5407 Sistemas de informação – fundamentos

Sessão 3

06/12/2023

Margarida Fachada

Fases do desenvolvimento dos sistemas de informação

O desenvolvimento de um sistema de informação desenrola-se através

de várias fases distintas.

Fases do desenvolvimento dos sistemas de informação

- Estas fases podem ser vistas como etapas sucessiva, desde um ponto inicial, em que é decidido criar o sistema, até ao momento final, em que o sistema está pronto a ser usado.
- Cada vez mais um Sistema de Informação é visto como algo que surge e evolui através de um ciclo de vida.
- Neste ponto de visto, o desenvolvimento de um sistema de informação não termina quando está pronto a ser utilizado na organização.
- O ciclo de vida continua com a sua utilização e manutenção, mas também com a perspetiva do seu melhoramento e renovação.

Fases do desenvolvimento dos sistemas de informação

Planeamento

- Corresponde à tomada de decisão de construir o sistema de informação ou renová-lo, após terem identificado as necessidade gerais da organização e as possíveis soluções.
- É costume considerar nesta fase o estudo de viabilidade, ou seja, uma análise dos custos e benefícios em relação ao projeto.

Análise

- Fazer um levantamento de requisitos, ou seja, identificar as necessidades e restrições da organização em termos de sistema de informação, para isso os analistas fazem entrevistas ou questionários aos futuros utilizadores, analisam documentação e observam processos de trabalho.
- Definir as especificações do sistema, ou seja, estabelecer as indicações técnicas de como o sistema deverá ser pensado para ir ao encontro dos requisitos analisados no ponto anterior; para isso, os analistas utilizam ferramentas técnicas, como UML.
- Desta fase deve resultar o chamado Modelo Conceptual do sistema – que consiste numa descrição técnica da solução que é necessária à organização em termos de SI.

Fonte: https://www.catho.com.br/carreira-sucesso/15-respostas-que-os-recrutadores-nao-gostam-de-ouvir-na-entrevista/

Desenho

- Os analistas de sistemas elaboram a arquitetura global do sistema a implementar, com as indicações técnicas detalhadas para os programadores saberem como devem desenvolver os programas necessários.
- Estas indicações costumam ser referidas como o modelo lógico do sistema.
- Nesta fase trata-se de especificar "como" é que o sistema deve fazer o que tem de fazer.
- Os analistas identificam e avaliam aas possíveis soluções técnicas ao nível das TI (hardware e software) que deverão ser incorporadas no SI.

Desenho

- Deve ser especificado que tipo de sistema informático vai ser necessário (tipo de computadores, armazenamento de dados, redes informáticas, telecomunicações, etc.)
- Devem ser feitas as especificações técnicas quanto ao sistema de gestão de base de dados (SGBD) a utilizar, esquemas ou estrutura da base de dados e programas de aplicação a desenvolver.

Desenho

- Tendo em conta que um SI assenta em grande parte na utilização de base de dados, na fase de desenho devem ser "desenhados" os seguintes elementos:
 - Desenho de modelos lógicos e físicos das bases de dados (a estrutura da base de dados em termos de tabelas e relações entre elas).
 - Desenho de esquemas lógicos (fluxogramas, algoritmos) dos processos e fluxos de dados existentes no sistema (que vão dar origem aos programas)
 - Desenho de interfaces (menus, formulários) dos programas a desenvolver.

Implementação

- Passa por 2 tipos de tarefas distintas:
 - Criação do esquema físico da base de dados (com base no modelo lógico)
 - Codificação de programas de aplicação para acesso e manipulação de base de dados.
- Alguns conceitos no domínio da TI/SI que se referem a tecnologias e ferramentas mais utilizadas por analistas e programadores:
 - Programação orientada a objetos (POO)
 - Criação e reutilização de componentes
 - Linguagens de programação de 4ª geração
 - Ferramentas CASE

Implementação

- Programação orientada a objetos (POO):
 - Um dos principais paradigmas de programação (com a linguagem C++, Java, entre outras).
 - Permite a criação e reutilização de componentes de uns sistemas para outros, de umas aplicações para outras.
- As linguagens de 4^ª geração (4GL):
 - Possibilitam aos utilizadores interagirem com os sistemas de bases de dados (SGBD) obtendo de forma rápida, consultas, relatórios, etc. (por exemplo: a linguagem SQL).
- Ferramentas CASE:
 - Permitem aos analistas e programadores desenharem diagramas e esquemas das bases de dados, bem como criara aplicações de forma rápida.

