Durham University - School of Engineering & Computing Sciences Examination Answer Sheet 2016/2017 – Engineering Exams

Exam ref: ENGI4121-WE01		Paper Title: Communications Systems	
Section:	Question:	Total marks for question:	Sheet 1 of 4
Question set by: Sana Salous		Answer checked and approved	bv:

Q part	Answer	Mark allocated
Q.1 (a)	The matched filter output for a waveform f(t) is found by taking the convolution of f(t) with f(T-t) where T is the duration of the waveform.	
	For the waveforms of bird and enemy jet, the output of the matched filter is a triangular waveform which extends over 2T with a maximum value equal to A ² T where A is equal to 1 and T=1 for the bird waveform and 5 for the enemy jet.	
	Matched filter output for the first two waveforms: A ² T bird and enemy jet	
	Assignment Project Exam Help	4%
	https://tutorcs.com	
	WeChat: cstutorcs	8%
	2 4 6 8 10	
	Matched filter output for a friendly jet	
	12-	
		8%
	2 4 6 8 10	
	Matched filter output for the commercial airline	

Durham University - School of Engineering & Computing Sciences Examination Answer Sheet 2016/2017 - Engineering Exams

Exam ref: ENGI4121-WE01		Paper Title: Communications Systems	
Section:	Question:	Total marks for question:	Sheet 2 of 4
Question set by: Sana Salous		Answer checked and approved	d by:

Durham University - School of Engineering & Computing Sciences Examination Answer Sheet 2016/2017 - Engineering Exams

Exam ref: ENGI4121-WE01		Paper Title: Communications Systems	
Section:	Question:	Total marks for question:	Sheet 3 of 4
Question set by: Sana Salous		Answer checked and approved	d by:

	identify the start and end of each of word. This can be achieved by transmitting a code	
	word every so many words of data. The code word must satisfy certain requirements such as its auto-correlation function should be distinct with a single peak and the synch word should have a low probability of occurrence in the data stream. An example of	
0.0()	such code is the Barker sequences.	
Q.2 (a)		F0/
(i)		5%
	Simplex transmission is one way transmission while duplex allows two way	
	transmissions. Example of simplex transmission is paging where the receiver cannot communicate back. Telephony wired or wireless are forms of duplex operation.	
(ii)	dominationate back. Telephony when or wireless are forms of duplex operation.	10%
(")	Frequency division multiplexing (FDM) is used to allocate different users different	1070
	frequencies to transmit over the same transmission medium. Usually these frequencies	
	are fixed and allocated for all time such as radio and TV transmission. FDMA is a form of frequency multiplexing where the user is allocated the frequency band when needed	
	i.e. to Acessthegen ring that to Post of reventy Hervisam Help	
(iii)		10%
	CDMA is a form of multiple access technique to a radio network where each user is allocated different code. The codes of the different users are orthogonal to each other.	
	Hence all users decripting same transfer the same time which results in a	
	frequency reuse cell structure of one. This is the form of multiplexing used in 3G mobile	
/b)	radio networks.	150/
(b)	In open loop power control the mobile adjusts its transmitted power on the basis of the	15%
	received signal strength. Whereas in closed loop power control, the base station sends	
	a control signal to the mobile to adjust its output power. The problem in the open loop	
	method is that in frequency division duplex transmission due to the frequency selectivity of the radio channel the mobile is adjusting its output power level on the basis of the	
	received signal at a different frequency. Hence it can result in transmitting the wrong	
	signal level. In closed loop the base station measures the received signal strength at the correct frequency and instructs the mobile to adjust its output accordingly. This	
	method can result in a delay and if the base station is using the received signal strength	
	as a function of interference it might instruct a mobile to increase its output to combat	
	the interference of other users which in turn can result in higher interference to the other users.	
(0)		F0/
(c) (i)		5%
(1)	$y(t) = x(t) + \beta x(t - \tau_m)$ $Y(\omega) = X(\omega) \left(1 + \beta e^{-j\omega \tau_m} \right)$	
	$Y(\omega) = X(\omega) \left(1 + \beta e^{-j\omega t_m} \right)$	
	The transfer function is given by the ratio which is equal	5%
	$H_c(\omega) = 1 + \beta(\cos \omega \tau_m - j \sin \omega \tau_m)$	
	For β =1 this reduces to	5%
	$\left H_c(\omega) \right ^2 = 2(1 + \cos \omega \tau_m)$	
	The transfer function would go through minima when the cosine term goes to -1 which	5%
	would occur at $\omega \tau_m = (2n+1)\pi$ or equivalently at frequencies $f = \frac{2n+1}{2\tau_m}$	
	A sketch of the frequency response is shown below	

Durham University - School of Engineering & Computing Sciences Examination Answer Sheet 2016/2017 - Engineering Exams

Exam ref: ENGI4121-WE01		Paper Title: Communications Systems	
Section:	Question:	Total marks for question:	Sheet 4 of 4
Ouestion set by: Sana Salous		Answer checked and approved	l by:

