Hierarchical Linear Models

Bayesian Data Analysis Steve Buyske

An Example

 Our first data set consists of exam scores at the start and end of the school year for 4059 students. the exams are standardized to mean 0 and standard deviation 1. The plot shows a scatter plot, with the individual observations colored by the 65 schools.

An Example cont.

- · Now I've added a least squares line for each school.
- · The thick black line is the least squares fit for all of the students at once.
- · Clearly there's a lot of variability in the slope (and intercept) by school.

An Example cont.

- The next slide shows a plot of just the slopes.
 - the vertical black line indicates the predicted value if we fit a single regression line to all the students—that is, pool all the data.
- · Again, it's clear that there is a considerable variation from school to school.
- · Some of that variation is presumably due to genuine differences, while others represents random variation (aka noise).

Linear Models When the Data is Grouped

- · While it would be legitimate to analyze each school separately, it feels like if we do so we would not be taking advantage of everything we know.
- By looking at all of the slopes at once, we get a sense of the distribution of the slopes.
- We might also conclude that the most extreme slopes are overly extreme estimates, just due to chance.
- That's particularly true if the sample size for that school is small.
 - For example, the two smallest slope correspond to schools of size n=2 and n=8.

Linear Models When the Data is Grouped cont.

- There are three general approaches one could take when we have this kind of grouped data.
- One approach is to fit each school blind to all the other schools; that is, fit each school separately.
 - Doesn't take into account useful information.
 - Because of the smaller sample sizes, there is a risk of overfitting each regression line.
 - We will refer to this approach as "no pooling" of the data.

- · A second approach is to fit a single regression line; that is fit all students at once while ignoring the group structure.
 - This ignores the school entirely.
 - This risks underfitting the regression line.
 - Ignores potentially important information (the school) and possible correlation due to that.
 - We will refer to this approach as "complete pooling" of the data.

Hierarchical Linear Models

- The third approach is to *partially* pool the the data.
 - That is, conceptually fit each school individually, while taking advantage of our knowledge of the fit of other schools
 - Phrased differently, we can start with an overall regression line, but simultaneously allow for school-specific variation in regression lines.
- This idea has been called "borrowing strength"—our estimates for one school borrow strength from other schools since we know what their estimates look like.
- · Another phrase for the phenomenon is called *shrinkage* of the estimates closer together.
- The statistical models are called *hierarchical linear models*, *multilevel models*, or *mixed effects models*.
- Before we look at it formally, this plot on the next slide shows the result of such a model.

- The open circles correspond to the unpooled model.
- The filled circles corresponds to the hierarchical model.
- · Notice how the filled circles are generally pulled towards the black vertical line.

Formal framework

- Let's say the data looks like (x_{ki}, y_{ki}) , where k indexes the group (the school in our example) and i indexes the individual.
- Each group has a separate intercept and slope.
 - This part looks just like an interaction model
 - It's the relationship among those intercepts and slopes that different.

$$y_{ki} \sim \text{Normal}(\mu_{ki}, \sigma)$$

$$\mu_{ki} = \alpha_k + \beta_{1k} x_{ki}$$

I discovered after I was done with the video that my brightly colored cursor didn't show up, and that the line I drew on this slide wasn't visible. At least I can draw the line here.

Priors for this model

```
\alpha_k \sim \text{Normal}(\mu_{\alpha_k}, \text{something})

\mu_{\alpha_k} \sim \text{Normal}(\text{something}, \text{something})

\beta_{1k} \sim \text{Normal}(\mu_{1_k}, \text{something})

\mu_{1_k} \sim \text{Normal}(\text{something}, \text{something})

\sigma \sim \text{Exponential}(\text{something}).
```

An alternative parametrization of the model

- A more common version of the model is to think of an overall intercept and slope with variation from that.
- In this case, the overall intercept and slope are called the *fixed effects* and the group-specific differences the *random effects*.

$$y_{ki} \sim \text{Normal}(\mu_{ki}, \sigma)$$

$$\mu_{ki} = (\alpha + \gamma_k) + (\beta + \delta_k)x_{ki}$$

Priors for the alternative parametrization

```
\alpha \sim \text{Normal}(\text{something}, \text{something})
```

 $\gamma_k \sim \text{Normal}(0, \text{something})$

 $\beta \sim \text{Normal}(0, \text{something})$

 $\delta_k \sim \text{Normal}(0, \text{something})$

 $\sigma \sim$ Exponential(something).

How the hierarchical model works

- · Individuals in the same group have the same distribution for $lpha_k$ and eta_k .
- Those parameters themselves have distributions
 - That means that extreme values for those parameters, for some specific group, is possible, but less likely than values closer to the modes.
 - That means that the distributions for α_k and β_k for a specific group are pushed towards the middle (aka "shrinkage").
- · How much? ...

How much shrinkage occurs?

- The amount of shrinkage is determined by the model, especially the priors, and the data.
 - There's no manual shrinkage that you have to decide on after the analysis.
- · In a group with a large sample size, the evidence will get most of the weight in determining α_k and β_k .
- In a group with a small sample size, there will be less evidence about the values of α_k and β_k , so the distributions (higher in the Kruschke diagram) for the mean and sd of *the distributions* for α_k and β_k get more relative weight.
- · If there are many groups with similar distributions for the parameters,
 - then the posteriors for the distributions at the top of the diagram will be fairly narrow
 - which will lead to more shrinkage for a group that's atypical.

Summary about grouped data

- Ignore the groups => a single model => "complete pooling" => likely to underfit.
- Include the groups, while fitting everything at once in a hierarchical model => a single model that includes the group effect => "partial pooling" => likely to fit just right.
- Fit each group separately, ignoring the other groups => separate model for each group => "no pooling" => likely to overfit.

· There are details of analyzing the exam data in the RStudio Cloud project.