POLITECNICO DI MILANO

Facoltà di Ingegneria dell'Informazione Corso di Laurea in Ingegneria Informatica

Progetto di Ingegneria del Software 2

Parte II: DD con rettifiche

Autori:

Paolo FERRARIS (matr. 716032)

p.ferraris88@gmail.com

Fabio MONTI (matr. 782577)

f.monti88@teletu.it

Elisabetta A. MORELLI (matr. 782557)

elisabetta.morelli@libero.it

Prof.ssa: Di Nitto Elisabetta

Anno accademico 2011/12

INDICE

Εl	enco	o delle figure	4
1.	Dat	tabase	5
	1.1	Modello E/R	5
		1.1.1 Entità	5
		1.1.2 Associazioni	7
	1.2	Modello relazionale	8
2.	Mo	delli	11
	2.1	Modelli di navigazione	11
		2.1.1 Studente	12
		2.1.2 Professore	13
		2.1.3 Amministratore	14
	2.2	Diagrammi di analisi	15
		2.2.1 Studente	15
		2.2.2 Professore	16
		2.2.3 Amministratore	17
	2.3	Diagrammi di dettaglio	18
		2.3.1 Login	18
		2.3.2 Studente	19
		2.3.3 Professore	20
		2.3.4 Amministratore	21

Appendice A. Software utilizzati	
A.1 StarUML	22
A.2 MySQL	22
A.3 Microsoft Visio 2010	22

ELENCO DELLE FIGURE

Fig. 1.1 – Modello E/R	7
Fig. 1.2 – Modello Relazionale	10
Fig. 2.1 – UX Model: Studente	12
Fig. 2.2 – UX Model: Professore	13
Fig. 2.3 – UX Model: Amministratore	14
Fig. 2.4 – BCE Model: Studente	15
Fig. 2.5 – BCE Model: Professore	16
Fig. 2.6 – BCE Model: Amministratore	17
Fig. 2.7 – JSP Model: Login	18
Fig. 2.8 – JSP Model: Studente	19
Fig. 2.9 – JSP Model: Professore	20
Fig. 2.10 – JSP Model: Amministratore	21

DATABASE

P er la gestione dei dati persistenti è stata realizzata una base di dati relazionale, alla quale si accede con l'apposito sistema di identificazione. A tal proposito verranno di seguito mostrati il modello E/R e lo schema relazionale del database.

1.1 Modello E/R

Il modello E/R è utilizzato per la rappresentazione concettuale dei dati ad un alto livello di astrazione. Per la sua semplicità intuitiva è spesso utilizzato nelle prime fasi della progettazione di una base di dati per tradurre i risultati derivanti dall'analisi di un determinato dominio in uno schema concettuale.

1.1.1 Entità

Dall'analisi del problema si sono individuate le seguenti entità-chiave:

Utente

È l'entità padre delle entità Studente, Professore e Amministratore. I suoi attributi sono: *Username, Password, Nome, Cognome, Email*. L'identificatore interno è *Username*.

Studente

È l'entità figlia dell'entità Utente. I suoi attributi sono quelli ereditati dall'entità padre ai quali si aggiunge: *Matricola*.

• Professore

È l'entità figlia dell'entità Utente. I suoi attributi sono quelli ereditati dall'entità padre ai quali si aggiunge: *Telefono*.

• Amministratore

È l'entità figlia dell'entità Utente. I suoi attributi sono quelli ereditati dall'entità padre.

• Gruppo

Possiede gli attributi: Nome, Control. L'identificatore interno è Nome.

Progetto

Possiede gli attributi: *Nome, Descrizione, Materia*. L'identificatore interno è *Nome*.

• Release

Possiede gli attributi: *Id, Tipo, Deadline, Consegnabile*. L'identificatore interno è *Id*.

• File

Possiede gli attributi: *Id, Url, Descrizione*. L'identificatore interno è *Id*.

• Progetto_Gruppo

È l'entità debole che associa un progetto con il gruppo che lo sta svolgendo. Possiede gli attributi: *Id, VotoFinale*. L'identificatore interno è *Id*.

• Progetto_Release

È l'entità debole che mostra le release consegnate da un gruppo, il quale sta svolgendo un determinato progetto. Possiede gli attributi: *Id, VotoParziale, Penalita, DataUpload*. L'identificatore interno è *Id*.

1.1.2 Associazioni

Durante la stesura del progetto sono state individuate le seguenti associazioni tra entità:

- Formato da lega le entità Studente e Gruppo.
- Responsabile lega le entità Professore e Progetto.
- Svolge lega le entità Gruppo e Progetto_Gruppo.
- Suddiviso lega le entità Progetto_Release e Progetto_Gruppo.
- **Appartiene** lega le entità Progetto e Progetto_Gruppo.
- Composto lega le entità Progetto e Release.
- **Tipo** lega le entità Release e Progetto_Release.
- Fa parte lega le entità Progetto_Release e File.
- Ha visibilita lega le entità Progetto_Release e Gruppo.

Figura 1.1 – Modello E/R

1.2 Modello Relazionale

Il modello relazionale è utilizzato per la rappresentazione logica dei dati con l'obiettivo di costituire il database per l'effettiva realizzazione dell'applicazione, anche a costo di una ristrutturazione forzata del modello concettuale.

L'associazione uno a molti tra le entità **Professore** e **Progetto** suggerisce l'eliminazione della relazione **Responsabile**, con l'accorpamento dell'attributo *UsernameProfessore* all'entità **Progetto**.

L'associazione uno a molti tra le entità **Progetto** e **Release** suggerisce l'eliminazione della relazione **Composto**, con l'accorpamento dell'attributo *NomeProgetto* all'entità **Release**.

