REPORT DOCUMENTATION PAGE

AFRL-SR-AR-TR-04-

• •

the collection of information. Send comments regarding this t	nated to average 1 hour per response, including the time for review burden estimate or any other aspect of this collection of inforn 1204, Arlington, VA 22202-4302, and to the Office of Managem		0/32 Wisking mation
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPOR	
	February 25, 2004	Final Technica	l Report (15 May 99 - 14 May 02)
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
	e-Property Relationships for Hig	th Temperature	F49620-99-1-0266
Ceramic Composites		•	3484/SS
			61103D
6. AUTHOR(S)			
Elizabeth C. Dickey			
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
University of Kentucky	NIED ADDITION(ES)		REPORT NUMBER
Dept of Materials Science and I	Engineering		
177 Anderson Hall	angineering.		
Lexington, KY 40506-0046			
Lexington, K1 40500-0040			
9. SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
AFOSR/NA			AGENCY REPORT NUMBER
4015 Wilson Blvd., Room 713			
Arlington, VA 22230-1954			
Program Manager: Dr. Joan F	uller		
2			
11. SUPPLEMENTARY NOTES			
			Lan Diagnipurion conf
12a. DISTRIBUTION AVAILABILITY STATEM		NI IMITED	12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RE	ELEASE, DISTRIBUTION IS U	NLIMITED	
13. ABSTRACT (Maximum 200 words)			
	utectics such as alumina-YAG ar	nd alumina-zirconia sho	ow promise as high-temperature
			6 Compatibility constraints at the
	two constituent phases can lead		
			resses have important ramifications for
			mina-YAG and alumina-zirconia
			are thoroughly characterized. X-ray
			ently converted to stress tensors. Since
			ic finite element modeling (FEM) is
			rimental measurements and FEM
		isons between the expe	intental measurements and I Livi
results provide insight into poss	ible sitess teller.		
14. SUBJECT TERMS	ว กกเก	305 020	115. NUMBER OF PAGES
17. JUDULUI IENWIJ	£0040,	707 050	8
			16. PRICE CODE
			1
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATIO	N 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Ŭ	U	U	

FINAL REPORT

For AFOSR Award # F49620-99-1-0266

FUNDAMENTAL STRUCTURE-PROPERTY RELATIONSHIPS FOR HIGH-TEMPERATURE CERAMIC COMPOSITES

Elizabeth C. Dickey
Department of Materials Science and Engineering
University of Kentucky

Abstract

Directionally-solidified oxide eutectics such as alumina-YAG and alumina-zirconia show promise as high-temperature structural materials because of their high temperature strength and creep resistance. Compatibility constraints at the internal interfaces between the two constituent phases can lead to residual stresses upon thermal cycling and elastic interaction stresses under applied loads. The magnitudes and distributions of these stresses have important ramifications for the mechanical behavior of the composites. Here we investigate thermal stresses in alumina-YAG and alumina-zirconia directionally solidified eutectics (DSEs). First, the microstructure and crystallography are thoroughly characterized. X-ray diffraction is employed to measure the strain tensors in each phase, which are subsequently converted to stress tensors. Since the experimental measurements provide only average stresses in each phase, anisotropic finite element modeling (FEM) is used to investigate stress distributions in the materials. Comparisons between the experimental measurements and FEM results provide insight into possible stress relief

I. Objectives

This research program aims to elucidate fundamental aspects of interfacial bonding and interfacial compatibility stresses in high-temperature ceramic composites. The principal class of composite materials investigated are directionally solidified ceramic eutectics. To assess the relationship between interface structure and interfacial compatibility stresses in these classes of materials, this research aims to develop analytical techniques to probe the structure and strain state of the material from multiple length scales.

II. Research Results

Microstructure and Crystallography

The YAG - A½O₃ DSE fibers were grown by Dr. Ali Sayir of NASA-Glenn via the laser heated floating zone technique. Fibers were drawn with diameters of 80 µm, although the diameter was intentionally increased to 2mm in some sections to increase the sampling volume for x-ray diffraction. The "Chinese script" microstructure of the YAG-A½O₃ eutectic, shown in Fig. 1, proved to be uniform across the radius of the fibers as well as among samples taken from different locations along the fiber axis.

Figure 1. SEM BSE image showing the microstructure of YAG-Al₂O₃ eutectic; YAG is lighter phase.

The crystallographic orientation relationship between YAG and AbO_3 , shown in Fig. 2, is consistent over the entire cross-section of the sample. The sample normals for AbO_3 and YAG are very close to $[12\overline{1}]$ (rhombohedral coordinates) and $[1\overline{1}1]$, respectively. Perpendicular to the growth axis, the $(2\overline{1}1)$ and (011) planes of YAG are coincident with the (111) and $(10\overline{1})$ planes AbO_3 .

