

(19) RU (11) 2 124 397 (13) С1
(51) МПК⁶ В 01 J 20/22

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 97106058/25, 15.04.1997

(46) Дата публикации: 10.01.1999

(56) Ссылки: 1. US, патент, 3791991, кл. 252-427, 1974. 2. SU, авторское свидетельство, 663296, кл. C 02 F 1/40, 1979. 3. SU, авторское свидетельство, 704903, кл. C 02 F 1/40, 1979.

(98) Адрес для переписки:
630048 Новосибирск, ул.Немировича-Данченко
139/3-22, Гофману Якову Ароновичу

(71) Заявитель:
Гофман Яков Аронович

(72) Изобретатель: Гофман Я.А.,
Колесников Ю.В., Батура Ю.И., Любченко
В.Я. , Гаврилов Е.А., Батура В.И.

(73) Патентообладатель:
Гофман Яков Аронович

(54) АДСОРБЕНТ ДЛЯ ОЧИСТКИ ОТ НЕФТЕПРОДУКТОВ

(57) Реферат:

Использование: изобретение относится к адсорбирующему материалу и может быть использовано для очистки почвы и воды от нефти и нефтепродуктов. Сущность: адсорбент содержит многокомпонентное природное образование в количестве 95,0 - 99,5 вес.% и модификатор в количестве

0,05-5,0 вес.%. В качестве многокомпонентного образования применяют торф или его смесь с сапропелем, а в качестве модификатора - соли двухвалентных металлов гуминовых кислот. Изобретение позволяет получить экологически чистый адсорбент. 3 табл.

R U
2 1 2 4 3 9 7
C 1

R U
2 1 2 4 3 9 7
C 1

(19) RU (11) 2 124 397 (13) C1
(51) Int. Cl. 6 B 01 J 20/22

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 97106058/25, 15.04.1997

(46) Date of publication: 10.01.1999

(98) Mail address:
630048 Novosibirsk, ul.Nemirovicha-Danchenko
139/3-22, Gofmanu Jakovu Aronovichu

(71) Applicant:
Gofman Jakov Aronovich

(72) Inventor: Gofman Ja.A.,
Kolesnikov Ju.V., Batura Ju.I., Ljubchenko
V.Ja., Gavrilov E.A., Batura V.I.

(73) Proprietor:
Gofman Jakov Aronovich

(54) ADSORBENT FOR REMOVING CRUDE OIL AND PETROLEUM PRODUCTS

(57) Abstract:

FIELD: natural sorbents. SUBSTANCE:
adsorbent for removing crude oil and
petroleum products from soils and water
contains 95-99.5 wt % of multicomponent

natural complex and 0.05-5 wt % of modifier.
The former can peat or its mixture with
sapropel, and the latter humin acid salts
with bivalent metals. EFFECT: increased
environmental safety of adsorbent. 1 tbl, 7 ex

R U
2 1 2 4 3 9 7
C 1

R U
2 1 2 4 3 9 7
C 1

Изобретение относится к адсорбирующему материалу и может быть использовано для очистки почвы и воды от нефтепродуктов.

Известен адсорбент для очистки от нефтепродуктов, содержащий сапропель с влажностью не более 25% с гидрофобным агентом. Гидрофобный агент представляет насыщенный раствор смеси высших жирных кислот с числом атомов углерода не менее 14 в летучих органических растворителях. Удельный расход адсорбента 1.02 г/г нефтепродукта [1].

Недостатком этого адсорбента является сложность его приготовления из-за сложности получения гидрофобного агента с применением токсичных летучих органических растворителей.

Известен адсорбент для очистки от нефтепродуктов на основе торфа с влажностью менее 10% [2].

Недостатком адсорбента является невысокая адсорбционная способность и потеря адсорбционной способности при хранении во влажной среде.

Известен адсорбент для очистки от нефтепродуктов путем их биоразложения, содержащий органические соединения, являющиеся источником азота и фосфора, магниевые отходы производства глутаминовой кислоты, а также вещества, богатые аминокислотами, выбранными из группы, содержащей глутаминовую кислоту, глицин, тирозин, лейцин, гистидин, аланин и вещество основного характера, например, гидрат окси натрия, а в качестве органической кислоты, например, капроновую и олеиновую. В условиях умеренного климата процесс очистки от нефтепродуктов заканчивается в течение 1-3 месяцев [3].

Недостатком адсорбента является сложность адсорбента, основанного на дефицитных органических кислотах, а также длительность процесса очистки от нефтепродуктов, протекающего 1-3 месяца.

