Lecture 2: Overfitting. Regularization

- Overfitting
- Cross-validation
- L2 and L1 regularization for linear estimators
- Bias-variance trade-off

Recall: Overfitting

- A general, <u>HUGELY IMPORTANT</u> problem for all machine learning algorithms
- We can find a hypothesis that predicts perfectly the training data but does not generalize well to new data
- E.g., a lookup table!

Another overfitting example

- ullet The higher the degree of the polynomial M, the more degrees of freedom, and the more capacity to "overfit" the training data
- Typical overfitting means that error on the training data is very low, but error on new instances is high

Overfitting more formally

- Assume that the data is drawn from some fixed, unknown probability distribution
- Every hypothesis has a "true" error $J^*(h)$, which is the expected error when data is drawn from the distribution.
- ullet Because we do not have all the data, we measure the error on the training set $J_D(h)$
- ullet Suppose we compare hypotheses h_1 and h_2 on the training set, and $J_D(h_1) < J_D(h_2)$
- If h_2 is "truly" better, i.e. $J^*(h_2) < J^*(h_1)$, our algorithm is overfitting.
- We need theoretical and empirical methods to guard against it!

Typical overfitting plot

- The training error decreases with the degree of the polynomial M, i.e. the complexity of the hypothesis
- The testing error, measured on independent data, decreases at first, then starts increasing
- Cross-validation helps us:
 - Find a good hypothesis class (M in our case), using a *validation set* of data
 - Report unbiased results, using a test set, untouched during either parameter training or validation

Cross-validation

- A general procedure for estimating the true error of a predictor
- The available data is split into two subsets:
 - A training and validation set used only to find the right predictor
 - A test set used to report the prediction error of the algorithm
- These sets must be disjoint!
- The process is repeated several times, and the results are averaged to provide error estimates.

Model selection: Polynomial regression

Model selection with leave-one-out cross-validation

- 1. For each order of polynomial, d:
 - (a) Repeat the following procedure m times:
 - i. Leave out *ith instance* from the training set, to estimate the true prediction error; we will put it in a *validation set*
 - ii. Use all the other instances to find best parameter vector, $\mathbf{w}_{d,i}$
 - iii. Measure the error in predicting the label on the instance left out, for the $\mathbf{w}_{d,i}$ parameter vector; call this $J_{d,i}$
 - iv. This is a (mostly) unbiased estimate of the true prediction error
 - (b) Compute the average of the estimated errors: $J_d = \frac{1}{m} \sum_{i=1}^m J_{d,i}$
- 2. Choose the d with lowest average estimated error: $d^* = \arg\min_d J(d)$

Estimating true error for d=1

 $D = \{(0.86, 2.49), (0.09, 0.83), (-0.85, -0.25), (0.87, 3.10), (-0.44, 0.87), (-0.43, 0.02), (-1.10, -0.12), (0.40, 1.81), (-0.96, -0.83), (0.17, 0.43)\}.$

Iter	D_{train}	D_{valid}	Error _{train}	Error _{valid} $(J_{1,i})$
1	$D - \{(0.86, 2.49)\}$	(0.86, 2.49)	0.4928	0.0044
2	$D - \{(0.08, 0.83)\}$	(0.09, 0.83)	0.1995	0.1869
3	$D - \{(-0.85, -0.25)\}$	(-0.85, -0.25)	0.3461	0.0053
4	$D - \{(0.87, 3.10)\}$	(0.87, 3.10)	0.3887	0.8681
5	$D - \{(-0.44, 0.87)\}$	(-0.44, 0.87)	0.2128	0.3439
6	$D - \{(-0.43, 0.02)\}$	(-0.43, 0.02)	0.1996	0.1567
7	$D - \{(-1.10, -0.12)\}$	(-1.10, -0.12)	0.5707	0.7205
8	$D - \{(0.40, 1.81)\}$	(0.40, 1.81)	0.2661	0.0203
9	$D - \{(-0.96, -0.83)\}$	(-0.96, -0.83)	0.3604	0.2033
10	$D - \{(0.17, 0.43)\}$	(0.17, 0.43)	0.2138	1.0490
		mean:	0.2188	0.3558

