

Status and Developments of Event Generators

Torbjörn Sjöstrand

Theoretical Particle Physics
Department of Astronomy and Theoretical Physics
Lund University
Sölvegatan 14A, 223 62 Lund

LHCP 2016, Lund, 13 June 2016

Table of Contents

- \star Historical introduction from the Lund perspective \star
 - ⋆ Generator overview + MCnet ⋆
 - * Herwig, Sherpa, PYTHIA news & plans *
 - \star Match & merge overview \star
 - \star Some other programs \star
 - **★ Summary and outlook ★**

Further talks by Gavin Salam, Rikkert Frederix, Tomas Jezo, Marek Schönherr, Frank Tackmann, and several of the experimental presentations (?)

1976: Lund QCD Phenomenology group

Created by Bo Andersson and Gösta Gustafson

Lund string model: \sim like rubber band that is pulled apart and breaks into pieces, or like a magnet broken into smaller pieces.

Complete, consistent description of 2-jet events — but not necessarily perfect.

1978: JETSET version 1

```
SUBBOUTING ISTSEN(N)
                                                                                            SUBROUTINE DECAY(IPD:I)
                                                                                                                                                                                 SURROUTINE EDIT(N)
        COMMON /JET/ K(100:2), P(100:5)
COMMON /PAR/ PUD. PSI, SIGNA, CX2, EBEG, WFIN, IFLBEG
COMMON /DATA!/ MESO(9:2), CMIX(6:2), PMAS(19)
                                                                                            COMMON /JET/ K(180:2): P(180:5)
COMMON /DATA1/ MESO(9:2): CHII(6:2): PMAS(19)
                                                                                                                                                                                 COMMON /JET/ K(180.2), P(108.5)
COMMON /EDPAR/ ITHROW, PZMIN, PMIN, THETA, PMI, BETA(3)
                                                                                            COMMON /DATA2/ IDCD(12): CBR(29): KDP(29:3)
                                                                                                                                                                                 REAL POT(3.3), PR(3)
                                                                                     DIMENSION U(3) - BE(3)
C 1 DECAY CHANNEL CHOICE - GIVES DECAY PRODUCTS
                                                                                                                                                                         C 1 THROW AWAY NEUTRALS OR UNSTABLE OR WITH TOO LOW PZ OR P
        IFLS6N=(10-IFLBEG)/5
        N-2.*EBEG
                                                                                            TRROPRANE (O)
                                                                                                                                                                                 DO 110 I=1.N
                                                                                            IDC=IDCD(M(IDD-2)-7)
                                                                                                                                                                                 IF(ITHROW.GE.1.AND.K(1.2).GE.8) GOTO 110
        190=0
                                                                                       100 IDC=IDC+1
IF(TBR,GT,CBR(IDC)) GOTO 100
                                                                                                                                                                                 IF(ITHROW.GE.2.AND.K(1.2).GE.6) GOTO 110
IF(ITHROW.GE.3.AND.K(1.2).Eg.1) GOTO 110
C 1 FLAVOUR AND PT FOR FIRST BUARK
        IFL1=IABS(IFLBEG)
                                                                                            ND=(59+KDP(IDC:3))/20
DO 110 I1=I+1:I+ND
                                                                                                                                                                                 IF(P(1:3).LT.PZMIN.OR.P(1:4)**2-P(1:5)**2.LT.PMIN**2) GOTO 110
        PT1=SISMA*SORT(-ALOG(RANF(D)))
        PHI1=6.2832*RANF(D)
        PX1=PT1+COS(PHI1)
                                                                                                                                                                                 KC11, 13 a I D TH (KC1, 43, 43,
                                                                                            K(11:2)=KDP(100:14-1)
                                                                                                                                                                                 K(11:2)=K(1:2)
        PY1=PT1+SIN(PHI1)
                                                                                        110 P([1:5)=PMAS(K([1:2)
                                                                                                                                                                                 DO 100 J-1.5
   400 I=I=1
                                                                                     C 2 IN THREE-PARTICLE DECAY CHOICE OF INVARIANT MASS OF PRODUCTS 2+3
                                                                                                                                                                            400 P(11:J)=P(I:J)
C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK
                                                                                            IF(ND.E0.2) GOTO 130
R4=(P(IPD.5)+P(I+1.5))**2
        TEL 2=14TNT/DANE (D) /BUB)
                                                                                                                                                                            110 CONTINUE
                                                                                            SB=(P(IPD:5)+P(I+1:5))**2
SB=(P(IPD:5)-P(I+1:5))**2
SC=(P(I+2:5)+P(I+3:5))**2
        PT2=SIGMA*SQRT(-ALOG(RANF(D)))
