23-51-Q1 Q: TSP 12 city < a, a2 .. a12) recombination -> hyper-recomb OPM X : shade cells Dcycle ~ 3 Edge. ~ -> Node 1 Node 7 greedy approach: lowest 6->2 dij %: modalo dij = ((ai+ai) %5)+1 ca) two off spring

Parent 1 5 12 7 1 10 3 8 6 11 4 9 2

Parent 2 7 8 9 10 11 12 1 2 3 4 5 6

O Cycle 2

C	hoices	Element Selected	Reason	Partial Result
	1		off spring t start with	1
7	10122	10	smallese d	61
•	3911	9	\sim	109
2	428	2	\sim	11092
_	53	3	\sim	10923
	84	8	\sim	1109238
	6 7	7	\sim	11092387
	[26	6	\sim	110923876
	115	5	~	1109238765
	12 4	12		110923876512
	[]	[[only one	11092387651211
	4	4	only one	10923876512114

offspring5 110923876512114

Doffspring 6: Smillar Step! Skip 10 12 5 8 0

	ı	1	
Choices	Elemens Selected	Reason	Partial Result
7	7	off spring 6 start with	7
12 86	3	mini d	78
369	3	\sim	783
1024	2	~	7832
951	9	\sim	78329
4 10	4	\sim	783294
11 5	[(N	78329411
6 10 15	10	\sim	7832941110
1	ſ	only	783294 11 101
12	12	only	783294 11 10/12
57	5	\sim	783294 11 10/125
6	6	Gnly	783294 11 10/1256
		·	

(b) fros & cons Pros @ areater Diversity of Solution 3 Potentially Faster Improvement 3) combine three methods pros (1) PMX often preserves valative order of substrings nicely (1)Cycle crossover systema-cically passes certain "alleles" in cycles (3) Edge ~ preserve adjacency information O increased computational cost per Pair @ Risk of Overfitting to the crossover stage 3) complexity of Implement and two