(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-284290

(43)公開日 平成4年(1992)10月8日

(51) Int.Cl.5 庁内登理番号 FΙ 識別記号 技術表示箇所 B41M 5/26 G11B 7/24 A 7215-5D 7215-5D В B41M 5/26 8305-2H 審査請求 未請求 請求項の数9(全 10 頁) (71)出廣人 000005821 (21)出願番号 特願平3-49544 松下電器産業株式会社 (22) 出願日 平成3年(1991)3月14日 大阪府門真市大字門真1006番地 (72) 発明者 橋田 阜 大阪府門真市大字門真1006番地松下電器産 業株式会社内 (72)発明者 岸本 良雄 大阪府門真市大字門真1006番地松下電器産 業株式会社内 (74)代理人 弁理士 池内 寛幸 (外1名)

(54) 【発明の名称】 光学記録媒体とこれを用いた記録、消去及び再生方法

(57)【要約】

【目的】 記録エネルギーの低い新規な光学記録媒体と その記録、再生、消去方法を提供する。

【構成】 記録媒体を、蛍光体 0.5 mm o 1 と、スピロピラン等のフォトクロミック化合物 0.005 mm o 1を100 m 1 クロロホルムに溶解した溶液から、LB 法により単分子膜を 2 層を累積して構成する。記録時には蛍光体の吸収波長 500 nmのレーザ光を照射して記録を行なう。励起エネルギーが、多数の蛍光体から小数のフォトクロミック化合物へ移動して、フォトクロミック反応が起こることを利用して、記録エネルギーの低減が達成される。

蛍光体

光反応性性双安定性消光剂

- (1)記録、再生光
- (2)、(2°)再生時換出量光。
- (9) 初去光

【特許請求の範囲】

【請求項1】 蛍光体とその蛍光を消光する光反応性双 安定性消光剤とを含む組成物よりなる光学記録媒体。

【請求項2】 蛍光体が、J会合体を形成する物質であ る請求項1記載の光学記録媒体。

【請求項3】 蛍光体と光反応性双安定性消光剤とを含 む組成物が、単分子膜によって形成される請求項1記載 の光学配録媒体。

【請求項4】 蛍光体と光反応性双安定性消光剤の分子 数の比が、N/1でNが5以上である請求項1配載の光 10 学記録媒体。

【請求項5】 J会合体を形成する蛍光体と光反応性双 安定消光剤を含有してなる請求項1記載の組成物からな る記録層が、複数個積層されてなり、各記録層中の蛍光 体の吸収波長が異なる波長多重光学記録媒体。

【請求項6】 請求項1または5記載の光学記録媒体を 用い、蛍光体吸収波長の光の照射で記録する光学記録媒 体の記録方法。

【請求項7】 請求項1または5記載の光学記録媒体を 用い、蛍光体吸収波長の光を照射し蛍光作用をもつ、光 20 反応性双安定性消光剤からの蛍光を検知する光学記録媒 体の再生方法。

【請求項8】 請求項1または5記載の光学記録媒体を 用い、蛍光体吸収波長の光を照射し、蛍光体からの蛍光 を検知する光学記録媒体の再生方法。

【請求項9】 請求項1または5記載の光学記録媒体を 用い、紫外光照射により光反応性双安定性消光剤の1部 を高エネルギー側の安定状態にする光学配録媒体の消去 方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フォトクロミック化合 物を用いた書き換え可能な光学記録媒体とその記録、消 去、再生方法に関する。

[0002]

【従来の技術】従来、波長の異なる2種類の光源によ り、可逆的な色の変化を生ずる材料としてフォトクロミ ック材料が知られている。

【0003】これを光記録材料として用いる場合、一般 にフォトクロミック化合物の着色体からなる記録層に、 その着色体の吸収する可視レーザを照射し無色体にする ことで記録を行い、紫外線レーザを照射して着色体に戻 すことで消去を行なう。再生は可視レーザを記録時より 弱い強度で照射し、前記着色体の吸収を検知して行なう 、ことが提案されている。

[0 0 0 4]

【発明が解決しようとする課題】しかしながら、従来技 術のフォトクロミック化合物からなる記録媒体に、フォ トクロミック化合物の着色体が吸収する可視レーザを照

あった。これは、光反応(すなわちフォトクロミック反 応) の効率が低いためである。その結果として記録エネ ルギーが大きくなり、大出力の光源が必要となったり、 記録時間が長くなるという課題があった。本発明は、前 記従来技術の課題を解決するため、記録エネルギーが小 さい光学記録媒体を提供し、さらに光学記録媒体を用い た新規な記録、消去、再生方法とを提供することを目的 とする。

[0005]

