

31.03.03

JAPAN PATENT OFFICE

01 OCT 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 4月 4日

REC'D 2 3 MAY 2003

PCT

WIPO

出願番号 Application Number:

特願2002-102682

[ST.10/C]:

[JP2002-102682]

出 願 人
Applicant(s):

新日本製鐵株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 5月 9日

特 許 庁 長 官 Commissioner, Japan Patent Office 太田信一

BEST AVAILABLE COPY

出証番号 出証特2003-3033833

::

【書類名】

特許願

【整理番号】

2002P0094

【提出日】

平成14年 4月 4日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

C30B 29/36

C30B 23/00

【発明者】

【住所又は居所】

千葉県富津市新富20-1 新日本製鐵株式会社 技術

開発本部内

【氏名】

大谷 昇

【発明者】

【住所又は居所】

千葉県富津市新富20-1 新日本製鐵株式会社 技術

開発本部内

【氏名】

勝野 正和

【発明者】

【住所又は居所】 千葉県富津市新富20-1 新日本製鐵株式会社 技術

開発本部内

【氏名】

藤本 辰雄

【特許出願人】

【識別番号】

000006655

【氏名又は名称】

新日本製鐵株式会社

【代理人】

【識別番号】

100072349

【弁理士】

【氏名又は名称】 八田 幹雄

【電話番号】

03-3230-4766

【選任した代理人】

【識別番号】

100102912

【弁理士】

【氏名又は名称】 野上 敦

【選任した代理人】

【識別番号】 100110995

【弁理士】

【氏名又は名称】 奈良 泰男

【選任した代理人】

【識別番号】

100111464

【弁理士】

【氏名又は名称】 齋藤 悦子

【選任した代理人】

【識別番号】 100114649

【弁理士】

【氏名又は名称】 宇谷 勝幸

【手数料の表示】

【予納台帳番号】

001719

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【その他】

国等の委託研究の成果に係る特許出願(平成13年度、

新エネルギー・産業技術総合開発機構「超低損失電力素

子技術開発」委託研究、産業活力再生特別措置法第30

条の適応を受けるもの)

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴッ

ト及びその製造方法

【特許請求の範囲】

【請求項1】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、<0001>軸を中心に[1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項2】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、[0001] Si軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項3】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上30度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項4】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、[0001] Si軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上30度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項5】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、6度以上30度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項6】 炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の(11-20)面から、[0001] Si軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、6度以上30度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶。

【請求項7】 請求項1~6のいずれか1項に記載の炭化珪素単結晶育成用

種結晶を用いて、昇華再結晶法により前記種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法。

【請求項8】 請求項7に記載の製造方法により得られた炭化珪素単結晶インゴットであって、該インゴットの口径が20mm以上である炭化珪素単結晶インゴット。

【請求項9】 請求項7に記載の製造方法により得られた炭化珪素単結晶インゴットを加工、研磨してなる炭化珪素単結晶ウエハであって、かつ、ウエハ径が20mm以上である炭化珪素単結晶ウエハ。

【請求項10】 請求項9に記載の炭化珪素単結晶ウエハにエピタキシャル成長してなる炭化珪素単結晶エピタキシャルウエハ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、炭化珪素単結晶育成用種結晶と炭化珪素単結晶及びその製造方法に関し、特に、電力デバイスや高周波デバイスなどの基板ウエハとなる良質で大型の単結晶インゴット及びその製造方法に関する。

[0002]

【従来の技術】

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、放射線に強いなどの物理的、化学的性質から耐環境性半導体材料として注目されている。また近年、青色から紫外にかけての短波長光デバイス、高周波高耐圧電子デバイス等の基板ウエハとして、SiC単結晶ウエハの需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、いまだ確立されていない。それゆえ、SiCは、上述のような多くの利点及び可能性を有する半導体材料にもかかわらず、その実用化が阻まれていた。

[0003]

従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。 しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形

状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不 純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を 用いて珪素(Si)などの異種基板上にヘテロエピタキシャル成長させることに より立方晶の炭化珪素単結晶を成長させることも行われている。この方法では、 大面積の単結晶は得られるが、基板との格子不整合が約20%もあること等によ り多くの欠陥 ($\sim 10^7$ c m⁻²) を含む $\rm SiC$ 単結晶しか成長させることができ ず、高品質のSiC単結晶を得ることは容易でない。これらの問題点を解決する ために、SiC単結晶 {0001} ウエハを種結晶として用いて昇華再結晶を行 う改良型のレーリー法が提案されている(Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146~150)。この方法では、種 結晶を用いているため結晶の核形成過程が制御でき、また不活性ガスにより雰囲 気圧力を100Paから15kPa程度に制御することにより結晶の成長速度等 を再現性良くコントロールできる。改良レーリー法の原理を図1を用いて説明す る。種結晶となるSiC単結晶と原料となるSiC結晶粉末は坩堝(通常黒鉛) の中に収納され、アルゴン等の不活性ガス雰囲気中(133Pa~13.3kP a)、摂氏2000~2400度に加熱される。この際、原料粉末に比べ種結晶 がやや低温になるように温度勾配が設定される。原料は、昇華後、濃度勾配(温 度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は 、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。 この際、結晶の抵抗率は、不活性ガスからなる雰囲気中に不純物ガスを添加する 、あるいは、原料のSiC結晶粉末中に不純物元素あるいはその化合物を混合す ることにより、制御可能である。SiC単結晶中の置換型不純物として代表的な ものに、窒素(n型)、ホウ素、アルミニウム(p型)がある。改良レーリー法 を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状 、キャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる

[0004]

現在、上記の改良レーリー法で作製したSiC単結晶から口径2インチ(50mm) から3インチ(75mm)の $\{0001\}$ 面SiC単結晶ウエハが切り出

され、エピタキシャル薄膜成長、デバイス作製に供されている。しかしながら、これらのSiC単結晶ウエハには、成長方向に貫通する直径数μmのピンホール 欠陥(マイクロパイプ欠陥)が50~200cm⁻²程度含まれていた。

[0005]

【発明が解決しようとする課題】

上記したように、従来の技術で作られたSiC単結晶にはマイクロパイプ欠陥が $50\sim200$ cm $^{-2}$ 程度含まれていた。P.G. Neudeck et al., IEEE Electron Device Letters, vol.15 (1994) pp.63 \sim 65に記載されているように、これらの欠陥は素子を作製した際に、漏れ電流等を引き起こし、その低減はSiC単結晶のデバイス応用における最重要課題とされている。

[0006]

このマイクロパイプ欠陥は、 {0001} 面に垂直な面を種結晶として用いて 、<0001>方向と垂直方向にSiC単結晶を成長させることにより、完全に 防止できることが、特開平5-262599号公報に開示されている。【000 1) 面に垂直な面は、デバイス製造にとっても有用な面である。H. Yano et al. . Materials Science Forum, vol.338-342 (2000) pp.1105~1108に示されてい るように、例えば {0001} 面に垂直な面である(11-20)面を用いたM OS (金属-酸化膜-半導体) 型電界効果トランジスタは、 (0001) Si面 上に作製したものと比べて、格段に高いチャネル移動度を示す。このように、〈 0001} 面に垂直な面に成長したSiC単結晶はマイクロパイプ欠陥を含まず 、さらに、「11-20」方向に成長したSiC単結晶インゴットを切断研磨し て得られる(11-20)ウエハは高性能のSiCデバイスを作製するのに適し ている。しかしながら、この方向にSiC単結晶を成長した場合、J. Takahashi et al., Journal of Crystal Growth, vol.181 (1997) pp.229~240に記載され ているように、結晶中に多量の(0001)面積層欠陥が導入されてしまう。こ の結果、特開平5-262599号公報に開示されている方法を用いても、マイ クロパイプ欠陥は抑制できるものの、今度はデバイスに悪影響を与える積層欠陥 が多量に発生してしまっていた。

[0007]

[0008]

