# Лабораторная работа 3.3.4 Эффект Холла в полупроводниках

Симанкович Александр Б01-104

07.09.2022

### Цель работы

Проверка эффекта Холла в полупроводниках. Измерение подвижности и концентрации носителей заряда в полупроводниках.

### Оборудование и приборы

Электромагнит с регулируемым источником питания GPR-11H30D; вольтметр B7-78/1; миллиамперметр M2020; милливеберметр M119 и миллитесламетр AKTAKOM ATE-8702; источник питания (1,5 B); образцы легированного германия.

### Теоретическое введение

Во внешнем магнитном поле В на заряды действует сила Лоренца:

$$F = qE + qu \times B$$
.

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с E. Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.



Рис. 1: Схема мостика Холла

В данной работе для проверки эффекта Холла будем использовать мостик Холла (см. рис. 1).

Для поперечного (холловского) напряжения получаем:

$$U_{\perp} = E_y a = \rho_{yx} \cdot j_x a = \frac{j_x B}{nq}.$$

Учитывая, что  $j_x = \frac{I}{ah}$ , получаем:

$$U_{\perp} = \frac{B}{nqh} \cdot I = R_H \cdot \frac{B}{h} \cdot I, \tag{1}$$

где  $R_H = \frac{1}{nq}$  – постоянная Холла.

Для продольной составляющей напряжения:

$$U_{\parallel} = E_x l = j_x / \sigma_0 l = IR_0,$$

где  $R_0 = \frac{l}{\sigma_0 ah}$ .

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a}.\tag{2}$$

### Экспериментальная установка



Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (см. рис. 2) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром  $A_1$ .

Градуировка электромагнита проводится при помощи милливеберметра и миллитесламетра. Прямоугольный образец из легированного германия, смонтированный в специальном держателе (см. рис. 2), подключается к источнику питания ( $\approx 1.5$  В). При замыкании ключа  $K_2$  вдоль длинной стороны образца (контакты 3, 5) течёт ток, величина которого регулируется реостатом  $R_2$  и измеряется миллиамперметром  $A_2$ .

В образце с током, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов  $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки могут не лежать на эквипотенциали, для устранения этого эффекта будем измерять начальное значение напряжения  $U_0$  (при выключенном магните) в каждой серии измерений.

## Ход работы

#### Градуировка электромагнита

Проведем градуировку электромагнита. Для этого измерим зависимость B(I), где B – модуль вектора индукции магнита,  $I_M$  – ток, протекающий через обмотки магнита. Измерения проведем милливеберметром М119 и миллитесламетром АКТАКОМ АТЕ-8702. Погрешности данных приборов:

$$\varsigma_{\text{Вб}} = 0.15 \text{ мВб} \quad \varepsilon_{\text{Тл}} = 0.06$$

Точность измерения  $I_M$  определяется точностью  $A_1$ , встроенного в лабораторный блок питания GPR-11H30D:

$$\varsigma_{A_1} = 0.005 \text{ A}$$

|           | Вебермет | q          | Тесл      | аметр  |
|-----------|----------|------------|-----------|--------|
| $I_M$ , A | Ф, мВб   | B, м $T$ л | $I_M$ , A | В, мТл |
| 0.15      | 0.9      | 120        | 0.15      | 154    |
| 0.30      | 1.7      | 227        | 0.30      | 280    |
| 0.45      | 2.4      | 320        | 0.45      | 403    |
| 0.60      | 3.2      | 427        | 0.60      | 533    |
| 0.75      | 4.0      | 533        | 0.75      | 653    |
| 0.90      | 4.8      | 640        | 0.90      | 809    |
| 1.05      | 5.4      | 720        | 1.05      | 964    |
| 1.20      | 5.9      | 787        | 1.20      | 1083   |
| 1.35      | 6.2      | 827        | 1.35      | 1145   |
| 1.50      | 6.5      | 867        | 1.50      | 1180   |

Таблица 1: Результаты измерений индукции магнита

Построим графики B(I) по результатам милливеберметра и миллитесламетра.



Рис. 3:  $B(I_M)$ 

По методу наименьших квадратов рассчитаем параметры графиков, считая зависимость линейной (y=ax+b).

#### Веберметр

| $\overline{x}$ | $\sigma_x^2$ | $\overline{y}$ | $\sigma_y^2$ | $r_{xy}$   | a      | $\Delta a$ | b     | $\Delta b$ |  |  |
|----------------|--------------|----------------|--------------|------------|--------|------------|-------|------------|--|--|
| 8.25e-01       | 1.86e-01     | 546.67         | 6.28e + 04   | 1.07e + 02 | 575.35 | 29.68      | 72.00 | 27.62      |  |  |
| Тесламетр      |              |                |              |            |        |            |       |            |  |  |
| $\overline{x}$ | $\sigma_x^2$ | $\overline{y}$ | $\sigma_u^2$ | $r_{xy}$   | a      | $\Delta a$ | b     | $\Delta b$ |  |  |

