A Direct Multisearch Filter Method for Biobjective Optimization

Everton Jose da Silva Advisor Ana Luísa Custódio

Ph.D Student in Mathematics at Nova School of Science and Technology

VA NOVAMATH

CENTED FOR MATHEMATICS + APPLICATIONS

DMS-FILTER

UIDB/00297/2020 UIDP/00297/2020

1 / 45

Outline

- 1 Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Outline

- 1 Introduction
- ② Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Multiobjective Derivative-free Optimization

$$\min_{x \in \Omega \subseteq \mathbb{R}^n} F(x) = (f_1(x), f_2(x), \dots, f_m(x))^{\top}$$
$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, m \ge 2$$

- $\Omega = X \cap \{x \in \mathbb{R}^n \mid C(x) \leq 0\}$ where X is a full dimensional polyhedron and $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^p$
- objectives often conflicting
- impossible to use or approximate derivatives
- expensive function evaluation

Large memory requirement

Multiobjective Derivative-free Optimization

Make use of Pareto Dominance

Pareto Dominance (x dominates y)

$$F(x) \le F(y)$$
, with $F(x) \ne F(y)$

Numerical Optimization

Iterative Methods

$$x_{k+1} = x_k + \alpha_k d_k$$

• Derivative-based methods: d_k should be a descent direction according to at least one of the objectives, i.e.

$$d_k^\top \nabla f_i(x_k) < 0, \quad \text{ with } i \in \{1, \dots, m\}$$

- Derivative-free methods: when derivatives are not available and cannot be numerically approximated
 - Directional Direct Search: Uses positive spanning sets for sampling In R²:

 $pspan(D) = \mathbb{R}^2$

Motivation

- DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140
 - DMS_{dense} → Directions Asymptotically dense in the unit sphere
 - DMS_⊕ → Coordinate directions

Motivation

- DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140
 - DMS_{dense} → Directions Asymptotically dense in the unit sphere
 - $DMS_{\oplus} \rightarrow Coordinate directions$

DMS - General Linear Constraints

- Set of poll directions conforms to the geometry of the nearby constraints
- Approach of Abramson, Brezhneva, Dennis, and Pingel [2008] for single objective optimization

(in Kolda, Lewis, and Torczon [2003])

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\begin{split} \Gamma_{p,s} &= \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right) \\ \Delta &= \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right) \end{split}$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\Gamma_{p,s} = \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right)$$

$$\Delta = \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right)$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

Metrics for Performance Profiles (Dolan and Moré [2002])

Purity

$$\frac{|F_{p,s} \cap F_p|}{|F_{p,s}|}$$

• Spreads Γ and Δ

$$\Gamma_{p,s} = \max_{j \in \{1,...,m\}} \left(\max_{i \in \{0,...,N\}} \{d_i\} \right)$$

$$\Delta = \max_{j \in \{1,...,m\}} \left(\frac{d_0 + d_N + \sum_{i=1}^{N-1} |d_i - \overline{d}|}{d_0 + d_N + (N-1)\overline{d}} \right)$$

Hypervolume

$$HI_{p,s} = Vol\{b \in \mathbb{R}^m \mid b \le U_p \land \exists a \in F_{p,s} : a \le b\}$$

DMS - General Linear Constraints

Motivation

DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140

 DFMO → G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. (2016), 26, 2744-2774

- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29

Motivation

DMS → A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente. Direct multisearch for multiobjective optimization, SIAM J. Optim. (2011), 21, 1109-1140

 DFMO → G. Liuzzi, S. Lucidi, and F. Rinaldi. A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. (2016), 26, 2744-2774

- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29

DMS - Nonlinear + Bound Constraints

-DFMO -DMS

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{\mathbf{x} \in Y} \left(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}), h(\mathbf{x}) \right)^{\top}$$

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

• Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{x \in X} (f_1(x), f_2(x), \dots, f_m(x), h(x))^{\top}$$

New Problem

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^p \max\{0, c_i(x)\}^2$$

$$\min_{x \in X} \left(f_1(x), f_2(x), \dots, f_m(x), h(x) \right)^{\mathsf{T}}$$

Filter Approach

The filter \mathcal{F} is a set of nondominated points

A point x' is said to be filtered by a filter \mathcal{F} if any of the following properties hold:

- There exists a point $x \in \mathcal{F}$ such that $x' \geq x$
- $h(x') > h_{\max}$ for some positive finite upper bound h_{\max}

Everton Silva (NOVA SST)