【課題を解決するための手段】

本発明は、

3/23

- (1) (11-20) 面から、<0001>軸を中心に [1-100] 軸方向に -45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾い た面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (2) (11-20) 面から、 [0001] Si軸を中心に [1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下 個いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (3) (11-20) 面から、<0001>軸を中心に [1-100] 軸方向に -45度以上45度以下の範囲にある任意の一方向に、3度以上30度以下傾い た面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (4) (11-20) 面から、[0001] Si軸を中心に[1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上30度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (5) (11-20) 面から、<0001>軸を中心に [1-100] 軸方向に -45度以上45度以下の範囲にある任意の一方向に、6度以上30度以下傾い た面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (6) (11-20) 面から、[0001] Si軸を中心に[1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、6度以上30度以下 傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶、
- (7) (1) ~ (6) のいずれか1つに記載の炭化珪素単結晶育成用種結晶を用いて、昇華再結晶法により前記種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法、
- (8) (7) に記載の製造方法により得られた炭化珪素単結晶インゴットであって、該インゴットの口径が20mm以上である炭化珪素単結晶インゴット、

- (9) (7) に記載の製造方法により得られた炭化珪素単結晶インゴットを加工、研磨してなる炭化珪素単結晶ウエハであって、かつ、ウエハ径が20mm以上である炭化珪素単結晶ウエハ、
- (10) (9) に記載の炭化珪素単結晶ウエハにエピタキシャル成長してなる炭化珪素単結晶エピタキシャルウエハ、である。

[0009] `

【発明の実施の形態】

本発明は、炭化珪素単結晶からなる炭化珪素単結晶育成用種結晶であって、該単結晶の、(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。さらに本発明においては、このようなSiC単結晶育成用種結晶をSiC単結晶育成用種結晶を として用いることにより、マイクロパイプ欠陥、積層欠陥の発生を防止することができる。なお、本発明において、該種結晶は六方晶SiC単結晶からなる単結晶であり、面指数はミラー指数表示法に基いて記載される。参考として、図2に六方晶SiC単結晶の面指数を説明する概略図を示す。

[0010]

{0001} 面に垂直方向にSiC単結晶を成長させた場合に積層欠陥が発生するメカニズムについては、J. Takahashi and N. Ohtani, phys. stat. sol.(b), vol.202 (1997) pp.163~175に記載されている。改良レーリー法によるSiC単結晶の成長においては、原料から昇華したSiC分子が種結晶表面(成長が進行して行った段階では、結晶成長表面)に吸着し、これが結晶に規則正しく取り込まれていくことによって結晶が成長する。積層欠陥は、この吸着されたSiC分子が結晶に取り込まれる際に、正規の配位ではなく、誤った配位で取り込まれることによって誘起される。誤った配位で取り込まれたSiC分子は、結晶中に局所的な歪をもたらし、この歪が原因となって積層欠陥が発生する。ここで問題とされている積層欠陥は、結晶成長中においてのみ発生する結晶成長誘起欠陥であり、結晶成長後に成長結晶に機械的応力、電気的ストレス等が加えられるこ

[0011]

すなわち本発明においては、上記のメカニズムを解析した結果見出されたものであり、種結晶として、(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に3度以上60度以下傾いた面を単結晶育成面とするSiC単結晶を用いることにより、吸着分子が誤った配位で結晶中に取り込まれることを防止し、積層欠陥の発生を抑制したものである。なお、以下の説明において、(11-20)面からの単結晶育成面の傾き角度を「オフ角度」(図4中、αで示される)、該オフ角度が導入される方向を「オフ方向」と称する。

[0012]

図3を用いて、本発明の効果を説明する。オフ角度の導入されていない(11-20)面種結晶上に結晶を成長させた場合、結晶成長表面上でSiC分子は結合配位として複数の配位形態を取り得る(例えば、模式的に図3(a)の(1)および(2)で示される)。複数の配位形態の内、結晶内部と全く同一の結合配位がエネルギー的には最も安定な配位であるが、SiC単結晶の場合、配位間のエネルギー差が極めて小さいために、吸着されるSiC分子は正規の配位(最安定配位)とは異なった配位で結晶中に取り込まれてしまうことがしばしば起こる。このように誤った配位で取り込まれたSiC分子が起点となって積層欠陥がSiC単結晶中に発生する。

[0013]

一方、オフ角度を有する(11-20)面種結晶上に結晶を成長させる場合には、図3(b)に示すように、成長表面にはステップが形成されている。ステップ間隔(密度)はオフ角度の大きさに依存し、オフ角度が小さくなるほどステップ間隔は大きくなり、逆にオフ角度が大きくなるとステップ間隔は小さくなる。成長表面のステップ間隔が或る値以上小さくなると、原料より飛来するSiC分子は全てステップで取り込まれるようになる。ステップにSiC分子が吸着し、取り込まれる場合には、その配位は一義的に決定され、誤った配位で結晶中に取り込まれることはない。結果、積層欠陥発生が抑制される。なお、オフ角度が小

