Minimum bases in permutation groups

Lawrence Chen

October 24, 2022

Honours presentation Monash University Supervised by A/Prof. Heiko Dietrich and Dr Santiago Barrera Acevedo

Contents

Some basic group theory

Permutations

Permutation groups

Group actions

Orbits and stabilisers

The Rubik's group

Representing the cube and its operations

The Rubik's group of permutations

Orbits in the Rubik's group

Transitive action on corners

Bases and stabiliser chains

Bases and stabiliser chains

What is the size of the Rubik's group?

Base sizes of primitive groups

Affine groups

Non-large base permutation groups

Main result in thesis

Aim: analyse Blaha's 1992 paper on NP-completeness of min base problem, and recent results for primitive perm groups.

• How can we represent *operations* of a cube?

- How can we represent *operations* of a cube?
- How many states does a Rubik's cube have?

- How can we represent *operations* of a cube?
- How many states does a Rubik's cube have?
- How can we better *understand* operations of a cube?

- How can we represent operations of a cube?
- How many states does a Rubik's cube have?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

- How can we represent operations of a cube?
- · How many states does a Rubik's cube have?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

(J. A. Paulos, Innumeracy)

Ideal Toy Company stated on the package of the original Rubik cube that there were **more than three billion** possible states the cube could attain. It's analogous to McDonald's proudly announcing that they've sold **more than 120** hamburgers.

Some basic group theory

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, \ldots, n\}$$
, write $Sym(n)$.)

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

g

It means

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$,

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, \ldots, n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$, $4^g = 5$,

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, \ldots, n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$, $4^g = 5$, $5^g = 1$,

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, \ldots, n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$, $4^g = 5$, $5^g = 1$, $2^g = 6$,

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$, $4^g = 5$, $5^g = 1$, $2^g = 6$, $6^g = 2$,

Definition (permutation)

Permutation of Ω is bijection $g:\Omega\to\Omega$.

Symmetric group Sym(Ω) is set of permutations of Ω .

(For
$$\Omega = [n] := \{1, ..., n\}$$
, write Sym (n) .)

Write 1 = () for identity. Write i^g instead of g(i) for *image*.

Cycle notation: $g = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means $1^g = 4$, $4^g = 5$, $5^g = 1$, $2^g = 6$, $6^g = 2$, $3^g = 3$.

Product/composition: for $g,h\in \mathrm{Sym}(\Omega),gh$ means "first g, then h", so $\alpha^{gh}=(\alpha^g)^h$.

Product/composition: for $g,h \in \mathrm{Sym}(\Omega), gh$ means "first g, then h", so $\alpha^{gh} = (\alpha^g)^h$. E.g. $g = (1,2,3) \in \mathrm{Sym}(4),$

Product/composition: for $g, h \in \operatorname{Sym}(\Omega)$, gh means "first g, then h", so $\alpha^{gh} = (\alpha^g)^h$. E.g. $g = (1, 2, 3) \in \operatorname{Sym}(4)$, $h = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

Product/composition: for $g, h \in \operatorname{Sym}(\Omega)$, gh means "first g, then h", so $\alpha^{gh} = (\alpha^g)^h$. E.g. $g = (1, 2, 3) \in \operatorname{Sym}(4)$, $h = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$gh = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in Sym(4).$$

Product/composition: for $g, h \in \text{Sym}(\Omega)$, gh means "first g, then h", so $\alpha^{gh} = (\alpha^g)^h$. E.g. $g = (1, 2, 3) \in \text{Sym}(4)$, $h = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$gh = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in Sym(4).$$

Note: here, $gh \neq hg$, since $1^{gh} = 4$ but $1^{hg} = (1^h)^g = 3^g = 1$. Identity 1 = () satisfies 1g = g1 = g for $g \in \operatorname{Sym}(\Omega)$.

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

(i) **(closure)** $gh \in G$ for $g, h \in G$;

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) (identity) $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) (identity) $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Definition (generator)

Set X **generates** G if every $g \in G$ is $g = x_1^{\varepsilon_1} \cdots x_r^{\varepsilon_r}$ for some $r \in \mathbb{N}$, $x_i \in X$ **generators**, $\varepsilon_i \in \{\pm 1\}$; write $G = \langle X \rangle$.

