

Chapter 8

Baseband Transmission of Digital Signals

(Part 2 of 2)

Channel noise

Limited channel bandwidth

main sources of transmission errors

Signal waveform gets distorted when going through the channel.

Transmitted signal Transmitted signal Received signal Transmitter Received signal Transmitter Received signal Received signal Received signal Received signal

Baseband digital communication system

Baseband digital communication system

Receiver

Baseband digital communication system model

H₁(f) = transfer function of transmitting filter

 $H_c(f)$ = transfer function of transmission channel

 $H_r(f)$ = transfer function of receiving filter

Equivalent Model

Overall equivalent system transfer function:

$$H(f) = H_t(f) H_c(f) H_r(f)$$

The effect of system band-limitation

The effect of more limited system bandwidth

- ISI occurs even in the absence of channel noise.
- Effect of ISI on detection can be minimised by selecting appropriate transmitting filter, channel and receiving filter.

Nyquist Transmission Theorem

A special case investigated by Nyquist where H(f) is an ideal LPF.

Theorem:

If the transmission rate is R_b bits/s, for no ISI the minimum system filter bandwidth is

 $R_b/2 Hz$

$$R_b = \frac{1}{T_b}$$

$$\frac{\mathsf{R}_{\mathsf{b}}}{2} = \frac{1}{2T_{\mathsf{b}}}$$

Example 8.1

A binary source is transmitting information at a rate of 1 kb/s. A binary 1 is transmitted as a unit impulse, and a binary 0 as no pulse. The channel is an ideal LPF with zero phase shift.

What is the minimum cut-off frequency of the channel to allow ISI-free transmission?

Solution

Given $R_b = 1 \text{ kb/s}$.

From Nyquist's Theorem, the theoretical system bandwidth to detect R_b bits without ISI is $R_b/2$ Hz, if the system (or channel) has an ideal low pass filter characteristic.

Hence, the channel cut-off frequency is $f_c = R_b/2 = 500$ Hz.

4 characteristics of channel noise

AWGN:

Additive white Gaussian noise

- Zero-mean voltage
- Gaussian probability density function (pdf)
- Corrupts the desired signal in an additive fashion
- White power spectral density (psd)
 i.e. constant psd over all frequencies.

Probability Density Function (pdf) and Probability of Gaussian Noise

Zero-mean Gaussian pdf is given by

$$p(n) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left[\frac{n}{\sigma} \right]^2 \right]$$
 Formula not tested

where n is the magnitude of the noise signal. σ = standard deviation = rms noise voltage

Probability density function of Gaussian Noise

The probability of noise being within a certain magnitude range is

Probability density function of Gaussian Noise

The probability of n > T is given by Probability (n>T) = Prob (T<n<∞)</p>

Probability density function of Gaussian Noise

The probability of n > T is given by Probability (n>T) = Prob (T<n<∞)</p>

Example 8.2

What is the probability of a zero-mean white Gaussian noise:

- (i) exceeding 8 mV, if it has an rms value of 2 mV?
- (ii) exceeding a magnitude of 5 mV, if it has an rms value of 3 mV?
- (iii) equal or less than a magnitude of 5 mV, if it has an rms value of 3 mV?

What is the probability of a zero-mean white Gaussian noise:

(i) exceeding 8 mV, if it has an rms value of 2 mV?

Solution

(i) The probability that the noise exceeds T volt is given by

$$P(n > T) = \frac{1}{2} erfc \left[\frac{T}{\sqrt{2\sigma}} \right]$$
 where σ = rms value of noise signal.

Therefore
$$P(n > 8mV) = \frac{1}{2}erfc \left[\frac{8mV}{\sqrt{2} \times 2mV} \right]$$

$$= \frac{1}{2}erfc \left[2.828 \right] \longrightarrow \frac{1}{2}erfc [z]$$

Referring to the Erfc table to find the result for erfc[Z].

PROBABILITY AND STATISTICS

(cont.)

