Introdução Metodologia Experimentos Frabalhos Futuros

## Aplicação de Otimização Multi-Objetivo em Problemas de Aprendizagem de Máquinas para Diminuição de Discriminação

Vitória Aquino Guardieiro Orientador: Jorge Poco Coorientador: Marcos Raimundo

FGV/EMAp - Escola de Matemática Aplicada

07/12/2020

#### Introdução

- A utilização de modelos de aprendizagem de máquinas para tomar decisões está se popularizando e expandindo nas políticas públicas, contratação de funcionários, análises de crédito, entre outras aplicações que tem um impacto significativo na vida das pessoas e da sociedade como um todo.
- Entretanto, tais modelos podem propagar e perpetuar discriminações, caso sejam treinados com dados implicitamente discriminatórios ou caso ser discriminatório resulte em erros menores para os modelos.
- A partir da importância ética de não se discriminar, assim como das iminentes regulamentações em relações ao tópico, surgiu a subárea de discriminação ou fairness nas pesquisas que envolvem inteligências artificiais.
- Inicialmente, acreditava-se que treinar um modelo sem fornecer a ele informações potencialmente discriminatórias (chamadas de sensíveis), como raça e gênero, era suficiente para garantir que seu resultado não seria discriminatório. Mas isso já se provou falso, por conta existirem características bastante correlacionadas com as sensíveis e que são necessárias para a aplicação, como endereco e raça.
- Assim se tornou necessário o desenvolvimento de novas estratégias de treinamento para os modelos, que considerasse a discriminação e não apenas o desempenho resultante.

#### Motivação

- Quando restringimos ou otimizamos a discriminação de um modelo, isso geralmente resulta em uma perda em seu desempenho, o que já foi apresentado em diversos estudos.
- Com tal conflito entre as métricas de discriminação e desempenho, assim como o desejo de otimizar ambas simultaneamente, temos um cenário bastante similar ao que os métodos de otimização multi-objetivo buscam resolver.
- Alguns trabalhos em fairness aplicaram tais métodos de otimização no treinamento de modelos de aprendizagem de máquinas, mas eles se limitam a encontrar um único modelo que é determinado como o melhor, não deixando o utilizador do modelo escolher explicitamente o melhor modelo dado o conflito entre desempenho e discriminação.
- Este trabalho busca utilizar da otimização multi-objetivo para explicitar o conflito entre discriminação e desempenho, permitindo que o utilizador escolha qual o modelo dentre eles consideração sua aplicação.

#### Objetivos

- O objetivo principal deste projeto é obter uma metodologia capaz ajustar modelos de inteligência artificial para classificação binária minimizando não somente o erro de aprendizado, mas também a discriminação. Isso será abordado utilizando da otimização multi-objetivo, que permite a otimização simultânea de diversas funções objetivo.
- Além disso, outro objetivo é comparar os resultados obtidos pelas propostas deste trabalho com estratégias similares da literatura de fairness.
- E, por fim, analisar a utilização de métodos de ensemble learning para, a partir de um conjunto de modelos gerado pela abordagem multi-objetiva, permitir ao tomador de decisão que combine modelos em um ensemble para atender múltiplas métricas.

#### Metodologia



Figura 1: Descrição visual da metologia proposta neste trabalho. Em (a) temos a modelagem por soma ponderada dos objetivos que minimizaremos, em (b) utilizamos a abordagem MONISE para resolver o problema multiobjetivo, resultando na Fronteira de Pareto apresentada em (c). Em (d), selecionamos dentre os modelos de (c) aqueles que minimizam unicamente cada uma das métricas de desempenho e discriminação escolhidas.

## Otimização Multi-objetivo

- A otimização multi-objetivo consiste em minimizar ou maximizar m funções  $f_1, f_2, \ldots, f_m$  simultaneamente, com  $f_i(\vec{x}): \Omega \to \mathbb{R}$  e  $\vec{x} \in \Omega, \Omega \subset \mathbb{R}^d$ , sendo  $\Omega$  o subespaço de valores possíveis para x.
- Devido à existência de diversos objetivos, a otimização multi-objetivo não busca encontrar um único x que otimiza todos os objetivos simultaneamente, mas sim um conjunto ótimo, chamado de Fronteira de Pareto, tal que os elementos desse conjunto otimizem o conflito/tradeoff entre os objetivos.
- No trabalho, apliquei a abordagem MONISE Many-Objective Non-Inferior Set Estimation para resolver os problemas de otimização propostos. Ela utiliza do método de soma ponderada, que consiste em otimizar diversas vezes  $\vec{w}^T f(\vec{x})$ , determinando vetores w de forma a obter um conjunto representativo da Fronteira de Pareto.

