MEGR 7090/8090: Advanced Optimal Control

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\left\{\mathbf{u}_{n}, \mathbf{u}_{n+1}, \dots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right]$$

$$\begin{aligned} V_{n}(\mathbf{x}_{n}) &= \min_{\left[\mathbf{u}_{n}, \mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + \min_{\left[\mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \right] \\ &= \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right]$$

Lecture 18 October 24, 2017

Main Idea of MPC – Reminder

- At time 0, compute the control trajectory that minimizes $J(\mathbf{u}, \mathbf{x}(0)) = \sum_{i=0}^{N-1} g(\mathbf{x}(i), u(i)) + h(\mathbf{x}(N))$, subject to constraints. Implement $u^*(0)$.
- At the next time step (1), compute the control signal that minimizes $J(\mathbf{u}, \mathbf{x}(1)) = \sum_{i=1}^{N} g(\mathbf{x}(i), u(i)) + h(\mathbf{x}(N+1))$, subject to constraints
- Repeat every time step
- This process is known as model
 predictive control (MPC), also known as

 receding horizon control

Source: ETH

MPC Notation – Reminder

Note: At every time step, MPC optimizes a **sequence** of control signals. Those sequences overlap. (Example: If N=10), then a value for u(9) is computed at steps 0, 1,..., 9. To differentiate between these different values, we use what Dr. V calls "slash notation":

- $\mathbf{u}(k) = [u(k|k) \dots u(k+N-1|k)]^T$ = candidate control sequence at step k
- $\mathbf{x}_{sea}(k) = [\mathbf{x}(k|k) \quad \dots \quad \mathbf{x}(k+N|k)]^T$ = predicted state sequence at step k
- In general, the notation is interpreted as (time step at which the variable is evaluated time step at which the optimization is performed)

General mathematical formulation for MPC:

$$\mathbf{u}^*(k) = \arg\min \left[\sum_{i=k}^{N-1} g(\mathbf{x}(i|k), u(i|k)) + h(\mathbf{x}(k+N|k)) \right]$$

$$u(k) = u^*(k|k)$$

(Implement the first step of the optimized sequence)

subject to:
$$\frac{\mathbf{x}(i|k) \in X, i = k \dots k + N}{u(i|k) \in U, i = k \dots k + N - 1}$$
 and:
$$\mathbf{x}(i+1|k) = f(\mathbf{x}(i|k), u(i|k))$$

Linear MPC – Reminder

Constrained discrete-time LQR problem – also known as *linear MPC*:

$$\mathbf{u}^{*}(k) = \arg\min \left[\sum_{i=k}^{N-1} (\mathbf{x}^{T}(i|k)Q\mathbf{x}(i|k) + Ru^{2}(i|k)) + \mathbf{x}^{T}(k+N|k)S\mathbf{x}(k+N|k)) \right] \qquad u(k) = u^{*}(k|k)$$

Subject to:
$$\begin{aligned} & M_1 \mathbf{x}(i|k) - \mathbf{b}_1 \leq 0, i = k \dots k + N \\ & M_2 u(i|k) - \mathbf{b}_2 \leq 0, i = k \dots k + N - 1 \end{aligned} \quad \text{and} \quad \mathbf{x}(i+1|k) = A\mathbf{x}(i|k) + Bu(i|k)$$

Solution – *Quadratic programming (QP):*

 Refer to lecture 9 notes for proof that the above problem is convex and therefore QP can be used reliably

Simulink's built-in MATLAB toolbox can be used to perform linear MPC (constrained discrete-time LQR)

Benefit and Limitations to Linear MPC

Major benefit: Convex constraints on the state and control signal can be enforced

Limitations:

- System dynamics *must be linear* (other than constraints) or linearized
- Stage cost *must be quadratic* in the states and control signal

Today, we will discuss nonlinear MPC, which removes the above limitations at the expense of computational expensiveness.

