Demo 2 Cheat Sheet: Wave Decomposition

Numpy: Numerical Vectors and arrays (np)

Function	Purpose	Inputs	Usage
zeros	Return a new array of given shape and type, filled with zeros.	shape = number or numbers	x=np.zeros(5)
			x = np.zeros((5,5))
arange	Return an array evenly spaced values within a given interval according to a step size.	start, stop, step_size	x = np.arange(-1.0,1.0, 0.1)
linspace	Return an array of evenly spaced numbers over a specified interval.	start, stop, num	x = np.arange(-1.0,1.0, 100)
pi	the value of pi.		np.pi
double	Convert a number or integer in to a floating number (decimals).	number	np.double(3)
sin	sinusoidal wave	number or vector	y = np.sin(x)
concatenate	Join a sequence of arrays together.	(x1, x2,)	x = np.concatenate((x1,x2))

Matplotlib: Plotting (plt)

Function	Purpose	Inputs	Usage
plot	Plot lines	x, y	plt.plot(x,y)
xlabel	Set the <i>x</i> axis label of the current plot.	name	plt.xlabel("Axis x name")
title	Set a title of the current plot.	name	plt.title("Plot name")
show	Display a figure.		plt.show()

Scipy: Scientific python (sp)

Function	Purpose	Inputs	Usage
quad	Compute a definite integral between an interval.	func, start, end, extra args for function	sp.integrate.quad(np.sin , 0 , np.pi , args=())

Demo Specific - Common variables:

x==avector L==thelengthofatriangle n==thenumberofaneigenstate max_num==thenumberofapproximation.

Function	Purpose	Inputs	Usage
triangle_func tion	triangle function	x, L	triangle_function(x, 1.0)
projection_in tegrand	integrand between projection of eigenstates and triangle.	x, n, L	use with quad
inner_produc t_function	integrand between eigenstates.	x, n1, n2	use with quad
analytical_sol ution	analytical solution to triangle function.	x, max_num	analytical_solution(x, 50)