

A GENERATION AHEAD SEMINAR SERIES

TCL, the Tool Control Language, and Vivado

Agenda

- **>** Expectations
- **➤** Controlling Vivado with TCL
- > Vivado Physical Constraints
- Vivado Timing Constraints
- **➤** More Information

I. Expectations

Expectations for the Next 44 Minutes

- ➤ There is NO WAY I can teach you the entire TCL language and how to use it with Vivado in 43 minutes
- ▶ It is absolutely possible to expose you to <u>enough</u> TCL in 42 minutes such that you'll get it
 - And this will be done in the context of using Vivado
- ➤ For now don't think of TCL as a language. Think of it as a bunch of similarly structured commands.
 - As you write more powerful scripts, and you find that you need more power and flexibility in your scripts, TCL enables that

Homework: Get a TCL book, explore TCL on the WEB, play in Vivado

II. Controlling Vivado with TCL

Vivado Tcl

Include in .xdc file

- **➤** SDC Synopsys Design Constraints
 - Timing Constraints
- > XDC Xilinx Design Constraints
 - Physical Constraints

- SDC + XDC
- Xilinx commands
 - Project management, synthesize, place and route, compilation, report,...
- Xilinx objects
 - Netlist, device, timing, project,...
- General Tcl (8.5)
 - List-related commands are overloaded to support primary objects
 - Primary objects can directly be used with general commands

Things that used to go in a UCF are now TCL commands and are now included in a .xdc constraints file

Things that used to be separate executables in ISE are now TCL commands and can be included in a .tcl batch file

Launching Vivado From the ISE Command Prompt

Launches Xilinx Command Prompt

Then type

Vivado	Launches GUI
vivado -mode tcl	Launches Vivado in command line mode
<pre>vivado -mode batch - source <filename.tcl></filename.tcl></pre>	Launches Vivado in command line, executes filename.tcl

- mode tcl:

- Vivado is running, no GUI
- start_GUI TCL
 command will launch the
 GUI without forgetting what you've done

— mode batch

 Same as –mode tcl, but executes a tcl script on start-up

A Vivado "Batch Mode" TCL Script Might Look Something Like this

Commands Used to Synthesize / Implement Design

You can still load the design into PlanAhead GUI for Design Analysis

ISE Command Line Equivalence in Vivado

ISE Command Line Tool	Vivado Equivalent TCL Commands
xst	synth_design
Ngdbuild (Translate)	link_design (Not required if running synth_design)
map	<pre>opt_design power_opt_design (optional) phys_opt_design (optional)</pre>
par	place_design route_design
trce	report_timing
bitgen	write_bitstream

A Separate "Project Flow" Uses DIFFERENT TCL Commands

Vivado IDE for Project Management Commands Used to Accomplish Same Thing

create_project ...

add_files ...

import_files ...

...

launch_run synth_1

wait_on_run ...

open_run ...

report_timing_summary

launch_runs impl_1

wait_on_run ...

open_run ...

- Design runs use specific source sets
 - Design Sources
 - Constraints Sets
 - Simulation Sets

Uses the concept of design runs

- launch_run
 (synthesis /
 implementation)
- wait_on_run
- open_run (synthesis /
 implementation)

Confused?

Pins and Ports May Not Be What you Expect

- **▶** Ports are the pads or balls of the FPGA. Literally.
 - You apply things like LOC and IOSTANDARD to ports
- > There's also CELLs and PINS

The I/O of an instantiated module or primitive is the PIN of a CELL_{Cells}

III Vivado Physical Constraints

Finding Netlist Objects in the Design

Command	Description						
get_cells	Cell objects based on name/hierarchy or connectivity						
get_pins	Pin objects based name/hierarchy or connectivity						
get_nets	Net objects by name/hierarchy or connectivity						
get_ports	Top-level netlist ports by name or connectivity						
get_iobanks	IO Bank objects, needed for constraining						
all_inputs	Get a list of all input ports in the current design						
all_outputs	Get a list of all output ports in the current design						
all_ffs	Get a list of all flip flops in current design						
all_latches	Get a list of all latches in current design						
all_dsps	Get a list of dsp cells in the current design						
all_rams	Get a list of ram cells in the current design						

