Neha Maddali

Homework 3.2

- 1. (50 points) Consider the following relations: Technicians(SSN, tech_name, address, phone_number), Tests(FAAid, test_name, max_score), Planes(Pid, model), and Examine(SSN, FAAid, Pid, date, score), and the following queries:
 - Q1: Find the names and phone_numbers of the technicians who examine a plane on 10/27/2021 or 10/28/2021;
 - Q2: Find the date that at least one Boeing 747 plane got higher than 80% of the max scores in its tests. (Hint: Boeing 747 is a model, not a Pid);
 - Q3: Find the name and ssn of the technicians who have not conducted any test on any Boeing 747 plane.
 - a) (12 pts) For each of the queries, write a relational algebraic expression. Q1: ∏ tech_name, phone_number (6 date = 10/27/2021 V date = 10/28/2021 (Technicians ⋈ Examine)
 - **Q2:** ∏ date (6 max_score > 80 ^ model = "Boeing 747" (Examine ⋈ Tests ⋈ Planes)
 - **Q3:** Π tech_name, SSN (Π tech_name, SSN (Technicians) Π tech_name, SSN (δ model = "Boeing 747" (Examine \bowtie Technicians \bowtie Planes)
 - b) (30 pts) Draw their expression trees with selection and projection conducted as early as possible. Use left-deep joins whenever joins are needed.

c) (8 pts) How many left-deep plans are there for joining all the four tables without cross product? Write down all these plans by drawing their expression trees. (Hint: if two tables do not have a common attribute, then natural join is defined as cross product, and thus should be avoided).

Submission Instruction

You can handwrite, but please make sure it is readable. Save your work as PDF and submit through your Canvas account.