

Regresi Linear

email: khairil@apps.ipb.ac.id

Prof. Dr. Ir. Khairil Anwar Notodiputro, MS

Guru Besar Tetap pada Fakultas Matematika dan Ilmu Pengetahuan Alam IPB University

Hubungan Dua Kejadian

- Dua kejadian sering kali berhubungan
- Misal: suhu udara vs kelembaban; harga vs permintaan; pupuk vs hasil tanaman; tinggi vs bobot
- Jika dua kejadian itu terukur (skala kategorik maupun kontinu) maka metode statistika dapat digunakan
- Misal dua kejadian itu adalah Xdan Ydan keduanya berskala kontinu (misal tinggi badan dan bobot badan) maka kita sebut X= penjelas dan Y= respon

 Dalam praktek sering tdk mudah menentukan mana yang berperan sbg penjelas dan mana respon

Email vs FB

☐ Hubungan penggunaan *email* vs *FB*

Country	Internet Penetration	Facebook Penetration
Argentina	49.40%	30.53%
Australia	80.60%	46.01%
Belgium	67.30%	36.98%
Brazil	37.76%	4.39%
Canada	72.30%	52.08%
Chile	50.90%	46.14%
China	22.40%	0.05%
Colombia	38.80%	25.90%
Egypt	12.90%	5.68%
France	65.70%	32.91%
Germany	67.00%	14.07%
Hong Kong	69.50%	52.33%
India	7.10%	1.52%
Indonesia	10.50%	13.49%
Italy	48.80%	30.62%
Japan	73.80%	2.00%
Malaysia	62.80%	37.77%
Mexico	24.90%	16.80%
Netherlands	82.90%	20.54%

- Siapa yang punya FB?
- Lebih sering FB atau email?
- Apakah ada hubungan antara penggunaan email dengan FB?
- Apa keunggulan FB dibanding email?
- Sekarang perhatikan data internet dan FB di dunia

(Continued)

Email vs FB

Data pengguna email dan FB dalam diagram

Apa yang terjadi di: USA, Jepang, Indonesia?

- Apa penjelas (X)nya? Apa respon (Y)nya?
- Bolehkah dibalik posisi penjelas dan respon itu?
- Spt apa bentuk hubungan X dengan Y disini?

Email vs FB

- Jika dianggap hubungan email dan FB linear bgm?
- Ingat : persamaan garis lurus (linear) → Y = a + bX

Lazimnya

a: intercept, yaitu titik potong garis dengan sumbu tegak

b: kemiringan garis atau slope

Karena hubungan keduanya tdk sempurna maka kita gunakan model :

$$FB_i = \alpha + \beta Email_i + \varepsilon_i$$
 (i = 1, 2, ..., n)

Hubungan Linear

■ Perhatikan gambar persamaan garis y = 61.4 + 2.4 x

Data kita tidak sempurna, data kita mengandung galat, shg digunakan

MODEL $Y_i = \alpha + \beta X + \varepsilon_i$ (i=1,2,...,n)

Data kita tidak sempurna, mengandung galat, shg digunakan

MODEL
$$Y_i = \alpha + \beta X + \varepsilon_i$$
 ($i=1,2,...,n$)

■ Perhatikan bhw ε_i adalah galat pengamatan ke-i

Menduga Garis Regresi

• Untuk data pengguna internet tadi kita bisa minta MINITAB menghitung berapa dugaan (estimate) dari α dan β pada model tadi sbb:

Bagaimana MINITAB bisa memperoleh dugaan

 $\alpha = 3.590 \, dan$

B = 0.456??

Metode Kuadrat Terkecil (Least Squares)

Ilustrasi

Andaikan dari suatu survei diperoleh persamaan regresi antara pendidikan (X) dalam tahun dgn pendapatan (Y) dalam dollar pertahun.

Persamaannya: $\hat{Y} = -20,000 + 4000x$.

Maknanya, semakin lama pendidikan seseorang semakin tinggi pendapatannya.

