Introducción a la Lógica y la Computación. Examen Final 20/12/2021.

(1) Decida si cada uno de los siguientes tres reticulados son distributivos, justificando su respuesta.

a)

 $(P,\subseteq), \quad donde$ $P = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,3,4,5\}\}$

(2) Sea P el poset de la figura de la derecha.

Y sea L un reticulado distributivo finito tal que P = Irr(L). Encuentre n tal que D_n es isomorfo a L. Justifique detalladamente.

- (3) Encuentre derivaciones para:
 - (a) $\vdash \neg(\varphi \land \psi) \rightarrow (\neg \varphi \lor \neg \psi)$
 - (b) $\neg \varphi \lor \psi \vdash \neg (\varphi \land \neg \psi)$
- (4) Sea Γ un conjunto de proposiciones.
 - (a) Pruebe que si Γ es consistente maximal entonces $\varphi \in \Gamma$ o $\neg \varphi \in \Gamma$ para toda φ .
 - (b) Si $\{p_1 \land p_2, p_2 \rightarrow \neg p_1\} \subseteq \Gamma$ entonces Γ es inconsistente.
- (5) Considere la gramática G dada abajo. Se debe obtener un autómata finito **determinístico** que acepte exactamente L(G), y luego una una expresión regular. Ambas transformaciones se deben realizar utilizando los algoritmos dados en el teórico.

 $S \rightarrow bS \mid aA \mid \epsilon$

 $A \rightarrow bS \mid aC \mid \epsilon$

 $C \rightarrow aC \mid bC$

(6) Considere el autómata $M=(Q,\Sigma,\delta,q_0,F)$ dado por el siguiente diagrama. Determine cuáles representan reglas de transición en el autómata $M=(Q',\Sigma,\delta',q'_0,F')$ obtenido mediante el algoritmo de determinización.

- $a) \quad \delta'(Q, a) = \{q_1, q_3\}$
- b) $\delta'(\{q_1, q_3\}, a) = \{q_1, q_3\}$
- c) $\delta'(\{q_3\}, b) = Q$
- d) $\delta'(\{q_1, q_3\}, b) = \{q_1, q_2, q_3\}$