UMA DEMONSTRAÇÃO ILUSTRADA DO TEOREMA DE MALGRANGE-EHRENPREIS

Luca Maciel Alexander ¹

Abstract. É apresentada uma demonstração curta e ilustrada do teorema de Malgrange-Ehrenpreis, que implica diretamente na resolubilidade local de qualquer EDP a coeficientes constantes.

"Em 1948, Laurent Schwartz visitou a Suécia para apresentar sua teoria de distribuições aos matemáticos locais. Ele teve a oportunidade de conversar com Marcel Riesz. Tendo escrito na lousa a fórmula de integração por partes para explicar a ideia de derivada fraca, foi interrompido por Riesz, que disse: "Espero que você tenha encontrado outra coisa na vida." Mais tarde, Schwartz contou a Riesz sobre suas esperanças de que o seguinte teorema viesse a ser provado: toda equação diferencial parcial linear com coeficientes constantes possui uma solução fundamental (um conceito tornado preciso e geral pela teoria das distribuições). "Loucura!" exclamou Riesz. "Esse é um projeto para o século XXI!" O teorema geral foi provado por Ehrenpreis e Malgrange em 1952. No final do século XX, já existiam demonstrações dele em apenas dez linhas."

F. Treves, 2003 ²

Definição 0.1 (Solução fundamental e polinômio característico). Considere o operador diferencial parcial linear (ODPL)

$$L = \sum_{|\alpha| \le M} a_{\alpha} \partial_x^{\alpha}$$

sobre funções definidas em \mathbb{R}^d , com constantes complexas a_α . Uma solução fundamental de L é uma distribuição F tal que $L(F)=\delta$. O polinômio característico de L é

$$P(\xi) = \sum_{|\alpha| \le M} a_{\alpha} (2\pi i \xi)^{\alpha}.$$

Observação 0.2. A possibilidade de uma definição clara e simples para a solução fundamental foi uma das várias vitórias da teoria das distribuições de Schwartz.

¹Aluno do programa PPGMat, ICMC-USP, lmalexander@usp.br

²Transcrito de [4], tradução própria.

Esses conceitos têm utilidade na resolução de equações do tipo Lu=f, onde $f\in\mathcal{D}$ é dada. Se existe uma solução fundamental F, então $T:\mathcal{D}\to C^\infty,\,T:f\mapsto F*f$ é a inversa de L, isto é, $LT=TL=\mathrm{Id}$ (com $L,\,T$ e Id restritos a \mathcal{D}). De fato, note que $\partial_x^\alpha(F*f)=F*(\partial_x^\alpha f)=(\partial_x^\alpha F)*f \implies L(F*f)=F*(Lf)=(LF)*f \implies LT(f)=TL(f)=\delta*f=f$. Portanto, quando f é função teste, a solução u de Lu=f é T(f)=F*f.

Quanto ao polinômio característico, observe sua relação com a transformada de Fourier aplicada em L. Se $f \in \mathcal{S}$ então $(Lf)^{\wedge} = P\hat{f}$. É razoavel esperar, portanto, que em alguns casos seja possível obter uma solução fundamental F por meio de P, fixando f = F e notando que $(Lf)^{\wedge} = P\hat{f} \implies \hat{\delta} = P\hat{F} \implies F = \int_{\mathbb{R}^d} (1/P(\xi))e^{2\pi ix\cdot\xi}d\xi$. Este é um bom candidato a solução fundamental quando o anulamento do polinômio $P(\xi)$ não impede a interpretação da integral F como uma distribuição.

Um exemplo em que é possível obter F a partir de P dessa forma é o Laplaciano $L = \Delta = \sum_{j=1}^d \partial^2/\partial x_j^2$ em \mathbb{R}^d . Nesse caso, $1/P(\xi) = 1/(-4\pi^2 |\xi|^2)$, e as soluções fundamentais obtidas através da transformada inversa de Fourier desta função coincidem com soluções radiais encontradas através dos métodos clássicos (separação de variáveis, fórmula de Poisson, etc.).

Não é sempre que o método acima fornece F diretamente. Entretanto, se a equação de interesse é linear e a coeficientes constantes, sempre há uma solução fundamental F. Assim afirma o teorema principal desta exposição, que enunciaremos e provaremos agora.

Teorema 0.3 (Malgrange-Ehrenpreis). Todo ODPL (não nulo) a coeficientes constantes L sobre \mathbb{R}^d possui solução fundamental.

 ${\it Proof.}$ O objetivo desta demonstração será atribuir um significado preciso ao candidato

$$F = \int_{\mathbb{R}^d} \left(\frac{1}{P(\xi)} \right) e^{2\pi i x \cdot \xi} d\xi.$$

Mais especificamente, o interpretaremos como uma distribução. Ignoramos por ora o problema da convergência da integral acima, para notar que se a integral em questão definisse uma função em L^1_{loc} , teríamos, para $\varphi \in \mathcal{D}$,

$$F(\varphi) = \int_{\mathbb{R}^d} \varphi(x) \int_{\mathbb{R}^d} \Big(\frac{1}{P(\xi)}\Big) e^{2\pi i x \cdot \xi} d\xi dx$$

portanto, após trocar a ordem de integração (teorema de Fubini),

$$F(\varphi) = \int_{\mathbb{R}^d} \frac{\hat{\varphi}(-\xi)}{P(\xi)} d\xi.$$

A expressão acima ainda não está bem-definida pois P pode se anular. Para contornar este obstáculo, tomamos a variável ξ_1 a valores complexos para então transladar (no plano complexo) a linha de integração com relação a ξ_1 , de modo a evitar raízes do polinômio $p(z) = P(z, \xi')$, para $\xi' = (\xi_2, \ldots, \xi_d)$ fixado.

Iniciamos a demonstração reescrevendo P como permite o seguinte lema: todo polinômio de grau m, após uma mudança de coordenadas composta por uma rotação e multiplicação por uma constante, pode ser escrito como

$$P(\xi) = P(\xi_1, \xi') = \xi_1^m + \sum_{j=0}^{m-1} \xi_1^j Q_j(\xi')$$

onde Q_i é um polinômio de grau no máximo m-j. Note que para cada ξ' , o polinômio $p(z) = P(z, \xi')$ possui m raízes em \mathbb{C} , a saber, $\alpha_1(\xi'), \ldots, \alpha_m(\xi')$ (repetidas de acordo com as respectivas multiplicidades). Conjecturamos que é possível escolher, para cada ξ' , um inteiro $n(\xi')$ tal que

- $\begin{array}{ll} (1) \ |n(\xi')| \leq m+1, \ \forall \xi'. \\ (2) \ \mathrm{Se} \ \mathrm{Im}(\xi_1) = n(\xi'), \ \mathrm{ent\tilde{ao}} \ |\xi_1 \alpha_j(\xi')| \geq 1 \ \ \forall j=1,\ldots,m. \\ (3) \ \mathrm{A} \ \mathrm{funç\tilde{ao}} \ \xi' \mapsto n(\xi') \ \mathrm{\acute{e}} \ \mathrm{mensur\acute{a}vel}. \end{array}$

De fato existe $n(\xi')$ satisfazendo 1 e 2. Note que para cada ξ' , o polinômio p possui m raízes, portanto ao menos um dos m+1 intervalos $I_{\ell}=[-m-1+2\ell, -m-1]$ $1+2(\ell+1)$) (para $\ell=0,\ldots,m$) não contém a parte imaginária de qualquer raiz de p. Definimos $n(\xi')$ como o ponto médio do "primeiro" I_{ℓ} com tal propriedade, isto é, o I_{ℓ} com menor valor de ℓ . As propriedades 1 e 2 são imediatamente satisfeitas. Para ver que a definição dada também satisfaz a propriedade 3, aplicamos o teorema de Rouché sobre pequenos círculos ao redor das raízes de p, mostrando que $\alpha_1(\xi'), \ldots, \alpha_m(\xi')$ são funções contínuas de ξ' , o que implica 3.

FIGURA 1. Raízes de um p(z) de grau 3 evoluindo com $\xi' = \mathbb{R}$.

FIGURA 2. Conjunto $n(\xi')$ desviando das partes imaginárias das raízes de p(z).

Com isso, redefinimos o candidato F como

(0.1)
$$F(\varphi) = \int_{\mathbb{R}^{d-1}} \int_{\mathrm{Im}(\xi_1) = n(\xi')} \frac{\hat{\varphi}(-\xi)}{P(\xi)} d\xi_1 d\xi', \ \varphi \in \mathcal{D}$$

onde tomamos a extensão inteira de $\hat{\varphi}$ para que a integral tenha sentido. Esta extensão existe pois φ possui suporte compacto, e a extensão possui a propriedade de decaimento rápido em direções paralelas aos eixos reais.

Mostraremos que F está bem definido, isto é, que a integral não diverge. Como cada φ possui suporte compacto, sua transformada de Fourier $\hat{\varphi}$ é analítica com decaimento rápido em cada linha paralela ao eixo real, portanto é suficiente mostrar que P é uniformemente inferiormente limitado sobre as linhas de integração. Para isso, fixe um $\xi = (\xi_1, \xi')$ sobre uma das linhas em questão $(\text{Im}(\xi_1) = n(\xi'))$. Agora considere o polinômio de uma variável $q(z) = P(\xi_1 + z, \xi')$. Note que q tem grau

m e que seu coeficiente principal é 1, portanto se $\lambda_1, \ldots, \lambda_m$ denotam as raízes de q, então $q(z) = (z - \lambda_1) \cdots (z - \lambda_m)$. Pela propriedade 2 de $n(\xi')$, $|\lambda_j| \geq 1$, $\forall j$, logo $|P(\xi)| = |q(0)| = |\lambda_1 \cdots \lambda_m| \ge 1$, como queríamos. Além disso, F é uma distribuição pois (é linear e) para cada compacto K em \mathbb{R}^d , existem constantes C'e C tais que vale, para cada $\varphi \in \mathcal{D}(K)$,

$$F(\varphi) \le C' \sup_{|\mathrm{Im}(\xi)| \le m+1} (1+|\xi|)^{-d-1} |\hat{\varphi}(\xi)| \le C \sum_{|\alpha| \le d+1} \|\partial_x^{\alpha} \varphi\|_{\infty}.$$

Por fim, defina $L'=\sum_{|\alpha|\leq m}a_{\alpha}(-1)^{|\alpha|}\partial_x^{\alpha}$. O polinômio característico de L' é $P(-\xi)$, logo $(L'(\varphi))^{\wedge} = P(-\xi)\hat{\varphi}(\xi)$. O decaímento rápido do integrando em (0.1) nos permite derivar sob o sinal de integração:

$$(LF)(\varphi) = F(L'(\varphi)) = \int_{\mathbb{R}^{d-1}} \int_{\mathrm{Im}(\xi_1) = n(\xi')} \hat{\varphi}(-\xi) d\xi_1 d\xi'.$$

Ao deformar o contorno de integração $n(\xi')$ de volta à reta real (teorema de Cauchy), obtemos

$$(LF)(\varphi) = \int_{\mathbb{R}^d} \hat{\varphi}(-\xi)d\xi = \varphi(0) = \delta(\varphi)$$

isto é, F é uma solução fundamental de L.

Observação 0.4. O teorema acima implica que toda EDP linear a coeficientes constantes $Lu=f,\,f\in C^{\infty},$ é localmente resolúvel, pois já estabelecemos que quando $f\in C_c^\infty$, a solução u de Lu=f é F*f (F solução fundamental). Logo, multiplicando f por uma função de corte $\psi\in C_c^\infty$ com $\psi=1$ em uma vizinhança do aberto limitado \mathcal{U} , temos $F * f \psi$ uma solução local de Lu = f em \mathcal{U} . Um exemplo simples em que não temos resolubilidade local (em nenhuma vizinhança da origem) é dado por Grushin e Garabedian: $L = \partial_x + ix\partial_y$ em \mathbb{R}^2 . Note que o segundo coeficiente não é constante.

References

- [1] G. B. Folland. Introduction to Partial Differential Equations. Princeton University Press, 2 edition, 1995.
- [2] Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer-Verlag, 1983.
- [3] Elias M. Stein and Rami Shakarchi. Functional Analysis: An Introduction to Further Topics in Analysis. Princeton University Press, 2011.
- [4] F. Treves, G. Pisier, and M. Yor. Laurent schwartz (1915-2002). Notices A.M.S., 50(9):1072-1084, 2003.