MC102 - Algoritmos e Programação de Computadores

Turmas QRSTWY

Instituto de Computação - Unicamp Professores: Hélio Pedrini e Zanoni Dias

Monitores: Andre Rodrigues Oliveira, Gustavo Rodrigues Galvão, Javier Alvaro Vargas Muñoz e

Thierry Pinheiro Moreira

Lab 15a - Walk-Bot - Part II

Prazo de entrega: 29/06/2015 às 13h59m59s

Peso: 10

Os *feedbacks* da primeira versão do Walk-Bot não foram muito positivos. Os usuários gostaram da premissa do jogo, porém acharam que havia pouca interação: a única escolha que poderia ser feita era a casa inicial do Walk-Bot. Pensando nisso, a empresa LastLife desenvolveu uma segunda versão do jogo.

Nesta nova versão, o Walk-Bot deve andar por um tabuleiro tal que, em cada casa, há um conjunto de instruções possíveis. Desse modo, cabe ao jogador escolher qual deve ser a instrução executada caso haja mais do que uma. A ideia básica do jogo continua a mesma: o Walk-Bot deve atravessar o tabuleiro, isto é, começar em uma das casas localizadas na coluna mais à esquerda do tabuleiro e terminar em uma das casas localizadas na coluna mais à direita do tabuleiro, na qual deve existir uma instrução, dentre as possíveis, para ele ir à direita. A casa inicial continua sendo escolhida pelo jogador.

O desafio do jogo permanece praticamente o mesmo: o jogador deve realizar as escolhas (tanto da casa inicial quanto nas demais casas) que levem o Walk-Bot a atravessar o tabuleiro com o menor número de passos. Isso porque, a cada passo, o robô perde uma unidade de energia, que é parcialmente carregada a cada mudança de fase (ou tabuleiro). Desse modo, se o caminho de travessia for muito longo, a energia do Walk-Bot acaba e ele morre. Além disso, conforme as fases vão avançando, maiores são os tabuleiros e, portanto, mais energia é necessária para atravessá-los.

Para entender melhor como a nova versão do jogo funciona, considere que o Walk-Bot deve atravessar o tabuleiro (5x5) ilustrado abaixo. As setas preenchidas com a cor preta indicam as instruções (direções) possíveis de serem executadas naquela casa.

Dado que uma casa localizada na linha i e na coluna j pode ser identificada pelo par (i,j) e que a casa mais acima e mais à esquerda do tabuleiro é a casa (1,1), nós podemos traçar os seguintes *caminhos mínimos* para o Walk-Bot no tabuleiro ilustrado acima:

```
• (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,5) \rightarrow (2,5) \rightarrow (3,5)
```

- $(2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (2,4) \rightarrow (3,4) \rightarrow (3,5)$
- $(3,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (2,4) \rightarrow (3,4) \rightarrow (3,5)$
- $(4,1) \rightarrow (3,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (2,4) \rightarrow (3,4) \rightarrow (3,5)$

Note que não foi listado nenhum caminho começando da casa (5,1). Isso se deve ao fato de que não é possível atravessar o tabuleiro começando desta casa. Além disso, suponha que a energia inicial do Walk-Bot é 6. Dado que o Walk-Bot perde uma unidade de energia a cada passo dado, o único caminho de travessia possível é o caminho iniciado na casa (2,1), no qual o Walk-Bot dá 5 passos e termina com uma unidade de energia. Nos demais caminhos, sua energia é zerada e, portanto, ele morre.

Tenha em mente que este foi apenas um exemplo. Podem existir tabuleiros em que há mais de um caminho que leve o Walk-Bot a atravessar o tabuleiro com vida. Além disso, você pode considerar que o Walk-Bot só consegue sair do tabuleiro pelas casas localizadas na coluna mais à direita. Em outras palavras, as casas localizadas na primeira linha (*i.e.* na linha mais acima) nunca terão uma instrução para o Walk-Bot ir para cima, as casas localizadas na última linha (*i.e.* na linha mais abaixo) nunca terão uma instrução para o Walk-Bot ir para baixo e, finalmente, as casas localizadas na primeira coluna (*i.e.* na coluna mais à esquerda) nunca terão uma instrução para o Walk-Bot ir para esquerda.

