Project 2

Alessio Canclini, Filip von der Lippe (Dated: September 26, 2022)

Github repository: https://github.com/Fslippe/FYS4150/tree/main/project2

We are working with:

- A horizontal beam of length L.
- We let u(x) be the vertical displacement of the beam at horizontal position x, with $x \in [0, L]$.
- A force F is applied at the endpoint (x = L), directed into the beam, i.e. towards x = 0.
- The beam is fastened with pin endpoints, meaning that u(0) = 0 and u(L) = 0, but the endpoints are allowed to rotate $(u'(x) \neq 0)$.

Second order differential equation describing our buckling beam situation:

$$\gamma \frac{d^2 u(x)}{dx^2} = -Fu(x) \tag{1}$$

Troughout this project we will be working with the scaled equation:

$$\frac{d^2u(\hat{x})}{d\hat{x}^2} = -\lambda u(\hat{x})\tag{2}$$

Where $\hat{x} \equiv x/L$ is a dimensionless variable, $\hat{x} \in [0,1]$ and $\lambda = \frac{FL^2}{\gamma}$.

PROBLEM 1

Using the defeniation $\hat{x} \equiv x/L$ to show that Eq. 1 can be written as Eq. 2.

$$\gamma \frac{d^2 u(x)}{dx^2} = -Fu(x)$$
$$\frac{d^2 u(x)}{dx^2} = -\frac{F}{\gamma}u(x)$$

Multiplying both sides by L^2 .

$$\frac{d^2u(x)L^2}{dx^2} = -\frac{FL^2}{\gamma}u(x)$$
$$\frac{d^2u(x)}{d\frac{x^2}{L^2}} = -\frac{FL^2}{\gamma}u(x)$$

Using that $\hat{x} \equiv x/L$ so that $\hat{x}^2 \equiv x^2/L^2$.

$$\frac{d^2u(x)}{d\hat{x}} = -\frac{FL^2}{\gamma}u(x)$$

We also know that $x = \hat{x}L$, so $u(x) = u(\hat{x}L) = u(\hat{x}) + u(L) = u(\hat{x})$. Since u(L) = 0. Finally, using $\lambda = \frac{FL^2}{\gamma}$ gives us the dimensionless Eq. 2:

$$\frac{d^2u(\hat{x})}{d\hat{x}} = -\lambda u(\hat{x})$$

PROBLEM 5

a) By running the jacobi algorithm for different choices of N we can see how the number of jacobi rotation scales with increasing matrix sizes. This is done by reducing all elements to less than $\epsilon = 10^{-9}$.

(a) Iterations for increasing tridiagonal matrix sizes. Both on a (b) Iterations for increasing dense matrix sizes. Both on a log-logarithmic scale arithmic scale

We will now look at how many similarity transformations we need before we reach a result where all non-diagonal matrix elements are close to zero.

PROBLEM 6