Lecture 1

Chapter 2

1

PATTERN RECOGNITION

- Typical application areas
 - ➤ Machine vision
 - ➤ Character recognition (OCR)
 - > Computer aided diagnosis
 - > Speech recognition
 - > Face recognition
 - ➤ Biometrics
 - > Image Data Base retrieval
 - > Data mining
 - > Bionformatics
- ❖ The task: Assign unknown objects patterns into the correct class. This is known as classification.

- ❖ Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values.
- ❖Feature vectors: A number of features

$$X_1,...,X_l$$

constitute the feature vector

$$\underline{x} = [x_1, ..., x_l]^T \in R^l$$

Feature vectors are treated as random vectors.

- ❖ The classifier consists of a set of functions, whose values, computed at \underline{x} , determine the class to which the corresponding pattern belongs
- Classification system overview

5

Supervised – unsupervised – semisupervised pattern recognition:

The major directions of learning are:

- > **Supervised**: Patterns whose class is known a-priori are used for training.
- ➤ **Unsupervised**: The number of classes/groups is (in general) unknown and no training patterns are available.
- ➤ **Semisupervised:** A mixed type of patterns is available. For some of them, their corresponding class is known and for the rest is not.

CLASSIFIERS BASED ON BAYES DECISION THEORY

Statistical nature of feature vectors

$$\underline{x} = [x_1, x_2, \dots, x_l]^T$$

 $\ \ \, \ \ \,$ Assign the pattern represented by feature vector \underline{x} to the most probable of the available classes

$$\omega_1, \omega_2, ..., \omega_M$$

That is
$$\underline{x} \rightarrow \omega_i : P(\omega_i | \underline{x})$$
 maximum

7

- Computation of a-posteriori probabilities
 - ➤ Assume known
 - a-priori probabilities

$$P(\omega_1), P(\omega_2), \dots, P(\omega_M)$$

•
$$p(\underline{x}|\omega_i), i = 1, 2, ..., M$$

This is also known as the likelihood of

$$\underline{x}$$
 w.r. to ω_i .

 \rightarrow The Bayes rule (M=2)

$$p(\underline{x})P(\omega_i|\underline{x}) = p(\underline{x}|\omega_i)P(\omega_i) \Rightarrow$$

$$P(\omega_i|\underline{x}) = \frac{p(\underline{x}|\omega_i)P(\omega_i)}{p(\underline{x})}$$

where

$$p(\underline{x}) = \sum_{i=1}^{2} p(\underline{x} | \omega_i) P(\omega_i)$$

9

- ❖ The Bayes classification rule (for two classes M=2)
 - \triangleright Given χ classify it according to the rule

If
$$P(\omega_1|\underline{x}) > P(\omega_2|\underline{x}) \ \underline{x} \to \omega_1$$

If $P(\omega_2|\underline{x}) > P(\omega_1|\underline{x}) \ \underline{x} \to \omega_2$

> Equivalently: classify \underline{x} according to the rule

$$p(\underline{x}|\omega_1)P(\omega_1)(><)p(\underline{x}|\omega_2)P(\omega_2)$$

> For equiprobable classes the test becomes

$$p(\underline{x}|\omega_1)(><)p(\underline{x}|\omega_2)$$

Equivalently in words: Divide space in two regions

If
$$\underline{x} \in R_1 \Rightarrow \underline{x} \text{ in } \omega_1$$
If $\underline{x} \in R_2 \Rightarrow \underline{x} \text{ in } \omega_2$

Probability of error

> Total shaded area

$$P_e = \frac{1}{2} \int_{-\infty}^{x_0} p(x|\omega_2) dx + \frac{1}{2} \int_{x_0}^{+\infty} p(x|\omega_1) dx$$

❖ Bayesian classifier is OPTIMAL with respect to minimising the classification error probability!!!!

➤ Indeed: Moving the threshold the total shaded area INCREASES by the extra "grey" area.

13

- ❖ The Bayes classification rule for many (M>2) classes:
 - \triangleright Given \underline{x} classify it to ω_i if:

$$P(\omega_i|\underline{x}) > P(\omega_j|\underline{x}) \ \forall j \neq i$$

- > Such a choice also minimizes the classification error probability
- Minimizing the average risk
 - > For each wrong decision, a penalty term is assigned since some decisions are more sensitive than others

 \triangleright For M=2

• Define the loss matrix

$$L = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$$
 deciding class 1 when the true class is indeed 1.

