# qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs

Joost Renes<sup>1</sup> Benjamin Smith<sup>2</sup>

<sup>1</sup>Radboud University

<sup>2</sup>INRIA and Laboratoire d'Informatique de l'École polytechnique

5 December 2017









- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P + Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P+Q$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P+Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P+Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P + Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P+Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P+Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

(1) 
$$P \mapsto [2]P$$

$$(2) \{P,Q\} \mapsto P+Q$$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P + Q$

(1) 
$$\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$$



#### Operations on E

- (1)  $P \mapsto [2]P$
- $(2) \{P,Q\} \mapsto P + Q$

#### Operations on $\mathbb{P}^1$

(1)  $\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$ 



# Operations on E (1) $P \mapsto [2]P$ (2) $\{P,Q\} \mapsto P+Q$ Operations on $\mathbb{P}^1$ (1) $\mathbf{x}(P) \mapsto \mathbf{x}([2]P)$ (2) $\left\{ \mathbf{x}(P), \mathbf{x}(Q) \right\} \mapsto \left\{ \mathbf{x}(P+Q), \mathbf{x}(P-Q) \right\}$



## Signatures on the Kummer

Starting point: Schnorr signatures [Sch89]

- (1) Schnorr identification scheme (group-based)
- (2) Apply Fiat-Shamir to make it non-interactive
- (3) Include message to create a signature scheme

## Signatures on the Kummer

Starting point: Schnorr signatures [Sch89]

- (1) Schnorr identification scheme (group-based)
- (2) Apply Fiat-Shamir to make it non-interactive
- (3) Include message to create a signature scheme

| $\texttt{Prover}(\textit{P},\textit{Q},\alpha)$ | Comm. | Verifier(P,Q) |
|-------------------------------------------------|-------|---------------|
|                                                 |       |               |
|                                                 |       |               |
|                                                 |       |               |
|                                                 |       |               |
|                                                 |       | l<br>I        |







| $\texttt{Prover}(\textit{P},\textit{Q},\alpha)$ | Comm.            | Verifier(P,Q)                 |
|-------------------------------------------------|------------------|-------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                 | <br> <br>        |                               |
| $R \leftarrow [r]P$                             | R                | <br>                          |
|                                                 |                  | $c \leftarrow_R \mathbb{Z}_N$ |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$     | ,<br>,<br>,<br>, | <br>                          |
|                                                 | <br>             | <br>                          |

| $\texttt{Prover}(\textit{P},\textit{Q},\alpha)$ | Comm. | Verifier(P,Q)                   |
|-------------------------------------------------|-------|---------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                 |       |                                 |
| $R \leftarrow [r]P$                             | R     | <br>                            |
|                                                 | С     | $c \leftarrow_R \mathbb{Z}_N$   |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$     | , S   | <br>                            |
|                                                 | <br>  | $R \stackrel{?}{=} [s]P + [c]Q$ |

| $\texttt{Prover}(\mathbf{x}(P),\mathbf{x}(Q),\alpha)$ | Comm. | $\texttt{Verifier}(\mathbf{x}(P),\mathbf{x}(Q))$ |
|-------------------------------------------------------|-------|--------------------------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                       |       |                                                  |
| $R \leftarrow [r]P$                                   | R     |                                                  |
|                                                       | c     | $c \leftarrow_R \mathbb{Z}_N$                    |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$           | S     |                                                  |
|                                                       | <br>  | $R \stackrel{?}{=} [s]P + [c]Q$                  |

| Prover $(\mathbf{x}(P), \mathbf{x}(Q), \alpha)$ | Comm.        | $\texttt{Verifier}(\mathbf{x}(P),\mathbf{x}(Q))$ |
|-------------------------------------------------|--------------|--------------------------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                 |              |                                                  |
| $\mathbf{x}(R) \leftarrow \mathbf{x}([r]P)$     | <b>x</b> (R) |                                                  |
|                                                 | c            | $c \leftarrow_R \mathbb{Z}_N$                    |
| $s \leftarrow (r - c \cdot \alpha) \mod N$      | , S          |                                                  |
|                                                 |              | $R \stackrel{?}{=} [s]P + [c]Q$                  |

| $\texttt{Prover}(\mathbf{x}(P),\mathbf{x}(Q),\alpha)$ | Comm.        | $\texttt{Verifier}(\mathbf{x}(P),\mathbf{x}(Q))$ |
|-------------------------------------------------------|--------------|--------------------------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                       | <br> <br>    |                                                  |
| $\mathbf{x}(R) \leftarrow \mathbf{x}([r]P)$           | <b>x</b> (R) |                                                  |
|                                                       | c            | $c \leftarrow_R \mathbb{Z}_N$                    |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$           | ;<br>;<br>;  | <br>                                             |
|                                                       | <br>         | $R \stackrel{?}{=} [s]P + [c]Q$                  |

