Combinatorics of exclusion processes with open boundaries

Sylvie Corteel (CNRS Paris 7)

Koornwinder moments and the two species ASEP

Sylvie Corteel (CNRS Paris 7)

Lauren Williams (Berkeley)

Triangular staircase tableaux

Sylvie Corteel, Olya Mandelshtam (Berkeley) and Lauren Williams (Berkeley)

$$\tau \in \{\circ, \bullet\}^N$$

B(au) number of trees of canopy au

M(au) number of paths of shape au

$$\tau \in \{\circ, \bullet\}^N$$

M(au) number of paths of shape au

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

M(au) number of paths of shape au

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

M(au) number of paths of shape au

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

$$\tau \in \{\circ, \bullet\}^N$$

M(au) number of paths of shape au

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

$$\tau \in \{\circ, \bullet\}^N$$

M(au) number of paths of shape au

C(au) number of tableaux of shape au

 $B(\tau)/C_{n+1}$ is the probability to be in state τ of the TASEP with open boundaries and N sites

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

$$\tau \in \{\circ, \bullet\}^N$$

 $M(\tau)$ number of paths of shape τ

C(au) number of tableaux of shape au

 $B(\tau)/C_{n+1}$ is the probability to be in state τ of the TASEP with open boundaries and N sites

$$B(\tau) = M(\tau) = C(\tau)$$

$$\sum_{\tau} C(\tau) = C_{n+1}$$
 Catalan numbers

Matrix Ansatz [Derrida et al 93]

Matrices D and E, and vectors $\langle W |$ and $|V \rangle$

$$\bullet \ \langle W|E = \langle W|$$

$$\bullet$$
 $D|V\rangle = |V\rangle$

$$\bullet$$
 $DE = D + E$

$$Z_N = \langle W | (D+E)^N | V \rangle.$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

$$P(\tau) = \frac{\langle W | \prod_{i=1}^N [\tau_i D + (1 - \tau_i) E] | V \rangle}{Z_N}.$$

Matrix Ansatz [Derrida et al 93]

Matrices D and E, and vectors $\langle W |$ and $|V \rangle$

$$\bullet \ \langle W|E = \langle W|$$

$$\bullet$$
 $D|V\rangle = |V\rangle$

$$\bullet$$
 $DE = D + E$

$$Z_N = \langle W | (D+E)^N | V \rangle.$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

$$P(\tau) = \frac{\langle W | \prod_{i=1}^N [\tau_i D + (1 - \tau_i) E] | V \rangle}{Z_N}.$$

Solution:
$$\langle W | = (1, 0, \ldots), | V \rangle = (1, 0, \ldots)^T$$

$$D = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & & & \vdots \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ \vdots & & & \vdots \end{pmatrix}$$

Motzkin paths [Zeilberger, Duchi and Schaeffer, Brak and Essam]

Matrix Ansatz [Derrida et al 93]

Matrices D and E, and vectors $\langle W |$ and $|V \rangle$

$$\bullet \ \langle W|E = \langle W|$$

$$\bullet$$
 $D|V\rangle = |V\rangle$

$$\bullet$$
 $DE = D + E$

$$Z_N = \langle W | (D+E)^N | V \rangle.$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

Steady state
$$\tau \in \{\circ, \bullet\} = \{0, 1\}^N$$

$$P(\tau) = \frac{\langle W | \prod_{i=1}^N [\tau_i D + (1 - \tau_i) E] | V \rangle}{Z_N}.$$

Solution:
$$\langle W|=(1,0,\ldots),\ |V\rangle=(1,1,\ldots)^T$$

$$D = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & & & \vdots \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 1 & 1 & 0 & 0 & \dots \\ 1 & 1 & 1 & 0 & \dots \\ 1 & 1 & 1 & 1 & \dots \\ \vdots & & & \vdots \end{pmatrix}$$

