Date de rendu: 06/04/2021

MAT 452

Devoir maison 1

Exercice. Inégalité de Khinchine-Kahane L1-L2

1. On montre que la famille $(\varepsilon_I)_{I\subset\{1,\ldots,n\}}$ est une base orthonormée de $L^2(\Omega,\mu)$. Soient $I\neq J\subset\{1,\ldots,n\}$ alors

$$\langle \varepsilon_I | \varepsilon_J \rangle = \int_{\Omega} \varepsilon_I(w) \varepsilon_J(w) d\mu(w)$$

= $\int_{\Omega} \prod_{i \in I} w_i \prod_{j \in J} w_j d\mu(w).$

De cette expression on voit que les termes w_k pour $k \in I \cap J$ apparaissent deux fois dans l'intégrande, comme les w_l sont dans $\{-1,1\}$ leur carré vaut toujours 1. On peut donc supposer sans perte de généralité que I et J sont disjoints.

En utilisant la définition de la mesure μ sur Ω peut ensuite réécrire l'intégrale comme

$$\int_{\Omega} \prod_{i \in I} w_i \prod_{j \in J} w_j \mathrm{d}\mu(w) = \frac{1}{2^n} \sum_{(w_1, \dots, w_n) \in \Omega} \prod_{i \in I} w_i \prod_{j \in J} w_j,$$

avec I,J disjoints. Comme chaque w_l peut prendre la valeur 1 ou -1 le produit $\prod_{i\in I} w_i$ peut prendre la valeur 1 ou -1 indépendamment de la valeur de $\prod_{j\in J} w_j$. On voit alors bien que les termes de la somme vont se compenser et donc on vérifie bien la condition d'orthogonalité

$$\langle \varepsilon_I | \varepsilon_I \rangle = 0.$$

En utilisant la même notation on voit clairement que pour $I \subset \{1, ..., n\}$ quelconque

$$\langle \varepsilon_I | \varepsilon_I \rangle = \int_{\Omega} \prod_{i \in I} w_i \prod_{j \in I} w_j d\mu(w)$$

 $= \int_{\Omega} \prod_{i \in I} w_i^2 d\mu(w)$
 $= \int_{\Omega} 1 d\mu = \mu(\Omega) = 1.$

2. On calcule l'opérateur Δ dans la base $(\varepsilon_I)_{I\subset\{1,\ldots,n\}}$. Soit $I\subset\{1,\ldots,n\}$ quelconque,

remarquons que pour $w=(w_i)_{i\in\{1,\dots,n\}}\in\Omega$ et $w'\in V(w)$ on a deux possibilités

$$\begin{cases} w_i = w_i', \ \forall i \in I & \text{et } \varepsilon_I(w) = \varepsilon_I(w') \\ \exists ! i \in I, \ w_i \neq w_i' & \text{et } \varepsilon_I(w) = -\varepsilon_I(w') \end{cases}.$$

Alors on obtient par définition de l'opérateur Δ sur $L^2(\Omega, \mu)$

$$\begin{split} \Delta \varepsilon_I(w) &= \frac{n}{2} (\varepsilon_I(w) - \frac{1}{n} \sum_{w' \in V(w)} \varepsilon_I(w')) \\ &= \frac{n}{2} (\varepsilon_I(w) + \frac{|I|}{n} \varepsilon_I(w) - \frac{n - |I|}{n} \varepsilon_I(w)) \\ &= |I| \cdot \varepsilon_I(w). \end{split}$$

Comme $w \in \Omega$ était quelconque on en déduit

$$\Delta \varepsilon_I = |I| \cdot \varepsilon_I$$
.

