Exercise For Midterm 1

October 15, 2019

1 Logic

1. Write the principal disjunctive normal form of the following table.

P	Q	R	G	m (minimum)	M (maximum)
\overline{T}	Т	Т	Т	111	-
Τ	${\rm T}$	\mathbf{F}	\mathbf{F}	-	110
\mathbf{T}	\mathbf{F}	${\rm T}$	\mathbf{F}	-	101
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	-	100
\mathbf{F}	${\rm T}$	${ m T}$	${ m T}$	011	-
\mathbf{F}	${\rm T}$	\mathbf{F}	\mathbf{F}	-	010
\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	001	-
\mathbf{F}	F	F	F	-	000

Answer: $G = m_{111} \lor m_{011} \lor m_{001} = (P \land Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$ or $G = M_{110} \land M_{101} \land M_{100} \land M_{010} \land M_{000} = (\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \land R) \land (P \lor \neg Q \lor R) \land (P \lor Q \land R)$ Note that:

- 1. G = T, minimum (m) for disjunctive normal form, and m_{001} means $\neg P \land \neg Q \land R$.
- 2. G = F, maximum (M) for conjunctive normal form, and M_{001} means $P \vee Q \vee \neg R$.
- 2. Show that $A \Rightarrow B, \neg(B \Rightarrow C) \Rightarrow \neg A \mid \therefore A \Rightarrow C$ Answer:
 - 1. :: A
 - $2. : \neg (B \Rightarrow C) \Rightarrow \neg A$
 - 3. $\therefore \neg (\neg (B \Rightarrow C)) \equiv B \Rightarrow C$
 - $4. :: A \Rightarrow B$
 - $5. \therefore C$

Note: If $(A_1, A_2, \dots, A_n, A : B)$ is a valid argument, then $(A_1, A_2, \dots, A_n : A \Rightarrow B)$ is also valid. (If the conclusion that needs to be proved is $A \Rightarrow B$, then A can be used as a premise.)

- 3. Show that $(\exists x(P(x) \Rightarrow Q(x))) \Leftrightarrow ((\forall xP(x)) \Rightarrow (\exists xQ(x)))$ is a tautology. Note
 - 1. $\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x)$
 - 2. $\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$

Answer: see my RC slides.

2 Set

No exercise for set.

3 Relation and Orders

Just memorize all the definitions.

4 Lattice

4.One of the most important properties of lattice is the property of order-preserving. Let (L, \preceq) be a lattice, and $a, b, c \in L$. Show that

- 1. $(a \lor b) \lor c = a \lor (b \lor c)$.
- $2. \ a \lor (a \land b) = a.$
- 3. $a \lor (b \land c) \preceq (a \lor b) \land (a \lor c)$.

Answer: see my RC slides.

Note that: Let (L, \preceq) be a lattice, and $a, b, c \in L$.

- 1. (a) $a \leq a \vee b, a \wedge b \leq a$.
 - (b) If $a \leq b, c \leq d$, then $a \wedge c \leq b \wedge d, a \vee c \leq b \vee d$. proof: $a \wedge c \leq a \leq b$, and $a \wedge b \leq b \leq d$ (\leq is transitive.) $a \wedge c$ is a lower bound of $\{b, d\}$, and thus, $a \wedge c \leq b \wedge d$
 - (c) If $b \prec c$, then $a \wedge b \prec a \wedge c$, $a \vee b \prec a \vee c$.
- 2. $a \lor b = b \lor a, a \land b = b \land a$.
- 3. $a \lor a = a, a \land a = a$.

5 Function

5. Find an injection from the power set of \mathbb{N} to $\mathbb{R}[0,1] = \{x \in \mathbb{R} | 0 \le x \le 1\}$ Answer:

$$f(M) = \sum_{k \in M} 10^{-(k+1)}, \ M \subseteq \mathbb{N}$$

5.1 Cantor's Theorem (Important)

If A is a set, then there is no injection $f: \mathcal{P}(A) \to A$.

6. Show that $\mathbb{R}[0,1]$ is not a countable set by showing that $|\mathcal{P}(\mathbb{N})| \leq |\mathbb{R}[0,1)|$ Answer: the conclusion of 5.

6 Tarski-Knaster Theorem and Schroder-Bernstein Theorem

7. Prove the Tarski-Knaster Theorem. (See the lecture slide).

8. Show that $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}[0,1)|$ By Schroder-Bernstein Theorem. Answer: we have already found a an injection from the power set of \mathbb{N} to $\mathbb{R}[0,1) = \{x \in \mathbb{R} | 0 \leq x \leq 1\}$. An injection from $\mathbb{R}[0,1)$ to the power set of \mathbb{N} is $g: \mathbb{R}[0,1) \to \mathcal{P}(\mathbb{N})$

$$\sum_{k \in M} 2^{-k} \to M$$

7 Countable Sets and Infinite Sets

9. Show that a set S is infinite if and only if $|S - \{a\}| = |S|$, where a is an arbitrary element of S.

Answer: Let P be a countable infinite subset of S, and $a \in P$. If $a \notin P$, then $P = P \cup \{a\}$, and P is still a countable infinite subset. It is easy to find a bijection $f: P \to P - \{a\}$. $10.S = \{X \in \mathcal{P}(\mathbb{Z}) | X \text{ is finite} \}$. Is S a countable set? Answer: yes.