NYILATKOZAT

Név: Kürti Zoltán

ELTE Természettudományi Kar, szak: fizika BSc.

NEPTUN azonosító: DF4JJT

Szakdolgozat címe:

Falak közé zárt kvantum részecske homogén térben: "Schrödinger macskája dobozban"

A szakdolgozat szerzőjeként fegyelmi felelősségem tudatában kijelentem, hogy a dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül nem használtam fel.

Budapest, 20_{21.} május 30.

Knuti Zolfan a hallgató aláirása

SZAKDOLGOZAT

Falak közé zárt kvantum részecske homogén térben: "Schrödinger macskája dobozban"

KÜRTI ZOLTÁN
Fizika BSc., fizikus szakirány

Témavezetők:

DR. CSERTI JÓZSEF egyetemi tanár

DR. GYÖRGYI GÉZA egyetemi docens

Eötvös Loránd Tudományegyetem Komplex Rendszerek Fizikája Tanszék 2021

Kivonat

Kvantummechanikai iskolapélda a homogén térbe helyezett egydimenziós részecske. Ezt három dimenzióra kiterjesztve és két fal közé zárva keressük az energia sajátállapotokat. Annyi előrelátható, hogy a nyílt vagy félig nyílt esetekben használható, reguláris Airy függvény itt nem elegendő a megoldáshoz, ennyiben túlmegyünk a tankönyvi feladaton. Az aszimptotikus függvényalakok segítségével előállítjuk a magasan gerjesztett állapotok energiáit és hullámfüggvényeit, s ezeket összehasonlítjuk a közvetlenül a Bohr–Sommerfeld-módszerrel kapott eredménnyel. Numerikusan szemléltetjük fizikailag érdekes kezdőállapotok időfejlődését. Vizsgáljuk a rezolvenst és az állapotsűrűséget.

Tartalomjegyzék

1.	\mathbf{Bev}	ezetés	1	
2.	A d	obozba zárt részecske homogén térben	2	
	2.1.	Három dimenzióban	2	
	2.2.	Egy dimenzióban	4	
		2.2.1. $F = 0$ eset	4	
		2.2.2. Airy függvények	4	
		2.2.3. Véges F eset	7	
		2.2.4. Falak nélküli eset	9	
3.	Szer	miklasszikus közelítés	11	
	3.1.	Szemiklasszikus energiaszintek	11	
	3.2.	Összehasonlítás az egzakt eredménnyel	14	
	3.3.	Airy függvények aszimptotikája	15	
4.	Homogén tér Green-függvénye			
	4.1.	Egzakt Green-függvény	18	
	4.2.	Green-függvény határesetei	21	
	4.3.	Állapotsűrűség	24	
	4.4.	Perturbációszámítás	26	
5 .	Össa	zegzés	32	
Α.	Szal	bad részecske gyorsuló koordinátarendszerben	32	
в.	Nur	nerikus számítások	32	
	B.1.	Hullámfüggvény időfejlődése	32	
		B.1.1. 1D	32	
		B.1.2. 2D	32	
	B.2.	Momentumok időfejlődése	32	
Hivatkozások				

Ábrák jegyzéke

2.1.	Airy-függvények	6
2.2.	Egzakt energiaszintek	8
2.3.	Sajátállapotok	9
3.1.	Szemiklasszikus energiaszintek	12
3.2.	Szemiklasszikus állapotszám	13
3.3.	Végtelen potenciálgödör energiaszintjei	14
4.1.	Egy dimenziós Green-függvény	20
4.2.	Két dimenziós Green-függvény	21
4.3.	Állapotsűrűség	24
4.4.	Állapotok száma	25
4.5.	A Green-függvény perturbációs sorának konvergencia sebessége	29
4.6.	A Green-függvény perturbációs sorának konvergenciatartománya	31

1. Bevezetés

A dolgozat címében a méréselméleti utalás ellenére a dolgozatban nem foglalkozunk méréselméleti kérdésekkel. A cím csupán a dobozba zárt macska (feltételezhetően homogén gravitációs térben) és a dobozba zárt és homogén térbe helyezett kvantum részecske hasonlóságára utal.

A dolgozatban tárgyalt rendszer egy belső szabadsági fokokkal nem rendelkező résecske vizsgálata homogén erőtérben, különböző határfeltételekkel. A központi probléma a zárt doboznak megfelelő határfeltétel, egy vagy három dimenzióban. Egy dimenzióban vizsgáljuk az alulról zárt, felülről nyitott dobozt, (úgyevezett "quantum bouncer" [1], [2], [3]), valamint a falak nélküli csupán a lineáris potenciálnak alávetett részecskét [4, 137-138.o.].

Az irodalomban több helyen megtalálható a "quantum bouncer" ahogy ezt előzőleg említettük, valamint [5], [6] és [7] (utóbbi a a V=k|x| potenciált vizsgálja, ami triviális kiterjesztése a "quantum bouncer" problémának a Dirichlet-határfeltételen kívül a Neumann-határfeltétellel kapott állapotok megengedésével) tankönyvekben is, külön elnevezés nélkül. Ezekben a forrásokban mind csak az Ai Airy-függvény merül fel, a Bi esetleges fizikai jelentőségéről nincs szó, a végtelen beli exponenciális növekedés miatt nem vizsgálják. Az Ai függvény természetesen felmerül minden szemiklasszikus közelítéssel foglalkozó tankönyvben, hiszen az analitikus fordulópontokban a szemiklasszikus megoldásokat az Ai függvény aszimptotikája illeszti össze. A [8] cikkben felmerül a Bi függvény is, mivel a véges potenciálgödröt vizsgálják és ebben az esetben csak az egyik tartományból lehet kizárni a Bi függvényt a végtelenben való növekedése miatt. A dolgozatban részletesebben kidolgozzuk ezt a problémát a végtelen mély potenciálgödör esetét. Érdemes megjegyezni hogy az említett rendszerek Green-függvényeiben felmerül a Bi Airy-függvény, még a falak nélküli esetben is. Az irodalom ismeretében nagy pedagógiai jelentése van a Bi Airy-függvények vizsgálata a kvantummechanikában, hiszen a lineáris potenciál a szabad részecske után az egyik legegyszerűbb rendszer. Klasszikus mechanikában is a szabad részecske tárgyalása után gyakran az egyenletesen gyorsuló részecske tárgyalása következik, így a kvantummechanika bevezetése szempontjából kritikus, hogy a klasszikus mechanika második példáját alaposan tárgyalják a tankönyvek.

Aerubg fwieofbqoief fweifwnfpeofq. DWEfiho c mfbgwir. Aerubg fwieofbqoief fweifwnfpeofq. DWEfiho c mfbgwir. Aerubg fwieofbqoief fweifwnfpeofq. DWEfiho c mfbgwir. Aerubg fwieofbqoief fweifwnfpeofq. DWEfiho c mfbgwir.

A dolgozat első részét a három dimenziós dobozba zárt részecske tárgyalásával kezd-

jük, tetszőleges irányú homogén erőtérben, és három egy dimenziós egyenletre redukáljuk a Schrödinger-egyenletet. A dolgozat további részében főleg az egy dimenziós problémát vizsgáljuk. Az Airy-függvények alapvető matematikai tulajdonságainak bemutatása után analitikus megoldást mutatunk az egy dimenziós zárt doboz esetére. Az energiaszintekre vonatkozó transzcendens egyenletet leszámítva a sajátfüggvényekre és normálási faktoraikra explicit analitikus képleteket vezetünk le. Röviden tárgyaljuk a falak nélküli esetet, és a hozzá tartozó sajátállaptok normálását és teljességi relációját. A dolgozat második részében a szemiklasszikus közelítést vizsgáljuk. Összevetjük a semiklasszikus és egyéb közelítésekkel kapott energiaszinteket az egzakt implicit egyenletből kapott energiákkal, és megadjuk a Airy-függvények aszimptotikus viselkedését a szemiklasszikus közelítés alapján. A dolgozat harmadik részében az egy dimenziós eset Green-függvényét vizsgáljuk. Explicit analitikus képletet vezetünk le a zárt doboz esetére. Ezen kGreen-függvény határeseteiként levezetjük az egy fallal határolt, és a fal nélküli rendszer Green-függvényét. Utóbbi esetében a határeset a Green-függvény diszkrét pólusai vágássá alakulnak a komplex energiasíkon. Végül a Green-függvények perturbációs sorát vizsgáljuk numerikusan, a zárt doboz Green-függvényén szemléltetjük, hogy a perturbációs tag triviális változtatása, az egység operátor számszorosának levonása, drámaian javíthatja a perturbációs sor konvergencia tartományát és sebességét valamint numerikus módszerek esetén a pontosságát is. Végül a függelékben bemutatjuk a Schrödinger-egyenlet időfejlődését ábrázoló kód működését.

2. A dobozba zárt részecske homogén térben

2.1. Három dimenzióban

A rendszer egy téglatest alakú dobozba zárt részecske. A doboz mérete L_x , L_y és L_z . A dobozban homogén erőtér hat a részecskére, azaz $\boldsymbol{F}=\text{const.}$ A potenciál így $V(x,y,z)=-F_xx-F_yy-F_zz$. A rendszer időfüggő Schrödinger-egyenlete

$$i\hbar \frac{\partial \psi(x,y,z,t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi(x,y,z,t) + V(x,y,z)\psi(x,y,z,t). \tag{2.1}$$

Az egyenlet kezdőfeltétele egy kezdeti állapot t_0 -ban, $\psi(x,y,z,t_0) = \psi_0(x,y,z)$, az egyenlet határfeltételei pedig a hullámfüggvény határokon való eltűnése, $0 = \psi|_{x=0} = \psi|_{x=L_x} = \psi|_{y=0} = \psi|_{z=L_y} = \psi|_{z=L_z}$. Mivel ez a potenciál lineáris x, y és z-ben, a

Schrödinger-egyenlet szeparálható a

$$\psi_{klm}(x, y, z, t) = e^{-\frac{iE_{klm}}{\hbar}t} \psi_k^{(1)}(x) \psi_l^{(2)}(y) \psi_m^{(3)}(z)$$
(2.2)

próbafüggvénnyel. A $\psi_n^{(i)}$ függvényekre így az egy dimenziós stacionárius Schrödingeregyenlet vonatkozik. A $\psi^{(i)}$ -re vonatkozó egyenlet

