Feedback Message Passing for Inference in Gaussian Graphical Models

Ying Liu Venkat Chandrasekaran, Animashree Anandkumar and Alan Willsky

> Stochastic Systems Group, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

ISIT, Austin Texas, June 18, 2010

 The probability density of a Gaussian graphical model can be written as

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J\mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

where J is called the information matrix and ${\bf h}$ is called the potential vector.

 The probability density of a Gaussian graphical model can be written as

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J\mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

where J is called the information matrix and ${\bf h}$ is called the potential vector.

ullet For a valid model, J is symmetric and positive semidefinite.

 The probability density of a Gaussian graphical model can be written as

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J\mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

where J is called the information matrix and $\mathbf h$ is called the potential vector.

- ullet For a valid model, J is symmetric and positive semidefinite.
- An information matrix J is sparse or Markov with respect to a graph if $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}: \ \forall (i,j) \notin \mathcal{E}, \ J_{ij} = 0.$

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J \mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J \mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

means $\mu = J^{-1}\mathbf{h}$ and variances $\operatorname{diag}\{\Sigma = J^{-1}\}$

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J \mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

means
$$\mu = J^{-1}\mathbf{h}$$
 and variances $\operatorname{diag}\{\Sigma = J^{-1}\}$

• Solving this problem in general has $\mathcal{O}(n^3)$ (fastest $\mathcal{O}(n^{2.376})$) time complexity, which is intractable for very large scale models.

$$p(\mathbf{x}) \propto \exp\{-\frac{1}{2}\mathbf{x}^T J \mathbf{x} + \mathbf{h}^T \mathbf{x}\}$$

means $\mu = J^{-1}\mathbf{h}$ and variances $\operatorname{diag}\{\Sigma = J^{-1}\}$

- Solving this problem in general has $\mathcal{O}(n^3)$ (fastest $\mathcal{O}(n^{2.376})$) time complexity, which is intractable for very large scale models.
- Applications: gene regulatory networks, medical diagnostics, oceanography, and communication systems

• Belief propagation on trees: linear time complexity, exactness

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.
 - ▶ LBP performs reasonably well for certain loopy graphs (Murphy et al, Crick et al).

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.
 - LBP performs reasonably well for certain loopy graphs (Murphy et al, Crick et al).
 - Convergence and accuracy not guaranteed in general (Ihler et al, Weiss et al)

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.
 - LBP performs reasonably well for certain loopy graphs (Murphy et al, Crick et al).
 - Convergence and accuracy not guaranteed in general (Ihler et al, Weiss et al)
 - For Gaussian graphical models, if LBP converges, the means are correct and the variances are generally incorrect (Weiss et al)

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.
 - ▶ LBP performs reasonably well for certain loopy graphs (Murphy et al, Crick et al).
 - Convergence and accuracy not guaranteed in general (Ihler et al, Weiss et al)
 - ► For Gaussian graphical models, if LBP converges, the means are correct and the variances are generally incorrect (Weiss et al)
 - Walk-sum analysis framework (Malioutov et al)

- Belief propagation on trees: linear time complexity, exactness
- Loopy belief propagation for graphs with cycles.
 - ► LBP performs reasonably well for certain loopy graphs (Murphy et al, Crick et al).
 - Convergence and accuracy not guaranteed in general (Ihler et al, Weiss et al)
 - ► For Gaussian graphical models, if LBP converges, the means are correct and the variances are generally incorrect (Weiss et al)
 - Walk-sum analysis framework (Malioutov et al)
- Generalized BP (Yedidia et al.), embedded trees (Sudderth et al.), inference by tractable subgraphs (Chandrasekaran et al.)

• Exact Feedback Message Passing

Exact Solution: $\mathcal{O}(k^2n)$, where k is the size of the "feedback nodes" and n is the number of nodes.

- Exact Feedback Message Passing

 Exact Solution: $\mathcal{O}(k^2n)$, where k is the size of the "feedback nodes" and n is the number of nodes.
- Approximate Feedback Message Passing
 Approximate Solution: trade-off complexity and accuracy by selecting a proper set of "feedback nodes" of bounded size. Walk-sum interpretation.

