階層構造データの高速集計の原理・説明図 Hyper Tree(HT)技術のコア部分

[出典:特許公報·特許第3230677号=平成13年11月19日発行]

図1 入力データ列: 上から順に入ってくる

(b)	店舗	商品	注文個数	ーーレコード1(1番目のデータ)
	A1	B2	N1	

(c)	店舗	商品	注文個数	ーーレコード2(2番目のデータ)
	A1	B1	N2	

(e)	店舗	商品	注文個数	ーーレコード4(4番目のデータ)
	A2	B1	N4	

図3 階層構造でデータを管理するインデックス・テーブル (これで、高速集計のアイデアを実現)

		ノード	レベル	L Link	C Link	R Link	値
(a)	1	ROOT	0	4	-1	-1	N1+N2+N3+N4
(b)	2	B2	1	3	1	6	N1
	3	A1	2	-1	2	-1	N1
(c)	4	B1	1	5	1	2	N2+N4
	5	A 1	2	-1	4	8	N2
(d)	6	В3	1	7	1	-1	N3
	7	A1	2	-1	6	-1	N3
(e)	8	A2	2	-1	4	-1	N4

表中の-1は、下位なし、上位なし、同位の下なしを示す。

L Link: 下位を指すリンク C Link: 上位を指すリンク

R Link: 同位の、すぐ下の弟妹を指すリンク

(この3つのリンクで、各ノードに関する階層関係を動的に管理)

値: 各ノードの傘下のデータの合計値を記録

[図2] 入力データを商品(Bi)をキーに階層構造化 しながら、商品別・店舗別に逐次集計する。

入力データが入る度に (矢印の上から順に) ノード間の関係を更新しながら、ノード毎に 逐次集計を行なう。