CSCI 5451 Fall 2015 Week 5 Notes

Professor Ellen Gethner

September 14, 2015

Greedy Algorithms: Second Big Example

► Big Greedy Example 2: Data Compression by way of Huffman Encoding

Greedy Algorithms: Second Big Example

- Big Greedy Example 2: Data Compression by way of Huffman Encoding
- Problem. Given a text file, find a compressed file, as small as possible, such that the original file can be reconstructed fully and efficiently.

Greedy Algorithms: Second Big Example

- ► Big Greedy Example 2: Data Compression by way of Huffman Encoding
- Problem. Given a text file, find a compressed file, as small as possible, such that the original file can be reconstructed fully and efficiently.
- Some Applications.
 - 1. Storage savings
 - 2. Communications (when the cost of sending information is greater than the cost of reconstruction)

▶ For purposes of illustration, assume that our alphabet is a sequence of letters from $\Sigma = \{A, B, C, ..., X, Y, Z\}$.

- ▶ For purposes of illustration, assume that our alphabet is a sequence of letters from $\Sigma = \{A, B, C, ..., X, Y, Z\}$.
- ► Each character in an encoding will be a unique string of bits.

- ▶ For purposes of illustration, assume that our alphabet is a sequence of letters from $\Sigma = \{A, B, C, ..., X, Y, Z\}$.
- ► Each character in an encoding will be a unique string of bits.
- ▶ If the length of each character is the same, say $k \in \mathbb{N}$, then the length of the encoded file is nk where n is the number of characters in the file.

- ▶ For purposes of illustration, assume that our alphabet is a sequence of letters from $\Sigma = \{A, B, C, ..., X, Y, Z\}$.
- Each character in an encoding will be a unique string of bits.
- ▶ If the length of each character is the same, say $k \in \mathbb{N}$, then the length of the encoded file is nk where n is the number of characters in the file.
- ► For example, the length of each character in standard ASCII is seven bits.

- ▶ For purposes of illustration, assume that our alphabet is a sequence of letters from $\Sigma = \{A, B, C, ..., X, Y, Z\}$.
- ► Each character in an encoding will be a unique string of bits.
- ▶ If the length of each character is the same, say $k \in \mathbb{N}$, then the length of the encoded file is nk where n is the number of characters in the file.
- ► For example, the length of each character in standard ASCII is seven bits.
- ▶ Better Idea. Choose smaller bit representations for characters that occur more frequently (like "e" in the English language).

▶ In ASCII, the letter A is encoded by 1000001.

- ▶ In ASCII, the letter A is encoded by 1000001.
- Suppose in our new encoding scheme we decide to shorten A to 1001.

- ▶ In ASCII, the letter A is encoded by 1000001.
- Suppose in our new encoding scheme we decide to shorten A to 1001.
- ► Then we could no longer encode M by 1001101 because the new version of A would be a prefix of M, thus causing an ambiguity.

- ▶ In ASCII, the letter A is encoded by 1000001.
- Suppose in our new encoding scheme we decide to shorten A to 1001.
- Then we could no longer encode M by 1001101 because the new version of A would be a prefix of M, thus causing an ambiguity.
- We could use delimiters, but that would defeat our purpose of compression.

- ▶ In ASCII, the letter A is encoded by 1000001.
- Suppose in our new encoding scheme we decide to shorten A to 1001.
- Then we could no longer encode M by 1001101 because the new version of A would be a prefix of M, thus causing an ambiguity.
- We could use delimiters, but that would defeat our purpose of compression.
- ▶ Thus, in an encoding, we should as that all of the prefixes of the encoding of one character are not the same as a complete encoding of any other character.

- ▶ In ASCII, the letter A is encoded by 1000001.
- Suppose in our new encoding scheme we decide to shorten A to 1001.
- ▶ Then we could no longer encode M by 1001101 because the new version of A would be a prefix of M, thus causing an ambiguity.
- ▶ We could use delimiters, but that would defeat our purpose of compression.
- ▶ Thus, in an encoding, we should as that all of the prefixes of the encoding of one character are not the same as a complete encoding of any other character.
- ► The above constraint is called the Prefix Constraint.

