Задание 12.

Ортогональное преобразование A в самосопряженное преобразование B пространства геометрических векторов V_3 в ортонормированном базисе $\bar{i}, \bar{j}, \bar{k}$ имеют соответственно матрицы

$$A = \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix}; B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Каждое преобразование привести к каноническому виду, т. е. найти ортонормированный базис s_1, s_2, s_3 , в котором матрица преобразования имеет канонический вид, и найти эту матрицу. Выяснить геометрический смысл каждого преобразования.

Решение.

Преобразование для матрицы A:

1. Составим характеристическое уравнение $det(A - \lambda E) = 0$ матрицы *A*:

$$\begin{vmatrix} \frac{2}{3} - \lambda & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} - \lambda & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} - \lambda \end{vmatrix} = 0 \Leftrightarrow \frac{1}{3^3} \begin{vmatrix} 2 - 3\lambda & 2 & -1 \\ -1 & 2 - 3\lambda & 2 \\ 2 & -1 & 2 - 3\lambda \end{vmatrix} = 0.$$

Сделаем замену $t = 3\lambda$ и разложим определитель:

$$\begin{vmatrix} 2-t & 2 & -1 \\ -1 & 2-t & 2 \\ 2 & -1 & 2-t \end{vmatrix} = 0 \Leftrightarrow (2-t)^3 + 8 - 1 + 4 - 2t + 4$$

 $-2t = 8 - 12t + 6t^2 - t^3 + 8 - 1 + 12 - 6t = 27 - 18t + 6t^2 - t^3 = 0$ Так как собственное значение ортогонального преобразования или $\lambda = 1$, или $\lambda = -1$, то полученное уравнение должно иметь корень t = 3 либо t = -3. Подстановкой убеждаемся, что корень t = 3 подходит. Разделив уравнение на (t - 3), получим $t^2 - 3t + 9 = 0$, которое имеет два комплексно

сопряженных корня $t_{2,3}=\frac{3\pm\sqrt{27}}{2}$. Значит, характеристическое уравнение имеет корни $\lambda_1=1, \lambda_{2,3}=\frac{1\pm i\sqrt{3}}{2}$. У всех корней кратность 1.

2. Для действительного корня $\lambda_1 = 1$ кратности 1 находим фундаментальную систему решений однородной системы $(A - \lambda_1 E)x = o$. Приводим матрицу системы к упрощенному виду:

$$A - \lambda_1 E = \begin{pmatrix} \frac{2}{3} - 1 & \frac{2}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} - 1 & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} - 1 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ -1 & -1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Общее решение системы: $x_1 = x_3$, $x_2 = x_3$. Следовательно, фундаментальная система содержит решение $\phi_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$. Нормируя это решение, получаем столбец $s_1 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}^T$.

3. Для пары комплексных сопряженных корней $\lambda_{2,3} = \frac{1}{2} \pm \frac{i\sqrt{3}}{2}$ нужно искать фундаментальную систему решений однородной системы $(A - (\frac{1}{2} - \frac{i\sqrt{3}}{2})E)z = o$. Приводим матрицу к упрощенному виду:

$$A - \lambda_3 E = \begin{pmatrix} \frac{2}{3} - (\frac{1}{2} - \frac{i\sqrt{3}}{2}) & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} - (\frac{1}{2} - \frac{i\sqrt{3}}{2}) & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} - (\frac{1}{2} - \frac{i\sqrt{3}}{2}) \end{pmatrix} \sim \begin{pmatrix} 4 - 3 + 3i\sqrt{3} & 4 & -2 \\ -2 & 4 - 3 + 3i\sqrt{3} & 4 & -2 \\ 4 & -2 & 4 - 3 + 3i\sqrt{3} \end{pmatrix} \sim \begin{pmatrix} 1 + 3i\sqrt{3} & 4 & -2 \\ -2 & 1 + 3i\sqrt{3} & 4 & -2 \\ 4 & -2 & 1 + 3i\sqrt{3} & 4 & -2 \\ -2 & 1 + 3i\sqrt{3$$

$$\sim \begin{pmatrix}
4 & -2 & 1 + 3i\sqrt{3} \\
28 & 4 - 12i\sqrt{3} & -2 + 6i\sqrt{3} \\
-2 & 1 + 3i\sqrt{3} & 4
\end{pmatrix}
\sim \begin{pmatrix}
4 & -2 & 1 + 3i\sqrt{3} \\
0 & 18 - 12i\sqrt{3} & -9 - 15i\sqrt{3} \\
0 & 6i\sqrt{3} & 9 + 3i\sqrt{3}
\end{pmatrix}.$$

