화학 General Chemistry 034.020-005

2018 Spring Semester

Tue/Thr 9:30~10:45 Building 028-302

송윤주 woonjusong@snu.ac.kr

Max Planck (1858 –1947) Nobel Prize in Physics in 1918

Albert Einstein (1879 -1955) Nobel Prize in Physics in 1921

Niels Bohr (1885 –1962) Nobel Prize in Physics in 1922

Erwin Schrödinger (1887–1961) Nobel Prize in Physics in 1933

Quantum theory

Photoelectric effect

1.7. Wave functions and Energy Levels

A particle has wave-like property; wavefunction

Max Born (1882-1970) Nobel Prize in Physics (1954)

Schrödinger equation

$$H \psi = E \psi$$

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

Born interpretation: statistical interpretation of

the wave function, probability density function

m: mass of the particle

Quantized energy levels: E Hamiltonian: H

(Matter) Wave function: $\Psi_n(x)$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x) + V(x)\Psi(x) = E\Psi(x)$$

$$\Psi_n(x, y, z)$$

Matter wave associated with the particle.

$$P(x, y, z) = |\Psi_n(x, y, z)|^2 = \Psi_n^*(x, y, z) \times \Psi_n(x, y, z)$$

$|\Psi|^2 dx dy dz$

Wave function (ψ)

= Probability to find a particle at (x,y,z)

Probability density (ψ^2)

Classical Mechanics

Position and momentum of a particle can be determined

Energy is continuous

Quantum Mechanics

Position and momentum of a particle cannot be determined simultaneously

Energy is discrete (quantized)

One-dimensional boxes:

Zero potential energy inside the box And infinite potential energy outside

Energy is quantized (determined by n)!

$$E_n = \frac{h^2 n^2}{8mL^2}, \Psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

$$E_{n+1} - E_n = \frac{h^2 (n+1)^2}{8mL^2} - \frac{h^2 n^2}{8mL^2} = (2n+1)\frac{h^2}{8mL^2}$$

- 1. Energy level is quantized.
- 2. As the L or m increases, the separation between neighboring energy levels decreases: The quantized energy level is obvious in an electron in a hydrogen atom.
- 3. It is impossible to have no energy (E \neq 0). The lowest energy state is when n=1: E_1 = zero-point energy.
- 4. There is always some degrees of kinetic energy = always moving (linear momentum)= uncertainty in the position.
- 5. With large quantum number, the quantum mechanics should converge to classical mechanics: Correspondence Principle

Energy: Principle Quantum Number (n)

Wave function:

4 Quantum Numbers:

The Rutherford–Bohr model of the hydrogen atom

1.8. The Principal Quantum Number

Similarly to a particle in a box, an electron in an atom

For Hydrogen Atom, V(r) = Coulomb potential energy

$$V(r) = \frac{(-e)(+e)}{4\pi\epsilon_0 r} = -\frac{e^2}{4\pi\epsilon_0 r}$$
 where, ϵ_0 = vacuum permittivity

Solutions of the Schrödinger equation, $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$

$$E_n = -\frac{h\mathcal{R}}{n^2}$$

$$\mathcal{R} = \frac{m_e e^4}{8h^3 \varepsilon_0^2} \qquad n = 1, 2, \dots$$

$$\mathcal{R} = \frac{m_{\rm e}e^4}{8h^3\varepsilon_0^2}$$

$$n=1,2,\ldots$$

where, $R = 3.29 \times 10^{15} \, \text{Hz}$ — Rydberg constant!

For other one-electron ions, such as He⁺, Li²⁺ and even C⁵⁺

$$E_n = -\frac{Z^2 h \mathcal{R}}{n^2}$$

$$n=1,2,\ldots$$

 $n = 1, 2, \dots$ Proportional to Z^2 = charge effect+ distance effect

Z = atomic number; n = principal quantum number

1.9. Atomic Orbitals

Atomic Orbitals: the wave functions of electrons in atoms

$$-\frac{\hbar^2}{2 m} \nabla^2 \psi + \frac{V(x, y, z) \psi}{\text{Potential energy}} = \frac{E}{V} \psi$$
Total energy