Problem. Given text file,

- Problem. Given text file,
- find an encoding of the alphabet of characters

- Problem. Given text file,
- find an encoding of the alphabet of characters
- that satisfies the prefix constraint and

- Problem. Given text file,
- find an encoding of the alphabet of characters
- that satisfies the prefix constraint and
- that minimizes the total number of bits needed to encode the text.

▶ **Set-up.** Let the text file be called *F* and

- ▶ **Set-up.** Let the text file be called *F* and
- ▶ denote the characters in the text file by $C_1, C_2, ..., C_n$ and suppose character C_i occurs f_i times in the text file.

- ▶ **Set-up.** Let the text file be called *F* and
- ▶ denote the characters in the text file by $C_1, C_2, ..., C_n$ and suppose character C_i occurs f_i times in the text file.
- ▶ The quantity f_i is called the *frequency* of character C_i .

- ▶ **Set-up.** Let the text file be called *F* and
- ▶ denote the characters in the text file by $C_1, C_2, ..., C_n$ and suppose character C_i occurs f_i times in the text file.
- ▶ The quantity f_i is called the *frequency* of character C_i .
- ▶ **Notation.** The encoding will be called *E*,

- ▶ **Set-up.** Let the text file be called *F* and
- ▶ denote the characters in the text file by $C_1, C_2, ..., C_n$ and suppose character C_i occurs f_i times in the text file.
- ▶ The quantity f_i is called the *frequency* of character C_i .
- ▶ **Notation.** The encoding will be called *E*,
- ▶ C_i will be represented by big string S_i of length s_i .

- ▶ **Set-up.** Let the text file be called *F* and
- ▶ denote the characters in the text file by $C_1, C_2, ..., C_n$ and suppose character C_i occurs f_i times in the text file.
- ▶ The quantity f_i is called the *frequency* of character C_i .
- ▶ **Notation.** The encoding will be called *E*,
- ▶ C_i will be represented by big string S_i of length s_i .
- ▶ Then the length of *F* encoded by *E* is

$$L(E,F) = \sum_{i=1}^{n} s_{i} f_{i}.$$

Another Restatement of the Data Compression Problem

► Recall: $L(E,F) = \sum_{i=1}^{n} s_i f_i$.

Another Restatement of the Data Compression Problem

- ▶ Recall: $L(E, F) = \sum_{i=1}^{n} s_i f_i$.
- ► **Goal.** Find an encoding *E* that satisfies the prefix constraint, and

Another Restatement of the Data Compression Problem

- ► Recall: $L(E, F) = \sum_{i=1}^{n} s_i f_i$.
- ► **Goal.** Find an encoding *E* that satisfies the prefix constraint, and
- ▶ that minimizes L(E, F).

How should the encoding behave?

- ► How should the encoding behave?
- Scan through the bit sequence left to right until we arrive at a character.

- How should the encoding behave?
- Scan through the bit sequence left to right until we arrive at a character.
- Record the character and continued scanning until another character is found.

- How should the encoding behave?
- Scan through the bit sequence left to right until we arrive at a character.
- Record the character and continued scanning until another character is found.
- Record and repeat.

 Consider a binary tree in which each node has either two children or no children, and moreover

- Consider a binary tree in which each node has either two children or no children, and moreover
- siblings are labeled with 0 or 1 and

- Consider a binary tree in which each node has either two children or no children, and moreover
- siblings are labeled with 0 or 1 and
- no two siblings have the same label.

- Consider a binary tree in which each node has either two children or no children, and moreover
- siblings are labeled with 0 or 1 and
- no two siblings have the same label.
- If we build such a tree and somehow use the leaves of the tree in the encoding, then the encoding will satisfy the prefix constraint.

- Consider a binary tree in which each node has either two children or no children, and moreover
- siblings are labeled with 0 or 1 and
- no two siblings have the same label.
- If we build such a tree and somehow use the leaves of the tree in the encoding, then the encoding will satisfy the prefix constraint.
- ► That is, when the encoded file is scanned and we reach a leaf, we determine the encoding of the character.

▶ Another Problem Restatement. Construct the binary tree that minimizes L(E, F).

- ▶ Another Problem Restatement. Construct the binary tree that minimizes L(E, F).
- ▶ **Goal.** Reduce the problem with n characters to one of n-1 characters so that we can use inductive reasoning.