| $\mathtt{Prover}(\mathbf{x}(P),\mathbf{x}(Q),\alpha)$ | Comm.            | $\texttt{Verifier}(\mathbf{x}(P),\mathbf{x}(Q))$        |
|-------------------------------------------------------|------------------|---------------------------------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                       | <br>             |                                                         |
| $\mathbf{x}(R) \leftarrow \mathbf{x}([r]P)$           | <b>x</b> (R)     |                                                         |
|                                                       | ,<br>,<br>,      | $c \leftarrow_R \mathbb{Z}_N$                           |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$           | ;<br>; <b>S</b>  |                                                         |
|                                                       | 1<br>1<br>1<br>1 | $\mathbf{x}(R) \stackrel{?}{=} \mathbf{x}([s]P + [c]Q)$ |

| $\mathtt{Prover}(\mathbf{x}(P),\mathbf{x}(Q),\alpha)$ | Comm.           | $\texttt{Verifier}(\mathbf{x}(P),\mathbf{x}(Q))$          |
|-------------------------------------------------------|-----------------|-----------------------------------------------------------|
| $r \leftarrow_R \mathbb{Z}_N^*$                       |                 |                                                           |
| $\mathbf{x}(R) \leftarrow \mathbf{x}([r]P)$           | <b>x</b> (R)    |                                                           |
|                                                       | . c             | $c \leftarrow_R \mathbb{Z}_N$                             |
| $s \leftarrow (r - c \cdot \alpha) \bmod N$           | <br>            |                                                           |
|                                                       | I  <br>I  <br>I | $\mathbf{x}(R) \stackrel{?}{=} \mathbf{x}([s]P \pm [c]Q)$ |



```
\begin{array}{ccc} \mathsf{qID} & \textit{Fiat-Shamir} & \mathsf{qSIG} \\ \mathsf{(Schn.\ ID)} & & & \mathsf{(Schn.\ sig.)} \end{array}
```

$$\begin{array}{ccc} \mathsf{qID} & \begin{matrix} \mathit{Fiat-Shamir} & \mathsf{qSIG} \\ (\mathsf{Schn.} \ \mathsf{ID}) \end{matrix} & \Longrightarrow & \mathsf{qDSA} \\ & (\mathsf{Schn.} \ \mathsf{sig.}) \end{matrix} \Longrightarrow & (\mathsf{EdDSA}) \\ \end{array}$$

$$\begin{array}{ccc} \mathsf{qID} & \begin{array}{c} \textit{Fiat-Shamir} & \mathsf{qSIG} \\ (\mathsf{Schn.\;ID}) & \Longrightarrow & (\mathsf{Schn.\;sig.}) \end{array} & \Longrightarrow & \begin{array}{c} \mathsf{qDSA} \\ (\mathsf{EdDSA}) \end{array}$$

(1) **Security reduction.** Similar to original Schnorr ID scheme

```
\begin{array}{ccc} \mathsf{qID} & \stackrel{\textit{Fiat-Shamir}}{\Longrightarrow} & \mathsf{qSIG} & \Longrightarrow & \mathsf{qDSA} \\ (\mathsf{Schn.\;ID}) & & & (\mathsf{Schn.\;sig.}) & & & (\mathsf{EdDSA}) \end{array}
```

- (1) Security reduction. Similar to original Schnorr ID scheme
- (2) Unified keys. Identical key pairs for DH and qDSA

```
\begin{array}{ccc} \mathsf{qID} & \begin{array}{c} \textit{Fiat-Shamir} & \mathsf{qSIG} \\ (\mathsf{Schn.\;ID}) & \Longrightarrow & (\mathsf{Schn.\;sig.}) \end{array} & \Longrightarrow & \begin{array}{c} \mathsf{qDSA} \\ (\mathsf{EdDSA}) \end{array}
```

- (1) **Security reduction.** Similar to original Schnorr ID scheme
- (2) Unified keys. Identical key pairs for DH and qDSA
- (3) Key and signatures sizes. 32-byte keys, 64-byte signatures

$$\begin{array}{ccc} \mathsf{qID} & \stackrel{\textit{Fiat-Shamir}}{\Longrightarrow} & \mathsf{qSIG} \\ \mathsf{(Schn. \ ID)} & & & \mathsf{(Schn. \ sig.)} \end{array} \implies & \begin{array}{c} \mathsf{qDSA} \\ \mathsf{(EdDSA)} \end{array}$$

