Asie. 2016. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

Notons A l'évènement « la fleur provient de la serre A », B l'évènement « la fleur provient de la serre B » et F l'évènement « la fleur donne un fruit ». Représentons la situation par un arbre de probabilités.

La probabilité demandée est P(F). D'après la formule des probabilités totales,

$$P(F) = P(A) \times P_A(F) + P(B) \times P_B(F) = 0,55 \times 0,88 + 0,45 \times 0,84 = 0,484 + 0,378 = 0,862.$$

La proposition 1 est vraie.

La probabilité demandée est $P_F(A)$.

$$P_F(A) = \frac{P(A \cap F)}{P(F)} = \frac{0,55 \times 0,88}{0,862} = 0,561 \ \mathrm{arrondi} \ \text{à} \ 10^{-3}.$$

La proposition 2 est fausse.

Partie B

1) Puisque 237 = 250 - 13 et 263 = 250 + 13, les deux nombres 237 et 263 sont symétriques par rapport au nombre 250. Pour des raisons de symétrie,

$$P(237 \le X \le 263) = 1 - P(X \le 237) - P(X \ge 263) = 1 - 2P(X \le 237) = 1 - 2 \times 0, 14 = 0, 72.$$

- 2) a) On sait que Y suit la loi normale centrée réduite c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
- b) $X \leqslant 237 \Leftrightarrow X 250 \leqslant -13 \Leftrightarrow \frac{X 250}{\sigma} \leqslant -\frac{13}{\sigma} \Leftrightarrow Y \leqslant -\frac{13}{\sigma}$. Les événements $X \leqslant 237$ et $Y \leqslant -\frac{13}{\sigma}$ sont les mêmes et donc

$$P\left(Y\leqslant -\frac{13}{\sigma}\right) = P(X\leqslant 237) = 0, 14.$$

c) La calculatrice fournit

$$P\left(Y\leqslant -\frac{13}{\sigma}\right)=0, 14\Leftrightarrow -\frac{13}{\sigma}=-1,080\ldots\Leftrightarrow \sigma=12,03\ldots$$

Donc, $\sigma = 12$ arrondi à l'unité.

3) a) La suite $(P(250 - n \le X \le 250 + n))_{n \in \mathbb{N}}$ est croissante. La calculatrice fournit

$$P(250-23\leqslant X\leqslant 250+23)=0,944\ldots<0,95 \ {\rm et} \ P(250-24\leqslant X\leqslant 250+24)=0,954\ldots\geqslant0,95.$$

La plus petite valeur de l'entier $\mathfrak n$ pour laquelle la probabilité qu'une barquette soit conforme, est supérieure ou égale à 0,95, est $\mathfrak n=24.$

b) La suite $(P(250 \leqslant X \leqslant m))_{m \geqslant 230}$ est croissante. La calculatrice fournit

$$P(230\leqslant X\leqslant 284)=0,949\ldots <0,95 \ {\rm et} \ P(230\leqslant X\leqslant 285)=0,950\ldots\geqslant 0,95.$$

La plus petite valeur de l'entier \mathfrak{m} pour laquelle $P(230 \leqslant X \leqslant \mathfrak{m}) \geqslant 0,95$ est $\mathfrak{m}=285.$

EXERCICE 2

- 1) Pour tout réel x, $f_0(x) = 0$. Donc I(0) = 0.
- 2) a) Représentation graphique.

I(1) est l'aire, exprimée en unités d'aire, du domaine coloré en bleu.

b)
$$I(1) = \int_0^1 (e^x + 1) dx = [e^x + x]_0^1 = (e^1 + 1) - e^0 = e.$$

I(1) = e = 2,7 arrondi au dixième.

3) Soit a un réel de [0, 1].

$$I(\alpha) = \int_0^1 (\alpha e^{\alpha x} + \alpha) dx = [e^{\alpha x} + \alpha x]_0^1 = (e^{\alpha} + \alpha) - e^{0} = e^{\alpha} + \alpha - 1.$$

La fonction I est dérivable sur [0,1] et pour tout réel α de [0,1], $I'(\alpha)=e^{\alpha}+1$. La fonction I' est strictement positive sur [0,1] et donc la fonction I est strictement croissante sur [0,1].

La fonction I est continue et stristement croissante sur [0,1]. De plus, I(0)=0<2 et I(1)=e>2. D'après un corollaire du théorème des valeurs intermédiaires, il existe un réel \mathfrak{a}_0 de [0,1] et un seul tel que $I(\mathfrak{a}_0)=2$.