Leave-one-out cross-validation results

d	Error _{train}	$Error_{valid}\ (J_d)$
1	0.2188	0.3558
2	0.1504	0.3095
3	0.1384	0.4764
4	0.1259	1.1770
5	0.0742	1.2828
6	0.0598	1.3896
7	0.0458	38.819
8	0.0000	6097.5
9	0.0000	6097.5

- ullet Typical overfitting behavior: as d increases, the training error decreases, but the validation error decreases, then starts increasing again
- Optimal choice: d=2. Overfitting for d>2

Estimating both hypothesis class and true error

- Suppose we want to compare polynomial regression with some other algorithm
- We chose the hypothesis class (i.e. the degree of the polynomial, d^*) based on the estimates J_d
- Hence J_{d^*} is not unbiased our procedure was aimed at optimizing it
- If we want to have both a hypothesis class and an unbiased error estimate, we need to tweak the leave-one-out procedure a bit

Cross-validation with validation and testing sets

- 1. For each example j:
 - (a) Create a *test set* consisting just of the jth example, $D_j = \{(\mathbf{x}_j, y_j)\}$ and a *training and validation set* $\bar{D}_j = D \{(\mathbf{x}_j, y_j)\}$
 - (b) Use the leave-one-out procedure from above on D_j to find a hypothesis, h_j^*
 - Note that this will split the data internally, in order to both train and validate!
 - Typically, only one such split is used, rather than all possible splits
 - (c) Evaluate the error of h_j^* on D_j (call it $J(h_j^*)$)
- 2. Report the average of the $J(h_j^{\ast})$, as a measure of performance of $\it the$ $\it whole algorithm$

Summary of leave-one-out cross-validation

- A very easy to implement algorithm
- Provides a great estimate of the true error of a predictor
- Computational cost scales with the number of instances (examples), so it can be prohibitive, especially if finding the best predictor is expensive
- Alternatives:
 - Leave-k-out generalizes LOO, computationally very expensive.
 - k-fold cross-validation: split the data set into k parts, then proceed as above.

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to *penalize hypothesis complexity*:

$$J(\mathbf{w}) = J_D(\mathbf{w}) + \lambda J_{pen}(\mathbf{w})$$

This is called *regularization* in machine learning and *shrinkage* in statistics

ullet λ is called *regularization coefficient* and controls how much we value fitting the data well, vs. a simple hypothesis

L_2 regularization for linear models

• L_2 regularization (or weight decay in neural networks): add a squared penalty on the weights:

$$J_{\lambda}(\mathbf{w}) = \frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^{\top}(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}$$

- Why?
 - A simple hypothesis should not be too sensitive to small perturbation of the input
 - Math works out nicely
 - Resolve the issue of $\Phi^{\top}\Phi$ not being invertible in linear regression, e.g. large n small m (original motivation)...

L_2 regularization: closed from solution

$$J_{\lambda}(\mathbf{w}) = \frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^{\top}(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}$$

• By re-grouping terms, we get:

$$J_{\lambda}(\mathbf{w}) = \frac{1}{2} \left(\mathbf{w}^{\top} (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} - \mathbf{w}^{\top} \mathbf{\Phi}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{\Phi} \mathbf{w} + \mathbf{y}^{\top} \mathbf{y} \right)$$

• Optimal solution (obtained by solving $\nabla J_{\lambda}(\mathbf{w}) = 0$)

$$\mathbf{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$

(observe that $\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I}$ is invertible)

Side note: data centering

- For linear regression, we incorporated the bias term in $\mathbf{w} \in \mathbb{R}^{n+1}$ by adding a 1 to each input vector $\mathbf{x} \in \mathbb{R}^n$. Why cannot we do the same for regression with L_2 regularization?
- Instead we center the data, i.e. remove the means from inputs and outputs:
 - Let $\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$ and $\bar{y} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$.
 - Consider the new data set $\{(\mathbf{x}_i \bar{\mathbf{x}}, y_i \bar{y})\}_{i=1}^m$.
 - Solving the regularized regression problem on this new dataset is equivalent to solving the original problem
 - You can check that the bias term of the solution on this new data set is 0...
 - \rightarrow exercise

