Graph the function:

$$f(x) = \begin{cases} x^2, x \in \Re, x \neq 2\\ 1, x = 2 \end{cases}$$

Calculate:
$$\lim_{x\to 2} f(x) = 4$$

More Limits

The limit $\lim_{x\to a} f(x)$ exists and is equal to the finite value A if $\lim_{x\to a} f(x) = \lim_{x\to a} f(x) = A$. We say that f(x) converges to A as x approaches a.

Example #1

Calculate

$$\lim_{x\to 0}\frac{1}{x}$$

$$x \rightarrow 0$$
 $1(\alpha) \rightarrow -\infty$
 $x \rightarrow 0$ $1(\alpha) \rightarrow -\infty$
 $x \rightarrow 0$ $1(\alpha) \rightarrow -\infty$
 $1(\alpha) \rightarrow -\infty$

Infinite Limits

$$\lim_{x \to \infty} \frac{1}{x} = 0$$
as x gets larger and larger

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

Example #2 - Evaluate each of the following limits:

a)
$$\lim_{x \to \infty} \frac{2x+3}{x-4}$$

$$= \lim_{x \to \infty} \frac{\frac{2x}{x} + \frac{3}{x}}{\frac{x}{x} - \frac{4}{x}}$$

$$= \lim_{x \to \infty} \frac{\frac{2x}{x} + \frac{3}{x}}{\frac{x}{x} - \frac{4}{x}}$$

$$= \lim_{x \to \infty} \frac{2 + \frac{3}{x}}{\frac{1 - \frac{4}{x}}{1 - 0}}$$

$$= \frac{2 + 0}{1 - 0} = 2$$

b)
$$\lim_{x \to \infty} \frac{x^2 - 3x + 2}{1 - x^2}$$

$$= \lim_{x \to \infty} \frac{\frac{x^2}{x^2} - \frac{3x}{x^2} + \frac{2}{x^2}}{\frac{1}{x^2} - \frac{x^2}{x^2}} + \frac{2}{x^2}$$

$$= \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{2}{x^2}}{\frac{1}{x^2} - \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{2}{x^2}}{\frac{1}{x^2} - \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{2}{x^2}}{\frac{1}{x^2} - \frac{1}{x^2}}$$

horizontal lim
$$\frac{5\pi^3-7\pi^2}{x^5\infty} = 0$$

horizontal $\frac{3\pi^2+5\pi^2}{x^5\infty} = -\frac{3}{7}$

where $\frac{3\pi^2+5\pi^2}{x^5\infty} = -\frac{3}{7}$

oblique $\frac{7\pi^2+3}{x^5\infty} = \infty$

asymptote asymptote