

Audition Maître de Conférences INSA Lyon/CITI

Samir SI-MOHAMMED

Projet : Jumeaux Numériques pour des Réseaux Sans-fil Optimisés

Équipe: **DYNAMID**

Parcours, Activités de Recherche et d'Enseignement

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 2/21

Parcours Académique + Contributions

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Calibrage de modèles de simulation

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Jumeaux numériques de réseaux sans-fil

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 3/21

Parcours Académique + Contributions

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau

- Calibrage de modèles de simulation

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Jumeaux numériques de réseaux sans-fil

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 3/21

Calibrage de Simulateurs Réseau

Problématique :

- > Simulation extrêmement utilisée en réseaux
 - Exemple : Approx. autant d'articles IoT utilisant ns-3 que FIT IoT-Lab en 2021 [1]
- > Comment calibrer les modèles de consommation d'énergie?
 - Précision des simulateurs réseau
 - Exemple : Consommation énergétique cruciale dans les systèmes IoT

Verrou scientifique:

 Écart entre expérimentation et simulation en termes de temps passé dans chaque état physique du nœud

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 4/2

^[1] Singh, A., Nandanwar, H., & Chauhan, A. (2022, September). Simulation Tools and Testbeds for Internet of Things (IoT): "Comparative Insight". In 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1-7). IEEE.

Calibrage de Simulateurs Réseau

Contribution : Méthode hybride combinant simulation et expérimentation

Fonctionnement:

- 1. Pour des fenêtres de temps identiques :
 - Garder trace des temps passés dans chaque état physique dans le simulateur
 - Calculer l'énergie consommée dans la plateforme expérimentale
- 2. Fusionner les deux ensembles de données
- Appliquer une régression linéaire pour calibrer les modèles

Apport

· Calibrage des modèles de simulation sans avoir à modifier leur implémentation

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 5/21

Si-Mohammed, et al. « NS+ NDT: Smart Integration of Network Simulation in Network Digital Twin, Application to IoT Networks ». Future Generation Computer Systems (2024).

Activités d'Enseignement

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 6/21

Activités d'Enseignement / d'Encadrement

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 6/21

Projet d'Intégration: Recherche et Enseignement

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 7/21

- ❖ Jumeaux Numériques (JN): Approche visant à reproduire le comportement d'un système [2].
 - > Dans un contexte réseau :
 - Détection de changements dans l'environnement
 - Test de configurations avant déploiement

→ Compromis entre précision et complexité des modèles

Objectifs:

- Concevoir des mécanismes pour développer un jumeau numérique précis et le moins coûteux possible
- Permettre l'optimisation automatique d'un réseau sans-fil sur l'ensemble de la pile réseau

[2] Rasheed, A., San, O., & Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access (2020).

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 8/21

Axe 1 : Réplication de réseaux sans-fil à l'aide de jumeaux numériques

* Objectif : Efficacité et Précision du processus de Modélisation

Problématique :

- Comment développer des modèles capables, à coût minimal, de :
 - Reproduire les performances d'un réseau sans-fil ?
 - Prédire ses performances futures ?

Verrou scientifique :

- Imprécision et Complexité des modèles de simulation
 - Ray-tracing [3] précis mais coûteux
 - Log Distance ou Rayleigh trop simplistes

[3] Valenzuela, Reinaldo. "A ray tracing approach to predicting indoor wireless transmission." IEEE 43rd vehicular technology conference (1993).

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025

Axe 1 : Réplication de réseaux sans-fil à l'aide de jumeaux numériques

Approche:

- 1. Employer des approches pilotées par des données expérimentales
- 2. Modéliser séparément chaque famille de liens radio

* Originalité:

✓ Capture de l'évolution du réseau (comparé aux GNN [4] et au Ray-Tracing [5])

✓ Capture des relations entre les liens du réseau

Défis scientifiques :

- Métrologie
 - → Métriques actives/passives, frugalité, etc.
- Groupement de liens
 - → Métriques statistiques + relatives au déploiement

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 10/21

^[4] Ferriol-Galmés, M. et al. « RouteNet-Fermi: Network modeling with graph neural networks. » IEEE/ACM transactions on networking (2023).

^[5] Ruah, C. et al. « Calibrating wireless ray tracing for digital twinning using local phase error estimates. » IEEE Transactions on Machine Learning in Communications and Networking (2024).

