let & be a vecom or with k-dresson

If m is a mond of is of down man

$$\overline{X} = \begin{bmatrix} X_i \\ X_n \end{bmatrix}$$

$$= \begin{bmatrix} X$$

Va():=E(xx+) - E(x) E(x+)

$$= \mathbb{E} \left[\begin{array}{c} X_1 X_1 & X_1 X_2 \\ \vdots & \vdots & \vdots \\ X_n X_1 & \cdots & X_n X_n \end{array} \right] = \mathbb{E} \left[\begin{array}{c} X_1 \\ \vdots \\ X_n \end{array} \right] \mathbb{E} \left[\begin{array}{c} X_1 & \cdots & X_n \end{array} \right]$$

$$= \underbrace{\left(\mathbb{E}(X_1) - \mathbb{E}(X_1)\mathbb{E}(X_1)\right)}_{\mathbb{E}(X_1X_1) - \mathbb{E}(X_1)\mathbb{E}(X_2)} \underbrace{\left(\mathbb{E}(X_1) - \mathbb{E}(X_1)\mathbb{E}(X_2) - \mathbb{E}(X_1)\mathbb{E}(X_2)\right)}_{\mathbb{E}(X_1X_1) - \mathbb{E}(X_1X_2)\mathbb{E}(X_2)} \underbrace{\left(\mathbb{E}(X_1X_1) - \mathbb{E}(X_1X_2) - \mathbb{E}(X_1X_2) - \mathbb{E}(X_1X_2) - \mathbb{E}(X_1X_2)\right)}_{\mathbb{E}(X_1X_1) - \mathbb{E}(X_1X_2)}$$

$$= \left\{ \left(\operatorname{con} \left(X_{1}, X_{1} \right) \right\} \right\} = \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \right\} = \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \right) = \left(\operatorname{con} \left(X_{1}, X_{2} \right) \right) \left(\operatorname{con$$

Z~ Musti (n,p), Cor (Ki, Xj) =? Back to man problem ... Xi 2 Bin (2, Pi) renewse Xi, X; me hot indepular he kron Xj ~ Bin (h, pi) Binamile ar agentles to Xi,1, Xi,2, ..., Xin the Ben (gi) Which are reguler !! Xj.1, Xj.2, ... , Xj. , 200 kem (Pc) Xi, 2 and Xi, m if It in Xi, l al Xi, m & l + m Xi, l al Xi, m if l+m Wy? They are different drands from the bag with eplacener! (ov[Xi,Xi] = Cov[Xi,1+...+Xi,n, Xj,1+...+Xi,n] = \$\frac{2}{e} \text{Cor [Xi,e, Xi,m]} Jandeston of Cor (Y, +/2, 43) = du to = S Cor [Xi,R, Xj,R] all te Car[x, Y3] + Cov[x2, Y3] ndepelens = E[Xie Xie] - Mile viel
e=1

= E & Xi,e xi,e Pxi,e (xi,e,xi,e) Xi,e &(e,i) xy,e &(e,i) = PXi, Xie (1,1) O since you can't get a bound AND Xilexil => (or (X; X;) = S - Pip = -npip)

De Mare fact about the Mutinomial,
Za Maki hom (4, p)
What if I tell you Xj=5, Who is the TMF of
all the other K-1 m's Krum raha
$P(\vec{X}_{-j} = \vec{X}_{-j} \mid X_j = c)$ = Conditional Jist
$= \frac{P(\vec{X} = \vec{x})}{P(\vec{X} = c)} = \frac{Multipum(\vec{b}, \vec{p})}{Biham(\vec{h}, \vec{p})} = \frac{(\vec{x}_1,, \vec{x}_n)}{(\vec{x}_j)} P_j^{x_j} (-p_j)^{x_{n_j}}$
= P(X;=c) Biron(h, Pi) (xi) P; x; (-Pi) 4-x;
- X. 1. 1. 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1. (h-x;)! As 5 (-pi) h-x; Ine No Ing 650,, h3
Define Un = In which is I'f In=1 ordering guidefind
= (h-15)! [h-15]! [
Nose: X, + . + xj++xj++++++ = 4-5 = (pj) 1-xj = (pj) 1 (-pj) 1 (-pj) 1 (-pj) 1
= (h-x) (P1) x (P1) x (P1) x (P1) x (P1) x (P1) x (P2) x (
= Multinom (h); p') Unem (k) (La 1 downord)
= Multimom (h), p') Uners Useran) (La 1 downword) When h'= n-x; , p' = 1-p; port port port port port port port port

foll prosonly "
prot of Extent

Back to though. Let's do two famors hypothers

Let X be a non-ray rv. ii. $S_X \ge 0$ thus has $n < \infty$ o let q > 0, a consort, Consider $g(X) = q \int X \ge q$ r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r > q r < q r

if X < 9 => 91x=9 = 0 = X sine Sx ≥ 0

let's take Expectorm of book sides:

 $E[n 1/x \ge n] \le E(x) \Rightarrow 9 E[1/x \ge n] \le n \Rightarrow 9 P(x \ge n) \le n \Rightarrow P(x \ge n) \le \frac{n}{2}$

Aur 1

This bound is crude wholl news its usually too big to be Heresty. For example

X~ Eap (1):= e-x, n=1, F&=1-e-x

P(X=4) = 1-F()= == .018

Markon Boul P(XZA) = = .25. This is also crake " ream

Corollaries

a let X be any rx. |X| is hon-reg since its support >0

> p(x za) < E(x)

Threshing since it bombs both the left and right son?

Hor to columbra E(XI)

Me: |X| = X1 x ≥ 0 - X1 x < 0 > EMERITARIO - EXINCO

= J X Ax 20 fe) dx - J x Ax 20 fe) dx

= Sx Lesda - Sx Les da

Gotell sometimes defforte.

a let he gry monotonelly increming from it. !!

 $P(h \otimes \geq h_0) \leq \frac{E(h)}{h_0}$

=> P(X = a) & EG(&) Sapretons this con give better bonds.

X = Edp(), Let L(8) = X2 = EL(8)) = E(3) = V-(8) + E(x)2 = 1+12=2

P(XZ4) = = = o which is better that the of from the "smith" board

Let X be my re with frame in oz Let $Y = (X - n)^2$ $S_Y \ge 0!$ Use Markov. on 9^2 $P(Y \ge a^2) \le \frac{E(X-a)^2}{a^2}$ => P(x-1)2 = R2) & 02 => P(|X-m| 29) = 02 Chelysheis Ingraling This is a much less craple bound both tails for them Markor but register more the conserval or. Informer About X, its variouse Com ne get this to look like Monkov's one tail style? Yes assure SX ZO disjoin lans $P(x-m|\geq n) = P(x-m\geq q) + P(-(k-m)\geq q) = P(x-m\geq n) + P(x-n\leq -q)$ $= P(X \ge m+n) + P(X \le m-q)$ I P(X = m+q) = O2
92

let b = n+3 $\stackrel{?}{=} P(X \ge b) \le \frac{\sigma^2}{b-m^2}$ Valid for hor-by rus and $b \ge 2m$ Note $b \ge 2m$

 $X \sim E \sim p(1)$, m = 1, $\sigma^2 = 1$ $f(X = A) \leq \frac{1}{(A-1)^2} = \frac{1}{2}$ bester that the bound that record $E(X^2)$ Which is the sam as knowing unionce