

Fall Semester 2020 - 2021

PROJECT REPORT

Title: Cursor control with facial movements.

Submitted by

Arjun S (18BCE0236)

Vaishnav S Anand (18BCE0109)

N Ganesh Reddy (18BCB0113)

Course Code: CSE 3501 Human Computer Interaction

Project Guide

DR. Swathi J.N

School of Computer Science and Engineering

INTRODUCTION

Recently there has been a growing interest in developing natural interaction between human and computer. All ordinary devices require manual control and cannot be used by persons impaired in movement capacity. The proposed work includes face detection, face tracking, eyeblink detection, voice recognition and interpretation of a sequence of blinks in real time to control a non-intrusive human—computer interface.

To replace the traditional mouse with the human face and eye movements to interact the Computer. It is to assist the physically challenged persons without hands to use the computer efficiently and also easy. As accordingly to the previously invention mouse motion through eye blink was possible but the circumstances that occurred were the small blink or shorts blink were neglected. Even hardware was used for detecting eye blinks but it used to cause a eye damage. Our system uses only webcam for detecting face and eye movements and microphone for voice recognition to give better output.

AIM:

With this project, we aim to create a program that allows the user to interact with the GUI using their face. To implement Mouse Cursor Control Using Facial Movements with the help of Python. This allows for a user experience without the need for hands. A user will be able to control the cursor with their face gestures and do tasks such as selecting, clicking etc.

The target users are the differently abled people who have difficulty in manually controlling the computer.

STAKE HOLDERS PROFILE

- Primary Stakeholder Differently abled persons
- Facilitating stakeholders Programmer

USE CASES

As mentioned, the target user for the project are the differently abled persons or people who have motor issues and is unable to cope with the standard methods of controlling the cursor to interact with the GUI.

The program aids in making a computer system more accessible to a greater number of people who otherwise would have issues operating it.

USE CASE DIAGRAM

HTA

STORYBOARD

Action	Function		
Opening Mouth	Activate / Deactivate Mouse Control		
Right Eye Wink	Right Click		
Left Eye Wink	Left Click		
Squinting Eyes	Activate / Deactivate Scrolling		
Head Movements (Pitch and Yaw)	Scrolling / Cursor Movement		

STAKEHOLDER PROFILES

Primary Stakeholder - Differently abled persons

The program allows them to use a computer system without external devices. The user should be an intermediate or expert user as the program involves the use of predefi

Educational Level Elementary Middle School High School Undergraduate	Typing Skill (Words per Minute) Novice Intermediate Expert
☐ Graduate School ☐ Post Graduate	Domain Knowledge 1 = Novice 5 = Expert 1) 2 3 4 5
Computer Literacy	0
System	Cognitive Style
1 = Low 5 = High 1 2 3 4 5 Application 1 = Low 5 = High 1 2 3 4 5	☐ Auditory ☐ Graphical ☐ Linguistic

Physica	al Ability
Visual Blind 20/200 20/100 20/70 20/50 20/40 20/30 20/25 20/25	Color Vision Trichromatic Protanomaly Deuteranomaly Auditory 1 = Deaf 5 = Normal 1 2 3 4 5 Haptic Disabled Motor disability Fully Functional

☐ Early Childhood ☐ Childhood	Interests
Preteen	Country
□/teen	Region
Young Adult	Language
PAdult	Ethnicity
Middle Age	Religion
Senior	Socio-Economic

GOMS

1. Goal: To right click

Goal:Activate mouse

Operator: Open your mouth

Goal:Righ-click

Operator:Right Eye wink

2. Goal: To le3 click

Goal:Activate mouse

Operator: Open your mouth

Goal:Le>-click

Operator:Le> Eye wink

3. Goal: To right click

Goal:Activate mouse

Operator: Open your mouth

Goal: Activate Scroll

Operator: Squint Eyes

Goal:Scroll

[Select Goal:Scroll Up

Operator: Move Head up

Select Goal:Scroll Down

Operator: Move Head Down]

STATE TRANSITION NETWORK DIAGRAM

GUI and HCI principles.

Our project has minimal GUI. The user sees just an image of himself while he performs the actions necessary for doing the mouse actions that the user wishes to do.

Our program enables the user to interact with other programs in the computer that the user wishes to interact with.

Screenshot of UI detecting face (eye and mouth).

The output shows the actions to the user. ie. Offers informative feedback

Screenshot showing current mode

Screenshot showing direction selected

Consistent usage across all programs.

The program behaves similarly across all other programs and GUI's The output window shows information about the current action.

Program ensures universal usability.

