1 nolen

א. נכון ב. לא נכון ג. לא נכון

ד. נכון ה. לא נכון ו. נכון

ז. לא נכון ח. נכון

2 nalen

 $M \in P(Y)$ עלינו להראות , $M \in P(X)$. תהי . $X \subseteq Y$ א.

בספר, 2 בעמי 1.6 בעמי אלה אלה , $X\subseteq Y$ בספר, מכאן יחד עם הנתון $M\subseteq X$ פירושו $M\in P(X)$ נקבל כי $M\subseteq Y$ כמבוקש. $M\in P(Y)$ כלומר $M\subseteq Y$

ב. התנאי $X \in P(A \cap B)$ שקול, לפי הגדרת קבוצת חזקה, לתנאי

 $X \subseteq A \cap B$

לפי שאלה 1.10 בי, זה **שקול** ל-

 $X\subseteq B$ (i.e. $X\subseteq A$

שוב לפי הגדרת קבוצת חזקה, זה שקול ל-

 $X \in P(B)$ גע $X \in P(A)$

ומהגדרת חיתוך, זה **שקול** ל-

 $X \in P(A) \cap P(B)$

 $X \in P(A) \cap P(B)$ (אם ורק אם $X \in P(A \cap B)$: קיבלנו

ולכן ,לפי הגדרה 1.1, שתי הקבוצות שוות.

ג. במהלך ההוכחה נזדקק לשימוש חוזר בטענה הבאה:

. טענת-עזר: אם $X \subset Y$ אז $X \subset Y$ אז $X \subset Y$ טענה או הוּכחה בעמי אם $X \subset Y$

: לשאלה עצמה

 $A \subseteq B$ נתון $A \subseteq B$ או $A \subseteq B$ ב.ה.כ (בלי הגבלת כלליוּת) נניח $A \subseteq B$

(הסבר: ב.ה.כ. פירושו: אנו מוסיפים הנחה מסוימת, שאינה מגבילה אותנו באמת, כי אם היא אינה מתקיימת ההוכחה שאנו מביאים תפעל בשינוי קטן שצריך להיות ברור מאד לקורא.

. במקרה אורך החוכחה שלהלון B ל-A לכל אורך החוכחה שלהלון.

. $P(A \cup B) = P(B)$ לכן $A \cup B = B$: מההנחה $A \subseteq B$, בעזרת טענת-העזר

, $P(A) \subseteq P(B)$, אוב מההנחה $A \subseteq B$, בעזרת סעיף א כאן,

. $P(A) \cup P(B) = P(B)$, ומכאן שוב בעזרת טענת-העזר

. לפיכך הם שווים אווים שניהם ל- $P(A) \cup P(B)$ ו- $P(A \cup B)$ לפיכך הם שווים זה לזה.

אינה B אינה אינה חלקית ל- אונה $P(A \cup B) = P(A) \cup P(B)$ אינה חלקית ל- ד.

.(יי $B \subseteq A$ או $A \subseteq B$ יי). או שלילת האמירה או דה-מורגן או דה-מורגן ל-

 $a \notin B$ המקיים $a \in A$ נובע שקיים B - אינה חלקית A

 $b \notin A$ המקיים $b \in B$ ומכך ש- $b \in A$ המקיים ל- $b \in A$ המקיים

 $A \cup B$ - כלומר שייכת ל- $A \cup B$ - חלקית ל- $\{a,b\}$ חלקית ל- פעת, מצד אחד, הקבוצה

: אך מצד שני

 $\{a,b\}\notin P(A)$ ולכן ($b\notin A$ (כי A-) אינה חלקית ל- $\{a,b\}$

 $\{a,b\} \notin P(B)$ ולכן ($a \notin B$ (כי B + B) ולקית ל- $\{a,b\}$ -ו

. $\{a,b\} \notin P(A) \cup P(B)$ לכן

 $P(A) \cup P(B)$ שאינו אבר של אבר של אבר של משני הצדדים יחד: מצאנו אבר של

. $P(A) \cup P(B) \neq P(A \cup B)$ לכן

3 nalen

הוכחה אחת:

מהגדרת הפרש סימטרי,

(אם ורק אם $A' \oplus B'$ - שייך לx

A' -לא ל- B' ולא ל- B' ולא ל- B' ולא ל- או A' ולא ל- הוא שייך ל-

כלומר אסם

A -אינו שייך ל- B והוא שייך ל- B אווה שייך ל- A והוא שייך ל- x

. $x \in A - B$ והתנאי השני פירושו $x \in B - A$ התנאי הראשון פירושו

. $x \in A \oplus B$ בסהייכ, לפי הגדרת הפרש סימטרי, קיבלנו שזה מתקיים אםם

הוכחה שניה, אלגברית:

$$A' \oplus B' = (A' - B') \cup (B' - A') = (A' \cap B) \cup (B' \cap A)$$

נשנה את סדר האיברים בעזרת חילופיות החיתוך וחילופיות האיחוד:

$$= (A \cap B') \cup (B \cap A') = (A - B) \cup (B - A) = A \oplus B$$

כפי שהעירו בפורום, שתי ההוכחות מקבילות כמעט צעד-צעד.

4 22167

$$A_1 = \{x \in \mathbb{N} \mid 2 \le x \le 4\} = \{2, 3, 4\}$$
 , $A_0 = \{x \in \mathbb{N} \mid 2 \le x \le 1\} = \emptyset$.

$$A_3 = \{x \in \mathbb{N} \mid 2 \le x \le 10\}$$
 , $A_2 = \{x \in \mathbb{N} \mid 2 \le x \le 7\} = \{2, 3, 4, 5, 6, 7\}$

$$B_0 = A_1 - A_0 = \{2,3,4\} - \emptyset = \{2,3,4\}$$

$$B_2 = A_3 - A_2 = \{8,9,10\}$$
 , $B_1 = A_2 - A_1 = \{5,6,7\}$

ב. עבור 0 < n כלשהו

$$B_n = A_{n+1} - A_n = \{ x \in \mathbb{N} \mid 2 \le x \le 3n + 4 \} - \{ x \in \mathbb{N} \mid 2 \le x \le 3n + 1 \}$$
$$= \{ x \in \mathbb{N} \mid 3n + 2 \le x \le 3n + 4 \} = \{ 3n + 2, 3n + 3, 3n + 4 \}$$

.
$$\bigcup_{1 \le n \in \mathbb{N}} B_n = \{x \in \mathbb{N} \mid 5 \le x\} :$$
ג. נוכיח:

. נניח ש-x הוא אבר של אגף שמאל, נוכיח שהוא אבר של אגף ימין.

$$x \in \bigcup_{1 \le n \in \mathbb{N}} B_n$$
 יהי

 $1 \leq n$ כאשר אייך לפחות הקבוצות אייך לפחות שייך לפחות משמע אייך לפחות משמע

. $x \in B_n = \{3n+2, 3n+3, 3n+4\}$ כלומר קיים $1 \le n$ כלומר כדים

 $0.5 \le x \in \mathbb{N}$ -מובן ש- $1 \le n \in \mathbb{N}$ מכיון ש

הכלה בכיוון שני: נניח ש-x הוא אבר של אגף $\{x \in \mathbb{N} \mid 5 \le x\}$, ונוכיח שהוא אבר

$$0.5 \leq x \in \mathbf{N}$$
 של של . $\bigcup_{1 \leq n \in \mathbf{N}} B_n$

 $x \in B_n$ -פדי להוכיח ש- , $1 \leq n \in \mathbf{N}$, אלינו להראות שקיים א עלינו $x \in \bigcup_{1 \leq n \in \mathbf{N}} B_n$ -פדי להוכיח ש

- זו ההגדרה של איחוד אוסף קבוצות!

