

SEQUENCE LISTING

(i) APPLICANT: Goodman, Corey S.

Kidd, Thomas Mitchell, Kevin

Tear, Guy

- (ii) TITLE OF INVENTION: Robo: A Novel Family of Polypeptide and Nucleic Acids
- (iii) NUMBER OF SEQUENCES: 13
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SCIENCE & TECHNOLOGY LAW GROUP
 - (B) STREET: 75 DENISE DRIVE
 - (C) CITY: HILLSBOROUGH
 - (D) STATE: CALIFORNIA
 - (E) COUNTRY: USA
 - (F) ZIP: 94010
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: OSMAN, RICHARD A
 - (B) REGISTRATION NUMBER: 36,627
 - (C) REFERENCE/DOCKET NUMBER: B98-006
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (650) 343-4341
 - (B) TELEFAX: (650) 343-4342
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4188 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGCATCCCA	TGCATCCCGA	AAACCACGCC	ATCGCCCGGA	GCACGAGCAC	CACTAATAAC	60
CCATCTCGCA	GTCGGAGCAG	CAGGATGTGG	CTCCTGCCCG	CCTGGCTGCT	CCTCGTCCTG	120
GTGGCCAGCA	ATGGCCTGCC	AGCAGTCAGA	GGCCAGTACC	AATCGCCACG	TATCATCGAG	180
CATCCCACGG	ATCTGGTCGT	TAAGAAGAAT	GAACCCGCCA	CGCTCAACTG	CAAAGTGGAG	240
GGCAAGCCGG	AACCCACCAT	TGAGTGGTTT	AAGGATGGCG	AACCCGTCAG	CACCAACGAA	.300
AAGAAATCGC	ACCGCGTCCA	GTTCAAGGAC	GGCGCCCTCT	TCTTTTACAG	GACAATGCAA	360
GGCAAGAAGG	AGCAGGACGG	CGGAGAGTAC	${\tt TGGTGCGTGG}$	CCAAGAACCG	AGTGGGCCAG	420
GCCGTTAGTC	GCCATGCCTC	CCTCCAGATA	${\tt GCTGTTTTGC}$	GCGACGATTT	TCGCGTGGAG	480
CCCAAAGACA	CGCGAGTGGC	CAAAGGCGAG	ACGGCTCTGC	TGGAGTGTGG	GCCGCCCAAA	540
GGCATTCCAG	AGCCAACGCT	GATTTGGATA	AAGGACGGCG	TTCCCTTGGA	CGACCTGAAA	600
GCCATGTCGT	TTGGÇGCCAG	CTCCCGCGTT	CGAATTGTGG	ACGGTGGCAA	CCTGCTGATC	660
AGCAATGTGG	AGCCÇATTGA	TGAGGGCAAC	TACAAGTGCA	TTGCCCAGAA	TCTGGTAGGC	720
ACCCGCGAGA	GCAGCTATGC	CAAGCTGATT	GTCCAGGTCA	AACCATACTT	TATGAAGGAG	780

	AGGTGATGCT					840
GATCCGCCGC	CGAAAGTGTT	GTGGAAAAAG	GAGGAGGCA	ATATTCCGGT	GTCCAGAGCG	900
CGAATCCTTC	ACGACGAGAA	AAGTTTAGAG	ATATCCAACA	TAACGCCCAC	CGATGAGGGC	960
ACCTATGTCT	GCGAGGCACA	CAACAATGTC	GGTCAGATCA	GCGCTAGGGC	TTCTCTTATA	1020
GTCCACGCTC	CGCCGAACTT	TACGAAAAGA	CCCAGTAACA	AGAAAGTGGG	ACTAAATGGG	1080
GTTGTCCAAC	TACCTTGCAT	GGCCTCCGGA	AACCCTCCGC	CGTCTGTATT	CTGGACCAAG	1140
GAAGGAGTAT	CCACTCTTAT	GTTCCCAAAT	AGTTCGCACG	GAAGGCAGTA	TGTGGCTGCC	1200
GATGGAACTC	TGCAGATTAC	GGATGTGCGG	CAGGAAGACG	AAGGCTACTA	TGTGTGTTCC	1260
GCTTTCAGTG	TAGTCGATTC	CTCTACAGTA	CGGGTTTTCC	TGCAAGTCAG	CTCGGTAGAC	1320
GAGCGTCCAC	CTCCGATTAT	TCAAATCGGA	CCTGCCAATC	AAACACTGCC	CAAGGGATCA	1380
GTTGCTACTT	TACCCTGTCG	GGCCACTGGA	AATCCCAGTC	CCCGTATCAA	GTGGTTCCAC	1440
GATGGACATG	CCGTACAAGC	GGGCAATCGA	TACAGCATCA	TCCAAGGAAG	CTCACTGAGA	1500
GTCGATGACC	TTCAACTAAG	TGACTCTGGT	ACCTACACCT	GCACTGCATC	TGGCGAACGA	1560
GGAGAAACTT	CCTGGGCTGC	CACACTAACG	GTGGAAAAAC	CCGGTTCTAC	ATCTCTTCAC	1620
	ATCCTAGCAC					1680
	GCATTAGTCT					1740
	GATACACTGT					1800
	GAGTCGGCGA					1860
	TAGTTAGAGC					1920
	AAACCATTGA					1980
	TGCTGACAGG					2040
	GACTTGAGTG		•			2100
	ACTATAAGGA					2160
	CTGCAGAATC					2220
	CACCCTTTTT					2280
	AAGATGTTCC					2340
	GTTGGGTGCG					2400
	AGATTGAGGT					2460
	CCACCACATC					2520
	ACTCCTTTAC					2580
	CCACCCATCA					2640
	AGGGACAGGA					2700
	CCACTCATAA					2760
	TCGTTCTTCT					2820
	ATCAAATGAC					2880
	TAAATATCAA					2940
ATAACCGCAT	ATACTGACAA	ACACTCACCA	TTAACCGAAT	CCAACCTACT	ATCCCACGTT	3000
	AATCCAACTA					3060
	TTACCACCTT					3120
	TGATCATTGG					3180
	AGGACTCGGG					3240
	CTGTTGTCAA					3300
	TACCCCCGCC					3360
	CTGAATCTTC					3420
	TTCTGAACGC					3480
	CCCAATATGC					3540
	CTGGCGGCAC					3600
	CTGGCGGCAC					3660
	CCACACAGCG					3720
	AAAGCCGCGC					3720
						3840
	CGCCAGTTCC					3900
	ACCCGACCTC					3900
	GGAGCTCGCA					
AGTGCCAAAC	AACGCGGAGG	ACACCACCGT	CGACGAGCCC	CGGTGGTGCA	GCCGTGCATG	4020

()

GAGAGCGAGA	ACGAGAACAT	GCTGGCGGAG	TACGAGCAGC	GCCAGTACAC	CAGCGATTGC	4080
TGCAATAGCT	CCCGCGAGGG	CGACACCTGC	TCCTGCAGCG	AGGGATCCTG	TCTTTACGCC	4140
GAGGCGGGCG	AGCCGGCGCC	TCGTCAAATG	ACTGCTAAGA	ACACCTAA		4188

)	INFO	RMAT	ION I	FOR S	SEQ I	ID NO	0:2:									
	(i)	SEQU	JENCI	E CHA	ARAC'	reris	STICS	3:								
		(A)	LE	NGTH	: 139	95 ar	nino	acio	is							
		(B)	TY	PE: 8	amino	aci	id							•		•
		(C)	ST	RANDI	EDNES	SS: 8	singl	Le								
		(D)	TOI	POLO	3Y:]	linea	ar									
	(ii)	MOLE	CULI	E TY	PE: p	pepti	ide									
	(xi)	SEQU	JENCI	E DES	CRI	OITS	N: SI	EQ II	ON C	2:						
	Met	His	Pro	Met	His	Pro	Glu	Asn	His	Ala	Ile	Ala	Arg	Ser	Thr	Ser
	1				5					10					15	
	Thr	Thr	Asn	Asn	Pro	Ser	Arg	Ser	Arg	Ser	Ser	Arg	Met	Trp	Leu	Leu
				20					25					30		
	Pro	Ala	Trp	Leu	Leu	Leu	Val	Leu	Val	Ala	Ser	Asn	Gly	Leu	Pro	Ala
			35					40					45			
	Val	Arg	Gly	Gln	Tyr	Gln	Ser	Pro	Arg	Ile	Ile	Glu	His	${\tt Pro}$	Thr	Asp
		50					55					60				
	Leu	Val	Val	Lys	Lys	Asn	Glu	Pro	Ala	Thr	Leu	Asn	Cys	Lys	Val	Glu
	65					70					75					80
	Gly	Lys	Pro	Glu	Pro	Thr	Ile	Glu	Trp	Phe	Lys	Asp	Gly	Glu	Pro	Val
					85					90					95	
	Ser	Thr	Asn	Glu	Lys	Lys	Ser	His	Arg	Val	Gln	Phe	Lys	Asp	Gly	Ala
				100					105					110		•
	Leu	Phe	Phe	Tyr	Arg	Thr	Met		Gly	Lys	Lys	Glu	Gln	Asp	Gly	Gly
			115					120					125			
	Glu	Tyr	Trp	Cys	Val	Ala	Lys	Asn	Arg	Val	Gly	Gln	Ala	Val	Ser	Arg
		130					135					140				_
		Ala	Ser	Leu	Gln		Ala	Val	Leu	Arg		Asp	Phe	Arg	Val	
	145					150					155		_	_		160
	Pro	Lys	Asp	Thr		Val	Ala	Lys	GIY		Thr	Ala	Leu	Leu		Cys
			_	_	165		_		_	170	_		_		175	_
	GLY	Pro	Pro	_	GLY	TTE	Pro	GIU		Thr	Leu	11e	Trp	Ile	Lys	Asp
	G 1	**- 7	D	180	3	3	T	T	185	Mah	0	Dha	~1	190	Com	Com
	GLY	vai		Leu	Asp	Asp	Leu		Ala	Met	ser	Pne		Ala	ser	ser
		77. J	195	T1.	17a 3	7	~1	200	7	T 011	T 011	T10	205	7 00	Wa I	C1.1
	Arg	210	Arg	116	Val	Asp	215	GIY	Abii	Leu	пеп	220	SET	Asn	vai	GIU
	Dro		λαn	Glu	Glv	λan		Tare	Cve	Tle	בוג	_	Δen	Leu	Val	Glv
		TIE	wab	Giu	_	230	-	шуз		116			Abii	Licu		240
	225 Thr	λra	Glu	Ser				Larg		•			Val	Lys		
	1111	Arg	Giu	561	245	1 Y L	nια	шуз	пси	250	Vai	0444	· · · ·	_	255	-1-
	Dhe	Met	Tage	Glu		Taye	Δsn	Gln	Val		T.e.i	Tvr	Glv	Gln		Ala
	FIIC	1-10-0	цуз	260	110	цуо	nop	<u> </u>	265	1100	204	+1-	O ₂	270		
	Thr	Dhe	Hig		Ser	Val	Glv	Glv		Pro	Pro	Pro	Lvs	Val	Leu	Trp
	1111	1110	275	C _f D	001	v u	<u></u>	280	1100	110			285			
	Lvs	Lvs		Glu	Glv	Asn	Ile		Val	Ser	Ara	Ala		Ile	Leu	His
	-, 5	290			1		295					300	ان ساد .			
	Asp		Lvs	Ser	Leu	Glu		Ser	Asn	Ile	Thr		Thr	Asp	Glu	Glv
	305		_1 -			310					315			- T -		320
		Tyr	Val	Cys	Glu		His	Asn	Asn	Val		Gln	Ile	Ser	Ala	
		1 -		4	325					330	•				335	_

Ala Ser Leu Ile Val His Ala Pro Pro Asn Phe Thr Lys Arg Pro Ser Asn Lys Lys Val Gly Leu Asn Gly Val Val Gln Leu Pro Cys Met Ala Ser Gly Asn Pro Pro Pro Ser Val Phe Trp Thr Lys Glu Gly Val Ser Thr Leu Met Phe Pro Asn Ser Ser His Gly Arg Gln Tyr Val Ala Ala Asp Gly Thr Leu Gln Ile Thr Asp Val Arg Gln Glu Asp Glu Gly Tyr Tyr Val Cys Ser Ala Phe Ser Val Val Asp Ser Ser Thr Val Arg Val Phe Leu Gln Val Ser Ser Val Asp Glu Arg Pro Pro Pro Ile Ile Gln Ile Gly Pro Ala Asn Gln Thr Leu Pro Lys Gly Ser Val Ala Thr Leu Pro Cys Arg Ala Thr Gly Asn Pro Ser Pro Arg Ile Lys Trp Phe His Asp Gly His Ala Val Gln Ala Gly Asn Arg Tyr Ser Ile Ile Gln Gly Ser Ser Leu Arg Val Asp Asp Leu Gln Leu Ser Asp Ser Gly Thr Tyr Thr Cys Thr Ala Ser Gly Glu Arg Gly Glu Thr Ser Trp Ala Ala Thr Leu Thr Val Glu Lys Pro Gly Ser Thr Ser Leu His Arg Ala Ala Asp Pro Ser Thr Tyr Pro Ala Pro Pro Gly Thr Pro Lys Val Leu Asn Val Ser Arg Thr Ser Ile Ser Leu Arg Trp Ala Lys Ser Gln Glu Lys Pro Gly Ala Val Gly Pro Ile Ile Gly Tyr Thr Val Glu Tyr Phe Ser Pro Asp Leu Gln Thr Gly Trp Ile Val Ala Ala His Arg Val Gly Asp Thr Gln Val Thr Ile Ser Gly Leu Thr Pro Gly Thr Ser Tyr Val Phe Leu Val Arg Ala Glu Asn Thr Gln Gly Ile Ser Val Pro Ser Gly Leu Ser Asn Val Ile Lys Thr Ile Glu Ala Asp Phe Asp Ala Ala Ser Ala Asn Asp Leu Ser Ala Ala Arg Thr Leu Leu Thr Gly Lys Ser Val Glu Leu Ile Asp Ala Ser Ala Ile Asn Ala Ser Ala Val Arg Leu Glu Trp Met Leu His Val Ser Ala Asp Glu Lys Tyr Val Glu Gly Leu Arg Ile His Tyr Lys Asp Ala Ser Val Pro Ser Ala Gln Tyr His Ser Ile Thr Val Met Asp Ala Ser Ala Glu Ser Phe Val Val Gly Asn Leu Lys Lys Tyr Thr Lys Tyr Glu Phe Phe Leu Thr Pro Phe Phe Glu Thr Ile Glu Gly Gln Pro Ser Asn Ser Lys Thr Ala Leu Thr Tyr Glu Asp Val Pro Ser

