# Group Theory Notes

Leon Lee

September 23, 2024

## Contents

| 1 | Recapping from previous courses |                                   |   |
|---|---------------------------------|-----------------------------------|---|
|   | 1.1                             | Groups, Subgroups, Cosets, oh my! | 3 |
|   |                                 | 1.1.2 something                   | 5 |
|   | 1.2                             | Group Homomorphisms               | 7 |

## 1 Recapping from previous courses

## 1.1 Groups, Subgroups, Cosets, oh my!

## Definition 1.1.1: Group

A **group** consists of a set G together with a function  $G \times G \to G$  which maps an ordered pair  $(g,h) \in G \times G$  to an element  $g*h \in G$ . The following axioms must be satisfied:

- 1. Associativity: (g \* h) \* k = g \* (h \* k) for each triple  $(g, h, k) \in G \times G \times G$
- 2. **Identity**: There is an element  $e \in G$  s.t. e \* g = g = g \* e for each element  $g \in G$
- 3. **Inverse**: To each element  $g \in G$  there is an element  $h \in G$  s.t. gh = e = hg

Every single course seems to have its own definition for a group, this one is a bit more compact than others. FPM had the **closure** axiom, but that is satisfied by the definition of the function  $G \times G \to G$ 

Note on notation: Usually just write gh instead of g \* h. Additionally  $g^{-1}$  is the inverse of g

## Definition 1.3.1: Subgroups

If H is a nonempty subset of G, then H is a **subgroup** provided that

- 1.  $hk \in H$  for all  $h, k \in H$
- 2.  $h^{-1} \in H$  for each  $h \in H$

Alternatively, we can say "H is closed under the group operation"

#### – Notation -

- $H \leq G$  means H is a subgroup of G, whereas  $H \subseteq G$  means H is a subset of G.
- H < G means that H is a subgroup of G and also  $H \neq G$ .
- A subgroup is **proper** if  $H \neq G$
- A subgroup is **non-trivial** if  $H \neq \{e\}$

**Note:**  $e \in H$  follows from the definition, and associativity follows from the fact that G is a group. Any subgroup H of G is a group using the same product as G

## Definition 1.3.6: Cosets

Let  $H \leq G$  and let  $g \in G$ . Then the **left coset of** H **determined by** g is the set  $gH := \{gh : h \in H\}$ .  $Hg := \{hg : h \in H\}$  is the **right coset of** H **determined by** g

#### ——— Notation -

- The set of left cosets of H is denoted G/H, the set of right cosets is denoted  $H\backslash G$ .
- The number of elements in a group G is denoted by #G or |G|, and is known as the **order** of G. We will use |G| in this course.
- The number of left cosets of a subgroup H of G is the **index** of H in G and is denoted by |G:H| or [G:H] (That is, [G:H]=|G/H|). We will use [G:H] in this course.

#### Theorem 1.1.1: Coset Lemmas

If H if finite, |gH| = |H|If  $g_1H \cap g_2H \neq \emptyset$ , then  $g_1H = g_2H$ 

## Theorem 1.3.8: Lagrange's Theorem

Let H be a subgroup of a finite group G. Then

$$|G| = [G:H] \cdot |H|$$

## Consequences and Results

- The order of a subgroup must divide the order of the group, e.g. A group of order 12 cannot have a subgroup of order 8
- The converse of Lagrange's Theorem is false, e.g. there is a group of order 12 that doesn't have a subgroup of order 6

**Example**: If  $G = S_3$  and  $H = \{e, (12)\}$ , what are the left cosets of H?

$$H = eH = \{e, (12)\} \quad \{(23), (132)\} \quad \{(13), (123)\}$$

**Example**: If  $H\triangle G$  then the left cosets are right cosets

Proof.

$$gH = \{gh : h \in H\} = \{(ghg^{-1})g : h \in H\} \subseteq Hg$$

#### Theorem 1.3.9: Cauchy's Theorem

If G is a finite group and p is a prime that divides the order of G, then G has a subgroup of order p

#### Definition 1.3.10: Order of an element

Let  $g \in G$ . The **order** of g is the least positive integer such that  $g^n = g$  or  $\infty$  if such n does not exist. We write the order of g as o(g). Note that  $o(g) = |\langle g \rangle|$ .

