Tutorial-3

Natural convection, Boiling and Condensation 5th-6th Feb 2020

Exercise 1. A number of thin plates are to be cooled by vertically suspending them in a water bath at 20 °C. If the plates are initially at 54 °C and are 0.15 m long, what minimum spacing would prevent interference between their free convection boundary layers?

Exercise 2. A circular copper pan of 0.3 m diameter is submerged in saturated water. The metal surface temperature is maintained at 118 °C by using electric heater. What should be the power supply to the heater so that the temperature of the plate is maintained? (Pressure = 1 atm)

Exercise 3. The outer surface of a vertical tube is maintained at 50 °C by flow of cooling water through the tube (inside fluid is CW). The tube is 1 m long and has an outer diameter of 80 mm. The tube is exposed to saturated steam at 1 atm. What is the rate of heat transfer to the coolant and what is the rate at which steam is condensed at the surface?

Table 1: External Natural Convection Correlations. Source: Fundamentals of Heat and Mass Transfer, Incropera et al., Seventh Edition

Condition	Correlation									
Vertical plate, Laminar flow. Analytical solution of the velocity and thermal boundary layer. Dimensionless velocity profile	Figure 9.4 of Incropera et al. (7th Ed.)									
Vertical plate, Laminar flow (Ra $< 10^9$), Local Nu. All Pr. Property evaluated at T_f	$Nu_x = (Gr_x/4)^{1/4} \frac{0.75\sqrt{Pr}}{\left(0.609 + 1.221\sqrt{Pr} + 1.238Pr\right)^{1/4}}$									
Vertical plate, Laminar flow (Ra $< 10^9$), Average Nu. All Pr. Property evaluated at T_f	$\overline{Nu_L} = 4/3Nu_L$									
Vertical plate, Turbulent flow ($10^9 < \text{Ra}$; 10^{13}). Property evaluated at T_f	$\overline{Nu} = 0.10Ra^{1/3}$									
Horizontal cylinder, $Ra_D < 10^{12}$ Property evaluated at T_f .	$\sqrt{\overline{Nu}} = 0.60 + \frac{0.387 Ra_D^{1/6}}{\left[1 + (0.559/Pr)^{9/16}\right]^{8/27}}$									
Sphere. Property evaluated at T_f . $Ra_D < 10^{11}$; $Pr > 0.7$	$\overline{Nu} = 2 + \frac{0.589Ra_D^{1/4}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}}$									

Table 2: Correlations for boiling. Source: Fundamentals of Heat and Mass Transfer, Incropera et al., Seventh Edition. Property evaluated at T_{sat} . Refer to the text for various constants such as C_{sf} and n

Condition	Correlation
Nucleate pool boiling (Rohsenow correlation)	$q'' = \mu_l \lambda \left[\frac{g(\rho_l - \rho_v)}{\sigma} \right]^{\frac{1}{2}} \left(\frac{c_p \Delta T}{C_{sf} \lambda Pr^n} \right)^3$
Maximum heat flux	$q_{max}^{"} = C\lambda\rho_v \left[\frac{\sigma g(\rho_l - \rho_v)}{\rho_v^2}\right]^{\frac{1}{4}}$
Minimum heat flux	$q_{min}'' = C\lambda \rho_v \left[\frac{\sigma g(\rho_l - \rho_v)}{(\rho_l + \rho_v)^2} \right]^{\frac{1}{4}}$

Table 3: Heat Transfer Correlations for Condensation on a vertical surface. $Re_{\delta} \equiv 4\Gamma/\mu_{l}$. Properties are evaluated at T_{f} except ρ_{v} and λ which are evaluated at T_{sat} . The condensate film is always considered to be fully developed.

Condition	Correlation
Flat plate. Laminar flow; $Re_{\delta} < 30$	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = 1.47 Re_{\delta}^{-1/3}$
	$Re_{\delta} = 3.78 \left[\frac{k_l L (T_{sat} - T_s)}{(\nu^2/g)^{1/3} \mu_l \lambda} \right]^{3/4}$
Flat plate. Transition region; $30 < Re_{\delta} < 1800$	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = \frac{Re_{\delta}}{1.08Re_{\delta}^{1.22} - 5.2}$
	$Re_{\delta} = \left[\frac{3.7k_l L(T_{sat} - T_s)}{(\nu^2/g)^{1/3} \mu_l \lambda} Pr^{0.5} + 4.8 \right]^{0.82}$
Flat plate, Turbulent flow; $Re > 1800$	$\frac{\overline{h_L}(\nu_l^2/g)^{1/3}}{k_l} = \frac{Re_{\delta}}{8750 + 58Pr_l^{-0.5}(Re_{\delta}^{0.75} - 253)}$
	$Re_{\delta} = \left[\frac{0.069k_lL(T_{sat} - T_s)}{(\nu^2/g)^{1/3}\mu_l\lambda} Pr^{0.5} - 151Pr^{0.5} + 253 \right]^{4/3}$
Horizontal tube	$\overline{h_D} = 0.729 \left(\frac{g\rho_l(\rho_l - \rho_v)k_l^3 \lambda}{\mu_l(T_{sat} - T_s)D} \right)^{1/4}$

