Paper	Code	:DSC	-302

Roll No.					

B.Sc.(PCM)-18, B.A.(Math)-6 3rd Year Examination, Academic Batch 2015-16 Mathematics-VI

Time:	3 Hours]	[Max. Marks : 100
Note. A	Attempt any five questions. All questions carry equal marks.	
• • •	A field has no proper ideals. Every field is an Euclidean ring.	[20]
• ()	Every field in on integral domain? The intersection of two sub rings is again a sub ring	[20]
	Prove that the vectors $(2,-1,4)$, $(1,-1,2)$, $(3,1,-2)$ form a basis for \mathbb{R}^3 Prove that the vectors $(1,1,0)$, $(3,1,3)$ and $(5,3,3)$ are linearly dependent	[10] t.
Q.4	Show that the mapping $d.R^2*R^2 \rightarrow R^2$ defined by $d(x, y) = \max. = \{ x_1-y \}$ where $x = (x_1, x_2), y = y_1, y_2 \in \mathbb{R}$ is metric on \mathbb{R}^2	$y_2 , x_2-y_2 $ [20]
Q.5	Let A and B be subset of a matrix space X. then (i) $A \subset B \Rightarrow D(A) \subset D(B)$ (ii) $D(A \cap B) \subset D(A) \cap D(B)$ (iii) $D(A \cup B) = D(A) \cup D(B)$	[20]
Q.6	Find the dual basis of the basis set $B==\{(1,-1,3), (0,1,-1), (0,3,-2)\}$ for	$V_3(R)$ [20]
Q.7	If the matrix of a linear transformation T on a vector space V2 (c) w.r.t basis $B=\{(1,0), (0,-1)\}$ is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ what is the matrix of T w.r.t. the ordered basis $B=\{(1,1), (1,-1)\}$	[=v]
	The intersection of any two subspaces of a vector space is a subspace. Is the sector $(2,-5,3)$ in the subspace of \mathbb{R}^3 s panned by the vectors $(1,-3,-5,7)$.	[20]