Министерство науки и высшего образования Российской Федерации

Калужский филиал фелерального государственного бюджетного

образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет» (КФ MITV им. Н.Э. Баумана)

ФАКУЛЬТЕТ: <u>ИУК «Информатики и управления»</u>

КАФЕДРА: <u>ИУК7-КФ «Экология и промышленная безопасность»</u>

Лабораторная работа №6 «ИССЛЕДОВАНИЕ МЕТОДОВ ЗАЩИТЫ ОТ ШУМА» ДИСЦИПЛИНА: «Безопасность жизнедеятельности»

Выполнил: студент гр. ИУК4-62	
Проверил:	(подпись) Ф.И.О. Астахова Л.В_) Ф.И.О.
Дата сдачи (защиты):	8.04. dod3 2

Результаты сдачи (защиты):

- Бальная оценка: 4

- Оценка:

Калуга, 2023

Цель работы:

- 1. Изучить методы измерения и нормирования производственного шума.
- 2. Ознакомиться с приборами для измерения шума.
- 3. Исследовать эффективность звукопоглощения и звукоизоляции.

Теоретическая часть

 \mathbf{III} ум — это беспорядочное сочетание звуков различной частоты и интенсивности (с физической точки зрения).

С физиологической точки зрения шумом называют любой нежелательный звук, оказывающий вредное воздействие на организм человека.

Человек слышит только те звуки, частота которых находится в частотных пределах 20-20000 Гц.

Колебания с частотой менее 20 Гц (инфразвук) и выше 20000 Гц (ультразвук) не вызывают слуховых ощущений.

Под воздействием шума развиваются болезни сердца и сосудов.

Такие болезни, как гастрит, язва желудка и язва двенадцатиперстной кишки чаще всего встречаются у людей, живущих или работающих в шумной обстановке.

Шумовые явления обладают свойством кумуляции.

Накапливаясь в организме, шумовые воздействия начинают все больше угнетать нервную систему.

Шум понижает:

- внимательность,
- замедляет психические реакции,
- ускоряет процессы переутомления, нарушает ритмы и дыхание, обмен веществ.

Шум может привести:

- 1. К ухудшению слуха, а в отдельных случаях к глухоте.
- 2. К снижению внимания.
- 3. Увеличению расхода энергии при одинаковой физической нагрузке.
- 4. К замедлению скорости психических реакций.
- 5. К снижению производительности и качества выполняемой работы.

СРЕДСТВА И МЕТОДЫ ЗАЩИТЫ ОТ ШУМА

ГОСТ 12.1.029-80.

Средства и методы защиты от шума по отношению к защищаемому объекту подразделяются на:

□ средства и методы коллективной защиты; □ средства индивидуальной защиты.

Средства и методы коллективной защиты от шума в зависимости от способа реализации подразделяются:

Средства коллективной защиты по отношению к источнику возбуждения шума подразделяются на:

- □ средства, снижающие шум в источнике его возникновения;
- □ средства, снижающие шум на пути его распространения от источника до защищаемого объекта.

Средства индивидуальной защиты от шума в зависимости от конструктивного исполнения подразделяются на: • противошумные шлемы и каски;

- противошумные костюмы.
- противошумные наушники, закрывающие ушную раковину снаружи;
- противошумные вкладыши, перекрывающие наружный слуховой проход или прилегающие к нему;

Эффективность звукопоглощения, т.е. звукопоглощающие свойства материалов (или конструкции) характеризуется коэффициентом звукопоглощения:

где J_{no2} л - интенсивность звуковой энергии, поглощаемой материалом или конструкцией; $J_{na\partial}$ - интенсивность звуковой энергии, падающей на материал.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШУМА

Любой звук характеризуется:

- □ частотой f, (Гц);
- □ интенсивностью J, (Вт/м2); □ звуковым давлением P, (Па).

 $\it Интенсивность -$ количество энергии, переносимое звуковой волной за 1 с через площадь в 1 $\rm m^2$, перпендикулярно распределению звуковой волны.

Звуковое давление — разность между мгновенным значением полного давления и средним давлением, которое наблюдается в невозмущенной среде.

Часть пространства, в котором распространяются звуковые волны, называется *звуковым полем*.

В практике защиты от шума приходится иметь дело с огромным диапазоном изменения звукового давления (104...109 раз).

