RESTRICTED 内部文件

RESTRICTED 內部	文件	13 Math. I
Solution	Marks	Remarks
1. (a) The simple interest = \$1.5	1A	
(b) $h = 64.3$	1A	Any figure roundable to 64.3
(c) $x = \frac{21}{5}$ (= 4.2)	1A	
(d) (i) x + 2y is greatest at (1, 4)	1A]
$\begin{cases} 1 & \text{(ii)} x + 2y \text{ is least at } (0, -3) \end{cases}$	1A	Accept answers showing in
$I^{n} \rightarrow I$ The greatest value is 9. $(1, 4) \rightarrow q$	1A	reasonable order (名)技艺(心)。)
The least value is -6. (y, \circ) $(-5, \circ)$	1A 7	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
2. (a) $f(3) = 5$ (05) 6 O'	1A	
2. (a) $f(3) = 5$ (0, -5) (2) (b) $y = \frac{6x - 3}{2x} (= 3 - \frac{3}{2x})$ (c) $y = \frac{6x - 3}{2x} (= 3 - \frac{3}{2x})$	1A	
(c) $\frac{1}{x-1} - \frac{1}{x+1} = \frac{2}{x^2-1} \left(= \frac{2}{(x-1)(x+1)} \right)$	1A	
(d) The remainder is 2.	1A	
(e) H.C.F. = $2xy^2$ L.C.M. = $12x^2y^3z$ (or $2^2 \cdot 3x^2y^3z$)	1A+1A	
(f) $r = 1$, $s = -2$	1A+1A	. \
(g) $\frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{2}$	1A	
(i) 15 , Garl	9	
3. $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} = \frac{3}{2}$ $\frac{\sin\theta + \cos\theta}{\sin\theta} = \frac{3}{2}$ $\frac{\sin\theta + \cos\theta}{\sin\theta} = \frac{3}{2}$ $\frac{\sin\theta}{\sin\theta} = \frac{3}{2}$		
281110 + 20080 - 381110 - 30080		
	1A	
: tan 0 = 5 0 = 78.7° or 259° (を第一個内は12-分)	1M 1A+1A	roundable to 78.7°,
7) radia \$ \$ \$1 mg.		deduct 1A for each excess answer
Remark		
$\sin\theta = 5\cos\theta$ (same as above)	1A	
$\sin^2\theta = 25\cos^2\theta$		
$\sin^2\theta = 25 (1 - \sin^2\theta)$ $\sin^2\theta = \frac{25}{26}$ $\frac{1}{2} \frac{1}{2} \frac{1}{2} \cos^2\theta$	1m	
$\sin^2\theta = \frac{25}{26}$		
(i) If $\sin \theta = \sqrt{\frac{25}{26}}$, $\theta = 78.7^{\circ}$ or 101° (rej.)	7 1A	
(ii) If $\sin \theta = -\sqrt{\frac{25}{26}}$, $\theta = 259^{\circ}$ or 281° (rej.)	1A	

93-CE-Maths I

RESTRICTED 内部文件Provided by dse.life

P.1

RESTRICTED 内部文件

RESTRICTED 内部文件						
• .	Solution		Marks	Remarks		
4. $x^2 - x - 2 < 0$	*					
(x + 1)(x - 2)			1A	for factorization or accept as x=-1,2		
∴ -1 < x < 2			2A	deduct 1A for any equal sign, accept		
Putting $x = y$	- 100 , we have $ $	1-100 +1) (7-100-2) <0.	1M	graphical solution		
∴ 99 ⟨ <i>y</i> ⟨ 1	5		2A	1.75 °C 2		
			-6			
5. (a) $9^x = \sqrt{3}$		•				
$9^x = 3^{\frac{1}{2}}$	(or $3^{2x} = \sqrt{3}$, $9^{2x} = 3$ etc	7.) <u>1</u>				
$3^{2x} = 3^{\frac{1}{2}}$, , , , , , , , , , , , , , , , , , , ,	9 ⁷ = JS	1A			
$2x = \frac{1}{2}$		二十二年(左對)	1м	equating index with		
∴ x =	14	,	1A	the same base		
OR Tak	ing logarithms					
x1c	g9 = log√3		1M			
x =	log√3 log 9		1A			
=	0.25		1A			
$(b) x \left(\frac{x^{-1}}{y^2}\right)^{-3}$	$= x \left(\frac{1}{xy^2}\right)^{-3}$					
	$= x(xy^2)^3$					
	$= x(x^3y^6)$					
	$= x^4y^6$		2M+1A	1M for correct use of the formula		
				$a^{-n} = \frac{1}{a^n}$ 1M for correct use of the formula		
			2 6	$(a^m)^n = a^{mn}$		
			[3]			
				,		
	•					
3-CE-Maths I						
				P.2		

Solution Marks Remarks 6. (a) $\alpha + \beta = \frac{m}{2}$ $\alpha \beta = \frac{500}{2}$ (= 250) The area of the picture = $\alpha \beta$ = 250 (b) (i) The perimeter = $2(\alpha + \beta)$ $= 2(\frac{m}{2}) = m$ (ii) The area of the border $= (\alpha + 4)(\beta + 4) - \alpha \beta$ $= \alpha \beta + 4(\alpha + \beta) + 16 - \alpha \beta$ $= 4(\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2(2(\beta + 4) + 2\alpha)$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7.	
(b) (i) The perimeter = $2(\alpha + \beta)$ $= 2(\frac{\pi}{2}) = m$ (ii) The area of the border $= (\alpha + 4)(\beta + 4) - \alpha\beta$ $= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$ $= 4(\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2(2(\beta + 4) + 2\alpha)$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7.	
(b) (i) The perimeter = $2(\alpha + \beta)$ $= 2(\frac{\pi}{2}) = m$ (ii) The area of the border $= (\alpha + 4)(\beta + 4) - \alpha\beta$ $= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$ $= 4(\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2(2(\beta + 4) + 2\alpha)$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7.	
(b) (i) The perimeter = $2(\alpha + \beta)$ $= 2(\frac{\pi}{2}) = m$ (ii) The area of the border $= (\alpha + 4)(\beta + 4) - \alpha\beta$ $= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$ $= 4(\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2(2(\beta + 4) + 2\alpha)$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7.	
$= 2\left(\frac{m}{2}\right) = m$ (ii) The area of the border $= (\alpha + 4)(\beta + 4) - \alpha\beta$ $= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$ $= 4\left(\frac{m}{2}\right) + 16$ $= 2m + 16$ OR $= 2\left[2\left(\beta + 4\right) + 2\alpha\right]$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7.	
(ii) The area of the border $= (\alpha + 4) (\beta + 4) - \alpha \beta$ $= \alpha \beta + 4 (\alpha + \beta) + 16 - \alpha \beta$ $= 4 (\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2[2(\beta + 4) + 2\alpha]$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7. 200 180 180 180 300 400 400 400 400 400 400 4	
$= (\alpha + 4) (\beta + 4) - \alpha \beta$ $= \alpha \beta + 4 (\alpha + \beta) + 16 - \alpha \beta$ $= 4 (\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2 [2 (\beta + 4) + 2\alpha]$ $= 4 (\alpha + \beta) + 16$ $= 2m + 16$ 1M+1A in for summation of areas 7. 200 $4 - 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$	
$= \alpha\beta + 4(\alpha + \beta) + 16 - \alpha\beta$ $= 4(\frac{m}{2}) + 16$ $= 2m + 16$ OR $= 2[2(\beta + 4) + 2\alpha]$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 1M for summation of areas 7. 200 $4-$ 40 40 30 40 40 accept plotting t points with error 10.5 line segment from	
$= 4\left(\frac{m}{2}\right) + 16$ $= 2m + 16$ OR $= 2\left[2\left(\beta + 4\right) + 2\alpha\right]$ $= 4\left(\alpha + \beta\right) + 16$ $= 2m + 16$ 1M for summation of areas 7. $= 2m + 16$ 1A 1A 1A 1A 1A 1A 1A 1A 1A 1	r
$= 2m + 16$ $0R$ $= 2 \left[2 \left(\beta + 4 \right) + 2\alpha \right]$ $= 4 \left(\alpha + \beta \right) + 16$ $= 2m + 16$ $1A$ $1A$ $1B0$ 160 $45 - 140$ 180 160 $45 - 140$ 180 160	
OR $= 2[2(\beta + 4) + 2\alpha]$ $= 4(\alpha + \beta) + 16$ $= 2m + 16$ 180 180 180 190 190 190 190 190	
$= 2\left[2\left(\beta+4\right)+2\alpha\right]$ $= 4\left(\alpha+\beta\right)+16$ $= 2m+16$ 100 180 160 $1-20$ 140 140 120 140 150 150 150 17 180	,
$= 4(\alpha + \beta) + 16$ $= 2m + 16$ 180 160 140 140 140 140 140 140 150 80 60 150 40 100 1	7
7. 200 180 180 160 7 140 200 140 2-	
7. 200 180 160 4-2 140 60 60 60 60 40 accept plotting t points with error i0.5 line segment from	
180 160 4 140 140 160 60 60 60 accept plotting t points with error to.5 line segment from	
160 140 140 140 100 80 60 accept plotting t points with error to.5 line segment from	
140 140 140 140 140 140 140 140	
140 140 140 140 140 140 140 140	
140 140 140 140 140 140 140 140	
accept plotting t points with error to.5	
accept plotting t points with error to.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	
accept plotting t points with error ±0.5	•
40 ±0.5	he
line segment from	
	 0 F
is optional	7.5
	4
93-CE-Matha T	
RESTRICTED 內部文件 Provided by ds	P.3
Provided by ds	e.life

