Manual Lawn Mower

Group 6

Mohd. Albab Amin 201636007

> Shaqoat Tamim 201636021

Saikat Das 201636018

Jakir Hassan 201636030 Sohanoor Rahman 201636020

Azmin Ahmed 201636039

Product Specification

- Grass can be mowed 1.5-2.5 inch height
- Cover 18 inch width at one drive
- Maximum coverage 700 m /hr
- Maximum Speed 1.5km/hr

Why our product?

- 1. Upgrade of existing machines
- 2. Leverage of existing power sources
- 3. Affordable Price
- 4. Have high potential use of time
- 5. Totally eco friendly
- 6. Reduce cost, labor and saves time

Survey Area

MIST

Savar Golf Club

Glimpse of Customer Survey

power

Glimpse of Customer Survey

Customer's Requirements

Flexibility

Appearance

Quality Function Deployment (QFD)

- Define customer requirements
- Convert them into detailed engineering specification
- Plans to produce the products that fulfill those requirements

Strong Positive + +

Positive +

Negative
Strong Negative - -

■ - Strong (9) □ - Moderate (3) ◆ - Weak (1)	Bicycle Mechanism	Environmenta I Benefit	Cutting Speed	Ergonomics	Weight & Material	Gear , Chain	Warranty	Cutting Blade	Operational & Fixed Cost	Importance	We Today	Target In Future	Improvement Ration	Sales Point	Scores	Percentage
Time Saving			•							7	7	9	1.3	1.3	11.8	11
Portability	*				•				-	6	7	7	1.0	1.1	6.6	6
Tool Life							-	-	-	9	6	9	1.5	1.3	17.6	16
Easy To Use						•	*			10	7	8	1.2	1.5	18	17
Functionality							*			8	6	8	1.3	1.3	13.5	13
Safety										7	5	7	1.4	1.1	10.8	10
Eco Friendly	*									5	7	9	1.3	1.4	9.1	8
Low Cost								-		7	6	8	1.3	1.3	11.8	11
Easy To Maintain			♦							7	7	8	1.2	1.0	8.4	8
Score (Sum∑=1891)	137	72	224	132	153	294	207	474	198					Sum	107.6	
Percent Score (100)	7	4	12	7	8	15	11	25	11							

Relationship between customer requirements and technical requirements

Customer requirement	Engineering requirement	Relation	Explanation		
Time saving	1. Cutting speed.	Strong	The more the cutting speed the less the time required.		
	2. Bicycle mechanism	Moderate	The force is given to the paddle has moderate impact on horizontal movement.		
	1. Weight, material.	Strong	The less the weight, the more easy to shift.		
Dontability	2. Bicycle mechanism.	Weak	The size of bicycle has less impact on portability.		
Portability	3. Ergonomics.	Moderate	The more ergonomics is applied, the more easily to port.		
	4. Fixed cost.	Strong	Portability will increase the fixed cost.		
	1. Cutting blade.	Strong	The more tool life increases, the quality of cutting blade also increases.		
	2. Cutting speed.	Moderate	The more the cutting speed increases, the tool life decreases.		
Tool life	3. Warranty.	Strong	When warranty increases the tool life will also be extended.		
	4. Fixed cost.	Strong	Any improvement or increased property in the tool increases its life therefore the fixed cost is also increased.		

Relationship between customer requirements and technical requirements

Customer requirement	Engineering requirement	Relation	Explanation
	1. Bicycle mechanism.	Moderate	Bicycle makes it easy to operate.
Ease to use	2. Gear chain.	Strong	The more the force is given through the gear chain the more the efficiency is.
	3. Ergonomics.	Moderate	It adds comfort on the customer side.
	4. Warranty.	Weak	The increasing of usability decreases the warranty.
	1. Bicycle mechanism.	Moderate	Bicycle mechanism makes it easy for function.
	2. Cutting speed.	Moderate	Cutting speed controls the function ability.
Function ability	3. Gear chain.	Strong	The more the force is transferred through the gear the more smoothly the product function.
	4. Cutting blade.	Strong	The sharper the blade is the more smoothly the product works.
	1.Cutting blade	Strong	Blade can be dangerous if it is not used properly.
Safety	Cutting speed	Moderate	Has moderate impact.
	3. Ergonomics	Moderate	Ergonomics is also applied for safe using.
Factor and he	1. Environment benefits.	Strong	There is no use of fossil fuel.
Eco friendly	2. Bicycle mechanism.	Weak	This mechanism has no bad effect on environment.

