importing the dependencies

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

Data Collection and Data Processing

In [17]:	<pre>#loading the dataset to pandas Dataframe sonar_data = pd.read_csv('Copy of sonar data.csv',header=None)</pre>														
In [22]:	sonar_data														
Out[22]:		0	1	2	3	4	5	6	7	8	9		51		
	0	0.0200	0.0371	0.0428	0.0207	0.0954	0.0986	0.1539	0.1601	0.3109	0.2111		0.0027	0.00	
	1	0.0453	0.0523	0.0843	0.0689	0.1183	0.2583	0.2156	0.3481	0.3337	0.2872		0.0084	0.00	
	2	0.0262	0.0582	0.1099	0.1083	0.0974	0.2280	0.2431	0.3771	0.5598	0.6194		0.0232	0.01	
	3	0.0100	0.0171	0.0623	0.0205	0.0205	0.0368	0.1098	0.1276	0.0598	0.1264		0.0121	0.00	
	4	0.0762	0.0666	0.0481	0.0394	0.0590	0.0649	0.1209	0.2467	0.3564	0.4459		0.0031	0.00	
	203	0.0187	0.0346	0.0168	0.0177	0.0393	0.1630	0.2028	0.1694	0.2328	0.2684		0.0116	0.00	
	204	0.0323	0.0101	0.0298	0.0564	0.0760	0.0958	0.0990	0.1018	0.1030	0.2154		0.0061	0.00	
	205	0.0522	0.0437	0.0180	0.0292	0.0351	0.1171	0.1257	0.1178	0.1258	0.2529		0.0160	0.00	
	206	0.0303	0.0353	0.0490	0.0608	0.0167	0.1354	0.1465	0.1123	0.1945	0.2354		0.0086	0.00	
	207	0.0260	0.0363	0.0136	0.0272	0.0214	0.0338	0.0655	0.1400	0.1843	0.2354		0.0146	0.01	
	208 rows × 61 columns														
4														•	
In [19]:	son	ar_data	head ()											

Out[19]:

3

4

6

7

9 ...

51

52

0.0207 0.0954 0.0986 0.2111 ... 0.0027 0.0065 **0** 0.0200 0.0371 0.0428 0.1539 0.1601 0.3109 **1** 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.0089 **2** 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.5598 0.6194 ... 0.0232 0.0166 0.0100 0.0171 0.0623 0.0205 0.0205 0.0368 0.1098 0.1276 0.0598 0.1264 ... 0.0121 0.0036 0.0762 0.0666 0.0481 0.0394 $0.0590 \quad 0.0649 \quad 0.1209 \quad 0.2467 \quad 0.3564 \quad 0.4459 \quad \dots \quad 0.0031 \quad 0.0054$ 5 rows × 61 columns In [20]: #number of rows and cplumms sonar data.shape (208, 61)Out[20]: sonar data.describe() # describe --> statstical measures of the data In [21]: 0 2 3 4 5 6 1 Out[21]: 208.000000 208.000000 208.000000 208.000000 208.000000 208.000000 208.000 count 208.000000 0.029164 0.038437 0.043832 0.053892 0.075202 mean 0.104570 0.121747 0.134std 0.022991 0.032960 0.038428 0.046528 0.055552 0.059105 0.061788 0.085 min 0.001500 0.000600 0.001500 0.005800 0.006700 0.010200 0.003300 0.005 25% 0.013350 0.016450 0.018950 0.024375 0.038050 0.067025 0.080900 0.080 50% 0.022800 0.030800 0.034300 0.044050 0.062500 0.092150 0.106950 0.112 75% 0.035550 0.047950 0.057950 0.064500 0.100275 0.134125 0.154000 0.169 max 0.137100 0.233900 0.305900 0.426400 0.401000 0.382300 0.372900 0.459 8 rows × 60 columns sonar data[60].value counts() In [25]: 60 Out[25]: 111 97 Name: count, dtype: int64 M --> Mine R --> Rock

sonar data.groupby(60).mean() # to make to group one for m anD Other for R

In [27]:

2

3

5

7

0

Out[27]:

60

M 0.034989 0.045544 0.050720 0.064768 0.086715 0.111864 0.128359 0.149832 0.213492 0.251 R 0.022498 0.030303 0.035951 0.041447 0.062028 0.096224 0.114180 0.117596 0.137392 0.159 2 rows × 60 columns 4 In [28]: #separeting data andlabels x = sonar data.drop(columns=60, axis=1) y = sonar data[60] In [29]: print(x) 0 1 2 3 4 5 6 7 8 0 0.0200 0.0371 0.0428 0.0207 0.0954 0.0986 0.1539 0.1601 0.3109 1 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.3481 0.3337 0.2156 2 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.0205 3 0.0100 0.0171 0.0623 0.0205 0.0368 0.1098 0.1276 0.0598 4 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564 0.0187 0.0346 0.0168 0.0177 0.0393 203 0.1630 0.2028 0.1694 0.2328 0.0298 0.0323 0.0101 0.0564 0.0760 204 0.0958 0.0990 0.1018 0.1030 205 0.0522 0.0437 0.0180 0.0292 0.0351 0.1171 0.1257 0.1178 0.1258 206 0.0303 0.0353 0.0490 0.0608 0.0167 0.1354 0.1465 0.1123 0.1945 0.0260 207 0.0363 0.0136 0.0272 0.0214 0.0338 0.0655 0.1400 0.1843 9 50 51 52 53 54 55 56 . . . 0.0167 0 0.2111 0.0232 0.0027 0.0065 0.0159 0.0072 0.0180 . . . 1 0.2872 0.0125 0.0084 0.0089 0.0048 0.0094 0.0191 0.0140 2 0.6194 0.0033 0.0232 0.0166 0.0095 0.0180 0.0244 0.0316 3 0.1264 0.0241 0.0121 0.0036 0.0150 0.0085 0.0073 0.0050 4 0.4459 0.0156 0.0031 0.0054 0.0105 0.0110 0.0015 0.0072 203 0.2684 0.0203 0.0116 0.0098 0.0033 0.0101 0.0199 0.0065 204 0.2154 0.0051 0.0061 0.0093 0.0135 0.0063 0.0063 0.0034 . . . 0.0062 205 0.0155 0.0160 0.2529 0.0029 0.0051 0.0089 0.0140 . . . 206 0.2354 0.0042 0.0086 0.0046 0.0126 0.0036 0.0035 0.0034 207 0.2354 0.0181 0.0146 0.0129 0.0047 0.0039 0.0061 . . . 0.0040 57 58 59 0 0.0084 0.0090 0.0032 1 0.0049 0.0052 0.0044 2 0.0164 0.0095 0.0078 3 0.0044 0.0040 0.0117 0.0048 0.0107 4 0.0094 . . . 203 0.0115 0.0193 0.0157 0.0032 0.0062 204 0.0067 205 0.0138 0.0031 0.0077 0.0079 206 0.0036 0.0048 207 0.0036 0.0061 0.0115 [208 rows x 60 columns] print(y) In [30]:

```
R
1
       R
2
       R
3
       R
       R
203
       Μ
204
205
       Μ
206
207
Name: 60, Length: 208, dtype: object
```

