뉴로 심볼릭 유도 규칙을 활용한 지식 추론 및 지식 완성 방법

신 원 철

숭실대 컴퓨터학과

지도교수: 박 영 택 교수

2021. 05. 26

개 요

- 1. Review
- 2. Comments
- 3. Experiments
- 4. Conclusion

Symbolic Unification 개념

• Symbolic Unification

- Symbol에 대한 동일성 검사를 통해 True/False를 return
- Entity에 해당하는 변수에 대해서 Substitution 생성
- Predicate에 대한 변수는 허용하지 않음

Unification Evamples	return		
Unification Examples	True/False	Substitution	
Unify(likes(Tom, Beer), likes(Tom, Beer))	True	-	
Unify(likes(X, Beer), likes(Tom, Beer))	True	{X/Tom}	
Unify(likes(Tom, Beer), likes(Tom, Wine))	False	-	
Unify(P1(Tom, Beer), likes(Tom, Beer))	False	허용 안함	

Neural Unification 개념

Neural Unification

- 뉴럴 시스템 에서는 Unification 개념이 없음
- 각 Symbol의 Embedding vector에 대한 유사도 비교를 통해 Neural unification 수행

$$\theta_{likes}(\theta_{Tom}, \theta_{Beer}) \cong \theta_{likes}(\theta_{Tom}, \theta_{Wine})$$

Symbolic & Neural Unification 비교

- Neural Unification의 장점
 - 모든 Symbol을 Vector로 표현하고 각 Symbol간 유사도 계산을 통해 Symbolic unification에서 못했던 기능을 실현 할 수 있음

Triples	father(Tom, Jane)	daddy(Tom, Jane)	papa(Tom, Jane)
Symbolic Unification	father(Tom, Jane) ≠	daddy(Tom, Jane) ≠	papa(Tom, Jane)
Neural Unification	$\theta_{father}(\theta_{Tom}, \theta_{Jane}) \approx$ since $\theta_{father} \approx \theta_{daddy}$	$\theta_{daddy}(\theta_{Tom}, \theta_{Jane}) \approx \theta_{p}$ $\approx \theta_{papa}$	$_{apa}(heta_{Tom}$, $ heta_{Jane})$

- Neural Unification의 문제점
 - 지식 그래프에 있는 모든 Symbol을 Embedding 해야함
 - Embedding vector 사이의 유사도 계산에 많은 시간이 소요

Rule Learning from Knowledge Graph

● 지식 그래프를 이용한 규칙 추론의 한계

● Rule schema사용한 Rule instance 추론 방법

Proposed Model

- 심볼릭 방식과 딥러닝 방식의 장점을 결합한 지식 완성 모델
 - 추론 결과에 대한 해석이 가능
 - 벡터 표현 학습을 통한 symbol의 유사성 고려 가능

COMMENT #1

- NTP와 제안 방법간의 핵심 차이점은 무엇인가?
 - NTP는 KG의 모든 트리플의 벡터간 유사도를 비교하도록 Proof Tree를 구성
 - 보다 효율적인 Proof Tree 구성을 위해 Symbolic 기반 Unification방법을 사용

COMMENT #2

- NTP이외의 비교될 수 있는 뉴로 심볼릭 관련 연구는 무엇이 있는가?
 - GNTP(Greedy Neural Theorem Prover) (Pasquale Minervini et al. 2019)
 - 기존의 NTP에서 sub-query와 모든 트리플간 유사도 계산 대신 (NNS)Nearest Neighbor Search를 통해 유력한 Triple을 선택
 - 제안 방법과 비교 실험 수행

COMMENT #3

- 제안하는 모델에서 규칙 유도에 소요되는 시간은 얼마나 되는가?
 - NTP에서 사용한 Bench mark데이터에 대해서 규칙 유도에 소요되는 시간 측정
 - Dataset: Nations, UMLS, kinship, FB122
 - Training time: Substitution generation time + Proof path generation time + Relation learning time

- NTP와 GNTP의 임베딩 학습 시간에 대하여 제안 방법간 비교 실험 수행

실험 데이터셋 및 비교 시스템

• 실험 데이터셋

Dataset	# of Train	# of Test	# of Entities	# of Relations
Nations	1,592	201	56	14
UMLS	5,216	661	135	46
Kinship	8,544	1074	104	26
FB122	91,638	11,243	9,738	122
Kdata	5,512,130		1,871,384	15,278
WiseKB	15,58	81,738	4,077,907	389

