

SMA Ver.	0.7.0	ShiftLeft	Test Algeb	raic "Shif	t Left" Ins	structions	23 Mar 2024 00:30:50 Page	2
LOC	ОВЈЕСТ СО	DE ADDR1	ADDR2	STMT				
				22 *		LOW	*************** CORE *************	
		0000000	0000053B		TEST START			
0000000		00000000	00000335	27	USING		Use absolute addressing	
000000		0000000	000001A0	29	ORG	SHIFTEST+X'1A0'	z/Arch Restart new PSW	
00001A0 00001A4	00000001 8000000			31 32		XL4'00000001' XL4'80000000'		
00001A8	00000000 000001E0			33 34	DC	XL4'00000000' A(BEGIN)		
						, •		
00001B0		000001B0	000001D0	36	ORG	SHIFTEST+X'1D0'	z/Arch Program new PSW	
00001D0 00001D4	00020001 80000000			38 39	DC	XL4'00020001' XL4'80000000'		
00001D8 00001DC	00000000 0000DEAD			40 41		XL4'00000000' A(X'DEAD')		

ASMA Ver.	0.7.0 S	hiftLeft	Test Algebr	raic "Shift Le	ft" Ins	structions	23 Mar 2024 00:30:50 Page 3
LOC	OBJECT COD	E ADDR1	ADDR2	STMT			
				44 *		Main F	**************************************
000001E0				47 BEGIN	DS	0Н	
000001E4 000001E8 000001EC	45E0 0220 45E0 0256 45E0 0296 45E0 02DE B2B2 0200		00000220 00000256 00000296 000002DE	49 50 51 52	BAL BAL BAL	R14,SLA R14,SLDA R14,SLAK R14,SLAG	Test Shift Left Single Test Shift Left Double Test Shift Left Single Distinct Test Shift Left Single Long Success! All tests passed!
	4BD0 034C B2B2 0210		0000034C 00000210	56 FAILTEST 57		R13,=H'4' FAILPSW	Backup to actual failure location Abnormal termination disabled wait
00000200				59 GOODPSW	DC	0D'0'	Test SUCCESS disabled wait PSW
00000200 00000204 00000208		0000		60 61 62		XL4'00020001' XL4'80000000' AD(0)	
00000210 00000210 00000214 00000218		0BAD		64 FAILPSW 65 66 67	DC	0D'0' XL4'00020001' XL4'8000000' AD(X'BAD')	Test FAILURE disabled wait PSW

ASMA Ver.	0.7.0	ShiftLef	t	Test Algeb	raic "	Shift	Left" Ins	struct	ions				23 Mar	2024	00:30:50	Page	4
LOC	OBJECT	CODE	ADDR1	ADDR2	STMT												
					69	*****	******	*****	****	*****	*****	*****	*****	*****	******	****	
					70	* 8B	SLA -	- Shif	t Left	t Singl	.e				ΓRS-	al	
					71	*****	******	*****	****	*****	*****	*****	*****	*****	*****	****	
					72												
					73		SHIFT LEFT	T SING	LE (SI	LA)							
					74 75		The SHIFT	I E E T	CTNGLI	E inctn	uction	ic ci	milan +	0			
					76		SHIFT LEFT										
					77	* 3	31 numerio	c bits	of a	single	regis	ter. T	herefor	e, thi	S		
					78		instrucți	on per	forms	an alg	gebraic	left	shift o	f a 32	-bit		
					79 80	* S	signed bir	nary 1	ntegei	r.							
