

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS

Year/Sem : II/III

Branch: Common to All branches

Unit I – Partial Differential Equations

1. Form PDE of $z = ax + a^2y^2 + b$ by eliminating arbitrary constants

(a)
$$q = 2p^2y$$
 (b) $q = 2py$ (c) $p = 2q^2y$ (d) $p = 2qy$

Solution:

Given
$$z = ax + a^2y^2 + b$$
 -----(1)

Differentiate (1) partially with respect to x and y,

$$p = a \longrightarrow (2)$$

$$q = 2a^2y - \rightarrow (3)$$

Substituting (2) in (3) we get $q = 2p^2y$ which is the required PDE.

2. Form PDE of
$$2z = (ax + y)^2 + b$$
, by eliminating arbitrary constants (a) $px + qy = p^2$ (b) $py + qx = q^2$ (c) $px + qy = q^2$ (d) $p^2x + q^2y = q^2$

Solution:

Given
$$2z = (ax + y)^2 + b$$
 -----(1)

Differentiate (1) partially with respect to $x\ and\ y$,

$$2p = 2a(ax + y) \qquad ---\rightarrow (2)$$

$$2q = 2(ax + y) \qquad - \to (3)$$

Dividing (2) by (3) we get $\frac{p}{q} = a$ substituting in (3) we get

$$px + qy = q^2$$
 which is the required PDE.

3. Form PDE of $z = axe^y + \frac{a^2e^{2y}}{2} + b$, by eliminating arbitrary constants

(a)
$$p = xq + p^2$$
 (b) $q = xp + p^2$ (c) $p = xq + q^2$ (d) $q = x + p^2$

Solution

Given
$$z = axe^y + \frac{a^2e^{2y}}{2} + b$$
 -----(1)

Differentiate (1) partially with respect to x and y,

$$p = ae^{y} \quad --- \rightarrow (2)$$

$$q = axe^{y} + a^{2}e^{2y} \quad -- \rightarrow (3)$$

Substituting (2) in (3) we get $q = xp + p^2$ which is the required PDE.

4. Form PDE of $z = f(x^2 - y^2)$ by eliminating arbitrary function

(a)
$$yp + xq = 0$$
 (b) $yp - xq = 0$ (c) $yq + xp = 0$ (d) $yq - xp = 0$

Solution:

Given
$$z = f(x^2 - v^2) - - \to (1)$$

Differentiate (1) partially with respect to x and y.

$$p = 2xf(x^{2} - y^{2}) - \longrightarrow (2)$$

$$q = -2yf(x^{2} - y^{2}) - \longrightarrow (3)$$

$$f(x^{2} - y^{2}) = \frac{p}{2} - g(x^{2} - y^{2}) = \frac{q}{2}$$

From (2) & (3)
$$f(x^2 - y^2) = \frac{p}{2x}$$
 & $f(x^2 - y^2) = \frac{q}{-2y}$

So, $\frac{p}{2x} = \frac{q}{-2x}$ $\Rightarrow yp + xq = 0$ which is the required PDE.

5. Form PDE of $\varphi(x^2 + y^2 + z^2, lx + my + nz) = 0$

(a)
$$\frac{2x+2zp}{2y+2zq} = \frac{l+np}{m+nq}$$

(b)
$$\frac{2y+2zq}{2x+2zp} = \frac{l+np}{m+nq}$$

$$(c)\frac{2x+2zp}{2y+2zq} = \frac{m+nq}{l+np}$$

(d)
$$\frac{2x-2zp}{2y-2zq} = \frac{l+np}{m+nq}$$

Solution:

$$x^{2} + y^{2} + z^{2} = \varphi(lx + my + nz) - \longrightarrow (1)$$

Differentiate Partially (1) with respect to x and y

$$2x + 2zp = (l + np)\varphi(lx + my + nz) - \longrightarrow (2)$$

$$2y + 2zq = (m + nq)\varphi(lx + my + nz) - \longrightarrow (3)$$

$$\frac{(2)}{(3)}$$
 \Rightarrow $\frac{2x+2zp}{2y+2zq} = \frac{l+np}{m+nq}$ which is the required PDE

6. Form a PDE of $z = f(x^2 + y^2)$ by eliminating the arbitrary function

(a)
$$px = yq$$

$$(b) p + y = xq$$

(a)
$$px = yq$$
 (b) $p + y = xq$ (c) $py = x + q$ (d) $py = xq$

(d)
$$py = xq$$

Solution:

