ФАКТОРИЗАЦИЯЧИСЕЛ РО-МЕТОДОМ ПОЛЛАРДА

Ро-алгоритм Полларда

В 1975 году Поллард опубликовал статью, в которой он изложил идею алгоритма факторизации чисел, работающего за время, пропорциональное $N^{1/4}$.

С его помощью было разложено на множители число Ферма $F_8 = 2^{256} + 1$.

Оригинальная версия алгоритма

Возьмем некоторое случайное отображение $f\colon Z_n\to Z_n$, которое сгенерирует некоторую случайную последовательность $x_0,x_1,x_2\dots$ где $x_i=f(x_{i-1})(mod\ n)$. Обычно берётся многочлен $f(x)=x^2+1$.

Так как последовательность генерируется в Z_n , то в определённый момент она зациклится.

$$x_{k+h} = x_h$$

h называется индексом вхождения, k - длиной цикла.

Оригинальная версия алгоритма

Рассмотрим теперь алгоритм подробнее.

При выбранном многочлене $f(x) = x^2 + 1 \pmod{n}$ рассматриваем $x_i = f(x_{i-1})$. Причём i - индекс элемента перед зацикливанием последовательности.

И для всех j < i вычисляем НОД $d = gcf(|x_i - x_j|, n)$.

Если n>d>1, то d – нетривиальный делитель n.

Если $^n/_d$ - составное число, то применяем данный алгоритм ещё раз уже к числу $^n/_d$. И так продолжаем до тех пор, пока не получим разложение только из простых чисел.

Пример использования алгоритма

Нужно разложить на простые множители число 54.

Возьмём $F = x^2 + 1$ и $x_0 = 3$.

Вычисляем последовательность по модулю 54, пока она не зациклится:

$$x_0 = 3, x_1 = 3 * 3 + 1 \pmod{54} = 10,$$

 $x_2 = 47, x_3 = 50, x_4 = 17, x_5 = 20, x_6 = 23, x_7 = 44, x_8 = 47 \dots$

 $x_8 = x_3$, значит, последовательность зациклилась.

Начинаем попарно высчитывать НОД = $gcf(|x_i - x_j|, 54)$ чисел в последовательности, пока он не будет больше 1, но меньше 54.

При $|x_3 - x_2| = 3$: НОД(3, 54) = 3. Следовательно, 3 — простой делитель 54. 54/3 = 18.

Число 18 — не простое, поэтому применяем к нему алгоритм аналогично. И так до тех пор, пока у нас не получится разложение из одних простых чисел.

Обоснование алгоритма

Оценка основывается на «парадоксе дня рождения».

Пусть $\lambda > 0$. Для случайной выборки из l+1 элементов, каждый из которых меньше q , где $l=\sqrt{2}\lambda q$, вероятность того, что два элемента окажутся равными $p>1-e^{-\lambda}$.

- Утверждение: Пусть S фиксированное множество из r элементов, f какое-либо отображение $f\colon S\to S, x_0\in S$, последовательность x_0, x_1, x_2 … определяется соотношением $x_i=f(x_{i-1})$. Пусть $\lambda>0$, $l=1+\left[\sqrt{2\lambda r}\right]< r$. Тогда доля тех пар (f,x_0) (где f пробегает все отображения из S в S и x_0 пробегает всё множество S), у которых x_0, x_1, x_2 … x_l попарно различны, среди всех пар (f,x_0) не превосходит $e^{-\lambda}$.
- □ Доказательство:

Всего имеется $r^r * r = r^{r+1}$ различных пар (f, x_0) . Пар (f, x_0) , у которых $x_0, x_1, x_2 \dots x_l$ попарно различны будет

$$r(r-1) \dots (r-l) * r^{r-l}$$

Доля таких пар составляет величину

$$t = r^{-r-1} * r^{r-l+1} \prod_{j=1}^{l} (r-j) = \prod_{j=1}^{l} (1 - j/r)$$

Поскольку при 0 < x < 1 выполнено неравенство $\ln(1-x) < -x$, то

$$\ln(t) = \sum_{j=1}^{l} \left(1 - \frac{j}{r}\right) < -\sum_{j=1}^{l} \left(\frac{j}{r}\right) = -\frac{l(l+1)}{2r} < -\frac{l^2}{2r} < -\frac{2\lambda r}{2t} = -\lambda$$

Обоснование алгоритма

Отметим, что вероятность p=0,5 в парадоксе дня рождения достигается при $\lambda\approx0,69$.

Пусть последовательность $\{u_n\}$ состоит из разностей $|x_i-x_j|$, проверяемых в ходе работы алгоритма. Определим новую последовательность $\{z_n\}$, где $z_n=u_n\ (mod\ q)$, q — меньший из делителей n.

