Assignment 2

Question 1

```
1)
     Given
     F = \{A \rightarrow DE, B \rightarrow GI, E \rightarrow CD, CE \rightarrow ADH, H \rightarrow G, AH \rightarrow I\},\
     derive A \rightarrow I:
     1. CE \rightarrow ADH (given)
     2. CE \rightarrow AH (by F5(Projectivity) from 1)
     3. AH \rightarrow I (given)
     4. CE \rightarrow I (by F3(Transitivity) from 2 and 3)
     5. A \rightarrow DE (given)
     6. A \rightarrow E (by F5(Projectivity) from 5)
     7. E \rightarrow CD (given)
     8. E \rightarrow C (by F5(Projectivity) from 7)
     9. A \rightarrow C (by F3(Transitivity) from 6 and 8)
     10. AA \rightarrow CE (by F2((Augmentation) from 6 and 9); that is, A \rightarrow CE
     11. A \rightarrow I (by F3(Transitivity) from 10 and 4)
     Therefore, A \rightarrow I \in F^+.
```

```
2)
   Step 1:
   Let X := \{A, B, E, C, H, J\}
   Step 2:
   Try to remove A, H, C
    {B, E, C, H, J}^+ = {A, B, C, D, E, G, H, I, J}
    Thus X := \{B, E, C, H, J\}
    {B, E, C, J}^+ = {A, B, C, D, E, G, H, I, J}
    Thus X := \{B, E, C, J\}
    {B,E,I}^+ = {A,B,C,D,E,G,H,I,J}
    Thus X := \{B, E, J\}
   Step 3:
   Try to remove B, E, J
    {E, J}^+ = {A, C, D, E, G, H, I, J}
    {B,I}^+ = {B,G,I,I}
    {B,E}^+ = {A,B,C,D,E,G,H,I}
    Thus cannot be removed
    So \{B, E, J\} is a candidate key for R
```

```
3)
```

1. According to 1):

We can prove:

- 1. $CE \rightarrow ADH$ (given)
- 2. $CE \rightarrow AH$ (by F5(Projectivity) from 1)
- 3. $AH \rightarrow I$ (given)
- 4. $CE \rightarrow I$ (by F3(Transitivity) from 2 and 3)
- 5. $E \rightarrow CD$ (given)
- 6. $E \rightarrow C$ (by F5(Projectivity) from 5)
- 7. $EE \rightarrow CE$ (by F2((Augmentation) from 6); that is, $E \rightarrow CE$
- 8. $E \rightarrow I(\text{by F3 (Transitivity) from 7 and 4})$

Thus:

The attributes of I are transitively dependent on E.

Therefore:

R with respect to F does not satisfies Third Normal Form (3NF)

2. Because:

$$E \to CD \in F^+$$
 (According to 1))

 $\{B, E, J\}$ is a candidate key for R (According to 2)

$$E \subset BEI$$

Thus,

CD is partially dependent on BEJ

Therefore,

R with respect to F does not satisfies Second Normal Form (2NF)

3. All of attribute values are atomic

Therefore,

R with respect to F satisfies First Normal Form (1NF)

Hence, the highest normal form of R with respect to F is First Normal Form (1NF)

4)

$$R = \{A, B, C, D, E, G, H, I, J\}$$

$$F = \{A \to DE, B \to GI, E \to CD, CE \to ADH, H \to G, AH \to I\}$$
Step 1:
$$F' = \{A \to D, A \to E, B \to G, B \to I, E \to C, E \to D,$$

$$CE \to A, CE \to D, CE \to H, H \to G, AH \to I\}$$
Step 2:
$$CE \to A$$

$$\{C\}^+ = \{C\}; \text{ thus } C \to A \text{ is not inferred by } F'.$$
Hence, $CE \to A$ cannot be replaced by $C \to A$.
$$\{E\}^+ = \{A, C, D, E, G, H, I\}; \text{ thus } E \to A \text{ is inferred by } F'.$$
Hence, $CE \to A$ can be replaced by $E \to A$.
$$F'' = \{A \to D, A \to E, B \to G, B \to I, E \to C, E \to D,$$

$$E \rightarrow A, CE \rightarrow D, CE \rightarrow H, H \rightarrow G, AH \rightarrow I$$

$$CE \rightarrow D$$

```
\{C\}^+ = \{C\}; thus C \to D is not inferred by F'.
            Hence, CE \rightarrow D cannot be replaced by C \rightarrow D.
            \{E\}^+ = \{A, C, D, E, G, H, I\}; thus E \to D is inferred by F'.
            Hence, CE \rightarrow D can be replaced by E \rightarrow D.
            F'' = \{A \rightarrow D, A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D,
                           E \rightarrow A, E \rightarrow D, CE \rightarrow H, H \rightarrow G, AH \rightarrow I
  CE \rightarrow H
            \{C\}^+ = \{C\}; thus C \to H is not inferred by F'.
            Hence, CE \rightarrow A cannot be replaced by C \rightarrow H.
            \{E\}^+ = \{A, C, D, E, G, H, I\}; thus E \to H is inferred by F'.
            Hence, CE \rightarrow H can be replaced by E \rightarrow H.
            F'' = \{A \rightarrow D, A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D,
                          E \rightarrow A, E \rightarrow D, E \rightarrow H, H \rightarrow G, AH \rightarrow I
  AH \rightarrow I
            \{H\}^+ = \{H, G\}; thus H \to I is not inferred by F'.
            Hence, AH \rightarrow I cannot be replaced by H \rightarrow I.
            \{A\}^+ = \{A, C, D, E, G, H, I\}; thus A \to I is inferred by F'.
            Hence, AH \rightarrow I can be replaced by A \rightarrow I.
            F'' = \{A \rightarrow D, A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D, A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D, B \rightarrow E, E \rightarrow E, 
                           E \rightarrow A, E \rightarrow H, H \rightarrow G, A \rightarrow I
  Step 3:
A^+|_{F''-\{A\to D\}} = \{A, C, D, E, G, H, I\}; thus A\to D is inferred by
       F'' - \{A \rightarrow D\}
  That is, A \rightarrow D is redundant.
 Thus, we can remove A \to D from F'' to obtain F'''.
A^+|_{F''-\{A\to E\}}=\{A,D\}; thus A\to D is not inferred by
       F'' - \{A \rightarrow E\}
 That is, A \rightarrow E is not redundant.
 Iteratively,
            F''' = \{A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D,
                                                    E \rightarrow A, E \rightarrow H, H \rightarrow G, A \rightarrow I
            Thus, F_{min} = \{A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D,
                                                                                              E \rightarrow A, E \rightarrow H, H \rightarrow G, A \rightarrow I
```

$$R = (A, B, C, D, E, G, H, I, J)$$

$$F_{min} = \{A \rightarrow E, B \rightarrow G, B \rightarrow I, E \rightarrow C, E \rightarrow D, E \rightarrow A, E \rightarrow H, H \rightarrow G, A \rightarrow I\}$$
Candidate key: (B, E, J)

$$R_1 = (B, G, I)$$

$$R_2 = (A, E, I)$$

 $R_4 = (H, G)$

 $R_5 = (B, E, J)$

 $R_3 = (E, C, D, A, H)$

	A	В	С	D	Е	G	Н	I	J
(B,G,I)	b	a	b	b	b	a	b	a	b
(A, E, I)	a	b	b	b	a	b	b	a	b
(E,C,D,A,H)	a	b	a	a	a	b	a	b	b
(H,G)	b	b	b	b	b	a	a	b	b
(B,E,J)	b	a	b	b	a	a	b	b	b

According to the rule of testing for the lossless join property:

Base on key (B, E, J):

2000 011 1105 (2)215).									
	A	В	C	D	Е	G	Н	I	J
(B,G,I)	b	a	Ъ	Ъ	Ъ	a	Ъ	a	Ъ
(A, E, I)	a	b	b	b	a	b	b	a	b
(E,C,D,A,H)	a	b	a	a	a	b	a	b	b
(H,G)	b	b	b	b	ь	a	a	Ъ	b
(B, E, J)	a	a	a	a	a	a	a	a	a

Therefore,

The decomposition of R_1, R_2, R_3, R_4, R_5 is lossless-join.

$$R_1$$
 can infer $F_1 = \{B \rightarrow G, B \rightarrow I\}$

$$R_2$$
 can infer $F_2 = \{A \to E, A \to I\}$

$$R_3$$
 can infer $F_3 = \{E \to C, E \to D, E \to A, E \to H\}$

$$R_4$$
 can infer $F_4 = \{ H \rightarrow G \}$

$$R_5$$
 can infer $F_5 = \emptyset$

$$F^+ = (F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5)^+$$

Therefore,

The decomposition of R_1, R_2, R_3, R_4, R_5 is dependency-preserving.

1)

According to the schedule graph, the graph is a cyclic.

Therefore, the transaction schedule is not conflict serializable.

2)

T 1	T ₂	T3	T4
R(B)			
W(B)			
R(A)			
W(A)			
	R(B)		
	W(B)		
		R(A)	
		W(A)	
			R(A)
			W(A)
			R(B)
			W(B)
	I	I	I

3)		
	T ₁	T2
	Write_lock(B)	
	Write_lock(A)	
	R(B)	
	R(A)	
	W(B)	
	Unlock(B)	
	W(A)	Write_lock(B)
	Unlock(A)	R(B)
		W(B)
		Unlock(B)