Introdução a Redes Neurais Artificiais com a biblioteca Encog em Java

Apresentação

- Graduada em Sistemas de Informação –
 FAP/Parnaíba
- Mestranda do Programa de Pós-Graduação em Engenharia da Eletricidade - UFMA

Roteiro

- Introdução
- Redes Neurais Artificiais
- Neurônio Biológico
- Neurônio Artificial
- Funções de Ativação
- Estruturas das RNAs
- Aprendizado em RNAs
- Regras de Aprendizagem
- Rede Perceptron Simples
- A biblioteca Encog

Introdução

- O cérebro resolve problemas de maneira inata
- Desejo de construir artefatos de comportamento inteligente
- Dificuldades de tratar informações imprecisas e incompletas

Redes Neurais Artificiais

"São modelos computacionais inspirados no sistema nervoso de seres vivos. Possuem a capacidade de aquisição e manutenção de conhecimento e podem ser definidas como um conjunto de unidades de processamento, que são interligados por um grande número interconexões, sendo as mesmas representadas por vetores/matrizes de pesos sinápticos."Silva(2010)

Redes Neurais Artificiais

- Baseada no neurônio biológico
- Grande capacidade de aprendizado e generalização
- Processamento paralelo
- Técnica estatística não linear
- Abordagem conexionista

Áreas relacionadas da IA

Principais tarefas realizadas pela RNAs

- Classificação
- Agrupamento
- Regressão numérica
- Predição
- Reconhecimento de Padrões

Interesse em usar RNAs

- Classificação e predição do câncer com base do perfil genético;
- Diagnóstico de doenças no coração;
- Sistemas de controle de tratamento da água;
- Previsão de ações do mercado financeiro;
- Classificação de fontes de corrente harmônico em sistemas de distribuição de energia;

Histórico das RNAs

- Modelo neurônio artificial por McCulloch & Pitts (1943)
- Regra de aprendizado de Hebb (1949)
- O modelo Perceptron de Rosenblatt (1958)
- Descoberta da limitação do Perceptron por Minsky e Papert (1969)
- Abordagem de energia de Hopfield (1982)
- Algoritmo de aprendizagem Backpropagation para redes Perceptron Múltiplas Camadas por Rumelhart (1986)

Neurônio Biológico

Neurônio Biológico

- Corpo celular ou Soma Produz um potencial de ativação que indicará se o neurônio poderá disparar um impulso elétrico ao longo do axônio.
- **Dendritos -** Responsáveis pela captação, de forma contínua, dos estímulos vindos de diversos outros neurônios.
- Axônio Formado por um único prolongamento, têm por função conduzir os impulso elétricos para os outros neurônios conectores chegando até os dendritos.
- Sinapses Que se configuram como as conexões que viabilizam a transferência de impulsos elétricos do axônio de um neurônio para os dendritos dos outros.

Neurônio Biológico

Neurônio Artificial

- Os **sinais de entrada** representados pelo conjunto $\{x_1, x_2, ..., x_n\}$, equivalem aos impulsos elétricos externos captados pelos dendritos.
- As **sinapses** são representadas pelas penderações sinápticas ajustadas em $\{w_1, w_2, ..., w_n\}$.
- Dopotencial de ativação u determinado pela função soma, equivale ao corpo celular.
- A saída propagada pelo axônio é representada por y.

Neurônio Artificial

Função linear \longrightarrow g(u) = u

Função degrau $\longrightarrow g(u) = \begin{cases} 1 & se (u \ge 0) \\ 0 & se (u < 0) \end{cases}$

Função degrau bipolar

$$g(u) = \begin{cases} 1 & se (u > 0) \\ 0 & se (u = 0) \\ -1 & se (u < 0) \end{cases}$$

$$g(u) = \begin{cases} 1 & se \ (u \ge 0) \\ -1 & se \ (u < 0) \end{cases}$$

Função logística $g(u) = \frac{1}{1 + e^{-\beta u}}$

$$e = 2,718281 \Rightarrow (Número de Euler)$$

 $\beta = constante de inclinação$

Função tangente hiperbólica $g(u) = \frac{1 - e^{-\beta u}}{1 + e^{-\beta u}}$

Função gaussiana

 $e = 2,718281 \Rightarrow Número de Euler$

 $\sigma \Rightarrow Desvio\ Padrão$

 $c \Rightarrow Centro da Função Gaussiana$

Estruturas das RNAs

» Redes feedforward de camada simples

Este tipo de estrutura é formada por apenas uma camada de entrada e uma única camada de neurônios, que é a mesma camada de saída.

