Meta-Heuristics 2 COMP4691 / 8691

Previously on COMP4691(8691)

S.A.

CONSTR.

- (Stochastic) Local Search
 - ... and how Local Search gets stuck in local minima
- Some Metaheuristic to escape local minima
- Based on
 - Accepting non-improving solutions
 - Changing the objective or the data
 - Combining Solutions

Today:

More Metaheuristics!

3 C LAST MH

Meta-heuristics

Meta-heuristics: An Incomplete Survey

Iterated Local Search

- Closely related to Tabu Search
- Instead of climbing up the wall, it is kicked over it

- Find Local minimum
- Repeat
 - Perturb the solution (problem dependent)
 - = fix part of the solution, randomise the rest
 - Find Local minimum
 - Accept Solution?

Iterated Local Search

(CONTROLLED KANDOM STARTY

- Perturbation
 - A.K.A "Kick" or "Shake"
 - "Strength" = how many elements to change
- Similar to Tabu Search
 - Fix too much → Fall back to same solution
 - Fix too little → Same as random restart
- Can store some solution history
 - Use it to control perturbation

Iterated Local Search

TSP

Good perturbation is "Double Bridge"

• = replace 4 arcs

- Good because
 - it is hard for local search to undo
 - a good initial tour will still be good (only small increase in objective)

Metaheuristics

GRASP

URP

Greedy Randomised Ascent Procedure

- Similar to ILS (independently developed)
- "Kick" in ILS is replaced by a constrained construction method
 - Inserts elements of the solution one at a time
 - Guides and randomises a good order for insertion
 - Uses a Reduced Candidate List (RCL) to guide insertion
 - & MC FGA7.
- Based on "Feature Cost"
- E.g. TSP:
 - Feature = City
 - Feature cost = Cost of inserting city into solution (Min Insert Cost)

For TSP:

- Feature = City
- Feature cost = Cost of inserting city into solution (Min Insert Cost)

```
repeat
FeatCost; = CostToAddFeature (Soln, i) for i not in Soln minCost = min(FeatCost)
                                                                                      RANDOM
                                                                                        ALG
    maxCost = max(FeatCost)
                (RED) CAND. LIST
                                                       GLEEDY
      RCL = \{\}
      for Inot in Soln
        if FeatCost_i \leq minCost + \alpha \ (maxCost - minCost)
          RCL.append (Feat<sub>i</sub>)
                                                                        d
                                                                                   MAY COST
                                                           4.4 6057
      Feat = SelectRandomFeature(RCL) ____
     Add(Feat, Soln) 4
                                                                    2=1
                               - UNIP SAMEING
   until IsComplete(Soln)
                                                               \alpha = 0.75
  REJECTION SAMPLING
                                                                   25%
                                                                                    MAY
```

- α too low = Greedy
 α too high = Random
- Again, methods to adapt α to problem instance
- Also, don't have to start at empty solution every time.
 - Similar to ILS, we can destroy and reconstruct just part of the current solution

Metaheuristics

Basic idea:

• If you have reached the local min for one neighbourhood, swap neighbourhoods (to a larger one)

Given a list of neighbourhoods $\mathcal{N} = \{ \mathcal{N}_1, \mathcal{N}_2 \} \dots \mathcal{N}_m \}$

- Start by applying the first.
- When you get to local minimum, move to next
- When you find an improvement, go back to first.

Very successful method across multiple domains


```
S = \text{initialSolution ()} \\ k = 0 \\ \text{while } k < m \\ \text{if LocalSearch(S, } \mathcal{N}_k) \text{ improved the solution S: } \\ k = 0 \\ \text{else} \\ k = k + 1
```


VNS + ILS

- Take the "kick" idea from Iterated Local Search
 - when a local minimum is found, apply a series of neighbourhood moves regardless of cost

Number to apply (strength of kick) has to be chosen carefully, as per ILS

Metaheuristics

- Originally developed by Paul Shaw (1997)
- This version Ropke & Pisinger (2007)¹
- A.k.a "Record-to-record" search

VRP as an example:

- Remove customers
- Re-insert those customers

- Destroy part of the solution
 - Remove elements from the solution
- Re-create solution
 - Use favourite construct method to re-insert those elements
- If the solution is better, keep it
- Repeat

