Decidable and Semidecidable Languages

Chapter 20

D and SD Languages

Every CF Language is in D

Theorem: The set of context-free languages is a *proper* subset of D.

Proof:

- Every context-free language is decidable, so the context-free languages are a subset of D.
- There is at least one language, AⁿBⁿCⁿ, that is decidable but not context-free.

So the context-free languages are a *proper* subset of D.

Decidable and Semidecidable Languages

Almost every obvious language that is in SD is also in D:

- $\bullet \mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}} = \{\mathsf{a}^{n}\mathsf{b}^{n}\mathsf{c}^{n}, \, n \geq 0\}$
- •{ $wcw, w \in \{a, b\}^*$ }
- •{ww, $w \in \{a, b\}^*$ }
- •{ $w = x*y=z: x,y,z \in \{0, 1\}$ * and, when x, y, and z are viewed as binary numbers, xy = z}

But there are languages that are in SD but not in D:

•H = $\{<M, w> : M \text{ halts on input } w\}$

D and SD

- 1. D is a subset of SD. In other words, every decidable language is also semidecidable.
- There exists at least one language that is in SD/D, the donut in the picture.
- 3. There exist languages that are not in SD. In other words, the gray area of the figure is not empty.

Subset Relationships between D and SD

✓ 1. There exists at least one SD language that is not D.

2. Every language that is in D is also in SD: If L is in D, then there is a Turing machine M that decides it (by definition).

But M also semidecides it.

Languages That Are Not in SD

Theorem: 3. There are languages that are not in SD.

Proof: Assume any nonempty alphabet Σ .

- There is a countably infinite number of SD languages over Σ .
- There is an uncountably infinite number of languages over Σ .

So there are more languages than there are languages in SD. Thus there must exist at least one language that is in \neg SD.

Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) If L is in D, then there is a deterministic Turing machine M that decides it.

From M, we construct M' to decide $\neg L$:

Closure of D Under Complement

Proof: (by construction)

M: M':

This works because, by definition, *M* is:

- deterministic
- complete

Since M' decides $\neg L$, $\neg L$ is in D.

SD is Not Closed Under Complement

Can we use the same technique?

M:

SD is Not Closed Under Complement

Suppose we had:

 M_{\perp} :

Then we could decide *L*. How?

So every language in SD would also be in D.

But we know that there is at least one language (*H*) that is in SD but not in D. Contradiction.

D and SD Languages

Theorem: A language is in D iff both the language and its complement are in SD.

Proof:

- L in D implies L and ¬L are in SD:
 - L is in SD because $D \subset SD$.
 - D is closed under complement
 - So $\neg L$ is also in D and thus in SD.
- L and $\neg L$ are in SD implies L is in D:
 - M_1 semidecides L.
 - M_2 semidecides $\neg L$.
 - To decide *L*:
 - Run M_1 and M_2 in parallel on w.
 - Exactly one of them will eventually accept.

A Language that is Not in SD

Theorem: The language $\neg H =$

{<*M*, *w*> : TM *M* does not halt on input string *w*}

is not in SD.

Proof:

- H is in SD.
- If $\neg H$ were also in SD then H would be in D.
- But *H* is not in D.
- So $\neg H$ is not in SD.

Enumeration

Enumerate means list. We look at Turing Machines as generators.

We say that Turing machine *M* enumerates the language *L* iff, for some fixed, non-halting, state *p* of *M*:

$$L = \{w : (s, \epsilon) \mid -_{M}^{*} (p, w)\}.$$

Whenever the machine enters p, the string on the tape is enumerated.

If *L* is finite, then *M* eventually halts.

A language is **Turing-enumerable** iff there is a Turing machine that enumerates it.

Example of Enumeration

Consider a printing subroutine: *P* be a Turing machine that enters state *p* and then halts:

Let $L = a^*$. M_1 and M_2 both enumerate L:

 M_1 : M_2 :

$$>$$
 $PaP \square RaRaRaP \square P$

SD and Turing Enumerable

Theorem: A language is in SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let *M* be the Turing machine that enumerates *L*. We convert *M* to a machine *M'* that semidecides *L*:

- 1. Save input w.
- 2. Begin enumerating *L*. Each time an element of *L* is enumerated, compare it to *w*. If they match, accept.

The Other Way

Proof that SD implies Turing-enumerable:

If $L \subseteq \Sigma^*$ is in SD, then there is a Turing machine M that semidecides L.

A procedure *E* to enumerate all elements of *L*:

- 1. Enumerate all $w \in \Sigma^*$ lexicographically. e.g., ϵ , a, b, aa, ab, ba, bb, ...
- 2. As each is enumerated, use *M* to check it.

Does this work?

Dovetailing

ε [1]

ε [2]

ε [3]

ε [4]

ε [5]

ε [6]

[1]

[2]

[3]

[4]

[5]

[1]

[2]

[3]

[1] aa

[2] aa

[3] aa

ab [1]

[2] ab

ba

[1]

The Other Way

Proof that SD implies Turing-enumerable:

If $L \subseteq \Sigma^*$ is in SD, then there is a Turing machine M that semidecides L.

A procedure to enumerate all elements of *L*:

- 1. Enumerate all $w \in \Sigma^*$ lexicographically.
- 2. As each string w_i is enumerated:
 - 1. Start up a copy of M with w_i as its input.
 - 2. Execute one step of each M_i initiated so far, excluding only those that have previously halted.
 - 3. Whenever an M_i accepts, output w_i .

Lexicographic Enumeration

M lexicographically enumerates L iff *M* enumerates the elements of *L* in lexicographic order.

A language L is **lexicographically Turing-enumerable** iff there is a Turing machine that lexicographically enumerates it.

Example: $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$

Lexicographic enumeration:

Lexicographically Enumerable = D

Theorem: A language is in D iff it is lexicographically Turingenumerable.

Proof that D implies lexicographically TE: Let M be a Turing machine that decides L. Then M' lexicographically generates the strings in Σ^* and tests each using M. It outputs those that are accepted by M. Thus M' lexicographically enumerates L.

Proof, Continued

Proof that lexicographically TE implies D: Let M be a Turing machine that lexicographically enumerates L. Then, on input w, M' starts up M and waits until:

- M generates w (so M' accepts),
- M generates a string that comes after w (so M' rejects), or
- M halts (so M' rejects).

Thus M' decides L.

Language Summary

IN

Semideciding TM Enumerable Unrestricted grammar

Deciding TM Lexicographic enum. L and $\neg L$ in SD

CF grammar PDA Closure

Regular Expression FSM

