

FORMALE SYSTEME

ÜBUNG 6

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 26. November 2021

Aufgabe 1:

Pumping-Lemma

NICHTREGULARITÄT DURCH PUMPEN

Idee:

- ▶ Jeder DFA hat nur endlich viele Zustände *n*
- Aber manche reguläre Sprachen enthalten beliebig lange Wörter

Wie kann ein DFA Wörter mit mehr als n Zeichen akzeptieren?

- Dann muss der DFA beim Einlesen einen Zustand mehr als einmal besuchen
- Dafür muss es in den Zustandsübergangen eine Schleife geben
- ► Diese Schleife kann man aber auch mehr als einmal durchlaufen

Jedes akzeptierte Wort mit $\geq n$ Zeichen hat einen Teil, den man beliebig oft wiederholen – "aufpumpen" – kann.

DAS PUMPING-LEMMA

Satz (Pumping-Lemma): Für jede reguläre Sprache **L** gibt es eine Zahl $n \geq 0$, so dass gilt: für jedes Wort $z \in \mathbf{L}$ mit $|z| \geq n$ gibt es eine Zerlegung z = uvw mit $|v| \geq 1$ und $|uv| \leq n$, so dass: für jede Zahl $k \geq 0$ gilt: $uv^k w \in \mathbf{L}$

Beweis: Sei \mathcal{M} ein DFA für **L** mit |Q| Zuständen. Wir wählen n = |Q| + 1.

Ein akzeptierender Lauf für ein beliebiges Wort z mit $|z| = \ell \ge n$ muss in den ersten n Schritten einen Zustand p zweimal besuchen (sagen wir: nach i und j Schritten), hat also die Form:

$$q_0 \overset{z_1}{\to} q_1 \overset{z_2}{\to} \dots \overset{z_{i-1}}{\to} q_{i-1} \overset{z_i}{\to} p \overset{z_{i+1}}{\to} q_{i+1} \overset{z_{i+2}}{\to} \dots \overset{z_{j-1}}{\to} q_{j-1} \overset{z_j}{\to} p \overset{z_{j+1}}{\to} q_{j+1} \overset{z_{j+2}}{\to} \dots \overset{z_\ell}{\to} q_\ell$$

Die gesuchte Zerlegung ist $u = z_1 \cdots z_i$, $v = z_{i+1} \cdots z_j$, $w = z_{j+1} \cdots z_\ell$. Der Lauf $(q_0 \dots q_{i-1}p)(q_{i+1} \dots q_{j-1}p)^k(q_{j+1} \dots q_\ell)$ akzeptiert $uv^k w$.

- a) Geben Sie für jedes $z \in \{bc, adc, cda, bcdc, acdc\}$ alle Zerlegungen z = uvw mit $u, w \in \Sigma^*, v \in \Sigma^+$ an, sodass für alle $k \ge 0$ gilt: $uv^kw \in L(\mathcal{M})$. Begründen Sie Ihre Antworten.
- b) Ermitteln Sie eine Zahl $n \in \mathbb{N}$, sodass für alle $z \in L(\mathcal{M})$ mit $|z| \ge n$ gilt, dass eine Zerlegung z = uvw mit $u, w \in \Sigma^*$, $v \in \Sigma^+$ und $|uv| \le n$ existiert, sodass für alle $k \ge 0$ gilt: $uv^k w \in L(\mathcal{M})$.

- a) Idee: Aufpumpen entspricht Zyklen/Schleifen in \mathcal{M} \rightsquigarrow möglich durch Schleife in q_1 oder Zyklus $q_3 \rightarrow q_4 \rightarrow q_3$
 - ightharpoonup Für z ∈ {bc, adc} existiert keine Zerlegung (beachte, dass stets auch k = 0 zulässig sein muss)
 - $\triangleright z = cda \notin L(\mathcal{M})$
 - $\triangleright z = bcdc \rightsquigarrow b \mid c \mid dc \text{ oder } b \mid cd \mid c \text{ oder } bc \mid dc \mid \varepsilon$
 - $\triangleright z = acdc \rightsquigarrow a \mid c \mid dc$
- b) Laut Beweis des Pumping-Lemmas ist n = |Q| + 1 = 6 zulässig. Tatsächlich reicht auch n = 5, da ein Lauf mit i Übergängen automatisch i + 1 Zustände besucht. Auch n = 4 ist ausreichend, wenn man sich überlegt wie Wörter der Länge 4 aussehen dürfen:
 - ightharpoonup Weg über q_3 : nutze Zyklus $q_3 o q_4 o q_3$
 - \triangleright Weg über q_1 und q_3 Variante 1: nutze Loop in q_1
 - ightarrow Weg über q_1 und q_3 Variante 2: nutze Zyklus
 - $q_3
 ightarrow q_4
 ightarrow q_3$ (evtl. mit Start in q_1 , d.h.
 - $q_1 \rightarrow q_3 \rightarrow q_4 \rightarrow q_3 \rightarrow \cdots \rightarrow q_4 \rightarrow q_2$)