3. En posant $\hat{h}(I) := \langle h | \varepsilon_I \rangle$ on a comme les $(\varepsilon_I)_I$ forment une base hilbertienne de $L^2(\Omega, \mu)$,

$$h = \sum_{I \subset \{1,\dots,n\}} \hat{h}(I) \varepsilon_I.$$

De plus on a pour les mêmes raisons

$$\Delta h = \sum_{I \subset \{1,\dots,n\}} \hat{h}(I) \Delta \varepsilon_I = \sum_{I \subset \{1,\dots,n\}} \hat{h}(I) |I| \varepsilon_I.$$

Enfin comme la famille des $(\varepsilon_I)_I$ est orthonormée la linéarité du produit scalaire donne

$$\hat{\Delta h}(I) = \langle \Delta h | \varepsilon_I \rangle = \hat{h}(I) \cdot |I|.$$

4. On prolonge φ en

$$\tilde{\varphi}: \mathbf{R}^n \longmapsto \mathbf{R}$$

$$w \longmapsto \|\sum_{i=1}^n w_i x_i\|_B.$$

On montre que $\tilde{\varphi}$ est convexe comme attendu. Soient $w, w' \in \mathbb{R}^n$, $\lambda \in [0,1]$,

$$\tilde{\varphi}(\lambda w + (1 - \lambda)w') = \|\lambda \sum_{i=1}^{n} w_{i}x_{i} + (1 - \lambda) \sum_{i=1}^{n} w'_{i}x_{i}\|_{B}
\leq \|\lambda \sum_{i=1}^{n} w_{i}x_{i}\|_{B} + \|(1 - \lambda) \sum_{i=1}^{n} w'_{i}x_{i}\|_{B}
\leq \lambda \|\sum_{i=1}^{n} w_{i}x_{i}\|_{B} + (1 - \lambda) \|\sum_{i=1}^{n} w'_{i}x_{i}\|_{B}
= \lambda \tilde{\varphi}(w) + (1 - \lambda) \tilde{\varphi}(w').$$

Pour tout $w \in \Omega$ on a $\sum_{w' \in V(w)} w' = (n-2)w$, ce qui donne donc par convexité

$$\tilde{\varphi}(\frac{n-2}{n}w) = \frac{n-2}{n}\tilde{\varphi}(w) \le \frac{1}{n}\sum_{w'\in V(w)}\tilde{\varphi}(w').$$

Ainsi

$$\tilde{\varphi}(w) - \frac{1}{n} \sum_{w' \in V(w)} \tilde{\varphi}(w') \le \frac{2}{n} \tilde{\varphi}(w),$$

soit

$$\Delta \tilde{\varphi} \leq \tilde{\varphi}$$
.

Le résultat est valable pour φ par restriction de $\tilde{\varphi}$ à Ω .

5. Dans un premier temps nous avons par la question **3.** et comme les ε_I sont unitaires

$$\langle \varphi | \Delta \varphi \rangle = \langle \sum_{I \subset \{1, \dots, n\}} \hat{\varphi}(I) \varepsilon_I, \sum_{I \subset \{1, \dots, n\}} |I| \hat{\varphi}(I) \varepsilon_I \rangle$$
$$= \sum_{I \subset \{1, \dots, n\}} |I| \hat{\varphi}(I)^2.$$

Ensuite l'inégalité de Cauchy Schwarz nous donne avec le résultat du point précédent

$$\langle \varphi | \Delta \varphi \rangle \le \|\varphi\|_{L^2} \|\Delta \varphi\|_{L^2}$$

$$\le \|\varphi\|_{L^2}^2.$$

On en déduit l'inégalité voulue

$$\sum_{I \subset \{1,\dots,n\}} |I| \hat{\varphi}(I)^2 \le \|\varphi\|_{L^2}^2.$$

On a

$$\|\varphi\|_{L^2}^2 = \sum_{w \in \Omega} \mu(\{w\}) \varphi(w)^2 = \frac{1}{2^n} \sum_{w \in \Omega} \|\sum_{i=1}^n w_i x_i\|_B^2.$$

Le point précédent nous permet d'affirmer que

$$\hat{arphi}(arphi)^2 \geq \sum_{I \subset \{1,...,n\}, |I| \geq 2} (|I|-1)\hat{arphi}(I)^2 \geq \sum_{I \subset \{1,...,n\}, |I| \geq 2} \hat{arphi}(I)^2.$$

