Materials Chemistry III Day 9

From last class....

Conjugated Polymers-Plastic solar cells

- Conjugated polymer: Trans-polyacetylene

Conjugated Polymers

Trans-polyacetylene (t-PA)

Applications
OLED
OFET
OPV

How do we explain the band properties of large conjugated system?

Nobel Prize in Chemistry 2000

"For the Discovery and Development of Conductive Polymers"

Alan Heeger
University of California
at Santa Barbara

Hideki Shirakawa University of Tsukuba

Alan MacDiarmid
University of
Pennsylvania

Effect of Conjugation

Compare 1D box?

Molecule λ_{max} (nm) Ethylene 165 1,3-butadiene 217 1,3,5-hexatriene 258 470 **B**-Carotene H₃Ç H₃C-ÇH₃ ÇH₃ ÇH₃ -CH₃ ĊH₃ ĊH₃ CH₃

Spectrum?

Why deviation?

- Effect of solvent!
 - •Chain rotation!
- 1D Box model is a crude model, which provides the trend!

Light Mater Interaction

<u>Lambert-Beers law:</u> $log(I_o/I_t)=\epsilon cL=Absorbance$

UV-Visible spectroscopy-Measurement of Electronic Transition Electron-Mater Interaction!

Lambert-Beers law

When a monochromatic radiation is passed through an absorbing medium a part of the incident radiation is scattered by the absorbing medium, a part is absorbed and rest of which is transmitted.

Scattering effect may be minimized by using a specific geometry of the sample holder/cuvette.

$$I_o = I_t + I_s + I_A$$

Lambert's law

When a monochromatic radiation is passed through a medium, the decrease in intensity of the radiation w.r.t the length of the absorbing medium is proportional to the intensity of the radiation.

$$-[dI/dL] \alpha I$$

$$log(I_t/I_o) = -ZL$$

Where **Z** is the extinction co-efficient.

$$\begin{aligned} \log(I_o/I_t) = & ZL \\ If, \log(I_o/I_t) = & 1 \\ Then, I_o/I_t = & 10 \\ Z = & 1/L \end{aligned}$$

Extinction coefficient is defined as the reciprocal of the thickness, expressed in cm at which the intensity of the light falls to 1/10 th of the original value.

Beers law

• Equal fractions of incident light radiation are absorbed by equal changes in concentration of the absorbing substance in a path of constant length.

-[dI/l] α C

Lambert-Beers law:

Limitation:

Radiation should be monochromatic

-[dI/l] α C dL

 $log(I_o/I_t) = \varepsilon cL = Absorbance$

The relationship between transmittance (T) and absorbance (A) can be expressed by the following:

 $\epsilon cl = A = 2 - log[I_t]$ From spectrophotometer

- 1. Sources (UV and visible)
- 2. Wavelength selector (monochromator)
- 3. Sample containers
- 4. Detector
- 5. Signal processor and readout

<u>Lambert-Beers law:</u> $log(I_o/I_t)=\epsilon cL=Absorbance$

Chlorophyll or Hemoglobin

$$2\pi R=n\lambda$$

$$\Delta E=(2n+1)h^2/8\pi^2 R^2$$

If you control chain length, you may control HOMO-LUMO gap and use for flexible solar-cell!

π Conjugated polymers

PA: polyacetylene (1st conducting polymer)

PPP: poly(*para*-phenylene) (large bandgap)

Synthesis by Elimination Route

PVC?

Solar Roadways

Solar mobile charger

Solar umbrella

Particle in 1D Box Semiconductor Nanocrystals-Quantum confinement!

What are semiconductors?

Particle in 1D Box-allows us to understand the trend in bandgap in nanoparticles

$$\Delta E \infty \frac{1}{L^2}$$

Quantum confinement

Particle in 1D Box?

Colloidal CdSe quantum dots dispersed in hexane

Size effect in semiconductors

E=h²/8ml² For one electron system

$$E_A = h^2/8l^2[1/m_e + 1/m_h]$$
 For electron and hole

Quantum confinement is a result of size of nanocrystals (NCs), smaller than that of Bohr's exciton radius of the bulk semiconductor.

$$\begin{split} E_{dot} = & E_{bulk} + E_{ex} \\ E_{ex} = & E_A + E_{Coul} \\ E_{coul} = & -1.8e^2/4\pi\epsilon_0 R \text{ (small quantity)} \\ E_{dot} = & E_{bulk} + h^2/8l^2[1/m_e + 1/m_h] + E_{coul} \end{split}$$

Brus Equation

$$E_{QD} = E_{bulk} + h^2/8\mu R^2 - \frac{1.8e^2}{(ER)}$$
Quantum

Quantum

Screening of charges-can

be neglected as inorganics

have high 'E'

R= Bohrs Radius

confinement