Definition 1. Escribiremos $C \vdash_{\mathcal{M}}^{n} C'$ si hay C_0, \ldots, C_{n+1} configuraciones de \mathcal{M} tales que:

$$C_0 = C$$

$$C_{n+1} = C'$$

$$C_i \vdash_{\mathcal{M}} C_{i+1} \text{ con } i = 0, \dots, n-1$$

Escribiremos $C \vdash_{\mathcal{M}}^* C'$ si hay $n \geq 0$ tal que $C \vdash_{\mathcal{M}}^n C'$ o C = C'. Notar que $\vdash_{\mathcal{M}}^*$ es la clausura transitiva y reflexiva de $\vdash_{\mathcal{M}}$.

La configuracion incial con entrada x de una maquina de Turing $\mathcal M$ con k cintas es:

$$C_{\operatorname{start}(\mathcal{M},x)} = (q_{\operatorname{start}}, (\triangleright, x), \underbrace{(\triangleright, \varepsilon), \dots, (\triangleright, \varepsilon)}_{k-1}))$$

Notar que las configuraciones son finitarias, se les podria agregar algunos \Box , al final de cada palabra y representarian el mismo estado, aunque no estaría en "forma canónica".

Definition 2. Diremos que \mathcal{M} de k cintas se detiene en (n pasos) a partir de x y devuelve y si

 $C_{\operatorname{start}(\mathcal{M},x)} \vdash_{\mathcal{M}}^{n} (q_{\operatorname{halt}}, (U_1, V_1), \dots, (U_k, V_k))$ para algunos $U_i, V_i \in \Gamma^*$ y $U_k V_k = y$ Notar que $U_1 V_1 = \triangleright x \square^*$.

Definition 3. Sean $f: \{0,1\}^* \to \{0,1\}^*$ y $T: \omega \to \mathbb{N}$, diremos que una maquina de Turing \mathcal{M} computa f en tiempo T si para todo $x \in \{0,1\}^*$,

$$x \to_{\mathcal{M}}^{T(|x|)} f(x),$$

si \mathcal{M} se detiene en T(|x|) pasos a partir de x y devuelve f(x).

Example 4. Dada \mathcal{M}_{Pal} (CITA a la clase pasada), la maquina de Turing que determina si su entrada es palindroma. Es claro que \mathcal{M}_{Pal} computa a $Pal: \{0,1\}^* \to \{0,1\}^*$ con

$$Pal(x) = \begin{cases} 1 & x = x^R \\ 0 & \text{si no} \end{cases}$$

en tiempo T, con T(|x|) = 3|x| + 4 ya que:

- Copia en |n|+1 pasos,
- rebobina en |n|+1 pasos,
- compara en |n|+1 pasos,
- imprime en 1 paso.

0.1 Comparando funciones

Compararemos las funciones por su comportamiento asintotico.

Definition 5. Sean $f, g : \omega \to \omega$ escribiremos: $f = \mathcal{O}(g)$ si hay c > 0 y $n \in \omega$ tal que $f(m) < c.g(m), \forall m : m > n$.

Notar que esta notacion es transitiva pero no conmutativa (en algunos contextos, se ve la notacion quiza mas natural $f \in \mathcal{O}(g)$).

Si
$$f = \mathcal{O}(g)$$
 y $g = \mathcal{O}(f)$, se escribe $f = \Theta(g)$.

Definition 6. Sean
$$f, g : \omega \to \omega$$
 escribiremos: $f = o(g)$ si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

0.2 Codificaciones

Codificacion de palabras

Dado un alfabeto finito Γ , es claro que podemos asignar a cada uno de sus elementos un numero a traves de una funcion inyectiva $f:\Gamma\to\omega$ y codificarlo en binario en un string de tamaño fijo para todo $s\in\Gamma$. Dado $s\in\Gamma$, utilizaremos |s| para su codificacion en binario, notar que $||s||=\lceil\log_2|\Gamma|\rceil$.

Codificacion de tuplas

Dado una k-upla ($\lfloor x_1 \rfloor, \ldots, \lfloor x_k \rfloor$), escribiremos $\langle \lfloor x_1 \rfloor, \ldots, \lfloor x_k \rfloor \rangle$ para el string binario que codifica a ($\lfloor x_1 \rfloor, \ldots, \lfloor x_k \rfloor$), repitiendo 2 veces los bits de cada $\lfloor x_i \rfloor$ y utilizando 01 como separador en vez de la coma.

Example 7. Dado
$$\Gamma = \{\Omega, \underline{\sim}, \mathbb{M}\}$$
, tomamos $f(s) = \begin{cases} \Omega & 0 \\ \underline{\sim} & 1$, luego $\lfloor s \rfloor = \mathbb{M} & 2 \end{cases}$

$$\begin{cases} \Omega & 00 \\ \underline{\quad} & 01, \text{ luego } \langle \lfloor \Omega \mathcal{M} \rfloor, \lfloor \underline{\quad} \rfloor \rangle = \langle 0011, 01 \rangle = 00001111010011. \\ \mathcal{M} & 11 \end{cases}$$