## 8.1 Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накалённого тела

Александр Романов Б01-107

### 1 Введение

#### 1.1 Краткое описание

При помощи модели абсолютно чёрного тела проводятся измерения температуры оптическим пирометром с ичезающей нитью и термопарой, исследуется излучение накалённых тел с различной испускательной способностью, определяются постоянные Планка и Стефана-Больцмана.

#### 1.2 Теоретическая справка

Если бы нить излучала как AЧT, то баланс потребляемой и излучаемой энергии был бы:

$$W = \sigma S \left( T^4 - T0^4 \right)$$

где W - потребляемая нитью электрическая мощность, S - площадь излучающей поверхности нити, T - температура нити,  $T_0$  - температура окружающей среды.

Если предположить, что нить излучает как серое тело, то выражение можно записать в виде:

$$W = \varepsilon_T S \sigma T^4$$

#### 1.3 Экспериментальная установка



Рис. 3. Схема экспериментальной установки: 1 — блок питания; 2 — тумблер включения питания пирометра и образцов; 3 — тумблер нагрева нити пирометра: «Быстро» — вверх, «Медленно» — вниз; 4 — кнопка «Нагрев нити»; 5 — кнопка «охлаждение нити»; 6 — тумблер переключения образцов; 7 — регулятор мощности нагрева образцов; 8 — окуляр пирометра; 9 — корпус пирометра; 10 — объектив пирометра; 11 — переключение диапазонов: 700–1200°С — вниз, 1200–2000°С — вверх; 12 — ручка перемещения красного светофильтра; 13 — регулировочный винт; 14 — вольтметр (напряжение на лампе накаливания); 15 — амперметр (ток через образцы); 16 — вольтметр в цепи термопары; 17 — модель АЧТ; 18 — трубка с кольцами из материалов с разной излучательной способностью; 19 — лампа накаливания; 20 — неоновая лампочка

#### 2 Работа

#### 2.1 Изучение работы оптического пирометра

В этой части работы мы измерим температуру модели АЧТ с помощью пирометра и сравним её с температурой, полученной по термопаре.

Включив пирометр будем методом последовательных приближений изменять его температуру так, чтобы определить момент визуального исчезновения нити на фоне АЧТ. Получим значение  $T=1190\pm20^{\circ}C$ . При этом показания термопары:  $U_p=47.25~mV$ . Учитывая постоянную термопары

 $(41 \ \mu V/^{\circ}C)$  получим значение температуры:

$$T_p = 41 \cdot U_p = 1173 \pm +21^{\circ}C = 1173 \pm^{\circ}C$$

Значение температуры, полученное при помощи пирометра, совпадает с температурой термопары в пределах погрешности.

#### 2.2 Проверка закона Стефана-Больцмана

Направим пирометр на нить лампы накаливания и включим её. Постепенно увеличивая накал нити лампы, начиная со слабого тёмно-красного накала ( $\simeq 900^{\circ}C$ ) вплоть до  $1900^{\circ}C$ . Помимо температуры необходимо записывать также величину тока и напряжения на нити лампы.

| $T, \circ C$ | 900   | 1000  | 1100  | 1200  | 1300  | 1400  | 1500  | 1600  | 1700   | 1800   | 1900   |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| I, A         | 0.625 | 0.702 | 0.806 | 0.902 | 1     | 1.08  | 1.15  | 1.23  | 1.31   | 1.4    | 1.5    |
| U, V         | 15.8  | 20.87 | 29    | 37    | 46.4  | 54    | 60.3  | 69.1  | 78     | 88.3   | 100    |
| P = IV, J    | 9.88  | 14.65 | 23.37 | 33.37 | 46.40 | 58.32 | 69.34 | 84.99 | 102.18 | 123.62 | 150.00 |

Построим график P = f(T):



Получили зависимость вида  $y = k \cdot x + b$ :

$$k = 3.58 \pm 0.10$$

$$b = -21.97 \pm 0.7$$

Полученное значение углового коэффициента ( $k=3.58\pm0.10$ ) достаточно точно совпадает со значением 4, следующем из закона Стефана-Больцмана:

$$P = \sigma \varepsilon_T S T^4$$

Найдём значение постоянной Стефана-Больцмана по формуле:

$$\sigma = \frac{P}{\varepsilon_T} S T^4 = 3.2 \cdot 10^{-4} \frac{Wt}{m^2 K^4}$$

Полученное значение на несколько порядков отличается от табличного:  $\sigma = 5.66 \cdot 10^{-8} \ \frac{Wt}{m^2 K^4}$ 

#### 2.3 Измерение яркостной температуры накалённых тел

Нагре кольца и керамическую трубку до одинаковых температур убедимся что разные температуры имеют различную яркостную температуру при одинаковой термодинамической температуре.

# 2.4 Измерение яркостной температуры неоновой лампочки

Направим пирометр на неоновую лампочку. Измерим при помощи него яркостную температуру неоновой лампочки.

$$T = 914 \ K$$

Однако дотронувшись до лампочки рукой убедимся что её температура даже не близка к 900 K.

## 3 Выводы

В ходе работы:

1. Был проверен закон Стефана-Больцмана и получен коэффициент степени *T*, который достаточно точно совпадает с теоретическим:

$$3.58 \pm 0.1 VS4$$

2. Было найдено значение постоянной Стефана-Больцмана. Однако значение отличается от табличного на несколько порядков:

$$3.2 \cdot 10^{-4} VS5.66 \cdot 10^{-8} \frac{Wt}{m^2 K^4}$$

 Было проверено, что разные материалы имеют разную яркостную температуру при равной термодинамической. Также объекты с высокой яркостной температурой могут иметь маленькую термодинамическую.