# Splicing systems

### Clelia De Felice

Dipartimento di Informatica e Applicazioni, University of Salerno, ITALY

Colloquium "unconventional Models of Computation" in honour of Giancarlo Mauri – Cremona, September 28, 2009

### THE MECHANISM



Source: Watson, J.D., Gilman, M., Witkovski., Zoller, M. Recombinant DNA, pg 78.





## HIGHLIGHTS

#### Linear case

- 1) Strictly locally testable languages are exactly languages generated by null context splicing systems [Head 1987]
- 2) reflexive languages are constructed by constants

#### Circular case: the relation between

- 1) complete systems and pure unitary languages (in particular, free monoids generated by group codes)
- 2) marked systems and P4-free graphs.

## CIRCULAR SPLICING





#### THE MODEL



~ aaab = circular word

- ~w = equivalence class of w w.r.t. the <u>conjugacy relation</u>
- Circular language L: set of circular words

 $w, w' \in A^*, w \sim w' \Leftrightarrow w = xy, w' = yx$ 



#### **Definition**

A circular language L is *regular* (resp. *context-free*) if Lin(L) is *regular* (resp. *context-free*).

languages closed under the conjugacy relation

## PAUN CIRCULAR SPLICING SYSTEMS

S = (A,I,R), A = finite alphabet, I = initial circular language  $\subseteq {}^{\sim}A^*$ , R = set of the rules r=u<sub>1</sub> #u<sub>2</sub> \$ u<sub>3</sub> # u<sub>4</sub>, u<sub>i</sub>  $\in$  A\*, #, \$  $\notin$  A.

$$(^{\sim} w', ^{\sim} w'') \vdash r^{\sim} w \text{ if } w'= u_2xu_1, w''= u_4yu_3, w = u_2xu_1u_4yu_3$$



**Definition** [Head, Paun, Pixton, Handbook of Formal Languages, Vol. 2, 1996]

L(S) = circular splicing language **generated** by S =(A,I,R) is the smallest language which contains I and is invariant under iterated splicing by rules in R.

## **Problem 1**

The computational power of circular splicing systems

## **Problem 2**

Finding a characterization of the class of (regular) circular languages generated by circular splicing systems

## **Problem 3**

Given S =(A,I,R), is it decidable whether L(S) is regular?

## **Problem 4**

Given a regular circular language L, is it decidable whether there exists S = (A,I,R) such that L=L(S)?

### STATE OF THE ART

#### ✓ Circular splicing systems

Results [Paun, Handbook of Formal Languages], [Pixton, TCS, 2000]: S=(A,I,R)

- I regular circular, additional conditions on R, self-splicing  $\Rightarrow L(S)$  regular circular
- Lin(I) regular ⇒ Lin(I) in a full AFL closed under conjugacy relation

```
✓ Finite circular splicing systems S =(A,I,R) with I, R finite sets
```

```
Example: ^{\{}w ∈ A* | |w|=2n, n≥0} is generated by a finite splicing system ^{\{}w ∈ {a,b}* | |w|<sub>a</sub>=2n, |w|<sub>b</sub> = 2m, n,m ≥0} is generated by a finite splicing system ^{\{}((aa)*b) is regular and cannot be generated by a finite splicing system ^{\{}a<sup>n</sup>b<sup>n</sup> | n,m ≥0} is context-free and is generated by a finite splicing system
```

Results: L(S) may be regular, context-free, context-sensitive [Fagnot, JM04]

Case A ={a} [Bonizzoni, DeF, Mauri, Zizza, Rairo 2004, DAM 2005]: The class of regular circular languages generated has been characterized. It is decidable whether L(S) is regular

Special families of circular languages [B, DF, M, Z, Rairo 2004]:

 $X^*$  closed under conjugacy relation, X regular,  $X^*$  cycle closed (for each simple cycle c in m.DFA of  $X^*$ , c in  $X^*$ )  $\Rightarrow$   $^{\sim}X^*$  generated by finite systems. Example group codes.

#### ✓ CSSH systems

Rules: a # 1 \$ b # 1 or 1 # a \$ 1 # b or 1# a \$ b # 1 or a # 1 \$ 1 # b, with a, b letters

**Example**  $S = (A,I,R), A = \{a,b,c\}, I = ^{aac}, bcba\}, R = \{c # 1 $ b # 1, 1 # a $ b # 1\}$ 

Result: L(S) context-free [Fagnot, JM04]

(1,3)-CSSH systems: S=(A,I,R), R = {a #1 \$ b # 1| a,b ∈ A}



Complete systems: S =(A,I,R), alph(I) = A, I finite
 R = {a #1 \$ b # 1 | a, b ∈ A} = A x A

