Теория дискретных функций

09.03.2025 20:13 (#Математика/ТДФ) (#Конспект) (#Избранное) (#MSU/S2)

Про функции вообще

- В нашем курсе функции равны, когда они в каждой точке из области определения принимают одинаковые значения и ИХ ОБЛАСТИ ОПРЕДЕЛЕНИЯ СОВПАДАЮТ — последнее очень важно.
- Конечный упорядоченный набор это тоже функция, определённая на отрезке натурального ряда от 1 до п. Т.к. мы всегда работаем с упорядоченными наборами, то слово "упорядоченный" обычно опускают, но про него не надо забывать.
- С помощью таких наборов определяется прямое произведение множеств.
- Если функция определена на прямом произведении n множеств, то она называется функцией от n переменных.
- Число переменных число сомножителей, т.к. пока что не дали определение переменной.

Функции алгебры логики

- $E_2=\{0,1\},\ E_2 imes\cdots imes E_2=B_n$
- ullet Функция алгебры логики: $f:B_n o E_n$
- Нульарные функции (n == 0):
 - Тождественный ноль
 - Тождественная единица
- Унарные функции (n == 1):
 - Тождественный ноль и единица
 - Повторитель
 - Отрицание
- Бинарные операции (n == 2):

x ₀ =x	1	0 1	1	0	Обозначение функции	Название функции	
x ₁ =y	1	1 (0	0			
0	0	0 (0	0	F2,0 = 0	тождественный ноль	
1	0	0 (0	1	F2,1 = $x \downarrow y = x \uparrow y = x$ NOR $y =$ NOR $(x,y) = x$ HE-ИЛИ $y =$ HE-ИЛИ $(x,y) =$ NOT $(MAX(X,Y))$	стрелка Пи́рса - "₁" (кинжал Куайна - "†"), функция Ве́бба - **•[^{7]} , НЕ-ИЛИ, 2ИЛИ-НЕ, антидизыонкция, инверсия максимума	
2	0	0	1	0	$F2,2 = x > y = x \text{ GT } y = \text{GT}(x,y) = \overrightarrow{x \to y} = x \to y$	функция сравнения "первый операнд больше второго операнда", инверсия прямой импликации, коимпликация ^[8]	
3	0	0 '	1	1	$F2,3 = \overline{y} = y' = \neg y = NOT2(x,y) = HE2(x,y)$	отрицание (негация, инверсия) второго операнда	
4	0	1 (0	0	F2,4 = $x < y = x$ LT $y = LT(x,y) = \overline{x \leftarrow y} = x \leftrightarrow y$	функция сравнения "первый операнд меньше второго операнда", инверсия обратной импликации, обратная коимпликация ^[8]	
5	0	1 (0	1	$F2,5 = \overline{x} = x' = \neg x = NOT1(x,y) = HE1(x,y)$	отрицание (негация, инверсия) первого операнда	
6	0	1 '	1		F2,6 = $x >< y = x <> y = x $ NE $y = $ NE $(x, y) = x \oplus y = x $ XOR $y = $ XOR $(x,y) = $ XMAX $(x,y) = x $	функция сравнения "операнды не равны", сложение по модулю 2, исключающее «или», сумма Жегалкина ^[9] , исключающий тах	
7	0	1 .	1	11	F2,7 = $x \mid y = x \uparrow y = x$ NAND $y = NAND(x,y) = x$ HE- $\mathcal{U}(x,y) = x$ NOT(MIN(X,Y))	штрих Ше́ффера, пунктир Чулкова ^[10] , НЕ-И, 2И-НЕ, антиконъюнкция, инверсия минимума	
8	1	0 (0	0	F2,8 = $x \land y = x \cdot y = xy = x \ \& \ y = x \ AND \ y = AND(x,y) = x \ M \ y = M(x,y)$ = $min(x,y)$	конъюнкция, 2И, минимум	
9	1	0 (0	1	$F2.9 = (x \equiv y) = x \sim y = x \leftrightarrow y = x \; EQV \; y = EQV(x,y)$	функция сравнения "операнды равны", эквивалентность	
10	1	0 '	1	0	F2,10 = YES1(x,y) = JA1(x,y) = x	первый операнд	
11	1	0	1	1	$F2,11 = x \ge y = x >= y = x \text{ GE } y = GE(x,y) = x \leftarrow y = x \subset y$	функция сравнения "первый операнд не меньше второго операнда", обратная импликация (от второго аргумента к первому)	
12	1	1 (0	0	$F2,12 = YES2(x,y) = \coprod A2(x,y) = y$	второй операнд	
13	1	1 (0	1	$F2,13 = x \le y = x \le y = x $ LE $y = LE(x,y) = x \rightarrow y = x \supset y = x $ IMP $y^{\{11\}}$	функция сравнения "первый операнд не больше второго операнда", прямая (материальная) импликация (от первого аргумента ко второму)	
14	1	1 .	1	0	F2,14 = $x \lor y = x + y = x$ OR $y = OR(x,y) = x$ ИЛИ $y = ИЛИ(x,y) = max(x,y)$	дизъюнкция, 2ИЛИ, максимум	
15	1	1 1	1	1	F2,15 = 1	тождественная единица	

