STID 1ère année - Introduction au Calcul DES PROBABILITÉS

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

FEUILLE DE TRAVAUX DIRIGÉS N° 5

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

Vecteurs aléatoires - Indépendances - Vecteurs gaussiens

Enseignant-Formateur: H. El-Otmany

A.U.: 2019-2020

Exercice n°1 Soit (X,Y) un couple aléatoire de densité $f(x,y) = kxy\mathbf{1}_D(x,y)$ avec $k \in \mathbb{R}$ et

$$D = \{(x, y) \in \mathbb{R}^2, x \geqslant 0, y \geqslant 0, x^2 + y^2 \leqslant 1\}.$$

- 1. Calculer k puis la probabilité de l'événement $\{X + Y < t\}$ avec $t \in [0, 1]$.
- 2. Déterminer les densités de X et de Y. Ces variables aléatoires sont-elles indépendantes ?

Exercice n°2 Soient X et Y deux variables aléatoires Gaussiennes centrées et indépendantes telles que V(X) = 1 et V(Y) = 4.

1. Déterminer la loi du vecteur aléatoire ci-dessous en précisant son espérance et sa matrice de variance-covariance Σ .

 $\begin{pmatrix} X \\ Y \end{pmatrix}$

2. On considère le vecteur aléatoire

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} 3X + Y + 4 \\ 2X + 2 \end{pmatrix}$$

Donner sa loi en précisant son espérance et sa matrice de variance-covariance.

3. Les variables Z_1 et Z_2 sont-elles indépendantes?

Exercice $\mathbf{n}^{\circ}\mathbf{3}$ On considère un vecteur (X_1, \cdots, X_n) de n variables aléatoires indépendantes et identiquement distribuées (i.i.d) suivant la loi normale centrée réduire $\mathcal{N}(0,1)$. Soient $a,b \in \mathbb{R}^n$ tels que $a=(a_i)_{1\leqslant i\leqslant n}$ et $b=(b_i)_{1\leqslant i\leqslant n}$. On pose $A=\sum\limits_{i=1}^n a_iX_i$ et $B=\sum\limits_{i=1}^n b_iX_i$. Montrez que A et B sont indépendantes si et seulement si $\sum\limits_{i=1}^n a_ib_i=0$.

Exercice n°4 On suppose que la vitesse (en km/h) et la distance (en km) parcourue par une voiture forment un vecteur aléatoire Z de loi Gaussienne. En notant X la variable aléatoire associée à la la vitesse et Y celle associée à la distance, on a donc :

$$Z = \mathcal{N}\left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right) \right)$$

avec $\mu_1 = 110$, $\mu_2 = 80$, $\sigma_1^2 = 9$ et $\sigma_2^2 = \sigma_{12} = 4$.

- 1. Donner est la loi de X?
- 2. Déterminer la probabilité qu'une voiture, choisi au hasard dans cette population, a une vitesse plus de 125 km/h?

- 3. Déterminer la probabilité qu'une voiture, choisi au hasard dans cette population, a une vitesse entre 110 km/h et 130 km/h?
- 4. Les variables X et Y sont-elles indépendantes?
- 5. Déterminer le coefficient de corrélation linéaire entre *X* et *Y* ? Quelle est l'intérêt de ce coefficient ? Commenter le résultat obtenu.

Exercice $n^{\circ}5$ La proportion de personnes ayant les cheveux marrons foncés dans une population est p.

- 1. Quelle variable peut-on associer à une personne prise au hasard dans la population. Déterminer sa loi de probabilité.
- 2. On s'intéresse à un échantillon de n personnes tirées au hasard avec remise dans la population.
 - 2.1. Déterminer l'univers associé à cette expérience aléatoire.
 - 2.2. Construire un vecteur aléatoire qui reflète cette expérience.
 - 2.3. Exprimer la proportion de personnes ayant des cheveux marrons foncés dans l'échantillon à partir de la question 2.2.
 - 2.4. Donner la proportion en moyenne des personnes ayant des cheveux marrons foncés dans l'échantillon.
 - 2.5. On suppose maintenant que n=20, p=0.2. Calculer la probabilité d'obtenir une proportion de personnes ayant des cheveux marrons foncés supérieure ou égale à 30%.
- 3. Que se passe-t-il si l'échantillon est choisi sans remise.

Exercice n°6 La répartition selon la religion d'une population de 120 étudiants dans un établissement universitaire est la suivante :

Religions x_i	Effectif n_i
abrahamiques	35
chinoises	20
japonaises	17
traditionnelles africaines	8
Autres	40

On tire par hasard avec remise 15 personnes dans cette population.

- 1. Donner un vecteur de variables aléatoires dépendantes (c'est-à-dire non indépendantes) qui reflète cette expérience. Donner sa loi de probabilité.
- 2. Calculer la probabilité d'obtenir 5 étudiants de religions abrahamiques, 3 de religions chinoises, 4 de religions japonaises et 3 de religions traditionnelles africaines.
- 3. Calculer la probabilité d'obtenir un échantillon avec 5 étudiants de religions abrahamiques.
- 4. Donner des exemples de vecteurs aléatoires indépendants pouvant être associé à cette expérience aléatoire.

Exercice n°7 On lance un dé équilibré 5 fois. Calculer les probabilités des événements suivants :

- 1. On obtient deux fois un nombre pair et une fois le nombre 1, un fois le nombre 3, une fois le nombre 5.
- 2. On obtient trois fois un nombre pair et jamais un nombre premier.
- 3. On obtient trois fois un nombre premier et une fois le 4.
- 4. On obtient au moins une fois le nombre 2 et 3 fois un nombre pair.
- 5. On obtient au moins une fois le nombre 2 et au plus deux fois un nombre pair.