- ▶ Another Problem Restatement. Construct the binary tree that minimizes L(E, F).
- ▶ **Goal.** Reduce the problem with n characters to one of n-1 characters so that we can use inductive reasoning.
- ▶ We won't eliminate a character from the alphabet!

- ▶ Another Problem Restatement. Construct the binary tree that minimizes L(E, F).
- ▶ **Goal.** Reduce the problem with n characters to one of n-1 characters so that we can use inductive reasoning.
- We won't eliminate a character from the alphabet!
- ▶ Instead, we'll create a new artificial character made up of two low frequency characters.

▶ Let C_i and C_j be the two characters of lowest frequency, where

- ▶ Let C_i and C_j be the two characters of lowest frequency, where
- we arbitrarily break ties whenever necessary.

- ▶ Let C_i and C_j be the two characters of lowest frequency, where
- we arbitrarily break ties whenever necessary.
- ▶ We will see shortly that there exists a binary tree that minimizes L(E, F) in which C_i and C_j correspond to leaves of maximum distance from the root.

- ▶ Let C_i and C_j be the two characters of lowest frequency, where
- we arbitrarily break ties whenever necessary.
- ▶ We will see shortly that there exists a binary tree that minimizes L(E, F) in which C_i and C_j correspond to leaves of maximum distance from the root.
- ▶ In fact, since each node has either 0 or 2 children, we can always assume that C_i and C_j are siblings.

- ▶ Let C_i and C_j be the two characters of lowest frequency, where
- we arbitrarily break ties whenever necessary.
- ▶ We will see shortly that there exists a binary tree that minimizes L(E, F) in which C_i and C_j correspond to leaves of maximum distance from the root.
- ▶ In fact, since each node has either 0 or 2 children, we can always assume that C_i and C_j are siblings.
- ▶ The new character is called C_{ij} and will have frequency $f_i + f_j$, where recall that f_x is the frequency of C_x .

▶ The new problem has and alphabet of n-1 characters (n-2) old and one new) and can be solved by an induction hypothesis.

- ▶ The new problem has and alphabet of n-1 characters (n-2) old and one new) and can be solved by an induction hypothesis.
- ▶ Obtain a solution to the original problem by substituting an internal node in the reduced problem

- ▶ The new problem has and alphabet of n-1 characters (n-2) old and one new) and can be solved by an induction hypothesis.
- ▶ Obtain a solution to the original problem by substituting an internal node in the reduced problem
- ▶ with two leaves corresponding to C_i and C_j in place of the leaf corresponding to C_{ij}.

- ▶ The new problem has and alphabet of n-1 characters (n-2) old and one new) and can be solved by an induction hypothesis.
- ▶ Obtain a solution to the original problem by substituting an internal node in the reduced problem
- ▶ with two leaves corresponding to C_i and C_j in place of the leaf corresponding to C_{ij}.
- ► The process that we'll make precise is called Huffman Encoding and the tree so constructed is called a Huffman Tree.

- ▶ The new problem has and alphabet of n-1 characters (n-2) old and one new) and can be solved by an induction hypothesis.
- ► Obtain a solution to the original problem by substituting an internal node in the reduced problem
- ▶ with two leaves corresponding to C_i and C_j in place of the leaf corresponding to C_{ij}.
- ► The process that we'll make precise is called Huffman Encoding and the tree so constructed is called a Huffman Tree.
- ► We'll do an example before writing down the algorithm.

▶ The textfile is F = helloyellowcows

- ▶ The textfile is F = helloyellowcows
- ▶ The alphabet of characters is $\{h, e, l, o, y, w, c, s\}$, and

- ▶ The textfile is F = helloyellowcows
- ▶ The alphabet of characters is $\{h, e, l, o, y, w, c, s\}$, and
- ▶ the array of corresponding frequencies is $\{1, 2, 4, 3, 1, 2, 1, 1\}$.

- ▶ The textfile is F = helloyellowcows
- ▶ The alphabet of characters is $\{h, e, l, o, y, w, c, s\}$, and
- ▶ the array of corresponding frequencies is $\{1, 2, 4, 3, 1, 2, 1, 1\}$.
- ▶ That is, h occurs once in F, e occurs twice in F, and so on.

