5과목

Chapter 1. 소프트웨어 개발 방법론 활용

090 소프트웨어 생명주기 모델★

- 소프트웨어 생명주기(SDLC; Software Life Cycle): 시스템의 요구분석부터 유지보수까지의 소프트웨어 개발 전체 과정을 체계적으로 정리하여 표준화한 것
- •소프트웨어 생명주기 모델 종류

종류	설명
0 11	- 폭포에서 떨어진 물은 거슬러 올라갈 수 없는 것처럼 소프트웨어 개발 시, 각 단계를
	마무리지은 후, 다음 단계로 넘어가는 모델
	- Bohem이 제시한 고전적 생명주기 모델로, 선형 순차적 모델이라고 함
폭포수 모델	- 모델을 적용한 경함과 성공 사례가 많으며, 단계별 정의와 산출물이 명확하나, 중간에
(Waterfall Model)	요구사항 변경 어려움
	- 절차
	타당성 검토 → 계획 → 요구시항분석 → 설계 → 구현 → 테스트 → 유지보수
	- 사용자의 요구사항을 실제 개발될 소프트웨어에 대한 프로토타입(Prototype)을 만들어
	최종 결과물을 예측하는 모델 - 프로토타입은 구현 단계에서 구현 골격으로 활용
	- 프도도다입는 구면 단계에서 구면 출격으로 활용 - 절차
_ 프로토타입 모델	
(Prototyping	End Start
Model)	구현 요구수집
,	프로토타입 빠른 설계
	조정 기급 분기
	고객 평가 프로토타입 구축
	- 폭포수 모델의 확장형으로 생명주기 단계별로 테스트 단계가 추가되어 개발 작업과 검
	증 작업 사이의 관계를 명확히 들어낸 모델
	- Perry에 의해 제안되었으며 세부적인 테스트 과정으로 구성되어 신뢰도 높은 시스템을
	개발하는데 효과적임
	- 절차: 위에서 아래 방향(↘)으로 진행하다가 개발 단계를 거치면서 아래에서 위로(↗)
	향함
V 모델	사용자 요구 <u>인수테스트 계획</u> 인수 명세서 <u>테스트</u>
V 모델 (V Model)	
(v Model)	시스템 요구 시스템 테스트 계획
	시스템 통합테스트 계획 통합 설계 테스트
	HAE THE
	단위 설계 타스트 타스트
	코드
	- 폭포수 모델과 프로토타입 모델의 장점에 위험 분석 기능을 추가하여 점진적으로 완벽
പിച്ച് നമ്പ	한 시스템으로 개발해나가는 모델
나선형 모델	- 대형 프로젝트 비교적 적합하나, 프로젝트 관리가 어려움
(Spiral Model)	- 절차

091 소프트웨어 개발 방법론★★

- •소프트웨어 개발 방법론: 소프트웨어의 생산성과 품질 향상을 위하여, 개발 전 과정에서 지속적으로 적용할 수 있는 방법
- 소프트웨어 개발 방법론 종류

종류	설명	
공유 구조적 방법론 (Structured Development)	설명 - 정형화된 분석 절차에 따라 사용자 요구사항을 파악하여 문서화하는 프로세스 접근 방식의 방법론 - 쉬운 이해와 검증이 가능한 프로그램 코드를 생성하는 것이 목적이며, 분할과 정복 (Divide and Conquer) 원리 적용 - 문서화하는 분석 방법으로 자료 흐름도(DFD), 자료 사전(DD), 소단위 명세서의 특징을 나타냄 - 나씨-슈나이더만(NS-Chart: Nassi-Shneidrman) 차트 사용 • 나씨-슈나이더만(NS-Chart: Nassi-Shneidrman) 차트 - 논리의 기술에 중점을 두고 도형을 이용한 표현 방법 - 연속, 선택, 반복 등의 제어 논리 구조 표현 - 이해하기 쉽고 코드 변환이 용이	
	- 조건이 복합되어 있는 곳의 처리를 시각적으로 명확히 식별하는데 적합	
정보공학 방법론	- 시스템의 개발을 위해 계획, 분석, 설계, 구축에 정형화된 기법들을 통합하여 적용	
(Information	하는 자료 중심의 방법론	
Engineering	- 개발 주기를 이용하여 대형 프로젝트를 수행하는 방법론	
Development)	- 데이터베이스 설계 모델링 언어로 ERD(Entity-Relationship Diagram) 사용	
	- 현실 세계의 개체(Entity)를 하나의 객체(Object)로 만들어서 소프트웨어를 개발할	
객체지향 방법론	때 조립하듯이 객체들을 조립해서 소프트웨어를 구현하는 방법론	
(Object-Oriented	- 객체(Object), 클래스(Class), 메시지(Message) 사용	
Development)	- 설계 모델링 언어로 패키지 다이어그램(Package Diagram), 배치 다이어그램	
	(Deployment Diagram), 상태 전이도(State Transition Diagram) 등 사용	
기반 방법론 컴포넌트 기반 방법론	- 소프트웨어를 구성하는 컴포넌트를 조립하여 새로운 소프트웨어를 만드는 방법론	
(CBD; Componet	- 생산성과 품질을 높이고 유지보수를 최소화할 수 있음	
Based Development)	- 컴포넌트 제작 기법을 통해 재사용성 향상	
	- 독립적인 컴포넌트 단위 관리로 복잡성 최소화	
애자일 방법론	고객의 요구사항 변화에 유연하고 신속하게 적응하면서 효율적으로 일정한 주기로 반	
(Agile Development)	복하며 개발 과정을 진행하는 방법론	
제품 계열 방법론	- 특정 제품에 적용하고 싶은 공통된 기능을 정의하여 개발하는 방법론	
(Product Line	- 임베디드 소프트웨어를 개발하는데 적합	
Development)	- 영역 공학과 응용 공학으로 구분	

영역 공학	영역 분석, 영역 설계, 핵심 자산 구현
응용 공학	제품 요구 분석, 제품 설계, 제품 구현

092 비용 산정 모델과 일정관리 모델★

- 소프트웨어 비용 산정: 소프트웨어 개발에 소요되는 인원, 자원, 기간 등을 파악하여 실행 가능한 계획을 수립하기 위해 비용을 산정하는 기법이다.
- •비용 산정 기법 종류
- 하향식 비용 산정 기법: 전문가를 통해 비용 산정

종류	설명	
저무기 가져 기배	- 조직 내 경험이 많은 두 명 이상의 전문가에게 비용 산정을 의뢰하는 기법	
전문가 감정 기법 	- 빠르고 편리하게 비용을 산정할 수 있으나, 개인적, 주관적 산정	
	- 전문가 감정 기법의 주관적인 판단을 보완하기 위해 많은 전문가의 의견을 종합하여	
델파이 기법	비용을 산정하는 기법	
	- 1명의 조정자와 여러 명의 전문가로 구성	

- 상향식 비용 산정 기법: 요구사항과 기능에 따라 비용 산정

종류	설명				
	- 소프트웨어 각 기능의 원시 코드 라인 수의 낙관치, 중간치, 비관치를 측정하여 예 측치를 구하고, 이를 이용하여 비용 산정				
LOC 기법 (source Line Of	예측치 = $\frac{o+4m+p}{6}$ (o : 낙관치, m : 중간치, p : 비관치)				
Code)	낙관치: 가장 적게 측정된 코드 라인수 중간치: 측정된 모든 코드 라인 수의 평균				
	비관치: 가장 많이 측정된 코드 라인 수				
	- 측정이 쉽고 이해하기 쉬워 많이 사용				
	- 예측치를 이용하여 생산성, 노력, 개발 기간 등의 비용 산정				
	한 사람이 1개월 동안 할 수 있는 일의 양을 기준으로 프로젝트 비용을 산정				
Man Month	Man Month = LOC / 개발자 월 생산성				
	프로젝트 기간 = Man Month / 참여 개발자 수				
	- 보헴이 제안한 모델로 LOC(원시 코드 라인 수)에 따라 비용 산정				
	- 비용 산정 결과는 프로젝트를 완성하는 데 필요한 노력(Man-Month)로 표현				
	- 프로젝트의 복잡도 또는 원시 프로그램의 규모에 따라 조직형, 반분리형, 임베디드				
	형으로 분류				
	유형 설명				
	- 기관 내부에서 개발된 중·소 규모의 소프트웨어로				
COCOMO	조직형 일괄 자료 처리, 과학 기술 계산용, 비지니스 자료				
(Constructive Cost	(Organic Mode) 개발용				
Model)	- 5만(50KDSI) 라인 이하의 소프트웨어 개발				
inodol)	- 조직형과 임베디드형의 중간형으로 트랜잭션 처리				
	반 분리형 시스템이나 운영체제, 데이터베이스 관리 시스템,				
	(Semi-Detached Mode) 컴파일러 개발용				
	- 30만(300KDSI) 라인 이하의 소프트웨어 개발 - 초대형 규모의 트랜잭션 처리 시스템, 운영체제, 실				
	임베디드형 시간 처리 시스템 등 시스템 프로그램 개발용				
	(Embedded Mode) 지신 시디 시크림 등 시크림 프로그림 개필증 - 30만(300KDSI) 라인 이상의 소프트웨어 개발				
Putnam 모형	- 소프트웨어 개발 주기 단계별 노력의 분포 가정하여 비용 산정				
	- 푸트남(Putnam)이 제안한 것으로, 생명주기 예측 모형이라고도 함				

