Solutions to the Selected Exercises in R. Durrett's Probability: Theory and Examples, 5th edition.

The 2rd part of those solutions can be find in this pdf file.

4.1.2. Prove Chebyshev's inequality. If a>0 then

$$P(|X| \ge a|\mathscr{F}) \le a^{-2}E[X^2|\mathcal{F}]$$

Proof: Notice that

$$X^2 \ge \mathbf{1}_{|X| > a} a^2$$
, a.s..

Therefore, form Theorem 4.1.9. (b) we have

$$E[X^2|\mathscr{F}] \ge a^2 E[\mathbf{1}_{|X| > a}|\mathscr{F}].$$

4.1.4. Use regular conditional probability to get the conditional Holder inequality from the unconditional one, i.e., show that if $p,q\in(1,\infty)$ with 1/p+1/q=1 then

$$E[|XY||\mathcal{G}] \le E(|X|^p|\mathcal{G})^{1/p}E(|Y|^q|\mathcal{G})^{1/q}.$$

Proof: Note that $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ is a nice space. Therefore, according to Theorem 4.1.17. there exists a μ which is the regular conditional distribution for (X,Y) given \mathcal{G} . In another word,

- For each $A \in \mathcal{B}(\mathbb{R}^2)$, $\omega \mapsto \mu(\omega,A)$ is a version of $P((X,Y) \in A|\mathcal{G})$.
- For a.e. $w, A \mapsto \mu(\omega, A)$ is a probability measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$.

Now for a.e. w, it follows from the unconditional Holder inequality that

$$\int_{\mathbb{R}^d} |xy| \mu(\omega,dx,dy) \leq \Bigl(\int_{\mathbb{R}^2} |x|^p \mu(\omega,dx,dy)\Bigr)^{1/p} \Bigl(\int_{\mathbb{R}^2} |y|^q \mu(\omega,dx,dy)\Bigr)^{1/q}.$$

Using Theorem 4.1.16., the above inequality implies that

$$E[|XY||\mathcal{G}] \leq E(|X|^p |\mathcal{G})^{1/p} E(|Y|^q |\mathcal{G})^{1/q},$$
 a.s.

as desired. □

4.1.6. Show that if $\mathcal{G} \subset \mathcal{F}$ and $EX^2 < \infty$ then

$$E(\{X - E(X|\mathcal{F})\}^2) + E(\{E(X|\mathcal{F}) - E(X|\mathcal{G})\}^2) = E(\{X - E(X|\mathcal{G})\}^2).$$

Proof: Note that

$$E(XE(X|\mathcal{F})) = E[E(XE(X|\mathcal{F})|\mathcal{F})] = E(E(X|\mathcal{F})^2).$$

Therefore we can verify the following Pythagorean law:

$$E(\{X - E(X|\mathcal{F})\}^2) = E(X^2) + E(E(X|\mathcal{F})^2) - 2E(XE(X|\mathcal{F}))$$

= $E(X^2) - E(E(X|\mathcal{F})^2)$.

Also note that $E[E(X|\mathcal{F})|\mathcal{G}] = E(X|\mathcal{G})$. So using this Pythagorean law three times, we get that the desired equality is equivalent to

$$E[X^2] - E[E(X|\mathcal{F})^2] + E[E(X|\mathcal{F})^2] - E[E(X|\mathcal{G})^2] = E[X^2] - E[E(X|\mathcal{G})^2].$$

This is trival. \square

4.1.9. Show that if X and Y are random variables with $E(Y|\mathcal{G})=X$ and $EY^2=EX^2<\infty$, then X=Y a.s.

Proof: Using the Pythagorean law (see the proof of exercise 4.1.6.), we have

$$E({Y - X}^2) = E(Y^2) - E(X^2) = 0$$

So we have X=Y a.s. \square

4.1.10. If $E|Y| < \infty$ and $E(Y|\mathcal{G})$ has the same distribution as Y, then $E(Y|\mathcal{G}) = Y$ a.s.

Proof: First we proof that for each random variable X satisfies the condition of this exercise, we have $\{E(X|\mathcal{G}) \geq 0\} \stackrel{a.s.}{=} \{X \geq 0\}$. In fact, on one hand, Jensen's inequality implies that

$$|E(X|\mathcal{G})| \le E(|X||\mathcal{G}), \quad a.s..$$

On the other hand, the condition that $E(X|\mathcal{G}) \stackrel{d}{=} X$ says that

$$E[|E(X|\mathcal{G})|] = E|X| = E(E(|X||\mathcal{G})).$$

So we must have $|E(X|\mathcal{G})| = E(|X||\mathcal{G})$ as surely.

This leads us to

$$\begin{split} E[X\mathbf{1}_{E[X|\mathcal{G}]\geq 0}] &= E[E[X|\mathcal{G}]\mathbf{1}_{E[X|\mathcal{G}]\geq 0}] = E[|E[X|\mathcal{G}]|\mathbf{1}_{E[X|\mathcal{G}]\geq 0}] \\ &= E[E[|X||\mathcal{G}]\mathbf{1}_{E[X|\mathcal{G}]> 0}] = E[|X|\mathbf{1}_{E[X|\mathcal{G}> 0]}], \end{split}$$

which forces that

$$X\mathbf{1}_{E[X|\mathcal{G}]>0}=|X|\mathbf{1}_{E[X|\mathcal{G}]>0},\quad a.\,s.\,.$$

So we must have $\{E(X|\mathcal{G}) > 0\} \subset \{X = |X|\} = \{X > 0\}$. Noticing again we have

$$P(E(X|\mathcal{G}) > 0) = P(X > 0),$$

so we must have $\{E(X|\mathcal{G}) \geq 0\} \stackrel{a.s.}{=} \{X \geq 0\}$ as required. Now take X = Y - c, we get

$$\{E(Y|\mathcal{G}) > c\} \stackrel{a.s.}{=} \{Y > c\}, \quad c \in \mathbb{R}.$$

This complete the proof. \square

4.2.2. Give an example of a submartingale X_n so that X_n^2 is a supermartingale.

Proof: $X_n=0$. \square

4.2.3. Show that if X_n and Y_n are submartingales w.r.t. \mathcal{F}_n then $X_n \vee Y_n$ is also.

Proof: Obviously $X_n \vee Y_n$ is adapted to \mathcal{F}_n . From $X_n \vee Y_n \leq |X_n| + |Y_n|$, we know $X_n \vee Y_n$ is integrable. Finally, we have

$$E[X_{n+1} \vee Y_{n+1} | \mathcal{F}_n] \ge E[X_{n+1} | \mathcal{F}_n] \vee E[Y_{n+1} | \mathcal{F}_n] \ge X_n \vee Y_n. \quad \Box$$

4.2.4. Let $X_n, n \ge 0$, be a submartingale with $\sup X_n < \infty$. Let $\xi_n = X_n - X_{n-1}$ and suppose $E(\sup \xi_n^+) < \infty$. Show that X_n converges a.s..

Proof: For each $m\geq 0$, define stopping time $\tau_m:=\inf\{k:X_k>m\}$. From $\sup_n X_{n\wedge\tau_m}^+\leq X_{\tau_m}^+=(X_{\tau_m-1}+\xi_{\tau_m})^+\leq X_{\tau_m-1}^++\xi_{\tau_m}^+\leq m+\sup_n\xi_n^+$, we know $E\sup_n X_{n\wedge\tau_m}^+<\infty$. According to Theorem 4.2.11, this says that $X_{n\wedge\tau_m}$ convergence a.s.. (Note that $X_{n\wedge\tau_m}$ is also a submartingale due to Theorem 4.2.9.). Therefore X_n convergence on the event $\{\tau_m=\infty\}$. Note that the condition $\sup X_n<\infty$ implies that $\bigcup_{m=1}^\infty \{\tau_m=\infty\}\stackrel{a.s.}{=}\Omega$. Therefore, X_n converges a.s.. \square

4.2.6. Let $(Y_k)_{k\in\mathbb{N}}$ be nonnegative i.i.d. random variables with $EY_m=1$ and $P(Y_m=1)<1$. By example 4.2.3 that $X_n=\prod_{m\leq n}Y_m$ defines a martingale. (i) Show that $X_n\to 0$ a.s.. (ii) Use the strong law of large numbers to conclude $(1/n)\log X_n\to c<0$.

