

Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34
Giovanna Maria Nogueira	112479	Física / 34

Experimento I

Circuito RC em série, em corrente alternada.

1- Anote os valores de
$$R = \begin{bmatrix} 98,28 \Omega \pm 0,10 \\ \end{bmatrix}$$
 e $C = \begin{bmatrix} 9,937 \times 10^{-9} F \pm 0,100 \\ \end{bmatrix}$

2- Calcule a frequência de corte (f_c^{calc}) e anote aqui: 162967,009 $kHz \pm 0,010$

Fig. 1. Esquema da montagem do circuito.

O gerador de função foi ajustado em 5 V, pico a pico (V_{pp}) , e com forma de onda senoidal. Já o osciloscópio foi configurado para medir a V_{pp} nos canais 1 e 2, a frequência do canal 2 e a diferença de fase (ϕ) do canal 1 com relação ao canal 2;

- 3- Anote na Tabela (na última linha) os valores da f_C^{exp} (frequência de corte experimental), obtida por meio do osciloscópio. E nesta frequência, anote os valores de V_C (tensão pico a pico aplicada no capacitor), V_R (tensão pico a pico aplicado no resistor) e da ϕ (diferença de fase entre a V_T e a corrente do circuito);
- 4- A frequência foi variada na fonte AC de 10 a 700 kHz. Anote cada uma das frequências selecionadas, e em cada uma delas anote também os valores de V_{fonte} , V_R , V_C e ϕ ;
- 5- Calcule X_C (Reatância capacitiva), X_{Cexp} (Reatância capacitiva experimental), Z_{exp} (Impedância total do circuito experimental) e anote seus valores na tabela;

$$\chi_{Cexp} = \frac{V_C}{I} = \frac{V_C}{(V_R/R)}; \quad \chi_C = \frac{1}{2\pi fC}; \quad f_C^{calc} = \frac{1}{2\pi RC}; \quad Z_{exp} = \sqrt{R^2 + \chi_{Cexp}^2}; \quad V_T = \sqrt{V_R^2 + V_C^2}$$

Discussão dos dados obtidos:

1) Construa em um mesmo gráfico de V_T , V_R e V_C em função da frequência:

a. Obtenha f_C por meio deste gráfico e determine o desvio percentual com relação ao valor de f_C^{cal} .

Utilizando a tabela e o gráfico, foi possível obter a frequência para a qual tanto a diferença de potencial do capacitor, quanto à do resistor são iguais, isto é, a própria frequência de corte dada por:

$$f_c^{exp} \cong 168 \, kHz$$

Teoricamente, pode-se encontrar esta grandeza igualando as funções complexas do potencial do resistor (V_R) e do potencial do capacitor (V_C) . Para o resistor, temos:

$$V_R(t) = R \cdot I(t)$$

A corrente é dada pela solução real do circuito RC:

$$I(t) = \frac{I_{m\acute{a}x}}{|Z|} \cdot cos(\omega \cdot t + \varphi)$$

Sendo |*Z*| *a impedância do circuito dada por:*

$$|Z| = \sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2} = \sqrt{R^2 + (\chi_C)^2}$$

 $Com Z = R - i \cdot \chi_C$

Assim, o potencial do resistor fica:

$$V_R(t) = \frac{R \cdot I_{m\acute{a}x}}{|Z|} \cdot cos(\omega \cdot t + \varphi)$$

O potencial do capacitor é dado pela seguinte expressão:

$$V_C = \frac{Q(t)}{C}$$

Sendo Q a carga e C a capacitância.