Table A.6 Thermophysical Properties of Saturated Water^a

er-	ē, ⊗	15																			
Temper-	auure, T (K)	273.15	275	280	285	290	295	300	305	310	315	320	325	330	335	340	345	350	355	360	365
Expansion Coef- cient, $\beta \cdot 10^6$ (K ⁻¹)		-68.05	-32.74	46.04	114.1	174.0	227.5	276.1	320.6	361.9	400.4	436.7	471.2	504.0	535.5	266.0	595.4	624.2	652.3	6.769	707.1
Surface Tension,	(N/m)	75.5	75.3	74.8	74.3	73.7	72.7	71.7	70.9	70.0	69.2	68.3	67.5	9.99	65.8	64.9	64.1	63.2	62.3	61.4	60.5
Prandtl Number	Pr_g	0.815	0.817	0.825	0.833	0.841	0.849	0.857	0.865	0.873	0.883	0.894	0.901	0.908	0.916	0.925	0.933	0.942	0.951	0.960	0.969
Prandtl Number	Pr	12.99	12.22	10.26	8.81	7.56	6.62	5.83	5.20	4.62	4.16	3.77	3.42	3.15	2.88	2.66	2.45	2.29	2.14	2.02	1.91
Viscosity Conductivity (N·s/m²) (W/m·K)	$k_g \cdot 10^3$	18.2	18.3	18.6	18.9	19.3	19.5	19.6	20.1	20.4	20.7	21.0	21.3	21.7	22.0	22.3	22.6	23.0	23.3	23.7	24.1
	$k \cdot 10^3$	695	574	582	590	869	909	613	620	628	634	640	645	650	959	099	664	899	671	674	<i>LL</i> 9
	$\mu_g \cdot 10^6$	8.02	8.09	8.29	8.49	8.69	8.89	60.6	9.29	9.49	69.6	68.6	10.09	10.29	10.49	10.69	10.89	11.09	11.29	11.49	11.69
	$\mu \cdot 10^6$	1750	1652	1422	1225	1080	626	855	692	695	631	577	528	489	453	420	389	365	343	324	306
ic at g·K)	$c_{p,g}$	1.854	1.855	1.858	1.861	1.864	1.868	1.872	1.877	1.882	1.888	1.895	1.903	1.911	1.920	1.930	1.941	1.954	1.968	1.983	1.999
Specic Heat (kJ/kg·K)	$c_{p,}$	4.217	4.211	4.198	4.189	4.184	4.181	4.179	4.178	4.178	4.179	4.180	4.182	4.184	4.186	4.188	4.191	4.195	4.199	4.203	4.209
Heat of Vapor-ization,	$(\mathbf{kJ/kg})$	2502	2497	2485	2473	2461	2449	2438	2426	2414	2402	2390	2378	2366	2354	2342	2329	2317	2304	2291	2278
Specic Volume (m³/kg)	v_g	206.3	181.7	130.4	99.4	2.69	51.94	39.13	29.74	22.93	17.82	13.98	11.06	8.82	7.09	5.74	4.683	3.846	3.180	2.645	2.212
	$v \cdot 10^3$	1.000	1.000	1.000	1.000	1.001	1.002	1.003	1.005	1.007	1.009	1.011	1.013	1.016	1.018	1.021	1.024	1.027	1.030	1.034	1.038
0	$p \text{ (bars)}^b$	0.00611	0.00697	0.00990	0.01387	0.01917	0.02617	0.03531	0.04712	0.06221	0.08132	0.1053	0.1351	0.1719	0.2167	0.2713	0.3372	0.4163	0.5100	0.6209	0.7514
Tempera-	ture, I	273.15	275	280	285	290	295	300	305_{7}	310	315	320	325	330	335	340	345	350	355	360	365