To create constraints or analyze designs, you need to access netlist objects

Simple Example 1: Utilization

Utilization

```
    get_cells :returns list of all cells in the design on one line
    join [get_cells] "\n" : return list of all cells in the design, but on separate lines
    llength [get cells [all dsps]] : How many are DSPs are in the desgin
```

OR

- > report utilization
 - Just a bunch of stuff scrolling by
- > report_utilization -file my_util.txt
 - Creates a file, sticks it . . . somewhere
- Click the GUI button that says Report Utilization.
 - Gives you a great table
 - But you didn't learn as much TCL

Simple Example #2: Find Netlist Objects

- ➤ Use the Find (Ctrl-F) function in the Vivado GUI to find objects in the netlist:
 - Choose <u>Instances</u> to search for Cells
- **▶** Use the Search Results with "get_cells".

Simple Example #3: Checking Your Work

Check your work!

Simple Example #4: More Sanity Checking

- > You've set Location Constraints on all of your I/O
 - llength [get_ports]: Returns number of I/O in your design
 - llength [get property PACKAGE PIN [get ports]]
 - Should return the same number
- Of course the tools will tell you this too after you place_design

Master Class: PROBES (1)

- ➤ In ISE, PROBEs allows you to tap off of a net, connecting it to an unused I/O. How would you do the same thing in Vivado TCL?
- 1. Create a port
- Select an I/O Standard
- 3. Select an unused pin location
- 4. Connect the net from the design to the port created in 1.

Master Class: PROBES (2)

```
proc addProbe {signal pin IOStandard name} {
    create_port -direction OUT $name
    set_property IOSTANDARD $IOStandard [get_port $name]
    set_property LOC $pin [get_port $name]
    connect_net -net $signal -objects [get_port $name]
}
```

- Save this file as probes.tcl
- ➤ After design is loaded, type "source probes.tcl" at the TCL prompt
- > Type "addProbe mem_en V25 LVCMOS18 Fred" at the TCL prompt

IV. Vivado Timing Constraints

Baselining Designs With Vivado

Need a common starting point for wide variety of designs

- Constraint Development
 - check_timing: no unconstrained clocks
 - No unreasonable (ie. 20 ps)
 path requirements
 - No unexpanded clocks

Constraint Development Tips For Baselining

▶ Do Not Forget To Include IP Timing Constraints

 Native IP: review BOTH xdc file that comes with core AND example project xdc for timing exceptions

Constraint Development Tips For Baselining

▶ Do Not Forget To Include IP Timing Constraints

- Many cores have their own timing constraints that include important exceptions (PCIE, MIG, 2-clock distributed FIFOs...)
- Use report_compile_order –constraints to identify all constraint file sources

- > Q. How do I start?
 - A. Open synthesized design in Vivado IDE
- ▶ Q. How do I make sure I'm starting from scratch?
 - A. tcl_console> reset_timing
- ▶ Q. How do I know what to constrain?
 - A. report_clock_networks


```
Tcl Console

INFO: [Timing 38-35] Done setting XDC timing constraints.

reset_timing
```

```
Clock Networks - network_2

Unconstrained (5 loads)

SysCik

TXOUTCLK (0.00 MHz) (drives 152 loads)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt4_ROCKETIO_WRAPPER_TILE_//gtve2_//TXOUTCLK)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt0_ROCKETIO_WRAPPER_TILE_//gbxe2_//TXOUTCLK)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt0_ROCKETIO_WRAPPER_TILE_//gbxe2_//TXOUTCLK)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt6_ROCKETIO_WRAPPER_TILE_//gbxe2_//TXOUTCLK)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt6_ROCKETIO_WRAPPER_TILE_//gbxe2_//TXOUTCLK)

TXOUTCLK (mgtEngine/ROCKETIO_WRAPPER_TILE_//gt2_ROCKETIO_WRAPPER_TILE_//gbxe2_//TXOUTCLK)
```


- > Q. How do I know when I'm done constraining clocks?
 - A. When report_clock_networks shows no unconstrained networks

▶ Q. How do I make sure my clocks are correct?