Ala Pro Pro Asp Asn Ile Gln Ile Gly Met Tyr Asn Gln Thr Ala Gly Trp Val Arg Trp Thr Pro Pro Pro Ser Gln His His Asn Gly Asn Leu Tyr Gly Tyr Lys Ile Glu Val Ser Ala Gly Asn Thr Met Lys Val Leu Ala Asn Met Thr Leu Asn Ala Thr Thr Thr Ser Val Leu Leu Asn Asn Leu Thr Thr Gly Ala Val Tyr Ser Val Arg Leu Asn Ser Phe Thr Lys Ala Gly Asp Gly Pro Tyr Ser Lys Pro Ile Ser Leu Phe Met Asp Pro Thr His His Val His Pro Pro Arg Ala His Pro Ser Gly Thr His Asp Gly Arg His Glu Gly Gln Asp Leu Thr Tyr His Asn Asn Gly Asn Ile Pro Pro Gly Asp Ile Asn Pro Thr Thr His Lys Lys Thr Thr Asp Tyr Leu Ser Gly Pro Trp Leu Met Val Leu Val Cys Ile Val Leu Leu Val Leu Val Ile Ser Ala Ala Ile Ser Met Val Tyr Phe Lys Arg Lys His Gln Met Thr Lys Glu Leu Gly His Leu Ser Val Val Ser Asp Asn Glu Ile Thr Ala Leu Asn Ile Asn Ser Lys Glu Ser Leu Trp Ile Asp His His Arg Gly Trp Arg Thr Ala Asp Thr Asp Lys Asp Ser Gly Leu Ser Glu Ser Lys Leu Leu Ser His Val Asn Ser Ser Gln Ser Asn Tyr Asn Asn Ser Asp Gly Gly Thr Asp Tyr Ala Glu Val Asp Thr Arg Asn Leu Thr Thr Phe Tyr Asn Cys Arg Lys Ser Pro Asp Asn Pro Thr Pro Tyr Ala Thr Thr Met Ile Ile Gly Thr Ser Ser Ser Glu Thr Cys Thr Lys Thr Thr Ser Ile Ser Ala Asp Lys Asp Ser Gly Thr His Ser Pro Tyr Ser Asp Ala Phe Ala Gly Gln Val Pro Ala Val Pro Val Val Lys Ser Asn Tyr Leu Gln Tyr Pro Val Glu Pro Ile Asn Trp Ser Glu Phe Leu Pro Pro Pro Pro Glu His Pro Pro Pro Ser Ser Thr Tyr Gly Tyr Ala Gln Gly Ser Pro Glu Ser Ser Arg Lys Ser Ser Lys Ser Ala Gly Ser Gly Ile Ser Thr Asn Gln Ser Ile Leu Asn Ala Ser Ile His Ser Ser Ser Ser Gly Gly Phe Ser Ala Trp Gly Val Ser Pro Gln Tyr Ala Val Ala Cys Pro Pro Glu Asn Val Tyr Ser Asn Pro Leu Ser Ala Val Ala Gly Gly Thr Gln Asn Arg Tyr Gln Ile Thr Pro Thr Asn Gln His Pro

Pro Gln Leu Pro Ala Tyr Phe Ala Thr Thr Gly Pro Gly Gly Ala Val 1205 1210 Pro Pro Asn His Leu Pro Phe Ala Thr Gln Arg His Ala Ala Ser Glu 1220 1225 Tyr Gln Ala Gly Leu Asn Ala Ala Arg Cys Ala Gln Ser Arg Ala Cys 1240 Asn Ser Cys Asp Ala Leu Ala Thr Pro Ser Pro Met Gln Pro Pro 1255 1260 Pro Val Pro Val Pro Glu Gly Trp Tyr Gln Pro Val His Pro Asn Ser 1270 1275 His Pro Met His Pro Thr Ser Ser Asn His Gln Ile Tyr Gln Cys Ser 1285 1290 Ser Glu Cys Ser Asp His Ser Arg Ser Ser Gln Ser His Lys Arg Gln 1305 Leu Gln Leu Glu Glu His Gly Ser Ser Ala Lys Gln Arg Gly Gly His 1320 His Arg Arg Arg Ala Pro Val Val Gln Pro Cys Met Glu Ser Glu Asn 1335 Glu Asn Met Leu Ala Glu Tyr Glu Gln Arg Gln Tyr Thr Ser Asp Cys 1350 1355 . 1360 Cys Asn Ser Ser Arg Glu Gly Asp Thr Cys Ser Cys Ser Glu Gly Ser 1365 1370 Cys Leu Tyr Ala Glu Ala Gly Glu Pro Ala Pro Arg Gln Met Thr Ala 1380 1385 Lys Asn Thr 1395

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4146 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

${\tt GGTGAAAATC}$	CACGCATCAT	CGAGCATCCC	ATGGACACGA	CGGTGCCAAA	AAATGATCCA ·	60
${\tt TTTACGTTTA}$	ATTGCCAGGC	CGAGGGCAAT	CCAACACCAA	CCATTCAATG	GTTTAAGGAC	120
GGTCGCGAAC	TGAAGACGGA	TACGGGTTCG	CATCGCATAA	TGCTGCCCGC	CGGGGGTCTA	.180
${\tt TTCTTTCTCA}$	${\tt AGGTTATCCA}$	CTCACGTAGA	GAGAGCGATG	CGGGCACTTA	CTGGTGCGAG	240
GCCAAAAACG	AGTTTGGAGT	GGCACGGTCC	AGGAATGCAA	CGTTGCAAGT	GGCAGTTCTC	300
CGCGACGAAT	${\tt TCCGTTTGGA}$	${\tt GCCGGCAAAT}$	ACCCGCGTGG	CCCAAGGCGA	GGTGGCCCTG	360
${\tt ATGGAATGCG}$	GTGCCCCCG	${\tt AGGATCTCCG}$	GAGCCGCAAA	TCTCGTGGCG	CAAGAACGGC	420
CAGACCCTGA	${\tt ATCTTGTCGG}$	GAACAAGCGG	ATTCGCATTG	TCGACGGTGG	CAATCTGGCC	480
ATCCAGGAAG	CCCGCCAATC	GGACGACGGA	CGCTACCAGT	${\tt GTGTGGTCAA}$	GAATGTGGTT	540
GGCACCCGGG	AGTCGGCCAC	CGCTTTTCTT	AAAGTGCATG	TACGTCCATT	CCTCATCCGA	600
GGACCCCAGA	ATCAGACGGC	GGTGGTGGGC	AGCTCGGTGG	TCTTCCAGTG	CCGCATCGGA	660
GGCGATCCCC	TGCCTGATGT	CCTGTGGCGA	CGCACTGCCT	CCGGCGGCAA	TATGCCACTG	720
CGTAAGTTTT	CTTGGCTTCA	TTCAGCTTCA	GGTCGTGTGC	ACGTACTTGA	GGACCGCAGT	780
CTGAAGCTGG	ACGACGTTAC	TCTGGAGGAC	ATGGGCGAGT	ACACTTGCGA	GGCGGACAAT	840
GCGGTGGGCG	GCATCACGGC	CACTGGCATC	CTCACCGTTC	ACGCTCCCCC	CAAATTTGTG	900
ATACGCCCCA	AGAATCAGCT	GGTGGAGATC	GGTGATGAAG	TGCTGTTCGA	GTGCCAAGCG	960
AATGGACATC	CCCGACCAAC	GCTCTACTGG	TCGGTGGAGG	GCAACAGCTC	CCTGCTGCTC	1020
CCCGGCTATC	GGGATGGCCG	CATGGAAGTG	ACCCTGACGC	CCGAGGGGCG	CTCGGTGCTC	1080
TCGATAGCTC	GATTTGCCCG	TGAGGATTCC	GGAAAGGTGG	TCACTTGCAA	CGCCCTGAAC	1140

GCCGTGGGCA (GCGTCAGCAG	TCGGACTGTG	GTCAGTGTGG	ATACGCAATT	CGAGCTGCCA	1200
CCGCCGATTA T	rcgaacaggg	GCCCGTGAAT	CAAACGTTGC	CCGTTAAATC	AATTGTGGTT	1260
CTGCCATGCC (GAACTCTGGG	CACTCCAGTG	CCACAGGTCT	CTTGGTACCT	GGATGGCATA	1320
CCCATCGATG	TGCAGGAGCA	CGAGCGGCGG	AATCTTTCGG	ACGCTGGAGC	CTTAACCATT	1380
TCGGATCTTC A	AGCGCCACGA	GGATGAAGGC	TTGTACACCT	GCGTGGCCAG	CAATCGCAAC	1440
GGAAAATCCT (CTTGGAGTGG	TTACCTTCGT	CTGGACACCC	CGACAAATCC	GAATATCAAG	1500
TTCTTCAGAG	CCCCAGAACT	TTCCACCTAC	CCAGGGCCGC	CAGGAAAACC	GCAAATGGTG	1560
GAGAAGGCC	AAAATTCGGT	GACTCTCAGC	TGGACGAGGA	GCAACAAGGT	GGGCGGCTCC	1620
AGTCTGGTGG (GCTATGTAAT	CGAGATGTTT	GGCAAAAACG	AAACGGATGG	CTGGGTGGCT	1680
GTGGGCACTA	GGGTGCAAAA	TACCACGTTT	ACCCAAACGG	GTCTGCTGCC	GGGTGTGAAT	1740
TACTTCTTTC '	TAATTCGAGC	CGAGAACTCC	CATGGCTTAT	CACTGCCCAG	TCCGATGTCG	1800
GAACCCATTA	CGGTGGGAAC	GCGCTACTTC	AATAGTGGTC	TGGATCTGAG	CGAGGCTCGT	1860
GCCAGTCTGC '	TGTCCGGAGA	TGTTGTGGAG	CTGAGCAACG	CCAGTGTGGT	GGACTCCACT	1920
AGCATGAAAC	TCACCTGGCA	GATCATCAAT	GGCAAATACG	TCGAGGGCTT	CTATGTCTAT	1980
GCGAGACAGT	TGCCAAATCC	AATAGTCAAC	AATCCGGCGC	CCGTTACTAG	CAATACCAAT	2040
CCGCTGCTGG	GCTCTACATC	CACATCCGCA	TCCGCATCCG	CCTCGGCATC	GGCATTGATT	2100
TCGACAAAGC	CAAATATTGC	AGCTGCCGGC	AAACGTGATG	GGGAGACAAA	CCAGAGTGGA	2160
GGAGGAGCTC	CGACCCCACT	GAACACCAAG	TATCGCATGC	TAACGATTCT	CAATGGCGGT	2220
GGCGCCTCAT	CCTGCACCAT	CACCGGGCTC	GTCCAGTACA	CGCTGTATGA	ATTTTTCATC	2280
GTGCCATTTT	ACABATCCGT	CGAGGGCAAG	CCGTCGAATT	CGCGCATCGC	TCGCACCCTT	2340
GAAGATGTTC	CCTCTGAGGC	ACCATATGGA	ATGGAGGCTC	TGCTGTTGAA	CTCCTCCGCG	2400
GTCTTCCTCA	AATGGAAGGC	ACCAGAACTC	AAGGATCGGC	ATGGTGTTCT	CTTGAACTAT	2460
CATGTTATAG	TCCCACCTAT	TGACACTGCC	CACAATTTCT	CACGCATTTT	GACAAATGTC	2520
ACCATCGATG	CCCCTTCGCC	TACTCTGGTT	TTGGCCAATC	TCACCGAAGG	CGTCATGTAC	2580
ACCATCGATG	TCCCGCCCGC	AAATAACGCT	GGAGTTGGTC	CTTATTGTGT	CCCAGCTACT	2640
TTGCGTTTGG	ATTCCCATCAC	AAAGCGACTC	GATCCGTTCA	TCAATCAGCG	GGACCATGTT	2700
AACGATGTGC	TO COCATORO	CTCCTTCATA	ATACTCCTGG	GCGCCATCCT	GGCCGTTCTT	2760
AACGATGTGC	TURCUCAGCC	CCTCTTTCTC	AAGCGCAAGC	ACATGATGAT	GAAGCAGTCG	2820
ATGCTGTCCT	CANTECCTEC	CAATCACACG	AGCGACGTGC	TCAAAATGCC	GAGTCTATCG	2880
GCCCTAAATA	CAAIGCGIGG	CTGCCTGGAC	TCCTCCACCG	GCGGAATGGT	GTGGCGTCCC	2940
GCGCGCAAIG	CCCACTCCCT	CCACATCCAA	AAGGATCACA	TCGCCGACTA	TGCGCCGGTC	3000
TCGCCCGGCG	CCCCTTCTCTCC	GGCCGCGCGT	GGCACCTCTT	CCGGTGGATC	CGGTGGCGCG	3060
TGCGGTGCCC	CCACCCCCC	CCATGACATT	CATGGAGGAC	ACGGCAGCGA	ACGCAATCAG	3120
GGCAGCGGTG	TCCCCCACTA	CTCCAACATA	CCGACCGACT	ATGCAGAGGT	GTCCAGTTTT	3180
CAGCGGTACG	CCACCCACTA	TCCTCCCCAT	GGCAACGCCT	CCCCGGCCCC	TTATGCCACC	3240
GGCAAGGCAC	TCACTCCCCA	CCAGCAGCAA	CAGCAGCAGC	AGCCGCGTTA	TCAACAGCGA	3300
TCTTCGATCC	COMMITTEE	CCAGCGCCCA	ATGCACCCAC	ACTACCAGCA	GCAGCAGCAT	3360
CCAGTGCCCG	ACCCCACCA	CCAGCGCCCA	CAACACCAGG	CTCTCCAGCA	GCACCAGCAA	3420
CAGCAGCAAC	AGGCGCAGCA	CCACCACATG	TCCACCACCA	GCGAGATATA	CCCCACGAAC	3480
CIGCCACCCA	GCAACAICIA	CTACTCTCAG	CAGTATTACT	ACCCCAAGGA	CAAGCAGAGA	3540
ACGGGTCCTT	CGCGCTCTGT	CIACICIGAG	AACTGCCACA	CCTATGAGGC	GGCTCCTGGC	3600
CACATCCACA	COMOCOCCO	ATTCTTCCTAGC	TTCGCCAGCG	TGAGGCGGCA	GCAGCTGCCG	3660
GCCAAGCAGT	CCTCGCCGAI	CCANACTCC	CCCTTCAAGG	TGCTAAACAC	GGATCAGGGC	3720
CCCAACTGCA	GCATCGGCAG	GGAAAGIGCC	CGCTTCTTCGA	TGTGCTACAA	CGGTCTGGCA	3780
AAGAACCAGC	AGAATCICCI	GGAICICGAC	. GGCTCCTCGA	TGATGTCGC	CGAGGACGAG	3840
GACTCGGGCT	CCGGTGGATC	CONTROCO	י התפפינתופי	TGGAACGAC	GTACGTCAAG	3900
CACGCGCTGT	ACCACACGGC	ACACCACCAC	CIGGACGACA	, TOCKECOMCI	CCCACAGCAT	3960
GTGGACGAGC	AGCAGCCTCC	ACAGCAGCAG	TANGCAGCIGA		TOGGAAGAAC	4020
CCGGCGGAAG	GTCACCTGCA		AAICAGAGCA	CUCCGGAGCAC	TCGGAAGAAC	4080
GGCCAGGAAT	GCATCAAGGA	ACCCAGCGAC	GOONGONGON	CICCGGGAA	G CGTGGCCACAAT	4140
	TCCTCAGCAA	CTCGGGTAGC	GGCACCAGCA	A GCCAGCCAGG	TGGCCACAAT	4146
GTCTGA			•			11.10