Sabemos que:

$$\frac{dQ}{dt} = i$$

Então, a função carga pode ser encontrada resolvendo a equação diferencial com Q(t = t) = Q(t), e Q(t = 0) = 0. Assim, temos:

$$\int_{0}^{Q(t)} dQ = \int_{0}^{t} i(t) dt$$

Resolvendo a integral, obtém-se:

$$Q(t) = \frac{I_{m\acute{a}x}}{\omega \cdot |Z|} \cdot sin(\omega \cdot t + \varphi)$$

Portanto, o potencial do capacitor é dado por:

$$V_C(t) = \frac{I_{m\acute{a}x}}{\omega \cdot C \cdot |Z|} \cdot sin(\omega \cdot t + \varphi)$$

Igualando as equações abaixo:

$$V_R(t) = \frac{R \cdot I_{m\acute{a}x}}{|Z|} \cdot cos(\omega \cdot t + \varphi) \ e \ V_C(t) = \frac{I_{m\acute{a}x}}{\omega \cdot C \cdot |Z|} \cdot sin(\omega \cdot t + \varphi)$$

Ignorando a parte temporal, temos:

$$R = \frac{1}{\omega \cdot C} \cdot \tan \varphi$$

Nota que esta igualdade ocorre quando:

$$tan \varphi = 1 \Leftrightarrow \varphi = 45^{\circ}$$

A interpretação é imediata. Os fasores do potencial do resistor e do capacitor têm mesmo módulo. Retornando a equação anterior com $\omega = 2 \cdot \pi \cdot f$, pode-se obter a frequência para qual V_C e V_R são iguais:

$$f_C^{teorico} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

Substituindo $R = 98,28 \Omega e C = 9,937 \times 10^{-9} F$:

$$f_C^{calc} = 162967,009 \, kHz$$

Comparando ambos, calcula-se um erro percentual de 2,99 %. A maior dificuldade é manter o potencial fornecido pela fonte AC constante em 5 V. O aparelho em questão possui pouca precisão em relação às variações envolvidas no experimento. Também, nada nos garante a precisão na leitura da frequência segundo o osciloscópio. Ainda assim, obteve-se excelente aproximação experimental quando comparado aos valores teóricos.

b. Descreva/Explique neste gráfico o comportamento de V_T , V_R e V_C para valores $f \ll f_C$, $f \gg f_C$ e $f = f_C$.

É fácil perceber que o para frequências baixas, isto é, $f \ll f_C$ o potencial do capacitor é máximo, o que é justificável observando $\chi_C = 1/2 \cdot \pi \cdot f \cdot C$ que cresce para $f \to 0$ e decresce para $f \to \infty$. Já para o potencial do resistor ocorre o oposto, pois para $f \to 0$ o termo da impedância é muito grande, e para $f \to \infty$ o termo de impedância tende para R. Quando $f = f_C$ os potenciais iguais. Já o potencial total permanece constante.

c. Discuta sobre as principais fontes de erro com relação à medida V_R e V_C e sobre o que estas podem acarretar sobre o valor de f_C obtida pelo gráfico.

Existe uma certa imprecisão na leitura dos valores lidos pelos instrumentos de medida (multímetro), e o fato de que o osciloscópio tem uma certa faixa de frequência de trabalho, onde por algum motivo poderia discordar da faixa de frequência externa da corrente; o resistor é formado por uma cerâmica revestida por um fio condutor enrolado de longo comprimento, nesse caso, temos uma certa reatância indutiva associado a essa resistência, o que pode alterar os resultados obtidos; a fonte pode estar um pouco "cansada", levando a pequenas oscilações.

2) Construa em um mesmo gráfico $X_{C_{exp}}$ e X_C em função da frequência.

a. O comportamento de $X_{C_{exp}}$ é o esperado em função da frequência? Discuta sobre esse comportamento para $f \ll f_C$ e $f \gg f_C$.

Olhando para a equação:

$$\chi_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

Percebemos que a reatância capacitiva varia com o inverso da frequência, ou seja, quando o valor de $f \ll f_C$ a reatância tente a um valor máximo e diminui com o aumento da frequência e quando a $f \gg f_C$ a reatância tente a zero.

3) Construa um gráfico $X_{C_{exp}}$ em função do inverso da frequência (f^{-1}) .

Reatância Capacitiva Expetimental X Inverso da Frequência

a. A partir do gráfico obtenha o valor da capacitância e calcule o desvio percentual com relação ao valor da capacitância medido com a ponte LCR.

Da equação à baixo, podemos obter uma relação com a equação da reta, dessa forma, podemos obter o valor da capacitância por meio da análise do gráfico.

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C} \rightarrow X_C = \frac{1}{(2 \cdot \pi \cdot C)} \cdot \frac{1}{f}$$

Comparando a equação da reta, percebemos que não existe um coeficiente linear, dessa forma:

$$A \cdot x + B$$

$$\therefore \chi_C = y(x)$$

Assim temos:

$$A = \frac{1}{2 \cdot \pi \cdot C} e x = \frac{1}{f}$$

Onde A é o coeficiente angular e x é a variável independente.

Do gráfico, temos:

[06/04/2021 00:41 Graphe: "Graphe1"]

Regression linéaire Ajustement des données: Tableau1_XCexp, utilisant la fonction: A*x+B Y erreurs standard: Inconnu

De x = 0,0014 à x = 0,099

B (y-intercept) = 5,10277388057038 +/-0,483898627481884

A (pente) = 16 199,2978450787 +/- 17,083859622527

Chi^2 = 42,5685658350235 R^2 = 0,999983317404445

 $A \cong 16200000$, substituindo as informações na equação, temos:

$$\frac{16200000 - 1}{2 \cdot \pi \cdot C} \Rightarrow C = \frac{1}{16200000 \cdot 2 \cdot \pi} = 9.8 \times 10^{-9} F$$

Calculando o desvio percentual, temos:

$$\Delta = \frac{|9.8 \times 10^{-9} - 9.937 \times 10^{-9}|}{|9.8 \times 10^{-9}|} \times 100 \cong 1,40\%$$

4) Construa em um mesmo gráfico de $X_{C_{exp}}$, Z_{exp} e R em função da frequência.

a. Obtenha f_C por meio deste gráfico e determine o desvio percentual com relação ao valor de f_C^{cal} .

Como f_C é a frequência de corte que separa os dois meios, olhando para o gráfico o ponto em que isso acontece é mais ou menos em 170 kHz; dessa forma, podemos obter o desvio percentual:

$$\Delta = \frac{|170000,000 - 162967,009|}{|170000,000|} \times 100 \cong 4,14\%$$

b. Descreva/Explique neste gráfico o comportamento de $X_{C_{exp}}, Z_{exp}$ e R para valores $f \ll f_C, f \gg f_C$ e $f = f_C$.

Essa análise é parecida com a que fizemos anteriormente, quando temos $f \ll f_C$, a reatância tem seu valor máximo e f é mínimo, a medida que vamos aumentando a frequência a reatância também diminui; a impedância do circuito também diminui pois ela se dá em função da resistência e da reatância, como a resistência é constante a reatância decai junto com a impedância até atingirem o valor da resistência. Quando temos $f \gg f_C$, a reatância acaba decaindo ainda mais, como vemos no gráfico (pontos pretos abaixo da curva da resistência), note que a impedância tem seu valor mínimo igual ao valor da resistência do circuito. E por fim, quando $f = f_C$, a reatância e a resistência assumem valores iguais, vale ressaltar que a resistência é constante durante todo o experimento, pois ela não varia com as consecutivas mudanças de frequência, o que se torna uma característica intrínseca desse componente eletrônico.

5) Construa o gráfico de ϕ em função da frequência.

a. Determine por meio deste gráfico o valor de $f_{\mathcal{C}}$ e calcule o desvio percentual com relação ao valor de $f_{\mathcal{C}}^{cal}$.

Lembrando que $\omega = 1/R \cdot C$, do gráfico de fasores temos:

$$\phi = \arctan\left(-\frac{1}{\omega \cdot R \cdot C}\right) \rightarrow \phi = \arctan(-1)$$

Temos isso quando $\phi = 45^{\circ}$, no gráfico encontramos essa igualdade quando a frequência é aproximadamente igual a 170 kHz, que é a nossa frequência de corte experimental. Assim, temos um desvio percentual igual a:

$$\Delta = \frac{|170000,000 - 162967,009|}{|170000,000|} \times 100 \cong 4,14\%$$

b. Descreva/Explique neste gráfico o comportamento de ϕ para valores $f \ll f_c$, $f \gg f_c$ e $f = f_c$.