Relationship between customer requirements and technical requirements

Customer requirement	Engineering requirement	Relation	Explanation		
	1. Ergonomics.	Moderate	Changes in ergonomics will bring moderate change in cost.		
Low cost	2. Weight, material.	Strong	Increasing the quality of material will also increase the cost.		
Low cost	3. Warranty.	Moderate	Cost varies moderately with warranty.		
	4. Cutting blade.	Strong	High functioned blade increases the cost.		
	1. Cutting speed.	Weak	The increasing cutting speed has less impact on maintenance.		
Easy to maintain	2. Gear chain.	Moderate	To make the best use of gear chain maintenance is required.		
manitani	3. Cutting blade.	Strong	The more the cutting blade is used the more maintenance is required.		

Functional Decomposition

Black Box Model of Functional Decomposition

Design Analysis

Part Designed by SolidWorks

Circular Blade

Axle

Roller

Roller Bar

Side Bar

Front Link

Wheel Shaft

Mower Wheel

Design Analysis

Part Designed by SolidWorks

Frame 1

Rear Wheel

Frame 2

Pedal

Handle

Handle grip

Pinion Gear

Wheel gear

Sprocket

Seat

Design Analysis

Final Assembly in SolidWorks

Final Product

Final Product

Front View

Top View

Side View

Stress Analysis

Stress Analysis on Axle and Mower Wheel

Force applied 200 Yield strength (6.204e+08) Maximum stress (3.176e+05)

Force applied 600 N Yield strength (6.204e+08) Maximum stress (7.620e+07)

Stress Analysis on Circular Blade

Force applied 170 N Yield strength (2.920e+08) Maximum stress (1.68e+08)

...

Material Selection

For Material Selection Process We Used Digital Logic Gate Method Material Selection For Circular Blade :

Selection		N	lumbe	er of	pos	sitive	deci	sion	s ,N=	=n(n-	1)/2=	6(6-1)/	2=15			sitive Stipp	mphasis Co- efficient
Criteria	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Pos Rige	Emphas Co- efficie
Cost	0	0	0	1	1											2	.133
Strength	1					0	1	0	1							3	.200
Availability		1				1				1	0	0				3	.200
Shear Modulus			1				0			0			0	0		1	.066
Functionalit y				0				1			1		1		1	4	.266
Hardness					0				0			1		1	0	2	.133
				T	otal	numl	ber o	f pos	sitive	e dec	ision	IS				15	1

Calculation of Performance Index

		Mile	d Steel	High Speed Steel			
Selection Criteria	Weight ing factor (α)	Scaled property ,(β)	Weighted score,(αβ)	Scaled property, (β)	Weighte d score,(α β)		
Cost	.133	100	13.33	75	9.98		
Strength	.200	12.54	2.50	100	20.00		
Availability	.200	100	20.00	60	12.00		
Shear Modulus	.066	81.26	5.363	100	6.60		
Functional ity	.266	100	26.6	75	19.95		
Hardness	.133	100	13.3	91.54	12.17		
Material performan ce index, γ			81.093		80.7		

Material Properties

Property	Mild steel	High Speed steel
Compressive Strength (N/m²)	407.7×10 ⁶	3250×10 ⁶
Shear Modulus (N/m²)	7.72×10 ¹⁰	9.5×10 ¹⁰
Rockwell Hardness (c)	71	65

Numerical value (rating) for cost, availability and functionality

Criteria	Mild Steel	High Speed Steel
Cost	3	5
Availability	5	3
Functionality	4	3
Very High		5
High		4
Medium		3
Low		2
Poor		1

Formula Used

For goals: Compressive Strength, Availability, Functionality, Shear modulus and Hardness-

Scaled Property,
$$\beta = \frac{Numerical\ value\ of\ property}{Maximum\ value\ of\ list}$$
 ×100

For goals: Cost -

Scaled Property,
$$\beta = \frac{Minimum\ value\ of\ list}{Numerical\ value\ of\ property}$$
 ×100

After calculation we selected Mild Steel for circular blade

By Same Method We Selected Mild Steel For Axle, Shaft, Front Link, Wheel Shaft, Pinion Gear and Wheel Gear.

Manufacturing Process

Manufacturing Process Determined by "The relative importance of goals using digital logic method"

Part	Process
Circular Blade, Axle, Front Link	Sheet Cutting, Welding Machining, Grinding
Roller Bar, Wheel Shaft, Front Shaft	Turning, Facing
Wheel gear and Pinion gear	Milling, Facing
Joining Process	Arc Welding
Temporary Joining	Nutt- Bolt
Finishing	Non-precision grinding and polishing
Coloring	Spray

Controllable Factors

- Type of mild Steel
- Model of lathe Machine
- Model of Grinding Machine
- Temp of Welding Machine
- Number of Gear
- Size of Axle
- Time of production
- Type of bicycle
- Diameter of wheel

Uncontrollable input factors

Uncontrollable Factors

- Twisting Operation of Blade
- Labor

Response/ Output

- Speed
- Sharpness of Blade
- Area Coverage
- Comfort

Levels

- Cheap or costly
- Quantity of weld temperature
- Large or small
- Measurement of time
- Model number of equipment etc.

