Lista 1

Regressão Linear

Emanuel Eduardo da Silva Oliveira, 392471

1. Regressão Linear Univariada

Figura com os dados

A partir da figura dos dados, é perceptível que uma função linear se adapta muito bem à distribuição. Vê-se que a relação entres as variáveis segue um comportamento linear crescente.

Valor final dos coeficientes e gráfico épocas x EQM (alpha = 0.001 e épocas = 1000) são:

w0 = -3.8405 w1 = 1.1782

Verifica-se que o EQM cai com o avanço positivo da quantidade de épocas. Nas primeiras épocas, o erro é alto. Com o aumento das épocas o erro já segue uma mesma faixa de variação, com erro mais baixo.

Extra: plot da regressão linear sobre os dados.

2. Regressão Linear Múltipla

Valor final dos coeficientes e gráfico épocas x EQM (alpha = 0.01 e épocas = 100).

w0=0.8443881 w1=1.4239834 w2=0.0080310

A partir do gráfico é perceptível que quanto mais épocas menor é o erro quadrático médio.

"Encontre os coeficientes da regressão utilizando o método dos mínimos quadrados."

Valor final dos coeficientes:

w0=0.895979 w1=1.392107 w2=-0.087380

Os pesos não são exatamente iguais, mas são bem próximos, o que demonstra a convergência dos dois métodos para uma solução igual, mas com diferença em tempo de execução.

3. <u>Regularização</u>

Valores finais dos coeficientes

	w0	w1	w2	w3	w4	w5
lambda 0	0.792989	2.056501	0.121439	-1.161379	0.062729	-0.391102
lambda 1	0.218377	1.339161	0.225068	0.180160	0.048057	-0.247075
lambda 2	0.258168	1.162657	0.230547	0.249108	0.057040	-0.115261
lambda 3	0.318750	1.049327	0.233039	0.259881	0.068043	-0.031174
lambda 4	0.381665	0.965942	0.234412	0.257707	0.078538	0.025469
lambda 5	0.443831	0.900535	0.234909	0.251674	0.087866	0.065334

A variável associada ao peso w1 aparenta ter mais relevância por ter peso maior quando comparado aos pesos das variáveis associadas aos pesos w2, w3, w4, e w5.

Comportamento:

O valor de lambda é diretamente proporcional ao peso da regularização na definição dos pesos das features. Ou seja, quanto maior o lambda, mais regularização é aplicada aos pesos e menos overfitting é esperado. Com a divisão do conjunto dos dados em treino e teste, analisemos o comportamento dos gráficos lambda-x-erro para tais subconjuntos.

• Treino: Com lambdas menores, consequentemente, menos regularização, o erro nesse conjunto é baixo, pois há overfitting. Com lambdas maiores há mais regularização e então menos overfitting. Entretanto

- o erro aumenta. Isso se explica pelo fato da regressão linear, devido à regularização, estar "se distanciando" do conjunto de treino, computando, consequentemente, erros maiores.
- Teste: Com lambdas menores, o erro nesse conjunto é alto, pois o modelo está enviesado no conjunto de treino. Com o aumento do lambda, mais regularização é aplicada a computação dos pesos, consequentemente menos overfitting. Isso ajusta melhor o modelo, i.e., produz menos erro, para dados não vistos, como os dados do conjunto de teste.