- (1) **Security reduction.** Similar to original Schnorr ID scheme
- (2) Unified keys. Identical key pairs for DH and qDSA
- (3) Key and signatures sizes. 32-byte keys, 64-byte signatures
- (4) **Verification.** Two-dimensional scalar multiplication algorithms not available & no batching

$$\begin{array}{ccc} \mathsf{qID} & \stackrel{\textit{Fiat-Shamir}}{\Longrightarrow} & \mathsf{qSIG} \\ \mathsf{(Schn. \ ID)} & & & \mathsf{(Schn. \ sig.)} \end{array} \implies & \begin{array}{c} \mathsf{qDSA} \\ \mathsf{(EdDSA)} \end{array}$$

- (1) **Security reduction.** Similar to original Schnorr ID scheme
- (2) Unified keys. Identical key pairs for DH and qDSA
- (3) Key and signatures sizes. 32-byte keys, 64-byte signatures
- (4) **Verification.** Two-dimensional scalar multiplication algorithms not available & no batching
- (5) Side-channels & faults. Add countermeasures depending on context of implementation

$$\left\{ \mathbf{x}(P), \mathbf{x}(Q) \right\} \mapsto \left\{ \mathbf{x}(P+Q), \mathbf{x}(P-Q) \right\}$$

$$\{(X_1:Z_1),(X_2:Z_2)\}\mapsto \{(X_3:Z_3),(X_4:Z_4)\}$$

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \mapsto \\
(X_3: Z_3), (X_4: Z_4) \\
 & \downarrow \\
X_3X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1X_2 - Z_1Z_2)^2 \\
 & \downarrow \\
Z_3Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1Z_2 - X_2Z_1)^2
\end{cases}$$
**xADD**

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \mapsto \\
(X_3: Z_3), (X_4: Z_4)
\end{cases}$$

$$\begin{array}{l}
X_3 X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1 X_2 - Z_1 Z_2)^2 \\
 & Z_3 Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1 Z_2 - X_2 Z_1)^2
\end{array}$$

$$X_3 X_4 + X_4 Z_3 = B_{10}, \quad B_{10} = \nu \cdot \left[ (X_1 Z_2 - X_2 Z_1) (X_1 Z_2 + X_2 Z_1) + 2AX_1 X_2 Z_1 Z_2 \right]$$

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \longleftrightarrow \\
X_3 X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1 X_2 - Z_1 Z_2)^2 \\
 & \longleftrightarrow \\
Z_3 Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1 Z_2 - X_2 Z_1)^2
\end{cases}$$

$$X_3 X_4 + X_4 Z_3 = B_{10}, \quad B_{10} = \nu \cdot \left[ (X_1 Z_2 - X_2 Z_1) (X_1 Z_2 + X_2 Z_1) + 2AX_1 X_2 Z_1 Z_2 \right]$$

$$\begin{pmatrix}
X_3 X_4 & * \\
X_3 Z_4 + X_4 Z_3 & Z_3 Z_4
\end{pmatrix} = \nu \cdot \begin{pmatrix}
B_{00} & * \\
B_{10} & B_{11}
\end{pmatrix}$$

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \mapsto \\
X_3 X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1 X_2 - Z_1 Z_2)^2 \\
 & Z_3 Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1 Z_2 - X_2 Z_1)^2
\end{cases}$$

$$X_3 X_4 + X_4 Z_3 = B_{10}, \quad B_{10} = \nu \cdot \left[ (X_1 Z_2 - X_2 Z_1)(X_1 Z_2 + X_2 Z_1) + 2AX_1 X_2 Z_1 Z_2 \right]$$

$$\begin{pmatrix}
X_3 X_4 & * \\
X_3 Z_4 + X_4 Z_3 & Z_3 Z_4
\end{pmatrix} = \nu \cdot \begin{pmatrix}
B_{00} & * \\
B_{10} & B_{11}
\end{pmatrix}$$

Thus  $(X_3:Z_3)$  and  $(X_4:Z_4)$  are the **unique** solutions to

$$B_{11}X^2 - 2 \cdot B_{10}XZ + B_{00}Z^2 = 0$$

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \mapsto \\
X_3 X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1 X_2 - Z_1 Z_2)^2 \\
 & Z_3 Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1 Z_2 - X_2 Z_1)^2
\end{cases}$$

$$X_3 X_4 + X_4 Z_3 = B_{10}, \quad B_{10} = \nu \cdot \left[ (X_1 Z_2 - X_2 Z_1) (X_1 Z_2 + X_2 Z_1) + 2AX_1 X_2 Z_1 Z_2 \right]$$

$$\begin{pmatrix}
X_3 X_4 & * \\
X_3 Z_4 + X_4 Z_3 & Z_3 Z_4
\end{pmatrix} = \nu \cdot \begin{pmatrix}
B_{00} & * \\
B_{10} & B_{11}
\end{pmatrix}$$

