Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: 2 Bac Sciences Physiques

Durée totale : 10h

🙇 Contenus du programme :

- Limites des suites numériques de référence : $(n)_{n\geq 0}$, $(n^2)_{n\geq 0}$, $(n^3)_{n\geq 0}$, $(\sqrt{n})_{n\geq 0}$, $(n^p)_{n\geq 0}$ où p est un entier naturel.
- Limites des suites numériques de référence : $\left(\frac{1}{n}\right)_{n\geq 0}$, $\left(\frac{1}{n^2}\right)_{n\geq 0}$, $\left(\frac{1}{\sqrt{n}}\right)_{n\geq 0}$, $\left(\frac{1}{n^p}\right)_{n\geq 0}$ où p est un entier naturel.
- Suite convergente.
- Critères de convergence; convergence d'une suite croissante et majorée; convergente d'une suite décroissante et minorée.
- Suite divergente.
- Opérations sur les limites de suites; limittes et ordre.

🙇 Les capacités attendues :

• Utiliser les suites arithmétiques et les suites géométriques pour étudier des exemples de suites de la forme :

$$u_{n+1} = au_n + b \text{ et } u_{n+1} = \frac{au_n + b}{cu_n + d}$$

- Utiliser les suites de référence et les critéres de convergence pour déterminer les limites de suites numériques.
- Utiliser les suites numériques pour résoudre des problèmes variés de différentes domaines.
- Déterminer la limite d'une suite convergente (u_n) de la forme : $u_{n+1} = f(u_n)$ où f est une fonction continue sur un intervalle I et $f(I) \subset I$.

🖾 Recommandations pédagogiques :

• Toute étude théorique de la notion de limite d'une suite est hors programme.

où p est un entier naturel supérieur ou égal à 3, quand n tend vers $+\infty$

• En tenant compte du fait qu'une suite numérique est une fonction numérique sur l'ensemble des entiers naturels et à partir de limites de fonctions de référence on admettra dans une première étape les limites des suites : $(n)_{n\geq 0} \ , \ (n^2)_{n\geq 0} \ , \ (n^3)_{n\geq 0} \ , \ (\sqrt{n})_{n\geq 0} \ et \ (n^p)_{n\geq 0} \ et \ (n^p)_{n\geq 0} \ , \ (\frac{1}{n^2})_{n\geq 0} \ , \ (\frac{1}{\sqrt{n}})_{n\geq 0} \ et \ (\frac{1}{n^p})_{n\geq 0}$

1. Généralités sur les fonctions numériques :

Definition 1

- Une suite numérique est une fonction définie sur $\mathbb N$ ou une partie de $\mathbb N$.
- Soit f une fonction définie sur \mathbb{N} , alors f est une suite numérique. Pour tout, $n \in \mathbb{N}$ on note f(n) par u_n et on note f par $(u_n)_{n>0}$ ou (u_n) .

Exemple 1

$$(n^2+n+1)_{n\geq 0}$$
 , $(\sqrt{n-2})_{n\geq 2}$, $\left(rac{1}{n}
ight)_{n\geq 1}$ sont des suites numériques.

1.1. Suite majorée - suite minorée - suite bornée :

Soit $(u_n)_{n\geq n_0}$ une suite numérique.

Definition 2

- On dit que la suite $(u_n)_{n>n_0}$ est majorée s'il existe un réel M tel que : $(\forall n\geq n_0)$ $u_n\leq M$.
- On dit que la suite $(u_n)_{n\geq n_0}$ est minorée s'il existe un réel m tel que : $(\forall n\geq n_0)$ $u_n\geq m$.
- On dit que la suite $(u_n)_{n\geq n_0}$ est bornée si elle est à fois majorée et minorée.

Exemple 2

- 1. La suite $\left(\frac{1}{n}+1\right)_{n>1}$ est une suite majorée.
- 2. La suite $(n^2+1)_{n\geq 0}$ est une suite minorée.

1.2. Monotonie d'une suite numérique :

Definition 3

- On dit que la suite $(u_n)_{n\geq n_0}$ est croissante si : $(\forall n\geq n_0)$ $u_{n+1}-u_n\geq 0$
- On dit que la suite $(u_n)_{n\geq n_0}$ est décroissante si : $(\forall n\geq n_0)$ $u_{n+1}-u_n\leq 0$
- On dit que la suite $(u_n)_{n\geq n_0}$ est constante si : $(\forall n\geq n_0)$ $u_{n+1}=u_n$

Exemple 3

- 1. La suite $(n^2)_{n\geq 0}$ est une suite croissante.
- 2. La suite $\left(\frac{1}{n}\right)_{n>1}$ est une suite décroissante.

