

UNISOC Android 9.0 UDS710+UDX710 Camera Driver Customization Guide

修改历史

版本号	日期	注释
V1.0	2020/5/15	初稿Fornial

Unisoc Confidential

文档信息

适用产品信息	适用版本信息	关键字
UDS710_UDX710	Android 9.01 hial	Sensor driver, OTP driver, AF driver, Flash driver
Unisoc Col		

- Camera Driver Introduction
- 2 Sensor Driver Porting
- 3 OTP Driver Porting
- 4 AF Driver Porting
- 5 Flash Driver Porting
- 6 Compile and Download

Camera Driver Introduction

Inisoc Confidential For hiar

sensor_config.xml

BoardConfig.mk

tuning parameter

libparam_xxx.so

xxx_mipi_raw.c xxx_mipi_raw.h

libsensor_xxx.so

User Space

dts

Kernel Space

Camera Driver Introduction

- Camera Driver Introduction hial
 - 2 Sensor Driver Porting
 - 3 OTP Driver Porting
 - 4 AF Driver Porting
 - 5 Flash Driver Porting
 - 6 Compile and Download

Sensor Driver Porting

Sensor Driver Porting-Sensor工程配置

Path: ddevice/sprd/roc1/ud710_2h10/BoardConfig.mk • Set sensor resolution___fide_ntial

```
#select camera 2M, 3M, 5M, 8M, 13M, 16M, 21M
CAMERA SUPPORT SIZE := 13M
FRONT CAMERA SUPPORT SIZE := 8M
BACK EXT CAMERA SUPPORT SIZE := 5M
```

FRONT EXT CAMERA SUPPORT SIZE :=

Add sensor name

```
#camera sensor support list
#example
#CAMERA SENSOR TYPE BACK :="ov8856,ov8858"
CAMERA SENSOR TYPE BACK := "imx351,xxx"
CAMERA SENSOR TYPE FRONT := "ov8856 shine"
CAMERA SENSOR TYPE BACK EXT := "ov5675 dual"
CAMERA SENSOR TYPE FRONT EXT := ""
```

Add tuning parameter

```
#tuning param support list
TUNING PARAM LIST := "imx351,ov8865 shine,ov5675,ov5675 dual,xxx
```

CAMERA SUPPORT SIZE:后摄分辨率 FRONT CAMERA SUPPORT SIZE:前摄分辨率

BACK EXT CAMERA SUPPORT SIZE:后辅摄分辨率 FRONT EXT CAMERA SUPPORT SIZE: 前辅摄分辨率

CAMERA SENSOR TYPE BACK:后摄sensor型号 CAMERA SENSOR TYPE FRONT: 前摄sensor型号 CAMERA_SENSOR_TYPE_BACK_EXT:后辅摄sensor型号 CAMERA SENSOR TYPE FRONT EXT: 前辅摄sensor型号

Note: sensor型号需与存放driver文件夹同名

依次添加对应sensor参数名称

Note: sensor参数名称需与存放tuning parameter中sensor名相同

Sensor Driver Porting-Sensor电气特性配置

Path:kernel4.14/arch/arm64/boot/dts/sprd/ud710-2h10.dts

Sensor Driver Porting-Sensor电气特性配置

Path: kernel4.14/arch/arm64/boot/dts/sprd/ud710-2h10.dts

Path: u-boot15/board/spreadtrum/ud710_2h10/pinmap-ud710.c

根据硬件原理图修改

LDO供电, gpio口控制

将对应pin脚在pinmap中配置为gpio dts中设置为gpio控制即可

```
&i2c0 {
   status = "okay";
   sensor main: sensor-main@34 {
       compatible = "sprd, sensor-main";
       reg = <0x34>;
       clock-names = "clk src", "sensor eb",
           "clk 96m", "clk 76m8",
           "clk 48m", "clk 26m";
       clocks = <&mm clk CLK_SENSOR1>,<&mm_gate CLK_MM_SENSOR1_EB>,
           <&g12_pll CLK_TWPLL_96M>,<&g12_pll CLK_TWPLL_76M8>,
           <&q12 pll CLK TWPLL 48M>,<&ext 26m>;
       vddio-supply = <&vddcamio>;
       vddcama-supply = <&vddcama0>;
       vddcamd-supply = <&vddcamd0>;
                                                             mipi switch
       vddcammot-supply = <&vddcammot>;
                                                             将对应pin脚在pinmap中配置为gpio
       sprd,phyid = <0>;
       csi = <&csi0>;
                                                             在sensor驱动中控制
       dvdd-gpios = <&ap gpio 62 0>;
       mipi-switch-en-gpios = <&ap gpio 55 0>;
       mipi-switch-mode-gpios = <&ap gpio 8 0>;
       reset-qpios = <&ap qpio 45 0>;
       power-down-gpios = <&ap gpio 47 0>;
```

Sensor Driver Porting-Sensor电气特性配置-Example

vddcammot-supply = <&vddcammot>;

reset-gpios = <&ap_gpio 44 0>;

power-down-gpios = <&ap_gpio 46 0>;

sprd,phyid = <1>;

csi = <&csi0>;


```
status = "okay";
                                                                                     后主摄
   sensor main: sensor-main@34 {
      compatible = "sprd, sensor-main";
                                                                                                                                                       ucsia_axrxa_r 🗁
                                                                                     I2c: i2c0
                                                                                                                                                                                     810 CSI1_0 NO
                                                                                      csi1: phyid = 0
      clock-names = "clk src", "sensor eb",
                                                                                                                                                       "CS10_0A/A|_* \___
          "clk 96m", "clk 76m8",
          "clk 48m", "clk 26m";
                                                                                                                                                       clocks = <&mm_clk CLK_SENSOR1>,<&mm_gate CLK_MM_SENSOR1_EB>
                                                                                     clock: MCLK1
          <&g12_pll CLK_TWPLL_96M>,<&g12_pll CLK_TWPLL_76M8>,
                                                                                                                                                                                      B13 CSI1_DPZ
                                                                                                                                                       •œio_oxraz_r <u> </u>——
          <&g12 pll CLK TWPLL 48M>,<&ext 26m>;
                                                                                                                                                                                      A13 CSI1_DNZ
                                                                                                                                                       VCS10_0X7X2_4 (T)—
                                                                                     reset: gpio 45
      vddio-supply = <&vddcamio>;
      vddcama-supply = <&vddcama0>;
                                                                                                                                                       vddcamd-supply = <&vddcamd0>;
                                                                                     pwdn: gpio 47
                                                                                                                                                                                      D1Z C8H_D#3
      vddcammot-supply = <&vddcammot>;
                                                                                                                                                       ucsio_oxrxs_4 🗁—
      sprd,phyid = <0>;
      csi = <&csi0>;
                                                                                                                                                        MCSIG_CK_F -
      reset-gpios = <&ap gpio 45 0>;
                                                                                                                                                        PG310_CLK_4 □>
      power-down-gpios = <&ap gpio 47 0>;
&i2c1 {
   sensor main2: sensor-main2@20 {
                                                                                     后辅摄
      compatible = "sprd, sensor-main2";
      reg = <0x20>;
                                                                                     i2c: i2c1
                                                                                                                                                       ***************
      clock-names = "clk src", "sensor eb",
          "clk 96m", "clk 76m8",
                                                                                     csi1: phyid = 5
          "clk 48m", "clk 26m";
      clocks = <&mm clk CLK SENSOR0>, <&mm gate CLK MM SENSOR0 EB>,
                                                                                                                                                                                     C14 CSIZ_DMZ
                                                                                                                                                       "GILDVAL" [___
          <&g12_pll CLK_TWPLL_96M>,<&g12_pll CLK_TWPLL_76M8>,
                                                                                     clock: MCLK0
          <&g12 pll CLK TWPLL 48M>,<&ext 26m>;
                                                                                                                                                                                      D1+ C8IZ_DP3
      vddio-supply = <&vddcamio>;
      vddcama-supply = <&vddcama1>;
                                                                                                                                                                                      E14 CSIZ_D#3
                                                                                     reset: gpio 41
      vddcamd-supply = <&vddcamd1>;
      vddcammot-supply = <&vddcammot>;
                                                                                                                                                        pwdn: gpio 40
      sprd,phyid = <5>;
                                                                                                                                                                                     B15 CSIZ_CKM
      csi = <&csi1>;
                                                                                                                                                        "CSIL_CK_" D
      reset-gpios = <&ap gpio 41 0>;
      power-down-gpios = <&ap_gpio 40 0>;
                                                                                                                                                                                                  CSIO M
                                                                                                                                                                                      ES CSID_DPD
                                                                                                                                                       &i2c1 {
                                                                                     前摄
   status = "okay";
                                                                                                                                                       PGS12_0X7X0_4 \____
   sensor sub: sensor-sub@6c {
                                                                                                                                                       MCSIZ_BAFAI_F 🗀
                                                                                     i2c: i2c1
       compatible = "sprd, sensor-sub";
                                                                                                                                                       PGS12_0AFA1_4 🗀
      reg = <0x6c>;
                                                                                     csi0_s: phyid = 1
                                                                                                                                                        "CS12_C1<_" □
       clock-names = "clk src", "sensor eb",
                                                                                                                                                                                      87 CSID_CKND
          "clk 96m", "clk 76m8",
                                                                                                                                                        clock: MCLK0
          "clk 48m", "clk 26m";
      clocks = <&mm clk CLK SENSORO>, <&mm gate CLK MM SENSORO EB>,
          <&g12 pll CLK TWPLL 96M>,<&g12 pll CLK TWPLL 76M8>,
                                                                                     reset: gpio 44
          <&g12 pll CLK TWPLL 48M>,<&ext 26m>;
                                                                                                                                                       "CS12_0X7X2_1" _____
       vddio-supply = <&vddcamio>;
                                                                                                                                                                                      D11 CSE_DMZ
       vddcama-supply = <&vddcama1>;
                                                                                     pwdn: gpio 46
       vddcamd-supply = <&vddcamd1>;
```

