University of Moratuwa

Department of Electronic & Telecommunication Engineering

EN2074 Communication Systems Engineering

Lab Assignment – Eye Diagrams and Equalization

Name	Index No		
Dodangoda D.K.S.J.	210150V		
Wathudura T.R.	210682D		

Content

1.	Task 1				
	1.1	. 3			
	1.2	. 4			
	1.3	. 4			
	1.4.a	. 5			
	1.4.b	. 6			
	1.5	. 7			
2.	Task 2				
	2.1	. 9			
	2.2	10			
	2.3	10			
	2.4.a	11			
	2.4.b	12			
	2.5	13			
3.	Task 3				
	3.1 -3.10	L4			
	3.11	L5			
	3.12	L5			
4.	Appendix	L7			

Used Software - MATLAB R2022b

1) Task 1

1.1)

3

1.3)

1.4. a) Raised cosine pulse with roll-off factor 0.5

1.4. b) Raised cosine pulse with roll-off factor 1

1.5) Comparison of the robustness of the system with respect to noise, sampling time and synchronization errors

Characteristic	Evo Paramotor	Sinc Pulse	Raised Cosine	Raised Cosine
Characteristic	Eye Parameter	Sinc Puise	Pulse	Pulse
			(Roll-off = 0.5)	(Roll-off =1)
			(Kon on = 0.5)	(Koli Oli –I)
Noise	Maximum height of	No noise is	No noise is	No noise is added.
(Noise	the	added.	added.	
Immunity)	center of the eye.			Good noise
	(Height of	Good noise	Good noise	margin is
	Eye at optimum	margin is	margin is	Present.
	sampling point)	Present.	Present.	
	When this gap is			
	wider, the noise			
	immunity is higher.			
	, 0			
Sampling Time	Horizontal eye width.	Lowest of the	Wider than the	Widest of the
	-	three.	Sinc	three.
	When this width is		Pulse but	
	wider, the sampling	Has the	narrower	Has the largest
	instance can vary	least range	than the RC	range for error-
	more without	for error-free	pulse with roll-	free sampling.
	leading to errors.	sampling.	off = 1.	I Carlo a a h
		Least	Medium	Highest robustness to
		robustness to	range for error-	sampling errors
		sampling	free sampling.	(ISI).
		errors (ISI).	g.	(10.7)
			Medium	
			robustness to	
			sampling errors	
			(ISI).	
Synchronization	Slope of the eye.	Highest slope	Lowest slope	Medium slope
Errors		among the	among the	among the three.
	When the slope is	three.	three.	
	larger, the			More robust to
	probability of	Highest	Best robustness	timing
	synchronization	probability	to timing errors.	errors than the
	errors (sensitivity to	for timing		Sinc pulse
	sampling time) is	errors.		but less robust
	higher.			than the RC pulse with
				roll-off = 0.5.
				0.0.
L		<u> </u>		

2) Task 2

2.1)

9

2.3)

2.4.a) Raised cosine pulse with roll-off factor 0.5

2.4.b) Raised cosine pulse with roll-off factor 1

2.5 Comparison of the robustness of the system with respect to noise, sampling time and synchronization errors.

Characteristic	Eye Parameter	Sinc Pulse	Raised Cosine Pulse (Roll-off = 0.5)	Raised Cosine Pulse (Roll-off =1)
Noise	Maximum	Least	Medium	Highest height
(Noise Immunity)	height of the center of the	height among the	height among the three.	among the three.
	eye.	three.		Highest noise
	(Height of		Medium noise	margin. (Highest
	Eye at optimum	Lowest	margin.	noise immunity.)
	sampling point)	noise margin.	(Medium noise immunity.)	
	When this gap	(Least	-	
	is wider, the	noise		
	noise immunity	immunity.)		
	is higher.	, .		

The other characteristics remain same as in Task 1.

3) Task 3

3.11 Discrepancy between the AWGN channel BER and the ZF equalized multipath Channel

When comparing the performance of a channel with an impulse response that spreads the signal (such as a multipath channel) to that of a pure AWGN (Additive White Gaussian Noise) channel, several key differences exist.

In a pure AWGN channel, the bit error rate tends to be lower because the main source of degradation is Gaussian noise, which is easier to manage. In contrast, a channel with an impulse response that spreads the signal, such as a multipath channel, introduces Inter Symbol interference (ISI), causing overlapping of adjacent symbols and increasing the bit error rate.

A zero-forcing equalizer is commonly used to counteract the effects of the channel's impulse response by inverting the channel's effect on the transmitted signal. However, this equalizer can amplify any noise present in the channel, leading to higher noise levels in the decoded signal. This amplified noise results in increased errors in the decoded signal, ultimately making the overall signal quality lower in a channel with an impulse response that spreads the signal compared to a pure AWGN channel.