P	ES ₁	P	rer	太	立区	す	坐
\Box	E3 I	$\mathbf{\Gamma}$, ka		X	17

•	. Sc	olution		Marks	Remarks
. (a)	Cummulative Frequen	cy Table			
, ,	Score (less than)	Cummulative Frequency		,	
	9.5	20			
	19.5	60			
	29.5	120			
	39.5	170			
	49.5	190			
	59.5	200		12412	13 6
				1A+1A	1A for any 3 correct
				2	
					must be line segments
(þ)	(i) Cummulative f	requency polygon.		1M+1A	1M for following the
	The upper qua	rtile = 36 (or 35)	•		data in (a)
	The lower qua	•			上面 free polym空影物
	∴ The inter	quartile range = 36 - 17 :	= 19	1M+1 Å	/ Accept 18 <u>4</u> 19
				-	
_					1M for using the 25% or $(\frac{N+1}{4})$ th value,
		٠			etc.
	(ii) If the pass n	ercentage is set at 60%,			
					\sim
		students failed would be	(122		180.
	200 x (1 - 60%	s) = 80 No. of absolute pace	kal· 120	1M	or horizontal line through 80 on the
	The pass scor	e should be 23		1A	graph
				6	
	`	4.0	# ·		•
(c)	Mean = 26.5 (4xa)	to value j.		1 A	Working steps are not required
	Standard deviation	$=\sqrt{166}$ (= 12.9)		1A	r.t. 12.9
	,				
		· · · · · · · · · · · · · · · · · · ·			
- (d)	The new mean is inc	reased by 20,		1M	or exact answer
	i.e. Mean = 26.5	+ 20 = 46.5			·
	The new standard de	viation i <u>s unchange</u> d		1M	or exact answer
	i.e. Standard dev	iation = $\sqrt{166}$ (= 12.9)			
	•				
•	•				
*					
		1	•		
		· · · · · · · · · · · · · · · · · · ·			

RESTRICTED 内部文件

	RESTRICTED 内部文件						
		Solution	Marks	Remarks			
8.	(a)	The slope of $L_1 = \frac{2-7}{10-0} \left(= -\frac{1}{2} \right)$	1A				
		The equation of L_1 is $y - 7 = -\frac{1}{2}(x - 0)$	A(0	, ,			
		i.e. $y = -\frac{1}{2}x + 7$		1			
		(or $x + 2y - 14 = 0$, $5x + 10y - 70 = 0$, etc.)	1A	B(10, 2) L ₁ C(4, 0)			
	(p)	Slope of $L_1 = -\frac{1}{2}$		(x = 4)2 · y2 .			
		As $L_2 \perp L_1$, slope of $L_2 = 2$	אג				
		The equation of L_2 is					
		y - 0 = 2(x - 4)					
		i.e. $y = 2x - 8$ (or $2x - y - 8 = 0$, etc.)	1A				
_		(5)					
		Solving $\begin{cases} y = -\frac{1}{2}x + 7 \\ y = 2x - 8 \end{cases}$					
		$2x - 8 = -\frac{1}{2}x + 7$	1M ·	で 入 か 注 ! Celiminate into 1			
		The coordinates of D are $x = 6$, $y = 4$ (or $D = (6, 4)$)	1A	\{\unknown			
	-	(2) '1				
	(c)	As $AP : PB = k : 1$, the coordinates of P are given by					
		$x = \frac{10k}{1+k}$, $y = \frac{2k+7}{1+k}$	1A+1A				
		Substituting in the equation of the circle,					
		$\left(\frac{10k}{1+k}-4\right)^2+\left(\frac{2k+7}{1+k}\right)^2=30$	1M				
_		$(6k-4)^2 + (2k+7)^2 = 30(k+1)^2$					
		$10k^2 - 80k + 35 = 0$					
		$2k^2 - 16k + 7 = 0$ (*) $4 \pm \frac{1}{2} \sqrt{2}$	1				
		$k = \frac{16 \pm \sqrt{16^2 - 4 \times 2 \times 7}}{4} = \frac{8 \pm 5\sqrt{2}}{2} (7.54 \text{ or } 0.464)$	1A	accept $\frac{16 \pm \sqrt{200}}{4}$			
	•	As P lies on AD , $\frac{AP}{PB} = \frac{8 - 5\sqrt{2}}{2}$ (0.464)	1M	choosing the smaller			
				one from 2 positive values			
			6				

