Sarah Ertel	1	2	3	Σ
Patrick Greher				
Eugen Ljavin				

Übungsblatt Nr. 1 (Abgabetermin 26.04.2018)

Aufgabe 1

Tutor: Jan Splett

a)

Zu zeigen:
$$f_1(n)$$
, $f_2(n) = \mathcal{O}(g(n)) \Rightarrow f_1(n) + f_2(n) = \mathcal{O}(g(n))$

Sei
$$f_1(n) = \mathcal{O}(g(n)) \Rightarrow \exists c_1, n_1 > 0 \ \forall \ n \geq n_1 : f(n) \leq c_1 \cdot g(n) \text{ und}$$

 $f_2(n) = \mathcal{O}(g(n)) \Rightarrow \exists c_2, n_2 > 0 \ \forall \ n \geq n_2 : f(n) \leq c_2 \cdot g(n)$

Es gilt
$$f_1(n) + f_2(n) \le c_1 \cdot g(n) + c_2 \cdot g(n) = g(n) \cdot (c_1 + c_2) \square$$

Zu zeigen:
$$f_1(n), f_2(n) = \mathcal{O}(g(n)) \Rightarrow f_1(n) \cdot f_2(n) = \mathcal{O}(g(n)^2)$$

Sei $f_1(n) = \mathcal{O}(g(n)) \Rightarrow \exists c_1, n_1 > 0 \ \forall \ n \geq n_1 : f(n) \leq c_1 \cdot g(n)$ und $f_2(n) = \mathcal{O}(g(n)) \Rightarrow \exists \ c_2, n_2 > 0 \ \forall \ n \geq n_2 : f(n) \leq c_2 \cdot g(n)$
Es gilt $f_1(n) \cdot f_2(n) \leq c_1 \cdot g(n) \cdot c_2 \cdot g(n) = c_1 \cdot c_2 \cdot g(n)^2 \square$

b)

Zu zeigen:
$$f(n) = \mathcal{O}(g(n)) \land g(n) = \mathcal{O}(h(n)) \Rightarrow f(n) = \mathcal{O}(h(n))$$

Sei
$$f(n) = \mathcal{O}(g(n)) \Rightarrow \exists c_0, n_0 > 0 \ \forall \ n \ge n_0 : f(n) \le c_0 \cdot g(n) \land g(n) = \mathcal{O}(h(n)) \Rightarrow \exists c_1, n_1 > 0 \ \forall \ n \ge n_1 : g(n) \le c_1 \cdot h(n)$$

Wähle
$$n_2 = max(n_0, n_1), c_2 = c_0 \cdot c_1$$

Dann gilt $\forall n \ge n_2 : f(n) \le c_0 \cdot f(n) \le c_0 \cdot c_1 \cdot h(n) = c_2 \cdot h(n)$
 $\Rightarrow \exists c_2, n_2 > 0 \ \forall \ n \ge n_2 : f(n) \le c_2 \cdot h(n) \ \Box$

30. April 2018

c)

Zu zeigen:
$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

Links \rightarrow Rechts:

Sei
$$f(n) = \Theta(g(n)) \Rightarrow \exists c_1, c_2, n_0 > 0 \ \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Es gilt $(1) c_1 \cdot g(n) \le f(n) \Rightarrow g(n) \le \frac{1}{c_1} \cdot f(n)$ und $(2) f(n) \le c_2 \cdot g(n) \Rightarrow \frac{1}{c_2} \cdot f(n) \le g(n)$
Folglich $\frac{1}{c_2} \cdot f(n) \le g(n) \le \frac{1}{c_1} \cdot f(n)$
Wähle $c_3 = \frac{1}{c_2}$ und $c_4 = \frac{1}{c_1}$

$$\Rightarrow \exists c_3, c_4, n_0 > 0 \ \forall n \geq n_0 : c_3 \cdot g(n) \leq f(n) \leq c_4 \cdot g(n) \text{ und somit ist } g(n) = \Theta(f(n))$$

Rechts \rightarrow Links:

Sei
$$g(n) = \Theta(f(n)) \Rightarrow \exists c_1, c_2, n_0 > 0 \ \forall n \ge n_0 : c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n)$$

Es gilt $(1) c_1 \cdot f(n) \le g(n) \Rightarrow f(n) \le \frac{1}{c_1} \cdot g(n)$ und $(2) g(n) \le c_2 \cdot f(n) \Rightarrow \frac{1}{c_2} \cdot g(n) \le f(n)$
Folglich $\frac{1}{c_2} \cdot g(n) \le f(n) \le \frac{1}{c_1} \cdot g(n)$
Wähle $c_3 = \frac{1}{c_2}$ und $c_4 = \frac{1}{c_1}$

$$\Rightarrow \exists c_3, c_4, n_0 > 0 \ \forall \ n \geq n_0 : c_3 \cdot f(n) \leq g(n) \leq c_4 \cdot f(n) \text{ und somit ist } f(n) = \Theta(g(n)) \square$$

d)

Zu zeigen:
$$f(n) = \mathcal{O}(g(n)) \iff g(n) = \Omega(f(n))$$

Links \rightarrow Rechts:

Sei
$$f(n) = \mathcal{O}(g(n)) \Rightarrow \exists \ c, n_0 > 0 \ \forall \ n \geq n_0 : f(n) \leq c \cdot g(n)$$
 Es gilt
$$f(n) \leq c \cdot g(n) \Rightarrow \frac{1}{c} \cdot f(n) \leq g(n)$$
 Wähle
$$c_1 = \frac{1}{c}$$

$$\Rightarrow \exists c_1, n_0 > 0 \ \forall \ n \geq n_0 : c \cdot g(n) \leq f(n) \text{ und somit ist } g(n) = \Omega(f(n))$$

Rechts \rightarrow Links:

Sei
$$g(n) = \Omega(f(n)) \Rightarrow \exists \ c, n_0 > 0 \ \forall \ n \geq n_0 : c \cdot g(n) \leq f(n)$$
 Es gilt
$$c \cdot f(n) \leq g(n) \Rightarrow f(n) \leq \frac{1}{c} \cdot g(n)$$
 Wähle
$$c_1 = \frac{1}{c}$$

 $\Rightarrow \exists c_1, n_0 > 0 \ \forall \ n \geq n_0 : f(n) \leq c_1 \cdot g(n) \text{ und somit ist } f(n) = \mathcal{O}(g(n)) \ \Box$

Aufgabe 2

a)

$$\begin{split} T(n) &= T(\frac{n}{2}) + 1 \\ &\to a = 1, b = 2, f(n) = 1 \\ log_b a &= log_2 1 = 0 \\ &\to f(n) = 1 = n^0 = n^{log_b a} \to 2. \text{Fall Mastertheorem} \\ T(n) &= \Theta(n^{log_b a}) * log_b n \end{split}$$

b)

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + 1\\ &\to a = 2, b = 2, f(n) = 1\\ log_b a &= log_2 2 = 1\\ &\to f(n) = 1 \leq n^{1-\epsilon} \to 1. \text{ Fall Mastertheorem}\\ T(n) &= \Theta(n^{log_b a}) \end{split}$$

c)

$$T(n) = 2T(\frac{n}{2}) + n$$

 $\rightarrow a = 2, b = 2, f(n) = n$
 $log_b a = log_2 2 = 1$
 $\rightarrow f(n) = n = n^1 = n^{log_b a} \rightarrow 2$. Fall Mastertheorem
 $T(n) = \Theta(n^{log_b a}) * log_b n$

