Algorithmic Approaches for Biological Data, Lecture #20

Katherine St. John

City University of New York American Museum of Natural History

20 April 2016

Outline

 \bullet Aligning with Gaps and Substitution Matrices

Outline

- Aligning with Gaps and Substitution Matrices
- Global versus Local Alignment

Outline

- Aligning with Gaps and Substitution Matrices
- Global versus Local Alignment
- Searching Graphs: Breadth First & Depth First

Pairwise Sequence Alignment

		Α	G	Α	G
	0	-1	-2	-3	-4
Α	-1	1			
G	-2				
G	-3				

Pairwise Sequence Alignment

		Α	G	Α	G
	0	-1	-2	-3	-4
Α	-1	1			
G	-2				
G	-3				

Pictorially:

Pairwise Sequence Alignment

		Α	G	Α	G
	0	-1	-2	-3	-4
Α	-1	1			
G	-2				
G	-3				

Pictorially:

As equations:

$$\begin{split} S(s_{0..i},t_{0..j}) = \max \left\{ \begin{array}{l} \sigma(s_i,t_j) + S(s_{0..i-1},t_{0..j-1}) \\ -\delta + S(s_{0..i-1},t_{0..j}) \\ -\delta + S(s_{0..i},t_{0..j-1}) \end{array} \right. \end{split}$$

where:

$$\delta = 1 \text{ and } \sigma(s,t) = \left\{ egin{array}{l} 1 ext{ if } s = t \\ -1 ext{ otherwise} \end{array}
ight..$$

Aligning with Gaps and Substitution Matrices

$$S(s_{0..i},t_{0..j}) = \max \left\{ \begin{array}{l} \sigma(s_i,t_j) + S(s_{0..i-1},t_{0..j-1}) \\ -\delta + S(s_{0..i-1},t_{0..j}) \\ -\delta + S(s_{0..i},t_{0..j-1}) \end{array} \right.$$

where:

$$\delta = 1 \text{ and } \sigma(s,t) = \left\{ \begin{array}{l} 1 \text{ if } s = t \\ -1 \text{ otherwise} \end{array} \right. .$$

 The basic dynamic programming format can be adjusted for different gaps and substitutions models.

Aligning with Gaps and Substitution Matrices

$$S(s_{0..i},t_{0..j}) = \max \left\{ \begin{array}{l} \sigma(s_i,t_j) + S(s_{0..i-1},t_{0..j-1}) \\ -\delta + S(s_{0..i-1},t_{0..j}) \\ -\delta + S(s_{0..i},t_{0..j-1}) \end{array} \right.$$

where:

$$\delta = 1 \text{ and } \sigma(s,t) = \left\{ \begin{array}{l} 1 \text{ if } s = t \\ -1 \text{ otherwise} \end{array} \right. .$$

- The basic dynamic programming format can be adjusted for different gaps and substitutions models.
- δ : the gap penalty

Aligning with Gaps and Substitution Matrices

$$S(s_{0..i},t_{0..j}) = \max \begin{cases} \sigma(s_i,t_j) + S(s_{0..i-1},t_{0..j-1}) \\ -\delta + S(s_{0..i-1},t_{0..j}) \\ -\delta + S(s_{0..i},t_{0..j-1}) \end{cases}$$

where:

$$\delta = 1 \text{ and } \sigma(s,t) = \left\{ \begin{array}{l} 1 \text{ if } s = t \\ -1 \text{ otherwise} \end{array} \right. .$$

- The basic dynamic programming format can be adjusted for different gaps and substitutions models.
- δ : the gap penalty
- σ : scores matches/mismatches.

Gaps Are Treated Equally

| A G A G |

• Commonly use affine gap penalty function:

-3

Gaps Are Treated Equally

		Α	G	Α	G
	0	-1	-2	-3	-4
Α	-1	1			
G	-2				
G	-3				

- Commonly use affine gap penalty function:
 - ► h: penalty associated with opening a gap
 - ▶ g: (smaller) penalty associated with extending the gap.

Gaps Are Treated Equally

		Α	G	Α	G
	0	-1	-2	-3	-4
Α	-1	1			
G	-2				
G	-3				

- Commonly use affine gap penalty function:
 - ► h: penalty associated with opening a gap
 - g: (smaller) penalty associated with extending the gap.
- To implement this efficiently, use 2 additional matrices that keeps track of the gaps (one for each sequence).

Affine Gap

Global Alignment Example

(Affine Gap Penalty)

Burr Settles, U Wisconsin, 2008

• Can view $\sigma(i,j)$ as a substitution matrix.

	Α	С	G	Т
Α	1	-1	-1	-1
С	-1	1	-1	-1
G	-1	-1	1	-1
Т	-1	-1	-1	1

- Can view $\sigma(i,j)$ as a substitution matrix.
- Substitution matrices commonly used for protein sequences.

