

- 2.1 순차형의 알고리즘 작성 요령
- 2.2 순차형 예제 및 문제
- 2.3 순차형 연습문제

- 순차형이란 어떤 문제를 해결하기 위한 처리 순서를 일렬로 나열시킨 구조로, 위에서부터 순서대로 실행하는 형식이다.
- 처리 순서의 위, 아래가 상호 밀접한 관련성이 있을 수도 있고, 관련 서 없이 독립적일 수도 있다.
- 아래 순서도에서 처리 A, B, C는 상호 관련성이 있을 수도 없을 수도 있다.
- 예1은 20과 10을 더해 출력하고, 빼서 출력 하는 것으로, 둘 사이에 순서는 관련성이 없다. 그러나 예2는 a와 b의 값을 교환하는 것으로, 처리 순서 사이에 밀접한 관련성이 있다.

- 슈도 코드(pseudocode)는 특정 프로그래밍 언어의 문법을 따라 씌여진 것이 아니라, 일반적인 언어로 코드를 흉내내어 알고리즘을 써놓은 코드를 말한다.
- 따라서, 그냥 일을 순서를 한글이나 영어, 또는 섞어서 표현해도 된다.
- 그러나, 알고리즘을 보다 정확하고 명확하게 표현하기 위해, 이 책에서 슈도코드는 C언어의 기본적인 문법을 이용해 표현한다.
- 그렇다고, C언어의 문법을 정확히 따르는 것은 아니다.
- 은행에 입금하는 절차를 알고리즘으로 표현

한글 슈도코드	영어 슈도코드	C-like 슈도코드
 계좌를 확인한다. 만약에 계좌가 없다 면 끝낸다. 입금액을 입력 받는 다. 	 BEGIN Read Account If Account is not found then exit Read Deposit 	 main() { int account, Deposit, Balance, newD; scanf("%d", &Account); If (Account < 0) exit(1); scanf("%d", &Deposit);
4. 잔액을 읽어들인다. 5. 잔액에 입금액을 더 한다.	6. Read Balance7. newD = Deposit + Balance8. Write newDeposit	 scanf("%d", &Balance); newD = Deposit + Balance; printf("%d", newD);
6. 새로운 잔액을 저장 한다.	9. Print "End of Deposit"10. END	9. printf("End of Deposit₩n");10. }
7. 입금처리 끝 메시지 를 출력한다.		

- 슈도코드는 C언어의 기본적인 명령어와 함수를 사용해 표현한다.
- 데이터(data)는 정수, 실수, 문자, 문자열(스트링) 등으로 표현한다.
- 상수(constant) : 프로그램에서 다루는 데이터(값)
 - 정수: 10, -5, 0, 20, -15
 - 실수: 19.5, -21.3, 5.0, -7.3
 - 문자 : 'a', '+', '가', '6'
 - 문자열(스트링): "algorithm", "coding", "1234", "-50.45"
- 변수(variable) : 상수 데이터가 담길 그릇(메모리 주소)
 - 변수명은 메모리 주소는 숫자인데, 사람이 기억하기 쉬운 심볼로 대신 표현
 - 영문자와 숫자로 표현하며, 어떤 데이터 형을 담을 것인가를 선언하고 사용
 - 데이터형 선언은, 정수 int(integer), 실수(float), 문자(char), 문자열(char*)

```
1 main() {
2 int n1, n2;  // 정수형 변수 선언
3 float f1;  // 실수형 변수 선언
4 char ch;  // 문자형 변수 선언
5 char* str;  // 문자열형 변수 선언
6 n1 = 10;
7 n2 = n1 + 10;
8 f1 = 5.54;
9 ch = 'a';
10 str = "algorithm";
11 }
```


- 컴퓨터 데이터의 최소 단위는 이진수(0과 1)라는 의미인 비트(bit, binary digit)이며, 정보 저장 메모리는 8bit를 묶은 바이트(byte)가 최소 단위이므로, 정보의 읽기와 쓰기의 기본 단위는 바이트가 된다.
- 바이트는 16진수로 0x00~0xFF이며, 십진수로는 0~255가 된다.

Binary	Octal	Decimal	Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	C
1101	15	13	D
1110	16	14	E
1111	17	15	F
Base-2	Base-8	Base-10	Base-16

■ 256 크기로 영숫자와 특수문자 등 키보드의 문자를 실제 컴퓨터에 저장하기 위해 대응시켜 놓은 코드가 아스키(ASCII, American Code for Information Interchange)이다. 다음 표는 10진수(Decimal), 16진수(Hexadecimal), 8진수(Octal) 로 대응되는 문자(Character)를 나타 낸 것이다.

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
32	20	40	[space]	64	40	100	@	96	60	140	*
33	21	41	!	65	41	101	A	97	61	141	a
34	22	42		66	42	102	В	98	62	142	b
35	23	43	#	67	43	103	C	99	63	143	C
36	24	44	\$	68	44	104	D	100	64	144	d
37	25	45	%	69	45	105	E	101	65	145	e
38	26	46	&	70	46	106	F	102	66	146	f
39	27	47		71	47	107	G	103	67	147	g
40	28	50	(72	48	110	Н	104	68	150	h
41	29	51)	73	49	111	1	105	69	151	i
42	2A	52	*	74	4A	112	J	106	6A	152	j
43	2B	53	+	75	4B	113	K	107	6B	153	k
44	2C	54	,	76	4C	114	L	108	6C	154	1
45	2D	55	-	77	4D	115	М	109	6D	155	m
46	2E	56		78	4E	116	N	110	6E	156	n
47	2F	57	/	79	4F	117	0	111	6F	157	0
48	30	60	0	80	50	120	P	112	70	160	p
49	31	61	1	81	51	121	Q	113	71	161	q
50	32	62	2	82	52	122	R	114	72	162	r
51	33	63	3	83	53	123	S	115	73	163	S
52	34	64	4	84	54	124	Т	116	74	164	t
53	35	65	5	85	55	125	U	117	75	165	u
54	36	66	6	86	56	126	V	118	76	166	v
55	37	67	7	87	57	127	W	119	77	167	w
56	38	70	8	88	58	130	X	120	78	170	×
57	39	71	9	89	59	131	Υ	121	79	171	У
58	3A	72	:	90	5A	132	Z	122	7A	172	z
59	3B	73	;	91	5B	133	[123	7B	173	{
60	3C	74	<	92	5C	134	\	124	7C	174	
61	3D	75	=	93	5D	135]	125	7D	175	}
62	3E	76	>	94	5E	136	^	126	7E	176	~
63	3F	77	?	95	5F	137	_	127	7F	177	

■ 변수(variable)의 데이터형은 프로그래밍 언어별로 다를 수 있으며, C언어의 경우 변수형별 크기는 다음 표와 같다.

구분	자료형	범위	明印置	
	char	-128 ~ 127	1(8)	
	unsigned char	0 ~ 255	1(8)	
정수형	short	-32768 ~ 32767	2(16)	
	int	-2,147,483,648 ~ 2,147,483,647	4(32)	
	long	-2,147,483,648 ~ 2,147,483,647	4(32)	
	unsigned short	0~65535	2(16)	
	unsigned int	0~4,294,967,295	4(32)	
	unsigned long	0~4,294,967,295	4(32)	
실수형	float	8,4×10 ⁻³⁷ ~ 3,4×10 ³⁸	4(32)	
	double	2,2×10 ⁻³⁰⁸ ~ 1,8×10 ³⁰⁸	8(64)	
나열형	enum	정수를 대신하여 사용하는 별명, int형의 크기		
무치형	void	실제 자료는 없음을 명시적으로 선언		

- 숫자 연산을 위한 연산자(operator)로는, +, -, *, /, % 등이 있다.
- 출력은 printf()로, 괄호 안에는 형식지정자와 출력할 변수를 넣는다.
 - printf("출력 양식", 변수1, 변수2...);
 - printf()의 형식지정자로 정수(decimal number)는 "%d" 로, 실수는 "%f", 문자는 "%c" 로, 문자열(스트링)은 "%s"로 한다.
 - 형식 지정자 다음에는 출력할 변수가 오는데 콤마로 구분한다.
- 입력은 scanf()로, scanf()의 "%d"는 printf()와 같다.
 - scanf("변환 문자", &변수1, &변수2...);
 - C언어에서 scanf() 사용시, 변수명 앞에 &를 붙여야 한다.
 - &를 붙이는 이유는, C언어 교재를 참고하고, 여기서는 그냥 붙여 사용하기로 한다.

```
■ 예제 1
                                                        10 20
           main() {
                                                        합은 30
                                  //정수형 변수 선언
              int n1, n2, add, sub;
                                                        차는 -10
              scanf("%d %d", &n1, &n2); // 두 수를 입력 받음
                                   // 합을 계산
              add = n1 + n2;
              sub = n1 - n2;
                                   // 차를 계산
              printf("합은 %d", add);
                                  // 합을 출력함
              printf("차는 %d", sub);
                                  // 차를 출력함
        6
```

2.2 순차형 예제 1

두 수를 더한 결과에서, 뺀 결과를, 곱해, 그 값을 출력하는 프로그램의 순 서도와 슈도코드를 작성하시오.

flowchart

pseudocode

```
main() {
                                                   n1
                                                               n2
        int n1, n2, add, sub, mul; //변수 선언
3
        n1 = 20;
        n2 = 10:
                                                  add
                                                              sub
5
        add = n1 + n2;
                                                        30
                                                                    10
6
        sub = n1 - n2;
        mul = add * sub;
                                                  mul
8
        printf("%d, %d, %d", add, sub, mul);
                                                        300
9
```

실행 예

30, 10, 300

생각해보기

- 3,4번 라인이 서로 바뀌면 어떤 문제가 있을까? - 5,6번 라인이 서로 바뀌면 어떤 문제가 있을까? - 6,7번 라인이 서로 바뀌면 어떤 문제가 있을까? - 3단계의 순차 계산을 한 단계로 묶어서 표현해 보자.

2.2 순차형 예제 2

수량, 단가를 입력받아 금액을 계산한 후, 25%를 할인하여, 원래 금액, 할인액, 지불금액을 출력하는 순서도와 슈도코드를 작성하시오.

flowchart 작 시 변수선언 및 초기화 수량, 단가 금액 계산 할인액 계산 지불금액 계산 금액,할인액,지불금액

종

류

pseudocode

```
1 main(){
2 int quantity, unitPrice, amount, discountAmount, paymentAmount;
3 float discountRate = 0.25;
4 scanf("%d %d", &quantity, &unitPrice);
5 amount = quantity * unitPrice;
6 discountAmount = amount * discountRate;
7 paymentAmount = amount - discountAmount;
8 printf("금액 할인액 지불액\n");
9 printf("%d %d %d\n", amount, discountAmount, paymentAmount);
10 }
```

실행 예

```
30 10000
금액 할인액 지불액
300000 75000 225000
```

2.2 순차형 예제 3

x개의 사탕을 y명의 학생들에게 똑같이 나누어주려고 할 때, 각 학생들이 받을 수 있는 사탕의 수와 남는 사탕의 수를 계산해 출력하는 순서도와 슈도코드를 작성하시오.

flowchart

pseudocode

```
1 main() {
2 int x, y, take, remain;
3 scanf("%d %d", &x, &y);
4 take = x / y;
5 remain = x % y;
6 printf("학생들이 받을 사탕의 수 %d \n", take);
7 printf("남은 사탕의 수 %d \n", remain);
8 }
```

실행 예

```
20 3
학생들이 받을 사탕의 수 6
남은 사탕의 수 2
```

국어, 영어, 수학 점수를 입력받아, 총점과 평균을 구해 출력하는 프로그램의 순서도와 슈도코드를 작성하시오.

flowchart

pseudocode

```
1 main() {
2 int kor, eng, math; // 입력받은 수를 저장할 변수 선언
3 int tot, avg; //계산 결과를 저장할 변수 선언
4 scanf("%d %d %d", &kor, &eng, &math);
5 [ ]
6 [ ]
7 printf("총점은 %d, 평균은 %d /n", tot, avg);
8 }
```

실행 예

```
90 80 100
총점은 270, 평균은 90
```

생각해보기

- 총점을 구해야, 평균을 구할 수 있다.
- 평균을 소수점까지 구해 출력하도록 수정해보자.
- 5,6번 라인의 2단계의 순차 계산을 한 단계로 묶어서 표현해 보자.

두 수를 입력받아 입력받은 두 수를 상호 교환하여 출력하는 순서도와 슈도코드를 완성하시오.

주머니 A에는 흰 공이 x개, 검은 공이 y개 있고, 주머니 B에는 흰 공이 x1개, 검은 공이 y1개 있다. 두 주머니에서 각각 공을 한 개씩 꺼낼 때 두 공이 모 두 흰 공일 확률(probability)을 구하는 순서도와 슈도코드를 작성하시오.

5528

10.0 퍼센트


```
pseudocode
   main(){
        int x, y, x1, y1;
        float A, B, pro;
3
        scanf('%d %d %d %d", &x, &y, &x1, &y1);
6
       pro = (A * B) * 100;
8
        printf("%f 퍼센트", pro);
9
   실행 예
```

영화 타이타닉에 대한 네티즌 평가에서 x명이 참여한 A사이트에서는 평균 점수가 xScore점 이었으며, y명이 참여한 B사이트의 평균 점수는 yScore이다. 두 사이트 전체 참여자의 평균 점수를 출력하는 순서도와 슈도코드를 작성하시오.

floughort

pseudocode

```
1 main(){
2 int x, xScore, y, yScore, A, B;
3 float avg;
4 scanf("%d %d %d %d", &x, &xScore, &y, &yScore);
5 [ ]
6 [ ]
7 [ ]
8 printf("평균점수는%f", avg);
9 }
```

x명 참여

평점 평균 xScore

y명 참여

평점 평균 yScore

실행 예

100 9 100 8 평균 점수는 8.5

생각해보기

(xScore + yScore) / 2 의 계산식으로 평균 평점을 구해보고, 원래의 계산식 에서 구한 평균과 비교해보자.

같은 크기의 컵 A에는 물이 3만큼 컵B에는 물이 7만큼 들어있다. 컵A에는 물이 초당 x만큼씩 나오는 수도꼭지를 컵 B에는 물이 초당 y만큼씩 나오 는 수도꼭지를 틀었을 때 몇 초 후에 컵 A에 있는 물의 양이 컵 B에 있는 물의 양보다 많아지는가.

처리조건

x, y는 양의 정수이며 x는 y보다 더 크다.

flowchart

Hint

3 + xn > 7 + yn, n > 4 / (x - y)

pseudocode

가로가 6m이고, 세로가 1과2/3m 인 직사각형 모양의 벽에 색칠을 하는데 1과1/3L(리터)의 페인트가 들었다. 1L의 페인트로 몇 m^2 의 벽을 칠했는지와 $1m^2$ 의 벽을 칠하는데 몇 L의 페인트가 들었는지를 출력하는 순서도와 슈도코드를 작성하시오.

Hint

벽의 넓이 = 가로 * 세로 1L로 칠할 수 있는 넓이 = 벽의 넓이 / 투입된 페인트의 양(L) 1m의 벽을 칠하는데 드는 페인트(L) = 투입된 페인트의 양(L) / 벽의 넓이

pseudocode

```
main(){
      float garo = 6.0;
3
      float sero = [
      float paint = [
4
5
      float literArea, meterPaint;
      int area = garo * sero;
      literArea = [
                            ] //1L의 페인트로 칠 한 벽의 넓이
      meterPaint = [
                            ] //1m²의 벽을 칠한 페인트의 양
      printf("1L의 페인트로 칠한 벽의 넓이 : %f\n", literArea);
6
      printf("1제곱 미터의 벽에 칠한 페인트의 양: %f\n", meterPaint);
8
```

실행 예

```
1L의 페인트로 칠한 벽의 넓이 : 7.500000
1제곱 미터의 벽을 칠한 페인트의 양 : 0.133333
```

100부터 999까지의 숫자(3자리수) 중 각 자리의 수를 더하는 슈도코드를 작성하시오.

flowchart

100 이하 숫자 추출

10의 자리 수 계산

1의 자리 수 계산

각 자리수의 숫자 합

Hint

```
10진수 123은 다음과 같다.
(1 * 10<sup>2</sup>) + (2 * 10<sup>1</sup>) + (3 * 10<sup>0</sup>)
(1 * 100) + (2 * 10) + (3 * 1)
1+2+3=6
```

pseudocode

실행 예

123 6

생각해 보기

2진수 값 101의 자리수를 더하는 알고리즘의 슈도코드를 작성해보자. 20

초 단위의 시간을 입력 받아서 시간, 분, 초로 변경하는 순서도와 슈도코 드를 작성하시오.

flowchart

종

료

Hint

- ① 1시간은 3600초
- ② 1분은 60초
- ③ 예를 들어, 7265초는 2시 1분 5초이다.

pseudocode

```
1 main(){
2 int sec, min, hour, inputSec; //초, 분, 시간, 입력한 초단위 시간
3 scanf("%d", &inputSec);
4 hour = inputSec / 3600;
5 inputSec = [ ]
6 min = inputSec / 60;
7 sec = [ ]
8 printf("%d시간 %d분 %d초", hour, min, sec);
9 }
```

실행 예

7327 2시간 2분 7초

■ 2.2 순차형 문제 9

Byte 를 입력받아, KB, MB, GB, TB로 출력하는 순서도와 슈도코드

를 작성하여라

flowchart

pseudocode

```
1 main()
2 {
  int byte, KB, MB, GB, TB;
 printf("byte...");
  scanf("%d", &byte);
6 KB = [
7 \quad MB = [
8 	ext{ GB} = [
  TB = [
10 printf("KB : %d\n", KB);
11 printf("MB: %d\n", MB);
12 printf("GB : %d\n", GB);
13 printf("TB: %d\n", TB);
14 }
```


택시의 주행 요금으로, 주행거리를 출력하는 슈도코드를 작성하시오.

