$TZ_15 - 8$ nın 14

סיכום של ההתפלגות נורמית וההתפלגות הנורמלית הסטנדרדית

הנדרה. (מ"מ רציף נורמאלי) משתנה מקרי X מתפלג נורמאלי מוגדר להיות כך שצפיפותו נתון ע"י הנוסחאה 14.1

$$n(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

 $X \sim N(\mu,\sigma)$ באשר מ"מ נורמאלי התקן. הסטיית הסטיית ו- כאשר התוחלת התוחלת החלת החלת החלת התקן.

מתפלג נורמאלי סטנדרדי מוגדר להיות מ"מ נורמאלי משתנה מקרי מחפלג נורמאלי סטנדרדי מוגדר להיות מ"מ נורמאלי הגדרה. (מ"מ רציף נורמאלי סטנדרדי) משתנה מקן $\sigma=1$, כלומר המ"מ נורמאלי עם צפיפות נתון ע"י בעל תוחלת $\mu=0$

$$n(z, \mu = 0, \sigma = 0) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$
.

14.3 הגדרה. (התפלגות המצטברת של מ"מ נורמאלי סטנדרדי) התפלגות המצטברת של מ"מ נורמאלי סטנדרדי

מוגדרת להיות Z

$$\Phi(z) = \int_{-\infty}^{z} dt \ \frac{1}{\sqrt{2\pi}} e^{-t^2/2} = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{z}{\sqrt{2}} \right) \right] \ ,$$

כאשר

$$\operatorname{erf}(z) := \frac{2}{\sqrt{\pi}} \int_0^z dt \ e^{-t^2} \ ,$$

והתכונה ש ($\operatorname{erf}\left(z/\sqrt{2}\right)=rac{2}{\sqrt{\pi}}\int_0^{z/\sqrt{2}}dt\ e^{-t^2}=rac{1}{\sqrt{2\pi}}\int_0^zdt\ e^{-t^2}$ והתכונה ש

$$\operatorname{erf}(-z) = -\operatorname{erf}(z)$$

נובע למסקנה

$$\Phi(-z) = 1 - \Phi(z) .$$

מקבל σ מקבל וסטיית התקן אורה. (הסתברות של מ"מ נורמאלי) ההסתברות שמ"מ נורמאלי בעל תוחלת של מ"מ נורמאלי) מקבל ערך פחות או שווה ל x_1 נתון ע"י

$$P(X \le x_1) = \Phi(z_1)$$

כאשר

$$z_1 = \frac{x_1 - \mu}{\sigma} \ .$$

נתון ע"י x_2 ו- x_1 וי x_2 וי x_1 מקבל ערים בין x_1 וסטיית התקן σ וסטיית בעל תוחלת אויי x_2 ווי x_2 נתון ע"י

$$P(x_1 \le X \le x_2) = \Phi(z_2) - \Phi(z_1)$$

כאשר

$$z_1 = \frac{x_1 - \mu}{\sigma} , \qquad z_2 = \frac{x_2 - \mu}{\sigma} .$$

 $N \geq 30$ אז עבור $X \sim \mathrm{Bin}\left(n,p
ight)$ יהי (קירוב נורמלי להתפלגות בינומית) יהי 14.5

$$X \sim N(np, nq)$$
.

תיקון רציפות:

$$P(a \le X \le b)$$

כמשתנה בדיד שווה ל

$$P(a - 0.5 < X < b + 0.5)$$

כמשתנה רציף.

משפט הגבול המרכזי

ויהי , σ וסטיית התקן, ומשפט הגבול המרכזי) יהי א משתנה מקרי בעל תוחלת ומשפט הגבול המרכזי) יהי 14.6

$$x_1,\ldots,x_n$$

מדגם מקרי מתוך X אזי,
כאשר $n \geq 30$ או לכל $n \geq 30$ אזי,

$$\sum_{i=1}^{n} X_i \sim N\left(n\mu, n\sigma^2\right),\,$$

או במילים אחרות, כאשר $ar{X}:=rac{1}{n}\sum_{i=1}^{n}X_{i}$ או במילים אחרות, כאשר

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) .$$

 μ מתוך אוכלוסיה בעל תוחלת של מדגם מקרי של אורך אוכלוסיה בעל תוחלת יהי משפט הגבול המרכזי) יהי זהי יהי מסקנה. (משפט הגבול המרכזי) יהי \bar{X} התוחלת של המשתנה ושונות σ^2 . אזי, כאשר σ^2 , ההתפלגות של המשתנה

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

קרי, n(z,0,1) היא ההתפלגות הנורמלית הכורמלית

$$Z \sim N(0,1)$$
.

