

ساخمان عي داده

مرتبسازر هبابر، درهر و انتفابر

Bubble Sort, Insertion Sort, and

Selection Sort

مدرس: سيدكمال الدين غياثي شيرازي

مساله مرتب سازی

پایداری الگوریتمهای مرتب سازی

• یک الگوریتم مرتب سازی پایدار (stable) است هرگاه ترتیب عناصر مساوی را به هم نزند.

sorted by time	sorted by location (not stable)	sorted by location (stable)
Chicago 09:00:00 Phoenix 09:00:03 Houston 09:00:13 Chicago 09:00:59 Houston 09:01:10 Chicago 09:03:13 Seattle 09:10:11 Seattle 09:10:25 Phoenix 09:14:25 Chicago 09:19:32 Chicago 09:19:46 Chicago 09:21:05 Seattle 09:22:43 Seattle 09:22:54 Chicago 09:35:21 Seattle 09:36:14	Chicago 09:25:52 Chicago 09:03:13 Chicago 09:21:05 Chicago 09:19:46 Chicago 09:19:32 Chicago 09:00:00 Chicago 09:35:21 Chicago 09:00:59 Houston 09:01:10 Houston 09:00:13 Phoenix 09:37:44	Chicago 09:00:00 Chicago 09:00:59 Chicago 09:03:13 Chicago 09:19:32 Chicago 09:21:05 Chicago 09:25:52 Chicago 09:35:21 Houston 09:00:13 Houston 09:00:13 Phoenix 09:00:03 Phoenix 09:14:25 Phoenix 09:37:44 Seattle 09:10:11 Seattle 09:22:43 Seattle 09:22:54 Seattle 09:36:14
Stability when sorting on a second key		

مرتبسازی حبابی (Bubble Sort)

• الگوریتم مرتبسازی حبابی دا نما دو عنصر مجاور را با یکدیگر مقایسه می کند و اگر ترتیب آنها را عوض می کند.

مرتبسازی حبابی (Bubble Sort)

```
n = length(A)
for i = n-1 down to 1 do
for j = 1 to i do
  if A[j-1] < A[j] then
    swap(A[j-1], A[j])</pre>
```

نسخهی بهینهشده مرتبسازی حبابی

```
n = length(A)
repeat
newn = 0
for i = 1 to n-1 do
  if A[i-1] < A[i] then
   swap(A[i-1], A[i])
     newn = i
n = newn
until n = 0
```

تحليل الكوريتم Bubble sort

- $\Theta(?)$ زمان اجرا در بدترین حالت از مرتبه \bullet
 - پایدار ؟
- تعداد دفعات جابجایی عناصر از مرتبه $\Theta(?)$ است.

تحليل الكوريتم Bubble sort

- $\Theta(n^2)$ زمان اجرا در بدترین حالت از مرتبه ullet
 - پایدار است.
- است. $\Theta(n^2)$ است. عناصر از مرتبه $\Theta(n^2)$
- و بنابراین اگر اندازه عناصر لیست بر حسب بایت بالا باشد، بسیار کند عمل خواهد کرد.

مرتب سازی درجی (Insertion Sort)

 $\rho(1)$ همانند اثبات استقرایی عمل می کند. $\rho(K+1)$ $\rho(K)$ $\rho(K)$

• آرایه ای به طول یک مرتب است.

• فرض کنیم آرایه به طول j-1 مرتب باشد، در این صورت عنصر j ام را در محل صحیح در j-1 تایی درج می کنیم تا یک آرایه j-1 تایی درج می کنیم تا یک آرایه j-1 تایی مرتب بوجود آید.

7-4-5323 1-4-7-7-54 1-4-7-54 1-3-3-3-4 1-3-3-3-4

الگوريتم مرتبسازي درجي

n = length(A)for i=1 to n-1 do $\vec{i} = 1 + 2 + \cdots + n - 1 = (n - 1) \cdot n$

n. Len (A) n = length(A)for i=1 to n-1 do for i=1 to n-1 do while j > 0 and A[j+1) A[j] A[j+1] = A[j] A[j+1] = A[j] A[j+1] = A[j]j = j - 1A[j+1] = V 4 5 7 1 3 4 5 7

تحليل الكوريتم Insertion sort

 $\Theta(?)$ زمان اجرا در بدترین حالت از مرتبه \bullet

- پایدار ؟
- ر $\Theta(?)$ تعداد دفعات جابجایی عناصر از مرتبه $\Theta(?)$ است.

$$\Lambda$$
, $\Lambda = 1$, $\Lambda = 2$, ..., 1

تحليل الكوريتم Insertion sort

- $\Theta(n^2)$ زمان اجرا در بدترین حالت از مرتبه ullet
 - پایدار است.
- است. $\Theta(n^2)$ تعداد دفعات جابجایی عناصر از مرتبه
- بنابراین اگر اندازه عناصر لیست بر حسب بایت بالا باشد، بسیار کند عمل خواهد کرد.

مرتبسازی انتخابی (Selection Sort)

و در Selection Sort محل بزرگ ترین عنصر در لیست عناصر مشخص می شود و جای آن با
 عنصر آخر لیست عوض می شود.

• با تکرار همین کار، لیست مرتب می شود.

9, 1, 12, 13,
$$7$$
, 4 , $|5$, 6 , 9 , $|1$, $|2$, $|3$, $|7$, $|4$, $|6$, $|15$, $|9$, $|1$, $|2$, $|6$, $|7$, $|4$, $|3$, $|5$, $|9$, $|1$, $|2$, $|6$, $|7$, $|4$, $|3$, $|5$, $|9$, $|1$, $|2$, $|6$, $|7$, $|4$, $|3$, $|5$

الكوريتم مرتبسازى انتخابي

```
n = length(A)
for i=1 to n-1 do
  maxVal = A[0]
            \sum_{i=1}^{n} (n-i) = n-1 + \cdots + 1
  maxIdx = 0
  if maxVal < A[j]</pre>
       maxVal = A[j]
        maxIdx = j
```

تحليل الكوريتم مرتبسازى انتخابي

n2

- $\Theta(?)$ و زمان اجرا در بدترین حالت از مرتبه \bullet
 - پایدار ؟ 🗡
- تعداد دفعات جابجایی عناصر از مرتبه (?) است.

تحليل الكوريتم مرتبسازى انتخابى

- $\Theta(n^2)$ زمان اجرا در بدترین حالت از مرتبه \bullet
- پایدار نیست مثال زیر ناپایداری را نشان میدهد.

تعداد دفعات جابجایی عناصر از مرتبه $\Theta(n)$ است. بنابراین اگر اندازه عناصر لیست برullet

حسب بایت بالا باشد، این الگوریتم نسبت به دو الگوریتم قبل رجحان دارد.