fin SP + ONTO () fin SP + UN () fin SP + @ PE

Theorem (Gibbard '73, Sattenth waite '75)

Suppose 1A17,3. If is ONTO and SP (=) f is dictatorial.

- · |A|=2, GS Theonem doesn't hold. Phinality with a fixed tie-breaking rule is SP, ONTO and non-dictatornial.
- o P: The preferences of every voter is unhestricted all possible permutations of the alternatives are beasible. This also implies that too a manipulating agent has more options to misnepont. If the domain had been restricted, then GS theorem may not hold.
- · Indifference: in general, GS theonem may not hold.

 But in the proof, we will use some specific profile constructions, if they hold then

 GS characterization holds.
- · Cardinalization: doesn't matter, ar long ar the order ordinal order is maintained, GS Theorem will hold.
 - Proof; We'll follow a direct approach. First prove for m=2 and then use induction on the number of voters,

Ref: (Sen 2001)

20-2 Lemma: 1A17,3, N= {1,2}, f is onto and SP, then for every preference profile P $f(P) \in \{P_1(1), P_2(1)\}$ Proof: If $P_1(1) = P_2(1)$ then Unanimity implies $f(P) = f(P_1(1))$ Say $P_1(1) = a \neq b = P_2(1)$ for contradiction assume $f(P) = c \neq a, b$.

f(P1,P2) E {a,b} PE: every then alternative except b is Pareto dominated

'y b, then 2 will manipulate by a from P2 - P2

hence $f(P_1, P_2') = a$

f(P1,P2) = 6 (by similar arguments)

 $P_1 P_2' \longrightarrow P_1' P_2'$ should be a by MONO

 $P'_1P_2 \rightarrow P'_1P'_2$ --- b by MONO.

Lemma: 1A1>,3, N= {1,2}, f is ONTO and SP

Let P: P₁(1) = a ≠ b = P₂(1), P': P₁(1) = C, P₂(1) = d.

Then if $f(P) = a \Rightarrow f(P') = c$ if f(p) = b => f(p') = d

Proves dictatorship for two voters

Proof? If c=d, unanimity implies the lemma.

Cases c d Whyexhoustive *‡a*, b b 2 a b 3 ta,b +b $a \neq b, a$ 4 a \neq a, b b a b #a,b b #a,b 5 ta,6 6 6 b a ta, b \$ b

Enough to consider yf(p)=a ≠f(p')=c the other case is

Symmetric.

Case 1:	C =	.a,	d=6	
P, P ₂		Pipe a	Say	f(p')=b
P' ₁ P' ₂ J	\rightarrow	P, P2		

P,	P2	P1	P2	PI	P2
<u>`</u>	Ь	a	Ь	a	P
1	1	1	1	Ь	a
i	1		,	!	1
		}		1 '	,

Case 2: $c \neq a, b$ d = bsay f(P) = b for contradiction Then $P_1'P_2' \rightarrow \hat{P}_1 P_2$ case !

$$\frac{P_1 P_2 P_1 P_2 P_2 P_1 P_2}{a b c f a, b b c b}$$

agent 1 misneponts from $\hat{P}_1 \rightarrow P_1$ since $f(\hat{P}_1\hat{P}_2)\hat{P}_1f(\hat{P}_1,\hat{P}_2)$

(20-4)
Case 3:
$$C \neq a, b, d \neq b$$
 $P_1 P_2 P_1' P_2' | \hat{P}_1 \hat{P}_2$
Say $f(P') = d$ $a b | C \neq a, b | d \neq b | c b$
 $P' \rightarrow \hat{P} f(\hat{P}) = b (case 2)$

 $P \rightarrow \hat{P} + (\hat{P}) = c \text{ (case 2)}$

Case 4:
$$c = a$$
, $d \neq b$, a

$$f(p') = d$$

$$p' \rightarrow \hat{p} \quad f(\hat{p}) = b \quad (case 2)$$

$$P \rightarrow \hat{p} \quad f(\hat{p}) = a \quad (case 1)$$

Case 5:
$$c = b$$
 $d \neq a, b$ $f_1 \stackrel{P}{}_2 \stackrel{P'}{}_1 \stackrel{P'}{}_2 \stackrel{P'}{}_2$ $f(p') = d$

$$p' \rightarrow \hat{p} \qquad f(\hat{p}) = d \qquad (case 4)$$

$$p \rightarrow \hat{p} \qquad f(\hat{p}) = a \qquad (case 4)$$

Case 6:
$$c=b$$
 $d=a$

$$f(P')=a$$

$$2 \neq a,b$$

$$f(A) = a \qquad A = a$$

$$A = a \qquad A$$

$$A = a$$

$$P' \rightarrow (\hat{P}_1 P_2') f(\hat{P}_1 P_1') = a (case 1)$$

$$P \rightarrow (\tilde{P}_1 P_2') f(\tilde{P}_1 P_2') = \chi (case 3)$$

Player 1 manipulates from $\hat{P}_1 P_1' \longrightarrow \hat{P}_1 P_2'$ z P, a