

CREATED BY: Ankil Mehta

Load Data File:

trainX <- read.csv(file.choose(), header= TRUE)</pre>

trainY <- read.csv(file.choose(), header= TRUE)</pre>

testX <- read.csv(file.choose(), header= TRUE)

testY <- read.csv(file.choose(), header= TRUE)

Data Wrangling and Cleaning

cols<-c("mean-Radius", "mean-Texture", "mean-Perimeter", "mean-Area", "mean-Smoothness", "mean-Compactness", "mean-Concavity", "mean-Number of concave portions of contour", "mean-Symmetry", "mean-Fractial dimension", "sd-Radius", "sd-Texture", "sd-Perimeter", "sd-Area", "sd-Smoothness", "sd-Compactness", "sd-Concavity", "sd-Number of concave portions of contour", "sd-Symmetry", "sd-Fractial dimension", "largest-Radius", "largest-Texture", "largest-Perimeter", "largest-Area", "largest-Smoothness", "largest-Concavity", "largest-Number of concave portions of contour", "largest-Symmetry", "largest-Fractial dimension")

names(trainX)[1:30]<-cols

names(trainY)<-"Label"

names(testX)[1:30]<-cols

names(testY)<-"Label"

Combining trainX and trainY to a single train data

train_data<-cbind(trainX,trainY)</pre>

#Label is a target variable and binary

train_data\$Label<-as.factor(train_data\$Label)</pre>

Decision Tree model

library(rpart)

library(rpart.plot)

model<-rpart(Label~., data=train_data, parms = list(split = "information"),control=rpart.control(minsplit = 6, cp=0.011))

rpart.plot(model, cex=0.5)

Exaluate the model on train data


```
train_data_pred<-predict(model, train_data, type = "class")
train_data_accuracy<-round(mean(train_data$Label==train_data_pred)*100,2)
train_data_accuracy
#98.68</pre>
```


Exaluate the model on test data


```
test_data_pred<-predict(model,testX,type = "class")

test_data_accuracy<-round(mean(testY$Label==test_data_pred)*100,2)

test_data_accuracy

#94.64
```


Estimating the cp and minsplit to improve performance of the model

After pruning, the accuracy of model on train data should reduce but on test data should increase

plotcp(model)

ср

model\$cptable

#7

CP nsplit	rel error	xerror	xstd
1 0.79166667	0 1.00000000	1.0000000	0.06123510
2 0.03571429	1 0.20833333	0.3273810	0.04138382
3 0.02380952	3 0.13690476	0.2261905	0.03512378
4 0.01785714	6 0.06547619	0.2023810	0.03338312
5 0.01190476	7 0.04761905	0.1488095	0.02893087
6 0.01100000	8 0.03571429	0.1547619	0.02946940

#Estimating the best cp
model\$cptable[which.min(model\$cptable[,"xerror"]),"CP"]
#0.01190476

#Estimating the best minsplit
model\$cptable[which.min(model\$cptable[,"xerror"]),"nsplit"]

#Build a tree using cp=0.011 and nsplit=8

```
#Prune the tree and build a new model

model_pruned<-rpart(Label~., data=train_data, parms = list(split = "information"),
control=rpart.control(minsplit = 7, cp=0.011))

#Evaluate on train data

train_data_pred2<-predict(model_pruned, train_data, type = "class")

train_data_accuracy2<-round(mean(train_data$Label==train_data_pred2)*100,2)

train_data_accuracy2

#98.24

#Evaluate on test data

test_data_pred2<-predict(model_pruned,testX,type = "class")

test_data_accuracy2<-round(mean(testY$Label==test_data_pred2)*100,2)

test_data_accuracy2

#94.64
```