TAB	LE C	omple	ementary Erro	or Fun	ection
z	erfc(Z)	z	erfc(Z)	z	erfc(Z)
1.29	0.681014D-01	1.72	0.149972D-01	2.15	0.236139D-02
1.30	0.659920D-01	1.73	0.144215D-01	2.16	0.225285D-02
		1.74	0.138654D-01	2.17	0.214889D-02
1.31	0.639369D-01	1.75	0.133283D-01	2.18	0.204935D-02
1.32	0.619348D-01	1.76	0.128097D-01	2.19	0.195406D-02
1.33	0.599850D-01	1.77	0.123091D-01	2.20	0.186285D-02
1.34	0.580863D-01	1.78	0.118258D-01		
1.35	0.562378D-01	1.79	0.113594D-01	2.21	0.177556D-02
1.36	0.544386D-01	1.80	0.109095D-01	2.22	0.169205D-02
1.37	0.526876D-01			2.23	0.161217D-02
1.38	0.509840D-01	1.81	0.104755D-01	2.24	0.153577D-02
1.39	0.493267D-01	1.82	0.100568D-01	2.25	0.146272D-02
1.40	0.477149D-01	1.83	0.965319D-02	2.26	0.139288D-02
		1.84	0.926405D-02	2.27	0.132613D-02
1.41	0.461476D-01	1.85	0.888897D-02	2.28	0.126234D-02
1.42	0.446238D-01	1.86	0.852751D-02	2.29	0.120139D-02
1.43	0.431427D-01	1.87	0.817925D-02	2.30	0.114318D-02
.44	0.417034D-01	1.88	0.784378D-02		
.45	0.403050D-01	1.89	0.752068D-02	2.31	0.108758D-02
.46	0.389465D-01	1.90	0.720957D-02	2.32	0.102449D-02
.47	0.376271D-01			2.33	0.983805D-03
1.48	0.363459D-01	1.91	0.691006D-02	2.34	0.935430D-03
.49	0.351021D-01	1.92	0.662177D-02	2.35	0.889267D-03
.50	0.338949D-01	1.93	0.634435D-02	2.36	0.845223D-03
.51	0.327233D-01	1.94	0.607743D-02	2.37	0.803210D-03
1.52	0.327233D-01 0.315865D-01	1.95	0.582066D-02	2.38	0.763142D-03
0.50		1.96	0.557372D-02	2.39	0.724936D-03
.53	0.304838D-01 0.294143D-01	1.97	0.533627D-02	2.40	0.688514D-03
		1.98	0.510800D-02		
.55	0.283773D-01	1.99	0.488859D-02	2.41	0.653798D-03
1.56	0.273719D-01	2.00	0.467773D-02	2.42	0.620716D-03
.57	0.263974D-01 0.254530D-01			2.43	0.589197D-03