#### Regressão Logística

- Um problema de classificação binária é dado por um conjunto de N amostras, onde  $\vec{x_i} \in \mathbb{R}^d: i \in \{1,\dots,N\}$ , e  $\vec{X} = \{\vec{x_1},\dots,\vec{x_N}\}$  consiste nos atributos de entrada e  $y_i \in \{0,1\}: i \in \{1,\dots,N\}$  é o valor de saída que se deseja predizer. Em classificação, esse valor indica a pertinência à classe 0 ou à classe 1.
- A regressão logística consiste em escolher como modelo a função sigmoide  $f(x,\theta) = \frac{e^{\theta^\top \phi(\vec{x})}}{1+e^{\theta^\top \phi(\vec{x})}} \in [0,1] \text{, que descreve a probabilidade de uma nova amostra } \vec{x}$  ter a sua pertinência vinculada ao grupo 1, e usar o seguinte problema de otimização para encontrar o vetor de parâmetros  $\theta$  que faz a sigmóide melhor se adequar aos dados:

## Primeira proposta: Erro por grupo

Na primeira proposta do trabalho, é utilizada a função de perda da regressão logística, mas o valor de perda é calculado para cada grupo com base na característica sensível  $g \in \{1, \dots, G\}$ :

$$I^{\mathcal{G}}(\vec{X}, \vec{y}, \theta) = \sum_{i \in \mathcal{G}^{\mathcal{G}}} - \left[ y_i \ln \left( \frac{e^{\theta^{\top} \phi(\vec{x}_i)}}{1 + e^{\theta^{\top} \phi(\vec{x}_i)}} \right) + (1 - y_i) \ln \left( 1 - \frac{e^{\theta^{\top} \phi(\vec{x}_i)}}{1 + e^{\theta^{\top} \phi(\vec{x}_i)}} \right) \right] \quad (2)$$

Com isso, o treinamento do modelo consiste em otimizar a seguinte soma ponderada:

$$\min_{\theta} \sum_{g=1}^{G} \vec{w}_{g} I^{g}(\vec{X}, \vec{y}, \theta) + \vec{w}_{G+1} \|\theta\|_{2}.$$
 (3)

sendo  $\vec{w}$  o vetor de pesos que será encontrado pelo método MONISE.

## Segunda proposta: Probabilidade por grupo

Na segunda proposta, ao invés de utilizarmos a perda por grupo, utilizamos da probabilidade de aceitação por grupo, dada por:

$$a^{g}(\vec{X},\theta) = -\sum_{i \in \mathcal{G}^{g}} \ln \left( \frac{e^{\theta^{\top}\phi(\vec{x_{i}})}}{1 + e^{\theta^{\top}\phi(\vec{x_{i}})}} \right) \tag{4}$$

Assim, é otimizada a seguinte soma ponderada:

$$\min_{\theta} \sum_{g=1}^{G} \vec{w}_g \, a^g(\vec{X}, \theta) + \vec{w}_{G+1} I(\vec{X}, \vec{y}, \theta) + \vec{w}_{G+2} \|\theta\|_2$$
 (5)

sendo  $\vec{w}$  o vetor de pesos que será encontrado pelo método MONISE.

#### Métricas de Fairness

Para compararmos e avaliarmos os métodos propostos, utilizaremos as seguintes métricas de discriminação/ *fairness*, que representam noções distintas sobre o que é discriminação:

|                    | Noção de Justiça          | Condição de Justiça                            |
|--------------------|---------------------------|------------------------------------------------|
| Justiça por Grupos | Igualdade de Oportunidade | Taxa de verdadeiros positivos igual para todos |
|                    |                           | os grupos                                      |
|                    | Paridade Demográfica      | Taxa de aceitação igual para todos os grupos   |
| Justiça Individual | Coeficiente de Variação   | Indivíduos que merecem resultados similares    |
|                    |                           | recebem resultados similares                   |

Tabela 1: Visão geral das métricas de desigualdade.