Da teoria temos que o ângulo ϕ corresponde ao ângulo formado entre a corrente e a tensão no diagrama dos fasores e também, temos que a corrente está adiantada 90° em relação a tensão; sendo assim, quando $f \ll f_C$ temos a defasagem máxima que é aproximadamente igual a 90°; quando $f \gg f_C$ a frequência de oscilação é máxima, levando a corrente (alternada) a ter um comportamento semelhante a de uma corrente contínua, logo a defasagem é mínima e tende a zero quando a frequência aumenta. Por fim, $f = f_C$ temos que a defasagem é aproximadamente igual a 45°.

c. Discuta sobre as principais fontes de erro com relação à medida de ϕ e sobre o que estas podem acarretar sobre o valor de f_C obtida pelo gráfico ϕ em função da frequência.

Existe uma certa imprecisão na leitura dos valores lidos pelos instrumentos de medida (multímetro), e o fato de que o osciloscópio tem uma certa faixa de frequência de trabalho, onde por algum motivo poderia discordar da faixa de frequência externa da corrente; o resistor é formado por uma cerâmica revestida por um fio condutor enrolado de longo comprimento, nesse caso, temos uma certa reatância indutiva associado a essa resistência, o que pode alterar os resultados obtidos; a fonte pode estar um pouco "cansada", levando a pequenas oscilações.

f (kHz)	$V_{fonte}(V)$	$V_T(V)$	$V_R(V)$	$V_{c}(V)$	φ (°)	$X_{C_{exp}}(\Omega)$	$X_{\mathcal{C}}(\Omega)$	$Z_{exp}\left(\Omega \right)$	$Z(\Omega)$	$f^{-1} (kHz^{-1})$
10,01	5,04	5,049	0,308	5,04	-86,1	1608,218	1600,040	1611,218	1603,055	0,0990
20,08	5,00	4,996	0,600	4,96	-80,4	812,448	797,629	818,370	803,661	0,0498
40,19	5,12	5,144	1,21	5,00	-74,7	406,116	398,517	417,839	410,457	0,0249
61,43	5,08	5,106	1,74	4,80	-68,6	271,117	260,726	288,381	278,634	0,0163
80,39	5,08	5,127	2,18	4,64	-61,9	209,183	199,234	231,120	222,156	0,0124
120,00	5,04	5,060	2,88	4,16	-53,6	141,960	133,470	172,660	165,750	0,0083
140,30	5,00	5,000	3,16	3,88	-49,5	120,673	114,158	155,631	150,635	0,0071
150,60	5,12	5,102	3,36	3,84	-46,6	112,320	106,351	149,247	144,808	0,0066
160,00	5,08	5,067	3,44	3,72	-44,9	106,279	100,102	144,756	140,283	0,0063
170,40	5,00	5,007	3,48	3,60	-42,9	101,670	93,993	141,406	139,494	0,0059
180,80	5,00	5,007	3,60	3,48	-42,0	95,004	88,568	136,692	132,300	0,0055
200,00	5,00	4,990	3,76	3,28	-38,9	85,734	80,082	130,420	126,776	0,0050
300,10	5,08	4,987	4,28	2,56	-29,4	58,784	53,370	114,519	111,836	0,0033
400,60	5,16	5,048	4,60	2,08	-23,1	44,440	39,981	107,860	106,101	0,0025
500,00	5,08	4,935	4,64	1,68	-18,7	35,584	32,033	104,524	103,369	0,0020
604,60	5,00	4,935	4,72	1,44	-14,8	29,984	26,491	102,752	101,788	0,0017
701,30	5,00	4,890	4,72	1,28	-12,6	26,652	22,838	101,830	100,899	0,0014
$f_C = 172,70$	5,08	5,148	3,64	3,64	-44,1	98,280	92,741	139,000	135,129	0,0058