Definition (permutation group)

Perm group on Ω (of deg n) is subset $G \leq \operatorname{Sym}(\Omega)$ ($|\Omega| = n$) s.t.

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Definition (generator)

Set X **generates** G if every $g \in G$ is $g = x_1^{\varepsilon_1} \cdots x_r^{\varepsilon_r}$ for some $r \in \mathbb{N}$, $x_i \in X$ **generators**, $\varepsilon_i \in \{\pm 1\}$; write $G = \langle X \rangle$.

Example (dihedral group)

Let r = (1, 2, 3, 4), $s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ (e.g. $srs^{-1}r^2 = r$), "symmetries of square".

Group actions

Definition (group action)

For $G \operatorname{Sym}(\Omega)$ and $S \neq \emptyset$, a G-action is map $S \times G \to S$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in S$ and $g, h \in G$. **Degree** of action is |S|.

Idea: $\alpha \in S$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Group actions

Definition (group action)

For $G \operatorname{Sym}(\Omega)$ and $S \neq \emptyset$, a G-action is map $S \times G \to S$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in S$ and $g, h \in G$. **Degree** of action is |S|.

Idea: $\alpha \in S$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Example (natural action)

 $G \leq \operatorname{Sym}(\Omega)$ acts on $S = \Omega$ by $\alpha^g := \alpha^g$ (image) for $\alpha \in \Omega, g \in G$.

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Note: r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4). Visualise D_8 -action by labelling vertices of square by [4]: $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Note: r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4). Visualise D_8 -action by labelling vertices of square by [4]: $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Note: r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4). Visualise D_8 -action by labelling vertices of square by [4]: $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Note: r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4). Visualise D_8 -action by labelling vertices of square by [4]: $g \in D_8$ sends vertex at i to i^g .

Example (dihedral group)

Recall $D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ acts naturally on [4].

Note: r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4). Visualise D_8 -action by labelling vertices of square by [4]: $g \in D_8$ sends vertex at i to i^g .

Orbits and stabilisers

Definition (orbit)

If G acts on S, then **orbit** of $\alpha \in S$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in S$ reachable from fixed $\alpha \in S$ by moves $g \in G$.

One orbit only: **transitive** action.

Orbits and stabilisers

Definition (orbit)

If G acts on S, then **orbit** of $\alpha \in S$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in S$ reachable from fixed $\alpha \in S$ by moves $g \in G$.

One orbit only: transitive action.

Definition (stabiliser)

If G acts on S, then **stabiliser** of $\alpha \in S$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in S$.

7

Orbit α^G : states $\alpha^g \in \mathcal{S}$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1: $1^1 = 1$, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

8

Orbit α^G : states $\alpha^g \in \mathcal{S}$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

8

Orbit α^G : states $\alpha^g \in \mathcal{S}$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Orbit α^G : states $\alpha^g \in \mathcal{S}$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Theorem (orbit-stabiliser)

If G acts on S, then for $\alpha \in S$, $|\alpha^G||G_\alpha| = |G|$.

The Rubik's group

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

In **solved state** 1, label stickers (except each centre) using [48]:

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

In **solved state** 1, label stickers (except each centre) using [48]:

6 **generators** (*moves* in CC): *U*, *L*, *F*, *R*, *B*, *D* (rot. *clockwise*).

Representing the cube and its operations (ii)

From *solved state* 1, consider *F* which rotates front face clockwise:

Representing the cube and its operations (ii)

From *solved state* 1, consider *F* which rotates front face clockwise:

$$F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)$$
$$(7, 28, 42, 13)(8, 30, 41, 11) \in Sym(48).$$

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- $\bullet \ \ F = (17, 19, 24, 22) \, \big(18, 21, 23, 20\big) \, \big(6, 25, 43, 16\big) \, \big(7, 28, 42, 13\big) \, \big(8, 30, 41, 11\big)$
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46) \, \big(42,45,47,44\big) \, \big(14,22,30,38\big) \, \big(15,23,31,39\big) \, \big(16,24,32,40\big)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$, 1 = ().

Definition (Rubik's group)

 $\mathcal{G} = \langle U, L, F, R, B, D \rangle \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called **Rubik's group**.

Clearly G is finite, but what is |G|?