Given
$$z = f(x^2 + y^2) - \rightarrow (1)$$

Differentiate partially (1) with respect to *x* and *v* we get

$$p = 2x f(x^2 + y^2)$$

 $q = 2y f(x^2 + y^2)$

Therefore, $\frac{p}{a} = \frac{x}{v} \Rightarrow py = xq$ which is the required PDE

7. Solve $p^2 + q^2 = 4$

(a)
$$z = ax \pm \sqrt{4 - a^2} + c$$
 (b) $z = ax \pm \sqrt{4 + a^2} + c$

(b)
$$z = ax \pm \sqrt{4 + a^2} + c$$

(c)
$$z = ax \pm \sqrt{4 - a} + c$$
 (d) $z = ax \pm \sqrt{4 + a} + c$

$$(d) z = ax \pm \sqrt{4 + a} + c$$

Solution:

Given
$$p^2 + q^2 = 4 - - \rightarrow (1)$$

Let us assume that $z = ax + by + c - \rightarrow$ (2) be a solution of (1)

Partially differentiating (2) with respect to x and y we get

$$p = a, q = b$$

Substituting above in (1) we get

$$a^2 + b^2 = 4 - \rightarrow (3)$$

$$a^2 + b^2 = 4 - - \rightarrow (3)$$

From (3) we get $b = \pm \sqrt{4 - a^2}$

Substituting in (2) we get $z = ax \pm \sqrt{4 - a^2} + c$ which is the complete integral of (1). There is no singular integral of this type f(p,q)=0

8. Find the complete integral of p = q

(a)
$$z = a(x - y) + c$$
 (b) $z = 2ax + c$

(b)
$$z = 2ax + c$$

$$(c) z = ax + y + c$$

(c)
$$z = ax + y + c$$
 (d) $z = a(x + y) + c$

Solution:

Given
$$p = q - \rightarrow (1)$$

Let us assume that $z = ax + by + c - \rightarrow$ (2) be a solution of (1)

Partially differentiating (2) with respect to x and y we get

$$p = a, q = b$$

Substituting above in (1) we get

$$a = b - \rightarrow (3)$$

Substituting in (2) we get z = a(x + y) + c which is the complete integral of (1).

9. Find the complete solution of $\sqrt{p} + \sqrt{q} = 1$

(a)
$$z = ax + (1 + \sqrt{a})^{\frac{1}{2}}y + c$$

(b)
$$z = ax + (1 - \sqrt{a})^{\frac{1}{2}}y + c$$

(d) $z = ax - (1 + \sqrt{a})^{\frac{1}{2}}y + c$

(c)
$$z = ax - (1 - \sqrt{a})^{\frac{1}{2}}y + c$$

(d)
$$z = ax - (1 + \sqrt{a})^{\frac{1}{2}}y + c$$

Solution:

Given
$$\sqrt{p} + \sqrt{q} - 1 = 0$$
 $- \rightarrow (1)$

The Complete Solution is given by $z = ax + by + c - \rightarrow (2)$

Replace p by a and q by b in (1), we get $\sqrt{a} + \sqrt{b} - 1 = 0$

$$\sqrt{b} = 1 - \sqrt{a} \Rightarrow b = (1 - \sqrt{a})^{\frac{1}{2}}$$

Substituting in (2), we get $z = ax + (1 - \sqrt{a})^{\frac{1}{2}}y + c$ which is required complete solution.

10. Find the Singular integral of z = px + qy + pq

(a)
$$z = xy$$

(b)
$$z = -\frac{x}{y}$$

(d) $z = \frac{x}{y}$

(c)
$$z = -xy$$

(d)
$$z = \frac{x}{y}$$

Solution:

The Complete Integral is $z = ax + by + ab - \rightarrow (1)$

Partially differentiating (1) with respect to `a` and `b` and equating to 0

$$\frac{\partial z}{\partial a} = x + b = 0 - \longrightarrow (2)$$

$$\frac{\partial z}{\partial b} = y + a = 0 - \longrightarrow (3)$$

From (2) and (3) a = -y, b = -x substituting in (1)

$$z = -xy - xy + xy$$

So, z = -xy is required singular integral.