Figure 2. SEM electron backscattered diffraction (EBSD) patterns showing orientation relationship between YAG (left) and Al₂O₃ (right).

This orientation relationship concurs with that found in x-ray diffraction pole figures, as shown in Fig. 3. The pole figures, while showing only one orientation of YAG within the sample, show two twin-related variants of A_bO_3 . The (10 $\overline{1}$) reflections belonging to each variant are indicated by the black triangles in Fig. 3b.

Figure 3. Pole figures done on YAG {111} (left) and Al₂O₃ {10 1} (right) peaks to show orientation relations and variants.

EBSD was used to map the two twin-related variants of AbO_3 along the length of a fiber. Fig. 4 shows the spatial variation of the variants. Within what appears to be a contiguous grain, the two twin-related variants are apparent.

Figure 4 Orientation map showing spatial distribution of the Al₂O₃ variants within a YAG-Al₂O₃ DSE fiber. The sample direction to which the crystallographic directions are referred is indicated in the schematic to the right of the figure.

Fig. 5 shows pole figures from AbO3 and ZrO2(Y2O3) in an AbO3-ZrO2 DSE. Whereas the AbO₃ is nearly single crystalline with [0001] oriented along the growth axis, the ZrO₂ has multiple orientations, although it is highly (220) textured along the growth axis.

Al₂O₃-ZrO₂ DSE. Since the phase is nearly single an Al₂O₃-ZrO₂ DSE. crystalline, a rotated single crystal stiffness tensor can polycrystalline yet textured, a weighted stiffness be used.

Figure 5a: (1123) pole figure of the Al₂O₃ phase in an Figure 5b: (311) pole figure of the ZrO₂ phase in Since the phase is tensor must be used.

Measurement of Residual Stresses in Highly Textured Composites by X-ray Diffraction

Because the directionally solidified eutectics are highly textured, standard polycrystalline stress measurements using x-ray diffraction are not possible. It is therefore necessary to make measurements of interplanar spacings along particular sample directions where reflections are present. Once at least six interplanar-spacing measurements have been made and the unstressed lattice parameter measured, it is possible to fit the six components of the strain tensor to the experimental data. Typically, the system is over-determined by making at least twelve measurements and using a fitting routine to determine the strain tensor and error matrix.

The final step in the analysis is to convert the strain tensors to stress tensors with the stiffness tensors. Since the alumina is nearly single crystalline, the single-crystal stiffness tensor rotated to the correct reference frame can be used. The ZrO₂ phase, however, has much weaker texture and it is necessary to weight the stiffness tensor using the orientation distribution function (ODF) as outlined below:

Single crystal stiffness tensor of cubic ZrO₂ (MPa)

Weighted stiffness tensor (MPa)

Applying this procedure to A_bO_3 -Zr $O_2(6.6wt\% Y_2O_3)$ DSEs, the following stress tensors were determined where x_3 is normal to the growth axis:

The very large stresses, particularly in ZrO₂ which has a lower volume fraction, result from mismatches in thermal expansion/contraction between the two phases and the large temperature differential between the solidification temperature (~2180°C) and room temperature.

In order to measure room temperature residual thermal stress in the alumina-YAG composite, several interplanar spacings of the same crystallographic family of planes in each phase were measured and, in combination with unstressed lattice spacings, strains were calculated and fit to the fundamental x-ray strain equation. The strain tensors were subsequently converted to stress tensors using the single crystal elastic constants. Eighteen measurements were taken of the YAG phase from the family $\{10 \ 6 \ 4\}$ and eleven measurements were taken of the alumina phase of the families $\{5 \ 4 \ 3\}\{2 \ 2 \ -2\}\{4 \ 2 \ 0\}$. The resulting stress tensors and accompanying errors are:

	YAG			,-			· · ·
43	-26	-71			89	36	32
-26	18	-111	MPa	+/-	36	78	40
-71	-111	119		l.	32	40	58
	Alumina						
296	-7 0	29			137	34	54
-70	276	65	MPa	+/-	34	136	33
29	65	238			54	33	118

This method of stress measurement was limited by the experimental error, which was on the order of the predicted stresses. It can be seen that most of the stress magnitudes for YAG- A_bO_3 fall within one standard deviation of error.

