CH01R01BAC2015

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

زارة التربية الوطنية

متحان بكالوريا التعليم الثانوي

لشعبة: تقني رياضي

المدة: 04 سا و30 د

ختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

نظام آلى لملء قارورات

يحتوي الموضوع الأول على 08 صفحات (من الصفحة 01 من 18 إلى الصفحة 08 من 18). العرض: من الصفحة 01 من 18 إلى الصفحة 05 من 18.

العمل المطلوب: الصفحة 06 من 18.

وثائق الإجابة: من الصفحة 07 من 18 إلى الصفحة 08 من 18 (تعاد مع أوراق الاختبار).

1- دفتر المعطيات:

- * يهدف هذا النظام إلى ملء قارورات بمادة سائلة.
 - * وصف الكيفية:
 - *يمكن تجزئة تشغيل النظام إلى 3 أشغولات:
 - 1-1- أشغولة ملء القارورات:
- في البداية توجد 6 قارورات فارغة في مركز الملء فيتم ملؤها بفتح Ev لمدة 5 ثوان.
 - 1-2- أشغولة تقديم البساط:
- عند نهاية الملء يتقدم البساط بخطوة واحدة بواسطة الرافعة W: خروج ذراع الرافعة يقدم البساط بخطوة واحدة بينما رجوعه يكون بدون تأثير على البساط.
 - 1-3-1 أشغولة غلق القارورات:
- Y_1 تقوم الرافعة Z بتقديم السدادة أمام الرافعة Y_2 . تنزل الرافعة Y_3 حتى Y_4 لحمل السدادة ثم تعود إلى Y_5 وعندئذ يرجع ذراع الرافعة Z_5 إلى Z_5 بعدها ينزل ذراع الرافعة Z_5 الوضع السدادة على القارورة ثم يعود بعد ذلك إلى الوضعية الابتدائية.
 - * يوجد عداد N يعد 6 قارورات مغلقة، تسمح هذه المعلومة بملء 6 قارورات موالية (المعلومة n). *الأمن: حسب القوانين المعمول بها.

1-4- أنماط التشغيل والإيقاف.

- مبدّلة C/C-AUTO تسمح باختيار نمط التشغيل.

عند وجود خلل أو الضغط على زر الإيقاف الاستعجالي AU يؤدي إلى إيقاف النظام في وضعية معينة ثم تنجز العمليات الباقية يدويا.

2- التحليل الوظيفي التنازلي:

- الوظيفة العامة:

الطاقة الكهربائية: EE

الطاقة الهوائية: EP

تعليمات الاستغلان: E

عدد مرات تقدم البساط: n (غلق 6 قارورات)

زمن التأجيل: t

3 - المناولة الهيكلية:

4- التحليل الزمني:

$3 \times 380 \text{ V} \sim 50 \text{ Hz}$. نبكة التغذية: شبكة التغذية: -5

أشغولة تقديم البساط	أشغولة غلق القارورات
رافعة W مزدوجة المفعول	رافعة Y مزدوجة المفعول
D 85.	رافعة Z مزدوجة المفعول
موزع 2/5 كهروهوائي	موزع 2/5 كهروهوائي ثنائي
ثنائي الاستقرار	الاستقرار ('Y , Y)
(W^+,W^-)	موزع 2/5 كهروهوائي ثنائي
	الاستقرار (Z ⁺ , Z ⁻)
w1 - w0 ملتقطات	ملتقطات نهاية الشوط
نهاية الشوط	y2 - y0 -y1, - z0 -z1
	رافعة W مزدوجة المفعول موزع 2/5 كهروهوائي ثنائي الاستقرار (W+,W-)

تركيب العداد N:

المؤجل T:

6-العمل المطلوب:

- 1) أنشئ متمن الأشغولة 1 (ملء القارورات) من وجهة نظر جزء التحكم.
- 2) أنشئ متمن الأشغولة 3(غلق القارورات) من وجهة نظر جزء التحكم.
- 3) اكتب معادلات التنشيط والتخميل لمتمن أشغولة تقديم البساط (الصفحة 4 من 18).
 - 4) ارسم تدرج المتمنات (GS, GCI, GPN) . (4

على وثيقة الإجابة 1(الصفحة 7 من 18) أكمل:

- 5) ترسيمة المعقب الكهربائي لأشغولة تقديم البساط.
- 6) دارة الاستطاعة الهوائية للرافعة W و دارة المخارج.
 - 7) دارة تغذية المعقب.

