$\mathbf{Math} \ \mathbf{1300}, \mathbf{Midterm} \ \mathbf{3} \\ \mathbf{April} \ \mathbf{10}, \ \mathbf{2017}$

PRINT YOUR NAME:		
PRINT INSTRUCTOR'S NAME: _		

Mark your section/instructor:

-	 Jour Section, 12		
	Section 001	Brendt Gerics	8:00-8:50
	Section 002	Leo Herr	9:00-9:50
	Section 003	Tyler Schrock	9:00-9:50
	Section 004	Lee Roberson	10:00-10:50
	Section 005	Braden Balentine	10:00-10:50
	Section 006	Xingzhou Yang	10:00 - 10:50
	Section 007	Lee Roberson	11:00 - 11:50
	Section 008	Shen Lu	11:00 - 11:50
1	Section 009	Suzanne Craig	12:00 - 12:50
	Section 010	Carlos Pinilla-Suarez	12:00 - 12:50
	Section 011	Nathan Davidoff	1:00 - 1:50
	Section 012	Sion Ledbetter	1:00 - 1:50
	Section 013	Ruofan Li	2:00 - 2:50
	Section 014	Daniel Martin	2:00 - 2:50
	Section 015	Isabel Corona	3:00 - 3:50
	Section 016	Ira Becker	3:00 - 3:50
	Section 017	Ira Becker	4:00 -4:50
	Section 430R	Patrick Newberry	11:00 -11:50

Question	Points	Score
1	9	
2 .	8	
3	. 8	
4	12	
5	8	
6	12	
7	22	
8	9	
9	12	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 80 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like ln(3)/2 as is.
- When done, give your exam to your instructor, who will mark your name off on a photo roster.
- We hope you show us your best work!

- 1. Multiple Choice. Evaluate the following derivatives. Circle the correct answer.
 - (a) (3 points) $\frac{d}{dx} [\log_2(x)]$

 - I) $\frac{2}{x}$ II) $\frac{\ln(2)}{x}$

III) $\frac{1}{\ln(2)x}$

- IV) $\frac{1}{2x}$ V) $\ln(2)2^x$

- (b) (3 points) $\frac{d}{dx} \left[\ln(2x^3 4x) \right]$
- I) $6x^2 4$ II) $\frac{1}{2x^3 4x}$ III) $\frac{2x^3 4x}{6x^2 4}$
- IV) $\frac{1}{6x^2 4x}$ V) $\frac{6x^2 4}{2x^3 4x}$
- (c) (3 points) $\frac{d}{dx} \left[\arctan(2x) \cdot \sqrt{x} \right]$

 - I) $\frac{2\sqrt{x}}{\sqrt{1-4x^2}} + \frac{\arctan(2x)}{2\sqrt{x}}$ II) $-\frac{2\sqrt{x}}{\sqrt{1-4x^2}} + \frac{\arctan(2x)}{2\sqrt{x}}$
 - III) $\frac{2\sqrt{x}}{1+2x^2} + \frac{\arctan(2x)}{2\sqrt{x}}$ IV) $\frac{2\sqrt{x}}{1+4x^2} + \frac{\arctan(2x)}{2\sqrt{x}}$

V) $\frac{1}{\sqrt{x}(1+4x^2)}$

2. (8 points) Use logarithmic differentiation and the properties of logarithms to find the derivative of

$$y = \left(3x^2e^x\right)^x$$

3. (a) (6 points) Use the linearization of the function $f(x) = \sin\left(\frac{1}{2}x\right)$ at the x value a=0 to find an estimate for $\sin\left(\frac{1}{2}(.01)\right)$.

(b) (2 points) Is this estimation an over/under estimate? Justify your answer.

- 4. The following statements are all false. For **each** statement, justify why it is false by providing an explanation that includes a picture.
 - (a) (4 points) If a function f(x) is decreasing on the interval [-1, 1], then f'(x) must also be decreasing on [-1, 1].

(b) (4 points) If a function g(x) is continuous on an open interval (a, b), then g(x) has an absolute maximum and minimum on the interval (a, b).

(c) (4 points) If a function h(x) is defined on the closed interval [a, b], then h(x) has an absolute maximum and minimum value on [a, b].

5. (8 points) Find the absolute minimum value and the absolute maximum value of the function

$$h(x) = e^{x^2 - 4x + 3}$$

on the interval [1, 5].

- 6. Suppose two police officers are at two consecutive exits 10 miles apart on a straight highway. Assume the speed limit on the highway is 60 mph, and a speeding ticket costs \$100 plus \$10 for each mph above 60.
 - (a) (6 points) If a car passes the first police officer at 3:00 and passes the second police officer 12 minutes later, can the second officer issue a ticket to the car using the mean value theorem as justification?

- (b) (6 points) Answer one of the following:
 - i) If your answer to part (a) was yes, for how much can the cop write the ticket?
 - ii) If your answer to part (a) was no, can we conclude that the car never broke the speed limit?

- 7. Consider the following function f(x) and its derivatives:
 - $f(x) = \frac{-2x(x-1)}{(x+1)^2}$ $f'(x) = \frac{2(1-3x)}{(x+1)^3}$ $f''(x) = \frac{12(x-1)}{(x+1)^4}$
- (a) (2 points) What are the x and y intercepts of f(x)?

(b) (2 points) What are equations of the vertical asymptotes (if any exist) of f(x)?

(c) (2 points) What are the equations of the horizontal asymptotes of f(x)?

(d) (2 points) On which interval(s) is f(x) increasing?

(e) (2 points) On which interval(s) is f(x) decreasing?

- $f(x) = \frac{-2x(x-1)}{(x+1)^2}$ $f'(x) = \frac{2(1-3x)}{(x+1)^3}$ $f''(x) = \frac{12(x-1)}{(x+1)^4}$
- (f) (2 points) On which interval(s) is f(x) concave up?

(g) (2 points) On which interval(s) is f(x) concave down?

(h) (2 points) At which point(s) (x, y) does f(x) have a local maximum?

(i) (2 points) At which point(s) (x, y) does f(x) have a local minimum?

(j) (2 points) At which point(s) (x, y) does f(x) have an inflection point?

(k) (2 points) Using the information from parts (a) through (j) on the previous pages, draw a sketch of the graph of f(x) below. Be sure to label any local min and/or max and inflection points.

Graph of
$$f(x) = \frac{-2x(x-1)}{(x+1)^2}$$

f(x)

f'(x)

f''(x)

- 8. Multiple Choice. Evaluate the following limits. Circle the correct answer.
 - (a) (3 points) $\lim_{x\to\infty} [x-\sqrt{x}]$
 - I) $-\infty$ II) -1 III) 0 IV) 2 V) ∞

- (b) (3 points) $\lim_{x\to 1} \frac{\sin(x-1)}{\ln(x)}$
 - I) $-\infty$ II) -1 III) 0 IV) 1 V) ∞

- (c) (3 points) $\lim_{x\to 0^+} (\sqrt{x})^x$
- I) $-\infty$ II) 0 III) $\frac{1}{2}$ IV) 1 V) ∞

9. (a) (8 points) A cylindrical soup can has volume 128π cm³. What radius will minimize the surface area? Recall that the surface area of a cylinder is given by $S=2\pi r^2+2\pi rh$ and the volume by $V=\pi r^2h$, where r is the radius of the base and h is the height of the cylinder.

(b) (4 points) Justify that your answer in part (a) is, in fact, the radius that minimizes surface area.