L'associazione uno a molti tra le entità **Gruppo** e **Progetto_Gruppo** suggerisce l'eliminazione della relazione **Svolge**, con l'accorpamento dell'attributo *NomeGruppo* all'entità **Progetto_Gruppo**.

L'associazione uno a molti tra le entità **Progetto** e **Progetto_Gruppo** suggerisce l'eliminazione della relazione **Appartiene**, con l'accorpamento dell'attributo *NomeProgetto* all'entità **Progetto_Gruppo**.

L'associazione uno a molti tra le entità **Progetto_Release** e **File** suggerisce l'eliminazione della relazione **Fa parte**, con l'accorpamento dell'attributo *IdProgettoRelease* all'entità **File**.

L'associazione uno a molti tra le entità **Progetto_Release** e **Release** suggerisce l'eliminazione della relazione **Tipo**, con l'accorpamento dell'attributo *IdRelease* all'entità **Progetto_Release**.

L'associazione uno a molti tra le entità **Progetto_Release** e **Progetto_Gruppo** suggerisce l'eliminazione della relazione **Suddiviso**, con l'accorpamento dell'attributo *IdProgettoGruppo* all'entità **Progetto_Release**.

L'associazione molti a molti tra le entità **Studente** e **Gruppo** suggerisce la definizione della tabella **Studente_Gruppo** avente come attributi gli identificatori interni <u>UsernameStudente</u>, <u>NomeGruppo</u> delle entità **Studente** e **Gruppo** in qualità di identificatori esterni.

L'associazione molti a molti tra le entità **Gruppo** e **Progetto_Release** suggerisce la definizione della tabella **Release_Condivisa** avente come attributi gli identificatori interni <u>IdProgettoRelease</u>, <u>NomeGruppoProp</u> delle entità **Gruppo** e **Progetto_Release** in qualità di identificatori esterni.

Lo schema relazionale si può sintetizzare come segue:

- Studente(<u>Username</u>, Password, Nome, Cognome, Email, Matricola)
- Professore(<u>Username</u>, Password, Nome, Cognome, Email, Telefono)
- Amministratore(<u>Username</u>, Password, Nome, Cognome, Email)
- Gruppo(<u>Nome</u>, Control)
- Studente_Gruppo(<u>UsernameStudente</u>, <u>NomeGruppo</u>)
- Progetto(Nome, Descrizione, Materia, UsernameProfessore)
- Progetto_Gruppo(<u>Id</u>, VotoFinale, NomeProgetto, NomeGruppo)
- Progetto_Release(<u>Id</u>, VotoParziale, Penalita, DataUpload, IdProgettoGruppo, IdRelease)
- Release(<u>Id</u>, Tipo, Deadline, Consegnabile, NomeProgetto)
- Release_Condivisa(IdProgettoRelease, NomeGruppoProp)
- File(<u>Id</u>, Url, Descrizione, IdProgettoRelease)

Figura 1.2 - Modello Relazionale

2 Modelli

In particolare verranno mostrati i modelli su cui si basa l'analisi del sistema. In particolare verranno mostrati i modelli di navigazione, i diagrammi di analisi e i diagrammi di dettaglio. Per non appesantire la lettura, in alcuni schemi sono stati omessi i metodi get() e set() legati agli attributi delle entity.

2.1 Modelli di navigazione

Per illustrare i percorsi di navigazione dell'applicazione sono stati realizzati i seguenti modelli di navigazione, chiamati UX Diagram (User eXperience Diagram), organizzati in relazione al tipo di utente.

2.1.1 Studente

Figura 2.1 – Ux Model: Studente

2.1.2 Professore

Figura 2.2 – Ux Model: Professore

2.1.3 Amministratore

Figura 2.3 – Ux Model: Amministratore

2.2 Diagrammi di analisi

Per illustrare le tipologie dei singoli componenti (Boundary, Control, Entity) e le loro relazioni, di seguito verranno riportati i diagramma di analisi organizzati in relazione al tipo di utente.

2.2.1 Studente

Figura 2.4 – BCE Model: Studente

2.2.2 Professore

Figura 2.5 – BCE Model: Professore

2.2.3 Amministratore

Figura 2.6 – BCE Model: Amministratore

2.3 Diagrammi di dettaglio

Per entrare maggiormente nel dettaglio sono stati esplosi i diagrammi di analisi, mettendo in evidenza i componenti dell'architettura JEE. Gli oggetti di tipo Boundary sono diventate pagine HTML/JSP e Servlet; gli oggetti di tipo Control hanno assunto la forma di EJB Session e infine gli oggetti di tipo Entity si sono trasformati in EJB Entity.

2.3.1 Login

Figura 2.7 – JSP Model: Login

2.3.2 Studente

Figura 2.8 – JSP Model: Studente

2.3.3 Professore

Figura 2.9 –JSP Model: Professore

2.3.4 Amministratore

Figura 2.10 – JSP Model: Amministratore

SOFTWARE UTILIZZATI

In questa sezione verranno brevemente definiti i software utilizzati nella realizzazione di questo documento.

A.1 StarUML

StarUML è una piattaforma open source utilizzata per lo sviluppo veloce di diagrammi UML, secondo il paradigma MDA. È flessibile ed estensibile grazie alla sua architettura a plug-in e alla disponibilità delle apposite API. All'interno di questo documento starUML è stato utilizzato per la composizione dello Use Case Diagram, Class Diagram, Sequence Diagram e Activity Diagram.

A.2 MySQL

MySQL, definito Oracle MySQL, è un Relational Database Management System composto da un client con interfaccia a caratteri e un server, entrambi disponibili sia per sistemi Unix che per sistemi Windows.

A.3 Microsoft Visio 2010

Microsoft Visio 2010 è uno strumento utilizzato per la creazione semplificata di diagrammi grazie ai suoi efficaci elementi visivi.