Lab 2 Report

黄偉哲 107598019 2019/3/30

1 Test Plan

1.1 Test requirements

The Lab 2 requires to (1) select 15 methods from 6 classes of the SUT (GeoProject), (2) design Unit test cases by using **input space partitioning (ISP)** technique for the selected methods, (3) develop test scripts to implement the test cases, (4) execute the test scripts on the selected methods, (5) report the test results, and (6) specify your experiences of designing test cases systematically using the ISP technique.

In particular, based on the statement coverage criterion, the **test requirements** for Lab 2 are to design test cases with **ISP** for each selected method so that "each statement of the method will be covered by <u>at least one test case</u> and the <u>minimum</u> statement coverage is 70% (greater than Lab 1)".

1.2 Test Strategy

To satisfy the test requirements listed in Section 1, a proposed strategy is to

- (1) select **those 10 methods that were chosen in Lab1** and **5 new methods** that are NOT selected previously. If possible, some of the methods do NOT have <u>primitive types</u> of input or output parameters (if possible).
- (2) set the objective of the minimum statement coverage to be greater than that of Lab 1 and adjust the test objective based on the time available (if necessary).
- (3) design the test cases for those selected methods by using the **input space** partitioning (ISP) technique.

1.3 Test activities

To implement the proposed strategy, the following activities are planned to perform.

No.	Activity Name	Plan hours	Schedule Date
1	Study GeoProject	1	2019/3/26
2	Learn ISP and JUnit	1	2019/3/26
3	Design test cases for the selected methods	2	2019/3/27
4	Implement test cases	3	2019/3/28

5	Perform tests	1	2019/3/29
6	Complete Lab2 report	1	2019/3/30

1.4 Design Approach

The **ISP** technique will be used to design the test cases. Specifically, the possible <u>partitions</u> and <u>boundary values</u> of input parameters shall be identified first using the **Mine Map** and **domain knowledge** (if applicable). The possible **valid** <u>combinations of the partitions</u> (i.e., **all combination coverage**) as well as the boundary values shall be computed for the input parameters of each selected method. Each of the partition combination can be a possible test case. *Add more test cases by considering the possible values and boundary of the outputs for the methods or by using test experiences.*

1.5 Success criteria

All test cases designed for the selected methods must pass (or 90% of all test cases must pass) and the statement coverage should have achieved at least 70%.

2 Test Design

To fulfill the test requirements listed in section 1.1, the following methods are selected and corresponding test cases are designed.

The details of the design are given below:

The Excel file of test cases...

No.	Class	Method	Test Objective	st Objective Inputs	
				i = -75314, length = -6	"-29jk"
1	Base32	encodeBase32	encodeBase3 2(long i, int	i = -89563, length = 1	"-2rfv"
1	Daseoz	cheddebase32	length)	i = 66666, length = -8	"213b"
				i = 88888, length = 7	"0002qts"
2	Base32	decodeBase32	decodeBase3	hash = 29jw	75324
	Buscoz	decodeDase32	2(String hash)	hash = -29jk	-75314
			getCharIndex(c	ch = 'b'	10
3	Base32	getCharIndex	har ch)	ch = 'a'	"not a base32 character: a"
4	Base32	encodeBase32	encodeBase3 2(long i)	i = -6666	"- 0000000006h b"
			_(.59 ')	i = 75324	"0000000029j w"
5	GeoHash	top	top(String	hash = "-29xy"	"-2c8n"
	deoriasii	юр	hash)	hash = "29jw"	"29jx"
6	GeoHash	bottom	bottom (String	hash = "-30xx"	"-30xr"
	acoriasii	oottom	hash)	hash = "88eq"	"88em"
7	GeoHash	left	left (String	hash = "-32ty"	"-32tv"
,	dooridon	Tett	hash)	"66ру"	"66pw"
8	GeoHash	right	right (String	hash = "-00er"	"-00g2"
	Goor Idon	Tight	hash)	hash = "68jk"	"68js"
9	GeoHash	heightDegrees	heightDegrees(i	n = 2	5.625
	Goor Idon	merginez egrees	nt n)	ch = 14	5.24E-09
10	GeoHash	widthDegrees	widthDegrees(i	n = 13	5.4.19095158 5769653E-8
			nt n)	n = 6	1.10E-02
11	GeoHash	hashLengthToC overBoundingB ox	hashLengthTo CoverBoundin gBox(double topLeftLat,	topLeftLat = 25.0361156, topLeftLon = 121.4639264,	4

