Государственный научный центр Российской Федерации – Физикоэнергетический институт имени А. И. Лейпунского

Войтенков Дмитрий Александрович

Семинар НИИЯФ МГУ по материалам диссертация на соискание ученой степени кандидата физико-математических наук

Самосогласованные микроскопические расчеты характеристик основного и низкоэнергетических возбужденных состояний сферических ядер

Специальность: 01.04.16 – «физика атомного ядра и элементарных частиц»

Научный руководитель: доктор физ.-мат. наук, профессор Камерджиев С. П.

Актуальность работы

- Самосогласованные расчеты квадрупольных моментов нечетных ядер в основном и возбужденном состоянии с учетом взаимодействия между квазичастицами весьма актуальны для стабильных ядер, где имеется большое количество экспериментальных данных.
- Расчет квадрупольных моментов в возбужденном состоянии представляет большой самостоятельный интерес по двум причинам. Во-первых, в настоящее время имеется большое количество данных для статических моментов в возбужденном состоянии, которые требуют современного микроскопического описания. Во-вторых, эта задача содержит корреляции в основном состоянии, которые в отличие от обычных корреляций в QRPA специально не изучались. Задача расчета квадрупольных моментов в возбужденных состояниях, решаемая в данной работе, является простейшим и очень важным (диагональным) случаем для расчета переходов между возбужденными состояниями.
- Современная теория многих тел позволяет учесть эффекты фононного тэдпола для улучшения Обобщенной ТКФС.

Цель исследования

микроскопическое самосогласованное описание с использованием современных методов теории многих тел квадрупольных моментов нечетных и нечетно-нечетных сферических ядер в основном состоянии, характеристик первых 2⁺ уровней и их квадрупольных моментов в четно-четных сферических ядрах и улучшение ОТКФС путем включения эффектов фононного тэдпола.

Задачи исследования

- ✓ Рассчитать квадрупольные моменты нечетных и нечетно-нечетных ядер в основном состоянии в рамках самосогласованной ТКФС на базе ЭФП Фаянса в рамках одноквазичастичного приближения для нечетных ядер (Глава 2).
- ✓ Рассчитать статические квадрупольные моменты в 2⁺ состоянии в магических и немагических ядрах (Глава 3).
- ✓ Исследовать эффекты фононного тэдпола, т.е. всех g^2 поправок в ОТКФС. (Глава 4).
- ✓ Оценить вклад КФВ в расчетах квадрупольных моментов, чтобы проверить правильность используемого расчетного метода (Глава 4).

Основные положения, выносимые на защиту:

- ✓ Объяснены имеющиеся экспериментальные данные для многих нечетных магических и полумагических ядер и предсказаны неизвестные значения квадрупольных моментов нечетных ядер в основном и возбужденном состоянии.
- ✓ С использованием полученных значений квадрупольных моментов нечетных ядер объяснены измеренные квадрупольные моменты нечетно-нечетных околомагических ядер в основном состоянии.
- ✓ Объяснены и предсказаны квадрупольные моменты первых 2⁺ состояний четно-четных изотопов свинца и олова.
- ✓ Исследован вклад корреляций в основном состоянии в задачу о расчетах квадрупольных моментов первых 2⁺ состояний в четных изотопах олова и свинца.

Основные положения, выносимые на защиту:

- ✓ Исследована роль фононного тэдпола, т.е. предпринята попытка улучшения ОТКФС
- ✓ Подтверждена поверхностная природа ядерного спаривания в задаче об энергии первых 2⁺ уровней в четно-четных полумагических ядрах.

Научная новизна:

- ✓ Впервые в рамках единого самосогласованного подхода и с использованием хорошо известных ранее параметров ЭФП рассчитаны и предсказаны значения квадрупольных моментов многих как нечетных, так и нечетнонечетных сферических ядер в основном состоянии и квадрупольные моменты возбужденных первых 2⁺ состояний в полумагических ядрах.
- ✓ Показано, что величина квадрупольного момента первого 2⁺-состояния в четно-четных ядрах определяется двумя, примерно одинаковыми по величине эффектами корреляциями в основном состоянии нового вида и эффектами ядерной среды. Впервые изучены эти корреляции и показан их большой количественный вклад в рассмотренные величины.
- ✓ Получены результаты, обобщающие ОТКФС на случай учета эффектов фононного тедпола. Выполнены оценки возможного вклада КФВ в величину квадрупольного момента нечетного ядра в основном состоянии, которые подтвердили правильность наших расчетов без учета КФВ.

