High School Analysis

Qiū Cáiyóng

This course is taught by the author in Shenzhen Middle School, 2022.

Contents

1	Rudiments		
	1.1	Set Theory	3
	1.2	Basic Set-theoretic Constructions	3
	1.3	Relations and Ordering	5
	1.4	Fields	5
	1.5	Exercise	6
	1.6	General Theory on Cartesian Products	6
2	Numbers 7		
	2.1	Ordered Fields	7
	2.2	Dedekind completeness	7
	2.3	Archimedean properties	7
	2.4	<i>n</i> -th root of a positive real number	7
3	Cardinality		
		Cardinality	9
4	Topology 1		
	4.1	Metric Spaces	11
	4.2	Topology	12
	4.3	More on Topology	14
	4.4	Hard Theorems	16
5	Limits 18		
	5.1	Sequencial Limit	18
	5.2	Cauchy Theory	20
	5.3	More on Sequences	22
	5.4	Important Limits	22
6	Cor	ntinuity	23
A	Son	ne Inequalities	24
B	3 Problems		25

Rudiments

1.1 Set Theory

To be written.

1.2 Basic Set-theoretic Constructions

Definition 1.2.1 (Cartesian product of sets). Suppose A, B are sets, we define their Cartesian product $A \times B$ by

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

By definition, we know that if $A_0 \subset A$, $B_0 \subset B$ are subsets, then $A_0 \times B_0$ is a subset of $A \times B$. Also, $A \times B \neq B \times A$ unless A = B.

Definition 1.2.2 (Mapping). A mapping is an ordered pair $f = (S_f, \Gamma_f)$, where S_f is an ordered pair $S_f = (D_f, C_f)$ and Γ_f is a subset of $D_f \times C_f$, such that for every $x \in D_f$, there exists uniquely a $y \in C_f$ with $(x, y) \in \Gamma_f$.

Instead of $f = ((D_f, C_f), \Gamma_f)$, we say that the domain of f is D_f and the codomain of f is C_f . We also call Γ_f the graph of f. Instead of $(x, y) \in \Gamma_f$, we say that f(x) = y or fx = y.

Example 1.2.3. Suppose $T \subset S$ is a subset, we define the embedding mapping ι_T^S by $\iota_T^S = ((T, S), \{(t, t) : t \in T\})$.

If T = S, we also write 1_S instead of ι_T^S .

Example 1.2.4. Suppose S is a set, then $((\emptyset, S), \emptyset)$ is a mapping.

Proposition 1.2.5 (Composition of mappings). Suppose we have two mappings $f = ((D_f, C_f), \Gamma_f)$ and $g = ((D_g, C_g), \Gamma_g)$ with $C_f = D_g$. We define their composition $g \circ f$ to be $((D_f, C_g), \Gamma_{g \circ f})$ where

$$\Gamma_{g \circ f} = \{(x, z) : \exists y \in C_f = D_g, (x, y) \in \Gamma_f, (y, z) \in \Gamma_g\}$$

Example 1.2.6. It is easy to examine that $\iota_V^W \circ \iota_U^V = \iota_U^W$.

Note that $(f \circ g) \circ h = f \circ (g \circ h)$ always hold (whenever defined).

Definition 1.2.7 (Restriction and extension). Suppose $f = ((D, C), \Gamma)$ is a mapping, and $E \subset D, C \subset B$ are subsets. We define

$$f|_E = f \circ \iota_E^D, f|^B = \iota_C^B \circ f, f|_E^B = \iota_C^B \circ f \circ \iota_E^D$$

Instead of $f=((D,C),\Gamma),$ we will write $f:D\to C.$ This notation is better. For example:

 $f|_E^B = \left(E \xrightarrow{\iota_E^D} D \xrightarrow{f} C \xrightarrow{\iota_C^B} B\right)$

Definition 1.2.8 (Monomophism). Suppose $f: D \to C$ is a mapping. If there exists a mapping $g: C \to D$ such that $g \circ f = 1_D$, then we say that f is a monomorphism.

Definition 1.2.9 (Epimophism). Suppose $f: D \to C$ is a mapping. If there exists a mapping $g: C \to D$ such that $f \circ g = 1_C$, then we say that f is an epimorphism.

Definition 1.2.10 (Image and inverse image). Suppose $f: D \to C$ is a mapping. If $D_0 \subset D$, we define $f(D_0)$ to be the set

$$\{y \in C : \exists x \in D_0, fx = y\}$$

If $C_0 \subset C$ is a subset, we define $f^{-1}(C_0)$ to be the set

$$\{x \in D : fx \in C_0\}$$

It is possible that $f^{-1}(C_0) = \emptyset$ for some nonempty C_0 . We also call f(D) the image of f, it may well be a proper subset of C.

We also call $f^{-1}(\{y\})$ the fibre of y under f, or the fibre of f on y.

Definition 1.2.11 (Injective and surjective mappings). Suppose $f: D \to C$ is a mapping. We say that f is injective if $f^{-1}(\{y\})$ contains at most one element for all $y \in C$. We say that f is surjective if f(D) = C.

Definition 1.2.12. A mapping f is called an isomorphism if it is both a monomorphism and an epimorphism. In this case, there exists a mapping g such that $f \circ g = 1, g \circ f = 1$.

Proposition 1.2.13. (Assuming AC,) A mapping is a monomorphism if and only if it is injective. A mapping is an epimorphism if and only if it is surjective.

Proposition 1.2.14 (Structure of mappings). Suppose $f: D \to C$ is a mapping, there exists uniquely a mapping $f_0: D \to f(D)$ such that f_0 is surjective, and $f = \iota_{f(D)}^D \circ f_0$.

1.3 Relations and Ordering

Definition 1.3.1 (Relation). Let S be a set, a subset of $S \times S$ is called a relation on S.

Example 1.3.2. $>= \{(n,m) \in \mathbb{N} \times \mathbb{N} : n > m\}$ is a relation on \mathbb{N} .

Example 1.3.3. div = $\{(n, m) \in \mathbb{N} \times \mathbb{N} : n|m\}$ is a relation on \mathbb{N} .

Definition 1.3.4 (Diagonal). Suppose S is a set, we define its diagonal Δ_S by $\{(s,s):s\in S\}$. It is a relation on S. We also call Δ_S the equal relation on S.

Definition 1.3.5 (Ordered set). An ordered set is an ordered pair $P = (S_P, <_P)$, where $<_P$ is a relation on S_P such that:

• for every $x, y \in S_P$, one and only one of the following is true:

$$(x,y) \in <_P, x = y, (y,x) \in <_P$$

• $(x,y) \in \langle P, (y,z) \in \langle P | \text{implies that } (x,z) \in \langle P |$.

Example 1.3.6. (N, >) is an ordered set. (N, div) is an ordered set.

Every subset of an ordered set is also an ordered set in a canonical way:

Proposition 1.3.7. Suppose (S,<) is an ordered set, and $T\subset S$ a subset. Then $(T,<\cap(T\times T))$ is also an ordered set.

Proof. I only point out that < and $T \times T$ are both subsets of $S \times S$.

Proposition 1.3.8. (Assuming AC) For every set S, there exists $\langle C \times S \rangle$ such that (S, \langle) is an ordered set.

1.4 Fields

Definition 1.4.1 (Operation on a set). Suppose S is a set, a mapping $*: S \times S \to S$ is called an operation on S.

The notation *(x,y) or *xy is called the Polish notation. We usually use the infix notation x*y. The Polish notation is somehow better:

$$(x * y) * z = * * xyz, x * (y * z) = *x * yz$$

Definition 1.4.2 (Field). A field **F** is an ordered pair $\mathbf{F} = (S_{\mathbf{F}}, \mathrm{op}_{\mathbf{F}})$, where $\mathrm{op}_{\mathbf{F}}$ is an ordered pair $(+_{\mathbf{F}}, \times_{\mathbf{F}})$, such that:

- $+_{\mathbf{F}}, \times_{\mathbf{F}}$ are operations on $S_{\mathbf{F}}$
- for all $x, y, z \in S_{\mathbf{F}}$, we have

$$(x +_{\mathbf{F}} y) +_{\mathbf{F}} z = x +_{\mathbf{F}} (y +_{\mathbf{F}} z), (x \times_{\mathbf{F}} y) \times_{\mathbf{F}} z = x \times_{\mathbf{F}} (y \times_{\mathbf{F}} z)$$

• for all $x, y \in S_{\mathbf{F}}$, we have

$$x +_{\mathbf{F}} y = y +_{\mathbf{F}} x, x \times_{\mathbf{F}} y = y \times_{\mathbf{F}} x$$

- there exists an element $0_{\mathbf{F}} \in S_{\mathbf{F}}$ such that $0_{\mathbf{F}} +_{\mathbf{F}} x = x$ for all $x \in S_{\mathbf{F}}$.
- there exists an element $1_{\mathbf{F}} \in S_{\mathbf{F}}$ such that $1_{\mathbf{F}} \neq 0_{\mathbf{F}}$ and $1_{\mathbf{F}} \times_{\mathbf{F}} x$ for all $x \in S_{\mathbf{F}}$.
- for any $x \in S_{\mathbf{F}}$, there exists an element $y \in S_{\mathbf{F}}$ such that $x +_{\mathbf{F}} y = 0_{\mathbf{F}}$
- for any $x \in S_{\mathbf{F}}$ with $x \neq 0_{\mathbf{F}}$, there exists an element $y \in S_{\mathbf{F}}$ such that $x \times_{\mathbf{F}} y = 1_{\mathbf{F}}$
- for all $x, y, z \in S_{\mathbf{F}}$, we have $x \times_{\mathbf{F}} (y +_{\mathbf{F}} z) = (x \times_{\mathbf{F}} y) +_{\mathbf{F}} (x \times_{\mathbf{F}} z)$

We call $S_{\mathbf{F}}$ the underlying set of \mathbf{F} .

Example 1.4.3. The set ${\bf Q}$ with the usual addition and usual multiplication is a field.

Example 1.4.4. The field \mathbf{F}_2 consists of two elements $\{0,1\}$, in which we define 1+1=0.

Definition 1.4.5. Suppose we have two fields $\mathbf{F}=(S_{\mathbf{F}},(+_{\mathbf{F}},\times_{\mathbf{F}}))$ and $\mathbf{E}=(S_{\mathbf{E}},(+_{\mathbf{E}},\times_{\mathbf{E}}))$. If $S_{\mathbf{F}}$ is a subset $S_{\mathbf{E}}$, and

$$+_{\mathbf{F}} = +_{\mathbf{E}}|_{S_{\mathbf{F}} \times S_{\mathbf{F}}}, \times_{\mathbf{F}} = \times_{\mathbf{E}}|_{S_{\mathbf{F}} \times S_{\mathbf{F}}}$$

then we say that F is a subfield of E, and E is an field extension of F.

Example 1.4.6. F_2 is **not** a subfield of Q.

1.5 Exercise

Exercise 1.5.1. In a field, the additive and multiplicative unit and inverse are unique in some sence. State this property in a precise way and proof it.