⁽²⁾ INFORMATION FOR SEQ ID NO:4:
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1381 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Gly Glu Asn Pro Arg Ile Ile Glu His Pro Met Asp Thr Thr Val Pro

 1 10 15
- Lys Asn Asp Pro Phe Thr Phe Asn Cys Gln Ala Glu Gly Asn Pro Thr
- Pro Thr Ile Gln Trp Phe Lys Asp Gly Arg Glu Leu Lys Thr Asp Thr
- Gly Ser His Arg Ile Met Leu Pro Ala Gly Gly Leu Phe Phe Leu Lys
- Val Ile His Ser Arg Arg Glu Ser Asp Ala Gly Thr Tyr Trp Cys Glu 65 70 75 80
- Ala Lys Asn Glu Phe Gly Val Ala Arg Ser Arg Asn Ala Thr Leu Gln 85 90 95
- Val Ala Val Leu Arg Asp Glu Phe Arg Leu Glu Pro Ala Asn Thr Arg
 100 105 110
- Val Ala Gln Gly Glu Val Ala Leu Met Glu Cys Gly Ala Pro Arg Gly
 115 120 125
- Ser Pro Glu Pro Gln Ile Ser Trp Arg Lys Asn Gly Gln Thr Leu Asn 130 135 140
- Leu Val Gly Asn Lys Arg Ile Arg Ile Val Asp Gly Gly Asn Leu Ala 145 150 155 160
- Ile Gln Glu Ala Arg Gln Ser Asp Asp Gly Arg Tyr Gln Cys Val Val 165 170 175
- Lys Asn Val Val Gly Thr Arg Glu Ser Ala Thr Ala Phe Leu Lys Val
- His Val Arg Pro Phe Leu Ile Arg Gly Pro Gln Asn Gln Thr Ala Val
- Val Gly Ser Ser Val Val Phe Gln Cys Arg Ile Gly Gly Asp Pro Leu 210 215 220
- Pro Asp Val Leu Trp Arg Arg Thr Ala Ser Gly Gly Asn Met Pro Leu 225 230 235 240
- Arg Lys Phe Ser Trp Leu His Ser Ala Ser Gly Arg Val His Val Leu 245 250 255
- Glu Asp Arg Ser Leu Lys Leu Asp Asp Val Thr Leu Glu Asp Met Gly 260 265 270
- Glu Tyr Thr Cys Glu Ala Asp Asn Ala Val Gly Gly Ile Thr Ala Thr 275 280 285
- Gly Ile Leu Thr Val His Ala Pro Pro Lys Phe Val Ile Arg Pro Lys 290 295 300
- Asn Gln Leu Val Glu Ile Gly Asp Glu Val Leu Phe Glu Cys Gln Ala 305 310 315 320
- Asn Gly His Pro Arg Pro Thr Leu Tyr Trp Ser Val Glu Gly Asn Ser 325 330 335
- Ser Leu Leu Pro Gly Tyr Arg Asp Gly Arg Met Glu Val Thr Leu 340 345 350
- Thr Pro Glu Gly Arg Ser Val Leu Ser Ile Ala Arg Phe Ala Arg Glu 355 360 365
- Asp Ser Gly Lys Val Val Thr Cys Asn Ala Leu Asn Ala Val Gly Ser 370 375 380

Val Ser Ser Arg Thr Val Val Ser Val Asp. Thr Gln Phe Glu Leu Pro Pro Pro Ile Ile Glu Gln Gly Pro Val Asn Gln Thr Leu Pro Val Lys Ser Ile Val Val Leu Pro Cys Arg Thr Leu Gly Thr Pro Val Pro Gln Val Ser Trp Tyr Leu Asp Gly Ile Pro Ile Asp Val Gln Glu His Glu Arg Arg Asn Leu Ser Asp Ala Gly Ala Leu Thr Ile Ser Asp Leu Gln Arg His Glu Asp Glu Gly Leu Tyr Thr Cys Val Ala Ser Asn Arg Asn Gly Lys Ser Ser Trp Ser Gly Tyr Leu Arg Leu Asp Thr Pro Thr Asn Pro Asn Ile Lys Phe Phe Arg Ala Pro Glu Leu Ser Thr Tyr Pro Gly Pro Pro Gly Lys Pro Gln Met Val Glu Lys Gly Glu Asn Ser Val Thr Leu Ser Trp Thr Arg Ser Asn Lys Val Gly Gly Ser Ser Leu Val Gly Tyr Val Ile Glu Met Phe Gly Lys Asn Glu Thr Asp Gly Trp Val Ala Val Gly Thr Arg Val Gln Asn Thr Thr Phe Thr Gln Thr Gly Leu Leu Pro Gly Val Asn Tyr Phe Phe Leu Ile Arg Ala Glu Asn Ser His Gly Leu Ser Leu Pro Ser Pro Met Ser Glu Pro Ile Thr Val Gly Thr Arg Tyr Phe Asn Ser Gly Leu Asp Leu Ser Glu Ala Arg Ala Ser Leu Leu Ser Gly Asp Val Val Glu Leu Ser Asn Ala Ser Val Val Asp Ser Thr Ser Met Lys Leu Thr Trp Gln Ile Ile Asn Gly Lys Tyr Val Glu Gly Phe Tyr Val Tyr Ala Arg Gln Leu Pro Asn Pro Ile Val Asn Asn Pro Ala Pro Val Thr Ser Asn Thr Asn Pro Leu Leu Gly Ser Thr Ser Thr Ser Ala Ser Ala Ser Ala Ser Ala Leu Ile Ser Thr Lys Pro Asn Ile Ala Ala Ala Gly Lys Arg Asp Gly Glu Thr Asn Gln Ser Gly Gly Gly Ala Pro Thr Pro Leu Asn Thr Lys Tyr Arg Met Leu Thr Ile Leu Asn Gly Gly Gly Ala Ser Ser Cys Thr Ile Thr Gly Leu Val Gln Tyr Thr Leu Tyr Glu Phe Phe Ile Val Pro Phe Tyr Lys Ser Val Glu Gly Lys Pro Ser Asn Ser Arg Ile Ala Arg Thr Leu Glu Asp Val Pro Ser Glu Ala Pro Tyr Gly Met Glu Ala Leu Leu Leu Asn Ser Ser Ala Val Phe Leu Lys Trp Lys Ala Pro Glu Leu Lys Asp Arg His Gly Val

Leu Leu Asn Tyr His Val Ile Val Arg Gly Ile Asp Thr Ala His Asn Phe Ser Arg Ile Leu Thr Asn Val Thr Ile Asp Ala Ala Ser Pro Thr Leu Val Leu Ala Asn Leu Thr Glu Gly Val Met Tyr Thr Val Gly Val Ala Ala Gly Asn Asn Ala Gly Val Gly Pro Tyr Cys Val Pro Ala Thr Leu Arg Leu Asp Pro Ile Thr Lys Arg Leu Asp Pro Phe Ile Asn Gln Arg Asp His Val Asn Asp Val Leu Thr Gln Pro Trp Phe Ile Ile Leu Leu Gly Ala Ile Leu Ala Val Leu Met Leu Ser Phe Gly Ala Met Val Phe Val Lys Arg Lys His Met Met Lys Gln Ser Ala Leu Asn Thr Met Arg Gly Asn His Thr Ser Asp Val Leu Lys Met Pro Ser Leu Ser Ala Arg Asn Gly Asn Gly Tyr Trp Leu Asp Ser Ser Thr Gly Gly Met Val Trp Arg Pro Ser Pro Gly Gly Asp Ser Leu Glu Met Gln Lys Asp His Ile Ala Asp Tyr Ala Pro Val Cys Gly Ala Pro Gly Ser Pro Ala Gly Gly Gly Thr Ser Ser Gly Gly Ser Gly Gly Ala Gly Ser Gly Ala Ser Gly Gly Asp Asp Ile His Gly Gly His Gly Ser Glu Arg Asn Gln · 1035 Gln Arg Tyr Val Gly Glu Tyr Ser Asn Ile Pro Thr Asp Tyr Ala Glu Val Ser Ser Phe Gly Lys Ala Pro Ser Glu Tyr Gly Arg His Gly Asn Ala Ser Pro Ala Pro Tyr Ala Thr Ser Ser Ile Leu Ser Pro His Gln Gln Gln Gln Gln Gln Pro Arg Tyr Gln Gln Arg Pro Val Pro Gly Tyr Gly Leu Gln Arg Pro Met His Pro His Tyr Gln Gln Gln His Gln Gln Gln Gln Ala Gln Gln Thr His Gln Gln His Gln Ala Leu Gln Gln His Gln Gln Leu Pro Pro Ser Asn Ile Tyr Gln Gln Met Ser Thr Thr Ser Glu Ile Tyr Pro Thr Asn Thr Gly Pro Ser Arg Ser Val Tyr Ser Glu Gln Tyr Tyr Tyr Pro Lys Asp Lys Gln Arg His Ile His Ile Thr Glu Asn Lys Leu Ser Asn Cys His Thr Tyr Glu Ala Ala Pro Gly Ala Lys Gln Ser Ser Pro Ile Ser Ser Gln Phe Ala Ser Val Arg Arg Gln Gln Leu Pro Pro Asn Cys Ser Ile Gly Arg Glu Ser Ala Arg Phe Lys Val Leu Asn Thr Asp Gln Gly Lys Asn Gln Gln Asn Leu Leu Asp

Leu Asp Gly Ser Ser Met Cys Tyr Asn Gly Leu Ala Asp Ser Gly Cys 1255 1250 Gly Gly Ser Pro Ser Pro Met Ala Met Leu Met Ser His Glu Asp Glu 1270 1275 1265 His Ala Leu Tyr His Thr Ala Asp Gly Asp Leu Asp Asp Met Glu Arg 1285 1290 Leu Tyr Val Lys Val Asp Glu Gln Gln Pro Pro Gln Gln Gln Gln 1305 1300 Leu Ile Pro Leu Val Pro Gln His Pro Ala Glu Gly His Leu Gln Ser 1320 Trp Arg Asn Gln Ser Thr Arg Ser Ser Arg Lys Asn Gly Gln Glu Cys 1335 Ile Lys Glu Pro Ser Glu Leu Ile Tyr Ala Pro Gly Ser Val Ala Ser 1355 1350 1345 Glu Arg Ser Leu Leu Ser Asn Ser Gly Ser Gly Thr Ser Ser Gln Pro 1370 1365 Ala Gly His Asn Val 1380