Proof. (i) Since X_n is a non-negative martingale, it convergence a.s.ly to a limit, say X. Fix a u>0 such that $P(|Y_n-1|\geq u)>0$. Then for each $\epsilon>0$, since X_n is independent of Y_{n+1} , we have

$$P(|X_{n+1} - X_n| \ge \epsilon u) \ge P(|X_n| \ge \epsilon)P(|Y_{n+1} - 1| \ge u).$$

The left hand side converges to 0 as $n \to \infty$, so we must have $P(|X_n| > \epsilon)$ converges to 0 as well. Therfore, X = 0 a.s..

(ii) We can assume that $P(Y_m=0)=0$, since if $P(Y_m=0)>0$, it is easy to see that

$$P(\exists n > 0 \text{ s.t. } X_n = 0) = 1,$$

which implies that $(1/n) \log X_n \to -\infty$.

Now, assuming $P(Y_m = 0) = 0$, we can write

$$\log X_n = \sum_{m=1}^n \log Y_1 \in (-\infty,\infty).$$

According to strong law of large numbers (Theorem 2.4.1. and 2.4.5.), we only have to show that $E\log Y_1\in [-\infty,0)$.

Define $Y_1^{(n)} = Y \mathbf{1}_{n^{-1} < Y < n}$, then both $Y_1^{(n)}$ and $\log Y_1^{(n)}$ are integrable. From Jensen's inequality, we have

$$E\log Y_1^{(n)} \leq \log EY_1^{(n)}, \quad n\geq 1.$$

By monotonicity, taking $n \to \infty$, we have

$$E\log Y_1 \le \log EY_1 = 0.$$

Now, we only have to show that $E\log Y_1\neq 0$. In fact, if $E\log Y_1=0$, we have $\log Y_1$ is integrable. So from $E\log Y_1=\log EY_1$ and Exercise 1.6.1. we have $Y_1=1$ a.s., which contradicts to the condition $P(Y_1=1)<1$. \square

4.2.8. Let X_n and Y_n be positive integrable and adapted to \mathcal{F}_n . Suppose

$$E(X_{n+1}|\mathcal{F}_n) \leq (1+Y_n)X_n$$

with $\sum Y_n < \infty$ a.s.. Prove that X_n converges a.s. to a finite limit.

Proof: Let

$$W_n = rac{X_n}{\prod_{m=1}^{n-1} (1+Y_m)}, \quad n \in \mathbb{N},$$

which is positive, integrable and adapted to \mathcal{F}_n . From

$$E(W_{n+1}|\mathcal{F}_n) = rac{1}{\prod_{m=1}^n (1+Y_m)} E(X_{n+1}|\mathcal{F}_n) \leq W_n,$$

we know (W_n) is a supersomartingale. Theorem 4.1.12. says that (W_n) converges a.s. to a finite limit, say W. Since Y_m are positive, we have

$$\log \prod_{m=1}^n (1+Y_m) = \sum_{m=1}^n \log (1+Y_m) \leq \sum_{m=1}^n Y_m.$$

From the condition $\sum Y_n < \infty$ a.s. and the fact that the left hand side of above is non-decreasing, we have $\prod_{m=1}^n (1+Y_m)$ converges a.s. to a finite limit. Therefore X_n also converges a.s. to a finite limit. \square

4.2.9. Suppose X_n^1 and X_n^2 are supermartingales w.r.t. \mathcal{F}_n , and N is a stopping time so that $X_N^1 \geq X_N^2$. Then

$$Y_n = X_n^1 \mathbf{1}_{N>n} + X_n^2 \mathbf{1}_{N< n}$$

and

$$Z_n = X_n^1 \mathbf{1}_{N \geq n} + X_n^2 \mathbf{1}_{N < n}$$

are supermartinales.

Proof: Clearely, Y_n and Z_n are integrable and adapted to \mathcal{F}_n . Note that

$$egin{aligned} Y_{n+1} &= X_{n+1}^1 \mathbf{1}_{N>n+1} + X_{n+1}^2 \mathbf{1}_{N=n+1} + X_{n+1}^2 \mathbf{1}_{N< n+1} \ &\leq X_{n+1}^1 \mathbf{1}_{N>n+1} + X_{n+1}^1 \mathbf{1}_{N=n+1} + X_{n+1}^2 \mathbf{1}_{N< n+1} \ &= Z_{n+1} = X_{n+1}^1 \mathbf{1}_{N>n} + X_{n+1}^2 \mathbf{1}_{N\le n}. \end{aligned}$$

Therefore,

$$E[Y_{n+1}|\mathcal{F}_n] \leq E[Z_{n+1}|\mathcal{F}_n] = E[X_{n+1}^1|\mathcal{F}_n] \mathbf{1}_{N > n} + E[X_{n+1}^2|\mathcal{F}_n] \mathbf{1}_{N \leq n} \leq Y_n \leq Z_n.$$

 \square **4.3.1.** Give an example of a martingale X_n with $\sup_n |X_n| < \infty$ and $P(X_n = a \ i. \ o.) = 1$ for a = -1, 0, 1.

Proof: Suppose that $(U_k)_{k\in\mathbb{N}}$ are i.i.d. r.v. with uniform distribution in (0,1). Let $X_0=0$. For each $n\geq 1$, if $X_n=0$, let $X_{n+1}=\mathbf{1}_{U_{n+1}\geq 1/2}-\mathbf{1}_{U_{n+1}<1/2}$; if $X_n\neq 0$, let $X_{n+1}=n^2X_n\mathbf{1}_{U_{n+1}\leq n^{-2}}$. Then (X_n) is a martingale since

$$E[X_{n+1}|\mathcal{F}_n] = \mathbf{1}_{X_n=0}E[X_{n+1}|\mathcal{F}_n] + \mathbf{1}_{X_n\neq 0}n^2X_nE[U_{n+1}\leq n^{-2}|\mathcal{F}_n] = X_n.$$

Note that

$$P(X_n > 1) = P(X_{n-1} \neq 0, U_n \leq n^{-2}) \leq \frac{1}{n^2}.$$

So B.C. lemma says that $P(X_n \leq 1 \text{ for } n \text{ large engough}) = 1$, which says that $\sup_n |X_n| < \infty$ a.s..

It is elementary to see that

$$\sum_{n=1}^{\infty} P(X_{n+1} = 0 | \mathcal{F}_n) = \sum_{n=1}^{\infty} P(X_{n+1} = 0 | \mathcal{F}_n) \mathbf{1}_{X_n
eq 0} \stackrel{a.s.}{=} \sum_{n=1}^{\infty} (1 - rac{1}{n^2}) \mathbf{1}_{X_n
eq 0}.$$

Notice that we always have $\sum n^{-2} \mathbf{1}_{X_n
eq 0} < \infty$, so the above identity says that

$$\Big\{\sum_{n=1}^\infty P(X_{n+1}=0|\mathcal{F}_n)<\infty\Big\}\stackrel{a.s.}{=} \Big\{\sum_{n=1}^\infty \mathbf{1}_{X_n
eq 0}<\infty\Big\}\subset \{X_n=0\ i.o.\}.$$

Now, using Theorem 4.3.4. and above we have

$${X_n = 0 \ i.o.}^c \subset {X_n = 0 \ i.o.}$$

in the sense of a.s.. This can only happen if $P(X_n=0\ i.\ o.\)=1.$

We can also verify that

$$\sum_{n=1}^{\infty} P(X_{n+1} = 1 | \mathcal{F}_n) \geq \sum_{n=1}^{\infty} P(X_{n+1} = 1 | \mathcal{F}_n) \mathbf{1}_{X_n = 0} \ = rac{1}{2} \sum_{n=1}^{\infty} \mathbf{1}_{X_n = 0}$$

So from what we have proved, we know that a.s.ly

$$\sum_{n=1}^{\infty} P(X_{n+1} = 1 | \mathcal{F}_n) = \infty.$$

Using Theorem 4.3.4., we have that $P(X_n=1\ i.\ o.\)=1.$ Similarly, we have $P(X_n=-1,\ i.\ o.\)=1.$ \square

4.3.3. Let X_n and Y_n be positive integrable and adpted to \mathcal{F}_n . Suppose $E(X_{n+1}|\mathcal{F}_n) \leq X_n + Y_n$, with $\sum Y_n < \infty$ a.s.. Prove that X_n converges a.s. to a finite limit.

