

PROCEEDINGS

4TH ANNUAL COMMERCIAL AND PLASTIC COMPONENTS IN MILITARY APPLICATIONS WORKSHOP

Sponsored By:

SHARP

Sustainable Hardware and Affordable Readiness Practices Program Crane Division, Naval Surface Warfare Center Crane, Indiana

> 15 & 16 November, 1995 The Westin Hotel Indianapolis, Indiana

19960716 052

Approved for public release;
Distribution Unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

COMMERCIAL & PLASTIC COMPONENTS IN MILITARY APPLICATIONS WORKSHOP

Westin Hotel Indianapolis, Indiana

Agenda

Session 1 - W	ednesday, 15 November, 1995
8:00-8:30	Registration, Continental Breakfast
8:30-8:35	Welcome; Dan Quearry
8:35-8:50	SHARP Introduction; Don Schulte, NSWC Crane
Plast	ic Package Availability Program - Final Review
8:50-8:55 8:55-9:55 9:55-10:15	PPA Program Introduction; Dan Quearry, NSWC Crane PPA Overview; Ron Kovacs, NSC Program Manager High Lead Count Testing & Chip Seal; Rob Camilletti, Dow Corning Summary of the Plastic Package Reliability Test Program; Bob Byrne, National
10:15-10:30	Break
10:30-11:30	Plastic Molding Compounds; Nick Rounds/Bill Bates, Plaskon
11:30-12:15	Sensor Chip Development; Dave Peterson, Sandia National Lab
12:15-1:00	Lunch
1:00-1:30	Low Lead Count Testing and Results; Dan Quearry, NSWC Crane
1:30-2:00	Low Lead Count F/A; Jim Reilly, USAF-Rome Lab
2:00-2:30	High Lead Count Testing & F/A; Ron Kovacs, NSC
2:30-2:50	Break
2:50-4:30	PEM Usage in Commercial Avionics; Fred Malver/John Fink/Bruce Johnson, Honeywell CFS
4:30-4:45	Summary & Analysis of the Honeywell Field Reliability Program; Bob Byrne
	National
4:45-5:00	Conclusions and Future Work; Ron Kovacs, NSC
5:00-5:10	Days Wrap-up; Dan Quearry

COMMERCIAL & PLASTIC COMPONENTS IN MILITARY APPLICATIONS WORKSHOP

Westin Hotel Indianapolis, Indiana

Agenda	
_	nursday, 16 November, 1995
8:00-8:30	Registration, Continental Breakfast
8:30-9:10	Summary Report, Commercial ICs in Military Systems Cliff Schwach, Rockwell
9:10-9:50	Best Commercial in Military Semiconductors Buf Slay, Texas Instruments
9:50-10:30	Transitioning From Military to Commercial Manufacturing Maurice Chenier, Computing Devices International
10:30-10:40	Break
10:40-11:20	Plastic Packaging Consortium TRP Dr. Luu Nguyen, National Semiconductor
11:20-12:00	The Reliability of Plastic Encapsulated Microcircuits William Denson, Reliability Analysis Center
12:00-1:00	Lunch
1:00-1:40	Long Term Storage of PEMs Bill Garry, Westinghouse
1:40-2:20	Accelerated Testing for Telecommunications Equipment Dr. Tony Chan, AT&T
2:20-2:40	Break
2:40-3:20	Plastic Package Total Dose Study Steve Clark, NSWC Crane
3:20-3:30	Days Wrap-up; Dan Quearry

FOURTH ANNUAL SHARP COMMERCIAL & PLASTIC COMPONENT WORKSHOP ATTENDANCE 15 & 16 November 1995

Name	Company	Telephone FAX
Agresti, Aldo	GEC-MARCONI Systems	(201) 305-2170
- Sr. Design Engineer	150 Parish Dr.	fax: (201) 305-2746
511 2 52 61 21 6	P.O. Box 932	
	Wayne, NJ 07474-0932	
Allen, Carl	Philips Semiconductor	(408) 991-4081
- Special Products Eng.	811 E. Arques Ave.	fax: (408) 991-2216
Special Freducis 2.1g.	Sunnyvale, CA 94088	
Anderson, Norm	Rockwell/Collins	(319) 395-3818
- Assoc. Principal Eng.	MS 105-167	fax: (319) 395-1788
- Assoc. I Incipal Eng.	400 Collins Rd.	
	Cedar Rapids, IA 52498	
Bains, Singh	NAWCADI	(317) 306-4742
- Electronics Engineer	MS 31	fax: 306-4373
- Electronics Engineer	6000 E. 21 st Street	Iun. 500 1575
	Indianapolis, IN 46219-2189	
Baird, Eugene W. II	NAWCADI	(317) 306-3903
	Code: 456500C38	fax: (317) 306-4914
- Electronic Engineer	6000 E. 21st Street	iux. (317) 300 1311
	Indianapolis, IN 46219-2189	(812) 854-2105
Baker, Phil	NSWC, Crane	fax: (812) 854-3806
- Electronics Engineer	Code 6052	1ax: (812) 834-3800
	300 Hwy 361	
	Crane, IN 47522	(015) 007 (209
Bartelli, Susan	Sundstrand Aerospace	(815) 226-6398
 Associate Engineer 	4747 Harrison Ave.	fax: (815) 394-2497
	Rockford, IL 61125	
Bates, Bill	Plaskon	(215) 641-7963
	727 Norristown Rd.	
	P. O. Box 904	
	Springhouse, PA 19477-0904	
Bjerregaard, Clair	Cubic Defense Systems	(619) 277-6780
- Senior Components	M/S 10-27	X2769
Engineer	9333 Balboa Ave.	fax: (619) 277-1878
	San Diego, CA 92123	
Bird, Mark	Amkor Electronics, Inc.	(214) 580-1879
- Director of Corporate	2425 Gateway Dr., Ste. 200	fax: (214) 518-0293
Standards	Irving, TX 75063-2700	-1803
Blanton, James	DESC	(513) 296-6268
2.0	1507 Wilmington Pike	
	Dayton, OH 45444	
Borrego, Joc. H.	Sandia National Labs	(505) 845-8167
- Component Engineer	Mail Stop 0967	fax: (505) 844-7059
- Component Engineer	P.O. Box 5800	(2.00)
	Albuquerque, NM 87185	
D 1 D4 I	Harris Semiconductor	(407) 724-7783
Brooks, Peter J.		fax: (407) 724-7783
	M/S 58-005	1ax. (407) 724-7940
	P.O. Box 883	
	Melbourne, FL 32902-0883	

Name	Company	Telephone FAX
Brunamonti, Vic	Commander NSWC, Crane Code 6024/5, Bldg. 2940W 300 Highway 361 Crane, IN 47522	(812) 854-2378 fax: (812) 854-4248
Bubar, Carmen - Component Engineer	Hughes Aircraft E1/C188 P. O. Box 902 El Segundo, CA 90245	(310) 616-7557 fax: (310) 616-4451
Butcher, Charles	NWSC, Crane Code 6024/5 Bldg. 2940W 300 Highway 361 Crane, IN 47522-5001	(812) 854-22378 fax: (812) 854-4248
Byrne, Robert C Senior Engineering Manager	National Semiconductor Corp. Mail Stop 10-225 1120 Kifer Rd. Sunnyvale, CA 94086	(408) 721-5275 fax: (408) 721-4860
Camilletti, Robert - Program Manager	Dow Corning Corporation MS C041B1 2200 W. Salzburg Rd. Midland, MI 48611	(517) 496-5722 fax: (517) 496-5121
Canada, Bobbie R Engineer	Kollsman 220 Daniel Webster Hwy. Merrimack, NH 03054	(603) 886-2541 fax: (603) 595-5156
Carlini, Angelo - Director Military Programs	Pantronix Corporation 145 Rio Robles Dr. San Jose, CA 95134	(408) 432-1898 fax (408) 432-1890
Casasnovas, Anthony - Components Engineer	Old Dominion Systems, Inc. of Maryland M/S 23-294 11100 John Hopkins Rd. Laurel, MD 20723	(301) 953-6000 X7652 fax: (301) 953-6696
Chadwick, Craig - Reliability Engineer	Harris - Government Aerospace Division M/S 102-4825 PO Box 9400 Melbourne, FL 32901	(407) 729-7221 fax: (407) 725-0646
Chan, Dr. Tony	AT&T P. O. Box 900 Princeton, NJ 08542-0900	(609) 639-2420
Chenier, Maurice	Computing Devices Int'l M/S BLCS1A 8800 Queen Ave. South Bloomington, MN 55431	(612) 921-6120
Ciancetta, Mark - Project Engineer	General Research Corporation 20 Trafalgar Square, Suite 455 Nashua, NH 03063	(603) 889-6343 fax: (603) 889-8042
Clark, Steve	NSWC, Crane 300 Highway 361 Crane, IN 47522	(812) 854-1693 fax: (812) 854-1808
Combs, Bret	Naval Air Warfare Center Cruise Missile Project 1 Administration Circle China Lake, CA 93555	(619) 939-8277 fax: (619) 927-1902

Name	Company	Telephone FAX
Commare, Donald L.	Sonoscan, Inc.	(708) 766-7088
- Manager, Analytical	530 E. Green St.	fax: (708) 766-4603
Inspection Div.	Bensenville, IL 60106	
Coss, Richard	ARINC, Inc.	(410) 266-4435
- Staff Principal	Data Link Engineering	fax: (410) 573-3026
Engineer	2551 Riva Rd.	
	Annapolis, MD 21401	
Crawford, Hugh	NAWCADI	(317) 306-3664
- Quality Assurance	Code 61	fax: (317) 306-4373
Specialist	6000 E. 21 st St.	
	Indianapolis, IN 46219	
Damm, Joseph	Hazeltine Corporation	(516) 262-8363
- Components Engineer	MS 1-16	fax: (516) 262-8393
Components Engineer	950 E. Pulaski Rd.	` ′
	Greenlawn, NY 11740-1606	
Denson, Bill	IITRI/RAC	(315) 339-7038
- Sr. Reliability Engineer	201 Mill St.	fax: (315) 337-9932
- St. Renability Engineer	Rome, NY 13440	
Derickson, Karen	GE Aircraft Controls	(219) 434-5417
- Valve Engineer	2000 Taylor St.	fax: (219) 434-5568
- Valve Eligineer	Ft. Wayne, IN 46804	2011
Doll, Fred C.	Aircraft Braking Systems Corp.	(216) 796-5875
- Parts Engineer	Dept. 689B	fax: (216) 796-9805
- Parts Engineer	1204 Massillon Rd.	lux. (210) //0 /000
	Akron, OH 44306-4186	
Donlin, Dr. Noel	U. S. Army Missile Command	(205) 842-0156
- General Engineer	Product Assurance Directorate	fax: (205) 842-0152
- General Engineer	AMSMI-RD-QA-QT-RT	2 (200)
	Redstone Arsenal, AL 35898-5260	
Durham, Lester	ARINC, Inc.	(912) 542-2242
- Principal Analyst	210 Park Dr.	fax: (912) 923-4177
- i incipai i inaiyst	Warner Robins, GA 31088	
Dworghak, Robert	Naval Warfare Assessment Division	(909) 273-5290
- Mechanical Engineer	QA-23	fax: (909) 273-5315
- Mechanical Engineer	P.O. Box 5000	14.1. (505) 275 55 15
	Corona, CA 91718-5000	
Emargan Daya	Rockwell International - Collins	(319) 395-2356
Emerson, Doug	Mail: 153-264	fax: (319) 395-4358
- Reliability Engineer	350 Collins Rd. N.E.	Ida. (313) 333 1330
	Cedar Rapids, IA 52498	
F-rich Druce	Naval Air Warfare Center, Weapons Division	(619) 939-1992
Eyrich, Bruce	Code 41600D	fax: (619) 939-1765
- Sr. Components	China Lake, CA 93555-6001	lax. (015) 555 1705
Engineer		(612) 951-6213
Fink, John	Honeywell, Inc. Military Avionics	fax: (612) 951-5907
1		Iun. (012) 751-5707
	2600 Ridgway Parkway	
Fig. C	Minneapolis, MN 55440	(616) 241-7462
Fisher, Gary	Smith Industries	fax: (616) 241-8433
- Product Assurance	4141 Eastern Ave., SE	14A. (010) 241-0433
Engineer	Grand Rapids, MI 49518-8727	(2(0) 20(7451
Floring, Gary	Naval Undersea Warfare Center	(360) 396-7451
- Electronic Technician	610 Dowell St.	X264
	Keyport, WA 98345	fax: (360) 396-1453

Name	Company	Telephone FAX
Fong, Everett	TRW Components International	(310) 214-5504
- Staff Engineer	19951 Mariner Ave/157-1098	fax: (310) 214-5692
24.12	Torrance, CA 90503	
Foor, Ron	Motorola, Inc.	(602) 441-6544
- Commodity Engineer	M/S R7115	fax: (602) 441-4744
- Commonly Engineer	8220 E. Roosevelt	
	Scottsdale, AZ 85257	
Flynn, Jim	Lockheed Martin	(413) 494-2486
- Component Engineer	100 Plastics Avenue, RM 2720T	fax: (413) 494-5633
- Component Engineer	Pittsfield, MA 01201	
C William	Westinghouse Electric Corp.	(410) 765-2486
Garry, William	M/S S-3	fax: (410) 993-8009
- Manager Reliability		lax. (410) 223-0002
Analysis	P.O. Box 746	
	Baltimore, MD 21203	(616) 574 1625
Gillin, John F.	Loral Defense Systems - East	(516) 574-1635
- Engineer - Quality	MS 0-6	fax: (516) 574-4118
Management	365 Lakeville Rd.	
	Great Neck, NY 11020-1696	
Gittinger, Kurt	Allied Signal	(816) 997-5591
- Staff Engineer	D/416, FH40	fax: (816) 997-2266
	Kansas City Division	
	Kansas City, MO 64141-6159	
Gorden, Neal	NAWCADI	(317) 306-7451
- Electronics Engineer	Code 456500C38	fax: (317) 306-4914
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	*
Gottesfeld, Sheldon	Harris Semiconductor	fax: (407) 729-5560
- Reliability Engineering	2401 Palm Bay Road, N.E.	1
Manager	Palm Bay, Florida 32905	
Graebe, Jinhee	Naval Warfare Assessment Division	(909) 273-4936
- Industrial Engineer	QA-23	fax: (909) 273-5315
- Industrial Engineer	P.O. Box 5000	
	Corona, CA 91718-5000	
C D-1t	CAE Electronics	(514)-341-6780
Gregory, Robert	8885 Cote De Liesse	X2837
- Component Engineer	St. Laurent, Quebec Canada H4T 1G6	fax: (514) 734-5618
G : 67		(818) 591-8189
Griffin, Clay	Rantec Microwave & Electronics, Inc.	X290
- Vice President	24003 Ventura Blvd.	fax: (818) 876-0452
of Engineering	Calabasas, CA 91302	(505) 845-8868
Hanlon, James T.	Sandia National Laboratories	
- Sr. Member of	P. O. Box 5800	fax: (505) 844-8168
Technical Staff	Albuquerque, NM 87185-0525	
Hastings, Doug	Loral Aeronutronic	(714) 459-3515
- Technical Consultant	29947 Banderas Ave.	fax: (714) 459-3190
	P. O. Box 7004	
	Rancho Santa Margarita, CA 92688	
Havard, Diane	Chrysler Technology Airborne Systems, Inc.	(817) 867-4348
- Specialist Components	P. O. Box 154580, M/S 1119	fax: (817) 867-4026
•	Waco, TX 76715-4580	

Name	Company	Telephone FAX
Hawes, Allen	Commander NSWC, Crane Code 6024/5, Bldg. 2940W 300 Highway 361 Crane, IN 47522	(812) 854-2378 fax: (812) 854-4248
Henderson, James - Electronic Technician	NSWC, Crane Code 6031 B-2917 300 Highway 361 Crane, IN 47522-5001	(812) 854-5161 fax: (812) 854-1916
Hodge, Robert - Reliability Engineer Specialist	Lockheed Martin 0/79-40, B/151 PO Box 3504 Sunnyvale, CA 94088-3504	(408) 742-5223 fax: (408) 742-6468 or (408) 743-2020
Hokenson, Eric - Electronic Engineer	Naval Warfare Assessment Division QA-22 P.O. Box 5000 Corona, CA 91718-5000	(909) 273-4589 fax: (909) 273-5315
Howard, Alan - Manager, Operations	Uwohali 200 E. Main Stakville, MS 39759	(601) 324-8441 fax: (601) 324-8447
Huang, Ming - Assistant Project Engineer	Lockheed Martin Tactical Aircraft Systems MZ 2481 PO Box 748 Ft. Worth, TX 76101-0748	(817) 763-3327 fax: (817) 777-2115
Hubbell, Wes - Sr. Engineer	E-Systems, ECI Division P. O. Box 12248 St. Petersburg, FL 33733-2248	(813) 347-7645 fax: (813) 343-7318
Ingram, Pam	NSWC, Crane Code 602 300 Highway 361 Crane, IN 47522	(812) 854-2378 fax: (812) 854-4248
Jackson, Joc - Electronic Engineer	NAWCADI MS 61 6000 E. 21st Street Indianapolis, IN 46219-2189	(317) 306-4229 fax: (317) 306-4373
Jacoby, Ed - Sr. Components Engineer	ITT A/CD 7310 Innovation Blvd. Ft. Wayne, IN 46801	(219) 487-5153 fax: (219) 487-5066
Jasti, Suresh - Electronic Engineer	NAWCADI MS 50 6000 E. 21st Street Indianapolis, IN 46219-2189	(317) 306-4358 fax: (317) 306-7532
Jeffers, Larry - Electronics Engineer	NSWC, Crane Code 6058, Bldg. 3188 300 Highway 361 Crane, IN 47522-5001	(812) 854-5933 fax: (812) 854-1243
Johnson, Bruce G Reliability Engineer	Honcywell - CAS/SPO MN51-1370 8840 Evergreen Blvd. Minneapolis, MN 55433-6040	(612) 957-4375 fax: (612) 957-4195
Johnson, Will - Electronics Engineer	DESC-ELDS 1507 Wilmington Pike Dayton, OH 45444	(513) 296-5377 fax: (513) 296-8867