Exercise 1.5.2. Suppose **F** is a field. Prove that exact one of the following is true:

- if $x \neq 0$, then $\underbrace{x + \dots + x}_{n} \neq 0$ for all $n \in \mathbb{N}_{+}$
- there exists (uniquely) a prime number p such that $\underbrace{x+\cdots+x}_p=0$ for all $x\in \mathbf{F}.$

1.6 General Theory on Cartesian Products

You might have noticed that, although we've defined the ordered pair, we didn't define the ordered triple. In our definition of fields, we defined a field as an ordered pair consists of ordered pair.

This approach is not wrong, but feels cliché and redundant.

Numbers

2.1 Ordered Fields

Definition 2.1.1 (Ordered field).

2.2 Dedekind completeness

2.3 Archimedean properties

2.4 *n*-th root of a positive real number

Recall that any nonempty subset of ${\bf R}$ bounded above has a unique least upper bound, any nonempty subset of ${\bf R}$ bounded below has a unique greatest lower bound.

Lemma 2.4.1. Let n be a natural number strictly greater than 1. a, L be positive real numbers with $a^n < L$. Then there exists a positive real number b such that $b > a, b^n < L$.

Proof. \Box

Lemma 2.4.2. Let n be a natural number strictly greater than 1. a, L be positive real numbers with $a^n > L$. Then there exists a positive real number b such that $b < a, b^n > L$.

Proof. \Box

Theorem 2.4.3. Let $\beta > 1$ be a real number, n be a natural number strictly greater than 1. Then there exists a positive real number γ such that $\gamma^n = \beta$.

Proof. Let $E = \{r > 0 : r^n < \beta\}$, we claim that E is an nonempty set and bounded above. Actually $\min\{1,\beta\}$ is an element of E and $\max\{1,\beta\}$ is an upper bound of E. Set $\gamma = \sup E$, we prove that $\gamma^n = \beta$.

Suppose $\gamma^n < \beta$, by Lemma 2.4.1 there exists $\gamma' > \gamma$ such that $\gamma' \in E$. So γ cannot be an upper bound of E, a contradiction. Suppose $\gamma^n > \beta$, by Lemma 2.4.2 there exists $\gamma' < \gamma$ such that γ' is an upper bound of E. So γ cannot the least upper bound of E, a contraduction.

We denote this number by $\gamma = \sqrt[n]{\beta}$.

Cardinality

Recall that a mapping $f: X \to Y$ is said to be

- injective, if given any $y \in Y$, there is at most one $x \in X$ such that fx = y
- surjective, if given any $y \in Y$, there is at least one $x \in X$ such that fx = y
- \bullet bijective, if f is injective and surjective

If $f: X \to Y$ is bijective, then there exists uniquely a mapping $g: Y \to X$ such that fx = y if and only if gy = x. The mapping g is called the inverse of f. Inverse is defined only when the mapping is bijective.

3.1 Cardinality

Definition 3.1.1. We say that two sets X and Y are of the same cardinality, if there exists a bijective mapping f from X to Y. Denoted by |X| = |Y|.

Recall that a natrual number n is a set of n elements by definition.

Definition 3.1.2. We say a set X is

- finite, if |X| = |n| for some $n \in \mathbb{N}$
- countable, if $|X| = |\mathbf{N}|$
- \bullet uncountable, if X is neither finite nor countable

We say X is at most countable if it is finite or countable. We say X is infinite if it is not finite.

Example 3.1.3. There exists a bijection from N to Z. So Z is countable.

Theorem 3.1.4. A set X is infinite if and only if there exists a proper subset $X_0 \subset X$ such that $|X| = |X_0|$.

Theorem 3.1.5. Every subset of a countable set is at most countable.

Theorem 3.1.6. Suppose A is at most countable, and for every $\alpha \in A$, X_{α} is at most countable. Then $\bigcup_{\alpha \in A} X_{\alpha}$ is at most countable.

Example 3.1.7. The set of rationals ${\bf Q}$ is countable.

Example 3.1.8. The set of algebraic numbers A is countable.

If X is a set, we define its power set 2^X to be the set of all subsets of X. That is,

$$2^X = \{X_0 : X_0 \subset X\}$$

Theorem 3.1.9 (Cantor). $|X| \neq |2^X|$

Proof. Suppose there exists a bijective mapping $f: X \to 2^X$. Define

$$Y = \{x \in X : x \notin fx\}$$

Suppose $y \in X$ such that fy = Y. Then $y \in Y \iff y \notin Y$.

Topology

4.1 Metric Spaces

Definition 4.1.1 (Metric). Suppose X is a set, a function $d: X \times X \to \mathbf{R}$ is called a metric on X, if

- d(x,x) = 0 for all $x \in X$
- d(x,y) > 0 if $x \neq y$
- d(x,y) = d(y,x) for all $x,y \in X$
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

Definition 4.1.2 (Metric Space). A metric space is an ordered pair (X, d) such that d is a metric on X.

Example 4.1.3. Let $p \ge 1$ be a real number. Suppose $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$ are two points, we define

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Then d_p is a metric on \mathbf{R}^n .

 (\mathbf{R}^n, d_2) is called the *n*-dimensional Euclidean space. When we use \mathbf{R}^n as a metric space, we always mean (\mathbf{R}^n, d_2) . When we use \mathbf{C} as a metric space, we always mean $d(z_1, z_2) = |z_1 - z_2|$.

Example 4.1.4 (Discrete metric). Let X be a set, we define

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Then d is a metric on X, called the discrete metric on X.