11. Solve p + q = 1

$$(a) f(x + y, y - z) = 0$$

(b)
$$f(x - y, y + z) = 0$$

$$(c) f(x-y,y-z) = 0$$

(d)
$$f(x + y, y + z) = 0$$

Solution:

p + q = 1 in the form of pP + qQ = R

$$\frac{dx}{1} = \frac{dy}{1} = \frac{dz}{1}$$

Comparing 1st and 2nd & 2nd and 3rd term and integrating

$$\int dx = \int dy \qquad \& \quad \int dy = \int dz$$

$$x-y=c_1, \quad y-z=c_2$$
 Solution is $f(x-y,y-z)=0$

12. Find the complete integral of $p^2 = qz$

(a)
$$z = ke^{a(x-ay)}$$

(b)
$$z = ke^{x+ay}$$

(c)
$$z = ke^{x-ay}$$

(d)
$$z = ke^{a(x+ay)}$$

Solution:

Given $p^2 = qz - \rightarrow (1)$ which of the form f(p, q, z) = 0Let u = x + ay, where `a` is arbitary constant.

Replace p by $\frac{dz}{dy}$ and q by $a\left(\frac{dz}{dy}\right)$ in (1), we get

$$\frac{dz}{du} = az$$

$$\frac{dz}{z} = adu$$

Integrating both sides , logz = au + c (or) $z = ke^{au}$ The complete integral is given by $z = ke^{a(x+ay)}$

13. Find the complete integral of z = pq

(a)
$$4az = (x + ay + b)^2$$

(b)
$$4az = (x + ay + b)^3$$

(c)
$$4az = (x - ay + b)^2$$

(d)
$$4az = (x - ay + b)^3$$

Solution:

Given $z = pq - \rightarrow (1)$ which of the form f(p, q, z) = 0

Let u = x + ay, where `a` is arbitary constant.

Replace p by $\frac{dz}{dx}$ and q by $a\left(\frac{dz}{dx}\right)$ in (1), we get

$$z = a \left(\frac{dz}{du}\right)^{2}$$

$$\frac{dz}{du} = \pm \sqrt{\frac{z}{a}}$$

$$\frac{dz}{\sqrt{z}} = \pm \frac{du}{\sqrt{a}}$$

Integrating on both sides, $\pm 2\sqrt{az} = u + k$

Squaring on both sides and substituting u = x + ay we get

 $4az = (x + ay + b)^2$ which is the required

complete integral.

14. Solve
$$p^2 + q^2 = x + y$$

(a)
$$z = \frac{2}{3} (x + k)^{\frac{3}{2}} + \frac{3}{2} (y - k)^{\frac{3}{2}}$$
 (b) $z = \frac{3}{2} (x + k)^{\frac{3}{2}} + \frac{2}{3} (y - k)^{\frac{3}{2}}$
(c) $z = \frac{2}{3} (x + k)^{\frac{3}{2}} + \frac{2}{3} (y - k)^{\frac{3}{2}}$ (d) $z = \frac{3}{2} (x + k)^{\frac{3}{2}} + \frac{3}{2} (y - k)^{\frac{3}{2}}$

(b)
$$z = \frac{3}{2} (x + k)^{\frac{3}{2}} + \frac{2}{3} (y - k)^{\frac{3}{2}}$$

(c)
$$z = \frac{2}{3} (x + k)^{\frac{3}{2}} + \frac{2}{3} (y - k)^{\frac{3}{2}}$$

(d)
$$z = \frac{3}{2} (x + k)^{\frac{3}{2}} + \frac{3}{2} (y - k)^{\frac{3}{2}}$$

Solution:

The given problem can be written as

$$p^2 - x = y - q^2 - \longrightarrow (1)$$

This is of the form $f_1(x,p) = f_2(y,q)$ and there is no singular integral for this type. We will find the complete integral.

Let
$$p^2 - x = y - q^2 = k \ (say)$$

Then
$$p = \sqrt{x + k}$$
 , $q = \sqrt{y - k}$

We know that dz = pdx + qdy

Integrating both sides

$$z = \int \sqrt{x+k} \ dx + \int \sqrt{y-k} \ dy$$
$$z = \frac{2}{3} (x+k)^{\frac{3}{2}} + \frac{2}{3} (y-k)^{\frac{3}{2}}$$

which is the required solution

15. Solve
$$yp = 2yx + \log q$$

(a)
$$z = (x^2 + kx) + \frac{e^{ky}}{k} + C$$

(a)
$$z = (x^2 + kx) + \frac{e^{ky}}{k} + C$$
 (b) $z = (x^2 - kx) - \frac{e^{ky}}{k} + C$ (c) $z = (x^2 + kx) - \frac{e^{ky}}{k} + C$ (d) $z = (x^2 - kx) + \frac{e^{ky}}{k} + C$

