SEMAINE DU 17/09 AU 21/09

1 Cours

Raisonnements et ensembles

Logique Conjonction, disjonction, négation de propositions logiques. Implication et équivalence. Quantificateurs.

Raisonnements Double implication. Raisonnement par l'absurde. Contraposition. Récurrence (simple, double, forte). Analyse/synthèse.

Ensembles Appartenance, inclusion. Union, intersection, complémentaire. Produit cartésien.

Sommes et produits

Techniques de calcul Symbole \sum et règles de calcul, sommes télescopiques, changement d'indice, sommation par paquets.

Sommes classiques Suites arithmétiques et géométriques, factorisation de $\mathfrak{a}^n - \mathfrak{b}^n$, coefficients binomiaux et formule du binôme de Newton.

 $\textbf{Sommes doubles} \ \ \text{D\'efinition, r\`egles de calcul, interversion des signes} \ \ \sum \ \ \text{(cas de sommes triangulaires), sommation par paquets.}$

2 Méthodes à maîtriser

- ► Rédiger proprement une récurrence.
- ▶ Montrer une inégalité en raisonnant par équivalence.
- ▶ Résolution d'équations et d'inéquations avec valeurs absolues et racines carrées.
- ► Changement d'indice.
- ► Calcul de sommes : il n'y a guère que deux techniques a priori :
 - faire apparaître une somme télescopique;
 - faire apparaître des sommes connues (somme des termes d'une suite arithmétique ou géométrique ou somme provenant d'un développement via la formule du binôme de Newton).
- ▶ Interversion des symboles \sum pour les sommes doubles.

3 Questions de cours

ightharpoonup Déterminer les applications $f: \mathbb{N} \to \mathbb{N}$ telles que

$$\forall (m,n) \in \mathbb{N}^2, \ f(m+n) = f(m) + f(n)$$

- $\blacktriangleright \ \, \text{Soit} \, n \in \mathbb{N}^*. \, \text{Calculer} \, \sum_{k=0}^n k \binom{n}{k}.$
- ▶ Énoncer et démontrer la formule du binôme de Newton par récurrence.
- $\blacktriangleright \ \, \text{Soit} \, n \in \mathbb{N}^*. \, \text{Calculer} \, S_n = \sum_{k=0}^n \binom{2n}{2k} \, \text{et} \, T_n = \sum_{k=0}^{n-1} \binom{2n}{2k+1}.$
- ▶ Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n k^2$ sous forme **factorisée**.