		EAU VEARCH	2/8/06
	Hits	Search String	Databases
S1	977	predict\$3 with model\$1 with ((control near2 system\$1) or controller\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S 2	118	S1 and ((plurality or multiple) near2 model\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S3	117	S1 and ((smart or intelligent or learning) with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S4	210	S2 or S3	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S5	39	S4 and (actuator\$1 with sensor\$1)	EPO; JPO;
Se	26	S4 and (weight\$3 with ((control near2 system\$1) or controller\$1 or model\$1))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S7	22	S2 and S3	EPO; JPO; DERWENT;
S8	7	S4 and (evaluat\$3 with model\$1 with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S9	16		EPO; JPO; DERWENT;
S11	39	S4 and ((predict\$3 or forecast\$3) with (future near2 state\$1))	USPAT; EPO; JPO; DERWENT;
S12	13	S4 and (repeat\$3 with predict\$3)	EPO; JPO;
S13	100	S4 and (predict\$3 with error\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S14	89	S6 and S14	USPAT; EPO; JPO; DERWENT;
S15	140	S5 or S6 or S7 or S8 or S9 or S10 or S11 or S12 or S13 or S15	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S17	13	S4 and (weight\$3 with (fraction or part))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S18	20	S4 and (weight\$3 with (invest\$3 or modify\$3 or modification\$1))	USPAT; EPO; JPO;
S19	224	predict\$3 with model\$1 with ((control near2 system\$1) or controller\$1)	EPO; JPO;
S20	118	S17 and ((plurality or multiple) near2 model\$1)	JPO,
S21	117	S17 and ((smart or intelligent or learning) with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S22	210	S18 or S19	USPAT;
S23	33	S20 and (actuator\$1 with sensor\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S24	97	S20 and (weight\$3 with ((control near2 system\$1) or controller\$1 or model\$1))	EPO; JPO;
S25	25	S18 and S19	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S26	-	S20 and (evaluat\$3 with model\$1 with ((control near2 system\$1) or controller\$1))	USPAT; EPO; JPO;
S27	16	S20 and (weight\$3 with initial\$4)	USPAT; EPO; JPO; DERWENT;
S28	13	S20 and (weight\$3 with (fraction or part))	EPO; JPO;
S29	39	S20 and ((predict\$3 or forecast\$3) with (future near2 state\$1))	USPAT; EPO; JPO; DERWENT;
S30	20	S20 and (weight\$3 with (invest\$3 or modify\$3 or modification\$1))	EPO; JPO;
S31	13	S20 and (repeat\$3 with predict\$3)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S32	100	S20 and (predict\$3 with error\$1)	USPAT;
S33	89	S22 and S30	USPAT; EPO;
S34	140	S21 or S22 or S23 or S24 or S25 or S26 or S27 or S28 or S29 or S31	USPAT; EPO; JPO;
S35	က	S32 and (sum with weight\$1 with (one or "1"))	USPAT; EPO; JPO;
S36	7	S20 and (fraction\$1 with weight\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
S37	=	S17 and (fraction\$1 with weight\$1)	EPO; JPO;
S38	7	S17 and (error with (deviation or variance) with weight\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB

	77.9.00	\$17 and (error with ((control or actuating) near2 signal) with weight) 5,602,761.pn. \$38 and (noise near2 variance) 4,775,949.pn. \$43 and (noise near2 variance) 4,771,250.pn. \$43 and (noise near2 variance) 7,000("28", "44", "45", "30", "31").cols. \$45 and ((multiple or plurality) with models) \$45 and ((multiple or plurality) with (predict\$3 or forecast\$3) with models) \$54 and ((multiple or plurality) with (predict\$3 or forecast\$3) with models) \$55 and (weight\$3 with model\$1) \$55 and (weight\$3 with model\$1) \$55 and (weight\$3 with (adapt\$3 or modif\$4 or chang\$3 or increast\$3)) \$55 and (weight\$3 with (adapt\$3 or modif\$4 or chang\$3 or increast\$3)) \$55 and (weight\$3 with (adapt\$3 or modif\$4 or chang\$3 or increast\$3)) \$55 and (accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3)) \$55 and (accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3)) \$55 and (accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3)) \$55 and (accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3)) \$59 and (accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3)) \$59 and (investing near2 fraction) \$60 or \$61 \$60 or \$61 \$6119,652.pn. or "6,027,112".pn. or "6,039,316".pn. "6,568,592".pn. or "6,834,811".pn. \$60.3003002447 or "20030028275" or "20030127616"	USPAT; EPO; JPO; USPAT; EPO; USPAT; EPO; JPO; USPAT; EPO; USPA
000 000 000	7	See and (weight\$1 with model\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
09/973786		Warren Jackson et al.	

