Short Term Load Forecasting of Indian System Using Linear Regression and Artificial Neural Network

Present	ation · November 2015						
DOI: 10.131	40/RG.2.2.15858.40645						
CITATIONS		READS					
0		11					
2 autho	rs, including:						
	Harsh Patel						
4	Shree Swami Atmanand Saraswati Institute of Technology						
	7 PUBLICATIONS 3 CITATIONS						
	CEE DOOFH F						
	SEE PROFILE						
C							
Some of the authors of this publication are also working on these related projects:							
Project	Application of Artificial Neural Network for Short Term Load Forecas	sting. View project					

Short Term Load Forecasting of Indian System Using Linear Regression and Artificial Neural Network

Paper id :- 532

Prepared By:Harsh Patel
ME Power System
L E College Morbi

Outline

- *Introduction*
- Block diagram of STLF
- Linear Regression
- Artificial Neural Network
- Levenberg Marquardt Back Propagation algorithm
- Simulation & Results

Introduction

- Short Term Load Forecasting (STLF) provides the basis for,
 - Unit Commitment
 - Spinning Reserve Capacity
 - To Prepare Schedule Maintenance Plan
- Accurate Load Forecasts provide the key information for energy planning and operation [1].
- STLF is useful for safe and economic planning of an electrical power system.
- It is also used for determining,
 - Start-up and Shut-down Schedules Of Generating Units
 - Overhaul Planning
 - Load Management [2].

Block diagram of Short Term Load Forecasting

Linear Regression

- Regression tries to find relationship between a dependent variable and one or more explanatory variables.
- The relationship between an input matrix and an output vector is easy to understand.
- When weather variables are included, linear regression algorithm assume a linear relationship between weather variables and load [1].
- Mathematically,

$$Y = X * \beta + r$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{21} & . & x_{p1} \\ x_{12} & x_{22} & . & x_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & . & x_{pn} \end{bmatrix} * \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$$
Wher

Forecast Load = $X_T * \beta$

Where Y = Historical Load Vector X = Input Matrix $\beta =$ Relationship Vector r = Residual Vector

Artificial Neural Network

Levenberg Marquardt Back propagation (LMBP) Algorithm

■ Levenberg – Marquardt Back propagation algorithm is specifically designed to minimize sum of-square error functions,

•
$$E = 1/2 [e(j)]^2$$

■
$$W(j+1) = W(j) - (J^T J + \mu I)^{-1} * J^T e(j)$$

- $H \approx J^T J + \mu I$ H = Hessian Matrix
- Gradient = $J^T e(j)$
- Very large values of μ (10¹⁰) amount to standard gradient descent, while very small values of μ (0.001) amount to the Newton method [8]-[11].

Network consideration for Simulation

- Feed forward neural network use.
- Log sigmoid transfer function is considered as an activation function.
- Hidden neurons vary from 1 to 20.
- For both technique inputs are considered same.
- Analysis carried out with 4 cases
 - Case 1: Without Weather data and with Linear Regression Method
 - Case 2: With Weather data and with Linear Regression Method
 - Case 3: Without Weather data and with Neural Network Method
 - Case 4: With Weather data and with Neural Network Method

Inputs for Simulation

- Hour
- Day of week
- Working day
- Previous Week same hour load
- Previous Day same hour load
- Previous Hour same hour load
- Humidity
- Temperature

Results for Residential Feeder

Case 1: Without Weather Data LR

Case 2: With Weather Data LR

Case 3: Without Weather Data NN

Case 4: With Weather Data NN

Actual and Forecast Load

Case	MAE (kW)	MAPE (%)	HN	Case	Actual (MW)	Forecast (MW)
1	7.636	0.196		1	3.9	3.8924
2	48.791	1.251		2	3.9	3.8512
3	1.563	0.040	1	3	3.9	3.8984
4	0.551	0.014	18	4	3.9	3.9006

Results for Industrial Feeder

Case 1: Without Weather Data LR

Case 2: With Weather Data LR

Case 3: Without Weather Data NN

Case 4: With Weather Data NN

Actual and Forecast Load

Case	MAE (kW)	MAPE (%)	HN	Case	Actual (MW)	Forecast (MW)
1	10.993	0.458		1	2.4	2.4110
2	7.937	0.331		2	2.4	2.3921
3	0.894	0.037	7	3	2.4	2.3991
4	0.217	0.009	3	4	2.4	2.3998

Graphical Representation of case 4 (MAPE)

Conclusion

- For Short Term Load Forecasting LR and NN models are developed. Indian systems are considered with and without weather data.
- Accurate number of Hidden neurons is important for STLF Result.
- ANN technique is providing reduction in MAPE with accuracy in forecasted load. The MAPE is reduced up to 0.156 % in residential feeder and 0.42 % in industrial feeder when ANN is used to forecast the load.
- When ANN is used with weather data then MAPE is further reduced up to 0.026 % in residential feeder and 0.028 % in industrial feeder.

