A. DNA STRUCTURE

• DNA is made up of nucleotides.

- Four types of base: adenine (A), thymine (T), cytosine (C) and guanine (G).
- The bases can be classed as either purine or pyrimidine.
- You are **not** expected to **memorise** the **chemical structure** of each base.

• **Pyrimidine** bases have **one ring** and the letter 'Y' in their name – just like the word 'pYrimidine'.

The nucleotides connect as follows:

- There are **complementary base pairs** inside the molecule:
 - Adenine (A) pairs with thymine (T) with two hydrogen bonds
 - Guanine (G) pairs with cytosine (C) with three hydrogen bonds
- The two DNA strands are **antiparallel** they run in **opposite directions**.

C. SEMI-CONSERVATIVE DNA REPLICATION

Other models proposed that were incorrect

- Conservative replication new DNA molecules consist of two completely new strands;
 the two old template strands go back together
- Dispersive replication new DNA molecules consist of segments of old and new DNA

D. THE MESELSON-STAHL EXPERIMENT

- This proved that DNA replicates **semi-conservatively**.
- Nitrogen is needed to make DNA bases.
- They grew bacteria on medium containing ¹⁵N (heavy nitrogen isotope) for one generation.
- They then transferred these bacteria to medium containing ¹⁴N (light nitrogen isotope).
- They then **centrifuged** the **DNA** after **each** generation and viewed the **bands** produced.
- The heavier the DNA, the lower it will be in the tube.

The **position** of the **band(s)** at **each generation** is only possible if DNA replicates **semi-conservatively**

E. OTHER POSSIBLE MODELS FOR DNA REPLICATION

If DNA Replication Was Conservative

• The following bands would have been seen (and they were **not!**):

Note that the 15/15 DNA band would get thinner and the 14/14 DNA band would get thicker with each sample, as the proportion of 14/14 DNA would increase.

If DNA Replication Was Dispersive

• The following bands would have been seen (and they were **not**!):

F. HOW THE STRUCTURE OF DNA IS ADPAPTED TO ITS FUNCTION

Structure	Function
LARGE MOLECULE	Can store lots of information (bases/genes)
HELICAL/COILED	Compact so can store lots of DNA in a small space within a cell
COMPLEMENTARY BASE PAIRS (A-T AND G-C)	Ensures DNA replication is accurate
SUGAR-PHOSPHATE BACKBONE	 Provides strength and stability Protects the bases inside from damage
THREE BASES CODE FOR ONE SPECIFIC AMINO	Ensures that translation is accurate
ACID	 Ensures each protein has the correct sequence of amino acids
H-BONDS CONNECT THE BASES TOGETHER	 H-bonds are weak so DNA can be easily broken for replication and transcription
	 Collectively, <u>many</u> H-bonds provide strength and stability

G. CONTRASTING PROKARYOTIC DNA AND EUKARYOTIC DNA

Prokaryotic DNA	Eukaryotic DNA
Circular	Linear
One chromosome	Many chromosomes
Found in a nucleoid	Found in a nucleus
Not associated with histone proteins	Associated with histone proteins
Plasmids present	Plasmids absent
No introns, only exons	Introns and exons
One replication/initiation point	Many replication/initiation points

- Eukaryotic DNA is associated with proteins called histones, to make it more compact.
- Together, these form **chromatin** the substance from which **chromosomes** are **made**.

H. COMPARING AND CONTRASTING DNA AND RNA

DNA	RNA	
Contains deoxyribose	Contains ribose	
Contains thymine (T)	Contains uracil (U)	
Double stranded	Single stranded	
Both are polymers of nucleotides		
Both contain adenine (A), cytosine (C) and guanine (G) bases		

I. MODEL MAKING BY WATSON & CRICK

 They used cardboard shapes to represent the DNA bases and metal rods to represent bonds. Bond lengths were all to scale and bond angles were correct.

Why was this useful?

Other scientists had previously found that:

- DNA is helical (by X-ray diffraction) = Rosalind Franklin.
- The amounts of A and T are equal, and the amounts of C and G are equal = Erwin Chargaff.

Watson & Crick found that:

- DNA is a <u>double</u> helix.
- The two DNA strands must run antiparallel to each other, in opposite directions.
- A-T and G-C complementary base pairs could be formed with hydrogen bonds between them.
- The **base pairs** were the **same length**, so they **could fit** into a **molecule** between the two sugar-phosphate backbones.

Watson & Crick's approach:

- They **combined** what had been discovered about the **chemical content** of DNA and **X-ray diffraction** studies.
- They built scale models of the components of DNA
- They attempted to fit the components of DNA together in a way that agreed with all of the data