

Universidade Federal de Santa Catarina Campus Joinville Centro Tecnológico de Joinville - CTJ Departamento de Engenharias da Mobilidade

EMB5116 – ELETRÔNICA ANALÓGICA INTRODUÇÃO À ELETRÔNICA ANALÓGICA, DIODOS IDEAIS E REAIS

Prof^a Jéssika Melo de Andrade, Dra. Eng.

melo.jessika@ufsc.br

SUMÁRIO

- Semicondutor;
- Material tipo p e tipo n;
- Junção PN;
- Diodo semicondutor;
- Curva característica;
- Resistência CC e CA;
- Circuitos Equivalentes;
- Tempo de Recuperação Reversa;
- Teste do diodo;
- Outros tipos de diodo.

- São materiais capazes de atuar como condutores elétricos ou isolantes elétricos. Possuem resistividade elétrica intermediária.
- Condutores: propícios para conduzir corrente elétrica;
- Isolantes: propícios para isolar cargas elétricas;
- Semicondutor é um meio termo entre condutores e isolantes.

Material	Resistividade (temperatura ambiente)
Cobre (condutor)	$1,68 \times 10^{-8} \Omega m$
Silício (semicondutor)	$6,40 \times 10^2 \Omega m$
Vidro (isolante)	$10 \mathrm{x} 10^{10} \mathrm{a} 10 \mathrm{x} 10^{14} \Omega \mathrm{m}$

• Os semicondutores são utilizados na construção de circuitos eletrônicos e o material mais utilizados é o silício (Si), devido suas características e baixo custo.

Si Silicon 28.085

- ➤ 4 elétrons na camada de valência (camada mais externa)
- > Se estabilizam quando possuem 8 elétrons na camada de valência.

- Os semicondutores são sensíveis a presença de impurezas e isso afeta significativamente as características do material.
- Impurezas podem ser adicionadas propositalmente em um processado chamado de dopagem.
- Semicondutores intrínsecos: material sem impurezas;
- Semicondutores extrínsecos: material que foi submetido ao processo de dopagem.
- Dopagem é o processo de adicionar <u>impurezas</u> ao cristal semicondutor.

SEMICONDUTOR EXTRÍNSECO

■ Impurezas são materiais com átomos que possuem 3 ou 5 elétrons na camada de valência.

5 elétrons na camada de valência Antimônio Arsênio Fósforo

Impureza doadora (doa elétrons)

3 elétrons na camada de valência

Boro Alumínio Gálio

Impureza aceitadora (aceita elétrons)

SEMICONDUTOR EXTRÍNSECO

Impureza: Boro 3 elétrons na camada de valência

- Número de elétrons insuficientes para completar as ligações covalentes (falta um elétron).
- ➤ O espaço vazio resultante é chamado de lacuna (ausência de um elétron);
- Quanto mais impurezas, mais lacunas;
- Esse material é chamado de <u>tipo p</u>. Material dopado positivamente.

SEMICONDUTOR EXTRÍNSECO

Impureza: Antimônio 5 elétrons na camada de valência

- Número de elétrons sobrando para completar as ligações covalentes (sobra um elétron).
- Esse elétron é chamado de elétron livre.
- Como possui um elétron a mais, diz-se que está dopado negativamente;
- \triangleright Esse material é chamado de <u>tipo n</u>.

JUNÇÃO PN

Quando junta os materiais, os elétrons livres no material tipo n (mais próximos da junção) são atraídos automaticamente para as lacunas vazias no material tipo p. Os mais afastados não são afetados.

JUNÇÃO PN

Região de depleção

- \triangleright Quando junta os materiais, os elétrons livres no material tipo n (mais próximos da junção) são atraídos automaticamente para as lacunas vazias no material tipo p. Os mais afastados não são afetados.
- ➤ Isso cria um região, na qual, não existem elétrons livres, nem lacunas (camada de valência completa).
- Essa região é chamada de depleção;

JUNÇÃO PN

- Essa junção PN, também é chamada de diodo.
- É um semicondutor com dois terminais.

<u>Polarização</u>: refere-se a aplicação de uma tensão externa nos terminais do diodo, pode ser de dois tipos:

- > Reversa;
- Direta.

Polarização Reversa

Polarização Reversa

CIRCULA CORRENTE?

Polarização Reversa

CIRCULA CORRENTE? NÃO

MOTIVO: As cargas positivas serão **atraídas** pelo polo negativo da fonte e a os elétrons livres serão **atraídos** pelo polo positivo da fonte. Com isso, a região de depleção irá aumentar (barreira grande demais para passar corrente).

Polarização Direta

Polarização Direta

CIRCULA CORRENTE?

Polarização Direta

CIRCULA CORRENTE? SIM

Polarização Direta

CIRCULA CORRENTE? SIM

- É o mais simples dos componentes eletrônicos, possui somente dois terminais;
- Permite a circulação de corrente em somente um sentido (somente se estiver polarizado diretamente);
- Polarizado diretamente: curto circuito (conduz corrente);
- Polarizado reversamente: circuito aberto (não conduz corrente "isolante").

CARVA CARACTERÍSTICA IDEAL

CARACTERÍSTICAS IDEAIS:

Quando polarizado diretamente, independente do nível de tensão, conduz uma corrente i_D instantaneamente.

☐ Quando polarizado reversamente, suporta uma tensão reversa infinita.

