

BEST AVAILABLE COPY

REMARKS

The drawings now comply with 37 CFR 1.84(p)(5)

The drawings were objected to in the Office Action because the drawings included reference numeral 14, which was not referenced in the written specification. Applicant has herein amended paragraph 30 of the specification to include reference numeral 14. No new matter was added to the specification by this amendment. As such, the drawings now comply with 37 CFR 1.84(p)(5) and Applicant requests the reconsideration and withdrawal of the objection thereto.

Claims 10-12 and 14 Are Not Indefinite Under 35 U.S.C. §112

Each of claims 10, 12, and 14 have been amended to eliminate any reference to the terms "Inconel" and "Kovar" therein by replacing each occurrence of the terms "Inconel" and "Kovar" therein with chemical compositions of the particular alloys. Applicant submits that the chemical compositions of Inconel and Kovar materials are, and were on the priority date of the present application, known to those of ordinary skill in the art and are inherently described in specification of the application by reference to the trademarks Inconel and Kovar. Thus, no new matter has been added by said amendments to the claims. As evidence of the chemical compositions of the "Inconel" and "Kovar," Applicant submits the material data sheets herewith as Exhibit A. As such, Applicant request the withdrawal of the objections made under 35 USC §112 to claims 10, 12, and 14.

Claim 11 has been amended to change its direct dependency from claim 10 to claim 9. As such, the objection to claim 11 is moot and Applicant therefore requests the

withdrawal of the objection made under 35 USC §112 to claim 11.

Claims 1, 3-14, 16-19, and 22 Are Not Obvious In View Of The Prior Art

Independent claim 1 requires, among other things, the sealing end of the probe to be hermetically sealed to the vessel via a metal-to-glass-to-metal seal, and requires at least a portion of the probe within the internal cavity of the vessel to be devoid of any glass extending therearound. Even in combination, the prior art fails to disclose a vessel having a capacitance probe that is hermetically sealed to the vessel via a metal-to-glass-to-metal seal, with at least a portion of the probe within the internal cavity of the vessel to be devoid of any glass extending therearound. Whitney discloses a conventional mixing vessel having a baffle shaft extending into the vessel wherein the baffle shaft and the vessel wall are coated in layer of glass. Whitney further discloses placing an electrode strip on the glass layer of the baffle and thereafter applying a second layer of glass over the baffle inside the container. Whitney touts the elimination of the need for a separate entry into the vessel for a capacitance probe and the resulting elimination of an additional “expensive and complicated pressure seals” as an advantage over the prior art. Whitney, col. 2:3-19. Whitney does not disclose the configuration of any particular hermetic seal of a vessel and therefore fails to teach or suggest a metal-to-glass-to-metal hermetic seal as required by claim 1. Furthermore, the foil strip that constitutes the probe in Whitney’s vessel, is completely surrounded by glass and therefore the probe lacks any portion within the internal cavity of the vessel that is devoid of any glass extending therearound, as is also required by claim 1.

Notably, claim 1 is directed to a bubbler comprising an outlet extending through the outer wall of the vessel that is adapted and configured to allow gas to pass from the internal cavity of the vessel to an environment external to the vessel, and a conduit extending through the outer wall of the vessel and into the internal cavity of the vessel that is adapted and configured to allow a gas to be pumped into the internal cavity of the vessel. Franz discloses such a bubbler with a probe but does not disclose a metal-to-glass-to-metal seal at the sealing end of the metallic probe. Franz also fails to disclose the use of glass in any portion of the probe, vessel, or sealing members. As such, even in combination, Franz and Whitney fail to teach or suggest any bubbler comprises a probe that is hermetically sealed to the vessel wall via a metal-to-glass-to-metal seal. For these reasons, Franz and Whitney can not possibly teach or suggest each and every limitation of claim 1 and therefore claim 1 is not obvious in view of the prior art. It follows then that claims 3-14 and 16-19, being dependent upon claim 1, are also not obvious in view of the prior art.

Claim 22, requires, among other things, a method of monitoring the level of an organometallic compound in a vessel that includes a step of hermetically sealing the sealing end of a probe within the vessel via a metal-to-glass-to-metal seal. As discussed above, neither Franz nor Whitney disclose the use of a metal-to-glass-to-metal seal to hermetically seal a capacitance probe to the wall of a vessel. As such, claim 22 is not obvious in view of the prior art.

Conclusion

In view of the above, Applicant requests reconsideration and withdrawal of the rejections made to the claims.

