ISyE 6785: Mini-project 2 (Due on 7/12/2018)

Note: For all the computations, please report the configuration of your computer (e.g. CPU type and speed, size of RAM) and the computing CPU time in seconds.

1. A spread call option on two assets S^1 , S^2 with strike price K pays off max (S^1 - S^2 - K, 0); a spread put option on two assets S^1 , S^2 with strike price K pays off max (K – (S^1 - S^2), 0). Suppose the asset price processes are given by the following correlated Geometric Brownian motions.

$$dS_{t}^{1} = (r - \delta_{1})S_{t}^{1}dt + \sigma_{1}S_{t}^{1}dW_{t}^{1}$$

$$dS_{t}^{2} = (r - \delta_{2})S_{t}^{2}dt + \rho\sigma_{2}S_{t}^{2}dW_{t}^{1} + \sqrt{1 - \rho^{2}}\sigma_{2}S_{t}^{2}dW_{t}^{2}$$

where r = 4.5%, $\delta_1 = 2\%$, $\sigma_1 = 20\%$, $\delta_2 = 0.5\%$, $\sigma_2 = 25\%$, $\rho = 0.3$. The current prices are S¹ = \$100, S² = \$95.

- a. Implement a simulation approach to simulate 100 price paths of $(S^1,\,S^2)$ from time 0 to T=0.5 years.
- b. Implement the Longstaff and Schwartz (RFS, 2001) algorithm to price a *standard American-style put* option on S^1 with strike price K = 90 and maturity time T = 0.5 years.
- c. (Bonus question, optional) Price an American-style *spread call* option with strike price K = 15 and the maturity time 0.5 years.