Long Paths in Polynomial Divisor Graphs

Jay Calkins, Nicole Froitzheim, Jonathan Parlett, Kayla Traxler TU REU 2024

(with mentors Dr. Angel Kumchev and Dr. Nathan McNew)

July 26, 2024

A divisor graph, D(n) contains vertices $\{1, 2, ..., n\}$ and an edge between two vertices, u and v, if u|v or v|u.

LCM Graphs

An LCM graph, L(n) contains vertices $\{1, 2, ..., n\}$ and an edge between two vertices, u and v, if $[u, v] \le n$.

LCM Graphs

Note: D(n) is a subgraph of L(n) because if u|v, $[u, v] = v \le n$.

Previous Results

Let f(n), g(n) denote the length of the longest path in D(n), L(n) respectively. Note that $f(n) \le g(n)$. f(n) has been previously studied by Pollington, Pomerance, Tenenbaum, and Saias. In particular Saias shows that

Theorem

For sufficiently large n there exist constants c_1 , c_2 s.t

$$c_1 \frac{n}{\log n} \le f(n) \le g(n) \le c_2 \frac{n}{\log n}.$$

Previous Results

Let f(n), g(n) denote the length of the longest path in D(n), L(n) respectively. Note that $f(n) \le g(n)$. f(n) has been previously studied by Pollington, Pomerance, Tenenbaum, and Saias. In particular Saias shows that

Theorem

For sufficiently large n there exist constants c_1 , c_2 s.t

$$c_1 \frac{n}{\log n} \le f(n) \le g(n) \le c_2 \frac{n}{\log n}.$$

We are interested in the analogous question for polynomials over a finite field (also called function fields).

Some Notation

• Let \mathbb{F}_q be a finite field of order q. For example $\mathbb{Z}_2 = \{0, 1\}$ with addition and multiplication mod 2 is the finite field of order 2.

Some Notation

- Let \mathbb{F}_q be a finite field of order q. For example $\mathbb{Z}_2 = \{0, 1\}$ with addition and multiplication mod 2 is the finite field of order 2.
- We denote the set of monic polynomials of degree n with coefficients in \mathbb{F}_q by

$$\mathcal{M}_q^n = \{ \text{monic } F \in \mathbb{F}_q[x] : \deg F = n \}$$

Some Notation

- Let \mathbb{F}_q be a finite field of order q. For example $\mathbb{Z}_2 = \{0, 1\}$ with addition and multiplication mod 2 is the finite field of order 2.
- We denote the set of monic polynomials of degree n with coefficients in \mathbb{F}_a by

$$\mathcal{M}_q^n = \{ \text{monic } F \in \mathbb{F}_q[x] : \deg F = n \}$$

We denote the polynomials with degree at most n by

$$\mathcal{M}_q^{\leq n} = \{ \text{monic } F \in \mathbb{F}_q[x] : \deg F \leq n \}$$

Polynomial Divisor Graphs

The Polynomial Divisor Graph $D_q(n)$ has vertices $\mathcal{M}_q^{\leq n}$. Below is the case $D_2(3)$ with vertices $\mathcal{M}_2^{\leq 3}$.

Result

Let $f_q(n)$, $g_q(n)$ to be the longest path in the polynomial divisor graph $D_q(n)$, and the polynomial LCM graph $L_q(n)$ respectively. We will show that

Theorem

For sufficiently large n there exist constants c_1, c_2 s.t

$$c_1 \frac{q^n}{n} \le f_q(n) \le g_q(n) \le c_2 \frac{q^n}{n}.$$

Result

Let $f_q(n)$, $g_q(n)$ to be the longest path in the polynomial divisor graph $D_q(n)$, and the polynomial LCM graph $L_q(n)$ respectively. We will show that

Theorem

For sufficiently large n there exist constants c_1 , c_2 s.t

$$c_1 \frac{q^n}{n} \le f_q(n) \le g_q(n) \le c_2 \frac{q^n}{n}.$$

We don't yet have a complete proof for the upper bound.