Lukasiewicz paths, Catalan tableaux

Matrix Ansatz

- $\langle W | (\alpha E \gamma D) = \langle W |$
- $\bullet \ (\beta D \delta E)|V\rangle = |V\rangle$
- $\bullet \ DE = qED + D + E$

Matrix Ansatz

•
$$\langle W | (\alpha E - \gamma D) = \langle W |$$

$$\bullet \ (\beta D - \delta E)|V\rangle = |V\rangle$$

$$\bullet \ DE = qED + D + E$$

$$\gamma = \delta = 0$$

- Trees ⇒ tree like tableaux
- Paths ⇒ moments of AlSalam-Chihara Polynomials
- Tableaux ⇒ Permutation tableaux, Alternative tableaux

Matrix Ansatz

- $\langle W | (\alpha E \gamma D) = \langle W |$
- $(\beta D \delta E)|V\rangle = |V\rangle$
- $\bullet DE = qED + D + E$

$$\gamma = \delta = 0$$

- Trees ⇒ tree like tableaux
- Paths ⇒ moments of AlSalam-Chihara Polynomials
- Tableaux ⇒ Permutation tableaux, Alternative tableaux

[Aval, Boussicault, C. Josuat-Vergès, Nadeau, Viennot, Williams...

General model

- Moments of Askey Wilson polynomials [Uchiyama, Sasamoto, Wadati 04]
- Staircase tableaux [C., Williams 10]

Askey Wilson polynomials

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

$$b_n = 1/2(a + 1/a - A_n - C_n) \qquad \lambda_n = A_{n-1}C_n/4$$

$$A_n = \frac{(1 - abq^n)(1 - acq^n)(1 - adq^n)(1 - abcdq^{n-1})}{a(1 - abcdq^{2n})(1 - abcdq^{2n-1})}$$

symmetric in
$$a, b, c, d$$

$$C_n = \frac{(1 - abq^{n-1})(1 - bcq^{n-1})(1 - bdq^{n-1})(1 - q^n)}{a(1 - abcdq^{2n-2})(1 - abcdq^{2n-1})}$$

Askey Wilson polynomials

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

$$b_n = 1/2(a + 1/a - A_n - C_n) \qquad \lambda_n = A_{n-1}C_n/4$$

$$A_n = \frac{(1 - abq^n)(1 - acq^n)(1 - adq^n)(1 - abcdq^{n-1})}{a(1 - abcdq^{2n})(1 - abcdq^{2n-1})}$$

symmetric in
$$a, b, c, d$$

$$C_n = \frac{(1-abq^{n-1})(1-bcq^{n-1})(1-bdq^{n-1})(1-q^n)}{a(1-abcdq^{2n-2})(1-abcdq^{2n-1})}$$

orthogonal

$$\oint_C \frac{dz}{4\pi iz} w \left(\frac{z+z^{-1}}{2}\right) P_m \left(\frac{z+z^{-1}}{2}\right) P_n \left(\frac{z+z^{-1}}{2}\right) = h_n \delta_{mn},$$

$$w(x) = \frac{(z^2, z^{-2}; q)_{\infty}}{(az, a/z, bz, b/z, cz, c/z, dz, d/z; q)_{\infty}}, \ x = (z+z^{-1})/2$$

$$h_n = \frac{(1-q^{n-1}abcd)(q, ab, ac, ad, bc, bd, cd; q)_n}{(1-q^{2n-1}abcd)(abcd; q)_n}$$