Reference

- 1. Jonathan Schachter and Pierluigi Mancarella "A short-term load forecasting model for demand response applications" EEM 2014 11TH IEEE International Conference 2014.
- 2. Wenjin Dai, Ping Wang "Application of Pattern Recognition and Artificial Neural Network to Load Forecasting in Electric Power System" In IEEE Third International Conference on Natural Computation 2007.
- 3. N. Amral, D. King, C.S. Ozveren "Application of Artificial Neural Network for Short Term Load Forecasting" in IEEE International Conference Published in 2008.
- 4. Mohsen Hayati, and Yazdan Shirvany "Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region" International Journal of Electrical, Robotics, Electronics and Communications Engineering Vol:1 No:4, 2007.
- 5. Kishan Bhushan Sahay, M.M.Tripathi "Day Ahead Hourly Load Forecast of PJM Electricity Market and ISO New England Market by Using Artificial Neural Network" 978-1-4799-3653-3/14 IEEE International Conference 2014.
- 6. Reza Afkhami, and F. Mosalman Yazdi "Application of Neural Networks for Short-Term Load Forecasting" IEEE Transactions on Power Systems 2006.
- 7. Mahdi FAIAZY AND Mahdi EBTEHAJ "Short Term Load Prediction Of A Distribution Network Based On An Artificial Intelligent Method" 22nd International Conference On Electricity Distribution June 2013.

- 8. D.C. Park, M.A. El-Sharkawi, R.J. Marks 11, L.E. Atlas and M.J. Damborg "*Electric Load Forecasting Using An Artificial Neural Network*" IEEE Transactions on Power Engineering, vol.6, pp.442-449, 1991.
- 9. Raman Kamboj, Mr. Ram Avtar " *Electric Load Forecasting Using Ann*" International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974 Engg. Res. Studies / II/ IV/July-Sept., 2013/81-83.
- 10. Chin Yen Tee, Student Member, Judith B. Cardell, Member, and Glenn W. Ellis "Short-Term Load Forecasting Using Artificial Neural Networks" North American Power Symposium, 2009.
- 11. Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro Souza "Neural Networks for Short-Term Load Forecasting: A Review and Evaluation" IEEE Transactions On Power Systems, Vol. 16, No. 1, February 2001.
- 12. Muhammad Buhari, Member, IAENG and Sanusi Sani Adamu "Short-Term Load Forecasting Using Artificial Neural Network" Proceedings of the International Multi Conference of Engineers and Computer Scientists 2012 Vol 1, Mar 14-16 2012, Hong Kong.
- 13. S.Sapna, Dr. A. Tamilarasi and M. Pravin Kumar "Backpropagation Learning Algorithm Based On Levenberg Marquardt Algorithm" Computer Science & Information Technology CS & IT-CSCP 2012.
- 14. Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, Cemal Ardil "Levenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting" World Academy of Science, Engineering and Technology International Journal of Computer, Control, Quantum and Information Engineering Vol:2, No:4, 2008.

- 15. M. López, S. Valero, C. Senabre, J. Aparicio, A. Gabaldon "Development of a Model for Short-Term Load Forecasting with Neural Networks and its Application to the Electrical Spanish Market" 2011 IEEE 2011 8th International Conference on the European Energy Market (EEM) 25-27 May 2011, Zagreb, Croatia.
- 16. S. Surender Reddy, James A. Momoh "Short Term Electrical Load Forecasting Using Back Propagation Neural Networks" 978-1-4799-5904-4/14 2014 IEEE North American Power Symposium, 2014.
- 17. Ozgur Kisi and erdal uncuoglu "Comparison of three back propagation training algorithms for two case studies "Indian Journal of Engineering and Materials Science Vol. 12, October 2005, pp. 434-442.
- 18. Salim Lahmiri "A Comparative Study Of Backpropagation Algorithms In Financial Prediction" International Journal of Computer Science, Engineering and Applications Vol.1, No.4, August 2011.
- 19. Samsher Kadir Sheikh, M. G. Unde "Short-Term Load Forecasting Using Ann Technique" International Journal of Engineering Sciences & Emerging Technologies, Feb 2012. ISSN: 2231 6604 Volume 1, Issue 2, pp: 97-107.
- 20. Mrs. J. P. Rothe Dr. A. K. Wadhwani Dr. Mrs. S. Wadhwani "Short Term Load Forecasting Using Multi Parameter Regression" International Journal of Computer Science and Information Security, Vol. 6, No. 2, 2009.
- 21. N. P. Padhy, Artificial Intelligence and Intelligent System, Sixth impression 2009, ISBN-0-19-567154-6, Oxford University Press, New Delhi 110001.
- 22. Harsh M Patel and M. H. Pandya "Application of Artificial Neural Network for Short Term Load Forecasting" International Journal Advance Engineering and Research Development (IJAERD) 2015 Vol: 2 Issue:4 April 2015

16

Thank You