

微信公众号:校园薯

或许,这是国内最大的公益高考资料分享的公众号

绝密★启用前

2018年普通高等学校招生全国统一考试

理科综合能力测试

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量: H1 Li7 C12 N14 O16 Na23 S32 C135.5 Ar40 Fe56 I127

- 一、选择题:本题共 13 个小题,每小题 6 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 生物膜的结构与功能存在密切的联系。下列有关叙述错误的是
 - A. 叶绿体的类囊体膜上存在催化 ATP 合成的酶
 - B. 溶酶体膜破裂后释放出的酶会造成细胞结构的破坏
 - C. 细胞的核膜是双层膜结构,核孔是物质进出细胞核的通道
 - D. 线粒体 DNA 位于线粒体外膜上,编码参与呼吸作用的酶
- 2. 生物体内的 DNA 常与蛋白质结合,以 DNA—蛋白质复合物的形式存在。下列相关叙述错误的是
 - A. 真核细胞染色体和染色质中都存在 DNA—蛋白质复合物
 - B. 真核细胞的核中有 DNA—蛋白质复合物,而原核细胞的拟核中没有
 - C. 若复合物中的某蛋白参与 DNA 复制,则该蛋白可能是 DNA 聚合酶
 - D. 若复合物中正在进行 RNA 的合成,则该复合物中含有 RNA 聚合酶
- 3. 下列有关植物根系吸收利用营养元素的叙述,错误的是
 - A. 在酸性土壤中,小麦可吸收利用土壤中的 N₂和 NO-3
 - B. 农田适时松土有利于农作物根细胞对矿质元素的吸收
 - C. 土壤微生物降解植物秸秆产生的无机离子可被根系吸收
 - D. 给玉米施肥过多时,会因根系水分外流引起"烧苗"现象
- 4. 已知药物 X 对细胞增值有促进作用,药物 D 可抑制药物 X 的作用。某同学将同一瓶小鼠皮肤细胞平均分为甲、乙、丙三组,分别置于培养液中培养,培养过程中进行不同的处理(其中甲组未加药物),每隔一段时间测定各组细胞数,结果如图所示。据图分析,下列相关叙述不合理的是

- A. 乙组加入了药物 X 后再进行培养
- B. 丙组先加入药物 X, 培养一段时间后加入药物 D, 继续培养
- C. 乙组先加入药物 D, 培养一段时间后加入药物 X, 继续培养
- D. 若药物 X 为蛋白质,则药物 D 可能改变了药物 X 的空间结构
- 5. 种群密度是种群的数量特征之一,下列叙述错误的是
 - A. 种群的 S 型增长是受资源因素限制而呈现的结果
 - B. 某林场中繁殖力极强老鼠种群数量的增长会受密度制约
 - C. 鱼塘中某种鱼的养殖密度不同时,单位水体该鱼的产量有可能相同
 - D. 培养瓶中细菌种群数量达到 K 值前, 密度对其增长的制约逐渐减弱
- 6. 某大肠杆菌能在基本培养基上生长,其突变体 M 和 N 均不能在基本培养基上生长,但 M 可在添加了氨基酸甲的基本培养基上生长,N 可在添加了氨基酸乙的基本培养基上生长,将 M 和 N 在同时添加氨基酸甲和乙的基本培养基中混合培养一段时间后,再将菌体接种在基本培养基平板上,发现长出了大肠杆菌(X)的菌落。据此判断,下列说法不合理的是
 - A. 突变体 M 催化合成氨基酸甲所需酶的活性丧失
 - B. 突变体 M 和 N 都是由于基因发生突变而得来的
 - C. 突变体 M 的 RNA 与突变体 N 混合培养能得到 X
 - D. 突变体 M 和 N 在混合培养期间发生了 DNA 转移
- 7. 硫酸亚铁锂(LiFePO₄)电池是新能源汽车的动力电池之一。采用湿法冶金工艺回收废旧硫酸亚铁锂电池 正极片中的金属,其流程如下:

下列叙述错误的是

- A. 合理处理废旧电池有利于保护环境和资源再利用
- B. 从"正极片"中可回收的金属元素有 Al、Fe、Li
- C. "沉淀"反应的金属离子为 Fe3+

- D. 上述流程中可用硫酸钠代替碳酸钠
- 8. 下列说法错误的是
 - A. 蔗糖、果糖和麦芽糖均为双糖
 - B. 酶是一类具有高选择催化性能的蛋白质
 - C. 植物油含不饱和脂肪酸酯,能使 Br₂/CCl₄ 褪色
 - D. 淀粉和纤维素水解的最终产物均为葡萄糖
- 9. 在生成和纯化乙酸乙酯的实验过程中,下列操作未涉及的是

