ERANSKINA

1. TRIGONOMETRIA

Sinu, kosinu eta tangente direlako arrazoi trigonometrikoak honela definitzen dira:

$$\sin \alpha = \frac{AB}{OB} = \frac{y}{r}$$

$$\cos \alpha = \frac{OA}{OB} = \frac{x}{r}$$

$$\tan \alpha = \frac{AB}{OA} = \frac{y}{x}$$

Alderantzizko arrazoi trigonometrikoak:

$$\csc \alpha = \frac{1}{\sin \alpha} = \frac{r}{v}$$
; $\sec \alpha = \frac{1}{\cos \alpha} = \frac{r}{x}$; $\cot \alpha = \frac{1}{\tan \alpha} = \frac{x}{v}$

r arbitrarioa denez, r = 1 har daiteke:

$$\sin \alpha = \frac{y}{r} = \frac{y}{1} = y \qquad \cos \alpha = \frac{x}{r} = \frac{x}{1} = x$$

Kontsidera dezagun zentroa O jatorrian eta erradioa r=1 dauzkan zirkunferentzia trigonometrikoa delakoa. Adieraz dezagun α angelu bat koordenatuen ardatzean (erpina O jatorrian eta alde bat abzisen ardatzean egonda). Orduan x eta y segmentuak hurrenez hurren $\cos \alpha$ eta $\sin \alpha$ -ren balioak dira.

Beraz, koadrante bakoitzeko arrazoi trigonometrikoen zeinuak honelakoak dira:

	Lehenengo	Bigarren	Hirugarren	Laugarren
	koadrantea	koadrantea	koadrantea	koadrantea
$\sin \alpha$	+	+	_	_
$\cos \alpha$	+	_	_	+
$\tan lpha$	+	_	+	_

TRIGONOMETRIAREN OINARRIZKO FORMULA

Zirkunferentzia trigonometrikoa kontutan hartuta eta Pitagorasen teoremaren arabera:

$$\sin^2 \alpha + \cos^2 \alpha = x^2 + y^2 = 1$$

 $\sin^2 \alpha + \cos^2 \alpha = 1$ erlazioa *trigonometriaren oinarrizko formula* da. Hartatik, $\cos^2 \alpha$ eta $\sin^2 \alpha$ -z zatituz, hurrengo formulak ondorioztatzen dira:

$$1 + \tan^2 \alpha = \sec^2 \alpha$$
 $1 + \cot^2 \alpha = \csc^2 \alpha$

ANGELU AZPIMARRAGARRIEN ARRAZOI TRIGONOMETRIKOAK

	0°	30°	45°	60°	90°
	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin \alpha$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos \alpha$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
$\tan \alpha$	0	$1/\sqrt{3}$	1	$\sqrt{3}$	A

ANGELU OSAGARRIEN ARRAZOIAK

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \qquad \cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \qquad \tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

ANGELU BETEGARRIEN ARRAZOIAK

$$\sin(\pi - \alpha) = \sin \alpha$$
 $\cos(\pi - \alpha) = -\cos \alpha$ $\tan(\pi - \alpha) = -\tan \alpha$

AURKAKO ANGELUEN ARRAZOIAK

$$\sin(-\alpha) = -\sin\alpha$$
 $\cos(-\alpha) = \cos\alpha$ $\tan(-\alpha) = -\tan\alpha$

90°-ko DIFERENTZIA DAUKATEN ANGELUEN ARRAZOIAK

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha \qquad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha \qquad \tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$

90°-ko DIFERENTZIA DAUKATEN ANGELUEN ARRAZOIAK

$$\sin(\pi + \alpha) = -\sin\alpha$$
 $\cos(\pi + \alpha) = -\cos\alpha$ $\tan(\pi + \alpha) = \tan\alpha$

$\alpha + \beta$ eta $\alpha - \beta$ -ren ARRAZOI TRIGONOMETRIKOAK

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

ANGELU BIKOITZAREN ARRAZOI TRIGONOMETRIKOAK

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

ERDIANGELUAREN ARRAZOI TRIGONOMETRIKOAK

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}} \qquad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}} \qquad \tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

BATUREN ETA KENDUREN TRANSFORMAZIOA BIDERKADURETAN

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

2. FORMULA TRIGONOMETRIKOAK

Errektangelua: $A = a \cdot b$, a eta b aldeen luzerak izanik.

