Discrete mathematics course Chapter 5: Modeling Computation

Anh Tuan GIANG

ICTLab, ICT Department University of Science and Technology of Hanoi-USTH

May 5, 2017

GIANG (ICTLab)

- Languages and Grammars
- 2 Finite-State Machines with Outputs
- 3 Finite-State Machine with No Outputs
- 4 Language Recognition
- 5 Turing Machine

Formal language is:

• A set of natural language (i.e English, Vietnamese).

Formal language is:

- A set of natural language (i.e English, Vietnamese).
- Specified by a well-defined set of rules of syntax.

Formal language is:

- A set of natural language (i.e English, Vietnamese).
- Specified by a well-defined set of rules of syntax.
- Sentences can be described by using grammar

Formal language is:

- A set of natural language (i.e English, Vietnamese).
- Specified by a well-defined set of rules of syntax.
- Sentences can be described by using grammar

Example: The rabbit eats quickly.

Definition 1.1.

A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (or sentence) over V is a string of finite length of elements of V. The empty string or null string, denoted by λ , is the string containing no symbols. The set of all words over V is denoted by V^* . A language over V is a subset of V^* .

Definition 1.2.

A phrase-structure grammar G = (V, T, S, P) consists of a vocabulary V, a subset T of V consisting of terminal symbols, a start symbol S from V, and a finite set of productions P. The set V - T is denoted by N. Elements of N are called nonterminal symbols. Every production in P must contain at least one nonterminal on its left side.

Definition 1.2.

A phrase-structure grammar G = (V, T, S, P) consists of a vocabulary V, a subset T of V consisting of terminal symbols, a start symbol S from V, and a finite set of productions P. The set V - T is denoted by N. Elements of N are called nonterminal symbols. Every production in P must contain at least one nonterminal on its left side.

Example: let G = (V, T, S, P), where $V = \{a, b, A, B, S\}$, $T = \{a, b\}$, S is the start symbol, and $P = \{S \rightarrow ABa, A \rightarrow BB, B \rightarrow ab, AB \rightarrow b\}$. G is an example of a phrase-structure grammar.

Definition 1.3.

Let G=(V,T,S,P) be a phrase-structure grammar. Let $w_0=lz_0r$ (that is, the concatenation of I,z_0 , and r) and $w_1=lz_1r$ be strings over V. If $z_0\to z_1$ is a production of G, we say that w_1 is directly derivable from w_0 and we write $w_0\Rightarrow w_1$. If $w_0,w_1,...,w_n$ are strings over V such that $w_0\Rightarrow w_1,w_1\Rightarrow w_2,...,w_{n1}\Rightarrow w_n$, then we say that w_n is derivable from w_0 , and we write $w_0\stackrel{*}{\Rightarrow}w_n$. The sequence of steps used to obtain w_n from w_0 is called a derivation.

Definition 1.3.

Let G=(V,T,S,P) be a phrase-structure grammar. Let $w_0=lz_0r$ (that is, the concatenation of I,z_0 , and r) and $w_1=lz_1r$ be strings over V. If $z_0\to z_1$ is a production of G, we say that w_1 is directly derivable from w_0 and we write $w_0\Rightarrow w_1$. If $w_0,w_1,...,w_n$ are strings over V such that $w_0\Rightarrow w_1,w_1\Rightarrow w_2,...,w_{n1}\Rightarrow w_n$, then we say that w_n is derivable from w_0 , and we write $w_0\stackrel{*}{\Rightarrow}w_n$. The sequence of steps used to obtain w_n from w_0 is called a derivation.

Example: the string Aaba is directly derivable from ABa in the grammar in the previous example, because $B \rightarrow ab$ is a production in the grammar.

The string *abababa* is derivable from *ABa* because

 $ABa \Rightarrow Aaba \Rightarrow BBaba \Rightarrow Bababa \Rightarrow abababa$, using the productions $B \rightarrow ab, A \rightarrow BB, B \rightarrow ab, and B \rightarrow ab$ in succession.

<ロ > ∢回 > ∢回 > ∢ ≧ > √ ≧ → へへ(

Definition 1.4.

Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words,

$$L(G) = \{ w \in T^* | S \stackrel{*}{\Rightarrow} w \}.$$

Definition 1.4.

Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words,

$$L(G) = \{ w \in T^* | S \stackrel{*}{\Rightarrow} w \}.$$

Example: let G be the grammar with vocabulary V = S, A, a, b, set of terminals $T = \{a, b\}$, starting symbol S, and productions $P = \{S \rightarrow aA, S \rightarrow b, A \rightarrow aa\}$. What is L(G)?

Definition 1.4.

Let G = (V, T, S, P) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words,

$$L(G) = \{ w \in T^* | S \stackrel{*}{\Rightarrow} w \}.$$

Example: let G be the grammar with vocabulary V = S, A, a, b, set of terminals $T = \{a, b\}$, starting symbol S, and productions $P = \{S \rightarrow aA, S \rightarrow b, A \rightarrow aa\}$. What is L(G)?

Example: let G be the grammar with vocabulary $V = \{S, 0, 1\}$, set of terminals $T = \{0, 1\}$, starting symbol S, and productions $P = \{S \to 11S, S \to 0\}$. What is L(G)?

Exercises

• Exercise: give a phrase-structure grammar that generates the set $\{0^n1^n|n=0,1,2,...\}$.

Exercises

- Exercise: give a phrase-structure grammar that generates the set $\{0^n1^n|n=0,1,2,...\}$.
- Exercise: find a phrase-structure grammar to generate the set $\{0^m1^n|m \text{ and } n \text{ are nonnegative integers}\}.$

8 / 42

• A **type 0** grammar has no restrictions on its productions

- A type 0 grammar has no restrictions on its productions
- A **type 1** grammar can have productions of the form $w_1 \to w_2$, where $w_1 = IAr$ and $w_2 = Iwr$, where A is a nonterminal symbol, I and r are strings of zero or more terminal or nonterminal symbols, and w is a nonempty string of terminal or nonterminal symbols.

(context-sensitive language)

- A type 0 grammar has no restrictions on its productions
- A **type 1** grammar can have productions of the form $w_1 \rightarrow w_2$, where $w_1 = IAr$ and $w_2 = Iwr$, where A is a nonterminal symbol, I and I are strings of zero or more terminal or nonterminal symbols, and I is a nonempty string of terminal or nonterminal symbols. (context-sensitive language)
- A **type 2** grammar can have productions only of the form $w_1 \rightarrow w_2$, where w_1 is a single symbol that is not a terminal symbol. (context-free grammars)

- A type 0 grammar has no restrictions on its productions
- A **type 1** grammar can have productions of the form $w_1 \rightarrow w_2$, where $w_1 = IAr$ and $w_2 = Iwr$, where A is a nonterminal symbol, I and I are strings of zero or more terminal or nonterminal symbols, and I is a nonempty string of terminal or nonterminal symbols. (context-sensitive language)
- A **type 2** grammar can have productions only of the form $w_1 \rightarrow w_2$, where w_1 is a single symbol that is not a terminal symbol. (context-free grammars)
- A **type 3** grammar can have productions only of the form $w_1 \rightarrow w_2$ with $w_1 = A$ and either $w_2 = aB$ or $w_2 = a$,where A and B are nonterminal symbols and a is a terminal symbol, or with $w_1 = S$ and $w_2 = \lambda$. (regular grammars)

 A derivation in the language generated by a context-free grammar can be represented graphically using an ordered rooted tree, called a derivation, or parse tree.

- A derivation in the language generated by a context-free grammar can be represented graphically using an ordered rooted tree, called a derivation, or parse tree.
- The root of this tree represents the starting symbol.

- A derivation in the language generated by a context-free grammar can be represented graphically using an ordered rooted tree, called a derivation, or parse tree.
- The root of this tree represents the starting symbol.
- The internal vertices of the tree represent the nonterminal symbols that arise in the derivation.

- A derivation in the language generated by a context-free grammar can be represented graphically using an ordered rooted tree, called a derivation, or parse tree.
- The root of this tree represents the starting symbol.
- The internal vertices of the tree represent the nonterminal symbols that arise in the derivation.
- The leaves of the tree represent the terminal symbols that arise.

• Example: Construct a derivation tree for the derivation of *the hungry* rabbit eats quickly.

• Example: Construct a derivation tree for the derivation of *the hungry* rabbit eats quickly.

FIGURE 1 A Derivation Tree.

Backus-Naur form

• A type 2 grammar can be referred to as the BackusNaur form (BNF).

Backus-Naur form

- A type 2 grammar can be referred to as the BackusNaur form (BNF).
- Use in the specification of the programming language ALGOL.

