线性规划、单纯形法

张腾*

2023年12月26日

线性规划是在一组线性等式或不等式的约束下, 求线性目标函数最值的问题, 现实中的许多问题都可化为线性规划问题。

例 1 (分数背包问题). 设背包承重量为 10, 各物品价值如下:

	物品1	物品2	物品3	物品4
重量	4	7	5	3
价值	40	42	25	12

现允许物品按比例取走部分, 求最大装包方案。

对 $i \in [4]$, 设物品 i 取走的比例为 x_i , 可得如下线性规划

max
$$40x_1 + 42x_2 + 25x_3 + 12x_4$$

s.t. $4x_1 + 7x_2 + 5x_3 + 3x_4 \le 10$
 $0 \le x_i \le 1, i \in [4]$

注. 如果不允许取部分物品,就是 0/1 背包,约束 $0 \le x_1, x_2, x_3, x_4 \le 1$ 变成 $x_1, x_2, x_3, x_4 \in \{0, 1\}$,此时问题变成整数线性规划,比线性规划要难得多。

例 2 (最大流). 给定如下的流网络, 求最大流。

^{*}tengzhang@hust.edu.cn

设 5 条边上的流量分别为 $x_1, ..., x_5$, 可得如下线性规划

$$\begin{array}{ll} \max & x_1 + x_2 \\ \text{s.t.} & 0 \leq x_1 \leq 10 \\ & 0 \leq x_2 \leq 10 \\ & 0 \leq x_3 \leq 1 \\ & 0 \leq x_4 \leq 10 \\ & 0 \leq x_5 \leq 10 \\ & x_1 + x_3 - x_4 = 0 \\ & x_2 - x_3 - x_5 = 0 \end{array}$$

其中前5个不等式约束对应容量限制,后2个等式约束对应流量守恒。

 \mathbb{R}^2 中的线性规划只有 2 个变量,线性等式和不等式分别对应直线和半平面,可采用图解法。 **例** 3 (图解法示例). 考虑如下线性规划

max
$$3x_1 + 5x_2$$

s.t. $x_1 + 5x_2 \le 40$
 $2x_1 + x_2 \le 20$
 $x_1 + x_2 \le 12$
 $x_1, x_2 \ge 0$

先确定可行域,即满足所有约束的可行解构成的集合。该例中共有 5 个线性不等式约束,每个对应一个半平面,因此可行域为 5 个半平面的交集,图1中的红色凸五边形。

图 1: 直线簇与可行域相切于最优解 (5,7) 处, 目标函数最优值为 50。

引入直线簇 $y = 3x_1 + 5x_2$,其中不同的 y 对应不同的直线,这些直线都是平行的。先将 y 取为一个较大的值使直线与凸五边形不相交,然后逐渐减小 y,这相当于从上向下平移直线 $y = 3x_1 + 5x_2$ 使其逐渐靠近凸五边形,当其与凸五边形相切时,切点就是最优解,

1 标准型

当变量多于 2 个时,图解法就不适用了,需要更一般性的方法。线性规划的一般性求解算法有单纯形法和内点法。前者在最坏情况下是指数复杂度,后者是多项式复杂度,但实际使用中两者几乎没有差别,单纯形法的最坏情况实际中很难遇到。

要想使用单纯形法,需要先将问题转化为标准型(不等式只约束变量非负,其余都是等式约束):

$$\begin{array}{ll}
\max & c^{\top} x \\
\text{s.t.} & \mathbf{A}x = b \\
x > 0
\end{array}$$

其中

$$\boldsymbol{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \boldsymbol{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

这里为了简化表达、将所有等式约束合并写成了线性方程组 Ax = b 的形式、不失一般性可设

- 共有 m 个线性等式约束、n 个变量, 其中 m < n, 否则可行域为单点集或空集;
- A 是行满秩矩阵, 即 rank(A) = m, 否则存在冗余约束;
- $b \ge 0$,若某个 $b_i < 0$,对该约束两边取反即可。

对任何形式的线性规划,都可按以下步骤将其转化成标准型,且两者是等价的:

- 对非正变量 x < 0,令 y = -x 作为替代;
- 对无约束变量 x, 将其表示成两个非负变量的差 x = u v;
- 对 $a^{T}x \leq b$ 型不等式约束,引入非负松弛变量将其转化为等式约束 $a^{T}x + y = b$;
- 对 $a^{\top}x \geq b$ 型不等式约束,引入非负剩余变量将其转化为等式约束 $a^{\top}x y = b$ 。 下面将例1、例2、例3中的问题转化为标准型。
- 分数背包问题有 5 个 $a^{T}x \leq b$ 型约束,分别引入松弛变量 x_5, \ldots, x_9 :

• 最大流问题有 5 个 $a^{T}x \le b$ 型约束, 分别引入松弛变量 x_6, \ldots, x_{10} :

• 例3中的线性规划有 3 个 $a^{T}x < b$ 型约束,分别引入松弛变量 x_3, x_4, x_5 :

$$\begin{array}{lllll} \max & 3x_1 + 5x_2 & \max & 3x_1 + 5x_2 \\ \text{s.t.} & x_1 + 5x_2 \leq 40 & \text{s.t.} & x_1 + 5x_2 + x_3 = 40 \\ & 2x_1 + x_2 \leq 20 & \Longrightarrow & 2x_1 + x_2 + x_4 = 20 \\ & x_1 + x_2 \leq 12 & x_1 + x_2 + x_5 = 12 \\ & x_i \geq 0, \ i \in [2] & x_i \geq 0, \ i \in [5] \end{array} \tag{3}$$

例 4. 将如下线性规划转化为标准型

max
$$x_2 - x_1$$

s.t. $3x_1 = x_2 - 5$
 $|x_2| \le 2$
 $x_1 \le 0$

- x_1 非正, $\diamondsuit y_1 = -x_1 \ge 0$;
- x_2 无约束,令 $x_2 = y_2 y_3$;

2 基本解

对于线性规划的标准型,可行解是线性方程组 $\mathbf{A}x = \mathbf{b}$ 的解与第一象限的交集。根据之前的约定矩阵 $\mathbf{A} \in \mathbb{R}^{m \times n}$ 行满秩且 m < n,因此它有无穷多个解,但求解线性规划只需要关注其中一类称为基本解的解。