Definition 4.1.5. Suppose (X, d) and (X', d') are metric spaces. If X' is a subset of X, and

$$d'(x,y) = d(x,y)$$

for all $x, y \in X'$. Then we say that (X', d') is a subspace of (X, d).

Theorem 4.1.6 (Every subset of a metric space admits a canonical metric). Suppose (X, d) is a metric space, and X' is a subset of X. Then there exists uniquely a metric d' on X' such that (X', d') is a subspace of (X, d).

Example 4.1.7. Suppose (X, d) is a metric space. Define

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

Then (X, δ) is also a metric space.

Definition 4.1.8 (Topological pair). A topological pair is an ordered triple (E, X, d) where (X, d) is a metric space and E is a subset of X.

Definition 4.1.9 (Neighborhood). Suppose (X, d) is a metric space, $r \in \mathbf{R}$, $x \in X$. We define

$$\begin{aligned} \mathbf{B}_{r}^{(X,d)}(x) &= \{ y \in X : d(x,y) < r \} \\ \mathbf{\bar{B}}_{r}^{(X,d)}(x) &= \{ y \in X : d(x,y) \le r \} \\ \mathbf{\dot{B}}_{r}^{(X,d)}(x) &= \{ y \in X : 0 < d(x,y) < r \} \end{aligned}$$

4.2 Topology

Definition 4.2.1 (Limit point and derived set). Suppose (E, X, d) is a topological pair, a point $p \in X$ is called a limit point of (E, X, d) if for all r > 0, such that $\mathring{\mathbf{B}}_r^{(X,d)}(p) \cap E \neq \emptyset$. The set of all limit points of (E, X, d) is called the derived set of (E, X, d) and denoted by $\mathsf{D}(E, X, d)$.

Definition 4.2.2 (Interior point and interior). Suppose (E,X,d) is a topological pair, a point $p \in X$ is called an interior point of (E,X,d) if there exists r > 0, such that $\mathbf{B}_r^{(X,d)}(x) \subseteq E$. The set of all interior points of (E,X,d) is called the interior of (E,X,d) and denoted by $\ln(E,X,d)$.

Definition 4.2.3 (Open and closed subsets). Suppose (X, d) is a metric space and E a subset of X. We say that

- E is open in (X, d), if $E \subseteq In(E, X, d)$
- E is closed in (X, d), if $D(E, X, d) \subseteq E$
- E is perfect in (X, d), if D(E, X, d) = E

Theorem 4.2.4 (Open neighborhood and closed neighborhood). Suppose (X, d) is a metric space and $p \in X$ is a point. Then $\mathbf{B}_r^{(X,d)}(x)$ is open in (X,d) for all $r \in \mathbf{R}$ and $\mathbf{\bar{B}}_r^{(X,d)}(x)$ is closed in (X,d) for all $r \in \mathbf{R}$.

Theorem 4.2.5. Suppose (E, X, d) is a topological pair, and $p \in D(E, X, d)$. Then every neighborhood of p with positive radius contains infinitely many points of E.

Proof.
$$\mathring{\mathbf{B}}_{1/n}^{(X,d)}(p) \cap E$$
 is nonempty for all $n \in \mathbf{N}_+$.

Theorem 4.2.6. Suppose (E, X, d) is a topological pair. Then E is open in (X, d) if and only if $\mathcal{C}_X E$ is closed in (X, d). Hence E is closed in (X, d) if and only if $\mathcal{C}_X E$ is open in (X, d).

Theorem 4.2.7. Suppose (X, d) is a topological space, and X_{α} is open in (X, d) for all α . Then $\bigcup_{\alpha} X_{\alpha}$ is open in (X, d).

Theorem 4.2.8. Suppose (X,d) is a topological space, and X_{α} is closed in (X,d) for all α . Then $\bigcap_{\alpha} X_{\alpha}$ is closed in (X,d).

Theorem 4.2.9. Suppose (X, d) is a topological space, and X_i is open in (X, d) for all i. Then $\bigcap_{i=1}^{n} X_i$ is open in (X, d).

Theorem 4.2.10. Suppose (X, d) is a topological space, and X_i is closed in (X, d) for all i. Then $\bigcup_{i=1}^{n} X_i$ is closed in (X, d).

Definition 4.2.11. Suppose (E, X, d) is a topological pair. We define the closure of (E, X, d) to be

$$\mathsf{CI}(E,X,d) = \mathsf{D}(E,X,d) \cup E$$

If Cl(E, X, d) = X, we say that E is dense in X.

Theorem 4.2.12. Suppose (E, X, d) is a topological pair. Then $\mathsf{Cl}(E, X, d)$ and $\mathsf{D}(E, X, d)$ is closed in (X, d).

Proof.
$$\Box$$

Theorem 4.2.13. Suppose (E, X, d) is a topological pair. Then E = Cl(E, X, d) if and only if E is closed in (X, d).

Theorem 4.2.14. Suppose (E, X, d) is a topological pair. Then ln(E, X, d) is open in (X, d). And E = ln(E, X, d) if and only if E is open in (X, d).

Theorem 4.2.15. Suppose (X,d) is a metric space, $E \subseteq F$ are subsets of X. If F is closed in (X,d) then $\mathsf{Cl}(E,X,d) \subseteq F$.

Theorem 4.2.16. Suppose (X,d) is a metric space, $E \supseteq G$ are subsets of X. If G is open in (X,d) then $ln(E,X,d) \supseteq G$.