Misal pula bahwa setiap pendapatan pada tingkat pendidikan tertentu menyebar normal dengan sipangan baku σ = 13,000.

$$\hat{Y} = -20,000 + 4000x$$

■
$$x = 12 \rightarrow \hat{Y} = -20,000 + 4000(12)$$
, shg $\hat{Y} = 28,000$, $\sigma = 13,000$

•
$$x = 16 \rightarrow \hat{Y} = -20,000 + 4000(16)$$
, shg $\hat{Y} = 44,000$, $\sigma = 13,000$

Makna Koefisien Regresi

$$\hat{\beta_0}$$
 = dugaan intersep
= (nilai \hat{y} pada saat $x = 0$)

 $\hat{\beta_0}$ tidak selalu bisa ditafsirkan dalam praktik.

$$\hat{\beta_1}$$
 = dugaan kemiringan
= perubahan nilai \hat{y} utk setiap
kenaikan 1 unit dari x

 $\hat{\beta}_1$ is always interpretable!

Tanda Koefisien Regresi

Model Regresi Linear

Misalkan kita memiliki data dari contoh acaka berupa pasangan $(y_1, x_1), \ldots, (y_n, x_n)$ seperti tabel berikut ini:

y_i	y_1	y_2	•••	y_n
x_i	x_1	x_2	***	x_n

Biasanya, kita ingin memodelkan hubungan antara respon Y dengan penjelas X menggunakan model linear sbb:

(Least Square Method)

Perhatikan data biaya dan jarak sbb:

Cost y_i (in thousands of dollars):

6.0

14.0

14.0

26.0

Mileage x_i (in miles):

1.0

3.0

4.0

10.0

5.0

7.0

Diskusi Dulu.....

(Least Square Method)

Bagaimana metode kuadrat terkecil bisa menemukan $\hat{\beta}_0$ dan $\hat{\beta}_1$?

Model:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, 2, \dots, n_i$$

Galat:
$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_i, \quad i = 1, 2, \dots, n$$

JK galat:
$$S(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Meminimumkan S thd β_0 dan β_1 melalui:

$$\frac{\partial S}{\partial \beta_0} = -2\sum (y_i - \beta_0 - \beta_1 x_i) = 0 \implies \beta_0 = ??? \implies \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$
Tidak memerlukan iterasi

 $\frac{\partial S}{\partial \beta_1} = -2\sum (y_i - \beta_0 - \beta_1 x_i) \ x_i = 0 \rightarrow \beta_1 = ??? \qquad \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$

(Least Square Method)

Sifat-sifat $\hat{\beta}_0$ dan $\hat{\beta}_1$

TAKBIAS (unbiased)

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \rightarrow E(\hat{\beta}_1) = E(\frac{S_{xy}}{S_{xx}}) = \frac{1}{S_{xx}} E(S_{xy}) = ???$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \rightarrow E(\hat{\beta}_0) = E(\bar{y} - \hat{\beta}_1 \bar{x}) = E(\bar{y}) - \bar{x} E(\hat{\beta}_1) = ???$$

Mengapa takbias (unbiased)?

•
$$E(\frac{\partial S}{\partial \beta_0}) = 0 \text{ dan } E(\frac{\partial S}{\partial \beta_1}) = 0 \rightarrow E(\hat{\beta}_0) = \beta_0 \text{ dan } E(\hat{\beta}_1) = \beta_1$$

■ Jadi statistik $\hat{\beta}_0$ dan $\hat{\beta}_1$ tidak berbias thd parameter β_0 dan β_1

PERIN NIA NI BOGOR

(Least Square Method)

Sifat-sifat $\hat{\beta}_0$ dan $\hat{\beta}_1$

$$Var(\hat{\beta}_0) = Var(\bar{y} - \hat{\beta}_1 \bar{x}) \longrightarrow Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right]$$

$$\operatorname{Var}(\hat{\beta}_1) = \operatorname{Var}\left(\frac{S_{XY}}{S_{XX}}\right) \longrightarrow Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

> s^2 atau $\hat{\sigma}^2$ perlu diduga dari data sbb:

$$\hat{\sigma}^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\text{SSE}}{n-2}$$
s.e. $(\hat{\beta}_{0}) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{\sum (x_{i} - \bar{x})^{2}}}$
s.e. $(\hat{\beta}_{1}) = \frac{\hat{\sigma}}{\sqrt{\sum (x_{i} - \bar{x})^{2}}}$

