Miriam Jańczak

11 listopada 2017 prowadzący: dr hab. Paweł Zieliński numer albumu: 229761

OBLICZENIA NAUKOWE

Lista 2

Iloczyn skalarny raz jeszcze 1

Opis problemu 1.1

Ponowne obliczenie iloczynu skalarnego z zadania 5 z listy 1 dla typów Float32 i Float64 po wprowadzeniu niewielkich zmian danych w wektorze x, tj. obcięciu ostatniej cyfry znaczącej współrzędnych x_4 i x_5 (9 dla x_4 , 7 dla x_5). W tym celu wykorzystano te same cztery algorytmy co w zadaniu z listy 1. Poniżej przedstawiono zmienione dane wejściowe:

$$\begin{split} \tilde{x} = & [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995] \\ y = & [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049] \end{split}$$

1.2 Rozwiązanie

Iloczyn skalarny dla typów Float32 i Float64 obliczono za pomocą czterech algorytmów z programu z listy 1:

- (a) w przód,
- (b) w tyl,
- (c) od największego do najmniejszego,
- (d) od najmniejszego do największego.

1.3 Wyniki

Zestawienie wyników iloczynów skalarnych $x \cdot y$ (zadanie 5 z listy 1) oraz $\tilde{x} \cdot y$ przedstawia Tabela 1.

		Floa	at32	Float64		
Algoryt	tm	$x \cdot y$ $\tilde{x} \cdot y$		$x \cdot y$	$ ilde{x}\cdot y$	
(a)		-0.4999443	-0.4999443	$1.0251881368296672\cdot 10^{-10}$	-0.004296342739891585	
(b)		-0.4543457	-0.4543457	$-1.5643308870494366 \cdot 10^{-10}$	-0.004296342998713953	
(c)		-0.5	-0.5	0.0	-0.004296342842280865	
(d)		-0.5	-0.5	0.0	-0.004296342842280865	

Tabela 1: Iloczyny skalarne $x \cdot y$ oraz $\tilde{x} \cdot y$ obliczone w arytmetykach Float32 i Float64 przy użyciu danych algorytmów.

1.4 Wnioski

2 Nietypowa granica

2.1 Opis problemu

Porównanie wykresów funkcji

$$f(x) = e^x \ln(1 + e^{-x}) \tag{1}$$

(narysowanych w co najmniej dwóch programach do wizualizacji) z jej granicą $\lim_{x\to\infty}$, a następnie wyjaśnienie zaistniałego zjawiska.

2.2 Rozwiązanie

Wykresy funkcji (1) wykonano za pomocą biblioteki Plotly (używając różnych typów zmiennopozycyjnych) w języku Julia, a także za pomocą pakietu matematycznego $Wolfram\ Alpha$. Granicę $\lim_{x\to\infty}$ funkcji (1) wyliczono za pomocą biblioteki SymPy w języku Julia oraz w sposób analityczny.

2.3 Wyniki

Poniżej przedstawiono otrzymane wykresy funkcji (1).

Rysunek 1: Wykresy wykonane za pomocą biblioteki Plotly

Rysunek 2: Wykresy wykonane za pomocą programu Wolfram Alpha

Obliczona przez program granica $\lim_{x\to\infty}$ funkcji (1) wynosi 1. Taki sam wynik został uzyskany przez rozwiązanie analityczne:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{e^{-x}} = \left[\frac{0}{0}\right] \stackrel{H}{=} \lim_{x \to \infty} \frac{(\ln(1 + e^{-x}))'}{(e^{-x})'} = \lim_{x \to \infty} \frac{\frac{1}{1 + e^{-x}} \cdot -e^{-x}}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1.$$

2.4 Wnioski

3 Układ równań i wskaźnik uwarunkowania

3.1 Opis problemu

Rozwiązanie układu równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$ dla danej macierzy współczynników $\mathbf{A} \in \mathbb{R}^{n \cdot n}$ i wektora prawych stron $\mathbf{b} \in \mathbb{R}^n$.

Macierz A zadana była w następujący sposób:

- (a) macierz Hilberta \mathbf{H}_n stopnia n,
- (b) $macierz\ losowa\ \mathbf{R}_n^c$ stopnia n o danym wskaźniku uwarunkowania c.

Wektor **b** natomiast jako **b** = $\mathbf{A}\mathbf{x}$, gdzie \mathbf{A} jest wygenerowaną macierzą, a $\mathbf{x} = (1, \dots, 1)^T$, tak aby było znane dokładne rozwiązanie dla \mathbf{A} i \mathbf{b} .

Układ równań $\mathbf{A}\mathbf{x} = \mathbf{b}$ należało rozwiązać za pomocą dwóch algorytmów:

- (i) metodq eliminacji $Gaussa: \mathbf{x} = \mathbf{A} \backslash \mathbf{b}$,
- (ii) metoda macierzy odwrotnej: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Obliczone rozwiązania $\tilde{\mathbf{x}}$ dla różnych macierzy wejściowych należało porównać z rozwiązaniem dokładnym $\mathbf{x} = (1, \dots, 1)^T$ oraz obliczyć błędy względne.

3.2 Rozwiązanie

Macierz Hilberta \mathbf{H}_n z rosnącym stopniem n>1 wygenerowano za pomocą funkcji hilb(n), natomiast losową macierz \mathbf{R}_n^c , n=5,10,20, z rosnącym wskaźnikiem uwarunkowania $c=1,10,10^3,10^7,10^{12},10^{16}$ stworzono przy użyciu funkcji matcond(n,c). Dla każdej wygenerowanej macierzy rozwiązano układ równań metodą eliminacji Gaussa i macierzy odwrotnej, a także policzono błędy względne $\frac{||x-\tilde{x}||}{||x||}$ obu tych metod, wskaźniki uwarunkowania i rzędy macierzy.

3.3 Wyniki

Otrzymane wyniki dla macierzy Hilberta \mathbf{H}_n prezentuje Tabela 2, natomiast dla macierzy losowej \mathbf{R}_n^c Tabela 3, metoda eliminacji Gaussa jest oznaczona przez GE, a metoda macierzy odwrotnej przez INV.

Macierz Hilberta \mathbf{H}_n							
Rozmiar Rząd		COND	Błędy względne				
HOZIIIIai	nząu	COND	GE	INV			
1x1	1	1.0	0.0	0.0			
2x2	2	$1.928147006790397\cdot 10^{1}$	$5.661048867003676\cdot 10^{-16}$	$1.124015143811696\cdot 10^{-15}$			
3x3	3	$5.240567775860644\cdot10^2$	$8.022593772267726\cdot 10^{-15}$	$9.825526038180824\cdot10^{-15}$			
4x4	4	$1.551373873892924\cdot 10^4$	$4.451545960181209\cdot 10^{-13}$	$2.950477637286781\cdot 10^{-13}$			
5x5	5	$4.766072502425943\cdot10^5$	$1.682842629922719\cdot 10^{-12}$	$8.500055777753297\cdot 10^{-12}$			
6x6	6	$1.495105864225467\cdot 10^7$	$2.618913302311624\cdot 10^{-10}$	$3.347413507036174\cdot 10^{-10}$			
7x7	7	$4.753673565831290\cdot 10^{8}$	$1.260686722417155\cdot 10^{-8}$	$5.163959183577243\cdot 10^{-9}$			
8x8	8	$1.525757553806004\cdot 10^{10}$	$1.026543065687064\cdot 10^{-7}$	$2.698715074276819\cdot 10^{-7}$			
9x9	9	$4.931537564468762\cdot 10^{11}$	$4.832357120502150\cdot 10^{-6}$	$9.175846868614517\cdot 10^{-6}$			
10x10	10	$1.602441699254171\cdot 10^{13}$	$6.329153722983848\cdot 10^{-4}$	$4.552142251740885\cdot 10^{-4}$			
11x11	11	$5.222677939280335\cdot 10^{14}$	$1.154395859612211\cdot 10^{-2}$	$8.044466773431160\cdot 10^{-3}$			
12x12	11	$1.751473190709146\cdot 10^{16}$	$2.975640310734787\cdot 10^{-1}$	$3.439293709120522\cdot 10^{-1}$			
13x13	11	$3.344143497338461\cdot 10^{18}$	2.375017867706776	5.585796893150773			
14x14	12	$6.200786263161444\cdot10^{17}$	5.281004646755168	4.800641929017436			
15x15	12	$3.674392953467974\cdot 10^{17}$	1.177294734836712	4.827357721257648			
16x16	12	$7.865467778431645\cdot 10^{17}$	$2.056465582380410\cdot 10^{1}$	$3.173646749626613\cdot 10^{1}$			
17x17	12	$1.263684342666052\cdot 10^{18}$	$1.774221463517907\cdot 10^{1}$	$1.591033596260414\cdot 10^{1}$			
18x18	12	$2.244630992918913\cdot 10^{18}$	4.276456441115942	6.281223433472033			
19x19	13	$6.471953976541591\cdot 10^{18}$	$2.211993729264891\cdot 10^{1}$	$2.292561401563632\cdot 10^{1}$			
20x20	13	$1.355365790868823\cdot 10^{18}$	$1.493006966929400\cdot 10^{1}$	$2.153949860251383\cdot 10^{1}$			