さい場合には、ステップ密度が低下し、その結果SiC分子がステップとステップの間に存在するテラス(図3(a)のオフ角度の導入されていない(11-2 O)面に相当)上でも結晶に取り込まれるようになるため、本発明の効果が期待できない。

[0014]

従来、結晶成長表面にオフ角度を付けることは、他の材料系でも行われてきた 。しかしながら今回、本発明者等は、数多くの実験および考察の結果として、数 ある条件の中から特に、SiC単結晶の(11-20)面において、オフ方向を 、<0001>軸を中心に [1-100] 軸方向に-45度以上45度以下の範 囲にある任意の一方向、好ましくは [0001] Si軸を中心に [1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向とすることによって 積層欠陥が効果的に抑制できることを見出した。なおここで、前記 [0001] Si軸とは、<0001>軸には [0001] Siと [000-1] Cとの2方 向があり(すなわち<0001>軸とはこれら2方向の総称)、その内の[00 01] Si方向のことである。(11-20)面におけるオフ方向としては、 [1-100] 方向(<0001>方向の垂直方向)も結晶学的には考えられるが 、この方向にオフ角度を付けた場合には、本発明の効果は得られない。これは、 <0001>方向にオフ角度を付けた場合と[1-100]方向にオフ角度を付 けた場合とで、形成されるステップの構造等がそれぞれ異なり、 [1-100] 方向にオフ角度を付けた場合には、ステップでのSiC分子の吸着配位に任意性 が残ってしまうためであると考えられる。

[0015]

SiС単結晶の(11-20)面におけるオフ方向とオフ角度との関係を図4に示す。本発明の効果を得るには、オフ方向が、<0001>軸、好ましくは [0001] Si軸を中心に、 [1-100] 軸方向に-45度以上45度以下の範囲にある必要がある。すなわち、図4に示す β が、 $-45° \le \beta \le 45°$ である必要がある。ここでオフ方向が<0001>軸から-45度未満または45度超の場合には、ステップの構造が [1-100] 方向にオフ角度を付けた場合と類似した構造となり、ステップでのSiC分子の吸着配位に任意性が残ってしま

[0016]

また、オフ角度(図4中、 α で示される)は、3度以上60度以下($3^\circ \le \alpha \le 60^\circ$)であり、好ましくは3度以上30度以下($3^\circ \le \alpha \le 30^\circ$)、さらに好ましくは6度以上30度以下($6^\circ \le \alpha \le 30^\circ$)である。オフ角度(α)が3度未満では、種結晶表面のステップ間隔が大きくなり過ぎ、テラス上でS1 C分子が取り込まれるようになるため、積層欠陥が発生する。また、オフ角度が60度超になると、従来の<0001>方向へのS1C単結晶成長と類似の成長様式となり、マイクロパイプ欠陥が発生してしまい、好ましくない。

[0017]

以上説明した、本発明のSiC単結晶育成用種結晶の好ましい実施形態を以下に具体的に例示する。

[0018]

本発明の第1実施形態は、(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。

[0019]

本発明の第2実施形態は、(11-20)面から、[0001] Si軸を中心に [1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。

[0020]

本発明の第3実施形態は、(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上30度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。

[0021]

本発明の第4実施形態は、(11-20)面から、[0001] Si軸を中心

[0022]

本発明の第5実施形態は、(11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、6.度以上30度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。

[0023]

本発明の第6実施形態は、(11-20)面から、[0001] Si軸を中心に [1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、6度以上30度以下傾いた面を単結晶育成面とするSiC単結晶育成用種結晶である。

[0024]

これら第1~第6実施形態に係るSiC単結晶育成用種結晶はいずれも、上述 したように、吸着分子が誤った配位で結晶中に取り込まれることを防止し、積層 欠陥の発生を抑制したものである。

[0025]

次に、本発明のSiC単結晶育成用種結晶の製造方法について説明する。

[0026]