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_k^{(i)}(x_i)}{dx_i^2} + F_i x_i \psi_k^{(i)}(x) = E_k^{(i)} \psi_k^{(i)}(x_i), \tag{2.3}$$

a határfeltételek $\psi_k^{(i)}\Big|_{x_i=0} = \psi_k^{(i)}\Big|_{x_i=L_i} = 0$. Az E_{klm} energia a három egy dimenziós stacionárius Schrödinger-egyenlet sajátenergiáinak összege,

$$E_{klm} = E_k^{(1)} + E_l^{(2)} + E_m^{(3)}. (2.4)$$

A (2.1) egyenlet általános megoldása a (2.2) próbafüggvények kezdőfeltételhez illesztett lineáris kombinációja,

$$\psi(x, y, z, t) = \sum_{klm} C_{klm} \psi_{klm}(x, y, z, t). \tag{2.5}$$

 C_{klm} együtthatók meghatározásához a szokásos hely reprezentáció beli skalárszorzást kell használni.

$$C_{klm} = \frac{1}{N_{klm}} \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, \psi_{klm}(x, y, z, t = 0)^* \psi_0(x, y, z), \tag{2.6}$$

$$N_{klm} = \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, |\psi_{klm}(x, y, z, t = 0)|^2.$$
 (2.7)

A (2.6) egyenlet nem egyszerűsíthető tovább általános ψ_0 esetén, viszont a (2.7) igen. Mivel ψ_{klm} szorzat alakú, nem kell a tripla integrált elvégezni, elég csak három egyszeres integrál szorzatát kiszámítani. Ez numerikus számításokban jelentős.

$$N_{klm} = N_k^{(x)} N_l^{(y)} N_m^{(z)}, (2.8)$$

ahol az egyes N tagok az egy dimenziós sajátfüggvények normájaként vannak definiálva.

$$N_k^{(i)} = \int_0^{L_i} dx_i \left| \psi_k^{(i)}(x_i) \right|^2. \tag{2.9}$$

A továbbiakban az egy dimenziós probléma részleteit vizsgáljuk.

2.2. Egy dimenzióban

Az egy dimenziós probléma tárgyalásának két esete van aszerint, hogy \boldsymbol{F} megfelelő komponense 0-e. Amennyiben a komponens 0, a feladat a szabad részecske utáni legelemibb probléma megoldása: a végtelen potenciálgödör. Amennyiben \boldsymbol{F} komponense nem 0, a megoldandó egyenlet az Airy-egyenletre [9] hasonlít, és az Airy függvények rövid vizsgálata után az energia sajátfüggvényeket megadjuk az Airy függvények kombinációjaként.

2.2.1. F = 0 eset

Az F=0 eset megoldása egyszerű, az egyik legalapvetőbb példa egyszerű kvantummechanikai rendszerekre. A sajátfüggvények

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right),\tag{2.10}$$

 $(n=1,2,\ldots)$, a normálási faktorok

$$N_n = 1. (2.11)$$

Minden sajátfüggvény egyre normált szinusz függvény, melyek n-1 helyen veszik fel a 0 értéket x=0 és x=L között. Sajátenergiáik

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}. (2.12)$$

Ezek az energiaszintek hasznosak lesznek a numerikus számításokban az $F \neq 0$ eseten is.

2.2.2. Airy függvények

Az Airy egyenlet

$$\frac{d^2y}{dx^2} - xy = 0, (2.13)$$

ennek az egyenletnek a megfelelő kezdőfeltételekhez illesztett megoldásai az úgynevezett Airy-függvények, Ai(x) és Bi(x).

Az Airy-függvények szorosan kapcsolódnak a Bessel-függvényekhez. Ez jelentős mind az aszimptotikus alakjuk meghatározásához, mind a függvények numerikus kiértékeléséhez. A megoldást

$$y(x) = x^{\frac{1}{2}}v\left(\frac{2}{3}x^{\frac{3}{2}}\right) \tag{2.14}$$

alakban keresve a $x \ge 0$ tartományban a v(x)-re vonatkozó egyenlet a módosított Besselegyenlet $t = \frac{2}{3}x^{\frac{3}{2}}$ bevezetésével.

$$t^{2}\frac{d^{2}v(t)}{dt^{2}} + t\frac{dv(t)}{dt} - \left(t^{2} + \frac{1}{9}\right)v(t) = 0$$
 (2.15)

Leolvasható, hogy $\nu^2=\frac{1}{9}$, azaz a v(x)-re vonatkozó egyenlet megoldásai az $I_{\frac{1}{3}}(x)$ és $I_{-\frac{1}{3}}(x)$ módosított Bessel-függvények lineáris kombinációi. A két hagyományosan választott lineáris kombinációk a következőek:

$$Ai(x) = \frac{\sqrt{x}}{3} \left(I_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) - I_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right)$$
 (2.16)

$$Bi(x) = \sqrt{\frac{x}{3}} \left(I_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) + I_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right). \tag{2.17}$$

 $x \leq 0$ tartományban

$$y(x) = (-x)^{\frac{1}{2}}v\left(\frac{2}{3}(-x)^{\frac{3}{2}}\right)$$
 (2.18)

alakban keresve a megoldást a v(x)-re kapott egyenlet a Bessel-egyenlet, megint $\nu^2 = \frac{1}{9}$.

$$t^{2}\frac{d^{2}v(t)}{dt^{2}} + t\frac{dv(t)}{dt} + \left(t^{2} - \frac{1}{9}\right)v(t) = 0$$
 (2.19)

Az x=0pontban megkövetelt analitikusságnak megfelelően $x\geq 0$ esetén

$$Ai(-x) = \frac{\sqrt{x}}{3} \left(J_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) - J_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right)$$
 (2.20)

$$Bi(-x) = \sqrt{\frac{x}{3}} \left(J_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) + J_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right), \tag{2.21}$$

ahol $J_{\nu}(x)$ a Bessel-függvények. Érdemes definiálni a

$$Ti(x) = \frac{Ai(x)}{Bi(x)}$$
 (2.22)

függvényt.

Az $x \to \infty$ aszimptotikus alakok megkaphatóak a Bessel-függvények aszimptotikus alakjából:

Ai
$$(-x) = \frac{1}{\sqrt{\pi}x^{1/4}}\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right),$$
 (2.23)

Bi
$$(-x) = -\frac{1}{\sqrt{\pi}x^{1/4}}\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right),$$
 (2.24)

2.1. ábra. Ai(x) és Bi(x) grafikonja.

$$Ai(x) = \frac{1}{2\sqrt{\pi}x^{1/4}}e^{-\frac{2}{3}x^{\frac{3}{2}}} + \mathcal{O}\left(x^{-5/4}\right), \tag{2.25}$$

$$Bi(x) = \frac{1}{\sqrt{\pi}x^{1/4}}e^{\frac{2}{3}x^{\frac{3}{2}}} + \mathcal{O}\left(x^{-5/4}\right). \tag{2.26}$$

A Ti(x) definíciójába behelyettesítve (2.23) és (2.24) egyenleteket,

$$\operatorname{Ti}(-x) = -\cot\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right).$$
 (2.27)

Az állapotok normájának kiszámításához szükség van az Airy-függvények szorzatának integráljára. [10] (A.16) szerint

$$\int y^2 \, dx = xy^2 - {y'}^2,\tag{2.28}$$

ahol y az Airy egyenlet tetszőleges megoldása. Ezen egyenlet segítségével tetszőleges kötött állapot normája meghatározható, azonban az esetleges szórási állapottok normálásához a Dirac-delta függvénnyel kapcsolatos relációra lesz szükség [4] (3.108),

$$\frac{1}{\alpha^2} \int_{-\infty}^{\infty} \operatorname{Ai}\left(\frac{x+a}{\alpha}\right) \operatorname{Ai}\left(\frac{x+b}{\alpha}\right) dx = \delta(a-b) \tag{2.29}$$

A Green-függvény meghatározása közben felmerül a Wronski-determinánsa az Airy-függvényeknek, ez [11] (9.2.7) szerint

$$\mathcal{W}\{\operatorname{Ai}(x),\operatorname{Bi}(x)\} = \operatorname{Ai}(x)\operatorname{Bi}'(x) - \operatorname{Bi}(x)\operatorname{Ai}'(x) = \frac{1}{\pi}.$$
 (2.30)

2.2.3. Véges F eset

A (2.13) egyenlet (2.3) alakúra hozható a

$$x = ax' - bE, (2.31)$$

$$y(x) = y(ax' - bE) \tag{2.32}$$

helyettesítés
ekkel. A helyettesítés után $\frac{d}{dx}=\frac{1}{a}\frac{d}{dx'},$ és a (2.13) alakja

$$\frac{d^2y(ax - bE)}{dx'^2} - (a^3x - a^2bE)y(ax - bE) = 0.$$
 (2.33)

Ezt az egyenletet összevetve (2.3) egyenlettel a és b értéke leolvasható,

$$a = \sqrt[3]{\frac{2mF}{\hbar^2}},\tag{2.34}$$

$$b = \sqrt[3]{\frac{2m}{\hbar^2 F^2}}. (2.35)$$

Az egy dimenziós időfüggetlen Schrödinger-egyenlet megoldása

$$\psi(x) = c_1 \operatorname{Ai}(ax - bE) + c_2 \operatorname{Bi}(ax - bE), \tag{2.36}$$

melyet a határfeltételekhez kell illeszteni,

$$\psi(0) = \psi(L) = 0. \tag{2.37}$$

A $\psi(0) = 0$ feltételből következik, hogy $\psi \propto \text{Bi}(-bE) \, \text{Ai}(ax - bE) - \text{Ai}(-bE) \, \text{Bi}(ax - bE)$. A második határfeltétel pedig meghatározza a lehetséges energiákat,

$$0 = \psi(L) = \operatorname{Bi}(-bE)\operatorname{Ai}(aL - bE) - \operatorname{Ai}(-bE)\operatorname{Bi}(aL - bE). \tag{2.38}$$

Felhasználva a Ti(x) függvényt, az egyenlet kompakt és jól közelíthető alakra hozható,

$$Ti(aL - bE) - Ti(-bE) = 0. (2.39)$$

2.2. ábra. Egzakt energia szintek, bE és aL közötti relációval ábrázolva. Az ába jobb alsó sarkán látható, hogy $E \ll FL$ esetén az energiaszintek L-től függetlenek lesznek, mivel a félvégtelen tér beli homogén tér energiaszintjeit közelítik.