					81		or examp	le. if	the o	content	s of r	egiste	r 2 are	•			
					82		о. схар.	,				-6-5-0	4. c	•			
					83		00 7F 0A 7	72 = 0	00000	00 0111	.1111 0	000101	0 01110	010			
					84												
					85 86		The instru	uction	:								
					87		Machine Fo	ormat									
					88	*											
					89		0	1		2) -	3		4			
					90 91		++	+ - I	2	+ + ///	0	+	+- 008	+	RS-a		
					92		++							+	K3-a		
					93			•			•	•	•	•			
					94		Assembler	Forma	t								
					95 96		On Codo	D1 D	2/02\								
					96 97		Op Code	КІ, О.	Z(DZ)								
					98		SLA	2,8	(0)								
					99							_					
					100		results in							bit			
					101 102		ositions	so th	at its	s new c	ontent	s are:					
					103		7F 0A 72 6	90 =									
					104	*											
					105		0111111	1 0000	1010 (0111001	.0 0000	0000					
					106 107		Condition	code	2 ic 4	cat to	indica	+6 +h2	+ +ha n	AC111+	ic		
					107		greater th			שבנ נט	THUTCA	ice tild	c che r	SOUTE	12		
					109	*	J. 20. 22. C.										
					110		[f a left	shift	of n	ine pla	ices ha	d been	specif	ied, a			
					111 112		significar										
					112		oosition 1 indicate 1								1 ow		
					114		nask bit										
					115	* i	interrupti										
					116	***** *	******	*****	*****	*****	*****	****	*****	*****	*****	****	
					11/		ጥጥጥጥጥጥ	· · · · · · · · · · · · · · · · · · ·	~~~~~	ጥጥጥጥጥ			~~~~~~~		∵ ጥጥጥጥጥጥጥ	~ ~ ~ ~ ~	

ASMA Ver.	0.7.0	ShiftLef	t	Test Algebr	raic "Shift L	eft" In	structions	23 Mar 2024 00:30:50 Page	5
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT				
00000220			00000000		119	USING	TTAB32,R1		
00000220	5810 0340			00000340	121 SLA	L	R1,=A(TST32TAB)	R1> test table	
00000224 00000228	9825 1000 4344 033A			00000000 0000033A	123 SLA1 124	LM IC	R2,R5,0(R1) R4,BCMASKS(R4)	Load parameters Get BC instruction mask	
	8B20 3000			00000000	126	SLA	R2,0(R3)	Do the shift	
	4440 0252 45D0 01F4			00000252 000001F4	127 128	EX BAL	R4,SLACC R13,FAILTEST	Expected CC? Unexpected CC! FAIL!	
	1525 4780 0242 45D0 01F4			00000242 000001F4	130 SLA2 131 132	CLR BE BAL	R2,R5 SLA3 R13,FAILTEST	Expected results? Yes, continue No! Unexpected results! FAIL!	
	4110 1010 D503 0344	1000	00000344	00000010 00000000	134 SLA3 135	LA CLC	R1,TT32NEXT =CL4'END!',0(R1)	Next test table entry End of test table?	
	4770 0224 07FE			00000224	136 137	BNE BR	SLA1 R14	No, loop Yes, return to caller	
00000252	4700 0238			00000238	139 SLACC	ВС	0,SLA2	Expected condition code?	
00000256					141	DROP	R1		

ASMA Ver.	0.7.0	ShiftLeft		Test Algebr	aic "S	hift Left" Instructions 23 Mar 2024 (00:30:50	Page	6
LOC	OBJECT	CODE	ADDR1	ADDR2	STMT				
						**************************************	******* RS-		
					145 **	******************	******	****	
					146 * 147 *				
					148 * 149 *				
					150 *	numeric bits of an even-odd register pair to the lef			
					151 * 152 *		1		
					153 * 154 *	binary integer.			
