

CRICOS PROVIDER 00123M

School of Computer Science

COMP SCI 1103/2103 Algorithm Design & Data Structure
Priority Queues and Heaps

adelaide.edu.au seek LIGHT

Priority queue operations

- M.build $(\{e_1, ..., e_n\})$ $M := \{e_1, ..., e_n\}$
- M.insert(e) M := M ∪ {e}
- M.min return min M
- M.deleteMin
 e = min M;
 M \{e};
 return e

Heaps

• Tree-based data structure efficient implementation of priority queues

Binary heap: the underlying tree is binary tree

Binary heaps

Binary heaps – properties

- Smallest element is stored at the root (min heap)
- Each node is smaller than its children (min heap)
- All levels are completely filled (except the last one)
- Last level is filled from left to right

Binary heaps as arrays

Binary heaps as arrays

Observations

- The children of a node with index j have indices 2j and 2j+1 (if they exist)
- Heap ordered: An array h is called heap-ordered iff

$$\forall j \in \{2, \dots, n\} : h[|j/2|] \le h[j]$$

Insertion

Example insert

Example insert

Heap property violated

Example – siftUp

Example – siftUp

SiftUp

```
siftUp(i)

assert heap property holds except maybe at position i

if i = 1 or h[\lfloor i/2 \rfloor] \le h[i] then return

assert heap property holds except for position i

swap(h[i], h[\lfloor i/2 \rfloor])

assert heap property holds except maybe at position \lfloor i/2 \rfloor

siftUp(\lfloor i/2 \rfloor)
```

Correctness of insertion

Assume: Heap property is fulfilled before call of insertion.

- Insertion calls sift up of element e and explores one path to the root.
- Heap property can only be violated at element e.
- Element e is moved up along the path until heap property on that path is established again.

Heap property holds after insertion.

Deletion

deleteMin

```
assert n>0 // heap not empty
result= h[1] // min value
h[1]:=h[n]; // remove value
n-- // update # of elements
siftDown(1) // ensure heap property
return result // return min
```

SiftDown

```
siftDown(i)
  assert heap property holds for trees rooted at j=2i and j=2i+1
  if 2i \le n then
    if 2i + 1 > n or h[2i] \le h[2i + 1] then m := 2i
    else m := 2i + 1
    assert sibling of m does not exist or its key is larger then m
    if h[i] > h[m] then
      swap(h[i], h[m])
      siftDown(m)
  assert heap property holds for tree rooted at i
```


Correctness of deletionMin

Assume: Heap property is fulfilled before call of deletion.

- Deleting the first element and replacing it by the last element *e* in the array can violate the heap property at the children of the root.
- Heap property still holds at all other nodes.
- Deletion calls siftDown and explores one path from the root to a leaf.
- Heap property can only be violated at the children of e.
- SiftDown swaps *e* with the smallest of its children (implies heap property holds at the other child after the swap)
- Element *e* is moved down along the path until heap property is not violated at the children anymore.

Heap property holds after deletion.

Theorem

Insert and deleteMin have O(log n) time complexity

Proof sketch:

- Binary heap of n element has height $k = \lfloor \log n \rfloor$
- Insert and deleteMin explore one root-to-leaf path
- Hence have logarithmic running time