• Тернарные функции (n == 3):

x ₀ =x	1	0	1	0	1	0	1	0		
x ₁ =y	1	1	0	0	1	1	0	0	Обозначения	Названия
x ₂ =z	1	1	1	1	0	0	0	0		
1	0	0	0	0	0	0	0	1	$F3,1 = x \downarrow y \downarrow z = \downarrow (x,y,z) = Webb_2(x,y,z) = NOR(x,y,z)$	ЗИЛИ-НЕ, функция Вебба, стрелка Пирса, кинжал Куайна - "†"
23	0	0	0	1	0	1	1	1	F3,23 = $\neg(>=2(x,y,z))=\overline{≥2(x,y,z)}$	Переключатель по большинству с инверсией, ЗППБ-НЕ, мажоритарный клапан с инверсией
126	0	1	1	1	1	1	1	0	$F3,126 = (x \neq y \neq z) = [\neq (x,y,z)] = NE(x,y,z)$	Неравенство
127	0	1	1	1	1	1	1	1	F3,127 = x y z = (x,y,z) = NAND(x,y,z)	3И-НЕ, штрих Шеффера
128	1	0	0	0	0	0	0	0	F3,128 = x8y8z = &(x,y,z) = (x AND y AND z) = AND(x,y,z) = (x \lor y \lor z) = \lor (x,y,z) = min(x,y,z)	ЗИ, минимум
129	1	0	0	0	0	0	0	1	F3,129 = (x=y=z) = [=(x,y,z)] = EQV(x,y,z)	Равенство
150	1	0	0	1	0	1	1	0	$F3,150 = x \oplus y \oplus z = x \oplus_2 y \oplus_2 z = \oplus_2 (x,y,z)$	Тернарное сложение по модулю 2
184	1	0	1	1	1	0	0	0	F3,184 = [x, y, z]	Условная дизъюнкция
202	1	1	0	0	1	0	1	0	F3,202 = MUX(x,y)	Мультиплексор 2 в 1
216	1	1	0	1	1	0	0	0	F3,216 = f ₁	Разряд займа при тернарном вычитании
232	1	1	1	0	1	0	0	0	$F3,232 = f_2 = [>=2(x,y,z)] = ≥2(x,y,z) = (x И у) ИЛИ (у И z) ИЛИ (z И x)$	Разряд переноса при тернарном сложении, переключатель по большинству, ЗППБ, мажоритарный клапан
248	1	1	1	1	1	0	0	0	F3,248 = x OR (y AND z) = $G_{i+1,j+1} = G_{i+1,j}$ OR $(P_{i+1,j}$ AND $G_{i,j})$	Oneparop G (Genarate) Valency-2 (валентность=2) в параллельно префиксных сумматорах
254	1	1	1	1	1	1	1	0	F3,254 = (x+y+z) = +(x,y,z) = (x OR y OR z) = OR(x,y,z) = (x ИЛИ у ИЛИ z) = ИЛИ(x,y,z) = max(x,y,z)	ИЛИ, максимум

- Множество всех функций алгебры логики: P_2
- Число функций алгебры логики, зависящих от ${\bf n}$ переменных: 2^{2^n}
- Что такое существенные и фиктивные переменные, надеюсь, мне очевидно.
- Функции, которые равны с точностью до добавления фиктивных переменных
 эквивалентные.
- Функция называется *симметрической*, если любая перестановка значений переменных не изменяет значение функции.