记矩阵 **A** 的 n 个列分别为 a_1,\ldots,a_n ,由于 $\mathrm{rank}(\mathbf{A})=m$,因此可以从中挑出 m 个线性无关的列 a_{i_1},\ldots,a_{i_m} 构成基 **B**,这些列也称为基向量,未被选择的 $a_{i_{m+1}},\ldots,a_{i_n}$ 称为非基向量。为表述方便,引入矩阵的切片表示 $\mathbf{A}_{\mathcal{R},\mathcal{C}}$,其中 \mathcal{R} 、 \mathcal{C} 为索引元组,例如记 $\mathcal{B}=(i_1,\ldots,i_m)$ 、 $\mathcal{D}=(i_{m+1},\ldots,i_n)$,则

$$\mathbf{B} = \mathbf{A}_{:,\mathcal{B}} = \begin{bmatrix} a_{i_1} & \cdots & a_{i_m} \end{bmatrix}, \quad \mathbf{D} = \mathbf{A}_{:,\mathcal{D}} = \begin{bmatrix} a_{i_{m+1}} & \cdots & a_{i_n} \end{bmatrix}$$
 $\mathbf{x}_{\mathcal{B}}^{\top} = \begin{bmatrix} x_{i_1} & \cdots & x_{i_m} \end{bmatrix}, \quad \mathbf{x}_{\mathcal{D}}^{\top} = \begin{bmatrix} x_{i_{m+1}} & \cdots & x_{i_n} \end{bmatrix}, \quad \mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}_{\mathcal{B}} + \mathbf{D}\mathbf{x}_{\mathcal{D}}$

其中 x_{i_1}, \ldots, x_{i_m} 称为基变量, $x_{i_{m+1}}, \ldots, x_{i_n}$ 称为非基变量。令所有非基变量为零可确定基变量的取值,这 称为 $\mathbf{A}x = \mathbf{b}$ 在基 \mathbf{B} 下的基本解: $x_{\mathcal{B}} = \mathbf{B}^{-1}\mathbf{b}$, $x_{\mathcal{D}} = \mathbf{0}$ 。

- 如果基本解中某些基变量为零. 则称其为退化的基本解:
- 如果基本解还是线性规划的可行解 (满足所有变量非负),则称其为基本可行解。

例 5. 设线性规划的等式约束为 Ax = b, 其中

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 1 & -2 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

由于 n=4、m=2,故基本解不超过 $\binom{4}{2}=6$ 个,对线性方程组的增广矩阵做初等行变换:

$$\begin{bmatrix} 1 & 1 & -1 & 4 & 8 \\ 1 & -2 & -1 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & 4 & 8 \\ 0 & -3 & 0 & -3 & -6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 3 & 6 \\ 0 & 1 & 0 & 1 & 2 \end{bmatrix}$$

因此

$$\begin{cases} x_1 = x_3 - 3x_4 + 6 \\ x_2 = -x_4 + 2 \end{cases} \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

- \diamondsuit s=t=0, $x^{\top}=\begin{bmatrix} 6 & 2 & 0 & 0 \end{bmatrix}$, 这是关于基 $\begin{bmatrix} a_1 & a_2 \end{bmatrix}$ 的基本可行解;
- $\diamondsuit s = -6$, t = 0, $x^{\top} = \begin{bmatrix} 0 & 2 & -6 & 0 \end{bmatrix}$, 这是关于基 $\begin{bmatrix} a_2 & a_3 \end{bmatrix}$ 的基本解,但不可行;
- \diamondsuit s = 0, t = 2, $x^{\top} = \begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix}$, 这是同时关于基 $\begin{bmatrix} a_1 & a_4 \end{bmatrix}$, $\begin{bmatrix} a_2 & a_4 \end{bmatrix}$, $\begin{bmatrix} a_3 & a_4 \end{bmatrix}$ 的退化基本可行解;
- 令 s=1、 t=1, $\mathbf{x}^{\top}=\begin{bmatrix} 4 & 1 & 1 & 1 \end{bmatrix}$, 这是可行解,但不是基本解。

注意 a1、a3 线性相关,因此前三种情况已经找到所有的基本解了。

定理 6 (线性规划基本定理). 对于线性规划的标准型:

- 1. 如果存在可行解. 则一定存在基本可行解:
- 2. 如果存在最优可行解,则一定存在最优基本可行解。

证明. 1. 设可行解 x 有 l 个正分量 $\{i \mid x_i > 0, i \in [n]\} = \{i_1, \ldots, i_l\}$,记 $\mathcal{L} = (i_1, \ldots, i_l)$,则

$$b = \mathbf{A}\mathbf{x} = \mathbf{A}_{:,\mathcal{L}}\mathbf{x}_{\mathcal{L}} = \mathbf{a}_{i_1}\mathbf{x}_{i_1} + \dots + \mathbf{a}_{i_l}\mathbf{x}_{i_l} \tag{4}$$

此时分两种情况:

- $a_{i_1}, ..., a_{i_l}$ 线性无关,则 $l \le m$ 。若 l = m,x 就是基本可行解;若 l < m,从 **A** 的剩余列中 挑选 m l 个列与 $a_{i_1}, ..., a_{i_l}$ 构成基,此时 x 就是对应该基的退化基本可行解。
- a_{i_1}, \ldots, a_{i_l} 线性相关,可以去掉一些冗余列使其线性无关,从而转化为前一种情况。设不全为零的实数 y_{i_1}, \ldots, y_{i_l} 使得

$$\mathbf{0} = a_{i_1} y_{i_1} + \dots + a_{i_l} y_{i_l} \tag{5}$$

且至少某个 $y_{i_k} > 0$, 否则对所有的 y_{i_1}, \ldots, y_{i_l} 取反即可,于是对任意 ϵ ,令 $(4) - \epsilon \times (5)$ 有 $\mathbf{b} = \mathbf{a}_{i_1}(x_{i_1} - \epsilon y_{i_1}) + \cdots + \mathbf{a}_{i_l}(x_{i_l} - \epsilon y_{i_l}) = \mathbf{A}(\mathbf{x} - \epsilon \mathbf{y}), \quad \mathbf{y}_{\mathcal{L}}^{\top} \triangleq \begin{bmatrix} y_{i_1} & \cdots & y_{i_l} \end{bmatrix}, \quad \mathbf{y}_{[n] \setminus \mathcal{L}} = \mathbf{0}$ 让 ϵ 从 0 增大,对 $\mathbf{y}_{\mathcal{L}}$ 的所有正分量, $\mathbf{x}_{\mathcal{L}} - \epsilon \mathbf{y}_{\mathcal{L}}$ 在这些分量上单调减。取 ϵ 使得 $\mathbf{x}_{\mathcal{L}} - \epsilon \mathbf{y}_{\mathcal{L}}$ 某个分量率先变为 $\mathbf{0}$,即

$$\epsilon = \min\{x_{i_k}/y_{i_k} : y_{i_k} > 0, k \in [l]\}$$

注意 $x - \epsilon y$ 是只有 l - 1 个正分量的可行解, 重复该操作直到正分量对应的列线性无关。

2. 设最优可行解 x 有 l 个正分量 $\{i \mid x_i > 0, i \in [n]\} = \{i_1, ..., i_l\}$,记 $\mathcal{L} = (i_1, ..., i_l)$ 。 若 $a_{i_1}, ..., a_{i_l}$ 线性无关,证明同命题 1。若 $a_{i_1}, ..., a_{i_l}$ 线性相关,可继续沿用命题 1 中去冗余列的方式,但还需证明对任意 ϵ , $x - \epsilon y$ 都是最优解,这只需证明 $c^{\top}y = 0$ 。注意 $x_{\mathcal{L}} > 0$,只要

$$|\epsilon| \le \min\{|x_{i_k}/y_{i_k}| : y_{i_k} \ne 0, \ k \in [l]\} \Longrightarrow \epsilon y_{i_k} \le x_{i_k}, \ \forall k \in [l]\}$$

