# **Complex Analysis**

# D. Zack Garza

# February 8, 2020

# **Contents**

| 1  | Friday January 10                                              | 1               |
|----|----------------------------------------------------------------|-----------------|
| 2  | Monday January 13th                                            | 3               |
| 3  | Wednesday January 15th 3.1 Topology and Algebra of $\mathbb C$ | <b>4</b> 5      |
| 4  | Friday January 17th                                            | 6               |
| 5  | Wednesday January 22nd                                         | 9               |
| 6  | Friday January 24th                                            | 11              |
| 7  | Monday January 27th                                            | 14              |
| 8  | Wednesday January 29th                                         | 18              |
| 9  | Friday January 31st                                            | 21              |
| 10 | Monday February 3rd                                            | 22              |
| 11 | Wednesday February 5th                                         | 27              |
| 12 | Friday February 7th                                            | 32              |
| 13 | Appendix13.1 Useful Techniques13.2 Residues                    | <b>34</b> 36 36 |
|    |                                                                |                 |

# 1 Friday January 10

Recall that  $\mathbb C$  is a field, where  $z=x+iy \implies \overline z=x-iy$ , and if  $z\neq 0$  then  $z^{-1}=\overline z/|z|^2$ . **Lemma (Triangle Inequality:**  $|z+w|\leq |z|+|w|$  Proof:

$$(|z| + |w|)^2 - |z + w|^2 = 2(|z\overline{w}| - \Re z\overline{w}) \ge 0.$$

Lemma (Reverse Triangle Inequality):  $||z| - |w|| \le |z - w|$ .

Proof:

$$|z| = |z - w + w| \le |z - w| + |w| \implies |w| - |z| \le |z - w| = |w - z|.$$

**Claim:**  $(\mathbb{C}, |\cdot|)$  is a normed space.

**Definition:**  $\lim z_n = z \iff |z_n - z| \to 0 \in \mathbb{R}$ .

**Definition:** A disc is defined as  $D_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| < r\}$ , and a subset is open iff it contains a disc. By convention,  $D_r$  denotes a disc about  $z_0 = 0$ .

**Definition:**  $\sum_k z_k$  converges iff  $S_N := \sum_{|k| < N} z_k$  converges.

Note that  $z_n \to z$  and  $z_n = x_n + iy_n$ , and

$$|z_n - z| = \sqrt{(x_n - x)^2 - (y_n - y)^2} < \varepsilon \implies |x - x_n|, |y - y_n| < \varepsilon.$$

Since  $\mathbb{R}$  is complete iff every Cauchy sequence converges iff every bounded monotone sequence has a limit.

Note: This is useful precisely when you don't know the limiting term.

Note that  $\sum_{k} z_k$  thus converges if  $\left| \sum_{k=m}^{n} z_k \right| < \varepsilon$  for m, n large enough, so sums converges iff they have small tails

**Definition:**  $S_N = \sum_{k=1}^{N} z_k$  converges absolutely iff  $\tilde{S} := \sum_{k=1}^{N} |z_k|$  converges.

Note that the partial sums  $\sum_{k=1}^{N} |z_k|$  are monotone, so  $\tilde{S}_N$  converges iff the partial sums are bounded above.

**Definition:** A sum of the form  $\sum_{k=0}^{\infty} a_k z_k$  is a power series.

Examples:

$$\sum x^{k} = \frac{1}{1 - x}$$
$$\sum (-x^{2})^{k} = \frac{1}{1 + x^{2}}.$$

Note that both of these have a radius of convergence equal to 1, since the first has a pole at x = 1 and the second as a pole at x = i.

### 2 Monday January 13th

Recall that  $\sum z_k$  converges iff  $s_n = \sum_{k=1}^n z_k$  converges.

Lemma: Absolute convergence implies convergence.

The most interesting series:  $f(z) = \sum a_k z^k$ , i.e. power series.

**Divergence lemma:** If  $\sum z_k$  converges, then  $\lim z_k = 0$ .

Corollary: If  $\sum z_k$  converges,  $\{z_k\}$  is uniformly bounded by a constant C > 0, i.e.  $|z_k| < C$  for all k.

**Proposition:** If  $\sum a_k z_k$  converges at some point  $z_0$ , then it converges for all  $|z| < |z|_0$ .

The inequality is necessarily strict. For example,  $\sum \frac{z^{n-1}}{n}$  converges at z=-1 (alternating harmonic series) but not at z=1 (harmonic series).

*Proof:* Suppose  $\sum a_k z_1^k$  converges. The terms are uniformly bounded, so  $\left|a_k z_1^k\right| \leq C$  for all k. Then we have

$$|a_k| \le C/|z_1|^k$$

, so if  $|z| < |z_1|$  we have

$$\left| a_k z^k \right| \le |z|^k \frac{C}{|z_1|^k} = C(|z|/|z_1|)^k.$$

So if  $|z| < |z_1|$ , the parenthesized quantity is less than 1, and the original series is bounded by a geometric series. Letting  $r = |z|/|z_1|$ , we have

$$\sum \left| a_k z^k \right| \le \sum c r^k = \frac{c}{1 - r},$$

and so we have absolute convergence.

Exercise (future problem set): Show that  $\sum \frac{1}{k} z^{k-1}$  converges for all |z| = 1 except for z = 1. (Use summation by parts.)

Definition The radius of convergence is the real number R such that  $f(z) = \sum a_k z^k$  converges precisely for |z| < R and diverges for |z| > R. We denote a disc of radius R centered at zero by  $D_R$ . If  $R = \infty$ , then f is said to be *entire*.

**Proposition:** Suppose that  $\sum a_k z^k$  converges for all |z| < R. Then  $f(z) = \sum a_k z^k$  is continuous on  $D_R$ , i.e. using the sequential definition of continuity,  $\lim_{z \to z_0} f(z) = f(z_0)$  for all  $z_0 \in D_R$ .

Recall that  $S_n(z) \to S(z)$  uniformly on  $\Omega$  iff  $\forall \varepsilon > 0$ , there exists a  $M \in \mathbb{N}$  such that  $n > M \Longrightarrow |S_n(z) - S(z)| < \varepsilon$  for all  $z \in \Omega$ 

Note that arbitrary limits of continuous functions may not be continuous. Counterexample:  $f_n(x) = x^n$  on [0,1]; then  $f_n \to \delta(1)$ . Note that it uniformly converges on  $[0,1-\varepsilon]$  for any  $\varepsilon > 0$ . Exercise: Show that the uniform limit of continuous functions is continuous.

Hint: Use the triangle inequality.

Proof of proposition: Write  $f(z) = \sum_{k=0}^{N} a_k z^k + \sum_{N+1}^{\infty} a_k z^k := S_N(z) + R_N(z)$ . Note that if |z| < R, then there exists a T such that |z| < T < R where f(z) converges uniformly on  $D_T$ .

Check!

We need to show that  $|R_N(z)|$  is uniformly small for |z| < s < T. Note that  $\sum a_k z^k$  converges on  $D_T$ , so we can find a C such that  $|a_k z^k| \le C$  for all k. Then  $|a_k| \le C/T^k$  for all k, and so

$$\left| \sum_{k=N+1}^{\infty} a_k z^k \right| \le \sum_{k=N+1}^{\infty} |a_k| |z|^k$$

$$\le \sum_{k=N+1}^{\infty} (c/T^k) s^k$$

$$= c \sum_{k=N+1}^{\infty} |s/T|^k$$

$$= c \frac{r^{N+!}}{1-r} = C\varepsilon_n \to 0,$$

which follows because 0 < r = s/T < 1.

So  $S_N(z) \to f(z)$  uniformly on |z| < s and  $S_N(z)$  are all continuous, so f(z) is continuous.

There are two ways to compute the radius of convergence:

- Root test:  $\lim_{k} |a_k|^{1/k} = L \implies R = \frac{1}{L}$ .
- Ratio test:  $\lim_{k} |a_{k+1}/a_k| = L \implies R = \frac{1}{L}$ .