*دارة العداد N:(الصفحة 5 من 18)

على وثيقة الإجابة 2 (الصفحة 8 من 18) أكمل:

- 8) تركيب هذا العداد باستعمال قلابات JK تحكم بالجبهة النازلة.
 - 9) المخطط الزمني لمخارج العداد والمخرج n.

*المؤجل T (الصفحة 5 من 18):

- 10) ما هو دور الثنائية D؟
- 11) احسب قيمة التوتر Uc عند تشحين المكثفة.
- 12) أوجد عبارة الزمن t بدلالة R , Uc ,E , C .
- 13) احسب قيمة المقاومة R للحصول على زمن التأجيل t=5s.

*محول تغذية المعقب ، الموزعات والكهروصمام يحمل المعلومات التالية:

220/24 V~, 50 Hz, 120VA

أجريت على هذا المحول الاختبارات التالية:

 $U_1=220V$; $U_{20}=26V$; $P_{10}=5W$

اختبار في حالة فراغ (بدون حمولة):

P_{1CC}=5W; I_{2CC}=5A

اختبار بدارة قصيرة:

- 14) احسب نسبة التحويل في حالة الفراغ.
 - 15) ماذا تمثل P₁₀ وP₁₀
- 16) احسب قيمة المقاومة المرجعة للثانوي Rs.

 $I_2=5A$ عند التشغيل الاسمي للمحول و بتوتر ابتدائي $U_1=220$ ينتج تيار ثانوي

 $\cos \phi_2 = 0.8$ בבד توتر ثانوي $U_2 = 24V$ ويمعامل استطاعة

- ΔU_2 احسب الهبوط في التوتر (17
- 18) احسب قيمة المعاوقة المرجعة للثانوي Xs.
 - 19) احسب مردود المحول.

وثيقة الإجابة 1: تعاد مع أوراق الامتحان

وثيقة الإجابة2: تعاد مع أوراق الامتحان

الموضوع الثائي وحدة سد القارورات

ا دفتر المعطيات:

1- هدف التأليه: تعتبر الوحدة جزءا من نظام آلي لصناعة العطور، يتمثل دورها في غلق القارورات المعبأة بالمادة المذكورة بشكل سريع وبصِفة مستمرة. (انظر الصفحة 11 من 18)

*يتطلب النظام توقفا أسبوعيا للمراقبة، الصيانة والنظافة.

*الأمن: حسب القوانين والاتفاقيات المعمول بها في المجال الصناعي.

2- وصف النظام: تحتوي الوحدة على أربعة مراكز:

- المركز 1: الإتيان بالسدادات.

- المركز 2: الإتيان بالقارورات.

- المركز 3: وضع السدادة على القارورة، الغلق والسحب.

- المركز 4: إخلاء العلب المعبأة.

اا- التحليل الوظيفي:

أ- الوظيفة العامة للنظام الآلي.

الطاقة الكهربائية: EE

الطاقة الهوائية: EP

تعليمات الاستغلال : E

عدد القارورات: n

t1,t2, t3,t4: أزمنة التأجيل

ب- التشغيل.

- يمكن تجزئة تشغيل النظام الآلي إلى 5 أشغولات أساسية:

أشغولة 1: الإتيان بالسدادات.

تأتى السدادات بواسطة البساط1 والذي يتوقف عند اكتشاف سدادة في المركز B.

أشغولة 2: الإتيان بالقارورات مفتوحة.

تأتى القارورات بواسطة البساط2 والذي يتوقف عند اكتشاف سكادة في المركز F.

أشغولة 3: التقاط السدادة ونقلها.

تبدأ العملية بنزول ذراع الرافعة C فتتغذى المصاصة لتلتقط سدادة وبعد (01) ثانية (t1=1s) يصعد ذراع الرافعة

C ثم تتقل السدادة إلى المركز F بواسطة المحرك M3

أشغولة 4: سد قارورة وسحبها.