Backus-Naur form

- A type 2 grammar can be referred to as the BackusNaur form (BNF).
- Use in the specification of the programming language ALGOL.
- The BackusNaur form is used to specify the syntactic rules of many computer languages, including Java.

- Languages and Grammars
- 2 Finite-State Machines with Outputs
- 3 Finite-State Machine with No Outputs
- 4 Language Recognition
- Turing Machine

Definitions

Definition 2.1.

A finite-state machine $M = (S, I, O, f, g, s_0)$ consists of a finite set S of states, a finite input alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a new state, an output function g that assigns to each state and input pair an output, and an initial state s_0 .

• Construct the state diagram for the finite-state machine with the state table shown in Table on the left.

• Construct the state diagram for the finite-state machine with the state table shown in Table on the left.

TABLE 2							
	f		g				
	Input		Input				
State	0	1	0	1			
s_0	s_1	s_0	1	0			
s_1	83	s_0	1	1			
s_2	s_1	s_2	0	1			
83	s ₂	s_1	0	0			

• Construct the state diagram for the finite-state machine with the state table shown in Table on the left.

TABLE 2							
	f		g				
	Input		Input				
State	0	1	0	1			
s_0	s_1	s_0	1	0			
s_1	83	s_0	1	1			
s_2	s_1	s_2	0	1			
83	s ₂	s_1	0	0			

FIGURE 2 The State Diagram for the Finite-State Machine Shown in Table 2.

• Construct the state table for the finite-state machine with the state diagram shown in Figure on the left.

• Construct the state table for the finite-state machine with the state diagram shown in Figure on the left.

FIGURE 3 A Finite-State Machine.

 Construct the state table for the finite-state machine with the state diagram shown in Figure on the left.

FIGURE 3 A Finite-State Machine.

TABLE 3				
	f		g	
	Input		Input	
State	0	1	0	1
s_0	s_1	83	1	0
s_1	s_1	s_2	1	1
s_2	53	54	0	0
s_3	s_1	s_0	0	0
84	83	84	0	0

• Find the output string generated by the finite-state machine in previous Figure if the input string is 101011.

• Find the output string generated by the finite-state machine in previous Figure if the input string is 101011.

TABLE 4							
Input	1	0	1	0	1	1	_
State	s_0	<i>s</i> ₃	s_1	s_2	s_3	s_0	53
Output	0	0	1	0	0	0	_

In a certain coding scheme, when three consecutive 1s appear in a
message, the receiver of the message knows that there has been a
transmission error. Construct a finite-state machine that gives a 1 as
its current output bit if and only if the last three bits received are all
1s.

• In a certain coding scheme, when three consecutive 1s appear in a message, the receiver of the message knows that there has been a transmission error. Construct a finite-state machine that gives a 1 as its current output bit if and only if the last three bits received are all 1s.

FIGURE 6 A Finite-State Machine That Gives an Output of 1 If and Only If the Input String Read So Far Ends with 111.

Definitions

Definition 2.2.

Let $M = (S, I, O, f, g, s_0)$ be a finite-state machine and $L \subseteq I^*$. We say that M recognizes (or accepts) L if an input string x belongs to L if and only if the last output bit produced by M when given x as input is a 1.

- Languages and Grammars
- 2 Finite-State Machines with Outputs
- 3 Finite-State Machine with No Outputs
- 4 Language Recognition
- 5 Turing Machine

Definition 3.1.

Suppose that A and B are subsets of V^* , where V is a vocabulary. The concatenation of A and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is a string in B.

Definition 3.1.

Suppose that A and B are subsets of V^* , where V is a vocabulary. The concatenation of A and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is a string in B.

• Example: let $A = \{0, 11\}$ and $B = \{1, 10, 110\}$. Find AB and BA.

Definition 3.1.

Suppose that A and B are subsets of V^* , where V is a vocabulary. The concatenation of A and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is a string in B.

- Example: let $A = \{0, 11\}$ and $B = \{1, 10, 110\}$. Find AB and BA.
- Example: let $A = \{1,00\}$. Find A^n for n=0,1,2, and 3.

Definition 3.2.

Suppose that A is a subset of V^* . Then the *Kleene closure* of A, denoted by A^* , is the set consisting of concatenations of arbitrarily many strings from A. That is, $A^* = \bigcup_{k=0}^{\infty} A^k$

Definition 3.2.