Theorem 4.2.17. Suppose (E, X, d) is a topological pair. Then

$$C_X \ln(E, X, d) = Cl(C_X E, X, d)$$

Theorem 4.2.18. Suppose (E, X, d) is a topological pair. Then

$$C_X CI(E, X, d) = In(C_X E, X, d)$$

4.3 More on Topology

Definition 4.3.1 (Topology). Suppose X is a set. A subset $\mathcal{T} \subseteq 2^X$ is called a topology on X, if:

- $\varnothing \in \mathcal{T}, X \in \mathcal{T}$
- if $X_{\alpha} \in \mathcal{T}$ for all $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} X_{\alpha} \in \mathcal{T}$
- if $X_i \in \mathcal{T}$ for all i = 1, ..., n, then $\bigcap_{i=1}^n X_i \in \mathcal{T}$

Example 4.3.2. Suppose (X, d) is a metric space, then

$$\mathcal{T}_{(X,d)} = \{ E : E \text{ is open in } (X,d) \}$$

is a topology on X. It is called the induced topology of (X, d).

Example 4.3.3. The induced topology for (\mathbf{R}^n, d_p) is the same for all $p \geq 1$.

Theorem 4.3.4. Suppose (X', d') is a subspace of (X, d). Then

$$\mathcal{T}_{(X',d')} = \{ E \cap X' : E \in \mathcal{T}_{(X,d)} \}$$

In general, we don't have

$$\mathcal{T}_{(X',d')} = \mathcal{T}_{(X,d)} \cap 2^{X'}$$

Corollary 4.3.5. Suppose (X,d) is a metric space and (X',d') is a subspace. A subset $E \subseteq X'$ is open in (X',d') if and only if there exists a subset $G \subseteq X$ such that G is open in (X,d) and $G \cap X' = E$.

Corollary 4.3.6. Suppose (X,d) is a metric space and (X',d') is a subspace. A subset $E \subseteq X'$ is closed in (X',d') if and only if there exists a subset $F \subseteq X$ such that F is closed in (X,d) and $F \cap X' = E$.

Definition 4.3.7 (Open cover). Suppose (X, d) is a metric space, denote its induced topology by $\mathcal{T}_{(X,d)}$. Let E be a subset of X.

A subset C of $\mathcal{T}_{(X,d)}$ is called a (X,d)-open covering of E, if

$$\bigcup_{G\in\mathcal{C}}G\supseteq E$$

By definition, a (X, d)-open cover is a family of subsets of (X, d), each one is open in (X, d).

Definition 4.3.8 (Open subcover). Suppose (X, d) is a metric space, E is a subset of X, C is a (X, d)-open cover of E. A finite subset C_0 of C is called a (X, d)-open subcover of E if C_0 itself is a (X, d)-open cover of E.

The following definition can be generalized to any topological space.

Definition 4.3.9 (Compact subset). Suppose (X, d) is a metric space. A subset $K \subseteq X$ is said to be compact in (X, d), if every (X, d)-open covering of K admits a finite (X, d)-open subcover of K. By a finite subcover, we mean that the subcover is a finite set as a covering.

Surprisingly, the notion of campactness is not relative, it is an absolute property:

Theorem 4.3.10. Suppose (X, d) is a metric space and (X', d') is a subspace. A subset $K \subseteq X'$ is compact in (X, d) if and only if (X', d').

Proof. This is just Theorem 4.3.4.

We say a metric space (X, d) is compact, if X is compact in (X, d). So if (X, d) is compact and (X, d) is a subspace of (Y, δ) , then X is compact in (Y, δ) .

Theorem 4.3.11 (Properties of compact spaces). All spaces are assumed to be metric spaces.

- 1. Suppose (X', d') is a subspace of (X, d), (X', d') is a compact space. Then $\mathcal{C}_X X'$ is open in (X, d).
- 2. Suppose (X', d') is a subspace of (X, d), (X, d) is a compact space and X' is closed in (X, d). Then (X', d') is a compact space.
- 3. Suppose (X, d) is a compact space and K_{α} is closed in (X, d) for all $\alpha \in \Lambda$. If the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\bigcap K_{\alpha}$ is nonempty.
- 4. Suppose (X, d) is a metric space and F is closed in (X, d), K is compact in (X, d). Then $F \cap K$ is closed and compact in (X, d).

Proof. 1. Fix a $p \in \mathcal{C}_X X'$. We construct an open covering of X':

$$X' \subseteq \bigcup_{x \in X'} \mathbf{B}_{\frac{d(x,p)}{2}}^{(X,d)}(x)$$

Since (X', d') is compact, there exists a finite subset $X_0 \subseteq X'$ such that

$$X' \subseteq \bigcup_{x \in X_0} \mathbf{B}_{\frac{d(x,p)}{2}}^{(X,d)}(x)$$

And we have $\mathbf{B}_r^{(X,d)}(p) \subseteq \mathbf{C}_X X'$ where

$$d = \min_{x \in X_0} \frac{d(x, p)}{2}$$

- 2. Notice that if \mathcal{C} is an (X, d)-open covering of X', then $\mathcal{C} \cup \{C_X X'\}$ is an (X, d)-open covering of X.
- 3. Notice that $\mathcal{C}_X K_{\alpha}$ is an open covering of X if $\bigcap K_{\alpha}$ is empty.

Currently we can only show that a finite space is compact. To increase our example, we need to study some hard theorems.

4.4 Hard Theorems

We want to study topology, not tautology. When we say \mathbb{R}^n , we mean the set \mathbb{R}^n together with the 2-metric d_2 on it. (So \mathbb{R}^n is a metric space, as well as every subset of \mathbb{R}^n .)

Theorem 4.4.1. If E is a subset of \mathbf{R} which has a least upper bound γ . Then $\gamma \in \mathsf{Cl}(E, \mathbf{R}, d_2)$.

