

Rapport sur le modèle de mélange

Projet tutoré

Contents

Introduction	2
Modélisation par clustering (mclust)	3
Attribution des clusters aux données	4
Analyse des groupes	5
Données basiques	5
Sexe	5
Age	6
Poids	7
Coach	8
Blessure	9
Côte ITRA	10
Courses	11
Temps d'expérience en trail	13
Volume hebdomadaire consacré à la profession	14
Proportion des autres disciplines	15
Données sur les scores	16
Epanouissement	16
Conflits entre vie personnelle et pratique de l'activité sportive	17
	18
Force mentale	20
Discours interne	21
Anxieté	23
Passions	24
	25
Conclusion	27

Introduction

Dans cette étude, nous explorons les nuances psychologiques des coureurs de trail en utilisant des techniques de clustering pour identifier des groupes homogènes au sein de cette communauté. L'objectif principal est d'analyser les profils distincts émergents au sein de cette population hétérogène, en mettant l'accent sur les caractéristiques individuelles telles que la motivation, l'anxiété, les habitudes de vie et d'autres aspects psychologiques.

À travers une approche méthodologique basée sur le clustering gaussien implémentée avec le package mclust en R, cette étude cherche à déterminer le nombre optimal de groupes représentatifs des coureurs de trail. Une fois ces groupes identifiés, nous nous pencherons sur les différences significatives entre eux, afin de mieux comprendre les dynamiques psychologiques et comportementales qui sous-tendent la passion commune du trail running.

Modélisation par clustering (mclust)

Nous avons élaboré divers modèles de mélanges afin d'explorer nos données. Pour simplifier, un modèle de mélange est un outil qui nous guide pour déceler différents groupes ou composants au sein de nos informations, ce qui peut être précieux pour dévoiler des schémas ou des tendances dissimulées. Pour choisir le modèle le plus adapté, nous avons ajusté la variable "G" de 1 à 5, en observant la meilleure valeur du BIC, nous permettant ainsi de sélectionner notre modèle optimal.

Figure 1: Comparaison des valeurs BIC pour différents modèles

Nous avons choisi le modèle de clustering avec deux groupes, car il a la meilleure valeur du BIC (Bayesian Information Criterion). Cela suggère qu'il correspond le mieux à la structure sous-jacente des données des coureurs de trail.

Attribution des clusters aux données

Voici la sortie générée par R, nous permettant d'examiner notre modèle choisi. Le code suivant a été utilisé pour créer le modèle et afficher ses caractéristiques :

Ce morceau de code ajuste un modèle de mélange gaussien avec deux groupes (G=2) en utilisant les données spécifiées. Ensuite, la fonction summary() nous fournit un aperçu détaillé des résultats du modèle. Cela inclut des informations telles que les paramètres estimés pour chaque groupe, les proportions de chaque groupe, et d'autres mesures importantes liées à la qualité du modèle. L'analyse de cette sortie nous permet de mieux comprendre la structure de nos données et les caractéristiques de chaque groupe identifié.

Incorporons les classifications des clusters dans notre dataframe initial. Pour ensuite afficher les premières lignes du dataframe ajusté fournissant un aperçu rapide des modifications.

file_number	$intrinsic_motivation$	$identified_motivation$	$integrated_motivation$	$introjected_motivation$	extern
ZWT22697828	0.9166667	0.7500000	0.9166667	0.1666667	
PWV43016656	0.83333333	0.7500000	0.7916667	0.3333333	
QIQ45303215	0.8750000	0.6666667	0.7500000	0.2500000	
KNE59187482	0.9583333	0.9583333	0.8333333	0.6250000	
RON31606396	1.0000000	1.0000000	1.0000000	0.3333333	
FOZ58315106	0.8333333	0.7500000	0.7500000	0.2916667	

> 1 2 > 267 68

Analyse des groupes

Données basiques

\mathbf{Sexe}

Figure 2: Répartition des sexes par groupe

```
> Pearson's Chi-squared test with Yates' continuity correction
> data: sex_table
> X-squared = 0.012923, df = 1, p-value = 0.9095
```

\mathbf{Age}

Figure 3: Distribution de l'âge par groupe

Poids

Figure 4: Distribution du poids par groupe

```
> Welch Two Sample t-test
>
> data: weight by cluster
> t = 1.0286, df = 110.08, p-value = 0.3059
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -1.187713  3.751185
> sample estimates:
> mean in group 1 mean in group 2
> 69.54644  68.26471
```

Coach

Figure 5: Répartition des coureurs ayant des coachs par groupe

```
> Pearson's Chi-squared test with Yates' continuity correction
> data: coach_table
> X-squared = 0.00064304, df = 1, p-value = 0.9798
```

Blessure

Figure 6: Répartition des coureurs ayant eu une blessure par groupe

```
> Pearson's Chi-squared test with Yates' continuity correction
> data: blessure_table
> X-squared = 0.020963, df = 1, p-value = 0.8849
```

Côte ITRA

Figure 7: Répartition des côtes ITRA des coureurs par groupe

Courses

Figure 8: Répartition des courses par groupe

```
> Pearson's Chi-squared test
> data: course_table
> X-squared = 5.4663, df = 4, p-value = 0.2427
```


Figure 9: Répartition des courses regroupées

```
> Pearson's Chi-squared test with Yates' continuity correction
> data: course2_table
> X-squared = 0.10017, df = 1, p-value = 0.7516
```

Temps d'expérience en trail

Figure 10: Répartition du temps d'expérience en trail

```
> Pearson's Chi-squared test
> data: experience_table
> X-squared = 6.4127, df = 3, p-value = 0.09317
```

Volume hebdomadaire consacré à la profession

Figure 11: Répartition du volume hebdomadaire consacré à la profession chez les courreurs

```
> Pearson's Chi-squared test
> data: profession_table
> X-squared = 3.2314, df = 2, p-value = 0.1988
```

Proportion des autres disciplines

Figure 12: Proportion de ces autres disciplines dans le volume total d'entraînement

```
> Pearson's Chi-squared test
> data: other_table
> X-squared = 3.6511, df = 2, p-value = 0.1611
```

Données sur les scores

Epanouissement

Figure 13: Distribution de l'épanouissement des coureurs par groupe

```
> Welch Two Sample t-test
>
> data: fulfillment by cluster
> t = 2.6424, df = 113.29, p-value = 0.009395
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> 0.009767599 0.068289701
> sample estimates:
> mean in group 1 mean in group 2
> 0.8064919 0.7674632
```

Conflits entre vie personnelle et pratique de l'activité sportive

Figure 14: Distribution des conflits entre vie personnelle et pratique de l'activité sportive

Motivations

Motivation intrinsèque

Groupes

Motivation intégrée

Motivation externe


```
Welch Two Sample t-test
>
>
> data: intrinsic_motivation by cluster
> t = 5.2259, df = 81.38, p-value = 1.31e-06
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
  0.06137116 0.13682778
> sample estimates:
> mean in group 1 mean in group 2
       0.8993446
                        0.8002451
    Welch Two Sample t-test
> data: identified_motivation by cluster
> t = 3.3982, df = 102.11, p-value = 0.0009683
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> 0.02850402 0.10842959
> sample estimates:
> mean in group 1 mean in group 2
>
       0.7829276
                        0.7144608
>
```

0.2

```
Welch Two Sample t-test
> data: integrated_motivation by cluster
> t = 4.2027, df = 82.285, p-value = 6.657e-05
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> 0.05897023 0.16495941
> sample estimates:
> mean in group 1 mean in group 2
       0.7908864
                   0.6789216
>
   Welch Two Sample t-test
>
> data: introjected_motivation by cluster
> t = -3.7066, df = 92.41, p-value = 0.0003579
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.14256766 -0.04309181
> sample estimates:
> mean in group 1 mean in group 2
       0.2833958
                     0.3762255
>
   Welch Two Sample t-test
> data: external_motivation by cluster
> t = -9.1991, df = 68.788, p-value = 1.333e-13
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.2120728 -0.1364805
> sample estimates:
> mean in group 1 mean in group 2
      0.01935081
                     0.19362745
```

Force mentale


```
Welch Two Sample t-test
> data: consistency by cluster
> t = 3.1456, df = 107.01, p-value = 0.002146
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> 0.01964374 0.08659613
> sample estimates:
> mean in group 1 mean in group 2
       0.7553258
                    0.7022059
>
    Welch Two Sample t-test
>
>
> data: control by cluster
> t = 1.7316, df = 105.71, p-value = 0.08626
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
 -0.006847119 0.101311221
> sample estimates:
> mean in group 1 mean in group 2
       0.6134085
                       0.5661765
```

Discours interne

Discours interne en compétition

Discours interne à I...entrainement


```
Welch Two Sample t-test
> data: general_internal_speech by cluster
> t = 1.2302, df = 94.4, p-value = 0.2217
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.02186554 0.09309711
> sample estimates:
> mean in group 1 mean in group 2
       0.5588165
                   0.5232008
>
   Welch Two Sample t-test
>
> data: competition_internal_speech by cluster
> t = 1.1214, df = 93.503, p-value = 0.265
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.02633245 0.09466550
> sample estimates:
> mean in group 1 mean in group 2
       0.5824620
                    0.5482955
>
>
   Welch Two Sample t-test
> data: training_internal_speech by cluster
> t = 1.1634, df = 96.728, p-value = 0.2475
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.02616776 0.10029784
> sample estimates:
> mean in group 1 mean in group 2
       0.5351711
                       0.4981061
```

Anxieté

Anxiété somatique

Anxiété cognitive


```
Welch Two Sample t-test
>
> data: general_precompetitive_anxiety by cluster
> t = -2.4744, df = 95.472, p-value = 0.01511
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
  -0.11739211 -0.01288008
> sample estimates:
> mean in group 1 mean in group 2
       0.2520356
                        0.3171717
    Welch Two Sample t-test
> data: somatic_anxiety by cluster
> t = -1.8222, df = 97.925, p-value = 0.07147
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.104250754 0.004443521
> sample estimates:
> mean in group 1 mean in group 2
>
       0.2127226
                        0.2626263
>
```

Passions

Passion harmonieuse 0.8 0.6 Groupes

Passion obsessive


```
> Welch Two Sample t-test
>
    data: harmonious_hobbies by cluster
> t = 4.699, df = 103.92, p-value = 8.046e-06
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> 0.04065059 0.10001386
> sample estimates:
> mean in group 1 mean in group 2
> 0.7584635 0.6881313
```

Addiction

Figure 15: Distribution de l'addiction par groupe

```
> Welch Two Sample t-test
>
> data: addiction by cluster
> t = 0.90806, df = 108.64, p-value = 0.3659
> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
> 95 percent confidence interval:
> -0.02118875  0.05701950
> sample estimates:
```

- > mean in group 1 mean in group 2 > 0.5562992 0.5383838

Conclusion