Software Approach

III							
+	C1	C2	C3	C4	C5-T	C6-T	
	StdOrder	RunOrder	CenterPt	Blocks	Mild steel	Axle	
1	2	1	1	1	costly	small	
2	11	2	1	1	cheap	large	
3	4	3	1	1	costly	large	
4	3	4	1	1	cheap	large	
5	1	5	1	1	cheap	small	
6	12	6	1	1	costly	large	
7	10	7	1	1	costly	small	
8	7	8	1	1	cheap	large	
9	6	9	1	1	costly	small	
10	8	10	1	1	costly	large	
11	5	11	1	1	cheap	small	
12	9	12	1	1	cheap	small	

	Design Sammary											
	Factors: 2 Base Design: 2, 4											
III												
+	C1	C2	C3	C4	C5-T	C6-T	C7-T					
	StdOrder	RunOrder	CenterPt	Blocks	Mild steel	Axle	Sharpness of blade					
1	2	1	1	1	costly	small	12					
2	11	2	1	1	cheap	large	12.5					
3	4	3	1	1	costly	large	14					
4	3	4	1	1	cheap	large	13					
5	1	5	1	1	cheap	small	14.5					
6	12	6	1	1	costly	large	12.8					
7	10	7	1	1	costly	small	15					
8	7	8	1	1	cheap	large	14.6					
9	6	9	1	1	costly	small	13.4 ●					
10	8	10	1	1	costly	large	12.4					
11	5	11	1	1	cheap	small	13					
12	9	12	1	1	cheap	small	12.9					

Factorial Design

Factorial Regression

Regression Equation

Full Factorial Design

Design Summary

Factors:	2	Base Design:	2, 4
Runs:	12	Replicates:	3
Blocks:	1	Center pts (total):	0

All terms are free from aliasing.

Design Table (randomized)

Run	Blk	Α	В
1	1	+	-
2	1	-	+
3	1	+	+
4	1	-	+
5	1	-	-
6	1	+	+
7	1	+	-
8	1	-	+
9	1	+	-
10	1	+	+
11	1	-	-
12	1	-	-
12			

Factorial Regression: Sharpness of blade versus Mild steel, Ax

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	3	2.6158	0.87194	0.92	0.475
Linear	2	2.0083	1.00417	1.06	0.392
Mild steel	1	0.0075	0.00750	0.01	0.931
Axle	1	2.0008	2.00083	2.10	0.185
2-Way Interactions	1	0.6075	0.60750	0.64	0.447
Mild steel*Axle	1	0.6075	0.60750	0.64	0.447
Error	8	7.6133	0.95167		
Total	11	10.2292			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
0.975534	25.57%	0.00%	0.00%

Coded Coefficients

Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF	
Constant		13.342	0.282	47.38	0.000		
Mild steel	0.050	0.025	0.282	0.09	0.931	1.00	
Axle	0.817	0.408	0.282	1.45	0.185	1.00	

Regression Equation in Uncoded Units

Sharpness of blade = 13.342 + 0.025 Mild steel + 0.408 Axle + 0.225 Mild steel*Axle

Alias Structure

Factor	Name
Α	Mild steel
В	Axle

Aliases

Α

В

ΑB

Effects Plot for Sharpness of blade

Effects Pareto for Sharpness of blade

Residual Plots for Sharpness of blade

Normal Plot

Pareto Chart

Residual Plots

Main Effects Plot

Hence the interaction plot shows the mean sharpness for four different combinations. Among them none is acceptable because of their insignificance (p value is greater than .005). Now as the lines at interaction plot are not parallel, so the plot represents the interaction between two factors. So from this experiment we can obtain that there is no significance of mild steel and axle on the response

Explanation of Non significant

- P value greater than .05
- Represents the non-significance
- Absolutely ok for any kind of statistical approach
- A door-opening for checking other factors and conducting new dataset.