On en déduit donc en remarquant que $\hat{\varphi}$ est nulle sur les sous ensembles de taille 1 que

$$2\hat{\varphi}(\varnothing)^2 \geq \|\varphi\|_{L^2}^2$$

soit

$$\sqrt{2}\hat{\varphi}(\emptyset) \ge \|\varphi\|_{L^2}..$$

Comme pour $w\in\Omega$ on a $\varepsilon_{\varnothing}(w)=1$ on trouve finalement l'inégalité Khinchine Kahane optimale

$$\left(\frac{1}{2^n}\sum_{w\in\Omega}\|\sum_{i=1}^n w_i x_i\|_B^2\right)^{\frac{1}{2}} \leq \sqrt{2}\left(\frac{1}{2^n}\sum_{w\in\Omega}\|\sum_{i=1}^n w_i x_i\|_B\right).$$

Problème. Théorème de Tychonoff

- **1.** Soit X un espace topologique et $x \in X$. Posons \mathcal{V}_x l'ensemble des voisinages de x dans X. L'ensemble vide n'appartient pas à \mathcal{V}_x par définition puisqu'il ne contient pas x. Une intersection finie d'ouverts est ouverte, si chacun de ces ouverts contient x l'intersection le contient toujours. Ainsi l'intersection de voisinages de x contient toujours un ouvert contenant x et \mathcal{V}_x est stable par intersections finies. Enfin si pour $F \in \mathcal{V}_x$ on a $F \subset G$ alors G contient un ouvert contenant x puisque F en contient un lui même et $G \in \mathcal{V}_x$.
- **2.** Soient \mathcal{F} , \mathcal{G} deux filtres compatibles, notons \mathcal{H} un filtre tel que \mathcal{F} , $\mathcal{G} \subset \mathcal{H}$. Soient \mathcal{F} , \mathcal{G} dans \mathcal{F} , \mathcal{G} respectivement, quelconques. Alors par hypothèse \mathcal{F} , $\mathcal{G} \in \mathcal{H}$ et par stabilité par intersection finie $\mathcal{F} \cap \mathcal{G} \in \mathcal{H}$. Comme ce dernier est un filtre il ne contient pas l'ensemble vide donc \mathcal{F} intersecte \mathcal{G} . Réciproquement, si tout élément de \mathcal{F} intersecte tout événement de \mathcal{G} posons

$$\mathcal{H} := \{ F \cap G \mid F \in \mathcal{F}, G \in \mathcal{G} \}.$$

Il est clair que $\mathcal{F}, \mathcal{G} \subset \mathcal{H}$ puisque ces premiers contiennent tous deux l'espace ambiant X. L'hypothèse nous donne directement que \mathcal{H} ne contient pas l'ensemble vide. Enfin les deux dernières propriétés d'un filtre découlent directement du fait que \mathcal{F}, \mathcal{G} sont eux mêmes des filtres.

3. Supposons que \mathcal{F} admette x comme valeur d'adhérence. Par l'absurde supposons de plus que pour un $F \in \mathcal{F}$ on ait $x \notin \overline{F}$. $X \setminus \overline{F} \in \mathcal{V}_x$ puisque c'est un ouvert contenant x. On a donc $X \setminus \overline{F} \in \mathcal{F}$ comme $\mathcal{V}_x \subset \mathcal{F}$, mais alors par les propriétés des filtres

$$\overline{F} \cap X \setminus \overline{F} = \emptyset \in \mathcal{F}$$
,

contradiction.

Réciproquement si $x \in \overline{F}$ pour tout F de \mathcal{F} , alors $F \cap V \neq \emptyset$, $\forall V \in \mathcal{V}_x$ et donc par le point **2.** \mathcal{F} et \mathcal{V}_x sont compatibles, donc \mathcal{F} admet x comme valeur d'adhérence.

4. Montrons d'abord que \mathcal{U}_X est un filtre. Par définition l'ensemble vide ne contient aucun élément donc ne contient pas $x \in X$ et donc n'appartient pas à \mathcal{U}_X . Une intersection finie de sous ensembles de X contenant x est toujours un sous ensemble de X contenant x, \mathcal{U}_X est stable par intersections finies. Enfin si $F \subset G$ pour $F \in \mathcal{U}_X$ alors G est toujours un sous ensemble de X contenant X comme Y le contient lui même.