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(11) NO	OTTENCE DESC	RIPTION: SE	O TD NO:5:			
ATGTACTATC	TACCTTTTTA	CCACACTCAC	ACACACACAC	ACACATACAT	AAATTTTGAT	60
AAAATTCCTA	ATCCCTCAAA	TCTCGCTCCC	GTGATAATCG	AACATCCCAT	CGATGTGGTG	120
GTATCTAGGG	CATCCCCAGC	AACCCTCAAC	TGTGGTGCAA	AGCCATCTAC	CGCCAAAATC	180
ACATGGTACA	ACCATCCACA	GCCCGTAATC	ACGAATAAGG	AGCAAGTGAA	CAGCCACCGG	240
ACATGGTACA	ACACCCCATC	CCTGTTTCTT	CTGAAAGTGA	ATAGTGGAAA	AAACGGAAAA	300
GACAGCGATG	CGGGAGCGTA	CTATTGTGTG	GCCAGCAACG	AGCACGGAGA	AGTGAAGTCG	360
AACGAAGGAT	CGTTAAAATT	GGCGATGCTT	CGCGAAGACT	TTCGAGTTCG	GCCAAGAACA	420
GTTCAGGCTC	TTGGTGGAGA	GATGGCCGTT	CTGGAATGCA	GTCCGCCACG	TGGATTCCCG	480
GAGCCGGTTG	TGAGCTGGCG	GAAAGACGAC	AAAGAGCTCC	GAATTCAAGA	CATGCCACGA	540
TACACTCTAC	ACTCTGACGG	AAACCTCATC	ATTGATCCGG	TCGATCGAAG	CGATTCTGGT	600
ACTTATCAGT	GTGTTGCCAA	CAACATGGTC	GGAGAACGGG	TGTCCAATCC	CGCAAGATTG	660
AGTGTCTTTG	AGAAACCAAA	GTTTGAGCAA	GAACCCAAGG	ACATGACGGT	CGACGTCGGA	720
GCCGCAGTGC	TGTTTGATTG	TCGTGTGACT	GGAGATCCTC	AACCACAAAT	TACGTGGAAA	780
CGCAAAAATG	AGCCGATGCC	AGTTACACGT	GCATACATTG	CCAAGGATAA	TCGGGGGTTG	840
AGAATCGAAA	GAGTTCAACC	ATCAGACGAA	GGTGAATACG	TTTGCTATGC	ACGAAATCCA	900
GCGGGAACTC	TTGAAGCATC	TGCACATCTT	CGTGTCCAGG	CACCTCCATC	CTTCCAGACA	960
AAACCAGCAG	ACCAGTCAGT	TCCAGCTGGA	GGCACGGCAA	CTTTTGAATG	CACCTTGGTC	1020
GGTCAACCGA	GTCCCGCCTA	TTTTTGGAGC	AAGGAAGGCC	AACAGGATCT	TCTTTTCCCA	1080
AGTTATGTGT	CCGCTGATGG	TAGAACGAAA	GTTTCACCAA	CTGGAACATT	GACAATTGAG	1140
GAAGTTCGTC	AAGTTGATGA	GGGAGCTTAT	GTGTGCGCTG	GAATGAACTC	GGCAGGAAGC	1200
TCGTTGAGCA	AGGCAGCTTT	GAAAGCAACA	TTTGAAACCA	AAGGCCGTGT	CCAAAAAAAA	1260
AAGAGCAAAA	TGGGCAAACA	GAAACAAAAA	AATGTTCAAT	CAATTATCAA	ATATTTAATT	1320
TCAGCCGTGA	CCGGAAACAC	ACCCGCCAAA	CCACCACCAA	CAATCGAGCA	TGGTCATCAA	1380
AATCAGACCC	TTATGGTTGG	ATCATCAGCC	ATCCTTCCAT	GTCAGGCTAG	CGGAAAACCA	1440
ACTCCAGGAA	TATCATGGCT	CAGGGATGGG	CTACCTATTG	ACATTACAGA	TAGTCGTATC	1500
AGTCAACATT	CAACGGGAAG	TCTACATATT	GCCGATTTAA	AGAAACCTGA	CACCGGAGTT	1560
TACACTTGCA	TTGCGAAGAA	CGAGGATGGA	GAGTCAACAT	GGTCGGCATC	TCTGACTGTT	1620

GAAGATCACA	CTAGCAATGC	ACAATTTGTT	CGGATGCCGG	ATCCATCGAA	CTTCCCGTCT	1680
TCTCCAACGC	AACCCATTAT	TGTCAATGTC	ACTGATACCG	AAGTAGAGCT	CCACTGGAAT	1740
GCTCCCTCCA	CATCTGGCGC	AGGACCAATC	ACTGGTTATA	TCATTCAGTA	CTACAGTCCA	1800
GACCTCGGAC	${\tt AGACGTGGTT}$	TAACATTCCA	GACTACGTGG	CATCTACTGA	ATATAGAATA	1860
${\tt AAGGGTCTGA}$	AACCATCTCA	CTCGTATATG	TTTGTGATTC	GAGCAGAAAA	TGAGAAAGGT	1920
ATTGGAACGC	CGAGTGTGTC	GTCGGCTCTC	GTTACCACTA	GCAAGCCAGC	AGCTCAAGTT	1980
$\tt GCGCTTTCTG$	ACAAGAACAA	AATGGACATG	GCCATCGCTG	AGAAGAGACT	CACTTCGGAA	2040
${\tt CAACTCATAA}$	AACTCGAGGA	AGTGAAGACT	ATTAATTCTA	CGGCCGTTCG	TTTGTTCTGG	2100
AAGAAGAGGA	AACTTGAAGA	GCTGATTGAT	GGTTACTACA	TCAAGTGGAG	AGGGCCTCCA	2160
AGAACCAATG	ATAATCAATA	CGTGAATGTG	ACCAGCCCTA	GCACCGAAAA	CTATGTTGTT	2220
TCAAATTTAA	TGCCATTCAC	CAACTATGAG	TTTTTCGTGA	TTCCTTATCA	TTCCGGAGTT	2280
CATAGTATTC	ATGGAGCACC	GAGTAATTCC	ATGGACGTGT	TGACCGCCGA	AGCTCCACCT	2340
TCATTGCCAC	CAGAGGATGT	GCGAATCCGT	ATGCTCAACC	TGACCACTCT	TCGTATCTCT	2400
TGGAAAGCAC	CAAAAGCCGA	CGGCATCAAC	GGAATTCTCA	AAGGATTCCA	AATTGTTATT	2460
GTTGGTCAAG	CGCCCAACAA	CAATCGGAAC	ATCACTACAA	ACGAGAGAGC	TGCCAGTGTT	2520
ACTCTGTTCC	${\tt ATTTAGTGAC}$	TGGAATGACG	TATAAAATTC	GTGTAGCGGC	TAGAAGCAAT	2580
GGTGGAGTTG	${\tt GAGTCTCACA}$	TGGAACGAGT	GAAGTCATCA	TGAATCAAGA	CACGCTGGAA	2640
AAACACCTTG	${\tt CTGCTCAACA}$	AGAAAACGAA	TCATTTTTGT	ATGGGCTGAT	CAATAAATCT	2700
CATGTTCCTG	TGATTGTCAT	TGTTGCAATT	CTGATTATTT	TCGTAGTCAT	CATTATAGCC	2760
TATTGTTACT	${\tt GGAGGAATAG}$	CAGAAACAGT	GATGGAAAGG	ATCGAAGTTT	TATAAAGATC	2820
AATGATGGAA	GTGTTCATAT	GGCTTCGAAT	AATCTTTGGG	ATGTTGCACA	AAATCCGAAT	2880
		TGCTGGAAGA				2940
CTCTATTCGC	TGACACCAAA	TGCGCAAGAC	TTTTTCAACA	ATTGTGATGA	CTACAGTGGA	3000
ACGATGCACA	GACCAGGATC	CGAGCATCAC	TATCATTATG	CTCAACTGAC	TGGCGGACCT	3060
GGTAATGCGA	TGTCTACTTT	TTATGGAAAC	CAATATCACG	ATGATCCATC	TCCATATGCC	3120
ACCACAACAC	TGGTCCTGTC	GAACCAACAA	CCAGCTTGGC	TCAATGACAA	AATGCTTCGC	3180
		TCCCGTGCCA				3240
ACCGCTGGAA	GACGATCTCG	ATCGAGCCGT	GCATCCGATG	GGAGAGGAAC	TCTGAATGGC	3300
GGACTCCATC	ACCGGACTAG	CGGAAGTCAA	CGGTCGGATA	GTCCACCTCA	CACAGATGTG	3360
		ATCCGATGGA				3420
		GACTCTGATG				3480
		TTATGACACA	•			3540
		CGATTCGGTC				3600
		GAATCGGAAT				3660
-		TTCGTTGATG			·	3720
		AGACGTTCCG				3780
		GCTGGCTCAT				3840
CGATTCCGGT	CAATTCCACG	TAACAATGGA	ATCGTCACAC	AAGAACAAAC	TTGA	3894

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1297 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Tyr Tyr Leu Gly Phe Tyr His Thr His Thr His Thr His Thr Tyr

1 5 10 15

Ile Asn Phe Asp Lys Ile Pro Asn Ala Ser Asn Leu Ala Pro Val Ile 20 25 30

Ile Glu His Pro Ile Asp Val Val Val Ser Arg Gly Ser Pro Ala Thr
35 40 45

Leu Asn Cys Gly Ala Lys Pro Ser Thr Ala Lys Ile Thr Trp Tyr Lys

50 Asp Gly Gln Pro Val Ile Thr Asn Lys Glu Gln Val Asn Ser His Arg 70 Ile Val Leu Asp Thr Gly Ser Leu Phe Leu Leu Lys Val Asn Ser Gly 90 85 Lys Asn Gly Lys Asp Ser Asp Ala Gly Ala Tyr Tyr Cys Val Ala Ser 105 Asn Glu His Gly Glu Val Lys Ser Asn Glu Gly Ser Leu Lys Leu Ala 125 120 Met Leu Arg Glu Asp Phe Arg Val Arg Pro Arg Thr Val Gln Ala Leu 135 Gly Gly Glu Met Ala Val Leu Glu Cys Ser Pro Pro Arg Gly Phe Pro 155 150 · Glu Pro Val Val Ser Trp Arg Lys Asp Asp Lys Glu Leu Arg Ile Gln 170 165 Asp Met Pro Arg Tyr Thr Leu His Ser Asp Gly Asn Leu Ile Ile Asp 185 Pro Val Asp Arg Ser Asp Ser Gly Thr Tyr Gln Cys Val Ala Asn Asn 200 Met Val Gly Glu Arg Val Ser Asn Pro Ala Arg Leu Ser Val Phe Glu 215 Lys Pro Lys Phe Glu Glu Pro Lys Asp Met Thr Val Asp Val Gly 235 230 Ala Ala Val Leu Phe Asp Cys Arg Val Thr Gly Asp Pro Gln Pro Gln 250 245 Ile Thr Trp Lys Arg Lys Asn Glu Pro Met Pro Val Thr Arg Ala Tyr 265 260 Ile Ala Lys Asp Asn Arg Gly Leu Arg Ile Glu Arg Val Gln Pro Ser 280 Asp Glu Gly Glu Tyr Val Cys Tyr Ala Arg Asn Pro Ala Gly Thr Leu 295 300 Glu Ala Ser Ala His Leu Arg Val Gln Ala Pro Pro Ser Phe Gln Thr 315 310 Lys Pro Ala Asp Gln Ser Val Pro Ala Gly Gly Thr Ala Thr Phe Glu 330 Cys Thr Leu Val Gly Gln Pro Ser Pro Ala Tyr Phe Trp Ser Lys Glu 345 Gly Gln Gln Asp Leu Leu Phe Pro Ser Tyr Val Ser Ala Asp Gly Arg 360 Thr Lys Val Ser Pro Thr Gly Thr Leu Thr Ile Glu Glu Val Arg Gln 380 375 Val Asp Glu Gly Ala Tyr Val Cys Ala Gly Met Asn Ser Ala Gly Ser 395 Ser Leu Ser Lys Ala Ala Leu Lys Ala Thr Phe Glu Thr Lys Gly Arg 405 Val Gln Lys Lys Lys Ser Lys Met Gly Lys Gln Lys Gln Lys Asn Val 425 Gln Ser Ile Ile Lys Tyr Leu Ile Ser Ala Val Thr Gly Asn Thr Pro 440 Ala Lys Pro Pro Pro Thr Ile Glu His Gly His Gln Asn Gln Thr Leu 455 Met Val Gly Ser Ser Ala Ile Leu Pro Cys Gln Ala Ser Gly Lys Pro 475 470 Thr Pro Gly Ile Ser Trp Leu Arg Asp Gly Leu Pro Ile Asp Ile Thr

