

www.**eritecampinas**.com.br

PROFESSOR DANILO

MUDANÇA DE ESTADO DE AGREGAÇÃO - PIMEIRO ANO - 20/09/2024

Mudança de estado físico

Como você já deve ter visto, a mudança de fase pode ser representada pelo diagrama a seguir:

Figura 1: mudança de estado de agregação

Os processos para a direita se dão pela absorção de calor (endotérmicos) enquanto os processos da direita para a esquerda ocorrem devido à liberação de calor (exotérmicos).

A temperatura de fusão muda de acordo com a pressão na qual a substância se encontra. Podemos dividir estas substâncias, de acordo com a dependência da pressão com o seu ponto de fusão, em duas categorias:

- Materiais de primeira categoria, que aumentam o ponto de fusão com o aumento da temperatura;
- Materiais de segunda categoria, que diminuem o ponto de fusão com o aumento da temperatura;

DIAGRAMA DE FASE

No Q. 1 representamos os materiais de primeira categoria e no Q. 2 os materiais de segunda categoria. Para ambos os diagramas, temos:

- PT: ponto triplo ponto do diagrama no qual coexistem a substância nos três estados;
- PC: ponto crítico ponto a partir do qual não é possível mudar o estado de agregação da substância por compressão isotérmica, ou seja, sem mudar sua temperatura;
- 1 → 2 fusão;
- 2 → 1 solidificação;
- 2 → 3 vaporização;
- 3 → 2 liquefação;
- 1 \rightarrow 3 sublimação;
- 3 → 1 ressublimação;

Q. 1 - MATERIAIS DE PRIMEIRA CATEGORIA

Pensando nesse diagrama, responda:

Em uma panela comum, onde o cozimento de um alimento é mais demorado: no Everest ou em Santos? Dica: quando maior a altitude, menor é a pressão atmosférica.

Calor Latente

A quantidade de calor $\mathbb Q$ necessário para uma substância de massa m mudar de estado depende de uma constante que depende do material. Esta constante é chamada de calor latente

L. Alguns valores de calor latente podem ser encontrados na Tabela 1.

Q. 3 – EQUAÇÃO DO CALOR LATENTE
Q. 4 – UNIDADE DE MEDIDA DO CALOR LATENTE
Q. 5 – CONVENÇÃO DE SINAL PARA O CALOR LATENTE

Tabela 1: Calores latentes de diversas substâncias e seus respectivos pontos de fusão e ebulição (pressão de 1 atm).

Substância	Ponto de Fusão(K)	Calor Latente de Fusão (k <i>J/</i> kg)	Ponto de Ebulição (K)	Calor Latente de Vaporização (kJ/kg)
Hidrogênio	14,0	58,0	20,3	455
Oxigênio	54,8	13,9	90,2	213
Mercúrio	234	11,4	630	296
Água	273	333	373	2256
Chumbo	601	23,2	2017	858
Prata	1235	105	2323	2326
Cobre	1356	207	2868	4730

Podemos novamente falar em potência térmica, afinal, potência é a taxa de troca de calor pelo tempo.

(19) 3251 1012 www.elitecampinas.com.br

PROFESSOR DANILO

MUDANÇA DE ESTADO DE AGREGAÇÃO - PIMEIRO ANO - 20/09/202

EXERCÍCIOS

*1. (UEL-1997 - MODIFICADA) Ao se retirar calor Q de uma substância líquida pura de massa 5,0 g, sua temperatura cai de acordo com o gráfico a seguir.

Determine, em módulo, o calor latente de solidificação, em cal/g, o calor específico no estado líquido e sólido, em cal/(g °C), dessa substância.