 $x-\epsilon y$ 都是可行解,因此若 $c^{\top}y\neq 0$,根据其符号总能取某个适当的 ϵ 使得 $c^{\top}(x-\epsilon y)>c^{\top}x$,这与 x 是最优可行解矛盾。

2

根据该定理,线性规划的求解可转化为对基本可行解的搜索问题,依次对基本可行解的最优性进行检查即可。

3 几何视角

线性规划的可行域 $\Omega=\{x\mid \mathbf{A}x=b,\ x\geq \mathbf{0}\}$ 是凸集,因为对 $\forall x_1,x_2\in\Omega$ 和 $\forall \alpha\in(0,1)$ 有

$$\mathbf{A}(\alpha x_1 + (1 - \alpha)x_2) = \alpha \mathbf{A}x_1 + (1 - \alpha)\mathbf{A}x_2 = \alpha b + (1 - \alpha)b = b, \quad \alpha x_1 + (1 - \alpha)x_2 \ge 0$$

即连接 Ω 内任意两点的线段依然属于 Ω 。对凸集 Ω 中的点 x,若它无法表示成 Ω 中另外两点的凸组合,则称 x 为 Ω 的极点。

定理 7 (等价性). $x \in \Omega = \{x \mid Ax = b, x \ge 0\}$ 的极点当且仅当 $x \in Ax = b, x \ge 0$ 的基本可行解。 证明. \Rightarrow : 设 x 满足 $Ax = b, x \ge 0$ 且 $\{i \mid x_i > 0, i \in [n]\} = \{i_1, ..., i_l\}$,记 $\mathcal{L} = (i_1, ..., i_l)$,则

$$a_{i_1}x_{i_1}+\cdots+a_{i_l}x_{i_l}=b$$

令向量 y 满足 $a_{i_1}y_{i_1}+\cdots+a_{i_l}y_{i_l}=0$ 且 $y_{[n]\setminus\mathcal{L}}=0$, 于是对任意 ϵ 有

$$a_{i_1}(x_{i_1}+\epsilon y_{i_1})+\cdots+a_{i_l}(x_{i_l}+\epsilon y_{i_l})=b$$

$$a_{i_l}(x_{i_l}-\epsilon y_{i_l})+\cdots+a_{i_l}(x_{i_l}-\epsilon y_{i_l})=b$$

注意 x_{i_1},\ldots,x_{i_l} 均大于 0,于是存在不超过 $\min\{|x_{i_k}/y_{i_k}|:y_{i_k}\neq 0,\ k\in[l]\}$ 的正数 ϵ ,使得

$$z_1=x+\epsilon y\in\Omega,\quad z_2=x-\epsilon y\in\Omega,\quad x=rac{1}{2}z_1+rac{1}{2}z_2$$

由于 x 是极点,因此 $z_1 = z_2 = x$,而 $\epsilon > 0$,故 y = 0,从而 $y_{\mathcal{L}} = 0$,这意味着 a_{i_1}, \ldots, a_{i_l} 线性无关。若 l = m,则 x 是基本可行解;若 l < m,则 x 是退化的基本可行解。

 \Leftarrow : 设 x 是基本可行解,对应基向量为 a_{i_1},\ldots,a_{i_m} ,记 $\mathcal{B}=\{i_1,\ldots,i_m\}$ 、 $\mathcal{D}=[n]\setminus\mathcal{B}$,则

$$a_{i_1}x_{i_1}+\cdots+a_{i_m}x_{i_m}=b, \quad x_D=0$$

若存在 $y,z \in \Omega$ 、 $\alpha \in (0,1)$ 使得 $x = \alpha y + (1-\alpha)z$, 注意 $\alpha > 0$ 、 $(1-\alpha) > 0$, 故 $y_D = z_D = 0$ 且

$$a_{i_1}y_{i_1}+\cdots+a_{i_m}y_{i_m}=b$$
, $a_{i_1}z_{i_1}+\cdots+a_{i_m}z_{i_m}=b$

两式相减可得 $a_{i_1}(y_{i_1}-z_{i_1})+\cdots+a_{i_m}(y_{i_m}-z_{i_m})=\mathbf{0}$, 由于 a_{i_1},\ldots,a_{i_m} 线性无关,故 $y_{\mathcal{B}}=z_{\mathcal{B}}$,从而 y=z,即 x 是极点。

例 8. 再看例3中的线性规划,根据式(3),其标准型为:

$$\begin{array}{ll} \max & 3x_1 + 5x_2 \\ \text{s.t.} & x_1 + 5x_2 + x_3 = 40 \\ & 2x_1 + x_2 + x_4 = 20 \\ & x_1 + x_2 + x_5 = 12 \\ & x_i \geq 0, \ i \in [5] \end{array} , \quad \mathbf{A}x = \underbrace{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}}_{a_1} x_1 + \underbrace{\begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}}_{a_2} x_2 + \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{a_3} x_3 + \underbrace{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}_{a_4} x_4 + \underbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}_{a_5} x_5 = \underbrace{\begin{bmatrix} 40 \\ 20 \\ 12 \end{bmatrix}}_{b}$$

注意 a_3 、 a_4 、 a_5 构成单位阵,取其作基,基本可行解是一目了然的:

$$40a_3 + 20a_4 + 12a_5 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 40 & 20 & 12 \end{bmatrix}$

对应原问题 \mathbb{R}^2 中可行域的极点 [0,0],目标函数值 0 < 50,因此还不是最优解。

根据迭代改进的思路,需要从当前极点移动到邻近极点,同时使目标函数值增大。现选择 a_1 作为新的基向量 (入基) 并移除原来的某个基向量 (出基),注意 $a_1 = a_3 + 2a_4 + a_5$,于是

$$\epsilon a_1 + (40 - \epsilon) a_3 + (20 - 2\epsilon) a_4 + (12 - \epsilon) a_5 = b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \epsilon & 0 & 40 - \epsilon & 20 - 2\epsilon & 12 - \epsilon \end{bmatrix}$$

让 ϵ 从 0 增大, x_1 变成正数, x_3 、 x_4 、 x_5 逐渐变小, 当 ϵ 增大到 10 时, x_4 率先减小到 0, 即 a_4 出基, 得到一个新的基本可行解

$$10a_1 + 30a_3 + 2a_5 = b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 10 & 0 & 30 & 0 & 2 \end{bmatrix}$$

