18.100A Assignment 2

Octavio Vega

February 10, 2023

Problem 1

Proof. (By contradiction).

Suppose instead that $xy \leq xz$. Then

$$\implies xy - xz \le 0$$

$$\implies x(y-z) \le 0.$$

Since x < 0 by assumption, it must then be true that $y - z \ge 0$. But then

$$\implies y \ge z \implies \iff$$

which is a contradiction since we assumed that y < z. Thus, xy > xz.

Problem 2

Proof. We want to show that $\exists b \in S$ such that $\forall a \in A, a \leq b$.

Since S is ordered, then for every $x, y \in S$, we have that either x < y, x > y, or x = y. But since $A \subset S$, then $\forall a \in A, a \in A \implies a \in S$.

$$\implies \forall a, b \in A$$
, either $a < b$, $a > b$, or $a = b$.

So A is also ordered. Since A is finite, then $\exists a_0 \in A$ such that $\forall a \in A, a_0 \geq a$.

Thus, A is bounded.