



# UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE  
United States Patent and Trademark Office  
Address: COMMISSIONER FOR PATENTS  
P.O. Box 1450  
Alexandria, Virginia 22313-1450  
[www.uspto.gov](http://www.uspto.gov)

| APPLICATION NO.                                                              | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|------------------------------------------------------------------------------|-------------|----------------------|---------------------|------------------|
| 09/726,380                                                                   | 12/01/2000  | Toshiaki Okuno       | 50212-168           | 1261             |
| 20277                                                                        | 7590        | 07/31/2003           |                     |                  |
| MCDERMOTT WILL & EMERY<br>600 13TH STREET, N.W.<br>WASHINGTON, DC 20005-3096 |             |                      | EXAMINER            |                  |
|                                                                              |             |                      | PHAN, HANH          |                  |
|                                                                              |             | ART UNIT             | PAPER NUMBER        | 9                |
|                                                                              |             | 2633                 |                     |                  |

DATE MAILED: 07/31/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

|                              |                 |              |
|------------------------------|-----------------|--------------|
| <b>Office Action Summary</b> | Application No. | Applicant(s) |
|                              | 09/726,380      | OKUNO        |
| Examiner                     | Art Unit        |              |
| Hanh Phan                    | 2633            |              |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

#### Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

#### Status

- 1) Responsive to communication(s) filed on 01 December 2000.
- 2a) This action is FINAL.                    2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

#### Disposition of Claims

- 4) Claim(s) 1-6 is/are pending in the application.
  - 4a) Of the above claim(s) \_\_\_\_\_ is/are withdrawn from consideration.
- 5) Claim(s) \_\_\_\_\_ is/are allowed.
- 6) Claim(s) 1,4 and 5 is/are rejected.
- 7) Claim(s) 2,3 and 6 is/are objected to.
- 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

#### Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on \_\_\_\_\_ is/are: a) accepted or b) objected to by the Examiner.
 

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on \_\_\_\_\_ is: a) approved b) disapproved by the Examiner.
 

If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

#### Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
  - a) All b) Some \* c) None of:
    1. Certified copies of the priority documents have been received.
    2. Certified copies of the priority documents have been received in Application No. \_\_\_\_\_.
    3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- \* See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
  - a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

#### Attachment(s)

|                                                                                                              |                                                                              |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)                                  | 4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). _____ . |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)                         | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)  |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) <u>5</u> . | 6) <input type="checkbox"/> Other: _____                                     |

## DETAILED ACTION

### ***Claim Rejections - 35 USC § 102***

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

2. Claims 1, 4 and 5 are rejected under 35 U.S.C. 102(e) as being anticipated by Jones et al (US Patent No. 6,229,935).

Regarding claim 1, referring to Figures 2-5, Jones discloses an optical communication system (i.e., a wavelength division multiplex system, Figure 2, col. 2, lines 56-67) comprising an optical transmission line (i.e., optical fiber transmission line 12, Fig. 2) disposed between a transmitting end (i.e., optical transmitter 10, Fig. 2) and a receiving end (inherently, there is a receiving end in the wavelength division multiplex system of Jones, see col. 3, lines 9-13 and 60-67 and col. 4, lines 1-2, Fig. 2) for transmitting signals of plural channels, and one or more nodes (i.e., a branching unit 18 in the form of a wavelength add/drop multiplexer ADM, Fig. 2, col. 2, lines 59-67) each arranged at a predetermined position of the optical transmission line (Fig. 2) and adding signals of a predetermined channel (i.e., shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , Figs. 2-5) to the optical transmission line (as indicated in Fig. 2, the branching unit

18 is arranged to route a signal carried by a specific wavelength, for example shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , from the trunk onto a drop fiber 20 for onward transmission by a receiver 24, Figs. 3-5, at the end of the branch and to introduce to the trunk a signal carried by the same wavelength, for example shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , from a transmitter 26, Figs. 3-5, at the end of the branch which signal wavelength is provided on the add fiber 22, see col. 2, lines 57-67, col. 3, lines 13-15 and 43-67, col. 4, lines 1-2 and lines 60-62 and col. 6, lines 12-15),

wherein among signal channels (i.e., shortest wavelength  $\lambda_s$  and longest wavelength  $\lambda_L$ ) which can be added to the optical transmission line (Figs. 2-5), each of said nodes (i.e., a branching unit 18, Fig. 2) adds signals of a signal channel ( i.e., shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ ) at which an absolute value of previously calculated accumulated-dispersion from said node itself (i.e., branching unit 18) to the receiving end becomes smallest, to the optical transmission line (as indicated in Fig. 2, the shortest wavelength channel  $\lambda_s$  is dropped out of the spectrum in the trunk and detected in the spur. The add channel, at the same as the drop, is pre-dispersed such that the cumulative dispersion at the output of the branching unit 18 is the same magnitude but opposite sign of dispersion when compared to the drop channel immediately before the branching unit 18. After transmission through an equal length of line, the shortest wavelength channel is now dispersed the same amount as the center channel and so will be perfectly compensated at the receiver. This is best illustrated by looking at the TABLE 1 and TABLE 2. In the TABLE 1, the absolute value of previously calculated accumulated-dispersion from the node (i.e., branching unit 18)

to the receiving end to the transmission line is 840 (differential dispersion). In the TABLE 2, after the adds signals of a signal channel (i.e., shortest wavelength  $\lambda_s$  is pre-dispersed), the absolute value of calculated accumulated-dispersion from the node (i.e., branching unit 18) to the receiving end to the transmission line is 560 (differential dispersion). Jones suggests that in a system with more than one branching unit 18, we would then add/drop the longest wavelength channel and repeat the procedure to minimize the differential dispersion, see col. 3, lines 43-67 and col. 4, lines 1-2 and 60-63 and TABLE 1 and 2).