Поскольку оперировать многозначными числами неудобно, а также вследствие способности уха человека оценивать не абсолютное, а относительное изменение звукового давления, введены логарифмические показатели - уровни звукового давления и уровни интенсивности звука, измеряемые в децибелах.

Уровень звукового давления (УЗД) определяется по формуле, дБ: 2

где P - средняя квадратичная величина звукового давления в данной точке;

 $Po=2\cdot10-5$ Па - величина звукового давления, соответствующая порогу слышимости на частоте 1000 Гц при нормальных атмосферных условиях.

Учитывая протяженный частотный диапазон (20-20000 Γ ц) при оценки источника шума, используется логарифмический показатель, который называется **уровнем интенсивности**. $J L_J \square$ 10 \lg ___ [д $_{\rm B}$] Учитывая протяженный частотный диапазон (20-20000 Γ ц) при оценки источника J_0 шума, используется логарифмический показатель, который называется **уровнем интенсивности**. J

- J интенсивность в точке измерения [Bт/м 2]
- J_0 величина, которая равна порогу слышимости $10^{-12} \, [\mathrm{Br/m^2}]$
- J интенсивность в точке измерения [Bт/м 2]
- ${
 m J}_0$ величина, которая равна порогу слышимости $10^{\text{-}12}\,[{
 m Br/m}^2]$

Системой стандартов безопасности труда предусмотрены пять методов измерения шумовых характеристик источников шума:

- □ два точных,
- □ два технических, □ один ориентировочный метод.

Для измерения шума используют шумомер и комплект октавных фильтров. С помощью фильтров в шуме выделяют отдельные октавные полосы, в которых верхняя частотная характеристика f_2 в два раза больше нижней f_1 .

Характеристикой каждой полосы частот является <u>среднегеометрическая</u> частота f_{cz} ,

которая для октавы вычисляется по выражению: $f_{cz} \, \Box \, f_1 \, \Box \, f_2$

Производственный шум подразделяют на: — низкочастотный (до 300 Гц), — среднечастотный (от 300 до 1000 Гц), — высокочастотный (свыше 1000 Гц).

Наиболее неприятным для уха является высокочастотный шум.

Нормативные требования к производственным шумам изложены в ГОСТ 12.1.003-83.

В этих нормах установлены предельно допустимые уровни (ПДУ) звукового давления в октавных полосах частот со среднегеометрическими частотами 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц, уровни звука и эквивалентные уровни звука для широкополосного постоянного и непостоянного шума.

Нормированные значения УЗД на стандартных частотных полосах называется частотным спектром шума.

Наиболее широко применим (ввиду отсутствия специальных измерительных помещений) ориентировочный метод измерения шума (рис.1).

Рис.1. Принцип измерения шума ориентировочным методом.

КЛАССИФИКАЦИЯ ШУМА (ГОСТ 12.1.003-83)

По характеру спектра шум следует подразделять на:

 широкополосный с непрерывным спектром шириной более одной октавы; – тональный, в спектре которого имеются выраженные дискретные тона.

По временным характеристикам шум подразделяется на:

- постоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБ А;
- непостоянный, уровень звука которого за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБ А.

Непостоянный шум следует подразделять на:

□ колеблющийся во времени, уровень звука которого непрерывно изменяется во времени;

- □ прерывистый, уровень звука которого ступенчато изменяется (на 5 дБ A и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;
- □ импульсный, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с.

ПРАКТИЧЕСКАЯ ЧАСТЬ

В данной работе используются: Шум-1М (рис. 2) — шумомер 3 класса точности для ориентировочных рабочих измерений на частотах характеристик A, B, C. Питание шумомера от 2 батареек типа «Крона-ВЦ» (Корунд).

Шумомер ВШВ-003-М2 — предназначен для измерения звука с частотными характеристиками A,B,C (при уровне звукового давления в диапазоне частот от 1 Гц до 8 кГц в свободном и диффузном полях. ВШВ-003-М2 относится к 1 классу точности.

В ВШВ-003-М2 используется принцип преобразования звуковых и механических

колебаний исследуемых объектов в пропорциональные им электрические сигналы, которые затем усиливаются, преобразуются и измеряются измерительным трактом (прибором измерительным).

ВШВ-003-М2 замеряет как общий уровень, так и по всем стандартным октавным полосам.