1.3. Suite arithmétique :

Definition 4

On dit que la suite $(u_n)_{n\geq n_0}$ est arithmétique s'il existe un réel r (indépendant de n) tel que :

$$(\forall n \geq n_0) \ u_{n+1} - u_n = r$$

Le nombre r est appelé la raison de la suite $(u_n)_{n>n_0}$.

Proposition 1

Si la suite $(u_n)_{n\geq n_0}$ est une suite arithmétique de raison r, alors pour tout (n;p) tels que $n\geq n_0$ et

$$u_n = u_p + (n-p).r$$
 et $u_p + u_{p+1} + \cdots + u_n = \frac{n-p+1}{2}(u_n + u_p)$ $(n \ge p)$

1.4. Suite géométrique :

On dit que la suite $(u_n)_{n\geq n_0}$ est géométrique s'il existe un réel q (indépendant de n) tel que :

$$(\forall n \geq n_0) \ u_{n+1} = qu_n$$

Le nombre q est appelé la raison de la suite $(u_n)_{n>n_0}$.

Proposition 2

Si la suite $(u_n)_{n>n_0}$ est une suite géométrique de raison $q\in\mathbb{R}^*-\{1\}$, alors pour tout (n;p) tels que $n \geq n_0$ et $p \geq n_0$:

$$u_n = u_p \cdot q^{n-p}$$
 et $u_p + u_{p+1} + \dots + u_n = u_p \cdot \frac{1 - q^{n-p+1}}{1 - q}$ $(n \ge p)$

2. Limite d'une fonction numérique :

2.1. Limite infinie des suites usuelles :

Proposition 3

Soit p un entier naturel supérieure ou égal à 4. Alors :

- $\lim_{n \to +\infty} n = +\infty$; $\lim_{n \to +\infty} n^2 = +\infty$; $\lim_{n \to +\infty} n^3 = +\infty$; $\lim_{n \to +\infty} n^p = +\infty$.
- $\lim_{n \to +\infty} \sqrt{n}$; $\lim_{n \to +\infty} \sqrt[3]{n} = +\infty$; $\lim_{n \to +\infty} \sqrt[p]{n} = +\infty$.

2.2. Convergence d'une suite numérique :

On dit qu'une suite numérique est convergente si elle admet une limite réelle. Dans le cas contraire, on dit qu'elle est divergente.

Proposition 4

Soit k un réel et p un entier naturel non nul. Alors : $\lim_{n \to +\infty} \frac{k}{n^p} = 0$ et $\lim_{n \to +\infty} \frac{k}{\sqrt{n}} = 0$. En particulier : $\lim_{n \to +\infty} \frac{1}{n} = 0$; $\lim_{n \to +\infty} \frac{1}{n^2} = 0$; $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$.

Proposition 5

Étant donné une suite $(u_n)_{n>n_0}$ et $l\in\mathbb{R}$, alors on a les équivalences suivantes :

$$\lim_{n\to+\infty}u_n=l\Longleftrightarrow\lim_{n\to+\infty}(u_n-l)=0\quad\text{ et }\quad \lim_{n\to+\infty}u_n=l\Longleftrightarrow\lim_{n\to+\infty}|u_n-l|=0$$

Remarque:

• Dire qu'une suite diverge (ou qu'elle est divergente), ne signifie pas qu'elle tend vers l'infinie. Cela signifie exactement que la suite n'a pas de limite ou qu'elle tend vers l'infini.

Exemple 4

Soit $(u_n)_{n\geq n_0}$ une suite numérique définie par : $u_n=\frac{3n^2+(-1)^n}{n^2}$. Montrons que $\lim_{n\to+\infty}u_n=3$.

