

- Abramson, Adolph G. and R. H. Mack. *Business Forecasting in Practice*. New York: Wiley, 1956
- Adams, Robert William. "The Use of Economic Models in Forecasting." Unpublished doctoral dissertation, M.I.T. 1951.
- American Management Association. Company Organization for Economic Forecasting. Rev. Report No. 28. New York: A.M.A. 1957.
- _____, Materials and Methods of Sales Forecasting, Special Report No. 27. New York: A.M.A. 1956.
- _____, *Sales Forecasting, Uses, Techniques, and Trends*, Special Report No. 16. New York: A.M.A. 1956.

- Bassie, V. Lewis, *Economic Forecasting*. New York: McGraw-Hill, 1958.
- , *Uncertainty in Forecasting and Policy Formation*. Austin, Tex.: University of Texas Bureau of Business Research, 1959.
- Bates, Philip Knight, Jr., "A Dynamic Study of Self-Induced Seasonal Cycles." Unpublished master's thesis, M.I.T., 1960.
- Berger, Richard, "Several of the Forecasting Techniques in Use Today," *Com. Fin. Chron.*, May 14, 1959, pp. 22-23.
- Biggs, Robert M., *National Income Analysis and Forecasting*. New York: Norton, 1956.
- Box, G. E. P. and G. M. Jenkins, "Some Statistical Aspects of Adaptive Optimization and Control," *Jour. Roy. Stat. Soc., Part 5*, 1962.
- Bratt, Elmer C., *Business Cycles and Forecasting*, 5th ed., Homewood, Ill.: Irwin, 1961.
- , *Business Forecasting*. New York: McGraw-Hill, 1958.
- , "Methodology in Long-Range Business Forecasting," *Com. Fin. Chron.*, Feb. 4, 1960, pp. 10-11.
- Brown, R. G., "Less Risk in Inventory Estimates," *Har. Bus. Rev.*, July-Aug., 1959, pp. 16-16.
- , *Statistical Forecasting for Inventory Control*. New York: McGraw-Hill, 1959.
- and R. F. Meyer, "The Fundamental Theorem of Exponential Smoothing," *Operations Research*, Vol. 9, No. 5 (Sept.-Oct., 1961), 673-87.
- Business Week*, "Business Forecasting, A Special Report," Sept. 24, 1955, pp. 90-122.
- Chambers, Edward J., *Economic Fluctuations and Forecasting*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1961.
- Cohn, Gerhard, "Economic Projections: Tools of Economic Analysis and Decision Making," *Amer. Econ. Rev.*, May 1958, pp. 178-87.
- Conference on Research in Income and Wealth, *Long-Range Economic Projection: Studies in Income and Wealth*, Vol. 16. Princeton, N.J.: Princeton University Press, 1954.
- , *Short-Term Economic Forecasting: Studies in Income and Wealth*, Vol. 17. Princeton, N.J.: Princeton University Press, 1955.
- Controllorship Foundation, *Business Forecasting; A Survey of Business Practices and Methods*. New York: 1950.
- Con, D. P., "Prediction by Exponentially Weighted Moving Averages and Related Methods," *Jour. Roy. Stat. Soc. (Ser. B)*, Vol. 23, No. 2 (1961), 414-22.
- Deweij, Edward R. and E. F. Dakin, *Cycles: The Science of Prediction*. New York: Holt, 1947.
- Eiteman, Wilford J., *Business Forecasting*. Ann Arbor, Mich.: Masterco Press, 1954.
- Goldberg, Melvin J., "How Top Management Forecasts the Future," *Dun's Rev. Mod. Ind.*, September, 1958, pp. 33ff.
- Goodman, Oscar R., *Sales Forecasting: A Case Study Approach*. Madison, Wis.: University of Wisconsin Bureau of Business Research and Service, 1954.
- Gordon, Robert A., *Business Fluctuations*. New York: Harper, 1952.
- Grayson, Henry, *Economic Planning under Free Enterprise*. Washington, D.C.: Public Affairs, 1954.
- Juster, Francis T., *Consumer Expectations, Plans, and Purchases*. Princeton, N.J.: Princeton University Press, 1959.
- Klein, Lawrence R. and A. S. Goldberger, *An Econometric Model of the U.S., 1929-1952*. Amsterdam: North-Holland Publishing Co., 1955.
- Lazer, William, "Perspectives of Sales Forecasting," *Bus. Topics*. Michigan State University Bureau of Business and Economic Research, Winter, 1959, pp. 41-51.
- Lewis, John P., *Business Conditions Analysis*. New York: McGraw-Hill, 1959.
- , *Recent Development in Economic Forecasting*. Indiana University: Bloomington School of Business, 1955.
- Likert, Rensis and Samuel P. Hayes, *Psychological Surveys in Business Forecasting*. Foundation for Research on Human Behavior, 1955.
- Luedicke, Heinz E., *How to Forecast Business Trends: A Special Report for Executives*. New York: Jour. Com., 1954.
- MacNiece, E. H., *Production Forecasting, Planning and Control*. 3rd ed. New York: Wiley, 1961.
- Maisel, Sherman J., *Fluctuations, Growth, and Forecasting: The Principles of Dynamic Business Economics*. New York: Wiley, 1957.
- Meyer, R. F., "An Adaptive Method of Short-Term Forecasting," International Federation of Operational Research Societies, Oslo, July, 1963.

- Moore, G. H. "Statistical Indicators of Cyclical Revivals and Recessions," National Bureau of Economic Research, *Occasional Paper* No. 31, 1950.
- Muth, R. F. "Optimal Properties of Exponentially Weighted Forecasts," *Amer. Soc. Assoc. Jour.*, Vol. 55, No. 250 (June, 1960), 295-306.
- National Bureau of Economic Research, "Measuring Recessions," *Occasional Paper* No. 6, Princeton, N.J., 1958.
- , *Qualitative and Economic Significance of Anticipations Data*. Princeton, N.J.: 1960.
- National Planning Association, "Long-Range Projections for Economic Growth: The American Economy in 1970," *Planning Pamphlet*, No. 107, Washington, D.C.: 1959.
- Newbury, Frank D. *Business Forecasting; Principles and Practices*. New York: McGraw-Hill, 1952.
- Orcutt, G. H., et al., *Microanalysis of Socioeconomic Systems*. New York: Harper, 1961.
- Platt, H. M. "Economic Indicators: Their Use in Business Forecasting," Dartmouth College, Amos Tuck School of Business Administration, *Tuck Bulletin*, No. 21, 1959.
- Roos, Charles F. "Survey of Economic Forecasting Techniques," *Econometrica*, October, 1957, pp. 363-95.
- Saunders, L. P. "The Prediction of a Random Time Series Affected by a Prescribed Time Function," *Aust. Jour. Stat.*, Vol. 4, No. 1 (April, 1962), 11-24.
- Shapiro, I. I. *The Prediction of Ballistic Missile Trajectories from Radar Observations*. New York: McGraw-Hill, 1957.
- Shiskin, J. "Electronic Computers and Business Indicators," National Bureau of Economic Research, *Occasional Paper* No. 55, 1957.
- , H. Eisenpress, "Seasonal Adjustments by Electronic Computer Methods," National Bureau of Economic Research, *Technical Paper* No. 12, 1955.
- Silk, Leontard S. *Forecasting Business Trends*. New York: McGraw-Hill, 1956.
- Snyder, Pittard M., *Measuring Business Change*. New York: Wiley, 1955.
- Spencer, Marion H. and Louis Siegelman, *Managerial Economics: Decision Making and Forward Planning*. Homewood, Ill.: Irwin, 1959.
- , et al., *Business and Economic Forecasting: An Econometric Approach*. Homewood, Ill.: Irwin, 1961.
- Theil, H. *Economic Forecasts and Policy*. Amsterdam: North-Holland, 1958.

University of Chicago, *Jour. Bus.*, "Eleven Articles on Forecasting," January, 1954.

Weintraub, Sidney, *Forecasting the Price Level. Income Distribution and Economic Growth*. Philadelphia, Chilton, 1959.

Wright, Wilson, *Forecasting for Profit: A Technique for Business Management*. New York: Wiley, 1947.

Sampled-data Systems

- Cosgriff, R. L., *Nonlinear Control Systems*. New York: McGraw-Hill, 1958.
- Doyle, A. C., *Sherlock Holmes* (various).
- Goode, H. H. and R. E. Machol, *Systems Engineering*. New York: McGraw-Hill, 1957.
- Jury, Elijah I., *Sampled-Data Control Systems*. New York: Wiley, 1958.
- Lanning, J. H. and R. H. Battin, *Random Processes in Automatic Control*. New York: McGraw-Hill, 1955.
- Mishkin, Eli, ed., *Adaptive Control Systems*. New York: McGraw-Hill, 1961.
- Ragazzini, John R. and Gene Franklin, *Sampled-Data Control Systems*. New York: McGraw-Hill, 1958.
- Sittler, R. W., "Lectures on Sampled-Data Systems," M.I.T. Lincoln Laboratory, *Memorandum* No. 2M 0671, Aug. 22, 1957.
- Tou, Julius T., *Digital and Sampled-Data Control Systems*. New York: McGraw-Hill, 1959.
- Trunz, J. G., *Control System Synthesis*. New York: McGraw-Hill, 1955.
- Vassian, H. J., "Application of Discrete Variable Servo Theory to Inventory Control," *Oper. Res. Soc. Amer. Jour.*, Vol. 3 (August, 1955), 272.

Time-series Analysis

- Arrow, Kenneth and J. M. Hoeffding, *A Time Series Analysis of Interindustry Demands*. Amsterdam: North-Holland, 1959.
- Blackman, R. B. and J. W. Tukey, *Measurement of Power Spectra from the Point of View of Communications Engineering*. New York: Dover, 1959.
- Cunningham, L. and W. Hynd, "Random Processes in Problems of Air Warfare," *Jour. Roy. Soc. Sci. Supplement* No. 1, pp. 62-85, 1946.

- Davenport, W. B. and W. L. Root, *An Introduction to the Theory of Random Signals and Noise*. New York: McGraw-Hill, 1958.
- Davis, Harold T., *The Analysis of Economic Time Series*. New Haven: Yale University, Cowles Commission, 1941.
- Grenander, Ulf, *Probability and Statistics*. New York: Wiley, 1960.
- and Murray Rosenblatt, *Statistical Analysis of Stationary Time Series*. New York: Wiley, 1957.
- Hannan, E. J., *Time Series Analysis*. London: Methuen, 1960.
- Jackson, D., *Fourier Series—Orthogonal Polynomials*. New York: American Mathematical Society, 1941.
- Jones, R. H., "Stochastic Processes on a Sphere as Applied to Meteorological 500 mb Forecasts," Brown University Symposium, June 12, 1962.
- Koopmans, Tjalling C., *Statistical Inference in Dynamic Economic Models*. New York: Wiley, 1950.
- Maverick, Lewis A., *Time Series Analysis: Smoothing by Stages*. Southern Illinois University Press, 1945.
- Morgenstern, Osikar, "A New Look at Economic Time Series Analysis," Princeton University Econometric Research Program, *Research Memorandum* No. 19.
- Myagust, E., "Certain Topics in Telegraph Transmission Theory," *Trans. AIEE*, April, 1928, 617-44.
- Nenouille, M. H., *Analysis of Multiple Time Series*. New York: Hafner, 1957.
- Reiner, Peter O., *Introduction to the Analysis of Time Series*. New York: Holt, Rinehart and Winston, 1956.
- Wiener, Norbert, *Extrapolation, Interpolation, and Smoothing of Stationary Time Series*. New York: Wiley, 1949.
- Vold, H., *A Study in the Analysis of Stationary Time Series*, 2nd ed.; Appendix by Peter Whittle. Stockholm: Almqvist and Wiksell, 1954.
- Wie, G. U., "Why Do We Sometimes Get Nonsense Correlations between Time Series," *Jour. Roy. Stat. Soc.*, Vol. 89 (New Ser.), 61-64, 1926.
- HARMONIC ANALYSIS**
- Tietz, M. S., "Smoothing Periodograms from Time Series with Continuous Spectra," *Nature*, Vol. 161 (1948), 666-68.
- Slepčevitch, A. S., *Almost Periodic Functions*. New York: Dover, 1955.
- Bochner, Salomon, *Harmonic Analysis and the Theory of Probability*. Berkeley, Calif.: University of California, 1955.
- , *Lectures on Fourier Integrals*. Princeton, N.J.: Princeton University Press, 1959.
- Bohr, H., *Almost Periodic Functions*. New York: Clarendon, n.d.
- Bryson, William E., *Elementary Treatise on Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics*. New York: Dover, 1959.
- Cuciaia, C. L., *Harmonics, Sidebands, and Transients in Communication Engineering*. New York: McGraw-Hill, 1952.
- Cunningham, W. J., *Introduction to Nonlinear Analysis*. New York: McGraw-Hill, 1956.
- Harrington, Roger F., *Time-Harmonic Electromagnetic Fields*. New York: McGraw-Hill, 1961.
- Heble, M. P., "A Regression Problem Concerning Stationary Processes," *Trans. Amer. Math. Soc.*, Vol. 99 (May, 1961), 350-71.
- Lee, Y. W., *Statistical Theory of Communication*. New York: Wiley, 1960.
- Loomis, Lynn H., *Introduction to Abstract Harmonic Analysis*. New York: Van Nostrand, 1953.
- Murnaghan, F. D., *Introduction to Applied Mathematics*. New York: Wiley, 1948.
- Riesz, Frigyes and Béla Sz.-Nagy, *Functional Analysis*. New York: Ungar, 1955.
- Titchmarsh, Edward C., *Eigen Function Expansions Associated with Second-Order Differential Equations*; Part 1, Part 2. New York: Oxford University Press, 1946, 1958.
- Whittaker, E. T. and G. N. Watson, *Modern Analysis*, 4th ed. Cambridge: Cambridge University Press, 1927.
- Communication Filters**
- Bagliadari, Elie J., *Lectures on Communication System Theory*. New York: McGraw-Hill, 1961.
- Grabbe, E. M., S. Ramo and D. E. Wooldridge, eds., *Handbook of Automation, Computation, and Control*. New York: Wiley, 1958.
- Middleton, David, *An Introduction to Statistical Communication Theory*. New York: McGraw-Hill, 1960.
- Shannon, Claude E. and Warren Weaver, *Mathematical Theory of Communication*. University of Illinois, 1949.
- Storer, James E., *Passive Network Synthesis*. New York: McGraw-Hill, 1957.
- Wiener, Norbert, *Non-Linear Problems in Random Theory*. New York: Wiley, 1958.

Multiple Regression

- Ezekiel, Mordecai and Karl A. Fox. *Methods of Correlation, Analysis and Regression Analysis*. 3rd ed.. New York: Wiley, 1959.
- Freudenthal, W., M. Rosenblatt, and J. van Ness. "Regression Analysis of Vector Valued Random Processes." *Jour. Soc. Ind. Appl. Math.*, Vol. 10, No. 1 (March, 1962), 89-102.
- Graybill, Franklin A. *An Introduction to Linear Statistical Models*, Vol. 1. New York: McGraw-Hill, 1961.
- Höel, Paul G. *Introduction to Mathematical Statistics*. 2nd ed., New York: Wiley, 1954.
- Lyle, Philip. *Regression Analysis of Production Costs and Factory Operations*. New York: Hafner, 1957.
- Plackett, R. L. *Principles of Regression Analysis*. New York: Oxford University Press, 1960.
- Scheid, F. J. "The Under-Over-Under Theorem." *Amer. Math. Monthly*, Vol. 68, No. 9 (November, 1961), 862-71.
- Williams, E. J. *Regression Analysis*. New York: Wiley, 1959.

Statistical Decision Theory

- Anscombe, F. J. "Rejection of Outliers." *Technometrics*, Vol. 2, No. 2 (May, 1960), 123-24.
- Bellman, Richard E. *Adaptive Control Processes*. Princeton, N.J.: Princeton University Press, 1961.
- , *Dynamic Programming*. Princeton, N.J.: Princeton University Press, 1957.
- Bierman, Harold, L. E. Fouraker, and R. K. Jaedicke. *Quantitative Analysis for Business Decisions*. Homewood, Ill.: Irwin, 1961.
- Blackwell, D. and M. A. Girshick. *Theory of Games and Statistical Decision*. New York: Wiley, 1954.
- Bowman, E. H. and R. B. Fetter. *Analysis of Industrial Operations*. Homewood, Ill.: Irwin, 1959.
- Bross, Irwin. *Design for Decision*. New York: Macmillan, 1953.
- Chernoff, Herman and L. E. Moses. *Elementary Decision Theory*. New York: Wiley, 1959.
- Churchman, C. West. *Prediction and Optimal Decision*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1961.
- Coppock, J. D. *Economics of the Business Firm*. New York: McGraw-Hill, 1959.
- Davidson, Donald, et al. *Decision Making: An Experimental Approach*. Stanford, Calif.: Stanford University Press, 1957.
- Derman, Cyrus and Silver, Klein. *Probability and Statistical Inference for Engineers*. New York: Oxford University Press, 1959.
- Dresher, Melvin. *Games of Strategy: Theory and Applications*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1961.
- Forrester, Jay W. *Industrial Dynamics*. Cambridge, Mass.: M.I.T. Press, 1961.
- Grayson, Charles J. *Decisions under Uncertainty: Drilling Decisions by Oil and Gas Operators*. Boston: Harvard University, Division of Research, 1959.
- Holt, Charles C., et al., *Planning Production, Inventories, and Work Force*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1960.
- Howard, Ronald A. *Dynamic Programming and Markov Processes*. Cambridge, Mass.: M.I.T. Press, 1960.
- Willner, D., ed., *Decisions, Values, and Groups: Proceedings of an Interdisciplinary Research Conference*. University of New Mexico, New York: Pergamon Press, 1960.
- Kemeny, John G., et al. *Introduction to Finite Mathematics*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1957.
- Kozelka, Robert M., *Elements of Statistical Inference*. Reading, Mass.: Addison-Wesley, 1961.
- Kurnow, Ernest. *Statistics for Business Decisions*. Homewood, Ill.: Irwin, 1959.
- Lindsay, Franklin A. *New Techniques for Management Decision Making*. New York: McGraw-Hill, 1958.
- Luce, R. and H. Raiffa. *Games and Decisions*. New York: Wiley, 1957.
- Machol, Robert E., *Information and Decision Processes*. New York: McGraw-Hill, 1960.
- Manne, Alan Sussmann. *Economic Analysis for Business Decisions*. New York: McGraw-Hill, 1961.
- Raiffa, Howard and Robert Schlaifer. *Applied Statistical Decision Theory*. Cambridge, Mass.: Harvard University, Division of Research, 1961.
- Schlaifer, Robert. *Introduction to Statistics for Business Decisions*. New York: McGraw-Hill, 1961.
- , *Probability and Statistics for Business Decisions*. New York: McGraw-Hill, 1959.

- Simon, Herbert A., *Models of Men*. New York: Wiley, 1957.
- Simon, Herbert, ed., *Studies in Iter. Analysis and Prediction*. Stanford, Calif.: Stanford University Press, 1951.
- Sweets, John A., "Detection Theory and Psychophysics: A Review," *Psychometrika*, Vol. 26 (March, 1961), 45-62.
- Tinall, R. M., et al., *Decision Procedure*. New York: Wiley, 1954.
- Wald, Abraham, *Statistical Decision Functions*. New York: Wiley, 1950.
- Weiss, Lionel, *Statistical Lecture Theory*. New York: McGraw-Hill, 1961.
- Heuristic Programming**
- Ashby, W. Ross, *Design for a Brain*. 2nd ed. rev. New York: Wiley, 1960.
- Friedberg, R. M., B. Durham, and J. H. North, "A Learning Machine. Part II," *IBM Jour. Res. Dev.*, Vol. 3 (July, 1959), 252-85.
- Geffter, H. L. and N. Rochester, "Intelligent Behavior in Problem-Solving Machines," *IBM Jour. Res. Dev.*, Vol. 2 (October, 1955), 336-45.
- Hawkins, J. K., "Self-Organizing Systems: A Review and Commentary," *IRE Proc.*, Vol. 49 (January, 1961), 31-45.
- Joseph, R. D., "Contributions to Perception Theory," *U.S. Government Research Reports*, Vol. 35 (Jan. 13, 1961), 50-51(a).
- Melvin, D., "Computers: Key to Total Systems Control," *Proc. Eastern Joint Computer Conference*. Washington, D.C.: American Federation of Information Processing Societies, 1961.
- Minsky, Marvin, "Steps Toward Artificial Intelligence," *IRE Proc.*, January, 1961.
- Shestyn, G. S., "Recognition of Membership in Classes," *IRE Trans. Information Theory*, Vol. IT-7 (January, 1961), 44-50.
- Stevens, M. E., "A Machine Model of Recall," *Proc. Int'l. Conf. Information Processing*, UNESCO, Paris, June 15-25, 1959.
- Watansabe, M. S., "Information—Theoretical Aspects of Inductive and Deductive Inference," *IBM Jour. Res. Dev.*, Vol. 4 (April, 1960), 208-31.
- Yerits, Marshall C. and Scott Cameron, "Self-Organizing Systems," *Proceedings of an Interdisciplinary Conference*, May, 1959. New York: Pergamon Press, 1960.

- A** vector of coefficients, 163
 a_T estimated coefficient at time T , 61
 b_T estimated trend at time T , 61
 e exponential base (e) 71828...), 129, 437
 $E(t > k)$ forecast error for a lead time τ , 291
 $E[x]$ partial expectation, 371
 $f(k)$ expected value of x , 101
 $f(t)$ partial expectation, 373
 $f_i(t)$ vector of fitting functions, 162
 $f_i(t)$ the i th fitting function at time t , 76
 F matrix of weighted fitting functions, 163
 $F(k)$ probability, 377
 $F_s(j_s)$ Fourier transform, 276
 \mathfrak{F} matrix of fitting functions, 162
 $\mathfrak{g}(t)$ data vector, 164
 $G(\omega)$ gain, 397
 h_n impulse response, 407
 \mathbf{h} smoothing vector, 175
 $H(z)$ transfer function, 146
 L transition matrix, 165
 M_t moving average, 98
 $M_t^{(p)}$ double moving average, 127
 MSE mean square error, 119
 $p(t)$ probability vector, 201
 P probability vector, 83
 P_t probability of arriving home before t , 55
 $P_s(\omega)$ power spectrum, 398
 $R_{xx}(\tau)$ autocovariance, 47
 $S_1(x)$ exponential smoothing operator, 101
 $S_1(p)(x)$ p th order exponential smoothing, 128
 t time index in general
 T time of the most recent observation
 $\binom{t}{k} = \frac{t!}{(t-k)!k!}$ binomial coefficient, 66
 \mathbf{u} unit vector, 200
 V variance-covariance matrix, 229
 W weighting matrix, 391
 W_T weighted moving average, 125
 x_t observed data, 25
 $\hat{x}_t(T)$ or $\hat{x}(T)$ forecast made at time T for a lead time τ , 272
 $\hat{x}_t(\tau)$ estimate of the n th derivative, 132
 $\overline{x_1 x_2 \dots x_T}$ average lagged product, 119
 $Y(T)$ sum of the forecast errors, 240
 α smoothing constant, 101
 $\beta = 1 - \alpha$ discount factor, 92
 $\delta(t)$ Dirac delta function, impulse, 112
 $\Delta(t)$ mean absolute deviation, 253
 Δ^n nth difference, 63
 ϵ noise sample, 60
 θ phase angle, 116
 $\theta(x)$ probability distribution, 253
 $\xi(t)$ process generating observed data, 60
 $\rho(k)$ autocorrelation coefficient, 394
 σ^2 variance, 47
 σ_τ standard deviation of forecast errors over the lead time, 365
 $\Psi(\omega)$ frequency response function, 397

PREDICTION AND REGULATION

by Linear Least-Square Methods

P. WHITTLE,
M.Sc.(N.Z.), Ph.D. (Uppsala)

Professor of Mathematical Statistics
University of Manchester

The prediction of a random process in time has been studied as a topic in probability, and as a technique in the fields of communication and control: this book is an attempt at something intermediate in character.

The classical probabilistic treatment is to consider the pure prediction problem (i.e. prediction of the process which is actually observed) for a general stationary process; it culminates in a derivation of the conditions (formulae (2.7.9), (2.7.10)) for linear determinism. Several good treatments of this type already exist (Doob, 1953; Grenander and Rosenblatt, 1957); to write another would be pointless. Furthermore, from the applied point of view this approach is at once too general and too special: one will not be interested in the general stationary process, but one may well have to deal with processes which are not stationary at all, and the concept of pure prediction very soon proves over-narrow. There is a certain amount of what I believe to be new material in the book, although in rather dispersed form. The sections on accumulated processes and multivariate processes (Chapters 8 and 9, cf. Jugion (1955, 1960)), prediction from finite samples (Chapter 7) and regulation (Chapter 10) contain some such results, which, if not new, are at least novel. The important concepts and techniques of linear least-square regulation theory are, of course, due to G. C. Newton (1952, 1957), but trying to integrate these into the book, I found that quite a number of interesting new points arose.

It was intriguing to find in the course of writing that there were two themes that recurred quite spontaneously. One of these was the characterisation of a predictor (or regulator) by the processes for which it gave an exact result. The other was the continual dualism between the time-domain and frequency-domain approaches, typified by the methods of Kolmogorov and of Wiener respectively. This dualism persisted right through to the section on regulation, where the obvious Wiener-Hopf methods had as analogue in the time-domain the fascinating idea of certainty equivalence.

Regrets which I have are that so little attention is paid to processes with irrational spectral density function and to processes in several dimensions; also that, outside the chapter on regulation, there are so few detailed discussions of special cases of the degree of complexity that would be met in practice. However, if one wishes to retain the advantages of brevity, then a fairly stern limit must be drawn.

Sections, formulae and exercises are referred to by similar conventions. Thus, "section 5" means section 5 of the current chapter.

THE ENGLISH UNIVERSITIES PRESS LTD
102 NEWGATE STREET · LONDON · EC1

while "section (3.5)" means section 5 of chapter 3. "Ex. 3" means Exercise 3 of the current section. "Ex.(4.3)" means Exercise 3 of section 4 in the current chapter. "Ex. (6.4.3)" means Exercise 3 of section (6.4). I shall be most grateful for any comments which readers may care to offer.

My present debts of gratitude are too numerous to list; I must recall, however, the pleasant and instructive years that I spent at the Applied Mathematics Laboratory of the New Zealand Department of Scientific and Industrial Research.

Manchester

CONTENTS

-53-

CHAPTER 1

INTRODUCTION

1.1 Scientific prediction. 1.2 Deterministic processes in discrete time. 1.3 Deterministic processes in continuous time. 1.4 Stochastic processes in discrete time. 1.5 Stochastic processes in continuous time. 1.6 Linear least-square prediction and estimation.

P. WHITTLE

STATIONARY AND RELATED PROCESSES

2.1 Notation. 2.2 Linear operations; response and transfer functions. 2.3 The spectral representation of a stationary process (scalar case). 2.4 Linear operations on stationary processes. 2.5 The elementary stationary processes. 2.6 Linear determinism; Wold's decomposition. 2.7 Moving average and autoregressive representations of a process. 2.8 The canonical factorisation of the spectral density function. 2.9 Multivariate processes.

CHAPTER 2

A FIRST SOLUTION OF THE PREDICTION PROBLEM
 3.1 Deterministic components. 3.2 Pure prediction. 3.3 Some examples. 3.4 The factorisation of the spectral density function in practice. 3.5 Pure prediction in continuous time. 3.6 Continuous time processes with rational spectral density function. 3.7 The prediction of one series from another. 3.8 Processes with real zeros in the spectral density function. 3.9 General comments.

CHAPTER 3

LEAST-SQUARE APPROXIMATION
 4.1 Derivation of the linear least-square estimate. 4.2 Methods of inverting a covariance matrix. 4.3 The inclusion of deterministic terms in the least-square approximation. 4.4 Minimisation of more general quadratic forms.

CHAPTER 4

PROJECTION ON THE INFINITE SAMPLE
 5.1 Construction of the estimate. 5.2 Some examples of signal extraction. 5.3 Interpolation between evenly-spaced observations. 5.4 Smoothing in several dimensions.

PROJECTION ON THE SEMI-INFINITE SAMPLE
6.1 The prediction formula. 6.2 The mean square error. 6.3 An example. 6.4 Continuous time processes.

CHAPTER 1
INTRODUCTION

CHAPTER 7
PROJECTION ON THE FINITE SAMPLE

7.1 Autoregressive processes. 7.2 Moving-average processes. 7.3 Processes with rational s.d.f. 7.4 Interpolation. 7.5 Continuous time processes. 7.6 Processes generated by stochastic differential equations. 7.7 Continuous time processes with rational s.d.f.

CHAPTER 8
DEVIATIONS FROM STATIONARITY: TRENDS,
DETERMINISTIC COMPONENTS AND
ACCUMULATED PROCESSES

8.1 Linear models. 8.2 Extrapolation of trends. 8.3 The fitting of deterministic components. 8.4 Deterministic components; special cases. 8.5 Accumulated processes. 8.6 Exponentially weighted moving averages.

CHAPTER 9
MULTIVARIATE PROCESSES

9.1 Projection on the infinite sample. 9.2 Projection on the semi-infinite sample. 9.3 Canonical factorisation of a rational spectral density matrix. 9.4 Projection on the finite sample. 9.5 Continuous time.

CHAPTER 10
REGULATION

10.1 Notation for operators. 10.2 Some examples. 10.3 Optimal regulation when the input series have known future. 10.4 Statistical averages, time averages and non-stationary inputs. 10.5 Optimal regulation for systems with inputs of uncertain future. 10.6 Inputs with deterministic and non-stationary components. 10.7 Specific examples. 10.8 Certainty equivalence. 10.9 General comments on least-square regulation.

REFERENCES

INDEX

1.1 Scientific prediction

A title such as "prediction theory" is apt to raise unjustified expectations, because any claim to foretell the future, in however trivial and limited a sense, can never be regarded as something completely matter of fact. For this reason, we hasten to define our position.

Ideally, prediction is a by-product of the quantitative understanding of a situation, of a *physical model*. Thus, knowledge of Newton's laws of motion enables one to predict the paths of the planets with extreme accuracy; the laws of dynamics and elasticity enable one to predict the motion of a structure such as a bridge or a building under the influence of given applied forces. The majority of situations are *stable to specification*, in that a model which is only approximately valid will yield predictions which are also approximately valid, at least over a limited interval of time. Thus, Newton's laws do not allow for relativistic effects, and the model assumed for an engineering structure will certainly be oversimplified, but the derived predictions will not be greatly in error initially.

A model is termed *stochastic* or *deterministic* according as to whether it does or does not contain random variables. The classic models (such as the two examples above) are deterministic, and give definite predicted values. On the other hand, the future of a stochastic process is only partly determined by past values of the variables, and the idea of a definite prediction must be replaced by that of a *conditional distribution*; a probability distribution of future values, conditioned by the knowledge of past values.

Probabilistic effects may enter a model in a fundamental and inescapable fashion, as in quantum mechanics. Alternatively, they may enter because one is essentially interested in the average or "typical" behaviour of a complex system rather than in its detailed behaviour; this is the situation in statistical mechanics. Finally (and this situation is related to the last one), they may enter because there is a host of minor deterministic effects which one could not treat even if one would; the statistical effects represent this residuum of complicated and unexplained deterministic variation. The "residual" of a statistical model in econometrics, say, represents unexplained (but presumably explainable) variation of this type. (For the sake of brevity we have made these statements in a rather definite and unqualified fashion. In fact, they touch on the basic question of determinism, and are all controversial to some extent.)

1964

SPECTRAL ANALYSIS OF ECONOMIC TIME SERIES

BY C. W. J. GRANGER

IN ASSOCIATION WITH

M. HATAKAWA

A time series is a sequence of data, almost certainly intercorrelated, each of which is associated with a moment of time. As the majority of data in economics is found in the form of time series it has long been recognized that the development of sophisticated and powerful methods for analyzing such series is of importance when questions such as the testing of economic hypotheses are discussed. Many of the earlier methods have not proved satisfactory and it is thus clearly sensible to ask if methods used with success in other disciplines could not be useful in economics. The most obvious of the new methods that needed to be considered was spectral analysis.

The main object of this volume is to report upon the methods developed by members of the Time Series Project at the Econometric Research Program of Princeton University. The Project was directed by Professor Oskar Morgenstern and was also particularly fortunate in being advised from its earliest days by Professor John Tukey who made available to us many of his unpublished methods of analysis. The other members of the Econometric Research Program particularly concerned with the Time Series Project were Michael Godfrey, Michio Hatanaka, Herman Karrerman, Mitsuo Suzuki, Thomas Wonnacott, and the author.

Upon being initiated into the use of spectral methods by Professor Tukey, we were soon convinced of their potential importance, particularly the use of cross-spectral methods to discover and describe the possibly complex inter-relationships between economic variables. There were, however, two main obstacles to the direct use of these methods to economics. The first was that a re-orientation of many of our previous concepts of economic theory was required before the results of spectral analysis could be usefully interpreted. To non-mathematicians, the usefulness of presenting results in terms of frequencies is not immediately obvious but it is felt that once the great flexibility of this approach is appreciated it becomes important to recast many economic hypothesis in terms of frequencies instead of distributed lags or simple correlations.

Our second main obstacle was that, strictly, spectral methods may only be used on stationary data whereas it is obvious that few if any economic series are stationary. Much of the effort of the Project has been directed to the problems of either how to make economic data less non-stationary or to discovering whether or not spectral methods can extract useful information from series which are not completely stationary. The first of these problems chiefly concerns the development of efficient methods of removing trends in means. We are now confident, using the methods outlined in Chapter 8 and given sufficient data, that any undesirable effects due to such trends can be minimized. The effects of

certain other forms of non-stationarity on spectral methods have been investigated both empirically and, in a non-rigorous manner, theoretically in Chapter 9. Although the study of non-stationary series is in its very early stages, we are at the moment confident that spectral methods can provide useful results when used with non-stationary series generated by processes which appear intuitively realistic for economics.

This book attempts both to promote the use of methods of analysis which are new to economics and to present and justify some entirely new methods in time series analysis. This has presented many problems of presentation as these two diverse objectives require two entirely different levels of mathematical sophistication. Thus an attempt has been made to follow each mathematically-orientated section or chapter by a non-mathematical discussion of the results. These non-mathematical sections often proceed in terms of analogies and intuitive reasoning. It should be remembered, however, that many of the basic concepts used in spectral methods are conceptually difficult, particularly the Cramér representation of a stationary series and the basic implications of the cross-spectrum. It is hoped that the non-mathematical sections will aid comprehension; but readers should be warned that if the analogies and the semi-intuitive reasoning are carried too far they are likely to give misleading results.

The presentation is chiefly aimed at graduate students taking advanced courses in econometrics, econometricians, and those statisticians who advise economists, although it is hoped that a much wider class of research workers will also find new concepts and techniques which will be useful to them.

It appears to be impossible to choose a perfect moment to record the methods of a quickly developing field. At all times, new and exciting possibilities are being considered, new results are appearing, and fresh experience is accumulated. Thus it is felt that any book on spectral methods appearing at the present time must be in many ways incomplete and should be considered as a progress report. Since the first draft was prepared, for example, a number of important and basic ideas in the field of non-stationary series have been proposed, new information is available concerning the problem of removing annual fluctuations from a series and a new method of constructing highly efficient filters has been discovered. If time were taken to insert these developments into the text, doubtless further results would by then become available, and so forth. Nevertheless these new results mainly represent further developments of a number of basic methods and as no full account of these methods is at present available it is hoped that their presentation here at this time is justified.

Although the whole Time Series Project has been a team effort, certain aspects of the work have been particularly connected with certain

people and I feel that these should be acknowledged. The interpretation of cross-spectra and the demodulation technique were shown to us by John Tukey, the partial cross-spectral methods were developed by Thomas Wonnacott, and the considerable and important task of preparing the numerous computer programs for our various computers has been organized and, for the large majority, personally carried out by Herman Karrenan. (A research memorandum, No. 59, giving the more important of these computer programs in Fortran language for use on an IBM 7090 computer is available from the Econometric Research Program, Princeton University, 92A Nassau Street, Princeton, N.J., U.S.A.)

I would like to thank Oskar Morgenstern for his continual encouragement and inspiration; Michio Hatanaka for his help at all stages in the preparation of this book and in particular for the two important studies using spectral methods which appear as chapters twelve and thirteen; John Tukey for showing us his extremely effective, if somewhat individualistic, methods of analyzing a time series; both Mitsu Suzuki and Herman Karrenan for advising and correcting the first draft of the manuscript; my wife Patricia for help with numerous details, and Mr. J. Wilson of Princeton University Press for preparing the book for publication. I would also like to thank numerous friends and acquaintances who by constant help and discussion have helped form the climate of opinion and experience within which this book was written. I would finally like to thank Professor Tew and Professor Pitt of the University of Nottingham, England, who have encouraged and enabled me to make the four trips to the United States which has made my part in this work possible.

I would like to emphasize that the views and opinions expressed in the book are mine alone and that any remaining errors are entirely my own responsibility.

The Time Series Project has been supported by a grant from the National Science Foundation and some individual members of the Project have been partially supported by grants from the Office of Naval Research and the Rockefeller Foundation. My own first year in Princeton was as a Harkness Fellow of the Commonwealth Fund.

The manuscript was typed by Mrs. Lois Crooks, Mrs. Helen Peck, and Miss Helen Perna to whom I also wish to express my gratitude.

C. W. J. Granger,
Princeton, August, 1963.

CONTENTS

Foreword	vii	CONTENTS	-57-
Preface	xii		
<i>Chapter 1. Introduction to the Analysis of Time Series</i>			
1.1	Introduction	3	
1.2	Classic History of Time Series Analysis	4	
1.3	Plan of the Book	9	
	References	10	
<i>Chapter 2. Nature of Economic Time Series</i>			
2.1	Classification of Economic Series from a Statistical Viewpoint	12	
2.2	Trends and Seasonal Variation	13	
2.3	Business Cycles and Economic Fluctuations	15	
2.4	Some Important Advantages of Using Spectral Methods of Analysis	18	
2.5	Beveridge's Annual Wheat Price Series	21	
	References	21	
PART A. STATIONARY TIME SERIES			
<i>Chapter 3. Spectral Theory</i>			
3.1	Definitions	25	
3.2	Power Spectra	27	
3.2	Black Boxes and Processes with Rational Spectral Functions	35	
3.3	Filters	39	
3.4	Estimation of the Power Spectrum	42	
3.5	Nyquist Frequency, Aliasing	46	
3.6	Transformations of Stationary Processes	47	
	Appendix	49	
	References	50	
<i>Chapter 4. Spectral Analysis of Economic Data</i>			
4.1	An Analogy	52	
4.2	Economic Implications of Spectral Decomposition	55	
4.3	Spectral Estimation	59	
4.4	Principles of Estimated Spectra	61	
4.5	Normality of Economic Series	69	
4.6	Some Special Filters	70	
	References	72	
PART B. NON-STATIONARY TIME SERIES			
<i>Chapter 5. Cross-spectral Analysis</i>			
5.1	Cross-spectral Theory	74	
5.2	Coherence, Phase, Gain, and Argand Diagrams	77	
5.3	Processes differing only in Phase	80	
5.4	Special Cases	82	
	Estimation of $\{Y_t\}$	85	
5.5	Case when Coherence is not a Constant	87	
5.6	Sums and Products of Related Series	90	
5.8	The Partial Cross-spectrum and other Generalizations	91	
	References	94	
<i>Chapter 6. Cross-spectral Analysis of Economic Data</i>			
6.1	Introduction	95	
6.2	Relationships between Economic Series	100	
6.3	Estimating Cross-spectra	100	
6.4	An Example of Estimated Cross-spectra	105	
6.5	A Note on the Interpretation of Coherence	107	
<i>Chapter 7. Processes Involving Feedback</i>			
7.1	Feedback and Cross-spectral Analysis	109	
7.2	Some Preliminary Results	111	
7.3	Definitions of Causality and Feedback	113	
7.4	Time-lags Connected with Causality and Feedback	115	
7.5	Strength of Causality and Feedback	116	
7.6	Tests for Causality and Feedback	117	
7.7	Removing the Basic Assumption of Section 7.3	119	
7.8	Calculations involved in testing for Feedback	121	
7.9	Causality and Feedback Varying with Frequency	123	
7.10	Summary and Conclusions	124	
	References	126	
<i>Chapter 8. Series with Trending Means</i>			
8.1	Introduction	129	
8.2	Leakage Problems	132	
8.3	Regression Analysis	134	
8.4	Filters for Determining Trend	136	
8.5	Conclusion	145	
	References	146	
<i>Chapter 9. Series with Spectrum Changing with Time</i>			
9.1	Definitions	147	
9.2	Particular Cases	150	

(xvi)

(xv)

CONTENTS**CONTENTS****-58-**

9.3 Effect of Non-stationarity on Estimated Spectrum and Cross-spectrum	155
9.4 Some Experiments Designed to Check the Results of the Previous Sections	158
9.5 The Use of Filters with Non-stationary Series	168
References	169
Chapter 10. Demodulation	
10.1 Introduction	170
10.2 Demodulation	171
10.3 Practical Aspects of Demodulation	177
10.4 Uses and Examples of Demodulation	182
References	189
Chapter 11. Non-stationarity and Economic Series	
11.1 Visible Trends in Time Series	190
11.2 Trends in Mean	191
11.3 Trends in Variance	193
11.4 Spectrum Changing with Time	193
11.5 Contamination: Gaps, Strikes, Crises, and Wars	196
11.6 Quality of Data and Effects of Errors	200
11.7 Effect of Varying Month-length	204
References	206

Chapter 11. Non-stationarity and Economic Series

11.1 Visible Trends in Time Series	190
11.2 Trends in Mean	191
11.3 Trends in Variance	193
11.4 Spectrum Changing with Time	193
11.5 Contamination: Gaps, Strikes, Crises, and Wars	196
11.6 Quality of Data and Effects of Errors	200
11.7 Effect of Varying Month-length	204
References	206

Chapter 12. Application of Cross-spectral Analysis and Complex Demodulation:
Business Cycle Indicators (by M. Hatanaka)

12.1 Business Cycle Indicators	207
12.2 Lead-lag in terms of all Time Points	211
12.3 Frequency Band for the Major Component of the Cyclical Component	212
12.4 New Problems Brought Out by Cross-spectral Analysis	215
12.5 Selection of Cycle Indicators and Reference Time Series	217
12.6 Experiences with Filtering	220
12.7 Strength of Cyclical Components: A Digression	236
12.8 Examples of Cross-spectra and their Interpretations	238
12.9 Conclusions from the Cross-spectra	245
12.10 Complex Demodulation to Study the Changes in Lead-lag	255
12.11 Examples of Complex Demodulation to Study the Changes in Lead-lag	258
12.12 Suggestions for future study	262

Chapter 13. Application of Partial Cross-spectral Analysis: Tests of Acceleration Principle for Inventory Cycle (by M. Hatanaka)

13.1 Inventory Cycle	264
13.2 A simple Version of the Acceleration Principle	270

< xvii >

< xviii >

1964

MATHEMATICAL AND STATISTICAL TECHNIQUES
FOR INDUSTRY

MONOGRAPH NO. 1

MATHEMATICAL TREND CURVES: AN AID TO FORECASTING

J. V. GREGG, B.A.
C. H. HOSSELL, M.A.
J. T. RICHARDSON, B.Sc.

FOREWORD

This monograph has been written by a small team of people in ICI who have made a close study of mathematical trend curves and their value in long-term forecasting. It is one of a number prepared for the Statistical Methods Panel of ICI, which was set up to collate and disseminate mathematical statistical techniques of value in dealing with various problems, including those met in the techno-commercial and administrative fields. It is intended to publish further monographs on the application of such techniques.

Forecasting is indispensable in commercial and manufacturing activities, and forecasts are essentially subjective judgments made on the basis of existing information. It is usual and prudent to adopt alternative procedures in assessing the future and then to compare their results. There are various ways of basing forecasts on data available for a series of years. The most common is to analyse the economic, technical and commercial factors which have influenced the past figures and then, on the basis of assumptions on how these factors will operate in the future, to build up the forecast. Another method is to graph past data and, by use of a suitable trend curve, to extrapolate the past growth into the future. In view of the use of such curves as an alternative method, it is surprising that relatively little appears to have been published on the types of curves which have found favour and, as far as is known, no attempt has been made objectively to decide what curve or curves are at least consistent with the known data for the past.

The authors have tried to remedy this deficiency by writing a comprehensive document on trend curves and suggesting a method which affords some discrimination when the choice of a trend curve is being considered.

Published for
IMPERIAL CHEMICAL INDUSTRIES LIMITED
by

OLIVER & BOYD

CONTENTS

CONTENTS	Page	CONTENTS	Page
1. INTRODUCTION	1	3.3. Fitting Polynomials	25
2. CHOICE OF TREND CURVE ...	1	3.3.1. Introduction ...	25
2.1. General	3	3.3.2. Fitting the Straight Line and Simple Exponential ...	25
2.2. Examination of Nature of Market and its Reported Demand ...	3	3.3.3. Fitting the Parabola and Log Parabola ...	26
2.2.1. The Continuity of a Market in the Past ...	3	3.3.4. Parabola fitted to Commodity A ...	27
2.2.2. The Future Continuity of a Market ...	3	3.3.5. Limiting Value of the Parabola ...	28
2.2.3. Examination of the Demand Figures for Exceptional Years ...	4	3.4. Fitting Modified Exponential Trends ...	28
2.3. Moving Average and Slope ...	4	3.4.1. Introduction ...	28
2.3.1. Moving Average ...	4	3.4.2. Possible Methods for Fitting the Modified Exponentials ...	28
2.3.2. Slope ...	6	3.4.3. First Approximation to the Simple Modified Exponential by the Three Point Method ...	28
2.4. Slope Characteristic ...	6	3.4.4. Simple Modified Exponential Fitted to Commodity A ...	29
2.5. Various Mathematical Trend Curves and Their Slope Characteristics ...	7	3.4.5. Fitting Modified Exponentials by the Gompertz Method ...	30
2.5.1. Polynomials ...	8	3.4.6. Practical Example of Least Squares Fitting of a Modified Exponential ...	32
2.5.2. Exponentials ...	10	3.5. General Comment on Possible Trends for Commodity A ...	33
2.5.3. Modified Exponentials ...	12	3.6. Adjustment for Growth of General Economy ...	33
2.6. Procedure for the Use of Slope Characteristics ...	15	3.7. Confidence Limits ...	35
2.7. Limitations to the Use of Trend Curves ...	15	3.7.1. Estimation of Confidence Limits ...	35
2.7.1. Data to be Used for Fitting Curves ...	15	3.7.2. Confidence Limits for Straight Line and Parabola ...	36
2.7.2. Suitability of Chosen Curve ...	16	3.7.3. Confidence Limits for Simple Exponential and Logarithmic Parabola ...	38
2.7.3. Errors of Prediction ...	16	3.7.4. Confidence Limits for Modified Exponentials ...	39
2.7.4. Confidence Limits ...	16	3.7.5. Confidence Limits for Individual Values ...	40
2.7.5. Variation of Individual Values about a Trend Curve ...	17	APPENDIX 1—Alternative Methods for Estimating the Slopes ...	42
3. FITTING TREND CURVES ...	18	APPENDIX 2—Gomes Functions for the Fitting of Modified Exponentials ...	43
3.1. Calculating the Moving Average and the Slope ...	18	APPENDIX 3—The Slope Characteristic ...	44
3.1.1. Choice of Period and Method of Calculation ...	18	APPENDIX 4—The General Modified Exponential ...	47
3.1.2. Computational Method for Calculating the Moving Average ...	18	APPENDIX 5—Mathematical Basis for Fitting Modified Exponentials ...	51
3.1.3. Computational Method for Calculating the Slopes ...	21	APPENDIX 6—Computer Programmes Available from Imperial Chemical Industries Limited ...	58
3.2. Examination of the Slope Characteristics ...	23	TABLES and GRAPHS ...	60-99
3.2.1. Straight Line and Parabola ...	23		
3.2.2. Simple Modified Exponential ...	23		
3.2.3. Simple Exponential and Log Parabola ...	24		
3.2.4. Gompertz ...	24		
3.2.5. Logistic ...	24		
3.2.6. Remarks on the Slope Characteristics ...	24		

Time-Series Computations in FORTRAN and FAP

VOLUME I — A PROGRAM LIBRARY

STEPHEN MILTON SIMPSON, JR.
Massachusetts Institute of Technology

Preface

In the fall of 1952 I joined, as a graduate student, a Massachusetts Institute of Technology project called the Geophysical Analysis Group, and so began a twelve-year effort in the application of digital computers to time-series problems. This project, the G.A.G., was organized by Professors G.P. Wadsworth and P.M. Hurley of M.I.T. and by Dr. Daniel Silverman of the Standard Oil and Gas Company. It assumed the task of aiding the realization of Norbert Wiener's linear-series theories on the Whirlwind 1 (WW1) Computer in the code-sounding problems of seismic exploration for oil.

At the same time I developed a close friendship with my fellow student Enders A. Robinson, on whom the directorship of G.A.G. soon devolved. Robinson's efforts centered in the elucidation of theory, and its translation to discrete notation, and my own work tended toward machine realization of theory, but we each made sufficient excursions into the other's domain to form a profitable research partnership. This pattern has persisted over the years.

The Geophysical Analysis Group is relevant for the reason that many of the programming concepts presented herein were seeded in the 16-bit registers of WW1 for the seismic exploration problem. Digital prediction, both single and multiple, special digital filtering, spectral and correlation analysis, traveling special analysis, automatic processing systems for multitrace seismograms, and many other operational concepts were developed and experimented with on WW1 to an unprecedented degree. Besides myself and Robinson those involved with computation included Alark Smith, Howard Briscoe, William Walsh, Robert Bowman, Freeman Gilheit, Sven Treitel, Donald Grine, Kazi Haq, Donald Fink, Robert Wylie, Manuel Lopez-Linares, Richard Toohey, and Robert Sax. The ideas carried into industry and pursued there by students associated with G.A.G. have now ripened to the point of causing what amounts to a technological revolution in seismic interpretation.

In 1954 Robinson left, eventually to become Associate Professor of Mathematics at the University of Wisconsin, and I assumed directorship of G.A.G. until its termination in 1957, but frequent visits with each other kept alive our mutual interests. With G.A.G.'s termination and the subsequent retirement of WW1, I was forced to the realization that my programming output might just as well have been expressed in vanishing ink—an experience which rankled long and which underlies our determination to develop stable programming and communicating techniques.

I took a year's leave of absence from my Assistant Professorship in the Department of Geology and Geophysics at M.I.T. and spent it in military applications of special-design general purpose computers with RCA. This work tended to keep me from recognizing the latent power of the then infant language of FORTRAN.

was not until 1960, when I was asked by the Advanced Research Projects Agency to set up a project like G.A.C. but focused on the underground detection problem of VELA UNIFORM, that I became seriously involved with the new computers. I was fortunate in being able to attract Robinson to the project. As well as many gifted graduate students.

By this time FORTRAN had become well established, and, after some hesitancy, we began to use it, gradually evolving a sense of proportion in the mixture of FORTRAN and FAP programming. I find in this mixture that the whole is greater than the sum of its parts. For not only can we have the essential power of the individual languages, but they can supplement each other's weaknesses, as, for instance, they do when we use subroutine sandwiches of alternating language or use FAP programs to bolster FORTRAN's capabilities.

Once again this leaves me committed, albeit partially, to a machine language. But the situation is not as bad as it was ten years ago. In the first place, the ubiquity of the IBM 700 series machines suggests a national and international investment in specific hardware and software of considerable inertia. The time constant of change has lengthened to a point where we should be able to keep up with it without periodic wholesale abandonment of past results. Secondly, our program design, testing, and documentation techniques have matured to the point where machine language translation is not nearly as formidable a prospect as previously.

These considerations, the rapid advances which have been made in time-series computations, the growing requests we have had for the programs, and the general expanding interest in time series and in programming, have all encouraged me to pause and to pull together the myriad threads of our work into a single document representing, in first approximation, where time-series computations stand with respect to today's machines. Such has been my goal. However, this goal has proved too ambitious for a single volume, and we content ourselves in Volume I with a presentation of our subroutine library per se. Volume II will be devoted to the development of pertinent time-series theory from the computational viewpoint, to the consideration of computational applications in a realistic setting, and to discussion of programming technique.

Taken together, the first and second volumes of Time-Series Computations in FORTRAN and FAP may be considered an introduction to a new topic, namely, the realization of modern time-series theory on digital computers. Their principal intended audience is students of time series or communications engineering who wish to acquire advanced techniques of handling empirical time series with present-day computational equipment, especially on the IBM 709, 7090, or 7094. 2) "advanced" refer both to the conceptual level of the techniques and to the professionalism of their realization.

But I would hope that this work, Volume I especially, should also prove of value to the general programming community. The majority of our programs are not specialized to the time-series area. What we have done is to fill the gap between basic FORTRAN statements and time-series operations with a complex of general-purpose black boxes that could be used to assist in the development of other areas of application. But even aside from functional utility, we hope that all computing groups faced with the problems of program exchange and communication will be interested in our experiments in communication formalisms.

The subroutine library constitutes the bulk of Volume I. It represents the disillusion of years of effort of my co-workers and myself. Cost studies of programming systems of this size (about 40,000 registers) might predict a developmental price tag of about a quarter million dollars for this set. Consequently we have felt justified in devoting considerable time and effort to the development of techniques for communicating our results in the context of applied problems.

At the lowest level of communication, that is, the individual subroutine, we have tried to maintain high standards both of programming and of documentation. Toward the latter end, we have adhered to a program-writing format which might be called the self-documenting symbolic deck. In this format, the program card deck contains a program instruction and a detailed input-output specification, as well as illustrative and critical examples. The card deck is totally definitive of its own behavior. The format was originally designed for input to an automatic debugging compiler which would read the examples, set up appropriate test programs, execute the test programs, and report back results. In the press of other business the compiler never proceeded beyond a rudimentary stage, but the format has remained and proved itself valuable in our own internal communications.

Furthermore, the format has proved itself many times over as a disciplining device for keeping programmers honest. It is a characteristic of the trade that programmers modify and remodify their decks. The juxtaposition of the documentation and the program proper in deck listings emphasizes documentation errors that result from such modifications, and the weeding out of these errors becomes a natural and integral part of the debugging process. Moreover, to a programmer, there is a great psychological difference between having to change a few comment cards and tracking down a secretary to make the same changes on a mimeograph master in order to run off an updated memorandum.

The self-documenting program deck is a black box with input-output terminals fully described. It is necessarily bulky, the description being generally several times the length of the program proper. For routine reference we turn to compressed summaries, the "program digests," which, by judicious choice of terminology, enable one familiar with the programs to refresh his memory of calling-sequence details needed while programming, with an absolute minimum of page turning. For general scanning of and access to the programs, we have sorted them by various functional and non-functional attributes. The other types of documentation in Volume I relate to subroutine library structure and are of more specialized interest to the system programmer.

But the study of n black boxes, each of which performs an isolated task in time-series analysis, does not give one a sense of the coherence of the subject, or of the methods of interconnecting the boxes in broad experimental applications. For such purposes we have designed the experimental programs to be presented in Volume II. Each of these programs represents a series of experimental studies in an later-connected area of time-series analysis, with some carry-over from one program to the next. They permit the reader to see essentially all of our subroutines used in an applied framework.

The applications chosen for illustration in Volume II range from elementary ones to problems the average student or research worker is unlikely to have encountered (especially multi-input processes). Since our theoretical development of time series is of rather limited scope, we have included appendices on some of the less well-known topics covered in the experiments.

The experiments of Volume II are designed to be readable without knowledge of the basic machine language, FAP, and to require a minimum of experience with FORTRAN. The study of Volume II, especially in conjunction with practice on a computer which can accept the subprograms of Volume I, is probably the easiest way of acquiring familiarity with the techniques we have to offer.

It is an unfortunate fact that artificial but general languages like FORTRAN are,

in themselves, incapable of expressing many of the critical time-series operations

truly efficient form.

This situation may change, but probably not in the near future.

To a large extent our subroutine library may be viewed as an independent collection of FORTRAN and FAP programs where the FORTRAN programs start the FAP programs to the desired task. The higher-level FORTRAN programs will easily complete

on machines outside the IBM 700 series family, but their required subordinates, the FAP workhorse programs, will not in general carry over without hand-coded translation.

For this reason, Volume II will present expositions of the more important logical processes used in the FAP subprograms to attain high-speed behavior, particularly in connection with correlation and spectral analysis. A knowledge of FAP is desirable but is not essential, since we lean considerably on ordinary flow charts for detailed relationships.

Other limitations of a formal nature inherent in FORTRAN II have led us to some programming effort in the twilight region between FORTRAN and FAP, that is, to the writing of FAP programs which utilize "forbidden" knowledge of the FORTAN system in order to remove these limitations, and which we therefore label "system-expansion programs." Volume II includes a discussion of the techniques and problems involved in such programming and should prove of interest to serious students of programming. In short, then, we have limited the first volume to the presentation of the subroutine library with subsidiary documentation designed for the working programmer, and we have reserved time-series and programming concepts for Volume II.

The "we" I use frequently above is not editorial, but includes my many co-workers, mostly graduate students, who have contributed to the subprogram collection and with whom it has been my pleasure to work. It is congenial and loosely structured group; considerations of programming technique and style were developed to refined levels. Although the authorship of the programs is given individually, I would like to emphasize the importance of the contributions of James Galbraith, Jon Claerhout, and most particularly Ralph Wiggins. Other students directly associated were William Ross, Czech Pat., Carl Wunsch, and Roy Greenfield.

As for what theory we include in Volume II, much of it is pure review, but some of it has previously appeared only in project report form. I consider Robinson's solution, in the fall of 1962, of the multi-input iteration problem to be a significant achievement. Wiggins pursued and expanded the analysis from this base through the program-development stage, and in so doing was the first to demonstrate the computational feasibility of multi-input least squares.

But the work presented here has also depended on many others. The tireless and dedicated writing of test routines by Joseph Procto is invaluable in the establishment of program reliability. In broader areas of service programming, analysis, data handling, desk calculating, etc., we also relied on Mrs. Irene Hawkins, Karl Gentili, my wife Jacqueline, Erminda Irbin, Mrs. Susan Kannenberg, Allan Kessler, and Lloyd Kannenberg. Most of the card preparation and manuscript chores fell to Mrs. Elizabeth Studer, to my wife, and to Mrs. Wendy Tibbets, with assistance from Mrs. Eileen Hershberg, Dauna Trop, Mrs. Myrna Kasser, Regina Lahteine, Mrs. Hazel White, and Mrs. Barbara Cullum.

The punched-card work involved in these two volumes is too elegant to be passed over without further comment. The conventions and forms that we now use regularly (not all of which appear in these volumes; for instance, the mathematics of Volume II was card-coded in the source manuscript) I consider to be significant experiments in a field — call it "punched-card typography" — of growing importance in printing. In large part these conventions are due to my wife, who has become our arbiter of formats and to whose sense of style and standards of excellence we are much indebted.

Over the years we have been favored with the most friendly cooperation of the machine operators and supervisors, starting in the early Whirlwind days with Robert A.J. Gildea (to whom I also owe many enjoyable hours of chess while waiting for the machine to come back) and Michael Sollitto, and continuing with Anthony Sacco at the M.I.T. Computation Center and at the Cooperative Computing Laboratory at M.I.T., John Hartman and our long-term friend Michael Saxton of IBM, and more recently with Thomas Burhoe, Mason Fleming, and William Jarvis of IBM.

We owe much to the sponsors of both the G.A.G. project and the VELA UNIFORM project for the computing facilities these projects have afforded us in the development of time-series and computing concepts, and to Lincoln Laboratory, the M.I.T. Computation Center, and Geoscience Incorporated for the use of programs developed under their auspices.

Concerning editorial assistance, I am indebted to Robinson for critical review of the mathematical aspects of the manuscript and to Wiggins for his joint labors with my wife and myself in the editing of the programs.

It is indeed a pleasure for me to acknowledge the many contributions and accommodations from this small army of co-workers and associates.

S. M. S., Jr.

Brookline, Massachusetts
November, 1965

Blank

Contents

Time-Series Computations in FOITHAN and FAP

The sorted lists which will follow below need some introduction with regard to format. First of all, the sortings have been made on the basis of names of principal entries, and the lists are alphabetically ordered with respect to these names. In the case of multiple-entry programs, the names of the secondary entries appear as a parenthetical list following each appearance of the principal entry name. However, a parenthetical list following a name is not necessarily a list of secondary entries; it may alternatively be a list of functionally related programs. For example, each appearance of the Fourier-transform program QFTRANS is followed by a parenthetical reference to the inverse Fourier-transform program QIFTRANS, and conversely.

Secondly, it should be noted that we run into an occasional problem resulting from the fact that the present sortings are necessarily based on six-character names for the principal entries, whereas in the program listings of Section 10 we sometimes have appended serial numbers and/or computer numbers to distinguish between programs of identical principal entry names. The sortings have been made on the basis of effective names. The effective names are identical to the principal entry names in cases where no ambiguity can arise. Effective names for the exceptional cases are listed below.

Effective Name	True Name	Effective Name	True Name
CLOCK1	CLOCK1 (7090)	LINE	LINE (709)
CNVLV2	CONVL V-"	LINE90	LINE (7090)
DISPLA	DISPLA (709)	LINEH	LINEH (709)
DSPL 90	DISPLA (7090)	LINH90	LINEH (7090)
FRAME	FRAME (709)	LINEV	LINEV (709)
FRAM90	FRAME (7090)	LINV90	LINEV (7090)
FT24II	FT24 -II	MULK2	MULK -II
HST2	HSTPLT -II	SETK2	SETK -II
HST309	HSTPLT -III (709)	SETKS2	SETKS -II
HST390	HSTPLT -III (7090)	TIMA2B	TIMA2B (7094)

1. Introduction
2. General Aspects of the Program Set
3. Terminology Backgrounds
4. Usages in the Present Volume
5. Programming Philosophy
6. Design for Speed
7. References
8. Illustrative Usage of Programs
9. Program Categorizations
10. Annotated Calling Sequences
11. Program Digests
12. Program Statistics
13. A One-Pass Subroutine Library
14. Cross-Reference Table for the One-Pass Library
15. Subroutine Rosters for the One-Pass Library
16. Complete Program Listings

PROGRAMS SORTED BY FUNCTION

1. ADMINISTRATIVE PROGRAMS

FOR CUMUL OF PROGRAM FLOW
INDEX - (CHSEST), SETAPI.

FOR EXPANDING SYSTEM CAPABILITY
PROFMT, GETX (IGETX), LOCATE (ARG,
SETSBY, STORE, XARG, XNAME, XNARGS),
CMLINE (ISTMD), (ITSM), EDOSSET,
(ITSM), (ITSM), APLFMAT,
VARARG.

FOR UNDERTHOOD SUBROUTINE USAGE
LOCATE (ARG, CALL, WHERE, XARG,
XNAME, XINDEX, XNARGS), PLURAS,
SEVERAL (PLURAL).

FOR INDEX LOGIC
FASTR, GETX (IGETX), INDEX (CHSET),
LOCATE (ARG, CALL, WHERE, XARG,
XNAME, XINDEX, XNARGS).

FOR DOCUMENTING EXECUTIONS
DADECK, LISTING, REMUSE,

FOR EQUIPMENT CNTRAL
CARIGE, CLKON, FRAME (ISTMH), -READ (EMDFIL,
SWITCH, TRIMD, ZEFBCO

FOR PROGRAM TIMING
CLKON, CLOCK, TIM2B, TIMSUB (INTMSB).

FOR ABSOLUTE MEMORY INFORMATION
IXCARG, LOC, PEMUSE, XLCOMM,
XLOCK.

FOR SUBROUTINE LIBRARY STUDY
(NO ENTRIES FOR THIS CATEGORY)

FOR PROPER USE OF MISNAMED VARIABLES
SAME (XNAME).

2. INPUT-OUTPUT PROGRAMS

FOR BCD INPUT TO CORE
RDATA, REREAD, TENDFIL,

2. INPUT-OUTPUT PROGRAMS

3. DATA TRANSMISSION
AND ACCESS PROGRAMS

FOR CONVERTING CATA MODE

FIXV (FIXVR), FLOATM, FLOATV, FDATA (FLCATA), MTOIV (IVTOIV).

FOR PACKING DATA
PAK (UNPAK).

FOR UNPACKING DATA
UNPAK (PAK).

FOR SCALING DATA
FDATA (FLDATA), MUSCL, SIMSON.

PROGRAMS SORTED BY FUNCTION

FOR ACO OUTPUT FROM CORE
CULABL, CSOUT, CYSDUT, DISPLA (DSPL90), FM7OUT, ML1246,
MOUTAI, ONLINE (ISTMH), ISTMD, (ISTMH), PHMLIV, VECOUT.
VSOUT.

FOR BINARY OUTPUT FROM CORE
ODATA, WRDATA.

FOR GRAPHICAL OUTPUT FROM CORE
CNTDB, CNTRM, CONCUR, DISPLAY (DSPL90), GRAPH,
(HST2, HST309, HST390), LINE (LINE90), LIMEN (LIMH90), LINEX
(LINH90), PLOTS, PLVSL.

FOR FORMAT PURPOSES
COLBL, DSPEFT, FDFMT, AFLFMT.

4. DATA FORM-CHANGING PROGRAMS

FOR STORAGE-TO-STORAGE MOVEMENT
EXCHVS, MOVE, MOVECS, MOVEEV, MAVRS, MAVLR,
AND ACCESS PROGRAMS

FOR STORAGE-TO-TAPE MOVEMENT
GETRD1, OUTDATA, WRTDAT.

FOR TAPE-TO-STORAGE MOVEMENT
INDATA, PACDT.

FOR TAPE-TO-TAPE MOVEMENT
CPYFL2, DADECK.

FOR INFORMATION STORAGE
QUOTDATA, PAKN (UNPAK), SETIND, TRMIND, WRTDAT.

FOR INFORMATION RETRIEVAL
GETX (IGETX), INDATA, LISTING, NTHA (KNTHA), PACAT, UNPARN
I PAKN.

5. DATA FORM-CHANGING PROGRAMS

FOR CONVERTING CATA MODE
FIXV (FIXVR), FLOATM, FLOATV, FDATA (FLCATA), MTOIV (IVTOIV).

FOR PACKING DATA
PAK (UNPAK).

FOR UNPACKING DATA
UNPAK (PAK).

FOR SCALING DATA
FDATA (FLDATA), MUSCL, SIMSON.

PROGRAMS SORTED BY FUNCTION

PROGRAMS SORTED BY FUNCTION

FOR NORMALIZING DATA
FADTA (FLDTA), MNNGL, MNVEC.

FOR SUMMING DATA
FLIV (FLVRI, FDATA (FLDTA), AND (FLDODM, RNDUP), ADDV (ADIV), ADIDE (ADIVR), ADDVBYV).

FOR SHIFTING DATA
MLADJ (MLADJ), ITOMLI, LSHTFT (LSHTFT), SHFTRI, SHFTRZ.

FOR CHANGING DATA SPACING
MVENV.

5. DATA GENERATING PROGRAMS

FOR GENERATING POLYERITH
GENHOL, GEIMOL, GHOLZ.

FOR GENERATING RANDOM NUMBERS
GETAL.

FOR GENERATING SINUSOIDS
COSBL (COSTBL, SINTBL, SINTBZ), SEQSAC (INACOS, MESSIA).

FOR GENERATING SCALARS
SEIK (SEIKS, SEIVECI), SETK2, SETKP (SETKVP), SETKS2.

FOR GENERATING 1-D ARRAYS
SEIK (SEIKS, SEIVECI), SETK2 (SETKVP), SETKS, SETLIM (SETLIM), SETLMS, STZ.

6. DATA INQUIRY PROGRAMS

FOR FINDING EXTREMAL VALUES
MAXSN (MAXAB), MINAB, MAXSN (MAXABR), MINABP, MINSNH.

FOR COMPARING DATA
COPARP (COPAR), CAPN (CAPNL, XCPRA), CMRA (CMRPL, XCMRPL), INDEX (INDEX), LOCATE (LOCATE), CALL, CALLR, RETURN, SETSBV, SETUP, STORE, WHERE, XARG, XARGR, XNAME, XARGSS, XACTEQ, XLIMIT.

FOR SEARCHING DATA
FASCHL, FASTRK, XALARM, SEARCH, SRCII.

FOR SELECTING DATA
CHOOSE, GETX (IGETX), NIHA (NIHAI), WHICH (XWHICH).

FOR ORDERING DATA
SIZEUP (ISZUPL).

FOR CLASSIFYING DATA
MONICK, ROZE.

***** ELEMENTARY NUMERICAL PROGRAMS *****

FOR ADDITION
ADD (ADDK, ADDKS, DIVK, DIVKS, XDIVK, XDIVKS, MOUST (DPRESS, XMOUST, XDRESS), XSUBSI, XSUBKS, XSUBV, XSUBVS).

FOR SUBTRACTION
ADD (ADDK, ADDKS, DIVK, DIVKS, XDIVK, XDIVKS, XBOOST, XBOOSTS), REMAY, VPLUSV.

FOR MULTIPLICATION
ADD (ADDK, ADDKS, DIVK, DIVKS, XDIVK, XDIVKS, XSUBSI, XSUBKS, XSUBV, XSUBVS).

FOR DIVISION
ADD (ADDK, ADDKS, DIVK, DIVKS, XDIVK, XDIVKS, XSUBSI, XSUBKS, XSUBV, XSUBVS).

FOR MODIFYING SIGN
ABSVAL, CHPRS (AVPATS), CHSIGN, MOREV.

FOR RAISING TO POWERS
MVSQAV, POWER (SPROVI, SQRM), SQUARE (XSQUARI).

FOR TAKING ROOTS
SQRT, XSQRT.

FOR TRIGONOMETRIC FUNCTIONS
ARCTAN, SEOSAC (NEKOS, NEKSINI).

FOR COLLAPSING VECTORS
COLAPS, KOLAPS.

FOR ROTATING VECTORS
ROTATI.

FOR REVERSING VECTORS
CHPRS (AVPATS), MOREV, REVER, REVERS.

FOR EXCHANGING VECTORS
EXCHVS.

FOR REFLECTING VECTORS
REFLEC (XREFLEC).

PROGRAMS SORTED BY FUNCTION

PROGRAMS SORTED BY FUNCTION

• • • • • MISCELLANEOUS NUMERICAL PROGRAMS • • • • •
FOR INTERPOLATION ABCOL, EXPND, INTOP, LINTR, QINTL.
FOR SAMPLE BASE CHANGING EXPND, MURINC, SIFT.
FOR GENERATING SINUSOIDS COSTAL (COSIBA), SINTAL, SINTBXI, SEQSSAC (MECOS, MESSIN).
FOR TRIGONOMETRIC FUNCTIONS ARCTAN, SEQSSAC (MEXCOS, MEXSINI).
FOR TREATING ODD AND EVEN PARTS CHPRS (RVPRTS), SPLIT (REFIT).
FOR FITTING EQUATIONS TO DATA CUFIT, INTOP, LSLINE, PROFIT, QUFFIT.
FOR CONTOURING CNTRDB, CONTRUR.
FOR DELTA AND STEP FUNCTIONS DELTA (STEP), STEPL, XDELTA, XSTEPCL, XSTEPL, XSTEPRI.
FOR CONVERTING COMPLEX NUMBERS AMPAZ (REIM).
FOR MOVING SUMMATION BLKSUM, MUVAOO, MVINAN, MVNSUM, MVSDAV.
FOR INVERTING FUNCTIONS IFMCIN.
FOR DOT PRODUCTS DOTJ, FOOT (FOOTRI), VDOTV.
• • • • • PROBABILITY AND STATISTICS • • • • •
FOR FINDING MOMENTS POWER (IMPROVI).
FOR FINDING AVERAGES AVERAGE, MVINAV, MVSGAV, RENAV, TARVL (TARVRI), KAVAGE (KAVGR).
FOR FINDING R.M.S. VALUES RMSDEV (RMSDVI).
FOR FINDING SUMS OF SQUARES SQDFFR (ISQDEV), SQRSUM (XSQSUM), XSQDFR (XSQDEV).

• • • • • FOR FINDING SUMS OF DIFFERENCES SQDFFR (ISQDEV), SUDFR (ISUDEV), XSHDEV, XSQDFR (XSQDEV).
FOR GENERATING RANDOM NUMBERS GETROL.
FOR RANDOMIZING DATA SHUFFL.
FOR FINDING DISTRIBUTIONS FROCT1, FROCT2, POKCT1, PROFIT. PROB2.
FOR PROBABILITY TRANSFORMATION GROUP2, MSEQ1, NOINT1 (NOINT2).
FOR CHI-SQUARE ANALYSIS CHISQR, KIINT1.
FOR DEPENDENCY TESTING MSCOML, POKCT1.
FOR NORMAL CURVE INTEGRATION NOINT1 (NOINT2).
• • • • • 10. INTEGRATION AND DIFFERENTIATION PROGRAMS • • • • •
FOR DEFINITE INTEGRATION MINTIN (MININT), SIMSON, TINGL (TINGLAI).
FOR INDEFINITE INTEGRATION IDERIV (IDERIV), INTGRA (IINTGRA), TAPVL (TAPVRI).
FOR DIFFERENTIATION DERIVA (IDERIV), INTGR (IINTGR).
FOR INDEFINITE SUMMATION INTSUM (IDIFPRS, XNTSUM).
FOR DIFFERENCING DIFPRS (INTSUM, XDIFRS).
• • • • • II. 2-D ARRAY AND 3-D ARRAY PROGRAMS • • • • •
FOR MATRIX MULTIPLICATION MATML1, MATML2.
FOR MATRIX INVERSION MATINV, SIMEQ (DETM).
FOR SOLVING MATRIX EQUATIONS LSSSL, ALSPP, RLSSR, SIMEQ (DETM). MLLSFP.

PROGRAMS SORTED BY FUNCTION

FOR DETERMINANT EVALUATION
S1EQ1 DEIRN.

FOR MATRIX TRANSPOSITION
MATRA, MATRA1.

FOR MATRIX FACTORIZATION
NFACT.

FOR 2-D ARRAY ROTATION
QDARZ.

FOR INTERPOLATING 2-D ARRAY COLUMNS
ARCOL.

FOR 2-D ARRAY DOT PRODUCTS
D0IP.

FOR 2-D ARRAY CORRELATIONS
SP0R2.

FOR 2-D ARRAY FOURIER TRANSFORMATION
PLANSF.

FOR SOLVING 2-D ARRAY EQUATIONS
FIRE2, RLSPR2.

FOR MATRIX VECTOR REVERSAL
MVR2.

FOR MATRIX VECTOR DOT PRODUCT
MDOT, MDOT3.

FOR MATRIX VECTOR CORRELATION
CASN1.

FOR SOLVING MATRIX VECTOR EQUATIONS
NIFL1, NIFL2, MISS.

12. POLYNOMIAL PROGRAMS

FOR POLYNOMIAL EVALUATION
FASCP, IPLEY, POLYEV.

FOR FINDING POLYNOMIAL ROOTS
MULLER.

FOR POLYNOMIAL MULTIPLICATION
CNVLV1, CNVLV2.

FOR POLYNOMIAL DIVISION
POLYDV.

PROGRAMS SORTED BY FUNCTION

FOR POLYNOMIAL SQUARE ROOTS
PSORT.

- FOR SYNTHESIZING POLYNOMIALS
PLTSYN, POLYSN.

13. CORRELATIONS AND CONVOLUTIONS

FOR AUTOCORRELATION
CROSS, CROS1, PROCDR IFASCOR, FASCRL, FASEPC, FASEPL1, QACORR,

FOR CROSS-CORRELATION
CROSS, CROS1, PROCDR IFASCOR, FASCRL, FASEPC, FASEPL1, QCORR.

FOR CONVOLUTION
CNVLV, CNVLV2, QCNLV.

FOR DOT PRODUCTS
QDTJ, FDQT, FDQT1, VDQT1.

14. HARMONIC TRANSFORMS

FOR COSINE TRANSFORMATION
ASPECT, ASPEC2, COSISI, COSP ICOSISP, SISPI.

FOR SINE TRANSFORMATION
COSISI, COSP ICOSISP, SISPI.

FOR FOURIER TRANSFORMATION
COSISI, COSP ICOSISP, SISPI, F124 FT24111, QFURRY CIFURRY.

FOR INVERSE FOURIER TRANSFORMATION
QIFURRY (QFURRY).

15. MISCELLANEOUS SPECIAL

ANALYSIS PROGRAMS

FOR DANIELL WEIGHTING
ADANL, XADANL, XDANKL.

FOR SPECTRAL FACTORIZATION
FACTOR.

FOR GENERATING NUMERICAL FILTERS
GMFL1.

PROGRAMS SORTED BY FUNCTION

FOR CONVERTING TO AMPLITUDE AND PHASE
AMPAZ (REIM).

FOR CONVERTING TO REAL AND IMAGINARY
AMPAZ (REIM).

FOR SPECTRAL COMPARISONS
ARABAE.

FOR GENERATING SINUSOIDS
COSTA, ICOSTA, SINTOL, SINTOKI, SEQSCAC (MEXCOS, MESSINI).

Preface

1967

STOCHASTIC APPROXIMATION AND NONLINEAR REGRESSION

ARTHUR E. ALBERT
LELAND A. GARDNER, JR.

This monograph addresses the problem of "real-time" curve fitting in the presence of noise, from the computational and statistical viewpoints. Specifically, we examine the problem of nonlinear regression where observations $\{Y_n; n = 1, 2, \dots\}$ are made on a time series whose mean-value function $\{F_n(\theta)\}$ is known except for a finite number of parameters $(\theta_1, \theta_2, \dots, \theta_p) = \theta$. We want to estimate this parameter. In contrast to the traditional formulation, we imagine the data arriving in temporal succession. We require that the estimation be carried out in real time so that, at each instant, the parameter estimate fully reflects all of the currently available data.

The conventional methods of least-squares and maximum-likelihood estimation, although computationally feasible in cases where a single estimate is to be computed after the data have been accumulated, are inapplicable in such a situation. The systems of normal equations that must be solved in order to produce these estimators are generally so complex that it is impractical to try to solve them again and again as each new datum arrives (especially if the rate of data collection is high). Consequently, we are led to consider estimators of the "differential correction" type. Such estimators are defined recursively. The $(n - 1)$ st estimate (based on the first n observations) is defined in terms of the n th by an equation of the form

$$t_{n+1} = t_n + a_n [Y_n - F_n(t_n)] \quad (t_1 \text{ arbitrary}; n = 1, 2, \dots),$$

where $\{a_n\}$ is a suitably chosen sequence of "smoothing" factors. The

term "differential correction" refers to the proportionality of the difference between t_{n+1} and t_n (the correction) to the difference between the n th observation, Y_n , and the value that would be predicted by the regression function if t_n were in fact the "true" parameter value.

The choice of smoothing vectors critically affects the computational simplicity and statistical properties of such recursive estimates. The main purpose of this monograph is to relate the large-sample statistical behavior of said estimates (consistency, rate of convergence, large-sample distribution theory, asymptotic efficiency) to the properties of the regression function and the choice of smoothing vectors. A wide class of smoothing vectors is examined. Some are deterministic and some depend on (are functions of) the observations.

The techniques used in the analysis are, for the most part, elementary and, by now, standard to those who are familiar with the literature of stochastic approximation. However, for the sake of the nonspecialist, we have tried to keep our treatment self-contained. In all cases, we seek the asymptotic properties (large n) of the solution to the nonlinear difference equation which relates t_{n+1} to t_n .

As a fortuitous by-product, the results of this monograph also serve to extend and complement many of the results in the stochastic-approximation literature.

The structure of the monograph is as follows. Part I deals with the special case of a scalar parameter. Here we discuss probability-one and mean-square convergence and asymptotic distribution theory of the estimators for various choices of the smoothing sequence $\{a_n\}$. Part II deals with the probability-one and mean-square convergence of the estimators in the vector case for various choices of smoothing vectors $\{a_n\}$. Examples are liberally sprinkled throughout the book. In fact, an entire chapter is devoted to the discussion of examples at varying levels of generality.

The book is written at the first-year graduate level, although this level of maturity is not required uniformly. Certainly the reader should understand the concept of a limit both in the deterministic and probabilistic senses. This much will assure a comfortable journey through Chapters 2 and 3. Chapters 4 and 5 require acquaintance with the Central Limit Theorem. Familiarity with the standard techniques of large-sample theory will also prove useful but is not essential. Chapters 6 and 7 are couched in the language of matrix algebra, but none of the "classical" results used are deep. The reader who appreciates the elementary properties of eigenvalues, eigenvectors, and matrix norms will feel at home.

The authors wish to express their gratitude to Nyles Barnett, who collaborated in the proofs of Theorems 6.1 through 6.3; to Sue M. McKay, Ruth Johnson, and Valerie Ondrejka, who shared the chore of typing the original manuscript; to the ARCON Corporation, the M.I.T. Lincoln Laboratory, the Office of Naval Research, and the U.S. Air Force Systems Command, who contributed to the authors' support during the writing of the monograph; and, finally, to the editorial staff of the *Annals of Mathematical Statistics*, who were principally responsible for the writing of this monograph.

ARTHUR E. ALBERT
LELAND A. GARDNER, JR.

Cambridge, Massachusetts
October 1966

Contents

xiv

CONTENTS

-72-

1. Introduction	1
PART I THE SCALAR-PARAMETER CASE	
2. Probability-One and Mean-Square Convergence	9
2.1 The Basic Assumptions (A ₁ Through A _{5''})	9
2.2 Theorems Concerning Probability-One and Mean-Square Convergence for General Gains	11
2.3 The Prototype Deterministic Gain	17
2.4 Reduction in the Linear Case	18
2.5 Gains That Use Prior Knowledge	19
2.6 Random Gains	20
2.7 Theorems Concerning Probability-One and Mean-Square Convergence for Particular Gains; Application to Polynomial Regression	23
2.8 Trigonometric Regression	24
2.9 Exponential Regression	25
3. Moment Convergence Rates	27
3.1 Restricted Gain Sequence	27
3.2 Theorems Concerning Moment Convergence Rates	28
3.3 Power-Law Derivatives	34
3.4 Relevance to Stochastic Approximation	35
3.5 Generalization	37

xiii

4. Asymptotic Distribution Theory	38
4.1 Notation for and Relations Between Modes of Convergence	39
4.2 Theorems Concerning Asymptotic Normality for General Gains	39
4.3 Alternative to the Continuous Convergence Assumption	47
4.4 Large-Sample Variances for Particular Gains	48
4.5 Other Gains	53
4.6 Gain Comparison and Choice of Gain Constants	54
4.7 A General Stochastic Approximation Theorem	58
5. Asymptotic Efficiency	60
5.1 Asymptotic Linearity	61
5.2 Increased Efficiency via Transformation of the Parameter Space	61
5.3 Asymptotic Efficiency and Summary Theorem	65
5.4 Increased Efficiency	72
5.5 Large-Sample Confidence Intervals	72
5.6 Choice of Indexing Sequence	73
5.7 A Single-Parameter Estimation Problem	74
PART II THE VECTOR-PARAMETER CASE	
6. Mean-Square and Probability-One Convergence	81
6.1 Theorem Concerning Divergence to Zero of Products of Elementary Matrices and Assumptions (B ₁ Through B ₅)	83
6.2 Discussion of Assumptions and Proof	84
6.3 Theorems Concerning Mean-Square and Probability-One Convergence for General Gains and Assumptions (C ₁ Through C _{6'} and D ₁ Through D ₅)	92
6.4 Truncated Vector Iterations	102
6.5 Conjectured Theorem and Assumptions (E ₁ Through E _{6'})	103
6.6 Batch Processing	104

	CONTENTS	xv
7. Complements and Details	109	
7.1 Optimum Gains for Recursive Linear Regression	109	
7.2 "Quick and Dirty" Recursive Linear Regression	115	
7.3 Optimum Gains for Recursive Linear Regression, Batch Processing	117	
7.4 "Quick and Dirty" Linear Regression, Batch Processing	121	
7.5 Gain Sequences for Recursive Nonlinear Regression, The Method of Linearization	122	
7.6 Sufficient Conditions for Assumptions E: Through E6 (E6) When the Gains (Equations 7.48) Are Used	125	
7.7 Limitations of the Recursive Method. III Conditioning	136	
7.8 Response Surfaces	139	
8. Applications	146	
8.1 Vector Observations and Time-Homogeneous Regression	148	
8.2 Estimating the Initial State of a Linear System via Noisy Nonlinear Observations	153	
8.3 Estimating Input Amplitude Through an Unknown Saturating Amplifier	156	
8.4 Estimating the Parameters of a Time-Invariant Linear System	161	
8.5 Elliptical Trajectory Parameter Estimation	172	
9. Open Problems	182	
9.1 Proof of the Conjectured Theorem	182	
9.2 Extensions of Chapters 3 Through 5 to the Vector-Parameter Case	182	
9.3 Kalman-Type Filtering Theory for Nonlinear Systems	183	
Appendix. Lemmas 1 Through 8	189	
References	200	
Index	203	

References

- REFERENCES 201
- Beckenbach, E. F., and R. Bellman (1961). *Inequalities*, Springer-Verlag, Berlin.
- Burkholder, D. L. (1956). "On a Class of Stochastic Approximation Processes," *Ann. Math. Statist.*, 27, 1044-1059.
- Chernoff, H. (1956). "Large Sample Theory: Parametric Case," *Ann. Math. Statist.*, 25, 463-483.
- Chernoff, H. (1959). "The Sequential Design of Experiments," *Ann. Math. Statist.*, 30, 755-770.
- Hobson, E. W. (1957). *The Theory of Functions of a Real Variable and the Theory of Fourier Series*, Vol. 2, Dover, New York.
- Hodges, J. L., Jr., and E. L. Lehmann (1951). "Some Applications of the Cramer-Rao Inequality," *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, University of California Press, Berkeley, California, pp. 13-22.
- Hodges, J. L., Jr., and E. L. Lehmann (1956). "Two Approximations to the Robbins-Monro Process," *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability*, Vol. 1, University of California Press, Berkeley, California, pp. 96-104.
- Hauscholder, A. S. (1964). *The Theory of Matrices in Numerical Analysis*, Blaisdell, New York.
- Kalman, R. E. (1960). "A New Approach to Linear Filtering and Prediction Problems," *Journal of Basic Engineering*, 82, 35-45.
- Koopman, K. (1947). *Theory and Application of Infinite Series*, Hafner, New York.
- LeCam, L. (1953). *On Some Asymptotic Properties of Maximum Likelihood Estimates and Related Bayes Estimates*, University of California Publications in Statistics, 1, No. 11, 277-330.
- Loeve, M. (1960). *Probability Theory*, Van Nostrand, New York.

PREFACE

1967

SPECTRAL ANALYSIS of TIME SERIES

Proceedings of an Advanced Seminar,
Conducted by the Mathematics Research Center,
United States Army and The Statistics Department at the
University of Wisconsin, Madison
October 3-5, 1966

Edited by
Bernard Harris

Spectral analysis has become a significant tool in the statistical analysis of stationary time series since the late 1940's, when John W. Tukey in the United States and M. S. Bartlett in England proposed this technique in essentially its present form. During the 1950's, E. Parzen, S. K. Zaremba, Z. A. Lomnicki, U. Grenander, and M. Rosenblatt, among others, studied this technique in great detail, considerably extending the frontiers of knowledge in this area. Technical advances in this area have been continuing at a rapid rate ever since. In view of the extensive recent advances in this area, the Mathematics Research Center, U. S. Army felt that this was an area which was eminently suitable for an advanced seminar and this volume is the result of that effort.

Therefore, the Mathematics Research Center, U. S. Army in conjunction with the Statistics Department of the University of Wisconsin held an Advanced Seminar on the Spectral Analysis of Time Series on October 3-5, 1966. Ten papers were presented at the Advanced Seminar, and they are published here in their entirety. This volume contains an additional paper, a general introduction to the subject, prepared by the editor.

The purpose of the advanced seminar was to present a survey of the basic theory of spectral analysis of time series together with an account of some of the more recent developments of significance. Thus, a substantial number of the papers are devoted to some topics of more recent interest, such as polyspectra, coherence, and cross-spectral analysis. The paper by G. E. P. Box, G. M. Jenkins, and D. W. G. G. Watts in this volume points out several alternatives to spectral analysis which are appropriate to statistical inference in time series. The various sessions were chaired by M. E. Muller, D. Stepan, D. L. Hanson, T. W. Anderson, and D. G. Watts.

The editor would like to express his thanks to H. F. Karren, M. E. Muller, D. G. Watts and H. J. Wenz who assisted in the planning of the program. Professor S. K. Zaremba deserves special

JOHN WILEY & SONS, INC.
New York • London • Sydney

CONTENTS

-76-

Preface

mention for providing substantial assistance and advice during the editing of this volume. Mrs. Gladys Moran deserves a special note of appreciation for serving as secretary of the program committee and taking care of the many problems concerned with the physical arrangements for the advanced seminar. Mrs. Grace Krewson is to be particularly commended for her painstaking efforts in the typing of the manuscripts and preparation of the figures for publication.

Bernard Harris
Madison, Wisconsin
December 19, 1966

Preface	vii
Introduction to the Theory of Spectral Analysis of Time Series, BERNARD HARRIS, Mathematics Research Center, Madison, Wisconsin	3
An Introduction to the Calculations of Numerical Spectrum Analysis, JOHN W. TUKEY, Department of Statistics, Princeton University, Princeton, New Jersey	25
Quartic Statistics in Spectral Analysis, S. K. ZAREMBA, Department of Pure Mathematics, University of Wales, and Mathematics Research Center, Madison, Wisconsin	47
Some Problems in the Application of the Cross-Spectral Method, HIROTUGU AKAIKE, Institute of Statistical Mathematics, Tokyo, and Department of Statistics, Princeton University, Princeton, New Jersey	81
Meteorological Applications of Cross-Spectrum Analysis, H. A. PANOFSKY, Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania	109
Estimation of Coherency, Leo J. TICK, Research Division, School of Engineering, New York University, New York, New York	133

x
Contents

Asymptotic Theory of Estimates of k -Th Order Spectra, DAVID R. BRILLINGER, London School of Economics, London, England and MURRAY ROSENBLATT, Department of Mathematics, University of California, San Diego, California and University College, London	153
Computation and Interpretation of k -Th Order Spectra, DAVID R. BRILLINGER, London School of Economics, London, England and MURRAY ROSENBLATT, Department of Mathematics, University of California, San Diego, California and University College, London	189
Time Series Analysis for Models of Signal Plus White Noise, EMANUEL PARZEN, Department of Statistics, Stanford University, Stanford, California	233
Prediction for Non-Stationary Stochastic Processes, MICHAEL D. GODFREY, Department of Economics, Princeton University, Princeton, New Jersey	259
Models for Forecasting Seasonal and Non-Seasonal Time Series, G. E. P. BOX, Department of Statistics, University of Wisconsin, Madison, G. M. JENKINS, Department of Systems Engineering, University of Lancaster, England, and D. W. BACON, DuPont of Canada, Kingston, Ontario, Canada	271
Index	313

and

Forecasting Techniques

PREFACE

-78-

Forecasting programs designed for large general-purpose computers constitute an important new tool in the control of production and economics. An example of such "big" forecasting programming is the work of Professor Richard Stone of Cambridge, who computerized the economics of the United Kingdom for 1970.

Nevertheless, small forecasting filters have their own domain of application. They can be realized not only as programs for general-purpose computers, but also as simple analog devices with quick response. The first of such devices was constructed on the basis of the operator of Academician Kolmogoroff's formula by Professor Dennis Gabor at Imperial College (London) in 1955. Since then many other forecasting filters have been designed for different purposes and in accordance with different formulas (algorithms)—for instance, at Kiev Polytechnic Institute, where the authors work.

These different forecasting algorithms are considered, and many new recommendations are given in this book.

The authors discuss three principal methods of forecasting in addition to some others.

1. Forecasting of deterministic processes, i.e., extrapolation and interpolation.
 2. Forecasting of stochastic processes, based on statistical forecasting theory.
 3. Forecasting based on adaptation or learning of the forecasting filters.
- Professor Gabor's filter was a self-learning one. It is shown in the book that the perceptron—the best known cognitive system—can also be used as a simple forecasting filter. Thus, there is no dividing line between cognitive systems and forecasting filters, for forecasting is the cognition of the future. The theory of cognitive systems can be applied to the designing of forecasting filters and, vice versa, the well developed theory

vii

A. G. IVAKHnenko AND V. G. LAPA
Institute of Cybernetics
Ukrainian Academy of Sciences, Kiev

Translated by *Scripta Technica, Inc.*

Translation Editor: ROBERT N. McDONOUGH

AMERICAN ELSEVIER PUBLISHING COMPANY, INC.
 NEW YORK 1967

of statistical forecasting can be used in cognitive system design.

The main problem is realization of optimum forecasting precision, the comparison of the precision and simplicity of various algorithms of forecasting. Sometimes, as in the case of control, quick response of the forecasting filters is also important. Some recommendations are given on the basis of a study of the precision of forecasting in the general form; some, on the basis of calculation of examples. All calculations were performed on digital computers.

The examples are taken from the chemical industry, biology, ocean turbulence processes, forecasting of the relief of the Dnieper river bottom, and so forth.

The most important is the original proposal to combine the forecasting method developed for nonstationary processes (presented by Professor Farmer at the second IFAC Congress) with Kolmogoroff's basic method, developed for stationary processes only. The combined method of forecasting yielded good results in forecasting intracranial pressure in neurosurgery.

A special part of the book is devoted to the use of forecasting filters or cognitive systems in production control. Extremum control of the plant should be effected by a combination of open loop control and a corrector, smoothly correcting the characteristics of the open loop part. Cognitive systems and forecasting filters can be used as correctors.

Forecasting filters furnish the only possibility of constructing a control system for periodic processes, since prediction of the result of the process is essential for its control. This problem is also discussed.

PREFACE

PREFACE	vii
INTRODUCTION	xii
1.1 The Basis of Prediction—Experience of the Past	xii
1.2 Prediction of Deterministic Processes	xii
1.3 Prediction of Random Processes	xiii

1. PREDICTION OF DETERMINISTIC PROCESSES.
INTERPOLATION AND EXTRAPOLATION

1.1 Interpolation and Extrapolation	1
-------------------------------------	---

2. PREDICTION OF STATIONARY RANDOM PROCESSES

2.1 Summary of Probability Theory and the Theory of Random Functions	25
2.2 Criteria of Prediction Quality, Optimality Criteria	33
2.3 Predicting Stationary Random Sequences	37
2.4 Predicting Stationary Random Processes	50

3. PREDICTING NONSTATIONARY RANDOM PROCESSES

3.1 Problem Statement	69
3.2 The Method of Characteristic Modes	69
3.3 Combined Method of Predicting Nonstationary Random Processes	70
3.4 A Second Modification of the Combined Method	79
3.5 Predicting the Internal Pressure During Brain Hemorrhage	81

4. COGNITIVE SYSTEMS USED IN PREDICTING FILTERS
AND REGULATORS

4.1 A Universal Predictor Which Optimizes Itself by a Learning Process	95
4.2 The "Alpha" Cognitive System—A Predicting Filter	105
4.3 Cognitive Systems Using Threshold Logic Elements	119

CONTENTS

4.4 The Application of Recognition Systems as Learning	
Correctors in External Control	121
4.5 Elements of Stability Theory and of the Theory of	
Invariance of Combined Systems Containing	
Predicting Filters	153
REFERENCES	161
INDEX	167

CONTENTS

	Page
A comparison of coherence and correlation as measures of association for time or spatially indexed data, by L. H. Koopmans	5
Some experiments to simulate the Pennsylvanian rock sequence of Kansas, by W. Schwarzscher	15
Frequency analysis for sparse and badly sampled data in the earth sciences, by N. S. Neidell	15
Simulation models of time-trend curves for paleoecologic interpretation, by W. T. Fox	16
Prediction of multiple time series generated by stationary random process, by G. G. Hingorani and L. F. Marczynski	20
Some distribution problems in time-series simulation, by N. C. Matolas	27
Spectral-density analysis of stratigraphic data, by C. J. Mann	41
A wave statistics model for climatic time series, by Leslie Curry	46
In search of geological cycles using a technique from communications theory, by B. W. Conn	51
Quality and quantity of available geologic information for studies in time, by P. H. A. Sneath	57
Comparison of subset trend surfaces by utilization of information theory, by S. V. L. N. Rao and G. S. Srivastava	62
Sedimentary laminations in time-series study, by R. Y. Anderson	68
Absence of detectable trends in the rate of bentonite occurrences in the Mowry Shale (Cretaceous) of Wyoming, by J. C. Davis	73
Geophysical digital filtering (abstract), by Sven Treitel	76
Autocorrelation, spectral analysis, and Markov chains (abstract), by W. C. Krumbein	77

1967

COMPUTER APPLICATIONS IN THE EARTH SCIENCES

COLLOQUIUM ON TIME-SERIES ANALYSIS

Edited by

DANIEL F. MERRIAM

1967

Time Series Analysis Papers

CONTENTS

1. ON CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY OF A STATIONARY TIME SERIES
Proc. Natl. Acad. Sci. (U.S.A.) 42 (1956), 154-157.
Math. Review: The estimates of the title are obtained for processes which are stationary of order 4 and whose covariance functions are in $L_1 \cap L_2$. The estimates are obtained by using averages of the periodogram with respect to various averaging kernels, generalizing the method used by Bartlett [*Biometrika* 37 (1950), 1-16; MR 12, 35] and others. The order of convergence is discussed. No proofs.
2. ANALYSIS OF A GENERAL SYSTEM FOR THE DETECTION OF AMPLITUDE-MODULATED NOISE (joint author: NORMAN SHUREY)
J. Math. Phys. 35 (1956), 278-288.
Math. Review: The authors treat a system involving square-law detectors and in which the input $u(t)$ is the sum of a stationary Gaussian noise $y(t)$ modulated with index m by a modulating function $g(t)$, which may or may not be random, and a background stationary Gaussian noise $z(t)$, that is, $u(t) = y(t)[1 + mg(t)] + z(t)$. If $E(W(T_m))$ and $E(I(\bar{I}(T_m)))$ are the expected values of the integrator output when the input is respectively unmodulated noise and amplitude modulated noise, then the detection of the presence or absence of signal may be based on the theory of testing the statistical hypothesis that $E(\Delta(T)) = 0$, where $\Delta(T) = W(T_m) - \bar{W}(T)$. The general results in terms of the statistics of the noise and modulating function are illustrated by application to the case where the noise spectra are flat and the spectrum of the modulating function and the filter transfer function have Gaussian shapes.