As long as these series converge, we can compute derivatives and integrals term-by-term, and they have the same radius of convergence.

# 3 Wednesday January 15th

See references: Taylor's Complex Analysis, Stein, Barry Simon (5 volume set), Hormander (technically a PDEs book, but mostly analysis)

Good Paper: Hormander 1955

We'll mostly be working from Simon Vol. 2A, most problems from from Stein's Complex.

#### 3.1 Topology and Algebra of $\mathbb C$

To do analysis, we'll need the following notions:

- 1. Continuity of a complex-valued function  $f: \Omega \to \Omega$
- 2. Complex-differentiability: For  $\Omega \subset \mathbb{C}$  open and  $z_0 \in \Omega$ , there exists  $\varepsilon > 0$  such that  $D_{\varepsilon} = \{z \mid |z z_0| < \varepsilon\} \subset \Omega$ , and f is **holomorphic** (complex-differentiable) at  $z_0$  iff

$$\lim_{h \to 0} \frac{1}{h} (f(z_0 + h) - f(z_0))$$

exists; if so we denote it by  $f'(z_0)$ .

Example: f(z) = z is holomorphic, since f(z+h) - f(z) = z + h - z = h, so  $f'(z_0) = \frac{h}{h} = 1$  for all  $z_0$ .

Example: Given  $f(z) = \overline{z}$ , we have  $f(z+h) - f(z) = \overline{h}$ , so the ratio is  $\frac{\overline{h}}{h}$  and the limit doesn't exist. Note that if  $h \in \mathbb{R}$ , then  $\overline{h} = h$  and the ratio is identically 1, while if h is purely imaginary, then  $\overline{h} = -h$  and the limit is identically -1.

We say f is holomorphic on an open set  $\Omega$  iff it is holomorphic at every point, and is holomorphic on a closed set C iff there exists an open  $\Omega \supset C$  such that f is holomorphic on  $\Omega$ .

If f is holomorphic, writing  $h = h_1 + ih_2$ , then the following two limits exist and are equal:

$$\lim_{h_1 \to 0} \frac{f(x_0 + iy_0 + h_1) - f(x_0 + iy_0)}{h_1} = \frac{\partial f}{\partial x}(x_0, y_0)$$

$$\lim_{h_2 \to 0} \frac{f(x_0 + iy_0 + ih_2) - f(x_0 + iy_0)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(x_0, y_0)$$

$$\implies \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

So if we write f(z) = u(x, y) + iv(x, y), we have

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{(x_0, y_0)} = \frac{1}{i} \left( \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \Big|_{(x_0, y_0)},$$

and equating real and imaginary parts yields the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

$$\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

The usual rules of derivatives apply:

$$1. \ (\sum f)' = \sum f'$$

Proof: Direct.

2.  $(\prod f)' = \text{product rule}$ 

Proof: Consider (f(z+h)g(z+h)-f(z)g(z))/h and use continuity of g at z.

3. Quotient rule

Proof: Nice trick, write 
$$q = \frac{f}{g}$$
 so  $qg = f$ , then  $f' = q'g + qg'$  and  $q' = \frac{f'}{g} - \frac{fg'}{g^2}$ .

4. Chain rule

Proof: Use the fact that if f'(g(z)) = a, then

$$f(z+h) - f(z) = ah + r(z,h), \quad |r(z,h)| = o(|h|) \to 0.$$

Write b = g'(z), then

$$f(g(z+h)) = f(g(z) + bh + r_1) = f(g(z)) + f'(g(z))bh + r_2$$

by considering error terms, and so

$$\frac{1}{h}(f(g(z+h)) - f(g(z))) \to f'(g(z))g'(z)$$

4 Friday January 17th

Reference: See Lang's Complex Analysis, there are plenty of solution manuals.

Let  $f: \Omega \to \mathbb{C}$  be a complex-valued function. Recall that f is *complex differentiable* iff the usual ratio/limit exists. Note that h = x + iy and  $h \to 0 \iff x, y \to 0$ .

We can write  $f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$ . This follows from Cauchy-Riemann since  $u_x = v_y$  and  $u_y = -v_x$ .

Definition: We want to define  $\partial$ ,  $\overline{\partial}$  operators. We have the identities

$$x = \frac{z + \overline{z}}{z}$$
  $y = \frac{z - \overline{z}}{iz}$ .

We can then write

$$dz = dx + idy$$
$$d\overline{z} = dx - idy.$$

We define the dual operators by  $\left\langle \frac{\partial}{\partial z},\ dz \right\rangle = 1$  and similarly  $\left\langle \frac{\partial}{\partial \overline{z}},\ d\overline{z} \right\rangle = 1$ . By the chain rule, we can write

6

$$f_z = f_x x_z + f_y y_z$$

$$= \frac{1}{2} f_x + f_y \frac{1}{2i}$$

$$= \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f,$$

and similarly  $f_{\overline{z}} = f_x x_{\overline{z}} + f_y z_{\overline{z}} = \frac{1}{2} \left( \frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y} \right) f$ .

We thus find  $\partial_x = \partial_z + \partial_{\overline{z}}$  and  $\partial_y = i(\partial_z - \partial_{\overline{z}})$ , and define

$$\partial f = \frac{\partial f}{\partial z} dz$$
$$\overline{\partial} f = \frac{\partial f}{\partial \overline{z}} d\overline{z}$$
$$df = f_z dz + f_{\overline{z}} d\overline{z}.$$

Proposition: f is holomorphic iff  $f_{\overline{z}} = 0$ .

This means that f depends on z alone and not  $\overline{z}$ .

Proof: 
$$\overline{\partial} f = 0 \text{ iff } \frac{1}{2} (f_x + i f_y) = 0, \text{ so } (u_x - v_y) + i (v_x + u_y) = 0.$$

Application to PDEs: We can write  $u_{xx} = v_{xy}$ ,  $u_{yy} = v_{yx}$  and so  $u_{xx} + u_{yy} = 0 = v_{xx} + v_{yy}$ . Thus  $\Delta f = 0$ , and f satisfies Laplace's equation and is said to be harmonic.

Corollary: If f is analytic, then u, v are both harmonic functions.

**Theorem (Chain Rule):** Let w = f(z) and g(w) = g(f(z)). Then

$$h_z = g_w f_z + g_{\overline{w}} \overline{f}_z$$
$$h_{\overline{z}} = g_w f_{\overline{z}} + g_{\overline{w}} \overline{f}_{\overline{z}}.$$

If f, g are holomorphic,  $f_{\overline{z}} = g_{\overline{w}} = 0$ , so  $h_{\overline{z}} = 0$  and h is holomorphic and  $h_z = g_w f_z$ .

Example: Given a power series  $f = \sum a_n(z-z_0)^n$ . Then

- 1. There exists a radius of convergence R such that f converges precisely on  $D_R(z_0)$ .
- 2. f is continuous on  $D_R(z_0)^{\circ}$ .
- 3. By the root test,  $R = (\limsup |a_n|^{1/n})^{-1} = \liminf |a_n/a_{n+1}| = (\limsup |a_{k+1}/a_k|)^{-1}$ .

Recall the ratio test:  $\sum a_k$  converges absolutely iff  $\limsup |a_{k+1}/a_k| < 1$ 

**Theorem:** If  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  is holomorphic on |z| < R for R > 0 then  $f'(z) = \sum_{n=0}^{\infty} a_n n z^{n-1}$ .

Exercise: Show  $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$ . Also tricky: show  $\lim_{n \to \infty} \sin(n)$  doesn't exist, and  $\sin(n)$  is dense in [-1,1].



Figure 1: Image

Proof: Consider  $\limsup |a_n n|^{\frac{1}{n}}$ .

Remark: An analytic function is holomorphic in its domain of convergence, so analytic implies holomorphic. The converse requires Cauchy's integral formula.

Note: look for 13 equivalent statements, Springer GTM Lipman.

Proof: Given |z| < R, fix r > 0 such that |z| < r < R. Suppose that |w - z| < r - |z|, so |w| < r.