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
1 \cup := (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11.35.27.19)::
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35)::
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8,30,41,11);;
4 R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(
      8.33.48.24)::
5 B := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1,14,48,27);;
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);;
7 G := Group( U, L, F, R, B, D );
```

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
1 \cup 1 = (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11.35.27.19)::
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35)::
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8,30,41,11);;
4 R := (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(
      8,33,48,24);;
5 B := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1,14,48,27);;
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);;
7 G := Group(U, L, F, R, B, D);
```

Order cmd: $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3 \cdot 10^{19}$. How?

Orbits in the Rubik's group

Two \mathcal{G} -orbits: corner stickers $1^{\mathcal{G}}$, edge stickers $2^{\mathcal{G}}$.

Definition (block)

If G acts transitively on S and $\Delta \subseteq S$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq S$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Definition (block)

If G acts transitively on S and $\Delta \subseteq S$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq S$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq S$.

Examples of blocks: singletons, S, orbits.

Definition (block)

If G acts transitively on S and $\Delta \subseteq S$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq S$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq S$.

Examples of blocks: singletons, S, orbits.

Definition (primitivity)

A *transitive G*-action is **primitive** if there are no nontrivial blocks; otherwise it is **imprimitive**.

If G is perm group with primitive natural action, G is **primitive**.

Definition (block)

If G acts transitively on S and $\Delta \subseteq S$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq S$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq S$.

Examples of blocks: singletons, S, orbits.

Definition (primitivity)

A *transitive G*-action is **primitive** if there are no nontrivial blocks; otherwise it is **imprimitive**.

If *G* is perm group with primitive natural action, *G* is **primitive**.

For block Δ , define **block system** $\Sigma = \{\Delta^g : g \in G\}$ (partitions S); then G acts on Σ ; if Δ is *maximal*, then acts primitively.

 ${\mathcal G}$ acts transitively on corner stickers $1^{\mathcal G}.$ In this action:

 \mathcal{G} acts transitively on corner stickers $1^{\mathcal{G}}$. In this action:

stickers stay together.

 ${\mathcal G}$ acts primitively on Σ (degree 8); $g\in {\mathcal G}$ induces perm of Σ , e.g.

 ${\mathcal G}$ acts primitively on Σ (degree 8); $g\in {\mathcal G}$ induces perm of Σ , e.g.

$$F \mapsto (\underbrace{FUL}_{FDL^F}, \underbrace{FUR}_{FUL^F}, \underbrace{FDR}_{FDR^F}, \underbrace{FDL}_{FDR^F}) \in \operatorname{Sym}(\Sigma).$$

 \mathcal{G} acts primitively on Σ (degree 8); $g \in \mathcal{G}$ induces perm of Σ , e.g.

$$F \mapsto (\underbrace{FUL}_{FDL^F}, \underbrace{FUR}_{FUL^F}, \underbrace{FDR}_{FUR^F}, \underbrace{FDR}_{FDR^F}) \in \operatorname{Sym}(\Sigma).$$

 \mathcal{G} induces every perm of Σ (so Sym(8) "is" *primitive* quotient of \mathcal{G}).

Definition (Base, stabiliser chain)

If
$$G \leq \operatorname{Sym}(\Omega)$$
, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1, \dots, \beta_r} = 1$. (Recall: $G_{\beta_1, \dots, \beta_r} = \{g \in G : \beta_1^g = \beta_1, \dots, \beta_r^g = \beta_r\}$.)

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1,\dots,\beta_r} = 1$. (*Recall:* $G_{\beta_1,\dots,\beta_r} = \{g \in G : \beta_1^g = \beta_1,\dots,\beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where
$$G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$$
.

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1, \dots, \beta_r} = 1$. (Recall: $G_{\beta_1, \dots, \beta_r} = \{g \in G : \beta_1^g = \beta_1, \dots, \beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where $G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$.

Base B contains elts of Ω such that only $1 \in G$ fixes every $\beta_i \in B$. (Short base desirable: how to compute **min base** of length b(G)?)

Definition (Base, stabiliser chain)

If $G \leq \operatorname{Sym}(\Omega)$, distinct elts $B = [\beta_1, \dots, \beta_r] \subseteq \Omega$ is **base** for G if $G_{\beta_1, \dots, \beta_r} = 1$. (Recall: $G_{\beta_1, \dots, \beta_r} = \{g \in G : \beta_1^g = \beta_1, \dots, \beta_r^g = \beta_r\}$.)