Filter Approach

The filter \mathcal{F} is a set of nondominated points

A point x' is said to be filtered by a filter \mathcal{F} if any of the following properties hold:

- There exists a point $x \in \mathcal{F}$ such that $x' \succeq x$
- $h(x') > h_{\max}$ for some positive finite upper bound h_{\max}

Outline

- 1 Introduction
- 2 Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **6** Conclusions and Future Work

DMS-Filter - Algorithmic Structure

Solutions: $L := \{(x, \alpha) \in \mathcal{F} \mid (F_X(x), h(x)) = (F(x), 0)\}$

DMS-Filter - Algorithmic Structure

Solutions: $L := \{(x, \alpha) \in \mathcal{F} \mid (F_X(x), h(x)) = (F(x), 0)\}.$

16 / 45

Poll Center Selection

• Feasible to Infeasible

• Infeasible to Feasible

Feasible poll center - Most Isolated Point

Feasible poll center - Most Isolated Point

Feasible poll center - Most Isolated Point

$$\begin{split} \delta_{i,j} &= f_{i+1,j} - f_{i,j} \\ \text{for } i &= 1, 2, 3 \text{ and } j = 1, 2. \end{split}$$

$$\gamma_3 = \frac{\frac{\delta_{2,2} + \delta_{1,2}}{2} + \frac{\delta_{2,1} + \delta_{3,1}}{2}}{2}$$

Outline

- 1 Introduction
- ② Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Globalization Strategies

Using Integer Lattices (Torczon [1997], Audet and Dennis [2002])

- requires only simple decrease
- poll directions and step size must satisfy integer/rational requirements Imposing Sufficient Decrease (Kolda, Lewis, and Torczon [2003])
 - use of a forcing function $\rho:(0,+\infty)\to(0,+\infty)$, continuous and nondecreasing, satisfying $\rho(t)/t\to 0$ when $t\downarrow 0$
 - x is nondominated $\Leftrightarrow (F_X(x), h(x)) \notin D(\mathcal{F}, \rho(\alpha))$

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, with $\lim_{k\in K}\alpha_k=0$.

Let \overline{x} be the limit point of a convergent refining subsequence $\{x_k\}_{k\in K}$.

Definition (Refining Directions)

Refining directions for \overline{x} are limit points of $\{d_k/\|d_k\|\}_{k\in K}$, where $d_k\in D_k$ and $x_k+\alpha_kd_k\in\mathcal{S}:=\{x\in X\mid h(x)\leq h_{\max}\}.$

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, with $\lim_{k\in K}\alpha_k=0$.

Let \overline{x} be the limit point of a convergent refining subsequence $\{x_k\}_{k\in K}$.

Definition (Refining Directions)

Refining directions for \overline{x} are limit points of $\{d_k/\|d_k\|\}_{k\in K}$, where $d_k\in D_k$ and $x_k+\alpha_k d_k\in \mathcal{S}:=\{x\in X\mid h(x)\leq h_{\max}\}.$

Some Definitions

Clarke Tangent Cone

$$\begin{split} T_S^{Cl}(x) &:= \{d \in \mathbb{R}^n \mid \forall \{y_k\} \in S, \ y_k \to x, \ \forall \{t_k\} \in \mathbb{R}_+, \ t_k \downarrow 0, \ \exists \{w_k\} \in \mathbb{R}^n, \\ \mathbf{w}_k \to d, \quad \text{such that } y_k + t_k w_k \in S\}. \end{split}$$

Clarke-Jahn Generalized Derivative

Let $g: \mathbb{R}^n \to \mathbb{R}$ be Lipschitz continuous near $\overline{x} \in \mathbb{R}^n$ we can define the Clarke-Jahn generalized derivatives of g along d in the $int(T_S^{Cl}(x))$ to $S \subset \mathbb{R}^n$ at x,

$$g^{\circ}(x;d) := \limsup_{\substack{x' \to x, x' \in S \\ t}} \frac{g(x'+td) - g(x')}{t}$$

Some Definitions

Clarke Tangent Cone

$$\begin{split} T_S^{Cl}(x) := \{ d \in \mathbb{R}^n \mid \forall \{y_k\} \in S, \ y_k \to x, \ \forall \{t_k\} \in \mathbb{R}_+, \ t_k \downarrow 0, \ \exists \{w_k\} \in \mathbb{R}^n, \\ \mathbf{w}_k \to d, \quad \text{such that } y_k + t_k w_k \in S \}. \end{split}$$

Clarke-Jahn Generalized Derivative

Let $g: \mathbb{R}^n \to \mathbb{R}$ be Lipschitz continuous near $\overline{x} \in \mathbb{R}^n$ we can define the Clarke-Jahn generalized derivatives of g along d in the $int(T_S^{Cl}(x))$ to $S \subset \mathbb{R}^n$ at x,

$$g^{\circ}(x;d) := \limsup_{\substack{x' \to x, x' \in S \\ t \mid 0, x' + t d \in S}} \frac{g(x' + td) - g(x')}{t}.$$

Assume that F and h are Lipschitz continuous near \overline{x} .

