Comparison Metrics for Large Scale Political Event Data Sets

Philip A. Schrodt

Parus Analytics Charlottesville, Virginia, USA schrodt735@gmail.com

Paper presented at the New Directions in Text as Data New York University, 16-17 October 2015

Slides:

http://eventdata.parusanalytics.com/presentations.html

Outline

- ▶ Why multiple sources are not necessarily a good thing
- ▶ A comparison metric for event data sets
- ► Example 1: BBC single-source data set vs ICEWS multi-source
- ► Example 2: shallow (TABARI)vs full (PETRARCH) parsing for the KEDS Levant data
- ► Example 3: Generate data using simple pattern matching and "bag of words" methods
- Next steps

Humans use multiple sources to create narratives

- ▶ Redundant information is automatically discarded
- Sources are assessed for reliability and validity
- ▶ Obscure sources can be used to "connect the dots"
- ▶ Episodic processing in humans provides a pleasant dopamine hit when you put together a "median narrative": this is why people read novels and watch movies.

Machines latch on to anything that looks like an event

This must be filtered

Figure 2: Effect of One-A-Day filtering

Implications of one-a-day filtering

- ► Expected number of correct codes from a single incident increases exponentially but is asymptotic to 1
- ► Expected number of incorrect codings increases linearly and is bounded only by the number of distinct codes

Tension in two approaches to using machines [Isaacson]

- ▶ "Artificial intelligence" [Turing, McCarthy]: figure out how to get machines to think like humans
- ▶ "Computers are tools" [Hopper, Jobs]: Design systems to optimally *complement* human capabilities

Weighted correlation between two data sets

$$wtcorr = \sum_{i=1}^{A-1} \sum_{j=i}^{A} \frac{n_{i,j}}{N} r_{i,j}$$
 (1)

where

- ightharpoonup A = number of actors;
- $n_{i,j} =$ number of events involving dyad i,j
- ▶ N = total number of events in the two data sets which involve the undirected dyads in A x A
- $r_{i,j}$ = correlation on various measures: counts and Goldstein-Reising scores

BBC vs. ICEWS: Correlations over time: total counts and Goldstein-Reising totals

Correlations over time: pentacode counts

Dyads with highest correlations

Table 1: Fifty dyads with highest average correlation on total counts

RUS-CHN 0.76	CHN-ZAF 0.72	CHN-EGY 0.67	CHN-PAK 0.66	CHN-DEU 0.66
CHN-SYR 0.66	CHN-HRV 0.65	CHN-JPN 0.64	RUS-JPN 0.63	UKR-HRV 0.63
RUS-IRN 0.61	CHN-FRA 0.60	CHN-ROU 0.60	CHN-IND 0.59	CZE-HRV 0.59
CHN-GBR 0.59	CHN-MEX 0.59	RUS-PSE 0.59	CHN-LKA 0.59	CHN-VNM 0.59
HRV-ROU 0.58	CHN-PSE 0.58	RUS-IND 0.58	RUS-DEU 0.57	TUR-POL 0.57
CHN-TUR 0.57	IRN-PAK 0.56	CHN-IRN 0.56	IRN-TUR 0.56	RUS-VNM 0.56
IRN-SYR 0.56	CHN-BRA 0.55	CHN-ESP 0.55	RUS-GBR 0.55	TUR-UKR 0.55
DEU-ROU 0.54	USA-CHN 0.54	RUS-CAN 0.54	CHN-AUS 0.54	RUS-EGY 0.54
CHN-ARG 0.54	RUS-ISR 0.54	TUR-ROU 0.54	RUS-SYR 0.54	RUS-POL 0.54
UKR-SVK 0.54	TUR-GEO 0.53	RUS-ROU 0.53	PSE-PAK 0.53	RUS-KOR 0.53

Dyads with lowest correlations

Table 2: Fifty dyads with lowest average correlation on total counts

MEX-SAU -0.0090	AUS-ITA -0.0086	GBR-VEN -0.0060	ISR-BGD -0.0060	AFG-SYR -0.0050
BRA-POL -0.0047	AFG-LKA -0.0045	SAU-NZL -0.0043	AUS-CZE -0.0042	CZE-LKA -0.0038
IDN-AZE -0.0037	ITA-NZL -0.0031	PRK-SAU -0.0030	IRQ-ZWE -0.0030	IND-ARG -0.0029
NPL-CAN -0.0028	PHL-LKA -0.0028	BRA-ITA -0.0027	VNM-SAU -0.0025	ESP-MYS -0.0025
NGA-LBN -0.0025	NGA-ITA -0.0025	PHL-ARG -0.0024	PSE-GEO -0.0024	IRN-NPL -0.0023
AZE-MYS -0.0022	GEO-SYR -0.0022	EGY-MEX -0.0022	BGD-SYR -0.0021	CAN-NZL -0.0020
TWN-EGY -0.0020	PRK-KEN -0.0019	COL-BGD -0.0018	PRK-LBN -0.0018	EGY-VEN -0.0018
CZE-VEN -0.0016	KOR-GEO -0.0016	KOR-VEN -0.0015	TUR-VEN -0.0015	NGA-VNM -0.0015
PHL-KEN -0.0015	SVK-SAU -0.0015	AFG-BRA -0.0015	SVK-ZWE -0.0015	AFG-VEN -0.0015
GEO-SAU -0.0015	KOR-ZWE -0.0015	SYR-ARG -0.0015	PSE-MEX -0.0014	ZAF-NZL -0.0014

TABARI vs PETRARCH

Table 3: Twenty dyads with highest weighted average correlation

ISR-LBN (9871) 0.7684	ISR-PSE (39655) 0.7554	JOR-TUR (75) 0.6798	EGY-SYR (924) 0.6798
ISR-USA (14722) 0.6689	JOR-FRA (188) 0.6567	SYR-JOR (591) 0.6503	EGY-TUR (251) 0.6327
EGY-USA (4727) 0.6318	LBN-USA (3300) 0.6096	ISR-EGY (5399) 0.608	SYR-USA (4301) 0.6054
,	ISR-IGO (4480) 0.5923	PSE-USA (10980) 0.5914	EGY-JOR (737) 0.583
	EGY-FRA (594) 0.5718	ISR-JOR (2424) 0.5682	ISR-FRA (1068) 0.558
JOR-USA (2435) 0.5724	EG1-FRA (594) 0.5718	ISR-JOR (2424) 0.5082	ISR-FRA (1008) 0.558

Table 4: Twenty dyads with lowest weighted average correlation

LBN-DEU (219) 0.403	PSE-IGO (5414) 0.3631	PSE-JOR (4632) 0.3577	USA-DEU (282) 0.3505
IGO-TUR (243) 0.3361	FRA-GBR (90) 0.3343	ISR-DEU (599) 0.3326	LBN-JOR (166) 0.321
USA-FRA (492) 0.3146	IGO-GBR (335) 0.3111	TUR-DEU (38) 0.2983	PSE-LBN (4574) 0.2861
IGO-FRA (384) 0.2549	LBN-TUR (61) 0.248	PSE-FRA (3532) 0.2473	PSE-SYR (3654) 0.2237
IGO-DEU (106) 0.2235	PSE-GBR (3445) 0.1275	PSE-TUR (2964) 0.0919	PSE-DEU (2973) 0.0701

TABARI vs PETRARCH: High frequency dyads generally have higher correlations

Table 5: Total counts by weighted correlation by dyad.

TABARI vs PETRARCH: Palestine is an outlier

Table 7: Total counts by dyad, excluding ISR-PSE. Green markers are dyads involving PSE; blue are all other dyads.

Experimenting with minimal "bag of words" approaches

- ► PETRARCH AFP and Reuters Levant data is the reference set
- ► Actors and agents: simply look for the patterns found in generic dictionaries
- ► Events: use support vector machines on lede-sentence texts to classify these into pentacodes
 - Experiment 1: train on 400 cases, test on remainder
 - ▶ Experiment 2: train on first half of cases, test on remainder

Pattern-based recognition of actors and agents

Table 8: AFP results [N = 86,450]

alpha-3	70271	81.29%
alpha-6	30367	35.13%
none found	5968	6.90%
order-3	11705	27.08%
order-6	0	0.00%

Table 9: Reuters results [N = 31,256]

alpha-3	25538	81.71%
alpha-6	10212	32.67%
none found	2314	7.40%
order-3	4184	26.78%
order-6	0	0.00%

SVM event classification: 400 training cases for each category

Table 11: Test set: AFP remaining cases Correct: 33.48%

	0	1	2	3	4	5	True cases	Category
	U	1		J	4	U		accuracy
0	3860	1183	1555	1476	1496	2538	12108 (10.50%)	31.88%
1	2558	5466	2325	1631	1855	2623	16458 (14.27%)	33.21%
2	413	276	1316	404	438	713	3560 (3.09%)	36.97%
3	816	383	562	2554	667	1037	6019 (5.22%)	42.43%
4	696	431	948	945	2948	1824	7792 (6.76%)	37.83%
5	3682	2232	4231	3065	4958	10723	28891 (25.06%)	37.12%
6	5699	3661	5905	5460	8020	11737	40482 (35.11%)	28.99%

SVM event classification: 50% training cases for AFP

Table 14: Training set: AFP 2005-2009 Correct: 63.12%

	0	1	2	3	4	5	Category
	U	1			-1	J	accuracy
0	5120	1424	161	397	426	1585	56.18%
1	893	10656	149	216	236	1124	80.28%
2	344	537	923	105	228	719	32.32%
3	557	447	72	2561	255	696	55.82%
4	403	498	108	303	3479	1323	56.90%
5	1225	1732	259	613	1202	8473	62.74%

Table 15: Test set: AFP 2010-2014 Correct: 53.4%

	0	1	2	3	4	5	True cases	Category
		-		U	-	0		accuracy
0	1950	633	93	239	209	1012	4136 (11.27%)	47.15%
1	426	3371	98	168	131	699	4893 (13.33%)	68.89%
2	183	196	207	50	94	374	1104 (3.01%)	18.75%
3	265	251	29	954	143	365	2007 (5.47%)	47.53%
4	212	260	58	192	945	613	2280 (6.21%)	41.45%
5	856	769	246	550	839	6046	9306 (25.35%)	64.97%
6	1830	2058	353	994	1625	6119	12979 (35.36%)	47.15%

SVM event classification: 50% training cases for Reuters

Table 16: Training set: Reuters 2005-2009 Correct: 76.85%

	0	1	2	3	4	5	Category
	Ů				-	·	accuracy
0	2051	259	47	80	132	307	71.31
1	177	2650	15	30	28	134	87.34
2	55	53	775	10	34	79	77.04
3	114	61	15	820	54	103	70.27
4	106	48	24	42	1581	196	79.17
5	345	234	55	88	246	2651	73.25

Table 17: Test set: Reuters 2010-2014 Correct: 45%

	0	1	2	3	4	5	True cases	Category
	U	1	2	3	*2	J	True cases	accuracy
0	1098	491	163	147	178	583	2660 (11.14%)	41.28%
1	418	1274	130	74	142	441	2479 (10.38%)	51.39%
2	155	127	175	55	74	249	835 (3.50%)	20.96%
3	206	127	63	257	98	235	986 (4.13%)	26.06%
4	147	107	76	95	459	327	1211 (5.07%)	37.90%
5	997	866	549	314	776	4370	7872 (32.97%)	55.51%
6	1480	1114	483	506	1132	3120	7835 (32.81%)	39.82%

OEDA NSF RIDIR Project

- ▶ Sustained support for the Phoenix real-time data
- ▶ Long time-frame data sets based on Lexis-Nexis
- Open-access gold standard cases
- Coding systems in Spanish and Arabic, possibly extended to French and Chinese
- ▶ Further improvements in automated geolocation
- ► Automated dictionary development tools
- ► Extend CAMEO and standardize sub-state actor codes: canonical CAMEO is too complicated, but ICEWS substate actors are too simple
- Develop event-specific coding modules, starting with protests

Thank you

```
Email:
schrodt735@gmail.com
Slides:
http://eventdata.parusanalytics.com/presentations.html
Data: http://phoenixdata.org
Software: https://openeventdata.github.io/
Papers:
http://eventdata.parusanalytics.com/papers.html
```