In this document, we provide the results of different combinations of different optimization strategies and architectures on the *NYUv2* dataset. There are something required special attention as follows.

- We comment out the code about reproducibility (https://github.com/median-research-group/LibMTL/blob/main/LibMTL/utils.py#L18-L20) for faster running speed;
- Each experiment is run only once here;
- We only use the default hyperparameters for each method, refer to Table 1 for details;
- All experiments are conduced on the NYUv2 dataset only.
- A few experiments have appeared the Out Of Memory (OOM) error because of the insufficient GPU memory.

Table 1: Hyperparameters Configuration.

Table 1: Hyperparameters Configuration.								
	Configuration							
common	GPU: NVIDIA GeForce RTX 3090 multi_input: False aug: False; seed: 0 train_bs: 8; test_bs: 8; epochs: 200 optim: Adam; lr: 0.0001; weight_decay: 1e-05 scheduler: step; step_size: 100; gamma: 0.5							
GradNorm	rep_grad: False; alpha: 1.5							
MGDA	rep_grad: True; mgda_gn: none							
DWA	T: 2							
GradDrop	leak: 0.0							
IMTL	rep_grad: True							
GradVac	beta: 0.5							
CAGrad	calpha: 0.5; rescale: 1							
Nash-MTL	update_weights_every: 1 optim_niter: 20; max_norm: 1.0							
ММоЕ	img_size: [3, 288, 384] num_experts: [2]							
CGC	img_size: [3, 288, 384] num_experts: [1, 1, 1, 1]							
PLE	<pre>img_size: [3, 288, 384] num_experts: [1, 1, 1, 1] train_bs: 4; test_bs: 4</pre>							
DSelect-k	<pre>img_size: [3, 288, 384] num_experts: [2] kgamma: 1.0; num_nonzeros: 2</pre>							

Table 2: Performance on the NYUv2 dataset with 3 tasks on HPS [1] architecture.

	Segmentation		De	pth	Normal						
	mIoII↑ D		. D		A E	DE	Angle I	Distance	V	Vithin t°	
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑		
EW	54.10	75.78	0.3771	0.1596	23.53	17.20	34.55	60.75	72.06		
GradNorm [2]	53.57	75.21	0.3853	0.1623	23.32	16.62	35.81	61.85	72.73		
UW [7]	54.02	75.66	0.3838	0.1573	23.45	16.86	35.43	61.32	72.33		
MGDA [15]	50.15	73.44	0.3839	0.1563	22.78	16.05	37.04	63.07	73.65		
DWA [11]	53.55	75.42	0.3811	0.1589	23.63	17.15	34.78	60.71	71.87		
GLS [4]	54.46	76.01	0.3793	0.1566	22.73	16.16	36.76	62.94	73.68		
PCGrad [18]	54.03	75.66	0.3814	0.1570	23.62	17.01	35.10	60.96	71.97		
GradDrop [3]	53.90	75.62	0.3851	0.1580	23.67	17.04	34.99	60.88	71.91		
IMTL [10]	53.53	75.46	0.3842	0.1578	22.99	16.44	36.16	62.28	73.20		
GradVac [17]	53.99	75.74	0.3842	0.1602	23.51	16.93	35.26	61.14	72.17		
CAGrad [9]	53.77	75.80	0.3836	0.1584	22.53	15.86	37.40	63.58	74.20		
Nash-MTL [14]	53.38	75.01	0.3814	0.1570	22.61	15.87	37.30	63.68	74.28		
RLW [8]	54.52	75.78	0.3890	0.1566	23.34	16.83	35.45	61.43	72.45		

Table 3: Performance on the NYUv2 dataset with 3 tasks on Cross-stitch [13] architecture.