RFSTRICTFD 內部文件

	RESTRICTED 内部文件							
`		Sc	lution	Marks	Remarks			
9.	(a) (i	i) Area of AOAB	ector $OACB = \frac{1}{2}r^2\alpha$ = $\frac{1}{2}r^2\sin\alpha$ (or $r^2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$) he segment ACB	1A	o pa c			
	(i	$= \frac{1}{2}r^2\alpha - \frac{k}{2}$ ii) As AB divides	$\frac{1}{2}r^2\sin\alpha \text{ (or } \frac{1}{2}r^2\alpha - r^2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ the circle in the ratio 4:1	1M+12	A			
		$\frac{1}{2}x^2\alpha - \frac{1}{2}x^2s$ $\therefore \sin \alpha = \alpha$	5	1м	correct use of the ratio 4:1			
		Remark	5	1				
		$\frac{\frac{1}{2}r^{2}(2\pi - \alpha)}{\frac{1}{2}r^{2}\alpha - \frac{1}{2}}$	$\frac{1}{2}r^2\sin\alpha = 2r^2\alpha - 2r^2\sin\alpha$	1м				
				1#				
	(v) 2.1 2.1 2.1 2.1125 2.1125 2.1125	Interval < α < 2.2 < α < 2.15 < α < 2.125 < α < 2.125 < α < 2.125 < α < 2.11875 < α < 2.115625 < α < 2.115625	8) > 0	1 1M+1X 1M-	f(α) = α - sinα - $\frac{2\pi}{5}$ f(2.1) < 0 f(2.2) > 0 for showing opposite signs Testing sign at mid-value > Correct choice of next interval Accept using smaller or larger starting intervals			
	(b) As i	the curved surface	has uniform height, surface areas of the two parts	10	Check whether it is bounded by the last interval			
	= ra = r	atio of the corres $(2\pi - \alpha) : r\alpha$ $\pi - 2.11 : 2.11$	surface areas of the two parts sponding arc lengths. $\mathcal{DK} = (2\eta - d)$: d	174	CR YX !(1,-N)			
	≈ 1.	.98 : 1		1A ⁽	F.18 & 1 . 1.98			
٠	OR	Let the height b	e h .					
			ed = $r(2\pi - \alpha)h : r\alpha h$ = 0.00 $\approx 1.98 : 1$	1#\ 1A				
3-CE	-Maths I				P.6			

RESTRICTED 內部文件 Provided by dse.life

RESTRICTED 内部文件							
Solution		Marks	Remarks				
10. (a) The annual food production in							
(i) the 3rd year = $8 + 1 \times 2$	10 (millimtorues))						
	10 (millimtorues))	1A	$u-1$ for 10×10^6 eV 10×10^6 million tonnes				
(ii) the <i>n</i> th year = 8 + $(n - 1)$ = 7 + n	million tonnes)	→ 1A					
		2					
(b) The total food production in the f	irst 25 years						
$= \frac{25}{2} [2 \times 8 + (25 - 1)] \qquad \text{or } \frac{15}{2} \left[\vec{\delta} + \frac{1}{2} \right]$	[14(1-7018)	1A					
= 500		1A					
		2					
(c) The population of the country at t	he end of						
(i) the 3rd year = $2 \times (1 + 6\%)^2$			•				
= 2.25 million	,	1A	r.t. 2.25				
(ii) the <i>n</i> th year = $2 \times (1 + 6\%)^{n-1}$		1A					
(or $2 \times 1.06^{n-1}$	- million)	2					
(d) For the population to be doubled,							
(> 作可) 2 × (1 + 6%) ⁿ = 4		1M	accept "answer of c(ii) = 4"				
Taking logarithm $n \log 1.06 = \log 2$	•	1M	for taking lograithm				
$n = \frac{\log 2}{\log 1.06} = 11.9$							
The minimum number of years for the (HL/) be doubled is 12 years.	e population to	1A	accept values r.t. 11.9				
•		3					
(C.)人 (e) The annual food production per cap	oita of the 100th y	year					
$\frac{7 + 100}{2 \times 1.06^{99}}$		1M+1A	1M for substituting				
だりは本代y 2×1.0699 大学 1M = 0.167			n=100 to "ans.of(a)(ii ans.of(c)(ii				
< 0.2							
the country will face a food a	shortage problem.	1M	corresponding logical conclusion				
		3					
			,				
			·				