对应原问题 \mathbb{R}^2 中可行域的极点 [10,0],目标函数值 30 < 50,依然不是最优解。

重复前面的操作, 现选择 a_2 作为新的基向量, 注意 $a_2 = \frac{1}{2}a_1 + \frac{9}{2}a_3 + \frac{1}{2}a_5$, 于是

$$\left(10 - \frac{1}{2}\epsilon\right)a_1 + \epsilon a_2 + \left(30 - \frac{9}{2}\epsilon\right)a_3 + \left(2 - \frac{1}{2}\epsilon\right)a_5 = b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 10 - \frac{1}{2}\epsilon & \epsilon & 30 - \frac{9}{2}\epsilon & 0 & 2 - \frac{1}{2}\epsilon \end{bmatrix}$$

让 ϵ 从 0 增大, x_2 变成正数, x_1 、 x_3 、 x_5 逐渐变小,当 ϵ 增大到 4 时, x_5 率先减小到 0,即 a_5 出基,得到一个新的基本可行解

$$8a_1 + 4a_2 + 12a_3 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 8 & 4 & 12 & 0 & 0 \end{bmatrix}$

对应原问题 \mathbb{R}^2 中可行域的极点 [8,4],目标函数值 44 < 50,依然不是最优解。

重复前面的操作, 现选择 a_4 作为新的基向量, 注意 $a_4 = a_1 - a_2 + 4a_3$, 于是

$$(8-\epsilon)a_1+(4+\epsilon)a_2+(12-4\epsilon)a_3+\epsilon a_4=b, \quad \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 8-\epsilon & 4+\epsilon & 12-4\epsilon & \epsilon & 0 \end{bmatrix}$$

让 ϵ 从 0 增大, x_4 变成正数, x_1 、 x_3 逐渐变小, 当 ϵ 增大到 3 时, x_3 率先减小到 0, 即 a_3 出基, 得到一个新的基本可行解

$$5a_1 + 7a_2 + 3a_4 = b$$
, $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 5 & 7 & 0 & 3 & 0 \end{bmatrix}$

对应原问题 \mathbb{R}^2 中可行域的极点 [5,7],目标函数值 50,这就是最优解。

这种从一个极点转移到另一个极点, 迭代改进的操作方式就是单纯形法求线性规划的基本思路, 但

- 1. 如何确定初始的基和基本可行解?
- 2. 如何确定每轮的入基向量以改进当前解?
- 3. 如何确定当前解为最优解以停止算法?

4 单纯形法

例8中每轮迭代都要将 b 和入基向量 a_q 用当前基向量 a_{i_1}, \ldots, a_{i_m} 线性表出:

$$b = x_{i_1}a_{i_1} + \cdots + x_{i_m}a_{i_m}, \quad a_q = y_{i_1}a_{i_1} + \cdots + y_{i_m}a_{i_m}$$

由此得到关于 ϵ 的恒等式

$$(x_{i_1} - \epsilon y_{i_1})a_{i_1} + \cdots + (x_{i_m} - \epsilon y_{i_m})a_{i_m} + \epsilon a_q = b$$

让 ϵ 从 0 增大直到某个 a_p 出基,其中 $p = \operatorname{argmin}_{i_k} \{x_{i_k}/y_{i_k} : y_{i_k} > 0, k \in [m]\}$ 。

b 和 a_a 的线性表出系数如何得到呢?根据线性方程组理论,对 $\mathbf{A}x = \mathbf{b}$ 的增广矩阵做初等行变换

$$egin{bmatrix} \mathbf{B} & \mathbf{a}_{i_{m+1}} & \cdots & \mathbf{a}_{i_n} & \mathbf{b} \end{bmatrix} \longrightarrow egin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{a}_{i_{m+1}} & \cdots & \mathbf{B}^{-1}\mathbf{a}_{i_n} & \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

当基 \mathbf{B} 变成单位阵时, $\mathbf{B}^{-1}a_q$ 和 $\mathbf{B}^{-1}b$ 就是 a_q 和 b 的线性表出系数。 下面考察基本可行解变化时目标函数值的变化,将标准型写成分块的形式

$$\max \quad c_{\mathcal{B}}^{\top} x_{\mathcal{B}} + c_{\mathcal{D}}^{\top} x_{\mathcal{D}}$$
s.t.
$$\mathbf{B} x_{\mathcal{B}} + \mathbf{D} x_{\mathcal{D}} = b$$

$$x_{\mathcal{B}}, x_{\mathcal{D}} \geq \mathbf{0}$$

• 若 $x_D = 0$, 则 $x_B = \mathbf{B}^{-1}b$, 此时 x 就是关于基 \mathbf{B} 的基本可行解, 对应目标函数值为

$$\hat{z} = \boldsymbol{c}_{\mathcal{B}}^{\top} \boldsymbol{x}_{\mathcal{B}} = \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \boldsymbol{b}$$

• 若 $x_D \neq 0$, 则 $x_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{D}x_D$, 对应目标函数值为

$$z = c_{\mathcal{B}}^{\top} x_{\mathcal{B}} + c_{\mathcal{D}}^{\top} x_{\mathcal{D}} = c_{\mathcal{B}}^{\top} (\mathbf{B}^{-1} b - \mathbf{B}^{-1} \mathbf{D} x_{\mathcal{D}}) + c_{\mathcal{D}}^{\top} x_{\mathcal{D}} = c_{\mathcal{B}}^{\top} \mathbf{B}^{-1} b - (c_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - c_{\mathcal{D}}^{\top}) x_{\mathcal{D}} = \hat{z} - r_{\mathcal{D}}^{\top} x_{\mathcal{D}}$$

其中 $r_{\mathcal{D}}^{\top} = c_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - c_{\mathcal{D}}^{\top}$ 称为检验数。注意 $x_{\mathcal{D}} \geq \mathbf{0}$,若 $r_{\mathcal{D}} \geq \mathbf{0}$,则 $z \leq \hat{z}$,即关于基 \mathbf{B} 的基本可行解就是最优解,这就回答了前面的问题 3。若 $r_{\mathcal{D}}$ 某个分量为负,则将 $x_{\mathcal{D}}$ 对应的非基变量从 0 变为正数可使目标函数值变大,因此可选该非基变量对应的列入基,这就回答了前面的问题 2。

基于此,构造单纯形表

$$egin{bmatrix} \mathbf{A} & oldsymbol{b} \ -oldsymbol{c}^ op & 0 \end{bmatrix} = egin{bmatrix} \mathbf{B} & \mathbf{D} & oldsymbol{b} \ -oldsymbol{c}_\mathcal{B}^ op & -oldsymbol{c}_\mathcal{D}^ op & 0 \end{bmatrix}$$

先做初等行变换将基 B 变成单位阵

$$\begin{bmatrix} \mathbf{B}^{-1} & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{D} & \boldsymbol{b} \\ -\boldsymbol{c}_{\mathcal{B}}^{\top} & -\boldsymbol{c}_{\mathcal{D}}^{\top} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{m} & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ -\boldsymbol{c}_{\mathcal{B}}^{\top} & -\boldsymbol{c}_{\mathcal{D}}^{\top} & 0 \end{bmatrix}$$

