Feuille d'exercices 7 : Équations différentielles

Equations différentielles du 1er ordre

Exercice 1. Résoudre les équations différentielles suivantes :

1.
$$y' + \frac{1}{1+r^2}y = 0$$

1.
$$y' + \frac{1}{1+x^2}y = 0$$

2. $\sin xy' + (\cos x)y = 0$ sur $]0, \pi[$
3. $y' - 2xy = \sinh(x) - 2x \cosh(x)$
4. $y' + y = \frac{1}{1+e^x}$
5. $(1-t)y' - y = t \text{ sur }]1, +\infty[$
6. $y' + y = 2e^x + 4\sin x + 3\cos x$
7. $y' + 2y = x^2$

4.
$$y' + y = \frac{1}{1 + e^x}$$

Exercice 2. Résoudre les équations différentielles suivantes :

1.
$$y' + \frac{1}{x}y = 0 \text{ sur } \mathbb{R}_+^*$$

3.
$$y' - 2xy = xe^{x^2}$$

$$7. \ y' + y = xe^x \cos x$$

1.
$$y' + \frac{1}{x}y = 0 \text{ sur } \mathbb{R}_{+}^{*}$$
 3. $y' - 2xy = xe^{x^{2}}$ 7. $y' + y = xe^{x} \cos x$ 4. $y' + y = e^{-x} + e^{-2x}$ 8. $2y' - y = \sin x$ 6. $y' - y \tan x = \cos^{2}(x) \sin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[$ 9. $y' + y = 2 \cos x + \cos(2x)$

4.
$$y' + y = e^{-x} + e^{-2x}$$

5. $y' - 2y = (x + 1)e^{x}$

$$8. \ 2y' - y = \sin x$$

6.
$$y'-y\tan x = \cos^2(x) \sin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

9.
$$y' + y = 2\cos x + \cos(2x)$$

Exercice 3. Après avoir déterminé une solution évidente, résoudre l'équation différentielle suivante : $y' + \sin(x)y = \sin(2x)$

Exercice 4. Résoudre les équations différentielles suivantes :

1.
$$(x \ln x)y' - y = -\frac{1}{x} (\ln x + 1) \text{ sur }]1, +\infty[$$

2. $(1+x^2)y' + xy = \sqrt{1+x^2} \text{ sur } \mathbb{R}$
3. $(1-x)y' + y = \frac{x-1}{x} \text{ sur }]0, 1[$

4.
$$(1+t^2)x' + x = \arctan t \operatorname{sur} \mathbb{R}$$

2.
$$(1+x^2)y' + xy = \sqrt[x]{1+x^2} \text{ sur } \mathbb{R}$$

5.
$$xy' + (x-2)y = x-2 \text{ sur } \mathbb{R}_+^*$$

3.
$$(1-x)y' + y = \frac{x-1}{x}$$
 sur $]0,1[$

6.
$$(x^4+1)y'-x^3y=x^5-x^3+2x+1 \text{ sur } \mathbb{R}$$

Exercice 5. Soit l'équation différentielle : $(x+1)y' + xy = x^2 - x + 1$

- 1. Trouver une solution polynomiale.
- 2. En déduire l'ensemble des solutions sur $]-1,+\infty[$.
- 3. Déterminer la solution vérifiant y(1) = 1.

1. Résoudre sur $]1, +\infty[$ l'équation différentielle suivante (1-t)y'-y=t.

2. Résoudre sur \mathbb{R} l'équation différentielle suivante (1-t)y'-y=t.

Exercice 7. Résoudre sur \mathbb{R} l'équation différentielle suivante $xy' - (1+x)y = -x^2$.

Exercice 8. Résoudre sur \mathbb{R} l'équation différentielle x(x-1)y' + (2x-1)y = 1

Exercice 9. Résoudre sur \mathbb{R} l'équation différentielle suivante $xy'-2y-x^4=0$.

Exercice 10. Résoudre sur \mathbb{R} l'équation différentielle suivante $xy'-2y=(x-1)(x+1)^3$.

Exercice 11. Déterminer les applications $f: \mathbb{R} \to \mathbb{R}$ telles que les deux équations différentielles y' - y = 1 - x et xy'-y=f(x) aient au moins une solution commune $y:\mathbb{R}\to\mathbb{R}$.

