

Challenge 2: Truth Tables

Convert the following Finite State Machine into a truth table. This FSM transitions between states based on input *i*, which can be 0 or 1. When constructing the truth table, encode the states in alphabetical order. (Version 1)

Inputs				Outputs			
s0	s1	s2	i	s*0	s*1	s*2	

Challenge 2: Truth Tables

Convert the following Finite State Machine into a truth table. This FSM transitions between states based on input *i*, which can be 0 or 1. When constructing the truth table, encode the states in alphabetical order. (Version 2)

Inputs				Outputs			
s0	s1	s2	i	s*0	s*1	s*2	

Challenge 2: Truth Tables

Convert the following Finite State Machine into a truth table. This FSM transitions between states based on input *i*, which can be 0 or 1. When constructing the truth table, encode the states in alphabetical order. Version 3

Inputs				Outputs			
s0	s1	s2	i	s*0	s*1	s*2	

Challenge 2 (V1):

*For the actual final, organize your inputs so that i is on the very left. Although, the main idea is that you organize your inputs like you're counting.

	Inp	uts	Outputs			
s0	s1	s2	i	s*0	s*1	s*2
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	1	0	1
0	0	1	1	1	0	0
0	1	0	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	1
1	0	1	1	0	1	1

Challenge 2 (V2):

*For the actual final, organize your inputs so that *i* is on the very left. Although, the main idea is that you organize your inputs like you're counting.

Inputs				Outputs			
s0	s1	s2	i	s*0	s*1	s*2	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	1	0	1	
0	0	1	1	1	0	0	
0	1	0	0	0	0	0	
0	1	0	1	0	1	0	
0	1	1	0	0	0	1	
0	1	1	1	1	0	0	
1	0	0	0	1	0	0	
1	0	0	1	0	1	0	
1	0	1	0	0	1	1	
1	0	1	1	0	1	1	

Challenge 2 (V3):

*For the actual final, organize your inputs so that *i* is on the very left. Although, the main idea is that you organize your inputs like you're counting.

Inputs				Outputs			
s0	s1	s2	i	s*0	s*1	s*2	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	1	0	1	
0	0	1	1	1	0	0	
0	1	0	0	0	0	0	
0	1	0	1	0	1	0	
0	1	1	0	0	1	1	
0	1	1	1	1	0	0	
1	0	0	0	1	0	0	
1	0	0	1	0	1	0	
1	0	1	0	0	1	1	
1	0	1	1	1	0	0	