LSM100A User Manual

Rev 1.12

SJIT

JUNE. 26, 2024

Contents

1. HARD WARE	3
1.1 EVALUATION KIT COMPONENT	3
1.2 EVB LSM100A BOARD	4
1.3 SCHEMATIC	5
1.4 CONNECTOR PIN DESCRIPTION	7
1.5 Antenna Dimension	8
1.6 RETURN LOSS & VSWR	9
1.7 2D RADIATION PATTERN	10
1.8 3D EFFICIENCY	11
1.9 EVB RADIATION → CONDUCTION CHANGE	12
2. MEMORY MAP	13
3. TEST PROGRAM	14
3.1 EVALUATION BOARD CONNECTION	14
3.2 Program execution	14
3.3 Test program Description	15
4. AT COMMAND COMPLETE SET	20
4.1 LORA COMMAND	20
12 SICEON COMMAND	28

Copyright SJIT | All Rights Reserved | www.seongji.co.kr

History

Date	Contents	Version	FW
			version
2021-11-11	Create	V1.0	V1.0.1
2021-11-12	Insertion Hardware Description	V1.1	V1.0.1
2021-12-08	Remove monarch	V1.2	V1.0.1
2021-12-13	Apply Sigfox RC1 only	V1.3	V1.0.1
2021-12-15	Edit content	V1.4	V1.0.1
2021-12-22	Change content	V1.5	V1.0.1
2022-01-21	Add AT command, Add software version	V1.6	V1.0.1
2022-01-28	Add sigfox memory map	V1.7	V1.0.1
2022-04-25	Change AT Command GUI and Add AT command	V1.8	V1.0.1
	- Add AT\$RP2P, AT\$SP2P command in Sigfox		
	- Add AT+NWKTYPE command in LoRa		
2022-05-16	Change AT Command GUI and Add AT command	V1.9	V1.0.2
	- Add AT+PCONF, AT+PSEND, AT+PRECV command in LoRa		
	Change memory map(add IAP, expansion F/W area)		
2023-06-30	Change RC(sigfox band)	V1.10	V1.0.3
	Change AS923-1 command		
	- standard (AT+BAND=0,1)		
	- japan (AT+BAND=0,4)		
2024-01-23	Set Channel Mask	V1.11	V1.0.4
	- AT+CHMASK=channel mask		
	Change Baudrate		
	- AT+BAUDRATE=baudrate		
	Add additional explanation of Rx2 Datarate		
	Maintain Uplink Count		
	- AT+DADDR=addr,1		
	Add content of Default Region & RC		
	Add a table of Tx power for explanation		
	Set retransmission of unconfirmed test		
	- AT+UNCNFRETX= <count></count>		
	Change the company name		
	Set Devnonce		
	- AT+DEVNONCE= <count></count>		
2024-02-28	Set retransmission of confirmed test	V1.12	V1.0.4
	- AT+CNFRETX= <count></count>		

SJIT CONFIDENTIAL 2 / 32

1. Hard Ware

1.1 Evaluation Kit Component

EVB LSM

[Fig. Evaluation Kit Component]

LSM100A Evaluation Kit Component

1) EVB LSM: 1EA

2) SMA Connector(ST type): 1EA

SJIT CONFIDENTIAL 3 / 32

1.2 EVB LSM100A Board

[Fig. EVM LSM]

- RF Connector: RF connector for Antenna
- LSM: LoRa Sigfox module
- **Boot Select switch:** Boot mode Low/High switch (↓: Low, ↑: High)
- Module reset switch: EVB LSM H/W reset switch
- Micro USB receptacle: Micro USB connector
 - ① Power supply
 - ② Virtual UART interface
- USB to serial IC: FT2232HL/ FTDI
- Status LED: Debug & Module status LED
- ST Link: ST Link connector
- Wake-up switch: wake-up switch
- Module power Jumper: EVB LSM power supply jumper PIN
- Module external power PIN: EVB LSM external power supply PIN (+3.3V supply)

SJIT CONFIDENTIAL 4 / 32

1.3 Schematic

SJIT CONFIDENTIAL 5 / 32

SJIT CONFIDENTIAL 6 / 32

1.4 Connector PIN Description

Connector	Pin No.	Pin name	Module Pin No.	Function
	1	PB2	2	AC/DC In
	2	-	-	-
	3	PA9	3	Inter-Integrated Circuit Serial Clock (SCL)
	4	PA10	4	Inter-Integrated Circuit Serial Data (SDA)
	5	PA11	5	General purpose IO
	6	PA12	6	General purpose IO
	7	PA13	7	Serial Wire Debug Data (FW Download)
11	8	PA14	8	Serial Wire Debug Clock (FW Download)
J1	9	PA15	9	General purpose IO
	10	GND	-	Ground
	11	VDD	11	Power Supply(+1.8V ~ +3.6V)
	12	GND	12	Ground
	13	PA3	13	UART2 Receive Data
	14	PA2	14	UART2 Transmit Data
	15	PA1	15	Wake-up, General purpose IO
	16	_	-	-

