Lecture #6 Sort (3)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Desired properties of a sorting algorithm

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		– Adap
			Best	Worst	Best	Worst	tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	0(n)	No
Bubble	Yes	Yes: <i>0</i> (1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No

Merge sort

Divide the array in half & sort them recursively

Quick sort

Divide it based on a pivot & sort them recursively

In This Lecture

Advanced sorting algorithms

- Quick Sort Part II
 - How to partition an array based on the selected pivot
 - Analyze the properties of quick sort
- Heap Sort
 - Concept of heap sort
 - Efficient way to build a heap

Outline

Advanced sorting algorithms

- Quick Sort Part II ج 🔠
- Heap Sort

Quick Sort (1)

www.visualdictionaryordine.com fulcrum con fulcrum pivot

Idea (based on divide & conquer)

- [Divide] select a pivot & partition the input array based on the pivot satisfying the following condition
 - ∘ Elements before pivot ≤ pivot ≤ elements after pivot
- [Conquer] recursively sort left & right partitions, resp.

Quick Sort (2)

Pseudocode of quick sort

```
def quick_sort(A, l, r):
    if l < r:
        # [Divide] pick a pivot and partition A by the pivot
        p ← partition(A, l, r) # p is the pivot's index

# [Conquer] recursively sort the left and right
    quick_sort(A, l, p - 1)
    quick_sort(A, p + 1, r)</pre>
```

• How to pick the pivot and partition the input?

- Any method can be possible if it is
 - Efficient (i.e., it should be done in O(n) when partitioning an array of size n)
- There are various methods for this; we'll learn about "Lomuto partition scheme" in this lecture

Quick Sort (3)

Lomuto partition

 Idea: pick the last element as a pivot & incrementally increase left and right partitions

Quick Sort (4)

Lomuto partition

 Idea: pick the last element as a pivot & incrementally increase left and right partitions

```
def partition(A, 1, r):
                                                             6
       pivot \leftarrow A[r]
       i \leftarrow 1 - 1
       for j \leftarrow 1 to r - 1:
            if A[j] <= pivot:</pre>
                                                                        6
                  i \leftarrow i + 1
                  swap A[i] and A[j]
                                                                                       for loop
       swap A[i+1] and A[r]
                                                                        6
                                           unassigned
                                                                                         ends
                                           left
       return i + 1
                                           right
                                           pivot
Let n be r - l + 1.
                                                                            5
                                                                        6
\Rightarrow # of comparisons is n-1
\Rightarrow # of swaps is n at most
                                                                  pivot
```

Quick Sort (5)

Correctness of quick sort

```
def quick_sort(A, 1, r):
    if l < r:
        p ← partition(A, 1, r) # Lomuto
        quick_sort(A, 1, p - 1)
        quick_sort(A, p + 1, r)</pre>
```

Proof by induction

- Base case: when the size is 1, it is sorted by itself
- Inductive step
 - \circ Assume quick_sort correctly sorts an array of any size less than k
 - \circ Q. Does quick_sort sort an array of size k correctly?
 - The partition() will correctly partition the input into two left and right partitions
 - The size of each partition is less than k
 - By the hypothesis, each partitions will be correctly sorted
 - Thus, all entries are sorted correctly

Quick Sort (6)

Time complexity of quick sort

- Let T(n) be the time complexity of quick_sort(A, 1, n)
 partition() takes O(n) time when its input size is n
- Best case for partitioning
 - When each selected pivot splits its input in half

[rough]
$$T(n) = 2T\left(\frac{n}{2}\right) + Cn \Rightarrow \Theta(n \log n)$$

- Worst case for partitioning
 - When each selected pivot makes one of partition empty
 - Consider an input array is already sorted in the ascending order [rough] $T(n) = T(n-1) + Cn \Rightarrow \Theta(n^2)$
 - However, this is very unlikely to happen in real-world (suppose an array is randomly sorted)

Quick Sort (7)