Tensão de entrada em condução.

RESISTÊNCIA CC OU ESTÁTICA

A aplicação de um tensão CC a um circuito que contenha um diodo semicondutor resultará em um ponto de operação na curva característica que não mudará com o tempo.

RESISTÊNCIA CC OU ESTÁTICA

A aplicação de uma tensão CC a um circuito que contenha um diodo semicondutor resultará em um ponto de operação na curva característica que não mudará com o tempo.

Lei de Ohm:

$$R_D = \frac{V_D}{I_D}$$

Quanto maior a corrente, menor a resistência.

RESISTÊNCIA CA OU DINÂMICA

Aplicação de uma tensão CA:

Lei de Ohm:

$$r_D = \frac{\Delta V_D}{\Delta I_D}$$

CIRCUITOS EQUIVALENTES

Circuito equivalente linear por partes:

CIRCUITOS EQUIVALENTES

Circuito equivalente simplificado:

CIRCUITOS EQUIVALENTES

Circuito equivalente ideal:

TEMPO DE RECUPERAÇÃO REVERSA

FOLHA DE DADOS

1N4148

Vishay Semiconductors

Small Signal Fast Switching Diodes

FEATURES

- · Silicon epitaxial planar diode
- Electrically equivalent diodes: 1N4148 - 1N914
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

DESIGN SUPPORT TOOLS click logo to get started

MECHANICAL DATA

Case: DO-35 (DO-204AH)
Weight: approx. 105 mg
Cathode band color: black
Packaging codes / options:

TR/10K per 13" reel (52 mm tape), 50K/box TAP/10K per ammopack (52 mm tape), 50K/box

APPLICATIONS

Extreme fast switches

FOLHA DE DADOS

PARTS TABLE						
PART	ORDERING CODE	TYPE MARKING	CIRCUIT CONFIGURATION	REMARKS		
1N4148	1N4148-TAP or 1N4148TR	V4148	Single	Tape and reel / ammopack		

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Repetitive peak reverse voltage		V _{RRM}	100	V		
Reverse voltage		V _R	75	V		
Peak forward surge current	t _p = 1 μs	I _{FSM}	2	Α		
Repetitive peak forward current		I _{FRM}	500	mA		
Forward continuous current		lF	300	mA		
Average forward current	V _R = 0	I _{F(AV)}	150	mA		
Power dissipation	I = 4 mm, T _L = 45 °C	P _{tot}	440	mW		
	$I = 4$ mm, $T_L \le 25$ °C	P _{tot}	500	mW		

THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Thermal resistance junction to ambient air	I = 4 mm, T _L = constant	R _{thJA}	350	K/W		
Junction temperature		Tj	175	°C		
Storage temperature range		T _{stg}	-65 to +150	°C		

FOLHA DE DADOS

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 10 mA	V _F			1	V
Reverse current	V _R = 20 V	I _R			25	nA
	V _R = 20 V, T _j = 150 °C	IR			50	μΑ
	V _R = 75 V	IR			5	μΑ
Breakdown voltage	$I_R = 100 \mu A, t_p/T = 0.01,$ $t_p = 0.3 \text{ ms}$	V _(BR)	100			V
Diode capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz,}$ $V_{HF} = 50 \text{ mV}$	C _D			4	pF
Rectification efficiency	V _{HF} = 2 V, f = 100 MHz	η _r	45			%
Reverse recovery time	$I_F = I_R = 10 \text{ mA},$ $I_R = 1 \text{ mA}$	t _{rr}			8	ns
	$I_F = 10 \text{ mA}, V_R = 6 \text{ V},$ $i_R = 0.1 \text{ x } I_R, R_L = 100 \Omega$	t _{rr}			4	ns

FOLHA DE DADOS

Fig. 1 - Forward Voltage vs. Junction Temperature

Fig. 2 - Forward Current vs. Forward Voltage

Fig. 3 - Reverse Current vs. Reverse Voltage

TESTE DO DIODO

Testes com multímetro:

Diodo deve estar no estado "ligado" (*on*) e sua tela fornecerá uma indicação de tensão de polarização direta.

TESTE DO DIODO

Testes com ohmímetro:

OUTROS TIPOS DE DIODOS

DIODO ZENER

- Fabricado justamente para operar com a polarização reversa.
- Quando a tensão de ruptura do diodo zener é atingida, a mesma torna-se praticamente constante independentemente da corrente que passa pelo diodo.
- Quando polarizado diretamente, opera como o diodo semicondutor visto anteriormente.
- Utilizado para proteção em alguns circuitos.

DIODO ZENER

DIODO EMISSOR DE LUZ

LEDs

DIODO EMISSOR DE LUZ

LEDs

DIODO EMISSOR DE LUZ

■ Para emitir luz precisam estar polarizados diretamente, e a corrente deve ser limitada em aproximadamente 20 m A.

Resistor pra limitar a corrente

REFERÊNCIA

- BOYLESTAD, R.L., NASCHELSKY, L. Dispositivos Eletrônicos e Teoria de Circuitos. 11ed., Prentice-Hall, 2013.
- https://www.vishay.com/docs/81857/1n4148.pdf

Universidade Federal de Santa Catarina Campus Joinville Centro Tecnológico de Joinville - CTJ Departamento de Engenharias da Mobilidade

Até a próxima aula!