INT3007: Systems Biology

Week 5

Modelling neural coding

Michelle Moerel

michelle.moerel@maastrichtuniversity.nl

Modeling the brain

Overview

- The brain as an organ to model
 - Challenges
 - Current approaches
- Single neuron models
 - Hodgkin-Huxley model
 - Integrate-and-fire model
 - Compartmental modeling
- Population level modeling
 - Neural encoding
 - Wilson-Cowan model of the auditory cortex
- Multiscale modeling

Why model the brain

• To emulate:

new algorithms (e.g. deep learning)

• To **heal**:

new therapies (e.g. deep brain stimulation)

• To understand:

new knowledge (e.g. learning)

The challenge

- The human brain is made of ~86 billion neurons
- Each neuron is connected to ~10,000 other neurons
- 1 mm³ of cortex contains ~1 billion connections

Modeling the brain

Systems Biology of Neuroscience

Neuroscience application has lagged behind

Due to specific challenges:

- Complexity of the research subject
- Traditions in existing field of computational neuroscience
- Lack of (human) data

Now catching up!

Current approaches

- Blue Brain project
- Human Brain Project
- Human Connectome project
- Allen Brain Atlas
- BrainSpan
- ENIGMA

Allen Brain Atlas

Overview

- The brain as an organ to model
 - Challenges
 - Current approaches
- Single neuron models
 - Hodgkin-Huxley model
 - Integrate-and-fire model
 - Compartmental modeling
- Population level modeling
 - Neural encoding
 - Wilson-Cowan model of the auditory cortex
- Multiscale modeling

Single neuron: morphology

Neurons are highly specialized for:

- Generating electrical signals in response to input
- Transmitting that signal to other cells

Dendrites allows neuron to receive input

Axon carries output to other cells

The squid giant axon

In 1952, Alan Hodgkin and Andrew Huxley described the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon

The squid giant axon

- Breakthrough voltage-clamp experiments
- A detailed mathematical model of action potential initiation and propagation
- Published in 1952
- Nobel prize in 1963

A.L Hodgkin

A. Huxley

Important, because:

- Start of the field of computational neuroscience
- Can be used to model ion channels, different types of synapes
- Reference model for the derivation of simplified neuron models

The squid giant axon

Single neuron: the membrane potential and ion channels

- Resting potential: potential inside neuron compared to extracellular medium ~-70 mV
- High concentration of potassium (K⁺) inside neuron
- High concentration of sodium (Na⁺) outside neuron

Single neuron: the membrane potential and ion channels

- Resting potential: potential inside neuron compared to extracellular medium ~70 mV
- High concentration of potassium (K⁺) inside neuron
- High concentration of sodium (Na⁺) outside neuron
- Membrane-spanning ion channels:
 - Mostly sodium (Na⁺), potassium (K⁺),
 calcium (Ca²⁺), and chloride (Cl⁻)
 - Channels open and close to control the flow of ions across the cell membrane

Action potential

Action potential (spike) = short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory

Excitatory and inhibitory potentials

- Neurotransmitter binds to (ligand-gated) ion-channels:
 - Sodium (Na⁺) channels: excitatory post-synaptic potential (EPSP)
 - Potassium (K⁺)/Chloride (Cl⁻) channels: inhibitory post-synaptic potential (IPSP)
- PSPs are graded potentials

- Summation at axon hillock:
 - Passive conductance of PSPs from dendrites through soma to axon hillock
 - Axon hillock:
 if ∑EPSP ∑IPSP > threshold, then generation of Action Potential

Action potential

For a summary, watch:

https://www.youtube.com/watch?v=iBDXOt uHTQ

Conducting action potentials

- Subthreshold potentials severely attenuate over distance of ~1mm
- Action potentials can propagate over large distances:
 - Myelination: Saltatory conduction

Conducting action potentials

- Subthreshold potentials severely attenuate over distance of ~1mm
- Action potentials can propagate over large distances:
 - Myelination: Saltatory conduction
 - Terminate at the synapse \rightarrow Ca²⁺ influx leads to neurotransmitter release

