Malaria Transmission Dynamics with Mosquito Treatment: Reproduction Number Analysis

Yaghoub Shahmari

March 5, 2025

1 Model Description

1.1 Ordinary Differential Equations

The model consists of 10 coupled ODEs tracking human and mosquito populations:

Human Dynamics (SIS):

$$\frac{dS_H}{dt} = -mab(I_M + I_T)S_H + rI_H$$
$$\frac{dI_H}{dt} = mab(I_M + I_T)S_H - rI_H$$

Untreated Mosquito Dynamics:

$$\begin{split} \frac{dS_M}{dt} &= g + hS_T - acI_HS_M - tS_M - gS_M \\ \frac{dE_{1,M}}{dt} &= acI_HS_M - tE_{1,M} - s_{1M}E_{1,M} - gE_{1,M} \\ \frac{dE_{2,M}}{dt} &= s_{1M}E_{1,M} - s_{2M}E_{2,M} - gE_{2,M} \\ \frac{dI_M}{dt} &= s_{2M}E_{2,M} - gI_M \end{split}$$

Treated Mosquito Dynamics:

$$\frac{dS_T}{dt} = tS_M - acI_H S_T - hS_T - gS_T$$

$$\frac{dE_{1,T}}{dt} = acI_H S_T + tE_{1,M} - s_{1T} E_{1,T} - gE_{1,T}$$

$$\frac{dE_{2,T}}{dt} = s_{1T} E_{1,T} - s_{2T} E_{2,T} - gE_{2,T}$$

$$\frac{dI_T}{dt} = s_{2T} E_{2,T} - gI_T$$

1.2 Parameter Values

Default parameter values used in simulations:

Parameter	Description	Default Value
\overline{a}	Biting rate (day^{-1})	0.2
b	Human-to-mosquito transmission probability	0.5
c	Mosquito-to-human transmission probability	0.5
m	Mosquito-to-human ratio	20.0
r	Human recovery rate (day^{-1})	0.01
g	Mosquito death rate (day^{-1})	0.12
h	Treatment waning rate (day^{-1})	0.1
t	Treatment encounter rate (day^{-1})	0.1
s_{1M}	Untreated $E_1 \to E_2$ rate (day ⁻¹)	0.2
s_{2M}	Untreated $E_2 \to I$ rate (day ⁻¹)	0.2
s_{1T}	Treated $E_1 \to E_2$ rate (day ⁻¹)	0.1
s_{2T}	Treated $E_2 \to I$ rate (day ⁻¹)	0.1

- All rates expressed per day (day⁻¹)
- Human population normalized to 1 $(S_H + I_H = 1)$
- Mosquito populations tracked as proportions

2 Methods

2.1 Reproduction Number Theory

The basic (R_0) and effective (R_{eff}) reproduction numbers are calculated using the Next Generation Matrix (NGM). This approach linearizes the system around equilibrium points and quantifies infection spread potential.

2.1.1 Disease-Free Equilibrium (DFE)

The DFE is characterized by:

$$I_H = E_{1,M} = E_{2,M} = I_M = E_{1,T} = E_{2,T} = I_T = 0$$

 $S_H = 1$, $S_M = S_M^*$, $S_T = S_T^*$

where S_M^* and S_T^* solve:

$$\begin{bmatrix} -(t+g) & h \\ t & -(h+g) \end{bmatrix} \begin{bmatrix} S_M^* \\ S_T^* \end{bmatrix} = \begin{bmatrix} -g \\ 0 \end{bmatrix}$$

2.1.2 Endemic Equilibrium (EE)

The EE satisfies:

$$\frac{dS_H}{dt} = \frac{dI_H}{dt} = \dots = \frac{dI_T}{dt} = 0$$

$$I_H > 0, \quad I_M + I_T > 0$$

Numerically found by solving the ODE system until convergence ($||du/dt|| < 10^{-6}$).

2.2 Next Generation Matrix Construction

For infected compartments $\mathbf{x} = [I_H, E_{1,M}, E_{2,M}, I_M, E_{1,T}, E_{2,T}, I_T]^\top$:

2.2.1 New Infections Matrix (F)

Where entries represent:

- $F_{1,4}, F_{1,7}$: Mosquito-to-human transmission
- $F_{2,1}, F_{5,1}$: Human-to-mosquito transmission

2.2.2 Transition Matrix (V)

$$V = \begin{bmatrix} r & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & t + s_{1M} + g & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -s_{1M} & s_{2M} + g & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -s_{2M} & g & 0 & 0 & 0 & 0 \\ 0 & -t & 0 & 0 & s_{1T} + g & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -s_{1T} & s_{2T} + g & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -s_{2T} & g \end{bmatrix}$$

Key components:

- Diagonal entries: Outflow from each compartment
- $V_{3,2}, V_{4,3}$: Untreated mosquito progression
- $V_{6,5}, V_{7,6}$: Treated mosquito progression
- $V_{5,2}$: Treatment transition $E_{1,M} \to E_{1,T}$

2.3 Reproduction Number Calculation

2.3.1 Basic Reproduction Number (R_0)

$$R_0 = \rho(FV^{-1})$$
 at DFE

where ρ denotes spectral radius. This represents expected secondary infections in a fully susceptible population.

2.3.2 Effective Reproduction Number (R_{eff})

$$R_{\text{eff}} = \rho(\tilde{F}\tilde{V}^{-1})$$
 at EE

where \tilde{F} and \tilde{V} use equilibrium values:

- $S_H^{\text{EE}} < 1, \, S_M^{\text{EE}} < S_M^*, \, S_T^{\text{EE}} < S_T^*$
- \bullet Maintains same matrix structure as F and V

2.4 Numerical Implementation

- Matrix inversion via LU decomposition
- Eigenvalue calculation using QR algorithm
- DFE validation: $||S_H + I_H 1|| < 10^{-8}$
- EE convergence: Slope $< 10^{-6}$ over 50 iterations

3 Results

3.1 Model Dynamics

Figure 1: Convergence to endemic equilibrium with default parameters: $R_0 \approx 7.1, R_{eff} \approx 1.00005$.

3.2 Basic Reproduction Number Analysis

Figure 2: R_0 vs treatment rates (t,h) and treatment periods (1/t,1/h).

3.3 Effective Reproduction Number

Figure 3: R_{eff} vs treatment rates (t,h) and treatment periods (1/t,1/h).