Estruturas das RNAs

» Redes feedforward de camada múltipla

São constituídas pela presença de uma ou mais camadas escondidas de neurônios.

Estruturas das RNAs

Redes recorrentes

São redes em que as saídas dos neurônios são realimentadas como sinais de entrada para outros neurônios.

Aprendizado em RNAs

"A aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo de estimulação pelo ambiente no qual a rede está inserida. O tipo de aprendizagem é determinado pela maneira pela qual a modificação dos parâmetros ocorre." Haykin (2001)

Aprendizado em RNAs

Aprendizado supervisionado

São fornecidos pares de entrada-saída para a rede;

A cada entrada fornecida, a saída é comparada com a saída correta.

Se a saída obtida for diferente da saída correta, os pesos sinápticos são corrigidos.

Aprendizado em RNAs

Aprendizado não-supervisionado

Aprendizagem por reforço

É realizado através de um crítico que procura maximizar as boas ações executadas pela rede neural

Aprendizagem não-supervisionada

Não existe qualquer supervisor ou crítico, são dadas condições para a rede se auto organizar de acordo com uma medida de representação

Regras de Aprendizagem

Aprendizagem por correção de erro

Seu princípio básico é usar o sinal de erro, para modificar os pesos gradualmente.

$$e_k(n) = d_k(n) - y_k(n)$$

Aprendizagem baseada em memória

As experiências são armazenadas em uma grande memória de exemplos de entrada-saída

Aprendizagem competitiva

Os neurônios disputam entre si, único vencedor de saída

Regras de Aprendizagem

Aprendizagem hebbiana

- Dois neurônios ativados sincronamente => Força sináptica ativada
- Dois neurônios ativados assincronamente => Força sináptica enfraquecida

Aprendizagem de boltzman

 Máquina de boltzman derivado da mecânica estatística, distribuição de probabilidade desejada

Estrutura da Rede

Duas entradas

$$y = \begin{cases} 1, se\left(\sum_{i=1}^{n} w_i * xi - \theta\right) \ge 0 \leftrightarrow w_1 * x_1 + w_2 * x_2 - \theta \ge 0 \\ -1, se\left(\sum_{i=1}^{n} w_i * xi - \theta\right) < 0 \leftrightarrow w_1 * x_1 + w_2 * x_2 - \theta < 0 \end{cases}$$

Classificador de padrões linearmente separável

- Processo de ajuste dos pesos
 - η → Constante da taxa de aprendizado (o < η < 1)
 - y → Valor de saída produzida pelo *Perceptron*
 - d^(k) → Valor desejado para k-ésima amostra de treinamento
 - x^(k) → K-ésima amostra de treinamento
 - w → Vetor contendo os pesos (inicialmente gerados aleatoriamente)

Notação matemática: $w^{Atual} = w^{Anterior} + \eta * (d^{(k)} - y) * x^{(k)}$

Notação algorítmica: $w = w + \eta * (d^{(k)} - y) * x^{(k)}$

Algoritmo de aprendizagem

```
Início (Algoritmo Perceptron – Fase de Treinamento)
  \ell<1> Obter o conjunto de amostras de treinamento \{x^{(k)}\};
  <2> Associar a saída desejada \{d^{(k)}\} para cada amostra obtida;
  <3> Iniciar o vetor w com valores aleatórios pequenos;
  <4> Especificar a taxa de aprendizagem {η};
  <5> Iniciar o contador de número de épocas {época ← 0};
  <6> Repetir as instruções:
          <6.1> erro ← "inexiste";
          <6.2> Para todas as amostras de treinamento { x^{(k)}, d^{(k)}}, fazer:
                    <6.2.1> u \leftarrow \mathbf{w}^T \cdot \mathbf{x}^{(k)};
                   <6.2.2> y \leftarrow sinal(u);
                    <6.2.3> Se y \neq d^{(k)}
                              <6.2.3.1> Então \begin{cases} \mathbf{w} \leftarrow \mathbf{w} + \eta \cdot (d^{(k)} - y) \cdot \mathbf{x}^{(k)} \\ erro \leftarrow \text{"existe"} \end{cases}
          <6.3> época ← época + 1;
```