【課題を解決するための手段】前記目的を達成するた め、本発明の光学記録媒体は、蛍光体とその蛍光を消光 する光反応性双安定性消光剤とを含む組成物よりなると いう構成を備えたものである。

【0006】前記構成においては、蛍光体がJ会合体を 形成する物質であることが好ましい。

【0007】また前記構成においては、蛍光体と光反応 性双安定性消光剤とを含む組成物が、単分子膜によって 形成されることが好ましい。

【0008】また前記構成においては、蛍光体と光反応 性双安定性消光剤の分子数の比が、N/1でNが5以上 であることが好ましい。

【0009】また本発明の波長多重光学記録媒体は、J 会合体を形成する蛍光体と光反応性双安定消光剤を含有 してなる請求項1記載の組成物からなる記録層が、複数 個積層されてなり、各記録層中の蛍光体の吸収波長が異 なるという構成を備えたものである。

【0010】また本発明の光学記録媒体の記録方法は、 前記光学記録媒体または波長多重光学記録媒体を用い、 蛍光体吸収波長の光の照射で記録するという構成を備え 30 たものである。

【0011】また本発明の光学記録媒体の再生方法は、 前記光学記録媒体または波長多重光学記録媒体を用い、 蛍光体吸収波長の光を照射し蛍光作用をもつ、光反応性 双安定性消光剤からの蛍光を検知するという構成を備え たものである。

【0012】また本発明の光学記録媒体の再生方法は、 前記光学記録媒体または波長多重光学記録媒体を用い、 蛍光体吸収波長の光を照射し、蛍光体からの蛍光を検知 するという構成を備えたものである。

【0013】また本発明の光学記録媒体の消去方法は、 前記光学記録媒体または波長多重光学記録媒体を用い、 紫外光照射により光反応性双安定性消光剤の1部を高工 ネルギー側の安定状態にするという構成を備えたもので ある。

[0014]

【作用】前記本発明の光学記録媒体の構成によれば、光 反応性双安定性消光剤は光照射により吸収波長域が変化 する化合物であり、その一種にフォトクロミック化合物 がある。記録媒体として用いる場合、情報は光反応性双 射して記録を行う場合、大量の記録エネルギーが必要で 50 安定性消光剤の双安定な2つの状態を用いてデジタル記 録される。消光剤の吸収が可視域にある場合(着色体) が消去状態に相当し、光反応性双安定性消光剤の吸収帯 が繋外域のみにある場合(無色体)が記録状態に相当す る。これは、従来のフォトクロミック化合物を用いた書 き替え可能な光学記録媒体と同じである。

【0015】以下、図1のエネルギーレベルの図に従って説明を行なう。蛍光体、光反応性消光剤と書かれた上に水平に引かれた3組の2本の実線は、各々下が基底状態のエネルギーレベル、上が励起状態のエネルギーレベルを表す。基底状態から励起状態への上向きの矢印は光 10 照射時の光吸収を、下向きの矢印は蛍光の放出に相当する。また、蛍光体の励起状態から光反応性消光剤の着色体の励起状態への矢印は蛍光体から光反応性消光剤へのエネルギー移動を表す。

【0016】さらに、光反応性消光剤の着色体と無色体との間に交差する矢印は対応するフォトクロミック反応に相当する。消去状態の場合、消光剤は着色体でありその吸収帯は蛍光体の蛍光帯と重なる。このため蛍光体から消光剤へのエネルギー移動が効率よく起き、蛍光体からの蛍光は消光される。従って消去状態は双安定性消光剤が消光剤として活性化された状態であり、これは高エネルギー側の安定状態に相当する。これに対し、配録状態では消光剤は無色体で、蛍光体の蛍光帯付近には吸収を有しない。従って、蛍光体から消光剤へのエネルギー移動は起こらず蛍光体の蛍光消光も進まない。この結果、蛍光体が直接蛍光を発する。従って、記録状態では光安定性双安定性消光剤は低エネルギー側の安定状態にあり、消光剤として活性を失った状態であると言える。

【0017】記録は、記録媒体に少なくとも蛍光体の吸 収波長域の光を照射することによっておこなわれる(図 30 1の(1))。この時、光を吸収した蛍光体の励起エネ ルギーが活性化された光反応性双安定性消光剤(フォト クロミック化合物の着色体) に移動する。このエネルギ -移動によって、励起された着色状態の光反応性双安定 性消光剤は、着色体から無色体への反応(フォトクロミ ック反応)を起こして、消光剤としての活性を失う。本 発明では蛍光体の分子数を、活性化された光反応性双安 定性消光剤分子よりも多くしているため、記録時に多数 の蛍光体の励起エネルギーが少数の活性化された光反応 性双安定性消光剤(フォトクロミック化合物)に集中し 40 て移動する。従って、光反応性双安定性消光剤(フォト クロミック化合物) が直接光を吸収して励起される場合 よりも、多くのエネルギーが与えられることになり、フ ォトクロミック化合物の励起される確率が増加する。こ の結果、光反応性双安定性消光剤(フォトクロミック化 合物)の着色体から無色体へのフォトクロミック反応が 促進され、記録エネルギーが小さくなる。

