Seasonal ARIMA models

FISH 550 – Applied Time Series Analysis Download Rmd pdf

Eli Holmes

6 Apr 2023

Seasonality

Load the chinook salmon data set

```
load("chinook.RData")
head(chinook)
```

##		Year	Month	Species	log.metric.tons	metric.tons
##	1	1990	Jan	${\tt Chinook}$	3.397858	29.9
##	2	1990	Feb	${\tt Chinook}$	3.808882	45.1
##	3	1990	Mar	${\tt Chinook}$	3.511545	33.5
##	4	1990	Apr	${\tt Chinook}$	4.248495	70.0
##	5	1990	May	${\tt Chinook}$	5.200705	181.4
##	6	1990	Jun	${\tt Chinook}$	4.371976	79.2

The data are monthly and start in January 1990. To make this into a ts object do $\,$

start is the year and month and frequency is the number of months in the year.

Use ?ts to see more examples of how to set up ts objects.

Plot seasonal data

plot(chinookts)

Seasonal ARIMA model SARIMA

Seasonally differenced data, e.g. chinook data January 1990 - chinook data January 1989.

$$z_t = x_t - x_{t+s} - m$$

Basic structure of a seasonal AR model

seasonal differenced data = AR(seasonal) + AR(non-seasonal) + AR(p+season)

For example, SARIMA model could capture this process

- 1. AR(seasonal) January in t is correlated with January in t-1
- 2. AR(non-seasonal) January differences are correlated with February differences
- 3. AR(p+season) appears because of 1 and 2

$$z_t = AR(1) + AR(12) + AR(1+12)$$

 $z_t = \phi_1 z_{t-1} + \Phi_1 z_{t-12} - \phi_1 \Phi_1 z_{t-13}$

Notation

ARIMA (p,d,q)(ps,ds,qs)S

ARIMA (non-seasonal part)(seasonal part)Frequency

ARIMA (non-seasonal) means t correlated with t-1

ARIMA (seasonal) means t correlated with t-s

Examples

ARIMA (1,0,0)(1,0,0)[12]

What data are we modeling? Get the differences

$$z_t = x_t - m$$

Write out the AR parts with z_t

$$z_t = \phi_1 z_{t-1} + \Phi_1 z_{t-12} - \phi_1 \Phi_1 z_{t-13} + w_t$$

Write out the MA parts, the w_t . No MA in this model.

$$w_t = e_t$$

ARIMA (1,0,0)(1,1,0)[12]

Figure out z_t . Just a seasonal difference.

$$z_t = x_t - x_{t-12} - m$$

Write out the AR parts with z_t

$$z_t = \phi_1 z_{t-1} + \Phi_1 z_{t-12} - \phi_1 \Phi_1 z_{t-13} + w_t$$

Write out the MA parts, the w_t . No MA in this model. w_t is white noise.

$$w_t = e_t$$

Seasonal random walk model

ARIMA(0,0,0)(0,1,0)[12]

expected January 1990 = January 1989 + constant mean Figure out z_t . m is the mean seasonal difference.

$$z_t = x_t - x_{t-12} - m$$

Write out the AR parts with z_t . No AR part.

$$z_t = w_t$$

$$w_t = e_t$$

Seasonal random walk model with random trend

ARIMA(0,1,0)(0,1,0)[12]

 $\mathsf{expected}\;\mathsf{Feb}\;1990 = \mathsf{Feb}\;1989 + \big(\mathsf{Jan}\;1990 - \mathsf{Jan}\;1989\big)$

Figure out z_t . m is the mean seasonal difference.

$$z_t = (x_t - x_{t-12}) - (x_{t-1} - x_{t-13}) - m$$

Write out the AR parts with z_t . No AR part.

$$z_t = w_t$$

$$w_t = e_t$$

airline model

ARIMA(0, 1, 1)(0, 1, 1)[12]

Figure out z_t .

$$z_t = (x_t - x_{t-12}) - (x_{t-1} - x_{t-13}) - m$$

Write out the AR parts with z_t . No AR part.