تبدأ العملية بنزول ذراع الرافعة C لتضع السدادة على القارورة لمدة (02) ثانيتين (12=2s) بعدها يصعد ذراع الرافعة C ثم تتقل قارورة مغلقة إلى المركز G بواسطة المحرك M3 عندها تتحرر القارورة (تخميل مرحل المصاصة) و بعد (01) ثانية (13=1s) تعود المجموعة "الرافعة C-مصاصة" إلى (المركز B) أشغولة 5: تعبئة العلب وإخلاؤها.

تأتي القارورات إلى العلبة عن طريق المنحدر وعندما يصبح عددها عشرة (n=10) تنقل العلبة بواسطة البساط 3 لمدة 10 ثواني (t4=10s).

ج- أنماط التشغيل والإيقاف.

- مبدلة C/C-AUTO تسمح باختيار نمط التشغيل.

عند وجود خلل أو الضغط على زر الإيقاف الاستعجالي AU يؤدي إلى إيقاف النظام في وضعية معينة ثم تنجز العمليات الباقية يدويا.

IV-جدول الاختيارات التكنولوجية:

اثملتقطات	المنفذات المتصدرة	المنفذات		الأشغولات
\$1: للكشف عن	KM1: ملامس كهربائي	ني ثلاثي الطور بدوار	M1: محرك لاتزام	
وصول سدادة	رباعي الأقطاب	220/380 إقلاع مباشر	مقصور V,50Hz	الأشغولة 1
	تغذية الوشيعة ~24V	التيار	مزود بمكبح بغياب	
\$2: للكشف عن	KM2: ملامس كهربائي	ني ثلاثي الطور بدوار	M2: محرك لاتزام	
وصول قارورة	رباعي الأقطاب	220/380 إقلاع مباشر	مقصور V,50Hz	الأشغولة 2
a -	تغذية الوشيعة ~24V	التيار	مزود بمكبح بغياب	
SF: يكشف عن وجود		ني ثلاثي الطور بدوار	M3: محرك لاتزام	
المصاصة فوق القارورة	AV: KM3 ملامس	220/380 إقلاع مباشر	مقصور V,50Hz	
SB: يكشف عن وجود	كهربائي رباعي الأقطاب	زود بمكبح بغياب النيار	اتجاهين للدوران م	
المصاصة فوق السدادة	تغذية الوشيعة~24V	B إلى F	- AV من	
SG: يكشف عن وجود	KM4:AR ملامس	ا إلى G و من G إلى B	AR – من	
المصاصة فوق المنحدر	كهربائي رباعي الأقطاب			الأشغولة 3
	تغذية الوشيعة~24V			والأشغولة 4
t1 ;t2 ;t3	مرحل ثنائي الاستقرار	- المصاصة نشطة	٧: مصاصة	
أزمنة التأجيل	24V~ (V+,V-)	- المصاصة خاملة	ride V. N	
	T2,T3,T1: مؤجلات	[03]4[1]		121
c1: كاشف خروج	موزع 2/5 كهروهوائي	المفعول لإنزال ورفع	C: دافعة مزدوجة	
الساق	ثنائي الاستقرار		المصاصة	
c0: كاشف دخول	24V~(C+,C-)			
الساق				
\$3: للكشف عن مرور	KM5: ملامس كهربائي	ني ثلاثي الطور	M4: محرك لاتزاما	
قارورة إلى العلبة.	رباعي الأقطاب	220/380V,5	دوار مقصور HZ06	
\$4: للكشف عن وجود	تغذية الوشيعة ~24٧	بمكبح بغياب النيار	إقلاع مباشر مزود	الأشغولة 5
علبة	مؤجل T4			
t4: زمن إخلاء علبة				

ملاحظة: لإبقاء المصاصة مغذات طيلة عملية النقل والسد تغذى عن طريق مرحل ثنائي الاستقرار V+ للتنشيط و V- للتخميل.

دارة التغذية المستقرة 5V

دارة المؤجلة T2

جدول خصائص المرحلات.