- ▶ The textfile is *F* = *helloyellowcows*
- ▶ The alphabet of characters is $\{h, e, l, o, y, w, c, s\}$, and
- ▶ the array of corresponding frequencies is $\{1, 2, 4, 3, 1, 2, 1, 1\}$.
- ▶ That is, h occurs once in F, e occurs twice in F, and so on.
- Here comes the Huffman Tree...

Example, continued

► Each internal node has two children; assign the left child a 0 and the right child a 1 (on edges to avoid clutter).

Example, continued

▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .

- ▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .
- $c_1 = \ell = 00$ cost = $4 \times 2 = 8$ (frequency \times length)

- ▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .
- $c_1 = \ell = 00$ cost = $4 \times 2 = 8$ (frequency \times length)
- $c_2 = e = 010$ cost = $2 \times 3 = 6$

- ▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .
- $c_1 = \ell = 00$ cost = $4 \times 2 = 8$ (frequency \times length)
- $c_2 = e = 010$ $cost = 2 \times 3 = 6$
- $c_3 = h = 00$ $cost = 1 \times 4 = 4$

- ▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .
- ▶ $c_1 = \ell = 00$ cost = $4 \times 2 = 8$ (frequency × length)
- $c_2 = e = 010$ cost = $2 \times 3 = 6$
- $c_3 = h = 00$ cost = $1 \times 4 = 4$
- $c_4 = y = 0111$ cost $= 1 \times 4 = 4$

- ▶ Determine the encoding of each character α by taking the unique path from the root to the leaf corresponding to character α .
- ▶ $c_1 = \ell = 00$ cost = $4 \times 2 = 8$ (frequency × length)
- $c_2 = e = 010$ cost = $2 \times 3 = 6$
- $c_3 = h = 00$ cost = $1 \times 4 = 4$
- $c_4 = y = 0111 \quad \cos t = 1 \times 4 = 4$
- $c_5 = c = 1000$ cost $= 1 \times 4 = 4$

Example, finished

•
$$c_6 = s = 1001$$
 cost = $1 \times 4 = 4$

Example, finished

- $c_6 = s = 1001$ cost = $1 \times 4 = 4$
- $c_7 = w = 101 \quad \cos t = 2 \times 3 = 6$

Example, finished

- $c_6 = s = 1001$ cost $= 1 \times 4 = 4$
- $c_7 = w = 101 \quad \cos t = 2 \times 3 = 6$
- $c_8 = o = 11 \quad \cos t = 3 \times 2 = 6$

Example, finished

- $c_6 = s = 1001$ cost $= 1 \times 4 = 4$
- $c_7 = w = 101 \quad \cos t = 2 \times 3 = 6$
- $c_8 = o = 11 \quad \cos t = 3 \times 2 = 6$
- ► Thus, tallying the results, we see that L(E, helloyellowcows) = 42.

Implementation of Huffman Encoding

▶ **To Do.** Insertions, deletions, and build a binary tree.

Implementation of Huffman Encoding

- ▶ **To Do.** Insertions, deletions, and build a binary tree.
- Using a heap is an efficient method of accomplishing the former two items and

Implementation of Huffman Encoding

- ▶ **To Do.** Insertions, deletions, and build a binary tree.
- Using a heap is an efficient method of accomplishing the former two items and
- runs in time O(lg(n)) in the worst case.

Algorithm HuffmanEncoding(S, f)

- ▶ **Input** *S* (a string of characters) and *f* (the array of frequencies of *S*)
- ▶ **Output** *T* (the Huffman Tree for *S*)
- begin
- insert characters into heap H according to their
- frequencies (lowest to highest)
- while H is not empty do
 - if H contains only one character X then
- make X the root of tree T
- else pick two characters X and Y with lowest
- frequencies f_x and f_y and **delete** them from H;
- replace X and Y with a new character Z whose
- frequency is $f_X + f_Y$;
- ▶ insert Z to H.
- \blacktriangleright make X and Y children of Z in T.
- end

► **Theorem.** The Huffman Tree produces an optimal code. That is, the encoding *E* derived by Algorithm HuffmanEncoding will minimize *L*(*E*, *F*).