По технической сущности и достигаемому результату наиболее близок к предложенному адсорбент для очистки от нефтепродуктов, принятый за прототип [4]. Адсорбент включает целлюлозосодержащий материал и аминосодержащий модификатор, в качестве целлюлозосодержащего материала - торф, а в качестве модификатора - солянокислые соли алифатических аминов с длиной органической цепи С₈ - С₁₈ при следующем соотношении компонентов вес.%: торф - 95,0 - 99,95, соль амина - 0,05-5. В качестве модификатора используют, например, солянокислую соль октадециламина (1 аминооктадецилстерилимин), сложность получения которого подтверждается в Химическом энциклопедическом словаре, изд-во "Советская энциклопедия", 1983, с. 405, где дано описание способа получения октадециламина, основанного на каталитическом гидрировании нитрила стеариновой кислоты.

В книге Дж. Робертса "Основы органической химии", изд-во "Мир", М., 1968, с. 22 показано, что указанное гидрирование протекает на катализаторе LiAlH₂ в среде эфира.

Кроме того, получение нитрилстеариновой кислоты основано на реакции цианистого калия с галоидами алифатических

соединений.

Отсюда видно, что недостатком этого адсорбента является сложность каталитического процесса приготовления аминосодержащего модификатора, включающего использование ядовитых веществ и органических летучих растворителей, что вредно влияет на экологию.

Задачей изобретения является получение адсорбента, более простого и экологически чистого.

Это достигается тем, что адсорбент для очистки от нефтепродуктов, содержащий многокомпонентное природное образование в количестве 95 - 99,5 вес.% и модификатор в количестве 0,05 - 5,0 вес.%, отличающийся тем, что в качестве многокомпонентного природного образования он содержит торф или его смесь с сапропелем, а в качестве модификатора - соли двухвалентных металлов гуминовых кислот.

Адсорбент получают следующим образом.

Сапропель так же, как и торф, - многокомпонентное природное образование, имеющее в своем составе различные органические и минеральные вещества. В табл. 2 приводится органоминеральный состав торфа Марусинского месторождения и сапропеля Чикского месторождения Новосибирской области.

Как видно из табл. 2, в торфе органических веществ вдвое больше, чем в сапропеле, - 80% против 40%, а кальция в 10 раз меньше, т.е. 3% против 30%.

В торфе и сапропеле органические и минеральные вещества взаимосвязаны между собой и образуют сложные органоминеральные комплексы.

При воздействии химических и физико-химических факторов на органоминеральные комплексы происходит разрыв химических связей и возможно разделение комплексов и извлечение органической или минеральной их составляющей.

При воздействии на торф щелочью выделяются гуминовые кислоты (Краткая Химическая Энциклопедия, Гос. Научное издательство "Советская Энциклопедия", т. 1, 1961, с. 1014-1015).

Возможна также деструкция органоминерального комплекса при действии на сапропель раствором минеральной кислоты, например соляной. В этом случае извлекаются из сапропеля металлы и образуются соли металлов, например хлористые соли кальция, магния, либо железа.

Гуминовые кислоты - также сложная смесь соединений разного состава и строения, входящая в состав торфа и сапропеля. Гуминовые кислоты торфа и сапропеля содержат аминокислоты. Определение их количественного и качественного состава проводилось на автоматическом анализаторе аминокислот AAA339. Анализатор предназначен для качественного и количественного определения аминокислот методом ионообменной хроматографии на ионитах. В табл. 3 представлены результаты анализа аминокислот, содержащихся в торфе и сапропеле в % воздушно-сухого вещества.

Как видно из табл. 3, в торфе суммарное содержание аминокислот составляет 13,32%,

а сапропеля - 4,79%. Все аминокислоты, определенные в торфе и сапропеле, относятся к алифатическим α -аминокислотам (Дж. Робертс, "Основы органической химии", изд-во "Мир", М., 1968, с. 59, табл. 20-1).

Алифатические α -аминокислоты с ионами металлов со степенью окисления + 2 образуют соли аминов, представляющие внутрикомплексные, хелатные соединения, которые гидрофобны, не растворяются в воде и слабо диссоциированы (Б.А. Павлов, "Курс органической химии", изд-во "Химия", М., 1972, с. 228).

Реакцию взаимодействия алифатических α -аминокислот с раствором соли двухвалентных металлов, например с хлористым кальцием, можно представить уравнением (1):

(Б. А. Павлов, "Курс органической химии", изд-во "Химия", М., 1972, с. 354-355).

