Vv285 Recitation Class 2

Yuxiang Chen

May 18, 2022

Outline

- 1 Linear Maps
- 2 Bound and Norm of Linear Maps
- Recap on Integration
- 4 Reference

Review for this week - Linear maps

- Homogeneity and additivity.
 - ightharpoonup Is L(x)=c, $x\in\mathbb{R}^n$, $c\neq 0$ a linear map?
 - ightharpoonup Why the map $z\mapsto \bar{z}$ is not linear when $\mathbb C$ is a complex vector space?
- Important linear maps
 - The orthogonal projection map P_U : U is a subspace of V, $P_Uv=u+w$ for every $v\in V$, in which v=u+w s.t. $u\in U$ and $w\in U^\perp$
 - The inclusion map i: U is a subspace of V, i(u) = u for all $u \in U$ (what's its range and kernel?)

Review for this week - Linear maps

- Homogeneity and additivity.
 - ightharpoonup Is L(x)=c, $x\in\mathbb{R}^n$, $c\neq 0$ a linear map?
 - ightharpoonup Why the map $z\mapsto \bar{z}$ is not linear when $\mathbb C$ is a complex vector space?
- Important linear maps
 - The orthogonal projection map P_U : U is a subspace of V, $P_Uv = u + w$ for every $v \in V$, in which v = u + w s.t. $u \in U$ and $w \in U^{\perp}$
 - The inclusion map i: U is a subspace of V, i(u) = u for all $u \in U$ (what's its range and kernel?)
- Theorem that uniquely defines a homomorphism (linear map): define what the basis in the original vector space is mapped into.
- **1** The space of linear map $\mathcal{L}(U,V)$ is a vector space. (what is the dimension of this space?)
 - The space of *linear functional*: $\mathcal{L}(V, \mathbb{F})$ is called the *dual space* of V, denoted by V^* or V' (notation in Axler)
- **1** Important: **range and kernel** of $L \in \mathcal{L}(U, V)$
 - In which space lies ran L (ker L) ?

Exercise - Homogeneity or additivity ?

Q1 Give an example of a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but φ is not linear.

Q2 Give an example of a function $\varphi : \mathbb{C} \to \mathbb{C}$ s.t.

$$\varphi(w+z)=\varphi(w)+\varphi(z)$$

for all $w, z \in \mathbb{C}$ but φ is not linear (\mathbb{C} is viewed as a complex vector space).

Exercise - Homogeneity or additivity ?

Q1 Give an example of a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but φ is not linear.

Q2 Give an example of a function $\varphi: \mathbb{C} \to \mathbb{C}$ s.t.

$$\varphi(w+z)=\varphi(w)+\varphi(z)$$

for all $w, z \in \mathbb{C}$ but φ is not linear (\mathbb{C} is viewed as a complex vector space).

Hint

For 1, consider $f(x, y) = \sqrt{xy}$; for 2, consider g(z) = Re z

Review for this week - Isomorphisms

- **1** Definition: $L \in \mathcal{L}(U, V)$ is a bijective linear map
 - Property: L maps a basis to another basis (is the reverse still valid?)
 - $\dim U = \dim V$, i.e, U and V are isomorphic.
- Important: Dimension formula
- **T** or **F** $L \in \mathcal{L}(U, V)$ is injective iff it's surjective.
- **T** or **F** $L \in \mathcal{L}(U, V)$, then $U = (\ker L) \oplus (\operatorname{ran} L)$.
- **T** or **F** $L \in \mathcal{L}(U, V)$, and dim $U > \dim V$, then L can't be injective.
- **T** or **F** $L \in \mathcal{L}(U, V)$, and dim $U < \dim V$, then L can't be surjective
- **T** or **F** $L \in \mathcal{L}(U, V)$ and $e_1, ..., e_n$ spans U, then $(Le_1, ..., Le_n)$ spans ran L

Review for this week - Isomorphisms

- **①** Definition: $L \in \mathcal{L}(U, V)$ is a bijective linear map
 - Property: L maps a basis to another basis (is the reverse still valid?)
 - $\dim U = \dim V$, i.e, U and V are isomorphic.
- Important: Dimension formula
- **T** or **F** $L \in \mathcal{L}(U, V)$ is injective iff it's surjective.
- **T** or **F** $L \in \mathcal{L}(U, V)$, then $U = (\ker L) \oplus (\operatorname{ran} L)$.
- **T** or **F** $L \in \mathcal{L}(U, V)$, and dim $U > \dim V$, then L can't be injective.
- **T** or **F** $L \in \mathcal{L}(U, V)$, and dim $U < \dim V$, then L can't be surjective
- **T** or **F** $L \in \mathcal{L}(U, V)$ and $e_1, ..., e_n$ spans U, then $(Le_1, ..., Le_n)$ spans ran L
- **3** Quick proof: Suppose $T \in \mathcal{L}(\mathbb{F}^4, \mathbb{F}^2)$ such that $\ker T = \{(x_1, x_2, x_3, x_4) \colon x_1 = 5x_2, \ x_3 = 7x_4\}$. Show that T is surjective

Exercise - range and kernel

Suppose V is a vector space and $S,T\in\mathcal{L}(V,V)$ are such that

 $\operatorname{ran} S \subseteq \ker T$

Prove that $T \circ S = 0$, where 0 denotes the 0 map.

Exercise - Injectiveness and surjectiveness

Suppose $v_1,...,v_m$ are distinct vectors in V. Define $T \in \mathcal{L}(\mathbb{F}^m,V)$ by

$$T(z_1,...,z_m)=z_1v_1+\cdots z_mv_m$$

- (a) What property of T makes $v_1, ..., v_m$ span V?
- (b) What property of T ensures the linear independence of $v_1, ..., v_m$?

Exercise - Injectiveness and surjectiveness

(a) T is surjective. This is because for any $w \in V$, we must find some $\{\lambda_1,...,\lambda_m\} \subseteq \mathbb{F}$ such that

$$w = T(\lambda_1, ..., \lambda_m) = \lambda_1 v_1 + \cdots + \lambda_m v_m$$

Therefore, the list $\{v_1, ..., v_m\}$ spans V.

(b) T is injective. In this case, $T(z_1,...,z_n)=0$ implies that

$$z_1 = ... = z_n = 0$$
. Equivalently $\sum_{i=1}^n z_i v_i = 0$ implies that

 $z_1 = ... = z_n = 0$. Therefore, $v_1, ..., v_n$ are linearly independent.

Exercise - Riesz representation

Prove that suppose V is finite-dimensional inner product space and φ is a linear functional on V. Then there is a unique vector $u \in V$ such that

$$\varphi(v) = \langle u, v \rangle$$

for every v.

Exercise - Riesz representation

Existence: let $\{e_1, ..., e_n\}$ be an orthonormal basis for V, then we have

$$\varphi(v) = \varphi(\sum_{i} \langle e_{i}, v \rangle e_{i}) = \sum_{i} \langle e_{i}, v \rangle \varphi(e_{i})$$
$$= \left\langle \overline{\varphi(e_{i})} e_{i}, v \right\rangle \Rightarrow u := \sum_{i} \overline{\varphi(e_{i})} e_{i}$$

Uniqueness:

Suppose $w \neq u$, and $\langle v, w \rangle = \varphi(v) = \langle v, u \rangle$, then $\langle v, u - w \rangle = 0$ for all v, which implies that u - w = 0, i.e, u = w.

Operator Norm

Properties (you need to remember this!), suppose $T \in \mathcal{L}(U, V)$

- **1** ||Tu|| ≤ ||T|| ||u|| for $u \in U$
- $||L_2 \circ L_1|| \leq ||L_2|| \cdot ||L_1||$

$L \in \mathcal{L}(U, V)$ is bounded when dim $U < \infty$

Theorem (1.1)

Suppose U and V are normed vector space, $\dim U < \infty$ and $L \in \mathcal{L}(U,V)$. Define $\|L\| = \sup\{\|Le\| : \|e\| = 1\}$ for $e \in U$, then L is **continuous** and $\|L\|$ is **bounded**.

Theorem (1.2)

Suppose U and V are normed vector space and $L \in \mathcal{L}(U, V)$, if L is continuous, then ||L|| is bounded. (we do not require either U or V is finite dimensional)

Reminder

You're encouraged to learn the proof of these two, but it's not **necessary**. As long as you remember this conclusion, it'll be helpful to your exams and understandings of behavior of linear maps.

Proof for Theorem (1.1)

Proof.

First, we select a norm for U. Suppose $\{e_1,..,e_n\}$ is a basis for U and $u = \sum_i \lambda_i e_i$, then $||u||_1 := \sum_i |\lambda_i|$. Using the same u, we have:

$$||Lu||_{V} = \left||L(\sum_{i} \lambda_{i} e_{i})\right||_{V} = \sum_{i} |\lambda_{i}| ||Le_{i}||_{V} \leq \sum_{i} |\lambda_{i}| \cdot C = C ||u||_{1}$$

$$C := \max\{||Le_{1}||_{V}, ..., ||Le_{n}||_{V}\}$$

which proves L is bounded when U is endowed with $\|\cdot\|_1$. However, since $\dim U < \infty$, by the equivalence of norms (will be taught in chapter 2), there exist D > 0 such that $\|u\|_1 \le D \|u\|_U$. Therefore, $\|Lu\|_V \le C \cdot D \|u\|_U$, showing L is bounded.

◆□▶◆周▶◆忌▶◆忌▶ ⑤ ◆○○

Some Preliminaries

Lemma (2.1)

Suppose $T \in \mathcal{L}(X,Y)$, then T is continuous at 0 implies continuity everywhere on X.

2.1.

T continuous at $0 \Leftrightarrow \forall \epsilon, \exists \delta$ such that $\|(x-y)-0\| = \|x-y\| \leq \delta$ implies $\|T(x-y)-T(0)\| = \|Tx-Ty\| \leq \epsilon$, which reads off the continuity at any $x \in X$.

Proof for Theorem (1.2)

Theorem (1.2)

Suppose $T \in \mathcal{L}(X,Y)$, then T is continuous if and only if T is bounded.

1.2.

 (\Rightarrow) First, suppose T is continuous, then at the origin

$$||Tx|| = ||T(x) - T(0)|| \le \epsilon$$
 for $||x|| = ||x - 0|| \le \delta$

We simply re-scale x so that $||Tx|| \le \frac{\epsilon}{\delta}$ for $||x|| \le 1$, then T is bounded.

(\Leftarrow) Then, suppose T is bounded, then $||Tx|| \le ||T|| \, ||x|| \to 0$ as $||x|| \to 0$, this shows T's continuity at origin. By lemma (2.1), we know T is continuous.

Vv285 Recitation Class 2

May 18, 2022

Don't let your hands get cold!

$$\int \sqrt{x^2 + a^2} dx \quad \text{where } a \in \mathbb{R}$$

References I

- VV186 slides from Horst Hohberger
- VV285 slides from Horst Hohberger
- Linear Algebra Done Right from Axler
- StackExchange
 https://math.stackexchange.com/questions/365900/
 if-u-is-finite-dimensional-then-operator-norm-is-finite
- Linear Functional Analysis for Scientists and Engineers by Balmohan V.Limaye. Access link from Springer: https: //link.springer.com/chapter/10.1007/978-981-10-0972-3_3

40 40 40 40 40 40 40 40