ASTR 400B: Homework 3

Due on Feb 6, 2020

Colin Leach

2. Mass Breakdown

This is raw output from pandas.DataFrame.to_latex(), with rows sorted alphabetically:

Galaxy Name	Halo Mass	Disk Mass	Bulge Mass	Total	f_bar
M31	1.921	0.120	0.019	2.060	0.068
M33	0.187	0.009	0.000	0.196	0.047
MW	1.975	0.075	0.010	2.060	0.041
All	4.082	0.204	0.029	4.316	0.054

With a bit of manual formatting:

Galaxy Name	Halo Mass $(M_{\odot} \times 10^{12})$	Disk Mass $(M_{\odot} \times 10^{12})$	Bulge Mass $(M_{\odot} \times 10^{12})$	Total $(M_{\odot} \times 10^{12})$	f _{bar}
MW	1.975	0.075	0.010	2.060	0.041
M31	1.921	0.120	0.019	2.060	0.068
M33	0.187	0.009	0.000	0.196	0.047
Local Group	4.082	0.204	0.029	4.316	0.054

3. Questions

- **1. Total mass:** M31 and the MW have the same total mass in this simulation. Dark matter in the halo dominates in most cases, but especially for the MW.
- **2. Stellar mass:** Disk + bulge mass is about 60% higher for M31 than the MW. Assuming a roughly similar distribution of star types and ages, M31 is likely to be more luminous.
- 3. Dark matter mass:
- 4. Baryon fraction: