Graph Neural Networks

杨帆

2018年7月10日

Motivations for This Talk (1)

- (My) ultimate goal: to build models that accurately predict the future
 - We have already learned some powerful sequential models
 - E.g., RNNs, stochastic RNNs, WaveNet, state space models
 - They are good at modeling a set of independent sequences
 - Real-world sequences are often interacting with each other
 - Leveraging such interactions can improve the predictive ability of models

Motivations for This Talk (2)

- Simulators are perfect tools for forecasting dynamical systems
 - However, building simulators for real environment is not easy
 - Requiring a lot of domain-specific knowledge, e.g., physics
- There is a latest trend toward **learning** simulators from observations
 - Neural Physics Engines, World Models
- Graph NNs are the key building block behind such learned simulators
 - Do well in modeling the relations between objects, while remaining tractable
- Besides, Graph NNs are also promising tools for:
 - Representation learning on graphs, i.e., node/graph embedding
 - Generalizing deep models to graph-structured data
 - Semi-supervised learning
 - Model-based reinforcement learning

Outline

- Introduction to Graph Neural Networks
- Hierarchical Pooling in GNN
- Modeling Interacting Systems with GNN
- Conclusions and Further Discussion

Outline

- Introduction to Graph Neural Networks
- Hierarchical Pooling in GNN
- Modeling Interacting Systems with GNN
- Conclusions and Further Discussion

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. M Defferrard, et al. NIPS 2016.

Semi-Supervised Classification with Graph Convolutional Networks. TN Kipf, et al. ICLR 2017.

Geometric Deep Learning: Going beyond Euclidean data. MM Bronstein, et al. IEEE Signal Processing Magazine, 2017.

Graph Signal Processing: Overview, Challenges, and Applications. A Ortega, et al. Proceedings of IEEE, 2018.

Representation Learning on Graphs: Methods and Applications. WL Hamilton, et al. Arxiv 2018.

Relational inductive biases, deep learning, and graph networks. PW Battaglia, et al. Arxiv 2018.

The Need for Graph Neural Networks

Graph-structured data are ubiquitous

roadmaps

The Need for Graph Neural Networks

Consider the basic graph classification task

• For image classification, we use **convolutions** to extract features

The Two Faces of Convolutions

- Convolving with a filter ⇔ cross-correlating with the reverse filter
 - i.e., sliding inner-product

History of Graph Neural Networks

GNNs were also developed from two perspectives

Spectral Graph Theory Basics

- Spectral graph convolution is built on top of spectral graph theory
 - Study the properties of a graph through the lens of its Laplacian matrix
 - Or adjacency matrix
 - G = (V, E) is a graph
 - undirected, unweighted, no self-loops
 - N = #vertices
 - adjacency matrix A is $N \times N$ matrix

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• degree matrix D is $N \times N$ matrix

$$D_{ij} = \begin{cases} d_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- $d_i = \sum_j A_{ij}$ is the degree of vertex i
- Laplacian matrix L = D A

		1	2	3	4	5
Α	1	0	1	0	1	0
	2	1	0	1	0	0
	3	0	1	0	1	1
	4	1	0	1	0	0
	5	0	0	1	0	0

		1	2	3	4	5
L	1	2	-1	0	-1	0
	2	-1	2	-1	0	0
	3	0	-1	3	-1	-1
	4	-1	0	-1	2	0
	5	0	0	-1	0	1

Spectral Graph Theory Basics

The weighted and normalized definition

$$A_{ij} = \begin{cases} w_{ij} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}, \qquad D_{ij} = \begin{cases} \sum_{j} A_{ij} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$L = D^{-1/2}(D - A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

• Laplacian matrix is positive-semidefinite and can be diagonalized as:

$$L = U\Lambda U^T = \sum\nolimits_{i=1}^N \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^T$$
 where
$$U = [\boldsymbol{u}_1 \quad \boldsymbol{u}_2 \quad ... \quad \boldsymbol{u}_N] \in \mathbb{R}^{N \times N}$$

$$\Lambda = \operatorname{diag}([\lambda_1, \lambda_2, ..., \lambda_N]) \in \mathbb{R}^{N \times N}$$

