

dependability engineering & Petri nets May 2005

REDUCED STATE SPACE CONSTRUCTION

STUBBORN SET REDUCED REACHABILITY GRAPH

dependability engineering & Petri nets

May 2005

STUBBORN SETS & REDUCED RG

- basic principle lazy state space construction
 - only a subset of the complete rg is constructed
 - this subset still allows the decision of certain properties
 - RGred equiv RG equivalent with respect to some properties
 - suitable equivalence relation?
- basic idea -partial order reduction techniques
 - not all interleaving sequences of concurrent behavior (= partially ordered behavior) are considered
- preserved properties
 - all dead states
 - cyclic behavior

EXAMPLE SYSTEM DEADLOCK, **PETRI NET**

EXAMPLE SYSTEM DEADLOCK, (COMPLETE) RG

CONCURRENCY BRANCHING

19 nodes, 32 arcs

EXAMPLE, SYSTEM DEADLOCK, REDUCED RG

10 nodes, 12 arcs

STUBBORN SET, CHARACTERISTICS

- a marking-dependent selection of a set of independent transitions
- a set of independent transitions
 - their behavior cannot be influenced by the excluded transitions
 - -> "they are stubborn"
 - -> any sequence of excluded transitions cannot enable or disable an included transition
 - -> their firing can be postponed
 - -> contains at least one enabled transition
- □ stubborn set reduced rg
 - -> slight variation of the standard algorithm
 - at each marking (node):
 instead of firing all enabled transitions,
 only transitions of a stubborn set are fired

dependability engineering & Petri nets

May 2005

REACHABILITY GRAPH, CONSTRUCTION ALGORITHM

```
ROCEDURE rg (IN Net pn, IN Marking m0, out MSet nodes, out ArcSet arcs);
```

```
\mathsf{MSet} \quad U = \{m0\},\
                              // unprocessed markings
       N = \emptyset:
                              // rg nodes
ArcSet E = \emptyset:
                              // rg arcs (pre, post, t)
Marking m';
                              // successor marking
Transition t;
WHILE U \neq \emptyset DO
    choose one m \in U;
    U = U - \{m\}; N = N \cup \{m\};
    FOR ALL t enabled at m DO
       m' = m + \Delta t;
       IF m' \notin N \cup U
                              // new marking
       THEN U = U \cup \{m'\}
        ENDIF;
       E = E \cup \{(m, m', t)\}
    ENDFOR
ENDWHILE;
```

ENDPROC rg.

nodes = N; arcs = E;

STUBBORN REDUCED RG, CONSTRUCTION ALGORITHM

ROCEDURE rg (IN Net pn, IN Marking m0, out MSet nodes, out ArcSet arcs);

```
MSet \quad U = \{m0\}, \qquad \qquad /\!\!/ \text{ unprocessed markings} \\ N = \varnothing; \qquad /\!\!/ \text{ rg nodes} \\ ArcSet E = \varnothing; \qquad /\!\!/ \text{ rg arcs (pre, post, t)} \\ Marking <math>m'; \qquad /\!\!/ \text{ successor marking} \\ Transition \ t;
```

```
WHILE U \neq \emptyset DO choose one m \in U; U = U - \{m\}; N = N \cup \{m\};
```

FOR ALL enabled t of a stubborn set at m DO

```
m'=m+\Delta t; IF m'\not\in N\cup U // new marking THEN U=U\cup\{m'\} ENDIF; E=E\cup\{(m,m',t)\} ENDFOR
```

ENDWHILE;

```
nodes = N; arcs = E;
```

ENDPROC rg.

HOW TO CONSTRUCT STUBBORN SETS

- □ three basic steps
 - (1) choose an enabled transition t and put it into U
 - (2) FOR ALL enabled transition t in U: put into U also all transitions in conflict with t END FOR
 - -> conflict transitions: (Ft)F
 - any sequence of excluded transitions cannot disable an included transition
 - (3) FOR ALL disabled transition t in U:

choose a scapegoat
(a place p which prevents t
from being enabled),

and put all pre-transitions of p (Fp) into U

END FOR

- any sequence of excluded transitions cannot enable an included transition
- repeat (2) and (3) as long as necessary

STUBBORN SETS, EXAMPLES (1)

May 2005

dependability engineering & Petri nets

P1_downA

TP1_downB

stop

(2)

STUBBORN SETS, EXAMPLES (2)

- □ any conflict-free enabled transition
 - -> is a stubborn set for itself
- ☐ for any dead state
 - -> there is no stubborn set
- for non-dead states
 - -> set of all transitions is a stubborn set

P2_downB

P2_downA

 \mathcal{I}_{b2}

dependability engineering & Petri nets May 2005

STUBBORN SETS, OBSERVATIONS

- each set U constructed by this way is a stubborn set at m
- result U depends on the current marking m
- □ non-deterministic stubborn set construction
 - -> result depends on non-deterministic choices
 - -> choose an enabled transition t
 - -> choose a scapegoat p
- smaller stubborn sets result generally into smaller reduced rg
 - -> **BUT**, there are counter examples
- there are various heuristics to determine smaller stubborn sets, -> basic step (3)
- at best: minimal stubborn sets (contain no stubborn subset)
- ☐ **BUT**, increasing computational effort
 - -> may exceed benefit gained
 - -> what is more worth: space or run time?

