### 特性描述

TM1650 是一种带键盘扫描接口的 LED (发光二极管显示器) 驱动控制专用电路。内部集成有 MCU 输入输出控制数字接口、数据锁存器、LED 驱动、键盘扫描、辉度调节等电路。TM1650 性能稳定、质量可靠、抗干扰能力强,可适用于 24 小时长期连续工作的应用场合。

### 功能特点

- ▶ 两种显示模式:8段×4位和7段×4位
- ▶ 段驱动电流大于25mA,位驱动电流大于150mA
- ▶ 提供8级亮度控制
- ▶ 键盘扫描: 7×4bit内部集成三极管驱动
- ▶ 高速两线式串行接口
- ▶ 内置时钟振荡电路
- ▶ 内置上电复位电路
- ▶ 支持2.8V-5.5V电源电压
- ▶ 提供DIP16及SOP16封装

#### 适用领域:

◆ 家用电器产品如机顶盒、空调、DVD/VCD等显示的驱动。

### 内部结构框图



### 管脚信息



### 管脚功能

| 端     | П  | I/O | 44.4H.2A            |  |  |  |  |
|-------|----|-----|---------------------|--|--|--|--|
| 名称    | 管脚 | 1,0 | 功能描述                |  |  |  |  |
| DIG1  | 1  | 0   | LED段位驱动输出1/键盘扫描输出1  |  |  |  |  |
| DIG2  | 5  | 0   | LED段位驱动输出2/键盘扫描输出2  |  |  |  |  |
| DIG3  | 6  | 0   | LED段位驱动输出3/键盘扫描输出3  |  |  |  |  |
| DIG4  | 7  | 0   | LED段位驱动输出4/键盘扫描输出4  |  |  |  |  |
| SCL   | 2  | I   | 数据输入端               |  |  |  |  |
| SDA   | 3  | I   | 时钟输入端               |  |  |  |  |
| A/KI1 | 8  | 0/I | LED段驱动输出A/按键扫描输入KII |  |  |  |  |
| B/KI2 | 9  | 0/I | LED段驱动输出B/按键扫描输入KI2 |  |  |  |  |
| C/KI3 | 11 | 0/I | LED段驱动输出C/按键扫描输入KI3 |  |  |  |  |
| D/KI4 | 12 | 0/I | LED段驱动输出D/按键扫描输入KI4 |  |  |  |  |
| E/KI5 | 13 | 0/I | LED段驱动输出E/按键扫描输入KI5 |  |  |  |  |
| F/KI6 | 14 | 0/I | LED段驱动输出F/按键扫描输入KI6 |  |  |  |  |
| G/KI7 | 15 | 0/I | LED段驱动输出G/按键扫描输入KI7 |  |  |  |  |
| DP/KP | 16 | 0   | LED段输出DP/键盘标志输出KP   |  |  |  |  |
| GND   | 4  | -   | 逻辑地                 |  |  |  |  |
| VDD   | 10 | -   | 逻辑电源                |  |  |  |  |



在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,如果不正当的操作和焊接,可能会造成 ESD 损坏或者性能下降, 芯片无法正常工作。

2

### 通讯协议

TM1650 采用 2 线串行传输协议通讯。

### 1:开始信号(START)/结束信号(STOP)

开始信号:保持 SCL 为"1"电平, SDA 从"1"跳"0",认为是开始信号,

如(图 3)A 段;

结束信号:保持 SCL 为"1"电平, SDA 从"0"跳"1",认为是结束信号,

如(图 3)E 段;

#### 2: ACK 信号

如果本次通讯正常,芯片在串行通讯的第 8 个时钟下降沿后,TM1650 主动把 SDA 拉低。直到检测到 SCL 来了上升沿,SDA 释放为输入状态(对芯片而言),如(图 3)D 段。

