Medium Access Control (MAC) Protocols - Study Notes

1. Introduction to MAC Protocols

Data Link Layer Structure

- Position: Second layer in OSI model
- Two Sub-layers:
 - LLC (Logical Link Control): Handles frame synchronization, error detection/correction, flow control
 - MAC (Medium Access Control): Controls access to shared medium

Purpose of MAC Protocols

- Control access to shared communication links
- Prevent collisions when multiple stations transmit simultaneously
- Manage how and when stations can transmit data

2. Network Topologies and MAC Need

Point-to-Point Links

- Direct connection between two stations
- No need for MAC protocols
- Each station has dedicated link

Shared Medium (Bus/LAN)

- Multiple stations share same communication link
- **Problem**: Collisions occur when multiple stations transmit simultaneously
- **Solution**: MAC protocols coordinate access

3. Classification of MAC Protocols

A. Random Access Protocols

- Characteristic: No priority system, stations compete for access
- Key Protocols:

3.1 ALOHA

- Pure ALOHA:
 - Stations transmit whenever they have data

• Maximum throughput: 18.4% (0.184)

Slotted ALOHA:

- Time divided into slots
- Stations can only transmit at slot boundaries
- Maximum throughput: 36.8% (0.368)

3.2 CSMA (Carrier Sense Multiple Access)

- Stations listen before transmitting
- Better performance than ALOHA

3.3 CSMA/CD (Collision Detection)

- Used in Ethernet
- Detects collisions during transmission
- Stops transmission when collision detected

3.4 CSMA/CA (Collision Avoidance)

- Used in wireless networks
- Tries to avoid collisions before they occur

B. Controlled Access Protocols

3.1 Polling

- Central Controller: One station acts as controller
- Process: Controller polls each station to check if it has data to transmit
- Advantage: No collisions
- Disadvantage: Overhead of polling messages

3.2 Token Passing

- Token Ring: Special control frame (token) circulates
- **Rule**: Only station holding token can transmit
- Process:
 - Station receives token
 - If has data, transmits and then passes token
 - If no data, immediately passes token

• Key Concepts:

• Early Token Release

- Delayed Token concepts
- Token holding time

C. Channelization Protocols

3.1 FDMA (Frequency Division Multiple Access)

- Method: Frequency band divided into fixed channels
- Allocation: Each station assigned specific frequency channel
- **Usage**: Station uses assigned frequency for transmission

3.2 TDMA (Time Division Multiple Access)

- Method: Time divided into fixed time slots
- Allocation: Each station assigned specific time slot
- Usage: Station can only transmit during its assigned time slot

4. Important Performance Metrics

Key Formulas and Concepts

- Vulnerable Time: Time period during which collision can occur
- Throughput: Measure of successful data transmission
- **Efficiency**: Ratio of useful transmission time to total time
- Transmission Time vs Propagation Time: Important for calculating efficiency

Efficiency Considerations

- CSMA efficiency depends on ratio of transmission time to propagation time
- Token Ring efficiency depends on token circulation time
- Channelization protocols can achieve theoretical maximum efficiency

5. Exam Important Points

High Priority Topics

- CSMA and CSMA/CD: Most frequently asked
- ALOHA protocols: Pure vs Slotted comparison
- Token Ring: Delay calculations, early/delayed token release
- Throughput and efficiency calculations
- Numerical problems: Formula applications

Key Numerical Concepts

- Maximum throughput values for different protocols
- Efficiency calculations
- Vulnerable time calculations
- Token circulation time in token ring

6. Summary

MAC protocols are essential for managing access to shared communication media. The three main categories each serve different purposes:

- Random Access: Best for light traffic, simple implementation
- Controlled Access: Eliminates collisions, good for heavy traffic
- Channelization: Provides guaranteed bandwidth, suitable for real-time applications

Understanding the trade-offs between throughput, efficiency, and implementation complexity is crucial for selecting appropriate MAC protocols for different network scenarios.