Polynomials (Why do we care?)

Polynomials over a finite field have similar properties to the integers.

Integers	Polynomials
$n \in \mathbb{N}$	monic $F \in \mathbb{F}_q[x]$
$\log n$	$\deg F$
n = n	$ f = q^{\deg F}$
Primes, p	Irreducible polynomials, P
$\pi(n) = \#\{p \le n : p \text{ prime}\}\$	$\pi_q(n) = \# \left\{ egin{aligned} & P \in \mathbb{M}_q^n : \\ P & \text{irreducible} \end{aligned} ight\}$
Unique factorization into primes	Unique factorization into irreducibles

 An important tool in our study of polynomial divisor graphs is the Schinzel–Szekeres function.

- An important tool in our study of polynomial divisor graphs is the Schinzel–Szekeres function.
- Let $\delta^-(F)$ be the smallest degree of an irreducible factor of F.

- An important tool in our study of polynomial divisor graphs is the Schinzel–Szekeres function.
- Let $\delta^-(F)$ be the smallest degree of an irreducible factor of F.
- We define the Schinzel–Szekeres function for polynomials:

$$\Phi(F) = \max \{ \deg G + \delta^{-}(G) : G|F \}.$$

- An important tool in our study of polynomial divisor graphs is the Schinzel–Szekeres function.
- Let $\delta^-(F)$ be the smallest degree of an irreducible factor of F.
- We define the Schinzel–Szekeres function for polynomials:

$$\Phi(F) = \max \{ \deg G + \delta^{-}(G) : G|F \}.$$

• $\Phi(F)$ has connections to many important questions in number theory.

• *Question:* When does $F \in \mathcal{M}_q^n$ have a divisor of every degree up to n?

- *Question:* When does $F \in \mathcal{M}_q^n$ have a divisor of every degree up to n?
- For example, over \mathbb{Z}_2 , x^4 does while $x^2 + x + 1$ does not.

$$x^4: 1, x, x^2, x^3, x^4.$$
 $(x^2+x+1): 1, x^2+x+1$

- *Question:* When does $F \in \mathcal{M}_q^n$ have a divisor of every degree up to n?
- For example, over \mathbb{Z}_2 , x^4 does while $x^2 + x + 1$ does not.

$$x^4: 1, x, x^2, x^3, x^4.$$
 $(x^2 + x + 1): 1, x^2 + x + 1$

• *Answer*: Exactly when $\Phi(F) - \deg F \le 1$.

• This generalizes in the following way.

- This generalizes in the following way.
- Let $\deg F = n$. List its divisors D_i in increasing order of degree. $\deg D_1 \leq \deg D_2 \leq \cdots \leq \deg D_{\tau(F)}$.

- This generalizes in the following way.
- Let $\deg F = n$. List its divisors D_i in increasing order of degree. $\deg D_1 \leq \deg D_2 \leq \cdots \leq \deg D_{\tau(F)}$.
- Then the difference in degree of consecutive divisors, $\deg D_{i+1} \deg D_i$, is at most m exactly when $\Phi(F) \deg F \leq m$.

- This generalizes in the following way.
- Let $\deg F = n$. List its divisors D_i in increasing order of degree. $\deg D_1 \leq \deg D_2 \leq \cdots \leq \deg D_{\tau(F)}$.
- Then the difference in degree of consecutive divisors, $\deg D_{i+1} \deg D_i$, is at most m exactly when $\Phi(F) \deg F \leq m$.
- This difference is also called the divisor gap of *F*.

Andreas Weingartner provides estimates for

$$\#\left\{F\in\mathcal{M}_q^n\colon \Phi(F)\leq n+m\right\}.$$

The number of polynomials of degree n with divisor gap at most m.