Name	Company	Telephone FAX
Jones, Ed - Quality & Reliability Data Analysis Consultant	11205 Lake Jackson Rd. Mannassas, VA 22111-2810	(703) 369-5860
Jordan, Pauletta - Sr. Engineer	Sundstrand Aerospace MS: 715M6 4747 Harison Ave. Rockford, IL 61125	(815) 394-3303 fax: (815) 394-2497
Kapadia, Narendra - Sr. Engineer	Materials Quality Engineering MS - ANZ F04 350 Lowell St. Andover, MA 01810	(508) 470-5809 fax: (508) 470-6522
Karnopp, Roger J Acquisition Manager	Acquisition Management MS U1K22 P.O. Box 64525 St. Paul, MN 55164-0525	(612) 456-2306 fax: (612) 456-3597
Koehler, Gary	Lockheed Martin MS-0918 86 South Cobb Dr. Marietta, GA 30063	(770) 793-1544 fax: (770) 793-1534
Koons, Edwin	NAWCADI 6000 E. 21st Street Indianapolis, IN 46219-2189	
Kovacs, Ron - Program Manager	National Semiconductor Co. M/S 29-100 1145 Sonora Ct. Santa Clara, CA 95052-8080	(408) 721-2097 fax: (408) 721-6454
Lammie, Todd - Sales Mgr.	Continental Viking Labs 2320 W. Peoria Ave., Bldg. D-133 Phoenix, AZ 85029	(602) 997-8378 fax: (602) 395-5919
Lander, John - Electronic Engineer	NAWCADI MS 61 6000 E. 21 st Street Indianapolis, IN 46219-2189	(317) 306-7816 fax: (317) 306-4373
Lantz II, Leon - Sr. Chemist	Department of Defense M/S Y261 9800 Savage Rd. Ft. Meade, MD 20755-6000	(410) 859-6983 fax: (410) 859-6968
Lorenz, William - Principal Eng.	Allied Signal Aerospace 717 N. Bendix Dr. Southbend, IN 46620	(219) 231-3583 fax: (219) 231-3040
Lynch, David - Product Assurance Mgr	GEC-MARCONI Defense Systems NESD, Silver Knowes Edinburgh, Scotland, U. K. EH4 4AD	44 131 343 5738 fax: 44 131 343 5050
Magnuson, Nels D Sr Member of Technical Staff	Sandia National Labs MS 0830 PO Box 5800 Albuquerque, NM 87185	(505) 844-4749 fax: (505) 844-9037
Mallory, Mike - Sr. Product Engineer	Philips Semiconductor M/S 62 P.O. Box 3409 Sunnyvale, CA 94088-3409	(408) 991-2731 fax: (408) 991-2216

Name	Company	Telephone FAX
Malver, Fred - Principal Research Scientist	Honeywell Technology Center MN65-2500 3660 Technology Dr. Minneapolis, MN 55418	(612) 951-7896 fax: (612) 951-7438
Marshall, Richard	Commander NSWC, Crane Code 6024/5, Bldg. 2940W 300 Highway 361 Crane, IN 47522	(812) 854-2378 fax: (812) 854-4248
McCord, William - Vice President	Austin Semiconductor 8701 Cross Park Dr. Austin, TX 78754	(512) 339-1188 fax: (512) 339-6641
McDermott, Jack - Principal Engineer	ARINC, Inc. 70 Westview St. Lexington, MA 02173	(617) 860-4500 fax: (617) 861-1492
McDonald, Jim - Sr. Technical Specialist	McDonnell Douglas Corporation MS 14-2 5301 Bolsa Ave. Huntington, CA 92647	(714) 896-2220 fax: (714) 896-1686
Meier, Gary - Staff Engineer	Allied Signal Aerospace KCD G. W. Meier, EE7 2B36 P. O. Box 419159 Kansas City, MO 64141-6159	(816) 997-2445 fax: (816) 997-5817
Mendoza, Ben - QA Manager	Logic Devices, Inc. 628 E. Evelyn Ave. Sunnyvale, CA 94086	(408) 737-3319 fax: (408) 733-7690
Mensah, Robert - Electrical Engineer	Naval Warfare Assessment Division QA-21 P.O. Box 5000 Corona, CA 91718-5000	(909) 273-4995 fax: (909) 273-5315
Metroka, Roddy - Reliability Manager	Texas Instruments M/S 3498 2501 S. Highway 121 Lewisville, TX 75067	(214) 462-3760 fax: (214) 462-4395
Miller, Steve - Controls Development Engineer	Allison Turbine Engine Co. Speed Code S22 P. O. 420 Indianapolis, IN 46206	(317) 230-2417 fax: (317) 230-6520
Monnin, Ray - Electronics Engineer	Defense Electronics Supply Center DESC-ELDS 1507 Wilmington Pike Dayton, OH 45444-5765	(513) 296-5377 fax: (513) 296-8867
Morgan, Elliott - Staff Engineer	Hughes Aircraft Company MS RE / R01 / A526 P.O. Box 92426 Los Angeles, CA 90009	(310) 334-1326 fax: (310) 334-0999
Newell, Mike - Component Engineer	ITT A/CD P. O. Box 3700 Ft. Wayne, IN 46801	(219) 487-5172 fax (219) 487-5066
Nguyen, Luu T Engineering Program Manager	National Semiconductor Corp. M/S 19-100 P.O. Box 58090 Santa Clara, CA 95052-8090	(408) 721-4786 fax: (408) 746-2007

Name	Company	Telephone FAX
Nine, Kenneth - General Engineer	NAWCADI Code 45134, MS61 6000 E. 21 st St. Indianapolis, IN 46219-2189	(317) 306-7863 fax: (317) 306-4373
Noland, Kevin - Electronic Engineer	NAWCADI MS 61 6000 E. 21 st Street Indianapolis, IN 46219-2189	(317) 306-3061 fax: (317) 306-4373
Nuebler, George - Electronics Engineer	NAWCADI 6000 E. 21 st Street Indianapolis, IN 46219-2189	(317) 306-2955
O'Leary, Michael - Program Manager	Systems Design and Analysis, Inc. 8189 East 21st Street Indianapolis, IN 46219-2576	(317) 897-6041 fax: (317) 895-0926
Obenauf, John - Component Applications Engineer	Texas Instruments 1923 Clearview Ct. Carrollton, TX 75010	(214) 462-5171 fax: (214) 462-5696
Pace, Bill - Reliability Engineer	Texas Instruments mail: 812 Westbrook Dr Defense Group MS 3485 Plano, TX 75075 Lewisville, TX 75067	(214) 462-2711 fax: (214) 462-3155
Payonk, Robert A Reliability Engineer	ITT Aerospace & Electronics 1919 W. Cook Rd. PO Box 3700 Ft. Wayne, IN 46801-3700	(219) 487-6000 X5314 fax: (219) 487-5066
Peterson, Chris - Product Quality Engineer	Loral Aeronutronic 29947 Banderas Ave. P. O. Box 7004 Rancho Santa Margarita, CA 92688	(714) 459-4338 fax: (714) 459-3792
Peterson, Dave - Sr. Member of Technical Staff	Sandia National Labs Dept. 1333, M/S 1082 1515 Eaubank S.E. Albuquerque, NM 87185-1088	(505) 844-6009 fax: (505) 844-2991
Peterson, Dr. James	Plaskon 727 Norristown Rd. P.O. Box 904 Springhouse, PA 19477-0904	
Pitz, Greg - Electronics Engineer	Defense Electronics Supply Center DESC-ELDS 1507 Wilmington Pike Dayton, OH 45444-5765	(513) 296-5377 fax: (513) 296-8867
Praeger, E Principal Engineer	Raytheon 528 Boston Post Rd. Sudbury, MA 01776	(508) 440-3211 fax: (508) 440-4055
Prichard, Jeffrey - Electronic Engineer	NAWCADI MS 61 6000 E. 21 st Street Indianapolis, IN 46219-2189	(317) 306-3885 fax: (317) 306-4373
Quearry, Dan	Commander NSWC, Crane Code 6024/5, Bldg. 2940W 300 Highway 361 Crane, IN 47522	(812) 854-2378 fax: (812) 854-4248

Name	Company	Telephone FAX
Quintero, Charles	Lockheed Martin M/S 137-211	(609) 722-4738 fax: (609) 722-3067
- Sr. Engineer	Moorestown, NJ 08057-0927	lax. (00) 122 3001
Rader, Michael	Commander	(812) 854-2378
	NSWC, Crane	fax: (812) 854-4248
	Code 6024/5, Bldg. 2940W	
	300 Highway 361	
	Crane, IN 47522	(703) 607-5329
Rahall, Joe	US Navy 11504 Timberbrook Dr.	fax: (703) 607-0921
- Sr. Project Engineer	Waldorf, MD 20602-2935	lax. (703) 007-0721
Ralston, Dennis W.	National Semiconductor Corp.	(408) 721-2812
- Business Operations	M/S 10-225	fax: (408) 721-4860
Manager	1130 Kifer Rd.	
	Sunnyvale, CA 94086	
Reilly, Jim	Rome Lab/ERDR	(315) 330-3333
	525 Brooks Rd.	
	Griffiss AFB, NY 13441-4505	
Ricci, Bill	Magnavox Electronic System Co.	(219) 429-6786
- Manager Component	M/S 10-44	fax: (219) 429-4774
Engineering	1010 Production Rd. Ft. Wayne, IN 46808	
Ripp, Michael	Naval Warfare Assessment Division	(909) 273-4939
- Electrical Engineer	QA-23	fax: (909) 273-5315
- Licenteal Engineer	P.O. Box 5000	
	Corona, CA 91718-5000	
Rubia, Ed	Kearfott Guidance & Navigation Corporation	(201) 785-6676
- Sr. Engineering	150 Totowa Road	fax: (201) 785-6532
Specialist	Wayne, NJ 07474	(0.17) 000 7100
Sargent, Don	NAWCADI	(317) 306-7429
- Quality Assurance	MS 70	fax: (317) 306-7949
Specialist	6000 E. 21 st Street Indianapolis, IN 46219-2189	
Schulte, Don	NSWC, Crane	(2.12) 27/ 1525
- SHARP Program	300 Hwy 361	(812) 854-1686
Manager	Crane, IN 47522	fax (812) 854-5191
Schwach, Clif	Rockwell Collins	(319) 395-2406
	M/S 138-135	fax: (319) 395-1193
	855 35th St. N.E.	
	Cedar Rapids, IA 52498	
Shaver, Jeffrey	Boeing Defense & Space Group	(206) 657-8400
- Test Engineer	M/S 3X-MR	fax: (206) 657-8536
	P.O. Box 3999	
Sheafer, David H.	Seattle, WA 98124 NAWCADI	(317) 353-7488
- Electronic Engineer	Code 456500C38	fax: (317) 353-3765
- Electronic Engineer	6000 E. 21 st Street	
	Indianapolis, IN 46219-2189	
Shearrow, Steve	NAWCADI	(317) 306-7490
- Electronic Engineer	MS 61	fax: (317) 306-4373
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	i

Name	Company	Telephone FAX
Shew, Allen	Commander	(812) 854-2378
snew, mien	NSWC, Crane	fax: (812) 854-4248
	Code 6024/5, Bldg. 2940W	
	300 Highway 361	
	Crane, IN 47522	
StL Howid	White Microelectronics	(602) 437-1520
Shokrgozar, Hamid	4246 E. Wood St.	fax: (602) 437-9120
- President		lax. (002) 437-7120
	Phoenix, AZ 85040	(015) 5(1 (500
Slay, Buf	Texas Instruments	(915) 561-6589
	I-20 & FM 1788	fax: (915) 561-7189
	Midland, TX 70711-0448	
Smith, Gary W.	NAWCADI	(317) 306-7537
- APMS & E for	Code 453100C50	fax: (317) 306-7532
ARC-182	6000 E. 21 st St.	
	Indianapolis, IN 46219	
Smith, Gerald	TRW Components International, Inc.	(310) 214-5547
- Director Quality	19951 Mariner Ave/157-1098	fax: (310) 214-5690
	Torrance, CA 90503	lun. (010) 211 0070
Assurance	Harris Corporation Electronics Systems Sector	(407) 727-6139
Snyder, Steve		
- Engineer	M/S 100/2421	fax: (407) 729-7348
	P.O. Box 99000	
	Palm Bay, FL 32905	(247) 204 5100
Stoneburner, Mike	NAWCADI	(317) 306-7408
- Electronics Engineer	Code 456500C38	fax: (317) 306-4914
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	
Swanson, Dale	Rockwell International	(714) 762-3075
- Engineering Specialist	MS: 031-GE22	fax: (762-6222
	3370 Miraloma Ave.	
	Anaheim, CA 92803	
Swarz, Robert S.	The MITRE Corporation	(617) 271-2847
- Department Head	MS H114	fax: (617) 271-2734
- Department rieau	202 Burlington Rd.	
	Bedford, MA 01730	
0 1 5		(203) 654-9023
Szymko, Thomas	Hamilton Standard	fax: (203) 654-9500
- Component Engineer	1 Hamilton Rd.	1ax: (203) 634-9300
	Windsor Locks, CT	((10) #06 #001
Ta, David	Computing Devices Canada	(613) 596-7891
 Component Engineer 	3785 Richmond Rd.	fax: (613) 596-7334
	Nepean, Ontario Canada	
Tainter, Arthur	McDonnell Douglas Corp.	(314) 925-5739
- Reliability & Parts	MC 5982162	fax: (314) 925-5701
Control	P. O. Box 516	
	St. Louis, MO 63166	
Taylor, Danny	NAWCADI	(317) 306-3848
- Electronic Engineer	MS 50	fax: (317) 306-7532
Dionionio Diginooi	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	
rm 1 A		(513) 296-6244
Thacker, Andy	DESC	(313) 290-0244
	1507 Wilmington Pike	
	Dayton, OH 45444	1
	1	1

Name	Company	Telephone FAX
Thompson, Sharon	Commander	(812) 854-2378
	NSWC, Crane	fax: (812) 854-4248
	Code 6024/5, Bldg. 2940W	
	300 Highway 361	
	Crane, IN 47522-5001	
Trezza, John	Honeywell, Inc.	(813) 539-4063
	MS 838-4	fax: (813) 539-4679
	13350 U. S. Highway 19 S.	
	Clearwater, FL 33546-7290	
Trocger, Gary	McDonnell Douglas Corp.	(714) 896-1692
- Principal Engineer	M/S 14-2	fax: (714) 896-1686
Scientist	5301 Bolsa Ave.	
	Huntington Beach, CA 92647	
VanHooser, J. Patrick	NAWCADI	(317) 306-3902
- Electronics Engineer	MS-38	fax: (317) 306-4914
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	
	Naval Undersea Warfare Center	(360) 396-7451
Vazquetelles, Nelson	601 Dowell St., Bldg. 1050	X263
- Electronics Engineer	Keyport, WA 98345	fax: (360) 396-1453
	Naval Air Warfare Center	(619) 939-1219
Vernon, Gregory - Research Chemist	Code 41J000D	(015) 555 1215
	1 Administration Circle	
	China lake, CA 93555-6001	
		Intl+44-1252-394033
Wall, John J.	Defense Research Agency	fax:
- Adviser to the UK Expert to ESA/SCCG	Space Dept., Q134 Bldg.	Intl+44-1252-377121
	DRA, Farnborough	11111144-1232-377121
	GU14 6TD, England	(201) 244-6458
Walus, Denis - Component Engineer	MIDSCO, Inc.	fax: (201) 244-6452
	710 Rte. 46, East	lax: (201) 244-0432
	Fairfield, NJ 07004	(217) 20(4207
Wells, Nancy	NAWCADI	(317) 306-4297
- Electronics Engineer	MS 61	fax: 306-4373
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	(015) 006 5501
White, Gene - Electronic Technician	NAWCADI	(317) 306-7781
	6000 E. 21st Street	fax: (317) 306-3765
	Indianapolis, IN 46219-2189	
Whitehead, Chris A.	NAWCADI	(317) 306-4615
- Electronics Engineer	Code 456500C38	fax: (317) 306-4914
	6000 E. 21st Street	
	Indianapolis, IN 46219-2189	
Whitlow, Bert L.	NAWCADI	(317) 306-7779
- APMS & E for ARC-	Code 453100C50	fax: (317) 306-7532
210	6000 E. 21 st St.	
	Indianapolis, IN 46219-2189	
Winroth, Larry	Electronic Designs, Inc.	(508) 366-5151
- Quality Manager Wolf, Joe	1 Research Dr.	fax: (508) 836-4850
	Westborough, MA 01581	
	McDonnell Douglas Aerospace	(314) 925-6499
WOII, JUC		
	P. O. Box 516	fax: (314) 947-5874

MR. DON SCHULTE SHARP PROGRAM MANAGER (812) 854-1686

SHARP Program

Sustainable Hardware & Affordable Readiness Practices

6.3 Advanced Development Core Program

Align with Major Warfare Areas

to

Facilitate Transition of Exploratory Development (6.2)

to

System Acquisitions on a Continuing Basis

Navy's Generic Logistic R&D

Navy R&D

Enhanced Fleet Maintenance

Legacy Systems

DMS

Technology Insertion

Commercial Product Insertion

Up-Grades

Re-Design

Recertification

Civil/Military Integration

Best Maintenance Practices

Standardization

Commercialization

Privatization

Cooperative Research

National Centers of Excellence

Fleet Maintenance Enhancement

Organizational Process Improvements/Development

Intermediate Process Improvements/Development

Inter-Operational Maintenance Practices (Factory to Fleet)

Engineering For Reduced Maintenance

General Description:

Secretary of Defense, Dr. William Perry, has given the DoD the goal of using more commercial products in military systems. This is a reversal for the military, which historically used ceramic hermetically sealed microcircuits. To be able to assist programs in this transition, the SHARP program and the Naval Surface Warfare Center, Crane Division, has undertaken several efforts to investigate the use of commercial components in military systems.

Commercial and Plastic Component References:

- * "Plastic Packaged Microcircuits: Quality, Reliability, and Cost Issues" is a general article in the IEEE Transactions On Reliability, Vol. 42, No. 4, 1993 December.
- * "Reliability Environmental Evaluation of Commercial Plastic ICs for Military Application" November 1994 Government Microcircuit Applications Conference, (GOMAC) pg. 317-320, by Dan Quearry, Vic Brunamonti
- * "Plastic-Encapsulated Microelectronics: Materials, Processes, Quality, Reliability, and Applications" 1995, textbook by: Micheal G. Pecht, Luu T. Nguyen, Edward B. Hakim, published by John Wiley and Sons, Inc.
- *HAST study performed by NSWC-CD on four manufacturers of the same part type: <u>74F74</u> <u>Plastic DIP IC</u> (additional information available from Dan Quearry).

Commercial Specs. and Standards

- * JESD- 26A is a commercial specification for plastic encapsulated microcircuits for use in rugged applications. The spec. is currently being revised to revision "A" and is to voted on by the EIA counsel in the near future.
- * "Stress Test Qualification for Automotive Grade Integrated Circuits" is a specification that defines the minimum stress test driven qualification requirements and references test conditions for qualification of integrated circuits (ICs) for the automoti ve environment. This specification was jointly developed by the Automotive Electronic Council made up of Chrysler, Delco and Ford.

Commercial and Plastic Component Workshop

*Each November the SHARP program and the Naval Surface Warfare Center, Crane Division sponsor a two day "Commercial and Plastic Components" workshop. The first days presentations are from the military or military contractors on the use of commercial components in military applications. The second day is dedicated to industry's use of plastic components in various commercial applications and environments.

- Proceedings for the November 16 & 17, 1994 'Commercial & Plastic Components' workshop held in Indianapolis Indiana can be obtained by contacting Dan Quearry 812 854-2443 or Pam Ingram 812 854-2378.
- * The fourth annual "Commercial & Plastic Components" workshop will be held 15 & 16 November, 1995 at the Westin Hotel in Indianapolis Indiana. The point of contact for information and registration is Dan Quearry 812 854-2443 or Pam Ingram 812 854-2378.

Point of Contact For technical assistance on using commercial components in military electronic systems contact:

Dan Quearry
Phone # 812 854-2443
FAX # 812 854-4248
E-MAIL quearry@xmicro.nwscc.sea()6.navy.mil

Go back to the Component Engineering Home Page

Rockwell International Corporation 400 Collins Road NE Cedar Rapids, IA 52498 Voice 319 395 1600 FDD 319 395 9746

Rockwell Avionics

Collins

ACCELERATING THE USE OF COMMERCIAL INTEGRATED CIRCUITS IN MILITARY SYSTEMS

By

Clifton A. Schwach

November 16, 1995

Good morning

Please allow me to digress for just a minute. I believe it will set the stage for understanding the panel's findings. Let's go from Perry to Perry

In 1933 Admiral Perry prepared to return to the South Pole. To do that successfully he needed reliable communication capability. Perry was the first to demand and get specific long-range reliable radio communication capability. By 1940 the war in Europe was driving a greater need for improved electronics. New radar, bomb sights, radios—then the Korean conflict would demand superior equipment to overcome massive human odds. The cession of actual combat in the fifties sparked the cold war which in turn made new demands on technology for surveillance and information gathering. The sixties brought the space race, again new technologies, new demands, and new applications. We could put a man on the moon and bring him back safely. We could walk through fire with new protective suites and enjoy Tang at the breakfast table and many other marvelous things because of the space program.

