Problem

The formal description of a DFA M is {q1, q2, q3, q4, q5}, {u, d}, $\delta, q_3, q_3, q_3, q_3$ }, where _ is given by the following table. Give the state diagram of this machine.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Step-by-step solution

Step 1 of 1

Given formal description of DFA $\it M$ is

$$M = \left(Q, \Sigma, \delta, q_3, F\right)$$

$$Q = \text{ Set of states } = \left\{q_1, q_2, q_3, q_4, q_5\right\}$$

$$\Sigma = \text{Set of alphabet } = \{u, d\}$$

 δ = The transition function is described as

	и	d	
q_1	$q_{_1}$	q_2	
q_2	$q_{_1}$	q_3	
q_3	$q_{\scriptscriptstyle 2}$	$q_{\scriptscriptstyle 4}$	
q_4	$q_{\scriptscriptstyle 3}$	$q_{\scriptscriptstyle 4}$	
q_5	$q_{\scriptscriptstyle 4}$	$q_{\scriptscriptstyle 5}$	

Start state $= \left\{q_3\right\}$ indicated with an arrow

Set of accept states Final state $\ =\{q_3\}$ indicated by double circle

Now we will construct state diagram by using the above details.

M

So this is the state diagram for the given description of machine $\it M$.

Comments (2)