EXAMPLE TRAVEL PLANING

-> only one interleaving sequence is represented

DINING PHILOSOPHERS, RG AND REDUCED RG SIZES

# phils	P/T	R _{stub}	R
1	6 / 4	4	4
2	10 / 8	8	10
3	15 / 12	20	35
4	20 / 16	38	118
5	25 / 20	62	392
6	30 / 24	92	1.297
7	35 / 28	128	4.286
8	40 / 32	170	14.158
9	45 / 36	218	46.763
10	50 / 40	272	154.450
11	55 / 44	332	510.116
12	60 / 48	398	
13	65 / 52	470	(5.56 e+6)
14	70 / 56	548	,
15	75 / 60	632	(60.7 e+6)

PRODUCTION CELL, COOPERATION MODEL

	places/ transitions	DTP	R _{stub}	R
table / press				
with init part	13 / 9	(N)	12	28
without init part	12 / 8	28	8	24
crane	12 / 8	31	11	48
arms				
version 1	13 / 8	38	11	48
version 2	17 / 12	109	15	112
version 3	17 / 12	88	15	96
belts	12 / 8	26	8	36
subsystem with				
arm version 1	25 / 16	175	47	640
arm version 2	33 / 24	3.851 (N)	75	1.984
arm version 3	33 / 24	725	140	1.800
open system	51 / 36	1.145	299	77.760
closed system	51 / 36	1.140		
with 1 plate			36	864
with 2 plates			72	4.776
with 3 plates			94	12.102
with 4 plates			98	16.362
with 5 plates			121	12.144

PRODUCTION CELL, CONTROL MODEL

	P/T	PROD					
system part		R	time	R _{stub} ^{a)}	time	R _{stub} b)	time
controller	controllers						
crane	45/34	256	0.78"	51	0.16"	38	0.08"
feed belt	22/16	69	0.20"	31	0.10"	16	0.07"
table	32/24	88	0.38"	36	0.15"	24	0.09"
arm, v3	66/60	365"	1.19"	62	0.23"	51	0.09"
press	28/20	140	0.42"	48	0.10"	20	0.09"
deposit belt	22/16	69	0.20"	31	0.11"	16	0.07"
composed systems							
robot	124/120	63,232	11.26	992	5.99"	205	0.21"
robot/ press	140/132	18,344	3.10"	557	3.46"	305	0.35"
open system	198/176	2,776,936	?	798	5.90"	507	0.62"
closed system	231/202						
1 plate		30,952	7.54'	162	0.68"	163	0.32"
2 plates		543,480	3.3 h	406	2.53"	456	0.72"
3 plates		> 1,7 Mio	>20 h	523	4.51"	635	0.95"
4 plates		> 3.1 Mio	>42 h	471	4.02"	678	1.06"
5 plates		1,657,242	14 h	585	5.05"	608	0.98"

- a) deletion algorithm
- b) incremental algorithm

dependability engineering & Petri nets May 2005

EXAMPLE PUSHERS

# pushers	R	version 1 P / T	version 1 R _{stub}	version 2 P/T	version 2 R _{stub}
1	88	24 / 25	22	24 / 21	22
2	464	42 / 46	42	42 / 38	42
3	3.088	60 / 67	79	60 / 55	79
4	18.848	78 / 88	133	78 / 72	133
5	118.624	96 / 109	204	96 / 89	204
6	0.7 e+6	114 / 130	292	114 / 106	292
7	4.6 e+6	132 / 151	397	132 / 123	397
8	28.9 e+6	150 / 172	519	150 / 140	519
9	179.8 e+6	168 / 193	658	168 / 157	658
10	1.1 e+9	186 / 214	814	186 / 174	814

- version 1 many dynamic conflicts
- version 2 persistent

dependability engineering & Petri nets

May 2005

SUMMARY, OUTLOOK

- reduction effect needs concurrently enabled transitions
 - -> more than one
 - -> no conflict in between
- for system without concurrency
 - -> RG = RGred
- □ on-the-fly model checking of LTL\X

dependability engineering & Petri nets

May 2005

REFERENCES

[Gerth 95]

GERTH, R., PELED, D., VARDI, M. Y., WOLPER, P.:

Simple On-the-fly Automatic Verification of Linear Temporal Logic;

Proc. of the 15th International Symposium on Protocol Specification, Testing and Verification (PSTV'95), Warsaw 1995, 3-18.

[Godefroid 96]

GODEFROID, P.:

Partial-Order Methods for the Verification of concurrent Systems;

LNCS 1032, 1996.

[Pogrell 95]

Master Thesis, Humboldt Univ. at Berlin, 1995.

[Starke 92]

STARKE, P. H.; ROCH, S.:

INA - Integrated Net Analyser version 1.7; Technical report, Humbold University at Berlin, 1997,

http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina.

[Valmari 92]

VALMARI, A.:

A Stubborn Attack on State Explosion;

Formal Methods in System Design 1(1992)4, 297-322.

[Valmari 92]

VALMARI, A.:

Alleviating State Explosion during Verification of Behavioral Equivalence:

Univ. of Helsinki, Department of Computer Science, Report A-1992-4, Helsinki 1992.

[Varpaaniemi 95]

VARPAANIEMI, K.; HALME, J.; HIEKKANEN, K.; PYSSYSALO, T.:

PROD Reference Manual;

Helsinki Univ. of Technology, Digital Systems Laboratory, Series B: Techn. Report No. 13, August 1995, ftp://saturn.hut.fi/pub/reports

monika.heiner@informatik.tu-cottbus.de

8-21/21