- ► Theorem. The Huffman Tree produces an optimal code. That is, the encoding E derived by Algorithm HuffmanEncoding will minimize L(E, F).
- ▶ **Proof.** It suffices to show

- ► Theorem. The Huffman Tree produces an optimal code. That is, the encoding E derived by Algorithm HuffmanEncoding will minimize L(E, F).
- ▶ **Proof.** It suffices to show
- ▶ **Greedy Choice Property:** (1) Any optimal code tree for file F with alphabet $C = \{C_1, C_2, \ldots, C_n\}$ has a and b at maximum distance from the root of T, where

- ► Theorem. The Huffman Tree produces an optimal code. That is, the encoding E derived by Algorithm HuffmanEncoding will minimize L(E, F).
- Proof. It suffices to show
- ▶ **Greedy Choice Property:** (1) Any optimal code tree for file F with alphabet $C = \{C_1, C_2, \ldots, C_n\}$ has a and b at maximum distance from the root of T, where
- ▶ a and b are two characters of lowest frequency in F, and

- ► Theorem. The Huffman Tree produces an optimal code. That is, the encoding E derived by Algorithm HuffmanEncoding will minimize L(E, F).
- Proof. It suffices to show
- ▶ **Greedy Choice Property:** (1) Any optimal code tree for file F with alphabet $C = \{C_1, C_2, \ldots, C_n\}$ has a and b at maximum distance from the root of T, where
- ▶ a and b are two characters of lowest frequency in F, and
- ▶ **Optimal Substructure Property:** (2) Any optimal code tree for F is optimal is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$

- ► Theorem. The Huffman Tree produces an optimal code. That is, the encoding E derived by Algorithm HuffmanEncoding will minimize L(E, F).
- Proof. It suffices to show
- ▶ **Greedy Choice Property:** (1) Any optimal code tree for file F with alphabet $C = \{C_1, C_2, \ldots, C_n\}$ has a and b at maximum distance from the root of T, where
- ▶ a and b are two characters of lowest frequency in F, and
- ▶ **Optimal Substructure Property:** (2) Any optimal code tree for F is optimal is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$
- with the frequency of new character <u>ab</u> given by $f_a + f_b$.

▶ Verification of (1), Greedy Choice Property.

- ▶ Verification of (1), Greedy Choice Property.
- ▶ Let *T* be an optimal code tree for *C* and suppose *c* and *d* are siblings farthest from the root of *T*.

- Verification of (1), Greedy Choice Property.
- ▶ Let *T* be an optimal code tree for *C* and suppose *c* and *d* are siblings farthest from the root of *T*.
- Swap a and b (lowest frequency characters) with c and d respectively to form new tree T'.

- Verification of (1), Greedy Choice Property.
- ▶ Let *T* be an optimal code tree for *C* and suppose *c* and *d* are siblings farthest from the root of *T*.
- Swap a and b (lowest frequency characters) with c and d respectively to form new tree T'.
- Let $\ell_T(x)$ be the length of encoded character x in tree T, and

- Verification of (1), Greedy Choice Property.
- ▶ Let *T* be an optimal code tree for *C* and suppose *c* and *d* are siblings farthest from the root of *T*.
- Swap a and b (lowest frequency characters) with c and d respectively to form new tree T'.
- Let $\ell_T(x)$ be the length of encoded character x in tree T, and
- ▶ Let $\ell_{T'}(x)$ be the length of encoded character x in tree T'.

▶ Then COST(T) - COST(T')

- ▶ Then COST(T) COST(T')
- $= \sum_{x \in C} f_x \ell_T(x) \sum_{x \in C} f_x \ell_{T'}(x)$

- ▶ Then COST(T) COST(T')
- $= \sum_{x \in C} f_x \ell_T(x) \sum_{x \in C} f_x \ell_{T'}(x)$
- $= f_a(\ell_T(a) \ell_{T'}(a)) + f_b(\ell_T(b) \ell_{T'}(b))$
- $+ f_c(\ell_T(c) \ell_{T'}(c)) + f_d(\ell_T(d) \ell_{T'}(d)) = (*).$