			double topLeftLon, double bottomRightLa t, double bottomRightLo	bottomRightLa t = 25.0289061, bottomRightLo n = 121.4889208	
			n)	topLeftLat = 25.0289061, topLeftLon = 121.4889208, bottomRightLa t = 25.0361156, bottomRightLo n = 121.4639264	4
				opLeftLat = 0, topLeftLon = 0, bottomRightLa t = 0, bottomRightLo n = 0	12
12	GeoHash	adjacentHash	adjacentHash(S tring hash,	hash = null, directioh: Direction.LEF T	"hash must be non-null"
			Direction direction)	hash = "19jw", directioh: Direction.LEF T	"19jq"
			decodeHash(Str	geohash = null	"geohash cannot be null"
13	GeoHash	decodeHash	ing geohash)	geohash = "29jw"	LatLong <latl ong [lat=- 38.232421875 , lon=-</latl

					149.58984375]>
14	GeoHash encodeHash		encodeHash(L atLong p, int	p = new LatLong(- 38.232421875 , - 149.58984375), length = 6	"29jws0"
	Georiasii	Cheoderrash	length)	p = new LatLong(- 38.232421875 , - 149.58984375), length = 0	"length must be greater than zero"
15	GeoHash	hashContains	hashContains(S tring hash, double lat,	hash = 29jw, lat = - 38.232421875 , lon = - 149.58984375	TRUE
			double lon)	hash = 29jw, lat = 0, lon = 0	FALSE

3 Test Implementation

The design of test cases specified in Section 2 was implemented using JUnit 4. The test scripts of 3 selected test cases are given below. The rest of the test script implementations can be found in the <u>link</u> (or JUnit files).

No.	Test method	Source code						
	GeoHash.decodeHash(String	@Test						
	geohash)	public void decodeHash() throws Exception{						
		LatLong result = GeoHash.decodeHash("29jw");						
1		LatLong II = new LatLong(-38.232421875, -						
		149.58984375);						
		assertEquals(II.getLat(), result.getLat(),0.001);						
		assertEquals(II.getLon(), result.getLon(),0.001);						

		}
	GeoHash.hashContains(String	@Test
	hash, double lat, double lon)	<pre>public void coverBoundingBox() throws Exception{</pre>
2		Boolean result = GeoHash.hashContains("29jw",
		-38.232421875, -149.58984375);
		assertEquals(true, result);
		}
	GeoHash.widthDegrees(int n)	@Test
		<pre>public void widthDegrees_F() throws Exception{</pre>
3		double n = GeoHash.widthDegrees(13);
		assert Equals (4.190951585769653E-8, n, 0.001);
		}

4 Test Results

4.1 JUnit test result snapshot

Test Summary 57 0 0.232s 0 100% tests failures ignored duration successful Packages Classes Failures Tests **Ignored** 0 Duration Success rate 50 com.github.davidmoten.geo 0.145s 100% 0.087s 100% com.github.davidmoten.geo.mem Generated by Gradle 3.4 at 2019/3/30 上午 12:02:53

4.2 Code coverage snapshot

Coverage of each selected method

Total coverage

geo

Element	Missed Instructions	Cov.	Missed Branches +	Cov.	Missed	Cxty	Missed	Lines	Missed	Methods \$	Missed	Classes
com.github.davidmoten.geo		78%		70%	39	149	70	348	10	68	1	10
com.github.davidmoten.geo.mem	=	62%	=	30%	14	30	17	61	6	20	1	3
com.github.davidmoten.geo.util	1	100%	1	100%	0	4	0	6	0	2	0	1
Total	550 of 2,326	76%	61 of 186	67%	53	183	87	415	16	90	2	14

4.3 CI result snapshot (3 iterations for CI)

● CI#1

• CI#2

• CI#3

• CI Pipeline

Status	Pipeline	Commit	Stages	
	#1027 by a	P master ->- 00eab9f2 d Lab2_4	\odot	♂ 00:01:05 mathread about 15 hours ago
⊙ passed	#1016 by 🔏	P master → 31ee6535 Lab2_3	\odot	⊙ 00:01:01 ∰ a day ago
	#1004 by 💣	P master ->- 5c653410	\odot	⊙ 00:01:07 ∰ 3 days ago
	#1003 by 🧃	P master → 69806d27 # Lab2_1	⊘ - ⊘	ŏ 00:01:07 ∰ 3 days ago

5 Summary

相較 Lab1,在設計 test case 時須考量到較多面向,不只是為了提高 statement coverage 而寫 happy path,對同一個 method 會花更多間在設計,雖 然不見得會提高覆蓋率,但在品質方面相對有保障。