In [1]: import pandas as pd #data manipulation and analysis
import numpy as np # conjunction with pandas for data manipulation and analysis.
import warnings
warnings.filterwarnings("ignore") #ignore null values
import seaborn as sns #create a plot
import matplotlib.pyplot as plt # create a graph

In [2]: data=pd.read_csv("Titanic Dataset.csv")
 data

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina fe		26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [3]: data.head(5) #The head() function is used to display the first few rows of a dataframe.

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [4]: data.tail(5) #The tail() function in python is used to display the last few rows of a dataframe.

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

In [5]: data.describe() #The describe() method in python is used to generate summary statistics for a dataframe.

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
may	891 000000	1 000000	3 000000	80 000000	8 000000	6 000000	512 320200

```
In [6]: data.info() #he info() function is a commonly used to know the general information about a dataframe.
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
          # Column
                          Non-Null Count Dtype
                                          int64
          a
             PassengerId 891 non-null
          1
              Survived
                          891 non-null
                                          int64
          2
             Pclass
                          891 non-null
                                          int64
          3
             Name
                          891 non-null
                                          object
          4
             Sex
                          891 non-null
                                          object
                          714 non-null
             Age
                                          float64
          6
             SibSp
                          891 non-null
                                          int64
          7
             Parch
                          891 non-null
                                          int64
          8
             Ticket
                          891 non-null
                                          object
                          891 non-null
          9
             Fare
                                          float64
          10 Cabin
                          204 non-null
                                          object
          11 Embarked
                          889 non-null
                                          object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
 In [7]: data.shape
Out[7]: (891, 12)
In [8]: data.isnull().sum() #count the number of missing (null or NaN) values in each column of a DataFrame
Out[8]: PassengerId
         Survived
                         0
         Pclass
                         0
         Name
         Sex
                       177
         Age
         SibSp
                         0
         Parch
                         0
         Ticket
                         a
         Fare
                         0
         Cabin
                       687
         Embarked
                         2
         dtype: int64
 In [9]: list(data)
Out[9]: ['PassengerId',
           'Survived',
          'Pclass',
          'Name',
          'Sex',
          'Age',
          'SibSp',
          'Parch'
          'Ticket',
          'Fare',
'Cabin'
          'Embarked']
In [10]: data['Age'].unique() #unique values present in the 'Age' column of a DataFrame
Out[10]: array([22. , 38. , 26. , 35. ,
                                                                    , 14.
                                             nan, 54. , 2. , 27.
                    , 58.
                                                      , 34.
                                                             , 15.
                                                                    , 28.
                 4.
                           , 20. , 39. , 55. , 31.
                8. , 19.
                          , 40. , 66. , 42. , 21. , 18. , 3.
                49. , 29.
                           , 65.
                                  , 28.5 , 5. , 11.
                                                      , 45. , 17.
                                                , 23.
                16. , 25. , 0.83, 30. , 33.
                                                      , 24. , 46.
                           , 47. , 14.5 , 70.5 , 32.5 , 12. , 9. , 36.5
                71. , 37.
                51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                             , 50.
                                                                    , 36.
                45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
                                         , 48.
                                               , 0.75, 53. , 57. , 80.
                60. , 10. , 64. , 13.
                70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
```

In [11]: data1=data.drop(columns=['PassengerId','Cabin','Ticket','Name','SibSp','Parch'])# removes the columns
data1

```
Out[11]:
```

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [12]: data1['Sex'] = data1['Sex'].map({'male':1,'female':0})#replace the values in the 'Sex' column of the DataFrame data1 with
data1

Out[12]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [13]: data1.isnull().sum() #afer droping will use isnull:-no null values

Out[13]: Survived Pclass

Pclass 0 Sex 0 Age 177 Fare 0 Embarked 2

dtype: int64

In [14]: sns.boxplot(data.Age) #to create a boxplot for the 'Age' column in the DataFrame

Out[14]: <Axes: >


```
In [15]: data1['Age'] = data1['Age'].mask(data1['Age']>60,60)
```

In [16]: data1['Pclass'] = data1['Pclass'].map({1:'F', 2:'S', 3:'Third'}) #mapping the numeric values
data1

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	NaN	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

891 rows × 6 columns

In [17]: data1=pd.get_dummies(data1) #convert categorical variable(s) into dummy/indicator variables.
data1

