## SCS2213 - ELECTRONICS AND PHYSICAL COMPUTING ONLINE PRACTICAL TEST 1 ANALOG ELECTRONICS

Duration: 1 ½ hour Index no:

Answer the following questions and attach the required screenshots. Upload a file in pdf format with your index number.

Analyze the scenario below and answer the questions by designing the circuit using EWB.

- 1. Write down the values of the following parameters regarding the main supply voltage in Sri Lanka.
  - a. Waveform/ signal type: AC
  - b. RMS voltage: 230V
  - c. Frequency: 50Hz
- 2. In EWB, set an AC voltage source with the relevant parameters mentioned above.



- 3. If you want to convert that voltage mentioned in 1. b) to 15 Vrms, what type of transformer that needs to be used?
  - Answer: Step down transformer
- 4. What is the ratio between primary and secondary winding?

Answer: 46:3

5. In EWB, connect a transformer to the previously set AC voltage source. Change the primary to secondary turn's ratio (N) to the required value in transformer properties. Complete the output side connecting a load resistor.



6. Using oscilloscope, find the maximum peak voltage reading with error.

$$(Vrms = \frac{Vpeak}{\sqrt{2}})$$

Attach the screenshot of the oscilloscope output.

Answer:



7. If you want to convert this secondary voltage from AC to DC, what kind of electronic component that can be used?

Answer: Diode (Rectifier)

- 8. Complete the circuit using the component mentioned in question. Attach a screenshot of the circuit.
- 9. Simulate the completed circuit and obtain the output and input signal patterns. (Set two different wire colors to the two channels of oscilloscope for a clear visualization of input and output waveforms)

Attach a screenshot of the oscilloscope output.

10. What is the electronic component that can be used in order to get a smooth DC output of the above circuit?

**Answer: Capacitor** 

11. Suggest a commercially using electronic component mentioned in question 10 by its generally used values (type, value and working voltage)

Answer:

12. Explain how it (component mentioned in question 10) works in smoothing process.

Answer: When the voltage rises, capacitor charges. When rectifier voltage down capacitor release the voltage to the load slowly.

13. Assume that you are going to start a video studio and light it. You need to connect four of 12V 3W Incandescent light bulbs as the load of the above rectifier circuit. Calculate the current through a single bulb.

Answer: P = VI 3 = 15I I = 0.2A

- 14. In EWB, redesign the previous rectifier circuit appropriately to the given scenario in question 13. Attach a screenshot of the circuit.
- 15. By referring the given Zener diode electrical characteristic table, decide the Zener diode that you are going to use? Give the reason for choosing it.

Answer: 1N4728

16. Calculate the Zener resistor value with its wattage.

Answer:

17. Assume one of the bulb has burned (Remove the wire connection of a one bulb in circuit diagram). What is the new load voltage?

Answer:

18. Give the reason for the new load voltage.

Answer:

- 19. Upload a screenshot of the circuit.
- 20. Reconnect the bulb. By using an operational amplifier add two noise signals (50 Hz/5 mV and 20 kHz/8 mV) to the circuit. (Add it with rectifier output)

  Upload a full window screenshot of the circuit.
- 21. If you need to remove these frequencies what type of filter you need to use? Explain why you use it.

Answer: bandpass filter

ELECTRICAL CHARACTERISTICS (25 °C Ambient Temperature unless otherwise noted)

