

HACETTEPE UNIVERSITY COMPUTER ENGINEERING DEPARTMENT

UNDERGRADUATE PROJECT PROGRESS REPORT - 2

Project Name	Report Date	
Ball Balancing PID System	02.12.2017	

Student Number(s)	Student Name(s)
21427435 21327862 21591198	Ufuk Umut ŞENTÜRK Emre DAĞISTAN Hülya Şermin KARAKAŞ
Supervisor(s)	Company Representative(s)
Prof. Dr. M. Önder EFE	

Project Coordinator	Report Approval		
Ayça TARHAN Date: 02.12.2017			

1

A. TECHNICAL PROGRESS

I. INTRODUCTION

The main purpose of the project is to develop a ball balancing system to keep a ball balanced on a plate using a microcontroller and related control algorithm to adjust the servo motors with real-time feedback.

II. ARCHITECTURAL GOALS

Main idea is that calculating PID with received position of the ball to balance the ball. To do that, we will implement mechanical architecture that is moved by calculations are made in the software.

- System shall move along the x-axis and y-axis. Servo motors and u-joint are used for this purpose.
- System shall detect position of the ball. Camera and OpenCV library(native Python) are used.
- Servo motors shall move the arm with given angle. Arduino is used for connection between computer and servo motors with serial USB port.
- PID calculations must be made to balance ball. PID is implemented in Python.

Critical points are setting threshold value to identify ball correctly and constructing solid physical system. If Arduino is changed with any other processor, big part of implementation remains same.

III. ASSUMPTIONS AND DEPENDENCIES

- Arduino is an open-source electronics platform based on easy-to-use hardware and software. It is easy to use and cheap so good tool to start with.
- Python is one of the most popular scripting programming language. It can be used to implement anything desired and can run almost every machine.
- Other mechanical parts of the system can be found and implemented.
- Things mentioned above are chosen by our experience. We tried to be pick efficient and easy to learn tools.

IV. DECISIONS, CONSTRAINTS, AND JUSTIFICATIONS

- It was decided that calculations should be done on the computer because arduino mega can not handle that much process.
- In the physical modelling, the plate should be as light as possible because each sg90 servomotor can only carry 1kg.
- Image, that captured by camera, converted to binary image. In this way, algorithm will response quicker and ball position will obtained precisely.
- The servomotors are connected at the center of the plate edges, so each servomotor directly represents X and Y axis.

V. ARCHITECTURAL MECHANISMS AND KEY ABSTRACTIONS

Architectural Mechanism 1: Calculating PID. With given reference point and ball positions, system calculates PID and send angles information which servo motors will do

Architectural Mechanism 2: Detecting ball with OpenCV. System detects a ball with certain color which is adjusted by threshold value and sends position information. **Architectural Mechanism 3:** Moving servomotor arms. System sends an angle information to Arduino via USB port and Arduino moves the servo motors.

VI. LAYERS OF ARHITECTURAL FRAMEWORK

This project includes hardware implementation of Proportional-Integral-Derivative (PID) architecture using arduino for the position control of servomotors. Closed loop system is simulated using Phyton. Comparison of simulation results with the experimental results will show the efficacy of the proposed PID design.

VII. ARCHITECTURAL VIEWS

B. PROJECT PROGRESS

I. CHANGES TO PROJECT PLAN

Project plan has not been changed since initial plan.

II. PROGRESS OF PROJECT MILESTONES AND OBJECTIVES

Milestone #	Primary Objective	Due Date	Project Deliverable (if any)	Milestone
				Achieved?
1	Detecting the position of	Nov 3		Yes
	the ball by using OpenCV			
2	Implementing the PID	Dec 1	Prototype of the project	Yes
	System and mechanics to			
	arduino			
3	Converting the working			Not yet
	principle of the project	Dec 29	Final project delivery	
	computer to arduino			

III. PROGRESS OF PROJECT PRACTICES AND MEASURES

Task	Task Description	Responsibility	Start Date	Finish Date	Success Criteria	Task
#						Succeeded?
1.1	Mathematical	*Hülya	16.10.2017	03.11.2017	Observing the	Successfully
	modelling of	Şermin			mathematical	done
	system	*Ufuk			models of the	
		Şentürk			system by graphs	
1.2	Physical	*Emre	16.10.2017	23.10.2017	Completing the	Successfully
	modelling of	Dağıstan			visual models of the	done
	system				project	
2.1	Learning computer	*Hülya	16.10.2017	03.11.2017	Being able to use	Successfully
	vision (OpenCV)	Şermin			Computer Vision	done
	methods				methods	
2.2	Learning the	*Emre	16.10.2017	03.11.2017	Being able to use	Successfully
	concepts of the	Dağıstan			servo motors by	done
	servo motors				arduino	
					programming	
3.1	Connecting servo	*Emre	03.11.2017	13.11.2017	Completely	Successfully
	motors to arduino	Dağıstan			connecting servo	done
					motors with X and	
					Y axis movements.	
3.2	Arduino					
	programming					

