

R Fundamentals

Practical Machine Learning (with R)

UC Berkeley

Agenda

- Administrativa
 - Role Call
 - Missing Coordinates
 - Class Google Group
 - Class Location

- Review
- New Topics

REVIEW AND EXPECTATIONS

EXPECTATIONS: R

You have installed R and Rstudio

olf you are new to **R**, you will have checked out one of the resources and have started becoming familiar with syntax and functions.

EXPECTATIONS: GIT

- You understand:
 - installed git and created a github account
 - fork the class repo(sitory)
 - clone a local copy of the repo
 - pull new changes
 - edit existing files
 - add and commit changes
 - push the assignment back to your repo
- Now: **pull** upstream changes csx460/csx460.git

Expectations: Process

GETTING HELP IN PRIMER

Help in R

?,help,??,apropos

Operators

?Arithmetic

Control Flow

?Control

Rstudio Cheatsheets ... Google

ŷ

Prediction Forecast Estimate

. . .

DATA USES

MAGRITTR: PIPE OPERATOR

```
install.package('magrittr')
```

```
1:10 %>% mean
```

1:10 %>% add(2) %>% mean

$$x < -1:10$$

x %<>% add(2) %>% mean

Notes:

* Use backpipe package for %<%

DATA. TABLE: FAST DATA FRAMES

```
install.package('data.table')
data(iris)
setDT(iris)

iris[ i, j, by= , ... ]

Row
```

Note:

• see ?data.table

DATA USES

DPLYR: DATA PIPELINES

```
install.package('dplyr')
data (iris)
iris %>%
  filter (Species != "setosa") %>%
  group by (Species) %>%
  summarize (
    mean (Sepal. Width),
    mean (Sepal.Length)
```

Note:

Uses magrittr

BACK TO MACHINE LEARNING

MACHINE LEARNING TYPES

- Type of Response:
 - Continuous → REGRESSION
 - Categorical*
 Binary is a special case

 CLASSIFICATION
- Availability of "labelled" Responses
 - Available → SUPERVISED
 - Unavailable → UNSUPERVISED
 - Sometimes available/inferable → SEMI-SUPERVISED
 - Avail. as training progresses → ADAPTIVE/REINFORCEMENT

GOAL FIND A FUNCTION, f

- easy to evaluate
- Takes a one or more values of inputs
- yields a single output value for each input (row)

Output, \hat{y} , should be "close to" observed values, y:

$$\widehat{\mathbf{y}} \sim \mathbf{y}$$

QUESTIONS?

QUESTIONS:

What do we mean by "close"?

What is a quantitative way of measuring closeness?

Compare: $\hat{y} \sim y \quad f(\hat{y}, y)$

But how?

USE all observations/estimates?

$$g(f(\widehat{y},y)) = (g \circ f)(\widehat{y},y)$$

QUESTIONS:

What functions are available to be used?

OUR MODEL

Naïve Model

$$\hat{y} = mean(y)$$

Our Model, a linear model:

$$\hat{y} = \beta_0 + \beta_1 x_1$$

QUESTIONS:

How do we find one? The best one?

SEARCH / OPTIMIZATION

Find the parameters minimize that minimize the loss function ...

SOLVE:

$$argmin_{\beta} L(\mathbf{y}, \widehat{\mathbf{y}})$$

$$argmin_{\beta} \sum (y - \hat{y})^2$$
 (SSE)

- Direct Solution (special case)
- Recursive Goal Seeking

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- A restricted class of function (MODEL)

A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

LM / MODEL FORMULA

LINEAR REGRESSION MODEL

Abstract to multiple dimensions

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

Mathy-r!!!

APPENDIX

MLWR CHAPTER 1

- Four Parts to "Learning" Process
- Five Steps for Modeling
- Types of Data
- Types of Machine Learning Algorithms

MLWR CHAPTER 2

- Data structures
- Saving/Loading Data With R
- Exploring the structure of the Data
 - Numeric variables
 - Categorical variables
 - Relationship Between Variables

QUESTIONS:

> What do we mean by "close"?

• What functions are available to be used?

How do we find one? The best one?

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- → A restricted class of function (MODEL)

A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)