Таблица 2: Параметры графиков  $B(I_M)$ 

 $1.51\mathrm{e}{+02}$ 

813.66

33.28

49.13

30.97

 $1.25\mathrm{e}{+05}$ 

### ЭДС Холла

8.25e-01

1.86e-01

720.40

Проведем измерения  $U_{34}(I_M)$  для различных I. Рассчитаем значения B и занесем в таблицу. Измерения I делаются миллиамперметром  $A_2$ , модель M2020:  $\varsigma_{A_2}=5$  Измерения U проводятся вольтметром  $V_1$ , модель B7-78/1:  $\varsigma_{V_1}=3.5$  мкВ

|           |        |           |        |           |        | I,        | мА     |           |        |           |        |           |        |
|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|
| (         | 0.14   | 0.        | .30    | 0         | .45    | 0         | .60    | 0         | .75    | 0         | .90    | 1         | .00    |
| $I_M$ , A | U, мкВ |
| 0.15      | -13    | 0.15      | -31    | 0.15      | -50    | 0.15      | -65    | 0.15      | -82    | 0.15      | -99    | 0.15      | -113   |
| 0.30      | -27    | 0.30      | -62    | 0.30      | -96    | 0.30      | -127   | 0.30      | -159   | 0.30      | -193   | 0.30      | -220   |
| 0.45      | -41    | 0.45      | -94    | 0.45      | -144   | 0.45      | -193   | 0.45      | -241   | 0.45      | -294   | 0.45      | -324   |
| 0.60      | -56    | 0.60      | -125   | 0.60      | -191   | 0.60      | -253   | 0.60      | -317   | 0.60      | -386   | 0.60      | -428   |
| 0.75      | -68    | 0.75      | -153   | 0.75      | -233   | 0.75      | -313   | 0.75      | -390   | 0.75      | -474   | 0.75      | -526   |
| 0.90      | -82    | 0.90      | -180   | 0.90      | -273   | 0.90      | -368   | 0.90      | -460   | 0.90      | -558   | 0.90      | -614   |
| 1.05      | -92    | 1.05      | -203   | 1.05      | -308   | 1.05      | -414   | 1.05      | -517   | 1.05      | -623   | 1.05      | -693   |
| 1.20      | -99    | 1.20      | -220   | 1.20      | -334   | 1.20      | -447   | 1.20      | -558   | 1.20      | -675   | 1.20      | -749   |
| 1.35      | -105   | 1.35      | -233   | 1.35      | -352   | 1.35      | -472   | 1.35      | -590   | 1.35      | -713   | 1.35      | -790   |
| 1.50      | -110   | 1.50      | -243   | 1.50      | -367   | 1.50      | -493   | 1.50      | -618   | 1.50      | -745   | 1.50      | -826   |

Таблица 3: Результаты измерений  $U_{34}(I_M)$ 

Пересчитаем  $I_M$  в B с помощью результатов калибровки. Погрешность перевода будем считать  $\varepsilon_B \approx \Delta a/a \approx 0.05$ .

|            |        |            |        |            |        | I,         | мА     |            |        |            |        |        |        |
|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|--------|--------|
| 0.         | 14     | 0.         | 30     | 0.         | 45     | 0          | .60    | 0.         | 75     | 0.         | 90     | 1.     | .00    |
| B, м $T$ л | U, мкВ | B, мТл | U, мкВ |
| 151        | -13    | 151        | -31    | 151        | -50    | 151        | -65    | 151        | -82    | 151        | -99    | 151    | -113   |
| 281        | -27    | 281        | -62    | 281        | -96    | 281        | -127   | 281        | -159   | 281        | -193   | 281    | -220   |
| 410        | -41    | 410        | -94    | 410        | -144   | 410        | -193   | 410        | -241   | 410        | -294   | 410    | -324   |
| 540        | -56    | 540        | -125   | 540        | -191   | 540        | -253   | 540        | -317   | 540        | -386   | 540    | -428   |
| 669        | -68    | 669        | -153   | 669        | -233   | 669        | -313   | 669        | -390   | 669        | -474   | 669    | -526   |
| 799        | -82    | 799        | -180   | 799        | -273   | 799        | -368   | 799        | -460   | 799        | -558   | 799    | -614   |
| 928        | -92    | 928        | -203   | 928        | -308   | 928        | -414   | 928        | -517   | 928        | -623   | 928    | -693   |
| 1058       | -99    | 1058       | -220   | 1058       | -334   | 1058       | -447   | 1058       | -558   | 1058       | -675   | 1058   | -749   |
| 1187       | -105   | 1187       | -233   | 1187       | -352   | 1187       | -472   | 1187       | -590   | 1187       | -713   | 1187   | -790   |
| 1317       | -110   | 1317       | -243   | 1317       | -367   | 1317       | -493   | 1317       | -618   | 1317       | -745   | 1317   | -826   |

Таблица 4:  $U_{34}(B)$ 

Построим графики  $\mathcal{E}_H(B)$ .