Karratua: $A = a^2$, a aldearen luzera izanik.

Trapezioa: $A = \frac{a+b}{2}h$, a oinarririk handiena, b oinarririk txikiena eta h altuera izanik.

Erronboa: $A = \frac{d \cdot d'}{2}$, d eta d' diagonalak izanik.

Zirkunferentzia: $L = 2\pi r$, r erradioa izanik.

Zirkulua: $A = \pi r^2$, r erradioa izanik.

Sektore zirkularra: $A = \frac{1}{2}lr$, l arkuaren luzera eta r zirkunferentziaren erradioa izanik.

Paralelepipedo errectangeluarra: V = abc; S = 2(ab + ac + bc); a, b eta c ertzen luzerak izanik.

Kuboa: $V = a^3$; $S = 6a^2$, a ertzaren luzera izanik.

Prisma: V = Bh, B oinarriaren azalera eta h altuera izanik.

Zilindroa: $V = \pi r^2 h$; $S = 2\pi r h + 2\pi r^2$, r erradioa eta h altuera izanik.

Konoa: $V = \frac{1}{3}\pi r^2 h$; $S = \pi r g$, r erradioa, h altuera eta g sortzailea izanik.

Kono-enborra: $V = \frac{\pi h}{3} (R^2 + r^2 + Rr)$, R eta r erradioak eta h altuera izanik.

Esfera: $V = \frac{4}{3}\pi r^3$; $S = 4\pi r^2$, r erradioa izanik.

Piramidea: $V = \frac{1}{3}Bh$, B oinarriaren azalera eta h altuera izanik.

3. PROGRESIOAK

PROGRESIO ARITMETIKOA

Segida bat *progresio aritmetiko* bat dela esaten da, baldin gai bakoitza aurrekoa gehi *diferentzia* deritzon kantitate konstante bat bada. Beraz: $a_{n+1} = a_n + d$.

Gai orokorra $a_n = a_1 + (n-1)d$ formularen bidez lortzen da; halaber, n gairen batura $S_n = \frac{a_1 + a_n}{2}n$ da, $a_n + a_1 = a_k + a_{n-k+1}$ erlaziotik abiatuz.

PROGRESIO GEOMETRIKOA

Segida bat *progresio geometriko* bat dela esaten da, baldin gai bakoitza aurrekoa bider *arrazoia* deritzon kantitate konstante bat bada. Beraz: $a_{n+1} = a_n \cdot r$.

Gai orokorra $a_n = a_1 \cdot r^{n-1}$ formularen bidez lortzen da; halaber, n gairen batura $S_n = \frac{a_n \cdot r - a_1}{r - 1} = \frac{a_1(r^n - 1)}{r - 1} \text{ da.}$

Baldin progresio geometriko baten arrazoia |r| < 1 bada, orduan:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a_1(r^n - 1)}{r - 1} = \frac{a_1}{1 - r}$$

 $a_n \cdot a_1 = a_k \cdot a_{n-k+1}$ erlaziotik abiatuz, n gairen biderkadura lortzen dugu:

$$P_n = \sqrt{(a_1 \cdot a_n)^n} \ .$$

4. NEWTONEN BINOMIOA

$$(a+b)^{n} = \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \binom{n}{2} a^{n-2} b^{2} + \cdots + \binom{n}{n-1} a^{1} b^{n-1} + \binom{n}{n} a^{0} b^{n}$$

$$(a-b)^{n} = \binom{n}{0} a^{n} b^{0} - \binom{n}{1} a^{n-1} b^{1} + \binom{n}{2} a^{n-2} b^{2} - \cdots \mp \binom{n}{n-1} a^{1} b^{n-1} \pm \binom{n}{n} a^{0} b^{n}$$

Era laburtuan: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$,

non zenbaki konbinatorioak honela definituta baitaude:

$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n(n-1)(n-2)\cdots(n-p+1)}{p!}$$

Gogora bedi $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ dela.

Gainera, definizioz, 0!=1.

n-ren *erdifaktoriala* $n!! = n(n-2)(n-4)\cdots$ da.