Aufgabe 2:

Regularität von Sprachen

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Satz: Wenn L_1 und L_2 regulär sind, dann auch $L_1 \cap L_2$, $L_1 \cup L_2$, L_1^* und \overline{L}_1 .

Satz (Pumping-Lemma): Für jede reguläre Sprache **L** gibt es eine Zahl $n \geq 0$, so dass gilt: für jedes Wort $x \in \mathbf{L}$ mit $|x| \geq n$ gibt es eine Zerlegung x = uvw mit $|v| \geq 1$ und $|uv| \leq n$, so dass: für jede Zahl $k \geq 0$ gilt: $uv^k w \in \mathbf{L}$

Gegeben ist das Alphabet $\Sigma = \{a,b\}$. Welche der folgenden Sprachen L_j über Σ mit $1 \le j \le 2$ ist regulär? Beweisen Sie Ihre jeweilige Antwort.

a)
$$L_1 = \{a^i b^i : 1 \le i \le 15\}$$

b)
$$L_2 = \{a^n b^m a^{n \cdot m} : n, m \ge 0\}$$

- a) Die Sprache L_1 ist endlich, da i eine obere Grenze hat. Jede endliche Sprache ist regulär.
- b) L_2 ist nicht regulär Pumping-Lemma: Angenommen L_2 sei regulär. Dann existiert nach dem Pumping-Lemma ein $n \geq 0$, sodass jedes Wort $x \in L_2$ mit $|x| \geq n$ gepumpt werden kann. Insbesondere muss dies auch für das Wort $x = a^n b^1 a^{n \cdot 1}$ gelten. Dementsprechend muss es eine Zerlegung

$$x = uvw$$
 mit $|uv| \le n$ und $|v| \ge 1$

geben. Wegen $|uv| \le n$ muss $uv = a^\ell$ mit $1 \le \ell \le n$ gelten (d.h. uv liegt in den ersten a's). Ein Teil der a's muss dem v zugeschrieben werden, d.h. es gilt $v = a^h$ mit $1 \le h \le \ell$. Damit können wir nun pumpen, insbesondere mit k = 2:

$$uv^2w=a^{\ell-h}a^{2h}a^{n-\ell}ba^n=a^{\ell-h+2h+n-\ell}ba^n=a^{n+h}ba^n\notin L_2$$

im Widerspruch zur Aussage des Pumping-Lemmas, was $uv^2w\in L_2$ sichern würde. Damit kann die Annahme der Regularität nicht richtig gewesen sein und L_2 ist nicht regulär.

Aufgabe 3:

Wiederholung

- a) Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA $\mathcal M$ mit $L(\mathcal M)=L$.
- c) Für jeden NFA ${\cal M}$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der Nerode-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Lösung

- a) X Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA $\mathcal M$ mit $L(\mathcal M)=L$.
- c) Für jeden NFA ${\cal M}$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der Nerode-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Lösung

- a) **X** Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) \checkmark Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA \mathcal{M} mit $L(\mathcal{M}) = L$.
- c) Für jeden NFA ${\cal M}$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der Nerode-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Lösung

- a) X Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) \checkmark Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA \mathcal{M} mit $L(\mathcal{M}) = L$.
- c) \checkmark Für jeden NFA $\mathcal M$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der Nerode-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Lösung

- a) X Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) \checkmark Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA $\mathcal M$ mit $L(\mathcal M)=L$.
- c) \checkmark Für jeden NFA $\mathcal M$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) ✓ Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der *Nerode*-Rechtskongruenz endlich ist.
- e) Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

- a) X Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) \checkmark Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA \mathcal{M} mit $L(\mathcal{M}) = L$.
- c) \checkmark Für jeden NFA $\mathcal M$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) ✓ Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der Nerode-Rechtskongruenz endlich ist.
- e) \checkmark Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Lösung

- a) X Für die Grammatik $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow Y, X \rightarrow b, Y \rightarrow aYYb, aY \rightarrow aZ, ZY \rightarrow ZX, Z \rightarrow a\}, S)$ gilt: $abab \in L(G)$.
- b) \checkmark Kann eine Sprache L von einem DFA erkannt werden, so gibt es auch einen ε -NFA $\mathcal M$ mit $L(\mathcal M)=L$.
- c) \checkmark Für jeden NFA $\mathcal M$ mit Wortübergängen gibt es einen äquivalenten NFA.
- d) ✓ Es gibt eine reguläre Sprache, für welche die Anzahl der Äquivalenzklassen der *Nerode*-Rechtskongruenz endlich ist.
- e) \checkmark Wenn es für eine Sprache L ein $n \in \mathbb{N}$ gibt, so dass die Nerode-Rechtskongruenz \simeq_L höchstens n Äquivalenzklassen hat, so kann L von einem DFA erkannt werden.
- f) \checkmark Für jede Sprache L gilt: $L = \bigcup_{u \in I} [u]_{\simeq_L}$.

Aufgabe 4

Chomsky-Normalform

ELIMINIEREN VON ε -REGELN

Eingabe: CFG $G = \langle V, \Sigma, P, S \rangle$

Ausgabe: ε -freie CFG $G' = \langle V', \Sigma, P', S' \rangle$ mit $\mathbf{L}(G') = \mathbf{L}(G)$

- ▶ Initialisiere P' := P und V' := V
- ▶ Berechne $V_{\varepsilon} = \{A \in V \mid A \Rightarrow^* \varepsilon\}$
- ▶ Entferne alle ε -Regeln aus P'
- ▶ Solange es in P' eine Regel $B \rightarrow xAy$ gibt, mit

$$A \in V_{\varepsilon}$$
 $|x| + |y| \ge 1$ $B \to xy \notin P'$

wähle eine solche Regel und setze $P' := P' \cup \{B \rightarrow xy\}$

▶ Falls $S \in V_{\varepsilon}$ dann definiere ein neues Startsymbol $S' \notin V$, setze $V' := V' \cup \{S'\}$ und $P' := P' \cup \{S' \rightarrow S, S' \rightarrow \varepsilon\}$. Falls $S \notin V_{\varepsilon}$, dann verwenden wir einfach S' := S als Startsymbol.

ELIMINIERUNG VON KETTENREGELN

Eine **Kettenregel** ist eine Regel der Form $A \rightarrow B$.

Sei $G = \langle V, \Sigma, P, S \rangle$ ε -frei. Eine äquivalente Grammatik ohne Kettenregeln ist gegeben durch $G' = \langle V, \Sigma, P', S \rangle$:

Eliminieren von Kettenregeln:

E(A)... Menge aller $B \in V$, die man von $A \in V$ aus über Kettenregeln erreichen kann:

- (1) $A \in E(A)$
- (2) Falls $B \in E(A)$ und $B \to B' \in P$ mit $B' \in V$ dann $B' \in E(A)$. Wiederhole.

$$\Longrightarrow P' = \bigcup_{A \in V} \{A \to w \mid \text{es gibt } B \to w \in P \text{ mit } w \notin V \text{ und } B \in E(A)\}$$

DIE CHOMSKY-NORMALFORM

Eine kontextfreie Grammatik $G = \langle V, \Sigma, P, S \rangle$ ist in Chomsky-Normalform (CNF), wenn alle ihre Produktionsregeln eine der beiden folgenden Formen haben:

$$A \to BC$$
 (mit $B, C \in V$) oder $A \to c$ (mit $c \in \Sigma$)

Umwandlung in CNF:

- (1) Eliminierung von ε -Regeln
- (2) Eliminierung von Kettenregeln

- (3) Extrahiere Regeln der Form A \rightarrow c, so dass alle anderen Regeln B \rightarrow w keine Terminale mehr in w enthalten.