Connector Pin No.	Din No	Pin name	Module	Function
Connector	illiector Pili No.	Pili name	Pin No.	Function
	1	BOOT	31	IC Boot0
	2	NRST	30	IC Reset
	3	PA4	29	Selectable SPI1 functionality (NSS)
	4	PA5	28	Selectable SPI1 functionality (SCK)
	5	PA6	27	Selectable SPI1 functionality (MISO)
	6	PB5	26	Selectable SPI1 functionality (MOSI)
	7	PA7	25	General purpose IO
J2	8	PA8	24	General purpose IO
	9	PB4	22	General purpose IO
	10	PB3	21	General purpose IO
	11	GND	20	Ground
	12	PB6	19	UART1 Transmit Data
	13	PB7	18	UART1 Receive Data
	14	PB8	17	General purpose IO
	15	PA0	16	General purpose IO
	16	-	-	-

SJIT CONFIDENTIAL 7 / 32

1.5 Antenna Dimension

[Antenna Pattern]

[Matching]

SJIT CONFIDENTIAL 8 / 32

1.6 Return loss & VSWR

[Return Loss]

[VSWR]

SJIT CONFIDENTIAL 9 / 32

1.7 2D Radiation Pattern

[X-Y]

[X-Z]

SJIT CONFIDENTIAL 10 / 32

1.8 3D Efficiency

Antenna Pattern & Gain Report									
Manufacturer	Company Nam	ompany Name							
Model Name	Filename								
Tester Name	Airlink							SERVICE SERVICES	
Test Date	2021-08-18 오	후 4:55:34						THE REAL PROPERTY OF THE PERSON OF THE PERSO	
	100 Hz								
Port Power	0.00 dBm							CONT. THE PARTY AND ADDRESS.	
								6 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Meas Step	15`								
Frequency	Efficiency	A۱	verage Ga	in		Max Gain	_	Max Position	D irectivity
,		Ver	Hor	Total	Ver	Hor	Total		
863.000000 MHz	45.0 %	-8.6 dBi	-5.0 dBi	-3.5 dBi	-3.5 dBi	-0.8 dBi	1.0 dBi	Theta105/Pie75	4.49 dB
865.000000 MHz	46.2 %	-8.5 dBi	-4.9 dBi	-3.3 dBi	-3.4 dBi	-0.6 dBi	1.2 dBi	Theta105/Pie75	4.51 dB
868.100000 MHz	48.1 %	-8.3 dBi	-4.8 dBi	-3.2 dBi	-3.2 dBi	-0.5 dBi	1.3 dBi	Theta105/Pie75	4.49 dB
868.130000 MHz	48.1 %	-8.2 dBi	-4.8 dBi	-3.2 dBi	-3.3 dBi	-0.5 dBi	1.3 dBi	Theta105/Pie75	4.49 dB
902.200000 MHz	51.5 %	-7.3 dBi	-4.8 dBi	-2.9 dBi	-2.2 dBi	-0.2 dBi	1.9 dBi	Theta105/Pie75	4.80 dB
908.700000 MHz	49.8 %	-7.3 dBi	-5.0 dBi	-3.0 dBi	-2.1 dBi	-0.3 dBi	1.9 dBi	Theta105/Pie75	4.89 dB
916.000000 MHz	45.3 %	-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.3 dBi	-0.8 dBi	1.5 dBi	Theta105/Pie75	4.96 dB
920.800000 MHz	45.5 %	-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.1 dBi	-0.7 dBi	1.6 dBi	Theta105/Pie75	5.05 dB
921.600000 MHz	45.9 %	-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.1 dBi	-0.7 dBi	1.7 dBi	Theta105/Pie75	5.04 dB
923.200000 MHz	45.9 %	-7.6 dBi	-5.4 dBi	-3.4 dBi	-2.0 dBi	-0.7 dBi	1.7 dBi	Theta105/Pie75	5.05 dB
923.300000 MHz	45.9 %	-7.6 dBi	-5.4 dBi	-3.4 dBi	-2.0 dBi	-0.7 dBi	1.7 dBi	Theta105/Pie75	5.05 dB
927.500000 MHz	45.3 %	-7.7 dBi	-5.5 dBi	-3.4 dBi	-2.0 dBi	-0.8 dBi	1.6 dBi	Theta105/Pie75	5.04 dB
928.000000 MHz	45.1 %	-7.7 dBi	-5.5 dBi	-3.5 dBi	-2.0 dBi	-0.8 dBi	1.6 dBi	Theta105/Pie75	5.03 dB
									_