11 - cost of

- $\lambda_{\!\scriptscriptstyle 12}$ penalty term for deciding class $\,\omega_{\!\scriptscriptstyle 2}\,$, although the pattern belongs to ω_{i} , etc.
- \triangleright Risk with respect to ω_1

$$r_1 = \lambda_{11} \int_{R_1} p(\underline{x}|\omega_1) d\underline{x} + \lambda_{12} \int_{R_2} p(\underline{x}|\omega_1) d\underline{x}$$

15

 \triangleright Risk with respect to ω_{γ}

$$r_2 = \lambda_{21} \int_{R_1} p(\underline{x}|\omega_2) d\underline{x} + \lambda_{22} \int_{R_2} p(\underline{x}|\omega_2) d\underline{x}$$

➤ Average risk

$$r = r_1 P(\omega_1) + r_2 P(\omega_2)$$

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- Then assign <u>x</u> to ω_i if $\ell_1 \equiv \lambda_{11} p(\underline{x}|\omega_1) P(\omega_1) + \lambda_{21} p(\underline{x}|\omega_2) P(\omega_2) <$ $\ell_2 \equiv \lambda_{12} p(\underline{x}|\omega_1) P(\omega_1) + \lambda_{22} p(\underline{x}|\omega_2) P(\omega_2)$
- Equivalently:

assign \underline{x} in $\omega_1(\omega_2)$ if

$$\ell_{12} \equiv \frac{p(\underline{x}|\omega_1)}{p(\underline{x}|\omega_2)} > (<) \frac{P(\omega_2)}{P(\omega_1)} \frac{\lambda_{21} - \lambda_{22}}{\lambda_{12} - \lambda_{11}}$$

 $\ell_{\it 12}$: likelihood ratio

17

*If
$$P(\omega_1) = P(\omega_2) = \frac{1}{2}$$
 and $\lambda_{11} = \lambda_{22} = 0$

$$\underline{x} \to \omega_1 \text{ if } P(\underline{x} | \omega_1) > P(\underline{x} | \omega_2) \frac{\lambda_{21}}{\lambda_{12}}$$

$$\underline{x} \to \omega_2 \text{ if } P(\underline{x} | \omega_2) > P(\underline{x} | \omega_1) \frac{\lambda_{12}}{\lambda_{21}}$$

if $\lambda_{21} = \lambda_{12} \Rightarrow$ Minimum classification error probability

❖ An example:

$$- p(x|\omega_1) = \frac{1}{\sqrt{\pi}} \exp(-x^2)$$

$$- p(x|\omega_2) = \frac{1}{\sqrt{\pi}} \exp(-(x-1)^2)$$

$$- P(\omega_1) = P(\omega_2) = \frac{1}{2}$$

$$- L = \begin{pmatrix} 0 & 0.5 \\ 1.0 & 0 \end{pmatrix}$$

19

> Then the threshold value is:

$$x_0$$
 for minimum P_e :

$$x_0 : \exp(-x^2) = \exp(-(x-1)^2) \Rightarrow$$

 $x_0 = \frac{1}{2}$

ightharpoonup Threshold \hat{x}_0 for minimum r

$$\hat{x}_0$$
: $\exp(-x^2) = 2 \exp(-(x-1)^2) \Rightarrow$
 $\hat{x}_0 = \frac{(1-\ln 2)}{2} < \frac{1}{2}$

DISCRIMINANT FUNCTIONS DECISION SURFACES

If R_i, R_j are contiguous: g(x) ≡ P(ω_i|x) − P(ω_j|x) = 0

$$R_i: P(ω_i|x) > P(ω_j|x)$$

$$+ \frac{1}{2} \frac{1}{2$$

is the surface separating the regions. On the one side is positive (+), on the other is negative (-). It is known as Decision Surface.

$$\underline{x} \to \omega_i \text{ if } : f(P(\omega_i|\underline{x})) > f(P(\omega_i|\underline{x})) \ \forall i \neq j$$

- $g_i(\underline{x}) \equiv f(P(\omega_i|\underline{x}))$
 - is a **discriminant function.**
- ❖ In general, discriminant functions may be defined independently of the Bayesian rule
 They lead to suboptimal solutions
- If chosen appropriately, they can be computationally more tractable.
- Moreover, in practice, they may also lead to better solutions.
- Sometimes the case when the underlying pdf's are unknown.

