

CS207 FINAL PROJECT GROUP 1 - CHEMKIN AND OUTPUT PACKAGE

PREPARED FOR

DAVID SONDAK
CHARLES LIU
ERIC WU
KEVIN WU

BOYUAN SUN PAUL BLANKLEY RYAN JANSSEN 11 DECEMBER 2017

CS207 FINAL PROJECT GROUP 1 - CHEMKIN AND OUTPUT PACKAGE

PREPARED FOR

DAVID SONDAK
CHARLES LIU
ERIC WU
KEVIN WU

BOYUAN SUN PAUL BLANKLEY RYAN JANSSEN 11 DECEMBER 2017

INTRODUCING CHEMKIN207

- CHEMKIN207 is a package for calculating and outputting chemical reactions
- •Given reaction definitions, concentrations, and temperatures, calculate progress rates and reaction rates
- Uses NASA polynomial method
- Supports reversible and irreversible elementary reactions
- Compatible with Python 3.0-3.6 (inclusive)

PACKAGE INSTALLATION TWO INSTALLATION OPTIONS

OPTION 1: PIP

pip install chemkin207

OPTION 2: GITHUB

Clone:

https://github.com/cs207-g1/cs207-FinalProject

Run:

setup.py

THREE CLASS FAMILIES

Legend:

Class

- IrreversibleReaction()/
 ReversibleReaction():
 Calculate respective reaction rates
- Reaction(): Stores information related to one reaction in a set of reactions
- ReactionSet(): Represents entire reaction for a set of elementary reactions
- MultiReactionSet(): Used to compare elements from several ReactionSets

DATA FLOW

INTENDED USAGE

INTENDED USAGE

OUTPUT PACKAGE: MOTIVATION ENABLING A WIDE RANGE OF OUTPUT USE CASES

• Obtaining reaction rates is rarely the last step in the workflow:

Typical usage for reaction rate calculations:	CHEMKIN207 tool
Publication of findings via LATEX	.to_table('LATEX')
Sharing/storing reactions	.to_table('HDF5') .to_table('CSV')
Copy/paste inline in email to colleagues	.to_table('TXT')
Export to secondary analysis in excel etc.	.to_table('CSV')
Visualization/analysis via plots, determine max/min rates	.plot_rates_against_temperature() .find_rates()
Compare/contrast species in different reactions	.to_table_multi('*')

• CHEMKIN207 enables these in a repeatable, consistent format!

PLOT_RATES_AGAINST_TEMP() METHOD

ReactionSet.plot_rates_against_temperature(query_species, concs, temps)

Supporting function can be used to output max/min reaction rate/temperature for each specie:

ReactionSet.find_rates(query_species, concs, temps)

TO_TABLE() METHOD

VARIETY OF SELECTABLE OUTPUTS

ReactionSet.to_table(query_species, concs, temps, out_file, out_type = {'csv', 'txt', 'latex', 'hdf5'})