Апробация работы

Основные результаты работы докладывались на:

- 1. Международная конференция "Nuclear Structure and Related Topics" (NSRT09), г. Дубна, 30 июня 4 июля 2009 г.
- 2. XII Международный Семинар по электромагнитным взаимодействиям ядер, г. Москва, 17 20 сентября 2009 г.
- 3. LX Международная конференция по ядерной физике «Ядро 2010. Методы ядерной физики для фемто- и нанотехнологий», г. Санкт-Петербург, Петергоф, 6 9 июля 2010 г.
- 4. Международная конференция "Nuclear Structure and Related Topics" (NSRT12), г. Дубна, 2 7 июля 2012 г.

Список публикаций в журналах из перечня ВАК

- 1. Камерджиев С. П., Авдеенков А. В., Войтенков Д. А. Квазичастично-фононное взаимодействие в теории конечных ферми-систем // **ЯФ**. 2011. Т. 74 С. 10.
- 2. Tolokonnikov S. V., Kamerdzhiev S., Voitenkov D., Krewald S., Saperstein E. E. Effects of density dependence of the effective pairing interaction on the first 2⁺ excitations and quadrupole moments of odd nuclei // **Phys. Rev. C** 2011 Vol. 84 p. 054319.
- 3. Voitenkov D., Kamerdzhiev S., Krewald S., Saperstein E. E., Tolokonnikov S. V. Self-consistent calculations of quadrupole moments of the first 2⁺ states in Sn and Pb isotopes // **Phys. Rev. C** 2012 Vol. 48 p. 054319.
- 4. Tolokonnikov S. V., Kamerdzhiev S., Krewald S., Saperstein E. E., Voitenkov D. Quadrupole moments of spherical semi-magic nuclei within the self-consistent Theory of Finite Fermi Systems // **Eur. Phys. J. A** 2012 Vol. 48 p. 70.

Список публикаций в журналах из перечня ВАК

- 5. Камерджиев С. П., Ачаковский О. И., Войтенков Д. А., Толоконников С. В. Самосогласованные подходы в микроскопической теории ядра. Статические моменты нечетно-нечетных ядер // **ЯФ** 2014 Т. 77 с. 70.
- 6. Kamerdzhiev S., Krewald S., Tolokonnikov S., Saperstein E. E., Voitenkov D. Self-consistent calculations of quadrupole moments of spherical nuclei // EPJ Web of Conferences 2012 Vol. 38 p. 10002.
- 7. Tolokonnikov S. V., Kamerdzhiev S., Krewald S., Saperstein E. E., Voitenkov D. The first quadrupole excitations in spherical nuclei and nuclear paring // EPJ Web of Conferences 2012 Vol. 38 p. 04002.
- 8. Voitenkov D., Achakovskiy O., Kamerdzhiev S., Tolokonnikov S. Quadrupole moments of odd-odd near-magic nuclei // EPJ Web of Conferences 2012 Vol. 38 p. 17012.

Содержание работы

Введение

- **Глава 1.** Самосогласованная теория конечных ферми-систем с функционалом плотности и ее применение к анализу природы ядерного спаривания
- **Глава 2.** Квадрупольная поляризуемость и квадрупольные моменты сферических ядер в основном и возбужденных состояниях
- **Глава 3.** Квазичастично-фононное взаимодействие в самосогласованной теории конечных ферми-систем
- **Глава 4.** Квазичастично-фононное взаимодействие в обобщенной и стандартной теории конечных ферми-систем

Заключение

Глава 1. Самосогласованная теория конечных ферми-систем с функционалом плотности и ее применение к анализу природы ядерного спаривания

Общие соотношения

 ✓ Энергия основного состояния рассматривается как функционал от нормальной и аномальной плотностей

$$E_0 = \int \mathcal{E}[\rho_n(\mathbf{r}), \rho_p(\mathbf{r}), \nu_n(\mathbf{r}), \nu_p(\mathbf{r})] d^3r.$$

✓ Эффективное спаривательное взаимодействие

$$F^{\xi} = C_0 f^{\xi} = C_0 (f_{ex}^{\xi} + h^{\xi} x^{2/3})$$

Объемное спаривание: $h^{\xi}=0$

Поверхностное спаривание: $f_{
m ex}^{\xi}$ и h^{ξ} — отличны от нуля

Общие соотношения

Уравнения для эффективного поля

$$\hat{V}(\omega) = \hat{V}_0(\omega) + \hat{\mathcal{F}}\hat{A}(\omega)\hat{V}(\omega),$$