ITEM NO.	PART NAME	DESCRIPTION	QTY.
1	Frame 1	Cycle's main frame	1
2	Front link	Part which is welded with mower	1
3	Handle	Normal Cycle handle	1
4	Handle grip	Uses to grip the handle	2
5	Seat Rod	Where the Seat pad is joined	1
6	Seat Pad	cycle's seat	1
7	Frame 2	Part which is joined with cycle wheel	1
8	Cycle Wheel		1
9	Cycle Gear	Normal Cycle gear in	1
10	Pedal Part 1		1
11	Pedal Part 2		2

ITEM NO.	PART NAME	DESCRIPTION	QTY.
12	Pedal Part 3		2
13	Pedal Part 4		2
14	Sprocket	Cycle Sprocket	1
15	Mower Wheel		2
16	Pinion Gear	Little gear which transmits rotation to blade from Mower wheel gear	2
17	Mower Wheel Gear	Transmits rotational power to pinion gear from wheel	2
18	Support Side	Where axle, Mower blade, roller bar is set	2
19	Circular blade	Grass cutting blade	1
20	Wheel Shaft		1
21	Roller bar	Where roller wheel is set	1
22	Roller wheel	Give balance to the mower	2

Tree of BOM

Lean Manufacturing

Waste	Cause	Solution
Transportation	 Location of the workshop Carrying the bicycle to the workshop 	 Effective facility location Lessen the movement of the bicycle
Motion	 Unnecessary movements of materials between blade twisting machine and welding table 	 Proper arrangement of blade twisting machine and welding table
Inventory	More raw materials than needed	 Application of BOM
Over processing	Design of the cutting bladeLack of machineChange in design	 Specialized Blade twisting machine
Defect	 Heavier than expected Cutting blade not twisted properly One of the blade is deformed when transported 	 Use of composite materials Specialized Blade twisting machine

Cost Analysis

Prototype Costing

Cost of Raw Materials:

Material	Required Amount	Total Cost (Tk.)
Mild steel sheet	4mm - 2 kg2mm – 6kg	2500
Mild steel rod	2ft4ft	1260
Mild steel round bar	1inch4 inch	990

Total Raw Materials Cost = 4,750 Tk.

Prototype Costing

Labor cost for different manufacturing process:

Process	Total Cost (Tk.)
Sheet Cutting	1500
Welding	2500
Facing	1200
Joining	500
Drilling	1400
Coloring	550

Purchasing Cost:

Name of the equipment	Quantity required	Price per unit (BDT)	Cost (Taka)
Cycle	1 piece	6000	6000
Mower wheel	2 pieces	400	800
Roller	2 pieces	100	200
Spray color	2 pieces	200	400
Nut-bolt	10 pieces	30	300

Total labor cost= 7,650 Tk.

Total Purchasing cost= 7,700 Tk.

Prototype Costing Manufacturing Cost

Direct material cost

- Raw material cost: 4,750 Tk.
- Purchasing cost: 7,700 Tk.
- Direct material cost: (4,750 + 7,700) = 12,450 Tk.

Direct labor cost

Labor cost = 7,650 Tk.

Total manufacturing cost: (12,450 + 7,650) = 20,100 Tk.

Cost Analysis for Mass Production

Machine & Associated Cost

Machine	Buying Cost (Tk.)	Qty.	Buying Cost (considering salvage value) Tk.
Arc Welding	249000	1	230500
Grinding Machine	350000	1	264230
Lathe	350000	1	210000
Milling	385150	1	325822
Bending	47000	1	440279
TIG welding	31125	1	31003
Measuring equipment	100000	10	99978
Painting equipment	60000	1	59817

Total machine cost = 19,25,820 Tk.

Cost of Furniture, Computer and Other Accessories

Office Equipment	Buying Cost (considering salvage value) Tk.	
Total Furniture and accessories	95056	
Computer	143820	

Total cost = 2, 38, 876 Tk.

Cost of Raw Materials (Per Unit of Production)

Materials	Cost
AISI-1020 Mild Steel Shaft	510
AISI-1020 Mild Steel Sheet	740
HSS Sheet	1250
Chromalloy Steel	5000

Total cost = 7, 500 Tk./ unit

Labor cost for different manufacturing operation(per month):

Process	Total Cost (Tk.)
Measuring	8000
Welding	18000
Shearing & bending	15000
Grinding	11000
Lathe	21000
Threading & hammering	11000
Assembly & joining	28550
Finishing	6000
coloring	8000

Total labor cost = 1,26,500 Tk./ Per month

Purchasing Cost of Parts

Name of Components	Quantity	Price per unit (Taka)	Cost (Taka)
Cycle Wheel	1	800	800
Mower Wheel	2	650	1300
Brake Set	1	250	250
Bicycle Seat	1	150	150
Teeth Crack Set	1	200	200
Pedal	2	80	160
Sprocket	1	50	50
Sprocket Chain	1	90	90
Roller Wheel	5	200	1000
	Total Cost		4000

