Программа КР "Функции нескольких переменных" Теория

Функция двух переменных: область определения и ее геометрическое изображение, множество значений, график, приращение в точке, формула для вычисления дифференциала, приближенное вычисление приращения с помощью дифференциала.

Градиент функции трех переменных, его направление и модуль.

Уравнения касательной плоскости и нормали к поверхности F(x, y, z) = 0.

Исследование функции двух переменных на экстремум: точка минимума (максимума, экстремума), минимум (максимум, экстремум), необходимые условия экстремума, достаточные условия экстремума.

Тренировочные варианты на уровень А

Вариант 1

1. Найти значение функции
$$z = \frac{\sqrt{x}}{y}$$
 в точке $(\frac{1}{9}, -\frac{2}{3})$. (Ответ: $-1/2$)

2. Найти и построить на плоскости xy область определения функции $z = \ln(2x + y - 3)$. (Ответ: 2x + y - 3 > 0)

3.
$$z = \cos \frac{y}{x}$$
. $\frac{\partial z}{\partial x} = ?$

4.
$$z = \ln\left(\sqrt{x} - \sqrt{y}\right)$$
. $dz = ?$ (Other: $\frac{\sqrt{y}dx - \sqrt{x}dy}{2(x\sqrt{y} - y\sqrt{x})}$)

5. Найти модуль градиента функции
$$u = \frac{xy}{z}$$
 в точке $(1, -1, -1)$. (Ответ: $\sqrt{3}$)

6. Составить уравнение касательной плоскости к поверхности $3x - y^2 + z^2 = 0$ в точке (3,3,0).

(Otbet:
$$x-2y+3=0$$
)

7. Исследовать на экстремум функцию $z = x^2 + 5y^2 + 3xy + 11x + 11y - 1$. (Ответ: $z_{min} = z(-7,1) = -34$)

Вариант 2

1. Найти и построить на плоскости xy область определения функции $z = \sqrt{x+y}$. (Ответ: $x+y \ge 0$)

2.
$$z = \sqrt{1 - x - y^2}$$
. $\frac{\partial z}{\partial y} = ?$ (Other: $\frac{-y}{\sqrt{1 - x - y^2}}$)

3.
$$z = e^{-x/y}$$
. $dz = ?$

4. Найти градиент функции
$$u = \arctan\left(\frac{x}{y} - z\right)$$
. (Ответ: $\frac{(y, -x, -y^2)}{y^2 + (x - yz)^2}$)

5. Найти приближенно (заменив дифференциалом) приращение функции $z = x^2 - 4xy^2 + 2y - 4$ в точке (1,-1), если $\Delta x = 0,01$, $\Delta y = 0,02$. (Ответ: 0,18)

6. Составить уравнения нормали к поверхности
$$z = e^{x+y} - xy^2 + 1$$
 в точке $(1, -1, 1)$. (Ответ: $\frac{x-1}{0} = \frac{y+1}{3} = \frac{z-1}{-1}$)

7. Исследовать на экстремум функцию $z = x^2 + 4y^2 + 8xy - 8x - 8y + 1$. (Ответ: функция не имеет экстремумов)

Вариант 3

1. Найти вектор, в направлении которого функция u = xy - yz в точке (1,-1,2) возрастает с наибольшей скоростью. (Ответ: (-1,-1,1))

2. Найти и построить на плоскости
$$xy$$
 область определения функции $z = \frac{x}{\sqrt{1-y}}$. (Ответ: $y < 1$)

3.
$$z = \arcsin(xy)$$
. $\frac{\partial z}{\partial x} = ?$ (Other: $\frac{y}{\sqrt{1-x^2y^2}}$)

4.
$$z = \sin^2(x - y)$$
. $dz = ?$ (OTBET: $(dx - dy)\sin 2(x - y)$)

5. Найти модуль градиента функции
$$u = \frac{z-y}{x}$$
 в точке $(1, 1, 1)$. (Ответ: $\sqrt{2}$)

6. Составить уравнение касательной плоскости к поверхности $x + \sqrt{xy} + z^2 - 3 = 0$ в точке (1, 1, -1).

(Other:
$$3x + y - 4z - 8 = 0$$
)

7. Исследовать на экстремум функцию $z = 2\ln(2x-3) + 3\ln(y+2) - 4x - 3y + 7$. (Ответ: $z_{\text{max}} = z(2,-1) = 2$)

Тренировочные варианты на уровни В, С

Вариант 1

- **1.** Найти и построить на плоскости xy область определения функции $z = \sqrt{1 (x^2 + y)^2}$. (Ответ: $-1 \le x^2 + y \le 1$)
- **2.** Верно ли, что функция $z = y \cdot \varphi(\cos(x y))$ удовлетворяет уравнению $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{z}{y}$? (Ответ: да)
- **3.** Исследовать на экстремум функцию $z = 4y^3 + 6xy^2 3x^2 12y^2 + 2$. (Ответ: $z_{\text{max}} = z(0,0) = 2$)

Вариант 2

- **1.** Найти и построить на плоскости xy область определения функции $z = \sqrt{\frac{x^2 + y^2 x}{2x x^2 y^2}}$. (Ответ: $x \le x^2 + y^2 < 2x$)
- **2.** $xe^y ye^x = 0$. Доказать, что $\frac{dy}{dx} = \frac{(x-1)y}{x(y-1)}$.
- **3.** Найти производную функции u = xy + yz + zx в точке M(2,1,3) в направлении вектора \overline{MN} , где N(5,5,15) . (Ответ: 68/13)

Вариант 3

1. Найти и построить на плоскости xy область определения функции $z = \arccos \frac{x}{x+y}$.

(Otbet: $y(2x+y) \ge 0$, $(x,y) \ne (0,0)$)

- **2.** Для поверхности $z=4x-xy+y^2$ найти уравнение касательной плоскости, параллельной плоскости 4x+y+2z+9=0. (Ответ: 4x+y+2z-78=0)
- **3.** Исследовать на экстремум функцию $z = x^2 + x\sqrt{y} + 6x + y + 10$. (Ответ: $z_{\min} = z(-4,4) = -2$)