Все члены последовательности $\{z_n\}$ меньше \sqrt{n} . Если рассматривать $\{z_n\}$ как случайную последовательность чисел, меньших q, то, согласно парадоксу дней рождений, вероятность того, что среди первых l+1 ее членов попадутся два одинаковых, превысит 1/2 при 1/2 пр

Обоснование алгоритма

Если $z_i = z_j$, тогда $x_i - x_j = 0 \pmod{p} \to x_i - x_j = \log для$ некоторого $k \in \mathbb{Z}$.

Если $x_i \neq x_j$, что выполняется с большой вероятностью, то искомый делитель q числа n будет найден как $\mathrm{HOД} = gcf(|x_i - x_j|, n)$. Поскольку $\sqrt{q} \leq n^{1/4}$, то с вероятностью, превышающей 0,5, делитель n может быть найден за 1, $18 \cdot n^{1/4}$ итераций. Таким образом, ρ -метод Полларда является вероятностным методом, позволяющим найти нетривиальный делитель q числа n за $\mathrm{O}(q^{1/2}) \leq \mathrm{O}(n^{1/4})$ итераций.

Особенности использования алгоритма

Следует отметить, что рассматриваемый алгоритм в значительной степени случаен, его эффективность сильно и непредсказуемо зависит от выбора многочлена и начального элемента в последовательности.

Метод эффективен для нахождения небольших простых делителей числа n. Делители большего размера тоже могут быть обнаружены, однако лишь с некоторой вероятностью.

Тест на простоту чисел Миллера-Рабина

Для реализации факторизации чисел любого метода нужен тест на простоту чисел.

Я выбрала вероятностный тест Миллера-Рабина, так как при проверке k чисел на условия простоты вероятность того, что составное число будет принято за простое, будет меньше $\binom{1}{4}^k$. В своей программе я проверяла 3 случайных числа, так в этом случае достигается достаточно удовлетворительная вероятность 0.015625.

В моей программе функция носит название isPrimeNum().

Тест на простоту чисел Миллера-Рабина

Для проверки числа n (причём n>2) на простоту, во-первых, оно представляется в виде $n-1=t*2^s$, где t -нечётно.

Дальше проверяются следующие утверждения.

Если n - простое, то для любого a из Z_n (a < n) выполняются:

- 1) $a^t = 1 \ (mod \ n)$
- 2) $\exists r$, $\forall t = 0 \le r \le s : a^{2^{s}t} = -1 \pmod{n}$

Если хотя бы одно из этих условий соблюдается, то число а является свидетелем простоты числа n.

Делая проверку на 3 случайных числах, мы повышаем вероятность того, что число n не псевдопростое.

Пример использования теста на простоту чисел Миллера-Рабина

- Возьмём заведомо известное простое число, например, 23. Проверим его на простоту согласно тесту Миллера-Рабина.
- \square Представим его в виде 22 = $2^{1*}11$

Проверяем первое условие:

- □ Возьмём любое натуральное число меньше 23, например, 5

Проверяем второе условие (так как первое условие выполняется, то второе проверять необязательно, но для примера проверяем и второе):

 $\Box 5^{11} \pmod{23} = 22 - удовлетворяет$

Следовательно, число 23 – простое.

Возведение в степень по модулю

Данный алгоритм основывается на том факте, что для заданных а и b следующие 2 уравнения эквивалентны:

$$c = a * b \pmod{m}$$
$$c = a * (b \pmod{m}) \pmod{m}$$

Алгоритм следующий:

- □ Пусть с = 1, е' = 0
- □ Увеличим е' на 1
- \square Установим $c = b * c \pmod{m}$
- \blacksquare Если e' < e, возвращаемся к шагу 2. В противном случае, с содержит правильный вариант ответ $c = b^e \pmod{m}$.

В моей программе данный алгоритм носит название modular_pow().

Пример использования алгоритма возведения в степень по модулю

Допустим, стоит задача возвести в степень по модулю следующее выражение: $3^6 \pmod{32}$. Тогда b=3, e=6, m=32.

- $e' = 1, c = (1*3) \pmod{32} = 3;$
- $e' = 2, c = (3*3) \pmod{32} = 9;$
- $e' = 3, c = (9*3) \pmod{32} = 27;$
- 4. e' = 4, $c = (27*3) \pmod{32} = 17$;
- 5. e' = 5, $c = (17*3) \pmod{32} = 19$;
- 6. e' = 6, $c = (19*3) \pmod{32} = 25$.

Следовательно, $3^6 \pmod{32} = 25$.

Результаты работы программы