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in\mathcal{S}$. If $d\in\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If $d\in \mathrm{int}(T_\Omega^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j=j(d)\in\{1,\ldots,m\}$$
 such that $f_{j}^{\circ}(\overline{x};d)\geq0$

Assume that F and h are Lipschitz continuous near \overline{x} .

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in \mathcal{S}$. If $d\in \mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If $d\in \mathrm{int}(T^{Cl}_{\Omega}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j = j(d) \in \{1, \dots, m\}$$
 such that $f_j^{\circ}(\overline{x}; d) \ge 0$

Theorem

• Let $\{x_k^{\mathtt{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in \mathcal{S}$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Clarke critical point:

$$\forall d \in T_S^{Cl}(\overline{x}), h^{\circ}(\overline{x};d) \geq 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_\Omega^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Pareto-Clarke critical point:

$$\forall d \in T^{Cl}_{\Omega}(\overline{x}), \exists j = j(d) \in \{1, \dots, m\} \text{ such that } f_j^{\circ}(\overline{x}; d) \geq 0$$

Theorem

• Let $\{x_k^{\mathrm{I}}\}_{k\in K}$ be an infeasible refining subsequence converging to $\overline{x}\in\mathcal{S}$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_{\mathcal{S}}^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Clarke critical point:

$$\forall d \in T_S^{Cl}(\overline{x}), h^{\circ}(\overline{x}; d) \ge 0$$

• Let $\{x_k^{\mathrm{F}}\}_{k\in K}$ be a feasible refining subsequence converging to $\overline{x}\in\Omega$. If the set of refining directions for \overline{x} is dense in $\mathrm{int}(T_\Omega^{Cl}(\overline{x}))\neq\emptyset$ then \overline{x} is a Pareto-Clarke critical point:

$$\forall d \in T^{Cl}_{\Omega}(\overline{x}), \exists j = j(d) \in \{1, \dots, m\} \text{ such that } f_j^{\circ}(\overline{x}; d) \geq 0$$

Outline

- 1 Introduction
- ② Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $lpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO
 - default values
 - maximum of 20000 function evaluations

- Comparison among DFMO, DMS and DMS-Filter
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization with a feasible point
 - Feasible point provided by Karmitsa [2007]
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criterion
 - DMS and DMS-Filter:
 - $\alpha_k < 10^{-3}$ for all points in the filter
 - DFMO:
 - default values
 - maximum of 20000 function evaluations

Results - Purity

- DFMO
- DMS-Filter
- DMS

Results - Spread Gamma (Γ)

- DFMO
- DMS-Filter
- DMS

Results - Spread Delta $\overline{(\Delta)}$

- DFMO
- DMS-Filter
- DMS

Results - Hypervolume

- DFMO
- DMS-Filter
- DMS

Results - DMS-Filter(line,n) VS DFMO

- DFMO
- DMS-Filter

- Comparison between DMS-Filter and DMultiMads-PB
 - DMultiMads-PB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. Handling of constraints in multiobjective blackbox optimization. ArXiv:2204.00904
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criteria default and allowing a maximum of 20000 function evaluations for both solvers

DMS-Filter VS DMultiMads-PB

DMS-Filter

DMultiMads-PB

Are we starting from a strong code, or already in the basic version the code is not competitive?

- Problems:
 - 100 bound constrained MOO problems
 - number of variables between 1 and 30
 - number of objectives between 2 and 4
- Solvers:
 - DMS
 - DMultiMads-EB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization.
 Computational Optimization and Applications, Springer Verlag, 2021, 79 (2), pp.301-338.
 - MOIF → G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone. An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints, Comput Optim Appl (2018) 69:267–296.
- Stopping criteria one $\alpha_k < 10^{-9}$ and maximum of 20000 function evaluations

Are we starting from a strong code, or already in the basic version the code is not competitive?