3. A CENTRAL LIMIT THEOREM FOR MULTILINEAR STOCHASTIC PROCESSES
Ann. Math. Statist. 28 (1957), 252-256.
Math. Review: In a recent paper [*Proc. Cambridge Philos. Soc.* 49 (1953), 239-246; MR 14, 771] Diananda proved a central limit

SAN FRANCISCO, CALIFORNIA, U.S.A., AMSTERDAM

Holden-Day

theorem for discrete parameter stochastic processes which are linear. In this paper a central limit theorem is proved for a class of stochastic processes called multilinear by the author.

4. CONDITIONS THAT A STOCHASTIC PROCESS BE ERGODIC

Ann. Math. Statist. **29** (1958), 299-301.

Math. Review: The main result is as follows. Let $x(t)$ be a strictly stationary stochastic process and introduce for given time points t_0, t_1, \dots, t_k the characteristic function $\varphi(u_1, u_2, \dots, u_k)$ of the stochastic variables $x(t_0), x(t_1), \dots, x(t_k)$ and another characteristic function $\varphi(u_1, u_2, \dots, u_k; \tau)$ of the increments $x(t_1) - x(t_0 + \tau), x(t_2) - x(t_1 + \tau), \dots, x(t_k) - x(t_{k-1} + \tau)$. Then it is necessary and sufficient for $x(t)$ to be ergodic that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \varphi(u_1, u_2, \dots, u_k; \tau) = |\varphi(u_1, u_2, \dots, u_k)|^2$$

for every choice of $k, t_0, t_1, \dots, t_k, u_1, u_2, \dots, u_k$. This is a condition for asymptotic independence in a certain sense.

5. ON CONSISTENT ESTIMATES OF THE SPECTRUM OF A STATIONARY TIME SERIES

Ann. Math. Statist. **28** (1957), 329-348.

Math. Review: The author studies the estimation of the spectral density, distribution function or other spectral averages for stationary stochastic processes. The process is supposed to be normal or of a more general form, whose fourth order mixed moments do not differ too much in a certain sense from those of a normal process. Both discrete and continuous processes are treated. After studying some statistical properties of the sample covariances, the author considers the estimation of the spectral density. His main results describe the bias and covariances of certain estimates in asymptotic terms; relating them to the infinitesimal properties of the spectrum and the estimate used. Alternative estimates are discussed from this point of view. It is shown that the whole graph of the estimate can be obtained by an interpolation procedure.

6. ON CHOOSING AN ESTIMATE OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES

Ann. Math. Statist. **28** (1957), 921-932.

Math. Review: Let $x(t)$ be a continuous parameter stationary process with spectral density $f(\omega)$. The author studies estimates of $f(\omega)$ of the type

$$f_T^*(\omega) = (2\pi)^{-1} \int_{-\pi}^{\pi} e^{-i\omega t} k(B_{Tt}) R_T(r) dr,$$

where $k(u)$ is called the covariance averaging kernel, B_T tends to zero as T tends to infinity and $R_T(r)$ is the empirical covariance function. In terms of these quantities one can write down expressions for the asymptotic variance and bias of $f_T^*(\omega)$, valid under certain regularity assumptions.

To simplify the problem the author assumes that it is practically legitimate to deal with these expressions as if T were finite. This makes it possible to study the large sample mean square error as a function of T, B_T , functional form of $k(u)$, etc. This is done in some detail for certain families of $k(u)$ that contain most of the estimates suggested before. In a numerical investigation a very interesting conclusion is reached: the functional form of $k(u)$ is not as important as may have been thought at first glance. The practical consequences of this are discussed; to the reviewer it seems to indicate that the bandwidth is the most important parameter to consider when choosing spectral estimates.

7. ON ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES

J. Roy. Statist. Soc. Ser. B **20** (1958), 303-322.

Math. Review: The article for the most part is a discussion of results obtained by the author [see *Stanford University Appl. Math. Statist. Lab. Tech. Rep.* No. 26]. A variety of spectral estimates in the case of stationary time series are considered. Under rather detailed assumptions on the asymptotic behavior of the covariance function $R(r)$ of the stochastic process such as $|R(r)| \leq R_0 e^{-\rho|r|}$, $\rho > 0$, or $\lim r^p |R(r)| = R_0$, $r > 0$, estimates are produced which have asymptotically best behavior in the sense of some measure-like mean square error. The character of the "optimal" estimates depends on the rate of decay of the covariance function. One might feel that such an assumption on the rate of decay would not be verifiable unless there was a refined theory in the context at hand specifying the rate of decay.

8. GENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA, BY G. M. JENKINS

Techometrics **3** (1961), 133-166.

This is an expository paper on statistical spectral analysis intended for engineers, geophysicists, etc., who want to learn about

this technique. It gives a heuristic introduction to the subject and should be valuable to the potential users of spectral analysis.

Spectra are defined and discussed in terms of filters and frequency response. Various sources of estimation errors are mentioned, such as aliasing, smudging, and ordinary sampling fluctuations. The author presents a table of spectral windows that have been suggested and discusses the corresponding sampling properties. This is done in terms of bandwidth and equivalent number of independent estimates. A short account is given of Blackman's and Tukey's method, using prewhitening. The author mentions some possible optimality criteria and draws some conclusions about the choice of reasonable spectral windows.

9. MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF SPECTRA 132

Technometrics 3 (1961), 167-190.

Math. Review: Certain mathematical problems in statistical spectral analysis are discussed. The author wishes to estimate spectral averages of the form $\int_{-\infty}^{\infty} A(\omega) f(\omega) d\omega$, where $f(\omega)$ is the spectral density of the observed process and $A(\omega)$ is a known function. Such spectral averages arise naturally as variances of linear estimates. After a discussion of the existence of consistent estimates, the author turns to special estimates. They are classified and their sampling properties are studied. The basic relation between bandwidth and variance is noted. To choose among the possible estimates, various optimality criteria are introduced. The author discusses mean square criteria based on a single frequency or integrated over all frequencies. An interesting possibility is to choose the mean square maximum error.

The paper contains many helpful comments on specific problems. We mention the following. The usual estimate of the k th autocovariance r_k is formed by dividing the sum of lagged products by the sample number n . The author points out that if we divide instead by $n - k$ we get a smaller mean square error.

10. SPECTRAL ANALYSIS OF ASYMPTOTICALLY STATIONARY TIME SERIES 162

Bull. Inst. Internat. Statist. 39 (1962), livraison 2, 87-103.

Math. Review: Series $X(t)$ of random variables with uniformly bounded fourth moments are considered for which $R_{\tau}(r) = T^{-1} \int_0^T X(t+r) X(t) dt$ is well-defined as a limit in mean square of approximating sums and for which, in addition, $\lim E \|R_T(r) -$

CONTENTS

$R(r)\|^2 = 0$ for some function $R(r)$, which is called the covariance function of the series. Conditions for this last condition to hold are derived in terms of the covariance function of the sequence $X(t) - X(t+v)$ (v fixed). It is then shown that $L(v)$ is positive definite so that it may be represented as the Fourier transform of a spectral distribution function which may be interpreted as providing an analysis of variance. Examples of such "asymptotically stationary" series are given which are an amplitude modulated signal, a frequency modulated signal and an autoregressive time series (discrete time) which is not assumed to have been generated so long ago as to have yet reached a stationary state.

11. ON SPECTRAL ANALYSIS WITH MISSING OBSERVATIONS AND AMPLITUDE MODULATION 180

Sankhyā Ser. A 25 (1963), 383-392.

Math. Review: In this paper, the problem of the spectral analysis of a stationary normal time series with missing observations is treated as a special case of the problem of the spectral analysis of an amplitude modulated stationary normal time series. An amplitude modulated stationary time series is an important example of an asymptotically stationary time series, whose spectral analysis has been previously treated by the author [*Bull. Inst. Internat. Statist.* 39 (1962), livraison 2, 87-103; MR 28 #4655].

12. NOTES ON FOURIER ANALYSIS AND SPECTRAL WINDOWS 190

Technical Report No. 48, May 15, 1963, O.N.R. Contract 225(21), Statistics Department, Stanford University.

Summary: This is an expository paper which seeks to systematically develop some basic ideas about Fourier analysis and spectral windows in order to have a convenient reference for results to be used in other work by the author on statistical spectral analysis.

13. STATISTICAL INFERENCE ON TIME SERIES BY HILBERT SPACE METHODS, I 251

Technical Report No. 23, January 2, 1959, O.N.R. Contract 225(21), Statistics Department, Stanford University.

Summary: This paper is the first of a series of projected papers on modern time series analysis, in which it is hoped to show how Hilbert space methods (which were introduced in the 1940s to clarify the probabilistic structure of time series) can be used to clarify, and to solve, various problems of statistical inference on time series. In this paper we introduce, among other things, a tool which plays a

major role in our work, namely, the representation of a stochastic process with finite second moments by means of a reproducing kernel Hilbert space.

14. AN APPROACH TO TIME SERIES ANALYSIS

Ann. Math. Statist. **32** (1961), 951-989.

Math. Review: In this useful survey paper the author discusses some recent developments in the theory of second-order stochastic processes and in time series analysis. It is argued that, in this context, reproducing kernel Hilbert spaces can be used successfully to obtain a unified theory. Taking as a starting point the idea of representing second-order stochastic variables in a Hilbert space, the author describes how this approach can be used in prediction and estimation problems. In this way he obtains the classical representation theorems for stochastic processes as special cases. This is done explicitly for autoregressive processes with discrete or continuous time parameter. Regression analysis (of time series, with known covariances) takes a particularly simple and attractive form: known results are rederived in a simple way and new results are discovered. The author gives a (simultaneous) confidence band for the mean-value function when this is given as a finite linear combination of known functions. This can be used to test hypotheses concerning the mean-value function. Some other problems are discussed: the concept of a density functional when two hypothetical distributions are compared for the stochastic process in question. Also in this context it is convenient to base the discussion on reproducing kernel spaces. The paper concludes with a section on correlation analysis of stationary processes with known mean-value function, and asymptotic results are given for the relevant estimates.

383

16. A NEW APPROACH TO THE SYNTHESIS OF OPTIMAL SMOOTHING AND PREDICTION SYSTEMS

Mathematical Optimization Techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 75-108.

Math. Review: This paper describes a new approach in which a wide class of smoothing and predicting problems is incorporated. The approach is based on the author's idea that reproducing-kernel Hilbert spaces provide a unified framework for such problems, and the theoretical elaborations of this idea were first developed by the author in "Statistical inference of time series by Hilbert space methods," *J. Dept. of Statist., Stanford Univ. Tech. Rep. No. 23* (1959). The present paper is a further development of examples and applications, and problems of prediction, smoothing, smoothing and prediction, parameter estimation, and signal extraction and detection are treated. It is shown that each type of problem has a characteristic statistical structure, which calls for a coordinate system in which there is a natural way of expressing quantities such as inner products and data-handling procedures. One of the important innovations is the treatment of minimum-variance linear unbiased prediction.

443

17. PROBABILITY DENSITY FUNCTIONALS AND REPRODUCING KERNEL HILBERT SPACES

Proc. Sympos. Time Series Analysis (Brown Univ., 1962), Wiley, New York, 1963, pp. 155-169.

Math. Review: Further development of a general approach to statistical problems of extraction, detection and prediction of a signal $S(t)$ in the presence of noise $N(t)$. The conditions for absolute continuity of the distribution of $S(t) + N(t)$ with respect to that of $N(t)$ and respective densities are expressed in terms of reproducing kernel Hilbert spaces. If $S(t)$ is a sure function, $P_{S,N} < P$, if and only if $S(t)$ belongs to the reproducing kernel space $H(K, T)$, with the kernel $K(s, t) = E[N(s)N(t)]$, $t \in T$. Then $dP_{S,N} dP_N = \exp\{[N, S] - \frac{1}{2}(S, S)\}$, where (\cdot, \cdot) refers to $H(K, T)$. If $S(t)$ is stochastic, then $R(s, t) = E[S(t)S(s)]$ has to belong to the reproducing kernel space with the kernel $K(s_0, s)[K(t_0, t) + R(t_0, t)]$. The expressions like (N, S) where N is the sample function, are defined as limits (in the mean, almost surely) and not for individual trajectories. The paper overlaps with a paper developed independently by J. Hájek [Czechoslovak Math. J. 12 (87) (1962), 404-444; MR 27 #2070].

422

15. REGRESSION ANALYSIS OF CONTINUOUS PARAMETER TIME SERIES

Proc. 4th Berkeley Symp. Math. Statist. and Prob., Vol. I, Univ. California Press, Berkeley, Calif., 1961, pp. 469-489.

Math. Review: This paper is based on the observation that the analysis of second-order stochastic processes can be simplified by using a reproducing kernel theory. This idea, which seems to be due to Loéve, is carried out in detail and results in a unified theory. In particular, the author shows how to arrive at a useful representation of the process in terms of a reproducing kernel. This is exemplified in a later section. It is shown how the regression analysis of the process can be expressed conveniently in this terminology. It is interesting to note the simultaneous confidence band for the regression function

18. EXTRACTION AND DETECTION PROBLEMS AND REPRODUCTING KERNEL HILBERT SPACES 492
J. SIAM Control Ser. A. I (1962), 35-62.

Summary: In sections 1 and 2, it is shown how one may define and obtain a formula for the probability density functional of a normal time series. This formula is used to study the structure of optimum estimators (section 3) and detectors (section 4) by expressing them in a coordinate-free way in terms of inner products in a reproducing kernel Hilbert space. Various ways of evaluating such inner products are discussed in sections 5 and 6. In section 7, it is shown how reproducing kernel Hilbert spaces provide a solution to the problems of minimum mean-square-error linear and non-linear prediction.

19. ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE 520
Ann. Math. Statist. 33 (1962), 1065-1076.

Math. Review: Let X_1, X_2, \dots, X_n be independent random variables with common density f . The author examines estimates of the form

$$f_n(x) = \frac{1}{nh(n)} \sum_{j=1}^n K\left(\frac{x - X_j}{h(n)}\right)$$

for $f(x)$. Sufficient conditions on h and K ensuring consistency and uniform consistency of f_n are found, as well as conditions ensuring $E[f_n(x) - f(x)]^2 \rightarrow 0$. $E[f_n(x) - f(x)]^2$ is evaluated for certain cases in terms of f . From this the author derives the h minimizing $E[f_n(x) - f(x)]^2$ as a function of K and f , and order of magnitude estimates of $E[f_n(x) - f(x)]^2$. Sufficient conditions for the asymptotic normality of $f_n(x)$ and the sample mode θ_n (suitably normalized) are obtained.

20. ON MODELS FOR THE PROBABILITY OF FATIGUE FAILURE OF A STRUCTURE 532
North Atlantic Treaty Organization Advisory Group for Aeronautical Research and Development, Report 245. Presented at the Ninth Meeting of the Structures and Materials Panel, held 29-30 April, 1959, in Paris, France.

Summary: This report represents an attempt, based on probability theory, to survey some of the problems involved in evaluating structural safety. Part I is a review of the probabilistic considerations involved in evaluating the strength of materials, and the construction of so called S-N curves. In Part II is briefly advanced a probabilistic model for the life before fatigue failure of a structure.

21. AN APPROACH TO EMPIRICAL TIME SERIES ANALYSIS

SIS 551
J. Res. Natl. Bur. Standards Sect. D 66D (1961), 937-954.

Summary: This paper attempts to develop a philosophy for empirical time series analysis, involving the routine use of four data handling procedures (covariance estimation, spectral estimation, autoregressive model fitting and spectral estimation), and trend elimination and estimation) embodied in a computer program. The cross-spectral analysis of a pair of time series, each consisting of 4000 observations, requires approximately 10 minutes of [an IBM] 7040, including computation of covariances. Several examples of empirical time series analysis are given.

Statistical communication and detection

with special reference to
**digital data processing of
radar and seismic signals**

Enders A. Robinson, Ph.D.

Visiting Professor,
Seismological Institute, Uppsala University, Sweden
Distinguished Lecturer for the
Society of Exploration Geophysicists
and

Instrumentation Research Laboratory,
Electronics Research Center
National Aeronautics and Space Administration
Cambridge, Massachusetts, U.S.A.

Consultant

for
Seismological Institute, Uppsala University, Sweden

Anthony F. Gangi, Ph.D.
Associate Professor
Massachusetts Institute of Technology, Cambridge, Mass.
and

with forewords by
Markus Bath, Fil. Dr.
Professor and Director

of Single Channel Time Series, Supplement No. 1 of Geophysical Prospecting, Volume 14, European Association of Exploration Geophysics, The Hague, The Netherlands.

The research reported in this book was carried out with the sponsorship of the Cambridge Research Laboratories of the Office of Aerospace Research, United States Air Force, through its European office, as part of the Advance Research Projects Agency's project VELA-UNIFORM, under Contract AF 61(052)-702.

In the writing of this book I am indebted to many people. Professor

PREFACE

This monograph treats several aspects of statistical communication and detection theory with special reference to the digital data processing of radar signals and seismic signals in the presence of noise. By bringing together the two different disciplines of radar and seismology under one cover, it is possible to develop similarities and differences that can reinforce the study of each separately. Of course in a monograph of this size only a selection of topics can be covered, and it is hoped that the present volume will act as a supplement to the standard works in these fields. An extensive bibliography is given at the end of the book.

Some of the digital methods presented in this book have found wide-spread applications. The multichannel prediction-error filter, and more particularly modified versions of it which are still designed on the same general principle of computing the filter coefficients on the basis of a noise sample preceding the event, are in use in digital seismic detection systems for the surveillance of underground nuclear explosions. The single and multichannel recursive methods for the solution of normal equations involving correlation matrices are widely employed. The method of predictive decomposition (deconvolution) is being used extensively as a practical digital data processing method to eliminate unwanted reverberations on seismic records taken in the exploration for oil and gas. As a result large water-covered areas of the globe can now be explored for oil and gas, which hitherto had to be classified as 'no-good' seismic regions because of the destructive interference of water reverberations with the desired reflection signals from deep geological structures.

Digital computer programs for many of the methods given in this book may be found in S.M. Simpson (1966), *Time Series Computations in FORTRAN and FAP*, Volume 1, *A Program Library*, Addison-Wesley Publishing Co., Reading, Massachusetts, and E.A. Robinson (1965), *Collection of FORTRAN Programs for Filtering and Spectral Analysis of Single Channel Time Series*, Supplement No. 1 of *Geophysical Prospecting*, Volume 14, European Association of Exploration Geophysics, The Hague, The Netherlands.

1967
HARPER PUBLISHING COMPANY
NEW YORK

Markus Båth made available to me the facilities of the Seismological Institute of Uppsala University and gave much of his own time. Professor Anthony Gangi of the Massachusetts Institute of Technology contributed from his wide experience in both radar and seismology. I have been in constant contact with Professor Herman Wold of the Statistics Institute of Uppsala University who is one of the pioneers of time-series analysis. I have worked closely with Dr. Ulf Ericsson, Dr. L. Götherström, and Dr. Bo Jansson of the Research Institute of National Defence, Stockholm, with Dr. Norman Domenico, Dr. Daniel Silverman, and Dr. Sven Treitel of the Pan American Petroleum Corporation, Tulsa, Oklahoma, with Professor Stephen M. Simpson of M.I.T., with Dr. William Z. Leavitt, Dr. Peter Mengert, and Dr. Taffee Tanimoto of the Electronics Research Center, National Aeronautics and Space Administration, Cambridge, Massachusetts, and with Mr. David Brown, Mr. George Cloudy, Mr. Patrick Poe, Mr. E. Rudolph Prince, Mr. William Shell, and Mr. David Steele of Digital Consultants, Inc., Houston, Texas. I have benefited from my association with Dr. Jon Claerbout, especially during the academic year 1963-1964 which he spent in Sweden. I have gained much from discussions with and the work of Mr. N.A. Ansley of Seismograph Service, Ltd., Fenton, Kent, England, Dr. John Beckerle of Woods Hole Oceanographic Institute, Dr. Arthur Bennett of Pan American Petroleum Corporation, Professor George Box of University of Wisconsin, Professor Harald Cramér of Stockholm University, Professor J. Cl. De Bremaecker of Rice University, Professor David Durand of M.I.T., Dr. L.Y. Faust of Ametada Petroleum Corporation, Dr. E.A. Flinn of Teledyne, Inc., Dr. M.R. Foster of Mobil Oil Company, Dr. C.W. Frasier of M.I.T., Dr. James Galbraith of M.I.T., Dr. I.J. Good of Eurekron, Ltd., Dr. Pierre Goupillaud of Continental Oil Company, Major R.A. Gray of Air Force Cambridge Research Laboratories, Dr. Roy Greenfield of M.I.T., Professor Ulf Grenander of Stockholm University, Professor Preston C. Hammer of Pennsylvania State University, Professor E.J. Hagan of Australian National University, Dr. Norman A. Haskell of Air Force Cambridge Research Laboratories, Dr. Frank Kalisvaart of Shell Oil Company, Dr. Kari Karhunen of Helsinki, Dr. M.J. Levin of M.I.T., Dr. Einar Lyttkens of Uppsala University, Professor Ted Madden of M.I.T., Dr. David Middleton of Concord, Massachusetts, Dr. E.O. Nestvold of Shell Oil Company, Dr. J.T. Nipper of Mobil Oil Company, Mr. H.A. Ossing of Air Force Cambridge Research Laboratories, Professor Emanuel Parzen of Stanford University, Dr. Robert Price of M.I.T., Dr. R.B. Rice of Marathon Oil Company, Professor Norman Ricker of University of Oklahoma, Dr. Carl Savit of Western Geophysical Company, Dr. R.L. Sengbush of Mobil Oil Company, Dr. A. Sheriff of Shell Oil Company, Dr. John L. Shanks of Pan American Petroleum Corporation, Dr. John Sherwood of Standard Oil Company of California, Mr. E. Steinhart of Northeastern University, Dr.

A.W. Trörey of Standard Oil Company of California, Dr. A.M. Walker of Cambridge University, Dr. Jerry Ware of Continental Oil Company, Dr. Robert Watson of Mobil Oil Company, Dr. J.E. White of Marathon Oil Company, Dr. John Whittlesey of Ray Geophysical Company and Dr. Ralph Wiggins of M.I.T. Mr. K.S. Alcerton of Charles Griffin and Company has rendered much valuable service in the production of the book. To all I want to express my warmest thanks.

ENDERS A. ROBINSON

Concord, Massachusetts
November 1966

16
6575
R.O.3
14(1)

FOREWORD

by Markus Bäth

Seismology — like geophysics in general — works on a broad front, extending over observations in nature (seismic records), laboratory investigations, and theoretical studies. It is an applied mathematical-physical science, in which the major steps forward have been closely connected to impacts from outside, that is from other sciences where methods and techniques already have reached a high level of perfection. In the history of seismology there are many scientists who were specialists in an adjacent field as well, and thus were able to work in a border-line field — that is where new ideas are frequently born and new results come out. The present book by Professor Encers Robinson is another instance of such cross-fertilization of two fields — statistical communications theory and seismology — and is the most extensive, and thorough treatment which has appeared so far in this border region.

The similarities as well as the dissimilarities between seismic signals and radar signals are clearly emphasized, and what is particularly gratifying to seismologists is the clear exposition of statistical communications theory and filtering techniques, and their applications to seismological records. With partial exception for seismic exploration, much more sophisticated methods have been developed earlier in radar observations than in seismology. It is only in the last few years — after the installation of seismic array stations — that more developed techniques are coming into more general use.

A record obtained from an earthquake or an explosion bears the signature of the source properties, the path properties, and the seismograph response. In addition, seismic signals are always immersed in noise to varying degrees. In any seismological study it is of the greatest significance to distinguish clearly between these various factors and between signal and noise, a task which can sometimes be very difficult with traditional methods, but is much facilitated by methods described in this book.

Filtering and correlation techniques, which are extensively described here, offer flexible and efficient methods to improve seismological studies, as for example to detect and extract weak signals in the presence of noise or for signal enhancement and prediction. Filtering exists and has always done so in seismic recordings but in a less flexible way. Path filtering is naturally an unavoidable factor and beyond human influence. Instrumental filtering (due to seismograph response) is another kind of filtering, which has been used efficiently

to separate various frequencies from each other using a series of seismographs: short-period, medium-period, long-period. But even this represents a certain amount of compromise between what is practicable and what is required for a complete coverage of the wave spectrum. Also, once set up, it represents an inflexible system, which is only seldom changed. Filtering on the final records has so far been used only to a very limited extent, but obviously opens up new possibilities for seismological research — not only by means of array-station records but also on the more traditional station records. In addition, such methods are of the greatest significance in any nuclear surveillance system.

The human element still plays a very significant role in the reading and interpretation of seismic records, but the adaptive seismic array systems, described in the last chapter, certainly point to the future. Starting from the seismic wave source, everything is automatic up to the point when a seismic record is obtained (except when the source is a man-made explosion). This has naturally been so since the birth of instrumental seismology. The next step, the reading and interpretation of the record and the reporting in bulletins, is where the human element comes in and still is the most competent worker. In earthquake seismology, usually only visual inspection of records — with no special filtering — is used, at least in routine readings. Still more so, readings of records are too often left to unqualified people, in spite of the fact that enormous funds have been invested in the instrumental installations. Once the reports have reached one or several of the seismological world data centres, the next step takes over, that is the computation of source parameters. Since around 1960 this has been done on electronic computers, and thus represents an essentially automatic step. It is of interest to state that the intermediate step is very much dependent on the human element, and even if progress for its elimination is hopeful, it will certainly take some time before a trained and qualified seismologist can be dispensed with in the reading of records. But the new methods would be highly welcome, as they imply increased precision, increased reliability, and increased speed of data sampling. Digital seismographs may be considered as a step in this direction, but have so far only been operated on an experimental basis at a few institutes.

From this point of view and from the outlook expressed in the last chapter of this book, it is tempting to speculate on the future of seismological recordings. For rapid information — within the lapse of minutes — both of earthquakes and of explosions, it would be suitable to have a world-wide system of adaptive seismic array stations, which would automatically transmit data to certain centres where all pertinent source parameters were continuously calculated and then distributed.

Those interested in the techniques of signal and noise discrimination and digital data processing will find Professor Robinson's book of great value in their studies.

FOREWORD

by Anthony F. Gent

This book demonstrates the similarities that exist between radar and seismology. They both use waves to detect anomalies in the medium through which the waves propagate. The major problem in these two disciplines is the extraction of the desired return signal from the ever-present noise. This is the problem to which this book is directed. To extract the desired signal from the noise, or to discriminate against the noise, full advantage must be taken of the differences in the temporal and spatial characteristics between the signal and the noise. The Fourier transform is a powerful mathematical tool in delineating these differences. The concepts of matched filtering, shape filtering, auto-correlation, cross-correlation, convolution, and deconvolution are important processes in the discrimination problem, and these processes are clarified in terms of the Fourier transform.

Digital sampling is used in both radar and seismology. The use of sampled data systems leads to the z-transform which is derived from the Fourier transform. The similarities between time-sampled data and seismic or antenna arrays become readily apparent when it is realized that the signals from the arrays correspond to space-sampled data. The mathematics, fundamental constraints, and fundamental principles are then easily seen to be the same for these two seemingly different situations. This naturally leads to the concept of spatial filtering which is analogous to temporal filtering.

The digitization of the sampled data leads to the concept of digital signals and digital filtering. This digitization is performed so that the data may be processed on a digital computer. The flexibility, speed of operation, and data-handling capability of digital computers make them invaluable in the signal-noise discrimination problem. The mathematics of convolution and the Fourier transform, originally applied to continuous signals or functions, are readily modified for application to digital signals and digital filtering techniques.

The flexibility of digital computers makes it possible to consider adaptive filtering techniques in the discrimination problem. The adaptive techniques automatically take advantage of the differences in the properties of the signals and the noise. Thus the filtering process or discrimination process is made a function of both time and space. The importance of adaptive processing has been realized for some time, but only recently have techniques developed to the point where it is possible to use adaptive processing in practice. Adaptive processing is described in this book and its underlying principles are enunciated.

Chapter	CONTENTS	Page
	4 WAVEFORMS AND SPECTRA	50
	4.0 List of symbols	50
	4.1 Pulse radar	51
PART A		51
SIGNALS AND NOISE IN RADAR AND SEISMOLOGY		56
1 RADAR AND SEISMIC NOISE	3	56
1.0 List of symbols	3	56
1.1 General discussion of noise	3	56
1.2 Noise in radar systems	4	56
1.3 The electromagnetic spectrum	5	56
1.4 Detection of nuclear explosions	6	56
1.5 Noise in earthquake and nuclear explosion seismology	7	56
1.6 Noise in exploration seismology	10	56
1.7 The seismic spectrum	13	56
2 SIGNAL SOURCES IN RADAR AND SEISMOLOGY	14	57
2.0 List of symbols	14	57
2.1 Radar signal sources	15	57
2.2 Signal sources in exploration seismology	17	57
2.3 Earthquake signal sources	19	57
2.4 Nuclear explosion signal sources	23	57
PART B		57
ANTENNA PATTERNS AND SPECTRA AS FOURIER TRANSFORMS		58
3 APERTURE ILLUMINATION FUNCTIONS AND ANTENNA PATTERNS		58
3.0 List of symbols	35	58
3.1 Infinitesimally narrow beam of radiation	35	58
3.2 Radar antenna pattern for uniform aperture illumination	37	58
3.3 Introduction of the Fourier transform	41	58
3.4 Application of the Fourier transform to antennas	43	58
3.5 Radar antenna pattern for uniform aperture illumination obtained by Fourier transformation	45	58
3.6 Exercises	47	58
PART C		58
NUMERICAL FILTERING METHODS FOR DIGITAL COMPUTERS		58
6 DIGITAL SIGNALS AND FILTERS		103
6.0 List of symbols	103	103
6.1 Digital signals	106	103
6.2 Wavelets	111	106
6.3 Convolution and the z-transform	113	111
6.4 Autocorrelation and cross-correlation	120	113
6.5 Minimum-delay, mixed-delay, and maximum-delay	124	120
6.6 Energy build-up	128	124
6.7 Summary	129	128
6.8 Exercises	138	129
7 DECONVOLUTION, SHAPING FILTERS AND SPIKING FILTERS		142
7.0 List of symbols	142	142

AD-A081 161 TEXAS A AND M UNIV COLLEGE STATION INST OF STATISTICS F/G 12/1
TIME SERIES ANALYSIS METHODS AND APPLICATIONS: BIBLIOGRAPHY OF --ETC(U)
JAN 80 E PARZEN N00014-78-C-0599

UNCLASSIFIED TR-N-11 NL

2 of 3
AD
A081 161

7.1 Deconvolution (or inverse filtering)	144	9.7 Recursive solution of simultaneous equations involving an autocorrelation matrix	274
7.2 Feedback stability and minimum-delay	145	9.8 Exercises	280
7.3 Memory and anticipation	151		
7.4 Deconvolution of a 2-length wavelet	153		
7.5 Deconvolution of a wavelet of arbitrary length	160	10 ENHANCEMENT AND PREDICTION OF SIGNALS IN NOISE	283
7.6 Approximate deconvolution of a 2-length minimum-delay wavelet	163	10.0 List of symbols	283
7.7 Approximate deconvolution of a minimum-delay wavelet of arbitrary length	167	10.1 Discussion of signal enhancement and prediction	284
7.8 Shaping filters	174	10.2 Smoothing and prediction with finite operators	290
7.9 Spiking filters (or approximate deconvolution of an arbitrary wavelet)	178	10.3 Wiener-Kolmogorov theory of prediction	293
7.10 Exercises	183	10.4 Wavelet prediction	298
		10.5 Prediction-error filtering	300
		10.6 Exercises	302

PART D

DIGITAL PROCESSING OF
SIGNALS IN NOISE

8 STATIONARY STOCHASTIC PROCESSES	197	11 VELOCITY FILTERING FOR SEISMOMETER ARRAYS	31
8.0 List of symbols	197	11.1 Introduction to velocity filtering	313
8.1 Stationary stochastic processes in discrete time	201	11.2 Working model of signal and noise	314
8.2 The autocorrelation function	203	11.3 Implementation of a velocity filter	316
8.3 The power spectrum	206	11.4 Illustration	320
8.4 The energy spectrum and the z-transform	213	11.5 Conclusion	329
8.5 Physical realizations of white noise: thermal noise and shot noise	218	12 ADAPTIVE ARRAY SYSTEMS IN RADAR AND SEISMOLOGY	323
8.6 Mathematical characterization of white noise	222	12.1 Introduction to the concept of an adaptive system	323
8.7 Output of a digital filter due to a stationary stochastic input	224	12.2 Basic differences between adaptive systems in radar and seismology	323
8.8 Microseismic signals	227	12.3 Phased array systems for radio-frequency waves	325
8.9 Exercises	241	12.4 Matched spatial filters for seismic waves	327
		12.5 Adaptive array systems for radio-frequency waves	329
9 DETECTION AND EXTRACTION OF SIGNALS IN NOISE	248	12.6 Adaptive seismic array systems (AS-AS)	334
9.0 List of symbols	248	12.7 Conclusion	336
9.1 Reception of signals in noise	250		
9.2 Introductory examples	256		
9.3 Matched filter in the case of white noise	259	APPENDICES	
9.4 Matched filter in the case of autocorrelated noise	266		
9.5 Output-energy filter	269	Appendix	
9.6 Shaping filter in the case of autocorrelated noise	272	1 EXPLANATION OF THE DECIBEL SCALE	339

BIBLIOGRAPHY

Page	
341	Appendix (Continued)
342	2 THE CONVENTION USED FOR THE z-TRANSFORM
344	3 THE MINIMUM-DELAY CONCEPT IN THE CASE OF CONTINUOUS TIME
348	Bibliography
357	Index

- Antenna theory
1. King, R.W.P., *The theory of linear antennas*, Harvard Univ. Press, Cambridge, Mass., 1956.
 2. Kraus, J.D. *Antennas*, McGraw-Hill, New York, 1950.
 3. Schelkunoff, S.A., and Friis, H.T., *Antennas, theory and practice*, John Wiley, New York, 1952.
 4. Silver, S. (ed.), *Microwave antenna theory and design*, M.I.T. Radiation Lab. Series, McGraw-Hill, New York, 1949.

Communication theory

5. Baghdady, R.J. (ed.), *Lectures on communication systems theory*, McGraw-Hill, New York, 1960.
6. Brown, J., and Lazier, E.V.D., *Telecommunications*, Chapman and Hall, London, 1964.
7. Hancock, J.C., *An introduction to the principles of communication theory*, McGraw-Hill, New York, 1961.
8. Jackson, W. (ed.), *Communication theory*, Academic Press, New York, 1953.
9. Kharkevich, A.A., *Outline of general communication theory*, Gos. Izd. Moscow, 1955.
10. Nyquist, H., Certain topics in telegraph transmission theory, *Trans. AIEE*, April 1928, pp. 617-44.

Control theory

11. Cosgriff, R.L., *Nonlinear control systems*, McGraw-Hill, New York, 1958.
12. Gibson, J.E., *Control system components*, McGraw-Hill, New York, 1958.
13. Grabbe, E.M., Ramo, S., and Woodridge, D.E., *Handbook of automation, computation, and control*, John Wiley, New York 1958.
14. Kipiniak, W., *Dynamic optimization and control*, M.I.T. Press, Cambridge, Mass., 1961.
15. Lanning, J.H., and Battin, R.H., *Random processes in automatic control*, McGraw-Hill, New York, 1955.
16. Mishkin, Eli (ed.), *Adaptive control systems*, McGraw-Hill, New York, 1961.
17. Popov, E.P., *The dynamics of automatic control systems*, Addison-Wesley, Reading, Mass., 1962.
18. Pugachev, V.S., *Random functions and their applications in automatic control*, Gostekh. Izd., Moscow, 1957

BIBLIOGRAPHY

345

STATISTICAL COMMUNICATION AND DETECTION

19. Smith, O.J.M., *Feedback control systems*, McGraw-Hill, New York, 1958.
20. Solodovnikov, V.V., *Introduction to the statistical dynamics of automatic control systems*, Dover, New York, 1960.
21. Truxal, J.G., *Control system synthesis*, McGraw-Hill, New York, 1955.
22. Barber, N.F., *Experimental correlograms and Fourier transforms*, Pergamon Press, London, 1961.
23. Bartlett, M.S., Smoothing periodograms from time series with continuous spectra, *Nature*, 161, pp. 666-68, 1948.
24. Blackman, R.B. and Tukey, J.W., *Measurement of power spectra from the point of view of communications engineering*, Dover, New York, 1959.
25. Jansson, B., *Problems in spectral estimation and bandpass filtering*, Fil. Lic. Thesis, Univ. Inst. of Statistics, Uppsala, Sweden, 1964.
26. Jenkins, G.M., General considerations in the estimation of spectra, *Technometrics*, 3, pp. 167-190, 1961.
27. Jennissen, R.C., *Fourier transform and convolutions for the experimentalist*, Pergamon Press, London, 1961.
28. Parzen, E., Mathematical considerations in the estimation of spectra, Tech. Report No. 3, Stanford Univ. Statistics Lab., 1960.
29. Besicovitch, A.S., *Almost periodic functions*, Dover, New York, 1955.
30. Bochner, S., *Lectures on Fourier integrals*, Princeton Univ. Press, Princeton, N.J., 1959.
31. Bochner, S., *Harmonic analysis and the theory of probability*, Univ. of California, Berkeley, Cal., 1955.
32. Bohr, H., *Almost periodic functions*, Chelsea, New York, 1930.
33. Bracewell, R., *The Fourier transform and its applications*, McGraw-Hill, New York, 1965.
34. Byrnes, W.E., *Elementary treatise on Fourier series and spherical, cylindrical, and ellipsoidal harmonics*, Dover, New York, 1959.
35. Cuccia, C.L., *Harmonics, sidebands, and transients in communication engineering*, McGraw-Hill, New York, 1952.
36. Cunningham, W.J., *Introduction to nonlinear analysis*, McGraw-Hill, New York, 1958.
37. Harrington, R.F., *Time-harmonic electromagnetic fields*, McGraw-Hill, New York, 1961.
38. Jackson, D., *Fourier series and orthogonal polynomials*, Am. Math. Soc., New York, 1941.
39. Kharkevich, A.A., *Spectra and analysis*, Consultants Bureau, New York, 1960.
40. Loomis, Lynn H., *Introduction to abstract harmonic analysis*, Van Nostrand, New York, 1953.
41. Paley, R., and Wiener, N., *Fourier transforms in the complex domain*, Am. Math. Soc. Colloquium Publ., Vol. XIX, Amer. Math. Soc., New York, 1934.
42. Papoulis, A., *The Fourier integral and its applications*, McGraw-Hill, New York, 1965.
43. Riesz, Frigyes and "Sz.-Nagy, B." *Functional analysis*, Ungar, New York, 1955.
44. Titchmarsh, E.C., *Introduction to the theory of Fourier integrals*, Oxford Univ. Press, London, 1937.
45. Tolstov, G.P., *Fourier series*, Prentice Hall, Englewood Cliffs, N.J., 1962.
46. Whittaker, E.T., and Watson, G.N., *Modern analysis*, 4th ed., Cambridge Univ. Press, Cambridge, 1927.
47. Wiener, N., *The Fourier integral and certain of its applications*, Dover, New York, 1933.

Information theory

48. Brillouin, L., *Science and information theory*, Academic Press, New York, 1956.
49. Cherry, E.C., (ed.), *Information theory*, Academic Press, New York, 1956.
50. Feinstein, A., *Foundations of information theory*, McGraw-Hill, New York, 1958.
51. Goldman, S., *Information theory*, Prentice-Hall, Englewood Cliffs, N.J., 1953.
52. Khinchin, A.I., *Mathematical foundations of information theory*, Dover, New York, 1957.
53. Khinchin, A.I., Fadieev, D.A., Kolmogorov, A.N., Renyi, A., and Balatoni, J., *Arbeiten zur Informationstheorie*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957.
54. Kozesnik, J., (ed.), *Transactions of the second Prague conference on information theory, statistical decision functions, and random processes*, Academic Press, New York, London, 1957.
55. Machol, R.E., and Gray, P., (ed.), *Recent developments in information and decision processes*, Macmillan, New York, London, 1961.
56. Meyer-Eppler, W., *Grundlagen und Anwendungen der Informationstheorie*, Springer, Berlin, 1959.
57. Reza, F.M., *An introduction to information theory*, McGraw-Hill,

STATISTICAL COMMUNICATION AND DETECTION

- New York, 1961.
58. Russel, G.M., *Modulation and coding information systems*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
59. Schwartz, M., *Information transmission, modulation, and noise*, McGraw-Hill, New York, 1959.
60. Shannon, C.E., *The mathematical theory of communications*, Univ. of Illinois Press, Urbana, 1948.
61. Woodward, P.M., *Probability and information theory with applications to radar*, Pergamon, London, 1955.
62. Yaglom, A.M., and Yaglom, I.M., *Probabilité et information*, Dunod, Paris, 1959.
- Noise theory**
63. Bendat, J.S., *Principles and applications of random noise theory*, John Wiley, New York, 1958.
64. Freeman, J.J., *Principles of noise*, John Wiley, New York, 1958.
65. Korennikov, T.A., *The theory of optimum noise immunity*, McGraw-Hill, New York, 1959.
66. Lawson, J.L., and Uhlenbeck, G.E., *Threshold signals*, Radiation Lab. Series, 24, McGraw-Hill, New York, 1950, and Boston Technical Publishers, Lexington, Mass., 1964.
67. Rice, S.O., Mathematical analysis of random noise, *Bell System Tech. J.*, 23, pp. 282-332, 1944; 24, pp. 46-156, 1945.
68. Stratovich, R.L., *Topics in the theory of random noise*, Gordon and Breach, 1963.
69. Van der Ziel, A., *Noise*, Prentice-Hall, Englewood Cliffs, N.J., 1954.
- Radar**
70. Bell Telephone Labs. Staff, *Radar: systems and components*, Van Nostrand, New York, 1949.
71. Bowen, E.G. (ed.), *A textbook of radar*, Cambridge Univ. Press, Cambridge, 2nd edition, 1954.
72. M.I.T. Radiation Laboratory Series, 28 volumes, McGraw-Hill, New York, 1947-53, reprinted by Boston Technical Publishers, Lexington, Mass., 1964.
73. Reintjes, J.F., and Coate, G.T., *Principles of Radar*, M.I.T. Radar School Staff, McGraw-Hill, New York, 3rd edition, 1953.
74. Shapiro, I.I., *The prediction of ballistic missile trajectories from radar observations*, M.I.T. Lincoln Laboratories, Lexington, Mass., 1958.
75. Silver, S. (ed.), *Monograph on radio waves and circuits*, Elsevier Puhl. Co., Amsterdam, 1963.
76. Skolnik, M.I., *Introduction to radar systems*, McGraw-Hill, New York, 1962.
77. Starr, A.T., *Radio and radar technique*, Pitman, London, 1953.
- Sampled-data systems**
78. Jury, E.I., *Sampled-data control systems*, John Wiley, New York, 1958.
79. Kuo, B.C., *Analysis and synthesis of sampled data control systems*, Prentice-Hall, Englewood Cliffs, N.J., 1963.
80. Monroe, A.J., *Digital processes for sampled data systems*, John Wiley, New York, 1962.
81. Pagazzini, J.R., and Franklin, G., *Sampled-data control systems*, McGraw-Hill, New York, 1958.
82. Sittler, R.W., *Lectures on sampled-data systems, memorandum No. 2.M 0671*, M.I.T. Lincoln Laboratories, 22 Aug. 1957.
83. Tou, J.T., *Digital and sampled-data control systems*, McGraw-Hill, New York, 1959.
84. Tou, J.T., *Optimum design of digital control systems*, Academic Press, New York and London, 1963.
85. Tsyplkin, Y.Z., *Sampling Systems theory and its applications*, MacMillan, New York, 1964.
- Seismology**
86. Anstey, N.A., *Correlation Techniques. A Review*, *Geophysical Prospecting*, 12, pp. 355-382, 1964.
87. Brekhovskikh, L.M., *Waves in layered media*, Academic Press, New York and London, 1960.
88. Bullen, K.E., *An introduction to the theory of seismology*, Cambridge Univ. Press, Cambridge, 1963.
89. Cagniard, L., *Reflection and refraction of progressive seismic waves*, McGraw-Hill, New York, 1962.
90. Dobrin, M.B., *Introduction to geophysical prospecting*, McGraw-Hill, New York, 1960.
91. Ewing, W.M., Jardetzky, W.S., and Press, F., *Elastic waves in layered media*, McGraw-Hill, New York, 1957.
92. Haskell, N.A., *The dispersion of surface waves in multilayered media*, *Bulletin of the Seismological Soc. of Am.*, 43, pp. 17-34, 1953.
93. Jeffreys, H., *The earth*, Cambridge Univ. Press, Cambridge, 1952.
94. Officer, L.B., *Introduction to the theory of sound transmission*, McGraw-Hill, New York, 1958.
95. Redwood, M., *Mechanical waveguides*, Pergamon Press, London, 1960.
96. Ricker, N., *The form and laws of propagation of seismic wavelets*, *Geophysics*, 18, pp. 10-40, 1953.

97. Robinson, E.A., Predictive decomposition of seismic traces, *Geophysics*, 22, pp. 767-778, 1957.
98. Robinson, E.A., Mathematical development of discrete filters for the detection of nuclear explosions, *Journal of Geophysical Research*, 68, pp. 5555-5567, 1963.
99. Robinson, E.A., and Treitel, S., Principles of digital filtering, *Geophysics*, 29, pp. 395-404, 1964.
100. Treitel, S., and Robinson, E.A., The stability of digital filters, *IEEE Trans. on Geoscience Electronics*, Vol. GE-2, pp. 6-18, 1964.
101. Treitel, S., and Robinson, E.A., Seismic wave propagation in layered media in terms of communication theory, *Geophysics*, 31, pp. 17-32, 1966.
102. White, J., *Seismic waves, radiation, transmission, and attenuation*, McGraw-Hill, New York, 1965.
- Seismology: The M.I.T. Geophysical Analysis Group Reports (available at the M.I.T. Library and at VESIAC, the VELA Seismic Information Analysis Center at the Inst. of Science and Tech. of the Univ. of Michigan).
103. Robinson, E.A., and Wadsworth, G.P., *A prospectus on the applications of linear operators to seismology*, M.I.T., Geophysical Analysis Group Report 1, Cambridge, Mass., 1952.
104. Robinson, E.A., and Wadsworth, G.P., *Results of an auto-correlation and cross-correlation analysis of seismic records*, M.I.T. Geophysical Analysis Group Report 2, Cambridge, Mass., and VESIAC 1108, 1952.
105. Robinson, E.A., Simpson, S.M., Smith, M.K., and Walsh, W.P., *Case study of Henderson County seismic record*, M.I.T., Geophysical Analysis Group Report 3, Cambridge, Mass., and VESIAC 1100, 48 pp., 1953.
106. Robinson, E.A., Simpson, S.M., and Smith, M.K., *Linear operator study of a Texas Company seismic profile*, M.I.T. Geophysical Analysis Group Report 4, Cambridge, Mass., and VESIAC 1101, 181 pp., 1953.
107. Robinson, E.A., Smith, M.K., and Simpson, S.M., *On the theory and practice of linear operators in seismic analysis*, M.I.T. Geophysical Analysis Group Report 5, Cambridge, Mass., and VESIAC 1102, 95 pp., 1953.
108. Robinson, E.A., Smith, M.K., Simpson, S.M., Bowker, D.E., Bowman, R., Briscoe, H.W., Gilbert, J.F., Treitel, S., Turyn, M.S., and Walsh, W.P., *Further research on linear operators in seismic analysis*, M.I.T. Geophysical Analysis Group Report 6, Cambridge, Mass., and VESIAC 1103, 203 pp., 1954.
109. Robinson, E.A., *Predictive decomposition of time series with applications to seismic exploration*, Ph.D. Thesis, M.I.T., and
- M.I.T. Geophysical Group Report 7, Cambridge, Mass., and VESIAC 1104, 265 pp., 1954.
110. Simpson, S.M., *A multiple trace criterion for linear operator selection*, M.I.T. Geophysical Analysis Group Report 8, Cambridge, Mass., 30 pp., 1954.
111. Simpson, S.M., Bowman, R., Fink, D.R., Gilbert, J., Grine, D.P., Lopez-Linares, M., Tooley, R.D., Treitel, S., Wylie, R.W., Linear operators and seismic noise, M.I.T. Geophysical Analysis Group Report 9, Cambridge, Mass., 281 pp., 1955.
112. Simpson, S.M., Bowman, R., Fink, D.R., Grine, D.R., Lopez-Linares, M., Posen, H., Tooley, R.D., Treitel, S., and Wylie, R.W., Properties, origin, and treatment of certain types of seismic noise, M.I.T. Geophysical Analysis Group Report 10, Cambridge, Mass., 211 pp., 1956.
113. Simpson, S.M., Gilbert, J.F., Grine, D.R., Sax, R.L., Treitel, S., and Wylie, R.W., *The interpretation of the deterministic and probabilistic approaches to seismic problems*, M.I.T. Geophys. SICSA, Analysis Group Report 11, Cambridge, Mass., 136 pp., 1957.
- Statistical communication and detection theory
114. Bode, H.W., and Shann, C.E., A simplified derivation of linear least-square smoothing and prediction theory, *Proc. IRE*, 35, pp. 417-25, 1950.
115. Davenport, W.B., and Root, W.L., *An introduction to the theory of random signals and noise*, McGraw-Hill, New York, 1958.
116. Harman, W.W., *Principles of the statistical theory of communication*, McGraw-Hill, New York, 1963.
117. Helstrom, C.W., *Statistical theory of signal detection*, Pergamon Press, London, 1960.
118. Lee, Y.W., *Statistical theory of communication*, John Wiley, New York, 1960.
119. Levin, B.R., *Theory of random processes and its application in radio engineering*, Sovetskoe Radio, Moscow, 1957.
120. Middleton, D., *An introduction to statistical communication theory*, McGraw-Hill, New York, 1960.
121. Robinson, E.A., *Random wavelets and cybernetic systems*, Charles Griffin, London, and Stecher-Hafner, New York, 1961.
122. Swets, J.A. (ed.), *Signal detection and recognition by human observers*, John Wiley, New York, 1964.
123. Wainstein, L.A., and Zabakov, V.D., *Extraction of signals from noise*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
124. Wiener, N., *Extrapolation, interpolation, and smoothing of stationary time series*, M.I.T. Press, Cambridge, Mass., 1942, and John Wiley, New York, 1949.

- Stochastic processes**
125. Bartlett, M.S., *Stochastic processes*, Cambridge Univ. Press, Cambridge, 1955.
 126. Blanc-Lapierre, A., and Fortet, R., *Théorie des fonctions aléatoires*, Masson, Paris, 1953.
 127. Bogoliouboff, J.L., and Kozin, F., (ed.), *Proceedings of the first symposium on engineering applications of random function theory and probability*, John Wiley, New York, 1963.
 128. Deutsch, R., *Nonlinear transformations of random processes*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
 129. Doob, J.L., *Stochastic processes*, John Wiley, New York, 1953.
 130. Karhunen, K., Über die Struktur stationärer zufälliger Funktionen, *Ark. Mat.*, 1, pp. 141-60, 1949.
 131. Kolmogorov, A., (Interpolation und Extrapolation von stationären zufälligen Folgen), *Ser. stat.*, 5, *Izv. Acad. Nauk SSSR*, pp. 3-14, 1941.
 132. Parzen, E., *Stochastic processes*, Holden-Day, San Francisco, 1962.
 133. Robinson, E.A., *An introduction to infinitely many variates*, Charles Griffin, London, and Stechert-Hafner, New York, 1959.
 134. Wiener, N., *Nonlinear problems in random theory*, John Wiley, New York, 1958.
 135. Yaglom, A.M., *Introduction to the theory of stationary random functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- Systems theory**
136. Bode, H.W., *Network analysis and feedback amplifier design*, Van Nostrand, New York, 1945.
 137. Brown, B.M., *The mathematical theory of linear systems*, Chapman and Hall, London, 1961.
 138. Brown, W.M., *Analysis of linear time-invariant systems*, McGraw-Hill, New York, 1963.
 139. Mason, S.J., and Zimmerman, H.J., *Electronic circuits, signals, and systems*, John Wiley, New York, 1960.
 140. Peterson, E.L., *Statistical analysis and optimization of systems*, John Wiley, New York, 1961.
 141. Robinson, E.A., The minimum-delay concept in system design, Parts I, II, III, and IV, *Design Electronics (United Kingdom)*, Heywood and Co., Ltd, Dec. 1963, Jan. 1964, Feb. 1964, Mar. 1964.
 142. Zadeh, L.A., and Desoer, C.A., *Linear systems theory*, McGraw-Hill, New York, 1963.
- Time-series analysis**
143. Arrow, K., and Hoffenberg, J.M., *A time series analysis of inter-*

Yu. A. Rozanov

TRANSLATOR'S PREFACE

This translation has benefited, in comparison with the Russian original, by the inclusion of certain improved results connected with the factorization of rational spectral densities, which were communicated to me by the author, as well as by the correction (by author and translator) of various minor errors, mainly of a typographical nature.

It is a pleasure to thank the author for his considerable assistance in these matters.

A. FEINSTEIN

STATIONARY RANDOM PROCESSES

Translated by

A. Feinstein

HOLDEN-DAY

San Francisco. Cambridge. London. Amsterdam

AUTHOR'S PREFACE

In recent years new developments have taken place in the theory of stationary random processes. Many papers, devoted to linear forecasting of multi-dimensional stationary (in the wide sense) processes, have brought this portion of the theory close to a final definitive form. Considerable attention has been focused on various kinds of ergodic properties of stationary (in the strict sense) processes which arise in connection with the applicability of the central limit theorem to these processes. This book, which originated in a course of lectures on the theory of stationary processes given by me at Moscow University in 1959-1960, is devoted to these questions.

This book is intended for the mathematically qualified reader, but the basic results which it contains (particularly those relating to rational spectral densities) should also be intelligible to the engineering reader who is interested in applications of the theory of stationary processes.

In writing this book I have benefited considerably from various remarks by my friends. To all of them my sincere thanks.

I consider it my pleasant duty to express here my deep gratitude to my teacher Andrei Nikolaevich Kolmogorov.

Yu. A. ROZANOV

CONTENTS

I. Harmonic Analysis of Stationary Random Processes	1
1. Definitions. Examples	1
2. Random measures and integrals	4
3. Fourier transformation of a random measure	13
4. The spectral representation of stationary processes	14
5. Correlation functions and spectral measures of stationary processes	18
6. The ergodic theorem and the law of large numbers	24
7. The spectral representation of elements in the space of values of a stationary process	28
8. Linear transformations of stationary processes	34
9. Stationary processes of constant rank	39
10. Stationary processes with rational spectral densities	43
II. Linear Forecasting of Stationary Discrete-Parameter Processes	5
1. Linear prediction. Statement of the problem	5
2. Regularity and singularity of stationary processes	32
3. Wold's decomposition	56
4. The general formula of linear extrapolation	57
5. Linear extrapolation of one-dimensional stationary processes	63
6. Linear extrapolation of regular processes with maximal rank	71
7. Linear extrapolation of stationary processes whose values form a basis	77
8. A general criterion for the regularity, and linear extrapolation, of processes of rank 1	84
9. Linear filtering of stationary processes	94
10. Linear interpolation of stationary processes	96
11. Stationary processes whose values form a basis	104
III. Linear Forecasting of Continuous-Parameter Stationary Processes	109
1. Linear extrapolation. Statement of the problem	109
2. Regularity and singularity of stationary processes	109
3. Wold's decomposition	116

4. Linear extrapolation of stationary processes	119
5. Linear filtering of stationary processes	126
6. Linear interpolation of stationary processes	128
7. Linear forecasting by means of the values on a finite time interval	135
IV. Random Processes, Stationary in the Strict Sense	
1. Basic concepts. Examples	143
2. Direct definition of random processes	144
3. The shift transformation associated with a stationary process	148
4. On the measurability of the group of shift transformations	152
5. The ergodic theorem	156
6. Metric transitivity. Examples	161
7. Metrically transitive stationary processes with discrete spectra	167
8. The decomposition of a stationary process into metrically transitive components	171
9. Regular stationary processes	178
10. Conditions for the complete regularity of Gaussian stationary processes	180
11. The central limit theorem	190
Historical and Bibliographic References	
	199
Bibliography	205
Index	211

SPECTRAL ANALYSIS and its applications

Preface

Time series analysis is now widely used in many branches of engineering, the physical sciences and economics. One important aspect of time series analysis is spectral analysis, which is concerned with the splitting up of time series into different frequency components. Applications of spectral analysis cover a wide range of problems, for example, the effect of wave oscillations on the vibration of ships and the influence of disturbances or noise on the performance of electrical guidance systems and chemical reactors.

This book has been designed primarily for post-graduate engineers, since most of the applications of spectral analysis have, in fact, been made by engineers and physicists. One of the difficulties faced by users or potential users of spectral analysis is that most of the theory has been developed by statisticians during the last fifteen years. Unfortunately, much of this literature is difficult to read. Hence it is felt that a book directed mainly toward engineers is long overdue. However, we hope this book will appeal to a much wider audience, including mathematicians, statisticians, economists, physicists and biologists.

One of the difficulties we have encountered in writing this book is that, whereas spectral analysis involves the use of sophisticated statistical techniques, many engineers lack knowledge of elementary statistics. This is true even of electrical engineers, some of whom possess considerable knowledge of probability theory. For example, the Wiener theory of prediction and control shows that an optimum filter or control system can be designed if various spectra associated with the signal and noise in the system are known. However, little attention is paid in books on control theory to the very important practical question of how to estimate these spectra from *finite lengths of record*. It is with such problems that we shall be concerned in this book.

To provide a gradual introduction to time series estimation problems, we have been forced in the earlier chapters to deal with elementary statistical problems. This may distract mathematical and statistical readers, but in view of our experience in expounding these ideas to engineers, we feel that

HOLDEN-DAY

San Francisco, Cambridge, London, Amsterdam

a self-contained introduction, which includes most of the statistical ideas needed later on in the book, is necessary. Those readers who are familiar with the material of Chapters 2, 3 and 4 can, of course, start at Chapter 5. Chapter 1 is devoted to a brief outline of the territory covered and to a description of the kind of problems which can be solved using spectral analysis. Chapter 2 deals with the important ideas of Fourier analysis and is basic to what follows. Most of this is well known to engineers but is brought together here in a form oriented toward spectral analysis. In Chapter 3 we introduce some basic notions in probability theory which are fundamental to subsequent chapters. Chapter 4 consists of an introduction to many important ideas in statistical inference and includes a discussion of the sampling distribution approach to estimation theory, the theory of least squares and a brief reference to likelihood inference. Not all of this material is necessary for an understanding of the spectral techniques discussed later in the book, and engineering readers may wish to omit the latter part of this chapter at first reading. The most relevant parts of this chapter, as far as spectral analysis is concerned, are the sections on the sampling distribution approach to estimation theory and the theory of least squares. The latter is one of the most important weapons in the statistician's armory, and in our experience it is widely misunderstood among engineers.

Chapter 5 contains some of the simpler ideas in the theory of stochastic processes, for example, stationarity, the autocorrelation function and moving average-autoregressive processes. Methods for estimating autocorrelation functions and parameters in linear processes are described and illustrated by examples. In Chapter 6, the ideas of Fourier analysis and stochastic processes are brought together to provide a description of a stationary stochastic process by means of its spectrum. It is shown how Fourier methods need to be tailored to estimate the spectrum from finite lengths of record. The sampling properties of spectral estimators are then derived, and the important notion of smoothing of these estimators is introduced. Chapter 7 contains many simulated and practical examples of spectral estimation and gives a systematic method, called window closing, for deciding the amount of smoothing required.

In Chapter 8 the ideas of Chapters 5-7 are extended to pairs of time series, leading to the definition of the cross correlation function, the cross spectrum and the squared coherency spectrum. Chapter 9 is devoted to estimating the cross spectrum and the notion of aligning two series. Cross spectral analysis is applied in Chapter 10 to estimating the frequency response function of a linear system. Finally, we consider in Chapter 11 the spectral analysis of a vector of several time series and the estimation of the frequency response matrix of a linear system.

This book has been written at a time when there is much active work in this area and when much experience has still to be gained in the application

of spectral methods. Nevertheless, it is felt that enough has been achieved already to warrant an attempt. It is hoped that the book will provide applied scientists and engineers with a comprehensive and useful handbook for the application of spectral analysis to practical time series problems, as well as proving useful as a post-graduate textbook.

We are greatly indebted to Professor K. N. Stewart of the School of Engineering, Purdue University, for making available the power-station data used in later chapters and to Professor H. J. Wertz of the University of Wisconsin for helpful suggestions regarding computer programs. We are very grateful to Mr. A. J. A. MacCormick of the Statistics Department of the University of Wisconsin and also Mr. M. J. McClellan of the Mathematics Research Center, University of Wisconsin, for writing and running some of the computer programs. We also thank Mr. MacCormick and Mr. A. S. Alavi of the University of Lancaster for checking through the manuscript.

Lancaster, U.K.

Madison, Wis., U.S.A.

GWYNM M. JENKINS
DONALD G. WATTS

Contents

Contents

48	Finite-length records
2	2.4.1
51	Time sampling and aliasing
3	2.4.2
54	Appendix A2.1 Operational properties of Fourier transforms
1	1
1	CHAPTER 3. PROBABILITY THEORY
2	3.1 Frequency and probability distributions
3	3.1.1 Discrete random variables and distributions
3	3.1.2 Continuous random variables and distributions
3	3.1.3 Estimation of probability density functions
4	3.1.4 Bivariate distributions
4	3.1.5 Multivariate distributions
6	3.2 Moments of random variables
9	3.2.1 Univariate moments
10	3.2.2 Multivariate moments
10	3.2.3 Moments of linear functions of random variables
12	3.2.4 The correlation coefficient
14	3.2.5 Moments of non-linear functions of random variables
14	3.3 Sampling distributions
14	3.3.1 Sampling distribution of the mean, variance known
17	3.3.2 Sampling distribution of the variance
16	3.3.3 Sampling distribution of the mean, variance unknown
16	3.3.4 Sampling distribution of the ratio of two variances
17	3.3.5 Two properties of the chi-squared distribution
23	Appendix A3.1 Moments of linear functions of random variables
24	1
25	CHAPTER 4. INTRODUCTION TO STATISTICAL INFERENCE
25	4.1 Historical development of statistical inference
25	4.2 The sampling distribution approach to statistical inference
25	4.2.1 The basic method
28	4.2.2 Confidence intervals
33	4.2.3 Properties of estimators
33	4.2.4 Maximum likelihood estimators
91	4.2.5 Tests of significance
99	4.3 Least squares estimation
103	4.3.1 The principle of least squares
105	4.3.2 Confidence intervals for one parameter
109	1

4.3.3 Confidence regions for many parameters	112
4.3.4 Orthogonality	114
4.4 Likelihood inference	116
4.4.1 The basic method	116
4.4.2 Properties of likelihood functions	116
4.4.3 Examples of likelihood functions	117
4.4.4 Least squares and likelihood estimation	119
4.4.5 Methods of summarizing likelihood functions	120
4.4.6 Estimation of a Normal mean and variance	122
4.5 Summary	127
Appendix A4.1 Linear least squares theory	130
	132
CHAPTER 5. INTRODUCTION TO TIME SERIES ANALYSIS	
5.1 Stationary and non-stationary stochastic processes	140
5.1.1 Definition and classification of time series	140
5.1.2 Description of a stochastic process	143
5.1.3 Stationarity and the autocovariance function	147
5.1.4 Classification of time series occurring in practice	150
5.1.5 Minimum mean square error system analysis	152
5.2 The autocorrelation and autocovariance functions	155
5.2.1 Basic properties	155
5.2.2 The linear process and its autocovariance function	157
5.2.3 Finite moving average processes	161
5.2.4 Autoregressive processes	162
5.2.5 General autoregressive-moving average processes	166
5.2.6 Interpretation of the autocorrelation function	170
5.3 Estimation of autocovariance functions	171
5.3.1 Least squares system analysis	172
5.3.2 Sample autocovariance functions	174
5.3.3 Properties of autocovariance function estimators	174
5.3.4 Discrete time autocovariance estimates	180
5.3.5 Practical aspects of autocovariance function estimation	183
5.4 Estimation of the parameters of a linear process	189
5.4.1 Maximum likelihood estimation of autoregressive parameters	189
5.4.2 Mean likelihood estimates for autoregressive parameters	193
5.4.3 Determining the order of the autoregressive process	197
5.4.4 Estimation of the parameters of a moving average process	200
5.4.5 Estimation of the parameters of a mixed autoregressive-moving average process	202
Appendix A5.1 The analysis of variations	204
Appendix A5.2 Moments of linear processes	205
Appendix A5.3 Flow chart for covariance program	207

CHAPTER 6. THE SPECTRUM

6.1 The sample spectrum	209
6.1.1 Fourier methods applied to time series	209
6.1.2 The sample spectrum of a white noise process	211
6.1.3 The relation between the sample spectrum and the sample autocovariance function	213
6.2 The spectrum	213
6.2.1 Definition of the spectrum of a stochastic process	216
6.2.2 The integrated spectrum	221
6.2.3 The spectrum of white noise	224
6.2.4 The spectrum of a linear process	226
6.2.5 The spectra of autoregressive and moving average processes	227
6.3 Spectral estimators	230
6.3.1 Distribution properties of sample spectral estimators for white noise	230
6.3.2 A test for white noise	234
6.3.3 General results for sample spectra for white noise	238
6.3.4 Smoothing of spectral estimators	239
6.3.5 Spectral windows and smoothed spectral estimators	243
6.4 Further properties of smoothed spectral estimators	248
6.4.1 Covariance between smoothed spectral estimators	248
6.4.2 The chi-squared approximation to the distribution of smoothed spectral estimators	252
6.4.3 Confidence limits for the spectrum	254
6.4.4 Bandwidth of a spectral window	255

CHAPTER 7. EXAMPLES OF UNIVARIATE SPECTRAL ANALYSIS

7.1 Spectral analysis using simulated time series	255
7.1.1 Discrete estimation formulae	259
7.1.2 Effect of bandwidth on smoothing	263
7.1.3 Effect of window shape on smoothing	272
7.2 The theory and practice of smoothing	274
7.2.1 Optimal smoothing of spectral estimators	275
7.2.2 Fidelity and stability	277
7.2.3 Empirical smoothing of spectral estimates	279
7.2.4 Window closing	280
7.2.5 Window carpentry	282
7.3 Practical aspects of spectral estimation	284
7.3.1 The design of a spectral analysis	284
7.3.2 Pilot analysis	287
7.3.3 A practical procedure for spectral estimation	289

7.3.4 Two practical examples of spectral estimation	291	9.1.3 General moment properties of sample cross spectral estimators	370	
7.3.5 Digital filtering	295	9.2 Properties of smoothed cross spectral estimators	374	
7.4 Uses and examples of spectral analysis	301	9.2.1 Smoothed cross spectral estimators	374	
7.4.1 Model building	301	9.2.2 Smoothed cross amplitude, squared coherency and phase estimators	377	
7.4.2 The design of experiments	303	9.2.3 Confidence intervals for squared coherency and phase spectra	379	
7.4.3 Frequency response studies	305	9.3 Cross spectral analysis using simulated series	381	
Appendix A7.1 Flow chart for autospectrum subroutine	310	9.3.1 Discrete estimation formulae	382	
Appendix A7.2 Variance of slope estimators	312	9.3.2 Some numerical examples of cross spectral estimation	384	
Appendix A7.3 The fast Fourier transform	313	9.3.3 Improvement of cross spectral estimates	396	
Appendix A7.4 Data and autocorrelations for a simulated second-order autoregressive process	318	9.3.4 Discrete estimation formulae for aligned processes	400	
CHAPTER 8. THE CROSS CORRELATION FUNCTION AND CROSS SPECTRUM				
8.1 The cross correlation function	321	9.3.5 Examples of cross spectral estimation with alignment	401	
8.1.1 Introduction	321	9.4 Practical aspects of cross spectral estimation	404	
8.1.2 Cross covariance and cross correlation functions	322	9.4.1 The design of a cross spectral analysis	404	
8.1.3 The cross correlation function of a linear process	326	9.4.2 A practical procedure for estimating cross spectra	406	
8.1.4 Bivariate linear processes	329	9.4.3 An account of a practical cross spectral estimation	407	
8.1.5 Bivariate autoregressive and moving average processes	330	Appendix A9.1 Covariance of covariance function estimators	412	
8.2 Estimation of the cross covariance function	336	Appendix A9.2 Flow chart for bivariate spectral calculations	418	
8.2.1 The sample cross covariance function	336	Appendix A9.3 Table of sample correlations for data of Appendix A8.1	420	
8.2.2 Improvement of the sample cross correlation function estimator	339	CHAPTER 10. ESTIMATION OF FREQUENCY RESPONSE FUNCTIONS		
8.3 The cross spectrum	340	10.1 Introduction	422	
8.3.1 Fourier analysis applied to bivariate time series	341	10.2 Estimation of impulse response functions	425	
8.3.2 The relation between the sample cross spectrum and the sample cross covariance function	344	10.2.1 Direct estimation of impulse response functions	425	
8.3.3 The cross spectrum	345	10.2.2 Parametric estimation of impulse response functions	426	
8.4 Cross spectra of linear processes	348	10.3 Estimation of frequency response functions	429	
8.4.1 Simple examples of cross spectra	348	10.3.1 Gain and phase estimators	429	
8.4.2 The cross spectrum of a linear system	351	10.3.2 Least squares analysis in the frequency domain	430	
8.4.3 Cross spectra of bivariate linear processes	353	10.3.3 Smoothed least squares analysis in the frequency domain	432	
8.4.4 The squared coherency spectrum	356	10.3.4 Confidence intervals for gain and phase functions	434	
8.4.5 Linear operations on bivariate time series	359	10.4 Examples of frequency response estimation	436	
Appendix A8.1 Realizations of two bivariate linear processes	361	10.4.1 A practical procedure for estimating frequency response functions	437	
CHAPTER 9. ESTIMATION OF CROSS SPECTRA				
9.1 Properties of the sample cross spectrum	363	10.4.2 Analysis of a simulated system	438	
9.1.1 Moments of the sample cross spectrum for two uncorrelated white noise processes	363	10.4.3 Analysis of gas furnace data	444	
9.1.2 A test for correlation between time series	366	Appendix A10.1 Data and covariances for two frequency response estimations	449	
		Appendix A10.2 Flow chart for frequency response calculations	456	

Contents

CHAPTER II. MULTIVARIATE SPECTRAL ANALYSIS

11.1	Properties of the covariance matrix	459
11.1.1	The covariance matrix of a real stochastic process	459
11.1.2	Latent roots and the spectrum	460
11.1.3	The covariance matrix of a complex stochastic process	463
11.2	Multivariate stochastic processes	465
11.2.1	The lagged covariance matrix	465
11.2.2	The spectral matrix	466
11.2.3	Multivariate linear systems	468
11.2.4	Multivariate linear processes	471
11.2.5	Multivariate autoregressive and moving average processes	473
11.3	Time-domain multivariate analysis	475
11.3.1	Multiple regression analysis, single output	475
11.3.2	Multiple correlation	476
11.3.3	Partial correlation	478
11.3.4	Multivariate analysis, multiple outputs	482
11.4	Frequency-domain multivariate analysis	485
11.4.1	Multiple frequency response analysis, single output	485
11.4.2	The multiple coherence spectrum	487
11.4.3	Partial cross, squared coherency and phase spectra	488
11.4.4	Multivariate frequency response analysis, multiple outputs	490
11.4.5	Estimation of multivariate spectra	492
11.4.6	Estimation of multiple frequency response functions	493
11.4.7	Estimation of multivariate frequency response functions	495
11.5	Practical aspects of multivariate spectral analysis	496
11.5.1	Discrete estimation formulae	496
11.5.2	A practical procedure for estimating multivariate spectra	498
11.5.3	Analysis of turbo-alternator data	498
11.5.4	Summary	507
Appendix AII.1	Latent roots and vectors	508
Appendix AII.2	Flow chart for multivariate frequency response calculations	510
Appendix AII.3	Data for power station example	512

INDEX

1968 Multichannel Time Series Analysis with Digital Computer Programs

Revised Edition 1978

Enders A. Robinson
University of Tulsa
Tulsa, Oklahoma

Preface

-107-

This book is one member of the Holden-Day Series in Time Series Analysis. The entire series will give a comprehensive presentation of time series analysis from several different points of view. As a result, we have concentrated on certain aspects of time series analysis; these aspects are unified under the general philosophy presented in the *Nonmathematical Introduction*. Briefly, our approach is to link time series methods closely with the empirical and theoretical evidence provided by the subject matter under investigation. Because the writer's personal experience has been largely in geophysics, many of the methods are presented in their relationship to the analysis of geophysical time series recorded in the seismic exploration for oil. However, these methods can be quite readily adapted to analyze other physical time series.

Chapter 1 introduces some of the basic ideas and computer programs which are used in subsequent chapters. Chapter 2 presents single-channel time series analysis with computer programs. Chapter 3 is a digression into the physical mechanism of wave propagation in layered media in order to bring out the physical significance of such concepts as minimum delay, auto-correlation, and prediction-error operators. Chapter 4 treats the subject of polynomials with matrix coefficients, this material forms the mathematical basis for much of the theory of multichannel time series analysis. Chapter 5 presents methods of digital filtering and spectral analysis of multichannel time series with computer programs. Chapter 6 gives an extensive treatment of multichannel Wiener filtering and signal enhancement with computer programs.

All of the computer programs in this book are written in Fortran IV. Hence, a reader can key-punch them and use them directly for time series analysis on any digital computer which accepts Fortran. In fact, many significant results will be made by people with practical needs who make use of these computer programs to analyze actual time series data, provided that they also make full use of their own individual know-how and ingenuity. The

rd

Holden-Day San Francisco
Düsseldorf Johannesburg London Mexico
São Paulo Panama Singapore Sydney Toronto

Nonmathematical Introduction

present book does presuppose that the potential user of these programs has knowledge of the Fortran language equivalent to that given in any of the elementary texts in Fortran programming or the first term of a Fortran programming course at the university. Many practical people may want to read the last chapter first, for it contains some of the more interesting programs. In this book we have used the symbol i for $\sqrt{-1}$, instead of j , which is commonly used by electrical engineers. However, we have followed the engineer's usage of the superscript asterisk * to denote complex conjugate, mainly because it is easier to type and print than the overscore. We have used the superscript T to denote matrix transpose. We have not used the superscript dagger * for complex-conjugate transpose, but instead we have used the more explicit *T. In the text, we often write an isolated Fortran statement, such as:

- CALL NLOGN (N, X, SIG).

The punctuation (usually a period or comma) following such a statement, as the period following the above statement, is not part of the statement, but is part of the English sentence in which the statement appears. Professor Norbert Wiener (1894-1964) was generous with his ideas and always accessible to the younger staff at M.I.T. His original help in 1954 and 1955 in going over his work on multipoint time series with me had a decided influence on this book.

For their help and encouragement I want to express my sincere thanks to Professor Markus Barth, Professor Jon Claerbout, Professor Emanuel Parzen, Dr. Sven Treitel, Dr. Ralph Wiggins, and Professor Herman Wold.

Tulsa, Oklahoma
January 1978

ENDERS A. ROBINSON

Scientific models

In time series analysis the dualism between observation and theory is recognized as fundamental. This dualism between empirical evidence and theoretical analysis is embodied in the notion of the scientific model. To develop a model it is necessary to simplify. For example, one may model an industrial firm as a system where the investments by the firm in new equipment and inventory represent the inputs to the system, and the returns on the investments represent the outputs of the system. This idealized economic situation represents a scientific model which makes description and explanation of the actual situation easier. In practice, however, such a simple model has limited usefulness, for it is usually the case that there are many competing firms, and as a result the interactions between firms must be taken into account. Hence, an ensemble of different models is required to handle the complex situations encountered in economics. Thus, the approach of scientific model-building must be pluralistic: there can never be a unique, all-embracing scientific model. The variety of types of scientific models is almost unlimited for the situations encountered in time series analysis.

A scientific model of necessity must always be a compromise between simplicity and reality. It is interesting to look at some of the factors which have influenced the evolutionary trends of the models used in time series analysis. The most important factor, of course, has been the development of statistical communication theory, which dates from the work of Norbert Wiener at M.I.T. during World War II. At one time, statistical communication theory was regarded as a potential unifier which would provide solutions of problems within many scientific disciplines in terms common to each of them. However, this ideal unification has not materialized since unifying principles have the tendency to become highly specialized subjects in themselves, thereby compounding rather than easing the problems of bridging many scientific problem areas with common methods. However, this tendency

models which work just as accurately. At this point, any attempt to resolve the ambiguity must lie in bringing in new information. In particular, meaningful and relevant practical information should be incorporated because the final model will be interpreted in practical terms.

In summary, a scientific model represents the embodiment of theory and observation. Of necessity, it must be a compromise between simplicity and reality. There will never be one all-encompassing model; there must be many kinds of models to fit different situations. Above all, a model must incorporate practical information because the final interpretation will be based on practical needs.

New ideas take the form of new scientific models. There are verbal models, mathematical models, and physical models. A verbal model is simply a word description of the scientific situation. A mathematical model is one that reduces essential features of the situation into the form of mathematical equations. A physical model is a physical apparatus which represents an analog scaled-down version of the actual situation. Physical models have a long history in the sciences. In the past, mathematical models of necessity were greatly simplified. However, with the advent of the digital computer, the range of possibilities of mathematical models is greatly enhanced. No longer will mathematical models be essentially theoretical. With the large memory capacity of the new generation of computers, it is now possible to build mathematical models which indeed make use of the large body of empirical evidence which exists as data in any science. In the future, we can expect mathematical models to represent in a more equitable way both theory and observation, that is, both theoretical analysis and empirical evidence. In this way, the gap between theory and observation can be bridged, thereby forming a framework to support new ideas and new methods.

In making scientific interpretations, we are confronted in many cases not with direct problems, but with indirect or inverse problems. For example, in the physical sciences we are faced with the problems of inferring the location and properties of some unknown physical mass such as a submarine or buried ore body from physical measurements which can only be taken at a distance. In the biological sciences, we wish to determine things such as the state of health of the internal organisms of an astronaut from measurements which can be conveniently monitored while he is engaged in his normal duties. In economics, we wish to make inferences about the economic forces from measured prices and quantities. It is due to this inverse nature of many scientific problems that scientific interpretation is difficult. Knowledge and experience addition to numerical data are needed to achieve meaningful solutions. In order to attack the interpretation problem a flexible mathematical model is required whose outcomes can be readily tested against the measurements provided by direct observation. If the agreement is not good, then the model just be altered until the values do correspond at least to within satisfactory limits. The model becomes useful when it is able to reproduce the more significant results of the actual situation. However, it may be possible to find other

Digital data processing

Why have we discussed scientific models? The reason is that a model is required before there can be any data processing. The best data processing is that which is done with the best model. Data processing of scientific evidence to achieve practical ends, therefore, needs good scientific modeling.

In this book, we are concerned with time series data, that is, data which is ordered in time. Moreover, we are concerned with digital processing of the time series data, that is, processing which is done by a digital computer. Let us now take an example from Geophysics to make these concepts more meaningful. The word convolution means "folding." When a signal is passed into a filter, the output is given as the convolution of the signal with the impulse response function of the filter. Likewise, when a signal is passed into the earth, the output seismogram represents the convolution of the input signal with the response function of the earth. The word deconvolution means "unfolding." A deconvolution operator is one which produces the inverse operation to the given convolution operator. The objective in deconvolving seismic evidence with a computer, then, is to unfold it from its original heterogeneous complexities into its simpler components so that the interpreter can see the basic structuring of the data. Thus, a deconvolution operator is one which separates specific results produced on a seismogram by earth transmission effects and data collection systems from pertinent information as to deep-reflected energy which is needed in making the geologic interpretations. For example, system deconvolution would separate out effects of the data collection systems, reverberation deconvolution would separate out the effects of reverberations, and multiple reflection deconvolution would separate out the multiple reflections from the primary reflections. In the broad sense, deconvolution may be defined as any operation that unfolds the recorded data in such a way that it separates redundant or unwanted information from desired or wanted information.

In this context, we see that the problem of deconvolving data differs from the classical problem of separating signal from noise. For example, in the

classic radar situation, the received signal is masked by noise. This noise is white noise generated within the receiver and, as such, is completely independent of the signal. Hence, in such a case filters are designed to destroy as much of the noise as possible, for the noise contains no useful information about the radar environment. In contrast, nearly all the information recorded on a seismic trace represents meaningful information about the total seismic environment, and the problem is to unfold the recorded seismogram into simpler components so that an interpreter can see which energy is due to primary events and which is due to ghost events, multiple events, or to other causes. The digital processing method of deconvolution represents a way of unfolding this information.

In a similar argument, one can say that nearly all the data recorded in economic time series of share prices, commodity futures, quantities, and other economic indicators represent meaningful information. The problem then is to unfold this data into simpler components which can be interpreted. Nearly all the measurements taken on a human body represent valid information; the problem is to deconvolve the time series data into less complex components for medical interpretation.

Deconvolution

The concept of deconvolution is a key idea which underlies many of the developments in this book. For this reason, we want to discuss further the overall concept in this nonmathematical introduction. For any process of deconvolution, we must construct a model which takes into account both known factors and unknown factors. The known factors are used in deterministic aspects of the model, and the unknown factors are incorporated in stochastic aspects of the model. Let us now describe a basic model. The desired information consists of primary events or innovations. These innovations are unpredictable; they occur at random times and with random amplitudes. Attached to each innovation is a response. The response represents the reverberations or repercussions generated by the innovation, and each response persists over a relatively long time span before it damps out. The recorded time series consists of the sum of all the primary events with their attached responses. Because the primary events are not well separated in time, the high degree of overlap among the various responses completely masks out the onset of each primary event. As a result, a study of the recorded time series does not reveal the separate events, but only shows a highly mixed conglomeration of all the events which cannot be interpreted.

We have now described a model which generates time series data. These data represent useful information, but, as such, they are not in a form which can be interpreted. In order to interpret the data we must unfold or decon-

volve the data. The basic problem then is to unfold the time series so as to separate the primary events from the reverberations. Separately these components can be interpreted, for they represent the underlying structure which makes up the recorded time series.

For example, with the process of deconvolution one can answer questions such as these: Is a certain movement of economic prices the fortuitous result of several responses adding together in phase, or does it represent some new primary event? From all the recorded data on the human body, how can we sort out any essential changes in the human state of health from effects due to previous conditions? In radar and sonar, how can environmental reverberation and clutter be separated from the true signal?

Redundancy

How does one devise a deconvolution process for the given model? In principle, every deconvolution process is based upon the cornerstone of information theory, namely the concept of redundancy.

To bring these ideas out more clearly, let us make a small digression into the realm of information theory. The measure of information in information theory is called *entropy*. The ratio of the entropy per symbol to the maximum value it could have while still restricted to the same symbols is called the *relative entropy* ratio. One minus the relative entropy ratio is called the *redundancy*. Thus, the redundancy represents the factor by which the average lengths of messages are increased beyond the minimum necessary to transmit the desired information. *The fundamental theorem of information theory* states: A source of information can be encoded in such a way that, when transmitted over a noisy channel, the rate of transmission may approach the channel capacity with the probability of error as small as desired. This theorem is based upon the use of redundancy as a "noise-reducing" mechanism.

Let us explain. One way of reducing errors due to noise is to repeat the signal. For example, telegraph companies usually repeat numbers and names, and the sender himself sometimes repeats critical words. More generally, in many scientific situations, the symbols or parts that make up the message are linked among themselves. This linking makes the symbols partly redundant and thereby provides a check on the accuracy of the message as it is received. For this reason, every code has some overlap or redundancy. That is, its symbols do not all add their full weight of innovation, but instead they add a certain amount of internal confirmation. In this way, the reliability or accuracy of transmission over a noisy channel can be increased by means of redundancy. The source is encoded in a redundant manner, which in effect means that parts of a message tell us things already partly known. The receiver can then make use of this redundancy in order to predict the nearby

succeeding parts of a message to a considerable extent. As a result, the actual reception of a message gives partly a verification or correction of the preceding prediction, in addition to any completely new ideas.

As we have just seen, redundancy is the partial or complete repetition of message content. Redundancy forms the basis upon which encoding methods can be devised to increase the transmission rate up to the channel capacity. That is, we can approach the absolute capacity of a channel, to any tolerance we fix, by putting our messages in a code whose redundancies are appropriate to the form of the noise. The redundancies show up upon reception and allow us to correct all of the errors except for the given proportion. Hence, redundancy gives the code a structure or skeleton which resists the distortion of its individual symbols. Many of the engineering aspects of information theory are concerned with building systems in which adequate redundancy is incorporated into the system in order to overcome noise.

On the other hand, in many observational systems, nature itself has built enough redundancy into the system in order to overcome noise. However, this redundancy causes so much overlapping and mutual interference that it is not possible to interpret the raw records provided by nature. The process of deconvolution in effect separates the new information from the redundant information as time progresses. This separation makes interpretation possible, for both kinds of information (new and redundant) have value in understanding the basic mechanisms involved. The new information consists of the primary events or innovations, and the redundant information the attached responses or repercussions.

Minimum delay model as a basis for deconvolution

As we have seen, a model should represent both theory and observation. It is the judicious combination of both theory and observation which makes deconvolution possible.

First, let us consider theory. By theoretical reasoning, we must arrive at some partial knowledge of the innovations and the reverberations. For example, the model for seismic deconvolution is what is called a *minimum-delay model*. The model is based upon two theoretical hypotheses, namely:

- (1) The deterministic hypothesis that the reverberation attached to each primary event has the same minimum-delay shape.
- (2) The statistical hypothesis that the primary events are randomly spaced in time and have random amplitudes.

The deterministic hypothesis is based upon the fact that the reverberations are caused by the vibrating physical system made up of fixed geological layers near the surface. In Chapter 3, we show that wave propagation through layered system produces a minimum-delay response. Since each primary

event passes through the same layered system at the surface, each has the same minimum-delay response attached to it. The statistical hypothesis is based on the fact that the primary events are caused by reflections from deep geological beds within the earth. These deep layers were laid down in geologic time in an unsystematic way, and thus the primary events produced by them are randomly spaced in time and amplitude.

Next, observation must be combined with theory. The empirical evidence is in the form of the time series, namely, the seismic trace. The autocorrelation of the time series is computed. The autocorrelation is a method of averaging which averages out, or destroys, the unsystematic elements of the time series but preserves features of the systematic elements. The features preserved are those contained in the autocorrelation (or, equivalently, the amplitude spectrum) of the reverberating system. We must now combine this empirical amplitude spectrum with the theoretical minimum-phase spectrum. This essential step is possible because of the minimum-delay nature of the model. Hence, using both theory and observation together, we are able to reconstruct the minimum-delay reverberating system. Having the reverberation waveform, we can then design the deconvolution operator which removes the reverberations from the seismic trace; the output is the deconvolved seismic trace consisting of the primary events only.

Such models upon which deconvolution processes are based can be only approximately true, however, the existing models are sufficiently accurate to make the deconvolution processes based upon them worthwhile in an economic sense. For a time, people will be satisfied with these results, but as time goes on, we will want to develop better processes. These better processes must be based on broader models. Hopefully, our expanded knowledge will allow us to push forward the frontier between the deterministic and the statistical: that is, some factors which we had to treat statistically before can in the future be reduced to deterministic analysis, and factors which were completely neglected before can in the future be at least encompassed within some statistical framework. As we do this, our whole frame of reference will become larger.

For example, in seismic interpretation, a geophysicist in the 1920's looked at a single trace at a time, then at a record of up to twenty-four traces in the 1930's and 1940's, then at cross sections of single coverage in the 1950's, and cross sections of multiple coverage in the 1960's. Now in the mapping of salt domes and stratigraphic traps, one must look at three-dimensional models. With this perspective, present-day reverberation-elimination deconvolution acts on a single trace; multiple-elimination deconvolution acts on several traces. We envisage that the next generation of deconvolution procedures will act on entire cross sections and will encompass three spatial dimensions. Factors which appeared random on the basis of a small amount of data will find deterministic explanations, and factors which were missed en-

irely on the basis of limited data will be amenable to statistical treatment on the basis of the increased data samples. The frontier will be pushed forward. The new data processing techniques must explain local space-time effects in terms of a regional model: this regional model in turn must make full use of all the pertinent information which can be derived from the data.

Time structure of data

Let us now look at the time aspects of data processing. A time series is a function of time, which can be either historical time or real time. Associated with the concept of time is the concept of prediction, for prediction represents the concept of searching for a time structuring or ordering of events which occur as time progresses. Originally it was felt that although the problem of prediction is important in many branches of science that involve real time records, such as meteorology, it is not a significant problem in the analysis of historical time records. That is, it was held that the concept of prediction does not really enter into the problem of the analysis of a time series recorded sometime in the past. As a result, it was almost universally believed that any investigation of the predictive properties of such time series would not be fruitful. However, this seeming disadvantage has been turned into an advantage by refocusing attention from the predictions to the prediction errors. If we look at the spacetime complex, we see that the new information entering a time series as time progresses is from the primary (innovation) events, and hence unpredictable from the previous events. Reverberations, repercussions, and multiple reflections, however, are predictable events resulting from primary events already accounted for. Hence, a prediction-error operator represents a means of separating the unpredictable new events from the predictable reverberations, repercussions, and multiples. In Section 2.10, we discuss the prediction-error operator in the form of the deconvolution operator commonly used for the elimination of reverberations on seismic traces; however, much more general prediction-error operators can be devised to sift out new information from prior information on time series in many branches of science. This unfolding of information into the form of the dynamic structure as well as the series of innovations ordered in time and space is the essence of the deconvolution process. Deconvolution is based on the concept that new information, or innovations, are not predictable from the past and, hence, are exhibited as prediction errors. The best deconvolution of data is done from the best model, that is, the model which represents in the best way the scientific situation under consideration. The best final interpretation results from the best recognition of the validity of the model that is revealed after the unfolding process.

We want to use the term deconvolution in its larger sense, namely, as the process of unfolding the information on a time series into the predictable

Nonmathematical Introduction

components such as reverberations, repercussions, and multiples and into the unpredictable components which represent the successive innovations. The next significant item in the deconvolution process which we want to discuss may be called the time-space scale of the deconvolution. On the one hand, we have deconvolution in the small where we consider at one time only a single time series. On the other hand, we have convolution in the large where we consider at one time ensembles of time series produced on a regional scale.

Deconvolution in the large

Let us give a specific example taken from seismology of deconvolution in the large. Let our model be the normal-incidence synthetic seismogram which includes all multiples, as described in Chapter 3. This synthetic seismogram is based upon a parallel layered model of the earth in which plane waves travel along ray paths normal to the interfaces between the layers. The solution of the wave equation at each interface leads to the definition of a reflection coefficient associated with that interface. The reflection coefficient has several properties well known to every geophysicist. The most characteristic property is that the reflection coefficient physically cannot exceed unity in magnitude. If the reflection coefficient is equal to unity in magnitude, then the interface is a perfect reflector, and no transmission takes place through the interface. The best example of such a situation is provided by the interface representing the surface of the water in marine exploration: the reflection coefficient of the water surface is -1, or nearly so. In land exploration, the ground-to-air interface reflects nearly 100% of the energy coming up to it. Other interfaces can have high reflection coefficients; for example, it is not unusual for the base of the surface weathered layer to have a reflection coefficient of 0.5. Some interfaces, of course, have low reflection coefficients. Hence, our model is made up of a sequence of parallel interfaces where each has a reflection coefficient associated with it. Hence, in the discrete layer case, the reflection amplitudes are determined by the reflection coefficients.

Let us now consider the case of a layered system for which the upper interface is a perfect reflector. Such a case is realized in marine seismic exploration, for then the first layer is the water layer, and the surface of the water acts as a perfect reflector. Let us assume that the source is a single positive spike. This source results in a seismic trace recorded at the surface which represents all direct reflections and multiple reflections resulting from the layered system at depth.

As shown in Chapter 3, this synthetic trace itself may be regarded as one-half of an autocorrelation function. Also, from Section 2.8, we know that a prediction-error operator, or so-called deconvolution operator, of any

length may be computed from any given autocorrelation function. Hence, we can compute deconvolution operators of various lengths directly from the recorded seismic trace.

Let us now take a seismic trace and, treating it as an autocorrelation function, compute deconvolution operators from it of successively increasing length. For example, if our discrete time spacing were 4 msec, we would compute deconvolution operators of length 4 msec, 8, 12, 16, 20, 24, 28, etc., up to, say, 400 msec long. As we show in Chapter 3, we may regard this ensemble of deconvolution operators of successively increasing lengths as a means of portraying the structure of the layered earth. For example, if we convolve the deconvolution operator of length, say, 600 msec, with the trace, we obtain as output the wave motion at depth 300 msec. If we convolve the deconvolution operator of length 1400 msec with the trace, we obtain as output the wave motion at depth 700 msec. Hence, by this deconvolution process, we can obtain a three-dimensional picture of the wave motion in the earth from the two-dimensional observations at the surface. The potential value of such processes of deconvolution in the large lies in the possibility of obtaining a very detailed picture of the subsurface structure (in three dimensions) from observations taken at the surface (in two dimensions). Thus, the computer has allowed the scientist to refocus his attention on the entire process of prediction, namely, to find time structures along entire series by unfolding them into their components and seeing how the time events interlock and fit together.

Computers: digital and environmental

Today, the working scientist in the normal course of commercial work is exposed to large amounts of data, and, in fact, his interpretations of these data represent research of great theoretical as well as practical value. However, in order to do meaningful research, one must have time—time to think and time to try new ideas. Usually time is strictly limited though, and hence the scientist must extract as much information as he can from the data in the limited time available to him. However, such working under a constant deadline often defeats the ultimate objective, for vital information might be missed or misinterpreted simply because of the economic pressure of getting the job done quickly. As a result, if scientists are to fulfill their expanding role, they must, of necessity, expand in number as well as talent.

Scientists are continually expanding in talent, for today a scientist can do things that were impossible just a few years ago. In the next few years, the scientist will expand his capabilities many-fold over what it is today by the extended use of machines: data-generating machines, recording machines, computing machines, and data-display machines. This is indeed a stimulating prospect and one to encourage new people into science, thereby expanding

the number of scientists as well. Until recently, most scientific data were recorded by fixed equipment, so the scientist was completely dependent in his results on the analog equipment supplied to him. Except by an involved trial-and-error process in which new equipment was designed over the years, the scientist had very limited control over the type of operation he could apply to the data in any given instance. With the advent of digital recording equipment, the scientist can now record a much more detailed band of information; he can then digitally operate on this information with a general purpose digital computer. As a result, he can design operations on the basis of the data at hand and on his present needs and ideas; he can alter or change his methods in a matter of minutes by a programming change; he can incorporate fresh ideas into the analysis and see the results immediately.

At present, this ideal situation has not fully materialized, for usually there is still a significant time gap (the so-called *turn-around time*) between the original data collection and the final interpretation in most scientific work. However, with the new generation of computers and with such programming advances as time-sharing and the new computer languages, it is within our grasp to overcome the problem of turn-around time in most cases.

The computing machine will have a tremendous impact on science. Computer science represents an entirely new scientific discipline. Computer science is the science of the future. The computer by its handling of great masses of information allows man to spend more of his time on the edge of the unknown and thus lets him apply his unique talents to the field of the unknown. This ability of the computer to save time and manipulate large amounts of information has given new scope to the application of man's talents.

In this sense, the computer must be incorporated in the total environment of science. As an example, again taken from seismology, the earth itself can be used as a computer. Through the use of high-powered electro-mechanical vibrators, signals of specific types can be impressed in the earth. By the use of directional detectors, signals can be picked up, and coded signals can then be fed back into the earth under the control of a digital computer on the surface, all in real time. Hence, the earth itself becomes a computing machine which can effect the deconvolution process as the time series are recorded. Thus, we can use the earth itself to analyze the data from the earth. In this way, we can utilize seismic recording systems more efficiently; our equipment will not be idle a good part of the time as it is now, but will be used at great efficiency by incorporating the environment itself into our computing system. In the biomedical sciences, the human body itself will be used as a computer under control of digital computers, and thereby the final data recorded will already be deconvolved and hence in a form ready for interpretation. Thus, man can make his environment a computer which in turn is linked to the digital computer. Energy is recycled into the environmental computer in accordance with the needs determined by sampling the original

energy return from the environment. It is possible for man to see the results of his own ideas at the time of recording by such use of the environment as a computer. The information from the environment can be unfolded or deconvolved during the recording process itself, for man can link the digital computer to the environmental computer to acquire such information.

In closing this introduction, let us be careful to point out that such use of computers does not mean that the machine decides for us all the vital decisions to be made, for at the present time it would be very difficult or impossible to provide the machine with all the information which is germane to such decisions. The chief use of the machine is to prepare the information and to display it to the human interpreter who then incorporates into the decision such highly significant information as only the human mind has available. The logical development of such a use of the computer is as follows. As more and more of the unknown factors become better understood, they can be incorporated into the machine programs, and hence the scientific interpreter will always be able to concentrate his attention on the unknown factors. The computer will be used as a machine to always keep the scientist at the forefront of human knowledge, for it is at the edge of the unknown that the human mind has the comparative advantage over the computer and will produce the significant contributions.