Z	erfc(Z)	Z	erfc(Z)	Z	erfc(Z)
2.58	0.263600D-03	3.01	0.207390D-04	3.44	0.114518D-05
2.59	0.249461D-03	3.02	0.194664D-04	3.45	0.114518D-05 0.106605D-05
2.60	0.236034D-03	3.03	0.182684D-04	3.46	0.992201D-0
	0.2000010 00	3.04	0.171409D-04	3.47	0.923288D-0
2.61	0.223289D-03	3.05	0.160798D-04	3.48	0.858995D-0
2.62	0.211191D-03	3.06	0.150816D-04	3.49	0.799025D-0
2.63	0.199711D-03	3.07	0.141426D-04	3.50	0.743098D-06
2.64	0.188819D-03	3.08	0.132595D-04	0.50	0.7450560-00
2.65	0.178488D-03	3.09	0.124292D-04		
2.66	0.168689D-03	3.10	0.116487D-04	3.51	0.690952D-06
2.67	0.159399D-03	0.10	0.170.075.01	3.52	0.642341D-00
2.68	0.150591D-03	3.11	0.109150D-04	3.53	0.597035D-0
2.69	0.142243D-03	3.12	0.102256D-04	3.54	0.554816D-06
2.70	0.134333D-03	3.13	0.957795D-05	3.55	0.515484D-06
		3.14	0.896956D-05	3.56	0.478847D-06
2.71	0.126838D-03	3.15	0.839821D-05	3.57	0.444728D-06
2.72	0.119738D-03	3.16	0.786174D-05	3.58	0.412960D-00
2.73	0.113015D-03	3.17	0.735813D-05	3.59	0.383387D-06
2.74	0.106649D-03	3.18	0.688545D-05	3.60	0.355863D-06
2.75	0.100622D-03	3.19	0.644190D-05	3.61	0.0000540.00
2.76	0.949176D-04	3.20	0.602576D-05	3.62	0.330251D-06 0.306423D
2.77	0.895197D-04	0.00	0.0020, 00 00	3.63	0.30642.1
2.78	0.844127D-04	3.21	0.563542D-05	3.64	
2.79	0.795818D-04	3.22	0.526935D-05	J.B.	044483D-06
2.80	0.750132D-04	3.23	0.492612	3.66	0.226667D-06
		3.24	0.460 -05	3.67	0.210109D-06
2.81	0.706033D 04	3.25	u.430278D-05	3.68	0.194723D-06
2.82	0.666096D-04	3.26	0.402018D-05	3.69	0.180429D-06
2.83	0.627497D-04	3.27	0.375542D-05	3.70	0.167151D-06
2.84	0.591023D-04	3.28	0.350742D-05	3.70	0.10/1510-00
2.85	0.556563D-04	3.29	0.327517D-05	3.71	0.154821D-06
2.86	0.524012D-04	3.30	0.305771D-05	3.72	0.143372D-06

z is round down to 2.82 for worse case condition

	z	erfc (z)
	2.81	0.706933D-04
	2.82	0.666096D-04
Ì	2.83	0.627497D-04
	2.84	0.591023D-04

Solution

(i) The probability that the noise exceeds T volt is given by

$$P(n > T) = \frac{1}{2} erfc \left[\frac{T}{\sqrt{2}\sigma} \right]$$
 where σ = rms value of noise signal.

Therefore
$$P(n > 8mV) = \frac{1}{2}erfc\left[\frac{8mV}{\sqrt{2} \times 2mV}\right] = erfc[z]$$

$$=\frac{1}{2}erfc[2.828]$$

z is round down to 2.82 for worse case condition

For
$$z = 2.82$$
; erfc(z) = 0.666×10^{-4}

z		erfc (z)		
	2.81	0.706933D-04		
	2.82	0.666096D-04		
	2.83	0.627497D-04		
	2.84	0.591023D-04		

Therefore $P(n > 8 \text{ mV}) = 1/2 \times 0.666 \times 10^{-4} = 3.33 \times 10^{-5}$

The noise voltage is below 8 mV most of the time.

What is the probability of a zero-mean white Gaussian noise:

(ii) exceeding a magnitude of 5 mV, if it has an rms value of 3 mV?

Solution

(ii) The probability that the noise exceeds a magnitude of T volt is given by

$$P(|n| > T) = erfc [T/(\sqrt{2}\sigma)]$$
as $|n| > T = (n > T)$ or $(n < -T)$
thus $P(|n| > T) = P(n > T) + P(n < -T)$

$$= 2x1/2 \ erfc[T/(\sqrt{2}\sigma)] = erfc[T/(\sqrt{2}\sigma)]$$

What is the probability of a zero-mean white Gaussian noise:

(ii) exceeding a magnitude of 5 mV, if it has an rms value of 3 mV?