Aufgabe 3

a)

b)

$$T(1) = 0$$

$$T(n) = \frac{7}{8} \cdot T\left(\frac{7}{8}n\right) + \frac{7}{8} \cdot n$$

$$= \frac{7}{8} \cdot \left(\frac{7}{8} \cdot T\left(\frac{7}{8}n\right) + \frac{7}{8} \cdot n\right) + \frac{7}{8} \cdot n$$

$$= \frac{7}{8} \cdot \left(\frac{7}{8} \cdot T\left(\frac{49}{64}n\right) + \frac{49}{64} \cdot n\right) + \frac{7}{8} \cdot n$$

$$= \frac{7}{8} \cdot \left(\frac{7}{8} \cdot T\left(\frac{7}{8} \cdot \frac{49}{64}n\right) + \frac{7}{8} \cdot \frac{49}{64} \cdot n\right) + \frac{49}{64} \cdot n\right) + \frac{7}{8} \cdot n$$

$$= \frac{7}{8} \cdot \left(\frac{7}{8} \cdot \left(\frac{7}{8} \cdot T\left(\frac{343}{512}n\right) + \frac{343}{512} \cdot n\right) + \frac{49}{64} \cdot n\right) + \frac{7}{8} \cdot n$$

$$\vdots$$

$$i - \text{ter Schritt:} = \left(\frac{7}{8}\right)^{i} \cdot T\left(\left(\frac{7}{8}\right)^{i}n\right) + n \cdot \sum_{\mathbf{geom. Reihe}} \left(\frac{7}{8}\right)^{i} - 1$$

$$i + 1 - \text{ter Schritt:} = \left(\frac{7}{8}\right)^{i+1} \cdot T\left(\left(\frac{7}{8}\right)^{i+1}n\right) + n \cdot \frac{\left(\frac{7}{8}\right)^{n+1} - 1}{\left(\frac{7}{8}\right) - 1}$$

$$i + 1 - \log n : = \left(\frac{7}{8}\right)^{\log n} \cdot T\left(\left(\frac{7}{8}\right)^{\log n}n\right) + n \cdot \frac{\left(\frac{7}{8}\right)^{n+1} - 1}{\left(\frac{7}{8}\right) - 1}$$

$$= \left(\frac{7}{8}\right)^{\log n} \cdot T\left(1\right) + n \cdot \frac{\left(\frac{7}{8}\right)^{n+1} - 1}{\left(\frac{7}{8}\right) - 1}$$

$$= \left(\frac{7}{8}\right)^{\log n} \cdot 0 + n \cdot \frac{\left(\frac{7}{8}\right)^{n+1} - 1}{\left(\frac{7}{8}\right) - 1}$$

$$= n \cdot \frac{\left(\frac{7}{8}\right)^{n+1} - 1}{\left(\frac{7}{4}\right) - 1} \square$$

c)

$$T(1) = 1$$

$$T(n) = 2 \cdot T\left(\frac{2}{3}n\right) + 1$$

$$= 2 \cdot \left(2 \cdot T\left(\frac{2}{3} \cdot \frac{2}{3}n\right) + 1\right) + 1$$

$$= 2 \cdot \left(2 \cdot T\left(\frac{4}{9}n\right) + 1\right) + 1$$

$$= 2 \cdot \left(2 \cdot \left(2 \cdot T\left(\frac{2}{3} \cdot \frac{4}{9}n\right) + 1\right) + 1\right) + 1$$

$$= 2 \cdot \left(2 \cdot \left(2 \cdot T\left(\frac{8}{27}n\right) + 1\right) + 1\right) + 1$$

$$\vdots$$
i-ter Schritt:
$$= 2^i \cdot T\left(\left(\frac{2}{2}\right)^i n\right) + i$$

$$\begin{split} i\text{-ter Schritt:} &= 2^i \cdot T\left(\left(\frac{2}{3}\right)^i n\right) + i \\ i + 1\text{-ter Schritt:} &= 2^{i+1} \cdot T\left(\left(\frac{2}{3}\right)^{i+1} n\right) + i + 1 \\ \text{für } i + 1 = \log n\text{:} &= 2^{\log n} \cdot T\left(\left(\frac{2}{3}\right)^{\log n} n\right) + \log n \\ &= 2^{\log n} \cdot T\left(1\right) + \log n \\ &= 2^{\log n} \cdot 1 + \log n \\ &= n \cdot 1 + \log n \\ &= \mathcal{O}(\log n) \ \Box \end{split}$$

d)