- Exact Feedback Message Passing

 Exact Solution: $\mathcal{O}(k^2n)$, where k is the size of the "feedback nodes" and n is the number of nodes.
- Approximate Feedback Message Passing
 Approximate Solution: trade-off complexity and accuracy by selecting a proper set of "feedback nodes" of bounded size. Walk-sum interpretation.
- High level idea: run common BP/LBP on non-feedback nodes; special message passing scheme for feedback nodes.

- Exact Feedback Message Passing **Exact Solution**: $\mathcal{O}(k^2n)$, where k is the size of the "feedback nodes" and n is the number of nodes.
- Approximate Feedback Message Passing Approximate Solution: trade-off complexity and accuracy by selecting a proper set of "feedback nodes" of bounded size. Walk-sum interpretation.
- High level idea: run common BP/LBP on non-feedback nodes; special message passing scheme for feedback nodes.
 - Obtain inference results for feedback nodes first.

- Exact Feedback Message Passing **Exact Solution**: $\mathcal{O}(k^2n)$, where k is the size of the "feedback nodes" and n is the number of nodes.
- Approximate Feedback Message Passing Approximate Solution: trade-off complexity and accuracy by selecting a proper set of "feedback nodes" of bounded size. Walk-sum interpretation.
- High level idea: run common BP/LBP on non-feedback nodes; special message passing scheme for feedback nodes.
 - Obtain inference results for feedback nodes first.
 - Make corrections for the non-feedback nodes afterward.

5 / 21

Gaussian Belief Propagation

Message Passing

$$\forall j \in \mathcal{N}(i), \quad \Delta J_{i \to j}$$

$$\Delta h_{i \to j}$$

Gaussian Belief Propagation

Message Passing

$$\forall j \in \mathcal{N}(i), \quad \Delta J_{i \to j}$$

$$\Delta h_{i \to j}$$

Marginal Computation

$$\forall i \in \mathcal{V}, \quad \hat{J}_i = J_{ii} + \sum_{k \in \mathcal{N}(i)} \Delta J_{k \to i} \qquad \hat{h}_i = h_i + \sum_{k \in \mathcal{N}(i)} \Delta h_{k \to i}$$
$$\mu_i = \hat{J}_i^{-1} \hat{h}_i \qquad \mathbf{Var}\{i\} = \hat{J}_i^{-1}$$

 Message update scheme: completely local, no header information and suffers from the cyclic effects.

7 / 21

- Message update scheme: completely local, no header information and suffers from the cyclic effects.
- More memory and multiple messages?

- Message update scheme: completely local, no header information and suffers from the cyclic effects.
- More memory and multiple messages?
- Sacrifice some distributiveness for better convergence and accuracy?

- Message update scheme: completely local, no header information and suffers from the cyclic effects.
- More memory and multiple messages?
- Sacrifice some distributiveness for better convergence and accuracy?
- Some special nodes?

Feedback Vertex Set

Feedback Vertex Set

• Feedback vertex set (FVS) is a set of nodes whose removal results in a cycle-free graph.

Feedback Vertex Set

• Feedback vertex set (FVS) is a set of nodes whose removal results in a cycle-free graph.

 In practice, a pseudo-FVS (a small subset of the FVS) may be sufficient for convergence and accuracy.

Exact Inference: a Single Feedback Node Case

ullet Extra potential vector ${f h}^1$,

$$h_j^1 = \left\{ \begin{array}{cc} 0 & j \notin \mathcal{N}(1) \\ J_{1j} & j \in \mathcal{N}(1) \end{array} \right.$$

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ。

Exact Inference: a Single Feedback Node Case (cont')

ullet Run belief propagation on ${\mathcal T}$. The messages are

$$\Delta J_{i \to j}^{\mathcal{T}} \quad \Delta h_{i \to j}^{\mathcal{T}} \quad \Delta h_{i \to j}^{1}$$

We obtain partial variance, partial mean, and feedback gain:

$$\operatorname{Var}^{\mathcal{T}}\{i\} \quad \mu_i^{\mathcal{T}} \quad g_i^1$$

Exact Inference: a Single Feedback Node Case (cont')

$$Var\{1\} = (J_{11} - \sum_{k \in \mathcal{N}(1)} J_{1k} g_k^1)^{-1}$$

$$\mu_1 = \text{Var}\{1\}(h_1 - \sum_{j \in \mathcal{N}(1)} J_{1j}\mu_j^T)$$

Exact Inference: a Single Feedback Node Case (cont')

