Discrete Math

Lab 3 - September, 22

Agenda

- Homework review
- Naïve Set Theory
- Logic

Naïve Set Theory

Definitions

 A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements.

 $a \in A$ denotes that a **is an element** of the set A.

 $a \notin A$ denotes that a **is not an element** of the set A.

Ø denotes an **empty set** (a set that has no elements)

- The cardinality |A| of a finite set A is a number of distinct elements in A.
- The infinite sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.

Set builder notation

 Set builder notation – a way to describe a set by stating the properties the elements must have to be members

Example: $O = \{x \mid x \text{ is an odd positive integer less than 10}\}$ $O = \{x \in Z + \mid x \text{ is odd and } x < 10\}$ Domain (the set of entities over which x may range)

The set { x ∈ U | P(x) } is the set of all x from U such that P(x) is true.
 Predicate P(x) is a statement about some object x that is either true or false.

Discussion

Why the notion of a set is important in Computer Science?

Definitions

Two sets are equal if and only if they have the same elements.

```
A = B if and only if \forall x (x \in A \leftrightarrow x \in B)
Example: \{1, 2\} = \{2, 1\}
```

- Two sets are equivalent if they have the same number of elements.
 - Example: {1,3,5} and {January, March, May} are equivalent
- The set A is a subset of B if and only if every element of A is also an element of B. A ⊆ B if and only if ∀x (x ∈ A → x ∈ B)

Exercises I

- 1. Are sets A and B equal? $A = \{1, 2, 3\}, B = \{3, 2, 2, 1\}$
- 2. Are sets A and B equal? $A = \{\emptyset\}, B = \emptyset$
- 3. Let S = { {1, 2}, {2, 3}, 4}. Is 1 an element of S? List all elements of S.
- 4. Are sets Z and Q (of integer and rational numbers) equivalent?
- 5. True or false? $\{a, b\}\subseteq \{b, a, c\}$
- 6. True or false? $\{a\}\subseteq \{\{a\}\}$
- 7. True or false? $\{a\} \in \{\{a\}\}$
- 8. True or false? $\emptyset \subseteq \{b,a,c\}$
- 9. True or false? $\emptyset \in \{a,b,c\}$
- 10. True or false? {a, b} \subset {a,a,b}

Set Theory: operations on Venn diagrams

Intersection A ∩ B

Difference A \ B

Symmetric difference A⊕B

Union A U B

Complement \bar{A}

α

Fundamental Set Properties

Idempotence

$$A \cup A = A$$
$$A \cap A = A$$

Associativity

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Commutativity

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Distributivity (\cap over \cup)

$$[A \cap (B \cup C)] = [(A \cap B) \cup (A \cap C)]$$
$$[(A \cup B) \cap C] = [(A \cap C) \cup (B \cap C)]$$

Complement

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

Involution

$$\overline{(\overline{A})} = A$$

Domination

$$A \cup U = U$$

 $A \cap \emptyset = \emptyset$

Identity

$$A \cup \emptyset = A$$
$$A \cap U = A$$

De Morgan's Laws

$$\frac{\overline{A \cup B} = \overline{A} \cap \overline{B}}{\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}}$$

Distributivity (\cup over \cap)

$$[A \cup (B \cap C)] = [(A \cup B) \cap (A \cup C)]$$
$$[(A \cap B) \cup C] = [(A \cup C) \cap (B \cup C)]$$

Complement (continued)

$$\overline{\varnothing} = U$$
 $\overline{U} = \varnothing$

Exercises II

- 1. Let A={1,2,3,4,5}, B={0,3,6}. Find A ∩ B, A U B, A \ B, B \ A, A⊕B
- 2. Use Venn diagrams to prove or disprove the following equation: $[(A \cap B) \setminus C] \cup [(B \cap C) \setminus A] = [(A \cap B) \cup (B \cap C) \setminus (A \cap B \cap C)]$
- 3. Simplify: $\bar{A} \cup (\overline{A \cup \bar{B} \cup \bar{C}}) \cup (B \cap \overline{(A \cup C)})$
- 4. There are 35 students. Each is using at least one way of transportation: subway, bus or tram. Only 6 students are using all 3 ways. Both subway and bus are used by 15 students, subway+tram 13 students, tram+bus 9 students. How many students are using the only way of transportation?