Axe 2 : Optimisation de réseaux sans-fil à l'aide de jumeaux numériques

Objectif: Optimisation du réseau selon l'évolution de l'environnement

Problématique :

- Comment assurer la précision des modèles pour des scénarios inexplorés ?
 - What-if scenarios (protocole, topologie, etc. différents)
- **Verrou scientifique :**
 - Difficulté de généralisation précise des modèles de simulation
 - Relations complexes entre topologie, trafic, etc.

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025

Axe 2 : Optimisation de réseaux sans-fil à l'aide de jumeaux numériques

Approche:

Création de modèles agnostiques à travers des campagnes de mesures

Originalité :

- ✓ Optimisation continue et multi-couches
 - → Changement de protocole à la volée, topologie etc.

Défis scientifiques :

- Limites des modèles de prédiction
 - → Généralisation de domaines/Transfer Learning [6,7]
- Déclenchement de reconfigurations
 - → Détection d'instabilité, gains/coût, etc.

^[6] G. Blanchard et al., Generalizing from several related classification tasks to a new unlabeled sample. Advances in neural information processing systems (2011).

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025

^[7] M. Akrout et al., Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues. IEEE Comm. Surveys & Tutorials (2023).

Intégration au CITI / Équipe DYNAMID

Convergence des thématiques de recherche

- Extension du projet de recherche au continuum IoT-Edge-Cloud (F. Le Mouel)
 - Modélisation des interactions entre couches réseau et application
 - Refléter l'impact des décisions réseau sur les performances des applications (équilibrage de charge, allocation de ressources, etc.)
 - Ensemble de jumeaux numériques (DTN) interagissant entre eux
- Tirer parti du cas d'usage au CITI incluant FIT IoT-Lab et Grid 5000 (SLICES-FR)

Apport personnel

- a) Compétences en simulation, expérimentation et approches orientées données
- b) Nombreuses collaborations académiques internationales (UW, UB, UMA)
- c) Participation à l'initiation de nouveaux axes de recherche

Synergies au CITI

- Collaboration directe avec l'équipe AGORA sur la modélisation des réseaux (H. Rivano, O. Iova, W.Bechkit, R. Stanica)
- Interactions avec les équipes :
 - MARACAS (optimisation des couches basses)
 - PRIVATICS (sécurité)

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 13/21

Projet d'Enseignement

* Renforcer l'axe « informatique distribuée » du département TC

Dès à présent :

- Intervenir dans le cours de Systèmes distribués au S1 de la 4ème année
- Prise en charge du module de Virtualisation en S2 de la 4ème année
- Capacité à intervenir potentiellement dans tous les cours orientés réseaux, dont en particulier :
 - Mécanismes d'accès au canal en S2 de la 3^{ème} année
 - Performance de Réseaux en S1 de la 4^{ème} année
- Intervenir dans les cours de :
 - Algorithmique et Programmation C en S1 de la 3^{ème} année...

Moyen/ terme :

- Proposition d'un cours sur la virtualisation des réseaux en S2 de la 4ème année
 - SDN, NFV, Network Slicing...
 - (Éventuellement changer l'emplacement du cours de Virtualisation au S1)

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025

Mise en situation : Introduction au concept d'Hyperviseur

- ❖ Public cible : Étudiants en S2 de la 4^{ème} année
- * Prérequis:
 - Architecture des ordinateurs (3^{ème} année, S2)

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 15/21

Définitions

Une Machine Virtuelle (VM) est un ensemble de ressources virtualisées qui simule un ordinateur complet. Elle fonctionne comme un système indépendant, avec son propre système d'exploitation (guest OS), mais s'exécute à l'intérieur d'un autre système appelé hôte (host OS).

Ressources virtualisées :

- **CPU et mémoire :** État des registres, RAM...
- Unité de gestion de la mémoire : Tables des pages, segments...
- Support matériel: Contrôleur d'interruption, timer, bus...
- **Périphériques** : Disque, interface réseau...
- •

Intérêts de la virtualisation :

- Indépendance matérielle
- Efficacité
- Isolation
- Passage à l'échelle
- ...

Définitions

Un Hyperviseur (aussi appelé Virtual Machine Manager, ou VMM) est un logiciel ayant pour rôle d'exécuter et de gérer plusieurs OS dans des machines virtuelles au sein d'une même machine physique.