	Segmentation		Depth		Normal				
	T-TIA	DA oo¢		DEwel	Angle I	Distance	Within t°		
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	53.14	75.24	0.3824	0.1621	23.03	16.29	36.77	62.30	72.98
GradNorm [2]	53.70	75.30	0.3790	0.1591	23.12	16.50	36.30	61.95	72.77
UW [7]	53.39	75.37	0.3780	0.1583	23.12	16.32	36.77	62.29	72.94
MGDA [15]	53.78	75.50	0.3758	0.1560	22.70	15.91	37.53	63.21	73.72
DWA [11]	52.91	75.06	0.3795	0.1577	23.19	16.42	36.61	62.02	72.72
GLS [4]	53.50	75.46	0.3798	0.1576	22.52	15.73	37.90	63.60	74.02
PCGrad [18]	52.71	75.10	0.3824	0.1607	22.97	16.14	37.08	62.66	73.19
GradDrop [3]					OOM				
IMTL [10]	53.49	75.65	0.3770	0.1565	22.81	15.96	37.41	63.13	73.65
GradVac [17]	53.45	75.22	0.3787	0.1570	23.25	16.54	36.34	61.76	72.51
CAGrad [9]	53.69	75.17	0.3757	0.1503	22.45	15.80	37.71	63.52	74.08
Nash-MTL [14]	53.17	75.12	0.3701	0.1542	22.63	15.81	37.62	63.48	73.98
RLW [8]	53.27	75.17	0.3772	0.1546	22.65	15.84	37.58	63.37	73.81

Table 4: Performance on the NYUv2 dataset with 3 tasks on MMoE [12] architecture.

	Segmentation		Depth		Normal				
	T T1A	DA and	A E	DE	Angle I	Distance	V	Vithin t°)
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	53.02	75.09	0.3884	0.1631	22.96	16.37	36.31	62.46	73.30
GradNorm [2]	53.09	75.07	0.3946	0.1698	22.93	16.23	36.81	62.59	73.32
UW [7]	53.49	75.38	0.3813	0.1605	22.76	15.99	37.23	63.16	73.74
MGDA [15]	50.69	73.82	0.3772	0.1574	22.78	16.22	36.68	62.70	73.43
DWA [11]	53.18	74.70	0.3859	0.1613	23.25	16.61	35.87	61.90	72.76
GLS [4]	53.35	75.28	0.3778	0.1576	22.54	15.77	37.70	63.65	74.12
PCGrad [18]	54.24	75.68	0.3832	0.1601	22.58	15.88	37.42	63.45	73.98
GradDrop [3]					OOM				
IMTL [10]	53.83	75.59	0.3788	0.1601	22.79	16.16	36.88	62.78	73.46
GradVac [17]	52.93	75.04	0.3903	0.1565	22.89	16.04	37.00	63.03	73.57
CAGrad [9]	53.15	74.96	0.3933	0.1650	22.38	15.66	37.93	63.88	74.36
Nash-MTL [14]	53.67	75.62	0.3885	0.1604	22.28	15.76	37.61	63.86	74.49
RLW [8]	53.10	74.77	0.3955	0.1696	22.32	15.51	38.29	64.15	74.42

Table 5: Performance on the NYUv2 dataset with 3 tasks on MTAN [11] architecture.

	Segmentation		Depth		Normal				
	T-TIA	DA aad		DE	Angle I	Distance	V		
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	54.38	75.84	0.3764	0.1561	22.98	16.36	36.35	62.44	73.27
GradNorm [2]	54.01	75.67	0.3838	0.1554	23.25	16.59	35.97	61.89	72.82
UW [7]	54.01	75.75	0.3729	0.1515	23.04	16.25	36.79	62.53	73.21
MGDA [15]	51.43	74.22	0.3712	0.1508	22.20	15.30	38.79	64.73	74.89
DWA [11]	54.82	75.93	0.3780	0.1582	22.94	16.34	36.53	62.44	73.21
GLS [4]	55.16	76.34	0.3726	0.1551	22.58	15.82	37.63	63.59	74.12
PCGrad [18]	54.63	75.95	0.3810	0.1585	23.48	17.02	35.04	60.99	72.16
GradDrop [3]					OOM				
IMTL [10]	54.35	75.84	0.3722	0.1553	22.45	15.72	37.76	63.85	74.34
GradVac [17]	53.65	75.59	0.3821	0.1612	23.43	17.01	35.12	61.04	72.21
CAGrad [9]	53.87	75.40	0.3815	0.1557	22.55	15.91	37.36	63.43	74.08
Nash-MTL [14]	54.78	75.85	0.3788	0.1546	22.46	15.60	38.19	64.01	74.41
RLW [8]	55.19	76.13	0.3758	0.1568	22.79	16.05	37.11	63.08	73.70

Table 6: Performance on the NYUv2 dataset with 3 tasks on CGC [16] architecture.