Самосогласование:

$$\mathcal{F} = \frac{\delta^2 \mathcal{E}}{\delta \rho^2}, \quad \mathcal{F}^{\xi}(\rho) = \frac{\delta^2 \mathcal{E}}{\delta \nu^2} \quad \mathcal{F}^{\omega \xi} = \frac{\delta^2 \mathcal{E}}{\delta \rho \delta \nu}.$$

Поверхностное и объемное спаривание

Энергия возбуждения первых 2+ уровней изотопов Sn и Pb

SkM* и SLy4 – J. Terasaki, J. Engel, and G. F. Bertsch. Phys. Rev. С 78, 044311

Глава 2. Квадрупольная поляризуемость и квадрупольные моменты сферических ядер в основном и возбужденных состояниях

Квадрупольные моменты нечетных изотопов олова и свинца

$$Q_{\lambda}^{p,n} = (u_{\lambda}^2 - v_{\lambda}^2) V_{\lambda}^{p,n}, \qquad V_{\lambda} = -\frac{2j-1}{2j+2} \int V(r) R_{nlj}^2(r) r^2 dr.$$

Квадрупольные моменты нечетных ядер соседей четных N=50 и N=82 изотонов

Квадрупольные моменты нечетно-протонных соседей четных изотопов олова и свинца

Квадрупольные моменты нечетно-протонных N=50 и N=82 изотонов

Квадрупольные моменты нечетно-нечетных околомагических ядер в основном состоянии

$$Q_{I} = \langle II \mid V^{p} + V^{n} \mid II \rangle,$$

$$Q_{I} = (2I+1) \begin{pmatrix} I & 2 & I \\ I & 0 & -I \end{pmatrix} (-1)^{j_{p}+j_{n}+I+2} \times$$

$$\times \left[\begin{cases} j_{p} & I & j_{n} \\ I & j_{p} & 2 \end{cases} \right\} c_{j_{p}}^{-1} Q^{p} + \begin{cases} j_{n} & I & j_{p} \\ I & j_{n} & 2 \end{cases} \right\} c_{j_{n}}^{-1} Q^{n} \right],$$

$$Q_{\lambda} = \langle \lambda | V(\omega = 0) | \lambda \rangle = c_j \langle njl \parallel V \parallel njl \rangle,$$

$$c_j = 2j(2j-1)^{1/2} [(2j+3)(2j+2)(2j+1)2j]^{-1/2}$$

Феноменологический подход

Квадрупольные моменты нечетно-нечетных околомагических ядер

Ядро	J^{π}	$T_{1/2}$	$Q_{ m phen}$	Q_{exp}	
$^{40}_{19}\mathrm{K}_{21}$	4-	$1.248 \times 10^9 \text{ y}$	-0.106(6)	-0.071(1)	
$^{92}_{41}{ m Nb}_{51}$	7+	$3.47 \times 10^7 \text{ y}$	-0.43(7)	-0.35(3)	
$^{210}_{83}\mathrm{Bi}_{127}$	1-	$5.01 \mathrm{d}$	+0.22(6)	+0.19(6)	

Значения квадрупольные моментов соответствующих нечетных ядер взяты из эксперимента

Квадрупольные моменты нечетно-нечетных околомагических ядер

Ядро	J^{π}	$T_{1/2}$	$Q_{ m eff}$	$Q_{ m theor}$	$Q_{\rm exp}$	
$^{54}_{27}{ m Co}_{27}$	0+	$193.28~\mathrm{ms}$	1	-	_	
$^{56}_{27}{ m Co}_{29}$	4+	77.236 d	0.19	0.30	+0.25(9)	
$^{56}_{29}\mathrm{Cu}_{27}$	(4^{+})	$93~\mathrm{ms}$	0.14	0.28	_	
$_{29}^{58}\mathrm{Cu}_{29}$	1+	$3.204~\mathrm{s}$	0.09	0.15	_	
$^{78}_{29}\mathrm{Cu}_{49}$	(3-)	$637 \mathrm{\ s}$	-0.18	-0.21	_	
	(4-)		4×10^{-5}	-0.03	_	
$^{100}_{49}\mathrm{In}_{51}$	(6^{+})	$5.9 \mathrm{\ s}$	0.24	0.21	_	
$^{130}_{49}\mathrm{In}_{81}$	1-	$0.29 \mathrm{\ s}$	-0.08	-0.07	_	
$^{132}_{49} \mathrm{In}_{83}$	(7-)	$0.207~\mathrm{s}$	-0.40	-0.29	_	
$^{132}_{51}{ m Sb}_{81}$	$(4)^{+}$	$2.79~\mathrm{m}$	-0.30	-0.22	_	
$_{51}^{134} \mathrm{Sb}_{83}$	(0-)	$0.78 \mathrm{\ s}$	_	_	_	
$^{206}_{81}\mathrm{Tl}_{125}$	0-	_	_	_	_	
$^{208}_{81}\mathrm{Tl}_{127}$	5 ⁺	$3.053~\mathrm{m}$	-0.30	-0.27	_	
$^{208}_{83}\mathrm{Bi}_{125}$	5+	$_{\rm 3.68E+5~y}$	-0.51	-0.35	-0.64(6)	
$^{210}_{83}\mathrm{Bi}_{127}$	1-	5.012 d	0.21	0.16	+0.136(1)	

