

IE0527 – Ingeniería de Comunicaciones II-2018

Taller de simulación: Señales y sistemas Dominio del tiempo

Descripción

Este taller busca desarrollar destrezas de simulación de señales y sistemas en el domino del tiempo (discreto) y ejemplificar algunos conceptos relacionados. Así, el taller consiste en utilizar herramientas de software para generar señales, calcular su potencia y energía, y estudiar su interacción con sistemas (lineales).

Señales de potencia

Considere la señal $x(t) = A_1 \cdot \cos(2\pi \cdot f_1 \cdot t) + A_2 \cdot \sin(2\pi \cdot f_2 \cdot t) + A_3 \cdot \cos(2\pi \cdot f_3 \cdot t)$.

Trabajo previo

1. Elija valores para A_i y f_i . Utilice una frecuencia base f_b como divisor común para f_1 , f_2 y f_3 , es decir, $f_i = k_i \cdot f_b$, con $k_i \in \mathbb{N}$.

COMENTARIO: Para obtener resultados agradables, utilice valores de frecuencias alrededor del centro geométrico del espectro audible y valores de amplitud menores que 1.

- 2. Escriba la expresión para x(t) utilizando los valores escogidos para A_i y f_i .
- 3. Grafique x(t) (en función del tiempo).
- 4. Calcule la potencia promedio de x(t), P_x .
- 5. Calcule la potencia promedio de x(t) en el intervalo $[0, T_b]$, con $T_b = \frac{1}{f_b}$, P_{x,T_b} .

RECUERDO #TBT

La potencia promedio de una señal x(t) se define como:

$$P_x = \lim_{T \to \infty} \frac{1}{T} \cdot \int_{\langle T \rangle} |x(t)|^2 dt$$

$$P_{x,T} = \frac{1}{T} \cdot \int_0^T |x(t)|^2 dt$$

- 6. Calcule la energía total de x(t), E_x .
- 7. Calcule la energía de x(t) en el intervalo $[0,T_{\rm b}],\,E_{x,T_{\rm b}}$.

RECUERDO #TBT

La energía de una señal x(t) se define como:

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$E_{x,T} = \int_0^T |x(t)|^2 dt$$

8. Elija una frecuencia de muestreo $F_{\rm S}$ y una longitud de vector N apropiadas.

COMENTARIO: Para obtener resultados agradables, se recomienda que N sea una potencia de 2 y $F_{\rm S}$ esté relacionada con $f_{\rm b}$ de la forma $F_{\rm S}=k_{\rm b}\cdot f_{\rm b}$ con $k_{\rm b}>4\cdot k_{i,{\rm max}}.$

Trabajo de simulación

- 1. Defina los valores elegidos para los parámetros A1, A2, A3 y f1, f2, f3.
- 2. Defina la frecuencia de muestreo Fs y la longitud de vector N elegidas anteriormente.
- 3. Defina un vector para el tiempo t, t, que comprenda desde 0 hasta $\frac{(N-1)}{F_{\rm S}}$ en intervalos de $\frac{1}{F_{\rm S}}$.
- 4. Genere el vector de muestras de x(t), x.
- 5. Grafique el vector x contra el vector de tiempo t.

- 6. Determine la potencia promedio de x, Px.
- 7. Compare el valor obtenido para Px con el calculado para P_x .

COMENTARIO: Considere que la potencia promedio P_x de una señal en tiempo discreto x(k) para un conjunto de muestras N se puede calcular como:

$$P_x = \frac{1}{N} \sum_{k \in N} |x(k)|^2$$

- 8. Determine la energía total de x, Ex.
- 9. Compare el valor obtenido para Ex con el calculado para E_x .

COMENTARIO: Considere que la energía total E_x de una señal en tiempo discreto x(k) para un conjunto de muestras N se puede calcular como:

$$E_x = \sum_{k \in N} |x(k)|^2$$

- 10. Defina el valor del parámetro $T_{\rm b}$, Tb.
- 11. Determine la cantidad de muestras correspondiente al intervalo de tiempo $[0, T_b]$, NTb.

COMENTARIO: Considere que la cantidad de muestras N_T correspondiente a un intervalo de tiempo [0,T[cuando se utiliza una frecuencia de muestreo F_S se puede calcular como:

$$N_T = T \cdot F_S$$

- 12. Determine la potencia promedio de x en el intervalo $[0, T_{\rm b}[$, PxTb.
- 13. Compare el valor obtenido para PxTb con el calculado para P_{x,T_b} .
- 14. Compare los valores obtenidos para Px y PxTb.
- 15. Determine la energía de x en el intervalo $[0, T_b]$, ExTb.
- 16. Compare el valor obtenido para ExTb con el calculado para E_{x,T_b} .
- 17. Verifique que el valor obtenido para ExTb coincide con PxTb*NTb.

2. Señales de energía

Considere la señal $z(t) = A \cdot \mathrm{rect}\left(\frac{t - \frac{T}{2}}{T}\right)$.