	- 시간에 따른 함수로 표현되는 Rayeigh-Norden 곡선의 노력 분포도를 기초로 함				
	- 비용 산정 자동화 추정 도구로 SLIM 사용				
	- 요구 기능을 증가시키는 인자별로 가중치를 부여하고 요인별 가중치를 합산하여 총				
	기능의 점수를 계산	하여 비용 산정			
	기능적수(FP) = 총	기능 점수 × [0.65 +	() 1 × 총 영향도]		
	- 기능별 가중치	10 01 (0.00	0.1 0 0 0 1		
	702 70 7	I			
	소프트웨어 기능		<u>.</u> 가중치		
	증대 요인	단순	보통	복잡	
	자료 입력	3	4	6	
기능점수(FP; Function	(입력양식)	3	4	U	
Point) 모형	정보 출력	4	5	7	
	(출력 보고서)				
	명령어 (사용자 질의 수)	2	3 4	5	
		3		5	
	데이터 파일	7	10	15	
	필요한 외부				
	루틴과의	5	7	10	
	인터페이스				
	- 비용 산정 자동화 도구로 ESTIMACS 사용				

•일정관리 모델: 프로젝트가 일정 기한 내에 적절하게 완료될 수 있도록 관리하는 모델

모델 종류	설명
	 프로젝트 완성에 필요한 작업을 나열하고 작업에 필요한 소요 기간을 예측하는데 사용하는 기법 네트워크 다이어그램을 통하여 노드와 간선으로 작업과 소요 시간을 표시, 각 작업의 순서와 의존관계 확인 가능 임계 경로는 최장 경로를 의미함 (예시) 아래의 네트워크 다이어그램에서 임계 경로를 구하시오.
CMP 기법 (Critical Path Method)	2일 A 3일 C 3일 PB 3일 C 3일 PB 3일 PB 3일 PB A A B PB PB PB A B PB PB PB A B PB P
PERT (Program Evaluation and Review Technique)	- 일의 순서를 계획적으로 정리하기 위한 기법으로 낙관치, 중간치, 비관치를 사용하여 일정을 관리하는 기법 작업 예측치 = (낙관치 + (4 × 기대치) + 비관치) / 6 - 과거에 경험이 없어서 소요 기간 예측이 어려운 소프트웨어에 사용
간트 차트 (Gantt Chart)	- 프로젝트의 시작과 끝을 그래픽으로 표시, 각 작업 일정을 수평 막대(Bar) 형태로 표현한 차트로 시간선(Time-Line) 차트라고도 함 - 수평 막대의 길이는 작업에 필요한 시간을 나타냄 작업단계 일정 산출물 계획 프로젝트 정의서 분석 요구 분석 명세서 구현 원시 코드

093 소프트웨어 개발 표준★

• 소프트웨어 개발 표준: 소프트웨어 개발 단계에서 수행하는 품질 관리에 사용되는 국제적 표준 (ISO/IEC 12207, CMMI, SPICE)

프로세스 구분	내용
기본 생명주기 프로세스	획득, 공급, 개발, 운영, 유지보수
지원 생명주기 프로세스	품질 보증, 검증, 확인, 활동 검토, 감사, 문서화, 형상관리, 문제해결
조직 생명주기 프로세스	기반 구조, 관리, 개선, 훈련

· CMMI(능력 성숙도 통합 모델, Capability Maturity Model Intergration): 소프트웨어 개발 조직의 업무 능력 및 조직의 성숙도를 평가하는 모델

수준	단계	설명
1	초기화 단계	- 정의된 프로세스 없음, 예측 불가
1	(Initial)	- 작업자의 능력에 따라 성공 여부
2	관리 단계	- 특정한 프로젝트 내의 프로세스 정의 및 수행
	(Managed)	- 프로젝트 관리 시스템 생성
3	정의 단계	조지이 교조 교급계入에 따라 어디 스해
3	(Defined)	- 조직의 표준 프로세스에 따라 업무 수행
	정량적 관리 단계	저라저 기베오 하요하여 표근계시 토계
4	4 (()))antitatively	- 정량적 기법을 활용하여 프로세스 통제
	Managed)	- 프로젝트 정량적 관리 및 통제
г	최적화 단계	교 그 계 2 - 어그는 참 N O 이 의 기 시 지 계 계 계계 위
5	(Optimizing)	프로세스 역량 향상을 위해 지속적 개선, 내재화

- SPICE(Software Process Imporvement and Capability dEtermination): 소프트웨어 처리 개선 및 능력 평가 기준에 대한 국제 표준

수준	단계	설명
0	불안정 단계	프로세스가 구현되지 않았거나, 프로세스가 목적을 달성하지 못한 단계
1	수행 단계	프로세스가 수행되고, 목적을 달성한 단계
2	관리 단계	정의된 자원의 한도 내에서 프로세스가 작업 산출물을 인도하는 단계
3	확립 단계	소프트웨어 공학 원칙에 기반하여 정의된 프로세스 수행되는 단계
4	예측 단계	프로세스가 목적 달성을 위해 통제되고, 양적인 측정을 통해 일관되게 수행되 는 단계
5	최적화 단계	프로세스 수행을 최적화하고, 지속적인 개선을 통해 업무 목적을 만족하는 단계

094 테일러링 기준★

• 테일러링(Tailoring): 조직의 프로젝트 상황, 목적, 특성에 맞게 표준 프로세스를 커스터마이징하는 작업 - 테일러링 프로세스

프로세스	설명	
프로젝트 특징	파크제도이 ENO 파아워크 무거 줘 샤햐 파크제도에 대한 이케로 윈도 다게	
정의	프로젝트의 특징을 파악하고, 목적, 현 상황, 프로젝트에 대한 이해를 하는 단계	
표준 프로세스	교조 교급계시 심지 건조	
선정 및 검증	표준 프로세스 선정, 검증	
상위 수준의	비기나 토사에 마느 새머즈가 저어 게바 다게 조저	
커스터마이징	비지니스 특성에 맞는 생명주기 정의, 개발 단계 조정	
세부	WDC/Work Prockdown Chrystyno) 저용 이저 스리	
커스터마이징	WBS(Work Breakdown Structure) 적용, 일정 수립	
테일러링 문서화	테일러링 내용 문서화, 검토 및 승인	

- 테일러링 기준

구분	기준	설명
내부적 기준	목표 환경	시스템 개발 유형 및 기술 환경이 서로 다른 경우, 테일러링 필요
	요구사항	소프트웨어 생명주기 활동에서 개발/운영/유지보수 등 프로젝트 상 요구

		사항 우선 순위가 서로 다른 경우 테일러링 필요
	프로젝트 규모	비용, 인력, 기간과 같은 프로젝트 특성이 서로 다른 경우 테일러링 필요
	보유 기술	구성원 역량, 산출물, 개발방법론 등이 서로 다른 경우 테일러링 필요
외부적 기준	법적 제약 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	프로젝트 대상 도메인에 따라 적용되는 컴플라이언스(Compliance)가 서
		로 다른 경우 테일러링 필요
	국제 표준 품질	금융, 제도, 분야별 표준 품질 기준이 다른 경우 테일러링 필요
	기준	