#### 3: 写"1"和写"0"。

写 "1": 保持 SDA 为 "1" 电平, SCL 从 "0" 跳到 "1",再从 "1" 跳到 "0",则认为是写入 "1" 如(图 3)B 段。

写 "0": 保持 SDA 为 "0" 电平, SCL 从 "0" 跳到 "1",再从 "1" 跳到 "0",则认为是写入 "0" 如(图 3) C 段。



### 4: 一个字节数据传输格式

一个字节数据的传输格式如图 4.数据发送时 MSB 在前,LSB 在后。微处理器的数据通过两线总线接口和 TM1650 通信,在输入数据时当 SCL 是高电平时,SDA 上的信号必须保持不变;只有 SCL 上的时钟信号为低电平时,SDA 上的信号才能改变。数据输入的开始条件是 SCL 为高电平时,SDA 由高变低;结束条件是 SCL 为高时,SDA 由低电平变为高电平。



### 5:读按键数据时序

读数据时, SCL 下降沿, 数据从 TM1650 SDA 脚输出。



Command: 发送读按键命令。 Key\_data: 读到的键盘扫描码。

### 键盘扫描码:

TM1650 对应键盘扫描码:

| 编址    | DIG4 | DIG3 | DIG2 | DIG1 |
|-------|------|------|------|------|
| A/KI1 | 47H  | 46H  | 45H  | 44H  |
| B/KI2 | 4FH  | 4EH  | 4DH  | 4CH  |
| C/KI3 | 57H  | 56H  | 55H  | 54H  |
| D/KI4 | 5FH  | 5EH  | 5DH  | 5CH  |
| E/KI5 | 67H  | 66H  | 65H  | 64H  |
| F/KI6 | 6FH  | 6EH  | 6DH  | 6CH  |
| G/KI7 | 77H  | 76H  | 75H  | 74H  |

备注:读按键时,DIG与KI串接2K电阻。不支持组合键。

# 控制命令

### 1、数据命令设置

| В7 | В6 | В5 | B4 | В3 | B2 | B1 | ВО | 说明      |
|----|----|----|----|----|----|----|----|---------|
| 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 模式命令    |
| 0  | 1  | 0  | 0  | 1  | ×  | ×  | 1  | 读按键数据命令 |

注: 打×的位可以为1, 也可以为0, 建议写0。其他为必须固定值。

# 2、显示命令设置

| MSB | LSB |
|-----|-----|
|     |     |

| В7 | В6 | В5 | B4 | ВЗ | B2 | В1 | во | 功能         | 说明     |
|----|----|----|----|----|----|----|----|------------|--------|
| ×  | 0  | 0  | 0  | _  | ×  | ×  |    |            | 8级亮度   |
| ×  | 0  | 0  | 1  |    | ×  | ×  |    |            | 1级亮度   |
| ×  | 0  | 1  | 0  |    | ×  | ×  |    |            | 2级亮度   |
| ×  | 0  | -  | 1  |    | ×  | ×  |    | 辉度设置       | 3级亮度   |
| ×  | 1  | 0  | 0  |    | ×  | ×  |    | 件反反且       | 4级亮度   |
| ×  | 1  | 0  | 1  |    | ×  | ×  |    |            | 5级亮度   |
| ×  | 1  | 1  | 0  |    | ×  | ×  |    |            | 6级亮度   |
| ×  | 1  | 1  | 1  |    | ×  | ×  |    |            | 7级亮度   |
| ×  |    |    |    | 0  | ×  | ×  |    | 7/955日二拉制合 | 8段显示方式 |
| ×  |    |    |    | 1  | ×  | ×  |    | 7/8段显示控制位  | 7段显示方式 |
| ×  |    |    |    |    | ×  | ×  | 0  | 开点/关语用二位   | 关显示    |
| ×  |    |    |    |    | ×  | ×  | 1  | 开启/关闭显示位   | 开显示    |

