31 Déterminer des équations électrochimiques

a. Lorsque la pile fonctionne, l'ion Cu²⁺(aq) est consommé.

Les équations de réactions électrochimiques sont donc :

$$Cu^{2+}(aq) + 2 e^{-}(électrode) \rightarrow Cu(s)$$

$$Sn(s) \rightarrow Sn^{2+}(aq) + 2 e^{-}(électrode)$$

 b. Les électrons quittent l'électrode en étain : elle est le pôle négatif et l'électrode en cuivre est le pôle positif.

35) Étude d'une pile bouton APPLICATION

a. Les demi-équations électroniques faisant intervenir les deux couples sont :

$$ZnO(s) + 2 H^{+}(aq) + 2 e^{-} = Zn(s) + H_{2}O(\ell)$$

$$Ag_2O(s) + 2 H^+(aq) + 2 e^- = 2 Ag(s) + H_2O(\ell)$$

L'un des réactifs est Ag₂O(s): le deuxième réactif est donc Zn(s). Les équations de réactions électrochimiques aux électrodes sont :

$$Zn(s) + H_2O(\ell) \rightarrow ZnO(s) + 2 H^+(aq) + 2 e^-(électrode)$$

$$Ag_2O(s) + 2 H^+(aq) + 2 e^-(electrode) \rightarrow 2 Ag(s) + H_2O(\ell)$$

L'équation de réaction de la transformation ayant lieu dans la pile est donc :

$$Zn(s) + Ag_2O(s) \rightarrow ZnO(s) + 2 Ag(s)$$

 b. Le nombre stœchiométrique des électrons est de 2 dans les deux équations de réactions électrochimiques : pour un avancement x_{max} , une quantité de 2 x_{max} d'électrons est échangée.

Ag₂O(s) étant le réactif limitant :
$$x_{\text{max}} = n_{\text{Ag}_2\text{O,i}} = \frac{m_{\text{Ag}_2\text{O,i}}}{M(\text{Ag}_2\text{O})}$$

La quantité de matière d'électrons échangés est :

$$n(e^-) = 2 \times \frac{m_{Ag_2O,i}}{M(Ag_2O)}.$$

A. N.:
$$n(e^{-}) = 2 \times \frac{0.20 \text{ g}}{(2 \times 108 + 16.0) \text{ g} \cdot \text{mol}^{-1}} = 1.7 \times 10^{-3} \text{ mol}.$$

c. La capacité électrique de la pile est :

$$q_{\text{pile}} = n(e^-) \times N_A \times e = n(e^-) \times \mathcal{F}$$
.

A.N.: $q_{pile} = 1.7 \times 10^{-3} \text{ mol } \times 96.5 \times 10^{3} \text{ C} \cdot \text{mol}^{-1} = 1.6 \times 10^{2} \text{ C}.$ Cette question est une application directe d'une formule du

d. La durée de vie de la pile Δt_{max} est telle que $I = \frac{q_{\text{pile}}}{\Delta t_{\text{max}}}$, soit

$$\Delta t_{\text{max}} = \frac{'\text{pile}}{I}$$

$$\Delta t_{\rm max} = \frac{q_{\rm pile}}{l} \ .$$
 A. N. : $\Delta t_{\rm max} = \frac{1,6 \times 10^2 \ \rm C}{0,40 \times 10^{-3} \ \rm A} = 4,0 \times 10^5 \ \rm s = 1,1 \times 10^2 \ h.$ Cette dernière question permet de réinvestir la défin

Cette dernière question permet de réinvestir la définition de l'intensité électrique comme un débit de charges, définition vue en classe de 1^{re} Spécialité.

1. Pile à hydrogène

a. Les équations des réactions électrochimiques ayant lieu aux électrodes sont :

$$H_2(g) \rightarrow 2 H^+(aq) + 2 e^-(électrode)$$
 (1)

$$O_2(g) + 4 H^+(aq) + 4 e^-(électrode) \rightarrow 2 H_2O(g)$$

La combinaison 2 × (1) +1 × (2) permet d'établir l'équation de la réaction modélisant la transformation qui a lieu dans la pile :

$$O_2(g) + 2 H_2(g) \rightarrow 2 H_2O(g)$$

b. Au pôle positif se produit une réduction. Le réactif est donc O₂(g). Au pôle négatif se produit une oxydation. Le réactif est donc H₂(g).

c. Le stockage du dihydrogène est complexe car c'est un gaz. Même fortement comprimé, il reste sous forme gazeuse. D'autre part c'est un gaz très inflammable.