2.3. Opérations sur les limites :

Proposition 6

• Limite de la somme :

lim u _n	1	1	1	+∞	-∞	+∞
$\lim v_n$	l'	+∞	-∞	+∞	-∞	-∞
$\lim(u_n+v_n)$	l+l'	+∞	-∞	+∞	-∞	Forme indéterminée

• Limite du produit :

$\lim u_n$	l	+∞	+∞	-∞	-∞	+∞	+∞ ou -∞
$\lim v_n$	ľ	l'>0	$l^{\prime} < 0$	+∞	-∞	+∞	0
$\lim(u_n\times v_n)$	11'	+∞	$-\infty$	-∞	+∞	+∞	Forme indéterminée

• Limite de l'inverse :

lim u _n	$l \neq 0$	+∞ ou -∞	0
$\lim \frac{1}{u_n}$	$\frac{1}{l}$	0	$\lim \frac{1}{ u_n } = +\infty$

Application 1

Calculer la limite de chacune des suites suivantes définies par :

$$u_n = \frac{2\sqrt{n-3}}{5\sqrt{n+2}}$$
 ; $v_n = \frac{n^2+5n+6}{n^2+7n+8}$; $w_n = \frac{2n-7}{n^4+3n^2+1}$; $x_n = \sqrt{4n^2-4n+1}-2n$

$$y_n = \sqrt{n+2} - \sqrt{n+3}$$
 ; $a_n = (n+4)\sqrt[3]{\frac{1}{n^3}}$; $b_n = 4 + \frac{1}{n} - \frac{10}{\sqrt[5]{n}}$

2.4. Limites et ordre:

Proposition 7

Soit $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites numériques convergentes. Alors :

- Si la suite $(u_n)_{n\geq n_0}$ est positive, alors : $\lim u_n\geq 0$.
- Si $u_n \le v_n$ pour tout entier $n \ge n_0$, alors : $\lim u_n \le \lim v_n$.

Remarque:

Une suite strictement positive (à partir d'un certain rang) et convergente peut avoir une limite nulle. Par exemple : On a : $\frac{1}{n}$ pour tout $n \in \mathbb{N}^*$, mais $\lim \frac{1}{n} = 0$.

2.5. Monotonie et convergence :

Théorème 1

- Toute suite croissante majorée est convergente.
- Toute suite décroissante minorée est convergente.

Ce résultat porte le nom de Théorème de la convergence monotone.

Application 2

- 1. Soit $(u_n)_{n\geq n_0}$ une suite numérique défine par $u_0=0$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\sqrt{2+u_n}$.
 - (a) Montrer par récurrence que pour tout $n \in \mathbb{N} : 0 \le u_n \le 2$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n>n_0}$.
 - (c) Déduire que la suite $(u_n)_{n\geq n_0}$ est convergente.
- 2. Soit $(u_n)_{n\geq n_0}$ une suite numérique définie par $u_0=\frac{3}{2}$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{u_n^2+1}{2u_n}$.
 - (a) Montrer par récurrence que $(\forall n \in \mathbb{N})$ $u_n > 1$.
 - (b) Érudier la monotonie de la suite $(u_n)_{n>n_0}$.
 - (c) Déduire que la suite $(u_n)_{n\geq n_0}$ est convergente.

3. Critére de convergence - Limite d'une suite géométrique :

3.1. Critéres de convergence :

Proposition 8

Soit $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites numériques telles que pour tout $n\geq n_0$: $u_n\leq v_n$.

- Si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$
- Si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

Exemple 5

1. Soit (u_n) la suite définie par : $u_n = -n + \cos \sqrt{n} - 1$. Montrons que $\lim u_n = -\infty$.

Application 3

Soit $(u_n)_{n\geq 0}$ la suite numérique définie par $u_0=1$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=u_n+2n+3$.

- 1. Montrer que $(\forall n \in \mathbb{N})$ $u_n > n^2$.
- 2. Déduire la limite de u_n .

Théorème 2

Soit $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites numériques convergeant vers une limite commune l.

Si
$$(\exists N \geq n_0)$$
 $(\forall n \geq N)$ $v_n \leq u_n \leq w_n$, alors $\lim_{n \to +\infty} u_n = l$.

Ce résultat est appelé Théorème des limites comparées.

Exemple 6

Soit $(u_n)_{n\geq 0}$ la suite définie par : $u_n=\frac{n+\cos n}{n^2+1}$

Montrons que la suite (u_n) est convergente et calculons sa limite.

Application 4

1. Soit
$$(u_n)_{n\geq 1}$$
 la suite numérique définie par : $u_n = \frac{3n + \cos\frac{5}{n}}{n+1}$.

(a) Montrer que :
$$(\forall n \in \mathbb{N}^*)$$
 $\frac{3n-1}{n+1} \le u_n \le \frac{3n+1}{n+1}$

(b) En déduire que la suite
$$(u_n)_{n\geq 1}$$
 est convergente et déterminer sa limite.

2. Soit
$$(v_n)_{n\geq 0}$$
 la suite numérique définie par : $v_n=\frac{\sqrt{n}\sin n}{n+1}$.

(a) Montrer que la suite
$$(v_n)_{n>0}$$
 est convergente st calculer sa limite.

