数据结构

Larunatrecy

目录

CF1764H Doremy's Paint 2

题目描述

有一个长度为 n 的序列 a,初始时 $a_i=i$ 。 有 m 个操作,第 i 个操作将数列里 $a_{l_i}\sim a_{r_i}$ 都赋值成 a_{l_i} 。 对于 $i=1\dots m$,输出依次执行第 $i,i+1\dots (i+k-1) \bmod m+1$ 个操作后序列里的颜色数。 $1\leq n,m\leq 2\times 10^5$ 。

CF1764H Doremy's Paint 2

破环成链,倒着考虑每个操作,维护 t_i 表示 i 位置的数字会存在到哪个时刻。

加入操作 i 时,产生的影响即是对于 $[l_i+1,r_i]$ 内的位置 j , $t_j=i$,而 $t_{l_i}=\max_{j\in (l_i,r_i]}t_j$ 。

因为只有区间覆盖操作,所以用 set 维护连续段即可,维护答案可以再用一个树状数组,维护 $t_i \leq v$ 的 i 的个数,复杂度 $O((n+m)\log n)$ 。

「2024 集训队互测」连通块

题目描述

给定一棵树,和一个初始为空的集合 S,先向 S 加入 m 次连通 块,每次给定了 k_i 条边,把这些边断掉后形成的若干连通块都 加入 S。接下来由 q 次询问,每次给定 u,r,询问有多少 S 内的连通块满足连通块内所有点到 u 的距离都 $\leq r$ 。

$$1 \leq n \leq 10^5, \sum k_i, q \leq 3 \times 10^5\,{\rm s}$$

「2024 集训队互测」连通块

连通块内所有点到 u 的距离都 $\leq r \Leftrightarrow$ 到连通块的两个直径端点的距离均 $\leq r$ 。

而两个以直径端点为中心的半径为r的邻域的交是一个以直径中点为中心的半径为r-l/2的邻域,其中l是直径长度。使用点分树维护,每次是一个一维数点。

QOJ8028 Octasection

题目描述

给定 n 个三维立方体 (x_l,y_l,z_l) - (x_r,y_r,z_r) ,你要从每一维选出一个坐标 x_p,y_p,z_p ,使得每个立方体至少在一维上的坐标区间覆盖了对应的 $x_p/y_p/z_p$ 。 $n < 10^5$

QOJ8028 Octasection

题目描述

给定 n 个三维立方体 (x_l,y_l,z_l) - (x_r,y_r,z_r) ,你要从每一维选出一个坐标 x_p,y_p,z_p ,使得每个立方体至少在一维上的坐标区间覆盖了对应的 $x_p/y_p/z_p$ 。 $n < 10^5$

QOJ8028 Octasection

枚举 x_p ,用数据结构维护 (y,z) 平面,这样每个立方体会在 x_l 处被删除, x_r+1 处被加入,而在 (y,z) 上对应的就是一个十字,我们要判断十字有没有交。

转化为求出补集的并,而补集的并可以看成是四条单调轮廓线,而每个立方体出现在轮廓线上的时刻是 O(1) 个区间,因此可以用 set 维护轮廓线,用线段树维护每个 y 上的上轮廓线-下轮廓线,每次线段树二分找到第一个 > 0 的位置输出即可。

题目大意

给定一个排列 a,每次询问区间 [l,r] 内满足 $l \leq i < j < k \leq r \land a_i < a_j < a_k$ 的 (i,j,k) 数量。 $n,m \leq 10^5$,强制在线。

分块,在不考虑空间的情况下,不妨先封装一个 $O(n\sqrt{n}) - O(1)$ 的可持久化分块,用来做在线二维数点。

设块长为 B, 块 b 的左右端点是 $st_b ed_b$, i 所在块编号是 bel_i 。

- 散块一散块一散块 枚举 j,查询左边比 a_j 小的乘上右边比 a_j 大的,容易用可 持久化分块 O(1) 查询。
- 散块一散块一整块 / 整块一散块一散块和上面的一样的。
- 散块-整块-散块 对于固定的 $i,k,a_i < a_k$,符合要求的 j 的个数是中间整块 里值域在 $[a_i,a_k]$ 的数的个数,可以求出 $\leq a_k$ 的个数 v_k , 减掉 $\leq a_i$ 的个数 v_i ,故我们将两个块的元素从小到大归并 起来后,把贡献拆开即可 O(B) 计算。

扫一遍即可。

• 散块-整块-整块 / 整块-整块-散块 两种是对称的,只考虑第一种,对于每个 i 预处理 $ans_{i,b}$ 表 示 i 和 $[bel_i + 1, b]$ 组成的答案。 固定 i, 从小到大枚举 b, 考虑 k 位于块 k 的数量, 那么此 时预处理 j 和 k 同块的方案数,这个很容易做到 O(nB), 对于 j 和 k 不同块的方案数, 我们用 $a_i < a_k$ 的数量减掉 $a_i < a_i < a_k$ 的数量,减掉 $a_i < a_k < a_i$ 的数量,就是 $a_i < a_i < a_k$ 的数量。 $a_i < a_k$ 的数量可以提前枚举 b 后扫一遍预处理, $a_i < a_k < a_i$ 用两次可持久化分块查二维数点即可。对于第