Contents

-114-

Foreword	xv
Preface	xii
Nonmathematical Introduction	xiii
Chapter 1. Some Basic Computer Programs	
1.1 <i>Introduction</i>	1
1.2 <i>Stimulus-response: single-channel case</i>	2
1.3 <i>The z-transform</i>	4
1.4 <i>Stimulus-response: multichannel case</i>	4
1.5 <i>Subroutines</i>	6
1.6 <i>Dimension statements</i>	10
1.7 <i>Standard subroutines</i>	16
1.8 <i>Polynomial subroutines</i>	28
1.9 <i>Matrix subroutines</i>	38
1.10 <i>Transposition of rectangular matrices</i>	49
1.11 <i>Input and output subroutines</i>	52
Chapter 2. Single-Channel Digital Filtering and Spectral Analysis	
2.1 <i>Single-channel operators</i>	57
2.2 <i>Single-channel spectral subroutines</i>	59
2.3 <i>Minimum delay, mixed delay, and maximum delay</i>	68
2.4 <i>Inverse digital filters</i>	69
2.5 <i>Spike filters and waveshaping filters</i>	71
2.6 <i>Autocorrelation and power spectral computations</i>	85
2.7 <i>Linear least-squares estimation</i>	92
2.8 <i>Prediction</i>	95
2.9 <i>Minimum-delay factorization of power spectrum</i>	101
2.10 <i>Predictive deconvolution of seismic traces in petroleum exploration</i>	105

Contents**2.11 Signal approximation and adaptive detection**

112

- Chapter 3. Wave Propagation in Layered Media**
- 3.1 Optical properties of thin solid films**
- 3.2 Seismic properties of stratigraphic layers in the earth**
- 3.3 Model of the layered medium**
- 3.4 Reflection and transmission coefficients**
- 3.5 Relationships between the waveforms**
- 3.6 Recursive generation of the fundamental polynomials**
- 3.7 Layered system subject to given boundary conditions**
- 3.8 Optical properties of a single thin film**
- 3.9 Optical properties of two thin films**
- 3.10 Optical properties of an arbitrary number of thin films**
- 3.11 All-pass system or the case of a perfect reflector at the lower interface**
- 3.12 Marine seismogram or the case of a perfect reflector at the upper interface**
- 3.13 Computer program to find marine seismogram from reflection coefficients**
- 3.14 To find determinants**
- 3.15 Polynomials orthogonal on the unit circle**

137

143

144

137

133

133

137

149

149

149

150

152

152

152

158

160

164

166

168

173

Chapter 4. Matrix Polynomials

- 4.1 Matrix notation**
- 4.2 Eigenvectors and eigenvalues of a matrix**
- 4.3 Similar matrices**
- 4.4 Matrix polynomials**
- 4.5 Inverse of a matrix polynomial**
- 4.6 Subroutine for inverting matrix polynomials**
- 4.7 Extended hermitian matrices and extended unitary matrices**
- 4.8 The determinantal equation and the adjugate**
- 4.9 Eigenvectors and eigenvalues of a polynomial matrix**
- 4.10 Factoring matrix polynomials into binomial factors**

Chapter 5. Multichannel Digital Filtering and Spectral Analysis

- 5.1 Multichannel operators**
- 5.2 Inverse of a multichannel operator**
- 5.3 Autocorrelation of the inverse multichannel operator**
- 5.4 Minimum-delay factorization of multichannel spectrum**

179

179

184

188

190

Contents**2.11 Signal approximation and adaptive detection**

112

- 5.5 Autocorrelation and cross correlation of multichannel time series**
- 5.6 Spectral analysis of multichannel time series**
- 5.7 Coherence and phase**
- 5.8 Stationary Markov processes**
- 5.9 Auto-regressive processes**
- 5.10 Nonlinear filtering theory**
- 5.11 Reduction of a multichannel process to uncorrelated single-channel processes**
- Chapter 6. Multichannel Prediction and Signal Enhancement**
- 6.1 Multichannel Wiener filtering**
- 6.2 Design of multichannel Wiener digital filters**
- 6.3 Recursive solution of the multichannel normal equations**
- 6.4 Subroutine for multichannel Wiener filtering**
- 6.5 Prediction of commodity futures**
- 6.6 Output energy; filters with linear constraints**
- 6.7 Output energy; filters with quadratic constraints**

Appendix 1. Relationship to Mathematical Operator Theory

271

276

280

280*

Appendix 2. Glossary of Subroutines**Appendix 3. Program Revisions**

293

Preface

1969

SPECTRAL
METHODS
IN

ECONOMETRICS

George S. Fishman

Time series analysis is a branch of statistics whose scope and method have broadened considerably in the past quarter century. Among the developments of this period, the spectral approach, which concerns the decomposition of a time series into frequency components, has become a principal tool of analysis in such diverse fields as communications engineering, geophysics, oceanography, and electroencephalography. Spectral methods have also been applied to the analysis of economic time series, and it is evident that the recent extension of these methods to the estimation and testing of distributed lag models will attract more interest in applying this approach to econometrics.

This book describes spectral methods and their use in econometrics. It is intended as an introduction for graduate students and econometricians who wish to familiarize themselves with the topic.

The literature often emphasizes the ability of the spectral approach to reveal periodic or almost periodic components in a time series. While this information is of interest to the econometrician, it does not justify his learning more than a meager amount about the spectral approach to time series analysis, but a number of other reasons do justify learning about it in detail. The spectral approach has conceptual advantages for conveying information about interdependent events and also has desirable properties for working with sample data. In addition, it often suggests models for explaining the time-varying behavior of economic phenomena; it often enables one to determine the effects of transformations on variables, it often simplifies hypothesis testing, and

Harvard University Press
Cambridge, Massachusetts 1969

Contents

it often permits more efficient use of sample data in the estimation of time-domain model parameters than do more traditional methods.

Mathematically, time series may be regarded as a topic in Hilbert space analysis. If we were to use this approach, the conciseness of the notation would unfortunately obscure many intuitive analogies that prove so helpful in acquainting readers with a new topic. Alternatively, the benefits of spectral methods would not emerge clearly in a predominantly heuristic description. This is especially true in studying simultaneous distributed lag equations. To convey the significance of spectral methods for econometric analyses properly, some compromise is necessary.

A study of this book therefore requires a knowledge of probability theory and difference equations for univariate and bivariate time series analysis, and also a knowledge of matrix analysis and multivariate statistical analysis for multivariate time series analysis. A familiarity with operations on complex variables is also helpful, but not essential.

In writing this book, I have attempted to include as many of the recent advances in spectral methods as have appeared in the open literature and that seem relevant for econometrics. The rate at which new work appears has made this attempt difficult, as have the many new questions that arise whenever spectral methods are extended. For example, the sample properties of the fast Fourier transform technique remain to be worked out in detail. The theory of testing hypotheses related to distributed lag models is also incomplete. Wherever these new advances are mentioned, I have emphasized the transitional state of their development to encourage the reader to watch for future developments.

Thanks are due Marc Nerlove, who read the entire manuscript and suggested numerous improvements, to Bennett Fox, who checked a number of the mathematical results, and to Murray A. Geisler and Albert Mudansky, who encouraged me to write the book.

I would also like to thank Jacque McMullen, Nancy Gibson, and Marie Spaugy for their excellent typing of several versions of the manuscript, Doris Dong for preparing the artwork, and Roberta Schneider and Willard Harris for their editorial assistance.

I am indebted to The RAND Corporation for support of this work under its broad research contract with the United States Air Force.

George S. Fishman
Santa Monica, California

January 1969

1. Introduction	7
1.1. Modern Time Series Analysis	7
1.2. Plan of the Study	5
2. Covariance Stationary Processes	7
2.1. Definition of a Stochastic Process	7
2.2. Strict Stationarity	9
2.3. The Autocovariance and Autocorrelation Functions	10
2.4. Covariance Stationarity	11
2.5. The Ergodic Property	12
2.6. Harmonic Analysis	15
2.7. The Spectral Representation of Covariance Stationary Processes	20
2.8. Relationship between Variance Decomposition and Frequency	21
2.9. Decomposition of the Spectral Distribution Function	25
2.10. Relationship between the Autocorrelation and Spectral Density Functions	26
2.11. Examples	27
2.12. Spectral Methods and a Traditional Model of an Economic Time Series	32
2.13. Aliasing	36
2.14. Unweighted Time Averaging	38
2.15. Covariance Stationary Sequences	39
2.16. The Spectrum of an Uncorrelated Sequence	40
2.17. Linear Filtering	41
2.18. A Method of Seasonal Adjustment	44
2.19. The Long Swings Hypothesis	45
2.20. The Moving Average Representation	47
2.21. The Linear Autoregressive Representation	51
2.22. The First-Order Autoregressive Process	55

2.23. The Second-Order Autoregressive Process	54
2.24. Uniqueness of Representation.....	57
2.25. Trend Elimination and V_1 's Effects	58
2.26. Bivariate Spectral Analysis	61
2.27. The Effects of Seasonal Adjustment	69
2.28. The Effect of Linear Filtering on the Relationship between X and Y	71
2.29. Econometric Models and Spectral Analysis	72
2.30. Multivariate Spectral Analysis	74
3. Spectrum Analysis	80
3.1. Introduction	80
3.2. Autocorrelation Analysis	82
3.3. Spectrum Averaging	87
3.4. Averaging Kernels	90
3.5. Spectrum Estimation	96
3.6. Covariance Properties of Spectrum Estimates	97
3.7. Correlation Between Spectrum Estimates	99
3.8. Criteria for Choosing among Estimators	101
3.9. The Distribution of Spectrum Estimates	102
3.10. The Fast Fourier Transform	106
3.11. Prewhitenning	112
3.12. Bivariate Sampling Properties	118
3.13. The Sample Covariance Function	121
3.14. The Sample Cross Spectrum	121
3.15. The Asymptotic Covariances of Cross-Spectrum Estimates	124
3.16. The Distribution of Bivariate Spectrum Estimates	126
3.17. The Sample Coherence, Gain, and Phase Angle and Their Asymptotic Bias and Variance	131
3.18. The Distributions of Sample Coherence, Gain, and Phase Angle	133
3.19. Testing the Zero Coherence Hypothesis	135
3.20. Approximate Confidence Intervals for Gain and Phase Angle	138
3.21. Multivariate Estimation Procedures	138
3.22. The Joint Distribution of Multivariate Spectrum Estimates	142
3.23. Multivariate Testing Procedures	143

4.15. Constant Multivariate Signal-to-Noise Ratio.....

177

4.16. Consistency of a Multivariate Model.....	179

5. The Income-Consumption Relationship.....

181

5.1. Introduction	181
5.2. Spectrum Estimation	181
5.3. The Adaptive Model	189
5.4. Estimation of Coefficients	191
5.5. Testing the Validity of the Model	194
5.6. The Normality of the Time Series	196

References.....

200

Index.....	207

4. Distributed Lag Models	146
4.1. Problem Definition	147
4.2. The Estimation of Coefficients	150
4.3. The Sampling Properties of $\hat{\alpha}$	155
4.4. The Uniform Residual Spectrum	159
4.5. Constant Signal-to-Noise Ratio	160
4.6. The Substitution of Consistent Estimators for α_n and β	162
4.7. The Choice of m	162
4.8. Adjustment for Nonzero Means	163
4.9. The Adaptive Model	163
4.10. Testing the Validity of a Bivariate Model	165
4.11. An Example of a Distributed Lag Model	167
4.12. Estimation for Simultaneous Equations	172
4.13. Single Equation Multiple Regression	176
4.14. Correlated White Noise Residual Processes	177

1. Adelman, I., "Long Cycles—Fact or Artifact?" *Am. Econ. Rev.*, Vol. 55, No. 3, June 1965, pp. 447-463.
2. Amemiya, T., and W. Fuller, *A Comparative Study of Alternative Estimators in a Distributed-Lag Model*, Institute for Mathematical Studies in the Social Sciences, Stanford University, Technical Report 12, National Science Foundation Grant, GS-142, June 23, 1965.
3. Amos, D. E., and L. H. Koopmans, *Tables of the Distribution of the Coefficient of Coherence for Stationary Bivariate Gaussian Processes*, Sandia Corporation Monograph, SCR-483, March 1963.
4. Anderson, T. W., *An Introduction to Multivariate Statistical Analysis*, John Wiley and Sons, New York, 1958.
5. Bartlett, M. S., *An Introduction to Stochastic Processes*, Cambridge University Press, London, 1961.
6. ———, "Some Remarks on the Analysis of Time-Series," *Biometrika*, Vol. 54, Nos. 1 and 2, 1967, pp. 25-38.
7. Bendat, J. S., and A. G. Piersol, *Measurement and Analysis of Random Data*, John Wiley and Sons, New York, 1966.
8. Beveridge, W. H., "Wheat Prices and Rainfall in Western Europe," *J. Roy. Stat. Soc.*, Vol. 85, 1922, pp. 412-459.
9. ———, "Weather and Harvest Cycles," *Econ. J.*, Vol. 31, December 1921, pp. 429-452.
10. Bingham, C., M. D. Godfrey, and J. W. Tukey, "Modern Techniques of Power Spectrum Estimation," *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-15, No. 2, June 1967, pp. 56-66.
11. Blackman, R. B., and J. W. Tukey, *The Measurement of Power Spectra*, Dover Publications, New York, 1958.
12. Box, G. E. P., and G. M. Jenkins, *Recent Advances in Forecasting and Control*, presented at the European Meeting of Statisticians, London, September 1966 (mimeograph).
13. Cooley, J. W., and J. W. Tukey, "An Algorithm for the Machine Calculation of Fourier Series," *Math. Comput.*, Vol. 19, 1965, pp. 297-301.
14. Coutts, D., D. Grether, and M. Nerlove, "Forecasting Non-Stationary Economic Time Series," *Management Science*, Vol. 13, No. 1, September 1966, pp. 1-21.
15. Cox, D. R., and H. D. Miller, *The Theory of Stochastic Processes*, John Wiley and Sons, New York, 1965.
16. Cramér, H., *Mathematical Methods of Statistics*, Princeton University Press, Princeton, New Jersey, 1946.
17. Danielson, G. C., and C. Lanczos, "Some Improvements in Practical Fourier Analysis and Their Application to X-ray Scattering from Liquids," *J. Frank. Inst.*, Vol. 233, 1924, pp. 365-380, 435-452.
18. Davenport, W. B., Jr., and W. L. Root, *Random Signals and Noise*, McGraw-Hill Book Company, Inc., New York, 1958.
19. Davis, H. T., *The Analysis of Economic Time Series*, Principia Press, Bloomington, Indiana, 1941.

20. Doob, J. L., *Stochastic Processes*, John Wiley and Sons, New York, 1953.
21. Durbin, J., "Trend Elimination by Moving Average and Variance Difference Filters," *Bull. Inst. Intern. de Stat.*, Vol. 39, 1961, pp. 130-142.
22. Enochson, L. D., *Frequency Response Functions and Coherence Function for Multiple Input Linear Systems*, National Aeronautics and Space Administration, NASA CR-32, Washington, D.C., April 1964.
23. Enochson, L. D., and N. R. Goodman, *Gaussian Approximation to the Distribution of Sample Coherence*, Research and Technology Division, AFSC, AFFDL TR 65-57, Wright-Patterson AFB, Ohio, June 1965.
24. Friedman, M., *A Theory of the Consumption Function*, Princeton University Press, Princeton, New Jersey, 1957.
25. Goodman, N. R., *On the Joint Estimation of the Spectra, Coherence, and Quadrature Spectrum of a Two-Dimensional Stationary Gaussian Process*, Scientific Paper 10, Engineering Statistical Laboratory, College of Engineering, New York University, March 1957 (mimeograph).
26. ———, "Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution," *Ann. Math. Stat.*, Vol. 34, No. 1, March 1963, pp. 152-177.
27. ———, "The Distribution of the Determinant of a Complex Wishart Distributed Matrix," *Ann. Math. Stat.*, Vol. 34, No. 1, March 1963, pp. 178-190.
28. ———, *Measurement of Matrix Frequency Response Functions and Multiple Coherence Functions*, Research and Technology Division, AFSC, AFFDL TR 65-56, Wright-Patterson AFB, Ohio, June 1965.
29. Gordon Committee Report, President's Committee to Appraise Employment and Unemployment, United States Government, Princeton Office, Washington, D.C., 1962.
30. Granger, C. W. J., and M. Hatanaka, *Spectral Analysis of Economic Time Series*, Princeton University Press, Princeton, New Jersey, 1964.
31. Granger, C. W. J., and O. Morgenstern, "Spectral Analysis of New York Stock Market Prices," *Kyklos*, No. 16, 1963, pp. 1-27.
32. Grenander, U., and M. Rosenblatt, *Statistical Analysis of Stationary Time Series*, John Wiley and Sons, New York, 1957.
33. Grenander, U., and G. Szegö, *Toepplitz Forms and Their Applications*, University of California Press, Berkeley and Los Angeles, 1958.
34. Halmos, P. R., *Finite-Dimensional Vector Spaces*, Van Nostrand, Princeton, New Jersey, 1958.
35. ———, "Estimating Relations Between Time Series," *J. Geophysical Res.*, Vol. 68, No. 21, November 1963, pp. 6033-6041.
36. Hannan, E. J., *Time Series Analysis*, Methuen, London, 1960.
37. ———, "The Estimation of Seasonal Variation," *Australian J. Stat.*, Vol. 2, 1961, pp. 1-15.
38. ———, "Regression for Time Series," in *Proceedings of the Symposium on Time Series Analysis*, Brown University, June 11-14, 1962, M. Rosenblatt (ed.), John Wiley and Sons, New York, 1963.
39. ———, "The Estimation of Seasonal Variation in Economic Time Series," *J. Am. Stat. Assoc.*, Vol. 58, No. 301, March 1963, pp. 31-44.
40. ———, "The Estimation of a Changing Seasonal Pattern," *J. Am. Stat. Assoc.*, Vol. 59, No. 308, December 1964, pp. 1063-1077.
41. ———, *Notes on Time Series Analysis, Part II*, lectures by E. J. Hannan, 1964-1965, notes recorded by C. A. Rohd, Department of Statistics, The Johns Hopkins University, Baltimore. Copyright applied for.
42. ———, "The Estimation of Relationships Involving Distributed Lags," *Econometrica*, Vol. 33, No. 1, January 1965, pp. 206-222.
43. ———, "The Estimation of a Lagged Regression Relation," *Biometrika*, Vol. 54, Nos. 3 and 4, 1967, pp. 409-418.
44. Hatanaka, M., and E. P. Howrey, *Another View of the Long Swing: Comments on Adelman's Study of Long Cycles*, Econometric Research Program, Research Memorandum 75, Princeton University, July 1965.
45. Hood, W. C., and T. C. Koopmans (eds.), *Studies in Econometric Method*, John Wiley and Sons, New York, 1953.
46. Howrey, E. P., *A Spectral Analysis of the Long-Swing Hypothesis*, Econometric Research Program, Research Memorandum 75, Princeton University, August 1965.
47. Jenkins, G. M., "General Considerations in the Analysis of Spectra," *Technometrics*, Vol. 3, No. 2, May 1961, pp. 133-166.
48. ———, "Comments on the Discussions of Messrs. Tukey and Goodman," *Technometrics*, Vol. 3, No. 2, May 1961, pp. 229-232.
49. ———, "Cross-Spectral Analysis and the Estimation of Open Loop Transfer Functions," in *Proceedings of the Symposium on Time Series Analysis*, Brown University, June 11-14, 1962, M. Rosenblatt (ed.), John Wiley and Sons, New York, 1963.
50. ———, "Some Examples of and Comments on Spectral Analysis," in *Proceedings of the IBM Scientific Computing Symposium on Statistics*, IBM Data Processing Division, White Plains, New York, 1965.
51. Jeavons, W. S., *Investigations in Currency and Finance*, Macmillan and Company, London, 1884.
52. Kendall, M. G., *Contributions to the Study of Oscillatory Time Series*, Occasional Paper IX, National Institute of Economic and Social Research, Cambridge University Press, Cambridge, 1946.
53. ———, "Note on Bias in the Estimation of Autocorrelation," *Biometrika*, Vol. 41, Parts 3 and 4, 1954, pp. 403-404.
54. Khintchine, A., "Korrelationstheorie der stationären stochastischen Prozesse," *Math. Ann.*, Vol. 109, 1934, pp. 60-615.
55. Klein, L., "The Estimation of Distributed Lags," *Econometrica*, Vol. 26, No. 4, October 1958, pp. 553-565.
56. Kolmogorov, A. N., "Sur l'interpolation et l'extrapolation des suites stationnaires," *Compt. rend. acad. sci. Paris*, Vol. 208, 1939, pp. 2042-2045.
57. Kuznets, S. S., *Capital and the American Economy: Its Formation and Financing*, National Bureau of Economic Research, New York, 1961.
58. Lanczos, C., *A Discourse on Fourier Series*, Hafner, New York, 1966.

59. Leviatan, N., "Consistent Estimates of Distributed Lags," *Intern. Econ. Rev.*, Vol. 2, No. 1, January 1963, pp. 44-52.
60. Lemnicki, Z. A., and S. K. Zaremba, "On Estimating the Spectral Density Function of a Stochastic Process," *J. Roy. Stat. Soc., Series B*, Vol. 19, No. 1, 1957, pp. 13-37.
61. ———, "On Some Moments and Distributions Occurring in the Theory of Linear Stochastic Processes," *Monatshefte für Math., Part I*, Vol. 61, 1957, pp. 318-358, and Part II, Vol. 63, 1959, pp. 94-118.
62. Malinvaud, E., *Statistical Methods of Econometrics*, Rand McNally, Chicago, 1966.
63. Marriot, F. H. C., and J. A. Pope, "Bias in the Estimation of Autocorrelations," *Biometrika*, Vol. 41, Parts 3 and 4, 1954, pp. 390-402.
64. Moore, H. L., *Economic Cycles: Their Law and Cause*, The Macmillan Company, New York, 1914.
65. Murthy, V. K., "Estimation of the Cross-Spectrum," *Ann. Math. Stat.*, Vol. 34, No. 3, September 1965, pp. 1012-1021.
66. Nerlove, M., *Distributed Lags and Demand Analysis for Agricultural and Other Commodities*, Agricultural Marketing Service, United States Department of Agriculture, June 1958.
67. ———, "Spectral Analysis of Seasonal Adjustment Procedures," *Econometrica*, Vol. 35, No. 3, July 1964, pp. 241-286.
68. ———, "A Comparison of a Modified 'Hannan' and BLS Seasonal Adjustment Filters," *J. Am. Stat. Assoc.*, Vol. 60, No. 310, June 1965, pp. 422-491.
69. ———, *Distributed Lags and Unobserved Components in Economic Time Series*, Cowles Commission Discussion Paper 211, Yale University, New Haven, Connecticut, March 13, 1967.
70. Neterheim, N. F., *A Spectral Study of "Overadjustment" for Seasonal Adjustment*, Department of Statistics, Stanford University, Stanford, California, Technical Report 1, prepared under Contract Nonr-225(80), (NR-042-234) for the Office of Naval Research, May 16, 1966.
71. ———, *The Estimation of Cohärenz*, Department of Statistics, Stanford University, Stanford, California, Technical Report 5, prepared under Contract Nonr-225(80), (NR-042-234) for the Office of Naval Research, May 16, 1966.
72. Parzen, E., "On Asymptotically Efficient Consistent Estimates of the Spectral Density Function of a Stationary Time Series," *J. Roy. Stat. Soc., Series B*, Vol. 20, No. 2, 1958, pp. 303-322.
73. ———, "Mathematical Considerations in the Estimation of Spectra," *Technometrics*, Vol. 3, No. 2, May 1961, pp. 167-190.
74. ———, "An Approach to Time Series Analysis," *Ann. Math. Stat.*, Vol. 32, No. 4, December 1961, pp. 951-988.
75. ———, "An Approach to Empirical Time Series Analysis," *Radio Sci.*, Published by National Bureau of Standards, United States Department of Commerce, Vol. 6, No. 9, September 1964, pp. 937-952.
76. ———, "The Role of Spectral Analysis in Time Series Analysis, Presented at the 35th Session of the International Statistical Institute, Belgrade, September 1965, pp. 1-25.
77. ———, *Analysis and Synthesis of Linear Models for Time Series*, Department of Statistics, Stanford University, Stanford, California, Technical Report 4, prepared under Contract Nonr-225(80), (NR-042-234) for the Office of Naval Research, April 18, 1966.
78. ———, *Analysis for Models of Signal Plus White Noise*, Department of Statistics, Stanford University, Stanford, California, Technical Report 6, prepared under Contract Nonr-225(80), (NR-042-234) for the Office of Naval Research, September 12, 1966.
79. Rosenblatt, M., "Statistical Analysis of Stochastic Processes," in *Probability and Statistics*, U. Grenander (ed.), John Wiley and Sons, New York, 1959, pp. 246-273.
80. ———, "Some Comments on Narrow Band-Pass Filters," *Quart. Appl. Math.*, Vol. 18, No. 4, January 1961, pp. 387-393.
81. ———, *Random Processes*, Oxford University Press, New York, 1962.
82. Rudnick, P., "Note on the Calculation of Fourier Series," *Math. Comput.*, Vol. 20, 1966, pp. 429-430.
83. Scheffé, H., *The Analysis of Variance*, John Wiley and Sons, New York, 1959.
84. Schmid, C. F., *Handbook of Graphic Representation*, The Ronald Press Company, New York, 1964.
85. Schuster, Sir Arthur, "On the Investigation of Hidden Periodicities With Application to a Supposed Twenty-Six Day Period of Meteorological Phenomena," *Territorial Magnetism*, Vol. 3, 1898, p. 13.
86. Shaer, M., *Casani, Estimation of the Covariance and Autoregressive Structure of a Stationary Time Series*, Technical Report 12, prepared under Grant DA-AARO(D)-31-124-G363 for United States Army Research Office, Department of Statistics, Stanford University, Stanford, California, January 13, 1964 (microfiche).
87. Singleton, R. C., and T. C. Poulter, "Spectral Analysis of the Call of the Male Killer Whale," *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-15, No. 2, June 1967, pp. 104-113.
88. Slutsky, E., "The Summation of Random Causes as the Source of Cyclic Processes," *Econometrica*, Vol. 5, 1937, pp. 105-146.
89. Tintner, G., *The Variate Difference Method*, Principia Press, Bloomington, Indiana, 1940.
90. Tukey, J. W., "Discussion Emphasizing the Connection Between Analysis of Variance and Spectral Analysis," *Technometrics*, Vol. 3, No. 2, May 1961, pp. 191-220.
91. ———, "An Introduction to the Calculations of Numerical Spectrum Analysis," in *Advanced Seminar on Spectral Analysis of Time Series*, B. Harris (ed.), John Wiley and Sons, New York, 1967.
92. United States Department of Commerce, Office of Business Economics, *Survey of Current Business* (monthly).
93. ———, *Business Statistics Supplement*, August 1965.
94. Wahba, G., *Estimation of the Coefficients in a Multidimensional Distributed Lag Model*, Department of Statistics, Stanford University, Stanford, California, 1965.

- ford, California. Technical Report No. 100, prepared under National Science Foundation Grant GP-4265, January 3, 1967.

95. Walker, A. M., "The Asymptotic Distribution of Serial Correlation Coefficients for Autoregressive Processes with Dependent Residuals," *Philosophical Magazine*, Vol. 50, 1955, pp. 63-64.

96. Wallis, K. F., *Distributed Lags Relationships Between Recent Social and Economic Events*, Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, California, National Science Foundation Grant GS-142, Technical Report 14, July 26, 1965.

97. ———, *Some Econometric Problems in the Analysis of Interrelated Cycles*, Cowles Commission Discussion Paper 209, Yale University, New Haven, Connecticut, May 9, 1966.

98. Weissman, A. S., "Alternative Definitions of the Serial Correlation Coefficients in Short Autoregressive Sequences," *J. Am. Stat. Assoc.*, Vol. 51, No. 284, December 1952, pp. 881-892.

99. Welch, B. L., "A Generalization of Student's Problem When Several Different Population Variances are Involved," *Econometrica*, Vol. 22, January 1947, pp. 25-35.

100. Welch, P., "The Use of Fast Fourier Transforms for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Non-adjacent Periodograms," *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-12, No. 2, June 1964, pp. 70-73.

101. Whittle, P., *Prediction and Regulation by Linear Least-Squares Methods*, English Universities Press, London, 1963.

102. Wiener, N., "Generalized Harmonic Analysis," *Acta Math.*, Vol. 35, 1930, pp. 117-258.

103. ———, *Extrapolation, Interpolation and Smoothing of Stationary Time Series*, Technology Press, Cambridge, and John Wiley and Sons, New York, 1949.

104. Wilks, S. S., *Mathematical Statistics*, John Wiley and Sons, New York, 1962.

105. Wold, H., *A Study in the Analysis of Stationary Time Series*, Almqvist and Wiksell, Uppsala, 1954.

106. Yaglom, A. M., *An Introduction to the Theory of Stationary Random Functions*, trans. from the Russian by R. A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.

107. Yule, G. U., "On the Time Correlation Problem, with Especial Reference to the Variate-Difference Correlation Methods," *J. Roy. Stat. Soc. Ser. B*, Vol. 84, 1921, pp. 497-526.

108. ———, "On a Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Numbers," *Phil. Trans. Roy. Soc.*, Vol. 226, Series A, 1927, pp. 267-298.

109. Zarembe, S. K., "Quartic Statistics in Spectral Analysis," in *Advanced Seminar on Spectral Analysis of Time Series*, B. Harris (ed.), John Wiley and Sons, New York, 1967.

INTRODUCTION TO STOCHASTIC CONTROL THEORY

TO

Karl J. Åström

*Division of Automatic Control
Lund Institute of Technology, Lund, Sweden*

The object of this book is to present stochastic control theory — analysis, parametric optimization and optimal stochastic control. The treatment is limited to linear systems with quadratic criteria. It covers discrete time as well as continuous time systems.

The first three chapters provide motivation and background material on stochastic processes. Chapter 4 is devoted to analysis of dynamical systems whose inputs are stochastic processes. A simple version of the problem of optimal control of stochastic systems is discussed in Chapter 6; this chapter also contains an example of an industrial application of this theory. Filtering and prediction theory are covered in Chapter 7, and the general stochastic control problem for linear systems with quadratic criteria is treated in Chapter 8.

In each chapter we shall first discuss the discrete time version of a problem. We shall then turn to the continuous time version of the same problem. The continuous time problems are more difficult both analytically and conceptually. Chapter 6 is an exception because it deals only with discrete time systems.

There are several different uses for this volume:

- A short applications-oriented course covering Chapter 1, a survey of Chapter 2, Sections 1, 2 and 3 of Chapters 3 and 4, Sections 1 and 4 of Chapter 5, Chapter 6, and a survey of Chapters 7 and 8.
- An introductory course in discrete time stochastic control covering the sections mentioned above, and also Section 2 of Chapter 5, Sections 1-5 of Chapter 7, and Sections 1-6 of Chapter 8.
- A course in stochastic control including both discrete time processes as well as continuous time processes covering the whole volume.

The prerequisites for using this book are a course in analysis, one in probability theory (preferably but not necessarily covering the elements of stochastic processes), and a course in dynamical systems which includes frequency response as well as the state space approach for continuous time and discrete time systems. A reader who is acquainted with the deterministic theory of optimal control for linear systems with quadratic criteria

ix

1970

TABLE OF CONTENTS

Preface

will get a much richer understanding of the problems discussed, although this knowledge is not absolutely required in order to read this book.

This work is an expansion of the notes from lectures delivered to various industrial and academic audiences between 1962-1969. A preliminary version was given in seminars in 1963 at the IBM Research Laboratories in San Jose, California and Yorktown Heights, New York. An expanded version was presented during 1964 and 1965 at the IBM Nordic Laboratory, the Royal Institute of Technology, and the Research Institute of National Defense, all located in Stockholm, Sweden. Part of this material has been used in graduate courses at the Lund Institute of Technology, Sweden, since 1965. The complete manuscript was presented as a graduate course in stochastic control at the Lund Institute of Technology during the 1968-1969 academic year.

Preface

Acknowledgements

Chapter 1 STOCHASTIC CONTROL

1. Introduction	1
2. Theory of Feedback Control	1
3. How to Characterize Disturbances	5
4. Stochastic Control Theory	6
5. Outline of the Contents of the Book	9
6. Bibliography and Comments	11

Chapter 2 STOCHASTIC PROCESSES

1. Introduction	13
2. The Concept of a Stochastic Process	13
3. Some Special Stochastic Processes	16
4. The Covariance Function	23
5. The Concept of Spectral Density	26
6. Analysis of Stochastic Processes	33
7. Bibliography and Comments	42

Chapter 3 STOCHASTIC STATE MODELS

1. Introduction	44
2. Discrete Time Systems	45
3. Solution of Stochastic Difference Equations	47
4. Continuous Time Systems	51
5. Stochastic Integrals	57
6. Linear Stochastic Differential Equations	63
7. Nonlinear Stochastic Differential Equations	71
8. Stochastic Calculus—The Ito Differentiation Rule	74
9. Modeling of Physical Processes by Stochastic Differential Equations	78
10. Sampling of Stochastic Differential Equation	82
11. Bibliography and Comments	86

Chapter 4 ANALYSIS OF DYNAMICAL SYSTEMS WHOSE INPUTS ARE STOCHASTIC PROCESSES

1. Introduction	91
-----------------	----

Table of Contents

<i>Chapter 1</i>	<i>DISCRETE TIME SYSTEMS</i>	92
2.	Discrete Time Systems	92
3.	Spectral Factorization of Discrete Time Processes	98
4.	Analisis of Continuous Time Systems Whose Input Signals Are Stochastic Processes	104
5.	Spectral Factorization of Continuous Time Processes	107
6.	Bibliography and Comments	112
<i>Chapter 5</i>	<i>PARAMETRIC OPTIMIZATION</i>	115
1.	Introduction	115
2.	Evaluation of Loss Functions for Discrete Time Systems	116
3.	Evaluation of Loss Functions for Continuous Time Systems	128
4.	Reconstruction of State Variables for Discrete Time Systems	142
5.	Reconstruction of State Variables for Continuous Time Systems	150
6.	Bibliography and Comments	156
<i>Chapter 6</i>	<i>MINIMAL VARIANCE CONTROL STRATEGIES</i>	159
1.	Introduction	159
2.	A Simple Example	160
3.	Optimal Prediction of Discrete Time Stationary Processes	162
4.	Minimal Variance Control Strategies	172
5.	Sensitivity of the Optimal System	181
6.	An Industrial Application	188
7.	Bibliography and Comments	209
<i>Chapter 7</i>	<i>PREDICTION AND FILTERING THEORY</i>	210
1.	Introduction	210
2.	Formulation of Prediction and Estimation Problems	211
3.	Prerequisites	218
4.	State Estimation for Discrete Time Systems	225
5.	Data	238
6.	State Estimation for Continuous Time Processes	241
7.	Bibliography and Comments	252
<i>Chapter 8</i>	<i>LINEAR STOCHASTIC CONTROL THEORY</i>	256
1.	Introduction	256
2.	Formulation	257
3.	Prerequisites	259
4.	Complete State Information	264
5.	Incomplete State Information 1	269
6.	Incomplete State Information 2	278
7.	Continuous Time Problems	286
8.	Bibliography and Comments	292
Index		295

1970
**TIME SERIES
ANALYSIS
forecasting
and
control**

Revised Edition 1976

GEORGE E. P. BOX
University of Wisconsin, U.S.A.

and

GWILYM M. JENKINS
University of Lancaster, U.K.

Much of statistical methodology is concerned with models in which the observations are assumed to vary independently. In many applications dependence between the observations is regarded as a nuisance, and in planned experiments, randomization of the experimental design is introduced to validate analysis conducted as if the observations were independent. However a great deal of data in business, economics, engineering and the natural sciences occur in the form of time series where observations are dependent and where the nature of this dependence is of interest in itself. The body of techniques available for the analysis of such series of dependent observations is called *time series analysis*.

Spectral analysis, in the frequency-domain, comprises one class of techniques for time series analysis, but we shall say very little here about that important subject. This book is concerned with the building of stochastic (statistical) models for discrete time series in the time-domain and the use of such models in important areas of application. Our objective will be to derive models possessing maximum simplicity and the minimum number of parameters consonant with representational adequacy. The obtaining of such models is important because:

- (1) They may tell us something about the nature of the system generating the time series;
- (2) They can be used for obtaining *optimal forecasts* of future values of the series;
- (3) When two or more related time series are under study, the models can be extended to represent dynamic relationships between the series and hence to estimate transfer functions;
- (4) They can be used to derive *optimal control policies* showing how a variable under one's control should be manipulated so as to minimize disturbances in some dependent variable.

ix

HOLDEN-DAY

*San Francisco, Düsseldorf, Johannesburg, London,
Panama, Singapore, Sydney, Toronto*

The ability to forecast optimally, to understand dynamic relationships between variables and to control optimally is of great practical importance. For example, optimal sales forecasts are needed for business planning. Transfer function models are needed for improving the design and control of process plant and optimal control policies are needed to regulate important process variables, both manually and by the use of on-line computers. Over the last ten years the authors have worked with real data arising in economics and industry and, by trial and error, and by a long sequence of interactions between theory and practice, have attempted to select, adapt, and develop practical techniques to fulfill such needs. This book is the fruit of these labors.

The approach adopted is, first, to discuss a class of models which are sufficiently flexible to describe practical situations. In particular, time series are often best represented by *nonstationary* models in which trends and other pseudo-systematic characteristics which can change with time are treated as statistical rather than as deterministic phenomena. Furthermore, economic and business time series often possess marked seasonal or periodic components themselves capable of change and needing (possibly non-stationary) seasonal statistical models for their description.

The process of model building, which is next discussed, is concerned with relating such a class of statistical models to the data at hand and involves much more than model fitting. Thus, identification techniques, designed to suggest what particular kind of model might be worth considering, are developed first and make use of the autocorrelation and partial autocorrelation functions. The fitting of the identified model to a time series using the likelihood function can then supply maximum likelihood estimates of the parameters or, if one prefers, Bayesian posterior distributions. The initially fitted model will not, necessarily, provide adequate representation. Hence diagnostic checks are developed to detect model inadequacy, to suggest appropriate modifications and thus, where necessary, to initiate a further iterative cycle of identification, fitting and diagnostic checking.

When forecasts are the objective, the fitted statistical model is used directly to generate optimal forecasts by simple recursive calculation. In particular, this model completely determines whether the forecast predictions should follow a straight line, an exponential curve, and so on. In addition, the fitted model allows one to see exactly how the forecasts utilize past data, to determine the variance of the forecast errors, and to calculate limits within which a future value of the series will lie with a given probability.

When the models are extended to represent dynamic relationships, a corresponding iterative cycle of identification, fitting and diagnostic checking is developed to arrive at the appropriate transfer function-stochastic model. In the final section of the book, the stochastic and transfer function models developed earlier are employed in the construction of feedforward and feedback control schemes.

The applications given in this book are by no means exhaustive and it is hoped that the examples presented will enable the reader to adapt the techniques to his own problem. In particular the difference equations used to represent transfer functions and stochastic phenomena may be employed as building blocks which when appropriately fitted together can simulate a wide variety of the systems occurring in engineering, business and economics. Furthermore the principles of model building which are discussed and illustrated have very general application.

AN OUTLINE OF THE BOOK

This book is set out in the following parts (from time to time, a vertical line has been inserted in the left margin to indicate material which may be omitted in the first reading):

Introduction and Summary (Chapter 1)

This chapter is an informal and highly condensed outline of topics discussed, defined and more fully explained in the main body of the text. It is intended as a broad mapping of areas to be subsequently explored, and the student may wish to refer back to it as later chapters are read.

Part I Stochastic models and their forecasting (Chapters 2, 3, 4 and 5)

After some basic tools of time series analysis have been discussed in Chapter 2, an important class of linear stochastic models is introduced in Chapters 3 and 4 and their properties discussed. The immediate introduction of forecasting in Chapter 5 takes advantage of the fact that the form of the optimal forecasts follows at once from the structure of the stochastic models discussed in Chapter 4.

Part II Stochastic model building (Chapters 6, 7, 8 and 9)

Part II of the book describes an iterative model-building methodology whereby the stochastic models introduced in Part I, are related to actual time series data. Chapters 6, 7 and 8 describe, in turn, the processes of model identification, model estimation, and model diagnostic checking. Chapter 9 illustrates the whole model building process by showing how all these ideas may be brought together to build seasonal models and how these models may be used to forecast seasonal time series.

Part III Transfer function model building (Chapters 10 and 11)

In Chapter 10 transfer function models are introduced for relating a system output to one or more system inputs. Chapter 11 discusses methods for transfer function-noise model identification, estimation and diagnostic checking. The chapter ends with a description of how such models may be used in forecasting.

Part IV Design of discrete control schemes (Chapters 12 and 13)

In these two chapters we show how the stochastic models and transfer function models previously introduced may be brought together in the design of simple feedforward and feedback control schemes.

A first draft of the book was produced in 1965 and subsequently was issued in 1966 and 1967 as Technical Reports Nos. 72, 77, 79, 94, 95, 99, 103, 104, 116, 121 and 122 of the Department of Statistics, University of Wisconsin, and Nos. 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13 of the Department of Systems Engineering, University of Lancaster. The work has involved a great deal of research, which has been partially supported by the Air Force Office of Scientific Research, United States Air Force, under AFOSR Grants AF-AFOSR-1158-66 and AF-49 (638) 1608 and also by the British Science Research Council. We are grateful to Professor E. S. Pearson and the Biometrika Trustees for permission to reprint condensed and adapted forms of Tables 1, 8 and 12 of *Biometrika Tables for Statisticians*, Vol. 1, edited by E. S. Pearson and H. O. Hartley, and to Dr. Casimer Smakowski for permission to reproduce and adapt three figures from his doctoral thesis, University of Wisconsin, 1968. The authors are indebted to George Tiao, David Mayne, Emanuel Parzen, David Pierce, Granville Wilson and Donald Watts for suggestions for improving the manuscript, to John Hampton, Granville Wilson, Elaine Hodkinson and Patricia Blant for writing the computer programs described at the end of the book and also to them and to Dean Wichern, David Bacon and Paul Newbold for assistance with the calculations. Finally, we are glad to record our thanks to Hiro Kanemasu, Paul Newbold, Larry Haugh, John MacGregor and Granville Wilson for careful reading and checking of the manuscript, to Carole Leigh and Mary Esser for their care and patience in typing the manuscript and to Meg Jenkins for the initial draft of the diagrams.

G. E. P. Box, Madison, U.S.A.
G. M. Jenkins, Lancaster, U.K.
June 1969

Contents

vii	Preface
CHAPTER 1 INTRODUCTION AND SUMMARY	
1	1.1 Three important practical problems
1	1.1.1 Forecasting time series
1	1.1.2 Estimation of transfer functions
2	1.1.3 Design of discrete control systems
4	1.2 Stochastic and deterministic dynamic mathematical models
7	1.2.1 Stationary and nonstationary stochastic models for forecasting and control
7	1.2.2 Transfer function models
13	1.2.3 Models for discrete control systems
16	1.3 Basic ideas in model building
17	1.3.1 Parsimony
17	1.3.2 Iterative stages in the selection of a model
18	
CHAPTER 2 THE AUTOCORRELATION FUNCTION AND SPECTRUM	
23	2.1 Autocorrelation properties of stationary models
23	2.1.1 Time series and stochastic processes
26	2.1.2 Stationary stochastic processes
28	2.1.3 Positive definiteness and the autocovariance matrix
30	2.1.4 The autocovariance and autocorrelation functions
32	2.1.5 Estimation of autocovariance and autocorrelation functions
34	2.1.6 Standard errors of autocorrelation estimates

2.2 Spectral properties of stationary models	36
2.2.1 The periodogram	36
2.2.2 Analysis of variance	37
2.2.3 The spectrum and spectral density function	39
2.2.4 Simple examples of autocorrelation and spectral density functions	42
2.2.5 Advantages and disadvantages of the autocorrelation and spectral density functions	44
A2.1 Link between the sample spectrum and autocovariance function estimate	44
CHAPTER 3 LINEAR STATIONARY MODELS	
3.1 The general linear process	46
3.1.1 Two equivalent forms for the linear process	46
3.1.2 Autocovariance generating function of a linear process	48
3.1.3 Stationarity and invertibility conditions for a linear process	49
3.1.4 Autoregressive and moving average processes	51
3.2 Autoregressive processes	53
3.2.1 Stationarity conditions for autoregressive processes	53
3.2.2 Autocorrelation function and spectrum of autoregressive processes	54
3.2.3 The first order autoregressive (Markov) process	56
3.2.4 The second order autoregressive process	58
3.2.5 The partial autocorrelation function	64
3.2.6 Estimation of the partial autocorrelation function	65
3.2.7 Standard errors of partial autocorrelation estimates	65
3.3 Moving average processes	67
3.3.1 Invertibility conditions for moving average processes	67
3.3.2 Autocorrelation function and spectrum of moving average processes	68
3.3.3 The first-order moving average process	69
3.3.4 The second-order moving average process	72
3.3.5 Duality between autoregressive and moving average processes	73
3.4 Mixed autoregressive—moving average processes	73
3.4.1 Stationarity and invertibility properties	73
3.4.2 Autocorrelation function and spectrum of mixed processes	74
3.4.3 The first-order autoregressive—first order moving average process	76
3.4.4 Summary	80
A3.1 Autocovariances, autocovariance generating functions and stationarity conditions for a general linear process	80

A3.2 A recursive method for calculating autoregressive parameters	82
CHAPTER 4 LINEAR NONSTATIONARY MODELS	
4.1 Autoregressive integrated moving average processes	85
4.1.1 The nonstationary first order autoregressive process	85
4.1.2 A general model for a nonstationary process exhibiting homogeneity	87
4.1.3 The general form of the autoregressive integrated moving average process	91
4.2 Three explicit forms for the autoregressive integrated moving average model	94
4.2.1 Difference equation form of the model	94
4.2.2 Random shock form of the model	95
4.2.3 Inverted form of the model	101
4.3 Integrated moving average processes	103
4.3.1 The integrated moving average process of order $(0, 1, 1)$	105
4.3.2 The integrated moving average process of order $(0, 2, 2)$	108
4.3.3 The general integrated moving average process of order $(0, d, q)$	112
4.4 Linear difference equations	114
A4.2 The IMA $(0, 1, 1)$ process with deterministic drift	119
A4.3 Properties of the finite summation operator	120
A4.4 ARIMA processes with added noise	121
A4.4.1 The sum of two independent moving average processes	121
A4.4.2 Effect of added noise on the general model	121
A4.4.3 Example for an IMA $(0, 1, 1)$ process with added white noise	122
A4.4.4 Relation between the IMA $(0, 1, 1)$ process and a random walk	123
A4.4.5 Autocovariance function of the general model with added correlated noise	124
CHAPTER 5 FORECASTING	
5.1 Minimum mean square error forecasts and their properties	126
5.1.1 Derivation of the minimum mean square error forecasts	127
5.1.2 Three basic forms for the forecast	129
5.2 Calculating and updating forecasts	132
5.2.1 A convenient format for the forecasts	132
5.2.2 Calculation of the ψ weights	132
5.2.3 Use of the ψ weights in updating the forecasts	134
5.2.4 Calculation of the probability limits of the forecasts at any lead time	135

PART I STOCHASTIC MODEL FITTING	-130-
CHAPTER 5 FORECASTING AND PREDICTION	
5.3 The forecast function and forecast weights	138
5.3.1 The eventual forecast function determined by the autoregressive operator	139
5.3.2 Role of the moving average operator in fixing the initial values	139
5.3.3 The lead-1 forecast weights	141
5.4 Examples of forecast functions and their updating	144
5.4.1 Forecasting an IMA (0, 1, 1) process	144
5.4.2 Forecasting an IMA (0, 2, 2) process	146
5.4.3 Forecasting a general IMA (0, d, q) process	149
5.4.4 Forecasting autoregressive processes	150
5.4.5 Forecasting a (1, 0, 1) process	152
5.4.6 Forecasting a (1, 1, 1) process	154
5.5 Summary	155
AS.1 Correlations between forecast errors	158
AS.1.1 Autocorrelation function of forecast errors at different origins	158
AS.1.2 Correlation between forecast errors at the same origin with different lead times	159
AS.2 Forecast weights for any lead time	160
AS.3 Forecasting in terms of the general integrated form	162
AS.3.1 A general method of obtaining the integrated form	162
AS.3.2 Updating the general integrated form	164
AS.3.3 Comparison with the discounted least squares method of R. G. Brown	166
PART II STOCHASTIC MODEL IDENTIFICATION	
CHAPTER 6 MODEL IDENTIFICATION	
6.1 Objectives of identification	173
6.1.1 Stages in the identification procedure	173
6.2 Identification techniques	174
6.2.1 Use of the autocorrelation and partial autocorrelation functions in identification	174
6.2.2 Standard errors for estimated autocorrelations and partial autocorrelations	177
6.2.3 Identification of some actual time series	178
6.3 Initial estimates for the parameters	187
6.3.1 Uniqueness of estimates obtained from the autocovariance function	187
6.3.2 Initial estimates for moving average processes	187
6.3.3 Initial estimates for autoregressive processes	189
6.3.4 Initial estimates for mixed autoregressive-moving average processes	190
6.3.5 Choice between stationary and nonstationary models in doubtful cases	192
6.3.6 Initial estimate of residual variance	193
6.3.7 An approximate standard error for \bar{w}	193
6.4 Model multiplicity	195
6.4.1 Multiplicity of autoregressive-moving average models	195
6.4.2 Multiple moment solutions for moving average parameters	198
6.4.3 Use of the backward process to determine starting values	199
A6.1 Expected behaviour of the estimated autocorrelation function for a nonstationary process	200
A6.2 A general method for obtaining initial estimates of the parameters of a mixed autoregressive-moving average process	201
A6.3 The forward and backward IMA processes of order (0, 1, 1)	205
CHAPTER 7 MODEL ESTIMATION	
7.1 Study of the likelihood and sum of squares functions	208
7.1.1 The likelihood function	208
7.1.2 The conditional likelihood for an ARIMA process	209
7.1.3 Choice of starting values for conditional calculation	210
7.1.4 The unconditional likelihood—the sum of squares function—least squares estimates	212
7.1.5 General procedure for calculating the unconditional sum of squares	215
7.1.6 Graphical study of the sum of squares function	215
7.1.7 Description of "well-behaved" estimation situations—confidence regions	220
7.2 Nonlinear estimation	224
7.2.1 General method of approach	231
7.2.2 Numerical estimates of the derivatives	231
7.2.3 Direct evaluation of the derivatives	233
7.2.4 A general least squares algorithm for the conditional model	235
7.2.5 Summary of models fitted to Series A-F	236
7.2.6 Large sample information matrices and covariance estimates	238
7.3 Some estimation results for specific models	240
7.3.1 Autoregressive processes	243
7.3.2 Moving average processes	243
7.3.3 Mixed processes	245
7.3.4 Separation of linear and nonlinear components in estimation	245
7.3.5 Initial estimates for autoregressive processes	246

7.3.5 Parameter redundancy	248	9.3.2 Identification	324
7.4 Estimation using Bayes' theorem	250	9.3.3 Estimation	325
7.4.1 Bayes' theorem	250	9.3.4 Eventual forecast functions for various seasonal models	325
7.4.2 Bayesian estimation of parameters	252	9.3.5 Choice of transformation	328
7.4.3 Autoregressive processes	253	A9.1 Autocovariances for some seasonal models	329
7.4.4 Moving average processes	255		
7.4.5 Mixed processes	255		
A7.1 Review of normal distribution theory	257	PART III TRANSFER FUNCTION MODEL BUILDING	
A7.2 A review of linear least squares theory	258	CHAPTER 10 TRANSFER FUNCTION MODELS	
A7.3 Examples of the effect of parameter estimation errors on probability limits for forecasts	265	10.1 Linear transfer function models	337
A7.4 The exact likelihood function for a moving average process	267	10.1.1 The discrete transfer function	338
A7.5 The exact likelihood function for an autoregressive process	269	10.1.2 Continuous dynamic models represented by differential equations	340
A7.6 Special note on estimation of moving average parameters	274	10.2 Discrete dynamic models represented by difference equations	345
		10.2.1 The general form of the difference equation	345
		10.2.2 Nature of the transfer function	346
		10.2.3 First and second order discrete transfer function models	348
		10.2.4 Recursive computation of output for any input	353
		10.3 Relation between discrete and continuous models	355
		10.3.1 Response to a pulsed input	356
		10.3.2 Relationships for first and second order coincident systems	358
		10.3.3 Approximating general continuous models by discrete models	361
		10.3.4 Transfer function models with added noise	362
		A10.1 Continuous models with pulsed inputs	363
		A10.2 Nonlinear transfer functions and linearization	367
CHAPTER 8 MODEL DIAGNOSTIC CHECKING		CHAPTER 11 IDENTIFICATION, FITTING, AND CHECKING OF TRANSFER FUNCTION MODELS	
8.1 Checking the stochastic model	285	11.1 The cross correlation function	371
8.1.1 General philosophy	285	11.1.1 Properties of the cross covariance and cross correlation functions	371
8.1.2 Overfitting	286	11.1.2 Estimation of the cross covariance and cross correlation functions	374
8.2 Diagnostic checks applied to residuals	287	11.1.3 Approximate standard errors of cross correlation estimates	376
8.2.1 Autocorrelation check	289	11.2 Identification of transfer function models	377
8.2.2 A portmanteau lack of fit test	290	11.2.1 Identification of transfer function models by prewhitening the input	379
8.2.3 Model inadequacy arising from changes in parameter values	293	11.2.2 An example of the identification of a transfer function model	381
8.2.4 Cumulative periodogram check	294	11.2.3 Identification of the noise model	383
8.3 Use of residuals to modify the model	298	11.2.4 Some general considerations in identifying transfer function models	386
8.3.1 Nature of the correlations in the residuals when an incorrect model is used	298		
8.3.2 Use of residuals to modify the model	299		
CHAPTER 9 SEASONAL MODELS			
9.1 Parsimonious models for seasonal time series	300		
9.1.1 Fitting versus forecasting	301		
9.1.2 Seasonal models involving adaptive sines and cosines	301		
9.1.3 The general multiplicative seasonal model	303		
9.2 Representation of the airline data by a multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ model	305		
9.2.1 The multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ model	305		
9.2.2 Forecasting	306		
9.2.3 Identification	313		
9.2.4 Estimation	315		
9.2.5 Diagnostic checking	320		
9.3 Some aspects of more general seasonal models	322		
9.3.1 Multiplicative and nonmultiplicative models	322		

CHAPTER 11 DESIGN OF DISCRETE CONTROL SCHEMES 11.3 Fitting and checking transfer function models 11.3.1 The conditional sum of squares function 388 11.3.2 Nonlinear estimation 388 11.3.3 Use of residuals for diagnostic checking 390 11.3.4 Specific checks applied to the residuals 392 11.4 Some examples of fitting and checking transfer function models 393 11.4.1 Fitting and checking of the gas furnace model 395 11.4.2 A simulated example with two inputs 400 11.5 Forecasting using leading indicators 402 11.5.1 The minimum square error forecast 404 11.5.2 Forecast of CO ₂ output from gas furnace 407 11.5.3 Forecast of nonstationary sales data using a leading indicator 409 11.6 Some aspects of the design of experiments to estimate transfer functions 412 A11.1 Use of cross spectral analysis for transfer function model identification 413 A11.1.1 Identification of single input transfer function models 413 A11.1.2 Identification of multiple input transfer function models 415 A11.2 Choice of input to provide optimal parameter estimates 416 A11.2.1 Design of optimal input for a simple system 416 A11.2.2 A numerical example 418 	CHAPTER 12 DESIGN OF FEEDFORWARD AND FEEDBACK CONTROL SCHEMES 12.1 Feedforward control 423 12.1.1 Feedforward control to minimize mean square error at the output 424 12.1.2 An example—control of specific gravity of an intermediate product 427 12.1.3 A nomogram for feedforward control 430 12.1.4 Feedforward control with multiple inputs 432 12.2 Feedback control 433 12.2.1 Feedback control to minimize output mean square error 434 12.2.2 Application of the control equation: relation with three-term controller 436 12.2.3 Examples of discrete feedback control 437	CHAPTER 13 SOME FURTHER PROBLEMS IN CONTROL 13.1 Effect of added noise in feedback schemes 460 13.1.1 Effect of ignoring added noise—rounded schemes 461 13.1.2 Optimal action when there are observational errors in the adjustment entries X_t 465 13.1.3 Transference of the noise origin 469 13.2 Feedback control schemes where the adjustment variance is restricted 472 13.2.1 Derivation of optimal adjustment 474 13.2.2 A constrained scheme for the viscosity/gas rate example 483 13.3 Choice of the sampling interval 486 13.3.1 An illustration of the effect of reducing sampling frequency 487 13.3.2 Sampling an IMA (0, 1, 1) process 488	PART V PART VI PART VII PART VIII PART IX PART X
		Description of computer programs 495 Collection of tables and charts 517 Collection of time series used for examples in the text 524 References 538 Index 543	

- [1] C. C. Holt, F. Modigliani, J. F. Muth and H. A. Simon, *Planning Production, Inventories and Work Force*, Prentice Hall, New Jersey, 1963.
- [2] R. G. Brown, *Smoothing, Forecasting and Prediction of Discrete Time Series*, Prentice-Hall, New Jersey, 1962.
- [3] *Short Term Forecasting*, I.C.I. Monograph No. 2, Oliver and Boyd, Edinburgh, 1964.
- [4] P. J. Harrison, "Short-term sales forecasting," *Appl. Stat.*, **14**, 102, 1965.
- [5] K. J. Astrom, "Numerical identification of linear dynamic systems from normal operating records," *Theory of Self-adaptive Control Systems*, 96, Plenum Press, 1966.
- [6] A. W. Hutchinson and R. J. Shelton, "Measurement of dynamic characteristics of full-scale plant using random perturbing signals: an application to a refinery distillation column," *Trans. Inst. Chem. Engrs.*, **45**, 334, 1967.
- [7] P. A. N. Briggs, P. H. Hammond, M. T. G. Hughes and G. O. Plumbe, "Correlation analysis of process dynamics using pseudo-random binary test perturbations," *Inst. Mech. Eng. Advances in Automatic Control*, Paper 7, Nottingham, U.K., April 1965.
- [8] W. A. Shewhart, *The Economic Control of the Quality of Manufactured Product*, Macmillan, New York, 1931.
- [9] B. P. Dudding and W. J. Jennet, "Quality control charts," *British Standard 600/R*, 1942.
- [10] E. S. Page, "On problems in which a change in a parameter occurs at an unknown point," *Biometrika*, **44**, 249, 1957.
- [11] E. S. Page, "Cumulative sum charts," *Technometrics*, **3**, 1, 1961.
- [12] G. A. Barnard, "Control charts and stochastic processes," *Jour. Royal Stat. Soc. B21*, 239, 1959.
- [13] S. W. Roberts, "Control chart tests based on geometric moving averages," *Technometrics*, **1**, 239, 1959.
- [14] G. E. P. Box and G. M. Jenkins, "Some statistical aspects of adaptive optimization and control," *Jour. Royal Stat. Soc. B24*, 297, 1962.
- [15] G. E. P. Box and G. M. Jenkins, "Further contributions to adaptive quality control: simultaneous estimation of dynamics; non-zero costs," *Bull. Int'l Stat. Inst.*, **34th** Session, 943, Ottawa, Canada, 1963.
- [16] G. E. P. Box and G. M. Jenkins, "Mathematical models for adaptive control and optimization," *4th Ch. E. / Chem. E. Symp. Series*, **4**, 61, 1965.
- [17] G. E. P. Box, G. M. Jenkins and D. W. Bacon, "Models for forecasting seasonal and non-seasonal time series," *Advanced Seminar on Spectral Analysis of Time Series*, ed. B. Harris, 271, John Wiley, New York, 1967.
- [18] G. E. P. Box and G. M. Jenkins, "Discrete models for feedback and feedforward control," *The Future of Statistics*, ed. D. G. Watts, 201, Academic Press, New York, 1968.
- [19] G. E. P. Box and G. M. Jenkins, "Some recent advances in forecasting and control, I," *Appl. Stat.*, **17**, 91, 1968.
- [20] G. E. P. Box and G. M. Jenkins, "Discrete models for forecasting and control," *Encyclopedia of Linguistics, Information and Control*, 16², Pergamon Press, 1969.
- [21] K. D. Coughlin, "Digital computer controls paper machine," *Ind. Electron.*, **5**, 358, 1965.
- [22] C. C. Holt, "Forecasting trends and seasonals by exponentially weighted moving averages," *O.N.R. Memorandum*, No. 52, Carnegie Institute of Technology, 1957.
- [23] P. R. Winters, "Forecasting Sales by exponentially weighted moving averages," *Management Sci.*, **6**, 324, 1960.
- [24] G. U. Yule, "On a method of investigating periodicities in disturbed series, with special reference to Wölfel's sunspot numbers," *Phil. Trans.*, **A226**, 267, 1927.
- [25] J. W. Tukey, "Discussion emphasizing the connection between analysis of variance and spectrum analysis," *Technometrics*, **3**, 191, 1961.
- [26] G. E. P. Box and W. G. Hunter, "The experimental study of physical mechanisms," *Technometrics*, **7**, 23, 1965.
- [27] G. M. Jenkins and D. G. Watts, *Spectral Analysis and its Applications*, Holden-Day, San Francisco, 1968.
- [28] M. S. Bartlett, "On the theoretical specification of sampling properties of auto-correlated time series," *Jour. Royal Stat. Soc. B8*, 27, 1946.
- [29] M. G. Kendall, "On the analysis of oscillatory time series," *Jour. Royal Stat. Soc. B108*, 93, 1945.
- [30] A. Schuster, "On the investigation of hidden periodicities," *Terr. Mag.*, **3**, 13, 1898.
- [31] G. C. Stokes, "Note on searching for periodicities," *Proc. Royal Soc.*, **29**, 122, 1879.
- [32] G. Walker, "On periodicity in series of related terms," *Proc. Royal Soc. A131*, 518, 1931.
- [33] C. M. Stralkowski, "Lower order autoregressive-moving average stochastic models and their use for the characterization of abrasive cutting tools," Ph.D. Thesis, University of Wisconsin, 1968.
- [34] J. Durbin, "The fitting of time series models," *Rev. Int. Inst. Stat.*, **28**, 233, 1960.
- [35] M. H. Quenouille, "Approximate tests of correlation in time series," *Jour. Royal Stat. Soc. B11*, 68, 1949.
- [36] G. M. Jenkins, "Tests of hypotheses in the linear autoregressive model," *Biometrika*, **41**, 405, 1954.
- [37] H. E. Daniels, "The approximate distribution of serial correlation coefficients," *Biometrika*, **43**, 169, 1956.

- [38] A. M. Yaglom. "The correlation theory of processes whose n th difference constitute a stationary process." *Matem. Sb.*, **37** (79), 141, 1955.
- [39] L. A. Zadeh and J. R. Ragazzini. "An extension of Wiener's theory of prediction." *Jour. of App. Phys.*, **21**, 645, 1950.
- [40] R. E. Kalman. "A new approach to linear filtering and prediction problems." *Jour. of Basic Eng.*, Series D82, 35, 1960.
- [41] R. E. Kalman and R. S. Bucy. "New results in linear filtering and prediction theory." *Jour. of Basic Eng.*, Series D83, 5, 1961.
- [42] G. E. P. Box and D. R. Cox. "An analysis of transformations." *Jour. Royal Stat. Soc.*, **B26**, 211, 1964.
- [43] J. F. Muhi. "Optimal properties of exponentially weighted forecasts of time series with permanent and transitory components." *Jour. Amer. Stat. Assoc.*, **55**, 299, 1960.
- [44] H. O. Wold. *A Study in the Analysis of Stationary Time Series*. Almqvist and Wiksell, Uppsala, 1938 (2nd. ed. 1954).
- [45] A. Kolmogoroff. "Sur l'interpolation et l'extrapolation des suites stationnaires." *C.R. Acad. Sci. Paris*, **208**, 2043, 1939.
- [46] A. Kolmogoroff. "Stationary sequences in Hilbert space." *Bull. Math. Univ. Moscow* 2, No. 6, 1941.
- [47] A. Kolmogoroff. "Interpolation und Extrapolation von stationären zufälligen folgen." *Bull. Acad. Sci. (Nauk) U.S.S.R., Ser. Math.*, **5**, 2, 1941.
- [48] N. Wiener. *Extrapolation, Interpolation and Smoothing of Stationary Time Series*. John Wiley, New York, 1949.
- [49] P. Whittle. *Prediction and Regulation by Linear Least-Squares Methods*. English Universities Press, London, 1963.
- [50] R. G. Brown and R. F. Meyer. "The fundamental theorem of exponential smoothing." *Operations Res.*, **9**, 673, 1961.
- [51] L. Bachelier. "Théorie de la spéculation." *Ann. Sci. Éc. norm. sup., Paris, Series 3*, **17**, 21, 1900.
- [52] R. L. Anderson. "Distribution of the serial correlation coefficient." *Ann. Math. Stat.*, **13**, 1, 1942.
- [53] A. Schuster. "On the periodicities of sunspots." *Phil. Trans. Royal Soc.*, **A206**, 69, 1906.
- [54] P. A. P. Moran. "Some experiments in the prediction of sunspot numbers." *Jour. Royal Stat. Soc., B16*, 112, 1954.
- [55] G. T. Wilson. "Factorization of the generating function of a pure moving average process." *SIAM Jour. Num. Analysis*, **6**, 1, 1969.
- [56] R. A. Fisher. *Statistical Methods and Scientific Inference*. Oliver and Boyd, Edinburgh, 1956.
- [57] G. A. Barnard. "Statistical inference." *Jour. Royal Stat. Soc., B11*, 116, 1949.
- [58] A. Birnbaum. "On the foundations of statistical inference." *Jour. Amer. Stat. Assoc.*, **57**, 269, 1962.
- [59] C. R. Rao. *Linear Statistical Inference and Its Applications*. John Wiley, New York, 1965.
- [60] G. E. P. Box and N. R. Draper. "The Bayesian estimation of common parameters from several responses." *Biometrika*, **52**, 355, 1965.
- [61] S. S. Wilks. *Mathematical Statistics*. John Wiley, New York, 1962.

- [62] G. W. Booth and T. I. Peterson. "Non-linear estimation." *IBM Share Program, Pa. No. 687 WL NLL*, 1958.
- [63] D. W. Marquardt. "An algorithm for least squares estimation of non-linear parameters." *Jour. Soc. Ind. Appl. Math.*, **11**, 431, 1963.
- [64] L. J. Savage. *The Foundations of Statistical Inference*. Methuen, London, 1962.
- [65] H. Jeffreys. *Theory of Probability*, 3rd. ed. Clarendon Press, Oxford, 1961.
- [66] G. E. P. Box and G. C. Tiao. *Bayesian Inference*. Addison-Wesley, Reading, 1973.
- [67] G. M. Jenkins. contribution to the discussion of the paper "Relationships between Bayesian and confidence limits for predictors" by A. R. Thatcher. *Jour. Royal Statist. Soc.*, **B26**, 176, 1964.
- [68] E. A. Cornish. "The multivariate t -distribution associated with a set of normal sample deviates." *Aust. Jour. Phys.*, **7**, 531, 1954.
- [69] C. W. Dunnett and M. Sobel. "A bivariate generalization of Student's t -distribution, with tables for special cases." *Biometrika*, **31**, 153, 1954.
- [70] G. A. Barnard. "The logic of least squares." *Jour. Royal Stat. Soc.*, **B25**, 124, 1963.
- [71] R. L. Plackett. *Principles of Regression Analysis*. Clarendon Press, Oxford, 1960.
- [72] F. J. Anscombe. "Examination of residuals." *Proc. 4th Berkeley Symp.*, **1**, 1961.
- [73] F. J. Anscombe and J. W. Tukey. "The examination and analysis of residuals." *Technometrics*, **5**, 141, 1963.
- [74] C. Daniel. "Use of half normal plots in interpreting factorial experiments." *Technometrics*, **1**, 311, 1959.
- [75] J. Durbin. "Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables." *Econometrica*, **38**, 410, 1970.
- [76] J. Durbin. "An alternative to the bounds test for testing serial correlation in least squares regression." *Econometrica*, **38**, 422, 1970.
- [77] G. E. P. Box and D. A. Pierce. "Distribution of residual autocorrelations in autoregressive-integrated moving average time series models." *Jour. Amer. Stat. Assoc.*, **64**, 1509, 1970.
- [78] M. S. Bartlett. *Stochastic Processes*. Cambridge University Press, Cambridge, 1955.
- [79] A. Hald. *Statistical Theory with Engineering Applications*. John Wiley, New York, 1952.
- [80] D. W. Bacon. "Seasonal time series." Ph.D. Thesis, University of Wisconsin, Madison, 1965.
- [81] A. J. Young. *An Introduction to Process Control Systems Design*. Longman Green, New York, 1955.
- [82] J. O. Houghen. *Experience and Experiments with Process Dynamics*. Chemical Engineering Progress Monograph Series, **60**, No. 4, 1964.
- [83] K. D. Kotmar, G. E. P. Box and R. J. Altpeter. "A discrete predictor-controller applied to sinusoidal perturbation adaptive optimization." *Instr. Soc. Amer. Trans.*, **5**, 225, 1966.
- [84] D. A. Pierce. "Distribution of residual correlations in dynamic stochastic time series models." *University of Wisconsin Tech Rep 173*, August 1968.

- [85] G. E. P. Box, G. M. Jenkins and D. W. Wichern. "Least squares analysis with a dynamic model." *University of Wisconsin Technical Report 105*. 1967.
- [86] G. E. P. Box. "Use and abuse of regression." *Techometrics*, **8**, 625. 1966.
- [87] P. Whittle. "Estimation and Information in Stationary time series." *Arkiv für Mathematik*, **2**, 423. 1953.
- [88] G. A. Barnard, G. M. Jenkins and C. B. Winster. "Likelihood inference and time series." *Jour. Royal Stat. Soc., A125*, 321. 1962.
- [89] M. G. Kendall and A. Stuart. *The Advanced Theory of Statistics*, Vol. 3. Griffin. London. 1966.
- [90] G. Tintner. *The Variate Difference Method*. Principia Press. Bloomington. Indiana. 1940.
- [91] G. Tintner and J. N. K. Rao. "On the variate difference method." *Australian Journal of Statistics*, **5**, 106. 1963.
- [92] E. Slutsky. "The summation of random causes as the source of cyclic processes" (Russian). *Problems of Economic Conditions*, **3**, 1. 1927. English trans. in *Econometrica*, **5**, 105. 1937.
- [93] H. B. Mann and A. Wald. "On the statistical treatment of linear stochastic difference equations." *Econometrica*, **11**, 173. 1943.
- [94] T. C. Koopmans. "Serial correlation and quadratic forms in normal variables." *Ann. Math. Stat.*, **13**, 14. 1942.
- [95] T. C. Koopmans (ed.). *Statistical Inference in Dynamic Economic Models*. John Wiley. New York. 1950.
- [96] D. R. Cox. "Prediction by exponentially weighted moving averages and related methods." *Jour. Royal Stat. Soc., B23*, 41. 1961.
- [97] E. J. Hannan. *Time Series Analysis*. Methuen. London. 1960.
- [98] U. Grenander and M. Rosenblatt. *Statistical Analysis of Stationary Time Series*. John Wiley. New York. 1957.
- [99] M. H. Quenouille. *Analysis of Multiple Time Series*. Hafner. New York. 1957.
- [100] M. H. Quenouille. *Associated Measurements*. Butterworth. London. 1952.
- [101] P. Whittle. *Hypothesis Testing in Time Series Analysis*. University of Uppsala publication. 1951.
- [102] J. L. Doob. *Stochastic Processes*. John Wiley. New York. 1953.
- [103] E. A. Robinson. *Multichannel Time Series Analysis*. Holden-Day. San Francisco. 1967.
- [104] G. E. P. Box and G. C. Tiao. "Multiparameter problems from a Bayesian point of view." *Ann. Math. Statist.*, **36**, 1468. 1968.
- [105] P. M. Reilly. *Personal Communication*. 1967.
- [106] B. Noble. *Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations*. Pergamon Press. New York. 1958.
- [107] G. T. Wilson. "Optimal Control—A General Method of Obtaining the Feedback Scheme which Minimizes the Output Variance, Subject to a Constraint on the Variability of the Control Variable." Technical Report No. 20. Dept. of Systems Engineering. University of Lancaster.
- [108] D. W. Wichern. "The behaviour of the sample autocorrelation function for an integrated moving average process." *Biometrika*, **60**, 235. 1973.

Time Series Data Analysis and Theory

David R. Brillinger,
The University of California, Berkeley

The initial basis of this work was a series of lectures that I presented to the members of Department 1215 of Bell Telephone Laboratories, Murray Hill, New Jersey, during the summer of 1967. Ram Gnanadesikan of that Department encouraged me to write the lectures up in a formal manner. Many of the worked examples that are included were prepared that summer at the Laboratories using their GE 645 computer and associated graphical devices.

The lectures were given again, in a more elementary and heuristic manner, to graduate students in Statistics at the University of California, Berkeley, during the Winter and Spring Quarters of 1968 and later to graduate students in Statistics and Econometrics at the London School of Economics during the Lent Term, 1969. The final manuscript was completed in mid 1972. It is hoped that the references provided are near complete for the years before then.

I feel that the book will prove useful as a text for graduate level courses in time series analysis and also as a reference book for research workers interested in the frequency analysis of time series. Throughout, I have tried to set down precise definitions and assumptions whenever possible. This undertaking has the advantage of providing a firm foundation from which to reach for real-world applications. The results presented are generally far from the best possible, however, they have the advantage of flowing from a single important mixing condition that is set down early and gives continuity to the book.

Because exact results are simply not available, many of the theorems of the work are asymptotic in nature. The applied worker need not be put off by this. These theorems have been set down in the spirit that the indicated

HOLT, RINEHART AND WINSTON, INC.
New York Chicago San Francisco Atlanta
Dallas Montreal Toronto London Sydney

asymptotic moments and distributions may provide reasonable approximations to the desired finite sample results. Unfortunately not too much work has gone into checking the accuracy of the asymptotic results, but some references are given.

The reader will note that the various statistics presented are immediate functions of the discrete Fourier transforms of the observed values of the time series. Perhaps this is what characterizes the work of this book. The discrete Fourier transform is given such prominence because it has important empirical and mathematical properties. Also, following the work of Cooley and Tukey (1965), it may be computed rapidly. The definitions, procedures, techniques, and statistics discussed are, in many cases, simple extensions of existing multiple regression and multivariate analysis techniques. This pleasant state of affairs is indicative of the widely pervasive nature of the important statistical and data analytic procedures.

The work is split into two volumes. This volume is, in general, devoted to aspects of the linear analysis of stationary vector-valued time series. Volume Two, still in preparation, is concerned with nonlinear analysis and the extension of the results of this volume to stationary vector-valued continuous series, spatial series, and vector-valued point processes.

Dr. Colin Mallows of Bell Telephone Laboratories provided the author with detailed comments on a draft of this volume. Professor Ingram Olkin of Stanford University also commented on the earlier chapters of that draft. Mr. Jostein Lillesööl read through the galleys. Their suggestions were most helpful.

I learned time series analysis from John W. Tukey. I thank him now for all the help and encouragement he has provided.

D.R.B.

Berkeley, California
June, 1974

CONTENTS

Preface	vii
1 The Nature of Time Series and Their Frequency Analysis	1
1.1 Introduction	1
1.2 A Reason for Harmonic Analysis	7
1.3 Mixing	8
1.4 Historical Development	9
1.5 The Uses of the Frequency Analysis	10
1.6 Inference on Time Series	12
1.7 Exercises	13
2 Foundations	16
2.1 Introduction	16
2.2 Stochastics	17
2.3 Cumulants	19
2.4 Stationarity	22
2.5 Second-Order Spectra	23
2.6 Cumulant Spectra of Order k	25
2.7 Filters	27
2.8 Invariance Properties of Cumulant Spectra	34
2.9 Examples of Stationary Time Series	35
2.10 Examples of Cumulant Spectra	39
2.11 The Functional and Stochastic Approaches to Time Series Analysis	41
2.12 Trends	43
2.13 Exercises	44

3 Analytic Properties of Fourier Transforms and Complex Matrices

49

3.1	Introduction	49
3.2	Fourier Series	49
3.3	Convergence Factors	52
3.4	Finite Fourier Transforms and Their Properties	60
3.5	The Fast Fourier Transform	64
3.6	Applications of Discrete Fourier Transforms	67
3.7	Complex Matrices and Their Extreme Values	70
3.8	Functions of Fourier Transforms	75
3.9	Spectral Representations in the Functional Approach to Time Series	80
3.10	Exercises	82

6	Analysis of A Linear Time Invariant Relation Between A Stochastic Series and Several Deterministic Series	186
6.1	Introduction	186
6.2	Least Squares and Regression Theory	188
6.3	Heuristic Construction of Estimates	192
6.4	A Form of Asymptotic Distribution	194
6.5	Expected Values of Estimates of the Transfer Function and Error Spectrum	196
6.6	Asymptotic Covariances of the Proposed Estimates	200
6.7	Asymptotic Normality of the Estimates	203
6.8	Estimating the Impulse Response	204
6.9	Confidence Regions	206
6.10	A Worked Example	209
6.11	Further Considerations	219
6.12	A Comparison of Three Estimates of the Impulse Response	223
6.13	Uses of the Proposed Technique	225
6.14	Exercises	227

4 Stochastic Properties of Finite Fourier Transforms

88

4.1	Introduction	88
4.2	The Complex Normal Distribution	89
4.3	Stochastic Properties of the Finite Fourier Transform	90
4.4	Asymptotic Distribution of the Finite Fourier Transform	94
4.5	Probability 1 Bounds	98
4.6	The Cramér Representation	100
4.7	Principal Component Analysis and its Relation to the Cramér Representation	106
4.8	Exercises	109

7	Estimating The Second-Order Spectra of Vector-Valued Series	232
7.1	The Spectral Density Matrix and its Interpretation	232
7.2	Second-Order Periodograms	235
7.3	Estimating the Spectral Density Matrix by Smoothing	242
7.4	Consistent Estimates of the Spectral Density Matrix	247
7.5	Construction of Confidence Limits	252
7.6	The Estimation of Related Parameters	254
7.7	Further Considerations in the Estimation of Second-Order Spectra	260
7.8	A Worked Example	267
7.9	The Analysis of Series Collected in an Experimental Design	276
7.10	Exercises	279

5 The Estimation of Power Spectra

116

5.1	Power Spectra and Their Interpretation	116
5.2	The Periodogram	120
5.3	Further Aspects of the Periodogram	128
5.4	The Smoothed Periodogram	131
5.5	A General Class of Spectral Estimates	142
5.6	A Class of Consistent Estimates	146
5.7	Confidence Intervals	151
5.8	Bias and Prefiltering	154
5.9	Alternate Estimates	160
5.10	Estimating the Spectral Measure and Autocovariance Function	166
5.11	Departures from Assumptions	172
5.12	The Uses of Power Spectrum Analysis	179
5.13	Exercises	181
8.1	Introduction	286
8.2	Analogous Multivariate Results	287
8.3	Determination of an Optimum Linear Filter	295
8.4	Heuristic Interpretation of Parameters and Construction of Estimates	299
8.5	A Limiting Distribution for Estimates	304
8.6	A Class of Consistent Estimates	306
8.7	Second-Order Asymptotic Moments of the Estimates	309

6	Analysis of A Linear Time Invariant Relation Between A Stochastic Series and Several Deterministic Series	186
---	--	-----

8.8	Asymptotic Distribution of the Estimates	313
8.9	Confidence Regions for the Proposed Estimates	314
8.10	Estimation of the Filter Coefficients	317
8.11	Probability 1 Bounds	321
8.12	Further Considerations	322
8.13	Alternate Forms of Estimates	325
8.14	A Worked Example	330
8.15	Uses of the Analysis of this Chapter	331
8.16	Exercises	332

9 Principal Components in The Frequency Domain 337

9.1	Introduction	337
9.2	Principal Component Analysis of Vector-Valued Variates	339
9.3	The Principal Component Series	344
9.4	The Construction of Estimates and Asymptotic Properties	348
9.5	Further Aspects of Principal Components	353
9.6	A Worked Example	355
9.7	Exercises	364

10 The Canonical Analysis of Time Series 367

10.1	Introduction	367
10.2	The Canonical Analysis of Vector-Valued Variates	368
10.3	The Canonical Variate Series	379
10.4	The Construction of Estimates and Asymptotic Properties	384
10.5	Further Aspects of Canonical Variates	388
10.6	Exercises	390

Proofs of Theorems

References

Notation Index

Author Index

Subject Index

THE NATURE OF TIME SERIES AND THEIR FREQUENCY ANALYSIS

1.1 INTRODUCTION

In this work we will be concerned with the examination of r vector-valued functions

$$\begin{bmatrix} X_1(t) \\ \vdots \\ X_r(t) \end{bmatrix} \quad (1.1.1)$$

where $X_j(t), j = 1, \dots, r$ is real-valued and t takes on the values $0, \pm 1, \pm 2, \dots$. Such an entity of measurements will be referred to as an r vector-valued time series. The index t will often refer to the time of recording of the measurements.

An example of a vector-valued time series is the collection of mean monthly temperatures recorded at scattered locations. Figure 1.1.1 gives such a series for the locations listed in Table 1.1.1. Figure 1.1.2 indicates the positions of these locations. Such data may be found in *World Weather Records* (1965). This series was provided by J. M. Craddock, Meteorological Office, Bracknell. Another example of a vector-valued time series is the set of signals recorded by an array of seismometers in the aftermath of an earthquake or nuclear explosion. These signals are discussed in Keen et al (1965) and Carpenter (1965). Figure 1.1.3 presents an example of such a record.

$$\begin{aligned} \mathbf{A}'(\lambda) &= \mathbf{A}(\lambda)\mathbf{f}_{xx}(\lambda)^{1/2} \\ \mathbf{B}'(\lambda) &= \mathbf{B}(\lambda)\mathbf{f}_{yy}(\lambda)^{1/2}. \end{aligned}$$

By Schwarz's inequality the coherence is

$$\begin{aligned} &\frac{\mathbf{B}'(\lambda)\mathbf{f}_{yy}(\lambda)^{-1/2}\mathbf{f}_{yx}(\lambda)\mathbf{f}_{xx}(\lambda)^{1/2}\mathbf{f}_{xy}(\lambda)\mathbf{f}_{yy}(\lambda)^{-1/2}\mathbf{B}'(\lambda)}{\mathbf{B}'(\lambda)\mathbf{B}'(\lambda)} \\ &\leq \mu_j\|\mathbf{f}_{xy}(\lambda)^{-1/2}\mathbf{f}_{yx}(\lambda)\mathbf{f}_{xx}(\lambda)^{-1/2}\mathbf{f}_{xy}(\lambda)\mathbf{f}_{yy}(\lambda)^{-1/2}] \end{aligned}$$

for $\mathbf{B}'(\lambda)$ orthogonal to $\mathbf{V}_1(\lambda), \dots, \mathbf{V}_{j-1}(\lambda)$ the first $j - 1$ latent vectors of $\mathbf{f}_{yy}^{-1}\mathbf{f}_{yx}\mathbf{f}_{xx}^{-1}\mathbf{f}_{xy}\mathbf{f}_{yy}^{1/2}$ by Exercise 3.10.26. Expression (10.3.25) indicates that $\mathbf{B}_j(\lambda)$ is as indicated in the theorem; that $\mathbf{A}_j(\lambda)$ achieves equality follows by inspection.

Proof of Theorem 10.3.3 Because the latent roots of $\mathbf{f}_{yx}\mathbf{f}_{xx}^{-1}\mathbf{f}_{xy}$ are simple for all λ , its latent roots and vectors are real holomorphic functions of the entries, see Exercises 3.10.19–21. Expressions (10.3.28) and (10.3.29) now follow from Theorem 3.8.3. Expression (10.3.30) follows from (10.3.26) to (10.3.29).

Proof of Theorem 10.3.4 Because the latent roots of $\mathbf{f}_{yy}^{-1/2}\mathbf{f}_{yx}\mathbf{f}_{xx}^{-1}\mathbf{f}_{xy}\mathbf{f}_{yy}^{1/2}$ are simple for all λ , its latent roots and vectors are real holomorphic functions of its entries; see Exercises 3.10.19 to 3.10.21. Expressions (10.3.33) and (10.3.34) now follow from Theorem 3.8.3. That the spectral density is (10.3.36) either follows from Theorem 10.3.1 or by direct computation. *Proof of Theorem 10.4.1* This follows as did the proof of Theorem 9.4.1 with the exception that the perturbation expansions of the proof of Theorem 10.2.6 are now used.

Proof of Theorem 10.4.2 This follows from the above perturbation expansions in the manner of the proof of Theorem 10.2.6.

Proof of Theorem 10.4.3 The $\hat{\mu}_j$, $\hat{\mathbf{A}}_j$, and $\hat{\mathbf{B}}_j$ are continuous functions of the entries of (10.4.25). The theorem consequently follows from Theorem 7.3.3 and Theorem P5.1.

REFERENCES

- ABELSON, R. (1955). *Spectral analysis and the study of individual differences*. Ph.D. Thesis, Princeton University.
- ABRAMOWITZ, M., and STEGUN, I. A. (1964). *Handbook of Mathematical Functions*. Washington: National Bureau of Standards.
- ACZÉL, J. (1969). *On Applications and Theory of Functional Equations*. Basel: Birkhäuser.
- AITKEN, A. C. (1954). *Determinants and Matrices*. London: Oliver and Boyd.
- AKAIKE, H. (1960). "Effect of tuning-error on the power spectrum of sampled data." *Ann. Inst. Statist. Math.* **11**:145–165.
- AKAIKE, H. (1962a). "Undamped oscillation of the sample autocovariance function and the effect of prewhitening operation." *Ann. Inst. Statist. Math.* **13**:127–144.
- AKAIKE, H. (1962b). "On the design of lag windows for the estimation of spectra." *Ann. Inst. Statist. Math.* **14**:1–21.
- AKAIKE, H. (1964). "Statistical measurement of frequency response function." *Ann. Inst. Statist. Math.*, Suppl. III: 15:5–17.
- AKAIKE, H. (1965). "On the statistical estimation of the frequency response function of a system having multiple input." *Ann. Inst. Statist. Math.* **17**:185–210.
- AKAIKE, H. (1966). "On the use of a non-Gaussian process in the identification of a linear dynamic system." *Ann. Inst. Statist. Math.* **18**:269–276.
- AKAIKE, H. (1968a). "Low pass filter design." *Ann. Inst. Statist. Math.* **20**:271–298.
- AKAIKE, H. (1968b). "On the use of an index of bias in the estimation of power spectra." *Ann. Inst. Statist. Math.* **20**:55–69.
- AKAIKE, H. (1969a). "A method of statistical investigation of discrete time parameter linear systems." *Ann. Inst. Statist. Math.* **21**:225–242.
- AKAIKE, H. (1969b). "Fitting autoregressive models for prediction." *Ann. Inst. Statist. Math.* **21**:243–247.

- AKAIKE, H., and K. NESHIGE, I. (1964). "An analysis of statistical response of backslash." *Ann. Inst. Statist. Math.*, Suppl. III. **15**:99-102.
- AKAIKE, H., and YAMANOUCHI, Y. (1962). "On the statistical estimation of frequency response function." *Ann. Inst. Statist. Math.* **14**:23-36.
- AKCASU, A. Z. (1961). "Measurement of noise power spectra by Fourier analysis." *J. Appl. Physics*. **32**:565-568.
- AKHIEZER, N. I. (1956). *Theory of Approximation*. New York: Ungar.
- ALBERT, A. (1964). "On estimating the frequency of a sinusoid in the presence of noise." *Ann. Math. Statist.* **35**:1403.
- ALBERTS, W. W., WRIGHT, L. E., and FEINSTEIN, B. (1965). "Physiological mechanisms of tremor and rigidity in Parkinsonism." *Confin. Neurol.* **26**:318-327.
- ALEXANDER, M. J., and VOK, C. A. (1963). *Tables of the cumulative distribution of sample multiple coherence*. Res. Rep. 63-67. Rockeydyne Division, North American Aviation Inc.
- AMOS, D. E., and KOOPMANS, L. H. (1962). *Tables of the distribution of the coefficient of coherence for stationary bivariate Gaussian processes*. Sandia Corporation Monograph SCR-483.
- ANDERSON, G. A. (1965). "An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix." *Ann. Math. Statist.* **36**:1153-1173.
- ANDERSON, T. W. (1957). *An Introduction to Multivariate Statistical Analysis*. New York: Wiley.
- ANDERSON, T. W. (1963). "Asymptotic theory for principal component analysis." *Ann. Math. Statist.* **34**:122-148.
- ANDERSON, T. W. (1971). *Statistical Analysis of Time Series*. New York: Wiley.
- ANDERSON, T. W., and WALKER, A. M. (1964). "On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process." *Ann. Math. Statist.* **35**:1296-1303.
- ARATO, M. (1961). "Sufficient statistics of stationary Gaussian processes." *Theory Prob. Appl.* **6**:199-201.
- AREN'S, R., and CALDERON, A. P. (1955). "Analytic functions of several Banach algebra elements." *Ann. Math.* **62**:204-216.
- ASCHOFF, J. (1965). *Circadian Clocks*. Amsterdam: North Holland.
- AUTONNE, L. (1915). "Sur les matrices hypohermitiennes et sur les matrices unitaires." *Ann. Univ. Lyon*. **38**:1-77.
- BALAKRISHNAN, A. V. (1964). "A general theory of nonlinear estimation problems in control systems." *J. Math. Anal. App.* **8**:4-30.
- BARLOW, J. S. (1967). "Correlation analysis of EEG-tremor relationships in man." In *Recent Advances in Clinical Neurophysiology, Electroenceph. Clin. Neurophysiol.* Suppl. **25**:167-177.
- BARTLETT, M. S. (1946). "On the theoretical specification of sampling properties of auto-correlated time series." *J. Roy. Statist. Soc., Suppl.* **8**:27-41.
- BARTLETT, M. S. (1948a). "A note on the statistical estimation of supply and demand relations from time series." *Econometrica* **16**:323-329.
- BARTLETT, M. S. (1948b). "Smoothing periodograms from time series with continuous spectra." *Nature*. **161**:686-687.
- BARTLETT, M. S. (1950). "Periodogram analysis and continuous spectra." *Biometrika*. **37**:1-16.
- BARTLETT, M. S. (1966). *An Introduction to Stochastic Processes*, 2nd ed. Cambridge: Cambridge Univ. Press.
- BARTLETT, M. S. (1967). "Some remarks on the analysis of time series." *Biometrika*. **50**:25-38.
- BASS, J. (1962a). "Transformées de Fourier des fonctions pseudo-aléatoires." *C. R. Acad. Sci.* **254**:3072.
- BASS, J. (1962b). *Les Fonctions Pseudo-aléatoires*. Paris: Gauthier-Villars.
- BATCHELOR, G. K. (1960). *The Theory of Homogeneous Turbulence*. Cambridge: Cambridge Univ. Press.
- BAXTER, G. (1963). "A norm inequality for a finite section Wiener-Hopf equation." *Ill. J. Math.* **7**:97-103.
- BELLMAN, R. (1960). *Introduction to Matrix Analysis*. New York: McGraw-Hill.
- BENDAT, J. S., and PIERSOL, A. (1966). *Measurement and Analysis of Random Data*. New York: Wiley.
- BERANEK, L. L. (1954). *Acoustics*. New York: McGraw-Hill.
- BERGLUND, G. D. (1967). "The fast Fourier transform recursive equations for arbitrary length records." *Math. Comp.* **21**:236-238.
- BERNSTEIN, S. (1938). "Équations différentielles stochastiques." *Act. Sci. Ind.* **738**:5-31.
- BERTRAND, J., and LACAPE, R. S. (1943). *Théorie de l'Electro-encephalogram*. Paris: G. Doin.
- BERTRANDIAS, J. B. (1960). "Sur le produit de deux fonctions pseudo-aléatoires." *C. R. Acad. Sci.* **250**:263.
- BERTRANDIAS, J. B. (1961). "Sur l'analyse harmonique généralisée des fonctions pseudo-aléatoires." *C. R. Acad. Sci.* **253**:2829.
- BEVERIDGE, W. H. (1921). "Weather and harvest cycles." *Econ. J.* **31**:429.
- BEVERIDGE, W. H. (1922). "Wheat prices and rainfall in Western Europe." *J. Roy. Statist. Soc.* **85**:412-459.
- BILLINGSLEY, P. (1965). *Erodic Theory and Information*. New York: Wiley.
- BILLINGSLEY, P. (1966). "Convergence of types in λ -space." *Zeit. Wahrschein.* **5**:175-179.
- BILLINGSLEY, P. (1968). *Convergence of Probability Measures*. New York: Wiley.
- BINGHAM, C., GODFREY, M. D., and TUKEY, J. W. (1967). "Modern techniques in power spectrum estimation." *IEEE Trans. Audio Electroacoust.* AU-15:56-66.
- BLACKMAN, R. B. (1965). *Linear Data Smoothing and Prediction in Theory and Practice*. Reading, Mass.: Addison-Wesley.
- BLACKMAN, R. B., and TUKEY, J. W. (1958). "The measurement of power spectra from the point of view of communications engineering." *Bell Syst. Tech. J.* **37**:183-282, 485-569.
- BLANC-LAPIERRE, A., and FORTET, R. (1953). *Théorie des Fonctions Aléatoires*. Paris: Masson.
- BLANC-LAPIERRE, A., and FORTET, R. (1965). *Theory of Random Functions*. New York: Gordon and Breach. Translation of 1953 French edition.

- BOCHNER, S. (1936). "Summation of multiple Fourier series by spherical means." *Trans. Amer. Math. Soc.* **40**:175-207.
- BOCHNER, S. (1959). *Lectures on Fourier Integrals*. Princeton: Princeton Univ. Press.
- BOCHNER, S. and MARTIN, W. T. (1948). *Several Complex Variables*. Princeton Univ. Press.
- BODE, H. W. (1945). *Network Analysis and Feedback Amplifier Design*. New York: Van Nostrand.
- BOYMAN, H. (1960). "Approximate Fourier analysis of distribution functions." *Ark. Mat.* **4**:99-157.
- BORN, M. and WOLF, E. (1959). *Principles of Optics*. London: Pergamon.
- BOWLEY, A. L. (1920). *Elements of Statistics*. London: King.
- BOX, G. E. P. (1954). "Some theorems on quadratic forms applied in the study of analysis of variance problems." *Ann. Math. Statist.* **25**:290-302.
- BOX, G. E. P. and JENKINS, G. M. (1970). *Time Series Analysis, Forecasting and Control*. San Francisco: Holden-Day.
- BRACEWELL, R. (1965). *The Fourier Transform and its Applications*. New York: McGraw-Hill.
- BRENNER, J. L. (1961). "Expanded matrices from matrices with complex elements." *SIAM Review* **3**:165-166.
- BRIGHAM, E. O. and MORROW, R. E. (1967). "The fast Fourier transform." *IEEE Spectrum* **4**:63-70.
- BRILLINGER, D. R. (1964a). "The generalization of the techniques of factor analysis: canonical correlation and principal components to stationary time series." Invited paper at Royal Statistical Society Conference in Cardiff, Wales. Sept. 25-Oct. 1.
- BRILLINGER, D. R. (1964b). "A technique for estimating the spectral density matrix of two signals." *Proc. I.E.E.E.* **52**:103-104.
- BRILLINGER, D. R. (1964c). "The asymptotic behavior of Tukey's general method of setting approximate confidence limits (the jackknife) when applied to maximum likelihood estimates." *Rel. Inter. Statist. Inst.* **32**:202-206.
- BRILLINGER, D. R. (1965a). "A property of low-pass filters." *SIAM Review* **7**:65-67.
- BRILLINGER, D. R. (1965b). "An introduction to polyspectra." *Ann. Math. Statist.* **36**:1351-1374.
- BRILLINGER, D. R. (1966a). "An extremal property of the conditional expectation." *Biometrika* **53**:594-595.
- BRILLINGER, D. R. (1966b). "The application of the jackknife to the analysis of sample surveys." *Commentary* **8**:74-80.
- BRILLINGER, D. R. (1968). "Estimation of the cross-spectrum of a stationary trivariate Gaussian process from its zeros." *J. Roy. Statist. Soc., B.* **30**:145-159.
- BRILLINGER, D. R. (1969a). "A search for a relationship between monthly sunspot numbers and certain climatic series." *Bull. ISI* **43**:293-306.
- BRILLINGER, D. R. (1969b). "The calculation of cumulants via conditoning." *Ann. Inst. Statist. Math.* **21**:215-218.
- BRILLINGER, D. R. (1969c). "Asymptotic properties of spectral estimates of second-order." *Biometrika* **56**:375-390.
- BOCHNER, S. (1969d). "The canonical analysis of stationary time series." In *Multivariate Analysis — II*. Ed. P. R. Krishnaiah, pp. 331-350. New York: Academic.
- BRILLINGER, D. R. (1970a). "The identification of polynomial systems by means of higher order spectra." *J. Sound Vib.* **12**:301-313.
- BRILLINGER, D. R. (1970b). "The frequency analysis of relations between stationary spatial series." *Proc. Twelfth Bienn. Sem. Canadian Math. Congr.*, Ed. R. Pyke, pp. 39-81. Montreal: Can. Math. Congr.
- BRILLINGER, D. R. (1972). "The spectral analysis of stationary interval functions." In *Proc. Seventh Berkeley Symp. Prob. Statist.* Eds. L. LeCam, J. Neyman, and E. L. Scott, pp. 483-513. Berkeley: Univ. of California Press.
- BRILLINGER, D. R. (1973). "The analysis of time series collected in an experimental design." *Multivariate Analysis — III*. Ed. P. R. Krishnaiah, pp. 241-256. New York: Academic.
- BRILLINGER, D. R. and HATANAKA, M. (1969). "An harmonic analysis of nonstationary multivariate economic processes." *Econometrica* **35**:131-141.
- BRILLINGER, D. R. and HATANAKA, M. (1970). "A permanent income hypothesis relating to the aggregate demand for money (an application of spectral and moving spectral analysis)." *Economic Studies Quart.* **21**:44-71.
- BRILLINGER, D. R. and ROSENBLATT, M. (1967a). "Asymptotic theory of k-th order spectra." *Spectral Analysis of Time Series*, Ed. B. Harris, pp. 153-188. New York: Wiley.
- BRILLINGER, D. R. and ROSENBLATT, M. (1967b). "Computation and interpretation of k-th order spectra." In *Spectral Analysis of Time Series*, Ed. B. Harris, pp. 189-232. New York: Wiley.
- BRILLINGER, D. R. and TUKEY, J. W. (1964). *Asymptotic variances, moments, cumulants and other average values*. Unpublished manuscript.
- BRYSON, R. A. and DUTTON, J. A. (1961). "Some aspects of the variance spectra of tree rings and varves." *Ann. New York Acad. Sci.* **95**:580-604.
- BULLARD, E. (1966). "The detection of underground explosions." *Sci. Am.* **215**:19.
- BUNIMOVITCH, V. I. (1949). The fluctuation process as a vibration with random amplitude and phase." *J. Teor. Phys. (USSR)* **19**:1237-1259.
- BURGERS, J. M. (1948). "Spectral analysis of an irregular function." *Proc. Acad. Sci. Amsterdam* **51**:1073.
- BURKHARDT, H. (1964). "Trigonometrische Reihen und Integrale." *Enzykl. Math. Wiss.* **2**:825-1354.
- BURLEY, S. P. (1969). "A spectral analysis of the Australian business cycle." *Austral. Econ. Papers* **8**:193-128.
- BUSINGER, P. A. and GOLUB, G. H. (1969). "Singular value decomposition of a complex matrix." *Comm. ACM* **12**:564-565.
- BUTZER, P. L. and NESSEL, R. J. (1971). *Fourier Analysis and Approximations*, Vol. 1. New York: Academic.
- CARNS, T. W. (1971). "On the fast Fourier transform on a finite Abelian group." *IEEE Trans. Computers* **C-20**:569-571.
- CAPON, J. (1969). "High resolution frequency wavenumber spectral analysis." *Proc. I.E.E.E.* **57**:1408-1418.

