Session 5: Map Projections and Coordinate Systems

Randy Bucciarelli randobucci@gmail.com

Class Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
08/05/19	08/06/19	08/07/19	08/08/19	08/09/19
Introduction to Geographical Information Systems 10:45 am–12:15 am	Cartography and Spatial Data Display 8:30am – 11:00pm	Querying Data for Spatial & Attribute Selections 8:30am – 11:00pm	Data Formats and Open-Source GIS 8:30am – 11:00pm	Map Projections and Coordinate Systems 8:30am – 11:00pm
08/12/19	08/13/19	08/14/19	08/15/19	08/16/19
Spatial Analysis Tool 8:30am – 11:00pm	Raster and Terrain Analysis 8:30 am – 10:00 am Scripps Institution of Oceanography 1:00pm – 4:00pm	Image Analysis 8:30am – 11:00pm	Editing Spatial Data and Geocoding 8:30am – 11:00pm	Web Mapping/ Wrap up 8:30am – 11:30am

Outline: Map Projections and Coordinate Systems

- Introduction
- What is a map projection?
- Geographic Coordinate System (GCS)
- Datums
- Common map projections
- Demonstration
- Project

Introduction

- Map projections
- Why do we need map projections

Coordinate Systems

Coordinate system: Framework used to define unique position Earth reference systems:

- Geographic Coordinate System (GCS)
 - o Spherical (angular units of degrees)
 - o Latitude and Longitude
- Projection Coordinate System
 - o Cartesian (linear units)
 - Meters or Feet

Geographic Coordinates

GCS: Reference system for locations on the curved surface of the earth.

 Locations defined by a latitude and longitude value

UC San Diego is located:

Latitude: 32.87° North of Equator

Longitude: 117.23° West or Prime

Meridian

Latitude = 0 degrees at Equator

Longitude: East-West

Longitude = 0 degrees at Prime Meridian

GCS: Spherical System

- Latitude measures the angle from the equatorial plane to the location on the earth's surface.
- Longitude measures the angle between the prime meridian plane and the north-south plane that intersects the location of interest.

Source: GIS Fundamentals by P. Bolstad, 2015

GCS Representation

In decimal degrees:

Latitude > 0, north equator = Positive

Latitude < 0, south equator = Negative

Longitude > 0, east Prime Meridian = Positive Longitude < 0, west Prime Meridian = Negative **UCSD Location**

32.87° North and

117.23° West

+ 32.87, -117.23

GCS Representation

Latitude and longitude can be expressed as:

degrees-minutes-seconds (DMS)

degrees-minutes (DM)

decimal degrees (DD)

GIS prefers decimal degrees

Conversion from DMS to DD

$$60' = 1 \deg$$

Nominal location	Absolute location (DMS)	Absolute location (DD)
Los Angeles, US	34° 3' North, 118° 15' West	+34.05, -118.25
Mumbai, India	18° 58' North, 72° 49' East	+18.975, +72.8258
Sydney, Australia	33° 51' South, 151° 12' East	-33.859, 151.211
Sao Paolo, Brazil	23° 33' South, 46° 38' West	-23.550, -46.634

Dimensional Analysis

GIS requires decimal degrees

Dimensional analysis

$$(118 + 15/60)$$

- Express 73°57′48″ as decimal degrees:
 - Convert the 48 to minutes

$$\frac{48''}{1} \times \frac{1'}{60''} = 0.8'$$

- Add that to your minutes
 - So 57.8'
- Now change that to $\frac{57.8'}{1} \times \frac{1^{\circ}}{60'} = 0.963^{\circ}$
- Add to the 73°
- So 73.963°

Decimal Minutes (DM) popular for navigating the seas

1' minute latitude = 1 nautical mile (nm)

1' nm ~ 1852 meters

Question?

UC San Diego is located:

Latitude: 32.87°

Longitude: -117.23°

How much is 0.01 degrees in meters?

How precise is this for UCSD location?

Answer

0.01 deg = ? meters

$$X = \left(\frac{0.01 \text{ deg}}{1}\right) \left(\frac{60 \text{ min}}{1 \text{ deg}}\right) \left(\frac{1 \text{ nm}}{1 \text{ min}}\right) \left(\frac{1852 \text{ m}}{1 \text{ nm}}\right)$$

$$X \sim 1111.2 \text{ m}$$

How precise is this for UCSD location - Depends who is asking!!! +/- 1 kilometer is large error for most applications.

Question

Latitude and Longitude are not considered Cartesian coordinates

Why?

Projected Coordinate Systems

 Positions on curved Earth's surface projected to "flat" map

- GCS \iff Projection
 - o Mathematical transformations

Source: GIS: An Introduction by P. McHaffie, 2019

GIS offers on-the-fly projections

Projections: Illustrated

- Imagine light bulb in center of translucent globe
- Outline of continents will be "projected" as shadows on wall or ceiling
- 3-d to 2-d transformation

Source: Essentials of GIS by J. Campbell, 2011

Map Projections

• Planar: Use planes

• Conical: Use cones

• Cylindrical: Use cylinders

Common Map Projections

Transverse Mercator

- Cylindrical
- Many flavors: including UTM
- Google Maps and Web Mapping

State Plane Coordinate System

- Cartesian "blend"
- Multiple "zones" per state
- County and state agencies

Source: GIS Fundamentals by P. Bolstad, 2015

On The Fly Projection

Video (5 min): On The Fly Projections in ArcGIS Pro

