CS3061 Artificial Intelligence

Submit to Blackboard by Monday, March 25th (23:59)

Recall from lecture¹ that Sam is either fit or unfit

$$S = \{ \text{fit, unfit} \}$$

and has to decide whether to exercise or relax

$$A = \{\text{exercise, relax}\}$$

on the basis of the following (probability, reward)-matrices (p(s, a, s'), r(s, a, s'))for row s, column s' in table with corner a

exercise	fit	unfit	relax	fit	unfit
fit	.99, 8	.01, 8	fit	.7, 10	.3, 10
${ m unfit}$.2, 0	.8, 0	unfit	0, 5	1, 5

The γ -discounted value of (s, a) is

$$\lim_{n\to\infty}q_n(s,a)$$

where

$$q_0(s,a) := p(s,a,\text{fit})r(s,a,\text{fit}) + p(s,a,\text{unfit})r(s,a,\text{unfit})$$

$$V_n(s) := max(q_n(s,\text{exercise}),q_n(s,\text{relax}))$$

$$q_{n+1}(s,a) := q_0(s,a) + \gamma(p(s,a,\text{fit})V_n(\text{fit}) + p(s,a,\text{unfit})V_n(\text{unfit})).$$

In particular, $\gamma = 0.9$ leads to the following $q_n(s, a)$ for n = 0, 1, 2

	exercise	relax	π
fit	8, 16.955, 23.812	10, 17.65, 23.685	relax, relax, exercise
unfit	0, 5.4, 10.017	5, 9.5, 13.55	relax, relax, relax

For variety, let us add a state to S, dead, for the new state set

$$S' = \{ \text{fit, unfit, dead} \}$$

and revise the functions p and r to p' and r' as follows. Let us introduce a chance $\frac{1}{10}$ of death from exercise

$$p'(s, \text{exercise,dead}) = \frac{1}{10} \quad \text{for } s \in S$$

$$p'(s, \text{exercise}, s') = \frac{9 p(s, \text{exercise}, s')}{10} \quad \text{for } s, s' \in S$$

¹It may help to read Poole & Mackworth, 9.5 Decision Processes.

and a chance $\frac{1}{100}$ of death from relaxing

$$p'(s, \text{relax,dead}) = \frac{1}{100} \text{ for } s \in S$$

$$p'(s, \text{relax}, s') = \frac{99 p(s, \text{relax}, s')}{100} \text{ for } s, s' \in S$$

and treat death as a sink

$$p'(\text{dead}, a, \text{dead}) = 1$$
 for $a \in A$
 $r'(s, a, \text{dead}) = 0$ for $s \in S', a \in A$.

Your task is to write a program that given

a positive integer n, a γ -setting G (0 < G < 1), and a state $s \in S'$ returns the values

$$q_n(s, \text{exercise})$$
 and $q_n(s, \text{relax})$

for $\gamma = G$ and the revised functions p' and r'. You may use Python or if you prefer, Prolog.