Proof. Recall that $Cl(E, \mathbf{R}, d_2) = D(E, \mathbf{R}, d_2) \cup E$. If $\gamma \in E$ then we're done. If $\gamma \notin E$ we will prove that $\gamma \in D(E, \mathbf{R}, d_2)$. This follows from the definition of least upper bound.

Theorem 4.4.2. If E is a subset of \mathbf{R} which has a greatest lower bound γ . Then $\gamma \in \mathsf{Cl}(E, \mathbf{R}, d_2)$.

Theorem 4.4.3. Suppose F is a closed subset of \mathbf{R} . If F has a least upper bound γ , then $\gamma \in F$. If F has a greatest lower bound β , then $\beta \in F$.

Theorem 4.4.4. Suppose G is an open subset of \mathbf{R} . If G has a least upper bound γ , then $\gamma \notin G$. If G has a greatest lower bound β , then $\beta \notin G$.

Theorem 4.4.5. The only clopen subset of \mathbf{R} are \emptyset and \mathbf{R} .

Proof. Suppose A is a clopen nonempty proper subset of **R**. Let $b \notin A$. We define

$$A_* = \{x \in A : x < b\}$$
$$A^* = \{x \in A : x > b\}$$

Since $A = A_* \cup A^*$, at least one of it is nonempty, say A_* . A_* is bounded above so it has a least upper bound α . Notice that $A_* = A \cap (-\infty, b) = A \cap (-\infty, b]$, so A_* is also clopen. We must have $\alpha \notin A_*$ and $\alpha \in A_*$.

Definition 4.4.6 (Connected space). We say a metric space (X, d) is connected, if its only clopen subsets are \emptyset and X.

Example 4.4.7. Intervals are connected.

Example 4.4.8. \mathbb{R}^n is connected.

Actually, we can describe all open subsets of R:

Theorem 4.4.9. A subset of \mathbf{R} is open if and only if it is a countable union of a disjoint open intervals.

Proof. Suppose G is open, for every $t \in \mathbf{R}$ we define

$$G_t = \bigcup_{t \in (a,b) \subseteq G} (a,b)$$

Then $G = \bigcup_{t \in \mathbf{Q}} G_t$.

The following result is simple yet powerful:

Theorem 4.4.10. Suppose X,Y are two nonempty subsets of \mathbf{R} , such that $x \leq y$ for all $x \in X, y \in Y$. Then X is bounded above and Y is bounded below, and

$$\sup X \le \inf Y$$

We now study the Heine-Borel-Bolzano-Weierstrass Theorems.

Theorem 4.4.11 (Heine-Borel). A subset K of \mathbb{R}^n is compact if and only if it is closed and bounded.

Proof. Consider the case n=1, we only need to show that [-a,a] is compact. Suppose [-a,a] is not compact, so there exists $\mathcal{C} = \{G_{\alpha} | \alpha \in \Lambda\}$, which is a family of open subsets of \mathbf{R} such that no finite subfamily of \mathcal{C} covers [-a,a].

- \rightarrow Get a nested closed intervals $[a_n, b_n]$, and sup $a_n \leq \inf b_n$
- \rightarrow Choose sup $a_n \leq r \leq \inf b_n$ and $r \in [*, *] \subseteq G_{\alpha_0}$

The general Heine-Borel is true in any metric spaces, it is irrelevant to Dedekind completeness:

Theorem 4.4.12 (General Heine-Borel). If (K_n, d_n) are compact spaces for all $n \in \mathbb{N}_+$. Suppose (K_{n+1}, d_{n+1}) is a subspace of (K_n, d_n) for all $n \in \mathbb{N}_+$. Then there exists a point x such that $x \in K_n$ for all $n \in \mathbb{N}_+$.

Theorem 4.4.13 (Bolzano-Weierstrass). A subset K of \mathbf{R}^n is compact if and only if $\mathsf{D}(K_0,\mathbf{R}^n,d_2)\cap K\neq\varnothing$ for every infinite subset $K_0\subseteq K$.

Remark. Is it true that $D(K_0, \mathbf{R}^n, d_2) \cap K = D(K_0, K, d_2)$?

Theorem 4.4.14 (General Bolzano-Weierstrass). If (X, d) is a compact space, then $\mathsf{D}(X_0, X, d) \neq \emptyset$ for every infinite subset $X_0 \subseteq X$.

The most useful form of Heine-Borel-Bolzano-Weierstrass is the following:

Corollary 4.4.15. Every bounded (infinite) sequence of real numbers has a convergent (infinite) subsequence.

Limits

The word "space" means metric space throughout this chapter. The theory of limits in a general topological space is not well-behaved. Sometimes we will use a single capital to denote a metric space.

5.1 Sequencial Limit

Definition 5.1.1 (Sequence, bounded sequence). A sequence in a space X is a nothing but a mapping from \mathbf{N} or \mathbf{N}_+ to X. If the range(=image) of this mapping is a bounded subset of X, then we say that the sequence is bounded.

For example, if a is a sequence in X, then $a(n) \in X$ for every $n \in \mathbb{N}$. But we will write a_n instead of a(n).

If a sequence takes its values in **C**, the space of complex numbers with the usual metric, we say that the sequence is a numerical sequence.

Definition 5.1.2. Suppose (X, d) is a space and $\{p_n\}$ is a sequence in X. Let $p \in X$ be a point, we say that $\{p_n\}$ converges to p under the metric d, if there is a function

$$\delta: \mathbf{R}_{>0} \to \mathbf{N}$$

such that for all $\epsilon > 0$ we have

$$p_n \in \mathbf{B}_{\epsilon}^{(X,d)}(p), \forall n \ge \delta(\epsilon)$$

If a sequence converges to two points p, p' then these two points are the same. So we can talk about **the** limit of a sequence if such limit exists. Denoted by

$$\lim_{n \to \infty} p_n = p$$

If a sequence converges to no point in (X, d), we say that it diverges.

