

SIERRA

MECH 10 Fundamentals of Electronics

Parallel Circuits

- Any circuit having a multiple current paths
- Characteristics
 - Applied voltage is equal across all parallel components
 - Multiple current paths inversely proportional to resistance

Parallel Circuits

 Parallel resistance is equal to product over the sum of the resistance (for two resistor circuits)

$$R_{T} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}}$$

$$R_{T} = \frac{2.5K\Omega \times 250\Omega}{2.5k\Omega + 250\Omega}$$

$$R_{T} = ?\Omega$$

3

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

Parallel Circuits

 Parallel resistance is equal to resistor value divided by number of equal branch resistors

$$R_{T} = \frac{R_{all}}{N}$$

$$R_{T} = \frac{50\Omega}{3}$$

$$R_{T} = ?\Omega$$

4

Parallel Circuits

• Parallel resistance is equal to the inverse of the conductance sum.

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{n}}}$$

$$R_{T} = \frac{1}{\frac{1}{2.5k\Omega} + \frac{1}{250\Omega}}$$

$$R_{T} = ?\Omega$$

5

SIERRA Callege

MECH 10 Fundamentals of Electronics

Parallel Circuits

 Parallel resistance reduces to a single series resistor, R_T for calculating total current.

$$R_T = 227\Omega$$

$$I_T = \frac{V_S}{R_T}$$

$$I_T = \frac{24V}{227\Omega}$$

6

- Parallel Circuits
 - Kirchhoff's Current Law the total circuit current is equal to the sum of the branch currents

$$I_{R1} = \frac{24V}{2.5k\Omega} = ? mA$$
$$I_{R2} = \frac{24V}{250\Omega} = ? mA$$

$$I_T = I_{R1} + I_{R2}$$

$$I_T = ? mA + ? mA$$

$$I_T = 105.7 mA$$

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Parallel Circuits
 - KCL current divider
 - (+) Easily split currents for component level needs
 - (-) stiff voltage source required

$$I_{R1} = \frac{24V}{2.5k\Omega} = 9.6mA$$

$$I_{R2} = \frac{24V}{250\Omega} = 96mA$$

8

- **Parallel Circuits**
 - Ohm's Law total current is directly proportional to source voltage and inversely proportional to total equivalent resistance.

$$I_{T} = \frac{V_{S}}{R_{T}}$$

$$I_{T} = \frac{24V}{227\Omega}$$

$$I_{T} = ?mA$$

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- **Parallel Circuits**
 - **Power** the total power consumed is the sum of the individual branch powers.

$$P_T = P_{R1} + P_{R2} + P_{Rn...}$$

$$P_{R1} = V_S \times I_{R1} = 24V \times 9.6mA$$

$$P_{R2} = V_S \times I_{R2} = 24V \times 96mA$$

$$P_T = P_{R1} + P_{R2}$$

$$P_T = W$$

- Parallel Circuits
 - Power the total power consumed is directly proportional to total current and source potential.

$$P_{T} = V_{S} \times I_{T}$$

$$P_{T} = 24V \times 105.7 mA$$

$$P_{T} = W$$

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Parallel Circuits
 - Power the total power consumed is directly proportional to total current squared and total resistance.

$$P_T = I_T^2 \times R_T$$

$$P_T = (105.7mA)^2 \times 227\Omega$$

$$P_T = ?W$$

._

- **Parallel Circuits**
 - **Power** the total power consumed is directly proportional to voltage squared and inversely proportional to total resistance

$$P_T = \frac{V_S^2}{R_T}$$

$$P_T = \frac{(24V)^2}{227\Omega}$$

$$P_T = ?W$$

SIERRA

MECH 10 Fundamentals of Electronics

- **Parallel Circuits**
 - Sources in Parallel parallel connected power sources are current adding

14

- Parallel Circuits
 - Sources in Series series connected power sources are voltage adding

MECH 10 Fundamentals of Electronics

Lab 07 – Parallel Circuits

Learning Objectives

- Build parallel circuits as per a schematic diagram
- Measure electrical values using a digital voltmeter
- Use Ohm's Law to validate field measurements
- Use a data table and schematic diagrams to capture field measurements

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
Circuit 1	Expected and measured resistor values recorded in data table with percent error	5
	Expected and measured total resistance recorded in data table with percent error	5
	Expected and measured branch and total currents recorded in data table with percent error	5
Circuit 2	Expected and measured total resistance recorded in data table with percent error	5
	Expected and measured branch and total currents recorded in data table with percent error	5
Circuit 3	Min / max voltage levels recorded	5
Conclusions	Questions answered completely & accurately	10
	Total	50

16