Proof: Define $M_n = X_n - \sum_{k=1}^{n-1} Y_k$. Then (M_n) is a supermartingale, since

$$E[M_{n+1}|\mathcal{F}_n] \leq X_n + Y_n - \sum_{k=1}^n Y_k = M_n.$$

Define stopping times

$$N_m:=\inf\{n:\sum_{k=1}^nY_k>m\},\quad m\in\mathbb{N},$$

Then it is easy to see that, for each $m \in \mathbb{N}$,

$$M_{n\wedge N_m}+m=X_{n\wedge N_m}-\sum_{k=1}^{n\wedge N_m-1}Y_k+m,\quad n\in\mathbb{N},$$

is a non-negative supermartingale. Therefore, M_n convergences a.s.ly on event $\{N_m=\infty\}$. Finally, notice that event

$$igcup_{m=1}^{\infty}\{N_m=\infty\}=\{\exists m\in\mathbb{N}\; s.t.\;\;\sum Y_n< m\}$$

is with probability 1. \square

4.3.5. Show $\sum_{n=2}^{\infty} P(A_n | \cap_{m=1}^{n-1} A_m^c) = \infty$ implies $P(\cap_{m=1}^{\infty} A_m^c) = 0$.

Proof: Note that, there is a partition $\{ ilde{A}_n:n\in\mathbb{N}\}$ for the event $\bigcup_{m=1}^\infty A_m$ satisfying that

$$igcup_{m=1}^n A_m = igcup_{m=1}^n ilde{A}_m, \quad n \in \mathbb{N}.$$

Define a filtration (\mathcal{F}_n) such that

$$\mathcal{F}_n = \sigma(A_m; m=1,\ldots,n) = \sigma(ilde{A}_m; m=1,\ldots,n), \quad n \in \mathbb{N}.$$

Notice also that $\{\tilde{A}_1,\ldots,\tilde{A}_n,\bigcap_{m=1}^nA_m^c\}$ is a partition for the underlying probablity space Ω . Therefore, according to Example 4.1.5., we have

$$P\Big(A_{n+1}\Big|igcap_{m=1}^n A_m^c\Big) = P(A_{n+1}|\mathcal{F}_n), \quad ext{on } igcap_{m=1}^n A_m^c.$$

From the condition of this exercise, we have

$$\sum_{m=1}^{\infty} P(A_{m+1}|\mathcal{F}_m) = \infty, \quad ext{on } igcap_{m=1}^{\infty} A_m^c.$$

Now, using Theorem 4.3.4. we get that

$$igcap_{m=1}^{\infty}A_m^c\subset \{A_m\ i.\,o.\,\}\subset \Bigl(igcap_{m=1}^{\infty}A_m^c\Bigr)^c$$

in the sense of almost sure. This can only happen if $P(\cap_{m=1}^{\infty}A_m^c)=0$. \square

For the next two exercises, in the context of Kakutani dichotomy for infinite product measures on page 235, suppose F_n , G_n are concentrated on $\{0,1\}$ and have $F_n(0)=1-\alpha_n$, $G_n(0)=1-\beta_n$

4.3.9. Show that if $\sum \alpha_n < \infty$ and $\sum \beta_n = \infty$ then $\mu \perp \nu$.

Proof: Let $A:=\{\xi_n\neq 0\ i.\ o.\}$. According to B.C. lemma, condition $\sum \alpha_n<\infty$ says that $\mu(A)=0$; condition $\sum \beta_n=\infty$ says that $\nu(A)=1$. So we must have $\mu\perp\nu$. \square

4.3.10. Suppose $0<\alpha_n,\beta_n<1$. Show that $\sum |\alpha_n-\beta_n|<\infty$ is sufficient for $\mu\ll \nu$ in general.

Proof: Let $(U_k)_{k\in\mathbb{N}}$ be i.i.d. r.v. uniform distribution on [0,1] w.r.t. probability space (Ω,\mathcal{F},P) . Define $\{0,1\}^{\mathbb{N}}\times\{0,1\}^{\mathbb{N}}$ random element (ξ^1,ξ^2) by

$$\xi_k^1 := \mathbf{1}_{U_k < lpha_k}, \quad \xi_k^2 := \mathbf{1}_{U_k < eta_k}, \quad k \in \mathbb{N}.$$

Then we have ξ^1 has distribution μ and ξ^2 has distribution ν . Note that

$$\sum_{k=1}^{\infty}P(\xi_k^1
eq \xi_k^2)=\sum_{k=1}^{\infty}|lpha_k-eta_k|<\infty,$$

therefore, according to B.C. lemma, we have

$$P\Big(\bigcup_{K=1}^{\infty}\bigcap_{k>K}\{\xi_k^1=\xi_k^2\}\Big)=1.$$

This says that there exists $K\in\mathbb{N}$ such that $P\left(\bigcap_{k>K}\{\xi_k^1=\xi_k^2\}\right)>0$. On the other hand, it is obvious that

$$P\Big(igcap_{k=1}^K\{\xi_k^1=\xi_k^2\}\Big)>0,$$

so from the independency, we have

$$P(\xi^1 = \xi^2) = P\Big(igcap_{k=1}^K \{ \xi_k^1 = \xi_k^2 \} \Big) \cdot P\Big(igcap_{k>K} \{ \xi_k^1 = \xi_k^2 \} \Big) > 0.$$

Now, suppose that $\mu \ll \nu$ is not true, then according to Kakutani dichotomy, we have $\mu \perp \nu$. This says that, there exists a subset $A \subset \mathbb{R}^{\mathbb{N}}$, wuch that $\mu(A) = \nu(A^c) = 1$. In this case, we have

$$P(\xi^1 \in A) = \mu(A) = 1 =
u(A^c) = P(\xi^2 \in A^c),$$

which says that

$$P(\xi^1
eq \xi^2)\geq P(\xi^1\in A, \xi^2\in A^c)=1.$$

This is a contradiction. \square

4.3.13. Galton and Watson who invented the process that bears their names were interested in the survival of family names. Suppose each family has exactly 3 children but coin flips determine their sex. In the 1800s, only male children kept the family name so following the male offspring leads to a branching process with $p_0=1/8$, $p_1=3/8$, $p_2=3/8$, $p_3=1/8$. Compute the probability ρ that the family name will die out when $Z_0=1$.

Proof: According to Theorem 4.3.12. we know that ρ is the only solution of

$$\varphi(\rho) = \rho$$

in [0,1), where

$$\varphi(\rho) = \frac{1}{8} + \frac{3}{8}\rho + \frac{3}{8}\rho^2 + \frac{1}{8}\rho^3.$$

Solving this gives that $ho=\sqrt{5}-2$. \square **4.4.3.** Suppose $M\leq N$ are stopping times. If $A\in\mathcal{F}_M$ then $L=M\mathbf{1}_A+N\mathbf{1}_{A^c}$ is a stopping time.

Proof: According to Theorem 7.3.6. we have $A^c \in \mathcal{F}_M \subset \mathcal{F}_N$. Therefore, for each $t \geq 0$, we have

$$A \cap \{M \le t\} \in \mathcal{F}_t; \quad A^c \cap \{N \le t\} \in \mathcal{F}_t.$$

From the above, we have $\{L \leq t\} = (A \cap \{M \leq t\}) \cup (A^c \cap \{N \leq t\}) \in \mathcal{F}_t$. \square

4.4.5. Prove the following variant of the conditional variance formula. If $\mathcal{F}\subset\mathcal{G}$ then

$$E(E[Y|\mathcal{G}]-E[Y|\mathcal{F}])^2=E(E[Y|\mathcal{G}])^2-E(E[Y|\mathcal{F}]^2).$$

Proof: Note that $E(E[Y|\mathcal{G}]|\mathcal{F}) = E[Y|\mathcal{F}]$. So according to the Pythagorean law (see the Slution to Excise 4.1.6.) we get the desired result. \square

4.4.7. Let X_n be a martingale with $X_0=0$ and $EX_n^2<\infty.$ Show that

$$P(\max_{1 \leq m \leq n} X_m \geq \lambda) \leq rac{EX_n^2}{EX_n^2 + \lambda^2}.$$

Proof: According to Theorem 4.2.6. we have $(X_n+c)^2$ is a submartingale where c is an arbitrary real number. Therefore, for each $c \in \mathbb{R}$, according to Doob's inequality

$$P(\max_{1 \leq m \leq n} X_m \geq \lambda) \leq Pig(\max_{1 \leq m \leq n} (X_n + c)^2 \geq (\lambda + c)^2ig) \leq rac{E(X_n + c)^2}{(\lambda + c)^2} = rac{EX_n^2 + c^2}{(\lambda + c)^2}.$$

Now, taking $c=rac{EX_n^2}{\lambda}$ we have

$$P(\max_{1 \leq m \leq n} X_m \geq \lambda) \leq rac{EX_n^2}{EX_n^2 + \lambda^2}.$$

4.4.8. Let X_n be a submartingale and $\log^+ x = \max(\log x, 0)$. Prove

$$E\bar{X}_n \le (1 - e^{-1})^{-1} \{ 1 + E(X_n^+ \log^+(X_n^+)) \},$$

where $ar{X}_n = \max_{k=1}^n X_k$.