                                                                                                                                                                         C 2 ROTATE TO GIVE JET PRODUCED IN DIRECTION THETA, PHI
        PHI2=6.2832*RANF(0)
PX2=PT2*C0S(PHI2)
                                                                                                                                                                                 IF(THETA.LT.1E-4) GOTO 140
                                                                                            Shu(P(I+2,5)-P(I+3,5))++2
                                                                                                                                                                                 ROT(1:1)=COS(THETA)+COS(PHI)
        PY2=PT2+SIN(PH12)
                                                                                             DU=(8A-8D)*(8B-8C)/(4.*S9RT(8B*8C))
                                                                                                                                                                                 POT(1:2) ==SIN(PHI)
                                                                                            IF(K(IPD+2).6E.11) TDU=SQRT(SB+SC)+TOU++3
C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED
K(1,1)=MESO(3*(IFL1-1)+IFL2,IFLSEN)
                                                                                                                                                                                 ROT(1:3)=SIN(THETA)+COS(PHI)
                                                                                        120 SX-SC+(SB-SC) *RANE(D)
                                                                                                                                                                                 POT(2.4)=COS(THETA)+SIN(SHI)
                                                                                            TDF=SQRT < (SI-SA)*(SI-SB)*(SI-SC)*(SX-SD))/SX
        ISPIN=INT(PS1+RANF(0))
                                                                                            IF(K(IPD+2).GE.11) TDF=SE*TDF++3
IF(RANF(0)+TDU.GT.TDF) GOTO 120
                                                                                                                                                                                 ROT(2:3)=SIN(THETA)+SIN(PHI)
        IF(K(I:1),LE.6) GOTO 110
                                                                                                                                                                                ROT(3:1)=-SIN(THETA)
        THIX=RANF(D)
                                                                                                                                                                                 ROT (3:2)=D.
                                                                                     C 3 TWO-PARTICLE DECAY IN CM. TWICE TO SINULATE THREE-PARTICLE DECAY
        KM+K(I:1)-6+3*ISPIN
                                                                                                                                                                                ROT(3:3)=COS(THETA)
DO 130 I=1:N
                                                                                        130 DO 160 IL-1-NO-1
        K(1:2)=8+9+18PIN+INT(THIX+CHIX(KH:1))+INT(THIX+CHIX(KH:2))
                                                                                             ID=(II =1) #100 = (II =2) #100
C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS
                                                                                                                                                                                 DO 120 J=1.3
                                                                                            11=1+1L
12=(ND-EL-1)*100-(ND-EL-2)*(1+EL+1)
                                                                                                                                                                            120 PR(J)=F(1:J)
  110 P(1:5)=PMAS(K(1:2))
        P(1:1)=PX1+PX
                                                                                                                                                                                DO 130 I=1-3
                                                                                            PA=S9RT((P(ID:5)**2-(P(I1:5)+P(I2:5))**2)*
                                                                                                                                                                         130 P(1,1)=ROT(J,1)*PR(1)*ROT(J,2)*PR(2)*ROT(J,3)*PR(3)
C 3 OVERALL LORENTZ BOOST GIVEN BY BETA VECTOR
        P(1.2)=PV1+PV
                                                                                           &(P(10:5)**2-(P(11:5)-P(12:5))**2))/(2.*P(10:5))
        PMTSuP(1,1)*#2#P(1,2)##2#P(1,5)##2
                                                                                       140 U(3)=2.*RANF(0)-1.
PHI=6.2832*RANF(0)
C 5 RANDOM CHOICE OF X=(E+PZ)HESON/(E+PZ)AVAILABLE GIVES E AND PZ
                                                                                                                                                                           140 IF(BETA(1)**2*BETA(2)**2*BETA(3)**2.LT.1E-8) RETURN

SA=1./S9RT(1,-BETA(1)**2*BETA(2)**2*BETA(3)**2.
                                                                                            U(1)=S0RT(1.-U(3)**2)*C0S(PHI)
U(2)=S0RT(1.-U(3)**2)*SIN(PHI)
        IF(RANF(0).LT.CX2) X=1.-X**(1./3.)
P(1.3)=(X*N-PMTS/(X*N))/2.
                                                                                                                                                                                 BEP=BETA(1)*P(I+1)*BETA(2)*P(I+2)*BETA(3)*P(I+3)
                                                                                           TDA=1,-(U(1)*P(10:1)*U(2)*P(10:2)*U(3)*P(10:3))**2/
&(P(10:1)**2*P(10:2)**2*P(10:3)**2)