$$\psi$$
 $(r, \theta, \phi) = R(r) Y(\theta, \phi)$

Radial Angular wavefunction

$$x = r \cos\theta \sin\phi$$

$$y = r \sin\theta \sin\phi$$

$$z = r \cos\theta$$

$$x^{2}+y^{2}+z^{2} = r^{2}$$

Spherical Coordinate: $(x, y, z) \rightarrow (r, \theta, \phi)$

$$\rightarrow n, l, m_l$$

TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$

(a) R	adial wa	vefunctions, $R_{nl}(r)$	(b) A	ngular wavefu	nctions, $Y_{lm_l}(\theta, \phi)$
n	l	$R_{nl}(r)$	l	"m _l "*	$Y_{lm_{l}}(oldsymbol{ heta},oldsymbol{\Phi})$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\cos 2\varphi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$
n =	nrincin	al quantum number 1, 2, ···		zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$
/=		angular momentum quantum number		$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\sin2\varphi$
		etic quantum number /, /-1,···-/		z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

Note: In each case, $a_0 = 4\pi\epsilon_0^2/m_e^2$, or close to 52.9 pm; for hydrogen itself, Z = 1. *In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_l .

Energy is dependent only on n; Total number of orbital = n^2

Representation of energy levels

Atomic Orbital =
A mathematical function
that describes the wavelike behavior of either
one electron or a pair of
electrons in an atom.

TABLE 7.2 Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom

		Orbital		
n	ℓ	Designation	m_ℓ	Number of Orbitals
1	0	1.s	0	1
2	0	2s	0	1
	1	2p	-1, 0, +1	3
3	0	3s	0	1
	1	3 <i>p</i>	-1, 0, 1	3
	2	3d	-2, -1, 0, 1, 2	5
4	0	4s	0	1
	1	4p	-1, 0, 1	3
	2	4d	-2, -1, 0, 1, 2	5
	3	4f	-3, -2, -1, 0, 1, 2, 3	7

Shape of orbitals

Spherically symmetric. Number of nodes increase with n

p_x, p_y and p_z have the same energy: (degenerate states) p-orbitals have nodal plane along xy, yz, and zx planes

Size and Shape of orbitals

I = 0: s-orbitals:

Spherically symmetric.

Number of nodes increase with n

(a) Radial wavefunctions, $R_{nl}(r)$

n	l	$R_{nl}(r)$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$

(b) Angular wavefunctions, $Y_{lm}(\theta, \phi)$

		1	
l	" m_l "*	$Y_{lm_l}(oldsymbol{ heta},oldsymbol{oldsymbol{\phi}})$	
0	0	$\left(\frac{1}{4\pi}\right)^{\!1/2}$	
1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$	
	у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$	
	z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$	

 $a_0 = 4\pi\varepsilon_0^2/m_e^2$, or close to 52.9 pm; Bohr radius

Hydrogen Wavefunctions

2p-orbital: p_x , p_y and p_z

- p_x , p_v and p_z have the same energy = degenerate states /

- p-orbitals have nodal plane along xy, yz, and zx planes

 $3p_z$

 $4p_z$

TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$

(a) R	adial wa	vefunctions, $R_{nl}(r)$	(b) A	Angular wavefu	inctions, $Y_{lm_l}(\theta, \phi)$
n	l	$R_{nl}(r)$	l	"m _l "*	$Y_{lm_l}(\theta, \phi)$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} \mathrm{e}^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9{a_0}^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\cos2\varphi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{\!1/2}\cos\theta\sin\theta\sin\varphi$

Node: yz plane: Φ = 90

 $2p_z$

Node: xz plane: $\Phi = 0$

Node: xy plane: $\theta = 90$

3*d*-orbital

TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$

(a) R	adial wa	vefunctions, $R_{nl}(r)$	(b) A	ngular wavefu	nctions, $Y_{lm_l}(\theta, \phi)$
n	l	$R_{nl}(r)$	l	"m _l "*	$Y_{lm_l}(oldsymbol{ heta},oldsymbol{\Phi})$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9{a_0}^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\cos2\varphi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$
				zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$
				$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\sin2\varphi$
				z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

1.10. Electron Spin

 m_s : spin magnetic quantum number

$$(m_s = +1/2, -1/2)$$

→ related to the **spin** of electron

Name	Symbol	Values	Specifies	Indicates
principal	n	1, 2,	shell	size
orbital angular	l	$0, 1, \ldots, n-1$	subshell:	shape
momentum*			$l = 0, 1, 2, 3, 4, \dots$	
			s, p, d, f, g, \dots	
magnetic	m_l	$l, l-1, \ldots, -l + \frac{1}{2}, -\frac{1}{2}$	orbitals of subshell	orientation
spin magnetic	m_s	$+\frac{1}{2}, -\frac{1}{2}$	spin state	spin direction

 Initially, Schrodinger's theory did not exactly match the observed spectral lines because he did not account for "spin".