- CAPON, J. and GOODMAN, N. R. (1970). "Probability distributions for estimators of the frequency wavenumber spectrum." *Proc. I.E.E.E.* **58**:1785-1786.
- CARIGO, G. T. (1966). "Some extension of the integral test." *Amer. Math. Monthly* **73**:521-525.
- CARPENTER, E. W. (1965). "Explosions seismology." *Science* **147**:363-373.
- CARTWRIGHT, D. E. (1967). "Time series analysis of tides and similar motions of the sea surface." *J. Appl. Prob.* **4**:103-112.
- CHAMBERS, J. M. (1966). *Some methods of asymptotic approximation in multivariate statistical analysis*. Ph.D. Thesis, Harvard University.
- CHAMBERS, J. M. (1967). "On methods of asymptotic approximation for multivariate distributions." *Biometrika* **54**:367-384.
- CHANCE, B., PYE, K., and HIGGINS, J. (1967). "Waveform generation by enzymatic oscillators." *IEEE Spectrum* **4**:79-86.
- CHAPMAN, S., and BARTELS, J. (1951). *Geomagnetism*, Vol. 2. Oxford: Oxford Univ. Press.
- CHERNOFF, H., and LIEBERMAN, G. J. (1954). "Use of normal probability paper." *J. Amer. Statist. Assoc.* **49**:778-785.
- CHOKSI, J. R. (1966). "Unitary operators induced by measure preserving transformations." *J. Math. and Mech.* **16**:83-100.
- CHOW, G. C. (1966). "A theorem on least squares and vector correlation in multivariate linear regression." *J. Amer. Statist. Assoc.* **61**:413-414.
- CLEVENSON, M. L. (1970). *Asymptotically efficient estimates of the parameters of a moving average time series*. Ph.D. Thesis, Stanford University.
- CONDIT, H. R., and GRUM, F. (1964). "Spectral energy distribution of daylight." *J. Optical Soc. Amer.* **54**:937-944.
- CONSTANTINE, A. G. (1965). "Some noncentral distributions in multivariate analysis." *Ann. Math. Statist.* **34**:1270-1285.
- COOLEY, J. W., LEWIS, P. A. W., and WELCH, P. D. (1967a). "Historical notes on the fast Fourier transform." *IEEE Trans. on Audio and Electroacoustics*. AU-**15**:76-79.
- COOLEY, J. W., LEWIS, P. A. W., and WELCH, P. D. (1967b). *The fast Fourier transform algorithm and its applications*. IBM Memorandum RC 1743.
- COOLEY, J. W., LEWIS, P. A. W., and WELCH, P. D. (1970). "The application of the Fast Fourier Transform Algorithm to the estimation of spectra and cross-spectra." *J. Sound Vib.* **12**:339-352.
- COOLEY, J. W., and TUKEY, J. W. (1965). "An algorithm for the machine calculation of complex Fourier series." *Math. Comp.* **19**:297-301.
- COOTNER, P. H. (1964). *The Random Character of Stock Market Prices*. Cambridge: MIT Press.
- COVEYOU, R. R., and MACPHERSON, R. D. (1967). "Fourier analysis of uniform random number generators." *J. Assoc. Comp. Mach.* **14**:100-119.
- CRADDOCK, J. M. (1965). "The analysis of meteorological time series for use in forecasting." *Statistician* **15**:167-190.
- CRADDOCK, J. M., and FLOOD, C. R. (1969). "Eigenvectors for representing the 500 mb geopotential surface over the Northern Hemisphere." *Quart. J. Roy. Met. Soc.* **95**:576-593.
- CRAVEN, H. (1939). "On the representation of functions by certain Fourier integrals." *Trans. Amer. Math. Soc.* **46**:191-201.
- CRAVEN, H. (1942). "On harmonic analysis in certain functional spaces." *Arkiv Math. Astr. Fysik* **28**:1-7.
- CRAMÉR, H., and LEADBETTER, M. R. (1967). *Stationary and Related Stochastic Processes*. New York: Wiley.
- CRANDALL, I. B. (1958). *Random Vibration*, I. Cambridge: MIT Press.
- CRANDALL, I. B. (1963). *Random Vibration*, II. Cambridge: MIT Press.
- CRANDALL, I. B., and SACTA, C. F. (1924). "A dynamical study of the vowel sounds." *Bell Syst. Tech. J.* **3**:232-237.
- DANIELL, P. J. (1946). "Discussion of paper by M. S. Bartlett." *J. Roy. Statist. Soc. Suppl.* **8**:27.
- DANIELS, H. E. (1962). "The estimation of spectral densities." *J. Roy. Statist. Soc. B* **24**:185-198.
- DARRROCH, J. N. (1965). "An optimal property of principal components." *Ann. Math. Statist.* **36**:1579-1582.
- DARZELL, J. F., and PIERSON, W. J., Jr. (1960). *The apparent loss of coherence in rectilinear Gaussian processes due to computational procedures with applications to ship motions and random seas*. Report of Dept. of Meteorology and Oceanography, New York University.
- DAVIS, C., and KAHLAN, W. M. (1969). "Some new bounds on perturbation of subspaces." *Bull. Amer. Math. Soc.* **75**:863-868.
- DAVIS, R. C. (1953). "On the Fourier expansion of stationary random processes." *Proc. Amer. Math. Soc.* **24**:564-569.
- DEEMER, W. L., and OLKIN, I. (1951). "The Jacobians of certain matrix transformations." *Biometrika* **38**:345-367.
- DEMPSSTER, A. P. (1966). "Estimation in multivariate analysis." In *Multivariate Analysis*, Ed. P. R. Krishnaiah, pp. 315-334. New York: Academic.
- DEMPSSTER, A. P. (1969). *Continuous Multivariate Analysis*. Reading: Addison-Wesley.
- DEUTSCH, R. (1962). *Nonlinear Transformations of Random Processes*. Englewood Cliffs: Prentice-Hall.
- DICKEY, J. M. (1967). "Multivariate generalizations of the multivariate distributions and the inverted multivariate t distribution." *Ann. Math. Statist.* **38**:511-519.
- DOEBLIN, W. (1938). "Sur l'équation matricielle $A(u+s) = A(r)A(s)$ et ses applications aux probabilités en chaîne." *Bull. Sci. Math.* **62**:21-32.
- DOOB, J. L. (1953). *Stochastic Processes*. New York: Wiley.
- DRAPER, N. R., and SMITH, H. (1966). *Applied Regression Analysis*. New York: Wiley.
- DRESEL, P. L. (1940). "Semi-invariants and their estimates." *Ann. Math. Statist.* **11**:33-57.
- DUGUNDJI, J. (1958). "Envelopes and pre-envelopes of real waveforms." *IRE Trans. Inf. Theory* **IT-4**:53-57.
- DUNCAN, D. B., and JONES, R. H. (1966). "Multiple regression with stationary errors." *J. Amer. Statist. Assoc.* **61**:917-928.

- DUNFORD, N., and SCHWARTZ, J. T. (1963). *Linear Operators. Part II. New York: Wiley, Interscience.*
- DUNNETT, C. W., and SOBEL, M. (1954). "A bivariate generalization of Student's t -distribution, with tables for certain special cases." *Biométrika*. 41:153-169.
- DURBIN, J. (1954). "Errors in variables." *Rev. Inter. Statist. Inst.* 22:23-32.
- DURBIN, J. (1960). "Estimation of parameters in time series regression models." *J. Roy. Statist. Soc., B.* 22:139-153.
- DYNKIN, E. B. (1960). *Theory of Markov Processes*. London: Pergamon.
- ECKART, C., and YOUNG, G. (1936). "On the approximation of one matrix by another of lower rank." *Psychometrika*. 1:211-215.
- ECONOMIC TRENDS (1968). No. 178. London: Central Statistical Office.
- EDWARDS, R. E. (1967). *Fourier Series: A Modern Introduction*. Vols. I, II. New York: Holt, Rinehart and Winston.
- EHRLICH, L. W. (1970). "Complex matrix inversion versus real." *Comm. A.C.M.* 13:561-562.
- ENOCHSON, L. D., and GOODMAN, N. R. (1965). *Gaussian approximations to the distribution of sample coherence*. Tech. Rep. AFFDL-TR-65-57, Wright-Patterson Air Force Base.
- EEZEKIEL, M. A., and FOX, C. A. (1959). *Methods of Correlation and Regression Analysis*. New York: Wiley.
- FEHR, U., and MCGAHAAN, L. C. (1967). "Analog systems for analyzing infrasonic signals monitored in field experimentation." *J. Acoust. Soc. Amer.* 42: 1001-1007.
- FEJÉR, L. (1900). "Sur les fonctions bornées et intégrables." *C. R. Acad. Sci. Paris* 131:984-987.
- FEJÉR, L. (1904). "Untersuchungen über Fouriersche Reihen." *Mat. Ann.* 58:501-569.
- FELLER, W. (1966). *Introduction to Probability Theory and its Applications*. Vol. 2. New York: Wiley.
- FELLER, E. C. (1954). "Some problems in interval estimation." *J. Roy. Statist. Soc., B.* 16:175-185.
- FISHER, R. A. (1928). "The general sampling distribution of the multiple correlation coefficient." *Proc. Roy. Soc. A.* 121:654-673.
- FISHER, R. A. (1962). "The simultaneous distribution of correlation coefficients." *Sankhyā A*. 24:1-8.
- FISHER, R. A., and MACKENZIE, W. A. (1922). "The correlation of weekly rainfall" (with discussion). *J. Roy. Met. Soc.* 48:234-245.
- FISHMAN, G. S. (1969). *Spectral Methods in Econometrics*. Cambridge: Harvard Univ. Press.
- FISHMAN, G. S., and KIVIAT, P. J. (1967). "Spectral analysis of time series generated by simulation models." *Management Science*. 13:525-557.
- FOX, M. (1956). "Charts of the power of the F -test." *Ann. Math. Statist.* 27:484-497.
- FREIBERGER, W. (1963). "Approximate distributions of cross-spectral estimates for Gaussian processes." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 244-259. New York: Wiley.
- FREIBERGER, W., and GRENANDER, U. (1959). "Approximate distributions of noise power measurements." *Quart. Appl. Math.* 17:271-283.
- FRIEDLANDER, S. K., and TOPPER, L. (1961). *Turbulence; Classic Papers on Statistical Theory*. New York: Wiley Interscience.
- FRIEDMAN, B. (1961). "Eigenvalues of composite matrices." *Proc. Camb. Philos. Soc.* 57:37-49.
- GABOR, D. (1946). "Theory of communication." *J. Inst. Elec. Engrs.* 93:429-457.
- GAJJAR, A. V. (1967). "Limiting distributions of certain transformations of multiple correlation coefficient." *Metron*. 26:189-193.
- GAVURIN, M. K. (1957). "Approximate determination of eigenvalues and the theory of perturbations." *Uspehi Mat. Nauk.* 12:173-175.
- GELFAND, I., RAIKOV, D., and SHILOV, G. (1964). *Commutative Normed Rings*. New York: Chelsea.
- GENTLEMAN, W. M., and SANDE, G. (1966). "Fast Fourier transforms — for fun and profit." *AFIPS*. 1966 Fall Joint Computer Conference. 28:563-578.
- GERSCH, W. (1972). "Causality or driving in electrophysiological signal analysis." *J. Math. Bioscience*. 14:177-196.
- GIBBS, F. A., and GRASS, A. M. (1947). "Frequency analysis of electroencephalograms." *Science*. 105:132-134.
- GIKMAN, I. I., and SKOROKHOD, A. V. (1966). "On the densities of probability measures in function spaces." *Russian Math. Surveys*. 21:183-136.
- GINZBURG, J. P. (1964). "The factorization of analytic matrix functions." *Soviet Math.* 5:1510-1514.
- GIRI, N. (1965). "On the complex analogues of T^* and R^2 tests." *Ann. Math. Statist.* 36:664-670.
- GIRSHICK, M. A. (1939). "On the sampling theory of roots of determinantal equations." *Ann. Math. Statist.* 10:203-224.
- GLAHN, H. R. (1968). "Canonical correlation and its relationship to discriminant analysis and multiple regression." *J. Atmos. Sci.* 25:23-31.
- GODFREY, M. D. (1965). "An exploratory study of the bispectrum of an economic time series." *Applied Statistics*. 14:48-69.
- GODFREY, M. D., and KARREMAN, H. F. (1967). "A spectrum analysis of seasonal adjustment." In *Essays in Mathematical Economics*, Ed. M. Shubik, pp. 367-421. Princeton: Princeton Univ. Press.
- GOLDBERGER, A. S. (1964). *Econometric Theory*. New York: Wiley.
- GOLUB, G. H. (1969). "Matrix decompositions and statistical calculations." In *Statistical Computation*, Eds. R. C. Milton, J. A. Nelder, pp. 365-397. New York: Academic.
- GOOD, I. J. (1950). "On the inversion of circulant matrices." *Biometrika*. 37:185-186.
- GOOD, I. J. (1958). "The interaction algorithm and practical Fourier series." *J. Roy. Stat. Soc., B.* 20:361-372. Addendum (1960), 22:372-375.
- GOOD, I. J. (1963). "Weighted covariance for detecting the direction of a Gaussian source." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 447-470. New York: Wiley.

- GOOD, I. J. (1971). "The relationship between two fast Fourier transforms." *IEEE Trans. Computers*, C-20:310-317.
- GOODMAN, N. R. (1957). *On the joint estimation of the spectra, cospectrum and quadrature spectrum of a two-dimensional stationary Gaussian process*. Ph.D. Thesis, Princeton University.
- GOODMAN, N. R. (1960). "Measuring amplitude and phase." *J. Franklin Inst.* 270:437-450.
- GOODMAN, N. R. (1963). "Statistical analysis based upon a certain multivariate complex Gaussian distribution (an introduction)." *Ann. Math. Statist.* 34:152-177.
- GOODMAN, N. R. (1965). *Measurement of matrix frequency response functions and multiple coherence functions*. Research and Technology Division, AFSC, AFFDL TR 65-56. Wright-Patterson AFB, Ohio.
- GOODMAN, N. R. (1967). *Eigenvalues and eigenvectors of spectral density matrices*. Seismic Data Lab. Report 179.
- GOODMAN, N. R., and DUBMAN, M. R. (1969). "Theory of time-varying spectral analysis and complex Wishart matrix processes." In *Multivariate Analysis* II, Ed. P. R. Krishnaiah, pp. 351-366. New York: Academic.
- GOODMAN, N. R., KATZ, S., KRAMER, B. H., and KUO, M. T. (1961). "Frequency response from stationary noise: two case histories." *Technometrics*, 3:245-268.
- GORMAN, D., and ZABORSZKY, J. (1966). "Functional expansion in state space and the s domain." *IEEE Trans. Aut. Control*, AC-11:498-505.
- GRANGER, C. W. J. (1964). *Spectral Analysis of Economic Time Series*. Princeton Univ. Press.
- GRANGER, C. W. J., and ELLIOTT, C. M. (1968). "A fresh look at wheat prices and markets in the eighteenth century." *Economic History Review*, 20:257-265.
- GRANGER, C. W. J., and HUGHES, A. O. (1968). "Spectral analysis of short series—a simulation study." *J. Roy. Statist. Soc., A*, 131:87-99.
- GRANGER, C. W. J., and MORGENSEN, O. (1963). "Spectral analysis of stock market prices." *Kyklos*, 16:1-27.
- GRENADE, U. (1950). "Stochastic processes and statistical inference." *Ark. Mat.* 1:195-277.
- GRENADE, U. (1951a). "On empirical spectral analysis of stochastic processes." *Ark. Mat.* 1:503-531.
- GRENADE, U. (1951b). "On Toeplitz forms and stationary processes." *Ark. Mat.* 1:551-571.
- GRENADE, U. (1954). "On the estimation of regression coefficients in the case of an autocorrelated disturbance." *Ann. Math. Statist.* 25:252-272.
- GRENADE, U., POLLAK, H. O., and SLEPIAN, D. (1959). "The distribution of quadratic forms in normal variates: a small sample theory with applications to spectral analysis." *J. Soc. Indust. Appl. Math.* 7:374-401.
- GRENADE, U., and ROSENBALTT, M. (1955). "Statistical spectral analysis of time series arising from stochastic processes." *Ann. Math. Statist.* 24:537-558.
- GRENADE, U., and ROSENBALTT, M. (1957). *Statistical Analysis of Stochastic Time Series*. New York: Wiley.
- GRENADE, U., and SZEGÖ, G. (1958). *Toeplitz Forms and Their Applications*. Berkeley: Univ. of Cal. Press.
- GROVES, G. W., and HANNAN, E. J. (1968). "Time series regression of sea level on weather." *Rev. Geophysics*, 6:129-174.
- GROVES, G. W., and ZETTLER, B. D. (1964). "The cross-spectrum of sea level at San Francisco and Honolulu." *J. Marine Res.* 22:269-275.
- GUPTA, R. P. (1965). "Asymptotic theory for principal component analysis in the complex case." *J. Indian Statist. Assoc.* 3:97-106.
- GUPTA, S. S. (1963a). "Probability integrals of multivariate normal and multivariate t." *Ann. Math. Statist.* 34:792-828.
- GUPTA, S. S. (1963b). "Bibliography on the multivariate normal integrals and related topics." *Ann. Math. Statist.* 34:829-838.
- GURLAND, J. (1966). "Further consideration of the distribution of the multiple correlation coefficient." *Ann. Math. Statist.* 37:1418.
- GYIREK, B. (1961). "Über die Spuren der verallgemeinerten Toeplitzschen Matrix." *Publ. Math. Debrecen*, 8:93-116.
- HAJEK, J. (1962). "On linear statistical problems in stochastic processes." *Czech. Math. J.* 12:404-443.
- HALL, P. (1927). "Multiple and partial correlation coefficients." *Biometrika*, 19: 100-109.
- HALMOS, P. R. (1956). *Lectures in Ergodic Theory*. Tokyo: Math. Soc. Japan.
- HALFERIN, M. (1967). "A generalisation of Fieller's theorem to the ratio of complex parameters." *J. Roy. Statist. Soc., B*, 29:126-131.
- HAMBURGER, H., and GRIMSHAW, M. E. (1951). *Linear Transformations in n-dimensional Vector Space*. Cambridge: Cambridge Univ. Press.
- HAMMING, R. W. (1962). *Numerical Methods for Scientists and Engineers*. New York: McGraw-Hill.
- HAMMING, R. W., and TUKEY, J. W. (1949). *Measuring noise color*. Bell Telephone Laboratories Memorandum.
- HAMON, B. V., and HANNAN, E. J. (1963). "Estimating relations between time series." *J. Geophys. Res.* 68:6033-6041.
- HANNAN, E. J. (1960). *Time Series Analysis*. London: Methuen.
- HANNAN, E. J. (1961a). "The general theory of canonical correlation and its relation to functional analysis." *J. Aust. Math. Soc.* 2:229-242.
- HANNAN, E. J. (1961b). "Testing for a jump in the spectral function." *J. Roy. Statist. Soc., B*, 23:394-404.
- HANNAN, E. J. (1963a). "Regression for time series with errors of measurement." *Biometrika*, 50:293-302.
- HANNAN, E. J. (1963b). "Regression for time series." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 17-37. New York: Wiley.
- HANNAN, E. J. (1965). "The estimation of relationships involving distributed lags." *Econometrica*, 33:206-224.
- HANNAN, E. J. (1967a). "The estimation of a lagged regression relation." *Biometrika*, 54:409-418.
- HANNAN, E. J. (1967b). "Fourier methods and random processes." *Bull. Intern. Statist. Inst.* 42:475-494.
- HANNAN, E. J. (1967c). "Canonical correlation and multiple equation systems in economics." *Econometrica*, 35:123-138.
- HANNAN, E. J. (1968). "Least squares efficiency for vector time series." *J. Roy. Statist. Soc., B*, 30:490-498.

- H. NINAN, E. J. (1970). *Multiple Time Series*. New York: Wiley.
- HASSELMAN, K., MUNK, W., and MACDONALD, G. (1963). "Bispectrum of ocean waves." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 125-139. New York: Wiley.
- HAUBRICH, R. A. (1965). "Earth noise, 5 to 500 millcycles per second. I. Spectral stationarity, normality, nonlinearity." *J. Geophys. Res.* **70**:1415-1427.
- HAUBRICH, R. A., and MACKENZIE, G. S. (1965). "Earth noise, 5 to 500 millcycles per second. 2. Reaction of the earth to ocean and atmosphere." *J. Geophys. Res.* **70**:1429-1440.
- HENNINGER, J. (1970). "Functions of bounded mean square and generalized Fourier-Stieltjes transforms." *Can. J. Math.* **22**:1015-1034.
- HERGLOTZ, G. (1911). "Über Potenzreihen mit positivem realem Teil im Einheitskreis." *Sitzschr. Sachs. Akad. Wiss.* **63**:501-511.
- HEWITT, E., and ROSS, K. A. (1963). *Abstract Harmonic Analysis*. Berlin: Springer.
- HEXT, G. R. (1966). *A new approach to time series with mixed spectra*. Ph.D. Thesis, Stanford University.
- HINICH, M. (1967). "Estimation of spectra after hard clipping of Gaussian processes." *Technometrics* **9**:391-400.
- HODGSON, V. (1968). "On the sampling distribution of the multiple correlation coefficient." *An. Math. Statist.* **39**:307.
- HOFF, J. C. (1970). "Approximation with kernels of finite oscillations, I. Convergence." *J. Approx. Theory* **3**:213-228.
- HOOPER, J. W. (1958). "The sampling variance of correlation coefficients under assumptions of fixed and mixed variates." *Biometrika* **45**:471-477.
- HOOPER, J. W. (1959). "Simultaneous equations and canonical correlation theory." *Econometrica* **27**:245-256.
- HOPF, E. (1937). *Ergodentheorie*. Berlin: Springer.
- HOPF, E. (1952). "Statistical hydromechanics and functional calculus." *J. Rat. Mech. Anal.* **1**:87-123.
- HORST, P. (1965). *Factor Analysis of Data Matrices*. New York: Holt, Rinehart and Winston.
- HOTELLING, H. (1933). "Analysis of a complex of statistical variables into principal components." *J. Educ. Psych.* **24**:417-441, 498-520.
- HOTELLING, H. (1936). "Relations between two sets of variates." *Biometrika* **28**:321-377.
- HOWREY, E. P. (1968). "A spectrum analysis of the long-swing hypothesis." *Int. Econ. Rev.* **9**:228-252.
- HOYT, R. S. (1947). "Probability functions for the modulus and angle of the normal complex variate." *Bell System Tech. J.* **26**:318-359.
- HSU, P. L. (1941). "On the limiting distribution of canonical correlations." *Biometrika* **33**:38-45.
- HSU, P. L. (1949). "The limiting distribution of functions of sample means and application to testing hypotheses." In *Proc. Berkeley Symp. Math. Statist. Prob.*, Ed. J. Neyman, pp. 359-401. Berkeley: Univ. of Cal. Press.
- HUA, L. K. (1963). *Harmonic Analysis of Functions of Several Variables in Classical Domains*. Providence: American Math. Society.

- IBRAGIMOV, I. A. (1963). "On estimation of the spectral function of a stationary Gaussian process." *Theor. Prob. Appl.* **8**:366-401.
- IBRAGIMOV, I. A. (1967). "On maximum likelihood estimation of parameters of the spectral density of stationary time series." *Theory Prob. Appl.* **12**:115-119.
- IOSIFESCU, M. (1968). "The law of the iterated logarithm for a class of dependent random variables." *Theor. Prob. Appl.* **13**:304-313.
- IOSIFESCU, M., and THEODORESCU, R. (1969). *Random Processes and Learning*. Berlin: Springer.
- ISSENLIS, L. (1918). "On a formula for the product moment coefficient of any order of a normal frequency distribution in any number of variables." *Biometrika* **12**:134-139.
- ITO, K., and NISIO, M. (1964). "On stationary solutions of a stochastic differential equation." *J. Math. Kyoto.* **4**:1-75.
- IZENMAN, A. J. (1972). *Reduced rank regression for the multivariate linear model*. Ph.D. Thesis, University of California. Berkeley.
- JAGERMAN, D. L. (1963). "The autocorrelation function of a sequence uniformly distributed modulo 1." *Ann. Math. Statist.* **34**:1243-1252.
- JAMES, A. T. (1962). "Distributions of matrix variates and latent roots derived from normal samples." *Ann. Math. Statist.* **35**:475-501.
- JAMES, A. T. (1966). "Inference on latent roots by calculation of hypergeometric functions of matrix argument." In *Multivariate Analysis*, Ed. P. R. Krishnaiah, pp. 209-235. New York: Academic.
- JENKINS, G. M. (1961). "General considerations in the analysis of spectra." *Technometrics* **3**:133-166.
- JENKINS, G. M. (1963a). "Cross-spectral analysis and the estimation of linear open loop transfer functions." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 267-278. New York: Wiley.
- JENKINS, G. M. (1963b). "An example of the estimation of a linear open-loop transfer function." *Technometrics* **5**:227-245.
- JENKINS, G. M., and WATTS, D. G. (1968). *Spectrum Analysis and Its Applications*. San Francisco: Holden-Day.
- JENNISON, R. C. (1961). *Fourier Transforms and Convolutions for the Experimentalist*. London: Pergamon.
- JONES, R. H. (1962a). "Spectral estimates and their distributions, II." *Aktuarietidsskr.* **45**:125-153.
- JONES, R. H. (1962b). "Spectral analysis with regularly missed observations." *Ann. Math. Statist.* **33**:455-461.
- JONES, R. H. (1965). "A reappraisal of the periodogram in spectral analysis." *Technometrics* **7**:51-542.
- JONES, R. H. (1969). "Phase free estimation of coherence." *Ann. Math. Statist.* **40**:540-548.
- KABE, D. G. (1966). "Complex analogues of some classical non-central multivariate distributions." *Austral. J. Statist.* **8**:99-103.
- KABE, D. G. (1968a). "On the distribution of the regression coefficient matrix of a normal distribution." *Austral. J. Statist.* **10**:21-23.
- KABE, D. G. (1968b). "Some aspects of analysis of variance and covariance theory for a certain multivariate complex Gaussian distribution." *Metrika* **13**:86-97.

- KAHANE, J. (1968). *Some Random Series of Functions*. Lexington: Heath.
- KAMPÉ de FÉRIET, J. (1954). "Introduction to the statistical theory of turbulence." *J. Soc. Ind. Appl. Math.* **2**:244-271.
- KAMPÉ de FÉRIET, J. (1965). "Random integrals of differential equations." In *Lectures on Modern Mathematics*, Ed. T. L. Saaty, 3:277-321. New York: Wiley.
- KANESHIGE, I. (1964). "Frequency response of an automobile engine mounting." *Ann. Inst. Stat. Math., Suppl.* **3**:49-58.
- KAWASHIMA, R. (1964). "On the response function for the rolling motion of a fishing boat on ocean waves." *Ann. Inst. Stat. Math., Suppl.* **3**:33-40.
- KAWATA, T. (1959). "Some convergence theorems for stationary stochastic processes." *Ann. Math. Statist.* **30**:1192-1214.
- KAWATA, T. (1960). "The Fourier series of some stochastic processes." *Japanese J. Math.* **29**:16-25.
- KAWATA, T. (1965). "Sur la série de Fourier d'un processus stochastique stationnaire." *C. R. Acad. Sci. (Paris)* **260**:5453-5455.
- KAWATA, T. (1966). "On the Fourier series of a stationary stochastic process." *Zent. Wahrzsch. Verw. Geb.* **6**:224-245.
- KEEN, C. G., MONTGOMERY, J., MOWAT, W. M. H., and PLATT, D. C. (1965). "British seismometer array recording systems." *J. Br. Instn. Radio Engngs.* **30**:279.
- KENDALL, M. (1946). *Contributions to the Study of Oscillatory Time Series*. Cambridge: Cambridge Univ. Press.
- KENDALL, M. G., and STUART, A. (1958). *The Advanced Theory of Statistics*, Vol. I. London: Griffin.
- KENDALL, M. G., and STUART, A. (1961). *The Advanced Theory of Statistics*, Vol. II. London: Griffin.
- KENDALL, M. G., and STUART, A. (1968). *The Advanced Theory of Statistics*, Vol. III. London: Griffin.
- KHATRI, C. G. (1964). "Distribution of the 'generalised' multiple correlation matrix in the dual case." *Ann. Math. Statist.* **35**:1801-1806.
- KHATRI, C. G. (1965a). "Classical statistical analysis based on a certain multivariate complex Gaussian distribution." *Ann. Math. Statist.* **36**:98-114.
- KHATRI, C. G. (1965b). "A test for reality of a covariance matrix in a certain complex Gaussian distribution." *Ann. Math. Statist.* **36**:115-119.
- KHATRI, C. G. (1967). "A theorem on least squares in multivariate linear regression." *J. Amer. Statist. Assoc.* **62**:1494-1495.
- KHINTCHINE, A. (1934). "Korrelationstheorie der stationären Prozesse." *Math. Annalen* **109**:604-615.
- KINOSHITA, K. (1964). "On the behaviour of tsunami in a tidal river." *Ann. Inst. Stat. Math., Suppl.* **3**:78-88.
- KIRCHNER, R. B. (1967). "An explicit formula for $\exp At$." *Amer. Math. Monthly* **74**:1200-1203.
- KNOPP, K. (1948). *Theory and Application of Infinite Series*. New York: Hafner.
- KOLMOGOROV, A. N. (1941a). "Interpolation und Extrapolation von stationären zufälligen Folgen." *Bull. Acad. Sci. de l'U.R.S.S.* **5**:3-14.
- KOLMOGOROV, A. N. (1941b). "Stationary sequences in Hilbert space." (In Russian.) *Bull. Moscow State U. Math. Trab. Estad.* **4**:55-73, 243-270.]
- KOOPMANS, L. H. (1964a). "On the coefficient of coherence for weakly stationary stochastic processes." *Ann. Math. Statist.* **35**:532-549.
- KOOPMANS, L. H. (1964b). "On the multivariate analysis of weakly stationary stochastic processes." *Ann. Math. Statist.* **35**:1765-1780.
- KRÄMER, H. P., and MATHEWS, M. V. (1956). "A linear coding for transmitting a set of correlated signals." *IRE Trans. Inf. Theo.* **IT-2**:41-46.
- KRÄMER, K. H. (1963). "Tables for constructing confidence limits on the multiple correlation coefficient." *J. Amer. Statist. Assoc.* **58**:1082-1085.
- KRISHNAAIAH, P. R., and WALKAR, V. B. (1970). *Exact joint distributions of few roots of a class of random matrices*. Report ARL 70-0345. Aerospace Res. Labs.
- KROMER, R. E. (1969). *Asymptotic properties of the autoregressive spectral estimator*. Ph.D. Thesis, Stanford University.
- KSHIRSAGAR, A. M. (1961). "Some extensions of the multivariate t -distribution and the multivariate generalization of the distribution of the regression coefficient." *Proc. Camb. Philos. Soc.* **57**:80-85.
- KSHIRSAGAR, A. M. (1971). "Goodness of fit of a discriminant function from the vector space of dummy variables." *J. Roy. Statist. Soc., B.* **33**:11-16.
- KUHN, H. G. (1962). *Atomic Spectra*. London: Longmans.
- KUO, F. F., and KAISER, J. F. (1966). *System Analysis by Digital Computer*. New York: Wiley.
- LABROUSTE, M. H. (1934). "L'analyse des sismogrammes." *Memorial des Sciences Physiques*, Vol. 26. Paris: Gauthier-Villars.
- LAMPERTI, J. (1962). "On convergence of stochastic processes." *Trans. Amer. Math. Soc.* **104**:430-435.
- LANCASTER, H. O. (1966). "Kolmogorov's remark on the Hotelling canonical correlations." *Biometrika* **53**:585-588.
- LANCZOS, C. (1955). "Spectroscopic eigenvalue analysis." *J. Wash. Acad. Sci.* **45**:315-323.
- LANCZOS, C. (1956). *Applied Analysis*. Englewood Cliffs: Prentice-Hall.
- LATHAM, G., et al. (1970). "Seismic data from man-made impacts on the moon." *Science* **170**:620-626.
- LAUBSCHEIER, N. F. (1960). "Normalizing the noncentral t and F distributions." *Ann. Math. Statist.* **31**:1105-1112.
- LAWLEY, D. N. (1959). "Tests of significance in canonical analysis." *Biometrika* **46**:59-66.
- LEE, Y. W. (1960). *Statistical Theory of Communication*. New York: Wiley.
- LEE, Y. W., and WIESNER, J. B. (1950). "Correlation functions and communication applications." *Electronics* **23**:86-92.
- LEONOV, V. P. (1960). "The use of the characteristic functional and semi-invariants in the ergodic theory of stationary processes." *Soviet Math. J.* **1**:878-881.

- LEONOV, V. P. (1962). *Some Applications of Higher-order Semi-invariants to the Theory of Stationary Random Processes* (in Russian). Moscow: Izdatstvo Nauka.
- LEONOV, V. P., and SHIRYAEV, A. N. (1959). "On a method of calculation of semi-invariants." *Theor. Prob. Appl.* **4**: 319-329.
- LEONOV, V. P., and SHIRYAEV, A. N. (1960). "Some problems in the spectral theory of higher moments. II." *Theory Prob. Appl.* **5**: 460-464.
- LEPPINK, G. J. (1970). "Efficient estimators in spectral analysis." *Proc. Twelfth Biennial Seminar Can. Math. Cong.*, Ed. R. Pyke, pp. 83-87. Montreal: Can. Math. Cong.
- LEVY, P. (1933). "Sur la convergence absolue des séries de Fourier." *C. R. Acad. Sci. Paris*. **196**: 463-464.
- LEWIS, F. A. (1939). "Problem 3824." *Amer. Math. Monthly*. **46**: 304-305.
- LIGHTHILL, M. J. (1958). *An Introduction to Fourier Analysis and Generalized Functions*. Cambridge: Cambridge Univ. Press.
- LOÈVE, M. (1963). *Probability Theory*. Princeton: Van Nostrand.
- LOMNICKI, Z. A., and ZAREMBA, S. K. (1957a). "On estimating the spectral density function of a stochastic process." *J. Roy. Statist. Soc., B* **19**: 13-37.
- LOMNICKI, Z. A., and ZAREMBA, S. K. (1957b). "On some moments and distributions occurring in the theory of linear stochastic processes. I." *Mh. Math.* **61**: 318-338.
- LOMNICKI, Z. A., and ZAREMBA, S. K. (1959). "On some moments and distributions occurring in the theory of linear stochastic processes. II." *Mh. Math.* **63**: 128-168.
- LOYNES, R. M. (1968). "On the concept of the spectrum for non-stationary processes." *J. Roy. Statist. Soc., B* **30**: 1-30.
- MACDONALD, N. J., and WARD, F. (1963). "The prediction of geomagnetic disturbance indices. I. The elimination of internally predictable variations." *J. Geophys. Res.* **68**: 3351-3373.
- MACDUFFEE, C. C. (1946). *The Theory of Matrices*. New York: Chelsea.
- MACNEIL, I. B. (1971). "Limit processes for co-spectral and quadrature spectral distribution functions." *Ann. Math. Statist.* **42**: 81-96.
- MADANSKY, A., and OLKIN, I. (1969). "Approximate confidence regions for constraint parameters." In *Multivariate Analysis — II*, Ed. P. R. Krishnaiah, pp. 261-286. New York: Academic.
- MADDEN, T. (1964). "Spectral, cross-spectral and bispectral analysis of low frequency electromagnetic data." *Natural Electromagnetic Phenomena Below 30 kc/s*, Ed. D. F. Biehl, pp. 429-450. New York: Wiley.
- MAJEWSKI, W., and HOLLIEN, H. (1967). "Formant frequency regions of Polish vowels." *J. Acoust. Soc. Amer.* **42**: 1031-1037.
- MALEVICH, T. L. (1964). "The asymptotic behavior of an estimate for the spectral function of a stationary Gaussian process." *Theor. Prob. Appl.* **9**: 350-353.
- MALEVICH, T. L. (1965). "Some properties of the estimators of the spectrum of a stationary process." *Theor. Prob. Appl.* **10**: 447-465.
- MALINVAUD, E. (1964). *Statistical Methods of Econometrics*. Amsterdam: North-Holland.

- MALLOWS, C. L. (1961). "Latent vectors of random symmetric matrices." *Biomerkika*. **48**: 133-149.
- MANN, H. B., and WALD, A. (1943a). "On stochastic limit and order relationships." *Ann. Math. Statist.* **14**: 217-226.
- MANN, H. B., and WALD, A. (1943b). "On the statistical treatment of linear stochastic difference equations." *Econometrica*. **11**: 173-220.
- MANWELL, T., and SIMON, M. (1956). "Spectral density of the possibly random fluctuations of π C 273." *Nature*. **212**: 1224-1225.
- MARUYAMA, G. (1949). "The harmonic analysis of stationary stochastic processes." *Mem. Fac. Sci. Kyushu Univ.: Ser. A* **4**: 45-106.
- MATHEWS, M. V. (1963). "Signal detection models for human auditory perception." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 349-361. New York: Wiley.
- MCGLUCKEN, W. (1970). *Nineteenth Century Spectroscopy*. Baltimore: Johns Hopkins.
- MCNEIL, D. R. (1967). "Estimating the covariance and spectral density functions from a clipped stationary time series." *J. Roy. Statist. Soc., B* **29**: 180-195.
- MCSHANE, E. J. (1963). "Integrals devised for special purposes." *Bull. Amer. Math. Soc.* **69**: 597-627.
- MEDGYESSY, P. (1961). *Decomposition of Superpositions of Distribution Functions*. Budapest: Hungar. Acad. Sci.
- MEECHAM, W. C. (1969). "Stochastic representation of nearly-Gaussian nonlinear processes." *J. Statist. Physics*. **1**: 25-57.
- MEECHAM, W. C., and SIEGEL, A. (1964). "Wiener-Hermite expansion in model turbulence at large Reynolds numbers." *Physics Fluids*. **7**: 1178-1190.
- MIEGERS, W. F. (1946). "Spectroscopy: past, present and future." *J. Opt. Soc. Amer.* **36**: 431-448.
- MIDDLETON, D. (1960). *Statistical Communication Theory*. New York: McGraw-Hill.
- MILLER, K. S. (1968). "Moments of complex Gaussian processes." *Proc. IEEE*. **56**: 83-94.
- MILLER, K. S. (1969). "Complex Gaussian processes." *SIAM Rev.* **11**: 544-567.
- MILLER, R. G. (1966). *Simultaneous Statistical Inference*. New York: McGraw-Hill.
- MIYATA, M. (1970). "Complex generalization of canonical correlation and its application to sea level study." *J. Marine Res.* **28**: 202-214.
- MOORE, C. N. (1966). *Summable Series and Convergence Factors*. New York: Dover.
- MORAN, J. M., et al. (1968). "The 18-cm flux of the unresolved component of 3 C 273." *Astrophysical J.* **151**: L99-L101.
- MORRISON, D. F. (1967). *Multivariate Statistical Methods*. New York: McGraw-Hill.
- MORTENSEN, R. E. (1969). "Mathematical problems of modeling stochastic non-linear dynamic systems." *J. Statist. Physics*. **1**: 271-296.
- MUNK, W. H., and CARTWRIGHT, D. E. (1966). "Tidal spectroscopy and prediction." *Phil. Trans.*, A **259**: 533-581.

- MUNK, W. H., and MACDONALD, C. J. F. (1960). *The Rotation of the Earth*. Cambridge: Cambridge Univ. Pres.
- MUNK, W. H., and SNODGRASS, F. E. (1957). "Measurements of southern swell at Guadalupe Island." *Deep-Sea Research*, **4**:272-286.
- MURTHY, V. K. (1963). "Estimation of the cross-spectrum." *Ann. Math. Statist.* **34**:1012-1021.
- NAKANURA, I. (1964). "Relation between superelevation and car rolling." *Ann. Inst. Stat. Math., Suppl.* **3**:41-48.
- NAKAMURA, H., and MURAKAMI, S. (1964). "Resonance characteristic of the hydraulic system of a water power plant." *Ann. Inst. Stat. Math., Suppl.* **3**:65-70.
- NAYLOR, T. H., WALLACE, W. H., and SASSER, W. E. (1967). "A computer simulation model of the textile industry." *J. Amer. Stat. Assoc.* **62**:1338-1364.
- NERLOVE, M. (1964). "Spectral analysis of seasonal adjustment procedures." *Econometrica*, **32**:241-286.
- NETTHEIM, N. (1966). *The estimation of coherence*. Technical Report, Statistics Department, Stanford University.
- NEUDECKER, H. (1968). "The Kronecker matrix product and some of its applications in econometrics." *Statistica Neerlandica*, **22**:69-82.
- NEWTON, H. W. (1958). *The Face of the Sun*. London: Penguin.
- NICHOLLS, D. F. (1967). "Estimation of the spectral density function when testing for a jump in the spectrum." *Austral. J. Statist.* **9**:103-108.
- NISIO, M. (1960). "On polynomial approximation for strictly stationary processes." *J. Math. Soc. Japan*, **12**:207-226.
- NISIO, M. (1961). "Remarks on the canonical representation of strictly stationary processes." *J. Math. Kyoto*, **1**:129-146.
- NISSEN, D. H. (1968). "A note on the variance of a matrix." *Econometrica*, **36**:603-604.
- NOLL, A. M. (1964). "Short-time spectrum and 'cepstrum' techniques for vocal-pict. detection." *J. Acoust. Soc. Amer.* **36**:296-302.
- OBLUKHOV, A. M. (1938). "Normally correlated vectors." *Izv. Akad. Nauk SSSR. Section on Mathematics*, **3**:339-370.
- OBLUKHOV, A. M. (1940). "Correlation theory of vectors." *Uchen. Zap. Moscow State Univ. Mathematics Section*, **45**:73-92.
- OCEAN WAVE SPECTRA (1963). National Academy of Sciences. Englewood Cliffs: Prentice-Hall.
- OKAMOTO, M. (1969). "Optimality of principal components." In *Multivariate Analysis*, Ed. P. R. Krishnaiah, pp. 673-686. New York: Academic.
- OKAMOTO, M., and KANAZAWA, M. (1968). "Minimization of eigenvalues of a matrix and optimality of principal components." *Ann. Math. Statist.* **39**:859-863.
- OLKIN, I., and PRATT, J. W. (1958). "Unbiased estimation of certain correlation coefficients." *Ann. Math. Statist.* **29**:201-210.
- OLSHEN, R. A. (1967). "Asymptotic properties of the periodogram of a discrete stationary process." *J. Appl. Prob.* **4**:508-528.
- OSWALD, J. R. V. (1956). "Theory of analytic bandlimited signals applied to carrier systems." *IRE Trans. Circuit Theory*, CT-3:244-251.

- PANOFSKY, H. A. (1967). "Meteorological applications of cross-spectrum analysis." In *Advanced Seminar on Spectral Analysis of Time Series*, Ed. B. Harris, pp. 109-132. New York: Wiley.
- PAPOULIS, A. (1962). *The Fourier Integral and its Applications*. New York: McGraw-Hill.
- PARTHASARATHY, K. R. (1960). "On the estimation of the spectrum of a stationary stochastic process." *Ann. Math. Statist.* **31**:568-573.
- PARTHASARATHY, K. R., and VARADAHN, S. R. S. (1964). "Extension of stationary stochastic processes." *Theory Prob. Appl.* **9**:65-71.
- PARZEN, E. (1957). "On consistent estimates of the spectrum of a stationary time series." *Ann. Math. Statist.* **28**:329-348.
- PARZEN, E. (1958). "On asymptotically efficient consistent estimates of the spectral density function of a stationary time series." *J. Roy. Statist. Soc., B*, **20**:303-322.
- PARZEN, E. (1961). "Mathematical considerations in the estimation of spectra." *Technometrics*, **3**:167-190.
- PARZEN, E. (1963a). "On spectral analysis with missing observations and amplitude moduli." In *Sankhya A*, **25**:180-189.
- PARZEN, E. (1963b). "Notes on Fourier analysis and spectral windows." Included in Parzen (1967a).
- PARZEN, E. (1963c). "Probability density functionals and reproducing kernel Hilbert spaces." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 155-169. New York: Wiley.
- PARZEN, E. (1964). "An approach to empirical-time series analysis" *Radio Science*, **68D**:937-951.
- PARZEN, E. (1967a). *Time Series Analysis Papers*. San Francisco: Holden-Day.
- PARZEN, E. (1967b). "Time series analysis for models of signals plus white noise." In *Advanced Seminar on Spectral Analysis of Time Series*, Ed. B. Harris, pp. 233-257. New York: Wiley.
- PARZEN, E. (1967c). "On empirical multiple time series analysis." In *Proc. Fifth Berkeley Symp. Math. Statist. Prob.*, 1, Eds. L. Le Cam and J. Neyman, pp. 305-340. Berkeley: Univ. of Cal. Press.
- PARZEN, E. (1969). "Multiple time series modelling." In *Multivariate Analysis* — II, Ed. P. R. Krishnaiah, pp. 389-409. New York: Academic.
- PEARSON, E. S., and HARTLEY, H. O. (1951). "Charts of the power function for analysis of variance tests derived from the non-central *F* distribution." *Biometrika*, **38**:112-130.
- PEARSON, K., and FILON, L. N. G. (1898). "Mathematical contributions to the theory of evolution IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation." *Phil. Trans. A*, **191**:229-311.
- PEARSON, K., JEFFERY, G. B., and ELDERTON, E. M. (1929). "On the coefficient of the first product moment coefficient in samples drawn from an indefinitely large normal population." *Biometrika*, **21**:164-201.
- PHILIPP, W. (1967). "Das Gesetz vom iterierten Logarithmus für stark mischende stationäre Prozesse." *Zeit. Wahrscheinlichkeit*, **8**:204-209.
- PHILIPP, W. (1969). "The central limit problem for mixing sequences of random variables." *Z. Wahrscheinlichkeit, verw. Gebiete*, **12**:155-171.

- ICINBONO, B. (1959). "Tendance vers le caractère gaussien par filtrage sélectif." *C. R. Acad. Sci. Paris.* **248**:2280.
- PICKLANDS, J. (1970). "Spectral estimation with random truncation." *Ann. Mat. Statist.* **41**:44-58.
- PINSKER, M. S. (1964). *Information and Information Stability of Random Variables and Processes*. San Francisco: Holden-Day.
- PISARENKO, V. F. (1970). "Statistical estimates of amplitude and phase corrections." *Geophys. J. Roy. Astron. Soc.* **20**:89-98.
- PISARENKO, V. F. (1972). "On the estimation of spectra by means of non-linear functions of the covariance matrix." *Geophys. J. Roy. Astron. Soc.* **28**:511-531.
- PLAGEMANN, S. H., FELDMAN, V. A., and GRININ, J. R. (1969). "Power spectrum analysis of the emission-line redshift distribution of quasi-stellar and related objects." *Nature*, **224**:875-876.
- POLYA, G., and SZEGÖ, G. (1925). *Aufgaben und Lehrsätze aus der Analysis I*. Berlin: Springer.
- PORTMANN, W. O. (1960). "Hausdorff-analytic functions of matrices." *Proc. Amer. Math. Soc.* **11**:97-101.
- POSNER, E. C. (1968). "Combinatorial structures in planetary reconnaissance." In *Error Correcting Codes*, Ed. H. B. Mann, pp. 15-47. New York: Wiley.
- PRESS, H., and TUKEY, J. W. (1956). *Power spectra, methods of analysis and their application to problems in airplane dynamics*. Bell Telephone System Monograph **606**.
- PRIESTLEY, M. B. (1962a). "Basic considerations in the estimation of spectra." *Technometrics* **4**:551-564.
- PRIESTLEY, M. B. (1962b). "The analysis of stationary processes with mixed spectra." *J. Roy. Statist. Soc., B.* **24**:511-529.
- PRIESTLEY, M. B. (1964). "Estimation of the spectra density function in the presence of harmonic components." *J. Roy. Statist. Soc., B.* **26**:123-132.
- PRIESTLEY, M. B. (1965). "Evolutionary spectra and non-stationary processes." *J. Roy. Statist. Soc., B.* **27**:204-237.
- PRIESTLEY, M. B. (1969). "Estimation of transfer functions in closed loop stochastic systems." *Automatica* **5**:623-632.
- PUTIN, M. I. (1954). "Resonance analysis of alternating and polyphase currents." *Trans. A.I.E.E.* **9**:523.
- QUEENILLE, M. H. (1957). *The Analysis of Multiple Time Series*. London: Griffin.
- RAO, C. R. (1964). "The use and interpretation of principal component analysis in applied research." *Sankhya A*, **26**:329-358.
- RAO, C. R. (1965). *Linear Statistical Inference and Its Applications*. New York: Wiley.
- RAO, M. M. (1960). "Estimation by periodogram." *Trabajos Estadistica* **11**:123-137.
- RAO, M. M. (1963). "Inference in stochastic processes. I." *Teor. Veroyatnost. i Primenen.* **8**:282-298.
- RAO, M. M. (1966). "Inference in stochastic processes. II." *Zeit. Wahrscheinl. S. 317-335.*
- ROZANOV, Yu. A. (1967). *Stationary Random Processes*. San Francisco: Holden-Day.

- RAO, S. T. (1967). "On the cross-periodogram of a stationary Gaussian vector process." *Ann. Math. Statist.* **38**:593-597.
- RICHTER, C. P. (1967). "Biological clocks in medicine and psychiatry." *Proc. Nat. Acad. Sci.* **46**:1506-1530.
- RICKER, N. (1940). "The form and nature of seismic waves and the structure of seismograms." *Geophysics* **5**:348-366.
- RIESZ, F., and NAGY, B. Sz. (1955). *Lessons in Functional Analysis*. New York: Ungar.
- ROBERTS, J. B., and BISHOP, R. E. D. (1965). "A simple illustration of spectral density analysis." *J. Sound Vib.* **2**:37-41.
- ROBINSON, E. A. (1967a). *Multichannel Time Series Analysis with Digital Computer Programs*. San Francisco: Holden-Day.
- ROBINSON, E. A. (1967b). *Statistical Communication and Detection with Special Reference to Digital Data Processing of Radar and Seismic Signals*. London: Griffin.
- RODEMICH, E. R. (1966). "Spectral estimates using nonlinear functions." *Ann. Math. Statist.* **37**:1237-1256.
- RODRIGUEZ-JURBE, I., and YEVJEVICH, V. (1968). *The investigation of relationships between hydrologic time series and sunspot numbers. Hydrology Paper No. 26*. Fort Collins: Colorado State University.
- ROOT, W. L., and PITTLER, T. S. (1955). "On the Fourier expansion of random functions." *Ann. Math. Statist.* **26**:313-318.
- ROSENBERG, M. (1964). "The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure." *Duke Math. J.* **31**:291-298.
- ROSENBLATT, M. (1956a). "On estimation of regression coefficients of a vector-valued time series with a stationary disturbance." *Ann. Math. Statist.* **27**:99-121.
- ROSENBLATT, M. (1956b). "On some regression problems in time series analysis." *Proc. Third Berkeley Symp. Math. Statist. Prob.*, Vol. 1. Ed. J. Neyman, pp. 165-186. Berkeley: Univ. of Cal. Press.
- ROSENBLATT, M. (1956c). "A central limit theorem and a strong mixing condition." *Proc. Nat. Acad. Sci. (U.S.A.)*, **42**:43-47.
- ROSENBLATT, M. (1959). "Statistical analysis of stochastic processes with stationary residuals." In *Probability and Statistics*. Ed. U. Grenander, pp. 246-275. New York: Wiley.
- ROSENBLATT, M. (1960). "Asymptotic distribution of the eigenvalues of block Toeplitz matrices." *Bull. Amer. Math. Soc.* **66**:320-321.
- ROSENBLATT, M. (1961). "Some comments on narrow band-pass filters." *Quart. Appl. Math.* **18**:387-393.
- ROSENBLATT, M. (1962). "Asymptotic behavior of eigenvalues of Toeplitz forms." *J. Math. Mech.* **11**:941-950.
- ROSENBLATT, M. (1964). "Some nonlinear problems arising in the study of random processes." *Radiot. Science* **68D**:933-936.
- ROSENBLATT, M., and VANNESS, J. S. (1965). "Estimation of the bispectrum." *Ann. Math. Statist.* **36**:1120-1136.

- SALEM, R., and ZYGMUND, A. (1956). "A note on random trigonometric polynomials." In *Proc. Third Berkeley Symp. Math. Statist. Prob.*, Ed. J. Neyman, pp. 243-246. Berkeley: Univ. of Cal. Press.
- SARGENT, T. J. (1968). "Interest rates in the nineteen-fifties." *Rev. Econ. Stat.* 50:164-172.
- SATO, H. (1964). "The measurement of transfer characteristic of ground-structure systems using micro tremor." *Ann. Inst. Stat. Math., Suppl.* 3:71-78.
- SATTERTHWAITE, F. E. (1951). "Synthesis of variance." *Psychometrika* 6:309-316.
- SAXENA, A. K. (1969). "Classification into two multivariate complex normal distributions with different covariance matrices." *J. Ind. Statist. Assoc.* 7:158-161.
- SCHEFFÉ, H. (1959). *The Analysis of Variance*. New York: Wiley.
- SCHOENBERG, I. J. (1946). "Contributions to the problem of approximation of equidistant data by analytic functions." *Quart. Appl. Math.* 4:45-87, 112-141.
- SCHOENBERG, I. J. (1950). "The finite Fourier series and elementary geometry." *Amer. Math. Monthly* 57:394-404.
- SCHÜLSTER, A. (1894). "On interference phenomena." *Phil. Mag.* 37:509-545.
- SCHÜLSTER, A. (1897). "On lunar and solar periodicities of earthquakes." *Proc. Roy. Soc.* 61:455-465.
- SCHÜLSTER, A. (1898). "On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena." *Terr. Magn.* 3:13-41.
- SCHÜLSTER, A. (1900). "The periodogram of magnetic declination as obtained from the records of the Greenwich Observatory during the years 1871-1895." *Camb. Phil. Trans.* 18:107-135.
- SCHÜLSTER, A. (1904). *The Theory of Optics*. London: Cambridge Univ. Press.
- SCHÜLSTER, A. (1906a). "The periodogram and its optical analogy." *Proc. Roy. Soc.* 77:137-140.
- SCHÜLSTER, A. (1906b). "On the periodicities of sunspots." *Philos. Trans. Roy. Soc., A.* 206:69-100.
- SCHWARTZ, L. (1957). *Théorie des Distributions*. Vol. I. Paris: Hermann.
- SCHWARTZ, L. (1959). *Théorie des Distributions*, Vol. II. Paris: Hermann.
- SCHWERDTFEGER, H. (1960). "Direct proof of Lanczos's decomposition theorem." *Amer. Math. Mon.* 67:856-860.
- SEARS, F. W. (1949). *Optics*. Reading: Addison-Wesley.
- SHAPIRO, H. S. (1969). *Smoothing and Approximation of Functions*. New York: Van Nostrand.
- SHIRYAEV, A. N. (1960). "Some problems in the spectral theory of higher-order moments, I." *Theor. Prob. Appl.* 5:265-284.
- SHIRYAEV, A. N. (1963). "On conditions for ergodicity of stationary processes in terms of higher order moments." *Theory Prob. Appl.* 8:436-439.
- SHUVIVAY, R. H. (1971). "On detecting a signal in N stationarily correlated noise series." *Technometrics* 13:499-519.
- SIMPSON, S. M. (1966). *Time Series Computations in FORTRAN and FAP*. Reading: Addison-Wesley.
- SINGLETON, R. C. (1969). "An algorithm for computing the mixed radix fast Fourier transform." *IEEE Trans. Audio Elec.* AU-17:93-103.
- SINGLETON, R. C., and POULTIER, T. C. (1967). "Spectral analysis of the call of the male killer whale." *IEEE Trans. on Audio and Electroacoustics*. AU-15: 104-113.
- SIOTANI, M. (1967). "Some applications of Loewner's ordering of symmetric matrices." *Ann. Inst. Statist. Math.* 19:245-259.
- SKOROKHOD, A. V. (1956). "Limit theorems for stochastic processes." *Theory Prob. Appl.* 1:261-290.
- SLEPIAN, D. (1954). "Estimation of signal parameters in the presence of noise." *Trans. I.R.E. PGIT-3:82-87.*
- SLEPIAN, D. (1958). "Fluctuations of random noise power." *Bell Syst. Tech. J.* 37:163-184.
- SLUTSKY, E. (1929). "Sur l'extension de la théorie de periodogrammes aux suites des quantités dépendantes." *Comptes Rendues* 189:722-723.
- SLUTSKY, E. (1934). "Alcuni applicazioni di coefficienti di Fourier al analisi di sequenze eventuali coerenti stazionari." *Giorn. d. Istituto Italiano degli Attuari* 5:435-482.
- SMITH, E. J., HOLZER, R. E., MCLEOD, M. G., and RUSSELL, C. T. (1967). "Magnetic noise in the magnetosheath in the frequency range 3-300 Hz." *J. Geophys. Res.* 72:4803-4813.
- SOLODOVNIKOV, V. V. (1960). *Introduction to the Statistical Dynamics of Automatic Control Systems*. New York: Dover.
- SRIVASTAVA, M. S. (1965). "On the complex Wishart distribution." *Ann. Math. Statist.* 36:313-315.
- STIGUM, B. P. (1967). "A decision theoretic approach to time series analysis." *Ann. Inst. Statist. Math.* 19:207-243.
- STOCKHAM, T. G., JR. (1966). "High speed convolution and correlation." *Proc. Spring Joint Comput. Conf.* 28:229-233.
- STOKES, G. G. (1879). *Proc. Roy. Soc.* 122:303.
- STONE, R. (1947). "On the interdependence of blocks of transactions." *J. Roy. Statist. Soc., B* 9:1-32.
- STRIEBEL, C. (1959). "Densities for stochastic processes." *Ann. Math. Statist.* 30:559-567.
- STUMPFF, K. (1937). *Grundlagen und Methoden der Periodenforschung*. Berlin: Springer.
- STUMPFF, K. (1939). *Tafeln und Aufgaben zur Harmonischen Analyse und Periodogrammrechnung*. Berlin: Springer.
- SUGIYAMA, G. (1966). "On the distribution of the largest latent root and corresponding latent vector for principal component analysis." *Ann. Math. Statist.* 37:995-1001.
- SUHARA, K., and SUZUKI, H. (1964). "Some results of EEG analysis by analog type analyzers and finer examinations by a digital computer." *Ann. Inst. Statist. Math., Suppl.* 3:89-98.
- TAKEDA, S. (1964). "Experimental studies on the airplane response to the side gusts." *Ann. Inst. Statist. Math., Suppl.* 3:59-64.
- TATE, R. F. (1966). "Conditional-normal regression models." *J. Amer. Statist. Assoc.* 61:477-489.

- TICK, L. J. (1963). "Conditional spectra, linear systems and coherency." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 197-203. New York: Wiley.
- TICK, L. J. (1966). "Letter to the Editor." *Technometrics*. 8:559-561.
- TICK, L. J. (1967). "Estimation of coherency." In *Advanced Seminar on Spectral Analysis of Time Series*, Ed. B. Harris, pp. 133-152. New York: Wiley.
- TMAN, M. F. (1962). "Some linear summation processes for the summation of Fourier series and best approximation." *Soviet Math.* 3:1102-1105.
- TMAN, A. F. (1963). *Theory of Approximation of Functions of a Real Variable*. New York: Macmillan.
- TUKEY, J. W. (1949). "The sampling theory of power spectrum estimates." Proc. on *Applications of Autocorrelation Analysis to Physical Problems*. NAVEXOS-P-735, pp. 47-67. Washington, D.C.: Office of Naval Research, Dept. of the Navy.
- TUKEY, J. W. (1959a). "An introduction to the measurement of spectra." In *Probability and Statistics*, Ed. U. Grenander, pp. 300-330. New York: Wiley.
- TUKEY, J. W. (1959b). "The estimation of power spectra and related quantities." In *On Numerical Approximation*, pp. 389-411. Madison: Univ. of Wisconsin Press.
- TUKEY, J. W. (1959c). "Equalization and pulse shaping techniques applied to the determination of initial sense of Rayleigh waves." In *The Need of Fundamental Research in Seismology*. Appendix 9, pp. 60-129. Washington: U.S. Department of State.
- TUKEY, J. W. (1961). "Discussion, emphasizing the connection between analysis of variance and spectrum analysis." *Technometrics*. 3:1-29.
- TUKEY, J. W. (1965a). "Uses of numerical spectrum analysis in geophysics." *Bull. I.S.I.* 35 Session. 267-307.
- TUKEY, J. W. (1965b). "Data analysis and the frontiers of geophysics." *Science*. 148:1283-1289.
- TUKEY, J. W. (1967). "An introduction to the calculations of numerical spectrum analysis." In *Advanced Seminar on Spectral Analysis of Time Series*, Ed. B. Harris, pp. 25-46. New York: Wiley.
- TUMURA, Y. (1965). "The distributions of latent roots and vectors." *TRU Mathematics*. 1:1-16.
- VANDER POL, B. (1930). "Frequency modulation." *Proc. Inst. Radio. Eng.* 18: 227.
- VARIOUS AUTHORS (1966). "A discussion on recent advances in the technique of seismic recording and analysis." *Proc. Roy. Soc.* 290:286-476.
- VOLTERRA, V. (1959). *Theory of Functionals and of Integrals and Differential Equations*. New York: Dover.
- VON MISES, R. (1964). *Mathematical Theory of Probability; and Statistics*. New York: Academic.
- VON MISES, R., and DOOB, J. L. (1941). "Discussion of papers on probability theory." *Ann. Math. Statist.* 12:215-217.
- WAHBA, G. (1966). *Cross spectral distribution theory: for mixed spectra and estimation of prediction filter coefficients*. Ph.D. Thesis, Stanford University.
- WAHBA, G. (1968). "One the distribution of some statistics useful in the analysis of jointly stationary time series." *Ann. Math. Statist.* 39:1849-1862.
- WAHBA, G. (1969). "Estimation of the coefficients in a distributed lag model." *Econometrica*. 37:398-407.
- WALDMER, M. (1961). *The Sunspot Activity in the Years 1610-1960*. Zurich: Schulteths.
- WALKER, A. M. (1954). "The asymptotic distribution of serial correlation coefficients for autoregressive processes with dependent residuals." *Proc. Camb. Philos. Soc.* 50:60-64.
- WALKER, A. M. (1965). "Some asymptotic results for the periodogram of a stationary time series." *J. Austral. Math. Soc.* 5:107-128.
- WALKER, A. M. (1971). "On the estimation of a harmonic component in a time series with stationary residuals." *Biometrika*. 58:21-36.
- WEDEDERBURN, J. H. M. (1934). *Lectures on Matrices*. New York: Amer. Math. Soc.
- WEIGEL, R. L., and MOORE, C. R. (1924). "An electrical frequency analyzer." *Bell Syst. Tech. J.* 3:299-323.
- WELCH, P. D. (1961). "A direct digital method of power spectrum estimation." *IBM J. Res. Dev.* 5:141-156.
- WELCH, P. D. (1971). "The use of the fast Fourier transform for estimation of spectra: a method based on time averaging over short, modified periodograms." *IEEE Trans. Electron. Acoust.* AU-15:70.
- WEYL, H. (1946). *Classical Groups*. Princeton: Princeton Univ. Press.
- WHITTAKER, E. T., and CUTHILL, G. (1944). *The Calculus of Observations*. Cambridge: Cambridge Univ. Press.
- WHITTLE, P. (1951). *Hypothesis Testing in Time Series Analysis*. Uppsala: Almqvist.
- WHITTLE, P. (1952a). "Some results in time series analysis." *Skand. Aktuar*. 35: 48-60.
- WHITTLE, P. (1952b). "The simultaneous estimation of a time series' harmonic and covariance structure." *Trab. Estad.* 3:43-57.
- WHITTLE, P. (1953). "The analysis of multiple stationary time series." *J. Roy. Statist. Soc. Ser. B*. 15:125-139.
- WHITTLE, P. (1954). "A statistical investigation of sunspot observations with special reference to H. Alven's sunspot model." *Astrophys. J.* 120:251-260.
- WHITTLE, P. (1959). "Sur la distribution du maximum d'un polynome trigonométrique à coefficients aléatoires." *Colloques Internationaux du Centre National de la Recherche Scientifique*. 87:173-184.
- WHITTLE, P. (1961). "Gaussian estimation in stationary time series." *Bull. Int. Statist. Inst.* 39:105-130.
- WHITTLE, P. (1963a). *Prediction and Regulation*. London: English Universities Press.
- WHITTLE, P. (1963b). "On the fitting of multivariate auto-regressions and the approximate canonical factorization of a spectral density matrix." *Biometrika*. 50:129-134.
- WIDOM, H. (1965). "Toeplitz matrices." In *Studies in Real and Complex Analysis*, Ed. I. I. Hirschman, Jr., pp. 179-209. Englewood Cliffs: Prentice-Hall.
- WIENER, N. (1930). "Generalized harmonic analysis." *Acta. Math.* 55:17-258.

- WIENER, N. (1933). *The Fourier Integral and Certain of its Applications*. Cambridge: Cambridge Univ. Press.
- WIENER, N. (1938). "The historical background of harmonic analysis." *Amer. Math. Soc. Semicentennial Pub.* 2:56-68.
- WIENER, N. (1949). *The Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications*. New York: Wiley.
- WIENER, N. (1953). "Optics and the theory of stochastic processes." *J. Opt. Soc. Amer.* 43:225-228.
- WIENER, N. (1957). "Rhythms in physiology with particular reference to encephalography." *Proc. Rud. Virchow Med. Soc. in New York*. 16:109-124.
- WIENER, N. (1958). *Non-linear Problems in Random Theory*. Cambridge: MIT Press.
- WIENER, N., SIEGEL, A., RANKIN, B., and MARTIN, W. T. (1967). *Differential Space. Quantum Systems and Prediction*. Cambridge: MIT Press.
- WIENER, N., and WINTNER, A. (1941). "On the ergodic dynamics of almost periodic systems." *Amer. J. Math.* 63:794-824.
- WILK, M. B., GNANADESIKAN, R., and HYLSTED, M. J. (1962). "Probability limits for the gamma distribution." *Technometrics* 4:1-20.
- WILKINS, J. E. (1948). "A note on the general summability of functions." *Ann. Math.* 49:189-199.
- WILKINSON, J. H. (1965). *The Algebraic Eigenvalue Problem*. Oxford: Oxford Univ. Press.
- WILLIAMS, E. J. (1967). "The analysis of association among many variates." *Proc. Statist. Soc. B*. 29:199-242.
- WINTNER, A. (1932). "Remarks on the ergodic theorem of Birkhoff." *Proc. Natl. Acad. Sci. (U.S.A.)*. 18:248-251.
- WISHART, J. (1931). "The mean and second moment coefficient of the multiple correlation coefficient in samples from a normal population." *Biometrika*. 22:353-361.
- WISHART, J., and BARTLETT, M. S. (1932). "The distribution of second order moment statistics in a normal system." *Proc. Camb. Philos. Soc.* 28:455-459.
- WOLD, H. O. A. (1948). "On prediction in stationary time series." *Ann. Math. Stat.* 19:558-567.
- WOLD, H. O. A. (1954). *A Study in the Analysis of Stationary Time Series*, 2nd ed. Uppsala: Almqvist and Wiksell.
- WOLD, H. O. A. (1963). "Forecasting by the chain principle." In *Time Series Analysis*, Ed. M. Rosenblatt, pp. 471-497. New York: Wiley.
- WOLD, H. O. A. (1965). *Bibliography on Time Series and Stochastic Processes*. London: Oliver and Boyd.
- WONG, E. (1964). "The construction of a class of stationary Markov processes." *Proc. Symp. Applied Math.* 16:264-276. Providence: Amer. Math. Soc.
- WOOD, L. C. (1968). "A review of digital pass filtering." *Rev. Geophysics*. 6:73-98.
- WOODING, R. A. (1956). "The multivariate distribution of complex normal variates." *Biometrika* 43:212-215.
- WOODROOFE, M. B., and YANNESS, J. W. (1967). "The maximum deviation of sample spectral densities." *Ann. Math. Statist.* 38:1558-1570.

WORLD WEATHER RECORDS. Smithsonian Miscellaneous Collections, Vol. 79 (1927), Vol. 90 (1934), Vol. 105 (1947). Smithsonian Inst. Washington.

WORLD WEATHER RECORDS, 1941-1950 (1959) and 1951-1960 (1965). U.S. Weather Bureau, Washington, D.C.

WRIGHT, W. D. (1906). *The Measurement of Colour*. New York: Macmillan.

YAGLOM, A. M. (1962). *An Introduction to the Theory of Stationary Random Functions*. Englewood Cliffs: Prentice-Hall.

YAGLOM, A. M. (1965). "Stationary Gaussian processes satisfying the strong mixing condition and best predictable functionals." In *Bernoulli, Bayes, Laplace*, Ed. J. Neyman and L. M. LeCam, pp. 241-252. New York: Springer.

YAMANOUCHI, Y. (1961). "On the analysis of the ship oscillations among waves—I, II, III." *J. Soc. Naval Arch. (Japan)*. 109:169-183; 110:19-29, 111: 103-115.

YULE, G. U. (1927). "On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers." *Phil. Trans. Roy. Soc. A*. 226:267-298.

YUZURIHA, T. (1960). "The autocorrelation curves of schizophrenic brain waves and the power spectra." *Psych. Neurol. Jap.* 62:911-924.

ZYGMUND, A. (1959). *Trigonometric Series*. Cambridge: Cambridge Univ. Press.

ZYGMUND, A. (1968). *Trigonometric Series*, Vols. I, II. Cambridge: Cambridge Univ. Press.

Multiple Time Series

E. J. HANNAN

*The Australian National University
Canberra*

Preface

The subject of time series analysis has intimate connections with a wide range of topics, among which may be named statistical communication theory, the theory of prediction and control, and the statistical analysis of time series data. The last of these is to some extent subsidiary to the other two, since its purpose, in part at least, must be to provide the information essential to the application of those theories. However, it also has an existence of its own because of its need in fields (e.g., economics) in which at present well-developed, exact theories of control are not possible. It is with the third of these topics that this book is concerned. It extends beyond that in two ways. The first and most important is by the inclusion in the first half of the book of a fairly complete treatment of the underlying probability theory for second-order stationary processes. Although this theory is for the most part classical and available elsewhere in book form, its understanding is an essential preliminary to the study of time series analysis and its inclusion is inevitable. I have, however, included a certain amount of material over and above the minimum necessary, in relation, for example, to nonlinear filters and random processes in space as well as time. The statistical development of this last subject is now fragmentary, but may soon become important.

The second additional topic is the theory of prediction, interpretation, signal extraction, and smoothing of time series. The inclusion of this material seems justified for two reasons. The first arises from the understanding that the classical "Wiener-Kolmogoroff" theories give of the structure of time series. This understanding is needed, in part at least, for statistical developments (e.g., identification problems and problems associated with the relation between the eigenvalues of the covariance matrix and the spectrum). The second reason is that these developments are becoming important to people who are statisticians concerned with time series (e.g., in missile

John Wiley and Sons, Inc.
New York · London · Sydney · Toronto

trajectory estimation and economics). Of course, some of the more practically valuable work here is recent and would require a separate volume for an adequate treatment, but some indications concerning it are needed. There is one other characteristic that a modern book on time series must have and that is the development of the theory and methods for the case in which multiple measurements are made at each point, for this is usually the case.

Having decided on the scope of the book, one must consider the manner in which the material will be presented and the level of the presentation. This book sets out to give the theory of the methods that appear to be important in time series analysis in a manner that it is hoped will lead finally to an understanding of the methods as they are to be used. On the whole it presents final formulas but often does not discuss computational details and it does not give computer programs. (For the most part the methods discussed are already programmed and these programs are available.) With minor exceptions numerical examples are not given. It is not a book on "practical time series analysis" but on the theory of that subject. There is a need for books of the first kind, of course, but also of this second kind, as any time series analyst knows from requests for references to a definitive discussion of the theory of this or that topic. The level of presentation causes problems, for the theory is both deep and mathematically unfamiliar to statisticians. It would probably be possible to cover the underlying probability theory more simply than has been done by making more special assumptions (or by making the treatment less precise). To make the book more accessible a different device has been used and that is by placing the more difficult or technical proofs in chapter appendices and starting a few sections that can be omitted. It is assumed that the reader knows probability and statistics up to a level that can be described as familiarity with the classic treatise *Mathematical Methods of Statistics* by Harald Cramér. A mathematical appendix which surveys some needed elementary functional analysis and Fourier methods has been added.

Some topics have not been fully discussed, partly because of the range of my interests and partly because of the need to keep the length of the book within reasonable bounds. I have said only a small amount about the spectra of higher moments. This is mainly because the usefulness of this spectral theory has not yet been demonstrated. (See the discussion in Chapter II, Section 8.) Little also has been said about nonstationary processes, and particularly about their statistical treatment. This part of the subject is fragmentary at the moment. Perhaps, of necessity, it always will be. A third omission is of anything other than a small discussion of "digitized" data (e.g., "clipped signals" in which all that is recorded is whether the phenomenon surpassed a certain intensity). There is virtually no discussion

of the sample path behavior of Gaussian processes, for this subject has recently been expertly surveyed by Cramér and Leadbetter (1967) and its inclusion here is not called for. I have also not discussed those inference procedures for point processes based on the times of occurrence of the events in the process (as distinct from the intervals between these times). This has recently been surveyed by Cox and Lewis (1966). Finally, the second half of the book (on inference problems) discusses only the discrete time case. This is justified by the dominance of digital computer techniques.

I have not attempted to give anything approaching a complete bibliography of writing on time series. For the period to 1959 a very complete listing is available in Wold (1965). It is hoped that the references provided herein will allow the main lines of development of the subject to the present time to be followed by the reader.

I have many people to thank for help. The book developed from a course given at The Johns Hopkins University, Baltimore, Maryland, and an appreciable part of the work on it was supported by funds from the United States Air Force. The book's existence is due in part to encouragement from Dr. G. S. Watson. Dr. C. Rhode at Johns Hopkins and R. D. Terrell, P. Thomson, and D. Nicholls at the Australian National University have all read parts of the work and have corrected a number of errors in its preliminary stages. The typing was entirely done, many times over, by Mrs. J. Radley, to whom I am greatly indebted.

Canberra, Australia
April, 1970

E. J. HANNAN

Contents

PART I BASIC THEORY

CHAPTER I. INTRODUCTORY THEORY	3
1. Introduction	3
2. Differentiation and Integration of Stochastic Processes	5
3. Some Special Models	9
4. Stationary Processes and their Covariance Structure	18
5. Higher Moments	23
6. Generalized Random Processes†	23
EXERCISES	
APPENDIX	

CHAPTER II. THE SPECTRAL THEORY OF VECTOR PROCESSES

32	
1. Introduction	32
2. The Spectral Theorems for Continuous-Time Stationary Processes	34
3. Sampling a Continuous-Time Process. Discrete Time Processes	44
4. Linear Filters	51
5. Some Special Models	61
6. Some Spectral Theory for Nonstationary Processes	77
7. Nonlinear Transformations of Random Processes	82
8. Higher Order Spectra	88
9. Spectral Theory for GRP†	91
10. Spectral Theories for Homogeneous Random Processes on Other Spaces†	94
11. Filters, General Theory†	106
EXERCISES	
APPENDIX	

* These topics are special and may be omitted.

CHAPTER III. PREDICTION THEORY AND SMOOTHING

1. Introduction	127
2. Vector Discrete-Time Prediction for Rational Spectra	127
3. The General Theory for Stationary, Discrete-Time, Scalar Processes [†]	136
4. The General Theory for Stationary, Continuous-Time, Scalar Processes [†]	151
5. Vector Discrete-Time Prediction [†]	157
6. Problems of Interpolation	163
7. Smoothing and Signal Measurement	168
8. Kaiman Filtering	180
9. Smoothing Filters	186

EXERCISES

APPENDIX

PART II INFERENCE

CHAPTER IV. THE LAWS OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM

1. Introduction	199
2. Strictly Stationary Processes. Ergodic Theory	200
3. Second-Order Stationary Processes. Ergodic Theory	204
4. The Central Limit Theorem	220

EXERCISES

APPENDIX

CHAPTER V. INFERENCE ABOUT SPECTRA

1. Introduction	245
2. The Finite Fourier Transform	246
3. Alternative Computational Procedures for the FFT	263
4. Estimates of Spectral for large N and M	273
5. The Asymptotic Distribution of Spectral Estimates	288
6. Complex Multivariate Analysis [†]	295

EXERCISES

APPENDIX

CHAPTER VI. INFERENCE FOR RATIONAL SPECTRA

1. Introduction	325
2. Inference for Autoregressive Models. Asymptotic Theory	326
3. Inference for Autoregressive Models. Some Exact Theory	342

4. Moving Average and Mixed Autoregressive, Moving Average Models. Introduction	369
5. The Estimation of Moving Average and Mixed Moving Average Autoregressive Models Using Spectral Methods	377
6. General Theories of Estimation for Finite Parameter Models	395
7. Tests of Goodness of Fit	398
8. Continuous-Time Processes and Discrete Approximations	405

EXERCISES

APPENDIX

CHAPTER VIII. REGRESSION METHODS

1. Introduction	415
2. The Efficiency of Least Squares. Fixed Sample Size	416
3. The Efficiency of Least Squares. Asymptotic Theory	423
4. The Efficient Estimation of Regressions	438
5. The Effects of Regression Procedures on Analysis of Residuals	448
6. Tests for Periodicities	463
7. Distributed Lag Relationships	475

EXERCISES

APPENDIX

MATHEMATICAL APPENDIX

BIBLIOGRAPHY	519
TABLE OF NOTATIONS	529
INDEX	531

$\lambda_i \mu_j$. If λ_i is of multiplicity m_i and μ_j of multiplicity n_j , then $\lambda_i \mu_j$ has multiplicity $m_i n_j$. This may be seen by taking A, B as realized by matrices and reducing A, B to Jordan canonical form by the transformation $A \rightarrow PAP^{-1}$, $B \rightarrow QBQ^{-1}$. In this canonical form PAP^{-1} and QBQ^{-1} have null elements below the main diagonal and their eigenvalues in appropriate multiplicity, in the main diagonal. Thus if $A \otimes B$ is taken in the first matrix realization then $A \otimes B \rightarrow (PAP^{-1}) \otimes (QBP^{-1}) = (P \otimes Q)(A \otimes B)(P \otimes Q)^{-1}$ again reduces $A \otimes B$ to upper triangular form and evidently $A \otimes B$ has $\lambda_i \mu_j$, with multiplicity $m_i n_j$.

It follows, in particular, that $\det(A \otimes B) = (\det(A))^q(\det(B))^p$ and $\text{tr}(A \otimes B) = \text{tr}(A)\text{tr}(B)$.

These definitions may be extended to an arbitrary number of tensor factors so that we may form $X_1 \otimes X_2 \otimes \dots \otimes X_r$. These may be defined inductively. Similarly we define $A_1 \otimes A_2 \otimes \dots \otimes A_r$, if A_i acts in X_i as a linear transformation. We shall not list the extensions to $r > 2$ of the properties listed above since these are all fairly obvious. For example, if the eigenvalues of A_i are $\lambda_{i,j}$, with multiplicity $n_{i,j}$, then the eigenvalues of $A_1 \otimes A_2 \otimes \dots \otimes A_r$, and their multiplicities are

$$\prod_{j=1}^r \lambda_{i,j} n_{i,j},$$

where all possible choices $i(1), \dots, i(r)$ are allowed.

It may be observed from the abstract definition first given that $X \otimes Y$ and $Y \otimes X$ are isomorphic as vector spaces and similarly there is an isomorphism between $X_1 \otimes X_2 \otimes \dots \otimes X_r$ and the tensor product of the X_j taken in any other order. If $X \otimes Y$ (and $Y \otimes X$) are realized as spaces of $p \times q$ (and $q \times p$) matrices then the isomorphism of $X \otimes Y$ with $Y \otimes X$ is clearly attained through $C \in X \otimes Y \leftrightarrow C' \in Y \otimes X$. This isomorphism defines a corresponding isomorphism of the algebra of linear operators in $X \otimes Y$ into the algebra of linear operators in $Y \otimes X$ and clearly under this correspondence $A \otimes B \leftrightarrow B \otimes A$. The generalization to more than two factors is evident.

Bibliography

- Abramowitz, M., and I. A. Stegun (1964), *Handbook of Mathematical Functions*, Nat. Bur. Standards, App. Math. Ser. No. 55, Washington, U.S. Govt. Printing Office.
- Achiezer, N. I. (1956), *Theory of Approximation*, New York, Frederick Ungar.
- Amemiya, T., and W. A. Fuller (1967), "A comparative study of alternative estimators of a distributed lag model," *Econometrica*, 35, 509-529.
- Amos, D. E., and L. H. Koopmans (1963), *Tables of the Distribution of the Coefficient of Coherence for Stationary Bivariate Gaussian Processes*, Washington, Office of Technical Services, Dept. of Commerce.
- Anderson, R. L. (1942), "Distribution of the serial correlation coefficient," *Ann. Math. Statist.*, 13, 1-13.
- _____, and T. W. Anderson (1950), "Distribution of the circular serial correlation coefficient for residuals from a fitted Fourier series," *Ann. Math. Statist.*, 21, 59-81.
- Anderson, T. W. (1948), "On the theory of testing serial correlation," *Skand. Aktuarietidskr.*, 31, 81-115.
- _____, (1958), *Introduction to Multivariate Statistical Analysis*, New York, John Wiley.
- _____, (1970), *Time Series Analysis*, New York, John Wiley.
- _____, and A. M. Walker (1964), "On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process," *Ann. Math. Statist.*, 35, 1296-1303.
- Bartlett, M. S. (1935), "Some aspects of the time correlation problem in regard to tests of significance," *J. R. Statist. Soc.* 98, 536-543.
- _____, (1954), "Problèmes de l'analyse spectrale des séries temporelles stationnaires," *Publications de L'Institut de Statistique de l'Univ. de Paris*, III-3, 119-134.
- _____, (1955), *An Introduction to Stochastic Processes*, Cambridge University Press.
- _____, (1963), "The spectral analysis of point processes," *J. R. Statist. Soc.* 25, 264-296.

- Tartlet, M. S., and P. H. Diananda (1950), "Extensions of Quenouille's test for autoregressive schemes," *J. R. Statist. Soc., Ser. B*, **12**, 108-115.
- _____, and J. Stechin (1955), "On the efficiency of procedures for smoothing periodograms from time series with continuous spectra," *Biometrika*, **42**, 143-150.
- _____, and D. V. Rajalakshman (1953), "Goodness of fit tests for simultaneous autoregressive series," *J. R. Statist. Soc., Ser. B*, **15**, 107-124.
- Bernardau, S. (1926), "Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités corrélatives," *Math. Ann.*, **97**, 1-59.
- Billingsley, P. (1965), *Ergodic Theory and Information*, New York, John Wiley.
- _____, (1965), *Convergence of Probability Measures*, New York, John Wiley.
- Blackman, R. B. (1965), *Linear Data Smoothing and Prediction*, Reading, Mass., Addison-Wesley.
- _____, and J. W. Tukey (1959), *The Measurement of Power Spectra*, New York, Dover.
- Bôcher, M. (1907), *An Introduction to Higher Algebra*, New York, Macmillan.
- Boerner, H. (1963), *Representations of Groups*, Amsterdam, North Holland.
- Bonnet, G. (1965), "Théorie de l'information—sur l'interpolation optimale d'une fonction aléatoire échantillonnée," *C.R. Acad. Sci. Paris*, **260**, 784-787.
- Box, G. E. P., and G. M. Jenkins (1962), "Some statistical aspects of adaptive optimization and control," *J. R. Statist. Soc., Ser. C*, **24**, 297-343.
- _____, (1970), *Time Series, Forecasting and Control*, San Francisco, Holden-Day.
- Brillinger, D. R. (1965), "An introduction to polynomials," *Ann. Math. Statist.*, **36**, 1351-1374.
- _____, and M. Rosenblatt (1967a), "Computation and interpretation of k-th order spectra," pp. 186-232 in *Advanced Seminar on Spectral Analysis of Time Series* (ed. B. Harris), New York, John Wiley.
- _____, (1967b), "Asymptotic theory of estimates of k-th order spectra," pp. 153-158 in *Advanced Seminar on Spectral Analysis of Time Series* (ed. B. Harris), New York, John Wiley.
- Chandris, K. C. (1961), "Comparative efficiencies of methods of estimating parameters in linear autoregressive schemes," *Biometrika*, **48**, 427-432.
- _____, (1962), "On bounds of serial correlations," *Ann. Math. Statist.*, **33**, 1457-1460.
- _____, (1964), "Asymptotic expansions for tests of goodness of fit for linear autoregressive schemes," *Biometrika*, **51**, 459-465.
- Chapman, J. S., K. R. Kadivala, A. Madansky, and J. W. Pratt (1968), "Efficiency of the sample mean when residuals follow a first-order stationary Markoff process," *J. Amer. Statist. Assoc.*, **63**, 1237-1246.
- Coopey, J. W., and J. W. Tukey (1965), "An algorithm for the machine calculation of complex Fourier series," *Mathematics of Computation*, **19**, 297-301.
- Cox, D. R., and P. A. W. Lewis (1966), *The Statistical Analysis of Series of Events*, London, Methuen.
- _____, and H. D. Miller (1965), *The Theory of Stochastic Processes*, London, Methuen.
- Cramér, H. (1937), *Random Variables and Probability Distributions*, Cambridge University Press.

- _____, (1946), *Mathematical Methods of Statistics*, Princeton University Press.
- _____, and M. R. Leadbetter (1967), *Stationary and Related Stochastic Processes*, New York, John Wiley.
- Daniels, H. E. (1956), "The approximate distributions of serial correlation coefficients," *Biometrika*, **43**, 169-185.
- De Bruijn, N. G. (1958), *Asymptotic Methods in Analysis*, Amsterdam, North-Holland.
- Deutsch, R. (1962), *Nonlinear Transformations of Random Processes*, Englewood Cliffs, N. J., Prentice-Hall.
- Dhrymes, P. J. (1969), "Efficient estimation of distributed lags with autocorrelated errors," *Int. Economic Rev.*, **10**, 47-67.
- Diananda, P. H. (1954), "The central limit theorem for n-dependent variables asymptotically stationary to second order," *Proc. Camb. Phil. Soc.*, **50**, 287-292.
- Dixon, W. J. (1944), "Further contributions to the problem of serial correlation," *Ann. Math. Statist.*, **15**, 119-144.
- Dobr, J. L. (1953), *Stochastic Processes*, New York, John Wiley.
- Durbin, J. (1959), "Efficient estimators of parameters in moving average models," *Biometrika*, **46**, 306-316.
- _____, (1960), "Fitting of time series models," *Rev. Int. Statist. Inst.*, **28**, 233-244.
- _____, and G. S. Watson (1950), "Testing for serial correlation in least squares regression," *I. Biometrika*, **37**, 409-428.
- _____, (1951), "Testing for serial correlation in least squares regression. II," *Biometrika*, **38**, 159-178.
- Eicker, F. (1967), "Limit theorems for regressions with unequal and dependent errors," *Proc. Fifth Berkeley Sympos. Math. Statist. and Probability* (Berkeley Calif., 1965/66), Vol. 1: Statistics, pp. 59-82, Berkeley, Univ. California Press.
- Feller, W. (1957), *An Introduction to Probability Theory and its Applications*, Vol. I (2nd Ed.), New York, John Wiley.
- _____, (1966), *An Introduction to Probability Theory and its Applications*, Vol. II, New York, John Wiley.
- Fisher, R. A. (1929), "Tests of significance in harmonic analysis," *Proc. Roy. Soc., Ser. A*, **125**, 54-59.
- _____, (1940), "On the similarity of the distributions found for the test of significance in harmonic analysis, and in Steven's Problem in geometrical probability," *Annals of Eugenics*, **10**, 14-17.
- _____, (1950), *Contributions to Mathematical Statistics*, New York, John Wiley.
- Fishman, G. S. (1969), *Spectral Methods in Econometrics*, Santa Monica, Rand Corporation.
- Fisz, M. (1963), *Probability Theory and Mathematical Statistics*, New York, John Wiley.
- Fraser, D. A. S. (1957), *Non Parametric Methods in Statistics*, New York, John Wiley.
- Freeman, H. (1965), *Discrete Time Systems*, New York, John Wiley.
- Gelfand, J. M., and G. E. Shillov (1964), *Generalized Functions*, Vol. I, New York, Academic Press.

- and N. Ya. Vilenkin (1964), *Generalised Functions, Vol. 4. Application to Harmonic Analysis*, Translated by A. Feinstein, New York, Academic Press.
- Garcia, B. V., and A. N. Kolmogoroff (1954), *Limit Distributions for Sums of Independent Random Variables*, Reading, Mass., Addison-Wesley.
- Goddard, N. R. (1963), "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)," *Ann. Math. Statist.*, **33**, 152-177.
- Gourié, E., and E. R. Hedrick (1904), *A Course in Mathematical Analysis*, Boston, Gunn.
- Greniger, C. W. J., and M. Hatanaka (1964), *Spectral Analysis of Economic Time Series*, Princeton University Press.
- Grenander, U. (1950), "Stochastic processes and statistical inference," *Ark. Mat.*, **1**, 195-277.
- (1951), "On empirical spectral analysis of stochastic processes," *Ark. Mat.*, **1**, 505-531.
- (1954), "On the estimation of regression coefficients in the case of an autocorrelated disturbance," *Ann. Math. Statist.*, **25**, 252-272.
- and M. Rosenblatt (1957), *Statistical Analysis of Stationary Time Series*, New York, John Wiley.
- and G. Szegö (1958), *Toepplitz Forms and Their Applications*, Berkeley, Univ. California Press.
- Grob, W. (1967), *Multilinear Algebra*, Berlin, Springer-Verlag.
- Grafches, Z. (1967), "Distributed lags: a survey," *Econometrica*, **35**, 16-49.
- Graw, G. W., and E. J. Hannan (1968), "Time series regression of sea level on tides," *Rev. Geophysics*, **6**, 129-174.
- Hannan, P. R. (1947), *Finite Dimensional Vector Spaces* (2nd Ed.), Princeton University Press.
- (1950), *Measure Theory*, New York, Van Nostrand.
- Hannan, E. J. (1960), *Time Series Analysis*, London, Methuen.
- (1961a), "A central limit theorem for systems of regressions," *Proc. Camb. Phil. Soc.*, **57**, 583-588.
- (1961b), "Testing for a jump in the spectral function," *J. R. Statist. Soc.*, **23**, 392-404.
- (1963), "Regression for time series," (Proc. Symp. on) *Time Series Analysis* (ed. M. Rosenblatt), New York, John Wiley.
- (1963), "Regression for time series with errors of measurement," *Biometrika*, **50**, 295-302.
- (1965a), "Group representations and applied probability," *J. App. Prob.*, **2**, 1-68. (Also issued as Vol. 3 of Methuen's Review Series in Applied Probability, London, Methuen).
- (1965b), "The estimation of relationships involving distributed lags," *Econometrica*, **33**, 206-224.
- (1967a), "The concept of a filter," *Proc. Camb. Phil. Soc.*, **63**, 221-227.
- (1967b), "Measurement of a wandering signal amid noise," *J. App. Prob.*, **4**, 95-102.
- and N. Ya. Vilenkin (1964), *Generalised Functions, Vol. 4. Application to Harmonic Analysis*, Translated by A. Feinstein, New York, Academic Press.
- Garcia, B. V., and A. N. Kolmogoroff (1954), *Limit Distributions for Sums of Independent Random Variables*, Reading, Mass., Addison-Wesley.
- Goddard, N. R. (1963), "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)," *Ann. Math. Statist.*, **33**, 152-177.
- Gourié, E., and E. R. Hedrick (1904), *A Course in Mathematical Analysis*, Boston, Gunn.
- Greniger, C. W. J., and M. Hatanaka (1964), *Spectral Analysis of Economic Time Series*, Princeton University Press.
- Grenander, U. (1950), "Stochastic processes and statistical inference," *Ark. Mat.*, **1**, 195-277.
- (1951), "On empirical spectral analysis of stochastic processes," *Ark. Mat.*, **1**, 505-531.
- (1954), "On the estimation of regression coefficients in the case of an autocorrelated disturbance," *Ann. Math. Statist.*, **25**, 252-272.
- and M. Rosenblatt (1957), *Statistical Analysis of Stationary Time Series*, New York, John Wiley.
- and G. Szegö (1958), *Toepplitz Forms and Their Applications*, Berkeley, Univ. California Press.
- Grob, W. (1967), *Multilinear Algebra*, Berlin, Springer-Verlag.
- Grafches, Z. (1967), "Distributed lags: a survey," *Econometrica*, **35**, 16-49.
- Graw, G. W., and E. J. Hannan (1968), "Time series regression of sea level on tides," *Rev. Geophysics*, **6**, 129-174.
- Hannan, P. R. (1947), *Finite Dimensional Vector Spaces* (2nd Ed.), Princeton University Press.
- (1950), *Measure Theory*, New York, Van Nostrand.
- Hannan, E. J. (1960), *Time Series Analysis*, London, Methuen.
- (1961a), "A central limit theorem for systems of regressions," *Proc. Camb. Phil. Soc.*, **57**, 583-588.
- (1961b), "Testing for a jump in the spectral function," *J. R. Statist. Soc.*, **23**, 392-404.
- (1963), "Regression for time series," (Proc. Symp. on) *Time Series Analysis* (ed. M. Rosenblatt), New York, John Wiley.
- (1963), "Regression for time series with errors of measurement," *Biometrika*, **50**, 295-302.
- (1965a), "Group representations and applied probability," *J. App. Prob.*, **2**, 1-68. (Also issued as Vol. 3 of Methuen's Review Series in Applied Probability, London, Methuen).
- (1965b), "The estimation of relationships involving distributed lags," *Econometrica*, **33**, 206-224.
- (1967a), "The concept of a filter," *Proc. Camb. Phil. Soc.*, **63**, 221-227.
- (1967b), "Measurement of a wandering signal amid noise," *J. App. Prob.*, **4**, 95-102.
- and N. Ya. Vilenkin (1964), *Generalised Functions, Vol. 4. Application to Harmonic Analysis*, Translated by A. Feinstein, New York, Academic Press.
- Garcia, B. V., and A. N. Kolmogoroff (1954), "Fourier methods and random processes," *Bull. Int. Statist. Inst.*, **42**, 475-496.
- (1969a), "Identification of vector m. ed autoregressive-moving average systems," *Biometrika*, **56**, 223-225.
- (1969c), "A note on an exact test for trend and serial correlation," *Econometrica*, **37**, 485-489.
- and R. D. Terrell (1968), "Testing for serial correlation after least squares regression," *Econometrica*, **36**, 133-150.
- (1970), "The seasonal adjustment of economic time series," *Int. Ec. Rev.*, **11**, 1-29.
- Hasselmann, K. F., W. H. Munk and G. J. F. MacDonald (1963), "Bispectra of ocean waves," (Proc. Symp. on) *Time Series Analysis* (ed. M. Rosenblatt), New York, John Wiley.
- Heble, M. P. (1961), "A regression problem concerning stationary processes," *Trans. Amer. Math. Soc.*, **99**, 350-371.
- Helgason, S. (1962), *Differential Geometry and Symmetric Spaces*, New York, Academic Press.
- Helson, H. (1964), *Lectures on Invariant Subspaces*, New York, Academic Press.
- and D. Lovendusger (1958), "Prediction theory and Fourier series in several variables," *Acta Math.*, **99**, 165-202.
- Henshaw, R. C. (1966), "Testing single-equation least squares regression models for autocorrelated disturbances," *Econometrica*, **34**, 646-660.
- Hewitt, E., and K. Stromberg (1965), *Real and Abstract Analysis*, New York, Springer-Verlag.
- Hille, E., and R. S. Phillips (1957), *Functional Analysis and Semi-Groups*, Providence, American Mathematical Society.
- Hoffman, K. (1962), *Banach Spaces of Analytic Functions*, Englewood Cliffs, N.J., Prentice-Hall.
- Hsu, P. L. (1941), "On the limiting distribution of the roots of a determinantal equation," *J. London Math. Soc.*, **16**, 183-194.
- James, A. T. (1964), "Distributions of matrix variates and latent roots derived from normal samples," *Ann. Math. Statist.*, **35**, 475-501.
- Jenkins, G. M. (1954a), "Tests of hypotheses in the linear autoregressive model. Null hypothesis distributions in the Yule scheme," *Biometrika*, **41**, 405-419.
- (1954b), "An angular transformation for the serial correlation coefficient," *Biometrika*, **41**, 261-265.
- (1956), "Tests of hypotheses on the linear autoregressive model. Null distributions for higher order schemes; non-null distributions," *Biometrika*, **43**, 186-199.
- and D. G. Watts (1968), *Spectral Analysis*, San Francisco, Holden-Day.
- Kalman, R. E. (1960), "A new approach to linear filtering and prediction problems," *Trans. Amer. Soc. Mech. Eng., J. Basic Engineering*, **82**, 35-45.
- (1963), "New methods of Wiener filtering theory," pp. 270-388 in *Proc. First Symp. on Eng. Applications of Random Function Th. and Prob.* (Eds. J. L. Bogdonoff and F. Kozin), New York, John Wiley.