Suppose that A is a subset of V^* . Then the Kleene closure of A, denoted by A^* , is the set consisting of concatenations of arbitrarily many strings from A. That is, $A^* = \bigcup_{k=0}^{\infty} A^k$

• Example: what are the Kleene closures of the sets

$$A = \{0\}, B = \{0, 1\}, \text{ and } C = \{11\}$$
?

Definition 3.3.

A finite-state automaton $M = (S, I, f, s_0, F)$ consists of a finite set S of states, a finite input alphabet I, a transition function f that assigns a next state to every pair of state and input (so that $f: S \times I \to S$), an initial or start state s_0 , and a subset F of S consisting of final (or accepting states).

• Construct the state diagram for the finite-state automaton $M = (S, I, f, s_0, F)$, where $S = \{s_0, s_1, s_2, s_3\}$, $I = \{0, 1\}, F = \{s_0, s_3\}$, and the transition function f is given in the Table below.

• Construct the state diagram for the finite-state automaton $M=(S,I,f,s_0,F)$, where $S=\{s_0,s_1,s_2,s_3\}$, $I=\{0,1\}, F=\{s_0,s_3\}$, and the transition function f is given in the Table below.

TABLE 1			
	f		
	Input		
State	0	1	
s_0	s_0	s_1	
s_1	s_0	s_2	
s_2	s_0	s_0	
83	s_2	s_1	

• Construct the state diagram for the finite-state automaton $M=(S,I,f,s_0,F)$, where $S=\{s_0,s_1,s_2,s_3\}$, $I=\{0,1\},F=\{s_0,s_3\}$, and the transition function f is given in the Table below.

TABLE 1			
	f		
	Input		
State	0	1	
s_0	s_0	s_1	
s_1	s_0	s_2	
s_2	s_0	s_0	
83	s_2	s_1	

FIGURE 1 The State Diagram for a Finite-State Automaton.

Language Recognition by Finite-State Machines

Definition 3.4.

A string x is said to be recognized or accepted by the machine $M = (S, I, f, s_0, F)$ if it takes the initial state s_0 to a final state, that is, $f(s_0, x)$ is a state in F. The language recognized or accepted by the machine M, denoted by L(M), is the set of all strings that are recognized by M. Two finite-state automata are called equivalent if they recognize the same language.

Language Recognition by Finite-State Machines

• Determine the languages recognized by the finite-state automata M_1 , M_2 , and M_3 in Figure below.

Language Recognition by Finite-State Machines

• Determine the languages recognized by the finite-state automata M_1 , M_2 , and M_3 in Figure below.

Definition 3.5.

A non-deterministic finite-state automaton $M=(S,I,f,s_0,F)$ consists of a set S of states, an input alphabet I, a transition function f that assigns a set of states to each pair of state and input (so that $f:S\times I\to P(S)$), a starting state s_0 , and a subset F of S consisting of the final states.

• Find the state table for the non-deterministic finite-state automaton with the state diagram shown in Figure below.

• Find the state table for the non-deterministic finite-state automaton with the state diagram shown in Figure below.

TABLE 3			
	ſ		
	Input		
State	0	1	
s ₀	s_0 , s_2	s_1	
s_1	53	<i>S</i> 4	
s_2		84	
s ₃	s ₃		
84	<i>s</i> ₃	s_3	

• Find the state table for the non-deterministic finite-state automaton with the state diagram shown in Figure below.

TABLE 3			
	ſ		
	Input		
State	0	1	
s ₀	s_0 , s_2	s_1	
s_1	53	S4	
s_2		84	
<i>s</i> ₃	s ₃		
84	83	<i>s</i> ₃	

FIGURE 7 A Nondeterministic Finite-State Automaton.

Theorem 3.6.

If the language L is recognized by a non-deterministic finite-state automaton M_0 , then L is also recognized by a deterministic finite-state automaton M_1 .

- Languages and Grammars
- 2 Finite-State Machines with Outputs
- 3 Finite-State Machine with No Outputs
- 4 Language Recognition
- Turing Machine

Definition 4.1.

Definition 4.1.

The regular expressions over a set I are defined recursively by:

• the symbol ⊘ is a regular expression;

Definition 4.1.

- the symbol ⊘ is a regular expression;
- symbol λ is a regular expression;

Definition 4.1.

- the symbol ⊘ is a regular expression;
- symbol λ is a regular expression;
- the symbol x is a regular expression whenever $x \in I$;

Definition 4.1.