Hortaz: $(2n)! = 2n(2n-2)(2n-4)\cdots 4\cdot 2 = 2^n \cdot n!$

$$(2n-1)!! = \frac{(2n)!}{(2n)!!}$$

Newtonen binomioan agertzen diren koefizienteak lortzeko era azkar eta eraginkorra *Tartagliaren triangelua* delakoa da. Hartan, zenbaki konbinatorioen

hurrengo propietatea erabiltzen da:
$$\binom{m}{n} + \binom{m}{n+1} = \binom{m+1}{n+1}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Triangeluan, aldeetako zenbakiek bat balio dute; beste zenbakiak lortzeko, aipatutako propietatearen arabera, zenbaki bakoitzak justu goian dauzkan bi zenbakien batura burutzen da.

NEWTONEN BINOMIOAREN ETA BIDERKETA LABURTUAREN FORMULAK

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a^{2} - b^{2}) = (a + b)(a - b)$$

$$(a^{3} - b^{3}) = (a - b)(a^{2} + ab + b^{2})$$

$$(a^{3} + b^{3}) = (a + b)(a^{2} - ab + b^{2})$$

$$(a^{4} - b^{4}) = (a^{2} - b^{2})(a^{2} + b^{2}) = (a - b)(a + b)(a^{2} + b^{2})$$

5. GEOMETRIA ANALITIKO LAUA

 $P_1(x_1, y_1)$ eta $P_2(x_2, y_2)$ puntuen arteko distantzia:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $P_1(x_1, y_1)$ eta $P_2(x_2, y_2)$ puntuetatik igarotzen den zuzenaren ekuazioa:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

 $P_1(x_1, y_1)$ puntutik igarotzen den eta m malda daukan zuzenaren ekuazioa:

$$y - y_1 = m(x - x_1)$$

 $P_1(x_1, y_1)$ puntuaren eta ax + by + c = 0 zuzenaren arteko distantzia:

$$d = \left| \frac{a x_1 + b y_1 + c}{\sqrt{a^2 + b^2}} \right|$$

 m_1 eta m_2 maldako bi zuzenen arteko angelua:

$$\tan \alpha = \frac{m_2 - m_1}{1 + m_1 m_2}$$

Erpintzat $P_1(x_1, y_1), P_2(x_2, y_2)$ eta $P_3(x_3, y_3)$ puntuak dauzkan triangelu baten azalera:

$$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

6. GEOMETRIA ANALITIKOA ESPAZIOAN

 $P_1(x_1, y_1, z_1)$ eta $P_2(x_2, y_2, z_2)$ puntuen arteko distantzia:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

 $P_1(x_1, y_1, z_1)$ eta $P_2(x_2, y_2, z_2)$ puntuetatik igarotzen den zuzenaren ekuazioa:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

 $P_1(x_1, y_1, z_1)$ puntutik igarotzen den eta norabide bektoretzat $\vec{v} = (v_1, v_2, v_3)$ daukan zuzenaren ekuazioa:

$$\frac{x - x_1}{v_1} = \frac{y - y_1}{v_2} = \frac{z - z_1}{v_3}$$

Planoaren ekuazio orokorra:

$$ax + bv + cz + d = 0$$
,

 $\vec{v} = (a, b, c)$ planoarekiko bektore perpendikularra izanik.

 $P_1(x_1,y_1,z_1)$, $P_2(x_2,y_2,z_2)$ eta $P_3(x_3,y_3,z_3)$ puntuetatik igarotzen den planoaren ekuazioa:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

 $P_1(x_1, y_1, z_1)$ puntutik igarotzen den eta ax + by + cz + d = 0 planoaren perpendikularra den zuzenaren ekuazioa:

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

 $P_1(x_1, y_1, z_1)$ puntuaren eta ax + by + cz + d = 0 planoaren arteko distantzia:

$$d = \frac{a x_1 + b y_1 + c z_1 + d}{\sqrt{a^2 + b^2 + c^2}}$$

7. INTEGRALEN TAULA

xⁿ DAUKATEN FUNTZIOAK

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad n \neq -1$$

$$2. \quad \int \frac{1}{x} \, dx = \ln|x| + C$$

a+bx DAUKATEN FUNTZIOAK

1.
$$\int \frac{x}{a+bx} dx = \frac{bx-a\ln|a+bx|}{b^2} + C$$

2.
$$\int \frac{x}{(a+bx)^2} dx = \frac{1}{b^2} \left(\frac{a}{a+bx} + \ln|a+bx| \right) + C$$