RESTRICTED 内部文件 Solution Marks Remarks AB . 11. (a) Join $\angle ABD = 90^{\circ}$ ∠ in a semicircle 1 accept "semicircle" or "diameter" The day see 4-1 and $\angle AQP =$ (Given) 900 1 国L智慧 TP1 LABD + LAQP = 180° 1 is a cyclic quadrilateral. (Opp. 1s supp.) , Q , P , B are concyclic. 3 (b) (i)Join CD . Using the same argument as in (a), it can be shown that PQDC is a cyclic quadrilateral. $\angle PQC =$ LPDC (or LBDC) (is in the same segment) 1 Now consider the cyclic quadrilateral ADCB . $\angle BDC =$ (Ls in the same segment) 1 LBAC (or LBAP) **AQPB** is a cyclic quadrilateral, $\angle BAP =$ (Is in the same segment) 1 $\angle BQP \text{ (or } \theta)$ $\angle BQC = \angle BQP + \angle POC$ In terms of θ , $\angle BQC =$ 1 2θ (ii) Consider the given semi-circle. $\angle BOC = 2 \times \angle BAC \mid \angle$ at centre = twice \angle at 0^{ce} 1 accept "∠ at centre" or "0 is the centre" $\angle BAC = \theta$ (Proved) But $\angle BOC =$ 20 1 6 (C) Solution: Consider the quadrilateral AQPB . $\angle PBQ (= \angle PAQ) = \Phi$ 1 But in the given semi-circle, $\angle CBD (= \angle CAD) = \Phi$ 1 15 1 1 m $\angle CBQ = \angle CBD + \angle PBO$ 吴岱鹭 沒年登 生儿 21 t $= 2\phi$ 海南分 OR $\angle BQC = \angle BOC$ B, O, Q, C are concyclic Hence $\angle CBQ = \angle COQ$ 1 $= 2 \angle CAD$ $= 2\phi$ 1 93-CE-Maths I P.8

RESTRICTED 内部文件

RESTRICTED 内部立丛

	RESTRICTED 内部文件								
• 4		Solution	Marks	Remarks					
12. (a)	(i)	As PQ is perpendicular to the plane ABQ							
		$\tan 45^{\circ} = \frac{PQ}{AQ} \text{ and } \tan 60^{\circ} = \frac{PQ}{BQ}$	1A	for either					
		$AQ = \frac{h}{\tan 45^{\circ}} = h \text{ metres}$	1A						
		$BQ = \frac{h}{\tan 60^{\circ}} = \frac{h}{\sqrt{3}} \text{ metres (or 0.577h)}$	1A	r.t. 0.577					
	(ii)	Consider ABQ .							
•		By the cosine rule,	·						
		$AB^2 = AQ^2 + BQ^2 - 2AQ \cdot BQ \cos \angle AQB$							
		$100^2 = h^2 + (\frac{h}{\sqrt{3}})^2 - 2(h)(\frac{h}{\sqrt{3}})\cos 80^\circ$	1M+1A						
		$= 1.13282h^2$							
		h = 94.0 (93.9549)	1A	r.t. 94.0					
		Consider AABQ again.							
		By the sine rule, $\frac{BQ}{\sin \angle QAB} = \frac{AB}{\sin \angle AQB}$							
		$\frac{93.9549}{\sqrt{3}} = \frac{100}{\sin 2QAB} = \frac{100}{\sin 80^6}$	1м						
		$\sin \angle QAB = \frac{93.9549 \times \frac{1}{\sqrt{3}} \sin 80^{\circ}}{100} = 0.5342$. 4					
		\(\alpha B = 32.3\cdot (32.2902\cdot)\)	1A 8	r.t. 32.3 accept 32°15'-32°21'					
		OR							
_		By the cosine rule,							
		$QB^2 = AQ^2 + AB^2 - 2(AQ)(AB)\cos \angle QAB$		·					
		$\left(\frac{93.9549}{\sqrt{3}}\right)^2 = 93.9549^2 + 100^2 - 2 \times 93.9549 \times 1000$	ds <i>LQAB</i>						
		COS /OND = 0. 0454	1м						
		$\cos \angle QAB = 0.8454$							
		<i>LQAB</i> = 32.3°	1A						