1.11. The Electronic Structure of Hydrogen Atom

In the ground state,

$$\rightarrow$$
 n = 1, I = 0, m_I = 0, m_s = +1/2 or -1/2

In the excited state

 \rightarrow n = 2 (four orbitals), n = 3 (nine orbitals), n = k (k² orbitals) n = infinite (ionization)

Degeneracy: same energy for all orbitals in the same n

1.12. Orbital Energies

Coulomb potential for many-electron atoms

For poly-electronic atoms, electron-electron repulsion: Slightly change the energy level structure:

We can't obtain analytical solution to this:

→ Approximate solution exists.

1.12. Orbital Energies

Coulomb potential for many-electron atoms

$$V(r) = \frac{(-e)(+e)}{4\pi\varepsilon_0 r} = -\frac{e^2}{4\pi\varepsilon_0 r}$$

For one-electron atom

$$E_n = -\frac{h\mathcal{R}}{n^2} \qquad \mathcal{R} = \frac{m_e e^4}{8h^3 \epsilon_0^2}$$

$$E_n = -\frac{Z^2 h\mathcal{R}}{n^2}$$

For example, in a helium atom, r_1 : e_1 ~nucleus; r_2 : e_2 ~nucleus; r_{12} : e_1 ~ e_2 7 = +2

Shielding and Penetration effect

: Each electron is shielded by the other (e-)s.

$$E_n = -\frac{Z_{\text{eff}}^2 h \mathcal{R}}{n^2}$$
 Z_{eff}: effective nuclear charge energy split

- (e⁻)s in p orbital penetrate less than (e-)s in s orbital \rightarrow E_s < E_p

Hydrogenic atom (no e-e repulsion)

(Usual) Energy Ordering

Polyelectronic atom

$$E_{ns} < E_{np} < E_{nd} < E_{nf}$$

1.13. The Building-Up Principles

 \rightarrow no more than 2 (e⁻)s in any given orbital: no two electrons in an atom can have the same set of 4 quantum numbers (n, l, m_l, m_s)

→ parallel spin rather than paired

Shell: all of the orbitals with the same *n*.

1.14. Periodic trends in atomic properties

Atoms want to have "filled electronic shell".

Chemically unstable, Highly reactive

Chemically Stable, does not react

Electron Configurations of the first-low transition metals

 $K: 1s^22s^22p^63s^23p^64s^1$ [Ar]4s¹ Ca: [Ar]4s² Sc: [Ar]4s²3d¹ Ti: [Ar]4s²3d² V: [Ar]4s²3d³ Co: [Ar]4s²3d⁷ Cr: [Ar]4s²3d⁴ actually [Ar]4s¹3d⁵ Ni: [Ar]4s²3d⁸ Mn: [Ar]4s²3d⁵ Cu: [Ar]4s²3d⁹ actually [Ar]4s¹3d¹⁰ **Transition** Fe: [Ar]4s²3d⁶ elements favors Zn: [Ar]4s²3d¹⁰ half-filled and filled orbital! Filled d-orbitals Partially filled d-orbitals + partially filled p Sc Ni Ca Τi Cr Mn Fe Co Cu Zn Ga Se Br Kr Ge As

