Lecture 7: Introduction to Data Mining

Introduction

- Data is growing at a phenomenal rate.
- Users expect more sophisticated information.
- How?

UNCOVER HIDDEN INFORMATION DATA MINING

Data Mining – Definition

- Finding hidden information in a database.
- Fit data to a model.
- Similar terms:
 - o Exploratory data analysis.
 - Data driven discovery.
 - Deductive learning.

Data Mining Algorithm

- Objective: Fit Data to a Model:
 - o Descriptive.
 - o Predictive.
- Preference Technique to choose the best model.
- Search Technique to search the data.
 - o "Query".

Database Processing vs. Data Mining Processing

- Query
 - · Well defined
 - SQL
- Data
 - Operational data
- Output
 - Precise
 - Subset of database

- Query
 - · Poorly defined
 - No precise query language
- Data
 - Not operational data
- Output
 - Fuzzv
 - Not a subset of database

Query Examples

- Database:
 - o Find all credit applicants with last name of Smith.
 - o Identify customers who have purchased more than \$10.000 in the last month.
- Data Mining:
 - o Find all credit applicants who are poor credit risks (classification).
 - o Identify customers with similar buying habits (clustering).
 - o Find all items which are frequently purchased with milk (association rules).

Basic Data Mining Tasks

- Classification maps data into predefined groups or classes.
 - Supervised learning.
 - o Prediction.
 - o Regression.
- Clustering groups similar data together into clusters.
 - Unsupervised learning.
 - o Segmentation.
 - o Partitioning.
- Link Analysis uncovers relationships among data.
 - Affinity Analysis.
 - Association Rules.
 - Sequential Analysis determines sequential patterns.

Classification

- Assign data into predefined groups or classes.

But It Isn't Magic

- You must know what you are looking for.
- You must know how to look for you.
- Suppose you know that a specific cave had gold:
 - O What would you look for?
 - O How would you look for it?
 - Might need an expert miner.

Classification Example

- Grading.
- Given a collection of annotated data (in this case 5 instances of Katydids and five of Grasshoppers),
 decide what type of insect the unlabeled example is.
- The classification problem can now be expressed as:
 - o Given a training database, predict the class label of previously unseen instance.
- Facial Recognition.
- Handwriting Recognition.
- Anomaly Detection.

Clustering

- Partition data into previously undefined groups.

Two Types of Clustering

- Hierarchical.
- Partitional.

Hierarchical Clustering Example

- Iris Data Set.

Microarray Data Analysis

- Each probe location associated with gene.
- Color indicates degree of gene expression.
- Compare different samples (normal/disease).
- Track same sample over time.
- Questions:
 - O Which genes are related to this disease?
 - O Which genes behave in a similar manner?
 - O What is the function of a gene?
- Clustering:
 - o Hierarchical.
 - o K-means.
- Gene Expression Profiling identifiers clinically relevant subtypes of prostate cancer.

Association Rules/Link Analysis

- Find relationships between data.

Association Rules Examples

- People who buy diapers also buy beer.
- If gene A is highly expressed in this disease, then gene A is also expressed.
- Relationships between people.
- Book Stores.
- Department Stores.
- Advertising.
- Product Placement.

Example: Stock Market Analysis

- Example: Stock Market.
- Predict future values.
- Determine similar patterns over time.
- Classify behavior.

Data Mining vs. KDD

- Knowledge Discovery in Databases (KDD): process of finding useful information and patterns in data.
- Data Mining: Use of algorithms to extract the information and patterns derived by the KDD process.

KDD Process

- Selection: Obtain data from various sources.
- Preprocessing: Cleanse data.
- Transformation: Convert to common format. Transform to new format.
- Data Mining: Obtain desired results.
- Interpretation/Evaluation: Present results to user in meaningful manner.

KDD Process Example: Web Log

- Selection:
 - Select log data (dates and locations) to use.
- Preprocessing:
 - o Remove identifying URLs. Remove error logs.
- Transformation:
 - Sectionize (Sort and Group).
- Data Mining:
 - o Identify and count patterns. Construct data structure.
- Interpretation/Evaluation:
 - o Identify and display frequently accessed sequences.
- Potential User Applications:
 - o Cache prediction.
 - o Personalization.

Related Topics

- Databases.
- OLTP.
- OLAP.
- Information Retrieval.

