In the mass-spring system shown above, the masses  $m_1$ ,  $m_2$ ,  $m_3$ ,  $m_4$ ,  $m_5$  and  $m_6$  are .4, .7, .7, .2, .6 and .5, the spring constants  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$ ,  $k_5$ ,  $k_6$  and  $k_7$  are 3.9, 3.2, 2.2, 2.7, 1.3, 4.9 and 4.4, and  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ ,  $x_5$  and  $x_6$  are the displacements of  $m_1$ ,  $m_2$ ,  $m_3$ ,  $m_4$ ,  $m_5$  and  $m_6$  from their equilibrium positions.

## Write a MATLAB program as follows:

- 1) t will go from 0 to 10 sec in steps of .001 sec.
- 2) For each of the 6 normal modes of oscillation (in each normal mode, the masses all oscillate with the same frequency; these frequencies are called the natural frequencies of the mass-spring system), plot x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>, x<sub>5</sub> and x<sub>6</sub> versus t using the colors blue, red, green, black, magenta, and cyan and the t axis in black (there will be 6 figures). Only Figures 1-4 are attached, but the program must plot all 6 figures and the title of each figure must have a different figure number. The horizontal and vertical axes of all 6 figures should look like the ones on the attached Figures 1-4.
- 3) For each of the 6 normal modes, print the frequency, the maximum amplitude and the minimum amplitude, where the frequency, f, is the angular frequency,  $\omega$ , divided by  $2\pi$ :

$$f = \omega/(2\pi)$$

The graphs should look like the attached graphs.

The printed output of this program should look like this:

Mode 1: Frequency=0.18094 Max Amplitude=0.60975 Min Amplitude = 0.14734Mode 2: Frequency=0.32434 Max Amplitude=0.72898 Min Amplitude = 0.09798 Mode 3: Frequency=0.42681 Max Amplitude=0.54545 Min Amplitude = 0.20135Mode 4: Frequency=0.72139 Max Amplitude=0.88047 Min Amplitude = 0.02371Mode 5: Frequency=0.75170 Max Amplitude=0.80147 Min Amplitude = 0.10716Mode 6: Frequency=0.81010 Max Amplitude=0.77525 Min Amplitude = 0.03695

The equations are given on the back.

## Equations

$$m_{1} \frac{d^{2}x_{1}}{dt^{2}} = -k_{1}x_{1} + k_{2}(x_{2}-x_{1});$$

$$m_{2} \frac{d^{2}x_{2}}{dt^{2}} = -k_{2}(x_{2}-x_{1}) + k_{3}(x_{3}-x_{2});$$

$$m_{3} \frac{d^{2}x_{3}}{dt^{2}} = -k_{3}(x_{3}-x_{2}) + k_{4}(x_{4}-x_{3});$$

$$m_{4} \frac{d^{2}x_{4}}{dt^{2}} = -k_{4}(x_{4}-x_{3}) + k_{5}(x_{5}-x_{4});$$

$$m_{5} \frac{d^{2}x_{5}}{dt^{2}} = -k_{5}(x_{5}-x_{4}) + k_{6}(x_{6}-x_{5});$$

$$m_{6} \frac{d^{2}x_{5}}{dt^{2}} = -k_{6}(x_{6}-x_{5}) - k_{7}x_{6};$$