- the symbol ⊘ is a regular expression;
- ullet symbol λ is a regular expression;
- the symbol x is a regular expression whenever $x \in I$;
- the symbols (AB), $(A \cup B)$, and A^* are regular expressions whenever A and B are regular expressions.

Definition 4.1.

- the symbol ⊘ is a regular expression;
- symbol λ is a regular expression;
- the symbol x is a regular expression whenever $x \in I$;
- the symbols (AB), $(A \cup B)$, and A^* are regular expressions whenever A and B are regular expressions.
- Example: what are the strings in the regular sets specified by the regular expressions $10^*,(10)^*,\ 0\cup 01,\ 0(0\cup 1)^*,\ and\ (0^*1)^*$?

Kleene Theorem

Theorem 4.2 (Kleene theorem).

A set is regular if and only if it is recognized by a finite-state automaton.

Theorem 4.3.

A set is generated by a regular grammar if and only if it is a regular set.

Theorem 4.3.

A set is generated by a regular grammar if and only if it is a regular set.

• Example: construct a non-deterministic finite-state automaton that recognizes the language generated by the regular grammar G=(V,T,S,P), where $V=\{0,1,A,S\}$, $T=\{0,1\}$, and the productions in P are $S\to 1A$, $S\to 0$, $S\to \lambda$, $A\to 0A$, $A\to 1A$, and $A\to 1$.

 Example: find a regular grammar that generates the regular set recognized by the finite-state automaton shown in the Figure below.

 Example: find a regular grammar that generates the regular set recognized by the finite-state automaton shown in the Figure below.

• Example: Show that the set $\{0^n1^n|n=0,1,2,...\}$, made up of all strings consisting of a block of 0s followed by a block of an equal number of 1s, is not regular.

- Example: Show that the set $\{0^n1^n|n=0,1,2,...\}$, made up of all strings consisting of a block of 0s followed by a block of an equal number of 1s, is not regular.
- Finite-State Automaton are unable to carry out many computations due to the limitation of finite memory.

- Example: Show that the set $\{0^n1^n|n=0,1,2,...\}$, made up of all strings consisting of a block of 0s followed by a block of an equal number of 1s, is not regular.
- Finite-State Automaton are unable to carry out many computations due to the limitation of finite memory.
- Pushdown automaton

- Example: Show that the set $\{0^n1^n|n=0,1,2,...\}$, made up of all strings consisting of a block of 0s followed by a block of an equal number of 1s, is not regular.
- Finite-State Automaton are unable to carry out many computations due to the limitation of finite memory.
- Pushdown automaton
- Linear bounded automaton

- Example: Show that the set $\{0^n1^n|n=0,1,2,...\}$, made up of all strings consisting of a block of 0s followed by a block of an equal number of 1s, is not regular.
- Finite-State Automaton are unable to carry out many computations due to the limitation of finite memory.
- Pushdown automaton
- Linear bounded automaton
- Turing machine

- Languages and Grammars
- 2 Finite-State Machines with Outputs
- 3 Finite-State Machine with No Outputs
- 4 Language Recognition
- Turing Machine

• The finite-state automata studied earlier in this chapter cannot be used as general models of computation.

- The finite-state automata studied earlier in this chapter cannot be used as general models of computation.
- Finite-state automata are able to recognize regular sets, but are not able to recognize many easy-to-describe sets, including $\{0^n1^n|n \ge 0\}$, which computers recognize using memory.

- The finite-state automata studied earlier in this chapter cannot be used as general models of computation.
- Finite-state automata are able to recognize regular sets, but are not able to recognize many easy-to-describe sets, including $\{0^n1^n|n\geq 0\}$, which computers recognize using memory.
- Basically, a Turing machine consists of a control unit, which at any step is in one of finitely many different states, together with a tape divided into cells, which is infinite in both directions.

- The finite-state automata studied earlier in this chapter cannot be used as general models of computation.
- Finite-state automata are able to recognize regular sets, but are not able to recognize many easy-to-describe sets, including $\{0^n1^n|n\geq 0\}$, which computers recognize using memory.
- Basically, a Turing machine consists of a control unit, which at any step is in one of finitely many different states, together with a tape divided into cells, which is infinite in both directions.
- Turing machines have read and write capabilities on the tape as the control unit moves back and forth along this tape, changing states depending on the tape symbol read.

Definition

Definition 5.1.

