

Akumulasi Waktu Pada Timer

- Program biasanya menampilkan akumulasi waktu sehingga kita dapat melihat nilai detak yang dicapai oleh timer, timer dapat berdetak mulai 0 sampai 9999 kali atau 0 sampai 65535 kali.
- Kebanyakan PLC memiliki timer 16 bit, dimana 0-9999 adalah 16 bit BCD (binary coded decimal) dan 0-65535 adalah 16 bit biner.
- Setiap produk memiliki lama detak yang berbeda yaitu antara 10 dan 100 ms kenaikan, "ms" artinya milli-detik (second) atau 1/1000 detik. Beberapa produk menggunakan 1 ms atau 1 detik untuk setiap kenaikan

OFF delay timer dari ON delay timer:

Diagram waktu:

c. ON-OFF Delay Timer

Contoh ON delay 7 detik dan OFF delay 5 detik.

d. Accumulating timer

Hal yang penting untuk diperhatikan adalah:

Antara penghitung dan timer tidak boleh memiliki alamat yang sama, karena keduanya menggunakan alamat register dalam PLC yang sama.

Perlu diingat simbol mungkin kelihatan berbeda antara satu PLC dengan PLC lain namun operasinya adalah sama, kemungkinan beda adalah lama waktu detak kenaikannya

e. Self Reseting Timer

Diagram pulsa Self Reseting Timer

2. Reversible Counters

Contoh PLC dari Siemens Step 7 dan gambar ladder menunjukan penghitung reverse, dimana hitungan ditentukan sebanyak 30. Dengan memberikan pulsa pada Input I0.1 maka CTUD akan mulai menghitung dari 30 sampai 0, bila 0 sudah tercapai kontak C48 akan ON dengan demikian CTUD direset sehingga hitungan akan diawali lagi mulai 30 sampai 0 dst.

Counter sebagai penunda pulsa:

3. Timer Kaskada

Diagram waktu kaskada timer.

4. Kombinasi Timer dengan Penghitung

Rangkaian ini terdapat tiga aplikasi secara bersamaan, yaitu dapat diambil dari output TMR1 yang merupakan sumber pulsa (pulse generator) output kedua dapat diambil dari output CNT2 dimana juga merupakan pulsa dan yang terakhir adalah diambil dari output CNT3. Bila kita ambil dari CNT3 maka pulsa akan diberikan setiap 24 jam, sedangkan pada output CNT2 akan diberikan pulsa setiap 1 jam dan terakhir pada output TMR1 akan diberikan pulsa setiap 1 menit.

5. Aplikasi Counter/Timer Sebagai Pulsa Stretcher Counter:

➤ Q0.0 merupakan pulsa yang akan digunakan sebagai input strecher sedangkan hasil berupa pulsa yang dikeluarkan oleh output Q0.1. Durasi strecher ditentukan oleh besar dan kecilnya CNT sebagai contoh pada gambar diset 50 siklus scan.

Timer:

6. Aplikasi Counter Sebagai Pulsa Divider

Register

7. Bit Register Geser

a. FIFO register

1 0 0 1 1 0 0 1 0 1 1

Geser data (Clock)

0	1	0	0	1	1	0	0	1	0	1	1	1	0	1	0
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Dua metode untuk FIFO register

Register	aeser	asin	kron
	9000.	40	•

Move Word ke File

input	
(Word)	

a.	0	0	1	1

File / Stack					
0	0	0	0		
0	0	0	0		
0	0	0	0		
0	0	1	1		

Stack			inp	ut (vvo	
)	0	0	0	0	1	•
)	0	0				

	File						
(0	0	1	1			
	0	0	0	0			
	0	0	0	0			
-	0	0	0	0			

0	0	0	0
0	0	0	0
0	1	0	1
0	0	1	1

0	1	0	1
0	0	1	1
0	0	0	0
0	0	0	0

0	0	0	0
1	0	1	0
0	1	0	1
0	0	1	1

1	0	1	0
0	1	0	1
0	0	1	1
0	0	0	0

Register (Lanjutan)

b. LIFO Register

Contoh proses dalam LIFO untuk 1 byate (8 bit):