American and world technology had begun to change. Until then the American tax payer had been the technology driver. By 1980's the consumer had become the technology driver.

Off in the East, Perry was watching. I don't think he is the same Perry who started all of this in 1933; but,

In 1994 Secretary of Defense William Perry recognized publicly what everyone had known privately for a long time. It was time to adjust the government technology paradigm. If we were to continue to maintain our military superiority, we would have to do it with the existing budget and on industry terms.

The Defense Manufacturing Council was chartered to oversee the implementation of an integrated DoD strategy for achieving affordable weapons systems that meet all performance requirements

Under the Defense Manufacturing Council (DMC), the Industry Task Force for Affordablity met in January 1994 and 1995 with a number of industry leaders. The product of these meetings is the multi-use manufacturing work panel's findings

The panel's objective was to determine the extent to which commercial integrated circuits could be used in military systems. The panel explored these issues:

- 1. What is the most effective source for integrated circuit components for DoD? As Mil Spec components? As commercial components? Through a new system? Some mixture of mil and commercial?
- 2 If the most effective source is different form the current practice, how should a change be accomplished?
- 3 What are the barriers or uncertainties that limit increasing the use of commercial ICs in military systems?
- 4. What evidence exists to date that indicates the extent to which commercial ICs can be used in military systems?
- 5. To what extent (if any) are Standard Microcircuit Drawings and Qualified Manufacturers Lists necessary or desirable for military use of ICs?
- 6. What impact is there likely to be on the performance, cost, and schedule of systems resulting from use of commercial ICs?
- 7. To what extent can Plastic Encapsulated Microcircuits be used in military systems, particularly those involving environments with extreme temperature and humidity? What evidence is there for the reliability of Plastic Encapsulated Microcircuits?

The panel held 3 workshops and a symposium each with a broad range of participants from IC manufacturers, military system developers, the military services, and industry trade groups. The symposium was a review of 18 projects where the presenters described how they went about designing commercial components into military applications and, in some cases, how these commercial units actually performed in the field.

The results were overwhelmingly positive. They validated that commercial parts could be successfully incorporated into military equipment. Detailed follow-up interviews were held with designers, quality assurance engineers, and engineering managers in an attempt to determine "How To" design in a mil environment with commercial parts. The fundamental difference between military and commercial designers was determined to be that the commercial designer bears full responsibility for assuring that each component he selects will work properly in the environment of the end product. Conversely, the mil designer feels assured that mil parts will function properly. So the "How To" boils down to a shift in responsibility.

Because data is not readily available for commercial parts in military environment, the panel questioned the value of their original premise: to facilitate use of commercial devices in military equipment to reduce cost. As it turned out, cost was not the primary motivator. Performance was and it was followed closely by "time to market". Cost came in forth after frustration from "red tape" to specify and procure mil parts.

The lessons from the symposium:

- 1. The use of commercial parts will require the designers to accept responsibility for performance.
- 2. The component industry will seldom support solutions needed for the unique military application.
- 3. Qualification of commercial parts for military applications must be specific to application and supplier and rely on the imagination and sound engineering judgment of the designer.

The third workshop targeted the semiconductor industry's support for military applications. The result was a clear understanding that mil designers would most likely be buying their commercial parts from distribution. The QML/SMD system may offer a solution by providing a virtual "military customer" without the burdensome mil spec system thereby avoiding the "no support" commercial system.

The second concern at the workshop was "spares". How can we support systems for 20 years with components whose lifetimes total single digits? This issue of supportability remains the open issue.

Based on the panel's work, they recommend that the order of preference for component selection be reversed from its traditional order and qualification be emphasized

- Step 1 Select commercial components which meet environmental needs.
- Step 2 Select QML/SMD components.
- Step 3 Select from the QPL/Mil spec component list

ကြားသူကြားသောရေး သောကြောင့်ကို ကြောင်းသောကိုသည်။ အကြောင်းသည် သည်လောက်သည်။ အကြောင်းသည်။ ကြောင်းသည်။ ကြောင်းသည်။ ကြောင်းသည်။

Step 4 Any part to be used outside its specified range should be specifically qualified based on economic judgment, engineering skill, and technical risk.

This scenario will not be as comfortable or convenient as the environment of the past; but, it will provide the DoD with reasonably priced superior technology in a timely manner CONCLUSIONS:

The panel drew the following conclusions from the study:

- 1. The use of commercial integrated circuits in military systems is broadly practical. In many situations ICs in industrial or military temperature ranges are available commercially. In others, standard commercial ICs can be used with appropriate testing or screening.
- 2. The primary motivation for using commercial ICs in most military design situations is not to reduce cost, but to gain better and more timely access to new technologies. While cost is typically a factor, it is usually a minor one
- 3. The stability of the industrial base for producing specialized military integrated circuits is in serious question. Major suppliers, Motorola and AMD, have recently announced they are leaving the business, and the list is very likely to grow.
- 4. The use of commercial ICs is unlikely to fulfill all needs of military designers. This is also true of ICs based on military specifications and standards. In particular, military designers are likely to frequently need far more support services from manufacturers than are likely to be available. Some alternate system, such as a system base on Qualified Manufacturer's Lists and Standard Microcircuit Drawings (QML/SMD) is likely needed.
- 5. Commercial ICs can be used even in space applications where radiation tolerance is needed, particularly in the case of the lower earth orbits
- 6. The fact that commercial integrated circuits have a far shorter time span for availability than the typical life cycle of a weapons system is a potentially scrious problem that is as yet unresolved and needs further study

RECOMMENDATIONS:

- 1. All military designers should be encouraged to use the new order of preference in which ICs manufactured commercially, by a QML/SMD approach, or by a military specification are considered for use, in that order.
- 2 A system for the manufacture and procurement of ICs based on QML and SMD should be implemented, at least on an experimental basis, and its value studied for a period of time.

5

REMAINING ISSUE

The single remaining issue that is still unresolved is the apparent need, or at least expectation, on the part of military weapons systems developers for long-term availability of parts.

National Center for Advanced Technologies 1250 Eye Street, NW, Suite 1100, Washington, D.C. 20005

202 371-8450

MULTI ASSOCIATION INDUSTRY AFFORDABILITY TASK FORCE MEMO

TO:

Industry Members

11 September, 1995

FROM:

Joe Syslo, Task Force Secretariat

SUBJECT:

Summary Report, Commercial Integrated Circuits in Military Systems

The enclosed summary report is provided for your review. This report is the final product of Multi-Use Manufacturing Team of the Industry Affordability Task Force. The project, an analysis of the needs of the Department of Defense for access to Integrated Circuit (IC) technology, is an attempt to improve the DoD's ability to have access to the best technology, at lowest cost. Further information on the team's activities or the activities of the Task Force for Affordability can be obtained by contacting the National Center for Advanced Technologies by Facsimile, (202) 371-8470; Voice (202) 371-8455; or Internet, Joe Syslo <ncatt@millkern.com>. Comments on the product would be appreciated.

Attachment

SUMMARY REPORT AND RECOMMENDATIONS FOR ACCELERATING THE USE OF COMMERCIAL INTEGRATED CIRCUITS IN MILITARY SYSTEMS

August, 1995

FINAL DRAFT

Prepared by
The Multi-Use Manufacturing Work Panel
of
The Industry Task Force for Affordability

For further information contact:
National Center for Advanced Technologies (NCAT)
1250 I Street, NW
Washington, DC 20005
(202) 371-8455
ncatt@millkern.com

SUMMARY REPORT AND RECOMMENDATIONS FOR ACCELERATING THE USE OF COMMERCIAL INTEGRATED CIRCUITS IN MILITARY SYSTEMS

INTRODUCTION

This paper reports on a project in which the needs of the Department of Defense for access to Integrated Circuit (IC) technology—in the form of specific IC components— were analyzed, and strategies developed to improve the ability of DoD to have access to the best IC technology for weapons systems in the most timely matter and at the least cost.

The paper is organized as follows:

In the first section, the objectives and approach of the project are presented, including the initial objective and how it evolved over the duration of the project. Additionally, the primary issues to be explored and the general approach we took to attack the problem are detailed.

In the second section, a discussion presents chronologically what we learned as we learned it. We first discuss our initial expectations and our learning experience as workshops were held. A symposium in which examples of actual use of commercial ICs and other relevant information is discussed next. We then present results from followup interviews with designers of example systems, and a summary of general lessons learned from the example systems and follow-up interviews. The issue of design supportability is then confronted, and the resulting need for some system for manufacturing and procurement of ICs that is in addition to the commercial and MIL Spec systems. A methodology for use by military designers to allow them to select parts appropriately from the alternative systems is then described. Finally, the section concludes with a discussion comparing the expectations of participants at the beginning of the project with the actual findings of the project.

In the third section, we present those general conclusions that we drew from the study, including those related to the extent to which commercial ICs, can be used in military systems, the motivation for using them, the stability of the industry base, and other issues.

In the fourth section, we present specific recommendations to DoD concerning what designers of military electronic systems should do to increase their use of commercial ICs, and what DoD should do to provide sufficient alternatives to such designers.

The fifth section discusses the one remaining issue that is still unresolved and that needs further study.

OBJECTIVES, ISSUES, AND APPROACH OF PROJECT

Objectives and Motivation

The initial objective of the task was to determine the extent to which commercial Integrated Circuits could be used in military systems. The primary motivation behind this objective was a desire to reduce cost: it was felt that the military specification system was a very expensive way of doing business, and that substantial economies could be had by taking advantage of the low perunit costs of commercial chips. Commercial ICs were also seen as a way to obtain better access to

new technologies and reduce the time required for particular chips to be made available for use in weapons systems.

The objective changed somewhat as the project progressed. Soon after the project began, it became clear that commercial ICs could indeed be used to a significant extent, and so the task focused on how to accelerate the use of commercial ICs in military systems. Later in the project, it became clear that lack of support from manufacturers was a critical barrier to using commercial ICs but that other alternatives were available outside of the MIL-spec system. The objective was accordingly broadened to include such issues as the desirability of such alternative systems. It also became apparent that the initial motivation focusing on cost overemphasized the importance of that aspect and underemphasized other motivations, such as performance of ICs and delay in getting products into operational use.

Issues to Be Explored

The following issues were to be explored, and resolved to the extent possible:

- 1. What is the most effective source for integrated circuit components for DoD? As Mil Spec components? As commercial components? Through a new system? Some mixture of the above?
- 2. If the most effective source is different from the current practice, how should a change be accomplished?
- 3. What are the barriers or uncertainties that limit increasing the use of commercial ICs in military systems
- 4. What evidence exists to date that indicates the extent to which commercial ICs can be used in military systems?
- 5. To what extent (if any) are Standard Microcircuit Drawings and Qualified Manufacturers Lists necessary or desirable for military use of ICs?

- 6. What impact is there likely to be on the performance, cost, and schedule of systems resulting from use of commercial ICs?
- 7. To what extent can plastic encapsulated microcircuits be used in military systems, particularly those involving environments with extreme temperature and humidity? What evidence is there for the reliability of plastic encapsulated microcircuits? Data from simulations? Data from actual system use?

Approach to the Problem

The problem was approached primarily by holding a series of workshops and a symposium at which particular cases were presented. The workshops and symposium had a broad range of from integrated participants manufacturers, military system developers, the military services, industry trade groups (e.g., the Electronics Industry Association), and the Institute for Defense Analyses. Three workshops were held. One workshop, on Commercial IC Capabilities, was held March 29, 1995 at the IDA facilities in Alexandria, Virginia, with 22 participants. Α second workshop, Applications and Operating Environments, was held June 9-10, 1994, with 26 participants, also at IDA. A third workshop, on Design and Supportability, was held December 13-14, 1995. with 15 participants, at IDA. The Case Studies Symposium was held June 13-15, with 43 participants, at IDA.

The workshops and symposium were further supplemented by additional data collection and analysis, and followup studies of some of the cases presented at the Case Studies Symposium, including visits to facilities in Baltimore, Los Angeles, and San Diego.

FINDINGS

Initial Expectations and Experience

From the beginning of this project, the first product expected was an answer to the basic question: "Can we use commercial Integrated Circuits to any significant extent in Military equipment applications?" If the answer was "yes", as most participants expected, then the tasks remaining were to: (1) characterize the various military applications into convenient groupings with similar requirements, (2) select types of commercial ICs that were likely to meet the requirements of each application group, and (3) create for each group of ICs a list of specific part (and suppliers) of commercial numbers components that could be used in designing military equipment of the appropriate type. Thus, the ultimate product of the project was to be a reference manual that military equipment designers could use to select commercial components for their designs, and a database listing parts and their applicability to particular types of systems.

Given such a reference manual and database, all that remained was to remove any bureaucratic barriers that prevent the designer from abandoning the old way of always reaching for a MIL Spec handbook and instead reaching for a commercial parts catalog. In order to promote the new acquisition rules necessary to remove these barriers, it was thought necessary to provide examples (in the form of case histories) of the successful use of commercial parts in military products. It was hoped that these cases would not only show that commercial parts worked satisfactorily but also what the rewards were in terms of cost, rapid availability of components, and technical performance.

The first two workshops (in March and June, 1994) were conducted with these expectations in mind. The participants did some excellent work in categorizing the many diverse military applications and the environments in which they operated. Some preliminary judgments were also made as to which military applications would be

most likely to accommodate commercial ICs. Further, data was presented relevant to the performance of commercial ICs operating under military-like conditions.

The third major activity of this project was a case history symposium (in June, 1994). Over 20 companies and government organizations submitted proposals and expressed willingness to present their experiences. Eighteen were chosen for presentation and a two-day symposium was held during which the presenters described, in some detail, how they went about designing commercial components into equipment for military use. In cases where the projects resulted in equipment that had been fielded long enough so that tangible reliability results were available, this data was also shared.

The results of the cases were uniformly positive and encouraged the team members to believe that the use of commercial components in military equipment was a viable concept. It should be recognized that, although the original request for papers did not limit submissions to positive outcomes, we could have predicted that the submissions would be heavily weighted toward the positive side. Few organizations enjoy reporting failures. In fact, all the submissions had positive outcomes. The team did not view the cases as a representative cross section of successes and failures but simply a validation that commercial parts could in fact be successfully incorporated into military equipment.

The case studies seemed to offer another significant insight toward the potentially successful meeting of the project objective. Specifically, the team felt that if they could capture and combine the design methodologies used by the engineers in the case studies, it would be an invaluable addition to project results. In short, it was one thing to tell military designers that they should use commercial components, but meaningful if substantially more instructions could be coupled with information on how to go about the task.

Followup Interviews with Designers of Case Study Systems

In an attempt to further understand the "how to" element of the design process and to better prepare for the third workshop (Design and Supportability), we decided to delve deeper into the rich case study experiences. Members of the team visited 4 of the companies who had presented case studies. Detailed interviews were conducted with design engineers, Quality Assurance (OA) engineers, and engineering managers. From these interviews we synthesized a "best practice" methodology for designing commercial parts into military equipment. Basically this methodology is a simple extension of the process used by all successful designers of fundamental equipment. The commercial difference between the practices of the traditional military designer and the commercial designer seems to be that the latter bears full responsibility for assuring that each component the designer selects will work properly in the environment in which the end product must function. Conversely, the military designer reaches for the MIL Spec handbook and feels assured that all parts meeting a given specification will function properly. The responsibility taken on is not as onerous as it first sounds for the commercial designer: most commercial products will be used in friendly environments and any component, if it exists at all, will work in this benign environment. Automotive and telecommunications equipment designers have environments less friendly than the normal commercial ones, which makes their task more difficult. They too must take full responsibility for the performance of the components they choose.

The military designer trying to use commercial parts does have the problem that many commercial parts won't necessarily work over extended temperature ranges. While a significant number of commercial components are specified over extended ranges, the majority are not. To make matters more frustrating, many commercial parts will actually work over extended temperature ranges (or will work with only slightly degraded performance) but data

indicating this is not included in published specifications.

The military designers in our case studies had no magic, or simple, solution to their dilemma. They simply analyzed each component one at a time and somehow qualified it for use in their circuit. The techniques they used included (1) calling friends at the supplier's engineering department and asking for extended temperature test data, (2) calling design engineers on similar projects to see if they used the device under consideration, (3) buying a small quantity of the device and running tests themselves (or in their QA departments). In some cases, the devices would work with equal performance at extended temperatures, in other cases performance was degraded. In the latter situation, our case study designers would determine if the degraded performance could be accommodated in their circuit or if the circuit could be modified to compensate for the degraded performance. In some cases, designers would simply choose a MIL Spec component to avoid the effort of dealing with degraded performance, if such a component was available. For the critical applications, however, MIL Spec components were typically not available.

Considering the amount of extra effort our case study engineers needed to invest in using commercial parts in their military equipment, we began to question the value of our original premise; i.e. to facilitate the use of commercial devices in military equipment. Our case study engineers assured us, however, that it was worth the effort, but not for the reasons we originally anticipated. Our original expectation was that cost reduction was likely to be the most important motivation for switching to commercial parts. Each of the case study engineers we visited had cost on their priority list, but it was never first. Performance was always the prime motivation: either electrical characteristics or size were at the top of the list. These characteristics were simply not available in MIL versions. The second most important characteristic was "time to market": even if the part being considered was expected to become a MIL part, the elapsed time for this to happen was judged to be unacceptable. Other reasons given for preferring commercial parts were a substantial reduction in the red tape required to specify and procure a part, and cost.

The business environments into which our case study engineers were working seemed to fall into two categories: (1) dual use, i.e. both commercial and military, and (2) military only. Thus the underlying motivations spanned the spectrum between needing to meet competitive commercial pressures to the single objective of providing DoD with a needed technology.

Lessons from the Case Studies and Follow-up Interviews

Three extremely valuable lessons came out of the case studies, and especially the follow up visits, as follows:

- (1) The use of commercial parts would require the designer to accept responsibility for the performance of those parts in the environments that the final product must operate. This responsibility would frequently require imagination and sound engineering judgment to address these undocumented circumstances.
- (2) There was seldom adequate support provided by the component supplier toward solution of the problems posed by the unique situations in (1) above.
- (3) The concept of a catalog or reference manual of commercial parts that can be used in military applications, while appealing on the surface, would be unproductive, if not outright misleading. The design engineers from the case studies felt that their process of qualifying a part for their particular circuit in its particular application yielded extremely unique information. Specifically all that could be said about a particular part, from a particular manufacturer, was that it would work in the intended circuit. Successful application in any other circuit should not be implied. In fact, the same part from a different supplier should be treated as a completely different part in terms of "outside of published spec" performance. One

case study company felt so strongly about this conclusion that they would not even assemble a list of commercial parts successfully used in one department for use in another department of the same company.

Supportability and the Need for QML/SMD

At this point we held the third workshop (Supportability and Design Techniques). A more detailed description of the results of the workshop can be found in a separate document. The emphasis of this workshop was changed somewhat from our original intention, because of the lessons learned from the earlier workshops and particularly the lessons from the case studies. This change in emphasis, which we discuss below, dictated a different participant set than we originally anticipated. We invited participation from each of the largest semiconductor houses in the U.S. Accordingly, we fashioned the agenda to elicit from the participants a discussion on two very key issues.