Amikor $FL \ll \frac{\pi^2 \hbar^2}{2mL^2}$, a potenciál jól közelíthető konstans potenciállal, mivel az alapállapot energiájához képest is elhanyagolható a lineáris potenciál eltérése a konstans potenciáltól. Eben a esetben $E \propto n^2$. $E \ll FL$ esetben az energiaszintek jó közelítéssel konstanssá válnak. Ennek az oka, hogy $\lim_{L\to\infty} \psi(x) = \alpha \operatorname{Ai}(ax-b)$, mert a $\operatorname{Bi}(x)$ exponenciálisan növekszik nagy x-ek esetén. Ebben az eseten az energiaszinteket a $\operatorname{Ai}(-bE) = 0$ egyenlet határozza meg. Ezeket az aszimptotikus viselkedéseket a 2.2. ábra jól mutatja, később a Szemiklasszikus közelítés vizsgálata során részletesebben tárgyaljuk.

$$\psi_k(x) = \operatorname{Bi}(-bE_k)\operatorname{Ai}(ax - bE_k) - \operatorname{Ai}(-bE_k)\operatorname{Bi}(ax - bE_k)$$
(2.40)

sajátállapotokhoz tartozó normálás analitikusan meghatározható. Mivel ψ_k sajátállapotok valós értékűek, $|\psi_k(x)|^2 = \psi_k(x)^2$, így a (2.28) egyenlet közvetlenül alkalmazható,

$$N_{k} = \int_{0}^{L} dx |\psi_{k}(x)|^{2}$$

$$= \left(x - \frac{bE_{k}}{a}\right) \psi_{k}(x)^{2} - \frac{1}{a^{3}} \psi'_{k}(x)^{2} \Big|_{x=0}^{x=L}$$

$$= \frac{1}{a\pi^{2}} - \frac{1}{a} \left(\text{Bi}(-bE) \,\text{Ai}'(aL - bE) - \text{Ai}(-bE) \,\text{Bi}'(aL - bE)\right)^{2}.$$
(2.41)

A ψ_k -t tartalmazó tagok kiesnek a határokon, mert a határfeltételeknek megfelelően $\psi_k = 0$ x = 0 és x = L-ben. A maradék tag x = 0-beli értéke $\frac{1}{\pi^2}$ az Airy-függvények Wronski-determinánsa (2.30) miatt. A 2.3. ábra az első néhány sajátállapotot szemlélteti, 1-re normálva az N_k együtthatók segítségével.

2.3. ábra. Az első 4 energia sajátállapot aL=8 hosszúságú doboz esetén, 1-re normálva, azaz $\frac{1}{\sqrt{N_n}}\psi_n(x)$ függvényeket ábrázolva (n=0,1,2,3).

2.2.4. Falak nélküli eset

Falak hiányában a Schrödinger-egyenlet továbbra is (2.3), azonban a határfeltételek különböznek. A fizikai kép az, hogy V(x) = Fx potenciál esetén az $x \to \infty$ -ből nem jönnek részecskék, és nem is tartózkodnak ott. Ezek problémás állapotok lennének, végtelen energiával rendelkeznének. Tehát a szórásállapotokra vonatkozó feltétel, hogy

$$\lim_{x \to \infty} \psi(x) = 0. \tag{2.42}$$

Mivel itt folytonos spektrumról van szó, az eddigi normálás helyett az állapotokat Diracdeltára kell normálni. Ebben a feladatban az energia és energia sajátállapot között egy az egyhez megfeleltetés van, ellenben a jól ismert szabad részecske esetével. Ennek oka, hogy itt $x \to \infty$ -ből nem jönnek részecskék. Ennek következtében az a sajátállapotokat $|E\rangle$ egyértelmen jelöli. A (2.42) feltétel azt jelenti, hogy az Airy-függvények közül a Bi(ax-bE) nem szerepel a lineáris kominációban, a megoldás tisztán az Ai(ax - bE) függvény lesz,

$$\langle x \mid E \rangle = N \operatorname{Ai}(ax - bE).$$
 (2.43)

A szórásállapotokra vonatkozó normálási feltétel

$$\langle E \mid E' \rangle = \delta(E - E'). \tag{2.44}$$

Ez alapján N meghatározható (2.29) azonosság felhasználásával,

$$\delta(E - E') = N^2 \int_{-\infty}^{\infty} \operatorname{Ai}(ax - bE) \operatorname{Ai}(ax - bE') dx$$

$$= N^2 \frac{1}{ab} \delta(E - E').$$
(2.45)

Ez alapján $N = \sqrt{ab} = \sqrt[3]{\frac{2m}{\hbar^2 \sqrt{F}}}$, és

$$\langle x \mid E \rangle = \psi_E(x) = \sqrt{ab} \operatorname{Ai}(ax - bE).$$
 (2.46)

A teljességi reláció is leellenőrizhető a (2.29) egyenlet alapján,

$$\int_{-\infty}^{\infty} dE |E\rangle \langle E| = ab \int_{-\infty}^{\infty} dE \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \operatorname{Ai}(ax - bE) \operatorname{Ai}(ay - bE) |x\rangle \langle y|$$

$$= \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \, \delta(x - y) |x\rangle \langle y|$$

$$= \hat{I}$$
(2.47)

A (2.45) egyenlet a \hat{H} operátor hermitikusságából következik, hiszen a hermitikus operátorok sajátállapotai ortogonálisak egymásra. A (2.47) teljességi reláció is arra utal, hogy az összes fizikai sajátállapotot megtaláltuk a csupán Ai(x) függvényt tartalmazó állapotok keresésével. Ha hiányozna valamely fizikai állapot, akkor nem lehetne a megtalált sajátfüggvények lineáris kombinációjaként tetszőleges hullámfüggvényt előállítani, és így a teljességi reláció nem teljesülne.

Érdemes a fizikai intuícióval összevetni az Airy-függvény Fourier-transzformáltját. Az Airy-függény Fourier transzformáltja

$$\int_{-\infty}^{\infty} \operatorname{Ai}(x)e^{-ikx} dx = e^{ik^3/3}.$$
(2.48)

Ez azt jelenti, hogy az impulzus térben a hullámfüggvény

$$\psi_E(p) = \frac{1}{\sqrt{2\pi F\hbar}} \exp\left(i\left(\frac{1}{3}\left(\frac{p}{a\hbar}\right)^3 - \frac{pE}{F\hbar}\right)\right),\tag{2.49}$$

$$|\psi_E(p)|^2 = \frac{1}{2\pi F\hbar}.$$
 (2.50)

Az impulzus hullámfüggvény amplitúdója nem függ az impulzustól! Ez nem meglepő, mert a klasszikus esetben az impulzus időfejlődése

$$p(t) = -Ft + p_0, (2.51)$$

tehát minden részecske egy kis dp tartományban dp/F időt tölt, adott impulzushoz tartozó részecskesűrűség értéke független az impulzustól. Ennek a klasszikus fizika beli megállapításnak a megfelelője, hogy $|\psi_E(p)|^2$ p-től független.

3. Szemiklasszikus közelítés

3.1. Szemiklasszikus energiaszintek

A dobozba zárt részecske esetében két esetet kell vizsgálni a szemiklasszikus energiaszintek meghatározásához. Az első eset, amikor az energia E < FL, tehát a fordulópont a második fal elérése előtt van. Ebben az esetben a Maslov index $\frac{3}{4}$ [12] (2.4.1 fejezet). Az x=0 fordulópontban a szemiklasszikus hullámfüggvény $\frac{\pi}{4}$ fázist vesz fel, az x=E/F fordulópontban pedig $\frac{\pi}{2}$ fázist vesz fel,

$$\left(n + \frac{3}{4}\right)h = \oint p \, dq = 2 \int_0^{E/F} \sqrt{2m \left(E - Fx\right)} \, dx = \frac{4\sqrt{2m}}{3F} E^{3/2}.$$
 (3.1)

A második eset amikor E > FL, ekkor a fordulópontok 0-ban és L-ben vannak, és a Maslov index 1. Mind az x = 0, mind az x = L fordulópontban $\frac{\pi}{2}$ fázis vesz fel a szemiklasszikus hullámfüggvény,

$$(n+1) h = \oint p \, dq = 2 \int_0^L \sqrt{2m \left(E - Fx\right)} \, dx = \frac{4\sqrt{2m}}{3F} \left(E^{3/2} - \left(E - FL\right)^{3/2}\right). \quad (3.2)$$

3.1. ábra. Az ábrán a szemiklasszikus energiaszintek összehasonlítása látható az egzakt energiaszintekkel. Ez az ábra is a bE és aL közötti relációt ábrázolja. A szemiklasszikus közelítés nagy kvantumszámok illetve ebben a esetben $E\gg FL$ esetén is pontos. Utóbbi oka, hogy ebben az esetben a potenciál elhanyagolható, és a potenciál nélküli végtelen potenciálgödör energiaszintjeit pedig a szemiklasszikus közelítés egzaktul megadja.

Előfordulhat, hogy valamely n-re egyszerre van (3.1) és (3.2) egyszerre van megoldása, ahol E a megfelelő tartományba esik. Ez azt jelenti, hogy a szemiklasszikus közelítés hibáján belül nem lehet meghatározni, hogy a valódi energiszint FL felett, vagy alatt van. A 3.1. ábra az E-L diagrammon szemlélteti a szemiklasszikus közelítés pontosságát. Két különböző esetben is pontos a szemiklasszikus közelítés. Nagy kvantumszámok esetében általánosságban is igaz, hogy pontos a szemiklasszikus közelítés. Ezen felül $E\gg FL$ esetében is pontos, ennek oka, hogy ilyenkor a lineáris potenciál elhanyagolható, viszont az így kapott problémát, a végtelen potenciálgödröt, a szemiklasszikus közelítés egzaktul írja le. A 3.2. ábra szemlélteti a szemiklasszikus és egzakt állapotszámok viszonyát. A szemiklasszikus energiaszintekre vonatkozó egyenleteket minden esetben kézenfekvő az állapotok számának meghatározására használni, hiszen az egyenlet alapból n-re van rendezve a Maslov-indextől eltekintve.

3.2. ábra. A szemiklasszikus és egzakt energiaszintek összevetése. A kék vonal az egzakt energiák által meghatározott állapotszám. A narancssárga vonal pedig a (3.1) vagy a (3.2) (E és FL relációjától függően) egyenletekből kapott n az energia függvényében.