注: 打×的位可以为1, 也可以为0, 建议写0。



### 显存地址:

该寄存器存储通过串行接口从外部器件传送到TM1650的数据,共4个字节单元,分别与芯片 A/KI~DP/KP和DIG管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从高位到低位,从数据字节的高位到低位操作。

| A/KI1 | B/KI2  | C/KI3 | D/KI4 | E/KI5 | E/KI5 F/KI6 G/KI7 DP/KP |      |    |      |  |
|-------|--------|-------|-------|-------|-------------------------|------|----|------|--|
|       | xxHL ( | 低四位)  |       |       |                         |      |    |      |  |
| ВО    | B1     | B2    | В3    | B4    | B5                      | В6   | B7 |      |  |
|       | 68     | 3HL   |       |       | DIG1                    |      |    |      |  |
|       | 6/     | ٩HL   |       |       |                         | DIG2 |    |      |  |
|       | 60     | CHL   |       |       |                         | DIG3 |    |      |  |
|       | 61     | EHL   |       |       | 6E                      | HU   |    | DIG4 |  |

### 1:显存地址命令:

MSB

| B7 | В6 | B5 | В4 | В3 | B2 | B1 | ВО | 显存地址 |
|----|----|----|----|----|----|----|----|------|
| 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 68H  |
| 0  | 1  | 1  | 0  | 1  | 0  | 1  | 0  | 6AH  |
| 0  | 1  | 1  | 0  | 1/ | 1  | 0  | 0  | 6CH  |
| 0  | 1  | 1  | 0  | 1  | 1  | 7  | 0  | 6EH  |

注: 该指令用来设置显示寄存器的地址。

### 2:对显存地址写数据的时序:



ADDRESS: 向 TM1650 写显存地址 DATA: 向 TM1650 写要显示的数据。

### 一个完整的写显示时序



Command1: 数据命令:48H。

Command2: 开显示,显示亮度级。

ADDRESS: 显存地址。 DATA: 显示数据。

4



### 绝对最大额定值范围 (1) (2)

|      | 参数                | 范围 | 单位            |            |
|------|-------------------|----|---------------|------------|
| VDD  | 逻辑电源电压            |    | -0.5~+7.0     | ٧          |
| VIN  | 逻辑输入端电压范围 SDA,SCL |    | -0.5~VDD+0.5V | ٧          |
| Topr | 工作温度范围            |    | -40~+85       | $^{\circ}$ |
| Tstg | 储存温度范围            |    | -55~+125      | $^{\circ}$ |
| ESD  | 人体模式 (HBM)        |    | 3000          | ٧          |
| ESD  | 机器模式 (MM)         |    | 200           | ٧          |

<sup>(1)</sup>以上表中这些等级,芯片在长时间使用条件下,可能造成器件永久性伤害,可降低器件的可靠性。天微电子不建议在其它任何条件下,芯片超过这些极限参数工作。

### 推荐工作条件范围

|     | <b>⇔</b> ₩- | 测学女件 |        | TM1650 |        | 单位         |  |
|-----|-------------|------|--------|--------|--------|------------|--|
|     | 参数          | 测试条件 | 最小值    | 典型值    | 最大值    | 丰区         |  |
| VDD | 电源电压        | -    | 2.8    | 5.0    | 7.0    | ٧          |  |
| VIH | 高电平输入电压     | -    | 0.7VDD | X- /   | VDD    | ٧          |  |
| VIL | 低电平输入电压     | -    | 0      | -      | 0.3VDD | ٧          |  |
| TA  | 工作温度范围      | -    | -40    |        | +85    | $^{\circ}$ |  |
| TJ  | 工作结温范围      | 4-11 | -40    |        | +125   | $^{\circ}$ |  |