Рис. 3. Шумомер ВШВ-003-М2

Подготовка Шум-1М к работе

- 1. Микрофон находится на расстоянии 1 -1,5 м от источника шума (или на вытянутой руке).
- 2. Переключатель РОД РАБОТЫ в положении ВЫКЛ.
- 3. Переключатель ДИАПАЗОН в положении 120 или 110
- 4. Переключатель БЫСТРО-МЕДЛЕННО в положении БЫСТРО (кнопка нажата)
- 5. Включение и настройка шумомера.
 - Перевести РОД РАБОТЫ в положение БАТАРЕЯ (стрелка должна находиться в черном секторе).
 - Перевести РОД РАБОТЫ в положение КАЛИБР. Ручку КАЛИБР установить на отметку (-0,4) по нижней шкале прибора. Кф=-0,4 дБ.
- 6. Установить ДИАПАЗОН в положение ожидаемого уровня звука. При прерывистых сигналах переключатель БЫСТРО-МЕДЛЕННО установить в положение МЕДЛЕННО (кнопку отжать).
- 7. Установить РОД РАБОТЫ на необходимую частотную характеристику А,В,С.
- 8. Переключателем ДИАПАЗОН добиться показаний, чтобы стрелка измерительного прибора находилась в секторе 0 10 дБ.

Например: ДИАПАЗОН на отметке 70, РОД РАБОТЫ – характеристика (A), стрелка измерительного прибора на 5 (правее 0), уровень шума равен 75 д $\mathbb{E}(A)$

Подготовка ВШВ-003-М2 к работе

Калибровка измерителя проводится каждый раз перед началом работы, периодически.

- 1. Для измерения звукового давления установить переключатель в положения:
- 2. РОД РАБОТЫ Г (быстро)
 - ДЛТ1, dB 80 ДЛТ2, дВ 50
 - ФЛТ; Hz − лин.
 - Все кнопки отжаты. При этом светиться индикатор 130 dB.
- 3. Произвести измерения звукового давления: ВПМ101 с капсюлем держать на вытянутой руке в направлении излучателя звука.
- 4. Для измерения общего уровня звукового давления в дБ(А) (после замеров Лин.) устанавливаем следующее:
 - РОД РАБОТЫ S (медленно)
 - ДЛТ1, dB − 80
 - ДЛТ2, dB 50
 - ФЛТ; Hz A и затем начинаем работать тумблером ДІ, dB до тех пор, пока не выведем стрелку прибора вправо от . Если ДІ, пройдя весь путь так и не вывел стрелку вправо от , то переходим работать с ДІІ.(шкала прибора от $-\infty$ до 10dB).
- 5. Как только стрелка отклонилась от 0 вправо, то можно снимать показания.

Например:

- ДЛТ1, 50 dB;
- ДЛТ2, 20 dB;
- Показания стрелки прибора 6. Уровень звукового давления = 76 дБ.

Измерение уровней звука в октавных полосах частот:

- 1. Переключатель ФЛТ, Hz окт.
- 2. Необходимый октавный фильтр переключателем ФЛТ окт и кнопкой кHz (отжата); Hz нажата.
- 3. Установить переключатели в положения:
 - РОД РАБОТЫ F(S)
 - ДЛТ1, dB -80 ДЛТ2, дB -50
 - ФЛТ окт. необходим октав фильтр 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 (Γ ц).

Затем работаем ДЛТ1, ДЛТ2 так же как показано выше.

ВНИМАНИЕ!

- Предусилитель ВПМ-101 с капсюлем находится не ближе 1,5 м от пола и 1 м от источника звука и стен, можно закрепить в штатив при измерении уровней звукового давления.
- При измерении уровня звукового давления в диффузном поле (малые производственные помещения с большим количеством отражающих поверхностей) кнопку СВ; ДИФ нажать.

Для точности и быстроты снятия показаний используем индикаторную шкалу. На шкале M-101dB (по загоревшейся лампе) снимаем показания и суммируем с показаниями стрелочного прибора.

Порядок проведения исследования шумоглушения

1. В камере имитирующем производственное помещение (без облицовки - L) помещаем источник шума (пылесос) и микрофон прибора ВШВ-003-М2 на расстоянии 0,25 м друг от друга.

