

The Question?

Twitter is a social media where opinions and feelings are posted and college students are active users. Can we find a correlation between tweets from students and the college they attend?

```
The control of the co
```


Motivation

- Students' social media posts are a close estimate of their opinions and feelings about different subject matters.
- There is no current application that shows what the social media environment of college students looks like.

Past Related Work

Harvard Study - Analysis on near real-time related to movies

Howto-stack.com,. (2015). CSCI-E63, 2014 Final Project -- Big Data Case Study in Social Media. Retrieved 5 December 2015, from http://www.howto-stack.com/videos/g44yqpxVSuU/CSCI-E63,-2014-Final-Project----Big-Data-Case-Study-in-Social-Media

Visual Insights - Give every Twitter user a brush and they will paint you the world — if they geotag their Tweets.

Blog.twitter.com,. (2013). The geography of Tweets | Twitter Blogs. Retrieved 5 December 2015, from https://blog.twitter.com/2013/the-geography-of-tweets

Intelligent Systems Program (University of Pittsburgh) - determines whether an expression is neutral or polar

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis.

Approach and Expected Results

Approach

- First, we use Twitter's REST API and Streaming API together to gather tweets from the following colleges.
 - UMBC
 - Towson University
 - University of Maryland, College Park
 - Johns Hopkins
 - Hood College
- Perform a word count for the tweets and generate a word cloud for each college
- · Manual selection of subject matter
- With those results we create the different informational visuals on a web application and check to see if any deductions can be made.

Expected Results

- Correlation between college's social life and their students' tweets
- A useful web application for prospective college students

Data Collection

- Streaming of tweets for a 2-week period using Twitter REST API
- Gave school as arguments to choose which bounding box of geographical coordinates to use
- Appended files of tweet into HDFS depending on college

Data Cleansing

- Python script to strip tweets of metadata
 - Punctuation
 - Characters incompatible with ISO-8859
- Java program to remove insignificant words
 - Articles
 - Some slang
 - Numbers

Data Analysis

Hadoop Implementation

Mapping:

INPUT - Raw tweets after cleansing PROCESSING - Breaks the tweets into words and output a key/value pair for each word.

OUTPUT - The word as the key and the number of instances of that word in the tweet as the value.

Reducing:

INPUT- Key/value pair
PROCESSING - Sums of the occurence
OUTPUT - Single output of word and final sum

Sentiment Analysis

- Sentiment was based on a dictionary provided by the University of Pittsburg
- Performed by comparing each school's list of tweets versus the sentiment dictionary calculating a sum.
- Formulae used:
 - Positive Sentiment: + 1 * log(frequency_of_word)
 - Negative Sentiment: 1 * log(frequency_of_word)
- Logs used for a more comparable growth function between schools

Integration into Word Cloud

- Uses the top 50 most frequently used words in each college's tweets.
- Word clouds are generated using Timothy Chien's modification to the javascript WordCloud library
- The size of the words in the word cloud are determined by weighting their frequency with a scaling factor http://timdream.org/#about

Data Visualization

Limitations and Future Enhancements

Limitations

- 1. Streaming rate limit on Twitter API
- 2. Inability to directly access our local files from the web application due to restrictions in HTML5 and javascript.

Future Enhancements

- 1. Host the web application on a host server
- 2. Create a script that ties the files from hdfs to hbase to github
- 3. Examine words in the context of the tweets

Roles of Group Members

lan:

- Streamed of tweets from REST API
- Prepared data for analysis and visualization

Eke:

- Data cleansing and preparation
- MapReduce jobs for tweet count

William:

- Integration into word cloud
- Created JavaScript files for visualization tool

Sources and References

The Best 376 Colleges 2012. Robert Franek, Princeton Review (Firm), Laura Braswell, Seamus Mullarkey.

Dev.twitter.com,. (2015). The Streaming APIs | Twitter Developers. Retrieved 8 December 2015, from https://dev.twitter.com/streaming/overview

Howto-stack.com,. (2015). CSCI-E63, 2014 Final Project -- Big Data Case Study in Social Media. Retrieved 5 December 2015, from http://www.howto-stack.com/videos/g44yqpxVSuU/CSCI-E63,-2014-Final-Project----Big-Data-Case-Study-in-Social-Media

Blog.twitter.com,. (2013). The geography of Tweets | Twitter Blogs. Retrieved 5 December 2015, from https://blog.twitter.com/2013/the-geography-of-tweets

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Questions?

