Unsupervised Representation Learning by predicting image rotations

Summary

- 1. Train Convnet to predict the 2d rotation that is applied to the image it gets as input.
- 3. Demonstrate dramatic perf improvement compared to prior UL methods. 3. 2 days on a single Titan X GPU. Predicting Rotations
 - 1. 0, 90, 180, 270 degree s.
 - 2. The Conv Net has to predict the transformation without having access to the original untransformed image.
 - 3. Intuitive argument: it is not possible to perform this task. without knowing how to:
 - recognize classes of the objects in the image
 - . He die detect the semantic parts of the object
 - A. More concretely, the model needs to:
 - · localize salvent objs in the imags
 - . recognize their orientation and type
 - . relate the obj's orientation with the dominant orientation that each type of objects tend to be depicted within the available images.
 - 5. Argument wit & pror methods: image stations do not wester low-level visual aftigact that allow the network to cheat in the task