- and R. S. Bucy (1961), "New results in linear filtering and prediction theory," *Trans. Amer. Soc. Mech. Eng., J. Basic Engineering* **83**, 95-108.
- Kato, T. (1966), *Perturbation Theory for Linear Operators*, Berlin, Springer-Verlag.
- Kendall, M. G., and A. S. Stuart (1966), *The Advanced Theory of Statistics Vol. 3*, London, Griffin.
- Kharti, C. G. (1966), "A note on a large sample distribution of a transformed multiple correlation," *Ann. Inst. Statist. Math.* **18**, 375-380.
- Koopmans, T. C. (1942), "Serial correlation and quadratic forms in normal variables," *Ann. Math. Statist.* **13**, 14-33.
- Leznik, R. B. (1947), "Distribution of the serial correlation coefficient in a circularly correlated universe," *Ann. Math. Statist.* **18**, 80-87.
- Liviatan, N. (1963), "Consistent estimation of distributed lags," *International Economic Review* **4**, 44-52.
- Loeve, M. (1960), *Probability Theory* (2nd Ed.), Princeton, Van Nostrand.
- Lorentz, G. G. (1966), *Approximation of Functions*, New York, Holt, Rinehart and Winston.
- Macduffee, C. C. (1956), *The Theory of Matrices*, New York, Chelsea.
- MacGregor, J. R. (1962), "The approximate distribution of the correlation between two stationary linear Markov series," *Biometrika* **49**, 379-388.
- Mackey, G. W. (1968), *Induced Representations of Groups and Quantum Mechanics*, New York, Benjamin.
- Madow, W. G. (1945), "Note on the distribution of the serial correlation coefficient," *Ann. Math. Statist.* **16**, 308-310.
- Mazza, H. B. (1953), *Introduction to the Theory of Stochastic Processes Depending on a Continuous Parameter*, Nat. Bur. Standards, App. Math. Ser. No. 24, Washington, U.S. Govt. Printing Office.
- and A. Wald (1943), "On the statistical treatment of linear stochastic difference equations," *Econometrica* **11**, 173-220.
- Masani, P. (1959a), "Cramer's theorem on monotone matrix valued functions and the Wold decomposition," in *Probability and Statistics*, the Harald Cramer volume (Ed. U. Grenander), Stockholm, Almqvist and Wiksell.
- (1959b), "I. Sur la fonction génératrice d'un processus stochastique vectoriel," "II. Isomorphie entre les domaines temporel et spectral d'un processus vectoriel régulier," "III. Sur les fonctions matricielles de la classe de Hardy H_2 ," "IV. Sur les fonctions matricielles de la classe de Hardy H_2 ," *C.R. Acad. Sc., Paris*, **249**, 360-362, 496-498, 873-875, 906-907.
- (1960), "Une généralisation pour les fonctions matricielles de la classe de Hardy H_2 d'un théorème de Nevanlinna," *C.R. Acad. Sci., Paris*, **251**, 318-320.
- Moran, P. A. P. (1947), "Some theorems on time series I," *Biometrika* **34**, 28-291.
- Munk, W. H., and D. E. Cartwright (1966), "Tidal spectroscopy and prediction," *Phil. Trans.* **259**, 533-581.
- Naimark, M. A. (1960), *Normed Rings*, Groningen, Noordhoff.
- (1964), *Linear Representations of the Lorentz Group*, New York, Macmillan.
- von Neumann, J. (1931), "Distribution of the ratio of the mean square successive difference to the variance," *Ann. Math. Statist.* **12**, 367-395.

- Nerlove, M. (1964), "Spectral analysis of seasonal adjustment procedures," *Econometrica* **32**, 241-286.
- Neyman, J. (1934), "Discussion on Symposium on Interval Estimation," *J. R. Statist. Soc.*, **16**, 216-218.
- Nicholls, D. F. (1967), "Estimation of the spectral density function when testing for a jump in the spectrum," *Aust. J. Statist.* **9**, 103-108.
- (1969), "Testing for a jump in cospectra," *Aust. J. Statist.* **11**, 7-13.
- Olszen, R. A. (1967), "Asymptotic properties of the periodogram of a discrete stationary process," *J. Appl. Prob.* **4**, 508-528.
- Orcutt, G. H. (1948), "A study of the autoregressive nature of the time series used for Tinbergen's model of the economic system of the United States, 1919-32," *J. R. Statist. Soc., Ser. B* **10**, 1-45.
- Owen, D. B. (1962), *Handbook of Statistical Tables*, Reading, Mass., Addison-Wesley.
- Paley, R. E. A. C., and N. Wiener (1934), *Fourier Transforms in the Complex Domain*, Providence, Amer. Math. Soc.
- Parzen, E. (1957), "On consistent estimates of the spectrum of a stationary time series," *Ann. Math. Statist.* **28**, 329-348.
- (1961), "An approach to time series analysis," *Ann. Math. Statist.* **32**, 951-989.
- Phillips, A. W. (1959), "The estimation of parameters in a system of stochastic differential equations," *Biometrika* **46**, 67-76.
- Potapov, V. P. (1958), "The multiplicative structure of J -contractive matrix functions," (in Translations Amer. Math. Soc., Ser. 2, **15**, 131-244).
- Priestley, M. B. (1962), "Analysis of stationary processes with mixed spectra—I," *J. R. Statist. Soc., Ser. B* **24**, 511-529.
- Quenouille, M. H. (1947), "A large-sample test for the goodness of fit of autoregressive schemes," *J. R. Statist. Soc., Ser. A* **110**, 123-129.
- Rao, C. R. (1965), *Linear Statistical Inference and its Applications*, New York, John Wiley.
- Riesz, F., and B. Sz.-Nagy (1956), *Functional Analysis*, London, Blackie.
- Robertson, J. B. (1968), "Orthogonal decompositions of multivariate weakly stationary stochastic processes," *Canad. J. Math.* **20**, 368-383.
- Robinson, E. A. (1962), *Random Variables and Cybernetic Systems*, London, Griffin.
- (1967), *Multi-Channel Time Series Analysis*, San Francisco, Holden-Day.
- Rosenblatt, M. (1956a), "A central limit theorem and a strong mixing condition," *Proc. Nat. Acad. Sci., U.S.A.* **42**, 43-47.
- (1956b), "Some regression problems in time series analysis," *Proc. of Third Berkeley Symp. on Math. Statist. and Prob.* 1954, **1**, 165-186. Berkeley, Univ. of Calif. Press.
- (1959), "Statistical analysis of stochastic processes with stationary residual," in *Probability and Statistics*, the Harald Cramér volume (Ed. L. Grenander), pp. 246-275. Uppsala, Almqvist and Wiksell.
- (1961), "Some comments on narrow band-pass filters," *Quart. Appl. Math.* **18**, 387-393.

- Rozanov, Yu. A. (1967), *Stationary Random Processes*, San Francisco, Holden Day.
- Rubin, H. (1945), "On the distribution of the serial correlation coefficient," *Ann. Math. Statist.*, **16**, 211-215.
- Scheffé, H. (1959), *The Analysis of Variance*, New York, John Wiley.
- Shaman, P. (1969), "On the inverse of the covariance matrix of a first order moving average," *Biometrika*, **56**, 595-600.
- Shapiro, H. S., and R. A. Silverman (1960), "Alias-free sampling of random noise," *J. Soc. Indust. Appl. Math.*, **8**, 225-248.
- Tate, R. F., and G. W. Klett (1959), "Optimal confidence intervals for the variance of a normal distribution," *J. Amer. Statist. Assoc.*, **54**, 674-682.
- Terrell, R. D., and N. E. Tuckwell (1969), "The efficiency of least squares in estimating a stable seasonal pattern," Research Report available from Stats. Dept. SGS, ANU, Canberra, Australia.
- Theil, H., and A. L. Nagar (1961), "Testing the independence of regression disturbances," *J. Amer. Statist. Assoc.*, **56**, 793-806.
- Tintner, G. (1940), *The Variate Difference Method*, Cowles Comm. Monograph No. 5, Evanston, Ill., The Principia Press.
- Vilenkin, N. J. (1968), *Special Functions and the Theory of Group Representations*, Province, Amer. Math. Soc.
- van der Waerden, B. L. (1949), *Modern Algebra*, New York, Frederick Ungar.
- Wahba, Grace (1968) "On the distribution of some statistics useful in the analysis of joint stationary time series," *Ann. Math. Stat.*, **39**, 1849-1862.
- (1969), "Estimation of the coefficients in a multidimensional distributed lag model," *Econometrica*, **31**, 398-407.
- Wainstein, L. A., and V. D. Zubakov (1962), *Extraction of Signals from Noise*, Englewood Cliffs, N.J., Prentice-Hall.
- Walker, A. M. (1962), "Large sample estimation of parameters for autoregressive processes with moving average residuals," *Biometrika*, **49**, 117-132.
- (1964), "Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series," *J. Aust. Math. Soc.*, **4**, 363-384.
- (1965), "Some asymptotic results for the periodogram of a stationary time series," *J. Aust. Math. Soc.*, **5**, 107-128.
- Watson, G. S. (1955), "Some tests of separate families of hypotheses in time series analysis," *Biometrika*, **54**, 39-68.
- Watson, G. S. (1955), "Serial correlation in regression analysis I," *Biometrika*, **42**, 327-341.
- (1956), "On the joint distribution of the circular serial correlation coefficients," *Biometrika*, **43**, 161-168.
- (1957), "Linear least squares regression," *Ann. Math. Statist.*, **38**, 1679-1699.
- Whittaker, E. T., and G. N. Watson (1946), *A Course of Modern Analysis*, Cambridge University Press.
- Whittle, P. (1951), *Hypothesis Testing in Time Series Analysis*, Thesis, Uppsala University, Almqvist and Wiksell, Uppsala, Hafner, New York.

- (1962), "On the convergence to normality of quadratic forms in independent variables," *Theor. Veroyatnost. i Primenen.*, **9**, 113-118.
- Wiener, N. (1923), "Differential space," *J. Math. Phys.*, **2**, 131-174.
- (1933), *The Fourier Integral*, New York, Dover.
- (1938), *Nonlinear Problems in Random Theory*, Cambridge, Mass., M.I.T. Press.
- and P. Masani (1957), "The prediction theory of multivariate stochastic processes, I," *Acta. Math.*, **98**, 111-150.
- (1958), "The prediction theory of multivariate stochastic processes, II," *Acta. Math.*, **99**, 93-137.
- Wilson, G. (1969), Factorization of a covariance generating function, *SIAM J. Numerical Analysis*, **6**, 1-7.
- Wold, H. (1938), *A Study in the Analysis of Stationary Time Series*, Uppsala, Almqvist and Wiksell.
- (1965), *Bibliography on Time Series and Stochastic Processes*, London, Oliver and Boyd.
- Woodroffe, M. B., and J. W. Van Ness (1967), "The maximum deviation of sample spectral densities," *Ann. Math. Statist.*, **38**, 1559-1569.
- Yaglom, A. M. (1961), "Second order homogeneous random fields," *Fourth Berkeley Symposium on Mathematical Statistics and Probability*, **2**, 593-622, Berkeley, Univ. California Press.
- (1962), *An Introduction to the Theory of Stationary Random Functions*, Englewood Cliffs, N.J., Prentice-Hall.
- Yosida, K. (1965), *Functional Analysis*, Berlin, Springer-Verlag.
- Zygmund, A. (1959), *Trigonometric Series, Vol. I*, Cambridge University Press.

¹⁹⁷¹The Statistical Analysis of Time Series

T. W. ANDERSON
Professor of Statistics and Economics
Stanford University

Preface

In writing a book on the statistical analysis of time series an author has a choice of points of view. My selection is the mathematical theory of statistical inference concerning probabilistic models that are assumed to generate observed time series. The probability model may involve a deterministic trend and a random part constituting a stationary stochastic process; the statistical problems treated have to do with aspects of such trends and processes. Where possible, the problem is posed as one of finding an optimum procedure and such procedures are derived. The statistical properties of the various methods are studied; in many cases they can be developed only in terms of large samples, that is, on information from series observed a long time. In general these properties are derived on a rigorous mathematical basis.

While the theory is developed under appropriate mathematical assumptions, the methods may be used where these assumptions are not strictly satisfied. It can be expected that in many cases the properties of the procedures will hold approximately. In any event the precisely stated results of the theorems give some guidelines for the use of the procedures. Some examples of the application of the methods are given, and the uses, computational approaches, and interpretations are discussed, but there is no attempt to put the methods in the form of programs for computers.

This book grew out of a graduate course that I gave for many years at Columbia University, usually for one semester and occasionally for two semesters. By now the material included in the book cannot be covered completely in a two-semester course; an instructor using this book as a text will select the material that he feels most interesting and important. Many exercises are given. Some of these are applications of the methods described; some of the problems are to work out special cases of the general theory; some of the exercises fill in details in complicated proofs; and some extend the theory.

Besides serving as a text book I hope this book will furnish a means by which statisticians and other persons can learn about time series analysis without resort to a formal course. Reading this book and doing selected exercises will lead to a considerable knowledge of statistical methodology useful for the analysis of time series. This book may also serve for reference. Much material which has not been assembled together before is presented here in a fairly coherent fashion. Some new theorems and methods are presented. In other cases the assumptions of previously stated propositions have been weakened and conclusions strengthened.

Since the area of time series analysis is so wide, an author must select the topics he will include. I have described in the introduction (Chapter 1) the material included as well as the limitations, and the Table of Contents also gives an indication. It is hoped that the more basic and important topics are treated here, though to some extent the coverage is a matter of taste. New methods are constantly being introduced and points of view are changing; the results here can hardly be definitive. In fact, some material included may at the present time be rather of historical interest.

In view of the length of this book a few words of advice to readers and instructors may be useful in selecting material to study and teach. Chapter 2 is a self-contained summary of the methods of least squares, it may be largely redundant for many statisticians. Chapters 3 and 4 deal with models with independent random terms (known sometimes as "errors in variables"); some ideas and analysis are introduced which are used later, but the reader interested mainly in the later chapters can pass over a good deal (including much of Sections 3.4, 4.3, and 4.4). Autoregressive processes, which are useful in applications and which illustrate stationary stochastic processes, are treated in Chapter 5; Sections 5.5 and 5.6 on large-sample theory contain relevant theorems, but the proofs involve considerable detail and can be omitted. Statistical inference for these models is basic to analysis of stationary processes "in the time domain." Chapter 6 is an extensive study of serial correlation and tests of independence; Sections 6.3 and 6.4 are primarily of theoretical statistical interest; Section 6.5 develops the algebra of quadratic forms and ratios of them; distributions, moments, and approximate distributions are obtained in Sections 6.7 and 6.8, and tables of significance points are given for tests. The first five sections of Chapter 7 constitute an introduction to stationary stochastic processes and their spectral distribution functions and densities. Chapter 8 develops the theory of statistics pertaining to stationary stochastic processes, estimation of the spectral density is treated in Chapter 9; it forms the basis of analyzing stationary processes "in the frequency domain." Section 10.2 extends regression analysis (Chapter 2) to stationary random terms; Section

10.3 extends Chapters 8 and 9 to this case; and Section 10.4 extends Chapter 6 to the case of residuals from fitted trends. Parts of the book that constitute units which may be read somewhat independently from other parts are (i) Chapter 2, (ii) Chapters 3 and 4, (iii) Chapter 5, (iv) Chapter 6, (v) Chapter 7, and (vi) Chapters 8 and 9.

The statistical analysis of time series in practical applications will also invoke less formal techniques (which are now sometimes called "data analysis") A graphical presentation of an observed time series contributes to understanding the phenomenon. Transformations of the measurement and relations to other data may be useful. The rather precisely stated procedures studied in this book will not usually be used in isolation and may be adapted for various situations. However, in order to investigate statistical methods rigorously within a mathematical framework some aspects of the analysis are formalized. For instance, the determination of whether an effect is large enough to be important is sometimes formalized as testing the hypothesis that a parameter is 0.

The level of this book is roughly that of my earlier book, *An Introduction to Multivariate Statistical Analysis*. Some knowledge of matrix algebra is needed. (The necessary material is given in the appendix of my earlier book; additional results, are developed in the text and exercises of this present book.) A general knowledge of statistical methodology is useful; in particular, the reader is expected to know the standard material of univariate analysis such as *t*-tests and *F*-statistics, the multivariate normal distribution, and the elementary ideas of estimation and testing hypotheses. Some more sophisticated theory of testing hypotheses, estimation, and decision theory that is referred to is developed in the exercises. [The reader is referred to Lehmann (1959) for a detailed and rigorous treatment of testing hypotheses.] A moderate knowledge of advanced calculus is assumed. Although real-valued time series are treated, it is sometimes convenient to write expressions in terms of complex variables; actually the theory of complex variables is not used beyond the simple fact that $e^{i\theta} = \cos \theta + i \sin \theta$ (except for one problem). Probability theory is used to the extent of characteristic functions and some basic limit theorems. The theory of stochastic processes is developed to the extent that it is needed.

As noted above, there are many problems posed at the end of each chapter except the first which is the introduction. Solutions to these problems have been prepared by Paul Shaman. Solutions which are referred to in the text or which demonstrate some particularly important point are printed in Appendix B of this book. Solutions to most other problems (except solutions that are straightforward and easy) are contained in a Solutions Manual which is issued as a separate booklet. This booklet is available free of charge by writing to the publisher.

Contents

PREFACE

I owe a great debt of gratitude to Paul Shuman for many contributions to this book in matters of exposition, selection of material, suggestions of references and problems, improvements of proofs and exposition, and corrections of errors of every magnitude. He has read my manuscript in many versions and drafts. The conventional statement that an acknowledged reader of a manuscript is not responsible for any errors in the publication I feel is usually superfluous because it is obvious that anyone kind enough to look at a manuscript assumes no such responsibility. Here such a disclaimer may be called for simply because Paul Shuman corrected so many errors that it is hard to believe any remain. However, I admit that in this material it is easy to generate errors and the reader should throw the blame on the author for any he finds (as well as inform him of them).

My appreciation also goes to David Hinkley, Takanatsu Sawa, and George Siyan, who read all or substantial parts of the manuscript and proofs and assisted with the preparation of the bibliography and index. There are many other colleagues and students to thank for assistance of various kinds. They include Selwyn Gallot, Joseph Gastwirth, Vernon Johns, Ted Matthes, Emily Stong Myers, Emanuel Parzen, Lloyd Rosenberg, Ester Samuel, and Morris Walker as well as Anupam Basu, Nancy David, Ronald Glaser, Elizabeth Hinkley, Raul Mentz, Fred Nold, Arthur V. Peterson, Jr., Cheryl Schiffman, Kenneth Thompson, Roger Ward, Larry Weldon, and Owen Whitby. No doubt I have forgotten others. I also wish to thank J. M. Craddock, C. W. J. Granger, M. G. Kendall, A. Stuart, and Herman Wold for use of some material.

In preparing the typescript my greatest debt is to Pamela Oline Gerstman, my secretary for four years, who patiently went through innumerable drafts and revisions. (Among other tribulations her office was used as headquarters for the "liberators" of Fayerweather Hall in the spring of 1968.) The manuscript also bore the imprints of Helen Bellows, Shaunaen Nelson, Carol Andermann Novak, Katherine Cane, Carol Hallett Robbins, Alexandra Mills, Susan Parry, Noreen Browne Ettl, Sandi Hochler Frost, Judi Campbell, and Polly Bixler.

An important factor in my writing this book was the sustained financial support of the Office of Naval Research over a period of some ten years. The Logistics and Mathematical Statistics Branch has been helpful, encouraging, accommodating and patient in its sponsorship.

*Stanford University
Stanford, California
February, 1970*

PREFACE	xi
CHAPTER 1	1
Introduction	7
References	7
CHAPTER 2	8
The Use of Regression Analysis	8
2.1. Introduction	8
2.2. The General Theory of Least Squares	8
2.3. Linear Transformations of Independent Variables; Orthogonal Independent Variables	13
2.4. Case of Correlation	18
2.5. Prediction	20
2.6. Asymptotic Theory	23
References	27
Problems	27
CHAPTER 3	30
Trends and Smoothing	30
3.1. Introduction	30
3.2. Polynomial Trends	31
3.3. Smoothing	46
3.4. The Variate Difference Method	60
3.5. Nonlinear Trends	79
3.6. Discussion	81
References	82
Problems	82

CHAPTER 4	
Cyclical Trends	92
4.1. Introduction	92
4.2. Transformations and Representations	93
4.3. Statistical Inference When the Periods of the Trend Are Integral	102
Divisors of the Series Length	
4.4. Statistical Inference When the Periods of the Trend Are Not Integral	136
Divisors of the Series Length	
4.5. Discussion	158
References	159
Problems	159
CHAPTER 5	
Linear Stochastic Models with Finite Numbers of Parameters	164
5.1. Introduction	164
5.2. Autoregressive Processes	166
5.3. Reduction of a General Scalar Equation , a First-Order Vector Equation	177
5.4. Maximum Likelihood Estimates in the Case of the Normal Distribution	183
5.5. The Asymptotic Distribution of the Maximum Likelihood Estimates	188
5.6. Statistical Inference about Autoregressive Models Based on Large-Sample Theory	211
5.7. The Moving Average Model	223
5.8. Autoregressive Processes with Moving Average Residuals	235
5.9. Some Examples	242
5.10. Discussion	247
References	248
Problems	248
CHAPTER 6	
Serial Correlation	254
6.1. Introduction	254
6.2. Types of Models	256
6.3. Uniformly Most Powerful Tests of a Given Order	260
6.4. Choice of the Order of Dependence as a Multiple-Decision Problem	270
6.5. Models: Systems of Quadratic Forms	276

CONTENTS

xiii	CONTENTS
6.6. Cases of Unknown Means	294
6.7. Distributions of Serial Correlation Coefficients	302
6.8. Approximate Distributions of Serial Correlation Coefficients	335
6.9. Joint and Conditional Distributions of Serial Correlation Coefficients	345
6.10. Distributions When the Observations Are Not Independent	351
6.11. Some Maximum Likelihood Estimates	353
6.12. Discussion	357
References	358
Problems	358
CHAPTER 7	
Stationary Stochastic Processes	371
7.1. Introduction	371
7.2. Definitions and Discussion of Stationary Stochastic Processes	372
7.3. The Spectral Distribution Function and the Spectral Density	373
7.4. The Spectral Representation of a Stationary Stochastic Process	392
7.5. Linear Operations on Stationary Processes	398
7.6. Hilbert Space and Prediction Theory	414
7.7. Some Limit Theorems	424
References	432
Problems	432
CHAPTER 8	
The Sample Mean, Covariances, and Spectral Density	438
8.1. Introduction	438
8.2. Definitions of the Sample Mean, Covariances, and Spectral Density, and their Moments	439
8.3. Asymptotic Means and Covariances of the Sample Mean, Covariances, and Spectral Density	459
8.4. Asymptotic Distributions of the Sample Mean, Covariances, and Spectral Density	477
8.5. Examples	495
8.6. Discussion	495
References	496
Problems	496

CONTENTS

Bibliography

CHAPTER 9	
Estimation of the Spectral Density	501
9.1. Introduction	501
9.2. Estimates Based on Sample Covariances	502
9.3. Asymptotic Means and Covariances of Spectral Estimates	519
9.4. Asymptotic Normality of Spectral Estimates	514
9.5. Examples	546
9.6. Discussion	549
References	551
Problems	551
CHAPTER 10	
Linear Trends with Stationary Random Terms	559
0.1. Introduction	559
0.2. Efficient Estimation of Trend Functions	560
0.3. Estimation of the Covariances and Spectral Density Based on Residuals from Trends	587
0.4. Testing Independence	603
References	617
Problems	617
PART IV	
Time Data and Statistics	622
V.1. The Beveridge Wheat Price Index	622
V.2. Three Second-Order Autoregressive Processes Generated by Random Numbers	640
V.3. Sunspot Numbers	659
PART V	
Solutions to Selected Problems	663
BIBLIOGRAPHY	
Books	680
Papers	689
Index	689

- BOOKS**
- Anderson, O. (1929), *Die Korrelationsrechnung in der Konjunkturforschung*, Schröder, Bonn.
- Anderson, R. L. (1941), *Serial Correlation in the Analysis of Time Series*, unpublished thesis, Iowa State College, Ames, Iowa.
- Anderson, R. L., and E. E. Houseman (1942), *Tables of Orthogonal Polynomial Values Extended to N = 104* (Research Bulletin 297), Agricultural Experiment Station, Iowa State College, Ames, Iowa.
- Anderson, T. W. (1958), *An Introduction to Multivariate Statistical Analysis*, John Wiley & Sons, Inc., New York.
- Bartlett, M. S. (1966), *An Introduction to Stochastic Processes with Special Reference to Methods and Applications* (Second Edition), Cambridge Univ. Press, Cambridge.
- Blackman, R. B., and J. W. Tukey (1959), *The Measurement of Power Spectra from the Point of View of Communications Engineering*, Dover Publications, Inc., New York (printed originally 1958, Bell System Tech. J., 37, 185-285, 569).
- Box, George E. P., and Gwilym M. Jenkins (1970), *Time Series Analysis, Forecasting and Control*, Holden-Day, Inc., San Francisco.
- Bujs Ballot, C. H. D. (1847), *Les Changements Periodiques de Température*, Utrecht.
- Courant, R., and D. Hilbert (1937), *Méthodes der Mathematischen Physik*, Springer-Verlag, Berlin.
- Cramer, Harald (1946), *Mathematical Methods of Statistics*, Princeton Univ. Press, Princeton, N. J.
- Davis, Harold T. (1941), *The Analysis of Economic Time Series* (The Cowles Commission for Research in Economics, Monograph No. 6), Principia Press, Inc., Bloomington, Ind.
- Doob, J. L. (1953), *Stochastic Processes*, John Wiley & Sons, Inc., New York.
- Draper, N. R., and H. Smith (1966), *Applied Regression Analysis*, John Wiley & Sons, Inc., New York.
- Feller, William (1968), *An Introduction to Probability Theory and Its Applications*, Vol. I (Third Edition), John Wiley & Sons, Inc., New York.
- Fisher, R. A., and Frank Yates (1963), *Statistical Tables for Biological, Agricultural and Medical Research* (Sixth Edition), Oliver and Boyd Ltd., Edinburgh.

BIBLIOGRAPHY

- Granger, C. W. J. (1964), in association with M. Hatanaka, *Spectral Analysis of Economic Time Series*, Princeton Univ. Press, Princeton, N.J.
- Graybill, Franklin A. (1956), *An Introduction to Linear Statistical Models*, Vol. I, McGraw-Hill Book Co., Inc., New York.
- Grenander, Ulf, and Murti, G. Rosenblatt (1957), *Statistical Analysis of Stationary Time Series*, John Wiley & Sons, Inc., New York.
- Halmos, Paul R. (1958), *Finite-Dimensional Vector Spaces*, D. Van Nostrand Co., Inc., Princeton, N.J.
- Hanning, Richard W. (1962), *Numerical Methods for Scientists and Engineers*, McGraw-Hill Book Co., Inc., New York.
- Hannan, E. J. (1960), *Time Series Analysis*, Methuen and Co., Ltd., London, and John Wiley & Sons, Inc., New York.
- Hobson, E. W. (1907), *The Theory of Real Variables and the Theory of Fourier Series*, Cambridge Univ. Press, Cambridge.
- Jordan, Charles (1939), *Calculus of Finite Differences*, Budapest (reprinted in 1947 by Chelsea Publishing Co., New York).
- Kempthorne, Oscar (1952), *The Design and Analysis of Experiments*, John Wiley & Sons, Inc., New York.
- Kendall, Maurice G. (1946a), *The Advanced Theory of Statistics, Vol. II*, Charles Griffin and Co., Ltd., London.
- Kendall, Maurice G. (1946b), *Contributions to the Study of Oscillatory Time-Series*, Natl. Inst. Econ. Soc. Res. Occasional Papers IX, Cambridge Univ. Press, Cambridge.
- Kendall, Maurice G., and Alan Stuart (1961), *The Advanced Theory of Statistics, Vol. 2*, Charles Griffin and Co., Ltd., London, and Hafner Publishing Co., Inc., New York.
- Kendall, Maurice G., and Alan Stuart (1966), *The Advanced Theory of Statistics, Vol. 3*, Charles Griffin and Co., Ltd., London, and Hafner Publishing Co., Inc., New York.
- Kolmogorov, A. N. (1933), *Grundbegriffe der Wahrscheinlichkeitsrechnung*, Berlin (reprinted in 1946 by Chelsea Publishing Co., New York).
- Kuznets, S. (1954), *National Income and Its Composition: 1919-1938*, National Bureau of Economic Research, New York.
- Lanczos, Cornelius (1956), *Applied Analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J.
- Laplace, le Marquis P. S. de (1829), *Traité de Mécanique Céleste, Tome Second* (Second Edition), Bachelier, Successeur de Mme. Ve Courcier, Paris.
- Lehmann, E. L. (1959), *Testing Statistical Hypotheses*, John Wiley & Sons, Inc., New York.
- Loeve, Michel (1963), *Probability Theory* (Third Edition), D. Van Nostrand Co., Inc., New York.
- Lukacs, Eugene (1960), *Characteristic Functions*, Charles Griffin and Co., Ltd., London, and Hafner Publishing Co., Inc., New York.
- Macaulay, F. R. (1938), *Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States Since 1856*, National Bureau of Economic Research, New York.
- Miller, Kenneth S. (1960), *An Introduction to the Calculus of Finite Difference*, Prentice-Hall, Inc., San Francisco.
- Parzen, Emanuel (1962), *Stochastic Processes*, Holden-Day, Inc., San Francisco.
- Plackett, R. L. (1960), *Principles of Regression Analysis*, Clarendon Press, Oxford.
- Rao, C. Radhakrishna (1952), *Advanced Statistical Methods in Biometric Research*, John Wiley & Sons, Inc., New York.
- Rosenblatt, Murray (1962), *Random Processes*, Oxford Univ. Press, New York.
- Scheffé, Henry (1959), *The Analysis of Variance*, John Wiley and Sons, Inc., New York.
- Tintner, Gerhard (1940), *The Variate Difference Method*, Principia Press, Inc., Bloomington, Ind.
- Tintner, Gerhard (1952), *Econometrics*, John Wiley & Sons, Inc., New York.
- Turnbull, H. W., and A. C. Atkyns (1952), *An Introduction to the Theory of Censuses* (Third Edition), Blackie and Son Ltd., London (reprinted in 1956 by Doctor Publications, Inc., New York).
- United States Bureau of the Census (1955), *Statistical Abstract of the United States*, U.S. Government Printing Office, Washington, D.C.
- United States Department of Agriculture (1955), *Agricultural Statistics, Land and States*, Government Printing Office, Washington, D.C.
- Wald, A. (1936), *Berechnung und Ausschaltung von Saisonschwankungen*, Springer-Verlag, Vienna.
- Waldmeier, M. (1961), *The Sunspot Activity in the Years 1610-1960*, Schultness & Co., Zürich.
- Watson, G. S. (1952), *Serial Correlation in Regression Analysis*, Mimeo Series No. 49, Institute of Statistics, Univ. of North Carolina, Chapel Hill, N.C.
- Whittaker, E. T., and G. Robinson (1926), *The Calculus of Observations. A Treatise on Numerical Mathematics* (Second Edition), Blackie & Son Ltd., London.
- Whittaker, E. T., and G. N. Watson (1943), *A Course of Modern Analysis*, Cambridge Univ. Press, Cambridge, and The Macmillan Co., New York.
- Whittle, Peter (1951), *Hypothesis Testing in Time Series Analysis*, Almqvist and Wiksell Book Co., Uppsala.
- Wiener, Norbert (1949), *The Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications*, Technology Press of the Massachusetts Institute of Technology, Cambridge, Mass.
- Wilks, Samuel S. (1962), *Mathematical Statistics*, John Wiley & Sons, Inc., New York.
- Williams, E. J. (1959), *Regression Analysis*, John Wiley & Sons, Inc., New York.
- Wold, Herman (1954), *A Study in the Analysis of Stationary Time Series* (Second Edition), Almqvist and Wiksell Book Co., Uppsala.
- Wold, Herman O. A. (1965), *Bibliography on Time Series and Stochastic Processes*, Oliver and Boyd Ltd., Edinburgh.

- Yaglom, A. M. (1962). *An Introduction to the Theory of Stationary Random Functions* (Revised English Edition, Richard A. Silverman, trans. and ed.), Prentice-Hall, Inc., Englewood Cliffs, N. J.
- Zygmund, A. (1959). *Trigonometric Series, Vol. I*, Cambridge Univ. Press, Cambridge.

PAPERS

- Akutowicz, Edwin J. (1957). On an explicit formula in least squares prediction, *Math. Scand.*, **5**, 261-266.
- Anderson, R. L. (1942). Distribution of the serial correlation coefficient, *Ann. Math. Statist.*, **13**, 1-13.
- Anderson, R. L., and T. W. Anderson (1950). Distribution of the circular serial correlation coefficient for residuals from a fitted Fourier series, *Ann. Math. Statist.*, **21**, 59-81.
- Anderson, T. W. (1948). On the theory of testing serial correlation, *Skand. Aktuarietidskr.*, **31**, 88-116.
- Anderson, T. W. (1959). On asymptotic distributions of estimates of parameters of stochastic difference equations, *Ann. Math. Statist.*, **30**, 676-687.
- Anderson, T. W. (1963). Determination of the order of dependence in normally distributed time series, *Proc. Symp. Time Series Anal. Brown Univ.* (Murray Rosenblatt, ed.), John Wiley & Sons, Inc., New York, 425-446.
- Anderson, T. W., and Herman Rubin (1950). The asymptotic properties of estimates of the parameters of a single equation in a complete system of stochastic equations, *Ann. Math. Statist.*, **21**, 570-582.
- Anderson, T. W., and A. M. Walker (1964). On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process, *Ann. Math. Statist.*, **35**, 1296-1303.
- Bartlett, M. S. (1935). Some aspects of the time-correlation problem in regard to tests of significance, *J. Roy. Statist. Soc. Ser. B*, **98**, 536-543.
- Bartlett, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated time-series, *J. Roy. Statist. Soc. Suppl.*, **8**, 27-41, 85-97. [Corrigenda (1948), **10**, 200.]
- Bartlett, M. S. (1950). Periodogram analysis and continuous spectra, *Biometrika*, **37**, 1-16.
- Bartlett, M. S., and P. H. Diananda (1950). Extensions of Quenouille's test for autoregressive schemes, *J. Roy. Statist. Soc. Ser. B*, **12**, 108-115.
- Beveridge, W. H. (1921). Weather and harvest cycles, *Econ. J.*, **31**, 429-452.
- Beveridge, W. H. (1922). Wheat prices and rainfall in Western Europe, *J. Roy. Statist. Soc.*, **85**, 412-459.
- Burbaum, Allan (1959). On the analysis of factorial experiments without replication, *Technometrics*, **1**, 343-357.
- Burbaum, Allan (1961). A multi-decision procedure related to the analysis of single degrees of freedom, *Ann. Inst. Statist. Math. Tokio*, **12**, 227-236.
- Cave-Bronne-Cave, F. E. (1943). On the influence of the time factor on the correlation between the barometric heights at stations more than 1000 miles apart, *Proc. Roy. Soc. London*, **74**, 403-413.
- Cheng, H. A., and E. J. Hannan (1968). The asymptotic distribution of spectral estimates, unpublished.
- Cowley, James W., Peter A. W. Lewis, and Peter D. Welch (1967). Application of the Fast Fourier Transform to computation of Fourier integrals, Fourier series, and convolution integrals, *IEEE Transactions on Audio and Electroacoustics*, **AC-15**, 79-84.
- Cookley, J. W., and J. W. Tukey (1965). An algorithm for the machine calculation of complex Fourier series, *Math. Comput.*, **19**, 237-301.
- Coxden, D. J. (1962). Weights for fitting polynomial secular trends, University of North Carolina School of Business Administration Technical Paper No. 4, Chapel Hill, N.C.
- Cridland, J. M. (1967). An experiment in the analysis and prediction of time series, *The Statistician*, **17**, 257-268.
- Dempster, H. E. (1956). The approximate distribution of serial correlation coefficients, *Biometrika*, **43**, 169-185.
- Diananda, P. H. (1953). Some probability limit theorems with statistical applications, *Proc. Cambridge Philos. Soc.*, **49**, 239-246.
- Dixon, Wilfrid J. (1944). Further contributions to the problem of serial correlation, *Ann. Math. Statist.*, **15**, 119-144.
- Dobr, J. L. (1944). The elementary Gaussian processes, *Ann. Math. Statist.*, **15**, 229-282.
- Durbin, J. (1959). Efficient estimation of parameters in moving-average models, *Biometrika*, **46**, 306-316.
- Durbin, J. (1960a). Estimation of parameters in time-series regression models, *J. Roy. Statist. Soc. Ser. B*, **22**, 139-153.
- Durbin, J. (1960b). The fitting of time-series models, *Rev. Inst. Internat. Statist.*, **28**, 233-244.
- Durbin, J. (1963). Trend elimination for the purpose of estimating seasonal and periodic components of time series, *Proc. Symp. Time Series Anal. Brown Univ.* (Murray Rosenblatt, ed.), John Wiley & Sons, Inc., New York, 3-16.
- Durbin, J. (1970). An alternative to the bounds test for testing serial correlation in least-squares regression, *Econometrica*, **38**, 422-429.
- Durbin, J., and G. S. Watson (1959). Testing for serial correlation in least squares regression, I, *Biometrika*, **37**, 409-428.
- Durbin, J., and G. S. Watson (1951). Testing for serial correlation in least squares regression. II, *Biometrika*, **38**, 159-178.

- Egger, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. *Ann. Math. Statist.*, **34**, 447-456.
- Fisher, R. A. (1929). Tests of significance in harmonic analysis. *Proc. Roy. Soc. London Ser. A*, **125**, 54-59.
- Fisher, R. A. (1940). On the similarity of the distributions found for the test of significance in harmonic analysis, and in Stevens's problem of geometrical probability. *Adv. Eugenics*, **10**, 14-17.
- Gesset, Seymour (1956). The modified mean square successive difference and related statistics. *Ann. Math. Statist.*, **27**, 819-824.
- Granger, C. W. J., and A. O. Hughes (1969). A new look at some old data: the Beers ridge wheat price series, unpublished.
- Grenander, Ulf (1954). On the estimation of the regression coefficients in the case of an autocorrelated disturbance. *Ann. Math. Statist.*, **25**, 252-272.
- Hannan, E. J. (1947). Methods of measuring the marginal propensity to consume. *J. Amer. Statist. Assoc.*, **42**, 105-122.
- Hannan, E. J. (1958). The estimation of the spectral density after trend removal. *J. Roy. Statist. Soc. Ser. B*, **20**, 323-333.
- Hannan, E. J. (1961). A central limit theorem for systems of regressions. *Proc. Cambridge Philos. Soc.*, **57**, 583-588.
- Hannan, E. J. (1963). Regression for time series. *Proc. Symp. Time Series Anal. Brown Univ.* (Murray Rosenblatt, ed.), John Wiley & Sons, Inc., New York, 17-37.
- Hannan, E. J. (1964). The estimation of a changing seasonal pattern. *J. Amer. Statist. Assoc.*, **59**, 1063-1077.
- Hart, B. J. (1942). Significance levels for the ratio of the mean square successive difference to the variance. *Ann. Math. Statist.*, **13**, 445-447.
- Hart, B. J., and John von Neumann (1942). Tabulation of the probabilities for the ratio of the mean square successive difference to the variance. *Ann. Math. Statist.*, **13**, 277-214.
- Hoeffding, Wassily, and Herbert Robbins (1945). The central limit theorem for dependent random variables. *Duke Math. J.*, **15**, 773-780.
- Hoeffding, W. (1955). On the correlation of successive observations, illustrated by corn prices. *J. Roy. Statist. Soc.*, **68**, 696-703.
- Irwin, J. O. (1955). A unified derivation of some well-known frequency distributions of interest in biometry and statistics. *J. Roy. Statist. Soc. Ser. A*, **118**, 389-404.
- Jenkins, G. M. (1956). Tests of hypotheses in the linear autoregressive model. II. Null distributions for higher order schemes: non-null distributions. *Biometrika*, **43**, 183-199.
- Jenkins, G. M. (1961). General considerations in the analysis of spectra. *Technometrics*, **3**, 133-166.
- Kendall, A. R. (1955). Modified mean square successive difference with an exact distribution. *Sankhyā*, **15**, 295-302.
- Kantorovich, L. V. (1948). Functional analysis and applied mathematics. *Uspehi Mat. Nauk.*, **36**, 89-185.

- Karlin, Samuel, and Donald Traux (1960). Slepcev problems. *Ann. Math. Statist.*, **31**, 296-324.
- Kolmogorov, A. N. (1941a). Stationary sequences in Hilbert space (in Russian). *Bull. Math. Univ. Moscow*, **2/6**, 1-40.
- Kolmogorov, A. N. (1941b). Interpolation und Extrapolation von stationären zufälligen Folgen. *Bull. Acad. Sci. U.S.S.R. Ser. Math.*, **5**, 3-14.
- Koopmans, Tjalling (1942). Serial correlation and quadratic forms in normal variates. *Ann. Math. Statist.*, **13**, 14-33.
- Koopmans, T. C., H. Rubin, and R. B. Leipnik (1950). Measuring the equation systems of dynamic economics. *Statistical Inference in Dynamic Economic Models* (Cowles Commission Monograph No. 10, T. C. Koopmans, ed.), John Wiley & Sons, Inc., New York, 53-237.
- Kudo, Akio (1960). The symmetric multiple decision problems. *Mem. Fac. Sci. Kyushu Univ. Ser. A*, **14**, 179-206.
- Lehmann, E. L. (1957). A theory of some multiple decision problems. II. *Ann. Math. Statist.*, **28**, 547-572.
- Leipnik, R. B. (1947). Distribution of the serial correlation coefficient in a circularly correlated universe. *Ann. Math. Statist.*, **18**, 80-87.
- Madow, William G. (1945). Note on the distribution of the serial correlation coefficient. *Ann. Math. Statist.*, **16**, 308-310.
- Magnus, T. A., and J. B. McGuire (1962). Comparison of least squares and minimum variance estimates of regression parameters. *Ann. Math. Statist.*, **33**, 462-470.
- Mann, H. B., and A. Wald (1943a). On stochastic limit and order relationships. *Ann. Math. Statist.*, **14**, 217-226.
- Mann, H. B., and A. Wald (1943b). On the statistical treatment of linear stochastic difference equations. *Econometrica*, **11**, 173-220.
- Marsaglia, G. (1954). Iterated limits and the central limit theorem for dependent variables. *Proc. Amer. Math. Soc.*, **5**, 987-991.
- Moran, P. A. P. (1947). Some theorems on time series. I. *Biometrika*, **34**, 281-291.
- von Neumann, John (1941). Distribution of the ratio of the mean square successive difference to the variance. *Ann. Math. Statist.*, **12**, 367-395.
- Olsien, Richard A. (1967). Asymptotic properties of the periodogram of a discrete stationary process. *J. Appl. Prob.*, **4**, 508-528.
- Parzen, Emanuel (1957a). A central limit theorem for multilinear stochastic processes. *Ann. Math. Statist.*, **28**, 252-256.
- Parzen, Emanuel (1957b). On consistent estimates of the spectrum of a stationary time series. *Ann. Math. Statist.*, **28**, 329-348.
- Parzen, Emanuel (1961a). An approach to time series analysis. *Ann. Math. Statist.*, **32**, 951-989.
- Parzen, Emanuel (1961b). Mathematical considerations in the estimation of spectra. *Technometrics*, **3**, 167-190.

PAPERS

688

- Quenouille, M. H. (1947), A large-sample test for the goodness of fit of autoregressive schemes, *J. Roy. Statist. Soc., Ser. B*, **110**, 123-129.
- Quenouille, M. H. (1949a), The joint distribution of serial correlation coefficients, *Ann. Math. Statist.*, **20**, 561-571.
- Quenouille, M. H. (1949b), Approximate tests of correlation in time-series, *J. Roy. Statist. Soc. Ser. B*, **11**, 68-84.
- Quenouille, M. H. (1953), Modifications to the variate-difference method, *Biometrika*, **40**, 353-408.
- Rao, M. M. (1960), Estimation by periodogram, *Trabajos Estadist.*, **11**, 123-137.
- Rosenblatt, Murray (1956), Some regression problems in time series analysis, *Proc. Third Berkeley Symposium on Mathematical Statistics and Probability*, G. Neyman, ed., Vol. I, Univ. of California Press, Berkeley and Los Angeles, 165-186.
- Rosenblatt, M. (1959), Statistical analysis of stochastic processes with stationary increments, *Probability and Statistics: The Harold Cramér Volume* (Ulf Grenander, ed.), Almqvist and Wiksell Book Co., Stockholm, 246-275.
- Rudin, Herman (1945), On the distribution of the serial correlation coefficient, *Ann. Math. Statist.*, **16**, 211-215.
- Runge, C. (1903), Über die Zerlegung empirisch gegebener periodischer Funktionen in Säuswellen, *Z. Math. Phys.*, **48**, 443-456.
- Sargan, J. D. (1953), An approximate treatment of the properties of the correlogram and periodogram, *J. Roy. Statist. Soc. Ser. B*, **15**, 140-152.
- Schafer, M. Casini (1964), Estimation of the covariance and autoregressive structure of a stationary time series, Technical Report, Department of Statistics, Stanford University, Stanford, Calif.
- Seneff, Henry (1970), Multiple testing versus multiple estimation. Improper confidence sets. Estimation of directions and ratios, *Am. Math. Statist.*, **41**, 1-29.
- Schuster, A. (1898), On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena, *Terr. Mag. Atmos. Elect.*, **3**, 13.
- Schuster, Arthur (1906), On the periodicities of sunspots, *Philos. Trans. Roy. Soc. London Ser. A*, **206**, 69-100.
- Stevens, W. L. (1939), Solution to a geometrical problem in probability, *Ann. Eugenics*, **9**, 315-320.
- "Student" (1914), The elimination of spurious correlation due to position in time and space, *Biometrika*, **10**, 179-180.
- Tintner, Gerhard (1955), The distribution of the variances of variate differences in the circular case, *Metron*, **17** (3-4), 43-52.
- Walker, A. M. (1952), Some properties of asymptotic power functions of goodness-of-fit tests for linear autoregressive schemes, *J. Roy. Statist. Soc. Ser. B*, **14**, 117-134.
- Walker, A. M. (1954), The asymptotic distribution of serial correlation coefficients for autoregressive processes with dependent residuals, *Proc. Cambridge Philos. Soc.*, **50**, 60-64.

BIBLIOGRAPHY

688

- Walker, A. M. (1961), Large-sample estimation of parameters for moving-average models, *Biometrika*, **48**, 343-357.
- Walker, A. M. (1962), Large-sample estimation of parameters for autoregressive processes with moving-average residuals, *Biometrika*, **49**, 117-131.
- Walker, A. M. (1965), Some asymptotic results for the periodogram of a stationary time series, *J. Austral. Math. Soc.*, **5**, 107-128.
- Walker, A. M. (1968), Large-sample properties of least-squares estimators of harmonic components in a time series with stationary residuals. I. Independent residuals, Technical Report, Department of Statistics, Stanford University, Stanford, Calif.
- Walker, G. T. (1914), Correlation in seasonal variation of weather. III. On the criterion for the reality of relationships or periodicities, *Mem. Indian Meteorol. Dep.*, **21** (9), 13-15.
- Walker, Gilbert (1931), On periodicity in series of related terms, *Proc. Roy. Soc. London Ser. A*, **131**, 518-532.
- Watson, G. S. (1955), Serial correlation in regression analysis. I, *Biometrika*, **42**, 327-341.
- Watson, G. S. (1956), On the joint distribution of the circular serial correlation coefficients, *Biometrika*, **43**, 161-168.
- Watson, G. S. (1967), Linear least squares regression, *Ann. Math. Statist.*, **38**, 1679-1699.
- Watson, G. S. and J. Durbin (1951), Exact tests of serial correlation using non-circular statistics, *Ann. Math. Statist.*, **22**, 446-451.
- Watson, G. S. and E. J. Hannan (1956), Serial correlation in regression analysis. II, *Biometrika*, **43**, 436-449.
- Whittle, Peter (1952), The simultaneous estimation of a time series harmonic components and covariance structure, *Trabajos Estadist.*, **3**, 43-57.
- Whittle, P. (1954), A statistical investigation of sunspot observations with special reference to H. Aliven's sunspot model, *The Astronom. J.*, **120**, 251-260.
- Whittle, Peter (1959), Sur la distribution du maximum d'un polynôme trigonométrique à coefficients aléatoires, *Colloq. Internat. Centre Nat. Rech. Sci.*, **87**, 173-183.
- Young, L. C. (1941), On randomness in ordered sequences, *Ann. Math. Statist.*, **12**, 293-309.
- Yuic, G. I. dny (1927), On a method for investigating periodicities in disturbed series with special reference to Wolf's sunspot numbers, *Philos. Trans. Roy. Soc. London Ser. A*, **226**, 267-298.
- Ziskind, George (1967), On canonical forms, non-negative covariance matrices, and best and simple least squares linear estimators in linear models, *Ann. Math. Statist.*, **38**, 1092-1109.

RANDOM DATA: ANALYSIS AND MEASUREMENT PROCEDURES

JULIUS S. BENDAT

*Mathematical and Environmental Consultant
Formerly President, Measurement Analysis Corporation*

ALLAN G. PIERSOL

*Staff Consultant, Digetek Corporation
and Lecturer in Engineering, University of Southern California*

PREFACE

This book is an extensive revision and replacement for the authors' early book, *Measurement and Analysis of Random Data*, 1966. Approximately 50 percent of the original material has been rewritten or deleted and replaced by new material. These changes reflect the technical advances that have taken place in the last five years as well as an increased awareness of pertinent matters gained through the further experience of the authors. Specifically, a broader discussion appears on statistical errors in random data analysis. An entirely new chapter has been introduced to integrate the general requirements for data acquisition, recording, preparation, qualification, and processing. The discussions of digital data analysis procedures have been greatly expanded to cover the more recent analysis techniques made feasible by the availability of fast Fourier transform algorithms. Discussions of transient and multidimensional random processes are now included. Finally, a number of illustrative examples involving actual physical data have been added to support theoretical developments. The illustrations are largely restricted to aerospace and automotive applications since these are the fields of most recent concern to the authors. The general techniques, however, are applicable to data common in many other fields including meteorology, oceanography, seismology, communications, nuclear processes, and biomedical research.

The emphasis in this new book is on the practical aspects of random data analysis and measurement procedures, with special attention to the interrelationships of the various technical disciplines involved. As before, the book is written with the primary intent of providing a convenient reference for practicing engineers and scientists. The secondary intent of providing a specialized textbook for students has been augmented by the addition of problem sets at the end of each chapter. The reader is assumed to have a basic knowledge of probability theory, statistics, and transform methods of applied mathematics.

Summaries of chapter contents appear at the beginning of each chapter. In brief, Chapters 1 through 4 present a review of basic theoretical background material needed for the developments in later chapters. Basic descriptive properties of random data are outlined in Chapter 1 while physical system response properties are reviewed in Chapter 2. Pertinent mathematical

WILEY-INTERSCIENCE

a division of John Wiley & Sons, Inc.
New York · London · Sydney · Toronto

and statistical theory is summarized in Chapters 3 and 4. This review material is followed in Chapters 5 and 6 by extensive developments and formulations of input-output relationships and statistical errors in measured data. Chapter 7 outlines the overall procedures for random data acquisition and processing. Detailed procedures for analog and digital data analysis are presented in Chapters 8 and 9. The final Chapter 16 discusses some advanced ideas and procedures relevant to nonstationary, transient, and multidimensional data.

We wish to acknowledge the many contributions to this book by former associates in Measurement Analysis Corporation and Digitek Corporation. We also thank those government agencies, industrial companies, and individuals who supported our work. A special appreciation is given to Engineering Extension, University of California, Los Angeles, and to other organizations, who sponsored our presentation of short courses on this subject matter. Our final thanks extends to Teresita Piorsol and Lucinda Bendat for their help in preparing the manuscript.

Los Angeles, California
July 1971

JOHN S. BENDAT
ALLAN G. PIORSOL

CONTENTS

GLOSSARY OF SYMBOLS

1 BASIC DESCRIPTIONS OF PHYSICAL DATA	1
1.1 CLASSIFICATIONS OF DETERMINISTIC DATA	2
1.1.1 Sinusoidal Periodic Data	3
1.1.2 Complex Periodic Data	4
1.1.3 Almost-Periodic Data	6
1.1.4 Transient Nonperiodic Data	7
1.2 CLASSIFICATIONS OF RANDOM DATA	9
1.2.1 Stationary Random Processes	10
1.2.2 Ergodic Random Processes	12
1.2.3 Nonstationary Random Processes	13
1.2.4 Stationary Sample Records	13
1.3 BASIC DESCRIPTIVE PROPERTIES OF RANDOM DATA	14
1.3.1 Mean Square Values (Mean Values and Variances)	14
1.3.2 Probability Density Functions	15
1.3.3 Autocorrelation Functions	18
1.3.4 Power Spectral Density Functions	22
1.4 JOINT PROPERTIES OF RANDOM DATA	25
1.4.1 Joint Probability Density Functions	26
1.4.2 Cross-Correlation Functions	28
1.4.3 Cross-Spectral Density Functions	31
2 REVIEW OF PHYSICAL SYSTEM RESPONSE PROPERTIES	37
2.1 CONSTANT PARAMETER LINEAR SYSTEMS	37
2.2 BASIC DYNAMIC CHARACTERISTICS	38
2.3 FREQUENCY RESPONSE FUNCTIONS	40
2.4 ILLUSTRATIONS OF FREQUENCY RESPONSE FUNCTIONS	42
2.4.1 Mechanical Systems	42

	CONTENTS	ix
4.8 CORRELATION AND REGRESSION PROCEDURES	125	
4.8.1 Linear Correlation	126	
4.8.2 Linear Regression	129	
CHAPTER 5 STATIONARY RANDOM	56	
5.1 PROBABILITY FUNDAMENTALS FOR RANDOM	56	
5.1.1 One Random Variable	56	
5.1.2 Two Random Variables	61	
5.1.3 Gaussian (Normal) Distribution	63	
5.2 STATIONARY RANDOM PROCESSES	67	
5.2.1 Correlation (Covariance) Functions	69	
5.2.2 Spectral Density Functions	75	
5.2.3 Spectral Density via Finite Fourier Transforms	82	
5.2.4 Spectral Density via Filtering-Squaring-Averaging	85	
5.3 ERGODIC RANDOM PROCESSES	86	
5.4 GAUSSIAN RANDOM PROCESSES	90	
5.5 LINEAR TRANSFORMATIONS AND SAMPLING	93	
5.5.1 Linear Transformations of Random Processes	93	
5.5.2 Sampling Theorems for Random Records	95	
CHAPTER 6 REVIEW OF STATISTICAL PRINCIPLES	99	
4.1 SAMPLE VALUES AND PARAMETER ESTIMATION	99	
4.2 IMPORTANT PROBABILITY DISTRIBUTION		
FUNCTIONS	102	
4.2.1 Normal Distribution	102	
4.2.2 Chi-Square Distribution	103	
4.2.3 Student <i>t</i> Distribution	105	
4.2.4 The <i>F</i> Distribution	107	
4.3 SAMPLING DISTRIBUTIONS AND ILLUSTRATIONS	110	
4.3.1 Distribution of Sample Mean with Known Variance	110	
4.3.2 Distribution of Sample Variance	111	
4.3.3 Distribution of Sample Mean with Unknown Variance	112	
4.3.4 Distribution of Ratio of Two Sample Variances	112	
4.4 CONFIDENCE INTERVALS	113	
4.5 HYPOTHESIS TESTS	115	
4.6 CHI-SQUARE GOODNESS-OF-FIT TEST	119	
4.7 RUN TEST	122	
CHAPTER 7 INPUT-OUTPUT RELATIONSHIPS FOR	136	
PHYSICAL SYSTEMS		
5.1 SINGLE-INPUT LINEAR SYSTEMS	136	
5.2 ORDINARY COHERENCE FUNCTIONS	141	
5.3 MULTIPLE-INPUT LINEAR SYSTEMS	147	
5.3.1 Autocorrelation and Power Spectra Relations	147	
5.3.2 Cross-Correlation and Cross-Spectra Relations	150	
5.3.3 Special Case of Two Inputs	151	
5.4 PARTIAL AND MULTIPLE COHERENCE		
FUNCTIONS	153	
5.4.1 Residual Random Variables	153	
5.4.2 Partial Coherence Functions	156	
5.4.3 Multiple Coherence Functions	160	
5.4.4 Matrix Formulation of Results	163	
CHAPTER 8 STATISTICAL ERRORS IN RANDOM	170	
DATA ANALYSIS		
6.1 DEFINITION OF ERRORS	170	
6.2 MEAN AND MEAN SQUARE VALUE ESTIMATES	172	
6.2.1 Mean Values	172	
6.2.2 Mean Square Values	175	
6.3 PROBABILITY DENSITY ESTIMATES	177	
6.3.1 Variance of the Estimate	178	
6.3.2 Bias of the Estimate	179	
6.3.3 Normalized rms Error	180	
6.3.4 Joint Probability Density Estimates	180	
6.4 CORRELATION FUNCTION ESTIMATES	181	
6.5 SPECTRAL DENSITY FUNCTION ESTIMATES	184	
6.5.1 Variance of the Estimate	186	
6.5.2 Bias of the Estimate	187	
6.5.3 Normalized rms Error	187	
6.5.4 Cross-Spectral Density Estimates	188	
6.5.5 Estimates from Finite Fourier Transforms	189	
6.6 COHERENCE FUNCTION ESTIMATES	193	

* CONTENTS

6.7 FREQUENCY RESPONSE FUNCTION ESTIMATES— SINGLE INPUT CASE	196	8.3.2 Lag Time Resolution and Averaging Time	268
6.7.1 Bias Errors	197	8.3.3 Scan Rate and Analysis Time	270
6.7.2 Random Errors	199	8.4 POWER SPECTRAL DENSITY FUNCTIONS	271
6.8 FREQUENCY RESPONSE FUNCTION ESTIMATES— MULTIPLE INPUT CASE	204	8.4.1 Basic Instrument Requirements	271
6.9 RECORD LENGTH REQUIREMENTS	208	8.4.2 Frequency Resolution and Averaging Time	273
7 GENERAL CONSIDERATIONS IN DATA ACQUISITION AND PROCESSING	214	8.4.3 Scan Rate and Analysis Time	274
7.1 DATA COLLECTION	214	8.4.4 Variable Resolution Bandwidth	275
7.2 DATA RECORDING	219	8.4.5 Time Base Compression	276
7.2.1 Magnetization-Reproduce Procedures	220	8.4.6 Bandpass Filter Characteristics	277
7.2.2 Modulation-Demodulation Procedures	222	8.5 ANALYSIS OF JOINT DATA PROPERTIES	281
7.2.3 Time Base Errors in Tape Recording	223	8.5.1 Joint Probability Density Functions	281
7.3 DATA PREPARATION	227	8.5.2 Cross-Correlation Functions	282
7.3.1 Digitization	228	8.5.3 Cross-Spectral Density Functions	283
7.3.2 Preprocessing	233	8.5.4 Frequency Response and Coherence Functions	284
7.4 DATA QUALIFICATION	233		
7.4.1 Test for Stationarity	234		
7.4.2 Test for Periodicities	237		
7.4.3 Test for Normality	240		
7.5 DATA ANALYSIS	240		
7.5.1 Procedure for Analyzing Individual Records	240		
7.5.2 Procedure for Analyzing a Collection of Records	244		
7.5.3 Test for Equivalence of Power Spectra	249		
7.5.4 Analog Versus Digital Data Analysis	251		
8 ANALOG DATA ANALYSIS PROCEDURES	256		
8.1 MEAN AND MEAN SQUARE VALUES	256		
8.1.1 Basic Instrument Requirements	257		
8.1.2 Practical Voltmeter Considerations	258		
8.1.3 Measurement Accuracy	259		
8.1.4 Averaging Time	260		
8.2 PROBABILITY DENSITY FUNCTIONS	264		
8.2.1 Basic Instrument Requirements	264		
8.2.2 Amplitude Resolution and Averaging Time	265		
8.2.3 Scan Rate and Analysis Time	266		
8.3 AUTOCORRELATION FUNCTIONS	268		
8.3.1 Basic Instrument Requirements	268		

9.8	FREQUENCY RESPONSE FUNCTIONS AND COHERENCE FUNCTIONS	337
9.8.1	Single-Input Linear Systems	337
9.8.2	Multiple-Input Linear Systems	339

10 NONSTATIONARY, TRANSIENT, AND MULTIDIMENSIONAL DATA

10.1	NONSTATIONARY RANDOM PROCESSES	344
10.1.1	Probability Structure of Nonstationary Data	344
10.1.2	Nonstationary Mean Values	346
10.1.3	Nonstationary Mean Square Values	349
10.1.4	Correlation Structure of Nonstationary Data	354
10.1.5	Spectral Structure of Nonstationary Data	356
10.1.6	Input-Output Relations for Nonstationary Data	360
10.2	TRANSIENT (SHOCK) RANDOM PROCESSES	364
10.2.1	Classification and Analysis of Transient Data	366
10.2.2	Spectral Structure of Transient Data	366
10.3	MULTIDIMENSIONAL RANDOM PROCESSES	371
10.3.1	Vibrating String Problem	371
10.3.2	Definitions of Fields and Functions	373
10.3.3	Measurement Considerations	376

REFERENCES

APPENDIX

INDEX

1973

Time-Series

Preface to the First Edition

In the last thirty years the theory of time-series has been transformed into a new subject. In part this is due to the introduction of probabilistic ideas into what was formerly treated deterministically; in part it is attributable to the power of the electronic computer, which has removed the obstacles imposed by the extensive and tedious calculations involved in most time-series studies. There has, nevertheless, tended to appear a rift between sophisticated theory and practical application, and although there exists an extensive literature in scientific and professional journals there are few books which attempt to treat the subject in its entirety for the benefit of the practising statistician.

That is my reason for writing this book. It aims to present the basic ideas and techniques of the subject, with as much exemplification as space will permit and a determination not to let the mathematics multiply beyond necessity. I have tried to make it the sort of book that I would like to have had put in my hand when I first became interested in time-series many years ago.

I am indebted to Professor Dudley J. Cowden and the Director of the School of Business Administration, University of North Carolina, for permission to reproduce Appendix Table A; to Professor James Durbin and the Editors of *Biometrika* for permission to reproduce Appendix Tables B; to Professor C.W.J. Granger for permission to reproduce Fig. 8.4; and to Dr D.J. Reid for permission to reproduce Fig. 9.1.

M.G.K.

London
February, 1973

HAFNER PRESS
A Division of Macmillan Publishing Co., Inc.
NEW YORK

1299-25

Preface to the Second Edition

A number of misprints and obscurities have been removed and some references added in this edition, which otherwise follows the same lines as the first.

M.G.K.

London
December, 1975

Contents

1 GENERAL IDEAS	5
Aggregation	7
Continuity and discontinuity	7
Calendar problems	7
The length of a time-series	8
Some examples of time-series	9
The object of time-series analysis	12
Decomposition	16
2 TESTS OF RANDOMNESS	22
Turning points	24
Phase-length	24
The difference-sign test	26
Rank tests	26
3 TREND	29
Moving averages	29
Spencer's 15-point formula	36
Spencer's 21-point formula	36
End-effects	37
Centred averages	38
The effect of moving averages on other constituents	38
Autocorrelation	39
The Slutsky-Yule effect	40
4 THE CHOICE OF A MOVING AVERAGE	47
The variate-difference method	49
Practical cases	49
5 SEASONALITY	56
Types of model	56
The Bureau of the Census program	63
The regression method	66
6 STATIONARY SERIES	70
The correlogram	70
Autoregression	71
The Markoff scheme	71

		ix
7.1	The Yule scheme	73
7.2	Partial autocorrelation	78
7.3	The spectrum	80
7.4	Autocorrelation generating functions	82
7.5	Spectrum of the Markoff series	82
7.6	Spectrum of the Yule scheme	83
7.7	The transfer function	83
7 PROBLEMS IN SAMPLING SERIAL CORRELATION AND CORRELOGRAM		84
	Bias in the estimation of autocorrelations	91
8 SPECTRUM ANALYSIS		96
	Frequency and wavelength	96
	Intensity	97
	Examples of power spectra	99
	Side-bands	100
	Echo effects	100
	Sampling variance of the spectral ordinate	102
	Computation of ordinates	109
	Seasonality and harmonic components	112
9 FORECASTING BY AUTOPROJECTIVE METHODS		116
	Autoprojection	116
	Exponential smoothing	118
	Holt-Winters model	122
	Harrison's seasonal model	122
	Box-Jenkins model	123
	Choice of predictive method	126
	Kalman filters	126
10 MULTIVARIATE SERIES		129
	Cross-correlation	129
	Cross-spectra	130
	Coherence	130
	Types of models	133
	The unidentifiability problem	138
11 FORECASTING FROM LAGGED RELATIONSHIPS		142
	Discarding variables	142
	Stepwise forward and stepwise backward procedures	142
	The optimal regression method	143
	Some practical examples	143
12 NOTES ON SOME PROBLEMS OF ESTIMATION AND SIGNIFICANCE		157
	Fitting autoregressions	157
	Moving-average schemes	160
	References	167
	Appendix A: Weights for fitting polynomial trends	167
	Appendix B1: Significance points of the Durbin-Watson statistics d_L and d_U : 1 per cent	171
	Appendix B2: Significance points of the Durbin-Watson statistics d_L and d_U : 5 per cent	193
	Index	195

REFERENCES

- Anderson, R.L. (1942). Distribution of the serial correlation coefficient. *Ann. Math. Statist.*, **13**, 1.
- Anderson, T.W. (1958). *The Statistical Analysis of Time-Series*. John Wiley & Sons, London.
- Bartlett, M.S. (1946). On the theoretical specification and sampling properties of auto-correlated time-series. *Suppl. J. R. Statist. Soc.*, **8**, 27, 85 and (1945), **10**, 85.
- Bartlett, M.S. (1950). Periodogram analysis and continuous spectra. *Biometrika*, **37**, 1.
- Bartlett, M.S. (1955). *An Introduction to Stochastic Processes, with special reference to Methods and Applications*. Cambridge University Press.
- Besale, E.M.H., Kendall, M.G. and Mann, D.W. (1967). The discarding of variables in multivariate analysis. *Biometrika*, **54**, 357.
- Beveridge, W.H. (1921). Weather and harvest cycles. *Econ. J.*, **31**, 429.
- Birkhoff, G.D. (1931). Proof of the ergodic theorem. *Proc. Natl. Acad. Sci.*, **17**, 656.
- Blackman, R.B. and Tukey, J. (1955). *The Measurement of Power Spectra from the Point of View of Communication Engineering*. Dover Publications, New York.
- Bliss, C.I. (1958). Periodic Regression in Biology and Climatology. Bulletin No 615. Connecticut Agricultural Experiment Station, New Haven.
- Box, G.E.P. and Jenkins, G.M. (1970). *Time-Series Analysis, Forecasting and Control*. Holden-Day (McGraw-Hill Book Co.), New York and Londonhead, Eng. I.
- Box, G.E.P. and Newbold, P. (1971). Some comments on a paper of Coen, Gomme and Kendall. *J. R. Statist. Soc. A*, **134**, 299.
- Brown, R.G. (1963). *Smoothing, Forecasting and Prediction*. Prentice-Hall, Englewood Cliffs, N.J.
- Burman, J.P. (1965). Moving seasonal adjustment of economic time series. *J. R. Statist. Soc., A*, **128**, 534 and (1966), **129**, 274.
- Cochrane, D. and Orcutt, G.H. (1949). Application of least-squares regression to relationships containing autocorrelated error terms. *J. Amer. Statist. Ass.*, **44**, 32.
- Coen, P.G., Gomme, E.D. and Kendall, M.G. (1969). Lagged relationships in economic forecasting. *J. R. Statist. Soc., A*, **132**, 133.
- Cowden, D.J. (1962). *Weights for fitting polynomial secular trends*. Technical Paper No. 4, School of Business Administration, University of North Carolina.
- Daniel, P.J. (1946). Discussion on "Symposium on Autocorrelation in Time-series". *Supp. J. R. Statist. Soc.*, **8**, 88.
- Daniels, H.E. (1956). The approximate distribution of serial correlation coefficients. *Biometrika*, **43**, 169.
- Daniels, H.E. (1962). The estimation of spectral densities. *J. R. Statist. Soc. B*, **24**, 185.
- Daniels, H.E. (1970). Autocorrelation between first-differences of mid-ranges. *Econometrika*, **34**, 215.
- Deweys, E.R. (1963). The 18.2-year cycle in immigration, U.S.A., 1820-1962. Foundation for the Study of Cycles, Inc., Pittsburgh, Pa.
- Dixon, W.J. (1944). Further contributions to the problem of serial correlation. *Ann. Math. Statist.*, **15**, 119.
- Durbin, J. (1959). Efficient estimation of parameters in moving-average models. *Biometrika*, **46**, 306.
- Durbin, J. (1960). Estimation of parameters in time-series regression models. *J. R. Statist. Soc., B*, **22**, 139.

REFERENCES

- Durbin, J. (1961). Efficient fitting of linear models for continuous stationary time series from discrete data. *Bull. Int. Statist. Inst.*, **38**, (4), 273.
- Durbin, J. (1963). Trend elimination for the purpose of estimating seasonal and periodic components of time-series. In the book edited by Rosenblatt, *q.v.*
- Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. *Econometrica*, **38**, 410.
- Durbin, J. and Watson, G.S. (1950, 1951, 1971). Testing for serial correlation in least-squares regression. *Biometrika*, **37**, 409; **38**, 159; **58**, 1.
- Fisk, P.R. (1967). *Stochastically Dependent Equations*. Charles Griffin & Co., London.
- Foster, F.G. and Stuart, A. (1954). Distribution-free tests in time-series based on the breaking of records. *J. R. Statist. Soc. B*, **16**, 1.
- Fürnkirchner, H.G. (1936). A note on a 10th century graph. *Ostasi*, 1. Bruges.
- Gänsser, W. (1945). Eine Ausgabe der Kombratonek in der Wahrscheinlichkeitsrechnung. *Univ. Istanbul Rev. Fac. Sci.*, **A**, **10**, 25.
- Granger, C.W.J. (1963). The effect of varying month-length on the analysis of economic time-series. *L'Industria*, **1**, 3. Milano.
- Granger, C.W.J. and Hatanaka, M. (1964). *Spectral Analysis of Economic Time-Series*. Princeton Univ. Press, Princeton, N.J.
- Granger, C.W.J. and Hughes, A.O. (1971). A new look at some old data: the Beveridge wheat price series. *J. R. Statist. Soc. A*, **134**, 413.
- Grenander, U. and Rosenblatt, H.M. (1957). *Statistical Analysis of Stationary Time Series*. John Wiley & Sons, New York, & Chichester, Eng.
- Gudmundsson, G. (1971). Time-series analysis of imports, exports and other economic variables. *J. R. Statist. Soc. A*, **134**, 383.
- Hannan, E.J. (1960a). *Time Series Analysis*. Methuen, London.
- Hannan, E.J. (1960b). The estimation of seasonal variation. *Australian J. Statist.*, **2**, 1.
- Harrison, P.J. (1965). Short-term sales forecasting. *Applied Statistics*, **14**, 102.
- Harrison, P.J. (1967). Exponential smoothing and short-term sales forecasting. *Metrol. Scr.*, **13**, 821.
- Harrison, P.J. and Stevens, C.F. (1971). A Bayesian approach to short-term forecasting. *Op. Res. Q.*, **22**, 341.
- Holt, C.C. (1957). Forecasting seasonal and trends by exponentially weighted moving averages. Carnegie Inst. Tech. Res. Mem. No. 52.
- Jevons, W.S. (1879). *The Principles of Science*. London.
- Kalman, R.E. and Bucy, R.S. (1961). New results in linear filtering and prediction theory. *Trans. A.S.M.E. Journal of Basic Engineering*, p. 95.
- Kendall, M.G. (1945). On the analysis of oscillatory time-series. *J. R. Statist. Soc. A*, **108**, 93.
- Kendall, M.G. (1946). *Contributions to the Study of Oscillatory Time-series*. Cambridge University Press.
- Kendall, M.G. (1949). The estimation of parameters in lower autoregressive time-series. *Econometrica Suppl.*, **17**, 44.
- Kendall, M.G. (1969). *Rank Correlation Methods*. 4th edn. Charles Griffin & Co., London.
- Kendall, M.G. (1971). Studies in the history of probability and statistics, XXVI: The work of Ernst Abbe. *Biometrika*, **58**, 369.
- Kendall, M.G. and Stuart, A. (1968). *Advanced Theory of Statistics*, Vol. 3, 2nd edn. Charles Griffin & Co., London.

-181-

REFERENCES

169

- Khinchine, A. Ya. (1932). Zu Burkhoff's Lösung des Ergodentheorems. *Math. Ann.*, **107**, 485.
- King, P.D. (1956). Increased frequency of births in the morning hour. *Science*, **123**, 985.
- Leipnik, R.P. (1947). Distribution of the serial correlation coefficient in a circularly correlated universe. *Ann. Math. Statist.*, **18**, 80.
- Levene, H. (1952). On the power function of tests of randomness based on runs up and down. *Ann. Math. Statist.*, **23**, 34.
- Madow, W.G. (1945). Note on the distribution of the serial correlation coefficient. *Ann. Math. Statist.*, **16**, 308.
- Mann, H.B. (1945). Nonparametric tests against trend. *Econometrica*, **13**, 245.
- Mann, H.B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. *Econometrica*, **11**, 173.
- Moore, G.H. and Wallis, W.A. (1943). Time series significance tests based on signs of differences. *J. Amer. Statist. Ass.*, **38**, 153.
- Moran, P.A.P. (1947). Some theorems on time-series. *J. Biometrika*, **34**, 281.
- Moran, P.A.P. (1948). Some theorems on time-series. II. *Biometrika*, **35**, 215.
- Moran, P.A.P. (1967). Testing for serial correlation with exponentially distributed variates. *Biometrika*, **54**, 395.
- Nold, F.C. (1972). *A bibliography of applications of spectral techniques to economic time-series*. Technical Report No. 66, Institute for Mathematical Studies in the Social Sciences, Stanford University, California.
- Parzen, E. (1961). Mathematical considerations in the estimation of spectra. Comments on the discussions of Messrs Tukey and Goodman. *Technometrics*, **3**, 167, 232.
- Playfair, W. (1821). *A Letter on our Agricultural Distress*. London.
- Quenouille, M.H. (1947). A large sample test for the goodness of fit of autoregressive schemes. *J. R. Statist. Soc. B*, **110**, 123.
- Quenouille, M.H. (1949). A method of trend elimination. *Biometrika*, **36**, 75.
- Quenouille, M.H. (1953). Modifications to the variate-difference methods. *Biometrika*, **40**, 383.
- Quenouille, M.H. (1956). Notes on bias in estimation. *Biometrika*, **43**, 353.
- Quenouille, M.H. (1957, 1968). *The Analysis of Multiple Time-Series*. Charles Griffin & Co., London.
- Quenouille, M.H. (1958). Discrete autoregressive schemes with varying time-intervals. *Biometrika*, **1**, 21.
- Reid, D.J. (1971). Forecasting in action. A comparison of forecasting techniques in economic time-series. Joint Conference of O.R. Society's Group on Long Range Planning and Forecasting.
- Rhodes, E.C. (1921). *Smoothing Tracts for Computers*. No. 6. Cambridge University Press.
- Rosenberg, B. (1970). The distribution of \bar{M}_L -range - a comment. *Econometrica*, **38**, 176.
- Rosenblatt, M. (ed.) (1963). *Proceedings of the Symposium of Time Series Analysis held at Brown University, 1962*. John Wiley & Sons, New York, & Chichester, Eng.
- Rosehead, J. (1968). An extension of Quenouille's test for the comparability of correlation structures in time. *J. R. Statist. Soc. B*, **30**, 180.
- Sargan, J.D. (1953). An approximate treatment of the properties of the correlogram and periodogram. *J. R. Statist. Soc. B*, **15**, 140.

REFERENCES

- Shiskin, J. (1967). The X-11 Variant of the Census Method II Seasonal Adjustment Program. Technical Paper No. 15. U.S. Bureau of the Census.
- Slutzky, E. (1927). The summation of random causes as the source of cyclic processes. (Russian). English trans., 1937. *Econometrica*, 5, 105.
- Spencer, J. (1914). On the graduation of the rates of sickness and mortality. *J. Inst. Act.*, 38, 334.
- Stuart, A. (1954). Asymptotic relative efficiencies of distribution-free tests of randomness against normal alternatives. *J. Amer. Statist. Ass.*, 49, 147.
- Stuart, A. (1956). The efficiencies of tests of randomness against normal regression. *J. Amer. Statist. Ass.*, 51, 285.
- T.A.S.C. (The Analytic Sciences Corporation) (1971). *A short course on Kalman Filter Theory and Application*. T.A.S.C. Reading, Mass.
- Theil, H. (1971). *The Principles of Econometrics*. John Wiley & Sons, New York, & Chichester, Eng.
- U.S. Bureau of the Census (1965). A Spectral Study of "Overadjustment" for Seasonality. Working Paper No. 21. Washington, D.C.
- Wallis, W.A. and Moore, G.H. (1941). A significance test for time-series analysis. *J. Amer. Statist. Ass.*, 36, 401.
- Whittle, P. (1953). The analysis of multiple time-series. *J. R. Statist. Soc. B*, 15, 125.
- Wilson, L.L. (1964). *Catalogue of Cycles. Part I - Economics*. Foundation for the Study of Cycles, Inc., Pittsburgh, Pa.
- Winters, P.R. (1960). Forecasting sales by exponentially weighted moving averages. *Manag. Sci.*, 6, 324.
- Wold, H.O. (1954). *A Study in the Analysis of Stationary Time-Series*. 2nd edn. Almqvist & Wiksell, Uppsala.
- Wold, H.O. (1965) (ed.). *Bibliography on Time-Series and Stochastic Processes*. Oliver and Boyd, Edinburgh.
- Working, H. (1960). Note on the correlation of first differences of averages in random chain. *Econometrica*, 28, 916.
- Yule, G. Udn. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers. *Phil. Trans. A*, 226, 67.
- Yule, G. Udn. (1931). *Statistical Papers Selected by Alan Stuart and M.G. Kendall*. Charles Griffin & Co., London.

APPENDIX A

Weights for fitting polynomial trends

The following tables are extracted by permission from Dudley J. Cowden, *Weights for fitting polynomial secular trends*. Technical Paper No. 4, School of Business Administration, University of North Carolina, 1962. Professor Cowden gives values up to N (the extent of the moving average) = 25, and also values for even N .

Except in one or two early tables, the tables give the weights required to fit at one end of the series, those for the other end being given by symmetry. For example, for fitting a straight line (a simple moving average) to nine points the weights for the first point are $\frac{1}{9}$ [17, 14, 11, 8, 5, 2, -1, -4, -7]. Those for the second are $\frac{1}{180}$ [56, 47, 38, 29, 20, 11, 2, -7, -16] and so on.

Conversely, for the last four points, the weights are (reading the table upwards) for the last but three, [8, 11, 14, 17, 20, 23, 26, 29, 32], and so on. The columns headed 0 give the weights required to extrapolate the fitting one unit beyond the end of the observed series.

The sums in the last row but one are the sums of the integral weights given in the table.

The final row in the table is the square root of the error-reducing factor, i.e. the square root of the sum of the squares of the weights.

**Applied
Time Series Analysis**

For
Managerial
Forecasting

**COMPLIMENTARY COPY
NOT TO BE SOLD**

Charles R. Nelson
Graduate School of Business
University of Chicago

This book was written with the objective of making recent developments in applied time series analysis, particularly those due to Box and Jenkins, accessible to students in business, economics, management sciences, and industrial engineering at the master's level. The need for such a text became evident to me when I undertook development of a forecasting course for MBA students at the Graduate School of Business of the University of Chicago. Although univariate time series analysis offers a powerful tool for forecasting in many operational settings, and should, I felt, constitute the core of such a course, it became apparent that little of what has been written in that area may be read and understood by students lacking substantial preparation in statistics. Nevertheless, I became convinced that much of the substance of what is important for application could be communicated to a less sophisticated audience. For example, presentation of the theory of linear stochastic processes is greatly facilitated by use of the algebra of back-shift operators. Unfortunately, some considerable investment in time, relative to that available in a single academic term, is required before most students are sufficiently comfortable and skilled in using back-shift algebra to benefit from the investment. Consequently, in

Hollen-Day, Inc.

San Francisco
Düsseldorf
Johannesburg
London
Panama
Singapore
Sydney
Toronto

Contents

This text many general results that are readily proved using back-shift algebra are simply stated after their plausibility and intuitive appeal have been established by simple examples. Experimentation with this approach, combined with heavy emphasis on first-hand data analysis, led to a workable program that equips the student to make intelligent use of time series analysis and provides him with a base for further reading or formal study in the area.

Chapter 1 reviews the primary methodological alternatives open to the operational forecaster and establishes the motivation for putting particular emphasis on univariate time series analysis. The introductory discussion goes on to consider why there is a payoff to good forecasting in the context of a profit-maximizing firm and the relationship between the forecaster and the decision-maker. Chapter 2 begins the formal study of time series analysis with the concepts of stationarity and autocorrelation. Models for stationary time series are presented in Chapter 3. The moving-average model is introduced as a special case of the general discrete linear stochastic process, after which autoregressive models and mixed autoregressive-moving-average models are seen to be natural conceptual extensions. Considerable attention is given to derivation of the autocorrelation structures of these models and the observational characteristics for the data that those structures imply. Chapter 4 widens the scope of the linear models to include nonstationary behavior by entertaining the stationary models of Chapter 3 as models for the differences or successive changes occurring in nonstationary series. With this extension, the linear models are seen to offer a very flexible framework in which to describe the behavior of a wide range of stationary and nonstationary series. Chapter 5 takes up the problem of statistical inference—namely, choice of a model appropriate to a particular time series (“identification”) and use of the data at hand to estimate the parameters of the model. Considerable emphasis is placed on understanding the limits of precision encountered in practical application and on interpretation of results obtained in illustrative examples. Chapter 6 completes the model-building sequence with computation of forecasts and confidence intervals and derivation of rules for adaptive revision of forecasts. Seasonality is a property of many time series of interest to the operational forecaster, and a special class of linear model is required to model such series. These are discussed in Chapter 7, where their basic stochastic properties are developed and identification and estimation are illustrated by application to monthly auto registrations in the United States. No forecasting strategy should proceed in a critical vacuum. Rather, alternative techniques should be subjected to comparison with a view toward discovering their relative strengths and weaknesses and, ultimately, revision of forecasting strategy. Chapter 8 is addressed to the question of forecast evaluation, offering a methodological approach that emphasizes optimal weighting of alternative forecasts in composite forecasts. Evaluation of forecasts of major macroeconomic variables by the Federal Reserve Board-MIT-Penn econometric

1 FORECASTING METHODS AND OBJECTIVES	1
1.1 A Typology of Forecasting Methods	1
1.1.1 Subjective Forecasting	1
1.1.2 Structural and Econometric Models	2
1.1.3 Deterministic Models	1
1.1.4 Ad Hoc Forecasting Formulas	6
1.1.5 Time Series Analysis	7
1.2 Why Does Good Forecasting Pay Off?	11
1.3 The Relationship between the Forecaster and the Decision-maker	11
2 FUNDAMENTAL CONCEPTS IN TIME SERIES ANALYSIS	18
2.1 The Concept of Stationarity	19

- 2.2 Autocorrelation, 23
 2.3 Estimation of the Autocorrelation Function from Sample Data, 27
 2.4 Analysis of Nonstationary Time Series, 27

3

MODELS FOR STATIONARY TIME SERIES

- 3.1 Discrete Linear Stochastic Processes, 30
 The First-order-Moving-average Process, 33
 Moving-average Processes of Higher Order, 36
 3.2 Moving-average Processes, 23
 The First-order Autoregression, 35
 The Second-order Autoregression, 43
 Autoregressive Processes of Higher Order, 45
 3.3 Autoregressive Processes, 37
 Invertibility of Moving-average Processes, 46
 Mixed Autoregressive-Moving-average Processes, 47
 The ARMA (1,1) Process, 47
 Mixed Processes of Higher Order, 52

4

MODELS FOR NONSTATIONARY TIME SERIES

- 4.1 Differencing and Homogeneous Nonstationarity, 57
 4.2 Other Transformations Useful in Achieving Stationarity, 58
 4.3 The Difference-equation Form of the ARIMA Process, 59
 4.4 The Random-shock Form of the ARIMA Process, 60
 4.5 The Inverted Form of the ARIMA Process, 61
 4.6 Constant Terms in ARIMA Processes, 63
 4.7 Examples of Non-stationary Processes: Gross National Product and Expenditure on Producers' Durables, 64.

- 5.2 Determining the Appropriate Degree of Differencing, 75
 5.3 Example: Expenditures on Producers' Durables, 77
 5.4 Identification of the Order of an Autoregressive Process: The Partial Autocorrelation Function, 82
 5.5 Example: Gross National Product, 84
 5.6 Identification of Mixed Processes, 84
 5.7 Preliminary Estimates of Parameters, 89
 5.8 Maximum-likelihood Estimation of ARIMA Models, 92

- 5.9 Statistical Inference: Standard Errors for Maximum-likelihood Estimates, 97
 5.10 Examples of Estimation Using Program ESTIMATL, 99
 5.11 Diagnostic Checks, 107
 5.12 Additional Examples: Tool Sales Series A and B and the Unemployment Rate, 116
 Tool Sales Series A, 116
 Tool Sales Series B, 116
 The Unemployment Rate, 129

6

FORECASTING ARIMA PROCESSES

- 6.1 Minimum Mean-square-error Forecasts, 143
 6.2 Computation of Conditional Expectation Forecasts, 144
 One-step-ahead Forecasts, 144
 Multi-step-ahead Forecasts, 146
 Limiting Properties of Forecast Profiles for Stationary Models, 117
 6.3 Examples of Forecast Profiles for Stationary Processes, 118
 6.4 Examples of Forecast Profiles for Nonstationary Processes, 119
 6.5 Adaptive Forecasting, 157
 6.6 The Dispersion of Forecast Errors: Variance, Standard Deviation, and Confidence Intervals, 159
 6.7 Forecasting after Transformation to Logs, 161
 The Log-normal Distribution, 162
 Application to Forecasting, 163

MODELS FOR SEASONAL TIME SERIES

168

- 7.1 The Seasonal Moving-average Process, 169
- 7.2 The Seasonal Autoregressive Process, 171
- 7.3 The Seasonal Integrated Autoregressive-Moving-average Model, 173
- 7.4 The General Multiplicative Seasonal Model, 174
Seasonal Adjustment: An Alternative View, 174
Autocorrelation Structure of the Multiplicative
Seasonal Process, 175
- 7.5 Identification, Estimation, and Forecasting of the
Multiplicative Seasonal Model: The Example
of Monthly Automobile Registrations, 177
Identification, 177
Estimation, 187
Diagnostic Checks, 187
Forecasting, 194

8

FORECAST EVALUATION: A CASE STUDY

- 202
- 8.1 The Federal Reserve Board-MIT-Penn (FMP)
Model of the United States Economy, 203
- 8.2 ARIMA Models for 14 Endogenous Variables of the
FMP Model, 204
- 8.3 Analysis of Sample-period Prediction Errors, 205
- 8.4 Turning-point Errors, 211
- 8.5 Composite Predictions for the Endogenous Variables,
211
- 8.6 Jointly Optimal Composite Predictions, 215
- 8.7 Analysis of Postsample Prediction Errors, 217

Appendix

COMPUTER PROGRAMS FOR IDENTIFICATION,
ESTIMATION, AND FORECASTING

- | | |
|-----|---------------------------|
| 222 | A.1 Program PDQ, 222 |
| 223 | A.2 Program ESTIMATE, 223 |
| 224 | A.3 Program FORECAST, 224 |
| 227 | INDEX, 227 |

The Analysis of Time Series: Theory and Practice

C. CHATFIELD

*Lecturer in Statistics,
The University of Bath*

Preface

Time-series analysis is an area of statistics which is of particular interest at the present time. Time series arise in many different areas, ranging from marketing to oceanography, and the analysis of such series raises many problems of both a theoretical and practical nature. I first became interested in the subject as a postgraduate student at Imperial College, when I attended a stimulating course of lectures on time-series given by Dr. (now Professor) G. M. Jenkins. The subject has fascinated me ever since.

Several books have been written on theoretical aspects of time-series analysis. The aim of this book is to provide an introduction to the subject which bridges the gap between theory and practice. The book has also been written to make what is rather a difficult subject as understandable as possible. Enough theory is given to introduce the concepts of time-series analysis and to make the book mathematically interesting. In addition, practical problems are considered so as to help the reader tackle the analysis of real data.

The book assumes a knowledge of basic probability theory and elementary statistical inference (see Appendix III). The book can be used as a text for an undergraduate or postgraduate course in time-series, or it can be used for self-tuition by research workers.

Throughout the book, references are usually given to recent readily accessible books and journals rather than to the original attributive references. Wold's (1965) bibliography contains many time series references published before 1959.

CHAPMAN AND HALL

London

A HALSTED PRESS BOOK

JOHN WILEY & SON New York

AD-A081 161 TEXAS A AND M UNIV COLLEGE STATION INST OF STATISTICS F/G 12/1
TIME SERIES ANALYSIS METHODS AND APPLICATIONS: BIBLIOGRAPHY OF --ETC(U)
JAN 80 E PARZEN N00014-78-C-0599

UNCLASSIFIED TR-N-11 NL

3 OF 3
AD
AD81 161

END
DATE
FILED
3-80
DDC

In writing the book, I have been struck by the many different definitions and notations used by different writers for different features of time-series. This makes the literature rather confusing. I have adopted what seems to me to be the most sensible definition and notation for each feature, but I have always tried to make it clear how my approach is related to that of other authors.

A difficulty with writing a textbook is that many practical problems contain at least one feature which is 'non-standard' and these cannot all be envisaged in a book of reasonable length. Thus I want to emphasize that the reader who has grasped the basic concepts of time-series analysis, should always be prepared to use his commonsense in tackling a problem. Example 1 of Section 5.5 is a typical situation where common-sense has to be applied and also stresses the fact that the first step in any time-series analysis should always be to plot the data.

I am indebted to many people for helpful comments on earlier drafts, notably Chris Theobald, Mike Pepper, John Vassall, Paul Newbold, David Prothero, Henry Neave, and Professors V. Barnett, D. R. Cox, and M. B. Priestley. Dick Fenton carried out the computing for Section 7.9. I would particularly like to thank Professor K. V. Dipple who made many useful suggestions regarding linear systems and helped me write Section 9.4.3. Of course any errors, omissions or obscurities which remain are entirely my responsibility. The author will be glad to hear from any reader who wishes to make constructive comments.

Finally it is a particular pleasure to thank Mrs. Jean Hetherington for typing the manuscript with exceptional efficiency.

Christopher Chatfield,
University of Bath,
December 1974.

Contents

Preface	xii
Abbreviations	xiv
1 Introduction	1
1.1 Examples	1
1.2 Terminology	5
1.3 Objectives of time-series analysis	6
1.4 Approaches to time-series analysis	9
1.5 Review of time-series literature	10
2 Simple descriptive techniques	12
2.1 Types of variation	12
2.2 Stationary time series	14
2.3 Time plot	14
2.4 Transformations	14
2.5 Analysing series which contain a trend	16
2.5.1 Curve-fitting	16
2.5.2 Filtering	17
2.5.3 Differencing	21
2.6 Seasonal fluctuations	21
2.7 Autocorrelation	23
2.7.1 The correlogram	25
2.7.2 Interpreting the correlogram	25
2.8 Other tests of randomness	31
Exercises	31

THE ANALYSIS OF TIME SERIES

CONTENTS

3	Probability models for time series	33
3.1	Stochastic processes	33
3.2	Stationary processes	35
3.2.1	Second-order stationarity	37
3.2.2	The autocorrelation function	37
3.2.3	Some useful stochastic processes	39
3.4.1	A purely random process	39
3.4.2	Random walk	40
3.4.3	Moving average processes	41
3.4.4	Autoregressive processes	44
3.4.5	Mixed models	50
3.4.6	Integrated models	51
3.4.7	The general linear process	52
3.4.8	Continuous processes	52
3.5	The Wold decomposition theorem	54
	Exercises	55
4	Estimation in the time domain	60
4.1	Estimating the autocovariance and autocorrelation functions	60
4.1.1	Interpreting the correlogram	63
4.1.2	Ergodic theorems	65
4.2	Fitting an autoregressive process	65
4.2.1	Estimating the parameters of an autoregressive process	65
4.2.2	Determining the order of an autoregressive process	69
4.3	Fitting a moving average process	70
4.3.1	Estimating the parameters of a moving average process	70
4.3.2	Determining the order of a moving average process	73
4.4	Estimating the parameters of a mixed model	73
4.5	Estimating the parameters of an integrated model	74
4.6	The Box-Jenkins seasonal model	74
5	Forecasting	82
5.1	Introduction	82
5.2	Univariate procedures	84
5.2.1	Extrapolation of trend curves	84
5.2.2	Exponential smoothing	85
5.2.3	Holt-Winters forecasting procedure	87
5.2.4	Box-Jenkins forecasting procedure	89
5.2.5	Stepwise autoregression	93
5.2.6	Other methods	93
5.3	Multivariate procedures	95
5.3.1	Multiple regression	95
5.3.2	Econometric models	97
5.3.3	Box-Jenkins method	97
5.4	A comparison of forecasting procedures	98
5.5	Some examples	101
5.6	Prediction theory	107
	Exercises	108
6	Stationary processes in the frequency domain	110
6.1	Introduction	110
6.2	The spectral distribution function	111
6.3	The spectral density function	116
6.4	The spectrum of a continuous process	119
6.5	Examples	120
	Exercises	125
7	Spectral analysis	127
7.1	Fourier analysis	127
7.2	A simple sinusoidal model	128
7.2.1	The Nyquist frequency	131
7.3	Periodogram analysis	133

THE ANALYSIS OF TIME SERIES

7.3.1	The relationship between the periodogram and the autocovariance function	136
7.3.2	Properties of the periodogram	137
7.4	Spectral analysis: some consistent estimation procedures	138
7.4.1	Transforming the truncated autocovariance function	139
7.4.2	Flanning	142
7.4.3	Flanning	143
7.4.4	Smoothing the periodogram	143
7.4.5	The fast Fourier transform	145
7.5	Confidence intervals for the spectrum	149
7.6	A comparison of different estimation procedures	150
7.7	Analysing a continuous time series	155
7.8	Discussion	158
7.9	An example	165
	Exercises	168

8	Bivariate processes	169
8.1	Cross-covariance and cross-correlation functions	169
8.1.1	Examples	171
8.1.2	Estimation	172
8.1.3	Interpretation	174
8.2	The cross-spectrum	174
8.2.1	Examples	178
8.2.2	Estimation	180
8.2.3	Interpretation	184
	Exercises	185

9	Linear systems	186
9.1	Introduction	186
9.2	Linear systems in the time domain	187
9.2.1	Some examples	188

CONTENTS

9.2.2	The impulse response function	192
9.2.3	The step response function	192
9.3	Linear systems in the frequency domain	193
9.3.1	The frequency response function	193
9.3.2	Gain and phase diagrams	198
9.3.3	Some examples	200
9.3.4	General relation between input and output	203
9.3.5	Linear systems in series	210
9.3.6	Design of filters	211
9.4	Identification of linear systems	213
9.4.1	Estimating the frequency response function	215
9.4.2	The Box-Jenkins approach	219
9.4.3	Systems involving feedback	223
	Exercises	226
10	Some other topics	228
Appendix I	The Fourier, Laplace and Z-transforms	233
Appendix II	The Dirac Delta Function	238
Appendix III	Covariance	240
	References	242
	Answers to exercises	252
	Author Index	258
	Subject Index	261

Preface

1974

The Spectral Analysis of Time Series

L. H. KOOPMANS

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico

This book is intended to provide an introduction to the techniques and theory of the frequency domain (spectral) analysis of time series. It has been written for use both as a textbook and for individual reading by a rather diverse and varied audience of time series analysts "users." For this purpose, the style has been kept discursive and the mathematical requirements have been set at the minimum level required for a sound understanding of the theory upon which the techniques and applications rest. It is essential even for the reader interested only in the applications of time series analysis to have an understanding of the basic theory in order to be able to tailor time series models to the physical problem at hand and to follow the workings of the various techniques for processing and analyzing data. Acquiring this understanding can be a stimulating and rewarding endeavor in its own right, because the theory is rich and elegant with a strong geometric flavor. The geometric structure makes possible useful intuitive interpretations of important time series parameters as well as a unified framework for an otherwise scattered collection of seemingly isolated results. Both features are exploited extensively in the text.

