

## Exercice 1 - Mouvement RT - RSG \*\*

**B2-13** 

Soit le mécanisme suivant. On a  $\overrightarrow{IA} = R \overrightarrow{j_0}$  et  $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$ . De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.





**Question 1** Déterminer  $\overrightarrow{V(B,2/0)}$ .

**Question 2** Donner le torseur cinématique  $\{\mathcal{V}(2/0)\}$  au point B.

**Question 3** *Déterminer*  $\Gamma(B, 2/0)$ .

Indications:  
1. 
$$V(B,2/0) = \lambda \overrightarrow{i_1} + \dot{\theta} \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$$
.  
2.  $\{ \mathcal{V}(2/0) \} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{cases}$ .  
3.  $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left( \dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right)$ .

Corrigé voir 2.

## Exercice 2 - Mouvement RT - RSG \*\* B2-13

**Question 1** Déterminer  $\overrightarrow{V(B,2/0)}$ .

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$
  
D'une part,  $\overrightarrow{V(B,2/1)} = \lambda \overrightarrow{i_1}.$ 

D'autre part, en utilisant le roulement sans glissement en I,  $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overrightarrow{b} + \overrightarrow{b} +$ 

Au final,  $\overrightarrow{V(B,2/0)} = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$ .

**Question 2** Donner le torseur cinématique  $\{ \mathcal{V}(2/0) \}$  au point B.

$$\{\mathscr{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{array} \right\}_R.$$

**Question 3** *Déterminer*  $\overrightarrow{\Gamma(B,2/0)}$ .

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ \overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left( \lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left( \dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$$



Exercice 3 - Mouvement RT - RSG \*\*

**B2-14** 

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a  $\overrightarrow{IA} = R \overrightarrow{j_0}$  et  $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$ . De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- $G_1$  désigne le centre d'inertie de 1 tel que  $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$ , on note  $m_1$  la masse de 1;
- $G_2 = B$  désigne le centre d'inertie de **2**, on note  $m_2$  la masse de **2**.

Un ressort exerce une action mécanique entre les points A et B.



**Question** 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

**Question 2** Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à  $\mathcal{R}_0$ .

Corrigé voir 4.

Exercice 4 - Mouvement RT - RSG \*\*

**B2-14** 

C1-05

Pas de corrigé pour cet exercice.

**Question** 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.



**Question 2** Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à  $\mathcal{R}_0$ . Le système posède deux mobilités :

- translation de 1 par rapport à 2 ( $\lambda$ );
- rotation de l'ensemble  $\{1+2\}$  autour du point I (le roulement sans glissement permet d'écrire une relation entre la rotation de paramètre  $\theta$  et le déplacement suivant  $\overrightarrow{i_0}$ .



On en déduit la stratégie suivante :

- on isole 2 et on réalise un théorème de la résultante dynamique en projection suivant  $\overrightarrow{i_1}$ . BAME :  $\{\mathscr{T}(1 \to 2)\}$ ,  $\{\mathscr{T}(1_{\text{ressort}} \to 2)\}$   $(\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} = 0)$  et  $\overrightarrow{R(1_{\text{ressort}} \to 2)} \cdot \overrightarrow{i_1} = 0$ )  $\{\mathscr{T}(\text{Pesanteur} \to 2)\}$ .
   on isole  $\{1+2\}$  et on réalise un théorème du moment dynamique en I en projection suivant  $\overrightarrow{k_0}$ . BAME :  $\{\mathscr{T}(0 \to 1)\}$
- $(\overrightarrow{\mathcal{M}(I,0\to 1)}\cdot\overrightarrow{k_0}=0), \{\mathscr{T}(\text{Pesanteur}\to 1)\} \text{ et } \{\mathscr{T}(\text{Pesanteur}\to 2)\}.$