Amennyiben $E\gg FL$ a (3.2) egyenleten a különbség az $E^{3/2}$ függvény deriváltjának segítségével helyettesíthető,

$$(n+1)h \approx FL \frac{d}{dE} \left(\frac{4\sqrt{2m}}{3F} E^{3/2} \right) = 2\sqrt{2m} E^{1/2} L.$$
 (3.3)

Átrendezve az egyenletet energiára a megszokott végtelen potenciálgödör energiaszintjeit kapjuk,

$$E_n \approx \frac{(n+1)^2 h^2}{8mL^2}. (3.4)$$

Ezeket az energiaszinteket a 3.3. ábra összeveti az E-L diagrammon az egzakt energiaszintekkel.

3.3. ábra. Az ábrán a végtelen potenciálgödör és az egzakt energiaszintek összehasonlítása látható. Ez csak az $E\gg FL$ esetben jó közelítés, a szemiklasszikus energiaszintek jóval pontosabbak.

3.2. Összehasonlítás az egzakt eredménnyel

A (2.39) egyenletet nagy bE illetve nagy bE-aL esetén a (2.27) közelítés alkalmazható,

$$\cot\left(\frac{2}{3}(bE - aL)^{3/2} - \frac{\pi}{4}\right) - \cot\left(\frac{2}{3}(bE)^{3/2} - \frac{\pi}{4}\right) = 0.$$
 (3.5)

A $\cot(x)$ függvény π -ben periodikus, és mivel a $(0,\pi)$ intervallumban szigorúan monoton csökken, a (3.5) egyenletnek csak akkor van megoldása, ha a $\cot(x)$ függvények argumentumainak különbsége $n\pi$, azaz

$$\frac{2}{3} (bE)^{3/2} - \frac{2}{3} (bE - aL)^{3/2} = n\pi.$$
 (3.6)

Az a és b állandók behelyettesítésével ez az egyenlet a (3.2) egyenletet adja. Az n értéke ugyan különbözik 1-gyel a két egyenletben, viszont mivel n egész, ugyan azokat az energiaszinteket határozzák meg. Ennek nem feltétlenül kéne így lennie, viszont ebben az esetben a szemiklasszikus illetve az Airy-függvények aszimptotikus alakjából kapott közelítések egzaktul megegyeznek.

Amennyiben bE - aL negatív, a Ti(bE - aL) gyorsan lecseng, a (3.5) egyenlet bal oldalának első tagja elhanyagolható. Ennek a tagnak az elhanyagolásával a (3.1) egyenletet

kapjuk vissza. Ez a képlet felel meg az $L \to \infty$ határesetnek, ami a féltérben pattogó labdát írja le.

3.3. Airy függvények aszimptotikája

Klasszikus mechanikai megfontolások alapján meghatározhatóak az Airy-függvények aszimptotikus alakjai, a pontos fázistól eltekintve. Ez nem meglepő, mert a hullámfüggvény amplitúdója a megtalálási valószínűséggel van kapcsolatban. A hullámfüggvény lokális közelítése egy síkhullámmal, vagyis a fázis deriváltja az impulzussal van kapcsolatban. Így a klasszikus mechanika alapján lehet a hullámfüggvény amplitúdójára és fázisára következtetni.

A 2.2.4. fejezetben leírt rendszert vizsgáljuk, E=0 választásával, azaz a klasszikus esetben a fordulópont x=0-ban van. Kvantum mechanika szerint a megtalálási valószínűség $|\psi|$ -tel arányos, klasszikus mechanikában pedig a dx tartományon való áthaladás idejével, $\frac{dx}{v}$ -vel arányos. Mivel a kérdéses állapot szórásállapot, nem normálható. Ezért a valószínűségeknél csak arányosságról beszélhetünk, egy részecske rendszerre vonatkozó valószínűségsűrűségként nem értelmezhető. Egy lehetséges interpretáció a szórásállapotok esetében $|\psi|^2$ -re, hogy nem kölcsönható részecske áramról van szó, és a részecskék sűrűsége $|\psi|^2$ -tel arányos. A klasszikus esetben hasonló a helyzet, a $\frac{dx}{v}$ a részecskesűrűséggel arányos. A két módon kapott részecskesűrűség egyenlőségének feltételezésével a hullámfüggvény amplitúdójának viselkedését kapjuk,

$$\frac{dx}{v} = \sqrt{-\frac{m}{2Fx}} dx \propto |\psi(x)|^2 dx,\tag{3.7}$$

a klasszikus mechanikából ismert energia megmaradás szerint. Átrendezve

$$\psi(x) \propto \frac{1}{\sqrt[4]{-x}}.\tag{3.8}$$

A hullámfüggvény fázisának meghatározása a de Broglie hullámhossz, $p = \hbar k$, és a klasszikus impulzus alapján történik. Abban az esetben, ha az amplitúdó ami közelítőleg megkapható az előző egyenletből, kicsit változik a de Broglie hullámhossz alatt,

$$\psi(x) \propto \exp\left(\pm i \int_{x_0}^x k(x') dx'\right),$$
 (3.9)

Attól függően, hogy a részecske +x vagy -x irányban halad. A klasszikus energia megmaradás meghatározza az impulzust, ami alapján a de Broglie hullámszám

$$k = \frac{\sqrt{2mF}}{\hbar}\sqrt{-x}. (3.10)$$

A k integrálja könnyen kiszámítható,

$$\int \frac{\sqrt{2mF}}{\hbar} \sqrt{-x} \, dx = \frac{2}{3} \left(-ax \right)^{3/2}. \tag{3.11}$$

A részecskeáram klasszikusan mindenhol 0, ebben a potenciálban minden részecske visszaesik. Ez a feltétel ekvivalens azzal a feltétellel, hogy ψ valós, azaz a (3.9) egyenletnek csak bizonyos kombinációi léphetnek fel. Ezt írja le az exponenciális függvény helyettesítése a szinusz függvénnyel, és a ϕ_0 fázistolás,

$$\psi(x) \propto \text{Ai}(ax) \approx \frac{1}{\sqrt[4]{-ax}} \sin\left(\frac{2}{3}(-ax)^{3/2} + \phi_0\right).$$
 (3.12)

Ez az egyenlet kombinálja a fázisra és az amplitúdóra vonatkozó feltételeket, és egyezik a (2.23) és a (2.24) aszimptotikus alakokkal.

Pozitív x esetén a kinetikus energia negatív lenne, ami formálisan képzetes de Broglie hullámhossznak felel meg. Ezen formális összefüggés alapján az aszimptotikus alak polinomiális részét leszámítva az aszimptotikus alakok

$$\operatorname{Ai}(x) \approx \exp\left(-\frac{2}{3}x^{3/2}\right),\tag{3.13}$$

$$\operatorname{Bi}(x) \approx \exp\left(\frac{2}{3}x^{3/2}\right).$$
 (3.14)

A polinomiális részt leszámítva ez egyezik a (2.25) és a (2.26) egyenletekkel.

4. Homogén tér Green-függvénye

A Green-függvény a szilárdtest fizika egyik legtöbbet használt eszköze. A mérhető és egyéb jelentős egyensúlyi mennyiségek gyakran egyszerűen kifejezhetőek a Greenfüggvénnyel, mint például a (lokális) állapotsűrűség, imaginárius idő használatával pedig termodinamikai mennyiségek: egy részecske operátorok egyensúlyi várható értéke, bizonyos esetekben még két részecske operátorok várható értéke is.

A frekvenciatér beli Green-függvény a Hamilton operátor rezolvenseként definiálható. A rezolvens, avagy a Green operátor

$$\hat{G}(E) = (E - \hat{H})^{-1} = \frac{1}{E - \hat{H}},$$
 (4.1)

és ezen operátorhoz tartozó magfüggvény, a Green függvény

$$G(x, y; E) = \langle x | \hat{G}(E) | y \rangle. \tag{4.2}$$

A projektor felbontással rendelkező operátorok függvényei felírhatóak összeg alakban is, ez a Green-operátor esetében

$$\hat{G}(E) = \sum_{n} \frac{|n\rangle \langle n|}{E - E_n}.$$
(4.3)

Több féle időfüggő Green-függvény van, ezek mind az időfüggő Schrödinger-egyenlet differenciálegyenletek elméletéből ismert Green-függvények, csupán a határfeltételekben különböznek. Amennyiben a Hamilton-operátor időfüggetlen,

$$G(x,y,t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dE G(x,y;E) e^{-\frac{i}{\hbar}Et}.$$
 (4.4)

Mivel G(x,y;E)-nek valós E mentén pólusai vannak, az integrál elvégzéséhez további előrírásokra van szükség. A pólusok kerülési iránya határozza meg, hogy retardált vagy avanzsált Green-függvényt kapunk. A pólusok kerülési irányában különböző Green-függvények közötti különbség előállíthatóak a $\hat{G}(E)e^{-\frac{i}{\hbar}Et}$ pólusai körül vett komplex E kontúrintegrálokkal. Ezen kontúrintegráloknak az eredménye a reziduumtétel szerint viszont nem más, mint a hullámfüggvénynek a pólushoz tartozó sajátállapotra vett projekciójának időfejlesztő operátora,

$$\frac{1}{2\pi\hbar i} \oint_{C_n} \hat{G}(E) e^{-\frac{i}{\hbar}Et} = |n\rangle \langle n| e^{-\frac{i}{\hbar}E_n t}, \tag{4.5}$$

ahol C_n pozitív irányítású ϵ sugarú kör az n. pólus, azaz az n. sajátenergia körül. Ez tetszőleges állapotra hattatva megoldja az időfüggő Schrödinger-egyenletet, ezért lehet különböző kerülési irányokkal előírt Fourier szerű integrál időfüggő Green-függvény.

A retardált Green függvény kontúrra a pólusokat felülről, a pozitív képzetes résszel rendelkező irányban kerüli meg. Másképpen fogalmazva a kontúr a valós tengely, viszont a sajátenergiákat módosítva kell elvégezni az integrált, $E_n \to E_n - i\epsilon$, majd a számítás végén az $\epsilon \to 0^+$ határesetet venni. Ez fizikailag annak felel meg, hogy a sajátállapotoknak van időbeli lecsengése, ϵ időállandóval.

$$G_R(x,y,t) = \frac{1}{2\pi\hbar} \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dE G(x,y;E+i\epsilon) e^{-\frac{i}{\hbar}Et}, \tag{4.6}$$

ez a típusú Green-függvény a múltban 0 az időbeli lecsengés miatt. Egy másik nevezetes Green-függvény az avanzsált Green-függvény,

$$G_A(x,y,t) = \frac{1}{2\pi\hbar} \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dE G(x,y;E - i\epsilon) e^{-\frac{i}{\hbar}Et}, \tag{4.7}$$

ez a Green-függvény az előzőhöz hasonló logika alapján t > 0 esetén 0. A (4.5) egyenlet alapján e két Green-függvény különbsége előállítja az időfejlesztő operátor magját,

$$\hat{G}_{A}(t) - \hat{G}_{R}(t) = \sum_{n} \frac{1}{2\pi\hbar} \oint_{C_{n}} \hat{G}(E) e^{-\frac{i}{\hbar}Et} = i \sum_{n} |n\rangle \langle n| e^{-\frac{i}{\hbar}E_{n}t} = i\hat{U}(t).$$
 (4.8)

Ez a kontúrintegrál szummázás helyett egy kibővített kontúrral szerepel [13]-ban. A továbbiakban az egy dimenziós homogén tér Green-függvényével foglalkozunk.

4.1. Egzakt Green-függvény

A Green-függvény név indokolt: a teljességi reláció beszúrásával látható, hogy a kvantummechanikai Green-függény megegyezik a differenciálegyenletek elméletéből ismert Greenfüggvénnyel.

$$\left(E - \hat{H}\right)\hat{G}\left(E\right) = \hat{I},\tag{4.9}$$

azaz

$$\int dx' \langle x| \left(E - \hat{H}\right) |x'\rangle \langle x'| \, \hat{G}(E) |y\rangle = \langle x| \, \hat{I} |y\rangle = \delta \left(x - y\right). \tag{4.10}$$

A $\langle x | \left(E - \hat{H} \right) | x' \rangle$ maggal vett konvolúció az $E - \hat{H}$ operátor hatása, ezért

$$\left(E - \hat{H}_x\right)G\left(x, y; E\right) = \delta\left(x - y\right),\tag{4.11}$$

amely a differenciálegyenletek elméletéből ismert Green-függvény definíciója. Ebben a konkrét esetben

$$\left(E + \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - Fx\right)G(x, y; E) = \delta(x - y),$$
(4.12)

amely azt jelenti, hogy az x < y tartományban, illetve y < x tartományban a Greenfüggvény a homogén egyenlet megoldása. A homogén megoldások illesztését az eredeti differenciálegyenlet határfeltételei, valamint az x = y pontban a (4.12) egyenlet y körüli integrálásából kapott feltételek határozzák meg. A doboz falára vonatkozó határfeltételek

$$G(x, y; E)|_{x=0} = 0,$$
 (4.13)

$$G(x, y; E)|_{x=L} = 0.$$
 (4.14)

A 4.12. egyenlet xszerinti integrálja ykörüli ϵ sugarú környezetében az $\epsilon \to 0^+$ határesetben

$$\lim_{\epsilon \to 0^{+}} \frac{\partial}{\partial x} G(x, y; E) \Big|_{x=y-\epsilon}^{x=y+\epsilon} = \frac{2m}{\hbar^{2}}.$$
 (4.15)

Itt a jobb oldal integrálja $\theta\left(x-y\right)|_{x=y-\epsilon}^{x=y+\epsilon}=1$ az előírt határesetben. Mivel G(x,y;E)-ről feltesszük, hogy folytonos, a bal oldal integrálja is folytonos, leszámítva a deriváltakat tartalmazó tagokat. A határeset elvégzése közben a deriváltakat nem tartalmazó tagok így kiesnek. A 4.12. egyenlet $\int_{y-\epsilon}^{y+\epsilon} dx' \int_{y-\epsilon}^{x'} dx$ integrálja az $\epsilon \to 0^+$ határesetben

$$\lim_{\epsilon \to 0^+} G(x, y; E)|_{x=y-\epsilon}^{x=y+\epsilon} = 0 \tag{4.16}$$

folytonossági feltételt adja. A jobb oldal integrálja $(x-y)\theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}$, ami a határesetben 0. Az (Fx-E)G(x,y;E) integrálja is 0 a határesetben, az előző integrálhoz hasonló módon.

Valós energiákra $G(x,y;E) = G(y,x;E)^*$. Ezt a szimmetria tulajdonságot fel lehet használni a Green-függvényre adott ansatz pontosítására az x < y és y < x x-y csere szimmetriájának megkövetelésével. Ez automatikusan kielégíti a (4.16) egyenletet. A tartomány peremén a homogén megoldás eltűnését megkövetelve a (4.13) és a (4.14) teljesül. Érdemes bevezetni a

$$u = ax - bE, v = ay - bE \tag{4.17}$$

jelöléseket. A fent leírt három kritériumot és szimmetria tulajdonságot teljesítő ansatz a

$$G(x, y; E) = C_0(E) \times \begin{cases} \left(\operatorname{Ti}(aL - bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right) \times \\ \left(\operatorname{Ti}(-bE) \operatorname{Bi}(u) - \operatorname{Ai}(u) \right) \\ \left(\operatorname{Ti}(aL - bE) \operatorname{Bi}(u) - \operatorname{Ai}(u) \right) \times \\ \left(\operatorname{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right) \end{cases} \quad x \le y$$

$$\left(\operatorname{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right)$$

A $C_0(E)$ együtthatót úgy kell megválasztani, hogy a (4.15) egyenlet teljesüljön. A (4.15) egyenletbe behelyettesítve a (4.18) egyenlet, és osztva $C_0(E)$ -vel,

$$\frac{1}{C_0(E)} \frac{2m}{\hbar^2} = \frac{1}{C_0(E)} \lim_{\epsilon \to 0^+} \frac{\partial G(x, y; E)}{\partial x} \Big|_{x=y-\epsilon}^{x=y+\epsilon}$$

$$= a \lim_{\epsilon \to 0^+} \left(-\operatorname{Ti}(aL - bE) \operatorname{Bi}'(u) \operatorname{Ai}(v) - \operatorname{Ti}(-bE) \operatorname{Ai}'(u) \operatorname{Bi}(v) + \operatorname{Ti}(aL - bE) \operatorname{Bi}(v) \operatorname{Ai}'(u) + \operatorname{Ti}(-bE) \operatorname{Ai}(v) \operatorname{Bi}'(u) \right)$$

$$= a \left(\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE) \right) \left(\operatorname{Ai}(v) \operatorname{Bi}'(v) - \operatorname{Ai}'(v) \operatorname{Bi}(v) \right)$$

$$= a \frac{\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE)}{\pi}.$$
(4.19)

A második egyenlőségnél kihasználtuk, hogy a Bi(v) Bi'(u)-t és Ai(v) Ai'(u)-t tartalmazó tagok kiesnek. A harmadik egyenlőségnél a határérérték kiértékelhető, az $\epsilon \to 0^+$

határesetben $u \to v$, így szorzat alakba írható az összeg. Végül a negyedik sorban a Wronski-determinánst használtuk fel, (2.30) egyenletnek megfelelően. Az a definíciója szerint $\frac{2m}{\hbar^2} = \frac{a^3}{F}$, így (4.19) átrendezésével

$$C_0(E) = \frac{a^2}{F} \frac{\pi}{\text{Ti}(-bE) - \text{Ti}(aL - bE)}.$$
 (4.20)

Összesítve az eredményeket, a rendszer energiafüggő Green-függvénye

$$G(x, y; E) = \frac{a^2}{F} \frac{\pi}{\text{Ti}(-bE) - \text{Ti}(aL - bE)} \times \begin{cases} \left(\text{Ti}(aL - bE) \operatorname{Bi}(v) - \operatorname{Ai}(v)\right) \times \\ \left(\text{Ti}(-bE) \operatorname{Bi}(u) - \operatorname{Ai}(u)\right) \\ \left(\text{Ti}(aL - bE) \operatorname{Bi}(u) - \operatorname{Ai}(u)\right) \times \\ \left(\text{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v)\right) \end{cases} \quad x \le y$$

$$(4.21)$$

A 4.1. és a 4.2. ábra a (4.21) Green-függvényt ábrázolja. A doboz mérete aL=10, és az energia, ahol a Green-függvény ki van értékelve bE=5.

4.1. ábra. E a ábra a Green-függvények x függését ábrázolja, különböző y-ok esetén. A doboz mérete aL=10, és a Green-függvény a bE=5 energián van kiértékelve.

Valós energiák esetén a Green-függvény valós lesz, így lehet róla három dimenziós ábrát készíteni, ahol a vízszintes sík az x-y-nak felel meg, a függőleges tengely pedig a Green-függvény értékének.

4.2. ábra. aL = 10 és bE = 5 esetén a Green függvény három dimenziós ábrája.

A (4.3) egyenletnek megfelelően a Green-függvénynek pólusai vannak $E=E_n$ -ben. Ezt a (4.21) egyértelmen mutatja, mivel a nevezőjében a (2.39) 0-ra rendezett egyenlet bal oldala szerepel. Ennek az egyenletnek a gykei határozták meg az E_k sajátenergiákat.

Egy érdekes matematikai következmény, hogy a Green-függvényre vonatkozó differenciál egyenlet megoldásával elvégeztük a 4.3. egyenlet összegzését. Ez az összeg az Airy függvények szorzatának összege lenne, osztva $E - E_k$ -val és a megfelelő N_k normálási faktorral ahol E_k -t a (2.39) transzcendens egyenlet határoz meg. A Green-függvényre vonatkozó differenciálegyenlet ismerete nélkül az összeg elvégzése reménytelennek látszana.

4.2. Green-függvény határesetei

A két falú doboz Green-függvényéből megfelelő határesetekben előállítható más fizikai rendszerek Green-függvénye is. Például az $L\to\infty$ határeset visszaadja a felül nyitott

doboz Green-függvényét, avagy a földön pattogó kvantum részecske ("quantum bouncer") Green-függvényét. Egy következő transzformáció határeseteként megkaphatjuk a falak nélküli végtelen lineáris potenciálban mozgó részecske Green-függvényét. Ehhez mind a helykoordinátát, mind az energiát meg kell változtatni: $x \to x' = x + d$, $y \to y' = y + d$ és $E \to E' = E + Fd$, végül a $d \to \infty$ határesetet kell venni.