^{1:} S Ropke and D Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Transportation Science **40**(4), pp 455-472, 2007

Destroy part of the solution (Select method)

In VRP:

- Remove some visits
- Move them to the "unassigned" lists

Destroy part of the solution (Select method)

- Examples
- Remove a sequence of visits

Destroy part of the solution (Select method)

- Examples
- Remove a sequence of visits

Destroy part of the solution (Select method)

- Examples
- Remove a sequence of visits

Destroy part of the solution (Select method)

- Choose longest (worst) arc in solution
 - Remove visits at each end
 - Remove nearby visits
- Actually, choose rth worst
- r = n * (uniform(0,1)) 4
- y ~ 6
 - unif \rightarrow (unif) y
 - $0.56 \rightarrow 0.016$
 - $0.96 \rightarrow 0.531$

Destroy part of the solution (Select method)

Examples

• Dump all visits from k routes (k = 1, 2, 3)

Prefer routes that are close,

Better yet overlapping

Destroy part of the solution (Select method)

- Choose first visit randomly
- Then, remove "related" visits
 - Based on distance, time compatibility, load

Destroy part of the solution (Select method)

- Nearest neighbour
 - Select first customer randomly
 - Select *n* nearest neighbours
 - Allows us to find a better tour in a local area

Destroy part of the solution (Select method)

- Dump visits from the smallest route
 - Good if saving vehicles
 - Sometimes fewer vehicles = reduced travel

Destroy part of the solution (Select method)

- Parameter: Max to dump
- → As a % of n?
 - As a fixed number e.g. 100 for large problems
- Actual number is uniform rand (5, max)

CAN YOU FIND THE OPT 27

WE DON'T NEED OP T

Re-create solution

- Systematic search (e.g., MILP, Constrained Programming, etc)
 - Smaller problem, easier to solve
 - Can be very effective
- Use your favourite insert method
- Better still, use a portfolio of insert methods
 - Ropke's paper¹: Select amongst
 - Minimum Insert Cost
 - Regret (2-regret)
 - 3-regret
 - 4-regret
 - Random insert order

1: S Ropke and D Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows, Transportation Science **40**(4), pp 455-472, 2007

Initial solution

Destroy using random

We can observe some really bad solutions during the iterations

After less than 50 iterations we get this route that is the best known for this problem

• If the solution is better, keep it

• If the solution is better, keep it

- If the solution is better, keep it
- Can use Hill-climbing
- Can use Simulated Annealing 4—

• ...

Adaptive Insert Method 4- Reconstr.

Ropke¹ adapts choice based on prior performance

- "Good" methods are chosen more often 45%

ASIZE

Adaptive Select Method (destruction method)

Ropke & Pisinger (with additions) can solve a variety of problems

- VRP
- VRP + Time Windows
- Pickup and Delivery
- Multiple Depots
- Multiple Commodities
- Heterogeneous Fleet
- Compatibility Constraints

More generally:

As soon as you have a construction method you trust, you have an LNS

• (Random, clustered, and various other Select methods are easy to define)

• That makes it a very powerful idea _____

Meta-heuristics: An Incomplete Survey

Course Outline

- Linear Programming
- Mixed-Integer Linear Programming
- Decomposition
- Convex Optimisation
- Local Search & Metaheuristics 4 7 w.k
- Advanced Topics

M. PLOG

Course Outline – Weeks 10 to 12

```
• Tue Oct 8<sup>th</sup>: no lecture
       • Wed 9<sup>th</sup> – Thu 10<sup>th</sup> : Meta-Heuristics Tutorial
       • Fri Oct 11<sup>th</sup>: Multi-Objective Optimisation + Quiz on Meta-Heuristics
W11 • Tue Oct 15<sup>th</sup>: Stochatic Optimisation \leftarrow
       • Wed 16<sup>th</sup> – Thu 17<sup>th</sup>: Meta-Heuristics drop-ins
                                                                          Fecite's GUESTLEC

    Fri Oct 18<sup>th</sup>: Network Flows and Al Planning

       • Tue Oct 22<sup>nd</sup> : Review lecture
       • Friday Oct 25<sup>th</sup>: Charles Gretton on Satisfiability +Quiz

    Sunday Oct 27<sup>th</sup>: Assignment 2 due
```