Term Project

- The term project is carried out in teams of 1-2 students
- One-page project proposal (due date May 17, 2021)
 - The problem description
 - · Background, previous work, motivation
 - Methods
 - · Assumptions, proposed flowchart or steps
 - Possible results
 - References
 - · Books, papers, websites
- Project demo & presentation (June 3, 7, 10, 17)
- Final report (June 28)
 - The final report (4-8 pages) should extend your proposal to include detailed methods, results and discussion

Layout Pattern Classification for Hotspot Detection

100062527 林聖淵、100062523 陳靜怡

動機:

- 電路尺寸下降+光微影製程誤差相對大
- 部份路徑易產生微影熱點(lithography hotspot)
 - 希望在電路佈局階段,就把可能 產生微影熱點的電路偵測出

• 方法:

- 資料:路徑位置、輪廓、骨架
- 分類:
 - · 透過LDA將原始資料進行降維
 - 透過SVM、Artificial Neural Network、KNN進行分類

• 實驗 + 分析:

- Precision and Recall
- SVM設定不同參數的實驗結果
- 不同LDA維度影響辨識率的討論

Correct Preposition Errors

9965703 張至、100062703 張竟

動機:

- 使用者輸入可能含錯誤介係詞的英文句子 系統輸出正確句子
- 不易取得錯誤的句子當作訓練資料

• 方法:

- 正確+錯誤句全改為中介形式
 - 無介係詞
- Conditional Random Field (CRF)訓練model
 - Context-dependent Classification (Ch9)

• 實驗 + 分析:

- 資料: British National Corpus
 - 包含13個常用介係詞、共約400萬字
- 計算準確率+針對易誤用介係詞進行討論

On this paper, we present a new classifier based user's age.

In this paper, we present a new classifier based on user's age.

Moving Object Detection with Robust PCA

101062547 黃啟清 101062576 劉品均

動機

- 將移動物體偵測視為image decomposition 問題

方法

- Robust PCA
- Robust PCA with noise term
- Multi-task robust PCA

• 實驗與分析

- 對sparse term套入不同的threshold作二值化,以F-measure找出最 適合的threshold
- 套入不同threshold計算precision以及recall,並畫出ROC curve作 為評量

Classification of 101065505 林孟樟 Vocal Singing & Synthesized Sound

• 動機

- Yamaha在2007年推出語音合成軟體Vocaloid2, 塑造了虛擬歌手「初音未來」和她的家族成員
- Vocaloid2軟體僅需輸入音調、歌詞就能唱出酷似真人演唱的歌曲, 程式內也包含了進階設定的參數,讓合成的語音更接近真人

方法

- Feature extraction and selection
 - 採用Volume、Zero crossing rate(ZCR)、MFCC、local min等48個特徵,並以 Sequential Forward Selection尋找最佳特徵

• 實驗與分析

Training Data 400 信音核(200 信電子音合成液态含核~200 信人學清唱音報)
Teoring Data 1: 400 信音核(200 同電子合成液态含核~200 信人學清唱音報)
Teoring Data II: 400 信音核(200 信皇原笔子合成漆唱音核~200 信人學清唱音核)

- 分析選取不同feature數的影響(recognition rate)
- 比較frame-based及segment-based下的差異
- 比較有/否加入背景音樂的差異

Auto Photo Classification

9960106 陳立昂 9860106 許峻榮

• 動機

- 整理大量照片時總會有需要後製修圖的照片,但是一張一張檢查及 分類太過費工費時,而且不同種類的照片需要不同的修圖技巧
- 希望可自動將照片分為正常、過曝、過暗、背光、手震及失焦五種類別,方便對大量相片批次處理前的初步分類

方法

- Two-stage classifier
- Feature selection
 - · Testing on 9 features

實驗與分析

- 特徵可行度驗證
- 分類器特徵選擇及表現
- 其餘分類器架構嘗試

102062568 王任

NBA Game Prediction

- 動機
 - 透過online learning的方式對每一場NBA比賽做賽前預測
- 方法
 - Predict personal performance
 - 使用過去的比賽數據做加權平均,時間上離現在越接近或是和這次對手相同的場次會有較高的weight
 - Predict team work
 - 以預測出的球員數據當作feature vector,
 - · Regression: 預測兩隊分別會得幾分,並以此來判斷誰輸誰贏
 - SVM:在每個feature分別預測結果(+1/-1),總和較高的即為獲勝球隊
- 實驗與分析
 - Data: NBA官網 2010~2011、2011~2012、2012~2013三個賽季
 - 結果討論
 - 當球隊與上一季狀況相差不大時有不錯的效果
 - 每支球隊因為有不同的特性,而可能有各自適合的model