**Example** S=({a,b,c}, ~{ac, bb}, {a#1\$a#1, a#1\$b#1, a#1\$c#1, b#1\$b#1, c#1\$c#1, b#1\$c # 1})

Remark Splicing = concatenation + closure under conjugation

#### AN OLD PROBLEM...

CONDITIONS UNDER WHICH A CONTEXT-FREE LANGUAGE L IS REGULAR:
PROPERTIES OF A CONTEXT-FREE GRAMMAR G WITH L(G)=L

- properties of L [Autebert, J. Beauquier, Boisson, Latteaux, Nivat, Ehrenfeucht, Haussler, Rozenberg,... 80's]
- properties of a context-free grammar G with L(G)=L
   [Ehrenfeucht, Haussler, Rozenberg, 80's]

#### ✓ *Example* (Dyck languages)

G = 
$$({X},A,P,X)$$
, A =  ${a,b}$ ,  
P =  ${X \rightarrow 1, X \rightarrow XaXbX, X \rightarrow XbXaX}$ 

$$L(G) = \{w \text{ in } A^* \mid |w|_a = |w|_b \}$$

#### ✓ <u>Example</u> (generalized Dyck languages)

Y = {aba, c}  
P= { 
$$X \rightarrow 1$$
,  $X \rightarrow XcX$ ,  $X \rightarrow XaXbXaX$ }  
(In the previous example take Y = {ab, ba})

$$\underline{\textbf{Definition}} \ w = a_{i_1} \ \dots \ a_{i_h} \in Y, \ a_{i_j} \in A, \ p_w = X \xrightarrow{} X \ a_{i_1} \ X \ a_{i_2} \ \dots X \ a_{i_h} \ X$$

$$G_Y = (\{X\},A,P,X),$$
  
P =  $\{X \rightarrow 1\} \cup \{p_w \mid w \in Y\}$ 

## STRUCTURE OF L(G)?

#### **INSERTION** [Haussler, Inf. Sci. 1983]

$$Z \leftarrow Y = \{w_1 \ y \ w_2 \mid w_1 w_2 \in Z, \ y \in Y\}$$

#### **Example**

Y = {aba, c}, 
$$Y^{\leftarrow_2}$$
 = Y  $\leftarrow$ Y ={caba, acba, abca, abac, cc, aababa, ababaa, abaaba}

#### **ITERATED INSERTION [Haussler, Inf. Sci. 1983]**

$$Y \leftarrow 0 = 1$$
,  $Y \leftarrow n = Y \leftarrow n-1 \leftarrow Y$ ,  $Y \leftarrow * = \bigcup_{n \geq 0} Y \leftarrow n$ 

#### **Example**

Y = {aba, c}, Y<sup>←</sup>\* = {1, aba, c, caba, acba, abca, abac, cc, aababa, ababaa, abaaba, ccaba, cabaaba...}

### ✓ Pure unitary languages (GENERALIZED DYCK LANGUAGES)

### **Definition** [Ehrenfeucht, Haussler, Rozenberg, TCS 1983]

L is a pure unitary language  $\Leftrightarrow \exists Y \subseteq A^*, Y \text{ finite: } L = L(G_Y).$ 

Theorem 1 [Ehrenfeucht, Haussler, Rozenberg, TCS 1983]
L is a pure unitary language, i.e., ∃ Y finite: L =L(G<sub>Y</sub>) ⇔∃ Y finite: L = Y<sup>←\*</sup>

Theorem 2 [Ehrenfeucht, Haussler, Rozenberg, TCS 1983]

A pure unitary language  $L = Y^{\leftarrow *}$  is regular  $\Leftrightarrow Y$  is subword unavoidable in alph(Y)\* (i.e.  $\exists$  k s.t. each word w  $\in$  alph(Y)\*, with  $|w| \ge k$  has a word of Y as a factor)

(well quasi-orders)

Proposition [Ehrenfeucht, Haussler, Rozenberg, TCS 1983]

For any regular set  $R \subseteq A^*$ , it is decidable whether or not R is subword unavoidable

## COMPLETE SYSTEMS AND PURE UNITARY LANGUAGES

✓ REMIND. Complete systems: S = (A,I,R), alph(I) = A, I finite  $R = \{a \# 1 \$ b \# 1 \mid a,b \in A\} = A \times A$ 

```
Theorem [DCM'09] L = L(S) with S complete system \Leftrightarrow
```

- $\exists$  Y finite and closed under the conjugacy relation : Lin(L) = L(G<sub>Y</sub>) \1  $\Leftrightarrow$
- $\exists$  Y finite and closed under the conjugacy relation : Lin(L) = Y  $\leftarrow$ \* \ 1

#### **Corollary** [DCM'09] S = (A, I, R) complete system.

- L(S) is context-free
- L(S) is a regular circular language 

   ⇔ Lin(I) is subword unavoidable.
- It is decidable whether L(S) is a regular circular language.

