MA378 Chapter 1: Interpolation

§1.2 Lagrange Interpolation

Dr Niall Madden
January 2024

Source: http://jeff560.tripod.com/stamps.html

Joseph-Louis Lagrange, born 1736 in Turin, died 1813 in Paris. He made great contributions to many areas of Mathematics.

2.1 Finding the polynomial

Example 2.1

Show that the polynomial of degree 2 that interpolates $f(x) = 1 - x + \sin(\pi x/2)$ at the points $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$ is $p_2 = -x^2 + x + 1$.

How to we know we have found the *only* solution? More generally, under what conditions is there exactly one polynomial that solves the PIP?

As a first step, we'll prove the following:

Theorem 2.2

If $p_n \in \mathcal{P}_n$ has n+1 zeros, then $p_n \equiv 0$ (i.e., $p_n(x) = 0$ for all x).

We know that $P_n(x_0) = P_n(x_1) = \cdots = P_n(x_n) = 0$. So we can write $P_n(x) = q(x) \left[(x - x_0) (x - x_1) \cdots (x_n - x_n) \right]$ where q is some polynomial. Then q is the coeficient of x^{n+1} . Since $P_n \in P_n$, we have $q \equiv 0$. So $P_n(x) \equiv 0$.

2.1 Finding the polynomial (Finished here Uniqueness

Theorem 2.3 (There is a unique solution to the PIP)

There is at most one polynomial of degree $\leq n$ that interpolates the n+1 points (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) where x_0, x_1, \ldots, x_n are distinct.

Proof. So pose both
$$q(x)$$
 and $r(x)$ are polynomials of degree n that solve this interpolation problem. That is $q(x_0) = q_0$ $q(x_0) = q_0$

Now we want to solve the PIP. It turns out that the most obvious approach may not be the best.

Suppose we are trying to solve the problem as follows: $find p_2$ such that

$$p_2(x_0) = y_0$$
, $p_2(x_1) = y_1$, and $p_2(x_2) = y_2$.

Since $p_2(x)$ is of the form $a_0 + a_1x + a_2x^2$, this just amounts the finding the values of the coefficients a_0 , a_1 , and a_2 . One might be tempted to solve for them using the system of equations

$$a_0 + a_1x_0 + a_2x_0^2 = y_0$$
 Solul for $a_0 + a_1x_1 + a_2x_1^2 = y_1$ $a_0 + a_1x_2 + a_2x_2^2 = y_2$

This is known as the Vandermonde System.

Writing

$$a_0 + a_1x_0 + a_2x_0^2 = y_0$$

 $a_0 + a_1x_1 + a_2x_1^2 = y_1$
 $a_0 + a_1x_2 + a_2x_2^2 = y_2$

in matrix-vector format we get

$$\begin{pmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix} \quad \text{or} \quad Va = y.$$
 (1)

But this is usually not be a good idea. At the very least, we'd have to solve a linear system of equations. Furthermore, the system is very *ill-conditioned*.

[Slides 7 and 8 depend on material from MA385, so we'll skip them in class: please read in your own time.]

In MA385 you learned about the relationship between the condition number of a matrix, V, and the relative error in the (numerical) solution to a matrix-vector equation with V as the coefficient matrix. The condition number is $\kappa(V) = \|V\| \|V^{-1}\|$, for some subordinate matrix norm $\|\cdot\|$.

Example 2.4 (Stewart's "Afternotes...", Lecture 19)

Suppose $x_0 = 100$, $x_1 = 101$ and $x_2 = 102$. Then it is not hard to check that

$$||X||_{\infty} = \max_{i} \sum_{j} |X_{ij}| = 10,507.$$

Also,

$$V^{-1} = \frac{1}{2} \begin{pmatrix} 10302 & -20400 & 10100 \\ -203 & 404 & -201 \\ 1 & -2 & 1 \end{pmatrix},$$

so
$$||V^{-1}||_{\infty} = 20401$$
. So $\kappa(V) = 214,353,307$.

