

Mathematical Methods in Finance

Lecture 7: Stochastic Differential Equations and Financial Applications

Fall 2013

Copyright © 2013 LI, Chenxu

Overview

- ► Stochastic Differential Equations (SDE)
- ► Examples in Financial Modeling

Stochastic Differential Equations (SDEs)

▶ Definition: A one-dimensional Stochastic Differential Equation (SDE) is an equation of the form

$$dX(t) = \beta(t, X(t))dt + \gamma(t, X(t))dW(t). \tag{1}$$

- $ightharpoonup \beta(t,x)$: drift;
- $\gamma(t,x)$: diffusion;
- ▶ X(0) = x for $t \ge 0$ and $x \in \mathcal{R}$: the initial condition.
- ► Similarly define SDEs with multiple driving Brownian motions
- ► Similarly define multidimensional SDEs

3

Two types of solutions

- ► A strong solution is a process that solves the dynamic (2) on a given probability space (the driving Brownian motion is given as an input);
- ► A weak solution consists of a probability space and a process on it that solves the dynamic (2).
- ▶ strong solution ⇒ weak solution

▶ Existence and Uniqueness of Strong Solution If there exist two constants C and D s.t. for any $t \in [0, T]$ and $x \in \mathcal{R}$,

- $|\beta(t,x)| + |\gamma(t,x)| \le C(1+|x|);$
- $|\beta(t,x) \beta(t,y)| + |\gamma(t,x) \gamma(t,y)| \le D|x y|.$

The SDE admits a unique strong solution!

- Generally speaking, a SDE is not easy to solve, but sometimes we can solve it explicitly.
- ► Sometimes, numerical computing (e.g. Monte Carlo simulation) are necessary!

5

Linear SDEs

SDE:

$$dX(t) = \beta(t, X(t))dt + \gamma(t, X(t))dW(t).$$
 (2)

with

- ▶ Drift $\beta(t,x) = a(t) + b(t)x$;
- ▶ Diffusion $\gamma(t,x) = \gamma(t) + \sigma(t)x$; condition.
- e.g. One-dimensional linear SDEs:

$$dX(t) = [a(t) + b(t)X(t)]dt + [\gamma(t) + \sigma(t)X(t)]dW(t).$$

Example 1: (Generalized) Geometric Brownian Motion for Modeling Asset Price

ightharpoonup S(t) satisfies SDE:

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW(t), S(0) = s_0$$

- ▶ Modeling issue: $\alpha(t)$ is instantaneous mean rate of return, and $\sigma(t)$ is volatility.
- ▶ Both $\alpha(t)$ and $\sigma(t)$ could be very general adapted stochastic processes.
- ▶ If $\alpha(t)$ and $\sigma(t)$ are both constants \Longrightarrow Black-Scholes-Merton model (1973)
- ► Explicit solution:

$$S(t) = s_0 e^{\int_0^t \sigma(u)dW(u) + \int_0^t \left(\alpha(u) - \frac{1}{2}\sigma^2(u)\right)du}.$$

7

Examples in Financial Modeling: the Vasicek Model

Example 2: Vasicek Model for Interest Rate

$$dR(t) = (\alpha - \beta R(t))dt + \sigma dW(t).$$

- ▶ When $\alpha = 0$, R(t) is called an Ornstein-Uhlenbeck
- Equivalently written as

$$dR(t) = \kappa(\theta - R(t))dt + \sigma dW(t).$$

process.

- \blacktriangleright κ : mean-reverting speed
- \blacktriangleright θ : mean-reverting level

How to solve is?

If RHS does not involve R(t), the integral form of R(t) is ready. So our objective is to remove R(t) on the RHS.

Recall from Ordinary Differential Equation

Recall ODE

$$\frac{df(x)}{dx} = -af(x) + g(x),$$

where g(x) is known. We have that

$$df(x) + af(x)dx = g(x)dx,$$

and

$$e^{ax}df(x) + ae^{ax}f(x)dx = e^{ax}g(x)dx,$$

i.e.,

$$d[e^{ax}f(x)] = e^{ax}g(x)dx.$$

Therefore

$$f(x) = e^{-ax} \left[f(0) + \int_0^x e^{as} g(s) ds \right].$$

9

Examples in Financial Modeling: the Vasicek Model

► Similarly, multiply

$$dR(t) = (\alpha - \beta R(t))dt + \sigma dW(t)$$

by $e^{\beta t}$. Then Itô lemma applies

$$d\left[e^{\beta t}R(t)\right] = e^{\beta t}dR(t) + \beta e^{\beta t}R(t)dt = e^{\beta t}\alpha dt + e^{\beta t}\sigma dW(t)$$

► Integrating both sides yields

$$e^{\beta t}R(t) = R(0) + \frac{\alpha}{\beta} \left(e^{\beta t} - 1\right) + \int_0^t \sigma e^{\beta s} dW(s).$$

▶ Namely, a closed-form expression for R(t) is given by

$$R(t) = e^{-\beta t}R(0) + \frac{\alpha}{\beta} \left(1 - e^{-\beta t}\right) + \sigma e^{-\beta t} \int_0^t e^{\beta s} dW(s).$$

