Step	PARAME [*]	TERS/EQUATIONS
1: Inputs	Pick V_{in} , V_{out} , and f_{osc} to calculate	$V_{in} = 18 V$
	equations below.	$V_{out} = -15 V$
		$f_{osc} = 1 MHz (< f_{max} = 2.5MHz)$
2: DC	$DC \cong \frac{ V_{OUT} + 0.5V}{V_{IN} + V_{OUT} + 0.5V - 0.27V}$ $L_{TYP} = \frac{(V_{IN} - 0.27V) \cdot DC}{f_{OSC} \cdot 1.8A}$	$DC \cong \frac{ -15 +0.5}{18+ -15 +0.5-0.27} = 46.6\%$
3: L	$L_{TYP} = \frac{(V_{IN} - 0.27V) \cdot DC}{f_{OSC} \cdot 1.8A}$	$L_{TYP} = \frac{(18 - 0.27) \cdot 0.466}{1 \cdot 10^6 \cdot 1.8} = 4.59 \mu H$
	$L_{MIN} = \frac{(V_{IN} - 0.27V) \cdot (2DC - 1)}{4A \cdot f_{OSC} \cdot (1 - DC)}$	$L_{MIN} = \frac{(18 - 0.27) \cdot (2 \cdot 0.466 - 1)}{4 \cdot 1 \cdot 10^6 \cdot (1 - 0.466)} = -564 nH \to 564 nH$
	$L_{MAX} = \frac{(V_{IN} - 0.27V) \cdot DC}{f_{OSC} \cdot 0.5A}$	$L_{MAX} = \frac{(18 - 0.27) \cdot 0.466}{1 \cdot 10^6 \cdot 0.5} = 16.5 \mu H$
4: I _{RIPPLE}	$L_{MAX} = \frac{(V_{IN} - 0.27V) \cdot DC}{f_{OSC} \cdot 0.5A}$ $I_{RIPPLE} = \frac{(V_{IN} - 0.27) \cdot DC}{f_{OSC} \cdot L}$	$I_{RIPPLE} = \frac{(18 - 0.27) \cdot 0.466}{1 \cdot 10^6 \cdot 4 \cdot 10^{-6}} = 2.066 A$
5: <i>I_{OUT}</i>	$I_{OUT} = \left(6A - \frac{I_{RIPPLE}}{2}\right) \cdot (1 - DC)$	$I_{OUT} = \left(6 - \frac{2.066}{2}\right) \cdot (1 - 0.466) = 2.652 A$
6: <i>D</i> ₁	$ V_R > V_{IN} + V_{OUT} ; I_{AVG} > I_{OUT}$	$V_R > 18 + -15 \rightarrow V_R > 33 V$ $I_{AVG} > 1vA$
7: <i>C</i> ₁	4.7 μF (typical); $V_{RATING} > V_{IN} + V_{OUT} $	$C_1 = 4.7 \ \mu F$
8: <i>C_{OUT}</i>	$C_{OUT} = \frac{I_{RIPPLE}}{8 \cdot f_{OSC} \cdot 5 \cdot 10^{-3} \cdot V_{OUT} }$	$V_{RATING} > 18 + -15 \rightarrow V_{RATING} > 33 V$ $C_{OUT} = \frac{2.066}{8 \cdot 1 \cdot 10^6 \cdot 5 \cdot 10^{-3} \cdot -15 } = 3.443 \ \mu F$
9: <i>C</i> _{IN}	$C_{IN} = C_{PWR} + C_{VIN} C_{IN} = \frac{I_{RIPPLE}}{8 \cdot f_{OSC} \cdot 5 \cdot 10^{-3} \cdot V_{IN}} + \frac{6A \cdot DC}{40 \cdot f_{OSC} \cdot 5 \cdot 10^{-3} \cdot V_{IN}}$	$C_{IN} = \frac{2.066}{8 \cdot 1 \cdot 10^{6} \cdot 5 \cdot 10^{-3} \cdot 18} + \frac{6 \cdot 0.466}{40 \cdot 1 \cdot 10^{6} \cdot 5 \cdot 10^{-3} \cdot 18} = 3.646 \mu F$
10: R _{FB}	$R_{FB} = \frac{ V_{OUT} + 9mV}{83.3\mu A}$ $R_T = \frac{87.6}{f_{OSC}} - 1; f_{OSC} \text{ in MHz and } R_T \text{ in } k\Omega$	$R_{FB} = \frac{ -15 + 9 \cdot 10^{-3}}{83.3 \cdot 10^{-6}} = 180.180 \ k\Omega \rightarrow 180 \ k\Omega$
11: <i>R</i> _T	$R_T = \frac{87.6}{f_{OSC}} - 1$; f_{OSC} in MHz and R_T in $k\Omega$	$R_T = \frac{87.6}{1} - 1 = 86.6 k\Omega \to 82 k\Omega$