 - ho für Regeln A $\to w$ mit |w| > 1: ersetze jedes Vorkommen von $\mathbf{a} \in \Sigma$ in w durch V_a
- (4) Reduziere Regeln der Form $A \to B_1 \cdots B_n$ auf n = 2Für jede Produktionsregel $A \to B_1 \cdots B_n$ mit n > 2:
 - \triangleright Führe n-2 neue Variablen C_1, \ldots, C_{n-2} ein
 - ▷ Ersetze die Regel durch neue Regeln:

$$A \rightarrow B_1C_1$$

$$C_1 \rightarrow B_2C_2$$

$$\vdots$$

$$C_{n-3} \rightarrow B_{n-2}C_{n-2}$$

$$C_{n-2} \rightarrow B_{n-1}B_n$$

Betrachten Sie die Grammatik $G_0 = \langle V, \Sigma, P, S \rangle$ mit $V = \{S, T, U, V, R\}, \Sigma = \{a, b\}$ und

$$\begin{split} P = \{ & S \rightarrow \varepsilon, & S \rightarrow aSb, & S \rightarrow T, & S \rightarrow R, \\ & T \rightarrow bbT, & T \rightarrow U, & U \rightarrow aaU, & U \rightarrow bbT, \\ & V \rightarrow bSa, & R \rightarrow \varepsilon, & R \rightarrow bSa \ \} \end{split}$$

- a) Konstruieren Sie eine Grammatik G_1 , die keine Regeln der Form $A \to \varepsilon$ für $A \in V$ enthält. Erweitern Sie dazu, wenn nötig, die Grammatik G_0 um ein neues Startsymbol S' und entsprechende Regeln.
- b) Geben Sie zu G_1 eine äquivalente Grammatik G_2 an, die keine Kettenregeln, also Produktionen der Form $A \to B$ mit Nichtterminalsymbolen A, B, enthält.
- c) Geben Sie eine Grammatik G_3 in Chomsky-Normalform an mit $L(G_3) = L(G_2) \setminus \{\varepsilon\}$.

Zur Vereinfachung entfernen wir nicht erreichbare Symbole (V) und nicht terminierende Symbole (T, U).¹ Damit sieht die Regelmenge in Kurznotation wie folgt aus:

$$P = \left\{ \begin{array}{ccc} S & \to & \varepsilon \mid aSb \mid R \\ R & \to & \varepsilon \mid bSa \end{array} \right\}$$

a) **Eliminieren der** ε -**Regeln** laut Algorithmus: $V_{\varepsilon} = \{S,A\}$

$$P_1 = \left\{ \begin{array}{ccc} S & \rightarrow & aSb \mid R \mid ab \\ R & \rightarrow & bSa \mid ba \\ S' & \rightarrow & \varepsilon \mid S \end{array} \right\}$$

Damit erhalten wir $G_1 = \langle V_1, \Sigma, P_1, S' \rangle$ mit $V_1 = \{S, R, S'\}$ und P_1 von oben.

¹Diese Vereinfachung ist nicht Bestandteil des Algorithmus.

b) Eliminieren von Kettenregeln: Erreichbarkeitsmengen:

$$E(S) = \{S, R\}, \qquad E(R) = \{R\}, \qquad E(S') = \{S', S, R\}$$

$$P_{\mathsf{neu}} = \bigcup_{A \in V} \left\{ A \to w \mid \mathsf{es} \; \mathsf{gibt} \; B \to w \in P \; \mathsf{mit} \; w \notin V \; \mathsf{und} \; B \in E(A) \right\}$$

$$P_{2} = \left\{ \begin{array}{ccc} S & \rightarrow & \underbrace{aSb \mid ab \mid \underbrace{bSa \mid ba}}_{B=S} & A = S \\ R & \rightarrow & \underbrace{bSa \mid ba}_{B=R} & A = R \\ S' & \rightarrow & \underbrace{\varepsilon \mid \underbrace{aSb \mid ab \mid bSa \mid ba}}_{B=S} & A = S' \end{array} \right\}$$

Damit erhalten wir $G_2 = \langle V_1, \Sigma, P_2, S' \rangle$ mit $V_1 = \{S, R, S'\}$ wie bisher und P_2 von oben.

c) Chomsky-Normalform:

Extrahieren von Terminalen

$$\left\{ \begin{array}{cccc} S & \rightarrow & V_a S V_b \mid V_a V_b \mid V_b S V_a \mid V_b V_a \\ R & \rightarrow & V_b S V_a \mid V_b V_a \\ S' & \rightarrow & \varepsilon \mid V_a S V_b \mid V_a V_b \mid V_b S V_a \mid V_b V_a \\ V_a & \rightarrow & a \\ V_b & \rightarrow & b \end{array} \right\}$$

