Numerikus módszerek 2.	Név:
Prog. inf. BSc (Estis)	Kód:
2018. március 21.	Gv.v.:

1. zárthelyi dolgozat

Oldja meg az alábbi feladatokat! Minden feladat 6 pontot ér. A munkához 90 perc áll rendelkezésre. (Az elégséges alsó ponthatára 12 pont.)

- 1. Határozza meg a Lagrange-féle alappolinomok segítségével azt a polinomot, amely az $f(x) = \cos(\frac{\pi}{2}x)$ függvényt a -2, 0, 1 pontokban interpolálja? Becsülje a hibát az x = -1 pontban!
- $\mathbf{2}$. Mi az a H polinom, melyre teljesülnek az alábbi feltételek?

$$H(0) = 0, H'(0) = -1, H''(0) = 2, H(1) = 1, H'(1) = 4$$

- 3. Egy függvényt a lehető legkisebb hibával kívánunk interpolálni a [1,9] intervallumon első-, illetve másodfokú polinommal. Hogyan válasszuk meg az alappontokat? Milyen becslés adható az ekkor fellépő ω függvényekre?
- 4. Alkalmazza az inverz interpoláció egy lépését a 0,1,2 pontokból indulva a $x^4-x^3-x^2-1=0$ egyenlet megoldásának közelítésére.
- **5.** (a) Hogyan definiáljuk a (k darab) különböző és az (k-szor) ismétlődő alappontokhoz tartozó osztott differenciákat?
 - (b) Írja fel az interpolációs polinom Newton-alakját! Hogyan becsülhetjük az interpoláció hibáját a teljes intervallumon?
 - (c) Hogyan definiáljuk a T_n Csebisev-polinomokat? Adjon formulát a T_n polinom x_0, \ldots, x_{n-1} gyökhelyeinek kiszámítására!

Jó munkát!