Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3\}$. For each of the relations R from A to B listed below list all pairs $(a, b) \in \mathbb{R}$ and write the corresponding $\{0, 1\}$ -indicator-matrix.

a.
$$a = b : (0, 0), (1, 1), (2, 2), (3, 3)$$

b. a + b = 4 : (1, 3), (2, 2), (3, 1), (4, 0)

c. a > b : (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)

d. a divides b: (1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1, 2), (2, 2), (1, 3)

For each of these relations on the set {1, 2, 3, 4} decide whether or not it is reflexive, symmetric, antisymmetric, and transitive.

- a. $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- b. $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- c. $\{(2, 4), (4, 2)\}$
- d. $\{(1, 2), (2, 3), (3, 4)\}$
- e. $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- f. $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$

Relation	R	S	A	T
a	0	0	0	1
b	1	1	0	1
c	0	1	0	1
d	0	0	1	0
e	1	1	1	1
f	0	0	0	1

Exercise 3

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$ on the set $A = \{1, 2, 3, 4\}$

a. Find $R \cup S$

$$\{(1, 2), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)\}$$

- b. Find $R \cap S$
 - $\{(3, 1)\}$
- c. Find R o S

$$\{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

Exercise 4

Let R be the relation $\{(1,2), (1,3), (2,3), (2,4), (3,1)\}$ on the set $A = \{1, 2, 3, 4\}$.

- a. Find the reflexive closure of R.
- b. Find the symmetric closure of R.
- c. Find the transitive closure of R.

Prove the following:

- a. A relation R is reflexive iff R^{-1} is reflexive (where R^{-1} is the inverse relation that just reverses the order).
- b. A relation R is symmetric iff $R = R^{-1}$.
- c. A relation R is anti-symmetric iff $R \cap R^{-1} \subset \Delta$: $\Delta = \{(a, a) : a \in A\}$

Exercise 6

Let R be the relation represented by the matrix $M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find the matrices for the relations:

- a. R^2
- b. R^3
- c. R^4

Exercise 7

Which of these relations on {0, 1, 2, 3} are equivalence relations? If they are not, why?

- a. $\{(0,0), (1,1), (2,2), (3,3)\}$
- b. $\{(0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3)\}$
- c. $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3)\}$
- d. $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- e. $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$

Exercise 8

List the ordered pairs in the equivalence relations produced by these partitions of {0, 1, 2, 3, 4, 5}.

- a. $\{0\}, \{1, 2\}, \{3, 4, 5\}$
- b. {0, 1}, {2, 3}, {4, 5}
- c. $\{0, 1, 2\}, \{3, 4, 5\}$
- d. {0}, {1}, {2}, {3}, {4}, {5}

Exercise 9

Which of these relations on $\{0, 1, 2, 3\}$ are partial orderings? If they are not, why?

- a. $\{(0,0), (1,1), (2,2), (3,3)\}$
- b. $\{(0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3)\}$
- c. $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3)\}$
- d. $\{(0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- e. $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$

Answer these questions for the divides poset $(\{3, 5, 9, 15, 24, 45\}; |)$.

- a. Draw the Hasse diagram
- b. List the maximal and minimal elements
- c. Is there a greatest element? A least element?
- d. Find all upper bounds of $\{3, 5\}$. Find the least upper bound of $\{3, 5\}$, if it exists.
- e. Find all the lower bounds of {15, 45}. Find the greatest lower bound of {15, 45}, if it exists.

Exercise 11

Prove the following:

- a. There is exactly one greatest element of a poset, if such an element exists.
- b. There is exactly one maximal element in a poset with a greatest element.
- c. The least upper bound of a set in a poset is unique if it exists.

Exercise 12

Determine whether these posets are lattices.

```
a. (\{1, 3, 6, 9, 12\}; |)
```

- c. $(\mathbb{Z}; \geq)$
- d. $(\mathcal{P}(S), \subset)$, where $\mathcal{P}(S)$ is the power set of a set S.

Exercise 13

Show that every totally ordered set is a lattice.

Exercise 14

Show that every finite lattice has a least element and a greatest element.

Exercise 15

Give an example of an infinite lattice with

- a. neither a least nor a greatest element.
- b. a least but not a greatest element.
- c. a greatest but not a least element.
- d. both a least and a greatest element.

Show that in any lattice $(x \wedge y) \wedge z = x \wedge (y \wedge z)$. Note: $(x \wedge y) \wedge z \leq x \wedge (y \wedge z)$ was shown in class.)

Exercise 17

Show that in any lattice $x \vee (x \wedge y) = x$. Note: the dual absorption law was shown in class.

Exercise 18

Show that any lattice $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$. Note: the dual distributive inequality was shown in class.

Exercise 19

Show that the two distributive equalities are equivalent. That is, $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ if, and only if, $x \land (y \lor z) = (x \land y) \lor (x \land z)$.

Exercise 20

Show that the distributive law implies the modular law. That is, if a lattice satisfies one (hence both, from problem 19), then $(x \le z \Rightarrow x \lor (y \land z) = (x \lor y) \land z)$.

Exercise 21

Check if the lattice N_5 is distributive.