Generating Quantum Natural Finite Difference

VQE: A hybrid quantum algorithm

Existing Aqua Optimizers

Singular Points In Parameter space (BAD)

FIG. 1: Idea of natural gradient. (a) Parameter space; the dotted line represents the set of parameters where $f(\theta_1, \theta_2)$ takes the same value for all θ_2 . (b) Trajectory of the parameters with Euclidean metric. (c) Trajectory of the parameters with non-Euclidean metric.

Taken from "On the natural gradient for variational quantum eigensolver - Naoki Yamamoto"

Quantum Natural Gradient (QNG) Optimizers

Pros

- Moves past singular points fast.
- Tailor made for quantum computers.

Cons

- Require 3d circuit evaluations per optimization step.
 - d is the number of parameters.

Extending the QNG

- QNG algorithm uses analytic gradients:
 - (requires 2d circuit evaluations to get those gradients)
- OUR optimizer: Quantum Natural Finite Differences:
 - Does not need analytic gradients

Our approach needs only d evaluations! Rather than 3d

(d = number of parameters in our variational circuit)

	SPSA	QNFD	QNG
Error Robustness	Good!	Good!	Good!
Circuits run per optimization step	2	d+2	3d

This shows how the QNG converges faster than the rest optimizers.

Figure 4:

APPLICATIONS

The possibility to train quantum algorithms (VQE) using gradient descent

In near-term noisy devices it may be of interest to study the relevant geometry for density matrices.

References

[1]. James Stokes, Josh Izaac, Nathan Killoran, Giuseppe Carleo. "Quantum Natural Gradient." arXiv:1909.02108, 2019.