| SYMBOL                                                                                                                                                                                     | V <sub>z</sub>                                                                                                                                   | Z <sub>z</sub>                                                                                                                          | l <sub>zt</sub>                                                                                                                              | Z <sub>zx</sub>                                                                                      | l <sub>zx</sub>                                                                                                    | l <sub>R</sub>                                                                               | V <sub>ert</sub>                                                                                                                      | l <sub>zu</sub>                                                                                                                  | l <sub>z</sub> (surge)                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Characteristics                                                                                                                                                                            | Nominal<br>Zener<br>Votlage<br>@l <sub>zt</sub><br>( <i>See note</i> )                                                                           | Max<br>Zener<br>Imped.<br>@l <sub>zr</sub>                                                                                              | Test<br>Current                                                                                                                              | Max.<br>Zener<br>Imped.<br>@l <sub>x</sub>                                                           | Test<br>Current                                                                                                    | Max.<br>Reverse<br>Current<br>@V <sub>RT</sub>                                               | Test<br>Voltage                                                                                                                       | Max.<br>Zener<br>Current                                                                                                         | Max.<br>Zener<br>Surge<br>Current                                                                                                          |
| ÜNIT                                                                                                                                                                                       | ٧                                                                                                                                                | Ω                                                                                                                                       | mA                                                                                                                                           | Ω                                                                                                    | mA                                                                                                                 | μА                                                                                           | ٧                                                                                                                                     | mA                                                                                                                               | mA                                                                                                                                         |
| 1N4728<br>1N4729<br>1N4730<br>1N4731<br>1N4732<br>1N4733<br>1N4734<br>1N4735<br>1N4736<br>1N4737<br>1N4738<br>1N4739<br>1N4740<br>1N4741<br>1N4742<br>1N4743<br>1N4744<br>1N4745<br>1N4744 | 3.3<br>3.6<br>3.9<br>4.3<br>4.7<br>5.1<br>5.6<br>6.2<br>6.8<br>7.5<br>8.2<br>9.1<br>10.0<br>11.0<br>12.0<br>13.0<br>15.0<br>16.0<br>18.0<br>20.0 | 10.0<br>10.0<br>9.0<br>9.0<br>8.0<br>7.0<br>5.0<br>2.0<br>3.5<br>4.0<br>4.5<br>5.0<br>7.0<br>8.0<br>9.0<br>10.0<br>14.0<br>20.0<br>22.0 | 76.0<br>69.0<br>64.0<br>58.0<br>53.0<br>49.0<br>45.0<br>41.0<br>37.0<br>34.0<br>31.0<br>25.0<br>23.0<br>21.0<br>19.0<br>17.0<br>15.5<br>14.0 | 400<br>400<br>400<br>500<br>550<br>600<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>70 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>0.5<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25 | 100<br>100<br>50<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>5.0<br>5.0<br>5.0<br>5.0 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.6<br>8.4<br>9.1<br>9.9<br>11.4<br>12.2<br>13.7<br>15.2 | 276<br>252<br>234<br>217<br>193<br>178<br>162<br>146<br>133<br>121<br>110<br>100<br>91<br>83<br>76<br>69<br>61<br>57<br>50<br>45 | 1380<br>1260<br>1190<br>1070<br>970<br>89<br>810<br>730<br>660<br>605<br>550<br>500<br>454<br>41<br>380<br>344<br>304<br>285<br>250<br>225 |
| 1N4748<br>1N4749<br>1N4750<br>1N4751                                                                                                                                                       | 22.0<br>24.0<br>27.0<br>30.0                                                                                                                     | 23.0<br>25.0<br>35.0<br>40.0                                                                                                            | 11.5<br>10.5<br>9.5<br>8.5                                                                                                                   | 750<br>750<br>750<br>1000                                                                            | 0.25<br>0.25<br>0.25<br>0.25                                                                                       | 5.0<br>5.0<br>5.0<br>5.0                                                                     | 16.7<br>18.2<br>20.6<br>22.8                                                                                                          | 41<br>38<br>34<br>30                                                                                                             | 205<br>190<br>170<br>150                                                                                                                   |
| 1N4752                                                                                                                                                                                     | 33.0                                                                                                                                             | 45.0                                                                                                                                    | 7.5                                                                                                                                          | 1000                                                                                                 | 0.25                                                                                                               | 5.0                                                                                          | 25.1                                                                                                                                  | 27                                                                                                                               | 135                                                                                                                                        |