91.
$$dN = 9t^{2}$$
 $(P=7...(19+9+6=34=7=3+4))$

1st Method: h=0.1 (Raltson)

 $N|_{t=0.5} = ?$
 $y_{R}(?+1) = y(!) + hs[y(!), x(!)] \cdot \cdot \cdot \cdot (Raltson Method) - (?)$
 $f(t,N) = dN = 9t^{2}$
 dt
 $h=0.1$
 $(Lsing ?) we modify it we get,$
 $y_{R}(?+1) = y(?) + h[w_{1}k_{1} + w_{2}k_{2}] ; w_{1} = 1/3 \cdot w_{2} = 2/3$
 $R_{1} = f(t,N)$
 $= y(?) + \frac{1}{3} \times [x_{1} + 2k_{2}]$
 $= y(?) + \frac{1}{3} \times [x_{1} + 2k_{2}] \cdot x_{2} = y(?) + \frac{1}{3} \times [x_{1} + 2k_{2}] \cdot x_{3} = y(?) + \frac{1}{3} \times [x_{1} + 2k_{2}] \cdot x_{4} =$

$$N_{R}(3) = N_{R}(2) + \frac{1}{10} \times \left[(0.2)^{\frac{1}{2}} + 2(0.2 + 9(0.2)^{\frac{1}{2}})^{\frac{1}{2}} \right] = 3.0910 \times 10^{3} + 0.012$$

$$= 0.015827$$

$$N_{R}(4) = 0.01587 + 1 \left[(0.3)^{\frac{1}{2}} + 2(0.3 + 9(0.3)^{\frac{1}{2}})^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(5) = 0.05438 + 1 \left[(0.4)^{\frac{1}{2}} + 2\times(0.4 + 9(0.4)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}}) \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}} + 2\times(0.5 + 9(0.5)^{\frac{1}{2}} \right] = 0.05438$$

$$N_{R}(6) = + \frac{1}{10} \left[(0.5)^{\frac{1}{2}$$

On.
$$y(0)=1$$
 $y(0)=1$
 $y(0)=1$

P=7 Derryative=3 n=5, Central froste Difference f(x)=sin(x) $f'''(x_{l}) = a, f(x_{l+2}) + a_{2} f(x_{l+1}) + a_{3} f(x_{l}) + a_{4} f(x_{l-1}) + a_{5} f(x_{l}) + a_{5} f(x_{l-2}) - a_{5$ + (20x)2 f"(xx) + (20x)3 f"(xx) + (20x) 4 f (ap) $f(x_{l+1}) = f(x_{l}) + \Delta x f'(x_{l}) + \Delta x^{2} \times f''(x_{l}) + \underbrace{\otimes(\Delta x)^{3} f'''(x_{l})}_{\Im[} + \underbrace{(\Delta x)^{4}}_{4]} \times f''(x_{l})$ $f(x_{l-1}) = f(x_{l}) - \Delta x f'(x_{l}) + \Delta x^{2} \times f''(x_{l}) - (\Delta x)^{3} \times f'''(x_{l})$ $+ (\Delta x)^{4} \times f^{N}(x_{l})$ $+ (\Delta x)^{4} \times f^{N}(x_{l})$ $f(x_{\ell-2}) = f(x_{\ell}) - 2\Delta x f'(x_{\ell}) + (2\Delta x) + f''(x_{\ell}) + (-2\Delta x)^{3} + f''(x_{\ell})$ + (2Ax) x (N(N)) In (1) substitutions these are Expansions:

.

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[64a, +2a_{2} \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[36 - 6 \right] = \int \sqrt{\langle 1 \rangle} \times \sqrt{\Delta x^{2}} \times \frac{36}{36}$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[36 - 6 \right] = \int \sqrt{\langle 1 \rangle} \times \sqrt{\Delta x^{2}} \times \frac{36}{36}$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[36 - 6 \right] = \int \sqrt{\langle 1 \rangle} \times \sqrt{\Delta x^{2}} \times \frac{36}{36}$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \Delta x^{5} \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \left[32 \times \left[32 \times 3 + (-6) \right]$$

$$= \int \sqrt{\langle 1 \rangle} \times \left[32 \times \left[3$$

found is numerically same With the Ar tox Ep=2x10

$$\begin{array}{c}
(x = \frac{x}{4} - x), \quad dx = h d\alpha, \quad h = (b - a)/2, \\
(x = \frac{x}{4} - x), \quad dx = h d\alpha, \quad h = (b - a)/2, \\
(x = \frac{x}{4} - x), \quad dx = h d\alpha, \quad dx = \frac{x}{4} + \frac{x}{4}$$

	defenetely with increasing N the exxx decreases
	with () order N4 (tox Cony N) = -(1) = 24x31
	with Ooxder N ⁴ (for Cany N) = $-(1)^{\frac{3}{2}} \times \frac{24 \times 31}{32}$
n=1	estimated error = $\frac{180 \times N^4}{(511 \text{mate})} = 0.0267 \times 100\%$
	(stimate -6.1291)
	$\left(\overline{N^{4}} \right)$
n=2	estimated crxox = 0.1291 1 1.67 x10-3 x 100%
No.	4.833 (2)4
n=3	$11 = 0.0267 \times \bot = 3.2962 \times 10^{-4} \times 100\%$
	(3)4
n=4	$11 = 0.0267 \times 1 = 1.042 \times 10^{-4} \times 100\%$
	(4)*
	We can calculate the Actual crrox likelyin
	Jame way.