Verkürzen der Nichtterminalseguenzen

$$P_{3}' = \left\{ \begin{array}{cccc} S & \rightarrow & V_{a}C_{b} \mid V_{a}V_{b} \mid V_{b}C_{a} \mid V_{b}V_{a} \\ R & \rightarrow & V_{b}C_{a} \mid V_{b}V_{a} \\ S' & \rightarrow & \varepsilon \mid V_{a}C_{b} \mid V_{a}V_{b} \mid V_{b}C_{a} \mid V_{b}V_{a} \\ V_{a} & \rightarrow & a \\ V_{b} & \rightarrow & b \\ C_{a} & \rightarrow & SV_{a} \\ C_{b} & \rightarrow & SV_{b} \end{array} \right\}$$

Damit ist $G_3 = \langle V_3, \Sigma, P_3, S' \rangle$ mit $V_3 = \{S', S, R, V_a, V_b, C_a, C_b\}$ und $P_3 = P_3' \setminus \{S' \to \varepsilon\}$ in Chomsky-Normalform. Es gilt jedoch $L(G_3) = L(G_2) \setminus \{\varepsilon\}$.

Aufgabe 5

CYK-Algorithmus

CYK: GRUNDIDEE

gegeben: kontextfreie Grammatik G in CNF **Frage**: $w = \mathbf{a_1} \cdots \mathbf{a_n} \in \mathbf{L}(G)$?

- Falls |w| = 1, dann ist w ∈ Σ und es gilt: w ∈ L(G) genau dann wenn es eine Regel S → w in G gibt
- ► Falls |w| > 1, dann ist: $w \in \mathbf{L}(G)$ genau dann wenn es eine Regel S \rightarrow AB und eine Zahl i gibt, so dass gilt

$$A \Rightarrow^* a_1 \cdots a_i$$
 und $B \Rightarrow^* a_{i+1} \cdots a_n$

Idee: Fall 2 reduziert das Problem S $\stackrel{?}{\Rightarrow}$ * w auf zwei einfachere Probleme A $\stackrel{?}{\Rightarrow}$ * $\mathbf{a_1} \cdots \mathbf{a_i}$ und B $\stackrel{?}{\Rightarrow}$ * $\mathbf{a_{i+1}} \cdots \mathbf{a_n}$, die man allerdings für alle Regeln S \rightarrow AB und Indizes i lösen muss

CYK: PRAKTISCHE UMSETZUNG

Vorgehen: $V[i,j] = \text{Menge aller A mit A} \Rightarrow^* w_{i,j}$ V[i,j] können in einer Dreiecksmatrix notiert werden

- ► Diagonale = Fall 1: existiert Terminalsymbolregel
- ► Fixiere Element ■: sei ◄ in der gleichen Zeile ganz links und ▼ direkt unten drunter

Ist am Ende das Startsymbol $S \in V[1, |w|]$, dann liegt w in der Sprache

Beispiel: Wir betrachten das Wort $w = \mathbf{a} + \mathbf{b} \cdot \mathbf{c}$ der Länge |w| = 5.

a	V[1,1]	V[1, 2]	V[1, 3]	V[1,4]	V[1, 5]
+		- ◀	V[2, 3]	■∪♦	V[2, 5]
b			V[3, 3]	▼	V[3, 5]
				V[4,4]	V[4, 5]
С					V[5, 5]
	a	+	b		С

Gegeben ist folgende Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, X, M, A, B\}, \Sigma = \{a, b\}$ und

$$P = \{ S \rightarrow \varepsilon, S \rightarrow AX, S \rightarrow AB, X \rightarrow MB, M \rightarrow AB, M \rightarrow AX, A \rightarrow a, B \rightarrow a, B \rightarrow b \}$$

Verwenden Sie den CYK-Algorithmus (mit der Matrix-Notation aus der Vorlesung), um für die folgenden Wörter w_i zu entscheiden, ob $w_i \in L(G)$ ist.

- a) $w_1 = aaabba$
- b) $w_2 = aabbaa$

a) $w_1 = aaabba$

a	A, B	<i>S</i> , <i>M</i>	X	S, M	X	<i>S</i> , <i>M</i>
а		A, B	<i>S</i> , <i>M</i>	X	<i>S</i> , <i>M</i>	X
а			A, B	S, M	X	Ø
b				В	Ø	Ø
b					В	Ø
a						A, B
	а	а	а	h	h	a

$$\Rightarrow w_1 \in L(G)$$

b) $w_2 = aabbaa$

a	A, B	<i>S</i> , <i>M</i>	X	S, M	X	Ø
a		A, B	S, M	X	Ø	Ø
b			В	Ø	Ø	Ø
b				В	Ø	Ø
a					A, B	S, M
a						A, B
	а	а	b	b	a	а

$$\Rightarrow w_2 \notin L(G)$$