Popek/Goldberg Theorem

Hardware and Software Support For Virtualization

Chapter 2

Introduction

Virtual machines was an intense research area in late 60/early 70

- Instruction Set Architecture (ISA) design was a really hot-topic too in engineering
- In 1974 proposed as a way to detect if new architectures enable or not the construction of VMM (Virtual Machine Monitors)
 - PDP10 and how "seemingly" arbitrarily decision in ISA design impacts on VMM (preventing its implementation)
- Later in mid 2000s this theorem was used as guide for Intel/AMD to design his virtualization extension (Pacifica & Vanderpool)

The Model

- Proposed as 74 as "Formal Requirements for Virtualizable Third-Generation Architectures"
- Two execution modes for the processor (user and supervisor)
- \blacksquare Hardware support for virtual memory, using segments (base register B limits L)
- Physical memory contiguous and start in 0 and ends on SZ-1
- Processor state determined by Processor Status Word (PSW), contains
 - Execution level M={u or s}
 - Segment register (B, L)
 - Program counter virtual address (PC)
- Trap architecture has the mechanisms to save in MEM[1] the PSW and load from MEM[0] the new PSW
- ISA includes instructions to manipulate PSW
- I/O and interrupts are ignored (to simplify the discussion)

In Absence of VMM the OS

- The kernel would run in M = s and applications in M = u
- During initialization, the kernel sets the MEM[0] = (M:s, B:0,
 L:SZ, PC:trap_en)
- The kernel will allocate a contiguous range of physical memory for each application
- To launch and resume an application (already stored in physical memory [L,C], the operation system would simply PSW←(M:u,L,C,PC)
- At the trap entry point (PC == trap_en), the kernel would first decode de instruction stored in MEM[1].PC to deter mine the cause of the trap and the appropriate actions

Question to Address by the Theorem

Given a computer that meets this basic architectural model, under which precise conditions can a VMM be constructed, so that the VMM:

- can execute one or more virtual machines;
- is in complete control of the machine at all times;
- supports arbitrary, unmodified, and potentially malicious operating systems designed for that same architecture; and
- be efficient to show at worst a small decrease in speed?
- The theorem must confirm compliance with the following criteria:
 - Equivalence
 - Safety
 - Performance

Theorem

Theorem 1 [143]: For any conventional third-generation computer, a virtual machine monitor may be constructed if the set of sensitive instructions for that computer is a subset of the set of privileged instructions.

- Control-sensitive Instructions
 - It can update the system state
- Behavioral-sensitive Instructions
 - Its behavior depend on the system status
- Innocuous Instructions
 - Others

 $□ {control - sensitive} \cup {behavioral - sensitve} \subseteq {privileged}$

Proof by Construction

- 1. **Only** VMM runs in **supervisor mode**. Reserves a portion of the VMM physical memory for himself (never shared by the VM)
- 2. VMM allocates a contiguous portion of physical for each VM
- 3. The VMM keeps in memory a copy of each VM (vPSW)
- 4. Before resume VM, VMM loads in PSW the corresponding state, i.e.
 - {M',B',L',PC'}
 - M' ← u: always in user mode
 - B'← addr0+vPSW.B: the guest-physical offset is added to the base register VM
 - ◆ L'← min{vPSW.L, vPSW.memsize-vPSW.B}
 - PC ← vPSW.PC: resumes execution

Proof by Construction (...cont.)

- The VMM perform $vPSW.PC \leftarrow PSW.PC$ on every trap. Any guest attempt to modify his own PSW (but PC) will result in a trap (control-sensitive are privileged and $PSW.M \equiv u$)
- VMM emulates the behavior of the instruction that caused the trap. If $vPSW.M \equiv S$ VMM emulates the semantics of the instruction according the ISA, including vPSW modification, and resumes VM execution when possible
- Guess traps (v.gr. Non-legal instructions (i.e., privileged ins when $vPSW \cdot M \equiv u$) should be redirected by the guest
- 8. Changes in base or bound registers should result in a trap. VMM emulates it

Proof by Construction (...cont.)