Вторая и третья строки матрицы пропорциональны, так как

$$\begin{vmatrix} 18 - 12i\sqrt{3} & -9 - 15i\sqrt{3} \\ 6i\sqrt{3} & 9 + 3i\sqrt{3} \end{vmatrix} = 162 - 108i\sqrt{3} + 54i\sqrt{3} + 108 + 54i\sqrt{3} - 108i\sqrt{3} + 108 + 10$$

— 270 = 0. Следовательно, вторую строку матрицы можно удалить. Находим ненулевое решение оставшихся уравнений. Пусть $z_3=-6i\sqrt{3}$, тогда из третьего уравнения имеем $z_2=9+3i\sqrt{3}$. Подставляя эти значения в первое уравнение, получаем $z_1=9-3i\sqrt{3}$. Таким образом, столбец $z=(-9+3i\sqrt{3}-9+3i\sqrt{3}-6i\sqrt{3})^T$ — это собственный вектор матрицы, соответствующей собственному вектору $\lambda_3=\frac{10}{2}-\frac{i\sqrt{3}}{2}$. Выделяя действительные и мнимые части, получаем столбцы $Rez=(-9-9-0)^T$ и $Imz=(3i\sqrt{3}-3i\sqrt{3}-6i\sqrt{3})^T$, нормируя которые, получаем $s_2=(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}-0)^T$ и $s_3=(\frac{\sqrt{6}}{6}-\frac{\sqrt{6}}{6}--\frac{\sqrt{6}}{3})^T$.

4. Записываем полученные столбцы s_1 , s_2 , s_3 в искомую матрицу перехода:

$$S = \begin{pmatrix} \frac{1}{3} & -\frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{6} \\ \frac{1}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}}{6} \\ \frac{1}{3} & 0 & -\frac{\sqrt{6}}{3} \end{pmatrix}.$$

Векторы канонического базиса $\overline{s_1}, \overline{s_2}, \overline{s_3}$ находим по столбцам s_1, s_2, s_3 матрицы перехода S, так как нормируя координатные столбцы $x_2 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix}^T,$ $x_3 = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}^T,$ получаем $x_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}^T,$ $x_3 = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{pmatrix}^T.$

Для столбцов
$$s_2 = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \ 0\right)^T$$
, $s_3 = \left(\frac{1}{\sqrt{6}} - \frac{1}{\sqrt{6}} - \frac{2}{\sqrt{6}}\right)^T$,

найденных вторым способом, матрица перехода будет иметь вид

$$S = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix},$$

а канонический базис —

$$\overline{s_1} = \frac{1}{\sqrt{3}}\overline{i} + \frac{1}{\sqrt{3}}\overline{j} + \frac{1}{\sqrt{3}}\overline{k},$$

$$\overline{s_2} = \frac{1}{\sqrt{2}}\overline{i} - \frac{1}{\sqrt{2}}\overline{j},$$

$$\overline{s_3} = \frac{1}{\sqrt{6}}\overline{i} - \frac{1}{\sqrt{6}}\overline{j} - \frac{2}{\sqrt{6}}\overline{k}.$$

Преобразование для матрицы В:

1. Составим характеристическое уравнение $det(B - \lambda E) = 0$

$$\begin{vmatrix} 1 - \lambda & 1 & -1 \\ 1 & 1 - \lambda & -1 \\ -1 & -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 + 1 + 1 - 1 + \lambda - 1 + \lambda = \lambda^2 (3 - \lambda)$$

$$=\lambda^2(3-\lambda)=0.$$

Находим его корни: $\lambda_1=0$ (кратность $n_1=2$) и один простой корень $\lambda_2=3$ (кратность $n_2=1$).

2. Для собственного значения $\lambda_1 = 0$ составляем расширенную матрицу системы $(B - \lambda_1 E)x = o$ и приводим ее к упрощенному виду:

$$(B \ -\lambda_1 E) x \ = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ -1 & -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Выражаем базисную переменную через свободные: $x_1 = -x_2 + x_3$ и находим ФСР: $\phi_1 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$, $\phi_2 = \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$. Ортогонализируем их, используя

метод Грама-Шмидта. Полагаем $\psi_1 = \phi_1 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$, $\psi_2 = \phi_2 = \alpha \psi_1$. Коэффициент α выбираем из условия ортогональности.

$$(\psi_1, \psi_2) = 0$$

$$(1 \quad 0 \quad 1) \left[\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right] = 1(1 - \alpha) + 0(-1) + 1(-\alpha) = 0 \Rightarrow$$

$$\Rightarrow 1 - 2\alpha = 0$$

Следовательно, $\alpha = 0,5$ и $\psi_2 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix}^T - \begin{pmatrix} 0,5 & 0 & 0,5 \end{pmatrix}^T =$

$$=(0,5-1-0,5)^T$$
. Нормируем столбцы $(|\psi_1|=\sqrt{2},|\psi_2|=\frac{\sqrt{3}}{2})$

$$s_1 = \frac{1}{|\psi_1|} \psi_1 = (\frac{\sqrt{2}}{2} \quad 0 \quad \frac{\sqrt{2}}{2})^T, s_2 = \frac{1}{|\psi_2|} \psi_2 = (\frac{\sqrt{6}}{6} \quad -\frac{\sqrt{6}}{3} \quad -\frac{\sqrt{6}}{6})^T.$$

Для собственного значения $\lambda_2 = 3$ составляем расширенную матрицу системы $(B - \lambda_2 E)x = o$ и приводим ее к упрощенному виду:

$$(B - \lambda_2 E) x = \begin{pmatrix} -2 & 1 & -1 & 0 \\ 1 & -2 & -1 & 0 \\ -1 & -1 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -3 & -3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Выражаем базисные переменные через свободную: $x_1 = -x_3, x_2 = -x_3$. При $x_3 = 1$ получаем $\phi_3 = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}^T$. Нормируя этот столбец, получаем $s_3 = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix}^T$. Вместо вектора \overline{s}_3 можно было бы взять вектор $[s_1, s_2]$.

3. Записываем полученные векторы в матрицу перехода:

$$S = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & -\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} \end{pmatrix}.$$

Векторы канонического базиса $\overline{s_1}, \overline{s_2}, \overline{s_3}$ находим по столбцам s_1, s_2, s_3 матрицы перехода S, так как они связаны формулой $(\overline{s_1}, \overline{s_2}, \overline{s_3}) = (\overline{i}, \overline{j}, \overline{k})S$

$$\overline{s}_{1} = \frac{\sqrt{2}}{2}\overline{i} + \frac{\sqrt{2}}{2}\overline{k},$$

$$\overline{s}_{2} = \frac{\sqrt{6}}{6}\overline{i} - \frac{\sqrt{6}}{3}\overline{i} - \frac{\sqrt{6}}{6}\overline{k},$$

$$\overline{s}_{3} = \frac{\sqrt{3}}{3}\overline{i} + \frac{\sqrt{3}}{3}\overline{i} - \frac{\sqrt{3}}{3}\overline{k}.$$

По собственным значениям составляем диагональную матрицу — канонический вид матрицы самосопряженного преобразования B:

$$B_{(S)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Выполним проверку, используя равенство $\Lambda = S^T B S$:

$$\begin{split} B_{(\mathcal{S})} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & -\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} \end{pmatrix} = \\ = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} 0 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} \\ 0 & 0 & -\sqrt{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \end{split}$$

Геометрический смысл преобразования B — это композиция ортогонального проектирования на ось, содержащую вектор \overline{s}_3 и расстояния вдоль этой оси с коэффициентом 3.

Ответ:

Преобразование А:

Матрица преобразования имеет канонический вид
$$\begin{pmatrix} 36 & 0 & 0 \\ 0 & 54 & -54\sqrt{3} \\ 0 & 54\sqrt{3} & 54 \end{pmatrix}$$

относительно базиса

$$\begin{split} \overline{s}_1 &= \frac{1}{\sqrt{3}} \overline{i} + \frac{1}{\sqrt{3}} \overline{j} + \frac{1}{\sqrt{3}} \overline{k}, \\ \overline{s}_2 &= \frac{1}{\sqrt{2}} \overline{i} - \frac{1}{\sqrt{2}} \overline{j}, \\ \overline{s}_3 &= \frac{1}{\sqrt{6}} \overline{i} - \frac{1}{\sqrt{6}} \overline{j} - \frac{2}{\sqrt{6}} \overline{k}. \end{split}$$

Геометрический смысл преобразования — это композиция поворота вокруг оси, содержащей вектор \overline{s}_1 , на угол $\phi_1 = \frac{\pi}{6}$, если смотреть из конца вектора \overline{s}_1 на плоскость, содержащую векторы \overline{s}_2 , \overline{s}_3 и зеркальное отражение этой плоскости.

Преобразование B: $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ относительно базиса

$$\overline{s}_{1} = \frac{\sqrt{2}}{2}\overline{i} + \frac{\sqrt{2}}{2}\overline{k},$$

$$\overline{s}_{2} = \frac{\sqrt{6}}{6}\overline{i} - \frac{\sqrt{6}}{3}\overline{i} - \frac{\sqrt{6}}{6}\overline{k},$$

$$\overline{s}_{3} = \frac{\sqrt{3}}{3}\overline{i} + \frac{\sqrt{3}}{3}\overline{i} - \frac{\sqrt{3}}{3}\overline{k}.$$

Геометрический смысл преобразования равен 3.