Solution

(ii) The probability that the noise exceeds a magnitude of T volt is given by

$$P(|n| > T) = erfc [T/(\sqrt{2}\sigma)]$$
as $|n| > T = (n > T)$ or $(n < -T)$
thus $P(|n| > T) = P(n > T) + P(n < -T)$

$$= 2x1/2 \ erfc[T/(\sqrt{2}\sigma)] = erfc[T/(\sqrt{2}\sigma)]$$
Therefore $P(|n| > 5 \text{ mV}) = erfc [5 \text{ mV}/(\sqrt{2} \times 3 \text{ mV})]$

$$= erfc (1.179)$$

Referring to the Erfc table:

z	erfc(Z)	Z	erfc(Z)	z	erfc(Z)
0.00	1.00000	0.43	0.543113	0.86	0.223900
0.01	0.988717	0.44	0.533775	0.87	0.218560
0.02	0.977435	0.45	0.524518	0.88	0.213313
0.03	0.966159	0.46	0.515345	0.89	0.208157
0.04	0.954889	0.47	0.506255	0.90	0.203092
0.05	0.943628	0.48	0.497250		SENSON AND DANCE
0.06	0.932378	0.49	0.488332	0.91	0.198117
0.07	0.921142	0.50	0.479500	0.92	0.193232
0.08	0.909922			0.93	0.188436
0.09	0.898719	0.51	0.470756	0.94	0.183729
0.10	0.887537	0.52	0.462101	0.95	0.179109
		0.53	0.453536	0.96	0.174576
0.11	0.876377	0.54	0.445061	0.97	0.170130
0.12	0.865242	0.55	0.436677	0.98	0.165768
0.13	0.854133	0.56	0.428384	0.99	0.161492
0.14	0.843053	0.57	0.420184	1.00	0.157299
0.15	0.832004	0.58	0.412077		***************************************
0.16	0.820988	0.59	0.404063	1.01	0.153190
0.17	0.810008	0.60	0.396144	1.02	0.149162
0.18	0.799064			1.03	0.145216
0.19	0.788160	0.61	0.388319	1.04	0.141350
0.20	0.777297	0.62	0.380589	1.05	0.137564
	×.	0.63	0.372954	1.06	0.133856
0.21	0.766478	0.64	0.365414	1.07	0.130227
0.22	0.755704	0.65	0.357971	1.08	0.126674
0.23	0.744977	0.66	0.350623	1.09	0.123197
0.24	0.734300	0.67	0.343372	1.10	0.119795
0.25	0.723674	0.68	0.336218		
0.26	0.713100	0.69	0.329160	1.11	0.116467
0.27	0.702582	0.70	0.322199	1.12	0.113212
0.28	0.692120			1.13	0.110029
0.29	0.681716	0.71	0.315334	1.14	0.106918
0.30	0.671373	0.72	0.308567	1.15	0.103876
		0.73	0.301896	1.16	0.100904
0.31	0.661092	0.74	0.295322	1.17	0.979996D-01
0.32	0.650874	0.75	0.288844	1.18	0.951626D-01
0.33	0.640721	0.76	0.282463	1.19	0.923917D-01
0.34	0.630635	0.77	0.276178	1.20	0.896860D-01

erfc (z)
0.103876
0.100904
0.979996D-01
0.951626D-01

 $erfc(1.17) = 0.98 \times 10^{-1}$

What is the probability of a zero-mean white Gaussian noise:

(ii) exceeding a magnitude of 5 mV, if it has an rms value of 3 mV?

Solution

(ii) The probability that the noise exceeds a magnitude of T volt is given by

$$P(|n| > T) = erfc [T/(\sqrt{2}\sigma)]$$
as $|n| > T = (n > T)$ or $(n < -T)$
thus $P(|n| > T) = P(n > T) + P(n < -T)$ $P(n)$ is symmetrical about y axis: $P(n > T) = P(n < -T)$ $P(n > T)$ $P(n > T) = P(n < -T)$ $P(n > T)$ $P(n > T)$

Therefore $P(|n| > 5 \text{ mV}) = 0.98 \times 10^{-1}$

What is the probability of a zero-mean white Gaussian noise:

(iii) equal or less than a magnitude of 5 mV, if it has an rms value of 3 mV?