R	E	ST	RI	C	ΓΕ	D	内	部	文	件
_								- II		

	RESTRICTED	rapr.	AIT	<u> </u>
	Solution		Marks	Remarks
(b)	Consider APQR .			
٠	$\tan 50^{\circ} = \frac{h}{QR}$		1м	
	$\therefore QR = \frac{h}{\tan 50^{\circ}} \text{ metres}$			
	Consider $\triangle AQR$.			
	By the sine rule, $\frac{QR}{\sin \angle QAR} = \frac{AQ}{\sin \angle ARQ}$			
	$\frac{h}{\tan 50^{\circ}} = \frac{h}{\sin 22.2902^{\circ}} = \frac{h}{\sin \angle ARO}$		1M	Λ.
	$\angle ARQ = \sin^{-1}(\sin 32.2902^{\circ} \tan 50^{\circ})$			
	$= \sin^{-1} 0.636644$			
	= 140.45796° (as it is obtuse)		1A	r.t. 140-141
	$\angle AQR = 180^{\circ} - 140.45796^{\circ} - 32.2902^{\circ}$			•
	= 7.2518°			
	Using the sine rule again.			
	$AR = \frac{AQ\sin 7.2518^{\circ}}{\sin 140.45796^{\circ}}$		·	4.
	= 18.6 m		1A	r.t. 18.4-18.7
			4	1.0. 15.4-16.7
	n metres	(78.8 (78.8		8 AR +26 11.12=0.
	80 140 B	18R	= 18.64	8 AR 126 11.11=0. or AR = 140.8 17 (reject)

93-CE-Maths I

RESTRICTED	内	部	文	件
------------	---	---	---	---

		<u></u>	KESIKICIED 内部	义什	
		······································	Solution	Marks	Remarks
13. (a)	(i)	The prob. that the elections in the Tuen Mun and Yuen Long constituencies would both be won by the Democrats		
			= 0.65 × 0.45 = 0.2925	1A 1A	r.t. 0.293 accept $\frac{117}{400}$ or $\frac{2925}{10000}$
		(i <u>i</u>)	The prob. that the elections in the two constituencies would both be won by the Liberal	•	400 10000
			$= (0.25 + 0.1) \times 0.55$ $= 0.1925$	1A	
			the probability that the elections in the two constituencies would both be won by the same party		
			= 0.2925 + 0.1925 = 0.485	1M 1A	r.t. 0.485-0.486 accept 97 or 485 1000
			•	5	200 0 1000
(b)	(i)	The probability that a vote came from the Tuen is constituency and was for 'The Democrats'	iun	Candidate No. of
, ~			$= \frac{40000 \times 70\%}{60000} \text{ (or } \frac{28000}{60000}\text{)}$	A 28000 B 8000 C 4000 P 8000 Q 12000	
			$= \frac{7}{15} \text{ (or 0.467)}$		P 8000
			The probability that both votes came from the To Mun constituency and were for 'The Democrats'	en	
			$= \left(\frac{7}{15}\right)^2$ $= \frac{49}{225} \text{ (or 0.218)}$	1M	× +
		(ii)	The probability that a vote was for 'The Democra	1A	r.t. 0.218
		. ,	$= \frac{40000 \times 70\% + 20000 \times 40\%}{60000} \left(\text{or } \frac{28000 + 8000}{60000} \right)$	1A	
			$=\frac{3}{5}$ (or 0.6)	·	Zhovo form
			The probability that both votes were for 'The Democrats'.		60000 600000
_			$=\left(\frac{3}{5}\right)^2 = \frac{9}{25}$ (or 0.36)	1A.	bone bone
		(iii)	The probability that a vote was for 'The Libera	s'	
			$= \frac{8000 + 4000 + 12000}{60000} \text{ (or } 1 - \frac{3}{5}\text{)}$ $= \frac{24000}{60000} = \frac{2}{5}$		
	•		The probability that both votes were for different	ent part	ies
			$= 1 - (\frac{3}{5})^2 - (\frac{2}{5})^2 \qquad OY 2 \times \frac{5}{5} \times \frac{3}{5}$	1A	
*			$=\frac{12}{25}$ (or 0.48)	1A 7	
					A STATE OF THE STA