Trabajo previo

1. Elija valores para A y T.

COMENTARIO: Para obtener resultados agradables, se recomienda que $0 < T < \frac{1}{f_{\rm b}}$.

- 2. Escriba la expresión para z(t) utilizando los valores escogidos para A y T.
- 3. Grafique z(t) (en función del tiempo).
- 4. Calcule la energía total de z(t), E_z .
- 5. Calcule la energía de z(t) en el intervalo [0, T], $E_{z,T}$.
- 6. Calcule la potencia promedio de z(t), P_z .
- 7. Calcule la potencia promedio de z(t) en el intervalo [0,T], P_z .

Trabajo de simulación

- 1. Defina los valores elegidos para los parámetros A y T.
- 2. Genere el vector de muestras de z(t), z.
- 3. Grafique el vector z contra el vector de tiempo t.

- 4. Determine la energía total de z, Ez.
- 5. Compare el valor obtenido para E_z con el calculado para E_z .
- 6. Determine la potencia promedio de z, Pz.
- 7. Compare el valor obtenido para Pz con el calculado para P_z .
- 8. Determine la energía de z en el intervalo [0, T], EzT.
- 9. Compare el valor obtenido para EzT con el calculado para $E_{z,T}$.
- 10. Compare los valores obtenidos para Ez y EzT.
- 11. Determine la potencia promedio de z en el intervalo [0, T], PzT.
- 12. Compare el valor obtenido para PzT con el calculado para $P_{z,T}$.
- 13. Verifique que el valor obtenido para EzT coincide con PzT*NT.

3. Señal de audio

Considere una señal de audio w(t) representada mediante un archivo .wav (de unos cuantos segundos).

Trabajo de simulación

1. Obtenga el vector de muestras mono de w(t), w, y su frecuencia de muestreo, Fsw, así como su longitud Nw.

COMENTARIO: En aplicaciones de audio *estéreo* normalmente se utilizan dos canales: izquierdo (L) y derecho (R). Es posible que el vector de muestras \mathbf{w} presente dos series de muestras, correspondientes a estos canales. Por convención, en procesamiento de audio *mono* normalmente se utiliza el promedio de ambos canales: $\frac{L+R}{2}$.

- 2. Defina un vector de tiempo tw adecuado para el vector de muestras w.
- 3. Grafique el vector w en función del vector de tiempo tw.

- 4. Determine la potencia promedio de w, Pw.
- 5. Determine la energía total de w, Ew.
- 6. Comente sobre los valores obtenidos para Pw y Ew.
- 7. **Opcional:** Determine Pwi, la potencia promedio de w en distintos intervalos de tw, elegidos arbitrariamente. Comente sobre los valores obtenidos.

4. Sistemas lineales

Considere un sistema cuya respuesta al impulso está dada por $h(t) = B \cdot e^{\frac{-t}{\tau}} \cdot u(t)$.

Trabajo previo

1. Elija valores para B y τ .

COMENTARIO: Para obtener resultados agradables, se recomienda que $0 < \tau < \frac{1}{f_{i,\max}}$.

- 2. Escriba la expresión para h(t) utilizando los valores escogidos para B y τ .
- 3. Grafique h(t) (en función del tiempo).
- 4. Calcule la convolución de x(t) con h(t), $y_x(t) = x(t) * h(t)$.
- 5. Grafique $y_x(t)$ (en función del tiempo).
- 6. Calcule la convolución de z(t) con h(t), $y_z(t) = z(t) * h(t)$.
- 7. Grafique $y_z(t)$ (en función del tiempo).

Trabajo de simulación

- 1. Defina los valores elegidos para los parámetros B y tau.
- 2. Genere el vector de muestras de h(t), h.
- 3. Grafique el vector h contra el vector de tiempo t.

- 4. Determine el vector de muestras de la convolución de x con h, yx.
- 5. Grafique el vector yx contra el vector de tiempo t. Utilice sólo las primeras N muestras del vector yx.
- 6. Compare la gráfica obtenida para yx con la calculada para $y_x(t)$.
- 7. Compare las gráficas obtenidas para x y yx.

- 8. Determine el vector de muestras de la convolución de z con h, yz.
- 9. Grafique el vector yz contra el vector de tiempo t. Utilice sólo las primeras N muestras del vector yz.
- 10. Compare la gráfica obtenida para yz con la calculada para $y_z(t)$.
- 11. Compare las gráficas obtenidas para z y yz.

- 12. Genere el vector de muestras de h(t) ajustado al vector de tiempo tw, hw.
- 13. Determine el vector de muestras de la convolución de w con hw, yw.
- 14. Grafique el vector yw contra el vector de tiempo tw. Utilice sólo las primeras Nw muestras del vector yw.
- 15. Compare las gráficas obtenidas para w y yw.

- 16. Escriba un nuevo archivo .wav con el vector de muestras yw.
- 17. Escuche el archivo generado y comente sobre el efecto audible de la convolución de w(t) con h(t).