Banco de Dados

Módulo Básico

O que é uma Transação?

- Unidade lógica de trabalho que deve ser concluída ou abortada inteiramente
- Uma transação bem-sucedida altera o BD de um estado consistente para outro
- Um BD em estado consistente é aquele em que são satisfeitas as restrições de integridade de todos os dados
- A maioria das transações reais é formada por duas ou mais solicitações
 - A solicitação de BD é o equivalente a um único comando de SQL em um aplicativo ou transação

Diagrama Relacional do BD

Esquema Hipotético de Banco de Dados Relacional

Avaliação dos Resultados de Transação

- Nem todas as transações atualizam o BD
- O código de SQL representa uma transação, pois acessa o BD
- Transações inadequadas ou incompletas podem ter efeito devastador sobre a integridade do BD
 - Alguns SGBDs fornecem meios pelos quais os usuários podem definir restrições aplicáveis
 - Outras regras são aplicadas automaticamente pelo SGBD

Propriedades da Transação

 Uma transação possui 4 propriedades fundamentais (ACID):

- Atômica

 Significa que as instruções SQL contidas em uma transação constituem uma única unidade de trabalho (tudo ou nada)

Consistente

 Significa que o BD está em um estado consistente quando uma transação inicia e, ao seu término, em outro estado consistente

Propriedades da Transação

 Uma transação possui 4 propriedades fundamentais (ACID) - continuação:

— <u>Isolada</u>

Transações separadas não devem interferir uma com a outra

Durável

 Uma vez que a transação sofreu COMMIT, as alterações feitas no BD são preservadas, mesmo que a máquina em que o SGBD esteja instalado apresente falha posteriormente

Gerenciamento de Transações

O Instituto Nacional Americano de Padrões (ANSI)
 definiu os padrões que determinam as transações de
 BD em SQL

O suporte a transações é fornecido por dois comandos

de **SQL**: *COMMIT* e *ROLLBACK*

Gerenciamento de Transações

- A sequência de transação deve continuar até que:
 - Chegar a um comando COMMIT
 - Chegar a um comando ROLLBACK
 - Chegar com sucesso ao fim de um programa
 - O programa seja encerrado de modo anormal

Controle de Concorrência

 A coordenação da execução simultânea de transações em um sistema de BD multiusuário

 O objetivo desse controle é garantir a serialização das transações nesse tipo de ambiente

Atualizações Perdidas

- O problema das atualizações perdidas:
 - Ocorre quando duas transações concorrentes, estão atualizando o mesmo elemento de dados

- Uma das atualizações é perdida
 - Sobrescrita por outra aplicação

Atualizações Perdidas

 Duas transações concorrentes para atualizar a quantidade disponível

TRANSAÇÃO	COMPUTAÇÃO
T1: compra 100 unidades	PROD_QOH = PROD_QOH + 100
T2: vende 30 unidades	PROD_QOH = PROD_QOH - 30

Atualizações Perdidas

• Execução em série das duas transações

ТЕМРО	TRANSAÇÃO	ETAPA	VALOR ARMAZENADO
1	T1	Leitura de PROD_QOH	35
2	T1	PROD_QOH = 35 + 100	
3	T1	Gravação de PROD_QOH	135
4	T2	Leitura de PROD_QOH	135
5	T2	PROD_QOH = 135 - 30	
6	T2	Gravação de PROD_QOH	105

Dados não Consolidados

- O fenômeno de dados não consolidados (não salvos):
 - Ocorre quando duas transações são executadas de modo concorrente

 A primeira é desfeita após a segunda ter acessado os dados não consolidados

Dados não Consolidados

Atualizações Perdidas:

TEMPO	TRANSAÇÃO	ETAPA	VALOR ARMAZENADO
1	T1	Leitura de PROD_QOH	35
2	T2	Leitura de PROD_QOH	35
3	T1	PROD_QOH = 35 + 100	
4	T2	PROD_QOH = 35 - 30	
5	T1	Gravação PROD_QOH (Atualização perdida)	135
6	T2	Gravação de PROD_QOH	5

Dados não Consolidados

 Transações que criam o problema de dados não consolidados:

TRANSAÇÃO	COMPUTAÇÃO
T1: compra 100 unidades	PROD_QOH = PROD_QOH + 100 (Desfeita)
T2: vende 30 unidades	PROD_QOH = PROD_QOH - 30

Recuperações Inconsistentes

- Recuperações inconsistentes:
 - Ocorrem quando uma transação acessa dados antes e após outras transações terminarem de trabalhar com esses dados

