Analízis II. Előadás jegyzet

A jegyzetet UMANN Kristóf készítette Dr. Szili László előadásán. (2016. október 2.) Külön köszönet jár CSONKA Szilviának a képek elkészítésért.

Tantárgyi honlap: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/index_An2_2016.htm

1. Folytatás.

1.0.1. Emlékeztető. Szakadási helyek, osztályozás.

1.0.2. Példa.

1. ábra.

$$f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0 \end{cases}$$

Ezalapján megállapítható:

1.
$$f \in C\{a\}, \forall a \neq 0$$

2.
$$a=0$$
 megszüntethető szakadási hely, mert $\lim_{x\to 0}\frac{\sin(x)}{x}=0 \neq f(0)=0.$

На

$$\tilde{f}(x) = \begin{cases} f(x), & x \in \mathbb{R} \setminus \{0\} \\ 1, & x = 0 \end{cases}$$

akkor $\tilde{f} \in C\{0\}$.

1.0.3. Példa.

$$f(x) := sign(x) \quad (x \in \mathbb{R})$$

2. ábra.

1.
$$f \in C\{a\}, \forall a \in \mathbb{R} \setminus \{0\}$$

2. az
$$a=0$$
 elsőfajú szakadási hely, mert $\exists \lim_{0 \to 0} f = 1 \neq \exists \lim_{0 \to 0} f = -1.$

1.0.4. Megjegyzés. Másodfajú szakadás sokféleképpen lehet.

1.0.5. Példa. Dirichlet-fv.

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{Q}^* \end{cases}$$

3. ábra.

 $\forall a \in \mathbb{R}$ másodfajú szakadási hely, mert $\nexists \lim_{a + 0} f, \lim_{a - 0} f.$

1.0.6. Példa. Dirichlet típusú függvény.

$$f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{Q}^* \end{cases}$$

4. ábra.

- 1. $f \in C\{0\}$
- 2. $\forall a \in \mathbb{R} \setminus \{0\}$ pont másodfajú szakadási hely.

1.0.7. Példa.

$$f(x) = \begin{cases} \frac{1}{x} & x > 0\\ 10, & x = 0\\ 0, & x < 0 \end{cases}$$

5. ábra.

- 1. $f \in C\{a\}, \quad a \in \mathbb{R} \setminus \{0\}$
- 2. a=0 másodfajú szakadási hely, mert $\lim_{x\to 0+0} f(x)=\lim_{x\to 0+0} \frac{1}{x}=+\infty$

1.0.8. Tétel. (Monoton függvény szakadási helyei)

Ha $f:(\alpha,\beta)\to\mathbb{R}$ monoton függvény (α,β) -n, akkor legfeljebb elsőfajú szakadásai lehetnek, azaz egy $a\in\mathcal{D}_f$ pontban az f vagy folytonos, vagy elsőfajú szakadása van. biz nélkül.

2. Elemi függvények.

2.1. Hatvány- és gyökfüggvények.

2.1.1. Emlékeztető. (hatványfüggvény) $f(x) := x^n \quad (x \in [0, +\infty))$

2.1.2. Emlékeztető. (gyökfüggvény) $f(x) := \sqrt[n]{x}, \quad (x \in [0, +\infty))$

Igazolható:

- f ↑ folytonos $\Rightarrow \exists f^{-1}$

$$-\left|f^{-1} = \sqrt[n]{\right|}$$

- f^{-1} ↑ és folytonos $[0, +\infty)$ -n.

A függvények képe:

6. ábra.

2.2. Az exp és az ln függvények.

2.2.1. Tétel. (Az exp függvény tulajdonságai)

1.
$$\exp(x)$$
 := $\exp x$:= e^x := $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$ $(x \in \mathbb{R}, n \in \mathbb{N})$

2. (helyettesítési értékek)

a)
$$\exp(0) = 1$$

$$b) \exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e \quad \left(\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n\right)$$

3. A függvény egyenlet: $e^{x+y} = e^x \cdot e^y \quad (x, y \in \mathbb{R})$

4. $\exp \uparrow$ folytonos \mathbb{R} -en.

5.
$$\mathcal{R}_{\exp} = (0; +\infty)$$
.

6.
$$\lim_{+\infty} \exp = +\infty$$
, $\lim_{-\infty} \exp = 0$.

biz nélkül.

7. ábra.

2.2.2. Definíció. exp függvény szigorú monoton növekedő \mathbb{R} -en \Rightarrow

$$\ln := \log := (\exp)^{-1}$$

a természetes alapú v. e-alapú logaritmus függvény.

$$\textbf{2.2.3. Megjegyz\'es.} \hspace{0.5cm} 1. \hspace{0.5cm} \mathcal{D}_{\ln} = \mathcal{R}_{\exp} = (0, +\infty), \hspace{0.5cm} \mathcal{R}_{\ln} = \mathcal{D}_{\exp} = \mathbb{R}.$$

8. ábra.