Training and Test data

```
0
                  1
                                    3
                                                     5
     0.0414
              0.0436
                               0.0844
                                        0.0419
                                                 0.1215
                      0.0447
                                                          0.2002
                                                                   0.1516
                                                                           0.0818
     0.0123
              0.0022
38
                      0.0196
                               0.0206
                                        0.0180
                                                 0.0492
                                                          0.0033
                                                                   0.0398
56
     0.0152
              0.0102
                      0.0113
                               0.0263
                                        0.0097
                                                 0.0391
                                                          0.0857
                                                                   0.0915
                                                                           0.0949
123
     0.0270
              0.0163
                      0.0341
                               0.0247
                                        0.0822
                                                 0.1256
                                                          0.1323
                                                                   0.1584
                                                                           0.2017
     0.0270
              0.0092
                               0.0278
                                                 0.0757
                                                          0.1026
18
                      0.0145
                                        0.0412
                                                                   0.1138
                                                                           0.0794
     0.0412
              0.1135
                      0.0518
                               0.0232
                                        0.0646
                                                 0.1124
                                                          0.1787
                                                                   0.2407
                                                                           0.2682
5
     0.0286
              0.0453
                      0.0277
                               0.0174
                                        0.0384
                                                 0.0990
                                                          0.1201
                                                                   0.1833
                                                                           0.2105
154
     0.0117
              0.0069
                      0.0279
                               0.0583
                                                                   0.1927
                                        0.0915
                                                 0.1267
                                                          0.1577
                                                                           0.2361
131
     0.1150
              0.1163
                      0.0866
                               0.0358
                                        0.0232
                                                 0.1267
                                                          0.2417
                                                                   0.2661
                                                                           0.4346
     0.0187
                                        0.0393
                                                 0.1630
                                                          0.2028
203
              0.0346
                      0.0168
                               0.0177
                                                                   0.1694
                                                                           0.2328
         9
                        50
                                51
                                         52
                                                  53
                                                           54
                                                                    55
                                                                             56
115
     0.1975
                   0.0222
                            0.0045
                                     0.0136
                                              0.0113
                                                      0.0053
                                                               0.0165
                                                                        0.0141
38
     0.0475
                   0.0149
                            0.0125
                                     0.0134
                                              0.0026
                                                      0.0038
                                                               0.0018
                                                                        0.0113
              . . .
56
     0.1504
                   0.0048
                            0.0049
                                     0.0041
                                              0.0036
                                                      0.0013
                                                               0.0046
                                                                        0.0037
     0.2122
                   0.0197
                            0.0189
                                     0.0204
                                              0.0085
                                                      0.0043
                                                               0.0092
                                                                        0.0138
18
     0.1520
                   0.0045
                            0.0084
                                     0.0010
                                              0.0018
                                                      0.0068
                                                               0.0039
                                                                        0.0120
140
     0.2058
                   0.0798
                            0.0376
                                     0.0143
                                              0.0272
                                                      0.0127
                                                               0.0166
                                                                        0.0095
              . . .
5
     0.3039
                   0.0104
                            0.0045
                                     0.0014
                                              0.0038
                                                      0.0013
                                                               0.0089
                                                                        0.0057
154
     0.2169
                   0.0039
                            0.0053
                                     0.0029
                                              0.0020
                                                      0.0013
                                                               0.0029
                                                                        0.0020
131
     0.5378
                   0.0228
                            0.0099
                                     0.0065
                                              0.0085
                                                      0.0166
                                                               0.0110
                                                                        0.0190
203
     0.2684
                   0.0203
                            0.0116
                                     0.0098
                                              0.0199
                                                      0.0033
                                                               0.0101
                                                                        0.0065
         57
                  58
                           59
     0.0077
115
              0.0246
                      0.0198
38
     0.0058
              0.0047
                      0.0071
56
     0.0011
              0.0034
                      0.0033
123
     0.0094
              0.0105
                      0.0093
18
     0.0132
              0.0070
                      0.0088
     0.0225
140
              0.0098
                      0.0085
     0.0027
              0.0051
5
                      0.0062
     0.0062
154
              0.0026
                      0.0052
131
     0.0141
              0.0068
                      0.0086
203
     0.0115
              0.0193
                      0.0157
[187 rows \times 60 columns]
115
       Μ
38
       R
56
       R
123
       Μ
18
       R
140
       Μ
5
       R
154
       Μ
131
       М
203
Name: 60, Length: 187, dtype: object
```

Model training --> LogisticRegression Model

```
In [35]: model = LogisticRegression()
```

```
In [37]: #traing model
model.fit(x_train ,y_train)

Out[37]: ▼ LogisticRegression
LogisticRegression()
```

Model Evaluation

```
In [38]: # accuracy on training data
    x_train_prediction = model.predict(x_train)
    training_data_accuracy = accuracy_score(x_train_prediction,y_train)

In [40]: print("Accuracy on training data : " ,training_data_accuracy)
    Accuracy on training data : 0.8342245989304813

In [41]: # accuracy on test data
    x_test_prediction = model.predict(x_test)
    test_data_accuracy = accuracy_score(x_test_prediction,y_test)

In [42]: print("Accuracy on test data : " ,test_data_accuracy)
    Accuracy on test data : 0.7619047619047619
```

Making a Predictive System

```
In [57]: input_data = (0.0131,0.0387,0.0329,0.0078,0.0721,0.1341,0.1626,0.1902,0.2610,0
# changing the input_data to numpy arrary
input_data_as_numpy_array = np.asarray(input_data)
#reshape the np as we are predicting for one instence
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)

if (prediction[0]=='R'):
    print("The object is Rock")
else:
    print("The object is Mine")

The object is Mine

In []:
```