Graph Signal Processing

- 1D signal: $x \in \mathbb{R}^N$
 - x_i is the value at time i
- Fourier transform

$$\hat{x} = Fx$$

spectral components

$$\left\{ F_k[n] = e^{-j\frac{2\pi}{N}kn} / \sqrt{N} : n = 0, \dots, N-1 \right\}_{k=0}^{N-1}$$

frequencies

$$2\pi k/N$$
, $k = 0,1,...,N-1$

convolution

$$h * x = F^{-1}\big((Fh) \cdot (Fx)\big)$$

- 1D graph signal: $x \in \mathbb{R}^N$
 - x_i is the value at node i
- graph Fourier transform

$$\hat{x} = U^T x$$

spectral components

$$\{u_1, u_2, ..., u_N\}$$

graph frequencies

$$\lambda_1, \lambda_2, \dots, \lambda_N$$

graph convolution

$$h_{\theta} * x \triangleq U(\theta \cdot (U^T x))$$

diagonalization: $O(N^3)$, matmul: $O(N^2)$

Spatial Graph NNs

- Spatial Graph NNs are based on the idea of message passing
 - Some GNNs were inspired by the spatial interpretation of convolutions

$$h_{\mathbf{p}_i}^{l+1} = \sum_{\mathbf{p}_j \in \mathcal{N}(\mathbf{p}_i)} W_j^l h_{\mathbf{p}_j}^l$$

where

$$\mathcal{N}(p) = neighbors(p)$$

Simple message passing on general undirected graphs

Input: Graph G = (V, E), non-linearity σ , differentiable AGGREGATE and COMBINE, weights \mathbf{W} , node features $\{h_v^l : v \in V\}$ Output: new node features $\{h_v^{l+1} : v \in V\}$ for $v \in V$ do $h_{\mathcal{N}(v)}^{l+1} \leftarrow \mathsf{AGGREGATE}\big(\{h_u^l : u \in \mathcal{N}(v)\}\big)$ $h_v^{l+1} \leftarrow \sigma\left(\mathbf{W} \cdot \mathsf{COMBINE}\big(h_v^l, h_{\mathcal{N}(v)}^{l+1}\big)\right)$ end

The Graph Network Framework

- Graph Network [Battaglia 2018] generalizes and extends various GNNs
 - They use a generalized definition of graph $G = (\mathbf{u}, V, E)$

- Directed: one-way edges $\mathbf{e}_k = (\mathbf{v}_{s_k}, \mathbf{v}_{r_k})$
- Attributed: vertices and edges have attributes
- Attribute: encoded as a vector or set
- Global attribute: a graph-level attribute u
- Multi-graph: there can be more than one edge between vertices, including self-edges
- A GN block takes as input a graph G = (u, V, E)
 - And outputs a new graph G' = (u', V', E')
- Differentiable and composable

Insides of a Graph Network Block

- A GN block: 3 update functions ϕ and 3 aggregation functions ρ
 - Edge update -> node update -> global update

Configuring Within-Block Structure

- Note that a GN block is a computation flow abstraction
- Functions ϕ and ρ must be instantiated with concrete implementation
- Example:

$$\phi^{e}(\mathbf{e}_{k}, \mathbf{v}_{s_{k}}, \mathbf{v}_{r_{k}}, \mathbf{u}) := \operatorname{NN}_{e}([\mathbf{e}_{k}, \mathbf{v}_{s_{k}}, \mathbf{v}_{r_{k}}, \mathbf{u}])$$

$$\phi^{v}(\overline{\mathbf{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u}) := \operatorname{NN}_{v}([\overline{\mathbf{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u}])$$

$$\phi^{u}(\overline{\mathbf{e}}', \overline{\mathbf{v}}', \mathbf{u}) := \operatorname{NN}_{u}([\overline{\mathbf{e}}', \overline{\mathbf{v}}', \mathbf{u}])$$

$$\rho^{e \to v}(E'_{i}) := \sum_{k} \mathbb{I}(r_{k} = i)\mathbf{e}'_{k}$$

$$\rho^{v \to u}(V') := \sum_{i} \mathbf{v}'_{i}, \qquad \rho^{e \to u}(E') := \sum_{k} \mathbf{e}'_{k}$$

Other aggregation functions can be used, e.g., average/max

Compositions of Graph Network Blocks

GN blocks can be stacked together to build more power models

Outline

- Introduction to Graph Neural Networks
- Hierarchical Pooling in GNN
- Modeling Interacting Systems with GNN
- Conclusions and Further Discussion

Neural Expectation Maximization. K Greff, et al. NIPS 2017

The Need for Hierarchical Pooling/Clustering

- Graph Networks are flat: the input and output have the same #vertices
- We would like to introduce some hierarchical structure to:
 - Aggregate node features in a hierarchical way

- Model the interactions at a coarser level
- Make the message passing more efficient

Hard Pooling

- Sometimes the hierarchical structure is fixed or relatively stable
- We can use hierarchical (graph) clustering algorithms to build a tree

Hierarchical Graph Convolution

message passing:

- (1) ϕ^{L2A} : leave $L \to \text{ancestors } A$
- (2) ϕ^{WS} : between siblings
- (3) ϕ^{A2D} : $A \rightarrow \text{descendants } D$