Référence	U collage à 20 °C V	U coupure à 20 °C V	U max à 50°C V	Résistance ±10% Ohm	indu fermée	ouverte
HB1 5V HB1 6V HB1 12V HB1 24V HB1 48V	4 4,8 9,6 19,2 38,4	0,5 0,6 1,2 2,4 4,8	6 7,2 14,4 28,8 57,6	69 100 400 1600 6000	0.13 0.18 0.7 3	0,094 0,13 0,5 2,1 6,6
HB2 5V HB2 6V HB2 12V HB2 24V HB2 48V	4 4,8 9.6 19,2 38,4	0,5 0,6 1,2 2,4 4.8	6 7,2 14,4 28,8 57,6	43,4 62,5 250 1000 4000	0,17 0,24 0,72 2,4	0,095 0,14 0,46 1,6 5,6

VI - العمل المطلوب:

- 1. أكمل مخطط التحليل الوظيفي التنازلي للنشاط البياني AO على ورقة الإجابة (صفحة 18 من 18).
 - 2. أنشئ متمن الأشغولة 4 (السد والسحب) من وجهة نظر جزء التحكم.
 - 3. اكتب معادلات التنشيط والتخميل مع الأفعال لمتمن الأشغولة 3 (الالتقاط والنقل).
 - 4. أكمل المعقب الكهربائي للأشغولة 3 (الالتقاط والنقل) على وثيقة الإجابة (صفحة 18 من 18).
 - العد: علما أن إخلاء العلبة يتم عند استقبالها 10 قارورات:
 - 5. أكمل تصميم العداد اللاتزامني بالقلابات JK ذات التحكم بالجبهة النازلة.
 - على وثيقة الإجابة (صفحة 18 من 18).
 - دارة التغذية المستقرة V2+ (الصفحة: 15 من 18):
 - 6. ما هو دور المكثفات C3 ، C2 ، C1 و الثنائية الكهروضوئية (Led)؟
 - 7. ارسم شكل التوتر VC1min و VC1max بين طرفي المكثفة C1 مبينا
 - .V_{Clmax} .8
 - $V_L = 1.8$ و $I_L = 13$ و $I_L = 13$
 - = المؤجلة T2 المستعملة في أشغولة السد والسحب (الصفحة: 15 من 18):
 - $V_C < V^-$ و $V_C > V^-$ و $V_C < V^-$ و $V_C < V^-$
 - 11. احسب قيمة التوتر ٧٠.
 - 12. احسب قيمة مقاومة المعدلة P المضبوطة للحصول على زمن التأجيل t2=2s.
 - 13. ما هي قيمة مقاومة وشيعة المرحل (R_L) انطلاقا من جدول خصائص المرحّلات؟
 - 14. احسب شدة التيار الذي يجتاز وشيعة المرحل عند تشبع المقحل Tr.
 - المحرك M4:
 - نقرأ على لوحة المعلومات للمحرك M4 الخصائص التالية:

MOT	EUR A	SYNC	HRONE -	NFC	51-11	1 N	OV.79
kW	11,5	cosφ	0,78	ΔV	220	A	6,65
		rd ^{to} %	76	λΥ	380	A	3,84
tr/min	1440		isol ⁱ classe		amb ^{ce}	°C	40
Hz	50	ph 3	S.ce S1				

CH15R29BAC2015

- 15. فسر المعلومات المنسوخة على اللوحة.
- 16. ما هو الإقران المناسب للفات الساكن على الشبكة؟ علل إجابتك.

عند التشغيل الاسمي إذا علمت أن مقاومة لفات الساكن المقاسة بين طورين $Ra=5~\Omega$ والضياع في حديد الساكن $P_{fs}=160$ احسب:

- 17. الانزلاق.
- 18. الاستطاعة الفعالة الممتصة من طرف المحرك.
 - 19. العزم المفيد الاسمي.
- 20. الضياع بفعل جول في الساكن (P_{js}) ، والاستطاعة المنقولة للدوار (Ptr))، والضياع بفعل جول في الدوار (P_{jr}) ، والضياع الميكانيكي (P_{m}) .

المحرك M1:

21. ارسم دارة الاستطاعة لهذا المحرك.