• 비교시스템

Methods	Brief Description
NTP (2017)	Backward Chaining 방식을 통해 구한 엔티티 및 릴레이션을 임베딩하여 유사도
(Tim Rocktäschel et al.)	학습을 통해 규칙 유도
GNTP (2019)	NTP의 계산 복잡성 및 확장성에 대한 한계를 해결하고 보다 큰 데이터 처리를 위한
(Pasquale Minervini et al.)	뉴로 심볼릭 기반 모델

실험 방법(Nations, UMLS, Kinship, FB122)

- 실험 및 결과 평가 과정
 - Symbolic Unification과 Relation Embedding 학습에 소요되는 시간 비교
 - 규칙 유도 및 트리플 추론 성능 비교

실험 평가 지표(Nations, UMLS, Kinship, FB122)

- 학습시간
 - NTP, GNTP와 제안 방법간 규칙 도출 소요 시간 비교
 - Parameter setting
 - rule templates, augment number :

```
Rule 1. \#1(X,Y) :- \#2(X,Y). 20
Rule 2. \#1(X,Y) :- \#2(Y,X). 20
Rule 3. \#1(X,Y) :- \#2(X,Z), \#3(Z,Y) 20
```

epoch: 100

- 추론된 트리플 개수 및 유도된 유효 규칙의 개수
 - 제안 방법과 관련 연구간 유도 규칙을 통해 추론 가능한 테스트 트리플수 비교
 - 유도된 규칙중 테스트 트리플을 추론 가능한 규칙의 개수 비교

실험 및 결과(Nations, UMLS, Kinship, FB122)

- 학습 소요 시간 비교
 - Nations를 제외한 모든 데이터에서 제안 방법이 가장 빠른 학습 시간을 보임
 - NTP와 GNTP의 경우 지식 그래프의 크기가 학습 시간에 미치는 영향이 큼
 - 제안 방법은 각 쿼리 트리플이 생성하는 proof path수가 학습 시간에 미치는 영향이 큼

Training Time						
Dataset	# Train triples	Avg #paths/ query	NTP	GNTP	Our model	
Nations	1,592	711	2h 12m	5m	42m	
UMLS	5,216	45	10h 13m	1h 18m	44m	
kinship	8,544	29	21h 18m	2h 3m	23m	
FB122	91,638	2	-	30h 54m	2h 19m	

실험 및 결과(Nations, UMLS, Kinship, FB122)

- 유도된 규칙 및 추론된 트리플 개수 비교
 - 제안하는 모델이 관련 연구보다 더 많은 규칙 및 트리플 추론

Inferred Rules						
Dataset	Dataset NTP GNTP					
Nations	21	28	94			
UMLS	11	40	65			
kinship	12	37	89			
FB122	-	27	34			

Inferred Triples					
Dataset	#Test triples	NTP	GNTP	Our model	
Nations	201	52	84	186	
UMLS	661	291	434	520	
kinship	1,074	490	828	844	
FB122	6,186	-	4,889	5,543	

실험 방법(Kdata, WiseKB)

- 실험 및 결과 평가 과정
 - 규칙 유도 정확도 및 지식 증강도 산출

실험 평가 지표(Kdata, WiseKB)

- 유도 규칙에 대한 정확도 및 지식 증강도
 - MAP(Mean Average Precision) : 모델로부터 도출된 규칙중 유의미한 규칙의 비율

- 테스트 셋과 유의미한 규칙을 통해 추론되는 트리플의 개수 비교
- 추론 엔진을 사용한 반복 추론으로 지식 증강도 산출

실험 및 결과(Kdata, WiseKB)

- Kdata, WiseKB의 유도된 규칙 검증 결과
 - 2개의 규칙 Template을 정의하여 8개의 릴레이션에 대한 MAP산출
 - Rule Template
 - ightharpoonup Rule-1: #1(X, Y):- #2(X, Z), #3(Z, Y)
 - ightharpoonup Rule-2: #1(X, Y):- #2(X, Z), #3(Z, W), #4(W, Y).