Corresponding stabiliser chain is

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1$$

where $G^{i} = G_{\beta_{i}}^{i-1} = G_{\beta_{1},...,\beta_{i}}$.

Base B contains elts of Ω such that only $1 \in G$ fixes every $\beta_i \in B$. (Short base desirable: how to compute **min base** of length b(G)?)

Theorem (Blaha, 1992)

Problem of finding minimum base for G is NP-complete (if $P \neq NP$, then no polynomial time algorithm).

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = \big[1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31\big].$$

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = [1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31].$$

Contains: 7 corner stickers (from 7 of 8 corners), 11 edge stickers (from 11 of 12 edges).

Example (Rubik's group)

Using BaseOfGroup cmd in GAP, base of ${\cal G}$ of size 18 is

$$B = [1, 3, 6, 8, 2, 4, 5, 7, 12, 13, 14, 15, 16, 21, 23, 24, 29, 31].$$

Contains: 7 corner stickers (from 7 of 8 corners), 11 edge stickers (from 11 of 12 edges).

Theorem

For Rubik's group G, b(G) = 18.

Stabiliser chain implemented in GAP; useful in algorithms.

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(Alternative:

Stabiliser chain implemented in GAP; useful in algorithms.

Let $G = \langle X \rangle \leq \operatorname{Sym}(\Omega)$ have base B and stabiliser chain

$$G = G^0 \ge G^1 \ge \dots \ge G^r = 1.$$

Problem (random element generation)

Generate uniformly random element of *G*.

(*Alternative:* random product of generators in X — Markov chain; mixing time/distribution?)

Stabiliser chain implemented in GAP; useful in algorithms.

Problem (membership testing)

For $g \in \operatorname{Sym}(\Omega)$, test if $g \in G$.

(Application:

Stabiliser chain implemented in GAP; useful in algorithms.

Problem (membership testing)

For $g \in \text{Sym}(\Omega)$, test if $g \in G$.

(Application: check if restickering of Rubik's cube is valid state.)

Theorem (size of perm group)

If
$$B = [\beta_1, ..., \beta_r]$$
 is base for $G \le \operatorname{Sym}(\Omega)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Theorem (size of perm group)

If
$$B = [\beta_1, ..., \beta_r]$$
 is base for $G \le \operatorname{Sym}(\Omega)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Theorem (size of perm group)

If $B = [\beta_1, ..., \beta_r]$ is base for $G \le \operatorname{Sym}(\Omega)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Implementing base and stabiliser chain for Rubik's group ${\cal G}$ (using BaseOfGroup and StabChain cmds), GAP computes:

Theorem (size of perm group)

If $B = [\beta_1, ..., \beta_r]$ is base for $G \le \operatorname{Sym}(\Omega)$ with stabiliser chain $G = G^0 \ge G^1 \ge \cdots \ge G^r = 1$, then

$$|G| = |\beta_1^{G^0}||\beta_2^{G^1}| \cdots |\beta_r^{G^{r-1}}|.$$

Orbits and stabilisers can be easily computed (e.g. using GAP).

Implementing base and stabiliser chain for Rubik's group \mathcal{G} (using BaseOfGroup and StabChain cmds), GAP computes:

Corollary

For Rubik's group \mathcal{G} , $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3\cdot 10^{19}$.

Base sizes of primitive groups

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in \mathrm{GL}_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Affine group $AGL_d(K) \leq Sym(K^d)$ of dim d is affine transfs of K^d . For $K = \mathbb{F}_q$ finite field, write $AGL_d(q)$ (perm group of deg q^d).

Definition

Let K be field. **Affine transformation** of K^d is map

$$t_{a,v}: K^d \to K^d, \quad u \mapsto ua + v$$

for $a \in GL_d(K)$ and $v \in K^d$. (Treat u, v as row vectors.)

Note: $t_{a,v} \in \text{Sym}(K^d)$ (bijection).

Definition

Affine group $\mathrm{AGL}_d(K) \leq \mathrm{Sym}(K^d)$ of dim d is affine transfs of K^d . For $K = \mathbb{F}_q$ finite field, write $\mathrm{AGL}_d(q)$ (perm group of deg q^d).