095 소프트웨어 개발 프레임워크★

- 소프트웨어 개발 프레임워크: 소프트웨어 개발에 공통적으로 사용되는 구성요소와 아키텍처를 손쉽게 구현할 수 있도록 여러 가지 기능을 제공해주는 반제품 상태의 개발 소프트웨어
- 소프트웨어 개발 프레임워크의 특징
 - 소프트웨어 디자인 패턴을 반제품 소프트웨어 상태로 집적화시킨 것
 - 도메인별로 필요한 서비스 컴포넌트를 사용하여 재사용성 확대와 성능 보장
 - 프레임워크의 동작 원리를 그 제어 흐름의 일반적인 프로그램 흐름과 반대로 동작한다고 해서 IoC(Inversion of Control)라고 불림
 - 개발해야 할 애플리케이션의 일부분이 이미 구현되어 있어 동일한 로직 반복 감소
- 소프트웨어 개발 프레임워크 기대효과
- 개발할 소프트웨어에 대한 품질보증
- 소프트웨어 개발 용이성 증가
- 소프트웨어 개발 변경 발생 시, 변경 용이
- 공통 컴포넌트 재사용으로 중복 예산 절감
- 표준화된 연계모듈 활용으로 상호 운용성 향상
- 개발표준에 의한 모듈화로 유지보수 용이
- 시스템의 복잡도 감소
- 생산성 향상과 유지보수성 향상

Chapter 2. IT프로젝트 정보시스템 구축관리 096 네트워크 관련 신기술★★★

•네트워크 관련 신기술

기술	설명
소프트웨어 정의 네트워크 (SDN: Software Defined Networking)	 네트워크를 제어부, 데이터 전달부로 분리하여 네트워크 관리자보다 효율적으로 네트워크를 제어, 관리할 수 있는 기술 기존의 라우터, 스위치 등과 같이 하드웨어에 의존하는 네트워크 체계에서 안정성, 속도, 보안 등을 소프트웨어로 제어 관리하기 위해 개발됨 네트워크 장비의 펌웨어 업그레이드를 통해 사용자의 직접적인 데이터 전송 경로 관리가 가능하고, 기존 네트워크에는 영향을 주지 않으면서 특정 서비스의 전송 경로 수정을 통하여 인터넷상에서 발생하는 문제를 처리할 수 있음
소프트웨어 정의 데이터센터(SDDC :Software Defined Data Center)	- 컴퓨팅, 네트워킹, 스토리지, 관리 등을 모두 소프트웨어로 정의 함 - 인력 개입 없이 소프트웨어 조작만으로 자동 제어 관리 - 데이터센터 내 모든 자원을 가상화하여 서비스
소프트웨어 정의 스토리지 (SDS: Software Defined Storage)	- 가상화를 적용하여 필요한 공간만큼 나눠 사용할 수 있도록 하며 서버 가상화와 유사 - 컴퓨팅 소프트웨어로 규정하는 데이터 스토리지 체계이며, 일정 조직 내 여러 스토리 지를 하나처럼 관리하고 운용하는 컴퓨터 이용환경 - 스토리지 자원을 효율적으로 나누어 쓰는 방법
메시 네트워크 (Mesh Network)	- 다른 국을 향하는 호출이 중계에 의하지 않고 직접 접속되는 그물 모양의 네트워크 - 통신량이 많은 비교적 소수의 국 사이에 구성될 경우 경제적이며 간편하지만, 다수의 국 사이에는 회선이 세분화되어 비경제적임 - 해당 형태의 무선 네트워크의 경우 대용량을 빠르고 안전하게 전달할 수 있어 행사 장이나 군 등에서 활용
피코넷	여러 개의 독립된 통신장치가 UWB(Ultra Wideband) 기술 또는 블루투스 기술을 사용
(PICONET)	하여 통신망을 형성하는 무선 네트워크 기술 - 매우 낮은 전력을 사용하여. 초광대역 주파수 대역으로 짧은 거리에서 많은 양의 디
UWB (Ultra Wide Band)	지털 데이터를 전송하는 무선 전송 기술 - 땅 속, 벽을 통과하여 신호 전송이 가능하여, 재해 상황에서 인명 구조 활용
근거리 무선 통신 (NFC; Near Field Communication)	- 고주파를 이용한 근거리 무선 통신 기술로, 10cm 이내에서 저전력, 비접촉, 양방향 무선 통신 기술 - 모바일 기기를 활용한 결제, 교통, 출입 통제 등에 사용
SON (Self Organizing Network)	노드 간 상호작용으로 스스로 망을 구성, 최적화하는 자율적 네트워크 기술
사물 인터넷 (IoT: Internet of Things)	정보 통신 기술을 기반으로 다양한 사물에 센서와 통신 기능을 내장하여 무선 통신을 통해 사물을 인터넷에 연결하는 기술
클라우드 기반 HSM (Cloud-based Hardware Security Module)	- 클라우드(데이터센터) 기반 암호화 키 생성, 처리, 저장 등을 하는 보안 기술 - 클라우드에 인증서를 저장하므로 기존 HSM 기기나 휴대폰에 인증서를 저장해 다닐 필요가 없음
파스-타 (PaaS-TA)	국내 IT 서비스 경쟁력 강화를 목표로 개발되었으며 인프라 제어 및 관리 환경, 실행 환경, 개발 환경, 서비스 환경, 운영환경으로 구성되어 있는 개방형 클라우드 컴퓨팅 플 랫폼
스마트 그리드 (Smart Grid)	전기 및 정보통신기술을 활용하여 전력망을 지능화, 고도화함으로써 고품질의 전력서비 스를 제공하고 에너지 이용효율을 극대화하는 전력망
MQTT (Message Queuing Telemetry Transport)	TCP/IP 기반 네트워크에서 동작하는 발행-구독 기반의 메시징 프로토콜로 최근 IoT 환경에서 자주 사용되고 있는 프로토콜

	기기를 키오스크에 갖다 대면 원하는 데이터를 바로 가져올 수 있는 기술로 10cm 이내
Zing	근접 거리에서 기가급 속도로 데이터 전송이 가능한 초고속 근접무선통신 (NFC :
	Near Field Communication) 기술
SSO	시스템이 몇 대가 되어도 하나의 시스템에서 인증에 성공하면 다른 시스템에 대한 접근
(Single Sign On)	권한도 얻는 시스템
Wi-SUN	스마트 그리드와 연계하여 전기, 수도, 가스 공급자와 사용자가 자체 가망 구축 형태의
(Wireless Smart	
Utility Network)	비면허대역 무선 네트워크를 이용하여 관리할 수 있게 하는 무선 통신 기술

097 네트워크 장비★

•네트워크 설치 구조(Topology): 통신망을 구성하는 장치들을 배치하는 방법

구조	설명
	- 각 단말장치가 중앙 허브에 포인트 투 포인트(Point-to-Point) 방식으로 연결
서(Cton)취 기조	- 소규모 네트워크 설치, 네트워크 재구성(단말의 추가/제거) 쉬움
성(Star)형 구조	- 중앙 허브가 고장나면 전체 네트워크 정지, 하나의 단말장치가 고장나는 경우, 다른
	단말장치에 영향을 주지 않음
	- 모든 단말장치가 하나의 링에 순차적으로, 포인트 투 포인트(Point-to-Point) 방식으
리(D; , , a)하 기 저	로 연결된 형태
링(Ring)형 구조	- 데이터는 단방향, 양방향 전송 모두 가능하나, 단방향 링의 경우, 단말장치가 하나라
	도 고장나면 전체 통신망 정지
버스(Bus)형 구조	- 하나의 네트워크에 여러 대의 단말장치가 연결된 형태
	- 단말장치가 고장나더라도 네트워크 전체에 영향을 주지 않음
트리(Tree)형 구조	- 각 단말장치가 계층적으로 연결되어 있는 구성
	- 분산처리 시스템을 구성하는 방식

•네트워크 장비: 서로 통신을 할 수 있는 컴퓨터, 스위치, 라우터, 광전송 장비

장비 종류		설명
스위치 장비	- LAN과 LAN을 연결하여 - OSI 7계층의 2계층에서	
	라 트래픽을 전달하는 징 - OSI 7계층의 3계층에서	사용
	프로토콜 RIP	설명 - 거리 벡터 라우팅 프로토콜
라우터 장비	(Routing Information Protocol)	- 소규모 네트워크 환경에 적합 - 최대 홉 카운트를 15홉 이하 제한 - 최단경로탐색 시, Bellman-Ford 알고리즘 사용
	OSPF (Open Shorter Path	- 대규모 네트워크 환경에 적합 - 홉 카운트에 제한 없음
	First) BGP (Border Gateway Protocol)	- 최단경로탐색 시, Dijkstra 알고리즘 사용 - 자율 시스템(AS)간 라우팅에 경로 정보를 교환하기 위한 라 우팅 프로토콜
	광케이블을 이용하여 스위칭	b 노드를 묶어주는 시스템
광전송 장비	기술	설명
	SONET (Synchronous Optical Network)	- 고속 디지털 통신을 위한 광전송 시스템 표준 규격
	WDM	- 광섬유를 이용한 통신 기술