	Segmentation		Depth		Normal					
	TaTIA	DA and	A E	RErr↓	Angle I	Distance	V	Within t°		
	mIoU↑	PAcc ↑	AErr↓		Mean↓	MED↓	11.25 ↑	22.5↑	30↑	
EW	53.40	75.07	0.3897	0.1650	22.17	15.41	38.50	64.47	74.76	
GradNorm [2]	53.01	75.07	0.3957	0.1653	22.17	15.42	38.45	64.51	74.81	
UW [7]	52.78	75.08	0.3832	0.1559	22.35	15.26	38.79	64.58	74.61	
MGDA [15]	54.34	76.20	0.3799	0.1573	22.09	15.41	38.39	64.63	75.03	
DWA [11]	52.35	74.90	0.3992	0.1694	22.09	15.35	38.74	64.55	74.81	
GLS [4]	53.36	75.38	0.3829	0.1595	22.12	15.44	38.42	64.50	74.85	
PCGrad [18]	52.90	74.98	0.3968	0.1646	22.17	15.51	38.25	64.27	74.63	
GradDrop [3]					OOM					
IMTL [10]	52.77	75.23	0.3920	0.1593	22.71	15.90	37.43	63.41	73.96	
GradVac [17]	53.06	75.01	0.4000	0.1666	22.22	15.40	38.34	64.58	74.77	
CAGrad [9]	53.61	74.94	0.3952	0.1644	22.18	15.47	38.26	64.41	74.77	
Nash-MTL [14]					OOM					
RLW [8]	53.42	75.21	0.3916	0.1646	21.78	15.09	39.21	65.22	75.43	

Table 7: Performance on the NYUv2 dataset with 3 tasks on **PLE** [16] architecture.

	Segmen	Segmentation		Depth		Normal					
	TaTIA	T. TIA. DA. A	DA oo¢	A E-m-	DE I	Angle I	Angle Distance		Within t°		
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5 ↑	30↑		
EW	53.22	74.89	0.4002	0.1658	22.04	15.17	38.75	65.24	75.42		
GradNorm [2]	53.17	74.98	0.3809	0.1601	21.96	15.12	39.25	65.05	75.18		
UW [7]	53.13	74.89	0.3767	0.1536	22.27	15.39	38.52	64.47	74.72		
MGDA [15]	53.55	75.42	0.3985	0.1663	22.07	15.35	38.58	64.73	75.02		
DWA [11]	53.06	75.00	0.3850	0.1561	21.97	15.21	38.92	64.98	75.25		
GLS [4]	53.28	75.33	0.3736	0.1549	22.14	15.49	38.43	64.22	74.58		
PCGrad [18]	52.99	74.93	0.3848	0.1592	22.55	15.56	38.29	63.90	74.17		
GradDrop [3]					OOM						
IMTL [10]	53.48	75.58	0.3876	0.1564	21.79	15.04	39.28	65.43	75.59		
GradVac [17]	53.03	74.96	0.3926	0.1594	22.02	15.36	38.72	64.52	74.86		
CAGrad [9]	52.76	75.11	0.3923	0.1586	22.12	15.58	38.14	64.16	74.66		
Nash-MTL [14]	50.80	73.84	0.3813	0.1562	22.28	15.57	37.90	64.30	74.78		
RLW [8]	52.24	74.08	0.3863	0.1621	22.26	15.39	38.78	64.24	74.46		

Table 8: Performance on the NYUv2 dataset with 3 tasks on LTB [5] architecture.