La calculatrice fournit $I(0,792)=1,999\ldots<2$ et $I(0,793)=2,003\ldots>2$. Donc, $I(0,792)< I(\mathfrak{a}_0)< I(0,793)$. Puisque la fonction I est strictement croissante sur [0,1], on en déduit que

$$0,792 < a_0 < 0,793.$$

EXERCICE 3

Partie A: Premier modèle - avec une suite

1) a) Pour tout entier naturel $\mathfrak n$, notons $\mathfrak u_n$ la masse, exprimée en grammes, de bactéries dans la cuve le $\mathfrak n$ -ème jour. Puisqu'initialement, la cuve contient 1 kg ou encore 1000 g de bactéries, on a effectivement $\mathfrak u_0=1$ 000. Soit $\mathfrak n\geqslant 0$. La masse de bactéries l'année $\mathfrak n+1$ est obtenue en rajoutant à la masse de bactéries l'année $\mathfrak n$, c'est-à-dire $\mathfrak u_n$, 0,2 fois cette masse puis en soustrayant 100 g. Donc

$$u_{n+1} = u_n + 0, 2u_n - 100 = 1, 2u_n - 100.$$

b) 30 kg sont encore 30 000 g. La calculatrice fournit les valeurs suivantes :

n	$\mathfrak{u}_{\mathfrak{n}}$
0	1 000
1	1 100
2	1 220
3	1 364
4	1 536,8
5	1 744, 2
6	1 993, 0
7	2 291,6
8	2 649, 9
9	3 079, 9
10	3 595, 9
11	4 215, 0
12	4 958, 1
13	5 849,7
14	6 919, 6
15	8 203,5
16	9 744, 2
17	11 593,
18	13 812,
19	16 474,
20	19 669,
21	23 503,
22	28 103,
23	33 624,

Le jour n° 23 ou encore au bout de 23 jours, la masse de bactéries dépasse 30 kg.

c) Algorithme complété.

Variables	u et n sont des nombres
Traitement	u prend la valeur 1000 n prend la valeur 0 Tant que u < 30 000 faire u prend la valeur 1, 2u - 100 n prend la valeur n + 1 Fin Tant que
Sortie	Afficher n

2) a) Montrons par récurrence que pour tout entier naturel $n,\,u_n\geqslant 1000.$

- $u_0 = 1000$ et en particulier $u_0 \geqslant 1000$. L'inégalité est vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $u_n \ge 1000$. Alors $1, 2u_n 100 \ge 1, 2 \times 1000 100$ ou encore $u_{n+1} \ge 1100$ et en particulier, $u_{n+1} \ge 1000$.

On a montré par récurrence que pour tout entier naturel $\mathfrak{n},\,\mathfrak{u}_\mathfrak{n}\geqslant 1000.$

b) Soit n un entier naturel.

$$u_{n+1} - u_n = 1, 2u_n - 100 - u_n = 0, 2u_n - 100.$$

Puisque $u_n \geqslant 1000$, on en déduit que $u_{n+1} - u_n \geqslant 0,22 \times 1000 - 100$ ou encore $u_{n+1} - u_n \geqslant 1900$ et en particulier $u_{n+1} - u_n \geqslant 0$.

On a montré que pour tout entier naturel n, $u_n \leq u_{n+1}$ et donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

3) a) Soit n un entier naturel.

$$v_{n+1} = u_{n+1} - 500 = 1, 2u_n - 100 - 500 = 1, 2u_n - 600 = 1, 2(u_n - 500) = 1, 2v_n.$$

Donc, la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=1,2.

b) La suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=1,2 et de premier terme $v_0=u_0-500=1000-500=500$. On en déduit que pour tout entier naturel n,

$$v_n = v_0 \times q^n = 500 \times 1, 2^n$$

puis que

$$u_n = v_n + 500 = 500 \times 1, 2^n + 500.$$

Pour tout entier naturel n,
$$u_n = 500 \times 1, 2^n + 500$$
.

c) Puisque 1, 2 > 1, on sait que $\lim_{n \to +\infty} 1, 2^n = +\infty$ et on en déduit que

$$\lim_{n\to +\infty} \mathfrak{u}_n = +\infty.$$

Partie B: second modèle - avec une fonction

1) a)
$$f(0) = \frac{50}{1 + 49e^0} = \frac{50}{1 + 49} = 1.$$

b) Soit t un réel positif. Puisque la fonction expoentielle est strictement positive sur \mathbb{R} , $1+49e^{-0.2t}>1$ puis $\frac{1}{1+49e^{-0.2t}}<1$ puis $50\times\frac{1}{1+49e^{-0.2t}}<50\times1$ et donc $\frac{50}{1+49e^{-0.2t}}<50$.