$$(2 \times 2)$$

Thus  $(X_3:Z_3)$  and  $(X_4:Z_4)$  are the **unique** solutions to

$$B_{11}X^2 - 2 \cdot B_{10}XZ + B_{00}Z^2 = 0$$
 (1 eqn)

$$\begin{cases}
(X_1: Z_1), (X_2: Z_2) \\
 & \mapsto \\
X_3X_4 = B_{00}, \quad B_{00} = \nu \cdot (X_1X_2 - Z_1Z_2)^2 \\
 & Z_3Z_4 = B_{11}, \quad B_{11} = \nu \cdot (X_1Z_2 - X_2Z_1)^2
\end{cases}$$

$$X_3Z_4 + X_4Z_3 = B_{10}, \quad B_{10} = \nu \cdot \left[ (X_1Z_2 - X_2Z_1)(X_1Z_2 + X_2Z_1) + 2AX_1X_2Z_1Z_2 \right]$$

$$\begin{pmatrix}
X_3X_4 & * \\
X_3Z_4 + X_4Z_3 & Z_3Z_4
\end{pmatrix} = \nu \cdot \begin{pmatrix}
B_{00} & * \\
B_{10} & B_{11}
\end{pmatrix}$$

$$(4 \times 4)$$

Thus  $(X_3:Z_3)$  and  $(X_4:Z_4)$  are the **unique** solutions to

$$B_{11}X^2 - 2 \cdot B_{10}XZ + B_{00}Z^2 = 0$$
 (6 eqns)

# Cost of computing biquadratic forms

| g | Func.  | М     | S     | С     |
|---|--------|-------|-------|-------|
| 1 | Check  | 8     | 3     | 1     |
|   | Ladder | 1 280 | 1 024 | 256   |
| 2 | Check  | 76    | 8     | 88    |
|   | Ladder | 1799  | 3 072 | 3 072 |

Table: Cost of  $B_{IJ}$ 

| g. | Ref.     | Object.          | Function. | CC.  | Stack.  |
|----|----------|------------------|-----------|------|---------|
|    | This     | Curve25519       | sign      | 14 M | 512 B   |
| 1  | [NLD15]  | Ed25519          | sign      | 19 M | 1 473 B |
|    | [Liu+17] | $Four\mathbb{Q}$ | sign      | 5 M  | 1572B   |

| g. | Ref.     | Object.          | Function. | CC.  | Stack.  |
|----|----------|------------------|-----------|------|---------|
|    | This     | Curve25519       | verify    | 25 M | 644 B   |
| 1  | [NLD15]  | Ed25519          | verify    | 31 M | 1 226 B |
|    | [Liu+17] | $Four\mathbb{Q}$ | verify    | 11 M | 4 957 B |

| g. | Ref.         | Object.       | Function. | CC.  | Stack. |
|----|--------------|---------------|-----------|------|--------|
| 2  | This         | Gaudry-Schost | sign      | 10 M | 417 B  |
|    | $[Ren{+}16]$ | Gaudry-Schost | sign      | 10 M | 926 B  |

| g. | Ref.         | Object.       | Function. | CC.  | Stack. |
|----|--------------|---------------|-----------|------|--------|
| 2  | This         | Gaudry-Schost | verify    | 20 M | 609 B  |
|    | $[Ren{+}16]$ | Gaudry-Schost | verify    | 16 M | 992 B  |

Thanks for your attention!

http://www.cs.ru.nl/~jrenes/

#### References I

- [Liu+17] Zhe Liu, Patrick Longa, Geovandro Pereira, Oscar Reparaz and Hwajeong Seo. Four on embedded devices with strong countermeasures against side-channel attacks. Cryptology ePrint Archive, Report 2017/434. http://eprint.iacr.org/2017/434. 2017.
- [NLD15] Erick Nascimento, Julio López and Ricardo Dahab. "Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers". In: Security, Privacy, and Applied Cryptography Engineering. Ed. by Rajat Subhra Chakraborty, Peter Schwabe and Jon Solworth. Vol. 9354. LNCS. Springer, 2015, pp. 289–309.
- [Ren+16] Joost Renes, Peter Schwabe, Benjamin Smith and Lejla Batina. "μKummer: Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers". In: Cryptographic Hardware and Embedded Systems CHES 2016 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. 2016, pp. 301–320. DOI: 10.1007/978-3-662-53140-2\_15. URL: http://dx.doi.org/10.1007/978-3-662-53140-2\_15.

#### References II

[Sch89]

Claus-Peter Schnorr. "Efficient Identification and Signatures for Smart Cards". In: *Advances in Cryptology - CRYPTO '89*. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer, 1989, pp. 239–252.