

O I P E
DEC 16 2004
JC35
PATENT & TRADEMARK OFFICE

FIG. 1A

FIG. 1B

BEST AVAILABLE COPY

FIG. 1C

a b c

FIG. 1D

FIG. 2A

1	GGTGCCTGGCGGGAGAGGCAATTATCAAGGTTAAATCTCGAGAAATGGCT	58
59	TTCGTTTGCTTGGCATCGGATGCTTATAACCTTCTGATAAGCACACATTTGGCTGT PheValCysLeuAlaTlieGlyCysLeuTyrThrPheLeuIleSerThrPheGlyCys	22
119	ACTTCATCTCAGACACCAGATAAAAGTTAACCCCTCAGGATTGAGATAAGTAGTGGAT ThrSerSerSerAspThrGluIleLysValAsnProProGlnAspPheGluIleValAsp	42
179	CCCGATTAAGTTAGGTTATCTCTTGCATGGCAAACCCCCACTGTCTGGATCATTT ProGlyTyrLeuGlyTyrLeuTyrLeuGlnTrpGlnProProLeuSerLeuAspHisPhe	238
143	AAGGAATGGCACAGTGGAAATAACTAAACTAAATGAAACATGGATTGAGTAGTGAACATGGAA LysGlucCysThrValGluIleLysTyrArgAsnIleGlySerGluThrTrpLys	62
239	ACCATTACCAAGAATCTACATTACAAGATGGTTGATCTTAACAAAGGCCATTGAA ThrIleThrLysAsnLeuHistYrLysAspGlyPheAspLeuAsnLysGlyIleGlu	298
63	GGAAAGATACACACGCTTTACATGGCAATGCACAAATGGATCAGAAGTTCAAAGTCC AlaLysThrIleHisThrLeuProTrpGlnCysThrAsnGlySerGluValGlnSerSer	82
299	TGGGCAGAAACTTACCTTGGATATTGGATATCACCACAAAGGAATTCCAGAAACTAAAGTTCAGGAT TrpAlaGluThrThrTyrTrpIleSerProGlnGlyIleProGluThrLysValGlnAsp	358
83	ATGGATTTGGCTATATTACAATTGGCAATTTACTGTTCTGGAAACCTGGCATAGGT MetAspCysValTyrTyrAsnTrpGlnTyrLeuCysSerTrpLysProGlyIleGly	102
359	GTAATTGATAACCAATTACAACATTGGTATTGAGGGCTTGGATCATGCATTA ValLeuAspThrAsnTyrAsnLeuPheTyrTrpTyrGluGlyLeuAspHisAlaLeu	418
103	TGGGCAGAAACTTACCTTGGATATTGGATATCACCACAAAGGAATTCCAGAAACTAAAGTTCAGGAT TrpAlaGluThrThrTyrTrpIleSerProGlnGlyIleProGluThrLysValGlnAsp	122
419	ATGGATTTGGCTATATTACAATTGGCAATTTACTGTTCTGGAAACCTGGCATAGGT MetAspCysValTyrTyrAsnTrpGlnTyrLeuCysSerTrpLysProGlyIleGly	478
123	GTAATTGATAACCAATTACAACATTGGTATTGAGGGCTTGGATCATGCATTA ValLeuAspThrAsnTyrAsnLeuPheTyrTrpTyrGluGlyLeuAspHisAlaLeu	142
479	TGGGCAGAAACTTACCTTGGATATTGGCAATTTACTGTTCTGGAAACCTGGCATAGGT MetAspCysValTyrTyrAsnTrpGlnTyrLeuCysSerTrpLysProGlyIleGly	538
143	GTAATTGATAACCAATTACAACATTGGTATTGAGGGCTTGGATCATGCATTA ValLeuAspThrAsnTyrAsnLeuPheTyrTrpTyrGluGlyLeuAspHisAlaLeu	162
539	CAGTGTGTTGATTACATCAAGGCTGATGGACAAATAAGGATGGCAGATTCCCATTG GlnCysValAspTyrIleGlyCysArgPheProTyrLeu	598
163		182
599		658
183		202

