1 Spectral Graph Theory

We assume the graph has n vertices and m edges. The vertex set is V and the edge set is E.

1.1 Courant-Fischer Theorem

1. **Eigenvalue version**: Let *A* be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$, then

$$\lambda_i = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\substack{x \in W \\ x \neq 0}} \frac{x^\top A x}{x^\top x} = \max_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = n+1-i}} \frac{x^\top A x}{x^\top x}.$$

2. **Eigenbasis version**: Let A be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and corresponding orthonormal eigenvectors x_1, \ldots, x_n , then

$$\lambda_i = \min_{\substack{x \perp x_1, \dots x_{i-1} \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x} = \max_{\substack{x \perp x_{i+1}, \dots x_n \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x}.$$

Note that we also have $\lambda_i = \frac{x_i^\top A x_i}{x_i^\top x_i}$.

Applying Courant-Fischer theorem, we have $\lambda_2 x^\top x \le x^\top L x \le \lambda_n x^\top x$ for all $x \perp 1$, as 1 is the eigenvector of L corresponding to eigenvalue 0. For connected graphs, $\lambda_2 > 0$.

1.2 PSD Order (Loewner Order)

Defined only for symmetric matrices: $A \leq B$ iff for all $x \in \mathbb{R}^n$, we have $x^\top Ax \leq x^\top Bx$. We also define $G \leq H$ for two graphs G and H iff $L_G \leq L_H$. We always have $G \geq H$ if H is a subgraph of G.

Properties:

- 1. If $A \leq B$ and $B \leq C$, then $A \leq C$.
- 2. If $A \leq B$, then $A + C \leq B + C$ for any symmetric C.
- 3. If $A \leq B$ and $C \leq D$, then $A + C \leq B + D$.
- 4. If A > 0 and $\alpha \ge 1$, then $\frac{1}{\alpha}A \le A \le \alpha A$.
- 5. If $A \leq B$, then $\lambda_i(A) \leq \tilde{\lambda_i}(B)$ for all i. Proof by Courant-Fischer theorem. The converse is not true.
- 6. For any matrix C, if $A \leq B$, then $C^{\top}AC \leq C^{\top}BC$.

1.3 Bounding the λ_2 and λ_n

1.3.1 Test Vector Method

Since $\lambda_2 \leq \frac{y^\top L y}{y^\top y}$ for any $y \perp 1$, we can upper bound the λ_2 by any **test vector** y. Similarly, we can lower bound the λ_n by test vectors by $\lambda_n \geq \frac{y^\top L y}{y^\top y}$.

- 1. For a complete graph K_n , $L = nI 11^{\top}$ and for any $x \perp 1$ we have $x^{\top}Lx = nx^{\top}x$. Therefore, $\lambda_2(K_n) = \cdots = \lambda_n(K_n) = n$ and any $x \perp 1$ is an eigenvector.
- 2. For a path graph P_n , let x(i) = n + 1 2i be the test vector which satisfies $x \perp 1$, we get $\lambda_2(P_n) \leq \frac{12}{n^2}$. Let x(1) = -1, x(n) = 1 and x(i) = 0 for other i to be the test vector, we get $\lambda_n(P_n) \geq 1$.
- 3. For a complete binary tree T_n (depth equals zero for a single root), let x(i) = 0 for all non-leaf nodes, x(i) = -1 for even-numbered leaf nodes and x(i) = 1 for odd-numbered

leaf nodes be the test vector, we get $\lambda_n(T_n) \ge 1$. Let x(1) = 0, x(i) = 1 for the left subtree of the root and x(i) = -1 for the right subtree of the root be the test vector, we get $\lambda_2(T_n) \le \frac{2}{n-1}$.

1.3.2 Consequences of PSD Order

Since $x^{\top}(D-A)x = \sum_{(u,v)} w(u,v)(x(u)-x(v))^2 \ge 0$ and $x^{\top}(D+A)x = \sum_{(u,v)} w(u,v)(x(u)+x(v))^2 \ge 0$, we have $D \ge A$ and $D \ge -A$. In addition, we have $D \le (\max D_{i,i})I$. Therefore, we have $L = D - A \le 2D \le (2\max D_{i,i})I$, which implies $\lambda_n \le 2\max D_{i,i}$ for any graph. For unit-weight graphs, this means $\lambda_n \le 2\max \deg (v)$. The bound is tight for a single-edge graph.

To get lower bounds of $\lambda_2(H)$, we first establish $f(n)H \ge G$ for some G with known lower bounds on $\lambda_2(G)$. Usually $G = K_n$ because $\lambda_2(K_n) = n$. Then it follows that $\lambda_2(H) \ge \lambda_2(G)/f(n)$.

- 1. **Path Graph** P_n : Let $G_{i,j}$ denote a unit-weight graph consisting of one edge (i,j) and P_n be the path graph connecting 1 and n. Then $(n-1)P_n \geq G_{1,n}$. Proof follows from applying Cauchy-Schwartz for $S_i := x(i+1)-x(i)$. For weighted paths, we have $G_{1,n} \leq \left(\sum_{i=1}^{n-1} \frac{1}{w_i}\right)\sum_{i=1}^{n-1} w_i G_{i,i+1}$.
 - Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \le \sum_{i < j} (j i) P_{i,j} \le \sum_{i < j} (j i) P_n \le n^3 P_n$, which implies $\lambda_2(P_n) \ge \lambda_2(K_n)/n^3 = 1/n^2$.
- 2. Any unit-weight graph G: Define the diameter D of a graph G to be the maximum length of the shortest paths between any two nodes. Let $G_{i,j}^s$ be the shortest path from i to j. Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \le \sum_{i < j} DG_{i,j}^s \le \sum_{i < j} DG \le n^2 DG$, which implies $\lambda_2(G) \ge \frac{1}{nD}$.
- 3. **Complete Binary Tree** T_n : Define G_e be the single-edge graph with edge e, and $T_{i,j}$ be the unique path between i and j. Applying the weighted path inequality, we have $K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} \left(\left(\sum_{e \in T^{i,j}} \frac{1}{w(e)} \right) \left(\sum_{e \in T^{i,j}} w(e) G_e \right) \right) \leq \left(\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)} \right) \left(\sum_{i < j} \sum_{e \in T^{i,j}} w(e) G_e \right)$. For e connecting level i and i+1 for $i \in [d-1]$, we set $w(e) = 2^i$. Then $\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)} \leq 4$. Since the number of occurrence of e in $T^{i,j}$ for any i < j is upper bounded by $n^2 2^{-i}$, we have $\sum_{i < j} \sum_{e \in T^{i,j}} w(e) G_e \leq \sum_{e} w(e) n^2 2^{-i} G_e = \sum_{e} n^2 G_e = n^2 T_n$. Therefore, $K_n \leq 4n^2 T_n$, which implies $\lambda_2(T_n) \geq \frac{1}{4n}$.

2 Conductance

Definitions:

1. Conductance of a vertex subset: Given $\emptyset \subset S \subset V$, the conductance $\phi(S) := \phi(S) = \frac{|E(S,V \setminus S)|}{\min\{\text{vol}(S),\text{vol}(V \setminus S)\}}$, where $\text{vol}(S) := \sum_{v \in S} \text{degree}(v)$. Define $\mathbf{1}_S$ to be the n-dimensional vector with only 1 for the vertices of S and 0 for the vertices of S Assuming $\text{vol}(S) \leq \text{vol}(V)/2$, thus $|E(V, V \setminus S)| = \sum_{(u,v) \in E} (\mathbf{1}_S(u) - \mathbf{1}_S(v))^2 = \mathbf{1}_S^T L \mathbf{1}_S$ and $\text{vol}(S) = \mathbf{1}_S^T D \mathbf{1}_S$. Then

$$\phi(S) = \frac{\mathbf{1}_S^{\mathsf{T}} L \mathbf{1}_S}{\mathbf{1}_S^{\mathsf{T}} D \mathbf{1}_S}$$

- 2. Conductance of a graph: The conductance $\phi(G) := \min_{0 \in S \subset V} \phi(S) = \min_{\substack{0 \in S \subset V \\ \text{vol}(S) \leq \text{vol}(V)/2}} \phi(S)$.
- 3. ϕ -expander: For any $\phi \in (0,1]$, we call a graph G to be a ϕ -expander if $\phi(G) \ge \phi$.
- 4. ϕ -expander decomposition of quality q: A partition $\{X_i\}$ of the vertex set V is called a ϕ -expander decomposition of quality q if (1) each induced graph $G[X_i]$ is a ϕ -expander, and (2.i) #edges not contained in any $G[X_i]$ is at most $q \cdot \phi \cdot m$. The second condition is equivalent to (2.ii) The partition removes at most $q \cdot \phi \cdot m$ edges.
- 5. **Normalized Laplacian**: We define the *normalized Laplacian* to be $N := D^{-1/2}LD^{-1/2}$. N is still PSD, with first eigenvalue equals 0 associated with eigenvector $D^{1/2}\mathbf{1}$. By Courant-Fischer theorem, $\lambda_2(N) = \min_{x \perp D^{1/2}\mathbf{1}} \frac{x^\top N x}{x^\top x} = \min_{z \perp d} \frac{z^\top L z}{z^\top D z}$.

2.1 Cheeger's Inequality

Notice that the $\lambda_2(N)$ has similar forms to $\phi(G)$. Cheeger's inequality aims to bound $\phi(G)$ by $\lambda_2(N)$.

Cheeger's Inequality: $\frac{\lambda_2(N)}{2} \le \phi(G) \le \sqrt{2\lambda_2(N)}$.

The lower bound is proved by restricting the minimum in $\lambda_2(N)$ to be $z_S = \mathbf{1}_S - \alpha \mathbf{1}$ for some α such that $z_S \perp d$. The upper bound is proved by constructing S for any $z \perp d$ such that $\frac{\mathbf{1}_S^T L \mathbf{1}_S}{\mathbf{1}_S^T D \mathbf{1}_S} \leq \sqrt{2 \frac{z^T L z}{z^T D z}}$.

3 Random Walks on a Graph

A **random walk on a graph** G is a Markov Chain with transition probability $\mathbb{P}(v_{t+1}=v\mid v_t=u)=w(u,v)/d(u)$ iff $(u,v)\in E$ and 0 otherwise. The transition matrix is thus $W=AD^{-1}=I-D^{1/2}ND^{-1/2}$ and $p_t=W^tp_0$. Define $\pi=\frac{d}{1^Td}$, thus $\pi=W\pi$ for any G, so every G has a stationary distribution.

3.1 Lazy Random Walks

A **lazy random walk on a graph** G is a random walk, but has half probability to not move for every step. Assuming that G is connected, the lazy random walk guarantees ergodicity of the Markov Chain, and thus convergence to the stationary distribution. The transition matrix is $\tilde{W} = \frac{1}{2}(I + W) = I - \frac{1}{2}D^{1/2}ND^{-1/2}$.

Relation between lazy random walk and normalized Laplacian: For the i-th eigenvalue v_i of N associated with eigenvector ψ_i , the \tilde{W} has an eigenvalue $1-\frac{1}{2}v_i$ associated with eigenvector $D^{1/2}\psi_i$. Since $0 \le L \le 2D$, we have $0 \le N \le 2I$ and thus $0 \le \lambda_i(N) \le 2$. Therefore, we conclude that all eigenvalues of $\tilde{W} \in [0,1]$.

Dynamics of lazy random walk: Expanding the starting distribution p_0 by the eigenvectors of \tilde{W} , we have for some $\{\alpha_i\}$ that $p_0 = \sum_{i=1}^n \alpha_i D^{1/2} \psi_i$. Therefore, we have $p_t = \tilde{W}^t p_0 = \sum_{i=1}^n \alpha_i (1 - \frac{1}{2} \nu_i)^t D^{1/2} \psi_i \rightarrow \alpha_1 D^{1/2} \psi_1$ as $\nu_1 = 0$ and $\nu_i > 0$ for $i \neq 1$. Since $\psi_1 \propto D^{1/2} 1$, we have $\psi_1 = \frac{d^{1/2}}{(1^\top d)^{1/2}}$, thus

 $\alpha_1 = \psi_1^{\top} D^{-1/2} p_0 = \frac{\mathbf{1}^{\top} p_0}{(\mathbf{1}^{\top} d)^{1/2}} = \frac{1}{(\mathbf{1}^{\top} d)^{1/2}}$ and $\alpha_1 D^{1/2} \psi_1 = \pi$, which implies $p_t \to \pi$, the stationary distribution.

Rate of Convergence: For any unit-weight connected graph G and any starting distribution p_0 , we have $\|p_t - \pi\|_{\infty} \le e^{-\nu_2 t/2} \sqrt{n}$. Therefore, a larger ν_2 and smaller vertex set means faster convergence, and the convergence rate is exponential.

3.2 Hitting Time

The expected hitting time from a to s is defined by $\mathbb{E}H_{a,s}$, where $H_{a,s} = \operatorname{argmin}_t \{v_t = s \mid v_0 = a\}$. We want $\mathbb{E}H_{a,s}$ for all vertices a and denote the vector as h, e.g., h(s) = 0.

By one-step analysis, we have $h(a) = 1 + \sum_{(a,b) \in E} \frac{w(a,b)}{d(a)} h(b) = 1 + \mathbf{1}_a^\top W^\top h$, and thus $1 = \mathbf{1}_a^\top (I - W^\top) h$. Combining the equation for all vertices except s, we have $\mathbf{1} - \alpha \mathbf{1}_s = (I - W^\top) h$, where α represents the extra freedom from the n-1 equations. Multiplying both side by D, we get $d - \alpha d(s) \mathbf{1}_s = (D - A) h = L h$, which only have solution when $d - \alpha d(s) \mathbf{1}_s \perp \mathbf{1}$. Therefore, $\alpha = \|d\|_1/d(s)$.

To summarize, by solving $Lh = d - ||d||_1 \mathbf{1}$, we can get the expected hitting time from all vertices to s. Note that the solution has one extra freedom because $\dim(\ker(L)) = 1$, and the correct expected hitting time is $h - h(s)\mathbf{1}$ to enforce the constraint that h(s) = 1. The equation can be solved in $\tilde{O}(m)$.

4 Effective Resistance

Given a Laplacian *L*, its (Moore-Penrose) pseudo inverse is defined to be either of the two equivalents:

- 1. A matrix L^+ that is (1) symmetric, (2) $L^+v = 0$ for $v \in \ker(L)$, and (3) $L^+Lv = LL^+v = v$ for $v \in \ker(L)$.
- 2. Let λ_i, v_i be the *i*-th eigenvalue and eigenvector. Then $L^+ = \sum_{\lambda_i \neq 0} \lambda_i^{-1} v_i v_i^{\top}$.

The effective resistance between vertex a and b is defined to be the cost (energy lost) to routing one unit (of positive electric charge) from a to b: $R_{\rm eff}(a,b) = \min_{Bf=1_b-1_a} f^\top R f = \tilde{f}^\top R \tilde{f}$, where \tilde{f} is the electric flow. Let \tilde{x} be the electric voltages, we also have $L\tilde{x} = \mathbf{1}_b - \mathbf{1}_a$, and thus $R_{\rm eff}(a,b) = \tilde{x}^\top L \tilde{x} = (\mathbf{1}_b - \mathbf{1}_a)^\top L^+ (\mathbf{1}_b - \mathbf{1}_a) = \|L^{+/2} (\mathbf{1}_b - \mathbf{1}_a)\|_2^2$.

Effective Resistance is a distance defined on the vertex pairs, i.e. $R_{\text{eff}}(a,c) \leq R_{\text{eff}}(a,b) + R_{\text{eff}}(b,c)$.

5 Gaussian Elimination for Laplacian