It thus follows from Lagrange's Theorem that the order of an element of G must divide |G|, since if o(g) = n then  $\langle g \rangle = \{g, g^2, \dots, g^n = e\}$  is a subgroup of G. We also have:

Corollary 1.3.11: If |G| is prime, then G is cyclic

#### Example A: Examples of Groups and Subgroups

- $\mathbb{Z}/n$  under addition, where  $a * b = a + b \mod n$
- $(\mathbb{R}\setminus\{0\},\times)$ , or  $K\setminus\{0\}$  for any field K
- Alternating group:  $A_n \subset S_n$  permutations from an even number of transpositions?
- 1.2.1  $S_n$ , the *n*-th symmetric group is the group of permutations of  $\{1, 2, \ldots, n\}$ . The

group operation is composition of functions

- 1.2.6 A group (G, \*) is **abelian** if g \* h = h \* g for all  $g, h \in G$ 
  - Let F be a field
    - The general linear group GL(n,F) is the set of all invertible  $n \times n$  matrices
    - The **special linear group** SL(n,F) is the set of all invertible  $n \times n$  matrices with determinant equal to 1
- 1.3.5 Let G be a group and let  $g \in G$ . Then  $\langle g \rangle := \{g^n : n \in \mathbb{Z}\}$  is a subgroup of G. It is called the **subgroup generated by** g. If  $G = \langle g \rangle$  for some  $g \in G$ , then G is referred to as **cyclic**
- 1.3.7 A subgroup  $H \leq G$  is **normal** if gH = Hg for all  $g \in G$ . In this case we write  $H \subseteq G$

#### 1.1.2 something...

Let  $H \leq G$  (H a subgroup of G). TFAE

$$1. \ \forall g \in G, h \in H, \, ghg^{-1} \in H$$

2. 
$$gHg^{-1} = H, \forall g \in G$$

3. 
$$gH = Hg, \forall g \in G$$

*Proof.* Show conditions imply each other

- $(2) \implies (1)$  immediately
- (1) says that  $qHq^{-1} \subseteq H, \forall q \in G$

WTS:  $gHg^{-1} \supseteq H$ 

$$H = g^{-1}gHg^{-1}g \subseteq g^{-1}Hg, \forall g \in G$$

replacing g with  $g^{-1}$ :

$$H \subseteq gHg^{-1}, \forall g \in G$$

- (2)  $\implies$  (3): Multiply by g on right
  - (3)  $\implies$  (2): Multiply by  $g^{-1}$  on left

#### Theorem 1.1.3: lma

If  $\phi: G \to H$  is a group homomorphism, then  $\ker \phi \triangle G$ 

*Proof.* If  $\phi(x) = e$ , then

$$\phi(gxg^{-1}) = \phi(g)\phi(x)\phi(g) = \phi(g)e\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = e$$

#### Theorem 1.1.4

If  $N \leq G$ , then  $N \triangleleft G$  iff  $\exists \phi : G \rightarrow H$  s.t.  $N = \ker \phi$ 

*Proof.* ker  $\phi$  is normal by the above lemma Conversely, given  $N \triangleleft G$ , we can form **factor group** G/NG/N is the set of left cosets, with:

- Identity N
- Inverses  $(gN)^{-1} : g^{-1}N$
- Multiplication:  $(g_1N) \times (g_2N) := g_1g_2N$

Check that the group is well defined

1. If gN = g'N, then g' = gx for  $x \in N$ 

$$(g'N)^{-1} = (g')^{-1}N = (gx)^{-1}N = x^{-1}g^{-1}N$$

As N is normal,  $gx^{-1}g^{-1} \in N$ 

$$\implies x^{-1}g^{-1}N = g^{-1}(gx^{-1}g^{-1})N = g^{-1}N, \text{ as } gx^{-1}g^{-1} \in N$$