SJIT CONFIDENTIAL 11 / 32

1.9 EVB Radiation → **Conduction Change**

SJIT CONFIDENTIAL 12 / 32

2. Memory map

- LSM100A F/W version: V1.0.1

◆ Area in Sigfox ID, PAC

0x08040000 - LSM100A IAP(Bootloader) ◆ Start address: 0x08000000 Sigfox ID/PAC 0x0803E000 ◆ End address: 0x08001FFF Sigfox user area • Size: 0x2000(8,192byte) (0x2000 = 8,192byte)0x0803C000 ◆ Area in IAP LoRa user area (0x2000 = 8,192byte)- LSM100A F/W 0x0803A000 ◆ Start address: 0x08002000 ◆ Fnd address: 0x0802FFFF Unused area ◆ Size: 0x2E000(188,416byte) ◆ Area in LSM100A F/W 0x08030000 - LoRa user area Start address: 0x0803A000 ◆ End address: 0x0803BFFF Size: 0x2000(8,192byte) ◆ Area in LoRa user data LSM100 F/W (0x2E000 = 188,416byte)- Sigfox user area Start address: 0x0803C000 ◆ End address: 0x0803DFFF • Size: 0x2000(8,192byte) ◆ Area in Sigfox user data 0x08002000 **IAP** - Sigfox ID/PAC (0x2000 = 8,192byte)◆ Start address: 0x0803E000

The Sigfox ID/PAC(Credentials) is placed at 0x0803E500. (The Sigfox area must not be erased and modified.)

X Warning: Never erase the entire memory. Users are responsible for any problems caused by the erase.

0x0800000

SJIT CONFIDENTIAL 13 / 32

3. Test Program

3.1 Evaluation board Connection

1) EVBLSM100A connect to Window PC by USB cable.

- ① LSM100A
- ② Micro USB cable
- 3 Windows PC

[Fig. EVBLSM100A connection]

3.2 Program execution

- 1) EVBLSM100A connected serial-port in Windows PC, and then check the COM-port number in device manager.
 - → USB Serial Port(Com□□)

[Fig. EVBLSM100A serial port]

- 2) Run serial communication program "LSM_LoRa(Sigfox)_CMD_vXX.exe"
- 3) Write serial port Number in 'DUTCOM' BOX, and then 'connect' click.

[Fig. EVBLSM100A serial port number]

SJIT CONFIDENTIAL 14 / 32

3.3 Test program Description

3.3.1 Lora command GUI

[Fig. Screen of execute Test program]

- 1) Write command on AT Command edit box located on left bottom and then click Send button to execute command. Configuration value list is defined on chapter "AT command complete set"
- 2) Instead of the item 1), can click button to execute on each AT command menu package on the right.

Example)

Command: AT+BAND=5 (CR) AT+BAND=? (CR)

[Fig. Region Band ID Set Command]

SJIT CONFIDENTIAL 15 / 32

3.3.2 Lora RF Test Description

1) Configure RF test

General Setting

* Conf RF Test Setting(Required to set every device reset)

- As in the picture above, enter parameters without spaces and Set

AT+TCONF=<Frequency>:<Power>:<LoRa Bandwidth>:<Lora SF>:<CodingRate>:<Lna>:<PA Boost>:
<Modulation>:<PayloadLen>:<FskDeviation>:<LowDrOpt >:<BTproduct:><CR>
EX) AT+TCONF=868300000:15:4:7:4/5:0:0:1:16:0:2:0

SJIT CONFIDENTIAL 16 / 32

2) Tx Test

After selecting Tx in the Packet part, set the number of times to repeat Value and Send.

3) Rx Test

After selecting Rx in the Packet part, set the number of times to repeat Value and Send.

- → if received success display "OnRxDone"
- → if received fail display "OnRxTimeout"

SJIT CONFIDENTIAL 17 / 32

3.3.3 Sigfox command GUI

[Fig. Screen of execute Test program]

○ The LSM100A supports only RC1 and doesn't support monarch

- 1) Write command on AT Command edit box located on left bottom and then click Send button to execute command. Configuration value list is defined on chapter "AT command complete set"
- 2) Instead of the item 2), can click button to execute on each AT command menu package on the right.

Example)

Command: ATS410=0 (CR) (0: private key 1: public key)

[Fig. Encryption Set Command]

SJIT CONFIDENTIAL 18 / 32

3.3.4 Sigfox RF Test Description

1) Input AT Command to LSM100A used as RX

EX) AT+RL=869525000

- 2) Test Result
 - → if received success display "TEST PASSED"
 - → if received fail display "Wait For End of Rx"

3) Input AT Command to LSM100A used as TX

EX) AT+CW=868130000

→ Transmit frequency to Continuous wave

4. AT command complete set

A typical serial terminal emulator can also be used to control the EVK instead of the proposed test SW. In that case, the following parameters should be used:

• Default Baudrate: 9600 bauds

Data bits: 8Stop bits: 1Parity: None

• Port: UART2 (EVK's micro 5pin connector is connected to UART2..)