Corollaire:

Soit $(u_n)_{n\geq n_0}$ une suite numérique et l un nombre réel. S'il existe une suite $(v_n)_{n\geq n_0}$ tendant vers 0 telle que pour tout $n\geq n_0$, $|u_n-l|\leq v_n$, alors $\lim_{n\to +\infty}u_n=l$.

3.2. Limite d'une suite géométrique :

Proposition 9

Soit q un nombre réel non nul.

• Si
$$q > 1$$
 alors $\lim_{n \to +\infty} q^n = +\infty$.

• Si
$$-1 < q < 1$$
 alors $\lim_{n \to +\infty} q^n = 0$.

• Si
$$q = 1$$
 alors $\lim_{n \to +\infty} q^n = 1$.

• Si
$$q \leq -1$$
 alors la suite $(q^n)_{n \geq 0}$ n'admet pas de limite.

Exemple 7

$$\begin{split} &\lim_{n\to+\infty}\left(\frac{1}{2}\right)^n=0 \ \mathrm{car}: \ -1<\frac{1}{2}<1.\\ &\lim_{n\to+\infty}\left(-\frac{1}{4}\right)^n=0 \ \mathrm{car}: \ -1<-\frac{1}{4}<1. \end{split}$$

Application 5

Calculer la limite de (u_n) :

$$u_n = \left(-\frac{4}{5}\right)^n$$
 ; $u_n = \frac{2^n + 5^n}{3^n - 5^n}$; $u_n = \frac{4^n}{3^{2n}}$; $u_n = \frac{3^{2n+1}}{2^{n+1} \times 5^{n-2}}$; $u_n = \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}}\right)^n$

4. Suites de la forme $u_{n+1} = f(u_n)$ et $v_n = f(u_n)$:

4.1. Limite d'une suite de la forme $v_n = f(u_n)$

Proposition 10

Si une suite $(u_n)_{n\geq n_0}$ est convergente vers l et f est une fonction continue en l, alors la suite $(v_n)_{n\geq n_0}$ définie par $v_n=f(u_n)$ est convergente et sa limite est f(l).

Exemple 8

Soit
$$(v_n)$$
 la suite numérique définie par : $v_n = \tan\left(\frac{\pi n + 1}{3n + 2}\right)$. Montrons que $\lim v_n = \sqrt{3}$.

Application 6

Déterminer les limites des suites numériques définies par :

$$u_n = \cos\left(\frac{n\pi - 2}{n^2 + 1}\right)$$
 ; $v_n = \sqrt[3]{\frac{8n^2 + 1}{27n^2 - 2n + 5}}$; $w_n = \sin\left(\frac{\pi^2}{n + \pi}\right)$

4.2. Limite de la suite (n^r) où $r \in \mathbb{Q}^*$:

Proposition 11

Soit r un nombre rationnel non nul.

- Si r > 0 alors $\lim_{n \to +\infty} n^r = +\infty$.
- Si r < 0 alors $\lim_{n \to +\infty} n^r = 0$.

Exemple 9

$$\lim_{n \to +\infty} n^{\frac{5}{6}} = +\infty \; \; ; \quad \lim_{n \to +\infty} n^{\frac{2}{7}} = +\infty \; \; ; \quad \lim_{n \to +\infty} n^{-\frac{5}{6}} = 0 \; \; ; \quad \lim_{n \to +\infty} n^{-\frac{54}{61}} = 0$$

4.3. Suite de la forme $u_{n+1} = f(u_n)$:

Proposition 12

Soit f une fonction continue sur un intervalle I telle que $f(I) \subset I$.

Soit $(u_n)_{n\geq n_0}$ une suite réelle définie par $u_{n_0}\in I$ et $u_{n+1}=f(u_n)$ pour tout entier $n\geq n_0$.

Si $(u_n)_{n\geq n_0}$ est convergente de limite l et $l\in I$, alors l est solution dans I de l'équation f(x)=x.

Application 7

Soit (u_n) la suite définie par : $u_0=1$ et $u_{n+1}=\sqrt{\frac{1+u_n}{2}}$ pour tout $n\in\mathbb{N}.$

- 1. Montrer par récurrence que : $0 \le u_n \le 1$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que $(u_n)_{n>0}$ est décroissante.
- 3. En déduire que la suite $(u_n)_{n\geq 0}$ est convergente et déterminer sa limite.