Divide and Conquer Algorithms

Main Idea:

- 1. Divide the problem into smaller subproblems
- 2. Solve each subproblem recursively
- Combine the solutions of the subproblems in a "meaningful" way

Runtime Analysis:

- * Tools to solve recurrence relations
- * The "Master Theorem"

The Master Theorem

Story: Divide-and-conquer algorithm breaks a problem of size n into:

- * *k* smaller problems
- * each one of size n/b
- * with cost of $O(n^d)$ to combine the results together

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^d)$, when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

Integer Multiplication

- * Given n-digit positive integers x and y
- * Goal: compute x * y
- * Easy: do "grade-school" method
- * Q: What's the runtime?
 - * $O(n^2)$ (yikes)

NaiveMult(x, y): r = 0for i = 1...n:

$$r += (x \cdot y[i]) \ll (i-1)$$

return r

		3	4
*		3	9
	3	0	6
1	0	2	
1	3	2	6

Shorthand for: $x + x + \cdots + x$ (y[i] times)

Splitting a Number

*
$$376280 = 3 \cdot 10^5 + 7 \cdot 10^4 + 6 \cdot 10^3 + 2 \cdot 10^2 + 8 \cdot 10^1 + 0 \cdot 10^0$$

$$= (3 \cdot 10^{2} + 7 \cdot 10^{1} + 6 \cdot 10^{0}) \cdot 10^{3} + 2 \cdot 10^{2} + 8 \cdot 10^{1} + 0 \cdot 10^{0}$$
$$= 376 \cdot 10^{3} + 280$$

- * Observation 1: N an n-digit number (assume n is even)
- * N can be split into n/2 low-order digits & n/2 high-order digits:

*
$$N = a \cdot 10^{n/2} + b$$

$$n/2$$
 digits $\rightarrow n/2$ digits $\rightarrow N$ a b

Divide and Conquer Multiplication

- * Input: N_1 and N_2 , two n-digit numbers (assume n is a power of 2)
- * Split N_1 and N_2 into n/2 low-order digits & n/2 high-order digits:

*
$$N_1 = a \cdot 10^{n/2} + b$$
 N_1

*
$$N_2 = c \cdot 10^{n/2} + d$$

$$\begin{array}{c|cccc}
N_1 & a & b \\
N_2 & c & d
\end{array}$$

* Compute $N_1 \times N_2 = a \times c \cdot 10^n + (a \times d + b \times c) \cdot 10^{n/2} + b \times d$

*
$$m_1 = (a+b) \times (c+d)$$

*
$$m_2 = a \times c$$

*
$$m_3 = b \times d$$

- * Return: $m_2 \cdot 10^n + (m_1 m_2 m_3) \cdot 10^{n/2} + m_3$.
- * T(n) = time to multiply two n-digit numbers

*
$$T(n) = 3T(n/2) + O(n) \Rightarrow k = 3, b = 2 \Rightarrow$$

 $T(n) = O(n^{\log_2 3}) = O(n^{1.585}).$

time: O(n) + T(n/2)

time: T(n/2)

time: T(n/2)

time: O(n)

Divide and Conquer Multiplication

* Conclusions & Remarks:

- * Karatsuba algorithm (1962) was the first known algorithm for multiplication that is asymptotically faster $O(n^{\log_2 3}) = O(n^{1.585})$ than long multiplication.
- * Extending some ideas, the fastest multiplication $O(n \log n)$ algorithm was recently (2019) devised by Harvey and van der Hoeven!