Pengujian Parameter Regresi

- Jika $Y_1, Y_2, ..., Y_n$ adalah contoh acak dari populasi normal $\rightarrow Y_i \sim Normal (\mu, \sigma^2)$ maka sebaran dari $\hat{\beta}_0$ dan $\hat{\beta}_1$ adalah
 - $\hat{\beta}_0 \sim Normal(\beta_0, var(\hat{\beta}_0)) dan \hat{\beta}_0 dan \hat{\beta}_1 \sim Normal(\beta_1, var(\hat{\beta}_1))$
- Pengujian hipotesis H_0 : $\beta_0 = 0$ vs H_1 : $\beta_0 \neq 0$ didasarkan pada statistik $t_{hit} = \frac{\widehat{\beta}_0}{s_{\widehat{\beta}_0}}$
- Pengujian hipotesis H_0 : $β_1 = 0$ vs H_1 : $β_1 \neq 0$ didasarkan pada statistik $t_{hit} = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$
- Derajat bebas dari uji-t adalah (n-2) → kita menolak H_0 tersebut jika $|t_{hit}| > t_{\alpha/2(n-2)}$ untuk uji dua arah. Untuk uji satu arah perlu disesuaikan.

Selang Kepercayaan Parameter

■ Dengan mengetahui bhw sebaran $\hat{\beta}_0$ dan $\hat{\beta}_1$ adalah normal maka SK (1- α)x100% dari β_0 :

$$\hat{\beta}_0 \pm t_{(n-2,\alpha/2)} \times \text{s.e.}(\hat{\beta}_0)$$

Begitu juga SK (1-α)x100% dari β₁:

$$\hat{\beta}_1 \pm t_{(n-2,\alpha/2)} \times \text{s.e.}(\hat{\beta}_1)$$

Ingat kembali apa interpretasi dari selang kepercayaan ini: apakah SK ini adalah ukurang peluang? Apakah SK ini konsep jangka pendek? Apa hubungan SK dgn uji hipotesis? SIAPA YG MASIH INGAT???

Ilustrasi

Perhatikan data durasi reparasi komputer dan banyaknya unit yang bisa direparasi:

Row	Minutes	Units	Row	Minutes	Units
1	23	1	8	97	6
2	29	2	9	109	7
3	49	3	10	119	8
4	64	4	11	149	9
5	74	4	12	145	9
6	87	5	13	154	10
7	96	6	14	166	10

- Model regresi $\rightarrow y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ i = 1, 2, ..., 14
- y_i = durasi, x_i = banyaknya unit, β_0 dan β_1 adalah koefisien, sedangkan ϵ_i = galat

Ilustrasi

- Plot data →
- Hub linear positif

$$\hat{\beta}_1 = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} = \frac{1768}{114} = 15.509$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 97.21 - 15.509 \times 6 = 4.162$$

$$\bigwedge_{\text{Minutes}} = 4.162 + 15.509 \cdot \text{Units}$$

Testing
$$H_0$$
: $\beta_1 = 12$ Mengapa 12???

$$t_1 = \frac{\hat{\beta}_1 - 12}{\text{s.e.}(\hat{\beta}_1)} = \frac{15.509 - 12}{0.505} = 6.948$$

$$t_{(12,0.025)} = 2.18$$

■ Jumlah
$$(y_i - \bar{y})^2 = 27768.36$$

■ Jumlah
$$(x_i - \bar{x})^2 = 114$$

■ Jumlah $(y_i - \bar{y})(x_i - \bar{x}) = 1768.00$

Selang kepercayaan 95% bagi β_1 :

 $15.509 \pm 2.18 \times 0.505 = (14.408, 16.610)$

H₀ ditolak

Jika Waktu dan Unit dibalik?

Jika model dibalik menjadi:

$$X = \beta_0 + \beta_1 Y + \varepsilon$$

Komputer = $\beta_0 + \beta_1$ **Waktu** + ε

The **regression equation** is

Komputer = - 0.1896 + 0.06367 Waktu

S = 0.345466 R-Sq = 98.7% R-Sq(adj) = 98.6%

Analysis of Variance

Source	DF	SS	MS	F
Regression	1 112	2.568	112.568	943.20

Error 12 1.432 0.119

Total 13 114.000

P-value 0.000

- Tidak masalah X dan Y dipertukarkan, selama ada maksud yang jelas dalam praktek.
- Hasilnya akan berubah dan interpretasinya otomatis akan berubah pula

Asumsi Model Regresi

Crews

PER NAME OF SOR

Formal assumptions of regression analysis:

- 1. The relation is, in fact, linear, so that the errors all have expected value zero: $E(\varepsilon_i) = 0$ for all *i*.
- **2.** The errors all have the same variance: $Var(\varepsilon_i) = \sigma^2$ for all *i*.
- **3.** The errors are independent of each other.
- **4.** The errors are all normally distributed; ε_i is normally distributed for all *i*.