                                                                                                                                                                                00 150 141.3
P(1:4)=(X*W+PHTS/(X*W))/2.
P(1:4)=(X*W+PHTS/(X*W))/2.
C 6 IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES
                                                                                            DO 150 J=1-3
                                                                                                                                                                            150 P(1;4)=P(1;4)+6A*(6A/(1.+6A)*BEP*P(1;4))*BETA(J)
150 P(1;4)=GA*(P(1;4)+BEP)
  120 IPD=IPD+1
                                                                                                                                                                                RETURN
                                                                                            P(11+12=P4+H(1)
        IF(K(IPD:2).6E.8) CALL DECAY(IPD:1)
                                                                                        150 P(12.J)=-PANU(J)
        IF (IPD.LT.I.AND.I.LE.96) GOTO 120
C 7 FLAVOUR AND PT OF GUARK FORMED IN PAIR WITH ANTIQUARK AROUS
                                                                                        P(11+4)=S9RT(PA+*2+P(11+5)+*2)
140 P(12+4)=S9RT(PA+*2+P(12+5)+*2)
        IFL1-IFL2
                                                                                     C 4 DECAY PRODUCTS LORENTZ TRANSFORMED TO LAB SYSTEM
                                                                                            DO 170 IL-ND-1-1-1
                                                                                                                                                                                BLOCK DATA
                                                                                            10=(1L-1)*100-(1L-2)*1PD
C & IF ENOUGH E-PZ LEFT. GO TO 2
                                                                                                                                                                                COMMON /PAR/ PUD. PS1. SISMA: CX2. EREC. WFIN: IFLBEG
COMMON /PAR/ PITHROW: PIMIN: PMIN: THETA: PMI, BETA(3)
COMMON /DATA1/ MESO(9:2): CMII(6:2): PMAS(19)
                                                                                        00 170 J=1.3
170 BE(J)=P(ID.J)/P(ID.4)
        W=(1.-X)*W
        IF (W.GT.WFIN.AND.I.LE.95) GOTO 100
                                                                                            SAMP([0.6)/P([0.5)
                                                                                                                                                                                COMMON /DATA2/ IDCD(12), CBR(29), KDP(29,3)
COMMON /DATA3/ CHA1(9), CHA2(19), CDA3(2)
                                                                                            DO 180 III-IATI - TAKO
        RETURN
                                                                                            REP=RE(1)*P(11:1)*BE(2)*P(11:2)*BE(3)*P(11:3)
                                                                                                                                                                               DATA PUD/0.4/: PSI/0.5/: SIGMA/350./: CX2/0.77/:

$EBES/10000./: WFIN/100./: IFLBES/1/
        END
                                                                                            DO 480 1-4-7
                                                                                        480 P(11,1) uP(11,1) +GA+(GA/(1,+GA)+REP+P(T1,4))+RE(1)
                                                                                                                                                                                DATA ITHROW/1/- PIMIN/G./- PMIN/G./- THETA-PHI-BETA/5+G./
DATA MESO/7:1:3:2:8:5:4:6:9:7:2:4:3:6:3:5:5/
                                                                                        190 P(11:4)=64+(P(11:4)+BEP)
                                                                                                                                                                               SUBROUTINE LIST(N)
                                                                                            RETURN
                                                                                            END
        COMMON /JET/ K(100+2)+ P(100+5)
        COMMON /DATA3/ CHA1(9): CHA2(19): CHA3(2)
        WRITE(6:110)
        DO 100 I=1:N
        IF(K(1,1).GT.0) C1=CHA1(K(1,1))
IF(K(1,1).LE,0) IC1=-K(1,1)
                                                                                                                                                                               AD. A99+D. 987+1.+D. 68A+D. 837+D. 984+1./
                                                                                                                                                                               DATA KPG/1/15.8.7.115.2.811.1.112.3.6.4.7.5.4.6.5.7.2.2.
8152.4.6.5.2.11.1.8.3.2.1.1.3.6.2.1.8.4.2.6.2.6.13.8.3.6.2.5.
83.5.3.6.2.5.7.3.9.0.10.8.6.3.3.8.9.9.4.8.0.8.4.80.8.6.7.
        C2=CHA2(K(I:2))
                                                                                                 \approx 200 punched cards
        C2=CHA2(47-K(1,2))/20)
IF(K(1,4).GT.O) WRITE(6,42O) I, C1, C2, C3, (P(1,J), J=1,5)
                                                                                                                                                                               100 IF(K(1:1).LE.0) WRITE(6:130) I: IC1: C2: C3: (P(1:1): J=1:5)
                                                                                                             Fortran code
   110 FORMAT(////T11:'1':T17:'OR1':T24:"PART':T32:"STAB':

5T44:"PX':T56:"PY':T68:"PZ':T80:"E':T92:"M'/)
   120 FORMAT(10x,12,4x,42,1x,2(4x,44),5(4x,F8,1))
  130 FORMAT(10X:12:4X:1X:12:2(4X:44):5(4X:F8.1))
```