- 10. $N_{\rm A}$ 是阿伏加德罗常数的值,下列说法正确的是
 - A. 16.25 g FeCl₃ 水解形成的 Fe(OH)₃ 胶体粒子数为 0.1 N_A
 - B. 22.4 L (标准状况) 氨气含有的质子数为 18NA
 - C. 92.0 g 甘油 (丙三醇) 中含有羟基数为 1.0NA
 - D. 1.0 mol CH₄与 Cl₂在光照下反应生成的 CH₃Cl 分子数为 1.0N_A
- 11. 环之间共用一个碳原子的化合物称为螺环化合物,螺[2,2]戊烷() 是最简单的一种。下列关于该化合物的说法错误的是
 - A. 与环戊烯互为同分异构体
 - B. 二氯代物超过两种
 - C. 所有碳原子均处同一平面
 - D 生成 1 mol C₅H₁₂至少需要 2 mol H₂
- 12. 主族元素 W、X、Y、Z 的原子序数依次增加,且均不大于 20。W、X、Z 最外层电子数之和为 10; W 与 Y 同族; W 与 Z 形成的化合物可与浓硫酸反应,其生成物可腐蚀玻璃。下列说法正确的是
 - A. 常温常压下 X 的单质为气态
 - B. Z 的氢化物为离子化合物

- C. Y和Z形成的化合物的水溶液呈碱性
- D. W 与 Y 具有相同的最高化合价
- 13. 最近我国科学家设计了一种 CO_2+H_2S 协同转化装置,实现对天然气中 CO_2 和 H_2S 的高效去除。示意图 如图所示,其中电极分别为 ZnO@ 石墨烯(石墨烯包裹的 ZnO)和石墨烯,石墨烯电极区发生反应为:

- \bigcirc EDTA-Fe²⁺-e⁻=EDTA-Fe³⁺
- (2)2EDTA-Fe³⁺+H₂S=2H⁺+S+2EDTA-Fe²⁺

该装置工作时,下列叙述错误的是

- A. 阴极的电极反应: CO₂+2H⁺+2e⁻=CO+H₂O
- B. 协同转化总反应: CO₂+H₂S=CO+H₂O+S
- C. 石墨烯上的电势比 ZnO@石墨烯上的低
- D. 若采用 Fe³⁺/Fe²⁺取代 EDTA-Fe³⁺/EDTA-Fe²⁺,溶液需为酸性
- 二、选择题:本题共8小题,每小题6分。在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。
- 14. 高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能
 - A. 与它所经历的时间成正比
 - B. 与它的位移成正比
 - C. 与它的速度成正比
 - D. 与它的动量成正比
- 15. 如图,轻弹簧的下端固定在水平桌面上,上端放有物块 P,系统处于静止状态,现用一竖直向上的力 F 作用在 P 上,使其向上做匀加速直线运动,以 x 表示 P 离开静止位置的位移,在弹簧恢复原长前,下 列表示 F 和 x 之间关系的图像可能正确的是

٨

В.

~

D.

16. 如图,三个固定的带电小球 a、b 和 c,相互间的距离分别为 ab=5 cm,bc=3 cm,ca=4 cm。小球 c 所 受库仑力的合力的方向平衡于 a、b 的连线。设小球 a、b 所带电荷量的比值的绝对值为 k,则

A. a、b 的电荷同号, $k = \frac{16}{9}$

B. a、b 的电荷异号, $k = \frac{16}{9}$

- C. a、b 的电荷同号, $k = \frac{64}{27}$
- D. a、b 的电荷异号, $k = \frac{64}{27}$
- 17. 如图,导体轨道 OPQS 固定,其中 PQS 是半圆弧,Q 为半圆弧的中心,O 为圆心。轨道的电阻忽略不计。OM 是有一定电阻。可绕 O 转动的金属杆。M 端位于 PQS 上,OM 与轨道接触良好。空间存在半圆所在平面垂直的匀强磁场,磁感应强度的大小为 B,现使 OQ 位置以恒定的角速度逆时针转到 OS 位置并固定(过程 I);再使磁感应强度的大小以一定的变化率从 B 增加到 B'(过程 II)。在过程 I 、 II 中,流过 OM 的电荷量相等,则 $\frac{B'}{B}$ 等于

- A. $\frac{5}{4}$
- B. $\frac{3}{2}$
- C. $\frac{7}{4}$
- D. 2
- 18. 如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为 2R: bc 是半径为 R 的四分之一的圆弧,与 a b 相切于 b 点。一质量为 m 的小球。始终受到与重力大小相等的水平外力的作用,自 a 点处从静止开始向右运动,重力加速度大小为 g。小球从 a 点开始运动到其他轨迹最高点,机械能的增量为

- A. 2mgR
- B. 4mgR
- C. 5mgR
- D. 6mgR
- 19. 如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在

纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法 正确的是

- A. 开关闭合后的瞬间,小磁针的 N 极朝垂直纸面向里的方向转动
- B. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向里的方向
- C. 开关闭合并保持一段时间后, 小磁针的 N 极指向垂直纸面向外的方向
- D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的 N 极朝垂直纸面向外的方向转动
- 20. 2017 年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约 100 s 时,它们相距约 400 km,绕二者连线上的某点每秒转动 12 圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星
 - A. 质量之积
 - B. 质量之和
 - C. 速率之和
 - D. 各自的自转角速度
- 21. 图中虚线 a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面 b 上的电势为 2 V。一电子 经过 a 时的动能为 10 eV,从 a 到 d 的过程中克服电场力所做的功为 6 eV。下列说法正确的是