Example 5.1.3. Consider the sequence 1/n, it converge to 0 in \mathbf{R} with the usual metric. It diverges in $\mathbf{R}_{>0}$ with the usual metric (=subspace topology). It also diverges in \mathbf{R} with the discrete metric.

Example 5.1.4. Any converge sequence is bounded, so unbounded sequence cannot be convergent.

We can give another definition of "convergence":

Proposition 5.1.5. Suppose (p_n) is a sequence in X, then (p_n) converges to $p \in X$ under d, if and only if every nonempty open neighborhood of p contains almost all (=all but finitely many) p_n .

Proposition 5.1.6. Suppose (E, X, d) is a topological pair and $p \in D(E, X, d)$. Then there is a sequence $\{p_n\}$ in E such that

$$\lim_{n \to \infty} p_n = p$$

Theorem 5.1.7. A real sequence converges to a real number, if and only if it converges (as a numerical sequence) to a complex number which is real.

Theorem 5.1.8. We consider numerical sequences (that is, sequence in **C**, where the metric is the usual one). Suppose

$$\lim_{n \to \infty} s_n = s, \lim_{n \to \infty} t_n = t$$

then:

- $\lim_{n\to\infty} (s_n + t_n) = s + t$
- $\lim_{n\to\infty} cs_n = cs$
- $\lim_{n\to\infty} c + s_n = c + s$
- $\lim_{n\to\infty} (s_n t_n) = st$
- Suppose $s_n \neq 0$ for all n and $s \neq 0$, then $\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}$

We automatically have the next theorem:

Theorem 5.1.9. We consider real sequences (that is, sequence in \mathbf{R} , where the metric is the usual one). Suppose

$$\lim_{n \to \infty} s_n = s, \lim_{n \to \infty} t_n = t$$

then:

- $\lim_{n\to\infty} (s_n + t_n) = s + t$
- $\lim_{n\to\infty} cs_n = cs$
- $\lim_{n\to\infty} c + s_n = c + s$
- $\lim_{n\to\infty} (s_n t_n) = st$
- Suppose $s_n \neq 0$ for all n and $s \neq 0$, then $\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s}$

5.2 Cauchy Theory

Until now, we can only verify that a sequence is convergent by finding its limit. Is there a way to decide the convergence of a sequence without finding its limit (if exists)? There is. This is called the Cauchy theory.

Definition 5.2.1 (Subsequence). Suppose $\{p_n\}$ is a sequence, and

$$n_1 < n_2 < \dots < n_i < \dots$$

is a sequence of natural numbers. Then the sequence $\{p_{n_i}\}$ is called a subsequence.

Theorem 5.2.2. A sequence converges to p if and only if its every subsequence converges to the same limit.

Definition 5.2.3 (Subsequential limit). Suppose $\{p_n\}$ is a sequence in a metric space (X,d). If its some subsequence is convergent, the limit is called a subsequential limit of $\{p_n\}$. The set of all subsequential limit of $\{p_n\}$ is denoted by $\mathsf{Sl}(p,X,d)$ or $\mathsf{Sl}(\{p_n\},X,d)$. If $(X,d)=\mathbf{R}$, then we set

$$\limsup_{n \to \infty} p_n = \sup \mathsf{SI}(p, X, d), \quad \liminf_{n \to \infty} p_n = \inf \mathsf{SI}(p, X, d)$$

We have

$$\limsup_{n \to \infty} p_n \le \sup\{p_n\}, \quad \liminf_{n \to \infty} p_n \ge \inf\{p_n\}$$

Theorem 5.2.4. SI(p, X, d) is closed in (X, d), and if (X, d) is compact, then SI(p, X, d) is nonempty.

Proof. To be written.

Definition 5.2.5. Suppose (X, d) is a metric, we define the diameter of X by

$$diam(X, d) = \sup_{p,q \in X} d(p, q)$$

In general, if (E, X, d) is a topological pair, we can define the diameter of E by

$$\operatorname{diam}(E,X,d) = \sup_{p,q \in E} d(p,q)$$

We have $\operatorname{diam}(\mathsf{Cl}(E,X,d),X,d)=\operatorname{diam}(E,X,d)$

Proposition 5.2.6.

Suppose $\{p_n\}$ is a sequence in a metric space (X, d), then for any $n \in \mathbb{N}$, the set

$$\{p_m: m \geq n\}$$

is a subspace of (X, d). So we can talk about its diameter.

Definition 5.2.7 (Cauchy sequence). Suppose $\{p_n\}$ is a sequence in a metric space (X, d). We say that $\{p_n\}$ is Cauchy sequence in (X, d), if

$$\lim_{n \to \infty} \operatorname{diam} \{ p_m : m \ge n \} = 0$$

Theorem 5.2.8 (Cauchy's criterion of convergence). When we say spaces, we mean metric spaces.

- Any convergent sequence is a Cauchy sequence.
- A metric space in which every Cauchy sequence converges is called a complete space.
- Any closed subspace of a complete space is complete.
- A space (X, d) is totally bounded if and only if for every $\epsilon > 0$ there exists finitely many points x_1, \ldots such that $\bigcup_i \mathbf{B}_{\epsilon}^{(X,d)}(x_i) = X$.
- A space is compact if and only if it is complete and totally bounded.
- Any discrete space is complete.
- \mathbf{R}^n and \mathbf{C}^n are complete, but \mathbf{Q} is not complete.