Architecture traditionnelle

Architecture virtuelle

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 17/21

Rôles

Allocation de ressources

- Répartir les ressources physiques (CPU, RAM, disque, GPU...) en ressources virtuelles.
- Attribuer dynamiquement ces ressources virtuelles à chaque VM.

Gestion des failles

Éviter les perturbations en permettant la réplication ou le clonage rapide d'une machine virtuelle en cas de sinistre

Évolutivité

Créer, déployer et mettre hors service des machines virtuelles presque instantanément selon les besoins

(M. Bacou, 2021)

Hardware

CPU

CPU

Types

- ❖ Type 1 : Native
 - Bare metal
 - Utilisé dans les data centers
 - Exemples: VMware ESXi, Microsoft Hyper-V, Xen.

- Type 2 : Hosted
 - Le VMM est lui-même un processus
 - Utilisé à usage personnel
 - Exemples : VirtualBox, VMWare

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 19/21

Références bibliographiques

- N. Troccoli, « Virtual Machines and Networking », CS111, Lecture 26, Stanford Computer Science.
- M. Bacou, « Hardware Virtualization », CSC5004 Cloud Computing Infrastructures, Télécom SudParis.
- A. Burtsev, « Lecture: Virtualization », CS5460: Operating Systems, University of Utah.

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 20/21

Récapitulatif de Candidature

Projet: Jumeaux Numériques pour des Réseaux Sans-fil Optimisés

Équipe : DYNAMID

Publications Int.

- 4 Journaux
- 5 Conférences + 3 en cours de soumission
- 1 Demo

Transfert technologique

- SIFRAN StackNet
- WT-Tool

Encadrement/Enseignement

- 1 Doctorat (depuis Nov. 2024)
- 1 Stage M1
- 1 Stage L2
- 5 TER (M1)
- 157h (CM/TD/TP)

TPC & Reviews

- **TPC:** IEEE ISCC 2024/2025, ICNP (Posters/Demos), IEEE VTC 2025
- Reviews: IEEE Comm. Magazine, IEEE Access, ICC, ICNC, ITU Journal of FET, Adhoc Net. Computer Net., Computer Comm.

Collaborations Internationales

University of Waterloo, Canada
University at Buffalo, USA
Universidad de Màlaga, Espagne

Merci pour votre attention

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 21/21

Annexes

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 19/21

Parcours Académique + Contributions

Ingénieur + Master 2 en Informatique

Supervision: Pr. Yacine Challal, Pr. Karima Benatchba

1 IEEE GLOBECOM

1 IEEE VTM

Stage de Recherche

Supervision: Pr. Adlen Ksentini

Contribution : Optimisation de vols de Drones sur des

Réseaux 5G

Doctorat en Informatique (10/2023)

Supervision: Pr. Thomas Begin,

Pr. Isabelle Guérin Lassous, Dr. Pascale Vicat-Blanc

Contributions:

- Sélection multicritère de Technologies Réseau
- Calibrage de modèles de simulation

1 IEEE ICCCN

- 1 ACM LANC
- 1 IEEE ICC
- 1 Elsevier IoT Journal
 - 1 Elsevier FGCS Journal

Mobilité Internationale

Supervision: Pr. Catherine Rosenberg

Contribution : Étude de techniques de localisation en 5G

1 IEEE IoT Journal

Postdoctorat

Supervision : Dr. Fabrice Théoleyre

Contribution: Jumeaux numériques de réseaux sans-fil

- 1 CloT (demo)
- 1 AINA
- 1 MSWiM (und. sub.)

Samir SI-MOHAMMED Audition MCF - CITI 12 Mai 2025 20/21

Collaborations internationales

University of Waterloo (Canada)

Multi-Armed Bandits pour l'optimisation OFDMA dans les réseaux Wi-Fi 6

Prof. Catherine Rosenberg

Dr. Maryam Amini

University at Buffalo (USA)

- Simulation no-code de topologies réseau sans-fil
- Impact de la communication sur l'optimisation distribuée

Dr. Filippo Malandra

Dr. Adedoyin Inaolaji

UNIVERSIDAD DE MÁLAGA

Universidad de Màlaga (Espagne)

- Sécurité dans les jumeaux numériques des réseaux
- Invité à un séjour de recherche de 2 semaines

Dr. Cristina Alcaraz

Prof. Javier Lopez