 $B_n = \{3n+2, 3n+3, 3n+4\}$, לכל הלכל העיף ב, לכל

: כלומר עלינו להראות את הטענה הבאה

טענת-עזר: לכל אחד משלושת המספרים ,
 $1 \le n \in \mathbb{N}$ קיים קיים אווה לאחד משלושת המספרים :
 $5 \le x \in \mathbb{N}$ לכל המספרים : $3n+2, \ 3n+3, \ 3n+4$

כדי לתרגל את התמרון האלגברי הכרוך בכך נציג שתי הוכחות לטענת העזר.

<u>הוכחה 1 לטענת העזר</u>

.3 בחילוק ב- ג בחילוק ב- 3. נפריד למקרים לפי השארית של x בחילוק ב- 3.

שארית זו יכולה להיות 0, 1 או 2.

n=k-1 נסמן ג טבעי. נאשר א כאשר א מתחלק ב- 3, משמע x מתחלק כלומר *

קיבלנו x=3k=3(n+1)=3n+3 זה מתאים לאחד המקרים המבוקשים, אבל עלינו

 $1.6 \le x$ משמע ב- 3, ומתחלק ב- 3, ובכן, $1 \le n \in \mathbb{N}$

 $1 \le n \in \mathbb{N}$ לכן $2 \le k = x/3$ לכן

. טבעי k כאשר x=3k+1 כאשר ב- 3 משמע ב- 3 משמע x=3k+1 טבעי *

n=k-1 גם הפעם נסמן

 $:\,1\leq n\in {\bf N}$ ים נוודא ש- גם אים, גם אם גו גx=3k+1=3(n+1)+1=3n+4קיבלנו איים, כל אוד גוודא א

 $0.7 \le x$ ונותן שארית 1 בחילוק ב- 3, לכן למעשה $0.5 \le x$

 $1 \leq n \in \mathbb{N}$ לכן גם הפעם $2 \leq k$ (מדועי). לכן

. טבעי x=3k+2 כאשר ב- 2 בחילוק ב- 3 משמע x=3k+2 כאשר *

x = 3k + 2 = 3n + 2 קיבלנו . n = k הפעם ניקח

. $1 \le n \in \mathbb{N}$ -שלימו את הבדיקה א

הוכחה 2 לטענת העזר

 $\frac{x-4}{3} \le n$ יהי $5 \le x \in \mathbb{N}$ יהי . $5 \le x \in \mathbb{N}$

. $n-1<\frac{x-4}{3}\leq n$: כלומר n הוא מספר טבעי המקיים

. $3n+1 < x \le 3n+4$: לאחר העברת אגפים נקבל

 $.1 \leq n$ -ש לובע ש- מכך ש- מכך . $x \in B_n$ נובע , B_n עבור שרשמנו מהנוסחה מהנוסחה

(איך הגענו לדרישה המוזרה שבתחילת ההוכחה הזו? על-ידי התבוננות בשלושת המספרים $3n+2,\ 3n+3,\ 3n+4$.

סיימנו את הוכחת טענת העזר, ובכך סיימנו להוכיח אונר , $x\in\bigcup_{1\leq n\in {\bf N}}B_n$ להוכיח הימנו העזר, ובכך הימנו העזר, ובכך הימנו התכלה העני המבוקש.

משתי ההכלות יחד מתקבל השוויון המבוקש.

$$igcap_{i\in I}(A_i')=(igcup_{i\in I}A_i)'$$
 , $igcup_{i\in I}(A_i')=(igcap_{i\in I}A_i)'$.7

נמקו בעזרת כללי דה-מורגן לכמתים, מהחוברת בלוגיקה.

 $D_n=B_n$ ' ניקח את ${f N}$ כקבוצה אוניברסלית. אז אוניברסלית

: מכאן ומהסעיפים הקודמים

$$\bigcap_{1 \le n \in \mathbb{N}} D_n = \bigcap_{1 \le n \in \mathbb{N}} (B_n)' = (\bigcup_{1 \le n \in \mathbb{N}} B_n)' = \{x \in \mathbb{N} \mid 5 \le x\}' = \{0, 1, 2, 3, 4\}$$

המעבר השני הוא בעזרת כלל דה-מורגן שהוכחנו בסעיף הקודם.