ecsu_oxrus_r D-

POSIZ_BAYAS_4 🗁-

89 CSID_D N3

CS CSE_CK#1

Sensor Driver Porting-Sensor驱动配置-添加驱动

Path: vendor/sprd/modules/libcamera/sensor/sensor_drv

Note:

Aaa: Sensor vendor; xxx: Sensor PN; yyy: Module vendor; zzz: VCM Driver IC PN

Sensor Driver Porting-Sensor驱动配置-添加参数

第一次点亮sensor,建议使用工具auto tuning生成初始参数

Chip Confide	Auto Tuning Option	Version ID
SC9832E\ISOU	SC9850KA/9850KH/9853i/9832E/9820E	0x00070005
SC7731E	Pike2(7731)	0x00080006
SC9863A	SharkL3(S9863A)/SharklEp(SC9850E)	0x00090007
UMS312/UDS710_UDX710	Sharkl5	0x000A0008
UMS512(T)	Sharkl5Pro	0x000B0009

Sensor Driver Porting-Sensor模组属性配置

Path: device/sprd/roc1/ud710_2h10/camera/sensor_config.xml

SensorName:与BoardConfig.mk中sensor型号相同

Facing: sensor朝向

Orientation: sensor安装角度

Resource_cost:该sensor资源占有比例,0/50/100

OTPName:与OTP driver名称中相同

I2cAddr: E2prom i2c地址

E2promNum: E2prom数量及存放方式 E2promsize: E2prom大小,一般为8K/16K

AfName:与Af driver名称中相同Mode:Af工作模式,默认为0

TuningName:与BoardConfig.mk中sensor

参数名称相同

模组属性字段

<CameraModuleCfg> <SlotId>0</SlotId> <SensorName>xxx</SensorName> Sensor属性字段 <Facing>BACK</Facing> <Orientation>90</Orientation> <Resource cost>0</Resource cost> <E2prom> <OtpName>xxx yyy</OtpName> <I2cAddr>0x00</I2cAddr> OTP属性字段 <E2promNum>1</E2promNum> <E2promSize>8192</E2promSize> </E2prom> </orp> <VCM> <AfName>zzz</AfName> VCM属性字段 <Mode>0</Mode> </VCM> <TuningParameter> <TuningName>xxx</TuningName> Tuning参数属性字段 </TuningParameter> </CameraModuleCfg>

Note: 如没有该功能,则不配置对应字段, Sensor属性字段必须有!

- Camera Driver Introduction hiar
 - 2 Sensor Driver Porting
 - 3 OTP Driver Porting
 - 4 AF Driver Porting
 - 5 Flash Driver Porting
 - 6 Compile and Download

OTP Driver Porting-平台OTP

Path: vendor/sprd/modules/libcamera/sensor/otp_drv/driver按照平台OTP规范烧录,数据存储在E2prom中,使用general驱动参考P16配置sensor_config.xml

OTP Driver Porting-Sensor OTP

Path: vendor/sprd/modules/libcamera/sensor/otp_drv/driver可使用两种方式应用sensor OTP

- 将sensor OTP的处理放在sensor driver中
- 借助平台OTP流程处理sensor OTP

方式	优点	缺点
Sensor driver	不需要单独维护OTP驱动	每一次进camera都会处理OTP,增加启动时间
平台OTP	仅开机第一次读取OTP	需按照平台OTP架构嵌入sensor OTP处理

