

NPN Silicon Digital Transistor

- Switching circuit, inverter, interface circuit, driver circuit
- Built in bias resistor (R_1 =2.2 k Ω , R_2 =47 k Ω)
- BCR108S: Two internally isolated transistors with good matching in one multichip package
- BCR108S: For orientation in reel see package information below
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101

BCR108/F BCR108T/W

BCR108S

Lili	

Туре	Marking	g Pin Configuration					Package	
BCR108	WHs	1=B	2=E	3=C	-	-	_	SOT23
BCR108F	WHs	1=B	2=E	3=C	-	-	_	TSFP-3
BCR108S	WHs	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363
BCR108W	WHs	1=B	2=E	3=C	-	-	_	SOT323

¹Pb-containing package may be available upon special request

1 2007-07-24

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	50	V
Collector-base voltage	V_{CBO}	50	
Input forward voltage	V _{i(fwd)}	20	
Input reverse voltage	V _{i(rev)}	5	
Collector current	I _C	100	mA
Total power dissipation-	P _{tot}		mW
BCR108, <i>T</i> _S ≤ 102°C		200	
BCR108F, <i>T</i> _S ≤ 128°C		250	
BCR108S, <i>T</i> _S ≤ 115°C		250	
BCR108W, <i>T</i> _S ≤ 124°C		250	
Junction temperature	T _j	150	°C
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Symbol	Value	Unit
R _{thJS}		K/W
	≤ 240	
	≤ 90	
	≤ 140	
	≤ 105	
		R _{thJS} ≤ 240 ≤ 90 ≤ 140

 $^{^{1}\}mbox{For calculation of}\,R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified **Values** Unit **Symbol Parameter** min. typ. max. **DC Characteristics** $V_{(BR)CEO}$ 50 ٧ Collector-emitter breakdown voltage $I_{\rm C}$ = 100 μ A, $I_{\rm B}$ = 0 Collector-base breakdown voltage $V_{(BR)CBO}$ 50 $I_{\rm C} = 10~\mu{\rm A},~I_{\rm E} = 0$ Collector-base cutoff current 100 nΑ I_{CBO} $V_{\rm CB} = 40 \text{ V}, I_{\rm E} = 0$ 164 μΑ Emitter-base cutoff current I_{EBO} $V_{\rm EB} = 5 \text{ V}, I_{\rm C} = 0$ DC current gain¹⁾ 70 h_{FE} - $I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 5 V Collector-emitter saturation voltage¹⁾ V_{CEsat} V 0.3 $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA Input off voltage $V_{i(off)}$ 0.4 8.0 $I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 5 V $V_{i(on)}$ Input on voltage 0.5 1.1 $I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 0.3 V R_1 1.5 2.2 2.9 Input resistor $\mathsf{k}\Omega$ 0.042 R_1/R_2 0.047 0.052 Resistor ratio **AC Characteristics** f_{T} 170 MHz Transition frequency $I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V, f = 1 MHz 2 рF C_{cb} Collector-base capacitance $V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$

¹Pulse test: $t < 300 \mu s$; D < 2%

DC current gain $h_{FE} = f(I_C)$

 V_{CF} = 5V (common emitter configuration)

 T_A = Parameter

Input on Voltage $Vi_{(On)} = f(I_C)$

 V_{CE} = 0.3V (common emitter configuration)

 T_A = Parameter

Collector-emitter saturation voltage

 $V_{CEsat} = f(I_{C}), I_{C}/I_{B} = 20$

 T_A = Parameter

Input off voltage $V_{i(off)} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

 T_A = Parameter

Total power dissipation $P_{tot} = f(T_S)$ BCR108

Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$ BCR108S

Total power dissipation $P_{tot} = f(T_S)$ BCR108F

Total power dissipation $P_{tot} = f(T_S)$ BCR108W

Permissible Pulse Load $R_{thJS} = f(t_p)$ BCR108

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR108F

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR108

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR108F

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR108S

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR108W

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR108S

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR108W

Foot Print

1) Lead width can be 0.6 max. in dambar area

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Small variations in positioning of Date code, Type code and Manufacture are possible.

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

For symmetric types no defined Pin 1 orientation in reel.

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

12 2007-07-24