Respectfully submitted,

Thompson Coburn LLP

By:

Clyde L. Smith
Reg. No. 46,292
One US Bank Plaza
St. Louis, MO 63101-1693
(314) 552-6338
(314) 552-7338 (fax)

Lees, Kate J

From: Cunning, Hugh [CunningH@epichem.co.uk]
Sent: 27 January 2006 09:41
To: Rushworth, Simon
Subject: Alloy X750 - Electronic Alloys

QUANTUM ALLOYS LTD

E-mail sales@quantumalloys.com

Tel. 44 (0) 8708 799001/2 Fax. 44 (0) 8707 652 267/8

Cupro - Nickel
 Nickel 200 & 201
 Nickel Chrome
 Tungsten
 Alloy 47/50

HXMU 80
 Nickel 400
 Nickel Silver
 Alloy 42 - F30
 Alloy 48

Kovar
 Nickel 500
 Stainless 300 Series
 Invar 36
 Alloy 49

Molybdenum
 Nickel 600, 601, 625
 Tantalum
 Alloy 45
 Alloy 52

Mi
 Nickel 7
 Tit
 Al
 OFHC

Request for Quotation

ALLOY 625 | ALLOY 718 | ALLOY X750 | SHEET | COIL/FOIL | ROD | PRODUCT

Nickel 600

NOMINAL DATA SHEET

CHEMICAL COMPOSITION

C - .15max	Ti - .50max
Mn - 1.00max	Cb+Ta - 1.0max
S - .015max	Co - 1.0max
Si - .50max	
Cr - 14/17	
Ni - 72.0	
Cu - .50max	
Fe - 6/10	
Al - .35max	

TYPICAL APPLICATIONS

Furnace Muffles
 Electronic and Electrical Components
 Jet Engine Parts
 Springs
 Chemical and Food Processing Equipment
 Bellows

Top of Page

PHYSICAL PROPERTIES (ANNEALED CONDITION)

Modulus of Elasticity, Tension 10*****psi - 31.0

Magnetic permeability at 200H(At 70 F) - 1.010
 Electrical Resistivity, Microhm-cm(At 70 F) - 103
 Density, lb/cu.in. - .304
 Coefficient of Thermal Expansion, in./in./F x 10(-*****)
 70 - 200 F 7.4
 70 - 400 F 7.7
 70 - 800 F 8.1
 70 - 1000 F 8.4

NOMINAL MECHANICAL PROPERTIES (ANNEALED CONDITION)

Ultimate Tensile Strength, psi - 90,000
 0.2% Offset Yield Strength, psi - 31,000
 Elongation in 2 inches percent - 40
 Hardness, Rockwell - B65

[Top of Page](#)

Alloy 625

NOMINAL DATA SHEET

CHEMICAL COMPOSITION TYPICAL APPLICATIONS

Cu - .10max	Al - .40max	Ducting Systems
Mn - .50max	Ti - .40max	Springs
P - 0.15max	Cb+Ta - 3.15/4.15	Fuel Nozzles
S - 0.15max	Co - 1.0max	Jet Engine Parts
Si - .50max		Honeycomb
Cr - 20/23		
Ni - Balance		
Mo - 8/10		
Fe - 5.0max		

PHYSICAL PROPERTIES (ANNEALED CONDITION)

Modulus of Elasticity, Tension 10(*****)psi - 30.0
 Magnetic permeability at 200H(At 70 F) - 1.001
 Electrical Resistivity, Microhm-cm (At 70 F) - 129
 Density, lb/cu.in. - .305
 Coefficient of Thermal Expansion, in./in./F x 10(-*****)
 70 - 200 F 7.1
 70 - 400 F 7.3

70 - 800 F	7.6
70 - 1000 F	7.8

NOMINAL MECHANICAL PROPERTIES (ANNEALED CONDITION)

Ultimate Tensile Strength, psi - 130,000
 0.2% Offset Yield Strength, psi - 68,000
 Elongation in 2 inches percent - 42
 Hardness, Rockwell - B65

Top of Page

Alloy 718

NOMINAL DATA SHEET

CHEMICAL COMPOSITION TYPICAL APPLICATIONS

C - .08max	Fe - Balance	Jet Engine Parts
Mn - .35max	Al - .20/.80	Pump Parts
P - .015max	Ti - .65/1.15	Rocket Motors Casings
S - .015max	Cb+Ta - 4.75/5.50	Aerospace Components
Si - .35max	Co - 1.0max	Nuclear Reactor Fuel
Cr - 17/21	B - .006max	Support Grids
Ni - 50/55		
Mo - 2.8/3.3		
Cu - .30		

Top of Page

PHYSICAL PROPERTIES (ANNEALED CONDITION) **

Modulus of Elasticity, Tension 10(******) psi - 29.0
 Magnetic permeability at 200H(At 70 F) - 1.001
 Electrical Resistivity, Microhm-cm(At 70 F) - 121
 Density, lb/cu.in. - .296
 Coefficient of Thermal Expansion, in./in./F × 10(-******)