Soft Pooling

- In many cases, the hierarchical structure is not fixed
 - Evolving over time
 - Different hierarchies across graphs

- Possible solution: learn the assignment matrices
 - Interestingly, an assignment matrix itself can be computed using a GNN

$$Z^{(l)} = \text{GNN}_{l,\text{embed}} (A^{(l)}, X^{(l)}) \in \mathbb{R}^{n_l \times d}$$

$$S^{(l)} = \text{softmax} \left(\text{GNN}_{l,\text{pool}} (A^{(l)}, X^{(l)}) \right) \in \mathbb{R}^{n_l \times n_{l+1}}$$

$$X^{(l+1)} = S^{(l)^T} Z^{(l)} \in \mathbb{R}^{n_{l+1} \times d}$$

$$A^{(l+1)} = S^{(l)^T} A^{(l)} S^{(l)} \in \mathbb{R}^{n_{l+1} \times n_{l+1}}$$

Outline

- Introduction to Graph Neural Networks
- Hierarchical Pooling in GNN
- Modeling Interacting Systems with GNN
- Conclusions and Further Discussion

Interacting Dynamical Systems

 Most real-world dynamical systems can be decomposed into smaller dynamics that interact with each other

- Given sequential observations of individual objects, we would like to:
 - Infer the latent interaction structure
 - Learn the dynamical model of the interacting system
- So we could understand what happens and better predict the future

Modeling Interacting Systems with GNN

Assume there are K objects and their corresponding sequential

observations $\left\{x_k^{1:T}\right\}_{k=1}^K$

$$\tilde{h}_{1:K}^{t} = \text{GNN}(h_{1:K}^{t})$$

$$h_{k}^{t+1} = \text{RNN}(x_{1:K}^{t}, \tilde{h}_{k}^{t})$$

$$x_{1:K}^{t+1} | x_{1:K}^{t} \sim p(\cdot | f(h_{1:K}^{t+1}))$$

where $\tilde{h}_{1:K}^t = \text{GNN}(h_{1:K}^t)$ is implemented as follows:

$$\begin{split} \tilde{h}_k^t &= \left[\hat{h}_k^t, E_k^t\right], \qquad \hat{h}_k^t = \text{MLP}^{enc}(h_k^t), \qquad E_k^t = \sum_{i \neq k} \alpha_{k,i}^t \cdot e_{k,i}^t \\ \alpha_{k,i}^t &= \text{MLP}^{att}\big(\xi_{k,i}^t\big), \qquad e_{k,i}^t = \text{MLP}^{eff}\big(\xi_{k,i}^t\big), \qquad \xi_{k,i}^t = \text{MLP}^{emb}\big(\big[\hat{h}_k^t, \hat{h}_i^t\big]\big) \end{split}$$

Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions. S Steenkiste, et al. ICLR 2018

Building Latent Variable Models with GNN

• NRI introduces discrete random variables z_{ij} to represent edge types

$$\mathbf{z} \sim p(\mathbf{z})$$

VAE is used for model learning and inference

$$h_{1:K}^{t+1} = \text{GNN}(h_{1:K}^t, x_{1:K}^t, \mathbf{z})$$

$$\mu_k^{t+1} = x_k^t + f_{\text{out}}(h_k^{t+1})$$

$$x_{1:K}^{t+1}|x_{1:K}^{t}, \mathbf{z} \sim \mathcal{N}(\mu_{1:K}^{t+1}, \sigma^{2}\mathbf{I})$$

where $h_{1:K}^{t+1} = GNN(h_{1:K}^t, x_{1:K}^t, \mathbf{z})$ is:

$$h_{(i,j)}^t = \sum_{m=1}^M z_{ij,m} f_e^m([h_i^t, h_j^t])$$

$$MSG_k^t = \sum_{i \neq k} h_{(i,k)}^t$$

$$h_k^{t+1} = \mathsf{GRU}([\mathsf{MSG}_k^t, x_k^t], h_k^t)$$

Neural Relational Inference for Interacting Systems. T Kipf, M Welling. ICML 2018

Outline

- Introduction to Graph Neural Networks
- Hierarchical Pooling in GNN
- Modeling Interacting Systems with GNN
- Conclusions and Further Discussion

Conclusions and Further Discussion

- Graph Neural Networks are very likely to be ubiquitous building blocks for deep models
- The theoretical understanding of GNNs is still lacking
 - e.g., spectral graph theory for directed graphs, convergence of massage passing, effects of auxiliary edges/channels
- GNNs are useful for modeling interacting dynamical systems
 - There is still room for improvement, e.g., introducing hierarchies, using better models for individual objects

Questions?