Problems:

- 100 bound constrained MOO problems
- number of variables between 1 and 30
- number of objectives between 2 and 4

Solvers:

- DMS
- DMultiMads-EB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization.
 Computational Optimization and Applications, Springer Verlag, 2021, 79 (2), pp.301-338.
- MOIF → G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone. An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints, Comput Optim Appl (2018) 69:267–296.
- Stopping criteria one $\alpha_k < 10^{-9}$ and maximum of 20000 function evaluations

Are we starting from a strong code, or already in the basic version the code is not competitive?

- Problems:
 - 100 bound constrained MOO problems
 - number of variables between 1 and 30
 - number of objectives between 2 and 4
- Solvers:
 - DMS
 - DMultiMads-EB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Computational Optimization and Applications, Springer Verlag, 2021, 79 (2), pp.301-338.
 - MOIF → G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone. An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints, Comput Optim Appl (2018) 69:267–296.
- Stopping criteria one $\alpha_k < 10^{-9}$ and maximum of 20000 function evaluations

Are we starting from a strong code, or already in the basic version the code is not competitive?

- Problems:
 - 100 bound constrained MOO problems
 - number of variables between 1 and 30
 - number of objectives between 2 and 4
- Solvers:
 - DMS
 - DMultiMads-EB → Jean Bigeon, Sébastien Le Digabel, Ludovic Salomon. DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Computational Optimization and Applications, Springer Verlag, 2021, 79 (2), pp.301-338.
 - MOIF → G. Cocchi, G. Liuzzi, A. Papini and M. Sciandrone. An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints, Comput Optim Appl (2018) 69:267–296.
- Stopping criteria one $\alpha_k < 10^{-9}$ and maximum of 20000 function evaluations

DMS original versus MOIF and DMultiMads-EB

- DMS-Original
- MOIF
- DMultiMads-EB

Improvements in DMS

Selection of poll center based on DMultiMads

$$L^{\mathrm{select}} \, := \left\{ (x, \alpha) \in L^k \mid \alpha \geq \tau^{\omega^+} \alpha_{\max}^k \right\}$$

with $\alpha_{\max}^k = \max_{j=1,2,\dots,\lfloor L^k \rfloor} \alpha^j, \ \tau \in (0,1)$ and $\omega^+ \in \mathbb{N}$

• Gamma Γ

$$\begin{split} \gamma_i\left(\mathbf{x}^j\right) &= \begin{cases} 2\frac{f_i\left(\mathbf{x}^2\right) - f_i\left(\mathbf{x}^1\right)}{f_i\left(\mathbf{x}^{\lfloor L^k \rfloor}\right) - f_i\left(\mathbf{x}^1\right)} & \text{if } j = 1\\ 2\frac{f_i\left(\mathbf{x}^{\lfloor L^k \rfloor}\right) - f_i\left(\mathbf{x}^{\lfloor L^k \rfloor} - 1\right)}{f_i\left(\mathbf{x}^{\lfloor L^k \rfloor}\right) - f_i\left(\mathbf{x}^1\right)} & \text{if } j = \lfloor L^k \rfloor\\ \frac{f_i\left(\mathbf{x}^{J+1}\right) - f_i\left(\mathbf{x}^{J-1}\right)}{f_i\left(\mathbf{x}^{\lfloor L^k \rfloor}\right) - f_i\left(\mathbf{x}^1\right)} & \text{oth erwise.} \end{cases} \end{split}$$

 $\gamma = \max_{i=1,\dots,|L^{\text{select}}|} \max_{i=1,\dots,p} \gamma_i(x^j)$

Improvements in DMS

- DMS-Original
- DMS-Improved $\omega^+ = 6$

DMS-Improved versus MOIF and DMultiMads-EB

Everton Silva (NOVA SST)

• If the poll center chosen is infeasible, we update the parameter $h^k_{ exttt{max}}$

$$h_{\max}^{k+1} := \begin{cases} \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x^t\right) < h\left(x_I^k\right) \right\} & \text{if iter k is improving,} \\ h\left(x_I^k\right) & \text{if } h\left(x_I^k\right) = \max_{x \in I^k} h(x), \\ \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x_I^k\right) \le h\left(x^t\right) < \max_{x \in I^k} h(x) \right\} & \text{otherwise.} \end{cases}$$

- ullet Generates a nonincreasing sequence of parameters such that $h^k_{ exttt{max}} o 0$
- Calibration of parameter ω^+ : $\omega^+ = 0$

$$L^{\text{select}} := \left\{ (x,\alpha) \in \mathcal{F}^k \mid h(x) = 0 \text{ and } \alpha = \alpha_{\max}^k \right\}$$
 with $\alpha_{\max}^k = \max_{j=1,2,\dots,|\mathcal{F}^k|} \alpha^j$