Az $L\to\infty$ határeset könnyen elvégezhető. A (2.25) és a (2.26) egyenletek szerint ${\rm Ti}(aL-bE)$ gyorsan 0-hoz tart. Ezt az eredményt felhasználva az x=0-ban fallal bezárt részecske Green-függvénye = Fx potenciálban

$$G_{egyfal}(x, y; E) = -\frac{a^2}{F} \frac{\pi}{\text{Ti}(-bE)} \times \begin{cases} \text{Ai}(v) \Big(\text{Ti}(-bE) \, \text{Bi}(u) - \text{Ai}(u) \Big) & x \leq y \\ \text{Ai}(u) \Big(\text{Ti}(-bE) \, \text{Bi}(v) - \text{Ai}(v) \Big) & x \geq y \end{cases}$$
(4.22)

A következő határesetet valamivel nehezebb kiszámítani. Ezt előre lehet sejteni, mert az eddigi Green-függvények olyan rendszereket írtak le, ahol minden állapot kötött állapot. A falak nélküli lineáris potenciálhoz nem tartoznak kötött állapotok, csak szórásállapotok vannak. Ez a változás megmutatkozik a Green-függvény pólusszerkezetében, utalva arra, hogy ez a határeset jelentősen megváltoztatja a Green-függvényt matematikai értelemben is. A feljebb említett átmenet,

$$x' = x + d$$

$$y' = y + d$$

$$E' = E + Fd$$

$$d \to \infty$$

$$(4.23)$$

E az átmenet eltolja a helykoordinátát, miközben a részecske kinetikus energiáját, változatlanul tartja. Az u v változók értéke (4.17) egyenlet szerint változatlan marad, a $d \to \infty$ határérték nem változtatja az alakjukat. Mivel a falak nélküli rendszernek az egész valós energiatengely a spektruma, a Green-függvényt az $E' = E + Fd \pm i\epsilon$ energiában vizsgáljuk, a Ti(-bE') viselkedését kell meghatározni nagy E' esetén. Felhasználva a (2.27)

egyenletet

$$Ti(-x - i\epsilon) \approx -\frac{\cos\left(\frac{2}{3}(x + i\epsilon)^{3/2} - \frac{\pi}{4}\right)}{\sin\left(x + i\epsilon\right)^{3/2} - \frac{\pi}{4}}$$

$$\approx -\frac{\cos\left(\frac{2}{3}x^{3/2} + i\sqrt{x}\epsilon - \frac{\pi}{4}\right)}{\sin\left(\frac{2}{3}x^{3/2} + i\sqrt{x}\epsilon - \frac{\pi}{4}\right)}$$

$$= -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\cosh\left(\sqrt{x}\epsilon\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\sinh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\cosh\left(\sqrt{x}\epsilon\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\sinh\left(\sqrt{x}\epsilon\right)}$$

$$= -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}$$

$$\approx -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\sinh\left(\epsilon\right)}.$$
(4.24)

A sorok közötti lépésekhez felhasználtuk a $(x+a)^{\alpha} \approx x^{\alpha} + \alpha x^{\alpha-1}a$ közelítést, a trigonometrikus addíciós képleteket, a képzetes argumentumú trigonometrikus függvények és hiperbolikus függvények kapcsolatát, valamint az előel függvény közelítését a tanh függvénnyel. Ezek a közelítések egzaktak az $x \to \infty$ határesetben, ezért

$$\lim_{x \to \infty} \text{Ti}(-x - i\epsilon) = \begin{cases} i & \epsilon > 0 \\ -i & \epsilon < 0 \end{cases}$$
 (4.25)

Ez az eredmény kellett ahhoz, hogy a (4.23) átmenet alapján meghatározzuk a fal nélküli lineáris V = Fx potenciálhoz tartozó Green-függényt. Ha Im(E) > 0

$$G_{nincsfal}(x, y; E) = \lim_{d \to \infty} G_{egyfal}(x + d, y + d; E + Fd)$$

$$= \frac{\pi a^2}{F} \times \begin{cases} \operatorname{Ai}(v) \left(\operatorname{Bi}(u) - i \operatorname{Ai}(u) \right) & x \le y \\ \operatorname{Ai}(u) \left(\operatorname{Bi}(v) - i \operatorname{Ai}(v) \right) & x \ge y \end{cases}$$

$$(4.26)$$

Ha Im(E) < 0, akkor a (4.25) egyenlet -i a limeszben, így

$$G_{nincsfal}(x, y; E) = \lim_{d \to \infty} G_{egyfal}(x + d, y + d; E + Fd)$$

$$= \frac{\pi a^2}{F} \times \begin{cases} \operatorname{Ai}(v) \left(\operatorname{Bi}(u) + i \operatorname{Ai}(u) \right) & x \le y \\ \operatorname{Ai}(u) \left(\operatorname{Bi}(v) + i \operatorname{Ai}(v) \right) & x \ge y \end{cases}, \tag{4.27}$$

ez a kifejezés csak az i előjelében különbözik az előzőtől. Az egész valós tengely mentén ugrása van ennek a Green-függvénynek a képzetes részének. Ez egybevág azzal a korábbi eredménnyel hogy tetszőleges energiájú sajátállapotai lehetnek a fal nélküli rendszernek, mert a Green-függvénynek vágása van a folytonos spektrumhoz tartozó energiák mentén.

4.3. Állapotsűrűség

Ahogy azt a Green-függvények bevezetésénél említettük, alkalmasak a (lokális) állapotsűrűség meghatározására [14, 7. o.],

$$\rho(E) = -\frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \operatorname{Im} \operatorname{Tr} \hat{G}(E + i\epsilon), \qquad (4.28)$$

$$\rho(x, E) = -\frac{1}{\pi} \lim_{\epsilon \to 0^+} \operatorname{Im} G(x, x, E + i\epsilon). \tag{4.29}$$

 $\rho(E) dE$ az állapotok száma egy dE energiatartományban, az állapotsűrűség. $\rho(x, E) dE dx$ pedig a megtalálási valószínűséggel súlyozott állapotok száma dx intervallumban dE energiatartományban, az úgynevezett lokális állapotsűrűség.

Ezeket a formulákat numerikus módon közelítőleg ki lehet értékelni kicsi, de véges ϵ választásával, ezt szemlélteti a 4.3. ábra.

4.3. ábra. A 4.28. képlet alapján számolt állapotsűrűség. A kék függvényt $b\epsilon = 0.1$, a narancssárga görbét pedig $b\epsilon = 0.01$ helyettesítéssel kaptuk. Látható, hogy ϵ csökkentésével a tüskék egyre keskenyebbek, és egyre magasabbak lesznek.

Ennek a közelítésnek egy jó tulajdonsága, hogy a formula származtatásához a jól ismert

$$\frac{1}{x \pm i\epsilon} = \frac{1}{x} \mp i\pi\delta(x) \tag{4.30}$$

formulát lehet használni. Ennek a formulának a levezetése során a $\delta(x)$ állandó területű, de egyre szűkebb Lorentz-görbék határértékeként bukkan fel. Ez azt jelenti, hogy véges ϵ

esetén is a sajátenergiákhoz tartozó csúcsok alatti terület változatlan, az állapotsűrűség E szerinti integrálja nagy E-k és véges ϵ esetén is pontos marad.

4.4. ábra. A 4.3. ábrán bemutatott függvények integrálja látható ezen az ábrán. Mind a két függvény ugrása közelítőleg 1, ami at jelenti, hogy a 4.3. ábrán látható tüskék alatti terület jó közelítéssel 1. Az ϵ csökkentése a lépcsőfüggvényhez közelíti az integrált függvényt, ami egyezik az elvárásokkal és a (4.28) egyenlettel.

A (4.22) Green-függvényhez tartozó állapotsűrűség kvalitatíve nem különbözik az előző számítás menetétől és eredményétől, hiszen az előzőhöz hasonlóan csak diszkrét sajátenergiák vannak, ezeknek csupán az értékük különböző.

Más a helyzet a (4.26), (4.27) Green-függvénnyel. Itt csak folytonos spektrumba tartozó sajátenergiák vannak, mind szórásállapotokhoz tartoznak. Ebben az esetben csak a lokális állapotsűrűséget lehet értelmezni, hiszen a sajátállapotok négyzetének integrálja végtelen, csak Dirac-deltára normálhatóak. A (4.29) egyenletnek megfelelően a határérték kiszámításához a pozitív képzetes részre vonatkozó (4.26) kifejezést kell használni,

$$\rho(x, E) = -\frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \operatorname{Im} \left\{ \frac{a^{2}\pi}{F} \operatorname{Ai}(ax - b(E + i\epsilon)) \left(\operatorname{Bi}(ax - b(E + i\epsilon)) - i \operatorname{Ai}(ax - b(E + i\epsilon)) \right) \right\}$$

$$= \frac{a^{2}}{F} \operatorname{Ai}^{2}(ax - bE). \tag{4.31}$$

Nem meglepő módon ez az E energiájú sajátállapot abszolútérték négyzete (2.46). A nomálási faktor is egyezik, hiszen $\frac{a^2}{F}=ab$.

4.4. Perturbációszámítás

A perturbációszámítás a Green-függvény egyik legjelentősebb alkalmazása. Ebben a részben a Green-függvény perturációs sorának a konvergencia tulajdonságait vizsgáljuk. A konvergencia tartományát és sebességét befolyásolja a perturbáló operátor triviális módosítása, konkrétan a vizsgált példában az $\frac{FL}{2}\hat{I}$ operátort a perturbáló tagból levonjuk és a perturálatlan operátorhoz hozzáadjuk. Ezzel a teljes Hamilton operátor nem változik, de a perturbációs sor konvergenciája igen.

