Décodage de codes polaires sur des architectures programmables

Mathieu Léonardon

13 Décembre 2018

Introduction

Mathieu Léonardon mathieu.leonardon@ims-bordeaux.fr

Chaîne de communication

Message transmis au travers d'un canal de communication

- Message transmis au travers d'un canal de communication
- Nécessité d'une modulation

- Message transmis au travers d'un canal de communication
- Nécessité d'une modulation
- Modèle simplifié

- Message transmis au travers d'un canal de communication
- Nécessité d'une modulation
- Modèle simplifié
- Correction d'erreurs par ajout de redondance (N > K)

- Message transmis au travers d'un canal de communication
- Nécessité d'une modulation
- Modèle simplifié
- Correction d'erreurs par ajout de redondance (N > K)
- Le cas des codes polaires

- 1948 : Théorie de l'information (Shannon)
- 1950 : Codes de Hamming
- 1955 : Codes convolutifs
- 1960 : Codes BCH
- 1960 : Codes Reed-Solomon
- 1960 : Codes LDPC
- 1966 : Codes concaténés (Forney)
- 1993 : Codes turbos
- 1996 : LDPC rediscovery
- 2008 : Codes polaires

Matrice d'encodage

- Matrice d'encodage
- Bits gelés

- Matrice d'encodage
- Bits gelés
- Mot de code : x_i

- Matrice d'encodage
- Bits gelés
- Mot de code : x_i
- Graphe de factorisation

- Matrice d'encodage
- Bits gelés
- Mot de code : x_i
- Graphe de factorisation

- Estimations : LLR
- Signe: valeur binaire la plus probable
- Valeur absolue : fiabilité de l'information

 L : Log Likelihood Ratios (LLR)

 L : Log Likelihood Ratios (LLR)

- L : Log Likelihood Ratios (LLR)
- s : Sommes Partielles

$$f(L_a,L_b) pprox \mathrm{sign}(L_a.L_b).\min(|L_a|,|L_b|)$$

$$g(L_a, L_b, \hat{s}_a) = (1 - 2\hat{s}_a)L_a + L_b$$

$$exttt{R1}(L_a) = \left\{egin{array}{l} 0 ext{ si } L_a \geqslant 0 \ 1 ext{ si } L_a < 0 \end{array}
ight.$$

$$h(\hat{\mathbf{s}}_a,\hat{\mathbf{s}}_b)=(\hat{\mathbf{s}}_a\oplus\hat{\mathbf{s}}_b,\hat{\mathbf{s}}_b)$$

Le décodage SC

Le décodage SC

 Pas de décision dure

- Pas de décision dure
- **Duplication des** chemins

- Pas de décision dure
- Duplication des chemins
- Métrique de chemins

- Pas de décision dure
 - Duplication des chemins
- Métrique de chemins
- Tri des métrique
 & élimination

- Pas de décision dure
- Duplication des chemins
- Métrique de chemins
- Tri des métrique
 & élimination
- Mot de code décodé

Vérification

CRC

Distance faible des codes polaires

Performances de décodage

Mathieu Léonardon

mathieu.leonardon@ims-bordeaux.fr

Élagage de l'arbre

Algorithme	Performances	Débit	Latence
de décodage	BER & FER		Maximum
SC	faibles	haut	faible
SCL	moyennes	bas	moyenne
CASCL	élevées	bas	moyenne
Adaptive-SCL	élevées	haut	forte

Résumé

- Chaîne de communications
- Role des codes correcteurs d'erreurs
- Codes polaires
- Algorithme de décodage SC
- Algorithme de décodage SCL (et CASCL)
- Compromis entre performances de décodage, débit et latence