רווחי סמך לתוחלת של מדגם מקרי: שונות ידועה

נניח שיש אוכלוסיה בעל תוחלת μ אינה ידועה ושונות σ^2 ידועה. עבור מדגם X כלשהו מתוך האוכלוסיה זו, לפי . $\sigma_{ar{X}}=rac{\sigma}{\sqrt{n}}$ וסטיית התקן \bar{X} מתפלג בקירוב נורמלי עם תוחלת $\mu_{ar{X}}=\mu$ וסטיית התקן השאלה היא:

נתון \bar{X} , מהו הטווח

$$a < \mu < b$$

כך כי יש הסתברות (1-lpha) ל (1-lpha) כי יש הסתברות

$$P(a \le \mu \le b) = 1 - \alpha$$

והסתברות ל ל לא להיות למצא בטווח זו, כלומר μ ל α

$$P(\mu \notin [a,b]) = \alpha$$
.

לדוגמה, מהו הטווח של μ כך שיש הסתברות של 0.95 (או 95%) להיות נמצא בו? הנה 0.95 שיש הסתברות של $1-\alpha=0.95$ (או 0.95) להיות נמצא בו? הנר למצוא $\alpha=0.05$ (גלה להלן (עיין משוואה (**) שהערכים הנדרשים הם

$$a = \bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$
, $b = \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$,

כאשר המחושב של המחושב של המדגם מקרי הסטיית התקן הידוע של האוכלוסיה כולה שממנה המדגם כאשר ar X הוא המדגם מקרי של המשתנה נורמלי המנדרדי z המתאים ל בוסחאה (1 $z_{1-lpha/2}$ האורך של המדגם ו- $z_{1-lpha/2}$ הוא הערך של המשתנה נורמלי המודר של המדגם ו-

להלן], מוגדר כך שהשטח התחום בטווח $[-z_{1-\alpha/2},z_{1-\alpha/2}]$ של הגרף הגרף (עיין אייור להלן) והשטח להלן. מוגדר כך שהשטח התחום בטווח ל $z_{1-\alpha/2}$ שווה ל $z_{1-\alpha/2}$

רמת וההסתברות $[a,b]=[~ar{X}-z_{1-lpha/2}\sigma/\sqrt{n}~,~ar{X}+z_{1-lpha/2}\sigma/\sqrt{n}~]$ נקרא וההסתברות הטווח . מובהקות

כדי למצוא את הטווח בשאלה, אנחנו זוכרים כי השטח התחום בגרף של משתנה מקרי כלשהו הוא שווה דווקא $P(a \leq ar{X} \leq b)$ הוא שווה ל [a,b] הוא של ההסתברות כי המ"מ נמצא בטווח זו. ז"א השטח התחום של הגרף של $ar{X}$ בטווח בשלה ממצא בטווח זו. ז"א השטח התחום של הגרף של $ar{X}$ בטווח המתאים. הוא מתפלג נורמלי (לפי המשפט הגבול המרכזי) אזי ניתן להגדיר משתנה מקרי נורמלי סטנדרדי המתאים, והשטח זו יהיה שווה לשטח התחום של הגרף של Z בטווח המתאים.

נגדיר המשתנה Z להיות

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \ . \tag{*1}$$

יהי

$$z_{1-\alpha/2}$$

השטח (1-lpha) אשר עבורו שווה ל $[-z_{1-lpha/2},z_{1-lpha/2}]$ של הגרף השטח התחום בטווח לאשר עבורו השטח התחום בטווח בצד ימין שלו הוא lpha/2 כמתואר באייור להלן.