	- 파장이 서로 다른 복수의 광신호를 동시에 이용하는 것으로,
(Wavelength Division	광섬유를 다중화하는 방식
Multiplexing)	- 빛의 파장 축과 파장이 다른 광선은 서로 간섭을 일으키지
	않는 성질 이용

098 소프트웨어 관련 신기술★★★

• 소프트웨어 관련 신기술

기술	설명
인공지능 (AI; Artificial Intelligence)	- 인간의 두뇌와 같이 컴퓨터가 인간의 지능적 작업을 수행하는 시스템 - 신경망, 자연어 처리, 컴퓨터 비전 등에서 응용
기계학습 (Machine Learning)	- 인간이 학습을 하듯 컴퓨터에 데이터를 입력하여 학습시키고, 답을 예측하게 만드는 것 - 알고리즘 개발이 어려운 문제의 해결에 유용하며, 학습 문제에 따라 지도학습, 비지 도학습, 강화학습으로 나누어짐
텐서플로 (TenserFlow)	구글 브레인 팀이 제작하여 공개한 기계 학습을 위한 오픈소스 소프트웨어 라이브러리
증강현실 (AR: Augmented Reality)	실제와 유사하지만 실제가 아닌 환경이나 상황을 구현하는 기술
그레이웨어 (Grayware)	- 바이러스인지, 평범한 소프트웨어인지 구분하기 어려운 프로그램 - 사용자가 원하지 않는 애드웨어, 트랙웨어, 기타 악성코드 등
매시업 (Mashup)	웹에서 제공하는 정보 및 서비스를 융합하여 새로운 소프트웨어, 서비스, 데이터베이스 등을 만드는 기술
디지털 트윈	물리적인 사물과 컴퓨터에 동일하게 표현되는 가상의 모델로 실제 물리적인 자산 대신 소프트웨어로 가상화함으로써 실제 자산의 특성에 대한 정확한 정보를 얻을 수 있고, 자산 최적화, 돌발사고 최소화, 생산성 증가 등 설계부터 제조, 서비스에 이르는 모든 과정의 효율성을 향상 시킬 수 있는 모델
Baas	- 블록체인(Blockchain) 개발환경을 클라우드로 서비스하는 개념 - 블록체인 네트워크에 노드의 추가 및 제거가 용이 - 블록체인의 기본 인프라를 추상화하여 블록체인 응용프로그램을 만들 수 있는 클라우드 컴퓨팅 플랫폼
	KIM&BOOK

099 소프트웨어 개발 보안 정책

• 소프트웨어 개발 보안 관련 법규

관련 법규	내용
개인정보 보호법	개인정보 처리 및 보호에 관한 사항 규정
정보통신망법	정보통신망을 통하여 수집, 처리, 보관, 이용되는 개인정보의 보호에 관한 규정
신용정보법	개인신용정보의 취급 단계별 보호조치 및 의무사항에 관한 규정
위치정보법	개인 위치정보 수집, 이용, 제공 파기, 및 정보 주체 권리 규정

• Secure SDLC(Software Development Life Cycle)모델 및 방법론

구분	설명
OWASP CLASP	활동중심, 역할기반의 프로세스로 구성된 보안 프레임워크로 기존에 운영중인 시스템에 적용하기 쉬움
Open SAMM	
(Software Assurance	OWASP에서 개발한 개방형 보안 프레임워크로 점진적 확대 가능
Maturity Model)	

MS SDL	마이크로소프트사(MS)가 자사의 소프트웨어 개발에 의무적으로 적용하도록 고안한 보
(Security Development	
Lifecycle)	안강화 프레임워크
	실무적으로 검증된 개발 보안 방법론 중 하나로써 SW보안의 모범 사례를
Seven TouchPoints	SDLC(Software Development Life Cycle)에 통합한 소프트웨어 개발 보안 생명주기
	방법론

100 하드웨어 관련 신기술★★★

• 하드웨어 관련 신기술

기술	설명
클라우드 컴퓨팅	인터넷을 통해 가상화된 컴퓨터 시스템 자원을 제공하고, 정보를 클라우드에 연결된 컴퓨
(Cloud Computing)	터로 처리하는 기술
도커	- 컨테이너 응용프로그램의 배포를 자동화하는 오픈소스 엔진
	- 소프트웨어 컨테이너 안에 응용프로그램들을 배치시키는 일을 자동화해 주는 오픈소스
(Docker)	프로젝트이자 소프트웨어
쿠버네스티스	리눅스 재단에 의해 관리되는 컨테이너화된 애플리케이션의 배포 자동화, 스케일링을 제
(Kubernetes)	공하는 오픈소스 기반의 관리 시스템
고가용성 솔루션	
(HACMP; High	트 게 이사이 가지되어 크고지리크 그저런서 된다이 가지되어 자에 바꿔 가 주기 다른
Availability	두 개 이상의 시스템을 클러스터로 구성하여, 하나의 시스템에 장애 발생 시, 즉시 다른
Clustering Multi	시스템으로 대체 작동(Fail Over)하는 기술
Processing)	
N-Screen	- N개의 서로 다른 단말기에서 동일한 콘텐츠를 자유롭게 이용할 수 있는 기술
	- PC, TV, 휴대폰에서 원하는 콘텐츠를 끊김없이 자유롭게 이용할 수 있는 서비스

101 하드웨어 장비 운영★

• 저장장치(스토리지 시스템): 정보 시스템 구축 및 운영을 위해서 대용량 데이터를 저장하기 위한 장치 - 저장장치의 종류

저장장치	설명
DAS	- 하드디스크와 같은 데이터 저장장치를 호스트 버스 어댑터에 직접 연결하는 방식
(Direct Attached	- 저장장치와 호스트 기기 사이에 네트워크 디바이스 없이 직접 연결하는 방식으로 구성
Storage)	사용하시켜 모르는 기가 사람에 에트워크 역약하는 없다 그룹 현실에는 중국으로 표준하는
NAS	
(Network Attached	서버와 저장장치를 네트워크로 연결하는 방식으로 구성된 스토리지 시스템
Storage)	
SAN	- 각기 다른 운영체제를 가진 여러 기종이 네트워크상에서 동일 저장장치의 데이터를 공
	유하게 함으로써, 여러 개의 저장장치나 백업 장비를 단일화시킨 시스템
(Storage Area	- 네트워크상에 광 채널 스위치의 이점인 고속 전송과 장거리 연결 및 멀티 프로토콜 기
Network)	는 활용

- 저장장치 구성도

102 데이터베이스 관련 신기술 및 데이터베이스 관리 기능★★

•데이터베이스 관련 신기술

-1.2	1100	
기술	설명	
빅데이터 (Big Data)	- 기존의 관리 방법이나 분석 체계로 처리하기 어려운 많은 양의 데이터 - 빅데이터의 특성으로 데이터의 양(Volume), 데이터의 다양성(Variety), 데이터의 속도(Velocity)을 3V라 함	
데이터 웨어하우스 (DW; Data Warehouse)	사용자의 의사결정에 도움을 주기 위하여 기간 시스템의 데이터베이스에 축적된 데이터를 공통의 형식으로 변환해서 관리하는 데이터베이스	
하둡 (Hadoop)	 오픈 소스를 기반으로 한 분산 컴퓨팅 플랫폼 일반 PC급 컴퓨터들로 가상화된 대형 스토리지 형성 거대한 데이터 세트를 병렬로 처리할 수 있도록 개발된 자바 소프트웨어 프레임워크로 구글, 야후 등에서 적용 	
맵리듀스 (MapReduce)	- 구글에서 대용량 데이터를 분산 병렬 컴퓨팅에서 처리하기 위한 목적으로 제작 - 연관성 있는 데이터를 묶어 쪼개는 Map, 중복된 데이터 제거 및 추출을 하는 Reduce 작업을 함	
하이 <u>브</u> (Hive)	하둡 기반의 데이터 웨어하우스 솔루션으로 SQL과 유사한 HiveQL이라는 쿼리 제공	
타조	- 하둡 기반의 분산 데이터 웨어하우스 프로젝트로 우리나라에서 주도하여 개발	
(Tajo)	- 맵리듀스를 사용하지 않고, SQL을 사용하여 하두 분산 파일 시스템 파일을 읽음	
데이터 마이닝	데이터 웨어하우스에 저장된 데이터 집합에서 사용자의 요구에 따라 유용하고 가능성 있	
(Data Mining)	는 정보를 도출하는 기법	
OLAP(Online Analytical Processing)	다차원으로 이루어진 데이터로부터 통계적인 요약 정보를 분석, 의사 결정에 활용	
스크래파이	웹 사이트를 크롤링하여 구조화된 데이터를 수집하는 파이썬(Python) 기반의 애플리케이	
(Scrapy)	션 프레임워크	