3.
$$\int \frac{x}{(a+bx)^n} dx = \frac{1}{b^2} \left(\frac{a}{(n-1)(a+bx)^{n-1}} - \frac{1}{(n-2)(a+bx)^{n-2}} \right) + C \qquad n \neq 1, 2$$

4.
$$\int \frac{x^2}{a+bx} dx = \frac{1}{b^3} \left(-\frac{bx(2a-bx)}{2} + a^2 \ln|a+bx| \right) + C$$

5.
$$\int \frac{x^2}{(a+bx)^2} dx = \frac{1}{b^3} \left(bx - \frac{a^2}{a+bx} - 2a \ln|a+bx| \right) + C$$

6.
$$\int \frac{x^2}{(a+bx)^3} dx = \frac{1}{b^3} \left(\frac{2a}{a+bx} - \frac{a^2}{2(a+bx)^2} + \ln|a+bx| \right) + C$$

7.
$$\int \frac{x^2}{(a+bx)^n} dx = \frac{1}{b^3} \left(-\frac{1}{(n-3)(a+bx)^{n-3}} + \frac{2a}{(n-2)(a+bx)^{n-2}} - \frac{a^2}{(n-1)(a+bx)^{n-1}} \right) + C \quad n \neq 1, 2, 3$$

8.
$$\int \frac{1}{x(a+bx)} dx = \frac{1}{a} \ln \left| \frac{x}{a+bx} \right| + C$$

9.
$$\int \frac{1}{x(a+bx)^2} dx = \frac{1}{a} \left(\frac{1}{a+bx} + \frac{1}{a} \ln \left| \frac{x}{a+bx} \right| \right) + C$$

10.
$$\int \frac{1}{x^2(a+bx)} dx = -\frac{1}{a} \left(\frac{1}{x} + \frac{b}{a} \ln \left| \frac{x}{a+bx} \right| \right) + C$$

11.
$$\int \frac{1}{x^2(a+bx)^2} dx = -\frac{1}{a^2} \left(\frac{a+2bx}{x(a+bx)} + \frac{2b}{a} \ln \left| \frac{x}{a+bx} \right| \right) + C$$

$a+bx+cx^2$; $b^2 \neq 4ac$ DAUKATEN FUNTZIOAK

1.
$$\int \frac{dx}{a+bx+cx^2} = \begin{cases} \frac{2}{\sqrt{4ac-b^2}} \arctan \frac{2cx+b}{\sqrt{4ac-b^2}} + C & b^2 < 4ac \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2cx+b-\sqrt{b^2 - 4ac}}{2cx+b+\sqrt{b^2 - 4ac}} \right| + C & b^2 > 4ac \end{cases}$$

2.
$$\int \frac{x}{a+bx+cx^2} dx = \frac{1}{2c} \left(\ln |a+bx+cx^2| - b \int \frac{dx}{a+bx+cx^2} \right)$$

$\sqrt{a+bx}$ DAUKATEN FUNTZIOAK

1.
$$I_n = \int x^n \cdot \sqrt{a + bx} \, dx = \frac{2}{b(2n+3)} \left(x^n (a + bx)^{3/2} - n \, a \, I_{n-1} \right)$$

2.
$$\int \frac{1}{x\sqrt{a+bx}} dx = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right| + C & a > 0 \\ \frac{2}{\sqrt{-a}} \arctan \sqrt{\frac{a+bx}{-a}} + C & a < 0 \end{cases}$$

3.
$$I_n = \int \frac{dx}{x^n \cdot \sqrt{a + bx}} = \frac{-1}{a(n-1)} \left(\frac{\sqrt{a + bx}}{x^{n-1}} + \frac{(2n-3)b}{2} I_{n-1} \right) \qquad n \neq 1$$

4.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{dx}{x\sqrt{a+bx}}$$

5.
$$I_n = \int \frac{\sqrt{a+bx}}{x^n} dx = \frac{-1}{a(n-1)} \left(\frac{(a+bx)^{3/2}}{x^{n-1}} + \frac{b(2n-5)}{2} I_{n-1} \right) \qquad n \neq 1$$

6.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{-2(2a-bx)}{3b^2} \sqrt{a+bx} + C$$

7.
$$I_n = \int \frac{x^n}{\sqrt{a+bx}} dx = \frac{2}{b(2n+1)} \left(x^n \sqrt{a+bx} - n a I_{n-1} \right)$$