What L_2 regularization does

$$\arg\min_{\mathbf{w}} \frac{1}{2} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{\Phi} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$

- ullet If $\lambda=0$, the solution is the same as in regular least-squares linear regression
- If $\lambda \to \infty$, the solution $\mathbf{w} \to 0$
- ullet Positive λ will cause the magnitude of the weights to be smaller than in the usual linear solution
- This is also called *ridge regression*, and it is a special case of Tikhonov regularization (more on that later)
- A different view of regularization: we want to optimize the error while keeping the L_2 norm of the weights, $\mathbf{w}^{\top}\mathbf{w}$, bounded.

Detour: Constrained optimization

Suppose we want to find

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 such that $g(\mathbf{x}) = 0$

Detour: Lagrange multipliers

 ∇g is orthogonal to the constraint surface (red curve)

- At the optimum:
 - ∇f must be orthogonal to the surface (otherwise we could move along the curve to get a higher value of f)
 - $\Rightarrow \nabla f$ and ∇g have to be parallel
 - \Rightarrow There must exist some $\lambda \in \mathbb{R}$ such that $\nabla f + \lambda \nabla g = 0$
- Lagrangian function: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$ (λ is called Lagrange multiplier)
- ullet We obtain the solution to our optimization problem by setting both $abla_{\mathbf{x}}L=0$ and $rac{\partial L}{\partial \lambda}=0$

Detour: Inequality constraints

• Suppose we want to find

$$\max_{\mathbf{x}} f(\mathbf{x})$$
 such that $g(\mathbf{x}) \geq 0$

- In the interior, $g(\mathbf{x}) > 0$: simply find $\nabla f(\mathbf{x}) = 0$ (in which case $\lambda = 0$ in the Lagrangian)
- ullet On the boundary, $g(\mathbf{x})=0$: same situation as before, but the sign matters this time
- ullet For maximization, we want abla f pointing in the direction opposite to abla g

Detour: KKT conditions

Consider again the Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

ullet Based on the previous observations, we minimize L wrt ${f x}$ subject to the following constraints:

$$\lambda \geq 0$$

$$g(\mathbf{x}) \geq 0$$

$$\lambda g(\mathbf{x}) = 0$$

- These are called *Karush-Kuhn-Tucker (KKT) conditions*
- ullet For minimization, simply flip the sign of λ in the Lagrangian:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$$

L_2 Regularization for linear models revisited

 Optimization problem: minimize error while keeping norm of the weights bounded

$$\min_{\mathbf{w}} J(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^{\top} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$
 such that $\mathbf{w}^{\top}\mathbf{w} \leq \eta$

• The Lagrangian is:

$$L(\mathbf{w}, \nu) = J(\mathbf{w}) - \nu(\eta - \mathbf{w}^{\mathsf{T}}\mathbf{w})$$

- Fix some λ and let \mathbf{w}_{λ} be the solution of the penalized problem with parameter λ .
- You can check that if $\eta = \|\mathbf{w}_{\lambda}\|^2$ and $\nu = \lambda$, then \mathbf{w}_{λ} satisfy the KKT conditions, hence the two problems have the same solution.

Visualizing regularization (2 parameters)

$$\mathbf{w}^* = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi} \mathbf{y}$$

Pros and cons of L_2 regularization

- ullet If λ is at a "good" value, regularization helps to avoid overfitting
- ullet Choosing λ may be hard: cross-validation is often used
- If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0.

