NWM Shiny application Geography 176C

Angus Watters

R Shiny streamflow application

The National Water Model (NWM)

• The National Water Model (NWM) project uses USGS stream gauges to simulate the water cycle processes using mathematical representations for different processes to see how the processes fit together.

Problem

There is ${f NOT}$ an easy way to view simultaneously view catchments + stream flow data

Solution

 \bullet Create a R Shiny~dashboard that allows the user to explore all watershed catchments in the US and get on demand streamflow data

Research questions

1. What is the relative impact of certain geographic factors on stream flows?

Proximity to a dam, population density, land cover

2. Forecast stream flow rates using precipitation and water withdrawals in a multilayer perceptron Machine learning algorithm

Data sources

• Project and data retrieval will use these R packages:

- tidyr
- dplyer
- sf
- leaflet
- dataRetrieval
- nhdplusTools
- nwmTools
- shiny

count: false

Find flowline from map click

```
.panel1-nldi-auto[
```

```
library(dataRetrieval)

# R Client for the Network Linked Data Index
flowline <- findNLDI(location = c(-94.64, 31.09)) #<<

]
.panel2-nldi-auto[]
count: false</pre>
```

Find flowline from map click

```
.panel1-nldi-auto[
library(dataRetrieval)
# R Client for the Network Linked Data Index
flowline <- findNLDI(location = c(-94.64, 31.09))
flowline
.panel2-nldi-auto[
Simple feature collection with 1 feature and 3 fields
geometry type: LINESTRING
dimension:
bbox:
                xmin: -94.64845 ymin: 31.0838 xmax: -94.62997 ymax: 31.09915
geographic CRS: WGS 84
# A tibble: 1 x 4
  sourceName identifier comid
                                                                        geometry
  <chr>
                        <chr>
                                                                <LINESTRING [°]>
              <chr>
1 NHDPlus com~ 101
                    101 (-94.64845 31.09915, -94.64803 31.09871, -94.64~
count: false
```

Find catchment polygons from COMID

```
.panel1-nhd-auto[
library(nhdplusTools) #<<

panel2-nhd-auto[]
count: false</pre>
```

Find catchment polygons from COMID

```
.panel2-nhd-auto[
Simple feature collection with 1 feature and 7 fields
geometry type: POLYGON
dimension:
                XY
                xmin: -94.6561 ymin: 31.0837 xmax: -94.6285 ymax: 31.108
bbox:
geographic CRS: WGS 84
# A tibble: 1 x 8
  id
                  gridcode featureid sourcefc
                                                areasqkm shape_length shape_area
* <chr>
                     <int>
                               <int> <chr>
                                                    <dbl>
                                                                 <dbl>
1 catchmentsp.18~ 1605970
                                 101 NHDFlowli~
                                                    4.57
                                                                 0.100
                                                                         0.000432
# ... with 1 more variable: geometry <POLYGON [°]>
count: false
View catchments in leaflet
.panel1-interactive-auto[
library(leaflet) #<<</pre>
.panel2-interactive-auto[]
count: false
View catchments in leaflet
.panel1-interactive-auto[
library(leaflet)
leaflet() %>%
  addProviderTiles(providers$Esri.WorldTopoMap)
```

. panel 2-interactive-auto[

Leaflet | Tiles © Esri — Esri, DeLorme, NAVTEQ, TomTom, Intermap, iPC, USGS, FAO, NPS, NRCAN, GeoBase, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), and User Community

count: false

View catchments in leaflet

. panel 1-interactive-auto[

.panel2-interactive-auto[

count: false

NWM data using nwmTools package

```
.panel1-nwm-auto[
library(nwmTools) #<<

]
.panel2-nwm-auto[]
count: false</pre>
```

NWM data using nwmTools package

```
.panell-nwm-auto[
library(nwmTools)

# Retrieve flow data from NWM via COMID
```

count: false

Climate data using climateR package

```
library(climateR) #<<</pre>
```

.panel2-climate-auto[] count: false

. panel 1-climate-auto[

Climate data using climateR package

```
.panel1-climate-auto[
library(climateR)
library(highcharter) #<<

]
.panel2-climate-auto[
count: false</pre>
```

Climate data using climateR package

```
.panell-climate-auto[
library(climateR)
library(sf)
library(highcharter)

# Retrieve climate data for the catchment using centroid point
pt <- st_centroid(flowline)

# precip <- getTerraClim(AOI = pt, param = "prcp", startDate = "2011-01-01", endDate = "2014-01-01") #

]
.panel2-climate-auto[]
count: false</pre>
```

Climate data using climateR package

.panel2-climate-auto

```
.panell-climate-auto[
library(climateR)
library(sf)
library(highcharter)

# Retrieve climate data for the catchment using centroid point
pt <- st_centroid(flowline)

# precip <- getTerraClim(AOI = pt, param = "prcp", startDate = "2011-01-01", endDate = "2014-01-01") #
# evap <- getTerraClim(AOI = pt, param = "aet", startDate = "2011-01-01", endDate = "2014-01-01") # ev
graph_climateR(precip, evap) #<</pre>
```

