

- 1. Sean dos cargas Q y -Q situadas en los puntos (-a,0,0) y (a,0,0) tal como se muestra en la figura.
- a) Determinar el valor del campo eléctrico \vec{E} en el punto P (0,a,0).
- b) Determina el valor del potencial V en el punto P?
- c) ¿Sería posible anular el campo eléctrico en dicho punto situando otra carga de valor Q en otra posición? Si es que sí determina dicha posición

1.5 p

- 1. Si tenim dues càrregues Q i –Q situades en els punts (-a,0,0) i (a,0,0) tal com es mostra en la figura.
- a) Determineu-ne el valor del camp elèctric $ec{E}$ en el punt P (0,a,0).
- b) Determineu-ne el valor del potencial V en el punt P.
- c) Seria possible anul·lar el camp elèctric en aquest punt situant una altra càrrega de valor Q en una altra posició? En cas afirmatiu, determineu-ne aquesta posició.

- (*) 2. a) Enuncia el teorema de Gauss
- b) Aplícalo para determinar la carga neta en el interior de un cilindro cuyo flujo a través de su superficie es saliente y vale 10000 Nm²/C ($\varepsilon_0 = 8'85.10^{-12}$ USI).
- (*) 2. a) Enuncieu el teorema de Gauss
- b) Apliqueu-lo per determinar la càrrega neta a l'interior d'un cilindre, quan el fluix a través de la seua superfície és isquent i val 10000 Nm²/C ($\varepsilon_0 = 8'85.10^{-12}$ USI).

1.5 p

a)

El teorema de Gauss enuncia que el flujo de campo eléctrico que atraviesa una superfície cerrada es igual a la carga encerrada por la superfície dividido la constante de permitividad eléctrica en el vacío.

b)

$$\Phi = \frac{Q_{enc}}{\varepsilon_0}$$

$$Q_{enc} = \Phi \varepsilon_0 = 10000 * 8.85e - 12C$$

- (*) 3. La figura representa dos superficies equipotenciales de valores: $V_1 = 10$ V y $V_2 = 20$ V. Razonar cuánto valen:
- a) la diferencia de energía potencial eléctrica de una carga q entre los puntos A y B (U_A - U_B)
- b) la diferencia de energía potencial eléctrica de una carga q entre los puntos A y C (U_A - U_C).
- (*) 3. La figura representa dues superfícies equipotencials de valors: $V_1 = 10$ V y $V_2 = 20$ V. Raoneu quant valen:
- a) la diferència d'energia potencial elèctrica d'una càrrega q entre els punts A i B (U_A - U_B).
- b) la diferència d'energia potencial elèctrica d'una carga a entre els punts A i C (U_A - U_C).

- a) $U_A U_B = q(V_A V_B) = 0$ por estar A y B en la misma superficie equipotencial
- b) $U_A U_C = q(V_A V_C) = q (20 -10) = 10 q$

- (*) 4. Justifica las características de un conductor cargado en equilibrio electrostático en su interior (campo eléctrico, potencial eléctrico y densidad volúmetrica de carga).
- (*) 4. Justifiqueu les característiques d'un conductor carregat en equilibri electrostàtic a l'interior (camp elèctric, potencial electrostàtic i densitat en volum de càrrega).

1.5 p

1.5 p

1.5 p

Ver página 4-3 del libro Fundamentos Físicos de la Informática, Ed. UPV

- (*) 5. Cargamos la asociación de condensadores de la figura aplicando una $V_{ab} = 11V$ entre los puntos a i b. Calcula la capacidad equivalente, la energía almacenada en el sistema y la carga Q_3 del condensador de 3μ F.
- (*) 5. Carreguem l'associació de condensadors de la figura aplicant una tensió $V_{ab} = 11V$ entre els punts a i b. Calculeu-ne la capacitat equivalent, l'energia emmagatzemada en el sistema i la càrrega Q_3 del condensador de $3\mu F$.

