

CIRCUITOS LÓGICOS ÁLGEBRA BOOLEANA

Marco A. Zanata Alves

UMA ÁLGEBRA DIFERENTE

Álgebra booleana [Boole, 1854]

Álgebra onde há apenas dois valores válidos: falso e verdadeiro.

George Boole (Lincoln, 02/11/1815 - Ballintemple, 08/12/1864) foi um filósofo britânico, criador da álgebra booliana, fundamental para o desenvolvimento da computação moderna

http://pt.wikipedia.org/wiki/George Boole

UMA ÁLGEBRA DIFERENTE

Álgebra booleana [Boole, 1854]

Álgebra onde há apenas dois valores válidos: falso e verdadeiro.

Também denotados:

- F e V;
- false e true (ou F e T);
- desligado e ligado;
- nível baixo e nível alto de um sinal;
- 0 e 1, etc.

Variável booleana: pode assumir um dos dois valores booleanos válidos.

 Geralmente denotada por uma letra maiúscula: A, B, C, X, Y, Z,...

George Boole (Lincoln, 02/11/1815 - Ballintemple, 08/12/1864) foi um filósofo britânico, criador da álgebra booliana, fundamental para o desenvolvimento da computação moderna

http://pt.wikipedia.org/wiki/George Boole

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:			
X e Y	X and Y	<i>X</i> ^ <i>Y</i>	$X \cdot Y$

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:			
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$
Disjunção ou produto booleano:			
X ou Y	X or Y	$X \vee Y$	X + Y

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:				
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$	
Disjunção ou produto booleano:				
X ou Y	$X \ ou \ Y$ $X \ or \ Y$ $X \lor Y$ $X + Y$			
Negação ou complemento:				
não X	not X	$\neg X$	\overline{X}	

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:			
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$
Disjunção ou produto booleano:			
X ou Y	X or Y	$X \vee Y$	X + Y
Negação ou complemento:			
não X	not X	$\neg X$	\overline{X}

Em C e Java, respectivamente: X && Y , X | | Y , !X

Assim como na álgebra comum, o resultado de uma operação booleana é obtido através de uma tabuada.

Na álgebra booleana, as tabuadas são chamadas tabelas verdade.

Assim como na álgebra comum, o resultado de uma operação booleana é obtido através de uma tabuada.

Na álgebra booleana, as tabuadas são chamadas tabelas verdade.

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
V	٧	V
V	F	F
F	٧	F
F	F	F

Tabela verdade da disjunção (ou)

X	Y	X + Y
V	٧	V
V	F	V
F	٧	V
F	F	F

Tabela verdade da negação (não)

X	\overline{X}
V	F
F	V

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
V	V	V
V	F	F
F	٧	F
F	F	F

Tabela verdade da disjunção (ou)

X	Y	X + Y
V	٧	V
V	F	V
F	٧	V
F	F	F

Tabela verdade da negação (não)

X	\overline{X}
V	F
F	V

Conjunção (e): resultado verdadeiro apenas se x e y forem verdadeiros.

Disjunção (ou): resultado verdadeiro apenas se x ou y forem verdadeiros.

Negação (não): resultado só será verdadeiro se x não for verdadeiro.

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
1	1	1
1	0	0
0	1	0
0	0	0

Tabela verdade da disjunção (ou)

X	Y	X + Y
1	1	1
1	0	1
0	1	1
0	0	0

Tabela verdade da negação (não)

X	\overline{X}
1	0
0	1

Equivalências: F = 0, V = 1

Cuidado! Não confunda tabelas verdade com tabuadas da aritmética na base 2.

EXPRESSÕES LÓGICAS

Como na álgebra comum, podemos combinar as operações, formando expressões lógicas.

O resultado de uma expressão lógica pode ser calculado aplicandose cada operação lógica, consultando-se as tabelas verdade correspondentes.

Para indicar a ordem de aplicação das operações, usam-se parênteses como na álgebra comum.

Ex 1.: calcule o resultado da expressão abaixo:

$$\overline{1} + (0 \cdot 1) =$$

EXPRESSÕES LÓGICAS

Como na álgebra comum, podemos combinar as operações, formando expressões lógicas.

O resultado de uma expressão lógica pode ser calculado aplicando-se cada operação lógica, consultando-se as tabelas verdade correspondentes.

Para indicar a ordem de aplicação das operações, usam-se parênteses como na álgebra comum.

Ex 1.: calcule o resultado da expressão abaixo:

$$\overline{1} + (0 \cdot 1) = 0 + (0 \cdot 1) = 0 + (0) = 0$$

Se não houver parênteses, a **operação "·" tem precedência** sobre a operação "+"

Ou seja, $\overline{1} + 0 \cdot 1$ significa o mesmo que $\overline{1} + (0 \cdot 1)$

VARIÁVEIS BOOLEANAS E EXPRESSÕES LÓGICAS

Como na álgebra comum, também podemos deixar valores a determinar em expressões lógicas.

Esses valores indeterminados são chamados variáveis booleanas.

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Qual o seu valor quando X = 1 e Y = 0?

Solução: substitua os valores de X e Y na expressão e calcule usando as tabelas verdade.

VARIÁVEIS BOOLEANAS E EXPRESSÕES LÓGICAS

Como na álgebra comum, também podemos deixar valores a determinar em expressões lógicas.

Esses valores indeterminados são chamados variáveis booleanas.

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Qual o seu valor quando X = 1 e Y = 0?

Solução
$$\overline{1} \cdot 0 + 1 \cdot \overline{0} = 0 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1$$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

TABELAS VERDADE

VARIÁVEIS BOOLEANAS E EXPRESSÕES LÓGICAS

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

X	Y	\overline{X}	\overline{Y}	$\overline{X} \cdot Y$	$X\cdot \overline{Y}$	$\overline{X} \cdot Y + X \cdot \overline{Y}$
0	0	1	1	$1 \cdot 0 = 0$	$0 \cdot 1 = 0$	0 + 0 = 0

VARIÁVEIS BOOLEANAS E EXPRESSÕES LÓGICAS

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

X	Y	\overline{X}	\overline{Y}	$\overline{X} \cdot Y$	$X\cdot \overline{Y}$	$\overline{X} \cdot Y + X \cdot \overline{Y}$
0	0	1	1	$1 \cdot 0 = 0$	$0 \cdot 1 = 0$	0 + 0 = 0
0	1	1	0	$1 \cdot 1 = 1$	$0 \cdot 1 = 0$	1 + 0 = 1
1	0	0	1	$0 \cdot 0 = 0$	$1 \cdot 1 = 1$	0 + 1 = 1
1	1	0	0	$0 \cdot 1 = 0$	$1 \cdot 0 = 0$	0+0=0

Interpretação: o resultado será verdadeiro se apenas uma das variáveis for verdadeira; será falso, caso contrário.

NOVA OPERAÇÃO: DISJUNÇÃO EXCLUSIVA

A expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$ costuma aparecer com muita frequência em álgebra booleana.

Daremos um nome para ela: disjunção exclusiva.

NOVA OPERAÇÃO: DISJUNÇÃO EXCLUSIVA

A expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$ costuma aparecer com muita frequência em álgebra booleana.

Daremos um nome para ela: disjunção exclusiva.

Também conhecida como "ou exclusivo", ou "xor".

Denotada pelo símbolo \oplus :

$$X \bigoplus Y = \overline{X} \cdot Y + X \cdot \overline{Y}$$

em C: X^{Y} , em Java: X^{Y} .

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

PRECEDÊNCIA DOS OPERADORES

A precedência das operações booleanas é sempre:

- Parênteses "()"
- Negação "não";
- 3. Conjunção "e";
- 4. Disjunção "ou";
- Disjunção exclusiva "ou-ex";

EXERCÍCIO

Construa a tabela verdade para as seguintes expressões:

$$A + (A \cdot B)$$

$$A \cdot (A + B)$$

$$(A + B) \cdot (A + C)$$

Função lógica: associação que "leva" de um conjunto de n variáveis booleanas ao conjunto $\{0,1\}$.

$$F: \{0,1\}^n \to \{0,1\}$$

$$X_1, X_2, ..., X_n \to Y = F(X_1, X_2, ..., X_n)$$

Podemos descrever uma função lógica por uma expressão booleana ou pela sua tabela verdade.

Ex. 4: construa a tabela verdade da função $F(A,B,C)=A+\overline{B}\cdot C$

Ex. 4: construa a tabela verdade da função $F(A,B,C)=A+\overline{B}\cdot C$

A	B	C	$\overline{B} \cdot C$	$F(A,B,C)=A+\overline{B}\cdot C$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0=X	1
1	0	1	1=X	1
1	1	0	0=X	1
1	1	1	0=X	1

Onde há "X" não importa o valor de $\overline{B} \cdot C$, pois nos quatro casos, como A=1, então $A+\overline{B}\cdot C=1$

Ex. 5: determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	Y	F(X,Y)
0	0	1
0	1	0
1	0	0
1	1	1

Ex. 5: determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	Y	F(X,Y)	
0	0	1	_
0	1	0	
1	0	0	
1	1	1	

Note que o resultado de F(X,Y) é sempre o "contrário" do resultado de $X \oplus Y$.