					155 *	For example, if the contents of registers 2 and 3 are	e:		
					156 * 157 *				
					158 *				
					159 * 160 *				
					161 * 162 *				
					163 *				
					164 * 165 *				
					166 * 167 *				
					168 *	++			
					169 * 170 *		RS-a		
					171 *				
					172 * 173 *				
					174 * 175 *				
					176 *	SLDA 2,31(0)			
					177 * 178 *		31		
					179 * 180 *	bit positions, so that their new contents are:			
					181 *	7F 6E 5D 4C 00 00 00 00 =			
					182 * 183 *				
					184 * 185 *	00000000 00000000 00000000 00000000			
					186 *	Because significant bits are shifted out of bit positions	tion		
					187 * 188 *		ask bit		
					189 *	in the PSW is one, a fixed-point-overflow program			
					190 * 191 *				
					192 **	**********************	******	****	

ASMA Ver.	0.7.0 Sh	niftLeft	Test Algeb	raic "Shift Lo	eft" In	structions	23 Mar 2024 00:30:50 Page	8
LOC	OBJECT CODE	ADDR1	ADDR2	STMT				
				222 ******	*****	*******	***********	
				223 * EBDD	SLAK	- Shift Left Single	Distinct [RSY-a]	
					*****	************	************	
				225 *		T CINCLE DICTINGT /	-1 A/()	
				226 * SH: 227 *	TFI LEF	T SINGLE DISTINCT (S	SLAK)	
				228 *				
					Op Code	R1,R3,D2(B2)		
				230 *				
				231 *	SLAK	2,3,8(0)		
				232 *				
				233 * 234 * Th:	ic inct	ruction is basically	videntical to SLA except that	
							eld in R3 and remains unchanged,	
							It shift being placed into R1.	
				237 *			•	
				238 *****	*****	*********	************	
00000296		00000000		240	USING	TTAB32,R1		
						/		
00000296	5810 0340		00000340	242 SLAK	L	R1,=A(TST32TAB)	R1> test table	
0000029A	9825 1000		00000000	244 SLAK1	LM	R2,R5,0(R1)	Load parameters	
0000029E	1862			245	LR	R6,R2	Load beginning value	
000002A0	1F22			246	SLR	R2,R2	Clear target register	
000002A2	4344 033A		0000033A	247	IC	R4,BCMASKS(R4)	Get BC instruction mask	
000002A6	EB26 3000 00DD)	00000000	249	SLAK	R2,R6,0(R3)	Do the shift	
	4440 02DA		000002DA	250	EX	R4,SLAKCC	Expected CC?	
000002B0	45D0 01F4		000001F4	251	BAL	R13,FAILTEST	NOT CC2! FAIL!	
000000004	1535			252 CLAV2	CLD	חם הב	Expected megults)	
000002B4	1525 4780 02BE		000002BE	253 SLAK2 254	CLR BE	R2,R5 SLAK3	Expected results? Yes, continue	
	45D0 01F4		000002BL	255	BAL	R13, FAILTEST	No! Unexpected results! FAIL!	
						•	·	
000002BE	5560 1000		0000000	257 SLAK3	CL	R6,BEGVAL32	Input register unchanged?	
	4780 02CA		000002CA	258	BE	SLAK4	Yes, continue	
000002C6	45D0 01F4		000001F4	259	BAL	R13,FAILTEST	No! Unexpected results! FAIL!	
000002CA	4110 1010		00000010	261 SLAK4	LA	R1,TT32NEXT	Next test table entry	
000002CE	D503 0344 1000	00000344	00000000	262	CLC	=CĹ4'END!',0(R1)	End of test table?	
	4770 029A		0000029A	263	BNE	SLAK1	No, loop	
000002D8	07FE			264	BR	R14	Yes, return to caller	
000002DA	4700 02B4		000002B4	266 SLAKCC	ВС	0,SLAK2	Expected condition code?	
300000011			1000257	200 02.1100		: , · · · · · ·	p = = = = = = = = = = = = = = = = = =	
000002DE				268	DROP	R1		

ASMA Ver.	0.7.0	ShiftLet	ft	Test Algebr	aic "Shi	ift Left"	Ins	tructions	23 Mar 2024 00:30:50 Page	9
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT					
					271 *	EBØB SLAG	ì -	Shift Left Single Lo	**************************************	
					273 * 274 * 275 *			SINGLE LONG (SLAG)		
					276 * 277 * 278 *	Assembl	.er	Format		
					279 * 280 *			R1,R3,D2(B2)		
					281 * 282 * 283 *	SLA	١G	2,3,31(0)		
					284 * 285 * 286 *			uction is identical f ft instead of a 31-b	to SLAK except that the shift is a it shift.	