Как видно, в результате реакции (1) образуются внутрикомплексные, хелатные соединения аминокислот с кальцием.

Внутрикомплексные хелатные соединения представляют собой гелеобразный осадок, не растворимый в воде, который можно использовать в качестве модификатора заявленного адсорбента. Таким образом, для получения модификатора необходимо извлечь из торфа гуминовую кислоту, а из сапропеля двухвалентные металлы. В процессе реакции гуминовых кислот с ионами двухвалентных металлов образуются не растворимые в воде, хелатные, гелеобразные соли, которые используют в качестве модификатора адсорбента. Возможно также в процессе получения модификатора применение хлористых солей двухвалентных металлов, взятых из числа химреактивов, например хлористого магния и хлористого железа. Как было показано, гуминовые кислоты извлекаются из торфа раствором щелочи с pH 11-13, а двухвалентные металлы из сапропеля раствором кислоты с pH 2.0-3.0. Поэтому смешивают остаток торфа, который после извлечения гуминовых кислот имеет pH 10-12, а сапропель после извлечения двухвалентных металлов - pH 1.5-3.5. Смешивая остатки торфа и сапропеля, производят нейтрализацию до достижения pH 7-8 и используют в качестве целлюлозосодержащего материала. К целлюлозосодержащему материалу, состоящему из торфа, взятому в количестве 95-99,98%, вносят модификатор в виде гелеобразной соли гуминовой кислоты с двухвалентным металлом, взятым в количестве 0.05-5%, тщательно перемешивают и получают адсорбент. Затем следует сушка и измельчение с образованием

порошкового адсорбента. Если перед сушкой производят гранулирование, то получают гранулированный адсорбент. Ниже приводятся примеры адсорбционной способности полученных адсорбентов.

Пример 1.

Определение сорбционной способности адсорбента в отношении масла.

Использовали порошковый адсорбент, содержащий в %:

смесь торфа и сапропеля в соотношении 1:1-96,

соль кальция с гуминовыми кислотами - 4.

На горизонтально установленную металлическую пластину наливали 2,03 г отработанного масла М6з/10 г, взятого после пробега автомобиля 10000 км. Из навески адсорбента брали малые пропорции и рассыпали на образовавшееся масляное пятно. При адсорбции масла цвет сорбента из светло-коричневого становился темным. В процессе внесения новых порций адсорбента увеличивалась продолжительность до момента потемнения адсорбента. Процесс адсорбции масла можно считать завершенным, если в течение 5 мин не происходит потемнения последней порции адсорбента. Выдерживали в течение 40 мин.

Образовавшийся продукт адсорбции рыхлили. Затем волоссянкой щеткой удаляли его с поверхности металлической пластины, взвешивали металлическую пластину и рассчитывали степень извлечения нефтепродукта. Таким взвешиванием определяли количество израсходованного адсорбента и рассчитывали количество масла, поглощенного 1 г адсорбента. В табл. 1 приведены результаты определения сорбционной способности модифицированного торфа по отношению к отработанному маслу.

Пример 2.

Определение сорбционной способности адсорбента к мазуту.

В качестве целлюлозосодержащего материала адсорбента использовали торф, в качестве модификатора соль магния с гуминовой кислотой в вес.%:

торф - 96,6%,

соль магния с гуминовой кислотой - 3,4%.

В примере использовали мазут топочный 40 ОКП 02 521101104, ГОСТ 10585-75. Металлическую пластину взвешивали, после чего наливали на ее поверхность 3,1 г мазута. Из навески адсорбента малыми порциями насыпали его на мазут и рыхлили до тех пор пока мазут не превращался в рыхлый продукт. После этого выдерживали 30 мин, и образовавшийся рыхлый продукт сметали с металлической пластины волоссянкой щеткой. Взвешивали остаток адсорбента и металлическую пластину. Рассчитывали расход адсорбента в г на очистку 1 г мазута и степень извлечения мазута адсорбентом. Результаты представлены в табл. 1.

Пример 3.

Определение сорбционной способности адсорбента к отработанному маслу на водной поверхности.

Применили адсорбент порошкообразный, содержащий в вес.%:

торф - 97,5%,

соль кальция с гуминовыми кислотами - 2,5%.