Interested in q=2, i.e. field $\mathbb{F}_2=\{0,1\}$ with $1+1=0,\,1\cdot 1=1,\,\mathrm{etc.}$

Non-large base permutation groups

Theorem (Liebeck, 1984)

For primitive perm group G of degree n, either:

- (i) G is "large base"; or
- (ii) $b(G) < 9 \log n$.

Non-large base permutation groups

Theorem (Liebeck, 1984)

For primitive perm group G of degree n, either:

- (i) G is "large base"; or
- (ii) $b(G) < 9 \log n$.

Previous best (Babai, 1981): $b(G) = O(\sqrt{n})$ if not containing Alt(n).

"Remarkable" proof used *classification of finite simple groups*, *O'Nan-Scott theorem* (classifies primitive groups).

Non-large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Non-large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Moreover, if $b(G) = \log n + 1$ then $G \le AGL_d(2)$ with $n = 2^d$.

Non-large base permutation groups (ii)

Theorem (Moscatiello & Roney-Dougal, 2021)

For primitive perm group G of degree n, and G is non-large base:

- (i) G is the Mathieu group M_{24} (degree 24); or
- (ii) $b(G) \le \lceil \log n \rceil + 1$.

Moreover, if $b(G) = \log n + 1$ then $G \le AGL_d(2)$ with $n = 2^d$.

Question (Moscatiello & Roney-Dougal, 2021)

Which primitive groups $G \leq \operatorname{Sym}(n)$ satisfy $b(G) = \log n + 1$?

Main result in thesis

Theorem

Let $G \leq \mathrm{AGL}_d(2)$ be primitive for some $d \leq 10$ with natural action on K^d with b(G) = d + 1. (Then G is perm group of degree $n = 2^d$.) Then

(i) G is $AGL_d(2)$ with $d \ge 2$, or

Main result in thesis

Theorem

Let $G \leq \mathrm{AGL}_d(2)$ be primitive for some $d \leq 10$ with natural action on K^d with b(G) = d + 1. (Then G is perm group of degree $n = 2^d$.) Then

- (i) G is $AGL_d(2)$ with $d \ge 2$, or
- (ii) G is $2^d: \operatorname{Sp}_d(2) = \operatorname{Sp}_d(2) \ltimes C_2^d$ with $d \geq 4$ even.

Proof (idea).

• Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use *greedy base algorithm* to find base for M; if base of length at most d is found then $b(M) \leq d$ and discard.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use greedy base algorithm to find base for M; if base of length at most d is found then b(M) ≤ d and discard.
- Otherwise, recursively check for each representative *M*.

Proof (idea).

- Find representatives M of conjugacy classes of primitive maximal subgroups of $AGL_d(2)$.
- Use greedy base algorithm to find base for M; if base of length at most d is found then b(M) ≤ d and discard.
- Otherwise, recursively check for each representative M.

Every primitive $G \le AGL_d(2)$ with b(G) = d + 1 is found by process (plus perhaps false positives), up to conjugacy.

Greedy base algorithm performed better than BaseOfGroup in testing; found no false positives.

From above theorem, we conjecture the following:

Conjecture

Primitive group $G \le \operatorname{Sym}(n)$ satisfies $b(G) = \log n + 1$ iff:

From above theorem, we conjecture the following:

Conjecture

Primitive group $G \le \operatorname{Sym}(n)$ satisfies $b(G) = \log n + 1$ iff:

- $n = 2^d$ with $d \ge 2$, and G is $AGL_d(2)$; or
- $n = 2^d$ with $d \ge 4$, and G is $2^d : \mathrm{Sp}_d(2)$.

Concluding remarks

References and resources

- Analyzing Rubik's cube with GAP: https://www.gap-system.org/Doc/Examples/rubik.html
- J. A. Paulos *Innumeracy* (book)
- Holt Handbook of Computational Group Theory (textbook)
- Dixon and Mortimer Permutation Groups (textbook)
- Blaha Minimum bases for permutation groups: The greedy approximation, 1992:

```
https://doi:10.1016/0196-6774(92)90020-D
```

- Liebeck On minimal degrees and base sizes of primitive permutation groups, 1984: https://doi.org/10.1007/bf01193603
- Moscatiello and Roney-Dougal: Base sizes of primitive permutation groups, 2021: https://doi.org/10.1007/s00605-021-01599-5