Глава 3. Квазичастично-фононное взаимодействие в самосогласованной теории конечных ферми-систем

Квадрупольные моменты в возбужденном состоянии в магических ядрах

$$M_{LL'} = \int V^{0}(\mathbf{r}) \delta_{LL'}^{(2)} G(\mathbf{r}, \mathbf{r}, \varepsilon) d\mathbf{r} \frac{d\varepsilon}{2\pi \imath},$$

$$M_{LL'} = \sum_{123} V_{12} A_{123}^{(1)} g_{31}^L g_{23}^{L'} + \sum_{1234} V_{12} A_{12} \delta_L F_{1234} A_{34} g_{43}^{L'}, \qquad Q = \sqrt{\frac{16\pi}{5}} < II|M|II > 0$$

$$A_{123}^{(1)}(\omega_L, \omega_{L'}) = \int G_1(\varepsilon) G_2(\varepsilon + \omega) G_3(\varepsilon + \omega_L) \frac{d\varepsilon}{2\pi i}$$

Обобщение на случай ядерного спаривания

$$\delta_L F, \delta_L F^{\xi} \neq 0$$

$$d^{(1)} = d^{(2)} = 0$$

$$M_{\rm ddf} = C_{IL} \int \delta \rho_{\rm st}(r) \frac{\partial \mathcal{F}}{\partial \rho}(r) (\rho_L^{\rm tr}(r))^2 d^3r,$$

$$\rho_L^{\text{tr}} = \mathcal{L}(\omega_L) g_L, \delta \rho_{\text{st}} = \mathcal{L}(0) V,$$

$$C_{IL} = \frac{1}{2} (-1)^{L} (2L+1)(2I+1) \begin{pmatrix} I & L & L \\ 0 & L - L \end{pmatrix} \begin{pmatrix} I & L & L \\ 0 & 0 & 0 \end{pmatrix},$$

$$\mathcal{L} = \int (GG - F^{(1)}F^{(2)})d\varepsilon/2\pi i.$$

$$\begin{split} M_{LL} &= \sum_{123} (-1)^{L+1} \begin{pmatrix} I & L & L \\ 0 & L & -L \end{pmatrix} \begin{cases} I & L & L \\ j_3 & j_2 & j_1 \end{cases} \\ &\times <1 \parallel V \parallel 2 > <3 \parallel g_L \parallel 1 > <2 \parallel g_L \parallel 3 > \sum_{s} A_{123}^{(i) \text{pair}} \;, \\ &\sum_{s=1}^{8} A_{123}^{(i) \text{pair}} = \\ &= \left(\frac{1}{(\omega_L + E_{13})(\omega_L + E_{23})} + \frac{1}{(\omega_L - E_{13})(\omega_L - E_{23})} \right) \\ &\times \left[u_1^2 u_2^2 v_3^2 - v_1^2 v_2^2 u_3^2 + \frac{\Delta_1 \Delta_2}{4E_1 E_2} (u_3^2 - v_3^2) \right. \\ &+ \frac{\Delta_1 \Delta_3}{4E_1 E_3} (u_2^2 - v_2^2) + \frac{\Delta_2 \Delta_3}{4E_2 E_3} (u_1^2 - v_1^2) \right] + \\ &\left[\frac{1}{E_{12}} \left[\frac{2E_{23} (u_1^2 u_3^2 v_2^2 - v_1^2 v_3^2 u_2^2)}{E_{23}^2 - \omega_L^2} + \frac{2E_{13} (u_2^2 u_3^2 v_1^2 - v_3^2 v_2^2 u_1^2)}{E_{13}^2 - \omega_L^2} \right. \right. \\ &\left. - \left(\frac{\Delta_1 \Delta_2}{2E_1 E_2} (u_3^2 - v_3^2) + \frac{\Delta_1 \Delta_3}{2E_1 E_3} (u_2^2 - v_2^2) \right. \\ &\left. + \frac{\Delta_2 \Delta_3}{2E_2 E_3} (u_1^2 - v_1^2) \right) \left(\frac{E_{13}}{E_{13}^2 - \omega_L^2} + \frac{E_{23}}{E_{23}^2 - \omega_L^2} \right) \right]. \end{split}$$