Proof: Fix an M > 1. Note that

$$E[ar{X}_n \wedge M] = \int_0^\infty P(ar{X}_n \wedge M \geq \lambda) d\lambda \leq 1 + \int_1^M P(ar{X}_n \wedge M \geq \lambda) d\lambda \leq 1 + \int_1^M P(ar{X}_n \geq \lambda) d\lambda$$

Doob's inequality then says that

$$egin{aligned} E[ar{X}_n \wedge M] & \leq 1 + \int_1^M rac{1}{\lambda} E[X_n^+; ar{X}_n \geq \lambda] d\lambda \ & \leq 1 + E[X_n^+ \int_1^M rac{1}{\lambda} \mathbf{1}_{ar{X}_n \geq \lambda} d\lambda] = 1 + E[X_n^+ \log(ar{X}_n \wedge M)]. \end{aligned}$$

Now, use the calculus fact that $a \log b \le a \log^+ a + b/e$, we have

$$E[\bar{X}_n \wedge M] \leq 1 + E[X_n^+ \log^+ X_n^+ + \frac{\bar{X}_n \wedge M}{e}].$$

This says that

$$E[ar{X}_n \wedge M] \leq (1 - rac{1}{e})^{-1} \{1 + E[X_n^+ \log X_n^+]\}.$$

Finally, taking $M o \infty$, using monotone convergence theorem, we get the desired result. \Box

4.4.9. Let X_n and Y_n be martingales with $EX_n^2 < \infty$ and $EY_n^2 < \infty$. Show that

$$E[X_nY_n] - E[X_0Y_0] = \sum_{m=1}^n E[(X_m - X_{m-1})(Y_m - Y_{m-1})].$$

Proof: Since $E[X_{n+1}-X_n|\mathcal{F}_n]=0$ and $Y_n\in\mathcal{F}_n$ we have by Theorem 4.4.7. that $E[(X_{n+1}-X_n)Y_n]=0$. Similarly we have $E[(Y_{n+1}-Y_n)X_n]=0$. Now it is easy to calculate that

$$E(X_{n+1} - X_n)(Y_{n+1} - Y_n) = E(X_{n+1} - X_n)Y_{n+1}$$

= $E[X_{n+1}Y_{n+1} - X_nY_n + X_n(Y_n - Y_{n+1})] = E[X_{n+1}Y_{n+1} - X_nY_n].$

From this to the desired result is trival. \square

4.4.10. Let $X_n, n \geq 0$, be a martingale and let $\xi_n = X_n - X_{n-1}$ for $n \geq 1$. If $EX_0^2, \sum_{m=1}^\infty E\xi_m^2 < \infty$ then $X_n \to X_\infty$ a.s. and in L^2 .

Proof: Using the result in Excise 4.4.9, we have

$$EX_n^2 = EX_0^2 + \sum_{m=1}^n E\xi_m^2.$$

Therefore $\sup_n EX_n^2 = EX_0^2 + \sum_{m=1}^\infty E\xi_m^2 < \infty$. According to Theorem 4.4.6. we get the desired result. \square

4.6.4. Let X_n be r.v.'s taking values in $[0,\infty)$. Let $D=\{X_n=0 \text{ for some } n\geq 1\}$ and assume

$$P(D|X_1,\ldots,X_n) \ge \delta(x) > 0$$
 a.s. on $\{X_n \le x\}$.

Use Theorem 4.6.9 to conclude that $P(D \cup \{\lim_n X_n = \infty\}) = 1$.

Proof: Let $\mathcal{F}_n=\sigma(X_1,\ldots,X_n), n\geq 1$ and $\mathcal{F}_\infty=\sigma(\cup_n\mathcal{F}_n)$. According to $D\in\mathcal{F}_\infty$, we have by Levy's 0-1 law that $E[D|\mathcal{F}_n]\to 1_D$ a.s.. For each x>0, and each element $\omega\in\{X_n\leq x\ i.\ o.\ \}$, there exists a sequence of integers $(n_i)_{i\in\mathbb{N}}$ such that for each $i\in\mathbb{N}$, we have $X_{n_i}(\omega)\leq x$. Therefore, for this ω ,

$$1_D(\omega) = \lim_n E[D|\mathcal{F}_n](\omega) = \lim_i E[D|\mathcal{F}_{n_i}](\omega) \geq \delta(x) > 0.$$

So we must have $1_D=1$ on this event $\{X_n\leq x\ i.\ o.\ \}$. This says that $\{X_n\leq x\ i.\ o.\ \}\subset D$ for each x>0. Therefore, $\cup_{x\in\mathbb{N}}\{X_m\leq x\ i.\ o.\ \}\subset D$. Finally, noticing that $\cup_{x\in\mathbb{N}}\{X_m\leq x\ i.\ o.\ \}=\{\lim_n X_n=\infty\}^c$, we must have the desired result. \square

4.6.5. Let Z_n be a branching process with offspring distribution p_k . Use the last result to show that if $p_0 > 0$ then $P(\lim_n Z_n = 0 \text{ or } \infty) = 1$.

Proof: Let $D:=\{\lim_n Z_n=0\}=\{Z_n=0,\exists n\in\mathbb{N}\}$ be the event of extinction. Let $(\xi_i^n)_{i,n\in\mathbb{N}}$ be i.i.d. r.v. used in (4.3.4.). Let $\mathcal{F}_n=\sigma(Z_1,\ldots,Z_n)$. Now for each x>0, on event $\{0< Z_n\leq x\}$ we have

$$P(D|\mathcal{F}_n) \geq P(Z_{n+1} = 0|\mathcal{F}_n) = P(\xi_i^{n+1} = 0, orall i = 1 \dots Z_n|\mathcal{F}_n) = p_0^{Z_n} \geq p_0^x > 0.$$

On event $\{Z_n=0\}$, we have $P(D|\mathcal{F}_n)=1\geq p_0^x>0$. Now, using Exercise 4.6.4. we have

$$P(D \cup \{\lim_{n} Z_n = \infty\}) = 1$$

as desired. \square

4.6.7. Show that if $\mathcal{F}_m \uparrow \mathcal{F}_\infty$ and $Y_n \to Y$ in L^1 then $E(Y_n | \mathcal{F}_n) \to E(Y | \mathcal{F}_\infty)$ in L^1 .

Proof: According to Theorem 4.6.8. we have $E[Y|\mathcal{F}_n] \to E[Y|\mathcal{F}_\infty]$ in L^1 . So we only have to show that

$$E(Y_n|\mathcal{F}_n) - E(Y|\mathcal{F}_n) \stackrel{L^1}{\longrightarrow} 0.$$

In fact,

$$E\Big[ig|E(Y_n|\mathcal{F}_n)-E(Y|\mathcal{F}_n)ig|\Big] \leq E\Big[Eig[|Y_n-Y|ig|\mathcal{F}_nig]\Big] = E|Y_n-Y| o 0. \quad \Box$$

4.7.3. Prove directly from the definition that if $(X_l)_{l\in\mathbb{N}}\subset\{0,1\}$ are exchangeable

$$P(X_1=X_2=\ldots X_k=1|S_n=m)={n-k\choose n-m}\Big/{n\choose m}.$$

Proof: Define

$$egin{align} \mathcal{N} = & \Big\{ w \in \{0,1\}^n : w_l = 1, orall 1 \leq l \leq k; \sum_{l=1}^n w_l = m \Big\}; \ \mathcal{M} = & \Big\{ w \in \{0,1\}^n : \sum_{l=1}^n w_l = m \Big\}. \ \end{cases}$$

Note that, for each $w \in \mathcal{N}$, there exists a purmutation Γ_{ω} on $\{1,\dots,n\}$ such that

$$w_{\Gamma_{-}(l)} = \mathbf{1}_{1 \le l \le m}, \quad l \in \{1, \dots, n\}.$$

Now, writting $X=(X_l)_{l\in\mathbb{N}}$, we have

$$egin{aligned} P(X_l = 1, 1 \leq l \leq k; S_n = m) &= \sum_{w \in \mathcal{N}} P(X_l = w_l, orall 1 \leq l \leq n) = \sum_{w \in \mathcal{N}} P(X_{\Gamma_{\omega}(l)} = \mathbf{1}_{1 \leq l \leq m}, orall 1 \leq l \leq n) \\ &= \sum_{w \in \mathcal{N}} P(X_l = \mathbf{1}_{1 \leq l \leq m}, orall 1 \leq l \leq n) = \#\mathcal{N} \cdot P(X_l = \mathbf{1}_{1 \leq l \leq m}, orall 1 \leq l \leq n). \end{aligned}$$

Similarly we have $P(S_n = m) = \#\mathcal{M} \cdot P(X_l = \mathbf{1}_{1 < l < m}, \forall 1 \le l \le n)$.