We want to show

$$|S| = \left| \frac{f(w) - f(z)}{w - z} - \sum_{n=1} a_n n z^{n-1} \right| \to 0 \text{ as } w \to z.$$

Idea: write everything in terms of power series. Use the fact that  $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots)$ , and so  $\left|(w^k-z^k)/(w-z)\right|\leq kr^{k-1}$ .

$$S = \sum_{n=1}^{\infty} a_n \left( \frac{w^n - z^n}{w - z} - nz^{n-1} \right)$$

$$= \sum_{n=1}^{\infty} a_n \left( w^{n-1} + w^{n-2}z + \dots + z^{n-1} + nz^{n-1} \right)$$

$$= \sum_{n=2}^{\infty} a_n \left( (w^{n-1} - z^{n-1}) + (w^{n-2} - z^{n-2})z + \dots + (w - z)z^{n-2} \right) = \sum_{n=2}^{\infty} a_n (w - z) \left( \dots + z^{n-2} \right)$$

$$\leq \sum_{n=2}^{\infty} |a_n| \frac{1}{2} n(n-1) r^{n-2} |z - w|.$$

Next time: trying to prove holomorphic functions are analytic.

### 5 Wednesday January 22nd

Note: multiple complex variables, see Hormander or Steven Krantz

Recall from last time that if  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  with  $z_0 \neq 0$  has radius of convergence R =

 $(\limsup |a_n|^{1/n})^{-1} > 0$ , then f' exists and is obtained by differentiating term-by-term. We have f analytic implies f holomorphic (and smooth), we want to show the converse. For this, we need integration.

**Definition:** A parameterized curve is a function z(t) which maps a closed interval  $[a,b] \subset \mathbb{R}$  to  $\mathbb{C}$ .

**Definition:** The curve is said to be smooth iff z' exists and is continuous on [a, b], and  $z'(t) \neq 0$  for any t. At the boundary  $\{a, b\}$ , we define the derivative by taking one-sided limits.

**Definition:** A curve is said to be piecewise smooth iff z(t) is continuous on [a, b] and there are  $a < a_1 < \cdots < a_n = b$  with z smooth on each  $[a_k, a_{k+1}]$ .

Note: may fail to have tangent lines at  $a_i$ .

**Definition:** Two parameterizations  $z:[a,b]\to\mathbb{C}, \tilde{z}:[c,d]\to\mathbb{C}$  are equivalent iff there exists a  $C^1$  bijection  $s:[c,d]\to[a,b]$  where  $s\mapsto t(s)$  such that s'>0 and  $\tilde{z}(s)=z(s(t))$ .

Note that s' > 0 preserves orientation and s' < 0 reverses orientation.

#### **Definition:**

$$\gamma: [a,b] \to \mathbb{C} \implies \gamma^- := [a,b] to \mathbb{C}, \ t \mapsto \gamma(a+b-t).$$

**Definition:** A curve is closed iff z(a) = z(b), and is simple iff  $z(t) \neq z_{t_1}$  for  $t \neq t_1$ .

**Definition:** For  $C_r(z_0) := \{z \mid |z - z_0| = r\}$ , the positive orientation is given by  $z(t) = z_0 + re^{2\pi i t}$  for  $t \in [0, 1]$ .

**Definition:** The integral of f over  $\gamma$  is defined as

$$\int_{\gamma} f \ dz = \int_{a}^{b} f(z(t))z'(t) \ dt.$$

Note: This doesn't depend on parameterization, since if t = t(s), then a change of variables yields

$$\int_{\gamma} f \ dz - \int_{c}^{d} f(z(t(s))) \ z'(t(s)) \ t'(s) \ ds = \int_{c}^{d} f(\tilde{z}(s)) \ \tilde{z}'(s) \ ds.$$

**Definition:** The length of  $\gamma$  is defined as  $|\gamma| = \int |z'(t)| dt$ .

#### **Proposition:**

1. We can extend this definition to piecewise smooth curves by

$$\int_{\gamma} f \ dz = \sum \int_{a_k}^{a_{k+1}} f \ dz$$

- 2. This integral is linear and  $\int_{\gamma} f = -\int_{\gamma^{-}} f$ .
- 3. We have an inequality

$$\left| \int_{\gamma} f \right| \le \max_{a \le t \le b} |f(z(t))| |\gamma|.$$

**Definition:** A function F is a primitive for f on  $\Omega$  iff F is holomorphic on  $\Omega$  and F'(z) = f(z) on  $\Omega$ .

Recall that in  $\mathbb{R}$ , we have  $F(x) \int_a^x f(t) dt$  as an antiderivative with F'(x) = f(x), and  $\int f = F(b) - F(a)$ .

**Theorem:** If f is continuous, has a primitive F in  $\Omega$ , and  $\gamma$  is a curve beginning at  $w_0$  and ending at  $w_1$ , then  $\int_{\gamma} f = F(w_1) - F(w_0)$ .

*Proof:* Use definitions, write z(t) where  $z(a) = w_1, z(b) = w_2$ . Then

$$\int_{\gamma} f = \int_{a}^{b} f(z(t))z'(t) dt$$

$$= \int_{a}^{b} F'(z(t))z'(t) dt$$

$$= \int_{a}^{b} F_{t} dt$$

$$= F(z(b)) - F(z(a)) \text{ by FTC}$$

$$= F(w_{1}) - F(w_{2}).$$

Note that if  $\gamma$  is piecewise smooth, the sum of the integrals telescopes to yield the same conclusion.

Corollary: If f is continuous and  $\gamma$  is a closed curve in  $\Omega$ , and f has a primitive in  $\Omega$ , then  $\oint f = 0$ .

### 6 Friday January 24th

Corollary: If  $\gamma$  is a closed curve on  $\Omega$  an open set and f is continuous with a primitive in  $\Omega$  (i.e. an F holomorphic in  $\Omega$  with F' = f) then  $\int_{\gamma} f \ dz = 0$ .

Proof (easy):

$$\int_{\gamma} f \ dz = \int_{\gamma} F' = F'(z)z(t) \ dt = F(z(b)) - F(z(a)) = 0.$$

Corollary: If f is holomorphic with f' = 0 on  $\Omega$ , then f is constant.

Proof (easy): Pick  $w_0 \in \Omega$ ; we want to fix  $w_0 \in \Omega$  and show  $f(w) = f(w_0)$  for all  $w \in \Omega$ .

Take any path  $\gamma: w_0 \to w$ , then

$$0 = \int_{\gamma} f' = f(w) - f(w_0).$$

**Example:** Let  $f(z) = e^{-z^2}$ , this is holomorphic. Write  $f(z) = \sum (-1)^n z^{2n} / n!$ , so  $\int f = \sum (-1)^n z^{2n+1} / (n!(2n+1))$ . Since f is entire,  $\int f$  is entire, and  $(\int f)' = f$  so this function has a primitive. Thus  $\int_{\gamma} f(z) = 0$  for any closed curve. So take  $\gamma$  a rectangle with vertices  $\pm a, \pm a + ib$ .