Tipos de Tecnologias e ferramentas de desenvolvimento de SI

Ferramentas de programação

Programação orientada a objetos

Componentes reutilizáveis

Ferramentas CASE (diagramas e protótipos)

Linguagens de 4º Geração (ex: SQL)

Sistemas de Informação

Programas de aplicação

SGBD

Bases de dados

Testes e Instalação

- O Sw deve ser dividido em diferentes módulos. Por ex: um modulo pode gerir as encomendas; outro para gerir os produtos de um armazém; etc.
- Fase de testes pode ser divida em:
 - Testes ao nível do módulo em que os programadores poem à prova as funcionalidades pretendidas para essa parte do sistema;
 - **Testes de integração** em que os módulos são integrados num todo e este é submetido a novos testes.

Testes e instalação

- Para além destes testes, devem ser feitos **testes de aceitação** em que as aplicações são avaliadas pelos seus utilizadores finais, para ver se correspondem às funcionalidades desejadas e se existem retificações a fazer.
- Quando o sistema está pronto a operar na organização, devem ainda ser efetuados novos testes – Testes de instalação.
- A instalação implica:
 - Colocação em funcionamento de vários componentes do sistema, tanto ao nível de hardware como de software (SGBD, bases de dados e aplicações);
 - Configurações e parametrizações, por ex: ao nível dos servidores das bases de dados, direitos e restrições dos utilizadores, etc.
 - Distribuição de documentação de apoio
 - Formação de utilizadores (se necessário).

Manutenção

- Inclui várias tarefas:
 - Apoio aos utilizadores na resolução de problemas surgidos
 - Introdução de grandes alterações
 - Retificação de deficiências detetadas
 - Acrescento de novas funções.
- Tipos de Manutenção:
 - Manutenção corretiva introdução de retificações em relação a erros detetados.
 - Manutenção perfetiva ou preventiva introdução de alterações para melhorar o desempenho do sistema ou evitar problemas previsíveis (por ex: aumento do volume de dados/ informação a processar);

Manutenção

- Manutenção adaptativa introdução de alterações do sistema exigidas por entidades externas (como o Estado, os clientes ou fornecedores) ou impostas a partir da própria organização (por ex:
 - √ aquisição de novos equipamentos,
 - ✓ mudança do SGBD utilizado,
 - ✓ exigência de aceder a bases de dados via internet,
 - ✓ etc.)

Tarefa 6

Introdução ao UML

- O desenvolvimento tecnológico veio permitir que toda a informação possa ser suportada em computadores. Assim, ao nível das organizações, o sistema de informação tende a ter um suporte informático cada vez mais significativo.
- As aplicações informáticas modernas tendem a ser cada vez mais flexíveis, mas não estão preparadas para satisfazer todas as necessidades de informação dos seus potenciais utilizadores.
- Torna-se necessário podermos recorrer a uma linguagem que facilite a comunicação entre aqueles que tem de lidar com o negocio e com a Informática: atuais e potenciais utilizadores que definem as suas necessidades, gestores que avaliam se os sistemas informáticos satisfazem essas necessidades e informáticos que desenvolvam as funcionalidades pretendidas.

Introdução ao UML

- UML Unified Modelling Language abre perspetivas para responder ao desafio de desenvolvimento de novos sistemas de informação, cada vez mais complexos, fiáveis e ajustados às necessidades dos utilizadores.
- UML pode ser traduzido por Linguagem de Modelação Unificada.
- Linguagem que utiliza uma notação padrão para especificar, construir, visualizar e documentar sistemas de informação orientados por objetos.
- Funciona como um meio de comunicação entre os diversos elementos envolvidos no processo: utilizadores, gestores e equipa de desenvolvimento.

Introdução ao UML

 Pode ser utilizada para documentar o sistema ao longo de todo o ciclo de desenvolvimento, começando com a tarefa inicial de análise de processos de negocio da organização e prolongando-se até à tarefa de manutenção evolutiva do sistema informático.