Т	O2	H2	OH
3.00e+03	-5.94e+13	9.67e + 13	4.74e + 14
3.01e+03	-5.99e+13	9.67e + 13	4.76e + 14
3.02e+03	-6.03e+13	9.66e + 13	4.78e + 14
3.03e+03	-6.07e+13	9.66e + 13	4.80e + 14
3.04e+03	-6.11e+13	9.66e + 13	4.82e + 14
3.05e+03	-6.16e+13	9.65e + 13	4.84e + 14
3.06e+03	-6.20e+13	9.65e + 13	4.87e + 14
3.07e+03	-6.24e+13	9.64e + 13	4.89e + 14
3.08e + 03	-6.28e+13	9.64e + 13	4.91e+14
3.09e+03	-6.32e+13	9.64e + 13	4.93e + 14
3.10e+03	-6.35e+13	9.63e + 13	4.95e + 14
3.11e+03	-6.39e+13	9.63e + 13	4.97e + 14
3.12e+03	-6.43e+13	9.62e + 13	4.99e + 14
3.13e+03	-6.47e+13	9.62e+13	5.02e+14
3.14e+03	-6.50e+13	9.61e+13	5.04e + 14
3.15e+03	-6.54e + 13	9.61e+13	5.06e + 14
3.16e+03	-6.58e + 13	9.60e+13	5.08e + 14
3.17e+03	-6.61e+13	9.60e+13	5.10e + 14
3.18e+03	-6.65e+13	9.59e+13	5.13e + 14
3.19e+03	-6.68e + 13	9.59e+13	5.15e + 14
3.20e+03	-6.72e+13	9.58e + 13	5.17e + 14
3.21e+03	-6.75e + 13	9.58e + 13	5.19e + 14
3.22e+03	-6.78e+13	9.57e+13	5.21e+14
3.23e+03	-6.82e+13	9.57e + 13	5.23e + 14
3.24e+03	-6.85e+13	9.56e+13	5.26e + 14
3.25e+03	-6.88e+13	9.56e + 13	5.28e + 14
3.26e + 03	-6.91e+13	9.55e + 13	5.30e + 14
3.27e + 03	-6.94e + 13	9.54e + 13	5.32e + 14
3.28e+03	-6.97e+13	9.54e+13	5.34e + 14
3.29e+03	-7.01e+13	9.53e+13	5.37e+14
3.30e+03	-7.04e+13	9.53e+13	5.39e+14
3.31e+03	-7.07e+13	9.52e+13	5.41e+14
3.32e+03	-7.10e+13	9.51e+13	5.43e+14
3.33e+03	-7.12e+13	9.51e+13	5.46e+14
3.34e+03	-7.15e+13	9.50e+13	5.48e+14

File Edit Format View	Help		
T	02	H2	ОН
3.00e+03	-5.94e+13	9.67e+13	4.74e+14
3.01e+03	-5.99e+13	9.67e+13	4.76e+14
3.02e+03	-6.03e+13	9.66e+13	4.78e+14
3.03e+03	-6.07e+13	9.66e+13	4.80e+14
3.04e+03	-6.11e+13	9.66e+13	4.82e+14
3.05e+03	-6.16e+13	9.65e+13	4.84e+14
3.06e+03	-6.20e+13	9.65e+13	4.87e+14
3.07e+03	-6.24e+13	9.64e+13	4.89e+14
3.08e+03	-6.28e+13	9.64e+13	4.91e+14
3.09e+03	-6.32e+13	9.64e+13	4.93e+14
3.10e+03	-6.35e+13	9.63e+13	4.95e+14
3.11e+03	-6.39e+13	9.63e+13	4.97e+14
3.12e+03	-6.43e+13	9.62e+13	4.99e+14
3.13e+03	-6.47e+13	9.62e+13	5.02e+14
3.14e+03	-6.50e+13	9.61e+13	5.04e+14
3.15e+03	-6.54e+13	9.61e+13	5.06e+14
3.16e+03	-6.58e+13	9.60e+13	5.08e+14
3.17e+03	-6.61e+13	9.60e+13	5.10e+14
3.18e+03	-6.65e+13	9.59e+13	5.13e+14
3.19e+03	-6.68e+13	9.59e+13	5.15e+14
3.20e+03	-6.72e+13	9.58e+13	5.17e+14
3.21e+03	-6.75e+13	9.58e+13	5.19e+14
3.22e+03	-6.78e+13	9.57e+13	5.21e+14
3.23e+03	-6.82e+13	9.57e+13	5.23e+14
3.24e+03	-6.85e+13	9.56e+13	5.26e+14
3.25e+03	-6.88e+13	9.56e+13	5.28e+14
3.26e+03	-6.91e+13	9.55e+13	5.30e+14
3.27e+03	-6.94e+13	9.54e+13	5.32e+14
3.28e+03	-6.97e+13	9.54e+13	5.34e+14
3.29e+03	-7.01e+13	9.53e+13	5.37e+14
3.30e+03	-7.04e+13	9.53e+13	5.39e+14
3.31e+03	-7.07e+13	9.52e+13	5.41e+14
3.32e+03	-7.10e+13	9.51e+13	5.43e+14
2 22 2 4 2 2	7 120112	0 [10:12]	Γ 46αι14

