

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2023 - 2024

C3 : MODÉLISATION CINÉMATIQUE DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

C3-4 - Cinématique du solide

28 Novembre 2023

Table des matières

I	Cha	mp cinématique des solides
	1	Torseur cinématique
	2	Propriétés
		a) Equiprojectivité
		b) Composition des champs cinématiques
	3	Champ de vecteur accélération des points d'un
		solide
II	Mοι	ivements particuliers des solides
	1	Mouvement de translation
		a) Définition
		b) Mouvement de translation rectiligne
		c) Mouvement de translation circulaire
	2	Mouvement de rotation
	3	Mouvement de translation/rotation hélicoïdale
	4	Mouvements plan
		a) Définition
		b) Exemples

Compétences

Modéliser

- Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.
- Modéliser la cinématique d'un ensemble de solides.
- Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

• Communiquer

• Utiliser un vocabulaire technique, des symboles et des unités adéquats.

I. Champ cinématique des solides

1 Torseur cinématique

Dans cette partie nous considérons que les solides sont indéformables. Le repère R_1 est attaché au solide S_1 (corps du drone ici), ainsi on note :

Considérons deux points **A et B appartenant au solide** S_1 attachés au repère $R_1(O_1, \vec{x_1}, \vec{y_1}, \vec{z_1})$. D'après la définition des solides indéformables vue dans le premier chapitre :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} = \overrightarrow{0}.$$

En écrivant la dérivée temporelle du vecteur \overrightarrow{AB} par rapport au repère R_0 avec la formule de dérivation vectorielle, on obtient :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} + \overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}.$$

On peut également écrire :

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{OB}}{dt}\right]_{R_0} - \left[\frac{d\overrightarrow{OA}}{dt}\right]_{R_0} = \overrightarrow{V}(B/R_0) - \overrightarrow{V}(A/R_0)$$

Définition 1 : Changement de point

• On obtient alors **la relation fondamentale de changement de point pour le champ cinématique** pour deux points *A* et *B* appartenant à un solide quelconque *S* :

$$\overrightarrow{V}(B/R_0) = \overrightarrow{V}(A/R_0) + \overrightarrow{\Omega}(S/R_0) \wedge \overrightarrow{AB} = \overrightarrow{V}(A/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$

• On peut étendre cette formule à **deux points quelconques** *A* **et** *B* (n'appartenant pas forcément à *S*) avec l'utilisation des vitesses d'entrainement :

$$|\overrightarrow{V}(B \in S/R_0) = \overrightarrow{V}(A \in S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).|$$
 (1)

• On peut parfois appeler cette relation, la formule de Varignon.

Propriété 1 :

On remarque alors que les vecteurs vitesses des points d'un solide indéformable vérifient la relation de changement de point du moment d'un torseur. Nous pouvons alors définir le **torseur cinématiques**.

Définition 2: Torseur cinématique

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\Omega(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\vec{V}(A \in S/R_0)$. On le note

$$\left\{ \mathcal{Y}_{(S/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S/R_0)}} \\ \overrightarrow{V}(A \in S/R_0) = \overrightarrow{V}_A(S/R_0) \end{array} \right\}$$
 (2)

Définition 3: Torseur

Un torseur est un outil mathématique qui présente deux composantes vectorielles :

- Une résultante qui est **indépendante** du point où on l'exprime et que l'on note $\overline{R} = \overline{\Omega_{(S/R_0)}}$.
- Un moment qui dépend du point où on l'exprime par la formule fondamental de change**ment de point** et que l'on note $\overrightarrow{M}_A(\overrightarrow{R}) = \overrightarrow{V}(A \in S/R_0) = \overrightarrow{V}_A(S/R_0)$.

🦰 Remarque 1 :

Le point A est lié au solide S. Deux cas peuvent se présenter.

- Lorsque le point appartient physiquement au solide (S), il est lié à tout instant à ce solide. On peut alors calculer sa vitesse avec le vecteur vitesse ou par dérivation vectorielle. On parlera alors de point matériel.
- Lorsque le point considéré est lié uniquement au solide à l'instant t où on calcule son vecteur vitesse, on ne peut calculer sa vitesse qu'en utilisant la loi de composition des vitesses. On parlera alors de **point géométrique**.

2 Propriétés

a) Equiprojectivité

Définition 4: Equiprojectivité

Un champ de vitesse est équiprojectif, c'est à dire qu'il vérifie pour tout couple de point (A, B) dans le mouvement d'un solide S_1 par rapport à R_0 la relation suivante :

$$\overrightarrow{V}(A \in S_1/R_0) \cdot \overrightarrow{AB} = \overrightarrow{V}(B \in S_1/R_0) \cdot \overrightarrow{AB}$$
 (3)

b) Composition des champs cinématiques

Propriété 2 : Composition des champs cinématiques

On peut décomposer un champ cinématique à l'aide des torseurs en effectuant une relation de Chasles par des solides successifs. Soit $S_1, S_2, \cdots S_n$ un ensemble de solides indéformables :

$$\left\{ \mathcal{V}_{(S_n/S_0)} \right\} = \left\{ \mathcal{V}_{(S_n/S_{n-1})} \right\} + \left\{ \mathcal{V}_{(S_{n-1}/S_{n-2})} \right\} + \dots \left\{ \mathcal{V}_{(S_1/S_0)} \right\}$$
(4)

Il en découle une décomposition en :

• Vecteur rotation instantané:

$$\overrightarrow{\Omega}(S_n/S_0) = \overrightarrow{\Omega}(S_n/S_{n-1}) + \overrightarrow{\Omega}(S_{n-1}/S_{n-2}) + \cdots \overrightarrow{\Omega}(S_1/S_0)$$
 (5)

