Date:	
10) 2[n] = §1,3,2,-1}	(6)
h[n]: 2(0.8)", 05 n 46]
a) g[3] = ?	(2)
3 y	
h[m] = [2 1.6 1.28 1.024 0.8192 0.65534 0	
h[-k]= [0.52488 0.65536 0.8192 1.024 1.2	18 1.6 2
2[n) ··· 0000 132 -	. 18.
h[3-k]	
y [3] = Ext y [3] = Ex [K] [3-K]	
$y[3] = 1 \times 1.024 + 3 \times 1.28 + 2 \times 1.6$ $y[3] = 6.064$	-1 x 2
<i>lory</i>	Page No.

	Date		Date:
1)			
6) 2[K]		\$ - 18 18 11 g	2 (4.) 3
*LKJ	1,	710.37	
,	0121	"(8.0) E	2 (0) (1)
h [K]		5	= [8] =
1111	111		0
0123	456		
h[-K]	-3-10		D.
[3841 3.0 4E37	2.4 0.8141 0.4		- Dala
h[3-k]	34 O.8192 1.0Z	253.0 881.52.0	1 = [4-] of
	-10123		W. Branch
	1.		212016
y 6] III	11100	00	(4.) 5
	86.1 F.SO.1		[2-6]
y [3]	111		
Γ.	(+67 + Fm) = 1	2 (M.	1836
	K [K] [3-1	3 657 6	
Sx1- 3.1x	.C . 86.138 +	PSOARI E [Dp.
		430.3 -1	

2.17

A discrete-time system is described by the following difference equation

$$y[n] = 1.15y[n - 1] - 1.5y[n - 2] + 0.7y[n - 3] - 0.25y[n - 4] + 0.18x[n] + 0.1x[n - 1] + 0.3x[n - 2] + 0.1x[n - 3] + 0.18x[n - 4]$$

with zero initial conditions.

```
a = [1 -1.15 1.5 -0.7 0.25];
b = [0.18 0.1 0.3 0.1 0.18];
n = [0:100];
```

(a) Compute and plot the impulse response h[n], $0 \le n \le 100$ using the function

h=impz(b,a,N).

```
h = impz(b,a,length(n));
impz(b,a,length(n))
```


(b) Compute and plot the output y[n], if x[n] = u[n], $0 \le n \le 100$ using the function

y=filter(b,a,x).

```
y = filter(b,a,ones(1,length(n)));
stem(n,y)
```

```
title('Step Response'); xlabel('n'); ylabel('Amplitude ')
```


(c) Compute and plot the output y[n], if x[n] = u[n], $0 \le n \le 100$ using the function y=conv(h,x).

```
y = conv(h,ones(1,length(n)));
stem(y)
title('Output Sequence'); xlabel('n'); ylabel('Y[n]')
```


(d) Compute and plot the output y[n], if x[n] = u[n], $0 \le n \le 100$ using the function

y=filter(h,1,x)

```
y = filter(h,1,ones(1,length(n)));
stem(y)
title('Output Sequence'); xlabel('n'); ylabel('Y[n]')
```


Part A gives the Impulse Response of the System

Part B gives the Step Response of the System

Part C by convolving gives both the Step and Impulse Response of the system

Part D gives the Zero State Response of the System, this mean the response of the system when initial conditions are set to Zero which is ame as Step Response of the System.

2.22

A downsampler system is defined in (2.24). Consider the sequence $x[n] = cos(0.1\pi n)$

for $-30 \le n \le 30$. Using the stem function plot

- (a) x[n] versus n.
- (b) A down sampled signal y[n] for M = 5.
- (c) A down sampled signal y[n] for M = 20.
- (d) How does the downsampled signal appear? Compressed or expanded.

