Kapitel PTS:II

II. Wahrscheinlichkeitsbegriff

- □ Zufallsexperimente
- □ Ergebnisräume
- □ Ereignisräume
- □ Relative Häufigkeit
- □ Klassischer Wahrscheinlichkeitsbegriff
- Axiomatischer Wahrscheinlichkeitsbegriff

Ziel: Mathematische Modellierung des Zufalls

Schritt 1: Beschreibung zufälliger Vorgänge als Zufallsexperiment

Schritt 2: Zusammenfassung interessierender Ausgänge zum Ergebnisraum Ω

Schritt 3: Identifikation interessierender Ereignisse im Ergebnisraum

Schritt 4: Bestimmung der Häufigkeit des Ereigniseintritts

Schritt 5: Statistische Wahrscheinlichkeit

Wahrscheinlichkeitsbegriff

Schritt 6: Axiomatisierung des Wahrscheinlichkeitsbegriffs

Beispiel: Französisches Roulette

- "Permanenzen" zählen Ergebnisse und Ereignisse beim Roulette.
- Ereignisse an Tisch 1 in der Spielbank Bad Homburg am 16.06.2013:
 - 9-mal die Null
 - 192-mal "Schwarz"
 - 184-mal "Rot"
 - 119-mal das "1. Dutzend"
- Die Zählung von Ergebnissen und Ereignissen eines Zufallsexperiments ist der erste Schritt der beschreibenden Statistik.

Bemerkungen:

Richard Jarecki hat in den 1960er und 1970er Jahren in europäischen Spielkasinos mehr als 1 Million Dollar im Roulette gewonnen. Jarecki und sein Frau Carol haben Permanenzen zehntausender Roulette-Ereignisse erhoben und ausgewertet. Sie erkannten bei verschiedenen Tischen Tendenzen zu bestimmten Ergebnissen bzw. Ereignissen, die auf Fertigungsfehler und Abnutzung zurückzuführen waren. Mit diesem Wissen ausgestattet konnten die Jareckis ihre Gewinnchancen signifikant erhöhen. In der Öffentlichkeit behauptete Jarecki hingegen, das Roulette-Spiel mit Hilfe einer Datenauswertung auf einem Großrechner "geknackt" zu haben.

Definition 7 (Absolute und relative Häufigkeit)

Tritt bei n-maliger Wiederholung eines Zufallsexperiments ein Ereignis A genau $H_n(A)$ -mal auf, so heißt diese Größe die absolute Häufigkeit des Ereignisses A und

$$h_n(A) = \frac{H_n(A)}{n}$$

die relative Häufigkeit des Ereignisses A.

Definition 7 (Absolute und relative Häufigkeit)

Tritt bei n-maliger Wiederholung eines Zufallsexperiments ein Ereignis A genau $H_n(A)$ -mal auf, so heißt diese Größe die absolute Häufigkeit des Ereignisses A und

$$h_n(A) = \frac{H_n(A)}{n}$$

die relative Häufigkeit des Ereignisses A.

Beispiel: Französisches Roulette (Fortsetzung)

- □ Ereignisse an Tisch 1 in der Spielbank Bad Homburg am 16.06.2013:
 - $H_{385}(\{0\}) = 9$

$$\to h_{385}(\{0\}) = \frac{9}{385}$$

- H_{385} ("Schwarz") = 192 $\rightarrow h_{385}$ ("Schwarz") = $\frac{192}{385}$

-
$$H_{385}(\text{"Rot"}) = 184$$
 $\rightarrow h_{385}(\text{"Rot"}) = \frac{184}{385}$

- H_{385} ("1. Dutzend") = 119 $\rightarrow h_{385}$ ("1. Dutzend") = $\frac{119}{385}$

Eigenschaften

Beispiele: Roulette-Permanenzen Bad Homburg (n=385)

 $h_n(\mathbf{1.Dutzend^*}) = (H_n(\{1\}) + \ldots + H_n(\{12\}))/n = \frac{119}{385}$ Das Ereignis "1. Dutzend" entspricht der Summe der absoluten Häufigkeiten der enthaltenen Elementarereignisse, geteilt durch die Zahl der Spiele.