$$P(|n| > 5 \text{ mV}) = \text{Total shaded area} = 0.98 \times 10^{-1}$$

$$Area = \frac{1}{2}erfc\left(\frac{5mV}{\sqrt{2}x3mv}\right)$$

$$-5 \qquad 0 \qquad 5$$

$$Area = \frac{1}{2}erfc\left(\frac{5mV}{\sqrt{2}x3mv}\right)$$

Unshaded area =
$$1 - 0.98 \times 10^{-1} = 0.902$$

Hence,
$$P(|n| < 5 \text{ mV}) = 0.902$$

Probability of Bit Error

Probability of Bit Error for a basic digital receiver

- The performance of a digital communication system, is measured by probability of bit error, P_e, i.e. the probability of receiving a wrong bit.
- The higher the noise, the higher the P_e.
- The practical measurement of P_e is bit error rate, BER.

$$BER = N_e/N_t$$

N_e = total number of error bits over time interval T

N_t = total number of bits transmitted over time interval T

■ BER in practical systems : 10⁻⁴ to 10⁻⁷.

Operation of a Baseband Binary Receiver

31

Regeneration of a unipolar NRZ signal

Probability of error in a baseband binary receiver

Probability of error
$$P_e = P(1) \times P([V_1 + n] < V_T) + P(0) \times P([V_0 + n] > V_T)$$

where

Probability that binary one voltage plus noise is below the threshold voltage.

Probability that binary zero voltage plus noise is above the threshold voltage.

- P(1) = probability of transmitting binary '1'
- P(0) = probability of transmitting binary '0'
- V₁ + n = voltage level for binary '1' + noise voltage
- V₀ + n = voltage level for binary '0' + noise voltage

Probability of error in a baseband binary receiver

$$P_e = 0.5P([V_1 + n] < V_T) + 0.5P([V_0 + n] > V_T)$$
 $P(1) = P(0) = 0.5$

$$P(1) = P(0) = 0.5$$

=
$$0.5P(n < [V_T - V_1]) + 0.5P(n > [V_T - V_0])$$

Probability of error in a baseband binary receiver

$$V_T = 0.5(V_1 + V_0)$$
, mid-point of V_1 and V_0

 $R = 0.5(V_1 - V_0)$, half signal excursion

Probability of error in a baseband binary receiver

$$P_e = 0.5P([V_1 + n] < V_T) + 0.5P([V_0 + n] > V_T)$$
 $P(1) = P(0) = 0.5$

= 0.5P(n <[
$$V_T - V_1$$
]) + 0.5P(n >[$V_T - V_0$]) $V_T = 0.5(V_1 + V_0)$, mid-point of V_1 and V_0

=
$$0.5P(n < [0.5(V_1 + V_0) - V_1]) + 0.5P(n > [0.5(V_1 + V_0) - V_0])$$

=
$$0.5P(n < [-0.5(V_1 - V_0)]) + 0.5P(n > [0.5(V_1 - V_0)])$$

=
$$0.5P(n < -R) + 0.5P(n > R)$$
 R = $0.5(V_1 - V_0)$, half signal excursion

=
$$P(n>R)$$
 P (n <-R) = P (n >R), symmetrical about n=0

$$P_e = P(n > R) = \frac{1}{2} erfc \left[\frac{R}{\sqrt{2}\sigma} \right]$$

8.3.3 Operation of a Baseband Binary Receiver

Probability of error in a baseband binary receiver

Example 8.3

A discrete data source is transmitting a random binary signal such that the probability of transmitting 1 or 0 is equiprobable. The signal input to the comparator at the receiver is 0.5 volt for binary 1 and -0.5 volt for binary 0. The channel noise is AWGN with an rms value of 0.2 volt.

- (i) What is the bit error rate (or P_e)?
- (ii) If a million bit is transmitted for each block of message, on the average, how many bits are received incorrectly per block?

