Naive Bayes

Algoritmo que gracios e un simple supuesto pue de ser use do pere hecer predicciones Se base en el teoreme de Bayes:

Pero, i qué nos dice este teoreme?
Supongamos dos eventos relaciona dos:

J es el evento jugar el sútbol un día

S es el evento el día está soleado

Entonces:

$$P(J|S) = \frac{P(J) P(S|J)}{P(S)}$$

Intentemos ver esto de sorme grésice:

Queremos P(115)

Pero en términos de probabilidades, i Cuento valen y?

$$P(J|S) = \times P(J) \times P(S|J)$$

$$\times P(J) \times P(S|J) + \times P(7J) \times P(S|7J)$$

$$P(J|S) = \frac{P(J) \times P(S|J)}{P(J) \times P(S|J) + P(J) \times P(S|J)}$$

Entonces:

Ahore, icómo usamos esto para clasificar?

Supongamos que queremos predecir si un suceso Y sucederé o no (0,1) iguel e i, dado que sobemos Xi,..., Xr. Esto es:

Si seguinos le mecénice hoste ahore, tenemos:

$$P(Y=i|X_1,...,X_p) = P(Y=i)P(Y_1,...,X_p|Y=i)$$

$$P(Y=0)P(X_1,...,X_p|Y=0)+P(Y=1)P(X_1,...,X_p|Y=1)$$

Pero aqui use nos le perte "neive": Vemos e a sumir que:

$$P(x_{1},...,x_{p}|Y=i) = \prod_{j=1}^{p} P(x_{j}|Y=i)$$

$$P(x_{1}|Y=i) \times ... \times P(x_{p}|Y=i)$$

Veamos un ejemplo:

Queremos predecir si este sébedo habre pertido de le liga de computeción UAI según costos detos:

Die de le semene	Clime	Partido
Lunes	Sol	No
Mertes	Lluvie	No
Miercoles	Lluvie	51
Jueves	5 0	No
Viernes	501	50
Sébedo	ς	50
Lunes	Lluvie	51
Miércoles	501	No
Viernes	501	No
Sébe do	Sol	No
Lunes	Uluvia	51
Sé bedo	Lluvie	5,7
Mertes	Sol	51
Sébe do	501	51
Sébe do	Lluvie	No

Queremos P()="5" D="5", C="501")

= P(J="Si") P(D="S|J="Si") P(C="Sol" | J= "Si")

 $P(J_{-} "S_{i}") P(D_{-} "S_{i}") P(C_{-} "S_{0}") I_{-} "S_{i}") + P(J_{-} "N_{0}") P(D_{-} "S_{i}") P(C_{-} "S_{0}") I_{-} "N_{0}")$

$$P(J="Si") = \frac{8}{15}$$
 $P(J="No") = \frac{7}{15}$

$$P(C = |S_0|^* | J = |S_1|^*) = \frac{4}{8}$$

$$P(D = 15^{\circ} / J = 1^{\circ} / N_{0}^{\circ}) = \frac{2}{7}$$

 $P(J_{-} "S_{i}") P(D_{-} "S_{i}") P(C_{-} "S_{0}" | J_{-} "S_{i}") + P(J_{-} "N_{0}") P(D_{-} "S_{i}") P(C_{-} "S_{0}" | J_{-} "N_{0}")$

$$\frac{\frac{6}{15} \cdot \frac{3}{8} \cdot \frac{4}{8}}{\frac{7}{15} \cdot \frac{2}{7} \cdot \frac{5}{7}}$$