The following table gather all AT command available:

4.1 LoRa Command

Command	Name	Description
AT?	Help on all	Help on All Commands.
	<cmd></cmd>	
		Ex) AT? (CR)
ATZ	Reset	Trig a MCU reset.
		Ex) ATZ (CR)
AT+BAT=?	Battery level	Get the battery level (in mV).
		Ex) AT+BAT=? (CR)
AT+VL=level	Verbose level	Set or Get the verbose level.
AT+VL=?		<level>: [0: off ~ 3: High]</level>
		Ex) AT+VL=3 (CR)
AT+MODE=mode	Mode Change	LoRa & Sigfox Mode Change. After a MCU reset.
AT+MODE=?		<mode>: [0: Sigfox, 1: LoRa]</mode>
		Ex) AT+MODE=1 (CR)
AT\$SSWVER=?	Software version	Get the Software version.
		Ex) AT\$SSWVER=? (CR)
AT+VER=?	Firmware and	Get the version of firmware and libraries.
	library versions	
		Ex) AT+VER=? (CR)
AT+LTIME=?	Local time in UTC	Get the local time in UTC format.
	format	

SJIT CONFIDENTIAL 20 / 32

		Ex) AT+LTIME=? (CR)
AT+LINKC?	Link Check	Piggyback a Link Check Request to the next uplink.
		Ex) AT+LINKC? (CR)
AT+APPEUI=eui	Application EUI	Set or Get the Application EUI.
AT+APPEUI=?		
		Ex) AT+APPEUI=00:00:00:00:00:00:07 (CR)
AT+NWKKEY=key	Network Key	Set or Get the Network Key.
AT+NWKKEY=?		
		Ex) AT+NWKKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+APPKEY=key	Application Key	Set or Get the Application Key.
AT+APPKEY=?		
		Ex) AT+APPKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+NWKSKEY=key	Network Session	Set or Get the Network Session Key.
AT+NWKSKEY=?	Key	
		Ex) AT+NWKSKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+APPSKEY=key	Application	Set or Get the Application Session Key.
AT+APPSKEY=?	Session Key	
		Ex) AT+APPSKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+DADDR=address	Device address	Set or Get the Device address.
AT+DADDR=?		If use 'AT+DADDR=address,1', Uplink count is maintained
		Ex) AT+DADDR=00:11:22:33 (CR)
		Ex) AT+DADDR=00:11:22:33,1 (CR)
AT+DEUI=?	Device EUI	Get the Device EUI.
		Ex) AT+DEUI=? (CR)
AT+NWKID=id	Network ID	Set or Get the Network ID.
AT+NWKID=?		<id>: [0 ~ 127].</id>
		Ex) AT+NWKID=100 (CR)
AT+JOIN=mode	Join network with	Join network with Mode.
AT+JOIN=?	Mode	<mode> [0: ABP, 1: OTAA]</mode>
		Ex) AT+JOIN=1 (CR)

SJIT CONFIDENTIAL 21 / 32

Command	Name	Description
AT+SEND=port:ack:data	Send binary data	Send binary data with the application
		<port> [1 ~ 199]</port>
		<ack> [0: unconfirmed, 1: confirmed]</ack>
		Ex) AT+SEND=1:1:123456789012345678901234567890
		123456789012345678901234567890123456 (CR)
AT+ADR=mode	Adaptive	Set or Get the Adaptive DataRate setting.
AT+ADR=?	DataRate	<mode>: [0: Off, 1: On]</mode>
		Ex) AT+ADR=0 (CR)
AT+DR=datarate	Tx DataRate	Set or Get the Tx DataRate.
AT+DR=?		Activation when ADR off Only
		<datarate>: [0 ~ 7]</datarate>
		[AU915 : 2 ~ 7 / US915 : 0 ~ 4]
		0: LoRa - SF12 / 125 kHz, bit rate – 250 bit/s
		1: LoRa - SF11 / 125 kHz, bit rate - 440 bit/s
		2: LoRa - SF10 / 125 kHz, bit rate - 980 bit/s
		3: LoRa - SF9 / 125 kHz, bit rate - 1760 bit/s
		4: LoRa - SF8 / 125 kHz, bit rate - 3125 bit/s
		5: LoRa - SF7 / 125 kHz, bit rate - 5470 bit/s
		6: LoRa - SF7 / 250 kHz, bit rate - 11000 bit/s
		7: FSK - 50 kbps, bit rate - 5000 bit/s
		Ex) AT+DR=0 (CR)
AT+BAND=band	Active Region	Set or Get the Active Region Band ID. [0 ~ 9]
AT+BAND=?	Band ID	<pre><band>: [0,1: AS923-1(default band), 0,4: AS923-1_JP,</band></pre>
		1: AU915, 2: CN470, 3: CN779, 4: EU433, 5: EU868,
		6: KR920(not certified), 7: IN865, 8: US915, 9: RU864]
		Note: Bands are not saved when rebooting
		"AT+BAND=0" = "AT+BAND=0,1"
		Ex) AT+BAND=0 (CR)
		(0,1 & 0,4 band are supported after FW V1.0.3)
AT+TXP=power	Transmit Power	Set or Get the Transmit Power.
AT+TXP=?		(valid range according to region)
		<pre><power>: [0 ~ 15]</power></pre>
		AS923: [0~7] AU915: [0~14] CN779: [0~5]
		EU868: [0~7] KR920: [0~7] IN865: [0~10]