• If the poll center chosen is infeasible, we update the parameter h^k_{\max}

$$h_{\max}^{k+1} := \begin{cases} \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x^t\right) < h\left(x_I^k\right) \right\} & \text{if iter k is improving,} \\ h\left(x_I^k\right) & \text{if } h\left(x_I^k\right) = \max_{x \in I^k} h(x), \\ \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x_I^k\right) \le h\left(x^t\right) < \max_{x \in I^k} h(x) \right\} & \text{otherwise.} \end{cases}$$

- Generates a nonincreasing sequence of parameters such that $h^k_{ exttt{max}} o 0$
- Calibration of parameter ω^+ : $\omega^+ = 0$

$$L^{\text{select}} := \left\{ (x,\alpha) \in \mathcal{F}^k \mid h(x) = 0 \text{ and } \alpha = \alpha_{\max}^k \right\}$$
 with $\alpha_{\max}^k = \max_{j=1,2,\dots,|\mathcal{F}^k|} \alpha^j$

• If the poll center chosen is infeasible, we update the parameter h^k_{\max}

$$h_{\max}^{k+1} := \begin{cases} \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x^t\right) < h\left(x_I^k\right) \right\} & \text{if iter k is improving,} \\ h\left(x_I^k\right) & \text{if } h\left(x_I^k\right) = \max_{x \in I^k} h(x), \\ \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x_I^k\right) \le h\left(x^t\right) < \max_{x \in I^k} h(x) \right\} & \text{otherwise.} \end{cases}$$

- Generates a nonincreasing sequence of parameters such that $h^k_{ exttt{max}} o 0$
- Calibration of parameter ω^+ : $\omega^+ = 0$

$$L^{\text{select}} := \left\{ (x,\alpha) \in \mathcal{F}^k \mid h(x) = 0 \text{ and } \alpha = \alpha_{\max}^k \right\}$$
 with $\alpha_{\max}^k = \max_{j=1,2,\dots,|\mathcal{F}^k|} \alpha^j$

• If the poll center chosen is infeasible, we update the parameter h^k_{\max}

$$h_{\max}^{k+1} := \begin{cases} \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x^t\right) < h\left(x_I^k\right) \right\} & \text{if iter k is improving,} \\ h\left(x_I^k\right) & \text{if } h\left(x_I^k\right) = \max_{x \in I^k} h(x), \\ \max_{x^t \in V^{k+1}} \left\{ h\left(x^t\right) : h\left(x_I^k\right) \le h\left(x^t\right) < \max_{x \in I^k} h(x) \right\} & \text{otherwise.} \end{cases}$$

- Generates a nonincreasing sequence of parameters such that $h^k_{ exttt{max}} o 0$
- Calibration of parameter ω^+ : $\omega^+ = 0$

$$L^{\text{select}} := \left\{ (x,\alpha) \in \mathcal{F}^k \mid h(x) = 0 \text{ and } \alpha = \alpha_{\max}^k \right\}$$
 with $\alpha_{\max}^k = \max_{j=1,2,\dots,\left|\mathcal{F}^k\right|} \alpha^j$

Numerical Settings

- Comparison between DMS-Filter Improved and DMultiMads-PB
- 93 biobjective problems with nonlinear constraints and bounds
 - number of variables between 3 and 30
 - number of constraints between 1 and 29
- Initialization in line
 - n-points equally spaced in the line segment, joining the variable upper and lower bounds
- Stopping criteria one $\alpha_k < 10^{-9}$ and maximum of 20000 function evaluations

DMS-Filter (Original versus Improved)

DMS-Filter Original

DMS-Filter Improved

DMS-Filter Improved versus DMultiMads-PB

DMS-Filter Improved

DMultiMads-PB

Outline

- 1 Introduction
- ② Direct Multisearch Filter (DMS-Filter)
- 3 Convergence Results
- 4 Computational Results
- **5** Conclusions and Future Work

Conclusions and Future Work

- DMS-Filter extends filter methods to constrained Multiobjective Derivative-free Optimization
- DMS-Filter presents a well-supported convergence analysis for both globalization strategies
- DMS-Filter presents competitive numerical results for constrained Biobjective Derivative-free Optimization Problems

 Future work comprises extending the approach to problems with more than two objectives

THANKS FOR YOUR ATTENTION! Any comments or questions?

Everton Jose da Silva - ejo silva@campus.fct.unl.pt