Normal Distribution:

$$R(t) \sim N\left(e^{-\beta t}R(0) + \frac{\alpha}{\beta}\left(1 - e^{-\beta t}\right), \frac{\sigma^2}{2\beta}\left(1 - e^{-2\beta t}\right)\right).$$

- ► Disadvantage: possibility to be negative.
- Advantage: mean-reverting property.
 - β (speed of mean reversion);
 - ▶ $\lim_{t\to+\infty} ER(t) = \frac{\alpha}{\beta}$ (long-term mean level);
 - ▶ $\lim_{t\to+\infty} Var(R(t)) = \frac{\sigma^2}{2\beta}$ (long-term variance).

11

General Linear SDEs

Consider SDE

$$dX(t) = [a(t) + b(t)X(t)]dt + [\gamma(t) + \sigma(t)X(t)]dW(t), X(0) = X_0.$$

Apply Ito's rule to prove that

$$X(t) = Y(t) \left[X_0 + \int_0^t (a(s) - \gamma(s)\sigma(s))Y(s)^{-1} ds + \int_0^t \gamma(s)Y(s)^{-1} dW(s) \right],$$

where

$$Y(t) = \exp\left\{ \int_0^t \left(b(s) - \frac{1}{2}\sigma(s)^2 \right) ds + \int_0^t \sigma(s)dW(s) \right\}.$$

Question: How to find the expectation and variance of X(t)?

Note: Previous examples are both special cases of linear SDEs.

Example 3: Cox-Ingersoll-Ross (CIR) Model for Interest Rate

$$dR(t) = (\alpha - \beta R(t))dt + \sigma \sqrt{R(t)}dW(t).$$

- ► So the advantage of CIR over Vasicek is its non-negativity.
- ► Widely used in modeling interest rate, stochastic volatility, stochastic intensity of credit default and other jumps.
- ▶ We cannot derive a closed form formula for R(t).
- ▶ However, we know R(t) assumes a noncentral Chi-square distribution.
- **Exercise:** Compute $\mathbb{E}(R(t))$ and Var(R(t)) via Itô formula.

13

Examples in Financial Modeling: Multidimensional Geometric Brownian Motion

Example 4: Multidimensional Geometric Brownian Motion Model for Multiple Correlated Asset Prices, e.g., for two correlated assets

$$\frac{dS_1(t)}{S_1(t)} = \alpha_1 dt + \sigma_1 dW_1(t),
\frac{dS_2(t)}{S_2(t)} = \alpha_2 dt + \sigma_2 [\rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t)],$$

where $\{(W_1(t), W_2(t))\}$ is a standard two-dimensional Brownian motion.

Equivalent dynamics:

$$\frac{dS_1(t)}{S_1(t)} = \alpha_1 dt + \sigma_1 dW_1(t),$$

$$\frac{dS_2(t)}{S_2(t)} = \alpha_2 dt + \sigma_2 dW_3(t).$$

Here $\{(W_1(t), W_3(t))\}$ is a two dimensional Brownian motion with $Corr(W_1(t), W_3(t)) = \rho$.

Apply Ito's formula to $\log S_1(t)$ and $\log S_2(t)$, we find that

$$S_1(t) = S_1(0) \exp \left\{ \sigma_1 W_1(t) + \left(\alpha_1 - \frac{1}{2} \sigma_1^2 \right) t \right\}$$

$$S_2(t) = S_2(0) \exp \left\{ \sigma_2 \left[\rho W_1(t) + \sqrt{1 - \rho^2} W_2(t) \right] + \left(\alpha_1 - \frac{1}{2} \sigma_1^2 \right) t \right\}$$

Generalization: multidimensional linear SDEs. Even in linear specifications, not all SDEs are explicitly solvable! This is not as simple as the one-dimensional linear SDEs.

15

More Examples

SDE provides us a powerful tool to describe the dynamics of financial market. For example, in order to incorporate the "volatility smile", a natural idea is to allow the change of volatility.

► Local volatility models (Dupire, Derman):

$$dS(t) = \mu S(t)dt + \sigma(t, S(t))S(t)dW(t)$$

► The stochastic volatility model (e.g. Heston (1993)):

$$dS(t) = \mu S(t)dt + \sqrt{V(t)}S(t)dW_1(t)$$

$$dV(t) = \kappa(\theta - V(t))dt + \sigma_v \sqrt{V(t)}dW_2(t).$$

▶ In practice, we may use more advanced models according to the special necessity, e.g. adding jumps, etc.

Supplementary Material

Suggested Reading Material (We only need to focus on the material parallel to our course slides):

- ► Selected material from Shreve Vol. II: Examples 4.4.10, 4.4.11, Sections 6.1, 6.2
- ► Or equivalent material from Mikosch: 3.2, 3.3

Suggested Exercises (some of these exercises have been included in Homework Assignment #6; others are for your deeper understanding)

► Shreve Vol.II: 4.5, 4.8, 6.1, 6.6

17