We'll now look at a much easier method for solving the Polynomial Interpolation Problem. As a by-product, we get a constructive proof of the existence of a solution to the PIP. (A "constructive proof" is one that shows a thing exists by by actually computing it).

Example

Consider the problem: find $p_3 \in \mathcal{P}_3$ such that

$$p_3(0) = 2$$
, $p_3(1) = -1/2$, $p_3(2) = 1$, $p_3(3) = -1$.

Because
$$L_0$$
 is a cubic and has zeros at $x=1,2,3$ it is of the form $L_0(x)=C(x-1)(x-2)(x-3)$. Choosing C so that $L_0(0)=1$, we get
$$L_0(x)=\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\frac{-1}{6}(x-1)(x-2)(x-3)$$

Then
$$L_{1}(x) = \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}$$

$$= \frac{1}{2}(x)(x-2)(x-3)$$

In the same style, let $L_2(x_i) = \begin{cases} 1 & i = 2 \\ 0 & i = 0, 1, 3 \end{cases}$

$$L_{2}(x) = \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}$$

$$= -\frac{1}{2}(x)(x-1)(x-3)$$

Finally, if we define

$$L_3(x_i) = \begin{cases} 1 & i = 3 \\ 0 & i = 0, 1, 2 \end{cases}$$

then clearly,

$$L_3(x) = \frac{(x-0)(x-1)(x-3)}{(3-0)(3-1)(3-2)} = \prod_{j=0, j\neq 3}^{n} \frac{(x-x_j)}{(x_3-x_j)}.$$

where n=3

Because each of L_0 , L_1 , L_2 , and L_3 is a cubic, so too is any linear combination of them. So

$$p_3(x) = 2L_0(x) - (\frac{1}{2})L_1(x) + (1)L_2(x) + (-1)L_3(x),$$

is a cubic. Furthermore. Secase Each of Lo

$$\begin{array}{rclcrcl} \rho_3(0) & = & 2L_0(0) & -(1/2)L_1(0) & +(1)L_2(0) & +(-1)L_3(0) \\ & = & 2(1) & -(1/2)(0) & +(1)(0) & +(-1)(0) \\ & = & 2, & & & & \\ \rho_3(1) & = & 2L_0(1) & -(1/2)L_1(1) & +(1)L_2(1) & +(-1)L_3(1) \\ & = & 2(0) & -(1/2)(1) & +(1)(0) & +(-1)(0) \\ & = & -1/2, & & & \\ \rho_3(2) & = & 2L_0(2) & -(1/2)L_1(2) & +(1)L_2(2) & +(-1)L_3(2) \\ & = & 2(0) & -(1/2)(0) & +(1)(1) & +(-1)(0) \\ & = & 1, & & & \\ \rho_3(3) & = & 2L_0(3) & -(1/2)L_1(3) & +(1)L_2(3) & +(-1)L_3(3) \\ & = & 2(0) & -(1/2)(0) & +(1)(0) & +(-1)(1) \\ & = & -1. & & & \\ \end{array}$$

Thus p_3 solves the problem! That is p_3 is a cubic that interpolates $(0,2), (1,-\frac{1}{2}), (2,1) \text{ and } (3,-1)$

2.4 The Lagrange Form

We can generalise this idea to solve any PIP using what is called *Lagrange* interpolation.

Definition 2.5 (Lagrange Polynomials)

The **Lagrange Polynomials** associated with $x_0 < x_1 < \cdots < x_n$ is the set $\{L_i\}_{i=0}^n$ of polynomials in \mathcal{P}_n such that

$$L_i(x_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (2a)

and are given by the formula

$$L_{i}(x) = \prod_{i=0, i \neq i}^{n} \frac{x - x_{i}}{x_{i} - x_{j}}.$$
 (2b)

2.4 The Lagrange Form

Definition 2.6

The Lagrange form of the Interpolating Polynomial

$$p_n(x) = \sum_{i=0}^n y_i L_i(x), \tag{3a}$$

or

$$p_n(x) = \sum_{i=0}^{n} f(x_i) L_i(x).$$
 (3b)

Take care not to confuse

- ightharpoonup the Lagrange Polynomials, which are the L_i with
- ▶ the Lagrange Interpolating Polynomial, which is the p_n defined in (3).

