The parameter λ is introduced to account for non-saturation effects. Parameters A_1 and A_2 can be extracted.

3.5 Unified Saturation Current Expression

A unified expression for the saturation current from the subthreshold to the strong inversion regime can be formulated by introducing the V_{gsteff} function into Eq. (2.6.15). The resulting equations are the following

$$I_{ds} = \frac{I_{dso(Vdsat)}}{1 + \frac{R_{ds}I_{dso(Vdsat)}}{V_{dsat}}} \left(1 + \frac{V_{ds} - V_{dsat}}{V_A}\right) \left(1 + \frac{V_{ds} - V_{dsat}}{V_{ASCBE}}\right)$$
(3.5.1)

where

$$V_{A} = V_{Asat} + \left(1 + \frac{P_{vag}V_{gsteff}}{E_{sat}L_{eff}}\right) \left(\frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBLC}}\right)^{-1}$$
(3.5.2)
$$(3.5.2)$$

$$V_{Asat} = \frac{E_{sat}L_{eff} + V_{dsat} + 2R_{DS}V_{sat}C_{ox}W_{eff}V_{gsteff}[1 - \frac{A_{bulk}V_{dsat}}{2(V_{gsteff} + 2v_t)}]}{2/\lambda - 1 + R_{DS}V_{sat}C_{ox}W_{eff}A_{bulk}}$$

$$V_{ACLM} = \frac{A_{bulk}E_{sat}L_{eff} + V_{gsteff}}{P_{CLM}A_{bulk}E_{sat}litl} (V_{ds} - V_{dsat})$$
(3.5.4)