

Universität Ulm

Abgabe: Freitag, den 26.06. um 12 Uhr

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

Lösungsvorschlag Analysis 1: Blatt 9

35. Beweisen oder widerlegen Sie die folgenden Aussagen:

(5)

(a) Ist $(x_n)_{n\in\mathbb{N}}$ eine reelle, gegen $x\in\mathbb{R}$ konvergente, Folge mit $x_n\in\mathbb{N}$ für alle $n\in\mathbb{N}$, dann gilt $x\in\mathbb{N}$.

Lösungsvorschlag: Wir nehmen an, dass der Grenzwert x keine natürliche Zahl ist. Dann können wir x schreiben als x = m + r mit $m \in \mathbb{N}$ und einem Rest $r \in (0, 1)$. Es sind

$$|x-m|=r>0$$
 und $|x-(m+1)|=|m+r-m-1|=|r-1|=1-r>0$

und wir sehen, dass x einen positiven Abstand zu den benachbarten natürlichen Zahlen hat. Wir wählen nun $\varepsilon = \frac{1}{2} \min\{r, 1-r\}$. Für die Folge $(x_n)_{n \in \mathbb{N}} \subset \mathbb{N}$ gilt dann

$$|x - x_n| \ge \min\{|x - m|, |x - (m+1)|\} = \min\{r, 1 - r\} = 2\varepsilon > \varepsilon.$$

Somit kann x nicht Grenzwert der Folge $(x_n)_{n\in\mathbb{N}}$ sein. Dies ist ein Widerspruch zur Annahme $\lim_{n\to\infty}x_n=x$. Die Aussage ist also wahr.

(b) Eine beschränkte Folge hat immer endlich viele Häufungspunkte.

Lösungsvorschlag: Diese Aussage ist falsch. Als Gegenbeispiel betrachten wir die Folge

$$x_n = \left(1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, 1, \dots\right).$$

Dann ist $(x_n)_{n\in\mathbb{N}}$ offensichtlich beschränkt (nach oben durch 1 und nach unten durch 0). Jedoch ist die Menge der Häufungspunkte

$$\left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$$

nicht endlich.

(c) Es sei $(y_n)_{n\in\mathbb{N}}$ eine komplexe Folge, sodass für alle $p\in\mathbb{N}$ die Folge $(y_{n+p}-y_n)_{n\in\mathbb{N}}$ eine Nullfolge ist, dann konvergiert die Folge $(y_n)_{n\in\mathbb{N}}$.

Lösungsvorschlag: Es sei $\varepsilon > 0$ beliebig und $p \in \mathbb{N}$ eine beliebige natürliche Zahl. Nach Voraussetzung ist die Folge $(y_{n+p} - y_n)_{n \in \mathbb{N}}$ eine Nullfolge. Zu vorgegebenem ε existiert also ein $N \in \mathbb{R}$, sodass $|y_{n+p} - y_n| < \varepsilon$ für alle n > N. Da dies für alle $p \in \mathbb{N}$ gilt, ist die Folge $(y_{n+p} - y_n)_{n \in \mathbb{N}}$ also eine Cauchyfolge. In \mathbb{C} konvergieren alle Cauchyfolgen und damit ist $(y_{n+p} - y_n)_{n \in \mathbb{N}}$ konvergent. Die Aussage ist somit wahr.

Sei $(a_n)_{n\in\mathbb{N}}$ eine komplexe Zahlenfolge und $(x_n)_{n\in\mathbb{N}}$ sei definiert durch

$$x_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

(d) Konvergiert $(a_n)_{n\in\mathbb{N}}$ gegen $a\in\mathbb{C}$, dann konvergiert auch x_n gegen a.