再做初等行变换将最后一行基变量对应的 $-c_{\mathcal{B}}^{\top}$ 变成 $\mathbf{0}^{\top}$

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ c_{\mathcal{B}}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ -c_{\mathcal{B}}^\top & -c_{\mathcal{D}}^\top & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\boldsymbol{b} \\ \mathbf{0}^\top & c_{\mathcal{B}}^\top \mathbf{B}^{-1}\mathbf{D} - c_{\mathcal{D}}^\top & c_{\mathcal{B}}^\top \mathbf{B}^{-1}\boldsymbol{b} \end{bmatrix}$$

这张表里包含了一切我们需要的信息:

- B-1D 里的每列就是当前非基向量 (候选入基向量) 在基下的线性表出系数;
- $B^{-1}b$ 是当前基对应的基本可行解中的基变量值:
- $c_{R}^{\top} \mathbf{B}^{-1} \mathbf{D} c_{D}^{\top}$ 就是检验数,可以指示下一个入基向量和是否已达最优解;
- $c_{R}^{\mathsf{T}}\mathbf{B}^{-1}b$ 就是当前基本可行解对应的目标函数值。

例 9 (用单纯形法求例3中的线性规划). 根据式(3), 初始单纯形表为

注意此时需要取 3 个线性无关的列组成初始的基,然后做初等行变换将其变成单位阵,因此直接取 a_3 、 a_4 、 a_5 是最省事的,已经是单位阵了,可以少做一次初等行变换:

- 基变量的名字在最左列, 取值就是最右列的 b;
- 基变量对应的 $c_{\mathcal{B}} = \mathbf{0}$,故非基变量的检验数就是最后一行的 $-c_{\mathcal{D}}^{\top}$;
- 目标函数值就是右下角的 0;

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 40 & 20 & 12 \end{bmatrix}$$

对应 \mathbb{R}^2 中可行域的极点 [0,0], 由于检验数还有负值, 因此还不是最优解。 取最小检验数对应的列入基 (改进幅度最大), 即 a_2 入基。注意

$$b = 40a_3 + 20a_4 + 12a_5$$
, $a_2 = 5a_3 + 1a_4 + 1a_5$

计算 $\min\{40/5, 20/1, 12/1\}$ 可知 a_3 出基。现做初等行变换将新的基变成单位阵,即 a_2 变成 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$, 先将主元 (入基向量 a_2 和 a_3 所在行的交点) 变成 1,然后消去 a_2 中的非主元元素

	a_1	a_2	a_3	a_4	a_5	1 			a_1	a_2	a_3	a_4	a_5	i I
x_2	1/5	1	1/5			8		x_2	1/5	1	1/5			8
x_4	2	1		1		20	\Longrightarrow	x_4	9/5		$-1/_{5}$	1		12
x_5	1	1			1	12		x_5	4/5		$-1/_{5}$		1	4
	-3	-5				0	•		-2		1			40

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 8 & 0 & 12 & 4 \end{bmatrix}$$

对应 \mathbb{R}^2 中可行域的极点 [0,8],由于检验数还有负值,因此还不是最优解。

根据检验数 a_1 入基, 计算 $\min\{8/1/5, 12/9/5, 4/4/5\}$ 可知 a_5 出基。做初等行变换

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 5 & 7 & 0 & 3 & 0 \end{bmatrix}$$

对应 \mathbb{R}^2 中可行域的极点 [5,7], 由于检验数均非负, 已达最优解。

注. 注意与例8中经过的基本可行解的顺序不一样, 本例中为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 40 & 20 & 12 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 8 & 0 & 12 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 5 & 7 & 0 & 3 & 0 \end{bmatrix}$$

例 10 (用单纯形法求分数背包问题). 根据式(1), 初始单纯形表为

由于 a_5 、 a_6 、 a_7 、 a_8 、 a_9 构成单位阵,取其作基,基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 0 & 0 & 0 & 0 & 10 & 1 & 1 & 1 & 1 \end{bmatrix}$$

根据检验数 a_2 入基, 计算 $\min\{10/7, 1/1\}$ 可知 a_7 出基。做初等行变换

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 0 & 1 & 0 & 0 & 3 & 1 & 0 & 1 & 1 \end{bmatrix}$$

根据检验数 a_1 入基, 计算 $min\{3/4,1/1\}$ 可知 a_5 出基。做初等行变换

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a 9	1 			a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a 9	! !
x_1	1		5/4	3/4	1/4		-7/4			3/4		x_1	1		5/4	3/4	$1/_{4}$		-7/4			3/4
x_6	1					1				1		<i>x</i> ₆			-5/4	-3/4	-1/4	1	$^{7}/_{4}$			$^{1}/_{4}$
x_2		1					1			1	\Longrightarrow	x_2		1					1			1
x_8			1					1		1		x_8			1					1		1
<i>x</i> ₉				1					1	1		<i>x</i> ₉				1					1	1
	-40		-25	-12			42			42					25	18	10	40	-28			72

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 3/4 & 1 & 0 & 0 & 0 & 1/4 & 0 & 1 & 1 \end{bmatrix}$$

根据检验数 a_7 入基, 计算 $\min\{\frac{1}{4},\frac{1}{1}\}$ 可知 a_6 出基。做初等行变换

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a 9	 			a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a 9	
x_1	1		5/4	3/4	1/4		-7/4			3/4		x_1	1					$7/_{4}$				1
x_7			-5/7	-3/7	-1/7	1	1			1/7		<i>x</i> ₇			-5/7	-3/7	-1/7	1	1			1/7
x_2		1					1			1	\Longrightarrow	x_2		1	5/7	3/7	$^{1}/_{7}$	-1				6/7
x_8			1					1		1		x_8			1					1		1
<i>x</i> ₉				1					1	1		<i>x</i> ₉				1					1	1
			25	18	10	40	-28			72					5	6	6	68				76

基本可行解为

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 6/7 & 0 & 0 & 0 & 0 & 1/7 & 1 & 1 \end{bmatrix}$$

由于检验数均非负,已达最优解。

注. 四个物品是按单价从高到低排好序的,根据最优解,先装单价最高的物品 1, 用掉 4 个单位重量,剩下 6 个单位重量全部用于装单价次高的物品 2, 事实上分数背包问题是可以用贪心法来做的。

4.1 修正单纯形法

单纯形法每轮迭代做初等行变换都要更新所有列,但若有些列从没入过基 (例10中的 a_3 、 a_4),那对它们的更新都是多余的,去掉这些无用的计算,可以进一步提升算法效率。

