电路与模拟电子技术实验 实验报告

班级___04022306__ 姓名__谢宝玛__ 学号_1120233506_ 成绩____

实验一 Multisim 与电工实验常用电子仪器的使用								
实验日期	11.2 实验分组 下午							
桌号	9	同组同学姓名 或编号	166					

一、实验目的

- 1. 巩固仪器设备的使用;
- 2. 验证叠加原理;
- 3. 加强对戴维南定理的理解。
- 二、实验仪器和设备
- 1. 面包板;
- 2. 直流电源;
- 3. 万用表。
- 三、实验内容与要求

(一)、电阻的测量

电	阻	测量时选用的电阻挡位(Ω)
标称值 (Ω)	测量值(Ω)	
51	51	200

100+200	199+99.7	2k
200	199	2k
510	512	2k
1k	1001	2k

(二)、电位电压的测量

1、实验电路(仿真文件"实验 2-1")

2、仿真实验结果

3、电位与电压测量表格

测量	量内容	电位(V)							电压(V)		
参考点		Va	Vb	Vc	Vd	Ve	Vf	Uab	Ude	Uef	
以a为参考点	理论值	0	-7. 258	1. 883	-16. 105	-14. 274	-15.000	7. 258	-1. 831	0.726	
考 点	测量值	0	-7. 290	1.870	-16. 130	-14. 260	-14.990	7. 360	-1.820	0.730	
以e为测量点	理论值	14. 274	7.016	16. 169	-1.831	0	-0.726	7. 258	-1. 831	0.726	
岬	测量值	14. 270	6. 980	16. 150	-1.830	0	-0.720	7. 290	1.830	0.720	

4、实际电路

(三)、验证叠加原理

1、仿真实验电路(文件"实验 2-2")

2、仿真实验结果

3、验证叠加原理表格

测量条件	I1 (mA)			I2(mA)	I3 (mA)		
E1 E2 共同作用	理	14.232	理论	-9.154		23.387	
产生的电流I	论		值		论		
	值				值		
	测	14.373	测量	-9.140	测	23.367	
	量		值		量		
	值				值		
E1 单独作用	理	18.727	理论	3.745	理	14.981	
产生的电流I'	论		值		论		
	值				值		

	测	18.824	测量	3.730	测	14.900
	量		值		量	
	值				值	
E2 单独作用	理	-4.494	理论	-12.899	理	8.404
产生的电流I"	论		值		论	
	值				值	
	测	-4.471	测量	-12.880	测	8.400
	量		值		量	
	值				值	
验证叠加原理	理	14.233	理论	-9.154	理	23.385
计算 <i>I = I' + I''</i>	论		值		论	
	值				值	
	测	14.353	测量	-9.150	测	23.300
	量		值		量	
	值				值	

(四) 、加深对戴维南定理的理解

1、戴维南定理测量表格

R3 支路电流 I (mA)		开路电压 Uoc (V)		等效电阻 Ro(Ω)		等效后的电流 I'(mA)	
理论值	23. 387	理论值	15. 956	理论值 382		理论值	23.396
测量值	23.367	测量值	15. 990	测量值	384	测量值	23.422

四、实验总结、收获体会和建议(包括实验出现的问题及处理方法)

实验中碰到的问题:

1, 电路没有连通

原因: 电阻插在面包板上没有串联

解决办法: 电阻应该插在面包板的同一列。

2,没有提前测电源电压

五,思考题

1, 右边的电源断路。

15* (510/8651) =8.9

2, 关系: 任意两点间的电位差即为这两点间的电压。

影响: 电位是一个相对量,其大小与参考点的选择密切相关。当参考点发生变化时,电路中各点的电位也会发生变化。电压是绝对的,与参考点的选择无关。无论参考点如何变化,电路中任意两点间的电压都不会发生变化。

- 3,利用戴维南定理,可以将这些复杂电路简化为一个等效的电压源和电阻串联电路,从而大大简化分析过程。
- 4, 开路短路法: 适用于大多数线性二端网络, 特别是当网络内部不包含受控源时。

输入电阻法:具有普遍适用性,不论二端网络是否含有受控源,都可以使用此方法。适用于需要准确测量等效电阻,且网络内部较为复杂或包含受控源的情况

外特性法:适用于各种线性二端网络,包括含有受控源的网络。