	Pepys Problem
***	Binomial distribution K=0
	One 6 appears from 6 dice, 1 - p(no successes)
	0
	$[-2(1-(1/6))^{\circ}(1/6)] \approx .665]$
	K= O
	Kz Kzo
	Two 6's appears from 12 dice, 1-p(success and no successes)
***	1 12 12 12 12 12 12 12 12 12 12 12 12 12
***	1-2(k)(1-(1/6)) ~ .618/
	KzD ,
	K22 K20 K20
	Three 6's appears from 18 dice, 1-p(2 successes, 1 success ond no seecesses)
	2 /18\/\/\/\/\/\\/\\\/\\\\/\\\\\\\\\\\\\\
($-2(K/(1/6)(1-(1/6)) \approx .5973$
(4)	K=0
<u> </u>	The first proposition has the greatest chance of success.
4	
	Geomtric Urn
45	
45	$E[draw red] = 20 = 1/p \Rightarrow p = 1/20$
<u>,</u>	probability of drawing a red ball = 1/20 therefore in an Urn of 100 balls
49	therefore in an Urn of 100 balls
	balls and 95 black balls
	balls and 95 black balls
- <u>-</u>	
	••