Input data pertama

Stack sebelum input pertama

<u> </u>	pertama						
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Input data pertama

4	_	1	0	1	_	1 A	_
1	U	1	U	1	U	1	U
-	-		_	-	_		_

Stack setelah input pertama

Stack setelah input data kedua

1	0	1	0	1	0	1	0
0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Output Data kedua

1 0 1 0 1 0 1	0
---------------	---

Stack setelah input data kedua

0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Stack setelah output data kedua

Register (Lanjutan)

Contoh register geser menggunakan alamat M300 ~ M317:

Kaskada Register

Kendali Master (Master Control)

MC dan MCR

merupakan pasangan instruksi satu blok instruksi, bila MC ON instruksi dalam blok dilaksanakan dan diakhiri pada MCR.

```
P0000
 0
                                                                               MC3
                                                                                        0
 2
                                                                     TON
                                                                             T092
                                                                                        00100
                                                                                           P0014
      T0092
 5
 7
                                                                               MCSCLR 0
      P0010
                                                                                           P0010
      P0010
10
                                                                               U CTU
                                                                                       C002
      C0002
                                                                               R <3>
                                                                                        00020
      C0002
15
                                                                               U CTU
                                                                                        C000
      C0000
                                                                               R <3>
                                                                                        00005
      C0000
                           C0002
                                                                                           P0011
20
      P0011
24
                                                                                          END
```

Instruksi One Shot

Timing diagram untuk DIFU

Timing diagram untuk DIFD

Instruksi one shot DIFD yang dibangun dari timer

Instruksi One Shot (Lanjutan)

Instruksi one shot DIFU yang dibangun dari timer

```
P0000 T0095 P0011
0 P0000
3 TON T095 00001
7
```

Aplikasi instruksi DIFU

Instruksi Jump

Contoh Aplikasi instruksi loncat (Jump)

Dituliskan secara STL:

0	LOAD	P0001	0	
1	JMP	000		
2	LOAD	P0000	0	
3	LOAD	P0007	1	
4	CTU	C004	00000	00005
7	LOAD	C0004	0	
8	OUT	P0010	0	
9	JME	000		
10	LOAD	P0002	0	
11	OUT	P0012	0	

Dokumentasi Dalam Sistem PLC

1. Dokumentasi Dalam Sistem PLC

a. Koneksi antar devais

b. Spesifikasi peralatan secara umum:

Contents	Specif	ications			
	AC	DC			
Supply Voltage Range	Free Voltage	24VDC			
	(85~264VAC, 47- ~63Hz)	(19 -~ 3OVDC)			
Power Consumption	max. 10 VA				
Dropout Tolerance	1/2 Cycle	1/2 Cycle			
DC Supply Output	DC 24V 0.2A				
Operating Temperature	0 ~ 55°C				
Storage Temperature	-10∼ 70°C				
Humidity	10 ~ 90% RH				
Atmosphere	Free from Corrosive g	ases			
Noise Immunity	1500V, 1µs (Noise Sim	nulator)			
Insulation Resistance	More than 10MG (500	VDC)			
Grounding	Grounding Resistance	e <u><</u> 1000			
Vibration	10 ~ 55Hz, 3mm in 3axes for 2 hours				
Shock	10G, 3 shocks each in 3axes				

c. Spesifikasi fungsi setiap bagian PLC:

Contents		Specification	
Program Co Method	ntrol	Cyclic Execution of Compiled Program	
I/O Proces Method	sing	I/O is updated after each scan	
Instruction Basic Instr. Applic Instr		35 instructions	
		141 instructions	
Memory Capac	ity	2K step (2048 step)	
Execution Time	е	1.2 us/step	
Memory Device Range	P	1/0 Relay (P000-P019) 24 Points input P000-P00D output P010-P019 Others (P00E,P00F,P01A-P05F) are used as Auxiliary relay.	
м		Auxiliary Relay (M000-M31F): 32 Reg. 512 Points M3I0: RTC data enable (Version 1.3 only)	
	K	Retentive Relay (K000-K15F) 16 Reg. 256 Points	
	F	Special Relay(F000-F15F) 16 Reg. 256 Points F070-F077 are used as HSC output area. F14 Elapsed value of High Speed Counter. FI5 Pre-set value of High Speed Counter	
	L	Link Relay (L000-L15F): 16 Reg. 256 Points LI 2-LI 5 (7byte) are used as the data area of Real Time Clock pre-set value.	

