

Examination

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER V [Information Technology]

SUBJECT: (IT-505) Computer And Communication Network : Second Sessional Seat No.

: 04/09/2013 :Wednesday Date Day

: 11:15 to 12:30 Time Max. Marks

INSTRUCTIONS:

Figures to the right indicate maximum marks for that question.

(R2)

Q.3(b) Explain link state routing protocol in detail.

- The symbols used carry their usual meanings.
- Assume suitable data, if required & mention them clearly.

3.	Assume sunable data, if required & mention them clearly.	
4.	Draw neat sketches wherever necessary.	
	.1 Do as directed.	[12]
	A Compare and contrast link-state and distance-vector routing algorithms.	[2]
	B A class C address has the following subnet mask 255.255.255.192. Which of the following are valid IP	[2]
	addresses under this network?(I)192.25.64.68(II)192.43.75.128(III)194.65.73.64(IV)194.75.74.131	
	C How to achieve good quality of service?	[2]
	D Which protocol is used to find internet errors? Which message it sends if congestion occurs?	[2]
	E What is multicasting? Give one example of multicast IP address.	[1]
	F What is the purpose of record route field in IPv4 header?	[1]
	G What is the difference between routing and forwarding?	[1]
	H Give the difference between congestion control and flow control.	[1]
Ç	2.2 Attempt Any TWO of the following questions.	[12]
	a [I] Explain count to infinity problem by solving example given below when A is getting down.	[4]
	After booting in routing table of B, C, D and E possesses the value are 2,4,6,8 respectively and each link	
	cost is 2.	
	0-0-0-0	
	A B C D E	[2]
	[II]Give the differences between virtual circuit subnet and datagram subnet.	
	b (1)Find the subnetwork address for 200.34.22.156/28	[1]
	(2)50 subnetworks are to be created from 150.193.0.0 each subnet is expected to have 750 hosts. Find the	[2]
	subnet mask. (2) An arganization want 2013 hosts ID address 222 12 0.0 is assigned to arganization. Find superment	[1]
	(3)An organization want 2013 hosts.IP address 222.12.0.0 is assigned to organization. Find supermet mask.	[1]
	(4) For IP address 172.60.50.2/19. Find subnet address. Find the range of assignable IP address on the	[2]
	subnet.	[-]
	c Consider the network shown in the figure-1. Using Dijkstra's algorithm. Compute the shortest path from s	[6]
	to all network nodes.	
Q.3	(a) Explain various congestion prevention policies	[6]
Q.3(
•	Host A: IP-192.192.192.100, MAC-1A-23-F9-CD-06-9B Host B: IP-192.192.192.101, MAC-88-B2-2F-	
	54-1A-0F	
	Host C:IP-192.192.192.102, MAC-48-BD-D2-C7-56-2A Host D:IP-192.192.192.103, MAC-5C-66-AB-	
	90-75-B1	
	(1)Suppose Host A send the ARP request to find the MAC address of the Host C and Host C sends back	[3]
	the ARP reply. What is the destination MAC address in ARP request packet and reply packet?	.
	(2) Suppose Host A send the ARP request to find who owns IP address 192.192.192.103. What is the	[3]
	destination address in ARP request packet? Which host will give reply? What are the contents of ARP reply packet?	
	-OR-	
Q.3		
Q.C	permits a MTU of 1500 bytes & 1100 bytes respectively (MTU: maximum transfer unit). A is an IP	
	datagram which has size 4000 bytes (the size of datagram includes its header of 20 bytes). It is not using	
	any of the option field in the header. A must be fragmented as it is sent from R1to H .Assume that all	
	datagram s are received successfully.	
	(1) What are the sizes of IP datagram A is fragmented in sending it from R1 to R2 over L1?	[4]
	(2)How many IP datagrams are received by H?	[2]
	L1 $L2$ $L2$	

[6]