- 2. После включения источника шума в сеть произвести измерения УЗД (L₁), как на общем уровне дБ(A), так и на стандартных октавных частотах от 31,5 до 8000 Гц. Значения L определяются как сумма «Делитель I» + «Делитель II» + показания стрелки прибора (шкала -□ 10 dB). Или показания индикаторной шкалы (M-101 dB) + показания стрелки прибора. Данные замеров записать в таблицу 5.
- 3. Определить УЗД при использовании звукопоглощающей облицовки (пенопласт), при этом устанавливаем облицовочные щиты по всем сторонам имитируемого помещения. Производим замеры УЗД (L2), аналогично L1. Данные записать в таблицу 5.
- 4. Определить УЗД при установке звукоизолирующего кожуха. (Вентиляционные патрубки располагаются поперек помещения, а источник шума не касается облицовки кожуха). Облицовку вынуть. Производим замеры УЗД (L₃), аналогично L₁. Данные записать в таблицу 5.
- 5. Построить зависимость звукового давления (L₁ , L₂ , L₃) от частоты $\Box f \Box$ 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Γ ц на графике (рис.4)

Рис.4. График зависимости уровня звукового давления от частоты.

6. Определить эффективность звукопоглощения ($\Box L_{oбn}$) и звукоизоляции ($\Box L_{кож}$): $\Box L_{ofn} \Box L_1 \Box L_2$

$$\square L_{\kappa o \varkappa c} \square L_1 \square L_3$$

Результаты записать в таблицу 5.

7. По формулам:

где $\Box\Box$ 0,48 - коэффициент звукопоглощения материала нанесенного на внутреннюю поверхность кожуха (войлок строительный) табл. 3;

 \Box_1 =0,2 - коэффициент звукопоглощения поверхности стен, потолка и пола помещений (необлицованных — дерево-плита) (табл. 3);

 $S \square 2m^2$

 $S_{oon} \square 1.5 m^2$, $m \square 2 \kappa \epsilon$,

 $\Box_2 \Box 0,88 (f \Box 1000, maбл.3)$ - коэффициент звукопоглощения облицовки (пенопласт – плиты «Винипор»),

- произвести расчет эффективности установки звукопоглощающей облицовки и звукоизолирующего кожуха. Сравнить результаты с фактическими.
 - 8. Сравнить практические спектры с допустимыми ($L_{don.}$). Сделать выводы об эффективности защиты.

Основная литература

- 1. Хван, Т.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие / Т.А. Хван, П.А. Хван. 11-е изд. Ростов-н/Д: Феникс, 2014. 448 с.: ил., табл. (Высшее образование). Режим доступа: http://biblioclub.ru/index.php?page=book&id=271593
- 2. Муравей, Л.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие / под ред. Л.А Муравей. 2-е изд., перераб. и доп. М.: Юнити-Дана, 2015. 431 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=119542
- 3. Арустамов, Э.А. Безопасность жизнедеятельности [Электронный ресурс]: учебник / Э.А. Арустамов, А.Е. Волощенко, Г.В. Гуськов; под ред. Э.А. Арустамова. 19-е изд., перераб. и доп. М.: Издательско-торговая корпорация «Дашков и К°», 2015. 448 с. Режим доступа: http://biblioclub.ru/index.php? page=book&id=375807
- 4. Попов, А.А. Производственная безопасность [Электронный ресурс]: учеб. пособие / под ред. А.А. Попова. СПб.: Лань, 2013. 432 с. Режим доступа: http://e.lanbook.com/book/12937

Дополнительная литература

- 1. Виноградов, Д.В. Применение смазочно-охлаждающих технологических средств при резании металлов [Электронный ресурс]: учеб. пособие по курсу
- «Инструментообеспечение машиностроительных предприятий» Ч. 1: Функциональные действия / Д.В Виноградов— Электрон. дан. М.: МГТУ им. Н.Э. Баумана, 2013. 90 с. Режим доступа: http://e.lanbook.com/book/58525
- 2. Макаров, В.Ф. Современные методы высокоэффективной абразивной обработки жаропрочных сталей и сплавов [Электронный ресурс]: учеб. пособие / В.Ф. Макаров. Электрон. дан. СПб.: Лань, 2013. 320 с. Режим доступа: http://e.lanbook.com/book/32819
- 3. Сибикин, М.Ю. Современное металлообрабатывающее оборудование: справочник [Электронный ресурс] / М.Ю. Сибикин, В.В. Непомилуев, А.Н. Семенов, М.В. Тимофеев.
- М.: Машиностроение, 2013. 308 с. Режим доступа: http://e.lanbook.com/book/37007
- 4. Суслов, А.Г. Наукоемкие технологии в машиностроении [Электронный ресурс] /

