

Description

These N-Channel enhancement mode power field effect transistors are using **shielded gate trench** DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $100V,140A,R_{DS(on).max}=4.7m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 100V \\ R_{DS(on).max} @\ V_{GS} {=} 10V & 4.7 m\Omega \\ I_D & 140A \end{array}$

Pin Configuration

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	100	V
Continuous drain current (Tc = 25°C)		140	А
(T _C = 100°C)	I _D	88	A
Pulsed drain current 1)	Ірм	480	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy 2)	E _{AS}	272	mJ
Power Dissipation	P _D	156	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	0.8	°C/W
Thermal Resistance, Junction-to-Ambient 3)	Reja	75	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube
VST10N047-TC	TO-220C	VST10N047-TC	50

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	'					
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	100			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.0		4.0	V
Drain-source leakage current		V _{DS} =100 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
	IDSS	V _{DS} =100V, V _{GS} =0 V, T _J = 150°C			100	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20V, V _{DS} =0 V			-100	nA
		V _{GS} =10 V, I _D =40 A,				
Drain-source on-state resistance	R _{DS(on)}	T _J = 25°C		4.2	4.7	mΩ
		T _J = 150°C		7.8		
Forward transconductance	g fs	V _{DS} =20V , I _D =40A		120		S
Dynamic characteristics	'					•
Input capacitance	C _{iss}	50,4,4, 0,4,		3838		pF
Output capacitance	Coss	$V_{DS} = 50V, V_{GS} = 0 V,$		1252		
Reverse transfer capacitance	Crss	f = 250kHz		13.4		
Turn-on delay time	t _{d(on)}			29.4		- ns
Rise time	t _r	40,47,4		29.2		
Turn-off delay time	t _{d(off)}	$V_{DD} = 40V, V_{GS} = 15V, I_D = 60 A$		80.2		
Fall time	t _f			30.8		
Gate resistance	R _g	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.0		Ω
Gate charge characteristics	•					
Gate to source charge	Q _{gs}	V 00 V 1 00 A		20.5		
Gate to drain charge	Q _{gd}	V _{DS} =80 V, I _D =80A,		16		nC
Gate charge total	Qg	V _{GS} = 10 V		65		
Gate plateau voltage	V _{plateau}			5.5		V
Output Charge	Q _{oss}	V _{DS} =80 V,V _{GS} = 0V		138		nC
Drain-Source diode characteris	tics and Max	imum Ratings				
Continuous Source Current	Is				111	А
Pulsed Source Current	Іѕм				444	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =80A, T _J =25℃			1.4	V
Reverse Recovery Time	t _{rr}	1 -004 di/dt-4004/ T 05°0		55.6		ns
Reverse Recovery Charge	Qrr	I _S =80A, di/dt=100A/us, T _J =25℃		233		nC
						_

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS} =33A, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C.
- 3: The value of R_{thJA} is measured by placing the device in a still air box which is one cubic foot.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. On-Resistance vs.Drain Current

Figure 5.Breakdown Voltage vs.Temperature

Figure 2. Transfer Characteristics

Figure 4.On-Resistance vs.Temperature

Figure 6. Threshold Voltage vs. Temperature

Figure 7.Rds(on) vs. Gate Voltage

Figure 9. Capacitance Characteristics

Figure 11. Drain Current Derating

Figure 8.Body-Diode Characteristics

Figure 10.Gate Charge Characteristics

Figure 12. Power Dissipation vs. Temperature

Figure 14. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Diode Recovery Test Circuit & Waveform