Therefore, we have

$$P(X_1=X_2=\dots X_k=1|S_n=m)=rac{\#\mathcal{N}}{\#\mathcal{M}}=inom{n-k}{n-m}\Big/inom{n}{m}.\quad \Box$$

4.7.4. If $(X_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ are exchangeable with $EX_i^2<\infty$ then $E(X_1X_2)\geq 0$.

Proof: Note that

$$0 \leq inom{n}{2}^{-1} E(X_1 + \dots + X_n)^2 = inom{n}{2}^{-1} nEX_1^2 + EX_1X_2 \xrightarrow[n o \infty]{} EX_1X_2. \quad \Box$$

4.7.5. If $(X_k)_{k\in\mathbb{N}}$ are i.i.d. with $EX_i=\mu$ and $\mathrm{var}(X_i)=\sigma^2<\infty$ then

$$inom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} (X_i - X_j)^2
ightarrow 2\sigma^2.$$

Proof: Note that

$$inom{n}{2}^{-1}\sum_{1\leq i < j \leq n} (X_i-X_j)^2 =: A_n \in \mathcal{E}_n.$$

Therefore, since $\mathcal{E}_{n+1} \subset \mathcal{E}_n$, we know $\mathcal{F}_k := \mathcal{E}_{-k}, k = -1, -2, \ldots$ is a filtration with index $-\mathbb{N}$. Therefore we have

$$egin{align} A_n &= E[A_n|\mathcal{E}_n] = rac{1}{(n)_2} \sum_{1 \leq i,j \leq n} E[(X_i - X_j)^2|\mathcal{E}_n] = E((X_1 - X_2)^2|\mathcal{E}_n) \ &= E((X_1 - X_2)^2|\mathcal{F}_{-n}) \stackrel{Thm~4.7.3.}{\longrightarrow} E((X_1 - X_2)^2|\mathcal{F}_{-\infty}), \quad a.~s. \end{split}$$

According to Hewitt-Savage 0-1 law, we have $\mathcal{F}_{-\infty}=\mathcal{E}$ is trival. So

$$E((X_1 - X_2)^2 | \mathcal{F}_{-\infty}) = E((X_1 - X_2)^2) = 2\sigma^2.$$

4.8.3. Let $S_n=\xi_1+\cdots+\xi_n$ where the ξ_i are independent with $E\xi_i=0$ and $\mathrm{var}(\xi_i)=\sigma^2$. $S_n^2-n\sigma^2$ is a martingale. Let $T=\min\{n:|S_n|>a\}$. Then we have $ET\geq a^2/\sigma^2$.

Proof: Without loss of generality, we assume $ET < \infty$. (Otherwise, the desired result is trival.) According to Wald's second identity (Excise 4.8.4. below), we have

$$\sigma^2 ET = ES_T^2 \geq a^2$$
. \square

4.8.4. Let $S_n=\xi_1+\cdots+\xi_n$ where the ξ_i are independent with $E\xi_i=0$ and $\mathrm{var}(\xi_i)=\sigma^2$. Show that if T is a stopping time with $ET<\infty$ then $ES_T^2=\sigma^2ET$.

Proof: Since $S^2_{n\wedge T}-(n\wedge T)\sigma^2, n\geq 1$ is a martingale, we have

$$E[S^2_{n\wedge T} - \sigma^2(n\wedge T)] = 0, \quad n\in \mathbb{N}.$$

Therefore, we have

$$\sup_n E[S^2_{n\wedge T}] = \sigma^2 \sup_n E(n\wedge T) \leq \sigma^2 ET < \infty.$$

This tells us that $S_{n\wedge T}, n\geq 1$ is a L^2 -martingale. Therefore $S_{n\wedge T}\stackrel{L^2}{\longrightarrow} S_T$ and

$$ES^2_T = \lim_{n o \infty} ES^2_{n \wedge T} = \lim_{n o \infty} \sigma^2 E(n \wedge T) \stackrel{MCT}{=} \sigma^2 E(T). \quad \Box$$

4.8.5. Let $(\xi_k)_{k\in\mathbb{N}}$ be independent with $P(\xi_i=1)=p$ and $P(\xi_i=-1)=1-p$ where p<1/2. Let $S_n=S_0+\xi_1+\cdots+\xi_n$ and let $V_0=\min\{n\geq 0:S_n=0\}$. Theorem 4.8.9 tells us that $E_xV_0=x/(1-2p)$. Let $Y_i=\xi_i-(p-q)$ and note that $EY_i=0$ and

$$\mathrm{var}(Y_i) = \mathrm{var}(X_i) = EX_i^2 - (EX_i)^2$$

then it follows that $(S_n - (p-q)n)^2 - n(1-(p-q)^2)$ is a martingale. (a) Use this to conclude that when $S_0 = x$ the variance of V_0 is

$$x\cdot\frac{1-(p-q)^2}{(q-p)^3}.$$

(b) Why must the answer in (a) be of the form cx?

Proof. (a). Since V_0 is a stopping time with finite expectation. Using Wald's second identity (Excise 4.8.7.), we have

$$E_x[(S_{V_0}-(p-q)V_0)^2-V_0(1-(p-q)^2)]=x^2.$$

From the fact that $S_{V_0}=0$ and $E_xV_0=x/(1-2p)$, we can calculate the desired result.

(b) Define $V_y=\min\{n\geq 0, S_n=y\}$. Then, according to $S_0=x>0$, we have $V_x=0$. From the fact that $|S_{n+1}-S_n|=1$, and the fact that $EV_0<\infty$, we know that

$$0 = V_x \le V_{x-1} \le \dots \le V_0 < \infty.$$

Moreover, it can be verified that $\{T_y=V_{y-1}-V_y:y=x,x-1,\ldots\}$ are i.i.d. random variables. (T_y are the time process (S_n) spend from first hitting position y to first hitting position y-1.) So

$$EV_0 = \sum_{k=1}^x ET_k = xc. \quad \Box$$

4.8.7. Let S_n be a symmetric simple random walk starting at 0, and let $T=\inf\{n: S_n \notin (-a,a)\}$ where a is an integer. Find constants b and c so that $Y_n=S_n^4-6nS_n^2+bn^2+cn$ is a martingale and use this to compute ET^2 .

Proof: First, since S_n^2-n is a martingale, we have $S_{n\wedge T}^2-n\wedge T$ is a martinale. Therefore

$$E[S^2_{n\wedge T}]=E[n\wedge T].$$

Note that $S^2_{n\wedge T}$ is bounded by a^2 ; $n\wedge T$ is monotonic in n. Therefore, using bounded/monotonic convergence theorem, we get

$$a^2 = E[T]. \qquad (*)$$

It is elementary to verify that

$$E[Y_{n+1}|\mathcal{F}_n] - Y_n = (2b-6)n + b + c - 5.$$

Therefore, Y_n is a martingale iff b=3 and c=2. Now, set b=3, c=2. since $(Y_{T\wedge n})_{n\in\mathbb{N}}$ is also a martingale, we have

$$E[S^4_{n\wedge T}+3(n\wedge T)^2+2(n\wedge T)]=E[6(n\wedge T)S^2_{n\wedge T}].$$

Note that $(S^4_{n\wedge T})_{n\in\mathbb{N}}$ is bounded by a^4 ; $(n\wedge T)_{n\in\mathbb{N}}$ is monotonic in n; $((n\wedge T)S^2_{n\wedge T})_{n\in\mathbb{N}}$ is dominated by Ta^2 . Therefore, using bounded/monotonic/dominated convergence theorem, we get

$$E[a^4 + 3T^2 + 2T] = E[6Ta^2].$$

From (*), we have $ET^2 = (5a^4 - 2a^2)/3$. \Box

4.8.10. Consider a favorable game in which the payoff ξ_k are -1, 1 or 2 with probability 1/3 each. Use the results of the previous problem to compute the probability we ever go broke (i.e. our winings W_n reach 0) when we start with i.