•데이터베이스 보안: 외부, 내부에서 DB에 저장된 기밀 정보에 불법적으로 접근하는 것을 막는 행위 - 데이터베이스 보안 3대 요소

요소	설명
기밀성	 접근 체계를 만들어 허가 받지 않은 개인, 시스템의 접근 차단
(Confidentiality)	접근 세계글 만들어 여기 믿지 않는 개인, 시스템의 접근 시년
무결성	절차를 따르지 않고 데이터가 변경될 수 없으며, 데이터의 정확성 및 완전함이 훼손되
(Integrity)	지 않음을 보장
가 용 성	기하ㅇ 가지 게이 가지데이 이런도 데이디에 대한 이하하 저그 제고 묘자
(Availability)	권한을 가진 개인, 시스템이 원하는 데이터에 대한 원활한 접근 제공 보장

Chapter 3. 시스템 보안 구축 103 SW 개발 보안 3요소★★

요소	설명
기밀성	 인가된 사용자에 대해서만 자원 접근이 가능해야 하는 특성
(Confidentiality)	현기된 사용자에 대에서된 사원 접근의 기능에야 이는 특성
무결성	인가된 사용자에 대해서만 자원 수정이 가능하며, 전송 중인 정보는 수정되지 않아야
(Integrity)	하는 특성
가 용 성	 인가된 사용자는 가지고 있는 권한 범위 내에서 언제든 자원 접근이 가능해야 하는 특성
(Availability)	원기된 사용사는 기시고 있는 전인 임취 데에서 원제는 사현 접근이 가능해야 하는 특성

외우기 Tip! <u>기</u>밀성, 무결성, <u>가</u>용성 → 기, 무, 가(정보보안을 위해 <u>기</u>무사들이 <u>가</u>다.)

104 Secure SDLC와 Secure Coding★★

- Secure SDLC(Software Development Life Cycle)
- 보안상 안전한 소프트웨어를 개발하기 위해 소프트웨어 개발 생명주기(SDLC; Software Development Life Cycle)에 **보안 강화**를 위한 프로세스
- CLASP, SDL, Seven Touchpoints 등이 있음
- •시큐어 코딩(Secure Coding)
- 소프트웨어의 구현 단계에서 발생할 수 있는 보안 취약점들을 최소화하기 위해 보안 요소들을 고려하여 코딩하는 것

• 보안 운영체제(Secure OS)

- 컴퓨터 운영체제의 커널에 보안 기능을 추가한 것으로 운영체제의 보안상 결함으로 인하여 발생 가능 한 각종 해킹으로부터 시스템을 보호하기 위하여 사용되는 것

105 보안 점검 항목★★★

• 입력 데이터 검증 및 표현

보안 취약점	설명	대책
SQL 삽입 (SQL Injection)	웹 응용 프로그램에 SQL을 삽입하여 내부데이터베이스(DB) 서버의 데이터를 유출 및 변조하고, 관리자 인증을 우회하는 보안 취약점	동적 쿼리에 사용되는 입력 데이터에 예약어 및 특수문자가 입력되지 않게 필터링 되도록 설정하여 방지
경로 조작 및 자원 삽입	데이터 입출력 경로를 조작하여 서버 자원을 수정·삭제할 수 있는 보안 취약점	사용자 입력값을 식별자로 사용하는 경우, 경로 순회 공격을 막는 필터를 사용하여 방 지
크로스사이트 스크립팅 (XSS: Cross Site Scripting)	웹페이지에 악의적인 스크립트를 삽입하여 방문자들의 정보를 탈취하거나, 비정상적인 기능 수행을 유발하는 보안 취약점	- HTML 태그 사용 금지(특히, < 문자 사용 시 <로 변환처리 등) - 특수문자 등록을 방지하기 위해 특수 문자 필터링
메모리 버퍼 오버플로	연속된 메모리 공간을 사용하는 프로그램에 서 할당된 메모리의 범위를 넘어선 위치에서 자료를 읽거나 쓰려고 할 때 발생하는 보안 취약점	메모리 버퍼를 사용할 경우 적절한 버퍼의 크기를 설정하고, 설정된 범위의 메모리 내 에서 올바르게 읽거나 쓸 수 있도록 함으로 써 방지
운영체제 명령어 삽입	외부 입력값을 통해 시스템 명령어의 실행을 유도함으로써 권한을 탈취하거나 시스템 장 애를 유발하는 보안 취약점	웹 인터페이스를 통해 시스템 명령어가 전달되지 않도록 하고, 외부 입력값을 검증 없이 내부 명령어로 사용하지 않음으로써 방지

		- 입력화면 폼을 작성 시 GET 방식보다
사이트 간 요청	가오기가 가지어 이기이트 묘자원에 고거기	POST 방식 사용
위조	사용자가 자신의 의지와는 무관하게 공격자	- 입력 폼과 입력처리 프로그램에서 세션별
(CSRF; Cross-Site	가 의도한 행위를 특정 웹사이트에 요청하게	CSRF 토큰을 사용하여 점검
Request Forgery)	하는 보안 취약점	- 중요 기능의 경우 재인증을 통해 안전하게
		실제 요청 여부를 확인하도록 구현
위험한 형식 파일	악의적인 명령어가 포함된 스크립트 파일을	업로드되는 파일의 확장자 제한, 파일명의
기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	업로드함으로써 시스템에 손상을 주거나, 시	암호화, 웹사이트와 파일 서버의 경로 분리,
입도드	스템을 제어할 수 있는 보안 취약점	실행 속성을 제거하는 등의 방법으로 방지
신뢰되지 않은 URL	입력 값으로 사이트 주소를 받는 경우 이를	연결되는 외부 사이트의 주소를 화이트 리스
주소로 자동접속	조작하여 방문자를 피싱 사이트로 유도하는	
연결	보안 취약점	트로 관리함으로써 방지

•보안 기능

보안 취약점	설명	대책
적절한 인증 없이 중요기능 허용	보안검사를 우회하여 인증과정 없이 중요정 보 또는 기능에 접근 및 변경 가능한 보안 취약점	중요정보나 기능을 수행하는 페이지에서는 재인증 기능을 통해 방지
부적절한 인가	접근제어 기능이 없는 실행경로를 통해 정보 또는 권한 탈취가 가능한 보안 취약점	모든 실행경로에 대해 접근제어 검사를 수행하고, 사용자에게는 반드시 필요한 접근권한만 부여하여 방지
중요한 자원에 대한 잘못된 권한 설정	권한 설정이 잘못된 자원에 접근하여 해당 자원을 임의로 사용 가능한 보안 취약점	소프트웨어 관리자만 자원을 읽고 쓸 수 있 도록 설정하고, 인가되지 않은 사용자의 중 요 자원에 대한 접근 여부를 검사함으로써 방지
취약한 암호화 알고리즘 사용	암호화된 환경설정 파일을 해독하여 비밀번 호 등의 중요정보를 탈취할 수 있는 보안 취 약점	안전한 암호화 알고리즘, 안정성이 인증된 암호 모듈을 이용하여 방지
중요정보 평문 저장 및 전송	암호화되지 않은 평문 데이터를 탈취하여 중 요한 정보를 획득할 수 있는 보안취약점	중요 정보를 저장하거나 전송할 때는 반드시 암호화 과정을 거치도록 하고, HTTPS 또는 SSL/TLS 등의 보안 채널을 이용하여 방지
하드코드된 비밀번호	프로그램 코드 내부에 패스워드 포함 시 관 리자 정보가 노출될 수 있는 보안 취약점	- 패스워드는 암호화하여 별도 파일에 저장 - 소프트웨어 설치 시 직접 패스워드나 키를 입력하도록 설계하여 방지
취약한 패스워드 요구조건	취약한 사용자 패스워드 조합 규칙에 따른 사용자 계정 보안 취약점	패스워드 생성 시 강한 조건 검증 필요