Рис. 4: Зависимость холловского напряжения от индукции магнитного поля

По методу наименьших квадратов рассчитаем параметры графиков, считая зависимость линейной (y=ax+b). Воспользуемся угловым коэффициентом  $K=\frac{\Delta \mathcal{E}_H}{\Delta B}$  для каждого графика. Построим график K(I) и рассчитаем его параметры.



Рис. 5: Зависимость углового коэффициента от тока через образец

Выясним знак носителей заряда в легированном германии. Мы знаем, что электрическое поле направлено от 4 к 3,5 из знака напряжения на вольтметре V1. Воспользовавшись правилом буравчика и правилом правой руки выясняем, что сила Лоренца направлена от 4 к 3,5

| I, мА | $ K , \frac{\text{mkB}}{\text{mB6}}$ | $\Delta I$ , мА | $\Delta  K , \frac{\text{mkB}}{\text{mB6}}$ |
|-------|--------------------------------------|-----------------|---------------------------------------------|
| 0.140 | 0.098                                | 0.005           | 0.004                                       |
| 0.300 | 0.213                                | 0.005           | 0.007                                       |
| 0.450 | 0.320                                | 0.005           | 0.011                                       |
| 0.600 | 0.431                                | 0.005           | 0.015                                       |
| 0.750 | 0.538                                | 0.005           | 0.019                                       |
| 0.900 | 0.649                                | 0.005           | 0.024                                       |
| 1.000 | 0.716                                | 0.005           | 0.025                                       |

Таблица 5: K(I)

| $\overline{x}$ | $\sigma_x^2$ | $\overline{y}$ | $\sigma_y^2$ | $r_{xy}$  | a     | $\Delta a$ | b      | $\Delta b$ |
|----------------|--------------|----------------|--------------|-----------|-------|------------|--------|------------|
| 5.914e-01      | 8.516e-02    | 0.423          | 4.440e-02    | 6.149e-02 | 0.722 | 0.003      | -0.004 | 0.002      |

Таблица 6: Параметры графика K(I)

для обоих знаков зарядов. Следовательно, носитель заряда в легированном германии имеет положительный заряд (дырочная проводимость).



Рис. 6: Пробная катушка и ее положение относительно магнита

Определим  $R_H$  по формуле (1):

$$R_H = h \frac{U_{\perp}}{BI} = h \cdot a_K = 1.0 \text{ mm} \cdot 0.72 \frac{\text{B}}{\text{B6} \cdot \text{A}} = (7.2 \pm 0.4) \cdot 10^{-4} \frac{\text{M}^3}{\text{K}_{\text{J}}}$$

Определим концентрацию n:

$$n = \frac{1}{R_H e} = (8.7 \pm 0.4) \cdot 10^{21} \frac{1}{\text{m}^3}$$

### Удельная проводимость

Измерим  $U_{35}(I)$  в образце.

Построим график  $U_{35}(I)$  и рассчитаем его параметры.

| I, MA | $U_{35}$ , мВ |
|-------|---------------|
| 0.14  | 0.544         |
| 0.30  | 1.203         |
| 0.45  | 1.800         |
| 0.60  | 2.395         |
| 0.75  | 3.007         |
| 0.90  | 3.623         |
| 1.00  | 4.025         |

Таблица 7: Результаты измерений  $I(U_{35})$ 



Рис. 7: Зависимость вынуждаещего напряжения от основного тока

| $\overline{x}$ | $\sigma_x^2$ | $\overline{y}$ | $\sigma_y^2$ | $r_{xy}$ | a    | $\Delta a$ | b     | $\Delta b$ |
|----------------|--------------|----------------|--------------|----------|------|------------|-------|------------|
| 5.91e-01       | 8.52e-02     | 2.37           | 1.39e+00     | 3.44e-01 | 4.04 | 0.01       | -0.02 | 0.01       |

Таблица 8: Параметры графика  $U_{35}(I)$ 

Рассчитаем  $\sigma_0$ :

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a} = \frac{5.0 \text{ mm}}{4.04 \text{ Om} \cdot 1.0 \text{ mm} \cdot 4.0 \text{ mm}} = (309 \pm 27) \frac{1}{\text{Om} \cdot \text{m}}$$

Рассчитаем b:

$$b = \frac{\sigma_0}{en} = (2230 \pm 220) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

# Вывод

Данная работа подтверждает существование эффекта Холла в полупроводниках.

В работе оценено значение концентрации носителей тока в образце  $n=(8.7\pm0.4)\cdot 10^{21}\frac{1}{\text{м}^3},$  удельная проводимость  $\sigma_0=(309\pm27)\frac{1}{\text{Ом·м}},$  подвижность носителей  $b=\frac{\sigma_0}{en}=(2230\pm220)\frac{\text{CM}^2}{\text{B·c}}$  (зависит от легирования, для германия  $\approx 4000\frac{\text{CM}^2}{\text{B·c}}$ ).