Vv255 Honours Calculus III

1 Introduction

1.1 Course Profile

1.1.1 Contact Information

• Instructor:

Jing Liu

• Lectures:

• Office Hours:

```
\begin{array}{lll} Monday & (10:10am-3.30pm) & in \ \hbox{$JI$-Building 204} \\ Thursday & (08:00am-9.30am) & in \ \hbox{$JI$-Building 204} \end{array}
```

• Email:

```
stephen.liu@sjtu.edu.cn
```

• Teaching Assistant/s:

See Canvas for his/her contact information

1.1.2 Grading Policy

• Assignment:

Assignments will be given in the form of problem sets, and may require extra reading and the use of Matlab.

Assignments will have bonus questions. Hints/solutions to the bonus questions will not be provided.

Bonus can be and only be credited to and between assignments, and it cannot be used to exceed the full grade.

Assignments need to be submitted to the correct pigeonhole in the JI-building before the beginning of class on the day indicated on the assignment. Please plan your time accordingly, late assignment will be severely penalised.

• Exam:

```
75% There will be Midterm I Midterm II Final three exams: 20\% 25\% 30\%
```

• For this course, the grade will be curved to achieve a median grade of "B⁺".

1.1.3 Textbook and Syllabus

• James STEWART, Calculus (7th edition).

Week	Topics	Textbook
1	Vectors, Matrices and Linear equations	$Ch-12.1 \sim 12.2$
	Dot Product, Projection and Basis	Ch-12.3
	Cross Product and Determinant	Ch-12.4
2	Lines, Planes, and Vector-valued functions	Ch-12.5
	Derivatives and integrals	$Ch-13.1 \sim 13.2$
3	Arc Length and Curvature	$Ch-13.3 \sim 13.4$
	Functions of Several Variables	Ch-14.1
	First Midterm Exam	
4	Continuity	Ch-14.2
	Partial Derivatives	Ch-14.3
5	Differentiability	Ch-14.4
	The Chain Rule	Ch-14.5
	Directional Derivatives and Gradient	Ch-14.6
6	Maximum and Minimum values	Ch-14.7
	Lagrange Multipliers	Ch-14.8
7	Change of coordinates	Slides Only
	Double integrals	Ch-15.1 ~ 15.3
	Second Midterm Exam	
8	Applications of Double integrals	Ch-15.4 ~ 15.6
	Triple integrals	$Ch-15.7 \sim 15.9$
0	Jacobian	Ch-15.10
9	Vector fields	Ch-16.1
10	Line Integrals	Ch-16.2
	The Fundamental Theorem for Line Integrals	Ch-16.3
	Green's Theorem	Ch-16.4
11	Divergence	Ch-16.5
11	Curl	Ch-16.5
	Surface Integrals	$Ch-16.6 \sim 16.7$
12	Stokes' Theorem	Ch-16.8
	The Divergence Theorem	Ch-16.9

13 Final Exam

1.1.4 Matlab

- Students are strongly encouraged to get acquainted with a computer algebra system and use it to experiment with the topics discussed in the class. Free software for both symbolic and numerical calculations (e.g. Maxima, Octave) are available, along with commercial tools such as Matlab.
- What is Matlab?

It is a software used by millions of engineers and scientists.

• What does it do?

It is designed to help you solve equations and manipulate expressions with minimal programming. It is particularly good at doing matrix operations.

• How to get Matlab

Matlab is installed on all computers in the JI Computer Lab.

You can also install Matlab on your own computer.

- 1. Register your name at MathWorks using your situ email
- 2. Download
- 3. Activate

Detailed instructions can be found at JI's IT-page

1.1.5 Honour Code

- Honesty and trust are important. Students are responsible for familiarising themselves with what is considered as a violation of honour code.
- Assignments/projects are to be solved by each student individually. You are
 encouraged to discuss problems with other students, but you are advised
 not to show your written work to others. Copying someone else's work is a
 very serious violation of the honour code.
- Students may read resources on the Internet, such as articles on Wikipedia,
 Wolfram MathWorld or any other forums, but you are not allowed to post
 the original assignment question online and ask for answers. It is regarded
 as a violation of the honour code.
- Since it is impossible to list all conceivable instance of honour code violations, the students has the responsibility to always act in a professional manner and to seek clarification from appropriate sources if their or another students conduct is suspected to be in conflict with the intended spirit of the honour code.