[0018]

【実施例】以下実施例を用いて本発明をさらに具体的に 説明する。 【0019】本発明の目的は記録エネルギーの低減にある。そのためには記録光を吸収し励起エネルギーの供与体となる、蛍光体の濃度を上げることが有効である。記録層中の蛍光体分子の数と(フォトクロミック化合物)の分子数の比は5/1以上が好ましい。

【0020】また、本発明の光学記録媒体では、蛍光体から光反応性双安定性消光剤へのエネルギー移動の効率が高い方が好ましいため、各分子間の距離を小さくする様な構造をつくることが有効である。このような色素とフォトクロミック化合物との構成をとるためには、配録層の製造方法として、水面展開単分子形成膜法(たとえばLB法等)の分子配列された単分子膜等の制御可能な手法によることが好ましい。

【0021】さらに、蛍光体から光反応性双安定性消光 剤へのエネルギー移動の効率を高めて記録エネルギーを 低減するためには、J会合体を形成する蛍光体を利用す ることが効果的である。これは一般にJ会合体エネルギー を動の効率が高いためである。

【0022】蛍光体の濃度が高い場合の再生には以下の 再生法が有効である。蛍光体の濃度が上昇する分、光反 応性消光剤の濃度は低くなる。この結果、従来の様に再 生時にフォトクロミック化合物の吸収を直接検知する再 生方法では、検知する吸収光量が減少して再生が難しく なる。そこで、再生も記録時と同じ波長の強度の弱い光 を照射して蛍光体からの蛍光を検知すれば、良好な感度 で再生が可能になる。前配の再生方法を用いる場合、再 生光の波長と検知する蛍光帯の波長が近ければ、再生光 の散乱成分の影響が大きくなるため、ノイズが大きくな り再生精度が低下する場合がある。この場合には蛍光作 用を持つ光反応性双安定性消光剤を用いて、その蛍光を 長波長にし、再生光と波長の大きくずれた蛍光を検知し て再生すれば、再生光の散乱によるノイズが減少して良 好な再生が可能になる。この場合の蛍光作用を持つ消光 剤は、高エネルギー側の安定状態で蛍光作用を有する。 この再生法は、蛍光体が「会合体を形成しその吸収帯と 蛍光帯の波長差 (ストークスシフト) が小さい時に効果 的である。

【0023】本発明の再生法では、蛍光体からの蛍光を検知する場合、記録部分では蛍光強度が強く、未記録(消去)部分では蛍光強度が弱くなる。一方、蛍光作用を持つ光反応性双安定性消光剤を用いてその蛍光を検知する場合は、未記録(消去)部分で蛍光強度が強くなる。これは、未記録部分の反応性双安定性消光剤が着色体であるため、励起エネルギーの移動によって蛍光体の蛍光が消光され光反応性双安定性消光剤からの発光が起こるためである。一方、記録部分では光反応性双安定性消光剤が無色体であるため、エネルギー移動は起こらず蛍光体が直接発光し、光双安定性消光剤からの蛍光強度は弱くなる。

50 【0024】ところで、光反応性双安定性消光剤である

フォトクロミック化合物には記録、消去に対応するフォ トクロミック反応と同時に光劣化反応が起こる。

【0025】従って記録、消去の繰り返し特性を向上さ せることが重要であるが、これには以下に述べる記録媒 体、消去方法、を用いることが効果的である。つまり、 記録媒体中に含有される蛍光体と光反応性双安定性消光 剤の分子数を同程度にし、消去時には大量の紫外光照射 によって光反応性双安定性消光剤の全部を消光剤として 活性化するのではなく、小量の紫外光照射によって光反 応性双安定性消光剤の一部のみを着色体とする(消光剤 10 として活性化する)。実際、蛍光体からの蛍光は微量の 消光剤により消光されることから、消去する場合、ごく 1部の光反応性消光剤を着色体にして消光剤として活性 化するだけで充分である。前もって消光剤として過剰の 光反応性双安定性消光剤(フォトクロミック化合物)を 記録媒体中に含有させているため、一部で劣化反応が進 行しても、残りの劣化していない光反応性双安定性消光 剤が消光剤として働く。

【0026】このようにして、記録、消去のサイクル回数を向上させることができる。また、上述のように消去 20時には、記録媒体に含まれる光反応性双安定性消光剤の全量のうち僅かな量を活性化すれば良いので、この消去法は消去エネルギー(紫外線の照射エネルギー)の低減にも効果的である。