Proof: It is elementary to verify that, if $\theta_0 = \ln(\sqrt{2} - 1) < 0$, then

$$E[\exp(heta_0 \xi_k)] = rac{1}{3} (e^{- heta_0} + e^{ heta_0} + e^{2 heta_0}) = 1.$$

It is well known that $X_n:=\exp(\theta_0W_n)$ is a martingale (the so-called exponential martingale). Note that it is non-negative, so it must have almost sure limit X_∞ . In fact, since $W_n\to\infty$ almost surely, we must have $X_\infty=0$.

Now, consider the martingale $X_{n\wedge T}$ where T is the broken time (hitting time at 0). Note that $W_{n\wedge T}\geq 0$, so $X_{n\wedge T}\in [0,1]$ is a bounded martingale. Therefore, we have

$$X_{n\wedge T} \xrightarrow[n o \infty]{L^1} X_T \mathbf{1}_{T<\infty} + X_\infty \mathbf{1}_{T=\infty} = \mathbf{1}_{T<\infty}.$$

This implies that

$$P(T < \infty) = E[\mathbf{1}_{T < \infty}] = E[X_0] = \exp(\theta_0 i) = (\sqrt{2} - 1)^i.$$

6.1.1. Show that the class of invariant events $\mathcal I$ is a σ -field, and $X \in \mathcal I$ if and only if X is invariant, i.e., $X \circ \varphi = X$ a.s.

Proof: \mathcal{I} is a sigma-field since (1) if $A \in \mathcal{I}$, then $\varphi^{-1}A^c = (\varphi^{-1}A)^c \stackrel{a.s.}{=} A^c$, which says that $A^c \in \mathcal{I}$. (2) $\emptyset \in \mathcal{I}$ since $\varphi^{-1}(\emptyset) = \emptyset$. (3) if $(A_k)_{k \in \mathbb{N}}$ is a sequence in \mathcal{I} , then

$$arphi^{-1}igcup_{n\in\mathbb{N}}A_n=igcup_{n\in\mathbb{N}}arphi^{-1}A_n\stackrel{a.s.}{=}igcup_{n\geq 1}A_n,$$

which says that $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{I}.$

Also note that

$$\begin{array}{l} X \in \mathcal{I} \\ \Longleftrightarrow \{X \in B\} \in \mathcal{I}, \forall \ \text{Borel} \ B \\ \Longleftrightarrow \{\omega : X(\omega) \in B\} \stackrel{a.s.}{=} \varphi^{-1}\{\omega : X(\omega) \in B\} = \{\omega : X \circ \varphi(\omega) \in B\}, \forall \ \text{Borel} \ B \\ \Longleftrightarrow X \stackrel{a.s.}{=} X \circ \varphi. \quad \Box \end{array}$$

6.1.2. Call A almost invariance if $P(A\Delta\varphi^{-1}(A))=0$ and call C invariant in the strict sense if $C=\varphi^{-1}(C)$. (i) Let A be any set, let $B=\cup_{n=0}^\infty\varphi^{-n}(A)$. Show $\varphi^{-1}(B)\subset B$. (ii) Let B be any set with $\varphi^{-1}(B)\subset B$ and let $C=\cap_{n=0}^\infty\varphi^{-n}(B)$. Show that $\varphi^{-1}(C)=C$. (iii) Show that A is almost invariant if and only if there is a C invariant in the strict sense with $P(A\Delta C)=0$.

Proof: (i)
$$\varphi^{-1}B = \bigcup_{n=0}^{\infty} \varphi^{-1} \circ \varphi^{-n}A = \bigcup_{n=1}^{\infty} \varphi^{-n}A \subset B$$
. (ii) Since $\varphi^{-1}B \subset B$, we have that $\varphi^{-1}(C) = \bigcap_{n \in \mathbb{N}} \varphi^{-1}\varphi^{-n}B = \bigcap_{n=1}^{\infty} \varphi^{-n}B = \bigcap_{n=0}^{\infty} \varphi^{-n}B = C$.

(iii) Define B and C as above. Since A is invariance, we have $A \stackrel{a.s.}{=} \varphi^{-1}A$. It can be verified that if two measurable subsets Ω_1, Ω_2 of Ω satisfies $\Omega_1 \stackrel{a.s.}{=} \Omega_2$, then $\varphi^{-1}\Omega_1 \stackrel{a.s.}{=} \varphi^{-1}\Omega_2$. In fact,

$$P(\varphi^{-1}(\Omega_1)\Delta\varphi^{-1}(\Omega_2))=P(\varphi^{-1}(\Omega_1\Delta\Omega_2))=P(\Omega_1\Delta\Omega_2)=0.$$

Using this fact multiple times we have $A\stackrel{a.s.}{=} \varphi^{-k}(A)$ for any $k\in\mathbb{N}$. Therefore $B\stackrel{a.s.}{=} A$. And we also have $B\stackrel{a.s.}{=} \varphi^{-k}(B)$ for any $k\in\mathbb{N}$. This tells us that $A\stackrel{a.s.}{=} C$. Yet (ii) already shows that C is strictly invariance. \Box

6.1.3. (i) Show that if θ is irrational, $x_n=n\theta \mod 1$ is dense in [0,1). (ii) Use Theorem A.2.1. to show that if A is a Borel subset of [0,1) with |A|>0, then for any $\delta>0$ there is an interval J=[a,b) so that $|A\cap J|>(1-\delta)|J|$. (iii) Let θ be irrational. Combine this with (i) to conclude if A is an a subset of [0,1) which is invariant under the operator

$$\varphi: y \mapsto y + \theta \bmod 1$$

and |A| > 0, then |A| = 1.

Proof: (i) Consider a 1-1 map $x\in[0,1)\mapsto e^{2\pi xi}\in S^1:=\{z\in\mathbb{C}:|z|=1\}.$ For any $\alpha,\beta\in S^1$, there is a natural distance

 $d(\alpha, \beta) := \text{length of the shorter arc connecting } \alpha \text{ and } \beta \text{ on } S^1.$

We only need to prove that $\{\alpha_n=e^{2\pi n\theta i}:n\in\mathbb{N}\}$ is dense on S^1 . More precisely, fixing an arbitrary β on S^1 and a large N, we only have to prove that there exists a n such that $d(\alpha_n,\beta)\leq \frac{2\pi}{N}$.

In fact, it is easy to verify that

- 1. $d(lpha_n,lpha_m)=d(0,lpha_{n-m})$ for all $n,m\in\mathbb{N}$;
- 2. all $lpha_n$ are distinct, so $d(lpha_n,lpha_m) \leq rac{2\pi}{N}$ for some $m < n \leq N$. Fix this m and n.
- 3. $S^1=\bigcup_{k=0}^\infty\{\alpha: \alpha \text{ lies on the shorter arc connecting } \alpha_{k(n-m)} \text{ and } \alpha_{(k+1)(n-m)}\}$

Now, for that fixed β , we know from 3. that there exists a $k \geq 0$ such that β lies on the shorter arc connecting $\alpha_{k(n-m)}$ and $\alpha_{(k+1)(n-m)}$. Therefore, for this k,

$$d(lpha_{k(n-m)},eta)\leq d(lpha_{k(n-m)},lpha_{(k+1)(n-m)})=d(0,lpha_{n-m})\leq rac{2\pi}{N},$$

as desired.

(ii) Let $\epsilon=rac{\delta}{1-\delta}|A|$. Using Theorem A.2.1. there exists countable disjoint intervals $J_k:=[a_k,b_k), k=1,\ldots$ such that $A\subset\bigcup_{k=1}^\infty J_k$ and $\sum_{k=1}^\infty |J_k|<|A|+\epsilon$. Suppose that non of those intervals J_k satisfies the desired property that $|A\cap J|>(1-\delta)|J|$, then

$$\sum_{k=1}^{\infty} |J_k| \ge \sum_{k=1}^{\infty} \frac{|J_k \cap A|}{1-\delta} = \frac{|A|}{1-\delta}.$$

Therefore $\epsilon>rac{|A|}{1-\delta}-|A|=\epsilon$. This is a contradiction.