设当前轮的基为 $\mathbf{B} = \begin{bmatrix} a_{i_1} & \cdots & a_p & \cdots & a_{i_m} \end{bmatrix}$,将 b 和入基向量 a_q 用基向量线性表出:

$$b = BB^{-1}b = Bx = x_{i_1}a_{i_1} + \cdots + x_{i_m}a_{i_m}, \quad x = B^{-1}b \in \mathbb{R}^m$$

 $a_q = BB^{-1}a_q = By = y_{i_1}a_{i_1} + \cdots + y_{i_m}a_{i_m}, \quad y = B^{-1}a_q \in \mathbb{R}^m$

由此得到出基向量 a_p ,其中 $p=\operatorname{argmin}_{i_k}\{x_{i_k}/y_{i_k}:y_{i_k}>0,\ k\in[m]\}$ 。不难看出整个过程并不需要完整的 $\mathbf{B}^{-1}\mathbf{D}$,要的只是其中一列 $\mathbf{B}^{-1}a_q$,因此修正单纯形法只维护 \mathbf{B}^{-1} 和 $\mathbf{B}^{-1}b$ 。

下面推导修正单纯形表的更新方法,设 a_q 入基、 a_p 出基,新的基为

$$\mathbf{B}_{\mathrm{new}} = egin{bmatrix} a_{i_1} & \cdots & a_{q} & \cdots & a_{i_m} \end{bmatrix} = \mathbf{B} \begin{bmatrix} e_1 & \cdots & \mathbf{B}^{-1} a_q & \cdots & e_n \end{bmatrix} = \mathbf{B} \begin{bmatrix} e_1 & \cdots & y & \cdots & e_n \end{bmatrix}$$
 于是

注意 $\mathbf{E}\mathbf{B}^{-1}a_q = \mathbf{E}y = e_p$, 即 \mathbf{E} 是将 \mathbf{y} 变成 e_p 的初等行变换, 于是

$$\mathbf{E} \begin{bmatrix} \mathbf{B}^{-1} & \mathbf{B}^{-1} \boldsymbol{b} & \mathbf{B}^{-1} \boldsymbol{a}_q \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{\mathrm{new}}^{-1} & \mathbf{B}_{\mathrm{new}}^{-1} \boldsymbol{b} & \boldsymbol{e}_p \end{bmatrix}$$

综上, 整个流程如下:

$$\begin{bmatrix} \mathbf{B}^{-1} & \mathbf{B}^{-1} \boldsymbol{b} \end{bmatrix} \xrightarrow{\text{¬$m}} \begin{bmatrix} \mathbf{B}^{-1} & \mathbf{B}^{-1} \boldsymbol{b} & \mathbf{B}^{-1} \boldsymbol{a}_q \end{bmatrix} \xrightarrow{\text{now}} \begin{bmatrix} \mathbf{B}_{\mathrm{new}}^{-1} & \mathbf{B}_{\mathrm{new}}^{-1} \boldsymbol{b} & \boldsymbol{e}_p \end{bmatrix} \xrightarrow{\text{¬¬$m}} \begin{bmatrix} \mathbf{B}_{\mathrm{new}}^{-1} & \mathbf{B}_{\mathrm{new}}^{-1} \boldsymbol{b} \end{bmatrix}$$

- 1. 根据当前检验数确定入基向量 a_a ;
- 2. 计算 $y = \mathbf{B}^{-1} \mathbf{a}_q$,将其添加到修正单纯形表最右侧得到增广修正单纯形表;
- 3. 根据 $p = \operatorname{argmin}_{i_k} \{ x_{i_k} / y_{i_k} : y_{i_k} > 0, k \in [m] \}$ 确定出基向量 a_p ;
- 4. 对增广修正单纯形表做初等行变换, 使最右列变成 e_p 后将其删除;
- 5. 更新检验数。

例 11 (用修正单纯形法求分数背包问题). 初始单纯形表为

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	
	4	7	5	3	1					10
	1					1				1
		1					1			1
			1					1		1
				1					1	1
$-c^{ op}$	-40	-42	-25	-12						0

取 a_5 、 a_6 、 a_7 、 a_8 、 a_9 作基,修正单纯形表为

检验数

$$\boldsymbol{r}_{\mathcal{D}}^{\top} = \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} = \mathbf{0}^{\top} \mathbf{B}^{-1} \mathbf{D} - \begin{bmatrix} 40 & 42 & 25 & 12 \end{bmatrix} = \begin{bmatrix} -40 & -42 & -25 & -12 \end{bmatrix}$$

根据检验数 a_2 入基,于是

计算 min{10/7,1/1} 可知最后一列第 3 个元素为主元,做初等行变换更新修正单纯形表

检验数

$$\begin{aligned} \mathbf{r}_{\mathcal{D}}^{\top} &= \mathbf{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \mathbf{c}_{\mathcal{D}}^{\top} \\ &= \begin{bmatrix} 0 & 0 & 42 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & & -7 & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \begin{bmatrix} 4 & 5 & 3 \\ 1 & & \\ & & & 1 \end{bmatrix} - \begin{bmatrix} 40 & 25 & 12 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & 0 & 42 \end{bmatrix} - \begin{bmatrix} 40 & 25 & 12 & 0 \end{bmatrix} = \begin{bmatrix} -40 & -25 & -12 & 42 \end{bmatrix} \end{aligned}$$

根据检验数 a_1 入基, 于是

计算 min{3/4,1/1} 可知最后一列第 1 个元素为主元,做初等行变换更新修正单纯形表

检验数

$$= \begin{bmatrix} 50 & 30 & 10 & -28 \end{bmatrix} - \begin{bmatrix} 25 & 12 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 25 & 18 & 10 & -28 \end{bmatrix}$$

根据检验数 a_7 入基, 于是

计算 min {1/4/7/4, 1/1} 可知最后一列第 2 个元素为主元,做初等行变换更新修正单纯形表

检验数

$$\begin{split} \boldsymbol{r}_{\mathcal{D}}^{\top} &= \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} \\ &= \begin{bmatrix} 40 & 0 & 42 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1_{-1/7} & 4/7 & 1 & & \\ & 1_{1/7} & -4/7 & & & \\ & & & 1 \end{bmatrix} \begin{bmatrix} 5 & 3 & 1 & \\ & & & 1 \\ & & & 1 \\ & & & 1 \end{bmatrix} - \begin{bmatrix} 25 & 12 & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 30 & 18 & 6 & 16 \end{bmatrix} - \begin{bmatrix} 25 & 12 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 6 & 6 & 16 \end{bmatrix} \end{split}$$

由于检验数均非负,当前基本可行解 $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\ 1 & 6/7 & 0 & 0 & 0 & 0 & 1/7 & 1 & 1 \end{bmatrix}$ 即为最优解。

例 12 (用修正单纯形法求最大流问题). 根据式(2), 初始单纯形表为

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	!
	1					1					10
		1					1				10
			1					1			1
				1					1		10
					1					1	10
	1		1	-1							0
		1	-1		-1						0
$-c^{ op}$	$\begin{bmatrix} -1 \end{bmatrix}$	-1									0