【0027】ところでさらに高密度な記録を行なうためには、以下に示す波長多重記録を行うことが効果的である。つまり、蛍光体と光反応性双安定性消光剤とを含む組成物からなる記録層を複数個積層させ、かつ各記録層中の蛍光体の吸収波長が異なる記録媒体を構成する。各記録層の蛍光体が吸収する波長の光を照射することによ 30って多重記録が可能となる。さらに、吸収帯の半値幅の狭い」会合体を形成する蛍光体を用いることで、選択的に各層で光吸収を起こし、より波長選択性の高い記録が可能になる。この場合、記録波長は蛍光体の波長で決まるため、従来例(たとえば米国特許第4737427号明細書)のようにフォトクロミック化合物が」会合体を形成する必要はなく多重記録へのフォトクロミック化合物の適用範囲を広げるのに効果がある。

【0028】 蛍光体としては、シアニン色素、メロシアニン色素を用いたが、本発明がこれら2種類の色素に限 40 定されるものではないことは勿論である。他にスクワリリウム色素、ピリリウム色素等の他の色素も用いることができる。

【0029】光反応性双安定性消光剤としてはスピロピラン系、スピロオキサジン系、フルギド系の他にチオインジゴ系、アゾベンゼン系、スチルベン系、ビオロゲン系、アジン系、ジテソン系、フォルムアザン系、サリシリデンアニリン系等がある。LB法で記録層を作製するためには、色素とフォトクロミック化合物とが両親媒性を有する必要がある。通常、このために各分子に長鎖の50

炭化水素鎖等を結合して、疎水性をもたせることが行われる。

【0030】長鎖の炭化水素鎖の炭素数を11~31に すると、親水性と疎水性とのパランスがとれ、良質なL B膜が得られるため好ましい。

【0031】以下の実施例では、光反応性双安定性消光 剤として下記の構造で示されるフルギドとスピロピラン (以下FT-10, SP1802c、SP1801、S P18と略す)を用い、蛍光体には下記の構造を持つも の(以下蛍光体1、蛍光体2と呼ぶ。)を用いたが、本 発明の光学記録媒体に適応される光反応性双安定性消光 剤及び蛍光体に限定されるものではない。

【0032】実施例における基板には、石英、ポリカーポネイトを用いたが他にアクリル、ポリオレフィン等の高分子材料や、ガラス及び各種金属、CaF: 等の無機物等を用いることができる。

[0033] また、ここではLB法やスピンコート法等の湿式の手段を用いて記録媒体を形成したが、蒸着法などの他の薄膜法を用いてもよい。

0 【0034】なお、以下に示す実施例で用いる化合物の、 構造は、下記(化1)~(化6)に示す通りである。 【0035】、

【化1】

世光体 1

0 [00.36]

[化2]

蛍光体 2

[0037]

【化3】

20

H 35 C 17

FT-10

[0038] 【化4】

SP1802c

【0041】 実施例1

光反応性双安定性消光剤として前記(化3)で示すFT -10、蛍光体として前記(化1)で示す蛍光体1(日 本感光色素社製)を用いた。

【0042】FT-10の合成法は、特開平1-928 1号に記載されており、これに従って合成した。また、 蛍光体1は日本感光色素社から購入した。

【0043】ポリカーポネイトの基板上に、蛍光体1 と、FT-10を含む記録層をスピンコート法により記 録媒体を形成した。

【0044】0.1mmolの蛍光体1と0.02mm olのFT-10とをトルエン10mlに溶解した溶液 を用い、スピンコートは回転数2000rpmの条件で 行なった。

【0045】こうして作製された記録媒体に、351n mの紫外線レーザを出力エネルギー100mJ/cm² 照射し、FT-10を着色体にして初期化を行なった。

* [0039] 化5] ćн² сн²

SP1801

[0040] 【化6】

SPIB

【0046】次に、蛍光体1の吸収帯の波長430nm の可視光レーザで出力エネルギー240mJ/cm²を 照射して記録を行なった。記録条件は蛍光体の蛍光強度 が2割減少するように制御した。

【0047】再生は、記録時と同じ波長のレーザで出力 エネルギー1mJ/cm²を照射して、蛍光体1の蛍光 帯の波長490nmの蛍光を検知することで行なった。

【0048】なお、351nmの紫外線レーザ100m J/cm²を照射する事で消去が可能であった。

【0049】比較例1

比較のために蛍光体1を含まないFT-10のみから記 録層を形成した。

[0050] 0. 1mmoloFT-10&10mlo トルエンに溶解した溶液を用い、実施例1と同じ条件で ポリカーポネイト基板上にスピンコート法で記録媒体を 作成し、実施例1と同様にして初期化をした。