Out[17]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	False	False	True	False	False	True
1	1	0	38.0	71.2833	True	False	False	True	False	False
2	1	0	26.0	7.9250	False	False	True	False	False	True
3	1	0	35.0	53.1000	True	False	False	False	False	True
4	0	1	35.0	8.0500	False	False	True	False	False	True
886	0	1	27.0	13.0000	False	True	False	False	False	True
887	1	0	19.0	30.0000	True	False	False	False	False	True
888	0	0	NaN	23.4500	False	False	True	False	False	True
889	1	1	26.0	30.0000	True	False	False	True	False	False
890	0	1	32.0	7.7500	False	False	True	False	True	False

891 rows × 10 columns

```
In [18]: colnames=list(data1)
         colnames
Out[18]: ['Survived',
           'Sex',
           'Age'
           'Fare'
           'Pclass_F',
           'Pclass_S'
           'Pclass_Third',
           'Embarked_C',
           'Embarked_Q'
           'Embarked_S']
In [19]: from sklearn.impute import KNNImputer #imputing missing values in a dataset using the k-nearest neighbors approach.
In [20]: imputer = KNNImputer(n_neighbors=3) # replaces missing values, it will consider the values of the three nearest neighbors
In [21]: data_filled = imputer.fit_transform(data1)
In [22]: data1 = pd.DataFrame(data=data_filled, columns = colnames)
In [23]: data1['Age'].unique()
                            , 38.
                                         , 26.
                                                                 , 53.5
Out[23]: array([22.
                                                    , 35.
                           , 2.
                                         , 27.
                                                                    , 4.
                                                      , 14.
                58.
                                                      , 55.
                                         , 39.
                                                                    , 35.66666667,
                           , 20.
                                                                    , 28.
                                                      , 15.
                 31.
                            , 16.66666667, 34.
                                                     , 40.
                            , 38.5 , 19.
                                                                    , 26.97333333,
                                         , 42.
                 18.
                            , 60.
                                                       , 23.66666667, 21.
                 32.16666667, 3.
                                         , 25.33333333, 36. , 18.66666667,
                         , 49.
                                                                    , 28.5
                                        , 29. , 43.
                 7.
                            , 11.
                                                      , 17.
                                                                   , 32.
                 5.
                                         , 45.
                                        , 0.83
                                                      , 30.
                           , 25.
                                                                   , 33.
                16.
                                                      , 59.
                            , 24.
                                                                    , 37.
                 23.
                                          , 46.
                 24.33333333, 21.33333333, 47.
                                                     , 14.5
                                                                   , 32.5
                        , 14.66666667, 9.
                 12.
                                                       , 36.5
                                                                     , 51.
                 55.5
                            , 40.5
                                         , 34.33333333, 28.33333333, 44.
                            , 55.66666667, 56.
                                                       , 50.
                                                                    , 48.33333333,
                            , 20.5 , 29.33333333, 25.83333333, 41.
                 45.5
                 55.33333333, 52.
                                          , 37.16666667, 45.33333333, 31.66666667,
                23.5 , 46.33333333, 38.33333333, 0.92 , 43.
20.33333333, 39.66666667, 35.33333333, 21.66666667, 10.
                                                                    , 43.66666667.
                                     , 22.33333333, 48.
                                                                   , 28.83333333,
                 26.33333333, 13.
                0.75 , 23.33333333, 31.83333333, 23.16666667, 42.33333333, 24.66666667, 32.66666667, 31.16666667, 28.66666667, 34.5 ,
                         , 16.5
                            , 16.5 , 33.66666667, 22.66666667, 57. , 22.166666667, 58.66666667, 6. , 0.0
                 53.
                 24.5
                                                                      0.67
                            , 50.33333333, 0.42 , 38.66666667])
                 30.5
In [24]: y=data1['Survived']
         x=data1.drop('Survived',axis=1)
In [25]: from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.33, random_state=42)
         from sklearn.neighbors import KNeighborsClassifier
         classifier= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2 )
         classifier.fit(x_train, y_train)
Out[25]:
         ▼ KNeighborsClassifier
          KNeighborsClassifier()
```

```
In [26]: y_pred= classifier.predict(x_test)
       y_pred
0., 1., 1., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0.,
             1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1.,
             0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 1., 1., 0.,
             1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
             0., 0., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0.,
             1., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0.,
             0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.,
             0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0.,
             0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 1., 0., 0., 1., 0.,
             0.,\; 0.,\; 1.,\; 1.,\; 0.,\; 0.,\; 1.,\; 0.,\; 1.,\; 0.,\; 0.,\; 0.,\; 0.,\; 1.,\; 0.,\; 1.,\; 0.,\;
             1., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1., 0., 1.,
             1., 0., 0., 1., 0., 0.])
In [27]: from sklearn.metrics import confusion_matrix #
       con= confusion_matrix(y_test, y_pred)
       con
Out[27]: array([[147, 28],
             [ 58, 62]], dtype=int64)
In [28]: from sklearn.metrics import accuracy_score
       accuracy_score(y_test,y_pred)
Out[28]: 0.7084745762711865
In [29]: cor_mat = data1.corr()
       cor_mat
```