$a^2 \pm x^2$; a > 0 DAUKATEN FUNTZIOAK

1.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

2.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

3.
$$I_n = \int \frac{dx}{(a^2 \pm x^2)^n} = \frac{1}{2a^2(n-1)} \left(\frac{x}{(a^2 \pm x^2)^{n-1}} + (2n-3)I_{n-1} \right) \qquad n \neq 1$$

$\sqrt{x^2 \pm a^2}$; a > 0 DAUKATEN FUNTZIOAK

1.
$$\int \sqrt{x^2 \pm a^2} \ dx = \frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \ \pm a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right) + C$$

2.
$$\int x^2 \sqrt{x^2 \pm a^2} \ dx = \frac{1}{8} \left(x(2x^2 \pm a^2) \sqrt{x^2 \pm a^2} - a^4 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right) + C$$

3.
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} - a \ln \left| \frac{a + \sqrt{x^2 + a^2}}{x} \right| + C$$

4.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cdot \arcsin \frac{|x|}{a} + C$$

5.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^2} dx = -\frac{\sqrt{x^2 \pm a^2}}{x} + \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C$$

6.
$$\int \frac{dx}{\sqrt{x^2 + 1}} = \ln\left|x + \sqrt{x^2 + 1}\right| + C = \arg\sinh x + C$$

7.
$$\int \frac{dx}{\sqrt{x^2 - 1}} = \ln \left| x + \sqrt{x^2 - 1} \right| + C = \arg \cosh x + C$$

8.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

9.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{x^2 + a^2}}{x} \right| + C$$

10.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arcsin \frac{|x|}{a} + C$$

11.
$$\int \frac{x^2 dx}{\sqrt{x^2 \pm a^2}} = \frac{1}{2} \left(x \sqrt{x^2 \pm a^2} \mp a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \right) + C$$

12.
$$\int \frac{dx}{x^2 \cdot \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x} + C$$

13.
$$\int \frac{dx}{(x^2 \pm a^2)^{3/2}} = \pm \frac{x}{a^2 \sqrt{x^2 \pm a^2}} + C$$

$\sqrt{a^2-x^2}$; a > 0 DAUKATEN FUNTZIOAK

1.
$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right) + C$$

2.
$$\int x^2 \cdot \sqrt{a^2 - x^2} \, dx = \frac{1}{8} \left(x(2x^2 - a^2) \sqrt{a^2 - x^2} + a^4 \arcsin \frac{x}{a} \right) + C$$

3.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + C$$

4.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C$$

$$5. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C$$

6.
$$\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right| + C$$

7.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = \frac{1}{2} \left(-x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right) + C$$

8.
$$\int \frac{dx}{x^2 \cdot \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C$$

9.
$$\int \frac{dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C$$

$\sin x$; $\cos x$ DAUZKATEN FUNTZIOAK

1.
$$I_n = \int \sin^n x \, dx = -\frac{\sin^{n-1} x \cdot \cos x}{n} + \frac{n-1}{n} I_{n-2}$$

2.
$$I_n = \int \cos^n x \, dx = \frac{\cos^{n-1} x \cdot \sin x}{n} + \frac{n-1}{n} I_{n-2}$$

$$3. \quad \int x \sin x \, dx = \sin x - x \cos x + C$$

$$4. \quad \int x \cos x \, dx = \cos x + x \sin x + C$$

5.
$$I_n = \int x^n \sin x \, dx = -x^n \cos x + n \, I_{n-1}$$

6.
$$I_n = \int x^n \cos x \, dx = x^n \sin x - n I_{n-1}$$

7.
$$\int \frac{dx}{1 \pm \sin x} = \tan x \mp \sec x + C$$

8.
$$\int \frac{dx}{1 \pm \cos x} = -\cot x \pm \csc x + C$$

9.
$$\int \frac{dx}{\sin x \cdot \cos x} = \ln |\tan x| + C$$

tan x; cot x; sec x; csc x **DAUZKATEN FUNTZIOAK**

$$1. \int \tan x \, dx = -\ln|\cos x| + C$$

$$2. \quad \int \cot x \, dx = \ln|\sin x| + C$$

3.
$$\int \sec x \, dx = \ln \left| \sec x + \tan x \right| + C$$

4.
$$\int \csc x \, dx = \ln\left|\csc x - \cot x\right| + C$$

5.
$$I_n = \int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - I_{n-2}$$
 $n \neq 1$

