PATRICK KAMBA

Portfolio Website: https://pat0kamba.github.io/myPortfolio/

1460 8th Street | Brookings, SD 57006 | patrick.kamba@jacks.sdstate.edu

EDUCATION

South Dakota State University – Brookings

Bachelor of Science in Computer Science

May 2025

Relevant Courses: Data Structures and Algorithms, Assembly, Digital Logic, Foundations of Software Engineering

TECHNICAL SKILLS

Programming Language: C++ (Advanced), Python (Intermediate), JavaScript (Advanced), C# (Intermediate).

Frameworks: System Verilog, DOSBox, Html, CSS, React, Redux, Node JS, MongoDB, Rest APIS, Git.

PROJECTS, please check my portfolio for more details, diagram and demo of the projects

10-bit Processor with Immediate Instructions

Problem: Design and build a 10-bit processor using System Verilog (SV) and demonstrate it on a DE10-Lite board based on the following requirements:

- The Data bus is 10-bits wide and is used to pass data between different elements of the processor.
- The 10-bit processor takes in data and instructions via an external source. Depending on the current instruction and the current timestep (saved in a 2-bit counter), the controller drives the control signals of the multi-stage processor circuit.
- All data is saved in one of four 10-bit registers (R0–R3) within the register file.
- To perform arithmetic and logic operations on the stored data, a multi-stage arithmetic logic unit (ALU) is used.

Electronic Devices: Multi-stage ALU, Processor controller, 4 10-bit Registers, Counter, 4 Seven-Segment decoders, Switches, LEDs, 2 Debouncers, all implemented on a DE10-Lite board and programmed in System Verilog. **Solution**:

- Each of the 4 10-bit registers has 2 operations: Write-operation and Read-operation.
- Based on the processor's instruction received on the data bus; data can be moved from one register to another or manipulated in other ways.
- The multi-stage ALU performs useful arithmetic operations on data held in the registers, and the ALU takes one common operand through the OP input.

Vending Machine Design

Problem: Design and build a vending machine system that takes a fixed amount of money and dispense a rotten tomato based on the following requirements:

- The vending machine has a single coin slot that accepts farthings (0.25d), half pennies (0.5d), and pennies (1d), and dispense a rotten tomato when a penny and farthing (1.25d) has been received.
- the machine dispenses the correct change (per farthing) for amounts greater than 1.25d using farthings and half penny coins.
- The vending machine is implemented using a Moore-style finite state machine (FSM) using System Verilog (SV) and demonstrated on a DE10-Lite board.

Electronic Devices: 4:2 encoder, Clock Debouncer, Reset Debouncer, D Flip Flop, 2 Seven-Segment decoders, all implemented on a DE10-Lite board and programmed in System Verilog.

Solution:

- The output (Current state on the vending) of the D Flip Flop combines with the encoded input (user's money) helps to generate the next state.
- The previous step will keep ongoing until the target amount is reached, and the user gets their rotten tomato along with the change.

WORK EXPERIENCE

South Dakota State University, Brookings, SD

August 2022 – April 2023

Division of Information Technology and Security

Student IT Programmer

- Worked in team with supervisors to create, update forms and documentation based on different University's departments demands, using formSite and JavaScript.
- Completed a wide range of web development projects using C# and .Net.
- Used MySQL to send and retrieve data to / from the University's Database.

Parkland college, Champaign, IL

June 2018 - May 2019

Academic Resources Peer Tutor

- Conducted group and one on one tutoring sessions to community college students in science subjects such as Math, physics and chemistry all level for three semesters.
- Developed meaningful and long-lasting relationship with students and coworkers.