(iii) Fix an arbitrary $1>\delta>0$. Note that if J=[a,b) is an interval satisfies the condition $|A\cap J|\geq (1-\delta)|J|$ then either interval $J'=[a,\frac{a+b}{2})$ or interval $J''=[\frac{a+b}{2},b)$ also satisfy the same condition. This and (ii) implies that for any small $\epsilon>0$, there exists an interval J=[a,b) satisfies $|A\cap J|\geq (1-\delta)|J|$ and $|J|<\epsilon$. Fix this $\epsilon>0$ and interval J. Let $N\in\mathbb{N}$ be the unique integer such that $\frac{1}{N+1}\leq |J|<\frac{1}{N}$. Thanks to (i), for each $k=0,\ldots,N-1$, there exists an integer n_k such that

$$rac{k}{N} \leq arphi^{n_k} a < arphi^{n_k} b < rac{k+1}{N}.$$

Note that $J_k=[\varphi^{n_k}a,\varphi^{n_k}b), k=0,\dots N-1$ are disjoint intervals, A is φ -invariant i.e. $\varphi^{-1}A=A$, and φ is measure preserving. Therefore

$$|A| \geq |igcup_{k=0}^{N-1}(A\cap J_k)| = \sum_{k=0}^{N-1}|A\cap J_k| = \sum_{k=0}^{N-1}|arphi^{-n_k}(A\cap J_k)| \ = \sum_{k=0}^{N-1}|A\cap J| \geq N(1-\delta)|J| \geq (1-\epsilon)(1-\delta).$$

Since $\epsilon>0$ and $\delta>0$ are arbitrary, so |A|=1. \square

6.1.4. For any stationary sequence $\{X_n, n \geq 0\}$, there is a two-sided stationary sequence $\{Y_n : n \in \mathbb{Z}\}$ such that $(X_n)_{n \geq 0} \stackrel{d}{=} (Y_n)_{n \geq 0}$.

Proof: Give a stationary process $(X_n)_{n\in\mathbb{N}}$. According to Kolmogrove's extension theorem, there is a stochastic process $(Y_n)_{n\in\mathbb{Z}}$ such that for any $n_1< n_2< \cdots < n_k$, we have

$$(Y_{n_i})_{i=1}^k \stackrel{d}{=} (X_{n_i-n_1})_{i=1}^k.$$

(It is elementary to verify that hose finite dimensional distribution if consistent.) So, $(X_n)_{n\in\mathbb{N}}\stackrel{d}{=}(Y_n)_{n\in\mathbb{N}}.$

We also need to verify that $\{Y_n\}$ is stationary. This is elementary from its definition. \square

6.1.5. If $(X_k)_{k\in\mathbb{N}}$ is a stationary sequence and $g:\mathbb{R}^\mathbb{N}\to\mathbb{R}$ is measurable then $Y_k=g(X_k,X_{k+1},\ldots)$ is a stationary sequence. If X_n is ergodic then so is Y_n .

Proof: The shift operator is defined as usual

$$heta w = (w_2, w_3, \ldots), \quad w \in \mathbb{R}^{\mathbb{N}}.$$

Define another operator $G:\mathbb{R}^{\mathbb{N}} o\mathbb{R}^{\mathbb{N}}$ with

$$Gw = (g(w), g(heta w), \ldots, g(heta^k w)), \quad w \in \mathbb{R}^\mathbb{N},$$

then Y = G(X). It can also be verified that $G\theta = \theta G$.

Therefore for each measurable subset $A \subset \mathbb{R}^{\mathbb{N}}$, we have

$$Y \in \theta^{-k}A \iff G(X) \in \theta^{-k}A \iff (\theta^k G)(X) \in A \iff (G\theta^k)(X) \in A$$

 $\iff \theta^k X \in G^{-1}A \iff X \in \theta^{-k}G^{-1}A.$

Therefore, if X is stationary, we have

$$\mu_Y(\theta^{-1}A) = \mu_X(\theta^{-1}G^{-1}A) = \mu_X(G^{-1}A) = \mu_Y(A),$$

which says that Y is also stationary.

Note that if A is invariant, i.e. $\theta^{-1}A=A$, then so is $G^{-1}A$, since $\theta^{-1}G^{-1}A=G^{-1}A=G^{-1}A$. Therefore, if X is egodic, then for any invariant subset $A\subset\mathbb{R}^\mathbb{N}$, we have

$$\mu_Y(A) = \mu_X(G^{-1}A) \in \{0, 1\},\$$

which says that Y is also ergodic. \square

6.1.6. Let $(X_k)_{k\in\mathbb{N}}$ be a stationary sequence. Let $n<\infty$ and let $(Y_k)_{k\in\mathbb{N}}$ be a sequence so that $(Y_{nk+1},\ldots,Y_{n(k+1)}), k\geq 0$ are i.i.d. and $(Y_1,\ldots,Y_n)=(X_1,\ldots,X_n)$. Finally, let ν be uniformly distributed on $\{1,2,\ldots,n\}$, independent of Y, and let $Z_m=Y_{\nu+m}$ for $m\geq 1$. Show that Z is stationary and ergodic.

Proof: The shift operator is defined as usual

$$heta w = (w_2, w_3, \ldots), \quad w \in \mathbb{R}^{\mathbb{N}}.$$

It is easy to see that for each measurable $A \subset \mathbb{R}^{\mathbb{N}}$, we have

$$P(Y \in \theta^{-n}A) = P(Y \in A).$$

Therefore

$$P(Z \in \theta^{-1}A) = P(Y \in \theta^{-\nu-1}A) = \sum_{k=1}^n \frac{1}{n} P(Y \in \theta^{-k-1}A) = \sum_{k=1}^n \frac{1}{n} P(Y \in \theta^{-k}A) = P(Z \in A).$$

This says that Z is stationary.

Now assume that A is shift invariant i.e. $\theta^{-1}A=A$. Note that

$$\{Z \in A\} = igcup_{k=1}^n \{Z \in A,
u = k\} = igcup_{k=1}^n \{Y \in heta^{-k}A,
u = k\} = \{Y \in A\}$$

Since Y is ergodic wrt operator θ^n and A is shift invariant wrt operator θ^n , so we have $P(Y \in A) \in \{0,1\}$. This says that $P(Z \in A) \in \{0,1\}$. So Z is ergodic. \square

6.1.7. Let $\varphi(x)=1/x-[1/x]$ for $x\in(0,1)$ and A(x)=[1/x], where [1/x]= the largest integer $\leq 1/x$. Then $a_n=A(\varphi^nx), n=0,1,2,\ldots$ gives the continued fraction representation of x, i.e.

$$x = 1/(a_0 + 1/(a_1 + 1/\ldots)).$$

Show that arphi preserves $\mu(A)=rac{1}{\log 2}\int_Arac{dx}{1+x}$ for $A\subset (0,1).$

Proof: It can be verified that for each $0 < a \le b < 1$, we have

$$arphi^{-1}[a,b) = igcup_{n\in\mathbb{N}}(rac{1}{n+b},rac{1}{n+a}].$$

Therefore, we can calculate that

$$\mu arphi^{-1}[a,b) = \sum_{n \in \mathbb{N}} rac{1}{\log 2} \int_{rac{1}{n+a}}^{rac{1}{n+a}} rac{dx}{1+x} = rac{1}{\log 2} \int_a^b rac{dx}{1+x} = \mu[a,b).$$

Using π - λ theorem, we can verifyopen φ preserves μ . \square

Exercise 6.2.1. Show that if $X \in L^p$ with p>1 then the convergence in Theorem 6.2.1 occurs in L^p

Proof: Take an arbitrary M>0. Let $X_M':=X\mathbf{1}_{|X|\leq M}$ and $X_M'':=X\mathbf{1}_{|X|>M}$. We claim that

$$\limsup_{n o\infty}\Bigl\|rac{1}{n}\sum_{k=0}^{n-1}X\circarphi^k-E[X|\mathcal{I}]\Bigr\|_p\leq 2\|X_M''\|_p.$$