- ▶ Then COST(T) COST(T')
- $= \sum_{x \in C} f_x \ell_T(x) \sum_{x \in C} f_x \ell_{T'}(x)$
- $= f_a(\ell_T(a) \ell_{T'}(a)) + f_b(\ell_T(b) \ell_{T'}(b))$
- $+ f_c(\ell_T(c) \ell_{T'}(c)) + f_d(\ell_T(d) \ell_{T'}(d)) = (*).$
- ▶ But $\ell_{T'}(a) = \ell_T(c)$ and $\ell_{T'}(b) = \ell_T(d)$ and

- ▶ Then COST(T) COST(T')
- $= \sum_{x \in C} f_x \ell_T(x) \sum_{x \in C} f_x \ell_{T'}(x)$
- $= f_a(\ell_T(a) \ell_{T'}(a)) + f_b(\ell_T(b) \ell_{T'}(b))$
- $+ f_c(\ell_T(c) \ell_{T'}(c)) + f_d(\ell_T(d) \ell_{T'}(d)) = (*).$
- ▶ But $\ell_{T'}(a) = \ell_T(c)$ and $\ell_{T'}(b) = \ell_T(d)$ and
- $\ell_{T'}(c) = \ell_T(a) \text{ and } \ell_{T'}(d) = \ell_T(b).$

▶ Thus (*) on the previous slide can be rewritten as

► Thus (*) on the previous slide can be rewritten as

$$f_a(\ell_T(a) - \ell_T(c)) + f_b(\ell_T(b) - \ell_T(d)) + f_c(\ell_T(c) - \ell_T(a)) + f_d(\ell_T(d) - \ell_T(b))$$

► Thus (*) on the previous slide can be rewritten as

$$f_a(\ell_T(a) - \ell_T(c)) + f_b(\ell_T(b) - \ell_T(d)) + f_c(\ell_T(c) - \ell_T(a)) + f_d(\ell_T(d) - \ell_T(b))$$

$$= (f_c - f_a)(\ell_T(c) - \ell_T(a)) + (f_d - f_b)(\ell_T(d) - \ell_T(b))$$

- ▶ Thus (*) on the previous slide can be rewritten as
- $f_a(\ell_T(a) \ell_T(c)) + f_b(\ell_T(b) \ell_T(d)) + f_c(\ell_T(c) \ell_T(a)) + f_d(\ell_T(d) \ell_T(b))$
- $= (f_c f_a)(\ell_T(c) \ell_T(a)) + (f_d f_b)(\ell_T(d) \ell_T(b))$
- ▶ > 0 because
 - $f_d \geq f_b$ and $f_c \geq f_a$, and
 - $\ell_T(d) \ge \ell_T(b)$ and $\ell_T(c) \ge \ell_T(a)$.

- ► Thus (*) on the previous slide can be rewritten as
- $f_a(\ell_T(a) \ell_T(c)) + f_b(\ell_T(b) \ell_T(d)) + f_c(\ell_T(c) \ell_T(a)) + f_d(\ell_T(d) \ell_T(b))$
- $= (f_c f_a)(\ell_T(c) \ell_T(a)) + (f_d f_b)(\ell_T(d) \ell_T(b))$
- ▶ ≥ 0 because
 - $f_d \geq f_b$ and $f_c \geq f_a$, and
 - $\ell_T(d) \ge \ell_T(b)$ and $\ell_T(c) \ge \ell_T(a)$.
- ► This completes the verification of (1) (the Greedy Choice Property).

▶ **Subconclusion.** We may assume WLOG that any optimal code tree has low frequency characters at maximum distance from the root of *T*.

- ▶ **Subconclusion.** We may assume WLOG that any optimal code tree has low frequency characters at maximum distance from the root of *T*.
- ▶ That is, low frequency characters are leaves of *T*.

▶ Verification of (2), The Optimal Substructure Property.

- ▶ Verification of (2), The Optimal Substructure Property.
- ▶ Let *T* be any optimal code tree for file *F* with alphabet *C*.

- ▶ Verification of (2), The Optimal Substructure Property.
- ▶ Let *T* be any optimal code tree for file *F* with alphabet *C*.

- Verification of (2), The Optimal Substructure Property.
- ▶ Let *T* be any optimal code tree for file *F* with alphabet *C*.

▶ BWOC suppose tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is not optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$.