Contents		Specification			
	Т	100 ms	T000-T095 Points	: 96	Setting Value
		10 ms	T096-TI27 Points	: 32	
	С	Counte r	C001-C127 Points	127	
	s	Step Controller (S00-S3 1): 32 x 100 steps			
	D	Data Re	gisters (D000)-D255) 2	56x16 bit
		D253-D2	255 are used	as data a	rea of scan time.
Internal Speed Counter	_	1 Point, 8Kpps. 24VDC, Range 0 - 65535			
Other Function	ıs	RS485 RS232, I	Communio	cation(ma	ax.32 Stations).

d. Peta memory dalam PLC:

Reg Addr.	Points Point Address O to F	Reg. Addr.	Data Register Value 065535	Program Area
P000 to P019	I/O 24 Points	D000 to D255	Data Register 256 Words	Parameter Setting Area
P01A to P05F	AuxiliaryRelay 72 Points	Т000 г	Value 065535	
M000 to M31F	AuxiliaryRelay 512 Points	to T127	Timer Pre-set 128 Reg.	User Program Memory
K000 to K15F	Rentetive Relay 256 Points	T000 to T127	Elapsed Time 128 Reg.	
F000 to F15F	Special Relay 256 Points	C001 to C127	Count Pre-Set 127 Reg.	_
L000 to L15F	Link Relay 256 Points	C001 to C127	Elapsed Count	2048 Steps
Point Addr.	Decimal	Group Addr.	Steps 00 to 99	
T000 to T095	100 ms Timer Output	S00	Step Controller 32 X 100step	* Retentive Area K000 to K15F L000 to L15F
T096 to T127	10 ms Timer Output	S31	\$00.00 to \$31.99	T072 to T095 T120 to T127 C096 to C127 S24 to S31 D192 to D255
C001 to C127	Counter Output			

e. Spesifikasi I/O:

Contents	Spec.	Input	Output
	•	•	•
	Туре	DC	Relay
Rated Voltage		24VDC	max.250VAC
			24VDC
ON : Guarantee Voltage		More than 9VDC	
OFF Guara	ntee Voltage	Less than 6VDC	
Input Curre	ent	7±1 mA/point	
Output Cui	rrent		2A/point
			4A/6points
Off State Leakage Curr.			<u><</u> 0.1 mA
Response	OFF ►ON	<u><</u> 10ms	<u><</u> 10ms
Time	ON ►OFF	<u><</u> 10ms	<u>≤</u> 10ms

 In using relay output, the life time of the PLC depends on the external load. Therefore, when the PLC is applied to a heavy load, we recommend that the user connect an external relay or SSR to the PLC to save the reliability and maintenance.

f. Pengkabelan dan Koneksi pada terminal Input - Output:

g. Real Time Clock

Parameter	Device region	Data scope
second	L15_High Byte	00 - 59
minute	L15_Low Byte	00 - 59
hour	L14_High Byte	00 - 23
day	L14_Low Byte	0 - 6
date	L13_High Byte	1 - 31
month	L13_Low Byte	1 - 12
year	L12_High Byte	00 - 99

h. Komunikasi RS-485 atau RS-232

Karakteristik Transmisi

Metoda transmisi : half duflex, asynkron

Kecepatan transmisi : 300 – 19.200 bps

Jumlah yang bisa dihubungkan: maks. 32 stasiun, dengan

alamat 00 - 1F

Organisasi karakter : jumlah bit 8 bit, pariti cek

(none), stop bit 1 bit

Cek kesalahan : BCC

Kode pengendali : Kode ASCII

2. Watchdog Timer

Watchdog Timer merupakan tool yang dapat digunakan untuk diaplikasikan pada beberapa sistem pengendali, dimana fungsinya sebagai pelayanan bilamana terjadi permasalahan keamanan pada sistem. Bilamana waktu scan tertutup sekitar 300 mili detik, maka instruksi WDT diperlukan untuk mengaktifkan watchdog timer sebagai tanda timing out atau sering disebut dengan creating error. Tertutupnya selama waktu 300 mili detik kemungkinan terjadi sesuatu bilamana operasi instruksi For-Next sedang dilaksanakan.

