

SAMSI UG WORKSHOP NC STATE UNIVERSITY

Characterizing and Classifying Alzheimer's Diagnosis

Frederick Donahey, Khoa Huynh, Linda Pan, Xin Tan, Lynn Zhu

Overview

- 1. Background
- 2. Objectives
- 3. Exploratory Data Analysis
- 4. Classification Methods and Results
- 5. Characterization of PET Scans
- 6. Conclusions

BackgroundAlzheimer's disease - Neurodegenerative disease

Prevalence [1]

- 6th leading cause of death in the US
- Affects more than 5.8 millions Americans.

Pathology

- Extracellular beta amyloid plaque + intracellular neurofibrillary tangles
- Neuronal damage and brain region death

Treatment

 Currently there is no cure for the disease and no way to reverse its progress

Our Data

Demographic and Genetic Data:

- Age
- Sex
- MMSE Score
- APOE4
- Site
- Ethnicity
- Race
- Marriage Status

Data Source: ADNI (http://adni.loni.usc.edu/)

Diagnosis of Alzheimer's disease

Mental Status Test - Mini-Mental State Examination (MMSE)

Maximum score of 30

- 20-24 = Mild dementia
- 13-20 = Moderate dementia
- <12 = Severe dementia</p>

Alzheimer's patients decrease on average 2-4 points each year

Brain Imaging

- Positron Emission Tomography (PET) Scan
 - Capture the image of the activity (metabolic level) of brain.
 - Used to rule out other conditions such as brain tumor, Louis body dementia and Parkinson's disease with Louis body

Genetic Risk Factor: ApoE4

There exist three alleles for the ApoE gene:

- ApoE2
- ApoE3
- ApoE4

The presence of the ApoE4 allele increases the risk of developing Alzheimer's disease

likely

Genotype	E2/E2	E2/E3	E2/E4
Disease Risk	40% less	40% less	times more
		40%	40% 40% less

E4/E4

14.9

times

more

likely

E3/E4

3.2

times

more

likely

Average

risk

Objectives and Methods

1. Characterize diagnoses

- Healthy
- Mild cognitive impairment (MCI)
- Alzheimer's disease (AD)
 in PET scan images

Methods:

- PCA
- Tensor-on-scalar Regression

2. Classify patients

Patients into the three diagnoses based on:

- demographic data
- genetic characteristics

Methods:

- Decision Tree (DT)
- Random Forest (RF)
- Neural Network (NN)
- Gradient Boosting Machine (GBM)

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Healthy

MCI

AD

Figure 6 The shrinking hippocampus

Normal 75 years

Mild cognitive

Principal Component Analysis

Classification Methods (Supervised)

Decision Tree

- Required little of work for data preparation
- Easy to interpret
- Base learner for RF and GBM

Neural Network

- Neural Network can used for classification problem
- Simulate the parameter and choose the best model base on MSE and accuracy

Random Forest

- Random Forest can used for classification problem
- Base learner as Decision Tree
- Low bias and high variance

Gradient Boosting Machine

- Gradient Boosting Machine can used for classification problem
- Base learner as Decision Tree
- High bias and low variance

Neural Network Classification Result

Predicted

		AD	CN	LMCI	I Error		Rate			
<u> </u>	AD	14	0	10	0.4167	=	10	/	24	
	CN		15		0.2500	=	5	/	20	
	LMCI	7	4	29	0.2750	=	11	/	40	
	Totals	21	19	44	0.3095	=	26	/	84	

Variable Importance for Random Forest

Variable Importance: DRF

Variable Importance for Gradient Boosting Machine

Variable Importance: GBM

Classification Results: Accuracy

	AD	Healthy	MCI	Total
DT	75%	62.5%	73.2%	71.6%
NN	75%	85%	80%	79.8%
RF	41.7%	50%	80%	61.9%
GBM	70.8%	90%	87.5%	83.3%

Baseline: 33%

Characterizing PET Scans: Regularized Tensor-on-scalar Regression [3]

$$Y = X\Gamma + \varepsilon$$

Y (n x M): vectorized images

X (n x p): patient's data

 Γ (p x M): coefficient to estimate

M: # picture voxels, e.g. $79 \times 95 = 7505$

n: #images/subjects, e.g. 402

p: # parameters in scalar data, e.g. 6

$$minrac{1}{2}||Y-X\Gamma||_F^2+\lambda||X\Gamma D||_{l_1}$$

Characterizing PET Scans: Regularized Tensor-on-scalar Regression [3]

Diagnosis stage 2 and Diagnosis stage 3 results in a decrease of brain activity compared with Diagnosis stage 1.