In fact, on one hand we have

$$rac{1}{n}\sum_{k=0}^{n-1}X_M'\circarphi^k \stackrel{a.s.\&L^p}{\longrightarrow} E[X_M'|\mathcal{I}],$$

where the almost sure convergence is due to Ergodic theorem, and the L^p convergence is then followed by bounded convergence theorem. On the other hand, we have

$$igg\|rac{1}{n}\sum_{k=1}^{n-1}X_M''\circarphi^k-E[X_M''|\mathcal{I}]igg\|_p \leq rac{1}{n}\sum_{k=1}^{n-1}\|X_M''\circarphi^k\|_p+\|E[X_M''|\mathcal{I}]\|_p \ \leq 2\|X_M''\|_p, \quad n\geq 0.$$

Now, since M is arbitrary and that $\|X_M''\|_p o 0$ as $M o \infty$, we get the desierd result. \Box

Exercise 6.2.2 (1) Show that if $g_n(w) \to g(w)$ a.s. and $E(\sup_k |g_k|) < \infty$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} g_m(\varphi^m w) = E(g|\mathcal{I}) \quad a.s.$

Proof: We claim that

$$\limsup_{n o \infty} rac{1}{n} \sum_{m=0}^{n-1} g_m \circ arphi \leq E[g|\mathcal{I}] \quad ext{a.s..}$$

In fact, taking an arbitrary M>0, we can define a almost sure finite random variable $h_M:=\sup_{m\geq M}|g_m-g|$ using the condition $E(\sup_k|g_k|)<\infty$. Then we have by ergodic theorem that

$$egin{aligned} rac{1}{n} \sum_{m=0}^{n-1} g_m \circ arphi^m & \leq rac{1}{n} \sum_{m=0}^{M-1} (g+h_0) \circ arphi^m + rac{1}{n} \sum_{m=M}^{n-1} (g+h_M) \circ arphi^m \ & \longrightarrow E[g+h_M|\mathcal{I}] \quad a.\, s. \, . \end{aligned}$$

According to the fact that $|h_M| \leq g + \sup_k |g_k|$ and $h_M \to 0$ as $M \to \infty$, we have $E[g+h_M|\mathcal{I}] \to E[g|\mathcal{I}]$ a.s. due to the dominated convergence theorem. Therefore, the claim is true. Applying this claim to $(-g_n)_{n=1,\ldots}$, we get that

$$\liminf_{n o\infty}rac{1}{n}\sum_{m=0}^{n-1}g_m\circarphi\geq E[g|\mathcal{I}]\quad ext{a.s..}$$

Exercise 6.2.3 Let $X_j=X\circ\varphi^j$, $S_k=X_0+\cdots+X_{k-1}$, $A_k=S_k/k$ and $D_k=\max(A_1,\ldots,A_k)$. Show that if $\alpha>0$ then

$$P(D_k > \alpha) \le \alpha^{-1} E|X|.$$

Proof: Define $X_j'=X_j-\alpha$, $S_k'=X_0'+\cdots+X_{k-1}$, $A_k'=S_k'/k$ and $D_k'=\max(A_1',\ldots,A_k')$. Then, it is easy to see that $S_k'=S_k-\alpha k$, $A_k'=A_k-\alpha$ and $D_k'=D_k-\alpha$. Lemma 6.2.2. says that $E[X';D_k'>0]\geq 0$. Therefore $E|X|\geq E[X;D_k>\alpha]\geq \alpha P(D_k>\alpha)$ as desired. \square

Exercise 6.3.1 Let $g_n=P(S_1\neq 0,\ldots,S_n\neq 0)$ for $n\geq 1$ and $g_0=1$. Show that

$$ER_n = \sum_{m=1}^n g_{m-1}$$

Where S_n and R_n is the same as Theorem 6.3.1.

Proof: Note that

$$R_n = 1 + 1_{S_{n-1} \notin \{S_n\}} + 1_{S_{n-2} \notin \{S_{n-1}, S_n\}} + \dots + 1_{S_1 \notin \{S_2, \dots, S_n\}}$$

Therefore.

$$egin{aligned} ER_n &= 1 + \sum_{m=1}^{n-1} P(S_m
otin \{S_{m+1}, \dots, S_n\}) \ &= 1 + \sum_{m=1}^{n-1} P(S_{m+1} - S_m
otin 0, \dots, S_n - S_m
otin 0\}) \ &= 1 + \sum_{m=1}^{n-1} P(S_1
otin 0, \dots, S_{n-m}
otin 0\}) \ &= \sum_{m=1}^{n} g_{m-1}. \end{aligned}$$

Exercise 6.3.2 Under the setting of Theorem 6.3.2. Show that if we assume $P(X_i > 1) = 0$, $EX_i > 0$, and the sequence X_i is ergodic, then $P(A) = EX_i$.

Proof: It is elementary analysis that if $s_n/n \to c > 0$, then we must have

$$n^{-1}\max_{1\leq k\leq n}s_k\to c$$

and

$$\inf_{k=1,\dots} s_k > -\infty.$$

Ergodic theorem syas that

$$rac{S_n}{n} o EX_i > 0, \quad a.\,s.$$

so we must have

$$n^{-1} \max_{1 \leq k \leq n} S_k o EX_i, \quad a. \, s.$$

and

$$M:=\inf_{k=1,\dots}S_k>-\infty,\quad a.\,s.$$

Note, from the condition $P(X_i>1)=0$, we have

$$\max_{1 \leq k \leq n} S_k \leq R_n \leq \max_{1 \leq k \leq n} S_k - m,$$

which now implies that

$$rac{R_n}{n} o EX_i.$$

However, from Theorem 6.3.1. we already know that $n^{-1}R_n \to P(A)$. Therefore, we must have $P(A) = EX_i$. \square

Exercise 6.3.3 Show that if $P(X_n \in A \text{ at least once}) = 1$ and $A \cap B = \emptyset$ then

$$E\Big(\sum_{1\leq m\leq T_1} 1_{X_m\in B}\Big|X_0\in A\Big)=rac{P(X_0\in B)}{P(X_0\in A)}.$$

Proof: We can find a two-side stationary process which has the same finite demisional distribution same as $(X_n)_{n\in\mathbb{N}}$. With some abuse of notations, we denote such two-side stationary process as $(X_n)_{n\in\mathbb{Z}}$. Now, we can verify that

$$egin{aligned} P(X_0 \in A)E \left[\sum_{m=1}^{T_1} \mathbf{1}_{X_m \in B} \middle| X_0 \in A
ight] &= E \left[\sum_{t \in \mathbb{N}} \sum_{m=1}^{t} \mathbf{1}_{X_m \in B, T_1 = t}; X_0 \in A
ight] \ &= \sum_{m=1}^{\infty} P\left(X_m \in B, T_1 \geq m; X_0 \in A
ight) &= \sum_{m=1}^{\infty} P\left(X_0 \in A, X_1 \notin A, \dots, X_{m-1} \notin A, X_m \in B
ight) \ &= \sum_{m=1}^{\infty} P\left(X_{-m} \in A, X_{-m+1} \notin A, \dots, X_{-1} \notin A, X_0 \in B
ight) &= P(X_0 \in B). \end{aligned}$$

Exercise 6.3.4 Consider the special case in which $X_n \in \{0,1\}$, and let $\bar{P} = P(\cdot|X_0=1)$. Here A=1 and so $T_1=\inf\{m>0: X_m=1\}$. Show $P(T_1=n)=\bar{P}(T_1\geq n)/\bar{E}T_1$.

Proof: From Theorem 6.3.3. we know that $P(X_0=1)ar{E}T_1=1$. Therefore

$$rac{ar{P}(T_1 \geq n)}{ar{E}T_1} = P(T_1 \geq n | X_0 = 1) P(X_0 = 1) = P(T_1 \geq n, X_0 = 1).$$

On the other hand, with some abuse of natations, assuming that $(X_n)_{n\in\mathbb{Z}}$ is a two-sided stationary sequence, we have

$$egin{align} P(T_1=n) &= \sum_{m=0}^{\infty} P(X_{-m}=1,X_{-m+1}=0,\ldots,X_{n-1}=0,X_n=1) \ &= \sum_{m=0}^{\infty} P(X_0=1,X_1=0,\ldots,X_{m+n-1}=0,X_{m+n}=1) \ &= P(X_0=1,T_1\geq n). \end{split}$$