3.2.1	Linking the	*Hülya	03.11.2017	13.11.2017	Arduino should	Successfully
	position values	Şermin			understand the	done
	coming from				position of the ball	
	camera to arduino				with minimum	
					delay	
3.2.2	PID system	*Ufuk	03.11.2017	01.12.2017	The servo motors	Successfully
	programming	Şentürk			should be able to	done
					balance the ball by	
					the values coming	
					from camera	
3.2.3	Using of servo	*Emre	13.11.2017	20.12.2017	The servo motors	Successfully
	motors by Arduino	Dağıstan			should make their	done
	programming	*Hülya			job by the	
		Şermin			calculations of the	
					PID system	
3.3	Physical montage	*Emre	03.12.2017	29.12.2017	The physical	
	of the project	Dağıstan			montage of the	
					project should be	
					complete	
4.1	Performance and	*Ufuk	01.12.2017	29.12.2017	The performance	
	optimization	Şentürk			and optimization	
	savings				saving which will	
					observe during	
					project process	
					should improve	

Team Member	Task # Under Responsibility	Description of the Work Done
*Hülya Şermin Karakaş	Linking the position values coming from camera to arduino	The position of the ball was detected in the previous delivery. In this delivery, The position values which coming from python code linked to Arduino. While doing that, the serial port of the Arduino is used to real time value transfer.
*Ufuk Umut Şentürk	PID system programming	Received positions of the ball are used as input for PID model and different reference points for different modes are set to calculate feedback in the system.
*Emre Dağıstan	Connecting servo motors to arduino	Servomotors connected to arduino and represent X and Y axis
*Emre Dağıstan *Hülya Şermin Karakaş	Using of servo motors by Arduino programming	Servomotors which are connected to arduino were rotated with values that coming from openCV using serial port.

IV. PROGRESS OF PROJECT BUDGET

Item #	Description of Income	Date of Income	Planned Amount	Actual Amount	Amount Difference
1.	Money collected from each team member	19.10.2017	240 □	115 □	125 □
2.	Sponsorship / not agreed yet.		115 □		

Item #	Description of Expense	Date of	Planned	Actual	Amount
		Expense	Amount	Amount	Difference
1	Arduino Mega	21.10.2017	85 □	45 □	40□
2	Jumper / Krokodil	21.10.2017	10 □	15 □	5 □
3	Servo Motor x 2	21.10.2017	30 □	20 □	10 □
4	Camera	21.10.2017	30 □	25 □	5 □
5	Platform	21.10.2017	10□	10□	

Overall Balance	Planned Amount	Actual Amount	Amount Difference	
Income	240 □	240 □	0 🗆	
Expense	240 □	115 □	125 □	
Total	0 🗆	125 □	125 □	

V. PROGRESS OF PROJECT RISKS

Risk	Description	Probability	Effect	Did It	How did you (or will you) handle
Item #				Happen?	its occurrence? (Plan-B)
1	Miscommunication	Medium	Medium	No	We meet right after the previous
	between team members				delivery and make a plan of the
					new tasks' process to handle that
					risk.
2	Lateness of the income	Low	High		To handle this risk, we are planning
					to gather money two day before the
					expense day.
3	Delay of the reaching time	High	High		To handle this risk, we are planning
	of position values which				to make performance optimizations.
	comes from the camera				In the worst case, we are planning
					to make project by using
					touchscreen.
4	Final delivery takes longer	Low	High		To handle this risk, we will try to
	than expected				finish tasks two days before
					delivery date.
5	Specification breakdown of	Medium	Medium	No	To handle this risk, we started to
	a team member				plan and manage the software at the
					very beginning of the project.

VI. PROGRESS OF RESEARCH AND DEVELOPMENT (R&D) ACHIEVEMENTS

While we work on OpenCV, we try to add some R&D features to project. Distinguished from other ball balancing systems, our project works with image processing and computer vision techniques instead of touchscreen and sensors.

In addition, we are planning to add some modes like path following feature of the ball to carry project into different place after ball balancing PID system finishes.

VII. OVERALL PROGRESS OF YOUR PROJECT

From the beginning of the project development process, we could work together easily with the balanced work sharing and good communication. Also, we tried to help each other when one of us had some trouble with his/her task.

Besides, we are planning to make a sponsorship agreement, but we have not completed it yet. We still keep in touch with the companies and we hope to find a sponsor for the project.