

Increasing and Decreasing Functions Ex 17.2 Q1(i)

We have,

$$f(x) = 10 - 6x - 2x^2$$

$$\therefore f'(x) = -6 - 4x$$

Now.

$$f'(x) = 0 \Rightarrow x = -\frac{3}{2}$$

The point $x = -\frac{3}{2}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, -\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$.

In interval
$$\left(-\infty, -\frac{3}{2}\right)$$
 i.e., when $x < -\frac{3}{2}$, $f'(x) = -6 - 4x < 0$.

: f is strictly increasing for $x < -\frac{3}{2}$

In interval
$$\left(-\frac{3}{2},\infty\right)$$
 i.e., when $x > -\frac{3}{2}$, $f'(x) = -6 - 4x < 0$.

: f is strictly decreasing for $x > -\frac{3}{2}$.

Increasing and Decreasing Functions Ex 17.2 Q1(ii)

$$f(x) = x^2 + 2x - 5$$

$$\therefore f'(x) = 2x + 2$$

Now,

$$f'(x) = 0 \Rightarrow x = -1$$

Point x = -1 divides the real line into two disjoint intervals i.e., $(-\infty, -1)$ and $(-1, \infty)$.

In interval
$$(-\infty, -1)$$
, $f'(x) = 2x + 2 < 0$.

: f is strictly decreasing in interval $(-\infty, -1)$.

Thus, f is strictly decreasing for x < -1.

In interval
$$(-1, \infty)$$
, $f'(x) = 2x + 2 > 0$.

f is strictly increasing in interval $(-1, \infty)$.

Thus, f is strictly increasing for x > -1.

Increasing and Decreasing Functions Ex 17.2 Q1(iii)

We have,

$$f(x) = 6 - 9x - x^2$$

$$\therefore f'(x) = -9 - 2x$$

Now.

$$f'(x) = 0$$
 gives $x = -\frac{9}{2}$

The point $x = -\frac{9}{2}$ divides the real line into two disjoint intervals i.e., $\left(-\infty, -\frac{9}{2}\right)$ and $\left(-\frac{9}{2}, \infty\right)$

In interval
$$\left(-\infty, -\frac{9}{2}\right)$$
 i.e., for $x < -\frac{9}{2}$, $f'(x) = -9 - 2x > 0$

: f is strictly increasing for $x < -\frac{9}{2}$.

In interval
$$\left(-\frac{9}{2},\infty\right)$$
 i.e., for $x > -\frac{9}{2}$, $f'(x) = -9 - 2x < 0$.

: f is strictly decreasing for $x > \frac{9}{2}$.

Increasing and Decreasing Functions Ex 17.2 Q1(iv)

$$f(x) = 2x^3 - 12x^2 + 18x + 15$$

$$f'(x) = 6x^{2} - 24x + 18$$
$$= 6(x^{2} - 4x + 3)$$
$$= 6(x - 3)(x - 1)$$

Critical point

$$f'(x) = 0$$

$$\Rightarrow 6(x-3)(x-1)=0$$

$$\Rightarrow$$
 $x = 3, 1$

Clearly, f(x) > 0 if x < 1 and x > 3

and
$$f(x) < 0$$
 if $1 < x < 3$

Thus, f(x) increases on $(-\infty,1) \cup (3,\infty)$, decreases on (1,3).