3.12 BER performance if binary orthogonal signaling was used instead of BPSK

The distance between symbols in the signal space is a key factor influencing the bit error rate (BER) performance.

When comparing binary phase-shift keying (BPSK) with Binary orthogonal signaling, the distance between symbols is different.

In BPSK, the two symbols (representing binary 0 and 1) are encoded as phase shifts of 0 and 180 degrees, respectively. This results in the maximum possible distance between symbols in the signal space, which minimizes the likelihood of confusion between them and reduces the error rate.

(a) BPSK Constellation Diagram

On the other hand, Binary orthogonal signaling uses two orthogonal signals to represent binary 0 and 1. These signals occupy separate frequency bands and are chosen to be orthogonal to each other. However, the distance between the symbols in binary orthogonal signaling is smaller compared to BPSK. This smaller distance means the receiver is more likely to confuse the two signals, particularly in the presence of noise, resulting in a higher BER.

(b) Binary Orthogonal Singal Constellation

Diagram

Therefore, while binary orthogonal signaling offers some advantages in terms of separating the signals and providing a measure of resistance to certain types of interference, the greater distance between symbols in BPSK generally leads to better BER performance. This makes BPSK more robust and reliable in terms of error rates, especially in channels where noise and interference are significant factors.

```
% Simulation Assignment - Eye diagrams and Equalization
% Wathudura T.R. - 210682D
% Dodangoda D.K.S.J. - 210150V
% Task 1
clear all;
close all;
clc;
% System Parameters
BitLength = 10^3; % No of Bits Transmitted
SampleFreq = 10; % Sampling frequency (Hz)
time = -SampleFreq:1/SampleFreq:SampleFreq; % Time Array
% Generate the BPSK Signal
% Map 0 \rightarrow -1 and 1 \rightarrow 1 (0-phase and 180-phase)
BPSKSignal = 2*(rand(1,BitLength)>0.5)-1;
t = 0:1/SampleFreq:99/SampleFreq;
stem(t, BPSKSignal(1:100)); xlabel('Time'); ylabel('Amplitude');
title('BPSK Impulse Train');
axis([0 10 -1.2 1.2]); grid on;
% Sinc Pulse
Sinc_Num = sin(pi*time); % numerator sinc
Sinc_Den = (pi*time); % denominator sinc
Sinc_DenZero = find(abs(Sinc_Den) < 10^-10); % Find t=0 position</pre>
Sinc_Filt = Sinc_Num./Sinc_Den;
Sinc_Filt(Sinc_DenZero) = 1; % Define t=0 value
figure;
plot(time, Sinc_Filt);
title('Sinc Pulse');
xlabel('Time'); ylabel('Amplitude');
axis([-SampleFreq SampleFreq -0.5 1.2]); grid on
% Raised Cosine Pulse for 0.5 roll-off
roll_off = 0.5;
cos_Num = cos(roll_off*pi*time);
cos_Den = (1 - (2 * roll_off * time).^2);
cos_DenZero = abs(cos_Den)<10^-10;</pre>
RaisedCosine = cos_Num./cos_Den;
RaisedCosine(cos_DenZero) = pi/4;
RC_gamma5 = Sinc_Filt.*RaisedCosine; % Getting the complete raised cosine pulse
plot(time, RC_gamma5);
title('Raised Cosine Pulse for Gamma = 0.5');
xlabel('Time'); ylabel('Amplitude');
axis([-SampleFreq SampleFreq -0.5 1.2]); grid on
\% Raised Cosine Pulse for 1 roll-off
roll_off = 1;
cos Num = cos(roll off * pi * time);
cos_Den = (1-(2 * roll_off * time).^2);
cos_DenZero = find(abs(cos_Den)<10^-20);</pre>
RaisedCosine = cos Num./cos Den;
RaisedCosine(cos_DenZero) = pi/4;
RC_gamma1 = Sinc_Filt.*RaisedCosine; % Get the complete raised cosine pulse
figure;
plot(time, RC_gamma1);
title('Raised Cosine Pulse for Gamma = 1');
xlabel('Time'); ylabel('Amplitude');
axis([-SampleFreq SampleFreq -0.5 1.2]); grid on
```

```
% Upsample the transmit sequence
BPSK_Upsample = [BPSKSignal;zeros(SampleFreq-1,length(BPSKSignal))]; % Upsample the BPSK to match the sampling frequency
BPSK_U = BPSK_Upsample(:).';