SJIT CONFIDENTIAL 22 / 32

		US915: [0~1	4] RU864: [0~7]	
		Ex) AT+TXP=	0 (CR) (in KR920	0: MAX ERP)
		TXPower	Configuration (EIRP)	
		0	Max EIRP	
		1	Max EIRP – 2dB	
		2	Max EIRP – 4dB	
		3	Max EIRP – 6dB	4
		5	Max EIRP – 8dB Max EIRP – 10dB	-
		6	Max EIRP – 10dB	-
		7	Max EIRP – 14dB	1
		814	RFU	
		15	Defined in [TS001]Error!]
			Bookmark not defined.	
		Table 7	71: KR920-923 TXPower	
AT+DEVNONCE=count	Devnonce count	Set or Get De	evnonce count	
AT+DEVNONCE=?				
		Ex) AT+DEVN	IONCE=0	
		Ex) AT+DEVN	IONCE=?	

SJIT CONFIDENTIAL 23 / 32

Name	Description
Device Class	Set or Get the Device Class.
	<class>: [A, B, C]</class>
	Ex) AT+CLASS=? (CR)
ETSI DutyCycle	Set or Get the ETSI DutyCycle.
	<mode>: [0: disable, 1: enable] - Only for testing</mode>
	Ex) AT+DCS=0 (CR) (for KR920, AS923, AU915,)
Rx2 window Fred	Set or Get the Rx2 window.
TOTAL WINDOW TTCG	After setting DR of Rx2, also RxC will be set
	<freq>: Frequency (in Hz)</freq>
	meq. Trequency (iii riz)
	Ex) AT+RX2FQ=869525000 (CR)
Rx2 window	Set or Get the Rx2 window DataRate.
DataRate	After setting DR of Rx2, also RxC will be set
	<datarate>: [0 ~ 13]</datarate>
	AS923: [0~7] AU915: [2~13] CN779: [0~7]
	EU868: [0~7] KR920: [0~5] IN865: [0~5]
	US915: [8~13] RU864: [0~7]
	Ex) AT+RX2DR=0 (CR)
Delay between	Set or Get the delay between the end of the Tx and the Rx
end of Tx and Rx	Window 1.
Window 1	<delay>: delay (in ms)</delay>
	Ex) AT+RX1DL=1000 (CR)
_	Set or Get the delay between the end of the Tx and the Rx
	Window 2 in ms.
Window 2	<delay>: delay (in ms)</delay>
	Ev) AT - DV2DI = 2000 (CD)
Join Accont Dolar	Ex) AT+RX2DL=2000 (CR) Set or Get the Join Accept Delay between the end of the
	Tx and the Join Rx Window 1 in ms.
	<pre></pre>
	Sucidy 2. delay (iii iiis)
······································	Ex) AT+JN1DL=5000 (CR)
	ETSI DutyCycle Rx2 window Freq Rx2 window DataRate Delay between end of Tx and Rx

SJIT CONFIDENTIAL 24 / 32

Command	Name	Description
AT+JN2DL=delay	Join Accept Delay	Set or Get the Join Accept Delay between the end of the
AT+JN2DL=?	between end of	Tx and the Join Rx Window 2 in ms.
	Tx and Join Rx	<delay>: delay (in ms)</delay>
	Window 2	
		Ex) AT+JN2DL=6000 (CR)
AT+NWKTYPE=type	Network Type	Set or Get the Network Type setting Type
AT+NWKTYPE=?		<type>: [0: Public, 1: Private]</type>
		Ex) AT+NWKTYPE=1 (CR)
AT+PGSLOT=period	Ping Slot	Set or Get the unicast ping slot Period
		<period>: [0:1s ~ 7:128s] (=2^Period)</period>
		Ex) AT+PGSLOT=3 (CR)
AT+TTH=fstart:fstop:fdelt	Test Tx Hopping	Starts RF Tx hopping test from Fstart to Fstop in Hz or
a:packetnb		MHz, Fdelta in Hz. Class B test.
		<fstart>: frequency (in Hz or MHz)</fstart>
		<fstop>: frequency (in Hz or MHz)</fstop>
		<fdelta>: frequency (in Hz)</fdelta>
		Ex) AT+TTH=867:869:500000:10 (CR)
AT+TCONF=frequency:po	Configure RF	Configure RF test.
wer:bandwidth:sf:codingr		3
ate:lna:paboost:modulati		<frequency>: [ex: 868300000]Hz</frequency>
on:payloadlen:fskdeviatio		<power>: [-9 ~ 22]dBm Max 15dBm at Low Power</power>
n:lowdropt:btproduct		<bandwidth>: Lora [4: 125, 5: 250, 6: 500]kHz,</bandwidth>
		or FSK: [4800Hz : 467000]Hz
		<sf>: [7 ~ 12] or <fsk>: [600 ~ 300000]</fsk></sf>
		<codingrate>: [4/5, 4/6, 4/7, 4/8]</codingrate>
		<lna>: [0: Off, 1: On]</lna>
		<pa boost="">: [0: Off, 1: On]</pa>
		<modulation>: [0: FSK, 1: LoRa, 2: BPSK]</modulation>
		<payloadlen>: [1 ~ 256]</payloadlen>
		<fskdev>: FSK Only [600 ~ 20000]</fskdev>
		<lowdropt>: Lora Only [0: off, 1: On, 2: Auto]</lowdropt>
		<btproduct>: [0: no Gaussian Filter Applied, 1: BT=0,3, 2:</btproduct>
		BT=0,5, 3: BT=0,7, 4: BT=1]
		Ex) AT+TCONF=868300000:15:4:7:4/5:0:0:1:16:0:2:0 (CR)