Fim {Algoritmo Perceptron - Fase de Treinamento}

Até que: erro ← "inexiste"

Algoritmo de aprendizagem

Início (Algoritmo Perceptron – Fase de Operação)

```
<1> Obter uma amostra a ser classificada { x };
<2> Utilizar o vetor w ajustado durante o treinamento;
<3> Executar as seguintes instruções:
<3.1> u \leftarrow w^T \cdot x;
<3.2> y \leftarrow \text{sinal}(u);
<3.3> Se y = -1
<3.3.1> Então: amostra x \in \{Classe A\}
<3.4> Se y = 1
<3.4.1> Então: amostra x \in \{Classe B\}
```

Fim {Algoritmo Perceptron – Fase de Operação}

- Exemplo de aplicação
- Porta lógica OR

Sinal 1 (x)	Sinal 2 (y)	Saída (x <i>OR</i> y)
О	О	o (Vermelho)
О	1	1 (Verde)
1	0	1 (Verde)
1	1	1 (Verde)

- Exemplo de aplicação
- Porta lógica OR

» Não classifica (não linearmente separável)

XOR -> Não linearmente separável

Sinal 1 (x)	Sinal 2 (y)	Saída (x XOR y)
0	0	o (Vermelho)
0	1	1 (Verde)
1	0	1 (Verde)
1	1	o (Vermelho)

XOR -> Não linearmente separável

Exemplo

X ₁ (Fósforo - mg)	X ₂ (Acidez - mg)	X ₃ (Cálcio - mg)	Classe (1 = tangerina) (-1 = laranja)	
0,1	0,4	0,7	1	
0,5	0,7	0,1	1	
0,6	0,9	0,8	(-1)	A CHARLES OF THE SECOND
0,3	0,7	0,2	(-1)	

Exemplo

$$w = \begin{bmatrix} 0,34 \\ -0,23 \\ 0,94 \\ 0,05 \end{bmatrix} \qquad \eta = 0,05$$

$$d^{(1)} = 1 \qquad x^{(1)} = \begin{bmatrix} -1 \\ 0,1 \\ 0,4 \\ 0,7 \end{bmatrix}$$

$$d^{(2)} = 1 \qquad x^{(2)} = \begin{bmatrix} -1 \\ 0,5 \\ 0,7 \\ 0,1 \end{bmatrix}$$

$$d^{(3)} = -1 \qquad x^{(3)} = \begin{bmatrix} -1 \\ 0,6 \\ 0,9 \\ 0,8 \end{bmatrix}$$

$$d^{(4)} = -1 \qquad x^{(4)} = \begin{bmatrix} -1 \\ 0,3 \\ 0,7 \\ 0,2 \end{bmatrix}$$

Exemplo - Ajuste dos pesos

$$w = w + \eta * (d^{(k)} - y) * x^{(k)}$$

$$\mathbf{w} = \begin{bmatrix} 0,34 \\ -0,23 \\ 0,94 \\ 0,05 \end{bmatrix} + 0,05 (1 - 1) \begin{bmatrix} -1 \\ 0,6 \\ 0,9 \\ 0,8 \end{bmatrix}$$

Exemplo - Pesos ajustados

Rede Adaline

- Ajustado pelo método dos Mínimos Quadrados dos Erros (LMS – least mean square)
- Essência da regra Delta (ajuste de pesos de redes múltiplas camadas)

Rede Multiplas Camadas

Usa regra delta generalizada ou método gradiente descendente.

Etapas para desenvolver uma aplicação de RNA

- Coleta de dados
- Separação em conjuntos
- Configuração da rede
- Treinamento da rede
- Testes da rede

A biblioteca Encog

"O Encog é um framework da Inteligência Artificial para Java que suporta não só redes neurais como outras áreas da IA. É uma estrutura de aprendizagem de máquina avançada que suporta uma variedade de algoritmos avançados, bem como métodos de apoio para normalizar e processar dados. Algoritmos de aprendizagem de máquina, como Support Vector Machines, Redes Neurais Artificiais, redes Bayesianas e algoritmos genéticos são suportados." [Heaton 2011]

Instalação

Para instalar é necessário baixar a última versão do Encog no seguinte link:

http://www.heatonresearch.com/encog/

Depois é só extrair os seguintes arquivos em um local desejado e incluir o caminho das bibliotecas ao usar uma IDE.