- А.Г. Суслов, Б.М. Базров, В.Ф. Безъязычный; под ред. А.Г. Суслова. М.: Машиностроение, 2012. 528 с. Режим доступа: http://e.lanbook.com/book/5795
- 5. Кривошеин, Д.А. Основы экологической безопасности производств [Электронный ресурс]: учеб. пособие / Д.А. Кривошеин, В.П. Дмитренко, Н.В. Федотова. СПб: Лань, 2015. 336 с. Режим доступа: http://e.lanbook.com/book/60654

1. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Научная электронная библиотека http://eLIBRARY.RU.
- 2. Электронно-библиотечная система http://e.lanbook.com.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru.
- 4. Электронно-библиотечная система http://biblio-online.ru.
- 5. Электронно-библиотечная система http://iprbookshop.ru

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступая к освоению дисциплины обучающийся должен принимать во внимание следующие положения.

Дисциплина построена по модульному принципу, каждый модуль представляет собой логически завершенный раздел курса.

Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебный заданий, выносимых на самостоятельную проработку.

Практические занятия проводятся для закрепления усвоенной информации, приобретения в основном умений для решения практических задач в предметной области дисциплины. Практические занятия обеспечены методическими указаниями по их выполнению:

Лабораторные работы предназначены для приобретения умений и навыков для решения практических задач в предметной области дисциплины. Лабораторные работы обеспечены методическими указаниями по их выполнению:

1. Астахова Л.В., Доможир В.В., Сорокина И.В., Шнитко И.Г. Исследование методов защиты от шума. Методическое пособие. -М.: Издательство МГТУ им. Н.Э. Баумана, 2009.

ПРИЛОЖЕНИЕ

Таблица 1 Стандартные граничные и среднегеометрические частоты полос пропускания.

	Среднегеометрические частоты, Гц							
Граничные частоты октавных полос, Гц	Полосы							
	октавные	полуоктавные	третьоктавные					

	31,5	31,5	31,5
18 – 45		45	45
	63	63	50
45 – 90		90	63
			90
	125	125	100
90 – 180		180	125
			160
	250	250	200
180 – 355		355	250
			315
	500	500	400
355 – 710		710	500
			630
	1000	1000	800
710 – 1400			1000
			1250
	2000	2000	1600
1400 – 2800		2800	2000
			2500
	4000	4000	3150
2800 – 5600		5600	4000
			5000
	8000	8000	6300
5600 – 11200			8000
			10000

Таблица 2 Акустическая эффективность индивидуальных средств защиты от шума.

,	,	1 1		, , , , ,	1	, ,	,		
Индивидуальные	Ослабле	Ослабление шума, ДБ при средней геометрической частоте октавных полос, Гц							
средства защиты	125	250	500	1000	2000	4000	8000		
Тампоны из УТВ	5	6	7	Ë2	20	25	29		
Вкладыши	10	10	10	12	24	29	25		
Наушники:									
ВЦНИИОТ-1	3	4	7	13	23	36	33		
ВЦНИИОТ-2	7	11	14	22	35	45	38		
ВЦНИИОТ-3	_	20	24	32	42	50	45		

Таблица 3 Коэффициенты звукопоглощения некоторых материалов.

таолаца з коэффициенты звукопоглощения некоторых материалов.										
	To	Коэффи	Коэффициенты звукопоглощения при среднегеометрической частоте октавных							
	ЛЩ	полос, Г	олос, Гц							
Материал	ина,									
	MM	31,5	63	125	250	500	1000	2000	4000	8000
Войлок	12,		0.02	0.07	0.00	0.45	0.40	0.50	0.71	
строительный ()	5	_	0,03	0,05	0,08	0,17	0,48	0,52	0,51	_
Стекловойлок	30	_	0,2	0,05	0,12	0,36	0,81	0,85	0,90	_
Шерсть	40	_	_	0,18	0,35	0,55	0,67	0,63	0,63	0,58
аллюминевая				ĺ	,	, i		,	,	,
Плиты «Винипор»	20		0.00	0.17	0.20	0.55	0.00	1.0	1.0	1.0
(\square_2)	30	_	0,08	0,17	0,28	0,55	0,88	1,0	1,0	1,0
Дерево-плита (\square_1)	15	_	0,01	0,02	0,04	0,08	0,2	0,25	0,3	0,35