SJIT CONFIDENTIAL 25 / 32

Command	Name	Description
AT+TTONE	RF Tx Tone test	Starts RF Tx Tone test (CW Test Mode)
		Ex)AT+TTONE (CR)
AT+TRSSI	RF Rx RSSI test	Starts RF Rx RSSI test.
		Ex) AT+TRSSI (CR)
AT+TTX=packetnb	Test RF Tx	Starts RF Tx test: Nb of packets sent.
The transfer packets		Starte it. St. testi it.
		Ex) AT+TTX=16 (CR)
AT+TRX=packetnb	Test RF Rx	Starts RF Rx test: Nb of packets expected.
		Stop by input 'X'
		Ex) AT+TRX=16 (CR)
AT+MTX	Test RF Modulation wave	Starts RF Tx test: Modulation Continuous Wave
	Modulation wave	Ex) AT+MTX (CR)
AT+MRX	Test RF	Starts RF Rx test: Continuous receive
	Continuous Rx	Stop by input 'X'
		Ex) AT+MRX (CR)
AT+TOFF	Stop RF test	Stops on-going RF test.
		E VAT. TOFF (CD)
AT+CHMASK=mask	Channel Mask	Ex) AT+TOFF (CR) Set Pegion Channel Mask
AT+CHMASK=?	Charmer Mask	Set Region Channel Mask
ALL CHIVITAGIC -		Configurable mask
		Dynamic Channel(AS923, EU868, etc) – Channel mask[0]
		Fixed Channel(US915, AU915) – Channel mask[0:5]
		Ex) Dynamic channel:
		AT+CHMASK=0x7F (CR)
		Ex) Fixed channel: AT+CHMASK=0x7F,0000,0000,001F,0000,0000 (CR)
AT+BAUDRATE=baudrate	Set Baudrate	Set Baudrate
AT+BAUDRATE=?		Set baudrate to '9600' before setting 'Sigfox Mode'
		<baudrate> [9600, 115200]</baudrate>
		EX) AT+BAUDRATE=9600 (CR)

SJIT CONFIDENTIAL 26 / 32

Command	Name	Description
AT+PCONF=frequency:po	P2P Configure	Set or Get configure P2P.
wer:bandwidth:sf:codingr		
ate:lna:paboost:modulati		<frequency>: [ex: 868300000]Hz</frequency>
on:payloadlen:fskdeviatio		<power>: [-9 ~ 22]dBm Max 15dBm at Low Power</power>
n:lowdropt:btproduct		<bandwidth>: Lora [4: 125, 5: 250, 6: 500]kHz,</bandwidth>
		or FSK: [4800Hz : 467000]Hz
		<sf>: [7 ~ 12] or <fsk>: [600 ~ 300000]</fsk></sf>
		<codingrate>: [4/5, 4/6, 4/7, 4/8]</codingrate>
		<lna>: [0: Off, 1: On]</lna>
		<pa boost="">: [0: Off, 1: On]</pa>
		<modulation>: [0: FSK, 1: LoRa, 2: BPSK]</modulation>
		<payloadlen>: [1 ~ 256]</payloadlen>
		<fskdev>: FSK Only [600 ~ 20000]</fskdev>
		<lowdropt>: Lora Only [0: off, 1: On, 2: Auto]</lowdropt>
		<btproduct>: [0: no Gaussian Filter Applied, 1: BT=0,3, 2:</btproduct>
		BT=0,5, 3: BT=0,7, 4: BT=1]
		Ex) AT+PCONF=868300000:15:4:7:4/5:0:0:1:16:0:2:0 (CR)
AT+PSEND=data	P2P Data Send	Send binary data with P2P.
		Ex) AT+PSEND=00112233445566778899AABBCCDDEE (CR)
AT+PRECV	P2P Data Receive	Starts P2P data receive.
		Stop by input 'X'
		Ex) AT+PRECV (CR)
AT+UNCNFRETX=?	Unconfirmed	Set or Get Number for the Unconfirmed Uplink
AT+UNCNFRETX= retxnb	Uplink	Retransmission <retxnb>: [1 ~ 15]</retxnb>
	Retransmission	
		Ex) AT+UNCNFRETX=1 (CR)
AT+CNFRETX=?	Confirmed	Set or Get Number for the Confirmed Uplink Retransmission
AT+CNFRETX= retxnb	Uplink	<retxnb>: [1 ~ 15]</retxnb>
	Retransmission	
		Ex) AT+CNFRETX=1 (CR)