وثيقة الإجابة تعاد مع ورقة الامتحان

X200

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكتولوجيا (هندسة كهريائية)

دورة: جوان 2015

الشعبة: تقتي رياضي

مه	العلا		
المجموع	مجزاة	(4	عناصر الاجابة (الموضوع الأول
	0.25×6		ج1- متمن الأشغولة 1 : ملء القارورات
	.0.25		
	0.25 ن لكل مرحلة		ا
1.50	ا انتقال.		0 2N
	0.25 ن		X1.X104
	لكل فعل.	П.	11 L EV T RAZ
9	.0		1 1 1 1 1 1 1 1 1 1
		-	- X12
			12
			+ X1) 3 2V
			- 1 December 2010
	-		- ج2- متمن أشغولة غلق القاورات
	-		1 21
1920	0.25×8	Tables of Same	30
	0.5+		X3.X104
			31 Z+
	(0.25 ن		/ ± 21
. 50	لكل مرحلة		32 Y+
2.50	+انتقالية		+ v ₁
	(ded+		70 33 TY
-	+		3 + yo
	(0.5)		+ X37 34 - Z-
	X3 7		+ 20
	+612+		35 Y+
	جواب)		(王 y2
			36 Y-
			\ 入土»
			37
			+ x3 / 10 2 V

اختبار مادة : تكنولوجيا (هندسة كهربائية)

الإجابة النموذجية لامتحان البكالوريا

دورة: جوان 2015

الشعبة : تقني رياضي

			بساط"	تخميل لمتمن الأشغولة 2 " تقديم ال	التنشيط و ال	مادلات
			التخميل	التنفيط	المراحل	7
	0.25×4		X21	X23.X2+X200	20	0,
	0.23^4		X22+X200	X20.X2.X104	21	0,
1	0.25ن		X23+X200	X21.W ₁	22	on
	لكل منظر		X20+X200	X22.W ₀	23	1
	100					op.
1.5	0.5×3		المراب القرادة متمن القرادة و التهيئة	VGPN(1) ON +ON	الم	* † (0)
	301		ساط.	ربائي للأشغولة 2: تقديم الب		
	- 121			بة 1 الصفحة 6 من 15)		
2	0.5×4	- 0.5 القابليات)	التنشيط - 0.5 التخميل	التوقيف الاستعجالِي – 0.5	0 للتهيئة و).5)
1	0.5			عة الهوانية للرافعة W. (انظ		
	0.5	نرج)	6 من 15) (0. 25 لكل ما	ظر وثيقة الإجابة! الصفحة	خارج. (اند	ارة الم
			سفحة6 من 15)	.(انظر وثيقة الإجابة 1 الم	ارة التغدية	ر7- د
0.5	0.25×2			0.25 للمقوم)		
.50			74 من 15)	نظر وثيقة الإجابة2 الصفد	ارة العداد(ا	8- د
	0.5×3	1	توصيلات (0.5 ن)	ن) ، المخرج n (0.5 ن) ال	0.5) J-	K-1
1	0.25×4	.0 ن لكل مخرج)	25) (15 من 15) (25	مِني. (انظر وثيقة الإجابة ²	لمخطط الز	n -9 ₀

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية) الشعبة : تقني رياضي دورة: جوان 2015

<u>T</u> ,	المؤ
I - دور الثنائية D:	ج0.
حماية المقحل من التيارات المتحرضة الناتجة عن وشيعة الملامس (المرحل)	
ا- حساب UC:	ج1
$0.26 U_C = V_Z + V_{BE}$	
$U_C = 7,5 + 0,7 = 8,2 V$	
$U_c = 8,2 V$	
ا عبارة t:	25
$Uc = E \left(1 - e^{\frac{-t}{r}}\right)$	
$Uc = E - E e^{\frac{-1}{\tau}}$	
$E - Uc = E e^{\frac{-1}{\tau}}$	
1 E	1
$e^{\frac{t}{F}} = \frac{E}{E - Uc} \qquad t = -2 \ln \left(\frac{E - Uc}{E} \right)$	
$t = \tau \cdot \ln(\frac{E}{E - Uc})$	
The state of the s	
$\partial \Lambda = R.C. \ln \left(\frac{E}{E - Uc} \right)$)
E - Uc	_
- قيمة المقاومة R:	13-
0.6	
$R = \frac{1}{C \cdot \ln(\frac{E}{E - Uc})}$	
E - Uc'	
$R = \frac{5}{12}$	
$R = \frac{12}{47 \times 10^{-6} \cdot \ln(\frac{12}{12 - 8, 2})}$	1
$K = 92.51 \text{ K} \Omega$	٤٠
تعتبر إجابته صحيحة من أعطى علاقة (t) أو (R) مباشرة	

