

Cahier-réponses Contrôle périodique 1

PHS1101

Sigle du cours

				•	
	Identific	ation de l'étudiant(e)			
Nom:		Prénom :		Réservé	
Signature :		Matricule :	Groupe :	Q1 :	/50
Oignature .		Matricule .	Groupe .	Q2 :	/50
Sigle et titre du cours		Groupe	Trimestre	Q3 :	/50
PHS1101		Tous	Été 2020	Q3 .	730
Mécanique pour ingénieurs				Q4 :	/50
Chargé de cours		Courriel			
Djamel Seddaoui		djamel.seddaoui@polymtl.ca			
Jour	Date	Durée	Heures		
Mardi	19 mai 2020	2h00 + 30 minutes pour la remise sur Moodle	9h30 à 12h00		
	Direc	tives particulières			
Vous vous e	engagez à faire cet e	examen individuellement.			
Toute documentation est permise (examen à livre ouvert).				Total :	
Détaillez et justifiez les étapes de vos solutions. Une réponse sans justification ne					
vaut aucun point. Toute réponse finale doit être accompagnée des unités					
appropriées.					
• Si vous pensez qu'il y a une erreur dans le questionnaire, vous pouvez écrire au				20	0
chargé de cours à l'adresse courriel ci-dessus.					

Important

Cet examen contient 4 questions sur un total de 15 pages (excluant cette page).

La pondération de cet examen est de **25** %.

Rédigez vos réponses lisiblement, à la main, soit en utilisant un outil électronique (écran tactile, tablette) pour répondre directement sur ce cahier-réponses, soit en répondant sur ce cahier-réponses imprimé ou sur des feuilles de papier vierge et en numérisant/photographiant les feuilles ensuite.

Remettez vos réponses sous forme d'un seul fichier PDF lisible, de taille inférieure à 10 Mo, dans le dépôt Moodle « Examen final » avant 12h00. Vous devez nommer ce fichier en respectant le format suivant :

Matricule_NomPrénom.pdf

Tout fichier qui ne sera pas rédigé à la main ou dont le nom ne sera pas conforme au format décrit ne sera pas corrigé.

Question 1 (50 points) - Questions conceptuelles et à réponses courtes

Répondez aux sous-questions suivantes en **expliquant votre raisonnement**. **Une réponse sans justification ne vaut aucun point**.

Les sous-questions A, B et C sont indépendantes les unes des autres.

- A. Vrai ou faux : Si on démontre qu'un point d'un corps rigide subit une accélération alors on peut affirmer que le corps en question n'est pas en équilibre statique. Justifiez votre réponse. (10 points)
- B. Un cube homogène de côté a est posé sur un plan incliné d'un angle θ avec l'horizontale. Le coefficient de frottement statique entre le cube et le plan incliné est μ_s .
 - I. Exprimer la valeur maximale de θ en fonction de μ_s pour laquelle le bloc reste immobile sans glisser. (10 points)
 - II. Exprimer l'angle minimal de θ pour laquelle le bloc commence à basculer. (10 points)

C. Une boule de quille de masse $m=1.5~{\rm kg}$ et de rayon $R=12~{\rm cm}$ roule à vitesse constante sur des rails horizontaux séparés d'une distance $d=15~{\rm cm}$. Déterminer la valeur de la réaction de chacun des rails sur la boule ainsi que son angle d'orientation par rapport à la verticale. (20 points)

Question 2 (50 points)

Soit un cube de bois homogène de masse négligeable et de côté $a=50~\rm cm$. On applique une force $F=200~\rm N$ au point A situé au milieu d'une arête supérieure du cube. Une autre force $P=100~\rm N$ est appliquée au point B situé au centre de la face avant tel que représenté sur la figure ci-dessous. On donne $\alpha=60^\circ$ et $\theta=40^\circ$.

- A. Déterminer le vecteur force \vec{F} . (15 points)
- B. Déterminer le système force-couple équivalent des forces \vec{F} et \vec{P} à l'origine du système d'axes (point 0). (20 points)
- C. Quel est le moment de ces forces par rapport à l'axe OC? (15 points)

Question 3 (50 points)

Votre ami Pierre, dont la masse est de 80 kg, décide de marcher sur la structure suivante. Le support au point C peut supporter une force maximale 700 N. Négligez la masse de la poutre.

On donne $|\vec{F}| = 250 \text{ N}$, a = 1.5 m et b = 1 m.

- A. Faites le DCL de la poutre ABC. (20 points)
- B. Déterminer la tension dans le câble et les réactions au point C lorsque Pierre est situé à x = 0.8 m. (15 points)
- C. Est-ce que la structure sera endommagée ? Justifier par les calculs appropriés. (15 points)

Question 4 (50 points)

Un manchon de masse négligeable est susceptible de glisser (avec frottement) le long d'un guide OA. Une corde élastique PC y est attachée et elle est retenue au point C du poteau BC. La longueur naturelle de la corde est de $L_0=0.2~\mathrm{m}$ et sa constante d'élasticité est $k=200~\mathrm{N/m}$. Le manchon est immobile à la position P telle que $\overline{OP}=\frac{2}{3}\overline{OA}$.

- A. Déterminer les coordonnées du point P. (15 points)
- B. Déterminer le vecteur tension \vec{T} qu'exerce la corde élastique sur le manchon. (20 points)
- C. Déterminer la grandeur de la force de frottement statique F_s qui s'exerce entre le manchon et le guide. (15 points)