EAST SEARCH

Results of search set S47

Document Kind Codes Title
US 20050168973 A1 Artificial miniature, landscape model with three dimensionally variable colored LEDS

5/8/06

Issue Date Current OR 20050804 362/122

Abstract

20050707 700/30 20050616 342/195 20050519 706/46 20050407 704/231 20050407 700/44 20050310 463/58 20050303 717/158	20050127 526/64 20041223 175/25 20041011 700/29 20041021 382/103 20041007 706/21 20040012 244/3.11 20040701 60/773 20040429 700/269 20031016 700/42 20030724 706/21 20030626 700/29 20030612 342/357.06 20030529 700/121 20030508 707/6 20030508 707/6 20030508 707/6 20030417 703/2 20030403 700/31	20030306 705/7 20021205 382/260 20020711 382/181 20020613 382/278 20020611 700/280 20050405 348/180 20050125 244/3.11 20041102 342/357.12 20041019 700/28 20040928 382/272 20040921 702/181 20040420 706/23 20040413 702/54
Adaptive multivariable process controller using model switching and attribute interpolation Multiple model radar tracking filter and systems and methods employing same Automatic working system Data process unit and data process unit control program Integrated optimization and control using modular model predictive controller Remote control toy system, and controller, model and accessory device to be used in the sam Method, apparatus and computer program for compiling program using statistical information c		System System System System Vibratio Adaptat System System System Adaptiv Method Weight System Method Method Method Method Method Method
US 20050149209 A1 US 20050128138 A1 US 20050108180 A1 US 20050075875 A1 US 20050054450 A1 US 2005005032 A1 US 2005005051451 A1	20050020784 20040256152 20040225383 20040199481 20040155142 20040123600 20040123600 20030195641 20030149603 20030149603 20030140023 20030140023 20030140023 20030140023 20030140023 2003014063 2003014063 2003014063 2003014063 2003014063 20030088565 20030088322 20030088322	US 20030046130 A1 US 20020181799 A1 US 20020090134 A1 US 20020071614 A1 US 20020042667 A1 US 20010014834 A1 US 6845938 B2 US 6845938 B2 US 6845938 B2 US 6845938 B2 US 687448 B1 US 6798919 B2 US 6795794 B2 US 6745087 B2 US 6745087 B2 US 675508 B1 US 675508 B1 US 675508 B1

Interference checked

		Degrada Transport) somethower
09/973786		Warren Jackson et al.	
		EAST SEARCH	2/8/06
L#	Hits	Search String	Databases
7	395	predict\$3 with model\$1 with ((control near2 system\$1) or controller\$1)	US-PGPUB
2	92	1 and ((plurality or multiple) near2 model\$1)	US-PGPUB
L 3	26	2 and (weight\$3 with ((control near2 system\$1) or controller\$1 or model\$1))	US-PGPUB
7	ω	2 and (weight\$3 with (fraction or part))	US-PGPUB
L 5	လ	2 and (weight\$3 with (invest\$3 or modify\$3 or modification\$1))	US-PGPUB
97	48	2 and ((accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3))	US-PGPUB
L7	20	2 and (weight\$3 with model\$1)	US-PGPUB
F8	43	2 and (weight\$3 with (adapt\$3 or modif\$4 or chang\$3 or increas\$3))	US-PGPUB
67	78	4 or 5 or 6 or 7 or 8	US-PGPUB
L10	7	9 and ("prediction errors".CLM.)	US-PGPUB
L11	6	9 and (weight.CLM.)	US-PGPUB
L12	က	9 and (fraction.CLM.)	US-PGPUB
L13	16	10 or 11 or 12	US-PGPUB

