

planetmath.org

Math for the people, by the people.

Frobenius theorem on linear determinant preservers

 ${\bf Canonical\ name} \quad {\bf Frobenius Theorem On Linear Determinant Preservers}$

Date of creation 2013-03-22 19:19:52 Last modified on 2013-03-22 19:19:52 Owner kammerer (26336) Last modified by kammerer (26336)

Numerical id 7

Author kammerer (26336)

Entry type Theorem Classification msc 15A04 Classification msc 15A15

 $Related\ topic \qquad Dieudonne Theorem On Linear Preservers Of The Singular Matrices$

Let \mathbb{F} be an arbitrary field. Consider $\mathcal{M}_n(\mathbb{F})$, the vector space of all $n \times n$ matrices over \mathbb{F} . Let $\mathcal{GL}_n(\mathbb{F})$ be the set of all nonsingular matrices $P \in \mathcal{M}_n(\mathbb{F})$.

Definition 1. A linear endomorphism $\varphi : \mathcal{M}_n(\mathbb{F}) \longrightarrow \mathcal{M}_n(\mathbb{F})$ is said to be in standard form, if either $\exists P, Q \in \mathcal{GL}_n(\mathbb{F}) \, \forall A \in \mathcal{M}_n(\mathbb{F}) : \varphi(A) = PAQ$ or $\exists P, Q \in \mathcal{GL}_n(\mathbb{F}) \, \forall A \in \mathcal{M}_n(\mathbb{F}) : \varphi(A) = PA^{\top}Q$.

The classical on linear preservers of the determinant function [?] reads as follows.

Theorem 2. If $\varphi : \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$ is a linear automorphism such that $\det(\varphi(A)) = \det(A)$ for all $A \in \mathcal{M}_n(\mathbb{C})$, then φ is in standard form with $\det(PQ) = 1$.

It is well known that the can be strengthened.

Theorem 3. Let \mathbb{F} be an arbitrary field and let $\varphi : \mathcal{M}_n(\mathbb{F}) \longrightarrow \mathcal{M}_n(\mathbb{F})$ be a linear endomorphism. Then the following conditions are equivalent:

- (i) $\det(\varphi(A)) = \det(A)$ for all $A \in \mathcal{M}_n(\mathbb{F})$,
- (ii) φ is in standard form with det(PQ) = 1.

The above strengthened version of the can be derived from the Dieudonné theorem on linear preservers of the singular matrices.

References

[GF] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber., Preuss. Akad. Wiss., Berlin, 1897 (994–1015).