Tabela 2: Wyniki obliczeń dla macierzy Hilberta \mathbf{H}_n

3.4 Wnioski

4 "Złośliwy wielomian" Wilkinsona

4.1 Opis problemu

Obliczenie dwudziestu zer wielomianu Wilkinsona p, tj. $p(x) = (x-20)(x-19)\dots(x-2)(x-1)$ w postaci naturalnej P i sprawdzenie otrzymanych pierwiastków z_k poprzez obliczenie $|P(z_k)|$, $|p(z_k)|$ i $|z_k-k|$ dla $1 \le x \le 20$. Powtórzenie eksperymentu Wilkinsona, tj. zmiana współczynnika -210 przy x^{19} na $-210-2^{-23}$ i wyjaśnienie zaistniałego zjawiska.

4.2 Rozwiązanie

Do rozwiązania zadania użyto pakietu Polynomials. Miejsca zerowe wielomianu P utworzonego z danych współczynników za pomocą funkcji Poly obliczono przy użyciu funkcji roots. Za pomocą funkcji poly stworzono natomiast wielomian p. Funkcja polyval posłużyła do obliczenia wartości wielomianów P i p w zadanych punktach. Obliczony został również błąd bezwzględny obliczonych pierwiastków wielomianu P. Podobne operacje zostały wykonane dla wielomianu P z zaburzonym współczynnikiem przy x^{19} .

Macierz losowa \mathbf{R}_n^c						
Rozmiar	Rząd	COND	Błędy względne			
Roziiiai			GE	INV		
5x5	5	1	$1.404333387430680\cdot 10^{-16}$	$1.790180836524724\cdot 10^{-16}$		
5x5	5	10	0.0	$9.930136612989092\cdot 10^{-17}$		
5x5	5	1000	$6.467561325518618\cdot 10^{-15}$	$6.138840652485208\cdot 10^{-15}$		
5x5	5	10^{7}	$2.932858554206356\cdot 10^{-10}$	$2.541421917682778\cdot 10^{-10}$		
5x5	5	10^{12}	$2.431174605159248\cdot 10^{-5}$	$2.445937707560239\cdot 10^{-5}$		
5x5	4	10^{16}	$9.228482506511224\cdot 10^{-2}$	$1.358024596793109\cdot 10^{-1}$		
10x10	10	1	$2.328823463338184\cdot 10^{-16}$	$2.302207463925367\cdot 10^{-16}$		
10x10	10	10	$5.324442579404919\cdot 10^{-16}$	$5.916561726981507\cdot 10^{-16}$		
10x10	10	1000	$7.659734318226236\cdot 10^{-16}$	$1.167815308046354\cdot10^{-14}$		
10x10	10	10^{7}	$2.568414379855613\cdot10^{-10}$	$2.258463845088549\cdot 10^{-10}$		
10x10	10	10^{12}	$1.951994704671510\cdot 10^{-5}$	$2.174813032517800\cdot 10^{-5}$		
10x10	9	10^{16}	$3.178399241163815\cdot 10^{-1}$	$3.516778693816187 \cdot 10^{-1}$		
20x20	20	1	$5.495323605393213\cdot 10^{-16}$	$4.557326905135503\cdot10^{-16}$		
20x20	20	10	$5.087681048627601\cdot 10^{-16}$	$4.071658748137585\cdot 10^{-16}$		
20x20	20	1000	$5.808917732317164\cdot 10^{-15}$	$3.747228857827342\cdot 10^{-15}$		
20x20	20	10^{7}	$1.511216720479130\cdot 10^{-10}$	$1.241078754561024\cdot 10^{-10}$		
20x20	20	10^{12}	$4.740084259557948\cdot 10^{-5}$	$4.819264617327459\cdot 10^{-5}$		
20x20	19	10^{16}	$8.613420159130484\cdot 10^{-1}$	$8.466277602660599\cdot 10^{-1}$		