Aktifkan WDT dari error yang tercatat pada F010

Instruksi untuk membuat semua output berkondisi OFF, sehingga dapat dimanfaat untuk menghindari adanya tabrakan pada semua system pengendali. Jadi dengan menerapkan instruksi WDT maupun instrukai OUTOFF dapat digunkan untuk menghentikan sistem operasi dari sebuah program, hanya kelebihan dari instruksi OUTOFF semua output terhenti total..

Tabel Kontak Error

Contac t	Explanation	Contact	Explanation
F000	ON during RUN mode	F090	20 ms symmetric Clock (duty=50)
F001	ON during PGM mode	F091	IOOms symmetric Clock (duty=50)
F002	ON during PAUSE mode	F092	200ms symmetric Clock (duty=50)
F03A	RTC data error flag	F093	Is symmetric Clock (duty=50)
F010	always ON	F094	2s symmetric Clock (duty=50)
F011	always OFF	F095	IOs symmetric Clock (duty=50)
F011A	Under Transmission	F096	20s symmetric Clock (duty=50)
F011C	Under Receiving	F097	60s symmetric Clock (duty50)
F011E	Complete Receiving	F100	User Clock #0 for duty instruction
F011H	Communication Error flag	F101	User Clock #1 for duty instruction
F012	ON during first Scan	F102	User Clock #2 for duty instruction
F013	OFF during first Scan	F103	User Clock #3 for duty instruction
F014	One Scan duty cycle contact	F104	User Clock #4 for duty instruction
F020	Comms Error [H byte = St number]	F105	User Clock #5 for duty instruction
F021	Comms Error [H byte = St number]	F106	User Clock #6 for duty instruction

Aplikasi instruksi OUTOFF melalui kesalahan pada F030 atau F031

Daftar kode error:

Error Code	CPU State	Cause	Corrective Action
10	STOP	System Memory Error or Check Sum Error	Contact distributor or replace unit,
11	STOP	RAM Memory Error	Contact distributor or replace unit.
12	STOP	LSI Error for Instruction execution	Contact distributor or replace unit.
13	STOP	24V Power Supply failure	Check external short circuit or load, contact distributor.
14	STOP	I/O unit being connected or disconnected to PLC during run	After power OFF, connector disconnect I/O unit and power ON
20	STOP	Watch Dog Time Out	Correct WDT parameter to maximum scan time or insert WDT instruction in the middle of application program
21	STOP	Change Contents of parameter or Check-Sum Error	Correct contents of parameter
23	STOP	Invalid Instruction used	Modify instruction
24	STOP	Missing END Instruction	Insert END instruction at the end of application program

BAB 5 CARA MENILAI UNIT INI

Apa yang dimaksud dengan penilaian?

Penilaian adalah proses pengumpulan petunjuk dan pembuatan penilaian atas kemajuan kearah ketercapaian kriteria unjuk kerja yang dimaksud dalam Standar Kompetensi. Pada poin yang tepat, penilaian dilakukan dengan mengetahui apakah kompetensi sudah dicapai atau belum. Penilaian cenderung mengindentifikasi prestasi-prestasi peserta pelatihan dibanding menampilkan unjuk kerja relatif anatara peserta dengan peserta lain.

Apakah yang dimaksud dengan kompeten?

Tanyakan pada diri anda,"Apa yang benar -benar dibutuhkan oleh karyawan untuk melakukan sesuatu?". Jawaban terhadap pertanyaan kepada anda yaitu apa yang kita maksudkan dengan sebauah kata "kompeten". Untuk menjadi kompeten dalam suatu pekerjaan yang berkaitan dengan ketrampilan berati bahwa orang tersebut harus mampu untuk:

- unjuk kerja pada tingkat ketrampilan yang dapat diterima
- mengorganisir tugas-tugas yang dibutuhkan
- merespon dan mereaksi secara layak bila sesuatu salah
- menjalankan suatu peranan dalam skema sesuatu pada pekerjaan
- mentransfer ketrampiian dan pengetahuan pada situasi baru.