OTP driver First time enter camera	Identify	OTP init	Read OTP to buffer	Apply OTP	Init setting	
OTP driver Second time enter camera	Identify		Read OTP from buffer	Apply OTP	Init setting	
Sensor driver Everytime enter camera	Identify	Init setting	OTP init	Read OTP	Apply OTP	>

Path: vendor/sprd/modules/libcamera/sensor/sensor_drv

```
access_val(cmr_handle handle, cmr_uint param)
    cmr int ret = SENSOR FAIL;
    SENSOR VAL T *param ptr = (SENSOR VAL T *)param;
    SENSOR IC CHECK HANDLE (handle);
    SENSOR IC CHECK PTR (param ptr);
    struct sensor ic drv cxt * sns drv cxt = (struct sensor ic drv cxt *) handle;
    SENSOR LOGI ("sensor xxx: param ptr->type=%x", param ptr->type);
    switch(param_ptr->type)
        case SENSOR VAL TYPE GET STATIC INFO:
            ret = xxx drv get static info(handle, param ptr->pval);
            break;
#ifdef FEATURE OTP
        case SENSOR_VAL_TYPE_READ_OTP:
            ret = xxx_yyy_identify_otp(handle, param_ptr);
            break;
#endif
        default:
            break;
```

OTP Driver Porting-Sensor OTP Through Platform OTP

Path: vendor/sprd/modules/libcamera/sensor/otp_drv/driver

Android.mk中添加编译关系,参照 模板添加

└---▶ xxx_yyy_otp_drv.c中添加函数 void *otp_driver_open_lib(void) { return &xxx_yyy_otp_drv_entry; }

OTP Driver Porting-Sensor OTP Through Platform OTP

Path: device/sprd/roc1/ud710_2h10/camera/sensor_config.xml

```
<slotId>0</slotId>
  <SensorName>xxx</SensorName>
  <Facing>BACK</Facing>
  <Orientation>90</Orientation>
  <Resource cost>0</Resource cost>
  <OTP>
      <E2prom>
          <OtpName>xxx yyy</OtpName>
          <I2cAddr>0x00</I2cAddr>
          <E2promNum>1</E2promNum>
          <E2promSize>8192</E2promSize>
      </E2prom>
  </orp>
  <VCM>
      <AfName>zzz</AfName>
      <Mode>0</Mode>
  </VCM>
  <TuningParameter>
      <TuningName>xxx</TuningName>
  </TuningParameter>
</CameraModuleCfg>
```

0: single camera, one EEPROM

1: dual camera, one EEPROM

2: dual camera, two EEPROM

3: multi camera, independent EEPROM

- Camera Driver Introduction hiar
 - 2 Sensor Driver Porting
 - 3 OTP Driver Porting
 - 4 AF Driver Porting
 - 5 Flash Driver Porting
 - 6 Compile and Download

AF Driver Porting

Path: vendor/sprd/modules/libcamera/sensor/af_driver

Android.mk中添加编译关系,参照 模板添加

af_zzz.c中添加函数 void *vcm_driver_open_lib(void){ return &zzz_drv_entry;}

- Camera Driver Introduction high
 - 2 Sensor Driver Porting
 - 3 OTP Driver Porting
 - 4 AF Driver Porting
 - 5 Flash Driver Porting
 - 6 Compile and Download

Flash Driver Porting

onfidential For hiar 平台支持两种方式控制闪光灯

- 内置PMIC
 - ✓ 平台PMU 输出PIN脚Flash_IB , 提供电源及控制
 - ✓ 例如: SC2720, SC2721, SC2703等

- 外置闪光灯IC
 - ✓ GPIO控制,例如:AW3641等
 - ✓ GPIO+i2c控制,例如:OCP8137,AW3648等

Figure 1 Typical Application Circuit of AW3641E

Flash Driver Porting

Path: vendor/sprd/modules/libcamera/kernel_module/flash

Path: kernel4.14/arch/arm64/boot/dts/sprd/ud710-2h10.dts


```
flash ic: flash-ic@63 {
    compatible = "sprd, flash-ocp8137";
    req = <0x63>;
    sprd, flash-ic = <8137>;
    sprd, torch = \langle 1 \rangle;
    sprd,preflash = <1>;
    sprd, highlight = <1>;
    sprd,torch-level = <128>;
    sprd,preflash-level = <128>;
    sprd, highlight-level = <128>;
    sprd, lvfm-enable = <1>;
    flash-torch-en-gpios = <&ap gpio 88 0>;
    flash-chip-en-gpios = <&ap gpio 89 0>;
    flash-en-gpios = <&ap gpio 76 0>;
    flash-sync-gpios = <&ap gpio 141 0>;
flash: sc2703-flash@4a {
    compatible = "sprd, sc2703-flash";
    reg = <0x4a>;
    flash-chip-en-gpios = <&ap gpio 137 0>;
```