【0051】この記録媒体にFT-10の吸収極大波長

540nmの可視光レーザで出力エネルギー390mJ /cm²を照射して記録を行ない、同じ波長のレーザで 出力エネルギー1mJ/cm² を照射してFT-1Oの 蛍光帯630nmの蛍光を検知して再生を行なった。 記 録条件は記録前後で蛍光体の蛍光強度の変化が2割にな るように制御した。

【0052】比較何2

比較のために、色素濃度の低い記録層を持つ記録媒体を 作成した。 蛍光体として蛍光体 1、光反応性双安定性消 光剤としてFT-10を用いた。

【0053】0.09mmolの色素1と0.03mm o 1のFT-10とをトルエン10m1に溶解した溶液 を用いて、スピンコート法により実施例1と同じ条件で 記録媒体を作成し、実施例1と同様に初期化した。

【0054】この記録媒体に蛍光体1の吸収極大波長4 30 nmの可視光レーザで出力エネルギー370mJ/ cm³ を照射して記録を行ない、同じ波長のレーザで出 カエネルギー1mJ/cm²を照射して蛍光体1の蛍光 帯490nmの蛍光を検知して再生を行なった。記録条 件は記録前後で色素の蛍光強度の変化が2割になるよう

【0055】以上の様に、本実施例では記録層中に蛍光 体を含有させることで、記録層中に蛍光体を含まない記 録媒体及び記録層中の蛍光体濃度が低い記録媒体に比べ て、(表1)に示したように記録エネルギーは小さくな った。

【0056】これは、本実施例で用いた蛍光体1の蛍光 $(\lambda_{nex} = 490 \text{ nm})$ とFT-10の吸収($\lambda_{nex} =$ 540nm)の重なりが大きく、しかも励起エネルギー の供与体である蛍光体の濃度が高いために、蛍光体から 30 フォトクロミック化合物へのエネルギー移動が起こりや すくなり、これにより記録に相当するフォトクロミック 反応が進行しやすくなるからである。

[0057] 【表1】

記録エネルギー $240 \,\mathrm{mJ/cm^2}$ 実施例1 390 m J / c m² 比較例1 $370 \,\mathrm{mJ/cm^2}$ 比較例2

【0058】 実施例2

LB法で記録層を形成して、この効果を調べた。0.1 mmolの蛍光体1と0.02mmolのFT-10と をクロロホルム100mlに溶解した溶液を用い、LB 法により単分子膜2層を累積して光学記録媒体を作製し た。溶液中の各化合物のモル比は実施例1と同じであ る。基板には、石英基板を用いた。

【0059】まず、実施例1と同じ方法で初期化を行な

光レーザで出力エネルギー200mJ/cm²を照射し で記録を行なった。記録条件は記録前後で蛍光体の蛍光 強度の変化が2割になるように制御した。

10

【0060】再生は、記録時と同じ波長のレーザで出力 エネルギー1mJ/cm²を照射して、蛍光体1の蛍光 帯の波長490nmの蛍光を検知することで行なった。 この時の記録エネルギーは、200mJ/cm²であっ た。なお、351nmの紫外線シーザ100mJ/cm 1 を照射する事で消去が可能であった。

【0061】以上の様に本実施例では記録層をLB法に より形成することでさらに記録エネルギーは小さくなっ た。これは、本実施例では色素1の蛍光 (λει = 49 0 nm) とFT-10の吸収 (λ... = 540 nm) の 重なりが大きくエネルギー移動が起こりやすい上に、記 録層がLB法で作られているので、分子間の距離が短く なり、さらに効率よくエネルギー移動が起こるからであ る。

【0062】実施例3

蛍光体として蛍光体1、光反応性双安定性消光剤として 前記(化3)で示すSP1802c(日本感光色素社

【0063】 SP1802 cは日本感光色素社から購入 したものを用いた。

【0064】0.5mmolの蛍光体1と0.1mmo 1のSP1802cと2mmolのステアリン酸を10 0m1のクロロホルムに溶解した溶液を用いて、LB法 により単分子膜2層を累積して光学記録媒体を作製し た。基板は、石英基板を用いた。

【0065】作製時から1802cは着色体であり、初 期化された状態であった。

【0066】次に、実施例1と同様に蛍光体1の吸収帯 の波長430 nmの可視光レーザで出力エネルギー19 0mJ/cm² を照射して記録を行なった。記録条件 は、記録前後で蛍光体の蛍光強度の変化が2割になるよ うに制御した。

【0067】再生は、記録時と同じ波長のレーザで出力 エネルギー1mJ/cm²を照射して、蛍光体1の蛍光 帯の波長490 nmの蛍光を検知することで行なった。 この時の記録エネルギーを(表3)に示す。

【0068】尚、351nmの紫外線レーザ100mJ /cm²を照射する事で消去が可能であった。

[0069] 比較例3

比較のために蛍光体1を含まない記録媒体を作成した。

[0070] 0. 1mmolOSP1802c22mm olのステアリン酸を100mlのクロロホルムに溶解 した溶液を用いて、LB法により単分子膜2層を累積し て光学記録媒体を作製した。基板は、石英基板を用い

【0071】この記録媒体にSP1802cの吸収極大 った。次に、蛍光体 1 の吸収帯の波長 4 3 0 n m の可視 50 波長 4 7 0 n m の可視光レーザで出力エネルギー 3 6 0

mJ/cm² を照射して記録を行ない、同じ波長のレーザで出力エネルギー1mJ/cm² を照射してSP1802cの蛍光帯660nmの蛍光を検知して再生を行なった。記録条件は色素の蛍光強度の変化が2割になるように制御した。この時の記録エネルギーを(表2)に示す。

【0072】 【表2】

 実施例3
 190mJ/cm²

 比較例3
 360mJ/cm²

【0073】以上のように、光反応性双安定性消光剤がスピロピランの場合も、記録層中に蛍光体を含有させることで、記録層中に蛍光体を含まない従来の記録媒体比べて、記録エネルギーは小さくなった。これは、本実施例で用いた蛍光体1の蛍光(λaaz = 490nm)と、SP1802cの吸収(λaaz = 470nm)の重なりが大きいため、蛍光体から光反応性双安定性消光剤へのエネルギー移動が起こりやすくなり、これにより記録に20相当するフォトクロミック反応が進行しやすくなるからである。

【0074】実施例4

実施例3とは異なるスピロピランに対して蛍光体の濃度 を高くして記録媒体を作成し、その効果を調べた。

【0075】 蛍光体として前記(化2)で示す蛍光体2、光反応性双安定性消光剤としてSP1801を用いた

【0076】0.5mmolの蛍光体2と0.05mm olのSP1801を100mlのクロロホルムに溶解 30 した溶液を用いて、LB法により単分子膜2層を累積し て光学記録媒体を作製した。基板は、石英基板を用い た。

【0077】作製時から1801は着色体であり、初期 化された状態であった。

【0078】次に、蛍光体2の吸収帯の波長500nm の可視光レーザを照射して記録を行なった。記録条件は 記録前後で蛍光体の蛍光強度の変化が2割になるように 制御した。この時の記録エネルギーを(表3)に示す。

【0079】再生は、記録時と同じ波長のレーザで出力 40 エネルギー1.0mJ/cm²を照射して、蛍光体2の 蛍光帯の波長580nmの蛍光を検知することで行なった。尚、351nmの紫外線レーザ100mJ/cm²を照射する事で消去が可能であった。

【0080】比較例4

板は、石英基板を用いた。

比較のために蛍光体2を含まない記録媒体を作成した。 【0081】0.1mmolのSP1801を100m 1のクロロホルムに溶解した溶液を用いて、LB法により単分子膜2層を累積して光学記録媒体を作製した。基 12 【0082】作成時にSP1801は着色体で初期化された状態であった。

【0083】この記録媒体にSP1801の吸収極大波 長590nmの可視光レーザで出力エネルギー350m J/cm^2 を照射して記録を行ない、同じ波長のレーザで出力エネルギー1mJ/cm² を照射してSP1801の蛍光帯の波長680nmの蛍光を検知して再生を行なった。記録条件は記録前後で蛍光体の蛍光強度の変化が2割になるように制御した。

【0084】以上述べた実施例4と比較例4との記録エネルギの値を(表3)に示す。(表3)の様に、フォトクロミック化合物が実施例3とは異なるスピロピランの場合も、記録層中に蛍光体を含有させることで、記録層中に色素を含まない従来の記録媒体に比べて、記録エネルギーは小さくなった。これは、本実施例で用いた蛍光体2の蛍光(入*** =580 nm)とSP1801の吸収(入*** =590 nm)の重なりが大きいため、フォトクロミック化合物へのエネルギー移動が起こりやすくなり、しかも励起エネルギーの供与体である蛍光体の濃度が高いために、大量のエネルギーが移動するためである。こうして、記録に相当するフォトクロミック反応が進行しやすくなる。

【0085】 【表3】

 契施例4
 160mJ/cm²

 比較例4
 350mJ/cm²

【0086】実施例5

蛍光体がJ会合を形成する場合について、J会合体の記録エネルギーへの効果を調べた。再生時には、光反応性 双安定性消光剤からの蛍光を検知した。

【0087】 蛍光体として蛍光体2、光反応性双安定性 消光剤として前配(化4)で示すSP1801を用いた。0.5mmolの蛍光体2と0.0006mmolのSP1801と1.5mmolのヘキサデカンを10:0mlのクロロホルムに溶解した溶液を用いて、LB法により単分子膜2層を累積して光学記録媒体を作製した。基板は、石英基板を用いた。作製時からSP1801は着色体であり、初期化された状態であった。

