Topic: Particulate Nature of Matter II

Subtopics Covered:

- 1. Dalton's Atomic Theory
- 2. Atomic Structure
- 3. Constituents of Atoms: Protons, Neutrons, Electrons
- 4. Electron Arrangement (Electronic Configuration)
- 5. Atomic Number, Mass Number, and Isotopy
- 6. Relative Atomic Mass (Based on Carbon-12 Standard)

Lesson Objectives:

By the end of the lesson, students should be able to:

- Explain **Dalton's Atomic Theory** and its relevance.
- Describe the **modern structure of the atom**.
- Identify and explain the roles of protons, neutrons, and electrons.
- Arrange electrons in shells following **electronic configuration rules**.
- Define and calculate atomic number, mass number, and isotopic composition.
- Calculate **relative atomic mass** using real-world examples.

1. Dalton's Atomic Theory

Historical Background:

Before Dalton, scientists believed matter was continuous. Dalton introduced the concept of atoms as tiny, indivisible particles.

Postulates of Dalton's Atomic Theory:

- 1. All matter is made up of tiny indivisible particles called atoms.
- 2. Atoms cannot be created, divided, or destroyed.

(Modern science has modified this: atoms can be split in nuclear reactions.)

3. Atoms of the same element are identical in mass and properties.

(Today we know about isotopes, so this is partly outdated.)

- 4. Atoms of different elements have different masses and properties.
- 5. Atoms combine in simple whole-number ratios to form compounds.
- 6. In chemical reactions, atoms are rearranged, not created or destroyed.

Significance of Dalton's Theory:

- First scientific model of the atom.
- Foundation of modern chemistry.
- Explains law of conservation of mass and law of definite proportions.

2. Atomic Structure

Modern View of the Atom:

Atoms are made up of **subatomic particles**:

Particle Symbol Charge Location

Proton p⁺ +1 Inside nucleus

Neutron n^o 0 Inside nucleus

Electron e⁻ -1 Orbiting nucleus

Atomic Model Summary:

Nucleus:

- Contains protons and neutrons.
- Has most of the atom's mass.
- Positively charged because of protons.

• Electron Shells:

- Electrons orbit the nucleus in energy levels.
- o Electrons have **negligible mass** but determine **chemical properties**.

3. Constituents of the Atom

Particle Relative Mass Charge Role

Proton 1 +1 Determines atomic number and element identity

Neutron 1 0 Adds mass and provides stability

Electron 1/1840 -1 Involved in chemical reactions and bonding

Examples:

Element Protons Neutrons Electrons

Hydrogen (¹H) 1 0 1

Helium (⁴He) 2 2 2

Carbon (12C) 6 6 6

Oxygen (16O) 8 8

Sodium (¹¹Na) 11 12 11

4. Electron Arrangement (Electronic Configuration)

Rules for Filling Electron Shells:

- Shells are filled from lower to higher energy levels.
- Each shell has a maximum capacity:

Shell Maximum Electrons

K (1st shell) 2

Shell Maximum Electrons

L (2nd shell) 8

M (3rd shell) 18

N (4th shell) 32

Examples of Electron Configuration:

Element Atomic Number Electron Arrangement

Hydrogen 1 1

Helium 2 2

Lithium 3 2, 1

Carbon 6 2, 4

Oxygen 8 2, 6

Sodium 11 2, 8, 1

Chlorine 17 2, 8, 7

Calcium 20 2, 8, 8, 2

5. Atomic Number, Mass Number, and Isotopy

A. Atomic Number (Z):

- The **number of protons** in an atom's nucleus.
- Determines the **identity** of the element.

B. Mass Number (A):

• The total number of protons and neutrons in the nucleus.

Formula:

Mass Number (A)=Number of Protons+Number of Neutrons\text{Mass Number (A)} = \text{Number of Protons} + \text{Number of Protons+Number of Neutrons}

Neutrons Number (A)=Number of Protons+Number of Neutrons

Example:

For Carbon-12:

- Atomic Number (Z) = 6 (protons)
- Neutrons = 6
- Mass Number (A) = 6 + 6 = 12

C. Isotopy

Definition:

Isotopes are **atoms of the same element** with the **same atomic number (Z)** but **different mass numbers (A)** due to different numbers of **neutrons**.

Examples of Isotopes:

Element	Isotope	Protons	Neutrons	Mass Number
Carbon	¹² C	6	6	12
	¹⁴ C	6	8	14
Hydrogen	¹ H (Protium)	1	0	1
	² H (Deuterium)	1	1	2
	³H (Tritium)	1	2	3
Chlorine	³⁵ Cl	17	18	35
	³⁷ Cl	17	20	37

Uses of Isotopes:

Isotope Use

Carbon-14 Carbon dating (archaeology)

Cobalt-60 Cancer treatment (radiotherapy)

Iodine-131 Thyroid diagnosis

Deuterium (2H) Used in heavy water (nuclear reactors)

6. Relative Atomic Mass (RAM)

Definition:

The Relative Atomic Mass (Ar) of an element is the average mass of its naturally occurring isotopes, compared to 1/12 of Carbon-12.

Formula for RAM:

RAM=(Isotope 1 mass×abundance)+(Isotope 2 mass×abundance)+...Total abundance\text{RAM} = \frac{(\text{Isotope 1 mass} \times \text{abundance}) + (\text{Isotope 2 mass} \times \text{abundance}) + \dots}{\text{Total abundance}}RAM=Total abundance(Isotope 1 mass×abundance)+(Isotope 2 mass×abundance)+ ...

Example 1: Chlorine

Isotope Mass Number Abundance (%)

Chlorine-35 35 75%

Chlorine-37 37 25%

Calculation:

RAM of Cl= $(35\times75)+(37\times25)100=2625+925100=35.5$ \text{RAM of Cl} = \frac{(35 \times 75) + (37 \times 25)}{100} = \frac{2625 + 925}{100} = 35.5RAM of Cl= $100(35\times75)+(37\times25)=1002625+925=35.5$

Example 2: Magnesium

Isotope Mass Number Abundance (%)

Magnesium-24 24 79%

Magnesium-25 25 10%

Magnesium-26 26 11%

Calculation:

RAM of Mg= $(24\times79)+(25\times10)+(26\times11)100$ \text{RAM of Mg} = \frac{(24 \times 79) + (25 \times 10) + (26 \times 11)}{100}RAM of Mg= $100(24\times79)+(25\times10)+(26\times11)$ = $1896+250+286100=2432100=24.32= \frac{1896 + 250 + 286}{100} = \frac{2432}{100} = 24.32=1001896+250+286=1002432=24.32$

So, RAM of magnesium = 24.32

Summary Table of Key Concepts:

Concept Meaning

Atom Smallest unit of an element

Proton Positive particle in nucleus

Neutron Neutral particle in nucleus

Electron Negative particle orbiting nucleus

Atomic Number (Z) Number of protons

Mass Number (A) Protons + Neutrons

Isotopes Same element, different mass number

Relative Atomic Mass (Ar) Average mass of isotopes

Conclusion:

The **particulate nature of matter** explains the structure of atoms, the arrangement of electrons, and how atomic properties influence chemical behavior.

Understanding isotopes and atomic masses helps in chemistry, biology, and physics.