1. Testing Network Dependence

Using Multiscale Graph Correlation

There have been a work on the properties of the neuronal network based on these incomplete or inconsistent wiring diagrams. Varshney et al(2011) proposed "near-complete" wiring diagram of C. elegans. They are interested in local network properties as well as global network properties. We can naturally think that neuronal physical networks and some of the biological function or properties would be correlated each other.

We are given a connected, weighted and also directed network of, which is comprised of 279 nodes and 3225 (directed) edges between them. The given network illustrates the network in the region of pharynx, and the weight imposed on each edge is equivalent to the number of corresponding synapses. For vertex attributes, we have (1) cell class, (2) soma position, (3) neurotransmitters and (4) role.

1 Neuronal Network vs. Soma position

Soma position, among those four attributes, is the only attribute that can be treated as a continuous variable. - \mathbf{A} : Distance matrix based on an adjacency matrix of A for which $A_{ij} = 0$ if and only if there exists an edge from node i to node j; $A_{ij} = 1$ if they are NOT adjacent each other.

- A' Geodesic distance matrix A weighted by the count of synapses, using Dijkstra algorithm.

-
$$\mathbf{B}$$
: $B_{ij} = (1 - \exp(-|X_i - X_j|)) / \max(B_{ij}; i, j = 1, ..., n)$

- B': Euclidean distance matrix of soma position.

- $\tilde{A} = HAH$ for any matrix A

Figure 1.1: Heatmap of dissimilarity measures

2

Figure 1.2: Local p-value matrix A vs B

Figure 1.3: Local p-value depending on choice of neighborhood

Figure 1.4: Heatmap of Geodesic Distance & Euclidean Distance

Figure 1.5: Local p-value matrix A^\prime vs B^\prime

P-values, in overall, shows lower value, or lowest value in the second hypothesis. (Euclidean distance measure is more sensitive than dissimilarity measure)

5

2 Neuronal Network vs. Cell type

- \mathbf{C} : Dissimilarity matrix of Cell type & Cell Direction categories. - Right(96), Left(93), and other 24 categories(90).

Figure 1.6: Heatmap of Dissimilarity measure for all networks

^{*} P-value for all local tests are still calculated..

Instead of using dissimilarity matrix for neuronal network A, Euclidean distance of A' is used to test the following hypothesis :

Figure 1.7: Heatmap of geodesic distance for all networks

7

Figure 1.8: Local p-value matrix A^\prime vs C

3 Neuronal Network vs. Cell Direction

Let's consider two categories in cell - "R"ight and "L"eft. Because 90 out of 279 nodes

do not have information whether they are right or left, We can only consider a induced

subnetwork comprised of 189 nodes. Let A_s be a similarity matrix of sub-network and A_s' be

a geodesic distance matrix of subnetwork. Note that A_s can be defined as a sub-matrix of A,

but how to define A'_s can be flexible - depending on whether you take account 90 nodes in

calculating geodesic distance or not. I assume that a full network of 279 nodes well reflects

all the connectivity, so include other 90 nodes in possible paths. Thus, A'_s can be also defined

as a sub-matrix of A'.

Let D be a distance matrix of cell direction - Right or Left.

Goal: Test $H_0: f_{A_sD} = f_{A_s}f_D$

9

Figure 1.9: Heatmap of Dissimilarity measure for subnetworks

Figure 1.10: Local p-value matrix \boldsymbol{A}_s vs D

Figure 1.11: Heatmap of Geodesic Distance for subnetworks

 $\mbox{\bf Figure 1.12:} \ \mbox{Local p-value matrix} \ A_s' \ \mbox{vs D}$