Propositional Logic

Propositions

- A proposition is a declarative sentence that is either true or false, but not both
- Examples of the sentences that are NOT propositions:
 - 1. What time is it?
 - 2. Read this carefully.
 - 3. x + 1 = 2.
 - 4. x + y = z.
- A tautology a compound proposition that is always true
- A contradiction a compound proposition that is always false

Well-formed propositional formulas

- Propositional formulas are constructed from atomic propositions by using logical operations (see formal definition in the lecture 2).
- The truth of a propositional formula $S(x_1, x_2, ..., x_n)$ is a function of the truth values of the atomic propositions $x_1, x_2, ..., x_n$ it contains.
- A **truth table** shows whether a propositional formula is true or false for each possible truth assignment.
- When two compound propositions always have the same truth value we call them equivalent

Operations & truth tables

X	Y	X&Y conjunction	XvY disjunction	X→Y Implication	X↔Y equivalence
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Х	¬X negation
1	0
0	1

Implications

Let's look at the formula $X \rightarrow Y$

- X is the **antecedent** or hypothesis,
- Y is the **consequent** or conclusion
- $Y \rightarrow X$ is the **converse** of $X \rightarrow Y$
- $\neg Y \rightarrow \neg X$ is the **contrapositive** of $X \rightarrow Y$
- $\neg X \rightarrow \neg Y$ is the **inverse** of $X \rightarrow Y$

X	Y	¬ X	¬ Y	X→Y	Y→X	¬Ү→ ¬Х	¬X→ ¬Y
0	0			1			
0	1			1			
1	0			0			
1	1			1			

Exercise:

Show that a conditional statement and its contrapositive are equivalent

Quantifiers

- A predicate (propositional function) a statement that may be true or false depending on the values of its variables
- Quantification expresses the extent to which a predicate is true over a range of elements

	Statement	Negation		
∀ <i>x P</i> (<i>x</i>)	P(x) is true for every x	∃ <i>x</i> ¬ <i>P</i> (<i>x</i>)	There is an x for which P(x) is false	
∃х Р(х)	There is an x for which P (x) is true.	$\forall x \neg P(x)$	P(x) is false for every x	

Logical equivalences

Equivalence	Name	
p & 1 ≡ p p ∨ 0 ≡ p	Identity laws	
p ∨ 1 ≡ 1 p & 0 ≡ 0	Domination laws	
$p \lor p \equiv p$ $p \& p \equiv p$	Idempotent laws	
¬(¬p) = p	Double negation law	
$p \lor q \equiv q \lor p$ $p \& q \equiv q \& p$	Commutative laws	

Equivalence	Name
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \& q) \& r \equiv p \& (q \& r)$	Associative laws
$p \lor (q \& r) \equiv (p \lor q) \& (p \lor r)$ $p \& (q \lor r) \equiv (p \& q) \lor (p \& r)$	Distributive laws
$\neg(p \& q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \& \neg q$	De Morgan's laws
$p \lor (p \& q) \equiv p$ $p \& (p \lor q) \equiv p$	Absorption laws
p ∨ ¬p ≡ 1 p & ¬p ≡ 0	Negation laws

Exercises III

- 1. Find the truth table of the compound propositions:
 - 1. $(p \& q) \rightarrow (p \lor \neg r)$.
 - 2. $(p \rightarrow q) \& (\neg p \rightarrow r)$
- 2. Give the contrapositive of the statement:

If |x| = x, then $x \ge 0$.

- 3. Show that $p \leftrightarrow q$ and $(p \& q) \lor (\neg p \& \neg q)$ are logically equivalent, using truth tables.
- 4. Show that ¬(p ∨ (¬p & q)) and ¬p & ¬q are logically equivalent by developing a series of logical equivalences.
- 5. Show that the proposition is always true: $(\neg q \& (p \rightarrow q)) \rightarrow \neg p$

Homework

Submit on Moodle by 10pm September 25 the pdf file named gg-surname.pdf

- 1. Show that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not logically equivalent.
- 2. Show that each of these conditional statements is a tautology by using truth tables.
- a) $(p \& q) \rightarrow p$
- b) $p \rightarrow (p \lor q)$
- 3. Use a truth table to verify the first De Morgan law: $\neg(p \& q) \equiv \neg p \lor \neg q$.
- 4. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for all sets A, B, and C.
- 5. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find
- a) A ∪ B
- b) $A \cap B$ c) $A \setminus B$

d) B \ A.