<u>Ορισμός 1:</u> Ένα μη κατευθυνόμενο γράφημα G = (V, E) είναι διχοτομίσιμο (ή διμερές) όταν οι κορυφές του μπορούν να διαμεριστούν (χωριστούν) σε δύο ξένα μεταξύ τους σύνολα V_1 και V_2 (δηλαδή $V_1 \cup V_2 = V$ και $V_1 \cap V_2 = \emptyset$), έτσι ώστε κάθε ακμή να έχει το ένα της άκρο σε κορυφή του V_1 και το άλλο της άκρο της V_2 .

Ορισμός 2: Ένα γράφημα καλείται διχοτομίσιμο αν και μόνο αν οι κορυφές του διαμερίζονται σε δύο σύνολα ανεξαρτησίας.

Ορισμός 3: Ένα γράφημα είναι διχοτομίσιμο αν και μόνο αν δεν περιέχει κύκλους περιττού μήκους

Παρατηρήσεις:

- Τα σύνολα V₁, V₂ καλούνται μερίδια κορυφών
- Το διμερές γράφημα συμβολίζεται και $G = (V_1, V_2, E)$

<u>Παράδειγμα:</u> Ο G_1 είναι διχοτομίσιμος με την διαμέριση: $V_1 = \{v_1, v_3, v_6\}$ και $V_2 = \{v_2, v_4, v_5\}$. Ο G_2 δεν είναι διχοτομίσιμος

Ορισμός: Ένα μη κατευθυνόμενο γράφημα G = (V, E) είναι πλήρες διχοτομίσιμο (ή πλήρες διμερές) αν είναι διχοτομίσιμο και περιέχει όλες τις δυνατές ακμές που μπορούν να συνδέουν τις κορυφές του V_1 με τις κορυφές του V_2

Παρατηρήσεις:

- Συμβολίζεται με $\mathbf{K}_{m,n}$ όπου $\mathbf{m} = |V_1|$, $\mathbf{n} = |V_2|$ και
- Ισχύει ότι:
 - Exel |V| = m + n κορυφές
 - Exet $|E| = m \cdot n$ akmés

<u>Παράδειγμα:</u> Ο G_1 είναι το $K_{3,3}$. Ο G_2 είναι το $K_{2,4}$

ΣΥΝΟΛΟ ΑΝΕΞΑΡΤΗΣΙΑΣ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Σύνολο Ανεξαρτησίας ενός γραφήματος είναι ένα υποσύνολο των κορυφών του γραφήματος που δεν συνδέονται με ακμή

Τυπικά:

Το σύνολο V' ⊆ V είναι ένα σύνολο ανεξαρτησίας του γραφήματος G = (V, E) αν και μόνο αν για κάθε ζεύγος $v_i, v_i \in V'$ με $v_i \neq v_i$ ισχύει ότι $[v_i, v_i] \notin E'$

Ορισμός: Ένα σύνολο ανεξαρτησίας που δεν μπορεί να επαυξηθεί περαιτέρω (προσθέτοντας του ακόμη μία κορυφή) λέγεται μεγιστοτικό σύνολο ανεξαρτησίας.

<u>Ορισμός:</u> Το μεγαλύτερο (σε πληθάριθμο) μεγιστοτικό σύνολο ανεξαρτησίας καλείται <u>μέγιστο σύνολο</u> ανεξαρτησίας.

Παράδειγμα:

k-ΧΡΩΜΑΤΙΣΙΜΟΣ ΓΡΑΦΟΣ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Ένα γράφημα G = (V, E) είναι **k-χρωματίσιμο** αν οι κορυφές του μπορούν να χρωματιστούν με k χρώματα ώστε δύο γειτονικές κορυφές να μην έχουν το ίδιο χρώμα.

- Ή ισοδύναμα αν μπορούμε να διαμερίσουμε τις κορυφές σε k σύνολα ανεξαρτησίας (με κάθε σύνολο να χρωματίζεται με ένα χρώμα)
- Ένα k-χρωματίσιμο γράφημα θα λέγεται και k-μερές (σε αναλογία το 2-χρωματίσιμο γράφημα έχει 2 σύνολα ανεξαρτησίας, καλείται διμερές)

Σημαντικό:

Ένας έγκυρος χρωματισμός δεν απαιτεί τον χρωματισμό των κορυφών με το ελάχιστο δυνατό πλήθος χρωματών.

ΧΡΩΜΑΤΙΚΟΣ ΑΡΙΘΜΟΣ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

<u>Ορισμός: Χρωματικός Αριθμός</u> ενός γραφήματος G = (V, E) καλείται το ελάχιστο k, για το οποίο ο γράφος είναι k-χρωματίσιμος.

Συμβολίζεται με $\chi(G)$

Το πρόβλημα της εύρεσης του χρωματικού αριθμού ενός γραφήματος είναι υπολογιστικά δύσκολο πρόβλημα (δεν υπάρχει αποδοτικός τρόπος για να βρίσκουμε γρήγορα τον χρωματικό αριθμό ενός γραφήματος – το πρόβλημα είναι NP-Complete).

Παράδειγμα:

