SI 140A-02 Probability & Statistics for EECS, Fall 2024 Homework 7

Name: Student ID:

Due on Dec. 3, 2024, 11:59 UTC+8

Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- You are required to write down all the major steps towards making your conclusions; otherwise you may obtain limited points of the problem.
- Write your homework in English; otherwise you will get no points of this homework.
- Any form of plagiarism will lead to 0 point of this homework.

Let X and Y be two continuous random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} cx^2y & \text{if } 0 \le y \le x \le 1\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the value of constant c.
- (b) Find the conditional probability $P\left(Y \leq \frac{X}{4} \mid Y \leq \frac{X}{2}\right)$.

$$(a) = \iint cx^{2}y dx dy$$

$$= \iint cx^{2}y dx dy dx = \frac{C}{10} \Rightarrow C = 10$$

$$(b) \quad P(Y) = \frac{P(Y \leq \frac{X}{2})}{P(Y \leq \frac{X}{2})} = \frac{P(Y \leq \frac{X}{2})}{P(Y \leq \frac{X}{2})} = \frac{1}{4}$$

Let X and Y be two integer random variables with joint PMF

$$P_{X,Y}(x,y) = \begin{cases} \frac{1}{6 \cdot 2\min(x,y)} & \text{if } x, y \ge 0, |x-y| \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the marginal distributions of X and Y.
- (b) Are X and Y independent?

(c) Find
$$P(X = Y)$$
. (b)

(a) $P(Y) = \sum_{y=0}^{\infty} P(XY)$
 $\chi = 0$, $y = 0$, 1
 $P(X=0) = P(X=0, Y=0) + P(X=0, Y=1) = \frac{1}{3}$
 $\chi > 0$, $y = \chi_{-1}, \chi_{1} + \chi_{1}$
 $P(X=X) = P(X=X, y=X-1) + P(\dots, Y=X) + P(\dots, Y=X+1)$
 $= \frac{1}{6 \cdot 2^{X-2}}$
 $P_{X}(y) = \begin{cases} \frac{1}{3}, \chi = 0 \\ 0, else \end{cases}$
 $P_{X}(y) = \begin{cases} \frac{1}{3}, \chi = 0 \\ 0, else \end{cases}$
 $P_{X}(y) = \begin{cases} \frac{1}{3}, \chi = 0 \\ 0, else \end{cases}$

(b)
$$x=Y=0$$
 $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$ $P(X,Y)=\frac{1}{6}$

Let X and Y be i.i.d. $\mathcal{N}(0,1)$, and let S be a random sign 1 or -1, with equal probabilities independent of (X,Y).

- (a) Determine whether or not (X, Y, X + Y) is Multivariate Normal.
- (b) Determine whether or not (X, Y, SX + SY) is Multivariate Normal.
- (c) Determine whether or not (SX,SY) is Multivariate Normal.

 (a) $aX + bY + c(XtY) = (a+c) \cdot X + (b+c) \cdot Y$ (b) $Z = X + Y + S \times X + SY$ $Z = 0 \Rightarrow S = -1$ $P(Z = 0) = P(S = 1) = \frac{1}{2}$, Z = iS not

 (c) P(SX + SY = k) = P(SX + SY = k, S = 1) P(S = 1) + P(SX + SY = k, S = 1) P(S = 1) = P(X + Y = k) = P(X + Y = k)Thus, it is.

,

Let Z_1, Z_2 be two i.i.d. random variables satisfying standard normal distributions, i.e., $Z_1, Z_2 \sim \mathcal{N}(0, 1)$. Define

$$X = \sigma_X Z_1 + \mu_X$$

$$Y = \sigma_Y \left(\rho Z_1 + \sqrt{1 - \rho^2} Z_2 \right) + \mu_Y$$
 where $\sigma_X > 0, \sigma_Y > 0, -1 < \rho < 1$.

- (a) Show that X and Y are bivariate normal.
- (b) Find the correlation coefficient between X and Y, i.e., Corr(X, Y).
- (c) Find the joint PDF of X and Y.

- (a) Let X and Y be i.i.d. $\mathcal{N}(0,1)$, and $Z = \frac{X}{Y}$. Find the PDF of Z.
- (b) Let X and Y be i.i.d. Unif(0,1), $W = X \cdot Y$, and $Z = \frac{X}{Y}$. Find the joint PDF of (W, Z).
- (c) A point (X,Y) is picked at random uniformly in the unit circle. Find the joint PDF of R and X, where $R = \sqrt{X^2 + Y^2}.$
- (d) A point (X, Y, Z) is picked uniformly at random inside the unit ball of \mathbb{R}^3 . Find the joint PDF of Z and

1. Where
$$R = \sqrt{X^{2} + Y^{2} + Z^{2}}$$
.

(a) Let $X : R \cos \theta$, $Y : R \sin \theta \Rightarrow R : \sqrt{XY^{2}}$, $\theta = tani(\frac{1}{X})$
 $tay(XY) = \frac{1}{2\pi} e^{-\frac{t^{2}}{2}} \Rightarrow te(\theta) = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\frac{t^{2}}{2}} dr = \frac{1}{\pi}$

Then, Let $2 = \frac{1}{X}$, $\frac{d\theta}{d\theta} = \frac{d \cdot tani(t)}{d\theta} = \frac{1}{1+2^{2}}$

(b) $f_{X}(X) = f_{Y}(Y) = 1$, $x_{1}f_{2} \in T_{2}$
 $f_{2}(2) = f_{2}(\theta) \left| \frac{d\theta}{d\theta} \right| = \frac{1}{\pi}(1+2^{2})$

(b) $f_{X}(X) = f_{Y}(Y) = 1$, $x_{1}f_{2} \in T_{2}$
 $f_{2}(X) = f_{2}(Y) = f_{2}(Y) = f_{2}(Y) = f_{2}(Y)$
 $f_{2}(X) = f_{2}(Y) = f_{2}($

×>1 > X> 1

 $({\bf Optional\ Challenging\ Problem})$

Let X and Y be i.i.d. Unif(0,1), and $Z = \frac{X}{Y}$. Find the probability that the integer close to Z is even.