	Segmentation		Depth		Normal				
	TaTIA	DA and	A E	Err↓ RErr↓	Angle I	Distance	Within t°)
	mIoU↑	PAcc ↑	AErr↓		Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	52.36	74.75	0.3850	0.1611	23.26	16.60	36.21	61.69	72.47
GradNorm [2]	51.93	74.60	0.3854	0.1618	23.25	16.54	36.27	61.82	72.55
UW [7]	52.19	74.68	0.3886	0.1576	23.32	16.47	36.46	61.81	72.42
MGDA [15]	52.85	74.68	0.3849	0.1585	22.97	16.13	37.11	62.67	73.18
DWA [11]	52.25	74.50	0.3865	0.1579	23.39	16.70	35.95	61.45	72.21
GLS [4]	52.97	74.88	0.3797	0.1536	22.90	15.98	37.44	62.93	73.34
PCGrad [18]	52.40	74.83	0.3847	0.1600	23.26	16.58	36.17	61.76	72.55
GradDrop [3]					OOM				
IMTL [10]	52.74	75.08	0.3783	0.1579	22.97	16.21	36.91	62.57	73.22
GradVac [17]	52.35	74.81	0.3817	0.1593	23.36	16.62	36.10	61.59	72.33
CAGrad [9]	53.25	75.36	0.3711	0.1567	22.65	15.94	37.42	63.22	73.79
Nash-MTL [14]					OOM				
RLW [8]	52.62	74.60	0.3829	0.1622	22.95	15.94	37.67	62.85	73.16

Table 9: Performance on the NYUv2 dataset with 3 tasks on **DSelect-k** [6] architecture.

	Segmentation		Depth		Normal				
	TaTIA	DA oo¢	A E-m-	DEwel	Angle I	Distance	Within t°		
	mIoU↑	PAcc ↑	AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	54.03	75.37	0.3854	0.1597	23.45	16.88	35.37	61.23	72.22
GradNorm [2]	53.54	75.43	0.3845	0.1625	23.05	16.46	36.19	62.22	73.07
UW [7]	54.34	75.55	0.3796	0.1587	23.17	16.55	36.07	61.96	72.79
MGDA [15]	53.88	75.72	0.3874	0.1613	22.25	15.63	37.99	63.99	74.48
DWA [11]	53.59	75.02	0.3849	0.1621	22.51	15.32	38.82	64.15	74.09
GLS [4]	54.76	75.96	0.3801	0.1569	22.74	16.03	37.05	63.18	73.73
PCGrad [18]	53.37	74.87	0.3844	0.1611	22.44	15.79	37.69	63.53	73.96
GradDrop [3]					OOM				
IMTL [10]	53.49	75.67	0.3730	0.1526	22.37	15.65	37.89	64.00	74.44
GradVac [17]	53.68	75.39	0.3811	0.1588	23.16	16.50	36.18	62.02	72.80
CAGrad [9]	53.34	75.42	0.3886	0.1616	22.61	16.06	37.07	63.15	73.89
Nash-MTL [14]	53.64	74.92	0.4014	0.1653	22.59	15.77	37.63	63.69	74.14
RLW [8]	52.25	74.92	0.3807	0.1561	22.47	15.73	37.74	63.75	74.16

References

- [1] Rich Caruana. Multitask learning: A knowledge-based source of inductive bias. In *International Conference on Machine Learning*, 1993.
- [2] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In *International Conference on Machine Learning*, 2018.
- [3] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign dropout. In *Neural Information Processing Systems*, 2020.
- [4] Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and Samir A Rawashdeh. MultiNet++: Multistream feature aggregation and geometric loss strategy for multi-task learning. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2019.
- [5] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In *International Conference on Machine Learning*, 2020.
- [6] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in the mixture of experts with applications to multi-task learning. In *Neural Information Processing Systems*, 2021.
- [7] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2018.
- [8] Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weighting: A litmus test for multi-task learning. *Transactions on Machine Learning Research*, 2022.
- [9] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-task learning. In *Neural Information Processing Systems*, 2021.
- [10] Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Towards impartial multi-task learning. In *International Conference on Learning Representations*, 2021.
- [11] Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2019.
- [12] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. In *ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, 2018.
- [13] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for multi-task learning. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2016.
- [14] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-task learning as a bargaining game. In *International Conference on Machine Learning*, 2022.
- [15] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In *Neural Information Processing Systems*, 2018.
- [16] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (PLE): A novel multi-task learning (MTL) model for personalized recommendations. In ACM Conference on Recommender Systems, 2020.
- [17] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and improving multi-task optimization in massively multilingual models. In *International Conference on Learning Representations*, 2021.
- [18] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery for multi-task learning. In *Neural Information Processing Systems*, 2020.