Andreas Weingartner provides estimates for

$$\#\left\{F\in\mathcal{M}_q^n\colon \Phi(F)\leq n+m\right\}.$$

The number of polynomials of degree n with divisor gap at most m.

• We will see later that the size of our longest path is limited by this set.

Andreas Weingartner provides estimates for

$$\#\left\{F\in\mathcal{M}_q^n\colon \Phi(F)\leq n+m\right\}.$$

The number of polynomials of degree n with divisor gap at most m.

- We will see later that the size of our longest path is limited by this set.
- Now we will show the main ideas of the proofs starting with the lower bound.

Dot Diagram

The following base case represents $\Gamma(6, x+1)$. The path is constructed by connecting multiples of irreducible polynomials that are adjacent in our ordering.

Polynomial Path

Our polynomial path is

$$\Gamma(d, P) = \begin{cases} 1 \to \Gamma_0 \to \Gamma_1 \to \dots \\ \to \Gamma_b \to^* \Gamma(d, P^{\dagger}) & P \le P_d \text{ and } b = a^{\dagger} \\ 1 \to \Gamma_0 \to \Gamma_1 \to \dots \to \Gamma_b \\ \to PP^{\dagger a^{\dagger}} \to^* \Gamma(d, P^{\dagger}) & P \le P_d \text{ and } b \ne a^{\dagger} \\ \Gamma(d, P_d) & P > P_d \end{cases}$$

• The proof that $\Gamma(d, P)$ is a valid path will be done by induction on P.

- The proof that $\Gamma(d, P)$ is a valid path will be done by induction on P.
- Irreducible polynomials are ordered based on a predetermined list in the form $1 < x < x + 1 < \dots < P^{\ddagger} < P^{\dagger} < P$.

- The proof that $\Gamma(d, P)$ is a valid path will be done by induction on P.
- Irreducible polynomials are ordered based on a predetermined list in the form $1 < x < x + 1 < \cdots < P^{\ddagger} < P^{\dagger} < P$.
- Base cases are $\Gamma(d, x)$ and $\Gamma(d, x+1)$.

- The proof that $\Gamma(d, P)$ is a valid path will be done by induction on P.
- Irreducible polynomials are ordered based on a predetermined list in the form $1 < x < x + 1 < \cdots < P^{\ddagger} < P^{\dagger} < P$.
- Base cases are $\Gamma(d, x)$ and $\Gamma(d, x+1)$.
- Assume the conditions hold for any irreducibles
 P.

Lower Bound Proof: Conditions

$$\Gamma(d, P) = 1 \rightarrow P^{a_0} \rightarrow \cdots \rightarrow x$$

• $\Gamma(d, P)$ is a simple path in $D_q(n)$ of the above structure.

Lower Bound Proof: Conditions

$$\Gamma(d, P) = 1 \rightarrow P^{a_0} \rightarrow \cdots \rightarrow x$$

- $\Gamma(d,P)$ is a simple path in $D_a(n)$ of the above structure.
- \bullet $\Gamma(d,P)$ consists only of polynomials F such that $\deg(F) \leq d$ and $P^+(F) \leq P$.

Lower Bound Proof: Conditions

$$\Gamma(d, P) = 1 \rightarrow P^{a_0} \rightarrow \cdots \rightarrow x$$

- $\Gamma(d, P)$ is a simple path in $D_q(n)$ of the above structure.
- ② $\Gamma(d, P)$ consists only of polynomials F such that $\deg(F) \le d$ and $P^+(F) \le P$.