Theorem 5.2.9. Suppose (X, d) is a metric space, then there exists a complete metric space $(X^{\natural}, d^{\natural})$ and a mapping $\iota : X \to X^{\natural}$ such that

- $d^{\natural}(\iota x, \iota y) = d(x, y)$
- the image of ι is dense in $(X^{\natural}, d^{\natural})$

Theorem 5.2.10. Suppose $(X,d),(X_1^{\natural},d_1^{\natural}),(X_2^{\natural},d_2^{\natural})$ are metric spaces, and $\iota_1:X\to X_1^{\natural},\iota_2:X\to X_2^{\natural}$ are mappings such that

- $(X_1^{\natural}, d_1^{\natural}), (X_2^{\natural}, d_2^{\natural})$ are complete
- $d_1^{\natural}(\iota_1 x, \iota_1 y) = d_2^{\natural}(\iota_2 x, \iota_2 y) = d(x, y)$
- the image of ι_1 is dense in $(X_1^{\natural}, d_1^{\natural})$, the image of ι_2 is dense in $(X_2^{\natural}, d_2^{\natural})$,

Then there exists a bijection $\phi: X_1 \to X_2$ such that $d_2(\phi x, \phi y) = d_1(x, y)$.

These two theorems can be summerized as "every metric space has completions, which are unique up to an isometry".

Example 5.2.11. R is **the** completion of **Q** (with the usual metric).

Example 5.2.12. The *p*-adic numbers \mathbf{Q}_p is the completion of \mathbf{Q} (with the *p*-adic metric).

There is no easy way to introduce p-adic numbers. So I'll just tell you what is a p-adic metric. Suppose we have two rational numbers x, y, such that

$$x - y = p^a \frac{m}{n}$$

where m, n are not multiples of p. Then

$$d_p(x,y) = p^{-a}$$

Using the 2-adic metric, the sequence $1, 3, 7, 15, 31, 63, 127, \ldots$ converges to -1. In \mathbf{Q}_p , every open ball is closed.

5.3 More on Sequences

Theorem 5.3.1. Suppose $\{p_n\}$ is a monotonically increasing sequence of real numbers. If it is unbounded, then it is divergent. If it is bounded, then it has limit $\lim p_n = \lim \sup p_n$.

Theorem 5.3.2. Suppose $\{p_n\}$ is a monotonically decreasing sequence of real numbers. If it is unbounded, then it is divergent. If it is bounded, then it has limit $\lim p_n = \liminf p_n$.

Theorem 5.3.3. Suppose $\{p_n\}$ is a sequence of real numbers. Let I be an interval of finite length with $I \cap \mathsf{Sl}(\{p_n\}) = \emptyset$. Then $I \cap \{p_n : n \in \mathbf{N}\}$ is finite.

We include the important by easy theorem of Sandwich:

Theorem 5.3.4. Suppose $\{a_n\}, \{b_n\}$ are two sequences of real numbers. If $a_n \leq b_n$ for almost all n, then

 $\liminf a_n \leq \liminf a_n$, $\limsup a_n \leq \limsup b_n$

5.4 Important Limits

Theorem 5.4.1. Let p > 0 be a real number, α be a real number, z be a complex number with |z| < 1.

- $\lim_{n\to\infty} n^{-p} = 0$
- $\lim_{n\to\infty} p^{1/n} = 1$
- $\lim_{n\to\infty} n^{1/n} = 1$
- $\lim_{n\to\infty} \frac{n^{\alpha}}{(1+p)^n} = 0$
- $\lim_{n\to\infty} z^n = 0$

Theorem 5.4.2 (Euler constant).

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{i!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828\dots$$

This number is called the Euler constant, denoted by e. It is not an algebraic number. The Euler constant can be computed in the following sense:

$$0 < e - \left(\frac{1}{0!} + \frac{1}{1!} + \dots + \frac{1}{n!}\right) < \frac{1}{n^2(n-1)!}$$

Continuity

Appendix A

Some Inequalities

 $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, prove that

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

 $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, prove that

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}$$

 $p \ge 1$, prove that

$$\left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i - z_i|^p\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} |x_i - z_i|^p\right)^{\frac{1}{p}}$$

 $p \leq 1$, prove that

$$\left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i - z_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i - z_i|^p\right)^{\frac{1}{p}}$$

 $p_1, \ldots, p_m > 0, \sum_{j=1}^m \frac{1}{p_j} = \frac{1}{r}$. Prove that

$$\left(\sum_{i=1}^{n} \left| \prod_{j=1}^{m} x_{i,j} \right|^{r} \right)^{\frac{1}{r}} \leq \prod_{j=1}^{m} \left(\sum_{i=1}^{n} |x_{i,j}|^{p_{i}} \right)^{\frac{1}{p_{i}}}$$

Appendix B

Problems

- $1.\ HW1:$ Prove Lemma 3.1.1, Lemma 3.1.2
- 2. HW2: Prove that if A is at most countable, and each X_{α} is at most countable for $\alpha \in A$, then $\bigcup_{\alpha \in A} X_{\alpha}$ is at most countable.
- 3. HW3: Prove that the set of all algebraic numbers is countable
- 4. HW4: Prove Exercise 1.5.2
- 5. HW5: Prove Theorem 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.2.8, 5.2.9, 5.2.10, 5.2.12, 5.2.13, 5.2.14, 5.2.15, 5.2.16, 5.2.17, 5.2.18
- 6. HW6: Prove Theorem 5.3.4
- 7. HW7: Prove Theorem 5.3.10