처리조건

- ① 기본요금: 2000m까지는 3000원
- ② 가산요금: 400m마다 600원 추가
- ③ 요금은 3000원 이상이 입력된다고 가정한다.

Hint

그림으로 요금과 거리 관계를 표현하면 다음과 같다.

직사각형 실습실의 가로와 세로의 비와 실습실 둘레를 미터(meter)로 입력하면 실습실의 넓이가 몇 m²인지 계산하는 순서도와 슈도코드를 작성하시오.

참고

예를들어, 가로,세로 비가 8:7이고, 둘레가 300m라면, (가로)+(세로) = 300÷2 = 150(m) 이므로

가루:

$$150 \times \frac{8}{8+7} = 150 \times \frac{8}{15} = 80$$

세로:

$$150 \times \frac{7}{8+7} = 150 \times \frac{7}{15} = 70$$

따라서 실습실 넓이는 80×70=5600 이므로, 답은 5600 m² 이다.

도서관에 1년 동안 구입한 도서 수는, 교양도서(30%), 전공도서(30%), 취업도 서(20%), 기타(20%) 로 구입한다. 4가지 도서 중 한 가지 도서의 구입 수를 입 력하면, 도서관에서 구입한 종류별 도서 권수와 총 도서는 모두 몇 권인지 구 하는 슈도코드를 작성하시오.

참고

교양도서를 84권 구입했다면, 도서관 구입 도서 수를 □권이라 하면,

$$\square \times \frac{30}{100} = 84$$
 $\square = 84 \div \frac{30}{100} = 84 \times \frac{100}{30} = 280$

이므로 도서관 구입 도서는 모두 280권이다.

버스를 아침 8시 40분 30초에 타고 학교에 도착한 시간 10시 25분 40초이다. 중간에 역이 12개 있다. 학교까지의 통학 시간과 역 사이에 평균 시간을 구하는 슈도코드를 작성하시오.

처리조건

- ① 통학시간은 시간, 분, 초로 구한다.
- ② 역 사이의 평균 시간은 초로 구한다. 8시 40분 30초

pseudocode

실행 예

통학시간은 1시간 45분 10초입니다. 역 사이의 평균시간은 525초입니다.

A지점에 있는 사람이 차량으로 B지점으로 이동하려 한다. 얼마의 연료와 시간이 필요한지를 계산하는 슈도코드를 작성하시오.

처리조건

- ① 1L당 5Km를 간다고 가정한다.
- ② 속도는 25Km/h 라고 가정한다.
- ③ 루트는 sqrt()로 한다.

Hint

두 지점 사이의 거리는 피타고라스 정리를 이용해 구한다.

※ 직각삼각형 ABC에서 변 AB길이의 제곱은 변 BC길이의 제곱과 변 AC길이의 제곱의 합과 같다. 이를 식으로 풀이하면

$$c^2 = b^2 + a^2$$

$$c = \sqrt{(b^2 + a^2)}$$

야구 선수의 타수와 안타수를 입력받아 타율을 계산하여 출력하는 슈도코드를 작성하시오.

처리조건

- ① 타율은 안타수를 타수로 나눈 것을 의미한다.
- ② 타율은 소수점 3자리에서 반올림한다.

Hint

반올림하는 순서 예 타율을 0.21653이라고 가정한다.

- ① 0.21653에 0.005를 더한다.(0.22167)
- ② 더한 결과에 100을 곱한다.(22.167)
- ③ 곱한 결과를 정수만 취한다.(22)
- ④ 점수를 100으로 나눈다.(0.22)

오리와 돼지가 37마리 있고 그들 다리의 합은 모두 102개이다. 오리와 돼 지는 각각 몇 마리인지 계산하는 슈도코드를 작성하시오.

flowchart

처리조건 오리는 다리가 2개, 돼지는 다리가 4개이다.

Hint

모형화를 한다.

- ① 미지수(변수)화 하자. 오리를 x로, 돼지를 y로 한다.
- ② 미지수의 개수만큼 식을 만들어야 한다.
- ③ 주어진 문제를 식으로 만들자. x + y = 372x + 4y = 102
- ④ x(오리), y(돼지)의 값을 찾자