Finite Element Modeling of Residual Stresses

To understand stress distributions in the materials, we modeled realistic eutectic microstructure by FEM. Microstructural and crystallographic data obtained by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) were used to generate models (see Fig. 6). The two phases (YAG and alumina in this case) were completely constrained at the interfaces. Anisotropic thermal and elastic properties were given as inputs to the program. The materials were assumed to be stress free at the eutectic temperature (2100°C) and the temperature was lowered from this point to room temperature.

The results of the FEM calculations are presented in Fig. 7 and show that the YAG is in tension and the AbO3 in compression. This is expected since YAG has a smaller thermal expansion that AbO3. The stresses are largest along the x-axis, corresponding to the c-axis of AbO3. While the average stresses in both phases are low even along the x-direction (~50 MPa in AbO3 and ~-200 MPa in YAG), stress concentrations at sharp corners exceed 600MPa and -550MPa. These areas of stress concentration are the critical areas for mechanical deformation and will certainly be the sites for crack initiation upon loading. Understanding such relationships between microstructure and residual stress is critical for optimizing eutectic microstructures.

Figure 6: Scanning electron microscope i mages (a) of the YAG-Al₂O₃ eutectic microstructures are used as the basis for FEM models. The white phase is YAG and the dark Al₂O₃. Boundaries between the phases are identified (b) and the model microstructure extended in the z-direction to make a 3-D model.

Figure 7: Thermal stresses associated with cooling a YAG-Al₂O₃ DSE from the eutectic temperature (2100°C) to room temperature as calculated by FEM.

References

¹ T. Mah, T.A. Parthasarathy and L.E. Matson, "Processing and mechanical properties of AhO₃/Y₃Ah₅O12 (YAG) eutectic composite," *Ceramic Engineering and Science Proceedings*, 11, 1617-27 (1990).

² T.A. Parthasarathy and T. Mah, "Creep behavior of an AbO₃-Y₃Al₅O₁₂ eutectic composite," *Ceramic Engineering and Science Proceedings*, 11, 1628-38 (1990).

³ A. Sayir and L. E. Matson, "Growth and Characterization of Directionally Solidified Ab₂O₃/Y₃Al₅O₁₂ (YAG) Eutectic Fibers," in HITEMP Review Vol. 1 NASA CP-10082, (1991) 83.1.

⁴ A. Sayir, R. M. Dickerson, H. M. Yun, S. Heidger and L. E. Matson, "High Temperature Mechanical Properties of Directionally Solidified AbO₃/Y₃Al₅O₁₂(YAG) Eutectic Fibers,"

in HITEMP Review Vol. 1, NASA CP-10146, (1994) 74.1-74.18.

⁵ S. C. Farmer, A. Sayir and P. O. Dickerson, "Mechanical and Microstructural Characterization of Directionally-Solidified Alumina-Zirconia Eutectic Fibers," in "Ceramic Matrix Composites-Advanced High-Temperature Structural Materials," eds., R. A Lowden, M. K. Ferber, J. R. Hellmann, K. K. Chawla, and S. G. DiPietro, Mat. Res. Soc. Proc., 365 (1995) 11.

⁶ E.C. Dickey, C. S. Frazer, T.R. Watkins and C.R. Hubbard, "Residual Stresses in High Temperature Ceramic Eutectics," Journal of the European Ceramic Society, 19 (1999)

2503-2509.

Personnel Supported

This grant supported the research activities of the following people from 1999-2001:

Elizabeth C. Dickey Colleen S. Frazer Assistant Professor, University of Kentucky Graduate Student, University of Kentucky

C. Evan Jones

Student Intern, Dunbar High School, Lexington, KY

Robert Miller

Graduate Student, University of Kentucky

Publications resulting from grant

E.C. Dickey, C. S. Frazer, T.R. Watkins and C.R. Hubbard, "Residual Stresses in High Temperature Ceramic Eutectics," *Journal of the European Ceramic Society*, 19 (1999) 2503-2509.

C.S. Frazer, EC. Dickey, and A. Sayir, "Crystallographic Texture and Orientation Variants in Al₂O₃/Y₃Al₅O₁₂ Directionally Solidified Eutectic Crystals," *J. Crystal Growth*, 233 (2001) 187-195.

C.S. Frazer, C.E. Jones, E.C. Dickey, "Interfacial Compatibility Stresses in Alumina-Zirconia and Alumina-YAG Composites," in Advances in Ceramic Matrix Composites VI, *Ceramic Transactions*, Volume 124 (2001) J.P. Singh, Narottam P. Bansal, and Ersan Ustundag, Editors, American Ceramic Society, Westerville, OH, pp.339-350.

Awards Received

Outstanding Materials Engineering Professor, University of Kentucky, 1999 and 2001 Presidential Early Career Award for Scientists and Engineers (PECASE), 1999