Lower MMSE score correlates with a lower brain activity.

Higher age and non-zero APOE4 type correlates with a higher brain activity. Thus, collinearity issues still exist.

Conclusions

Important Features

- Age
- MMSE
- Site

Classification

Significant accuracy
above baseline can be
achieved - could be
used to help doctors
make diagnoses

Future Works

- Improve the efficiency of tensor-on-scalar regression
- Compare the coefficient map with result of other algorithms

SAMSI
NC State University
Dr. Xinyi Li
Dr. Mansoor Haider
Thomas Gehrmann

THANK YOU!

Reference

- [1] Alzheimer's and Dementia. (n.d.). Retrieved from https://www.alz.org/alzheimer.s.dementia
- [2] Powles, R. (2016, August 18). Why Does ApoE4 Increase Alzheimer's Risk? Retrieved from http://longevityreporter.org/blog/2016/8/18/why-does-apoe4-increase-alzheimers-risk
- [3] Total Variation Regularized Tensor-on-scalar Regression. (n.d.). Retrieved from https://arxiv.org/pdf/1703.05264.pdf
- [4] Overview about h2o. Retrieved from http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html

Gradient Boosting Machine with Parameter

```
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
        AD CN LMCI Error
                               Rate
                 6 \ 0.2917 = 7 / 24
        1 18
                 1 \ 0.1000 = 2 / 20
CN
         2 3
                35 \ 0.1250 = 5 / 40
LMCI
Totals 20 22
                42 0.1667 = 14 / 84
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
        AD CN LMCI Error
                               Rate
                 9 \ 0.3750 = 9 / 24
        15 0
AD
                 4 \ 0.2000 = 4 / 20
         0 16
                32 \ 0.2000 = 8 / 40
 LMCI
Totals 19 20 45 0.2500 = 21 / 84
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
       AD CN LMCI Error
                               Rate
               10 \ 0.4545 = 10 / 22
                3 \ 0.2000 = 3 / 15
        0 12
     6 \quad 3 \quad 36 \quad 0.2000 = 9 \ / \ 45
               49 \ 0.2683 = 22 / 82
Totals 18 15
```

Best Neural Network model base on simulate parameter

```
> nn1 confusion best model mse
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
       AD CN LMCI Error
                              Rate
               11 \ 0.4583 = 11 / 24
                5 \ 0.2500 = 5 / 20
               27 \ 0.3250 = 13 / 40
        5 8
Totals 18 23
               43 \ 0.3452 = 29 / 84
> nn1_confusion_best_model_accuracy
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
       AD CN LMCI Error
                              Rate
                5 \ 0.2500 = 6 / 24
       18 1
                3 \ 0.1500 = 3 / 20
        0 17
               32 \ 0.2000 = 8 / 40
               40 \ 0.2024 = 17 / 84
Totals 20 24
```

Random Forest Classification

```
Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

AD CN LMCI Error Rate

AD 10 1 13 0.5833 = 14 / 24

CN 1 10 9 0.5000 = 10 / 20

LMCI 4 4 32 0.2000 = 8 / 40

Totals 15 15 54 0.3810 = 32 / 84
```

Decision Tree Classification Result

Confusion Matrix and Statistics

Reference

Prediction AD CN LMCI

AD 18 1 5 CN 0 10 6 LMCI 1 10 30

Overall Statistics

Accuracy: 0.716

95% CI: (0.605, 0.8107)

No Information Rate: 0.5062 P-Value [Acc > NIR]: 9.833e-05

Kappa : 0.5443

Mcnemar's Test P-Value: 0.1979

Statistics by Class:

	Class: AD	Class: CN	Class: LMCI
Sensitivity	0.9474	0.4762	0.7317
Specificity	0.9032	0.9000	0.7250
Pos Pred Value	0.7500	0.6250	0.7317
Neg Pred Value	0.9825	0.8308	0.7250
Prevalence	0.2346	0.2593	0.5062
Detection Rate	0.2222	0.1235	0.3704
Detection Prevalence	0.2963	0.1975	0.5062
Balanced Accuracy	0.9253	0.6881	0.7284

Principal Component Analysis

PC 1 (58%)