本発明のSiC単結晶育成用種結晶は、まず、[000-1] C方向に成長した4H型のSiC単結晶(マイクロパイプ欠陥を含むが積層欠陥は存在しない)から、(11-20) 面から、<0001>軸を中心に[1-100] 軸方向に-45度以上45度以下の範囲にある任意の一方向に、オフ角度が3度以上60度以下になるようにウエハを切り出し、鏡面研磨することによって製造することができる。なお切り出しの際、オフ角度の前記任意の方向からのずれは±1度以内であることが好ましい。

[0027]

また本発明は、上記で説明したような特徴を有する本発明のSiC単結晶育成

用種結晶を用いた、SiC単結晶の製造方法である。当該製造方法は、昇華再結晶法により、前記種結晶上にSiC単結晶を成長させる工程を包含することを特徴とするものであり、当該方法によって、マイクロパイプ欠陥、積層欠陥等の結晶欠陥が少ない良質のSiC単結晶を再現性良く得ることができる。したがって、当該製造方法によれば、20mm以上の口径を有するSiC単結晶インゴットを製造することができる。該SiC単結晶インゴットは、20mm以上という大口径を有しながら、デバイスに悪影響を及ぼすマイクロパイプ欠陥が皆無で、且つ積層欠陥が極めて少ないという利点を有する。

[0028]

以下、本発明の種結晶を用いたSiC単結晶インゴットの製造方法について具体的に説明する。

[0029]

まず本発明で用いられる製造装置について説明する。図5は、本発明で用いる 製造装置であり、種結晶を用いた改良型レーリー法によってSiC単結晶を成長 させる装置の一例である。まず、この単結晶成長装置について簡単に説明する。 結晶成長は、種結晶として用いたSiC単結晶1の上に原料であるSiC粉末2 を昇華再結晶化させることにより行われる。種結晶のSiC単結晶1は、黒鉛製 坩堝3の蓋4の内面に取り付けられる。原料のSiC粉末2は、黒鉛製坩堝3の 内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒 鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための 黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置11により 髙真空排気(10^{-3} Pa以下)することができ、かつ内部雰囲気をAr ガスによ り圧力制御することができる。Arガスによる圧力制御は、Arガス配管9およ びArガス用マスフローコントローラ10によりなされる。また、二重石英管5 の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒 鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩 場温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2~4 mmの 光路を設け坩堝上部及び下部からの光を取りだし、二色温度計を用いて行う。坩 堝下部の温度を原料温度、坩堝上部の温度を種温度とする。

[0030]

このような結晶成長装置を用いて、本発明に係るSiC単結晶を製造する。まず、本発明のSiC単結晶育成用種結晶1を黒鉛製坩堝3の蓋4の内面に取り付ける。黒鉛製坩堝3の内部には、原料2を充填する。次いで、原料を充填した黒鉛製坩堝3を、種結晶を取り付けた蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置する。そして、石英管の内部を真空排気した後、ワークコイル8に電流を流し原料温度を所定温度(通常摂氏2000度程度)に上げる。その後、雰囲気ガスとしてArガスを流入させ、石英管内圧力を所定圧力(通常約80kPa)に保ちながら、原料温度を目標温度(通常摂氏2400度程度)まで上昇させる。所定の成長圧力(通常1.3kPa程度)に時間をかけて減圧し、その後、口径が20mm以上になるように所定時間単結晶成長を続け、本発明に係るSiC単結晶を得ることができる。

[0031]

また一方で本発明は、前記SiC単結晶の製造方法によって製造されたSiCインゴットを加工、研磨してなる、口径20mm以上のSiC単結晶ウエハである。本発明のSiC単結晶ウエハは、まず、上記で得られたSiC単結晶インゴットを切り出し、従来汎用の手段によって研磨することによって製造される。研磨方法は特には限定されないが、例えば摂氏約530度の溶融KOHでウエハ表面をエッチングする方法が挙げられ本発明においても好ましく用いることができる。このようにして製造されるウエハを用いることによって、光学的特性の優れた青色発光素子、電気的特性の優れた電子デバイスを製作することができる。

[0032]