Eigenschaften

Beispiele: Roulette-Permanenzen Bad Homburg (n = 385)

- $h_n(\mathbf{1.Dutzend^*}) = (H_n(\{1\}) + \ldots + H_n(\{12\}))/n = \frac{119}{385}$ Das Ereignis "1. Dutzend" entspricht der Summe der absoluten Häufigkeiten der enthaltenen Elementarereignisse, geteilt durch die Zahl der Spiele.
- \square Seien A = 1. Dutzend" und B = 3. Dutzend" unvereinbare Ereignisse:

-
$$h_n(A) = \frac{119}{385}$$
, $h_n(B) = \frac{117}{385}$

-
$$h_n(A \cup B) = \frac{236}{385}$$
, $h_n(A \cap B) = 0$

$$h_n(A \cup B) = h_n(A) + h_n(B)$$

Eigenschaften

Beispiele: Roulette-Permanenzen Bad Homburg (n = 385)

- $h_n(\mathbf{1.Dutzend^*}) = (H_n(\{1\}) + \ldots + H_n(\{12\}))/n = \frac{119}{385}$ Das Ereignis "1. Dutzend" entspricht der Summe der absoluten Häufigkeiten der enthaltenen Elementarereignisse, geteilt durch die Zahl der Spiele.
- \square Seien A= "1. Dutzend" und B= "3. Dutzend" unvereinbare Ereignisse:

-
$$h_n(A) = \frac{119}{385}$$
, $h_n(B) = \frac{117}{385}$

-
$$h_n(A \cup B) = \frac{236}{385}$$
, $h_n(A \cap B) = 0$

$$\rightarrow h_n(A \cup B) = h_n(A) + h_n(B)$$

 \Box Seien A= "1. Dutzend" und B= "ungerade Zahl" vereinbare Ereignisse.

-
$$h_n(A) = \frac{119}{385}$$
, $h_n(C) = \frac{188}{385}$

-
$$h_n(A \cup C) = \frac{247}{385}$$
, $h_n(A \cap C) = \frac{60}{385}$

$$\rightarrow h_n(A \cup C) < h_n(A) + h_n(C)$$

$$h_n(A \cup C) = h_n(A) + h_n(C) - h_n(A \cap C)$$

Eigenschaften

Summenregel:

□ Die relative Häufigkeit von Ereignis *A* ist die Summe der relativen Häufigkeiten der Elementarereignisse, aus denen *A* zusammengesetzt ist:

$$h_n(A) = \sum_{\omega \in A} h_n\left(\{\omega\}\right)$$

Daraus folgt:

$$h_n(\emptyset) = 0$$
, $h_n(\Omega) = 1$, und $0 \le h_n(A) \le 1$

- □ Bemerkung:
 - Aus $h_n(A) = 0$ oder $h_n(A) = 1$ darf nicht geschlossen werden, dass A das unmögliche oder das sichere Ereignis ist.
 - $h_n(A)$ ist ja nur auf Basis von n Versuchen bestimmt worden und beim (n+1)-ten Versuch könnte A ja zum ersten Mal (nicht) eintreten.

Eigenschaften

Additionsregel für unvereinbare Ereignisse (nur eines kann eintreten)

$$h_n(A \cup B) = h_n(A) + h_n(B), \text{ falls } A \cap B = \emptyset$$

Eigenschaften

Additionsregel für unvereinbare Ereignisse (nur eines kann eintreten)

$$h_n(A \cup B) = h_n(A) + h_n(B)$$
, falls $A \cap B = \emptyset$

$$\Box$$
 Beispiel $B=\bar{A}$: $h_n(A\cup \bar{A})=h_n(A)+h_n(\bar{A})=1=h_n(\Omega)$

$$\Box$$
 Daraus folgt: $h_n(A) = 1 - h_n(\bar{A})$

Eigenschaften

Additionsregel für unvereinbare Ereignisse (nur eines kann eintreten)

$$h_n(A \cup B) = h_n(A) + h_n(B), \text{ falls } A \cap B = \emptyset$$

$$\Box$$
 Beispiel $B=\bar{A}$: $h_n(A\cup \bar{A})=h_n(A)+h_n(\bar{A})=1=h_n(\Omega)$

$$ullet$$
 Daraus folgt: $h_n(A) = 1 - h_n(\bar{A})$

"Additionsregel" für vereinbare Ereignisse (beide können gleichzeitig eintreten)

$$h_n(A \cup B) = h_n(A) + h_n(B) - h_n(A \cap B), \text{ falls } A \cap B \neq \emptyset$$

