Задача: Алгоритм Флойда

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайт

Используя алгоритм Флойда, решить следующую задачу. Задан взвешенный ориентированный граф (не более 100 вершин) без циклов отрицательного веса. Заданы m запросов вида (i;j). На каждый такой запрос требуется вывести длину кратчайшего пути из вершины i в вершину j.

Формат входного файла

В первой строке входного файла содержится два положительных целых числа n, m — число вершин и число запросов, соответственно $(1 \le n \le 100, 1 \le m \le 10^5)$. Далее следует n строк по n чисел в каждой — матрица смежности графа: j число в i-ой из этих строк равно -1001, если из вершины i нет ребра в вершину j, иначе — вес ребра a_{ij} ($-1000 \le a_{ij} \le 1000$). Следующие m строк файла содержат пары вершины, для которых необходимо узнать расстояние из первой вершины до второй. Гарантируется, что в графе отсутствуют циклы отрицательного веса.

Формат выходного файла

Выведите m чисел — расстояния от одной вершины запроса до другой. Если пути не существует, выведите "No path".

Примеры

input.txt	output.txt
4 1	-1
0 8 -9 0	
-1001 0 7 5	
-1001 10 0 5	
-1001 3 8 0	
1 2	