A Turing machine $T = (S, I, f, s_0)$ consists of a finite set S of states, an alphabet I containing the blank symbol B, a partial function f from $S \times I$ to $S \times I \times \{R, L\}$, and a starting state s_0 .

Definition

Definition 5.1.

A Turing machine $T=(S,I,f,s_0)$ consists of a finite set S of states, an alphabet I containing the blank symbol B, a partial function f from $S\times I$ to $S\times I\times \{R,L\}$, and a starting state s_0 .

Tape is infinite in both directions.

Only finitely many nonblank cells at any time.

FIGURE 1 A Representation of a Turing Machine.

Example

• What is the final tape when the Turing machine *T* defined by the seven five-tuples

```
(s_0, 0, s_0, 0, R), (s_0, 1, s_1, 1, R), (s_0, B, s_3, B, R), (s_1, 0, s_0, 0, R), (s_1, 1, s_2, 0, 0) and (s_2, 1, s_3, 0, R) is run on the tape shown in Figure (a) below?
```


Example

• What is the final tape when the Turing machine T defined by the seven five-tuples $(s_0, 0, s_0, 0, R), (s_0, 1, s_1, 1, R), (s_0, B, s_3, B, R), (s_1, 0, s_0, 0, R), (s_1, 1, s_2, 0, and <math>(s_2, 1, s_3, 0, R)$ is run on the tape shown in Figure (a) below?

Turing Machines to Recognize Sets

Definition 5.2.

Let V be a subset of an alphabet I. A Turing machine $T = (S, I, f, s_0)$ recognizes a string x in V^* if and only if T, starting in the initial position when x is written on the tape, halts in a final state. T is said to recognize a subset A of V^* if x is recognized by T if and only if x belongs to A.

Turing Machines to Recognize Sets

Definition 5.2.

Let V be a subset of an alphabet I. A Turing machine $T=(S,I,f,s_0)$ recognizes a string x in V^* if and only if T, starting in the initial position when x is written on the tape, halts in a final state. T is said to recognize a subset A of V^* if x is recognized by T if and only if x belongs to A.

• Example: find a Turing machine that recognizes the set of bit strings that have a 1 as their second bit, that is, the regular set $(0 \cup 1)1(0 \cup 1)^*$.

Turing Machines to Recognize Sets

Definition 5.2.

Let V be a subset of an alphabet I. A Turing machine $T=(S,I,f,s_0)$ recognizes a string x in V^* if and only if T, starting in the initial position when x is written on the tape, halts in a final state. T is said to recognize a subset A of V^* if x is recognized by T if and only if x belongs to A.

- Example: find a Turing machine that recognizes the set of bit strings that have a 1 as their second bit, that is, the regular set $(0 \cup 1)1(0 \cup 1)^*$.
- Example: find a Turing machine that recognizes the set $\{0^n1^n|n \ge 1\}$.

Definition 5.3.

A decision problem asks whether statements from a particular class of statements are true. Decision problems are also known as *yes-or-no* problems.

Definition 5.3.

A decision problem asks whether statements from a particular class of statements are true. Decision problems are also known as *yes-or-no problems*.

Definition 5.4.

The halting problem is the decision problem that asks whether a Turing machine T eventually halts when given an input string x.

Definition 5.3.

A decision problem asks whether statements from a particular class of statements are true. Decision problems are also known as *yes-or-no problems*.

Definition 5.4.

The halting problem is the decision problem that asks whether a Turing machine T eventually halts when given an input string x.

Theorem 5.5.

The halting problem is an unsolvable decision problem. That is, no Turing machine exists that, when given an encoding of a Turing machine T and its input string x as input, can determine whether T eventually halts when started with x written on its tape.

Definition 5.6.

A decision problem is in P, the class of polynomial-time problems, if it can be solved by a deterministic Turing machine in polynomial time in terms of the size of its input. That is, a decision problem is in P if there is a deterministic Turing machine T that solves the decision problem and a polynomial p(n) such that for all integers n, T halts in a final state after no more than p(n) transitions whenever the input to T is a string of length n. A decision problem is in NP, the class of non-deterministic polynomial-time problems, if it can be solved by a non-deterministic Turing machine in polynomial time in terms of the size of its input. That is, a decision problem is in NP if there is a non-deterministic Turing machine T that solves the problem and a polynomial p(n) such that for all integers n, T halts for every choice of transitions after no more than p(n)transitions whenever the input to T is a string of length n.