כמו כן הטווח הנדרש של μ כדי לתת רמת מובהקות α והסתברות ($1-\alpha$) ל- μ לפול בטווח זו) נמצא ע"י למצוא הטווח המתאים של Z כך שהשטח התחום שווה ל- $(1-\alpha)$. כמו כן לפי הגרף נמצא ש

$$P(-z_{1-\alpha/2} < Z < z_{1-\alpha/2}) = 1 - \alpha$$
,

על כן

$$P\left(-z_{1-\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha/2}\right) = 1 - \alpha .$$

מכפילים אגף הימין ואגף השמאול ב σ/\sqrt{n} ולוקחים $ar{X}$ מכל אגף ואגף ומקבלים כי

$$P\left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

100(1-lpha)א של אורך היווח מדגם מדגם מונות σ^2 ידועה. מתוך אוכלוסיה מתוך מתוך אוכלוסיה מדגם מקרי של אורך מתוך אוכלוסיה מתוך אוכלוסיה בעל שונות ע"י לתוחלת ע"י

$$\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \tag{*2}$$

כאשר $\alpha/2$ הוא הערך של Z אשר עבורו יש שטח של בצד הימין שלו. כאשר בורמלית:

(רווח סמך מדגם מקרי σ^2 ידועה) אוק. (רווח סמד מדגם מקרי

אם σ^2 אונות בעל שונות מתוך מתוך מתוך מקרי של מדגם מקרי אורך מתוחלת אורך מתוך מתוך מתוחלת של מדגם מקרי של מדגם n נתון ע"י להתוחלת $100(1-\alpha)\%$

$$\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

. בצד הימין שלו שטח של בצד הימין שלו אשר באר הימין שלו באר הימין הימין כאשר כאשר ב $z_{1-\alpha/2}$

(רווח סמך מדגם מקרי σ^2 ידועה) אוגמא. (רווח סמך מדגם 14.9

הריכוז הממוצע של חמצן ממדגם של מדידות הנלקחות מ36 מקומות שונים בנהר הוא 2.6 [gr/mm]. מהו הממוצע של המצו המבהוקות של 95% ו 95% להתוחלת של הריכוז חמצן בהנהר בשאלה. יש להניח שהסטיית התקן של האוכלוסיה הוא [gr/mm] 0.3

פיתרון.

הממוצע של המדגם מקרי הוא

$$\bar{x} = 2.6$$
,

-1

$$1 - \alpha = 0.95$$
 \Leftrightarrow $\alpha = 0.05$.

הוא lpha/2=0.025 הוא שלו הימין שלו השטח בצד השטח אשר z הוא

$$z_{1-\alpha/2} = z_{0.975} = 1.96$$
.

מהטבלה. לכן הרווח סמך של 95%, לפי נוסחאה (2*), הוא

$$2.6 - (1.96) \left(\frac{0.3}{\sqrt{36}}\right) < \mu < 2.6 + (1.96) \left(\frac{0.3}{\sqrt{36}}\right)$$
.

ניתן לצמצם זה ל

$$2.50 < \mu < 2.70$$
.

למצוא הרווח סמך של רמת מובהקות של 99%, שים לב ש

$$1 - \alpha = 0.99$$
 \Leftrightarrow $\alpha = 0.01$, \Leftrightarrow $\alpha/2 = 0.005$, \Leftrightarrow $1 - \alpha/2 = 0.995$.

יש לחפש את הערך של כך שבצד הימין שלו שטח של $\alpha/2=0.005$ מהטבלה הערך הנדרש יש לחפש את כך שבצד הימין שלו שלו ב $z_{1-\alpha/2}=z_{0.995}=2.575$

$$2.6 - (2.575) \left(\frac{0.3}{\sqrt{36}} \right) < \mu < 2.6 + (2.575) \left(\frac{0.3}{\sqrt{36}} \right) ,$$

או

$$2.47 < \mu < 2.73$$
.

שימו לב יש צורך לרווח יותר ארוך כדי להשיג ערך של μ יותר מדוייק.

הרווח סמך נותן הדייוק של האומדן של μ . אם μ נמצא במרכז של הרווח, אז \bar{x} מעריך את μ ללא שגיאה. רוב הזמן אבל, \bar{x} לא יהיה שווה בדיוק ל μ , כך שיהיה שגיאה בין האומדן לבין הערך המדויק של μ . הגודל של השגיאה זו הוא שווה להערך מוחלט של ההפרש בין μ לבין \bar{x} , וניתן להיות μ 00(1 – 2010 בטוח כי ההפרש זו לא יעבור μ 1 באשר לראות את זה עם העזרה של האייור להלן.

