TUTORIAL 1.6 SOLUTIONS

1. Table where * is multiplication.

*	е	a	b	С
е	е	a	b	С
a	a	е	С	b
b	b	С	е	a
С	С	b	a	е

Check $e^2 = a^2 = b^2 = c^2 = e$. This is a K-4 group.

2. Let $T = \{hk \mid h \in H, k \in K\}$ and G abelian. $T \neq \emptyset$ since $e = ee \in T$ and $T \subseteq G$ since G is closed and $h, k \in G \rightarrow hk \in G$.

$$h_1 k_1, h_2 k_2 \in T \implies (h_1 k_1) (h_2 k_2)^{-1} = (h_1 k_1) (k_2^{-1} h_2^{-1})$$

= $h_1 h_2^{-1} k_1 k_2^{-1} \in T$ since G is abelian.
 $\therefore T \leq G$.

3. $H = \{x \in G \mid x^2 = e\}$ and G abelian.

 $H \neq \emptyset$ since $e^2 = e \in H$.

By definition of H, it is clear that $H \subseteq G$.

$$x_1, x_2 \in H \implies x_1^2 = x_2^2 = e$$

 $\Rightarrow (x_1 x_2^{-1})^2 = (x_1 x_2^{-1})(x_1 x_2^{-1})$
 $= (x_1 x_2^{-1})(x_2 x_1^{-1}) = e \quad \text{(since } x^2 = e \Rightarrow x^{-1} = x \text{ and } G \text{ abelian)}$
 $\Rightarrow x_1 x_2^{-1} \in H \quad \therefore H \leq G.$

4. $H \neq \emptyset$, |H| = k, $H \subseteq G$ such that H is closed under *. Say $h \in H$ then

 $\langle h \rangle = \{ h^r \mid r \in \mathbb{Z} \} \subseteq H, H \text{ closed under } *.$

But |H| = k so $h^{r_1} = h^{r_2}$ for some $r_1, r_2 \in \mathbb{Z}$ and $h^{r_1 - r_2} = e \in H$.

Further, say $r_1 - r_2 = n$ then $h^n = e^{-1/2} = h(h^{n-1}) = (h^{n-1})h$.

So $h^{-1} = h^{n-1}$ for all $h \in H$ $\therefore H \leq G$.

5. $H_a = \{x \in G \mid xa = ax\} = \{x \in G \mid x = axa^{-1}\}, \text{ so } H_a \subseteq G.$ $aea^{-1} = aa^{-1} = e \text{ so } e \in H_a, \text{ so } H_a \neq \emptyset.$

$$x, y \in H_a \Rightarrow x = axa^{-1}, y = aya^{-1}$$

 $\Rightarrow xy^{-1} = (axa^{-1})(aya^{-1})^{-1}$
 $= axy^{-1}a^{-1} \Rightarrow xy^{-1} \in H_a$
 $\therefore H_a \leq G.$

6. (a) $S \subseteq G$ and $H_S = \{x \in G \mid xs = sx \ \forall s \in S\} = \{x \in G \mid x = sxs^{-1}, \ \forall s \in S\}$ so $H_S \subseteq G$. $e = ses^{-1} \quad \forall s \in S$ so $e \in H_S$ and $H_S \neq \emptyset$.

$$x, y \in H_S \Rightarrow sxs^{-1} = x, sys^{-1} = y \quad \forall s \in S$$

 $\Rightarrow xy^{-1} = (sxs^{-1})(sys^{-1})^{-1} = sxy^{-1}s^{-1} \quad \forall s \in S$
 $\Rightarrow xy^{-1} \in H_S.$
 $\therefore H_S \leq G.$

(b) $G \subseteq G$ so $H_G = \{x \in G \mid xy = yx \quad \forall y \in G\} = Z(G)$ centre of G is a subgroup of G by part (a). Hence H_G is an belian group.

For any $x, z \in H_G \implies xz = zx \implies H_G$ abelian.