1.5 p

a) Per al càlcul de la capacitat equivalent, tindrem en compte que els condensadors de 1μ F i de 2μ F estan disposats en paral·lel i, per tant, són equivalents a un condensador de capacitat 1+2=3 μ F. Aquest condensador equivalent es troba en sèrie amb els condensadors de 3μ F i 4μ F, sent, per tant, la capacitat equivalent total:

$$C_e = \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{4}\right)^{-1} = \left(\frac{11}{12}\right)^{-1} = \frac{12}{11}\mu F \approx 1,09\mu F$$

b) L'energia emmagatzemada al sistema serà igual a l'energia emmagatzemada al condensador equivalent, ja que aquesta és una conseqüència de la seua equivalència.

Com que l'energia emmagatzemada en un condensador ve donada per l'expressió: $W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2$ i com que coneixem tant la capacitat equivalent del sistema com la ddp aplicada que és de 11 V, substituint:

$$W = \frac{1}{2}CV^2 = \frac{1}{2} \times \frac{12 \times 10^{-6}}{11} \times 11^2 = 66 \times 10^{-6} J$$

on s'ha passat la capacitat a Farads per obtenir el resultat en el sistema internacional. En el cas de no fer-ho, caldria donar el resultat en μJ

c) La càrrega Q_3 que entra al condensador de $3\mu F$ és la mateixa que entra al conjunt del sistema des de l'exterior i, per tant, és la càrrega que entra al condensador equivalent en aplicar-li la ddp indicada al problema.

Llavors, de la definició de capacitat:

$$C = \frac{Q}{V} \rightarrow Q = CV = \frac{12}{11} \times 10^{-6} \times 11 = 12 \times 10^{-6} C$$

on s'ha passat la capacitat a Farads per obtenir el resultat en el sistema internacional. En el cas de no fer-ho, caldria donar el resultat en μ C

- 6. Deduce la expresión de la capacidad equivalente de una asociación de n condensadores conectados en paralelo.
- 6. Deduïu l'expressió de la capacitat equivalent d'una associació de *n* condensadors connectats en paral·lel. 1 p.

1 p

Dados n condensadores de capacidades C_i asociados en paralelo, todos se encuentran sometidos a la misma d.d.p. V. La carga total del sistema es la suma de la carga en cada condensador $Q = \sum_{i=1..n} Q_i$. Por tanto, la capacidad equivalente

del conjunto, será:

$$C_{eq} = \frac{Q}{V} = \frac{\sum_{i=1..n} Q_i}{V} = \sum_{i=1..n} \frac{Q_i}{V} = \sum_{i=1..n} C_i$$

- 7. Un condensador plano, de superficie S y distancia entre armaduras d, inicialmente en vacío, se carga con carga Q y se aísla.
- a) Determina cuánto valen su capacidad, la d.d.p.(V) entre sus armaduras, el campo eléctrico en su interior y la energía almacenada.
- b) Posteriormente se introduce entre sus armaduras una capa de dieléctrico de permitividad dieléctrica relativa $\epsilon_{\rm r}$. Determinar su nueva capacidad, carga, d.d.p., campo eléctrico y energía almacenada.
- c) Por último se le conecta en paralelo otro condensador idéntico al inicial, pero descargado. Determina la carga de cada condensador. (Justifica las respuestas)

Nota: Una vez resuelto el ejercicio, hay que ordenar los resultados obtenidos en una tabla similar a la que a continuación os mostramos:

7. Un condensador pla, de superfície S i distància entre armadures d, inicialment en buit, es carrega amb càrrega Q i s'aïlla.