- A. 平面 c 上的电势为零
- B. 该电子可能到达不了平面f
- C. 该电子经过平面 d 时,其电势能为 4 eV
- D. 该电子经过平面 b 时的速率是经过 d 时的 2 倍
- 三、非选择题: 共 174 分, 第 22~32 题为必考题, 每个试题考生都必须作答。第 33~38 题为选考题, 考生根

据要求作答。

- (一) 必考题: 共 129 分。
- 22. (5分)如图(a),一弹簧上端固定在支架顶端,下端悬挂一托盘:一标尺由游标和主尺构成,主尺竖直固定在弹簧左边;托盘上方固定有一能与游标刻度线准确对齐的装置,简化为图中的指针。现要测量图(a)中弹簧的劲度系数,当托盘内没有砝码时,移动游标,使其零刻度线对准指针,此时标尺读数为1.950 cm;当托盘内放有质量为0.100 kg的砝码时,移动游标,再次使其零刻度线对准指针,标尺示数如图(b)所示,其读数为_____cm。当地的重力加速度大小为9.80 m/s²,此弹簧的劲度系数为N/m(保留3位有效数字)。

23. (10 分)某实验小组利用如图 (a) 所示的电路探究在 25° C~80°C范围内某热敏电阻的温度特性,所用器材有:置于温控室(图中虚线区域)中的热敏电阻 R_T ,其标称值(25° C时的阻值)为 900.0 Ω : 电源 E (6V,内阻可忽略):电压表 \overline{V} (量程 150 mV):定值电阻 R_0 (阻值 20.0 Ω),滑动变阻器 R_1 (最大阻值为 1 000 Ω):电阻箱 R_2 (阻值范围 0-999.9 Ω):单刀开关 S_1 ,单刀双掷开关 S_2 。

实验时,先按图(a)连接好电路,再将温控室的温度 t 升至 80.0°C,将 S_2 与 1 端接通,闭合 S_1 ,调节 R_1 的滑片位置,使电压表读数为某一值 U_0 : 保持 R_1 的滑片位置不变,将 R_2 置于最大值,将 S_2 与 2 端

接通,调节 R_2 ,使电压表读数仍为 U_0 :断开 S_1 ,记下此时 R_2 的读数,逐步降低温控室的温度 t,得到相应温度下 R_2 的阻值,直至温度降到 25.0°C,实验得到的 R_2 -t 数据见下表。

t/℃	25.0	30.0	40.0	50.0	60.0	70.0	80.0
R_2/Ω	900.0	680.0	500.0	390.0	320.0	270.0	240.0

回答下列问题:

- (1) 在闭合 S_1 前,图 (a) 中 R_1 的滑片应移动到 (填"a"或"b") 端;
- (2) 在图 (b) 的坐标纸上补齐数据表中所给数据点,并做出 R2-t 曲线:

- (3) 由图 (b) 可得到 R_1 , 在 25℃-80℃ 范围内的温度特性, 当 t=44.0℃时, 可得 R_1 = Ω ;
- (4) 将 R_t 握于手心,手心温度下 R_2 的相应读数如图 (c) 所示,该读数为_____Ω,则手心温度为_____。 $^{\circ}$ C。
- 24. (12 分)一质量为 m 的烟花弹获得动能 E 后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为 E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为 g,不计空气阻力和火药的质量,求
 - (1) 烟花弹从地面开始上升到弹中火药爆炸所经过的时间;
 - (2) 爆炸后烟花弹向上运动的部分距地面的最大高度
- 25. (20 分) 如图,在 y>0 的区域存在方向沿 y 轴负方向的匀强电场,场强大小为 E,在 y<0 的区域存在方向垂直于 xOy 平面向外的匀强磁场。一个气核 1_1 H 和一个氘核 2_1 H 先后从 y 轴上 y=h 点以相同的动能射出,速度方向沿 x 轴正方向。已知 $_1$ ¹H 进入磁场时,速度方向与 x 轴正方向的夹角为 60° ,并从坐标原点 O 处第一次射出磁场。 $_1$ ¹H 的质量为 m,电荷量为 q 不计重力。求

- (1) 1¹H 第一次进入磁场的位置到原点 O 的距离
- (2) 磁场的磁感应强度大小
- (3) 12H 第一次离开磁场的位置到原点 O 的距离

26. (14分)

醋酸亚铬[(CH₃COO)₂Cr·H₂O]为砖红色晶体,难溶于冷水,易溶于酸,在气体分析中用作氧气吸收剂。 一般制备方法是先在封闭体系中利用金属锌作还原剂,将三价铬还原为二价铬;二价铬再与醋酸钠溶液 作用即可制得醋酸亚铬。实验装置如图所示,回答下列问题:

(1) 实验中所用蒸馏水均需经煮沸后迅速冷却,目的是, , 仪器 a 的名称是。 (2)将过量锌粒和氯化铬固体置于 c 中,加入少量蒸馏水,按图连接好装置,打开 K1、K2,关闭 K3。 ①c 中溶液由绿色逐渐变为亮蓝色,该反应的离子方程式为。 ②同时 c 中有气体产生, 该气体的作用是。 (3) 打开 K3, 关闭 K1 和 K2。c 中亮蓝色溶液流入 d, 其原因是 ; d 中析出砖红色沉淀, 为 使沉淀充分析出并分离,需采用的操作是 、 、洗涤、干燥。 (4) 指出装置 d 可能存在的缺 _____。

27. (14分)

焦亚硫酸钠(Na₂S₂O₅)在医药、橡胶、印染、食品等方面应用广泛。回答下列问题:

- (1)生产 Na₂S₂O₅,通常是由 NaHSO₃ 过饱和溶液经结晶脱水制得。写出该过程的化学方程式。
- (2) 利用烟道气中的 SO₂ 生产 Na₂S₂O₅ 的工艺为:

- ②工艺中加入 Na₂CO₃ 固体、并再次充入 SO₂ 的目的是。
- (3)制备 Na₂S₂O₅ 也可采用三室膜电解技术,装置如图所示,其中 SO₂ 碱吸收液中含有 NaHSO₃ 和 Na₂SO₃。阳极的电极反应式为_____。电解后,_____室的 NaHSO₃ 浓度增加。将 该室溶液进行结晶脱水,可得到 Na₂S₂O₅。

(4) Na₂S₂O₅可用作食品的抗氧化剂。在测定某葡萄酒中 Na₂S₂O₅残留量时,取 50.00 mL 葡萄酒样品,

用 $0.01000 \text{ mol} \cdot L^{-1}$ 的碘标准液滴定至终点,消耗 10.00 mL。滴定反应的离子方程式为,该样品中 $Na_2S_2O_5$ 的残留量为 $g \cdot L^{-1}$ (以 SO_2 计)。

28. (15分)

采用 N_2O_5 为硝化剂是一种新型的绿色硝化技术,在含能材料、医药等工业中得到广泛应用,回答下列问题: 学科&网

- (1) 1840 年 Devil 用干燥的氯气通过干燥的硝酸银,得到 N_2O_5 ,该反应的氧化产物是一种气体,其分子式为
- (2) F. Daniels 等曾利用测压法在刚性反应器中研究了 25℃时 N₂O₅(g)分解反应:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

$$1 \downarrow$$

$$2N_2O_4(g)$$

其中 NO_2 二聚为 N_2O_4 的反应可以迅速达到平衡,体系的总压强 p 随时间 t 的变化如下表所示($t=\infty$ 时, $N_2O_4(g)$ 完全分解):

	p/kPa	35.8	40.3	42.5.	45.9	49.2	61.2	62.3	63.1	
	①已知	: 2N ₂ O ₅ (g	$= 2N_2$	$O_5(g) + O_2(g)$	$\Delta H_1 =$	-4.4 kJ·mo	1^{-1}			-
		$2NO_2(g)$	$==N_2C$	9 ₄ (g)	Δ	$\Delta H_2 = -55.3$	$kJ \cdot mol^{-1}$			
	则反应	$(N_2O_5(g)=2)$	$2NO_2(g) + \frac{1}{2}$	O ₂ (g)的 Δ	H=	_ kJ·mol ⁻¹ 。				
	②研究	表明,N ₂ C	D5(g)分解的	反应速率	$v=2\times10^{-3}\times$	$p_{\mathrm{N_2O_5}}$ (kPa \cdot	min ⁻¹), t=	·62 min 时,	测得体系	s 中 p_{O_2}
	=2.9 kP	a,则此时	的 $p_{{ m N}_2{ m O}_5}=$	k	Pa, <i>v</i> =	kPa·n	\min^{-1} \circ			
	③若提	高反应温度	度至 35℃,	则 N ₂ O ₅ (g	g)完全分解	后体系压强		63.1 1	xPa(填"大	于""等
	于"或"	小于"),原	原因是	o						
	4 25℃	时 N ₂ O ₄ (g) ← 2NC	0 ₂ (g)反应的	口平衡常数	$K_p = \underline{\hspace{1cm}}$	_kPa (K_p	为以分压表	長示的平衡	常数,
	计算结	果保留1	立小数)。							
((3) 对于反	应 2N ₂ O ₅ (§	g)→4NO ₂ (g	$g)+O_2(g),$	R.A.Ogg 提	出如下反应	应历程:			
	第一步	N_2O_5	\longrightarrow NO ₃ +N	IO_2	快速平	衡				
	第二步	NO ₂ +N	O ₃ →NO+N	IO_2+O_2	慢反应					
	第三步	NO+NO	$O_3 \rightarrow 2NO_2$	快	反应					
	其中可	近似认为第	第二步反应	不影响第一	一步的平衡	。下列表达	比正确的是		_ (填标号)。
	A. v(第	第一步的逆	反应)>v(第	二步反应)						
	B. 反图	並的中间产	物只有 NC)3						
	C. 第	二步中 NO	2与NO3的	碰撞仅部分	分有效					
	D. 第	三步反应活	化能较高							
29.	(10分)									
	答下列问是	题:								
((1) 大自然									
			(者的每一)							
((2)根据生活						利于增加物]种多样性	,在这个过	程中,
			羊性增加的							
((3) 太阳能			过程是			_。分解者	通过	来	获得生
	命活动	所需的能量	主 。							