So

$$\int_{\gamma} f = \int_{-a}^{a} e^{-x^{2}} dx + \int e^{-(a+iy)^{2}} i dy - \int_{-a}^{a} e^{-(x+ib)^{2}} dx - \int_{0}^{b} e^{-(a+iy)^{2}} i dy = 0.$$

We can do some estimates,



Figure 2: Image

$$e^{-(a+iy)^{2}} = e^{-(a^{2}+2iay-y^{2})}$$

$$= e^{-a^{2}+y^{2}}e^{2iay}$$

$$\leq e^{-a^{2}+y^{2}}$$

$$\leq e^{-a^{2}+b^{2}},$$

$$\left| \int_{0}^{b} e^{-(a+ib)^{2}}i \ dy \right| \leq e^{-a^{2}+b^{2}} \cdot b$$

$$\int_{-a}^{a} e^{-(x^{2}+2ibx)-b^{2}} = e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} (\cos(2bx) - i\sin(2bx))$$

$$\stackrel{\text{odd fn}}{=} e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} \cos(2bx) \ dx.$$

Now take  $a \to \infty$  to obtain

$$\int_{\mathbb{R}} e^{-x^2} dx = e^{b^2} \int_{\mathbb{R}} e^{-x^2} \cos(2bx) dx.$$

We can compute

$$\int_{\mathbb{R}} e^{-x^2} = \left[ \left( \int_{\mathbb{R}} e^{-x^2} \right)^2 \right]^{1/2} = \left( \int_0^{2\pi} \int_0^{\infty} e^{r^2} r \ dr \ d\theta \right) = \sqrt{\pi}.$$

and then conclude

$$\int_{\mathbb{R}} e^{-x^2} \cos(2bx) = \sqrt{\pi}e^{-b^2}.$$

Make a change of variables  $2b = 2\pi \xi$ , so  $b = \pi \xi$ , then

$$\int_{\mathbb{R}} e^{-x^2} \cos(2\pi \xi x) \ dx = \sqrt{\pi} e^{-\pi^2 \xi^2}.$$

Thus  $\mathcal{F}(e^{-x^2}) = \sqrt{\pi}e^{-\pi^2\xi^2}$ , allowing computation of the Fourier transform. Note that this can be used to prove the Fourier inversion formula.

Exercise: Show that this is an approximate identity and prove the Fourier inversion formula.

**Exercise:** Show  $\mathcal{F}(e^{-ax^2}) = \sqrt{\pi/a}e^{-\pi^2/a\cdot\xi^2}$ , and thus taking  $a = \pi$  makes  $e^{\pi x^2}$  is an eigenfunction of  $\mathcal{F}$  with eigenvalue 1.

**Theorem:** If f has a primitive on  $\Omega$  then F(z) is holomorphic and  $\int_{\gamma} f = 0$ . If f is holomorphic, then  $\int_{\gamma} f = 0$ .

**Theorem (Green's):** Take  $\Omega \in \mathbb{R}^2$  bounded with  $\partial \Omega$  piecewise smooth. If  $f, g \in C^1\overline{\Omega}$ , then

$$\int_{\partial\Omega} f \ dx + g \ dy = \iint_{\Omega} (g_x - f_y) \ dA.$$

Proof: Not given here!

**Proof of Theorem:** Write  $\gamma = \partial \Gamma$ , and noting that  $f_z = f_x = \frac{1}{i} f_y$  implies that  $\frac{\partial f}{\partial \overline{z}}$ , so

$$\int_{\gamma} f \, dz = \int_{\gamma} f(z) \, (dx + idy)$$

$$= \int_{\gamma} f(z) \, dx + if(z) \, dy$$

$$= \iint_{\Gamma} (if_x - f_y) \, dA$$

$$= i \iint_{\Gamma} \left( f_x - \frac{1}{i} f_y \right) \, dA$$

$$= i \iint_{\Gamma} 0 \, dA = 0.$$

Next class: We'll prove that this integral over any triangle is zero by a limiting process.

# 7 Monday January 27th

Fix a connected domain  $\Omega$  which is bounded with a piecewise  $C^1$  boundary.

**Theorem (Green's):** Given  $f,g\in C^1\overline{\Omega}$ , we can take a vector field  $F=\langle f,g\rangle$  and have

$$\begin{split} &\int_{\partial\Omega} f \ dx + g \ dy = \iint_{\Omega} \left( \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \ dA \\ &\int_{\partial\Omega} -f \ dx + g \ dy = \iint_{\Omega} \left( \frac{\partial g}{\partial x} + \frac{\partial f}{\partial y} \right) \ dA \\ &\int_{\partial\Omega} f \ dy - g \ dy = \iint_{\Omega} \left( \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) \ dA \\ &\int_{\partial\Omega} F \cdot \mathbf{n} \ ds = \iint_{\Omega} \nabla \cdot F \ dA \\ &\int_{\partial\Omega} \mathrm{curl}(F) \ ds = \iint_{\Omega} \mathrm{div}(F) \ dA, \end{split}$$

where we take **n** to be orthogonal to  $\partial\Omega$ . The quantities appearing on the RHS are referred to as the flux.

For  $f(z) \in C^1(\Omega)$  holomorphic, we can then write

$$\int_{\partial\Omega} f \ dz = \int_{\partial\Omega} f \ (dx + idy)$$

$$= \int_{\partial\Omega} f \ dx + if \ dy$$

$$= \iint_{\Omega} (if_x - f_y) \ dA$$

$$= 0.$$

which follows since f holomorphic, we can write  $f'(z) = f_x = \frac{1}{i} f_y$ , so  $i f_x = f_y$  and thus  $\frac{\partial f}{\partial \overline{z}} = 0$ .

See Taylor's Introduction to Complex Analysis

**Theorem (Cauchy's Integral Formula):** If  $f \in C^1(\overline{\Omega})$  and f is holomorphic, then for any  $z \in \Omega$ 

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{d(\xi)}{\xi - z} \ d\xi.$$

*Proof:* Since  $z \in \Omega$  an open set, we can find some r > 0 such that  $D_r(z) \subset \Omega$ . Then  $\frac{f(\xi)}{\xi - z}$  is holomorphic on  $\Omega \setminus D_r(z)$ . Let  $C_r = \partial D_r(z)$ .

Claim 1: 
$$\int_{\partial\Omega} \frac{f(\xi)}{\xi - z} d\xi = \int_{C_r} \frac{f(\xi)}{\xi - z} d\xi.$$

*Proof:* Use the parameterization of  $C_r$  given by  $\xi = z + re^{i\theta}$ . Then

$$\begin{split} \frac{1}{2\pi i} \int_{C_r} \frac{f(\xi)}{\xi - z} \ d\xi &= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z + re^{i\theta})}{re^{i\theta}} \ ird\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) \ d\theta \\ &\stackrel{r \to 0}{\to} \frac{1}{2\pi} \int_{\partial \Omega} \frac{f(\xi)}{\xi - z}. \end{split}$$

where we use the fact that  $f(z + re^{i\theta}) = f(z) + f'(z)re^{i\theta} + o(r) \rightarrow f(z)$ .

Letting  $F(\xi) = f(\xi)/(\xi - z)$ , this is holomorphic on  $\Omega \setminus D_r(z)$ . Let  $\Omega_r = \partial \Omega \bigcup (-C_r)$ . Take the following path integral:

Then

$$0 = \int_{\partial \Omega_n} F(\xi) \ d\xi = \int_{\partial \Omega} F(\xi) \ d\xi - \int_{C_n} F(\xi) \ d\xi,$$

which forces these integrals to be equal.



Figure 3: Image

If we can differentiate through the integral, we can obtain

$$\frac{\partial}{\partial z}f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\xi)}{(\xi - z)^2} d\xi.$$

and thus inductively

$$(D_z)^n f(z) = \frac{n!}{2\pi i} \int_{\partial \Omega} \frac{f(\xi) \ d\xi}{(\xi - z)^{n+1}}.$$

To prove rigorously, need to write

$$\Delta_h f(z) = \frac{1}{h} (f(z+h) - f(z))$$

$$= \frac{1}{2\pi i h} \int_{\partial \Omega} f(\xi) \left( \frac{1}{\xi - (z+h)} - \frac{1}{\xi - z} \right) d\xi = \frac{1}{2\pi i h} \int_{\partial \Omega} f(\xi) \left( \frac{1}{(\xi - z - h)(\xi - z)} \right) d\xi,$$

and show the integrand converges uniformly, where

$$\frac{1}{(\xi - z - h)(\xi - z)} \xrightarrow{u} \frac{1}{(\xi - z)^2}.$$

Continuing inductively yields the integral formula.

Corollary: If f is holomorphic, then  $f \in C^1(\Omega)$  implies that  $f \in C^{\infty}(\Omega)$ .

**Theorem:** If f is holomorphic in  $\Omega$ , then f is equal to its Taylor series (i.e.  $f(z_0)$  is analytic.) Fix  $z_0 \in \Omega$  and let  $r = |z - z_0|$ .