- Os casos de uso representam o levantamento de requisitos de um sistema.
- O requisito num sistema é uma funcionalidade ou característica considerada relevante na ótica do utilizador.
- Normalmente representa o comportamento esperado do sistema, que na pratica consiste num serviço que deve ser disponibilizado a um utilizador.

- Os requisitos podem ser classificados em três categorias:
 - Requisitos Funcionais: Descrevem o que um sistema faz ou é esperado que faça. Serão levantados, abrangendo a descrição de processamentos a efetuar pelo sistema, entradas (inputs) e saídas (outputs) de informação em papel ou ecrã que derivam da interação com pessoas e outros sistemas.
 - Requisitos não funcionais: estão relacionados com as características qualitativas do sistema, descrevendo a qualidade com que o sistema devera fornecer os requisitos funcionais.

- Requisitos não funcionais abrangem medidas de desempenho como:
 - Tempos de resposta,
 - volume de dados,
 - Considerações de segurança
- Requisitos de facilidade de utilização: garantem que existirá uma boa ligação entre o sistema desenvolvido, utilizadores do sistema e também as tarefas que desempenham apoiados pelos sistema. Por exemplo: menus especiais para um ecrã tátil.

- São utilizados para a apresentação de requisitos e para assegurar que tanto o utilizador final como o perito numa determinada área ou o especialista informático possuem um entendimento comum dos requisitos.
- **Objetivo**: mostrar o que um sistema deve efetuar e não como o vai fazer.
- Estes diagramas utilizam as seguintes abstrações de modelação:
 - Atores
 - Casos de uso
 - Relações (include, extend e generalização)

Diagrama de Casos de Uso - Atores

- Um ator representa uma entidade externa que interage com o sistema.
- Apesar da representação humanizada, os atores podem não ser só pessoas, mas também outros sistemas físicos ou lógicos como, por exemplo, um modulo de contabilidade.
- Em geral, um ator pode invocar vários casos de uso e um caso de uso pode ser invocado por vários atores.
- Os atores devem ser caracterizados através de uma pequena descrição, de forma a assegurar uma correta compreensão do significado do ator por todos os elementos da equipa envolvida na analise.

Diagrama de Casos de Uso – Casos de uso

- · Simplificando...
 - Um caso de uso pode ser uma funcionalidade do sistema vista pelos utilizadores; um tipo de interação entre os atores e o sistema
- Como identificar os casos de uso?
 - Pensar em cada ator e nas interações que tem com o sistema
 - Um caso de uso agrupa interações elementares de atores com elementos da interface do sistema.

Nome do

sistema

Diagramas de casos de uso – Exemplo 1

- Um utilizador usa o seu telemóvel para efetuar 3 operações:
 - efetuar chamadas,
 - receber chamadas
 - e usar a agenda.

Diagramas de casos de uso – Exemplo 2

- Exemplo um restaurante, onde se pretende representar 3 ações:
 - Pedido de Reserva da mesa
 - Servir almoço
 - Emitir fatura

Diagrama de Casos de Uso (Use Cases) - Relacionamentos entre casos de uso

- Os casos de uso podem ser relacionados entre si. Mais frequentes são:
 - "include"
 - "extend"
 - Generalização
- Pode-se ter casos em que a execução de um caso de uso implique na execução de um outro
- Ou um caso de uso possui uma parte que se repete em outros casos de uso.
- Para evitar redundância de texto, pode-se isolar essas partes em casos de uso separados, e relacioná-los uns aos outros

Diagrama de Casos de Uso (Use Cases) -Relacionamento <include>

- Uso principal: Quando um caso de uso possui um comportamento parcial comum a vários outros casos de uso
 - Evitar repetir comportamento ->reutilização
 - A inclusão do outro caso de uso é obrigatória

Diagrama de Casos de Uso (Use Cases) - Relacionamento < extend>

- Um caso de uso estende outro se ele adiciona comportamento ao caso de uso base.
 - Quando um fluxo alternativo é complexo e merece maior detalhe, pode-se escrever na forma de uma extensão ao caso de uso base.

