Esercitazione N.6: Amplificatore operazionale: circuiti lineari

Gruppo BF Andrea Luzio, Gianfranco Cordella, Valerio Lomanto

17 Novembre 2016

1 Scopo e strumentazione

$\mathbf{2}$ Amplificatore invertente

Si è montanto il circuito in figura (1) e si è scelto $R_1=2.27\pm0.03\,\mathrm{k}\Omega$ e $R_2=22.1\pm0.3\,\mathrm{k}\Omega$ e la frequenza del generatore in ingresso è $f=1.0343\pm0.0005\,\mathrm{kHz}$. Si è eseguito un fit lineare dei dati $V_{out} = aVin + b$. Si sono considerati solo i dati con $V_{in} < 1.1$ V. I risultati del fit in 2 sono : $a = 9.8 \pm 0.1$

 $b = -0.02 \pm 0.04$

 $\chi^2 = 4.70 \ (4 \ dof, \ p = 0.32)$

Provando a considerare anche i dati con V_{in} superiore al cut-off si ottengono valori del χ^2 con un p-value <0.15. Quindi supponiamo che tale cut-off sia la tensione limite oltre la quale si perde la linearità. Una verifica immediata si è fatta con l'oscilloscopio con $V_{in}=2.76\pm0.02\,\mathrm{V}$. Dalla 3 si osserva un clipping del segnale in uscita chiaro segno della non linearità del circuito. Il valore atteso del guadagno è $A = \frac{R_2}{R_1} = 9.7 \pm 0.2$ che è compatibile con quello ottenuto dal fit.

Si è poi misurata la resistenza di ingresso del'amplificatore inserendo in serie a V_{in} una resistenza $R_s=2.27\pm0.03\,\mathrm{k}\Omega$ dello stesso ordine di grandezza di quella attesa. Poi è stato misurato V_{out} con e senza R_s inserita ottenendo rispettivamente $V_1=5.24\pm0.04\,\mathrm{V}$ e $V_2=10.32\pm0.08\,\mathrm{V}$. Da qui si ricava $R_{ing}=rac{R_sV_1}{V_2-V_1}=2.34\pm0.07\,\mathrm{k}\Omega.$ Tale valore è compatibile con quello atteso che è R_1 .

Figura 1: Amplificatore invertente.

Figura 2: Vout in funzione di Vin per l'opamp invertente.

Figura 3: Clipping di V_{out} per l'opamp invertente.

In questa sezione si vuole misurare la frequenza di taglio e lo slow rate del amplificatore così costruito.

3.1 Risposta in frequenza

Qui si vuole vedere il comportamento del OpAmp come circuito a un polo, dunque se ne vuole misurare la risposta in frequenza trovando una frequenza di taglio e un attenuazione $-20\,\mathrm{dB/decade}$ tipica dei passa-basso. L'ampiezza dell'ingresso, per risparmiare tempo, si è tenuta costante a $1.04\,\mathrm{V}$. Quest'ultima scelta ha impedito di aumentare la frequenza oltre $1\,\mathrm{MHz}$ per mantenere le pendenze massime delle sinusoidi al di sotto della pendenza di slewrate(da datasheet $13MVs^-1$).I dati sono stati fittati con due rette (una retta affine, 2 parametri, una retta costante, 1 parametro), senza considerare gli errori di calibrazione degli strumenti, ne l'errore sulla tensione di ingresso. I cut-off sulle frequenze scelti per separare la regione in cui l'amplificazione è costante e la regione in cui l'amplificazione scende a circa -20dB/decade sono poste a $40\,\mathrm{kHz}$ e $400\,\mathrm{kHz}$. I dati e i fit sono riassunti in figura 4

Figura 4: Plot di bode di dati e fit

Per la retta si sono ottenuti i seguenti parametri: $q=\chi^2 19.41\pm 0.02 dB$

 $\chi^2 = 2.40 \text{ (9 DoF, } p = 0.98)$

Questo farebbe pensare a una sovrastima degli errori di lettura. In effetti per molti dati il segnale letto è uguale all'interno dell'errore di lettura. A questi dati grezzi va aggiunto l'errore di calibrazione e l'errore sulla tensione in ingresso. Dati σ_l l'errore su q dato dagli errori di lettura, σ_c l'errore su V_{out} dovuto alla calibrazione dell'oscilloscopio e σ_{in} l'errore totale sulla tensione in ingresso, si ottiene (propagando in quadratura e considerando indipendenti le fonti di errore, utilizzando come errore di calibrazione sulle misure dell'oscilloscopio il 3% del valore misurato): $\sigma_q^2 = \sigma_l^2 + 400(\frac{\sigma_{in}^2}{V_{in}} + \frac{\sigma_c^2}{V_{out}^2})$ Inserendo i dati si ottiene:

 $\sigma_{q} = 0.84$

Dunque $q = 19.41 \pm 0.84$, compatibile con quanto atteso per il guadagno in continua.

