Partie 3 Construction du lexique

Vincent Labatut

Laboratoire Informatique d'Avignon – LIA EA 4128 vincent.labatut@univ-avignon.fr

2019/20

M2 ILSEN

UE Ingénierie du document et de l'information **UCE3** Indexation & Recherche d'information

Plan de la séance

- 1 Constitution de la collection
- 2 Définitions préliminaires
- 3 Étape de tokénisation
- 4 Mots vides
- **5** Étape de normalisation

Section 1 Constitution de la collection

Constitution de la collection Récupération et accès aux données

- Acquisition des données
 - Tâche complètement dépendante de la source : Web, BD, fichiers locaux...
 - Peut nécessiter un prétraitement spécifique : crawl, requêtage, lecture...
- Nature des fichiers
 - alert : texte, binaire (ex. MS Word, ZIP)
 - alert : ASCII, Unicode, propriétaire
 - alert d'entités (ex. SGML : &)
 - alert de la partie textuelle (ex. XML, PS, PDF)
 - → peut être très difficile à automatiser (ex. pages Web)
- Identification de la langue
 - Unilingue vs. multilingue

Constitution de la collection Unité de document

- Que choisir comme une unité de document?
- 1 document $\stackrel{?}{=} n$ fichiers
 - Ex.: latex2html transforme un document LaTeX en un site web contenant plusieurs pages
- n documents $\stackrel{?}{=} 1$ fichier
 - Ex.: un fichier mbox peut contenir une séquence d'emails
 - Ex.: un fichier ZIP peut contenir une collection de documents
- Niveau de granularité
 - Ex.: livres vs. chapitres
 - Trop grande → faible précision
 - Trop petite → faible rappel

Section 2 Définitions préliminaires

Définitions préliminaires Tokens & tokénisation

Segmentation (ou Tokénisation)

Découpage du texte constituant les documents du corpus, de manière a produire des séquences de **segments** (ou **tokens**) correspondant approximativement à des **mots** ou **expressions**.

Ex.: Friends, Romans, Countrymen, lend me your ears;

 \rightarrow <u>Friends Romans Countrymen lend me your ears</u>

Token

Chaîne de caractères apparaissant dans un document du corpus, et considérée comme une unité sémantique. Concrètement, un token correspond à un mot ou à un groupe de mots. Un token est une instance de type.

Ex.: le mot Friends apparaissant dans la phrase d'exemple

Définitions préliminaires Types & Termes

Type

Classe de tous les **tokens** correspondant à la même chaîne de caractères. Un type apparaît généralement **plusieurs fois** dans le corpus, sous la forme de plusieurs tokens **distincts**.

Ex. : le mot Friends *en général* (par opposition à une instance particulière)

Terme

Version **normalisée** d'un **type**, qui est utilisée dans le **lexique** d'un index. Il ne s'agit pas forcément d'un mot.

Ex.1 : le mot Friends *en général* (pas une instance particulière) Ex.2 : concept ontologique (=code associé à une sémantique donnée)

Définitions préliminaires Tokens vs. types vs. termes

Comparaison 1:

- Phrase: The friends of my friends are my friends
- 8 tokens: The, friends, of, my, friends, are, my, friends
- 5 types: The, friends, of, my, are
- Probablement 1 seul terme : friend

Comparaison 2 :

- Phrase: Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo [Wik19]
- 8 tokens: Buffalo, buffalo, buffalo, buffalo, buffalo, Buffalo, buffalo
- 2 types : Buffalo, buffalo
- Probablement 1 seul terme : buffalo

Section 3 Étape de tokénisation

Étape de tokénisation Approche standard

- La même segmentation doit être effectuée sur la requête
- Comment segmenter?
 - Approche standard : considérer les caractères non-alphanumériques comme des séparateurs
 - Ex. : $\underline{\text{Je}} \underline{\text{suis}} \underline{\text{là}} \rightarrow 3 \text{ tokens}$
- Principaux problèmes rencontrés :
 - Caractères d'espacement
 - Ex. : Le laboratoire est ouvert \rightarrow 4 tokens
 - Mais: <u>plate forme</u> → 2 tokens?
 - Ponctuation
 - \underline{L} 'homme \underline{n} 'avait jamais \underline{pris} \underline{ce} $\underline{chemin} \rightarrow 8$ tokens
 - Mais: aujourd'hui \rightarrow 2 tokens? U.S.A. \rightarrow 3 tokens?
 - Les deux :
 - J'ai pris le vol Los Angeles-Paris → 8 tokens?