figure;
stem(t, BPSK_U(1:100)); xlabel('Time'); ylabel('Amplitude');
title('BPSK Impulse Train after upsampling');
axis([0 10 -1.2 1.2]); grid on;
% Pulse Shaped sequences
Conv_sincpulse = conv(BPSK_U, Sinc_Filt);
Conv_RCgamma5 = conv(BPSK_U,RC_gamma5);
Conv_RCgamma1 = conv(BPSK_U,RC_gamma1);
% Take only the first 10000 samples
Conv sincpulse = Conv sincpulse(1:10000);
Conv RCgamma5 = Conv RCgamma5(1:10000);
Conv_RCgamma1 = Conv_RCgamma1(1:10000);
% Reshape the sequences to build Eye Diagrams
Conv_sincpulse_reshape = reshape(Conv_sincpulse, SampleFreq*2, BitLength*SampleFreq/20).';
Conv_RCgamma5_reshape = reshape(Conv_RCgamma5,SampleFreq*2,BitLength*SampleFreq/20).';
Conv_RCgamma1_reshape = reshape(Conv_RCgamma1,SampleFreq*2,BitLength*SampleFreq/20).';
% Plot the Eye Diagrams
% Eye diagram for Sinc pulse
figure;
plot(0:1/SampleFreq:1.99, real(Conv_sincpulse_reshape).', 'b');
title('Eye diagram for Sinc pulse');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -2.4 2.2]);
grid on
% Eye diagram for RC pulse with Gamma = 0.5
plot(0:1/SampleFreq:1.99, Conv_RCgamma5_reshape.','b');
title('Eye diagram for RC pulse with Gamma = 0.5');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -2.5 2.5]);
grid on
% Eye diagram for RC pulse with Gamma = 1
plot(0:1/SampleFreq:1.99, Conv RCgamma1 reshape.','b');
title('Eye diagram for RC pulse with Gamma = 1');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -1.5 1.5 ]);
grid on
```

```
% Simulation Assignment - Eye diagrams and Equalization
% Wathudura T.R. - 210682D
% Dodangoda D.K.S.J. - 210150V
% Task 2
% With Additive White Gaussian Noise (AWGN)
clear all;
close all;
clc;
% System Parameters
BitLength = 10^3; % No of Bits Transmitted
SampleFreq = 10; % Sampling frequency (Hz)
time = -SampleFreq:1/SampleFreq:SampleFreq; % Time Array
SNR dB = 10;
NoisePower = 1./(10.^(0.1*SNR_dB)); % Noise Power (Eb = 1 in BPSK)
% Generate the BPSK Signal (With noise)
% Map 0 \rightarrow -1 and 1 \rightarrow 1 (0-phase and 180-phase)
BPSKSignal = 2*(rand(1,BitLength)>0.5)-1;
t = 0:1/SampleFreq:99/SampleFreq;
% Noise Array Generation using SNR = 10dB
Noise1D = normrnd (0 , sqrt(NoisePower/2), [1, BitLength]);
AWGN_TX = BPSKSignal + Noise1D;
figure;
stem(t, AWGN TX(1:100)); xlabel('Time'); ylabel('Amplitude');
title('BPSK Impulse Train (With Noise)');
axis([0 10 -1.5 1.5]); grid on;
% Sinc Pulse
Sinc_Num = sin(pi*time); % numerator sinc
Sinc_Den = (pi*time); % denominator sinc
Sinc DenZero = find(abs(Sinc Den) < 10^-10); % Find t=0 position
Sinc Filt = Sinc Num./Sinc Den;
Sinc_Filt(Sinc_DenZero) = 1; % Define t=0 value
% Raised Cosine Pulse for 0.5 roll-off
roll off = 0.5;
cos_Num = cos(roll_off*pi*time);
cos Den = (1 - (2 * roll off * time).^2);
cos_DenZero = abs(cos_Den)<10^-10;</pre>
RaisedCosine = cos Num./cos Den;
RaisedCosine(cos DenZero) = pi/4;
RC_gamma5 = Sinc_Filt.*RaisedCosine; % Getting the complete raised cosine pulse
% Raised Cosine Pulse for 1 roll-off
roll off = 1;
cos Num = cos(roll off * pi * time);
cos_Den = (1-(2 * roll_off * time).^2);
cos DenZero = find(abs(cos Den)<10^-20);</pre>
RaisedCosine = cos_Num./cos_Den;
RaisedCosine(cos_DenZero) = pi/4;
RC_gamma1 = Sinc_Filt.*RaisedCosine; % Get the complete raised cosine pulse
```

```
% Upsample the transmit sequence (With Noise)
AWGNTx Upsample = [AWGN TX;zeros(SampleFreq-1,length(BPSKSignal))];
AWGNTx U = AWGNTx Upsample(:);
figure;
stem(t, AWGNTx U(1:100)); xlabel('Time'); ylabel('Amplitude');
title('Upsampled BPSK Impulse Train (With Noise)');
axis([0 10 -1.5 1.5]); grid on;
% Pulse Shaped sequences (With Noise)
Conv sincnoise = conv(AWGNTx U,Sinc Filt);
Conv RC5noise = conv(AWGNTx U,RC gamma5);