The program allows disabled users access to computers.

Offers informative feedback

The output window shows information about the current action.

Visibility of system status

Since the program directly interacts with the system GUI, status of the system at each instance is visible

Simplifying task structures

It enables disabled users an easy interface to interact with the system in comparison to current existing methods.

Furthermore, since our implementation is dependent on the activity or action that the user wants to conduct, the HCI principles implemented in that particular program is inherited by our program. Hence, flexibility is provided to the user. For example.

Error correction

Error correction depends on the underlying program that we are using.

USABILITY TESTING

Tool	Toot		Toot		Actual	Door
Test case	Test Module	Description	Test conditions	Expected results	Actual results	Pass/ Fail
ID_01	Face application. Wait for detection of face.	In Daylight	Face is detected	Face is detected	Pass	
ID_02		In Dark Light	Face is detected	Face is detected	Pass	
ID_03		Face is slightly sideways	Face is detected	Face is detected	Pass	
ID_04			Face is detected	Face is not	Fail	
ID_05	Activating activated by mouse opening of mouth		In Daylight	Mouth is detected	Mouth detected.	Pass
ID_06		In Dark Light	Mouth is detected	Mouth is not	Fail	
ID_07	Cursor is Moving controlled by cursor tilting face in required	In Daylight	Cursormoves	Cursor moves	Pass	
ID_08		_	In Dark Light	Cursormoves	Cursor moves	Pass
ID_09	Toggling Scroll mode is switched on by squinting eyes	In Daylight	Scrollmodeon	Scroll mode on	Pass	
ID_10		In Dark Light	Scrollmodeon	No scroll mode	Fail	
ID_11	Right click Wink right eye	In Daylight	Right click	No response	Fail	
ID_12		In Dark Light	Right click	No response	Fail	
ID_13	Left click Wink left eye	In Daylight	Left click	Leftclick	Pass	
ID_14		In Dark Light	Left click	Leftclick	Pass	
ID_15	Scrolling Move head Up and down	In Daylight	Scrolling action	Scrolling action	Pass	
ID_16		In Dark Light	Scrolling action	Scrolling action	Pass	

TEXTUAL NOTATIONS

Activity: Initial Setup

Event CSP:

- Capture = Select -camera -> get-input facial expression
- Feedback = Main Window -> Understand detected expression -> Show Feedback to be given

Event ISL

- Event: Get Input
 - o Uses: Input Camera
 - Set: Detected Face=input
- Event: Feedback-Issued
 - o Uses: Expression-input
 - Set: Match expression to inclusive neural network expression models and corresponding status is shown.

Activity: Move Cursor Movement

Event CSP:

- Moving Cursor = Open Program -> Open Mouth -> Move Your Head
- Feedback=Main Window -> Mouse Cursor Movement

Event ISL

- Event: Open Program
 - o Prompt: True
 - o Out: Display Interface Window
- Event: Open Mouth
 - o Uses: Input Capture to map to Open mouth
 - o Out: Display "Mouse Control ON"

Event: Moving Head

- o Uses: Input the cursor movement direction by moving your head
- o Out: Cursor moves in that direction

Activity: Scroll Mouse

Event CSP:

- Scroll Mouse = Open Program -> Activate Mouse -> Squint Eyes >Move Your Head (Up/Down)
- Feedback=Main Window -> Scroll Up/Down

Event ISL

- Event: Open Program
 - o Prompt: True
 - o Out: Display Interface Window
- Event: Activate Mouse
 - o Uses: Input Capture to map to Open mouth
 - o Out: Display "Mouse Control ON"
- Event: Moving Head
 - o Uses: Input Capture to map to Squint Eyes
 - o Out: Display "Scroll Mode ON"
- Event: Moving Head
 - o Uses: Input the cursor movement direction by moving your head
 - Out: Cursor moves in that direction

Activity: Mouse Click

Event CSP:

- Mouse Click = Open Program -> Activate Mouse -> Blink Eyes (Left/Right)
- Feedback=Main Window -> Left Click/Right Click

Event ISL

• Event: Open Program

o Prompt: True

o Out: Display Interface Window

Event: Activate Mouse

o Uses: Input Capture to map to Open mouth

o Out: Display "Mouse Control ON"

• Event: Moving Head

Uses: Input Capture to map to Eye Blink

o Out: Display "Right Click" or "Left Click"

CONCLUSION

Our aim while starting this project was to create an application which would allow a physically challenged individual navigate a computer. We believe we have achieved the target we have set for ourself all the while keeping in mind to follow HCI guidelines whenever applicable.