Roll No.

2 2 B T C 3 5 1 4 3

Program: B. Tech, Course: Computer Science and Engineering (Artificial Intelligence & Machine Learning) Subject: Engineering Mathematics, Code: ETMT109 Semester: I

Time: 03 Hours Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- 2. Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 02 marks.
- 3. Section B comprises 8 long answer type questions out of which students must attempt any5. Each question carries 10 marks.
- 4. Do not write anything on the question paper.

Q.No.		SECTION -A (SHORT ANSWER TYPE QUESTIONS)	Marks
	a	Prove that $\tanh(\log\sqrt{3}) = \frac{1}{2}$	(2)
	b	Value of $(1-i)^{100}$ is: (i) $2^{100} (\cos 100\pi - i \sin 100\pi)$ (ii) $2^{100} (\cos 25\pi - i \sin 25\pi)$	(2)
		(iii) $2^{50} (\cos 100\pi - i \sin 100\pi)$ (iv) $2^{50} (\cos 25\pi - i \sin 25\pi)$	
	c	All the four entries of the a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ are non-zero, and one of the Eigen	(2)
		Values is zero. Then,	
		i. $\frac{a}{b} = \frac{c}{d}$	
		ii. $ad + bc = 0$	
		iii. $\frac{a}{b} - \frac{c}{d} = 1$	
		iv. $ad + bc = 1$	

	A CO		(2)
,	d	Find the rank of the matrix $\begin{bmatrix} -2 & 3 & 0 & 0 \\ 1 & 4 & 3 & -1 \\ 3 & 1 & 3 & -1 \end{bmatrix}$	(2)
	a .		(2)
	e	By using a suitable Maclaurin series, find the sum to the infinity of:	(2)
		$\pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \dots$	
	f	Find the asymptotes parallel to the x-axis for the curve $x^2y^2 = a^2(x^2 + y^2)$	(2)
	g	The series $\sum_{n=1}^{\infty} \frac{(-1)^n n^{500}}{(1.0001)^n}$ is:	(2)
		i. Converges absolutely	
		ii. Converges to -∞	
		iii. Bounded but divergent iv. Divergent	
	1.		(2)
	h	Find the value of x for which the series $n^{\log x}$ is convergent?	(2)
	i	The product of order and degree of the differential equation $\sqrt{1 + \frac{d^2y}{dx^2}} = x\frac{dy}{dx}$ is:	(2)
1		i. 3	
		ii 2	
		iii. 4	
		iv. 1	
	j	The differential equation $7ydx - (4y + 9x)dy = 0$ is:	(2)
		i. Exact and Homogeneous but not Linear	
		ii. Exact and Linear but not Homogeneous	
		iii. Exact, Homogeneous and Linear	
		iv Homogeneous and Linear but not Exact	
	1		