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 - (z - z_0)}$$

$$= \frac{1}{\xi - z_0} \frac{1}{1 - \left(\frac{z - z_0}{\xi - z_0}\right)}$$

$$= \frac{1}{\xi - z_0} \sum_{n} \left(\frac{z - z_0}{\xi - z_0}\right)^n \quad \text{for } |z - z_0| < |\xi - z_0|.$$

Note that  $\sum z^n$  converges uniformly for any  $|z| < \delta < 1$ .

Thus

$$f(z) = \frac{1}{2\pi i} \int_{\xi \in \partial \Omega} f(\xi) \sum \frac{(z - z_0)^n}{(\xi - z_0)^{n+1}} d\xi$$
$$= \sum \left( \frac{1}{2\pi i} \int \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi \right) (z - z_0)^n$$
$$= \sum \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Thus f is holomorphic iff f is analytic.

Counterexample to keep in mind:

$$f(x) = \begin{cases} x^2 & x > 0 \\ 0 & x \le 0 \end{cases}.$$

In the case of  $\mathbb{R}$ , smooth and analytic are very different categories of functions.

Open question: does a PDE involving analytic functions always have solutions? Or does this hold for smooth functions instead?

### 8 Wednesday January 29th

Cauchy integral formula: Let  $f:\Omega\to\mathbb{C}$  be holomorphic, so  $f\in C^1(\overline{\Omega})$ . Then for any  $z\in\Omega$ ,

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\xi)}{\xi - z} d\xi.$$

In general,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

This implies that f is analytic, i.e.  $f(z) = \sum a_n (z-z_0)^n$  where  $a_n = \frac{f^{(n)}(z_0)}{n!}$ . Thus f is holomorphic iff f is analytic,

and

$$\int_{\partial\Omega}f=0 \implies \int_{\partial\Omega_{\gamma}}\frac{f(\xi)}{\xi-z}\;d\xi=0.$$

where  $\Omega_r = \Omega \setminus D_r(z)$ , and  $\partial \Omega_r = \partial \Omega \bigcup (-\partial D_r)$ .

We can thus shrink integrals:

$$\int_{\partial\Omega} f(\xi)/(\xi-z) \ d\xi = \int_{C_r} f(\xi)/(\xi-z) \ d\xi.$$

Proposition: Let  $f \in C^1(\Omega)$  be holomorphic on  $\Omega$ . Let  $\gamma_s(t)$  be a family of smooth curves in  $\Omega$ ; then  $\int_{\gamma_s} f$  is independent of s.

Proof: Write  $\gamma_s(t) = \gamma(s,t) : [a,b] \times [0,1] \to \Omega$ . We have  $\gamma_s(0) = \gamma_s(1)$  so  $\frac{\partial \gamma}{\partial s}(s,0) = \frac{\partial \gamma}{\partial s}(s,1)$ . Then

$$\frac{\partial \gamma}{\partial s} = \int_0^1 \left( f'(r(s,t)) \frac{\partial r}{\partial s} \frac{\partial r}{\partial t} + f(r(s,t)) \frac{\partial^2 \gamma}{\partial s \partial t} \right) dt$$

$$= \int_0^1 \left( f'(r(s,t)) \frac{\partial r}{\partial s} \frac{\partial r}{\partial t} + f(r(s,t)) \frac{\partial^2 \gamma}{\partial \mathbf{t} \partial \mathbf{s}} \right) dt$$

$$= \int_0^1 \frac{\partial}{\partial t} (f(\gamma(s,t)) \gamma_s)$$

$$= f(\gamma(s,1)) \gamma_s(s,1) - f(\gamma(s,0)) \gamma_s(s,0)$$

$$= 0.$$

where we can just take the paths  $\gamma(s,t)=z_0\in\Omega$  for all s,t.

**Proposition:** Let  $\Omega \subset \mathbb{C}$  be open and  $f_v : \Omega \to \mathbb{C}$ . Suppose that each  $f_v$  is holomorphic,  $f_v \to f$  pointwise, and *locally uniform*, i.e.  $f_v \to f$  uniformly on every compact  $K \subset \Omega$ . Then f is holomorphic in  $\Omega$  and f is locally uniform.

*Proof:* Given a compact set  $K \subset \Omega$ , pick an O with smooth boundary such that  $K \subset O \subset \overline{O} \subset \Omega$ . We have

$$f_v(z) = \frac{1}{2\pi i} \int_{\partial O} \frac{f_v(\xi)}{\xi - z} d\xi$$
$$f_v^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial O} \frac{f_v(\xi)}{(\xi - z)^{n+1}} d\xi$$

Then on  $\partial O$ , we have uniform convergence

$$\frac{f_v(\xi)}{(\xi-z)^{n+1}} \xrightarrow{u} \frac{f(\xi)}{(\xi-z)^{n+1}}.$$

By moving the limits inside, we obtain

$$f(z) = \frac{1}{2\pi i} \int_{\partial O} \frac{f(\xi)}{\xi - z} d\xi$$
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial O} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

Cauchy Inequality: Given  $z_0 \in \Omega$ , pick the largest disc  $D_R(z_0) \subset \Omega$  and let  $C_R = \partial D_R$ . Using the integral formula, defining  $||f||_{C_R} = \max_{|z-z_0|=R} |f(z)|$ 

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R \ d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Corollary: If f is entire and bounded, then f is constant.

Proof: For all  $z_0 \in \mathbb{C}$ , there exists an M such that  $|f(z)| \leq M$ . Then  $|f'(z_0)| \leq \frac{M}{R}$  for any R > 0. Taking  $R \to \infty$  yields  $f'(z_0) = 0$ , so f is constant.

Corollary: Every non-constant polynomial  $p(z) = a_0 + a_1 z + \cdots + a_n z^n$  has a root in  $\mathbb{C}$ .

General proof technique: proving for f(z), consider  $\frac{1}{f(z)}$  and  $f(\frac{1}{z})$ .

Proof: Suppose p is nonconstant and does not have a root,  $\frac{1}{p}$  is entire. Assume that  $a_n \neq 0$ , then

$$\frac{p(z)}{z^n} = a_n \left( \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right) := a_n + y$$

We can note that  $\lim_{z\to\infty} \frac{a_{n-k}}{z^k} \to 0$ , so there exists an R>0 such that

$$\left| \frac{p(z)}{z^n} \right| \ge \frac{1}{2} |a_n| \quad \text{for } |z| > R$$

$$\implies |p(z)| \ge \frac{1}{2} |a_n| |z|^n \ge \frac{1}{2} |a_n| R^n.$$

Since p(z) is continuous and has no root in the disc  $|z| \le R$ , |p(z)| is bounded from below in this disc. Since p(z) is continuous on a compact set, it attains a minimum, and so  $|p(z)| \ge \min_{|z| \le R} |p(z)| = c_2 \ne 0$ .

Then  $|p(z)| \ge A = \min(C_2, \frac{1}{2}|a_n|R^n)$ , so  $\frac{1}{p}$  is bounded. Then f is constant, a contradiction.

### 9 Friday January 31st

Recall that if f is holomorphic, we have Cauchy's integral formula.

Corollary: If P(z) is a polynomial in  $\mathbb{C}$  then P has a root in  $\mathbb{C}$ .

Corollary: Every polynomial of degree n has precisely n roots in  $\mathbb{C}$ .

Proof: By induction on the degree of P. From the first corollary, P has a root  $w_1$ , so write  $z = z - w_1 + w_1$ . Then

$$p(z) = p(z - w_1 + w_1)$$

$$= \sum_{k=1}^{n} a_k (z - w_1 + w_1)^k$$

$$= \sum_{k=1}^{n} a_k \sum_{j=1}^{n} {k \choose j} w_1 k - j (z - w_1)^j$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} a_k {k \choose j} w_1^{k-j} (z - w_1)^j$$

$$= \sum_{j=1}^{n} \left( \sum_{k \ge j} a_k {k \choose j} \right) (z - w_1)^j$$

$$= b_0 + b_1 (z - w_1) + \dots + b_n (z - w_1)^n.$$

Since  $P(w_1) = 0$ , we must have  $b_0 = 0$ , and thus this equals

$$b_1(z - w_1) + \dots + b_n(z - w_1)^n = (z - w_1) \Big( b_1 + \dots + b_n(z - w_1)^{n-1} \Big)$$
  
 
$$\coloneqq (z - w_1) \phi(z),$$

where  $\phi(z)$  is degree n-1, which has n-1 roots by induction.

