Diszkrét matematika I. feladatok Relációk I.

Harmadik alkalom (2025.02.24-28.)

Bemelegítő feladatok

- 1. Legyen $A = \{1, 2, 3, 4\}$ és $B = \{5, 6, 7, 8, 9\}$. Tekintsük a következő $R \subset A \times B$ binér (kétváltozós) relációt: $R = \{(1, 5), (1, 6), (1, 7), (3, 6), (3, 9), (4, 5), (4, 7), (4, 9)\}$.
 - a) Határozza meg az R reláció értelmezési tartományát és értékkészletét.
 - b) Legyen $H_1 = \{1, 2, 3\}$ és $H_2 = \{4\}$. Határozza meg az R reláció H_1 , illetve H_2 halmazra való leszűkítését.
 - c) A következő relációk közül melyek lehetnek az R reláció kiterjesztései?
 - $R_1 = \{(1,5), (1,6), (1,7), (2,2), (2,4), (3,6), (3,9), (4,3), (4,5), (4,7), (4,9)\}$
 - $R_2 = \{(1,5), (1,6), (1,7), (3,6), (3,8), (4,5), (4,6), (4,7), (4,9)\}$
 - $R_3 = A \times B$
 - $R_4 = B \times A$
 - d) Határozza meg az R reláció inverzét, $R(\{1,2\})$ képét és $R^{-1}(\{5,6\})$ inverz képet.
- 2. Legyen $R \subset \mathbb{R} \times \mathbb{R}$ a következő binér reláció $R = \{(x,y) : x^2 + y^2 \le 4\}$. Mi lesz dmn(R), rng(R), $R(\{0,1\})$ és $R^{-1}(\{0,1\})$?
- 3. Legyen $R \subset \mathbb{R}^2 \times \mathbb{R}^2$ a következő binér reláció $R = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u} \mathbf{v}| = 1\}$. Mi lesz dmn(R), rng(R), $R\left(\left\{\begin{pmatrix}0\\0\end{pmatrix}\right\}\right)$) és $R^{-1}\left(\left\{\begin{pmatrix}0\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right\}\right)$?

Gyakorló feladatok

4. Legyen $A = \{1, 2, 3\}, B = \{a, b, c, d, e, f\}$ és $C = \{2, 4, 6, 8\}$, továbbá $R \subset A \times B, S \subset B \times C$, $R = \{(1, a), (1, b), (2, b), (2, d), (3, c), (3, e)\}$ és

$$S = \{(a,2), (a,8), (c,2), (c,8), (e,4), (f,6)\}.$$

Határozza meg az $S \circ R$ kompozíciót, a kompozíció értékkészletét, értelmezési tartományát.

- 5. Legyenek $R \subset \mathbb{R} \times \mathbb{R}$ és $S \subset \mathbb{R} \times \mathbb{R}$ az alábbi binér relációk. Határozza meg az $S \circ R$ kompozíciót, annak értékkészletét és értelmezési tartományát!
 - a) $R = \{(x,y): x^2 + y^2 \le 4\}, S = \{(x,y): (x-1)^2 + y^2 \le 4\};$
 - b) $R = \{(x,y): x^2 + y^2 \le 4\}, S = \{(x,y): (x-2)^2 + y^2 \le 4\};$
 - c) $R = \{(x,y) : x^2 + y^2 \le 4\}, S = \{(x,y) : (x-3)^2 + y^2 \le 4\}.$

Érdekes feladatok

- 6. Tekintsük az emberek halmazán a G gyereke és a H házastársa relációt. Fejezzük ki segítségükkel a következőket:
 - a) unokája relációt; nagyszülője relációt, anyósa/apósa relációt, veje/menye relációt, testvére/önmaga relációt;
 - b) házasok halmaza, nagyszülők halmaza.
- 7. Adott $X=\{1,2,\dots,9\}$ alaphalmaz esetén tekintsük az alábbi $R\subset 2^X\times 2^X$ és $S\subset 2^X\times 2^X$ binér relációkat:

$$R = \{(A, B) : A \triangle B \neq \emptyset\}, \quad S = \{(A, B) : A \subset B\}.$$

Mi lesz $S \circ R(\{\emptyset, \{1, 2\}\})$, ill. $dmn(S \circ R)$ és $rng(S \circ R)$?

Beadandó házi feladatok

- 8. Legyen $R \subset \mathbb{R} \times \mathbb{R}$ a következő binér reláció: $R = \{(x,y) : x^2 + 2y^2 \le 4\}$. Mi lesz dmn(R), rng(R), R^{-1} , $R(\{0,1\})$ és $R^{-1}(\{0,1\})$? (1 pont)
- 9. Legyen $X = \{1, 2, \dots, 36\}$ és $R \subset X \times X$, $S = X \times X$ az alábbi két reláció:

$$R = \{(n, m) : |n - m| \text{ páros}\}, S = \{(n, m) : |n - m| \text{ osztható 3-mal}\}.$$

Mi lesz $S \circ R(\{1,2\})$, $(S \circ R)^{-1}(\{1,2\})$, $dmn(S \circ R)$, $rng(S \circ R)$? (1 pont)

10. Legyen $X = \{\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6\} \subset \mathbb{R}^2$ a következő vektorok halmaza:

$$\mathbf{v}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \ \mathbf{v}_4 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ \mathbf{v}_5 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \ \mathbf{v}_6 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}.$$

Legyen továbbá

$$M = \begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}.$$

Tekintsük az alábbi relációkat $R = \{(\mathbf{u}, \mathbf{v}) \in X \times X : M\mathbf{u} = \mathbf{v}\}$ és $S = \{(\mathbf{u}, \mathbf{v}) \in X \times X : N\mathbf{u} = \mathbf{v}\}$. Mi lesz az $R \circ S$, illetve az $S \circ R$ reláció? (1 pont)

További gyakorló feladatok

- 11. Legyenek $R \subset \mathbb{R}^2 \times \mathbb{R}^2$ és $S \subset \mathbb{R}^2 \times \mathbb{R}^2$ az alábbi binér relációk. Határozza meg az $S \circ R$ kompozíciót, annak értékkészletét és értelmezési tartományát!
 - a) $R = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u}| \le 2, |\mathbf{v}| \le 2\}, S = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u} (1, 0)| \le 2, |\mathbf{v} (1, 0)| \le 2\};$
 - b) $R = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u}| \le 2, |\mathbf{v}| \le 2\}, S = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u} (2, 0)| \le 2, |\mathbf{v} (2, 0)| \le 2\};$
 - c) $R = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u}| \le 2, |\mathbf{v}| \le 2\}, S = \{(\mathbf{u}, \mathbf{v}) : |\mathbf{u} (3, 0)| \le 2, |\mathbf{v} (3, 0)| \le 2\}.$