Tabela 3: Wyniki obliczeń dla macierzy losowej \mathbf{R}_n^c

4.3 Wyniki

Tabela 4 przedstawia obliczone pierwiastki wielomianu P oraz $|P(z_k)|$, $|p(z_k)|$ i $|z_k-k|$, natomiast Tabela 5 prezentuje te wartości dla wielomianu P z zaburzonym współczynnikiem.

4.4 Wnioski

5 Model wzrostu populacji

5.1 Opis problemu

Zbadanie modelu wzrostu populacji (model logistyczny)

$$p_{n+1} := p_n + rp_n(1 - p_n), \text{ dla } n = 0, 1, \dots,$$
 (2)

gdzie r jest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiącą procent maksymalnej wielkości populacji dla danego stanu środowiska.

W tym celu należało przeprowadzić następujące eksperymenty.

- (i) Wykonanie 40 iteracji wyrażenia (2) w arytmetyce Float32 dla danych $p_0 = 0.01$ i r = 3. Ponowne wykonanie 40 iteracji wyrażenia (2) z niewielką modyfikacją tj. wykonanie 10 iteracji, zatrzymanie, zastosowanie obcięcia wyniku odrzucając cyfry po trzecim miejscu po przecinku (daje to liczbę 0.722) i kontynuowanie dalej obliczenia (do 40-stej iteracji) tak, jak gdyby był to ostatni wynik na wyjściu. Porównanie wyników obu iteracji.
- (ii) Wykonanie 40 iteracji wyrażenia (2) dla danych $p_0 = 0.01$ i r = 3 w arytmetyce Float32 i Float64. Porównanie wyników iteracji dla obu arytmetyk.

k	$ P(z_k) $	$ p(z_k) $	$ z_k-k $
1	$2.746295274547\cdot 10^{13}$	$2.746278890701\cdot 10^{13}$	$1.907087633626 \cdot 10^{-4}$
2	$1.027837616282\cdot 10^{13}$	$1.027823565670\cdot 10^{13}$	$1.909818299438\cdot 10^{-3}$
3	$7.199554861056\cdot10^{12}$	$7.199447475200\cdot 10^{12}$	$9.078647283520\cdot10^{-3}$
4	$3.777623778304 \cdot 10^{12}$	$3.777532946944\cdot 10^{12}$	$2.542714623741\cdot 10^{-2}$
5	$1.555027751936\cdot 10^{12}$	$1.554961097216\cdot 10^{12}$	$5.371328339203 \cdot 10^{-2}$
6	$6.139877534720\cdot 10^{11}$	$6.139384156160\cdot 10^{11}$	$7.549379969948\cdot 10^{-2}$
7	$3.653832509440\cdot 10^{11}$	$3.653447936000 \cdot 10^{11}$	$8.524440819787\cdot 10^{-2}$
8	$2.157236290560\cdot 10^{11}$	$2.156963307520\cdot 10^{11}$	$7.431403244734\cdot 10^{-2}$
9	$7.216771584000\cdot 10^{10}$	$7.214665062400\cdot 10^{10}$	$4.671674615314 \cdot 10^{-2}$
10	$3.575989555200\cdot 10^{10}$	$3.574346905600\cdot 10^{10}$	$2.502293290932\cdot 10^{-2}$
11	$1.270712678400\cdot 10^{10}$	$1.269690726400\cdot 10^{10}$	$9.586957518275\cdot 10^{-3}$
12	$4.465326592000\cdot 10^9$	$4.457859584000\cdot 10^9$	$2.915294362053\cdot10^{-3}$
13	$1.682691072000\cdot 10^9$	$1.678497280000\cdot 10^9$	$6.441703922384 \cdot 10^{-4}$
14	$4.803983360000\cdot10^{8}$	$4.782909440000\cdot 10^{8}$	$1.020027930076\cdot 10^{-4}$
15	$1.201520640000\cdot 10^{8}$	$1.188249600000\cdot 10^{8}$	$1.075417522678\cdot 10^{-5}$
16	$2.411468800000 \cdot 10^{7}$	$2.334668800000\cdot 10^{7}$	$6.657697912971 \cdot 10^{-7}$
17	$3.106816000000\cdot 10^6$	$2.844672000000\cdot 10^{6}$	$1.626246826092\cdot 10^{-8}$
18	$2.094080000000\cdot 10^5$	$3.015680000000\cdot 10^5$	$4.079034887638\cdot10^{-10}$
19	$1.817600000000\cdot 10^5$	$1.981440000000\cdot 10^5$	$2.831823664451\cdot 10^{-11}$
20	$3.635200000000\cdot 10^4$	$3.840000000000 \cdot 10^4$	$3.010924842783 \cdot 10^{-13}$