Definition: For a sequence  $\{z_n\}$ , TFAE

- 1. z is a limit point.
- 2. There exists a subsequence  $\{z_{n_k}\}$  converging to z.
- 3. For every  $\varepsilon > 0$ , there are infinitely many  $z_i$  in  $D_{\varepsilon}(z)$ .

**Theorem:** Suppose f is holomorphic on a bounded connected region  $\Omega$  and f vanishes on a sequence of distinct points with a limit point in  $\Omega$ .

Proof: WLOG by restricting to a subsequence, suppose that  $\{w_k\} \in \Omega$  with  $f(w_i) = 0$  for all i and  $z_0$  is a limit point of  $\{w_i\}$ . Let  $U = \{z \in \Omega \mid f(z) = 0\}$ . Then

- 1. U is nonempty since  $f(w_k) = f(z_0) = 0$ .
- 2. Since holomorphic functions are continuous, if  $w_k \to z$  then  $z \in U$ , so U is closed.

3. (To prove) U is open.

Since U is closed and open,  $U = \Omega$ .

We will first show that  $f(z) \equiv 0$  in a disk containing  $z_0$ . Choose a disc D containing  $z_0$  and contained in  $\Omega$ . Since f is holomorphic on D, we can write  $f = \sum a_n n(z - z_0)^n$ . Since  $f(z_0) = 0$ , we have  $a_0 = 0$ .

Suppose  $f \not\equiv 0$ . Then there exists a smallest  $n \in \mathbb{Z}^+$  such that  $a_n \neq 0$ , so  $f(z) = a_n(z - z_0)^n + \cdots$ . Since  $a_n \neq 0$ , we can factor this as  $a_n(z - z_0)^n (1 + g(z - z_0))$  where  $g(z - z_0) = \sum_{k=n+1}^{\infty} \frac{a_k}{a_n} (z - z_0)^{k-n}$ . Note that g is holomorphic, and  $g(z_0 - z_0) = 0$ .

Choose some  $w_k$  such that  $f(w_k) = 0$  and  $|g(w_k - z_0)| \le \frac{1}{2}$  by continuity of g. Then  $|1 + g(w_k - z_0)| > 1 - \frac{1}{2} = \frac{1}{2}$ . Then  $|f(w_k)| = |a_n(w_k - z_0)^n(1 + g(w_k - z_0))| > |a_n||w_k - z_0|^n \frac{1}{2} > 0$ , a contradiction. So U is open, closed, and nonempty, so  $U = \Omega$ .

Corollary: Suppose f, g are holomorphic in a region  $\Omega$  with  $f(z_k) = g(z_k)$  where  $\{z_k\}$  has a limit point. Then  $f(z) \equiv g(z)$ .

Mean Value Theorem: Let  $z_0$  be a point in  $\Omega$  and  $C_{\gamma}$  the boundary of  $D_r(z_0)$ . Then

$$f(z_0) = \frac{1}{2\pi i} \int_{C_{\gamma}} f(z)/(z - z_0) dz$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} f(z_0 + re^{i\theta})/re^{i\theta} rie^{i\theta} d\theta \quad \text{by } z = z_0 + re^{i\theta}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta \qquad \qquad = \frac{1}{2\pi r} \int_0^{2\pi} f(z_0 + re^{i\theta}) rd\theta = \frac{1}{|C_{\gamma}|} \int_0^{2\pi} f(z) ds,$$

which is the average value of f on the circle.

Note that there is another formula that averages over the disc (see book for derivation?)

$$f(z_0) = \frac{1}{D_s(z_0)} \int_{P_s} \int_{D_s} f(z) \ dA.$$

These imply the maximum modulus principle, since the average can not be the max or min unless f is constant. Note that |f(z)| is continuous!

Next time: maximum modulus principle.

# 10 Monday February 3rd

Theorem (Mean Value for Holomorphic functions): Let  $f: \Omega \to \mathbb{C}$  be holomorphic where  $\Omega$  is open and connected. Then by Cauchy's integral formula, we have  $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$  for any  $z_0 \in \Omega$ . We can consider  $D_r(z_0)$ , in which case we have for all 0 < s < r,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + se^{i\theta}) d\theta$$

$$\implies s \cdot f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} s \cdot f(z_0 + se^{i\theta}) d\theta$$

$$\implies \cdot f(z_0) \int_0^r s ds = \frac{1}{2\pi} \int_0^{2\pi} \int_0^r f(z_0 + se^{i\theta}) \cdot s ds d\theta$$

$$\implies \frac{1}{2} r^2 f(z_0) = \frac{1}{2\pi} \iint_{D_r(z_0)} f(z) dA$$

$$\implies f(z_0) = \frac{1}{\pi r^2} \iint_{D_r(z_0)} f(z) dA$$

$$\implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Proposition: If  $\Omega$  is open and connected with f holomorphic on  $\Omega$  and suppose that f any f or any f

If  $\Omega$  is additionally bounded then f is continuous on  $\overline{\Omega}$ , then  $\sup_{z\in\overline{\Omega}}|f(z)|=\max_{z\in\overline{\Omega}}|f(z)|.$ 

Proof: Since |f| is continuous and  $\overline{\Omega}$  is compact, |f| attains a maximum at some point in  $\overline{\Omega}$ . We want to show that if  $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$ , then f is constant.

Assume that there exists a  $z_0 \in \Omega$  such that  $f(z) = f(z_0)$ . Let  $O = \{ \xi \in \Omega \mid f(\xi) = f(z_0) \}$ .

- 1. O is not empty, since  $z_0 \in O$ .
- 2. O is closed, since if  $\xi_n \to \xi$  then  $f(\xi_n) = f(z_0)$  implies  $f(\xi) = f(z_0)$  since f is continuous.
- 3. (Claim) O is open.

Suppose  $\xi_0 \in O$ , then there exists a disc  $D_{\rho}(\xi_0) \subset \Omega$  such that  $f(\xi_0) = \frac{1}{\pi \rho^2} \int_{D_{\rho}(\xi_0)} f(z) dA$ . Then (claim)  $|f(\xi_0)| \ge |f(z)|$  for all  $z \in D_{\rho}(\xi_0)$ , which forces  $f(z) = f(\xi_0)$  for all  $z \in D_{\rho}(\xi_0)$ .

Proof of this fact: Suppose that  $\sup_{a \in \Omega} |f(z)| = |f(\xi_0)|$  and write  $f(\xi_0) = Be^{i\alpha}$  for B > 0 and  $\alpha \in \mathbb{R}$ . Then define  $g(z) = f(z)e^{-i\alpha}$ ; then  $g(\xi_0) = B$  is real, and thus

$$0 = g(\xi_0) - B = \frac{1}{\pi \rho^2} \iint_{D_{\rho}(\xi_0)} \Re(g(z) - B) \ dA.$$

Note that  $\Re(g(z)-B) \leq 0$  implies that  $\Re(g(z)-B) \equiv 0$  on  $D_{\rho}(z_0)$ , so we can write g(z)=B+iI(z) for some real-valued function I. But then  $|g(z)|^2=B^2+I(z)^2=B^2$  by the previous statement, and so I(z)=0, forcing g(z)=B and thus  $f(z)=Be^{i\alpha}$ .

This shows that O is open, and thus  $O = \Omega$ .

**Proposition (Stein 2.1):** Suppose f is holomorphic on  $D_1(0)$  and  $|f(z)| \le 1$  for all |z| < 1 with f(0) = 0. Then  $|f(z)| \le |z|$  for all |z| < 1.

