Electricity and Magnetism - Lecture 4 Notes

Joshua Clement

October 7, 2024

Van der Waals Forces

- Induced dipoles cause weak attractive forces between atoms and molecules.
- Electron clouds fluctuate, creating temporary dipoles.
- Molecules do not need to be polar to interact.
- Fluctuations in electron clouds can synchronize, resulting in **attractive** forces.
- Example: **Gecko feet** adhere to surfaces via van der Waals forces, allowing them to climb walls.

Insulators vs. Conductors

- **Insulators**: Electrons are bound to atoms and cannot move freely.
 - Examples: plastic, wood, glass, pure water, air.
 - Electrons can shift slightly but remain bound.
 - Polarization occurs quickly (less than 1 nanosecond).
- Conductors: Charges can move freely.
 - Examples: metals, ionic solutions (e.g., NaCl in water).
 - Electric Field Inside a Conductor: E = 0 in equilibrium.
 - Charges flow like a liquid; **mobile charges** can be electrons or ions.

Polarization in Conductors and Insulators

- **Insulators**: Atoms or molecules polarize individually when an external electric field is applied.
- Conductors: The entire sea of mobile charges shifts in response to an external field.

- Ionic Solutions (e.g., NaCl in water):
 - Positive and negative ions move to either side under an applied electric field (E_{app}) .
 - The net electric field (E_{net}) results from the applied field and the field due to ion displacement.

Electric Field Inside a Conductor

- In Equilibrium: $E_{\text{net}} = 0$.
- Proof by Contradiction:
 - Assume $E_{\text{net}} \neq 0$. Charges would move, violating equilibrium.
 - Therefore, $E_{\text{net}} = 0$ in equilibrium.
- Excess charges in a conductor in equilibrium are always found on the surface.

Model of a Metal

- Mobile electrons in a metal behave like a liquid and can flow freely.
- Metals are good **conductors** due to this mobile electron sea.
- Metal Lattice:
 - Atoms form a 3D lattice structure.
 - Outer electrons are free to move, while inner electrons remain bound to the nucleus.

Charging and Discharging Conductors

- **Grounding**: Connecting a conductor to a very large object (e.g., Earth) to neutralize its charge.
- Charging by Induction:
 - 1. Bring a charged rod close to the conductor.
 - 2. Ground the conductor.
 - 3. Break the connection to ground while keeping the rod in place.
 - 4. Remove the rod, and the conductor retains the induced charge.

Figure 1: Electric field of a solid metal sphere with charge Q in equilibrium. The electric field inside the sphere is E=0, while the electric field outside follows the inverse square law.

Summary of Conductors vs. Insulators

• Conductors:

- Mobile charges are present.
- Entire sea of charges polarizes in an electric field.
- In equilibrium: $E_{\text{net}} = 0$ inside.
- Excess charges are only found on the ${\bf surface}.$

• Insulators:

- No mobile charges.
- Individual atoms/molecules polarize.
- Inside field: $E_{\rm net} \approx E_{\rm app}$ for low density.
- Excess charges can be anywhere in the material.

The charges rearrange to cancel the electric field of the point charge (-q)

Figure 2: Conducting sphere with charge $+\mathbf{Q}$ near a point charge $-\mathbf{q}$. The charges on the sphere rearrange to screen the field from the point charge.