Ou

 Quando uma modificação é necessária num caso de uso e não se quer mexer no caso de uso base

Diagrama de Casos de Uso (Use Cases) -Relacionamento Generalização

- Associação entre Casos de Uso onde dois ou mais deles possuem características semelhantes
- Nesse caso um Caso de Uso será o GERAL
- O Caso de Uso geral descreve as características compartilhadas
- As especializações definem características específicas

Diagrama de Casos de Uso (Use Cases) – Exemplo 3

- Pretende-se desenvolver um sistema de informação de gestão para um grupo de pizzarias, PhonePizza, que permita aos clientes efetuar encomendas na loja e através da Internet.
- Na loja, o cliente dirige-se ao empregado de balcão que introduzirá no sistema a encomenda pretendida.
- Caso a encomenda seja efetuada através da Internet, o cliente terá que se identificar, através do seu nome de utilizador e palavra-passe (controlo de acesso).
- O cliente pode então registar os artigos que pretende encomendar, podendo usufruir de um desconto no item, caso este esteja em promoção.
- O sistema deve ainda permitir que o Gestor da Pizzaria efetue as reservas de mesa, verificando se este tem autorização para o efetuar.

Exemplo 3

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 - Resolução

Identificação dos atores:

• Os atores Cliente e Gestor da Pizzaria são as pessoas que interagem com o sistema.

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 - Resolução

- Descrição dos atores do exerc. anterior:
- Cliente uma pessoa que encomenda produtos da PhonePizza pela Internet e nas pizzarias.
- Empregado de Balcão empregado que recebe as encomendas ao balcão da pizzaria
- Gestor da Pizzaria empregado que está encarregue de efetuar as reservas de mesa numa pizzaria.

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 - Resolução

Ator	Casos de uso
Cliente	Efetuar encomenda InternetControlo de acesso
Empregado de Balcão	Efetuar encomendaControlo de acesso
Gestor da Pizzaria	Reservar MesaControlo de acesso

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 – Resolução - Comunicação

- A comunicação entre um ator e os casos de uso pode ser representada por uma simples linha reta ou uma seta cujas pontas indicam a direção da comunicação.
- Linha reta simples os atores podem estar colocados em qualquer ponto do diagrama, com o pressuposto que existirá alguma comunicação de emissão ou receção
- Seta unidirecional a seta indica o sentido preferencial da comunicação.
 Normalmente, neste caso é habitual a colocação dos atores emissores à esquerda da fonteira do sistema, e dos atores recetores à direita.

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 – Resolução - Tempo

- Na identificação dos casos de uso parte-se do principio que todos são originados pelos atores.
- Contudo, em alguns sistemas existem casos de uso despoletados, automaticamente, de acordo com um processo temporal cíclico, onde num determinado momento no tempo o caso de uso é executado.
- Por ex: No caso de estudo, poderia existir a necessidade de efetuar uma copia periódica dos dados das encomendas o envio mensal das promoções aos clientes registados.

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 – Resolução – Relações

 No caso de uso Efetuar encomenda Internet estamos a considerar um pressuposto na pré-condição que o cliente era um utilizador válido no sistema, ou seja, já tinha passado pelo controlo de acesso.

• Caso não existisse esse pressuposto, a relação <<include>> também

teria que ser incluída na descrição.

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 – Resolução – Relações

- A relação <<extends>> ocorre quando existe um comportamento opcional que deve ser incluído num caso de uso. Este comportamento é definido num 2º caso de uso e invocado pelo caso de uso base através de um mecanismo de ponto de extensão.
- O mecanismo de pontos de extensão permite definir no caso de uso base onde o comportamento será incorporado, sem alterar a sua descrição. Também garante qua o seu comportamento não seja alterado caso o "Desconto Internet" deixe de existir.

Efetuar encomenda Internet

Desconto promoção

-Extends -

Desconto Internet

Diagrama de Casos de Uso (Use Cases) – Exemplo 3 – Resolução – Relações

- Na descrição do caso de uso "Efetuar Encomenda Internet" é definido um ponto de extensão "Desconto Promoção".
- Desta forma o cliente ao adicionar um novo produto à sua encomenda obterá um desconto, caso o produto esteja em promoção.
- A relação de generalização é utilizada quando existe um caso de uso que é particular de um outro caso de uso. Por ex: O comportamento do caso de uso Efetuar Encomenda Internet é semelhante ao caso de uso Efetuar Encomenda, existindo apenas pequenas variações especificais do meio onde é efetuada a encomenda.

Tarefa 7