2. Em um recipiente, de paredes adiabáticas e capacidade térmica desprezível, introduzem-se 200 g de água a 20 °C e 80 g de gelo a -20 °C. Atingindo o equilíbrio térmico, a temperatura do sistema será

Dados:

calor específico da água = 1,0 cal/g°C calor específico do gelo = 0,50 cal/g°C calor latente de fusão de gelo = 80 cal/g

- a) 11 °C
- b) 0 °C, restando 40 g de gelo.
- c) 0 °C, restando apenas água.
- d) 0 °C, restando apenas gelo.
- e) 11 °C
- 3. São misturados 50 g de água a 20 °C com 20 g de gelo a 0 °C em um calorímetro de capacidade térmica desprezível. O calor latente de fusão do gelo é de 80 cal/g e o calor específico da água é de 1 cal/g °C. A temperatura final da mistura é, em °C, de:
- a) 20
- b) 8,5
- c) 10
- d) 12
- 4. Enche-se uma seringa com pequena quantidade de água destilada a uma temperatura um pouco abaixo da temperatura de ebulição. Fechando o bico, como mostra a figura A a seguir, e puxando rapidamente o êmbolo, verifica-se que a água entra em ebulição durante alguns instantes (veja figura B).

Figura A

Figura B

Podemos explicar este fenômeno considerando que:

- a) na água há sempre ar dissolvido e a ebulição nada mais é do que a transformação do ar dissolvido em vapor.
- b) com a diminuição da pressão a temperatura de ebulição da água fica menor do que a temperatura da água na seringa.
- c) com a diminuição da pressão há um aumento da temperatura da água na seringa.
- d) o trabalho realizado com o movimento rápido do êmbolo se transforma em calor que faz a água ferver.
- e) calor específico da água diminui com a diminuição da pressão.
- 5. Uma criança aperta dois cubinhos de gelo um contra o outro e observa que eles ficam "grudados". Isso ocorre porque o aumento da pressão _ _ a temperatura de fusão. A volta à condição de pressão normal provoca a As lacunas são preenchidas, respectivamente, por:
- a) aumenta; fusão
- b) aumenta; solidificação
- c) não modifica: fusão
- d) diminui; solidificação
- e) diminui; fusão

- **15. Ao introduzirmos em água sobre-resfriada um cristal de
- gelo, ela imediatamente começa a congelar.
- a) Qual é a quantidade de gelo, que se forma de M=1kg de água, sobre-resfriada até a temperatura $t = -8 \, ^{\circ}\text{C}$?
- b) Que temperatura deverá ter a água sobre resfriada para que totalmente transforma-se em gelo?

Obs.: Não considerar a dependência da capacidade calorífica da água em relação à temperatura.

*6. (Eear 2019 - MODIFICADA) A figura a seguir mostra a curva de aquecimento de uma amostra de 200 g de uma substância hipotética, inicialmente a 15 °C, no estado sólido, em função da quantidade de calor que esta recebe.

Determine o valor aproximado do calor latente de liquefação, o calor latente de vaporização, o calor específico no estado sólido, o calor específico no estado líquido e o calor específico no estado gasoso da substância.

7. (G1 - ifsul 2019) A tabela abaixo mostra os valores da temperatura de ebulição da água em função da pressão a que a água está sendo submetida.

Pressão (atm)	Temperatura de Ebulição (°C)
0,474	80,0
1,0	100,0
2,0	120,0
5,0	152,0
10,0	180,0

Com base na tabela e nos conhecimentos de calorimetria, analise as afirmativas a seguir:

- I. Quanto maior a altitude local, menor será a temperatura de ebulição da água.
- II. Quanto maior a pressão exercida na água, maior será a sua temperatura de ebulição.
- III. Em uma panela de pressão, a temperatura da água no estado líquido não poderá ultrapassar os 100 °C.
- IV. À pressão de 0,474 atm e à temperatura de 90 °C, a água estará no estado líquido.

Estão corretas apenas as afirmativas

- a) I e II.
- b) II e III.
- c) I e IV.
- d) III e IV.
- * Questões sobre curvas de aquecimento
- ** Questão sobre superfusão (água sobre resfriada).

GABARITO

1. $L_s = 60 \text{ cal/g}$, $c_L = 0.4 \text{ cal/(g°C)}$ e $c_S = 0.2 \text{ cal/(g°C)}$.

3. E

5. D **4.** B

6. $L_L = L_V = 20 \text{ cal/g}$, $c_S = c_L = 0.5 \text{ cal/(g°C)}$ (Note que

normalmente os calores latentes e específicos são diferentes e a igualdade apresentada aqui é só porque são numericamente

iguais.) e
$$c_G = \frac{3}{7} = 0.43 \text{ cal/(g°C)}$$
.

7. A