The book is suitable for use as a one-semester or two-quarter course for students whose mathematical background includes calculus, linear algebra and matrices, complex variables through power series, and probability and statistics at the postcalculus level. For students with more advanced mathematical preparation, additional details and proofs of several of the results stated in the text are given in the appendices.

The basic geometry of vector spaces used throughout the book is summarized in Chapter I and the various (nonprobabilistic) models possessing

ACADEMIC PRESS New York and London
A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents

PREFACE

xii

spectral decompositions required in later chapters are presented as applications of the geometric theory. The univariate, continuous-time models used in spectral analysis are introduced in Chapter 2 and the discrete-time models are given in Chapter 3 along with a discussion of the sampling of time series. Chapter 4 contains a general discussion of linear filters while Chapter 6 is concerned with a variety of special purpose filters in discrete time (digital filters). Multivariate time series models are introduced in Chapter 5 and a number of examples illustrating the use and interpretation of the multivariate spectral parameters are given. The standard finite parameter time series models are presented in Chapter 7 along with a discussion of linear prediction and filtering.

The statistical theory of spectral analysis is covered in Chapters 8 and 9. The distributions of spectral estimators are derived in Chapter 8 and are applied to the calculation of confidence intervals and hypothesis tests for the more important spectral parameters. The properties of spectral estimators as point estimates are considered in Chapter 9. This chapter also contains a discussion of the experimental design of spectral analyses and of the various computational methods for estimating spectra. The necessary tables for the hypothesis tests, confidence intervals, and experimental design methods covered in the text are provided in the appendix to Chapter 9.

This book contains no (formal) sets of exercises. It is my philosophy that a course in time series analysis should be tailored to the students' needs and this is best reflected in the kinds of activities required of them. In this regard, the exercises should be determined by the interests and preparation of the audience. For graduate students in mathematics and statistics, mathematical exercises will be appropriate, and several will be suggested to the instructor in the form of enlargements on the theory in the text and the appendices. Students with more applied interests should devote most of their effort to familiarizing themselves with the methods and computer programs for performing time analyses described in the text and to applying these techniques to simulated time series and to actual data from their fields of study. There is absolutely no substitute for practical experience in learning this subject. In fact, even the more theoretically oriented students of time series analysis should undertake some activities of this nature.

PREFACE	xii
PART I	
ACKNOWLEDGMENTS	xiii
CHAPTER 1 Preliminaries	1
1.1 Introduction	1
1.2 Time Series and Spectra	1
1.3 Summary of Vector Space Geometry	13
1.4 Some Probability Notations and Properties	26
CHAPTER 2 Models for Spectral Analysis—The Univariate Case	29
2.1 Introduction	29
2.2 The Wiener Theory of Spectral Analysis	30
2.3 Stationary and Weakly Stationary Stochastic Processes	37
2.4 The Spectral Representation for Weakly Stationary Stochastic Processes—A Special Case	39
2.5 The General Spectral Representation for Weakly Stationary Processes	41
2.6 The Discrete and Continuous Components of the Process	46
2.7 Physical Realizations of the Different Kinds of Spectra	49
2.8 The Real Spectral Representation	50
2.9 Ergodicity and the Connection between the Wiener and Stationary Process Theories	53
PART II	vii

2.10 Statistical Estimation of the Autocovariance and the Mean Ergodic Theorem	55
Appendix to Chapter 2	61
Chapter 3 Sampling, Aliasing, and Discrete-Time Models	
3.1 Introduction	66
3.2 Sampling and the Aliasing Problem	67
3.3 The Spectral Model for Discrete-Time Series	74
Chapter 4 Linear Filters—General Properties with Applications to Continuous-Time Processes	
4.1 Introduction	79
4.2 Linear Filters	80
4.3 Combining Linear Filters	96
4.4 Inverting Linear Filters	105
4.5 Nonstationary Processes Generated by Time	
Varying Linear Filters	111
Appendix to Chapter 4	114
Chapter 5 Multivariate Spectral Models and Their Applications	
5.1 Introduction	119
5.2 The Spectrum of a Multivariate Time Series Wiener Theory	121
5.3 Multivariate Weakly Stationary Stochastic Processes	124
5.4 Linear Filters for Multivariate Time Series	129
5.5 The Bivariate Spectral Parameters, Their Interpretations and Uses	135
5.6 The Multivariate Spectral Parameters, Their Interpretations and Uses	152
Appendix to Chapter 5	162
Chapter 6 Digital Filters	
6.1 Introduction	165
6.2 General Properties of Digital Filters	166
6.3 The Effect of Finite Data Length	176
6.4 Digital Filters with Finitely Many Nonzero Weights	182
6.5 Digital Filters Obtained by Combining Simple Filters	190
6.6 Filters with Gapped Weights and Results Concerning the Filtering of Series with Polynomial Trends	196
Appendix to Chapter 6	205

Chapter 7 Finite Parameter Models, Linear Prediction, and Real-Time Filtering	
7.1 Introduction	210
7.2 Moving Averages	212
7.3 Autoregressive Processes	217
7.4 The Linear Prediction Problem	226
7.5 Mixed Autoregressive-Moving Average Processes and Recursive Prediction	240
7.6 Linear Filtering in Real Time	249
Appendix to Chapter 7	252
Chapter 8 The Distribution Theory of Spectral Estimates with Applications to Statistical Inference	
8.1 Introduction	257
8.2 Distribution of the Finite Fourier Transform and the Periodogram	
8.3 Distribution Theory for Univariate Spectral Estimators	258
8.4 Distribution Theory for Multivariate Spectral Estimators with Applications to Statistical Inference	265
Appendix to Chapter 8	280
Chapter 9 Sampling Properties of Spectral Estimates, Experimental Design, and Spectral Computations	
9.1 Introduction	294
9.2 Properties of Spectral Estimators and the Selection of Spectral Windows	
9.3 Experimental Design	295
9.4 Methods for Computing Spectral Estimators	310
9.5 Data Processing Problems and Techniques	321
Appendix to Chapter 9	330
334	334
References	354
INDEX	359

REFERENCES

References

- Automatic Control AC-7*, 10-19.
- Coburn, R. F., and Davis, H. T. (1972). "Periodic splines and spectral estimation." Tech. Rep. 253. Dept. of Math. and Statist., Univ. of New Mexico, Albuquerque, New Mexico.
- Cooley, J. W., and Tukey, J. W. (1965). "An algorithm for the machine calculation of complex Fourier series." *Math. Comput.* **19**, 297-301.
- Cooley, J. W., Lewis, P. A. W., and Welch, P. D. (1967). "The fast Fourier transform algorithm and its applications." Res. Monograph RC 1743. I.B.M. Watson Res. Center, Yorktown Heights, New York.
- Cramer, H. (1942). "On harmonic analysis in certain functional spaces." *Ark. Mat.* **Astron. Fys.** **283**, No. 12, 17 pp.
- Cramer, H. (1951a). *Mathematical Methods of Statistics*. Princeton Univ. Press, Princeton, New Jersey.
- Cramer, H. (1951b). A contribution to the theory of stochastic processes." *Proc. Symp. Math. Statist. and Probabilities*, 2nd. Berkeley, 1950, pp. 329-339. Univ. of Calif. Press, Berkeley, California.
- Daniell, P. J. (1946). Discussion following "On the theoretical specification and sampling properties of autocorrelated time series," by M. S. Bartlett. *J. Roy. Statist. Soc. Suppl.* **8**, 27-41.
- Davis, H. T. (1972). "Some applications of spline functions to time series analysis." *Proc. Ann. Symp. Interface Comput. Sci. and Statist.*, 2th, 1972. Oklahoma State Univ. Press, Stillwater.
- Davis, H. T., and Koopmans, L. H. (1970). "Adaptive prediction of stationary time series." Tech. Rep. 208. Dept. Math. and Statist., Univ. New Mexico, Albuquerque, New Mexico. To appear in Sankhya.
- Dixon, W. J. (ed.) (1969). *BMD Biomedical Computer Programs*, X-Ser. Suppl. Univ. of California Press, Berkeley.
- Dixon, W. J. (ed.) (1970). *BMD Biomedical Computer Programs*, 2nd ed. (third printing revised). Univ. of California Press, Berkeley.
- Doob, J. L. (1953). *Stochastic Processes*. Wiley, New York.
- Edge, B. L., and Liu, P. C. (1970). "Comparing power spectra computed by Blackman-Tukey and fast Fourier transform." *Water Resour. Res.* **6**, 1601-1610.
- Enochson, L. D., and Goodman, N. R. (1965). "Gaussian approximation to the distribution of sample coherence." AFFDL TR 65-57. Res. and Technol. Div., AFSC, Wright-Patterson AFB, Ohio.
- Enochson, L. D., and Oines, R. K. (1968). *Programming and Analysis for Digital Time Series Data*. The Shock and Vibration Information Center, U.S. Dept. of Defense, Washington, D.C.
- Feller, W. (1968). *An Introduction to Probability Theory and Its Applications*, 3rd ed., Vol. 1. Wiley, New York.
- Fisher, R. A. (1929). "Tests of significance in harmonic analysis." *Proc. Roy. Soc. London Ser. A* **125**, 54-59.
- Fishman, G. S. (1969). *Spectral Methods in Econometrics*. Harvard Univ. Press, Cambridge, Massachusetts.
- Frisch, R. (1933). "Propagation problems and impulse problems in dynamic economics." *Economic Essays in Honor of Gustav Cassel*, pp. 171-205. Allen & Unwin, London.
- Gardner, Jr., L. A. (1962). "Adaptive predictors." *Proc. Conf. Information Theory, Statis. Decision Functions, Stochastic Processes*, 3rd. Prague, pp. 123-192.
- Gentleman, W. M., and Sande, G. (1966). "Fast Fourier transform for fun and profit." *Proc. Fall Joint Comput. Conf., AFIPS*, New York, 1965, **29**, p. 563. Spartan Books, Washington, D.C.
- Amowitz, M., and Siegmund, J. A. (eds.) (1964). *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables*. U.S. Nat. Bur. Stand. Appl. Math. Ser. 55. U.S. Dept. of Commerce, Washington, D.C.
- Akaike, H. (1970). "Statistical predictor identification." *Ann. Inst. Statist. Math.* **22**, 203-217.
- Alexander, M. J., and Vok, C. A. (1963). "Tables of the cumulative distribution of sample multiple coherence." Res. Memo. 972-351. Rockwell Int'l. Research Div., North Amer. Aviation, Inc. Los Angeles, California.
- Amos, D. E., and Koopmans, L. H. (1963). "Tables of the coefficient of coherence for stationary bivariate Gaussian processes." Sandia Corp. Monograph SCR-483. Sandia Corp., Albuquerque, New Mexico.
- Anderson, R. Y., and Koopmans, L. H. (1963). "Harmonic analysis of varve time series." *J. Geophys. Res.* **68**, 877-893.
- Anderson, T. W. (1958). *An Introduction to Multivariate Statistical Analysis*. Wiley, New York.
- Anderson, T. W. (1971). *The Statistical Analysis of Time Series*. Wiley, New York.
- Bartlett, M. S. (1948). "Smoothing periodograms from time series with continuous spectra." *Nature (London)* **161**, 686-687.
- Bendat, J. S., and Piersol, A. G. (1966). *Measurement and Analysis of Random Data*. Wiley, New York.
- Benningus, V. A. (1969). "Estimation of coherence of non-Gaussian time series populations." *IEEE Trans. Audio Electroacoust.* **AL-17**, 198-201.
- Blackman, R. B., and Tukey, J. W. (1959). *The Measurement of Power Spectra from the Viewpoint of Communications Engineering*. Dover, New York. Reprinted from *Bell System Tech. J.* **37** (1958).
- Blackman, R. B. (1965). *Linear Data Smoothing and Prediction in Theory and Practice*. Addison-Wesley, Reading, Massachusetts.
- Box, G. E. P., and Jenkins, G. M. (1970). *Time Series Analysis Forecasting and Control*. Holden-Day, San Francisco, California.
- Brennan, L. (1969). *Probability and Stochastic Processes with a View toward Applications*. Houghton Mifflin, Boston, Massachusetts.
- Brillinger, D. R. (1965). "A property of low pass filters." *SIAM Rev.* **7**, 65-67.
- Brillinger, D. R. (1969). "A search for a relationship between monthly sunspot numbers and certain climatic series." *Bull. Inst. Statist.* **43**, 293-306.
- Brillinger, D. R. (1970). "The frequency analysis of relations between stationary spatial series." *Proc. Biennial Sem. Canad. Math. Congr.*, 12th (R. P. ke, ed.). Canad. Math. Congr., Montreal.
- Brown, R. G. (1962). *Smoothing, Forecasting and Prediction of Discrete Time Series*. Prentice-Hall, Englewood Cliffs, New Jersey.
- Bucci, R. S., and Follin, J. W., Jr. (1962). "Adaptive finite time filtering." *IRE Trans.*

- Gersl, W. (1970). "Spectral analysis of EEG's by autoregressive decomposition of time series." *Math. Biosci.* **7**, 205-222.
- Gersl, W. and Goddard, G. V. (1970). "Epileptic focus location: spectral analysis method." *Science* **169**, 701-702.
- Gol'tsberg, R. R. (1961). *Fourier Transform*. Cambridge Univ. Press, London and New York.
- Goodman, N. R. (1957). "On the joint estimation of the spectra, co-spectrum, and quadrature spectrum of a two-dimensional stationary gaussian process." *Sci. Paper No. 10. Engng. Statist. Lab., New York Univ.*, New York.
- Goodman, N. R. (1963). "Statistics: analysis based upon a certain multivariate complex Gaussian distribution (an introduction)." *Ann. Math. Statist.* **34**, 152-177.
- Goodman, N. R. and Katz, S. (1958). "Calculating open loop transfer functions from closed loop measurements." *J. Assoc. Comput. Mach.* **3**, 289-297.
- Granger, C. W. J. and Hatanaka, Y. I. (1964). *Spectral Analysis of Economic Time Series*. Princeton Univ. Press, Princeton, New Jersey.
- Graybill, F. (1969). *Introduction to Matrices with Applications in Statistics*. Wadsworth Belmont, California.
- Grenander, U. and Rosenblatt, M. (1957). *Statistical Analysis of Stationary Time Series*. Wiley, New York.
- Groves, G. W. and Hannan, E. J. (1968). "Time series regression of sea level on weather." *Rev. Geophys.* **6**, 129-174.
- Halmos, P. R. (1948). *Finite Dimensional Vector Spaces*. Princeton Univ. Press, Princeton, New Jersey.
- Hamon, B. V. and Hannan, E. J. (1963). "Estimating relations between time series." *J. Geophys. Res.* **68**, 6033-6041.
- Hannan, E. J. (1970). *Multiple Time Series*. Wiley, New York.
- Hannan, E. J. and Thomson, P. J. (1971). "The estimation of coherence and group delay." *Biometrika* **58**, 469-482.
- Jenkins, F. A. and White, H. A. (1950). *Fundamentals of Optics*. McGraw-Hill, New York.
- Jones, R. H. (1962). "Spectral analysis with regularly missed observations." *Ann. Math. Statist.* **33**, 455-461.
- Jones, R. H. (1965). "A reappraisal of the periodogram in spectral analysis." *Technometrics* **7**, 531-542.
- Jones, R. H. (1969). "Phase free estimation of coherence." *Ann. Math. Statist.* **40**, 540-548.
- Jones, R. H. (1971). "Spectrum estimation with missing observations." *Ann. Inst. Statist. Math.* **23**, 387-398.
- Kaiman, R. E. (1960). "A new approach to linear filtering and prediction problems." *J. Basic Engng.* **82**, 34-45.
- Kaiman, R. E. (1963). "New methods of Wiener filtering theory." *Proc. Symp. Engrg. Appl. Random Functions Theory and Probability, 1st, Purdue Univ., Lafayette, Indiana, 1962* (J. L. Bogdonoff and F. Kozin, eds.), Wiley, New York.
- Kaiman, R. E. and Bucy, R. S. (1961). "New results in linear filtering and prediction theory." *J. Basic Engng.* **83**, 95-108.
- Khart, C. G. (1964). "Distribution of the 'generalized' multiple correlation matrix in the dual case." *Ann. Math. Statist.* **35**, 1801-1806.
- Kharchine, A. (1934). "Korrelationstheorie der stationären stochastischen Prozesse." *Math. Ann.* **109**, 604-615.
- Kolmogorov, A. N. (1933). "Grundbegriffe der Wahrscheinlichkeitsrechnung." *Ersch. Russ. der Mathematik*. Published in English in 1950 as *Foundations of the Theory of Probability*. Chelsea, Bronx, New York.
- Kolmogorov, A. N. (1941a). "Stationary sequences in Hilbert space." (*Russian*) *Bull. Math. Univ. Moscow* **2**, No. 6, 40 pp.
- Kolmogorov, A. N. (1941b). "Interpolation und Extrapolation von stationären zufälligen Fögen." (*Russian, German summary*) *Bull. Acad. Sci. U.R.S.S. Ser. Math.* **5**, 3-14.
- Koopmans, L. H. (1961). "An evaluation of a signal summation technique for improving the signal-to-noise ratios for seismic events." *J. Geophys. Res.* **66**, 3879-3898.
- Koopmans, L. H. (1964a). "On the coefficient of coherence for weakly stationary stochastic processes." *Ann. Math. Statist.* **35**, 532-549.
- Koopmans, L. H. (1964b). "On the multivariate analysis of weakly stationary stochastic processes." *Ann. Math. Statist.* **35**, 1765-1780.
- Koopmans, L. H. and Qualls, C. (1971). "Fixed length confidence intervals for parameters of the normal distribution based on two-stage sampling procedures." *Rocky Mountain J. Math.* **1**, 587-602.
- Koopmans, L. H. and Qualls, C. (1972). "An exponential probability bound for the energy of a type of Gaussian process." *Ann. Math. Statist.* **43**, 1953-1960.
- Koopmans, L. H., Qualls, C., and Yao, J. T. P. (1973). "An upper bound on the failure probability for linear structures." *J. Appl. Mech. Ser. E* **40**, 181-185.
- Lee, Y. W. (1964). "Contributions of Norbert Wiener to linear theory and nonlinear theory in engineering." In *Selected Papers of Norbert Wiener*. MIT Press, Cambridge, Massachusetts.
- Monin, A. S. and Yuliv, I. L. (1971). "On the spectra of long-period oscillations of geophysical parameters." *Tellus* **23**, 337-345.
- Munk, W. H., Snodgrass, F. E., and Tucker, M. J. (1959). "Spectra of low-frequency ocean waves." *Bull. Scripps Inst. Oceanogr.* **7**, 283-362.
- Paganini, M. (1973). "When is an autoregressive scheme stationary?" *Commun. Statist.* **2**, 533-544.
- Parzen, E. (1961). "Mathematical considerations in the estimation of spectra." *Technometrics* **3**, 167-190. Reprinted in Parzen (1967).
- Parzen, E. (1967). *Time Series Analysis Papers*. Holden-Day, San Francisco, California.
- Parzen, E. (1972). "Some recent advances in time series analysis." In *Statistical Models and Turbulence* (M. Rosenblatt and C. Van Atta, eds.), Springer-Verlag, Berlin and New York.
- Presties, M. B. (1965). "Evolutionary spectra and nonstationary processes." *J. Roy. Statist. Soc. Ser. B* **27**, 204-237.
- Reed, J. W. (1971). "Low-frequency periodicities in Panama rainfall runoff." *J. Appl. Meteorol.* **10**, 666-673.
- Riesz, F. and Nagy, B. Sz. (1955). *Functional Analysis*. Ungar, New York.
- Robinson, E. A. (1967). *Multichannel Time Series Analysis with Digital Computer Programs*. Holden-Day, San Francisco, California.
- Rozanov, Yu. A. (1967). *Stationary Random Processes*. Holden-Day, San Francisco, California.
- Schuster, A. (1898). "On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena." *Terr. Magn.* **3**, 13-41.
- Schuster, A. (1906). "On the periodicities of sunspots." *Philos. Trans. Roy. Soc. London Ser. A* **206**, 69-100.
- Shannon, C. (1949). "Communication in the presence of noise." *Proc. IRE* **37**, 10-21.
- Shapiro, A. (1962). "Estimation of coherence between signal and signal plus echoes." *Bell Telephone Lab., Memo Bell Telephone Lab., Inc., Whippoorwill, New Jersey*.
- Slutzky, E. (1927). "The summation of random causes as the source of cyclic processes (Russian)." *Problems of Economic Conditions* **3**, Engl. transl. *Econometrica* **5**, 105-124 (1937).

REFERENCES

- Slepcev, G. (1935). *Orthogonal Polynomials*. A.M.S. Colloq. Publ. T.-A., L. J. (1955). "Statistical time series analysis of blast furnace variables." Publ. of Res. Div., College of Engng., New York Univ., New York.
- T.-A., L. J. (1967). "Estimation of coherence." *Advanced Sem. Spectral Anal. of Time Ser.*, 1965 (B. Harris, ed.), pp. 133-152. Wiley, New York.
- Tinbergen, J. (1937). *An Economic Approach to Business Cycle Problems*. Hermann, Paris.
- Trotter, G. (1950). *The Variate Difference Method*. Principia Press, Bloomington, Indiana.
- Trotter, G. (1953). *The Theory of Functions*, 2nd ed. Oxford Univ. Press, London and New York.
- Tucker, H. G. (1962). *An Introduction to Probability and Mathematical Statistics*. Academic Press, New York.
- Tukey, J. W. (1946). "Sporadic J." Measuring Noise Color." Unpublished.
- Tukey, J. W. (1959). "The sampling theory of power spectrum estimates." *Symp. Appl. Autocorrelation Anal. Phys. Problens*, Woods Hole, Massachusetts, 1949. NAVEXOS-P-35, Office of Naval Research, Washington, D.C.
- Tukey, J. W. (1959). "An introduction to the measurement of spectra." In *Probability and Statistics, The Harold Cramér Volume* (L. Grenander, ed.), Wiley, New York.
- Tukey, J. W. (1961). "Discussion emphasizing the connection between analysis of variance and spectral analysis." *Technometrics* 3, 211-219.
- Walter, D. O. (1969). "The method of complex demodulation." *Electroencephal. Clin. Neurophysiol.* 27, 53-57.
- Walter, D. O., Rhodes, J. M., Brown, D., and Adey, W. R. (1966). "Comprehensive spectral analysis of human EEG generators in posterior cerebral regions." *Electroencephal. Clin. Neurophysiol.* 20, 224-237.
- Wattie, P. (1963). *Precision and Regulation*. Van Nostrand-Reinhold, Princeton, New Jersey.
- Weiner, N. (1930). "Generalized harmonic analysis." *Acta Math.* 55, 117-258. Reprinted in *Selected Papers of Norbert Wiener*. MIT Press, Cambridge, Massachusetts, 1964.
- Weiner, N., and Masani, P. (1957). "The prediction theory of multivariate stochastic processes. I." *Acta Math.* 98, 111-150.
- Weiner, N., and Masani, P. (1958). "The prediction theory of multivariate stochastic processes. II." *Acta Math.* 99, 93-137.
- Wetsring, P. W., and Yao, J. T. P. (1971). "Monte Carlo study of seismic structural safety." *J. Struct. Div. ASCE* 97, 1497-1519.
- Weyl, H. (1938). *A Study in the Analysis of Stationary Time Series*. Almqvist & Wiksell, Stockholm. 2nd ed. with Addenda by P. Whittle, 1954.
- Weyl, H. (1959). "Ends and means in econometric model building." In *Probability and Statistics, the Harold Cramér Volume* (L. Grenander, ed.), Wiley, New York.
- Yaglom, A. M. (1955). "The correlation theory of processes whose nth differences constitute a stationary process." *Mar. Sh.* 37, 137-141.
- Yaglom, A. M. (1962). *An Introduction to the Theory of Stationary Random Functions*, translated from the Russian by R. A. Silverman. Prentice Hall, Englewood Cliffs, New Jersey.
- Yule, G. U. (1921). "On the time-correlation problem, with especial reference to the variate-difference correlation method." *J. Roy. Statist. Soc.* 84, 497-526.
- Yule, G. U. (1927). "On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers." *Philos. Trans. Roy. Soc. London, Ser. A*, 226, 26-298.

Time Sequence Analysis in Geophysics

E.R. Kanasewich
///
Second revised edition

-197-

PREFACE

Time sequence analysis is carried out extensively by earth scientists in industry and in research laboratories. Courses on the subject are being introduced in every department that pursues geophysics. However, there is a lack of a suitable text which gathers together material published in many journals. The available published books emphasize either the purely mathematical aspect or the application to engineering, radar technology, or economics.

Care has been taken to relate the subject material to the fields of physics, electrical engineering and geophysics. Original authors have been given credit for their published research discoveries and the references are included. A portion of the contents of this book has been used in a semester course during the past five years either at the senior undergraduate level or the graduate level. Additional material, from the fields of seismology and geomagnetism as applied in industry, is assigned to the students as subjects for a research project and a seminar. The lecturer will find this material readily available in journals of the Society of Exploration Geophysics or the European Society of Exploration Geophysics. This book is intended to present the fundamental background necessary for digital processing of geophysical or other types of experimental data. It is assumed that the digital computer will be used in obtaining spectral density and in the application of correlation, convolution and deconvolution techniques. Since the author has received many requests from colleagues at other universities for advance copies of the manuscript which he has been unable to supply, a photo reduction from a typeset written manuscript was used for the first edition to reduce the time lag between the completion of the manuscript and the final printed copy. Much active research is still being done in this field but it is felt that the subjects presented here will assist students in reading the current literature.

The University of Alberta Press
1975

CONTENTS

The title given to this study is time sequence analysis since many of the applications involve elastic and electrodynamic waves from well defined sources and it is desired to study relations between a sequence of data points or a sequence of signals in order to determine the physical properties of the earth. Some of the processes involved in contributing to the observed data will be deterministic while others will be random. The origin time of the wave pulse is often known or is a quantity to be determined. The use of the phrase "time series" is usually reserved for a study of random events or fcc data whose properties are independent of translation of the origin of time.

I am greatly indebted to my colleagues for suggestions and encouragement. It is a pleasure to acknowledge the assistance of my graduate students, Messrs. R.G. Agarwal, R.M. Clowes, C.D. Hemmings and J.F. Montambetti for checking various portions of the draft manuscript and for writing and running various computer programs. I would like to thank Mrs. Helen Hawkes for her assistance in preparing the manuscript.

E.P. Kanasewich

Department of Physics
University of Alberta
Edmonton, Alberta
Canada T6G 2G1

1. INTRODUCTORY OBSERVATIONS	1
1.1 Historical Notes	1
1.2 Examples of Applications of Time Sequence Analysis	2
2. CONVOLUTION OF A TIME SERIES	25
2.1 Introduction	25
2.2 Convolution as a Digital Integration	27
2.3 Convolution as a Geometric Operation of Folding	28
2.4 Convolution as a Geometric Operation of Sliding	28
2.5 Convolution as an Algebraic Operation - 2 Transformation	29
2.6 Convolution of Analog - Signals	31
2.7 Convolution Algorithm	32
3. FAST FOURIER TRANSFORMS	23
3.1 Fourier Series	33
3.2 The Fast Fourier Transform	34
3.3 Simultaneous Computation of Two Fourier Transforms	41
3.4 Fourier Transformation of Very Long Data Sets	42
3.5 Two Dimensional Fourier Transforms	44
3.6 Fast Fourier Transform Using Matrix Notation	46
4. LAPLACE TRANSFORMS AND COMPLEX S PLANE REPRESENTATION	54
4.1 Introduction	54
4.2 The Laplace Transform	55
4.3 Examples of Laplace Transformation	57
4.4 Translation of a Function	61
5. IMPULSE RESPONSE, CONVOLUTION AND THE TRANSFER FUNCTION	64
5.1 The Impulse Response	64
5.2 Convolution in the Frequency Domain	65
5.3 The Transfer Function	67
6. CORRELATION AND COVARIANCE	73
6.1 Definitions	73
6.2 Properties of the Autocovariance Function	75

7.	WIENER-KHINTCHINE THEOREM AND THE POWER SPECTRUM	79	
7.1	The Fejerogram	79	11.5 Minimum Delay Wavelet
7.2	Wiener-Khintchine Theorem	80	11.6 Maximum Delay Wavelet
7.3	Cross Power Spectral Analysis of Sampled Data	83	11.7 Mixed Delay Filter
7.4	Compensation for Instrument Response	86	11.8 The Partial Energy
			11.9 Minimum Phase, Minimum Delay and Hilbert
			Transformation
8.	ALIASING	89	12. DECONVOLUTION
8.1	The Nyquist Frequency	89	12.1 Introduction
8.2	Aliasing	90	12.2 Truncated Deconvolution Filter
9.	POWER SPECTRAL ESTIMATES AND SPECTRAL WINDOWS	96	12.3 Least Squares Deconvolution Dipole
9.1	Introduction	96	12.4 Derivation of More General Equations for Deconvolution
9.2	Effects of a Rectangular Window	96	12.5 Matrix Derivation of an Inverse Shaping Filter
9.3	Tapering the Data	98	12.6 Rice's Inverse Convolution Filter
9.4	Bartlett's Spectral Estimate	99	12.7 The Wiener-Hopf Optimum Filter
9.5	The Variance of the Spectral Estimate	102	
9.6	Daniel's Power Spectral Estimate	103	13. ZERO PHASE SHIFT BAND PASS FILTERS FOR DIGITAL COMPUTERS
9.7	The Hannings and Hanning Windows	106	175
9.8	The Bartlett Window	109	13.1 Ideal Filters and Their Truncated Approximation
9.9	The Parzen Window	110	175
9.10	Prewindowing	111	13.2 Introduction to Butterworth Filters
9.11	Matrix Formulation of the Power Spectral Density with Bartlett's Window	112	178
9.12	The Coherence and Bispectral Analysis of time series for Echoes	115	13.3 Number of Poles Required for a Given Attenuation
10.	CROSS SPECTRAL ANALYSIS, COHERENCY AND BISPECTRAL ANALYSIS	119	180
10.1	Cross Covariance With the Fast Fourier Transform	119	13.4 Poles and Zeros of a Low Pass Butterworth Filter
10.2	Cross Spectral Analysis and Coherence	120	180
10.3	Coherence	123	13.5 Frequency Transformations for High Pass Filter
10.4	Bispectral Analysis	125	184
11.	MINIMUM PHASE AND PROPERTIES OF AN IMPULSE RESPONSE FUNCTION	129	13.6 Frequency Transformation for a Band Pass Filter
11.1	Introduction	129	186
11.2	\hat{z} Transformation	130	13.7 The Bilinear z Transform
11.3	Dipole Presentation of Filtering	132	192
11.4	Normalized Wavelet	136	13.8 Recursion Filters
12.	WAVE PROPAGATION IN LAYERED MEDIA IN TERMS OF FILTER THEORY	211	13.9 Zero Phase Shift Filters - Cascade Form
			204
			13.10 Rejection Filters
13.	WAVE PROPAGATION IN LAYERED MEDIA IN TERMS OF FILTER	211	
14.	REFLECTION AND TRANSMISSION AT AN INTERFACE	211	
14.1	Introduction	211	
14.2	Reflection and Transmission at an Interface	211	
14.3	Reflection and Transmission in a Multi-Layered Media	215	
14.4	Traney's Model for Synthetic Seismogram including Dissipation	221	

14.5	Reverberation in a Water Layer	221
14.6	Removal of Ghost Reflections	224
15.	VELOCITY FILTERS	
15.1	Introduction	230
15.2	Linear Velocity Filters with Box-Car Shaped Pass Bands	230
15.3	Recursive Relation for a Velocity Filter	236
15.4	Nonlinear Velocity Filters	242
15.5	Velocity Spectra	251
16.	MAXIMUM ENTROPY AND MAXIMUM LIKELIHOOD METHODS OF SPECTRAL ANALYSIS	
16.1	Data Adaptive Spectral Analysis Methods	260
16.2	The Concept of Entropy	261
16.3	Maximum Entropy Method of Spectral Analysis	262
16.4	The Maximum Likelihood Method of Spectral Estimation	275
16.5	Comparison of MEM, MLM and Auto Regressive Methods	279
17.	POLARIZATION ANALYSIS	
17.1	Introduction	286
17.2	Theory of Polarization Analysis	286
17.3	Time Domain Polarization Filters	292
17.4	The Remote Filter	301
17.5	Surface Wave Discrimination Filter	304
	APPENDIX 1 - FOURIER SERIES AND INTEGRALS	
	APPENDIX 2 - THE DIRAC DELTA FUNCTION	328
	APPENDIX 3 - THE RELATION BETWEEN THE EULER-LAGRANGE EQUATION AND THE WIENER-HOPF EQUATION	332
	APPENDIX 4 - STATIONARY TIME SERIES AND WHITE NOISE	350
	AUTHOR INDEX	359
	SUBJECT INDEX	362

1976

FOURIER ANALYSIS OF TIME SERIES: AN INTRODUCTION

PETER BLOOMFIELD

Princeton University

PREFACE

There are two groups of users of an applied book on time series analysis such as this. The first consists of students (undergraduate or postgraduate) who encounter a course on time series in their study of statistics or its allied fields. The second consists of workers in the many fields in which time series data arise. The fact that this book was written with both groups in mind has imposed noticeable constraints on the contents and presentation, but they have proved entirely beneficial.

In the interests of the second group, the statistical level of the presentation has been kept low. The minimum statistical knowledge needed to follow the essential sections corresponds to a single introductory course in statistics. Greater knowledge of statistics, combined with some experience in the analysis of observational data, would of course allow the reader both an easier passage and the opportunity for greater gain on the way.

The interests of students are best served, at least on their first contact with time series, by tying the presentation to examples. All the methods described in this book are introduced in the context of specific sets of data, so that the motivation behind a method is evident as it is developed. The abstract properties of a procedure are discussed only when the motivation has been solidly established.

Many people have difficulty when they first encounter Fourier analysis or the Fourier transform. The discrete Fourier transform is described in Chapter 3 and is used in one form or another through most of the remaining chapters. It is elementary from a mathematical point of view, involving nothing more advanced than the summation of finite series, not even calculus. However, its properties are analogous to those of more difficult types of Fourier transforms. Careful study of Chapter 3 and the expenditure of some time on its exercises will convince the most fainthearted that Fourier transforms can be fun! Complex numbers are used extensively in deriving the properties of the discrete Fourier transform.

*ii

John Wiley & Sons
New York • London • Sydney • Toronto

However this is done purely for the notational simplicity, and to follow the algebra it is necessary only to know the rules for obtaining the sum and the product of two complex numbers.

The topics discussed are as follows:

- (i) harmonic regression: least squares regression on a sinusoid or sinusoids (Chapter 2);
- (ii) harmonic analysis: the discrete Fourier transform, periodogram analysis (Chapters 3, 4, and 5);
- (iii) complex demodulation (Chapter 6);
- (iv) spectrum analysis (Chapters 7, 8, and 9).

The order of the discussion is dictated by the increasing complexity of the statistical concepts involved. At all stages of the book, the reader is urged to stop and consider the appropriateness of applying a particular method to the set of data under consideration. In several cases some preprocessing is carried out to make the data more appropriate. This is all designed to make the point that any data-analytic procedure based on the sine and cosine functions has a better chance of yielding useful conclusions if the data show some kind of oscillation, preferably as uniform or as regular as possible.

There are exercises at the ends of most sections. Some are algebraic manipulations designed to make the reader more familiar with the tools of discrete Fourier analysis and to build his or her confidence. The others are used to indicate some of the directions in which the theory of time series analysis has revealed useful results. However, the most important exercise, and one that should be omitted by no serious reader, is the analysis of data. Almost all the data used in this book are widely available. However the reader who tries the methods on data arising in his or her own field will gain the added benefit of seeing these data from a new point of view. Many of the more general purpose computer programs used to analyze the examples have been included in Appendices to the relevant chapters. They are coded in a moderately transportable dialect of FORTRAN (apart from the use of the symbol $*$ rather than $'$ to delimit character strings in FORMATTED statements), and will have been executed successfully. Naturally they are not guaranteed to be bug-free.

I was encouraged to write this book by Geoffrey Watson, who saw clearly the need for an introductory text on Fourier methods not encumbered by an abundance of mathematical, probabilistic, or statistical detail. An early version was used as class notes in an undergraduate course on time series taught in the Department of Statistics at Princeton University in the spring of 1974. Revision was begun during a visit to the Computer Centre and the Department of Statistics, Institute of Advanced Study, Australian National University, Canberra. The final draft was

prepared during a leave spent at the Department of Statistics, University of California at Berkeley. I am grateful to colleagues at all three institutions for their assistance and encouragement, especially David Brillinger, Richard Hamming, E. J. Hannan, and John Tukey. Each institution provided an excellent background within which to work, including library and computer facilities.

The plasma physics data used in Chapters 6 and 9 were kindly provided by Joseph Ceech of the Plasma Physics Laboratory, Department of Astrophysics, Princeton University. I also thank Michael Stoto and John Turner for their assistance with computing problems. The final draft was typed immaculately, with great good humor, by Ruth Suzuki. Much of the computing was supported by the Office of Naval Research, under contract number 0014-67-A-0151-0017 with the Department of Statistics, Princeton University.

PETER BLOOMFIELD

Berkeley, California.
May 1975

CONTENTS

xii

Contents

-203-

Chapter 1 Fourier Analysis

- 1.1 Fourier Analysis. 1
- 1.2 Historical Development of Fourier methods. 2
- 1.3 Why Use Trigonometric Functions? 7

Chapter 2 The Search for Periodicity

- 2.1 A Curve-Fitting Approach. 9
- 2.2 Least Squares Estimation of Amplitude and Phase. 11
- 2.3 Least Squares Estimation of Frequency. 18
- 2.4 Multiple Periodicities. 20
- 2.5 The Effect of Discrete Time: Aliasing. 26
- 2.6 Some Statistical Results. 28
- Appendix. 32

Chapter 3 Harmonic Analysis

- 3.1 The Fourier Frequencies. 42
- 3.2 Complex-Valued Data: the Discrete Fourier Transform. 46
- 3.3 Decomposing the Sum of Squares. 50
- 3.4 Harmonic Analysis of Some Special Functions. 51
- 3.5 Smooth Functions. 57

Chapter 4 The Fast Fourier Transform

- 4.1 The Computational Cost of Fourier Transforms. 61
- 4.2 The Two-Factor Case. 62
- 4.3 General Theory. 65

Chapter 5 Examples of Harmonic Analysis

- 5.1 The Variable-Star Data. 77
- 5.2 Leakage Reduction by Data Windows: Tapers and Faders. 80
- 5.3 Tapering the Variable-Star Data. 87
- 5.4 Wolf's Sunspot Numbers. 94
- 5.5 Non sinusoidal Oscillations. 96
- 5.6 Amplitude and Phase Fluctuations. 99
- 5.7 Transformations. 101
- 5.8 The Periodogram of a Noise Series. 106
- 5.9 Fisher's Test for Periodicity. 110
- Appendix. 113

Chapter 6 Complex Demodulation

- 6.1 Motivation. 118
- 6.2 Smoothing: Linear Filtering. 120
- 6.3 Designing a Filter. 125
- 6.4 Least Squares Filter Design. 129
- 6.5 Demodulating the Sunspot Series. 137
- 6.6 Another Example of Complex Demodulation. 140
- Appendix. 145

Chapter 7 The Spectrum

- 7.1 Periodogram Analysis of Wheat Prices. 151
- 7.2 Analysis of Segments of a Series. 160
- 7.3 Smoothing the Periodogram. 162
- 7.4 Computing Autocovariances and Lag-Weights Spectrum Estimates. 165
- 7.5 Alternative Representations of a Spectrum Estimate. 167
- 7.6 Choice of a Spectral Window. 172
- 7.7 Examples of Smoothing the Periodogram. 173
- Appendix. 177

Chapter 8 Some Stationary Time Series Theory

- 8.1 Stationary Time Series. 181
- 8.2 Continuous Spectra. 185

181

xi

APPENDIX C

Contents

- 8.3 Time Averaging and Ensemble Averaging. 187
8.4 The Periodogram of a Time Series with a Continuous Spectrum. 188
- 8.5 The Approximate Mean and Variance of Spectrum Estimates. 189
Properties of Spectral Windows. 199
- 8.6 Aliasing and the Spectrum. 204
- Chapter 9 Analysis of Multiple Series**
- 9.1 The Cross Periodogram. 210
9.2 Estimating the Cross Spectrum. 212
9.3 The Theoretical Cross Spectrum. 217
9.4 The Distribution of the Cross Periodogram. 220
9.5 Means and Variances of Smoothed Spectra. 224
9.6 Alignment. 228
Appendix. 231
- Chapter 10 Further Topics**
- 10.1 Time Domain Analysis. 234
10.2 Spatial Series. 235
10.3 Multiple Series. 237
10.4 Higher-Order Spectra. 240
10.5 Nonquadratic Spectrum Estimates. 241
10.6 Incomplete Data, Irregularly Spaced Data, and Point Processes. 243
- References**
- Anderson, T. W. (1971) *The Statistical Analysis of Time Series*. New York: Wiley.
- Bartlett, M. S. (1948). Smoothing periodograms from time series with continuous spectra. *Nature* **161**, 686-687.
- (1950). Periodogram analysis and continuous spectra. *Biometrika* **37**, 1-16.
- (1955). *An Introduction to Stochastic Processes with Special Reference to Methods and Applications*. Cambridge: Cambridge University Press.
- (1963). The spectral analysis of point processes. *J. R. Stat. Soc., Ser. B* **25**, 264-280.
- Bergland, G. D. (1968). A Fast Fourier Transform algorithm using base 8 iterations. *Math. Comput.* **22**, 275-279.
- Beveridge, W. H. (1921). Weather and harvest cycles. *Econ. J.* **31**, 429-452.
- (1922). Wheat prices and rainfall in Western Europe. *J. R. Stat. Soc.* **85**, 412-459.
- Bingham, C., M. D. Godfrey, and J. W. Tukey (1967). Modern techniques of power spectrum estimation. *IEEE Trans. Audio Electroacoust.* **AL-15**, 56-66.
- Blackman, R. B. and J. W. Tukey (1959). *The Measurement of Power Spectra from the Point of View of Communications Engineering*. New York: Dover.
- Bloomfield, P. (1970). Spectral analysis with randomly missing observations. *J. R. Stat. Soc., Ser. B* **32**, 369-380.
- (1973). An exponential model for the spectrum of a scalar time series. *Biometrika* **60**, 217-226.
- Box, G. E. P. and G. M. Jenkins (1970). *Time Series Analysis: Forecasting and Control*. San Francisco: Holden-Day.
- Bray, R. J. and R. E. Loughhead (1964). *Suspects*. New York: Wiley.
- Brent, R. P. (1972). *Algorithms for Minimization without Derivatives*. Englewood Cliffs, N.J.: Prentice-Hall.
- Bingham, E. O. (1974). *The Fast Fourier Transform*. Englewood Cliffs, N.J.: Prentice-Hall.
- Brillinger, D. R. (1965). An introduction to polyspectra. *Ann. Math. Stat.* **36**, 1351-1374.
- (1972). The spectral analysis of stationary interval functions. In L. M. LeCam, J. Neyman, and E. L. Scott, Eds., *Proceedings Sixth Berkeley Symposium on Mathematics*. University of California Press, pp. 483-513.
- (1973). An empirical investigation of the Chandler wobble and two proposed eccentricity processes. *Bull. Int. Stat. Inst.* **45**, Book 3, 411-414.
- (1975). *Time Series: Data Analysis and Theory*. New York: Holt, Rinehart & Winston.
- Brillinger, D. R. and M. Rosenblatt (1967a). Asymptotic theory of estimates of k-th order spectra. In B. Harris, Ed., *Spectral Analysis of Time Series*. New York: Wiley, pp. 153-188.

References

Index

- (1967b) Computation and interpretation of k -th order spectra. In R. Harris, Ed., *Spectral Analysis of Time Series*. New York: Wiley, pp. 189-232.
- Burg, J. P. (1972). The relationship between maximum entropy spectra and maximum likelihood spectra. *Geometries* **37**, 375-376.
- Capon, J. (1969). High-resolution frequency-wavenumber spectral analysis. *Proc. IEEE* **57**, 1408-1418.
- Coope, J. W., P. A. W. Lewis, and P. D. Welch (1967). Historical notes on the Fast Fourier Transform. *IEEE Trans. Audio Electroacoustics* **AL-15**, 76-79.
- Cooley, J. W. and J. W. Tukey (1965). An algorithm for the machine computation of complex Fourier series. *Math. Comput.* **19**, 297-301.
- Dale, J. B. (1914a) The resolution of a compound periodic function into simple periodic functions. *Mon. Not. R. Astron. Soc.* **74**, 628-648.
- (1914b) Note on the number of components of a compound periodic function. *Mon. Not. R. Astron. Soc.* **74**, 664.
- Daniel, P. J. (1946). Discussion on the Symposium on Autocorrelation in Time Series. *J. R. Statist. Soc. (Suppl.)*, **8**, 85-90.
- Doob, J. L. (1953). *S stochastic Processes*. New York: Wiley.
- Durbin, J. and G. S. Watson (1956). Testing for serial correlation in least squares regression. I. *Biometrika* **43**, 476-428.
- (1951). Testing for serial correlation in least squares regression. II. *Biometrika* **38**, 169-178.
- (1971). Testing for serial correlation in least squares regression. III. *Biometrika* **58**, 1-19.
- Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. *Theory Probab. Appl.* **14**, 153-158.
- Feller, W. (1968). *An Introduction to the Theory of Probability and Its Applications*. Vol. 1, 3rd ed. New York: Wiley.
- Fisher, R. A. (1929). Tests of significance in harmonic analysis. *Proc. R. Soc. Ser. A* **125**, 54-59.
- Genteman, W. M. and G. Sande (1966). Fast Fourier Transforms—for fun and profit. In *1966 Fall Joint Comput. Conf. AFIPS Conf. Proc.* **29**, Sec. 3, 57-58.
- Gefter, M. D. (1965). An exploratory study of the bispectrum of an economic time series. *Appl. Stat.* **14**, 45-69.
- Good, I. J. (1958). The interaction algorithm and practical Fourier analysis. *J. R. Stat. Soc. Ser. B* **20**, 661-672.
- Good, I. J. (1971). The relationship between two Fast Fourier Transforms. *IEEE Trans. Comput.* **C-20**, 316-317.
- Granger, C. W. J. and A. O. Hedges (1971). A new look at some old data—the Beveridge wheat price series. *J. R. Stat. Soc. Ser. A* **134**, 413-428.
- Grenander, U. and M. Rosenblatt (1953). Statistical spectral analysis of time series arising from stationary stochastic processes. *Ann. Math. Stat.* **24**, 537-558.
- (1957). *Statistical Analysis of Stationary Time Series*. New York: Wiley.
- Hammings, R. W. (1973). *Numerical Methods for Scientists and Engineers*, 2nd ed. New York: McGraw-Hill.
- Hammings, R. W. and J. W. Tukey (1949). Measuring noise color. Bell Telephone Laboratories Memorandum.
- Hannan, E. J. (1970). *Multivariate Time Series*. New York: Wiley.
- Hannan, E. J. and P. J. Thompson (1973). Estimating group delay. *Biometrika* **60**, 241-253.
- Hart, B. I. and J. von Neumann (1942). Tabulation of the probabilities for the ratio of the mean square successive difference to the variance. *Ann. Math. Stat.* **13**, 207-214.
- Hodges, J. L. and E. L. Lehmann (1956). The efficiency of some nonparametric competitors of the t -test. *Ann. Math. Stat.* **27**, 324-335.
- Ibragimov, I. A. and Yu. V. Linnik (1971). *Independent and Stationary Sequences of Random Variables*. Groningen: Wolters-Nordhoff.
- Jenkins, G. M. (1961). General considerations in the analysis of spectra. *Technometrics* **3**, 133-166.
- (1971). Spectrum estimation with missing observations. *Ann. Inst. Stat. Math.* **23**, 387-398.
- Kendall, D. G. (1948). Oscillatory time series. *Review of Contributions to the Study of Oscillation Time Series*, by M. G. Kendall. *Nature* **161**, 187.
- Kendall, M. G. (1971). Studies in the history of probability and statistics XXVI. The work of Ernst Abbe. *Biometrika* **58**, 369-373.
- Knott, C. G. (1897). On lunar periodicities in earthquake frequency. *Proc. R. Soc.* **60**, 457-466.
- Koopmans, L. H. (1974). *The Spectral Analysis of Time Series*. New York: Academic.
- Lavine, R. I. (1971). Data-adaptive spectral analysis methods. *Graph. Stat.* **36**, 661-675.
- Lagrange (1873). Recherches sur la manière de former des tables des planètes les seules observations. *Oeuvres de Lagrange*, Vol. VI, pp. 507-627.
- Lanczos, C. (1961). *Applied Analysis*. Englewood Cliffs, N. J.: Prentice-Hall.
- Newton, H. W. (1928). *The Face of the Sun*. Harmondsworth: Middlesex Penguin.
- Olshten, R. A. (1967). Asymptotic properties of the periodogram of a discrete stationary process. *J. Appl. Probab.* **4**, 508-528.
- Oines, R. K. and L. Einchson (1972). *Digital Time Series Analysis*. New York: Wiley.
- Parzen, E. (1957a). On consistent estimates of the spectrum of a stationary time series. *Ann. Math. Stat.* **28**, 329-348.
- (1957b). On choosing an estimate of the spectral density function of a stationary time series. *Ann. Math. Stat.* **28**, 921-932.
- (1961). Mathematical considerations in the estimation of spectra. *Technometrics* **3**, 167-190.
- (1963). On spectral analysis with missing observations and amplitude modulation. *Stochastic Surv.* **4**, 381-392.
- (1969). Multiple time series modeling. In P. R. Krishnaiah, Ed., *Multivariate Analysis*, Vol. I. New York: Academic. Pp. 389-409.
- Pisarenko, V. F. (1972). On the estimation of spectra by means of nonlinear functions of the covariance matrix. *Geophys. J. R. Astron. Soc.* **28**, 511-531.
- (1973). Parameter estimation for 2 harmonics with closing frequencies on noise background. *Theor. Probab. Appl.* **18**, 826.
- Rayner, J. N. (1971). *An Introduction to Spectral Analysis*. London: Pion.

- Rosenblatt, M. (1971). Curve estimates. *Ann. Math. Stat.* **42**, 1815-1842.
- Scheinerman, P. A. (1965). Spectral analysis with randomly missed observations: the binomial case. *Ann. Math. Stat.* **36**, 971-977.
- Senutis, A. (1991). On lunar and solar periodicities of earthquakes. *Proc. R. Soc.* **61**, 455-465.
- (1995). On the investigation of hidden periodicities with application to a supposed 26-day periodic of meteorological phenomena. *Terr. Magn.* **3**, 13-41.
- (1996). The periodogram of magnetic declination as obtained from the records of the Greenwich Observatory during the years 1871-1895. *Cambridge Phil. Trans.* **18**, 107-135.
- (1996). On the periodicities of sunspots. *Phil. Trans. R. Soc., Ser. A* **306**, 69-100.
- Shimshoni, M. (1971). On Fisher's test of significance in harmonic analysis. *Geophys. J. R. Astron. Soc.* **23**, 373-377.
- Slusans, E. (1937). The summation of random causes as the source of cyclic processes. *Econometria* **5**, 105-146.
- Span, J. and J. A. Mayer (1973). Temperature trends in New York City: a postscript. *Weerhroning* **26**, 128-130.
- Stewart, B. and W. Dodgson (1879). Preliminary report to the Committee on Solar Physics on a method of detecting the unknown inequalities of a series of observations. *Proc. R. Soc.* **29**, 122-122.
- Stokes, G. G. (1879). Note on the paper by Stewart and Dodgson. *Proc. R. Soc.* **29**, 122-123.
- Thomson, W. (1876). On an instrument for calculating $(\int_0^x \psi'(x) dx)$, the integral of the product of two given functions. *Proc. R. Soc.* **24**, 266-268.
- (1918). Harmonic analyzer. *Proc. R. Soc.* **27**, 371-373.
- Titchmarsh, E. C. (1939). *Theory of Functions*. London: Oxford University Press.
- Tucker, J. W. (1977). An introduction to the calculations of numerical spectrum analysis. In B. Harris, Ed., *Spectral Analysis of Time Series*. New York: Wiley. Pp. 25-46.
- Ullman, D. J. and L. W. Hepple (1974). The statistical analysis of spatial series. *Statistician* **23**, 211-227.
- von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. *Ann. Math. Stat.* **12**, 367-395.
- (1942). A further remark concerning the distribution of the ratio of the mean square successive difference to the variance. *Ann. Math. Stat.* **13**, 86-88.
- von Neumann, J., R. H. Kent, H. R. Bellinson, and B. I. Hart (1941). The mean square successive difference. *Ann. Math. Stat.* **12**, 153-162.
- Waldmeier, M. (1961). *The Sunspot-Activity in the Years 1610-1960*. Zurich: Schulthess.
- Walker, A. M. (1971). On the estimation of a harmonic component in a time series with stationary independent residuals. *Biometrika* **58**, 21-36.
- Whittaker, E. T. and G. Robinson (1924). *The Calculus of Observations*. London: Blackie and Son.
- Whittle, P. (1952). The simultaneous estimation of a time series harmonic components and covariance structure. *Trab. Estad.* **3**, 43-57.
- (1963). *Prediction and Regulation by Linear Least-Squares Methods*. London: The English Universities Press.
- West, H. O. A. (1954). *A Study in the Analysis of Stationary Time Series*. 2nd ed. Stockholm: Almqvist and Wiksell.
- Wogalter, M. B. and J. W. Van Ness (1967). The maximum deviation of sample spectral densities. *Ann. Math. Stat.* **38**, 1558-1569.

1976

JON F. CLAERBOUT
*Department of Geophysics
Stanford University*

This book is based at the level of a bachelor's degree in physical science. Experience at Stanford indicates that a one-semester class in engineering systems theory provides helpful additional background. It will be readable to a general science and engineering audience and should be useful to anyone interested in computer modeling and data analysis in physical sciences. Inevitably, the book is strongly flavored by my own research interests which are presently mainly in exploration seismology. However, I have taken an interest in a good many of the data processing problems in general geophysics which have arisen in eight years of teaching graduate students and supervising research. This book is intended to be a textbook rather than a research monograph. The exercises are of a reasonable degree of difficulty for first-year graduate students, and most of them have been thoroughly tested.

I am indebted to a great many friends, associates, and former teachers for much of what I have learned. I have had many fruitful conversations with Steve Simpson, Enders Robinson, and John Burg about time series analysis. Ted Madden taught me much of what is written in this book on stratified media, but most importantly he infected me with the idea that the time had come to go beyond stratified media. John Sherwood and Francis Muir introduced me to reflection

Fundamentals of Geophysical Data Processing WITH APPLICATIONS TO PETROLEUM PROSPECTING

seismic prospecting and some unorthodox ways of thinking about it. Several generations of students were a great help in getting many of the "bugs" out of the text and the exercises. Phil Schultz, Don C. Riley and Steve Doherty prepared many of the figures in the final chapters. Mrs. Susana Erlin typed most of the manuscript and finally got the effort all together. My wife, Diane, inspired the continuing effort the project required.

Thanks for financial support over the past eight years is due mainly to Stanford University and the Chevron Oil Field Research Company, but also to the Petroleum Research Fund of the American Chemical Society, the National Science Foundation, and the Air Force Office of Scientific Research. Recent support from the sponsors of the Stanford Exploration Project (SEP) has enabled the rapid development of wave equation seismic data processing introduced in the last chapter. These sponsors are: Amoco, Arco, Chevron, Continental, Digicon, Dutch Shell, ELF-France, Exxon, GSI, INA-Yugoslavia, Mobil, Petrofina-Belgium, Petty Ray, Preussag-Germany, Seiscom Delta, Seismograph Service, Shell, Sun, Teledyne, Texaco, Total-France, Union, U.S. Geological Survey, United Geophysical, and Western Geophysical.

JON F. CLAERBOUT

ix	Preface
xii	Introduction
1	1 Transforms
1-1	Sampled data and Z transforms
1-2	Z transform to Fourier transform
1-3	The fast Fourier transform
1-4	Phase delay and group delay
1-5	Correlation and spectra
1-6	Hilbert transform
2	2 One-sided Functions
2-1	Inverse filters
2-2	Minimum phase
2-3	Filters in parallel
2-4	Positive real functions
2-5	Narrowband filters
	24
	24
	27
	29
	32
	35

2-6	All-pass filters	39
2-7	Notch filter and pole on pedestal	42
2-8	The bilinear transform	44
3	Spectral Factorization	
3-1	Root method	50
3-2	Robinson's energy delay theorem	52
3-3	The Toeplitz method	53
3-4	Whittle's exp-log method	58
3-5	The Kolmogoroff method	59
3-6	Causality and wave propagation	62
4	Resolution	
4-1	Time-frequency resolution	67
4-2	Time-statistical resolution	70
4-3	Frequency-statistical resolution	76
4-4	Time-frequency-statistical resolution	80
4-5	The central-limit theorem	83
4-6	Confidence intervals	87
5	Matrices and Multichannel Time Series	
5-1	Review of matrices	89
5-2	Sylvester's matrix theorem	94
5-3	Matrix filters, spectra, and factoring	99
5-4	Markov processes	102
6	Data Modeling by Least Squares	
6-1	More equations than unknowns	105
6-2	Weights and constraints	106
6-3	Fewer equations than unknowns	111
6-4	Householder transformations and Golub's method	114
6-5	Choice of a model norm	116
6-6	Robust modeling	120
7	Waveform Applications of Least Squares	
7-1	Prediction and shaping filters	130
7-2	Burg spectral estimation	130
7-3	Adaptive filters	133
7-4	Design of multichannel filters	136
7-5	Levinson recursion	139
7-6	Constrained filters	141
		142
8	Layers Revealed by Scattered Wave Filtering	
8-1	Reflection and transmission coefficients	144
8-2	Energy flux in layered media	144
8-3	Getting the waves from the reflection coefficients	148
8-4	Getting the reflection coefficients from the waves	153
9	Mathematical Physics in Stratified Media	
9-1	From physics to mathematics	163
9-2	Numerical matrixants	163
9-3	Up- and downgoing waves	167
9-4	Source-receiver reciprocity	169
9-5	Conservation principles and mode orthogonality	174
9-6	Elastic waves	178
10	Initial-Value Problems in Two and Three Dimensions	
10-1	Classical initial-value problems in time	184
10-2	Wave extrapolation in optics	185
10-3	Numerical extrapolation of monochromatic waves	189
10-4	Extrapolation of time-dependent waveforms in space	194
10-5	Beam coupling	208
10-6	Numerical viscosity	215
		220
11	Seismic Data Processing with the Wave Equation	
11-1	Downward continuation of gathers and sections	227
11-2	Wave-equation migration	227
11-3	Velocity estimation	236
11-4	Multiple reflections	246
		256
References		264
Index		267

INTRODUCTION TO STATISTICAL TIME SERIES

Preface

This textbook was developed from a course in time series given at Iowa State University. The classes were composed primarily of graduate students in economics and statistics. Prerequisites for the course were an introductory graduate course in the theory of statistics and a course in linear regression analysis. Since the students entering the course had varied backgrounds, chapters containing elementary results in Fourier analysis and large sample statistics, as well as a section on difference equations, were included in the presentation.

The theorem-proof format was followed because it offered a convenient method of organizing the material. No attempt was made to present the most general results available. Instead, the objective was to give results with practical content whose proofs were generally consistent with the prerequisites. Since many of the statistics students had completed advanced courses, a few theorems were presented at a level of mathematical sophistication beyond the prerequisites. Homework requiring application of the statistical methods was an integral part of the course.

By emphasizing the relationship of the techniques to regression analysis and using data sets of moderate size, most of the homework problems can be worked with any of a number of statistical packages. One such package is SAS (Statistical Analysis System, available through the Institute of Statistics, North Carolina State University). SAS contains a segment for periodogram computations that is particularly suited to this text. The system also contains a segment for regression with time series errors comparable with the presentation in Chapter 9. Another package is available from International Mathematical and Statistical Library, Inc.; this package has a chapter on time series programs.

There is some flexibility in the order in which the material can be covered. For example the major portions of Chapters 1, 2, 5, 6, 8, and 9 can be treated in their order with little difficulty. Portions of the later chapters deal with spectral matters, but these are not central to the development of those chapters. The discussion of multivariate time series is positioned in separate sections so that it may be introduced at any point.

John Wiley & Sons

New York • London • Sydney • Toronto

PREFACE

I thank A. R. Gallant for the proofs of several theorems and for the repair of others; J. J. Goebel for a careful reading of the manuscript that led to numerous substantive improvements and the removal of uncounted mistakes; and D. A. Dickey, M. Hidiroglou, R. J. Kiernan, and G. H. K. Wang for computing examples and for proofreading. G. E. Battese, R. L. Carter, K. R. Grouse, J. D. Cryer, D. P. Hasza, J. D. Jobson, B. Macpherson, J. Mellen, D. A. Pierce and K. N. Wolter also read portions of the manuscript. I also thank my colleagues, R. Groeneveld, D. Isaacson, and O. Kempthorne, for useful comments and discussions. I am indebted to a seminar conducted by Marc Nerlove at Stanford University for the organization of some of the material on Fourier analysis and spectral theory. A portion of the research was supported by joint statistical agreements with the U. S. Bureau of the Census.

I thank Margaret Nichols for the repeated typings required to bring the manuscript to final form and Avonelle Jacobson for transforming much of the original illegible draft into typescript.

WAYNE A. FULLER

Ames, Iowa
February 1976

Contents

1 INTRODUCTION	
1.1 Probability Spaces	1
1.2 Time Series	1
1.3 Examples of Stochastic Processes	1
1.4 Properties of the Autocovariance and Autocorrelation Functions	1
1.5 Complex Valued Time Series	10
1.6 Periodic Functions and Periodic Time Series	12
1.7 Vector Valued Time Series	14
2 MOVING AVERAGE AND AUTOREGRESSIVE PROCESSES	18
2.1 Moving Average Processes	18
2.2 Absolutely Summable Sequences and Infinite Moving Averages	21
2.3 An Introduction to Autoregressive Time Series	21
2.4 Difference Equations	24
2.5 The Second Order Autoregressive Time Series	27
2.6 Alternative Representations of Autoregressive and Moving Average Processes	30
2.7 Autoregressive Moving Average Time Series	66
2.8 Vector Processes	70
2.9 Prediction	75
3 INTRODUCTION TO FOURIER ANALYSIS	93
3.1 Systems of Orthogonal Functions—Fourier Coefficients	93
3.2 Complex Representation of Trigonometric Series	114

8 ESTIMATION FOR AUTOREGRESSIVE AND MOVING AVERAGE TIME SERIES	8
8.1 First Order Autoregressive Time Series	115
8.2 Higher Order Autoregressive Time Series	120
8.3 Moving Average Time Series	126
8.4 Autoregressive Moving Average Time Series	126
8.5 Nonstationary Autoregressive Time Series	133
8.6 Prediction with Estimated Parameters	133
9 REGRESSION, TREND, AND SEASONALITY	9
9.1 Global Least Squares	139
9.2 Grafted Polynomials	153
9.3 Autocorrelations Estimated from the Least Squares Residuals	166
9.4 Moving Averages—Linear Filtering	179
9.5 Differences	179
9.6 Some Effects of Moving Average Operators	193
9.7 Regression with Time Series Errors	199
9.8 Regression Equations with Lagged Dependent Variables and Time Series Errors	201
BIBLIOGRAPHY	211
INDEX	220
6 ESTIMATION OF THE MEAN AND AUTOCORRELATIONS	230
6.1 Estimation of the Mean	230
6.2 Estimators of the Autocovariance and Autocorrelation Functions	236
6.3 Some Central Limit Theorems for Stationary Time Series	244
6.4 An Example	257
6.5 Estimation of the Cross Covariances	262
7 THE PERIODGRAM, ESTIMATED SPECTRUM	275
7.1 The Periodogram	275
7.2 Smoothing, Estimating the Spectrum	287
7.3 Examples	301
7.4 Multivariate Spectral Estimates	308

Bibliography

- Bartlett, M. S. (1955). *An Introduction to Stochastic Processes with Special Reference to Methods and Applications*. (Second Edition, 1966), Cambridge University Press, Cambridge.
- Basmann, R. L. (1957). A generalization of linear estimation of coefficients in a structural equation. *Econometrica* **25**, 77-83.
- Bellman, R. (1960). *Introduction to Matrix Analysis*. McGraw-Hill, New York.
- Berk, K. N. (1974). Consistent autoregressive spectral estimates. *Ann. Statist.* **2**, 489-502.
- Bernstein, S. (1927). Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. *Mathematische Annalen* **97**, 1-59.
- Birnbaum, Z. W. (1952). Numerical tabulation of the distribution of Kolmogorov's statistic for finite sample size. *J. Amer. Statist. Assoc.* **47**, 425-441.
- Blackman, R. B., and Tukey, J. W. (1959). *The Measurement of Power Spectra from the Point of View of Communications Engineering*. Dover Publications, Inc., New York.
- Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification. *Ann. Math. Statist.* **25**, 290-316.
- Box, G. E. P., and Jenkins, G. M. (1970). *Time Series Analysis Forecasting and Control*. Holden-Day, San Francisco.
- Box, G. E. P., and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *J. Amer. Statist. Assoc.* **65**, 1509-1526.
- Brillinger, D. R. (1975). *Time Series Data Analysis and Theory*. Holt, Rinehart and Winston, New York.
- Brown, R. G. (1962). *Smoothing, Forecasting and Prediction of Discrete Time Series*. Prentice-Hall, Englewood Cliffs, N.J.
- Burman, J. P. (1965). Moving seasonal adjustment of economic time series. *J. Roy. Statist. Soc. Ser. A* **128**, 534-558.
- Chernoff, H. (1956). Large sample theory: parametric case. *Ann. Math. Statist.* **27**, 1-22.
- Chung, K. L. (1968). *A Course in Probability Theory*. Harcourt, Brace and World, New York.
- Cleveland, W. S. (1971). Fitting time series models for prediction. *Techometrics* **13**, 713-723.
- Cochran, W. T. et al. (1967). What is the fast Fourier transform? *IEEE Transactions on Audio and Electroacoustics*, AU-**15**, No. 2, 45-55.
- Cochrane, D., and Orcutt, G. H. (1949). Application of least squares regression to relationships containing autocorrelated error terms. *J. Amer. Statist. Assoc.* **44**, 32-61.
- Coleby, J. W., Lewis, P. A. W., and Welch, P. D. (1967). Historical notes on the Fast Fourier Transform. *IEEE Transactions on Audio and Electroacoustics*, AU-**15**, No. 2, 76-79.
- Emerson, R. J., and S. Cyr, E. B. A. (1966). Short term employment functions in British manufacturing industry. *Review of Economic Studies* **33**, 179-207.
- Barrie, R. G. (1964). *The Elements of Real Analysis*. Wiley, New York.
- Emerson, M. S. (1946). On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process. *Ann. Math. Statist.* **17**, 1296-1303.
- Emerson, R. J., and S. Cyr, E. B. A. (1966). Short term employment functions in British manufacturing industry. *Review of Economic Studies* **33**, 179-207.
- Barrie, R. G. (1964). *The Elements of Real Analysis*. Wiley, New York.
- Emerson, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated time series. *Suppl. J. Roy. Statist. Soc.* **8**, 27-41.
- Emerson, M. S. (1950). Periodogram analysis and continuous spectra. *Biometrika* **37**, 1-16.

- Cox, D. R., and Miller, H. D. (1965). *The Theory of Stochastic Processes*. Wiley, New York.
- Cramér, H. (1940). On the theory of stationary random processes. *Annals of Mathematics* **41**, 215-230.
- Cramér, H. (1946). *Mathematical Methods of Statistics*. Princeton University Press, Princeton, N. J.
- Davis, H. T. (1941). *The Analysis of Economic Time Series*. Principia Press, Bloomington, Ind.
- DeGracie, J. S., and Fuller, W. A. (1972). Estimation of the slope and analysis of covariance when the concomitant variable is measured with error. *J. Amer. Statist. Assoc.* **67**, 930-937.
- Dhrymes, P. J. (1971). *Distributed Lags: Problems of Estimation and Formulation*. Holden-Day, San Francisco.
- Diananda, P. H. (1953). Some probability limit theorems with statistical applications. *Proc. Cambridge Philos. Soc.* **49**, 239-246.
- Dickey, D. A. (1975). Hypothesis testing for nonstationary time series. Unpublished manuscript, Iowa State University, Ames, Iowa.
- Draper, N. R., and Smith, H. (1966). *Applied Regression Analysis*. Wiley, New York.
- Durbin, J. (1959). Efficient estimation of parameters in moving-average models. *Biometrika* **46**, 306-316.
- Durbin, J. (1960). Estimation of parameters in time series regression models. *J. Roy. Statist. Soc. Ser. B* **22**, 139-153.
- Durbin, J. (1961). Efficient fitting of linear models for continuous stationary time series from discrete data. *Bull. Int. Statist. Inst.* **38**, 273-281.
- Durbin, J. (1962). Trend elimination by moving-average and variate-difference filters. *Bull. Int. Statist. Inst.* **39**, 131-141.
- Durbin, J. (1963). Trend elimination for the purpose of estimating seasonal and periodic components of time series. In *Proc. Symp. Time Series Anal. Brown University*. (Rosenblatt, M., Ed.), Wiley, New York.
- Durbin, J. (1967). Tests of serial independence based on the cumulated periodogram. *Bull. Int. Statist. Inst.* **42**, 1039-1049.
- Durbin, J. (1968). The probability that the sample distribution function lies between two parallel straight lines. *Ann. Math. Statist.* **39**, 398-411.
- Durbin, J. (1969). Tests for serial correlation in regression analysis based on the periodogram of least-squares residuals. *Biometrika* **56**, 1-15.
- Durbin, J., and Watson, G. S. (1950). Testing for serial correlation in least squares regression. I. *Biometrika* **37**, 409-428.
- Durbin, J., and Watson, G. S. (1951). Testing for serial correlation in least squares regression. II. *Biometrika* **38**, 159-178.
- Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. *Ann. Math. Statist.* **34**, 447-456.
- Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. *Proc. Fifth Berkeley Sympos. Math. Statist. and Probability*, 1 Statistics, 59-82. University of California Press, Berkeley.
- Eisenhart, C., Hastay, M. W., and Wallis, W. A. (1947). *Selected Techniques of Statistical Analysis*. McGraw-Hill, New York.
- Ezekiel, M., and Fox, K. A. (1959). *Methods of Correlation and Regression Analysis*. Wiley, New York.
- Feller, E. C. (1932). The distribution of the index in a normal bivariate population. *Biometrika* **24**, 428-440.
- Feller, E. C. (1954). Some problems in interval estimation. *J. Roy. Statist. Soc. Ser. B* **26**, 175-185.
- Finkbeiner, D. T. (1960). *Introduction to Matrices and Linear Transformations*. W. H. Freeman, San Francisco.
- Fisher, R. A. (1929). Tests of significance in harmonic analysis. *Proc. Roy. Soc. London Ser. A* **125**, 54-59.
- Fishman, G. S. (1969). *Spectral Methods in Econometrics*. Harvard University Press, Cambridge, Mass.
- Fuller, W. A. (1969). Grafted polynomials as approximating functions. *Australian J. of Agr. Econ.* **13**, 35-46.
- Fuller, W. A., and Martin, J. E. (1961). The effects of autocorrelated errors on the statistical estimation of distributed lag models. *J. Farm. Econ.* **43**, 71-82.
- Gallant, A. R. (1971). *Statistical Inference for Nonlinear Regression Models*. Ph.D. thesis, Iowa State University, Ames, Iowa.
- Gallant, A. R. (1975). Nonlinear regression. *The American Statistician* **29**, 73-81.
- Gallant, A. R., and Fuller, W. A. (1973). Fitting segmented polynomial regression models whose join points have to be estimated. *J. Amer. Statist. Assoc.* **68**, 144-147.
- Gnedenko, B. V. (1967). *The Theory of Probability*. (Translated by B. D. Seckler). Chelsea, New York.
- Goldberg, S. (1958). *Introduction to Difference Equations*. Wiley, New York.
- Granger, C. W., and Hatanaka, M. (1964). *Spectral Analysis of Economic Time Series*. Princeton University Press, Princeton, N. J.
- Grenander, U. (1954). On the estimation of regression coefficients in the case of an autocorrelated disturbance. *Ann. Math. Statist.* **25**, 252-272.
- Grenander, U. (1957). Modern trends in time series analysis. *Sankhyā* **18**, 149-158.
- Grenander, U., and Rosenblatt, M. (1957). *Statistical Analysis of Stationary Time Series*. Wiley, New York.
- Grether, D. M., and Nelove, M. (1970). Some properties of "Optimal" seasonal adjustment. *Econometrica* **38**, 682-703.
- Greville, T. N. E. (1969). *Theory and Applications of Spline Functions*. Academic Press, New York.

- Griliches, Z. (1957). Distributed lags: a survey. *Econometrica* **35**, 16-49.
- Grizzle, J. E., and Allen, D. M. (1969). Analysis of growth and dose response curves. *BiometRICS* **25**, 357-381.
- Hannan, E. J. (1958). The estimation of spectral density after trend removal. *J. Roy. Statist. Soc. Ser. B* **20**, 323-333.
- Hannan, E. J. (1960). *Time Series Analysis. Methods*. London.
- Hannan, E. J. (1961). A central limit theorem for systems of regressions. *Proc. Cambridge Phil. Soc.* **57**, 583-588.
- Hannan, E. J. (1963). The estimation of seasonal variation in economic time series. *J. Amer. Statist. Assoc.* **58**, 31-44.
- Hannan, E. J. (1969). A note on an exact test for trend and serial correlation. *Econometrica* **37**, 485-489.
- Hannan, E. J. (1970). *Multiple Time Series*. Wiley, New York.
- Hannan, E. J., and Heyde, C. C. (1972). On limit theorems for quadratic functions of discrete time series. *Ann. Math. Statist.* **43**, 2656-2666.
- Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953). *Sample Survey Methods and Theory, II*. Wiley, New York.
- Harris, B. (1967). *Spectral Analysis of Time Series*. Wiley, New York.
- Hart, B. I. (1942). Significance levels for the ratio of the mean square successive difference to the variance. *Ann. Math. Statist.* **13**, 445-447.
- Hartley, H. O. (1961). The Gauss-Newton method for the fitting of non-linear regression functions by least squares. *Technometrics* **3**, 269-280.
- Hartley, H. O., and Booker, A. (1965). Nonlinear least squares estimation. *Ann. Math. Statist.* **36**, 638-650.
- Hatanaka, M. (1973). On the existence and the approximation formulae for the moments of the k -class estimators. *The Economic Studies Quarterly*, **24**, 1-15.
- Hatanaka, M. (1974). An efficient two-step estimator for the dynamic adjustment model with autoregressive errors. *J. Econometrics* **2**, 199-220.
- Hildebrand, F. B. (1968). *Finite-Difference Equations and Simulations*. Prentice-Hall, Englewood Cliffs, N. J.
- Hildreth, C. (1969). Asymptotic distribution of maximum likelihood estimators in a linear model with autoregressive disturbances. *Ann. Math. Statist.* **40**, 583-594.
- Hoeffding, W., and Robbins, H. (1948). The central limit theorem for dependent random variables. *Duke Math. J.* **15**, 773-780.
- Jenkins, G. M. (1961). General considerations in the analysis of spectra. *Technometrics* **3**, 133-166.
- Jenkins, G. M., and Watts, D. G. (1968). *Spectral Analysis and its Application*. Holden-Day, San Francisco.
- Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. *Ann. Math. Statist.* **40**, 633-643.
- Johnson, J. D. (1972). *Estimation for Linear Models with Unknown Diagonal Covariance Matrix*. Unpublished Ph.D. thesis, Iowa State University, Ames, Iowa.

- Jorgenson, D. W. (1964). Minimum variance linear unbiased seasonal adjustment of economic time series. *J. Amer. Statist. Assoc.* **59**, 681-724.
- Kempthorne, O., and Folks, L. (1971). *Probability, Statistics and Data Analysis*. Iowa State University Press, Ames, Iowa.
- Kendall, M. G. (1954). Note on bias in the estimation of autocorrelation. *Biometrika* **41**, 403-404.
- Kendall, M. G., and Stuart, A. (1966). *The Advanced Theory of Statistics* **3**. Hafner, New York.
- Kendall, M. G., and Stuart, A. (1967). *The Advanced Theory of Statistics* **2**. Hafner, New York.
- Kendall, M. G., and Stuart, A. (1969). *The Advanced Theory of Statistics* **1**. Hafner, New York.
- Koopmans, L. H. (1974). *The Spectral Analysis of Time Series*. Academic Press, New York.
- Koopmans, T. (1942). Serial correlation and quadratic forms in normal variables. *Ann. Math. Statist.* **13**, 14-33.
- Kramer, K. H. (1963). Tables for constructing confidence limits on the multiple correlation coefficient. *J. Amer. Statist. Assoc.* **58**, 1082-1085.
- Lighthill, M. J. (1970). *Introduction to Fourier Analysis and Generalised Functions*. Cambridge University Press, Cambridge.
- Ljungqvist, N. (1963). Consistent estimation of distributed lags. *International Economic Review* **4**, 44-52.
- Loeve, M. (1963). *Probability Theory* (Third Edition). Van Nostrand, Princeton, N. J.
- Lomnicki, Z. A., and Zaremba, S. K. (1957). On estimating the spectral density function of a stochastic process. *J. Roy. Statist. Soc. Ser. B* **19**, 15-37.
- Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. *J. Amer. Statist. Assoc.* **58**, 993-1010.
- Macpherson, B. D. (1975). Empirical distribution of alternative estimators of moving average parameters. Unpublished research, University of Manitoba, Winnipeg, Canada.
- Malinvaud, E. (1970a). *Statistical Methods in Econometrics*. North-Holland, Amsterdam.
- Malinvaud, E. (1970b). The consistency of nonlinear regressions. *Ann. Math. Statist.* **41**, 956-969.
- Mann, H. B., and Wald, A. (1943a). On the statistical treatment of linear stochastic difference equations. *Econometrica* **11**, 173-220.
- Mann, H. B., and Wald, A. (1943b). On stochastic limit and order relationships. *Ann. Math. Statist.* **14**, 217-226.
- Mariott, F. H. C., and Pope, J. A. (1954). Bias in the estimation of autocorrelations. *Biometrika* **41**, 390-402.
- McClave, J. T. (1974). A comparison of moving average estimation procedures. *Comm. Statist.* **3**, 865-883.

- Müller, K. S. (1963). *Linear Differential Equations in the Real Domain*. W. W. Norton, New York.
- Müller, K. S. (1968). *Linear Difference Equations*. W. A. Benjamin, New York.
- Moran, P. A. P. (1947). Some theorems on time series I. *Biometrika* **34**, 281-291.
- Nelson, C. R. (1974). The first-order moving average process: identification, estimation and prediction. *J. Econometrics* **2**, 121-141.
- Neftci, M. (1964). Notes on Fourier series and analysis for economists. Multilith prepared under Grant NSF-GS-142 to Stanford University, Palo Alto, Calif.
- Neftci, M. (1964). Spectral analysis of seasonal adjustment procedures. *Econometrica* **32**, 241-286.
- Nicotis, D. F., Pagan, A. R., and Terrell, R. D. (1975). The estimation and use of models with moving average disturbance terms: a survey. *International Economic Review* **16**, 113-134.
- Noic, F. C. (1972). A bibliography of applications of techniques of spectral analysis to economic time series. Technical Report No. 66. Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, Calif.
- Olszak, R. A. (1967). Asymptotic properties of the periodogram of a discrete stationary process. *J. Appl. Prob.* **4**, 508-528.
- Orcutt, G. H., and Winokur, H. S. (1969). First order autoregression: inference, estimation and prediction. *Econometrica* **37**, 1-14.
- Olme, R. K., and Enochson, L. (1972). *Digital Time Series Analysis*. Wiley, New York.
- Parzen, E. (1957). On consistent estimates of the spectrum of a stationary time series. *Ann. Math. Statist.* **28**, 329-348.
- Parzen, E. (1958). Conditions that a stochastic process be ergodic. *Ann. Math. Statist.* **29**, 299-301.
- Parzen, E. (1961). Mathematical considerations in the estimation of spectra. *Technometrics* **3**, 167-190.
- Parzen, E. (1962). *Stochastic Processes*. Holden Day, San Francisco.
- Parzen, E. (1969). Multiple Time Series Modeling. In *Multivariate Analysis II* (Keshinraiah, P. R., Ed.). Academic Press, New York.
- Pierce, D. A. (1970a). A duality between autoregressive and moving average processes concerning their least squares parameter estimates. *Ann. Math. Statist.* **41**, 422-426.
- Pierce, D. A. (1970b). Rational distributed lag models with autoregressive-moving average errors. *Proceedings of the Business and Economics Statistics Section of the American Statistical Association*, 591-596.
- Pierce, D. A. (1971). Least squares estimation in the regression model with autoregressive-moving average errors. *Biometrika* **58**, 299-312.
- Pierce, D. A. (1972). Least squares estimation in dynamic-disturbance time series models. *Biometrika* **59**, 73-78.
- Poirier, D. J. (1973). Piecewise regression using cubic splines. *J. Amer. Statist. Assoc.* **68**, 515-524.
- Pratt, J. W. (1959). On a general concept of "in probability." *Ann. Math. Statist.* **30**, 549-558.
- Prest, A. R. (1949). Some experiments in demand analysis. *Review of Economics and Statistics* **31**, 33-49.
- Quenouille, M. H. (1957). *The Analysis of Multiple Time Series*. Hafner, New York.
- Rao, C. R. (1959). Some problems involving linear hypothesis in multivariate analysis. *Biometrika* **46**, 49-58.
- Rao, C. R. (1965a). *Linear Statistical Inference and its Applications*. Wiley, New York.
- Rao, C. R. (1965b). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. *Biometrika* **52**, 447-458.
- Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals. *Fifth Berkeley Symposium* **1**, 355-372.
- Rao, J. N. K., and Tinner, G. (1963). On the variate difference method. *Australian J. of Statist.* **5**, 106-116.
- Rao, M. M. (1961). Consistency and limit distributions of estimators of parameters in explosive stochastic difference equations. *Ann. Math. Statist.* **32**, 195-218.
- Reeves, J. E. (1972). The distribution of the maximum likelihood estimator of the parameter in the first-order autoregressive series. *Biometrika* **59**, 387-394.
- Rogosinski, W. (1959). *Fourier Series*. (Translated by H. Cohn and F. Steinhardt), Chelsea, New York.
- Rosenblatt, M. (1963). Proceedings of the Symposium on Time Series Analysis held at Brown University, June 11-14, 1962. Wiley, New York.
- Royden, H. L. (1963). *Real Analysis*. Macmillan, New York.
- Rubin, H. (1950). Consistency of maximum likelihood estimates in the explosive case. In *Statistical Inference in Dynamic Economic Models* (Koopmans, T. C., Ed.), Wiley, New York.
- Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. *Econometrica* **26**, 393-415.
- Sargan, J. D. (1959). The estimation of relationships with autocorrelated residuals by the use of instrumental variables. *J. Roy. Statist. Soc. Ser. B* **21**, 91-105.
- Scheffe, H. (1970). Multiple testing versus multiple estimation. Improper confidence sets: Estimation of directions and ratios. *Ann. Math. Statist.* **41**, 1-29.
- Scott, D. J. (1973). Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach. *Advances in Applied Probability* **5**, 119-137.

BIBLIOGRAPHY

- Siegelton, R. C. (1969). An algorithm for computing the mixed radix fast Fourier transform. *IEEE Transactions on Audio and Electroacoustics* **AL-17**, No. 2, 25-103.
- Stephenson, J. A., and Farr, H. T. (1972). Seasonal adjustment of economic data by application of the general linear statistical model. *J. Amer. Statist. Assoc.* **67**, 37-45.
- Stigler, B. P. (1974). Asymptotic properties of dynamic stochastic parameter estimates (III). *J. Multivariate Analysis* **4**, 351-381.
- Tee, H. (1961). *Economic Forecasts and Policy*. North-Holland, Amsterdam.
- Thompson, L. M. (1969). Weather and technology in the production of wheat in the United States. *J. of Soil and Water Conservation* **24**, No. 6: 219-224.
- Thompson, L. M. (1973). Cyclical weather patterns in the middle latitudes. *J. of Soil and Water Conservation* **28**, No. 2: 87-89.
- Tintner, G. (1940). *The Variate Difference Method*. Principia Press, Bloomington, Ind.
- Tintner, G. (1952). *Econometrics*. Wiley, New York.
- Toitsov, G. P. (1962). *Fourier Series*. (Translated by R. A. Silverman). Prentice-Hall, Englewood Cliffs, N.J.
- Tucker, H. G. (1967). *A Graduate Course in Probability*. Academic Press, New York.
- Tukey, J. W. (1961). Discussion, emphasizing the connection between analysis of variance and spectrum analysis. *Technometrics* **3**, 1-29.
- Vasquez, V. S. (1958). A useful convergence theorem. *Statistica* **20**, 221-222.
- Von Neumann, J. (1941). Distribution of ratio of the mean square successive difference to the variance. *Ann. Math. Statist.* **12**, 367-395.
- Von Neumann, J. (1942). A further remark concerning the distribution of the ratio of the mean square successive difference to the variance. *Ann. Math. Statist.* **13**, 86-88.
- Watson, G. (1968). On the distribution of some statistics useful in the analysis of nonstationary time series. *Ann. Math. Statist.* **39**, 1659-1662.
- Watson, A. M. (1961). Large-sample estimation of parameters for moving-average models. *Biometrika* **48**, 343-357.
- Watson, K. F. (1967). Lagged dependent variables and serially correlated errors: a reappraisal of three pass least squares. *Rev. Econ. Statist.* **49**, 555-567.
- Watson, K. F. (1972). Testing for fourth order autocorrelation in quarterly regression equations. *Econometrica* **40**, 617-638.
- Watson, G. S. (1955). Serial correlation in regression analysis I. *Biometrika* **42**, 227-241.
- Watson, G. S., and Hannan, E. J. (1956). Serial correlation in regression analysis II. *Econometrica* **23**, 436-445.
- White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. *Ann. Math. Statist.* **29**, 1188-1197.

BIBLIOGRAPHY

-217- 461

- Whittle, P. (1951). *Hypothesis Testing in Time Series Analysis*. Almqvist and Wiksell, Uppsala.
- Whittle, P. (1953). The analysis of multiple stationary time series. *J. Roy. Statist. Soc. Ser. B* **15**, 125-139.
- Whittle, P. (1963). *Prediction and Regulation by Linear Least-Square Methods*. Van Nostrand, Princeton, N. J.
- Wilks, S. S. (1962). *Mathematical Statistics*. Wiley, New York.
- Williams, E. J. (1959). *Regression Analysis*. Wiley, New York.
- Wold, H. O. A. (1938). *A Study in the Analysis of Stationary Time Series* (Second Edition, 1954). Almqvist and Wiksell, Uppsala.
- Wold, H. O. A. (1965). *Bibliography on Time Series and Stochastic Processes*. Oliver and Boyd Ltd., Edinburgh.
- Yaglom, A. M. (1962). *An Introduction to the Theory of Stationary Random Functions*. (Translated by R. A. Silverman). Prentice-Hall, Englewood Cliffs, N. J.
- Yule, G. U. (1927). On a method of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers. *Philos. Trans. Roy. Soc. London Ser. A* **226**, 267-298.
- Zygmund, A. (1959). *Trigonometric Series*. Cambridge University Press, Cambridge.

Statistical Forecasting

From the dawn of recorded history, and probably before, man has sought to forecast the future. Indeed, the ability to foresee the consequences of actions and events is one of the defining properties of 'mind'. Where the phenomenon being forecast was a purely physical one, such as the occurrence of midsummer's day or of an eclipse, man was able from very early times to obtain very accurate forecasts. Initially such forecasts were derived on a purely empirical basis. Methods were found that worked without any basic understanding as to why they worked. Later, as greater understanding of the phenomena developed theoretical models were developed which enabled forecasts to be obtained on a more reasoned basis. During the last century interest focused on a number of phenomena, such as economic variation and sunspot cycles, where

- (a) there were available series of observations taken over a period of time, called time-series, upon which forecasts could be based;
- (b) purely mathematical rules were found to be inadequate to describe the phenomena since they involved features of a chance nature.

Over the last fifty years approaches to this type of problem have been developed which seek to allow for the influence of chance and for the unknown complexity of these situations. Thus, forecasting methods were developed which were essentially statistical in nature. These were based on using statistical techniques to fit models of a wide variety of types to past time-series data and on forecasting the future from these models.

The aim of this book is to provide the reader with an understanding of the methods and practice of statistical forecasting. The structure of the book is based on the structure of the activities involved in the practice of statistical forecasting. Figure P.1 summarizes this structure.

Part I of the book provides a general introduction to some of the basic concepts and terms in statistical forecasting. Part II deals with the development of statistical forecasting methods applicable to each of a variety of different situations. The approach to classifying this part into chapters has been to classify the situations; e.g. one chapter considers

JOHN WILEY & SONS
Chichester · New York · Brisbane · Toronto

1347037

This interrelation between forecast and application is explored in Chapter 18.

The general aim of the book is to give a systematic account of the methods of statistical forecasting in common use and of the practical aspects of their use; consequently, the level of mathematics and statistics assumed of the reader has been kept to that which the writer's teaching experience suggests as appropriate to people whose interest is in obtaining forecasts for practical purposes. This is mainly limited to the basic ideas of statistics and the ability to follow simple algebraic arguments. Where more than this is used, the section is marked with an * and can be omitted without detriment to the understanding of later sections. Where certain ideas are used that might be unfamiliar to a significant proportion of readers, these are discussed in the appendices. Wherever possible, the discussion of each forecasting method is developed and illustrated by example in such a way that the reader may then be able to use the method himself. There are, however, a number of methods whose mathematical development has been regarded as beyond the scope of this book, but computer programs are commonly available for their use. The author's aim in these cases has therefore been to discuss and illustrate the basic concepts of the methods. Thus the reader should be able to use such computer programs with understanding of their principles though not of their technical details. A short list of relevant references which are referred to in the text are given at the end of each chapter.

Acknowledgements

I would like to express my thanks to the many people who have discussed forecasting problems with me over the years and those who have given me comments on early drafts of this book. In particular, I would like to thank N. Booth, O. Oliver, V. G. Gilchrist and also numerous students who have helped me develop suitable approaches to many of the topics in this book. Finally, I would like to thank the Social Science Research Council for their support of work on the analysis of forecasting methods that underlies, particularly, Chapter 15.

W. G. GILCHRIST

Figure P1 The structure of the book and of statistical forecasting

trending time series, another seasonally varying time series. We then consider the various methods that might be used in each situation. In practice there is considerably more to statistical forecasting than putting data into a formula to obtain a forecast. Part III deals with these further facets. In Chapter 13 we look at the data that is needed for forecasting, where it might come from and how it may be treated. Chapter 14 looks at ways in which the forecasting methods of Part II may be adapted to apply to a wider range of applications and to give a better quality of forecast. In Chapter 15 we examine a wide range of methods for analysing and comparing forecasting methods. Chapter 16 has the same basic aim, but is concerned more with the routine control of an operational forecasting system. In Chapter 17 we use some of the properties of forecasts, that might be identified using the methods of Chapters 15 and 16, to create even better forecasts. Always we seek to bear in mind that forecasts are produced for practical purposes that may influence the way we obtain and use our forecast in the first place.

Contents

Notations

xiii

PART I PRELIMINARIES

Chapter 1. An introduction to forecasting	3
1.1 Everybody forecasts	3
1.2 Methods of forecasting	4
1.3 The basis of forecasting	5
Chapter 2. Models	12
2.1 Scientific forecasting	12
2.2 Basic models	17
2.3 Models of global and local validity	19
2.4 Forecasting models and formulae	21
Chapter 3. Forecasting criteria	23
3.1 The need for criteria	23
3.2 Classification of criteria for testing forecasting formulae or data	25
3.3 Statistical features	29
3.4 Transient features	32
3.5 Steady-state features	32
3.6 Criteria for testing forecasting formulae on models	33
3.7 Study by simulation	36
Chapter 4. The constant mean model	41
4.1 The global constant mean model	41
4.2 The local constant mean model	48
PART II FORECASTING FOR SOME BASIC MODELS
Chapter 5. Linear trend models	58
5.1 The global linear trend model	58
5.2 The local linear trend model	63
5.3 Polynomial models	75
Chapter 6. Regression models	77
6.1 Introduction	77
6.2 Fitting regression models	79
6.3 Selecting the variables	83
6.4 Econometric models	88
6.5 Time as a regressor variable	90
Chapter 7. Stochastic models	93
7.1 Introduction	93
7.2 Forecasting and conditional expectation	100
7.3 Moving average processes	101
7.4 Autoregressive processes	105
7.5 Autoregressive — moving average models	107
7.6 Models involving stochastic and deterministic elements	111
Chapter 8. Seasonal models	115
8.1 Introductory concepts	115
8.2 Seasonal index methods	124
8.3 Fourier methods	139
8.4 Stochastic methods	147
8.5 Comparison of methods	148
Chapter 9. Growth curves	150
9.1 Models for growth curves	150
9.2 Fitting growth curves	156
9.3 Forecasting growth curves	160
Chapter 10. Probabilistic models	162
10.1 Introduction	162
10.2 Forecasting probabilities	162
10.3 State models	166
10.4 Forecasting criteria	170
10.5 Probability forecasting and decision making	172
Chapter 11. Multivariate models	174
11.1 Introduction	174
11.2 Generalizing exponential smoothing	175
11.3 Multivariate stochastic models	176

Chapter 12. Forecasting methods and models	179	xii
12.1 Forecasting methods	179	
12.2 Model building and identification	179	
12.3 Model testing	183	
12.4 The use of judgement	188	
PART III THE FORECASTING PROCESS		
Chapter 13. Data	193	
13.1 Introduction	193	
13.2 Sources of data	193	
13.3 The quality of data	195	
13.4 The adjustment of data	196	
Chapter 14. Adaptive methods and other extensions	203	
14.1 Introduction	203	
14.2 Adaptive methods	203	
14.3 Extensions to recurrence methods	206	
14.4 Extensions to the error correction method — Kalman filters	209	
14.5 Linear forecasting formulae	213	
14.6 Using mixed methods	216	
Index	305	
Chapter 15. The analysis and comparison of methods	220	
15.1 Introduction	220	
15.2 Forecast analysis	221	
15.3 Choosing forecasting parameters	237	
15.4 Comparison of methods	240	
15.5 Prediction intervals	241	
15.6 Sensitivity analysis	243	
Chapter 16. Forecast control	246	
16.1 Quality control in forecasting	246	
16.2 Tracking signals for bias	248	
16.3 Cumulative sum methods	252	
16.4 A tracking signal for autocorrelation	254	
Chapter 17. Two-stage forecasting	256	
17.1 Introduction	256	
17.2 The use of forecast errors	258	
17.3 The use of external forecasting information	264	
17.4 Combining forecasts	266	
17.5 The use of cost and other criteria	268	

Dynamic Stochastic Models from Empirical Data

The construction of stochastic dynamic models from empirical time series is practiced in a variety of disciplines, including engineering, ecology, and applied statistics, with specific forecasting aims. However, there have been few systematic expositions of the major problems facing model builders: determination of the plausible classes of models for the given time series by inspection of the series and examination of its characteristics, detailed comparison of the various classes of models, the role and methods of model validation, etc. Of course, there have been a number of books discussing some techniques for developing models for time series data, as mentioned in the text.

The central problems in model building are, in our view, the choice of the appropriate class of models and the validation or checking for adequacy of the best fitting models from the selected class. Even though optimal parameter estimation methods are used, the performance of the best fitting model from an inappropriate class of models may be poor in comparison with the performance of the corresponding member of the appropriate class. Moreover, detailed validation tests bring out the limitations of the selected class and may suggest a more appropriate class, if one exists. In earlier expositions of the subject, the class comparison and validation problem, if considered at all, was discussed entirely in terms of the classical theory of hypothesis testing and other similar decision theoretic methods. The comparison of many important classes of models can be demonstrated to be beyond the scope of the theory of hypothesis testing because of the difficulty in finding the probability distribution of the test statistic. Furthermore, a validation program in which only the residuals are tested by using the methods of hypothesis testing is often inconclusive. Thus the development of various approaches to comparison of different classes and subsequent validation of the final models are the major themes of this book. In addition, relatively standard topics such as parameter estimation methods and estimability are covered in some detail.

