Семинар 21

Общая информация:

- Пусть $\beta \colon V \times V \to \mathbb{R}$ билинейная форма, а $U \subseteq V$ подпространство. Тогда β задает билинейную форму на U (просто применяем β к векторам из U). Такую билинейную форму будем называть *ограничением* β на U и обозначать $\beta|_U$.
- Напомню, что евклидово пространство, это векторное пространство V с «хорошей» билинейной формой $V \times V \to \mathbb{R}$ (ее значение на векторах $v, u \in V$ обозначается (v, u)), т.е. (1) симметричной (v, u) = (u, v), (2) невырожденной (v, V) = 0 влечет v = 0, (3) неотрицательная определенной $(v, v) \geqslant 0$ для любого $v \in V$ (из-за (2) равенство нулю достигается только на нулевом векторе)¹.
- В евклидовом пространстве определены длины и углы. Для вектора $v \in V$ его длина |v| это $\sqrt{(v,v)}$. Если $v,u \in V$ два вектора и α угол между ними, то $\cos \alpha = \frac{(v,u)}{|v||u|}$.
- В задачах ниже, найти угол, значит найти его косинус.
- Расстояние от вектора $v \in V$ до вектора $u \in V$, это |v u|. Расстояние от вектора v до какого-то подмножества $X \subseteq V$ это $\inf_{x \in X} |v x|$ нижняя грань расстояний до всех возможных точек из X.

Задачи:

- 1. Задачник. §37, задача 37.10 (a).
- 2. Задачник. §37, задача 37.21.
- 3. Задачник. §37, задача 37.22.
- 4. Задачник. §37, задача 37.23.
- 5. Задачник. §37, задача 37.30 (a).
- 6. Определите, задают ли следующие матрицы одну и ту же билинейную форму в разных базисах:
 - (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\mathbf{u} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & -3 \\ 2 & -3 & 7 \end{pmatrix}$ \bowtie $\begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$
- 7. Пусть $\beta\colon V\times V\to\mathbb{R}$ билинейная форма и $U\subseteq V$ подпространство. Пусть либо β симметрическая либо кососимметрическая (в этом случае нет разницы между U^\perp и $^\perp U$). Покажите, что следующие условия эквивалентны
 - (a) $\beta|_U$ невырождена
 - (b) $U \cap U^{\perp} = 0$
- 8. Пусть $\beta \colon V \times V \to \mathbb{R}$ билинейная форма (симметрическая или кососимметрическая). Пусть $V = U \oplus W$ и U ортогонально W относительно β . Пусть матрица $\beta|_U$ есть A, а матрица $\beta|_W$ есть B, покажите, что матрица β есть $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.
- 9. Пусть $\beta \colon V \times V \to \mathbb{R}$ кососимметрическая форма.
 - (а) Если β не равна тождественно нулю, то найдется такая пара векторов $v, u \in V$, что $\beta|_{\langle v, u \rangle}$ имеет матрицу $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (b) Покажите, что найдется такой базис в V, что матрица β является блочно диагональной с блоками 0 или $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

¹Вместе (2) и (3) называются положительно определенностью и равносильно (v, v) > 0 при $v \neq 0$ (это легко следует из рассмотрения сигнатуры формы).

- (c) Невырожденная кососимметрическая форма может существовать только в четномерном пространстве.
- 10. Задачник. §37, задача 37.36.
- 11. Пусть V векторное пространство, $\phi \colon V \to V$ линейный оператор и $\beta \colon V \times V \to \mathbb{R}$ невырожденная билинейная форма. И пусть для любых векторов $v,u \in V$ выполнено равенство $\beta(\phi(v),\phi(u))=(v,u)$. Найдите $\det \phi$.
- 12. Пусть на \mathbb{R}^2 задано стандартное скалярное произведение $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ по правилу $(x,y) = x^t y$. Опишите все матрицы $A \in \mathrm{M}_2(\mathbb{R})$ такие, что (Ax,Ay) = (x,y).
- 13. Задачник. §43, задача 43.15 (a).
- 14. Задачник. §43, задача 43.19 (а).
- 15. Задачник. §43, задача 43.21 (a).
- 16. Задачник. §43, задача 43.24.
- 17. Задачник. §43, задача 43.28 (a).