Семинар 14

Динамическое программирование (продолжение)

Задача о нахождении расстояния редактирования

Текстовый редактор, подозревая опечатку, предлагает заменить написанное слово на близкое (?).

Каково расстояние между словами SNOWY и SUNNY?

Стоимость выравнивания: количество столбцов, в которых символы различаются. Расстояние редактирования между словами — стоимость их наилучшего выравнивания.

ullet пусть A - конечный алфавит. $X = x_1 x_2 \dots x_m$, $Y = y_1 y_2 \dots y_n$,

 $x_i, y_j \in A$. Сколько существует возможностей для содержимого конечного столбца оптимального выравнивания?

- a) 2
- б) 3
- в) 4
- **г**) *mn*

Вывод рекуррентного соотношение

Если одна из цепочек пуста (например, Y), то расстояние редактирования равно X

$$P=P'+lpha$$
 , P' - оптимальное выравнивание для X' и Y'
$$lpha=egin{cases} 0,x_m=y_n \ 1,x_m
eq y_n \end{cases}$$

. Оптимальное выравнивание двух непустых символьных цепочек $X=x_1,x_2,...,x_m$ и $Y=y_1,y_2,...,y_n$ равно либо:

- (i) оптимальному выравниванию X' и Y', дополненному сочетанием x_m и y_n в последнем столбце;
- (ii) оптимальному выравниванию X' и Y, дополненному сочетанием x_m и зазора в конечном столбце;
- (iii) оптимальному выравниванию X и Y', дополненному сочетанием зазора и y_n в конечном столбце,

где X' и Y' обозначают соответственно X и Y с удаленными конечными символами x_m и y_m .

Рекуррентное соотношение

- $P_{i,j} = \min\{P_{i-1,j-1} + \alpha, P_{i-1,j} + 1, P_{i,j-1} + 1\}, i = 1,2,...,m, j = 1,2,...,n$
- Подзадачи: вычислить минимальное расстояние редактирования первых i символов X и первых j символов Y.

```
Dist Red
Вход: цепочки X=x_1x_2...x_m, Y=y_1y_2...y_n над алфавитом A
Выход: Р – расстояние редактирования
//решения подзадач(индексируемых с 0)
A := (m+1)(n+1) двумерный массив
// базовый случай 1 (i = 0)
For i := 0 to m \ do \ A[i][0] = i
// базовый случай 2 (i = 0)
                                                                                       O(m \cdot n)
  For j := 0 to n do
      A[0][i] = i
//систематическое решение всех подзадач
For i = 0 to m do
 For i = 0 to n do
A[i][j] := \min\{A[i-1][j-1] + \alpha, A[i-1][j] + 1, A[i][j-1] + 1\}
Return A[m][n] //решение самой крупной подзадачи
```

Пример вычисления расстояния редактирования

Вычислить расстояние редактирования между словами «МУСОР» и «ССОРА»

а	5	5	5	5	4	3
р	4	4	4	4	3	2
0	3	3	3	3	2	3
С	2	2	2	2,*	3	4
С	1	1	2	2	3	4
	0	- 1-*	2	3	4	5
		M	У	С	0	р

Алгоритм реконструкции (обратный проход)

Зазор в слове «МУСОР»

◄---- Зазор в слове «ССОРА»

Сверху и снизу нет зазора

Выравнивание последовательностей

Сравниваем 2 участка одного или нескольких геномов.

Алфавит A={A, C, G, T} A: <u>Аденин</u>; G — Г: <u>Гуанин</u>; С — Ц: <u>Цитозин</u>; Т — Т: <u>Тимин</u>

Допустим, что за несовпадение символов штраф=2, за отсутствие (зазор) штраф=1 Сравним АСС и АССТ

G	3	2	1	2	-3
С	2	1	2	- *	2
Α	1	0	-1	2	3
	O'	1	2	3	4
		Α	G	С	Т

Минимальный штраф за выравнивание (=3) называется отметкой Нидлмана-Вунша (NW-отметка символьных цепочек)

Кратчайшие пути в ориентированном графе с отрицательными длинами ребер (повторно)

• Задача: кратчайшие пути с единственным истоком

Вход: ориентированный граф G = (V, E), истоковая вершина $s \in V$ и вещественная длина ℓ_s для каждого ребра $e \in E$.

Выход: один из следующих:

- (i) расстояние кратчайшего пути dist (s, v) для каждой вершины v ∈ V либо
- (ii) заявление о том, что G содержит отрицательный цикл.

Рассмотрим экземпляр задачи о кратчайшем пути с единственным истоком с n вершинами, m ребрами, стартовой вершиной s и без отрицательных циклов. Что из перечисленного является истинным? Выберите самое подходящее утверждение:

- а) Для каждой вершины v, достижимой из истока s, существует кратчайший путь s−v не более чем с n − 1 ребрами;
- б) Для каждой вершины v, достижимой из истока s, существует кратчайший путь s-v не более чем с m ребрами;
- г) Нет конечной верхней границы (как функции от n и m) на наименьшем числе ребер в кратчайшем пути s–v.

Алгоритм Беллмана-Форда с использованием стратегии динамического программирования

• Если задача решена и Р — кратчайший путь $s \to v$, содержащий не более, чем i ребер, то

$$L_{\mathbf{i}^{,v}} = \min \left\{ \frac{L_{i-1,v}}{\min_{(w,v) \in E} \left\{ L_{i-1,w} + \ell_{wv} \right\}} \right.$$

Алгоритм Беллмана-Форла

BELLMAN-FORD

Вход: ориентированный граф G = (V, E), представленный в виде списков смежности, истоковая вершина $s \in V$ и вещественная длина ℓ_s для каждого $e \in E$.

Выход: dist(s, v) для каждой вершины $v \in V$ либо объявление, что G содержит отрицательный цикл.

```
// подзадачи (i индексируется от 0, v индексирует V)
A := (n+1) \times n двумерный массив
// базовые случаи (i = 0)
A[0][s] := 0
for each v \neq s do
    A[0][v] := +\infty
// систематически решить все подзадачи
for i = 1 to n do
                                  // размер подзадачи
    stable := TRUE
                    // для досрочной остановки
    for v \in V do
       // использовать рекурренцию *
       A[i][v] :=
      if A[i][v] \neq A[i-1][v] then
```

```
stable := FALSE if stable = TRUE then // выполнено леммой 18.3 return \{A[i-1][v]\}_{v \in V} // не удалось стабилизироваться на n итерациях return «отрицательный цикл» // исправлено леммой 18.4
```


i	0	1	2	3	4
V					
S	0	0	0	0	0
v	8	4	1	1	1
u	8	2	2	2	2
w	8	8	4	4	4
t	8	8	8	5	5

O(mn)

Не меняется