1980: string (colour coherence) effect

1980: string (colour coherence) effect

Predicted unique event structure; inside & between jets.

Confirmed first by JADE 1980.

Generator crucial to sell physics!

(today: PS, M&M, MPI, ...)

Lund contributions

Physics:

- string fragmentation (& colour coherence)
- dipole showers
- backwards evolution (for ISR)
- multiparton interactions (MPI)
- colour reconnection (CR)
- matching (POWHEG style)& merging (CKKW-L, ...)
- small-x evolution (CCFM, ...)
- interleaved evolution
- heavy-ion collisions
- QCD effects for BSM

Generators:

JETSET PYTHIA Fritiof Ariadne LDC DIPSY

Lepto VINCIA DIRE

RapGap HIJING ...

GEANT

The workhorses

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

The structure of an event

All full-fledged generators need to address many issues:

MCnet

Herwig PYTHIA Sherpa MadGraph

Plugin: Ariadne DIPSY HEJ

CEDAR: Rivet Professor HepForge LHAPDF HepMC

- EU-funded 2007–10, 2013–16, 2017–20
- Generator development
- Services to community
- PhD student training
- Common activities

Nodes: Manchester CERN Durham Glasgow Göttingen Heidelberg Karlsruhe **UC** London Louvain Lund

Monash (Au) SLAC (US)

MCnet

Herwig PYTHIA Sherpa MadGraph

Plugin: Ariadne DIPSY HEJ

CEDAR: Rivet Professor HepForge LHAPDF HepMC

- EU-funded 2007–10, 2013–16, 2017–20
- Generator development
- Services to community
- PhD student training
- Common activities
- Short-term studentships (3 - 6 months).
 Experimentalists welcome!
- Summer schools
 2016: DESY (w. CTEQ)
 2017: Lund, 3 7 July
 Send your students!