First, we wanted to know what level of support our military designers could expect from suppliers when designing with commercial parts. The processes that the designers had to resort to in our case studies seemed rather inefficient and we felt that a more structured approach might yield a more productive relationship. We were somewhat surprised to learn from our supplier participants that it was extremely unlikely that any support would be available from the commercial side of their companies. The volume of business was just too low to attract the attention of the commercial sales force. In fact, most companies participating in the workshop felt that the military designers would have to buy their commercial parts through distributors. This feeling was punctuated by the fact that two of the participants, AMD and Motorola, had recently announced a withdrawal from the military business. Apparently, the size of the military

Proceedings of the Supportability and Design Techniques Workshop.

business was not only too small to attract the commercial side of these two companies, it was also too small to support a separate military side of the company.

The industry participants clearly recognized the importance of a sound support base for the military designers and offered an alternate solution to the dilemma. They felt, unanimously, that if the DoD would actively push the OML/SMD system² it would provide a backdrop against which they could view the military market as a single entity or a single "virtual" customer. They could, therefore, offer this virtual customer much of the support unavailable to the many military designers acting separately. Obviously the customer would not really be one customer and thus not receive all the support of a single large customer, but nonetheless qualify for substantial support. Although the team was not completely convinced that support under these circumstances would be adequate, we did feel that the QML/SMD system offered an attractive and perhaps necessary middle ground between the expensive, burdensome MIL Spec system and the "no support" commercial system.

Long Term Availability an Unresolved Issue

The second point we wanted to address during the workshop was the issue of the long logistics, or spares, tail that the DoD has traditionally required of their equipment suppliers. Without exception, the case study follow-up visits revealed an

absence of concern for providing spares support for their equipment for 20 years. The designers recognized their responsibility for supporting their equipment for a substantial period, but hoped that they would be allowed to employ the traditional commercial approach to spares. Traditionally, commercial manufacturers take full responsibility for the support of their products but not at the component level. They provide ongoing support at the functionality level. In other words, they retain the option to use substitute components or even substitute boards or modules if direct replacements are unavailable. This seems like a satisfactory option to the team, but does leave one important loose end: commercial equipment manufacturers do not support their products for 20 years. They typically provide support for 5 or 10 years, after they cease active manufacturing. The participants of the workshop uniformly concurred that there was no interest by the commercial side of their companies to stretch out component availability to anything near 20 years. In fact, the participants felt that, to the extent that MIL components were tied to commercial devices (such as using the same chip), MIL microcircuits would also have shorter lifetimes of availability. This logistics problem remains an open issue.

Methodology for Use by Military Designers

Based upon the three workshops and the case studies, and heavily influenced by the follow-up visits, we have constructed the following methodology for the selection of ICs by designers of military systems. It is our feeling that this methodology offers the designer the maximum flexibility and opportunity for technical excellence, while recognizing the realities resulting from reduced DoD influence in a very dynamic commercial market.

There are two key elements to our design strategy. The first is that the designer must have readily available a free choice of three different sources of components. These sources are (1) commercial parts, (2) QML/SMD parts, and (3) MIL Spec parts. The second element is that the designer must accept the responsibility for the impact that

^{2.} QML/SMD stands for Qualified Manufacturers List and Standard Microcircuit Drawing, respectively. The QML designation refers to the meeting of process quality standards by the manufacturer. It is significant to recognize that SMD originally stood for Standard Military Drawing and was changed to its present designation a little over a year ago. The intention of this change was to try to bring this standard more into universal use in both the military and commercial world. While it is mostly used in the military world today, the participants felt that it would eventually spread to the commercial world. Both designations are attempts to bring a level of standardization to the microchip industry. There are currently over 8000 parts carrying this designation.

component selections have on the performance of the final product. In discharging this responsibility in the environment described below, the designer will be required to exhibit a considerable amount of initiative, creativity, and adherence to sound engineering principles.

With these elements firmly established, the following process should be followed by the designer: After generating a rough draft of a circuit diagram, or flow diagram, the designer should choose components for the circuit in the following sequence:

- 1. The circuit designer first selects as many circuit components as possible from commercial catalogs. At this step only components that meet the required operating conditions with the published specifications are selected. Many commercial parts have specifications that provide extended temperature ratings, either in an industrial range (e.g., 0-85 degrees C.) or in the full MIL Spec range (-55 to +125 degrees C.). Thus, depending on how severe the design conditions are, the designer may find the commercial catalogs a useful source for many or even most of the needed components.
- 2. The circuit designer then seeks components from the QML/SMD catalogs. These components will typically accommodate more severe conditions than the commercial ones and more supplier support will be available. However, the parts will cost more. As many as possible of the remaining components are selected from these lists.
- 3. As the last step in the first pass of selecting components, the circuit designer chooses parts from the MIL Spec lists. These parts will usually cost substantially more than commercial or QML/SMD parts and require much more effort and time to procure and use. As MIL Specs are cancelled or otherwise reduced in influence, and as manufacturers become less motivated to produce Mil Spec parts, this option will become less frequently used, and this step will probably eventually be eliminated.

- 4. The circuit designer then revisits the commercial catalogs to search for components that either weren't available from the other sources or are possible substitutes for components from those lists. It must be recognized that the designer is basically on his or her own in qualifying the commercial part for their circuit. Such qualification may range from seeking unpublished data from additional manufacturer to running performance and/or screening tests by the designer's organization. Whether the effort is worth it depends upon the circumstances. If the component is only available commercially and is a key part of the circuit, it will be necessary to qualify it, almost regardless of the effort needed. If a MIL Spec equivalent to a commercial part is substantially more expensive and the volume relatively large it also might be worth the effort to qualify the commercial part. Here is where economic judgment and engineering skill are required.
- 5. The last step in this process is to revisit the QML/SMD lists in much the same fashion as was done in the previous step with commercial catalogs. The idea is to see which MIL Spec components chosen in step 3 can sensibly be replaced with QML/SMD parts. Here again, the designer will be considering components that don't quite meet the required operating conditions of their product. However, here there is some support available from the supplier and the job may be somewhat easier, particularly if the incentives are great due to high difference in cost or relatively high volume. The proportion of commercial versus QML/SMD versus MIL Spec parts will depend greatly on the performance requirements and operating environment of the equipment. For many systems in relatively benign environments, all or nearly all commercial parts are likely to be used. For very demanding environments, systems are likely to have a high proportion of QML/SMD parts.

We think the above methodology will provide the DoD with reasonably priced defense electronic products while maintaining the ability to stay at the forefront of technology. This scenario may not be as comfortable or convenient as the design

environments of the past. However, we think it is likely to strike an optimum balance between DoD's needs and the realities of today's world. Clearly, DoD's funds have been dramatically reduced while their assignment to maintain operational superiority remains intact. This is made even more difficult by the commercial explosion of an IC industry who no longer views the DoD as a crucial and necessary customer.

Comparing Expectations with Actual Findings of this Project

At this point it seems appropriate to revisit our original expectations as a check of the completeness and validity of the findings described above. Our first expectation was that we would end up with a catalog, or reference manual, where we would chronicle the commercial devices that have been successfully used in military applications. In that way, future designers could benefit from past efforts to streamline their selection process. As described earlier, we now think that is an impractical idea. When an IC supplier publishes a specification, that specification creates the boundaries around an area of performance inside of which the device is guaranteed to work. When a military equipment designer reports that a device worked satisfactorily in a given product, it only establishes that the device worked at a single point, not throughout an area of performance. All that has been proved is that a single operating condition has been met, in a unique circuit environment with a particular device from a particular manufacturer. There is little assurance that the device will work in other military applications, that would inevitably involve other circuits, environments, and operating conditions. Thus, a specialized parts database for military systems is not desired.

The second expectation that we had was that we would ultimately propose a series of experiments and demonstrations. After reviewing the case studies and making the follow-up visits, we concluded we had captured the essence of what we needed to learn. We don't pretend that we know all there is to know about this subject, but

we do feel that additional experiments and demonstrations are of marginal utility at this time. If the above methodology is adopted by the DoD, it would be worth while to revisit the issue of demonstrations and experiments at a later date to test the efficacy of the methodology.

Another expectation we had for the project was that we would address both legacy and new systems. Our attention, as evidenced by the discussion above, focuses on new systems, apparently to the exclusion of legacy systems. This was primarily driven by our available experiences, the case studies, which dealt solely with new systems. We were probably also influenced by conventional industrial wisdom which tends to leave legacy systems alone once they are invented, particularly on low volume products. It is seldom worth the effort to qualify new components in existing products unless the old components didn't work properly. However, in retrospect, we do feel that the methodology described above is just as applicable to legacy systems as it is to new systems. Should DoD wish to pursue the application of this methodology on legacy systems, we advise beginning the process with Step 4 above. The initial selection of the components (Steps 1 - 3) has already been done and a MIL Spec part has been chosen. What remains is to see if a commercial component exists that could probably do the job and to decide if the effort to qualify the commercial part is worth the cost savings. If Step 4 does not produce an attractive alternative, Step 5 should be undertaken using the same process but with a QML/SMD component.

In this report, we have not tried to present definitive answers that resolve all of the issues presented earlier in this paper. As the project progressed, it became increasingly clear that not only was the data not easily available to allow such answers, but the situation was very volatile and undergoing considerable change. The Perry memo and similar activities initiated significant changes in procurement policies and practices. In addition, reduced demand for military components has already resulted in changes in the industry, such as the withdrawal of Motorola and

AMD from the military electronics business, and is likely to cause additional change. This volatility suggests that analysis of current data would do little to resolve the issues above.

We have, rather, presented in the report a general analysis of the problems and what needs to be done about them. We also applied a specific methodology for use by military designers that depends on the availability of components from three systems: commercial ICs, what might be termed "semi-commercial" ICs manufactured and procured according to the QML/SMD process, and MIL Spec components, with the expectation that MIL Spec components will be used less and less and the MIL Spec system will probably eventually be eliminated.

CONCLUSIONS

We drew the following conclusions from the study:

- 1. The use of commercial integrated circuits in military systems is broadly practical. In many situations ICs in industrial or military temperature ranges are available commercially; in others standard commercial ICs can be used with appropriate testing or screening.
- 2. The primary motivation for using commercial ICs in most military design situations is not to reduce cost, but to gain better and more timely access to new technologies. While cost is typically a factor, it is usually a minor one.
- 3. The stability of the industrial base for producing specialized military integrated circuits is in serious question. Two major suppliers, Motorola and AMD, have recently announced they are leaving the business, and others are also likely to do so.

- 4. The use of commercial ICs is unlikely to fulfill all needs of military designers, nor is the use of ICs based on military specifications and standards. In particular, military designers are likely to frequently need far more support services from manufacturers than are likely to be available if commercial components are used. Some alternate system, such as a system based on Qualified Manufacturer's Lists and Standard Microcircuit Drawings (QML/SMD) is likely needed.
- 5. Commercial ICs can be used even in space applications where radiation tolerance is needed, particularly in the case of the lower earth orbits. Care must be taken, however, to select parts with appropriate resistance to radiation.
- 6. The fact that commercial integrated circuits have a far shorter time span for availability than the typical life cycle of a weapons system is a potentially serious problem that is as yet unresolved and needs further study.

RECOMMENDATIONS

- 1. All military designers should be encouraged to use the methodology described earlier, in which ICs manufactured commercially, by a QML/SMD approach, or by a military specifications process are considered for use, in that order.
- 2. A system for the manufacture and procurement of ICs based on QML and SMD should be implemented, at least on an experimental basis, and its value studied after a period of time.

REMAINING ISSUE

The single remaining issue that is still unresolved is the apparent need, or at least expectation, on the part of military weapons systems developers for long-term availability of parts.

Perry Directive

spell out how we want things built in detail. In those still, of course, be situations where we will need to standards]...In those situations where there are no cases, we still will not rely on milspecs but rather on industrial specifications [i.e., non-government milspecs will be authorized as a last resort, but it "...We're going to rely on performance standards contractors how to build something... There will acceptable industrial specifications, or for some reason they are not effective, then the use of ...instead of relying on milspecs to tell our will require a special waiver."

Secretary of Defense William J. Perry June 29, 1994 Press Conference

Total Semiconductor End Use North America & Worldwide

OTHER U.S. MARKETS IN THE SAME RANGE AS MILITARY (1993)

	ENT - I.3	©	possest 8	2.0	ES - 1.3	-	* -	ООК	
GENERAL (SB)	MUSICAL INSTRUMENT	MOTORCYCLES & PARTS	GOLF EQUIPMENT	GYM & EXERCISE EQUIPMENT	HANDBAGS & PURSES	CHEWING GUM	DENTAL EQUIPMENT & SUPPLIES	SOURCE U.S. INDUSTRIAL OUTLOOK	
	· ·	9.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	transf o bransf	Americal of Americans II	9.			
ELECTRONICS (S.B.)	CELLULAR PHONES	MODEMS	HOME SECURITY SYSTEMS	PATIENT MONITORING SYSTEMS	TELEPHONES (CORDLESS)	TELEPHONES (CORDED)		SOURCE SIA	

RECENT SPECIFICATION CHANGES

QML APPROVED AS A PERFORMANCE SPECIFICATION

SUBJECT: Approval of Performance Specification Conversion for MIL-I-38535 TO: DESC-EL

- "Processing Performance Specification", and the DLA Performance Specification Certification Procedures 1. Reference DESC-ELDM letter of 7 Feb 95 regarding this subject, DSIC Policy Memorandum 95-2 dated 10 March 95.
- 2. After reviewing the subject document and the justification provided in the referenced letter, we concur that is a performance specification and approve its conversion.
- DSIC Policy Memorandum 95-2. A Service Detachment Office should be sent to the OADS(ES)/IA/AP with 3. Please convert this document to a performance specification in accordance with the procedures in a copy of the applicable specification and the new cover sheet.
- and the document identifier should be changed to MIL-PRF-38535 in accordance with the pending revision 4. This specification must be prepared in accordance with the requirements of MIL-STD-961D (pending) of Policy Document 95-2.
- 5. Thank you for your continued support of this essential program. The point of contact for this action is Mr. David Taylor, DSN 284-6775, commercial (703)274-6775, Fax (DSN) 284 or (703)274-7830.

Dave A. Taylor DLA Department Standardization Office

8

RECENT SPECIFICATION CHANGES

OFFSHORE WAFER FAB APPROVAL FOR QA

SUBJECT: Allowing Use of Offshore Wafer Fabrication Facilities for Monolithic devices.

monolithic devices covered by MIL-PRF-38535. Please proceed with covering The onshore restriction specified in Department of Defense (DoD) 4120.3-m, "Defense Standardization Program Policies and Procedures," is waived for the Offshore wafer fabrication facilities under the MIL-PRF-38535 Qualified Manufacturing List.

Walter B. Bergman Director Acquisition Practice

MIL-PRF-38535 QML PROGRAM STATUS COMPANY

ANALOG DEVICES

LINFINITY

AT&T

NATIONAL

MA

CYPRESS

HARRIS

PHILIPS

SILICONIX

TEXAS INSTRUMENTS

UNITRODE

HONEYWELL

UTMC

MICRON *

MORE THAN 7800

DEVICES LISTED

LINEAR TECHNOLOGY

LORAL

MOTOROLA*

*WAFER ONLY THROUGH CHIP SUPPLIER

- ON TI. THESE SPECIFICATIONS DEFINE THE PROCESS AND TEST PROCEDURES. COMPUTER, TELECOM) HAVE THEIR OWN SPECIFICATIONS THEY IMPOSE ► MOST OF TEXAS INSTRUMENTS STRATEGIC CUSTOMERS (AUTOMOTIVE.
- ▶ BECAUSE OF THE VERY HIGH VOLUME EACH OF THESE CUSTOMERS HAS, II WILL ACCEPT AND SUPPORT THESE SPECIFICATION REQUIREMENTS. THESE SPECIFICATIONS DEFINE BEST COMMERCIAL PRACTICES.
- THE QML, WHICH HAS THE SAME REQUIREMENTS, ALLOWS FOR THE MANY. RELATIVELY SMALLER IN VOLUME, MILITARY CUSTOMERS TO MEET BEST COMMERCIAL PRACTICES.
- THE SMALL VOLUME COMMERCIAL ACCOUNT CANNOT DO THIS.

AUTOMOTIVE ELECTRONICS COUNCIL QUALITY REQUIREMENTS FOR SEMICONDUCTORS

ndustry Common Requirements

ISO 9001

Special Requirements

CDF-AEC-Q100 Stress Test Qualification for

Quality Systems Requirements - ISO 9001 Management Responsibility Specification Review Quality System

Document and Data Control **Design Control**

Control of Customer Supplied Product Sub-Contractor Control

Production Identification and Traceability

UL-STD-994 - Test for Flammability of Plastic

material for parts in Devices and Appliances

Inspection and Testing **Process Control**

inspection, Measuring and Test Equipment Control of Non-Conforming Material Inspection and Test Status

Handling, Storage, Packaging and Delivery Corrective and Preventive Action

Control of Quality Records Internal Quality Audits **Fraining**

(Servicing intentionally omitted)

Statistical Techniques

Requirements in addition to ISO 9001:

 Self assessment according to CDF-AEC-A100

- Evaluation scoring criteria
 - FMEA
- Cross functional teams
- Appearance item inspection
- Lab accreditation
- Production Part Approval Process (PPAP)
- * Manufacturing Capabilities (Assessment)

Automotive-Grade Integrated CDF-AEC-Q100-001

MIL-STD-883 - Test Methods and Procedures

for Microelectronics

JEDEC JESD-22 - Reliability Test Methods

for Packaged Devices

CDF-AEC-Q100-002 **Bond Shear Test**

Human Body Electrostatic Discharge Test CDF-AEC-Q100-003

Machine Model Electrostatic Discharge CDFG-AEC-Q100-004 IC Latch-up

E²PROM Endurance Test CDF-AEC-Q100-005

E²PROM Data Retention Test

EOS/ESD Association Specification S5.1-1993

ASTM F-10, Method F459; Wire Pull Test

EOS/ESD Association Specification S5.1-(to

be released)

JEDEC Standard No. 17 August 1988

(reference IC Latch-up Test)

CDF-AEC-Q100-0065

Electro-Thermally Induced Gate Leakage Test CDF-AEC-Q100-007

CDF-AEC-Q101

Stress Test Qualification for Automotive Grade Discrete Semiconductors

JA100 (Series of test methods)

TI SC AUTOMOTIVE DEVICES (FORD, CHRYSLER, DELCO)

TI AUTOMOTIVE PARENT DEVICES

	011 000		2001 10/210	01/4901710	LIVI 1 004 U.T
	TMS3734FN	TL750L05QKC	SN75076B	SN103414KV	GEC16
	TMS3734	TL5812N	SN65518N	SN102954HS	C-65LB0431Y
	TMS320C53	TL5812IN	SN65518FN	SN100227N	B104038IN
	TMS1000CS	TL5812FN	SN104407Y	SE371E16092	ADU545E
	TMS1000	TL494CN	SN104195KC	NE5534P	ADU542F
	TMP320C51	TL4810BIN	SN104194Y	L28F400	ADC0832AIP
	TMC9801	TL431CLP	SN104193NE	L28F210	ADC0831AIP
	TLC555CP	TL298KV	SN104093NT	L28F010	74HC594
	TLC5451DW	TL2829ZN	SN104093N	L27C512GUA	74HC165
ULN2004AN	TLC5451FN	TL074CN	SN104087P	L27C512D	74HC157
UA78M05CK	TLC533AIN	TL072CP	SN104087D	L27C480	74ALS74A
UA78L10ACL	TLC372CP	STANDARD CELL	SN104038DW	L27C256GU	5453
TPX371E160	TLC27M4IN	SN94233CNG	SN104013N	L27C256D	5440
TPIC2801KV	TLC2772CD	SN77311P	SN103776N	L27C128	5400
TPIC0299KV	TLC274N	SN75518FN	SN103694D	LM393P	2C256-2J
TMS70C42A	TLC1550IFN	SN75512CN	SN103598P	LM393D	27C512D
TMS70C40A	TL780-05QKC	SN75435NE	SN103562NE	LM358P	27C256D
TMS70C40	TL780-05CKC	SN75176BP	SN103556NG	LM324N	27C128D
TMS70C20	TL751M10CKC	SN75176BD	SN103488N	LM2930-8LP	101957LP

OML: A Process to Achieve a Performance Based Specification

Process Specification	8883 8833 8833	Non-value added flows can data (example 100x, central temp cycle, and burn-m)	OME.
Performance Specification	Slash Sheet SMD Data Book	Unchanged	Slash Sheet SMD Data Book
Product Name	OPL 38510 SMD 883	Unchanged	OPL 38510 SMD 883
	Before OML		After OML

Old Process Specification - 883C with how to do specified in methods 5004 and 5005

New Performance Based Specification - QML with how-to not specified. JAN slash sheet/SMD or TI data sheet electrical performance requirements.

