WARTOŚĆ PIENIĄDZA W CZASIE

Wartość pieniądza w czasie ulega zmianie. Bardziej cenimy złoty dziś niż ten sam złoty w przyszłości. Są trzy przyczyny tego stanu rzeczy.:

- koszt utraconych możliwości,
- ryzyko,
- inflacja.

Koszt utraconych możliwości:

Lokując pieniądze w jakiekolwiek przedsięwzięcie tracimy możliwość osiągania korzyści z tytułu alternatywnego wykorzystania naszych środków pieniężnych. Jeżeli istnieje więcej niż jedna alternatywa (lokata bankowa, zakup papierów wartościowych, działalność produkcyjna lub handlowa), wybieramy najkorzystniejszą. Niech ta alternatywa oznacza r% przychodu od kapitału rocznie. W rezultacie po roku mielibyśmy (1+r)*K pieniędzy zakładając, że inicjujemy naszą działalność gospodarczą z kapitałem K zł. Po t latach kapitał powiększyłby się do K*(1+r)^t. Widzimy, że K zł dziś, równoważne jest K*(1+r)^t zł po t latach. Odwracając nasze rozumowanie mamy, że 1 zł w roku t warta jest w złotych roku zerowego 1/(1+r)^t zł. Wyrażenie 1/(1+r)^t może być interpretowane jako dzisiejsza cena 1 złotego w roku t-tym.

Ryzyko:

Całe powyższe rozumowanie dotyczy sytuacji pewności. Co stanie się jeżeli uwzględnimy stan ryzyka?

Niech f(s) oznacza funkcję gęstości prawdopodobieństwa iż spodziewany dochód w przyszłym roku uszczuplony zostanie o s*K, gdzie $0 \le s \le 1$ i tym samym dochód wyniesie K-s*K. Wtedy, możemy zdefiniować sobie miarę ryzyka w postaci wartości oczekiwanej p = $E(s) = \int s^* f(s) ds$ iż spodziewany dochód w przyszłym roku ulegnie zmniejszeniu, średnio biorąc, p razy $(0 \le p \le 1)$.

Jeżeli porównujemy <u>pewny</u> dochód obecnie z przyszłym oczekiwanym dochodem to, biorąc pod uwagę stopień ryzyka związany z przyszłymi dochodami i miarę ryzyka p, przewidywany, przyszły dochód K równoważny jest bieżącemu - i traktowanemu jako pewny - dochodowi w wysokości $K^*(1-p)$. Dla małych wartości p wyrażenie 1-p może być w przybliżeniu zapisane jako $1/(1+p)^1$

W efekcie czynnik ryzyka skłania nas do wyceny przyszłego dochodu wg stopy dyskonta 1/(1+p). Ponieważ p jest miarą ryzyka tylko dla jednego okresu, to stopa dyskonta dla i-tego roku wyniesie - o ile stopy ryzyka są identyczne dla wszystkich lat - 1/(1+p)ⁱ.

Inflacja:

Lokata nominalnej kwoty pieniężnej K w banku przy stopie realnego rocznego oprocentowania r oznacza, że po roku uzyskany dochód wynosi K*(1+r). Jeżeli uwzględnimy roczne tempo wzrostu cen τ , to nominalny dochód wyniesie K*(1+r)*(1+ τ). W złotych okresu t=0 dochód przyszłego roku dyskontujemy zatem stopą 1/[(1+r)*(1+ τ)].

Stopa dyskonta:

Niech koszt utraconych możliwości wynosi w poszczególnych latach r_1 , r_2 , ... r_i ,...; niech stopa ryzyka wynosi p_1 , p_2 , p_i ,....; niech stopa inflacji τ_1 , τ_2 , τ_i ,.... Wówczas stopa dyskonta dla roku i wynosić będzie:

¹Wynika to z rozwinięcia wyrażenia 1/(1+p) w szereg Maclaurina.. Tym samym przyszly dochód K traktujemy jako wartość K/(1+p) z okresu t=0.

Jeżeli, co jest regułą, zakładamy, że wszystkie $r_i = r$, $p_i = p$ oraz $\tau_i = \tau$, wówczas stopa dyskonta dla roku i upraszcza się do postaci:

Stopa dyskonta może być interpretowana jako cena pieniądza w roku i-tym wyrażona w jednostkach roku zerowego. Jeżeli wielkości r, p, τ nie są duże możemy w przybliżeniu zapisać $(1+r)^*(1+p)^*(1+\tau)\approx 1+r+p+\tau$. W praktyce posługujemy się takim zapisem, gdzie wyrażenie $r+p+\tau$ łącznie ujmuje trzy elementy rachunku: koszt utraconych możliwości (w wymiarze realnym), ryzyko i inflację.

Wycena papierów wartościowych

Zakładamy, że dany papier wartościowy wart jest tyle ile przyniesie on dochodu w całym okresie jego życia. W przypadku akcji - teoretycznie - okres ten jest nieskończenie wielki, natomiast dla obligacji obejmuje on okres do momentu wykupu.

Przeprowadzamy następujące rozumowanie: kurs bieżący papieru równy jest sumie zdyskontowanych przychodów w całym okresie życia papieru. Przyszłe przychody są zdyskontowane, bowiem jest to procedura pozwalająca sprowadzić "przyszłe złotówki" do "dzisiejszych złotówek", wyrazić dochody przyszłych okresów w dzisiejszej cenie pieniądza.