Conv R1noise = conv(AWGNTx U,RC gamma1);
% Take only the first 10000 samples (With noise)
Conv sincnoise = Conv sincnoise(1:10000);
Conv RC5noise = Conv RC5noise(1:10000);
Conv R1noise = Conv R1noise(1:10000);
% Reshape the sequences to build Eye Diagrams (With Noise)
Conv_sincnoise_reshape = reshape(Conv_sincnoise, SampleFreq*2, BitLength*SampleFreq/20).';
Conv_RC5noise_reshape = reshape(Conv_RC5noise,SampleFreq*2,BitLength*SampleFreq/20).';
Conv_R1noise_reshape = reshape(Conv_R1noise,SampleFreq*2,BitLength*SampleFreq/20).';
% Plot the Eye Diagrams (With Noise)
% Eye diagram for Sinc pulse
figure;
plot(0:1/SampleFreq:1.99, Conv_sincnoise_reshape.', 'b');
title('Eye diagram for Sinc pulse (With Noise)');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -2.4 2.2]);
grid on
% Eye diagram for RC pulse with Gamma = 0.5
figure;
plot(0:1/SampleFreq:1.99, Conv_RC5noise_reshape.', 'b');
title('Eye diagram for RC pulse with Gamma = 0.5 (With Noise)');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -2.4 2.2]);
grid on
% Eye diagram for RC pulse with Gamma = 1
figure;
plot(0:1/SampleFreq:1.99, Conv R1noise reshape.', 'b');
title('Eye diagram for RC pulse with Gamma = 1 (With Noise)');
xlabel('Time'); ylabel('Amplitude');
axis([0 2 -2.4 2.2]);
grid on
```

```
% Simulation Assignment - Eye diagrams and Equalization
% Wathudura T.R. - 210682D
% Dodangoda D.K.S.J. - 210150V
% Zero-forcing (ZF) equalizer for a 3-tap Multipath Channel
clear all;
close all;
clc;
% System Parameters
BitLength = 10<sup>3</sup>;
% Generate a random binary sequence
BinarySequence = randi([0,1],1,BitLength);
% 2-PAM Signal
PAMsignal = 2 * BinarySequence - 1;
figure
stem(PAMsignal, 'Marker', 'none');
title('2-PAM Signal');
grid
% Generate the received signal samples by convolving with channel response
h = [0.3 \ 0.7 \ 0.4];
ReceivedSignal = conv(PAMsignal,h);
BitErrors = zeros(10,5);
value = zeros(1,BitLength);
for n = 1:4
    % The matrix to obtain the ZF equalizer
    SignalWithNoise = awgn(ReceivedSignal,0);
    ShiftedMatrix = toeplitz([h([2:end]) zeros(1, 2 * n -1)], [h([2:-1:1]) zeros(1, 2 * n - 1)]);
    RequiredMatrix = zeros(1,2 * n + 1);
    RequiredMatrix(n + 1) = 1;
    ZF equalizerCoefficients = [inv(ShiftedMatrix)*RequiredMatrix.'].';
    for k = 1:10
        % Add White Gaussian Noise
        SignalWithNoise = awgn(ReceivedSignal,k);
        % Convolve with filter to get response
        y_filtered = conv(SignalWithNoise,ZF_equalizerCoefficients);
        y_filtered = y_filtered(n+2:n+1+BitLength);% Consider the appropriate samples
            for i = 1:length(PAMsignal)
                if (y_filtered(i) > 0)
                    value(i) = 1;
                else
                    value(i) = 0;
                end
            end
        NoOfBitErrors = sum(value ~= BinarySequence);
```

```
BitErrors(k,n) = NoOfBitErrors / BitLength;
    end
end
% AWGN Channel (Only noise)
for k = 1:10
    SignalWithNoise = awgn(PAMsignal,k);
     for i = 1:length(PAMsignal)
        if (SignalWithNoise(i) > 0)
            value(i) = 1;
        else
            value(i) = 0;
        end
     end
     NoOfBitErrors = sum(value ~= BinarySequence);
     BitErrors(k,5) = NoOfBitErrors / BitLength;
end
% BER vs SNR graphs
figure
semilogy([1:10],BitErrors(:,1),'b*-','Linewidth',1.8);
hold on
semilogy([1:10],BitErrors(:,2),'g*-','Linewidth',1.8);
semilogy([1:10],BitErrors(:,3),'k*-','Linewidth',1.8);
semilogy([1:10],BitErrors(:,4),'m*-','Linewidth',1.8);
semilogy([1:10],BitErrors(:,5),'r*-','Linewidth',1.8);
axis([0 10 10^-3 0.5])
grid on
legend('3-Tap', '5-Tap','7-Tap','9-Tap','Noise Only');
xlabel('Eb/No in dB');
ylabel('BER');
title('BER vs Eb/No with ZF equalizer');
```