Askey Wilson polynomials

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

$$b_n = 1/2(a + 1/a - A_n - C_n) \qquad \lambda_n = A_{n-1}C_n/4$$

$$A_n = \frac{(1-abq^n)(1-acq^n)(1-adq^n)(1-abcdq^{n-1})}{a(1-abcdq^{2n})(1-abcdq^{2n-1})}$$

symmetric in
$$a, b, c, d$$

$$C_n = \frac{(1 - abq^{n-1})(1 - bcq^{n-1})(1 - bdq^{n-1})(1 - q^n)}{a(1 - abcdq^{2n-2})(1 - abcdq^{2n-1})}$$

orthogonal

$$\oint_C \frac{dz}{4\pi iz} w \left(\frac{z+z^{-1}}{2}\right) P_m \left(\frac{z+z^{-1}}{2}\right) P_n \left(\frac{z+z^{-1}}{2}\right) = h_n \delta_{mn},$$

$$w(x) = \frac{(z^2, z^{-2}; q)_{\infty}}{(az, a/z, bz, b/z, cz, c/z, dz, d/z; q)_{\infty}}, \ x = (z+z^{-1})/2$$

$$h_n = \frac{(1-q^{n-1}abcd)(q, ab, ac, ad, bc, bd, cd; q)_n}{(1-q^{2n-1}abcd)(abcd; q)_n}$$

$$\mu_N^{AW} = \oint_C \frac{dz}{4\pi i z} w\left(\frac{z+z^{-1}}{2}\right) \left(\frac{z+z^{-1}}{2}\right)^N$$

Combinatorics of moments

[Flajolet, Viennot 80s]

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

Combinatorics of moments

[Flajolet, Viennot 80s]

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

Combinatorics of moments

[Flajolet, Viennot 80s]

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x)$$

$$b_1 \qquad b_1 \qquad b_1 \qquad b_1 \qquad (N,r)$$

$$(0,0) \qquad (0,r)$$

$$\mu_{N,r} = \oint_C \frac{dz}{4\pi i z} w\left(\frac{z+z^{-1}}{2}\right) P_r\left(\frac{z+z^{-1}}{2}\right) \left(\frac{z+z^{-1}}{2}\right)^N$$

Solution of the 5 parameter model [USW 04]

$$\mathsf{d} = \begin{pmatrix} d_0^{\natural} & d_0^{\sharp} & 0 & \cdots \\ d_0^{\flat} & d_1^{\natural} & d_1^{\sharp} & \\ 0 & d_1^{\flat} & d_2^{\natural} & \ddots \\ \vdots & \ddots & \ddots \end{pmatrix}$$

$$d_n^{\flat} = -\frac{q^n b d}{(1 - q^n a c)(1 - q^n b d)} \lambda_n \qquad e_n^{\flat} = \frac{1}{(1 - q^n a c)(1 - q^n b d)} \lambda_n \qquad d_n^{\sharp} = 1 \ e_n^{\sharp} = -q^n a c$$

$$\langle W | = (1, 0, \dots), \ | V \rangle = (1, 0, \dots)^T$$

Solution of the 5 parameter model [USW 04]

$$\mathsf{d} = \begin{pmatrix} d_0^\natural & d_0^\sharp & 0 & \cdots \\ d_0^\flat & d_1^\sharp & d_1^\sharp & \cdots \\ 0 & d_1^\flat & d_2^\sharp & \cdots \\ \vdots & \ddots & \ddots \end{pmatrix}$$

$$d_n^\natural + e_n^\natural = b_n$$

$$d_n^{\natural} + e_n^{\natural} = b_n$$

$$d_n^\flat = -\frac{q^n b d}{(1-q^n a c)(1-q^n b d)} \lambda_n \qquad e_n^\flat = \frac{1}{(1-q^n a c)(1-q^n b d)} \lambda_n \qquad d_n^\sharp = 1 \ e_n^\sharp = -q^n a c$$

$$\langle W| = (1,0,\ldots), \ |V\rangle = (1,0,\ldots)^T$$

$$\mu_N^{\mathrm{AW}} = \langle W| (\mathsf{d} + \mathsf{e})^N |V\rangle$$

Solution of the 5 parameter model [USW 04]

$$\mathsf{d} = \begin{pmatrix} d_0^{\natural} & d_0^{\sharp} & 0 & \cdots \\ d_0^{\flat} & d_1^{\natural} & d_1^{\sharp} & \\ 0 & d_1^{\flat} & d_2^{\natural} & \ddots \\ \vdots & \ddots & \ddots \end{pmatrix}$$