- □ Bei $h_n(A) + h_n(B)$ werden die Elementarereignisse aus $A \cap B$ doppelt gezählt, und müssen daher abgezogen werden.
- Bemerkung: Wenn "doch" $A \cap B = \emptyset$, dann wird der letzte Term Null und wir erhalten automatisch die Additionsregel für unvereinbare Ereignisse

Eigenschaften: Additionsregel für zwei Ereignisse

Die Summe der im Venn-Diagramm angegebenen relativen Häufigkeiten ergibt $h_n(A \cup B)$.

Beispiel: Blutgruppen

- □ Die roten Blutkörperchen eines Menschen können das Antigen A, das Antigen B, beide ("AB") oder keines ("0") besitzen.
- \Box Blutgruppen in einer Stichprobe von n=30.000 Personen:

A: 44%, B: 10%, AB: 4%, 0: 42%.

Beispiel: Blutgruppen

- Die roten Blutkörperchen eines Menschen können das Antigen A, das Antigen B, beide ("AB") oder keines ("0") besitzen.
- Blutgruppen in einer Stichprobe von n = 30.000 Personen: A: 44%, B: 10%, AB: 4%, 0: 42%.
- □ Sei "Person trägt Antigen A" das Ereignis A und das Ereignis B analog. A und B können wie folgt kombiniert werden: $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, und $\overline{A} \cap \overline{B}$.
- Tafel der relativen Häufigkeiten der möglichen Ereignisse (in Prozent):

	\overline{A}	\overline{A}	\sum
\overline{B}	4 (AB)	10 (B)	14
\overline{B}	44 (A)	42 (0)	86
$\overline{\sum}$	48	52	100

Beispiel: Blutgruppen

- Die roten Blutkörperchen eines Menschen können das Antigen A, das Antigen B, beide ("AB") oder keines ("0") besitzen.
- Blutgruppen in einer Stichprobe von n = 30.000 Personen: A: 44%, B: 10%, AB: 4%, 0: 42%.
- □ Sei "Person trägt Antigen A" das Ereignis A und das Ereignis B analog. A und B können wie folgt kombiniert werden: $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, und $\overline{A} \cap \overline{B}$.
- Tafel der relativen Häufigkeiten der möglichen Ereignisse (in Prozent):

	\overline{A}	\overline{A}	\sum
\overline{B}	4 (AB)	10 (B)	14
\overline{B}	44 (A)	42 (0)	86
\sum	48	52	100

Mit dieser Tafel und der Additionsregel können wir bspw. berechnen:

$$h_n(A \cup B) = 48\% + 14\% - 4\% = 58\%$$

Beispiel: Blutgruppen

- Die roten Blutkörperchen eines Menschen können das Antigen A, das Antigen B, beide ("AB") oder keines ("0") besitzen.
- Blutgruppen in einer Stichprobe von n = 30.000 Personen: A: 44%, B: 10%, AB: 4%, 0: 42%.
- □ Sei "Person trägt Antigen A" das Ereignis A und das Ereignis B analog. A und B können wie folgt kombiniert werden: $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, und $\overline{A} \cap \overline{B}$.
- Tafel der relativen Häufigkeiten der möglichen Ereignisse (in Prozent):

	\overline{A}	\overline{A}	\sum
\overline{B}	4 (AB)	10 (B)	14
\overline{B}	44 (A)	42 (0)	86
$\overline{\sum}$	48	52	100

Mit dieser Tafel und der Additionsregel können wir bspw. berechnen:

$$h_n(A \cup B) = 48\% + 14\% - 4\% = 58\%$$
 $h_n(\overline{A \cap B}) =$

Beispiel: Blutgruppen

- Die roten Blutkörperchen eines Menschen können das Antigen A, das Antigen B, beide ("AB") oder keines ("0") besitzen.
- Blutgruppen in einer Stichprobe von n = 30.000 Personen: A: 44%, B: 10%, AB: 4%, 0: 42%.
- □ Sei "Person trägt Antigen A" das Ereignis A und das Ereignis B analog. A und B können wie folgt kombiniert werden: $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, und $\overline{A} \cap \overline{B}$.
- Tafel der relativen Häufigkeiten der möglichen Ereignisse (in Prozent):

	\overline{A}	\overline{A}	\sum
\overline{B}	4 (AB)	10 (B)	14
\overline{B}	44 (A)	42 (0)	86
$\overline{\sum}$	48	52	100

Mit dieser Tafel und der Additionsregel können wir bspw. berechnen:

$$h_n(A \cup B) = 48\% + 14\% - 4\% = 58\%$$
 $h_n(\overline{A \cap B}) = 96\%$

Vierfeldertafel

- □ Zwei Ereignisse A und B zerlegen den Ergebnisraum in vier paarweise unvereinbare Ereignisse $A \cap B$, $A \cap \bar{B}$, $\bar{A} \cap B$ und $\bar{A} \cap \bar{B}$.
- □ Die absoluten / relativen Häufigkeiten der vier Ereignisse werden oft in einer sogenannten Vierfeldertafel notiert:

	A	\overline{A}	\sum
\overline{B}	$H_n(A \cap B)$	$H_n(\bar{A}\cap B)$	$\overline{H_n(B)}$
\overline{B}	$H_n(A\cap \bar{B})$	$H_n(\bar{A}\cap \bar{B})$	$H_n(ar{B})$
$\overline{\sum}$	$H_n(A)$	$H_n(\bar{A})$	\overline{n}

	A	\overline{A}	Σ
\overline{B}	$h_n(A \cap B)$	$h_n(\bar{A}\cap B)$	$h_n(B)$
\overline{B}	$h_n(A \cap \bar{B})$	$h_n(\bar{A}\cap \bar{B})$	$h_n(ar{B})$
\sum	$h_n(A)$	$h_n(\bar{A})$	1

- \Box Die absoluten / relativen Häufigkeiten der Einzelereignisse A, \bar{A}, B und \bar{B} sind die Spalten- und Zeilensummen an den Rändern.
 - Man nennt sie daher (absolute / relative) Randhäufigkeiten.

Beispiel: Untersuchungen in der Sprachstatistik / Computerlinguistik / Websuche

Wörter: [Wikipedia]

□ 30 Wörter machen etwa 32% der Wortanzahl eines deutschen Texts aus:

die, der, und, in, zu, den, das, nicht, von, sie, ist, des, sich, mit, dem, dass, er, es, ein, ich, auf, so, eine, auch, als, an, nach, wie, im, für

Satzlänge: [dtv-Atlas zur deutschen Sprache]

□ Kurze Sätze (4–12 Wörter) sind in Boulevard-Medien mit fast 50% aller Sätze deutlich häufiger relativ zu wissenschaftlichen Texten (etwa 10%).

"Neue" Suchanfragen: [Google]

□ Von den seit Jahren mehr als 3 Mrd. Suchanfragen pro Tag hat Google 15% noch nie vorher gesehen.

Beispiel: Münzwurf

- Das Ergebnis eines Münzwurfs ("Kopf" oder "Zahl") ist nicht vorhersagbar.
- Bei vielen Münzwürfen erwartet man aber, dass beides gleich oft auftritt.

Beispiel: Münzwurf

- Das Ergebnis eines Münzwurfs ("Kopf" oder "Zahl") ist nicht vorhersagbar.
- Bei vielen Münzwürfen erwartet man aber, dass beides gleich oft auftritt.

Experiment:

□ 200-maliger Münzwurf (Ereignisse K.opf, Z.ahl, Zwischenstand alle 10 Würfe):

	# K	\overline{n}	$h_n(\{K\})$
ZKKKZKKZKK	7	10	0,700

Beispiel: Münzwurf

- Das Ergebnis eines Münzwurfs ("Kopf" oder "Zahl") ist nicht vorhersagbar.
- Bei vielen Münzwürfen erwartet man aber, dass beides gleich oft auftritt.