L_1 Regularization for linear models

• Instead of requiring the L_2 norm of the weight vector to be bounded, make the requirement on the L_1 norm:

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^{ op} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$
 such that $\sum_{i=1}^n |w_i| \leq \eta$

• This yields an algorithm called Lasso (Tibshirani, 1996)

Solving L_1 regularization

- The optimization problem is a quadratic program
- There is one constraint for each possible sign of the weights (2^n) constraints for n weights)
- For example, with two weights: $\min_{w_1,w_2} \qquad \sum_{j=1}^m (y_j-w_1x_1-w_2x_2)^2$ such that $w_1+w_2 \leq \eta$ $w_1-w_2 \leq \eta$ $-w_1+w_2 \leq \eta$ $-w_1-w_2 \leq \eta$
- Solving this program directly can be done for problems with a small number of inputs

Visualizing L_1 regularization

- ullet If λ is big enough, the circle is very likely to intersect the diamond at one of the corners
- ullet This makes L_1 regularization much more likely to make some weights exactly 0

Pros and cons of L_1 regularization

- If there are irrelevant input features, Lasso is likely to make their weights 0, while L_2 is likely to just make all weights small
- Lasso is biased towards providing sparse solutions in general
- ullet Lasso optimization is computationally more expensive than L_2
- More efficient solution methods have to be used for large numbers of inputs (e.g. least-angle regression, 2003).
- ullet L_1 methods of various types are very popular
- One can combine L_1 and L_2 regularization (elastic-net)

Example of L1 vs L2 effect

- ullet Note the sparsity in the coefficients induces by L_1
- ullet Lasso is an efficient way of performing the L_1 optimization

The anatomy of the error of an estimator

- Suppose we have a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$ where $y = f(\mathbf{x}) + \epsilon$ and ϵ is Gaussian noise with zero mean and standard deviation σ^2
- We fit a linear hypothesis $h(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, such as to minimize sum-squared error over the training data:

$$\sum_{i=1}^{m} (y_i - h(\mathbf{x}_i))^2$$

- ullet Because of the hypothesis class that we chose (hypotheses linear in the parameters) for some target functions f we will have a *systematic* prediction error
- Even if f were truly from the hypothesis class we picked, depending on the data set we have, the parameters w that we find may be different; this variability due to the specific data set on hand is a different source of error

Bias-variance analysis

- Given a new data point x, what is the *expected prediction error*?
- Assume that the data points are drawn independently and identically distributed (i.i.d.) from a unique underlying probability distribution $P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$
- ullet The goal of the analysis is to compute, for an arbitrary given point x,

$$E_P\left[(y-h(\mathbf{x}))^2|\mathbf{x}\right]$$

where y is the value of ${\bf x}$ in a data set, and the expectation is over all training sets of a given size, drawn according to P

• For a given hypothesis class, we can also compute the *true error*, which is the expected error over the input distribution:

$$\sum_{\mathbf{x}} E_P \left[(y - h(\mathbf{x}))^2 | \mathbf{x} \right] P(\mathbf{x})$$

(if x continuous, sum becomes integral with appropriate conditions).

We will decompose this expectation into three components

Recall: Statistics 101

- Let X be a random variable with possible values $x_i, i = 1 \dots n$ and with probability distribution P(X)
- ullet The *expected value* or *mean* of X is:

$$E[X] = \sum_{i=1}^{n} x_i P(x_i)$$

- ullet If X is continuous, roughly speaking, the sum is replaced by an integral, and the distribution by a density function
- The *variance* of X is:

$$Var[X] = E[(X - E(X))^{2}]$$

= $E[X^{2}] - (E[X])^{2}$

The variance lemma

$$Var[X] = E[(X - E[X])^{2}]$$

$$= \sum_{i=1}^{n} (x_{i} - E[X])^{2} P(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}E[X] + (E[X])^{2}) P(x_{i})$$

$$= \sum_{i=1}^{n} x_{i}^{2} P(x_{i}) - 2E[X] \sum_{i=1}^{n} x_{i} P(x_{i}) + (E[X])^{2} \sum_{i=1}^{n} P(x_{i})$$

$$= E[X^{2}] - 2E[X]E[X] + (E[X])^{2} \cdot 1$$

$$= E[X^{2}] - (E[X])^{2}$$

We will use the form:

$$E[X^2] = (E[X])^2 + Var[X]$$

Bias-variance decomposition

• Simple algebra:

$$E_P [(y - h(\mathbf{x}))^2 | \mathbf{x}] = E_P [(h(\mathbf{x}))^2 - 2yh(\mathbf{x}) + y^2 | \mathbf{x}]$$

$$= E_P [(h(\mathbf{x}))^2 | \mathbf{x}] + E_P [y^2 | \mathbf{x}] - 2E_P [y | \mathbf{x}] E_P [h(\mathbf{x}) | \mathbf{x}]$$

- Let $\bar{h}(\mathbf{x}) = E_P[h(\mathbf{x})|\mathbf{x}]$ denote the *mean prediction* of the hypothesis at \mathbf{x} , when h is trained with data drawn from P
- For the first term, using the variance lemma, we have:

$$E_P[(h(\mathbf{x}))^2|\mathbf{x}] = E_P[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2|\mathbf{x}] + (\bar{h}(\mathbf{x}))^2$$

- Note that $E_P[y|\mathbf{x}] = E_P[f(\mathbf{x}) + \epsilon | \mathbf{x}] = f(\mathbf{x})$ (because of linearity of expectation and the assumption on $\epsilon \sim \mathcal{N}(0, \sigma)$)
- For the second term, using the variance lemma, we have:

$$E[y^2|\mathbf{x}] = E[(y - f(\mathbf{x}))^2|\mathbf{x}] + (f(\mathbf{x}))^2$$

Bias-variance decomposition (2)

Putting everything together, we have:

$$E_P \left[(y - h(\mathbf{x}))^2 | \mathbf{x} \right] = E_P \left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2 | \mathbf{x} \right] + (\bar{h}(\mathbf{x}))^2 - 2f(\mathbf{x})\bar{h}(\mathbf{x})$$

$$+ E_P \left[(y - f(\mathbf{x}))^2 | \mathbf{x} \right] + (f(\mathbf{x}))^2$$

$$= E_P \left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2 | \mathbf{x} \right] + (f(\mathbf{x}) - \bar{h}(\mathbf{x}))^2 + E \left[(y - f(\mathbf{x}))^2 | \mathbf{x} \right]$$

- The first term, $E_P[(h(\mathbf{x}) \bar{h}(\mathbf{x}))^2 | \mathbf{x}]$, is the *variance* of the hypothesis h at \mathbf{x} , when trained with finite data sets sampled randomly from P
- The second term, $(f(\mathbf{x}) \bar{h}(\mathbf{x}))^2$, is the *squared bias* (or systematic error) which is associated with the class of hypotheses we are considering
- The last term, $E[(y-f(\mathbf{x}))^2|\mathbf{x}]$ is the *noise*, which is due to the problem at hand, and cannot be avoided

Error decomposition

- The bias-variance sum approximates well the test error over a set of 1000 points
- x-axis measures the hypothesis complexity (decreasing left-to-right)
- Simple hypotheses usually have high bias (bias will be high at many points, so it will likely be high for many possible input distributions)
- Complex hypotheses have high variance: the hypothesis is very dependent on the data set on which it was trained.

Bias-variance trade-off

image credit: Scott Fortman-roe (http://scott.fortmann-roe.com/docs/BiasVariance.html)

Bias-variance trade-off

- Typically, bias comes from not having good hypotheses in the considered class
- Variance results from the hypothesis class containing "too many" hypotheses
- MLE estimation is typically unbiased, but has high variance
- Bayesian estimation is biased, but typically has lower variance
- Hence, we are faced with a *trade-off*: choose a more expressive class of hypotheses, which will generate higher variance, or a less expressive class, which will generate higher bias
- Making the trade-off has to depend on the amount of data available to fit the parameters (data usually mitigates the variance problem)

More on overfitting

- Overfitting depends on the amount of data, relative to the complexity of the hypothesis
- With more data, we can explore more complex hypotheses spaces, and still find a good solution

