

Course > Unit 4 Hypothesis testing > Homework 7 > 2. Student's T Test

Audit Access Expires Dec 24, 2019

You lose all access to this course, including your progress, on Dec 24, 2019.

Upgrade by Nov 4, 2019 to get unlimited access to the course as long as it exists on the site. **Upgrade now**

2. Student's T Test

Deriving the Student's T Test from Likelihood Ratio

2/2 points (graded)

Let $X_1,\dots,X_n\stackrel{iid}{\sim} X\sim \mathcal{N}\left(\mu_1,\sigma_1^2
ight)$. Consider the null and alternative hypotheses

$$H_0 : \mu_1 = 5$$

$$H_1 : \mu_1 \neq 5.$$

Assume that μ_1 is not known, but σ_1^2 is known. The test statistic T_n' for the likelihood ratio test associated to the above hypothesis can be expressed in terms of n, \overline{X}_n , and σ_1^2 .

What is T_n' ?

(Enter $\mathbf{barX_n}$ for \overline{X}_n , and $\mathbf{sigma_1^2}$ for σ_1^2 .)

Generating Speech Output n*(barX_n-5)^2/(sigma_1^2)

STANDARD NOTATION

If σ_1^2 were unknown and we used the estimator $\widetilde{\sigma_1^2} = \frac{1}{n-1} \sum_i \left(X_i - \overline{X}_n \right)^2$ in **both log-likelihoods**, what would be the distribution of $\sqrt{T_n'}$?

- $\bigcirc t_{n-1}$
- $\bigcirc t_n$
- lefte $|t_{n-1}|$
- None of the above.

STANDARD NOTATION

Submit

You have used 3 of 4 attempts

✓ Correct (2/2 points)

Introducing Another Sample

1/1 point (graded)

Let $Y_1,\ldots,Y_m\stackrel{iid}{\sim} Y\stackrel{iid}{\sim} N\left(\mu_2,\sigma_2^2\right)$ denote another sample, and assume that X's are independent of the Y's.

What is the distribution of $\overline{X}_n - \overline{Y}_m$?

$$leftering N\left(\mu_1-\mu_2,rac{\sigma_1^2}{n}+rac{\sigma_2^2}{m}
ight)$$

 $igcirc N\left(\mu_1-\mu_2,rac{\sigma_1^2}{n}-rac{\sigma_2^2}{m}
ight)$

igcirc $N\left(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2
ight)$

None of the above.

~

Submit

You have used 1 of 3 attempts

✓ Correct (1/1 point)

Test Statistic for a Two-Sample Test

1/1 point (graded)

Recall that $X_1,\ldots,X_n \overset{iid}{\sim} N\left(\mu_1,\sigma_1^2\right)$, $Y_1,\ldots,Y_m \overset{iid}{\sim} N\left(\mu_2,\sigma_2^2\right)$, and the two samples are independent of one another. Consider the null and alternative hypotheses

 $H_0: \mu_1 \leq \mu_2$

 $H_1 : \mu_1 > \mu_2.$

What is the test statistic T_n for the two-sample student's T test associated to H_0 and H_1 ? Express your answer in terms of $n, m, \hat{\sigma_1}^2, \hat{\sigma_2}^2, \overline{X}_n$, and \overline{Y}_m .

(Enter barX_n for \overline{X}_n , barY_m for \overline{Y}_m , hat(sigma_1^2) for $\widehat{\sigma_1^2}$, and hat(sigma_2^2) for $\widehat{\sigma_2^2}$.)

 $T_n = \left| \text{ (barX_n-barY_m)/sqrt(hat(sigma_1^2) /n+hat(sigma_2^2)/m)} \right|$

CTANDARD NOTATION

Submit

You have used 1 of 4 attempts

✓ Correct (1/1 point)

Applying the Welch-Satterthwaite Formula

2/2 points (graded)

Suppose we observe $\overline{X}_n=6.2,\overline{Y}_m=6,\hat{\sigma_1}^2=0.1$, and $\hat{\sigma_2}^2=0.2$ with n=50 and m=50.

Using the Welch-Satterthwaite formula, what is the approximate number of degrees of freedom for the test statistic T_n ?

89

What is the p-value for this test?

(You may consult a table of values or use software for the student's T distribution.)

0.005728596679356102

~

Submit

You have used 1 of 3 attempts

✓ Correct (2/2 points)

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing: Homework 7 / 2. Student's T Test

Add a Post

