



## Trabajo Fin de Máster

Máster en Ciencia de Datos e Ingeniería de Datos en la Nube

Predicción de duración de dosificación para corrección de colas en procesos automáticos de fabricación de pienso.

Auto: Jose Luis Casado Valero Tutor: Luis de la Ossa Jiménez





# Fabrica de piensos:







## Dosificación en bascula:







# Dosificación en bascula:







# Fuente de datos:

- Registros de trazabilidad aplicación de automatización.
- 395.477 registros.
- No existen valores perdidos.



| Nombre columna      | Ejemplo             |
|---------------------|---------------------|
| Fecha_inicio        | 2013-08-14 16:51:48 |
| Fecha_fin           | 2013-08-14 16:52:39 |
| Cantidad_solicitada | 235.026             |
| Cantidad_dosificada | 236.5               |
| Mezcla              | 1                   |
| Pesada              | 0                   |
| Peso_inicial        | 0.0                 |
| Manual              | 0                   |
| Id_lote_destino     | 232527              |
| Materia_origen      | 13                  |
| Materia_destino     | 66                  |
| Id_silo             | 90                  |
| Tipo_materia        | Prima               |
| Tipo_destino        | Premezcla           |
| Densidad            | 1.0                 |
| Tam_mezcla          | 500                 |
| Desviacion          | 1.47                |





# Objetivo:

- Esgrimir los datos en busca de información para entender las desviaciones.
- Prevenir las desviaciones en las dosificaciones.
- Conseguir un método complementario al cálculo de colas actual.

#### Planteamientos:

- Predicción del error. (Difícil de caracterizar)
- Predicción de duración.
  - o Corrección de cola condicionada a la duración.

#### Duración:

- Variable a predecir.
- Segundo que está activo el elemento dosificador.
- Dataset. Segundos que transcurren desde fecha inicio a fecha fin.
- Ejemplo: 51 seg.





## Estadísticos variables numéricas:

|       | C. Solicitada | C. Dosificada | P. Inicial | T. mezcla | Duración | Desviación |
|-------|---------------|---------------|------------|-----------|----------|------------|
| Count | 395477        | 395477        | 395477     | 395477    | 395477   | 395477     |
| Mean  | 801.251       | 800.430       | 1342.961   | 4000.817  | 37.613   | -0.8203    |
| Std   | 744.934       | 745.126       | 1249.587   | 211.905   | 37.362   | 30.4486    |
| Min   | 0.000         | 0.000         | -64.000    | 400.000   | 0.000    | -2623.09   |
| 25%   | 167.984       | 168.000       | 11.000     | 4000.000  | 16.000   | -3.000     |
| 50%   | 668.040       | 664.000       | 1574.000   | 4000.000  | 25.000   | 0.0040     |
| 75%   | 1163.096      | 1168.000      | 2600.000   | 4040.000  | 49.000   | 3.0198     |
| Max   | 3121.984      | 3127.000      | 3995.000   | 4500.000  | 7786.000 | 1179.891   |







## Filtrado de datos:

- Cantidad solicitada mayor de 0.
- Cantidad solicitada menor de 1300.
- Cantidad dosificada mayor de 1.
- Cantidad dosificada menor de 1400.
- Desviación > -100.
- Desviación < 100.</li>
- Peso inicial de la báscula menor de 2700.
- Duración menor de 120 segundos.

Como resultado nos queda una base de datos con 235.045 registros.





## Filtrado de columnas:

- Fecha\_fin.
- Cantidad\_dosificada.
- Mezcla.
- Pesada.
- Manual.
- Densidad.
- Tipo\_materia.
- Tipo\_destino.
- Desviación.





#### Creación de nuevas características:

- Orden. Orden de cada dosificación dentro de cada mezcla.
- Hora. Hora a la que se produce la dosificación.
- DOW. Día de la semana en el que se produce la dosificación.
- Tmed. Temperatura media del día (OpenData AEMET).





### Correlación entre variables:







## Cantidad solicitada – duración:









Por silo y Materia

Predicción de duración de dosificación para corrección de colas en procesos automáticos de fabricación de pienso.

Trabajo Fin de Máster





# Preprocesamiento:

- <u>Numéricas</u>: Cantidad solicitada, peso inicial, tamaño mezcla y tmed.
- <u>Categóricas</u>: Materia origen, Materia destino, silo, orden, hora, dow.

Numéricas
SimpleImputer()

Numéricas
StandarScaler()

Numéricas
SimpleImputer()

Categoricas
Categoricas
OneHotEncoder()

# Train y test:

- Aleatorio. 66% y 33%
- Curiosidad: Sobreajuste al hacerlo cronológicamente.





## Entrenamiento de modelos:

- Utilizamos le error absoluto medio.
  - o Cuantificar y comparar modelos
  - o Medida de valoración desde el punto de vista operativo.

| Modelo                         | C.V búsqueda de Hiperparametros             |
|--------------------------------|---------------------------------------------|
| R. Lineal                      |                                             |
| Ridge                          | Alpha = { <b>1</b> , 0.1, 0.001, 0.0001}    |
| Random Forest                  | Estimadores = {50, 100, <b>200</b> , 1000}  |
| Random Forest 1 silo           | Max Atributos = <b>'auto'</b> , 3, 5, 7, 10 |
| Random Forest 1 silo 1 materia | Max Profundidad = None, 3, 5, 10, <b>20</b> |
| Kandom Forest 1 silo 1 materia | wax Profundidad = None, 3, 5, 10, <b>20</b> |





# Resultados:

| Modelo                         | Error Train | Error Test | Hiperparametros        |
|--------------------------------|-------------|------------|------------------------|
| R. Lineal                      | 4.18 Seg.   | 4.15 Seg.  |                        |
| Ridge                          | 4.18 Seg.   | 4.15 Seg.  | Alpha = 1              |
| Random Forest                  | 1.31 Seg.   | 1.55 Seg.  | Estimadores = 200      |
| Random Forest 1 silo           | 0.39 Seg.   | 0.87 Seg.  | Max Atributos = 'auto' |
| Random Forest 1 silo 1 materia | 0.35 Seg.   | 0.88 Seg.  | Max Profundidad = 20   |











## Conclusiones:

- Importancia de la fase de análisis.
- Importancia Generación de características.
- Random Forest funciona perfectamente con gran cantidad de datos y variables.
- En nuestro problema, la dosificación está muy caracterizada por el diseño y la disposición del elemento mecánico.

# Trabajos futuros:

 Modelo de clasificación de materia en silos en función de menor desviación en la dosificación.





# GRACIAS POR SU ATENCIÓN