$(\mu$ מסקנה. (סמך באומדן של 14.10

 $z_{1-lpha/2}\sigma/\sqrt{n}$ אם לוקחים $ar{x}$ להיות אומדן של μ , אז יש רמת מובהקות של π

 $(1.96)(0.3)/\sqrt{36}=$ בדוגמה לעייל יש רמת מובהקות של 95% שההפרש בין התוחלת של המדגם $\bar{x}=2.6$ בדוגמה לעייל של איעבור של 95% שהחפרש של המדגם כדי לוודע שהשגיאה באומדן של μ לא יעבור ערך נתון 0.13. לעתים יש צורך לדעת את האורך הנדרש של המדגם כדי לוודע שהשגיאה באומדן של μ לא יעבור ערך נתון ν 0. על ידי המסקנה 14.10 לעייל, יש צורך לבחור ν 1 כך ש

$$z_{1-\alpha/2}\sigma/\sqrt{n}=e$$
.

n פותרים את המשוואה זו כדי לקבל נוסחאה ל

$(\mu$ מסקנה. (סמך באומדן של 14.11

אם עבור איעבור שהשגיאה אומדן של 100(1-lpha)% אם מובהקות איז יש רמת איש עבור איעבור אומדן של $ar{x}$ האורך של המדגם הוא

$$n = \left(\frac{z_{1-\alpha/2}\sigma}{e}\right)^2 .$$

שגיאה בדוגמה μ שיש לאומדן של 95% שיש להשיג רמת להשיג רמת של המדגם להשיג הורך הנדרש של המדגם להשיג רמת מובהקות של 95% שיש לאומדן של 14.9 שגיאה פחות מ0.05

:14.11 ביתרון. הסטיית התקן הוא $\sigma=0.3$ הוא התקן הסטיית

$$n = \left(\frac{(1.96)(0.3)}{(0.05)}\right)^2 = 138.3.$$

לכן אפשר להיות 95% בטוח שמדגם מקרי של אורך של 139 של \bar{x} יתן אומדן של 95% בטוח שמדגם מקרי של אורך של 0.05 ש

טבלות של ערכים של התפלגויות

$\Phi(z)$	z				
0.5000000	0.0000000				
0.5500000	0.1256613				
0.6000000	0.2533471				
0.6500000	0.3853205				
0.7000000	0.5244005				
0.7500000	0.6744898				
0.8000000	0.8416212				
0.8500000	1.0364334				
0.9000000	1.2815516				
0.9100000	1.3407550				
0.9200000	1.4050716				
0.9300000	1.4757910				
0.9400000	1.5547736				
0.9500000	1.6448536				
0.9600000	1.7506861				
0.9700000	1.8807936				
0.9800000	2.0537489				
0.9900000	2.3263479				
0.9950000	2.5758293				
0.9990000	3.0902323				
0.9995000	3.2905267				
0.9999000	3.7190165				
0.9999500	3.8905919				
0.9999900	4.2648908				
0.9999950	4.4171734				
0.9999990	4.7534243				
0.9999995	4.8916385				
0.9999999	5.1993376				