- Any behavioral-sensitive instruction should be privileged
 - V. gr. The outcome of instructions reading PSW.B differ from PSW.M=u to PSW.M=s

Early counter-examples

- A single unprivileged control-sensitive instruction breaks the hypothesis
 - ◆ PDP-10 JRST 1 , return to user mode (motivated the paper)
 - Apparently innocuous (from ISA design standpoint)
- Instructions that reads system state, are behavioral-sensitive, and it use
 violates the equivalence criteria
 - A user level instruction can read PSW.M in a general purpose register → the **guest OS** can conclude that it is in **user mode**!
- Instructions that bypasses virtual-memory system are behavior sensitive, since their outcome depends upon PSW.L and PSW.B
 - IBM VM/360 has such instruction. If privileged, not a problem

What is a VMM?

- Proof-by-construct, allows to conclude that VMM is basically an OS, since both:
 - Lets the untrusted component run directly in hardware
 - Judiciously intervene to retain control

- OS requires HW support to run efficiently (e.g. timers, MMU, ...), VMM too?
 - VMM runs OS that runs application. Seem the case...

Recursive and Hybrid Virtual machines

Complements Theorem 1 postulates

Theorem 2

• If an ISA meets Theorem 1 hypotheses, it allows to create VM recursively (i.e. the guestOS can be another VMM)

Theorem 3

• If an ISA don't meet 1 hypotheses, still is possible to build a hybrid virtual machine monitor if the set of **user-sensitive** instructions are a subset of the set of **privileged instructions** (*user-sensitive* if his behavior is cs or bs in supervisor mode but not in user mode)

An H-VMM acts as a:

- Normal VMM is the VM is running user level code (applications)
- Interprets **100**% of the **system-level code** of the guest (OS itself). Performance criteria is not violated if OS code is not relevant for the workload and architecture

Well known Violations

MIPS

- Three execution modes: kernel mode, supervisor mode, user mode
- Only kernel can execute privileged instructions
- Supervisor mode memory is protected from applications
- Run guest-OS as supervisor! (guest-OS/guest-user don't require TLB flushes, or changes in virtual memory, such as page-table pointer changes)
- Uses memory regions, that are location-sensitive (form of behavior-sens)

Region	Base	Length	Access K,S,U	MMU	Cache
USEG	0x0000 0000	2 GB	√,√ ✓	mapped	cached
KSEG0	0x8000 0000	512 MB	✓,x,x	unmapped	cached
KSEG1	0xA000 0000	512 MB	✓,x,x	unmapped	uncached
KSSEG	0xC000 0000	512 MB	✓,✓,X	mapped	cached
KSEG3	0xE000 0000	512 MB	√,x,x	mapped	cached

 Its not virtualizable (every load store might require a trap, won't meet efficiency criteria)

- Complex architecture (with many compatibility intricacies, segmented paging). Baroque
 privilege management (protection rings, call gates, etc...)
- Many instructions are sensitive and unprivileged (critical). Not virtualizable. Identified
 (2001) 17 instructions

Group	Instructions		
Access to interrupt flag	pushf, popf, iret		
Visibility into segment descriptors	lar, verr, verw, lsl		
Segment manipulation instructions	pop <seg>, push <seg>, mov <seg></seg></seg></seg>		
Read-only access to privileged state	sgdt, sldt, sidt, smsw		
Interrupt and gate instructions	fcall, longjump, retfar, str, int <n></n>		

- Example popf, pushf
 - Gets/puts from the stack the EFLAGS register
 - EFLAGS includes Z, N, ..., but also DPL (mode). In user mode only writes a portion of the register!

- One user level and many supervisors (v.gr. 6 in ARMv6, 1 in ARMv8)
 - Each one with independent registers
- Even ARMv8 has critical instructions. Instructions to deal with user mode regs, status regs, memory access depends on CPU mode

Description	Instructions
User mode	LDM (2), STM (2)
Status registers	CPS, MRS, MSR, RFE, SRS, LDM (3)
Data processing	ADCS, ADDS, ANDS, BICS, EORS, MOVS, MVNS, ORRS, RSBS,
	RSCS, SBCS, SUBS
Memory access	LDRBT, LDRT, STRBT, STRT

- Example Status Registers:
 - Current Program Status Register (CPSR) and Saved Program Status Register (SPSR).
 - MRS can be used in any mode to read CPSR (no longer in v8) [Control-S]
 - CPS can be used to write CPSR in any mode (ignored in user mode) [Behavior-S]