また一方で本発明は、前記SiC単結晶ウエハにエピタキシャル成長してなる SiC単結晶エピタキシャルウエハである。該エピタキシャルウエハは、上記で 得られたSiC0単結晶ウエハを基板として用いて、SiC00エピタキシャル成長を行うことによって製造される。SiC00エピタキシャル成長条件は、特には限定されず適宜好ましい条件を選択することが好ましいが、具体的には、成長温度 摂氏1500度、シラン (SiH_4) 、プロパン (C_3H_8) 、水素 (H_2) の流量が、それぞれ $0.1\sim10.0\times10^{-9}$ m $^3/sec.0.6\sim6.0\times10^{-9}$ m $^3/sec.0.9$

sec、 $1.0\sim10.0\times10^{-5}$ m $^3/sec$ cである条件が挙げられ、本発明において好ましく用いることができる。成長圧力は、他の成長条件に応じて適宜選択されることが好ましく、一般的には大気圧である。成長時間は所望の成長膜厚が得られる程度行えばよく特には限定されないが、例えば $1\sim20$ 時間で、 $1\sim20\,\mu$ mの膜厚が得られる。このようにして製造されるエピタキシャルウエハは、ウエハ全面に渡って非常に平坦で、マイクロパイプ欠陥、積層欠陥に起因する表面欠陥の非常に少ない良好な表面モフォロジーを有する。

[0033]

【実施例】

以下に、本発明の実施例を述べる。

[0034]

(実施例)

上記発明の実施の形態において図5を参照しながら説明した結晶成長装置を用 いて、SiC単結晶を製造した。まず、 [000-1] C方向に成長した4H型 のSiC単結晶(マイクロパイプ欠陥を含むが積層欠陥は存在しない)から、(11-20) 面から [0001] Si方向([0001] Si方向からのずれは ・±1度以内)に10度オフしたウエハを切り出し、鏡面研磨した後、種結晶とし た(口径は、一番小さいところで20mmであった)。この後、種結晶1を黒鉛 製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、原料2を充填し た。次いで、原料を充填した黒鉛製坩堝3を、種結晶を取り付けた蓋4で閉じ、 黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内 部に設置した。そして、石英管の内部を真空排気した後、ワークコイル8に電流 を流し原料温度を摂氏2000度まで上げた。その後、雰囲気ガスとしてAェガ スを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度 である摂氏2400度まで上昇させた。成長圧力である1.3kPaには約30 分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は 摂氏15度/cmで、成長速度は約0.8mm/時であった。得られた結晶の口 径は22mmで、高さは16mm程度であった。

[0035]

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、マイクロパイプ欠陥と積層欠陥を評価する目的で、成長した単結晶インゴットから(0001)面ウエハと(1-100)面ウエハを切り出し、研磨した(これら2つのウエハは、単結晶インゴットを成長方向に平行に切断することによって得られた)。その後、摂氏約530度の溶融KOHでウエハ表面をエッチングした。続いて、近顕微鏡観察により、(0001)ウエハにおいてはマイクロパイプ欠陥に対応する大型の六角形エッチピットの数を、(1-100)面ウエハにおいては積層欠陥に対応する線状のエッチピットの数を調べたところ、マイクロパイプ欠陥は全く存在せず、また積層欠陥は平均で4個/cmであることがわかった。

[0036]

次に、同様にして製造した 4 H型の S i C 単結晶インゴットから、今度は(1 1-20)面ウエハを切り出し(成長方向と垂直に切断。口径は 22 mm)、厚さ 300 μ mまで研磨し S i C 単結晶(1120)面鏡面ウエハを作製した。さらに、この S i C 単結晶鏡面ウエハを基板として用いて、S i C のエピタキシャル成長を行った。S i C エピタキシャル薄膜の成長条件は、成長温度摂氏 150 の度、シラン(S i H₄)、プロパン(C 3 H₈)、水素(H 2)の流量が、それぞれ 5.0×10^{-9} m 3 / s e c 、 3.3×10^{-9} m 3 / s e c であった。成長圧力は大気圧とした。成長時間は 4 時間で、膜厚としては約 5 μ m成長した。

[0037]

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウエハ全面に渡って非常に平坦で、マイクロパイプ欠陥、積層欠陥に起因する表面欠陥の非常に少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長されているのが分かった。

[0038]

また、このエピタキシャルウエハを (1-100) 面でへき開し、へき開面を 溶融KOHでエッチングしエピタキシャル薄膜中の積層欠陥密度を調べたところ

、基板ウエハと同様に平均で4個/cmであった。

[0039]

(比較例)