Total purchasing cost per year = $4000 \times 2000 = Tk. 80,00000$

Manufacturing Cost:

1. Direct Material Cost

Raw Material Cost: **Tk.** 1,50,00000

Purchasing Cost: **Tk.** 80, 00,000

Direct material cost per year:

(1,50, 00000+ 80,00, 000) = **Tk.2,30,00000**

2. Direct Labor Cost
Labor Cost per year = 1,518,000

Total manufacturing overhead per year: $(2, 20, 000 \times 12) = TK. 2, 640, 000$

Total manufacturing cost per year: (2, 30, 00, 000+ 1,518,000+2, 640, 000) = Tk.27, 158, 000

3. Manufacturing Overhead Cost per month:

Post	No. of Post	Salary / Person	Total (Tk.)
Production manager	1	40, 000	40, 000
Manufacturing Engineer	1	30, 000	30, 000
Assembly Manager	1	20, 000	20, 000
Design Engineer	1	25, 000	25, 000
Quality control Manager	1	25, 000	25, 000
Factory Rent	NA	NA	30, 000
Power Consumption	NA	NA	20, 000
Supply Chain Engineer	1	20, 000	25,000
Utilities factory	NA	NA	20, 000
Total			2, 20, 000

Administrative cost:

Cost Item / Post	No. of Post	Salary / Person	Total (Tk.)
Chief Executive Manager	1	45, 000	45, 000
HR Manager	1	35, 000	35, 000
Accountant	1	20, 000	20, 000
Secretary	1	12, 000	12, 000
Clerk	2	8, 000	16, 000
Guard (GS4)	3	6, 000	18, 000
Office Rent	NA	NA	30, 000
Power Bill	NA	NA	4,000
Water Bill	NA	NA	2, 000
Total			1, 82, 000

Selling Expense:

Cost Item / Post	No. of Post	Salary / Person	Total (Tk.)
Marketing Executive Manager	1	25, 000	25, 000
Advertisi ng	NA	25, 000	25, 000
Total			50, 000

Total Selling and Administrative expenses per month:

(1, 82, 000 +50,000) = Tk. 2, 32, 000 Total Selling and Administrative expenses per year:

 $(2, 32, 000 \times 12) = Tk. 2, 784, 00$

Break Even Analysis

Fixed cost

Machine cost: Tk. 19, 25, 820

Furniture and accessories cost: **Tk. 95, 056**

Building and land cost: TK. 80, 00, 000

Computer cost: Tk. 1, 43, 820

Labor cost: Tk. **1,518,000**

Fixed manufacturing overhead cost: Tk.2, 640, 000

Fixed selling & administrative cost: Tk. 2, 784, 000

Total amount of fixed cost: Tk. 17, 106, 696 per year

Variable Cost (for the 2,000 products in the first year)

Raw material cost = **Tk.** 1, **50**, **00000**

Purchasing cost per year = Tk. 80, 00000

Total variable cost per year: (1, 50, 00000 + 80, 00, 000) = **Tk. 23, 000, 000**

Total variable cost per unit production: (23, 000, 000 / 2000) =

Tk. 11,500

Selling price per unit: **11,500 + 30 % of 11,500** (expecting 30 % profit on sale)

= Tk. 14,950

The Equation for Break Even Analysis:

At Beak Even Point, Selling price × break-even unit (x) = Fixed cost+ Variable cost

Total amount of fixed cost: **Tk. 17, 106, 696**The total variable cost per unit: **Tk. 11,500**Selling price per unit: **Tk. 14,375**

So the equation stands as: 14,950x =17, 106, 696 + 11,500x

x ≈ 4958 units

Break even time is 2 years and 5 months

Graphical Representation of Break-Even Analysis

Further Recommendations

- By using composite materials it can be made lightweight to facilitate direction change.
- A tray can be kept underneath to collect waste grasses.
- Appropriate blade sharpening to increase cutting efficiency.

References

- http://www.made-in-china.com/products-search/hot-chinaproducts/Sheeting_Machine.html
- https://www.alibaba.com/premiumsupplier/machines.html
- Wikipedia
- http://www.rhd.gov.bd/RHDMaps/Maps/Dhaka_Zone.pdf
- Richard G. Budynas, J. Keith Nisbett, Shigley's Mechanical Engineering Design, 10th Ed, New York, McGraw Hill, Inc.
- A Textbook of Machine Design, RS Khurmi & JK Gupta
- http://www.statisticssolutions.com/my-results-were-not-significant-now-what/