这里就涉及到前面的问题 1 了:如何确定初始的基和基本可行解?前面两个例子只有 $a^{\top}x \leq b$ 型约束,每个约束引入一个松弛变量,A 中天然有一个单位阵,直接取这个单位阵作为初始基,最右的 b 就是基本解中基变量的取值,而我们开始假定了 $b \geq 0$,因此这个基本解也是可行解,从而单纯形法可以迭代下去。但最大流问题本身有两个流量守恒产生的等式约束,A 中没有现成的单位阵,这时有两种做法:

- 1. 手动选 m 列作为基, 但这种做法也有两个问题:
 - (a) 无法确保选出来的列一定能构成基 (线性无关);
 - (b) 做初等行变换将基变成单位阵,无法确保得到的基本解是可行解;
- 2. 采用后文的两阶段单纯形法。

我们先采用做法 1, 取 a_1 、 a_2 、 a_6 、 a_7 、 a_8 、 a_9 、 a_{10} 作为基,单纯形表为

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	
			-1	1		1					10
			1		1		1				10
			1					1			1
				1					1		10
					1					1	10
	1		1	-1							0
		1	-1		-1						0
$-c^{ op}$	-1	-1									0

修正单纯形表为 ********

检验数

$$\boldsymbol{r}_{\mathcal{D}}^{\top} = \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} = \boldsymbol{0}^{\top} \mathbf{B}^{-1} \mathbf{D} - \begin{bmatrix} 40 & 42 & 25 & 12 \end{bmatrix} = \begin{bmatrix} -40 & -42 & -25 & -12 \end{bmatrix}$$

根据检验数 a_2 入基, 于是

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

共有 18 个变量、13 个等式约束,因此基变量有 13 个,非基变量有 5 个。初始不妨取 x_1 、 x_2 、 x_4 、 x_5 、 x_7 为非基变量,将基变量由 x_1 、 x_2 、 x_4 、 x_5 、 x_7 表出:

初始单纯形表为

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	1
	1					1					10
		1					1				10
			1					1			1
				1					1		10
					1					1	10
	1		1	-1							0
		1	-1		-1						0
$-c^{ op}$	-1	-1									0

取 a_5 、 a_6 、 a_7 、 a_8 、 a_9 作基,修正单纯形表为

检验数

$$\boldsymbol{r}_{\mathcal{D}}^{\top} = \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} = \boldsymbol{0}^{\top} \mathbf{B}^{-1} \mathbf{D} - \begin{bmatrix} 40 & 42 & 25 & 12 \end{bmatrix} = \begin{bmatrix} -40 & -42 & -25 & -12 \end{bmatrix}$$

根据检验数 a_2 入基, 于是

最后还剩问题 1: 如何确定初始的基和基本可行解? 前面两个例子只有 $a^{T}x \leq b$ 型约束,每个约束引入一个松弛变量, **A** 中天然有一个单位阵,直接取这个单位阵作为初始基,最右的 **b** 就是基本解中基变量的取值,而我们开始假定了 **b** > **0**,因此这个基本解也是可行解,从而单纯形法可以迭代下去。

当存在其他类型的约束时, \mathbf{A} 中就没有现成的单位阵了,如果随便取 m 列作为基,如何确保它们线性无关? 此外做初等行变换将基变成单位阵,如何确保得到的基本解是可行解? 对此可采用下节的两阶段单纯形法。

5 两阶段单纯形法

针对线性规划的标准型,构造如下的辅助问题

min
$$\mathbf{1}^{ op}y$$
 s.t. $\begin{bmatrix} \mathbf{A} & \mathbf{I}_m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = b$ $x,y \geq 0$

辅助问题依然是个线性规划标准型,辅助变量 y 引入了一个单位阵,因此有一个天然的基本可行解。 定理 13. 原线性规划问题存在基本可行解当且仅当辅助问题存在使目标函数值为 0 的最优解。

证明. \Rightarrow : 设原问题存在基本可行解 x, 则 $\begin{bmatrix} x \\ \mathbf{0} \end{bmatrix}$ 是辅助问题的基本可行解。显然辅助问题的目标函数最小值为 0,因此这也是辅助问题的最优解。

 \Leftarrow : 设辅助问题存在使目标函数值为 0 的最优解 $\begin{bmatrix} x \\ y \end{bmatrix}$,则必然 y=0,于是 $\mathbf{A}x=b$,又 $x\geq 0$,即 x 是原问题的可行解,根据线性规划基本定理,原问题存在基本可行解。

根据该定理,一阶段用单纯形法求解辅助问题,得到的最优基本可行解中的x就是原问题的基本可行解。

例 14 (用两阶段单纯形法求例2中的最大流问题). 原问题有 9 个由容量限制产生的 $a^{T}x \leq b$ 型约束和 4 个由流量守恒产生的等式约束。转化成式(2)的标准型后,A 中没有单位阵,但有一个 9×9 的子单位 阵来自于前者,因此为后者引入辅助标量 y_1, \ldots, y_4 ,注意

$$\operatorname{argmin}\{y_1 + y_2 + y_3 + y_4\} = \operatorname{argmax}\{-y_1 - y_2 - y_3 - y_4\}$$

构造辅助问题:

初始单纯形表为

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	<i>a</i> ₁₇	a_{18}	<i>a</i> ₁₉	a_{20}	a_{21}	a_{22}	
x_{10}	1									1													16
x_{11}		1									1												13
x_{12}			1									1											4
x_{13}				1									1										12
x_{14}					1									1									9
x_{15}						1									1								14
x_{16}							1									1							7
x_{17}								1									1						20
x_{18}									1									1					4
y_1	1		1	-1															1				0
y_2		1	-1		1	-1														1			0
<i>y</i> ₃				1	-1		1	-1													1		0
y_4						1	-1		-1													1	0
																			1	1	1	1	0

取后 13 列作基, 修正单纯形表为

检验数

$$egin{aligned} oldsymbol{r}_{\mathcal{D}}^{ op} &= oldsymbol{c}_{\mathcal{B}}^{ op} \mathbf{B}^{-1} \mathbf{D} - oldsymbol{c}_{\mathcal{D}}^{ op} \ &= egin{bmatrix} \mathbf{0}_9^{ op} & -1 & -1 & -1 & -1 \end{bmatrix} \mathbf{B}^{-1} \mathbf{D} - \mathbf{0}^{ op} \ &= egin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \end{aligned}$$

根据检验数 a_1 入基, 于是

计算 min{16/1,0/1} 可知最后一列第 10 个元素为主元,做初等行变换更新修正单纯形表

x_{10}	1									-1				16	
x_{11}		1												13	
x_{12}			1											4	
x_{13}				1										12	
x_{14}					1									9	
x_{15}						1								14	
x_{16}							1							7	
<i>x</i> ₁₇								1						20	
x_{18}									1					4	
x_1										1				0	1
y_2											1			0	
y_3												1		0	
y_4													1	0	

