TOPOLOGY - HOMEWORK 06

Due: 2020 April 16th, 10:00AM

For questions below, we assume that every $X \subset \mathbf{R}^n$ is endowed with the standard subspace topology, unless stated otherwise.

Question 1. Show that the following subspace

$$X = \{(0, y) : y \in \mathbf{R}\} \cup \{(x, \sin(1/x)) : x \in \mathbf{R}_{>0}\}\$$

of \mathbb{R}^2 is not path-connected.

Question 2. Prove the following:

- (i) None of the three spaces (0,1), (0,1] and [0,1] is homeomorphic to the other two.
- (ii) Every continuous function $f:[0,1] \longrightarrow [0,1]$ has a fixed point $x \in [0,1]$, i.e., f(x) = x.

Is (ii) still true, if [0,1] is replaced by (0,1) or (0,1]? Justify your answer.

Question 3. Fix a topological space (X, \mathcal{T}) . An open neighborhood basis of $x \in X$ is a collection of open sets $\{B_i\}_{i \in I}$ such that

- (1) $x \in B_i$ for every i, and
- (2) for every open set U containing x, there is a B_i with $B_i \subset U$.

We call X locally path-connected if every point has an open neighborhood basis consisting of path-connected sets. Show that if X is connected and locally path-connected, then it is path-connected.

(Hint: fix $x \in X$ and consider the set S_x of points in X which can be joined to x by a path. Show that S_x is clopen.)

Question 4. Consider $(\mathbf{R}, \mathcal{T})$ with the topology given by

$$\mathcal{T} = \{\emptyset\} \cup \{\mathbf{R} - A : A \subset \mathbf{R} \text{ is finite}\}.$$

Show that every subset $X \subset \mathbf{R}$ is compact.

Question 5. Fix a compact topological space (X, \mathcal{T}) . Prove the equivalence of the following two statements:

- (i) every compact subset of X is closed;
- (ii) for every topology \mathcal{T}' strictly containing \mathcal{T} , the space (X, \mathcal{T}') is non-compact.

Can you give an example of (X, \mathcal{T}) satisfying (the equivalent) (i) and (ii) above?