A perturbációszámításhoz a Hamilton operátort két részre bontjuk,

$$\hat{H} = \hat{H}_0 + \hat{V}. \tag{4.32}$$

A \hat{H}_0 operátorhoz tartozó rezolvens operátor $\hat{G}_0(E)$. Mind \hat{H} és mind \hat{H}_0 kifejezhetőek a rezolvenseikkel, ha ezeket behelyettesítjük a fenti egyenletbe, implicit egyenletet kapunk $\hat{G}(E)$ -re nézve,

$$-\hat{G}^{-1}(E) - E = -\hat{G}_0^{-1}(E) - E + \hat{V}. \tag{4.33}$$

Ezt kisebb átalakítások után fel lehet használni perturbációszámításra. Az egyenletet balról $\hat{G}_0(E)$ -vel, jobbról $\hat{G}(E)$ -vel szorozzuk, így

$$\hat{G}(E) = \hat{G}_{0}(E) + \hat{G}_{0}(E)\hat{V}\hat{G}(E)$$
(4.34)

eredményhez jutunk. Megfelelően definiálva $\hat{G}_n(E)$ operátorokat,

$$\hat{G}_n(E) = \hat{G}_0(E) \sum_{k=0}^n (\hat{V}\hat{G}_0(E))^k,$$
 (4.35)

a \hat{G}_n -ekre a (4.34) egyenlethez hasonló rekurziós összefüggés áll fent,

$$\hat{G}_{n+1}(E) = \hat{G}_0(E) + \hat{G}_0(E) \hat{V} \hat{G}_n(E). \tag{4.36}$$

Ha $\|\hat{V}\hat{G}_0(E)\| < 1$ akkor a \hat{G}_n sorozat konvergál. Operátor normának a Hilbert-tér normája által indukált normát vesszük, így az operátorok konvergenciája kompatibilis a Hilbert-tér beli konvergenciával.

$$\|\hat{A}\| = \sup \left\{ \sqrt{\left\langle \phi \mid \hat{A}^{\dagger} \hat{A} \mid \phi \right\rangle}, \text{ ahol } \left\langle \phi \mid \phi \right\rangle = 1 \right\}.$$
 (4.37)

A sor határértéke a (4.36) miatt kielégíti a (4.34) egyenletet. Így konvergencia esetén

$$\hat{G}(E) = \hat{G}_0(E) \sum_{n=0}^{\infty} (\hat{V}\hat{G}_0(E))^n.$$
 (4.38)

Ez azt jelenti, hogy ha egy operátornak van projektor felbontása, akkor a normája a legnagyobb sajátérték abszolút értéke lesz, vagy általános esetben a sajátértékek szuprémuma. Ez hasznos jelen esetben is, mivel így meg tudjuk határozni az $\hat{V} = a\hat{x} + b$ operátor normáját. Ennek az operátornak a sajátfüggvényei a $\delta(x-x_0)$ függvények, így a sajátértékek maximuma a [0, L] tartományban

$$\left\|\hat{V}\right\| = \max(|b|, |aL + b|). \tag{4.39}$$

A (4.3) egyenlet alapján $\hat{G}(E)$ normája is meghatározható, az összeg nevezői közül kiválasztva a legkisebb abszolút értékűt,

$$\left\| \hat{G}(E) \right\| = \frac{1}{E - E_k},\tag{4.40}$$

ahol E-hez a komplex síkon a legközelebbi sajátérték E_k . Ezek segítségével felső korlátot lehet adni a $\left\|\hat{G}_1\hat{V}\right\|$ -re.

A Hamilton-operátort eredetileg

$$\hat{H} = \frac{\hat{p}^2}{2m} + F\hat{x} = \hat{H}_1 + \hat{V}_1$$

$$\hat{H}_1 = \frac{\hat{p}^2}{2m}$$

$$\hat{V}_1 = F\hat{x}$$

$$\hat{G}_1(E) = \frac{1}{E - \hat{H}_1}$$
(4.41)

részekre bontottuk. \hat{G}_0 a \hat{H}_0 operátor Green-függvénye. Ebben ha az esetben a \hat{G}_0 pólusaitól legalább FL távolságban, azaz $|E-E_k|>FL$, a komplex energia síkban a sor garantáltan konvergál, mert

$$\|\hat{G}_1(E)V_1\| < \|\hat{G}_1(E)\| \|V_1\| = \frac{FL}{|E - E_k|} < 1.$$
 (4.42)

Vizsgálunk egy módosított felontást is,

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{FL}{2} + F\hat{x} - \frac{FL}{2} = \hat{H}_2 + \hat{V}_2$$

$$\hat{H}_2 = \frac{\hat{p}^2}{2m} + \frac{FL}{2}$$

$$\hat{V}_2 = F\hat{x} - \frac{FL}{2}$$

$$\hat{G}_2(E) = \frac{1}{E - \hat{H}_2}$$
(4.43)

A perturbációszámítás során így a perturbálatlan operátor szerepét a $\frac{\hat{p}^2}{2m} + \frac{FL}{2}$ operátor tölti be. Ebben az esetben a garantált konvergencia tartomány nagyobb, az $\left|E - E_k - \frac{FL}{2}\right| > \frac{FL}{2}$ reláció telesülése esetén a perturbációs sor garantáltan konvergál,

$$\|\hat{V}_2\hat{G}_2(E)\| < \|\hat{V}_2\| \|\hat{G}_2(E)\| = \frac{\frac{FL}{2}}{|E - E_k - \frac{FL}{2}|} < 1.$$
 (4.44)

A második sorhoz tartozó perturbálatlan Green-függvény

$$\hat{G}_2(E) = \frac{1}{E - \left(\frac{\hat{p}^2}{2m} + \frac{FL}{2}\right)} = \hat{G}_1\left(E - \frac{FL}{2}\right),\tag{4.45}$$

könnyen kifejezhető az eredeti eset perturbálatlan \hat{G}_1 Green-függvényével.

A $\frac{\hat{p}^2}{2m}$ Green-függvénye a [0,L] tartományban a 4.1. fejezethez hasonlóan meghatározható,

$$G_1(x, y; E) = -\frac{\hbar}{\sqrt{2m}} \frac{1}{\sin(kL)} \times \begin{cases} \sin(k(y-L))\sin(kx) & x \le y\\ \sin(k(x-L))\sin(ky) & x \ge y \end{cases}, \tag{4.46}$$

$$k = \frac{\sqrt{2mE}}{\hbar}. (4.47)$$

A $G_0(x, y; E)$ diszkretizálásával lehetővé válik a perturbációs sor numerikus kiértékelése. A [0, L] tartományból N egyenletes eloszlású pontot választva, az operátorok közelíthetőek $N \times N$ mátrixokkal, és az operátorok szorzata a közelítő mátrixok szorzatával,

$$x_{k} = \frac{kL}{N-1}$$

$$\hat{A} \to A_{kl} = \left\langle x_{k} \middle| \hat{A} \middle| x_{l} \right\rangle ,$$

$$\hat{A}\hat{B} \to (AB)_{kl} = \frac{L}{N-1} \sum_{m=0}^{N-1} A_{km} B_{ml}$$

$$(4.48)$$

az indexek $0,1,\ldots N-1$ értékűek lehetnek. Szükség van még a operátor norma közelítésére is. A standard ℓ^2 mátrixnorma megszorozva $\frac{L}{N-1}$ -el megfelelő. A skálázási faktorra azért van szükség, mert az operátorok szorzatának közelítésében a mátrix szorzat is skálázva van. A két különböző perturbáció és a különböző N esetek konvergenciája numerikusan vizsgálható,

$$(V_1G_1(E))_{kl} = Fx_kG_1(x_k, y_l, E)$$
(4.49)

az első perturbációs sorban felmerülő $\hat{V}\hat{G}_0(E)$ mátrix közelítése,

$$(V_2G_2(E))_{kl} = F\left(x_k - \frac{L}{2}\right)G_1\left(x_k, y_l; E - \frac{FL}{2}\right)$$
 (4.50)

pedig a módosított perturbációs sorban felmerülő $\hat{V}_2\hat{G}_2(E)$ operátor mátrix közelítése. Minden eszköz adott, hogy a $\|\hat{G}_n(E)\| - \hat{G}(E)$ sorozatot a diszkretizáció segítségével numerikusan vizsgáljuk. Az eredményeket a 4.5. ábra mutatja. Látható, hogy adott finomságú diszkretizáció esetén a második perturbációs sor, ami a $V(x) = Fx - \frac{FL}{2}$ potenciálhoz tartozik, gyorsabban közelít az egzakt Green-függvényhez. A gyorsabb konvergencián túl amikor a numerikusan kiértékelt sor stacionáriussá válik a lépésszám függvényében, a kapott eredmény közelebb van az egzakt Green-függvényhez. Ez a különbség, amelyik tetszőleges lépésszám után is megmarad, a diszkretizáció finomságával jó közelítéssel fordítottan arányos, az ábrán a felbontás duplázása a különbség normájának logaritmusát egy állandó értékkel csökkentette.

4.5. ábra. Az ábra a \hat{G}_n sorozat és az egzakt \hat{G} operátor távolságát vizsgálja. A doboz mérete aL=7, és az energia bE=6.5+4i. A függőleges tengely logaritmikus, hogy a exponenciális csökkenés könnyen látható legyen. Mind az eredeti, V=Fx, és módosított, $V=Fx-\frac{FL}{2}$, perturbáló potenciálból származtatott sor konvergenciája ábrázolva van különböző finomságú diszkretizációk, azaz N esetén.

Mivel a 4.5. ábrán a lépésszám függvényében a különbség normája exponenciálisan csökken amíg el nem ér egy a diszkretizáció finomságától függő minimális hibát, a konvergencia vagy divergencia sebességét meg lehet becsülni a lépések függvényében a normákra

illesztett exponenciális függvény kitevőjével,

$$d(n) = d(0) \exp(-\alpha n) + r,$$
 (4.51)

ahol α jelentése a konvergencia sebessége, ha negatív, a sor divergál, d pedig a egzakt eredménytől való eltérés operátor normája. A maradék tagot r modellezi, ez az r tag lesz közelítőleg fordítottan arányas N-nel.

4.6. ábra. Ez az ábra a két perturbációs sor konvergenciáját hasonlítja össze a komplex energia síkon. Mind a két ábrán a doboz mérete aL=7. A felső ábra a V=Fx perturbáló potenciálnak, míg az alsó a V=Fx-FL/2 perturbáció szerinti sornak felel meg. A fekete tartományok divergenciát jelölnek, míg a többi szín a sorfejtés tagjainak csökkenési sebességét jellemzik az α paraméterrel a (4.51) egyenletből. A piros körökön kívüli tartomány a (4.44) formula által garantált konvergencia tartományt jelöli. A piros x-ek a \hat{G}_0 pólusait, a sárga x-ek pedig az egzakt \hat{G} operátor pólusait jelölik.

A 4.6. ábra jól mutatja, hogy a második perturbációs sor gyorsabban, és nagyobb tartományban konvergál. A két perturbációs sor között a különbség csupán annyi, hogy

a perturbáló tag egy triviális részét, az egység operátorral arányosat, a perturbálatlan Hamilton-operátorhoz csoportosítjuk a perturáló operátorból, ezzel csökkentve a $\hat{V}\hat{G}_0(E)$ normáját a (4.38) egyenletben.

