Matrix Algebra Basics - a review

1 Matrix operations

For a complex number z = x + iy, its conjugate is $\bar{z} = x - iy$.

The transpose of a m-by-n matrix $A = [a_{ij}]_{mn}$ is $A' = A^T = [a_{ji}]_{nm}$.

A is symmetric if A' = A.

The conjugate transpose or the Hermitian conjugate of a complex matrix $A=A_{mn}$ is $A^H=A^\dagger=[\bar{a}_{ji}]_{nm}$.

A is Hermitian if $A^H = A$.

When two matrices are of the same dimension, their $\underline{\operatorname{sum}} \ A_{mn} + B_{mn} = [a_{ij}]_{mn} + [b_{ij}]_{mn} = [a_{ij} + b_{ij}]_{mn}$

The product of two matrices of dimension $m\times n$ and $n\times p$ is

$$C = A_{mn}B_{np} = [c_{ij}]_{mp}, \quad \text{with } (i,j)th \text{ entry} \quad c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}.$$

Consequently, the product of three matrices is

$$H = A_{mn}B_{np}D_{pq} = [h_{ij}]_{mq}, \qquad h_{ij} = \sum_{\ell=1}^{p} \left(\sum_{k=1}^{n} a_{ik}b_{k\ell}\right) d_{\ell j} = \sum_{k=1}^{n} a_{ik} \left(\sum_{\ell=1}^{p} b_{k\ell}d_{\ell j}\right).$$

The transpose of a sum is

$$(A+B)' = A' + B'$$

The transpose of a product are

$$(AB)' = B'A'.$$

Suppose that A is a square matrix. B is an inverse of A, write as $B = A^{-1}$, if

$$BA = AB = I$$
.

The inverse of a product:

If $A = A_{nn}$ is invertible and $A = B_{nn}C_{nn}$, then B, C are also invertible, and

$$A^{-1} = (BC)^{-1} = C^{-1}B^{-1}$$

 $A = A_{nn}$ is an orthogonal matrix if

$$A^{-1} = A'$$
, or equivalently, $AA' = A'A = I_n$

The <u>trace</u> of a square matrix $A = [a_{ij}]_{n \times n}$ the sum of diagonal elements.

$$tr(A) = a_{11} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

with the linear property

$$tr(A+B) = tr(A) + tr(B), tr(cA) = c tr(A)$$

1

where c is a scalar, and

$$tr(AB) = tr(BA)$$

For $A = [a_{ij}]_{n \times n}$,

$$tr(AA') = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2$$

2 Eigenvalues and eigenvectors

 $x \in \mathbb{R}^p \setminus \{0\}$ is an eigenvector of matrix $A = [a_{ij}]_{p \times p}$ with eigenvalue λ if

$$Ax = \lambda x$$

- The eigenvector of an eigenvalue is not unique (since $Ax_c = \lambda x_c$ for $x_c = cx$, any c)
- ullet All eigenvectors of the same eigenvalue form a subspace of \mathbb{R}^p , which is an eigenspace.
- Sometimes normalization $\|x\|=1$ is used, where $\|x\|$ is the norm or length of the vector $x=(x_1,\ldots,x_p)'$. The most common norm is the Euclidean norm

$$\|m{x}\| = \|m{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

ullet Eigenvalues of matrix A are the roots of A's characteristic polynomial

$$P(\lambda) = det(\lambda I_p - A)$$

(sometimes, $P(\lambda) = det(A - \lambda I_p)$).

• In other words, eigenvalues are the solutions of the characteristic equation

$$det(A - \lambda I_p) = 0$$

where det means the determinant of the matrix.

• The characteristic polynomial can factored as

$$P(\lambda) = \prod_{i=1}^{p} (\lambda - \lambda_i)$$

with possible repeats of the factors (algebraic multiplicity)

From the expansion of the characteristic polynomial, we can obtain the following useful properties.

