

Separable DeepONet: A Scalable Framework for High-Dimensional Physics-Informed Neural Operators

Somdatta Goswami

Assistant Professor, Civil and Systems Engineering

November 2, 2024

Physics-based Models

Can represent the Processes of Nature

☐ Physics-based models are approximated viaODEs/PDEs

To model earthquake:
$$m \frac{d^2 u}{dt^2} + k \frac{du}{dt} + F_0 = 0$$

To model waves:
$$\frac{\partial^2 u}{\partial t^2} - v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

Computational Mechanics helps us simulate these equations.

Simulation of Orion Spacecraft Launch Abort System (NASA Ames)

Detailed flow around an Aircraft's landing gear (NASA Ames)

CFD Simulation of a Patient-Specific Intracranial Aneurysm

Challenges with Numerical Methods

- Require knowledge of conservation laws, and boundary conditions
- Time consuming and strenuous simulations.
- Difficulties in mesh generation.
- Solving inverse problems or discovering missing physics can be prohibitively expensive.

Develop Physics-based surrogate models for these systems to create a fast-to-evaluate alternative.

Surrogate Modeling Techniques

- Discretized Data
- Discretization dependent
- Queries on mesh
- Learning functions between vector spaces

PCA

Auto-encoders

K-PCA

Diffusion maps

Finite Dimensional

PINNs

Functional Data

Data-driven

- Discretization Invariant
- Continuous quantities
- Learning operators between function spaces

f-PCA DeepONet LNO
F-RKHS FNO WNO

Infinite Dimensional

PI-DeepONet

PINO

Operator Learning Framework

Input-output map

$$\Phi: \mathcal{U} \to \mathcal{S}$$

Data $\{\mathcal{U}_n, \mathcal{S}_n\}_{n=1}^N$ and/or Physics

$$S_n = \Phi(\mathcal{F}_n)$$
 , $\mathcal{F}_n \sim \mu i.i.d$

Output function space

Operator learning

$$\Psi:\times\Theta\to\mathcal{S}$$
 such that $\Psi(.,\theta^*)\approx\Phi$

Training
$$\theta^* = \operatorname{argmin}_{\theta} l(\{\mathcal{U}_n, \Psi(\mathcal{S}_n, \theta)\})$$

Deep Operator Network (DeepONet)

- Generalized Universal Approximation Theorem for Operator [Chen '95, Lu et al. '19]
- **Branch net**: Input $\{u(x_i)\}_{i=1}^m$, output: $[b_1, b_2, ..., b_p]^T \in \mathbb{R}^p$
- **Trunk net**: Input y, output: $[t_1, t_2, ..., t_n]^T \in \mathbb{R}^p$
- Input u is evaluated at the fixed locations $\{y_i\}_{i=1}^m$

Data-Driven Training of DeepONet

 $abla ig(K(x)
abla u(x)ig) = 1 \ u(x) = 0 \ \forall \ x \in \partial \Omega$ Nonlinear operator $G: \mathcal{K} \to \mathcal{U}$ Neural operator $G_{\theta}: \mathcal{K} \to \mathcal{U}$, $\theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

Training Dataset

S.No	Input field data	Output field data			
1	$k^1(x_1)$, $k^1(x_2)$, $\cdots \cdots$, $k^1(x_m)$	$\mathbf{u}^{1}(x_{1}), \mathbf{u}^{1}(x_{2}), \cdots \cdots , \mathbf{u}^{1}(x_{n})$			
2	$k^2(x_1)$, $k^2(x_2)$, \cdots $\cdot \cdot \cdot$, $k^2(x_m)$	$u^2(x_1)$, $u^2(x_2)$, $\cdots \cdots$, $u^2(x_n)$			
N	$k^{\mathrm{N}}(x_1), k^{\mathrm{N}}(x_2), \dots, k^{\mathrm{N}}(x_m)$	$u^{N}(x_1), u^{N}(x_2), \dots \dots, u^{N}(x_n)$			

Extremely data-hungry.

Physics-Informed DeepONet

- Wang et.al "Learning the solution operator of parametric partial differential equations with physics-informed DeepONets" Science Advances, 2021
- Goswami et al. "A physics-informed variational DeepONet for brittle fracture." CMAME, 2022.

Frameworks for $\nabla(K(x)\nabla u(x)) = 1$ u(x) = 0 \forall $x \in \partial\Omega$ and x = (x, y)

Derivatives

$$\frac{\partial \mathcal{L}}{\partial \theta}$$

$$\frac{\partial \mathcal{L}}{\partial \theta}$$
, $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x^2}$, ...

Reverse-mode autodiff

$$J = [bs * n, bs * n]$$

Shortcomings

1

Training is extremely expensive. So, never made it to common practice.

Our Proposed framework

Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning

Luis Mandl, Somdatta Goswami, Lena Lambers, and Tim Ricken. "Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning." *arXiv preprint arXiv:2407.15887* (2024).

Vanilla – Physics Informed DeepONet

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances, 7(40), October 2021.

Introducing Separation of Variables

Vanilla Trunk network

Separated Trunk network

Introduced in PINNs: Cho, J., Nam, S., Yang, H., Yun, S. B., Hong, Y., & Park, E. (2022). Separable PINN: Mitigating the curse of dimensionality in physics-informed neural networks. ArXiv preprint - 2211.08761.

Separable DeepONet Framework

Numerical Examples

Problem	Model		$egin{aligned} \mathbf{Relative} \ \mathcal{L}_2 \ \mathbf{error} \end{aligned}$	$egin{aligned} \mathbf{Run\text{-}time} \\ \mathrm{(ms/iter.)} \end{aligned}$
Burgers Equation	Vanilla Separable (Ours)	2	5.1e-2 $6.2e-2$	136.6 3.64
Consolidation Biot's Theory	Vanilla Separable (Ours)	2	7.7e-2 7.9e-2	169.43 3.68
Parameterized Heat Equation	Vanilla Separable (Ours)	4	- 7.7 <i>e</i> -2	10,416.7 91.73

Burgers' Equation

$$\frac{\partial s(x,t)}{\partial t} + s \frac{\partial s(x,t)}{\partial x} - \nu \frac{\partial^2 s(x,t)}{\partial x^2} = 0,$$

$$s(0,t) = s(1,t),$$

$$\frac{\partial s(0,t)}{\partial x} = \frac{\partial s(1,t)}{\partial x},$$

$$s(x,0) = u(x), \quad x \in [0,1]$$

Model	Branch	Trunk	p	r	Parameters	\mathcal{L}_2 rel. err.	Runtime [s]	Runtime improvment
Vanilla PI-DeepONet	6×[100]	6×[100]	100	-	131,701	5.14e-2	6,829.2	-
Sep-PI-DeepONet	$ \bar{6} \times [\bar{1}0\bar{0}] \\ 6 \times [100] \\ 6 \times [100] $	$ \begin{array}{c} \bar{6} \times [100] \\ 6 \times [100] \\ 6 \times [50] \end{array} $	50 20 20	$ \begin{array}{r} -\bar{50} \\ 20 \\ 20 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ar{6.24e-2} \ 6.04e-2 \ 6.46e-2$	182.1 197.8 197.0	97,33% $97,10%$ $97,12%$

Biot's Consolidation

$$(\lambda + 2\mu) \frac{\partial^2 u(z,t)}{\partial z^2} - \frac{\partial p(z,t)}{\partial z} = 0$$

$$\frac{\partial^2 u(z,t)}{\partial t \partial z} - \frac{k}{\rho g} \frac{\partial^2 \tilde{p}(z,t)}{\partial z^2} = 0,$$

$$u(z,0) = 0, \qquad p(0,t) = 0,$$

$$p(z,0) = f(0), \qquad u(L,t) = 0,$$

$$\sigma(0,t) = -f(t), \qquad \frac{\partial p(L,t)}{\partial z} = 0,$$

Key Takeaways

- These methods have a niche in real world problems, where partially physics in known and some measurements of quantities of interest are available.
- Separable architecture introduces the possibility of employing physics in neural operators.
- Extending this framework for non-separable differential equation would be a part of our future work.

Acknowledgement

Lena Lambers

Tim Ricken

U. of Stuttgart, Germany

For our other projects, please visit the group

Thank you!