Results of search set S47	t S47		
Document Kind Codes Title		Issue Date Current OR	~
US 20050168973 A1	US 20050168973 A1 Artificial miniature, landscape model with three dimensionally variable colored LEDS	20050804 362/122	
US 20050149209 A1	US 20050149209 A1 Adaptive multivariable process controller using model switching and attribute interpolation	20050707 700/30	
US 20050128138 A1	US 20050128138 A1 Multiple model radar tracking filter and systems and methods employing same	20050616 342/195	
US 20050108180 A1	US 20050108180 A1 Automatic working system	20050519 706/46	
US 20050075875 A1	US 20050075875 A1 Data process unit and data process unit control program	20050407 704/231	
US 20050075738 A1	US 20050075738 A1 Integrated optimization and control using modular model predictive controller	20050407 700/44	
US 20050054450 A1	US 20050054450 A1 Remote control toy system, and controller, model and accessory device to be used in the sami	20050310 463/58	
US 20050050532 A1	US 20050050532 A1 Method, apparatus and computer program for compiling program using statistical information	20050303 717/158	
US 20050049761 A1	US 20050049761 A1 Vibration control apparatus for automotive vehicle	20050303 701/1	
US 20050020784 A1	US 20050020784 A1 Process for preparing polyethylene	20050127 526/64	
US 20040256152 A1	US 20040256152 A1 Real-time drilling optimization based on MWVD dynamic measurements	20041223 175/25	

Abstract

5/8/06

EAST SEARCH

Warren Jackson et al.

09/973786

US 20040225383 A1	Method for Design of Multi-objective Robust Controllers	20041111 700/29
US 20040208341 A1	System and method for tracking a global shape of an object in motion	20041021 382/103
US 20040199481 A1	Bayesian neural networks for optimization and control	
US 20040155142 A1	SYSTEM AND METHOD FOR PERIODICALLY ADAPTIVE GUIDANCE AND CONTROL	20040812 244/3.11
US 20040123600 A1	ADAPTIVE MODEL-BASED CONTROL SYSTEMS AND METHODS FOR CONTROLLING A C	
US 20040083028 A1	Process control using on-line instrumentation and process models	
	State based adaptive feedback feedforward PID controller	
	System and method for operating a non-linear model with missing data for use in electronic co	20030807 705/7
US 20030140023 A1	System and method for pre-processing input data to a non-linear model for use in electronic co	20030724 706/21
US 20030120360 A1	Plant control apparatus	20030626 700/29
	Method and apparatus for saving power in a global postioning system receiver	20030612 342/357.06
US 20030100972 A1	Reusable software components for invoking computational models	20030529 700/121
US 20030088565 A1	Method and system for mining large data sets	20030508 707/6
	Kiln thermal and combustion control	20030508 700/53
US 20030074166 A1	Learning systems and methods for market-based control of smart matter	20030417 703/2
US 20030065409 A1	Adaptively detecting an event of interest	20030403 700/31
US 20030060945 A1	Vertical motion detector for air traffic control	20030327 701/4
US 20030046130 A1	System and method for real-time enterprise optimization	20030306 705/7
US 20020181799 A1	Dynamically reconfigurable signal processing circuit, pattern recognition apparatus, and image	20021205 382/260
US 20020090134 A1	System and method for providing a scalable objective metric for automatic video quality evalua	20020711 382/181
US 20020071614 A1	System and method for providing a scalable dynamic objective metric for automatic video qua	20020613 382/278
US 20020042667 A1	Vibration exciting apparatus and vibration testing system for structure using it	20020411 700/280
US 20010014834 A1	Adaptation to unmeasured variables	20010816 700/29
US 6876381 B2	System and method for providing a scalable objective metric for automatic video quality evalua	20050405 348/180
US 6845938 B2	System and method for periodically adaptive guidance and control	20050125 244/3.11
US 6823675 B2	Adaptive model-based control systems and methods for controlling a gas turbine	
US 6812887 B2	Method and apparatus for saving power in a global positioning system receiver	20041102 342/357.12
US 6807448 B1	Weight identification method and feedback control method	20041019 700/28
	System and method for providing a scalable dynamic objective metric for automatic video qua	
	Method for determination of spatial target probability using a model of multisensory processing	
	Method for control of a plant	
6725208	Bayesian neural networks for optimization and control	20040420 706/23
US 6721668 B1	Vibration exciting apparatus and vibration testing apparatus for structure using same	20040413 702/54
US 6609238 B1	Method of control cell placement to minimize connection length and cell delay	20030819 716/10
US 6604028 B2	Vertical motion detector for air traffic control	20030805 701/4
6600485	Polygon data generation method and image display apparatus using same	20030729 345/419
6577908	Adaptive feedback/feedforward PID controller	20030610 700/42
6575037	Multiple degree of freedom vibration exciting apparatus and system	
6560500	Method and apparatus for manufacturing objects having optimized response characteristics	20030506 700/98
US 6532454 B1	Stable adaptive control using critic designs	20030311 706/14

20020611 360/75 20020416 219/497 20011030 345/420 20010508 700/29 20010327 219/497 19990727 373/50 19980630 706/25 19980630 706/25 19980630 706/25 19960813 700/97 19960804 604/65 19951212 717/160 19950418 700/31 19940125 446/68 19931221 375/232 19910423 700/30 19861118 244/13 20050616	19860723 NA
3 A A B A B A B A B A B A B A B A B A B	0 A Graph modelling circuit - has control unit based on logic gates to enable multiple branch mode
US 6404581 B1 US 6373033 B1 US 6310619 B1 US 6230062 B1 US 5930284 A US 5930284 A US 5774633 A US 5774633 A US 574580 A US 574580 A US 552798 A US 552798 A US 522798 A US 522798 A US 522798 A US 5227723 A US 523108 A US 531712 A US 5010473 A US 5010473 A US 5010473 A	SU 1246110 A

	20060302 /05/400 on of a pollutant i 20060302 705/10 20060302 705/1	pollutant into the 20060302 700/266 to a desired value 20060302 700/19	utant into the air 20060302 422/62	20060302 422/62	20060302 422/62 20060302 422/62	20060302 422/62	20060302 95/1	cases 20060209 703/2	lishing pad 20060112 451/5	20051201 703/11
US 20060079143 A1 Controlled dosing of fibrous materials US 20060074501 A1 Method and apparatus for training a system model with gain constraints US 20060058899 A1 Cascaded control of an average value of a process parameter to a desired value	US 20060047607 A1 Maximizing profit and minimizing losses in controlling air pollution. US 20060047564 A1 Estimating an economic parameter related to a process for controlling emission of a pollutant i US 20060047526 A1 Cost based control of air pollution control	US 20060047366 A1 Estimated parameter based control of a process for controlling emission of a pollutant into the US 20060047347 A1 Control of rolling or moving average values of air pollution control emissions to a desired value	US 20060045804 A1 Process parameter estimation in controlling emission of a non-particulate pollutant into the air	US 20060045803 A1 APC process control when process parameters are inaccurately measured	US 20060045802 A1	US 20060045800 A1 Optimized air pollution control	US 20060042461 A1 Maximizing regulatory credits in controlling air pollution	Finite element analysis tire footprint smoothing algorithm using multiple load cases	US 20060009129 A1 Feedforward and feedback control for conditioning of chemical mechanical polishing pad	US 20050267723 A1 Physiocochemical process modelling system
US 20060074501 A1 US 20060058899 A1	US 20060047564 A1 US 20060047564 A1 US 20060047526 A1	US 20060047366 A1 US 20060047347 A1	US 20060045804 A1	US 20060045803 A1	US 20060045802 A1 US 20060045801 A1	US 20060045800 A1	US 20060042461 A1	US 20060031046 A1	US 20060009129 A1	US 20050267723 A1