Korelasi

(Correlation)

- Korelasi merupakan ukuran keeratan linear
- Dalam model regresi, koefisien β₁ (slope) menjelaskan apakah hubungan X dengan Y positif ataukah negatif sehingga menentukan kecenderungan (trend) perubahan dari Y jika X berubah.
- Tetapi koefisien β₁ tidak menjelaskan seberapa kuat hubungan antara X dengan Y
 → KORELASI
- Korelasi (lengkapnya: Pearson's Correlation) dihitung sbb:

$$r = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}} \sqrt{\sum y^2 - \frac{(\sum y)^2}{n}}}$$

$$r = \hat{\beta}_1 \cdot \left(\frac{S_x}{S_y}\right)$$

■ Koefisien $\hat{\beta}_1$ mrp penduga *slope* regresi, sedangkan S_x dan S_y simpangan baku dari X dan Y.

Ilustrasi

Hasil penelitian untuk mengukur korelasi penggunaan internet dengan 3 peubah lainnya sbb:

Unemployment rate: Total percentage of labor force unemployed

GDP: Gross domestic product, per capita, in thousands of U.S. dollars (a measure of a nation's economic development)

CO₂: Carbon dioxide emissions, per capita (a measure of air pollution)

		Incernec
		users (per
		100 people)
	Unemployment	
1/	rate	0.238
	GDP per capita	0.938
	Carbon dioxide	
		0 560
	emissions	0.569

- Peubah apa yang paling erat hubungannya dengan penggunaan internet? → GDP
- Peubah apa yang paling tidak erat hubungannya dengan penggunaan internet? → Unemployment
- Apa kesimpulan yang bisa diambil dari data ini? → Semakin tinggi GDP (makmur?) semakin banyak orang menggunakan internet.

Sifat Korelasi

(d) $r \approx 0$

■ Korelasi HANYA mengukur keeratan linear → hubungan taklinear

The correlation r has the same sign as the slope b. Thus, r > 0 when the points in the scatterplot have an upward trend and r < 0 when the points have a downward trend.

- The correlation r always falls between -1 and +1, that is, $-1 \le r \le +1$.
- The larger the absolute value of r, the stronger the linear association, with r = ±1 when the data points all fall exactly on the regression line.

Dalam regresi → ada koefisien determinasi (*r*²) atau *R-square*, yaitu ukuran kekuatan prediksi dari model.

■ Parameter korelasi adalah ρ (rho), sedangkan statistiknya adalah r.

(c) $r \approx 0$

Jika tidak ada hubungan antara X dan Y maka korelasinya akan sama dengan nol. **Tapi tidak berlaku sebaliknya.**

Diskusi Dulu.....

In a study of the reproductive success of grasshoppers, an entomologist collected a sample of 30 female grasshoppers. She recorded the number of mature eggs produced and the body weight of each of the females (in grams). The data are given here:

	Weight of female(x)	Number of eggs(y)	Weight of female(x)	Number of eggs(y)
	3.6	75	2.1	27
	3.6	84	2.3	32
	3.7	77	2.4	39
	3.7	83	2.5	48
	3.7	76	2.9	59
90	3.8	82	3.1	67
90	3.9	75	3.2	71
80	4.0	78	3.3	65
70	4.3	77	3.4	73
	4.4	75	3.4	67
60	4.7	73	3.5	78
50	4.8	71	3.5	72
	4.9	70	3.5	81
40	4.3 4.4 4.7 4.8 4.9 5.0	68	3.6	74
30	5.1	65	3.6	83

Model:

No_eggs =
$$\beta_0 + \beta_1$$
 Weight + ϵ

$$\sum_{i=1}^{30} x_i = 109.5 \Rightarrow \overline{x} = 3.65, \qquad \sum_{i=1}^{30} y_i = 2065 \Rightarrow \overline{y} = 68.8333$$

$$S_{xx} = \sum_{i=1}^{30} (x_i - \overline{x})^2$$

$$= (2.1 - 3.65)^2 + (2.3 - 3.65)^2 + \dots + (5.1 - 3.65)^2 = 17.615$$

$$S_{yy} = \sum_{i=1}^{30} (y_i - \overline{y})^2$$

$$= (27 - 68.8333)^2 + (32 - 68.8333)^2 + \dots + (65 - 68.8333)^2 = 6,066.1667$$