70 - 200 F	7.2
70 - 400 F	7.8
70 - 800 F	8.1
70 - 1000 F	8.2

** (Aged)

NOMINAL MECHANICAL PROPERTIES (ANNEALED CONDITION)

Ultimate Tensile Strength, psi - 130,000
 0.2% Offset Yield Strength, psi - 67,000
 Elongation in 2 inches percent - 41
 Hardness, Rockwell - B90

Top of Page

Alloy X750

NOMINAL DATA SHEET

ALLOY X750 CHEMICAL COMPOSITION	ALLOY X750 TYPICAL APPLICATIONS
C - .08max	Al - .4/1.0max
Mn - .35max	Ti - 2.25/2.75max
P - .015max	Cr+Ta - .7/1.2
S - .015max	Co - 1.0max
Si - .35max	Vacuum Envelopes
Cr - 14/17	Bellows
Ni - 70.0	Aircraft Sheet
Cu - .50max	Steam Service
Fe - 5/9	Springs

PHYSICAL PROPERTIES (ANNEALED CONDITION) **

Modulus of Elasticity, Tension 10(******)psi - 31.0
 Magnetic permeability at 200H(At 70 F) - 1.0035
 Electrical Resistivity, Microhm-cm (At 70 F) - 122
 Density, lb/cu.in. - .298
 Coefficient of Thermal Expansion, in./in./F x 10(-******)
 70 - 200 F 7.0
 70 - 400 F 7.1
 70 - 800 F 7.8
 70 - 1000 F 8.1
 ** (Aged)

Top of Page

NOMINAL MECHANICAL PROPERTIES (ANNEALED CONDITION)

Ultimate Tensile Strength, psi - 112,000
 0.2% Offset Yield Strength, psi - 46,000
 Elongation in 2 inches percent - 45
 Hardness, Rockwell - B80

NICKELS 600/601/625/718/750

SHEET	COIL/FOIL	ROD
.050	.003	.125
.062	.004	.250
.078	.005	.312
.109	.010	.437
.125	.015	.500
.140	.020	.625
.250	.030	.750
.375	.040	.875
.500	.050	1.00
.750	.062	1.25
1.00		1.50
		1.75
		2.00
		2.25
		2.50
		3.00
		3.50
		4.00
		5.00
		5.50
		6.00

***NOTE: Other sizes available upon request.**

[Top of Page](#)

Disclaimer

Every effort is made to ensure that technical specifications are accurate. However, technical specifications included herein should be used as a guideline only.
subject to change without notice.

| Aluminium Alloys | Alloy and ST / Steel | Titanium Alloys | Bronze | Magnesium | Nickel Alloys | Copper Alloys | El-

Site © 2005 Quantum Alloys Ltd A Division of AirCraftMaterialsUK.com Ltd
HP11 2QY Tel. 44 (0) 8708 799001/2 Fax. 44 (0) 8707 652 267/8

Lees, Kate J

From: Cunning, Hugh [CunningH@epichem.co.uk]
Sent: 27 January 2006 09:38
To: Rushworth, Simon
Subject: inconel

MATERIAL PROPERTY DATA

Data sheets for over 55,000 metals, plastics, ceramics, and
[HOME](#) • [SEARCH](#) • [TOOLS](#) • [SITE MAP](#) • [FOLDE](#)

Searches: Advanced | Material Type | Property | Composition | Trade Name | Manufacturer

MatWeb
MATERIAL PROPERTY DATA

Find Out More About MatWe
Premium Service

[Click Here](#)

Special Metals INCONEL® C276 Nickel Superalloy Tubing, 30% C

[Printer friendly version](#)

[Download to Excel \(requires Excel and Windows\)](#)

[Export data to your CAD/PEA program](#)

Subcategory: Metal; Nickel Base; Superalloy

Component	Wt. %	Component	Wt. %	Component	Wt. %
C	Max 0.01	Mn	Max 1	S	Max 0.03
Co	Max 2.5	Mo	15 - 17	Si	Max 0.08
Cr	14.5 - 16.5	Ni	59	V	Max 0.35
Fe	4 - 7	P	Max 0.04		

Material Notes:

Nickel content calculated as remainder.

Tensile strength (ultimate and yield) and elongation values reported here are typical for annealed + 30% cold typical of INCO® C276.

Data provided by the manufacturer, Special Metals.

[Click here](#) to view available vendors for this material.

Physical Properties

Metric

English

Density

8.89 g/cc

0.321 lb/in³

Mechanical Properties

Tensile Strength, Ultimate	<u>1150 MPa</u>	166600 psi
Tensile Strength, Yield	<u>987 MPa</u>	143200 psi
Elongation at Break	<u>28 %</u>	28 %
Modulus of Elasticity	<u>205 GPa</u>	29700 ksi
Poisson's Ratio	<u>0.307</u>	0.307
Shear Modulus	<u>79 GPa</u>	11500 ksi

Electrical Properties

Magnetic Permeability	1.0002	1.0002
-----------------------	--------	--------

Thermal Properties

Specific Heat Capacity	<u>0.427 J/g-°C</u>	0.102 BTU/lb-°F
Thermal Conductivity	<u>9.8 W/m-K</u>	68 BTU-in/hr-ft²-°F
Melting Point	<u>1325 - 1370 °C</u>	2420 - 2500 °F
Solidus	<u>1325 °C</u>	2420 °F
Liquidus	<u>1370 °C</u>	2500 °F

Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistent format. engineering calculations can click on the property value to see the original value as well as raw conversions to equivalent units. We advise that you only use the calculations to minimize rounding error. We also ask that you refer to MatWeb's disclaimer and terms of use regarding this information. [Click here](#) to view all data entered into MatWeb.

Find Out More About MatWeb
Premium Service
[Click Here](#)

Subscribe to Premium Services

Searches: [Advanced](#) • [Composition](#) • [Property](#) • [Material Type](#) • [Manufacturer](#) •

Other Links: [Advertising](#) • [Submit Data](#) • [Database Licensing](#) • [Web Design & Help](#)
[Supplier List](#) • [Unit Converter](#) • [Reference](#) • [News](#) • [Links](#) • [Help](#) • [Contact Us](#) •

Please read our [License Agreement](#) regarding materials data and our [Privacy Policy](#). Questions or comments? Please contact us at webmaster@matweb.com. We appreciate your input.

Site designed and maintained by [Automation Creations, Inc.](#) The contents of this web site, the MatWeb database and all related data is © 1996-2006 by Automation Creations, Inc. MatWeb is intended for personal, non-commercial use only. Technical data from this site may not be reproduced either electronically, photographically or otherwise without the express written consent of Automation Creations, Inc.

Lees, Kate J

From: Cunning, Hugh [CunningH@epichem.co.uk]
Sent: 27 January 2006 09:42
To: Rushworth, Simon
Subject: Kovar Products

Kovar®

Table of Contents

STANDARD DIM
and TOLER/

- [Introduction](#)
- [Chemistry By % Weight](#)
- [Typical Mechanical Properties](#)
- [Typical Physical Properties](#)
- [Forms](#)

Introduction

Kovar® is a registered trademark of Carpenter Technology Corporation

Chemistry By % Weight

C	0.02% Max
Co	17%
Fe	Balance
Mn	0.3%
Ni	29%
Si	0.2%

Typical Mechanical Properties

Ultimate Tensile Strength	.75,000 PSI
Yield Strength	50,000 PSI
Elongation @ Break	30%
Modulus of Elasticity	20,000 KSI
Poisson's Ratio	0.317

[Back to Top](#)

Typical Physical Properties

Density	0.302 lbs/cu in
---------	-----------------

Melting Point	1450° C
Electrical Resistivity @ RT	4.9 Microhm-cm
Thermal Conductivity @ RT	17.3 W/m-K
Coefficient of Thermal Expansion	3.26 μ in/in-°F
Linear at 20° C	
At 250°	2.85 μ in/in-°F
At 500° C	3.42 μ in/in-°F

Kovar® is a vacuum melted Fe-Ni-Co low expansion alloy that has its composition controlled to tight tolerances assuring precise and uniform expansion properties. Kovar is commonly used for making hermetic seal glass. It has also found wide application in power tubes, microwave tube diodes and transistors.

Forms

H Cross Company can provide Kovar in wire, ribbon, strip, sheet and foil to suit your particular needs. Please refer to our Standard Dimension and Tolerances page for general size ranges of products. If you do not see the required size list contact us via email or phone for further information or assistance.

[Back to Top](#)

Info@HCrossCompany.com

Tel: 201-863-1134
Fax: 201-863-9297

363 Pa
Weehawken, NJ 07086

Copyright © 2005 H. Cross Company All rights reserved.

Custom Metal Fabrication Shops Services * Specialty Metals Metal Products Fabricators * Fabricated Materials Material Metals * Metals Fabricators Machining Precious Metal Alloy Alloys * Precision Finishing Specialty Metal * Lamp Seal Custom Foil Seals * Precision Metal Processing Rolling Rockwell Testing Metal Tensile * Annealing Aluminum Metal Copper Aluminum * Metal Strip Open Weave Metallic Ribbons * Precision Metal Products Works * Roll Thin Metal Foils * Precision Metal Fabrication

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.