On a montré que pour tout réel $t \ge 0$, f(t) < 50.

c) La fonction f est dérivable sur $[0, +\infty[$ en tant qu'inverse d'une fonction dérivable sur $[0, +\infty[$ et ne s'annulant pas sur $[0, +\infty[$. De plus, pour $t \ge 0$,

$$f'(t) = 50 \times \frac{-\left(1 + 49e^{-0.2t}\right)'}{\left(1 + 49e^{-0.2t}\right)^2} = 50 \times \frac{-49 \times \left(-0.2e^{-0.2t}\right)}{\left(1 + 49e^{-0.2t}\right)^2} = \frac{490e^{-0.2t}}{\left(1 + 49e^{-0.2t}\right)^2}.$$

La fonction f' est strictement positive sur $\mathbb R$ et donc la fonction f est strictement croissante sur $\mathbb R$.

d)
$$\lim_{t \to +\infty} e^{-0.2t} = \lim_{X \to -\infty} e^X = 0$$
. Donc, $\lim_{t \to +\infty} f(t) = \frac{50}{1 + 49 \times 0} = 50$.

2) La masse de bactéries est initialement de 1kg. Cette masse croît avec le temps, reste strictement inférieure à 50 kg et vaut environ 50 kg au bout d'une longue durée.

3) Soit $t \ge 0$.

$$\begin{split} f(t) > 30 &\Leftrightarrow \frac{50}{1 + 49e^{-0,2t}} > 30 \\ &\Leftrightarrow \frac{1 + 49e^{-0,2t}}{50} < \frac{1}{30} \text{ (par stricte décroissance de la fonction } x \mapsto \frac{1}{x} \text{ sur }]0, +\infty[) \\ &\Leftrightarrow 1 + 49e^{-0,2t} < \frac{5}{3} \Leftrightarrow 49e^{-0,2t} < \frac{2}{3} \Leftrightarrow e^{-0,2t} < \frac{2}{147} \\ &\Leftrightarrow -0, 2t < \ln\left(\frac{2}{147}\right) \text{ (par stricte croissance de la fonction } x \mapsto \ln(x) \text{ sur }]0, +\infty[) \\ &\Leftrightarrow t > -\frac{1}{0,2} \ln\left(\frac{2}{147}\right) \Leftrightarrow t > 5 \ln\left(\frac{147}{2}\right) \\ &\Leftrightarrow t > 21, 4 \dots \end{split}$$

La masse de bactéries dépassera 30 kg au bout de 22 jours.

Partie C: un contrôle de qualité

Ici, n=200 et on suppose que p=0,8. On note que $n\geqslant 30$, np=160 et n(1-p)=40 et donc $np\geqslant 5$ et $n(1-p)\geqslant 5$. Un intervalle de fluctuation au seuil 95% est

$$\left[p-1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}},p+1,96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right] = \left[0,8-1,96\frac{\sqrt{0,8\times0,2}}{\sqrt{200}};0,8+1,96\frac{\sqrt{0,8\times0,2}}{\sqrt{200}}\right]$$
$$= \left[0,744;0,856\right]$$

en arrondissant de manière à élargir un peu l'intervalle. La fréquence observée est $f = \frac{146}{200} = 0,73$. f n'appartient pas à l'intervalle de fluctuation et donc l'affirmation de l'entreprise doit être remise en cause au risque de se tromper de 5%.

EXERCICE 4

Partie A: quelques résultats

- 1) a) $9 \times 3 26 \times 1 = 27 26 = 1$ et donc le couple (3, 1) est un couple solution.
- b) Soit (d, m) un couple d'entiers relatifs.

$$9d - 26m = 1 \Leftrightarrow 9d - 26m = 9 \times 3 - 26 \times 1 \Leftrightarrow 9d - 9 \times 3 = 26m - 26 \times 1 \Leftrightarrow 9(d - 3) = 26(m - 1)$$
.

c) Soit (d, m) un couple d'entiers relatifs. D'après b), si le couple (d, m) est solution de l'équation (E), alors l'entier 26 divise l'entier 9(d-3). Puisque les entiers 9 et 26 sont premiers entre eux (d'après la question 1)a) et le théorème de Bézout), le théorème de Gauss permet d'affirmer que l'entier 26 divise l'entier d-3. Par suite, il existe un entier relatif k tel que d-3=26k ou encore d=26k+3. De même, l'entier 9 divise l'entier m-1 et donc il existe un entier relatif k' tel que m-1=9k' ou encore m=9k'+1.