	А	В	С	D	
1	Т	02	H2	OH	
2	3000	-5.9E+13	9.67E+13	4.74E+14	
3	3010	-6E+13	9.67E+13	4.76E+14	
4	3020	-6E+13	9.66E+13	4.78E+14	
5	3030	-6.1E+13	9.66E+13	4.8E+14	
6	3040	-6.1E+13	9.66E+13	4.82E+14	
7	3050	-6.2E+13	9.65E+13	4.84E+14	
8	3060	-6.2E+13	9.65E+13	4.87E+14	
9	3070	-6.2E+13	9.64E+13	4.89E+14	
10	3080	-6.3E+13	9.64E+13	4.91E+14	
11	3090	-6.3E+13	9.64E+13	4.93E+14	
12	3100	-6.4E+13	9.63E+13	4.95E+14	
13	3110	-6.4E+13	9.63E+13	4.97E+14	
14	3120	-6.4E+13	9.62E+13	4.99E+14	
15	3130	-6.5E+13	9.62E+13	5.02E+14	
16	3140	-6.5E+13	9.61E+13	5.04E+14	
17	3150	-6.5E+13	9.61E+13	5.06E+14	
18	3160	-6.6E+13	9.6E+13	5.08E+14	
19	3170	-6.6E+13	9.6E+13	5.1E+14	
20	3180	-6.6E+13	9.59E+13	5.13E+14	
21	3190	-6.7E+13	9.59E+13	5.15E+14	
22	3200	-6.7E+13	9.58E+13	5.17E+14	
23	3210	-6.7E+13	9.58E+13	5.19E+14	
24	3220	-6.8E+13	9.57E+13	5.21E+14	
25	3230	-6.8E+13	9.57E+13	5.23E+14	
26	3240	-6.8E+13	9.56E+13	5.26E+14	
27	3250	-6.9E+13	9.56E+13	5.28E+14	
28	3260	-6 9F+13	9 55F+13	5 3F+1∆	

Fig. 1: LATEX output

Fig. 2: .txt/email output

Fig. 3: CSV output

TO_MULTI_TABLE() METHOD

- MultiReactionSet is instantiated by passing a list of ReactionSets
- Then, cross-tabulated outputs can be achieved with:

```
to_table_multi(
    query_species,
    concs,
    temps,
    output_dir,
    out_type = 'csv')
```

Reaction rates versus temperature - selected species:

Τ	H2	H2	О	О
	rxn 0	rxn 1	rxn 0	rxn 1
300	-6.00e+01	1.59e + 13	-7.00e+01	-2.12e+22
1300	-6.00e+01	5.76e + 13	-7.00e+01	-6.96e+14
3000	-6.00e+01	6.17e + 13	-7.00e+01	-2.94e+13

Fig. 1: LATEX output

multir	eaction - Notepad			
File Edit	Format View Help			
T	02	02	ОН	OH
	rxn 0	rxn 1	rxn 0	rxn 1
1500	3.36e+14	-1.14e+08	-1.12e+14	1.14e+08
2500	-2.75e+13	-1.12e+09	3.67e+14	1.13e+09
3500	-7.57e+13	-3.00e+09	5.85e+14	3.01e+09

Fig. 2: .txt/email output

	А	В	С	D	E
1	Т	O2	O2	ОН	ОН
2		rxn 0	rxn 1	rxn 0	rxn 1
3	1500	3.36E+14	-1.1E+08	-1.1E+14	1.14E+08
4	2500	-2.7E+13	-1.1E+09	3.67E+14	1.13E+09
5	3500	-7.6E+13	-3E+09	5.85E+14	3.01E+09
6					

Fig. 3: CSV output

IN CONCLUSION...

We hope this package will streamline the workflow process for chemical kinetics reaction research.

Thanks to:

- The entire CS207 teaching team for their support
- David Sondak for teaching us what a chemical kinetics is \odot

IN CONCLUSION...

QUESTIONS?