Таблица 4

Допустимые уровни звукового давления (ПДУ)

Уровни звукового давления (11д3) Уровни звукового давления, ДБ, в октавных полосах со									Уровни звука и эквивалентные	
Вид трудовой деятельности, рабочие	среднегеометрическими частотами, Гц							уровни звука, ДБ А		
места	31,5	63	125	250	500	1000	2000	4000	8000	
Предприятия, учреждения и орган	изации	Í							l	
1. Творческая деятельность, руководящая работа с повышенными требованиями, научная деятельность, конструирование и проектирование, программирование, преподавание и обучение, врачебная деятельность: рабочие места в помещениях, дирекции, проектно-конструкторских бюро; расчетчиков, программистов вычислительных машин, в лабораториях для теоретических работ и обработки данных, приема больных в здравпунктах.	86	71	61	54	49	45	42	40	38	50
2. Высококвалифицированная работа, требующая сосредоточенности, административно-управленческая деятельность, измерительные и аналитические работы в лаборатории: рабочие места в помещениях цехового управленческого аппарата, в рабочих комнатах конторских помещений, лабораториях.	93	79	70	63	58	55	52	50	49	60
3. Работа, выполняемая с часто получаемыми указаниями и акустическими сигналами, работа, требующая постоянного слухового контроля, операторская работа по точному графику с инструкцией, диспетчерская работа: рабочие места в помещениях диспетчерской службы, кабинетах и помещениях наблюдения и дистанционного управления с речевой связью по телефону, машинописных бюро, на участках точной сборки, на телефонных и телеграфных станциях, в помещениях мастеров, в залах обработки информации на вычислительных	96	83	74	68	63	60	57	55	54	65
4. Работа требующая сосредоточенности, работа с повышенными требованиями к процессам наблюдения и дистанционного управления производственными циклами: Рабочие места за пультами в кабинах наблюдения и дистанционного управления без речевой связи по телефону, в помещениях лабораторий с шумным оборудованием, в помещениях для размещения шумных агрегатов вычислительных машин.	103	91	83	77	73	70	68	66	64	75
5. Выполнение всех видов работ (за исключением перечисленных в пп. 1-4 и аналогичных им) на постоянных рабочих местах в производственных помещениях и на территории предприятий.	107	95	87	83	78	75	73	71	69	80

Таблица для занесения данных

L f	31,5	63	125	250	500	1000	2000	4000	8000	д $ oldsymbol{L}_{\kappa} $
L_1						78	83	76	63	87
L_2						74	78	71	56,5	82
L_3						70	71	58,5	46,5	78
$\Delta L_{o \delta \pi}$						4	5	5	7	5
$\Delta L_{\kappa o \varkappa c}$						8	12	18	17	9
$L_{\partial on.}$	93	79	70	68	63	55	52	50	49	60

Вывод: при использовании звукоизолирующей обшивки защита от шума есть но она малоэффективна.

Производственный шум

Шум — сочетание различных по частоте и силе звуков

Звук — колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения.

Слышимый шум — 20 - 20000 Гц, ультразвуковой диапазон

- свыше 20 к Γ ц, инфразвук меньше 20 Γ ц, устойчивый слышимый звук 1000 Γ ц 3000 Γ ц
 - Вредное воздействие шума:
 - □ сердечно-сосудистая система;
 - □ неравная система;
 - □ органы слуха (барабанная перепонка)

Физические характеристики шума

- 1. интенсивность звука J, $[Bт/м^2]$;
- 2. звуковое давление Р, [Па];
- 3. частота f, [Гц]

Интенсивность — кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1 м 2 , перпендикулярно распространению звуковой волны.

Звуковое давление — дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны.

Учитывая протяженный частотный диапазон (20-20000 Γ ц) при оценки источника шума, используется логарифмический показатель, который называется **уровнем интенсивности**. J

- J интенсивность в точке измерения [$B\tau/m^2$]
- J_0 величина, которая равна порогу слышимости $10^{-12}~[{\rm Bt/m}^2]$ При расчетах и нормировании используется показатель уровень **звукового давления**.

Р - звуковое давление в точке измерения [Па];

 P_0 - пороговое значение $2 \square 10^{-5} \ [\Pi a]$

При оценке источника шума и нормировании используется логарифмический уровень звука. Р

[дБА]

$$L_{PA} \square$$
 20 lg P_0

 P_{A} - звуковое давление в точке измерения по шкале A прибора шумомера, т.е. на шкале 1000 Γ ц.

Спектр шума — зависимость уровня звукового давления от частоты.

Спектры бывают: - дискретные; - сплошные; - тональный.

В производственном помещении обычно бывают несколько источников шума.

Для оценки источника шума одинаковых по своему уровню:

$$L_{\square} = L_i + 10 \, lgn$$

 L_i - уровень звукового давления одного из источников [дБ]; n -

кол-во источников шума

Если кол-во источников меняется от 1-100, а $L_i = 80$ дБ

$$=L_{max}+\square L$$

 L_{max} - максимальный уровень звукового давления одного из 2-х источников;

 $\square L$ - поправка, зависящая от разности между тах и \min уровнем давления

$$\begin{array}{c|cccc} L_{max} - L_{min} & 1 & 10 & 20 \\ \hline & \Box L & 2,5 & 0,4 & 0 \\ \end{array}$$

1.1. Звуковое восприятие человеком

Т.к. органы слуха человека обладают неодинаковой чувствительностью к звуковым колебаниям различной частоты, весь диапазон частот на практике разбит на октавные полосы.

Октава — полоса частот с границами f_1 - f_2 , где $f_2/f_1 = 2$.

Среднегеометрическая частота —
$$\mathbf{f}_{\mathrm{CT}} = \begin{pmatrix} \sqrt{f} & \mathbf{f} & \mathbf{f} \\ \mathbf{f} & \mathbf{f} \end{pmatrix}$$

90-180; 180-360 ...

Весь спектр разбит на 8 октавных полос:

45-90;

5600-11200.

взлет самолета — 145-150 дБ; 2 метод. Нормирование по уровню звука. взрыв атомной бомбы — 200 дБ По 1 методу дополнительный уровень звукового давления на раб. местах (смена 8 ч)

устанавливается для октавных полос со средними геом. частотами, т.е. нормируется с учетом спектра.

По 2 методу дополнительный уровень звука на раб. местах устанавливается по общему уровню звука, определенного по шкале А шумометра, т.е. на частоте 1000 Гц.

										Нормы шума
для			Ур	овень	зв. давле	ния [дБ]	Уровень	помещений лабораторий		
		окт. со среднегеом. част. [Гц]							звука, дБА	Доп. уровень звука в жилой
	63	125	125 250 500 1000 2000	4000	8000		застройке с 7 ⁰⁰ -23 ⁰⁰ не более			
	91	83	77	73	70	68	66	44	не более75	40 дБА, с 23 ⁰⁰ -7 ⁰⁰ — 30 дБА.

1.3. Мероприятия по борьбе с шумом

I группа - Строительно-планировочная

II группа - Конструктивная

III группа - Снижение шума в источнике его возникновения

IV группа - Организационные мероприятия

І группа. Строительно-планировочная

Использование определенных строительных материалов связано с этом проектирования. В ИВЦ — акустическая обработка помещения (облицовка пористыми акустическими панелями). Для защиты окружающей среды от шума используются лесные насаждения. Снижается уровень звука от 5-40 дБА. *II группа. Конструктивная*

1. Установка звукоизолирующих преград (экранов). Реализация метода звукоизоляции (отражение энергии звуковой волны). Используются материалы с гладкой поверхностью (стекло, пластик, металл).

Акустическая обработка помещения (звукопоглощение). Можно снизить уровень звука до 45 дБА.

2. Использование объемных звукопоглотителей (звукоизолятор + звукопоглотитель). Устанавливается над значительными источниками звука.

Можно снизить уровень звука до 30-50 дБА.

III группа. Снижение шума в источнике его возникновения

Самый эффективный метод, возможен на этапе проектирования. Используются композитные материалы 2-х слойные. Снижение: 20-60 дБА.

IV группа. Организационные мероприятия

- 1. Определение режима труда и отдыха персонала.
- 2. Планирование раб. времени.
- 3. Планирование работы значительных источников шума в разных источниках.

Снижение: 5-10 дБА.

Если уровень шума не снижается в пределах нормы, используются индивидуальные средства защиты (наушники, шлемофоны).

Приборы контроля: - шумомеры; - виброаккустический комплекс — RFT, ВШВ.

2. Инфразвук

Инфразвук — колебание звуковой волны > 20 Гц.

Природа возникновения инфразвуковых колебаний такая же как и у слышимого звука. Подчиняется тем же закономерностям. Используется такой же математический аппарат, кроме понятия, связанного с уровнем звука.

Особенности: малое поглощение эн., значит распространяется на значительные расстояния.

Источники инфразвука: оборудование, которое работает с частотой циклов менее 20 в секунду.

Вредное воздействие: действует на центр. нервную систему (страх, тревога, покачивание, т.д.)

2.1. Опасность для человека

Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6-8 Гц), следовательно, из-за резонанса могут возникнуть тяжелые последствия.

Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечному ритму. Возможна потеря слуха и зрения.

2.2. Нормирование инфразвука

СН 22-74-80. Нормативным параметром являются логарифмические уровни звукового давления в октавных полосах со ср. геом. частотой:

2, 4, 8, 16 Гц ☐ 105 дБА 32 Гц ☐ 102 дБА

2.3. Защитные мероприятия

- 1. Снижение ин. звука в источнике возникновения.
- 2. Средства индивидуальной защиты.
- 3. Поглошение.

2.4. Приборы контроля

Шумомеры типа ШВК с фильтром ФЭ-2. Виброаккустическая аппаратура типа RFT.

3. Ультразвук

Ультразвук — колебание звуковой волны < к Γ ц.

Используется в оптике (для обезжиривания, ...)

- Низкочастотные ультразвуковые колебания распространяются воздушным и контактным путем.
- Высокочастотные контактным путем.

Вредное воздействие — на сердечно-сосудистую систему; нервную систему; эндокринную систему; нарушение терморегуляции и обмена веществ. Местное воздействие может привести к онемению.

3.1. Нормирование ультразвука

ГОСТ 12.1.001-89. Нормируются логарифмические уровни звукового давления в октавных полосах:

не более	80 дБА
	90 дБА
	105 дБА
	110 дБА
	не более

3.2. Меры защиты

- 1. Использование блокировок.
- 2. Звукоизоляция (экранирование).
- 3. Дистанционное управление.
- 4. Противошумы.

Приборы контроля: виброаккустическая система типа RFT.

4. Вибрация

Вибрация — механические колебания материальных точек или тел.

Источники вибраций: разное производственное оборудование.

Причина появления вибрации: неуравновешенное силовое воздействие.

Вредные воздействия: повреждения различных органов и тканей; влияние на центральную нервную систему; влияние на органы слуха и зрения; повышение утомляемости.

Более вредная вибрация, близкая к собственной частоте человеческого тела (6-8 Гц) и рук (30-80 Гц).

4.1. Основные характеристики

- 1. Колебательная скорость: V, м/с
- 2. Частота колебаний: f, Гц
- 3. Ср. квадратичное значение колебательной скорости в соответствии полосе частот: Vc, м/с
- 4. Логарифм. уровень виброскорости при расчетах и нормировании: $L_V=20 \lg V_C/V_0$ [дБ]

 V_0 - пороговое значение колебательной скорости ($V_0 = 5 \square 10^{-8} \text{ м/c}$)

По способу передачи вибрации на человека: - общая; - локальная (ноги или руки).

По источнику возникновения: - транспортная; - технологическая; - транспортно-технологическая.

4.2. Нормирование вибрации

І направление. Санитарно-гигиеническое.

II направление. Техническое (защита оборудования).

ГОСТ 12.1.012-90 ССБТ Вибрационная безопасность.

Октава
$$f_1 \square \square f_2$$
, $f_2/f_1=2$, $f_{CP}=$ $\sqrt{f_1 f_1}$

При санитарно-гигиеническом нормировании разных видов вибрации используется логарифмический уровень виброскорости в октавных полосах ср. геом. частот. Граничные частоты октавных полос:

$$1,4-2,8$$
 $2,8-5,6$ $5,6-11,2$... $45-90$ 2 4 8 63 ср. геом. частоты

4.3. Методы снижения вибрации

- 1. Снижение вибрации в источнике ее возникновения.
- 2. Конструктивные методы (виброгашение, виброденфирование подбор опр. видов материалов, виброизоляция).
- 3. Организационные меры. Организация режима труда и отдыха.
- 4. Использование ср-в инд. защиты (защита опорных пов-тей)

4.4. Спектр электромагнитного излучения

