- Define frequent itemsets
- Support for item X: the number of baskets containing all items in X. Given as a percentage.

Basket ID	Items in Basket
1	{Bread, Milk, Butter}
2	{Bread, Butter}
3	{Milk, Butter}
4	{Bread, Milk}
5	{Bread, Butter}

• Support for {Bread} = $\frac{4}{5} = 0.8$ (4 out of 5 baskets contain Bread)

$$\operatorname{Support}(X) = \frac{\operatorname{Number\ of\ baskets\ containing\ item\ or\ itemset\ } X}{\operatorname{Total\ number\ of\ baskets}}$$

- Confidence: the ratio of support for I I{i} with support for I
 - Confidence is used to measure the reliability of a rule in predicting the occurrence of an item based on another.

$$\operatorname{Confidence}(X o Y) = rac{\operatorname{Support}(X \cup Y)}{\operatorname{Support}(X)}$$

Basket ID	Items in Basket
1	{Bread, Milk, Butter}
2	{Bread, Butter}
3	{Milk, Butter}
4	{Bread, Milk}
5	{Bread, Butter}

Calculating Confidence for the Rule:

Rule: {Bread} → {Butter}

- 1. Support(Bread) = $\frac{4}{5}$ = 0.8 (Bread appears in 4 transactions)
- 2. Support(Bread, Butter) = $\frac{3}{5}=0.6$ (Both Bread & Butter appear together in 3 transactions)
- 3. Confidence({Bread} \rightarrow {Butter}) = $\frac{0.6}{0.8} = 0.75$ (75%)

Interest

- evaluates how much the confidence of an association rule X → Y deviates
 from the expected probability of Y occurring independently.
 - In other words, it measures how likely when you buy two items together than buy one independently.

$$Interest(X \rightarrow Y) = Confidence(X \rightarrow Y) - Support(Y)$$

Step 1: Compute Support and Confidence

- Support(Bread) = $\frac{4}{5}$ = 0.8
- Support(Butter) = $\frac{4}{5} = 0.8$
- Support(Bread, Butter) = $\frac{3}{5}=0.6$
- Confidence(Bread \rightarrow Butter) = $\frac{0.6}{0.8} = 0.75$

Step 2: Compute Interest

$$ext{Interest}(Bread o Butter) = ext{Confidence}(Bread o Butter) - ext{Support}(Butter)$$
 $= 0.75 - 0.8 = -0.05$

- If Interest > 0, the rule is stronger than expected.
- If Interest < 0, the rule is weaker than expected (meaning Butter appears in transactions independently of Bread).
- If Interest = 0, the rule is no better than random occurrence.
- Counting Pairs
 - o 10⁵ items
 - Number of pairs of items = 10^5(10^5-1)/2=5*10^9
 - Triangular matrix approach
 - to find pair {l,j} position
 - (I-1)*(n-i/2)+(j-i)
 - Total pair
 - n(n-1)/2
 - Total bytes = 2n(n-1) known 4bytes per pair
- A-priori algorithm
 - o A two pass approach called a-priori limits the need for main memory
 - Monotonicity
 - If a set of items I appears s times then so does every subset j of I

- Pass1: read baskets and count in main memory the occurrences of each single item
- Pass2: read baskets again and count in main memory only those pairs of items where both were found in pass 1 to be frequent
- PCY Algorithm
 - o Generate all possible pairs for each basket
 - Hashes them to buckets
 - Keeps a count for each hash bucket
 - Identifies frequent Buckets where count>=s
- Random Sampling
 - Read a sample that represent entire data set
- Savasere Omiecinki and Navathe (Son algorithm)
 - Pass one: In-memory, read all small subsets and let itemset become candidate
 - Pass two: count all candidate itemsets and determine which are frequent in the entire set
 - Map Reduce
 - Phase 1: find local candidate
 - Phase 2: find true frequent itemsets
- Toivonen's Algorithm
 - Negative border
 - First path: find negative boarder