Lower Bound Proof: Counting $\Gamma(d, P)$

• Since our path $\Gamma(n, P)$ contains all polynomials $F \in \mathcal{M}_q^{\leq n}$ such that $\Phi(F) \leq n-1$ we have that

$$\Gamma(n,P) \supseteq \left\{ F \in \mathcal{M}_q^{n-2} : \Phi(F) \le n-1 \right\}.$$

Lower Bound Proof: Counting $\Gamma(d, P)$

• Since our path $\Gamma(n, P)$ contains all polynomials $F \in \mathcal{M}_q^{\leq n}$ such that $\Phi(F) \leq n-1$ we have that

$$\Gamma(n,P) \supseteq \left\{ F \in \mathcal{M}_q^{n-2} : \Phi(F) \le n-1 \right\}.$$

 Using the results of Weingartner discussed previously we can show that

$$|\Gamma(n,P)| \ge \# \left\{ F \in \mathcal{M}_q^{n-2} | \Phi(F) \le n-1 \right\}$$
$$\ge q^{n-2} \cdot \frac{c}{n-1} \ge c' \frac{q^n}{n}.$$

Where $c' = \frac{c}{q^2}$

• $\mathcal{A}(n,m) = \left\{ F \in \mathcal{M}_q^{\leq n} : \Phi(F) \leq n + m \right\}$. This set is closely related to the set of polynomials with divisor gap at most m.

- $\mathcal{A}(n,m) = \left\{ F \in \mathcal{M}_q^{\leq n} : \Phi(F) \leq n + m \right\}$. This set is closely related to the set of polynomials with divisor gap at most m.
- So we can count them using Weingartner! $|\mathcal{A}(n,m)| \le c \frac{q^n}{n}$ for some constant c.

Upper-Bound: A(n, m), B(n, m)

- $\mathcal{A}(n,m) = \left\{ F \in \mathcal{M}_q^{\leq n} : \Phi(F) \leq n + m \right\}$. This set is closely related to the set of polynomials with divisor gap at most m.
- So we can count them using Weingartner! $|A(n, m)| \le c \frac{q^n}{n}$ for some constant c.
- $\mathcal{B}(n,m) = \begin{cases} F \in \mathcal{M}_q^{\leq n} : F \notin \mathcal{A}(n,m) \\ \text{but any proper divisor } G \text{ of } F \text{ in } \mathcal{A}(n,m) \end{cases}$.

Upper-Bound: A(n, m), B(n, m)

- $\mathcal{A}(n,m) = \left\{ F \in \mathcal{M}_q^{\leq n} : \Phi(F) \leq n + m \right\}$. This set is closely related to the set of polynomials with divisor gap at most m.
- So we can count them using Weingartner! $|A(n, m)| \le c \frac{q^n}{n}$ for some constant c.
- $\mathcal{B}(n,m) = \begin{cases} F \in \mathcal{M}_q^{\leq n} : F \notin \mathcal{A}(n,m) \\ \text{but any proper divisor } G \text{ of } F \text{ in } \mathcal{A}(n,m) \end{cases}$
- There are two important facts that characterize $\mathfrak{B}(n, m)$.

• If $F \notin A(n, m)$ then there is $B \in B(n, m)$ s.t B|A.

- If $F \notin A(n, m)$ then there is $B \in B(n, m)$ s.t B|A.
- Every $F \notin A(n, m)$ is a multiple of some B.

- If $F \notin A(n, m)$ then there is $B \in B(n, m)$ s.t B|A.
- Every $F \notin A(n, m)$ is a multiple of some B.
- If $B_1 \neq B_2 \in \mathcal{B}$ (n, m), then $\deg[B_1, B_2] > n + m$.

- If $F \notin A(n, m)$ then there is $B \in B(n, m)$ s.t B|A.
- Every $F \notin A(n, m)$ is a multiple of some B.
- If $B_1 \neq B_2 \in \mathcal{B}(n, m)$, then $\deg[B_1, B_2] > n + m$.
- The LCMs of distinct *B* are large.

• Let $\mathcal{P} = (F_1, F_2, ..., F_{g_q(n)})$ be a longest path in $L_q(n)$.

- Let $\mathcal{P} = (F_1, F_2, ..., F_{g_q(n)})$ be a longest path in $L_q(n)$.
- We will use the sets $\mathcal{A}(n)$, $\mathcal{B}(n)$ to cut up our path.