Experiment:

□ 200-maliger Münzwurf (Ereignisse K.opf, Z.ahl, Zwischenstand alle 10 Würfe):

	# K	\overline{n}	$h_n(\{K\})$
ZKKKZKKZKK	7	10	0,700
ZZKKZKKKZK	13	20	0.650

Beispiel: Münzwurf

- Das Ergebnis eines Münzwurfs ("Kopf" oder "Zahl") ist nicht vorhersagbar.
- Bei vielen Münzwürfen erwartet man aber, dass beides gleich oft auftritt.

Experiment:

□ 200-maliger Münzwurf (Ereignisse K.opf, Z.ahl, Zwischenstand alle 10 Würfe):

	# K	n	$h_n(\{K\})$		# K	n	$h_n(\{K\})$
ZKKKZKKZKK	7	10	0,700	KKKKKZKZ	K 53	110	0,482
ZZKKZKKKZK	13	20	0,650	KZKKZKKK	KK 61	120	0,508
ZZZZZKZKKZ	16	30	0,533	ZZKZZKKZŁ	KK 66	130	0,508
KKZZKKKKZK	23	40	0,575	KZZZKZKKZ	70 ZZ	140	0,500
KZKZZZZKZZ	26	50	0,520	ZZKKZZZKZ	73 73	150	0,486
KZKKZZKZKZ	31	60	0,517	KKZKKKKZŁ	KK 81	160	0,506
ZZZKKZZZZZ	33	70	0,471	ZKZZKKZKI	KK 87	170	0,512
KKKZKZZZKK	39	80	0,488	ZZKZZZZKZ	ZZ 89	180	0,494
ZZKZZKZKZK	43	90	0,478	KZKZZZKKZ	72 93	190	0,489
ZZZZKKZZKZ	46	100	0,460	KKZKZZZKF	KK 99	200	0,495

Beispiel: Münzwurf

- Das Ergebnis eines Münzwurfs ("Kopf" oder "Zahl") ist nicht vorhersagbar.
- Bei vielen Münzwürfen erwartet man aber, dass beides gleich oft auftritt.

Experiment:

□ 200-maliger Münzwurf (Ereignisse K.opf, Z.ahl, Zwischenstand alle 10 Würfe):

				-			
	# K	n	$h_n(\{\mathtt{K}\})$		# K	n	$h_n(\{K\})$
ZKKKZKKZKK	7	10	0,700	KKKKKZKZZK	53	110	0,482
ZZKKZKKKZK	13	20	0,650	KZKKZKKKKK	61	120	0,508
ZZZZZKZKKZ	16	30	0,533	ZZKZZKKZKK	66	130	0,508
KKZZKKKKZK	23	40	0,575	KZZZKZKKZZ	70	140	0,500
KZKZZZZKZZ	26	50	0,520	ZZKKZZZKZZ	73	150	0,486
KZKKZZKZKZ	31	60	0,517	KKZKKKKZKK	81	160	0,506
ZZZKKZZZZZ	33	70	0,471	ZKZZKKZKKK	87	170	0,512
KKKZKZZZKK	39	80	0,488	ZZKZZZZKZZ	89	180	0,494
ZZKZZKZKZK	43	90	0,478	KZKZZZKKZZ	93	190	0,489
ZZZZKKZZKZ	46	100	0,460	KKZKZZZKKK	99	200	0,495

 $\rightarrow h_n(\{K\})$ scheint sich mit wachsender Wurfanzahl um 0,5 zu stabilisieren.

Beispiel: Geburtenstatistik

□ Lebendgeborene: Deutschland, Monate, Geschlecht [Statistisches Bundesamt]

2020	Offizielle Statistik						
	$\overline{\varphi_i}$	σ_i	$\overline{n_i}$				
Jan	31.049	32.664	63.713				
Feb	28.512	30.188	58.700				
Mär	30.584	31.646	62.230				
Apr	29.835	31.404	61.239				
Mai	31.247	33.457	64.704				
Jun	32.194	33.916	66.110				
Jul	34.436	36.626	71.062				
Aug	33.800	35.892	69.692				
Sep	33.533	35.924	69.457				
Okt	32.164	33.855	66.019				
Nov	29.041	30.461	59.502				
Dez	29.364	31.352	60.716				

