

Uncertainty in Software Models

Lola Burgueño, Paula Muñoz, Antonio Vallecillo Universidad de Málaga, Spain

Uncertainty

Uncertainty: Quality or state that involves imperfect and/or unknown information

- It applies to: predictions of future events,
 estimations,
 physical measurements, or
 properties of a system, its elements or its environment
- due to:
 - Underspecification of the problem or solution domains
 - Lack of knowledge of the system, its environment, or its underlying physics
 - Lack of precision in measurements
 - Imperfect, incorrect, or missing information
 - Numerical approximations
 - Values and parameters <u>indeterminacy</u>
 - Different interpretations of the same evidences by separate parties

"There is nothing certain, but the uncertain" (proverb)

Uncertainty in mechanical systems

Many different formalisms and theories to quantify uncertainty

- Bayesian Belief Networks (BBN)
- Monte Carlo simulations
- Decision theory/trees

A classification of uncertainty (according to its nature)

- Aleatory Uncertainty A kind of uncertainty that refers to the inherent uncertainty due to the probabilistic variability or randomness of a phenomenon
 - Examples: measuring the speed of a car, or the duration of a software development process
 - This type of uncertainty is irreducible, in that there will always be variability in the underlying variables.
- Epistemic Uncertainty A kind of uncertainty that refers to the lack of knowledge we may have about the system (modeled or real).
 - Examples: Ambiguous or imprecise requirements about the expected system functionality, its envisioned operating environment, etc.
 - This type of uncertainty is reducible, in that additional information or knowledge may reduce it.

Types of uncertainty (according to their sources)

- Measurement uncertainty: A kind of aleatory uncertainty that refers to a set of possible states or outcomes of a measurement, where probabilities are assigned to each possible state or outcome
- Occurrence uncertainty: a kind of epistemic uncertainty that refers to the degree of belief that we have on the actual existence of an entity, i.e., the real entity that a model element represents
- **Belief** uncertainty: A kind of *epistemic* uncertainty in which a *belief agent* is uncertain about any of the *statements* made about the system or its environment.
- Design uncertainty: A kind of epistemic uncertainty that refers to a set of possible design decisions or options, where probabilities are assigned to each decision or option
- Environment uncertainty: lack of certainty about the surroundings, boundaries and usages
 of a system and of its elements
- Location uncertainty: lack of certainty about the geographical or physical location of a system, its elements or its environment
- Time uncertainty: lack of certainty about the time properties expressed in a statement about the system or its environment

Based on M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model" In Proc. of ECMFA 2016, LNCS vol. 9764, pp. 247-264. Springer, 2016.

Measurement Uncertainty

Measurement uncertainty

- Measurement uncertainty: A kind of aleatory uncertainty that refers to a set of possible states or outcomes of a measurement
- Normally expressed by a parameter, associated with the result of a measurement x, that characterizes the dispersion of the values that could reasonably be attributed to the measurand: the standard deviation u of the possible variation of the values of x
- Representation: $x \pm u$ or (x, u)
- Examples:
 - Normal distribution: (x, σ) with mean x, and and standard deviation σ
 - Interval [a, b]: Uniform distribution is assumed

$$(x, u)$$
 with $x = \frac{a+b}{2}$, $u = \frac{(b-a)}{2\sqrt{3}}$

Some problems with Measurement Uncertainty

- Computations with uncertain values must respect the propagation of uncertainty (uncertainty analysis)
 - In general, this is a complex problem, which cannot be manually managed
- Comparison of uncertain values is no longer a Boolean property!
 - How to compare 17.7 ± 0.2 with 17.8 ± 0.2 ?
- Other primitive datatypes are also affected by uncertainty
 - Strings (OCR)
 - Enumerations
 - Collections

UBoolean

- UBooleans are pairs (b, c)
 - where b:Boolean and c:Real, $c \in [0, 1]$
 - c represents the <u>confidence</u> that the actual value of the value is indeed b
 - Canonical form: (true, c)
 - Equivalence relation: (b, c) = (not b, 1 c)
- Constants
 - UBoolean(true, 0.999), UBoolean(false, 0.001)
- Operations
 - Redefined basic operations: and, or, not
 - Redefined secondary operations: implies, equivalent, xor
 - Conversion operations: toBoolean() and toBooleanC(c:Real)

Belief Uncertainty

Belief uncertainty

- Belief uncertainty: A kind of epistemic uncertainty in which the modeler, or any other belief agent, is uncertain about any of the statements made about the system or its environment.
 - By nature, it is always subjective
 - It may not always be possible to determine whether or not a belief statement is valid.
 - A belief statement may not necessarily correspond to objective reality.
 - This means that it could be completely false, or only partially true, or completely true.
 - The validity of a statement may only be meaningfully defined within a given context or purpose.
 - Thus, the statement that "the Earth can be represented as a perfect sphere" may be perfectly valid for some purposes but invalid or only partly valid for others.
- Belief agent: An entity (human, institution, even a machine) that holds one or more beliefs
- Belief statement: Statement qualified by a degree of belief
- Degree of belief: Confidence assigned to a statement by a belief agent. Normally expressed by quantitative or qualitative methods (e.g., a grade or a probability "credence")

Classical Boolean Logic

$$true = 1$$
 $X \ vertex \ (belief)$

Probabilistic Logic

Kleene (three-valued) Logic

Uncertainty

 \overline{X} vertex (disbelief)

X vertex (belief)

Subjective Logic

Subjective logic in UML/OCL

- SBoolean(*b,d,u,a*)
 - b represents the degree of belief that the agent has about the statement
 - d represents the degree of disbelief
 - u represents the uncertainty that the agent expressing the opinion has about the statement, i.e., the degree of trust
 - a is the (objective) prior probability assigned to the statement (also called "base rate").
- b + d + u = 1
- Boolean values lifted to SBoolean:
 - true = SBoolean(1, 0, 0, 1)
 - false = SBoolean(0, 1, 0, 0)
- UBoolean values lifted to SBoolean:
 - Uboolean(true,c) = SBoolean(c,1-c,0,c)
- Projection from SBoolean to UBoolean:
 - SBoolean(b,d,u,a).projection() = UBoolean(true, b + u*a)