- Let $\mathcal{P} = (F_1, F_2, ..., F_{g_q(n)})$ be a longest path in $L_q(n)$.
- We will use the sets $\mathcal{A}(n)$, $\mathcal{B}(n)$ to cut up our path.
- First we remove all vertices in $\mathcal{A}(n)$.

$$|\mathcal{P} \cap \mathcal{A}(n)| \le |\mathcal{A}(n)| \le c \frac{q^n}{n}$$

- Let $\mathcal{P} = (F_1, F_2, ..., F_{g_q(n)})$ be a longest path in $L_q(n)$.
- We will use the sets $\mathcal{A}(n)$, $\mathcal{B}(n)$ to cut up our path.
- First we remove all vertices in A(n).

$$|\mathcal{P} \cap \mathcal{A}(n)| \le |\mathcal{A}(n)| \le c \frac{q^n}{n}$$

• What remains $|\mathcal{P} \setminus \mathcal{A}(n)|$, is a collection of disjoint subpaths.

What remains $|\mathcal{P} \setminus \mathcal{A}(n)|$, is a collection of disjoint subpaths.

What remains $|\mathcal{P} \setminus \mathcal{A}(n)|$, is a collection of disjoint subpaths.

• Let S(P) be the set of all subpaths.

What remains $|\mathcal{P} \setminus \mathcal{A}(n)|$, is a collection of disjoint subpaths.

• Let S(P) be the set of all subpaths.

9

$$|\mathcal{P} \setminus \mathcal{A}(n)| = \sum_{S \in \mathcal{S}(\mathcal{P})} |S|$$

• For each $S = (F_i, F_{i+1}, ..., F_j)$, since $F_k \notin A(n)$, there is $B_k | F_k$.

- For each $S = (F_i, F_{i+1}, ..., F_j)$, since $F_k \notin A(n)$, there is $B_k | F_k$.
- Then since the LCMs of things in $\mathcal{B}(n)$ are large (> n), we know all these B_k are equal

$$\deg[B_k, B_{k+1}] \le \deg[F_k, F_{k+1}] \le n$$

- For each $S = (F_i, F_{i+1}, ..., F_j)$, since $F_k \notin A(n)$, there is $B_k | F_k$.
- Then since the LCMs of things in $\mathcal{B}(n)$ are large (> n), we know all these B_k are equal

$$\deg[B_k,B_{k+1}] \le \deg[F_k,F_{k+1}] \le n$$

• So for each S, there is a $B(S) \in \mathcal{B}(n)$ that divides everything in the subpath.

- For each $S = (F_i, F_{i+1}, ..., F_j)$, since $F_k \notin A(n)$, there is $B_k | F_k$.
- Then since the LCMs of things in $\mathcal{B}(n)$ are large (> n), we know all these B_k are equal

$$\deg[B_k, B_{k+1}] \le \deg[F_k, F_{k+1}] \le n$$

- So for each S, there is a $B(S) \in \mathcal{B}(n)$ that divides everything in the subpath.
- This means we can break up our sum according to the *B*-values of the paths!

•
$$|\mathcal{P} \setminus \mathcal{A}(n)| = \sum_{S \in \mathcal{S}(\mathcal{P})} |S| = \sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(S) = B}} |S|$$

- $|\mathcal{P} \setminus \mathcal{A}(n)| = \sum_{S \in \mathcal{S}(\mathcal{P})} |S| = \sum_{B \in \mathcal{B}(n)} \sum_{S \in \mathcal{S}(\mathcal{P})} |S|$
- We can bound the inner sum $\sum_{\substack{S \in S(\mathcal{P}) \\ B(S)=B}} |S|$ in two different ways.