- 7. (a) $a \equiv a$ since $aa^{-1} = e \in H \leq G$.
 - (b)

$$a \equiv b \implies ab^{-1} \in H$$

$$\Rightarrow (ab^{-1})^{-1} \in H \le G$$

$$\Rightarrow ba^{-1} \in H$$

$$\Rightarrow b \equiv a.$$

(c)

$$a \equiv b$$
 and $b \equiv c \implies ab^{-1} \in H$ and $bc^{-1} \in H$
 $\Rightarrow (ab^{-1})(bc^{-1}) \in H \leq G.$
 $\Rightarrow a(b^{-1}b)c^{-1} = ac^{-1} \in H \leq G.$

8. Show (i)
$$\Rightarrow$$
 (ii) \Rightarrow (iii) \Rightarrow (i).

Assume (i) $HK \leq G$.

$$hk \in HK \quad \Rightarrow \quad (hk)^{-1} \ \Rightarrow \ k^{-1}h^{-1} \in HK$$

$$\Rightarrow \quad k^{-1}h^{-1} = h_1k_1 \in HK$$

$$\Rightarrow \quad hk = k_1^{-1}h_1^{-1} \in KH$$

$$\Rightarrow \quad HK \subseteq KH.$$

$$kh \in KH \implies k \in K \text{ and } h \in H \implies k^{-1} \in K \text{ and } h^{-1} \in H$$

 $\implies h^{-1}k^{-1} \in HK \implies (kh)^{-1} \in HK$
 $\implies kh \in HK$

As assumed HK is a group $\Rightarrow KH \subseteq HK$.

Therefore KH = HK.

Assume (ii) HK = KH $e \in KH$ so $KH \neq \emptyset$.

$$k_1h_1, k_2h_2 \in KH \implies (k_1h_1)(k_2h_2)^{-1}$$

 $\Rightarrow (k_1h_1)(h_2^{-1}k_2^{-1})$
 $\Rightarrow k_1h_3k_2^{-1} = k_3h_3 \in KH.$

Therefore $KH \leq G$.

By similar argument $KH \leq G \Rightarrow KH = HK$ and $KH = HK \Rightarrow HK \leq G$.

9.
$$G = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in \mathbb{R}, a \neq 0 \right\}.$$
 $G \neq \emptyset \text{ since } I_2 \in G.$

$$A, B \in G \implies A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
 where $a \neq 0$ and $B = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix}$ where $c \neq 0$.

Then
$$B^{-1} = \frac{1}{c^2} \begin{pmatrix} c & -d \\ 0 & c \end{pmatrix}$$
 . Hence

$$AB^{-1} = \frac{1}{c^2} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} c & -d \\ 0 & c \end{pmatrix}$$
$$= \frac{1}{c^2} \begin{pmatrix} ac & -ad + bc \\ 0 & ac \end{pmatrix}.$$

But $ac \neq 0$ since $a \neq 0$ and $c \neq 0 \Rightarrow AB^{-1} \in G$. Therefore $G \leq GL_2(\mathbb{R})$.

- 10. (a) $(1\ 2\ 3)(9\ 8\ 5)(4\ 7\ 6)$.
 - (b) $(7\ 2\ 3\ 1\ 9\ 8\ 4)(5\ 6)$.
 - (c) $(1\ 2)(3\ 7\ 8\ 5\ 6)(9\ 4)$.
- 11. $S_3 = \{e, (1\ 2\ 3), (1\ 3\ 2), (1\ 2)(1\ 3)(2\ 3)\}.$ But $(1\ 2\ 3) = (1\ 3)(1\ 2)$ and $(1\ 3\ 2) = (1\ 2)(1\ 3).$ Therefore, $e, (1\ 2\ 3), (1\ 3\ 2)$ are even permutations in S_3 .
- 12. e, (1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 3)(2 4), (1 4)(2 3), (1 2)(3 4) are even permutations in S_4 .