检验数

$$\begin{split} \boldsymbol{r}_{\mathcal{D}}^{\top} &= \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} \\ &= \begin{bmatrix} \mathbf{0}_{10}^{\top} & -1 & -1 & -1 \end{bmatrix} \mathbf{B}^{-1} \mathbf{D} - \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} -1 & 1 & -1 & 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix} \end{split}$$

根据检验数 a2 入基, 于是

计算 min{13/1,0/1} 可知最后一列第 11 个元素为主元,做初等行变换更新修正单纯形表

检验数

$$\begin{split} \boldsymbol{r}_{\mathcal{D}}^{\top} &= \boldsymbol{c}_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{D} - \boldsymbol{c}_{\mathcal{D}}^{\top} \\ &= \begin{bmatrix} \mathbf{0}_{11}^{\top} & -1 & -1 \end{bmatrix} \mathbf{B}^{-1} \mathbf{D} - \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & -1 & 1 & -1 & 0 & 1 & 1 & -1 & -1 \end{bmatrix} \end{split}$$

根据检验数 a4 入基, 于是

计算 min{13/1,0/1} 可知最后一列第 11 个元素为主元,做初等行变换更新修正单纯形表

做初等行变换更新最后一行

	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a 9	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	<i>a</i> ₁₇	a_{18}	<i>a</i> ₁₉	a_{20}	a_{21}	a_{22}	!
x_{10}	1									1													16
x_{11}		1									1												13
x_{12}			1									1											4
x_{13}				1									1										12
x_{14}					1									1									9
x_{15}						1									1								14
x_{16}							1									1							7
x_{17}								1									1						20
x_{18}									1									1					4
y_1	1		1	-1															1				0
y_2		1	-1		1	-1														1			0
y_3				1	-1		1	-1													1		0
y_4						1	-1		-1													_1	0
																			1	1	1	1	0

例 15. 用单纯形法求例2中的最大流问题,根据式(2),标准型为:

$$\begin{array}{lll} \max & x_1+x_2\\ \text{s.t.} & x_1+x_{10}=16\\ & x_2+x_{11}=13\\ & x_3+x_{12}=4\\ & x_4+x_{13}=12\\ & x_5+x_{14}=9\\ & x_6+x_{15}=14\\ & x_7+x_{16}=7\\ & x_8+x_{17}=20\\ & x_9+x_{18}=4\\ & x_1+x_3-x_4=0\\ & x_2+x_5-x_3-x_6=0\\ & x_4+x_7-x_5-x_8=0\\ & x_6-x_7-x_9=0\\ & x_i\geq 0,\ i\in[18] \end{array}$$

共有 18 个变量、13 个等式约束,因此基变量有 13 个,非基变量有 5 个。初始不妨取 x_1 、 x_2 、 x_4 、 x_5 、

 x_7 为非基变量,将基变量由 x_1 、 x_2 、 x_4 、 x_5 、 x_7 表出:

$$x_{3} = -x_{1} + x_{4} \implies x_{1} + x_{3} - x_{4} = 0 \implies -x_{1} + x_{4} + y_{3} = 4$$

$$x_{8} = x_{4} - x_{5} + x_{7} \implies -x_{4} + x_{5} - x_{7} + x_{8} = 0 \implies x_{4} - x_{5} + x_{7} + y_{8} = 20$$

$$x_{6} = x_{2} + x_{5} - x_{3} \implies -x_{1} - x_{2} + x_{4} - x_{5} + x_{6} = 0 \implies x_{1} + x_{2} - x_{4} + x_{5} + y_{6} = 14$$

$$x_{9} = x_{6} - x_{7} \implies -x_{1} - x_{2} + x_{4} - x_{5} + x_{7} + x_{9} = 0 \implies x_{1} + x_{2} - x_{4} + x_{5} - x_{7} + y_{9} = 4$$

初始单纯形表为

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	x_9	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	1
x_3	1		1	-1															0
x_6	-1	-1		1	-1	1													0
x_8				-1	1		-1	1											0
x_9	-1	-1		1	-1		1		1										0
y_1	1									1									16
y_2		1									1								13
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6	1	1		-1	1										1				14
y_7							1									1			7
y_8				1	-1		1										1		20
<i>y</i> ₉ _	1	_ 1 _		_1	1		_1											1_	4
	-1	-1																	0

基本可行解为

 a_1 、 a_2 的检验数均为 -1,不妨让 a_2 入基,计算 $\mathrm{argmin}\{^{13}/_1,^{14}/_1,^{4}/_1\}$ 可知 a_{18} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	x_9	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	<i>y</i> ₉	i I
x_3	1		1	-1															0
x_6						1	-1											-1	4
x_8				-1	1		-1	1											0
<i>x</i> ₉									1									1	4
y_1	1									1									16
y_2	-1			1	-1		1				1							-1	9
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6							1								1			-1	10
y_7							1									1			7
y_8				1	-1		1										1		20
x_2	1	1		_1	1		-1											1	4
				-1	1		-1											1	4

 a_4 、 a_7 的检验数均为 -1,不妨让 a_7 入基,计算 $\mathrm{argmin}\{9/1,10/1,7/1,20/1\}$ 可知 a_{16} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	i I
x_3	1		1	-1															0
x_6						1										1		-1	11
x_8				-1	1			1								1			7
χ_9									1									1	4
y_1	1									1									16
y_2	-1			1	-1						1					-1		-1	2
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8				1	-1											-1	1		13
x_2	1	_1		-1	_ 1											1		_ 1	11
				-1	1											1		1	11

根据检验数 a_4 入基,计算 $argmin\{2/1,4/1,12/1,13/1\}$ 可知 a_{11} 出基。做初等行变换

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6	y_7	y_8	y 9	ı
x_3			1		-1						1					-1		-1	2
x_6						1										1		-1	11
x_8	-1							1			1							-1	9
χ_9									1									1	4
y_1	1									1									16
x_4	-1			1	-1						1					-1		-1	2
y_3					1						-1	1				1		1	2
y_4	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8	1										-1						1	1	11
x_2		_1									1								13
	-1										1								13

根据检验数 a_1 入基, 计算 $argmin\{^{16/1},^{10/1},^{11/1}\}$ 可知 a_{13} 出基。做初等行变换

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	1
x_3			1		-1						1					-1		-1	2
x_6						1										1		-1	11
x_8					1			1					1			1			19
<i>X</i> ₉									1									1	4
y_1					-1					1	1		-1			-1		-1	6
x_4				1									1						12
y_3					1						-1	1				1		1	2
x_1	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8					-1								-1			-1	1		1
x_2		1_									1								13
					1								1			1		1	23

对应的流网络为

由于检验数均非负,已达最优解。

注. 在最大流的例子中,初始单纯形表中不存在单位阵,需先做一步初等行变换,也可采用两阶段单纯形法。