n	$t_{0.995}$	$t_{0.990}$	$t_{0.975}$	$t_{0.950}$	$t_{0.900}$	t _{0.800}	$t_{0.750}$	$t_{0.700}$	$t_{0.600}$	$t_{0.550}$
1.000	63.657	31.821	12.706	6.314		1.376	1.000	0.727	0.325	0.158
		6.965	4.303		3.078					
2.000	9.925			2.920	1.886	1.061	0.816	0.617	0.289	0.142
3.000	5.841	4.541	3.182	2.353	1.638	0.978	0.765	0.584	0.277	0.137
4.000	4.604	3.747	2.776	2.132	1.533	0.941	0.741	0.569	0.271	0.134
5.000	4.032	3.365	2.571	2.015	1.476	0.920	0.727	0.559	0.267	0.132
6.000	3.707	3.143	2.447	1.943	1.440	0.906	0.718	0.553	0.265	0.131
7.000	3.499	2.998	2.365	1.895	1.415	0.896	0.711	0.549	0.263	0.130
8.000	3.355	2.896	2.306	1.860	1.397	0.889	0.706	0.546	0.262	0.130
9.000	3.250	2.821	2.262	1.833	1.383	0.883	0.703	0.543	0.261	0.129
10.000	3.169	2.764	2.228	1.812	1.372	0.879	0.700	0.542	0.260	0.129
11.000	3.106	2.718	2.201	1.796	1.363	0.876	0.697	0.540	0.260	0.129
12.000	3.055	2.681	2.179	1.782	1.356	0.873	0.695	0.539	0.259	0.128
13.000	3.012	2.650	2.160	1.771	1.350	0.870	0.694	0.538	0.259	0.128
14.000	2.977	2.624	2.145	1.761	1.345	0.868	0.692	0.537	0.258	0.128
15.000	2.947	2.602	2.131	1.753	1.341	0.866	0.691	0.536	0.258	0.128
16.000	2.921	2.583	2.120	1.746	1.337	0.865	0.690	0.535	0.258	0.128
17.000	2.898	2.567	2.110	1.740	1.333	0.863	0.689	0.534	0.257	0.128
18.000	2.878	2.552	2.101	1.734	1.330	0.862	0.688	0.534	0.257	0.127
19.000	2.861	2.539	2.093	1.729	1.328	0.861	0.688	0.533	0.257	0.127
20.000	2.845	2.528	2.086	1.725	1.325	0.860	0.687	0.533	0.257	0.127
21.000	2.831	2.518	2.080	1.721	1.323	0.859	0.686	0.532	0.257	0.127
22.000	2.819	2.508	2.074	1.717	1.321	0.858	0.686	0.532	0.256	0.127
23.000	2.807	2.500	2.069	1.714	1.319	0.858	0.685	0.532	0.256	0.127
24.000	2.797	2.492	2.064	1.711	1.318	0.857	0.685	0.531	0.256	0.127
25.000	2.787	2.485	2.060	1.708	1.316	0.856	0.684	0.531	0.256	0.127
26.000	2.779	2.479	2.056	1.706	1.315	0.856	0.684	0.531	0.256	0.127
27.000	2.771	2.473	2.052	1.703	1.314	0.855	0.684	0.531	0.256	0.127
28.000	2.763	2.467	2.048	1.701	1.313	0.855	0.683	0.530	0.256	0.127
29.000	2.756	2.462	2.045	1.699	1.311	0.854	0.683	0.530	0.256	0.127
30.000	2.750	2.457	2.042	1.697	1.310	0.854	0.683	0.530	0.256	0.127
40.000	2.704	2.423	2.021	1.684	1.303	0.851	0.681	0.529	0.255	0.126
60.000	2.660	2.390	2.000	1.671	1.296	0.848	0.679	0.527	0.254	0.126
120.000	2.617	2.358	1.980	1.658	1.289	0.845	0.677	0.526	0.254	0.126

העשרה: הוכחה של המשפט הגבול מרכזי

ויהי σ , ויהי וסטיית התקן ויהי μ משתנה מקרי בעל תוחלת ויהי יהי איהי יהי ויהי ויהי ויהי ויהי 14.13

$$x_1,\ldots,x_n$$

מדגם מקרי מתוך X אזי,
כאשר $n \geq 30$ או לכל $n \geq 30$ אזי,

$$\sum_{i=1}^{n} X_i \sim N\left(n\mu, n\sigma^2\right),\,$$

,או במילים אחרות, כאשר ב $\bar{X}:=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ כאשר אחרות, או במילים אחרות, כאשר

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) .$$

 μ מסקנה. (משפט הגבול המרכזי) יהי יהי התוחלת של מדגם מקרי של אורך n מתוך אוכלוסיה בעל תוחלת יהי יהי אזי,כאשר n>30, אזי,כאשר σ^2 , אזי,כאשר יהי המשתנה

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

קרי n(z,0,1), היא ההתפלגות הנורמלית הטטנדרדית

$$Z \sim N(0,1)$$
.

הוכחה.

The central limit theorem (CLT) states that when independent random variables are added, their properly normalized sum tends toward a normal distribution (a bell curve) even if the original variables themselves are not normally distributed.

Let $\{X_1, \ldots, X_n\}$ be a random sample of size n, that is, a sequence of independent and identically distributed (IID)¹ random variables drawn from a distribution of expected value μ and finite variance σ^2 . The sample average

$$\bar{X}_n := \frac{X_1 + \dots + X_n}{n},$$

by the law of large numbers² converges to the expected value μ as $n \to \infty$.