Beispiel: Geburtenstatistik

□ Lebendgeborene: Deutschland, Monate, Geschlecht [Statistisches Bundesamt]

2020	Offizi	$h_{n_i}(\{\mathcal{O}_i\})$		
	$\overline{\varphi_i}$	σ_i	$\overline{n_i}$	
Jan	31.049	32.664	63.713	0.5127
Feb	28.512	30.188	58.700	0.5143
Mär	30.584	31.646	62.230	0.5085
Apr	29.835	31.404	61.239	0.5128
Mai	31.247	33.457	64.704	0.5171
Jun	32.194	33.916	66.110	0.5130
Jul	34.436	36.626	71.062	0.5154
Aug	33.800	35.892	69.692	0.5150
Sep	33.533	35.924	69.457	0.5172
Okt	32.164	33.855	66.019	0.5128
Nov	29.041	30.461	59.502	0.5119
Dez	29.364	31.352	60.716	0.5164

→ Schwankungen von $h_{n_i}(\{\emptyset\})$ im Intervall [0,509;0,517].

Beispiel: Geburtenstatistik

☐ Lebendgeborene: Deutschland, Monate, Geschlecht [Statistisches Bundesamt]

2020	Offizielle Statistik		$h_{n_i}(\{ \sigma_i \})$	kumuliert		$h_n(\{ \circlearrowleft \})$	
	$\overline{\varphi_i}$	σ_i	$\overline{n_i}$		$n = \sum n_i$	$z = \sum o_i$	
Jan	31.049	32.664	63.713	0.5127	63.713	32.664	0.5127
Feb	28.512	30.188	58.700	0.5143	122.413	62.852	0.5134
Mär	30.584	31.646	62.230	0.5085	184.643	94.498	0.5118
Apr	29.835	31.404	61.239	0.5128	245.882	125.902	0.5120
Mai	31.247	33.457	64.704	0.5171	310.586	159.359	0.5131
Jun	32.194	33.916	66.110	0.5130	376.696	193.275	0.5131
Jul	34.436	36.626	71.062	0.5154	447.758	229.901	0.5134
Aug	33.800	35.892	69.692	0.5150	517.450	265.793	0.5137
Sep	33.533	35.924	69.457	0.5172	586.907	301.717	0.5141
Okt	32.164	33.855	66.019	0.5128	652.926	335.572	0.5140
Nov	29.041	30.461	59.502	0.5119	712.428	366.033	0.5138
Dez	29.364	31.352	60.716	0.5164	773.144	397.385	0.5140

- → Schwankungen von $h_{n_i}(\{\emptyset\})$ im Intervall [0,509;0,517].
- → Schwankungen von $h_n(\{ \circlearrowleft \})$ im Intervall [0,512;0,514].

Beispiel: Geburtenstatistik

☐ Lebendgeborene: Deutschland, Jahre, Geschlecht [Statistisches Bundesamt]

Jahr	Offizielle Statistik		$h_{n_i}(\{ \circ _i \})$	kumuliert		$h_n(\{\circlearrowleft\})$	
	$\overline{\varphi_i}$	σ_i	$\overline{n_i}$		$n = \sum n_i$	$z = \sum o_i$	
2009	323.877	341.249	665.126	0.5131	665.126	341.249	0.5131
2010	330.710	347.237	677.947	0.5122	1.343.073	688.486	0.5126
2011	322.786	339.899	662.685	0.5129	2.005.758	1.028.385	0.5127
2012	327.915	345.629	673.544	0.5131	2.679.302	1.374.014	0.5128
2013	332.249	349.820	682.069	0.5129	3.361.371	1.723.834	0.5128
2014	348.092	366.835	714.927	0.5131	4.076.298	2.090.669	0.5129
2015	359.097	378.478	737.575	0.5131	4.813.873	2.469.147	0.5129
2016	386.546	405.585	792.141	0.5120	5.606.014	2.874.732	0.5128
2017	382.374	402.510	784.901	0.5128	6.390.915	3.277.242	0.5128
2018	383.471	404.052	787.523	0.5131	7.178.438	3.681.294	0.5128
2019	378.798	399.292	778.090	0.5132	7.956.528	4.080.586	0.5129
2020	375.759	397.385	773.144	0.5140	8.729.672	4.477.971	0.5130

→ Deutliche Stabilisierung von $h_n(\{ \circlearrowleft \})$ um einen Wert leicht geringer als 0,513.