$$d_n^{\natural} + e_n^{\natural} = b_n$$

$$d_n^{\flat} = -\frac{q^n b d}{(1 - q^n a c)(1 - q^n b d)} \lambda_n \qquad e_n^{\flat} = \frac{1}{(1 - q^n a c)(1 - q^n b d)} \lambda_n \qquad d_n^{\sharp} = 1 \ e_n^{\sharp} = -q^n a c$$

$$\langle W | = (1, 0, \dots), \ | V \rangle = (1, 0, \dots)^T$$

$$\mu_N^{\mathrm{AW}} = \langle W | (\mathsf{d} + \mathsf{e})^N | V \rangle$$

$$a = \frac{1 - q - \alpha + \gamma + \sqrt{(1 - q - \alpha + \gamma)^2 + 4\alpha\gamma}}{2\alpha} \ b = \frac{1 - q - \beta + \delta + \sqrt{(1 - q - \beta + \delta)^2 + 4\beta\delta}}{2\beta}$$

$$D = \frac{1 + \mathsf{d}}{1 - q}, \ E = \frac{1 + \mathsf{e}}{1 - q}$$

$$Z_N = \langle W | (D + E)^N | V \rangle$$

Koorwinder polynomials

Multivariate version of the AW polynomials $P_{\lambda}(z_1,\ldots,z_m;a,b,c,d|q,t)$

at
$$q = t$$

$$P_{\lambda}(\mathbf{z}; a, b, c, d|q, q) = \text{const} \cdot \frac{\det(p_{m-j+\lambda_j}(z_i; a, b, c, d|q))_{i,j=1}^m}{\det(p_{m-j}(z_i; a, b, c, d|q))_{i,j=1}^m}$$

Density

$$\prod_{1 \le i < j \le m} (1 - z_i z_j) (1 - z_i / z_j) (1 - z_j / z_i) (1 - 1 / z_i z_j) \prod_{1 \le i \le m} w \left(\frac{z_i + z_i^{-1}}{2} \right)$$

Koorwinder polynomials

Multivariate version of the AW polynomials $P_{\lambda}(z_1,\ldots,z_m;a,b,c,d|q,t)$

at
$$q=t$$

$$P_{\lambda}(\mathbf{z};a,b,c,d|q,q) = \mathrm{const} \cdot \frac{\det(p_{m-j+\lambda_j}(z_i;a,b,c,d|q))_{i,j=1}^m}{\det(p_{m-j}(z_i;a,b,c,d|q))_{i,j=1}^m}$$

Density

$$\prod_{1 \le i < j \le m} (1 - z_i z_j) (1 - z_i / z_j) (1 - z_j / z_i) (1 - 1 / z_i z_j) \prod_{1 \le i \le m} w \left(\frac{z_i + z_i^{-1}}{2}\right)$$
AW-density

Possible definition of moments

$$M_{\lambda} = I_k(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q).$$

Koorwinder polynomials

Multivariate version of the AW polynomials $P_{\lambda}(z_1,\ldots,z_m;a,b,c,d|q,t)$

at
$$q=t$$

$$P_{\lambda}(\mathbf{z};a,b,c,d|q,q)=\mathrm{const}\cdot\frac{\det(p_{m-j+\lambda_j}(z_i;a,b,c,d|q))_{i,j=1}^m}{\det(p_{m-j}(z_i;a,b,c,d|q))_{i,j=1}^m}$$

Density

$$\prod_{1 \le i < j \le m} (1 - z_i z_j) (1 - z_i / z_j) (1 - z_j / z_i) (1 - 1 / z_i z_j) \prod_{1 \le i \le m} w \left(\frac{z_i + z_i^{-1}}{2}\right)$$
AW-density