Moreover, there is a point  $z_0 \in D_1(0)$  such that  $|f(z_0)| = |z_0|$  iff f(z) = c(z) for some  $c \in S^1$ . Proof: Define

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0\\ f'(0) & z = 0 \end{cases}.$$

Then g is holomorphic on  $D_1(0)$  and  $|g(z)| \leq \frac{1}{\rho}$  for all  $|z| < \rho < 1$ . Now apply the maximum principle: since this is true for all  $\rho < 1$ , consider the limit  $\rho \to 1^-$ . Then  $|g(z)| \leq 1$ , so  $\left|\frac{f(z)}{z}\right| \leq 1$  and  $|f(z)| \leq |z|$ . If  $|f(z_0)| = |z_0|$  for any point, then  $|g(z_0)| = 1$  implies  $g(z_0) = c$  and  $c \in S^1$ . Thus f(z) = cz for some  $c \in S^1$ .

Corollary: Recall that  $\Phi_a(z) := \frac{z-a}{1-az}$ . If  $f: D_1(0) \to D_1(0)$  is a biholomorphism, then  $f(z) = c\Phi_a(z) = e^{i\theta}\Phi_a(z)$ ; so every such function is a rotated form of  $\Phi_a$ .

Let  $\Omega$  be a connected open domain and  $f:\Omega\to\mathbb{C}$  holomorphic with  $f\in C^1$ . Then  $\int_{\gamma}f(z)\;dz=0$  for every closed curve  $\gamma\subset\Omega$ , which implies that  $f^{(k)}(z)$  exists for all  $k\in\mathbb{N}$  and f is smooth/holomorphic. Morera's theorem is a converse to Cauchy's integral theorem.

**Theorem (Morera):** Suppose  $g: \Omega \to \mathbb{C}$  is continuous and  $\int_{\gamma} g(z) \ dz = 0$  whenever  $\gamma = \partial R$  for some rectangle  $R \subset \Omega$  with sides parallel to the axes:



Then g(z) is holomorphic in  $\Omega$ .

*Proof:* Fix a point  $\alpha = a + ib$  and given z = x + iy, construct a rectangle R containing z. Then by assumption,  $\int_{\partial R} g(z) \ dz = 0$ . Let  $\gamma_{az}$  be the path given by traversing the bottom edge of R, and  $\sigma_{az}$  by the top path.



Let

$$f(z) = \int_{\gamma_{az}} g(z) dz$$
  
= 
$$\int_{a}^{x} g(s+ib) ds + i \int_{b}^{y} g(x+it) dt.$$

Since  $\int_{\partial R} g(z) \ dz = 0 = \int_{\gamma_{az}} \cdots - \int_{\sigma_{az}} \cdots$ , we have

$$f(z) = \int_{\sigma_{az}} g(z) \ dz$$
 
$$= i \int_b^y g(a+it) \ dt + \int_x^a g(s+iy) \ ds.$$

Exercise: Apply  $\frac{\partial}{\partial y}$  to the first identity and  $\frac{\partial}{\partial x}$  to the second.

This yields  $\frac{\partial f}{\partial x} = g(z)$  and  $\frac{\partial f}{\partial y} = ig(z) = i\frac{\partial f}{\partial x}$  by applying the FTC, which are precisely the Cauchy-Riemann equations for f. So f is holomorphic, and thus f(z) = g(z).

### 11 Wednesday February 5th

Recall last time: We have Cauchy's theorem, which says that if  $f: \Omega \to \mathbb{C}$  is holomorphic then  $\int_{\gamma} f \ dz = 0$ .

We have a partial converse, Morera's theorem: If  $g:\Omega\to\mathbb{C}$  is continuous and  $\int_R g\ dz=0$  for every rectangle  $R\subset\Omega$  with sides parallel to the axes, then g is holomorphic.

Proof: Fix a point  $a \in \Omega$ , then for any  $z \in \Omega$  define  $f(z) = \int_{\gamma_{a,z}} g(\xi) d\xi = \int_{\sigma_{a,z}} g(\xi) d\xi$ .



Then 
$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} = g(z)$$
, making  $g$  holomorphic.

**Theorem (Schwarz Reflection):** Let  $\Omega = \Omega^+ \bigcup L \bigcup \Omega^-$  be a region of the following form:



I.e.,  $L = \{z \in \Omega \mid \text{im } z = 0\}$ ,  $\Omega^{\pm} = \{\pm \text{im } z > 0\}$  where  $\Omega$  is symmetric about the real axis, i.e.  $z \in \Omega \implies \overline{z} \in \Omega$ .

Assume that  $f: \Omega^+ \bigcup L \to \mathbb{C}$  is continuous and holomorphic in  $\Omega^+$  and real-valued on L. Define

$$g(z) = \begin{cases} f(z) & z \in \Omega^+ \bigcup L \\ \overline{f(z)} & z \in \Omega^- \end{cases}.$$

Then g(z) is defined and holomorphic on  $\Omega$ .

Proof: Since g is  $C^1$  in  $\Omega^-$ , check that g satisfies the Cauchy-Riemann equations on  $\Omega^-$  and thus holomorphic there. To see that g is holomorphic on all of  $\Omega$ , we'll show the integral over every rectangle is zero.

It's clear that if  $R \subset \Omega^{\pm}$ ,  $\int_R g = 0$  since g is holomorphic there, so it suffices to check rectangles intersecting the real axis. Write  $R = R^+ \bigcup R^-$ :



We then have  $R^+ = \lim_{\varepsilon \to 0} R_{\varepsilon}$  and  $R^- = \lim_{\varepsilon \to 0} R_{-\varepsilon}$ , and  $\int_{R_{\pm \varepsilon}} g = 0$  for all  $\varepsilon > 0$ . By continuity of f on L, we have  $\lim_{\varepsilon \to 0} \int_{R_{\varepsilon}} g(z) dz = 0$ .

**Theorem (Goursat):** If  $f:\Omega\to\mathbb{C}$  is complex differentiable at each point of  $\Omega$ , then f is holomorphic.

I.e. 
$$f \in C^1(\Omega) \implies f \in C^{\infty}(\Omega)$$
.

Proof: We have  $\int_R f \ dz = 0$  for all rectangles R. Write  $I = \int_R f \ dz$ . Break R into 4 sub-rectangles:



Then rewriting the integral and applying the triangle inequality yields

$$I = \int_{R} f = \sum_{j=1}^{4} \int_{R_{j}} f = \sum_{j=1}^{4} I_{j} \implies |I| \le \sum_{j} |I_{j}|.$$

So for at least one j, we have  $|I_j| \ge \frac{1}{4}|I|$ ; wlog call it  $R_1$ . By continuing to subdivide, we can write

$$|I| \le 4|I_k| = 4 \left| \int_{R_1} f \right| \le 4 \left( 4 \left| \int_{R_2} f \right| \right) \dots \le 4^k \left| \int_{R_k} f \right|.$$

This is a sequence of nested compact intervals, so there is some  $z_0 \in \bigcap R_k$ .

Write  $f(z) = f(z_0) + f'(z_0)(z - z_0) + \delta(z, z_0)$ , and since

$$\lim_{z \to z_0} \frac{|\delta(z, z_0)|}{z - z_0} = 0,$$

we have  $\delta(z,z_0)=o(z-z_0)$ . Then  $|I|\leq 4^k\frac{1}{2^k}|R|$ . We then try to estimate the integral using the fact that  $|\delta(z,z_0)|\leq \delta_k|z-z_0|$  for some constant  $\delta_k\to 0$  as  $k\to\infty$ .

$$\int_{R_k} fi = \int f(z_0) + f'(z_0)(z - z_0) + \delta(z, z_0) = \int_{R_k} \delta(z, z_0) \quad \text{since the first two terms are holomorphic}$$

$$\leq \frac{1}{2^k} |R| \delta_k \frac{C}{2^k} |R|$$

$$= c/4^k |R|^2 \delta_k$$

 $\rightarrow 0$ ,

where we use the fact that in  $R_k$  we have



$$R_k = 2(x+y) \implies R^2/4 = x^2 + y^2 + x + y \le_{CS} x^2 + y^2 + x^2 + y^2 = 2(x^2 + y^2)$$

$$\implies x^2 + y^2 \le R^2/8 \implies L = \sqrt{x^2 + y^2} \le R^8/2\sqrt{2}$$

$$\implies |z - z_0| \le \sqrt{x^2 + y^2} \le R_k/2\sqrt{2} \text{ and } R_k = \frac{1}{2^k}|R|.$$

Note that triangles implies rectangles, but think about how to use triangles to prove it for rectangles (note that sides should be parallel to axes!)