Tabela 4: Obliczone wartości dla wielomianu P

5.2 Rozwiązanie

Zaimplementowano podany model wzrostu populacji i za pomocą stworzonej funkcji obliczono wyniki dla odpowiedniej liczby iteracji.

5.3 Wyniki

Zestawienie wyników dla obu eksperymentów prezentują odpowiednio Tabela 6 oraz Tabela 7. Dla lepszego ukazania rozbieżności pomiędzy kolejnymi iteracjami w eksperymentach zostały narysowane wykresy (Rysunek 3) przedstawiające wartość bezwzględną różnic otrzymanych wyników.

Rysunek 3: Wykresy przedstawiają różnicę pomiędzy kolejnymi wynikami iteracji

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k-k $
1	20.846910215194789	$1.114453504512\cdot 10^{13}$	$1.374373319725\cdot 10^{18}$	$8.469102151948\cdot 10^{-1}$
2	19.502442368818102 + 1.940331978642903i	$9.539424609818\cdot 10^{12}$	$4.252502487993\cdot 10^{17}$	2.004329444310
3	19.502442368818102 - 1.940331978642903i	$9.539424609818\cdot 10^{12}$	$4.252502487993\cdot 10^{17}$	2.454021446313
4	16.730744879792670 + 2.812624896721978i	$3.315103475982\cdot 10^{11}$	$2.742089401676\cdot 10^{16}$	2.825483521350
5	16.730744879792670 - 2.812624896721978i	$3.315103475982\cdot 10^{11}$	$2.742089401676\cdot 10^{16}$	2.906001873538
6	13.992406684487216 + 2.518824425710844i	$1.061206453308\cdot 10^{11}$	$9.545941595184\cdot 10^{14}$	2.712880531285
7	13.992406684487216 - 2.518824425710844i	$1.061206453308\cdot 10^{11}$	$9.545941595184\cdot 10^{14}$	2.518835871191
8	11.793890586174369 + 1.652477136407579i	$3.357756113172\cdot 10^{10}$	$3.296021414130\cdot 10^{13}$	2.045820276678
9	11.793890586174369 - 1.652477136407579i	$3.357756113172\cdot 10^{10}$	$3.296021414130\cdot 10^{13}$	1.665281290598
10	10.095455630535774 + 0.644932823624069i	$7.143113638036\cdot 10^{9}$	$1.491263381675\cdot 10^{12}$	1.110918027272
11	10.095455630535774 - 0.644932823624069i	$7.143113638036\cdot 10^{9}$	$1.491263381675\cdot 10^{12}$	$6.519586830380\cdot 10^{-1}$
12	8.915816367932559	$3.065575424000\cdot 10^{9}$	$1.371743170560\cdot 10^{11}$	$8.418363206744\cdot 10^{-2}$
13	8.007772029099446	$1.072547328000\cdot 10^{9}$	$1.852548659200\cdot 10^{10}$	$7.772029099446\cdot 10^{-3}$
14	6.999602070422420	$3.881231360000\cdot 10^{8}$	$1.757670912000\cdot 10^9$	$3.979295775798\cdot 10^{-4}$
15	6.000020476673031	$1.291484160000\cdot 10^{8}$	$2.061204480000\cdot 10^{8}$	$2.047667303096\cdot 10^{-5}$
16	4.999998573887910	$3.946393600000\cdot 10^7$	$4.330393600000\cdot 10^7$	$1.426112089753\cdot 10^{-6}$
17	4.000000089724362	$1.046784000000\cdot 10^7$	$1.072998400000\cdot 10^7$	$8.972436216226\cdot 10^{-8}$
18	2.99999996603420	$2.221568000000\cdot 10^{6}$	$2.295296000000\cdot 10^6$	$3.396579906223\cdot 10^{-9}$
19	2.00000000055037	$3.491840000000\cdot 10^5$	$3.655680000000\cdot 10^5$	$5.503730804435\cdot 10^{-11}$
20	0.9999999999836	$2.099200000000\cdot 10^4$	$2.201600000000\cdot 10^4$	$1.643130076445\cdot 10^{-13}$