(c)
$$z = (x^2 + kx) - \frac{e^{ky}}{k} + C$$

(d)
$$z = (x^2 - kx) + \frac{e^{ky}}{k} + C$$

Solution:

The given problem can be written as

$$p - 2x = \frac{\log q}{y} \longrightarrow (1)$$

This is of the form $f_1(x,p) = f_2(y,q)$ and there is no singular integral for this type. We will find the complete integral.

i.e.,
$$p - 2x = \frac{\log q}{y} = k$$
 (say)
$$\frac{\log q}{y} = k$$

$$p = 2x + k, \quad \log q - ky = 0$$

$$p = 2x + k, \quad q = e^{ky}$$

$$z = \int p dx + \int q dy$$

$$z = \int (2x + k) dx + \int e^{ky} dy$$

$$z = (x^2 + kx) + \frac{e^{ky}}{k} + C$$
which is the required solution

16. Solve
$$xp + yq = x$$

(a)
$$\varphi\left(\frac{y}{x}, x - z\right) = 0$$

(b)
$$\varphi(xy, x - z) = 0$$

(c)
$$\varphi\left(\frac{x}{y}, x-z\right)=0$$

(d)
$$\varphi\left(\frac{x}{y}, \frac{z}{x}\right) = 0$$

Solution:

This is of Lagrange's type of PDE where P=x, Q=y, R=x

The subsidiary equations are $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{x}$

Taking first two $\frac{dx}{x} = \frac{dy}{y}$ and integrating we get $log x = log y + log c_1$

ie.,
$$\frac{x}{y} = c_1$$
 So, $u = \frac{x}{y}$

Taking first and last, $\frac{dx}{x} = \frac{dz}{x} \implies dx = dz$ and integrating we get $x = z + c_2$ So v = x - z

The Solution is given by $\varphi(u,v)=0$ ie. , $\varphi\left(\frac{x}{y},x-z\right)=0$

17. Solve $(D^2 - 4DD^{\hat{}} - 5D^{\hat{}})z = 0$

(a)
$$z = f_1(y - x) + f_2(y - 5x)$$
 (b) $z = f_1(y - x) + f_2(y + 5x)$

(c)
$$z = f_1(y+x) + f_2(y+5x)$$
 (d) $z = f_1(y-x) + f_2(y-5x)$

Solution:

Replace D by m and D by 1

The auxiliary equation is given by $m^2 - 4m - 5 = 0$

$$\Rightarrow m = 5, -1$$

The general solution is given by

$$z = f_1(y - x) + f_2(y + 5x)$$

18. Solve 25r - 40s + 16t = 0

(a)
$$z = f_1(5y + 4x) + f_2(5y + 4x)$$
 (b) $z = f_1(5y + 4x) + f_2(4y + 5x)$

(c)
$$z = f_1(4y + 5x) + f_2(5y + 4x)$$
 (d) $z = f_1(y + 4x) + f_2(5y + x)$

Solution

Since
$$r = \frac{\partial^2 z}{\partial x^2} = D^2 z$$
, $t = \frac{\partial^2 z}{\partial y^2} = D^2 z$ $s = \frac{\partial^2 z}{\partial x \partial y} = DDz$

The auxiliary equation is given by $25m^2 - 40m + 16 = 0 \implies (5m - 4)^2 = 0$

So,
$$m = \frac{4}{5}, \frac{4}{5}$$

The general solution is given by

$$z = f_1(5y + 4x) + f_2(5y + 4x)$$

19. Solve
$$\frac{\partial^3 z}{\partial z^3} = 0$$

(a)
$$z = f_1(y) + x^2 f_2(y) + x f_3(y)$$
 (b) $z = f_1(y) - x f_2(y) + x^2 f_3(y)$

(c)
$$z = f_1(y) + xf_2(y) + x^2f_3(y)$$
 (d) $z = f_1(y) + xf_2(y) - x^2f_3(y)$

Solution:

The auxiliary equation is given by $m^3 = 0$

$$m = 0.0.0$$

Hence the general solution is given by

$$z = f_1(y) + xf_2(y) + x^2f_3(y)$$

20. Find the particular integral of $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = sinx$

(a)
$$-\cos x$$
 (b) $\cos x$ (c) $-\sin x$ (d) $\sin x$

Solution:

$$P.I = \frac{1}{D+D} sinx = \int sinx \, dx = -cosx$$

$$P.I = -cosx$$

21. Find the Particular Integral of $(D^2 - 2DD^{\hat{}} + D^{\hat{}}^2)z = \cos(x - 3y)$

(a)
$$\frac{-1}{16} \cos(x - 3y)$$
 (b) $\frac{1}{16} \cos(x - 3y)$

(c)
$$\frac{-1}{32}\cos(x-3y)$$
 (d) $\frac{x}{16}\cos(x-3y)$

Solution:

$$P.I = \frac{1}{D^2 - 2DD + D^2} \cos(x - 3y)$$

Replace $D^2 by - 1$, $D^2 by - 9$, DD by 3

$$P.I = \frac{1}{-1 - 6 - 9} \cos(x - 3y) = \frac{-1}{16} \cos(x - 3y)$$

22. Find the Particular Integral of $\frac{\partial^2 z}{\partial x^2} - 5 \frac{\partial^2 z}{\partial x \partial y} + 6 \frac{\partial^2 z}{\partial y^2} = e^{x+y}$

(a)
$$\frac{1}{2} e^{x+y}$$
 (b) $\frac{1}{2} e^{x-y}$ (c) $\frac{1}{2} e^{2x+y}$ (d) $\frac{1}{2} e^{2x-y}$

Solution:

The given equation can be written as

$$(D^{2} - 5DD^{`} + 6D^{`2})z = e^{x+y}$$

$$P.I = \frac{1}{D^{2} - 5DD^{`} + 6D^{`2}} e^{x+y}$$

$$= \frac{1}{1-5+6} e^{x+y} = \frac{1}{2} e^{x+y}$$

23. Solve
$$(D^3 - 6D^2D) + 11DD^2 - 6D^3)z = 0$$

(a)
$$z = f_1(y - x) + f_2(y + 2x) + f_3(y + 3x)$$

(b)
$$z = f_1(y+x) + f_2(y+2x) + f_3(y+3x)$$

(c)
$$z = f_1(y+x) + f_2(y-2x) + f_3(y+3x)$$

(d)
$$z = f_1(y - x) + f_2(y + 2x) + f_3(y - 3x)$$

Solution:

The auxiliary Equation is given by $m^3-6m^2+11m-6=0$

Solving m = 1,2,3

C.F is
$$f_1(y+x) + f_2(y+2x) + f_3(y+3x)$$

where f_1 , f_2 , f_3 are arbitrary functions

Solution is $z = f_1(y + x) + f_2(y + 2x) + f_3(y + 3x)$

24. Find the Particular Integral of $(D^2 + 3DD^{\hat{}} - 4D^{\hat{}})z = siny$

(a)
$$-\frac{1}{4}siny$$
 (b) $\frac{1}{4}cosy$

(a)
$$-\frac{1}{4}siny$$
 (b) $\frac{1}{4}cosy$ (c) $-\frac{1}{4}cosy$ (d) $\frac{1}{4}siny$

Solution:

$$P.I = \frac{1}{D^2 + 3DD^2 - 4D^2} siny$$

Replace D^2 by 0, D^2 by -1, DD by 0

$$P.I = \frac{1}{0 + 0 - 4(-1)} siny = \frac{1}{4} siny$$

25. Solve $(D^3 - 3D^2D^{\hat{}} + 4D^{\hat{}})z = 0$

(a)
$$z = f_1(y+x) + f_2(y+2x) + xf_3(y-2x)$$

(b)
$$z = f_1(y+x) + f_2(y+2x) + xf_3(y+2x)$$

(c)
$$z = f_1(y+x) + f_2(y-2x) + xf_3(y-2x)$$

(d)
$$z = f_1(y-x) + f_2(y+2x) + xf_3(y+2x)$$

Solution:

The auxiliary equation is $m^3 - 3m^2 + 4 = 0$

The roots are m = -1,2,2

C.F =
$$f_1(y - x) + f_2(y + 2x) + xf_3(y + 2x)$$

Solution is $z = f_1(y - x) + f_2(y + 2x) + xf_3(y + 2x)$