Rule-1 AP Rule-2 AP

MAP

실험 및 결과(Kdata, WiseKB)

- Kdata, WiseKB의 유도된 규칙을 통한 트리플 추론 결과
 - 대부분의 relation에서 유도된 규칙으로 80%이상의 테스트 트리플 추론

실험 및 결과(Kdata, WiseKB)

- Kdata, WiseKB의 지식 증강도 산출 결과
 - 추론된 전체 트리플에 대해 Kdata는 30% WiseKB는 95% 증강도를 보임

	Dataset		Relation							
	K-Data	출생지	장르	국적	국가	직업	제작	출연	감독	Total
	Source	26,603	26,072	20,113	12,959	7,669	3,489	1,863	1,810	100,578
#Triple	inferred	2,684	3,321	16,267	4,118	3,732	235	255	139	30,751
	WiseKB	locatedIn	belongsTo	nationality	nation	bornIn	genre	derector	work	Total
	Source	176,330	145,916	114,487	81,561	63,025	30,721	9,274	5,804	627,118
	inferred	246,579	162,788	78,279	4,219	65,511	29,054	1,951	7,969	596,350

Conclusion

- 딥러닝 학습 방식과 로직 추론 방식의 통합 시스템 제안
 - 딥러닝 방식의 임베딩 학습을 통해 Symbol에 대한 유사성 고려가 가능하고, 여러 데이터에 적용 가능한 일반화 제공
 - 심볼릭 추론 방식을 통해 규칙 유도와 트리플 추론 결과에 대한 해석 제공

- 규칙 유도 및 트리플 추론 성능
 - Symbolic Unification을 사용하여 Proof tree구성에 필요한 Search space감소
 - 기존 뉴로 심볼릭 연구 방식인 NTP와 GNTP에 비해 빠르며 많은 규칙을 유도
 - 유도된 규칙은 지식 추론에 유의미하게 사용가능하며 누락된 지식을 효과적으로
 완성

감사합니다

Q & A

- 제안 방법의 한계점 및 향후 연구
 - 규칙에 대한 Dependency를 고려하지 못하는 한계점이 있음
 - 규칙 유도의 정확성 향상을 위해 Proof tree 생성에 있어 규칙의 Dependency에 대해 고려할 수 있도록 하는 실험을 진행할 계획

Rule

R1. $Pig(Y) \wedge Slug(Z) \rightarrow Faster(Y, Z)$

R2. Slimy(Z) $^{\land}$ Creeps(Z) \rightarrow Slug(Z)

Knowledge Graph

F1. Pig(pat)

F2. Slimy(Steve)

F3. Creeps(Steve)

- Benchmark Dataset에 대한 평가
 - 유도 규칙에 대해 비교 평가 하지 않음
 - 데이터에서 의미 있는 규칙 추출이 어려움

term0(person0,person45). term0(person0,person96). term0(person1,person45). term0(person1,person96). term0(person2,person86).

Kinship Dataset 예

Inferred Rules						
Dataset	Dataset NTP GNTP					
Nations	21	28	94			
UMLS	11	40	65			
kinship	12	37	89			
FB122	-	27	34			

- 추론되는 Triple의 개수

Inferred Rules					
Dataset	#Test Triples	NTP	GNTP	Our model	
Nations	201	52	84	186	
UMLS	661	291	434	520	
kinship	1,074	490	828	844	
FB122	6,186	-	4,889	5,543	

- 유도된 규칙에 대한 분석
 - Rule set에는 없지만 유의미한 규칙이 많이 유도된 경우

Rule-2: #1(X,Y) := #2(X,Z), #3(Z,W), #4(W,Y)

	장르				
	Rule	Induced			
	장르(X, Y) :- 이전작품(X, Z), 이전작품(Z, W), 장르(W, Y)	X			
Ruleset	장르(X, Y) :- 다음작품(X, Z), 다음작품(Z, W), 장르(W, Y)	О			
	장르(X, Y) :- 가수명(X, Z), 구성원(Z, W), 장르(W, Y)	X			
	장르(X, Y) :- 이전싱글 (X, Z), 이전싱글(Z, W), 장르(W, Y)	О			
	장르(X, Y) :- 구성원(X, Z), 관련활동(Z, W), 장르(W, Y)	О			
meaningful	장르(X, Y) :- 후앨범 (X, Z), 후앨범(Z, W), 장르(W, Y)	О			
	장르(X, Y) :- 관련활동 (X, Z), 전앨범(Z, W), 장르(W, Y)	О			