						*******	***	*******	***********	
000002DE			00000000		289	USI	NG	TTAB64,R1		
000002DE	5810 0348			00000348	291 SL/	AG L		R1,=A(TST64TAB)	R1> test table	
000002EC 000002F0 000002F4	B90B 0022 E330 1000 5840 1008 5850 100C 4355 033A E360 1010			00000000 00000008 0000000C 0000033A 00000010	293 SLA 294 295 296 297 298	AG1 SLG LG L L IC LG		R2,R2 R3,BEGVAL64 R4,SHIFT64 R5,CC64 R5,BCMASKS(R5) R6,ENDVAL64	Clear target register Load beginning value Get shift amount Get expected CC Get BC instruction mask Load expected ending value	
	EB23 4000 4450 0336 45D0 01F4			00000000 00000336 000001F4	300 301 302	SLA EX BAL		R2,R3,0(R4) R5,SLAGCC R13,FAILTEST	Do the shift Expected CC? Unexpected CC! FAIL!	
00000310	B921 0026 4780 0318 45D0 01F4			00000318 000001F4	304 SLA 305 306	AG2 CLG BE BAL		R2,R6 SLAG3 R13,FAILTEST	Expected results? Yes, continue No! Unexpected results! FAIL!	
0000031E	E330 1000 4780 0326 45D0 01F4			00000000 00000326 000001F4	308 SLA 309 310	AG3 CLG BE BAL		R3,BEGVAL64 SLAG4 R13,FAILTEST	<pre>Input register unchanged? Yes, continue No! Unexpected results! FAIL!</pre>	
00000326 0000032A	4110 1018 D503 0344 4770 02E2	1000	00000344	00000018	312 SLA 313 314 315			R1,TT64NEXT =CL4'END!',0(R1) SLAG1 R14	Next test table entry End of test table? No, loop Yes, return to caller	
00000336	4700 030C			0000030C	317 SLA	AGCC BC		0,SLAG2	Expected condition code?	
0000033A					319	DRC)P	R1		

```
ShiftLeft -- Test Algebraic "Shift Left" Instructions
                                                                                    23 Mar 2024 00:30:50 Page
ASMA Ver. 0.7.0
                                                                                                             10
 LOC
          OBJECT CODE
                          ADDR1
                                  ADDR2
                                          STMT
                                           322 *
                                                                 Working Storage
                                           325 BCMASKS DC X'80', X'40', X'20', X'10'
0000033A 80402010
                                                                                CC 0, 1, 2, 3
00000340
                                                      LTORG ,
                                                                  Literals Pool
                                           327
                                           328
                                                           =A(TST32TAB)
00000340
        00000350
00000344 C5D5C45A
                                           329
                                                           =CL4'END!'
                                           330
                                                           =A(TST64TAB)
00000348 00000418
                                                           =H'4'
0000034C 0004
                                           331
00000350
                                           333 TST32TAB DC
                                                         0D'0'
                                           334 *************************
                                           335 *
                                                      old way slowest possible positive
                                           336 *
                                                                       shift CC
                                                           A(X'00000001'),A(30),A(2)
00000350 00000001 0000001E
                                           337
                                                     DC
                                                          A(X'40000000')
0000035C 4000000
                                           338
                                           339 *
                                           340 **************************
                                           341 *
                                                      old way slowest possible negative
                                           342 *
                                                                       shift CC
00000360 FFFFFFF 0000001F
                                           343
                                                           A(X'FFFFFFFFF'), A(31), A(1)
0000036C 80000000
                                           344
                                                      DC A(X'80000000')
                                           345 *
                                           346 ***************************
                                           347 *
                                                      positive, 0 bits
                                           348 *
                                                                       shift CC
                                                           A(X'00000123'),A(0),A(2)
                                           349
00000370 00000123 00000000
                                                      DC
                                                          A(X'00000123')
                                                      DC
                                           350
0000037C 00000123
                                           351 *
                                           352 **************************