490 485 Asp Ser Arg Ile Ser Gln His Ser Thr Gly Ser Leu His Ile Ala Asp 505 Leu Lys Lys Pro Asp Thr Gly Val Tyr Thr Cys Ile Ala Lys Asn Glu 520 Asp Gly Glu Ser Thr Trp Ser Ala Ser Leu Thr Val Glu Asp His Thr 540 535 Ser Asn Ala Gln Phe Val Arg Met Pro Asp Pro Ser Asn Phe Pro Ser 555 550 Ser Pro Thr Gln Pro Ile Ile Val Asn Val Thr Asp Thr Glu Val Glu 570 565 Leu His Trp Asn Ala Pro Ser Thr Ser Gly Ala Gly Pro Ile Thr Gly 585 580 Tyr Ile Ile Gln Tyr Tyr Ser Pro Asp Leu Gly Gln Thr Trp Phe Asn 600 Ile Pro Asp Tyr Val Ala Ser Thr Glu Tyr Arg Ile Lys Gly Leu Lys 620 615 Pro Ser His Ser Tyr Met Phe Val Ile Arg Ala Glu Asn Glu Lys Gly 635 630 Ile Gly Thr Pro Ser Val Ser Ser Ala Leu Val Thr Thr Ser Lys Pro 650 645 Ala Ala Gln Val Ala Leu Ser Asp Lys Asn Lys Met Asp Met Ala Ile Ala Glu Lys Arg Leu Thr Ser Glu Gln Leu Ile Lys Leu Glu Glu Val 680 685 675 Lys Thr Ile Asn Ser Thr Ala Val Arg Leu Phe Trp Lys Lys Arg Lys 695 Leu Glu Glu Leu Ile Asp Gly Tyr Tyr Ile Lys Trp Arg Gly Pro Pro 710 715 Arg Thr Asn Asp Asn Gln Tyr Val Asn Val Thr Ser Pro Ser Thr Glu 730 725 Asn Tyr Val Val Ser Asn Leu Met Pro Phe Thr Asn Tyr Glu Phe Phe 745 740 Val Ile Pro Tyr His Ser Gly Val His Ser Ile His Gly Ala Pro Ser 760 Asn Ser Met Asp Val Leu Thr Ala Glu Ala Pro Pro Ser Leu Pro Pro Glu Asp Val Arg Ile Arg Met Leu Asn Leu Thr Thr Leu Arg Ile Ser 790 795 Trp Lys Ala Pro Lys Ala Asp Gly Ile Asn Gly Ile Leu Lys Gly Phe 810 805 Gln Ile Val Ile Val Gly Gln Ala Pro Asn Asn Asn Arg Asn Ile Thr 825 820 -Thr Asn Glu Arg Ala Ala Ser Val Thr Leu Phe His Leu Val Thr Gly 840 Met Thr Tyr Lys Ile Arg Val Ala Ala Arg Ser Asn Gly Gly Val Gly 855 Val Ser His Gly Thr Ser Glu Val Ile Met Asn Gln Asp Thr Leu Glu 875 870 Lys His Leu Ala Ala Gln Gln Glu Asn Glu Ser Phe Leu Tyr Gly Leu 890 Ile Asn Lys Ser His Val Pro Val Ile Val Ile Val Ala Ile Leu Ile 905 Ile Phe Val Val Ile Ile Ile Ala Tyr Cys Tyr Trp Arg Asn Ser Arg

		915					920					925			
Asn	Ser 930		Gly	Lys	Asp	Arg 935	Ser	Phe	Ile	Lys	Ile 940	Asn	Asp	Gly	Ser
Val 945	His	Met	Ala	Ser	Asn 950	Asn	Leu	Trp	Asp	Val 955	Ala	Gln	Asn	Pro	Asn 960
				965					970	Met				975	
			980					985		Asn			990		
		995					1000)		His		1005	5		
	1010)				1015	5			Gly	1020)		•	
1025	;				1030)				Asp 1035	5				1040
				1045	5				1050					1055	5
_			1060)				1065	5	Asn			1070)	
		1075	5				1080)		Gly		1085	5		
	1090)				1095	5			Asn	1100)			
Arg	Thr	Ser	Gly	Ser			Ser	Asp	Ser	Pro		His	Thr	Asp	Val 1120
											•				1121
1105				_	1110		.		a1	1115		000	C - ~	Tara	
		Val	Gln		His		Ser	Asp		Thr		Ser	Ser		Glu
Ser	Tyr		•	1125	His	Ser			1130	Thr	Gly			1135	Glu 5
Ser	Tyr		Glu	1125 Arg	His	Ser			1130 Asn	Thr	Gly			1135 Asp	Glu 5
Ser Arg	Tyr Thr	Gly Pro	Glu 1140 Pro	1125 Arg	His Arg	Ser Thr	Pro Pro	Pro 1145 Pro	1130 Asn	Thr	Gly Thr	Leu Gly	Met 1150 His	1135 Asp)	Glu Fhe
Ser Arg Ile	Tyr Thr Pro	Gly Pro	Glu 1140 Pro	1125 Arg) Pro	His Arg Ser	Ser Thr Asn	Pro Pro 1160	Pro 1145 Pro	1130 Asn 5 Pro	Thr) Lys Pro	Gly Thr Gly	Leu Gly 1165	Met 1150 His	1135 Asp) Val	Glu Phe Tyr
Ser Arg Ile	Tyr Thr Pro	Gly Pro 1155 Ala	Glu 1140 Pro	1125 Arg) Pro	His Arg Ser	Ser Thr Asn	Pro Pro 1160 Leu	Pro 1145 Pro	1130 Asn 5 Pro	Thr) . Lys	Gly Thr Gly	Leu Gly 1169 Thr	Met 1150 His	1135 Asp) Val	Glu Phe Tyr
Ser Arg Ile Asp	Tyr Thr Pro Thr 1170	Gly Pro 1159 Ala	Glu 1140 Pro 5 Thr	1125 Arg) Pro Arg	His Arg Ser Arg	Ser Thr Asn Gln 1179	Pro Pro 1160 Leu	Pro 1149 Pro) Asn	1130 Asn Pro Arg	Thr) Lys Pro Gly	Gly Thr Gly Ser	Leu Gly 1169 Thr	Met 1150 His Fro	1135 Asp) Val Arg	Glu Phe Tyr
Ser Arg Ile Asp Asp 1185	Tyr Thr Pro Thr 1170 Thr	Gly Pro 1159 Ala O Tyr	Glu 1140 Pro 5 Thr	Arg Pro Arg Ser	His Arg Ser Arg Val	Ser Thr Asn Gln 1179 Ser	Pro Pro 1160 Leu 5 Asp	Pro 1145 Pro) Asn Gly	Asn Pro Arg	Thr Lys Pro Gly Phe 1199	Gly Thr Gly Ser 1180 Ala	Leu Gly 1165 Thr O	Met 1150 His Pro Val	Asp Val Arg	Glu Phe Tyr Glu Val 1200
Ser Arg Ile Asp Asp 1185	Tyr Thr Pro Thr 1170 Thr	Gly Pro 1159 Ala O Tyr	Glu 1140 Pro 5 Thr	Arg Pro Arg Ser	His Arg Ser Arg Val	Ser Thr Asn Gln 1179 Ser	Pro Pro 1160 Leu 5 Asp	Pro 1145 Pro) Asn Gly	Asn Pro Arg	Thr Lys Pro Gly	Gly Thr Gly Ser 1180 Ala	Leu Gly 1165 Thr O	Met 1150 His Pro Val	Asp Val Arg	Glu Phe Tyr Glu Val 1200
Arg Ile Asp Asp 1189 Asn	Tyr Thr Pro Thr 1170 Thr S	Gly Pro 1159 Ala Tyr Arg	Glu 1140 Pro Thr Asp	Arg Pro Arg Ser Thr	His Arg Ser Arg Val 1190 Ser	Ser Thr Asn Gln 1179 Ser O Arg	Pro Pro 1160 Leu Asp	Pro 1145 Pro Asn Gly	Asn Pro Arg Ala Asn 1210	Thr Lys Pro Gly Phe 1195 Leu	Gly Thr Gly Ser 1186 Ala Gly	Gly 1169 Thr O Arg	Met 1150 His Pro Val	Asp Val Arg Asp Pro	Glu Fhe Tyr Glu Val 1200 Leu
Arg Ile Asp Asp 1189 Asn	Tyr Thr Pro Thr 1170 Thr S	Gly Pro 1159 Ala Tyr Arg	Glu 1140 Pro 5 Thr Asp Pro	Arg Pro Arg Ser Thr 1209 Asp	His Arg Ser Arg Val 1190 Ser	Ser Thr Asn Gln 1179 Ser O Arg	Pro Pro 1160 Leu Asp	Pro 1149 Pro Asn Gly Arg	Asn Pro Arg Ala Asn 1210 Arg	Thr Lys Pro Gly Phe 1195	Gly Thr Gly Ser 1186 Ala Gly	Gly 1169 Thr O Arg	Met 1150 His Pro Val Arg	Asp Val Arg Asp Pro 1215	Glu Fhe Tyr Glu Val 1200 Leu
Ser Arg Ile Asp Asp 1185 Asn Lys	Tyr Thr Pro Thr 1170 Thr Ala Gly	Gly Pro 1159 Ala Tyr Arg Lys Gly	Glu 1140 Pro 5 Thr Asp Pro Arg 1220 Gly	Arg Pro Arg Ser Thr 1209 Asp	His Arg Ser Arg Val 1190 Ser Asp	Ser Thr Asn Gln 1179 Ser O Arg	Pro Pro 1160 Leu Asp Asn Ser Ala	Pro 1145 Pro Asn Gly Arg Gln 1225 Asp	Asn Pro Arg Ala Asn 1210 Arg	Thr Lys Pro Gly Phe 1195 Leu	Gly Thr Gly Ser 1180 Ala Gly Ser	Leu Gly 1169 Thr Arg Gly Leu	Met 1150 Pro Val Arg Met 1230 Glu	Asp Val Arg Asp Pro 1215 Met	Glu Phe Tyr Glu Val 1200 Leu Asp
Ser Arg Ile Asp Asp 1185 Asn Lys Asp	Tyr Thr Pro Thr 1170 Thr Ala Gly Asp	Gly Pro 1159 Ala Tyr Arg Lys Gly 1239 Arg	Glu 1140 Pro 5 Thr Asp Pro Arg 1220 Gly	Arg Pro Arg Ser Thr 1209 Asp	His Arg Ser Arg Val 1199 Ser Asp	Ser Thr Asn Gln 1179 Ser Arg Asp Glu	Pro Pro 1160 Leu Asp Asn Ser Ala 1240 Lys	Pro 1145 Pro Asn Gly Arg Gln 1225 Asp	Asn Fro Arg Ala Asn 1210 Arg Gly	Thr Lys Pro Gly Phe 1199 Leu Ser	Gly Thr Gly Ser 1180 Ala Gly Ser Asn	Leu Gly 1165 Thr Arg Gly Leu Ser 124! Met	Met 1150 His Pro Val Arg Met 1230 Glu	Asp Val Arg Asp Pro 1215 Met O Gly	Glu Phe Tyr Glu Val 1200 Leu Asp
Arg Ile Asp Asp 1185 Asn Lys Asp Val	Tyr Thr Pro Thr 1170 Thr 6 Ala Gly Asp Pro 1250	Gly Pro 1159 Ala Tyr Arg Lys Gly 1239 Arg	Glu 1140 Pro Thr Asp Pro Arg 1220 Gly Gly	Arg Pro Arg Ser Thr 1209 Asp Ser Gly	His Arg Ser Arg Val 1190 Ser Asp Ser Val	Ser Thr Asn Gln 1179 Ser Arg Arg Asp Glu Arg 1259	Pro Pro 1160 Leu Asp Asn Ser Ala 1240 Lys	Pro 1145 Pro Asn Gly Arg Gln 1225 Asp	Arg Ala Asn 1210 Arg Gly Val	Thr Lys Pro Gly Phe 1199 Leu Ser Glu Pro	Gly Ser 1186 Ala Gly Ser Asn Arg	Leu Gly 1165 Thr Arg Gly Leu Ser 124! Met	Met 1150 His Pro Val Arg Met 1230 Glu 5	Asp Val Arg Asp Pro 1215 Met O Gly Ile	Glu Phe Tyr Glu Val 1200 Leu Asp Asp Ser
Arg Ile Asp Asp 1185 Asn Lys Asp Val Ala	Tyr Thr Pro Thr 1170 Thr Ala Gly Asp Pro 1250 Ser	Gly Pro 1159 Ala Tyr Arg Lys Gly 1239 Arg	Glu 1140 Pro Thr Asp Pro Arg 1220 Gly Gly	Arg Pro Arg Ser Thr 1209 Asp Ser Gly	His Arg Ser Arg Val 1190 Ser Asp Ser Val	Ser Thr Asn Gln 1179 Ser O Arg Asp Glu Arg 1259 Ser	Pro Pro 1160 Leu Asp Asn Ser Ala 1240 Lys	Pro 1145 Pro Asn Gly Arg Gln 1225 Asp	Arg Ala Asn 1210 Arg Gly Val	Thr Lys Pro Gly Phe 1199 Leu Ser Glu	Gly Ser 1180 Ala Gly Ser Asn Arg 1260 Asn	Leu Gly 1165 Thr Arg Gly Leu Ser 124! Met	Met 1150 His Pro Val Arg Met 1230 Glu 5	Asp Val Arg Asp Pro 1215 Met O Gly Ile	Glu Phe Tyr Glu Val 1200 Leu Asp Asp Ser
Arg Ile Asp Asp 1189 Asn Lys Asp Val Ala 1269	Tyr Thr Pro Thr 1170 Thr Ala Gly Asp Pro 1250 Ser	Pro 1159 Ala Tyr Arg Lys Gly 1239 Arg	Glu 1140 Pro 5 Thr Asp Pro Arg 1220 Gly 5 Gly Leu	Arg Pro Arg Ser Thr 1209 Asp Ser Gly Ala	His Arg Ser Arg Val 1199 Ser Asp Ser Val His 1279 Pro	Ser Thr Asn Gln 1179 Ser Arg Arg Asp Glu Arg 1259 Ser	Pro Pro 1160 Leu Asp Asn Ser Ala 1240 Lys Cys	Pro 1145 Pro Asn Gly Arg Gln 1225 Asp Ala Tyr	Asn Arg Ala Asn 1210 Arg Gly Val	Thr Lys Pro Gly Phe 1199 Leu Ser Glu Pro Thr 1279 Ile	Gly Ser 1180 Ala Gly Ser Asn Arg 1260 Asn	Gly 1169 Thr Arg Gly Leu Ser 1249 Met 0 Gly	Met 1150 His Pro Val Arg Met 1230 Glu 5 Gly Thr	Asp Val Arg Asp Pro 1219 Met O Gly Ile Ala	Glu Phe Tyr Glu Val 1200 Leu Asp Asp Ser Gln 1280 Gln