W jaki sposób określamy przyszłe przychody? Dochody z akcji to np. coroczne dywidendy, zaś z obligacji to coroczne oprocentowanie plus, w ostatnim roku, nominalna wartość obligacji (wykup obligacji). Są to wielkości jedynie przewidywane, a zatem niepewne. Nie dotyczy to obligacji, bo tu nominalne oprocentowanie jest ustalone z góry.

Ustalenie stopy dyskonta może być jeszcze bardziej kłopotliwe. Po pierwsze, koszt utraconych możliwości jest wielkością subiektywną i różną dla każdego podmiotu. Po drugie, ocena ryzyka jest także indywidualnie bardzo zróżnicowana, zaś ocena przyszłej inflacji niepewna. W efekcie każdy podmiot będzie przyjmować różne stopy dyskonta zależne od jego oceny ryzyka, przewidywanego tempa wzrostu cen i kosztu utraconych możliwości. Powoduje to, że nawet wówczas gdy przyszłe przychody oceniane są identycznie przez dwa różne podmioty, wartość danego aktywu może być różnie oszacowana ze względu na różnice w przyjętej stopie dyskontowej.

Niech zatem obecny rynkowy kurs akcji np. firmy MAX wynosi K. Jeżeli nasza ocena wartości tego aktywu oszacowana według powyższej metodologii wynosi L < K, to jako właściciel sprzedajemy papier bo zarabiamy K - L. Wszyscy dla których L < K kreują tym samym podaż akcji MAX. Są zapewne i tacy, dla których L > K i ci zechcą akcje MAX kupować bowiem zyskują L - K. Ostatecznie suma indywidualnych strumieni podaży i popytu wyznaczy rynkowy kurs akcji MAX.

Akcje

Niech roczne realne dochody z akcji MAX (dywidendy) są stałe i wynoszą d. Operując wielkością realnych przychodów możemy pominąć czynnik inflacyjny τ . Czynnik dyskontujący jest stały R=r+p. Wartość akcji szacujemy zatem jako sumę:

$$\sum_{i=1}^{\infty} d/(1+R)^{i} = d^{*}\sum_{i=1}^{\infty} 1/(1+R)^{i} = d/R$$

Jeżeli dochody d są wielkościami nominalnymi konieczne jest dodanie do współczynnika R składnika inflacyjnego τ.

Obligacje

Niech obligacja o wartości nominalnej B i oprocentowaniu rocznym ρ żyje T lat. Zdyskontowana suma przychodów wyznaczająca wartość obligacji może być szacowana następująco:

$$B^* \rho * \sum_{i=1}^{T} 1/(1+R)^i + B/(1+R)^T$$

Zdyskontowana suma jest skończona bowiem przychody osiąga się przez T lat a ponadto w roku T następuje wykup obligacji po cenie nominalnej. Ponieważ B jest nominalną wartością obligacji (cena zakupu w momencie t=0), to współczynnik dyskontujący musi zawierać τ (R = r + p + τ).

Wartość bieżąca netto (NPV)

Przyjmijmy, że przez g lat realizujemy inwestycję która przynosić będzie po jej ukończeniu roczne zyski d. Niech łączny okres budowy i eksploatacji obiektu wynosi T lat. Zakładamy, że K_i oznacza nakłady inwestycyjne w roku i. Kiedy uznamy opłacalność inwestycji? Sensowne jest przyjęcie kryterium, iż warunkiem opłacalności jest by przychody z inwestycji w całym okresie jej eksploatacji przewyższały nakłady. Nie możemy jednak zastosować prostej formuły:

$$\sum_{i=1}^{g} K_i < (T-g)^*d$$

jako kryterium bowiem musimy uwzględnić zmiany wartości pieniądza w czasie. Stąd musimy dyskontować zarówno nakłady jak i zyski dla jakiegoś ustalonego momentu. Niech momentem tym będzie pierwszy rok budowy obiektu. Wówczas nasze kryterium przyjmie postać:

$$\sum_{i=1}^{g} K_{i} / (1+R)^{i} < \sum_{i=1}^{g} d/(1+R)^{i}$$

Jeżeli warunek ten będzie spełniony, wówczas możemy uznać inwestycję za opłacalną. Powyższy warunek można zapisać także nieco inaczej:

$$\sum_{g+1}^{T} \frac{g}{d/(1+R)^{i}} - \sum_{1}^{g} \frac{K_{i}}{(1+R)^{i}} > 0$$

Wyrażenie po lewej stronie nazywamy wartością bieżącą netto (net present value NPV). Zarówno przychody (zyski) jak i nakłady dyskontowane są na ten sam moment i dodawane do siebie, z tym iż nakłady traktowane są jako wielkości ujemne. Dodatnia wartość NPV świadczy, że nakłady z nadwyżką pokryte są przez przychody. Oczywiście wartość NPV zależy od przyjętej stopy dyskonta.

Wewnętrzna stopa procentowa (IRR)

Wartość R taką, że dla danych K_i i d_i wartość bieżąca netto równa się zero nazywana jest wewnętrzną stopą procentową (internal rate of return IRR). Oznacza to, że wewnętrzna stopa procentowa to taka stopa dla której zachodzi NPV (IRR) = 0. Wewnętrzna stopa procentowa mówi nam na jaką średnioroczną stopę przychodu od inwestycji możemy liczyć. By dokonać wyboru musimy porównać wyliczoną IRR z minimalną stopą, którą uznamy za graniczną. Jeżeli IRR będzie wyższa niż przyjęta stopa minimalna uważamy decyzję inwestycyjną za opłacalną.