[Total No. of Questions: 8]

S.E. (Comp.) (Semester - III) (RC) Examination, Nov./Dec. - 2011 INTEGRATED ELECTRONICS

Duration: 3 Hours

Total Marks: 100

Instructions: 1) Answer any five questions, at least one question from each module.

2) Make suitable assumptions, wherever necessary.

MODULE - I

- Q1) a) Derive equation for input and output resistance with feedback in voltage series feedback amplifier. [9]
 - b) Draw and explain block diagram of an instrumentation system and name two instrumentation opamp Ics? [6]
 - c) What are the electrical characteristics that op-amp (ideal) should display? [5]
- Q2) a) What are compensating networks? Why are they required?

[5]

b)

In the above fig. if $\pm V_{sat} = \pm 13V$, find V_{UT} and V_{LT} if $V_i = 5$ sinwt, find the wave form of the output voltage. Why schmitt trigger is called as regenerative comparator.

c) Derive equation for summing, weighted, Averaging amplifier along with a circuit diagram in inverting configuration. [8]

MODULE - II

- Q3) a) Explain design of low voltage regulator using IC 723. Draw the circuit and write relevant equations.
 - b) Explain how IC 555 timer can be used as a Astable operation along with a circuit & equation. [8]
 - c) Draw a neat block diagram and explain working of PLL.

[6]

Q4)	a)	Explain how timer 555 can be used as a frequency divider & pulse stretcher. [7]
	b)	Explain any two applications of PLL. [7]
	c)	Explain series voltage regulator along with a circuit and give pin configuration
		of LM 105.
MODULE - III		
Q 5)	a)	Explain with a neat diagram the working of 3-input DTL NAND gate. Also
2-7	,	draw the circuit for modified DTL gate. [9]
	b)	Describe the 3-input HTL NAND with fanout of 'N' similar gates and give its advantages. [7]
	c)	Give a symbol for CMOS transmission gate and along with a circuit its operation.
		[4]
Q6)	a)	Explain with a neat diagram the working of 2-input CMOS NOR gate. [6]
	b)	What are the modifications in corporated TTL, to overcome the limitation of
	c)	speed compared to DTL. [3] Explain wired OP connections and fanout in ECL cates. Name two nameles
	C)	Explain wired-OR connections and fanout in ECL gates. Name two popular ECL families. [7]
	d)	Name the types in Bipolar and unipolar logic families. [4]
		MODULE - IV
Q 7)	a)	Explain A/D converter using voltage to frequency converter, along with schematic and waveforms. [8]
	b)	Describe 3 bit R-2R ladder D/A network. State its advantages & dis advantages.[8]
	c)	What is the conversion time of a 10-bit successive approximation type A/D
		converter using a 1MHz clock and define conversion time of A/D converter.[4]
Q 8)	a)	A 8-bit DAC has a resolution of 20 mV/bit, what is the analog output voltage
	•	for the following digital input codes. [6]
		i) 11100011 ii) 11111100
	b)	Give some examples where A/D & D/A converters are used. [6]
	c)	Explain successive approximation A/D conversion process and along with the
	,	effect of offsetting the scale in successive approximation weighing. [8]
		[0]