•에러 처리

보안 취약점	설명	대책
	프로그램이 실행환경, 사용자 정보, 디버깅	오류 발생 시 가능한 한 내부에서만 처리되
오류 메시지 통한	정보 등의 중요 정보를 포함하는 오류 메시	도록 하거나 메시지를 출력할 경우 최소한의
정보 노출	지를 생성하여 공격자의 악성 행위를 도와주	정보 또는 사전에 준비된 메시지만 출력되도
	는 보완 취약점	록 함으로써 방지
오류 상황 대응	오류가 발생할 수 있는 부분에 대해 예외처	오류가 발생할 수 있는 부분에 예외처리 구
오류 경황 대등 부재	리를 하지 않았거나 예외처리 미비로 인해	문을 작성하고, 제어문을 활용하여 오류가
구세	발생할 수 있는 보안 취약점	악용되지 않도록 코딩함으로써 방지
	프로그램 수행 중에 함수의 반환값 또는 오	모든 함수의 반환값이 의도대로 출력되는지
부적절한 예외 처리	류들을 세분화하여 처리하지 않고 광범위하	
	게 묶어 한 번에 처리하거나, 누락된 예외가	확인하고, 광범위한 예외처리 대신 구체적인
	존재학 때 발생하는 보안 취약점	예외처리를 통해 방지

•세션 통제(Session Control)

보안 취약점	설명	대책
	- 인증 시 일정한 규칙이 존재하는 세션ID	
	가 발급되거나, 세션 타임아웃이 너무 길	- 세션 ID의 예측이 불가능하도록 안전한
	게 설정되어 있는 경우 발생할 수 있는	난수 알고리즘 적용
비주비의 제제 키키	보안 취약점	- 로그인 시 로그인 전의 세션 ID를 삭제하
불충분한 세션 관리	- 세션 관리가 충분하지 않으면 침입자는 세	고 재할당
	션 하이재킹과 같은 공격을 통해 획득한	- 장기간 접속하고 있는 세션ID는 주기적으
	세션ID로 인가되지 않은 시스템의 기능을	로 재할당하도록 설계
	이용하거나 중요한 정보에 접근 가능	

•코드 오류

나이 카아크	រាក	eji an
보안 취약점	설명 - 널 포인터가 가리키는 메모리에 어떠한 값	대책
널 포인터 (Null Pointer) 역참조	- 될 포인터가 가다키는 메모디에 어떠인 값을 저장할 때 발생하는 보안 취약점 - 많은 라이브러리 함수들이 오류가 발생할 경우 Null 값을 반환하는데, 이 반환값을 포인터로 참조하는 경우 발생 - 대부분 운영체제에서 널 포인터는 메모리의 첫 주소를 가리키며, 해당 주소를 참조할 경우 소프트웨어가 비정상적으로 종료될 수 있음 - 공격자가 의도적으로 널 포인터 역참조를 실행하는 경우, 그 결과 발생하는 예외사항을 추후에 공격자가 악용할 수 있음	- Null이 될 수 있는 포인터를 이용하기 전에 Null 값을 갖고 있는지 검사한 후 안전한 경우에만 사용 - 스택 가드(Stack Guard) 활용
부적절한 자원 해제	 부적절한 자원 해제는 자원을 반환하는 코드를 누락하거나 프로그램 오류로 할당된 자원을 반환하지 못했을 때 발생하는 보안취약점 힙 메모리(Heap Memory), 소켓(Socket) 등의 유한한 시스템 자원이 계속 점유하고 있으면 자원 부족으로 인해 새로운 입력을 처리하지 못할 수 있음 	자원을 획득하여 사용한 다음에는 Finally 블록에서 반드시 자원이 반환되도록 코딩함 으로써 방지
해제된 자원 사용	- 이미 사용이 종료되어 반환된 메모리를 참 조하는 경우 발생하는 보안 취약점 - 반환된 메모리를 참조하는 경우 예상하지 못한 값 또는 코드를 수행하게 되어 의도 하지 않은 결과가 발생할 수 있음	반환된 메모리에 접근할 수 없도록 주소를 저장하고 있는 포인터를 초기화함으로써 방 지
초기화되지 않은 변수 사용	- 변수 선언 후 값이 부여되지 않은 변수를 사용할 때 발생할 수 있는 보안 취약점 - 변수가 선언되어 메모리가 할당되면 해당 메모리에 이전에 사용하던 내용이 계속 남아 있어 변수가 외부에 노출되는 경우 중요정보가 악용될 수 있음 정수를 문자로 변환하면서 표현할 수 없는	변수 선언 시 할당된 메모리를 초기화함으로 써 방지 정수를 문자로 변환할 경우, 변환 값의 크기
정수를 문자로 변환	범위의 값이 잘려나가 문자에 대한 저장 값이 올바르지 않은 보안 취약점	가 변환 값이 저장되는 변수의 크기보다 크 지 않도록 함

• 캡슐화

보안 취약점	설명	대책
잘못된 세션에 의한 데이터 정보 노출	- 다중 스레드(Multi-Thread) 환경에서 멤 버 변수에 정보를 저장할 때 발생하는 보 안 취약점 - 싱글톤(Singleton) 패턴에서 발생하는 경 쟁 조건(Race Condition)으로 인해 동기 화 오류가 발생하거나, 멤버 변수의 정보 가 노출될 수 있음	싱글톤 패턴을 사용할 경우 변수 범위(Scope)에 주의하고, 멤버 변수보다 지역 변수를 활용해 변수의 범위를 제한함으로써 방지
제거되지 않고 남은 디버그 코드	 개발 중에 버그 수정이나 결과값 확인을 위해 남겨둔 코드들로 인해 발생하는 보안 취약점 소프트웨어 제어에 사용되는 중요한 정보가 디버그 코드로 인해 노출될 수 있음 디버그 코드에 인증 및 식별 절차를 생략하거나 우회하는 코드가 포함되어 있는경우 공격자가 이를 악용할 수 있음 	디버그 코드는 개발 완료 후 삭제 처리
Public 메소드로부터 반환된 Private 배열	- 선언된 클래스 내에서만 접근이 가능한 Private 배열을 모든 클래스에서 접근이 가능한 Public 메소드에서 반환할 때 발생하는 보안 취약점 - Public 메소드가 Private 배열을 반환하면 배열의 주소가 외부로 공개되어 외부에서 접근할 수 있게 됨	Private 배열을 별도의 메소드를 통해 조작하거나, 동일한 형태의 복제본으로 반환받은 후 값을 전달하는 방식으로 방지
민감한 데이터를 가진 내부 클래스 사용	권한이 없는 클래스를 사용하고자 할 때 발 생하는 보안 취약점	내부 클래스 사용 시 외부 클래스의 접근 금지
시스템 데이터 정보	시스템의 내부 정보를 시스템 메시지 등을 출	시스템 메시지를 통해 노출되는 메시지는 최
노출	력하도록 코딩했을 때 발생하는 보안 취약점	소한의 정보만을 제공함으로써 방지

• API 오용

보안 취약점	설명	대책
	- 도메인명에 의존하여 인증이나 접근 통제 등 의 보안 결정을 내리는 경우 발생하는 보안 취약점) K
DNS lookup에 의존한 보안 결정	- DNS 엔트리를 속여 동일한 도메인에 속한 서버인 것처럼 위장하거나, 사용자와 서버 간의 네트워크 트래픽을 유도하여 악성 사이 트를 경유하도록 조작할 수 있음 - 공격자는 DNS lookup을 악용하여 인증이나 접근 통제를 우회하는 수법으로 권한을 탈취함	DNS 검색을 통해 도메인 이름을 비교하지 않고 IP 주소를 직접 입력하여 접근함으로써 방지
취약한 API 사용	□ 등세를 구워이는 구립으로 단인을 들러됨 - 보안 문제로 사용이 금지된 API를 사용하거나, 잘못된 방식으로 API를 사용했을 때 발생하는 보안 취약점 - 보안 문제로 금지된 대표적인 API에는 C언어의 문자열 함수 strcat(), strcpy(), sprintf()등이 있음 - 보안 상 안전한 API라고 하더라도 자원에 대한 직접 연결이나, 네트워크 소켓을 통한 직접호출과 같이 보안에 위협을 줄 수 있는 인터페이스를 사용하는 경우 보안 약점이 노출됨	보안 문제로 금지된 함수는 안전한 함수로 대체하고, API의 매뉴얼을 참고하여 보안이 보장되는 인터페이스를 사용함으로써 방지 (예) strcpy(): 글자 수 상관없이 문자열 복 사 가능하여 위험 → strncpy(): 문자열 복사 시 글자 길이 지정

