ASSIGNMENT # 11

MATH 660, DIFFERENTIAL GEOMETRY

- (1) Assume that M is a symmetric space, i.e. for all $p \in M$, there exists an isometry f such that f(p) = p and $d(f)_p = -\operatorname{Id}$. Show that this implies that $\nabla R = 0$, which in turn implies that, along every geodesic γ , R(X,Y)Z is parallel if X,Y,Z are parallel along γ .
- (2) Compute the conjugate (with multiplicity) and cut points for the Fubini-Study on \mathbb{CP}^n .

Hint: For the conjugate points you may want to use problem (1).

- (3) Let G be a compact Lie group.
 - (a) Show that it carries a biinvariant metric, i.e. a metric where L_g and R_g are isometries for all $g \in G$.
 - (b) Show that its sectional curvature is given by $\sec(u,v) = \frac{\|[u,v]\|^2}{4\|u\wedge v\|^2}$ for all $u,v\in \mathfrak{g}\simeq T_eG$.
 - (c) Show that it is a symmetric space and relate the conjugate points along $\exp(tu)$ with the eigenvalues of ad_u^2 where $\operatorname{ad}_u(v) = [u, v]$ for $u \in \mathfrak{g}$. Show that all conjugate points have even multiplicity.
- (4) In the following Table of 4-manifolds fill in what one knows about each category, i.e. do such (complete) examples exits, if yes give one, and if no explain why.

	\mathbb{S}^4	$\mathbb{S}^3 \times \mathbb{S}^1$	$\mathbb{S}^2 \times \mathbb{S}^2$	$\mathbb{RP}^2 \times \mathbb{S}^2$	$\mathbb{RP}^2 \times \mathbb{RP}^2$	T^4	\mathbb{R}^4
$\sec > 0$							
$\sec \ge 0$							
$\sec \leq 0$							
$\sec < 0$							
Ric > 0							

- (5) Let M be a manifold with $\sec \le \mu$ and γ a geodesic in M. Assume that J is a Jacobi field along γ with $J(0) = J(\frac{\pi}{\sqrt{\mu}}) = 0$. Show that $J(t) = \frac{1}{\sqrt{\mu}} \sin(\sqrt{\mu} t) E_{J'(0)}(t)$. Does the corresponding statement hold when $\sec \ge \mu > 0$?
- (6) Prove the Morse Schönberg comparison theorem:

Let $\gamma \colon [0,a] \to M^n$ be a normal geodesic and $\sec \geq \delta$. Show that if $L(\gamma) = a > k \frac{\pi}{\sqrt{\delta}}$, for some positive integer k, then the index of γ satisfies $\operatorname{ind}(\gamma) \geq k(n-1)$. Thus, by the index theorem, γ has at least k(n-1) conjugate points (counted with multiplicity). What is the corresponding statement for $\sec \leq \delta$?

Hint: Compare the index form of γ with the index form of a geodesic $\bar{\gamma}$ in a space of constant curvature δ .

1