4 Výroková logika

Zadání: logické spojky a formule, princip duality, aplikace (el. sítě), úplné systémy a báze spojek, axiomatizace výrokové logiky, věta o úplnosti

Logické spojky - vytvářejí z výrokových proměnných výrokové formule

Nulární logické spojky

$$v(T) = 1$$

$$v(F) = 0$$

Unární logické spojky

A	$\neg A$	id		
1	0	1		
0	1	0		

Binární logické spojky (celkem 16 možností, mezi nimi i id, \neg, T, F)

A	B	$A \lor B$	$A \wedge B$	$A \rightarrow B$	$A \leftrightarrow B$	$A \downarrow B$	A B	A XOR B
1	1	1	1	1	1	0	0	0
1	0	1	0	0	0	0	1	1
0	1	1	0	1	0	0	1	1
0	0	0	0	1	1	1	1	0

Nicodova spojka ... \downarrow ... NOR ... $A \land B \leftrightarrow (A \downarrow A) \downarrow (B \downarrow B)$

Shefferova spojka ... | ... NAND ... $A \lor B \leftrightarrow (A|A)|(B|B)$

Výrok - tvrzení o jehož pravdivosti má smysl uvažovat.

Nezajímá nás obsah výroku, zajímá nás pouze, zda je (ne)pravdivý.

Definice:

- (1) Každá výroková proměnná je formule.
- (2) Jsou-li A, B formule, pak jsou také $\neg A, A \lor B, A \land B, A \to B, A \leftrightarrow B$ formule.
- (3) Každá formule se získá konečným počtem opakování kroků (1) a (2).

Formule je tautologie $\Leftrightarrow v(\varphi)=1$ při všech ohodnoceních výrokových proměnných (prvotních formulí) a píšeme $\models \varphi$.

Příklady tautologií:

- zákon vyloučení třetího $A \vee \neg A$
- zákon dvojí negace $\neg(\neg A) \leftrightarrow A$
- vyloučení sporu $\neg (A \land \neg A)$

Princip duality

Věta: Buď A formule, v níž se vyskytují jen spojky \neg , \lor , \land . Označme A' formuli, která vznikne z A nahrazením spojek \lor , \land spojkami k nim duálními. Pak:

- A tautologie $\Leftrightarrow \neg A'$ je tautologie
- je-li $(A \to B)$ tautologie, pak je také $(B' \to A')$ tautologie
- je-li $(A \leftrightarrow B)$ tautologie, pak je také $(A' \leftrightarrow B')$ tautologie

Definice: Buď A formule. Pak duální formulí k A rozumíme A^* , která vznikne z A záměnou spojek \vee, \wedge za spojky k nim duálními a nahrazením jednotlivých proměnných jejich negacemi.

```
Věta: Buďte A, B formule obsahující jen spojky \neg, \lor, \land.
Je-li (A \to B) tautologie, pak je také (B^* \to A^*) tautologie.
Je-li (A \leftrightarrow B) tautologie, pak je také (A^* \leftrightarrow B^*) tautologie.
```

Aplikace

```
Spínačové obvody
disjunkce ... paralelní zapojení
konjunkce ... sériové zapojení
```

Sítě jsou ekvivalentní ⇔ proud prochází oběma zároveň.

Minimalizace sítě

- minimální sít má mezi všemi sítěmi s ní ekvivalentními nejméně spínačů
- řešení síť převedeme na formuli a tu upravíme na logicky ekvivalentní formuli
- můžeme použít Carnaughovu mapu

Definice:

- Úplným systémem spojek výrokové logiky rozumíme takovou množinu spojek, že každou spojku výrokové logiky můžeme vyjádřit pomocí spojek z této množiny.
- Minimální úplný systém spojek **báze spojek** výrokové logiky. (minimální vzhledem k množinové inkluzi)

Věta: Jedinými bázemi spojek tvořenými jednou binární spojkou jsou $\{\downarrow\}$ a $\{\mid\}$.

Formální axiomatický systém výrokové logiky

Abeceda

- množina P prvotních formulí
- symboly pro logické spojky
- pomocné symboly pro závorky

Formule

- všechny prvotní formule jsou formule
- jsou-li A, B formule, pak také $\neg A, (A \rightarrow B)$ (konečná kombinace) jsou formule

Axiomy výrokové logiky

(A1)
$$A \to (B \to A)$$

$$(A2) (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

(A3)
$$(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$
 ... toto je důkaz sporem

Odvozovací pravidlo - modus ponens (pravidlo odloučení)

Z formulí $A, (A \to B)$ (předpoklady) se odvodí formule B (závěr).

Definice: Důkazem ve formální výrokové logice rozumíme libovolnou konečnou posloupnost $A_1, ... A_n$ výrokových formulí takovou, že pro každé $i \leq n$ je formule A_i buď axiomem nebo závěrem pravidla modus ponens.

 $\vdash A \dots$ formule A je dokazatelná

Věta (o dedukci): Nechť T je množina formulí, nechť A, B jsou formule.

Potom $T \vdash A \to B$ právě když $T \cup \{A\} \vdash B$.

