Introduction à la Physique Médicale

Fenga Franklin Marshall

Université de Yaoundé 1 Faculté des Sciences

Département de Physique

Laboratoire de Physique Atomique, Moléculaire et Biophysique

Supervisé par :

Orlane ZANG
Ernest Jordan FOTSO TOKAM
Jules Romuald MVONDO EDOU
Ulrich Karles LEUGA KANKAM
Myke Vital SAO TEMGOUA

Table des Matières

- Introduction
- 2 Genèse et évolution de la physique médicale
- 3 Principe de Base de la Physique Médicale
- Applications de la Physique Médicale
- 5 Défis et Évolutions Futures
- 6 Conclusion

- Introduction
- 2 Genèse et évolution de la physique médicale
- Orincipe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- Défis et Évolutions Futures
- Conclusion

Introduction

La physique médicale est une branche de la physique appliquée qui utilise les principes et les techniques de la physique pour résoudre des problèmes médicaux.

- Introduction
- 2 Genèse et évolution de la physique médicale
- Orincipe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- Défis et Évolutions Futures
- Conclusion

Genèse et évolution de la physique médicale

- 1779 : Félix Vicq d'Azyr introduit le terme « physique médicale »
- 1895 : Wilhelm Röntgen découvre les rayons X.
- 1896 : Henri Becquerel découvre la radioactivité.
- 1898 : Marie Curie démontre la radioactivité d'autres éléments.

- Introduction
- 2 Genèse et évolution de la physique médicale
- 3 Principe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- Défis et Évolutions Futures
- Conclusion

Principes de Base de la Physique Médicale

- Interaction des rayonnements avec la matière biologique.
- Radioactivité et décroissance.
- Physique de la détection des rayonnements.
- Principes de radioprotection opérationnelle.
- Principes de dosimétrie interne.

- Introduction
- 2 Genèse et évolution de la physique médicale
- 3 Principe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- Défis et Évolutions Futures
- Conclusion

Applications de la Physique Médicale

Radiothérapie

• Imagerie médicale

Radiographie

6 août 2024

Imagerie par résonance magnétique (IRM)

Tomographie par émission de positons (TEP)

L'échographie ultrasonore

- Médecine nucléaire
- radioprotection

- Introduction
- 2 Genèse et évolution de la physique médicale
- 3 Principe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- 5 Défis et Évolutions Futures
- Conclusion

Défis et Évolutions Futures

Défis

Technologies en constante évolution Sécurité des patients Complexité croissante des équipements Intégration des nouvelles technologies

Évolutions Futures

Imagerie médicale avancée
Radiothérapie de précision
Développement de nouveaux traitements
Personnalisation des traitements

- Introduction
- 2 Genèse et évolution de la physique médicale
- Orincipe de Base de la Physique Médicale
- 4 Applications de la Physique Médicale
- Défis et Évolutions Futures
- 6 Conclusion

Conclusion

La physique médicale continue d'évoluer et de contribuer à l'avancement de la médecine, tout en faisant face à des défis technologiques et en intégrant des innovations pour améliorer les soins aux patients.