Ou seja, o resultado da operação **ou-exclusivo** é verdadeiro se, e somente se, F(X,Y) é falso.

Ex. 5: determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	V	F(X,Y)	
Λ	1	$I(\Lambda, I)$	Note
0	0	1	
	_		"con
0	1	0	Ou s
1	0	0	OU S
ı	U	U	verd
1	1	1	
		•	

Note que o resultado de F(X,Y) é sempre o "contrário" do resultado de $X \oplus Y$.

Ou seja, o resultado da operação **ou-exclusivo** é verdadeiro se, e somente se, F(X,Y) é falso.

Da observação anterior, e conhecendo as tabelas verdade das operações lógicas, uma expressão possível para F(X,Y) é:

$$F(X,Y) = \overline{X \oplus Y}$$

EXERCÍCIOS

Construa a tabela verdade e simplifique as seguintes funções:

$$F(A) = A + \overline{A}$$

$$F(B) = B \cdot \overline{B}$$

Ex. 6: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

compare-as e interprete os resultados.

Ex. 6: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

compare-as e interprete os resultados.

X	Y	Z	Y + Z	$X \cdot (Y + Z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Duas funções lógicas são equivalentes se suas tabelas verdade são iguais.

Ex. 6: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

$$G(X,Y,Z) = X \cdot Y + X \cdot Z_{A}$$

compare-as e interprete os resultados.

X	Y	Z	Y + Z	$X\cdot(Y+Z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

X	Y	Z	X·Y	$X \cdot Z$	$X \cdot Y + X \cdot Z$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Pela tabela, nota-se que

$$F(X,Y,Z) = G(X,Y,Z)$$

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

Acabamos de demonstrar que a conjunção é distributiva!

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

Todas as regras básicas da álgebra booleana podem ser demonstradas construindo-se as duas tabelas verdade das expressões em ambos os lados das equivalências.

Considere X, Y, Z variáveis booleanas.

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

	IN E O IN / IS	DITTION DITTION	IN DOCE THIN
	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
P6	Comutatividade	X + Y = Y + X	$X \cdot Y = Y \cdot X$
P7	Associatividade	(X+Y)+Z=X+(Y+Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
P8	Distributividade	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$	$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$
P9	Cobertura	$X \cdot (X + Z) = X$	$X + (X \cdot Y) = X$
P10	Combinação	$(X \cdot Y) + \left(X \cdot \overline{Y}\right) = X$	$(X+Y)\cdot \left(X+\overline{Y}\right)=X$
P11	Consenso	$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$ = $(X \cdot Y) + (\overline{X} \cdot Z)$	$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$ = $(X + Y) \cdot (\overline{X} + Z)$

MAIS PROPRIEDADES

Lei De Morgan:

$$\frac{\overline{(X+Y)} = \overline{X} \cdot \overline{Y}}{\overline{(X\cdot Y)} = \overline{X} + \overline{Y}}$$

As Leis De Morgan são muito importantes para simplificar expressões envolvendo negações.

MAIS PROPRIEDADES

Lei De Morgan:

$$\frac{\overline{(X+Y)} = \overline{X} \cdot \overline{Y}}{\overline{(X\cdot Y)} = \overline{X} + \overline{Y}}$$

As Leis De Morgan são muito importantes para simplificar expressões envolvendo negações.

Augustus De Morgan (Madura, Índia, 27/06/1806 - Londres, 18/03/1871) foi um matemático e lógico britânico. Formulou as Leis de De Morgan e foi o primeiro a introduzir o termo e tornar rigorosa a ideia da indução matemática.

https://pt.wikipedia.org/wiki/Augustus_De_Morgan

LEIS DE MORGAN

Lei De Morgan:

$$\frac{\overline{(X+Y)} = \overline{X} \cdot \overline{Y}}{(X \cdot Y)} = \overline{X} + \overline{Y}$$

Ex. 7: Usando as propriedades algébricas, demonstre que:

$$X + \overline{X} \cdot Y = X + Y$$