Bemerkungen:

- □ Das statistische Bundesamtes erfasst das <u>biologische Geschlecht</u> bei Geburt. Hermaphroditismus ("Doppelgeschlechtlichkeit") wird nicht gesondert ausgewiesen.
- □ Die Stabilisierung ist nicht "fair" bei 0,5, es sind im Durchschnitt etwas mehr Jungen als Mädchen.
- Die Geschlechterverteilung direkt nach der Empfängnis ist bislang nicht final geklärt. Sekundär wird kann sie von einer geschlechtsspezifischen Sterberaten je nach Entwicklungsphase des Fötus beeinflusst, so dass das unbeeinflusste Verhältnis etwa 1,05 : 1 ist. Tertiär wird das Verhältnis von kulturellen, gesellschaftlichen, und regionalen Faktoren beeinflusst, wie zum Beispiel geschlechtsspezifischer Geburtenverhinderung oder dem Aussetzen von Kindern unerwünschtem Geschlechts. [Wikipedia]

Empirisches Gesetz der großen Zahlen / Statistische Wahrscheinlichkeit

Empirisches Gesetz der großen Zahlen:

Es gibt Ereignisse, deren relative Häufigkeit nach einer hinreichend großen Anzahl von Versuchen ungefähr gleich einem festen Zahlenwert ist.

Empirisches Gesetz der großen Zahlen / Statistische Wahrscheinlichkeit

Empirisches Gesetz der großen Zahlen:

Es gibt Ereignisse, deren relative Häufigkeit nach einer hinreichend großen Anzahl von Versuchen ungefähr gleich einem festen Zahlenwert ist.

- Gesetzmäßigkeiten, die nur bei einer großen Anzahl von Versuchen feststellbar werden statistisches Gesetz genannt.
- Ereignisse, bei denen das empirische Gesetz der großen Zahlen feststellbar ist, werden statistische Ereignisse genannt.
- Je näher die relative Häufigkeit eines Ereignisses sich sich bei 1 stabilisiert, umso "wahrscheinlicher" nennt man es umgangsprachlich.
- → Dieser Zahlenwert wird daher als die statistische Wahrscheinlichkeit des Ereignisses bezeichnet.

Empirisches Gesetz der großen Zahlen / Statistische Wahrscheinlichkeit

Das empirische Gesetz der Großen Zahlen ist eine Erfahrungstatsache und damit letztlich analog zu einem physikalischen Gesetz.

Beispiel:

Die Wärme, Masse und Dichte einer Münze sind ebenso charakteristische, physikalische Eigenschaften, wie die statistische Wahrscheinlichkeit, bei einem Wurf Kopf zu erhalten.

Empirisches Gesetz der großen Zahlen / Statistische Wahrscheinlichkeit

Das empirische Gesetz der Großen Zahlen ist eine Erfahrungstatsache und damit letztlich analog zu einem physikalischen Gesetz.

Analogie zur Festlegung eines objektiven Temperaturmaßes:

	Wärme	Wahrscheinlichkeit
Begriff	Temperatur als <i>Wärmegrad</i> eines Körpers	Wahrscheinlichkeit als <i>Grad der</i> Sicherheit eines Ereignisses
Subjektive Maß-Skala	kalt, warm, heiß,	(sehr) unwahrscheinlich, wahrscheinlich, höchstwahrscheinlich,
Erfahrungstatsache (physikal. Gesetz)	Die meisten Körper <i>dehnen</i> sich bei Erwärmung aus. (Wärmeausdehnungsgesetz)	Es gibt Ereignisse, deren relative Häufigkeit sich bei sehr vielen Versuchen um einen festen Zahlenwert <i>stabilisiert</i> . (empirisches Gesetz der großen Zahlen)
Objektives Maß	Volumen eines Körpers als Maß für seine Temperatur (Thermometer)	Der Wert der Stabilisierung der relativen Häufigkeit eines Ereignisses als <i>Maß</i> <i>für seine Wahrscheinlichkeit</i> (statistische Wahrscheinlichkeit)