- (1,3)-simple systems: S=(A,I,R), R = {a #1 \$ a # 1 | a ∈ B ⊆ A}
   a # 1 \$ a # 1 = (a,a)
- ✓ (1,3)-simple systems with 1 rule:  $R = \{(a,a)\}$

## Complete systems ⇔ (1,3)-simple systems with 1 rule by means of

 $\varphi$ : S  $\rightarrow$  S', S (1,3)-simple system with 1 rule, S' complete

Example 
$$S=(A,I,R), I=^{baca}, R=\{(a,a)\} \rightarrow S'=(A,I',R'), I'=^{de}, R'=\{d\#1\$d\#1, e\#1\$e\#1, d\#1\$e\#1\}$$

Theorem [Siromoney, Subramanian, Dare, ICPIA, LNCS 654, 1992] (1,3)-simple system  $S \Rightarrow L(S)$  regular

#### **FALSE**

#### **Corollary** [DCM'09]

- The class of regular circular languages generated by (1,3)-simple systems S with 1 rule has been characterized.
- > (1,3)-simple systems S with 1 rule: it is decidable whether L(S) is regular

✓ *Marked systems* [DeF, Fici, Zizza, FCT 2007]

(1,3)-CSSH systems S=(A,I,R), 
$$R \subseteq A \times A$$
,  $I = A = alph(R)$ 

**Example** 
$$S = (A, I,R), A = I = \{c, b\}, R = \{(c, b)\}$$

- ✓ The class of regular circular languages generated by S has been characterized.
  - ✓ It is decidable whether L(S) is regular

#### [Bonizzoni, DeF, Fici, Zizza, to appear in Nat. Comp., 2009]

- Extended to marked systems with self-splicing
- Reviewed in a graph theoretical setting

A marked system generates a regular circular language



if and only if its graph is P₄-free

## PAUN'S LINEAR SPLICING (1996)

$$x$$
  $u_1$   $u_2$   $y$ 

$$\mathbf{w}$$
  $\mathbf{u}_3$   $\mathbf{u}_4$   $\mathbf{z}$ 

Pattern recognition

$$u_4$$
  $z$ 

cut

$$X \stackrel{\mathbf{u}_1}{\smile} u_4 \stackrel{\mathbf{z}}{\smile} \mathbf{z}$$

$$\mathbf{u}_{3}$$
  $\mathbf{u}_{2}$   $\mathbf{y}$ 

paste

✓ Paun's linear splicing system  $S_{PA} = (A, I, R)$ 

A=finite alphabet;  $I \subseteq A^*$  initial language;  $R \subseteq A^* | A^* A^* | A^*$  set of rules;

$$L(S_{PA}) = I \cup \sigma(I) \cup \sigma^{2}(I) \cup ... = \bigcup_{n \geq 0} \sigma^{n}(I)$$
 splicing language

✓ Finite linear splicing system S =(A,I,R) with I, R finite sets
 (aa)\* is regular and cannot be generated by a finite splicing system

## **Problem 1**

Characterize regular languages generated by finite linear Paun splicing systems

## **Problem 2**

Given L regular, can we decide whether L is generated by a finite linear Paun splicing system?

## PARTIAL RESULTS

#### ✓ Marker Languages [Bonizzoni, De Felice, Mauri, Zizza, DAM 2005]

Let L be a regular language ,  $\mathcal{A} = (A, Q, \delta, q_0, F)$  minimal for L. Consider the Syntactic Congruence (w.r.t. L)  $\equiv_{L}$ 



**Theorem**  $L([x]) = L_1[x]_1 L_2$  is a finite splicing language

✓ *Reflexive Languages* [Bonizzoni, D.F., Mauri, Zizza, DLT03; Bonizzoni, D.F., Zizza, TCS 2005]

The characterization of *reflexive Paun* splicing languages

Generated by finite splicing systems which are "reflexive", i.e.,  $u_1 \# u_2 \$ u_3 \# u_4 \in R \Rightarrow u_1 \# u_2 \$ u_1 \# u_2$ ,  $u_3 \# u_4 \$ u_3 \# u_4 \in R$ 

#### by means of

- finite set of (Schutzenberger) constants C
- finite set of factorizations of these constants into 2 words

#### ✓ As a consequence we have:

The characterization of Head splicing languages, since

Finite Head splicing system



Finite Paun splicing system, reflexive and symmetric

✓ <u>It is decidable</u> whether a regular language is generated by a reflexive splicing system [Goode, Pixton 2007], [Bonizzoni, Mauri 2005], [Bonizzoni 2009]