Conducting action potentials

- Subthreshold potentials severely attenuate over distance of ~1mm
- Action potentials can propagate over large distances:
 - Myelination: Saltatory conduction
 - Terminate at the synapse \rightarrow Ca²⁺ influx leads to neurotransmitter release
 - Neurotransmitters open ion-channels on postsynapse:
 - Excitatory effect (EPSP): depolarization
 - Inhibitory effect (IPSP): hyperpolarization

Single neuron models

How do we simulate the behavior of a single neuron in a computer?

"Make it as simple as possible, but not simpler"

Appropriate level of model complexity

Biological detail

Electrical Computational

Four differential equations, describing the ionic basis of the action potential

Three components of ionic current:

- 1. Sodium current I_{NA}
- 2. Potassium current I_K
- 3. small leakage current I_L (consisting mostly of cloride ions)

$$C \frac{dV}{dt} = -g_{K} n^{4} (V - E_{K}) - g_{Na} m^{3} h (V - E_{Na}) - g_{L} (V - E_{L}) + I(t)$$

Membrane capacitance (constant)

potential over time

$$C\frac{dV}{dt} = -g_{K}n^{4}(V - E_{K}) - g_{Na}m^{3}h(V - E_{Na}) - g_{L}(V - E_{L}) + I(t)$$

Max conductance when channels are open (Empirically determined)

Reversal potentials (Empirically determined)

$$C \frac{dV}{dt} = -g_{\rm K} n^4 (V - E_{\rm K}) - g_{\rm Na} m^3 h(V - E_{\rm Na}) - g_{\rm L}(V - E_{\rm L}) + I(t)$$

m, h, n:

- Gating variables that describe the probability that a channel is open
- Evolve according to differential equations
- Empirical functions to fit the data from the squid axon

$$\tau_{\rm n}(V) \frac{\mathrm{d}n}{\mathrm{d}t} = -[n - n_0(V)]$$

$$\tau_{\rm m}(V) \frac{\mathrm{d}m}{\mathrm{d}t} = -[m - m_0(V)]$$

$$\tau_{\rm h}(V) \frac{\mathrm{d}h}{\mathrm{d}t} = -[h - h_0(V)]$$

Hodgkin-Huxley (HH) model

- Calculate currents, conductances and voltages throughout nerve cells of all types
- We will test a HH model implemented in Matlab during the skills training

Hodgkin-Huxley (HH) model

What happens if we vary the strength of stimulation?

Shape/amplitude of the action potential

Hodgkin-Huxley (HH) model

What happens if we vary the strength of stimulation?

Shape/amplitude of the action potential

Hodgkin-Huxley (HH) adaptation by Wilson

Simplified HH model and added two cation channels:

- Graded-influx cation channel
- Slow depolarizing current

Captures more complex behavior:

- adaptation/fatigue
- long-lasting after-depolarizing potential of bursting neurons

Simpler models

Conductance-based models

Hodgkin-Huxley model

Threshold-based models

For studying neural coding, memory, and network dynamic

For example: integrate-and-fire neurons

Integrate-and-fire (IF) neurons

Simplification may be:

- necessary to make computations with a large number of neuron possible
- advantageous to highlight the minimal features necessary to enable certain emergent properties in the network

IF neurons consist of:

- Subthreshold leaky-integrator dynamic
- Firing threshold
- Reset mechanism

More detailed model

Multi-compartment models (compartmental modeling)

- Takes physical shape of neuron into account
- Used for detailed simulations of one or few neurons
- Divide a neuron in compartments (with distinct electrical properties) and connect the equivalent circuits
- Allows fine study of morphological, pharmacological, or electrical effects

Compartmental modeling

Alzheimer's Disease:

- aβ blocked K⁺ channels → dendritic hyperexcitability
- Causes enhanced back-propagating action potentials (bAPs)
- bAPs are critical for information processing/ memory storage
- Model hippocampal CA1 pyramidal neuron
- Model can explore any part of the dendritic tree that might be affected
- Fine oblique branches of the apical dendritic tree are especially vulnerable to increased excitability

Overview

- The brain as an organ to model
 - Challenges
 - Current approaches
- Single neuron models
 - Hodgkin-Huxley model
 - Integrate-and-fire model
 - Compartmental modeling
- Population level modeling
 - Neural encoding
 - Wilson-Cowan model of the auditory cortex
- Multiscale modeling

Recording from the brain: electrophysiology

Recorded activity (extracellular)

Raster plot

Recording from the brain: fMRI

Recording from the brain: fMRI

Functional Magnetic Resonance Imaging (fMRI)

- Blood oxygenation level dependent signal
- neurovascular coupling still not well understood (next lecture)

What is the neural code?

Tuning curves

Tuning curve of a cortical primary visual cortex (V1) neuron

Tuning curves

Tuning curve of a motor cortical neuron

Population coding

Neural spikes are noisy

Neurophysiological recordings/ fMRI: average data from many trials to see correlate behavior

PROBLEM: the brain does not have many trials!

SOLUTION: Population coding

- → The temporal average of single neurons measured in repeated physiological experiments approximates the neuro-computationally relevant average population activity of neurons
- → Divide population into subpopulations of same type, with similar response properties

Population coding

Neurons are organized in populations with similar properties

Describe the mean activity of a neural population, rather than the spiking of individual neurons

Feature selectivity in V1

Population equations

Neurons are organized in populations with similar properties

Auditory system: sound frequency

Population equations

Neurons are organized in populations with similar properties

Auditory system: sound frequency

Wilson Cowan Cortical Model (WCCM)

firing rate model

simple, non-linear & dynamic

Wilson Cowan Cortical Model

"...all nervous processes of any complexity are dependent upon the interaction of excitatory and inhibitory cells."

output: spike frequency / proportion of cells active per unit time / temporal dynamics of aggregate

anatomical assumptions

Wilson Cowan Cortical Model (WCCM)

$$\tau \frac{dE(x)}{dt} = -E(x) + S \left(\sum_{E} w_{EE} E(x) - \sum_{X} w_{IE} I(x) + P(x) \right)$$

$$\tau \frac{dI(x)}{dt} = -I(x) + S\left(\sum_{x} w_{EI} E(x) - \sum_{x} w_{II} I(x) + Q(x)\right)$$

Wilson Cowan Cortical Model (WCCM)

excitatory firing rate at position x

 $S(P) = \frac{V_m p^2}{\theta^2 + P^2}$

θ: semi-saturation constants

connectivity function
$$w_{ij}(x - x') = b_{ij} \exp\left(-\left|x - x'\right| / \sigma_{ij}\right)$$

bij: maximum synaptic strength
oij: space constant controlling the spread
of connectivity
 $i,j = E,I$

- Study auditory attention: how are irrelevant sounds filtered out?
- Study the mechanism underlying tinnitus

Homeostatic plasticity (HSP)

- Compensate for decreased neural activity due to hearing loss
- Increase excitability and weaken inhibitory transmission

Up to moderate levels of hearing loss, homeostatic plasticity (HSP) can compensate for the input reduction

After adding neural noise to the model:

Evidence of model instability Spatiotemporal oscillations

Increased sound driven responses

Overview

- The brain as an organ to model
 - Challenges
 - Current approaches
- Single neuron models
 - Hodgkin-Huxley model
 - Integrate-and-fire model
 - Compartmental modeling
- Population level modeling
 - Neural encoding
 - Wilson-Cowan model of the auditory cortex
- Multiscale modeling

Modeling the brain

Multiscale modeling

Needed due to limited computational power

Model is **multiscale** if:

- Modeled object spans multiple time/space scales
- Parts of the model run with different scales
- These model parts influence each other

Can be extremely challenging!