• Vecteur vitesse en un même point quelconque *A* :

$$\overrightarrow{V}(A \in S_n/S_0) = \overrightarrow{V}(A \in S_n/S_{n-1}) + \overrightarrow{V}(A \in S_{n-1}/S_{n-2}) + \cdots \overrightarrow{V}(A \in S_1/S_0)$$
(6)

3 Champ de vecteur accélération des points d'un solide

Définition 5: Champ d'accélération

Le relation de changement de point entre A et B pour un champ d'accélération d'un solide S_1 par rapport à un repère R_0 est donnée par :

$$\overrightarrow{a}\left(B/R_{0}\right) = \overrightarrow{a}\left(A/R_{0}\right) + \left[\frac{d}{dt}\overrightarrow{\Omega}(S_{1}/R_{0})\right]_{R_{0}} \wedge \overrightarrow{AB} + \overrightarrow{\Omega}(S_{1}/R_{0}) \wedge \left(\overrightarrow{\Omega}(S_{1}/R_{0}) \wedge \overrightarrow{AB}\right).$$

Attention:

Un champ d'accélération n'est pas un champ de moment, c'est à dire qu'il ne vérifie pas les propriétés d'équiprojectivité et il ne peut pas être décrit par un torseur.

II. Mouvements particuliers des solides

1 Mouvement de translation

a) Définition

Définition 6: Mouvement de translation

Un solide S_1 est en mouvement de **translation** par rapport à R_0 si l'ensemble des points de S_1 ont la même vitesse à l'instant t par rapport à R_0 .

Le vecteur de rotation instantané associé à ce torseur est nul : $\overline{\Omega(S_1/R_0)} = \overline{0}$. Il s'agit donc d'un **torseur couple** qui est indépendant du point où on l'exprime :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V}(A \in S_1/R_0) \end{array} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V}(B \in S_1/R_0) \end{array} \right\}$$
 (7)

Parmi les mouvements de translation, on peut en retenir deux particuliers :

b) Mouvement de translation rectiligne

Définition 7: translation rectiligne

Un mouvement de translation de S_1 par rapport à R_0 est dit de **translation rectiligne** si la trajectoire de tous les points de S_1 par rapport à R_0 est une **droite**. Dans ce cas \overrightarrow{V} ($[\in A/]$) S_1R_0 a pour direction la trajectoire du point A.

c) Mouvement de translation circulaire

Définition 8 : Mouvement de translation circulaire

Un mouvement de S_1 par rapport à R_0 est dit de **translation circulaire** si la trajectoire de tous les points de S_1 sont des **cercles**.

FIGURE 1 – Exemple de translation rectiligne et circulaire.

2 Mouvement de rotation

Définition 9: Mouvement de rotation

Un solide S_1 est en **mouvement de rotation** par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 . Le vecteur de rotation instantané $(\overrightarrow{\Omega}(S_1/S_0))$ est alors colinéaire à la direction \overrightarrow{u} :

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \begin{cases} \overrightarrow{\Omega}(S_1/S_0) \\ \overrightarrow{0} \end{cases}$$

$$\forall p \in (A, \overrightarrow{u}).$$
(8)

Remarque 2 :

Ce torseur est alors "**un glisseur**" car il existe des points pour lesquels le moment du torseur cinématique est nul. Ces points appartiennent à l'axe de rotation.

3 Mouvement de translation/rotation hélicoïdale

Définition 10: Mouvement de translation/rotation hélicoïdale

- Un mouvement de **translation/rotation** hélicoïdale est la superposition entre un mouvement de rotation autour d'un axe (A, \vec{u}) et de translation suivant la direction \vec{u} .
- Ces deux mouvement sont liés par le paramètre p qui représente le **pas hélicoïdal** et s'exprime en $m.rad^{-1}$.
- Le torseur cinématique associé à ce mouvement pour un solide S_1 par rapport à R_0 est donné par :

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) = \Omega \cdot \overrightarrow{u} \\ \overrightarrow{V}(A \in S_1/R_0) = p\Omega \cdot \overrightarrow{u} \end{array} \right\}$$
 (9)

4 Mouvements plan

a) Définition

Soit un solide S_1 , de repère lié R_1 , en mouvement dans un repère R_0 .

Définition 11: Mouvement plan

On dit que S_1 a **un mouvement plan** dans R_0 si chaque point $M \in S_1$ se déplace parallèlement à un plan P_0 lié à R_0 . Autrement dit, si \overrightarrow{n} est la normale à P_0 , alors :

$$\overrightarrow{V}(M \in S_1/R_0) \cdot \overrightarrow{n} = 0$$

 $\forall M \in S_1$

🦰 Remarque 3 :

Dans le cas d'un mouvement plan (par exemple dans le plan $(O, \vec{x_0}, \vec{y_0})$, le torseur cinématique de S_1 par rapport à R_0 se ramène à :

$$\left\{\mathcal{V}_{(S_1/R_0)}\right\} = \left\{ \begin{array}{ccc} 0 & V_x \\ 0 & V_y \\ \omega_z & 0 \end{array} \right\}_{R_0}$$

On remarquera ainsi que $\overrightarrow{\Omega_{(S_1/R_0)}} \perp \overrightarrow{V}(M \in S_1/R_0)$, et donc que ce torseur est un glisseur.

b) Exemples

Exemple 1 : Forme des torseurs pour des mouvements plans

- cas d'un mouvement dans le plan $(O, \vec{x_0}, \vec{y_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :
- cas d'un mouvement dans le plan $(O, \vec{z_0}, \vec{x_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par:
- cas d'un mouvement dans le plan $(O, \vec{y_0}, \vec{z_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par: