Tutorial 1

Systems of Linear Equations

. Find the values of k for which the equations

have a non-trivial solution.

Use Gaussian elimination and back substitution to solve the following system of linear equations:

$$\begin{array}{rcl} 2x + 3y + 4z & = & 1 \\ x + 2y + 3z & = & 1 \\ x + 4y + 5z & = & 2 \end{array}$$

3 Determine the values of a for which the following linear system has (i) no solutions, (ii) infinite solutions, (iii) exactly one solution:

$$\begin{array}{rcl}
x + 2y - 3z & = & 4 \\
3x - y + 5z & = & 2 \\
4x + y + (a^2 - 14)z & = & a + 2
\end{array}$$

4. Let $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$. Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, and let $W = \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$. Is \mathbf{b} in W? How many vectors are in W?

Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{u}$ and \mathbf{v} be vectors in \mathbb{R}^n . Suppose the vectors \mathbf{u} and \mathbf{v} are in $\mathrm{Span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v}$ is also in $\mathrm{Span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

How many rows of A contain a pivot position? Does the equation $A\mathbf{x} = \mathbf{b}$ have a solution for each \mathbf{b} in \mathbb{R}^4 ?

b. Do the columns of B span \mathbb{R}^4 ? Does the equation $B\mathbf{x} = \mathbf{y}$ have a solution for each \mathbf{y} in \mathbb{R}^4 ?

1

- c. Can each vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix A? Do the columns of A span \mathbb{R}^4 ?
- d. Can every vector in \mathbb{R}^4 be written as a linear combination of the columns of the matrix B? Do the columns of B span \mathbb{R}^3 ?
- 7. Construct a 2×2 matrix A such that the solution set of the equation $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (4, 1) and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^2 such that the solution set of $A\mathbf{x} = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$.
- 8. Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{y}$ does *not* have a solution. Does there exist a vector \mathbf{z} in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{z}$ has a unique solution? Why?
- / 9. Find the value of h for which the vectors $\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$ are linearly dependent.
 - 16. Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- 11. Find the standard matrix of the linear transformation
 - a. $T: \mathbb{R}^2 \to \mathbb{R}^2$, which first rotates points through $-3\pi/4$ radian (clockwise) and then reflects points through the horizontal x-axis.
 - b $T: \mathbb{R}^2 \to \mathbb{R}^2$, which first reflects points through the horizontal x-axis and then reflects points through the line y=x. Show that the transformation is merely a rotation about the origin. What is the angle of rotation?

Answers

- 1. k = 1
- λ . x = -1/2, y = 0, z = 1/2
- 3. (i) a = -4 (ii) a = +4 (iii) $a \neq \pm 4$
- 4. Yes, Infinite
- 5.
- 6. a. 3, No b. No, No c. No, No d.No, No
- 7. One possibility for $A = \begin{bmatrix} 1 & -4 \\ 1 & -4 \end{bmatrix}$. For **b**, take any vector that is not a linear combination of the columns of A.

8. No

9. All values of
$$h$$
.

10. $\begin{bmatrix} 13 \\ 7, \end{bmatrix}$, $\begin{bmatrix} 2x_1 - x_2 \\ 5x_1 + 6x_2 \end{bmatrix}$

11. a.
$$\begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
, b. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $\pi/2$ radians

End