Solving String Constraints with Lengths by Stabilization

Yu-Fang Chen², **David Chocholatý**¹, Vojtěch Havlena¹, Lukáš Holík¹, Ondřej Lengál¹, and Juraj Síč¹

¹Faculty of Information Technology, Brno University of Technology, Czech Republic ²Institute of Information Science, Academia Sinica, Taiwan

OOPSLA'23

Motivation: SMT and string constraint solving

- SMT solvers are in demand in the industry
- Reasoning about strings is important:
 - Analysis of string manipulations in programs
 - Prevention of attacks such as XSS, SQL-injection, ... (scripting languages rely heavily on strings)
 - Regular-expression-based filters
 - AWS cloud access control policy analysis (Neha Rungta. A Billion SMT Queries a Day. CAV'22)
- Number of powerful SMT string constraint solvers.
 Z3, cvc5, OSTRICH, Z3-Trau, Z3str3RE, Z3str4, ...

Motivation: SMT and string constraint solving

- SMT solvers are in demand in the industry
- Reasoning about strings is important:
 - Analysis of string manipulations in programs
 - Prevention of attacks such as XSS, SQL-injection, ... (scripting languages rely heavily on strings)
 - Regular-expression-based filters
 - AWS cloud access control policy analysis (Neha Rungta. A Billion SMT Queries a Day. CAV'22)
- Number of powerful SMT string constraint solvers.
 Z3, cvc5, OSTRICH, Z3-Trau, Z3str3RE, Z3str4, ...

$$\underbrace{x = yz \ \land \ y \neq u}_{\text{(dis)equations}} \ \land \ \underbrace{x \in (ab)^* a^+(b|c)}_{\text{regular constraints}} \ \land \ \underbrace{|ab|^* a^+(b|c)}_{\text{length constraints}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex oper$$

Our Approach

• Combination of two automata-based algorithms:

Our Approach

- Combination of two automata-based algorithms:
 - STABILIZATION decision procedure (FM'23).
 - Tightly integrating equations with regular constraints
 - Fast, but does not handle length constraints

- Supports:
 - Our earlier versions

Our Approach

- Combination of two automata-based algorithms:
 - STABILIZATION decision procedure (FM'23).
 - Tightly integrating equations with regular constraints
 - Fast, but does not handle length constraints
 - 2 ALIGN&SPLIT (CAV'14)
 - Slower, but handles length constraints
- Supports:
 - Our earlier versions

$$\underbrace{x = yz \ \land \ y \neq u}_{\text{(dis) equations}} \ \land \ \underbrace{x \in (ab)^* a^+(b|c)}_{\text{regular constraints}} \ \land \ \underbrace{|x| = 2|u| + 1}_{\text{more complex operations}} \ \land \ \underbrace{(ab)^* a^+(b|c)}_{\text{more complex operations}} \ \land$$

Now

$$x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1 \land \underbrace{\text{contains}(u, \text{substr}(s, i, n))}_{\text{more complex operations}}$$

 $\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$

 $\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$


```
u/x_1
v/x_2
w/x_3yz
x/x_1x_2x_3
```

 $x_1x_2x_3 \in \mathcal{R}_x$

 $\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$

 $x_1x_2x_3 \in \mathcal{R}_x$

 $\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$

 $xyz = uvw \land x \in \mathcal{R}_x \land y \in \mathcal{R}_y \land z \in \mathcal{R}_z \land u \in \mathcal{R}_u \land v \in \mathcal{R}_v \land w \in \mathcal{R}_w \land \ldots \land |x| = 100 + 4k$

STABILIZATION

$$xyz = uvw \land x \in \mathcal{R}_x \land y \in \mathcal{R}_y \land z \in \mathcal{R}_z \land u \in \mathcal{R}_u \land v \in \mathcal{R}_v \land w \in \mathcal{R}_w \land \ldots \land |x| = 100 + 4k$$

$$R_x \# R_y \# R_z \times R_u.R_v.R_w$$

no new variables, no alignments

no monadic decomposition (**)

Combined algorithm

$$\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$$

Combined algorithm

 $\textit{xyz} = \textit{uvw} \land \textit{x} \in \mathcal{R}_{\textit{x}} \land \textit{y} \in \mathcal{R}_{\textit{y}} \land \textit{z} \in \mathcal{R}_{\textit{z}} \land \textit{u} \in \mathcal{R}_{\textit{u}} \land \textit{v} \in \mathcal{R}_{\textit{v}} \land \textit{w} \in \mathcal{R}_{\textit{w}} \land \ldots \land |\textit{x}| = 100 + 4\textit{k}$

