8/5/24, 3:36 PM OneNote

Lecture 6

Thursday, March 23, 2023 12:26 PM

- Pumping Lemma for Context Free Lang
 - Easy to find lang that cannot be accepted by finite automation, even if proving is little harder
 - Ex: AnBn can't be accepted by a FA, bc w/ only a finite
 - o Theorem
 - 5 substrings
 - Wy has least 1 letter, wxy has at most n letters
 - M should be the same on w and y
 - Proof
 - Input grammar G should be in Chomsky normal form
 - Makes binary search tree
 - G is generic
 - Every derivation tree in this grammar is a binary tree, of height h has no more than 2 ^h leaf nodes
 - If u is in L(G) and h is the height of the derivation tree for u, the the length of u is less than/equal 2^h
 - o Let n be $2^{(p+1)}$ where p is the numb of distinct vars in G, and let u is a string in L(G) of length at least n
 - So in a derivation tree for u, there must be a path from the root to a leaf node w/ at least p+1 interior nodes
 - o Ex:
 - Applying the pumping lemma to AnBnCn
 - If AnBnCn is a context-free lang, and let n be the int in the pumping lemma
 - Let u be the string a(^n)b(^n)c(^n)
 - The second, |wxy| <= n, implies that wxy have no more than 2 distinct symbols
 - If sigma1 is one of the 3 symbols that happens in wy
 - .
 - •
 - Keep making contradictions
 - 0
 - O Theorem (Ogden's Lemma)(stronger version of the pumping lemma):
- Intersections and Complements of CFLs
 - The set of CFLs like the set of reg languages, is closed under the operations of union, concatentation, and Kleene *
 - o $\;$ But, unlike the set of reular langs, \underline{its} not closed under intersections/diff
 - o Consider AnBnCn
 - •
 - o Cousin of intersection is closed under union
 - O Xx is not context free, but compliment is context free