 A. report_clocks – shows period and waveform of every clock in the design

```
* Report : Clocks
* Part : Device=7k70t, Package=fbg676, Speed=-2
* Version : Vivado v2012.3 (64-bit) Build 209282 by xbuild on Thu Oct 18 20:50:53 MDT 2012
       : Thu Dec 06 10:10:19 2012
Attributes
 P: Propagated
 G: Generated
 V: Virtual
 I: Inverted
              Period Waveform
                                         Attributes Sources
Clock
sysClk
              10.00000 {0.00000 5.00000} P
gt0 txusrclk i 12.80000 {0.00000 6.40000}
                                                    {mgtEngine/ROCKETIO WRAPPER TILE i/gt0 ROCKETIO WRAPPER TILE i/gtxe2 i/TXOUTCLK}
gt2 txusrclk i 12.80000 {0.00000 6.40000} P
                                                    {mgtEngine/ROCKETIO WRAPPER TILE i/gt2 ROCKETIO WRAPPER TILE i/gtxe2 i/TXOUTCLK}
                                                    {mgtEngine/ROCKETIO WRAPPER TILE i/gt4 ROCKETIO WRAPPER TILE i/gtxe2 i/TXOUTCLK}
gt4 txusrclk i 12.80000 {0.00000 6.40000} P
gt6 txusrclk i 12.80000 {0.00000 6.40000} P
                                                    {mgtEngine/ROCKETIO WRAPPER TILE i/gt6 ROCKETIO WRAPPER TILE i/gtxe2 i/TXOUTCLK}
clkfbout
             10.00000 {0.00000 5.00000} P,G
                                                    {clkgen/mmcm adv inst/CLKFBOUT}
cpuClk
              20.00000 {0.00000 10.00000} P,G
                                                    {clkgen/mmcm_adv_inst/CLKOUT0}
wbClk
             20.00000 {0.00000 10.00000} P,G
                                                    {clkgen/mmcm adv inst/CLKOUT1}
usbClk
           10.00000 {0.00000 5.00000} P,G
                                                    {clkgen/mmcm_adv_inst/CLKOUT2}
phyClk0
         10.00000 {0.00000 5.00000} P,G
                                                    {clkgen/mmcm adv inst/CLKOUT3}
phyClk1
             10.00000 {0.00000 5.00000} P,G
                                                    {clkgen/mmcm adv inst/CLKOUT4}
fftClk
              10.00000 {0.00000 5.00000}
                                                    {clkgen/mmcm_adv_inst/CLKOUT5}
```


- > Q. How do I know what clocks should be related?
 - A. report_clock_interaction sort by Common Primary Clock

- > Q. How do I know if I have unrealistic path requirements?
 - A. report_clock_interaction sort by Path Req (WNS)

Baseline Stage 2

- ➤ Run report_timing_summary after each step
- ➤ Ensure WNS < 300 ps

Setting Up report_timing_summary

> GUI

opt_post_timing.tcl file: report_timing_summary -file opt_timing.rpt

> Batch

Build.tcl file:

```
link_design -name top -part xc7vx1140tflg1928-2
read_xdc top.xdc

opt_design
report_timing_summary -file opt_timing.rpt
write_checkpoint -force opt.dcp

place_design
report_timing_summary -file place_timing.rpt
write_checkpoint -force place.dcp

phys_opt_design
report_timing_summary -file popt_timing.rpt
write_checkpoint -force popt.dcp

route_design
report_timing_summary -file routed_timing.rpt
write_checkpoint -force routed.dcp
```

AVNET

High Fanout Nets Driven by LUTs

- Recommended to drive high fanout nets from a synchronous start point
- ➤ Identify high fanout nets driven by LUTs report_high_fanout_nets – load_types –max_nets 100
 - 2012.4 requires <u>placed</u> design
 - 2013.1 hope to be able to do this before placement

