Лабораторная работа

Измерение мощности эквивалентной дозы внешнего ұ-излучения Отчет подготовили Сысой Илья, Якимович Елизавета, 3 курс, 12 группа

Данные, полученные в ходе экспериментов:

$$K = 0.01$$

N	H, мкЗв/ч		
1	0,13		
2	0,23		
3	0,15		
4	0,16		
5	0,22		
6	0,17		

K	=	0.	n	n	1
1/	_	v.	v	v	ı

N	Н, мкЗв/ч		
1	0,164		
2	0,157		
3	0,151		

$$\overline{\dot{H}}$$
 = 0,177 мкЗв/ч $\delta \overline{\dot{H}}$ = 0,016 мкЗв/ч w = 0,092

$$\overline{\dot{H}}$$
 = 0,157 мкЗв/ч $\delta \overline{\dot{H}}$ = 0,0038 мкЗв/ч w = 0,024

w при k = 0.001 меньше, поэтому: $\dot{H}_{\rm rog}$ = 1375,32 мкЗв $\delta \dot{H}_{\rm rog}$ = 32,971 мкЗв

Ответ: 1375,32 ± 32,971 мкЗв

Используемые формулы:

 $\overline{\dot{\mathbf{H}}}=rac{1}{n}\sum_{i=1}^{n}\dot{\mathbf{H}}i$, где n - количество измерений, $\dot{\mathbf{H}}i$ - результат i-го измерения.

$$\delta \overline{\dot{\mathbf{H}}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\dot{\mathbf{H}}i - \overline{\dot{\mathbf{H}}})^2}$$

$$w = \frac{\delta \overline{\dot{H}}}{\overline{\dot{H}}}$$

 $\dot{\mathbf{H}}_{_{\mathrm{ГОД}}}=~\overline{\dot{\mathbf{H}}}~t$, в нашем случае t = 365 * 24 (перевод ч в год) $\delta \dot{\mathbf{H}}_{_{\mathrm{ГОЛ}}}=~\overline{\dot{\mathbf{H}}}~t$, в нашем случае t = 365 * 24 (перевод ч в год)

Вывод: Безопасная суммарная средняя индивидуальная эффективная эквивалентная годовая доза для населения - 2 мЗв/час. В ходе измерения и расчетов мы получили значение 1,37532 ± 0,032971 мЗв, что является безопасным значением для нахождения человека в аудитории 520 в течении года.