6.
$$I_n = \int \cot^n x \, dx = \frac{\cot^{n-1} x}{1-n} - I_{n-2} \qquad n \neq 1$$

7.
$$I_n = \int \sec^n x \, dx = \frac{\sec^{n-2} x \cdot \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$
 $n \neq 1$

8.
$$I_n = \int \csc^n x \, dx = \frac{\csc^{n-2} x \cdot \cot x}{1-n} + \frac{n-2}{n-1} I_{n-2}$$
 $n \neq 1$

9.
$$\int \frac{dx}{1 \pm \tan x} = \frac{1}{2} \left(x \pm \ln \left| \cos x \pm \sin x \right| \right) + C$$

10.
$$\int \frac{dx}{1 \pm \cot x} = \frac{1}{2} \left(x \mp \ln \left| \cos x \pm \sin x \right| \right) + C$$

11.
$$\int \frac{dx}{1 \pm \sec x} = x + \cot x \mp \csc x + C$$

12.
$$\int \frac{dx}{1 \pm \csc x} = x - \tan x \pm \sec x + C$$

ALDERANTZIZKO FUNTZIO TRIGONOMETRIKOAK DAUZKATEN FUNTZIOAK

1.
$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + C$$

2.
$$\int \arccos dx = x \arccos x - \sqrt{1 - x^2} + C$$

3.
$$\int \arctan x \, dx = x \arctan x - \ln \sqrt{1 + x^2} + C$$

4.
$$\int \operatorname{arc} \cot x \, dx = x \, \operatorname{arc} \cot x + \ln \sqrt{1 + x^2} + C$$

5.
$$\int \operatorname{arc} \sec x \, dx = x \operatorname{arc} \sec x - \ln \left| x + \sqrt{x^2 - 1} \right| + C$$

6.
$$\int \operatorname{arc} \csc x \, dx = x \operatorname{arc} \csc x + \ln \left| x + \sqrt{x^2 - 1} \right| + C$$

e^x DAUKATEN FUNTZIOAK

1.
$$I_n = \int x^n e^x dx = x^n e^x - nI_{n-1}$$

2.
$$\int \frac{dx}{1+e^x} = x - \ln(1+e^x) + C$$

3.
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$$

4.
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$

ln x DAUKATEN FUNTZIOAK

1.
$$\int x^n \ln x \, dx = \frac{x^{n+1}}{(n+1)^2} \left(-1 + (n+1) \ln x \right) + C \qquad n \neq -1$$

2.
$$I_n = \int \ln^n x \, dx = x \ln^n x - nI_{n-1}$$

8. LAPLACEREN TRANSFORMATUEN TAULA

FUNTZIO SORTZAILEA	FUNTZIO TRANSFORMATUA
$u_a = \begin{cases} 0 & \text{si} t < a \\ 1 & \text{si} t > a \end{cases}$	e^{-pa}
$u_a = \begin{cases} 1 & \text{si} t > a \end{cases}$	\overline{p}
$u_0 = \begin{cases} 0 & \text{si} t < 0 \\ 1 & \text{si} t > 0 \end{cases}$	<u>p</u> <u>1</u>
$u_0 = 1$ si $t > 0$	p
sin at	$\frac{a}{p^2 + a^2}$
cos at	$\frac{p}{p^2 + a^2}$ $\frac{a}{p^2 - a^2}$ $\frac{p}{p^2 - a^2}$ $\frac{1}{p}$
sinh at	$\frac{a}{p^2 - a^2}$
$\cosh at$	$\frac{p}{p^2-a^2}$
e^{-at}	$\frac{1}{p+a}$
t^n , $n > -1$	$\frac{\Gamma(n+1)}{p^{n+1}}$
$t^n, n \in \mathbb{Z}^+$	$\frac{n!}{p^{n+1}}$
$e^{-at}\sin bt$	$\frac{b}{(p+a)^2+b^2}$
$e^{-at}\cos bt$	$\frac{p+a}{(p+a)^2+b^2}$ $\frac{b}{(p+a)^2-b^2}$
$e^{-at}\sinh bt$	$\frac{b}{(p+a)^2-b^2}$
$e^{-at}\cosh bt$	$\frac{p+a}{(p+a)^2 - b^2}$
$e^{at}-e^{bt}$	1
a-b	(p-b)(p-a)
$\frac{a-b}{ae^{at}-be^{bt}}$	<i>p</i>
a-b	(p-b)(p-a)
$\frac{1-\cos at}{a^2}$	$\frac{1}{(p-b)(p-a)}$ $\frac{p}{(p-b)(p-a)}$ $\frac{1}{p(p^2+a^2)}$ $\frac{1}{p^2(p^2+a^2)}$
$at - \sin at$	1
$\frac{ar \sin ar}{a^2}$	$p^2(p^2+a^2)$