Tcl C	cl Console — 🔲 L															
	T	Device	: xc7k70tf	bg676-2												
(
4		Fanout	Driver Type			Set/Reset				Data & Other		Clock			Net Name	
			I													1
×	ı.		I	Slice	10	BRAM/L	OSP/OTHER SI	lice IO	BKA	M/DSP/OTHER S	lice IO	1 1	RAM/DSP/OTHER S1	lice IO	BRAM/DSP/OTH	LK
	1	10213	FDCE	I	0	0	0	10157	0	56	0	0 1	0	0	0	0 rectify_reset
	1	1037	LUT2	I	0	0	0 1	0	0	0 1	1037	0	0	0	0	0 cpuEngine/or1200_cpu/or1200_rf/rf_a/n_12332_mem_reg[1023]_i_2
	1	1027	RAMB36E1	I	0	0	0	0	0	0	1027	0	0	0	0	0 usbEngine0/usb_dma_wb_in/buffer_fifo/fifo_out[3]
	1	1027	RAMB36E1	1	0	0	0	0	0	0	1027	0	0	0	0	0 usbEngine1/usb_dma_wb_in/buffer_fifo/fifo_out[3]
	1	1020	RAMB36E1	I	0	0	0	0	0	0	1020	0	0	0	0	0 usbEngine0/usb_dma_wb_in/buffer_fifo/fifo_out[2]
	1	1020	RAMB36E1	1	0	0	0	0	0	0	1020	0	0	0	0	0 usbEngine1/usb_dma_wb_in/buffer_fifo/fifo_out[2]
	1	560	FDCE	I	0	0	0	0	0	0	560 I	0	0	0	0	0 usbEngine0/u1/u3/buf0_rl
	1	560	FDCE	I	0	0	0	0	0	0	560	0	0	0	0	0 usbEngine1/u1/u3/buf0_rl

Incremental Placement

Design checkpoint from near-timing-closed run can be used to guide placement for a second run through the tools

```
opt_design
place_design
phys_opt_design
route_design
write_checkpoint -guide.dcp

place_design -incremental guide.dcp
phys_opt_design
route_design
```

Vivado Strategies

- **▶** 2013.1 will include TCL based strategies
 - Requires manual application until 2013.3 (est)
- Useful for that last mile of timing closure

```
./run1/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.109 | TNS=-1.78 | WHS=0.0173 | THS=0
./run2/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.15 | TNS=-8.78 | WHS=0.00986 | THS=0
./run3/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.159 | TNS=-16.8 | WHS=0.00986 | THS=0
./run4/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.072 | TNS=-0.187 | WHS=0.0172 | THS=0
./run5/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.0774 | TNS=-0.0817 | WHS=0.018 | THS=0
./run6/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=0.0232 | TNS=0 | WHS=0.0208 | THS=0
./run7/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.109 | TNS=-1.78 | WHS=0.0173 | THS=0
./run8/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.127 | TNS=-3.29 | WHS=0.0172 | THS=0
./run9/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.154 | TNS=-6.63 | WHS=0.0162 | THS=0
./run10/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.053 | TNS=-0.177 | WHS=0.0182 | THS=0
./run11/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.15 | TNS=-8.78 | WHS=0.00986 | THS=0
./run12/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.159 | TNS=-16.8 | WHS=0.00986 | THS=0
./run13/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.072 | TNS=-0.187 | WHS=0.0172 | THS=0
./run15/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.155 | TNS=-12.2 | WHS=0.0124 | THS=0
./run17/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.042 | TNS=-0.292 | WHS=0.0137 | THS=0
./run18/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.155 | TNS=-12.2 | WHS=0.0124 | THS=0
./run19/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.155 | TNS=-12.2 | WHS=0.0124 | THS=0
./run21/log1:INFO: [Route 35-20] Post Routing Timing Summary | WNS=-0.148 | TNS=-27.6 | WHS=0.0208 | THS=0
```


V. For More Information

There is No Shortage of Information on TCL

- > Vivado Design Suite Tcl Command Reference Guide (Xilinx.com)
- > Vivado Design Suite Properties Reference Guide (Xilinx.com)
- > The GUI
 - help returns a number of categories, help –[category] returns additional detail
 - [command] -help returns detail on the command
- > Xilinx Tcl Cheat Sheet
- ➤ Tcl and the TK Toolkit (John K. Ousterhout, Amazon.com)