                                           353 *
                                                      negative, 0 bits
                                           354 *
                                                                       shift CC
00000380 80000123 00000000
                                           355
                                                          A(X'80000123'), A(0), A(1)
0000038C 80000123
                                           356
                                                          A(X'80000123')
                                           357 *
                                           358 **************************
                                           359 *
                                                      max positive, 1 bit
                                           360 *
                                                                       shift CC
                                                          A(X'7FFFFFFFF'), A(1), A(3)
00000390 7FFFFFF 00000001
                                           361
                                                      DC
0000039C 7FFFFFE
                                                          A(X'7FFFFFFE')
                                           362
                                           363 *
                                           364 ****************************
                                           365 *
                                                      max negative, 1 bit
                                           366 *
                                                                        shift CC
                                                          A(X'80000000'),A(1),A(3)
000003A0 80000000 00000001
                                           367
000003AC 80000000
                                           368
                                                      DC
                                                          A(X'80000000')
                                           369 *
                                           370 ****************************
                                           371 *
                                                      positive, 1 bit
                                           372 *
                                                                       shift CC
                                                          A(X'22222222'), A(1), A(2)
000003B0 2222222 00000001
                                           373
                                                      DC
000003BC 4444444
                                           374
                                                      DC A(X'4444444')
                                           375 *
                                           376 ******************************
```

```
ShiftLeft -- Test Algebraic "Shift Left" Instructions 23 Mar 2024 00:30:50 Page
ASMA Ver. 0.7.0
 LOC
           OBJECT CODE
                            ADDR1
                                     ADDR2
                                              STMT
00000418
                                              409 TST64TAB DC
                                                                0D'0'
                                              410 *************
                                                                       ********
                                               411 *
                                                          old way slowest possible positive
                                               412 *
                                                                                            shift CC
00000418
                                                              A(X'00000000'),A(X'00000001'),A(62),A(2)
         00000000 00000001
                                              413
                                                                A(X'4000000'), A(X'00000000')
00000428 40000000 00000000
                                              414
                                              415 *
                                               416 ****************************
                                               417 *
                                                          old way slowest possible negative
                                               418 *
                                                                                            shift CC
00000430 FFFFFFF FFFFFFF
                                               419
                                                          DC
                                                                A(X'FFFFFFFF'), A(X'FFFFFFFF'), A(63), A(1)
                                                                A(X'80000000'),A(X'00000000')
                                               420
                                                          DC
00000440 80000000 00000000
                                              421 *
                                              422 ***************************
                                              423 *
                                                           positive, 0 bits
                                              424 *
                                                                                            shift CC
