	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1	Утверждаю:
МЭИ	Кафедра ВМСС	Зав.кафедрой
	Дисциплина МСПИ II часть	00.01.22
	Институт ИВТ	09.01.22 г.
	цы информационных сигналов. Классификация	
	тв передачи информации (передатчики (модулят передачи, приемники (демодуляторы, усилител	
линиі		ш)). лн) и <u>входных</u>

1. Виды информационных сигналов. Классификация методов и средств передачи информации (передатчики (модуляторы, усилители), линии передачи, приемники (демодуляторы, усилители)).

Сигнал – материальный носитель информации, используемый для передачи сообщений в системе связи.

Сообщение – сигналы или комбинация сигналов, предназначенные для приема адресатом (т.е. значимый для адресата сигнал)

Сигналы разделают:

По способу задания на регулярные (детерминированные) и нерегулярные (псевдослучайные). Регулярные задаются аналитической функцией, а нерегулярные принимают произвольное значение в любой момент времени.

По физической природе носителя информации на электромагнитные, оптические, акустические

По функции, описывающей параметры сигнала на непрерывные (аналоговые), дискретные, квантованные, цифровые.

Аналоговые сигналы изменяются непрерывно во времени и могут принимать любые значения на некотором интервале, описываются математической функцией времени t и на любом интервале времени имеют бесконечное множество значений.

Дискретные сигналы получаются после дискретизации (сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени) аналогового сигнала.

Квантованный по уровню сигнал – сигнал, получающийся при "дискретизации" по мгновенным значениям сигнала.

Цифровой сигнал образуется в результате представления временной функции в виде набора чисел (вначале аналоговый сигнал превращают в дискретный, а потом каждое дискретное значение подвергают квантованию)

Событие – изменение состояния любого компонента системы, опознаваемое логикой системы как значимое, является сигналом.

Существуют два способа представления сигнала в зависимости от области определения: временной (представляется функцией времени) и частотный (представляется в виде спектральных составляющих преобразования Фурье)

Как будто это тоже должно тут быть:

Параметры сигналов: (обозначение s(t) – функция, задающая сигнал)

- Мгновенная мощность сигнала, пропорциональна $s^2(t)$
- Энергия сигнала, пропорциональна $\int_{-\infty}^{\infty} s^2(t)dt$
- Длительность сигнала
- Динамический диапазон (отношение наибольшей мгновенной мощности к

наименьшей
$$D = 10 \lg \left(\frac{P_{max}}{P_{min}} \right)$$

- Ширина спектра сигнала (полоса частот, в которой сосредоточена основная энергия)
 - База сигнала (= длительность * ширина спектра)
 - Отношение сигнал/шум (мощность полезного сигнала к мощности шума)
- Объем передаваемой информации (= ширина спектра * длительность * динамический диапазон)

Классификация методов и средств передачи информации в нашем курсе рассматривается на примере систем передачи цифровой информации.

Сетевая модель OSI – взгляд на компьютерную сеть с точки зрения отдельных операций.

Модель OSI			
Тип данных	Уровень (layer)	Функции	
Данные	7. Прикладной (application)	Доступ к сетевым службам	
	6. Представления (presentation)	Представление и кодирование данных	
	5. Сеансовый (session)	Управление сеансом связи	
Сегменты	4. Транспортный (transport)	Прямая связь между конечными пунктами и надежность	
Пакеты	3. Сетевой (network)	Определение маршрута и логическая адресация	
Кадры	2. Канальный (data link)	Физическая адресация	
Биты	1. Физический (physical)	Работа со средой передачи, сигналами и двоичными данными	

Структурная схема приемо-передатчика:

1 — антенна; 2 — фидерный тракт; 3 и 6 — приемный и передающий тракты; 4 — входной усилитель приемника; 5 — демодулятор сигнала; 7 — выходной усилитель передатчика; 8 — модулятор сигнала передатчика; 9 — цифровой контроллер

Передатчик преобразовывает информацию от источника в сигнал, линия передачи (канал связи) передает сигнал от передатчика к приемнику, приемник преобразовывает сигнал в информацию.

2. Типы выходных (источников электромагнитных волн) и входных (приемников волн) информационных каскадов радиоканалов передачи данных.

В настоящее время актуальные системы, основанные на применении радиолиний для передачи информационных сигналов, представляют устройства сетей подвижной связи (СПС) — наиболее динамично развивающихся отраслей инфраструктуры современного общества.

СПС позволяют абоненту, снабженному малогабаритным универсальным терминалом, получать услуги связи в любой точке в пределах зон действия наземных и спутниковых сетей.

К СПС относятся сети сотовой радиотелефонной связи, сети транкинговой связи (связи по радиолиниям с подвижными объектами в пределах ограниченной области), сети персонального радиовызова (СПР или пейджинговые сети) (сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений)

Эти СПС, а также различные их модификации основаны на определенных стандартах связи, среди которых применятся в соответствии со стандартами лишь системы:

D-AMPS (Digital-Advanced Mobil Phone Service –цифровой вариант широко распространенного в США и др. странах аналогового мобильного телефонного стандарта AMPS – усовершенствованная мобильная телефонная служба, разработанного в 1983 г. фирмой Bell Laboratories, имеет рабочие диапазоны 800 и 1900 МГц;

16 GSM (Global System for Mobil Communication – глобальная система мобильной связи, диапазоны 900, 1800 и 1900 МГц. Это второй по распространенности стандарт мира;

CDMA (Code Division Multiple Access) — стандарт, применяющий шумоподобные сигналы с кодовым разделением каналов в диапазоне частот 800 и 1900 МГц, распространен в США, Китае, ряде стран Европы и Восточной Азии, требует наличия системы синхронного времени, т.е. наличия космической группировки типа GPS или ГЛОНАСС (в России не получил распространения ввиду отсутствия (на период выбора и развертывания СПС) отечественной космической группировки);

JDC (Japanese Digital Cellular) – японский стандарт цифровой сотовой связи.

В части сравнения особенностей стандартов отметим большую информативную емкость систем CDMA при меньшей требуемой полосе рабочих частот. Только назовем виды модуляции, применяемые в таких СПС:

• GMSK – Gaussian Minimum Shift Keying – Гауссовская манипуляция с минимальным частотным сдвигом;

- DQPSK Differetial Quadrature Phase Shift Keying дифференциальная квадратурная фазовая манипуляция;
- QPSK Quadrature Phase Shift Keying квадратурная фазовая манипуляция.

Основное отличие систем CDMA – кодовое разделение каналов (с применением кодов Уолша 64 порядка), что определяет возможность одновременной передачи/приема 32 информационных каналов на одной несущей частоте.

Такой вид модуляции считается наиболее рациональным, как по использованию ресурса радиолинии, так и по возможностям защиты информации (обеспечению конфиденциальности) с применением более простых технических решений.