KOC

Квадрупольные моменты первых 2+ возбужденных состояний в изотопах олова и свинца

Вклад различных составляющих в квадрупольные моменты первых 2+ состояний в изотопах Sn и Pb

Ядро	Q^{n}	Q^{p}	$Q_{ m tot}$	Q_{exp}	$Q_{ m QRPA}$	Q_{GSC}	$Q_{ m V}$
$^{114}\mathrm{Sn}$	-0.15	-0.11	-0.28	0.32(3),	-0.004	-0.19	-0.09
				0.36(4)			
$^{116}\mathrm{Sn}$	0.00	-0.10	-0.12	-0.17(4),	-0.003	-0.09	-0.03
				+0.08(8)			
$^{118}\mathrm{Sn}$	0.10	-0.09	-0.01	-0.05(14)	-0.003	-0.02	0.01
$^{204}\mathrm{Pb}$	0.18	-0.07	0.10	+0.23(9)	-0.003	0.04	0.06
²⁰⁶ Pb	0.11	-0.02	0.09	+0.05(9)	-0.002	0.03	0.06
$^{208}\mathrm{Pb}$	0.01	0.04	0.05	-0.7(3)	0.043	-0.02	0.03

QRPA(GSC=0, $V=V^0$)

Глава 4. Квазичастично-фононное взаимодействие в обобщенной и стандартной теории конечных ферми-систем

Учет КФВ в ОТКФС для магических ядер

Подынтегральное выражение пропагатора уравнения для эффективного поля улучшенной ОТКФС, которое соответствует обобщенной модели 1 на случай учета эффектов тэдпол.

Оценки вклада КФВ в квадрупольные моменты нечетных ядер

График со "вставкой". Волнистая линия фононная D-функция. Кружок — амплитуда рождения $g_L(\mathbf{r})$ L-фонона.

$$\delta Q_{ph} \simeq 0, 1-0, 2$$
 барн

Основные результаты

- ✓ Впервые, в рамках единого самосогласованного подхода и с использованием известного ЭФП Фаянса объяснены имеющееся экспериментальные данные и предсказаны неизвестные значения квадрупольных моментов нечетных ядер в основном состоянии.
- ✓ объяснены и предсказаны квадрупольные моменты нечетно-нечетных околомагических ядер в основном состоянии
- ✓ Показано, что величина квадрупольного момента 2_1^+ состояния в четночетных ядрах определяется двумя, примерно одинаковыми по величине, эффектами корреляции в основном состоянии и эффектами ядерной среды.
- ✓ Впервые изучены корреляции в основном состоянии ("графики идущие назад") происходящие от интегрирования трех (а не двух, как в обычном QRPA) функций Грина. Показан их большой количественный вклад в рассматриваемой задаче.

Основные результаты

- ✓ Исследована роль фононного тедпола в проблеме дальнейшего развития ОТКФС. Полученные результаты показывают, что численная реализация этого улучшения возможна, по крайней мере для статического случая (моменты ядер), хотя и является достаточно сложной.
- ✓ Выполнена оценка возможной роли КФВ в рассмотренной задаче о квадрупольных моментах в нечетных ядрах. Показано, что изучаемый эффект складывается из двух противоположных по знаку величин, но сокращение не является полным и следует ожидать величину соответствующей поправки не более δQ = 0,1 0,2 барн для ядер с Q≥ 0,4 − 0,5 барн. Этот результат подтверждает правильность используемого нами метода для расчета квадрупольных моментов нечетных магических и полумагических ядрах.
- ✓ Подтверждена поверхностная природа ядерного спаривания в рассматриваемой нами задачи об энергии первых 2+ уровней четно-четных полумагических ядер.

Спасибо за внимание!