Possible definition of moments

$$M_{\lambda} = I_k(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q).$$

Schur functions

Integrate with respect to the Koorwinder density

Koorwinder polynomials

Multivariate version of the AW polynomials $P_{\lambda}(z_1,\ldots,z_m;a,b,c,d|q,t)$

at
$$q=t$$

$$P_{\lambda}(\mathbf{z};a,b,c,d|q,q) = \mathrm{const} \cdot \frac{\det(p_{m-j+\lambda_j}(z_i;a,b,c,d|q))_{i,j=1}^m}{\det(p_{m-j}(z_i;a,b,c,d|q))_{i,j=1}^m}$$

Density

$$\prod_{1 \le i < j \le m} (1 - z_i z_j) (1 - z_i / z_j) (1 - z_j / z_i) (1 - 1 / z_i z_j) \prod_{1 \le i \le m} w \left(\frac{z_i + z_i^{-1}}{2}\right)$$
AW-density

Possible definition of moments

$$M_{\lambda} = I_k(s_{\lambda}(x_1,\ldots,x_m);a,b,c,d;q,q).$$

Lemma

$$M_{\lambda} = \frac{\det(\mu_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(\mu_{2m - i - j})_{i,j=1}^m}$$

$$M_{\lambda} = \frac{\det(\mu_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(\mu_{2m - i - j})_{i,j=1}^m}$$

Path interpretation

$$\prod_{i=1}^{m} \lambda_i^{m-i}$$

$$M_{\lambda} = \frac{\det(\mu_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(\mu_{2m - i - j})_{i,j=1}^m}$$

Path interpretation

$$\prod_{i=1}^{m} \lambda_i^{m-i}$$

$$M_{\lambda} = \frac{\det(\mu_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(\mu_{2m - i - j})_{i,j=1}^m}$$

Path interpretation

$$\prod_{i=1}^{m} \lambda_i^{m-i}$$

$$M_{\lambda} = \frac{\det(\mu_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(\mu_{2m - i - j})_{i,j=1}^m}$$

Path interpretation

$$\prod_{i=1}^{m} \lambda_i^{m-i}$$

$$M_{\lambda} = \det(\mu_{\lambda_i + n - i + m - j, j})$$

More Koornwinder moments

$$\lambda_1 \ge \ldots \ge \lambda_m \ge 0$$

$$K_{\lambda} = \frac{\det(Z_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(Z_{2m - i - j})_{i,j=1}^m}$$

$$K_{\lambda} = \det(K_{(\lambda_i+j-i,0,0,...,0)})_{i,j=1}^n$$

Conjecture [C., Rains, Williams 14]

The Koornwinder moment K_{λ} is a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients (up to a normalizing factor).

More Koornwinder moments

$$\lambda_1 \ge \ldots \ge \lambda_m \ge 0$$

$$K_{\lambda} = \frac{\det(Z_{\lambda_i + m - i + m - j})_{i,j=1}^m}{\det(Z_{2m - i - j})_{i,j=1}^m}$$

$$K_{\lambda} = \det(K_{(\lambda_i+j-i,0,0,...,0)})_{i,j=1}^n$$

Conjecture [C., Rains, Williams 14]

The Koornwinder moment K_{λ} is a polynomial in $\alpha, \beta, \gamma, \delta, q$ with positive coefficients (up to a normalizing factor).

True for
$$\lambda = (N - r, \underbrace{0, \dots, 0}_r)$$

Theorem [C., Williams 15; Cantini 15] $K_{(N-r.0,...,0)}$ Partition function of the two species ASEP

N sites

r particles equal to imes

$$\bullet \circ \xrightarrow{q} \circ \bullet$$

$$\bullet \times \xrightarrow{q} \times \bullet$$

$$\times \circ \xrightarrow{q} \circ \times$$

$$\star \circ \xrightarrow{q} \circ \times$$

N sites

r particles equal to \times

Matrix Ansatz [Uchiyama 08]

- $\langle W | (\alpha E \gamma D) = \langle W |$
- $(\beta D \delta E)|V\rangle = |V\rangle$
- $\bullet DE qED = D + E$
- $\bullet DA = qAD + A$
- $\bullet AE = qEA + A.$

Partition function

$$Z_{N,r} = [y^r] \frac{\langle W | (D+E+yA)^N | V \rangle}{\langle W | A^r | V \rangle}$$

$$Z_{N,r} = [y^r] \frac{\langle W|(D+E+yA)^N|V\rangle}{\langle W|A^r|V\rangle}.$$

$$K_{(N-r,0,...,0)} = \langle W | (D+E)^N | V^r \rangle$$
 $|V^r\rangle = (0,...,0,1,0,...)^T$

$$K_{(N-r,0...,0)} = \mu_{N,r} = \oint_C \frac{dz}{4\pi iz} w\left(\frac{z+z^{-1}}{2}\right) P_r\left(\frac{z+z^{-1}}{2}\right) \left(\frac{z+z^{-1}}{2}\right)^N$$

Theorem.
$$Z_{N,r} = \frac{\alpha^r (1-q)^r}{\alpha + q^i \gamma} \times K_{(n-r,0,\dots,0)}$$

Lemma. The theorem is true if $\langle W|D^N|V^r\rangle \alpha^r (1-q)^r = [y^r] \frac{\langle W|(D+yA)^N|V\rangle}{\langle W|A^r|V\rangle}$.

Lemma. The theorem is true if $\langle W|D^N|V^r\rangle \alpha^r (1-q)^r = [y^r] \frac{\langle W|(D+yA)^N|V\rangle}{\langle W|A^r|V\rangle}$.

Proof. Matrix Ansatz

Lemma. The theorem is true if $\langle W|D^N|V^r\rangle \alpha^r (1-q)^r = [y^r] \frac{\langle W|(D+yA)^N|V\rangle}{\langle W|A^r|V\rangle}$.

Proof. Matrix Ansatz

$$D = (1+\mathsf{d})/(1-q)$$

Lemma. The theorem is true if $\langle W|\mathrm{d}^N|V^r\rangle=\left[\begin{array}{c}N\\r\end{array}\right]_q\frac{\langle W|A^r\mathrm{d}^{N-r}|V\rangle}{\langle W|A^r|V\rangle}.$

Proof. Matrix Ansatz

Lemma. The theorem is true if $\langle W|D^N|V^r\rangle \alpha^r (1-q)^r = [y^r] \frac{\langle W|(D+yA)^N|V\rangle}{\langle W|A^r|V\rangle}$.

Proof. Matrix Ansatz

$$D = (1+\mathsf{d})/(1-q)$$

Lemma. The theorem is true if $\langle W|\mathrm{d}^N|V^r\rangle=\left[\begin{array}{c}N\\r\end{array}\right]_q\frac{\langle W|A^r\mathrm{d}^{N-r}|V\rangle}{\langle W|A^r|V\rangle}.$

Proof. Matrix Ansatz

"Guess and check"

$$\frac{\langle W|A^r\mathsf{d}^{N-r}|V\rangle}{\langle W|A^r|V\rangle} = \frac{\sum_{i=0}^{N-r}(-1)^i \left[\begin{array}{c} N-r\\ i \end{array}\right]_q^{\binom{i}{2}}(bdq^r)^iB_{N-r-i}(b,d,q)B_i(a,c,1/q)}{\prod_{i=0}^{N-r-1}(1-abcdq^{2r+i})}$$

$$B_m(b,d,q) = \left(\sum_{j=0}^m \begin{bmatrix} m \\ j \end{bmatrix}_q b^j d^{m-j}\right)$$