Out[29]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_C	Embarked_Q	Embarked_S
Survived	1.000000	-0.543351	-0.107151	0.257307	0.285904	0.093349	-0.322308	0.168240	0.003650	-0.155660
Sex	-0.543351	1.000000	0.136861	-0.182333	-0.098013	-0.064746	0.137143	-0.082853	-0.074115	0.125722
Age	-0.107151	0.136861	1.000000	0.095942	0.356562	-0.001802	-0.305749	0.021250	0.004760	-0.028685
Fare	0.257307	-0.182333	0.095942	1.000000	0.591711	-0.118557	-0.413333	0.269335	-0.117216	-0.166603
Pclass_F	0.285904	-0.098013	0.356562	0.591711	1.000000	-0.288585	-0.626738	0.296423	-0.155342	-0.170379
Pclass_S	0.093349	-0.064746	-0.001802	-0.118557	-0.288585	1.000000	-0.565210	-0.125416	-0.127301	0.192061
Pclass_Third	-0.322308	0.137143	-0.305749	-0.413333	-0.626738	-0.565210	1.000000	-0.153329	0.237449	-0.009511
Embarked_C	0.168240	-0.082853	0.021250	0.269335	0.296423	-0.125416	-0.153329	1.000000	-0.148258	-0.778359
Embarked_Q	0.003650	-0.074115	0.004760	-0.117216	-0.155342	-0.127301	0.237449	-0.148258	1.000000	-0.496624
Embarked_S	-0.155660	0.125722	-0.028685	-0.166603	-0.170379	0.192061	-0.009511	-0.778359	-0.496624	1.000000

```
In [30]: sns.heatmap(cor_mat,vmax=1,vmin=-1,annot=True,linewidth=0.01,cmap='Set2')
Out[30]: <Axes: >
                                                                                                     1.00
                 Survived -
                                                 0.26 0.29 0.093
                                                                           0.170.0037-0.1
                                                                                                     - 0.75
                                     1
                                          0.14
                                                                    0.14
                                                                                       0.13
                       Sex -
                       Age --0.11
                                                                     0.31 <mark>0.0210.0048</mark>0.02
                                    0.14
                                            1
                                                0.096 0.36
                                                                                                    - 0.50
                       Fare - 0.26
                                          0.096
                                                  1
                                                        0.59
                                                                                                     0.25
                  Pclass_F - 0.29
                                           0.36 0.59
                                                                           0.3
                                                         1
                                                                                                     - 0.00
                  Pclass_S -0.093
                                                               1
                                                                                       0.19
                                                                                                   - -0.25
             Pclass_Third -- 0.32
                                    0.14
                                                                      1
                                                                                 0.24
             Embarked_C - 0.17
                                     0.083<mark>0.021 0.27</mark>
                                                        0.3
                                                                            1
                                                                                       -0.78
                                                                                                      -0.50
             Embarked_Q <del>0.0037</del>0.07<del>0.0048</del>-0.12
                                                                    0.24
                                                                                   1
                                                                                                      -0.75
                                    0.13
                                                              0.19
                                                                           -0.78
                                                                                         1
             Embarked_S --0.16
                                                                                                      -1.00
                                                                                         Embarked_S -
                                                         Pclass_F -
                                            Age
                                                  Fare
                                     Sex
                                                               Pclass_S
                                                                     Pclass_Third
                                                                            Embarked_C
                                                                                  Embarked_Q
                               Survived
```

In []: