Logic Design (Part 2) Combinational Logic Circuits (Chapter 3 + Notes)

Based on slides © McGraw-Hill Additional material © 2004/2005/2006 Lewis/Martin Additional material © 2008 Roth Additional material © 2010 Taylor Additional material © 2013 Farmer Additional material © 2018 Narahari

1

Next

- Download Set1 of Cedar Logic or LogiSim examples
 - · From lectures webpage
- Designing combinational logic circuits
 - · Cedar Logic or LogiSim
- Intro to Combinational logic devices
 - · Building complex devices using the basic gates
 - · Adders, Multiplexers, Decoders,.....

Digital Logic Design – Introduction

- MOS transistors used as switches to implement basic logic gates (boolean operations)
 - (NAND, NOT, AND, OR,..).
- Boolean logic functions operate on boolean variables
 - expressed with AND, OR, and NOT
 - (A AND B) OR (NOT A AND C)
 oAND, OR, NOT notation replaced by . + '
 o(A.B) + (A' . C)
- Boolean function represented as:
 - Truth table
 - · logic circuit

3

Digital Logic Circuits

- We saw how we can build the simple logic gates using transistors
- Can build any boolean function using these gates
- Use these gates as building blocks to build more complex combinational circuits
 - Multiplier, Multiplexer, Decoder,
 - ...any boolean function
- Develop a theoretically sound approach to designing boolean functions and circuits....Boolean Algebra

Δ

Definition: Combinational and Sequential Logic Circuits

- A circuit is a collection of devices that are physically connected by wires
 - · Combinational circuit
 - · Sequential circuit
- In Combinational circuit the input determines output
- In sequential circuit, the input and the previous 'state' (previous values) determine output and next 'state'
 - Need to 'remember' previous value need memory device
 - · Need circuit to implement concept of storage
- Start with design of Combinational Logic circuits

5

Boolean Function..Recall from Discrete Math!

- Output(s) is a function on input boolean variables
- z = f(x, y, ...)
- x,y are boolean variables (0 or 1)
- z=f(x,y) is a boolean output
- The "operators" used are any of the boolean logic operators
 - AND, OR, NOT, NAND, etc.
- If integers are represented using binary notation, then all functions over integers are boolean functions
- How do we represent boolean functions?

Boolean Functions

- A function can be thought of as a mapping from inputs to outputs.
 - Think of a black box with n binary inputs and 1 binary output
- We can express the action of this function in terms of a truth table which says what the output should be for every input pattern.
- · This function implements a binary adder!

Truth table (describes behavior)

A	В	С	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

7

Boolean Algebra

- George Boole Famous Mathematician/Logician
 - Boolean Algebra branch of Algebra, where variables can only have values of true (1) or false (0)
 - o Boolean operators: AND(.), OR(+), NOT(~ or !)
- With Boolean Algebra:
 - o We create "functions" using boolean variables and operators
 - Any logical function can be expressed in terms of the three elementary operations: AND, OR and NOT
 - Boolean functions can be rearranged and sometimes simplified by applying algebraic identities
 - o DeMorgan's laws: allow conversion from AND to OR (using NOT)
- Big idea you can write a logical function as a boolean algebraic expression and then use various identities to rewrite that function in an equivalent (usually simpler) form.

DeMorgan's Law: Converting AND to OR with help from NOT

- NOT(A AND B) = (NOT A) OR (NOT B);
- NOT(A OR B) = (NOT A) AND (NOT B);
- In C syntax: \sim (A&B) = \sim A| \sim B

Α	В	~A	~B	~A&~B	(A&B)	~A ~B	(A B)	~(A B)	~(A& B)
0	0	1	1	1	0	1	0	1	1
0	1	1	0	0	0	1	1	0	1
1	0	0	1	0	0	1	1	0	1
1	1	0	0	0	1	0	1	0	0

9

DeMorgan's Law

- Converting AND to OR (with some help from NOT)
- ■Consider the following gate:

$$A \longrightarrow \overline{A} \overline{B}$$

From DeMorgan's laws:
NOT ((NOT A) AND (NOT B))=
NOT (NOT A) OR NOT(NOT B)=
A OR B

A	В	Ā	\bar{B}	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1
Same as A+B					

To convert AND to OR (or vice versa), invert inputs and output.