106 암호 알고리즘★★★

•암호 알고리즘 관련 용어

용어	설명
평문	암호화되기 전의 원본 메시지
(Plain)	참오와되기 전의 현순 메시시
암호문(Cipher)	암호화가 적용된 메시지
암호화(Encryption)	평문을 암호문으로 바꾸는 작업
복호화(Decryption	암호문을 평문으로 바꾸는 작업
₹](Key)	적절한 암호화를 위하여 사용하는 값
치환 암호(대치암호;	비트, 문자 또는 문자의 블록을 다른 비트. 문자 또는 블록으로 대체하는
Substitution Cipher)	방법
전치 암호(Transposition	비트, 문자 또는 블록이 원래 의미를 감추도록 자리바꿈 등을 이용하여
Cipher)	재배열하는 방법

• 양방향 암호화 알고리즘 - 대칭키/비대칭 키 암호 방식 비교

구분	대칭 키 암호 방식	비대칭 키 암호 방식
7]	대칭 키(=개인 키, 비밀 키)	비대칭 키(=공개 키)
키의 관계	암호화 키=복호화 키	암호화 키≠복호화 키
암호화 키	비밀 키	공개 키
복호화 키	비밀 키	개인 키
키 개수	n(n-1) 2 10명이 공개키 암호를 사용할 경우 45개의 키가 필요하다.	2n 10명이 공개키 암호를 사용할 경우 20개의 키 가 필요하다.
장점	- 암복호화 키 길이가 짧음 - 암복호화 속도가 빠름	- 암호화 키 사전 공유 불필요 - 관리해야 할 키 개수가 적음 - 키 분배 및 관리가 쉬움 - 개인 키 활용해 인증, 전자 서명 등에 적용 가능
단점	- 키 분배 및 관리의 어려움 - 기밀성만 보장	- 암복호화 키 길이가 김 - 암복호화 속도가 느림
알고리즘	- 블록 암호화 방식: DES, SEED, AES, ARIA, IDEA - 스트림 암호화 방식: LFSR, RC4	디피-헬만(Diffie-Hellman), RSA, ECC, Elgamal, DAS

107 서비스 공격 기법★★

•서비스 공격 유형과 공격도구/탐지 기법

구분	공격기법	설명
	Buffer Overflow	메모리에 할당된 버퍼 크기를 초과하는 양의 데이터를 입력해 프로세
	(버퍼 오버플로우)	스의 흐름을 변경시켜 악성코드를 실행시키는 공격 기법
정보 보안 침해 공격	Backdoor (백도어)	- '뒷문(Backdoor)'이라는 단어의 어감에서 알 수 있듯, 어떤 제품이 나 컴퓨터 시스템, 암호시스템 또는 알고리즘에서 정상적인 인증 절차를 우회하는 기법. 즉, 허가받지 않고 시스템에 접속하는 권리 를 얻음 - 해커는 백도어를 통해서 이용자 몰래 컴퓨터에 접속하여 악의적인 행위를 하기도 함 - 백도어 탐지기법: 프로세스 및 열린 포트 확인, SetUid 파일 검사, 백신 및 백도어 탐지 툴 활용, 무결성 검사, 로그 분석

Key Logger	컴퓨터 사용자의 키보드 움직임을 탐지해서 저장하고, ID나 패스워드,
Attack	계좌 번호, 카드 번호 등과 같은 개인의 중요한 정보를 몰래 빼 가는
(키로거 공격)	공격 기법
Format String	포맷 스트링을 인자로 하는 함수의 취약점을 이용한 공격으로 외부로
Attack	부터 입력된 값을 검증하지 않고 입출력 함수의 포맷 스트링을 그대
(포맷 스트링 공격)	로 사용하는 경우 발생
Race Condition	
Attack	레이스 컨디션 공격은 실행되는 프로세스가 임시파일을 만드는 경우
(레이스 컨디션	악의적인 프로그램을 통해 그 프로세스의 실행 중에 끼어들어 임시파
공격)	일을 심볼릭 링크하여 악의적인 행위를 수행하게 하는 공격 기법
o~i)	시스템 침입 후 침입 사실을 숨긴 채 차후의 침입을 위한 백도어, 트
Rootkit	로이 목마 설치, 원격 접근, 내부 사용 흔적 삭제, 관리자 권한 획득
(루트킷)	등 주로 불법적인 해킹에 사용되는 기능을 제공하는 프로그램의 모음
Phishing	소셜 네트워크에서 악의적인 사용자가 지인 또는 특정 유명인으로 가
(피싱)	장해 불특정 다수의 정보를 탈취하는 공격 기법
(म,९)	(공격) 사회 공학의 한 기법으로, 특정 대상을 선정한 후 그 대상에게
Spear Phishing	일반적인 이메일로 위장한 메일을 지속적으로 발송하여, 발송 메일의
(스피어피싱)	본문 링크나 첨부된 파일을 클릭하도록 유도하여 사용자의 개인정보
(= 4743)	
	를 탈취하는 공격 기법(사이버 사기) 문자메시지를 이용해 신뢰할 수 있는 사람 또는 기업이 보낸 것처럼
Smishing	가장해 개인 비밀정보를 요구하거나 휴대폰 소액 결제를 유도하는 피
(스미싱)	
	성 공격(사이버 사기) 스마트폰을 이용하여 금융 업무를 처리하는 사용자에게 인증 등이 필
Qshing	
(큐싱)	요한 것처럼 속여 QR 코드를 통해 악성 앱을 내려받도록 유도, 금융
	정보 등을 빼내는 피싱 공격(사이버 사기) 무선 Wifi 피싱 기법으로 공격자는 합법적인 Wifi 제공자처럼 행세하
Evil Twin Attack	
(이블 트윈 공격)	며 노트북이나 휴대 전화로 핫스팟에 연결한 무선 사용자들의 정보를
Worm	취하는 무선 네트워크 공격 기법 다른 컴퓨터의 취약점을 이용해 스스로 전파하거나 메일로 전파되며
(웜)	<u>스스로를 증식하는 악성 소프트웨어 컴퓨터 프로그램 혹은 코드</u> - 스스로 실행되지 못하고, 해커의 명령에 의해 원격에서 제어 또는
Malicious Bot	실행이 가능한 프로그램 혹은 코드
	- 주로 취약점이나 백도어 등을 이용하여 전파되며, 스팸 메일 전송
(악성 봇)	
	이나 분산 서비스 거부 공격(DDoS) 등에 악용 - 악성 봇에 의해 감염된 PC
Zombie(좀비) PC	- C&C(Command & Control) 서버의 제어를 받아 주로 DDoS 공격
Zoiiibie(吉山) PC	
	등에 이용 해커가 원격지에서 감염된 좀비 PC에 명령을 내리고 악성코드를 제
C&C 서버	에기가 현각자에서 심심한 몸이 FC에 항상을 내다고 각성고드를 제어하기 위한 용도로 사용하는 서버
Botnet	악성 프로그램에 감염되어 악의적인 의도로 사용될 수 있는 다수의
(봊넷)	컴퓨터들이 네트워크로 연결된 형태
(天文) Ransomware	전류다들이 네트ㅋ그도 단결된 형네 인터넷 사용자의 컴퓨터에 침입해 내부 문서 파일 등을 암호화해 사
(랜섬웨어)	용자가 열지 못하게 하는 공격 기법
	특정 날짜나 시간 등 조건이 충족되었을 때 악의적인 기능(Function)
Logic Bomb	을 유발할 수 있게 만든 코드의 일부분으로 소프트웨어 시스템에 의
(논리 폭탄)	도적으로 삽입된 악성 코드
Advanced	다양한 IT 기술과 방식들을 이용해 조직적으로 특정 기업이나 조직
Persistent Threat	네트워크에 침투해 활동 거점을 마련한 뒤 때를 기다리면서 보안을
(APT 공격)	무력화시키고 정보를 수집한 다음 외부로 빼돌리는 형태의 공격
/211 1 O J /	
Supply Chain	소프트웨어 개발사의 네트워크에 침투하여 소스 코드에 악의적인 코
Attack	드를 삽입하거나 배포 서버에 접근해 악의적인 파일로 변경하는 방식
(공급망 공격)	을 통해 사용자 PC에 소프트웨어를 설치 또는 업데이트 시에 자동적
 	으로 감염되도록 하는 공격

