PRAKTIK INSTRUMENTASI

POTENTIOMETER

Disusun oleh:

MUHAMMAD EMIR AL HAFIDZ (20507334030)

D4 TEKNIK ELEKTRONIKA JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA DAN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

File pot1

Komponen:

- 1. POT-HG
- 2. DC Voltmeter

Langkah kerja:

1. Check pada properties dari tegangan sumber, berapa volt.

Tegangan sumber	5 V
reguligan sumber	5 •

2. Check properties dari POT-HG, berapa resistansi yang tertera di sana.

Resistansi 20 K ohm

3. Catat tegangan terukur saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur
Posisi di atas	5 V
Posisi di tengah	2.50 V
Posisi di bawah	0.02 mV

- 4. Tambahkan DC Amperemeter di antara POT-HG dengan ground.
- 5. Catat arus yang terukur saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Arus terukur
Posisi di atas	0.25 mA
Posisi di tengah	0.25 mA
Posisi di bawah	0.25 mA

6. Buat analisis dan kesimpulan sementara.

Analisis = Ketika wiper diatur menaik ke posisi terminal Vsin maka nilai tegangan output yang terukur akan semakin besar, dan ketika wiper diatur menurun ke posisi terminal ground maka tegangan output akan semakin kecil. Dan wiper yang diatur naik atau turun tidak mempengaruhi arus output yang terukur

Kesimpulan = Semakin besar nilai hambatan maka output yang dihasilkan semakin besar begitupun sebaliknya semakin kecil nilai hambatan maka output yang dihasilkan akan semakin kecil dengan arus yang tetap tidak terpengaruh

File pot2

Komponen:

- 1. POT-HG
- 2. LED-RED
- 3. BATTERY

Langkah kerja:

1. Check pada properties dari tegangan sumber dari battery, berapa volt.

Tegangan sumber battery	24 V
-------------------------	------

2. Check properties dari POT-HG, berapa resistansi yang tertera di sana.

Resistansi 1 K ohm	
--------------------	--

- 3. Tambahkan DC Voltmeter untuk mengukur tegangan yang malewati LED-RED.
- 4. Catat tegangan terukur dan nyala LED-RED saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur	Nyala LED-RED
Posisi di atas	22.6 V	Terang
Posisi di tengah	2.32 V	Redup

5. Ganti LED-RED dengan komponen MOTOR.

6. Catat tegangan terukur dan kecepatan putaran MOTOR saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur	Putaran MOTOR
Posisi di atas	23.6 V	Cepat
Posisi di tengah	550 mV	Pelan
Posisi di bawah	2.38 mV	Berhenti

7. Buat analisis dan kesimpulan sementara.

Analisis = Nilai tahanan potensiometer yang besar menjadikan tegangan beban lampu LED menyala terang, nilai tahanan potensiometer yang kecil menjadikan beban lampu LED menyala redup. Begitu juga dengan beban motor ketika nilai potensiometer besar maka kecepatan putaran motor pun menjadi besar

Kesimpulan = besar kecil nya nilai tahanan potensiometer mempengaruhi cepat lambatnya putaran motor, dan terang redupnya nyala lampu LED

File pot3

Komponen: 2 Resistor DC Voltmeter BATTERY

Langkah kerja:

1. Check pada properties dari tegangan sumber dari battery, berapa volt.

Tegangan sumber battery	24 volt
-------------------------	---------

2. Check properties dari dua buah resistor tersebut, berapa resistansi yang tertera di sana untuk R1 dan R2.

Resistansi R1 (Resistor atas)	1K ohm
Resistansi R2 (Resistor bawah)	1K ohm

3. Catat tegangan terukur saat R1 dan R2 pada kondisi awal.

Tegangan terukur kondisi awal	12 V
-------------------------------	------

4. Ubah nilai R1 dan R2 antara rentang 1000 ohm hingga 10000 ohm, lalu catat tegangan terukurnya.

Nilai R1	Nilai R2	Tegangan terukur
2K ohm	3K ohm	14.4 V

3K ohm	2K ohm	9.60 V
5K ohm	4K ohm	10.7 V
6K ohm	4K ohm	9.60 V
6K ohm	8K ohm	13.7 V
9K ohm	8K ohm	11.3 V
4.5K ohm	7K ohm	14.6 V
7.5K ohm	7K ohm	11.6 V
3.5K ohm	2K ohm	8.73 V
4K ohm	5 K ohm	13.3 V

5. Buat analisis dan kesimpulan sementara.

Analisis = apabila nilai R1 kecil dan R2 besar maka akan menghasilkan tegangan output yang nilainya kecil, apabila nilai R1 besar dan R2 Kecil maka akan menghasilkan tegangan output yang nilainya besar.

Kesimpulan = untuk menghasilkan output tegangan yang besar maka diperluka nilai R1 yang besar dan R2 kecil, begitu sebaliknya untuk menghasilkan output tegangan yang kecil maka diperlukan nilai R2 yang besar dan R1 yang kecil.