এনকোডার এবং ডিকোডার

লেকচার-৮

এনকোডার এবং ডিকোডার

লেকচার-৮

এই পাঠ শেষে যা যা শিখতে পারবে-

- ১। এনকোডার ব্যাখ্যা করতে পারবে।
- ২। এনকোডারের ব্যবহার বর্ণনা করতে পারবে।
- ৩। ডিকোডার ব্যাখ্যা করতে পারবে।
- ৪। ডিকোডারের ব্যবহার বর্ণনা করতে পারবে।
- ৫। এনকোডার এবং ডিকোডারের মধ্যে পার্থক্য করতে
 পারবে।

FIG: Radio metrix 4 Bit Encoder/Decoder IC for Remote.

এনকোডার কী?

এনকোডার এক ধরনের সমবায় সার্কিট বা ডিজিটাল বর্তনী যা মানুষের ব্যবহৃত বিভিন্ন আলফানিউমেরিক বর্ণ, বিশেষ চিহ্ন, টেক্সট, অডিও ও ভিডিও ইত্যাদিকে কম্পিউটার বা ডিজিটাল সিস্টেমের বোধগম্য কোডে রূপান্তর করে। অন্যভাবে বলা যায় এটি একটি ডিজিটাল বর্তনী যা এনকোডিং এর জন্য ব্যবহৃত হয়। অর্থাৎ এনকোডার অ্যানালগ সিগন্যালকে ডিজিটাল সিগন্যালে রূপান্তরিত করে।

এনকোডার এর বৈশিষ্ট্য

- এ বর্তনীর 2ⁿ সংখ্যক ইনপুট লাইন থেকে সর্বাধিক n সংখ্যক আউটপুট লাইন পাওয়া যায়।
- যেকোনো মুহূর্তে একটি মাত্র ইনপুট ১ এবং
 বাকি সকল ইনপুট ০ থাকে।
- এনকোডার ডিকোডারের বিপরীত কাজ সম্পাদন করে।
- এনকোডার সাধারণত ইনপুট ডিভাইস অর্থাৎ
 কী-বোর্ডের সাথে যুক্ত থাকে।

চিত্রঃ এনকোডারের ব্লক চিত্র

4 to 2 লাইন এনকোডার:

ধরি 4 to 2 এনকোডারের চারটি ইনপুট D_0, D_1, D_2 ও D_3 এবং দুটি আউটপুট X ও Y । নিচে 4 to 2 লাইন এনকোডারের ব্লুক চিত্র দেখানো হলো-

চিত্রঃ 4 to 2 লাইন এনকোডারের ব্লক চিত্র

যেকোনো মুহূর্তে চারটি ইনপুটের মধ্যে একটি মাত্র ইনপুট ১ এবং বাকি সকল ইনপুট ০ থাকে। নিচে 4 to 2 লাইন এনকোডারের সত্যক সারণি দেখানো হলো-

	Inp	Output			
D _o	D ₁	D ₂	X	Υ	
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

চিত্রঃ 4 to 2 লাইন এনকোডারের সত্যক সারণি

সত্যক সারণি থেকে প্রত্যেকটি আউটপুটের জন্য নিমোক্ত বুলিয়ান ফাংশন লিখা যায়-

$$X = D_2 + D_3$$

$$Y = D_1 + D_3$$

দুই ইনপুট বিশিষ্ট OR গেইট ব্যবহার করে উপরের ফাংশন দুটি বাস্তবায়ন করা যায়। নিচে 4 to 2 লাইন এনকোডারের সার্কিট দেখানো হলো-

চিত্রঃ 4 to 2 লাইন এনকোডারের সার্কিট

উপরের সার্কিটটি দুটি OR গেইটের সমন্বয়ে তৈরি, যা চারটি ইনপুটকে দুই বিটে এনকোড করতে পারে।

8 to 3 লাইন এনকোডার অথবা অক্টাল টু বাইনারি এনকোডার

 $8\ to\ 3$ এনকোডারের আঁটটি ইনপুট $D_0\ to\ D_7$ এবং তিনটি আউটপুট X , Y ও Z । নিচে $8\ to\ 3$ এনকোডারের ব্লক চিত্র দেখানো হলো-

চিত্রঃ 8 to 3 লাইন এনকোডারের ব্লক চিত্র

যেকোনো মুহূর্তে আঁটটি ইনপুটের মধ্যে একটি মাত্র ইনপুট ১ এবং বাকি সকল ইনপুট ০ থাকে। নিচে 8 to 3 লাইন এনকোডারের সত্যক সারণি দেখানো হলো-

Input								Output		
D _o	D_1	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	Х	Υ	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

চিত্রঃ 8 to 3 লাইন এনকোডারের সত্যক সারণি

সত্যক সারণি থেকে প্রত্যেকটি আউটপুটের জন্য নিমোক্ত বুলিয়ান ফাংশন লিখা যায়-

$$X = D_4 + D_5 + D_6 + D_7$$

$$Y = D_2 + D_3 + D_6 + D_7$$

$$Z = D_1 + D_3 + D_5 + D_7$$

চার ইনপুট বিশিষ্ট OR গেইট ব্যবহার করে উপরের ফাংশন তিনটি বাস্তবায়ন করা যায়। নিচে 8 to 3 লাইন এনকোডারের সার্কিট দেখানো হলো-

চিত্রঃ 8 to 3 লাইন এনকোডারের সার্কিট

উপরের সার্কিটটি তিনটি OR গেইটের সমন্বয়ে তৈরি, যা আঁটটি ইনপুটকে তিন বিটে এনকোড করতে পারে।

সীমাবদ্ধতাঃ

- যখন এনকোডারের সকল ইনপুট শূন্য হয়,
 তখন আউটপুট নির্ধারণ করতে পারে না।
- যদি একইসময় একাধিক ইনপুট সক্রিয় থাকে,
 তখন এনকোডারটি একটি আউটপুট দেয়, যা
 সঠিক নাও হতে পারে।

সুতরাং, এই সমস্যাগুলি কাটিয়ে উঠতে এনকোডার প্রতিটি ইনপুটের জন্য প্রায়োরিটি (অগ্রাধিকার) সেট করা উচিত। তারপরে, এনকোডারটির আউটপুট হবে সক্রিয় ইনপুটগুলির মধ্য যার উচ্চতর প্রায়োরিটি (অগ্রাধিকার) রয়েছে তার জন্য।

এনকোডারের ব্যবহার

- এনকোডার আলফানিউমেরিক কোডকে ASCII ও EBCDIC কোডে রূপান্তর করে।
- দশমিক সংখ্যাকে বিভিন্ন কোডে রূপান্তর করে।
- এনকোডারের সাহায্যে দশমিক সংখ্যাকে সমতুল্য বাইনারি সংখ্যায় রূপান্তর করা যায়।

ডিকোডার কী?

ডিকোডার এক ধরনের সমবায় সার্কিট বা ডিজিটাল বর্তনী যা কম্পিউটার বা ডিজিটাল সিস্টেমের বোধগম্য কোডকে মানুষের বোধগম্য ফরম্যাটে রূপান্তরিত করে। অন্যভাবে বলা যায় এটি একটি ডিজিটাল বর্তনী যা ডিকোডিং এর জন্য ব্যবহৃত হয়। অর্থাৎ ডিকোডার ডিজিটাল সিগন্যালকে অ্যানালগ সিগন্যালে রূপান্তরিত করে।

ডিকোডার এর বৈশিষ্ট্য

- এ বর্তনীর n সংখ্যক ইনপুট লাইন থেকে
 সর্বাধিক 2ⁿ সংখ্যক আউটপুট লাইন পাওয়া
 যায়।
- যেকোনো মুহূর্তে একটি মাত্র আউটপুট লাইনের মান ১ হয় এবং বাকি সকল আউটপুট লাইনের মান ০ হয়। কখন কোনো আউটপুট লাইনের মান ১ হবে তা নির্ভর করে ইনপুটগুলোর মানের উপর।
- ডিকোডার এনকোডারের বিপরীত কাজ সম্পাদন করে।
- ডিকোডার সাধারণত আউটপুট ডিভাইস অর্থাৎ
 ডিসপ্লে ইউনিটের সাথে যুক্ত থাকে।

চিত্রঃ ডিকোডারের ব্লক চিত্র

2 to 4 লাইন ডিকোডার:

ধরি 2 to 4 লাইন ডিকোডারের দুটি ইনপুট X ও Y এবং চারটি আউটপুট $D_0,\,D_1,\,D_2$ ও D_3 । নিচে 2 to 4 লাইন ডিকোডারের ব্লক চিত্র দেখানো হলো-

চিত্রঃ 2 to 4 লাইন ডিকোডারের ব্লক চিত্র

যেকোনো মুহূর্তে চারটি আউটপুটের মধ্যে একটি মাত্র আউটপুট ১ এবং বাকি সকল আউটপুট ০ থাকে। নিচে 2 to 4 লাইন ডিকোডারের সত্যক সারণি দেখানো হলো-

Input		Output						
Х	Y	D_0	D_1	D ₂	D ₃			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

চিত্রঃ 2 to 4 লাইন ডিকোডারের সত্যক সারণি

সত্যক সারণি থেকে SOP মেথডের সাহায্যে প্রত্যেকটি আউটপুটের জন্য নিমোক্ত বুলিয়ান ফাংশন লিখা যায়-

$$D_0 = \overline{X}\overline{Y}$$

$$D_1 = \overline{X}Y$$

$$D_2 = X\overline{Y}$$

$$D_3 = XY$$

প্রতিটি আউটপুটে একটি করে মোট চারটি প্রোডাক্ট টার্ম আছে। অর্থাৎ চারটি AND গেইটের সাহায্যে চারটি প্রোডাক্ট টার্ম বাস্তবায়ন করা যাবে। নিচে 2 to 8 লাইন ডিকোডারের সার্কিট দেখানো হলো-

চিত্রঃ 2 to 4 লাইন ডিকোডারের সার্কিট

3 to 8 লাইন ডিকোডার:

ধরি 3 to 8 লাইন ডিকোডারের তিনটি ইনপুট X , Y ও Z এবং আঁটটি আউটপুট D_0 to D_7 । নিচে 3 to 8 লাইন ডিকোডারের ব্লক চিত্র দেখানো হলো-

চিত্রঃ 3 to 8 লাইন ডিকোডারের ব্লক চিত্র

যেকোনো মুহূর্তে আঁটটি আউটপুটের মধ্যে একটি মাত্র আউটপুট ১ এবং বাকি সকল আউটপুট ০ থাকে। নিচে 3 to 8 লাইন ডিকোডারের সত্যক সারণি দেখানো হলো-

ı	npu	t				Output				
Х	Υ	Z	D _o	D_1	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

চিত্রঃ 3 to 8 লাইন ডিকোডারের সত্যক সারণি

সত্যক সারণি থেকে SOP মেথডের সাহায্যে প্রত্যেকটি আউটপুটের জন্য নিমোক্ত বুলিয়ান ফাংশন লিখা যায়-

$$D_0 = \overline{X} \overline{Y} \overline{Z}$$

$$D_1 = \overline{X} \overline{Y} Z$$

$$D_2 = \overline{X} Y \overline{Z}$$

$$D_3 = \overline{X} Y Z$$

$$D_4 = X \overline{Y} \overline{Z}$$

$$D_5 = X \overline{Y} Z$$

$$D_6 = X Y \overline{Z}$$

$$D_7 = X Y Z$$

প্রতিটি আউটপুটে একটি করে মোট আঁটটি প্রোডাক্ট টার্ম আছে। অর্থাৎ আঁটটি AND গেইটের সাহায্যে আঁটটি প্রোডাক্ট টার্ম বাস্তবায়ন করা যাবে। নিচে 3 to এনকোডার ও ডিকোডারের মধ্যে পার্থক্য ৪ লাইন ডিকোডারের সার্কিট দেখানো হলো-

চিত্রঃ 3 to 8 লাইন ডিকোডারের সার্কিট

ডিকোডারের ব্যবহার:

- কম্পিউটারে ব্যবহৃত মানুষের কোডকে বোধগম্য ফরম্যাটে রূপান্তর করতে।
- জটিল কোডকে সহজ কোডে রূপান্তর করতে।
- ডিসপ্লে ইউনিটে।
- বাইনারি সংখ্যাকে সমতুল্য দশমিক সংখ্যায় রূপান্তর করতে।
- ডেটা মাল্টিপ্লেক্সিং ও ডিমাল্টিপ্লেক্সিং এর ক্ষেত্রে।

এনকোডার	ডিকোডার
এক ধরনের সমবায় সার্কিট যা মানুষের ব্যবহৃত বিভিন্ন আলফানিউমেরিক বর্ণ, বিশেষ চিহ্ন, টেক্সট, অডিও ও ভিডিও ইত্যাদিকে কম্পিউটার বা ডিজিটাল সিপ্টেমের বোধগম্য কোডে রূপান্তর করে।	ডিকোডার এক ধরনের সমবায় সার্কিট যা কম্পিউটার বা ডিজিটাল সিস্টেমের বোধগম্য কোডকে মানুষের বোধগম্য ফরম্যাটে রূপান্তরিত করে।
$\mathbf{x}^{\mathbf{n}}$ সংখ্যক ইনপুট লাইন থেকে সর্বাধিক \mathbf{n} সংখ্যক আউটপুট লাইন পাওয়া যায়।	n সংখ্যক ইনপুট লাইন থেকে সর্বাধিক ২ ⁿ সংখ্যক আউটপুট লাইন পাওয়া যায়।
যেকোনো মুহূর্তে একটি মাত্র ইনপুট ১ এবং বাকি সকল ইনপুট ০ থাকে।	যেকোনো মুহূতে একটি আউটপুট লাইনের মান ১ এবং বাকি সকল আউটপুটের মান ০ হয়।
এনকোডার সাধারণত ইনপুট ডিভাইস অর্থাৎ কী-বোর্ডের সাথে যুক্ত থাকে।	ডিকোডার সাধারণত আউটপুট ডিভাইস অর্থাৎ ডিসপ্লে ইউনিটের সাথে যুক্ত থাকে।
উদাহরণঃ ৮-to-৩ লাইন এনকোডার।	উদাহরণঃ ৩-to-৮ লাইন ডিকোডার।

পাঠ মূল্যায়ন-

জ্ঞানমূলক প্রশ্নসমূহঃ

১। এনকোডার কী?

উত্তরঃ এনকোডার এক ধরনের ডিজিটাল সার্কিট যা মানুষের দেয়া ইনপুটকে ডিজিটাল সিস্টেমের বোধগম্য বাইনারি কোডে রূপান্তর করে।

২। ডিকোডার কী?

উত্তরঃ ডিকোডার এক ধরনের ডিজিটাল সার্কিট যা ডিজিটাল সিস্টেমের বোধগম্য বাইনারি কোডকে মানুষের বোধগম্য ফরম্যাটে রূপান্তর করে।

অনুধাবনমূলক প্রশ্নসমূহঃ

- যান্ত্রিক ভাষাকে মানুষের ভাষায় বোঝানোর উপযোগী লজিক সার্কিটটি ব্যাখ্যা কর।
- ২। এনকোডার কেন ইনপুট ডিভাইসের সাথে ব্যবহৃত হয়? ব্যাখ্যা কর।
- ৩। মানুষের ভাষাকে যান্ত্রিক ভাষায় বোঝানোর উপযোগী লজিক সার্কিটটি ব্যাখ্যা কর।
- ৪। ডিকোডার কেন আউটপুট ডিভাইসের সাথে ব্যবহৃত হয়? ব্যাখ্যা কর।
- ে। এনকোডার ডিকোডারের বিপরীত- ব্যাখ্যা কর।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

আইসিটি শিক্ষক ক্লাসে ছাত্রদের বললেন, কম্পিউটার A কে সরাসরি বুঝতে পারে না বরং একে একটি লজিক সার্কিটের সাহায্যে ৮ বিটের বিশেষ সংকেতে করে বুঝে থাকে। তিনি আরো বললেন, উক্ত সংকেতায়ন পদ্ধতিতে বাংলা কম্পিউটারকে বোঝানো যায় না। এজন্য ভিন্ন একটি সংকেতায়ন পদ্ধতির প্রয়োজন হয়।

গ) উদ্দীপকে উল্লিখিত লজিক সার্কিটটি বর্ণনা কর।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

- গ) ব্লক চিত্র-১ চিহ্নিত করে সত্যক সারণি ও লজিক সার্কিট অঙ্কন কর।
- ঘ) কম্পিউটারের বোধগম্য ভাষাকে মানুষের বোধগম্য ভাষায় রূপান্তর করতে কোন ব্লক চিত্রটির ভূমিকা অপরিহার্য-বিশ্লেষণ কর।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

সৃজনশীল প্রশ্নসমূহঃ

- গ) n=2 এর জন্য উদ্দীপকের চিত্র-২ ব্যাখ্যা কর।
- ঘ) উদ্দীপকের চিত্র-১ এর n=3 এর জন্য সত্যক সারণি এবং লজিক সার্কিট আঁক এবং বিশ্লেষণ কর সর্বাধিক ৮টি চিহ্নকে মেশিন ভাষায় রূপান্তর করতে পারে।

বহুনির্বাচনি প্রশ্নসমূহঃ

- ১। চল্লিশ টি ইনপুট লাইনের এনকোডারে কমপক্ষে কতটি আউটপুট লাইন থাকবে?
- ক) ৩ খ) ৪ গ) ৫ ঘ) ৬
- ২। 4 to 2 লাইন এনকোডার বাস্তবায়নে কতটি মৌলিক লজিক গেইট লাগবে?
- ক) ২ খ) ৪ গ) ৬ ঘ) ৮
- ৩। 8 to 3 লাইন এনকোডার বাস্তবায়নে কতটি মৌলিক লজিক গেইট লাগবে?
- ক) ২ খ) ৪ গ) ৬ ঘ) ৮
- ৪। কোনটি এনকোডার সার্কিট?
- ক) 8 to 3 লাইন খ) 3 to 8 লাইন
- গ) 3 to 9 লাইন ঘ) 2 to 16 লাইন

- ে। এনকোডার সার্কিটে ব্যবহৃত মৌলিক গেইট হলো
 - i. AND
 - ii. OR
 - iii. NOT

নিচের কোনটি সঠিক?

- ক) i ও iii খ) i ও iii
- গ) ii ও iii য) i, ii ও iii
- ৬। এনকোডার হলো এমন একটি সার্কিট যার--থাকে।
 - i. n সংখ্যক আউটপুট লাইন
 - ii. 2n সংখ্যক ইনপুট লাইন
 - iii. 2ⁿ সংখ্যক ইনপুট লাইন

নিচের কোনটি সঠিক?

- ক) i ও ii
- খ) i ও iii
- গ) ii ও iii
- ঘ) i, ii ও iii
- ৭। কোনটি এনকোডারের বিপরীত?
- ক) মাল্টিপ্লেক্সার খ) অ্যাডার
- গ) রেজিস্টার ঘ) ডিকোডার
- ৮। আটচল্লিশ টি আউটপুট লাইনের ডিকোডারে কমপক্ষে কতটি ইনপুট লাইন থাকবে?
- ক) ৩ খ) ৪ গ) ৫ ঘ) ৬

- ৯। 2 to 4 লাইন ডিকোডার বাস্তবায়নে কতটি মৌলিক লজিক গেইট লাগবে?
- ক) ২ খ) ৪ গ) ৬ ঘ) ৮
- ১০। কোনটি ডিকোডার সার্কিট?
- ক) 3 to 8 line খ) 8 to 3 line
- গ) 1 to 9 line য) 2 to 16 line
- ১১। ডিকোডার সার্কিটে ব্যবহৃত মৌলিক গেইট হলো
 - i. AND
 - ii. OR
 - iii. NOT

নিচের কোনটি সঠিক?

- ক) i ও iii খ) i ও iii
- গ) ii ও iii য) i, ii ও iii
- ১২। ডিকোডার হলো এমন একটি সার্কিট যার--থাকে।
 - i. n সংখ্যক ইনপুট লাইন
 - ii. 2n সংখ্যক আউটপুট লাইন
 - iii. 2ⁿ সংখ্যক আউটপুট লাইন

নিচের কোনটি সঠিক?

- ক) i ও iii খ) i ও iii
- গ) ii ও iii য) i, ii ও iii