Solution

(i)
$$P_e = P(n > R) = \frac{1}{2} erfc \left[\frac{R}{\sqrt{2}\sigma} \right]$$

$$R = 0.5(V_1 - V_0) = 0.5(0.5 - (-0.5)) = 0.5 V$$

$$P_e = 1/2 \text{ erfc (} 0.5/(\sqrt{2} \text{ x } 0.2 \text{)}$$

$$= 1/2 \text{ erfc } (1.76)$$

$$= 1/2 \times 0.128 \times 10^{-1}$$

$$= 6.4 \times 10^{-3}$$

From the Prob & Stat Table : If z = 1.76, erfc(z) = 0.128 x 10⁻¹.

Z	erfc(Z)
1.72	0.149972D-01
1.73	0.144215D-01
1.74	0.138654D-01
1.75	0.133283D-01
1.76	0.128097D-01

(ii) On the average, 10^6 x 6.4 x 10^{-3} = 6400 bits are received incorrectly, for every million bits transmitted.

Example 8.4

The signal component to the receiver of a baseband transmission system is of the form:

The signal is corrupted by additive white Gaussian noise (AWGN) which has a rms value of 0.8 mV. Assume equal probability of transmitting binary 1 or 0 and independent bit transmission.

- (i) Calculate the threshold voltage V_T of the receiver comparator for minimum bit error.
- (ii) Calculate the probability of bit error P_e at the receiver.
- (iii) If the transmission bit rate is 1 Mb/s, what is the average duration between bit errors?

Solution

(i) $V_H = 3 \text{ mV}$; $V_I = -1 \text{ mV}$;

$$V_{T} = \frac{V_{H} + V_{L}}{2} = 1 \text{ mV}$$
 $R = \frac{V_{H} - V_{L}}{2} = 2 \text{ mV}$

$$R = \frac{V_H - V_L}{2} = 2 \text{ mV}$$

(ii)
$$\mathbf{P_e} = \frac{1}{2} \operatorname{erfc} \left(\frac{R}{\sqrt{2} \sigma} \right) = \frac{1}{2} \operatorname{erfc} \left(\frac{2 \text{ mV}}{\sqrt{2} 0.8 \text{ mV}} \right) = \frac{1}{2} \operatorname{erfc}(1.768) = \frac{1}{2} \operatorname{erfc}$$

In one sec, there are $10^6 \times 6.4 \times 10^{-3} = 6400$ error bits.

Therefore, average duration between error bits = $1/6400 = 1.563 \times 10^{-4} = 0.156 \text{ ms}$.

8.4 Jitters

 Synchronisation clock at the receiving end is usually derived from the zero crossings of the received signal.

ISI and channel noises cause variations in the clock rate and phase.

jitters

Useful experimental method for assessing the quality of a digital transmission system:

Noise margin

ISI degradation

Jitter

Larger the eye opening, better is the transmission system.

Eye diagram measurement set-up

Eye diagram measurement set-up

Eye diagrams under different channel conditions

(a) 101010

channel conditions

Infinite BW
-No ISI and Noise free

(b) Eye pattern of PRBS connected directly to CRO (bypassing system under test).

Slightly bandlimited -No ISI and Noise free

(c) Eye pattern of a channel that is free from ISI and noise.

Bandlimited - with ISI, but Noise free

(d) Eye pattern of a channel with ISI (but free from noise) due to insufficient bandwidth.

SP Singapore Polytechnic

8.5 Eye Diagram

Eye Diagram measurements

Noise Margin (%) = $V_{min}/V_{max} \times 100 \%$

ISI Degradation = $20 \log_{10}(V_{max}/V_{min}) dB$

Jitter (%) = $\Delta T/T \times 100 \%$ where T = one bit interval

Eye Diagram measurements

Ideal Channel

- Noise Margin = 100%
- ISI degradation = 0 dB
- **Jitter = 0 %**

Worst Channel

- Noise Margin = 0%
- ISI degradation = ∞ dB
- Jitter = 100 %

End

CHAPTER 8

(Part 2 of 2)