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4956 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(11) 1100000000 11121	TOUTON. CE	O TD MO.7.			
(xi) SEQUENCE DESCR ATGAAATGGA AACATGTTCC T	(IPTION: SE	ATCATATCAC	ጥረርጥር አርርጥጥ	ΔΤΟΟΟΟΔΔΔΤ	60
CACCTGTTTC TGGCCCAGCT T	PATTCCAGAC	CCTGAAGATG	TAGAGAGGGG	GAACGACCAC	120
GGGACGCCAA TCCCCACCTC T	I A I I C CAGAC	CACAATTCCC	TCCCCTATAC	AGGCTCCCGT	180
CTTCGTCAGG AAGATTTTCC A	GATAACGAT	CTTCN NCNCC	CTTCACACCT	CATTGTCTCA	240
CTTCGTCAGG AAGATTTTCC A	ACCTCGCA11	GIIGAACACC	CCCCCACACC	CACTATTGAA	300
AAAGGAGAAC CTGCAACTTT C	JAACTGCAAA	GCTGAAGGCC	ACCUTCCCTC	ACACCCAATC	360
TGGTACAAAG GGGGAGAGAG A	AGTGGAGACA	GACAAAGAIG	ACCCICGCIC	ACACCGAAIG	420
TTGCTGCCGA GTGGATCTTT A	ATTTTTTCTTA	CGTATAGTAC	ATGGACGGAA	CACCCACAAT	480
GATGAAGGAG TCTATGTCTG T	rgtagcaagg	AATTACCTTG	GAGAGGCTGT	GAGCCACAAI	540
GCATCGCTGG AAGTAGCCAT A	ACTTCGGGAT	GACTTCAGAC	AAAACCCTTC	TOCTON CCCC	600
GTTGCAGTAG GAGAGCCTGC A	AGTAATGGAA	TGCCAACCTC	CACGAGGCCA	A A MA A COLA MA	660
ACCATTTCAT GGAAGAAAGA T	rggctctcca	CTGGATGATA	AAGATGAAAG	AATAACIAIA	
CGAGGAGGAA AGCTCATGAT C					720
GTTGGTACCA ATATGGTTGG C	GGAACGTGAG	AGTGAAGTAG	CCGAGCTGAC	TGTCTTAGAG	780
AGACCATCAT TTGTGAAGAG A	ACCCAGTAAC	TTGGCAGTAA	CTGTGGATGA	CAGTGCAGAA	840
TTTAAATGTG AGGCCCGAGG T	rgaccctgta	CCTACAGTAC	GATGGAGGAA	AGATGATGGA	900
GAGCTGCCCA AATCCAGATA					960
ACAGCTGGTG ACATGGGTTC	ATACACTTGT	GTTGCAGAAA	ATATGGTGGG	CAAAGCTGAA	1020
GCATCTGCTA CTCTGACTGT					1080
GTTGTTGCTT TGGGACGGAC	TGTAACTTTT	CAGTGTGAAG	CAACCGGAAA	TCCTCAACCA	1140
GCTATTTTCT GGAGGAGAGA					1200
TCATCCAGCC GATTTTCAGT (CTCCCAGACT	GGCGACCTCA	CAATTACTAA	TGTCCAGCGA	1260
TCTGATGTTG GTTATTACAT (CTGCCAGACT	TTAAATGTTG	CTGGAAGCAT	CATCACAAAG	1320
GCATATTTGG AAGTTACAGA					1380
CCTGTGAATC AGACTGTAGC					1440
AGTCCAGTGC CCACCATTCT (GTGGAGAAAG	GATGGAGTCC	TCGTTTCAAC	CCAAGACTCT	1500
CGAATCAAAC AGTTGGAGAA					1560
GGTCGGTACA CCTGCATTGC	ATCAACCCCC	AGTGGTGAAG	CAACATGGAG	TGCTTACATT	1620
GAAGTTCAAG AATTTGGAGT	TCCAGTTCAG	CCTCCAAGAC	CTACTGACCC	AAATTTAATC	1680
CCTAGTGCCC CATCAAAACC					1740
TGGCAACCAA ATTTGAATTC					1800
CATGCATCTG GTAGCAGCTG					1860
ATTAAAGGAC TCAAACCTAA					1920
GGAATTAGTG ATCCAAGCCA					1980
AGTCAGGGGG TGGACCACAA					2040
CACAACCCCA CCGTCCTTTC	TTCCTCTTCC	ATCGAAGTGC	ACTGGACAGT	AGATCAACAG	2100
TCTCAGTATA TACAAGGATA	TAAAATTCTC	TATCGGCCAT	CTGGAGCCAA	CCACGGAGAA	2160
TCAGACTGGT TAGTTTTTGA	AGTGAGGACG	CCAGCCAAAA	ACAGTGTGGT	AATCCCTGAT	2220
CTCAGAAAGG GAGTCAACTA	TGAAATTAAG	GCTCGCCCTT	TTTTTAATGA	ATTTCAAGGA	2280
GCAGATAGTG AAATCAAGTT	TGCCAAAACC	CTGGAAGAAG	CACCCAGTGC	CCCACCCCAA	2340
GGTGTAACTG TATCCAAGAA	TGATGGAAAC	GGAACTGCAA	TTCTAGTTAG	TTGGCAGCCA	2400
CCTCCAGAAG ACACTCAAAA	TGGAATGGTC	CAAGAGTATA	AGGTTTGGTG	TCTGGGCAAT	2460
GAAACTCGAT ACCACATCAA	CAAAACAGTG	GATGGTTCCA	CCTTTTCCGT	GGTCATTCCC	2520
TTTCTTGTTC CTGGAATCCG	ATACAGTGTG	GAAGTGGCAG	CCAGCACTGG	GGCTGGGTCT	2580
GGGGTAAAGA GTGAGCCTCA	GTTCATCCAG	CTGGATGCCC	ATGGAAACCC	TGTGTCACCT	2640
GAGGACCAAG TCAGCCTCGC	TCAGCAGATT	TCAGATGTGG	TGAAGCAGCC	GGCCTTCATA	2700
GCAGGTATTG GAGCAGCCTG	TTGGATCATC	CTCATGGTCT	TCAGCATCTG	GCTTTATCGA	2760
CACCGCAAGA AGAGAAACGG	ACTTACTAGT	ACCTACGCGG	GTATCAGAAA	AGTCCCGTCT	2820
TTTACCTTCA CACCAACAGT	AACTTACCAG	AGAGGAGGCG	AAGCTGTCAG	CAGTGGAGGG	2880
AGGCCTGGAC TTCTCAACAT	CAGTGAACCT	GCCGCGCAGC	CATGGCTGGC	AGACACGTGG	2940
CCTAATACTG GCAACAACCA	CAATGACTGC	TCCATCAGCT	GCTGCACGGC	AGGCAATGGA	3000
AACAGCGACA GCAACCTCAC	TACCTACAGT	CGCCCAGCTG	ATTGTATAGC	AAATTATAAC	3060

AACCAACTGG	ATAACAAACA	AACAAATCTG	ATGCTCCCTG	AGTCAACTGT	TTATGGTGAT	3120
GTGGACCTTA	GTAACAAAAT	CAATGAGATG	AAAACCTTCA	ATAGCCCAAA	TCTGAAGGAT	3180
GGGCGTTTTG	TCAATCCATC	AGGGCAGCCT	ACTCCTTACG	CCACCACTCA	GCTCATCCAG	3240
TCAAACCTCA	GCAACAACAT	GAACAATGGC	AGCGGGGACT	CTGGCGAGAA	GCACTGGAAA	3300
CCACTGGGAC	AGCAGAAACA	AGAAGTGGCA	CCAGTTCAGT	ACAACATCGT	GGAGCAAAAC	3360
AAGCTGAACA	AAGATTATCG	AGCAAATGAC	ACAGTTCCTC	CAACTATCCC	ATACAACCAA	3420
TCATACGACC	AGAACACAGG	AGGATCCTAC	AACAGCTCAG	ACCGGGGCAG	TAGTACATCT	3480
GGGAGTCAGG	GGCACAAGAA	AGGGGCAAGA	ACACCCAAGG	TACCAAAACA	GGGTGGCATG	3540
AACTGGGCAG	ACCTGCTTCC	TCCTCCCCCA	GCACATCCTC	CTCCACACAG	CAATAGCGAA	3600
GAGTACAACA	TTTCTGTAGA	TGAAAGCTAT	GACCAAGAAA	TGCCATGTCC	CGTGCCACCA	3660
		AGATGAATTA				3720
CCCCTGTTC	GGGGAGCAGC	TTCTTCTCCA	GCTGCCGTGT	CCTATAGCCA	TCAGTCCACT	3780
GCCACTCTGA	CTCCCTCCCC	ACAGGAAGAA	CTCCAGCCCA	TGTTACAGGA	TTGTCCAGAG	3840
GAGACTGGCC	ACATGCAGCA	CCAGCCCGAC	AGGAGACGGC	AGCCTGTGAG	TCCTCCTCCA	3900
CCACCACGGC	CGATCTCCCC	TCCACATACC	TATGGCTACA	TTTCAGGACC	CCTGGTCTCA	3960
GATATGGATA	CGGATGCGCC	AGAAGAGGAA	GAAGACGAAG	CCGACATGGA	GGTAGCCAAG	4020
		GTTACGTGGG				4080
GACCTGGAGA	GCTCTGTCAC	GGGGTCCATG	ATCAACGGCT	GGGGCTCAGC	CTCAGAGGAG	4140
GACAACATTT	CCAGCGGACG	CTCCAGTGTT	AGTTCTTCGG	ACGGCTCCTT	TTTCACTGAT	4200
GCTGACTTTG	CCCAGGCAGT	CGCAGCAGCG	GCAGAGTATG	CTGGTCTGAA	AGTAGCACGA	4260
CGGCAAATGC	AGGATGCTGC	TGGCCGTCGA	CATTTTCATG	CGTCTCAGTG	CCCTAGGCCC	4320
ACAAGTCCCG	TGTCTACAGA	CAGCAACATG	AGTGCCGCCG	TAATGCAGAA	AACCAGACCA	4380
GCCAAGAAAC	TGAAACACCA	GCCAGGACAT	CTGCGCAGAG	AAACCTACAC	AGATGATCTT	4440
CCACCACCTC	CTGTGCCGCC	ACCTGCTATA	AAGTCACCTA	CTGCCCAATC	CAAGACACAG	4500
CTGGAAGTAC	GACCTGTAGT	GGTGCCAAAA	CTCCCTTCTA	TGGATGCAAG	AACAGACAGA	4560
		CAGTTACAAG				4620
		AGGTGATCCC				4680
		AGCAAAACGA				4740
		TTGTAGACCT				4800
		GTCATCAAGA				4860
		TGCAGAAATG		GAGGATATGA	AAGAGGAGAA	4920
GATAATAATG	AAGAATTAGA	GGAAACTGAA	AGCTGA			4956

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1651 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Trp Lys His Val Pro Phe Leu Val Met Ile Ser Leu Leu Ser 10 5 Leu Ser Pro Asn His Leu Phe Leu Ala Gln Leu Ile Pro Asp Pro Glu Asp Val Glu Arg Gly Asn Asp His Gly Thr Pro Ile Pro Thr Ser Asp 40 Asn Asp Asp Asn Ser Leu Gly Tyr Thr Gly Ser Arg Leu Arg Gln Glu 55 Asp Phe Pro Pro Arg Ile Val Glu His Pro Ser Asp Leu Ile Val Ser 75 70 Lys Gly Glu Pro Ala Thr Leu Asn Cys Lys Ala Glu Gly Arg Pro Thr 90 Pro Thr Ile Glu Trp Tyr Lys Gly Glu Arg Val Glu Thr Asp Lys