Tabela 5: Obliczone wartości dla wielomianu P z zaburzonym współczynnikiem przy x^{19}

5.4 Wnioski

6 Iterowanie funkcji kwadratowej

6.1 Opis problemu

Zbadanie zachowania równania rekurencyjnego

$$x_{n+1} := x_n^2 + c$$
, dla $n = 0, 1, \dots$, (3)

gdzie c jest pewną daną stałą, dla następujących danych:

- (i) $c = -2 i x_0 = 1$
- (ii) $c = -2 i x_0 = 2$
- (iv) $c = -1 i x_0 = 1$
- (v) $c = -1 i x_0 = -1$
- (vi) c = -1 i $x_0 = 0.75$
- (vii) c = -1 i $x_0 = 0.25$

W tym celu należało wykonać 40 iteracji wyrażenia (3) i zaobserwować zachowanie generowanych ciągów, a także przeprowadzić iterację graficzną (3).

6.2 Rozwiązanie

- 6.3 Wyniki
- 6.4 Wnioski

Iteracja	Bez modyfikacji	Z modyfikacją	
1	0.0397	0.0397	
2	0.15407173	0.15407173	
3	0.5450726	0.5450726	
4	1.2889781	1.2889781	
5	0.1715188	0.1715188	
10	0.7229306	0.722	
11	1.3238364	1.3241479	
12	0.037716985	0.036488414	
15	1.2704837	1.2572169	
17	0.7860428	0.9010855	
19	0.16552472	0.577893	
20	0.5799036	1.3096911	
25	1.0070806	1.0929108	
30	0.7529209	1.3191822	
35	1.021 099	0.034241438	
40	0.25860548	1.093568	

Tabela 6: Wybrane wyniki kolejnych iteracji modelu logistycznego w arytmetyce Float32 bez modyfikacji i z obcięciem wyniku 10 iteracji od 3 miejsca po przecinku

Iteracja	Float32	Float64	
1	0.0397	0.0397	
2	0.15407173	0.15407173000000002	
3	0.5450726	0.5450726260444213	
4	1.2889781	1.288 978 001 188 800 6	
5	0.171 518 8	0.17151914210917552	
10	0.7229306	0.722914301179573	
15	1.2704837	1.2702617739350768	
20	0.5799036	0.5965293124946907	
25	1.0070806	1.315588346001072	
26	0.9856885	0.07003529560277899	
27	1.0280086	0.26542635452061003	
30	0.7529209	0.37414648963928676	
35	1.021 099	0.9253821285571046	
39	1.2652004	0.002 909 156 902 851 206 5	
40	0.25860548	0.011 611 238 029 748 606	

Tabela 7: Wybrane wyniki kolejnych iteracji modelu logistycznego w arytmetyce Float32 i Float64