	Zero Day Attack	보안 취약점이 발견되어 널리 공표되기 전에 해당 취약점을 악용하여	
	(제로데이 공격)	이루어지는 보안 공격	
	Trojan Horse	악성 루틴이 숨어 있는 프로그램으로 겉보기에는 정상적인 프로그램	
	(트로이 목마)	으로 보이지만 실행하면 악성 코드를 실행	
	Switch Jamming	위조된 매체 접근 제어(MAC) 주소를 지속적으로 네트워크로 흘려보	
	Switch Janning (스위치 재명)	내, 스위치 MAC 주소 테이블의 저장 기능을 혼란시켜 더미 허브	
	(프레시 세명)	(Dummy Hub)처럼 작동하게 하는 공격	
	Sniffing	암호화되지 않은 패킷들을 수집하여 순서대로 재조합 후 ID, PW와	
	(스니핑)	같은 중요한 정보를 유출하기 위한 수동적인 형태의 공격	
	Network		
	Scanner / Sniffer	(도구) 네트워크 하드웨어 및 소프트웨어 구성의 취약점 파악을 위해	
	(네트워크 스캐너	공격자가 사용하는 공격 도구	
	/ 스니퍼)		
	Password	패스워드를 '깨뜨리다(Crack)'는 말로, 공격자가 암호화된 사용자의	
		패스워드를 평문 형태로 알아내는 공격 (Dictionary Attack, Brute	
	Cracking	Force Attack, Password Hybrid Attack, Rainbow	
111 = 01 =	(패스워드 크래킹)	Table Attack)	
네트워크		- 서버에 대한 인증되지 않은 액세스 권한을 입수하는 데 사용하는	
침해 공격	IP Spoofing (IP 스푸핑)	기법	
		- 침입자가 패킷 헤더 수정을 통해 인증된 호스트의 IP 주소를 위조	
		- 타깃 서버로 메시지를 발송한 이후 패킷은 해당 포트에서 유입되는	
		것처럼 표시	
	ARP Spoofing (ARP 스푸핑)	공격자가 특정 호스트에게 잘못된 MAC 주소가 담긴 ARP Reply를	
		보내, 호스트의 ARP 캐시를 조작하여 호스트로부터 정보를 빼내는	
	ICMP Redirect	ICMP Redirect 메시지를 공격자가 원하는 형태로 만들어서 특정 목	
	공격	적지로 가는 패킷을 공격자가 스니핑하는 기법	
		- 서버에 접속하고 있는 클라이언트들의 세션 정보를 가로채는 공격	
	Session	기법	
	Hijacking	- 세션 하이재킹의 탐지 방법: 비동기화 상태 탐지, ACK 패킷 비율	
	(세션 하이재킹)	모니터링, 패킷의 유실 탐지, 예상치 못한 접속의 리셋 탐지	
	BlueBug	블루투스 장비 사이의 취약한 연결 관리를 악용한 공격으로 휴대폰	
블루투스	(블루버그)	원격 조정 또는 통화 감청	
	BlueSnarf	블루투스의 취약점을 활용하여 장비의 파일에 접근하는 공격으로 인	
		증 없이 간편하게 정보를 교환할 수 있는 OPP(Object Push Profile)	
	(블루스나프)	를 사용하여 정보 열람	
관련 공격	Blueprinting		
	(블루프린팅)	공격 대상이 될 블루투스 장비를 검색하는 활동	
	BlueJacking	보르트시르 이용해 소매한터 메시지르 이머스크 코프키노 고객	
	(블루재킹)	블루투스를 이용해 스팸처럼 메시지를 익명으로 퍼뜨리는 공격	

108 서버 인증★

• 인증 기술의 유형

유형	설명	예시
지식 기반 인증	주체가 '알고 있는 것'(Something you know)을 보여 주며	패스워드, PIN 번호 등
	인증	페드셔트, FIN 현오 등
소유 기반 인증	주체가 '그가 가지고 있는 것'(Something you have)을 보	토큰, 스마트카드,
	여 주며 인증	신분증, OTP 등
생체(존재) 기반 인증	주체가 '그가 가지고 있는 고유한 생체적 특	홍채, 지문, 얼굴 등
	징'(Something You Are)을 보여 주며 인증	중세, 시군, 월줄 궁
행위 기반 인증	주체가 '그가 하는 것'(Something you do)을 보여 주며 인증	서명, 발걸음, 몸짓 등

109 정보보안과 접근 제어 ★★★

•접근 제어 정책

	DAC	MAC	RBAC
구분	(Discretionary Access	(Mandatory Access	(Role Based Access
	Control)	Control)	Control)
의미	신분 기반(임의적)	규칙 기반(강제적)	역할 기반
의미	접근제어 정책	접근제어 정책	접근제어 정책
권한 부여자	데이터 소유자	시스템	중앙관리자
접근 결정	신분(Identity)	보안등급(Label)	역할(Role)
정책 변경	변경 용이	고정적(변경 어려움)	변경 용이
장점	구현 용이, 유연함	안정적, 중앙 집중적	관리 용이

110 시스템 보안 구현 ★★

• 리눅스(LINUX)의 커널 로그

데몬	파일명	내용
	/dev/console	커널에 관련된 내용을 관리자에게 알리기 위해 파일로 저
		장하지 않고 지정된 장치에 표시
kernel	var/log/wtmp	- 성공한 로그인/로그아웃에 대한 로그를 기록
		- 시스템의 시작/종료 시간에 대한 로그를 기록
	var/run/utmp	현재 로그인한 사용자의 상태에 대한 로그를 기록
	var/log/btmp	실패한 로그인에 대한 로그를 기록
	var/log/lastlog	마지막으로 성공한 로그인에 대한 로그를 기록

•네트워크 보안 솔루션

솔루션	설명
방화벽	기업 내부, 외부 간 트래픽을 모니터링하여 시스템의 접근을 허용하거나
(Firewall)	차단하는 시스템
웹 방화벽	- 일반적인 네트워크 방화벽과는 달리 웹 애플리케이션 보안에 특화된 보
(WAF; Web	안장비
Application Firewall)	- SQL 인젝션, XSS 등과 같은 웹 공격을 탐지하고 차단
네트워크 접근 제어 (NAC; Network Access Control)	- 단말기가 내부 네트워크에 접속을 시도할 때 이를 제어하고 통제하는 기능을 제공 - 바이러스나 웜 등의 보안 위협으로부터 네트워크 제어 및 통제 기능을 수행
침입 탐지 시스템 (IDS: Intrusion Detection System)	네트워크에서 발생하는 이벤트를 모니터링하고 비인가 사용자에 의한 자원 접근과 보안정책 위반 행위(침입)을 실시간으로 탐지하는 시스템

침입 방지 시스템 (IPS: Intrusion Prevention System)	네트워크에 대한 공격이나 침입을 실시간적으로 차단하고, 유해 트래픽에 대한 조치를 능동적으로 처리하는 시스템
무선 침입 방지 시스템 (WIPS: Wireless Intrusion Prevention System)	 인가되지 않은 무선 단말기의 접속을 자동으로 탐지 및 차단하고 보안에 취약한 무선 공유기를 탐지하는 시스템 외부 공격에 대해 내부 시스템을 보호하기 위해 무선 랜 환경에서의 보안 위협을 감지
통합 보안 시스템 (UTM: Unified Threat Management)	방화벽, 침입 탐지 시스템(IDS) 침입 방지 시스템(IPS), VPN, 안티 바이러 스, 이메일 필터링 등 다양한 보안 기능을 하나의 장비로 통합하여 제공하 는 시스템
가상사설망 (VPN: Virtual Private Network)	인터넷과 같은 공중망에 사설망을 구축하여 마치 전용망을 사용하는 효과 를 가지는 보안 솔루션