甲、乙两种植物净光合速率随光照强度的变化趋势如图所示。

回答下列问题:

(1) 当光照强度大于 a 时, 甲、乙两种植物中, 对光能的利用率较高的植物是	是。
--	----

- (2)甲、乙两种植物单独种植时,如果种植密度过大,那么净光合速率下降幅度较大的植物是________________________。
- (3) 甲、乙两种植物中, 更适合在林下种植的是。
- (4) 某植物夏日晴天中午 12: 00 时叶片的光合速率明显下降,其原因是进入叶肉细胞的_____(填 "O₂"或"CO₂")不足。

31. (8分)

为探究不同因素对尿量的影响,某同学用麻醉后的实验兔进行不同的实验,实验内容如下:

- a. 记录实验兔的尿量(单位:滴/分钟)。
- b. 耳缘静脉注射垂体提取液 0.5 mL, 记录尿量。
- c. 待尿量恢复后, 耳缘静脉注射 20%葡萄糖溶液 15 mL, 记录尿量, 取尿液做尿糖定性实验。 回答下列问题:
- (1) 该同学发现,与 a 相比, b 处理后实验兔尿量减少,其主要原因是,
- (2) c 处理后,肾小管腔内液体的渗透压会升高,实验兔的尿量会____。取尿液加入斐林试剂做尿糖定性实验出现砖红色,说明尿液中含有。

32. (12分)

果蝇体细胞有 4 对染色体,其中 2、3、4 号为常染色体。已知控制长翅/残翅性状的基因位于 2 号染色体上,控制灰体/黑檀体性状的基因位于 3 号染色体上。某小组用一只无眼灰体长翅雌蝇与一只有眼灰体长翅雄蝇杂交,杂交子代的表现型及其比例如下:

眼	性别	灰体长翅:灰体残翅:黑檀体长翅:黑檀体残翅
---	----	-----------------------

1/2 有眼	1/2 雌	9:3:3:1
1/2 有 収	1/2 雄	9:3:3:1
1/2	1/2 雌	9:3:3:1
1/2 无眼	1/2 雄	9:3:3:1

回答下列问题;

(1)	根据杂交结	课,	(填"	'能"或"不	能")判断	控制是	果蝇有眼/ラ	无眼性状的	J基因是位于	X 染色体
	还是常染色	1体上,	若控制有眼	/无眼性状	的基因位	于 X	染色体上	,根据上过	比亲本杂交组	[合和杂交
	结果判断,	显性性	:状是	,	判断依据	是		0		

- (2) 若控制有眼/无眼性状的基因位于常染色体上,请用上表中杂交子代果蝇为材料设计一个杂交实验来确定无眼性状的显隐性(要求:写出杂交组合和预期结果)。
- (二)选考题: 共 45 分。请考生从 2 道物理题、2 道化学题、2 道生物题中每科任选一题作答。如果多做,则每学科按所做的第一题计分。
- 33. [物理—选修 3-3] (15 分)
 - (1) (5分)如图,一定质量的理想气体从状态 a 开始,经历过程①、②、③、④到达状态 e,对此气体,下列说法正确的是____(选对 1 个得 2 分,选对 2 个得 4 分,选对 3 个得 5 分:每选错 1 个 扣 3 分,最低得分为 0 分)。

- A. 过程①中气体的压强逐渐减小
- B. 过程②中气体对外界做正功
- C. 过程④中气体从外界吸收了热量
- D. 状态 c、d 的内能相等

- E. 状态 d 的压强比状态 b 的压强小
- (2) (10 分) 如图,容积为 V 的汽缸由导热材料制成,面积为 S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门 K。开始时,K 关闭,汽缸内上下两部分气体的压强均为 p_0 ,现将 K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为 $\frac{V}{8}$ 时,将 K 关闭,活塞平衡时其下方气体的体积减小了 $\frac{V}{6}$,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为 g。求流入汽缸内液体的质量。

- 34. [物理一选修 3-4) (15 分)
 - (1) (5分)如图,△ABC为一玻璃三棱镜的横截面,∠A=30°,一束红光垂直 AB 边射入,从 AC 边上的 D 点射出,其折射角为 60°,则玻璃对红光的折射率为____。若改用蓝光沿同一路径入射,则光线在 D 点射出时的折射射角 ("小于""等于"或"大于") 60°。