DESC audits each QML supplier to insure quality system including SPC are in place allowing that supplier to eliminate NVA flows. "Screening doesn't make parts better, parts survive screens--they don't become better parts"--Jim Blanton, DESC

Qualified Manufacturer Listing Excerpts from MIL-PRF-38535

Paragraph 1.1

"The intent of this specification is to allow the device manufacturer the flexibility to implement best commercial practices to the maximum extent possible"

manufacturer, through the QM program and the TRB, may modify, "... If sufficient quality and reliability data is available, the substitute, or delete tests."

Texas Instruments

100X PRE-CAP

- GEOMETRIES LARGER THAN 3 MICRONS AND TO DETERMINE THE EFFECT OF INSPECTION TO REMOVE POSSIBLE LATENT FAILURES. ON DEVICES WITH THESE DEVICES ON THE FIT RATE OF THE DISTRIBUTION OF THE SAMPLE. APPROACH WAS TO DETERMINE THE EFFECTIVENESS OF 100X PRE-CAP
- 100X HAS BEEN ALLOWED TO BE DELETED ON GEOMETRIES SMALLER THAN 3 MICRONS
- COMMERCIAL LIFE TEST DATA SHOWS NO PROBLEMS WITH THESE DEVICES
- APPROXIMATELY 149K DEVICES WERE BUILT USING THE QML FLOW SHOWN BELOW. AFTER 40 X AND ELECTRICAL TEST, 265 REJECTS RESULTED AND THESE DEVICES WERE PLACED ON LIFE TEST

ALL FAILURES WERE EOS.

5 LINEAR DEVICES FAILED.

BURN-IN ELIMINATION STATUS

TO ONE FIT FOR TTL, S, AND LS (.96 EV, 168 HOURS AT 125 DEGREES C, 60% CONFIDENCE LEVEL) WITH ZERO FAILURES. TO DETERMINE IF BURN-IN ELIMINATION WAS POSSIBLE. THIS IS ROUGHLY EQUIVALENT TO ♠ INITIAL SAMPLE SIZES OF APPROXIMATELY 15K DEVICES BY TECHNOLOGY WERE CHOSEN

THESE SAMPLE SIZES HAVE NOW BEEN EXPANDED AS SHOWN BELOW:

L FITS	1.7 CURRENT LS CERAMIC FIT RATE IS APPROXIMATELY 2	3.5	1.6	2.1
S FAIL	5	47 13	65 7	195070 25
SS	TTL 54858	S 63347	LS 76865	TOTAL 1950

20 FAILURES ARE EOS/ESD. ELIMINATING EOS/ESD FAILURES GIVES 0.5 FIT RATE.

- FAILURE DUE TO DIE MECH. DAMAGE

 - 1 BOND BOUNCE 1 FAILURE NOT RESOLVED
 - 2 FA PENDING
- A ACTIVATION ENERGY FOR HCMOS IS .7 EV. CURRENT RESULTS ARE SHOWN BELOW:

FITS	8.0
FAIL	თ
SS	100165
	ICMOS

8/9 FAILURES ARE EOS/ESD. ELIMINATING EOS/ESD FAILURES GIVES 1.6 FIT RATE. 1 BROKEN PACKAGE PIN (DISCOUNTED)

HC & HCT -55 DEGREE ELECTRICAL TEST ELIMINATION

★ APPROACH WAS TO DETERMINE THE IMPACT OF -55C TESTING ON OUTGOING QUALITY OF DEVICES.

PARTS SHOULD NOT FAIL UNDER NORMAL TESTING AT -55 TEST FLOW IS BASED ON ELECTRICALLY GOOD UNITS. IF THEY HAVE PASSED 125C TESTING. TO DATE WE HAVE TESTED 226,702 DEVICES AND 18 HAVE

13 FAILURES WERE CONFIRMED GOOD.
4 FAILURES DUE TO HANDLING DAMAGE.
1 FAILURE TEST ESCAPE (DAMAGED BOND WIRE)

-55C GROUP A

COMPARISON OF PACKAGE/FLOW OPTION

INITIAL PRICE	COMMERCIAL PLASTIC LOWEST	QML PLASTIC MID RANGE	QML CERAMIC HIGHEST
PRODUCT SOURCE	DISTRIBUTION	DIRECT OR DISTRIBUTION	DIRECT OR DISTRIBUTION
TEMPERATURE RANGE	TYPICAL 0-70	-55 TO 125	-55 TO 125
TEST PROGRAM	COMMERCIAL DATA SHEET	SMD	SMD
LEAD FINISH	PD	PD	HOT SOL DIP
LONG TERM RELIABILITY	GOOD	G00D	BEST
SUPPLIER RESPONSIVENESS	DEPENDENT ON REVENUE	нОн	нісн
STORAGE/ PROCESSING	SOME ADDITIONAL REQUIREMENTS	SOME ADDITIONAL REQUIREMENTS	AS CURRENT

TOTAL COST OF OWNERSHIP DEPENDS ON PROGRAM REQUIREMENTS

COMPARISON OF PACKAGE/FLOW OPTION

È.	COMMERCIAL PLASTIC POSSIBLE ALLOCATION	GOOD	QML CERAMIC GOOD
PRODUCT PORTFOLIO (SPECTRUM) TIME TO MARKET	BEST BEST	WEAK-GOOD	g000 8000
OBSOLESCENCE	MINIMAL	BETTER	BEST
TRACEABILITY	MINIMAL - GOOD	BEST	BEST
OTHER CONTRACTORS REQUIREMENTS	NOT AVAILABLE	AS REQUIRED	AS REQUIRED
SUPPLIER CERTIFICATION	BY USER	DESC	DESC

TOTAL COST OF OWNERSHIP DEPENDS ON PROGRAM REQUIREMENTS

LESS IMPORTANT

LESS IMPORTANT

CRITICAL

SELECTION SUPPLIER

Comparison Between Military and Commercial Temperature Test Limits

Commercial and industrial devices are designed and maintained to operate over a more narrow temperature range (typically either 0-70 or -40 to 85 degrees Celsius) than military devices (-55 to 125 degrees Celsius)

some instances issues are found. In all cases the device will meet either the existing or As a result of this, the military test engineer must evaluate each device as the device is first released, redesigned, shrunk or has a major wafer fab process change. In revised commercial or industrial device specification prior to release.

These issues are resolved by the military test engineer in many ways including die die for military only, changing the military device specification, redesigning the die banking the older die, adjusting the wafer fab process, continuing to use the older and deleting the device from the military device list offered to the customer.

Some recent examples are show below:

44	(Vol. @ 125) Minor circuit redesign. (Voh @ -55) Complete die redesign. (Vol @ 125) Changed data sheet. (Iil @ -55) Changed wafer fab process. Using different die. Fail functional patterns at -55. Temperature was
NM 1416400	Pause time reduced from 64 ms to 34 ms at 12

as relaxed

In all the cases listed above the military user could have encountered system issues if the commercial device were purchased and used

RECENT ADDITIONAL DEVICES ISSUES

(ALL MEET THE COMMERCIAL REQUIREMENTS!)

DEVICE

SMJ320C80

WILL NOT MEET THE COMMERCIAL FREQUENCY OVER THE MILITARY

TEMPERATURE RANGE

SMJ684000

DATA RETENTION IS NOT A COMMERCIAL REQUIREMENT

SMJ44251

VIH CHANGED FROM 2.4 V @ 0-70 TO 2.9 V OVER MILITARY TEMPERATURE RANGE

SNJ54LS00

ICCL @ -55 C

SNJ5404

VOH @ -55 C

SNJ5474

VOL @ -55 C

SNJ54S163

FUNCTIONAL @ 125 C

SNJ54S32

VOH @ -55 C

ALL RUNNING DIFFERENT DIE OR WAFER-FAB PROCESSES

THAN COMMERCIAL

SNJ54AS04

VOL @ -55 C

SNJ54ALS244

TP @ -55 C

(MILITARY ONLY REQUIREMENT) IOD @ -55 C

SNJ54F04

AV @ 125 C

VOM @ -55 C RELAXED DATA SHEET

MC1558

LM118

CARE AND HANDLING OF PLASTIC PACKAGES

- DIPS CAN BE HANDLED RELATIVELY SIMPLY SINCE WAVE SOLDER OPERATIONS DO NOT CAUSE BODY TEMPERATURE TO RISE MUCH ABOVE 130 DEGREES C 4
- RAPIDLY, CAUSING ANY TRAPPED MOISTURE IN THE PACKAGE TO CONVERT TO SURFACE MOUNT PACKAGES WILL ACHIEVE THE REFLOW TEMPERATURE VERY STEAM CAUSING POSSIBLE PACKAGE DELAMINATIONS ON SOME PACKAGES 4
- REMAIN IN THE PACKAGE BY BAKING THE PRODUCT AND OR STORING IN LOW HUMIDITY TEMPERATURE CONDITIONS FOR SHORT PERIODS OF TIME BEFORE TEXAS INSTRUMENTS ENSURES THAT MINIMAL AMOUNTS OF MOISTURE
- DEVICES ARE PACKAGED WITH DESICCANT AND HUMIDITY INDICATOR
- IF CUSTOMER OPENS DRY PACK BAG, HE MUST RESEAL BY BAKING AND OR STORING IN LOW TEMPERATURE AND HUMIDITY CONDITIONS FOR SHORT PERIODS OF TIME BEFORE RESEALING

MOISTURE SENSITIVITY LEVELS FOR PLASTIC SURFACE MOUNT PRODUCT

	LEVEL	FLOOR LIFE	PACKAGE
		UNLIMITED	ALL DIPS
,	7	1 YEAR	1
	м	168 HOURS	68, 84 PLCC 80, 100, 144, 160 PQFP
	4	72 HOURS	64 PM, 100 PZ
	သ	24 OR 48 HOURS	1
	9	6 HOURS	ı

PER JEDEC STD A-112

PEM PERFORMANCE DATA

NOT ALL PLASTIC IS CREATED EQUAL!

TI DATA (LOGIC DEVICES FROM 6 DIFFERENT SUPPLIERS)

LIFETEST

AUTOCLAVE

0.1 TO 66 FITS

.01 TO 4 % FAIL

TEMP CYCLE

BIASED HUMIDITY

04 TO 27 % FAIL

.01 TO 2 % FAIL

MARYLAND DATA - LIFE TEST (SEVERAL SUPPLIERS) **UNIVERSITY OF**

.6 TO 460 FITs LINEAR I.C. MEMORIES

5.0 TO 7.1 FITs

DIGITAL I.C.

MICROPROCESSOR 3.8 TO 190 FITS

2.5 TO 50 FITS

NSWC DATA (LOGIC DEVICES FROM 4 SUPPLIERS)

HAST DIP

300 TO 1300 HRS 50% FAIL

50% FAILURE

HAST SOIC

200 TO 400 HRS

PLASTIC VS. CERAMIC OPERATING LIFE RESULTS

125C Temperature-Derated to 55C - 0.96ev 60% UCL

Texas Instruments

LOGIC/LINEAR SCREENING TEST DATA

PROCESS COMPARISON

PLASTIC

CERAMIC

WAFER

SAME

SAME

DIE ATTACH

METHOD USED NUMEROUS

SILVER GLASS GOLD OR

BOND

VARYING TEMPERATURE

ULTRASONIC

AND ENERGIES

PACKAGES

FROM A FEW

ENCAPSULATE SEAL

MANY DIFFERENT PLASTICS, MOLD COMPOUNDS

SUPPLIERS

PLASTIC PACKAGES ARE OPTIMIZED FOR THE COMMERCIAL APPLICATION

CONCLUSIONS

- **DEVICES WILL EITHER NOT WORK OR HAVE EXCESSIVE FALL OUT OVER THE MIL-TEMP** ★ A SIGNIFICANT NUMBER OF COMMERCIAL RANGE
- ★ WHILE LONG TERM RELIABILITY OF PLASTIC MAY BE ACCEPTABLE IN SOME MILITARY SYSTEMS IT MAY NOT BE AS GOOD AS HERMETIC
- ★ VENDOR SELECTION IS CRITICAL IN PLASTIC REGARDLESS OF THE SYSTEM IN WHICH IT IS USED

CONCLUSIONS

- QML IS A PERFORMANCE SPEC AND SUPPORTS THE PERRY DIRECTIVE
- ★ MILITARY MARKET IS DROPPING AS A PERCENT OF TOTAL MARKET, BUT IT IS STILL \$1.4B/YEAR
- COMMERCIAL PLASTIC HAS LOWEST INITIAL PRICE AND CAN BE USED IN SOME MILITARY SYSTEMS
- PLASTIC SURFACE MOUNT REQUIRES CAREFUL STORAGE HANDLING AND PROCESSING
- SUPPORT LEVELS WILL BE SIGNIFICANTLY LOWER AS CONVERSIONS TO COMMERCIAL PLASTIC ARE MADE

THESE ARE THE ISSUES-- THE DECISION IS THE USERS

Commercial Technology for Willitary Applications

A Business Necessity

Global Scope and Presence

STETTE AWACS Gralement F/A-18 Eurofighter 2000

A Proven Performer

- Over 45 Years of
 Electronic Information
 Management
 Experience
- U Hundreds of Successful Programs Worldwide
- Implementation on Thousands of Platforms, All Environments
- TechnicalCompetence/FastResponse

Computing Devices Quality Journey

A Changing Defense Environment The Challenge –

- □ Creating a Strong Information Weapon
- □ Adapting to Worldwide Strategic Shifts
- ☐ Meeting Current and Future Tactical Requirements
- □ Integrating Existing and Emerging Technologies
- Helping Customers Do More With Less

Acquisition Reform

Mission

Create a national defense that derives its strength and technical superiority from an integrated commercial and military industrial base.

Coals

- □ Reduce the cost of weapon systems and material.
- ☐ Remove access barriers to state-of-the art technology.
- ☐ Facilitate defense firm's diversification into commercial markets.

DECLINING MILITARY PRESENCE

🔤 TOTAL SEMICONDUCTOR MARKET 🔤 TOTAL MILITARY MARKET 🕂 % OF MILITARY MARKET

SOURCE: 1994 INTEGRATED CIRCUIT INDUSTRY (ICE)/TACTech

TOTAL SEMICONDUCTOR MARKET \$105.4 Billion

Source: ICE

AVERAGE BOX LEVEL USAGE OF MILITARY MICROCIRCUIT DEVICES

THE TOTAL MILITARY DEVICE * DISCONTINUANCE BY YEAR AND AS A PERCENTAGE OF TOTAL DEVICE AVAILABILITY

SOURCE: TACTech

*Includes QML, QPL, SMDs & 883 Devices

(Microcircuits, Diodes & Transistors) CONPONENT AVAILABILITY COMMERCIAL VS. MILITARY ACTIVE DEVICES

+000,69

SUPPLERS

ACTIVE WILTARY SUPPLERS

620 +

00

Source: IHS/TACTech

X/95

Commercial Technology

Advantages

- □ Affordable
- No development costs
- Limited testing costs
- □ Available
- Multiple suppliers
- Reduced delivery cycle
- □ Attractive
- State-of-the-art technology
- Open-system architecture

Limitations

- □ Requires ruggedization for most military applications
- ☐ Limited documentation support
- □ Steep obsolescence curve

DSMX CRITICAL DESIGN REVIEW 23 FEBRUARY 1995

Product Comparison

spect	hroughput
Asp	Thra

5,000 hours

14 months

Price

Advanced Common Processor

Computing Devices International Proprietary

Quality Function Deployment

□ Identify Objectives

☐ State Requirements

□ Prioritize Requirements

□ Define Alternatives

☐ Select Optimal Solution

Probability Factors

Competitive Assessment Absolute Score

Relative Score

CISRTM Model

Paradigm Shift

From:

년 :

Acquisition Community

- Multi-Disciplinary Teams
- Early Industry Involvement
- Clear, Well Understood Thresholds and Objectives
- Risk Identification, Tradeoffs, and Alternatives
- Best Value Acquisition Strategies

NE APRIOR OP TO TROY ON TO TRY

NEW POL

-Lord Rutherford

SOURCE: EIA

DoD-Funded Activities in Plastic Packaging: 2. Expert System for Design of Plastic 1. Plastic Packaging Consortium **Packages**

Luu T. Nguyen

National Semiconductor Corp.

P.O. Box 58090 M/S 19-100

Santa Clara, CA 95052-8090

1. PLASTIC PACKAGING CONSORTIUM

SYNOPSIS

Objective

performance "ruggedized" plastic packages manufacture low-cost, high density, high ⇒ Establish an on-shore infrastructure to

• Status

⇒ Officially started December 14, 1994

⇒ Ends on March 1997

Funding Level: \$20M with cost share >50%

Ten member companies - NSC lead

Program Manager: Richard Giberti (408) 721-6430 crwgsc@tevm2.nsc.com

DELIVERABLES

- Focus on cost and reliability
- Improved reliability
- ⇒ Unlimited shelf life Level 1 (no dry bag)
- ⇒No stress-induced failures
- Increase operating temperature and thermal conductivity
- High density, low-cost substrates (PQFP & BGA applications)

TEAM MEMBERS

- Amoco Resin and molding compounds
- Delco Electronics Materials characterization and system knowledge
- Dexter Enhanced epoxy molding compounds, die attach materials, and flip chip underfill materials
- Integrated Packaging Assembly Corp. (IPAC) QFP and BGA assembly
- Leading Technologies Leadframes and tooling
- National Semiconductor Corp. Materials characterization and product drivers

TEAM MEMBERS (cont.)

