CSD1100

Logic Gates

Vadim Surov

Introduction

- We have looked at Boolean expressions in abstract terms.
- In this presentation, we see that Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
 - In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.
 - Integrated circuits contain collections of gates suited to a particular purpose.

Telegraph

- In 1836, Samuel F. Morse (born 1791 in Massachusetts) invented the telegraph (which means "far writing").
- The idea is fairly simple: you do something at one end of a wire (apply a current) that causes something to happen (flashing a light) at the other end of the wire.
- At the core of a telegraph is a relay; its function relies on electromagnetism.

Telegraph

Copyright © 2021 DigiPen Institute Of Technology

Relay

- A relay is an electrically controlled switch.
- Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts.
- The coil current can be on or off, so a relay has two switch positions.

Relay

- Relays allow one circuit to switch a second circuit, which can be completely and remotely separate from the first.
- For example a low voltage battery circuit can use a relay to switch an 110V circuit.
- There is no electrical connection inside the relay between the two circuits; the link is both magnetic and mechanical.

Relay

Building logic gates

- Using relays the following simple "machines" (called gates) could be manufactured:
 - AND gate
 - OR gate
 - NOT gate or Inverter
- More complex gates can be manufactured by combining simple gates. The following gates could be manufactured:
 - NAND gate
 - NOR gate
 - XOR gate
 - XNOR gate

- The basic logical AND gate has has 2 inputs and 1 output.
 - Whenever at least one of the inputs is low, the output voltage will be low.
 - If both inputs are high, then the output voltage will be high.
- Some AND gates have 3 or more inputs.

А	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Copyright © 2021 DigiPen Institute Of Technology

- The basic logical OR gate has 2 inputs and 1 output.
 - Whenever at least one of the inputs is high, the output voltage will be high.
 - If both inputs are low, then the output voltage will be low.
- Some OR gates have 3 or more inputs.
- Note that this is an inclusive OR function.

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Copyright © 2021 DigiPen Institute Of Technology

Copyright © 2021 DigiPen Institute Of Technology

NOT gate (Inverter)

- The Inverter is the simplest logic gate.
- The logical circuit has 1 input and 1 output.
- The output is the opposite of the input.

Α	NOT A
0	1
1	0

- Logic gates are elementary building blocks.
- They can be connected to build more complex circuits (adder or subtractor)
- Combinational circuits are hardware circuits providing the logical function for electronic systems.
- These circuits are interconnected set of various gates where outputs connected to other inputs.
- Combinational circuits perform a logical function: if you change the inputs, you get a new output.

 The circuit below implements the Boolean expression ((AB)'+C')'

 Compare previous circuit to the following one, you will find that they are equivalent, they produce similar outputs:

- (AB)'
- The logical NAND gate has 2 inputs and 1 output.
- It is equivalent to an AND gate followed by a NOT gate.
- Whenever at least one of the inputs is low, the output voltage will be high.
- If both inputs are high, then the output voltage will be low.

Α	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

- (A + B)'
- The logical NOR gate has 2 inputs and 1 output.
- It is equivalent to an OR gate followed by a NOT gate.
- Whenever at least one of the inputs is high, the output voltage will be low.
- If both inputs are low, then the output voltage will be high.

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

NOR gate Out NOR Out Out

Copyright © 2021 DigiPen Institute Of Technology

- eXclusive OR.
- The logical XOR gate has 2 inputs and 1 output.
- Whenever only one of the inputs is high, the output voltage will be high.
- If both inputs are low, then the output voltage will be low.
- If both inputs are high, then the output voltage will be low.

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

$$A \cdot B' + A' \cdot B$$

 $(A + B) \cdot (A' + B')$
 $(A + B) \cdot (A \cdot B)'$

XNOR gate

- eXclusive NOR gate
- The logical XNOR gate has 2 inputs and 1 output.
- It is equivalent to an XOR gate followed by a NOT gate.
- Whenever only one of the inputs is high, the output voltage will be low.
- If both inputs are low, then the output voltage will be high.
- If both inputs are high, then the output voltage will be high.

Α	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

XNOR gate

$$(A + B)' + (A \cdot B)$$

Conversion From Logical Circuit to a Boolean Expression (1/2)

- Work out the circuit from the leftmost gate (input) and work forward towards the right (output).
- Build the corresponding Boolean expression from the innermost to the outermost level:
 - The leftmost gates (inputs) are the innermost operators of the Boolean expression.
 - The rightmost gate (the output) is the outermost operator of the Boolean expression.

Conversion From Logical Circuit to a Boolean Expression (2/2)

- The inputs of the circuit are assigned to variables of the Boolean expression.
- Write the Boolean operator that correspond to each gate:
 - OR gate translates to a +
 - AND gate translates to a *
 - NOT gate translates to a '
- Add parenthesis as desired, especially around the innermost expressions.
- The order of the expressions does not matter but try to make the expression easy to read.

Simplification of combinational circuits (Gate reduction)

- Combinational circuits can become too large to handle.
- Optimizing the circuit is to eliminate gate redundancy.
- Gates are manufactured and integrated into chips.
- Fewer gates means smaller, less expensive and faster circuit
- Simplification can be:
 - Achieved manually using Boolean theorems & axioms
 - Automated using tabular methods
 - K-map method
 - Quine-McKluskey method

Next Time

- So far we covered binary numbering system, and the electricity leading to logical gates implementing the Boolean algebra.
- Since the binary numbering system can be represented using electricity, in the next class we will build a combinational logic circuit that will take as input two numbers and produce their sum as an output.
- The adder is the core unit of the CPU (Arithmetic unit).
 Similarly, logical gates are used to build the logical unit.
- Usually, they are called the ALU, the Arithmetic and Logical unit.