23

THE GAUSSIAN DISTRIBUTION

The one-dimensional case

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

where

 μ is the mean value, i.e.: $\mu = E[x] = \int_{-\infty}^{+\infty} xp(x)dx$

 σ^2 is the variance, $\sigma^2 = E[(x - E[x])^2] = \int_0^{+\infty} (x - \mu)^2 p(x) dx$

The Multivariate (Multidimensional) case:

$$p(\underline{x}) = \frac{1}{(2\pi)^{\frac{\ell}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right)$$

where μ is the mean value, $\mu = E[x]$

and Σ is known s the covariance matrix and it is defined as:

$$\Sigma = E[(\underline{x} - \mu)(\underline{x} - \mu)^T]$$

❖ An example: The two-dimensional case:

$$p(\underline{x}) = p(x_1, x_2) = \frac{1}{(2\pi)|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}[x_1 - \mu_1, x_2 - \mu_2]\Sigma^{-1}\begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

$$\underline{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} E[x_1] \\ E[x_2] \end{bmatrix}, \quad \Sigma = E\begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}[x_1 - \mu_1, x_2 - \mu_2] = \begin{bmatrix} \sigma_1^2 & \sigma \\ \sigma & \sigma_2^2 \end{bmatrix}$$

where

$$\sigma = E[(x_1 - \mu_1)(x_2 - \mu_2)]$$

25

BAYESIAN CLASSIFIER FOR NORMAL DISTRIBUTIONS

Multivariate Gaussian pdf

$$p(\underline{x}|\boldsymbol{\omega}_{i}) = \frac{1}{(2\pi)^{\frac{\ell}{2}}|\boldsymbol{\Sigma}_{i}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\underline{x} - \underline{\mu}_{i})^{T} \boldsymbol{\Sigma}_{i}^{-1}(\underline{x} - \underline{\mu}_{i})\right)$$

 $\underline{\mu}_i = E[\underline{x}]$ is an $\ell \times 1$ vector, for $\underline{x} \in \omega_i$

$$\Sigma_i = E \left[(\underline{x} - \underline{\mu}_i) (\underline{x} - \underline{\mu}_i)^{\mathrm{T}} \right]$$

is the $\ell \times \ell$ covariance matrix.

- \bullet ln(·) is monotonic. Define:
 - $g_i(\underline{x}) = \ln(p(\underline{x}|\omega_i)P(\omega_i)) =$ $\ln p(\underline{x}|\omega_i) + \ln P(\omega_i)$ $g_i(x) = -\frac{1}{2}(x-\mu)^T \sum_{i=1}^{-1} (x-\mu)^{-1} \sum_{i=1}^{-$

$$g_{i}(\underline{x}) = -\frac{1}{2} (\underline{x} - \underline{\mu}_{i})^{T} \Sigma_{i}^{-1} (\underline{x} - \underline{\mu}_{i}) + \ln P(\omega_{i}) + C_{i}$$

$$C_{i} = -(\frac{\ell}{2}) \ln 2\pi - (\frac{1}{2}) \ln |\Sigma_{i}|$$

Example:
$$\Sigma_i = \begin{pmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{pmatrix}$$

27

$$g_i(\underline{x}) = -\frac{1}{2\sigma^2} (x_1^2 + x_2^2) + \frac{1}{\sigma^2} (\mu_{i1} x_1 + \mu_{i2} x_2)$$
$$-\frac{1}{2\sigma^2} (\mu_{i1}^2 + \mu_{i2}^2) + \ln(P\omega_i) + C_i$$

That is, $g_i(x)$ is quadratic and the surfaces $g_i(\underline{x}) - g_j(\underline{x}) = 0$ quadrics, ellipsoids, parabolas, hyperbolas, pairs of lines.

Decision Hyperplanes

 \triangleright Quadratic terms: $\underline{x}^T \underline{\Sigma}_i^{-1} \underline{x}$

If ${\sf ALL}\, {\varSigma}_i = {\varSigma}$ (the same) the quadratic terms are not of interest. They are not involved in comparisons. Then, equivalently, we can write:

$$g_{i}(\underline{x}) = \underline{w}_{i}^{T} \underline{x} + w_{io}$$

$$\underline{w}_{i} = \Sigma^{-1} \underline{\mu}_{i}$$

$$w_{i0} = \ln P(\omega_{i}) - \frac{1}{2} \underline{\mu}_{i}^{T} \Sigma^{-1} \underline{\mu}_{i}$$

Discriminant functions are LINEAR.