Étape de tokénisation Autres problèmes

- Autres problèmes :
 - Valeurs numériques
 - Numéros de téléphone 04 90 12 34 56
 - Dates 10/09/2014
 - Codes et noms propres
 - Le langage C++
 - Le bombardier B-52
 - Adresses
 - email:bozo@mysite.org
 - URL:http://www.univ-avignon.fr
 - IP: 172.16.254.1

Étape de tokénisation Problèmes relatifs à la langue

- Problème de segmentation de mots :
 - Mots construits (allemand, turc...)
 - Computerlinguistik (2 tokens) pour : linguistique computationnelle
 - Çekoslovakyalılaştıramadıklarımızdanmısınız? pour:
 Êtes-vous l'une de ces personnes que nous n'avons pas pu tchécoslovaquiser?
 - Aucun espace (chinois, japonais...)
 - Solutions:
 - Prétraitement linguistique de segmentation des mots : manuel, automatique (ML)
 - Utilisation de n-grammes de caractères au lieu de mots
- Texte bidirectionnel : contient des parties respectant différents sens de lecture
 - Ex.: texte arabe avec valeurs numériques en chiffres indo-arabes (exemple ici)

Mots vides Notion de mot vide

Mot vide (EN: stop word)

Mot si fréquent que son sens n'est pas jugé pertinent.

Ex.: le, la, un, cette...

...mais la notion de pertinence est relative au contexte du corpus

On ignore les mots vides dans le lexique

- Intérêt : réduire significativement le nombre de postings dans l'index
- Perte d'information relativement minime → qualité des résultats à peu près équivalente

Mots vides Fréquences d'un terme

Fréquence d'un terme

La fréquence d'un terme t dans un document d correspond à son **nombre** d'**occurrences** dans ce **document**, noté tf(t, d).

Fréquence de collection d'un terme

La fréquence de collection d'un terme t est le **nombre** total d'**occurrences** de ce terme dans le **corpus**, noté $\mathit{cf}(t)$. Formellement :

$$cf(t) = \sum_{d \in \mathcal{C}} tf(t, d).$$

Rappel : la fréquence de document $\mathit{df}(t)$ est le nombre de documents de $\mathcal C$ contenant t

Mots vides Méthodes de détection

- Deux méthodes complémentaires pour détecter les mots vides :
 - 1 Filtrage des termes les plus fréquents
 - ullet On utilise la fréquence de collection $\mathit{cf}(t)$ du terme t
 - On considère comme mots-vides tous les termes dépassant une certaine fréquence
 - Ce seuil peut être fixé arbitrairement ou empiriquement (en considérant les données)
 - 2 Utilisation de listes prédéfinies
 - Ex.: articles (la, le, les...), pronoms (je, tu, elle...), conjonctions (qui, que, dont...), etc.
- Contre-exemples:
 - Le vol pour Londres est plus précis que : vol, Londres
 - To be or not to be → uniquement des mots vides

Section 5 Étape de normalisation

Étape de normalisation Notion de normalisation

Normalisation

Action d'associer un **terme unique** à une **classe** de types jugés équivalents, puis de **substituer** ce terme aux **tokens** instanciant l'un de ces types dans le texte.

Exemples:

- Le terme chien représentant les types chien, chiens, chienne, et chiennes
- Le terme plateforme représentant les types plate-forme, plate forme et plateforme
- Le terme chant représentant chanter, chante, chantes, chantons, chantez, chantent...
- Le terme AB1267Q représentant voiture, autombile, caisse, bagnole

Étape de normalisation Méthodes générales

- Méthode 1: classes d'équivalence
 - Créer (manuellement ou automatiquement) des maps spécifiques token → terme
 - Ou : utiliser des règles générales de transformation (ex. supprimer les tirets)
- Méthode 2 : lier les types
 - Indexer tous les types
 - Utiliser des maps type → type plus spécifique et les appliquer aux requêtes
 - Ex.: indexer window, windows et Windows
 - Windows \rightarrow Windows
 - windows → Windows, windows, window
 - window → window, windows
- Méthode 2 plus flexible, mais beaucoup plus coûteuse (temps et mémoire)

Étape de normalisation Problèmes typographiques

Signe diacritique

Signe modifiant une lettre de l'alphabet : accent, cédille, tréma, etc.

- Signes diacritiques:
 - Approche standard : supprimer tous les signes
 - Problème : boite vs. boîte, jeûne vs. jeune
- Majuscules vs. minuscules :
 - Approche standard : tout convertir en minuscules
 - Mieux : seulement les mots en début de phrase
 - Problème : USA vs. usa
- Compromis entre :
 - Perte d'information
 - Performance obtenue
 - Utilisation effective
 - Ex.: accents omis dans la requête pour des raisons de rapidité, paresse, habitude, contraintes...