- Olin Corp. Leadframe materials and adhesion studies
- Plaskon Enhanced molding compounds
- Sheldahl Design and supply high density organic substrates
- Sandia National Laboratories Assembly Test Chips

ORGANIZATION

Plastic Packaging Consortium

THREE INTER-RELATED FOCUS AREAS

- Focus Area 1 Plastic Package Ruggedization
- ⇒ Reliability
- Focus Area 2 Plastic Package Thermal Enhancement
- ⇒ High temperature operation
- ⇒ Increased material thermal conductivity
- Focus Area 3 High Density Plastic Packaging
- ⇒ Fine pitch stamped leadframes
- ⇒ Low-cost substrates for PQFP and BGA

PLASTIC PACKAGE RUGGEDIZATION -GOALS

- No interfacial delamination
- "Anti-popcorning" unlimited shelf life @ 30°C/90% RH without dry bag
- shift, passivation cracking, dielectric cracking, or die No stress-induced device failures (e.g., metal line cracking)
- High reliability
- Team cost target improvement over SIA roadmap 50% to a cost of \$0.005/lead up to 300-lead PQFP

PLASTIC PACKAGE RUGGEDIZATION -APPROACH

- Mold compound enhancement
- Die attach material enhancement
- Leadframe enhancement
- Reliability characterization database Assembly Test Chips
- Technology demonstration Product reliability & characterization

PLASTIC PACKAGE THERMAL ENHANCEMENT - GOALS

- High temperature operation (175°C)
- High thermal dissipation (θ_{ia} improvement by 50% on 160-lead PQFP to 20°C/W)
- High thermal conductivity
- thermally enhanced package is \$0.002/lead over the Low-cost heat spreaders - Team cost target for the standard package of \$0.007/lead
- Ruggedization

PLASTIC PACKAGE THERMAL ENHANCEMENT - APPROACH

- Molding compound temperature enhancement
- Die attach material thermal conductivity and voiding enhancement
- Leadframe material enhancement
- Heat spreader development and assembly automation
- Reliability characterization database Assembly Test Chips
- Technology demonstration Product reliability & characterization

HIGH DENSITY PLASTIC PACKAGING -GOALS

- packages are addressed: 1. 160-lead PQFP with 6.0 PQFP with 7.0 mil internal pitch & 4.0 mil lead flat mil internal pitch & 4.0 mil lead flat; 2. 240-lead Fine pitch, stamped, low-cost leadframes - Two
- PQFP Interposer cost adder \$0.10 for 160-lead PQFP High density, low-cost substrates (interposers) for
- High density, low-cost substrates for BGA Substrate $\cos t < 0.40 / in^2$
- Minimal or zero warpage of BGA
- Reworkable, low stress underfill for flip chip BGA

HIGH DENSITY PLASTIC PACKAGING -APPROACH

- Integration of interposer to leadframe
- Ruggedization
- 160-lead & 240-lead PQFP fine pitch stamped leadframes
- ⇒6.0 mil internal pitch for 160-lead PQFP
- ⇒ Tool material development
- Interposer/leadframe integration
- ⇒ Thermal compression
- ⇒ Conductive adhesives
- ⇒ High temperature solder
- Low-cost substrate

HIGH DENSITY PLASTIC PACKAGING -APPROACH

- Flip chip plastic BGA
- ⇒ Molding compound for BGA low warpage
- ⇒ Reworkable, low stress underfill material
- ⇒ BGA flip chip low-cost substrate (design & materials)
- Reliability characterization database Assembly Test Chips
- Technology demonstration wirebond and flip chip

SUMMARY

- Upon completion of the Program, we will have:
- ⇒ A viable cost-reduced domestic plastic packaging infrastructure
- => Established a promising new technology base
- Technology transfer through publications, reports, and workshops 0

PLAN- PLASTIC PACKAGE RUGGEDIZATION

- characterization & testing over the 1st 16 months of Three iterations of materials for complete the Program
- Each round of materials will be characterized for mechanical & manufacturability properties & reliability performance with test chips
- Establish a characterization database
- Use optimized materials to assemble product drivers for technology demonstration

SCHEDULE - PLASTIC PACKAGE RUGGEDIZATION

Materials delivery

⇒ Scouting samples (1st iteration)

⇒Improved samples (2nd iteration)

⇒ Optimized samples (3rd iteration)

⇒ Optimized material selection

⇒ Technology demo build

8/1/95

1/15/96 5/1/96

7/1/96

SCHEDULE - PLASTIC PACKAGE RUGGEDIZATION (cont.)

- Materials suppliers (scouting, improved, optimized samples)
- ⇒ Molding compound Amoco, Dexter, Plaskon
- ⇒ Die attach material Dexter
- ⇒ High strength leadframe alloy Olin
- ⇒ Leadframe adhesion enhancement
- →Optimized "A2" Olin
- →Optimized plating Leading Tech.
- \Rightarrow Adhesion to polyimide guard ring Leading Tech.
- ⇒ Die coatings Amoco
- ⇒ Assembly capability IPAC, National

SCHEDULE - PLASTIC PACKAGE RUGGEDIZATION (cont.)

- Materials characterization
- Completion schedule

26/11 ⇒ Scouting samples

⇒ Improved samples

d / 96

⇒ Optimized samples

96/00

Mechanical & Physical - Delco, Plaskon, Dexter, Olin, Leading Tech.

- Assembly manufacturing IPAC, National ()
- Reliability Sandia, National 0

SCHEDULE - PLASTIC PACKAGE RUGGEDIZATION (cont.)

- Test chips will be developed and supplied by Sandia and National
- Technology demonstration
- \Rightarrow 160-lead Super I/OTM (1) National
- \Rightarrow 240-lead Super I/OTM (2) National
- Die attach material

PLAN- PLASTIC PACKAGE THERMAL **ENHANCEMENT**

- Similar to Focus Area 1 Plastic Package Ruggedization
- Design and demonstration of automated tooling for the production of heat sink attachment

SCHEDULE - PLASTIC PACKAGE THERMAL **ENHANCEMENT**

Materials delivery

⇒ Scouting samples (1st iteration)

⇒ Improved samples (2nd iteration)

 \Rightarrow Optimized samples (3rd iteration)

⇒Optimized material selection

⇒ Technology demo build

8/1/95

1/15/96

5/1/96

7/1/96

8/1/96

SCHEDULE - PLASTIC PACKAGE THERMAL ENHANCEMENT (cont.)

- Materials suppliers (scouting, improved, optimized samples of both high thermal conductivity & high temperature operation compounds)
 - ⇒ Molding compound Dexter, Plaskon
- ⇒ Die attach material Dexter
- ⇒ High thermal conductivity leadframe alloy Olin
- ⇒ Heat sink attachment *Leading Tech.*
- ⇒ Assembly capability IPAC, National

SCHEDULE - PLASTIC PACKAGE THERMAL ENHANCEMENT (cont.)

- Test chips will be developed and supplied by Sandia and National
- Technology demonstration
- ⇒ 160-lead LAN National
- ⇒ High temperature operation chip National

PLAN- HIGH DENSITY PLASTIC **PACKAGING**

- Similar to Focus Area 1 Plastic Package Ruggedization
- Three different projects being addressed
- ⇒ Fine pitch leadframe stamping tool development
- ⇒ Multi-chip packaging with low-cost substrate in PQFP
- ⇒ Multi-chip packaging with substrate in BGA

designed, and produced for 160-lead and 240-lead Fine pitch stamped leadframes will be modeled,

LT-
design
Frame
\uparrow

⇒ Punch material evaluation - LT

$$\Rightarrow$$
 Tool prototyping - LT

⇒ Technology demonstration of 160-lead PQFP as described in Focus Area 1

- Multi-chip PQFP efforts will use a low-cost Sheldahl substrate assembled in a PQFP leadframe
- Three efforts:
- ⇒ Test chip development
- ⇒ Leadframe integration
- ⇒ Development of multi-chip substrate

packaging materials, and to evaluate the leadframe interaction of Sheldahl substrate with other plastic Test chip development (developed to study the integration process)

⇒ Design reviews

2/2;3/30/

11/20/95 ⇒ First samples assembled and tested

- Leadframe integration
- ⇒ Three attachment methods to be evaluated:

⇒ Process optimization

11/20/95

Development of multi-chip substrate

⇒ Materials delivery

→Scouting samples (1st iteration)

9/15/95

2/16/96 →Improved samples (2nd iteration) 5/11/96 →Optimized samples (3rd iteration)

→Optimized material selection

→Technology demo build

8/15/96

7/15/96

⇒ Materials suppliers (scouting, improved, optimized samples) - Dexter, Plaskon

⇒ Materials characterization

- Scouting 1/96

-Improved 5/96

-Optimized 8/96

→Mechanical & Physical - Delco, Plaskon, Dexter, Sheldahl

→Assembly & manufacturing - *IPAC*, *Sheldahl*, National

→Reliability - Sandia, National

⇒ Underfill material (scouting & optimized) - Dexter

⇒ Substrate material - Sheldahl

⇒ BGA capability (molds ordered) - IPAC, National

⇒ Test chips developed and supplied by Sandia. Test chips from the "Low-Cost Flip Chip Consortium TRP" will also be used.

⇒ Final technology demo with a LAN chip set

SYNOPSIS

• Objective

⇒ Establish an Expert System for Design of Plastic IC Packages against latent moisture-induced defects

Status

⇒Officially started May 15, 1994

⇒ Ends on December 1996

Funding Level: \$700K - SBIR Phase II

Three companies - Structural Integrity Associates lead

Program Manager: An-Yu Kuo (408) 927-8600 optimal1@ix.netcom.com

DELIVERABLES

- Develop a rule-based Expert Design System for Plastic Packages
- ⇒Collect material data base
- ⇒Collect popcorn failure data
- ⇒ Establish a failure mechanism and criterion
- ⇒ Validate by finite element modeling
- ⇒Incorporate database and models into the Expert Design System

ORGANIZATION

SI/OPTIMAL - WORKSCOPE

- Automatic mesh generator
- Assessment of coupling effects
- Numerical algorithm for moving vaporization fronts
- Assessment of nonlinear and time-dependent effects
- Integration and implementation of Expert Design System
- Report and manuals

SI/OPTIMAL - STATUS

- Mesh generation of all EIA/JEDEC plastic packages
- ⇒ Form factors: DIP, SOP, PLCC, PQFP, PGA, BGA
- ⇒ Standards: JEDEC, EIAJ
- ⇒Components: Die, Die attach, Die attachment pad, Die coating, Leadframe, Molding compound, Solder, Board, Metal Traces
- ⇒ Parametric input and modeling
- Hardware/software specification

NATIONAL - WORKSCOPE

- Evaluate the popcorning threshold factor of different packages
- Determine the failure criterion for various interfaces in plastic packages
- Determine the criterion for crack propagation in three EMCs as a function of T and moisture content
- Evaluate the hygroscopic behavior of the EMCs
- Evaluate the popcorning phenomenon as a function of ramp rate and peak temperature
- Evaluate the effect of preconditioning on package reliability

NATIONAL - STATUS

Task 1: Evaluate the popcorning threshold factor of different packages

⇒Ongoing for different package families and lead count, e.g., for Quad Packages

→PLCC - 20, 28, 44, 52, 68, 84

→PQFP - 44, 48, 52, 64, 80, 100, 120, 128, 144, 160,

→TQFP - 32, 48, 64, 80, 100, 144, 208

→GaAs packages (with Quanta Labs)

Check for interface delamination and external cracking

Temperature and humidity preconditioning

- Task 2: Determine the failure criterion at interfaces (with SJSU)
- ⇒Pull tests for characterizing delamination strength at interfaces
- ⇒ Shear tests for delamination shear strength
- ⇒3-point bending with interfacial crack
- ⇒Interfacial integrity characterization by SAT

- Task 3: Determine the criterion for crack propagation for three EMCs (with SJSU)
- ⇒ Standard formulation (low pin count packages)
- ⇒ Low-stress formulation (high pin count packages)
- ⇒ Anti-popcorn formulation (moisture sensitive, high value-added packages)
- ⇒ Temperature range up to 260°C
- ⇒ Moisture content: 0% to past critical moisture level
- ⇒ 3-point bending in T/RH environmental chamber for fracture toughness characterization

- Task 4: Evaluate the hygroscopic behavior of the **EMCs**
- ⇒ Moisture diffusion coefficient
- ⇒ Hygro-swelling coefficient
- ⇒ Mass & energy transport coupling coefficients
- the fundamental mechanism of moisture diffusion ⇒ "Best effort" collaboration with NIST to elucidate in EMC & moisture behavior at interfaces

Task 5: Study the effects of heating/reflow profile and method on popcorning

⇒ Ramp rate

⇒Peak temperature and duration

⇒ When does popcorning occur?

delamination from preconditioning on package Task 6: Evaluate the effect of interfacial reliability

⇒ Candidate packages (TBD)

⇒ Reliability testing (TBD)

FORD - WORKSCOPE

 Provide the shell for the Expert Design System based on Ford's CAIR (Computer Aided Interconnect Reliability)

CONCEPT

CAIR SYSTEM ARCHITECTURE

Melability Analysis Center

SHARP CONPONENTS MORKSHOP

November 15, 16, 1995

- Background
- osoding.

STADO

Pros	Cons
 Availability 	 Uncertain long term reliability
• Weight	 Uncertain reliability in harsh environments
·Cost	 Lack of Quality/Reliability standards
	 Lack of Empirical Data

Purpose

- **Collect PEM data**
- Field
- HAST
- 85/85
- Temperature Cycling
- Life
- Failure Mode/Mechanism
- Analyze data
- Develop model

Goals of this Mode

- Accurately predict the field failure rate of PEMs under a wide variety of use conditions
- Provide adequate sensitivity as a function of the predominant reliability drivers
- Predict the failure rates as a function of most operating scenarios
- empirical data (if available) on a specific product or Include tailoring provisions that allow the use of product line to better predict field reliability.

Summary of 1992 Field Failure Data

			Application	
	Device Type	Ground Benign (G _b)	Commercial Airborne (A _I)	Automotive Underhood (G_M)
Folline Botoe	Linear	0030	.054	.32
(Failures/	Digital SSI/MSI	76000.	.01	.11
	Memory/Microprocessor	.0023	.14	.13
	Operating Hours	4.5 x 10 ¹¹	2.2 × 10 ⁹	8.0×10^{10}
Vata Attributes	Failures	57,274	86	18,830
	Dates	1980 - 1992	1992	1991 - 1993

TEST TYPE	Lognormal Characteristic Life Mean	AverageWeibull Shape Parameter (β)
HAST (AVERAGE CONDITIONS = 137°C, 85% RH)	1595H	4.5
AUTOCLAVE	H299	1
85°C/85% RH	6611H	ı
HIGH TEMP STORAGE (200 °C)	1065H	4.6
TEMPERATURE CYCLING (AVERAGE $\Delta T = 215$)	3745C	3.5
Life Test	963,167H	6-
H = Hours C = Cycles		

Hermetic and Nonhermetic Devices Ground Benign Failure Rates of

$$\lambda P = \lambda O + \lambda E + \lambda TC$$

Failure rate resulting from operational stresses Predicted failure rate in F/106 calendar hours 11 H

Failure rate resulting from environmental stresses 11 λ E ر م

Failure rate resulting from temperature cycling stresses γ 1C =

Distributions as a Function of Data/ Summany of Failure Category Test Type

Environmental and Temperature Cycling failure rates could not be distinguished for Life Test

 $\lambda_{\rho} = \Pi_{\mathrm{TYPE}} [\lambda_{\mathrm{BO}} \Pi_{\mathrm{T}} \Pi_{\mathrm{DC}} \Pi_{\mathrm{LT}} + \lambda_{\mathrm{BE}} \Pi_{\mathrm{RHT}} \Pi_{\mathrm{HAST}} + \lambda_{\mathrm{BTC}} \Pi_{\mathrm{TC}} \Pi_{\mathrm{TC}}] \Pi_{\mathrm{G}}$

Where

Function of Device Type IITYPE Base operating Die Failure Rate $\lambda_{
m BO}$

Temperature Factor

Function of Duty Cycle ПDC ПLT

Tailoring factor as a function of Life Test Data

Base Environmental Failure Rate $\gamma_{
m BE}$

Acceleration factor as a function of Temperature, Relative Humidity **TIRHT**

Tailoring factor as a function of HAST Test Data Π_{HAST}

Base Temperature Cycling Failure Rate λ_{BTC} Acceleration factor as a function of temperature extremes Π_{TC} Tailoring factor as a function of temperature cycling test data Π_{TCT} Reliability growth factor as a function of year of manufacturer

Calculation of III TYPE

	Ą	Q	GB	ПтурЕ (Geometric Mean)
Digital		1	1	1.0
Linear	5.4	2.91	3.09	3.65
Microprocessor Memory	14.0	1.18	2.37	3.40

Failure Rate Term	Failure site/stresses	Test Type
Operational	Die, Operating Temperature	High Temp Operating Life
Environmental	Relative Humidity, Temperature	HAST, 85/85
Temperature Cycling	Change in Temperature	Temperature Cycling

Pi (HAST) vs HAST Mean Life and

Years

Failure Rate Vs. Year

Questions

- How will the prediction results compare to HAST test results?
- How do the prediction results using this model compare with prediction performed using MIL-HDBK-217?
- Over what time period is the growth factor applicable?
- What is the meaning and relevance of the reliability growth factor?
- Why isn't device complexity accounted for?
- Why is the failure rate unit failures per million calendar hours?
- that are not typically experienced in the field. Why was data above this HAST data taken above 130°C is known to result in failure mechanisms value used in development of the model?
- What were the dates of the HAST test results to which the model is normalized?

Pesh sessells

Stress	Symbol	Severe Condition Value	Benign Condition Value
Ambient Operating Temp	TAO	3°08	30.00
Temperature Rise	<u>_</u>	50°C	5°C
Duty Cycle	2	2%	30%
Ambient Environmental Temp	AE	70°C	15°C
Relative Humidity	푼	%06	10%
Cycling Rate (Cycles 106 hours)	CR	500,000	20,000

Steves 1010 ovo Millosvets emile

Failure Rate vs Ambient Operating Temperature for Benign Stresses

7

Follow Policy Over the for Benier

Predicted vs. Observed Failure Rate

- Provisions to tailor the prediction if HAST, Life Test, or Temperature cycling data s available
- A factor which accounts for the growth in reliability that PEMs have experienced.
- Separate failure rates attributable to operational, environmental and temperature cycling stresses so the user can see the stresses that are driving the failure rate.
- The use of industry accepted acceleration factors with constants derived from the empirical data.
- Provisions to estimate the average long term reliability by estimating the failure rate due to known failure mechanisms.
- rates, yielding the predicted failure rate in failures per million calendar hour which Inclusion of operating, environmental and temperature cycling related failure accounts for operating and nonoperating periods.
- Methodology adopted by the Society of Automotive Engineers, various commercial organizations

Comellisions

- PEMs potentially highly reliable in benign applications
- Wide variations in reliability
- Much improved in last 15 years
- Standards becoming prevalent
- Reliability highly dependent on stress
- Each application must be evaluated

PEM Failure Rate Model Summary

If none of the tailoring factors are used, the fundamental parameters necessary to estimate the reliability of a PEM are:

<u>Device Type</u> - Categorization of the device type into either the linear, digital SSI/MSI, or memory/microprocessor categories.

Ambient Operating Temperature (T_{AO}) - The average ambient temperature within the vicinity of the PEM while the system is in operation.

Ambient Environmental Temperature (TAE) - The ambient temperature within the vicinity of the PEM while the system is non-operating.

<u>Temperature Rise</u> $(T_R = \theta_{JA} P)$ - The temperature rise associated with power dissipation. Equal to the thermal resistance (θ_{JA}) times power (P).

<u>Duty Cycle (DC)</u> - The percentage of calendar time that the system is in operation, expressed in decimal form.

