Problem Set 1

a partial list

Please assume Markov property, fully-observability, time-invariance throught this set of problems.

- Q-1) Consider $\langle S,A,R,T\rangle$, with finite state/action space. Let the reward R be a map from $S\times A$ to real numbers, i.e., $R(s,a)\in\mathbb{R}$. This is denoted by $R\colon S\times A\to\mathbb{R}$. Suppose R(s,a)=c, for all $s\in S$ and $a\in A$, where c is a constant. What are the *correct/best* agent functions?
- Q-2) In the bunny problem and the vacuum bot problem in the first lab session. Please list down the following:
 - Did you notice the difference between the agent function and the agent program? If so, explain it.
 - How is the search procedure different from BFS?
 - Using the search procedure that we derived in the lab, is it possible to arrive at the *correct/best* agent function?
- Q-3) Consider the following version of the n^2-1 puzzle for n=4 with $0{\rm s}$ and $1{\rm s}$. The start state and goal state are :

1	0	1	0
1	0	1	0
1	0	1	0
1	1	0	

Table 1: Start State

1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	

Table 2: Goal State

Is the goal reachable from the start state

Q-4) Consider the following example. Show that the complexity is $O(|A|^{|S|})$. What is the search tree? Does the complexity reduce if we have the *explored list*?

Figure 1: Show that complexity is $O(|A|^{|S|})$

Q-5) Let us think of a square as a graph with 4 edges and 4 vertices. Assign the weights of the edges to be 1, 2, 3, 4 (any assignment is fine). Pick a start state and a goal state. Give examples of

- Consistent heuristic
- Admissible heuristic
- Admissible but not consistent heuristic

Q-6) Let us say that the Euclidean distance between two points is given. How would you use this to create a Heuristic for a given road network. What happens when roads are removed. What happens when new roads are added. Suppose, all the road distances are known, how will you use it to compute a heuristic for rail network. Suppose travelling times on these roads for a bus are given, how to use it for derive shortest path for auto-rickshaw (it goes faster than bus on narrower roads and slower than bus on wider roads), describe our approach.

Q-7) Let say two heuristics h_1 and h_2 are given. Write down ways you can combine them in an intelligent manner.

Q-8) If h_1 and h_2 are admissible is $\max\{h_1, h_2\}$ an admissible heuristics as well?

Q-9) If h_1 and h_2 are consistent is $\max\{h_1, h_2\}$ a consistent heuristics as well?

Q-10) What happens if the heuristic is not admissible? Can we still somehow use it? What happens if the heuristic for certain nodes are missing?

Q-11) Say h(n) is a valid heuristic, then

- Say $h(n) \ge 0$, is -h(n) a valid heuristic?
- Is -h(n) a valid heuristic for any h(n) (not necessarily $h(n) \ge 0$)?