 A transação pode ler alguns dados antes de serem alterados e outros após a alteração, produzindo, assim, resultados inconsistentes

Recuperações Inconsistentes

Recuperação durante atualização:

T	RANSAÇÃO T1	TRANSAÇÃO T2	
SELECT SUM FROM PROD	PROD_QOH) DUCT	UPDATE PRODUCT SET PROD_QOH = PROD_QOH + 10 WHERE PROD_CODE = '1546-QQ2'	
		UPDATE PRODUCT SET PROD_QOH = PROD_QOH - 10 WHERE PROD_CODE = '1558-QW1'	
		COMMIT;	

Recuperações Inconsistentes

Resultados da Transação: correção de entrada de dados

	ANTES	DEPOIS
PROD_CODE	PROD_QOH	PROD_QOH
11QER/31	8	8
13-Q2/P2	32	32
1546-QQ2	15	(15 + 10) → 25
1558-QW1	23	(23 – 10) → 13
2232-QTY	8	8
2232-QWE	6	6
Total	92	92

Escalonador

- Processo especial do SGBD
 - Estabelece a ordem em que são executadas operações de transações concorrentes
- Intercala a execução de operações de BD, garantindo a serialização e o isolamento das transações
- Escala Serializável:
 - Escala de operações transacionais na qual a execução intercalada das transações produz o mesmo resultado

Controle de Concorrência

Bloqueio

- Garante a utilização exclusiva de um item de dados por uma transação atual
- São necessários para evitar que outras transações leiam dados inconsistentes

- Gerente de Bloqueio
 - Responsável por atribuir e inspecionar os bloqueios utilizados pelas transações

- Indica o nível de utilização de bloqueio
- Pode ocorrer nos seguintes níveis:
 - Banco de Dados
 - Tabela
 - Página
 - Linha (tupla)
 - Campo (atributo)

- Bloqueio no nível de Banco de Dados:
 - − O BD inteiro é bloqueado

- Bloqueio no nível de tabela:
 - A tabela inteira é bloqueada

- Bloqueio no nível de página:
 - O SGBD bloqueia uma página de disco inteira

- Bloqueio no nível de linha:
 - Permite que transações concorrentes acessem linhas diferentes da mesma tabela
 - Mesmo quando estas estiverem localizadas na mesma página
- Bloqueio no nível de campo:
 - Permite que transações concorrentes acessem a mesma linha (contanto que solicitem a utilização de campos (atributos) distintos nessa linha)

Sequência de bloqueio no nível de BD:

Exemplo de bloqueio no nível de tabela:

Exemplo de bloqueio no nível de página:

• Exemplo de bloqueio no nível de linha:

Tipos de Bloqueio

- Bloqueios Binários
 - Dois estados: bloqueado (1) e desbloqueado (0)
- Bloqueios Exclusivos
 - O acesso é reservado especificamente para a transação que bloqueou o objeto
 - Deve ser utilizado quando houver potencial para conflitos
- Bloqueio Compartilhado
 - Ocorre quando transações concorrentes recebem
 acesso de leitura com base em um bloqueio comum

Tipos de Bloqueio

• Exemplos de *bloqueio binário*:

TEMPO	TRANSAÇÃO	ETAPA	VALOR ARMAZENADO
1	T1	Bloqueio de PRODUCT	
2	T1	Leitura de PROD_QOH	15
3	T1	PROD_QOH = 15 + 10	
4	T1	Gravação de PROD_QOH	25
5	T1	Desbloqueio de PRODUCT	
6	T2	Bloqueio de PRODUCT	
7	T2	Leitura de PROD_QOH	23
8	T2	PROD_QOH = 23 - 10	
9	T2	Gravação de PROD_QOH	13
10	T2	Desbloqueio de PRODUCT	

Bloqueio de 2 Fases (Serialização)

- Define como as transações obtêm e liberam bloqueios
- Garante a serialização, mas não evita deadlocks
 - Fase de Crescimento
 - Uma transação adquire todos os bloqueios solicitados sem desbloquear nenhum dado
 - Fase de Redução
 - Uma transação libera todos os bloqueios e não pode obter novos

Bloqueio de 2 Fases (Serialização)

- O protocolo de bloqueio de 2 fases é determinada pelas seguintes regras:
 - Duas transações não podem apresentar bloqueios conflitantes
 - Nenhuma operação de desbloqueio pode preceder uma operação de bloqueio na mesma transação
 - Nenhum dado é afetado até que todos os bloqueios sejam obtido