                                                                A(X'00000000'), A(X'00000123'), A(0), A(2)
00000448 00000000 00000123
                                               425
00000458 00000000 00000123
                                               426
                                                                A(X'00000000'),A(X'00000123')
                                              427 *
                                               428 ****************************
                                               429 *
                                                          negative, 0 bits
                                               430 *
                                                                                            shift CC
                                                                A(X'80000000'), A(X'00000123'), A(0), A(1)
00000460 80000000 00000123
                                               431
00000470 80000000 00000123
                                              432
                                                               A(X'80000000'),A(X'00000123')
                                               433 *
                                               434 ****************************
                                              435 *
                                                          max positive, 1 bit
                                              436 *
                                                                                            shift CC
                                                                A(X'7FFFFFFF'), A(X'FFFFFFFF'), A(1), A(3)
00000478 7FFFFFF FFFFFFF
                                               437
                                                          DC
                                                                A(X'7FFFFFFF'),A(X'FFFFFFFE')
                                                          DC
00000488 7FFFFFF FFFFFFE
                                               438
                                               439 *
                                               440 **************************
                                              441 *
                                                          max negative, 1 bit
                                               442 *
                                                                                            shift CC
00000490 80000000 00000000
                                               443
                                                                A(X'80000000'), A(X'00000000'), A(1), A(3)
                                                                A(X'80000000'), A(X'00000000')
000004A0 80000000 00000000
                                               444
                                               445 *
                                               446 **************************
                                               447 *
                                                          positive, 1 bit
                                              448 *
                                                                                            shift CC
                                                                A(X'22222222'), A(X'22222222'), A(1), A(2)
000004A8 2222222 2222222
                                               449
000004B8 4444444 44444444
                                                          DC A(X'44444444'), A(X'44444444')
                                               450
                                              451 *
                                               452 ****************************
                                              453 *
                                                          negative, 1 bit
                                              454 *
                                                                                            shift CC
                                                                A(X'CAAAAAAA'), A(X'AAAAAAAA'), A(1), A(1)
000004C0 CAAAAAA AAAAAAA
                                               455
                                                                A(X'95555555'), A(X'55555554')
000004D0 95555555 55555554
                                               456
                                              457 *
                                              458 ****************************
                                               459 *
                                                          positive, 1 bit, OVERFLOW
                                              460 *
                                                                                            shift CC
000004D8 77777777 7777777
                                                                A(X'77777777'), A(X'77777777'), A(1), A(3)
                                               461
000004E8 6EEEEEEE EEEEEEEE
                                               462
                                                                A(X'6EEEEEEE'), A(X'EEEEEEEE')
                                               463 *
                                               464 ****************************
```

ASMA Ver.	0.7.0	ShiftLe	ft	Test Algeb	raic	"Shift Le	ft" In	structions	23 Mar 2024 00:30:50 Page	14