Path: vendor/sprd/modules/libcamera/kernel_module/init.sprd_flash.rc

```
on sprd-flash-ko
    insmod ${ro.vendor.ko.mount.point}/socko/flash_ic_sc2703s.ko
    insmod ${ro.vendor.ko.mount.point}/socko/flash_ic_ocp8137.ko
    insmod ${ro.vendor.ko.mount.point}/socko/flash_ic_sy7807.ko
```

Flash Driver Porting-Configuration

Path: device/sprd/roc1/ud710_2h10/BoardConfig.mk

• 双色温闪光灯配置 Confidential #flash led feature TARGET_BOARD_CAMERA_FLASH_LED_0 := true/false #flash led0 config TARGET_BOARD_CAMERA_FLASH_LED_1 := true/false #flash led1 config

• 前摄闪光灯模式

#front flash type #lcd,led,flash TARGET_BOARD_FRONT_CAMERA_FLASH_TYPE := lcd/led/flash #lcd: lcd补光 #led: led补光 #flash: 闪光灯模式

• 闪光灯总亮度等级

#Range of value 0~31 CAMERA_TORCH_LIGHT_LEVEL := 16 #0~31 level

- Camera Driver Introduction hiar
 - 2 Sensor Driver Porting
 - 3 OTP Driver Porting
 - 4 AF Driver Porting
 - 5 Flash Driver Porting
 - 6 Compile and Download

Compile and Download

1. Set environment variable, enter root directory

source build/envsetup.sh

2. Choose compile option, show as right

lunch <boardname>

3. Install kernel header, execute when first compiling

kheader

4. Compile whole project

make

5. Compile camera module, enter directory

vendor/sprd/modules/libcamera

mm

```
aosp walleye test-userdebug
47. aosp taimen-userdebug
48. hikey-userdebug

    49. hikey64 only-userdebug

    hikey960-userdebug
    sp7731e 1h10 native-userdebug-gms
52. sp7731e 1h10 nosec-userdebug
53. sp7731e 1h20 native-userdebug-gms
    ud710 20c10 native-userdebug
                                     (Based on Kernel v4.14)
55. ud710 2c10 native-userdebug
                                     (Based on Kernel v4.14)
56. ud710 2h10 native-userdebug
                                     (Based on Kernel v4.14)
   ud710 2h10 native noorca-userdebug
                                             (Based on Kernel v4.
   ud710 2h10 1sim native-userdebug
                                             (Based on Kernel v4
59. ud710 2h10 1sim cmcc-userdebug
                                    (Based on Kernel v4.14)
   ud710 2h10 ctcc-userdebug
                                     (Based on Kernel v4.14)
61. ud710 2h10 cmcc-userdebug
                                     (Based on Kernel v4.14)
62. ud710 2h10 nosec-userdebug
                                     (Based on Kernel v4.14)
    ud710 3h10u native-userdebug
64. ud710 3h10 native-userdebug
65. ud710 5h10 native-userdebug
                                     (Based on Kernel v4.14)
   ud710 haps native-userdebug
                                     (Based on Kernel v4.14)
   ud710 orca haps native-userdebug
                                             (Based on Kernel
```

Compile and Download

Path: out/target/product/ud710_2h10/vendor/lib

• 修改sensor驱动

Confidential

Generated	Download
libsensor_xxxso	adb push libsensor_xxxso vendor/lib

修改sensor tuning parameter

Generated	Download
libparam_xxxso	adb push libparam_xxxso vendor/lib

- 动态更换驱动或tuning parameter
 - 已添加在BoardConfig.mk中,先编译生成sprd_camera.ko,然后编译生成so文件
 - 更新sensor_config.xml中配置

Generated	Download
libsensor_xxxso	adb push libsensor_xxxso vendor/lib
libparam_xxxso	adb push libparam_xxxso vendor/lib
sensor_config.xml	adb push sensor_config.xml vendor/etc

Note: 所有修改建议重启手机

后验证生效

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技