Réciproquement, soient k et k' deux entiers relatifs puis d = 26k + 3 et m = 9k' + 1.

$$9d - 26m = 1 \Leftrightarrow 9(d - 3) = 26(m - 1) \Leftrightarrow 9 \times 26k = 26 \times 9k' \Leftrightarrow k = k'$$

On a montré que les couples (d, m) d'entiers relatifs solutions de l'équation (E) sont les couples de la forme $(26k+3,9k+1), k \in \mathbb{Z}$.

- 2) a) Soient n et k deux entiers relatifs tels que n = 26k 1. Alors $(-1) \times n + k \times 26 = 1$ et le théorème de Bézout permet d'affirmer que n et 26 sont premiers entre eux.
- b) Soient d et k deux entiers relatifs tels que d = 26k + 3.

$$9d - 28 = 9 \times 26k + 27 - 28 = 26(9k) - 1.$$

n = 9k est un entier et donc, d'après la question précédente, 9d - 28 et 26 sont premiers entre eux.

Partie B: cryptage et décryptage

1) A ES, on associe
$$C_1=\left(\begin{array}{c}4\\18\end{array}\right)$$
. $AC_1=\left(\begin{array}{c}9&4\\7&3\end{array}\right)\left(\begin{array}{c}4\\18\end{array}\right)=\left(\begin{array}{c}108\\82\end{array}\right)$. Puisque $108=4\times26+4$ et $82=3\times26+4$, $\left(\begin{array}{c}108\\82\end{array}\right)\equiv\left(\begin{array}{c}4\\4\end{array}\right)$ [26] et donc ES est codé en EE.

Finalement, le mot ESPION est codé en EELZWH

2) a) Soient a, b, c et d quatre réels puis $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$AB = \begin{pmatrix} 9 & 4 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 9a + 4c & 9b + 4d \\ 7a + 3c & 7b + 3d \end{pmatrix}$$

et donc

$$AB = I_2 \Leftrightarrow \left(\begin{array}{c} 9\alpha + 4c & 9b + 4d \\ 7\alpha + 3c & 7b + 3d \end{array}\right) = \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right) \Leftrightarrow \left\{\begin{array}{c} 9\alpha + 4c = 1 \\ 7\alpha + 3c = 0 \\ 9b + 4d = 0 \\ 7b + 3d = 1 \end{array}\right. \Leftrightarrow \left\{\begin{array}{c} c = -\frac{7}{3}\alpha \\ 9\alpha + 4\left(-\frac{7}{3}\alpha\right) = 1 \\ d = -\frac{9}{4}b \end{array}\right.$$

$$\Leftrightarrow \left\{\begin{array}{c} \alpha = -3 \\ c = 7 \\ b = 4 \end{array}\right. \Leftrightarrow B = \left(\begin{array}{c} -3 & 4 \\ 7 & -9 \end{array}\right).$$

$$d = -9$$

De plus, si $B = \begin{pmatrix} -3 & 4 \\ 7 & -9 \end{pmatrix}$, alors

$$BA = \begin{pmatrix} -3 & 4 \\ 7 & -9 \end{pmatrix} \begin{pmatrix} 9 & 4 \\ 7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

Donc, la matrice A est inversible et $A^{-1} = \begin{pmatrix} -3 & 4 \\ 7 & -9 \end{pmatrix}$.

b) XQ correspond à
$$C_1' = \begin{pmatrix} 23 \\ 16 \end{pmatrix}$$
.

$$AC_1 \equiv C_1'$$
 [26] $\Rightarrow A^{-1}AC_1 \equiv A^{-1}C_1'$ [26] $\Rightarrow C_1 \equiv A^{-1}C_1'$ [26].

$$A^{-1}C_1' = \begin{pmatrix} -3 & 4 \\ 7 & -9 \end{pmatrix} \begin{pmatrix} 23 \\ 16 \end{pmatrix} = \begin{pmatrix} -5 \\ 17 \end{pmatrix} \equiv \begin{pmatrix} 21 \\ 17 \end{pmatrix} \text{ [26]. } \begin{pmatrix} 21 \\ 17 \end{pmatrix} \text{ correspond à VR.}$$

De même, GY correspond à
$$C_2' = \begin{pmatrix} 6 \\ 24 \end{pmatrix}$$
. $A^{-1}C_2' = \begin{pmatrix} -3 & 4 \\ 7 & -9 \end{pmatrix} \begin{pmatrix} 6 \\ 24 \end{pmatrix} = \begin{pmatrix} 78 \\ -174 \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 8 \end{pmatrix}$ [26].

$$\begin{pmatrix} 0 \\ 8 \end{pmatrix}$$
 correspond à AI.

Finalement, le mot XQGY se décode en le mot VRAI.