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية) الإجابة الشعبة : تقني رياضي دورة: جوان 2015

0.5 0.25×2 $m = \frac{U_{20}}{U_1} = \frac{26}{220} = 0.118$ $m = 0.1$		ه14-دراسة المحول
1 0.5×2 $O_{10} = 0.5$	0.5 0.25×2	$m = \frac{U_{20}}{U} = \frac{26}{220} = 0.118$
0.5 $R_s = \frac{P_{1CC}}{I_{2CC}} = \frac{5}{25} = 0, 2\Omega$ $R_s = 0, 2\Omega$	1 0.5×2	0,5 - 150 : تمثل الضياعات في الحديد (6,5) P10 - 150 : P10 - 150 : تمثل الضياعات في النحاس (6,5)
0.5 $\Delta U_2 = U_{20} - U_2 / 0, 25$	0.5	$R_{s} = \frac{P_{1CC}}{I_{1CC}} = \frac{5}{25} = 0.2\Omega$
$\Delta U 2 = 20 - 24 = 2V$	0.5	$\Delta U_2 = U_{20} - U_2$ 0,25 ما $\Delta U_2 = 26 - 24 = 2V$

الصفحة 4 من 15

193

دورة: جوان 2015

الشعبة : تقني رياضي

-	T	5	ج19- حساب المردود:
1	0.5×2	$ \eta = \frac{P_2}{P_2 + \Sigma Pertes} $ $ P_2 = U_2 \times I_2 \times Cos \ \varphi = 24 \times \Sigma Pertes = P_{fer} + P_J = 5 + 5 = 10 $	$5 \times 0.8 = 96Watts 0.2$
		96 - 0.9056	
		$\eta = \frac{1}{96 + 10} = 0.9030$ $\eta = 90.56\%$	25
	H.		//
	7		
		-(
	V		
pt _	1		

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريانية)

دورة: جوان 2015

الشعبة : تقني رياضي

وثيقة الإجابة 1

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريانية)

الشعبة : تقني رياضي دورة: جوان 2015

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية)

دورة: جوان 2015

الشعبة : تقني رياضي

العلامة		/ usu
ة المجموع	مجزأ	عناصر الاجابة (الموضوع الثاني)
1.5 0.25	×6	ج1- التحليل الوظيفي التنازلي (انظر وثيقة الإجابة، الصفحة 15 من 15)
		ج2- متمن أشغولة السد و السحب
		40
		41 C+
2 0.25	×8	
		42 T2 + t2/X42/2s
		43 - C-
		1 128 +X47 44 KM4
		+ SG 45 V- T3
		+ t3/X45/1s
E .		46 KM4
		47 + x4
		0.25 ن لكل مرحلة +انتقالية +فعل

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهربائية)

دورة: جوان 2015

الشعبة : تقني رياضي

						1 3/4	C+	التخميل	التتشيط	لعراحل
		0,0	KM3	C-	11	V+	C+	X31	X35.X3+X200	X30
	0.05.6				-		X	X32+X200	X30.X3.X104.SB	X31
1.5	0.25×6	· oru	-		X	X		X33+X200	X31.c1	X32
		404	-	V				X34+X200	. X32.t1	X33
		0.74	>					X35+X200	X33.c0	X34
		0,57						X30+X200	X34.SF	X35
	65310777.5000	قابلیات)	0.5) للتهيئة والتوقيف الا - دارة العداد: (انظر	
					/ 15	. 15	1 . i .l	1.31-21.360.	- دارة العداد: (انظر	5=
1.5	0.5×3								· (0.5 ن) ، المخرج	
					(0 0.	-, -		(000)	لية المستقرة	
						1.1			ر العناصر:	1
									- المكثقة C1 : الت	
						Amalin	oracit	-	- المكثقة C2 : نز	7.56 7.77
1	0.25×4							110		
				stabil	Isatio				- المكثقة C3 : تتب	
	-					10.000			 الثنائية الضوئية 	
						(V	c1)C1	, طرفي المكتفة	مم و شکل التوتر بین	ŋ−/
				Vc1						-/