> Let in addition:

•
$$\Sigma = \sigma^2 I$$
. Then

$$g_i(\underline{x}) = \frac{1}{\sigma^2} \underline{\mu}_i^T \underline{x} + w_{i0}$$

•
$$g_{ij}(\underline{x}) = g_i(\underline{x}) - g_j(\underline{x}) = 0$$

= $\underline{w}^T (\underline{x} - \underline{x}_o)$

•
$$\underline{w} = \underline{\mu}_i - \underline{\mu}_j$$
,

•
$$\underline{x}_o = \frac{1}{2} (\underline{\mu}_i + \underline{\mu}_j) - \sigma^2 \ln \frac{P(\omega_i)}{P(\omega_j)} \frac{\underline{\mu}_i - \underline{\mu}_j}{\left\|\underline{\mu}_i - \underline{\mu}_j\right\|^2}$$

• If $p(\omega_1) \neq p(\omega_2)$, the linear classifier moves towards the class with the smaller probability

33

 \triangleright Nondiagonal: $\Sigma \neq \sigma^2 I$

•
$$g_{ij}(\underline{x}) = \underline{w}^T(\underline{x} - \underline{x}_0) = 0$$

•
$$\underline{w} = \Sigma^{-1} (\underline{\mu}_i - \underline{\mu}_i)$$

•
$$\underline{w} = \Sigma^{-1} (\underline{\mu}_i - \underline{\mu}_j)$$

• $\underline{x}_0 = \frac{1}{2} (\underline{\mu}_i + \underline{\mu}_j) - \ell n (\frac{P(\omega_i)}{P(\omega_j)}) \frac{\underline{\mu}_i - \underline{\mu}_j}{\|\underline{\mu}_i - \underline{\mu}_j\|_{\Sigma^{-1}}}$

where

$$\left\|\underline{x}\right\|_{\Sigma^{-1}} \equiv \left(\underline{x}^T \Sigma^{-1} \underline{x}\right)^{\frac{1}{2}}$$

➤ Decision hyperplane

not normal to $\underline{\mu}_i - \underline{\mu}_j$ normal to $\Sigma^{-1}(\underline{\mu}_i - \underline{\mu}_j)$

Minimum Distance Classifiers

- $P(\omega_i) = \frac{1}{M}$ equiprobable
- $g_i(\underline{x}) = -\frac{1}{2} (\underline{x} \underline{\mu}_i)^T \Sigma^{-1} (\underline{x} \underline{\mu}_i)$
- $\Sigma = \sigma^2 I$: Assign $\underline{x} \to \omega_i$:

Euclidean Distance: $d_E \equiv \left\| \underline{x} - \underline{\mu}_i \right\|$ smaller

> $\Sigma \neq \sigma^2 I$: Assign $\underline{x} \to \omega_i$:

Mahalanobis Distance: $d_m = ((\underline{x} - \underline{\mu}_i)^T \Sigma^{-1} (\underline{x} - \underline{\mu}_i))^{\frac{1}{2}}$ smaller

❖ Example:

Given $\omega_1, \omega_2 : P(\omega_1) = P(\omega_2)$ and $p(\underline{x}|\omega_1) = N(\underline{\mu}_1, \Sigma)$,

$$p(\underline{x}|\omega_2) = N(\underline{\mu}_2, \Sigma), \ \underline{\mu}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \underline{\mu}_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 1.1 & 0.3 \\ 0.3 & 1.9 \end{bmatrix}$$

classify the vector $\underline{x} = \begin{bmatrix} 1.0 \\ 2.2 \end{bmatrix}$ using Bayesian classification:

- $\bullet \ \Sigma^{-1} = \begin{bmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{bmatrix}$
 - Compute Mahalanobis d_m from μ_1, μ_2 : $d_{m,1}^2 = \begin{bmatrix} 1.0, & 2.2 \end{bmatrix}$ $\Sigma^{-1} \begin{bmatrix} 1.0 \\ 2.2 \end{bmatrix} = 2.952, d_{m,2}^2 = \begin{bmatrix} -2.0, & -0.8 \end{bmatrix} \Sigma^{-1} \begin{bmatrix} -2.0 \\ -0.8 \end{bmatrix} = 3.672$
- Classify $\underline{x} \rightarrow \omega_1$. Observe that $d_{E,2} < d_{E,1}$