## Ensemble Learning

- Os métodos de ensemble learning, ou aprendizado por agrupamento, consistem em, a partir de um conjunto de modelos treinados para uma mesma tarefa, produzir um novo modelo, mais complexo, que tenha performance mais robusta do que os modelos do conjunto. O objetivo dessa estratégia é a minimizar as desvantagens individuais dos modelos mais simples no modelo final.
- No trabalho, utilizei do método de ensemble learning de votação simples suave, onde cada modelo "vota" no que deveria ser o resultado.
- Como abordamos problemas de classificação binária, então para cada indivíduo x cada modelo i predirá sua classificação  $f(x,\theta_i)$ . Com o método suave (soft), cada modelo dá a probabilidade do indivíduo pertencer a cada um dos dois grupos, com a classificação do indivíduo sendo o grupo que obteve maior soma das probabilidades preditas.

## Experimentos

Foram realizados três experimentos com as estratégias propostas no trabalho. Para eles, foram utilizados os seguintes conjuntos de dados:

- German O conjunto de dados sobre solicitações de crédito, cujo objetivo é classificar se uma solicitação deve ser aceita ou não. A característica sensível é o gênero.
  - Adult Contém informação sobre indivíduos do Censo dos Estados Unidos de 1994. A tarefa proposta é prever se um certo indivíduo recebe mais ou menos que \$50.000 por ano, sendo raça a característica sensível.
  - LSAC Contém informações de exames e raça (utilizado como característica sensível). O objetivo é identificar se o aluno passou no exame de ordem ou não.
- ProPublica Inclui informações sobre indivíduos que foram presos, incluindo o grau do incidente e raça (utilizado como característica sensível). O objetivo é prever se o indivíduo voltará a ser preso em dois anos.

#### Experimentos

Nos experimentos, os resultados obtidos pelas estratégias propostas foram comparadas com outras estratégias:

- Regressão Logística Como definida na métodologia, será utilizada como base de comparação.
  - Reweighting Consiste em treinar um modelo a partir da regressão logística, mas considera pesos para cada amostra de acordo com a característica sensível.
- Classificador de Paridade Demográfica Treina um modelo de regressão logística considerando uma restrição para o valor da métrica de Paridade Demográfica (ou P porcento).
- Classificador de Igualdade de Oportunidade Treina um modelo de regressão logística considerando uma restrição para o valor da métrica de Igualdade de Oportunidade.
  - Minimax Estratégia de otimização que encontra o modelo que minimiza o erro máximo para os grupos gerados a partir da característica sensível.



Figura 2: Melhores resultados obtidos em cada métrica para o conjunto de dados German para as estratégias propostas e comparadas.



Figura 3: Melhores resultados obtidos em cada métrica para o conjunto de dados LSAC para as estratégias propostas e comparadas.



Figura 4: Melhores resultados obtidos em cada métrica para o conjunto de dados Adult para as estratégias propostas e comparadas.



Figura 5: Melhores resultados obtidos em cada métrica para o conjunto de dados COMPAS para as estratégias propostas e comparadas.

# Experimento 2 - Diversidade



Figura 6: Valores encontrados para métricas de desempenho e discriminação para os modelos resultantes de cada estratégia utilizando o conjunto de dados COMPAS.

# Experimento 3 - Ensemble Learning



(a) Seleção dos modelos



(c) Seleção dos modelos



(b) Resultados obtidos



(d) Resultados obtidos

## Experimento 3 - Ensemble Learning





(a) Seleção dos modelos

(b) Resultados obtidos

Figura 8: Resultados obtidos em teste para o modelo gerado a partir do método de ensemble learning utilizando o subconjunto de modelos encontrado pela estratégia multi-objetiva de erros que possuem maiores valores na métrica de acurácia para o conjunto de dados COMPAS.

#### Trabalhos Futuros

#### Possíveis trabalhos futuros:

- Estender a implementação e estudo para características sensíveis que não sejam binárias, por exemplo usando mais variações de raça além de branco/não-branco ou utilizar duas características sensíveis simultaneamente, como gênero e raça.
- Análise da Fronteira de Pareto resultante das estratégias propostas, comparando com as fronteiras encontradas por outras estratégias.
- Aplicação dessas estratégias para outros problemas além da classificação binária, como regressões lineares.