Analysis 1: Chapter 7 Series Exercises

Problem (Exercise 7.2.2). Let $\sum_{n=m}^{\infty} a_n$ be a formal infinite series. Then $\sum_{n=m}^{\infty} a_n$ converges if and only if for each $\epsilon > 0$ there exists a natural $N \ge m$ such that for all $p, q \ge N$ we have $|\sum_{p=0}^{q} a_p| \le \epsilon$.

Proof. (\iff) We shall that the sequence of partial sums $S_N \coloneqq \sum_{n=0}^N a_n$ is Cauchy and hence convergent (see Proposition 6.4.18). Let $\epsilon > 0$ then $\frac{\epsilon}{2} > 0$ so by assumption there exists an $N' \ge m$ such that for all $p,q \ge N'$ we have $|\sum_p^q a_n| \le \frac{\epsilon}{2}$. In particular if we set p to N'+1 we have $|\sum_{N'+1}^q a_n| \le \frac{\epsilon}{2}$ for all $q \ge N'+1$. We can use Lemma 7.1.4(a) to write $S_q = \sum_m^{N'} a_n + \sum_{N'+1}^q a_n$ for all $q \ge N'+1$. From this observe that $|S_q - S_{q'}| = |\sum_{N'+1}^q a_n - \sum_{N'+1}^{q'} a_n| \le \epsilon$ for all $q, q' \ge N'+1$ from the above discussion and the triangle inequality. Therefore S_N is Cauchy as desired.

 (\Longrightarrow) If the series is convergent then the partial sums sequence S_N is Cauchy. So for a given $\epsilon>0$ we have that for some natural $N'\geq M$ that $|S_q-S_{q'}|\leq \frac{\epsilon}{2}$ for all $q,q'\geq N'$. In particular if we set q' to N' then we see that using Lemma 7.1.4(a) that $|S_q-S_{N'}|=|\sum_{n=m}^{N'}a_n+\sum_{n=N'+1}^qa_n-\sum_{n=m}^{N'}a_n|=|\sum_{N'+1}^qa_n|\leq \frac{\epsilon}{2}$ for all $q\geq N'+1$. Let $p,q\geq N'+1$ and without loss of generality suppose that $q\geq p>N'+1$ then by Lemma 7.1.4(a) we have that $\sum_{n=N'+1}^qa_n=\sum_{n=N'+1}^{p-1}a_n+\sum_p^qa_n$. Thus we see from the above discussion that

$$\left| \sum_{n=N'+1}^{q} a_n - \sum_{n=N'+1}^{p-1} a_n \right| = \left| \sum_{n=N'+1}^{q} a_n \right| \le \left| \sum_{n=N'+1}^{q} a_n \right| + \left| \sum_{n=N'+1}^{p-1} a_n \right| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

and this completes the proof.