τ.	c = -2				c = -1			
It.	$x_0 = 1$	$x_0 = 2$	$x_0 = 1.99999999999999999999999999999999999$	$x_0 = 1$	x ₀ =-1	$x_0 = 0.75$	$x_0 = 0.25$	
1	-1.0	2.0	1.999 999 999 999 96	0.0	0.0	-0.4375	-0.9375	
2	-1.0	2.0	1.999 999 999 999 840 1	-1.0	-1.0	-0.80859375	-0.12109375	
3	-1.0	2.0	1.999 999 999 999 360 5	0.0	0.0	-0.3461761474609375	-0.9853363037109375	
4	-1.0	2.0	1.999 999 999 997 442	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135	
5	-1.0	2.0	1.999 999 999 989 768 2	0.0	0.0	-0.2253147218564956	-0.9991524699951226	
6	-1.0	2.0	1.999 999 999 959 072 7	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965	
7	-1.0	2.0	1.999 999 999 836 291	0.0	0.0	-0.0989561875164966	-0.9999971292061947	
8	-1.0	2.0	1.999 999 999 345 163 8	-1.0	-1.0	-0.9902076729521999	$-5.741579369278327\cdot 10^{-6}$	
9	-1.0	2.0	1.999 999 997 380 655 3	0.0	0.0	-0.01948876442658909	-0.9999999999670343	
10	-1.0	2.0	1.999 999 989 522 621	-1.0	-1.0	-0.999620188061125	$-6.593148249578462\cdot 10^{-11}$	
11	-1.0	2.0	1.999 999 958 090 484 1	0.0	0.0	-0.0007594796206411569	-1.0	
12	-1.0	2.0	1.999 999 832 361 938 3	-1.0	-1.0	-0.9999994231907058	0.0	
13	-1.0	2.0	1.999 999 329 447 781 4	0.0	0.0	$-1.1536182557003727 \cdot 10^{-6}$	-1.0	
14	-1.0	2.0	1.999 997 317 791 574 9	-1.0	-1.0	-0.9999999999986692	0.0	
15	-1.0	2.0	1.999 989 271 173 493 7	0.0	0.0	$-2.6616486792363503 \cdot 10^{-12}$	-1.0	
16	-1.0	2.0	1.999 957 084 809 082 6	-1.0	-1.0	-1.0	0.0	
17	-1.0	2.0	1.999 828 341 078 044	0.0	0.0	0.0	-1.0	
18	-1.0	2.0	1.999 313 393 778 961 3	-1.0	-1.0	-1.0	0.0	
19	-1.0	2.0	1.997 254 046 543 948 1	0.0	0.0	0.0	-1.0	
20	-1.0	2.0	1.989 023 726 436 175 2	-1.0	-1.0	-1.0	0.0	
21	-1.0	2.0	1.956 215 384 326 048 6	0.0	0.0	0.0	-1.0	
22	-1.0	2.0	1.826 778 629 873 91	-1.0	-1.0	-1.0	0.0	
23	-1.0	2.0	1.337 120 162 563 999 7	0.0	0.0	0.0	-1.0	
24	-1.0	2.0	-0.21210967086482313	-1.0	-1.0	-1.0	0.0	
25	-1.0	2.0	-1.9550094875256163	0.0	0.0	0.0	-1.0	
26	-1.0	2.0	1.822 062 096 315 173	-1.0	-1.0	-1.0	0.0	
27	-1.0	2.0	1.319 910 282 828 443	0.0	0.0	0.0	-1.0	
28	-1.0	2.0	-0.2578368452837396	-1.0	-1.0	-1.0	0.0	
29	-1.0	2.0	$\begin{bmatrix} -1.9335201612141288 \end{bmatrix}$	0.0	0.0	0.0	-1.0	
30	-1.0	2.0	1.738 500 213 821 510 9	-1.0	-1.0	-1.0	0.0	
31	-1.0	2.0	1.022 382 993 457 438 9	0.0	0.0	0.0	-1.0	
32	-1.0	2.0	$\begin{bmatrix} -0.9547330146890065 \end{bmatrix}$	-1.0	-1.0	-1.0	0.0	
33	-1.0	2.0	$\begin{bmatrix} -1.0884848706628412 \end{bmatrix}$	0.0	0.0	0.0	-1.0	
34	-1.0	2.0	-0.8152006863380978	-1.0	-1.0	-1.0	0.0	
35	-1.0	2.0	$\begin{bmatrix} -1.3354478409938944 \end{bmatrix}$	0.0	0.0	0.0	-1.0	
36	-1.0	2.0	$\left -0.21657906398474625 \right $	-1.0	-1.0	-1.0	0.0	
37	-1.0	2.0	-1.953093509043491	0.0	0.0	0.0	-1.0	
38	-1.0	2.0	1.814 574 255 067 817 4	-1.0	-1.0	-1.0	0.0	
39	-1.0	2.0	1.2926797271549244	0.0	0.0	0.0	-1.0	
40	-1.0	2.0	-0.3289791230026702	-1.0	-1.0	-1.0	0.0	

Tabela 8: Wybrane wyniki kolejnych iteracji modelu logistycznego w arytmetyce Float32 i Float64