Representation of Boolean Logic Functions

♦A logic function can be represented as

- 1. a truth table or
- 2. a logic expression or
- 3. a logic circuit

♦Example

$$f = a.(b.c + d) + a.c = a.b.c + a.d + a.c$$

a	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0_	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

11

Completeness: Very Important Concept

- It can be shown that any truth table (i.e. any binary function of binary variables) can be reduced to combinations of the AND & NOT functions, or of the OR & NOT functions.
 - This result extends also to functions of more than two variables
- In fact, it turns out to be convenient to use a basic set of three logic gates:
 - · AND, OR & NOT or NAND, NOR & NOT
 - In fact, can implement all logic functions using just NAND!
- Question to ask: How do we design a good circuit?

Truth Tables to Boolean Function/Circuits

- A truth table can be mapped to a Boolean function
 - In Disjunctive Normal Form (DNF) an OR of AND terms
 Recall from Discrete 1 (CS1311)
- Each row in the truth table corresponds to a conjunction of literals (i.e., Boolean variables) and is called *minterm*
 - · Literal is Boolean variable A or its complement A'
- To derive the Boolean function F:
 - Examine each row where the output = 1
 - o Include this conjunctive term as an AND of the literals
 - F = OR of the included terms (minterms)
 - Also called sum of products (OR of minterms)

13

Truth Tables to Boolean Function

- Input variables: A,B,C (Notation: NOT A written as A')
- Output = F
- First examine rows where F=1
- F=1 when A=0 B=1 C=0
 - bool func is (A' AND B AND C')
- F=1 when A=1 B=0 C=0
 - bool func is (A AND B' AND C')
- F=1 when A=1 B=1 C=0
 - bool func is (A AND B AND C')
- F=0 on all other input combinations
- Write F as OR of above minterms
- F= (A'.B.C') OR (A.B'.C') OR (A.B.C')

Α	В	С	F
A	0	0	0
0	0	1	0
0	1	<mark>0</mark> 1	1
0	1	1	0
1	0	<mark>0</mark> 1	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean functions, Circuits & Boolean Algebra!

- •Power of abstraction....To build boolean functions, you can work with basic gates..no need to go down to the transistor level !!
- what is the theory behind boolean logic design ?
- Boolean Algebra
 - o DeMorgan's Law: Convert AND&NOT to OR&NOT
 - (NOT A) AND (NOT B) = NOT (A OR B) (i.e., A NOR B)
 - (NOT A) OR (NOT B) = NOT (A AND B) (i.e, A NAND B)
 - o Disjunctive Normal Form (DNF), etc.
- Question: How can we design an "efficient" circuit to implement a Boolean function?
 - "efficient" = minimum number of logic gates
- Example:
 - Given F= A'BC' + A'B'C + ABC' + AB'C : 4 AND gates & OR gate
 - From Bool Alg., this is equivalent to F = BC' + B'C: 2 AND gates & 1 OR gate

15

Boolean Algebra and Combinational Logic Design

- Boolean Logic is a Boolean Algebra
 - · laws of Boolean Algebra can be applied
- How do we design "efficient" circuits? Is there a methodology we can follow?
 - Boolean algebra (Karnaugh Maps)
 - · Again, recall from CS1311 Discrete 1!
- Reading Assignment: Review Boolean algebra and Karnaugh Maps concepts and application to digital logic design
 - · Notes posted on website

How to design combinational circuit

- Analyze the problem
 - Determine inputs and outputs (they must be binary)
- Determine boolean variables
 - inputs x1,x2,...
 - Outputs y1, y2,...
- Derive truth table
 - Value of each yi for each combination of inputs x1,x2,...
- For simple circuit, find DNF from truth table
- To find 'optimal' (minimum size) 2-level circuit, derive Karnaugh map and find terms

17

Time to test your circuit design&analysis skills...