Bloqueio de 2 Fases (Serialização)

Exemplo de protocolo de bloqueio de 2 fases:

Deadlocks

- As três técnicas básicas de controle são:
 - Prevenção
 - Detecção
 - Evasão
- A escolha do melhor método de controle de deadlocks depende do ambiente de BD
 - Se a probabilidade de deadlocks for baixa, recomenda-se a detecção
 - Se a probabilidade for alta, a prevenção é mais adequada

Deadlocks

Exemplo: criação de uma condição de deadlock

TEMPO	TRANSAÇÃO	RESPOSTA	STATU	S DE BLOQUEIO
0			Dado X	Dado Y
1	T1:LOCK(X)	ОК	Desbloqueado	Desbloqueado
2	T2:LOCK(Y)	ОК	Bloqueado	Desbloqueado
3	T1:LOCK(Y)	Aguardar	Bloqueado	Bloqueado
4	T2:LOCK(X)	Aguardar	Bloqueado	Bloqueado
5	T1:LOCK(Y)	Aguardar	Bloqueado	Bloqueado
6	T2:LOCK(X)	Aguardar	Bloqueado e	Bloqueado
7	T1:LOCK(Y)	Aguardar	Bloqueado a d	Bloqueado
8	T2:LOCK(X)	Aguardar	Bloqueado	Bloqueado
9	T1:LOCK(Y)	Aguardar	Bloqueado	Bloqueado
***	***************************************	*****	C	******
				/
***		*****		

Exercícios (Transação)

Aula 08 | Módulo Básico

 Considere um sistema bancário simplificado e a execução das transações T1 e T2 conforme quadro abaixo:

	Transação T1	Transação T2
1	Consulta Saldo Conta X	
2	Grava Conta X com Saldo = Saldo + 100	
3		Consulta Saldo Conta X
4	Encerra T1	
5		Consulta Saldo Conta X

	Transação T1	Transação T2
1	Consulta Saldo Conta X	
2	Grava Conta X com Saldo = Saldo + 100	
3		Consulta Saldo Conta X
4	Encerra T1	
5		Consulta Saldo Conta X

Se em (1) a consulta do saldo da conta X resultar 200, assinale a alternativa correta abaixo:

- (A) Em (3) a consulta de saldo resultará 300
- (B) Em (3) a consulta de saldo resultará 100
- (C) Em (3) a consulta de saldo resultará 200
- (D) Em (3) a T2 entrará em espera da conclusão de T1
- (E) Em (5) a consulta de saldo resultará 200

 Considere um sistema de controle de estoque simplificado e a execução das transações T1 e T2 conforme quadro abaixo:

	Transação T1	Transação T2
1	Soma 50 ao Estoque do Produto 1	Subtrai 10 do Estoque do Produto 4
2	Soma 30 ao Estoque do Produto 2	Subtrai 20 do Estoque do Produto 5
3	Soma 100 ao Estoque do Produto 3	Subtrai 30 do Estoque do Produto 1
4	Encerra T1	
5		Encerra T2

	Transação T1	Transação T2
1	Soma 50 ao Estoque do Produto 1	Subtrai 10 do Estoque do Produto 4
2	Soma 30 ao Estoque do Produto 2	Subtrai 20 do Estoque do Produto 5
3	Soma 100 ao Estoque do Produto 3	Subtrai 30 do Estoque do Produto 1
4	Encerra T1	
5		Encerra T2

Assinale a alternativa *incorreta*:

- (A) Após a execução de T1 e T2 o estoque do Produto 1 estará aumentado de 20
- (B) Em (3) a T2 entra em espera do encerramento de T1
- (C) Ocorrerá um erro porque as duas transações alteram o estoque do Produto 1
- (D) Após a execução de T1 e T2 o estoque do Produto 2 estará aumentado de 30 e o do Produto 4 diminuído de 10
- (E) A T1 será executada de forma contínua, não dependendo do que ocorre na T2 Aula 08 | Módulo Básico

 Assinale a opção que não corresponde a uma propriedade de uma transação em um SGBD:

- (A) Distributividade
- (B) Atomicidade
- (C) Durabilidade
- (D) Consistência
- (E) Isolamento

EXERCÍCIOS

Referências

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2018.

HARRINGTON, J. L. Projeto de Bancos de Dados Relacionais - Teoria e Prática. 1.ed. Campus, 2015.

SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Campus, 2006.

Aula 08 | Módulo Básico