5. Összegzés

A. Szabad részecske gyorsuló koordinátarendszerben

Pozitív x irányban

B. Numerikus számítások

Az összes számításhoz és ábra készítéséhez használt kód elérhető a https://github.com/KurtiZoltan/schroedinger/tree/master/code oldalon, Python nyelven. Továbbiakban néhány érdekesebb kódrészletet és eredményt mutatunk be.

B.1. Hullámfüggvény időfejlődése

B.1.1. 1D

B.1.2. 2D

B.2. Momentumok időfejlődése

```
1 def __init__(self, psi0 = None, F = 1.0, L = 15.0, numPoints = 200,
      name = "1D: "):
2
      self.__name = name
      self._F = F
3
      self.__L = L
4
      self.__numPoints = numPoints
5
      self.__x = np.linspace(0, L, numPoints)
6
7
8
      self.\_Es = np.zeros((0))
9
      self.__norms = np.zeros((0))
      self.__cachedBasisFun = np.zeros((0, self.__numPoints), dtype=
10
     complex)
```

```
11
       self.\__c0s = np.zeros((0))
12
13
      if psi0 != None:
14
           self.__unormpsi0 = psi0
15
           self.__psiOnorm = 1 / np.sqrt(np.abs(self.scalarProd(psiO,
     psi0)))
16
           n = 0
17
           while True:
               self.eLevel(n)
18
               self.waveFunNorm(n)
19
20
               self.cacheBasisFun(n)
21
               self.basisCoeff(n)
22
23
               eWaveFunSum = np.sum(np.abs(self.__c0s)**2)
               print(self.__name + "Sum of probabilities: " + str(
24
      eWaveFunSum))
25
               if eWaveFunSum > 0.9999:
26
                   break
27
               n += 1
1 def charEq(self, E, L = None):
2
      if L == None:
3
           L = self.__L
      F3sqrt = np.power(self.__F, 1/3)
4
      ai1, ai1p, bi1, bi1p = special.airy(-E / F3sqrt ** 2)
6
      ai1p /= F3sqrt ** 2
      bi1p /= F3sqrt ** 2
7
8
      ai2, ai2p, bi2, bi2p = special.airy(F3sqrt * L - E / F3sqrt **
      2)
9
      ai2p /= F3sqrt ** 2
10
      bi2p /= F3sqrt ** 2
      f = bi1*ai2 - ai1*bi2
11
      fp = -(bi1p*ai2 + bi1*ai2p - (ai1p*bi2 + ai1*bi2p))
12
13
      return f, fp
1 def eLevel(self, n):
      ,,,
2
```

```
3
       n goes from O
       , , ,
4
       if len(self.__Es) <= n:</pre>
6
           for i in range(len(self.__Es), n+1):
7
               lstart = 1 / np.power(self.__F, 1/3)
8
               if self.__L <= lstart:</pre>
9
                   llist = np.array([self.__L])
10
                    stepsize = float("nan")
11
               else:
12
                    stepsize = 0.1
13
                    stepnum = int((self.__L-lstart)//stepsize) + 1
                    stepsize = (self.__L-lstart)/stepnum
14
15
                   llist = np.linspace(lstart, self.__L, stepnum+1)
16
               Eguess = (np.pi * (i+1) / llist[0]) ** 2
               E = 0
17
18
               for 1 in 11ist:
19
                   E = (optimize.root_scalar(f=self.charEq, args = (1)
      , x0=Eguess, fprime=True)).root
20
                    Eguess = E * (1/(1+stepsize))**2
               print(self.__name + f"E_{i:d}={E:.2f}")
21
22
               self.__Es = np.append(self.__Es, E)
23
       return
1 def unormWaveFun(self, x, n):
       , , ,
      n goes from O
3
       , , ,
4
       self.eLevel(n)
5
6
       E = self.__Es[n]
7
       F3sqrt = np.power(self.__F, 1/3)
8
       ai1, ai1p, bi1, bi1p = special.airy(-E / F3sqrt ** 2)
9
       ai2, ai2p, bi2, bi2p = special.airy(F3sqrt * x - E / F3sqrt **
      2)
10
      mask = np.array(E / F3sqrt ** 2 - F3sqrt * x > -10).astype(
      float)
11
       return (bi1 * ai2 - ai1 * bi2) * mask
```

```
1 def waveFunNorm(self, n):
  2
                 , , ,
                n goes from O
  4
                 ,,,
  5
                F3sqrt = np.power(self.F, 1/3)
                if len(self.__norms) <= n:</pre>
  6
  7
                           for i in range(len(self.__norms), n+1):
  8
                                      self.eLevel(i)
  9
                                      ai1, ai1p, bi1, bi1p = special.airy(-self.Es[i] /
              F3sqrt**2)
10
                                      ai2, ai2p, bi2, bi2p = special.airy(self.L * F3sqrt -
              self.Es[i] / F3sqrt**2)
11
                                      intsquared = 1 / F3sqrt * (1 / np.pi**2 - (bi1*ai2p -
              ai1*bi2p * (self.Es[i] - self.L * self.F > -10))**2)
12
                                      norm = 1 / np.sqrt(intsquared)
                                      print(self.__name + f"N_{i:d}={norm:.2f}")
13
14
                                      self.__norms = np.append(self.__norms, norm)
15
                return
  1 def scalarProd(self, a, b):
                real = integrate.quad(lambda x: np.real(np.conjugate(a(x)) * b(
              x)), 0, self.__L)[0]
  3
                imag = integrate.quad(lambda x: np.imag(np.conjugate(a(x)) * b(
              x)), 0, self.__L)[0]
                return real + 1j * imag
  1 def G(self, x, y, E):
                F3sqrt = np.power(self.__F, 1/3)
  3
                ai1, ai1p, bi1, bi1p = special.airy(-E / F3sqrt**2)
  4
                ai2, ai2p, bi2, bi2p = special.airy((self.__F * self.__L - E) /
                F3sqrt ** 2)
  5
                ai3, ai3p, bi3, bi3p = special.airy(x * F3sqrt - E / F3sqrt**2)
  6
                ai4, ai4p, bi4, bi4p = special.airy(y * F3sqrt - E / F3sqrt**2)
                c0 = 1 / F3sqrt * np.pi / (ai1/bi1 - ai2/bi2)
                G1 = c0 * (ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai5 - ai1/bi1 * bi5) * (x < ai5 - ai1/bi1 * bi5) * (x
  8
              y)
  9
                G2 = c0 * (ai4 - ai1/bi1 * bi4) * (ai3 - ai2/bi2 * bi3) * (1 -
```

```
(x < y))
10
                  return G1 + G2
 1 def timeEvolution(self, t = 0):
                  ret = np.zeros((self.__numPoints), dtype = complex)
                  for n in range(len(self.__cachedBasisFun)):
 3
                              ret += self._cos[n] * np.exp(-1j * self._Es[n]*t) * self.
               __cachedBasisFun[n, :]
 5
                  return ret
 1 def G(self, x, y, E):
 2
                  F3sqrt = np.power(self.__F, 1/3)
 3
                  ai1, ai1p, bi1, bi1p = special.airy(-E / F3sqrt**2)
                  ai2, ai2p, bi2, bi2p = special.airy((self.__F * self.__L - E) /
                  F3sqrt**2)
                  ai3, ai3p, bi3, bi3p = special.airy(x * F3sqrt - E / F3sqrt**2)
 5
                  ai4, ai4p, bi4, bi4p = special.airy(y * F3sqrt - E / F3sqrt**2)
 7
                  c0 = 1 / F3sqrt * np.pi / (ai1/bi1 - ai2/bi2)
                  G1 = c0 * (ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai3 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai4 - ai2/bi2 * bi4) * (ai5 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai5 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai5 - ai1/bi1 * bi3) * (x < ai4 - ai2/bi2 * bi4) * (ai5 - ai1/bi1 * bi3) * (a
               y)
                  G2 = c0 * (ai4 - ai1/bi1 * bi4) * (ai3 - ai2/bi2 * bi3) * (1 -
               (x < y))
10
                  return G1 + G2
 1 test = d1schroedinger(L=7)
 2
 3 def convergence(E):
                  GO = test.GO(x, y, E)
                  VGO = test.F * x * GO / N * test.L
 5
 6
                  realG = test.G(x, y, E)
 7
                  G = GO
                  norm0 = dx * np.linalg.norm(G0 @ VG0, ord=2)
 8
 9
                  norms = np.array([norm0])
10
                  steps = np.array([0])
                  for i in range (20):
11
12
                              G = GO + G @ VGO
                              norm = dx * np.linalg.norm(G - realG, ord=2)
13
```

Hivatkozások

- [1] Anatoli Andrei Vankov. Quantum bouncer: theory and experiment, 2009. 0906.5138
- [2] R. L. Gibbs. *The quantum bouncer*. American Journal of Physics, 43(1):25–28, 1975. https://doi.org/10.1119/1.10024
- [3] D. A. Goodings and T. Szeredi. The quantum bouncer by the path integral method. American Journal of Physics, 59(10):924-930, 1991. https://doi.org/10.1119/1.16673
- [4] Olivier Vallée and Manuel Soares. Airy Functions and Applications to Physics. Imperial College Press, London, second edition, 2010. ISBN 978-1-84816-548-9; 1-84816-548-X
- [5] L. D. Landau and L. M. Lifshitz. Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3. Butterworth-Heinemann, 3 edition, 1981. ISBN 0750635398
- [6] David J. Griffiths. Introduction to Quantum Mechanics (2nd Edition). Pearson Prentice Hall, 2nd edition, 2004. ISBN 0131118927
- [7] Jun John Sakurai. Modern quantum mechanics; rev. ed.. Addison-Wesley, Reading, MA, 1994
- [8] S. Panda and B.K. Panda. Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles. Pramana - J Phys, 56:809-822, 1991. https://doi.org/10.1007/s12043-001-0081-1
- [9] Richard Beals and Roderick Wong. Special Functions: A Graduate Text. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010
- [10] J R Albright. Integrals of products of airy functions. Journal of Physics A: Mathematical and General, 10(4):485–490, 1977
- [11] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

- [12] Matthias Brack and Rajat Bhaduri. Semiclassical Physics. Addison-Wesley Publishing Company, Inc., 1997
- [13] F. Porter. Course notessolving the schrödinger equation: Resolvents. http://www.hep.caltech.edu/~fcp/physics/quantumMechanics/resolvent/resolvent.pdf
- [14] E.N. Economou. *Green's Functions in Quantum Physics*. Springer Series in Solid-State Sciences. Springer, 2006. ISBN 9783540122661