Politechnika Łódzka

Wydział Elektrotechniki Elektroniki Informatyki i Automatyki

sem, zimowy, r ak. 2024/2025

Sprawozdanie z projektu BigData "Predykcja cen samochodów używanych"

Mateusz Grzybek 240678 Kamil Młynarczyk 240757

15 grudnia 2024

Spis treści

1	Wst	ep
	1.1	Założenia projektowe
	1.2	Wykorzystane technologie
2		kacja kliencka
	2.1	Opis
		Widoki aplikacji
		2.2.1 Strona
		2.2.2 Okno z ceną
		2.2.1 Strona 2.2.2 Okno z ceną 2.2.3 Okno z błędem
3	Kor	ponent pośredniczący
	3.1	Opis

Rozdział 1

Wstęp

1.1 Założenia projektowe

Celem projektu jest zaimplementowanie aplikacji webowej pozwalającej użytkownikom na predykcję ceny używanego samochodu na podstawie dostarczonego przez niego zestawu cech. Tematyka projektu daje możliwość wykorzystania różnorodnych technologii z dziedziny uczenia maszynowego, rozwoju aplikacji webowych, komunikacji pomiędzy serwisami, architektury oprogramowania oraz bierania i przetwarzania danych. W celu zrealizowania przewidywanych funkcjonalności, aplikacja została podzielona na cztery komponenty, każdy z nich odpowiedzialny za realizację innego aspektu aplikacji.

1.2 Wykorzystane technologie

- Java Obiektowy język programowania.
- SpringBoot Framework dla języka Java nastawiony na wytwarzanie aplikacji webowych i mikroserwisów
- Gradle Narzędzie do automatyzacji budowania projektów.
- React Framework JavaScript do tworzenia interfejsów użytkownika w oparciu o komponenty.
- Docker Narzędzie do tworzenia, uruchamiania i zarządzania aplikacjami w izolowanych środowiskach zwanych kontnerami.
- Docker Compose Narzędzie usprawniające zarządzanie wieloma kontenerami jednocześnie.
- Python Język skryptowy.
- Apache Spark Framework do sprawnego przetwarzania zbiorów danych w pamięci.
- Apache SparkML Moduł Apache Spark przeznaczony do uczenia maszynowego.
- Apache Kafka Platforma przetwarzania danych w czasie rzeczywistym.
- Apache Zookeeper Usługa koordynacyjna systemów rozproszonych.

Rozdział 2

Aplikacja kliencka

2.1 Opis

Aplikacja kliencka stanowi pojedynczą stronę dostępną za pośrednictwem przeglądarki, udostępnianą pod adresem $localhost^1$, na porcie 9091. Strona zawiera informacje związane z aplikacją oraz pola do wprowadzania wartości, na podstawie których następnie dokonywana jest predykcja ceny samochodu. Aplikacja łączy się z komponentem middleware za pośrednictwem protokołu $HTTP^2$ w architekturze $REST^3$.

 $^{^{1}}$ loopback address — adres pętli zwrotnej, który jest wykorzystywany do komunikacji urządzenia z samym sobą.

²HyperText Transfer Protocol — protokół komunikacyjny używany do przesyłania danych w sieci.

³Representational State Transfer — architektura komunikacji oparta o protokół HTTP definiujący sposoby identyfikacji i manipulacji zasobami za pomocą zapytań HTTP.

2.2 Widoki aplikacji

2.2.1 Strona

Rysunek 2.1: Widok strony

2.2.2 Okno z ceną

Rysunek 2.2: Widok okna z ceną

2.2.3 Okno z błędem

Rysunek 2.3: Widok okna z błędem

Rozdział 3

Komponent pośredniczący

3.1 Opis

Komponent pośrediczący pełni rolę pośrednika pomiędzy aplikacją kliencką i serwisem predykcyjnym. Otrzymywane od **frontendu**¹ dane w formie **JSON**² są w tym komponencie przetwarzane na wiadomości w formacie odpowiadającym wejściu modelu, z uwzględnieniem procesu **kodowania liczbowego**³ pól. Otrzymane w tym procesie wiadomości zapisywane są na temat wejściowy Kafki. Pośrednik jest również odpowiedzialny za odczytywanie danych z tematu wyjściowego i przekazywanie uzyskanych z nich informacji do klienta.

 $^{^1\}mathrm{Część}$ aplikacji, z którą użytkownik wchodzi w bezpośednią interakcję, w tym wszystko co widzi oraz elementy wizualne i interaktywne.

 $^{^2 {\}rm JavaScript~Object~Notation}$ — format danych zapewniający kompaktowe rozmiary i jest czytelny dla ludzi i maszyn.

³Technika zamiany wartości danych tekstowych na wartości liczbowe, poprzez przypisanie unikalnej liczby każdej unikalnej wartości tekstowej.