В стеклянный стакан емкостью 100 мл наливали 75 мл воды и взвешивали, после чего выливали 1 г отработанного масла М6 з/10 г (ГОСТ 10541-78). Из общей навески порошкообразного адсорбента отбирали небольшие порции и рассыпали их на поверхность масляного пятна до тех пор, пока все масло не "свяжется" адсорбирующими материалом. Через 10 мин скопление масла с адсорбентом снимали с поверхности воды. Взвешивали стакан с очищенной водой. Затем взвешивали остаток адсорбирующего материала. Рассчитывали степень извлечения нефтепродукта адсорбентом, а также удельный расход адсорбента в г/г отработанного масла.

Пример 4.

Определение сорбционной способности адсорбента к индустриальному маслу, разлитому на воде.

Применили адсорбент гранулированный, содержащий в вес.%:

торф - 98,5%,

соль мания с гуминовыми кислотами - 1,5%.

В стеклянный стакан емкостью 100 мл наливали 75 мл воды и взвешивали, после чего вливали туда 1 г индустриального масла "Г" (ГОСТ 17479.4-87). Из общей навески гранулированного адсорбента отбирали небольшие порции и рассыпали их на поверхность масляного до тех пор, пока все масло не "свяжется" адсорбирующими материалом.

Через 10 мин скопление масла с адсорбентом снимали с поверхности воды. Взвешивали стакан с очищенной водой и остаток адсорбента. Рассчитывали удельный расход адсорбента на очистку 1 г масла и степень извлечения масла с поверхности воды. Результаты приведены в табл. 1.

Пример 5.

Использование адсорбента для очистки земли от разливов нефти.

В качестве целлюлозосодержащего материала адсорбента применяли торф и сапропель, а в качестве модификатора соль кальция с гуминовыми кислотами в соотношении:

торф и сапропель (1:0,5)-98%,

соль гумата кальция - 2%.

В качестве нефтепродукта использовали нефть ГОСТ 99-65-76. Навеску земли массой 100 г насыпали на стеклянную пластину. Затем на поверхность земли наливали 5,01 г нефти. Из навески адсорбент насыпали порциями на нефтяное пятно и рыхлили образующийся продукт сорбции до образования рассыпчатого продукта, не образующего масляных пятен на бумажном слепке. После этого рассыпчатый продукт смешивали с навеской земли до образования однородной массы. Через 25 дней производили посев травяных культур и гороха. Всходы и рост растений несущественно отличался от контрольной пробы.

Пример 6.

Определение сорбционной способности торфяного адсорбента к нефти разлитой на водной поверхности.

Применили адсорбент крошку, содержащий в вес.%:

торф - 99,2%,

соль гумата магния - 0,8%.

В стеклянный стакан емкостью 100 мл наливали 75 мл воды и взвешивали, после чего вливали 1 г нефти.

Из общей навески крошки адсорбента отбирали небольшие порции и рассыпали их на поверхность нефтяного пятна до тех пор, пока вся нефть не связывалась адсорбирующим материалом. Через 10 мин скопление нефти с адсорбентом снимали с поверхности воды. Затем взвешивали стакан с очищенной водой, а также остаток адсорбирующего материала. Рассчитывали степень извлечения нефти адсорбентом, а также удельный расход адсорбента в г/г нефти. Результаты представлены в табл. 1.

Пример 7.

Определение сорбционной способности адсорбента к нефти, разлитой на твердой поверхности.

Применили адсорбент гранулированный, содержащий в вес.%:

смесь торфа и сапропеля в соотношении (0,6:1)-99%,

соль гумата кальция - 1%.

Металлическую пластину взвешивали, после чего наливали на ее поверхность 2,5 г нефти. Из навески адсорбент малыми порциями насыпали на нефть до образования рыхлого продукта, который легко сметали с металлической пластины волосянной щеткой. Взвешивали остаток адсорбента и металлическую пластину. Рассчитывали расход адсорбента в г на очистку 1 г нефти и степень извлечения нефти адсорбентом. Результаты представлены в табл. 1.

Как видно из табл. 1, в результате процесса адсорбции нефтепродукта на твердой поверхности образуется рыхлый рассыпчатый продукт, который легко удаляется механически с очищаемой поверхности и может транспортироваться в мягкой и жесткой таре. На очищаемой поверхности не остается видимых следов нефтепродуктов. Кроме того, продукт адсорбции брикетируется и гранулируется, после чего используется как вторичное топливо.

При очистке поверхности земли от загрязнения нефтепродуктами продукт адсорбции, будучи в рыхлом и рассыпчатом состоянии, смешивается с землей в однородную массу, которая при этом становится пригодной для посева травяных растений.

