Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T iff U^{\perp} is invariant under T^* .

For all pairs $u \in U$ and $w \in U^{\perp}$,

$$\langle Tu, w \rangle = 0$$

 $\langle u, T^*w \rangle = 0$

This implies that the range of $T^*|_{U^\perp}\subseteq U^\perp$, aka that T^* is invariant under U^\perp This implies both directions, since $U=U^{\perp^\perp}$ and $T=(T^*)^*$.

1 | :noexport:

For all $u \in U$, $Tu = u' \in U$. Let $w = U^{\perp}$. Then, $T^*w =$

$$\langle u, T^*w \rangle = \langle Tu, w \rangle = \langle u', w \rangle$$

Taproot • 2021-2022 Page 1