Class 1

Introduction Vectors Operations Basis Subspace

Essentials of Analytical Geometry and Linear Algebra 1

Lab requirements

Attendance

Responsibility

Activity

Participation

remind me, if I'll forget

do not cheat

ask me questions, ANY questions

more participation → less time on HW

Lab organization

- All the tasks beforehand, after the lecture
 - Try to solve it at weekends
 - Prepare your questions
- Weekly quizzes of different types (NOT graded)
- QA sessions
- Videos / examples
- Homeworks

Quiz time!

Pick column and give definitions

Vector

Span

Linear combination Linear independence

Length

Subspace

Q&A

Task 1

Points A(3, -2) and B(1,4) are given. The M point is on the line AB in the way that |AM| = 3 |AB|. Find coordinates of the M point, if:

- 1. The points ${\bf M}$ and ${\bf B}$ are from the same side from ${\bf A}$.
- 2. The points ${\bf M}$ and ${\bf B}$ are from the different sides from ${\bf A}$.

Main solution steps

- ullet Find the distance between points $oldsymbol{A}$ and $oldsymbol{B}$
- ullet Find the equation for the line $|\mathbf{AB}|$
- Find 2 points on the line with distance $3 | \mathbf{AB} |$ from A.

Task 2

Check if the result of each of the following operations is a vector or not. Explain your answer.

- 1. a + b, if a and b are vectors
- 2. $\mathbf{a} \mathbf{a}$, if \mathbf{a} is a vector

$$3.\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\2\end{bmatrix}$$

- 4. $\begin{bmatrix} 2x + 15 4y \\ y x \end{bmatrix}$, if x and y are integer numbers
- 5. $\begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix} \begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix}$, i if x and y are real numbers

First things first

What is a vector?

Vectors as lists of numbers

Column vectors. Examples

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ — we will use **this notation!** We represent vectors as **columns!**

Check if the result of each of the following operations is a vector or not. Explain your answer.

- 1. a + b, if a and b are vectors
- 2. a a, if a is a vector

3.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

- 4. $\begin{bmatrix} 2x + 15 4y \\ y x \end{bmatrix}$, if x and y are integer numbers
- 5. $\begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix} \begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix}$, i if x and y are real numbers

Task 3

Three vectors are given $\mathbf{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{b} \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

Find the vectors $2\mathbf{a} + 3\mathbf{b} - \mathbf{c}$ and $16\mathbf{a} + 5\mathbf{b} - 9\mathbf{c}$.

Task 3 – solution tip

$$2\mathbf{a} + 3\mathbf{b} - \mathbf{c} = 2\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3\begin{bmatrix} -5 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 \\ 2 \cdot 2 \end{bmatrix} + \begin{bmatrix} 3 \cdot (-5) \\ 3 \cdot (-1) \end{bmatrix} - \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$16\mathbf{a} + 5\mathbf{b} - 9\mathbf{c} = 16 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 5 \begin{bmatrix} -5 \\ -1 \end{bmatrix} - 9 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \cdot 1 \\ 16 \cdot 2 \end{bmatrix} + \begin{bmatrix} 5 \cdot (-5) \\ 5 \cdot (-1) \end{bmatrix} - \begin{bmatrix} 9 \cdot (-1) \\ 9 \cdot 3 \end{bmatrix}$$

Task 4

$$1. \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$6. \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

First things first

What is a basis?

Basis in \mathbb{R}^2

Basis in \mathbb{R}^2

A set of vectors is a *basis* of \mathbb{R}^2 if it spans \mathbb{R}^2 and this set is linearly independent.

Standard basis in \mathbb{R}^2

 $\{\hat{\mathbf{i}},\hat{\mathbf{j}}\}=\{(1,0),(0,1)\}$ is a basis of \mathbb{R}^2 . They are the standard basis in \mathbb{R}^2 .

Standard basis in \mathbb{R}^3

 $\{\hat{\mathbf{i}},\hat{\mathbf{j}},\hat{\mathbf{k}}\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of \mathbb{R}^2 . They are the standard (canonical) basis in \mathbb{R}^3 .

What does it means 'span'?

Span

Span

Let
$$S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\} \subset V$$
.

$$span(S) \equiv \left\{ \mathbf{w} \in V : \mathbf{w} = \sum_{k=1}^{n} c_k \mathbf{v_k}, \quad \forall c_k \in \mathbb{R} \right\}$$

In words, W = span(S) is the set of all (possible) linear combinations of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$.

Note that W is a subspace of V.

What does it means 'linearly imdependent'?

Linear independence in \mathbb{R}^2 and in \mathbb{R}^3

Linearly independent vectors in \mathbb{R}^2

Two vectors \mathbf{a} and \mathbf{b} are *linearly independent* if for $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = 0$.

Linearly independent vectors in \mathbb{R}^3

Vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are *linearly independent* if for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, $\alpha_1 \mathbf{a} + \alpha_2 \mathbf{b} + \alpha_3 \mathbf{c} = \mathbf{0}$ if and only if $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

Check if the set of vectors is a basis or not.

1.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

- 1. What is this?
- 2. Basis of what?

Check if the set of vectors is a basis or not.

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

- 1. What is this?
- 2. Basis of what?

Check if the set of vectors is a basis or not.

- 1. What is this?
- 2. Basis of what?

Check if the set of vectors is a basis or not.

- 1. What is this?
- 2. Basis of what?

Check if the set of vectors is a basis or not.

- 1. What is this?
- 2. Basis of what?

Check if the set of vectors is a basis or not.

6.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- 1. What is this?
- 2. Basis of what?

Task 5

- 1. Part of the plane x > 0
- 2. Entire plane
- 3. Part of the plane y < 0
- 4. Part of the plane x > 0, y > 0
- 5. Inner circle with the radius r = 5

First things first

What is a subspace?

Subspace

Definition

W is a subspace of V if

- a) $W \subset V$ (subset)
- b) $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ (closure under addition)
- c) $\mathbf{u} \in W, \lambda \in \mathbb{R} \Rightarrow \lambda \mathbf{u} \in W$ (closure under scalar multiplication)

43 / 53

- 1. Part of the plane x > 0
- 2. Entire plane
- 3. Part of the plane y < 0
- 4. Part of the plane x > 0, y > 0
- 5. Inner circle with the radius r = 5

Kahoot time!

Task 7

First things first

What is a coplanar vectors?

coplanar vertors × Q

Maps

: More

Settings

Tools

News

About 577,000 results (0.55 seconds)

Videos

Images

 \bigcirc All

Coplanar vectors are the **vectors** which lie on the same plane, in a three-dimensional space. These are **vectors** which are parallel to the same plane. We can always find in a plane any two random **vectors**, which are **coplanar**.

Task 6

Find the coordinates of the gravity center of a triangular plate \mathbf{ABC} with vertices in points $\mathbf{A}(3,1)$, $\mathbf{B}(6,3)$, $\mathbf{C}(0,2)$.

Task 8

In the plane of the triangle \overline{ABC} find the point \overline{O} such that

 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0}$. Are there such points outside of the triangle?

Note: 0 is a zero-vector.

Quiz task

- What is the length of each following vector?
- Are they linearly dependent?
- What is their span?
- Give an example of linear combination of this vectors