Lösungsvorschlag: Es sei $\varepsilon > 0$. Da (a_n) gegen $a \in \mathbb{C}$ konvergiert, existiert ein $N \in \mathbb{R}$, sodass $|a_n - a| < \frac{\varepsilon}{2}$ für alle n > N. Weiter existiert ein $N' \in \mathbb{R}$, sodass $\frac{1}{n} \le \frac{N\varepsilon}{2\max\{|a_1 - a|, |a_2 - a|, \dots, |a_N - a|\}}$ für alle n > N' Wir erhalten

$$|x_n - a| = \left| \frac{1}{n} \sum_{k=1}^n a_k - a \right| = \left| \frac{1}{n} \left(\sum_{k=1}^N a_k + \sum_{k=N+1}^n a_k \right) - \frac{n \cdot a}{n} \right|$$

$$= \left| \frac{1}{n} \sum_{k=1}^N (a_k - a) + \frac{1}{n} \sum_{k=N+1}^n (a_k - a) \right|$$

$$\leq \frac{N}{n} \max\{|a_1 - a|, |a_2 - a|, \dots, |a_N - a|\} + \frac{1}{n} \sum_{k=N+1}^n |a_k - a|$$

$$\leq \frac{\varepsilon}{2} + \frac{(n-N)\varepsilon}{2n} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Also konvergiert auch die Folge $(x_n)_{n\in\mathbb{N}}$ gegen den Wert a. Somit ist die Aussage wahr.

(e) Divergiert die Folge $(a_n)_{n\in\mathbb{N}}$, so ist auch $(x_n)_{n\in\mathbb{N}}$ eine divergente Folge.

Lösungsvorschlag: Betrachte die Folge definiert durch $a_n = (-1)^n$. Dann ist $(a_n)_{n \in \mathbb{N}}$ divergent. Für $(x_n)_{n \in \mathbb{N}}$ erhalten wir jedoch

$$x_n = \frac{1}{n} \sum_{k=1}^n a_n = \frac{1}{n} \sum_{k=1}^n (-1)^k = \begin{cases} -\frac{1}{n}, & \text{fall } n \text{ ungerade} \\ 0, & \text{falls } n \text{ gerade.} \end{cases}$$

Somit ist $(x_n)_{n\in\mathbb{N}}$ konvergent mit Grenzwert 0. Die Aussage ist also falsch.

36. Zeigen Sie die folgenden Charakterisierung der Konvergenz komplexer Zahlenfolgen: Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus \mathbb{C} konvergiert genau dann gegen $x\in\mathbb{C}$, wenn für alle Teilfolgen $(x_{n_k})_{k\in\mathbb{N}}$ von $(x_n)_{n\in\mathbb{N}}$ eine weitere Teilfolge $(x_{n_k})_{l\in\mathbb{N}}$ von $(x_n)_{k\in\mathbb{N}}$ existiert, die gegen x konvergiert.

Lösungsvorschlag: \Rightarrow : Sei $\varepsilon > 0$. Es sei $(x_n)_{n \in \mathbb{N}}$ konvergent gegen x. Sei (x_{n_k}) eine beliebige Teilfolge von (x_n) und $(x_{n_{k_l}})$ Teilfolge von (x_{n_k}) . Da (x_n) konvergiert, existiert zu ε ein $N \in \mathbb{R}$, sodass $|x_n - x| < \varepsilon$ für alle n > N. Da (x_{n_k}) Teilfolge von (x_n) ist, gilt $n_k \ge n$ für alle $k \in \mathbb{N}$, also $n_k > N$, falls n > N. Analog erhalten wir, dass auch $n_{k_l} > n_k$ für alle $l \in \mathbb{N}$ gilt und somit auch $n_{k_l} > N$, falls n > N. Es folgt $|x_{n_{k_l}} - x| < \varepsilon$ für alle $n_{k_l} > N$ und die Teilfolge $(x_{n_{k_l}})$ konvergiert gegen x.

 \Leftarrow : Wir zeigen die Aussage mittels Widerspruch. Wir nehmen an, dass (x_n) nicht gegen x konvergiert. Dann besitzt (x_n) einen kleinsten Häufungspunkt $s:=\lim\inf x_n$ und einen größten Häufungspunkt $S:=\lim\sup x_n$ und es gilt s< S. Es sei nun $\varepsilon=\frac{S-s}{3}$. Wir wählen zwei Teilfolgen (x_{n_j}) und (x_{n_k}) von (x_n) mit $\lim_{n_j\to\infty}x_{n_j}=S$ und $\lim_{n_k\to\infty}x_{n_k}=s$. Es existiert also ein N_1 mit $|x_{n_j}-S|<\varepsilon$ und $|x_{n_k}-s|<\varepsilon$ für $n_j,n_k>N_1$. Nach Voraussetzung existieren Teilfolgen $(x_{n_{j_l}})$ von (x_{n_j}) und $(x_{n_{k_m}})$ von (x_{n_k}) und ein $N_2\in\mathbb{R}$ mit

$$|x_{n_{j_l}} - x| < \frac{\varepsilon}{2} \text{ und } |x_{n_{k_m}} - x| < \frac{\varepsilon}{2} \quad \text{ für } n_{j_l}, n_{k_m} > N_2.$$