Relative Humidity (RH) - The average ambient relative humidity to the PEM expressed in decimal form.

Cycling Rate (CR) - The rate (in cycles per million calendar hours) at which the power is cycled, equivalent to the number of on-off cycles in 10⁶ hours.

PEM Failure Rate Model

$$\begin{split} \lambda_P &= \Pi_{TYPE} \Big[\lambda_{BO} \Pi_T \Pi_{DC} \Pi_{LT} + \lambda_{BE} \Pi_{RHT} \Pi_{HAST} + \lambda_{BTC} \Pi_{TC} \Pi_{CR} \Pi_{TCT} \Big] \Pi_G \end{split}$$
 where,

 λp = Predicted failure rate in failures per million calendar hours

 $\Pi_{\text{TYPE}} = \text{Device Type Factor}$

= 1.0 for Digital Devices (SSI/MSI)

= 3.65 for Linear Devices

= 3.40 for Memory and Microprocessors

 λ_{BO} = Base Operating Die Failure Rate

= 3.05×10^{-6} Failures/ 10^{6} calendar hours (F/ 10^{6} CH)

 Π_{T} = Operating Temperature Factor

$$= \exp \left[-\frac{.8}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298} \right) \right]$$

where,

$$T_J$$
 = Junction Operating Temperature in °K (°C + 273)
= $T_{AO} + T_R$

where,

$$T_{R} = Q_{JA}P$$
$$= T_{AO} + \theta_{JA}P$$

 T_{AO} = Ambient Operating Temperature

 θ_{JA} = Junction - Ambient Thermal Resistance

P = Power

$$\Pi_{DC} = \frac{DC}{.17}$$

$$DC = Duty Cycle = \frac{Operating Time}{Calendar Time}$$

 Π_{LT} = Tailoring Factor as a function of high temperature operating life test on the specific part being predicted

= 1 if no life test data is available

$$= \left(\frac{\lambda_{life}}{.608}\right) \bullet \left(\frac{13335}{\Pi_{T(life)}}\right) \text{ if data is available}$$

 λ_{life} = Observed life test operational failure rate(in f/10⁶ op-hours)

=
$$\frac{\text{Total Number of Failures}}{\text{Cumulative Number of Part Hours}} (\times 10^6)$$

 $\Pi_{T(life)}$ = Operating Temperature Factor (Π_T) for life test conditions

 λ_{BE} = Base Environmental Failure Rate (F/106CH)

 $=.00046 \text{ F}/10^6 \text{CH}$

Π_{RHT} = Acceleration Factor as a function of Environmental Effective Relative Humidity (RH_{eff}) and Temperature

$$= \exp \left[\frac{-.34}{8.617 \times 10^{-5}} \left(\frac{1}{T_{AE}} - \frac{1}{298} \right) \right] \left(\frac{RH_{eff}}{.5} \right)^{3}$$

TAE = Environment Ambient Temperature (in °K)

RH_{eff} = Effective Relative Humidity

= (DC)(RH) exp
$$\left[5230\left(\frac{1}{T_J} - \frac{1}{T_{AE}}\right)\right]$$
 + (1-DC)(RH)

RH = Ambient Average Relative Humidity

Π_{HAST} = Tailoring Factor as a Function of HAST Data on the Specific Part Being Predicted

= 1 if no HAST data is available

Table 6.8-1 contains the Π_{HAST} values as a function of the predicted mean time to failure and the time period (in years) over which the average failure rate is to be predicted. The Mean Time To Failure (μ) is:

$$\mu = \mu_{\text{HAST}} \frac{\Pi_{\text{RHT(HAST)}}}{1.29}$$

 μ_{HAST} = The observed MTTF from HAST Testing from the lognormal Distribution

$\Pi_{RHT(HAST)}$ = Acceleration Factor under the HAST Test Conditions

 λ_{BTC} = Base Temperature Cycling Failure Rate

=.00099 F/106CH

 Π_{TC} = Acceleration Factor as a Function of Temperature Extremes

$$=\left(\frac{\Delta T}{46.1}\right)^4$$

where,

$$\Delta T = T_{AO} + T_R - T_{AE} (^{\circ}C)$$

T_{AO} = Operating Ambient Temperature (°C)

T_R = Temperature Rise

 $= \theta_{IC}P$

 T_{AE} = Ambient Environmental Temperature during Non-operation

 Π_{CR} = Cycling Rate Factor

$$=\frac{CR}{123138}$$

where,

CR = Number of Expected Temperature Cycles of Magnitude ΔT per 10^6 calendar hours.

 Π_{TCT} = Tailoring Factor as a function of Temperature Cycling Tests.

= 1, if no temperature cycling data is available

= $\frac{1}{.43}$ (% Fail / 1000 cycles) $\left(\frac{215}{\Delta T_T}\right)^4$, if temperature cycling data is available

where,

% Fail/1000 Cycles = population percentage failing at 1000 temperature cycles (i.e., Failures/Population x 100)

 ΔT_T = Change in Temperature during Temperature Cycling Tests

 Π_G = Growth Factor as a Function of Year of Manufacture

- = 1, if any empirical data was used to tailor the prediction using Π_{LT} , Π_{HAST} , or Π_{TCT}
- $= \exp[-B(t-1992)]$

B = .293 For linear devices

= .473 For Digital SS1/MS1

= .479 For memory/microprocessors

IIHAST VS. HAST MEAN LIFE AND TIME

_							ICALL	:		Years										
3 .		2	3	*	5	9	7	8	٩	10	Ξ	12	13	14	15	16	17	18	19	20
25100	3.18+3																			
29276.64	2.3E+3														Ī		Ī			
31618.771	1.9E+3											T	T		Ī					
34148.273	1.6E+3	32E+3													Ī					
36880.135	1.3E+3	2.8E+3																		
39830.546	1.15+3	25E+3																		
43016.369	71842	1.8543		1							1						1	1		
50175016	5.7E+2	1.6E+3									1									
54189.017	4.5E+2	1.3E+3	1.9E+3								T									
58524.139	3.6E+2	1.1E+3	1.7E+3								1	I			Ī		T			
63206.07	2.8E+2	9.5E+2	1.5E+3												Ī		T			
68262.556	2.2E+2	7.9E+2	1.3E+3	1.6E+3											Ī					
73723.56	1.7E+2	6.5E+2	1.1E+3	1.4E+3											Ī		T			
79621.445	1.3E+2	5.4E+2	9.3E+2	12E+3							Ī		Ī		T		T	Ī	Ī	
85991.16	9.9E+1	4.4E+2	7.9E+2	1.1E+3	1.3E+3										Ī		T	Ī		
92870.453	7.5E+1	3.5E+2	6.6E+2	92E+2	1.1E+3						T						Ī	T		
100300.09	5.6E+1	2.8E+2	5.5E+2	7.9E+2	9.7E+2	1.1E+3					Ī				Ī		Ì			
108324.1	42E+1	2.3E+2	4.6E+2	6.7E+2	8.4E+2	9.7E+2						T					Ī		T	
116990.02	3.1E+1	1.8E+2	3.8E+2	5.7E+2	7.2E+2	8.5E+2	9.4E+2				Ī			Ī	Ī		Ī			
126349.23	2.3E+1	1.4E+2	3.1E+2	4.8E+2	6.2E+2	7.4E+2	8.3E+2										Ī			
136457.16	1.6E+1	1.1E+2	2.5E+2	4.0E+2	5.3E+2	6.4E+2	7.3E+2	8.0E+2									T			
147373.74	12E+1	8.5E+1	2.0E+2	3.3E+2	4.4E+2	5.5E+2	63E+2	7.0E+2					Ī		Ī		T	T	T	
159163.64	8.5E+0	65E+1	1.6E+2	2.7E+2	3.7E+2	4.7E+2	5.5E+2	62E+2	6.7E+2								T	T	T	
171896.73	6.0E+0	5.0E+1	1.3E+2	2.2E+2	3.1E+2	4.0E+2	4.7F+2	5.38+2	5.9R+2	6.2R+2			1	Ī			T	Ī		
185648,47	4.3E+0	3.8E+1	1.0E+2	1.85.+2	2.6E+2	3.38+2	4.0F+2	46F±2	S 1E+2	5 5 R 1.2	T				Ī	Ī	T			
200500.34	3.0E+0	2.8E+1	7.8F+1	1 45+7	7.1K±2	2 8842	3 4 1 1 2	39612	4 45-22	4 8E-2	C 2E 2	Ī			T		1	1		
216540.37	2.1E+0	2.1E+1	6.1E+1	1.15+2	1 7K+2	236+2	2 8E±2	34612	3 85.17	4.2E42	4 5612	4 OE.7					T			
233863.6	1.4E+0	15E+1	4.7E+1	9.0E+1	1.4E+2	1.95+2	2.4E+2	2.8R+2	3.38+2	3.6F±2	3 9F±2	43617	4 SELO			Î	T		T	
252572.69	9.7E-1	1.1E+1	3.6E+1	7.1E+1	1.1E+2	1.5E+2	20F+2	7 4F+7	2 RE+2	3.1542	3 4547	3.7F.1.2	3 OF 12	4 2542	43543		1		T	
277778.5	6.6E-1	8.3E+0	2.7E+1	5.5E+1	8.9E+1	1.3E+2	1.6E+2	2.0E+2	2.36+2	2.6E+2	2 9F+2	37547	345+7	3 6F±2	3 8842	40512	T		T	
294600.78	44E-1	6.0E+0	2.0E+1	4.3E+1	7.0E+1	1.0E+2	13E+2	1.6E+2	1.96+2	2.2E+2	2.5K+2	27F+2	30F+2	37547	3 45-17	355.2	3.75.13	Ī	T	
318168.85	2.9E-1	4.3E+0	1.5E+1	3.3E+1	5.5E+1	8.1E+1	1.1B+2	13E+2	1.6E+2	1.8E+2	2.15+2	23F±2	2.5K+2	2.7E+2	29642	3.15.2	3.7E.2	3 45.2	Ī	
343622.35	1.9E-1	3.0E+0	1.1E+1	2.5E+1	4.3E+1	6.4E+1	8.6E+1	1.1E+2	1.3E+2	1.5E+2	1.8E+2	20E+2	22E+2	2.4E+2	25E+2	27F+2	28F+7	2 9F±2	3.15.22	3.25.2
371112.14	1.3E-1	2.1E÷0	82E+0	1.95+1	3.3E+1	5.0E+1	6.9E+1	8.9E+1	1.1E+2	1.3E+2	1.5E+2	1.7E+2	1.8E+2	2.0E+2	22E+2	23E+2	24F+7	26642	275.22	2 8617
400801.11	8.3E-2	1.5E+0	Н	1.45+1	2.5E+1	3.9E+1	5.5E+1	7.1E+1	8.8E+1	1.0E+2	1.2E+2	1.4E+2	1.5E+2	1.7E+2	1.8E+2	2.0E+2	2.1E+2	2.2E+2	2.3E±2	2 4F±2
432865.2	5.3E-2	1.0E+0	_	1.1E+1	1.9E+1	3.0E+1	4.3E+1	5.7E+1	7.1E+1	8.5E+1	1.0E+2	12E+2	1.3E+2	1.4E+2	1.6E+2	1.7E+2	1.8E+2	1.9E+2	2.0E+2	2.1E+2
467494.42	3.4E-2	7.18-1	3.1E+0	7.8E+0	1.5E+1	2.3E+1	3.4E+1	4.5E+1	5.7E+1	6.9E+1	82E+1	9.5E+1	1.1E+2	1.2E+2	1.3E+2	1.4E+2	1.5E+2	1.6E+2	1.7E+2	1.8E+2
304993.97	7-977	4.96-1	-+	5.7E+0	1.1E+1	1.8E+1	2.6E+1	3.5E+1	4.5E+1	5.5E+1	6.6E+1	7.7E+1	8.8E+1	9.9E+1	1.1E+2	12E+2	13E+2	1.4E+2	1.5E+2	1.6E+2
242,002,49	+	1-90-0	+	4.18+0	6.1E+0	1.4E+1	Z.0E+1	2.8E+1	3.6E+1	4.4E+1	5.3E+1	63E+1	7.2E+1	8.1E+1	9.0E+1	9.9E+1	1.1E+2	12E+2	12E+2	1.3E+2
536(7)1	+	1,111	1.1E+0	3.08+0	0.0E+0	1.0E+1	15E+1	2.1E+1	2.85+1	3.5E+1	4.3E+1	5.0E+1	5.8E+1	6.6E+1	7.4E+1	82E+1	9.0E+1	9.7E+1	1.0E+2	1.1E+2
29 206989	┿	9.7E-2	+	1 55.10	3.2E.0	5.65.0	8 7E40	1 25.1	1 7 7 1	2.75+1	3.42+1	105+1	4./E+1	5.48+1	6.1E+1	0/2+1	/.4E+1	8.1b+1	8.75+1	9.45+1
741854.89	+	6.4E-2	+	1.1E+0	2.3E+0	4.1E+0	6.5E+0	9.4E+0	1.3841	16641	7 1541	2 5F11	30E+1	2 5E11	1061	4.4E.1	5.0E+1	5 5 5 5 1	1,78+1	/.or.+1
801203.28	-	4.2E-2	2.4E-1	7.5E-1	1.6E+0	3.0E+0	4.8E+0	7.1E+0	9.7E+0	1.3E+1	1.6E+1	20E+1	2.3F+1	2.7F+1	3.7F+1	3.6E41	4 OF AT	44641	1067	5 35.1
865299.54	Н	2.7E-2	1.6E-1	5.2E-1	1.2E+0	22E+0	3.5E+0	5.3E+0	7.3E+0	9.6E+0	1.2E+1	1.5E+1	1.8E+1	2.2E+1	25E+1	2.8E+1	32E+1	3.6E+1	3.9E+1	4.3841
934523.51	4	1.7E-2	1.1E-1	3.6E-1	82E-1	1.6E+0	2.6E+0	3.9E+0	5.5E+0	72E+0	9.4E+0	12E+1	1.4E+1	1.7E+1	2.0E+1	2.3E+1	2.6E+1	29E+1	32E+1	3.5E+1
1009285.4	+	1.1E-2	7.3E-2	2.4E-1	5.7E-1	1.1E+0	1.9E+0	2.8E+0	4.1E+0	5.4E+0	7.1E+0	8.9E+0	1.1E+1	1.3E+1	1.5E+1	1.8E+1	20E+1	23E+1	2.5E+1	2.8E+1
10900282	1.584	6.9E-3	4.8E-2	1.6E-1	4.0E-1	7.8E-1	1.3E+0	2.1E+0	3.0E+0	4.0E+0	5.3E+0	6.8E+0	8.3E+0	1.0E+1	1.2E+1	1.4E+1	1.6E+1	1.8E+1	2.0E+1	22E+1
1277408 0	+	4.35-3	3.1E-2	1.115-1	27E-1	5.5E-1	9.5E-1	1.5E+0	2.2E+0	3.0E+0	4.0E+0	5.1E+0	6.3E+0	7.7E+0	9.1E+0	1.1E+1	12E+1	1.4E+1	1.6E+1	1.8E+1
1373191 6	2.0E-3	1 45.3	1 25 3	7-95-7	1.35-1	3.01-1	0./E-1	1.1E+0	1.65.40	2.25+0	2.9E+0	3.8E+0	4.8E+0	5.8E+0	7.0E+0	8.2E+0	9.5E+0	1.1E+1	12E+1	1.4E+1
1482971 4	1 6E-5	1 OE.2	+	275.2	1-3E-1	1.05-1	2.75-1	1-20-7	1.15+0	1.02+0	04377	7.02+10	335+0	4.45+0	3.38+0	62E+0	7.3E+0	8.4E+0	9.5E+0	1.1E+1
1601609.1	╀	6.0E-4	┿	2152	5.6R-2	1 25.1	2 3E-1	3.7E-1	5 715.1	8.2E-1	115.0	1 55.0	1 05.0	3.75+0	4.0E+U	4./E+U	3.2E+0	6.4E+0	735.40	8.3E+0
1729737.8	5.1E-6	3.6E-4	3.2E-3	1.3E-2	3.7E-2	8.2E-2	1.56-1	2.6E-1	4.0E-1	5.8F-1	R 1E-1	1 1510	1 45+0	1 85.0	2.25+0	3 4510	275.0	4.7E+0	3.05.40	0.44
1868116.8	┝	22E-4	╀	8.6E-3	2.4E-2	5.5E-2	1.0E-1	1.8E-1	2.8E-1	4.1E-1	5 8E-1	7 RE-1	1 05-10	1 35.0	1 45.0	1 05.0	235.0	375.0	375.0	2.7E+0
2017566.2	Н	1.3E-4	1.2E-3	5.5E-3	1.6E-2	3.6E-2	7.0E-2	1.2E-1	1.9E-1	2.8E-1	4.1E-1	5.6E-1	7.3E-1	9.35-1	1.2E+0	14810	1 7E±0	2.7E+0	3.4E+0	3 8510
2178971.4	Н	7.3E-5	7.6E-4	3.4E-3	1.0E-2	2.4E-2	4.7E-2	8.3E-2	1.3E-1	20E-1	2.9E-1	3.9E-1	5.2E-1	6.7E-1	8.4E-1	1.0E+0	136+0	1.5E+0	1.8E+0	20E+0
2353289.2	4.5E-7	4.3E-5	4.6E-4	2.2E-3	6.6E-3	1.6E-2	3.1E-2	5.6E-2	9.0E-2	1.4E-1	2.0E-1	2.8E-1	3.7E-1	4.8E-1	6.0E-1	7.5E-1	-9.1E-1	1.1E+0	1.3E+0	1.5E+0
67661167	+	2.5E-5	2.8E-4	13E-3	4.2E-3	1.0E-2	2.0E-2	3.7E-2	6.1E-2	9.3E-2	1.4E-1	1.9E-1	2.6E-1	3.4E-1	43E-1	5,4E-1	6.6E-1	7.9E-1	9.4E-1	1.1E+0
																	•			

Prediction Example

As an example of using the PEM model, consider the following conditions:

Ambient Operating Temperature(
$$T_{AO}$$
) = 40°C

Temperature Rise
$$(T_R) = 20$$
°C

Duty Cycle (DC) =
$$30\%$$

Cycling Rate (CR) =
$$175,000$$
 cycles/ 10^6 calendar hours

$$Year = 1992$$

$$\lambda_{P} = \Pi_{TYPE} \left[\lambda_{BO} \Pi_{T} \left(\frac{\Pi_{DC}}{.17} \right) \Pi_{LT} + \lambda_{BE} \Pi_{RHT} \Pi_{HAST} + \lambda_{BTC} \Pi_{TC} \Pi_{CR} \Pi_{TCT} \right] \Pi_{G}$$

$$\Pi_{\text{TYPE}} = 3.4$$

$$\lambda_{BO} = .00000305$$

$$\Pi_{\rm T}$$
 = $\exp\left(\frac{-.8}{8.617\times10^{-5}}\left(\frac{1}{40+20+273}\right) - \left(\frac{1}{298}\right)\right) = 26.43$

$$\Pi_{DC} = \frac{DC}{.17} = \frac{.30}{.17} = 1.765$$

$$\Pi_{LT}$$
 = 1 (No available life test data)

$$\lambda_{RF} = .00046$$

$$\Pi_{\text{RHT}} = \exp\left[\frac{-.34}{8.617 \times 10^{-5}} \left(\frac{1}{25 + 273} - \frac{1}{298}\right)\right] \left[\frac{\text{RH}_{\text{eff}}}{.5}\right]^3$$

$$RH_{eff} = (DC) (RH) \exp \left[5230 \left(\frac{1}{T_J} - \frac{1}{T_{AO}} \right) \right] + (1 - DC) (RH)$$

$$= (.30) (.60) \exp \left[5230 \left(\left(\frac{1}{40 + 20 + 273} \right) - \left(\frac{1}{40 + 273} \right) \right) \right] + (.7) (.6) = .486$$

$$\Pi_{RHT} = .918$$

$$\Pi_{\text{HAST}} = 1$$
 (No HAST data available)

$$\lambda_{BTC} = .00099$$

$$\Pi_{\text{TC}} = \left(\frac{\Delta T}{46.1}\right)^4$$

$$\Delta T = T_{AO} + T_{R} - T_{AE}$$

$$= 40 + 20 - 25$$

$$\Pi_{TC} = \left(\frac{35}{46.1}\right)^4 = .332$$

$$\Pi_{CR} = \frac{CR}{123138} = \frac{175,000}{123,138} = 1.421$$

$$\Pi_{TCT} = 1 \text{ (No temperature cycling test data available)}$$

$$\Pi_{C} = \exp[-B(t-1992)]$$
For t = 1992,
$$\Pi_{C} = \exp[-.479(1992-1992)]$$
= 1