$$S_{xy} = \sum_{i=1}^{30} (x_i - \overline{x})(y_i - \overline{y})$$

$$= (2.1 - 3.65)(27 - 68.8333)$$

$$+ (2.3 - 3.65)(32 - 68.8333) + \dots + (5.1 - 3.65)(65 - 68.8333) = 198.05$$

$$r_{xy} = \frac{198.05}{\sqrt{(17.615)(6066.1667)}} = 0.606$$

Case 1:
$$H_0$$
: $\rho_{yx} \le 0$ vs. H_a : $\rho_{yx} > 0$
Case 2: H_0 : $\rho_{yx} \ge 0$ vs. H_a : $\rho_{yx} < 0$
Case 3: H_0 : $\rho_{yx} = 0$ vs. H_a : $\rho_{yx} \ne 0$

T.S.:
$$t = r_{yx} \frac{\sqrt{n-2}}{\sqrt{1-r_{yx}^2}}$$

R.R.: With n-2 df and Type I error probability α ,

1.
$$t > t_{\alpha}$$

2. $t < -t_{\alpha}$
3. $|t| > t_{\alpha/2}$

Check assumptions and draw conclusions.

$$\hat{\beta}_1 = 198.05/17.615$$
= 11.24

$$\hat{\beta}_0 = 68.83-11.24(3.65)$$
= 27.804

ID	No_eggs	Weight	RESI1
1	27	2.1	·/-24.41
2	32	2.3	-21.65
3	39	2.4	-15.78
4	48	2.5	-7.90
5	59	2.9	-1.40
6	67	3.1	4.35
7	71	3.2	7.23
8	65	3.3	0.10
9	73	3.4	6.98
10	67	3.4	0.98
11	78	3.5	10.85
12	72	3.5	4.85
13	81	3.5	13.85

ID	No_eggs	Weight	RESI1
14	74	3.6	5.73
15	83	3.6	14.73
16	75	3.6	6.73
17	84	3.6	15.73
18	77	3.7	7.60
19	83	3.7	13.60
20	76	3.7	6.60
21	82	3.8	11.48

ID	No_eggs	Weight	RESI1
23	78	4.0	5.23
24	77	4.3	0.86
25	75	4.4	· -2.27 \
26	73	4.7	, -7.64
27	71	4.8	-10.76
28	70	4.9	-12.89
29	68	5.0	-16.01
30	65	5.1	-20.14

Karena garis dengan data nampak tidak bersesuaian maka hasil regresi ini tidak bagus.

perlu diperbaiki terlebih dahulu.

- Andai dipaksakan dilakukan uji hipotesis (seharusnya tidak boleh)
- Misalkan hipotesis H_0 : $\rho = 0$ vs H_1 : $\rho \neq 0$

• Statistik
$$t = r_{yx} \frac{\sqrt{n-2}}{\sqrt{1-r_{yx}^2}} \rightarrow t = 0.606 (\sqrt{28} \div \sqrt{0.63}) = 4.04$$

Pada taraf nyata 5% nilai tabel t adalah

Tabel
$$\rightarrow t_{0.025(28)} = 2.048 <$$

 Jadi Ho ditolak → ada korelasi antara jumlah telor dengan bobot betina belalang. Semakin tinggi bobot betina belalang semakin banyak telornya

Under-estimated

Model linear bermasalah dalam kasus ini

Garis regresi tidak pas dengan data pengamatan.

→ CARI MODEL LAIN

- Banyak cara untuk mengatasi masalah yang terjadi pada model linear ini.
- Salah satu (sekedar ilustrasi) yaitu dengan membagi data menjadi 2 bagian:
- Weight < 3.65 dan Weight > 3.65.
- Lalu utk tiap bagian dicobakan model linear.

Jadi persamaan regresinya:

NoEggs =
$$\begin{cases}
-40.78 + 33.43 \text{ Weight, jika Weight} < 3.65 \\
111.23 - 8.50 \text{ Weight, jika Weight} \ge 3.65
\end{cases}$$

Garis regresi tidak menampakkan kejadian under-estimate dan over-estimate secara sistematis,

→ Model sudah relatif pas dengan data.

Tahank You

email: khairil@apps.ipb.ac.id

twitter: @kh_notodiputro