$$y[n] = H\{x[n]\} = x[nM]$$
 (2.24)

a)

```
n = [-30:30];
xn = cos(0.1*pi*n);
stem(n,xn)
title('x[n] vs n'); xlabel('n') ; ylabel('x[n]');
```


b)

```
n5d = downsample(n,5);
xn5d = downsample(xn,5);
stem(n5d,xn5d)
```

```
title('Downsample M=5'); xlabel('n'); ylabel('y[n]');
```


c)

```
n20d = downsample(n,20);
xn20d = downsample(xn,20);
stem(n20d,xn20d)
title('Downsample M=20'); xlabel('n'); ylabel('y[n]');
```


d) Compressed

Date:
23)
a) y [n] = n (-n) n n n n n n n n n
H [a, x, En] + 2x, En] = a, H[x, En] + a2 M[x, En]
: system is Orise.
Canal Ye
Time invariant No
Causal No
y[n]= x[n+1]-x[n-1]
Stable Yes
Lenine No
b) y [n] = log (1x[n]]]
Carras (es
Lunear No
Tim Invariant Yes
Canal Yes
Not BIBO stable
:. Stable No ray
•
tory Page No.

Date:	
(8	1,00
c) y [n] = x[n] - x[n-1]	
10-3 23 1 digen Yes produced - ford as in fill	
TI Yes willy :	
Carast You	
Stable Yes of miner	-
Causak No	
alate along the selection	
d) y[n] = roun[2[n]]	
See Yes	
hinia No	
To Yes I (Casa) placed (a	
Causal Yes	
Stable yes IV	
Time transing Yes	
Caral Yes	
Not BIBO stable.	
Stable No	
Victory	Page No.

Date:
27)
2[n] = anu[n] h[n] = bnu[n]
a= 1/4 u[n] 1 [1 n 7/6
b=1/3 2 [n]= \$164 1 0.25 0.0625 0.0156 }
2 2[7] = {1641 0.25 0.0625 0.0156 }
2 [n] = { 1 0.25 0.0625 0.0154 }
$h(n) = \begin{cases} 1 & 1/3 & 1/4 & 1/2 = -3 \\ h(-k) = \begin{cases}1/4 & 1/3 & 1 \end{cases}$
x[n] 0 0 0 1 0.25 0.065 0.016
n/1-k) 6/81 6/27 /9 /3
h[2-k] . 1/81 1/27 1/9 1/3 1 h[3-k] . 1/81 1/27 1/9 1/3
y[n] = [0.25 + 1/3 , 1/3 x 0.25 + 1/9) 1/3 x 0.0625 + 1/9 roll
y En] = 0.4643 0.1548 0.0172
Page No

```
n = 1:100;
un = ones(1,length(n));
an = (1/4) * ones(1,length(n));
an = an.^n;
xn = an.*un;
stem(xn)
title('xn')
xlim([0.0 23.6])
ylim([0.000 0.250])
```



```
bn = (1/3) * ones(1,length(n));
bn = bn.^n;
hn = bn.*un;

stem(hn)
title('hn')

xlim([0.0 13.9])
ylim([0.000 0.350])
```



```
yn = conv(xn,hn,'same');
stem(yn)
title('Convolution Response Only')
xlim([0.00 7.81])
```



```
stem(yn)
hold on
stem(xn)
```

```
stem(hn)
title('Convolution Response')

legend('y[n]','x[n]','h[n]')
xlim([0.12 9.33])
ylim([0.000 0.350])
hold off
```


2.31

Consider the system y[n] = y[n - 1] + y[n - 2] + x[n], y[-1] = y[-2] = 0.

- (a) Compute and plot the impulse response, for $0 \le n \le 100$, using function filter.
- (b) Can you draw any conclusions about the stability of this system from the results in (a)?
- (c) Determine the output y[n], if the input is x[n] = an, $-\infty < n < \infty$, and comment upon the result.

a)

```
a = [1 -1 -1];
b = [1];
n = [1;100];
```

```
figure;
impz(b,a,100)
```



```
y = filter(b,a,ones(1,100));
figure;
stem(y)
```


b) The Function is not decaying and continues and hence is not stable.

c)

```
c = [2];
d = [10];
e = [50];

figure;
subplot(3,1,1)
impz(c,a,100)
subplot(3,1,2)
impz(d,a,100)
subplot(3,1,3)
impz(e,a,100)
```


The shape of impulse response will remain the same, however. the amplitude now increases at a greater exponential scale.