Examples of Deterministic Finite Automata

ian.mcloughlin@gmit.ie

Deterministic Finite Automaton: Example 1

Try running the following strings on the automaton. $1101,\ 1,\ 01,\ 11,\ 0101010101$

Describe the strings that the automaton recognises.

Deterministic Finite Automaton: Example 2

Try running the following strings on the automaton. $aaaa,\ ababa,\ bababb,\ abaa$ Describe the strings that the automaton recognises.

Deterministic Finite Automaton: Example 3

Try running the following strings on the automaton. $aaaa,\ ababa,\ bababb,\ abaa$ Describe the strings that the automaton recognises.

Deterministic Finite Automaton (DFA) definition

A DFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- Σ is a finite set called the *alphabet*,
- δ is the transition function $(Q \times \Sigma \to Q)$,
- q_0 is the start state $(\in Q)$, and
- F is the set of accept states ($\subseteq Q$).

Example 1 definition

```
Q = \{q_0, q_1, q_2\}
\Sigma = \{0, 1\}
\delta = \{((q_0, 0), q_0), ((q_0, 1), q_1), ((q_1, 0), q_2), ((q_1, 1), q_1), ((q_2, 0), q_1), ((q_2, 1), q_1)\}
q_0 = q_0
F = \{q_1\}
```

Example 2 definition

```
Q = \{b_0, b_1, b_2\}
\Sigma = \{a, b\}
\delta = \{((b_0, a), b_0), ((b_0, b), b_1), ((b_1, a), b_1), ((b_1, b), b_2), ((b_2, a), b_2), ((b_2, b), b_2)\}
q_0 = b_0
F = \{b_2\}
```

Example 3 definition

$$Q = \{a_0, a_1, a_2, a_3\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \{((a_0, a), a_1), ((a_0, b), a_0), ((a_1, a), a_2), ((a_1, b), a_1), ((a_2, a), a_3), ((a_2, b), a_2)\}, ((a_3, a), a_3), ((a_3, b), a_3)\}$$

$$q_0 = a_0$$

$$F = \{a_3\}$$