【0088】また、作製された記録媒体中で蛍光体2は、 J会合体を形成し、その吸収極大波長は540nm、蛍 光極大波長は560nmであった。

【0089】次に、蛍光体2の吸収帯の波長540nmの可視光レーザで出力エネルギー2.0mJ/cm²を照射して記録を行なった。記録条件は、記録前後で光反応性双安定性消光剤SP1801からの680nm蛍光強度の変化が2割になるように制御した。

【0090】再生は、記録時と同じ波長のシーザで出力 50 エネルギー0.2mJ/cm²を照射して、光反応性双 安定性消光剤SP1801の蛍光帯の波長680nmの 蛍光を検知することで行なった。

【0091】尚、351nmの紫外線レーザ100mJ /cm²を照射する事で消去が可能であった。

【0092】この様に、記録層中の蛍光体が J 会合を形成する場合は、J 会合体を形成しない場合(実施例4)に比べて、記録エネルギーが小さくなった。

【0093】これは、本実施例で用いた蛍光体2の蛍光 (λ... = 560 nm) とSP1801の吸収(λ... = 590 nm) の重なりが大きい上に、配録層中の蛍光 10 体が J 会合体を形成するために、蛍光体から光反応性双 安定性消光剤へのエネルギー移動が起こりやすくなり、 これにより記録に相当するフォトクロミック反応が進行 しやすくなるからである。

【0094】比較例5

比較のために実施例5と同じ記録媒体に同様に、蛍光体2の吸収帯の被長540nmの可視光レーザで出力エネルギー2.0mJ/cm²を照射して、記録を行なった。再生を、記録時と同じ波長のレーザで出力エネルギー0.2mJ/cm²を照射して、蛍光体2の蛍光帯の20波長560nmの蛍光を検知することで行なった。このときの記録前後の蛍光強度の変化は6%であり、実施例5の再生法を用いた方が散乱光の影響が小さく、良好な再生が可能であった。

【0095】実施例6

J会合体を形成する蛍光体を複数種類用いることにより 波長多重記録をおこなった。光反応性双安定性消光剤と してFT-1O、前記(化5)で示すSP1801、蛍 光体として蛍光体1、蛍光体2を用いた。

【0096】LB法により石英基板上に蛍光体1とFT 30-10を含む単分子膜2層を記録層1として積層した。この層に接して、ステアリン酸カドミウムの単分子膜10層を累積し分離層とした。さらに最上層に蛍光体2とFT-10を含む単分子膜2層を光吸収層2として積層して記録媒体を形成した。

【0097】記録層1の累積には0.1mmo1の蛍光体1、0.0015mmo1のFT-10と0.1mm o1のアラキン酸とをクロロホルム100mlに溶解した溶液を用いた。また、記録層2の累積には0.5mm o1の蛍光体2、0.006mmo1のSP1801と 401.5mmo1のヘキサデカンとを100mlのクロロホルムに溶解した溶液を用いた。記録媒体中で蛍光体1及び蛍光体2はJ会合体を形成し、その吸収極大波長と蛍光極大波長は蛍光体1が450nm、470nm蛍光体2は540nm、560nmであった。

【0099】次に、蛍光体1が選択的に吸収する450 nmのレーザ光で出力エネルギー18mJ/cm² を照射した(記録状態1)。

14

【0100】更に同一場所に蛍光体2が選択的に吸収する540nmのレーザ光で出力エネルギー20mJ/cm²を照射して多重記録を行なった(記録状態2)。今度は別のスポットに540nmのレーザ光で出力エネルギー18mJ/cm²を照射して記録を行なった(記録状態3)。

0 【0101】また、再生は450nmのレーザ光を1m J/cm²を照射して蛍光体1の490nmの蛍光を検 知し、かつ470nmのレーザ光1mJ/cm²を照射 してSP1801の蛍光帯の680nmでの蛍光を検出 して行なった。

【0102】以上の結果を、(表4)にまとめた。再生時検出蛍光強度は490、680nmの各々の初期状態の強度を1とした相対値である。(表4)より配録被長により選択的記録が進行していることがわかる。こうして2波長多重記録が可能になった。

20 【0103】なお、紫外レーザ340nmを10mJ/cm² 照射することで各記録状態が消去され、初期状態の蛍光強度に回復した。

【0104】 【表4】

	用生时使用虫尤短皮	
	490 nm	680 nm
初期状態	1.00	1.00
記錄状態 1	1.20	0.97
記録状號 2	1.20	0.80
記録状態3	1.01	0.80

【0105】以上の様に、記録媒体中に異なる蛍光体を合む二つの記録層を形成することで、多重記録が可能になった。特に、従来のようにJ会合体を形成するフォト・クロミック化合物を用いる方法を用いる代わりに、J会合体を形成する蛍光体を用いることによって波長選択性の高い多重記録が可能になった。

【0106】尚、実施例4~5中で長鎖炭化水素の炭素 数が18のスピロピランSP1801を用いているが、 - 前配炭素数が11及び31のものについても良好なLB 膜が形成され、同様の効果が得られた。

.【0107】実施例7

消去時に着色体として活性化する光反応性双安定性消光 剤の割合小さくした場合の、記録消去の繰り返し回数に 及ばす影響を調べた。

【0108】0.5mmolの蛍光体2と、1.5mm olのヘキサデカンを100mlのクロロホルムに溶解 した溶液(A)、及び0.15mmolの前配(化6) 50で示すSP18を100mlのクロロホルムに溶解した

溶液(B)を用いて、LB法により単分子膜2層を累積して光学記録媒体を作製した。基板は、石英基板を用いた。単分子膜はY型に累積され、基板に接する層を溶液(B)から、上層を溶液(A)から形成した。

【0109】この記録媒体中で蛍光体2はJ会合体を形成した。その吸収極大波長は540nm、蛍光極大波長は560nmであった。

【0110】配録媒体中のSP18は初め無色体で消光 剤としては不活性な状態であった。配録媒体に、0.3 mJの351nmのレーザ光を照射して一部のSP18 を着色体(消光剤として活性化された状態)にして初期 化を行なった。

【0111】これに、蛍光体の吸収極大波長540nmのレーザ光を照射して記録をおこなった。記録エネルギーは30mJ/cm²であった。これは、SP18の670nmの蛍光強度が2割変化する様に決定された。消去は、0.3mJの351nmのレーザ光を照射することで達成され、この時蛍光強度は2割変化する様に決められた。

【0112】さらに、500回記録消去を繰り返した、その都度消去、記録時の蛍光強度に変化を初期状態の蛍光強度の2割にする事が可能であった。

【0113】比較例7

比較のために、SP18のみからなる単分子膜2層を累積して光学記録媒体を作製し、従来の方法で記録消去の繰り返し回数に及ぼす効果を調べた。記録媒体に351nmの紫外線レーザで出力エネルギー100mJ/cm²を照射して初期化(消去)を行なった。これに、SP18の吸収極大波長590nmのレーザ光を340mJ/cm²を照射して記録をおこなった。記録エネルギー30は、590nmの吸収強度が2割変化する様に決定された。

【0114】さらに、100回記録消去を繰り返したが、30回目には、記録、消去時の吸収強度の変化が、初期状態の吸収強度の2割以下になり、記録、消去の繰

り返しが難しくなった。

【0115】この様に、消去時に活性化する光反応性双安定性消光剤の量を小さくすることにより、1回の配録、消去のサイクルで劣化する量を減少させて、サイクル特性を向上させることができた。同時に、消去エネルギーも低減できた。

16

[0116]

【発明の効果】本発明の光学記録媒体は、記録層中に蛍 光体と、光反応性双安定性消光剤の両方を含むことが特 徴で、蛍光体が吸収する波長の光を照射して記録を行な う。このとき記録媒体中の蛍光体の割合を増やすこと で、多量の蛍光体から活性化された小量の光反応性双安 定性消光剤への励起エネルギーの移動が効率よく起こ り、記録エネルギーが小さくなる効果がある。

【0117】本発明の光学記録媒体は、複数のJ会合体を形成する蛍光体と対応する光反応性双安定性消光剤を含む記録層を形成することで、書換え可能でかつ波長選択性の高い多重記録が可能になる効果がある。

【0118】さらに、記録媒体中に含有される蛍光体のの制合を減らし、過剰の光反応性双安定性消光剤を含有させて、消去の際に1部に光反応を起こさせて消光剤として用いる。こうすることで光反応における耐久性が増し、記録媒体の記録消去の繰り返し特性も向上するという効果が生じる。この時、消去エネルギーが低減するという効果もある。

【0119】以上のように、本発明は新規な記録媒体と その記録再生及び消去方法を提供するものである。

【図面の簡単な説明】

【図 1】 本発明のエネルギーレベルの作用を説明する M 図.

【符号の説明】

- 1…記録、再生光
- 2、2~…再生時検出蛍光
- 3…消去光

【図1】

蛍光体

光反応性性双安定性消光剂

- (1) 記録、再生光
- (2)、(2)) 再生時検出蛍光
- (3)消去光