Exercise 12. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que : $\forall x \in \mathbb{R}, f'(x)f(-x) = 1$

Equations différentielles du 2nd ordre

Exercice 13. Résoudre les équations différentielles suivantes :

1.
$$y'' + 2y' - 3y = 0$$

2. $y'' + 4y' + 4y = 0$

3.
$$y'' + 2y' + 4y = 0$$
 dans \mathbb{R}

$$4. y'' + 2y' + 4y = 0$$
 dans \mathbb{C}

Exercice 14. Résoudre les équations différentielles suivantes :

1.
$$y'' + 3y' + 2y = e^x$$

2.
$$y'' - 2y' + y = 2 \operatorname{sh} x$$

Exercice 15. Résoudre les équations différentielles suivantes :

1.
$$y'' + y = \frac{1}{4}\cos(3x)$$

$$2. y'' + y = \cos^3 x$$

Exercice 16. Résoudre les équations différentielles suivantes :

1.
$$y'' - y' + (1+i)y = 0$$

3.
$$u'' + 4u = \sin(x) + \sin(2x)$$

3.
$$y'' + 4y = \sin(x) + \sin(2x)$$

4. $y'' - 3y' + 2y = e^x \cos x$
5. $y'' - y' - 2y = x^2 - x$
avec $y(0) = 0$ et $y'(0) = 1$

2.
$$y'' - 4y' + 4y = e^{2x}$$

4.
$$y'' - 3y' + 2y = e^x \cos x$$

Exercice 17. Résoudre sur \mathbb{R} l'équation différentielle : $e^{-2x}y'' - e^{-2x}y' - y = 1$. On pourra poser : $t = e^x$.

Exercice 18. Résoudre les équations différentielles suivantes :

1.
$$y'' + y' \tan x - y \cos^2(x) = 0 \text{ sur } \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ en posant } t = \sin x$$

2. $(1 - x^2)y'' - xy' + 4y = \arccos x \text{ sur } \right] - 1, 1[\text{ en posant } x = \cos t$

2.
$$(1-x^2)y'' - xy' + 4y = \arccos x \sin^2 \left[-1, 1 \right]$$
 en posant $x = \cos t$

Exercice 19. Soit $m \in \mathbb{R}^*$, on considère l'équation différentielle suivante :

(E)
$$(1+x^2)^2y'' + 2x(1+x^2)y' + m^2y = 0.$$

Résoudre (E) sur \mathbb{R} . On pourra poser $x = \tan t$.

Préciser les solutions dans le cas particulier m=2.

Exercice 20. Résoudre xy'' + 2y' + xy = 0 sur \mathbb{R}_+^* .

On pourra poser z(x) = xy(x).

Exercice 21. Résoudre les équations différentielles suivantes :

1.
$$xy'' + 2(x+1)y' + (x+2)y = 0$$
 sur \mathbb{R}_+^* en posant $z(x) = xy(x)$

2.
$$x^2y'' - 2xy' + (2 - x^2)y = 0$$
 sur \mathbb{R}_+^* en posant $z(x) = \frac{y(x)}{x}$

3.
$$(1 + e^x)y'' + y' - e^xy = 0$$
 sur \mathbb{R} en posant $z = y' + y$

Exercice 22. Résoudre l'équation différentielle suivante, avec $\lambda \in \mathbb{R}$:

$$y'' - 2y' + \lambda y = e^{2x} + e^x \sin x.$$

Exercice 23. Résoudre l'équation différentielle suivante : y'' + y = |x| + 1.

Exercice 24. Soit x et y des fonctions de la variable t. Résoudre les système différentiels suivants :

1.
$$\begin{cases} x' = y + t^2 \\ y' = x - t^2 \end{cases}$$
On pourra poser $u = x + y$ et $v = x - y$.
2.
$$\begin{cases} x' = -7x + y + 1 \\ y' = -2x - 5y \end{cases}$$

2.
$$\begin{cases} x' = -7x + y - y \\ y' = -2x - 5y \end{cases}$$

On pourra trouver une équation différentielle du second ordre satisfaite par x.

Exercice 25. Déterminer l'ensemble des couples $(a,b) \in \mathbb{R}^2$ tels que toute solution sur $]0,+\infty[$ de y''+ay'+by=0soit bornée.

Exercice 26. Déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que :

$$\forall x \in \mathbb{R}, \ f'(x) = f(-x).$$

Exercice 27. Trouver toutes les fonctions f dérivables sur \mathbb{R} telles que :

$$f(0) = 1$$
 et $\forall x \in \mathbb{R}, f'(x) = f(x) + \int_0^1 f(t)dt.$

Exercice 28. Soit f une fonction de classe C^2 sur \mathbb{R} . On définit ϕ par $\phi(x) = f(x) - \int_a^x (x-t)f(t)dt$.

1. Montrer que ϕ est \mathcal{C}^2 sur \mathbb{R} et calculer ϕ'' .

2. Donner l'ensemble des fonctions C^2 satisfaisant $\forall x \in \mathbb{R}, f(x) - \int_{0}^{x} (x-t)f(t)dt = x^2$.

Exercice 29. Trouver toutes les fonctions deux fois dérivables vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) + f(x-y) = 2f(x)f(y).$$

On pourra commencer par montrer que f''(x)f(y) = f(x)f''(y) pour tout $(x,y) \in \mathbb{R}^2$.