DB & OLTP Systems

- Schema:
 - o (ID, Name, Address, Salary, JobNo).
- Data Model:
 - Entity Relationship.
 - o Relational.
- Transaction.
- Sample query:

SELECT Name FROM T WHERE Salary > 100000

DM: Only imprecise queries

Classification/Prediction is Fuzzy

Information Retrieval

- Information Retrieval (IR): retrieving desired information from textual data.
- Library Science.
- Digital Libraries.
- Web Search Engines.
- Traditionally keyword based.
- Sample query:
 - o Find all documents about "data mining".

DM: Similarity measures; Mine text/Web data.

- Similarity: measure of how close a query is to a document.
- Documents which are "close enough" are retrieved.
- Metrics:
- Precision = |Relevant and Retrieved| |Retrieved|
- $Recall = \frac{|Relevant and Retrieved|}{|Relevant|}$

IR Query Result Measures and Classification

OLAP

- Online Analytic Processing (OLAP): provides more complex queries than OLTP.
- Online Transaction Processing (OLTP): traditional database/transaction processing.
- Dimensional data; cube view.
- Visualization of operations:
 - Slice: examine sub-cube.
 - O Dice: rotate cube to look at another dimension.
 - o Roll Up/Drill Down.

DM: May use OLAP queries.

DM vs. Related Topics

Area	Query	Data	Results	Output
DB/OLTP	Precise	Database	Precise	DB Objects
				or
				Aggregation
IR	Precise	Documents	Vague	Documents
OLAP	Analysis	Multidimensional	Precise	DB Objects
				or
				Aggregation
DM	Vague	Preprocessed	Vague	KDD
		-		Objects

Data Mining Development

KDD Issues

Human Interaction.
Overfitting.
Outliers.
Interpretation.
Visualization.
Large Datasets.
High Dimensionality.
Multimedia Data.
Irrelevant Data.
Noisy Data.
Changing Data.
Integration.
Application.

Warning

- With data mining, you don't always know what you are looking for.
- There is not one right answer.
- The data you are using is noisy.
- Data Mining is a very applied discipline.
- A data mining course provides you tools to use to analyze data.
- Experience provides you knowledge of how to use these tools.

Social Implications of DM

- Privacy. Profiling.
- Unauthorized use. Invalid results and claims.

Data Mining Metrics

- Usefulness.
- Return on Investment (ROI).
- Accuracy.
- ..
- Space/Time.

Visualization Techniques

- Graphical.
- Geometric.
- Icon-based.
- Pixel-based.
- Hierarchical.
- Hybrid.

Models Based on Summarization

- Visualization: Frequency distribution, mean, variance, median, mode, etc.
- Box Plot:

DM Tools

- XLMiner Easy addin to Excel: http://www.solver.com/xlminer/index.html
- Webka Open Source; Visualization, Functionality, Interface: http://www.cs.waikato.ac.nz/ml/weka/
- SAS (JMP) Commercial Product.
- SPSS Commercial Product.
- MATLAB Statistical/Math Applications.
- R Programming.

Table of Contents

ntroduction	. 1
Data Mining – Definition	. 1
Data Mining Algorithm	. 1
Database Processing vs. Data Mining Processing	. 1
Query Examples	. 1
Basic Data Mining Tasks	. 2
Classification	. 2
But It Isn't Magic	. 2
Classification Example	. 2
Clustering	. 2
Two Types of Clustering	. 2
Hierarchical Clustering Example	. 2
Microarray Data Analysis	. 3
Association Rules/Link Analysis	. <i>3</i>
Association Rules Examples	. <i>3</i>
Example: Stock Market Analysis	. <i>3</i>
Data Mining vs. KDD	. <i>3</i>
KDD Process	. <i>3</i>
KDD Process Example: Web Log	. 4
Related Topics	. 4
DB & OLTP Systems	. 4
Classification/Prediction is Fuzzy	. 5
nformation Retrieval	. 5
R Query Result Measures and Classification	. 6
OLAP	. 6
DM vs. Related Topics	. 6
Data Mining Development	. <i>7</i>
KDD Issues	. 7
Warning	. <i>7</i>
Social Implications of DM	. <i>7</i>
Data Mining Metrics	. 8
Visualization Techniques	. 8
Models Based on Summarization	. 8
DM Tools	. 8