Лабораторная работа 7

Модель М |М |1|∞

Мугари Абдеррахим

Содержание

	1.1	Исходные данные				
	1.2	Описа	ние модели	6		
		1.2.1	1. Суперблок генерации заявок	6		
		1.2.2	2. Суперблок обработки заявок	7		
			Итоговая модель			
	1.3	Резули	ьтаты моделирования	9		
	1.4	-	Į			
Сп	исок	: литер:	атуры	12		

Список иллюстраций

1.1	Задание параметров модели	6
1.2	Суперблок генерации заявок	7
1.3	Суперблок обработки заявок	8
1.4	Модель $M/M/1/\infty$	9
1.5	Динамика размера очереди	10
1.6	События поступления и обработки	10

Список таблиц

Лабораторная работа: Моделирование системы массового обслуживания М/М/1/∞ в Хсоѕ

1.1 Исходные данные

Заданные параметры модели: - Интенсивность поступления заявок: $(\lambda = 0.3)$ - Интенсивность обслуживания: $(\mu = 0.35)$ - Начальный размер очереди: $(z_0 = 6)$

Через меню $Modenupoваниe \rightarrow Установить контекст$ в Xcos были заданы значения переменных (см. рис. 1.1)..

Рис. 1.1: Задание параметров модели

1.2 Описание модели

1.2.1 1. Суперблок генерации заявок

Реализует пуассоновский процесс поступления заявок (см. рис. 1.2).: - Источник событий генерирует сигналы. - Синхронизатор обрабатывает входные/выходные сигналы. - Равномерное распределение на интервале \([0;1]\) преобразуется в экспоненциальное с параметром $\langle \lambda \rangle$. - Обработчик событий направляет заявки в очередь.

Рис. 1.2: Суперблок генерации заявок

1.2.2 2. Суперблок обработки заявок

Моделирует обслуживание заявок (см. рис. 1.3).: - Экспоненциальное распределение с параметром $\setminus (\mu \setminus)$. - Учет дисциплины обслуживания FIFO (First-In-First-Out).

Рис. 1.3: Суперблок обработки заявок

1.2.3 Итоговая модель

Система М/М/1/∞ в Xсоз включает (см. рис. 1.4).: - Селектор для управления потоками. - Оператор задержки для имитации очереди. - Регистраторы: - Динамики размера очереди. - Событий поступления/обработки заявок..

Рис. 1.4: Модель М/М/1/∞

1.3 Результаты моделирования

- 1. Динамика очереди (см. рис. 1.5). начинается с $(z_0 = 6)$, что соответствует начальным условиям.
- 2. График событий (см. рис. 1.6). отражает пуассоновский входной поток и экспоненциальное обслуживание.

Рис. 1.5: Динамика размера очереди

Рис. 1.6: События поступления и обработки

1.4 Вывод

В ходе работы: - Реализована модель СМО типа $M/M/1/\infty$ в Xcos. - Проверена корректность начальных условий (\(\(z_0 = 6\)\)). - Получены графики, подтверждающие соответствие модели теоретическим характеристикам систем массового обслуживания.

Подробнее см. в [1,2]

Список литературы

- Kleinrock L. Queueing Systems: Volume I Theory. New York: John Wiley
 Sons, 1975. 448 c.
- 2. Law A.M. Simulation Modeling and Analysis. 5th изд. New York: McGraw-Hill Education, 2015. 768 c.