Average time complexity of quick sort

- Suppose the pivot's index is i
 - The size of left partition: (i-1)-1+1=i-1
 - The size of right partition: n (i + 1) + 1 = n i

$$T_i(n) = T(i-1) + T(n-i) + Cn$$

- Take the average of $T_i(n)$ over all $i \in [1, n]$
 - \circ The probability that the pivot's index is i is uniform

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} T_i(n) = \frac{1}{n} \left(\sum_{i=1}^{n} T(i-1) + T(n-i) \right) + Cn$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + Cn \in O(n \log n) \leftarrow \text{proved by induction (108p)}$$

Quick Sort (8)

Stability of merge sort

- Quick sort is not stable (see the below counter-example)
 - Lomuto partition is not stable

Adaptivity of quick sort

- Quick sort is not adaptive due to the partition function
 - i.e., its comparisons are always performed

Quick Sort (9)

Space complexity of quick sort

- $ullet S(n) = \Theta(n)$
 - \circ O(n) is required to store n input data
 - $\circ O(log n)$ is required for extra space

def quick_sort(A, l, r):
 if l < r:
 p ← partition(A, l, r)
 quick_sort(A, l, p - 1)
 quick_sort(A, p + 1, r)</pre>

- Extra space: $\Theta(n)$ for worst and $\Theta(\log n)$ for best cases
 - Required for maintaining recursive calls in a system stack
 - Note that the Lomuto partition is operated in-place, i.e., $\Theta(1)$
 - Best case: When each selected pivot splits its input in half
 - The recursion tree is fully binarized \Rightarrow its maximum height is $O(\log n)$
 - Worst case: When each selected pivot makes one of partition empty
 - The recursion tree is degenerate \Rightarrow its maximum height is O(n)
 - Can be optimized to $O(\log n)$ (see Appendix)

Quick Sort (10)

Is quick sort in-place?

■ The answer depends on a criteria since it requires $O(\log n)$ extra space

Yes [Wikipedia, CLRS] << including this lecture

- Because it sorts the elements within the array with a most a nearly constant amount of them outside the array
 - \circ If $n = 10^{30}$, $\log 10^{30} = 30$ is very small compared to n
 - \circ Thus, it can be considered as a constant; it's negligible for n

No [By the strict definition of in-place alg.]

■ Because an in-place algorithm should have O(1) space

Summary

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		Adap
			Best	Worst	Best	Worst	- tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	O(n)	No
Bubble	Yes	Yes: <i>0</i> (1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: <i>0</i> (1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Quick	No	Yes: $O(\log n)$	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$	No

Remarks

- A swap operation is replaced with
 - A backward movement in insertion sort
 - A movement to temp array in merge sort
- Extra memory of quick sort is estimated by its optimized version
- No ideal answer in the above algorithms

Outline

Advanced sorting algorithms

- Quick Sort Part II
- Heap Sort حِيل

Heap Sort (1)

Sort an input using a heap!

- Heap is a complete binary tree satisfying heap property
 - Max-heap property: key(parent node) ≥ key(children node)

- Main idea of heap sort
 - Step 1) Build a heap from the input
 - Step 2) For each loop, extract the max from the heap & place it into
 the front of sorted area

Heap Sort (2)

down-heap (or heapify) operation

- Given index i, the down-heap operation heapifies the tree rooted at the index i
 - When the sub-trees of the root are heaps
 - \circ Where n is the size of the input array A

Heap Sort (3)

Step 1) Build a heap from the input

- At the initial step, some of sub-trees do not satisfy the max-heap property
- To push up a greater value to its upper level, performs down-heap()
 at each non-leaf nodes
 - From the bottom to the top & From the right to the left
 - Note that we don't need to do down-heap() for leaf nodes (i.e., start from index 3!)

