PREGUNTAS LABORATORIO 2

Describa la función del convertidor MAX3232 en esta práctica y por qué es necesario.

El MAX3232 se utiliza como convertidor de niveles de voltaje entre la interfaz RS232 (±12 V típicos) y la lógica TTL (0–5 V para Arduino o 0–3.3 V para Raspberry Pi Pico).

Es necesario porque los microcontroladores no soportan directamente los voltajes de RS232, y sin el MAX3232 podrían dañarse. En esta práctica permitió que el Arduino y la Raspberry Pi Pico se comunicaran de forma segura con la interfaz serie estándar.

¿Qué modificaciones haría para introducir errores artificiales en la transmisión?

- Alterar intencionalmente un byte en el código del transmisor antes de enviarlo.
- Desconectar momentáneamente el cable de transmisión o recepción.
- Introducir ruido eléctrico externo (por ejemplo, acercando un motor o fuente de interferencia).
- Modificar la temporización de bits (cambiar baud rate en uno de los dispositivos).

Basado en su implementación, ¿cuál método detectó más eficazmente los errores introducidos?

- El LRC (Longitudinal Redundancy Check) resultó más eficaz, porque analiza bloques de datos completos, detectando múltiples errores en distintas posiciones.
- El VRC (Vertical Redundancy Check) es más simple, pero puede no detectar errores cuando ocurren en número par dentro de un mismo byte.

Calcule el overhead de transmisión para ambos métodos con un bloque de 5 bytes y ¿cómo cambia la eficiencia de transmisión con el tamaño del bloque de datos?

VRC: Se añade 1 bit extra por cada byte → para 5 bytes = 5 bits adicionales.
Overhead ≈ 5/40 = 12.5%.

 LRC: Se añade 1 byte extra por cada bloque de datos → para 5 bytes = 1 byte adicional (8 bits). Overhead ≈ 8/40 = 20%.

¿Qué ventajas y desventajas observó entre VRC y LRC en términos de detección de errores?

VRC:

Ventaja: Simplicidad y bajo costo computacional.

Desventaja: No detecta errores múltiples cuando ocurren en número par.

LRC:

Ventaja: Mayor capacidad de detección de errores múltiples.

Desventaja: Mayor overhead cuando los bloques de datos son pequeños.

¿En qué aplicaciones industriales sería más adecuado usar VRC? ¿Y en qué aplicaciones industriales sería más adecuado usar LRC?

VRC: Adecuado en sistemas donde la probabilidad de error es baja y se privilegia la simplicidad, como sensores industriales básicos, comunicaciones cortas o protocolos simples.

LRC: Adecuado en sistemas donde se requiere mayor robustez frente a errores, como transmisión de datos en controladores lógicos programables (PLC), equipos CNC, o sistemas de comunicación industrial donde los bloques de datos son grandes y la integridad es crítica.