SJIT CONFIDENTIAL 27 / 32

4.2 Sigfox Command

Command	Name	Description
AT?	Help on all <cmd></cmd>	Help on All Commands
		Ex) AT? (CR)
ATZ	Reset	Trig a MCU reset.
		E) ATZ (CD)
ATE=mode	Echo mode	Ex) ATZ (CR) Not used except to set echo mode.
AIL-Mode	Leno mode	<pre><mode>: [0: echo ON, 1: echo OFF]</mode></pre>
		Tillode 2. [0. ecilo ON, 1. ecilo OFF]
		Ex) ATE=1 (CR)
		ATE=? (CR) Get echo mode
AT+BAT=?	Battery level	Get the battery level (in mV).
		Ex) AT+BAT=? (CR)
AT+VL=level	Verbose level	Set or Get the verbose level.
AT+VL=?		<level>: [0: off, 1: Low, 2: Meddle, 3: High]</level>
		F.2 AT. 1/4 2 (CD)
		Ex) AT+VL=3 (CR) AT+VL=? (CR) Get level
AT+MODE=mode	Mode Change	LoRa & Sigfox Mode Change. After a MCU reset.
AT+MODE=?	Wiede Change	<mode>: [0: Sigfox, 1: LoRa]</mode>
		Ex) AT+MODE=1 (CR)
		AT+MODE=? (CR) Get mode
AT\$SSWVER=?	Software version	Get the Software version.
		Ex) AT\$SSWVER=? (CR)
AT+VER=?	Firmware and library	Get the version of firmware and libraries.
	versions	F.) AT. MED. 2 (CD)
AT\$RFS	Factory settings	Ex) AT+VER=? (CR) Restores the factory setting.
TAT PINES	ractory settings	nestores the factory setting.
		Ex) AT\$RFS (CR)
AT\$ID	Device ID	Get the 32-bit device ID.
		Ex) AT\$ID (CR)

SJIT CONFIDENTIAL 28 / 32

Command	Name	Description
AT\$PAC	Device PAC	Get the 8-byte device PAC.
		Ex) AT\$PAC (CR)
AT\$SB=bit_value{,opt_resp	Bit status	Send a bit to the Sigfox network.
onsewaited}{,opt_txflag}		
		<pre><opt_responsewaited> 0: no response waited (default)</opt_responsewaited></pre>
		<pre><opt_responsewaited> 1: response waited</opt_responsewaited></pre>
		<pre><opt_txflag> 0: one Tx frame sent</opt_txflag></pre>
		<pre><opt_txflag> 1: three Tx frame sent (default)</opt_txflag></pre>
		Ex) AT\$SB=0,1,1 (CR)
		AT\$SB=1 (CR) sends bit 1 with no response waited.
		AT\$SB=0,1 (CR) sends bit 0 with a response waited.
		AT\$SB=0,1,1 (CR) sends bit 0 with a response waited
		and with three Tx frames sent.
AT\$SF=payload{,opt_respo	ASCII payload in	Send a frame to the Sigfox network.
nsewaited}{,opt_txflag}	bytes	<payload>: [12 bytes maximum in ASCII format (24</payload>
		ASCII characters max)]
		<pre><opt_responsewaited>: [0: no response waited (default)]</opt_responsewaited></pre>
		<pre><opt_responsewaited>: [1: response waited]</opt_responsewaited></pre>
		<pre><opt_txflag>: [0: one Tx frame sent]</opt_txflag></pre>
		<pre><opt_txflag>: [1: three Tx frames sent (default)]</opt_txflag></pre>
		Ex) AT\$SF=313245,1,1 (CR)
		AT\$SF=313245 (CR) sends 0x31 0x32 0x45
		payload with no response waited.
		AT\$SF=313245,1 (CR) sends 0x31 0x32 0x45
		payload with a response waited.
		AT\$SF=313245,1,1 (CR) sends 0x31 0x32 0x45
		payload with a response
		waited and with three Tx
		frames sent.

SJIT CONFIDENTIAL 29 / 32

Command	Name	Description
AT\$SH=payload_length,	Hexadecimal	Send a Hex frame to the Sigfox network.
payload{,opt_responsewait	payload in bytes	<pre><payload_length>: [length in bytes]</payload_length></pre>
ed}{,opt_txflag}		<payload>: [12 bytes maximum in hexadecimal</payload>
		format]
		<pre><opt_responsewaited>: [0: no response waited (default)]</opt_responsewaited></pre>
		<pre><opt_responsewaited>: [1: response waited]</opt_responsewaited></pre>
		<pre><opt_txflag>: [0: one Tx frame sent]</opt_txflag></pre>
		<pre><opt_txflag>: [1: three Tx frames sent (default)]</opt_txflag></pre>
		Ex) AT\$SH=1,A,1 (CR)
		AT\$SH=1,A (CR) sends 0x41 payload with no
		response waited.
		AT\$SH=1,A,1 (CR) sends 0x41 payload with a
		response waited.
AT\$CW=freq	Continuous	Start or stop a continuous unmodulated carrier for
	wave(CW)	test. Run CW Test mode.
		<freq>: frequency (in Hz)</freq>
		Ex) AT\$CW=868130000 (CR)
		AT\$CW=0 (CR) Stop a CW
AT\$PN=freq,bitrate	PRBS9 BPBSK test	Run PRBS9 BPBSK Test mode. Send a continuous
	mode	modulated carrier for test.
		<freq>: frequency (in Hz)</freq>
		Ex) AT\$PN=868130000,100 (CR)
		AT\$PN=0 (CR) Stop a BPBSK
AT\$RC=rc	Sigfox RC setting	Commands for changing and setting RC.
		<rc></rc>
		RC1(default band) = 1 RC3A = 3A RC3C = 3C
		Ex) AT\$RC=3C

SJIT CONFIDENTIAL 30 / 32

Command	Name	Description
AT\$TM=rc,mode	Sigfox test mode	Start a Sigfox test mode.
		<rc></rc>
		SFX_RC1 = 1 SFX_RC2 = 2 SFX_RC3C = 3C
		$SFX_RC4 = 4$ $SFX_RC5 = 5$ $SFX_RC6 = 6$
		SFX_RC7 = 7
		<mode></mode>
		SFX_TEST_MODE_TX_BPSK = 0
		SFX_TEST_MODE_TX_PROTOCOL = 1
		SFX_TEST_MODE_RX_PROTOCOL = 2
		SFX_TEST_MODE_RX_GFSK = 3
		SFX_TEST_MODE_RX_SENSI = 4
		SFX_TEST_MODE_TX_SYNTH = 5
		SFX_TEST_MODE_TX_FREQ_DISTRIBUTION = 6
		SFX_TEST_MODE_TX_BIT = 11
		SFX_TEST_MODE_PUBLIC_KEY = 12
		SFX_TEST_MODE_NVM = 13
		Ex) AT\$TM=2,0 (CR)
AT\$RSSICAL=value	RSSI value in dB	Set or Get the RSSI calibration value in dB.
AT\$RSSICAL=?		<value>: calibration value (in dB)</value>
		Ex) AT\$RSSICAL=0 (CR)
		AT\$RSSICAL=? (CR)
AT\$RL=freq	Listening for a data	Starts listening for a local loop.
	packet	<freq>: frequency (in Hz)</freq>
		Stop by input 'X'
		Ex) AT\$RL=869525000 (CR)
AT\$SL=freq,datarate,count	Send local loop	Send TX packet up to count number for local test.
		<freq>: frequency (in Hz)</freq>
		<datarate>: data rate (in bps)</datarate>
		<count>: send packets counter</count>
		Ex) AT\$SL=869525000,600,10 (CR)

SJIT CONFIDENTIAL 31 / 32

Command	Name	Description
AT\$RP2P	P2P RX	Starts listening for the P2P.
		Stop by input 'X'
		Ex) AT\$RP2P (CR)
AT\$SP2P=payload	P2P TX	Send TX packet for the P2P.
		<pre><payload>: [12 bytes maximum in ASCII format (24</payload></pre>
		ASCII characters max)]
476200		Ex) AT\$SP2P=112233445566778899AABBCC (CR)
ATS300	Out-of-band	Send one keep-alive out-of-band message.
	message	F.) ATC200 (CD)
ATS302=power	Radio output power	Ex) ATS300 (CR) Set or Get the radio output power.
ATS302=power ATS302=?	Radio output power	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
A13302-:		<pre><pre><pre><pre></pre></pre></pre></pre>
		Ex) ATS302=15 (CR)
		ATS302=? (CR) Get power
ATS400=<8_digit_word0>	Enabled channels for	Configure the enabled channels for FCC.
<8_digit_word1><8_digit_	FCC	J
word2>,timer_enable		Ex) ATS400=000000004000000000000000,0 (CR)
ATS410=key	Encryption key	Set or Get the configuration of the device encryption
ATS410=?		key.
		<key>: [0: Use Private key, 1: Use Public key]</key>
		F.) ATC 410 1 (CD)
		Ex) ATS410=1 (CR) ATS410=? (CR) Get the encryption key
ATS411=mode	Payload encryption	ATS410=? (CR) Get the encryption key Set or Get the device payload encryption mode.
ATS411=:	ayload elicryption	<pre><mode>: [0:Payload Encryption OFF,</mode></pre>
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1:Payload Encryption ON}
		37.033 2.16. 781011 0117
		Ex) ATS411=1 (CR)
		ATS411=? (CR) Get payload encryption

SJIT CONFIDENTIAL 32 / 32