الإجابة النموذجية المتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية)

-.1

الشعبة : تقني رياضي دورة: جوان 2015

ح8− قيمة V _{C1} max	$U_{1eff} = 8V$		
1. 9.25	$V_{C1\text{max}} = U_{1\text{max}} - 2V_d$	0.25×2	0.5
0.85 = 9.6V	$V_{C1\text{max}} = 8\sqrt{2} - 2 \times 0$		
$V_{C1\text{max}} = 9.6V O_1 U$			
ج9- قيمة المقاومة R1 :		**	1 8
0125	$R_{1} = \frac{Vcc - V_{L}}{I_{L}} $ $R_{1} = \frac{5 - 1.8}{13 \times 10^{-3}} =$		
= 246Ω	$R_1 = \frac{5 - 1.8}{12 - 1.03} =$	0.25×2	0.5
$R_1 = 246\Omega$	13× 10°	- 2	
المؤجلة T2		127	200
Vref=V-		-	F
ج10- شكل توتر الخروج لما - <i>اح ا</i>	:Vc <v- ,="" td="" vc<=""><td>100</td><td></td></v->	100	
ref oi leb	:Vc <v- ,="" vc<br="">Vs = 0V 0 125</v->		
من أجل Vref	Vs-+Vsat-Vcc-+12V 0, 25 Vc>V	0.5×2	1
	vs A		
Vc>Vref	Vc <vref td="" v<=""><td></td><td>-11</td></vref>		-11
9125			-
	0125		
	t2		
	X		A.
			- 0
		- 1	1

الإجابة النموذجية لامتحان البكالوريا اختبار مادة: تكنولوجيا (هندسة كهريائية) الشعبة: تقني رياضي دورة: جوان 2015

		ج11- ئيمة -V: كرية -V: كرية التي التي التي التي التي التي التي التي
0.5		$V - = \frac{2R \times Vcc}{2R + R}$
	0.5	$V = 2Vcc = 2 \times 12 = 8V$
		$V = \frac{3}{3} = \frac{3}{3}$ $V = 8V$
		ج12− قيمة مقاومة المعدلة P المضبوطة الحصول 12−2s:
		$V_{c} = V_{cc} \left(1 - e^{\frac{-tr}{r}} \right)$
	- 54 -	$V_c = V_{cc} - V_{cc} \times e^{\frac{-t_2}{r}}$
1.5	0.5	$V cc - Vc = Vcc \times e^{\frac{-tz}{r}}$
		$e^{\frac{t_1}{r}} = \frac{V cc}{V cc - V c}$
	2-15-15 2-15-15	$t_2 = \tau \cdot \ln(\frac{V cc}{V cc - Vc})$
	0.5	$t_2 = (R_2 + P).C. \ln(\frac{Vcc}{Vcc - Vc})$
		$t_2 = (R_2 + P).C. \ln\left(\frac{V cc}{V cc - V c}\right)$ $R_2 + P = \frac{t_2}{C. \ln\left(\frac{V cc}{V cc - V c}\right)}$
	7.45	$R_2 + P = \frac{2}{100 \times 10^{-4} \cdot \ln(\frac{12}{12 - 8})} = 18200 \Omega$
		$R_2 + P = 18.2 K \Omega$
	0.5	$P = 18.2 - 10 = 8.2 K \Omega$ $P = 8.2 K \Omega \Omega$
		F = 0.2 A M
35	100	عتبر إجابته صحيحة من أعطى علاقة (t) أو (R ₂ +P) مباشرة

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية)