自動語音點餐系統

102061535 黃郁淳 102061548 彭少瑜

- 動機
 - 飲料店常因顧客思考點餐內容或複雜的點餐組合而使隊伍大排長龍
 - 設計出一個系統能自動將一句點餐轉為文字,節省點餐人力
 - Audio input: 呃嗯...烏龍...綠茶... ...半糖去冰... ...兩杯
 - Output: 烏龍綠茶 半糖 去冰 兩杯
- 方法
 - Acoustic model: 39 MFCC + HMM (5 hidden states)
 - 飲料名稱、甜度、冰塊、數量4個分類器中各有14、10、15、15類別
 - Language model: HTK (Hidden Markov Model toolkit)
 - 將聲母、韻母拼成一個字 & 將字與字拼成一個詞:
- 實驗與分析 ***** **** **** **** *****

	以わる傳	/N.Vit	加及	数車
整句準確度	72.96%	82.05%	74.36%	83.33%
單字準確度	81.70%	91.03%	87.18%	91.67%
7 De Lublla	+++ ++ 1 (++++	*15 E ###		オマケ

- 資料蒐集: 11位男性、7位女性,其中4位在背景嘈雜環境中錄音
- 討論:中文字的發音重疊性高,像是「紅、龍、檬」、「微、無」、「去、全」、「兩、六」等,且台灣人講話多簡化咬字,「四、十」這種些微的差異有時連人耳都難以分辨

100062512 張光瑜

Tic-Tac-Toe Game 井字遊戲

- 動機
 - To develop a game playing A.I. based on the AlphaGo's method
 - Tic-Tac-Toe is selected as the game to be played
- 方法
 - The program is developed based on the method used by AlphaGo
 - Two types of neural networks: policy network & value netwrok
 - · Search tree
- 實驗與分析
 - Training data of the policy network is generated with an algorithm based on existing perfect strategy

Oppount.	trandom artirms		perfect strategy	
(Strategy goes,	flast	Europea	flirst	weeded
trine	987	866	.10	-
keen	0	- 9	- 0	- 1
draws	- 13	125	1000	1000

Table 1: (Strategy play against random actions and perfect strategy

PTT 酸文辨識

105065507 姚舜懷 105062507 陳星宇 105062525 林宏縉

- 動機
 - PTT 上常有發文或是網友一言不合透過留言互酸
 - 如果可以辨識一篇發文或底下的酸言佔比多高,我們認為可以幫助 鄉民更輕鬆選擇符合自己偏好的文章
- 方法
 - Data collection: 自行撰寫爬蟲抓取 PTT 站上文章資料
 - Features: TF-IDF, word2vec
 - Classifiers: Naïve Bayes, SVM, LSTM
- 實驗與分析
 - Data imbalance:酸文與中性文數量差距大

block	Fague :	Versus-Se	Ust into - No	Name 20
Neive Bayes (General NB)	word2ver	42.4%	01.0%	51.8%
3000	w042/ee	312%	50.8%	32.1%
Nave Bayes (Blaticomahili)	TEADE	42.5%	60.0%	72.4%
SW	TRIDE	18879	1000	73.25

Molei	Feeting	Val. em -Ba	Val. err., Mr.	Wat and -Se
Name Sayes (GeometriNB)	statiOvec	49.4%	51.0%	51.8%
80M	wordbee	66.2%	. 50.8%	12.5%
789	sion@vec	88.8%	720%	(7929)
RNN	wordver	64.5%	673%	70.7%

美國職棒大聯盟 (MLB)戰力分析

104034031 廖耕新

動機

- 107061604 李杰倫
- 國外很多棒球網站每年開季前都會預測今年度能進到季後賽的球隊
- 我們針對MLB中 30支球隊近10年來的數據進行分析,利用機器學習方法來看這些球隊花大錢增加戰力是否有實質幫助?又或者是哪些原因才是背後影響的關鍵?
- 方法
 - Data collection: Baseball reference
 - Feature selection: Wrapper method vs Filter method (52-D-> 9D)
 - Test on 5 classifiers
- 實驗與分析

SVM	Decision Tree	RININ.	Adaboost	MLP
70%	80%	83%	80%	83%

NOW TO ANALOGE MARKETER

利用 2017 作為訓練集 2018 上半李成績作為淵試集

植物品種鑑定

107003815 鄭良加

• 動機

- 植物種類多達450,000種,不易辨識
- 希望透過手機拍照,並結合植物百科,以開發快速辨識模型
- 方法
 - Data collection: 8 public domain data sets
 - Feature extraction: PCA/LAD
 - Multiclass classification
- 實驗與分析
 - 針對課堂上所教之6種不同降維方式(PCA, LDA, …)降到2維做一觀察, 並加入 t-SNE 方法(希望樣本間在高維對應的高斯核函數相似度同樣在

語音情緒分類模型

107062705 陳家昕 107003817 張傑智

- 問題描述
 - 全球智慧家庭裝置中以智慧音箱成長最為顯著[1]。語音已成為與智慧終端互動 不可或缺的方式,因此擬針對聊天時常出現的4類情緒(喜。怒、哀、中性)進 行辨識,在分類出使用者的情緒後,智慧終端即可依據狀況給予適當的回應。
- 方法

• 實驗與分析

[figure 5]在 MFCC13 下實驗不同正規化 方法配上 LDA(N=3)和 KNN(K=150), UAR 越高越好。