FIG. 2B

659	GAGGCATCAGACTATAAAGATTCTATTTGTGTTAAATGGATCATCAGAGAACAGCCT	718
203	GluAlaSerAspTyrLysAspPheTyrIleCysVal <u>AsnGlySer</u> GluAsnLysPro	222
719	ATCAGATCCAGTTATTCACTTTCAGCTTCAAATAATAGTTAAACCTTTGCCGCCAGTC	778
223	IleArgSerSerTyrPheThrPheGlnLeuGlnAsnIleVallysProLeuProProVal	242
779	TATCTTACTTTACTCGGGAGAGTGTGAATTAAAGCTGAAATGGAGCATACCTTTG	838
243	TyrLeuThrPheThrArgGluSerSerCysGluIleLysLeuLysLeuLysIleProLeu	262
839	GGACCTTATTCCAGCAAAGGTGTTTGATTATGAAATTGAGATCAGAGAAGATGATACTACC	898
263	GLYProIleProAlaArgCysPheAspTyrGluIleGluIleArgGluAspAspThrThr	282
899	TTGGTGACTGCTACAGTTGAAATGAAACATACACACCTTGAAAACAATGAAACCCGA	958
283	LeuValThrAlaThrValGlu <u>AsnGlu</u> ThrThrLeuLysThr <u>AsnGlu</u> ThrArg	302
959	CAATTATGCTTTGTAGTAAGGAAGCAAAGTGAATATTGCTCAGATGACCGGAATTGG	1018
303	GlnLeuCysPheValValArgSerLysValAsnIleTyrcysSerAspAspGlyIleTrp	322
1019	AGTGAGTGGAGTATAAACAAATGCTGGGAAGGGTGAAGAACCTATCGAAGAAACTTTGCTA	1078
323	SerGluTrpSerAspLysGlnCysStrpGluGlyGluAspLeuSerLysThrLeuLeu	342
1079	CGTTTCTGGCTTACCATTTGTTCATCTTAATATTAGTTGTAACCGGTCTGCTT	1138
343	Arg Phe Ter Phe Gly Phe Ile Leu Val Ile Leu Val Ile Phe Val Thr Gly Leu Leu	362
1139	TTGCGTAAGCCAAACACCTACCCAAAAATGATTCCAGAAATTGTTCTGTGATACATGAAGA	1198
363	Leu ArgLysProAsnThrTyrProLysMetIleProGluPhePheCysAspThr	380
1199	CTTCCATATCAAGAGACATGGTATTGACTCAACAGTTCCAGTCATGCCAAATGTTCA	1258
1259	ATATGAGTCTCAATAAACACTGAATTGGAAATGTTG	1298

FIG. 2C

FIG. 2D

IL13R	KPLPPVYLFFRESSCCEIKLKWSTIPLGPIPARCFDYIEIREDDTILVTA	286
IL5R	QINPPLMNVTAEIEGT.RLSIOWEKPVSAAFPIHCFDYEVKIHNTRNGYLIQI	286
IL13R	TVENETYTTLKTTNETRQLCFVVRSKVNTIYCSDDGIWSEWSDKQCWEGEDL	336
IL5R	EKLMTNAFISIIDDLSKYDVQVRRAVSSMCREAGIWSEWSQ.PIYVGNDDE	335
IL13R	SKKTLLRFWLPEFGFILILVIFVTGLLRKPNTYPKMIPI.....EF	376
IL5R	HKPLREWFVIVIMATICFILLSLICKICHLWIKLFPPIDAPKSNIKDL	385
IL13R	FCDT.....	380
IL5R	FVTTNYEKAGSSETIEVICCYIEKPGVETLEDHSVF	420

FIG. 3

FIG. 4B

FIG. 4A

FIG. 4C

FIG. 4D

FIG. 5

FIG. 6

FIG. 7A

FIG. 7B

61 GCAGGAAAATTAAACCATCCTTCAATATACTGCCTTTAACCTCCCGTGTGAAACCTGAT
 10 A G K I K P S F N I V P L T S R V K P D 229
 21 CCTCCACATATTAAACCTCTCCCTCACATTGACCTATATGTGCAATGGGAGAAT
 30 P P H I K N L S E H N D D L Y V Q W E N 249
 41 CCACAGAATTAGCAGATGCCTATTATGAAGTAGAAGTCAATAACAGGCCAACT 780
 50 P Q N F I S R C L F Y E V E V N N S Q T 840
 61 GAGACACATAATGTTTCTACGGTCCAAGAGGCTAAATGTGAGAATCCAGAATTGAGAGA 900
 70 E T H N V F Y V Q E A K C E N P E F E R 269
 81 AATGTGGAGAATACATCTTGTTCATGGTCCCTGGTGTCTCCTGATACTTTGAGACA 960
 90 N V E N T S C F M V P G V L P D T L N T 309
 100 GTCAGAATAAGAGTCAAACAAATAAGTTATGCTATGAGGATGACAAACTCTGGAGTAAT 1020
 10 V R I R V K T N K L C Y E D D K L W S N 329
 110 TGGAGCCAAAGAAATGAGTATAGGTAAGGAAGGCCAATTCCACACTCTACATAACCATTGTTA 1080
 120 W S Q E M S I G K R N S T L Y I T M L 349
 130 CTCATTGTTCCAGTCATCGTCCAGGTGCAATCATAGTACTCCTGCTTACCTAAAAAGG 1140
 140 L I V P V I V A G A I I V L L Y L K R 369
 150 CTCAGATTATTCCCTCCAATTCCCTGATCCCTGGCAAGATTTAAAGAAATGTTT 1200
 160 L K I I F P P I P D P G K I F K E M F 389
 170 GGAGACCAGAATGATGATACTCTGCACGGAAAGTACGACATCTATGAGAAGCAAACC 1260
 180 G D Q N D D T L H W K K Y D I Y E K Q T 409
 190 AAGGAGGAAACCGACTCTGTAGTGCTGATAGAAAACCTGAAGAAAGCCTCTCAGTGATGG 1320
 200 K E E T D S V V L I E N L K K A S Q * 429

