H5: inner products and orthogonality	
	5.1 prologue: bilinear and sesquilinear forms
def: bilinear map	For three vector spaces V_1 , V_2 , V_3 over a common field $\mathbb F$
	> a bilinear map is a map B: $V_1 \times V_2 \rightarrow V_3$ that is linear in both first and second argument:
	$\forall a,b \in \mathbb{F}, v_1,w_1 \in V_1 \text{ and } v_2,w_2 \in V_2$, it satisfies
	$B(av_1 + bw_1, v_2) = aB(v_1, v_2) + bB(w_1, v_2),$ $B(v_1, av_2 + bw_2) = aB(v_1, v_2) + bB(v_1, w_2).$
def: bilinear form	bilinear form on a vector space V over a field ${\mathbb F}$
	= a bilinear map B: $V \times V \rightarrow \mathbb{F}$
def: symmetric bilinear map	For a bilinear form B on a vector space V For all v,w∈V
	> B is symmetric if B(v,w) = B(w,v)
def: antisymmetric bilinear map	For a bilinear form B on a vector space V For all v,w∈V
	> B is symmetric if B(v,w) = -B(w,v)
vector space basis	We can choose a basis $B_V = \{e_1,,e_n\}$ for a finite-dimensional vector space such that: and completely characterise the bilinear form as
	$B(v, w) = B(v^i e_i, w^j e_j) = v^i B(e_i, e_j) w^j = v^i B_{ij} w^j = v^T B w$ (5.1)
	in terms of the coefficients $B_{ij} = B(e_i, e_j) \in \mathbb{F}$, which we have organised in a matrix $B \in \mathbb{F}^{n \times n}$.
bilinear decomposition	Any bilinear form B can be decomposed in a symm. B _S and antisymm. B _A :
	$B(v,w) = \underbrace{\frac{1}{2} (B(v,w) + B(w,v))}_{B_{S}(v,w)} + \underbrace{\frac{1}{2} (B(v,w) - B(w,v))}_{B_{A}(v,w)}$
	$B_{\rm S}(v,w)$ $B_{\rm A}(v,w)$
def: quadratic form	A quadratic form on a real vector space V is a map $q:V \to \mathbb{R}$ such that:
	$B(v, w) = \frac{1}{2} (q(v + w) - q(v) - q(w))$
	is a bilinear form
	> it implies that $q(av) = a^2q(v)$
def: associated bilinear form	= the bilinear form B in the definition of the quadratic form > by definition symmetric²
def: sesquilinear form C	For a vector space V over \mathbb{F} For any a,b $\in \mathbb{F}$ and u,v,w $\in \mathbb{V}$
	> the sesquilinear form C is a map B: V x V $\to \mathbb{F}$ that is: - linear in second argument - antilinear in first argument
	• $C(au + bv, w) = \overline{a}C(u, w) + \overline{b}C(v, w)$
	C(u,av+bw) = aC(u,v) + bC(u,w)
def: Hermitian	= a sesquilinear form C on the vector space V for which for all v,w∈V:
	$C(v,w) = \overline{C(w,v)}$
def: anti-Hermitian	= a sesquilinear form C on the vector space V for which for all v,w∈V:
	$C(v,w) = -\overline{C(w,v)}$

def: matrix congruence	For V an n-dimensional vector space over \mathbb{F} , with a basis and sesquilinear form C
	> the matrix congruence is the transformation behaviour of the matrix C with respect to a basis transform $T \in GL(n, \mathbb{F})$
	ie: $\tilde{C} = T^{-H}CT^{-1}$
def: degenerate form	For C a sesquilinear form on a vector space V For all w∈V
	> C is degenerate if there exists a nonzero v∈V such that C(w,v)=0
def:	For C a Hermitian sesquilinear form on the vector space V For all nonzero vectors v∈V
positive definite	= C(v,v)>0
positive semidefinite	= C(v,v)≥0
indefinite	= C(v,v) can be both pos. or neg.