	A	С	G	Т
Α	1	-1	-1	-1
С	-1	1	-1	-1
G	-1	-1	1	-1
Т	-1	-1	-1	1

- Can view $\sigma(i,j)$ as a substitution matrix.
- Substitution matrices commonly used for protein sequences.
- PAM = Percent Accepted Mutation

- Can view $\sigma(i,j)$ as a substitution matrix.
- Substitution matrices commonly used for protein sequences.
- PAM = Percent Accepted Mutation
 - ▶ Dayhoff et al., 1978
 - Used for closely related protein sequences
 - ▶ Based on global alignment

	Α	С	G	Т
Α	1	-1	-1	-1
С	-1	1	-1	-1
G	-1	-1	1	-1
Т	-1	-1	-1	1

- Can view $\sigma(i,j)$ as a substitution matrix.
- Substitution matrices commonly used for protein sequences.
- PAM = Percent Accepted Mutation
 - ▶ Dayhoff et al., 1978
 - Used for closely related protein sequences
 - ▶ Based on global alignment
- BLOSUM = Blocks Substitution Matrix

	Α	С	G	Т
Α	1	-1	-1	-1
С	-1	1	-1	-1
G	-1	-1	1	-1
Т	-1	-1	-1	1

- Can view $\sigma(i,j)$ as a substitution matrix.
- Substitution matrices commonly used for protein sequences.
- PAM = Percent Accepted Mutation
 - ▶ Dayhoff et al., 1978
 - Used for closely related protein sequences
 - ► Based on global alignment
- BLOSUM = Blocks Substitution Matrix
 - ► Henikoff & Henikoff, 1992
 - Used for more divergent sequences
 - Based on local alignment

Global versus Local Alignment

Paul Reiners, IBM, 2008

- Global: Needleman & Wunsch, 1970.
- Local: Smith & Waterman, 1981.
- Instead of looking for the global best score, look for the best score for subsequences of the initial sequences.

Global versus Local Alignment

Paul Reiners, IBM, 2008

- Global: Needleman & Wunsch, 1970.
- Local: Smith & Waterman, 1981.
- Instead of looking for the global best score, look for the best score for subsequences of the initial sequences.
- Examples:
 - finding motifs (conserved patterns) across sequences,
 - comparing sequences against longer sequences (e.g. blast search).

Smith-Waterman Algorithm

Paul Reiners, IBM, 2008

• The equation is slightly different:

Smith-Waterman Algorithm

Paul Reiners, IBM, 2008

• The equation is slightly different:

$$s(i,j) = max \left\{ egin{array}{l} \sigma(i,j) + s(i-1,j-1) \ -\delta + s(i,j-1) \ -\delta + s(i-1,j) \ 0 \end{array}
ight.$$

- Initialize: first row and first column set to 0's
- Traceback: find maximum value of s(i, j) anywhere in the the matrix, stop when we get to a cell with 0.

Smith-Waterman Algorithm

Paul Reiners, IBM, 2008

	Α	Α	G	Α
Т				
Т				
Α				
A A G				
G				

 $\bullet \ \ {\rm Use} \ \sigma \ {\rm from} \ {\rm Monday,} \ {\rm but} \ \delta = 2.$

	Α	Α	G	Α
Т				
Т				
Α				
A				
G				

- $\bullet \ \ {\rm Use} \ \sigma \ {\rm from} \ {\rm Monday,} \ {\rm but} \ \delta = 2.$
- What are the best local alignments?

		Α	Α	G	Α
	0	0	0	0	0
T	0				
T	0				
Α	0				
A G	0				
G	0				

- $\bullet \ \ {\rm Use} \ \sigma \ {\rm from} \ {\rm Monday,} \ {\rm but} \ \delta = 2.$
- What are the best local alignments?

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0	0	0
T	0	0	0	0	0
Α	0	1	1	0	1
Α	0	1	2	0	1
G	0	0	0	3	1

- $\bullet \ \ {\rm Use} \ \sigma \ {\rm from} \ {\rm Monday,} \ {\rm but} \ \delta = 2.$
- What are the best local alignments?

Bastert et al., 2002

 Develop a strategy to visit every node of the graph (i.e. what data structures are needed?)

Bastert et al., 2002

- Develop a strategy to visit every node of the graph (i.e. what data structures are needed?)
- The bookkeeping is important.

Bastert et al., 2002

- Develop a strategy to visit every node of the graph (i.e. what data structures are needed?)
- The bookkeeping is important.

• Two common strategies:

Bastert et al., 2002

Bastert et al., 2002

- Two common strategies:
 - Breadth First Search (BFS): visit all the neighbors, then visit all the neighbors' neighbors, etc.
 - Depth First Search (DFS): for each neighbor, visit its' neighbors, and continue as far down as possible.
- Bookkeeping is important:
 - Keep a "To Do" list (priority queue) of nodes still to visit.
 - Mark nodes as you visit them, so, you know not to visit again.

 Dynamic Programming: will do local & global alignments in lab today.

- Dynamic Programming: will do local & global alignments in lab today.
- More on searching graphs on Monday.

- Dynamic Programming: will do local & global alignments in lab today.
- More on searching graphs on Monday.
- Email lab reports to kstjohn@amnh.org.

- Dynamic Programming: will do local & global alignments in lab today.
- More on searching graphs on Monday.
- Email lab reports to kstjohn@amnh.org.
- Challenges available at rosalind.info.