# 电气特性

(在 VDD=3.0V~5.5V 和-40℃~+85℃下,(测试时电压为 VDD=5.0V 和 TA=+25℃)除非另有说明

|                 | <b>₩</b>      | 4) 女44师                   |         | TM1650 |     | 34 /2 <u>.</u> |
|-----------------|---------------|---------------------------|---------|--------|-----|----------------|
|                 | 参数            | 测试条件                      | 最小值     | 典型值    | 最大值 | 单位             |
| VDD             | 电压电压          |                           | 2.8     | 5.0    | 7.0 | V              |
| IDD             | 电源电流          |                           | 0.2     |        | 150 | mA             |
| IC <sub>s</sub> | 静态电流          | SCL,SDA,KP 为高             |         | 0.2    |     | mA             |
| VIL             | 低电平输入电压       |                           |         | 2.8    |     | V              |
| VIH             | 高电平输入电压       |                           |         | 2.8    |     | V              |
| VOH             | 高电平输出电压       |                           | VDD-0.4 |        | VDD | V              |
| VOL             | 低电平输出电压       |                           |         |        | 0.3 | V              |
| VOLdig          | DIG 引脚低电平输出电压 | I <sub>DIG</sub> = -200mA | -       |        | 1.3 | V              |
| VOLdig          | DIG 引脚低电平输出电压 | I <sub>DIG</sub> = -100mA |         |        | 0.9 | ٧              |
| VOHdig          | DIG 引脚高电平输出电压 | I <sub>DIG</sub> = 5mA    | 4.5     |        |     | V              |
| VOLki           | KI 引脚低电平输出电压  | I <sub>KI</sub> = -20mA   |         |        | 0.2 | V              |
| VOLki           | KI 引脚低电平输出电压  | I <sub>KI</sub> = 20mA    |         |        | 0.5 | V              |
| IDN1            | KI 引脚输入下拉电流   | V <sub>KI</sub> =5.0V     |         | 85     |     | mA             |
| VR              | 上电复位的默认电压门限   |                           |         | 2.5    |     | ٧              |

<sup>(2)</sup> 所有电压值均相对于网络地测试。



内部时序参数 (测试条件: Ta=25℃, VDD=5V)

| 参数            | 符号  | 最小 | 典型 | 最大 | 单位 |
|---------------|-----|----|----|----|----|
| 电源上电检测产生的复位时间 | TPR | 10 | 30 | 60 | ms |
| 显示扫描周期        | TP  |    | 7  |    | ms |
| 键盘扫描间隔,按键响应时间 | TKS |    | 40 |    | ms |

注:本表时序参数是内置时钟周期的倍数,内置时钟频率随电源电压的降低而降低。

接口时序参数 (测试条件: Ta=25℃, VDD=5V)

| 参数                     | 符号    | 最小  | 典型 | 最大 | 单位  |
|------------------------|-------|-----|----|----|-----|
| SDA 下降沿启动信号的建立时间       | TSSTA | 100 |    |    | ns  |
| SDA 下降沿启动信号的保持时间       | THSTA | 100 |    |    | ns  |
| SDA 上升沿停止信号的建立时间       | TSSTO | 100 |    | 4  | ns  |
| SDA 上升沿停止信号的保持时间       | THSTO | 100 |    |    | ns  |
| SCL 时钟信号的低电平宽度         | TCLOW | 100 |    |    | ns  |
| SCL 时钟信号的高电平宽度         | TCHIG | 100 |    |    | ns  |
| SDA 输入数据对 SCL 上升沿的建立时间 | TSDA  | 40  |    |    | ns  |
| SDA 输入数据对 SCL 上升沿的保持时间 | THDA  | 10  |    |    | ns  |
| SDA 输出数据有效对 SCL 下降沿的延时 | TAA   | 2   |    |    | ns  |
| SDA 输出数据无效对 SCL 下降沿的延时 | TDH   | 2   |    |    | ns  |
| 平均数据传输速率               | Rate  |     |    | 4M | bps |

注:本表计量单位以纳秒即 10-9,,未注明最大值则理论值可以无穷大。



### 典型应用电路

TM1650 驱动共阴数码屏接线电路图:



#### 备注:

- 1) 芯片的滤波电容在布板的时候应尽量靠近 TM1650 引脚放置,加强滤波效果。
- 2) 芯片电源以及地的网络在部线时线宽要尽量加宽。
- 3) 因蓝光数码管的导通压降约为 3.0V, 因此 TM1650 供电应选 5.0V。

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。



### IC 封装示意图 (SOP16):





# IC 封装示意图 (DIP16):





## 修订历史

| 版本   | 发行日期       | 修订简介 |
|------|------------|------|
| V1.0 | 2012-08-28 | 初版发行 |
|      |            |      |
|      |            |      |

