Universidad San Pablo CEU

Departamento de Matemáticas

Tabla de Contrastes de Hipótesis

Contraste	Población	Tamaño Muestral	Varianzas	Estadístico de Contraste	Distribución bajo H_0	Región de Aceptación
$H_0: \ \mu = \mu_0$ $H_1: \ \mu \neq \mu_0$	Cualquiera	$n \ge 30$	Conocida	$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
			Desconocida	$Z = \frac{\bar{x} - \mu_0}{\hat{s} / \sqrt{n}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
	Normal	n < 30	Conocida	$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
			Desconocida	$Z = \frac{\bar{x} - \mu_0}{\hat{s} / \sqrt{n}}$	T(n-1)	$-t_{\alpha/2}^{n-1} < T < t_{\alpha/2}^{n-1}$
$H_0: \ \sigma^2 = \sigma_0^2$ $H_1: \ \sigma^2 \neq \sigma_0^2$	Normal			$J = \frac{ns^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\chi_{\alpha/2}^{n-1} < J < \chi_{1-\alpha/2}^{n-1}$
$H_0: p = p_0$ $H_1: p \neq p_0$	Binomial	$n\hat{p} > 5 \text{ y}$ $n(1 - \hat{p}) > 5$		$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	Cualquiera	$n \ge 30$	Conocidas	$Z = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
			Desconocidas	$Z = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
	Normales	n < 30	Conocidas	$Z = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$
			Desconocidas e iguales	$T = \frac{(\bar{x}_1 - \bar{x}_2)}{\hat{s}_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$T(n_1 + n_2 - 2)$	$-t_{\alpha/2}^{n_1+n_2-2} < T < t_{\alpha/2}^{n_1+n_2-2}$
			Desconocidas y diferentes	$T = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}}$	T(v)	$-t^v_{\alpha/2} < T < t^v_{\alpha/2}$
$H_0: \ \sigma_1^2 = \sigma_2^2 \ H_1: \ \sigma_1^2 \neq \sigma_2^2$	Normales			$F = \frac{\hat{s}_1^2}{\hat{s}_2^2}$	$F(n_1 - 1, n_2 - 1)$	$F_{\alpha/2}^{n_1-1,n_2-1} < F < F_{1-\alpha/2}^{n_1-1,n_2-1}$
$H_0: p_1 = p_2 H_1: p_1 \neq p_2$	Binomiales	$n\hat{p_i} > 5 \text{ y}$ $n(1 - \hat{p_i}) > 5$		$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$	N(0,1)	$-z_{\alpha/2} < Z < z_{\alpha/2}$

Notación

n es el tamaño muestral.

 μ es la media poblacional.

 σ es la desviación típica de la población.

p es la proporción de individuos que presentan el atributo estudiado en la población.

 \bar{x} es la media muestral.

s es la desviación típica muestral.

 \hat{s} es la cuasidesviación típica muestral.

 \hat{p} es la proporción de individuos que presentan el atributo estudiado en la muestra.

$$\hat{s}_p^2 = \frac{(n_1 - 1)\hat{s}_1^2 + (n_2 - 1)\hat{s}_2^2}{n_1 + n_2 - 2} = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \text{ es la cuasivarianza ponderada}$$

$$\hat{p} \text{ es la proporción de individuos que presentan el atributo estudiado en la muestra.}$$

$$\hat{s}_p^2 = \frac{(n_1 - 1)\hat{s}_1^2 + (n_2 - 1)\hat{s}_2^2}{n_1 + n_2 - 2} = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \text{ es la cuasivarianza ponderada.}$$

$$v = \frac{\left(\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}\right)^2}{\left(\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}\right)^2} - 2, \text{ son los grados de libertad de la } t \text{ de Student en el caso de varianzas diferentes.}$$

$$V(0, 1) \text{ es la distribución pormel estadar}$$

N(0,1) es la distribución normal estudar.

T(n-1) es la distribución T de student de n-1 grados de libertad.

 $\chi(n-1)$ es la distribución Chi-cuadrado de n-1 grados de libertad.

 $F(n_1-1,n_2-1)$ es la distribución F de Fisher-Snedecor de n_1-1 y n_2-1 grados de libertad.