Você foi novamente um dos usuários selecionados para testar o jogo e dar um *feedback* para a LastLife. A fim de dar um bom *feedback*, você decidiu escrever um programa que, dado um tabuleiro, faz um relatório de quais são as casas iniciais que levam o Walk-Bot a atravessar o tabuleiro com vida. Com esse relatório, é possível classificar a dificuldade de cada tabuleiro.

Entrada

A entrada é constituída de várias linhas, tal que:

- A primeira linha da entrada contém 3 números inteiros N, M e E, onde:
 - ∘ N representa o número de linhas do tabuleiro, com 5 ≤ N ≤ 20;
 - o M representa o número de colunas do tabuleiro, com 5 ≤ M ≤ 20;
 - ∘ E representa a quantidade de energia inicial do Walk-Bot, com 5 ≤ E ≤ 100.
- As próximas N linhas contêm M números inteiros cada, pertencentes ao intervalo [0,15]. Cada número representa um conjunto de instruções possíveis de serem executadas na casa correspondente, tal como ilustrado nas tabelas abaixo. Note que cada número corresponde à representação decimal de um número binário com 4 bits B₁B₂B₃B₄, tal que B₁ indica se é possível ir para cima, B₂ indica se é possível ir para a direita, B₃ indica se é possível ir para baixo e B₄ indica se é possível ir para esquerda. Uma armadilha corresponde ao caso em que não é possível ir para nenhuma direção.

Casa	Binário	Decimal	Casa	Binário	Decimal	Casa	Binário	Decimal
18	0000	0	€	0100	4		1000	8
(0001	1	←→	0101	5	←	1001	9
	0010	2	→	0110	6		1010	10
←	0011	3	← →	0111	7	←	1011	11
			Casa	Binário	Decimal			
			1 .	I				

Casa	Binário	Decimal
*	1100	12
← →	1101	13
₹	1110	14
← →	1111	15

Saída

A saída deve ser constituída de N linhas, de tal modo que a linha i deverá ter o formato "Sim" caso exista um caminho começando na casa (i,1) que leve o Walk-Bot a atravessar o tabuleiro com vida e deverá ter o formato "Nao" caso contrário (com i variando de 1 a N).

Exemplos

#	Entrada	Saída
1	5 5 6	Nao
	6 7 7 7 3	Sim
	14 4 5 10 2	Nao
	14 0 3 15 14	Nao
	14 14 13 1 11	Nao
	4 12 8 0 9	
2	5 7 32	Nao
	2 4 2 4 2 4 2	Nao
	2828282	Nao
	2828282	Sim
	2828282	Sim
	4848484	
3	5 10 10	Nao
	6 7 7 7 7 7 7 7 3	Nao
	14 15 15 15 15 15 15 15 11	Nao
	14 15 15 15 15 15 15 15 11	Nao
	12 13 13 13 13 13 13 13 0	Sim
	12 13 13 13 13 13 13 13 13	

,		
4	9 8 100	Nao
	4 4 4 4 4 4 2	Nao
	2 1 1 1 1 1 1 1	Nao
	4 4 4 4 4 4 2	Sim
	4 4 4 2 0 1 1 1	Nao
	4 4 2 4 4 4 4 2	Nao
	4 4 4 4 4 2 2	Nao
	8 1 1 1 1 1 2	Nao
	4 4 4 4 4 8 4	Nao
	4 4 4 4 4 4 0	
5	10 10 22	Sim
	6 7 7 0 7 0 7 7 7 0	Sim
	14 0 15 0 15 15 15 0 15 11	Sim
	14 0 15 0 15 0 15 0 15 11	Nao
	14 0 15 15 15 0 15 0 15 9	Nao
	14 0 15 0 15 0 15 0 15 15	Nao
	14 0 15 0 15 0 15 0 15 15	Nao
	14 0 15 15 15 0 15 0 15 3	Sim
	14 0 15 0 15 0 15 0 15 11	Sim
	14 0 15 0 15 15 15 0 15 11	Sim
	12 13 13 0 13 0 13 13 13 0	