

Threat Modelling (Web)Apps Myths and Best Practices

OWASP 7.11.2012

Matthias Rohr

www.matthiasrohr.de mail@matthiasrohr.de

Copyright © The OWASP Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

About me

- Matthias Rohr
- Dipl. Medieninf. (FH), CISSP, CSSLP, CCSK
- Focus: Application Security Management
- Contractor in London from 2013 on back in Hamburg
- Active in OWASP since 2007:
 - OWASP ASVS/Java/Skavenger Project
 - Review of "BSI Baustein Webanwendungen"
 - WAF Best Practice Paper
 - OWASP Summits

Motivation I: Pushing Appsec Left in the SDLC

- Costs to fix a bug
- Level of Security
 (derived also from the costs)
- Planability: Sec tests may lead to "surprises"
- Visibility within SDLC:

"60% of all weaknesses are visible in the application design"

(Principles of Software Engineering Management, T. Gilb)

Motivation II: The Transformation Problem

Threat Modelling - Goals

■ Primary

- Early identification, assessment and correction of <u>potential</u> security problems in an IT system (such as a Web application)
- Link technical implementation to IT Risk Mgmt & ISMS

■ Secondary

- Improvement of planability & quality of later security tests (pentests, code reviews, etc.)
- Documentation and discussion of the application security architecture

What is a Threat?

Existing Methodologies

- Microsoft I (2003, "DREAD")
- Microsoft II (2009, "Bug Bars")
- OWASP I + OWASP II
- PASTA
- T-MAPS
- PTA
- SANS
- Trike

Difficult to compare due to different concepts.

Tools

- Word, Excel, Visio or any Wiki, etc.
- Microsoft Threat Modelling Toolkit (TAM): free MS Visio Plugin, but limited (DfD* analysis only)

Myths

(or just misunderstandings.....)

Myth 1: Threat Modelling is too Complicated

- Threat modelling is a **best effort** approach
 - Identifying only some threats is better than nothing at all
 - Objective is not 100% threat coverage
 - Learning and integration process: Start simple & informal
- Every stakeholder can conduct some sort of **threat assessment*** in principle (e.g. developers, project managers, ...)

^{*} A threat assessment is not necessarily a threat modelling!

Myth 2: Threat Modelling = Design Review

- Many threats are already visible in the specification!
- Hence: See TM as a **conceptual security analysis**!

- A threat model can be created in **iterations** (allows us to start very early and with a limited model)
- A threat model can be updated with details from implementation and operation phase.

Myth 3: TM Output = a List of Threats

- Lists are **static**, models can be **dynamic**
- Change of a system's property (e.g. a data flow) may effect its threats and therefore the threat model too.
- Lists as result of a generic "threat analysis" ok of course.

OWASP

Myth 4: Decide for ONE Perspective

- Attack-centric: Focuses on <u>attacks</u>
 - May suit a pentester
 - Example: "XSS attack to steal cookies"
- Software-/system-centric: Focuses on weaknesses
 - May suit a developer or SW architect
 - Example: "Insufficient output validation controls"
- Asset-/Risk-centric: Focuses on business impact (BI)
 - May suit an infosec manager
 - Example: "Attacker may access customer data via ..."

Multiple perspectives may lead to a lot **overlapping** threats, but will also increase **threat coverage!!!**

Myth 5: One Methodology suits them all

- For example Microsoft's TM:
 - Methodology is based on DfD analysis
 - Software-centric = focused on SW developers
- Instead, the approach should **be specific** to
 - The (development) organisation
 - Both SDLC and SDL
 - The qualification of the analyst
 - The protection requirements of the app
 - **■** Existing resources
 - **...**
- Known as: **Tailoring**

Best Practices

(based on my personal experiences)

Threat Intelligence (TI)

- Main idea: Mapping of **expert know-how** and other intelligence to a threat modelling exercise
- Examples: Gen. threats, metrics, countermeasures, etc.
- Essential for integrating threat modelling into SDLC, improving quality & reducing resources

See also "Attack Models" practice in BSIMM study: http://bsimm.com/online/int elligence/am