三种,枚举b,然后把所有值离散化到O(B)种,从右到左

4ロト 4個ト 4厘ト 4厘ト 厘 り9.00

• 整块-整块-整块 使用上面的 *ans* 数组容易求出来。

然后有个问题是开不下那个可持久化分块的数组,因此我们考虑 把这一部分替换掉,可以发现除了散块内部的贡献,剩下的都是 某个整块区间的查询,只需要开一个表查询即可。

对于散块内部的查询,用 i 左边同块内比 a_i 小的数的数量减掉比 a_i 小的数中 < l 的即可,前者可以预处理,后者在排序后的数组上扫一遍即可。

最后复杂度是 $O((n+m)\sqrt{n})$, 有亿点点卡常。

题目大意

给定一个元素两两不同的序列 a, m 次询问区间 [l,r] ,你要选出 $l \le i, j, k \le r$ 且两两不同的三个下标 i, j, k,最大化 $a_i \bmod a_j + a_j \bmod a_k + a_k \bmod a_i$ 。 $1 \le n \le 2 \times 10^6, 1 \le m \le 8 \times 10^5, 1 \le a_i \le 10^{18}$ 。

首先讨论一下 a_i, a_j, a_k 的大小关系,可以发现,只有两种可能的形态:

- $a_i < a_j < a_k$, 贡献是 $a_i + a_j + a_k \mod a_i$.

下面的若干性质证明会用到性质: 若 $a_i > a_j$,则 $a_i \mod a_j + a_j \le (a_i - a_j) + a_j = \min(a_i, 2a_j - 1)$ 很容易猜到下面的结论:

引理 (Key Observation)

最优方案下,区间内的最大值和次大值一定被选。

证明.

不妨假设区间内的数字从小到大排列为 $w_1, w_2 \dots w_m$ 。那么选择前三大的数就可以得到一组解为 $w_{m-2} + w_{m-1} + w_m \mod w_{m-2}$,假设最优解为 (i,j,k),那么在 方案 $a_i + a_j + a_k \mod a_i$ 中 $\leq a_k + a_j$,只有当 k = m 时可能大于之前的解,此时最优的 j 时 m-1;而 $a_i \mod a_j + a_j \mod a_k + a_k \leq a_i \leq \min(a_i, 2a_j - 1)$,如果 i < m 或 j < m-1,那么一定不优。

容易根据该引理得到一个 O(nq) 的做法。

设区间内的最大值下标是 i,次大值下标是 j,设 f([l,r],i) 表示从区间 [l,r] 选择一个 k,满足 $k \neq i$,且 a_k 不是 $[l,i) \cup (i,r]$ 内的最大值,使得 $a_i \mod a_k + a_k$ 最大。那么两种答案可以分别写成 $f([l,r],j) + a_i \mod a_j$, $f([l,r],i) + a_j$ 。现在把问题转化为求 f([l,r],i),我们把它拆成 f([l,i],i) 和 f([i,r],i) 两部分,注意这里可能会让原本的次大值不被考虑到,我们需要求一下然后更新答案。

两种是对称的,我们现在假设要求 f([i,r],i),固定 i 扫 r 即可 做到 $O(n^2+q)$ 。

注意根据查询的形式,这里的 i 一定是 [i,r] 内的最大值或次大 值,考虑 $a_i \mod a_k + a_k \le a_i$,并且取等的条件是 $a_i - a_k < a_k$ 即 $a_k > \frac{a_i}{2}$ 。

因此固定 i,有用的 r 一定不超过第二个 $> \frac{\alpha_i}{2}$ 的元素,再往后 扫都不变了。

分析一下此时的总支配对数量,我们按照值域倍增分块,则对于 每个值域块内的元素来说,最多向左/向右扫2个段,故总的扫 描次数是 O(n), 加上外层的倍增分块就是 $O(n \log V)$ 。

复杂度 $O(n \log V + q \log n)$ 。

还不够好!

考虑固定扫 r 的过程中,现在扫到了某个元素 a_k ,如果 [r,k-1]的元素里至少有两个元素 $\geq 2a_k$, 那么 k 就是没用的, 这是因为 $a_i \mod a_k + a_k < 2a_k$ 所以选择 $\geq a_k$ 的元素一定是更优。 我们从大到小枚举i,如果出现一个满足上述条件的k,那么对 于更小的i也是没用的,因此我们可以用链表维护没有被删除的 数字,每次扫一遍没被删除的数字,如果扫到的 $a_k \leq \frac{i}{2}$,那么最 多被扫两次就被删掉了; 否则根据上一个性质, 扫到第二个这种 元素就停止了,那么很容易说明总的扫描次数是 O(n) 的,我们 直接顺便出来每个 f([i,r],i) 的值发生变化的位置,询问的时候 直接二分即可。

复杂度是 $O(n + q \log n)$

还不够好!