FIG. 7C

81 TATCTGGGAACCTTAAATGGAAACTGACCATTAAACAGGCAGCTC
41 ATAAGGCCACAGGTCTTATGTTGAGTCATTCTCATTAATGGCGCT
01 TTGGAGAAGAGTGTGGAGTCATTCTCATTAATGGAGCTTCAAAACTAG
61 GGGACAAAAGCAAAAGTGTGATGATACTGGTTGGAGTTAACATGGCT
21 CCCTGAGGGATCTATACTGGCTTGTGTTCTTGTGCAACATGAACAAATTATTGT
81 AGGGAACTCATTTGGGTGCAAATGCTAATGTCAAACTTGAGTCACAAAGAACATGTAG
41 AAAACAAATGGATAAAATCTGATATGTATTGTTGGATCCTATTGAAACCATTGTTGTG
01 GCTATTAAACTCTTTAACAGTCTGGCTGGCTGGCTCACGGCTGTAAATCCAG
61 CAATTGGAGTCCGAGGCCGGGATCACTCGAGGTCAAGGAGTTCCAGGACTGAC
21 CAAATGGTGAACCTCCTACTAAACTACAAATTAACACTGGGTGGGGCG
81 TGCCTGTAATCCCAGCTACTCGGGAAAGCTGAGGAGGTGAATTGTTGAACCTGGAGGT
41 GGAGGTTGCAGTGAGCAGAGATCACACCACCTGCACTCTAGCCTGGGTGACAGAGCAAGAC
TCTGTCATAAAACAAAACAAAACAAAACAAAACAAAACAAAAC
41 CATCATCCCCCTCGACAGCATTTCCTCTGCTTGAAGCCCCAGAAATCAGTGTGGCC
21 ATGATGACAACACAGAGCCAGGCTTCTGGTATTAGAGTTCAACCATG
81 TTAGGCTGTTAGGGCAGTGGAGGTAGAATGACCTGGTATTAGAGTTCAACCATG
41 AAGCTCTAACAAATGTAATTTCACCTCTGCTACTCAAGTAGCATTACTGTCCTT
01 GTTTGTGCTAGGCCCGGGGTGTGAAGCACAGACCCCTCCAGGGTTACAGTCTATT
61 TGAGACTCCTCAGTCTGCCACTTTTAAATCTCCACOAGTCATTTCAGACCT
21 TTAACTCCTCAATTCCAACACTGATTCCCCGTTGCATTCCCTCCCTCCT
81 GTAGCCCTTGACTIONTCATTGGAAATTAGGATGTAATCTGCTCAGGAGACCTGGAGGAG
41 CAGAGGATAATTAGCATCTCAGGTTAAGTGTGAGTAATTGAGAAACAAATGACTAATTCT
01 TGCATATTGTAACCTCCATGTTGAGGGTTCAAGCATATTGTCATTCTAA