The determinant of a matrix $A = A_{p \times p}$ is the product of its eigenvalues,

$$det(A) = \lambda_1 \lambda_2 \cdots \lambda_p = \prod_{i=1}^p \lambda_i$$

The trace of a matrix $A=A_{p\times p}$ is the sum of its eigenvalues,

$$tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_p = \sum_{i=1}^p \lambda_i$$

32950-24620 S23

Symmetry, positive definiteness, and the spectral decomposition

If $A_{p\times p}$ is symmetric (or complex conjugate symmetric = Hermitian), then

- All eigenvalues are real. $\lambda_i \in \mathbb{R}, j = 1, \dots, p$.
- There exists an orthonormal basis consists of eigenvectors e_i of λ_i :

$$\mathbf{A}\mathbf{e}_j = \lambda_j \mathbf{e}_j, \qquad \mathbf{e}_i \mathbf{e}_j = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$
 $i, j = 1, \dots, p.$

• Arrange the eigenvectors e_i as columns of a matrix,

$$A[\boldsymbol{e}_1 \ \boldsymbol{e}_2 \ \cdots \ \boldsymbol{e}_p] = [\lambda_1 \boldsymbol{e}_1 \ \lambda_2 \boldsymbol{e}_2 \ \cdots \ \lambda_p \boldsymbol{e}_p] = [\boldsymbol{e}_1 \ \boldsymbol{e}_2 \ \cdots \ \boldsymbol{e}_p] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \lambda_p \end{bmatrix}$$

Let P denote the $p \times p$ matrix with the orthonormal eigenvectors e_i as the columns

$$P = [\boldsymbol{e}_1 \ \boldsymbol{e}_2 \ \cdots \ \boldsymbol{e}_p]$$

then P is an orthogonal matrix PP' = P'P = I.

Let Λ be the $p \times p$ diagonal matrix with λ_i as the ith entry on the diagonal,

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \lambda_p \end{bmatrix}, \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p,$$

The above definitions yield

$$AP = P\Lambda$$

which leads to the eigenvalue-eigenvector decomposition of matrix A as

$$A = P\Lambda P'$$

• A has a spectral decomposition

$$\mathbf{A} = \sum_{i=1}^{p} \lambda_i P_i, \qquad P_i = \mathbf{e}_i \mathbf{e}_i'$$

with the following properties.

- $-P_i=e_ie_i'$ is a $p\times p$ orthogonal projection matrix (or a projector) to the 1-dimensional eigenspace $\{e_i\}_i$
- P_i is idempotent: $P_i P_i = P_i$. Consequently,
- $-P_i$'s complementary $I-P_i$ is a projector to $\{e_i\}^{\perp}$.

Proof. To show $A = \sum_{i=1}^p \lambda_i P_i$. Let $M = \sum_{i=1}^p \lambda_i P_i = \sum_{i=1}^p \lambda_i e_i e_i'$. Since $\{e_i\}_{i=1,\cdots,p}$ form an orthonormal basis in \mathbb{R}^p , to show A = M it is sufficient to show that $Me_k = Ae_k$ for $k = 1, \cdots, p$.

$$M\mathbf{e}_k = \left(\sum_{i=1}^p \lambda_i \mathbf{e}_i \mathbf{e}_i'\right) \mathbf{e}_k = \sum_{i=1}^p \lambda_i (\mathbf{e}_i \mathbf{e}_i') \mathbf{e}_k = \sum_{i=1}^p \lambda_i \mathbf{e}_i (\mathbf{e}_i' \mathbf{e}_k) = \sum_{i=1}^p \lambda_i \mathbf{e}_i \delta_{ik} = \lambda_k e_k, \forall k = 1, \cdots, p.$$

Therefore A = M.

Remarks: Another intuitive way to show the spectral decomposition can be

$$A[e_1 \ e_2 \ \cdots \ e_p] = [\lambda_1 e_1 \ \lambda_2 e_2 \ \cdots \ \lambda_p e_p] \qquad A = [\lambda_1 e_1 \ \lambda_2 e_2 \ \cdots \ \lambda_p e_p] \begin{bmatrix} e_1' \\ \cdots \\ e_p' \end{bmatrix} = \sum_i \lambda_i e_i e_i'$$

using PP' = I and block matrix multiplication.