Enumeration formula

Theorem. [Stanton 15]

$$Z_{N,r} = \sum_{k=0}^{N} \sum_{j=0}^{k} F_{k,r} q^{k} \frac{q^{-j^{2}} a^{-2j}}{(q,q^{1-2j}/a^{2};q)_{j} (q,a^{2}q^{1+2j};q)_{k-j}} (1 + aq^{j} + 1/(aq^{j}))^{N}/2^{N}$$

$$F_{k,r} = (-a)^r \begin{bmatrix} k \\ r \end{bmatrix}_q \frac{(abq^r, acq^r, adq^r, q)_{k-r}}{(abcdq^{2r}, q)_{k-r}} \frac{(q;q)_r}{(abcd;q)_{2r}} (ab, ac, ad, bc, bd, cd; q)_r q^{\binom{r}{2}}$$

$$a=\frac{1-q-\alpha+\gamma+\sqrt{(1-q-\alpha+\gamma)^2+4\alpha\gamma}}{2\alpha}\text{, }b=\frac{1-q-\beta+\delta+\sqrt{(1-q-\beta+\delta)^2+4\beta\delta}}{2\beta}$$

Enumeration formula

Theorem. [Stanton 15]

$$Z_{N,r} = \sum_{k=0}^{N} \sum_{j=0}^{k} F_{k,r} q^{k} \frac{q^{-j^{2}} a^{-2j}}{(q,q^{1-2j}/a^{2};q)_{j}(q,a^{2}q^{1+2j};q)_{k-j}} (1 + aq^{j} + 1/(aq^{j}))^{N}/2^{N}$$

$$F_{k,r} = (-a)^r \begin{bmatrix} k \\ r \end{bmatrix}_q \frac{(abq^r, acq^r, adq^r, q)_{k-r}}{(abcdq^{2r}, q)_{k-r}} \frac{(q;q)_r}{(abcd;q)_{2r}} (ab, ac, ad, bc, bd, cd; q)_r q^{\binom{r}{2}}$$

$$a = \frac{1 - q - \alpha + \gamma + \sqrt{(1 - q - \alpha + \gamma)^2 + 4\alpha\gamma}}{2\alpha}, b = \frac{1 - q - \beta + \delta + \sqrt{(1 - q - \beta + \delta)^2 + 4\beta\delta}}{2\beta}$$

Remark. $Z_{N,r}$ is a polynomial with positive coefficients in $\alpha, \beta, \gamma, \delta$ and q with $4^{N-r}(n-r)!\binom{n}{r}^2$ terms

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

$$q = 0$$
 [Mandelshtam 14]

$$\gamma = \delta = 0$$

 $\gamma = \delta = 0$ [Viennot, Mandelshtam 2015]

For t and t' tilings, $Z(\tau,t) = Z(\tau,t')$

q = 0 [Mandelshtam 14]

$$\gamma = \delta = 0$$

$$\binom{N}{r} \frac{(N+1)!}{(r+1)!}$$
 tableaux

$$\alpha \text{ or } \gamma$$

$$x = uq, \beta u \text{ or } \delta q$$

$$\alpha = uq, \beta u \text{ or } \delta q$$

$$\alpha = uq, \beta u \text{ or } \delta q$$

Staircase tableaux [C., Williams 09]

Staircase tableaux [C., Williams 09]

Type

$$Z_n(\alpha, \beta, \gamma, \delta, 1, 1) = \binom{n}{r} \prod_{i=r}^{n-1} ((\alpha + \gamma)(\beta + \delta)i + \alpha + \beta + \gamma + \delta)$$

$$4^{n-r}(n-r)!\binom{n}{r}^2$$
 tableaux

Bijective proof?

More to do?

X Links with Affine Hecke algebras?

X How to prove the general conjecture?

Conj. K_{λ} is a polynomial in $\alpha, \beta, \gamma, \delta, q$ with non-negative coefficients

More to do?

X Links with Affine Hecke algebras?

X How to prove the general conjecture?

Conj. K_{λ} is a polynomial in $\alpha, \beta, \gamma, \delta, q$ with non-negative coefficients

Thanks!

Thanks!

Thanks!