FUNTZIO SORTZAILEA	FUNTZIO TRANSFORMATUA
$\sin at - at \cos at$	1
$2a^3$	$(p^2+a^2)^2$
$t \sin at$	$\frac{p}{\sqrt{1-\frac{1}{2}}}$
2 <i>a</i>	$(p^2+a^2)^2$
$\sin at + at \cos at$	p^2
2 <i>a</i>	$(p^2 + a^2)^2$
$2\cos at - at\sin at$	p^3
2	$(p^2 + a^2)^2$
t and at	p^2-a^2
$t\cos at$	$\sqrt{(p^2+a^2)^2}$
$at \cosh at - \sinh at$	1
$2a^3$	$ \frac{p}{(p^2 + a^2)^2} $ $ \frac{p^2}{(p^2 + a^2)^2} $ $ \frac{p^3}{(p^2 + a^2)^2} $ $ \frac{p^2 - a^2}{(p^2 + a^2)^2} $ $ \frac{1}{(p^2 - a^2)^2} $
t sinh at	<u> </u>
2 <i>a</i>	$(p^2-a^2)^2$
$\sinh at + at \cosh at$	p^2
2 <i>a</i>	$(p^2-a^2)^2$
$2\cosh at + at \sinh at$	p^3
2	$ \frac{p}{(p^2 - a^2)^2} $ $ \frac{p^2}{(p^2 - a^2)^2} $ $ \frac{p^3}{(p^2 - a^2)^2} $ $ \frac{p^2 + a^2}{(p^2 - a^2)^2} $ $ \frac{1}{p^4 - a^4} $
1	$p^2 + a^2$
t cosh at	$\overline{(p^2-a^2)^2}$
$\sinh at - \sin at$	1
${2a^3}$	p^4-a^4
$ \cosh at - \cos at $	$\frac{p}{p^4 - a^4}$
$2a^2$	p^4-a^4
$\sinh at + \sin at$	p^2
2 <i>a</i>	p^4-a^4
$ \cosh at + \cos at $	p^3
2	$\frac{p^2}{p^4 - a^4}$ $\frac{p^3}{p^4 - a^4}$
$\sin at \cosh at - \cos at \sinh at$	1
$4a^3$	$p^4 + 4a^4$
$\sin at \sinh at$	<u> </u>
$2a^2$	$\frac{p}{p^4 + 4a^4}$
$\sin at \cosh at + \cos at \sinh at$	$\frac{p^2}{p^4 + 4a^4}$ $\frac{p^3}{p^4 + 4a^4}$
2 <i>a</i>	$p^4 + 4a^4$
oos at oosh at	p^3
cos at cosh at	$p^4 + 4a^4$

9. TRANSFORMATUAREN OINARRIZKO PROPIETATEAK

FUNTZIO SORTZAILEA	FUNTZIO TRANSFORMATUA
$\sum_{1}^{n} C_{i} f_{i}(t)$	$\sum_{1}^{n} C_{i} F_{i}(p)$
f(at)	$\frac{F(p/a)}{a}$
$e^{-at}f(t)$	F(p+a)
f'(t)	$pF(p)-f(0^+)$
$t^n f(t)$	$\frac{(-1)^n d^n F(p)}{dp^n}$
$\int_0^t f(t)dt$	$\frac{F(p)}{p}$
$\frac{f(t)}{t}$	$\int_{p}^{\infty} F(u) du$
$\int_0^t f(u)g(t-u)du$	F(p)G(p)
$u_a(t)$	$\frac{e^{-pa}}{p}$
$f(t)u_a(t)$	$e^{-pa}\mathfrak{L}[f(t+a)]$
$f(t-a)u_a$	$e^{-pa}F(p)$
f(t) = f(t+a)	$\frac{\int_0^a e^{-pu} f(u) du}{1 - e^{-pa}}$