- a) Determineu quant valen la seua capacitat, la d.d.p.(V) entre les seues armadures, el camp elèctric en el seu interior i l'energia emmagatzemada.
- b) Posteriorment, s'introdueix entre les seues armadures una capa de dielèctric de la permitivitat relativa ϵ_r . Determineu la seua nova capacitat, la càrrega, la d.d.p., el camp elèctric i l'energia emmagatzemada.
- c) Finalment, se li connecta en paral·lel un altre condensador idèntic a l'inicial, però descarregat. Determineu la càrrega de cada condensador. (Justifiqueu les respostes)

Nota: Una vegada resolt l'exercici, cal ordenar els resultats obtinguts en una taula similar a la que a continuació us mostrem:

2p

2 p

		Q	С	V	E	W
l	a) Condensador con vacío / con-					
	densador amb buit					
	b)Condensador con dieléctrico /					
	Condensador amb dielèctric					
	c) Condensadores en paralelo /					
	condensadors en paral·lel					
1	· •					

a)

En función de los datos del problema, tenemos:

$$C = \frac{S\varepsilon_0}{d}$$
; $V = \frac{Q}{C} = \frac{Qd}{S\varepsilon_0}$;

Campo eléctrico en el interior de un condensador:

$$V = Ed \Rightarrow E = \frac{V}{d} = \frac{Q}{S\varepsilon_0}$$
, o también a partir de la relación $E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{S\varepsilon_0}$

Por otra parte, la energía almacenada en el interior de un condensador viene dada por cualquiera de las expresiones:

$$W = \frac{QV}{2} = \frac{Q^2}{2C} = \frac{CV^2}{2}$$
, que en función de los datos del problema observamos en la tabla adjunta.

b)

Al estar el condensador aislado no varía su carga.

Al introducir el dieléctrico, su capacidad aumenta \mathcal{E}_r veces. $C' = \varepsilon_r C = \frac{S \varepsilon_0 \varepsilon_r}{d}$

Por otra parte tanto el potencial como el campo eléctrico disminuyen,

$$V' = \frac{V}{\varepsilon_r} = \frac{Qd}{S\varepsilon_0\varepsilon_d}$$

$$E' = \frac{E}{\varepsilon_r} = \frac{Q}{S\varepsilon_0\varepsilon_r}$$

Y la energía almacenada también disminuirá:

$$W = \frac{QV'}{2} = \frac{Q^2}{2C'} = \frac{C'V'^2}{2}$$

c)

Al unir ambos condensadores en paralelo la carga total Q se reparte entre los des, de tal manera que:

$$Q = Q_1 + Q_2$$

Y también sabemos, que al estar los condensadores en paralelo están a la misma diferencia de potencial, luego:

$$\frac{Q_1}{\varepsilon_r C} = \frac{Q_2}{C}$$

Así, resolviendo este sistema de 2 ecuaciones con dos incógnitas, obtenemos:

$$Q_1 = \frac{Q\varepsilon_r}{1 + \varepsilon_r}$$

$$Q_2 = \frac{Q}{1 + \varepsilon_r}$$

	Q	С	V	Е	W
a) Condensador con vacío / condensador amb buit	Q	$\frac{S\varepsilon_0}{d}$	$rac{Qd}{Sarepsilon_0}$	$rac{Q}{Sarepsilon_0}$	$\frac{Q^2d}{2S\varepsilon_0}$
b)Condensador con dieléctri- co / Condensador amb dielèc- tric	Q	$\frac{S\varepsilon_0\varepsilon_r}{d} = \varepsilon_r C$	$\frac{V}{\varepsilon_r} = \frac{Qd}{S\varepsilon_0\varepsilon_d}$	$\frac{E}{\varepsilon_r} = \frac{Q}{S\varepsilon_0\varepsilon_r}$	$rac{{\cal Q}^2 d}{2S {m arepsilon}_0 {m arepsilon}_E}$
c) Condensadores en paralelo / condensadors en paral·lel	$Q_1 = \frac{Q\varepsilon_r}{1+\varepsilon_r}$ $Q_2 = \frac{Q}{1+\varepsilon_r}$				