2. Première pile au méthanol

a. La réaction (1) est identique à celle de la réponse 1.a. :

$$O_2(g) + 2 H_2(g) \rightarrow 2 H_2O(g)$$
 (1)

La réaction (2) est la combustion du monoxyde de carbone d'équation :

$$2 CO(g) + O_2(g) \rightarrow 2 CO_2(g)$$
 (2)

b. L'équation de reformage s'écrit :

$$CH_3OH(\ell) \rightarrow 2 H_2(g) + CO(g)$$
 (3)

L'équation de la réaction de fonctionnement de la pile se détermine en réalisant la combinaison $2 \times (1) + 1 \times (2) + 2 \times (3)$:

$$2 \text{ CH}_3\text{OH}(\ell) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$$

c. L'avantage de cette pile est que le combustible est liquide, donc facile à stocker dans un véhicule par exemple. L'inconvénient est que cette pile nécessite une étape de reformage à haute température, qu'il est difficile de mettre en œuvre a priori dans un petit véhicule. Ce reformage produit du monoxyde de carbone, espèce toxique pour l'homme.

3. Pile au méthanol moderne

a. Les réactifs sont identiques à la première pile au méthanol : méthanol liquide et dioxygène provenant de l'air. Les produits sont aussi identiques : dioxyde de carbone et eau. L'équation de la réaction est donc la même que pour la première pile au méthanol.

b. Cette nouvelle pile transforme directement le méthanol liquide sans avoir besoin d'une étape intermédiaire de reformage. Elle peut fonctionner à température ambiante.

4. Utilisation dans un camping-car

a. La charge électrique utilisée par le camping-car pendant un mois est : $q_{\text{pile}} = I \times \Delta t$.

A. N.:
$$q_{pile} = 8 \text{ A} \times 30 \times 24 \times 60 \times 60 \text{ s} = 2.1 \times 10^7 \text{ C}.$$

b.
$$q_{\text{pile}} = n_{\text{e-,éch,max}} \times \mathcal{F}$$
.

La demi-équation électronique d'oxydation du méthanol en dioxyde de carbone s'écrit :

$$CH_3OH(\ell) + H_2O(\ell) = CO_2(g) + 6 H^+(aq) + 6 e^-$$

Par conséquent, chaque molécule de méthanol conduit à un échange de six électrons dans le cadre d'une transformation totale. Ainsi : $n_{\text{méthanol,consommé}} = 6 n_{\text{e-,éch,max}}$.

La quantité de méthanol est reliée à sa masse par la relation

 $m_{\text{méthanol,consommé}} = M \times n_{\text{méthanol,consommé}}$

Avec
$$M = (12,0 + 1,0 \times 4 + 16,0) \text{ g} \cdot \text{mol}^{-1} = 32 \text{ g} \cdot \text{mol}^{-1}$$

Avec
$$M = \{12,0+1,0\times 4+16,0\}$$
 g·mol⁻¹ = 32 g·mol⁻¹.
Son volume est : $V_{\text{méthanol,consommé}} = \frac{m_{\text{méthanol,consommé}}}{\rho_{\text{eau}}\times d}$, où d est la

densité du méthanol et $\rho_{\text{\tiny eau}}$ la masse volumique de l'eau. En combinant l'ensemble de ces équations, on obtient :

$$V_{\text{méthanol,consommé}} = \frac{M \times 6 \times q_{\text{pile}}}{\mathscr{F} \times d}$$
.

$$V_{\text{méthanol,consommé}} = \frac{M \times 6 \times q_{\text{pile}}}{\mathscr{F} \times d}.$$
A.N.: $V_{\text{méthanol,consommé}} = \frac{32 \text{ g} \cdot \text{mol}^{-1} \times 6 \times 2, 1 \times 10^{7} \text{ C}}{96500 \text{ C} \cdot \text{mol}^{-1} \times 1000 \text{ g} \cdot \text{L}^{-1} \times 0, 79} = 53 \text{ L}.$

Le résultat semble plausible : un réservoir de 50 L environ correspond bien à un réservoir classique d'un véhicule particulier.