Midterm 1 Version 1 Review 2

July 17, 2020

- 1. a) aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc
 - b) Solution:

p	q	r	$p \lor q$	$(p \lor q) \Rightarrow \neg r$
$\mid T \mid$	Τ	Т	${ m T}$	${ m T}$
Т	Т	F	Т	F
Т	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	F
F	F	Т	F	Т
F	F	F	F	Т

c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \neg P(x, y) \land \neg Q(x, y)$

Correct Solution:

Let $x = \dots$. Let $y \in P$.

We need to prove $\neg P(x, y)$ and $\neg Q(x, y)$ are true.

- 2. a) $\exists x \in P, Student(x) \land Attends(x)$
 - b) $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \Rightarrow Loves(x, y)$

Correct Solution:

 $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \land \underline{Loves(x,y)}$

- c) $\forall x \in P, Student(x) \land Attends(x) \Rightarrow Loves(x, x)$
- d) $\forall x, y \in P, x \neq y \Rightarrow Loves(x, y) \Rightarrow Attends(x) \lor Attends(y)$
- 3. a) $\forall a, b, c \in \mathbb{Z}, \exists k_1, k_2, k_3 \in \mathbb{Z}, a = k_1 b \land b = k_2 c \Rightarrow a = k_3 c$

b) Proof. Let $a, b, c \in \mathbb{Z}$, and there is some $k1, k2, k3 \in \mathbb{Z}$ such that $a = k_1 b, b = k_2 c$.

I need to prove $a = k_3c$.

Let $k_3 = k_1 k_2$.

Then, we can conclude

$$a = k_1 b$$
 [By header] (1)

$$= k_1 k_2 c [By replacing b with k_2 c] (2)$$

$$= k_3 c$$
 [By $k_3 = k_1 k_2$] (3)

4. *Proof.* Let $x, y \in \mathbb{R}$. Assume $\lfloor x + y \rfloor$.

I need to show $\lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor y \rfloor$.

Indeed we have

$$|x+y| = ||x| + \epsilon + y|$$
 [By fact 1]

$$= \lfloor x \rfloor + \lfloor \epsilon + y \rfloor$$
 [By fact 2] (2)

$$\geq \lfloor x \rfloor + \lfloor y \rfloor$$
 [Since $\epsilon \geq 0$] (3)

Correct Solution:

Proof. Let $x, y \in \mathbb{R}$. Assume $\lfloor x + y \rfloor$.

I need to show $\lfloor x + y \rfloor \ge \lfloor x \rfloor + \lfloor y \rfloor$.

Indeed we have

$$\lfloor x + y \rfloor = \lfloor \lfloor x \rfloor + \epsilon + y \rfloor$$
 [By fact 1]

$$= \lfloor x \rfloor + \lfloor \epsilon + y \rfloor$$
 [By fact 2] (2)

$$\geq |x| + |y|$$
 [Since $\epsilon \geq 0$] (3)