

8. THE p - BLOCK **ELEMENTS**

Atomic & Physical Properties

- **→ Electronic configuration:** [Noble gas] ns²np¹
- **+Oxidation state:** +1 & +3
- + Metallic Character: B Al, Ga, In, Tl Metals

NonMetal

- + Atomic radii, ionic radii, density & stability of +1 oxidation state: Generally increase down the group.
- + Boiling point & stability of +3 oxidation state: Decreases down the group.
- **♦ Electronegativity**: B > Tl > In > Ga > Al
- **→ Melting point**: Decreases from B to Ga then increases. B > Al > Ga > In > Tl
- **♦ Ionisation Energy**: B > Tl > Ga > Al > In
- **+ Lewis Acid**: BCl₃, AlCl₃ etc behaves as Lewis Acid due to incomplete octet

GROUP 13 BORON FAMILY

Chemical Properties /

★ Reactivity towards Air \rightarrow 4E + 3O, $\stackrel{\triangle}{\rightarrow}$ 2E,O,

$$\begin{array}{c|cccc} Al_2O_3 & Ga_2O_3 & In_2O_3 \\ Acidic & Amphoteric & Basic \end{array}$$

 $2E + N_2 \xrightarrow{\Delta} 2EN \{Except Ga, In, Tl\}$

+ Reactivity towards halogens:

2E+
$$3X_2 \rightarrow 2EX_3$$
 (Except TlI_3)
(X = F, Cl, Br, I)

+ Reactivity towards Acids and alkalies

$$2Al(s) + 6HCl(aq.) \rightarrow 2Al^3 + (aq.) + 6Cl^{-}(aq.) + 3H_2(q)$$

 $2Al(s) + 2NaOH(aq.) + 6H₂O \rightarrow 2Na+[Al(OH)₄]^{-}(aq) + 3H₂(q)$

Anomalous Behaviour of Boron Properties/

AICI, achieves stability by forming a dimer

Reasons

- + Small size
- + High ionization enthalpy
- + Non availability of vacant d orbital
- + Heating

 $Na_2B_4O_7 \rightarrow 2NaBO_2 + B_2O_3$

- → boron on hyrolysis in water form tetrahedral [M(OH_a)]⁻ The hybridisation state of element M is sp³
- + Aluminium chloride in acidified aqueous solution forms octahedral [Al(H,O,)]3+ ion. hybridisation state of Al is sp³d².
- Its oxides and hydroxides have acidic nature

Atomic & Physical Properties

- **+ Electronic configuration:** [Noble gas] ns²np²
- **→ Oxidation state:** +2 & +4
- + Atomic radii, metallic character & stability of
 +2 Oxidation state: Generally increase down
 the group. C < Si < Ge < Sn < Pb
- + Catenation: Decreases down the group. Pb does not show catenation. C >> Si > Ge ≈ Sn
- **→ Ionization enthalpy:** C > Si > Ge > Pb > Sn
- **+ Electronegativity :** C > Pb > Si ≈ Ge ≈ Sn

Chemical Properties

★ Reactivity towards Air

They form oxides of the formula EO and EO₂ on heating with air.

+ Acidic strength of their oxides decrease down the group.

- **→ Reactivity towards water:** only Sn reacts with steam.
- → Reactivity towards halogen: They form halide of formula EX₂ and EX₄ most of the EX₄ are covalent in nature
- + Except CCl₄, Other halides are easily Hydrolysed by water

$$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$$

Silicic acid

- + It can form p π p π bonds with itself & other small atom (C=C, C=C C=N, C=O)
- + Carbon dioxide, Co₂, is a gas while the dioxides of other elements are solids.
- + CCl₄ does not undergo hydrolysis while the tetrahalides, MX₄, of other elements undergo hydrolysis.

Bond	Bond enthalpy / kJ mol ⁻¹
c – c	348
Si – Si	297
Ge – Ge	260
Sn – Sn	240