$$z_t = w_t$$

$$w_t = e_t - \theta_1 e_{t-1} - \Theta_1 e_{t-12} + \theta_1 \Theta_1 e_{t-13}$$

Example with longer lags

What data are we modeling? Get the differences

$$z_t = x_t - m$$

Write out the AR parts with z_t

$$z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + \Phi_1 z_{t-12} - (cross products) + w_t$$

$$w_t = e_t - \theta_1 e_{t-1} - \Theta_1 e_{t-12} - \Theta_2 e_{t-24} + (cross products)$$

auto.arima() for seasonal ts

auto.arima() will recognize that our data has season and fit a seasonal ARIMA model to our data by default. We will define the training data up to 1998 and use 1999 as the test data.

```
traindat <- window(chinookts, c(1990,10), c(1998,12))
testdat <- window(chinookts, c(1999,1), c(1999,12))
fit <- forecast::auto.arima(traindat)
fit</pre>
```

```
## ## Coefficients:

## ar1 drift

## 0.3676 -0.0320

## s.e. 0.1335 0.0127

##
```

ARIMA(1,0,0)(0,1,0)[12] with drift

$sigma^2 = 0.8053$: log likelihood = -107.37

AIC=220.73 AICc=221.02 BIC=228.13

Series: traindat

Summary for seasonal models

Basic steps for identifying a seasonal model. **forecast** automates most of this.

- Check that you have specified your season correctly in your ts object.
- Plot your data. Look for trend, seasonality and random walks.

Summary

- Use differencing to remove season and trend.
 - ► Season and no trend. Take a difference of lag = season
 - ▶ No seasonality but a trend. Try a first difference
 - Both. Do both types of differences
 - ► Neither. No differencing
 - Random walk. First difference
 - Parametric looking curve. Transform

Summary

- Examine the ACF and PACF of the differenced data.
 - Look for patterns (spikes) at seasonal lags
- ► Estimate likely models and compare with model selection criteria (or cross-validation). Use TRACE=TRUE
- Do residual checks

Forecasting with a Seasonal model

Load the chinook salmon data

Plot seasonal data

plot(chinookts)

Seasonal ARIMA model

Seasonally differenced data, e.g. chinook data January 1990 - chinook data January 1989.

$$z_t = x_t - x_{t+s} - m$$

Basic structure of a seasonal AR model

$$z_t = AR(p) + AR(season) + AR(p+season)$$

e.g.
$$z_t = AR(1) + AR(12) + AR(1+12)$$

Example AR(1) non-seasonal part + AR(1) seasonal part

$$z_t = \phi_1 z_{t-1} + \Phi_1 z_{t-12} - \phi_1 \Phi_1 z_{t-13}$$

Notation

 $\mathsf{ARIMA}\ (\mathsf{p},\mathsf{d},\mathsf{q})(\mathsf{ps},\mathsf{ds},\mathsf{qs})\mathsf{S}$

ARIMA (1,0,0)(1,1,0)[12]

auto.arima() for seasonal ts

auto.arima() will recognize that our data has season and fit a seasonal ARIMA model to our data by default. We will define the training data up to 1998 and use 1999 as the test data.

```
traindat <- window(chinookts, c(1990,10), c(1998,12))
testdat <- window(chinookts, c(1999,1), c(1999,12))
fit <- forecast::auto.arima(traindat)
fit</pre>
```

```
##
## Coefficients:
## ar1 drift
## 0.3676 -0.0320
## s.e. 0.1335 0.0127
##
## sigma^2 = 0.8053: log likelihood = -107.37
```

ARIMA(1,0,0)(0,1,0)[12] with drift

AIC=220.73 AICc=221.02 BIC=228.13

Series: traindat

Forecast using seasonal model

```
fr <- forecast::forecast(fit, h=12)
plot(fr)
points(testdat)</pre>
```

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift

Missing values

Missing values are ok when fitting a seasonal ARIMA model

Forecasts from ARIMA(1,0,0)(0,1,0)[12] with drift