Regarding claim 4, Jones further teaches a dispersion compensator (16)(Fig. 2) arranged at a predetermined position of the optical transmission line (col. 6, lines 9-11).

Regarding claim 5, referring to Figures 2-5, Jones teaches a method of assigning signal channels (i.e., shortest wavelength  $\lambda_s$  and longest wavelength  $\lambda_L$ ) which assigns a predetermined signal channel to be added to an optical transmission line (i.e., optical transmission line 12, Fig. 2) to each of nodes (i.e., a branching unit 18 in the form of a wavelength add/drop multiplexer ADM, Fig. 2) in an optical communication system, the optical communication system comprising: the optical transmission line (i.e., optical transmission line 12, Fig. 2) disposed between a transmitting end (i.e., optical transmitter 10, Fig. 2) and a receiving end (inherently, there is a receiving end in the wavelength division multiplex system of Jones, see col. 3, lines 9-13 and 60-67 and col. 4, lines 1-2, Fig. 2) and transmitting signals of plural channels; and one or more nodes (i.e., a branching unit 18, Fig. 2) each arranged at a predetermined position of the optical transmission line (Fig. 2) and adding signals of a predetermined channel (i.e.,

shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , Figs. 2-5) to the optical transmission line (as indicated in Fig. 2, the branching unit 18 is arranged to route a signal carried by a specific wavelength, for example shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , from the trunk onto a drop fiber 20 for onward transmission by a receiver 24, Figs. 3-5, at the end of the branch and to introduce to the trunk a signal carried by the same wavelength, for example shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ , from a transmitter 26, Figs. 3-5, at the end of the branch which signal wavelength is provided on the add fiber 22, see col. 2, lines 57-67, col. 3, lines 13-15 and 43-67, col. 4, lines 1-2 and lines 60-62 and col. 6, lines 12-15),

wherein to each of said nodes (i.e., branching unit 18, Fig. 2), among signal channels (i.e., shortest wavelength  $\lambda_s$  and longest wavelength  $\lambda_L$ ) which can be added to the optical transmission line, a signal channel (i.e., shortest wavelength  $\lambda_s$  or longest wavelength  $\lambda_L$ ) at which an absolute value of previously calculated accumulated-dispersion from the node itself to the receiving end becomes smallest is assigned (as indicated in Fig. 2, the shortest wavelength channel  $\lambda_s$  is dropped out of the spectrum in the trunk and detected in the spur. The add channel, at the same as the drop, is pre-dispersed such that the cumulative dispersion at the output of the branching unit 18 is the same magnitude but opposite sign of dispersion when compared to the drop channel immediately before the branching unit 18. After transmission through an equal length of line, the shortest wavelength channel is now dispersed the same amount as the center channel and so will be perfectly compensated at the receiver. This is best illustrated by looking at the TABLE 1 and TABLE 2. In the TABLE 1, the absolute value

of previously calculated accumulated-dispersion from the node (i.e., branching unit 18) to the receiving end is 840 (differential dispersion). In the TABLE 2, after the adds signals of a signal channel (i.e., shortest wavelength  $\lambda_s$  is pre-dispersed), the absolute value of calculated accumulated-dispersion from the node (i.e., branching unit 18) to the receiving end is 560 (differential dispersion). Jones suggests that in a system with more than one branching unit 18, we would then add/drop the longest wavelength channel and repeat the procedure to minimize the differential dispersion, see col. 3, lines 43-67 and col. 4, lines 1-2 and 60-63 and TABLE 1 and 2).

***Allowable Subject Matter***

3. Claims 2, 3 and 6 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

4. The following is a statement of reasons for the indication of allowable subject matter:

With respect to claim 2, the prior art of record fails to teach an optical communication system recited in claim 1 wherein each of said nodes includes a node control system which specifies signal channels which can be added to the optical transmission line, and among said specified signal channels, assigns a signal channel at which the absolute value of accumulated-dispersion from said associated node to said receiving end becomes smallest, to said associated node.

With respect to claims 3 and 6, the prior art of record fails to teach an optical communication system recited in claims 1 and 5 wherein further comprising a centralized control system which calculates wavelength dependency of accumulated-dispersion up to said receiving end for each of said nodes, and assigns optimum signal channels to said nodes in descending order of the absolute value of the accumulated-dispersion, wherein said centralized control system specifies signal channels which can be added to said optical transmission line for every node selected as an assignment object, and among said specified signal channels, assigns a signal channel at which the absolute of the accumulated-dispersion from said selected node itself to said receiving end becomes smallest, to said selected node.

### ***Conclusion***

5. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Lauzon et al (US Patent No. 5,978,131) discloses in fiber two stage amplifier.

6. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Hanh Phan whose telephone number is (703)306-5840.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jason Chan, can be reached on (703)305-4729. The fax phone number for the organization where this application or proceeding is assigned is (703)872-9314.

Application/Control Number: 09/726,380  
Art Unit: 2633

Page 8

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703)305-4700.

Hanh Phan

Hanh Phan

07/24/2003