Definition: A symmetric matrix A is positive definite (p.d.) if x'Ax > 0 for any p-vector $x \neq 0$ (the zero vector) If A is p.d., then

- All eigenvalues $\lambda_i > 0$.
- ullet A has an inverse matrix A^{-1} such that $AA^{-1}=A^{-1}A=I$.
 - $-A^{-1}$ is also p.d.
 - $-A^{-1}$ has eigenvalues $1/\lambda_i$, $i=1,\cdots,p$.
 - If A has the eigenvalue-eigenvector decomposition $A = P\Lambda P'$ then $A = P\Lambda^{-1}P'$.
 - If A has spectral decomposition

$$A = \sum_{i=1}^{p} \lambda_i e_i e_i' = \sum_{i=1}^{p} \lambda_i P_i$$

32950-24620 S23

$$A^{-1} = \sum_{i=1}^n \frac{1}{\lambda_i} e_i e_i' = \sum_{i=1}^p \frac{1}{\lambda_i} P_i$$

ullet If $A=\sum_{i=1}^p \lambda_i e_i e_i'=P\Lambda^{-1}P'$, then we can define a "square-root matrix" of A as

$$R=A^{1/2}=\sum_{i=1}^n\sqrt{\lambda_i}oldsymbol{e}_ioldsymbol{e}_i'=P\Lambda^{1/2}P'$$

Then R is also symmetric p.d. with eigenvalues $\sqrt{\lambda_i} > 0$, and $R^2 = A$.

If A is symmetric and $x'Ax \ge 0$, $\forall x \ne 0$, then A is positive semi-definite or non-negative definite with $\lambda_i \ge 0$. A symmetric matrix A is negative definite if x'Ax < 0 for any vector $x \neq 0$.

4 Matrix calculus

Recall from multivariate calculus:

If $f(x): \mathbb{R}^n \to \mathbb{R}$ is a function defined on \mathbb{R}^n , the derivative with respect to the *n*-vector x is an *n*-vector itself, often written in the row form and commonly denoted as ∇f .

$$\frac{\partial f}{\partial x} = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right) \triangleq \nabla f.$$

$$\text{If } f(x) = \left[\begin{array}{c} f_1(x) \\ \vdots \\ f_p(x) \end{array} \right], \mathbb{R}^n \to \mathbb{R}^p \text{ is a } p\text{-vector of functions of } n\text{-vector } x \text{, then } \frac{\partial f}{\partial x} = \left[\begin{array}{c} \frac{\partial f_1}{\partial x} \\ \vdots \\ \frac{\partial f_p}{\partial x} \end{array} \right] \text{ is a } p \times n \text{ matrix.}$$

Let A be a real $n \times n$ matrix, x be a vector in \mathbb{R}^n . Consider the quadratic form $f(x) = x^T A x$, a function $\mathbb{R}^n \to \mathbb{R}$. Its derivative (with respect to $x \in \mathbb{R}^n$) as a column vector can be expressed in the following neat form.

$$\frac{\partial}{\partial x} (x^T A x) = A^T x + A x$$

Proof.

Notice that $\frac{\partial}{\partial x}(x^TAx)$ is a vector in \mathbb{R}^n , with the kth component $\frac{\partial}{\partial x_k}(x^TAx)$, for $k=1,\cdots,n$.

Write out the summation x^TAx in terms of x_k , the kth element of the derivative can be written as

$$\frac{\partial}{\partial x_k} (x^T A x) = \frac{\partial}{\partial x_k} \left(\sum_{i=1}^n x_i \left(\sum_{j=1}^n a_{ij} x_j \right) \right)$$

$$= \frac{\partial}{\partial x_k} \left(a_{kk} x_k^2 + x_k \sum_{j \neq k} a_{kj} x_j + \left(\sum_{i \neq k} x_i a_{ik} \right) x_k \right)$$

$$= 2a_{kk} x_k + \sum_{j \neq k} a_{kj} x_j + \sum_{i \neq k} x_i a_{ik}$$

$$= \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n x_i a_{ik}$$

$$= (k^{th} \ row \ of \ A^T) x + (k^{th} \ row \ of \ A) x$$

$$= k^{th} \ element \ of \ (A^T x) + k^{th} \ element \ of \ (Ax)$$

We have shown $\frac{\partial}{\partial x}(x^TAx) = A^Tx + Ax$ by proving that

$$k^{th} \ element \ of \ \frac{\partial}{\partial x} \left(x^T A x \right) \ = \ k^{th} \ element \ of \ (A^T x + A x), \quad k = 1, \cdots, n.$$