Bila anda menilai kompetensi ini anda harus mempertimbangkan seluruh issue-issue diatas untuk mencerminkan kerja sebenarnya dan alami.

Pengakuan kemampuan yang dimiliki

Prinsip penilaian nasionai terpadu memberikan pengakuan terhadap kompetensi yang ada tanpa memandang dimana kompetensi tersebut diperoleh. Penilaian mengakui bahwa individu-individu dapat mencapai kompetensi dalam berbagai cara:

- kualifikasi terdahulu
- beiajar secara informal.

Pengakuan terhadap Kompetensi yang ada dengan mengumpulkan petunjuk untuk menilai setiap individu terhadap standar kompetensi agar dapat menentukan apakah mereka telah

Kualifikasi Penilai

Dalam kondisi lingkungan kerja, yaitu seorang penilai industri yang diakui dapat menentukan apakah seorang pekerja mampu melakukan tugas yang terdapat dalam unit kompetensi ini. Jika anda diakui untuk menilai unit ini kemungkinan anda dapat memilih metode yang ditawarkan dalam pedoman ini, atau mengembangkan metode anda sendiri untuk melakukan penilaian. Para penilai harus memperhatikan petunjuk bukti dalam standar kompetensi sebelum memutuskan metode penilaian yang akan dipakai.

Ujian yang disarankan

Umum

Unit Kompetensi ini, secara umum mengikuti format berikut:

- (a) menampilkan ketrampilan dan pengetahuan penunjang untuk setiap elemen kompetensi/kriteria unjuk kerja, dan
- (b) berhubungan dengan sesi praktek atau tugas untuk memperkuat teori atau layanan praktek dalam suatu ketrampilan.

Ini penting sekali bahwa peserta dinilai (penilaian formatif) pada setiap elemen kompetensi. Mereka tidak dapat mengikuti progress unit berikutnya sampai mereka benar-benar berkemampuan pada materi yang melingkupi sesi pelatihan.

Sebagai patokan keharusan disini adalah paling sedikit satu penilaian tugas untuk pengetahuan pendukung pada setiap elemen kompetensi. Setiap sesi praktek atau tugas disaratkan dinilai secara individu untuk sub kompetensi. Sesi praktek diharuskan untuk diulang sampai tingkat yang disyaratkan dari sub kompetansi dapat dicapai.

Tes pengetahuan penunjang biasanya digunakan tes obyektif. Sebagai contoh, pilihan ganda, komparasi, mengisi/melengkapi kalimat. Penggunaan Tes Essay berupa pertanyaan biasanya tidak cocok untuk tipe unit ini.

Penilaian untuk unit ini, berdasar pada dua hal yaitu:

- pengetahuan dan ketrampilan pendukung
- hubungan dengan ketrampilan praktek.

Untuk unit Penggunaan Pelatihan Berdasar Kompetensi pada tempat kerja penilaian berikut disarankan untuk digunakan:

Penilaian Ketrampilan dan Pengetahuan Penunjang

Elemen satu ... Menulis dan menguji instruksi diskrit lebih lanjut yang terdapat di PLC.

Pengujian satu

- 1. Peserta diminta menjelaskan metode untuk memperpanjang nilai timer dan counter dengan menjelaskan fungsi rangkaian, menggambarkan ladder diagram dan mengujinya pada sebuah PLC yang meliputi:
 - derived timers (off delay, self resetting, constant duty cycle)
 - reversible counters
 - · cascading timers
 - cascading counters
 - combining timers and counters
- 2. Peserta diminta menjelaskan dan mendemonstrasikan cara memprogram dan menguji penggunaan instruksi diskrit lanjut dengan menjelaskan fungsi rangkaian, menggambarkan ladder diagram dan mengujinya pada sebuah PLC yang meliputi:
 - jump instructions
 - master control instructions