The validity of the methodology developed in the text is demonstrated by presenting detailed case studies of model development for about 15 univariate and multivariate time series. In these case studies, all the important numerical details of parameter estimation, class selection, and validation are included. The rainfall and riverflow series, the animal population series, the U.S. population series, and sales figures of a certain company are some of the data sets treated here. The potential application of the model for forecasting, generation of synthetic data, and verification of certain causal hypotheses about environmental processes is discussed at some length. In particular, stochastic models are

R. L. Kashyap
*School of Electrical Engineering
Purdue University
West Lafayette, Indiana*

A. Ramachandra Rao

*School of Civil Engineering
Purdue University
West Lafayette, Indiana*

Preface

demonstrated to be superior to deterministic models even though the latter are popular.

The plan of the book is as follows: Chapter I is an introduction. Chapter II contains a brief discussion of a number of topics, such as prediction and other prerequisite materials that will be needed in later chapters. Chapter III is a qualitative discussion of the dominant features of time series obeying various schema for models, including autoregressive moving average (ARMA) models, integrated ARMA models, covariance stationary models, etc., with suggested guidelines for choice of the possible classes of models for any given series. Chapters IV and V deal with the problem of model multiplicity and estimability, i.e., the conditions needed on a class of models to ensure that there is at most one model in the class for the given series. Chapters VI and VII deal with various parameter estimation methods and the corresponding tradeoff involved between estimation accuracy and computational complexity. Chapters VIII and IX deal with methods of comparison of the various classes of models and with validation of the chosen model. Case studies of modeling are discussed in Chapters X and XI.

This book, developed from our teaching and research at Purdue University for the past four years on the topic of system identification, has been designed to be used by practicing engineers, ecologists, and applied statisticians interested in constructing models and by graduate students as a textbook in a course on time series analysis or system identification. The readers of the book are assumed to have some knowledge, albeit elementary, of statistics and random processes; otherwise it is self-contained. Some of the more complicated derivations are postponed to appendices so that the text reads smoothly. This book has been used as a textbook for a one-semester first-year graduate course with Chapter V and parts of Chapter VII omitted.

In writing a book on a subject that is being actively investigated, we can performe describe only a few of the various methods proposed for estimation and model comparison. Our guideline in this selection has been the availability of empirical support of the methods. It is entirely possible that a number of methods that may have been successful in practice are not included here. We take comfort from the Bhagavad Gita, "All actions are tainted with some blemish."

Preface	xii
Acknowledgments	xiii
Notation and Symbols	xv
I INTRODUCTION TO THE CONSTRUCTION OF MODELS	
1a. Nature and Goals of Modeling	2
1b. Description of Models	4
1c. Choice of a Model for the Given Data	7
1d. Validation	8
Notes	10
II PRELIMINARY ANALYSIS OF STOCHASTIC DYNAMICAL SYSTEMS	
Introduction	11
2a. Assumptions and Discussion	11
2b. Stationarity	12
2c. Invertibility	14
2d. Covariance Functions and Correlograms	15
2e. Spectral Analysis	20
2f. Prediction	23
2g. Prediction in Multiplicative Systems	27
2h. Prediction in Systems with Noisy Observations	29
2i. Rescaled Range-Lag Characteristic	31
2j. Fractional Noise Models	36
2k. Conclusions	39
Appendix 2.1. Characteristics of Fractional Noise Models Problems	39
III STRUCTURE OF UNIVARIATE MODELS	
Introduction	42
3a. Types of Dynamic Stochastic Models	44
3b. Types of Empirical Time Series	56
3c. Causality	63
3d. Choice of Time Scale for Modeling	64
3e. Conclusions	65
Notes	66
Problems	66

IV ESTIMABILITY IN SINGLE OUTPUT SYSTEMS

IV ESTIMABILITY IN SINGLE OUTPUT SYSTEMS	67
Introduction	68
4a. Estimability of Systems in Standard Form	75
4b. Estimability in Systems with Noisy Observations	77
4c. Estimability in Systems with AR Disturbances	78
4d. The Estimation Accuracy	85
4e. Conclusions	86
Appendix 4.1 Evaluation of the Chamer-Rao Matrix Lower Bound in Single Output Systems	91
Appendix 4.2 Evaluation of the Chamer-Rao Matrix Lower Bound Problems	92
V STRUCTURE AND ESTIMABILITY IN MULTIVARIATE SYSTEMS	93
Introduction	95
5a. Characterization	99
5b. The Triangular Canonical Forms	102
5c. Diagonal Canonical Forms	107
5d. Pseudocanonical Forms	108
5e. Discussion of the Three Canonical Forms	109
5f. Estimation Accuracy	111
5g. Conclusions	112
Appendix 5.1. Proofs of Theorems Problems	120
VI ESTIMATION IN AUTOREGRESSIVE PROCESSES	122
Introduction	123
6a. Maximum Likelihood Estimators	133
6b. Bayesian Estimators	133
6c. Quasi-Maximum Likelihood (QML) Estimators in Single Output Systems	137
6d. Computational Methods	139
6e. Combined Parameter Estimation and Prediction	142
6f. Systems with Slowly Varying Coefficients	147
6g. Robust Estimation in AR Models	149
6h. Conclusions	151
Appendix 6.1. Proofs of Theorems in Section 6a	151
Appendix 6.2. The Expressions for the Posterior Densities	155
Appendix 6.3. The Derivation of Computational Algorithms	156
Appendix 6.4. Evaluation of the Chamer-Rao Lower Bound in Multivariate AR Systems	158
Problems	159
VII PARAMETER ESTIMATION IN SYSTEMS WITH BOTH MOVING AVERAGE AND AUTOREGRESSIVE TERMS	160
Introduction	161
7a. Maximum Likelihood Estimators	165
7b. Numerical Methods for CML Estimation	171
7c. Limited Information Estimates	174
7d. Numerical Experiments with Estimation Methods	179
7e. Conclusions	179
VIII CLASS SELECTION AND VALIDATION OF UNIVARIATE MODELS	180
Introduction	181
8a. The Nature of the Selection Problem	182
8b. The Different Methods of Class Selection	183
8c. Validation of Fitted Models	191
8d. Discussion of Selection and Validation	194
8e. Conclusions	196
Appendix 8.1. Mean Square Prediction Error of Redundant Models Problems	216
IX CLASS SELECTION AND VALIDATION OF MULTIVARIATE MODELS	217
Introduction	219
9a. Nature of the Selection Problem	220
9b. Causality and the Construction of Preliminary Models	222
9c. Direct Comparison of Multivariate Classes of Models	227
9d. Validation of Models	232
9e. Conclusions	234
Appendix 9.1. Geometry of Correlation and Regression Notes Problems	235
X MODELING RIVER FLOWS	236
Introduction	238
10a. The Need and Scope of Modeling	239
10b. Discussion of Data	248
10c. Models for Monthly Flows	254
10d. Modeling Daily Flow Data	260
10e. Models for Annual Flow Data	281
10f. Conclusions	281
Notes	281
XI SOME ADDITIONAL CASE STUDIES IN MODEL BUILDING	283
Introduction	285
11a. Modeling Some Biological Populations	285
11b. Analysis of the Annual Sunspot Series	304
11c. The Sales Data of Company X: An Empirical Series with Both Growth and Systematic Oscillations	308
11d. The Time Series E2: Role of Moving Average Terms	312
11e. Causal Connection between Increases in Rainfall and Increased Urbanization	314
11f. A Multivariate Model for Groundwater Levels and Precipitation	318
11g. Conclusions	324
References	325
Index	331

- Some of the important references to the material used in the book are given here, although this list is not intended to be exhaustive. Wherever appropriate, we give a book or a review as a reference instead of the original paper so that additional references can be obtained from it.
- Akaike, H. (1972). Information Theory and an Extension of the Maximum Likelihood Principle. *Int. Symp. Informat. Theory U.S.S.R.*
- Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average models. *Biometrika* **60**, 255-265.
- Akaike, H. (1974). A new look at statistical model identification. *IEEE Trans. Autom. Contr. AC-19*, 716-722.
- Andel, J., and Balck, J. (1971). Analysis of periodicity in hydrological sequences. *J. Hydrol.* **14**, 66-82.
- Anderson, T. W. (1971). "The Statistical Analysis of Time Series." Wiley, New York.
- Andrews, D. F. et al. (1972). "Robust Estimates of Location." Princeton Univ. Press, Princeton, New Jersey.
- Astrom, K. J. (1967). On the achievable accuracy in identification problems. *IFAC Symp. Identification Automat. Contr. Syst. Preprint, Prague*.
- Astrom, K. J., Bohlin, T., and Wenmark, S. (1965). Automatic Construction of Linear Stochastic Dynamic Models for Stationary Industrial Processes. Tech. Rep. TR-18-150, IBM Nordic Lab.
- Bartlett, M. S. (1966). "An Introduction to Stochastic Processes." Cambridge Univ. Press, London and New York.
- Bartlett, M. S., and Rajakrishman, D. V. (1953). Goodness-of-fit tests for simultaneous autoregressive series. *J. Roy. Stat. Soc. (B)* **15**, 107.
- Burnbaum, A. (1969). Concepts of statistical evidence. In "Philosophy, Science and Method" (S. Morgenbesser et al.), St. Martin's Press, New York.
- Bohlin, T. (1971). On the problem of ambiguities in maximum likelihood identification. *Automatica* **7**, 199-210.
- Box, G. E. P., and Jenkins, G. M. (1970). "Time Series Analysis—Forecasting and Control." Holden-Day, San Francisco, California.
- Box, G. E. P., and MacGregor, J. F. (1972). The Analysis of Closed-Loop Dynamic Stochastic Systems. Dept. of Statistics, Univ. of Wisconsin, Tech. Rep. 309.
- Box, G. E. P., and Tiao, G. C. (1965). A change in level of a non-stationary time series. *Biometrika* **52**, 181-192.
- Box, G. E. P., and Tiao, G. C. (1973). "Bayesian Inference in Statistical Analysis." Addison Wesley, Reading, Massachusetts.
- Caines, P. E., and Chan, C. W. (1974). Feedback Between Stationary Stochastic Processes. *Contr. Syst. Rep. 7421*, Univ. of Toronto, Lectr. Eng. Dept.
- Caines, P. E., and Rissanen, J. (1974). Maximum likelihood estimation of parameters in multivariate Gaussian stochastic processes. *IEEE Trans. Inform. Theory IT-20*, 162-164.
- Chatfield, C., and Prothero, D. L. (1973). Box-Jenkins seasonal forecasting: Problems in a case study. *J. Roy. Statistical Soc. Ser. A* **136**, Part 3, 295-315 (with discussion).
- Chisholm, M., Frey, A. E., and Haggard, P. (eds.) (1971). "Regional Forecasting." Archon Books, Hamden, Conn.
- Chow, G. C. (1974). Identification and estimation in econometric systems: A survey. *IEEE Trans. Automat. Contr. AC-19*, 855-861.
- Chow, V. T. (1964). "Sequential Generation of Hydrologic Information." Sec. 8, Part IV, in "Handbook of Applied Hydrology." Ed. V. T. Chow, McGraw-Hill, New York, N.Y.
- Clarke, D. W. (1967). Generalized-least-square estimation of the parameters of a dynamic model. Presented at the IFAC Symp. Identification Autom. Contr. Syst. Prague.
- Clarke, R. D. (1973). "Mathematical Models in Hydrology." Irrigation and Drainage paper #19, F.A.O., Rome, Italy.
- Crawford, N. H., and Linsley, R. K. (1966). Digital Simulation in Hydrology: Stanford Watershed Model IV. Tech. Rep. No. 39, Dept. of Civil Eng., Stanford Univ., Stanford, California.
- Croxton, F. E., and Cowden, D. J. (1939). "Applied General Statistics," pp. 452-458. Prentice-Hall, Englewood Cliffs, New Jersey.
- Dhrymes, P. J. (1972). Simultaneous equations inference in econometrics. *IEEE Trans. Automat. Contr. AC-17*, 427-438.
- Duda, R. O., and Hart, P. E. (1973). "Pattern Classification and Scene Analysis." Wiley, New York.
- Durbin, J. (1959). Efficient estimation of parameters in moving average models. *Biometrika* **46**, 306-316.
- Dawdy, D. R., and Matyas, N. C. (1964). Statistical and Probability Analysis of Hydrologic Data, Sec. 8, Part III, In "Handbook of Applied Hydrology." Ed. V. T. Chow, McGraw-Hill, New York, N.Y. (1964).
- Elton, C. S., and Nicholson, M. (1942). The ten year cycle in the numbers of lynx. *J. Anim. Ecol.* **1**.
- Engle, R. F., and Ta-Chung Liu (1972). Effects of aggregation over time on dynamic characterization of an econometric model. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.), Columbia Univ. Press, New York.
- Eysenoff, P. (1974). "System Identification: Parameter and State Estimation." Wiley, New York.
- Feller, W. (1966). "An Introduction to Probability Theory and Its Applications," 2nd ed., Vol. 1. Wiley, New York.
- Fiering, M. B. (1967). "Streamflow Synthesis." Harvard Univ. Press, Cambridge, Massachusetts.
- Fiering, M. B., and Jackson, B. B. (1971). "Synthetic Stream Flows," Water Resources Monograph 1, Am. Geophys. Union, Washington, D.C.
- Fine, T. L. (1973). "Theories of Probability: An Examination of Foundations." Academic Press, New York.
- Finigan, B. M., and Rowe, I. H. (1974). Strongly consistent parameter estimation by the introduction of strong instrumental variables. *IEEE Trans. Automat. Contr. AC-19*, 825-830.
- Fisher, F. M. (1966). "The Identification Problem in Econometrics." McGraw-Hill, New York.
- Gertler, J., and Bayarri, C. (1974). "A recursive (online) maximum likelihood identification method." *IEEE Trans. Automat. Contr. AC-19*, 815-819.
- Gladyshev, E. G. (1961). Periodically correlated random sequences. *Sov. Math. 2*, 385-387.
- Goel, N. S., Maitra, S. C., and Montroll, E. W. (1971). On the volatile and other nonlinear models of interacting populations. *Rev. Mod. Phys.* **43**, Number 2, Part 1, 231-275.
- Goldschmidt, A. S. (1968). "Topics in Regression Analysis." Macmillan, New York.
- Granger, C. W. J. (1963). Economic processes involving feedback. *Inform. Contr.* **6**, 28-48.
- Gustafsson, I. (1972). Comparison of different methods for identification of industrial processes. *Automat. Contr. AC-19*, 127-142.

- Hannan, E. J. (1960). "Time Series Analysis." Methuen, London.
- Hannan, E. J. (1969). The identification of vector mixed autoregressive-moving average systems. *Biometrika* **56**, 223-235.
- Hannan, E. J. (1970). "Multiple Time Series." Wiley, New York.
- Hannan, E. J. (1971). The identification problem for multiple equation systems with moving average errors. *Econometrica* **39**, No. 5, 751-765.
- Hsu, T. C. (1975). On multistage least squares approach to system identification. *Proc. VI World Congress of IFAC*, Boston, Massachusetts.
- Huischmidt, M. M., and M. B. Herring (1966). "Simulation Techniques for Design of Water Resource Systems." Harvard University Press, Cambridge, Mass.
- Hurs, H. E., Black, R. P., and Sinaika, Y. M. (1965). "Long Term Storage: An Experimental Study." Constable, London.
- Jenkins, G. M., and Wallis, D. G. (1968). "Spectral Analysis and Its Applications." Holden-Day, San Francisco, California.
- Johnstone, J. (1963). "Econometric Methods." McGraw-Hill, New York.
- Kalaitzis, T. (1960). An innovations approach to least squares estimation—Part I. *IEEE Trans. Automat. Contr.* **AC-13**, 655-664.
- Kalman, R. E. (1963). New methods in Wiener filtering theory. *Proc. Symp. Eng. Appl. Random Functions*, (J. Bogdanov and F. Koza, eds.), Wiley, New York.
- Kashyap, R. L. (1970a). A new method of estimation in discrete linear systems. *IEEE Trans. Automat. Contr.* **AC-15**, 18-24.
- Kashyap, R. L. (1970b). Maximum likelihood identification of stochastic linear systems. *IEEE Trans. Automat. Contr.* **AC-15**, 25-34.
- Kashyap, R. L. (1971). Probability and uncertainty. *IEEE Trans. Inform. Theory*, 641-650.
- Kashyap, R. L. (1973). Validation of stochastic difference equation models for empirical time series. *Proc. IEEE Conf. Decision Contr.*, Miami.
- Kashyap, R. L., and Nasburg, R. E. (1974). Parameter estimation in multivariate stochastic difference equations. *IEEE Trans. Automat. Contr.* **AC-19**, 784-797.
- Kashyap, R. L., and Rao, A. R. (1973). Real time recursive prediction of river flows. *Automatica* **9**, 175-183.
- Kendall, M. G. (1971). Book review. *J. Roy. Statist. Soc. Ser. A* **134**, 450-453.
- Kendall, M. G. (1973). "Time Series." Hainer, New York.
- Kisei, C. C. (1969). "Time Series Analysis of Hydrologic Data." Advances in Hydroscience, ed. V. T. Chow, Vol. 5, Academic Press, New York, N.Y.
- Klein, L. R., and Evans, M. (1968). The Wharton Econometric Forecasting Model. Econ. Res. Unit, Univ. of Pennsylvania.
- Klemes, V. (1974). The Hurst phenomenon. A puzzle? *Water Resources Res.* **10**, 675-688.
- Landsberg, H. E. (1970). Man-made climate changes. *Science* **182**, 1265-1274.
- Lee, T. C., Judge, G. G., and Zellner, A. (1970). Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data. North-Holland Publ., Amsterdam.
- Leitmann, E. L. (1959). "Testing Statistical Hypothesis." Wiley, New York.
- Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H. (1958). "Hydrology for Engineers." McGraw-Hill, New York.
- Ljung, L., Gustavsson, I., and Soderstrom, T. (1974). Identification of linear multivariate system operating under linear feedback control. *IEEE Trans. Automat. Contr.* **AC-19**, 836-840.
- Lowry, W. P. (1971). The climate of cities. In "Man and the Ecosphere." Freeman, San Francisco, California.
- Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Jr., Marglin, S. A., Fair, G. M., (1962). "Design of Water Resource Systems." Harvard University Press, Cambridge, Mass.
- Mahnenaud, E. (1970). The consistency of nonlinear regressions. *Annals Math. Statist.* **41**, 956-969.
- Mandelbrot, B. B., and Wallis, J. R. (1968). Noah, Joseph, and operational hydrology. *Water Resource Res.* **4**, 900-918.
- Mandelbrot, B. B., and Wallis, J. R. (1969a). Computer experiments with fractional Gaussian noises: I. Averages and variances, 2. Rescaled ranges and spectra; 3. Mathematical appendix. *Water Resource Res.* **5**(1), 238-267.
- Mandelbrot, B. B., and Wallis, J. R. (1969b). Some long-run properties of geophysical records. *Water Resource Res.* **5**(2), 321-340.
- Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. *SIAM Rev.* **4**(10), 422-437.
- Mann, A. B., and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. *Econometrica* **11**, 173-220.
- Markel, J. D. (1972). Digital inverse filtering—a new tool for format trajectory estimation. *IEEE Trans. Audio Electroacoustics* **A-20**, 129-137.
- Mathews, W. H., Kellogg, W. N., and Robinson, G. D. (1971). "Man's Impact on the Climate." MIT Press, Cambridge, Massachusetts.
- Mayne, D. Q. (1968). Computational procedure for the minimal realization of transfer function matrices. *Proc. IEEE* **115**, 1363-1368.
- Medawar, P. B. (1969). "Induction and Intuition in Scientific Thought." Amer. Phil. Soc., Philadelphia, Pennsylvania.
- Mehra, R. K. (1971). On-line identification of linear dynamic systems with applications to Kalman filtering. *IEEE Trans. Automat. Contr.* **AC-16**, 12-21.
- Miller, R. B., and Bobkin, D. B. (1971). Endangered species: models and predictions. *Amer. Soc.* **62**, 172-181.
- Moumi, A. S. (1972). "Weather Forecasting as a Problem in Physics." MIT Press, Cambridge, Massachusetts.
- Montroll, E. W. (1968). In "Lectures in Theoretical Physics" (A. O. Barut and N. E. Brittin, eds.), vol. XA, Gordon and Breach, New York.
- Moran, P. A. P. (1953). The statistical analysis of the Canadian lynx cycle. *J. Anim. Ecol.* **22**, 163-173.
- Nasburg, R. L., and Kashyap, R. L. (1975). Robust parameter estimation in dynamical systems. *1975 Conf. Infomat. Sci. Syst.*, Johns Hopkins Univ., Baltimore, Maryland.
- Nelson, C. R. (1973). "Applied Time Series Analysis for Managerial Forecasting." Holden-Day, San Francisco, California.
- O'Connell, P. E. (1975). A simple stochastic modeling of Hurst's law. *Marin. Mater. Res.* **20**, vol. 1, IAHS Publ. 101 (Proc. of Warsaw Symp., 1971).
- Pandya, R. N. (1974). A class of bootstrap estimators and their relationship to the generalized 2 stage least squares. *IEEE Trans. Automat. Contr.* **AC-19**, 831-835.
- Panwala, N. (1969). An adaptive recursive least-square identification algorithm. *Proc. 1969 IEEE Symp. Adaptive Proc.*, Pennsylvania State Univ.
- Parzen, E. (1969). Multiple time series modeling. In "Multivariate Analysis II." Academic Press, New York.
- Parzen, E. (1974). Some recent advances in time series modeling. *IEEE Trans. Automat. Contr.* **AC-19**, 723-729.
- Peterson, J. T. (1969). "The Climate of the Cities, A Survey of Recent Literature." U.S. Dept. Health, Educ., Welfare, Nat. Air Pollut. Contr. Administration, Raleigh, North Carolina.
- Popov, V. M. (1969). Some properties of the control systems with irreducible matrix transfer functions. *In Lecture Notes in Math.*, 144, Springer Verlag, New York, pp. 169-185.
- Popper, K. R. (1934). "The Logic of Scientific Discovery." Harper, New York.
- Pratt, J. W., Radla, H., and Schlaifer, R. (1955). "Introduction to Statistical Decision Theory." McGraw-Hill, New York.
- Quenouille, M. H. (1957). "The Analysis of Multiple Time Series." Hafner, New York.

- Quimpo, R. G. (1967). Stochastic Model of Daily Riverflow Sequences. Hydrology Paper #18. Colorado State Univ., Fort Collins, Colorado.
- Rao, C. R. (1965). "Linear Statistical Inference." Wiley, New York.
- Rao, A. R., and Kashyap, R. L. (1973). Analysis, construction and validation of stochastic models for monthly river flows. Tech. Rep. CE-HYD-73-1, Purdue Univ.
- Rao, A. R., and Kashyap, R. L. (1974). Stochastic modeling of river flows. *IEEE Trans. Automat. Contr.* **A-19**, 271-281.
- Rao, A. R., and Rao, R. G. S. (1974). Analyses of the Effect of Urbanization on Rainfall Characteristics—I. Tech. Rep. No. 50, Water Resources Res. Center, Purdue Univ., W. Lafayette, Indiana.
- Rao, A. R., Rao, R. G. S., and Kashyap, R. L. (1975). "Stochastic Models for Ground Water Levels." Tech. Rep. 59, Water Resource Research Center, Purdue University, W. Lafayette, Ind.
- Rosenbrock, H. H. (1970). "State Space and Multivariate Theory." Wiley, New York.
- Rozanov, Yu. A. (1967). "Stationary Random Processes." Holden-Day, San Francisco, California.
- Savage, L. J. (1962). The foundations of statistical inference. Methuen, London.
- Sereiniger, A. E. (1970). Stochastic models in hydrology. *Water Resource Rev.* **6**, 733-755.
- Singer, K. P., and Lonnquist, C. G. 1974. Two-distribution methods for modeling and sequential generation of monthly stream flows. *Water Resource Rev.* **10**, 763-773.
- Sims, G. A. (1972). Money, income, and causality. *Amer. Econ. Rev.* **62**, 549-552.
- Sturzky, E. (1927). The summation of random causes as the source of cyclic processes. Reprinted in *Econometrica* **5**, 105.
- Soderstrom, T. (1972). On the Convergence Properties of the Generalized Least Square Identification Method. Div. Automat. Contr. Lund Inst. Technol., Lund, Sweden, Rep. 72:2E.
- Soderstrom, T. (1973). An On-Line Algorithm for Approximate Maximum Likelihood Identification of Linear Dynamic Systems. Div. Automat. Contr. Lund Inst. Technol., Lund, Sweden, Rep. 73:08.
- Statistical Abstract of the U.S. (1974). U.S. Dept. of Commerce, Social and Economic Statistics Administration, Bur. of the Census, Washington, D.C.
- Swami, P. A. V. B. (1971). "Statistical Inference in Random Coefficient Regression Models." Springer-Verlag, Berlin.
- Tao, P.-C., Rao, A. R., and Rukovich, C. (1975). Stochastic forecasting models of reservoir inflows for daily operation—Parts I and II. Tech. Rep. CEHYD-75-8, School of CE, Purdue.
- Tatarski, V. I. (1961). "Wave Propagation in a Turbulent Medium." McGraw-Hill, New York.
- Tessens, R. (1972). "Prediction by Multiplicative Models." Netheland Univ. Press, Amsterdam.
- Thorntas, H. A., and Fiering, M. B. (1962). Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. In "Design of Water Resources Systems" A. Maass et al., eds., pp. 479-493. Harvard University Press, Cambridge, Massachusetts.
- Toobman, S. (1957). "Foresight and Understanding: An Enquiry into the Affairs of Science." Harper, New York.
- UNESCO (1971). "Discharge of the Selected Rivers of the World." Vol. II. UNESCO, Paris.
- USGS, U.S. Geological Survey. "Water Supply papers" (misc. volumes), Dept. of the Interior, Washington, D.C.
- U.S. Weather Bureau, "Climatological Data," (Miscellaneous volumes), U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Washington, D.C.
- Vansteenkiste, G. C. (ed.) (1975). "Computer Simulation of Water Resource Systems." North Holland, Amsterdam.
- Van Den Boom, A. J. W., and Van Den Enden, A. W. M. (1974). The determination of the orders of process and noise dynamics. *Automat.* **10**, 245-250.
- Waldmeier, M. (1961). "Sunspot Activity in the Years 1610-1960." Zurich, Switzerland and Co.
- Walker, A. M. (1962). Large sample estimation of parameters for autoregressive processes with moving average residuals. *Biometrika* **49**, 117-131.
- Whittle, P. (1951). "Hypothesis Testing in Time Series Analysis." Almqvist and Wiksell, Upsala.
- Whittle, P. (1952). Tests of fit in time series. *Biomatrika* **39**, 309-318.
- Whittle, P. (1954). Statistical investigation of sunspot observations. *Ast. Phys. J.* **120**, 251-260.
- Whittle, P. (1974). A self tuning predictor. *IEEE Trans. Automat. Contr.* **AC-19**, 848-851.
- Wittenmark, B. (1974). A self tuning predictor. *IEEE Trans. Automat. Contr.* **AC-19**, 848-851.
- W. M. O. (1970). "Urban Climates." Proc. of the WMO Symposium on Urban Climates and Building Technology, held at Brussels, Oct. 1968, WMO-No. 254, T.P. 141, Geneva, Switzerland.
- Wold, H. (1954). Causality and econometrics. *Econometrica* **22**, 162-177.
- Wold, H. (1965). "Bibliography on Time Series and Stochastic Processes." Oliver and Boyd, Edinburgh.
- Wolovich, W. A. (1974). "Linear Multivariable Systems." Springer-Verlag, New York.
- Wong, K. Y., and Polak, E. (1967). Identification of linear discrete time systems using the instrumental variable method. *IEEE Trans. Automat. Contr.* **AC-12**, 707-718.
- Wonnacott, R. J., and Wonnacott, T. H. (1970). "Econometrics." Wiley, New York.
- Yaglom, A. M. (1958). Correlation theory of processes with stationary random increments of order n. *Amer. Math. Soc. Transl. Ser. 2* **8**.
- Yaglom, A. M. (1967). Outline of some topics in linear extrapolation of stationary random processes. *Proc. Berkeley Symp. Math. Statist. Probab.* **5**, Univ. of California, Berkeley, California.
- Yevjevich, V. (1972). "Stochastic Processes in Hydrology." Water Resources Publ., Fort Collins, Colorado.
- Young, P. C. (1970). An instrument variable method for real-time identification of a noisy process. *Automatica* **6**, 271-287.
- Yule, G. U. (1927). On the method of investigating periodicities in disturbed series with special reference to Wolter's sunspot numbers. *Phil. Trans. A* **226**, 267.
- Zellner, A. (1971). "An Introduction to Bayesian Inference in Econometrics." Wiley, New York.

SYSTEM IDENTIFICATION

Advances and Case Studies

edited by

Raman K. Mehra

*Division of Engineering and Applied Physics
Harvard University*

*Scientific Systems, Inc.
Cambridge, Massachusetts*

Dimitri G. Lainiotis

*Department of Electrical Engineering
State University of New York
Buffalo, New York*

The field of system identification and time series analysis is currently in a state of rapid development. Significant contributions have been made in the past few years by researchers from such diverse fields as statistics, control theory, system theory, econometrics, and information theory. The specialized jargon of each field, geographic isolation of researchers, and the difficulty of working on what Wiener called "cracks between disciplines" has hampered a rich cross fertilization of ideas among different specialties. The purpose of this book is to promote this activity by presenting in one volume promising new approaches and results in the field of system identification, approaches and results that are not easily available elsewhere.

The idea of putting together the current volume originated from this editor's experience with a special issue of the IEEE Transactions on Automatic Control (December 1974). The limitations on the length of the journal papers made it very difficult for authors to expand fully on their ideas. Furthermore, significant new developments took place which deserved widespread exposure. The effort turned out to be truly international in character with contributions from seven different countries. The authors were invited to write chapters on their current fields of interest, making their presentations self contained and summarizing the state of art in their subject areas. To achieve depth and completeness in their presentations, the authors have assumed on the part of readers a basic background in statistical estimation and time series analysis, equivalent to that contained in texts such as Jenkins and Watts,¹ Box and Jenkins,² Grupe,³ Sage and Melsa,⁴ Eskhoff,⁵ Schweihe,⁶ and Astrom.⁷ Following Box and Jenkins,¹ the four steps in system identification are shown schematically in Fig. 1. The chapters in this book are organized accordingly under the following headings: (1) model structure determination, (2) parameter estimation, (3) experimental design, (4) special topics, and (5) case studies.

Academic Press New York San Francisco London 1976
A Subsidiary of Harcourt Brace Jovanovich, Publishers

Fig. 1. Steps in System Identification

A brief description of each chapter is given below.

In Chapter I, Faurre introduces the linear Markovian representation of a time series and discusses the problem of obtaining a whole class of representations from the covariance function. He points out the importance of two special Markovian representations, one of which corresponds to the minimum variance Kalman filter for the process. Akaike, in Chapter II, further expands on this representation and discusses in detail his elegant method for determining the structure of this representation from noisy input-output data. For model order determination, Akaike uses an information criterion and illustrates his method with a number of interesting examples. Akaike's procedure is easy to implement and constitutes a major contribution to the analysis of multiple time series. It is interesting to note that a solution to this long-standing problem in time series analysis requires use of concepts from modern control and system theory, such as canonical forms and state vector models. Chapter III by Rissanen develops a new criterion for mode structure determination based on the information-theoretic concept of entropy. These concepts are likely to play an increasingly important role in future developments of the system identification.

Chapters IV and V by Ljung and Narendra respectively consider the problem of consistent and stable estimation of parameters in adaptive closed loop systems. Ljung presents new methods for proving consistency and shows that the prediction error minimization method is consistent under very weak conditions. Narendra discusses on-line estimation of parameters using a model reference approach, and Ljapunov's direct method. The effectiveness of this method is demonstrated by numerous examples and extensive simulation results.

Chapters VI and VII by Mehra and Goodwin and Payne respectively present new results on the choice of inputs and sampling rates. In practice, the success of system identification is often dependent on these two factors, which are generally chosen on an ad hoc basis for convenience in experimentation. A study of these two chapters reveals that methods are now available for computing both optimal and good suboptimal experimental designs for system identification.

The special topics discussed in Chapters VIII, IX, and X by Attasi, Caines and Char, and Robinson respectively pertain to the identification and estimation of doubly indexed time series (or random fields), feedback systems and continuous time systems. Attasi presents a new state vector model for discrete random fields, such as those encountered in image processing and gravity modeling, and develops a complete theory of stochastic realization and recursive estimation for these models. The parallels between his theory and that discussed by Faurre in Chapter I are remarkable considering the fact that causality does not hold in the case considered by Attasi. A special feature of Attasi's model for random fields is that vector white noise inputs are used to obtain a recursive structure for the model, and for the statistical smoother. In Chapter IX, Caines and Chan present a thorough rigorous discussion of feedback and the identification of closed loop systems. They also present results from applications in the areas of economics, power systems, and physiology. In Chapter X, Robinson discusses the important problem of identifying a continuous time model using discrete or sample data. He considers the effect of "aliasing" on the cross-spectral method for obtaining both parameterized and unparameterized models for multiple time series. Robinson's chapter provides a very good balance to the rest of the book in that it contains clear exposition of the spectral methods, which do not receive their full share of attention in the other chapters.

The last two chapters of the book are devoted to case studies. Boblin (Chapter XI) presents four case studies relating to driver control in a paper mill, EEG signals with changing spectra, machine failure forecasting, and load forecasting in power systems. A unified procedure based on Gauss-Markov models for changing system parameters, Kalman filtering, and maximum likelihood estimation is used successfully in all four applications. The chapter contains important insights that the author has gained over the years through extensive experience with real data. In Chapter XII, Olsson presents a detailed and careful study relating to the modeling and identification of a nuclear reactor, a problem that is of great current interest for safety reasons. The chapter serves as a good example of the way a practical system has to be studied using different methods. The application of different techniques for system identification is not a luxury but a necessity when one is dealing with complex real-life systems that never fit neatly into any standard theoretical mold. Each technique properly applied gives some insight into the system and helps to reinforce the results obtained from other techniques.

The references at the end of each chapter constitute an extensive bibliography on the subject of system identification.

This volume would not have been possible without the full and dedicated participation of all the authors, to whom the editors are highly indebted. Special thanks are due to Mrs. Renate D' Arcangelo for typing most of the book in such a short period of time with partial help from Karin Young. The international scale of the effort required special coordination skills for which thanks are due to Marie Cedrone.

Finally, I would like to thank my wife, Anjoo, for her patience and understanding during long hours of work in preparing this volume.

Raman K. Mehra

References

1. G. M. Jenkins and D. G. Watts, *Spectral Analysis and its Applications*, Holden Day, San Francisco, 1968.
2. G. E. P. Box and G. M. Jenkins, *Time Series Analysis, Forecasting and Control*, Holden Day, San Francisco, 1976 (revised edition).
3. D. Grasie, *Identification of Systems*, Robert E. Krieger Pub Co., Huntington, New York, 1976.
4. A. P. Sage and J. L. Melsa, *System Identification*, Academic Press, New York, 1971.
5. P. E. Klopf, *System Identification, Parameter and State Estimation*, Wiley, New York, 1974.
6. F. Schweppe, *Uncertain Dynamic Systems*, Prentice Hall, Englewood Cliffs, New Jersey, 1973.
7. K. J. Åström, *Introduction to Stochastic Control Theory*, Academic Press, New York, 1970.

*Special Issue, System Identification and Time Series Analysis, IEEE Trans on Automatic Control, Dec. 1974.

CONTENTS

-230-

CONTENTS	CONTENTS
<i>List of Contributors</i>	349
<i>Preface</i>	351
MODEL STRUCTURE DETERMINATION	
STOCHASTIC REALIZATION ALGORITHMS	1
Pierre L. Faure	
CANONICAL CORRELATION ANALYSIS OF TIME SERIES AND THE USE OF AN INFORMATION CRITERION	27
Hirotugu Akaike	
MINIMAX ENTROPY ESTIMATION OF MODELS FOR VECTOR PROCESSES	97
J. Rissanen	
PARAMETER ESTIMATION	
ON THE CONSISTENCY OF PREDICTION ERROR IDENTIFICATION METHODS	121
Lennart Ljung	
STABLE IDENTIFICATION SCHEMES	165
Kumpati S. Narendra	
<i>EXPERIMENTAL DESIGN</i>	
SYNTHESIS OF OPTIMAL INPUTS FOR MULTINPUT- MULTIOUTPUT SYSTEMS WITH PROCESS NOISE	211
Part I: Frequency Domain Synthesis	
Part II: Time Domain Synthesis	
Raman K. Mehra	
CHOICE OF SAMPLING INTERVALS	251
G. C. Goodwin and R. L. Payne	
SPECIAL TOPICS	
MODELLING AND RECURSIVE ESTIMATION FOR DOUBLE INDEXED SEQUENCES	289
Salvator Atassi	

1165501
1165501

Forecasting and Time Series Analysis

Preface

DOUGLAS C. MONTGOMERY

Associate Professor of Industrial and Systems Engineering
Georgia Institute of Technology

LYNWOOD A. JOHNSON

Professor of Industrial and Systems Engineering
Georgia Institute of Technology

Statistical forecasting techniques are widely used in the management of production and inventory systems and have also found frequent application in a variety of other problem areas, including quality and process control, financial planning, marketing, investment analysis, and distribution planning. Despite the wide application of statistical forecasting techniques, there is not a text available that covers the range of short-term forecasting methods in an introductory fashion. We believe that this book serves that purpose and is suitable for both undergraduate students and professional practitioners who design forecasting systems.

This text has evolved from forecasting lectures in an undergraduate course in production and from a graduate course in forecasting at the Georgia Institute of Technology. We also benefited from experience in extension and continuing education activity and professional consulting in forecasting and production control.

The book can be used by readers with modest mathematical and statistical training, provided they skip some developments and take the associated results on faith. A reader familiar with calculus and introductory statistics can read the entire book. Certain sections and some chapters which have considerable mathematical content and which may be skipped without loss of continuity have been marked with an asterisk.

MCGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland
Dusseldorf Johannesburg Kuala Lumpur
London Mexico Montreal New Delhi
Panama Paris São Paulo Singapore
Sydney Tokyo Toronto

This book can be used in several ways. It contains exercises and examples and can serve as a text for a one-semester or one-quarter course or seminar on forecasting, such as is typically taught by departments of industrial engineering, management science, operations research, or business administration. Most of the widely used forecasting techniques are organized and presented in a manner that should make the book useful to professional practitioners who are developing and maintaining forecasting systems. The book also contains computer programs for several of the forecasting methods discussed.

The scope of the book is confined to short-term forecasting methods. Chapter 1 is an introductory discussion of the forecasting problem and of the methods and systems in general use today. This chapter also introduces terminology and notation used in the rest of the text. Chapter 2 discusses regression methods and introduces the moving average as a forecasting technique for certain simple time series structures. In Chap. 3 exponential smoothing methods are introduced. Single and double smoothing are presented, as well as the generalization to smoothing of order k for a polynomial of degree $k-1$. Direct smoothing of the coefficients in polynomial and transcendental models is described in Chap. 4. This chapter requires some knowledge of matrix algebra, and may be skipped by the reader. Chapter 5 presents both exponential smoothing methods for forecasting seasonal time series. Here results from Chap. 4 are used to develop efficient parameter updating procedures for trigonometric seasonal models. Chapter 6 discusses forecasting with time series models, with emphasis on the construction of prediction intervals. Methods for directly forecasting the percentiles of the probability distribution of the process are also described. The analysis of forecast errors and the use of tracking signals to monitor forecasting system performance are discussed in Chap. 7. Chapter 8 contains several procedures for automatic control of the smoothing constant. Chapter 9 presents the Box-Jenkins approach of time series modeling and forecasting. This chapter requires a more advanced statistical background than does the rest of the book. Finally, in Chap. 10 we discuss Bayesian methods for forecasting when little or no historical data are available.

Many individuals contributed to the completion of this book. We particularly thank L. E. Contreras and D. H. Vatz for their assistance in developing the computer programs in Appendix C, B. W. Schmeiser for providing Table A-4, and Professor J. A. White for supplying the data in Example 9-5. We are also indebted to Professor E. S. Pearson and the Biometrika Trustees, the editor of *AIEE Transactions*, the editor of *Operational Research Quarterly*, and The Ronald Press Company for permission to use copyrighted material. We thank Dr. R. N. Lehrer for providing resources in support of this project. Finally, we thank the several secretaries involved in typing this manuscript.

Contents

1. INTRODUCTION TO FORECASTING SYSTEMS	1
1.1 Nature and Uses of Forecasts	1
1.2 Defining the Forecasting Problem	3
1.3 Methods of Forecasting	7
1.4 Time Series Models	9
1.5 Performance Criteria	14
1.6 Considerations in System Design	15
1.7 Exercises	17
2. REGRESSION METHODS AND MOVING AVERAGES	19
2.1 Regression Methods in Time Series Analysis	19
2.2 Simple Moving Averages for a Constant Process	29
2.3 Moving Averages for a Linear Trend Process	34
2.4 Exercises	42
Appendix 2A: The Matrix Approach to Multiple Regression	44
3. EXPONENTIAL SMOOTHING METHODS	48
3.1 Exponential Smoothing for a Constant Process	48
3.2 Exponential Smoothing for a Linear Trend Process	56
3.3 Higher Order Smoothing	62
3.4 Choice of Smoothing Constant	67

Douglas C. Montgomery
Lynnwood A. Johnson
Atlanta, Georgia

3.5 Exercises 69
Appendix 3A. Development of Double Smoothing by Least-Squares Criterion 72

10.4 Evaluation of Bayesian Methods 257
10.5 Exercises 257

- 4. DISCOUNTED LEAST SQUARES AND DIRECT SMOOTHING** 75
- 4.1 Discounted Least Squares 76
 - 4.2 Shifting the Origin of Time 78
 - 4.3 Application to Polynomial Models 83
 - 4.4 Application to Transcendental Models 88
 - 4.5 Development of the Smoothing Vector 90
 - 4.6 Exercises 96

5. SMOOTHING MODELS FOR SEASONAL DATA

- 5.1 A Multiplicative Seasonal Model 99
- 5.2 An Additive Seasonal Model 108
- 5.3 Direct Smoothing Models 112
- 5.4 Exercises 123

6. FORECASTING

- 6.1 Period and Cumulative Forecasts 128
- 6.2 Variance of Forecast Errors 131
- 6.3 Prediction Intervals 143
- 6.4 Direct Estimation of Percentiles of the Demand Distribution 147
- 6.5 Exercises 150

7. ANALYSIS OF FORECAST ERRORS

- 7.1 Estimation of Expected Forecast Error 155
- 7.2 Estimation of Variances 157
- 7.3 Tracking Signal Tests 163
- 7.4 Initial Values 167
- 7.5 Screening of Observations 170
- 7.6 Exercises 171

8. ADAPTIVE-CONTROL FORECASTING METHODS

- 8.1 Single Parameter Methods 176
- 8.2 Methods for Several Smoothing Parameters 179
- 8.3 Exercises 186

9. THE BOX-JENKINS MODELS

- 9.1 A Class of Time Series Models 189
- 9.2 Time Series Modeling 207
- 9.3 Forecasting 221
- 9.4 Seasonal Processes 229
- 9.5 A Critique of the Box-Jenkins Models 235
- 9.6 Exercises 237

10. BAYESIAN METHODS IN FORECASTING

- 10.1 Bayesian Estimation 241
- 10.2 Constant Process 243
- 10.3 General Time Series Models 247

10.4 Evaluation of Bayesian Methods 257
10.5 Exercises 257

APPENDIX A. STATISTICAL TABLES

- A-1 Distribution Function and Ordinates of the Standard Normal Density 262
- A-2 Percentage Points of the Chi-Square Distribution 266
- A-3 Percentage Points of the F-Distribution 267
- A-4 Random Normal Numbers 268

APPENDIX B. COLLECTION OF TIME SERIES FOR EXERCISES

- B-1 Demand for a Double-Knit Polyester Fabric 269
- B-2 Weekly Sales of a Cutting Tool 270
- B-3 Minutes of Usage Per Day for a Computer Terminal 270
- B-4 Weekly Demand for Crankshaft Bearings 271
- B-5 Monthly Demand for a Spare Part 271
- B-6 Chemical Process Temperature Readings 272
- B-7 Monthly Sales of a 32-oz Soft Drink 272
- B-8 Monthly Demand for Carpet 272
- B-9 Monthly Champagne Sales 273
- B-10 Yearly Weller Sunspot Numbers 274
- B-11 Reported Cases of Rubella by Two-Week Periods 275
- B-12 Monthly Demand for a Plastic Container 275

APPENDIX C. COMPUTER PROGRAMS

- C-1 Multiple Exponential Smoothing 276
- C-2 Winter's Method 287

References

297

Index

301

References

222 References

1. Bamber, D. J., "A Versatile Family of Forecasting Systems," *Operational Research Quarterly*, vol. 20, pp. 111-121, April, 1969.
2. Bartlett, M. S., "On the Theoretical Specification of Sampling Properties of Autocorrelated Time Series," *Journal of the Royal Statistical Society, ser. B*, vol. 8, 1946.
3. Boxons, J., "The Effects of Parameter Misspecification and Non-stationarity on the Applicability of Adaptive Forecasts," *Management Science*, vol. 12, no. 9, pp. 659-669, 1966.
4. Box, G. H., and G. J. Lieberman, *Engineering Statistics*, 2d ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.
5. Box, G. E. P., and N. R. Draper, *Evolutionary Operation: A Method for Increasing Industrial Productivity*, John Wiley & Sons, Inc., New York, 1969.
6. Box, G. E. P., and G. M. Jenkins, *Time Series Analysis, Forecasting, and Control*, Holden-Day, Inc., San Francisco, 1970.
7. Box, G. E. P., and D. A. Pierce, "Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models," *Journal of the American Statistical Association*, vol. 64, 1970.
8. Brown, R. G., *Statistical Forecasting for Inventory Control*, McGraw-Hill Book Company, New York, 1959.
9. Brown, R. G., *Smoothing, Forecasting and Prediction of Discrete Time Series*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.
10. Brown, R. G., *Decision Rules for Inventory Management*, Holt, Rinehart and Winston, Inc., New York, 1967.
11. Brown, R. G., and R. F. Meyer, "The Fundamental Theorem of Exponential Smoothing," *Operations Research*, vol. 9, no. 6, pp. 673-685, 1960.
12. Carter, R. F., "A Bayesian Approach to Seasonal Style Goods Forecasting," unpublished M.S. thesis, Georgia Institute of Technology, Atlanta, 1971.
13. Chambers, J. C., S. K. Mullick, and D. D. Smith, "How to Choose the Right Forecasting Technique," *Harvard Business Review*, vol. 65, no. 4, pp. 45-74, 1971.
14. Chen, G. K. C., and P. R. Winters, "Forecasting Peak Demand for an Electric Utility with a Hybrid Exponential Model," *Management Science*, vol. 12, no. 12, pp. 531-537, 1966.
15. Chow, W. M., "Adaptive Control of the Exponential Smoothing Constant," *Journal of Industrial Engineering*, vol. 16, no. 5, pp. 314-317, 1965.
16. Cogger, K. O., "The Optimality of General-Order Exponential Smoothing," *Operations Research*, vol. 22, no. 4, pp. 858-867, 1974.
17. Cohen, G. D., "Bayesian Adjustment of Sales Forecasts in Multi-item Inventory Control Systems," *Journal of Industrial Engineering*, vol. 17, no. 9, pp. 474-479, 1966.
18. Cox, D. R., "Prediction by Exponentially Weighted Moving Averages and Related Methods," *Journal of the Royal Statistical Society, ser. B*, vol. 23, no. 2, pp. 414-422, 1961.
19. Crane, D. B., and J. R. Croft, "A Two-Stage Forecasting Model: Exponential Smoothing and Multiple Regression," *Management Science*, vol. 13, no. 8, pp. 501-507, 1967.
20. Davenport, W. B., and W. L. Root, *An Introduction to the Theory of Random Signals and Noise*, McGraw-Hill Book Company, New York, 1958.
21. DeSopo, D. A., "A Note on Forecasting by the Exponential Smoothing Operator," *Operations Research*, vol. 9, no. 2, pp. 686-687, 1961.
22. Dobie, J. M., "Forecasting Periodic Trends by Exponential Smoothing," *Operations Research*, vol. 11, no. 6, pp. 905-918, 1963.
23. Draper, N. R., and H. Smith, *Applied Regression Analysis*, John Wiley & Sons, Inc., New York, 1966.
24. Durbin, J., "The Future of Time Series Models," *Proceedings of the International Institute of Statistics*, vol. 2, 1960.
25. Geman, M. L., "A Note on the Use of Exponential Smoothing for Forecasting," *Operations Research*, vol. 4, pp. 422-426, 1956.
26. Greenander, R., and J. R. Reiterman, *Statistical Decision Functions for Stochastic Processes*, John Wiley & Sons, Inc., New York, 1957.
27. Gray, D. M., J. L. Ray, "A General Report on Current Statistical Methods in Operations Research," *Journal of the American Statistical Association*, vol. 51, no. 275, 1956.
28. Graybill, F. A., S. E. Webb, et al., *Decision Behavior*, Prentice-Hall, Inc., 2d ed., John Wiley & Sons, Inc., 1971.
29. Harvey, L. R., "Decision-Theoretic Approaches to Deciding When to Stop Standardized Forecasting Techniques in Stochastic Management Services," *Journal of Forecasting*, vol. 13, no. 2, pp. 65-69, 1994.
30. Hirschman, P. J., "Exponentially Smoothed Short- and Long-Term Sales Forecasts," *Management Science*, vol. 13, no. 11, pp. 821-832, 1967.
31. Johnson, P. J., and C. L. Davis, "The Use of Cumulative Sum (CUSUM) Techniques for the Control of Economic Forecasts of Product Demand," *Operations Research*, vol. 12, no. 2, pp. 321-333, p. 34.
32. Johnson, D. A., and K. H. Schmitz, "A Forecasting Method for Management of Seasonal Style Goods Inventories," *Operations Research*, vol. 17, no. 1, pp. 45-52, 1969.
33. Hicks, C. F., *Two-Dimensional Concepts in the Design of Experiments*, 2d ed., Holt, Rinehart and Winston, Inc., New York, 1953.
34. Hines, W. W., and D. C. Montgomery, *Principles and Practice in Engineering and Management Science*, The Ronald Press Company, New York, 1972.
35. Jenkins, G. M., and G. C. Wiggins, *Specifying and Using Its Applications*, Holden-Day, Inc., San Francisco, 1968.
36. Johnson, L. A., and D. C. Montgomery, *Operating Research Production Planning, Scheduling, and Inventory Control*, John Wiley & Sons, Inc., New York, 1974.
37. Kotzschmar, R. E., "A New Approach to Linear Filtering and Prediction Problems," *Journal of Basic Engineering*, vol. 82, 1960.
38. Kirby, R. M., "A Comparison of Shert and Median Pointless Forecasting Methods," *Marketing Science*, vol. 1, no. 2, pp. 129-136, 1982.
39. Minton, W. L., and J. C. Charnes, *University Press, Inc.*, New York, 1959.
40. Montgomery, D. C., "An Introduction to Short-Term Forecasting," *Journal of Industrial Forecasting*, vol. 10, no. 4, pp. 201-208, 1984.
41. Montgomery, D. C., *Managerial Forecasting*, McGraw-Hill, New York, 1976.
42. Montgomery, D. C., "Some Implications of the Prediction of Forecast Numbers," *Journal of the Royal Statistical Society, Ser. B*, vol. 10, pp. 153-160, 1972.
43. Montgomery, D. C., *Introduction to Statistical Quality Control and Prediction*, McGraw-Hill, New York, 1979.
44. Muth, R. F., "Optimal Properties of Exponential Smoothing," *Journal of the American Statistical Association*, vol. 55, pp. 292-302, 1960.
45. Nelson, C. R., *Applied Time Series Analysis*, Holt, Rinehart and Winston, Inc., New York, 1972.
46. Nelson, C. R., *Applied Time Series Analysis, Part II: Spectral Analysis*, Holt, Rinehart and Winston, Inc., New York, 1973.
47. Nelson, M. M., and S. Weiss, "On the Optimality of Adaptive Forecasting," *Management Science*, vol. 19, no. 2, pp. 175-223, 1973.
48. Nelson, S. M., and J. M. Weiss, "Optimal Forecasting with a Linear Trend Component," *Journal of the American Statistical Association*, vol. 55, pp. 306-313, 1960.
49. Peters, R., "A Note on the Determination of Optimal Forecasting Strategies," *Management Science*, vol. 16, no. 4, pp. 516-523, 1970.

51. Petrucci, M. S., and S. M. Wu, "Modeling of Continuous Stochastic Processes from Discrete Observations with Applications to Forecasting Data," *Journal of the American Statistical Association*, vol. 69, no. 345, pp. 325-329, 1974.
52. Petrucci, J. W., H. Rietz, and R. Schindler, *An Application to Statistical Decision Theory*, McGraw-Hill Book Company, 1955.
53. Quenouille, M. H., "Approximate Tests of Correlation in Time Series," *Journal of the Royal Statistical Society, ser. B*, vol. 11, 1952.
54. Raiffa, H., and R. Schlaifer, *Applied Statistical Decision Theory*, Harvard University Press, Cambridge, Mass., 1961.
55. Rabinovitz, S. D., and C. Reed, "The Development of a Self-Adaptive Forecasting Technique," *AMT Transactions*, Vol. 1, no. 4, pp. 344-342, 1969.
56. Sandoe, G., "Sales Forecasting with the 'A' of a Human Behavior Simulator," *Management Science*, vol. 13, no. 10, pp. 1553-1551, 1967.
57. Sandoe, H., and S. W. Berg, "Some Observations on Adaptive Forecasting," *Management Science*, Vol. 10, no. 2, pp. 195-206, 1964.
58. Thompson, H. E., and W. Barneb, "The Intelligent Use of an Incomplete Forecast," *Management Science*, vol. 13, no. 2, pp. 233-243, 1966.
59. Trigg, D. W., "Optimizing a Forecasting System," *Operational Research Quarterly*, vol. 15, no. 1, pp. 271-274, 1964.
60. Trigg, D. W., and A. G. Leach, "Exponential Smoothing with an Adaptive Response Rate," *Operational Research Quarterly*, vol. 18, no. 1, pp. 53-59, 1967.
61. University of Wisconsin Computing Center, *Computer Programs for the Analysis of Univariate Time Series Using the Methods of Box and Jenkins*, Supplementary Program Series No. 517, 1970.
62. Vining, S. C., and S. McMillan, *Forecasting Methods for Management*, John Wiley & Sons, New York, 1973.
63. Vining, S. C., and S. McMillan, "Forecasting with Adaptive Filtering," *Revue Francophone d'Informatique et de Recherche Opérationnelle*, 1973.
64. Walker, R. L., *Introduction to Bayesian Inference and Prediction*, Holt, Rinehart and Winston, Inc., New York, 1972.
65. Walker, P. R., "Predicting Sales by Exponentially Weighted Moving Averages," *Journal of Forecasting*, vol. 6, no. 3, pp. 321-342, 1980.
66. Walker, G. U., "On a Method of Extrapolation Based on Discrete Series, with Special Reference to Volterra's Circular Predictor," *Philosophical Transactions of the Royal Society, London, ser. A*, vol. 226, 1927.

ECONOMETRIC MODELS AND ECONOMIC FORECASTS

CONTENTS

-236-

Acknowledgments
Introduction

Robert S. Pindyck

Massachusetts Institute of Technology

Daniel L. Rubinfeld

University of Michigan

PART I SINGLE-EQUATION REGRESSION MODELS	
CHAPTER 1 INTRODUCTION TO THE REGRESSION MODEL	3
1.1 Curve Fitting	3
1.2 Derivation of Least Squares	6
CHAPTER 2 THE TWO-VARIABLE REGRESSION MODEL	15
2.1 The Model	15
2.2 Statistical Properties of Estimators	20
2.3 Best Linear Unbiased Estimation	24
2.4 Hypothesis Testing and Confidence Intervals	28
2.5 Analysis of Variance and Correlation	33
Appendix 2.1 Elementary Statistics - A Review	42
Appendix 2.2 Maximum-Likelihood Estimation	51
CHAPTER 3 THE MULTIPLE REGRESSION MODEL	54
3.1 The Model	54
3.2 Regression Interpretation and Statistics	56
3.3 F tests, R^2 , and Corrected R^2	57
3.4 Multicollinearity	66
3.5 Partial Correlation	69
3.6 Beta Coefficients and Elasticities	71
3.7 The General Linear Model	75
3.8 Use of Dummy Variables	77
3.9 The Multiple Regression Model with Stochastic Explanatory Variables	84
Appendix 3 The Multiple Regression Model in Matrix Form	86

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Dusseldorf Johannesburg
Kuala Lumpur London Mexico Montreal New Delhi Panama Paris
São Paulo Singapore Sydney Tokyo Toronto

CHAPTER 4 SERIAL CORRELATION AND HETEROOSCEDASTICITY	94	Appendix 9.1 The Identification Problem in Matrix Form	292
4.1 Heteroscedasticity	95	Appendix 9.2 Two-Stage Least Squares in Matrix Form	293
4.2 Serial Correlation	106	Appendix 9.3 Zellner Estimation in Matrix Form	302
Appendix 4 Generalized Least-Squares Estimation	121	Appendix 9.4 Maximum-Likelihood Estimation of Equation Systems	304
CHAPTER 5 INSTRUMENTAL VARIABLES AND TWO-STAGE LEAST SQUARES	126	CHAPTER 10 INTRODUCTION TO SIMULATION MODELS	308
5.1 Correlation between an Independent Variable and the Error Term	127	10.1 The Simulation Process	310
5.2 Errors in Variables	128	10.2 Evaluating Simulation Models	314
5.3 Introduction to Simultaneous Equation Models	132	10.3 A Simulation Example	320
5.4 Consistent Parameter Estimation	137	10.4 Model Estimation	328
5.5 The Identification Problem	139	10.5 Other Kinds of Multi-Equation Simulation Models	332
5.6 Two-Stage Least Squares	144	CHAPTER 11 DYNAMIC BEHAVIOR OF SIMULATION MODELS	336
5.7 Serial Correlation in the Presence of Lagged Dependent Variables	146	11.1 Model Behavior—Stability and Oscillations	337
Appendix 5 Instrumental Variables Estimation in Matrix Form	153	11.2 Model Behavior—Multipliers and Dynamic Response	347
CHAPTER 6 FORECASTING WITH A SINGLE-EQUATION REGRESSION MODEL	156	11.3 Tuning and Adjusting Simulation Models	355
6.1 Unconditional Forecasting	159	11.4 Stochastic Simulation	360
6.2 Forecasting with Serially Correlated Errors	170	CHAPTER 12 EXAMPLES OF SIMULATION MODELS	370
6.3 Conditional Forecasting	177	12.1 A Small Macroeconometric Model	371
Appendix 6 Forecasting with the Multivariate Regression Model	181	12.2 An Industry-wide Econometric Model	394
CHAPTER 7 SINGLE-EQUATION ESTIMATION—ADVANCED TOPICS	186	12.3 A Simulation Model for Corporate Financial Planning	401
7.1 Specification Error	187	Appendix 12 Estimation Method and Data Series for the Macroeconomic Model	410
7.2 Missing Observations	194	PART III TIME-SERIES MODELS	421
7.3 Pooling of Cross-Section and Time-Series Data	202	CHAPTER 13 PROPERTIES OF STOCHASTIC TIME SERIES	421
7.4 Distributed Lags	211	13.1 Deterministic Models of Time Series	422
7.5 Nonlinear Estimation	225	13.2 Stochastic Models of Time Series	431
CHAPTER 8 MODELS OF QUALITATIVE CHOICE	237	13.3 Stationary and Nonstationary Time Series	435
8.1 Binary Choice Models	238	Appendix 13 The Autocorrelation Function for a Stationary Process	449
8.2 Multiple-Choice Models	256	CHAPTER 14 LINEAR TIME-SERIES MODELS	452
PART II MULTIEQUATION SIMULATION MODELS		14.1 Moving Average Models	453
CHAPTER 9 SIMULTANEOUS EQUATION ESTIMATION	266	14.2 Autoregressive Models	458
9.1 Types of Equation Systems	267	14.3 Mixed Autoregressive-Moving Average Models	465
9.2 The Identification Problem	271	14.4 Homogeneous Nonstationary Processes—ARIMA Models	469
9.3 Single-Equation Estimation	276	14.5 Specification of ARIMA Models	471
9.4 Estimation of Equation Systems	279	Appendix 14 Stationarity, Invertibility, and Homogeneity	476
9.5 Comparison of Alternative Estimators	286		

INTRODUCTION

-238-

viii CONTENTS

CHAPTER 15	ESTIMATION OF TIME-SERIES MODELS	479
15.1	The Estimation Procedure	481
15.2	Diagnostic Checking	490
Appendix 15	Initialization of the Time Series	495
CHAPTER 16	FORECASTING WITH TIME-SERIES MODELS	497
16.1	Minimum Mean Square Error Forecast	498
16.2	Computing a Forecast	499
16.3	The Forecast Error	501
16.4	Forecast Confidence Intervals	502
16.5	Properties of ARIMA Forecasts	504
16.6	Two Examples	512
CHAPTER 17	EXAMPLES OF TIME-SERIES APPLICATIONS	519
17.1	Review of the Modeling Process	520
17.2	Models of Economic Variables—Inventory Investment	521
17.3	Forecasting Seasonal Telephone Data	534
17.4	Combining Regression Analysis with a Time-Series Model—A Short-Term Interest Rate Forecast	538
17.5	Combining Regression Analysis with a Time-Series Model—Forecasting Short-Term Savings Deposit Flows	545
	<i>Statistical Tables</i>	551
	<i>Solutions to Selected Problems</i>	557
	<i>Indexes</i>	569
	<i>Author Index</i>	
	<i>Subject Index</i>	

This book is an introduction to the science and art of building and using models. The science of model building consists of a set of tools, most of them quantitative, which are used to construct and then test mathematical representations of portions of the real world. The development and use of these tools are subsumed under the subject heading of econometrics. While not altogether straightforward, econometrics is a well-defined field and therefore relatively easy to describe in written prose. For this reason, the science of model building will be a primary concern of this book. The art of model building is, unfortunately, much harder to describe in words, since it consists mostly of intuitive judgments that occur during the modeling process. Unfortunately, there are no clear-cut rules as to how these model-building judgments should be made, which makes the art of model building difficult to master. Nonetheless, one of the purposes of this book is to convey the nature of that art to the reader to the extent possible. This will be done in part by examples and by discussions of technique, but also by encouraging the reader to do what is ultimately necessary to master the art, namely, to build models of his or her own.

The book focuses upon models of processes that occur in business, economics, and the social sciences in general. These might include models of aggregate economic activity, the sales of an individual firm, or a political process (e.g., estimating the number of votes that a particular candidate can be expected to receive in an election). Discussions of the purposes of building these models are directed toward forecasting and policy analysis, but the reader should bear in mind the general nature of the content.

As one might expect, there are many types of models that can and often have been used for policy analysis and forecasting. This book does not attempt to cover the entire spectrum of model types and modeling methodologies; rather, it concentrates on those models which fit (and test theoretical relationships against) data. This still leaves a rather wide range of models among which to choose. On one end of this range, one might determine the effect of alternative monetary policies on the behavior of the United States economy by constructing a large, multi-equation econometric model of the economy and then simulating it using different monetary policies. The resulting model would be rather complicated and would presume to explain a complex structure in the real world. On the other end of the

range, one might desire to forecast the sales volume of a firm and, believing that those sales follow a strong cyclical pattern, use a time-series model to extrapolate the past behavior of sales.

It is this range of models that is the subject matter of this book. The objective of this book is to give the reader some understanding of the science and art of determining what type of model to build, building the model which is most appropriate, testing the model statistically, and then finally applying the model to practical problems in forecasting and analysis.

1 WHY MODELS?

Many of us often either use or produce forecasts of one sort or another. Few of us recognize, however, that some kind of logical structure, or model, is implicit in every forecast or analysis of a social or a physical system. Consider, for example, a stockbroker who tells you that the Dow Jones Industrial Average will rise next year. The stockbroker might have made this forecast because he has seen the Dow Jones average rising during the past few years and feels that whatever it was that made it rise in the past will continue to make it rise in the future. On the other hand, he/she might feel that the Dow Jones Industrial Average will rise next year because of a belief that this variable is linked to a set of economic and political variables through a complex set of relationships. The broker might believe, for example, that the Dow Jones average is related in a certain way to the gross national product and to interest rates, so that given certain other beliefs about the most probable future behavior of these latter variables, he/she would be led to believe that a rise in the Dow Jones average is likely.

If we have to find a word to describe the method by which our stockbroker made this forecast, we would probably say that it was intuitive, although the chain of reasoning differed substantially in the two cases cited above. The stockbroker certainly would not say that the forecast was made by building a model of the Dow Jones average; indeed, no equations were written down, nor was any computer used. Nonetheless, in each case, some *implicit* form of model building was involved. If the stockbroker based the optimistic forecast for the Dow Jones average on past increases, he/she has in effect constructed a *time-series model* which extrapolates past trends into the future. If, instead, the forecast was based on a knowledge of economics, a model would still be implicitly involved—it would be composed of the relationships that were loosely conceived in the stockbroker's mind as a result of past experience.

Thus, even the intuitive forecaster constructs some type of model, even if he/she is not aware of doing so. Of course, it is reasonable to ask why one might want to work with an *explicit* model to produce forecasts. Would it be worth the trouble, for example, for our stockbroker to read this book in order to construct an explicit model, estimate it on the computer, and test it statistically? Our response is that there are several advantages to working with models explicitly. Model building forces the individual to think clearly about and account for all the important interrelationships involved in a problem. The reliance on intuition can be dangerous

at times because of the possibility that important relationships will be ignored or improperly used. In addition, it is important that individual relationships be tested or validated in some way or another. Unfortunately, this is not usually done when intuitive forecasts are made. In the process of building a model, however, the individual must test or validate not only the model as a whole, but also the individual relationships that make up the model.

When making a forecast, it is also important to provide a statistical measure of confidence to the user of the forecast, i.e., some measure of how accurate one might expect the forecast to be. The use of purely intuitive methods usually precludes any quantitative measure of confidence in the resulting forecast. The statistical analysis of the individual relationships that make up a model, and of the model as a whole, makes it possible to attach a measure of confidence to the model's forecasts.

Once a model has been constructed and fitted to data, a sensitivity analysis can be used to study many of its properties. In particular, the effects of small changes in individual variables in the model can be evaluated. For example, in the case of a model that describes and predicts interest rates, one could measure the effect on a particular interest rate of a change in the rate of inflation. This type of quantitative sensitivity study, which is important both in understanding and in using the model, can be done only if the model is an explicit one.

2 TYPES OF MODELS

In this book we examine three general classes of models that can be constructed for purposes of forecasting or policy analysis. Each involves a different degree of model complexity and structural explanation, and each presumes a different level of comprehension about the real world processes that one is trying to model. The three classes of models are as follows:

(a) *Time-Series Models*. In this class of models we presume to know nothing about the real world causal relationships that affect the variable we are trying to forecast. Instead we examine the past behavior of a time series in order to infer something about its future behavior. The time-series method used to produce a forecast might involve the use of a simple deterministic model such as a linear extrapolation, or the use of a complex stochastic model for adaptive forecasting.

One example of the use of time-series analysis would be the simple extrapolation of a past trend in predicting population growth. Another example would be the development of a complex linear stochastic model for passenger loads on an airline. Models such as this have been developed and used to forecast the demand for airline capacity, seasonal telephone demand, the movement of short-term interest rates, as well as other economic variables. Time-series models are particularly useful when little is known about the underlying processes that one is trying to forecast. The limited structure in time-series models makes them most reliable only in the short run, but they are nonetheless rather useful.

(b) *Single-Equation Regression Models*. In this class of models the variable under

study is explained by a single function (linear or nonlinear) of explanatory variables. The equation will often be time-dependent (i.e., the time index will appear explicitly in the model), so that one can predict the response over time of the variable under study to changes in one or more of the explanatory variables.

An example of a single-equation regression model might be an equation that relates a particular interest rate, such as the 3-month Treasury bill rate, to a set of explanatory variables such as the money supply, the rate of inflation, and the rate of change in the gross national product. Regression models are often used to forecast not only the movement in short- and long-term interest rates, but also many other economic and business variables.

(c) *Multi-Equation Simulation Models.* In this class of models the variable to be studied may be a function of several explanatory variables, but now these explanatory variables are related to each other as well as to the variable under study through a set of equations. The construction of a simulation model begins with the specification of a set of individual relationships, each of which is fitted to available data. Simulation is the process of solving these equations simultaneously over some range in time.

An example of a multi-equation simulation model would be a complete model of the United States textile industry that contains equations that explain variables such as textile demand, textile production output, employment of production workers in the textile industry, investment in the industry, and textile prices. These variables would be related to each other and to other variables (such as total national income, the Consumer Price Index, interest rates, etc.), through a set of linear or nonlinear equations. Given assumptions about the future behavior of national income, interest rates, etc., one could simulate this model into the future and obtain a forecast for each of the model's variables. A model such as this can be used to analyze the impact on the industry of changes in external economic variables.

Multi-equation simulation models presume to explain a great deal about the structure of the physical process that is being studied. Not only are individual relationships specified, but the model accounts for the interaction of all these interrelationships at the same time. Thus, a five-equation simulation model actually contains more information than the sum of five individual regression equations. The model not only explains the five individual relationships, but it also describes the dynamic structure implied by the simultaneous operation of these relationships.

The choice of the type of model to develop is a difficult one, involving trade-offs among time, energy, costs, and desired forecast precision. The construction of a multi-equation simulation model might require large expenditures of time and money, not only in terms of actual work, but also in terms of computer time. The gains that result from this effort might include the better understanding of the relationships and structure involved as well as the ability to make a better forecast. However, in some cases these gains may be small enough so that they are outweighed by the heavy costs involved. Because the multi-equation model necessitates

a good deal of knowledge about the process being studied, the construction of such models may be extremely difficult.

The decision to build a time-series model usually occurs in cases when little or nothing is known about the determinants of the variable being studied, when a large number of data points are available (thus making some kind of inference feasible), and when the model is to be used largely for short-term forecasting. Given some information about the processes involved, however, it may not be obvious whether a time-series model or a single-equation regression model is preferable as a means of forecasting. It may be reasonable for a forecaster to construct both types of models and compare their relative performances.

In the course of this book, we plan not only to describe how each type of model is constructed and used, but also to give some insight into the relative costs and benefits involved. Unfortunately, this can be a rather hard problem, as the choice of model type is often not clear. In any case, it seems natural to include a discussion of all three types of models (single-equation regression, multi-equation simulation, and time series) in the confines of a single book.

3 WHAT THE BOOK CONTAINS

The book is divided into three parts, each concentrating on a different class of models. The most fundamental class of models, discussed in the first part of the book, is the single-equation regression model. The econometric methods developed and used to construct single-equation regression models will, with modification, find application in the construction of multi-equation simulation models as well as time-series models. Thus, Part One of this book presents an introduction to the development and estimation of single-equation econometric models.

Chapter 1 begins with an introduction to the basic concepts of regression analysis. The regression model then is developed in detail, beginning with a two-variable model in Chapter 2 and proceeding to the multiple regression model in Chapter 3. These chapters also develop statistical tests and procedures that can be used to evaluate the properties of a regression model.

The estimation techniques used in simple regression analysis require that certain assumptions be made about both the data and the model. At times, these assumptions break down. Chapters 4 and 5 begin a discussion of what can be done in some of these cases. Chapter 4 deals with heteroscedasticity and serial correlation and includes statistical tests for these problems as well as estimation methods that correct for them. Chapter 5 deals with the problem of correlation between explanatory variables and the implicit error term in the regression model. It concentrates on the development of the instrumental variable and two-stage least-squares estimation techniques.

Chapter 6 discusses the use of a single-equation regression model for forecasting purposes. The chapter discusses not only the methods by which a forecast is produced, but also measures that describe the reliability of a forecast, such as confidence intervals and the error of forecast.

The last two chapters of Part One of the book consider extensions of the regres-

sion model. These chapters are somewhat more advanced in nature, and could be skipped by the beginning student. Chapter 7 deals with the problems of specification error, missing observations, the estimation of nonlinear models, distributed lag models, and models which pool cross-section and time-series data. Chapter 8 deals with models in which the variable to be explained is qualitative in nature. These include linear probability models, probit models, and logit models.

The foundation of econometrics of Part One is essential for the development of multi-equation simulation models in Part Two of the book. Part Two begins with a chapter on estimation techniques particular to simultaneous equation models. This includes problems of model identification, as well as techniques such as three-stage least squares. Chapters 10 and 11 discuss the methodology of constructing and using multi-equation simulation models. Chapter 10 is an introduction to simulation models, and includes a discussion of the simulation process, methods of evaluating simulation models, alternative methods of estimating simulation models, and general approaches to model construction. Chapter 11 is more technical in nature and discusses methods of analyzing the dynamic behavior of simulation models, including questions of model stability, dynamic multipliers, and methods of tuning and adjusting simulation models. Chapter 11 concludes with a discussion of sensitivity analysis and stochastic simulation.

Part Two closes with a chapter that presents three detailed examples of the construction and use of simulation models. In the first example, a small but complete model of the United States economy is constructed and used for simple policy analysis. The second example develops an industry market model and shows how it can be used to forecast production and prices. The last example shows how simulation techniques can be useful for financial planning in a corporation.

Part Three of this book is devoted to time-series models, which can be viewed as a special class of single-equation regression models. Thus, the econometric tools developed in Part One of the book will find extensive application in Part Three. Part Three begins with Chapter 13, which introduces the basic properties of random time series, as well as the notion of a time-series model. The chapter discusses the properties of stationary and nonstationary time series, and the calculation and use of the autocorrelation function.

Chapters 14, 15, and 16 develop the methods by which time-series models are specified, estimated, and used for forecasting. Chapter 14 covers linear time-series models in detail, including moving average models, autoregressive models, mixed models, and finally models of nonstationary time series. Chapter 15 develops regression methods that can be used to estimate a time-series model, as well as methods of diagnostic checking that can be used to ascertain how well the estimated model "fits" the data. Chapter 16 deals with the computation of the minimum mean-square-error forecast, forecast error, and forecast confidence intervals.

The last chapter of Part Three is devoted entirely to examples of the construction and use of time-series models. After we review the modeling process, we construct models of several economic variables and use them to produce short-term forecasts. Finally, we demonstrate through examples how models can be constructed that combine time-series with regression analysis.

4 USE OF MATHEMATICAL TOOLS

This book is written on a rather elementary level, and can be understood with only a limited knowledge of calculus and no knowledge of matrix algebra. Mathematical derivations and proofs are generally reserved for appendices or suppressed entirely. In Part One of the book, the development of the regression model in matrix form is included in the appendixes. Thus most if not all of the book should be accessible to advanced undergraduate students as well as graduate students.

It is desirable that the reader of this book have some background in statistics. Although Appendix 2.1 contains a brief review of probability and statistics, the student with *no* background in statistics may find parts of the book somewhat difficult. Typically, this book would be used in an applied econometrics or business-forecasting course which a student would take after completing an introductory course in statistics.

5 ALTERNATIVE USES OF THE BOOK

The book is intended to have a wide spectrum of uses. Curriculum uses include an undergraduate or introductory graduate course in econometrics and an undergraduate or graduate course in business-forecasting. In addition, this book can be of considerable value as a reference book for people doing statistical analyses of economic and business data, or as a text or reference book for the social scientist or business analyst interested in the application of dynamic simulation models to forecasting or policy analysis.

Coverage in an introductory econometrics or business forecasting course must, of course, be dependent to some extent on the background of the student and the goals of the instructor. Emphasis on the use of econometric techniques for purposes of forecasting with econometric models would provide for one focus, but several alternatives are available. We list several alternative uses of the book below, but stress that the great variety of material leaves a good deal of discretion to the instructor planning a course outline.

I UNDERGRADUATE ECONOMETRICS (one semester)

- (i) *Standard*
 - Part One—Chapters 1–6; portions of Chapters 7 and 8 optional
 - Part Two—Chapter 9
- (ii) *Simulation emphasis*
 - Part One—Chapters 1–6
 - Part Two—Chapters 10–12
- Both courses would omit all matrix appendixes.

II FIRST-YEAR GRADUATE ECONOMETRICS

- (i) *One semester*
 - Part One—Chapters 1–6, Chapters 7 and 8 optional
 - Part Two—Chapters 9–12
- Portions of the above and the appendixes may be optional.

must be knowledgeable not only of regression methods, but also of how a model's dynamic behavior results from the interaction of its individual equations.

This book develops the techniques and methods for the construction of all three types of models. Thus, the reader becomes aware of the use of single-equation econometrics as a modeling form in itself, as a tool that can be used in the development of multi-equation simulation models, and as a statistical basis for the development of stochastic time-series models for forecasting. The reader also becomes aware that there is more than one type of model, and (we hope) gains an understanding of what models are most preferable for a particular purpose.

We believe that this wide breadth of coverage is desirable. The simulation and time-series techniques that make up Parts Two and Three of this book are usually presented only at an advanced level. We feel that a strength of this book is that the coverage is broad and includes these advanced techniques, but is presented on a level that can be understood and appreciated by the beginning student.

III BUSINESS FORECASTING (graduate or advanced undergraduate)

- (i) *One semester*
 - Part One—Chapter 6 plus review of Chapters 1–5
 - Part Two—Chapters 10–12
 - Part Three—Chapters 13–17 (selected portions)

(ii) *Two semesters*

- Part One—Chapters 1–6
- Part Two—Chapters 9–12
- Part Three—Chapters 13–17

IV QUANTITATIVE METHODS FOR POLICY ANALYSIS

(i) *Undergraduate—one semester*

- Part One—Chapters 1–6
- Part Two—Chapters 10–12

(ii) *Graduate—one semester*

- Part One—Chapters 1–6
- Part Two—Chapters 9–12

(iii) *Graduate—two semesters*

- Part One—Chapters 1–6; Chapters 7 and 8 optional
- Part Two—Chapters 9–12
- Part Three—Chapters 13–17

The book could also be used for courses in quantitative social science modeling (as taught in departments of sociology or political science). A course in social science modeling that uses this book as a text would probably cover most of Parts One and Two of the book.

6 WHAT DISTINGUISHES THIS BOOK FROM OTHERS?

This book attempts to explain the development and use of quantitative models from a broad perspective. Most textbooks on econometrics develop the single-equation regression model as a self-contained and isolated entity. The reader of such a book often infers that statistical regression models are somehow distinct and independent from other aspects of modeling, such as the analysis of a model's dynamic structure or the use of time-series analysis to forecast one or more exogenous variables in the model. This is certainly not the case, as any practitioner of the art knows. In developing a multi-equation simulation model, for example, one

1977

FORECASTING ECONOMIC TIME SERIES

C. W. J. GRANGER

*Department of Economics
University of California, San Diego
La Jolla, California*

PAUL NEWBOLD

*Department of Mathematics
University of Nottingham
Nottingham, England*

The academic literature on forecasting is very extensive, but in reality it is not a single body of literature, being rather two virtually nonoverlapping sets concerned with the theoretical aspects of forecasting and the applied aspects. A typical member of one set is very unlikely to mention any member of the other set. It was this realization that motivated the sequence of research projects that eventually resulted in this book. One of the few exceptions to the above statement about nonoverlapping sets is the well-known book by Box and Jenkins, and our own approach owes a lot to their work. However, we have tried to take the state of the art further by introducing new multivariate techniques, by considering questions such as forecast evaluation, and by examining a wider range of forecasting methods, particularly those which have been applied to economic data, on which this present book concentrates. It is one of our aims to further bridge the gap between the theoretical and applied aspects of forecasting.

The analysis of economic data has also been approached from two different philosophies, that imposed by time series analysis and the more classical econometric approach. Although we favor the former, it is quite clear that both approaches have a great deal to contribute and that they need to be brought together to a much greater extent. In the past couple of years, a number of steps have been taken in this direction, and we are

1977

ACADEMIC PRESS NEW YORK SAN FRANCISCO LONDON

A Subsidiary of Harcourt Brace Jovanovich Publishers

CONTENTS

PREFACE

tried to encourage the merger movement in this book by showing how a combined approach to data analysis can lead to potential benefits. We have many individuals and organizations to warmly thank for their help and encouragement in the preparation of this book and in the research projects that led up to it. Gareth Jancek, John Payne, and Harold Nelson gave considerable help with various aspects of the research. Rick Ashley and Allan Andersen have read and corrected large sections of the manuscript, as have many of our graduate students who had parts of the text inflicted on them for course reading; Alice Newbold prepared all the diagrams for us; Elizabeth Burford and Linda Sykes prepared the final version of the manuscript with great ability and patience; and Robert Young proofread it for us. The Social Science Research Council of the United Kingdom provided the funds to start our research on forecasting in 1976 at the University of Nottingham, and the National Science Foundation of the United States gave us a grant to finally complete the task at the University of California, San Diego. Both universities provided us with excellent facilities, as well as delightful surroundings. Finally, we would like to thank Mike Godfrey, Herman Kattelman, and Marc Nerlove for permission to use parts of their own work for illustrations in ours. Of course, we shall have to assume the usual responsibility for those errors that undoubtedly still lurk somewhere in the book.

-244-

Preface

xii

CHAPTER ONE

INTRODUCTION TO THE THEORY OF TIME SERIES

1.1	Introducing Time Series	1
1.2	Covariances and Stationarity	3
1.3	Some Mathematical Tools	5
1.4	The Linear Cyclic Model	9
1.5	The Autoregressive Model	13
1.6	The Moving Average Model	20
1.7	The Mixed Autoregressive-Moving Average Model	24
1.8	Interpreting the Mixed Model	28
1.9	Filters	31
1.10	Deterministic Components	32
1.11	Wold's Decomposition	36
1.12	Nonstationary Processes	36
1.13	Integrated Processes	40
1.14	Models for Seasonal Time Series	41

CHAPTER TWO

SPECTRAL ANALYSIS

2.1	Introduction	43
2.2	Filters	51
2.3	The Spectrum of Some Common Models	53
2.4	Aliasing	55
2.5	The Cross Spectrum	56
2.6	Estimation of Spectral Functions	60
2.7	The Typical Spectral Shape and Its Interpretation	63
2.8	Seasonal Adjustment: An Application of the Cross Spectrum	65
2.9	Books on Time Series Analysis and Forecasting	70

viii

CHAPTER THREE	BUILDING LINEAR TIME SERIES MODELS
3.1	Model Building Philosophy
3.2	Identification
3.3	Initial Estimates for Coefficients
3.4	The Autocorrelation Function as a Characteristic of Process Behavior
3.5	Estimation
3.6	Diagnostic Checking
3.7	Model Building for Seasonal Time Series
3.8	Time Series Model Building—An Overview

7.1	Identification
7.2	Causality and Feedback
7.3	Properties of Optimal Multiseries Forecasts
7.4	Relating Bivariate Series: The Cross Correlation Function
7.5	Building Bivariate Models: Unidirectional Causality Models
7.6	Alternative Identification Procedure for Unidirectional Causality Models
7.7	Outline of Bivariate Model Building Strategy: Feedback
7.8	Fitting Bivariate Models to Innovation Series: Feedback
7.9	Fitting Bivariate Models to Observed Series: Feedback
7.10	Fitting Bivariate Models to Innovation Series: Feedback
7.11	Fitting Bivariate Models to Observed Series: Feedback
7.12	A Further Illustration of Bivariate Model Building
7.13	Forecasting from Bivariate Time Series Models
7.14	Multivariate Time Series Model Building

CHAPTER FOUR THE THEORY OF FORECASTING

4.1	Some Basic Concepts
4.2	Generalized Cost Functions
4.3	Properties of Optimal Single-Series Forecasts
4.4	One-Step Forecasts for Particular Models
4.5	A Frequency-Domain Approach
4.6	Extrapolations and Forecasts
4.7	Forecasting with Misspecified Models
4.8	Confounded Forecasts
4.9	Forecastability
4.10	Types of Forecasts

CHAPTER EIGHT THE COMBINATION AND EVALUATION OF FORECASTS

111	115	8.1	Typical Suboptimality of Economic Forecasts
115	119	8.2	The Combination of Forecasts
119	123	8.3	The Evaluation of Forecasts
123	126	8.4	A Survey of the Performance of Macroeconomic Forecasts
126	131	8.5	Econometric Forecasting and Time Series Analysis
131	134		
134	140		
140	142		
142	146		

CHAPTER NINE NONLINEARITY, NONSTATIONARITY, AND OTHER TOPICS

303	303	9.1	Instantaneous Data Transformations
306	306	9.2	Forming Nonlinear Forecasts
309	309	9.3	General Nonlinear Models
311	311	9.4	Forecasting Nonstationary Processes
314	314	9.5	Testing for Nonstationarity
315	316	9.6	Forecasting Several Steps Ahead from an Estimated Model
316	317	9.7	Other Forecasting Problems and Techniques
317	318		

REFERENCES

327	327	<i>Author Index</i>
330	330	<i>Subject Index</i>

- ABDARAO, N. A., and M. B. PRIESTLEY [1967]. On the prediction of nonstationary processes. *J. Roy. Stat. Soc. Ser. B* **29**, 570-585.
- ADAMS, F. G., and V. G. DEGIOIA [1974]. Anticipations variables in an econometric model: performance of the anticipations version of Wharton Mark III. *Int. Econ. Rev.* **15**, 267-284.
- ADAMOWICZ, L., and F. L. ADIMIAN [1959]. The dynamic properties of the Klein-Goldberger model. *Econometrica* **27**, 596-625.
- ANDERSEN, L. C., and K. M. CARLSON [1974]. St. Louis model revisited. *Int. Econ. Rev.* **15**, 365-377.
- ANDERSON, R. L. [1942]. Distribution of the serial correlation coefficient. *Ann. Math. Stat.* **13**, 1-13.
- ANDERSON, T. W. [1971]. "The Statistical Analysis of Time Series." New York: Wiley.
- ANDERSON, T. W., and T. SAWA [1973]. Distributions of estimates of coefficients of a single equation in a simultaneous system and their asymptotic expansions. *Econometrica* **41**, 683-714.
- ARCHIBALD, L. [1966]. Théorie de la spéculation. *Ann. Sci. École Norm. Sup., Paris, Ser. 3* **17**, 21-26.
- BATTI, R. J. (ed.) [1971]. "The International Unions of National Economic Models," Amsterdam: North-Holland Publishing Co.
- BARNARD, G. A. [1963]. New methods of quality control. *J. Roy. Stat. Soc. Ser. A* **126**, 255-259.
- BARNARD, G. A., G. M. JENKINS, and C. B. WISSETT [1962]. Likelihood inference and time series. *J. Roy. Stat. Soc. Ser. A* **125**, 321-352.
- BARTER, J. F., and D. G. LAMPARD [1955]. An expansion for some second order probability distributions and its application to noise problems. *J. R. E. Trans. PGIT, II-1*, 10-15.
- BARTER, M. S. [1946]. On the theoretical specification of sampling properties of autocorrelated time series. *J. Roy. Stat. Soc. Ser. B* **8**, 27-41.
- BATES, J. M., and C. W. J. GRANGER [1969]. The combination of forecasts. *Oper. Res. Q.* **20**, 451-462.
- BATES, M. [1969]. Monitoring an exponential smoothing forecasting system. *Oper. Res. Q.* **20**, 315-325.
- BEANSTAFF, R. J. [1973]. A monte carlo comparison of the regression method and the spectral method of prediction. *J. Roy. Stat. Soc. Ser. B* **38**, 621-625.
- BEANSTAFF, R. J. [1974]. Asymptotic properties of the Wiener-Kolmogorov predictor. *J. Roy. Stat. Soc. Ser. B* **36**, 61-73.
- BHATTACHARYA, M. N., and A. P. ASHIPSHEK [1974]. A post-sample diagnostic test for a time series model. Working paper, Dep. of Economics, Univ. of Queensland, Australia.
- BREW, G. E. P., and D. R. COX [1964]. An analysis of transformations. *J. Roy. Stat. Soc. Ser. B* **26**, 217-243.
- BREW, G. E. P., and G. M. JENKINS [1962]. Some statistical aspects of adaptive optimization and control. *J. Roy. Stat. Soc. Ser. B* **24**, 297-343.
- BREW, G. E. P., and G. M. JENKINS [1970]. "Time Series Analysis, Forecasting and Control," San Francisco: Holden Day.
- BREW, G. E. P., and G. M. JENKINS [1973]. Some comments on a paper by Chatfield and Prothero and—a review by Kendall. *J. Roy. Stat. Soc. Ser. B* **4**, 337-345.
- BREW, G. E. P., G. M. JENKINS, and D. W. BACON [1967]. Models for forecasting seasonal and nonseasonal time series. In "Advanced Seminar on Spectral Analysis of Time Series" (B. Harris, ed.) New York: Wiley.
- BOX, G. E. P., and P. NEWBOLD [1971]. Some comments on a paper of Cuén, Gomme, and Kendall. *J. Roy. Stat. Soc. Ser. A* **134**, 229-249.
- BOX, G. E. P., and D. A. PARKER [1970]. Distribution of residual autocorrelations in autoregressive integrated moving average time series models. *J. Roy. Stat. Soc. Ser. B* **65**, 1509-1526.
- BROWN, R. G. [1962]. "Smoothing, Forecasting and Prediction of Discrete Time Series." Englewood Cliffs, New Jersey: Prentice Hall.
- BREBACHER, S. R., and G. T. WILSON [1975]. Selecting data transformations for time series. Dept. of Mathematics, Univ. of Lancaster.
- CHATFIELD, C., and D. L. PITTORO [1973]. Box-Jenkins seasonal forecasting: problems in a case study. *J. Roy. Stat. Soc. Ser. A* **136**, 295-336.
- CHOW, G. C. [1973]. Multiperiod predictions from stochastic difference equations by Bayesian methods. *Econometrica* **41**, 109-118.
- CHRIST, C. F. [1975]. Judging the performance of econometric models of the U.S. economy. *Int. Econ. Rev.* **16**, 54-74.
- CLEVELAND, W. S. [1972]. The inverse autocorrelations of a time series and their applications. *Technometrics* **14**, 277-293.
- COCHRAN, K. O. [1974]. The optimality of general order exponential smoothing. *Oper. Res.* **22**, 858-867.
- COOMBS, J. P., and C. R. NEISON [1975]. The ex ante prediction performance of the St. Louis and F.R.B. MIT-Penn econometric models and some results on composite predictors. *J. Money, Credit, Banking* **7**, 1-32.
- COOPER, R. L. [1972]. The predictive performance of quarterly econometric models of the United States. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.) New York: Columbia Univ. Press.
- CRAMER, H. [1961]. On some classes of non-stationary stochastic processes. In "Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2: Contributions to Probabilities Theory" (J. Neyman, ed.) Berkeley: Univ. of California Press.
- CROXTON, F. E., and D. J. COWDEN [1955]. "Applied General Statistics," 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall.
- DAVIES, N., M. B. PART, and M. G. FROST [1974]. Maximum autocorrelations for moving average processes. *Biometrika* **61**, 199-200.
- DAVIS, H. T. [1941]. "The Analysis of Economic Time Series." Bloomington, Indiana: Principia Press.
- DIAKES, P. J. [1970]. "Econometrics." New York: Harper and Row.
- DIAKES, P. J. [1971]. "Distributed Lags: Problems of Formulation and Estimation." San Francisco: Holden Day.
- DIAKES, P. J., et al. [1972]. Criteria for evaluation of econometric models. *Ann. Econ. Soc. Metr.* **1**, 291-334.
- DRAPER, N. R., and H. SMITH [1966]. "Applied Regression Analysis." New York: Wiley.
- DRUBIN, J. [1960]. The fitting of time series models. *Ann. Inst. Stat.* **28**, 235-244.
- DRUBIN, J. [1970]. Testing for serial correlation in least squares regression when some of the regressors are lagged dependent variables. *Econometrica* **38**, 410-421.
- DRUBIN, J., and G. S. WATSON [1970]. Testing for serial correlation in least squares regression I. *Biometrika* **57**, 409-428.
- DRUBIN, J., and G. S. WATSON [1981]. Testing for serial correlation in least squares regression II. *Biometrika* **38**, 159-178.
- DRUBIN, J., and G. S. WATSON [1971]. Testing for serial correlation in least squares regression III. *Biometrika* **58**, 1-19.
- ECKHUT, O. E. W. GREEN, and A. SINAI [1974]. The Data Resources Model: uses, structure and analysis of the U.S. economy. *Int. Econ. Rev.* **15**, 595-615.
- EVANS, M. K., Y. HALIMSKY, and G. I. TVER [1972]. An analysis of the forecasting properties of U.S. economic models. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.) New York: Columbia Univ. Press.

- EWAS, W. D., and K. W. KEMP [1960]. Sampling in relation of continuous processes with no autocorrelation between successive results. *Biometrika* **47**, 229-271.
- FAIR, R. C. [1970]. "A Short-Run Forecasting Model of the United States Economy." Lexington, Massachusetts: D. C. Heath.
- FAIR, R. C. [1974]. An evaluation of a short-run forecasting model. *Int. Econ. Rev.* **15**, 285-303.
- FISHER, F. M. [1966]. "The Identification Problem." New York: McGraw-Hill.
- FISHMAN, G. S. [1969]. "Special Methods in Econometrics." Cambridge, Massachusetts: Harvard Univ. Press.
- FROST, G., L. R. KIRK, and G. R. STURK [1972]. Short- and long-term simulations with the Brookings model. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.). New York: Columbia Univ. Press.
- GILCHRIST, W. G. [1967]. Methods of estimation involving discounting. *J. Roy. Stat. Soc. B* **29**, 355-369.
- GODFREY, M. D., and H. KARRIEMAN [1967]. A spectrum analysis of seasonal adjustment. In "Essays in Mathematical Economics in Honor of Oskar Morgenstern" (M. Shubik, ed.). New Jersey: Princeton Univ. Press.
- GOLDBRGER, A. S. [1962]. Best linear unbiased prediction in the generalized linear regression model. *J. Am. Stat. Assoc.* **57**, 369-375.
- GOLDberger, A. S. [1964]. "Econometric Theory." New York: Wiley.
- GOLDSTEIN, S. M. [1972]. Discussion of paper by R. L. Cooper. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.). New York: Columbia Univ. Press.
- GRANGER, C. W. J. [1966]. The typical spectral shape of an economic variable. *Econometrica* **34**, 150-161.
- GRANGER, C. W. J. [1969a]. Prediction with a generalized cost of error function. *Oper. Res. Q.* **20**, 194-207.
- GRANGER, C. W. J. [1969b]. Investigating causal relations by econometric models and cross-spectral methods. *Econometrica* **37**, 424-438.
- GRANGER, C. W. J. [1975]. Some consequences of the valuation model when expectations are taken to be optimum forecasts. *J. Finance* **40**, 135-145.
- GRANGER, C. W. J., and M. HAYASHI [1964]. "Spectral Analysis of Economic Time Series." New Jersey: Princeton Univ. Press.
- GRANGER, C. W. J., and A. O. HEGGINS [1968]. Spectral analysis of short series — a simulation study. *J. Roy. Stat. Soc. A* **131**, 83-99.
- GRANGER, C. W. J., and A. O. HEGGINS [1971]. A new look at some old data: the Beveridge wheat price series. *J. Roy. Stat. Soc. A* **134**, 413-428.
- GRANGER, C. W. J., and O. MORSE-SMITHERS [1970]. "Predictability of Stock Market Prices." Lexington, Massachusetts: D. C. Heath.
- GRANGER, C. W. J., and M. STOWARD [1976]. Time series modeling and interpretation. *J. Roy. Stat. Soc. A* **138**, 246-257.
- GRANGER, C. W. J., and P. NEWBOLD [1973]. Some comments on the evaluation of economic forecasts. *Appl. Econ.* **5**, 35-47.
- GRANGER, C. W. J., and P. NEWBOLD [1974]. Spurious regressions in econometrics. *J. Econometrics* **2**, 111-120.
- GRANGER, C. W. J., and P. NEWBOLD [1975]. Economic forecasting: the statistician's viewpoint. In "Modelling the Economy" (G. A. Renon, ed.). London: Hemsermann Educational Books.
- GRANGER, C. W. J., and P. NEWBOLD [1976]. Forecasting transformed series. *J. Roy. Stat. Soc. B* **38**, 195-203.
- GRANGER, C. W. J., and D. OGILVIE [1972]. "Infinite variance" and research strategy in time series analysis. *J. Am. Stat. Assoc.* **67**, 285-286.
- GRIFFIN, G. R., M. LIEBERSBERGER, and A. A. HIRSCH [1972a]. Short- and long-term simulations with the OBE econometric model. In "Econometric Models of Cyclical Behavior" (B. G. Hickman, ed.). New York: Columbia Univ. Press.
- GRIFFIN, G. R., M. LIEBERSBERGER, and A. A. HIRSCH [1972b]. Comment on paper by R. L. Cooper.
- HANSEN, E. J. [1960]. "Time Series Analysis." London: Methuen.
- HANSEN, E. J. [1969]. The identification of vector mixed autoregressive moving average systems. *Biometrika* **56**, 223-225.
- HANSEN, E. J. [1970]. "Multiple Time Series." New York: Wiley.
- HANSEN, E. J. [1971]. The identification problem for multiple equation systems with moving average errors. *Econometrica* **39**, 751-765.
- HARRISON, P. J. [1965]. Short-term sales forecasting. *Appl. Stat.* **14**, 102-139.
- HARRISON, P. J., and O. L. DAVIES [1964]. The use of cumulative sum (CUSUM) techniques for the control of routine forecasts of product demand. *Oper. Res.* **12**, 325-333.
- HARRISON, P. J., and C. F. STRATTON [1971]. A Bayesian approach to short term forecasting. *Oper. Res. Q.* **22**, 341-362.
- HART, B. L. [1942]. Significance levels for the ratio of the mean square successive difference to the variance. *Ann. Math. Stat.* **13**, 445-447.
- HAYASHI, M. [1974a]. A simple suggestion to improve the Mincer-Zarnowitz criterion for the evaluation of forecasts. *Ann. Econ. Soc. Metr.* **3**, 521-524.
- HAYASHI, M. [1974b]. On the identification and estimation of the dynamic simultaneous equations model with autoregressive disturbances. Discussion Paper 63, Institute of Social and Economic Research, Osaka Univ., Japan.
- HUGHES, L. D. [1972]. "The identification of time series interrelationships with special reference to dynamic regression," Ph.D. Thesis Dept. of Statistics, Univ. of Wisconsin, Madison.
- HUGON, L. D., and G. E. P. BOX [1974]. Identification of dynamic regression (distributed lag) models connecting two time series. Technical Report 37, Dept. of Statistics, U. of Wisconsin, Madison.
- HUTCHINS, D. F. [1974]. Stochastic specification in an aggregate demand model of the U.S. economy. *Econometrica* **42**, 559-578.
- HUTCHINS, B. G. (ed.) [1972]. "Econometric Models of Cyclical Behavior." New York: Columbia Univ. Press.
- HUTCHINS, B. G. [1975]. Project LINK in 1972: retrospect and prospect. In "Modeling the Economy" (G. A. Renon, ed.). London: Hemsermann Educational Books.
- HUTCHINS, A. A. [1973]. The BEA quarterly model as a forecasting instrument. *Survey of Current Business* **53** (August), 24-38.
- HUTCHINS, B. G., B. T. GRIMM, and G. V. L. NARASIMHAM [1974]. Some multiplier characteristics of the BEA quarterly model. *Int. Econ. Rev.* **16**, 616-631.
- HULL, J. C. C. [1957]. "Forecasting seasons and trends by exponentially weighted moving averages," Carnegie Institute of Technology, Pittsburgh, Pennsylvania.
- HUNTER, H. S., and L. D. TAYLOR [1966]. "Consumer Demand in the United States." Cambridge: Harvard Univ. Press.
- HUTCHINS, E. P. [1968]. A spectrum analysis of the long-wave hypothesis. *Int. Econ. Rev.* **9**, 223-252.
- HUTCHINS, E. P., L. R. KITTS, and M. D. McCARTHY [1974]. Notes on testing the predictive performance of econometric models. *Int. Econ. Rev.* **15**, 361-383.
- JAHN, G. [1975]. Estimation of the minimum mean squared error of prediction. *Biometrika* **62**, 175-180.
- JORDAN, G. M. [1974]. Personal communication.