A similar but simpler proof can show that $\frac{\partial}{\partial x}(Ax) = A$ (exercise)

Consequently, for symmetric matrix,

$$A = A^T$$

The derivatives are simplified,

$$\frac{\partial}{\partial x} (x^T A x) = 2Ax, \qquad \frac{\partial^2}{\partial x \partial x^T} (x^T A x) = 2A$$

5 Matrix inequalities and maximization

The results in this section are used repeatedly throughout the course, for example, in the derivation of simultaneous confidence intervals derived from Hotelling's T^2

5.1 Cauchy-Schwarz Inequality

Let v, w be vectors in a p-dimensional vector space with inner product v'w and norms ||v||, ||w||. Then

$$(v'w)^2 \le ||v||^2 ||w||^2 = (v'v)(w'w)$$

The equality holds if and only if v = cw for some constant c.

5.2 Extension of Cauchy-Schwarz Inequality

Let B be a $p \times p$ symmetric positive definite matrix. Then

$$(\boldsymbol{v}'\boldsymbol{w})^2 \le (\boldsymbol{v}'B\boldsymbol{v})(\boldsymbol{w}'B^{-1}\boldsymbol{w})$$

The equality holds if and only if $v = cB^{-1}w$ for some constant c.

Proof.

32950-24620 S23

By the symmetry and positive definiteness of B, there exists symmetric positive definite matrix R such that B = R'R. Then $B^{-1} = R^{-1}R'^{-1}$. Write

$$v'w = v'R'R'^{-1}w = (Rv)'(R'^{-1}w).$$

By Cauchy-Schwarz Inequality,

$$[(Rv)'(R'^{-1}w)]^2 \le (v'R'Rv)(w'R^{-1}R'^{-1}w) = (v'Bv)(w'B^{-1}w)$$

5.3 Maximization Lemma

Let B be a symmetric positive definite matrix of dimension $p \times p$, let $w \in \mathbb{R}^p$ be a given vector, then

$$\max_{\boldsymbol{v}\neq 0} \frac{(\boldsymbol{v}'\boldsymbol{w})^2}{\boldsymbol{v}'B\boldsymbol{v}} = \boldsymbol{w}'B^{-1}\boldsymbol{w}$$

with the maximum attained if and only if $v = cB^{-1}w$ for some constant $c \neq 0$

Proof. The inequality with \leq is directly from the Extension of Cauchy-Schwarz Inequality. When $\boldsymbol{v} = cB^{-1}\boldsymbol{w}$.

$$\frac{(\bm{v}'\bm{w})^2}{\bm{v}'B\bm{v}} = \frac{c^2(\bm{w}'B^{-1}\bm{w})^2}{c^2(\bm{w}'B'^{-1})B(B^{-1}\bm{w})} = \frac{(\bm{w}'B^{-1}\bm{w})^2}{\bm{w}'B'^{-1}\bm{w}} = \bm{w}'B'^{-1}\bm{w}$$

5.4 Applications of the Maximization Lemma

Recall that if B is positive definite then there is a spectral decomposition $B = \sum_{i=1}^p \lambda_i e_i e_i'$ by its eigenvalues $\lambda_1 \ge \cdots \ge \lambda_p > 0$ and orthonormal eigenvectors e_i . The Maximization Lemma leads to the following useful results.

- $\max_{\|v\|=1} v'Bv = \lambda_{\max} = \lambda_1$, attained by $v = e_1$.
- $ullet \min_{\|oldsymbol{v}\|=1} oldsymbol{v}' B oldsymbol{v} = \lambda_{\min} = \lambda_p$, attained by $oldsymbol{v} = oldsymbol{e}_p$.
- $ullet \max_{\substack{v\perp e_1,\cdots,e_\ell \ \|x\|=1}} x'Bx = \lambda_{\ell+1}$, attained by $v=e_{\ell+1}$.