Combined algorithm

 $xyz = uvw \land x \in \mathcal{R}_x \land y \in \mathcal{R}_v \land z \in \mathcal{R}_z \land u \in \mathcal{R}_u \land v \in \mathcal{R}_v \land w \in \mathcal{R}_w \land \ldots \land |x| = 100 + 4k$ Partial alignments, smaller case split (3) [yz][yz][yz] u_1 u_2 VW uv W u/u_1u_2 $[yz] = u_2vw$ Monadic decomposition Solved by for length variables stabilization [yz] = yz $[yz] = [yz]_1[yz]_2$

 $[yz]_1 = u_2$

Extensions and Completeness

- Extended string constr (substr(), indexof(), replace(), contains(), ...)
 rewritten to basic constr (equations, lengths, regular)
- Saturation with basic constraints further improves performance

Extensions and Completeness

- Extended string constr (substr(), indexof(), replace(), contains(), ...)
 rewritten to basic constr (equations, lengths, regular)
- Saturation with basic constraints further improves performance
- A new reduction of unrestricted disequations to length constraints
- Complete on the chain-free s.c. + unrestricted disequations
 - (Abdulla, Atig, Diep, Holík, Janků. Chain-Free String Constraints. ATVA'19)
 - yields a new largest known decidable fragment of
 - (dis)equations,
 - regular and
 - length constraints

Z3-Noodler

Z3-Noodler¹:

- Based on DPLL(T) SMT solver Z3, replaces its theory of strings
- Relies on our fast automata library MATA²
- Very fast and competitive

¹https://github.com/VeriFIT/z3-noodler

²https://github.com/VeriFIT/mata

Experimental Evaluation³

	Inco	1,104	instances
·	$m \sim 1$	IVEC	11151 2110 65
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		motaricos

	Regex				Equations					Predicates					
	Aut	Den	StrFuzz	Syg	Kal	Kep	Norn	Slent	Slog	Web	Woo	StrInt	Leet	StrSm	PyEx
Included	15,995	999	10,050	343	19,432	587	1,027	1,128	1,976	267	809	11,669	2,652	1,670	23,845
Unsupported	0	0	1,568	0	0	0	0	0	0	414	0	5,299	0	210	0
Z3-Noodler	62	0	0	0	259	4	0	5	0	0		4	4	55	
cvc5	94	18	1037	0	0	240	85	22	0	40	54	0	0	4	34
Z3	113	118	340	0	164	313	124	74	71	61	25	4	0	32	1,071
Z3str4	60	4	27	0	174	254	73	73	16	62	78	5	4	37	570
OSTRICH	55	15	229	0	288	387	1	130	7	65	53	37	26	*106	12,290
Z3str3RE	66	27	*143	1	*144	311	133	87	55	*104	*118	64	192	*179	17,764

Average runtimes

	Re	eg:	Е	q	Pred		
	avg std		avg	std	avg	std	
Z3-Noodler	0.11	1.35	0.11	2.13	0.11	2.16	
CVC5	1.17	8.51	0.11	2.15	0.03	0.15	
Z3	1.92	9.71	0.18	2.83	0.04	0.42	
Z3str4	0.35	2.00	0.25	3.40	0.02	0.31	
OSTRICH	4.29	8.67	4.28	9.28	12.71	15.08	
Z3str3RE	0.31	3.28	0.13	2.72	0.01	0.08	

³newer results than in the paper

Comparison with ${\ensuremath{\mathrm{CVC5}}}$ and Z3

Virtual Best Solver

	Reg	ex	Equations			
	Unsolved	Time	Unsolved	Time		
VBS	1	427	19	1,304		
VBS - Z3-Noodler	1	2,914	131	6,830		
VBS - cvc5	1	549	145	1,401		
VBS - Z3	1	430	29	1,579		
VBS - Z3str4	1	473	19	1,416		
VBS - OSTRICH	1	427	21	1,270		
VBS - Z3str3RE	1	510	20	1,307		
CVC5 + Z3 + Z3-NOODLER	1	608	22	1,471		
cvc5 + Z3	278	27,916	303	2,805		

Conclusion

- Combination of
 - STABILIZATION (efficient synergy of equations and regular constr.)
 - ALIGN&SPLIT (to handle lengths, disequations, and extended constr.)
- New SMT string solver Z3-Noodler⁴
 - Fast and complementary to s.o.t.a. string solvers
 - Relying on our new fast automata library MATA⁵
- Ongoing work
 - other constraints transducers, string/int conversion, . . .
 - efficiency of automata
 - benchmark-specific heuristics
 - witness/certificate generation

11/11

⁴https://github.com/VeriFIT/z3-noodler

⁵https://github.com/VeriFIT/mata