

National University of Computer & Emerging Sciences, Karachi FAST School of Computing (BCY & BAI)

Final Examination, Spring-2023 Tuesday, June 06, 2023 08:30 am to 11:30 am

Course Code: MT- 1004	Course Name: Linear Algebra
Instructor Names:	Dr. Nazish Kanwal.
Student Roll No:	Section No: BAI-2A & BCY-2A

Instructions:

- 1. Answer all questions on answer script . Credit will be awarded for correct content and clarity of presentation.
- 2. There are 10 questions and 3 pages. Solve all parts of a question in sequence.

Time: 3 hours. Max Points: 100

(a) 5 points Solve the linear system AX = b by Cramer's rule whose coefficient matrix and matrix b are given below:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & 2 \\ 3 & 1 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}.$$

- (b) 2 points Find det(4A) for matrix given in part(a).
- (c) For square matrix

$$C = \left[\begin{array}{rrr} 1 & 0 & -5 \\ -2 & 1 & -2 \\ 1 & 2 & 1 \end{array} \right]$$

- i. $\boxed{3 \text{ points}}$ Check whether C is orthogonal matrix? Justify your answer.
- ii. $\boxed{3 \text{ points}}$ If C is orthogonal matrix, find its inverse.

(a) Let \mathcal{V} be the set of all positive real numbers, the addition and scalar multiplication in \mathcal{V} are defined as:

$$u \oplus v = uv$$
 and $k \otimes v = u^k$.

Evaluate the following:

- i. 3 points $k \otimes (u \oplus v)$ for $k = 5, u = -3 \& v = \frac{1}{2}$.
- ii. 2 points $u \oplus (-u)$, for u = 2. (Hint: $-u = u^{-1} = \frac{1}{u}$)
- (b) 3 points Use subspace test to determine whether the set W is a subspace of $M_{3\times 3}$. W = {The set of all 3×3 matrices A such that tr(A) = 0}.

(Hint: tr(A) is the sum of main diagonal entries of matrix A.)

Let $T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be multiplication by A that is, $T_A(x) = Ax$, where $A = \begin{bmatrix} a & b \\ c & d \\ g & h \end{bmatrix}$, where a, b, c, d, g, h are real numbers. Let $e_1 = (1,0)$ & $e_2 = (0,1)$ be the standard basis vectors for \mathbb{R}^2 . Find the following: (i) $T_A(2e_1)$ (ii) $T_A(3e_2-2e_1)$. Let $B = \left[\begin{array}{cccccc} 1 & 2 & 3 & 1 & 1 \\ 2 & 8 & 0 & 1 & 2 \\ 0 & 4 & -6 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array} \right]$ (a) | 7 points | Find the bases for the, (i) row space of B (ii) column space of B (iii) null space of B (b) 1 point Find the rank of B. (c) | 2 points | Find the following: $\overline{\text{(i)}}$ nullity of B (ii) nullity of B^T . For the given linear system: 3x + 2y - z = 2,6x + 4y - 2z = 4-3x - 2y + z = -2. (a) 4 points Find the vector form of the general solution of the given system (AX = b). (b) 2 points Use the result of part(a) to find the vector form of the general solution of corresponding homogeneous system (AX = 0). Let $A = \left[\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array} \right]$ (a) 3 points Find the eigen values of A. (b) 4 points Find the algebraic and geometric multiplicity of each eigen value of A.

For each eigen value λ , find the rank of $\lambda I - A$.

Is A is diagonalizable? justify your answer.

(e) 2 points If A is diagonalizable, find a matrix P that diagonalize A.

(c) 2 points

(d) 2 points

- (f) 3 points Find $P^{-1}AP$.
- (g) 3 points Compute A^{11} .

Let $\langle u, v \rangle$ be the standard inner product on $M_{2\times 2}$.

$$U = \left[\begin{array}{cc} -2 & 4 \\ 1 & 0 \end{array} \right], \quad V = \left[\begin{array}{cc} -5 & 1 \\ 6 & 2 \end{array} \right].$$

- (a) 6 points Compute the following.
 - $(i) \langle 4u, v \rangle$ $(ii) \parallel 3u 2v \parallel$
- (b) 4 points Find the cosine of angle between the vector u and v.

Let $S = \{v_1, v_2, v_3\}$, where $v_1 = (0, -\frac{3}{5}, \frac{4}{5}), v_2 = (1, 0, 0), v_3 = (0, \frac{4}{5}, \frac{3}{5}).$

- (a) 5 points Determine whether the set S is orthonormal.
- (b) 3 points Find the coordinate vector $(u)_S$ for $u = (1, \frac{14}{5}, -\frac{2}{5})$.

- (a) 8 points Let R^4 have a Euclidean inner product, and $u_1 = (1, 1, 1, 1)$, $u_2 = (0, 1, 1, 1, 1)$, $u_3 = (0, 0, 1, 1)$ be the basis for a subspace of R^4 . Use Gram-Schmidth process to transform the basis $\{u_1, u_2, u_3\}$ into orthonormal basis.
- (b) 6 points Let u_1, u_2, u_3 (are basis vectors for subspace of \mathbb{R}^4) given in part(a), and q_1, q_2, q_3 are the orthonorml basis vectors obtained in part(a). Let

$$A = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$$
, and $Q = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$

Find QR-composition of A.

For the network shown in the figure. Assuming that the flows are all non-negative.

- i. 4 points Find the general solution of the network flow.
- ii. 2 points what is the largest possible value for x_3 .