Nodes: Manchester CERN Durham Glasgow Göttingen Heidelberg Karlsruhe **UC** London Louvain Lund

Monash (Au) SLAC (US)

Herwig 7.0 news

- Herwig++ 3.0 ⇒ Herwig 7.0 (December 2015).
 Concludes 16 years effort to replace Fortran Herwig 6.
- NLO matched to parton showers default for hard process.
 - Fully automated: no external codes to run, no intermediate event files.
 - Choice of subtractive (MC@NLO type) or multiplicative (PowHeg type) matching.

Matchbox in Herwig 7

script downloads & sets up external libraries (above + more)

Herwig 7.0 news

- Herwig++ 3.0 ⇒ Herwig 7.0 (December 2015).
 Concludes 16 years effort to replace Fortran Herwig 6.
- NLO matched to parton showers default for hard process.
 - Fully automated: no external codes to run, no intermediate event files.
 - Choice of subtractive (MC@NLO type) or multiplicative (PowHeg type) matching.
- Two showers: angular ordered or dipole.
 Spin correlations and QED radiation in the former.
- Facilities for parton-shower uncertainties.
- New tunes, including MB/UE.
- Vastly improved documentation, usage and installation.
- Several parallelization options.

Herwig 7 examples

 $LO \to NLO \Rightarrow$ major improvements in e^+e^- and pp alike. Subtractive or multiplicative matching less important. Ditto angular-ordered or dipole shower.

Future of Herwig 7

Herwig 7.1 later this year:

- NLO multijet merging (unitarized merging ideas).
- Loop-induced processes.
- Extended UFO-model support.
- Extended reweighting: weight vectors in HepMC files.
- Improved top decay in dipole shower.
- Interface to HEJ.
- Soft interactions and diffraction.

In the longer run:

- Code now 500k lines ⇒ need for significant restructuring.
- Amplitude-based parton showers.

Sherpa 2.2 news and activities

Recent news:

- DIRE shower (see below).
- UNNLOPS first results on NNLO merging.

Sherpa NNLO QCD with parton showers

W production @ NNLO+PS with SHERPA +BLACKHAT

[Höche et al. arXiv:1507.05325]

- \hookrightarrow fully differential hadron-level NNLO+PS simulation
 - inclusive (born-like) distribution NNLO accurate
 - ullet 0-jet bin NNLO, 1-jet bin NLO, 2-jet bin LO, \geq 3-jets shower accuracy
- → small corrections away from Born kinematics

Sherpa 2.2 news and activities

Recent news:

- DIRE shower (see below).
- UNNLOPS first results on NNLO merging.
- On-the-fly scale variations of NLO ME + PS.
 ME observables through interpolating grids (ApplGrid, FastNLO, MCgrid, ...).
- Electroweak NLO corrections, together with OpenLoops.
- Merging for loop-induced processes.

Sherpa QCD coherence test

Study events with two hard and one further softer third jets.

Angular distribution of third around second probes colour coherence:

PYTHIA/Herwig does not quite describe data, whereas Sherpa fares much better.

Sherpa 2.2 news and activities

Recent news:

- DIRE shower (see below).
- UNNLOPS first results on NNLO merging.
- On-the-fly scale variations of NLO ME + PS.
 ME observables through interpolating grids (ApplGrid, FastNLO, MCgrid, ...).
- Electroweak NLO corrections, together with OpenLoops.
- Merging for loop-induced processes.

Ongoing work and plans:

- Full NNLO QCD + NLO EW (for $2 \rightarrow 1$, $2 \rightarrow 2$).
- Higher-order shower (one-loop splitting functions, sub-leading colour).
- Automated N-jettiness slicing.