- $|\mathcal{P} \setminus \mathcal{A}(n)| = \sum_{S \in \mathcal{S}(\mathcal{P})} |S| = \sum_{B \in \mathcal{B}(n)} \sum_{S \in \mathcal{S}(\mathcal{P})} |S|$
- We can bound the inner sum $\sum_{\substack{S \in S(\mathcal{P}) \\ B(S)=B}} |S|$ in two different ways.
- Since every vertex in these subpaths is divisible by B,

$$\sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(S) = B}} |S| \le \# \text{ (multiples of } B\text{)} \le q^{n - \deg B}$$

• The 2nd way requires an observation. Each of these S implies a path in the LCM graph $L_q(n-\deg B)$

$$S = (F_i, F_{i+1}, ..., F_j) = (BG_i, BG_{i+1}, ..., BG_j)$$

So $(G_i, G_{i+1}, ..., G_j)$ is a path in $L_q(n - \deg B)$.

• The 2nd way requires an observation. Each of these S implies a path in the LCM graph $L_q(n-\deg B)$

$$S = (F_i, F_{i+1}, ..., F_j) = (BG_i, BG_{i+1}, ..., BG_j)$$

So $(G_i, G_{i+1}, ..., G_j)$ is a path in $L_q(n - \deg B)$.

• So really we are summing over a collection of paths in $L_q(n - \deg B)$!

• The 2nd way requires an observation. Each of these S implies a path in the LCM graph $L_q(n-\deg B)$

$$S = (F_i, F_{i+1}, ..., F_j) = (BG_i, BG_{i+1}, ..., BG_j)$$

So $(G_i, G_{i+1}, ..., G_j)$ is a path in $L_q(n - \deg B)$.

- So really we are summing over a collection of paths in $L_q(n-\deg B)$!
- If we know how many paths we have, does that help? Let $K(B) = |\{S \in S(\mathcal{P}) : B(S) = B\}|$.

$$\sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(S) = B}} |S| \le \# \left(\text{vertices we can cover in } L_q(n - \deg B) \right)$$

$$\text{with } K(B) \text{ paths}$$

$$\le \frac{q^{n - \deg B}}{n - \deg B} \log K(B)$$

$$\sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(S) = B}} |S| \le \# \left(\text{vertices we can cover in } L_q(n - \deg B) \right)$$

$$\leq \frac{q^{n - \deg B}}{n - \deg B} \log K(B)$$

• We can break up our sum strategically so that each of our bounds is as small as possible.

$$\sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ K(B), \deg B \text{ are small}}} |\mathcal{S}|$$

$$+ \sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ \text{one of } K(B), \deg B \text{ is big}}} |\mathcal{S}|$$

$$\sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ K(B), \deg B \text{ are small}}} |\mathcal{S}|$$

$$+ \sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ \text{one of } K(B), \deg B \text{ is big}}} |\mathcal{S}|$$

• When we don't have too many subpaths, we can use our first bound.

$$\sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ K(B), \deg B \text{ are small}}} |\mathcal{S}|$$

$$+ \sum_{B \in \mathcal{B}(n)} \sum_{\substack{S \in \mathcal{S}(\mathcal{P}) \\ B(\mathcal{S}) = B \\ \text{one of } K(B), \deg B \text{ is big}}} |\mathcal{S}|$$

- When we don't have too many subpaths, we can use our first bound.
- In the other case, we use our multiples bound.

4 D > 4 B > 4 E > 4 E > E 9 Q C

• Thus we obtain sums of the form

$$\sum_{\substack{A \in \mathcal{A}(n) \\ + \text{other constraints}}} h(n, A)$$

where h depends on n and A only.

• Thus we obtain sums of the form

$$\sum_{\substack{A \in \mathcal{A}(n) \\ + \text{other constraints}}} h(n, A)$$

where *h* depends on *n* and *A* only.

• We are close to bounding these sums using the results of Weingartner to count the *A*'s given our extra constraints.

Acknowledgements

We would like to thank the NSF and Towson University for funding this REU project!

Thank you!