Da $(x_{n_{j_i}})$ Teilfolge von (x_{n_j}) ist und $(x_{n_{k_m}})$ Teilfolge von (x_{n_k}) , gilt auch

$$|x_{n_{j_l}} - S| < \varepsilon$$
 und $|x_{n_{k_m}} - s| < \varepsilon$ für $n_{j_l}, n_{k_m} > N_1$.

Da $(x_{n_{j_l}})$ Teilfolge von (x_{n_j}) ist und $(x_{n_{k_m}})$ Teilfolge von (x_{n_k}) , gilt auch

$$\lim_{n_{j_l} \to \infty} x_{n_{j_l}} = S \quad \text{und} \quad \lim_{n_{k_m} \to \infty} x_{n_{k_m}} = s.$$

Es folgt

$$\begin{split} |S-s| &= |S-x_{n_{k_m}} + x_{n_{k_m}} + x - x - x_{n_{j_l}} + x_{n_{j_l}} - s| \\ &\leq |S-x_{n_{k_m}}| + |x_{n_{k_m}}x| + |x-x_{n_{j_l}}| + |x_{n_{j_m}} - s| \\ &< \varepsilon + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \varepsilon = 3\varepsilon = |S-s| \quad \text{für } n_{j_l}, n_{k_m} > \max\{N_1, N_2\}. \end{split}$$

Somit ist S - s < S - s, was ein Widerspruch ist. Es folgt, dass (x_n) gegen x konvergiert

- 37. Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine komplexe Zahlenfolge und $a\in\mathbb{C}$. Konvergieren die Teilfolgen $(a_{2k})_{k\in\mathbb{N}}$ und $(a_{2k+1})_{k\in\mathbb{N}}$ beide gegen a, so konvergiert auch $(a_n)_{n\in\mathbb{N}}$ gegen a.

Lösungsvorschlag: Da (a_{2k}) und (a_{2k+1}) gegen a konvergieren, existieren $N_1, N_2 \in \mathbb{R}$, sodass $|a_{2k} - a| < \varepsilon$, falls $k > N_1$ und $|a_{2k+1} - a| < \varepsilon$, falls $k > N_2$. Wir wählen nun $N := \max\{2N_1, 2N_2 + 1\}$. Dann gilt $|a_n - a| < \varepsilon$ für n > N und somit konvergiert (a_n) gegen a. Die Aussage ist also wahr.

(3)

(b) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ nichtnegative reelle beschränkte Zahlenfolgen, dann gilt

$$\limsup_{n\to\infty}(a_nb_n)\geq \left(\limsup_{n\to\infty}a_n\right)\left(\limsup_{n\to\infty}b_n\right).$$

Lösungsvorschlag: Wir betrachten die Folgen

$$a_n = (2, 0, 2, 0, 2, 0, \ldots)$$
 und $b_n = (0, 2, 0, 2, 0, 2, \ldots)$.

Dann gelten $\limsup a_n = \limsup b_n = 2$, also $\limsup a_n \cdot \limsup b_n = 4$. Jedoch ist $a_n b_n = (0, 0, 0, 0, 0, \dots)$ und damit $\limsup a_n b_n = 0$. Die Aussage ist demnach falsch.

(c) Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte reelle Zahlenfolge, dann gilt

$$-\limsup_{n\to\infty}(-a_n)=\limsup_{n\to\infty}a_n.$$

Lösungsvorschlag: Betrachte die Folge

$$a_n = (1, 2, 1, 2, 1, 2, 1, 2, \ldots).$$

Dann ist $\limsup a_n = 2$. Es ist

$$-a_n = (-1, -2, -1, -2, -1, -2, -1, -2, \dots),$$

also $\limsup(-a_n) = -1$. Es gilt somit

$$1 = -\lim \sup(-a_n) < \lim \sup(a_n) = 2$$

und die Aussage ist falsch.