- New match&merge schemes (now 8) and options.
- Weak showers: $q \rightarrow qZ^0$, $q \rightarrow q'W^{\pm}$ (also merged).

- New match&merge schemes (now 8) and options.
- Weak showers: $q \rightarrow qZ^0$, $q \rightarrow q'W^{\pm}$ (also merged).
- Allow reweighting of rare shower branchings.
- Automated parton-shower uncertainty bands.
- Extended interface for external shower plugins.
- Complete LHEF v3 support.
- Can run Madgraph5_aMC@NLO and POWHEG BOX from within PYTHIA.
- Complete Python interface.

Many new colour reconnection models.

- Many new colour reconnection models.
- Double onium production.
- New model for hard diffraction.
- Several new tunes; Monash new default.

Ongoing work and plans:

- $\gamma\gamma$, γp and ep.
- Total, elastic and diffractive cross sections.
- Improved showers and hadronization.

Match and merge strategies

CKKW CKKW-I MI M **UMEPS** MC@NLO POWHEG MENLOPS MFPS@NIO MI3UNLOPS FxFx NNI OPS MiNLO UN²LOPS MIN²I OPS

Intense activity, no "final word".

Combination strategies

Big flexibility, but different baseline "world view":

MadGraph:

Herwig, Sherpa:

Pythia:

ME gen

M&M

Event gen

ME gen

M&M

Event gen

ME gen

Les Houches

M&M

Event gen

Event gen =
$$ISR + FSR + MPI + BBR + CR + hadronization + ...$$

 \neq "hadronizer"

ME and Event Generators both indispensable

VINCIA: an Interleaved Antennae shower

Markovian process: no memory of path to reach current state.

Based on antenna factorization of amplitudes and phase space.

Smooth ordering fills whole phase space.

Step-by-step reweighting to new matrix elements: $Z \rightarrow Zj \rightarrow Zjj \rightarrow Zjjj$ (also Sudakov), e.g.

$$W = \frac{|\mathcal{M}_{\mathrm{Zj}}|^2}{\sum_{i} a_i |\mathcal{M}_{\mathrm{Z}}|_i^2}$$

Replaces PYTHIA normal showers; recent release.

DIRE: a Dipole Resummation shower

Joint Sherpa/PYTHIA development, but separate implementations, means technically well tested.

"Midpoint between dipole and parton shower", dipole with emitter & spectator, but not quite CS ones: unified initial-initial, initial-final, final-initial, final-final.

Soft term of kernels in all dipole types is less singular

$$rac{1}{1-z}
ightarrow rac{1-z}{(1-z)^2 +
ho_+^2/M^2}$$

Apologies: will not cover

- High Energy Jets (HEJ): BFKL-inspired description of well-separated multijets, with approximate matrix elements and virtual corrections.
- Deductor: improved handling of colour, partitioned dipoles, all final partons share recoil, q^2/E evolution variable.
- Geneva: Soft Collinear Effective Theory resummed (exclusive)
 n-jet rates as starting point for showers.
- Ariadne: first dipole parton shower program.
- DIPSY: evolution and collision of dipoles in transverse space.
- revived Fritiof: overlayed modified pp collisions to model pA.
- EPOS: pp/pA/AA, MPI + strings, saturation, thermalized core separate from corona, hydrodynamical evolution.
- DPMJET, QGSJET, SIBYLL: other pp/pA/AA/cosmic ray.
- . . .

Summary and Outlook

- Increased ME calculational capability: legs and loops.
- Match and merge approaches still steadily developing.
 Generators typically offer several options.
 Spread between approaches one measure of uncertainty.
- Continued/increased interest in parton shower development, with each generator offering several options.
- Automated uncertainty bands for scale choices etc.
- Many challenges remaining in soft physics, pA, AA: diffraction, colour reconnection, collective effects, ...
- Generators have gone from fringe activity for a few to a mainstream part of phenomenology research.