2. Ha
$$x>0 \implies \ln x := \ln(x) := y \stackrel{\text{inverz}}{\underset{\text{def.}}{\Rightarrow}} e^y = x$$
 (lásd: középiskolás definíció)

2.2.4. Tétel. (az ln függvény tulajdonságai)

1.
$$\ln e^x = x \quad (\forall x \in \mathbb{R}) \quad e^{\ln x} = x \quad (\forall x > 0)$$

2.
$$\ln(xy) = \ln x + \ln y \quad (x, y > 0)$$

3.
$$\ln \uparrow$$
 és folytonos $(0, +\infty)$ -en, $\mathcal{R}_{\ln} = \mathbb{R}$.

4.
$$\lim_{0 \to 0} \ln = -\infty$$
; $\lim_{+\infty} \ln = +\infty$

2.2.5. Megjegyzés.

1. expx jól számolható $\forall x \in \mathbb{R}$ -re.

2. $\forall x > 0$ -ra $\ln x$ értelmezhve van, de így nem számolható.

2.3. Az \exp_a és \log_a függvények.

2.3.1. Megjegyzés. a > 0; $x \in \mathbb{R}$, mi legyen a^x ?

- ha
$$x \in \mathbb{Q} \checkmark$$

– ha $x \in \mathbb{R}$ tetszőleges: a hatványazonosságok érvényben maradjanak.

Ötlet: $a = e^{\ln a}$, azaz az e-t a hatványként írjuk fel.

$$a = e^{\ln a^x} = e^{x \cdot \ln a}$$

2.3.2. Definíció. a > 0 valós, $x \in \mathbb{R}$

$$a^x := e^{x \cdot \ln a}$$

ezt nevezzük az a szám x-edik hatványának.

2.3.3. Definíció. a > 0, $\exp_a : \mathbb{R} \to \mathbb{R}$,

$$\exp_a(x) := a^x = e^{x \cdot \ln a}$$

az a alapú exponenciális függvény.

2.3.4. Megjegyzés. $\exp_e = \exp$ Igazolhat'o:

– 0 <
$$a \neq 1, \quad \exp_a : \mathbb{R} \to (0, +\infty)$$
 folytonos bijekció.

– Ha az
$$a>1 \quad \Rightarrow \quad \exp_a\uparrow, \quad \lim_{-\infty}\exp_a=0, \quad \lim_{+\infty}\exp_a=+\infty$$

– Ha 0 < a < 1, akkor $\exp \downarrow$, $\lim_{-\infty} \exp_a := +\infty$; $\lim_{+\infty} \exp_a = 0$

9. ábra.

2.3.5. Definíció. $0 < a \neq 1$ valós \Rightarrow exp_a szigorúan monoton és folytonos \mathbb{R} -en \Rightarrow \exists inverze.

$$\log_a := (\exp_a)^{-1}$$

a alapú logaritmus függvény.

2.3.6. Megjegyzés. $\log_e = \ln = \log$

10. ábra.

 $\textbf{2.3.7. Megjegyz\'es.} \ \, A \ \, f\"uggv\'enytulajdons\'agok \'es logaritmus azonoss\'agok megfogalmazhat\'ok (H.F.), megjegyzendők.$

2.4. Hatványfüggvények.

2.4.1. Definíció. Legyen $\alpha \in \mathbb{R}$ tetszőleges, az α kitevőjű hatványfüggvény:

$$h_{\alpha}:(0,+\infty)\ni x\to x^{\alpha}=e^{\alpha\cdot\ln x}$$

2.4.2. Tétel. (a hatványfüggvény tulajdonságai)

Ha $\alpha \in \mathbb{R} \setminus \{0\}$ \Rightarrow $h_{\alpha}(0, +\infty) \to (0, +\infty)$ folytonos bijekció, amely

1. ha $\alpha > 0$

$$\lim_{0+0} h_{\alpha} = 0, \quad \lim_{+\infty} h_{\alpha} = +\infty$$

2. ha $\alpha < 0 \downarrow$

$$\lim_{0+0} h_{\alpha} = +\infty, \quad \lim_{+\infty} h_{\alpha} = 0$$

11. ábra.

3. Differenciálszámítás.

3.0.1. Megjegyzés. hóóó crap

3.0.2. Emlékeztető. Határérték (függvénytulajdonság)

A pontbeli derivált motivációja pl. hogy a függvény grafikonjának van-e "töréspontja".

12. ábra. Az elsőnek nincs, a másodiknak van töréspontja.

Ötlet: (a, f(a))-ban szelőt húzni

13. ábra.

A szelő meredeksége $m_h = \frac{f(a+h) - f(a)}{h}$ A szelőknek van határhelyzete:

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

14. ábra.

A szelőknek nincs határhelyzete:

$$\nexists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad \blacksquare$$