- (2)(10 分)一列简谐横波在 $t=\frac{1}{3}$ s 时的波形图如图(a)所示,P、Q 是介质中的两个质点,图(b)是质点 Q 的振动图像。求
 - (i) 波速及波的传播方向;
 - (ii) 质点 Q 的平衡位置的 x 坐标。

35. [化学—选修 3: 物质结构与性质] (15 分)

Li 是最轻的固体金属,采用 Li 作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题:

(1)下列Li原子电子排布图表示的状态中,能量最低和最高的分别为____、___(填标号)。

	$\uparrow\downarrow$	\uparrow			
_	16	25	2n	2n	2n

- (2) Li^+ 与 H^- 具有相同的电子构型, $r(Li^+)$ 小于 $r(H^-)$,原因是。
- (3) LiAlH₄是有机合成中常用的还原剂,LiAlH₄中的阴离子空间构型是____。中心原子的杂化形式为____,LiAlH₄中,存在____(填标号)。
 - A. 离子键
 - B. σ键
 - C. π键
 - D. 氢键
- (4) Li₂O 是离子晶体,其品格能可通过图(a)的 born-Haber 循环计算得到。

可知,Li 原子的第一电离能为_____kJ·mol⁻¹,O=O 键键能为_____kJ·mol⁻¹,Li₂O 晶格能为 kJ·mol⁻¹。

- (5) Li_2O 具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为 0.4665 nm,阿伏加德罗常数的值为 N_A ,则 Li_2O 的密度为______g·cm⁻³(列出计算式)。=
- 36. [化学一选修 5: 有机化学基础] (15 分)

化合物 W 可用作高分子膨胀剂,一种合成路线如下:

回答下列问题:

- (1) A 的化学名称为。
- (2)②的反应类型是。
- (3) 反应④所需试剂,条件分别为。
- (4) G 的分子式为____。
- (5) W 中含氧官能团的名称是____。
- (6) 写出与 E 互为同分异构体的酯类化合物的结构简式(核磁共振氢谱为两组峰,峰面积比为 1:1) _____。

(7) 苯乙酸苄酯(CH,COOCH,)是花香型香料,设计由苯甲醇为起始原料制备苯乙
酸苄酯的合成路线(无机试剂任选)。
37. [生物一选修 1: 生物技术实践] (15 分)
将马铃薯去皮切块,加水煮沸一定时间,过滤得到马铃薯浸出液。在马铃薯浸出液中加入一定量蔗糖和
琼脂,用水定容后灭菌,得到 M 培养基。
回答下列问题:
(1) M 培养基若用于真菌的筛选,则培养基中应加入链霉素以抑制的生长,加入了链霉素的
培养基属于
(2) M 培养基中的马铃薯浸出液为微生物生长提供了多种营养物质,营养物质类型除氮源外还有
(答出两点即可)。氮源进入细胞后,可参与合成的生物大分子有(答出两点
即可)。
(3) 若在 M 培养基中用淀粉取代蔗糖,接种土壤滤液并培养,平板上长出菌落后可通过加入显色剂筛
选出能产淀粉酶的微生物。加入的显色剂是,该方法能筛选出产淀粉酶微生物的原
理是。
(4)甲、乙两位同学用稀释涂布平板法测定某一土壤样品中微生物的数量,在同一稀释倍数下得到以
下结果:
甲同学涂布了3个平板,统计的偏落数分别是110、140和149,取平均值133;
乙同学涂布了3个平板,统计的菌落数分别是27、169和176,取平均值124。
有人认为这两位同学的结果中,乙同学的结果可信度低,其原因是。
38. [生物——选修 3:现代生物科技专题](15 分)
回答下列问题:
(1) 博耶(H. Boyer)和科恩(S. Coben)将非洲爪蟾核糖体蛋白基因与质粒重组后导入大肠杆菌细胞中进
行了表达,该研究除证明了质粒可以作为载体外,还证明了(答出两点即可)。
(2) 体外重组的质粒可通过 Ca ²⁺ 参与的方法导入大肠杆菌细胞: 而体外重组的噬菌体 DNA 通
常需与组装成完整噬菌体后,才能通过侵染的方法将重组的噬菌体 DNA 导入宿主细胞,
在细菌、心肌细胞、叶肉细胞中,可作为重组噬菌体宿主细胞的是。
(3) 真核生物基因(目的基因)在大肠杆菌细胞内表达时,表达出的蛋白质可能会被降解。为防止蛋白质被
降解,在实验中应选用的大肠杆菌作为受体细胞,在蛋白质纯化的过程中应添加的
抑制剂。

