Национальный исследовательский ядерный университет «МИФИ»

Институт интеллектуальных кибернетических систем

КАФЕДРА КИБЕРНЕТИКИ

Задание на УИР

Студенту гр.	Б 22- 544	Писарев Александр Ильич
	(группа)	(фио)

ТЕМА УИР

Сравнительный анализ реализации микросервисной архитектуры с использованием паттерна Circuit Breaker на основе K3s и Istio.

THE LEVEL VE

ЗАДАНИЕ					
No	Содержание работы	Форма	Срок	Отметка о	
п/п		отчетности	исполнения	выполнении	
				Дата, подпись	
1.	Аналитическая часть			рук.	
1.1	Изучение и сравнительный анализ реализации Kubernetes	Текстовый	1 неделя		
	K3s и сервисной mesh-платформы Istio (преимущества,	сравнительный		13.02.2025	
	недостатки, особенности настройки).	анализ систем,			
	Изучение паттерна «circuit breaker», логики его работы,	схема		San at	
	особенностей реализации в Istio.	взаимодействия		asc	
1.2	∆ на пиз инструментор для на грузонного тостир огошия 1.6.	микросервисов.	2		
1.2	Анализ инструментов для нагрузочного тестирования k6: возможности, интеграция с Kubernetes, изучение	отчёт, сценарии	3 неделя	27.02.2025	
	возможных типов тестирования. Анализ возможностей	тестирования,			
	системы трассировки Jaeger. Изучение способов	подбор метрик		,	
	интеграции в Kubernetes кластер, изучение процесса	для анализа.		()'Sy pe	
	формирования метрик и отчётов о задержках.				
1.3	Оформление расширенного содержания пояснительной	Текст РСПЗ	8 неделя	25.03.2025	
	записки (РСП3)			U'are	
2.	Теоретическая часть				
2.1	Создание модели микросервисной архитектуры, в основе	Описанием	5 неделя		
	которой лежит паттерн circuit breaker как метод	структуры		11.03.2025	
	обеспечения устойчивости системы к сбоям.	модели,		_	
		диаграмма		مر روی	
		алгоритма			
		работы Circuit			
		Breaker.			

2.2	Интеграция в модель методов нагрузочного	Текстовый	6 неделя	18.03.2025
	тестирования, добавление ил оригмов растредоте	отчет со схемой		Barr
	трассирования для сбора и анализа задержек.	трафика.		USZ
3.	Инженерная часть			
3.1	Проектирование архитектуры на уровне UML: создание	UML	7 неделя	20.03.2025
	диаграммы компонентов, диаграммы развёртывания для	диаграммы.		Jan 2020
	наглядного представления взаимодействий микросервисов,			Use 1
	сетевых соединений и конфигурации контейнеров.			
4.	Технологическая и практическая часть			
4.1	Разработка и контейнеризация Python-клиента (echo-	Исходный	8 неделя	
	сервис, отвечающий на входящий запрос), подготовка	Python код,		25.03.2025
	Docker-образов, загрузка на Docker Hub, описание	Docker-образы,	·	
	процедур сборки и развертывания с использованием	README, yaml		० ७
	helm чартов.	файлы.		Use
4.2	Реализация прокси-клиента с паттерном «circuit breaker»,	Исходный	10 неделя	
	создание Docker-образа, конфигурация для приема	Python код,		
	внешних запросов и перенаправления на есho-сервис.	Docker-образы,		
1	Создание Helm чартов для развертывания в среде k3s.	README, yaml		
		файлы.		
4.3	Подготовка и настройка системы нагрузочного	Скрипты k6 и	11 неделя	
	тестирования k6 и трассировки Jaeger на отдельной	Jaeger, helm		
	виртуальной машине, интеграция с приложениями для	чарты.		
	сбора и анализа метрик, логов и задержек.			
	1 ,			
4.4	Реализация аналогичной схемы (echo и proxy)	Манифесты для	12 неделя	
''' '	микросервисов с использованием Istio (установка Istio в	Istio,		
	кластер, настройка правил «circuit breaker»,	конфигурацион		
	маршрутизации, сбора метрик и трассировки).	ные файлы.		
4.5	Проведение нагрузочного тестирования обеих	Config файлы	13 неделя	
7.5	реализаций ("чистая" реализация на python в K3s и на	тестовых		
	Istio), сбор метрик задержек и пропускной способности с	сценариев,	1.	
	помощью k6 и Jaeger, последующий анализ полученных	графики		
	данных, формирование отчётов и сравнительных	задержек.		
1	графиков (matplotlib, seaborn).			
5.	Оформление пояснительной записки (ПЗ) и	Текст ПЗ,	13 неделя	
]3.	иллюстративного материала для доклада.	презентация.		
	шиюстринивного минериши от общой.			•

ЛИТЕРАТУРА

1.	Kleppmann M. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable
	Systems. – O'Reilly Media, 2017.
2.	Hightower K., Burns B., Beda J. Kubernetes: Up and Running: Dive into the Future of Infrastructure O'Reilly
	Media, 2017.
3.	Calcote L., Jory Z. Istio: Up and Running: Using a Service Mesh to Connect, Secure, Control, and Observe
	O'Reilly Media, 2020.
4.	Richardson C. Microservices Patterns: With Examples in Java Manning Publications, 2018.
5.	Molyneaux I. The Art of Application Performance Testing. – O'Reilly Media, 2011.
6.	Mastering k6: Performance Testing for Cloud Native Applications. – Leanpub, 2020

Дата выдачи задания:	Руководитель	к.т.н., доцент Ровнягин М.М.	Дош (ФИО)
«11 » ОД 2025г.	Студент	Писарев А.И.	S#6
		_	(ФИО)
	•		