

Boston Bayesians

Microsoft NERD – August 25, 2016

Intro to Bayesian Networks: The Monty Hall Problem

Byron Galbraith, PhD
Chief Data Scientist, Talla
@bgalbraith

The Monty Hall Problem

The prize is hidden behind a door

The contestant chooses a door

The host reveals a non-winning door

Should the contestant switch or stay?

Random Variables

P(X) P(Y)

Independent Random Variables

$$P(X,Y) = P(X)P(Y)$$

X

Conditional Random Variables

$$P(X,Y) = P(X)P(Y|X)$$

X

Bayesian Network

$$P(X,Y) = P(X)P(Y|X)$$

Bayesian Networks are Graphical Models

$$P(X,Y) = P(X)P(Y|X)$$

Node = Random variable

Edge = Conditional dependency

Bayesian Network: Naïve Bayes

Probabilistic Graphical Models

Some PGM Applications

Conditional Probability Tables

BNs suffer from Exponential Complexity

Observing Random Variables

$$P(X = x, Y) = P(X = x)P(Y|X = x)$$

$$X \qquad Y$$

Observations influence belief

Flow of Influence follows active trails

Siblings can influence each other

But independent parents cannot

Unless we observe the child

Recomputing probabilities gets difficult

Factors are real-valued functions of RVs

X	Y	ф
1	1	0.2
1	2	100
1	3	42
2	1	0.7
2	2	0
2	3	9001
3	1	0.1
3	2	1
3	3	2

Should the contestant switch or stay?

Monty Hall Problem: Bayesian Network

X – Prize

C - Contestant

H – Host

$$P(C,X,H) = P(C)P(X)P(H|C,X)$$

Challenge: Find P(X|C = c, H = h)

We completely describe the game

 $\phi(C)$

4		$oldsymbol{V}$	II
ψ	ر يا ر	Λ ,	H)

С	ф
1	1/3
2	1/3
3	1/3

$\boldsymbol{\phi}$	(X)	1
Ψ	(Λ)	J

X	ф
1	1/3
2	1/3
3	1/3

C	X	Ξ	ф
1	1	1	0
1	1	2	1/2
1	1	3	1/2
1	2	1	0
1	2	2	0
1	2	3	1
1	3	1	0
1	3	2	1
1	3	3	0

C	X	Ξ	ф
2	1	1	0
2	1	2	0
2	1	3	1
2	2	1	1/2
2	2	2	0
2	2	3	1/2
2	3	1	1
2	3	2	0
2	3	3	0

С	X	Η	ф
3	1	1	0
3	1	2	1
3	1	3	0
3	2	1	1
3	2	2	0
3	2	3	0
3	3	1	1/2
3	3	2	1/2
3	3	3	0

Switching has 67% chance of winning

$$\phi(X, H, C = 1)$$

С	Х	Н	ф
1	1	1	0
1	1	2	1/2
1	1	3	1/2
1	2	1	0
1	2	2	0
1	2	3	1
1	3	1	0
1	3	2	1
1	3	3	0

$$\phi(X, C = 1, H = 2) P(X|C = 1, H = 2)$$

X φ

1 1/3

2 0

3 2/3

reduce

normalize

But only if we observe the contestant

$$\phi(C, X, H = 2)$$

С	Х	Н	ф
1	1	2	1/2
1	2	2	0
1	3	2	1
2	1	2	0
2	2	2	0
2	3	2	0
3	1	2	1
3	2	2	0
3	3	2	1/2

$$\phi(X, H=2)$$

	X	Н	ф
	1	2	3/2
•	2	2	0
	3	2	3/2

X	ф
1	1/
2	n

P(X|H = 2)

marginalize

normalize

1/2

Thanks!

Slides & Notebooks

- https://github.com/bgalbraith/intro-to-bayesian-networks

Daphne Koller's Coursera Course

- https://www.coursera.org/learn/probabilistic-graphical-models

Python Libraries

- https://github.com/jmschrei/pomegranate
- https://github.com/pgmpy/pgmpy/