Věta (o korektnosti): $\vdash \varphi \rightarrow \models \varphi$

tj. když je něco dokazatelné, tak je to tautologie

Věta (o úplnosti): $\models \varphi \rightarrow \vdash \varphi$

Lemma:

- $(a) \vdash \neg A \to (A \to B)$
- (b) $\vdash \neg \neg A \rightarrow A$
- (c) $\vdash A \rightarrow \neg \neg A$
- $(d) \vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- (e) $\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$
- $(f) \vdash (\neg A \to A) \to A$

5 Predikátová logika

Zadání: jazyk (termy, atomické formule a formule) a sémantika (realizace jazyka a ohodnocení proměnných), logicky platné formule

Jazyk

- proměnné (x, y,...)
- speciální symboly (predikátové, funkční)
- výrokové spojky
- kvantifikátory ∀,∃
- pomocné symboly (závorky)

Term je

- (i) každá proměnná (i každá konstanta)
- (ii) n-tice termů $f(t_1, t_2, ..., t_n)$
- (iii) každý term vznikne konečným počtem užití (i) a (ii)

Atomická formule

- jeden predikátový symbol p aplikovaný na n-tici prvků $p(t_1, t_2, ..., t_n)$

Formule predikátové logiky

- (i) každá atomická formule je formule
- (ii) jsou-li φ,ψ formule, pak také jejich spojení pomocí spojek výrokové logiky jsou formule
- (iii) je-li x proměnná a φ formule, pak také $\forall x\varphi, \exists x\varphi$ jsou formule
- (iiii) každá formule vznikne konečným počtem užití (i), (ii) a (iii)

Proměnné ve formuli

- vázané nachází-li se v nějaké podformuli
- volné ty, které nejsou vázané

Formule s čistými proměnnými

- otevřená formule neobsahuje žádnou vázanou proměnnou
- uzavřená formule neobsahuje žádnou volnou proměnnou

Realizace \mathcal{R} jazyka

- (i) neprázdná podmnožina M univerzum
- (ii) pro \forall funkční symbol f četnosti n je dáno zobrazení $f_r: M^n \to M$
- (iii) pro \forall predikátový symbol p četnosti n (n-ární), kromě "=", je dána relace $p_r \subseteq M^n$

Ohodnocení proměnných je libovolné zobrazení e množiny všech proměnných do univerza M dané realizace $\mathcal R$ jazyka L.

Formule je **logicky platná**, jestliže pro \forall realizaci \mathcal{R} jazyka L je $M \models \varphi$. Píšeme $\models \varphi$. Formule je pravdivá při ohodnocení e v \mathcal{R} ... $\mathcal{R} \models \varphi/e$ Formule je splněna v \mathcal{R} ... $\mathcal{R} \models \varphi$

6 Axiomatický systém predikátové logiky

Zadání: axiomy a odvozovací pravidla, dokazování formulí, věta o dedukci, věty o úplnosti a bezespornosti

Axiomy výrokové logiky

- (A1) $A \to (B \to A)$
- (A2) $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- (A3) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$

Axiom kvantifikátoru

pokud φ nemá volný výskyt proměnné x, pak $\forall x(\varphi \to \psi) \to (\varphi \to \forall x\psi)$

Axiom substituce

pokud t je term substituovatelný za x do φ , pak $\forall x \varphi \to \varphi x[t]$

Je-li L jazyk s rovností: Axiom rovnosti

$$x_1 = y_1 \to (...(x_n = y_n \to (p(x_1, ..., x_n) \to p(y_1, ..., y_n)))...)$$

Pravidlo odloučení - modus ponens (MP)

 $A, (A \rightarrow B) \vdash B$

Pravidlo zobecnění - modus generalis (MG)

 $\varphi \vdash \forall x \varphi$

Věta (o dedukci): Nechť T je množina formulí, φ je uzavřená, pak $T \vdash \varphi \rightarrow \psi$ právě když $T, \varphi \vdash \psi$.

Pravidlo $\forall:$ Nemá-li φ volnou proměnnou $x{:}\vdash\varphi\to\psi\ \Rightarrow\vdash\varphi\to\forall x\psi$

Pravidlo \exists : Nemá-li φ volnou proměnnou x: $\vdash \varphi \to \psi \ \Rightarrow \ (\exists x \varphi) \to \psi$

Prenexní tvary formulí (dokazování formulí)

Formule Aje v prenexním tvaru, jestliže má tvar $Q_1x_1...Q_nx_nB,$ kde

- (i) $n \ge 0$ a pro $\forall i = 1, ..., n$ je Q_i buď \forall nebo \exists
- (ii) $x_1,...,x_n$ jsou navzájem různé proměnné
- (iii) B je otevřená formule (bez kvantifikátorů)

Věta: Ke každé formuli A lze sestrojit prenexní formuli A' tak, že $\vdash A \leftrightarrow A'$.

Definice: Důkaz je konečná posloupnost formulí, kde každá formule je buď axiom nebo závěr pravidla MP nebo MG.

Věta o korektnosti: $T \vdash \varphi \Rightarrow T \models \varphi$

Věta o úplnosti: Jestliže je T teorie s jazykem L a φ je lib. formule jazyka L, potom $T \vdash \varphi \Leftrightarrow T \models \varphi$.

Teorie T je bezesporná právě tehdy, když má model.