### 12 Friday February 7th

**Theorem:** Suppose  $\{f_n\} \to f$  is a sequence of holomorphic functions converging uniformly on any compact subset  $K \subset \Omega$ . Then f is holomorphic.

Proof: Let D be any disc such that  $\overline{D} \subset \Omega$ . For any rectangle  $R \subset D$ , we have  $\int_R f_n \ dz = 0$ . Since  $f_n \to f$  uniformly,  $\int_R f \ dz = 0$  and thus f is holomorphic in D.



Theorem: Under the same hypotheses,  $f'_n \to f$  uniformly on any compact subset  $K \subset \Omega$ .

Proof: See Stein.

Corollary: Suppose  $F(z,s):\Omega\times[a,b]\to\mathbb{C}$  and

- 1. F(z,s) is holomorphic in z for each fixed  $s \in [a,b]$ .
- 2. F(z,s) is continuous in  $\Omega \times [a,b]$ .

Then  $f(z) = \int_a^b F(z, s) ds$  is holomorphic on  $\Omega$ .

Proof: Define  $f_n(z) = \left(\sum_{k=1}^n F(z,s_k)\right) \frac{b-a}{n}$  where each  $s_k = a + \frac{b-a}{n} k \in [a,b]$ . Need to show  $f_n(z)$  converges uniformly on any compact  $K \subset \Omega$ , i.e. it's uniformly Cauchy. Fix K compact, then by a theorem in topology  $K \times [a,b]$  is again compact. Using the fact that F is continuous on a compact set and thus uniformly continuous, fix  $\varepsilon > 0$  and find  $\delta > 0$  such that  $\max_{z \in K} |F(z,s) - F(z,t)| < \varepsilon$  for all  $s,t \in [a,b]$  with  $|t-s| < \delta$ .

Thus if  $\frac{b-a}{n} < \delta$  and  $z \in K$ , we have an estimate

$$|f_n(z) - f(z)| = \left| \sum_{k=1}^n \int_{s_{k-1}}^{s_k} F(z, s_k) - F(z, s) \, ds \right|$$

$$= \sum_{k=1}^n \int_{s_{k-1}}^{s_k} |F(z, s_k) - F(z, s)| \, ds$$

$$\leq \varepsilon (b - a).$$

Thus  $f_n \stackrel{u}{\to} f$ .

Note: useful for showing  $\Gamma(z) = \int_0^\infty e^{-s} s^{z-1} ds$  is holomorphic for  $\Re z > 0$ .

Can every function be uniformly approximated by polynomials? In general no. Take  $f(z) = \frac{1}{z}$  which is holomorphic on  $\mathbb{C} \setminus 0$ , but  $\int_{\gamma} P_N(z) = 0$  for any polynomial (since )hey are entire) for any loop  $\gamma$  around 0, but  $\int_{\gamma} \frac{1}{z} = 2\pi i$ .

**Theorem (5.2):** If  $f_n$  is a sequence of holomorphic functions converging uniformly on any compact subset K of  $\Omega$  then f is holomorphic in  $\Omega$  and if  $f(z) = \sum a_n(z-z_0)^n$  then  $P_N(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ .

**Theorem (5.7):** Any holomorphic function in a neighborhood of a compact set K can be approximated by a *rational* function with singularities only in  $K^c$ . If  $K^c$  is connected, it can be approximated by a *polynomial*.

**Lemma (5.8):** Suppose f is holomorphic in an open set  $\Omega$  with  $K \subset \Omega$  compact. Then there exist finitely many segments  $\{\gamma_i\}_{i=1}^N$  in  $\Omega \setminus K$  such that for all  $z \in K$ ,

Idea: Divide region into squares, take  $\gamma_i$  to be line segments such that they enclose K.

$$f(z) = \frac{1}{2\pi i} \sum_{n=1}^{N} \int_{\omega_n} \frac{f(\xi)}{z - \xi} d\xi$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{z - \xi} d\xi.$$

where we can rewrite

$$\int_{\gamma_n} \dots = \int_0^1 \frac{f(\gamma_n(t))}{\gamma_n(t) - z_0} \gamma'_n(t) dt = \int_0^1 F(z, s) ds$$

The idea is that we can then write  $\frac{1}{\xi - z} = \frac{1}{\xi} \frac{1}{1 - \frac{z}{\xi}} = \xi^{-1} \sum_{k} \left(\frac{z}{\xi}\right)^{k}$ , which allows uniform approximation by polynomials.



# 13 Appendix

$$dz = dx + i dy$$

$$d\overline{z} = dx - i dy$$

$$f_z = f_x = i^{-1} f_y.$$

- Holomorphic: once complex differentiable in neighborhoods of every point.
- Analytic: equal to its Taylor series expansion

Cauchy Inequality: Given  $z_0 \in \Omega$ , pick the largest disc  $D_R(z_0) \subset \Omega$  and let  $C_R = \partial D_R$ . Using the integral formula, defining  $||f||_{C_R} = \max_{|z-z_0|=R} |f(z)|$ 

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R \ d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Collection of facts used on problem sets

Standard forms of conic sections:

• Circle:  $x^2 + y^2 = r^2$ 

• Ellipse:  $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ 

• Hyperbola:  $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$ 

– Rectangular Hyperbola:  $xy = \frac{c^2}{2}$ .

• Parabola:  $-4ax + y^2 = 0$ .

Mnemonic: Write  $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$ , then consider the discriminant  $\Delta =$ 

•  $\Delta < 0 \iff \text{ellipse}$ 

 $-\Delta < 0$  and  $A = C, B = 0 \iff$  circle

- $\Delta = 0 \iff \text{parabola}$
- $\Delta > 0 \iff \text{hyperbola}$

Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where  $s = \frac{b}{2}$   
 $x^{2} + bx = (x + s)^{2} - s^{2}$  where  $s = \frac{b}{2}$ .

**Useful Properties** 

- $\Re(z) = \frac{1}{2}(z + \overline{z})$  and  $\Im(z) = \frac{1}{2i}(z \overline{z})$ .  $z\overline{z} = |z|^2$
- $\cos(\theta) = \frac{1}{2} \left( e^{i\theta} + e^{-i\theta} \right)$   $\sin(\theta) = \frac{1}{2i} \left( e^{i\theta} e^{-i\theta} \right)$ .

**Useful Series** 

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

#### Cauchy-Riemann Equations

$$u_x = v_y$$
 and  $u_y = -v_x$   
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$  and  $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$ 

#### 13.1 Useful Techniques

Showing a function is constant: Write f = u + iv and use Cauchy-Riemann to show  $u_x, u_y = 0$ , etc.

**Deriving Polar Cauchy-Riemann:** See walkthrough here. Take derivative along two paths, along a ray with constant angle  $\theta_0$  and along a circular arc of constant radius  $r_0$ . Then equate real and imaginary parts. See problem set 1.

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

The sum of the interior angles of an *n*-gon is  $(n-2)\pi$ , where each angle is  $\frac{n-2}{n}\pi$ .

#### 13.2 Residues

If p is a simple pole,  $\operatorname{Res}(p,f) = \lim_{z \to p} (z-p)f(z)$ . Example: Let  $f(z) = \frac{1}{1+z^2}$ , then  $\operatorname{Res}(i,f) = \frac{1}{2i}$ .