Analyze Circuits to derive Boolean functions Design circuits from truth table/function

- In Cedar Logic: Download and open Set1.cdl in CedarLogic
 - · Has number of 'pages' of circuits
- In Logisim: Download Set1.zip into folder, it has several Logisim circuits
 - Labelled Set1-Page1.circ, Set1-Page2, etc.
 - · Open in Logisim
- Work through the 6 pages of circuits

Transistor Circuits...Circuits on Page 1,2,3,4....

- Open in Cedar Logic view Page 1 circuit
- UsefulTip (for CedarLogic): Hit space key to center and maximize the circuit in the cedar logic window
- Circuit on Page 1 is NAND gate (from transistors)
 - Inputs: A,B . can be set to 1 (red) or 0 (black) by clicking on them
 - Output C=1 if at least one of upper two (switches) close
 This happens when A=0 or B=0 since it is a P-type transistor
 - Output C=0 when A=1 and B=1 since there is a path from C to ground (0) and N type transistor
- Transistors at bottom of page
 - N-type: if input is 1 (red) then transistor close (i.e., short circuit)
 - P-type: if input is 0 (black) then transistor closed (i.e, short circuit)

19

Questions...Circuit on Set1-Page2, Page3, Page4

- Page 2: What gate/function is being implemented?
 - Can you determine this by analyzing the circuit (instead of deriving truth table)
 - Note serial structure in upper two transistors = both must close for a path from Power to output, i.e., for output to be = 1
 - Note parallel structure in lower two transistors = at least one must be closed for a path from Ground (0) to output, i.e., for output =0
- Page 3: combination of Page 2 circuit whose output goes to another circuit
- Page 4: What function? Derive truth table with inputs A,B and 'outputs' C,D, F
 - · Is this a standard function?

Circuits with logic gates...Set1 - Pages 5,6,7,8

- Page 5: example using logic gates
- Input specified using the switches
- Output goes to LED (red=1, black=0)
- To determine the function being implemented by a circuit you can "trace" back from output to inputs

21

Questons: Pages 6, 7, 8:

- Page 6: what Boolean functions are being implemented by circuits (a) and (b)?
- Page 7: Draw circuit to implement the function:
 - F= (A AND (B XOR C) OR (NOT C))
 - Draw by hand first, then implement in simulator
- Page8: Design circuit for truth table shown here
 - Derive function and draw by hand first
 Implement in simulator

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Logic control for overhead light

- Design logic for light switch in a room based on the position of two switches – switches are at two different entrances to the room and either switch should be able to change the state (on/off) of the light independently.
 - If both switches are in the "down" position (represented by 0) the light must be off (represented by 0)
 - No matter what position the switches are in or the current state of the light, flipping either switch must change the state of the light.
 - Design gate level circuit
 - · Complete truth table first

23

Recall our Goal....

- Design a machine that translates from natural language to electrons running around to solve the problem
 - · We now have a device that controls how electrons run around
- Next: we want to build a computer
 - First step: Design a collection of logic devices that implement important functions that will be needed to build our computer
- S/W Analogy: When you write your software, you are using a collection of concepts, tools, IDEs and libraries
 - · Each has been built, and tested, for you
 - All you have to do is combine them!

Next: Combinational Logic Devices

- We saw how we can build the simple logic gates using transistors
- Can build any boolean function using these gates
- Use these gates as building blocks to build more complex combinational circuits
 - Decoder: based on value of n-bit input control signal, select one of 2^N outputs
 - Multiplexer: based on value of N-bit input control signal, select one of 2^N inputs.
 - Adder: add two binary numbers
 - · ...any boolean function
- SW Analogy: We are building a library of functions
 - To design your solution, you can use any device in the library!