Step 0: Preparation

- Plan threat modelling exercise early in project mgmt:
 - Select suitable threat modelling methodology (internal or external)
 - Input requested from whom and when?
 - Output provided to whom and when?
 - Early kick-off (after this: update planning)
 - Estimate required SMEs*
- Consider exercise as a quality gate
- Use **RACI** to define responsibilities / estimate resources

Step 1: Assessment Definition

- Describe the application
 - Name, version, etc.
 - Business objectives
 - Sec requirements
 - Stakeholder
- Define **scope**
 - Target of Assessment (ToA)
 - Exclude platform, IDM, container, etc.
- Define **constrains**: Trust assumptions, etc.,
 - "Data from IDM or SAP FI system is trust worthy"
 - Irrelevant threat scenarios to be ignored

Step 2: Application Decomposition (AD)

- **Identify** sub-systems, system boundaries and external dependencies.
- **Describe** assets, actors (including trust levels!), DfDs*, use cases*, entry points (channels)
- **Derive** (link) these information as shown left (e.g. using Word refs).
- This step may delivered as part of the development documentation.

^{*} focus on DfDs and use cases that affect identified assets!

Step 2: AD: Application Overview

- Create a layer 7 view of the security architecture (no backup, cluster or other network devices).
- Don't bother with UML standards.
- Instead: use **hybrid diagrams**. Focus: **Visualisation**!

Dashed lines are **trust boundaries** (= architectural trust assumptions)

Step 3: Clustering (optional)

- Applications can consists technically heterogeneous components leading to different **threat profiles**.
- Common example:
 - External Web interface for endusers
 - Internal admin GUI
- Clustering is used to identify such components and divide the **threat model** respectively.

Step 4: Threat Identification

- Objective: Maximization of coverage (don't be afraid of duplicates/overlapping threats!).
- Where/How may protection requirements of an assets be affected*:
 - **Primary**: Mainly confidentiality, integrity
 - **Secondary**: Authentication, loss of repudiation, etc.
 - Indirect: Design Principles (Least Priv., etc.)

Step 4: Threat Identification – Building Blocks

- Questionnaires
- Attribute threat mapping
- Known vulnerability analysis
- Roles and permissions analysis
- Abuse & misuse case modelling
- Security control analysis
- Attack models / attack patterns
- Attack surface analysis
- Attack trees
- DFD analysis: STRIDE mapping, trust boundary analysis, ...
- Input of pentests, other threat models, ...

Step 4: Threat Identification - Tips

- Selection of activities depends on
 - **Protection requirements** (of the app)
 - Level of **maturity** (of the organisation)
 - Qualification (of the analyst)
 - **Resources** & time
- Tip: Do not focus on STRIDE*. Use own categories instead that helps you to derive threats from them:
 - e.g. "Threats regarding roles and permissions." (see example in appendix!)

^{*} STRIDE = Spoofing identity, Tampering with data, Repudiation, Information disclosure DoS & Elevation of privilege. http://msdn.microsoft.com/en-us/library/ee823878.aspx

Step 4: Misuse & Abuse Cases

■ Misuse Case Modelling

- <u>Based</u> on use cases (of identified assets)
- Analyze cases step-by-step: What could happened / should not happen that could cause damage to an asset?

■ Abuse Case Modelling

- Not based on use cases
- What can a specific threat agent (e.g. admin, specific user such as a trader, hacker) do that could result in damage to an asset?

Step 4: Attribute Threat Mapping (ATM)

■ Idea: Use threat intelligence to map application properties to generic (or known) threats (expert system).

■ Technical ATM (simple approach):

Attribute	Threats (Weaknesses, Attacks, BI)			
Func.Register	 An attacker may enumerate users names 			
	 Missing anti-automation 			
Func.Auth.Custom	Insecure Session Identifier (CWE-330)			
	Authentication Bypass (CAPEC-115)			
	■ Insecure Password Storage (CWE-261)			
	■ PW Eavesdropping (CAPEC-94)			
Func.Auth.PWReset	■ Weak Password Recovery (CWE-640)			

Better approach: Map certain attributes using a logic (and, or, not) to specific threats.

■ Create **threat profiles** for certain app types (e.g. collaboration, HR app, etc.)

Step 5: Threat Revision

- Consolidation
 Combine similar threats
- Identify Mitigating Factors
 Incl. controls, existing and planned

T = ThreatTA = Threat Ident. Activity

Step 5: Threat Revision

- Consolidation
 Combine similar threats
- Identify Mitigating Factors
 Incl. controls, existing and planned
- Pre-Assessment (optional)
 Check relevance / known issues

Step 6: Threat Rating

■ Threat Criticality Rating

- Option 1: <u>DREAD</u>: Criteria's are mapped indirectly to a numerical value using a metric (MS TM I)
 - => Often very subjective!!
- Option 2: <u>CWSS</u>: Similar to DREAD but more granularly and precise (= more work)
- Option 3: <u>Bug Bars</u>: Criteria's that are mapped directly to low, medium, high, etc. (MS TM II)
- **.**..

■ Risk Assessment

■ Threat Modelling → Risk Assessment

Bug Bars: http://msdn.microsoft.com/en-us/magazine/ee336031.aspx

CWSS: http://cwe.mitre.org/cwss/

Step 7: Threat Treatment (Countermeasures)

- Implemental
 - E.g. code changes
- Configurative
 - E.g. system hardening
- Architectural
 - E.g. installation of a PKI, IDM solution
- Other
 - **■** Guidelines
 - Tests
 - ...

Threat 8: Threat Validation (Test Cases)

- Derive **test plan** & test cases from countermeasures
- Can easily include **generic test cases** (TI)
- Result: Threat-based security testing

Step 9+10: Threat Retrospective & Update

- Update threat intelligence:
 - Known issues
 - Security test cases
 - Attribute threat mappings
 - Abuse cases
 - Metrics
 - **...**
- Continuous improvement of threat modelling exercises
- Update of the threat model after a specific time / changes

Threat Modelling & Risk Assessments

Approach II: Approach III: Approach I: Assessing threats and **Assessing threats and Assessing threats** risks in one activity risks separately only **Threat** Modelling Threat & **Threat** Risk **Threat** Modelling **Assessment** Model Risk **Assessment** Threats / Risks / Threats / Risks / Threats / **Risk Mitigations Risk Mitigations** Countermeasures

$TM \rightarrow RM$: Example

Easy to combine both exercises. The WHERE is specific to an existing RM methodology!

So Where to Start?

- Begin simple, informal and learn! (e.g. as a pilot)
- Collect threat intelligence wherever possible
 - Lessons learned after pentests, projects, etc.
- Integrate stakeholders: Dev team, TPMs, SME, pentester, etc.
- Build a **roadmap**:
 - Prioritize critical apps and platforms
 - Process maturity / SDLC integration
- **Get help**: E.g. let complicated threat models may be conducted by experienced consultants companies and learn from them!

Thank You! Any Questions???

APPENDIX

APPENDIX: Possible Threat Groups

- Insecure systems or missing hardening threats (HRD)
- Local threats (LOC)
- Threats by privileged users (PRV)
- Denial-of-Service threats (DOS)
- Threats to authentication & identities (ATN)
- Access control threats (ATZ)
- Threats regarding roles and permissions (RLP)
- Manipulation or disclosure of data in motion (DMM)
- Manipulation or disclosure of data at rest (DMR)
- Business-logic specific threats (BIL)
- Privacy threats (PRV)
- Accountability threats (ACC)

APPENDIX: Overview of Methodology

APPENDIX: RACI Example

	Role			
Step	App Owner	Dev Team	Analyst	Sec Mgmt
Preparation	С	I	С	R/A
Assessment Definition	С	С	R	C/A
App Decomposition		С	R/A	
Threat Identification		С	R/A	
Threat Revision	С	С	R	I/A
Threat Rating	I	I	R	C/A
Define Action Plan	С	С	R	C/A

R – Responsible

A – Accountable

C - Consulted (in the loop)

I - Informed (in the picture)