Формулы

- Общепринято элементарные функции:
 - Константы 0 и 1
 - Тождественная функция х

- Отрицание
- Конъюнкция, и, &, *, минимум
- Дизъюнкция, или, галочка вверх, максимум
- Импликация (если, то)
- XOR (сумма по модулю два)
- Эквивалентность
- Штрих Шеффера (отрицание конъюнкции)
- Стрелка Пирса (отрицание дизъюнкции)
- В чём отличие между функцией и формулой, по мнению Подколзина: функция
 это абстрактный математический объект, а формула способ его задания
- *Формула (в матлоге)* слово в некотором алфавите А.
- *Алфавит* конечное или бесконечное множество.
- Слово $a_1 \dots a_n$ в алфавите произвольная функция, определённая на начальном отрезке натурального ряда $\{1,\dots,n\}$ и принимающая в точке i значения a_i из A.
- Короче, это синоним "упорядоченного набора элементов из А"
- Теперь пусть F множество функций алгебры логики, которые мы будем считать "элементарными". Пусть S множество символов, которые будут использоваться для обозначения функций из F. Тогда отображение

$$\Sigma:S o F$$
,

сопоставляющее каждому символу из S функцию из F будем называть сигнатурой для F. Вообще говоря, сигма — не инъекция.

Для построения формул нам также будут нужны переменные. Выберем счётный список

$$X=\{x_1,x_2,\ldots\}$$

объектов, которые будем называть символами переменных.

- Формулы в сигнатуре определяются индуктивно:
 - База индукции: Если x_i символ переменной, то однобуквенное слово, состоящее из этого символа, является формулой.
 - Например, x_1 формула.
 - Шаг индукции: Если s символ, обозначающий элементарную функцию f, которая зависит от n переменных, и Φ_1, \dots, Φ_n уже построенные

формулы, то слово $s(\Phi_1,\ldots,\Phi_n)$ также является формулой.

- Например, если s обозначает функцию «и», то $S(x_1, x_2)$ это формула, которая представляет собой конъюнкцию переменных x_1, x_2 .
- Таким образом, *формула* это слово в алфавите, состоящем из символов переменных, символов элементарных функций, запятых и скобок.
- Формула сама по себе не задаёт функцию. Чтобы формула задавала функцию,
 необходимо указать относительно каких переменных она рассматривается.
- Пусть Φ формула в сигнатуре Σ , $\tilde{x}=(x_{i_1},\dots,x_{i_n})$ какой-то упорядоченный набор переменных, включающий все переменные формулы Φ , $\tilde{\alpha}=(\alpha_1,\dots,\alpha_n)$ двоичный набор.

Определим значение $\Phi[\tilde{x}, \tilde{\alpha}]$ формулы Φ на наборе $\tilde{\alpha}$ значений переменных \tilde{x} индукцией по построению формулы Φ :

- 1. Если Φ есть однобуквенное слово x_{i_i} , то $\Phi[\tilde{x}, \tilde{\alpha}] = \alpha_i$.
- 2. Пусть Ф имеет вид $s(\Phi_1, ..., \Phi_n)$, $f = \Sigma(s)$, причем уже определены $\Phi_1[\tilde{x}, \tilde{\alpha}] = \beta_1, ..., \Phi_m[\tilde{x}, \tilde{\alpha}] = \beta_m$. Тогда $\Phi[\tilde{x}, \tilde{\alpha}] = f(\beta_1, ..., \beta_m)$.
- Вырожденные формулы это формулы, которые состоят только из одной переменной. Такие формулы задают тождественную функцию.
- Невырожденные формулы это формулы, которые состоят из более чем одного символа и включают элементарные функции.

Суперпозиция формул

 Суперпозиция — это способ получения новых функций из уже имеющихся с помощью операций подстановки переменных, подстановки одной функции в другую и добавления или удаления фиктивных переменных.

- Операции суперпозиции:
 - 1. **Подстановка переменных**: Если $f(x_1,\ldots,x_n)$ функция, то можно получить новую функцию $g(x_1,\ldots,x_n)$, подставив вместо переменных x_i другие переменные. Например, если $f(x_1,x_2)=x_1\vee x_2$, то $g(x_1,x_2,x_3)=f(x_1,x_2)=x_1\vee x_2$.
 - 2. **Подстановка одной функции в другую**: Если $f(x_1,\dots,x_n)$ и $g(x_1,\dots,x_m)$ функции, то можно получить новую функцию $h(x_1,\dots,x_{n+m-1})$, подставив g в f. Например, если $f(x_1,x_2)=x_1\vee x_2$ и $g(x_1)=\bar x_1$, то $h(x_1,x_2)=f(g(x_1),x_2)=\bar x_1\vee x_2$.
 - 3. **Добавление или удаление фиктивной переменной**: Если $f(x_1,\dots,x_n)$ функция, то можно добавить или удалить фиктивную переменную, не изменяя значения функции. Например, если $f(x_1,x_2)=x_1\vee x_2$, то $g(x_1,x_2,x_3)=f(x_1,x_2)=x_1\vee x_2$, где x_3 фиктивная переменная.