В процессе очистки водной поверхности образуется масса, пропитанная нефтепродуктом, которая также может использоваться в качестве топлива.

Таким образом, предложенный адсорбент является простым и экологически чистым. В его состав входят экологически чистые, имеющиеся в достаточных количествах сапропель и торф, а аминосодержащий модификатор получают из экологически чистых компонентов, которые могут входить в органоминеральный состав торфа и сапропеля.

Список литературы

1. Авторское свидетельство СССР N 1773873, кл. C 02 F 1/28, 1992.
2. Патент США N 3791990, кл. 252-427, 1974.
3. Авторское свидетельство СССР N 663296, кл. C 02 F 1/40, 1979.
4. Авторское свидетельство СССР N

Формула изобретения:

Адсорбент для очистки от нефтепродуктов, содержащий многокомпонентное природное образование в количестве 95 - 99,5 вес.% и модификатор в

5 количестве 0,05 - 5,0 вес.%, отличающийся тем, что в качестве многокомпонентного природного образования он содержит торф или его смесь с сапропелем, а в качестве модификатора - соли двухвалентных металлов гуминовых кислот.

10

15

20

25

30

35

40

45

50

55

60

R U 2 1 2 4 3 9 7 C 1

R U 2 1 2 4 3 9 7 C 1

№ п/п	Номер прилод.	Адсорбирующий материал	Род нефтепродукта (н.п.)	Поверхность для разлива	Исход. содержа- ние н.п. в г	Остат. содержа- ние н.п. в г	Степень измене- ния в %	Удел. расход адсорб.	Характер продукта адсорбци
1.		Смесь торфа и сапропеля (1:1)-86% соли гуматов кальция - 2%	Масло МБ-1/10; стараточное	Металлическая	2,03	0,09	95,6	0,97	Рыхлый рассыпчатый
2.		Торф 95%, соль гуматов магния - 4%	Мазут топочный	Металлическая	3,10	0,26	91,6	1,25	Рыхлый рассыпчатый
3.		Горючее кальция - 5% соль гуматов магния-1,5%	Масло стараточное	Вода	1,012	0,028	97,4	0,75	Рыхлый масса адсорбента, пропитанный маслом
4.		Гранулы торфа 98,5% соль и наустронапт- нов	Масло и наустронапт- нов	Вода	1,01	0,019	98,1	0,6	Масла гранулы пропитанной маслом
5.		Порошок смеси торфа и сапропеля (1:0,5); 97% соль гумата магния-3%	Нефть	Земля	5,04	5,04	-	1,1	Рыхлый рассыпчатый
6.		Порошок торфа-99,2% соль гумата магния-0,8%	Нефть	Вода	1	0,004	99,6	0,3	Масла крошки, пропитанной нефтью
7.		Гранулы торфа и сапропель (0,6:1)-86% соли гуматов кальция-1%	Нефть	Металлическая пластичная	2,5	0,075	97	0,72	Гранулы пропитанные нефтью

Таблица 2

№ п/п	Наименование вещества	Содержание в % воздушно-сухого вещества	
		Торф	Сапропель
1.	Органическое вещество	80,6	39,01
2.	Дезот	2,01	1,33
3.	Протеин	16,36	8,8
4.	Жир	1,4	0,28
5.	Клетчатка	15,18	7,67
6.	БЭВ	37,42	17,05
7.	Зола	19,84	80,89
8.	Кальций	3,58	30,0
9.	Магний	0,12	0,8
10.	Железо	0,01	0,015

БЭВ - безазотистые экстрактивные органические вещества, включающие углеводы и полисахариды.

Таблица 3

№ п/п	Аминокислоты	Торф	Сапропель
1.	Аспаргиновая к-та	1,17	0,41
2.	Треонин	0,8	0,17
3.	Серин	0,7	0,24
4.	Глутаминовая к-та	1,83	0,5
5.	Пролин	1,21	0,61
6.	Глицин	1,00	0,32
7.	Аланин	1,00	0,32
8.	Валин	0,9	0,28
9.	Метионин	0,35	0,08
10.	Изолейцин	0,47	0,18
11.	Лейцин	0,76	0,21
12.	Тирозин	0,74	0,15
13.	Фенилаланин	0,56	0,29
14.	Гистидин	0,48	0,42
15.	Лизин	1,27	0,37
16.	Арганин	0,08	0,28

Торф Марусинского месторождения Новосибирской области;
Сапропель Чикского месторождения Новосибирской области.