Étape de normalisation Problèmes linguistiques

- Problèmes dépendant de la langue/système d'écriture :
 - Multiples formes :
 - Français : l' = le, la
 - Variantes orthographiques
 - Anglais UK vs. US: colour vs. color
 - Translitérations Chebyshev vs. Tchebycheff
 - Conventions orthographiques
 - Allemand : ü=ue (Schütze = Schuetze)
 - Suédois : å=aa (Ålborg = Aalborg)
 - Systèmes d'écriture multiples, ex. Japonais :
 - Kanji 漢字: logogrammes
 - (Ateji : séquence de kanjis à valeur phonétique)
 - Kana: syllabaires (hiragana ひらがな, katagana カタカナ)
 - Rōmaji : alphabet latin

Étape de normalisation Problèmes de flexion

Flexion

Modification du mot permettant de représenter certains **traits grammaticaux** (genre, nombre, cas, temps, voix, classe lexicale...).

- Problèmes liés aux flexions :
 - Un même mot peut subir plusieurs flexions simultanément
 - Ex.1: l'université vs. les universités
 - Ex.2 : il écrivit vs. nous écrirons
 - Des mots dérivés de la même racine peuvent être jugés équivalents
 - Ex.: démocratie vs. démocratisation
- Solution : se ramener à une forme neutre dans le lexique
 - Ex.: Nous écrirons à l'université → nous écrire université
 - Deux méthodes : racinisation vs. lemmatisation

Étape de normalisation Opération de racinisation

Racinisation ou désuffixation (eng: Stemming)

Transformation d'un mot consistant à faire **disparaître** ses flexions en lui substituant sa **racine**.

- Ex.: frontal \rightarrow front; chercher \rightarrow cherch
- Réalisation : méthodes à base de règles de ré-écriture
 - Approche par dictionnaire : liste prédéfinie de paires (type, racine)
 - Approche algorithmique: Porter stemmer (EN); Carry (FR)
- Limites:
 - La racine ne correspond pas forcément à un mot réel
 - Confond les flexions (ex. sauter vs. sautent) et les dérivations (sauter vs. sautiller)

Étape de normalisation Opération de lemmatisation

Lemmatisation

Transformation d'un mot consistant à le ramener à une **flexion canonique** et lui substituant son **lemme**, i.e. le même mot sous une forme neutre (singulier-masculin, infinitif...).

- Ex.: écrirons → écrire; universités → université
- Réalisation : méthodes à base de règles (comme racinisation)
 - Approche par dictionnaire : liste prédéfinie de paires (type,lemme)
 - Approche algorithmique : règles définies manuellement ou apprises automatiquement
- Propriétés :
 - Le lemme correspond par définition à un mot réel
 - Ne tient compte que des flexions, pas des dérivations

Concepts abordés dans cette partie

- Tokenisation
- Signe diacritique
- Normalisation
- Racinisation
- Lemmatisation
- Fréquence de collection

- Token
- Type
- Terme
- Mot-vide
- Lemme
- Flexion

Lectures recommandées

- [MRS08] Introduction to Information Retrieval, chapitre 2.
- [BCC10] Information Retrieval: Implementing and Evaluating Search Engines, chapitre 2.
 - [BR11] Modern Information Retrieval: The Concepts and Technology behind Search, chapitre 6.
 - [AG13] Recherche d'information Applications, modèles et algorithmes, chapitre 2.
- [CMS15] Search Engines : Information Retrieval in Practice, chapitres 4 & 5.

Références bibliographiques I

- [AG13] M.-R. Amini et É. Gaussier. Recherche d'information -Applications, modèles et algorithmes. Paris, FR : Eyrolles, 2013. url :
 - https://www.eyrolles.com/Informatique/Livre/recherched-information-9782212673760/.
- [BR11] R. Baeza-Yates et B. Ribeiro-Neto. Modern Information
 Retrieval: The Concepts and Technology behind Search. 2nd
 Edition. Boston, USA: Addison Wesley Longman, 2011. url:
 http://people.ischool.berkeley.edu/~hearst/irbook/.
- [BCC10] S. Büttcher, C. L. A. Clarke et G. V. Cormack. Information Retrieval: Implementing and Evaluating Search Engines. Cambridge, USA: MIT Press, 2010. url: http://www.ir.uwaterloo.ca/book/.
- [CMS15] W. B. Croft, D. Metzler et T. Strohman. Search Engines:
 Information Retrieval in Practice. Pearson, 2015. url:
 http://www.search-engines-book.com/.

Références bibliographiques II

- [MRS08] C. D. Manning, P. Raghavan et H. Schütze. *Introduction to Information Retrieval*. New York, USA: Cambridge University Press, 2008. url: http://www-nlp.stanford.edu/IR-book/.
- [Wik19] Wikipedia. Buffalo buffalo.