Montrons à présent que \mathcal{U}_x est maximal. Supposons qu'il existe un filtre \mathcal{G} tel que $\mathcal{U}_x \subset \mathcal{G}$. Soit $G \in \mathcal{G}$, l'inclusion précédente nous donne $\{x\} \in \mathcal{G}$, ainsi si $x \notin G$ alors $\{x\} \cap G = \emptyset$, une contradiction. Nécessairement $x \in G$ et par définition de \mathcal{U}_x on a $G \in \mathcal{U}_x$. Comme le choix de G était arbitraire on en déduit $\mathcal{U}_x = \mathcal{G}$, \mathcal{U}_x est un ultrafiltre.

- **5.** On applique le lemme de Zorn sur le poset des filtres de X. On vérifie que l'union d'une chaine de filtres $\bigcup_{i\in\mathbb{N}}\mathcal{F}_i$ est encore un filtre. Elle ne contient pas l'ensemble vide. Si F_1,\ldots,F_n appartient à cette union il existe un m minimal tel que $F_1,\ldots,F_n\in\mathcal{F}_m$ par inclusion dans la chaine et comme $\{F_1,\ldots,F_n\}$ est un ensemble fini. Ainsi l'intersection finie $\bigcap_{k=1}^n F_k$ appartient à \mathcal{F}_m donc à l'union. Si $F\subset G$ pour un F dans l'union il existe de même un $I\in\mathbb{N}$ tel que $F\in\mathcal{F}_I$ et donc $Gn\in\mathcal{F}_I$ par les propriétés des filtres, et donc G appartient à l'union. Cette union est majorante pour la chaine et le lemme s'applique.
- **6.** Soit \mathcal{F} un filtre sur X. Supposons X compact. Le fermé \overline{F} est non vide pour tout $F \in \mathcal{F}$ et on a par la propriété des filtres que toute intersection finie $\bigcap_{i \in I} \overline{F_i}$ est non vide. Par contraposée de la propriété de Borel Lebesgue passée au complémentaire, on en déduit que

$$\cap_{F\in\mathcal{F}}\overline{F}\neq\emptyset.$$

Prenons x dans cette intersection, le point ${\bf 3.}$ nous donne directement que x est valeur d'adhérence de ${\cal F}$. Réciproquement supposons que tout filtre sur X admet une valeur d'adhérence. On applique la même caractérisation des compacts. Soit $(F_j)_{j\in J}$ une famille de fermés dont les intersections finies sont non vides, notons ${\cal F}$ le filtre engendré par ces intersections finies. Par hypothèse on trouve x valeur d'adhérence de ce filtre, x est donc dans l'intersection $\bigcap_{j\in J} F_j$ qui est donc non vide puisqu'à $j\in J$ fixé on a $F_j\cap V\neq\emptyset$ pour tout voisinage V de x et F_j est fermé.

7. Soit $f: X \longmapsto Y$ une application entre espaces topologiques et soit \mathcal{F} un filtre sur X, vérifions que le filtre image $f_*(\mathcal{F})$ satisfait les trois axiomes d'un filtre. Le seul ensemble dont la préimage par une application est l'ensemble vide est l'ensemble vide lui même, comme \mathcal{F} est un filtre \mathcal{F} ne contient pas cet ensemble et donc $f_*(\mathcal{F})$ non plus. On a pour $F_1, \ldots, F_n \in \mathcal{F}$ l'égalité

$$f^{-1}(\cap_{i=1}^n F_i) = \cap_{i=1}^n f^{-1}(F_i),$$

comme \mathcal{F} est stable par intersections finies on voit directement que $f_*\mathcal{F}$ l'est aussi. Enfin pour $F \subset G \subset Y$ avec $F \in f_*(\mathcal{F})$ alors par définition $f^{-1}(F) \in \mathcal{F}$. On a de plus l'inclusion suivante

$$f^{-1}(F) \subset f^{-1}(G).$$

Comme \mathcal{F} est un filtre $f^{-1}(G) \in \mathcal{F}$ et donc par définition du filtre image $G \in f_*(\mathcal{F})$.

8. Posons $X := \prod_{i \in I} X_i$ et supposons que \mathcal{F} converge vers $x \in X$. Fixons $i \in I$ et montrons que $(p_i)_*(\mathcal{F})$ converge vers $p_i(x)$. Par définition de la topologie produit la projection canonique $p_i : X \longmapsto X_i$ est continue, la préimage d'un ouvert par une application continue est un ouvert et la préimage préserve l'inclusion. Ainsi si $V \in \mathcal{V}_{p_i(x)}$ on a $V' = p_i^{-1}(V) \in \mathcal{V}_x$. Mais comme \mathcal{F} est plus fin que \mathcal{V}_x , $V' \in \mathcal{F}$ et donc par définition du filtre image $V' \in (p_i)_*(\mathcal{F})$.

Réciproquement soit V un voisinage de $(x_i)_{i \in I}$, la définition de la topologie produit garantit l'existence d'ouverts U_{i_1}, \ldots, U_{i_n} , voisinages de x_{i_1}, \ldots, x_{i_n} et tels que

$$\bigcap_{k=1}^n \pi_{i_k}^{-1}(U_{i_k}) = \{(y_i) \mid (y_{i_1}, \dots, y_{i_n}) \in U_{i_1}, \dots, U_{i_n}\}.$$

Pour $k \in \{1, ..., n\}$ on a donc $U_{i_k} \in (\pi_{i_k})_*(\mathcal{F})$. Par définition du filtre image cela signifie que V contient l'intersection de n éléments de \mathcal{F} et donc par les propriétés des filtres $V \in \mathcal{F}$. Ainsi \mathcal{F} est plus fin que \mathcal{V}_x et \mathcal{F} converge.

9. On montre que l'image d'un ultrafiltre est toujours un ultrafiltre. Nous avons déjà montré que c'est un filtre, montrons de plus qu'il est dans ce cas maximal. Soient $\mathcal F$ un filtre maximal sur X et $\mathcal G$ un filtre sur Y tel que

$$f_*(\mathcal{F})\subset\mathcal{G}.$$

Supposons par l'absurde qu'il existe $U \in \mathcal{G}$ tel que $U \notin f_*(\mathcal{F})$. Par définition du filtre image cela signifie que $f^{-1}(U) \notin \mathcal{F}$ ou encore que $X \setminus f^{-1}(U) \in \mathcal{F}$. Ainsi

$$f^{-1}(Y \setminus U) = X \setminus f^{-1}(U) \in \mathcal{F}.$$

Par définition du filtre image cela donne $Y \setminus U \in f_*(\mathcal{F})$. Montrons que cela implique que $f_*(\mathcal{F})$ est un ultrafiltre. Supposons que $f_*(\mathcal{F})$ ne soit pas un ultrafiltre, alors pour \mathcal{G} strictement plus fin on peut trouver $U \in \mathcal{G} \setminus f_*(\mathcal{F})$ et on ne peut avoir $Y \setminus U \in \mathcal{G}$ sinon

par stabilité par intersections finies \mathcal{G} devrait contenir l'ensemble vide. Ainsi par inclusion $Y \setminus U$ n'appartient pas au filtre image. Comme nous avons montré que pour tout sous ensemble $U \subset Y$ soit $U \in f_*(\mathcal{F})$ soit $Y \setminus U \in f_*(\mathcal{F})$ on en déduit que ce dernier est maximal.

10. Soit $(X_i)_{i\in I}$ une famille de compacts et soit \mathcal{F} un ultrafiltre sur $X:=\prod_{i\in I}X_i$. Le point **9.** nous donne que $(p_i)_*(\mathcal{F})$ est un ultrafiltre sur X_i qui converge vers un $x_i\in X_i$ par compacité. D'après la question **8.** \mathcal{F} converge vers $(x_i)_{i\in I}$. Ainsi tout ultrafiltre sur X converge, la question **6.** assure donc la compacité de X. Nous avons montré le théorème de Tychonoff.