2018年普通高等学校招生全国统一考试

理科综合参考答案

1. D 2. B 3. A 4. C 5. D 6. C

7. D 8. A 9. D 10. B 11. C 12. B 13. C

14. B 15. A 16. D 17. B 18. C 19. AD 20. BC 21. AB

22. (5分) 3.775 53.7

23. (10分) (1) b (2) 如图所示 (3) 450 (4) 620.0 33.0

24. (1) 设烟花弹上升的初速度为 vo, 由题给条件有

$$E = \frac{1}{2} m v_0^2 \, \text{(1)}$$

设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有

$$0 - v_0 = -gt \ (2)$$

联立①②式得

$$t = \frac{1}{g} \sqrt{\frac{2E}{m}} \, (3)$$

(2) 设爆炸时烟花弹距地面的高度为 h_1 , 由机械能守恒定律有

$$E=mgh_1$$

火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为 v_1 和 v_2 。由题给条件和动量守恒定律有

$$\frac{1}{4}mv_1^2 + \frac{1}{4}mv_2^2 = E \ (5)$$

$$\frac{1}{2}mv_1 + \frac{1}{2}mv_2 = 0 \ \textcircled{6}$$

由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹上部分继续上升的高度为 h_2 ,由机械能守恒定律有

$$\frac{1}{4}mv_1^2 = \frac{1}{2}mgh_2$$

联立4567式得,烟花弹上部分距地面的最大高度为

$$h = h_1 + h_2 = \frac{2E}{mg} \otimes$$

25. (1) ${}^{1}_{1}$ H 在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示。设 ${}^{1}_{1}$ H 在电场中的加速度大小为 a_{1} ,初速度大小为 v_{1} ,它在电场中的运动时间为 t_{1} ,第一次进入磁场的位置到原点 O 的距离为 s_{1} 。由运动学公式有

$$s_1 = v_1 t_1$$
 ①

$$h = \frac{1}{2} a_1 t_1^2$$
 ②

由题给条件, 1_1 H 进入磁场时速度的方向与 x 轴正方向夹角 $\theta_1=60^\circ$ 。 1_1 H 进入磁场时速度 y 分量的大小为

$$a_1 t_1 = v_1 \tan \theta_1 \, \text{(3)}$$

联立以上各式得

$$s_1 = \frac{2\sqrt{3}}{3}h$$
 (4)

(2) $^{1}_{1}H$ 在电场中运动时,由牛顿第二定律有

$$qE = ma_1$$
 (5)

设 ^{1}H 进入磁场时速度的大小为 v_{1}^{\prime} ,由速度合成法则有

$$v_1' = \sqrt{v_1^2 + (a_1 t_1)^2}$$
 (6)

设磁感应强度大小为B, 1_1 H 在磁场中运动的圆轨道半径为 R_1 ,由洛伦兹力公式和牛顿第二定律有

由几何关系得

$$s_1 = 2R_1 \sin \theta_1$$

联立以上各式得

$$B = \sqrt{\frac{6mE}{qh}} \, (9)$$

(3)设 $_{1}^{2}$ H在电场中沿 $_{x}$ 轴正方向射出的速度大小为 $_{v_{2}}$,在电场中的加速度大小为 $_{a_{2}}$,由题给条件得

$$\frac{1}{2}(2m) \ v_2^2 = \frac{1}{2}mv_1^2 \ (0)$$

由牛顿第二定律有

$$qE = 2ma_2$$
 (11)

设 $_1^2$ H第一次射入磁场时的速度大小为 $_2$ ^{\prime}, 速度的方向与 $_2$ 轴正方向夹角为 $_2$, 入射点到原点的距离为 $_2$, 在电场中运动的时间为 $_2$ 。由运动学公式有

$$s_2 = v_2 t_2 \, \widehat{12}$$

$$h = \frac{1}{2}a_2t_2^2$$
 (13)

$$v_2' = \sqrt{v_2^2 + (a_2 t_2)^2}$$
 (4)

$$\sin \theta_2 = \frac{a_2 t_2}{v_2'} \text{ (15)}$$

联立以上各式得

$$s_2 = s_1$$
, $\theta_2 = \theta_1$, $v_2' = \frac{\sqrt{2}}{2}v_1'$ (16)

设 $^{2}_{1}$ H在磁场中做圆周运动的半径为 R_{2} ,由⑦(⑥式及粒子在匀强磁场中做圆周运动的半径公式得

$$R_2 = \frac{(2m) \ v_2'}{qB} = \sqrt{2}R_1 \ \text{(17)}$$

所以出射点在原点左侧。设 $_1^2$ H进入磁场的入射点到第一次离开磁场的出射点的距离为 $_2^2$,由几何关系有

$$s_2' = 2R_2 \sin \theta_2$$
 (18)

联立48678式得, ${}_{1}^{2}$ H第一次离开磁场时得位置到原点O的距离为

$$s_2' - s_2 = \frac{2\sqrt{3}}{3}(\sqrt{2} - 1) \ h$$

26. (14分)

- (1) 去除水中溶解氧 分液(或滴液)漏斗
- (2) ①Zn+2Cr³⁺**===**Zn²⁺+2Cr²⁺ ②排除 c 中空气
- (3) c 中产生 H₂ 使压强大于大气压 (冰浴) 冷却 过滤
- (4) 敞开体系,可能使醋酸亚铬与空气接触

27. (14分)

