PATTERNS OF LAYOUT

- PROCESS LAYOUT
 - -INTERMITTENT LAYOUT
 - JOB SHOP
- PRODUCT LAYOUT
 - CONTINUOUS PRODUCTION
 - ASSEMBLY LINE
- FIXED POSITION
 - SPECIAL PROJECTS

Process Layout

- Worker skill level is moderate to high
- Makes good use of the special skills of people and capabilities of machines
- Flexible and able to handle a wide variety of products
- Machines are general purpose --- which implies flexibility --- and are generally less expensive than special purpose machines such as robots
- Less vulnerable to shutdowns because of breakdowns

Process Layout

- General purpose machines are slower than special purpose machines (ex robotics)
- Work routing, scheduling, bills of material, job costing are much more involved and complex
- Potentially each new order is a new product --- so routings, bills of material etc. may need to be created each time an order is received
- Material handling and transportation can be quite costly
- Material movement through the shop is slow

Product Layout

- Major advantage -- lowest cost per unit
- High rate of output
- Low training cost
- Routings, bill of material don't change frequently
- Large investment in capital equipment
- Must have a high demand in order to justify the huge capital investment
- Highly vulnerable to work stoppages ----
- Rate of output is quite inflexible ---- both up and down
- Does not handle variety very well
- Human relations problems
- Work comes to the worker

FIXED POSITION

- Large complex, often unique products
- Products seldom if ever move
- Portable equipment
- Worker comes to the work
- Duplicate tooling
- More responsibility on the part of the worker
- Labor skills high
- High cost
- Time to build is longer

Balanced Line

What Happens with a Balanced Line?

- Behind Schedule with Shipments
- WIP Levels Increase
- Why?
- Statistical Fluctuations
- Statistically Dependent Events

Un-Balanced Line

- Cycle Time = time interval between units coming off the line
- Longest task time=minimum possible cycle time
- Sum of task times=maximum possible cycle time
- Daily Capacity
 - =Operating Time+Cycle Time (OT+CT)

- Operating Time = 480 minutes
- Cycle Time = 1 minute
 Daily Capacity = 480/1
 =480
- Cycle Time = 2.5 minutes
 Daily Capacity = 480/2.5
 =192 units

Minimum # of Work Stations

- N=(DO*∑TT)/OT
 Where
 DO=Desired Output
 TT=Task Times
 OT=Operating Time
- N=(480*2.5)/480
 =2.5
 Or 3 work stations

Station 1

Station 2

Station 3

.1 + .7

1

.5 + .2

8.=

=1

=.7

Bottleneck = Station 2

Capacity = 480/1

= 480

Line Problem

<u>lask</u>	Immediate Predecessor	Task Time	
Α		.2	
В	A	.2	
C		.8	
D	C	.6	
E	В	.3	
F	D,E	1.0)
G	F	.4	
Н	G	.3	
	Sum of Task Time	s 3.8	3

Desired Output=400

- Cycle Time=OT/DO
 - =480/400
 - =1.2 minutes (target cycle time)
- Minimum # of Work Stations
 - =(DO*∑TT)/OT
 - =(400*3.8)/480
 - =3.2 or 4 stations

