ENTREGA 2

PRESENTADO POR:

SAMUEL IGNACIO GOMEZ 1958829 WILLIAM GIL CLAVIJO 1958472 JHOAN ANDRES DIAZ CASTAÑO 1958501

DOCENTE CARLOS ANDRES DELGADO

REDES NEURONALES

TULUÁ

VALLE DEL CAUCA

UNIVERSIDAD DEL VALLE

A. PROCESAMIENTO DE DATOS

Fuente de datos:

El conjunto de datos seleccionado se obtuvo mediante la plataforma Kaggle, denominado Flowers Recognition. El cual cuenta con un total de 4242 imágenes divido en 5 categorías de flores, contando con alrededor de 800 imágenes por categoría. Contando con dimensiones alrededor de los 320×240 pixeles, ya que no todas se encuentran reducidas al mismo tamaño.

Estrategias de procesamiento:

Usando las especificaciones del dataset se toma las siguientes decisiones:

- Conservar la característica del color en las imágenes, ya que tratándose de identificar flores el color se convierte en una característica importante en su reconocimiento.
- Cambio de tamaño; se realiza un cambio de tamaño a cada imagen del dataset a un tamaño específico de 224×224.
- Adición de etiquetas; cada imagen recibió una etiqueta entre el 0 al 4, la cual posteriormente recibirá un procesamiento One-Hot Encode para mejorar el proceso de entrenamiento

B. DESARROLLO RED NEURONAL

Se opto por el uso de una red neuronal pre entrenada (VGG19) para la clasificación de imágenes a color de tamaño 224×224 la cual cuenta con las siguientes características:

- Profundidad; cuenta con 19 capas convolucionales las cuales originalmente están entrenadas para el procesamiento de datos de imageNet, pero gracias a una de sus propiedades *include_top* permite adaptar la neurona a otro tipo de salidas.
- Tamaño de entrada; el tamaño de entrada que recibe esta neurona es de 224×224 pixeles.

Teniendo en cuenta esto, se crea un modelo secuencial con las siguientes características:

- Se añade el modelo pre entrenado, al cual se le especifica que sus últimas capas no serán incluidas, el tipo de entrada y especificación del orden de sus canales.
- Se añade una capa de *maxpooling* para reducir la dimensionalidad de las características.
- Se aplanan las características de entrada en un vector.
- Una capa densa con 5 unidades, esto debido a la cantidad de categorías que contiene el dataset y función de activación **softmax**.

Por último, se compila el modelo con el optimizador Adam, se usa una perdida de *categorical_crosstentropy*, ya que comúnmente es usada para clasificaciones multiclase.

C. DESARROLLO DEL ENDPOINT

Para el desarrollo del API-REST se dio uso al servicio de flask-rest, su funcionamiento consiste en la lectura de una imagen la cual previo al proceso de predicción sufre un cambio de tamaño, normalización y *reshape* para garantizar que sus canales serán recibidos por la neurona de la forma esperada.

De igual manera retornara un valor entre 0 y 4 el cual corresponde a una categoría:

- 0: Margarita.
- 1: Diente de león.
- 2: Rosa.
- 3: Girasol.
- 4: Tulipán.

Se uso el servicio de Google cloud para alojar el modelo, https://modeloneuronitas-mahbqzmqfq-ue.a.run.app/

Ejemplos:

Imagen entrada:

Diente de león, valor de predicción esperado: 1

Resultado predicción:

Imagen entrada:

Tulipán, valor de predicción esperado: 4

Resultado predicción:

```
{
    "result": "El número es: 4",
    "total": "El total de predicciones es [[3.5506320e-10 4.9850263e-11 9.4065662e-08 1.0244747e-06 9.9999893e-01]] "
}
```