20051117 20051110 20051006 20051006 20050922 20050804 20050804	20050616 7017108 20050616 435/14 20050609 708/400 30050512 701/102 20050407 700/44 ler 20050324 705/30	20050120 20041223 20041209 20041202 2004125 20040916	control system 20040715 705/7 in-line instrumentatin 20040708 702/30 ccclerators with var 20040708 315/501 CONTROLLING A C 20040701 60/773 ol system 20040617 717/121 ss 20040617 777/121 ss 20040617 700/29 cerd films 20040429 700/269 ered films 20040401 438/5 20040325 700/29 ol system 20040311 700/29 cer 20040311 700/29 cer 20030821 700/28 20030821 702/85 20030821 702/85 20030821 702/85 20030821 702/85 20030821 702/85 20030814 702/104 use in electronic cc 20030807 705/7 ignition engine 20030807 123/501
Predictive regulatory controller Optimal battery charging for damage mitigation Method and system for run-to-run control Adaptive sampling method for improved control in semiconductor manufacturing Method and system of monitoring, sensor validation and predictive fault analysis Control of chemical mechanical polishing pad conditioner directional velocity to improve pad lisystem, method, and medium for monitoring performance of an advanced process control sys Adaptive multivariable process controller using model switching and attribute interpolation	Control system Methods for measuring analyte in a subject and/or compensating for incomplete reaction involvethods for measuring analyte in a subject and/or compensating for incomplete reaction involvethod and structure for transform regression Damping system using a LOLIMOT model to counteract drive train oscillations Integrated optimization and control using modular model predictive controller Dynamic cost accounting	System and method for control of a subject's circadian cycle Real-time drilling optimization based on MWD dynamic measurements Multiple-input/multiple-output control blocks with non-linear predictive capabilities Apparatus and method for batch property estimation Process to prepare a hydrocarbon product having a sulphur content below 0.05 wt Constrained system identification for incorporation of a priori knowledge	Performing what-if forecasts using a business information and decisioning control system Process and method for chemical manufacturing using transformation of on-line instrumentation System and method of applying adaptive control to the control of particle accelerators with var ADAPTIVE MODEL-BASED CONTROL SYSTEMS AND METHODS FOR CONTROLLING A C Integrated model predictive control and optimization within a process control system System and method of adaptive control of processes with varying dynamics Hybrid cascade model-based predictive control system Process control using on-line instrumentation and process models Feedback control of a chemical mechanical polishing process for multi-layered films Klin thermal and combustion control Configuration and viewing display for an integrated model predictive control and optimization within a process control system Constraint and limit feasibility handling in a process control system optimizer Dynamic cost accounting On-line calibration process Control systems for extrusion or drawing plants On-site analysis system with central processor and method of analyzing System and method for operating a non-linear model with missing data for use in electronic or Method of controlling combustion in a homogeneous charge compression ignition engine System and method for pre-processing input data to a non-linear model for use in electronic or
US 20050256593 A1 US 200502248315 A1 US 2005022781 A1 US 2005021514 A1 US 20050216337 A1 US 20050171626 A1 US 20050149209 A1		US 20050015122 A1 US 20040256152 A1 US 20040249483 A1 US 20040232050 A1 US 20040232050 A1	US 20040138936 A1 US 20040133363 A1 US 20040133276 A1 US 20040117040 A1 US 20040117040 A1 US 20040083028 A1 US 20040063224 A1 US 20040063224 A1 US 20040049300 A1 US 20040049295 A1 US 20040049295 A1 US 20040049295 A1 US 20030158680 A1 US 20030158610 A1

7 00001000700	System and method for historical database training of non-linear models for use in electronic c	20030710 705/26
US 20030125865 A1	Control apparatus, control method, and engine control unit	20030703 701/109
US 20030120360 A1	Plant control apparatus	20030626 700/29
US 20030100972 A1	Reusable software components for invoking computational models	20030529 700/121
US 20030088322 A1	Kiln thermal and combustion control	20030508 700/53
US 20030074166 A1	Learning systems and methods for market-based control of smart matter	20030417 703/2
US 20030065409 A1	Adaptively detecting an event of interest	20030403 700/31
US 20030049390 A1	Feedback control of plasma-enhanced chemical vapor deposition processes	20030313 427/585
US 20030049376 A1	Feedback control of sub-atmospheric chemical vapor deposition processes	20030313 427/255.28
US 20030033587 A1	System and method for on-line training of a non-linear model for use in electronic commerce	20030213 717/104
US 20030033194 A1	System and method for on-line training of a non-linear model for use in electronic commerce	20030213 705/10
US 20030028266 A1	Tuning control parameters of vibration reduction and motion control systems for fabrication eq	20030206 700/32
US 20030027424 A1	Feedforward and feedback control for conditioning of chemical mechanical polishing pad	20030206 438/692
US 20030018399 A1	Method for optimizing a plant with multiple inputs	20030123 700/28
US 20030014131 A1	Method for optimizing a plant with multiple inputs	20030116 700/29
US 20020198622 A1	Controller for a laser using predictive models of materials processing	20021226 700/166
US 20020197934 A1	Control of chemical mechanical polishing pad conditioner directional velocity to improve pad li	20021226 451/21
US 20020197745 A1	Feedback control of a chemical mechanical polishing device providing manipulation of remova	20021226 438/5
US 20020072828 A1	Computer method and apparatus for constraining a non-linear approximator of an empirical pr	20020613 700/269
US 20020026110 A1	Methods for improving performance and reliability of biosensors	20020228 600/347
US 20020019722 A1	On-line calibration process	20020214 702/181