1 Що таке поляризація світла?

Поляризація світла — це процес упорядкування площини коливань вектора напруженості електричного поля і пов'язаного з ним вектора напруженості магнітного поля у просторі.

2 Чим відрізняється плоскополяризоване світло від неполяризованого?

Поляризованим називається світло, в якому вектор напруженості електричного поля виконує коливання в одній площині. У *неполяризованому* світлі площина коливань вектора для кожного пучка орієнтована випадково, тому площини коливань векторів напруженості електричного поля орієнтовані у будьяких перпендикулярних до вектора швидкості напрямках.

3 Які типи поляризованого світла ви знаєте?

Електромагнітні хвилі з певним хвильовим вектором k в системі координат, вісь z якої збігається із напрямом поширення, загалом, можна записати так:

$$\mathbf{E} = E_x \mathbf{i} + E_y \mathbf{j} = E_{0x} \mathbf{i} \cos(kz - \omega t - \varphi_x) + E_{0y} \mathbf{j} \cos(kz - \omega t - \varphi_y),$$

де і та ј — це орти у напрямку осей x та y,ω — частота, E_{0x} і E_{0y} — дві незалежні амплітуди, φ_x і φ_v — дві незалежні фази.

3.1 Пласка (лінійна) поляризація

Якщо фази φ_x і φ_y збігаються, то для хвилі в будь-який момент часу виконується співвідношення:

$$\frac{E_x}{E_y} = \frac{E_{0x}}{E_{0y}} = \text{const.}$$

Тобто в цьому випадку E_x і E_y зв'язані лінійним співвідношенням. Така поляризація електромагнітної хвилі називається лінійною поляризацією.

До цього випадку відносяться також хвилі, для яких $E_{0x}=0$ або Е 0 у = 0 $E_{0y}=0$. Будь-яку лінійно-поляризовану хвилю можна звести до одного з цих двох випадків, вибравши відповідним чином напрям осей x та y.

3.2 Циклічна (колова) поляризація

Циклічна або колова поляризація виникає тоді, коли $E_{0x}=E_{0y}$, а фази різняться на чверть періоду:

$$\varphi_y - \varphi_x = \pm \frac{\pi}{2}.$$

У такому разі електромагнітна хвиля записується:

$$\mathbf{E} = E_x \mathbf{i} + E_y \mathbf{j} = E_{0x} \mathbf{i} \cos(kz - \omega t - \varphi_x) \pm E_{0y} \mathbf{j} \sin(kz - \omega t - \varphi_x).$$

Для такої хвилі справджується рівність:

$$E_x^2 + E_y^2 = E_{0x}^2 + E_{0y}^2 = \text{const},$$

яка є рівнянням кола щодо змінних E_x та E_v .

Залежно від знаку зсуву фази вектор напруженості електричного поля в будь-якій точці простору для циклічно-поляризованої хвилі обертається за чи проти годинникової стрілки, виконуючи повний оберт за період.

Будь-яку лінійно поляризовану хвилю можна подати у вигляді суперпозиції двох циклічно поляризованих хвиль (з обертанням «за» та «проти» годинникової стрілки).

3.3 Еліптична поляризація

У загальному випадку між змінними E_x та E_y існує співвідношення, яке задається рівнянням:

$$\left(\frac{E_x}{E_{0x}}\right)^2 + \left(\frac{E_y}{E_{0y}}\right)^2 - 2\frac{E_x}{E_{0x}}\frac{E_y}{E_{0y}}\cos(\varphi_y - \varphi_x) = \sin^2(\varphi_y - \varphi_x).$$

Це рівняння еліпса, тож така поляризація називається еліптичною.

3.4 Неполяризоване

3.5 Часткова поляризація

4 Які способи одержання поляризованого світла

Поляризоване світло можна дістати під час відбивання і заломлення природного світла на межі поділу двох діелектриків.

5 Закон Брюстера

$$\operatorname{tg} \alpha_B = \frac{n_2}{n_1}.$$