The Encog Core

The Encog Examples

The Encog Workbench

O Encog está estruturado em camadas, sinapses, propriedades, classe lógica neural e funções de ativação.

Camada de entrada:

MLData – Interface usada para definir que classes mantém esses arrays de dados de entrada. O array pode ser convertido em um objeto MLData, através do seguinte código:

MLData data = new BasicMLData (input);

- Camada de entrada:
- A classe **BasicMLData** implementa a interface **MLData**.
- Existem outras classes que implementam o **MLData** para diferentes tipos de entrada de dados.
- Camada de saída:
- Utiliza a mesma estrutura da camada de entrada, um array **BasicMLData**.

- Configuração da rede:
- A classe **BasicNetwork** implementa uma rede neural.
- Implementa as interfaces **MLProperties** e **MLMethod** que definem o tipo de aprendizado de máquina e suas propriedades.

- Configuração da rede:
- A classe **BasicLayer** implementa as funcionalidades básicas das camadas.
- Implementa a interface **Layer** que define todos os métodos necessários a uma camada.

- Treinamento da rede:
- A classe MLDataSet e BasicMLDataSet configuram as entradas e saídas ideais da rede.

MLDataSet trainingSet = new BasicMLDataSet(input, ideal);

- Treinamento da rede:
- Os métodos de treinamento podem ser utilizados através da interface **MLTrain**, aqui todos os métodos de treinamento implementam essa interface.

- Treinamento da rede:
- Backpropagation
- ResilientPropagation
- ManhattanPropagation
- QuickPropagation
- ScaledConjugateGradient
- LevenbergMarquardtTraining

- Teste da rede:
- O teste da rede ocorre através das classes **MLDataPair** que recebe os pares de entrada e saída do treinamento e a classe **MLData** que computa os respectivas saídas da rede, dado somente os dados de entrada e a rede treinada.

- Algoritmo simplicado:
- Apresentação de um padrão X a rede, a qual fornece a saída;
- Calculo do erro (diferença entre o valor desejado e a saída) para cada saída;
- Determinação do erro pela rede associado a derivada parcial do erro quadrático;
- 4. Ajuste dos pesos de cada elemento;
- Por fim, um novo padrão é apresentado a rede e o processo é repetido até que ocorra a convergência (erro < tolerância estabelecida) ou o número de interações atinja a um valor máximo estabelecido;

Definição dos dados:

```
//Entrada necessária para o XOR
public static double XOR_INPUT[][] = {{1.0,0.0}, {0.0,0.0}, {0.0,1.0},
{1.0,1.0}};
// Dados ideais necessários para XOR
public static double XOR_IDEAL[][] = {{1.0}, {0.0}, {1.0}, {0.0}};
```


Configuração da rede neural

```
//Cria a rede neural
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(null,true,2));
network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 2));
network.addLayer(new BasicLayer(new ActivationSigmoid(),true,1));
network.getStructure().finalizeStructure();
network.reset();
```


Treinamento da rede neural

```
//Cria dados de treinamento
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
//Treinamento da rede neural
final Backpropagation train = new Backpropagation (network, trainingSet,
0.7, 0.3);
//Inicializo o numero de épocas
int epoch = 1;
//Interação de treinamento da rede
do {
  train.iteration();
  System.out.println("Epoch #" + epoch +"Error: " + train.getError());
                                                   NESPI-CEEN
  epoch++;
} while(train.getError() > 0.01);
```

Teste da rede neural

Bibliografia

SILVA, I. N.; Redes Neurais Artificiais para engenharia e ciências aplicadas. HEATON, J.; Programming Neural Networks with Encog₃ in Java.

PROGRAMMING
NEURAL NETWORKS WITH

ENCOG 3

JAVA

JEFF HEATON

Heaton Research

HAYKIN, S.; Redes Neurais: Princípios e práticas

Obrigada pela atenção!

- Contato:
- rachel.msousanet@gmail.com

