Data Sheet

do not submit

$\mathbf{Graph}\ K$

Union by Rank

The current state S of the union by rank representation of disjoint subsets of the set of vertices {A, B, C, D, E, F, G, H, I} is given by

рi	A	В	D	D	В	F	D	A	F
	A	В	\mathbf{C}	D	\mathbf{E}	F	\mathbf{G}	н	Ι

rank

1	1	0	1	0	1	0	0	0
A	В	\mathbf{C}	D	E	F	G	Н	Ι

CIS 3223 HW 7

Name: Solutions

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (9 pts) For the graph K use Kruskal's algorithm to find a **minimum**-cost spanning tree, and then determine the minimum cost. Use alphabetical ordering.

Construct a hash table using the lengths of the edges to store the edges.

Sort the edges in each bucket using alphabetical ordering.

Edge List (Hash Table)

3	Ac	OF	 	 	, , ,
4	AB	BE	EF	CE	EG
5	BD	BC	DE	FG	 <u> </u>
6	GZ	l l	 	 	1 1
7	FZ	 	 	 	
		l l	1	 	<u> </u>
			1	1	
]	1 — — - · !	T	T !	!]

Sorted Edge List (Hash Table)

Construct a minimum cost spanning tree by using the edges in each bucket moving from left to right starting with bucket with the lowest value:

Minimum Cost

28

2 (11 pts) (a) For S, draw the corresponding trees representing the sets.

- (b) Consider the following **SEQUENCE** of operations. Draw the corresponding tree(s) representing the sets after each of the operations has been executed (use alphabetical order):
- (i) union(A, E)
- (ii) union(F, G)
- (iii) union(C, I)
- (iv) union(E, F)

union(A, E) $f_{ind}(A) = A$, $f_{ind}(E) = B$, $f_{ind}(A) = 1$, $f_{ind}(B) = 1$ join B to A

 $\Gamma(A) = 1$, $\Gamma(A) = 1$ Join B to A $\Gamma(A) = 1$ $\Gamma(A) = 1$

omon(F,G) Find(F)=F, find(G)=D, rank(F)=1, rank(D)=1 join(E)=0 rank(D)=2

union (C, I) find (c) = D, find (I)=D eyele

union (E, F) find (E) = A, find (F) = D rank (A) = Z, runh (D)= Z join D to A

(c) Specify the current state of pi and rank after the sequence has been executed.

рi	А	A	D	A	B	D	D	A	F	rank	3	2	0	Z	9	l	0	0	0
	A	В	\mathbf{C}	D	E	F	G	н	Ι		A	В	\mathbf{C}	D	E	F	G	н	Ι

(d) Use induction to show that if a subtree T constructed in the rank by union procedure has rank m, then T contains at least 2^m nodes.

Verify this result using the tree(s) drawn in (b)(iv).

rank	3	2	0	2	C	1	C	0	0
2^{rank}	8	4	1	4	1	Z	ſ	ι	١
nodes	9	2	ı	5	7	2	1	١	1
Verified	T	T	T	T	T	T	T	T	T
root	A	В	C	D	\mathbf{E}	F	G	Н	Ι

Base case: m = 0:

T has one node (root).

$$2^k = 2^0 = 1$$

So true in this case.

Inductive case: Assume true for for m = k. Show true for m = k + 1

Let x be a noise with rank(x) = k+1

x promoted to rank k+1 by joining y with

rank k to x with rank k.

Before the union, the subtree with node x as root and the subtree with node y as root both hoos of least 2k nodes.

Bot than after the union, the subtree with node x Bot than after the union, the subtree with node x has at least 2k 12k = 2 ktl nodes.

so true for m = k+1.