- JENKINS, G. M., and D. G. WATSON [1968]. "Spectral Analysis and its Applications," San Francisco: Holden Day.
- JOHNSON, J. [1972]. "Econometric Methods," 2nd ed. New York: McGraw Hill.
- KAHN, H., and A. J. WINTER [1967]. "The Year 2000," New York: MacMillan.
- KALMAN, R. E. [1960]. A new approach to linear filtering and prediction problems. *J. Basic Eng.* 82, 35-45.
- KALMAN, R. E. [1963]. New methods in Wiener filtering theory. In "Proceeding of First Symposium on Engineering Application of Random Function Theory and Probability" (J. L. Bergstrand and F. Kozin, eds.) New York: Wiley.
- KENDALL, M. G. [1954]. "Exercises in Theoretical Statistics," London: Griffin.
- KENDALL, M. G. [1973]. "Time Series Analysis," London: Griffin.
- KENDALL, M. G., and A. STUART [1963]. "The Advanced Theory of Statistics," Vol. I, London: Griffin.
- KIEFF, L. R. [1960]. The efficiency of estimation in econometric models. Cowles Foundation Paper 157, Yale Univ., New Haven, Connecticut.
- KIEFF, L. R. [1971a]. "An Essay on the Theory of Economic Prediction," Chicago: Markham.
- KIEFF, L. R. [1971b]. Forecasting and policy evaluation using large scale econometric models: the state of the art. In "Frontiers of Quantitative Economics" (M. D. Intriligator, ed.) Amsterdam: North Holland Publ. Co.
- KIEFF, L. R., and A. S. GORTON-BROWN [1961]. "An Econometric Model of the United States 1929-1952," Amsterdam: North Holland Publ. Co.
- KOLOMOGOROV, A. [1939]. Sur l'interpolation et l'extrapolation des suites stationnaires. *C. R. Acad. Sci. Paris* 208 (2), 2043-2045.
- KOLOMOGOROV, A. [1941a]. Interpolation und extrapolation von stationären zufälligen folgen. *Bull. Acad. Sci. Russ. U. R. S. S. Ser. Math.* 5, 3-14.
- KOLOMOGOROV, A. [1941b]. Stationary sequences in Hilbert space (in Russian). *Bull. Math. Univ. Moscow* 2 (6), 1-40.
- KOOPMAN, L. H. [1974]. "The Spectral Analysis of Time Series," New York: Academic Press.
- LABYS, W. C., and C. W. J. GRANGER [1970]. "Speculation, Hedge, and Forecasts of Commodity Prices," Lexington, Massachusetts: D. C. Heath.
- LEHMANN, E. L. [1959]. "Testing Statistical Hypotheses," New York: Wiley.
- LE PESPINE, W. D., and D. TAYLOR [1975]. The power of f_0 -tests of autocorrelation in the linear regression model. *J. Econometrics* 3, 1-21.
- LEWIS, P. A. W. (ed.) [1972]. "Stochastic Point Processes," New York: Wiley.
- LOWICKI, Z. A. [1961]. Test for departure from normality in the case of linear stochastic processes. *Metrika* 4, 57-62.
- MARSHALL, E. [1966]. "Statistical Methods of Econometrics," Amsterdam: North Holland Publ. Co.
- MALLOW, C. L. [1967]. Linear processes are nearly Gaussian. *J. Appl. Prob.* 4, 313-329.
- MANN, H. B., and A. WALD [1943]. On the statistical treatment of linear stochastic difference equations. *Econometrica* 11, 173-220.
- MAROT, APT, D. W. [1963]. An algorithm for least squares estimation of nonlinear parameters. *J. Soc. Ind. Appl. Math.* 2, 431-441.
- MARSHALL, J. P. [1972]. "Technological Forecasting for Decision Making," New York: American Elsevier.
- MC CALLUM, M. D. [1972]. Discussion of paper by R. L. Cooper: *In "Econometric Models of Cyclical Behavior"* (B. G. Hickman, ed.) New York: Columbia Univ. Press.
- MESSELMAN, D. [1966]. "The Term Structure of Interest Rates," Englewood Cliffs, New Jersey: Prentice Hall.
- MUSCAT, J., and V. ZARBOWICZ [1969]. The evaluation of economic forecasts. In "Economic Forecasts and Expectations" (J. Mincher, ed.) New York: National Bureau of Economic Research.
- MUTH, J. F. [1960]. Optimal properties of exponentially weighted forecasts. *J. Am. Stat. Assoc.* 55, 299-306.
- NAYLOR, T. H., T. G. SEARS, and D. W. WICHERS [1972]. Box-Jenkins methods as an alternative to econometric models. *Rev. Inst. Int. Stat.* 40 (2), 137.
- NIJMEIJER, H. R. [1970]. An improved formula for the asymptotic variance of spectrum estimates. *Ann. Math. Stat.* 41, 70-77.
- NIJMEIJER, H. R. [1972]. Observations on "Spectral analysis of short series—a simulation study" by Granger and Hughes. *J. Roy. Stat. Soc. A* 135, 393-405.
- NELSON, C. R. [1972a]. "The Term Structure of Interest Rates," New York: Basic Books.
- NELSON, C. R. [1972b]. The prediction performance of the F.R.B.-M.I.T.-P.N.S. model of the U.S. economy. *Am. Econ. Rev.* 62, 942-947.
- NELSON, C. R. [1973]. "Applied Time Series Analysis for Managerial Forecasting," San Francisco: Holden Day.
- NELSON, J. Z., and J. W. VAN NESS [1973a]. Formulation of a nonlinear predictor. *Techometrics* 15, 1-12.
- NELSON, J. Z., and J. W. VAN NESS [1973b]. Choosing a nonlinear predictor. *Techometrics* 15, 219-231.
- NEFTOUEV, M. [1964]. Spectral analysis of seasonal adjustment procedures. *Econometrica* 32, 241-286.
- NEFTOUEV, M., and S. WAGE [1964]. On the optimality of adaptive forecasting. *Manage. Sci.* 10, 207-229.
- NEFTOUEV, M., and K. F. WALLS [1966]. The use of the Durbin-Watson statistic in inappropriate situations. *Econometrica* 34, 215-235.
- NEWBOLD, P. [1973a]. Forecasting Methods, Civil Service College Occasional Papers 15, London: H.M.S.O.
- NEWBOLD, P. [1973b]. Bayesian estimation of Box-Jenkins transfer function-noise models. *J. Roy. Stat. Soc. B* 35, 323-336.
- NEWBOLD, P. [1974]. The exact likelihood function for a mixed autoregressive-moving average process. *Biometrika* 61, 423-426.
- NEWBOLD, P., and N. DAVIS [1975]. Error mis-specification and spurious regressions. Dept. of Mathematics, Univ. of Nottingham.
- NEWBOLD, P., and C. W. J. GRANGER [1974]. Experience with forecasting univariate time series and the combination of forecasts. *J. Roy. Stat. Soc. A* 137, 131-146.
- NORDHAAK, W. D. [1973]. World dynamics measurement without data. *Econ. J.* 83, 1156-1183.
- PARZEN, E. [1961]. Mathematical considerations in the estimation of spectra. *Techometrics* 3, 167-190.
- PARZEN, E. [1967]. "Time Series Analysis Papers," San Francisco: Holden Day.
- PAYSEY, D. J. [1973]. "The determination of regression relationships using stepwise regression techniques." Ph.D. Thesis, Dept. of Mathematics, Univ. of Nottingham.
- PIERCE, D. A. [1974]. Relationships—and the lack thereof—between economic time series, with special reference to money, reserves and interest rates. Special Studies Paper 55, Federal Reserve Board, Washington, D. C.
- PIERCE, D. A., and L. D. HACON [1975]. The assessment and detection of causality in temporal systems. Technical Report 83, Dept. of Statistics, Univ. of Florida, Gainesville.
- PRESTON, A. J., and K. D. WALL [1973]. An extended identification problem for state space representations of econometric models. Discussion Paper 6, Programme of Research into Economic Methods, Dept. of Economics, Queen Mary College, London.
- PRIESTLEY, M. B. [1968]. Evolutionary spectra and non-stationary processes. *J. Roy. Stat. Soc. B* 27, 204-237.
- QUENSTEDT, M. H. [1949]. Approximate tests of correlation in time series. *J. Roy. Stat. Soc. B* 11, 68-84.
- QUENOUILLE, M. H. [1957]. "The Analysis of Multiple Time Series," London: Griffin.

REFERENCES

- RIDGE, D. J. [1961]. "A comparative study of time series prediction techniques on economic data." Ph.D. Thesis, Dept. of Mathematics, Univ. of Southampton.
- RIDGE, G. A. [ed.] [1978]. "Modelling the Economy," London: Heinemann Educational Books.
- RIDGEON, D. H. [1968]. "The exact distribution of a structural coefficient." *J. Am. Stat. Assoc.* **63**, 1214-1226.
- ROSENBLATT, M. [1957]. Some nearly deterministic processes. *J. Math. Mech.* **6**, 801-810.
- SARNA, T. [1967]. The exact sampling distribution of ordinary least squares and two-stage least squares estimates. *J. Am. Stat. Assoc.* **64**, 925-937.
- SCHAFER, A. [1958]. On the investigation of hidden periodicities. *Terr. Magn. Atmos. Elec.* **3**, 13-41.
- SHEPPARD, D. K. [1971]. "The Growth and Rule of U.K. Financial Institutions 1880-1962." London: Methuen.
- SIMON, C. A. [1972]. Money, income and causality. *Am. Econ. Rev.* **62**, 540-552.
- SUTT, D. B. [1965]. Forecasting and analysis with an econometric model. *Am. Econ. Rev.* **55**, 104-132.
- SWARTZ, P. [1970]. "A Probabilistic Theory of Causality." Amsterdam: North Holland Publ. Co.
- THEILE, H. [1955]. "Economic Forecasts and Policy," Amsterdam: North Holland Publ. Co.
- THEILE, H. [1966]. "Applied Economic Forecasting." Amsterdam: North Holland Publ. Co.
- THEILE, H., and S. WAGE [1964]. Some observations on adaptive forecasting. *Manage. Sci.* **10**, 197-206.
- THOMAS, J. [1939]. "Statistical Testing of Business Cycle Theories," Vol. II. Business Cycles in the United States of America 1919-1932. Geneva: League of Nations.
- THOMAS, D. W. [1964]. Monitoring a forecasting system. *Oper. Res. Q.* **15**, 271-274.
- THOMAS, D. W. and A. D. LESTER [1967]. Exponential smoothing with an adaptive response rate. *Oper. Res. Q.* **18**, 51-59.
- VAN THOENEN, J. C. [1971]. "Financial Management and Policy," 2nd ed. Tinglewood Cliffs, New Jersey: Prentice-Hall.
- WARD, B., J. G. G. H. RAPPENHORN, and V. A. LOWYNS [1968]. A program for short-term sales forecasting. *Trac Statistica* **18**, 131-147.
- WATKINS, G. [1931]. On periodicity in series of related terms. *Proc. Roy. Soc. London A* **131**, 515-522.
- WATSON, K., D. A. J. PRESTON, J. W. BRAY, and M. H. PISTON [1975]. Estimates of a simple control model of the U.K. economy. In "Modelling the Economy" (G. A. Renison, ed.) London: Heinemann Educational Books.
- WATSON, K. F. [1972]. Testing for fourth order autocorrelation in quarterly regression equations. *Econometrica* **40**, 617-636.
- WEBB, R. A. J. [1957]. A simulation study of Lomnicka's test for departure from Normality in the case of linear stochastic processes. M.Sc. Thesis, Dept. of Mathematics, Univ. of Nottingham.
- WHITFIELD, P. [1965]. "Prediction and Regulation." London: English Universities Press.
- WHITFIELD, P. [1965]. Recursive relations for predictors of non-stationary processes. *J. Roy. Stat. Soc. Ser. B* **27**, 923-932.
- WHITE, D. W. [1973]. The behavior of the sample autocorrelation function for an integrated moving average process. *Biometrika* **60**, 218-239.
- WHITE, N. [1949]. "The Extrapolation, Interpolation and Smoothing of Stationary Time Series." Boston: MIT Press.
- WILKS, S. S. [1962]. "Mathematical Statistics." New York: Wiley.
- WILSON, G. T. [1969]. Factorization of the generating function of a pure moving average process. *Stochastic Process. Appl.* **6**, 1-17.
- WILLE, H. [1942]. "A Study in the Analysis of Stationary Time Series," 2nd ed. Uppsala: Almqvist and Wiksell.
- WILLE, H. [1952]. Causality and econometrics. *Econometrica* **22**, 162-177.
- WILLE, H. [ed.] [1964]. "Econometric Models: Building Essays on the Causal Chain Approach." Amsterdam: North Holland Publ. Co.

Benchmark Papers
in Electrical Engineering
and Computer Science / 17

A BENCHMARK® Books Series

LINEAR
LEAST-SQUARES
ESTIMATION

Edited by

THOMAS KAILATH
Stanford University

Least-squares estimation is one of those topics that has the happy characteristic of being an apparently inexhaustible source of new problems, new applications, and new results. The reason for this vitality is that despite the seeming narrowness of its title, the subject is intimately connected with the basic structural properties not only of random and deterministic signals, but also of linear and nonlinear systems. This has the dual consequence of frequently bringing new insights from other fields to bear on problems of least-squares estimation and of often showing the usefulness of least-squares ideas in new problems and new applications. We might mention Wiener-Hopf equations, operator factorization, signal detection, martingale theory, matrix algebra, integral equations, scattering theory, and generalized orthogonal polynomial recursions as only some examples of topics that have had both classical and recent mutually fruitful interactions with least-squares theory.

This depth makes several of the classical papers in this field valuable not only for their historical significance but also because they contain insights and ideas that are still capable of further exploration and development. This potential for additional investigation has been one of the criteria used in selecting the papers gathered here. Another criterion has been the relative inaccessibility and sometimes even obscurity of several of the papers, even though this has meant the omission of other works because of their greater availability (some in other volumes in this series). Therefore, I hope that new students as well as those quite learned in this field will find some pleasure and some profit in this collection.

As I have said on numerous occasions, I am grateful to many friends in various countries and in a diversity of fields for shared pleasures in discussing and exploring this rich subject. The broad support of the mathematics department of the Air Force Office of

Dowden, Hutchinson
& Ross, Inc.
STUDENTS OR PROFESSIONALS

Scientific Research has been an important ingredient in these efforts. However, for specific assistance with the selections and commentaries in this volume, I am especially indebted to Professor A. M. Yaglom of the Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow.

THOMAS KAILATH

CONTENTS

- Series Editor's Foreword
- Preface
- Contents by Author

Introduction

- v
- vii
- xiii
- 1

-251-

PART I: A SURVEY OF THE FIELD

- | | |
|--|-----------|
| Editor's Comments on Paper 1 | 6 |
| 1 KAILATH, T.: A View of Three Decades of Linear Filtering Theory | 10 |

PART II: MATHEMATICAL FOUNDATIONS OF LEAST-SQUARES PREDICTION THEORY

- | | |
|---|-----------|
| Editor's Comments on Papers 2 Through 6 | 48 |
| 2 KOLMOGOROV, A. N.: Interpolation and Extrapolation of Stationary Random Sequences | 52 |
| RM-3090-PR, W. Doyle and I. Selin, trans., RAND Corporation, 1962, pp. 1-14 | |
| 3 KOLMOGOROV, A. N.: Stationary Sequences in Hilbert Space | 66 |
| CN742, J. F. Barrett, trans., Department of Engineering, Cambridge University, 1974, pp. 1-24. | |
| 4 KREIN, M. G.: On a Problem of Extrapolation of A. N. Kolmogoroff | 90 |
| C. R. (Dokl.) Akad. Nauk SSSR 46 (8): 306-309 (1945) | |
| 5 KREIN, M. G.: On a Fundamental Approximation Problem in the Theory of Extrapolation and Filtration of Stationary Processes | 94 |
| Selected Translations in Mathematical Statistics and Probability, Volume 4, American Mathematical Society, 1963, pp. 127-131 | |
| 6 KARHUNEN, K.: On the Structure of Stationary Random Functions | 99 |
| RM-3091-PR, I. Selin, trans., RAND Corporation, 1962, pp. 1-29 | |

PART III: WIENER-HOPF EQUATIONS AND OPTIMUM FILTERS

Editor's Comments on Papers 7 Through 13

130

- 7** YAGLOM, A. M.: On a Problem of Linear Interpolation of Stationary Random Sequences and Processes
Selected Translations in Mathematical Statistics and Probability, Volume 4, American Mathematical Society, 1963, pp. 339-344
- 8** KREIN, M. G.: Integral Equations on a Half-Line with Kernel Depending Upon the Difference of the Arguments
Am. Math. Soc. Transl. Ser. 2, 22, 163-172 (1962)
- 9** COHBERG, I. C., and I. A. FELDMAN: Introduction
Convolution Equations and Projection Methods for Their Solution,
Translations of Mathematical Monographs, vol. 41, American Mathematical Society, 1974, pp. 1-7
- 10** ZADEH, L. A., and J. R. RAGAZZINI: An Extension of Wiener's Theory of Prediction
J. Appl. Phys. 21(7):645-655 (1950)
- 11** YAGLOM, A. M.: Effective Solutions of Linear Approximation Problems for Multivariate Stationary Processes with a Rational Spectrum
Theory Probab. Appl. (USSR) 5(3):239-264 (1960)
- 12** ROZANOV, YU. A.: Spectral Properties of Multivariate Stationary Processes and Boundary Properties of Analytic Matrices
Theory Probab. Appl. (USSR) 5(4):362-376 (1960)
- 13** JAFFET, R., and E. RECHIIN: Design and Performance of Phase-Lock Circuits Capable of Near-Optimum Performance Over a Wide Range of Input Signal and Noise Levels
IRE Trans. Inf. Theory IT-1:66-76 (1955)
- 14** SWERLING, P.: First Order Error Propagation in a Stagewise Smoothing Procedure for Satellite Observations
J. Astronaut. Sci. 6:46-52 (1959)
- 15** STRATONOVICH, R. L.: Application of the Theory of Markoff Processes in Optimal Signal Discrimination
Radio Eng. Electron. Phys. 1:1-19 (1960)
- 16** KALMAN, R. E.: A New Approach to Linear Filtering and Prediction Problems
J. Basic Eng. 82:35-45 (Mar. 1960)
- 17** CARLTON, A. G., and J. W. ROLIN, JR.: Recent Developments in Fixed and Adaptive Filtering
Proc. 2nd AGARD Guided Missiles Seminar (Guidance and Control), AGARDograph 21, NATO Advanced Group for R & D, 1956, pp. 285-300

Editor's Comments

Conter
-252-

18 GENIN, Y.: Further Comments on the Derivation of Kalman Filters, Section II: Gaussian Estimates and Kalman Filtering

Theory and Applications of Kalman Filtering, AGARDograph 139, C. T. Leondes, ed., NATO Advanced Group for Aerospace R & D, 1970, pp. 55-61

19 BRYSON, A. E., and M. FRAZIER: Smoothing for Linear and Nonlinear Dynamic Systems
Proc. Optimum System Synthesis Conference, 1962, Tech. Doc. Rep. No. ASD-TDR-63-119, Aeronautical Systems Division, Wright-Patterson AFB 1963, pp. 354-364

20 KAILATH, T.: A Note on Least-Squares Estimation by the Innovations Method
SIAM J. Control 10(3):477-496 (1972)

21 Author Citation Index
Subject Index
About the Editor

22 Author Citation Index
Subject Index
About the Editor

23 Author Citation Index
Subject Index
About the Editor

24 Author Citation Index
Subject Index
About the Editor

25 Author Citation Index
Subject Index
About the Editor

PART IV: STATE-SPACE MODELS AND RECURSIVE FILTERS

Editor's Comments on Papers 14 Through 20

- 224**
- 228**
- 235**
- 254**
- 265**

14 SWERLING, P.: First Order Error Propagation in a Stagewise Smoothing Procedure for Satellite Observations
J. Astronaut. Sci. 6:46-52 (1959)

15 STRATONOVICH, R. L.: Application of the Theory of Markoff Processes in Optimal Signal Discrimination
Radio Eng. Electron. Phys. 1:1-19 (1960)

16 KALMAN, R. E.: A New Approach to Linear Filtering and Prediction Problems
J. Basic Eng. 82:35-45 (Mar. 1960)

17 CARLTON, A. G., and J. W. ROLIN, JR.: Recent Developments in Fixed and Adaptive Filtering
Proc. 2nd AGARD Guided Missiles Seminar (Guidance and Control), AGARDograph 21, NATO Advanced Group for R & D, 1956, pp. 285-300

Modern Spectrum Analysis

Edited by

Donald G. Childers
Professor of Electrical Engineering
University of Florida

Contents

Introduction	1
Part I: Historical	
Modern Techniques of Power Spectrum Estimation. C. Bingham, M. D. Godfrey, and J. W. Tukey (IEEE Transactions on Audio and Electroacoustics, June 1967)	6
The Use of Fast Fourier Transform for the Estimation of Power Spectra. A. Mermelstein (IEEE Transactions on Audio and Electroacoustics, June 1967)	17
Modified Periodogram, P. D. Welch (IEEE Transactions on Audio and Electroacoustics, June 1967)	17
Part II: Spectral Estimation by Maximum Entropy, Autoregression, Linear Prediction, and Maximum Likelihood	
Maximum Entropy Spectral Analysis. J. G. Abra (Astronomy and Astrophysics Supplement Series, June 1974)	23
Maximum Entropy Spectral Analysis. J. P. Burg (Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, 1967)	24
A New Analysis Technique for Time Series Data. J. P. Burg (NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics, August 12-23, 1968)	47
Spectral Estimation: Fact or Fiction. P. A. Gubarev, E. A. Robinson, and S. Tewari (IEEE Transactions on Geoscience Electronics, April 1978)	49
Maximum Entropy Spectral Analysis and Autoregressive Decomposition. T. J. Ulrych and T. N. Burchard (Review of Geophysics and Space Physics, February 1975)	54
Maximum Entropy Spatial Processing of Array Data. R. N. McDonough (Geophysics, December 1974)	72
An Empirical Investigation of the Properties of the Autoregressive Spectral Estimator. M. Kaveh and G. R. Cooper (IEEE Transactions on Information Theory, May 1976)	81
Alternative Interpretation of Maximum Entropy Spectral Analysis. A. van den Brink (IEEE Transactions on Information Theory, July 1971)	92
Notes on Maximum Entropy Processing. J. A. Edward and M. M. Fiedman (IEEE Transactions on Information Theory, March 1973)	98
The Effective Autocorrelation Function of Maximum Entropy Spectra. R. E. DuBrot (Proceedings of the IEEE, November 1975)	97
Linear Prediction: A Tutorial Review. J. Makoul (Proceedings of the IEEE, April 1975; correction in February 1976)	99
High Resolution Frequency Wavenumber Spectrum Analysis. J. Cohen (Proceedings of the IEEE, August 1969)	119
Comments on "High Resolution Frequency Wavenumber Spectrum Analysis." C. O. Songeon (Proceedings of the IEEE, June 1970)	130
The Relationship between Maximum Entropy Spectra and Maximum Likelihood Spectra. J. P. Burg (Geophysics, April 1972)	137
Data Adaptive Spectral Analysis Methods. R. T. Lucas (Geophysics, August 1971)	134
Part III: Statistics, Estimation, and Adaptive Techniques	
Confidence Intervals for Repetition (MEM) Spectral Estimation. A. B. Bergman (IEEE Transactions on Information Theory, September 1976)	150
Probability Distributions for Estimates of the Frequency Wavenumber Spectrum. J. Cohen and N. R. Goodman (Proceedings of the IEEE, October 1970; correction in January 1971)	162
Two Dimensional Markov Spectral Estimation. J. IV (October) (IEEE Transactions on Information Theory, September 1976)	164
Recursive Multichannel Maximum Entropy Spectral Estimation. M. Norit, A. Varga, D. T. L. Lee, and T. Keishin (IEEE Transactions on Geoscience Electronics, April 1978)	172
Extension to the Maximum Entropy Method. W. J. Newman (IEEE Transactions on Information Theory, January 1977)	182
Rapid Measurement of Digital Instantaneous Frequency. L. J. Griffiths (IEEE Transactions on Acoustics, Speech and Signal Processing, April 1975)	187
Adaptive Spectral Estimation. M. A. Alain (Proceedings of the 1977 Joint Automatic Control Conference, June 22-24, 1977)	203
Part IV: Algorithms and Model Order Selection	
An Introduction to Programming the Windowed Fourier Transform Algorithm (WFTA). M. F. Silverman (IEEE Transactions on Acoustics, Speech and Signal Processing, April 1977)	212
Some Recent Advances in Time Series Modeling. E. Parzen (IEEE Transactions on Automatic Control, December 1974)	226

A volume in the IEEE PRESS Selected Reprint Series prepared under the sponsorship of the IEEE Information Theory Group

The Institute of Electrical and Electronics Engineers, Inc. New York

A New Look at the Statistical Model Identification. H. Akaike (IEEE Transactions on Automatic Control, December 1974)	234
Autoregressive Model Fitting with Noisy Data by Akaike's Information Criterion. H. Tong (IEEE Transactions on Information Theory, Dec 1975)	242
More on Autoregressive Model Fitting with Noisy Data by Akaike's Information Criterion. H. Tong (IEEE Transactions on Information Theory, May 1977)	247
Autoregression Order Selection. R. H. Jones (Geophysics, August 1976)	249
On the Calculation of Filter Coefficients for Maximum Entropy Spectral Analysis. N. Anderson (Geophysics, February 1974)	252
Stable and Efficient Lattice Methods for Linear Prediction. J. Makhoui (IEEE Transactions on Acoustics, Speech, and Signal Processing, October 1977, correction in February 1978)	256
A Class of Algorithms for ARMA Models and Lander Realizations. M. Mori, D. T. Lee, J. A. Nickolls, and A. Vardi (IEEE International Conference Record on Acoustics, Speech and Signal Processing, May 9-11, 1977)	262
A Versatile IEEE International Conference Record on Acoustics, Speech and Signal Processing. M. Mori, B. Dickinson, T. Kawashita, and A. Vardi (IEEE Transactions on Acoustics, Speech, and Signal Processing, October 1977)	269
Part V Applications	
Convective Weather Forecast Decomposition Via Multidimensional Digital Filtering of Array Data. O. S. Helbing and D. G. Chidley (IEEE Transactions on Circuits and Systems, June 1975)	276
Maximum Entropy Image Reconstruction. S. J. Wernette and L. R. D'Addario (IEEE Transactions on Computers, April 1977)	287
Identification and Autoregressive Spectrum Estimation. R. H. Jones (IEEE Transactions on Automatic Control, December 1974)	301
Some Geophysical Applications of Autoregressive Spectral Estimates. T. E. Lenders and R. T. Lachas (IEEE Transactions on Geoscience Electronics, January 1977)	305
The Superiority of Maximum Entropy Power Spectrum Techniques Applied to Geomagnetic Micro pulsations. H. R. Fazekas, E. J. Zandbergen, and P. F. Fougerre (Physics of the Earth and Planetary Interior, August 1976)	312
Bibliography	321
Author Index	330
Subject Index	331
Editor's Biographies	334

1978

APPLIED TIME SERIES ANALYSIS

EDITED BY

DAVID F. FINDLEY

Division of Mathematical Sciences
The University of Tulsa
Tulsa, Oklahoma

The field of time series analysis or signal processing, as some scientists and engineers prefer to call it, is a child of man; parents, as this ambiguity of name already suggests. This is a historical and a present fact. A quick search through the current journals of a technical library is likely to turn up time series papers in publications from the fields of acoustics, earthquake engineering, econometrics, electrical engineering, geology, geophysics, guidance and control engineering, mathematics, mechanical engineering, neurophysiology, psychology, and statistics. In such circumstances, it is easy for a time series analyst to be unaware of important developments in the subject occurring in a field remote from his or her own because there are few opportunities for people working in apparently dissimilar fields to get to know one another.

With this situation in mind, the University of Tulsa is sponsoring a series of Applied Time Series Symposia in which distinguished time series researchers from different disciplines give talks about portions of their research they feel might be of general interest. The first such symposium took place in Tulsa, Oklahoma, on May 14-15, 1976. It featured speakers from econometrics, electrical engineering, geophysics, mathematics, and statistics, and attracted 165 participants from these fields and several others.

The speakers were H. Akaike, R. F. Engle, C. W. J. Granger, H. L. Gray, A. G. Houston, R. H. Jones, J. H. Justice, R. T. Lacoss, S. J. Lastor, A. V. Oppenheim, E. Parzen, E. A. Robinson, S. Treitel, and G. S. Watson.

The session chairmen were J. B. Bednar, S. E. Elliott, M. R. Foster, and P. M. Robinson.

The present volume contains papers based on talks presented at the symposium. Because of the novelty of their methods, H. L. Gray, A. G. Houston, and F. W. Morgan were invited to prepare a greatly expanded version of their talk for this publication, which they kindly agreed to do. Professor Gray was also kind enough to recommend inclusion of the paper of D. D. McIntire, which illustrates an important facet of these methods. Three papers, those of H. L. Gray, A. G. Houltin, and F. W. Morgan, R. H. Jones, and S. J. Lastor, include programs. The TMSAC program packages

1978
ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers
New York San Francisco London

Preface

C. Akaike, Arakata, and Ozaki, discussed in H. Akaike's paper, are available on magnetic tape from the Division of Mathematical Sciences of the University of Tulsa.

The Applied Time Series Symposium was the joint effort of several disciplines and several colleges of the University of Tulsa. Its director was D. F. Findley, and its associate director was S. J. Laster, both of whom were given substantial assistance by many colleagues and staff members among whom must be mentioned T. W. Cairns, W. A. Copely, E. T. Guerrero, N. J. Hynes, D. Murray, and A. R. Soltow. On behalf of all of us, I would like to thank the speakers, session chairmen, and participants for their contributions to a very stimulating conference.

It is my privilege to extend special thanks to the staff of Academic Press for their continued interest in this book, to J. R. Barton for her exceptionally competent work in preparing the manuscript for this book, and to Amoco Research Center and Cities Service Research Laboratory for technical assistance.

CONTENTS

Preface	x
The Applied Time Series Symposium	1
Planners and Several Colleges of the University of Tulsa	1
Its Director was S. J. Laster, both of whom were given substantial assistance by many colleagues and staff members among whom must be mentioned T. W. Cairns, W. A. Copely, E. T. Guerrero, N. J. Hynes, D. Murray, and A. R. Soltow. On behalf of all of us, I would like to thank the speakers, session chairmen, and participants for their contributions to a very stimulating conference.	1
It is my privilege to extend special thanks to the staff of Academic Press for their continued interest in this book, to J. R. Barton for her exceptionally competent work in preparing the manuscript for this book, and to Amoco Research Center and Cities Service Research Laboratory for technical assistance.	1
xi	ix
List of Contributors	vii
Preface	ix
Time Series Analysis and Control through Parametric Models	1
Hirotsugu Akaike	25
Non-Linear Time Series Modeling	25
C. W. J. Granger and A. Andersen	39
On G-Spectral Estimation	39
H. L. Gray, A. G. Houston, and F. W. Morgan	139
Multivariate Autoregression Estimation Using Residuals	139
Richard H. Jones	149
Two-Dimensional Recursive Filtering in Theory and Practice	163
James H. Justice	163
Adaptive Processing of Seismic Data	225
Stanley J. Laster	225
A Comparative Case Study of Several Spectral Estimators	245
Don McNamee	245
Application of Homomorphic Filtering to Seismic Data Processing	261
A. Oppenheim and J. Trichet	261
Waves Propagating in Random Media as Statistical Time Series	287
Enders A. Robinson	287
Estimating the Intensity of a Poisson Process	325
G. S. Watson	325

LIST OF CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Hirotsugu Akaike (1), Institute of Statistical Mathematics, 1-6-7 Minami-Azabu, Minato-Ku, Tokyo, Japan

Alan Anderson (25), Department of Economic Statistics, University of Sidney, New South Wales, Australia 2006

Clive W. J. Granger (25), Department of Economics, University of California, San Diego, La Jolla, California 92093

Henry L. Gray (39), Department of Statistics, Southern Methodist University, Dallas, Texas 75275

A. Glen Housman (39), NASA Johnson Space Center, Houston, Texas 77058

Richard H. Jones (139), Department of Biometrics, University of Colorado Medical Center, Denver, Colorado 80262

James H. Justice (163), Division of Mathematical Sciences, The University of Tulsa, Tulsa, Oklahoma 74104

Stanley J. Lasfer (225), Division of Earth Sciences, The University of Tulsa, Tulsa, Oklahoma 74104

Donald D. McIntire (245), W. L. Clayton Research Center, 3333 North Central Expressway, Richardson, Texas 75080

Fred W. Morgan (39), Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631

Alan V. Oppenheim (261), Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Eugene A. Robinson (287), 2630 Southwick Street, Houston, Texas 77059

Jesse M. Tribble (261), Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Geoffrey S. Watson (325), Department of Statistics, Princeton University, Princeton, New Jersey 08540

*Present address: Bell Laboratories, Murray Hill, New Jersey 07974

APPLIED TIME SERIES ANALYSIS

Glossary

xiii

ROBERT K. OTNES

Electromagnetic Systems Laboratories, Sunnyvale, California

LOREN ENOCHSON

*GenRad Inc.**Acoustics, Vibration and Analysis Division*

CONTENTS

Chapter 1 PRELIMINARY CONCEPTS

1.1	Introduction	1
1.2	Review of Complex Arithmetic	1
1.3	The Fourier Transform	4
1.4	The Boxcar Function and its Fourier Transform	13
1.5	Linear Systems	15
1.6	Convolution and Causality	19
1.7	The Effects of Finite Sample Length	21
1.8	Sampled Data and the Nyquist Frequency	24
1.9	Discrete Fourier Transform of Length N	29
1.10	The z Transform	37

Chapter 2 PROBABILITY AND STATISTICAL CONCEPTS

2.1	Introduction	40
2.2	Sample Values and Estimates	43
2.3	Normal Distribution	45
2.4	Correlation and Regression	49
2.5	Power Spectral Density Function	52
2.6	How to Compute Mean and Variance	55
2.7	Probability Histograms	57

iv

A Wiley-Interscience Publication
JOHN WILEY AND SONS
 New York • Chichester • Brisbane • Toronto

1 Contents

2.8	Peak Probability Density Functions	63
2.9	Multidimensional Density Functions	66
2.10	Examples and Applications of Probability Density Functions	67
Chapter 3		
3.1	Introduction	76
3.2	Data Acquisition	77
3.3	Digital Representation of Information	80
3.4	Analog to Digital Conversion	85
3.5	Orce: Errors	88
3.6	Conversion to Physical Units	93
3.7	Wild Point Editing	95
3.8	Trend Removal	98

COLLECTING AND PREPROCESSING DATA

4.1	Basic Concepts	106
4.2	First-Order Filters	108
4.3	Second-Order Filters	113
4.4	Higher-Order Filters	126
4.5	Basic Iideal Filters	133
4.6	Sinc Butterworth Lowpass Filter	137
4.7	Sinc Butterworth Highpass Filter	145
4.8	Bandpass Filters	146
4.9	Bandreject Filters	152
4.10	Tangent Filters	156
4.11	Other Recursive Filters	164
4.12	Nonrecursive (FIR) Filters	165
4.13	Filter Approximation Techniques	171

Chapter 4

DESIGN OF DIGITAL FILTERS

5.1	Introduction	179
5.2	Noise and Distortion	180
5.3	Deterioration	185

PRACTICAL ASPECTS OF DIGITAL FILTERING		
6.1	Introduction	259
6.2	Peak Probability Density Functions	63
6.3	Multidimensional Density Functions	66
6.4	Examples and Applications of Probability Density Functions	67
Chapter 3		
3.1	Introduction	76
3.2	Data Acquisition	77
3.3	Digital Representation of Information	80
3.4	Analog to Digital Conversion	85
3.5	Orce: Errors	88
3.6	Conversion to Physical Units	93
3.7	Wild Point Editing	95
3.8	Trend Removal	98

5.4	Filter Implementation	197
5.5	Decimation	202
5.6	Upwards Decimation	209
5.7	Reduction to a Common Sampling Rate	211
5.8	Complex Demodulation	212

259

Contents

xi

6.1	Background and Theory	219
6.2	Fast Fourier Transform Algorithm	239
6.3	Examples	260
Chapter 6		
7.1	Background and Theory	277
7.2	Differences Between Covariance and Convolution	284
7.3	Long Record Lengths and Basic Covariance Computations	285
7.4	Covariance and Convolution via FFT's	288
7.5	Wraparound and Aliasing Effects	295
7.6	How to Compute Covariance and Convolution Functions	303
7.7	Impulse Response Length and Bandwidth for Convolution Filtering	304
7.8	Normalization and Mean Removal in Covariance Computations	306
7.9	Examples of the Use of Covariance and Convolution	308
Chapter 7		
COVARIANCE AND CONVOLUTION FUNCTIONS		
8.1	General Considerations in Computing Spectra	316
8.2	Concept of Density	319
8.3	Effective Resolution Bandwidth	320
8.4	Resolution Limits	322
8.5	Statistical Stability	324
8.6	Leakage	326
8.7	How to Compute Spectral Functions	334
8.8	Tapering Functions—Data Windows	336
8.9	Examples of the Use of PSD Functions	360

Chapter 9
TRANSFER FUNCTIONS AND COHERENCE FUNCTION

1 Properties of Transfer Functions	363
2 Spectral Relationships for Single Input System	368
3 Spectral Relationships for Multiple Input Linear Systems	371
4 Ordinary, Multiple, and Partial Coherence Functions	374
5 Confidence Limits for Coherence	376
5 Confidence Limit Computations for Transfer Functions	379
6 How to Compute Transfer Functions	382
7 The Sweep Operator	386
8 Transfer Function from Sine Waves	388
9 Transfer Function from Random Inputs	393
10 Coherence Function for $B_t = 1/P$	394
11 Examples of Transfer Function Computations	396

GLOSSARY

a_{1P}	Recursive filter weight, first in cascade implementation
a_{2P}	Recursive filter weight, second in cascade implementation
b	Frequency interval ($= 1/NT$)
b_0	Overall nonrecursive scaling factor
b_{0P}	Nonrecursive filter weight, first in cascade implementation
b_{1P}	Nonrecursive filter weight, second in cascade implementation
b_{2P}	Nonrecursive filter weight, third in cascade implementation
B	Signal bandwidth
B_e	Effective resolution bandwidth in PSD calculations
$c(t)$	Convolution function
e	2.7182818...
$\exp(\cdot)$	$\exp(x) = e^x$
f	Frequency
F	Folding frequency
$h(i)$	Impulse response function
$H(k)$	Fourier transform of $h(i)$ (the transfer function)
i	Time index; time delay index
$\text{Im}[\cdot]$	Imaginary part of []
j	$\sqrt{-1}$
k	Frequency index
N	Number of points in the sample
n	Number of degrees of freedom

REFERENCES

2 References

- Abromowitz, M. and I. A. Stegun. *Handbook of Mathematical Functions*. U.S. Government Printing Office, Washington, D.C., 1964.
- Akaike, H. "On Informed Oscillation of the Sample Autocovariance Function and the Effect of Preswhitening Operation." *Annals of the Institute of Statistical Mathematics*, Vol. 13, pp. 127-144, 1962.
- Akaike, H. "On the Statistical Estimation of the Frequency Response Function of a System Having Multiple Input." *Annals of the Institute of Statistical Mathematics*, Vol. 17, No. 2, 1965.
- Balakrishnan, A. V. "On the Problem of Time Jitter in Sampling." *IRE Transactions on Information Theory*, Vol. IT-8, No. 3, pp. 226-236, April 1962.
- Bendat, J. S. and A. G. Piersol. *Random Data: Analysis and Measurement Procedures*. Wiley, New York, 1971.
- Bengus, V. A. "Estimation of the Coherence Spectrum and Its Confidence Interval Using the Fast Fourier Transform." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-17, No. 2, 1969.
- Bingham, C., M. D. Godfrey, and J. W. Tukey. "Modern Techniques of Power Spectrum Estimation." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-15, No. 2, pp. 56-66, 1967.
- Blackman, R. B. and J. W. Tukey. *The Measurement of Power Spectra from the Point of View of Communication Engineering*. Dover, New York, 1958.
- Bracewell, R. M. *The Fourier Transform and Its Applications*. McGraw-Hill, New York, 1965.
- Burnside, S. "On the Theory of Filter Amplifiers." *Experimental Wireless*, Vol. 7, pp. 536-541, Oct. 1930.
- Carter, G. C. "Estimation of the Magnitude-Squared Coherence Function." Naval Undersea Systems Center Report 4-143, May 19, 1972.
- Cleveland, W. S. and F. Parzen. "Estimation of Coherence, Frequency Response, and Ensemble Delay." *Techometrics*, May 1975.
- Cover, J. W. and J. W. Tukey. "An Algorithm for the Machine Calculation of Complex Fourier Series." *Mathematics of Computation*, Vol. 19, p. 297, 1965.
- Cramér, H. *Mathematical Methods of Statistics*. Princeton University Press, Princeton, N.J., 1946.
- Dn. W. G. and F. J. Massey. *Introduction to Statistical Analysis*, 3rd ed., McGraw-Hill, New York, 1969.
- D. H. and H. P. McKean. *Fisher's Series and Integrals*. Academic Press, New York, 1972.
- Dason, L. D. and N. R. Goodman. "Gaussian Approximations to the Distribution of Sample Coherence." AFFDL TR-65-57, Research and Technology Division, AFSC, Wright-Patterson Air Force Base, Ohio, Feb. 1965.
- Chet, R. and M. J. D. Powell. "A Rapidly Convergent Descent Method for Minimization." *Computer Journal*, Vol. 6, No. 2, 1963.
- Chie, G. and C. Moles. *Computer Solution of Linear Algebraic Systems*. Prentice-Hall, Englewood Cliffs, N.J., 1971.
- Dr. D. A. S.. *Statistics: An Introduction*. Wiley, New York, 1958.
- Dr. D. "Theory of Communication." *Journal IEEE (London)*, Vol. 93, Part 3, No. 26, 1946.
- Jemen, W. M. and G. Sande. "Fast Fourier Transforms for Fun and Profit." *AFIPS Conference Proceedings*, Vol. 29, 563-578, 1966.
- Jordan, N. R. "Measurement of Matrix Frequency Response Functions and Multiple Coherence Functions." AFFDL TR-65-56, Research and Technology Division, AFSC, Wright Patterson Air Force Base, Ohio, Feb. 1965.
- J. A. H. Jr. and J. D. Markel. "A Spectral Flatness Measure for Studying the Autocorrelation Method of Linear Speech Analysis." *IEEE Transactions on Speech Acoustics and Signal Processing*, PP. 207-211, 1974.
- J. A. H. Jr. and J. D. Markel. "Digital Lattice and Ladder Filter Synthesis." *IEEE Transaction on Audio and Electroacoustics*, Dec. 1973.
- Jeman, E. A. *Synthesis of Pulse Networks*. Wiley, New York, 1957.
- Jones, C. *Approximations for Digital Computers*. Princeton University Press, Princeton, N.J., 1955.
- J. M. "Estimation of Spectra after Hard Clipping of Gaussian Processes." *Technometrics*, Vol. 9, p. 391, 1967.
- J. H. "The Synthesis of Linear Recursive Digital Filters Optimal in a Minimax Sense." *Seventh Asilomar Conference on Circuits, Systems, and Computers*, Pacific Grove, Calif., pp. 513-517, Nov. 1973.
- H. P. *Fourier Analysis*, rev. ed., Simon and Schuster, New York, 1970.
- Johnson, L. B. "Roundoff Noise Analysis for Fixed Point Digital Filters Realized in Cascade or Parallel Form." *IEEE Transactions on Audio and Electroacoustics*, June 1970.
- Jones, G. M. and D. G. Watts. *Spectral Analysis and Its Applications*. Holden-Day, San Francisco, 1965.
- J. M. G. A. and M. A. Sidi-Ahmed. "A Computer Program for Filter Design Having Arbitrary Magnitude Specifications in the Frequency Domain." *International Journal of Numerical Methods (Great Britain)*, Vol. 6, No. 2, pp. 275-285, 1973.
- E. I. "A Stability Test for Linear Discrete Systems Using a Sample Division." *Proceedings of the I.R.E.*, Dec. 1961.
- E. I. and J. Blanchard. "A Stability Test for Linear Discrete Systems in Table Form." *Proceedings of the I.R.E.*, Dec. 1961.
- E. I. "Design Methods for Sampled Data Filters (Z-transform)." *Proceedings of the First Annual Allerton Conference on Circuit and System Theory*, Nov. 1963.

- Kelly, E., D. L. D. Enochson, and L. A. Rondineau. "Techniques and Errors in Measuring Cross-Correlation and Cross-Spectral Density Functions." NASA CR-7450, Feb. 1966.
- Kendall, M. G. and A. G. Stuart. *The Advanced Theory of Statistics*. Hafner, London, 1961.
- Kennedy, J. E. and F. B. Safford. "The Use of Vibration Impedance Measurements to Predict Blast Induced Structural Vibrations." *Fifth International Symposium on Military Applications of Blast Simulation*. Atomic Weapon Research Establishment, Foulness, England, Sept. 1974.
- Koopmans, L. H. *The Spectral Analysis of Time Series*. Academic Press, New York, 1974.
- Lanczos, C. *Applied Analysis*. Prentice-Hall, Englewood Cliffs, N.J., 1956.
- Liu, B. Ed. *Digital Filters and the Fast Fourier Transform*. Dowden, Hutchinson, and Ross, Succasunna, PA., 1975.
- Loizeau, J. W. "An Appraisal of Least Squares Computer Programs for the Electronic Computer from the Point of View of the User." *JASA*, Vol. 62, pp. 819-841, 1967.
- McCracken, J. H., T. W. Parks, and L. R. Rabiner. "A Computer Program for Designing Optimum FIR Linear Filters." *IEEE Transactions on Audio and Electroacoustics*, Dec. 1972.
- McCormick, D. W. "Finite Fourier Transform Theory and Its Application to the Computation of Convolutions, Correlations, and Spectra." Research Department, Technical Memorandum No. 8-66, Earth Sciences Division, Teledyne, Inc., Dec. 1966.
- Milgat, E. D. and D. S. Biomquist. *The Measurement of Time-Varying Phenomena*. Wiley, New York, 1971.
- Mintz, S. F. and F. B. Safford. "Dynamic Environment Simulation by Pulse Techniques." *Journal of the Engineering Mechanics Division, American Society of Civil Engineers*, EM-1, 1923 Feb. 1976.
- McMastre, H. W. "An Evaluation of Ten Fast Fourier Transfer Programs." Army Electronics Command, White Sands Missile Range, March 1973.
- Mittra, S. K. and R. J. Sherwood. "Digital Ladder Networks." *IEEE Transactions on Audio and Electroacoustics*, Feb. 1973.
- Neris, R. and E. Sloane. "A New Algorithm for Improving Digital Random Control System Speed and Accuracy." *IES Proceedings*, pp. 46-52, 1975.
- Nussbaum, H. "Certain Factors Affecting Telegraph Speed." *Bell Systems Journal*, Vol. 3, April 1924.
- Oder, E., M. J. R. Pierce, and C. E. Shannon. "The Philosophy of PCM." *Proceedings of IRE*, Nov. 1948.
- Oppenheim, A. V. et al. (Eds.), *Selected Papers in Digital Signal Processing II*. IEEE Press, New York, 1976.
- Ortisoy, J. F. "Design of Numerical Filters with Applications to Missile Data Processing." *Journal of the Association for Computing Machinery*, Vol. 8, No. 3, July 1961.
- Orriss, R. K. and L. Enochson. *Digital Time Series Analysis*. Wiley-Interscience, New York, 1972.
- Orriss, R. K. and L. P. McNamara. "Instability Thresholds in Digital Filters Due to Coefficient Rounding." *IEEE Transactions on Audio Electroacoustics*, Vol. AU-18, pp. 456-463, 1970.
- Orriss, R. K., H. A. Nathans, and L. Enochson. "A Procedure for Computing Power Spectral Density of Gust Data." AFFDL TR-49-11. Wright-Patterson Air Force Base, Ohio, March 1969.

444 References

- Parks, T. W. and J. H. McClellan. "A Program for the Design of Linear Phase Finite Impulse Response Digital Filters." *IEEE Transactions on Audio and Electroacoustics*, Aug. 1972.
- Parzen, E. "Mathematical Considerations in the Estimation of Spectra." *Techometrics*, Vol. 3, pp. 167-190, 1961.
- Pike, M. C. and I. D. Hill. "Algorithm 266. Pseudo Random Numbers (65)." *Collected Algorithms from ACM*, July 1965.
- Potter, R. W. *Combination of Time Windows and Time Shapes for Fourier Analysis*, 02-3952-0705. Healden-Pacazid, 1971.
- Rabiner, L. R. and C. M. Radier (Eds.). *Digital Signal Processing*. IEEE Press, New York, 1972.
- Rabiner, L. R. and B. Gold. *Theory and Application of Digital Signal Processing*. Prentice-Hall, Englewood Cliffs, N.J., 1975.
- Sande, G. "On an Alternative Method for Calculating Covariance Functions." Princeton Computer Memorandum, Princeton, N.J., 1965.
- Schafer, R. W. and L. R. Rabiner. "A Digital Signal Processing Approach to Interpolation." *Proceedings of the IEEE*, Vol. 61, No. 6, June 1973.
- Schatzoff, M., M. Fletcher, and S. Tsao. "Efficient Calculation of All Possible Regressions." *Technometrics*, Vol. 9, pp. 531-540, 1968.
- Schmid, L. P. "Efficient Autocorrelation." *Communications of the ACM*, Vol. 8, p. 115, 1965.
- Shannon, C. E. "Communication in the Presence of Noise." *Proceedings of the IRE*, Jan. 1949.
- Singleton, R. C. "A Method for Computing the Fast Fourier Transform with Auxiliary Memory and Limited High-Speed Storage." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-15, No. 2, June 1967.
- Singleton, R. C. "An Algorithm for Computing the Mixed Radix Fast Fourier Transform." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-17, No. 2, June 1969.
- Sloane, E. A. "Comparison of Linearly and Quadratically Modified Spectral Estimates of Gaussian Signals." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-17, No. 2, 1969.
- Steiglitz, K. *An Introduction to Discrete Systems*. Wiley, New York, 1974.
- Stockham, T. G. "High Speed Convolution and Correlation." *AFIPS Conference Proceedings*, Vol. 28, pp. 229-233, 1966.
- Storer, J. E. *Private Seminar Series*. McGraw-Hill, New York, 1957.
- Theilheimer, F. "A Mann Version of the Fast Fourier Transform." *IEEE Transactions on Audio and Electroacoustics*, Vol. AU-17, No. 2, 1969.
- Wampler, R. N. "On the Accuracy of Least Squares Computer Programs." *JASA*, Vol. 65, p. 549, June 1970.
- Wenreb, S. "A Digital Spectral Analysis Technique and Its Application to Radio Astronomy." MIT Research Laboratory of Electronics, Technical Report 412, Aug. 1963.
- Wiener, N. *Extrapolation, Interpolation, and Smoothing of Stationary Time Series*. MIT Press, Cambridge, Mass., 1949.

DIGITAL FOUNDATIONS FOR TIME SERIES ANALYSIS

Vol. 1. THE BOX-JENKINS APPROACH

ENDERS A. ROBINSON

University of Tulsa

MANUEL T. SILVIA

U.S. Naval Underwater Systems Center,
Newport, Rhode Island

PREFACE

During the past decade a significant new approach to time series analysis came into importance. The major event which produced this advance was the publication in 1970 of the book Time Series Analysis: Forecasting and Control by George E.P. Box and Gwilym M. Jenkins. The reason why the work of Box and Jenkins is so important is that they open up many new ways to apply time series analysis in order to solve real-world problems. The very vastness of our present technology, relative to the number of scientists and engineers working in the various disciplines, tends to fragment research and development efforts. One of the most severe kinds of fragmentation is that between theory and practice. The work of Box and Jenkins has none of this fragmentation. Instead Box and Jenkins show how the mathematics of time series analysis can be applied to an increasing number of complex problems which require solution in order to meet the needs of our technological society. Few works have succeeded as well as that of Box and Jenkins as a unifying force in bringing everything together in the solution of practical problems.

The present book with the subtitle The Box-Jenkins Approach is Volume 1 of a two-volume work entitled Digital Foundations of Time Series Analysis. This volume gives a self-contained development and explanation of the basic principles of the Box-Jenkins method of time series analysis. By emphasizing the fundamentals instead of advanced techniques, this volume lays the groundwork required for a deeper understanding of the classic book of Box and Jenkins. Unity of treatment is provided by first developing the simple and the multiple regression models of statistics and the linear systems models of engineering. The resulting structure provides the framework for a firm grasp of the Box-Jenkins time series approach.

Advances in integrated circuit technology are having a major impact on the technical areas to which time series analysis can be applied. One of the primary reasons for the importance of digital technology in time series analysis is the ease with which electrical representations of data can be manipulated. The great importance of the digital computer in carrying out time series analysis is reflected in our digital approach throughout this book. This volume is intended as a text for a one-semester course in time series analysis. The prerequisite is a one-semester course in statistics. An appendix on matrix algebra is given for those readers who have not had an introduction to this subject. Upon completion of a course based on this volume, the student would be prepared for a course in time series analysis at the level of the book by Box and Jenkins. He would also be prepared to start applying time series methods to the solution of real world problems. In this respect, this book is also useful as a reference for those engaged in empirical statistical work which involves the analysis of time series data.

Volume 2 of this work has the subtitle Wave-Equation Space-Time Processing. Volume 2 brings together analytic and digital methods to process data associated with multidimensional models, particularly those requiring both space and time variables for their descriptions. The approach is to consolidate the space-time representation of physical processes involving wave motion by means of the wave equation. Typical problem areas are those associated with sonar, where there is a need for simultaneously fulfilling a number of requirements such as the determination of multiple signal sources, their location in space, and their identification. Similar problems arise in radar, optics, radio astronomy, geophysics, and medicine.

HOLDEN-DAY, INC.

San Francisco • London • Dusseldorf • Singapore
Sydney • Tokyo • New Delhi • Mexico City

CONTENTS

264

PREFACE

Another important area of time series analysis is that associated with control theory in the areas of state-space modeling and Kalman filtering. The volumes of this work do not cover this field, and instead we refer the reader to the book *Discrete Techniques of Parameter Estimation* by Jerry Mendel published by Marcel Dekker, New York, 1973.

We are indebted to many people in the writing of this work. Our sincere thanks to Dr. Sven Treitel of Amoco Production Company and Professor Markus Ih of the Seismological Institute of Uppsala, Sweden, for their help and encouragement. We also want to thank our colleagues who participated in the Seminar on Wave Propagation at the University of Tulsa on the spring semester of 1979: Professor J.B. Bednar, Professor William A. Coberly, Dr. Kenneth R. Hessell, Professor David F. Findley, and Dr. Arthur Negelein. We would like to thank Barbara A. Clark for her excellent typing of the manuscript.

Manuel T. Silvia
Enders A. Robinson
Port, Rhode Island
Oklahoma

PREFACE	1
INTRODUCTION TO TIME SERIES ANALYSIS	1
1.1 Probability	1
1.2 Random variables	11
1.3 Time series	16
1.4 Arithmetic and geometric summation	23
LINEAR REGRESSION MODEL	30
2.1 Scientific models	30
2.2 Expected value, variance, covariance	34
2.3 Classic linear regression model in the case of two variables	41
2.4 Bivariate Gaussian distribution	47
2.5 Least-squares estimates	56
2.6 Tests of significance for the regression line	63
2.7 Variances and covariances of the empirical regression coefficients	70
2.8 The Gauss multipliers	73
2.9 Tests of significance for the regression coefficients	78
2.10 Conditional variance of the error at a sample point	84
2.11 Unbiased estimate of σ^2	87
2.12 Conditional variance of the error at a fresh point	90
THE MODEL FOR MULTIPLE REGRESSION	93
3.1 Matrix representation of the sample observations	93
3.2 Linear model in the case of many variables	96
3.3 Least-squares estimates	99
3.4 Partitioning the total sum of squares	104
3.5 Tests of significance for the regression function and coefficients	111
3.6 Multiple and partial correlation	115
3.7 Multiple regression as net (or partial) regression	122
3.8 Net (or partial) contribution of an independent variable	133
3.9 Linear transformations	136
3.10 Orthogonality	137
3.11 Net contribution for the last independent variable	138
3.12 Sequential contribution	140
3.13 The projection matrix	144
3.14 Expectation of explained sum of squares	147
3.15 Expectation of the unexplained sum of squares	149
3.16 Expectation of sequential contributions	151
3.17 Correlations among fitted values and the errors	153
3.18 Computation of the orthogonal representation	155
LINEAR SYSTEMS	158
4.1 Convolution and the z-transform	158
4.2 Autocorrelation and cross-correlation	181

4.3 Minimum-delay filters	186
4.4 Convolution of digital filters	197
4.5 Feedback stability	208
4.6 Exact deconvolution	219
4.7 Approximate deconvolution	233
4.8 Spiking filters and spiking filters	248
4.9 Invertibility and minimum-delay	257
4.10 Conversion to invertibility	262
4.11 Rational approximations	265
 APPENDIX A. THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS	275
5.1 Box-Jenkins time series models	275
5.2 The autoregressive (or AR) process	282
5.3 The moving average (or MA) process	297
5.4 The mixed autoregressive-moving average (or ARMA) process	304
5.5 Nonstationary processes	311
5.6 Box-Jenkins modeling	319
5.7 Forecasting	347
5.8 Seasonal processes	353
 APPENDIX B. REDUCED ARRAYS AND LINEAR FORMS	357
A.1 The Gauss method for solving simultaneous equations	357
A.2 The m-reduced array	363
A.3 Linear combinations of unknowns	366
A.4 Several linear combinations of unknowns	373
A.5 Mechanical interpretation of m-reduced array	376
 APPENDIX C. DETERMINANTS AND MATRICES	380
B.1 Permutations	380
B.2 Determinants	380
B.3 Cramer's rule	393
B.4 Matrices	394
B.5 Vectors	407
B.6 Rank of a matrix	419
B.7 Quadratic forms	421
B.8 Eigenvalues, Eigenvectors, and orthogonal matrices	425
B.9 The trace of a matrix	428
B.10 Idempotent matrices	428
B.11 The projection matrix in regression analysis	429
 APPENDIX D. THE TOEPLITZ RECURSION	433
E.1 REFERENCES	437
E.2 SELECTED PROBLEMS	440
E.3 TECHNIQUE	442
E.4 APPENDIX	448

deconvolution of geophysical time series in the exploration for oil and natural gas

CONTENTS

Foreword	VII
Preface	IX
PRELIMINARY CHAPTER. OVERVIEW OF GEOPHYSICS	1
1. Geophysical exploration	1
2. Digital processing of seismic data	8
3. Migration of seismic data	14
CHAPTER 1. GEOPHYSICAL MODELING	21
1.1. Models in science and engineering	21
1.2. Evolution of geophysical models	23
1.3. Statistical models in geophysics	27
1.4. The convolution model	30
1.5. The Robinson seismic model	32
CHAPTER 2. THE LAYERED EARTH MODEL	47
2.1. Minimum phase and minimum-delay	47
2.2. Transmission and reflection response for a single layer	51
2.3. Transmission and reflection response for multiple layers	60
2.4. Characteristic and reflection polynomials	72
CHAPTER 3. HOMOMORPHIC ANALYSIS AND SPECTRAL FACTORIZATION	81
3.1. Homomorphisms in engineering and science	81
3.2. Spectral factorization	84
3.3. The kepstrum	92
CHAPTER 4. DECONVOLUTION	113
4.1. Predictive deconvolution	113
4.2. Predictive deconvolution to eliminate multiple reflections	136
4.3. Kepstral deconvolution	159
4.4. State space filtering	168
CHAPTER 5. COMPUTER PROGRAMS FOR FILTERING AND SPECTRAL ANALYSIS	181
5.1. Introduction	181
5.2. The "standard" package of subroutines	181
5.3. The filter package	195
5.4. Spectral package	215
5.5. Concluding remarks	226

MANUEL T. SILVIA
Research Scientist
United States Naval Underwater Systems Center, Newport, Rhode Island

and

ENDERS A. ROBINSON

Distinguished Professor of Mathematics and Geophysics
University of Tulsa, Tulsa, Oklahoma

Associate Professor of Electrical Engineering
Northeastern University, Boston, Massachusetts

Consultant

Amerco Production Company, Tulsa, Oklahoma

ELSTMWIER SCIENTIFIC PUBLISHING COMPANY
 Amsterdam — Oxford — New York 1979

REFERENCES

- Cole, R.H., 1948. *Underwater Explosions*. Princeton University Press, Princeton, N.J.
- Dahlman, O. and Israelsen, H., 1977. *Monitoring Underground Nuclear Explosions*. Elsevier, Amsterdam.
- Davenport, W.B., Jr. and Root, W.L., 1958. *An Introduction to the Theory of Random Signals and Noise*. McGraw-Hill, New York, N.Y.
- Deutsch, R., 1965. *Estimation Theory*. Prentice-Hall, Englewood Cliffs, N.J.
- Dobrin, M.B., 1976. *Introduction to Geophysical Prospecting*. McGraw-Hill, New York, N.Y., 3rd ed.
- Doob, J.L., 1953. *Stochastic Processes*. Wiley, New York, N.Y.
- Durbin, J., 1960. The fitting of time series models. *Rev. Inst. Int. Stat.*, 26: 233-243.
- Fatou, P., 1906. Séries trigonométriques et séries de Taylor. *Acta Math.*, 30: 335-345.
- Frost, O.L., 1976. Power Spectrum Estimation. Paper presented at NATO Advanced Study Institute on Signal Processing, Portovenere.
- Fryer, G.J., Odegaard, M.E. and Sutton, G.H., 1975. Deconvolution and spectral estimation using final prediction error. *Geophysics*, 40: 411-425.
- Galbraith, J.N., 1971. Prediction error as a criterion for operator length. *Geophysics*, 35: 251-265.
- Gauss, C.F., 1809. *Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum*. Perthes and Besser, Hamburg (translation published by Dover, New York, N.Y., 1963).
- Gentleman, W.M. and Sande, G., 1966. Fast Fourier transforms for fun and profit. In: 1966 Fall Joint Computer Conference. AFIPS Conf. Proc., 29: 563-576.
- Goupillaud, P.L., 1961. An approach to inverse filtering of near-surface layer effects from seismic records. *Geophysics*, 26: 754-760.
- Grenander, U. and Szegö, G., 1958. *Toepplitz Forms and Their Applications*. University of California Press, Los Angeles, Calif.
- Hagedorn, B.B., 1954. A process of seismic reflection interpretation. *Geophys. Prospect.*, 2: 85-127.
- Hille, E. and Phillips, R.S., 1918. *Functional Analysis and Semigroups*. American Mathematical Society, Providence, R.I.
- Hobson, E.W., 1950. *The Theory of Functions of a Real Variable and the Theory of Fourier's Series*. Harren Press, Washington, D.C.
- Hofstetter, E.M., 1974. An introduction to the mathematics of linear predictive filtering as applied to speech analysis and synthesis. *Lincoln Lab. MIT Tech. Note*, 1973-36, Rev. 1.
- Jenkins, G.M. and Watts, D.G., 1968. *Spectral Analysis and Its Applications*. Holden-Day, San Francisco, Calif.
- Jones, R.H., 1973. Autoregressive spectrum estimation. *Proc. Am. Meteorol. Soc. 3rd Conf. on Probability and Statistics in Atmospheric Science*.
- Kailath, T., 1968. An innovations approach to least squares estimation, I. Linear filtering in additive white noise. *IEEE Trans. Autom. Control*, 13: 616-655.
- Kailath, T., 1971. A view of three decades of linear filtering theory. *IEEE Trans. Inf. Theory*, 20: 146-181.
- Kalman, R.E., 1960. New methods and results in linear prediction and filtering theory. *Trans. ASME, 82D*, 33-45.
- Kalman, R.E. and Bucy, R.S., 1961. New results in linear filtering and prediction theory. *Trans. ASME, 83D*, 35-108.
- Kemerait, R.C. and Childers, D.C., 1972. Signal detection and extraction by cepstrum techniques. *IEEE Trans. Inf. Theory*, 18: 745-759.
- Khintchine, A., 1931. Korrelationstheorie der stationären stochastischen Prozesse. *Math. Ann.*, 109: 604-615.
- Kolmogorov, A.N., 1939. Sur l'interpolation et extrapolation des suites stationnaires. *C.R. Acad. Sci. Paris*, 208: 2043-2045.
- Atsakai, H., 1968. On the use of a linear model for the identification of feedback systems. *Ann. Inst. Stat. Math.*, 20: 425-439.
- Atsakai, H., 1969. Fitting autoregressive models for prediction. *Ann. Inst. Stat. Math.*, 21: 243-257.
- Atsakai, H., 1971. Autoregressive model fitting for control. *Ann. Inst. Stat. Math.*, 23: 163-180.
- Andersen, N., 1974. On the calculation of filter coefficients for maximum entropy spectral analysis. *Geophysics*, 39: 69-72.
- Anstey, N.A., 1966. The sectional autocorrelogram and the sectional retrocorrelogram. *Geophys. Prospect.*, 14: 389-426.
- Bacskay, M.M., 1959. Water reverberations — their nature and elimination. *Geophysics*, 24: 233-261.
- Bain, M., 1967. *Mathematical Aspects of Seismology*. Elsevier, Amsterdam.
- Bain, M., 1973. *Introduction to Seismology*. Birkhäuser, Basel and Stuttgart.
- Bain, M., 1974. *Spectral Analysis in Geophysics*. Elsevier, Amsterdam.
- Balemar, H., 1944. *Partial Differential Equations of Mathematical Physics*. Dover, New York, N.Y.
- Bayless, J.W. and Brigham, E.O., 1970. Application of the Kalman filter to continuous signal restoration. *Geophysics*, 35: 2-23.
- Bereshoff, A.J. and Zaanen, P.R., 1976. A comparison between Wiener filtering, Kalman filtering, and deterministic least squares estimation. *Geophys. Prospect.*, 24: 141-197.
- Berryman, L.H., Goupillaud, P.L., and Waters, K.H., 1958. Reflections from multiple transmission layers. *Geophysics*, 23: 223-243.
- Blackman, R.B. and Tukey, J.W., 1958. *The Measurement of Power Spectra*. Dover, New York, N.Y.
- Bozé, H.W., 1945. *Network Analysis and Feedback Amplifier Design*. D. Van Nostrand, Princeton, N.J.
- Bozert, B.P. and Ossanna, J.F., 1966. The heuristics of cepstrum analysis of a stationary complex echoed Gaussian signal in stationary Gaussian noise. *IEEE Trans. Inf. Theory*, 12: 373-380.
- Bozert, B.P., Healy, M.J.R. and Tukey, J.W., 1963. The quefrency analysis of time series for echoes. In: M. Rosenblatt (Editor), *Proceedings of the Symposium on Time Series Analysis*. Wiley, New York, N.Y., 209-243.
- Box, G.E.P. and Jenkins, G.M., 1970. *Time Series Analysis Forecasting and Control*. Holden-Day, San Francisco, Calif.
- Buij, P., Stoofa, P.L. and Eryah, G.M., 1974. The application of homomorphic deconvolution to shallow-water marine seismology, 2. Real data. *Geophysics*, 39: 417-426.
- Ellis, J.P., 1966. A New Analysis Technique for Time Series Data. Paper presented at NATO Advanced Study Institute on Signal Processing, Enschede.
- Eitz, K.E., Ewing, M., Press, F. and Stuklen, E.J., 1951. A seismic wave guide phenomenon. *Geophysics*, 16: 594-612.
- Gerrhout, J., 1976. *Fundamentals of Geophysical Data Processing*. McGraw-Hill, New York, N.Y.

- Kolmogorov, A.N., 1911a. Interpolation and extrapolation of stationary random sequences. *Izv. Acad. Sci. USSR. Mat. Ser.*, 5: 3–21 (in Russian). (Translation by W. Doyle and J. Selin, RM-3090-PR, Rand Corp., Santa Monica, Calif., 1962.)
- Kolmogorov, A.N., 1911b. Stationary sequences in Hilbert space. *Bull. State Univ. Moscow. Math.*, 2 (in Russian). (A translation by N. Artin is available in many libraries.)
- Kulhanek, O., 1975. *Introduction to Digital Filtering in Geophysics*. Elsevier, Amsterdam.
- Kunetz, G., 1961. Generalization des opérateurs d'antirézonance à un nombre quelconque de réflecteurs. *Geophys. Prospect.*, 12: 283–289.
- Kunetz, G. and Fournain, J.M., 1965. Efficient deconvolution of marine seismic records. *Geophysics*, 33: 112–123.
- Lacoss, R.T., 1971. Data adaptive spectral analysis methods. *Geophysics*, 36: 661–675.
- Lamb, H., 1901. Propagation of tremors over the surface of an elastic solid. *Philos. Trans. R. Soc. Lond. Ser. A*, 203: 1–12.
- Lee, Y.W., 1960. *Statistical Theory of Communication*. Wiley, New York, N.Y.
- Levinson, N., 1947. A heuristic exposition of Wiener's mathematical theory of prediction and filtering. *J. Math. Phys.*, 25: 110–119.
- Makhoul, J., 1975. Linear prediction: a tutorial review. *Proc. IEEE*, 63: 561–580.
- Marden, M., 1966. *Geometry of Polynomials*. American Mathematical Society, Providence, R.I.
- Markel, J.D., 1971. FFT pruning. *IEEE Trans. Audio Electroacoust.*, 19: 305–311.
- Markel, J.D., 1972. Digital inverse filtering – a new tool for formant trajectory estimation. *IEEE Trans. Audio Electroacoust.*, 20: 129–137.
- Markel, J.D. and Gray, A.H., 1976. *Linear Prediction of Speech*. Springer-Verlag, New York, N.Y.
- Mendel, J.M., 1973. *Discrete Techniques of Parameter Estimation*. Marcel Dekker, New York, N.Y.
- Mendel, J.M., 1976. Single-channel white noise estimators for predictive deconvolution. Paper presented at the 46th SEG Meeting, Houston, Texas.
- Nettleton, L.L., 1940. *Geophysical Prospecting for Oil*. McGraw-Hill, New York, N.Y.
- Nuttall, A.H., 1976. Spectral analysis of a univariate process with bad data points, via maximum entropy and linear predictive techniques. *USC TR*, No. 5303, Naval Underwater Systems Center, Conn.
- Oppenheim, A.V. and Schafer, R.W., 1975. *Digital Signal Processing*. Prentice-Hall, Englewood Cliffs, N.J.
- Oppenheim, A.V., Kopec, G.E., and Trichter, J.M., 1976. Signal analysis by homomorphic prediction. *IEEE Trans. Acoust., Speech, Signal Process.*, 24: 327–332.
- Ott, N. and Meder, H.G., 1972. The Kalman filter as a prediction error filter. *Geophys. Prospect.*, 20: 549–560.
- Papoulis, A., 1965. *Probability, Random Variables and Stochastic Processes*. McGraw-Hill, New York, N.Y.
- Parzen, E., 1971. Some recent advances in time series analysis. In: M. Rosenblatt (Editor), *Statistical Models and Turbulence*. Springer-Verlag, New York, N.Y.
- Peacock, K.L. and Treitel, S., 1969. Predictive deconvolution: theory and practice. *Geophysics*, 34: 155–169.
- Peterson, R.A. and Walter, W.C., 1971. *Through the Kaleidoscope*. Lecture notes prepared by United Geophysical Corporation.
- Flueger, J., 1972. Spectra of water reverberations for primary and multiple reflections. *Geophysics*, 37: 785–796.
- Whitson, S.D., 1823. Sur la distribution de la chaleur dans les corps solides. *J. Ec. R. Polytech.*, Ser. I, 19: 1–162.
- Wicker, N., 1953. The form and laws of propagation of seismic wavelets. *Geophysics*, 18: 19–40.
- Wicker, N., 1977. *Transient Waves in Visco Elastic Media*. Elsevier, Amsterdam.
- Robinson, E.A., 1951. *Predictive Decomposition of Time Series with Applications to Seismic Exploration*. Ph.D. Thesis, MIT, Cambridge, Mass. Also in *Geophysics*, 1967, 32: 118–181.
- Robinson, E.A., 1957. Predictive decomposition of seismic traces. *Geophysics*, 22: 767–778.
- Robinson, E.A., 1962. *Random Wavelets and Cybernetic Systems*. Charles Griffin and Co., London.
- Robinson, E.A., 1967a. *Multichannel Time Series Analysis with Digital Computer Programs*. Holden-Day, San Francisco, Calif.
- Robinson, E.A., 1967b. *Statistical Communication and Detection with Special Reference to Digital Data Processing of Radar and Seismic Signals*. Charles Griffin and Co., London.
- Robinson, E.A., 1975. Dynamic predictive deconvolution. *Geophys. Prospect.*, 23: 780–798.
- Robinson, E.A. and Treitel, S., 1969. *The Robinson-Treitel Reader*. Compiled by Seismograph Service Corporation, Tulsa, Okla.
- Robinson, E.A. and Wold, H., 1963. Minimum-delay structure of least-squares and lossipso predicting systems for stationary stochastic processes. In: M. Rosenblatt (Editor), *Proceedings of the Symposium on Time Series Analysis*. Wiley, New York, N.Y., pp. 192–196.
- Schäfer, R.W., 1969. Echo removal by discrete generalized linear filtering. *Res. Lab. Electron.*, MIT, Tech. Rep., No. 466.
- Schwarz, H.A., 1872. Zur Integration der partiellen Differentialgleichung. *Z. Reine Angewandte Math.*, pp. 218–254.
- Senmoto, S. and Childers, D.G., 1972. Signal resolution via digital inverse filtering. *IEEE Trans. Aerosp. Electron. Syst.*, 8: 633–640.
- Sherwood, J.W.C. and Trioley, A.W., 1965. Minimum-phase and related properties of the response of a horizontally stratified absorptive earth to plane acoustic wave. *Geophysics*, 30: 191–197.
- Srinath, M.D. and Viswanathan, M.M., 1975. Sequential algorithm for identification of an autoregressive process. *IEEE Trans. Autom. Control*, 20: 542–546.
- Stoffa, P., Buhl, P., and Bryan, G., 1974. The application of homomorphic deconvolution to shallow-water marine seismology. I. Theory. *Geophysics*, 39: 417–436.
- Stolt, R.H., 1978. Migration by Fourier transform. *Geophysics*, 43: 23–38.
- Szege, G., 1915. Ein Grenzwertsatz über die Topologischen Determinanten einer reellen positiven Funktion. *Math. Ann.*, 76: 490–503.
- Szege, G., 1939. Orthogonal polynomials. *Am. Math. Soc. Colloq. Publ.*, 23.
- Treitel, S., 1966. Seismic wave propagation in layered media in terms of communication theory. *Geophysics*, 25: 106–129.
- Treitel, S. and Robinson, E.A., 1966. The design of high resolution digital filters. *IEEE Trans. Geosci. Electron.*, 4: 25–38.
- Utrich, T.J., 1971. Application of homomorphic deconvolution to seismology. *Geophysics*, 36: 650–660.
- Utrich, T.J. and Clayton, R.W., 1976. Time series modelling and maximum entropy. *Phys. Earth Planet. Inter.*, 12: 188–200.
- Wadsworth, G.P., Robinson, E.A., Bryan, J.G., and Hurley, P.M., 1953. Detection of reflection on seismic records by linear operators. *Geophysics*, 18: 539–586.
- White, R.E. and O'Brien, P.N.S., 1974. Estimation of the primary seismic pulse. *Geophys. Prospect.*, 22: 627–651.
- Whittle, P., 1969. A view of stochastic control theory. *J. R. Stat. Soc. Ser. A*, 132: 320–334.
- Wiener, N., 1930. Generalized harmonic analysis. *Acta Math.*, 55: 117–258.

- Wiener, N., 1912. The extrapolation, interpolation, and smoothing of stationary time series with engineering applications. *MIT DIC Contract*, No. 6037, Cambridge, Mass., National Defense Research Council, Section D2. (Reprinted 1949, Wiley, New York, N.Y.)
- Wiggins, R.A. and Robinson, E.A., 1965. Recursive solution to the multichannel filtering problem. *J. Geophys. Res.* 70: 1885-1891.
- Wold, H., 1954. *A Study in the Analysis of Stationary Time Series*. Almqvist and Wiksell, Uppsala, 2nd ed.
- Wood, L.C. and Treitel, S., 1975. Seismic signal processing. *Proc. IEEE*, 63: 649-661.
- Wuenschel, P.C., 1960. Seismogram synthesis including multiples and transmission coefficients. *Geophysics*, 25: 106-129.
- Yule, G.U., 1907. On the theory of correlation for any number of variables treated by a new system of notation. *Proc. R. Stat. Soc.*, 79: 182-193.
- Yule, G.U., 1927. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers. *Philos. Trans. Ser. A*, 226: 267-298.
- Zadeh, L.A. and Ragazzini, J.R., 1950. An extension of Wiener's theory of prediction. *J. Appl. Phys.*, 21: 645-655.

1979

ANALYSIS OF ECONOMIC TIME SERIES

A Synthesis

Marc Nerlove

Department of Economics
Northwestern University
Evanston, Illinois

David M. Grether

Division of the Humanities and Social Sciences
California Institute of Technology
Pasadena, California

José L. Carvalho

Fundação Getúlio Vargas-F.P.G.E.
Rio de Janeiro-R.J., Brazil

CONTENTS

Preface

xiii

Chapter I	A History of the Idea of Unobserved Components in the Analysis of Economic Time Series	
1.	Introduction	1
2.	Background	2
3.	Origins	2
4.	Nineteenth Century Contributors	6
5.	Recent Developments	11
6.	Application to Seasonal Adjustment and "Current Analysis"	16
7.	Application to the Historical Analysis of Business Cycles	18
Chapter II	Introduction to the Theory of Stationary Time Series	
1.	Introduction	22
2.	What Is a Stationary Time Series? Ergodicity	23
3.	The Wold Decomposition Theorem	30
Chapter III	The Spectral Representation and Its Estimation	
1.	Introduction	37
2.	Covariance Generating Functions	37
3.	The Spectral Representation of a Stationary Time Series	43

vii

ACADEMIC PRESS New York San Francisco London 1979
A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents	Contents	Contents
ix		
271		
Chapter IV Formulation and Analysis of Unobserved-Components Models		
4. The Cross Spectral Distribution Function of Two Jointly Stationary Time Series and Its Invariance 5. Estimation of the Autocovariance Function and the Spectral Density Function	69 1. Introduction 2. Unobserved-Components Models and Their Canonical Forms 3. Discussion on a General Method for the Determination of the Autocovariances of a Mixed Moving-Average Autoregressive Process	51 57 70 78
Chapter V Elements of the Theory of Prediction and Extraction		
1. Introduction 2. Prediction 3. Examples of the Application of Minimum-Mean-Square-Error Forecasts 4. Signal Extraction 5. Examples of Minimum-Mean-Square-Error Signal Extraction	86 86 89 97 98	86 86 89 97 98
Chapter VI Formulation of Unobserved-Components Models and Canonical Forms		
1. Introduction 2. Determining the Form of a Univariate Time-Series ARMA Model 3. Determining the Form of a Univariate Time-Series Unobserved-Components Model 4. The Analysis of a Time Series by More Than Its Own Past	103 104 109 115	103 104 109 115
Chapter VII Estimation of Unobserved-Components and Canonical Models		
1. Introduction 2. ARMA Model Estimation in the Time Domain 3. UIC Model Estimation in the Time Domain 4. ARMA Model Estimation in the Frequency Domain 5. Unobserved-Components Model Estimation in the Frequency Domain 6. Hypothesis Testing 7. Estimation of Multiple Time-Series Models	120 121 125 132 137 139 139	120 121 125 132 137 139 139
Chapter VIII Appraisal of Seasonal Adjustment Techniques		
1. Criteria for "Optimal" Seasonal Adjustment 2. Choice of Models 3. Some Results 4. Seasonal Adjustment and the Elimination of Structural Models 5. Conclusion	147 154 156 162 170	147 154 156 162 170
Chapter IX On the Comparative Structure of Serial Dependence in Some U.S. Price Series		
1. Introduction 2. Brief Characterization of Selected Nonindustrial Price Series of the Bureau of Labor Statistics 3. Buyer's Prices and Seller's Prices: The National Bureau of Economic Research Series and the Stigler-Kirchdahl Study 4. Conclusions	172 175 181 200	172 175 181 200
Chapter X Formulation and Estimation of Mixed Moving-Average Autoregressive Models for Single Time Series: Examples		
1. Introduction 2. The Formulation Procedure of Box and Jenkins 3. An Alternative Method for the Formulation of an ARIMA Model 4. The Detailed Examples 5. Comparison between Estimation Methods in the Frequency and Time Domains	201 202 205 218 219	201 202 205 218 219
Chapter XI Formulation and Estimation of Multivariate Mixed Moving-Average Autoregressive Time-Series Models		
1. Introduction 2. A Single-Equation Approach 3. A Simultaneous-Equations Approach 4. Estimation of Multiple Time-Series Models for Interrelated Agricultural Prices 5. Testing and Checking the Multivariate Time-Series Models for Interrelated Agricultural Prices	229 230 238 242 257	229 230 238 242 257
Chapter XII Formulation and Estimation of Unobserved-Components Models: Examples		
1. Introduction 2. Formulation of the Models: Trend Reduction	261 262	261 262

<p>Contents</p> <p>3. Estimation of the Models in Time and Frequency Domains 4. Predictive Properties of Unobserved Components Models</p> <p>Chapter XIII Application to the Formulation of Distributed-Lag Models</p> <p>1. Introduction 2. Prediction and Expectation-Formation Models 3. Signal Extraction 4. Distributed Lags in Dynamic Models 5. Estimation</p> <p>Chapter XIV A Time-Series Model of the U.S. Cattle Industry</p> <p>1. Introduction 2. The Cattle Industry 3. Cattleman Behavior: A Sample Example 4. Cattleman Behavior: A Quarterly Model 5. Tests of the Model with Quasi-Rational Expectations</p> <p>Appendix A The Work of Buys Ballot</p> <p>Appendix B Some Requisite Theory of Functions of a Complex Variable</p> <p>1. Complex Numbers 2. Simple Functions of a Complex Variable 3. Limits, Continuity, Derivatives, Singularities, and Rational Functions 4. Complex Integration, Cauchy's Theorem 5. Series Expansions: Taylor's Series, Laurent's Series 6. The Residue Theorem and Its Applications</p> <p>Appendix C Fourier Series and Analysis</p> <p>1. Introduction 2. Periodic Functions and Trigonometric Series of a Periodic Function 3. Orthogonal System of Functions 4. Questions of Convergence and Goodness of Approximation 5. Fourier Transforms and "Windows"</p> <p>Appendix D Whittle's Theorem</p> <p>Appendix E Inversion of Tridiagonal Matrices and a Method for Inverting Toeplitz Matrices</p>	<p>Contents</p> <p>270 284 291 294 308 311 320</p> <p>291 294 308 311 320</p> <p>291 294 308 311 320</p> <p>327 328 329 337 348</p> <p>354</p> <p>361 364 367 369 373 376</p> <p>380 381 388 391 404</p> <p>413</p> <p>416</p>
--	--

1978

TIME SERIES ANALYSIS: REGRESSION TECHNIQUES

CHARLES W. OSTRUM, JR.
Michigan State University

Editor's Introduction

Social scientists have become increasingly concerned with the analysis of change. Such an emphasis is the focus of TIME SERIIS ANALYSIS, which examines techniques based on regression analysis for the study of change.* Many techniques are employed in the analysis of change, but regression analysis is the one most commonly employed and thus in the greatest need of a clear explication.

Research employing statistical methods will always have at least one of two fundamental types of data set: (1) *cross-sectional* data, in which the researcher has observations on a set of variables at a given point in time across many nations, states, counties, cities, or other units of analysis; or (2) *time-series* data, in which one has a set of observations on some variable for the same unit of analysis (such as a nation, state, etc.) over a series of time points (days, months, years, etc.). For either type of data, one can employ techniques based on regression analysis. Why, then, a special paper on regression techniques in TIME SERIIS ANALYSIS?

The answer lies in the nature of time-series data. The regression model is based on a specific set of assumptions, relatively few in nature but very important if one is not to make erroneous inferences from the analysis of a data set. When we speak in terms of change over time, we may think of the analogy of "time's arrow," i.e., events in time move in one direction forward. Social science data also move in one direction when examined over time in many cases. The world's population has been continually increasing over time; so has public spending by various units of government. When there is a general pattern of increases in the value of variables over time, however, some problems with regression estimation arise. In particular, it is likely that the assumption of independent error terms for succeeding observations may be

*See Herbert B. Asher (1976) *Causal Modeling*, in this series, for a discussion of the regression techniques and the assumptions behind them, of which Ostrom also presents in this paper.

violated. This is considerably less likely to occur in cross-sectional data analysis, where the order in which the observations are used to derive the regression estimates is rarely a matter of concern. Thus, one critical difference between cross-sectional analysis and TIME SERIES ANALYSIS is that, for the latter, it is critical that the data be processed in the order of the time periods involved. For yearly data, we enter 1952, 1953, 1954, 1955, 1956, etc. rather than 1955, 1952, 1954, 1956, etc. The way we process the data is important for two reasons: (1) the statistical properties of the regression estimators may be affected by the order in which we enter the cases, particularly if many of the variables are consistently increasing over time (or "tracking" like a missile, always in an upward direction);** and (2) as the author notes, TIME SERIES ANALYSIS allows us not only to get estimates of a regression equation, but also to make forecasts into the future from data in the past. If we were to order our data randomly, we might as well assume that the future can "come before" the past!

Charles W. Ostrom, Jr. demonstrates how regression techniques can be employed for both hypothesis testing and forecasting in TIME SERIES ANALYSIS. His major example concerns defense expenditures in the United States and the Soviet Union. This is a question that has interested students of politics, economics, and even applied mathematics throughout the twentieth century, with the earliest sophisticated statistical models developed by the applied mathematician Lewis Richardson.*** The subject of TIME SERIES ANALYSIS is important to all social scientists, however.

• Political scientists, in addition to studying changing patterns of expenditures on armaments and domestic social welfare programs (among other categories), have been concerned with changing patterns of party strength in presidential and congressional elections.

• Historians have studied electoral results over time, and examined changing patterns of migration and socioeconomic mobility in many societies, including the U.S. These studies often yield findings about social structures that have gone against the conventional wisdom of other scholars who relied exclusively on the writings of observers of previous eras rather than examining the available data on social structures. The growth of quantitative methods in history, together with a changing social consciousness, has led many historians to seek out data sources previously

*This terminology is taken from Ronald J. Wonnacott and Thomas H. Wonnacott (1970). *Econometrics*. New York: John Wiley.

**While Richardson did his work over a half century ago, the references in the international relations literature are all to two 1960 reprints: (1960a) *Arms and Insecurity* and (1960b) *Socialities of Deadly Quarrels*, both published in Chicago by Quadrangle books.

thought unavailable, including census records of states and municipalities on the number and working conditions of slaves, and freed slaves in nineteenth-century America.****

- Economists have been among the pioneers in developing TIME SERIES ANALYSIS (generally considered to be a branch of "econometrics," statistical methodology developed by economists). They have developed large-scale models of the economies of the U.S. and many other nations, with particular emphasis on changes over time and with forecasts of future trends.

- Sociologists have been concerned with many of the same demographic analyses from census tracts as historians. They also use TIME SERIES ANALYSIS to examine changes in life styles over generations, including questions of the differing roles for organized religion, sexual and racial characteristics, and values in types of behavior (such as family relations and individual voting choices).*****

- Psychologists and educators have examined changes in achievement levels of students. Are such changes related to the age of the student, changing racial and/or sexual roles, changes in curriculum or in the larger environment of the society (such as the amount of time spent watching television)?

What, then, is the scope of TIME SERIES ANALYSIS? Anything that moves! More appropriately, the answer should be anything subject to change. Thus, TIME SERIES ANALYSIS is fundamental to most of the questions posed in social science research. History is, after all, the study of change; the other social sciences merely examine what might be called "contemporary history." As Ostrom notes, the techniques discussed here provide an introduction to TIME SERIES ANALYSIS. Even within the regression framework, there are additional topics interested students should examine. Ostrom provides brief descriptions of these other techniques in a field where developments in statistical theory are constantly occurring. Thus the methodology, like the subjects of the analysis, is itself always changing.

—E. M. Uslander, Series Editor

**** A highly controversial work in this area, from both the perspective of the methods employed and the conclusions reached, is Robert W. Fogel and Stanley F. Engerman (1974). *Time on the Cross*. Boston: Little, Brown, and Co., in two volumes.

***** On generational change and how to distinguish it from other types of change, see Norval D. Glenn (1977) *Cohort Analysis* in this series.

TIME SERIES ANALYSIS: Regression Techniques

CHARLES W. OSTRUM, JR.
Michigan State University

CONTENTS

Editor's Introduction 5

1. INTRODUCTION 9

2. TIME SERIES REGRESSION ANALYSIS: NONLAGGED CASE 10

A Ratio Goal Hypothesis 10

The Error Term 12

Time Series Regression Model 18

Nonautoregression Assumption 20

Consequences of Violating the Nonautoregression Assumption 25

Conventional Test for Autocorrelation 31

An Alternative Method of Estimation 35

Pseudo-GLS Estimation 38

Small Sample Properties 41

Extension to Multiple Regression 42

The Ratio Goal Hypothesis Reconsidered 42

3. TIME SERIES REGRESSION ANALYSIS: LAGGED CASE 44

Lagged Exogenous Variables 44

Lagged Endogenous Variables 46

Testing for Autocorrelation in Models with Lagged Endogenous Variables 51

Estimation 53

Pseudo-GLS Estimation 53

A Revised Ratio Goal Model 56

4. FORECASTING 58

Forecast Error 59

Forecast Generation 62

Modifying the Forecasting Equation 63

Forecast Evaluation 65

5. ALTERNATIVE TIME-DEPENDENT PROCESSES 73

The Alternative Processes 74

Process Identification 74

Estimation 74

6. SUMMARY 83

Note 83

References 84

1574.102

This monograph is designed to serve as an in-depth introduction to a variation of the basic regression model that utilizes data of a special type-time series. A collection of data X_t ($t = 1, 2, \dots, T$) with the interval between X_t and X_{t+1} being fixed and constant is referred to as a time series. In short, the order of the observations is of extreme importance-we are interested not only in the particular values of the observations but also in the order in which they appear. For example, series relating to U.S. defense expenditures, amount of war in the international system, presidential support, and unemployment meet the requirements of time series analysis. Thus, whereas in most treatments of regression (e.g., Wonnacott and Wonnacott, 1970; Kmenta, 1971; Johnston, 1972; Kelejian and Oates, 1974; Usaner, 1978) the ordering of the observations has been irrelevant, in this paper it is of prime importance.

Given data that are in a specified temporal ordering, it is possible to raise questions concerning how the variable has behaved in the past and how it is likely to behave in the future. The great advantage of time series regression analysis is that it is possible to both explain the past and predict the future behavior of variables of interest. Thus the past history of a time series is called upon to do double duty (Nelson, 1973:19): "first, it must inform us about the particular mechanism which describes the evolution through time and second, it allows us to put that mechanism to use in forecasting the future." As can be seen, both of these efforts are predicated upon being able to correctly postulate a model and estimate its parameters. For example, the decision by the U.S. with respect to how much to spend for defense is of great concern to the President, Congress, the publics, and other world leaders. As a result it is imperative that we try to understand how such a decision is made and what the future ramifications of the decision mechanism are likely to be. In an effort to provide some continuity to the technical discussion, we shall return to this example throughout this paper.

H 6!
275

6!
e83

REFERENCES

- BON, G.H.P. and G. M. JENKINS (1970) Time Series Analysis. San Francisco: Holden-Day.
- BUIS, A. (1973) "Goodness of fit in generalized least squares estimation." American Statistician 27:106-109.
- CHRIST, C. (1966) Econometric Models and Methods. New York: John Wiley.
- DAYRUMES, P. J., E. P. HOWREY, S. H. HYMANS, J. KMENTA, E. E. LEAMER, R. E. QUANDT, J. B. RAMSEY, H. T. SHAPIRO, and V. ZARNOWITZ (1972) "Criteria for the evaluation of econometric models." Annals of Economic and Social Measurement 1: July:255-324.
- DURBIN, J. (1970) "Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables." Econometrics 38:410-421.
- FRIEDMAN, M. (1957) "Comments." pp. 107-114 in National Bureau of Economic Research (ed.) Conference on Business Cycles. New York: National Bureau of Economic Research, Inc.
- GRILICHES, Z. (1967) "Distributed lags: a survey." Econometrica 35:117-49.
- (1968) "A note on the serial correlation bias in estimates of distributed lags." Econometrica 36:65-73.
- (1972) P. RAO (1969) "Small-sample properties of several two-stage regression methods in the context of autocorrelated errors." Journal of the American Statistical Association 64:253-272.
- HAGEMAN, H. H. and J. L. PRATSCHKE (1972) "A comparison of the power of the Von Neumann ratio, Durbin-Watson and Geary tests." Review of Economics and Statistics (May): 179-185.
- HABIB, B. (1974) "Problems of statistical estimation and causal inference in dynamic economic models." pp. 252-303 in Herbert Coster (ed.) Sociological Methodology 17:73-207. San Francisco: Jossey-Bass.
- JOHNSON, D. J. (1972) Econometric Methods. New York: McGraw-Hill.
- KELLOGG, H. H. and W. E. OATLIS (1974) Introduction to Econometrics: Principles and Applications. New York: Harper & Row.
- KLEIN, L. R. (1974) A Textbook of Econometrics. Englewood Cliffs: Prentice-Hall.
- KLEIN, L. R. (1977) An Essay on the Theory of Economic Prediction. Chicago: Markham.
- KLEIN, L. R. (1977) Elements of Econometrics. New York: Macmillan.
- KLEIN, L. R. (1979) Statistical Methods of Econometrics. Amsterdam: North-Holland Publishing Co.
- NELSON, C. R. (1977) Applied Time Series Analysis. San Francisco: Holden-Day.
- PERLOFF, M. and K. F. WALLIS (1966) "Use of the Durbin-Watson statistic in investigating price structures." Econometrica 34:235-238.
- SHAW, H. et al. (1975) SPSS: Statistical Package for the Social Sciences. New York: McGraw-Hill.
- COSTER, G. W., Jr. (1977) "Evaluating alternative foreign policy decision-making models." Ph.D. Thesis, University of Central Florida, Orlando.
- (1978) "W.E. Oatlis and H. H. Kellogg (editors) 'An essay on the theory of economic prediction'." In: *Journal of Economic Literature* 21:235-266.
- (1979) "W.E. Oatlis and H. H. Kellogg (editors) 'Econometrics: Models and Methods'." In: *Journal of Economic Literature* 21:235-266.
- WONNACOTT, R. J. and T. H. WONNACOTT (1970) Econometrics. New York: John Wiley.
- RATTINGER, H. (1975) "Management, deterrence, and bureaucracy." *Journal of Conflict Resolution* 19:571-595.
- RICHARDSON, L. I. (1970) Arms and Insanity. Pittsburgh: Bowwood.
- THEIL, H. (1971) Principles of Econometrics. New York: John Wiley.
- (1966) Applied Forecasting and Forecasting. Chicago: Rand McNally.
- and A. L. Negle (1963) "Testing the independence of regression disturbances." *Journal of the American Statistical Association* 56:793-805.
- WONNACOTT, R. J. and T. H. WONNACOTT (1970) Econometrics. New York: John Wiley.