Heap Sort (4)

Step 1) Build a heap from the input

```
def down-heap(A, i, n):
    left ← LEFT(i);
    right ← RIGHT(i);
    largest ← i;

if left <= n and A[left] > A[largest]:
        largest ← left

if right <= n and A[right] > A[largest]:
        largest ← right

if largest != i:
    swap A[i] and A[largest];
    down-heap(largest);
```


Heap Sort (5)

Step 1) Build a heap from the input

```
def down-heap(A, i, n):
    left ← LEFT(i);
    right ← RIGHT(i);
    largest ← i;

if left <= n and A[left] > A[largest]:
        largest ← left

if right <= n and A[right] > A[largest]:
        largest ← right

if largest != i:
    swap A[i] and A[largest];
    down-heap(largest);
```


Heap Sort (6)

Step 1) Build a heap from the input

```
def down-heap(A, i, n):
    left ← LEFT(i);
    right ← RIGHT(i);
    largest ← i;

if left <= n and A[left] > A[largest]:
        largest ← left

if right <= n and A[right] > A[largest]:
        largest ← right

if largest != i:
    swap A[i] and A[largest];
    down-heap(largest);
```


Heap Sort (7)

Step 1) Build a heap from the input

Using down-heap() operation!

```
def build-heap(A, n):

for i \leftarrow \left\lfloor \frac{n}{2} \right\rfloor downto 1:

down-heap(A, i, n)
```

- $\circ \left| \frac{n}{2} \right|$ indicates the index of the last non-leaf (or internal) node
- Fact: $\left\lfloor \frac{n}{2} \right\rfloor + 1$, $\left\lfloor \frac{n}{2} \right\rfloor + 2$, ..., n are indices of leaf nodes
 - Proof by contradiction
 - Assume the fact is false (i.e., i is the index of an internal node for $\left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n$)
 - Then, 2i and 2i + 1 are indices of node i's left & right children

- Then,
$$2\left[\frac{n}{2}\right] + 2 \le 2i \le 2n$$
; $2\left[\frac{n}{2}\right] + 2 > 2\left(\frac{n}{2} - 1\right) + 2 = n$

- i.e., $n < 2\left\lfloor \frac{n}{2} \right\rfloor + 2 \le 2i \Rightarrow 2i$ is out-of-array \Rightarrow "the fact is false" is false

Heap Sort (8)

Step 2) For each loop, extract the max from the heap & place it into the front of sorted area

def heap-sort(A, n):

```
build-heap(A, n)
                      for i \leftarrow n downto 2:
                           swap A[i] and A[1]
                           down-heap(A, 1, i-1)
               3
                                            3
5
                                                         After down-heap(A, 1, 5)
                                 After swap
```

What You Need To Know

Desired properties of a sorting algorithm

Name	Stable	In-place : Extra memory	# of comparisons		# of swaps		Adap
			Best	Worst	Best	Worst	– tive
Selection	No	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	O(n)	No
Bubble	Yes	Yes: 0(1)	$O(n^2)$	$O(n^2)$	0(1)	$O(n^2)$	No
Opt. bubble	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Insertion	Yes	Yes: 0(1)	O(n)	$O(n^2)$	0(1)	$O(n^2)$	Yes
Merge	Yes	No: <i>0</i> (<i>n</i>)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	No
Quick	No	Yes: $O(\log n)$	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	$O(n^2)$	No

Quick sort

- Divide the input based on a pivot & sort them recursively
- Lomuto partition gives $O(n \log n)$ average time complexity

Heap sort

Build a heap from the input & repeatedly extract the max

In Next Lecture

Discussion on advanced sorting algorithms

Including the analysis of heap sort

Theoretical lower bound of comparison-based sorting algorithm

■ Can we make a sorting algorithm faster than $\Omega(n \log n)$?

Non-comparison based sorting algorithms

- Counting Sort
- Radix Sort

Thank You

[Appendx] Optimized Quick Sort

Space optimized version

```
def opt_quick_sort(A, l, r):
    while 1 < r:
        p \leftarrow partition(A, 1, r) \# Lomuto
        left size = p - 1
        right_size = r - p
        if left_size < right_size:</pre>
            opt_quick_sort(A, l, p - 1) # do the smaller first
             l = p + 1 \# then repeat it on the right partition
        else:
            opt_quick_sort(A, p + 1, r) # do the smaller first
            r = p - 1 # then repeat it on the left partition
```

Then, the maximum height of the recursion tree is $O(\log n)$ for a worst case

 The smaller parition's size is at most half the size of the input parition