1 Set Theory

1.1 Basic Sets

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

$$\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$$

$$\mathbb{R} = real \ numbers$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$natural \ numbers$$

$$integers$$

$$rationals$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$complex \ numbers$$

1.2 Set Operations

- $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$ (non-zero reals)
- $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ (positive reals)

1.3 Set Relations

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$
$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Venn diagrams are provided for visual representation.

$$A \setminus B = \{x \in A : x \notin B\}$$
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

2 Functions

Let $(a_n)_{n\in\mathbb{N}}$ be an infinite sequence (where $n\in\mathbb{N}$).

Ex 1:
$$I: \mathbb{N} \to \mathbb{N}$$

$$A_n = \{n, n+1\}$$

Definition

Ex 2:
$$I: \mathbb{R}^* \to \{x \in \mathbb{R} : x > 0\}$$

 $A_x = \{x, -x\}$

Domain and codomain

$$\bigcup_{n \in \mathbb{N}} A_n = \{ n : n \in \mathbb{N} \text{ for some } n \in \mathbb{N} \}$$

$$\bigcap_{n \in \mathbb{N}} A_n = \{ n : n \in A_n \text{ for every } n \in \mathbb{N} \}$$

These are *countable* operations.

Any $f: A \to B$ is a subset (not \in) of $A \times B$ satisfying:

- $\forall a \in A, \exists b \in B : (a, b) \in f$
- If $(a, b_1) \in f$ and $(a, b_2) \in f$, then $b_1 = b_2$

Note: If $\forall x \in X \exists A : x \in A$, then $X \subseteq A$.

f is called the *graph* of the function (by definition).

If $A' \subseteq A$, then $f|_{A'} : A' \to B$ is called the *restriction* of f to A'.

3 Function Properties

If $A' \subseteq A$, then the *image* of A' under $f: A \to B$ is:

$$f(A') = \{ f(a) : a \in A' \}$$

This is called the *restriction* of f to A' (denoted by $f|_{A'}$).

- 1. $f: \mathbb{R} \to \mathbb{R}$
- 2. $f: \{x\} \to \{y\}$
- 3. $f: A \setminus \{x\} \to B \setminus \{y\}$
- 4. $g: B \to C$
- 5. $f: \frac{1}{x} \mapsto \frac{1}{x^2}$
- 6. D: f(x) = 2f'(x)