General Nonlinear MPC Setup

General optimization problem (note the free-form objective function, constraints, and model):

$$\mathbf{u}^*(k) = \arg\min \left[\sum_{i=k}^{N-1} g(\mathbf{x}(i|k), u(i|k)) + h(\mathbf{x}(k+N|k)) \right]$$

$$u(k) = u^*(k|k)$$

$$\mathbf{x}(i|k) \in X, i = k ... k + N$$

 $u(i|k) \in U, i = k ... k + N - 1$

and
$$\mathbf{x}(i+1|k) = f(\mathbf{x}(i|k), u(i|k))$$

Solution techniques:

- Sequential quadratic programming (SQP) refer to lecture 12-13 notes for a refresher
- Dynamic programming (DP) usually, the actual DP calculations must be done online, and a lookup table (generated by DP) can then be used to determine the required control signal

Dynamic Programming for MPC (Building a Lookup Table)

Recall: With backward recursion, DP allows you to specify a constraint on the terminal state $(\mathbf{x}(N))$ and determine the optimal control sequence for all possible initial states $(\mathbf{x}(0))$

Process for using DP to build a lookup table for MPC:

- Perform DP using backward recursion (gives you the result indicated above) refer back to lectures 14-16 for a reminder on how to do this)
- For each gridded state value, store $u^*(0)$, noting that with MPC, we will take $u(k) = u^*(0)$
- Use a 1D lookup table (available in Simulink) to determine u(k) for interpolated points

Sequential Quadratic Programming (SQP) for MPC

Recall:

- At each iteration, SQP first derives a quadratic approximation of the Lagrangian (setting up the "QP subproblem")
- SQP then moves in the direction specified by the QP subproblem solution
- fmincon can be used to perform SQP

Challenge: fmincon is not supported by Simulink!!

Workarounds:

- Option 1 Choose another SQP solver
- Option 2 Write SQP yourself
- Option 3 Generate a *level 2 s-function* We will focus on this one

Level 2 s-functions – Main Ideas and References

Main ideas:

- Embedded MATLAB functions only support a *subset* of MATLAB functionality (for code generation reasons)
- s-functions provide a way for you to take code written in a non-native language or non-supported MATLAB code and run it in Simulink
- Level 2 s-functions are for code that was written in MATLAB but not supported by Simulink blocks (fmincon is an example of this)
- We will work through a level 2 s-function example...a good video tutorial to level 2 s-functions can be found at:

https://www.youtube.com/watch?v=X-qVign6BLg

https://www.youtube.com/watch?v=ZnvRoGA23uU

Nonlinear MPC Example

Scenario: A wheeled mobile robot must travel from point A (0,0) to point B (1,0) while avoiding a circular obstacle of radius R=0.25

Dynamic model:

$$\dot{x} = v \cos \psi$$
 $\dot{y} = v \sin \psi$ where:
 $\dot{\psi} = u$

$$v = v_0((x-1)^2 + (y-1)^2)$$

$$-5 \le u(t) \le 5, \forall t$$

The robot slows down automatically as it nears the finish line.

Nonlinear MPC Example – Continued

Tasks:

- Given the scenario described on the previous slide, determine an acceptable stage cost $(g(\mathbf{x}(i|k),\mathbf{u}(i|k)))$, terminal cost $(h(\mathbf{x}(k+N|k),\mathbf{u}(k+N|k)))$, and constraint sets (U and X)
- Implement a Simulink model of the robot and MPC-based controller, using fmincon and a level 2 s-function

Sample code available on Canvas

Nonlinear MPC Setup with Disturbances

General optimization problem (note the free-form objective function, constraints, and model):

$$\mathbf{u}^*(k) = \arg\min \left[\sum_{i=k}^{N-1} g(\mathbf{x}(i|k), u(i|k)) + h(\mathbf{x}(k+N|k)) \right]$$

$$u(k) = u^*(k|k)$$

Subject to:
$$\mathbf{x}(i|k) \in X, i = k \dots k + N \\ u(i|k) \in U, i = k \dots k + N - 1$$
 and
$$\mathbf{x}(i+1|k) = f(\mathbf{x}(i|k), u(i|k), d(i|k))$$

Assessment of candidate solution techniques:

- Offline dynamic programming with online lookup table: The DP solution will be **different for every disturbance profile** (d(i|k), i = k ... k + N 1))...this makes the DP-based lookup table **cumbersome to generate**
- SQP, on the other hand, can take into account the new value of the disturbance at each time step

Preview of Upcoming Lectures

October 26 – Stability and robustness of MPC

After October 26 – Optimal control for continuous-time systems