Per la retta obliqua si ottiene invece:

 $m = -18.3255 \pm 0.3690 \, \text{dB/decade}$

 $q = 116.0 \pm 2.2 dB$

$$cov = -0.998 \ \chi^2 = 2.19 \ (4 \ \text{DoF}, p = 0.70)$$

Anche qui vanno aggiunti gli errori di calibrazione sulle tensioni di ingresso e uscita. Per quanto riguarda q la correzione da apportare è la stessa, dunque si ottiene un valore di:

 $q = 116.0 \pm 2.3 dB$

Per quanto riguarda m si è stimato di calibrazione sul rapporto incrementale di due punti presi a caso con gli errori di calibrazione. Si è ottenuto: $m = -18.3255 \pm 1.8000 \,\mathrm{dB/decade}$

Con questi dati si può stimare la frequenza di taglio come la frequenza di intersezione delle due rette:

3.2 Slew-rate

In questa sezione lo scopo è misurare lo slew-rate del componente. Per fare questo ci si è inviata in ingresso un onda quadra di ampiezza 1.04V e frequenza $1\,\mathrm{kHz}$. Si è ottenuto il comportamento mostrato in figura 5. Esso a prima vista sembra compatibile con il normale comportamento di un circuito ad un polo sotto un segnale a scalino

Figura 5: Output dell'onda quadra

ma, nonostante tutto, nella prima parte della salita si può notare uno scostamento dalla natura esponenziale aspettata. Per discernere il tratto in cui lo slow-rate si fa sentire dal normale comportamento da passa-basso si sono fittati i dati (acquisiti al computer tramite l'oscilloscopio) con un cut-off inferiore flottante (il componente inizia la salita 1.5e-7sec dopo il triggering, si è spostato il punto di cut-off in una finestra tra 1.5e-7sec a 3.0e-7sec) Si è dunque plottata la probabilità marginale in funzione del punto di cut-off 7.

Le cose notevoli sono:

- -La probabilità va a 1, dunque gli errori sono evidentemente sovrastimati
- -nonostante ciò la probabilità scende a zero se si considerano dati troppo vicini a 1.5sec.

Per fittare la retta che dovrebbe dare il nostro slow-rate si è deciso di prendere il valore di probabilità del 0.5%, ovvero un tempo finale di 1.97e-7sec dopo il triggering.

```
Con il fit in figura 8 (retta affine) si sono ottenuti i seguenti dati: SR=8.56\pm0.67MV/s b=-5.60\pm0.11V intercetta, parametro inutile corr=-0.99 \chi^2=8.8 (22 Dof p=0.994)
```

Si noti che anche qui si ha un valore di χ^2 troppo elevato, forse causato dalla sovrastima dell'errore di digitalizzazione. Il parametro risulta comunque non in disaccordo con il valore di riferimento 15MV/s, da datasheet.

Figura 6: Output dell'onda quadra, fittato con cut-off variabili

Figura 7: Probabilità marginale in funzione del cut-off

Figura 8: Fit dello slow-rate

4 3

5 Circuito integratore

Figura 9: circuito integratore con OpAmp.

Si è montato il circuito in 9 con $R_1=0.981\pm0.009\,\mathrm{k}\Omega,\,R_2=9.87\pm0.09\,\mathrm{k}\Omega,C_1=48\pm2\mathrm{nF}.$ L'ampiezza picco-picco di $V_{in}=2.08\pm0.02\,\mathrm{V}.$ Al variare della frequenza si è misurato V_{out} con l'oscilloscopio. La frequenza è stata misurata con il frequenzimetro dell'oscilloscopio e lo sfasamento tra V_{in} e V_{out} si è ricavato dalla misura dell'intervallo di tempo ΔT tra le due intersezioni delle onde in ingresso e uscita con l'asse delle ascisse ¹. Da questa misura si ricava lo sfasemento: $\Delta \phi=2\Delta T f$.

Per quanto riguarda il guadagno in frequenza sono stati eseguiti due fit(in 10), uno nella parte piatta dei dati cioè a basse frequenze ed un altro ad alte frequenze per studiare i due limiti del circuito integratore, rispettivamente $f \ll f_t$ e $f \gg f_t$. Per f_t si intende la frequenza di taglio del circuito integratore pari a $f_t = \frac{1}{2\pi R_2 C_1} = 335 \pm 16 \,\text{Hz}$.

Il fit a basse frequenze $(f < 50 \,\mathrm{Hz})$ è stato eseguito con una costante e i risultati sono :

$$A_v = 20.05 \pm 0.02$$

 $\chi^2 = 4.79 \text{ (4 dof, } p = 0.31)$

Il fit ad alte frequenze (f > 2 kHz) è stato eseguito con una funzione lineare $A_v(dB) = a \log_{10} f + b$ e i risultati sono:

$$a = -19.8 \pm 0.2 \frac{\text{dB}}{\text{decade}}$$

 $b = 69.9 \pm 0.4 \text{ dB}$
 $\chi^2 = 3.89 \text{ (5 dof, } p = 0.56)$

Il valore atteso del guadagno a basse frequenze è $A_v = 20 \log_{10} \frac{R_2}{R_1} = SI20.1(2)dB$ compatibile con il valore ottenuto dal fit. Ad alte frequenze la pendenza della retta è compatibile con $-20 \frac{\text{dB}}{\text{decade}}$.

E' stato eseguito anche un fit allo sfasamento() con un modello non lineare $\Delta \phi = \arctan \frac{-f}{f_t}$ e si è ottenuto:

$$f_t = 321 \pm 2 \text{ Hz}$$

 $\chi^2 = 62.21 \text{ (16 dof, } p = 0)$

Il valore della frequenza di taglio risulta compatibile con quello atteso prima calcolato.

Si è poi verificata la risposta del circuito ad un'onda quadra di frequenza $f=10.6\pm0.1\,\mathrm{kHz}$. Con un'ampiezza di $V_{in}=3.63\pm0.02\,\mathrm{V}$ si è ottenuta un'ampiezza di $V_{out}=1.90\pm0.02\,\mathrm{V}$ quindi $A_v=-5.6\pm0.2\,\mathrm{dB}$. Considerando che $f>>f_t$ si può usare la formula approssimata $A_v=-20\log_{10}f+20\log_{10}\frac{1}{2\pi R_1C_1}=$

¹Tale asse orizzontale corrispomde per ogni onda ad una tensione costante pari al proprio valor medio

Figura 10: plot di bode del guadagno del circuito integratore

Figura 11: fase in unità π del circuito integratore in funzione della frequenza