比較例として、オフ角度を有しない(11-20)面種結晶上へのSiC単結晶成長について述べる。種結晶として、[000-1] C方向に成長した4H型のSiC単結晶(マイクロパイプ欠陥を含むが積層欠陥は存在しない)から、(11-20)面ウエハ((11-20)面からのずれは±0.5度以内)を切り出し、鏡面研磨した後、種結晶とした(口径は、一番小さいところで20mmであった)。次に、種結晶1を黒鉛製坩堝3の蓋4の内面に取り付け、黒鉛製坩堝3の方能に、原料粉末2を充填した。原料を充填した黒鉛製坩堝3を、蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイル8に電流を流し原料温度を摂氏2000度まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である摂氏2400度まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は摂氏15度/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は22mmで、高さは16mm程度であった。

[0040]

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶が成長したことを確認できた。また、マイクロパイプ欠陥と積層欠陥を評価する目的で、成長した単結晶インゴットから(0001)面ウエハと(1-100)面ウエハを切り出し、研磨した。その後、摂氏約530度の溶融КОНでウエハ表面をエッチングし、顕微鏡により、(0001)ウエハにおいてはマイクロパイプ欠陥に対応する大型の六角形エッチピットの数を、(1-100)面ウエハにおいては積層欠陥に対応する線状のエッチピットの数を調べたところ、マイクロパイプ欠陥は全く存在しなかったものの、積層欠陥密度は平均で170個/cmと多かった。

[0041]

次に、同様にして製造した 4 H型の S i C 単結晶 4 H型の 4 K で の 4 C 単結晶 4 C 単結晶 4 C 中 の 4 C 中 の 4 C 単結晶 4 C 中 の 4 C 単 の 4 C 中 の 4

[0042]

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、積層欠陥に起因すると思われる表面欠陥がウエハ表面に観測された。

[0043]

また、このエピタキシャルウエハを (1-100) 面でへき開し、へき開面を 溶融KOHでエッチングしエピタキシャル薄膜中の積層欠陥密度を調べたところ 、基板ウエハと同様に平均で170個/cmであった。

[0044]

【発明の効果】

以上説明したように、本発明のSiC単結晶育成用種結晶を用いた改良型レーリー法により、マイクロパイプ欠陥、積層欠陥等の結晶欠陥が少ない良質のSiC単結晶を再現性良く成長させることができる。このようなSiC単結晶から製造されたウエハを用いれば、光学的特性の優れた青色発光素子、電気的特性の優れた電子デバイスを製作することができる。また、このようなSiC単結晶から製造された4H型のSiC単結晶ウエハを用いれば、従来に比べ格段に低損失な電力デバイスが作製可能である。

【図面の簡単な説明】

- 【図1】 改良レーリー法の原理を説明するための概略図である。
- 【図2】 六方晶SiC単結晶の面指数を説明する概略図である。
- 【図3】 本発明の効果を説明する図である。

- 【図4】 本発明の種結晶のオフ方向とオフ角度の関係を説明する図である
- 【図5】 本発明の製造方法に用いられる単結晶成長装置の一例を示す構成 図である。

【符号の説明】

- 1 種結晶(SiC単結晶): (
- 2 SiC結晶粉末
- 3 黒鉛製坩堝
- 4 黒鉛製坩堝蓋
- 5 二重石英管
- 6 支持棒
- 7 黒鉛製フェルト
- 8 ワークコイル
- 9 Arガス配管
- 10 Arガス用マスフローコントローラ
- 11 真空排気装置

J. J. G . A

図面

【図1】

【図2】

【図3】

【書類名】

要約書

【要約】

【課題】 低欠陥大口径の炭化珪素単結晶ウエハを取り出せる炭化珪素単結 晶育成用種結晶を提供する。

【解決手段】 (11-20)面から、<0001>軸を中心に[1-100]軸方向に-45度以上45度以下の範囲にある任意の一方向に、3度以上60度以下傾いた面を単結晶育成面とする炭化珪素単結晶育成用種結晶である。このような単結晶育成用種結晶を用いることにより、高品質な炭化珪素単結晶インゴットを得ることができる。

【選択図】

なし

出願人履歴情報

識別番号

[000006655]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

(평)

住 所

東京都千代田区大手町2丁目6番3号

氏 名

新日本製鐵株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.