الشعبة : تقني رياضي دورة: جوان 2015

ج13- قيمة المقاومة R _L من الجدول:	
0,5 R _L -400 Ω	
ج-14- شدة التيار L.:	
$I_L = \frac{V_{CC} - V_{CEsal}}{R_L} \qquad 0 25$	
$I_L = \frac{(12 - 0.4)}{400} = 0.029 A$	
$I_L = 29 mA O_1 25$	
R = 25mR	
M4c(b)M4	
ج15-تفسير المعلومات:	
- محرك لاتزامني NFC 51-111 NOV.79.	
- الاستطاعة المفيدة الاسمية 1.5KW.	
- معامل الاستطاعة Cosp-078.	
- المردود الاممى للمحرك 76-/rd.	
- التوتر المسموح به بالنسبة لكل ملف هو 220V.	
- التوتر بين طوري الشبكة في حالة اقران نجمي هو 380٧.	1
التيار الاسمي المار في كل ملف هو 3.84A.	1
(ويمثل النيار في الخط عند التركيب النجمي)	
- التيار الاسمي في الخط عند التركيب المثلثي 6.65A.	
- سرعة الدوران الاسمية 1440 tr/mn	1
- تربد التيار 50Hz.	
- محرك ثلاثي الطور 3ph	
-40°C هي درجة الحرارة الأعظمية للمحيط التي في حدودها يحتفظ المحرك	
بخصائصه الاسمية.	

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهريائية)

الشعبة : تقني رياضي دورة: جوان 2015

16 الإقران:		
-حسب الشبكة الكهربائية المتوفرة 220/380V الاقران المناسب هو إقران نجمي لأن لف	0.5	0.5
حرك يتحمل توترا 220٧		
17- الانزلاق.		
$n_s = 1500 tr / mn$		
$g = \frac{n_s - n}{n_s} = \frac{1500 - 1440}{1500} = 0.04$		
$g = \frac{1500}{n_s} = \frac{1500}{1500}$	0.25×2	0.5
g = 0.04 0.05		
18- الاستطاعة الممتصة.		
$Pa = \frac{Pu}{\eta} = \frac{1500}{0.76} = 1973,6W$		
η 0,76		
$Pa = \frac{1973,6W}{\eta} = 1973,$	0.25×2	0.5
$(Pa = \sqrt{3} \times U \times I \times Cos \ \varphi)$ كن حساب Pa بالعلاقة		
19-عزم المزدوجة المفيد.		
$Cu = \frac{Pu}{Q} = \frac{Pu \times 60}{2\pi n}$		
$Cu = \frac{\Gamma u}{\Omega} = \frac{\Gamma u \pi \sigma \sigma}{2\pi n}$		
60 × 1500		
	0.25×2	0.5
Cu = 9,95 Nm		
20-ضياع جول في العماكن.		
$P_{js} = \frac{3 \times Ra \times I^2}{2} = \frac{3 \times 5 \times 3.84^2}{2} = 110.6W$ و المماكن.		
2 2	0.05	
Pjs=110.6W	0.25	1
		N IN
		1
		3

الإجابة النموذجية لامتحان البكالوريا اختبار مادة : تكنولوجيا (هندسة كهربائية)

الشعبة : تقتي رياضي دورة: جوان 2015

		الاستطاعة المنقولة للدوار.
		الاستطاعة المنقولة للدوار. Ptr=Pa-Pjs-Pfs=1973,6-110,6-160=1703W
	0.25	Ptr = 1703W) 0,125
		and a
		ضياع جول في الدوار .
	0.05	$Pjr = g \times Ptr = 0.04 \times 1703 = 68W$ $Pjr = 68W) 0.42$
	0.25	الضياع الميكانيكي.
		Pm = Ptr - Pu - Pjr = 1703 - 1500 - 68 = 135W
	0.25	Pm = 135W) 0, 125
	2,11	
	11.	ج21- دارة استطاعة المحرك M1.
		L1 L2 L3
	10	
		Q1 1 1 0 W
	0.25×4	
1		
		KM1 / 1 / 0 124
	4.46	RT1 55501V
,		00(335)
	A-47 (42)	\cong (M_3°)
78		
	11	
13		

دورة: جوان 2015

الشعبة : تقني رياضي

وثيقة الإجابة

ج5- تصميم دارة العداد:

الصفحة 15 من 15