LOC	ОВЈЕСТ	CODE	ADDR1	ADDR2	STMT					
					486	*		Test	**************************************	
00000000 00000004 00000008 0000000C	00000000 00000000 00000000 00000000		00000010	00000001	490 491 492 493	TTAB32 BEGVAL32 SHIFT32 CC32 ENDVAL32 TT32NEXT	DS DS DS	A A A A	Starting value shift amount (#of bits to shift) Expected condition code Expected ending value	
00000000 00000004 00000008 0000000C 00000010 00000014	00000000 00000000 00000000 00000000 0000		00000018	00000001	497 498 499 500 501 502	SHIFT64 CC64 ENDVAL64	DS DS DS DS	A A A A A A	Starting value (hi 32) Starting value (lo 32) shift amount (#of bits to shift) Expected condition code Expected ending value (hi 32) Expected ending value (lo 32)	
					506			Reg	**************************************	
			00000000 00000001 00000003 00000004 00000005 00000006 00000007 00000008 000000000 0000000000	0000001 0000001 0000001 0000001 0000001 000000	520 521 522 523	R1 R2 R3 R4 R5 R6 R7	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
					526		END			

ASMA Ver. 0.7.0		iftLeft		est Al				Le†t"	Inst	ructi	ons				2	3 Mar	2024	00:3	Ø:50	Page	15
SYMBOL	TYPE	VALUE	LENGTH	DEFN	REFE	RENCE	S														
BCMASKS	X	00033A	1	325	124	199	247	297													
BEGIN	Н	0001E0	2	47	34																
BEGVAL32	Α	000000	4	490	257																
BEGVAL64	Α	000000	4	497	294	308															
CC32	Α	800000	4	492																	
CC64	Α	00000C	4	500	296																
ENDVAL32	Α	00000C	4	493																	
ENDVAL64	Α	000010	4	501	298																
FAILPSW	D	000210	8	64	57																
FAILTEST	I	0001F4	4	56	128	132	203	207	211	251	255	259	302	306	310						
GOODPSW	D	000200	8	59	54																
IMAGE	1	000000	1340	0																	
RØ	Ū	000000	1	509	27																
R1	Ü	000001	_ 1	510	119	121	123	134	135	141	194	196	198	213	214	220	240	242	244	261	262
	J	000001	-	310	268	289	291	312	313	319		170	170				210			201	202
R10	U	00000A	1	519	_00	200	- / ±	J ± Z	213	J . J											
R11	Ü	00000A	1	520																	
R12	U	00000C	1	521																	
R13		00000C	1	521	56	128	132	203	207	211	251	255	259	302	306	310					
	U		_	522									259	302	סשכ	210					
R14	U	00000E	1		49	50	51	52	137	216	264	315									
R15	U	00000F	1	524	422	126	120	100	201	205	244	245	246	240	252	202	200	204			
R2	U	000002	1	511	123	126	130	198	201	205	244	245	246	249	253	293	300	304			
R3	U	000003	1	512	126	209	249	294	300	308											
R4	U	000004	1	513	124	127	201	247	250	295	300										
R5	U	000005	1	514	123	130	199	202	244	253	296	297	301								
R6	U	000006	1	515	205	245	249	257	298	304											
R7	U	000007	1	516	198	209															
R8	U	800000	1	517																	
R9	U	000009	1	518																	
SHIFT32	Α	000004	4	491																	
SHIFT64	Α	000008	4	499	295																
SHIFTEST	J	000000	1340	25	29	36															
SLA	I	000220	4	121	49																
SLA1	I	000224	4	123	136																
SLA2	Ī	000238	2	130	139																
SLA3	Ī	000242	4	134	131																
SLACC	Ī	000252	4	139	127																
SLAG	Ť	000252 0002DE	4	291	52																
SLAG1	T	0002E2	4	293	314																
SLAG2	Ť	0002E2	4	304	317																
SLAG3	Ť	000300	6	308	305																
SLAG4	T	000318	4	312	309																
SLAGCC	T	000326	4	317	301																
	T																				
SLAK		000296	4	242	51																
SLAK1	Ţ	00029A	4	244	263																
SLAK2	Ţ	0002B4	2	253	266																
SLAK3	Ţ	0002BE	4	257	254																
SLAK4	Ī	0002CA	4	261	258																
SLAKCC	Ι	0002DA	4	266	250																
SLDA	I	000256	4	196	50																
SLDA1	I	00025A	4	198	215																
C D A O	I	00026E	2	205	218																
SLDA2	_																				
SLDA2 SLDA3	Ī	000278	2	209	206																
SLDA3	I I		2 4																		
	I I I	000278 000282 000292		209 213 218	206 210 202																

TYPE	VALUE	LENGTH	DEFN	REFE	RENCE	S									
D	000418	8	409	196											
	000010	1	494 503	134 213	261 312										
4	000000	16	489	119	240										
Α	000340	4	328	121	242										
Α	000348 000344	4	330	196	291	262	313								
Н	00034C	2	331	56	217	202	313								
	D U U 4 4 A A C	D 000418 U 000010 U 000018 4 000000 4 000000 A 000340 A 000348 C 000344	D 000418 8 U 000010 1 U 000018 1 4 000000 16 4 000000 24 A 000340 4 A 000348 4 C 000344 4	D 000418 8 409 U 000010 1 494 U 000018 1 503 4 000000 16 489 4 000000 24 496 A 000340 4 328 A 000348 4 330 C 000344 4 329	D 000418 8 409 196 U 000010 1 494 134 U 000018 1 503 213 4 000000 16 489 119 4 000000 24 496 194 A 000340 4 328 121 A 000348 4 330 196 C 000344 4 329 135	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214	U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313	D 000418 8 409 196 U 000010 1 494 134 261 U 000018 1 503 213 312 4 000000 16 489 119 240 4 000000 24 496 194 289 A 000340 4 328 121 242 A 000348 4 330 196 291 C 000344 4 329 135 214 262 313

	ShiftLeft -	- Test Algebraic	"Snift Left" I	nstructions	23 Mar	2024 00:30:50	Page	17
CRO DEFN REFEI								
defined macros								

	ShiftLeft -	- Test Algebraic "Shift		23 Mar 2024 00:30:50	Page 19
STMT C:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	sh\Dosumonts\\/isus	FILE NAME	: /Projects\ASMA-0\ShiftLeft\S	hiftloft orm	
C. \USers\FI	.SII\DOCumentS\VISua	1 Studio 2006 (Projects (My	rerojects (Asma-@\shiii tlei t\s	IIII CLEI C. aSIII	
NO ERRORS FOUN	ID **				