FIG. 7D

61 CAGAGATGAGGTGATCTCACGTAACATTGGTATTGGCTTGAGAAAAAGAATAG
21 TTGAACCTATTCTTACAAGATGGTCCAGGATTCTCTTCTGCCATAA 2820
81 ATGATTAAATAAGCTTTACATTGGTGTCTTACATTGGTAGCCAGCCAAAGGCTCTGTT 2880
41 ATGCTTTGGGCATATATTGGGTCCATTCTCACCTATCCACAAACATAATCCGTAT 2940
01 ATATCCCCTACTTACTTACTCCCCAAATTAAAGAAGTATGGAAATGAGGGCATT 3000
61 CCCCAACCCCATTTCTCCTCACACAGACTCATATTACTGGTAGGAACCTTGGAAACT 3060
21 TATTCCAAGTGTCAAACATTACCAATCATATAACAAATGATGCTATTGCAAT 3120
81 TCCGTCTCCTAGGGGAGGATAAAGAAACCCCTCACTCTACAGTTGGGTACAAGT 3180
41 GGCACACCTGCTTCCATGGCCGTGTAGAAGCATGGTGCCTGGCTTCCTGAGGAAGCTGG 3240
01 GGTCATGACAATGGCAGATGTAAGTTATTCTTGAAAGTCAGATTGGGGCTGGGAGACAG 3300
61 CCGTAGTAGATGAGATAATTCCAGGTATTGTCTAGAAAGAATAATTGGTTTCTCTGT 3360
21 ATAGGAATGAGATAATTCCAGGTATTGTCTAGAAAGAATAATTGGAAAGCAAAACCCATGC 3420
81 CTCCCCCCTAGCCATTACTGTTATCCTATTAGATGCCATGAAGAGGGATGGCTGTGAA 3480
41 ATTCCCACAAACATTGATGCTGACAGTCATGCAGTCTGGAGTGGGAAGTGATCTTT 3540
01 GTCCCCATCCTCTTCTTAGCAGTAAAATAGCTGAGGAAAGGGAGGAAAGGAAGT 3600
61 TATGGGAATAACCTGTGGTGGTTGTGATCCCTAGGTCTGGAGCTCTGGAGGTGTCTGT 3660
21 ATCAGTGATTCCCATCCCCCTGTGGAAATTAGTAGGCTCATTTACTGTTAGGTCTA 3720
81 GCCTATGGGATTTCCTAACATAACCTAACCTAACATAAGCAAACCCAGTGTCAAGGATGGTCTT 3780
41 ATTCTTCGTTCAAGTTAAGTTCCCTCATCTGGGCACTGAAGGATAATGTGAAACAA 3840
01 TGTAAACATTGGTAGTCACCAGGGATTGTCTTAACTTCTATAGGAAA 3900
61 GCTTGAGTAAATAATTGTCTTGTATGTCAACCCaaaaaaaaaaaaaa 4009
3960

FIG. 7E

MEWPRLCGIWALLCAGGGGGAAAPPTETQOPPVNTNLSVSVENLCTVIW
MARPALLGELLVLL..WTATVGQVAATEVQOPPVNTNLSVSVENLCTVIW

TWNPPPEGASSNCISLWYFSHFQDKQDKKKIAPETRRSIEVPLNERICLQVGSS
TWSPPPEGASPNCTILRYFSHFDDQQDQDKKKIAPETHRKEELPLDEKICLQVGSS

QCSTNESEKPSILVEKCISPPEGDPESAVTELQCIWHNLSYMKGCSWLPG
QCSANESEKPSPLVKKCISPPEGDPESAVTELKCIWHNLSYMKGCSWLPG

NTSPDTNYTLYYWHRSLEKIHQGENIFREGQYFGQSFDLTKVKDSSFEQH
NTSPDTHYTLYYWWYSSILEKSRQGENIYREGQHIAQSFKLTKV.EPSFEHQ

SVQIMVKDNAGKIKPSFNTIVPLTSRVKPDPPHIKNLSEHNDLIVQWENP
NVQIMVKDNAGKIRPSCKIVSLLT SYVKPDPPHIKHLILKNGALLVQWKNP

IL-13 α Mouse IL-13 α Human

50 ← 48 ←

101 99 149 201 198

151 149 201 250

100 98 148 247

FIG. 7F

	IL-13 α Mouse	IL-13 α Human
251	QNFISRCLFYEVENVNNSQTEETHNVFYVQEAKCENPEFERNNVENTSCEMVP	•
248	QNFRSRCCLTYEVENVNTQTDRHNILEVEEDKCQNSESDDRNMEGTSCFQLP	300 ← 297 ←
301	GVLPDITLNTRVIRVKTNKLGYEDDKLWNSNWQSQEMSIGKKRNSTLYITMILL	• 350
298	GVLADAVYTVRVRVKTNKLCFDDNKLNKLSDWSEAQSIGKEQNNSTFYTTMILL	347
351	TIPVIVAGAIIVLLLYLKRIKIIIFPPPIPDPGKIFKEMFGDQNDDTLHWRK	• 400
348	TIPVFVAVAVIILFYLKRIKIIIFPPPIPDPGKIFKEMFGDQNDDTLHWRK	397
401	KYDIYEKQTKEETDSVVLIENLKKASQ	427
398	KYDIYEKQSKEETDSVVLIENLKKAAP	424

FIG. 8A

FIG. 8B

FIG. 9

CHO	CHO-4			CHO-13			CHO-4-13			
4	13	4	13	c	4	13	c	4	13	c
•	•	•	•	•	•	•	•	•	•	•

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.