Node 1 tells its neighbors to make revisions on their node potentials.

$$\widetilde{h}_j = h_j - J_{1j}\mu_1, \ \forall j \in \mathcal{N}(1) \qquad \widetilde{h}_j = h_j, \ \forall j \notin \mathcal{N}(1)$$

→ロト → □ ト → 三 ト → 三 ・ りへで

Exact Inference: a Single Feedback Node Case (cont')

- \bullet Run BP on ${\cal T}$ with revised node potentials $\stackrel{.}{h}$ to obtain exact means.
- The exact variances can be achieved as

$$\operatorname{Var}\{i\} = \operatorname{Var}^{\mathcal{T}}\{i\} + \operatorname{Var}\{1\}(g_i^1)^2, \quad \forall i \in \mathcal{T}.$$

←□▶ ←□▶ ←□▶ ←□▶ ←□ ♥ ←□▶

Exact Inference: Multiple Feedback Nodes Case

• With size k FVS, run BP with k extra messages and add more correction terms. $\mathcal{O}(k^2n)$

Exact Inference: Multiple Feedback Nodes Case

- With size k FVS, run BP with k extra messages and add more correction terms. $\mathcal{O}(k^2n)$
- Example:

Exact Inference: $\mathcal{O}((\log n)^2 n)$

15 / 21

Full FVS ⇒ pseudo-FVS

- Full FVS ⇒ pseudo-FVS
- Approximate inference among the tree-like part.

- Full FVS \Rightarrow pseudo-FVS
- Approximate inference among the tree-like part.
- Exact inference among the feedback nodes.

• The spectral radius $\rho_T < 1$ for the remaining graph T is a sufficient condition for convergence

- The spectral radius $\rho_T < 1$ for the remaining graph T is a sufficient condition for convergence
- When it converges, feedback nodes get exact means and variances.

- The spectral radius $\rho_T < 1$ for the remaining graph $\mathcal T$ is a sufficient condition for convergence
- When it converges, feedback nodes get exact means and variances.
- When it converges, non-feedback nodes get exact means but inaccurate variances (capturing a strictly larger set of walks).

- The spectral radius $\rho_T < 1$ for the remaining graph $\mathcal T$ is a sufficient condition for convergence
- When it converges, feedback nodes get exact means and variances.
- When it converges, non-feedback nodes get exact means but inaccurate variances (capturing a strictly larger set of walks).
- For attractive models (where $J_{ij} \leq 0$ for $i \neq j$), better lower bounds of the variances.

Selecting a pseudo-FVS of Bounded Size

• Two goals: better convergence and better accuracy

Selecting a pseudo-FVS of Bounded Size

- Two goals: better convergence and better accuracy
- $\mathbf{0}$ $s(i) = \sum_{j \in \mathcal{N}(i)} |J_{ij}|$ $s(i) = \sum_{l,k \in \mathcal{N}(i), l < k} |J_{il}J_{ik}|$

Selecting a pseudo-FVS of Bounded Size

- Two goals: better convergence and better accuracy
- • $s(i) = \sum_{j \in \mathcal{N}(i)} |J_{ij}|$
 - $s(i) = \sum_{l,k \in \mathcal{N}(i), l < k} |J_{il}J_{ik}|$
- ullet Pick up one node with the largest score s(i) at one step and continue with the remaining graph

Numerical Results

Figure: Inference errors of a 80×80 grid graph

• Empirically, $k = \mathcal{O}(\log n)$ seems to be sufficient.

Conclusions

Conclusions

ullet Exact feedback message passing: $\mathcal{O}(k^2n)$

Conclusions

- Exact feedback message passing: $\mathcal{O}(k^2n)$
- Approximate feedback message passing: trade-off complexity and accuracy

Conclusions

- ullet Exact feedback message passing: $\mathcal{O}(k^2n)$
- Approximate feedback message passing: trade-off complexity and accuracy

Future Research

- Performance on random graphs
- Computing the partition function

Conclusions

- Exact feedback message passing: $\mathcal{O}(k^2n)$
- Approximate feedback message passing: trade-off complexity and accuracy

Future Research

- Performance on random graphs
- Computing the partition function
- Corresponding structural learning problem

Questions and Comments?

Thank you!