Therefore, the predicted failure rate is:

$$\begin{split} \lambda_{P} &= 3.4 \big[(.00000305)(26.43)(1.765)(1) + (.00046)(.918)(1) + (.00099)(.332)(1.421)(1) \big] (1) \\ &= .0035 \; \text{Failures} / 10^6 \, \text{CH} \end{split}$$

If this failure rate must be added to an operating reliability prediction in the units of failures per million operating hour, the predicted failure rate is;

$$\lambda_{\rm P} = \frac{.0035 \text{ F}/10^6 \text{CH}}{\text{DC}} = .0117 \text{ (Failures/10^6 op hrs.)}$$

Long Term Storage of PEM

16 November 1995

Bill Garry
Westinghouse

- The Problem
- The Plan
- The Team

The Problem

- Need for Lower Cost Systems
- Lack of models for Long Term Storage
- Not Just a Longbow Missile Problem

Two Potential Solutions

- Long Term Storage Actual
- Accelerated Testing Without Bias

Objective

 Develop a Model to Relate Accelerated Test Environments to LTDS

The Plan: Five Tasks

I. LTDS Environmental Study

I. Analytical Model Study

III. Experimental Study

IV. Analysis/Model Reconciliation

V. Final Report

Task I: LTDS Environmental Study

A. Define Magnitudes and Durations of Actual

LTDS Environments

B. Develop a Coordinated Test Plan to Study Effects

of Principal Environments of Concern

- Combined Temperature Humidity
- Thermal Cycling
- Ionic Contamination

Strawman Test Regimen - Four HAST Groups

Group I: 85°C, 85% RH

Group II: 130°C, 85% RH

Group III: 130°C, 95% RH

Group IV: 150°C, 95% RH

STRAWMAN TEST REGIMEN - SEQUENTIAL TESTS

CONDITIONS	50°C to 125°C, 16 min. dwell, 50 cycles	100 hours per group	-55°C to 125°C, 10 min. dwell, 50 cycles	100 hours per group	75°C to 150°C, 16 min. dwell, 50 cycles	100 hours per group
STRESS	T/C	HAST	T/C	HAST	T/C	HAST
STEP		2	3	4	S	9

CONDITIONS
STRESS
STEP

SALT FOG 120 hours

J./C 0.C

0°C to 75°C, 16 min dwell, 150 cycles

<clean & dry all part surfaces>

To t₅₀ for each group

HAST

Task II: Analytical Model Study

- Review Literature, ID Potential Failure Mechanisms
- Study Extant Models Strengths, Weaknesses
- Evaluate Compatibility with Geometric and Material Characteristics of PEM for LTDS
- Define Expected Failure Distributions
- Define Expected Acceleration Factors for LTDS

Output: Potential Model Framework

Task III - Experimental Study

- •5 Test Groups (4 HAST Groups, 1 HSM)
- 2 Sub-groups per Group
- Minimum Geometry
- Maximum Geometry
- Record Variables for Each Group
- Molding CompoundElastic Modulus
- Elastic Modulus - Thermal Expansion Coefficient
- Glass Transition Temperature
- Extractable Ionic Species Level

Task III - Experimental Study

- Lead Frame

- Elastic Modulus

- Thermal Expansion Coefficient

- Package

- Type & Dimensions

- Number of Leads

- Plastic Thickness Above Die

- Die Size

Determine Partial Factorial Plan

Define Group and Subgroup Sample Sizes

Task III - Continued

Obtain Test Parts

Subject All Parts to Preconditioning

- 5 cycles, -20°C to 50°C, 40 min., 10 min dwell

(shipping simulation)

- 85°C/85% RH, 168 hours (storage simulation)

- 1 cycle simulated IR reflow/vapor phase

time/temperature exposure

Task III - Continued

•Part Testing - Initial and Periodic

- External Visual

- Acoustic Microscopy

- Electrical Parametric (-40°C, 25°C, 85°C)

- Remove Failed Parts

Task III - Continued (Phew!)

Conduct Tests - per Coordinated Test Plan

• Failure Definition:

- Catastrophic - short or open

 out of spec condition - Degraded

• Failure Analysis

- Site, Mode, Mechanism

Task IV - Analysis/Model Reconciliation

Data Recording, Plotting

•For Each Failure Mechanism,

- Distribution

- t₅₀, t₁₆

•Fit Validated Data to Models from Task II

Conduct Sensitivity Analysis

Task V - Final Report

Schedule

4095 1096 2096 3096 4096 1097 2097 3097 Task III Task IV Task V Task II Task I

The Team

- Westinghouse Electric Corp., Baltimore
- Stan Whelan, Bill Garry
- University of Maryland CALCE-EPRC
- Dr. Pat McCluskey, Dr. Mike Pecht
- Advisors, USA MICOM
- Dave Locker, Dr. Noel Donlin
- Other Interested Parties
- Buff Slay, Texas Instruments, Dallas, TX
- Jim Reilly, Rome Labs, Rome, NY
- Ron DiCristoforo, Lockheed Martin, Orlando

An Appeal

- Suggestions, Critique Welcome

- Participation On Technical Advisory Panel

(TAP)

- Parts

- Ideas

FOR TELECOMMUNICATIONS EQUIPMENT ACCELERATED TESTING

Carter Road, Room 2-3057 Princeton, NJ08542 chan@pruxp.att.com H. Anthony Chan AT&T Bell Labs (609)639-2420

Introduction.

short product cycles and higher customer expectations at lower cost. Rapid technology changes, diverse global environments, Infant mortality.

Need for comprehensive quality programs. Product Weaknesses and Stress Testing.

Screening versus corrective actions. Stress-strength contours.

How is system stress testing relate to component quality? How does stress testing improve product quality at low cost?

ENVIRONMENTAL STRESS TESTING PRODUCT RELIABILITY AND

Introduction

Conventional Reliability Concepts.

Design for reliability

Product Weaknesses and Stress Testing.

Systematic Formulation

EST Programs

Stress stimuli

Reliability Programs

Fix the problems in response to

- field returns.
- ractory test data.

New product planning

- remet reliability qualification.
- predict failure rate.
- margins in design, component performance and process.
- g design verification test.

Stress Testing

- ESS.
- EST.

OLOGY ROADMAP 1992-2007 । ा४,४६६,६६४ Reliability technology is lagging behind 16,069.690 14 10000000000000

6,000,000 **BITS/CHIP** DRAM SIZE um **FEATURE**

O W/DIE POWER

OF I/O 500

PERFORMANCE (SPEED)

> AN CH9507. ERC

Predict failure rate?

Many failure modes are still empirical Too few data for new products.

Typical failure rate of a product

decreases during infant mortality, increases during wear-out, stays roughly constant in between.

Relibility programs cannot catch up. GROWTH

HUMAN Land

Feilures upsets customers more.

ONERSE CUSTOMERS

Product sees more failure conditions.

SHORT
PRODUCT
CYCLE
Cannot improve design.

COMPETITIVE MARKET Expect better quality at lower cost.

a reliability program

a low COGS and fast Time-to-Market program a pro-active reliability program

separate reliability expertise integrated team

empirical systematic long term reliability infant mortality

higher end systems consumer products

Reliability Strategy

Manufacture owner

Procurement owner

Reliability Team

Designer

Reliability expertise

Management

Marketing owner

handling/shipping Installation Maintenance/repair Field stress?

Process margin

Design margin

GM&E ERC CHAN FT9503.01

Component/Supplier Specification Program

GM&E ERC CHAN RP9511.02

Failure, Analysis, Corrective actions Database

LOGISTICS

FAILURE

ANALYSIS

CORRECTIVE ACTION

Model #

Part #___ Serial #

Symptom

FMA results

Recomended action

Effect

Taken?

When & by Who?

Verified?

Where failed

Operating mode

When failed

Environmental

conditions

Who reported

Failure category

GENERALIZED PROCESS

unknown status OUTPUTS of

G009

G009

WEAK

BAD

WEAK

BAD

GM&E ERC CHAN ST9401.01

GM&E ERC CHAN ST9404.12

Screening vs Stress Testing

Environmental Stress Screening (ESS)

- Apply stresses to stimulate observable failures for weak units.
- Weak products are screened out, although they continued to be produced.

Environmental Stress Testing (EST)

- Identify weaknesses of product to withstand stresses.
- Take corrective actions to achieve product robustness.
- Use sampling to monitor and maintain quality.

Rationale for stress testing.

Environmental stress testing is an effective method for improving product reliability. Products may often have hidden defects or weaknesses. which can cause failures during normal operation in the field. Top viewgraph shows that product failures may occur when the statistical distribution for a product's strength, or its capability of withstanding a stress, overlaps with the distributions of the operating environmental stresses. To prevent product failures, reliability may be achieved through a combination of robust design and tight control of variations in component quality and manufacturing processes. Center viewgraph shows that when the product undergoes sufficient improvements, there will no longer be an overlap between the stresses encountered and product strength distributions. Stress testing is a process in which environmental stress stimuli are applied to a product to turn such latent defects into observable failures. The stress testing process thus prevents defective product from being shipped to the field, and offers an opportunity to discover and correct product weaknesses early in product life.

Bottom viewgraoh shows that product variations are better revealed at heightened stress levels. The stress levels applied must be severe enough to precipitate the defects without causing damage to good product or nucleating defects, which cause early wear-out and reduced life in the field. Application of stress testing accelerates the process of precipitation and detection of latent defects.

Stress screening has its origins in the space program in the 1960's, which required 100% defect free systems. While quality control was the ultimate objective, there was not much attention paid to cost of doing stress screening. Subsequently, in the 1970's, stress screening was adopted by the defense electronics industries, as an effective technique for quality control. Much of the pioneering work to quantitatively establish the benefits of stress screening was done by the defense electronics industry. Defense contractors are contractually obligated to perform stress screening on 100% of their final shipped products, which can be a costly process. More recently, stress screening has been routinely applied in the commercial electronics industries, as well, and the number of commercial users is increasing at a rapid rate. While defense electronics industries apply stress screening as a contractual obligation, commercial industries have effectively applied stress testing as a tool for improving quality, while also making it cost more effective.

Stress Stimuli

Elevated Temperature. Low Temperature. 300

Liquid Temperature Cycling, Temperature Cycling,

Mechanical Shoet Vibration

Elevated Humidity

GM&E ERC CHAN ST9408.04

ESD, Power Surge. EMI Susceptibility. Power Cycling. EOS

Parameter Variations: Signal/Noise Voltage Clock

What Failure Type Dominates?

Threshold stress failure.

assembly, handing, transportation, installation, ** A high peak-stress encountered during or field use stimulates failure.

Breakdown electric field of device.

product life causes cumulative damage. ••• Stresses encountered over the entire Electromigration.

What Failure Type Dominates?

Combined threshold-cumulative stress failure.

•n• A high peak stress initiates an incipient failure site which is then driven to a hard failure by subsequent cumulative

Cracked component package followed by corrosion.

Product Reliability - avoidance of failures, which customers see over product life

fraction of product units that have (first) failed up to time t. Cumulative fraction failed, F(t),

cumulative fraction failed over the entire service life, F(service life). Lifetime failure rate, LFR,

From Where are Failures Coming?

Product strength distribution:

- •#• Main population
- Weak populations

Sources of infant mortality and freak failures:

- •* Mainly from weak populations.
- •* Some early wear out from low strength shoulder of the main population.

LIFETIME MAXIMUM STRESS, X

DEPENDS ON CUSTOMERS' STRESS ENVIRONMENT ONLY

Threshold stress failure.

Highest stress level ever encountered by a unit during its entire service life under a certain customer's environment.

e.g. coldest environmental temperature.

Cumulative stress failure.

accumulated over the entire service life under Total effect made by stresses on a unit a certain customer's environment.

e.g. 60C and 8V over 1,000 hours.

PRODUCT (YIELD) STRENGTH, Y

DEPENDS ON THE ROBUSTNESS OF THE PRODUCT ONLY

Threshold stress failure.

★ Highest stress level a unit can endure without exhibiting first failure.

e.g. I-V curve may shift too much to function properly at -30C.

• Maximum effect from stresses a unit can endure without exhibiting first failure.

e.g. electromigration failure after 60C and 8V over 1,000 hours.

Main

GM&E ERC CHAN CT9408.04

MAXIMUM EST STRESS LEVEL, XST

DEPENDS ON STRESS TESTING ENVIRONMENT

Threshold stress failure.

unit during the entire stress testing process. Highest stress level ever encountered by a

Cumulative stress failure.

accumulated over the entire stress testing ★ Total effect made by stresses on a unit process.

GM&E ERC CHAN CT9408.05

GM&E ERC CHAN CT9408.07

GM&E ERC CHAN CT9408.08

on Ionizing Dose Response in CMOS Microcircuits* Plastic Packaging and Burn-in Effects

Steven D. Clark and John P. Bings

Naval Surface Weapons Center - Crane Division

Michael C. Maher

National Semiconductor Corporation

National Semiconductor Corporation

David R. Alexander and Michael K. Williams

Mission Research Corporation

Ronald L. Pease

RLP Research Inc.

SHARP Commercial and Plastic Components in Military Applications Workshop Indianapolis, Indiana 16 November 1995 Presented to

*This work was performed under NSWC-Crane Contract N00164-92-D-0009 and supported by funding from the Defense Nuclear Agency

Motivation and Objective for Packaging and Burn-in Investigation

■ Motivation

systems which may be exposed to ionizing radiation from either The use of plastic encapsulated commercial-off-the-shelf (COTS) parts is being encouraged for weight and cost savings in natural space or nuclear radiation environments.

Objective

microcircuits as affected by plastic versus traditional ceramic packaging and by the application of burn-in as a reliability To compare ionizing dose radiation effects on CMOS

Mission Research Corporation

National Semiconductor

Test Population Summary

Wafer Map

- Product Sample Description
- Manufacturer: National
- 54AC02 Quad 2-Input NOR Gate
- JAN B, MIL-PRF-38535 Class
- Process Technology: Pwell Epi-CMOS, LOCOS isolation, TOX = 250 Angstroms

DESC 2/3 Region		•		■ Test Structures
	- C - J		Q	
	·		A .	
1	•		•	7

V		T		I		
# Sample	33	79	37	75	63	61
Package Type Burn-In Package Mfgr. # Samples	NSC	NSC	NSC	NSC	SEI	SEI
Burn-In	No	No	Yes	Yes	Yes	No
Package Type	Plastic	Ceramic	Plastic	Ceramic	Plastic	Plastic

Mission Research Corporation

National Semiconductor

ICCH Max vs. Dose/Anneal for Four Groups at High Dose Rate

ICCL Max vs. Dose for Four Groups

ICCH Population: 50K Rads Normal Distribution: 50 Rad(Si)/Sec.

ICCL Population: 50K Rads

Normal Distribution: .096 Rad(Si)/Sec.

Secondary Observations

- ICCH & ICCL annealing effects.
- O Rapid annealing following high dose rate exposure.
- O Minimal annealing following low dose rate exposure.
- ICCH & ICCL leakage paths.
- O N-channel source-to-drain edge path dominates high dose rate leakage.
- O Field oxide leakage path dominates low dose rate leakage.
- N-channel pseudo-subthreshold leakage correlates to postirradiation ICCH & ICCL.

ICCH Anneal After 50 krads for High and Low Dose Rate

Cartoon of N-channel Output Stage **Current Paths**

for Vdd < 150 mv Path A: Parasitic pre-rad currents diode dominates

dominates after Path B: NMOS high dose rate edge leakage irradiation.

3

ပ

rate irradiation. dominates after irradiation and anneal of high after low dose Path C: FOX dose rate leakage

Mission Research Corporation

National Semiconductor"

Correlation of ICCH and IL N-CH at 50 krads and 50 rads/s

Mission Research Corporation

National Semiconductor

Correlation of ICCH and IL N-CH at 50 krad and 0.096 rads/s

Summary of Packaging and Burn-in Investigations

- No parametric or functional total dose failures observed at or below 100 krad(Si).
- Plastic burned-in parts show enhanced degradation.
- O Worst case post-irradiation parameter values.
- O Broadest post-irradiation distributions.
- Degradation for low dose rate or high dose rate plus room temperature anneal is much less than for high dose rate.
- Analysis identified two leakage paths.
- O N-channel source-to-drain edge path dominates high dose rate effects.
- Field oxide path dominates low dose rate effects.
- Mil-Std-883 Method 1019.4 part A is overly conservative for space applications of this technology.
- Physical mechanism for enhanced degradation in plastic/burned-in parts has not been identified.

from Packaging and Burn-in Investigations Recommendations

- Caution is recommended in using plastic/burned-in parts in systems with total dose requirements.
- Test samples should be representative of the flight population in terms of packaging and burn-in.
- Sufficiently large sample size is required for determination of radiation damage margin for plastic/burned-in parts.
 - technologies should be performed to keep pace with the • Additional studies on other processes and packaging state-of-the art.

National Semiconductor"

Source of Burn-In/Total Dose Effects

- Test Structure Studies
- Failure Analysis
- Burn-In Bias Variations
- Alternate Materials
- O Package Compositions
- O Processes
- Technologies
- Delamination Not Likely

ADDENDUM TO DAY 1 HONEYWELL PRESENTATION

COMPARISON OF NATIONAL VS HONEYWELL ANALYSIS METHODS

RELIABILITY EXPERIENCE HONEYWELL FIELD

NATIONAL VS HONEYWEL

Purpose - "...Express a view of the Honeywell Raw Data..."

• Purpose - "...describe, compare...field reliability experience for plastic Vs hermetic microcircuits.

NATIONAL VS HONEYWELL

Focuses on the variability between LRU's.

Accepts variability as real world situation and statistically combines all data sources to draw conclusions.

NATIONAL VS HONEYWELL

- Gives-equal weighting to data sources irrespective of sample size.
- Assumes predicted failure rates are equal within each category (Dig. SSI/MSI, Mem./LSI, Linear)
- Sources using chi² distribution at a 50% confidence level.
- Data factored to account for difference in predicted failure rates.

NATIONAL VS HONEYWELL

PEM./CERAMIC FAILURE RATE RATIOS

<u>NS</u> ¹ 0.63	Device Grouping Digital SSI/MSI	HI 0.50
0.72	Memory/LSI	0.44
3.6	Linear	3.0

1) W/O Statistical analysis & predicted failure rate factoring