 $3d^{8}$

 $3d^{10}$

 $4p^2$

 $4p^4$

 $4p^{5}$

 $4p^{6}$

 $4s^{13}d^{10}$

 $3d^2$

 $3d^3$

4s1 3d5

 $4s^{2}$

4s1

 $3d^{1}$

 $3d^{5}$

 $3d^{6}$

 $3d^7$

1s H																	1s He
2 <i>s</i> –fi	illing													2 <i>p</i> –f	illing		
Li	Be											В	С	N	0	F	Ne
3s-fi	illing													3 <i>p</i> –f	illing		
Na	Mg											Al	Si	P	S	Cl	Ar
4s-fi	illing					3 <i>d</i> –f	illing					4p–filling					
K	Ca	Sc	Ti	V	Cr 3d ⁵ 4s ¹	Mn	Fe	Со	Ni	Cu 3d104s1	Zn	Ga	Ge	As	Se	Br	Kr
5 <i>s</i> –fi	illing					4 <i>d</i> –f	illing					5p-filling					
Rb	Sr	Y	Zr	Nb 4d ⁴ 5s ¹	Mo 4d ⁵ 5s ¹	Tc	Ru 4d ⁷ 5s ¹	Rh 4d ⁸ 5s ¹	Pd 4d10	$ \begin{array}{c} \text{Ag} \\ 4d^{10}5s^{1} \end{array} $	Cd	In	Sn	Sb	Te	I	Xe
6s-fi	illing					5 <i>d</i> –f	illing					6 <i>p</i> –filling					
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt 5 <i>d</i> 6 <i>s</i> 1	Au 5d106s1	Hg	Tl	Pb	Bi	Po	At	Rn
7 <i>s</i> –fi	illing	6d-filling															
Fr	Ra	Lr	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							

	4 <i>f</i> –filling												
La 5d ¹ 6s ²	Ce 4f ¹ 5d ¹ 6s ²	Pr	Nd	Pm	Sm	Eu	Gd 4f ² 5d ¹ 6s ²	Tb	Dy	Но	Er	Tm	Yb
	5f_filling												
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
$6d^17s^2$	$6d^27s^2$	$5f^{2}6d^{1}7s^{2}$	$5f^{3}6d^{1}7s^{2}$	$5f^46d^17s^2$			$5f^{7}6d^{1}7s^{2}$						

Why is this happening?

- 4s and 3d orbitals are close in energy.
- In fact, 'orbital picture' of the electrons is an approximation
- Electron-electron repulsion changes the energy level ordering.

For transition metal,

• Ti: $[Ar] (4s)^2 (3d)^2$

$$Ti^{3+}$$
: $(4s)^0(3d)^1$

When adding electrons:

s-orbital fills first d-orbital fills later When losing electrons:

s-orbital first d-orbital later

Electronic Configuration of Ions.

- Sc^{2+} : [Ar](4s) 0 (3d) 1
- Ti^{2+} : [Ar] $(4s)^0(3d)^2$ Ti^{3+} : $(4s)^0(3d)^1$
- V^{2+} : [Ar](4s) 0 (3d) 3
- Cr^{2+} : [Ar](4s) 0 (3d) 4
- Mn^{2+} : [Ar](4s) 0 (3d) 5
- Fe^{2+} : [Ar](4s) 0 (3d) 6
- Co^{2+} : [Ar](4s) 0 (3d) 7
- Ni^{2+} : [Ar](4s) 0 (3d) 8
- Cu^{2+} : [Ar](4s) 0 (3d) 9
- Zn^{2+} : [Ar](4s) 0 (3d) 10

1.15. Atomic Radius

1.16. Ionic Radius

1.17. Ionization Energy

The minimum E <u>need</u> to remove an electron from an atom in the gas phase.

$$X (g) \rightarrow X^{+} (g) + e^{-} (g)$$
 $I = E(X^{+}) - E(X)$

Typically, I₁ increases across a period

Typically, I_1 decreases down a group

Table: the 1st I (kJ mol⁻¹)

Table: the 1st and 2nd I (kJ mol⁻¹)

1.18. Electron Affinity

The E <u>released</u> when an electron is added to an atom in the gas phase.

$$X (g) + e^{-}(g) \rightarrow X^{-}(g)$$

$$\mathsf{E}_{\mathsf{ea}}\left(\mathsf{X}\right) = \mathsf{E}(\mathsf{X}) - \mathsf{E}(\mathsf{X}^{\scriptscriptstyle{-}})$$

H, Ne… → Do not want to have one more electron

O, F, Cl,··· → Want to have more electrons

Typically,

E_{ea} decreases down a group

electron affinity (kJ mol⁻¹)