Q1) satisfaction was high in tower blocks with high contact. Satisfaction was lower in apartments or houses than in tower blocks. Contact was lower in tower blocks.

satisfaction vs housing type and contact

Row Labels high	low me	edium Gra	nd Total
■apartment	302 271	192	765
high	191 141	116	448
low	111 130	7 6	317
■ house	166 197	153	516
high	104 130	105	339
low	62 67	48	177
■ tower block	200 99	101	400
high	100 34	47	181
low	100 65	54	219
Grand Total	668 567	446	1681

satisfaction vs housing type

Row Labels	high		low	medium	Grand Total
apartment		302	271	192	765
house		166	197	153	516
tower block		200	99	101	400
Grand Total		668	567	446	1681

satisfaction vs contact

Row Labels	high		low	medium	Grand Total
high		395	305	268	968
low		273	262	178	713
Grand Total		668	567	446	1681

b) nominal logistic regression model, with main effects (house type and contact), fits the data fairly well. Most of the parameter estimates are significantly different from zero. Adding interactions doesn't improve the model significantly. (deviance = 6.893, d.f. = 4, p-value = 0.142).

```
multinom(formula = satisfaction ~ type + contact, data = housing,
weights = frequency)
Coefficients:
        (Intercept) typehouse typetower block contactlow
         - 0. 2474055 0. 3040225
low
                                      -0.6415725 0.3282260
medium - 0. 4654412 0. 3736997
                                       -0. 2348298 0. 0322483
Residual Deviance: 3605.48
AIC: 3621.48
multinom(formula = satisfaction ~ type * contact, data = housing, weights = frequency)
Coefficients:
       (Intercept) typehouse typetower block contactlow typehouse: contactlow
        - 0. 3035132 0. 5266530
                                  -0. 7752954 0. 4615143
low
                                                                    - 0. 6070980
medi um - 0. 4986823 0. 5082498
                                                                    - 0. 3853824
                                   -0. 2563440 0. 1198824
       typetower block: contactlow
low
                       0.18651002
medi um
                       0.01895961
Residual Deviance: 3598.587
AIC: 3622.587
c) we can fit ordinal logistic regression as satisfaction is an ordinal variable. Adding interactions to
main effect model doesn't make much improvement according to Deviance test (deviance = 3.54, d.f.
= 2, p-value = 0.17)
polr(formula = factor(satisfaction) ~ type + contact, data = housing, weights = frequency)
Coeffi ci ents:
      typehouse typetower block
                                          contactl ow
     0. 27590184
                      - 0. 29240512
                                          0.07453312
Intercepts:
  high | low | low | medium
- 0. 3671175 1. 0816822
Residual Deviance: 3628.55
AIC: 3638.55
```

polr(formula = factor(satisfaction) ~ type * contact, data = housing, weights = frequency)

Coefficients:

- 0. 3326654 0. 1090346

Intercepts:

high|low|low|medium -0.3353559 1.1158384

Residual Deviance: 3625, 007

AIC: 3639.007

d) we can get probabilities by fitted(glm) in R and multiply by number of type,contact to get estimate d freq. Nominal and ordinal logistic regression models produce similar parameter estimates and similar fitted values in this case. On the grounds of parsimony we choose the ordinal model. The fit of the nominal logistic regression model is shown in the table below. The biggest residual is highlighted in red color.

type	satisfaction	contact Z	frequency	estimated freq 🔼	std residuals 🔼
tower block	low	low	65	60.00	0.08
tower block	low	high	34	39.01	-0.13
tower block	medium	low	54	53.89	0.00
tower block	medium	high	47	47.11	0.00
tower block	high	low	100	105.11	-0.05
tower block	high	high	100	94.89	0.05
apartment	low	low	130	125.77	0.03
apartment	low	high	141	145.23	-0.03
apartment	medium	low	76	75.22	0.01
apartment	medium	high	116	116.78	-0.01
apartment	high	low	111	116.01	-0.04
apartment	high	high	191	185.99	0.03
house	low	low	67	76.23	-0.12
house	low	high	130	120.77	0.08
house	medium	low	48	48.89	-0.02
house	medium	high	105	104.12	0.01
house	high	low	62	51.88	0.20
house	high	high	104	114.12	-0.09

Appendi x: R code

```
require(dobson)
require(ggplot2)
library(nnet)
library(MASS)
#preparation of data
housing <- dobson::housing
housi ng$type <- as. factor(housi ng$type)</pre>
housi ng$contact <- as. factor(housi ng$contact)</pre>
#model of interest
res. housing=multinom(satisfaction ~ type + contact,
                   wei ghts=frequency, data=housing)
summary(res. housing)
# full model
res. housing. full =multinom(satisfaction ~ type * contact,
                         weights=frequency, data=housing)
summary(res. housing. full)
# devi ance test
delta_deviance = deviance(res. housing) - deviance(res. housing. full)
# delta_df = 4 because df. resi dual (res. housi ng. full) = 12, df. resi dual (res. hou
# p_value > 0.05 so dont reject HO
p_value = 1-pchi sq(delta_devi ance, df = 4)
res. housing. polr = polr(factor(satisfaction) \sim type + contact,
                          wei ghts=frequency, data=housi ng)
res. housing. polr. full = polr(factor(satisfaction) ~ type * contact,
                          weights=frequency, data=housing)
# devi ance test
del ta_devi ance = devi ance(res. housi ng. pol r) - devi ance(res. housi ng. pol r. ful l)
# p_value > 0.05 so dont reject HO
p_value = 1-pchi sq(delta_devi ance, df = 4)
#fitted value and residual
fitted(res. housing)
fitted(res. housing. polr)
res. housi ng$resi dual s
```