Introductory E&M Practice Problems

Cyrus Vandrevala

April 26, 2013

Contents

1	\mathbf{Mir}	Mirrors			
	1.1	Plane Mirror	2		
	1.2	Mirror Problem #1	2		
	1.3	Mirror Problem #2	2		
	1.4	Mirror Problem #3			
		Mirror Problem #4			
2	Len	uses	4		
	2.1	Lens Problem #1	4		
	2.2	Lens Problem #2	4		
		Lens Problem #3			
		Lens Problem #4			
3	Inte	erference Effects	6		
	3.1	Double Slit Experiment	(
	3.2	Single Slit Experiment	(
	3.3	Multiple Choice			

Useful Constants

Electron Mass = 9.11×10^{-31} kg Proton Mass = 1.67×10^{-27} kg Elementary Charge = 1.602×10^{-19} C Coulomb's Constant = 8.99×10^9 Nm²/C² Permittivity of Free Space = 8.85×10^{-12} F/m Permeability of Free Space = 1.26×10^{-6} m kg/s²A²

1 Mirrors

1.1 Plane Mirror

Our good friend Bob the college student has a date with a beautiful girl tonight! Sadly, he is a scruffy guy, so he needs to clean up before his date. He wants to go out to buy a mirror so he can comb his hair properly, but he needs to save as much money as possible for dinner at a super fancy restaurant. How tall of a mirror should Bob buy if he is 6 feet tall and he wants to see his entire body all at once?

 \Rightarrow 3 ft

1.2 Mirror Problem #1

A converging mirror has a focal length of |f| = 10 cm. I place an object with a height of 6 cm, 30 cm in front of the mirror.

- A) What is the final image distance?
- B) What is the final image height?
- C) Is it in front of the mirror or behind the mirror?
- D) Is it real or virtual?
- E) Is it upright or inverted?

1.3 Mirror Problem #2

A diverging mirror has a focal length of |f| = 15 cm. I place an object with a height of 6 cm, 10 cm in front of the mirror.

- A) What is the final image distance?
- B) What is the final image height?
- C) Is it in front of the mirror or behind the mirror?
- D) Is it real or virtual?
- E) Is it upright or inverted?

1.4 Mirror Problem #3

A converging mirror has a focal length of |f| = 40 cm. I place an object with a height of 5 cm, 10 cm in front of the mirror.

- A) What is the final image distance?
- B) What is the final image height?
- C) Is it in front of the mirror or behind the mirror?
- D) Is it real or virtual?
- E) Is it upright or inverted?

1.5 Mirror Problem #4

A diverging mirror has a focal length of |f|=20 cm. I place an object with a height of 12 cm, 30 cm in front of the mirror.

- What is the final image distance?
- What is the final image height?
- Is it in front of the mirror or behind the mirror?
- Is it real or virtual?
- Is it upright or inverted?

2 Lenses

2.1 Lens Problem #1

A converging lens has a focal length of |f| = 10 cm. I place an object with a height of 6 cm, 30 cm in front of the lens.

- What is the final image distance?
- What is the final image height?
- Is it in front of the lens or behind the lens?
- Is it real or virtual?
- Is it upright or inverted?

2.2 Lens Problem #2

A diverging lens has a focal length of |f| = 15 cm. I place an object 10 cm in front of the lens.

- What is the final image distance?
- What is the final image height?
- Is it in front of the lens or behind the lens?
- Is it real or virtual?
- Is it upright or inverted?

2.3 Lens Problem #3

A converging lens has a focal length of |f| = 40 cm. I place an object with height 5 cm, 10 cm in front of the lens.

- What is the final image distance?
- What is the final image height?
- Is it in front of the lens or behind the lens?
- Is it real or virtual?
- Is it upright or inverted?

2.4 Lens Problem #4

A diverging lens has a focal length of |f| = 20 cm. I place an object with height 12 cm, 30 cm in front of the lens.

- What is the final image distance?
- What is the final image height?

- Is it in front of the lens or behind the lens?
- Is it real or virtual?
- Is it upright or inverted?

3 Interference Effects

3.1 Double Slit Experiment

A double slit apparatus has a slit width d = 10 cm. If I shine light with a wavelength of $\lambda = 15$ cm on the slits, how many total bright fringes could I potentially see on the screen?

 $\Rightarrow 1$

3.2 Single Slit Experiment

A single slit apparatus with a slit width of 100 nm is 10 m from a screen. If I shine light with wavelength $\lambda = 500$ nm on the slit, at what position would we see the first minimum?

 \Rightarrow 50 m from the center