Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Монастырская Кристина Владимировна

Содержание

Цель работы	4
Выполнение лабораторной работы	5
Домашнее задание	11
Выводы	14
Контрольные вопросы	15
Список литературы	17

Список иллюстраций

1	Окно «Размер основной памяти»
2	Окно определения размера виртуального динамического жёсткого
	диска и его расположения
3	Итоговые настройки виртуальной машины
4	Установка русского языка интерфейса ОС
5	Окно настройки установки: место установки
6	Окно настройки установки: выбор программ
1	Версия ядра
2	Частота процессора
3	Модель процессора
4	Объем доступной оперативной памяти
5	Тип обнаруженного гипервизора
6	Тип файловой системы корневого раздела
7	Последовательность монтирования файловых систем

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Выполнение лабораторной работы

Создала новую виртуальную машину. Указала имя виртуальной машины (lmponomareva), тип операционной системы — Linux, RedHat (puc. [-@fig:001]-[-@fig:002]).

Указала размер основной памяти виртуальной машины (рис. [-@fig:003]) — 2048 МБ.

Рис. 1: Окно «Размер основной памяти»

Задала конфигурацию жёсткого диска— загрузочный, VMDK, динамический виртуальный диск. Задала размер диска— 40 ГБ (рис. [-@fig:004]).

Specify Disk Capacity

How large do you want this disk to be?

Рис. 2: Окно определения размера виртуального динамического жёсткого диска и его расположения

Подтвердила настройки виртуальнной машины(рис. [-@fig:005]).

Рис. 3: Итоговые настройки виртуальной машины

Запустила виртуальную машину.

Выбрала Русский в качестве языка интерфейса (рис. [-@fig:006])

Рис. 4: Установка русского языка интерфейса ОС

Перешла к настройкам установки операционной системы. Место установки ОС оставила без изменения (рис. [-@fig:007])

Рис. 5: Окно настройки установки: место установки

В разделе выбора программ указала в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools (рис. [-@fig:008])

Рис. 6: Окно настройки установки: выбор программ

После завершения установки операционной системы корректно перезапустила виртуальную машину и установила корректное имя хоста. [-@fig:009])

Вошла в ОС под заданной при установке учётной записью.

Домашнее задание

Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы. Получите следующую информацию:

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (СРИО).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).
- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем.

Версия ядра - 5.14.0(рис. [-@fig:010])

Рис. 1: Версия ядра

Частота процессора - 2904.002 MHz(рис. [-@fig:011])

```
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "Detected MHz processor"
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "Detected MHz"
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "MHz processor"
[ 0.000029] tsc: Detected 1992.001 MHz processor
[kvmonastyrskaya@kvmonastyrskaya ~]$
```

Рис. 2: Частота процессора

Модель процессора - Intel Core i7(рис. [-@fig:012])

```
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "CPU0"
[ 0.124066] smpboot: CPU0: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (family:
0x6, model: 0x8e, stepping: 0xa)
[kvmonastyrskaya@kvmonastyrskaya ~]$
```

Рис. 3: Модель процессора

Объем доступной оперативной памяти - 215736K(рис. [-@fig:013])

```
[ 0.053468] Memory: 260860K/2096628K available (14342K kernel code, 5530K rwd ata, 10076K rodata, 2776K init, 7588K bss, 367896K reserved, 0K cma-reserved)
```

Рис. 4: Объем доступной оперативной памяти

Тип обнаруженного гипервизора - гипервизор KVM относиться к гипервизорам 2 типа, V (рис. [-@fig:014])

```
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: VMware
[kvmonastyrskaya@kvmonastyrskaya ~]$
```

Рис. 5: Тип обнаруженного гипервизора

Тип файловой системы корневого раздела - XFS (рис. [-@fig:015])

Рис. 6: Тип файловой системы корневого раздела

Последовательность монтирования файловых систем (рис. [-@fig:016])

```
[kvmonastyrskaya@kvmonastyrskaya ~]$ dmesg | grep -i "Filesystem"
[ 8.832142] XFS (dm-0): Mounting V5 Filesystem
[ 16.254102] XFS (sda1): Mounting V5 Filesystem
```

Рис. 7: Последовательность монтирования файловых систем

Выводы

Установили операционную систему Linux на виртуальную машину и настроили необходимые сервисы.

Контрольные вопросы

- 1. Учётная запись, как правило, содержит сведения, необходимые для опознания пользователя при подключении к системе. Это идентификатор пользователя (login) и его пароль.
- 2. Команды терминала: для получения справки по команде man; (man ls выведет инфорацию о команде ls) для перемещения по файловой системе cd; (cd ~ переместит нас в домашний каталог) для просмотра содержимого каталога ls; (введя ls в домашнем каталоге увидим все каталоги и файлы хранящиеся в ней) для определения объёма каталога du (du ~ увидим объем каждого файла в домашнем каталоге); для создания каталогов mkdir для удаления каталогов rmdir для создания файлов touch для удаления файлов rm < имя_файла > для задания определённых прав на файл / каталог опция mode (или m) присоздании каталога или команда chmod +x; для просмотра истории команд history.
- 3. Файловая система порядок, определяющий способ организации, хранения и именования данных на носителях информации. От нее зависит скорость работы с файлами, скорость записи, размер файлов и их сохранность. Примеры файловых систем:
- 1) Файловая система FAT(FileAllocationTable) поддерживается всеми ОС для ПК. Она проста, надежна и занимает мало места на диске.
- 2) Файловая система NTFS. Отличительные свойства данной файловой системы: поддержка больших файлов и дисков, низкий уровень фрагментации, поддержка длинных символьных имен, контроль доступа к каталогам и

- отдельным файлам.
- 3) XFS это высокопроизводительная файловая система. Преимущества: высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету и незначительный размер служебной информации.
- 4) JFS или Journaled File System была разработана в IBM для AIX UNIX и использовалась в качестве альтернативы для файловых систем ext. Она используется там, где необходима высокая стабильность и минимальное потребление ресурсов.
- 4. Чтобы посмотреть, какие файловые системы подмонтированы в ОС можно ввести команду mount.
- 5. Чтобы удалить зависший процесс нужно сначала воспользоваться ps aux | grep ping, чтобы узнать идентификатор утилиты, которая зависла. Потом с помощью команды kill удалить необходимый процесс.

Список литературы

1. Лабораторная работа № 1. Установка и конфигурация операционной системы на виртуальную машину