2.4 The Lagrange Form

Theorem 2.7 (Lagrange)

There exists a solution to the Polynomial Interpolation Problem and it is given by

$$p_n(x) = \sum_{i=1}^n y_i L_i(x).$$

Proof: Since each Li is a polynomial of degree n, so too is
$$P_n(x)$$
. Furthermore

 $P_n(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = y_j L_j(x_j)$ since $L_i(x_j) = 0$ if $i \neq j$
 $= y_j$ since $L_j(x_j) = 1$

So P_n solves the PIP. Consequently, it Exists!

2.5 Example

Example 2.8 (Süli and Mayers, E.g., 6.1)

Write down the Lagrange form of the polynomial interpolant to the function $f(x) = e^x$ at interpolation points $\{-1, 0, 1\}$.

Here
$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$
We wont $P_2(x_0) = e^{-1}$, $P_2(x_1) = e^{0} = 1$, $P_2(x_2) = 1$
Write down each of f_0 , f_1 , f_2
 $f_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x)(x - 1)}{(-1)(-2)} = \frac{1}{2}(x)(x - 1)$
 $f_1(x) = 1 - x^2$ $f_2(x) = \frac{1}{2}(x)(x + 1)$.
So $P_2(x) = e^{-1}f_0(x) + f_1(x) + 1$ $f_2(x)$ $f_3(x) = 1$

The figure below shows the solution to Example 2.8 (top) and the difference between the function e^x and its interpolant (bottom). It would be interesting to see how this error depends on

- (i) the function (and its derivatives)
- (ii) the number of points used.

Exercise 2.1

The general form of the Vandermonde Matrix is

$$V_n = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}.$$

Its determinant is

$$\det(V_n) = \prod_{0 \le i \le j \le n} (x_j - x_i). \tag{4}$$

Verify this for the 2×2 and 3×3 cases.

(Note that from Formula (4) we can deduce directly that the PIP has a unique solution *if and only if* the points x_0, x_1, \ldots, x_n are all distinct.)

Exercise 2.2

Find the polynomial p_1 that interpolates the function $f(x) = x^3$ at the points $x_0 = 0$ and $x_1 = a$. Find the point $\sigma \in [0, a]$ that maximises $|f(x) - p_1(x)|$, and hence compute

$$\max_{0 \le x \le a} |f(x) - p_1(x)|.$$

Source: Chapter 6 of Süli and Mayers.

Exercise 2.3

Show that

$$\sum_{i=0}^{n} L_i(x) = 1 \quad \text{for all } x.$$

Exercise 2.4

Write down the Lagrange Form of p_2 , the polynomial of degree 2 that interpolates the points (0,3), (1,2) and (2,4). Source: Chapter 2 of Stoer and Bulirsch.

Exercise 2.5

Show that all the following represent the same polynomial (usually called the "Chebyshev Polynomial of Degree 3"),

$$T_3(x) = 4x^3 - 3x$$
.

- (a) Horner form: ((4x + 0)x 3)x + 0.
- (b) Lagrange form: $\sum_{k=0}^{3} \left(\prod_{j=0, j \neq k}^{3} \frac{x x_{j}}{x_{k} x_{j}} \right) (-1)^{k+1}, \text{ where }$ $x_{0} = -1, x_{1} = -1/2, x_{2} = 1/2, x_{3} = 1.$
- (c) Recurrence relation: $T_0 = 1$, $T_1 = x$, and $T_n = 2xT_{n-1} T_{n-2}$ for n = 2, 3, ...
- (d) Trigonometric form: $T_3(x) = \cos(3\cos^{-1}(x))$.