Satz von Rice

René Filip, TINF13B1

Motivation

Motivation

Motivation

```
anderer
// Code
                  Ja / Nein
  ret x*x
```

Spoiler

```
// anderer
// Code
                        Ja / Nein
   ret x*x
```

Unterschied zum Halteproblem

Halteproblem

"Hält mein Programm irgendwan an?"

Satz von Rice

"Berechnet mein Programm die Funktion f?"

Definition Turingmaschine

$$(Q, \Gamma, B, \Sigma, \delta, q_0, F)$$

Entscheidbarkeit einer Sprache

2.1.2 Definition: Eine Sprache heißt rekursiv (entscheidbar), wenn es eine Turingmaschine gibt, die auf allen Eingaben stoppt und die Eingabe genau dann akzeptiert, wenn sie Element der Sprache ist.

$$w \longrightarrow \prod_{\text{h\"{a}lt immer}} \prod_{\text{h\"{a}lt immer}} \left\{ egin{array}{l} q_{\mathrm{end}} \in F, & \mathrm{falls} \ w \in L \\ q_{\mathrm{end}}
ot\in F, & \mathrm{falls} \ w
ot\in L \end{array}
ight.$$

existiert TM für Sprache $L \subseteq \Sigma^*$?

Gödelnummer

$$M = (\{q_1, \dots, q_t\}, \{0, 1, B\}, B, \{0, 1\}, \delta, q_1, \{q_2\})$$

$$\begin{array}{c|cccc}
0 & X_1 & L & D_1 \\
1 & X_2 & N & D_2 \\
B & X_3 & R & D_3
\end{array}$$

$$\delta(q_i, X_j) = (q_k, X_l, D_m) \Longrightarrow \operatorname{code}(z) = 0^i 10^j 10^k 10^l 10^m$$

 $\langle M \rangle := 111 \operatorname{code}(1)11 \operatorname{code}(2)11 \dots 11 \operatorname{code}(s)111$

Universelle Turingmaschine

$$M = (\{q_1, \dots, q_t\}, \{0, 1, B\}, B, \{0, 1\}, \delta, q_1, \{q_2\})$$

 $\delta(q_i, X_i) = (q_k, X_l, D_m) \Longrightarrow \operatorname{code}(z) = 0^i 10^j 10^k 10^l 10^m$

$$\langle M \rangle := 111 \operatorname{code}(1)11 \operatorname{code}(2)11 \dots 11 \operatorname{code}(s)111$$

$$(\langle M \rangle, w)$$

Formalisierung

Menge der von TM berechenbaren Funktionen \mathcal{R}

$$f(x) = 13$$

$$f(x) = x^2$$

$$h(x) = e^x$$

$$g(x) = x!$$

$$\mathcal{R} = \{x^2, 13, e^x, \dots\}$$

Nicht-triviale Teilmenge S

Beispiel:
$$S = \{f(x) = x^2\}$$

Sprache L(S)

$$S = \{ f(x) = x^2 \}$$

 $L(S) := \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$

Satz von Rice

 $L(S) := \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$

2.6.11 Satz von Rice: Die Sprache L(S) ist nicht rekursiv.

Beweis

Zutaten:

- M_S : Variable $\langle M'' \rangle$; Parameter Annahme; Turingmaschine die L(S) entscheidet
- $u \in \mathcal{R}$: Überall undefinierte Funktion
- M_f : Variable x; berechnet $f \in \mathcal{R} S$
- M': Variable ε ; Parameter $\langle M \rangle$
 - 1. Berechne $\langle M'' \rangle$
- M'': Variable x; Parameter (M_f, M, ε)

Beweis-Strategie

- **2.6.2** Satz: D ist nicht rekursiv.
- \Longrightarrow 2.6.3 Korollar: \overline{D} ist nicht rekursiv.
- \Longrightarrow 2.6.5 Satz: H ist nicht rekursiv.
- \Longrightarrow **2.6.10 Satz:** H_{ε} ist nicht rekursiv.
- \Longrightarrow 2.6.11 Satz von Rice

Das Spezielle Halteproblem

 $H_{\varepsilon} := \{ \langle M \rangle \mid M \text{ h\"alt auf der Eingabe } \varepsilon \}$

2.6.10 Satz: H_{ε} ist nicht rekursiv.

Beweis

Komplementär von $H_{oldsymbol{arepsilon}}$

 $\overline{H_{\varepsilon}} := \{ \langle M \rangle \mid M \text{ h\"alt nicht auf der Eingabe } \varepsilon \}$

$$\left\{\begin{array}{c|c} \varepsilon & \varepsilon & \varepsilon \\ \hline \langle M_1 \rangle & \langle M_2 \rangle & \cdots & \langle M_n \rangle \end{array}\right\} \quad \langle M \rangle + \langle M \rangle \quad \text{falls } \langle M \rangle \in \overline{H_\varepsilon} \\ \times \quad \text{falls } \langle M \rangle \not\in \overline{H_\varepsilon} \end{array}$$

Satz 2.6.10 + Korollar 2.6.3: H_{ε} ist nicht rekursiv.

Lösungsidee

Annahme: M_S existiert und entscheidet L(S)

 $H_{\varepsilon} := \{ \langle M \rangle \mid M \text{ hält nicht auf der Eingabe } \varepsilon \}$

Satz 2.6.10 + Korollar 2.6.3: H_{ε} ist nicht rekursiv.

Ziel: M' ist eine stets haltende Turingmaschine, die $\overline{H_{\varepsilon}}$ akzeptiert.

Verhalten von M'

M' entscheidet, ob M_1, M_2, \ldots auf die Eingabe ε hält

Wenn M auf ε nicht hält, dann muss M' das Programm $\langle M \rangle$ akzeptieren Wenn M auf ε hält, dann darf M' das Programm $\langle M \rangle$ nicht akzeptieren

Wähle f "geschickt"

1. Schritt: Berechnung von Programm $\langle M'' \rangle$

2. Schritt: Simulation von M_S auf $\langle M'' \rangle$

- **1. Fall:** M hält nicht auf $\varepsilon \Rightarrow u \in S \Rightarrow M_S$ akzeptiert $\langle M'' \rangle \Rightarrow M'$ akzeptiert $\langle M \rangle$
- **2. Fall:** M hält auf $\varepsilon \Rightarrow f \notin S \Rightarrow M_S$ akzeptiert nicht $\langle M'' \rangle \Rightarrow M'$ akzeptiert nicht $\langle M \rangle$
- $\Rightarrow M'$ stets haltend <u>und</u> akzeptiert $\overline{H_{\varepsilon}}$ \nleq

Hausaufgabe: Was ist mit $u \notin S$?

- Dann wähle ein $f \in S$ (erlaubt, da $S \neq \emptyset$)
- Beweis von $\overline{L(S)}$, d.h. M_S entscheidet $\overline{L(S)}$
- → Beweis sei dem aufmerksamen Studenten überlassen

Was ist mit $S = \mathcal{R}$?

- Vom Satz per Definition ausgeschlossen
- Von der Bedeutung: Gäbe es eine Code-Checker, mit $S=\mathcal{R}$, dann würde er uns nur sagen, dass unser Code *tatsächlich* eine (TM) berechenbare Funktion berechnet. Wir könnten aber nichts weitere eingrenzen, da jede Funktion aus \mathcal{R} in Frage kommt.