105 100 Asp Asp Pro Arg Ser His Arg Met Leu Leu Pro Ser Gly Ser Leu Phe 120 Phe Leu Arg Ile Val His Gly Arg Lys Ser Arg Pro Asp Glu Gly Val 135 Tyr Val Cys Val Ala Arg Asn Tyr Leu Gly Glu Ala Val Ser His Asn 155 Ala Ser Leu Glu Val Ala Ile Leu Arg Asp Asp Phe Arg Gln Asn Pro 165 Ser Asp Val Met Val Ala Val Gly Glu Pro Ala Val Met Glu Cys Gln 185 180 Pro Pro Arg Gly His Pro Glu Pro Thr Ile Ser Trp Lys Lys Asp Gly 200 Ser Pro Leu Asp Asp Lys Asp Glu Arg Ile Thr Ile Arg Gly Gly Lys Leu Met Ile Thr Tyr Thr Arg Lys Ser Asp Ala Gly Lys Tyr Val Cys 235 230 Val Gly Thr Asn Met Val Gly Glu Arg Glu Ser Glu Val Ala Glu Leu 245 250 Thr Val Leu Glu Arg Pro Ser Phe Val Lys Arg Pro Ser Asn Leu Ala 265 Val Thr Val Asp Asp Ser Ala Glu Phe Lys Cys Glu Ala Arg Gly Asp 280 Pro Val Pro Thr Val Arg Trp Arg Lys Asp Asp Gly Glu Leu Pro Lys 295 Ser Arg Tyr Glu Ile Arg Asp Asp His Thr Leu Lys Ile Arg Lys Val 315 310 Thr Ala Gly Asp Met Gly Ser Tyr Thr Cys Val Ala Glu Asn Met Val 330 Gly Lys Ala Glu Ala Ser Ala Thr Leu Thr Val Gln Glu Pro Pro His 345 Phe Val Val Lys Pro Arg Asp Gln Val Val Ala Leu Gly Arg Thr Val 360 Thr Phe Gln Cys Glu Ala Thr Gly Asn Pro Gln Pro Ala Ile Phe Trp 375 380 Arg Arg Glu Gly Ser Gln Asn Leu Leu Phe Ser Tyr Gln Pro Pro Gln 395 Ser Ser Ser Arg Phe Ser Val Ser Gln Thr Gly Asp Leu Thr Ile Thr 410 Asn Val Gln Arg Ser Asp Val Gly Tyr Tyr Ile Cys Gln Thr Leu Asn 425 420 Val Ala Gly Ser Ile Ile Thr Lys Ala Tyr Leu Glu Val Thr Asp Val 440 Ile Ala Asp Arg Pro Pro Pro Val Ile Arg Gln Gly Pro Val Asn Gln 455 Thr Val Ala Val Asp Gly Thr Phe Val Leu Ser Cys Val Ala Thr Gly 470 475 Ser Pro Val Pro Thr Ile Leu Trp Arg Lys Asp Gly Val Leu Val Ser 490 Thr Gln Asp Ser Arg Ile Lys Gln Leu Glu Asn Gly Val Leu Gln Ile Arg Tyr Ala Lys Leu Gly Asp Thr Gly Arg Tyr Thr Cys Ile Ala Ser 520 Thr Pro Ser Gly Glu Ala Thr Trp Ser Ala Tyr Ile Glu Val Gln Glu

535 530 Phe Gly Val Pro Val Gln Pro Pro Arg Pro Thr Asp Pro Asn Leu Ile 555 550 Pro Ser Ala Pro Ser Lys Pro Glu Val Thr Asp Val Ser Arg Asn Thr 565 570 Val Thr Leu Ser Trp Gln Pro Asn Leu Asn Ser Gly Ala Thr Pro Thr 585 Ser Tyr Ile Ile Glu Ala Phe Ser His Ala Ser Gly Ser Ser Trp Gln Thr Val Ala Glu Asn Val Lys Thr Glu Thr Ser Ala Ile Lys Gly Leu 615 Lys Pro Asn Ala Ile Tyr Leu Phe Leu Val Arg Ala Ala Asn Ala Tyr 635 630 Gly Ile Ser Asp Pro Ser Gln Ile Ser Asp Pro Val Lys Thr Gln Asp 650 Val Leu Pro Thr Ser Gln Gly Val Asp His Lys Gln Val Gln Arg Glu 665 Leu Gly Asn Ala Val Leu His Leu His Asn Pro Thr Val Leu Ser Ser 680 685 675 Ser Ser Ile Glu Val His Trp Thr Val Asp Gln Gln Ser Gln Tyr Ile . 700 695 Gln Gly Tyr Lys Ile Leu Tyr Arg Pro Ser Gly Ala Asn His Gly Glu 710 715 Ser Asp Trp Leu Val Phe Glu Val Arg Thr Pro Ala Lys Asn Ser Val 730 725 Val Ile Pro Asp Leu Arg Lys Gly Val Asn Tyr Glu Ile Lys Ala Arg 745 740 Pro Phe Phe Asn Glu Phe Gln Gly Ala Asp Ser Glu Ile Lys Phe Ala 760 Lys Thr Leu Glu Glu Ala Pro Ser Ala Pro Pro Gln Gly Val Thr Val 780 775 Ser Lys Asn Asp Gly Asn Gly Thr Ala Ile Leu Val Ser Trp Gln Pro 790 795 Pro Pro Glu Asp Thr Gln Asn Gly Met Val Gln Glu Tyr Lys Val Trp 810 . Cys Leu Gly Asn Glu Thr Arg Tyr His Ile Asn Lys Thr Val Asp Gly 820 Ser Thr Phe Ser Val Val Ile Pro Phe Leu Val Pro Gly Ile Arg Tyr 840 Ser Val Glu Val Ala Ala Ser Thr Gly Ala Gly Ser Gly Val Lys Ser 855 Glu Pro Gln Phe Ile Gln Leu Asp Ala His Gly Asn Pro Val Ser Pro 870 875 Glu Asp Gln Val Ser Leu Ala Gln Gln Ile Ser Asp Val Val Lys Gln 890 885 Pro Ala Phe Ile Ala Gly Ile Gly Ala Ala Cys Trp Ile Ile Leu Met 905 Val Phe Ser Ile Trp Leu Tyr Arg His Arg Lys Lys Arg Asn Gly Leu 925 Thr Ser Thr Tyr Ala Gly Ile Arg Lys Val Pro Ser Phe Thr Phe Thr 935 Pro Thr Val Thr Tyr Gln Arg Gly Glu Ala Val Ser Ser Gly Gly 955 950 Arg Pro Gly Leu Leu Asn Ile Ser Glu Pro Ala Ala Gln Pro Trp Leu

Ala Asp Thr Trp Pro Asn Thr Gly Asn Asn His Asn Asp Cys Ser Ile Ser Cys Cys Thr Ala Gly Asn Gly Asn Ser Asp Ser Asn Leu Thr Thr Tyr Ser Arg Pro Ala Asp Cys Ile Ala Asn Tyr Asn Asn Gln Leu Asp Asn Lys Gln Thr Asn Leu Met Leu Pro Glu Ser Thr Val Tyr Gly Asp Val Asp Leu Ser Asn Lys Ile Asn Glu Met Lys Thr Phe Asn Ser Pro Asn Leu Lys Asp Gly Arg Phe Val Asn Pro Ser Gly Gln Pro Thr Pro Tyr Ala Thr Thr Gln Leu Ile Gln Ser Asn Leu Ser Asn Asn Met Asn Asn Gly Ser Gly Asp Ser Gly Glu Lys His Trp Lys Pro Leu Gly Gln Gln Lys Gln Glu Val Ala Pro Val Gln Tyr Asn Ile Val Glu Gln Asn Lys Leu Asn Lys Asp Tyr Arg Ala Asn Asp Thr Val Pro Pro Thr Ile Pro Tyr Asn Gln Ser Tyr Asp Gln Asn Thr Gly Gly Ser Tyr Asn Ser Ser Asp Arg Gly Ser Ser Thr Ser Gly Ser Gln Gly His Lys Lys Gly Ala Arg Thr Pro Lys Val Pro Lys Gln Gly Gly Met Asn Trp Ala Asp Leu Leu Pro Pro Pro Pro Ala His Pro Pro Pro His Ser Asn Ser Glu Glu Tyr Asn Ile Ser Val Asp Glu Ser Tyr Asp Gln Glu Met Pro Cys Pro Val Pro Pro Ala Arg Met Tyr Leu Gln Gln Asp Glu Leu Glu Glu Glu Glu Asp Glu Arg Gly Pro Thr Pro Pro Val Arg Gly Ala Ala Ser Ser Pro Ala Ala Val Ser Tyr Ser His Gln Ser Thr Ala Thr Leu Thr Pro Ser Pro Gln Glu Glu Leu Gln Pro Met Leu Gln Asp Cys Pro Glu Glu Thr Gly His Met Gln His Gln Pro Asp Arg Arg Gln Pro Val Ser Pro Pro Pro Pro Pro Arg Pro Ile Ser Pro Pro His Thr Tyr Gly Tyr Ile Ser Gly Pro Leu Val Ser Asp Met Asp Thr Asp Ala Pro Glu Glu Glu Glu Asp Glu Ala Asp Met Glu Val Ala Lys Met Gln Thr Arg Arg Leu Leu Arg Gly Leu Glu Gln Thr Pro Ala Ser Ser Val Gly Asp Leu Glu Ser Ser Val Thr Gly Ser Met Ile Asn Gly Trp Gly Ser Ala Ser Glu Glu Asp Asn Ile Ser Ser Gly Arg Ser Ser Val Ser Ser Ser Asp Gly Ser Phe Phe Thr Asp Ala Asp Phe Ala Gln Ala Val Ala

		1395	5				1400)				1405	5		
Ala	Ala	Ala	Glu	Tyr	Ala	Gly	Leu	Lys	Val	Ala	Arg	Arg	Gln	Met	Gln
	1410			-		1415		-			1420				
Asp	Ala	Ala	Gly	Arg	Arg	His	Phe	His	Ala	Ser	Gln	Cys	Pro	Arg	Pro
1425	5		_		1430)				1435	5 .				1440
Thr	Ser	Pro	Val	Ser	Thr	Asp	Ser	Asn	Met	Ser	Ala	Ala	Val	Met	Gln
				1445					1450					1455	
Lys	Thr	Arg	Pro	Ala	Lys	Lys	Leu	Lys	His	Gln	Pro	Gly	His	Leu	Arg
•		•	1460					1465					1470		
Arg	Glu	Thr	Tyr	Thr	Asp	Asp	Leu	Pro	Pro	Pro	Pro	Val	Pro	Pro	Pro
_		1475					1480					1485			
Ala	Ile	Lys	Ser	Pro	Thr	Ala	Gln	Ser	Lys	Thr	Gln	Leu	Glu	Val	Arg
	1490)				1495	5				1500)			
Pro	Val	Val	Val	Pro	Lys	Leu	Pro	Ser	Met	Asp	Ala	Arg	Thr	Asp	Arg
1505					1510						5				1520
Ser	Ser	Asp	Arg	Lys	Gly	Ser	Ser	Tyr	Lys	Gly	Arg	Glu	Val	Leu	Asp
				1525					1530					1535	
Gly	Arg	Gln	Val	Val	Asp	Met	Arg	Thr	Asn	Pro	Gly	Asp	Pro	Arg	Glu
			1540					1545					1550		
Ala	Gln	Glu	Gln	Gln	Asn	Asp	Gly	Lys	Gly	Arg	Gly	Asn	Lys	Ala	Ala
		1555)				1569			
Lys	Arg	Asp	Leu	Pro	Pro	Ala	Lys	Thr	His	Leu	Ile	Gln	Glu	Asp	Ile
	1570						5				1580				
Leu	Pro	Tyr	Cys	Arg	Pro	Thr	Phe	Pro	Thr	Ser	Asn	Asn	Pro	Arg	Asp
1585					159	-					5				1600
Pro	Ser	Ser	Ser	Ser	Ser	Met	Ser	Ser	Arg	Gly	Ser	Gly	Ser	Arg	Gln
				160					1610					161	
Arg	Glu	Gln	Ala	Asn	Val	Gly	Arg	Arg	Asn	Ile	Ala	Glu	Met	Gln	Val
			1620					162					1630		
Leu	Gly	Gly	Tyr	Glu	Arg	Gly	Glu	Asp	Asn	Asn	Glu	Glu	Leu	Glu	Glu
		1639	5				1640)				164	5		
Thr	Glu	Ser													
	1650)													

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1300 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 855..1187
 - (D) OTHER INFORMATION: /note= "N signifies gap in sequence"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: CAGATTGTTG CTCAAGGTCG AACAGTGACA TTTCCCTGTG AAACTAAAGG AAACCCACAG 60 CCAGCTGTTT TTTGGCAGAA AGAAGGCAGC CAGAACCTAC TTTTCCCAAA CCAACCCCAG 120 CAGCCCAACA GTAGATGCTC AGTGTCACCA ACTGGAGACC TCACAATCAC CAACATTCAA 180 CGTTCCGACG CGGGTTACTA CATCTGCCAG GCTTTAACTG TGGCAGGAAG CATTTTAGCA 240 AAAGCTCAAC TGGAGGTTAC TGATGTTTTG ACAGATAGAC CTCCACCTAT AATTCTACAA 300 GGCCCAGCCA ACCAAACGCT GGCAGTGGAT GGTACAGCGT TACTGAAATG TAAAGCCACT 360 GGTGATCCTC TTCCTGTAAT TAGCTGGTTA AAGGAGGGAT TTACTTTTCC GGGTAGAGAT 420 480 CCAAGAGCAA CAATTCAAGA GCAAGGCACA CTGCAGATTA AGAATTTACG GATTTCTGAT