- (1) $2NaHSO_3 = Na_2S_2O_5 + H_2O$
- (2) ①NaHSO₃ ②得到 NaHSO₃ 过饱和溶液
- (3) $2H_2O-4e^-=4H^++O_2\uparrow$ a
- (4) $S_2O_5^{2-} + 2I_2 + 3H_2O = 2SO_4^{2-} + 4I^- + 6H^+$ 0.128

28. (15分)

- $(1) O_2$
- (2) ①53.1
- 230.0 6.0×10^{-2}
- ③大于 温度提高,体积不变,总压强提高; NO₂二聚为放热反应,温度提高,平衡左移,体系物质的量增加,总压强提高
- **4**)13.4

- (3) AC
- 29. (10分)
 - (1) 协同进化(或共同进化)
 - (2) 捕食者往往捕食个体数量多的物种,为其他物种的生存提供机会
 - (3) 绿色植物通过光合作用将太阳能转化为化学能储存在有机物中 呼吸作用将动植物遗体和动物 排遗物中的有机物分解
- 30. (9分)
 - (1) 甲
 - (2)甲 光照强度降低导致甲植物净光合速率降低的幅度比乙大,种植密度过大,植株接受的光照强度减弱,导致甲植物净光合速率下降幅度比乙大
 - (3) Z
 - (4) CO₂
- 31. (8分)
 - (1) 垂体提取液中含有抗利尿激素,促进了肾小管和集合管重吸收水
 - (2) 增加 葡萄糖
 - (3) 下丘脑
- 32. (12分)
 - (1) 不能 无眼 只有当无眼为显性时,子代雌雄个体中才都会出现有眼与无眼性状的分离
 - (2) 杂交组合:无眼×无眼 预期结果:若子代中无眼:有眼=3:1,则无眼位显性性状;若子代全部 为无眼,则无眼位隐性性状
 - (3) 8 隐性
- 33. (1) BDE
 - (2) 设活塞再次平衡后,活塞上方气体的体积为 V_1 ,压强为 p_1 ;下方气体的体积为 V_2 ,压强为 p_2 ,在活塞下移的过程中,活塞上下方气体的温度均保持不变。由玻意耳定律得

$$p_0 \frac{V}{2} = p_1 V_1 \textcircled{1}$$

$$p_0 \frac{V}{2} = p_2 V_2$$
 ②

由已知条件得

$$V_1 = \frac{V}{2} + \frac{V}{6} - \frac{V}{8} = \frac{13}{24}V$$
 (3)

$$V_2 = \frac{V}{2} - \frac{V}{6} = \frac{V}{3}$$
 (4)

设活塞上方液体的质量为 m, 由力的平衡条件得

$$p_2S = p_1S + mg \ \ \bigcirc$$

联立以上各式得

$$m = \frac{15p_0S}{26g} \, \textcircled{6}$$

- 34. (1) $\sqrt{3}$ 大于
 - (2)(i)由图(a)可以看出,该波的波长为

$$\lambda = 36 \text{ cm} \ \text{\textcircled{1}}$$

由图(b)可以看出,周期为

$$T=2 s(2)$$

波速为

由图 (b) 知, 当 $t = \frac{1}{3}$ s时, Q点向上运动,结合图 (a) 可得,波沿负方向传播。

(ii) 设质点 P、Q 平衡位置的 x 坐标分别为 x_P 、 x_Q 。由图(a)知,x=0 处 $y=-\frac{A}{2}=A\sin(-30^\circ)$,因此

$$x_P = \frac{30^\circ}{360^\circ} \lambda = 3 \text{ cm } \textcircled{4}$$

由图 (b) 知,在 t=0 时 Q 点处于平衡位置,经 $\Delta t=\frac{1}{3}$ s ,其振动状态向 x 轴负方向传播至 P 点处,由此及③式有

$$x_Q - x_P = v\Delta t = 6 \text{ cm } \boxed{5}$$

由45式得,质点Q的平衡位置的x坐标为

$$x_0 = 9 \text{ cm}$$
 6

- 35. (15分)
 - (1) D C
 - (2) Li+核电荷数较大
 - (3) 正四面体 sp³ AB
 - (4) 520 498 2908

(5)
$$\frac{8 \times 7 + 4 \times 16}{N_{\rm A} (0.4665 \times 10^{-7})^3}$$

36. (15分)

- (1) 氯乙酸
- (2) 取代反应
- (3) 乙醇/浓硫酸、加热
- $(4) C_{12}H_{18}O_3$
- (5) 羟基、醚键

37. (15分)

- (1) 细菌 选择
- (2) 碳源、无机盐 蛋白质、核酸
- (3) 碘液 淀粉遇碘液显蓝色,产淀粉酶的菌落周围淀粉被水解,形成透明圈
- (4) 乙同学的结果中,1个平板的计数结果与另2个相差悬殊,结果的重复性差。学科#网

38. (15分)

- (1) 体外重组的质粒可以进入体细胞; 真核生物基因可在原核细胞中表达
- (2) 转化 外壳蛋白(噬菌体蛋白) 细菌
- (3) 蛋白酶缺陷型 蛋白酶