prop: degenerate form	If the sesquilinear form C is positive semidefinite but not positive definite it is degenerate
	5.2 inner product spaces
def: inner product	inner product on a real or complex vector space V = positive Hermitian sesquilinear VxV $\rightarrow \mathbb{F}$
	not: $\langle v,w \rangle$
properties of inner product	• Linearity in the second argument: $\langle u,av+bw\rangle=a\langle u,v\rangle+b\langle u,w\rangle,\forall u,v,w\in V$ and $\forall a,b\in\mathbb{F}$
	$ullet$ Hermiticity: $\langle v,w angle=\overline{\langle w,v angle}$, $orall v,w\in V$
	 Antilinearity in the first argument (this is actually implied by combining the previous two properties)
	• Positive definiteness: $\langle v, v \rangle > 0$ for all $v \neq o$.
inner product space	= vector space with an inner product $(V, \langle \cdot, \cdot \rangle)$
Euclidean space	= inner product space for which \mathbb{F} = \mathbb{R}
Gram matrix	For a chosen basis $B_V = \{e_1,,e_n\}$
	> the matrix representation of the inner product is denoted as g with:
	$g_{ij}=\overline{g_{ji}}=\langle e_i,e_j\rangle$
5.2.1 Cauchy-Schwarz inequality	y and its consequences
Theorem: Cauchy-Schwarz	$\left \left\langle v,w\right angle ight ^{2}\leq\left\langle v,v\right angle \left\langle w,w ight angle$
	> inequality becomes equal if and only if v and w are linearly dependent

	5.3 orthogonality and unitarity
5.3.1 orthogonality and orthonorm	ality
def: orthogonal	For two vectors v,w ∈V
	> these two are orthogonal if: v⊥w
	$\langle v,w angle = 0.$
	two subsets A,B can be orthogonal if:
	$\langle v, w \rangle = 0$ for any $v \in A$ and $w \in B$.
def: normalized	A vector v is normalized if $\ v\ = 1$
def: orthogonal set	For a set of vectors {v _i ; i∈I} with I finite, countable infinite or uncountable infinite
	> this set is orthogonal if: - v _i ≠ 0
	$\langle v_i, v_j \rangle = 0 ext{ for all } i eq j \in I.$
def: orthonormal set	= orthogonal set where for all v _i :
	$ v_i = 1$ for all $i \in I$
prop: orth. vectors lin. ind.	A set of orthogonal vectors is linearly independent
> prop: amount of orthogonal vect.	In a finite dimensional V, we can construct at most n=dim(V) orthogonal vectors
th: Pythagoras	Given a finite set of orthogonal vectors {v _i ; i=1,,n}⊆V, then:
	$\left\ \sum_{i=1}^n v_i \right\ ^2 = \sum_{i=1}^n \ v_i\ ^2$
5.3.2 orthogonal complements and	orthogonal projections
def: orthogonal complement	For a subset $S\subseteq V$ of an inner product space (V, \langle , \rangle)
	> define S [⊥] as:
	$S^{\perp} = \{ v \in V \langle w, v \rangle = 0 \text{ for all } w \in S \}.$
prop: orth. compl. closed subspace	The orthogonal complement S ¹ is a closed subspace of V
prop: S and FS	For a subset S⊆V, it holds:
	$S^{\perp}=(\mathbb{F}S)^{\perp}=(\overline{\mathbb{F}S})^{\perp}.$
prop: intersection of S ¹	For a subset S⊆V, it holds that:
	$S\cap S^\perp$ is $\{o\}$ or empty
th: projection	For a closed subspace W≼V of a Hilbert space V
	> then: • For any vector $v \in V$, there exists a unique closest vector $w \in W$ such that
	$\ v-w\ =\inf_{v'\in W}\ v-w'\ $.
	$w \in W$
	$ullet$ The vector $w\in W$ closest to v is the unique element in W satisfying $v-w\in W^\perp.$
	The vector $w \in W$ is known as the orthogonal projection of v onto W .
prop: orthogonal direct sum	For W a closed subspace of a Hilbert space V
	> then V = $W \oplus W^{\perp}$ and this orthogonal direct sum decomposition is unique

def: orthogonal projector	For a Hilbert space V
	> this is a linear operator ^PEEnd(V) which satisfies:
	$\hat{P}^2 = \hat{P}, \qquad \qquad \langle \hat{P}v,w angle = \langle v,\hat{P}w angle, orall v,w \in V.$
lemma: norm of ^P	Lemma 5.15. Any nonzero orthogonal projector \hat{P} on a Hilbert space V has operator norm $ P = 1$. It is thus bounded and continuous.
theory: im and ker of ^P 5.16	For a Hilbert space V For W a closed subspace such that V=W⊕W [⊥]
	> then ^P _W the orthogonal projector
> theory: vice versa of 5.16	For an orthogonal projector ^P _w
	> this gives rise to an orthogonal direct sum decomposition:
	$V = \operatorname{im}(\hat{P}) \oplus \ker(\hat{P})$, with thus $\operatorname{im}(\hat{P}) = \ker(\hat{P})^{\perp}$ and both are closed subspaces of V .
prop: S ¹	For any subset S of a Hilbert space V, it holds that $V = S^{\perp} \bigoplus S^{\perp \perp}$ where $S^{\perp \perp} = (S^{\perp})^{\perp}$
prop: W ^{⊥⊥}	For any closed subspace W of a Hilbert space V , $W^{\perp \perp} = W$.
prop: $S^{\perp\perp} = \overline{\mathbb{F}S}$.	For any subset S of a Hilbert space V, it holds that $S^{\perp \perp} = \overline{\mathbb{F}S}$.
prop: S [⊥] = {0}	for S a complete set of a Hilbert space V > span of S is dense in V
	> then: thus $\overline{\mathbb{F}S} = V$, then $S^{\perp} = \{o\}$.
5.3.3 orthonormal basis for Hilbe	ert spaces
lemma: orthogonal proj. of v	For an infinite-dimensional Hilbert space V For an orthonormal sequence $(e_i)_{i\in\mathbb{N}_0}$. For a vector $\mathbf{v}\in\mathbf{V}$
	> the orthogonal projection of v onto subspace $W_n = \mathbb{F}\{e_i; i = 1,,n\}$ is given by:
	$v_n = \sum_{i=1}^n e_i \langle e_i, v \rangle.$
lemma: Bessel's inequality	For an infinite-dimensional Hilbert space V For an orthonormal sequence $(e_i)_{i\in\mathbb{N}_0}$. For a vector $\mathbf{v}\in\mathbf{V}$ and any $\mathbf{n}\in\mathbb{N}_0$
	$\sum_{i=1}^{n} \left \langle e_i, v \rangle \right ^2 \le \left\ v \right\ ^2.$
	so that in particular the series $\sum_{i=1}^{+\infty} \langle e_i, v \rangle ^2$ converges to value upper bounded by $ v ^2$.
th: expansion theorem	For V a Hilbert space for S a complete orthonormal sequence $S=(e_i)_{i\in\mathbb{N}_0}$
	> then $(e_i)_{i\in\mathbb{N}_0}$ is a Schauder basis and any vector $v\in V$ can be expanded
	$v = \sum_{i=1}^{+\infty} \langle e_i, v \rangle e_i.$
prop: Plancherel's identity	Bessel's inequality becomes an equality:
	$\left\ v ight\ ^2 = \left\langle v,v ight angle = \sum_{i=1}^{+\infty} \left \left\langle e_i,v ight angle ight ^2 = \sum_{i=1}^{+\infty} \left\langle v,e_i ight angle \left\langle e_i,v ight angle$
prop: Perseval's identity	more general, Plancheral's identity becomes:
	$\langle v,w angle = \sum_{i=1}^{+\infty} \left\langle v,e_i ight angle \left\langle e_i,w ight angle$
	I

5.3.4 Gram-Schmidt orthonormaliz	ation
def: Gram-Schmidt process	For a countable set of linearly independent vectors $S=\{v_1,v_2,\}$ For these vectors in an inner product space $(V,\langle\;,\;\rangle)$.
	> the Gram-Schmidt process is a strategy to construct an orthonormal sequence $(q_1,q_2,)$ that has the same linear span as S.
	$w_1=v_1$ $q_1=w_1/\left\ w_1 ight\ $
	$w_2 = v_2 - \langle q_1, v_2 \rangle q_1$ $q_2 = w_2 / \ w_2\ $
	$w_k = v_k - \sum_{j=1}^{k-1} \langle q_j, v_k \rangle q_j \qquad q_k = w_k / \ w_k\ $
def OD december with an	the decree of making of making of the form V OD
def: QR decomposition	= the decomposition of a matrix V∈F ^{mxn} with m≥n in the form V=QR with Q∈F ^{mxn} satisfying Q ^H Q = I _n and R∈F ^{mxn} an upper-triangle matrix
	> find the coefficients via:
	$R^{j}_{k} = \left\langle oldsymbol{q}_{j}, oldsymbol{v}_{k} ight angle = \left\lVert oldsymbol{v}_{k} - \sum_{j=1}^{k-1} R^{j}_{k} oldsymbol{q}_{j} ight Vert_{j},$
	5.4 linear functionals and the duality of Hilbert space
prop: inner prod. in Hilbert space	On a Hilbert space V, the inner product structure defines a canonical injective antilinear map $V \to V^* : v \mapsto \chi_v$ defined via the action:
	$\chi_v(w) = \langle v, w angle$, $\qquad orall w \in V.$
	Furthermore, the resulting linear functional χ_v is continuous and thus bounded.
5.4.2 Riesz representation theorem	1
th: Riesz representation theorem	every bounded linear functional ς on Hilbert space V is uniquely associated with a vector $v_\varsigma \in V$ such that:
	$\xi[w] = \langle v_{\xi}, w \rangle$ for all $w \in W$.
	5.5 bounded linear maps in Hilbert spaces
5.5.1 preliminaries	
Induced norm	For the space of bounded linear maps between Hilbert spaces:
	$(V,\langle\;,\;\rangle_V=\langle\;,\;\rangle) \text{ and } (W,\langle\;,\;\rangle_W),$ > We can reformulate the induced norm:
	> we can reformulate the induced norm: $\ \hat{A}\ = \sup_{\substack{v \in V \\ v \neq o}} \frac{\ \hat{A}v\ _W}{\ v\ _V} = \sup_{\substack{v \in V \\ \ v\ _V = 1}} \ \hat{A}v\ _W$
	$= \sup_{\substack{v \in V, w \in W \\ v \neq o, w \neq o}} \frac{\left \left\langle w, \hat{A}v \right\rangle_{W}\right }{\left\ w\right\ _{W} \left\ v\right\ _{V}} = \sup_{\substack{v \in V, w \in V \\ \left\ v\right\ _{V} = 1, \left\ w\right\ _{W} = 1}} \left \left\langle w, \hat{A}v \right\rangle_{W}\right .$

5.5.2 adjoint of a linear map	
prop: adjoint/dagger	For every map Â∈ℜ(V,W)
	> we can construct a map †such that for any v∈V and w∈W:
	$\left\langle w,\hat{A}v ight angle _{W}=\left\langle \hat{A}^{\dagger}w,v ight angle _{V}.$
	It furthermore holds that $\ \hat{A}\ = \ \hat{A}^{\dagger}\ $.
def: dagger	= map † from Hom(V,W) to Hom(W,V)
	> properties:
	> properties: • anti-linearity: $(a\hat{A} + b\hat{B})^{\dagger} = \bar{a}\hat{A}^{\dagger} + \bar{b}\hat{B}^{\dagger};$ • anti-homomorphism for composition: $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger};$
	• involution: $\hat{A}^{\dagger\dagger} = (\hat{A}^{\dagger})^{\dagger} = \hat{A}$.
	furthermore: $\hat{1}_V^{\dagger} = \hat{1}_V$ and that, if \hat{A} is invertible, $(\hat{A}^{-1})^{\dagger} = (\hat{A}^{\dagger})^{-1}$.
Hermitian conjugate and dagger	For finite dimensional space V and W For corresponding basis B _V and B _W
	Rewrite the defining equation as:
	$\overline{w}^i(g_W)_{ij}A^j_{k}v^k=\overline{(A^\dagger)^l_{i}w^i}(g_V)_{lk}v^k.$
	From this, we infer that $(A^{\dagger})^l_{\ i} = \overline{(g_W)_{ij}A^j_{\ k}(g_V^{-1})^{kl}}.$
	In the common case where both B_V and B_W are orthonormal bases, this becomes
	$(A^{\dagger})^l_{\ i} = \overline{A^i}_l = (A^H)^l_{\ i} \qquad \Longleftrightarrow \qquad \Phi_{B_V,B_W}(\hat{A}^{\dagger}) = A^H = \Phi_{B_W,B_V}(\hat{A})^H.$
	> adjoint coincides with Hermitian conjugate $> A^H = A^{\dagger}$
prop: norm of †	For a bounded linear map between Hilbert spaces V and W:
	$\left\ \hat{A}^{\dagger}\hat{A} ight\ = \left\ \hat{A}\hat{A}^{\dagger} ight\ = \left\ \hat{A} ight\ ^{2}.$
prop: ker and im with †	For a bounded linear map between Hilbert spaces V and W
	> we already know $\ker(\hat{A}^\dagger) = \operatorname{im}(\hat{A})^\perp$ and thus
	$W=\ker(\hat{A}^\dagger)\oplus\overline{\mathrm{im}(\hat{A})}, \hspace{1cm} V=\ker(\hat{A})\oplus\overline{\mathrm{im}(\hat{A}^\dagger)}$
5.5.3 self-adjoint operators	
def: self adjoint operator	= a bounded linear operator \hat{A} on the Hilbert space V for which \hat{A} = \hat{A}^{\dagger}
† and definitions of operators	a linear operator Â∈V is called
	• skew-adjoint or anti-Hermitian or skew-Hermitian if $\hat{A}^{\dagger} = -\hat{A};$
	• positive semidefinite if it is self-adjoint and $\langle v, \hat{A}v \rangle \geq 0$ for all $v \in V$, and positive definite if $\langle v, \hat{A}v \rangle > 0$ for all $v \neq o$.
5.5.4 isometric and unitary maps	
prop: isometry	For a linear map ^Q:V→W between Hilbert spaces V and W
	> ^Q is isometric with respect to $d_W(w',w) = \ w'-w\ _W$ and $d_V(v',v) = \ v-v'\ _V$ if and only if
	$\hat{\mathcal{Q}}^{\dagger}\hat{\mathcal{Q}}=\hat{1}_{V}$
	Such a map is said to be a (linear) isometry .

prop: unitary linear map	= An isometry $\hat{U}:V\rightarrow W$ that is surjective, and thus invertible, and has \hat{U}^{\dagger} as its inverse
	$\hat{U}^{\dagger}\hat{U}=\hat{1}_{V}, \qquad \qquad \hat{U}\hat{U}^{\dagger}=\hat{1}_{W}.$
	Such a linear map is said to be unitary or, when $\mathbb{F} = \mathbb{R}$, orthogonal.
isomorphic Hilbert spaces	= Hilbert spaces V and W such that there exists a unitary map Û:V→W
5.5.5 antiunitary transformation	
prop: adjoint for every map	For every antilinear map Â:V→W between Hilbert spaces V and W
	> there exists an antilinear map A [†] such that:
	$\left\langle w,\hat{A}v\right angle =\overline{\left\langle \hat{A}^{\dagger}w,v ight angle }=\left\langle v,\hat{A}^{\dagger}w\right angle$
def: antiunitary map	= isometric antilinear map that is invertible
	> isometric: $\hat{A}^{\dagger}\hat{A}=\hat{1}_{V}{}^{6}$, which implies that $\langle \hat{A}v_{1},\hat{A}v_{2}\rangle=\langle v_{2},v_{1}\rangle$ for all $v_{1},v_{2}\in V$.
5.5.6 normal operators	
def: normal operator	A linear operator on a Hilbert space V is normal if:
	$\hat{A}^{\dagger}\hat{A} = \hat{A}\hat{A}^{\dagger} \iff \left[\hat{A}^{\dagger}, \hat{A}\right] = \hat{0}.$
decomposition of an operator	every operator can be split into two self-adjoint parts:
	$\hat{A}=rac{\hat{A}+\hat{A}^{\dagger}}{2}+\mathrm{i}rac{\hat{A}-\hat{A}^{\dagger}}{2\mathrm{i}}=\hat{A}_{\mathrm{r}}+\mathrm{i}\hat{A}_{\mathrm{i}}$
prop: condition for normal op.	An operator on a Hilbert space V is normal if and only if for all v∈V:
	$\ \hat{A}v\ = \ \hat{A}^\dagger v\ $
prop: eigenspace of †	For a normal operator on V
	For v an eigenvector with eigenvalue $\boldsymbol{\lambda}$
	> it holds: $\hat{A}^\dagger v = \overline{\lambda} v$
	ie: \hat{A} and \hat{A}^{\dagger} share eigenspaces up to the complex conjugate
prop: orthogonality of eigenvectors	For a normal operator \hat{A} , eigenvectors v_{λ} and v_{φ} are orthogonal if $\lambda \neq \varphi$
prop: norm on normal operator	Using the operator norm, a normal operator on a Hilbert space V satisfies:
	$\ \hat{A^{n}}\ =\ \hat{A}\ ^{n}$
prop: norm and spectral radius	For a normal operator Â: $\ \hat{A}\ = ho_{\hat{A}}$
	ie: the operator norm equals the spectral radius
prop: nilpotent normal operator	A normal operator CANNOT be nilpotent
5.5.7 Hilbert-Schmidt inner product	t
def: Hilbert-Schmidt inner product	Between bounded linear maps $\hat{A}, \hat{B} \in \mathcal{B}(V, W)$ is defined as
	$\langle \hat{A}, \hat{B} \rangle_{\mathrm{HS}} = \mathrm{tr}_V(\hat{A}^\dagger \hat{B})$
	$=\sum_{n}\left\langle e_{n},\hat{A}^{\dagger}\hat{B}e_{n}\right\rangle _{V}=\sum_{n}\left\langle \hat{A}e_{n},\hat{B}e_{n}\right\rangle _{W}=\sum_{m,n}\left\langle \hat{A}e_{n},f_{m}\right\rangle _{W}\left\langle f_{m},\hat{B}e_{n}\right\rangle _{W}$
	$= \sum_{m,n} \left\langle e_n, \hat{A}^{\dagger} f_m \right\rangle_V \left\langle \hat{B}^{\dagger} f_m, e_n \right\rangle_W = \sum_m \left\langle \hat{B}^{\dagger} f_m, \hat{A}^{\dagger} f_m \right\rangle = \operatorname{tr}_W(\hat{B} \hat{A}^{\dagger}).$
	with orthonormal bases $B_V = \{e_n; n \in I \subseteq \mathbb{N}_0\}$ and $B_W = \{f_m; m \in J \subseteq \mathbb{N}_0\}$
Hilbert-Schmidt norm	$\ \hat{A}\ _{HS} = \operatorname{tr}(\hat{A}^{\dagger}\hat{A})^{1/2}.$

5.6 application: least squares solutions	
def: least squares solution	For a matrix A∈F ^{mxn} with m≥n that has full rank
	> the vector \mathbf{x}^* is the least squares solution of the overdetermined linear system $A\mathbf{x} = \mathbf{y}$:
	$x^* = \operatorname*{arg\ min}_{x \in \mathbb{F}^n} \left\ A x - y \right\ _2.$
def: Moore-Penrose pseudoinverse	For a full rank matrix A∈F ^{mxn} with m≥n this is:
	$A^+ = (A^HA)^{-1}A^H.$
	properties: - $AA^+A = A$,
	$^{-}$ $A^{+}AA^{+} = A^{+}$.