考虑固定扫 r 的过程中,现在扫到了某个元素 a_k ,如果 [r,k-1]的元素里至少有两个元素 $\geq 2a_k$, 那么 k 就是没用的, 这是因为 $a_i \mod a_k + a_k < 2a_k$ 所以选择 $\geq a_k$ 的元素一定是更优。 我们从大到小枚举i,如果出现一个满足上述条件的k,那么对 于更小的i也是没用的,因此我们可以用链表维护没有被删除的 数字,每次扫一遍没被删除的数字,如果扫到的 $a_k \leq \frac{i}{2}$,那么最 多被扫两次就被删掉了; 否则根据上一个性质, 扫到第二个这种 元素就停止了,那么很容易说明总的扫描次数是 O(n) 的,我们 直接顺便出来每个 f([i,r],i) 的值发生变化的位置,询问的时候 直接二分即可。

复杂度是 $O(n + q \log n)$

题目大意

给定序列 a_1, \ldots, a_n ,共 m 次询问,每次询问给出 l, r,查询所有满足 $l \le L \le R \le r$ 的 (L, R) 的权值的按位异或和,二元组 (L, R) 的权值是 $|\{a_i \mid L \le i \le R\}|$ 。 $n, m \le 4 \times 10^5$ 。

题目大意

给定序列 a_1, \ldots, a_n ,共 m 次询问,每次询问给出 l, r,查询所有满足 $l \le L \le R \le r$ 的 (L, R) 的权值的按位异或和,二元组 (L, R) 的权值是 $|\{a_i \mid L \le i \le R\}|$ 。 $n, m < 4 \times 10^5$ 。

离线,对 r 扫描线,维护每个 [l,r] 的权值,也就是颜色数。设 a_i 上一次出现的位置是 lst_{a_i} ,那么就是对 $(lst_{a_i},i]$ 做一次区间 加 1。同时要维护历史异或和 h_i ,然后扫到一个询问的右端点时 查询历史异或和的区间异或和。

将 w_i 写成 $(0 \oplus 1) \oplus (1 \oplus 2) \dots (w_i - 1) \oplus w_i$ 的形式,这样每次 修改操作的贡献可以拆开了。

具体来说,当我们扫到 R 的时候对 i 这个位置做了 +1,那么如果在扫到 r 时查询,如果 r 和 R 奇偶性不同,那么可以认为这次操作产生了 $w_i \oplus (w_i + 1)$ 的贡献,否则贡献为 0。

将奇偶分开,形式化地描述一下我们现在的操作:

维护一个序列 w,初始时全为 0,同时维护序列 h_0, h_1 ,每次让 区间内的 w_i 加一,并让 $h_{o,i} = h_{o,i} \oplus w_i(\oplus w_i + 1)$,其中 o 是当前操作编号 $r \mod 2$,查询区间异或和。

设 w_i 最低的 0 所在位是是 2^t , 那么 $w_i \oplus (w_i + 1)$ 就是 $2^{t+1} - 1$ 。

分块,考虑在进行一个整块操作时,对于每个 t 计算会有多少数的最低的 0 是这一位。对于每个 t 预处理一个桶 $B_{t,2^t}$ 表示块内 $\mathrm{mod}2^t \equiv 0 \sim 2^t - 1 (\mathrm{mod}2^t)$ 的个数,然后维护块内被整体加的次数 tag,那么我们只需要查询 $B_{t+1}, (2^t - 1 - tag) \mathrm{mod} 2^{t+1}$ 的个数即可,同时也可以通过这个来打标记。

但是这样桶需要开到 O(n) 级别,这样就炸了,我们考虑对 t 根号分治一下,前 b 位我们按照上面的方法处理。对于一个 w_i ,其在 b 位产生贡献的次数最多不超过 $O(n/2^b)$,这样桶就只需要处理 $O(\sqrt{n})$ 即可,大一的部分也开个桶每次暴力找到需要改的改一下即可。

复杂度 $O(n\sqrt{n}\log n)$

发现在于低位的处理不太行,而这部分有用的 tag 模意义下显然 只有 2^b 种,直接预处理一个 val_i 表示 $tag \equiv i$ 时的贡献,这个 直接每次加上一位去求贡献,总的状态数就是 $2^0+2^1+\dots 2^b=2^{b+1}$ 种,故预处理也不带 \log 。 最后的复杂度是 $O(n\sqrt{n})$ 。

Thanks!