2. If  $g_1N = g_1'N$  and  $g_2N = g_2'N$ , then  $g_1' = g_1x$  and  $g_2' = g_2y$  for  $x, y \in N$ 

$$(g_1'N) \times (g_2'N) = g_1'g_2'N = g_1xg_2yN$$

$$yN = N, \quad \text{so} \quad g_1 x g_2 y_1 N = g_1 x g_2 N$$

N normal, so  $g_2^{-1}xg_2\in N\implies g_1g_2(g_2^{-1}xg_2)N=g_1g_2N$ 

then prove the group axioms lol

Define can:  $G \to G/N$ ,  $g \mapsto gN$ . This is a group homomorphism

$$can(g_1g_2) = g_1g_2N = (g_1N) * (g_2N) = can(g_1) * can(g_2)$$

Kernel of can

$$\ker(\text{can}) = \{g \in G : \text{can}(g) = N\} = \{g \in G : gN = N\} = N$$

**Example**: If  $G = \mathbb{Z}$ , (normal) subgroups are  $n\mathbb{Z} = \{ni : i \in \mathbb{Z}\}$ . What is  $\mathbb{Z}/n\mathbb{Z}$ ? Elements of  $\mathbb{Z}/n\mathbb{Z}$  are cosets,  $i + n\mathbb{Z}$  (fixed i), or  $\{x \in \mathbb{Z} : x \equiv i \mod n\}$  Group operation:  $(i + n\mathbb{Z}) * (j + n\mathbb{Z}) = i + j + n\mathbb{Z} = i + j \mod n$  soooo...  $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n$ , where elements are  $n\mathbb{Z}, 1 + n\mathbb{Z}, \ldots, n - 1 + n\mathbb{Z}$  lol!

6

## 1.2 Group Homomorphisms

## Definition 1.4.1: Group Homomorphism

Let G, H be groups. A function  $\phi: G \to H$  such that

$$\phi(ab) = \phi(a)\phi(b)$$

for all  $a, b \in G$  is a **group homomorphism** 

**Example**: If  $\phi$  is a group homomorphism then  $\phi(e) = e$ 

Proof.

$$\phi(e \cdot e) = \phi(e)\phi(e)$$

$$\implies \phi(e) = \phi(e)\phi(e)$$
multiply by  $\phi(e)^{-1}$   $e = \phi(e)^{-1}\phi(e)\phi(e) = \phi(e)$ 

**Example:** Show  $\phi(g^{-1}) = \phi(g)^{-1}$ 

Proof.

$$\begin{split} \phi(g \cdot g^{-1}) &= \phi(g)\phi(g^{-1}) \\ \phi(e) &= \phi(g)\phi(g^{-1}) \end{split}$$
 Multiply by  $\phi(g)^{-1}$   $\phi(g)^{-1}\phi(e) = \phi(g)^{-1}\phi(g)\phi(g^{-1}) \\ \phi(g)^{-1} &= \phi(g^{-1}) \end{split}$ 

## Example 1.4.2: Cyclic Group Homomorphisms

Let  $C_n$  be the **cyclic group of order** n. We can think of  $C_n$  as the set of rotations of an equilaterial n-gon. If g is a rotation of  $2\pi/n$  radians, then  $C_n = \{g, g^2, \dots, g^n = e\}$ . The group  $C_n$  is cyclic since all elements are powers of a single element g. Then

$$\phi: \mathbb{Z} \to C_n$$
$$a \mapsto q^a$$

is a group homomorphism. (proof in lecture notes)

## Definition 1.4.3: Group Isomorphism

If G and H are groups and  $\psi: G \to H$  is a bijective group homomorphism, we say that  $\psi$  is a **group isomorphism** and that G and H are **isomorphic** 

## Definition 1.4.5: Kernel of a Homomorphism

Let  $\phi: G \to H$  be a group homomorphism. The **kernel** of  $\phi$  is  $\{g \to G: \phi(g) = e\}$ 

## Definition 1.4.6: Automorphisms

Let G be a group. The st of all isomorphisms  $\phi: G \to G$  is also a group. It is called the **automorphism group of** G, and is written  $\operatorname{Aut}(G)$ . The group operation is composition of functions

**Example:** What is  $Aut(C_3)$ ?

Proof.

$$C_3 = \{e, r, r^{-1}\}$$

## Definition 1.4.8: Direct Product

Let G, H be groups. The **product** (or **direct product**)  $G \times H$  is a group, with group operation \* given by

$$(g,h)*(g',h') = (g*_G g',h*_G h')$$

Note: we usually just say that (g,h)\*(g',h')=(gg',hh')