Assume $\{X_1,\ldots,X_n\}$ are independent and identically distributed random variables, each with mean μ abd finite variance σ^2 . The sum $X_1+\cdots+X_n$ has mean $n\mu$ and variance $n\sigma^2$. Define the random variable

$$Z_n := \frac{X_1 + \dots + X_n - n\mu}{\sqrt{n\sigma^2}} = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sqrt{n\sigma^2}} \right) = \sum_{i=1}^n \frac{1}{\sqrt{n}} Y_i, \tag{#1}$$

¹A set of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent.

² The law of large numbers (LLN) posits that the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer to the expected value as more trials are performed

where $Y_i := (X_i - \mu)/\sigma$, which has zero mean and unit variance: $\operatorname{var}(Y) = E\left[(Y_i - \text{mean of } Y)^2\right] = E\left[(Y_i)^2\right] = \frac{1}{\sigma^2}E\left[(X_i - \mu)^2\right] = \sigma^2/\sigma^2 = 1$. The characteristic function of Z_n is given by

$$\varphi\left(t\right)_{Z_{n}}=\varphi\left(t\right)_{\sum_{j=1}^{n}n^{-1/2}Y_{j}}=E\left[\exp\left(it\sum_{j=1}^{n}n^{-1/2}Y_{j}\right)\right]=E\left[\prod_{j=1}^{n}\exp\left(itn^{-1/2}Y_{j}\right)\right].\tag{#2}$$

By assumption the Y_j are identically distributed, which means they each have the same expectation value, and it follows from (#2) that

$$\varphi\left(t\right)_{Z_{n}}=\prod_{j=1}^{n}E\left[\exp\left(itn^{-1/2}Y_{j}\right)\right]=\varphi\left(n^{-1/2}t\right)_{Y_{1}}\varphi\left(n^{-1/2}t\right)_{Y_{2}}\cdots\varphi\left(n^{-1/2}t\right)_{Y_{n}}=\left[\varphi\left(n^{-1/2}t\right)_{Y_{1}}\right]^{n}.$$

The characteristic function of Y_1 is, by Taylor's theorem, $E\left[e^{itn^{-1/2}Y_1}\right]=E\left[1\right]+E\left[in^{-1/2}Y_1\right]t+E\left[-\left(n^{-1/2}Y_1\right)^2\right]t^2/2+O\left(t^3\right)$. Above it was established that Y_1 has zero expectation value ($E[Y_1]=0$) and variance one ($E\left[(Y_1)^2\right]=1$), which means that

$$\varphi\left(n^{-1/2}t\right)_{Y_1} = E\left[e^{itn^{-1/2}Y_1}\right] = 1 - \frac{t^2}{2n} + \frac{t^4}{4!n^2} + o\left(\frac{t^4}{n^2}\right),\tag{#4}$$

where $o(t^4/n^2)$ means something that goes to zero more rapidly than t^4/n^2 . Hence,

$$\varphi(t)_{Z_n} = \left(\varphi\left(n^{-1/2}t\right)_{Y_1}\right)^n$$

$$= \left(1 - \frac{t^2}{2n}\right)^n + n\left(1 - \frac{t^2}{2n}\right)^{n-1}\left(\frac{t^4}{4!n^2} + o\left(\frac{t^4}{n^2}\right)\right) + \cdots$$

The form of the exponential function as a limit is $e^x = \lim_{n\to\infty} (1+x/n)^n$. It follows that

$$\lim_{n\to\infty} \varphi(t)_{Z_n} = e^{-t^2/2} \lim_{n\to\infty} \left(1 + n \left(1 - \frac{t^2}{2n} \right)^{-1} \left(\frac{t^4}{4!n^2} + o \left(\frac{t^4}{n^2} \right) \right) + \cdots \right)$$

All of the higher order terms inside the brackets vanish in the limit $n \to \infty$. Therefore,

$$\lim_{n\to\infty} \varphi(t)_{Z_n} = e^{-t^2/2}. \tag{#5}$$

The right hand side equals the characteristic function of a standard normal distribution N(0,1) (prove), which implies through LeDvy's continuity theorem (state and prove) that the distribution of Z_n will approach N(0,1) as $n \to \infty$. Therefore, the sample average

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$

is such that

$$\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu \right)$$

converges to the normal distribution N(0,1), from which the central limit theorem follows.