ACTGGCACTT	ATACTTGTGT	GGCTACAAGT	${\tt TCAAGTGGAG}$	AGGCTTCCTG	GAGTGCAGTG	540
CTGGATGTGA	CAGAGTCTGG	AGCAACAATC	${\tt AGTAAAAACT}$	ATGATTTAAG	TGACCTGCCA	600
GGGCCACCAT	CCAAACCGCA	AGTCACTGAT	${\tt GTTACTAAGA}$	ACAGTGTCAC	CTTGTCCTGG	660
CAGCCAGGTA	CCCCTGGAAC	CCTTCCAGCA	AGTGCATATA	TCATTGAGGC	TTTCAGCCAA	720
TCAGTGAGCA	ACAGCTGGCA	GACCGTGGCA	AACCATGTAA	AGACCACCCT	CTATACTGTA	780
AGAGGACTGC	GGCCCAATAC	AATCTACTTA	${\tt TTCATGGTCA}$	GAGCGATCAA	CCCCAAGGTY	840
TCAGTGACCC	AAGTNAAACC	ACAGAAAAAC	AATGGATCCA	CTTGGGCCAA	TGTCCCTCTA	900
CCTCCCCCC	CAGTCCAGCC	CCTTCCTGGC	ACGGAGCTGG	AACACTATGC	AGTGGAACAA	960
CAAGAAAATG	GCTATGACAG	TGATAGCTGG	TGCCCACCAT	TGCCAGTACA	AACTTACTTA	1020
CACCAAGGTC	TGGAAGATGA	ACTGGAAGAA	GATGATGATA	GGGTCCCAAC	ACCTCCTGTT	1080
CGAGGCGTGG	CTTCTTCTCC	TGCTATCTCC	TTTGGACAGC	AGTCCACTGC	AACTCTTACT	1140
CCATCCCCAC	GGGAAGAGAT	GCAACCCATG	CTGCAGGCTT	CACCTNTTTA	CCTCCTCTCA	1200
AAGACCTCGA	CCTACCAGCC	CATTTTCTAC	TGACAGTAAC	ACCAGTGCAG	CCCTGAGTCA	1260
AAGTCAGAGG	CCTCGGCCCA	CTAAAAAACA	CAAGGGAGGG			1300

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 434 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 285..396
- (D) OTHER INFORMATION: /note= "Xaa signifies gap in sequence" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Gln Ile Val Ala Gln Gly Arg Thr Val Thr Phe Pro Cys Glu Thr Lys
- Gly Asn Pro Gln Pro Ala Val Phe Trp Gln Lys Glu Gly Ser Gln Asn 20 25 30
- Leu Leu Phe Pro Asn Gln Pro Gln Gln Pro Asn Ser Arg Cys Ser Val
- Ser Pro Thr Gly Asp Leu Thr Ile Thr Asn Ile Gln Arg Ser Asp Ala 50 55 60
- Gly Tyr Tyr Ile Cys Gln Ala Leu Thr Val Ala Gly Ser Ile Leu Ala
 65 70 75 80
- Lys Ala Gln Leu Glu Val Thr Asp Val Leu Thr Asp Arg Pro Pro Pro 85 90 95
- Ile Ile Leu Gln Gly Pro Ala Asn Gln Thr Leu Ala Val Asp Gly Thr
 100 105 110
- Ala Leu Leu Lys Cys Lys Ala Thr Gly Asp Pro Leu Pro Val Ile Ser 115 120 125
- Trp Leu Lys Glu Gly Phe Thr Phe Pro Gly Arg Asp Pro Arg Ala Thr 130 135 140
- Ile Gln Glu Gln Gly Thr Leu Gln Ile Lys Asn Leu Arg Ile Ser Asp
- 145 150 155 160
 Thr Gly Thr Tyr Thr Cys Val Ala Thr Ser Ser Gly Glu Ala Ser
- 165 170 175
 Trp Ser Ala Val Leu Asp Val Thr Glu Ser Gly Ala Thr Ile Ser Lys
- 180 185 190
 Asn Tyr Asp Leu Ser Asp Leu Pro Gly Pro Pro Ser Lys Pro Gln Val
 195 200 205
- Thr Asp Val Thr Lys Asn Ser Val Thr Leu Ser Trp Gln Pro Gly Thr

	210					215					220				
Pro 225	Gly	Thr	Leu	Pro	Ala 230	Ser	Ala	Tyr	Ile	11e 235		Ala	Phe	Ser	Gln 240
	Val	Ser	Asn	Ser 245	Trp	Gln	Thr	Val	Ala 250	Λsn	His	Val	Lys	Thr 255	Thr
Leu	Tyr	Thr	Val 260	Arg	Gly	Leu	Arg	Pro 265	Asn	Thr	Ile	Tyr	Leu 270	Phe	Met
Val	Arg	Ala 275	Ile	Asn	Pro	Lys	Val 280	Ser	Val	Thr	Gln	Xaa 285	Lys	Pro	Gln
Lys	Asn 290	Asn	Gly	Ser	Thr	Trp 295	Ala	Asn	Val	Pro	Leu 300	Pro	Pro	Pro	Pro
Val 305	Gln	Pro	Leu	Pro	Gly 310	Thr	Glu	Leu	Glu	His	Tyr	Ala [,]	Val	Glu	Gln 320
Gln	Glu	Asn	Gly	Tyr 325	Asp	Ser	Asp	Ser	Trp 330	Cys	Pro	Pro	Leu	Pro 335	Val
Gln	Thr	Tyr	Leu 340	His	Gln	Gly	Leu	Glu 345	Asp	Glu	Leu	Glu	Glu 350	Asp	Asp
Asp	Arg	Val 355	Pro	Thr	Pro	Pro	Val 360		Gly	Val	Ala	Ser 365	Ser	Pro	Ala
Ile	Ser 370	Phe	Gly	Gln	Gln	Ser 375	Thr	Ala	Thr	Leu	Thr 380	Pro	Ser	Pro	Arg
385	Glu				390					395					400
	Arg			405					410					415	
Ala	Ala	Leu	Ser 420	Gln	Ser	Gln	Arg	Pro 425	Arg	Pro	Thr	Lys	Lys 430	His	Lys
Glv	Glv														

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

		TGCGGAGTAT				60
CAAGATGCTG	CTGGCCGCCG	CCACTTCCAT	GCCTCTCAGT	GCCCAAGGCC	CACGAGTCCT	120
		GAGTGCTGTT				180
		TCTGCGCAGG				240
		AAAATCGCCC				300
		ACTCGCGTCT				360
		GGGGAGAGAA				420
CGAACAAATC				,		444

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ala Gln Ala Val Ala Ala Ala Glu Tyr Ala Gly Leu Lys Val Ala Arg Arg Gln Met Gln Asp Ala Ala Gly Arg Arg His Phe His Ala Ser Gln Cys Pro Arg Pro Thr Ser Pro Val Ser Thr Asp Ser Asn Met Ser 40 Ala Val Val Ile Gln Lys Ala Arg Pro Ala Lys Lys Gln Lys His Gln Pro Gly His Leu Arg Arg Glu Ala Tyr Ala Asp Asp Leu Pro Pro Pro Val Pro Pro Pro Ala Ile Lys Ser Pro Thr Val Gln Ser Lys Ala 90 85 Gln Leu Glu Val Arg Pro Val Met Val Pro Lys Leu Ala Ser Ile Glu 105 Ala Arg Thr Asp Arg Ser Ser Asp Arg Lys Gly Gly Ser Tyr Lys Gly 120 Arg Glu Ala Leu Asp Gly Arg Gln Val Thr Asp Leu Arg Thr Asn Pro 140 130 Ser Asp Pro Arg 145

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 909 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Phe Asn Arg Lys Thr Leu Leu Cys Thr Ile Leu Leu Val Leu Gln

1 5 10 15

Ala Val Ile Arg Ser Phe Cys Glu Asp Ala Ser Asn Leu Ala Pro Val

20 25 30

Ile Ile Glu His Pro Ile Asp Val Val Val Ser Arg Gly Ser Fro Ala
35 40 45

Thr Leu Asn Cys Gly Ala Lys Pro Ser Thr Ala Lys Ile Thr Trp Tyr 50 55 60

Lys Asp Gly Gln Pro Val Ile Thr Asn Lys Glu Gln Val Asn Ser His 65 70 75 80

Arg Ile Val Leu Asp Thr Gly Ser Leu Phe Leu Leu Lys Val Asn Ser 85 90 95

Gly Lys Asn Gly Lys Asp Ser Asp Ala Gly Ala Tyr Tyr Cys Val Ala 100 105 110

Ser Asn Glu His Gly Glu Val Lys Ser Asn Glu Gly Ser Leu Lys Leu 115 120 125

Ala Met Leu Arg Glu Asp Phe Arg Val Arg Pro Arg Thr Val Gln Ala 130 135 140

Leu Gly Gly Glu Met Ala Val Leu Glu Cys Ser Pro Pro Arg Gly Phe
145 150 155 160

Pro Glu Pro Val Val Ser Trp Arg Lys Asp Asp Lys Glu Leu Arg Ile 165 170 175

Gln Asp Met Pro Arg Tyr Thr Leu His Ser Asp Gly Asn Leu Ile Ile 180 185 190 Asp Pro Val Asp Arg Ser Asp Ser Gly Thr Tyr Gln Cys Val Ala Asn Asn Met Val Gly Glu Arg Val Ser Asn Pro Ala Arg Leu Ser Val Phe Glu Lys Pro Lys Phe Glu Gln Glu Pro Lys Asp Met Thr Val Asp Val Gly Ala Ala Val Leu Phe Asp Cys Arg Val Thr Gly Asp Pro Gln Pro Gln Ile Thr Trp Lys Arg Lys Asn Glu Pro Met Pro Val Thr Arg Ala Tyr Ile Ala Lys Asp Asn Arg Gly Leu Arg Ile Glu Arg Val Gln Pro Ser Asp Glu Gly Glu Tyr Val Cys Tyr Ala Arg Asn Pro Ala Gly Thr Leu Glu Ala Ser Ala His Leu Arg Val Gln Ala Pro Pro Ser Phe Gln Thr Lys Pro Ala Asp Gln Ser Val Pro Ala Gly Gly Thr Ala Thr Phe Glu Cys Thr Leu Val Gly Gln Pro Ser Pro Ala Tyr Phe Trp Ser Lys Glu Gly Gln Gln Asp Leu Leu Phe Pro Ser Tyr Val Ser Ala Asp Gly Arg Thr Lys Val Ser Pro Thr Gly Thr Leu Thr Ile Glu Glu Val Arg Gln Val Asp Glu Gly Ala Tyr Val Cys Ala Gly Met Asn Ser Ala Gly Ser Ser Leu Ser Lys Ala Ala Leu Lys Val Thr Thr Lys Ala Val Thr Gly Asn Thr Pro Ala Lys Pro Pro Pro Thr Ile Glu His Gly His Gln Asn Gln Thr Leu Met Val Gly Ser Ser Ala Ile Leu Pro Cys Gln Ala Ser Gly Lys Pro Thr Pro Gly Ile Ser Trp Leu Arg Asp Gly Leu Pro Ile Asp Ile Thr Asp Ser Arg Ile Ser Gln His Ser Thr Gly Ser Leu His Ile Ala Asp Leu Lys Lys Pro Asp Thr Gly Val Tyr Thr Cys Ile Ala Lys Asn Glu Asp Gly Glu Ser Thr Trp Ser Ala Ser Leu Thr Val Glu Asp His Thr Ser Asn Ala Gln Phe Val Arg Met Pro Asp Pro Ser Asn Phe Pro Ser Ser Pro Thr Gln Pro Ile Ile Val Asn Val Thr Asp Thr Glu Val Glu Leu His Trp Asn Ala Pro Ser Thr Ser Gly Ala Gly Pro Ile Thr Gly Tyr Ile Ile Gln Tyr Tyr Ser Pro Asp Leu Gly Gln Thr Trp Phe Asn Ile Pro Asp Tyr Val Ala Ser Thr Glu Tyr Arg Ile Lys Gly Leu Lys Pro Ser His Ser Tyr Met Phe Val Ile Arg Ala Glu Asn Glu Lys Gly Ile Gly Thr Pro Ser Val Ser Ser Ala Leu Val Thr

Thr Ser Lys Pro Ala Ala Gln Val Ala Leu Ser Asp Lys Asn Lys Met Asp Met Ala Ile Ala Glu Lys Arg Leu Thr Ser Glu Gln Leu Ile Lys Leu Glu Glu Val Lys Thr Ile Asn Ser Thr Ala Val Arg Leu Phe Trp Lys Lys Arg Lys Leu Glu Glu Leu Ile Asp Gly Tyr Tyr Ile Lys Trp Arg Gly Pro Pro Arg Thr Asn Asp Asn Gln Tyr Val Asn Val Thr Ser Pro Ser Thr Glu Asn Tyr Val Val Ser Asn Leu Met Pro Phe Thr Asn Tyr Glu Phe Phe Val Ile Pro Tyr His Ser Gly Val His Ser Ile His Gly Ala Pro Ser Asn Ser Met Asp Val Leu Thr Ala Glu Ala Pro Pro Ser Leu Pro Pro Glu Asp Val Arg Ile Arg Met Leu Asn Leu Thr Thr Leu Arg Ile Ser Trp Lys Ala Pro Lys Ala Asp Gly Ile Asn Gly Ile Leu Lys Gly Phe Gln Ile Val Ile Val Gly Gln Ala Pro Asn Asn Arg Asn Ile Thr Thr Asn Glu Arg Ala Ala Ser Val Thr Leu Phe His Leu Val Thr Gly Met Thr Tyr Lys Ile Arg Val Ala Ala Arg Ser Asn Gly Gly Val Gly Val Ser His Gly Thr Ser Glu Val Ile Met Asn Gln Asp Thr Leu Glu Lys His Leu Ala Ala Gln Gln Glu Asn Glu Ser Phe Leu Tyr Gly Leu Ile Asn Lys Ser His Val Pro Val Ile Val Ile Val Ala Ile Leu Ile Ile Phe Val Val Ile Ile Ile Ala Tyr Cys Tyr Trp Arg Asn Ser Arg Asn Ser Asp Gly Lys Asp Arg Ser Phe