- 유도된 규칙에 대한 분석
 - 유도된 규칙의 대부분이 하나의 릴레이션에 수렴한 경우

직업				
	Rule	Induced		
	직업(X, Y) :- <mark>관련활동</mark> (X, Z), 구성원(Z, W), 직업(Z, Y)	О		
	직업(X, Y) :- <mark>관련활동</mark> (X, Z), 전구성원(Z, W), 직업(Z, Y)	О		
	직업(X, Y) :- <mark>관련활동</mark> (X, Z), 직업(Z, Y)	О		
Dulant	직업(X, Y) :- 소속그룹(X, Z), 구성원(Z, W), 직업(Z, Y)	X		
Ruleset	직업(X, Y) :- 소속팀(X, Z), 구성원(Z, W), 직업(Z, Y)	X		
	직업(X, Y) :- <mark>관련활동</mark> (X, Z), <mark>관련활동</mark> (Z, W), 직업(Z, Y)	О		
	직업(X, Y) :- 후임자(X, Z), 직업(Z, Y)	X		
	직업(X, Y) :- 전임자(X, Z), 직업(Z, Y)	X		

- 지식 증강도 분석 결과
 - 각 릴레이션에서 추론된 규칙에 대한 분석 (60개의 규칙)
 - ▶ 6개의 Rule Template, 10번의 Augmentation
 - ➤ Correct / Incorrect : 정답 규칙을 통해 추론 유무 판단
 - ▶ Meaningful: 정답 규칙에 없지만 의미적으로 올바른 규칙

K-Data				
Relation	Rule set	Correct rule (중복 제거)	Meaningful	
감독	10	32 (6)	4	
국가	20	30 (9)	3	
국적	17	25 (5)	2	
장르	11	10 (7)	4	
제작	12	16 (6)	2	
직업	8	31 (4)	0	
출생지	9	18 (8)	2	
출연	7	18 (4)	2	

- 지식 증강도 분석 결과
 - 각 릴레이션에서 추론된 규칙에 대한 분석 (60개의 규칙)
 - ▶ 6개의 Rule Template, 10번의 Augmentation
 - ➤ Correct / Incorrect : 정답 규칙을 통해 추론 유무 판단
 - ▶ Meaningful: 정답 규칙에 없지만 의미적으로 올바른 규칙

WiseKB				
Relation	Rule set	Correct rule (중복 제거)	Meaningful	
belongsTo	8	25(7)	2	
bornIn	5	17(3)	3	
director	5	52(3)	1	
genre	19	21(8)	1	
locatedIn	10	41(6)	7	
nation	6	19(5)	0	
nationality	10	26(5)	1	
work	7	12(6)	3	

70 60 2 3 1 7 1 7 0 1 3 50 40 33 40 38 38 41 33 45 30 20 10 25 17 21 19 26 12 0 10 0 12 12 19 19 12

■ Correct ■ Incorrect ■ Meaningful

WiseKB

- 지식 증강도에 대한 결과 분석
 - WiseKB의 locatedIn, belongTo 릴레이션에서 추론에 사용된 트리플보다 많은 트리플이 추론된 이유

	Dataset	Relation								
#Triple	K-Data	출생지	장르	국적	국가	직업	제작	출연	감독	Total
	Source	26,603	26,072	20,113	12,959	7,669	3,489	1,863	1,810	100,578
	inferred	2,684	3,321	16,267	4,118	3,732	235	255	139	30,751
	WiseKB	locatedIn	belongsTo	nationality	nation	bornIn	genre	derector	work	Total
	Source	176,330	145,916	114,487	81,561	63,025	30,721	9,274	5,804	627,118
	inferred	246,579	162,788	78,279	4,219	65,511	29,054	1,951	7,969	596,350

Relation	Induced Rule			
belongTo	belongTo(X, Y) :- belongTo(X, Z), belongTo(Z, W), belongTo(Z, Y)			
	belongTo(X, Y) :- belongTo(X, Z), belongTo(Z, Y)			
locatedIn	locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, W), locatedIn(Z, Y)			
	locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y)			