- Verification of (2), The Optimal Substructure Property.
- ▶ Let *T* be any optimal code tree for file *F* with alphabet *C*.

▶ BWOC suppose tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is not optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$.

▶ Consider T', an optimal code tree for file F with alphabet C.

▶ Consider T', an optimal code tree for file F with alphabet C.

▶ By earlier work we know a and b are leaves of T', and

ightharpoonup Consider T', an optimal code tree for file F with alphabet C.

- ▶ By earlier work we know a and b are leaves of T', and
- \triangleright call the remainder of the tree (minus a and b) U'.

▶ Then $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$

▶ Then
$$COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$$

$$= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b) \ell_T(a)$$

▶ Then
$$COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$$

$$= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b) \ell_T(a)$$

▶ (because a and b are siblings, in which case $\ell_T(a) = \ell_T(b)$)

- ▶ Then $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$
- $= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b) \ell_T(a)$
- ▶ (because a and b are siblings, in which case $\ell_T(a) = \ell_T(b)$)
- $= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b)(\ell_U(\underline{ab}) + 1)$

- ▶ Then $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$
- $= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b) \ell_T(a)$
- ▶ (because a and b are siblings, in which case $\ell_T(a) = \ell_T(b)$)
- $= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b)(\ell_U(\underline{ab}) + 1)$
- (because a is one level below \underline{ab} in U)

▶ Then
$$COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_a \ell_T(a) + f_b \ell_T(b)$$

$$= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b) \ell_T(a)$$

▶ (because a and b are siblings, in which case $\ell_T(a) = \ell_T(b)$)

$$= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + (f_a + f_b)(\ell_U(\underline{ab}) + 1)$$

• (because a is one level below \underline{ab} in U)

$$= \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{$$

So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$

So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$

$$ightharpoonup = COST(U) + f_{\underline{ab}}.$$

So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$

$$\triangleright = COST(U) + f_{\underline{ab}}.$$

▶ Similarly, $COST(T') = COST(U') + f_{\underline{ab}}$.

So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$

$$ightharpoonup = COST(U) + f_{\underline{ab}}.$$

- ▶ Similarly, $COST(T') = COST(U') + f_{\underline{ab}}$.
- ▶ We have assumed that U is not optimal and thus COST(U') < COST(U) in which case

- So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$
- $\triangleright = COST(U) + f_{\underline{ab}}.$
- ▶ Similarly, $COST(T') = COST(U') + f_{\underline{ab}}$.
- ▶ We have assumed that U is not optimal and thus COST(U') < COST(U) in which case
- $COST(U') + f_{\underline{a}\underline{b}} < COST(U) + f_{\underline{a}\underline{b}}$

- So far we have $COST(T) = \sum_{x \in C \setminus \{a,b\}} f_x \ell_T(x) + f_{\underline{a}\underline{b}} \ell_U(\underline{a}\underline{b}) + f_{\underline{a}\underline{b}}$
- $ightharpoonup = COST(U) + f_{ab}.$
- ▶ Similarly, $COST(T') = COST(U') + f_{\underline{ab}}$.
- ▶ We have assumed that U is not optimal and thus COST(U') < COST(U) in which case
- $COST(U') + f_{\underline{ab}} < COST(U) + f_{\underline{ab}}$
- ▶ \Rightarrow COST(T') < COST(T), a contradiction (since T is optimal).

▶ The code tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$,

- ▶ The code tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$,
- and we have verified property (2), the optimal substructure property.

- ▶ The code tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$,
- and we have verified property (2), the optimal substructure property.
- Hence the HuffmanEncoding Algorithm is optimal.

- ▶ The code tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$,
- and we have verified property (2), the optimal substructure property.
- Hence the HuffmanEncoding Algorithm is optimal.
- QED

- ▶ The code tree $U = T \setminus \{a, b\} \cup \{\underline{ab}\}$ is optimal for $C \setminus \{a, b\} \cup \{\underline{ab}\}$,
- and we have verified property (2), the optimal substructure property.
- Hence the HuffmanEncoding Algorithm is optimal.
- QED
- ► Exercise: What is the run time of Algorithm HuffmanEncoding?

Next

Graph Theory and Graph Algorithms