Ministerul Educației Tineretului și Sportului al Republicii Moldova Universitatea Tehnică a Moldovei

REFERAT

Lucrarea de Laborator nr. 6

Tema: Determinarea coeficientului de frecare interioară și a parcursului liber al moleculelor unui gaz

A efectuat				Studentul grupei TI 206			
				Pleșu	Cătălin		
	semi	ıătura		nume, prenume			
A verificat					Dr. Ciobanu Marina		
	nota	data	semnătura	nume.	. prenume profesor		

Chisinău 2021

- 1. **Scopul lucrări:** <u>studierea fenomenului frecării interioare în gaze și</u> <u>determinarea coeficientului de frecare interioară a aerului și a parcursului liber mediu al moleculelor.</u>
- 2. Aparate și accesorii: <u>retortă din sticlă, un vas gradat, manometru, un tub capilar,</u> cronometru, barometru, termometru.

Unde:

1- fixator

2 - robinet

AB - capilar

C - retorta

 $D-vas\ gradat$

4. Formula de calcul:

$$\eta = \frac{\rho g(h_2 - h_1)\pi R_0^4 t}{8Vl},$$

$$<\lambda>=\frac{3\eta}{P}\cdot\sqrt{\frac{\pi RT}{8\mu}},$$

Unde:

η-coeficientul de frecare interioară;

ρ-densitatea apei;

g-accelerația căderii libere;

h1,h2-înălțimile coloanei de apă în manometru;

R0-raza capilarului;

t- timpul;

V-volumul aerului care a trecut prin capilar în timpul "t";

1-lungimea capilarului;

λ-parcursul liber al moleculelor de aer;

P-presiunea atmosferică;

R- constanta universală a gazelor;

T-temperatura absolută a aerului;

M- masa molară a aerului;

5. abela măsurărilor și determinărilor

data / semnătura profesorului

Înălțimea coloanei de lichid în manometru, volumul și timpul pentru fiecare caz se măsoară o singură dată, deaceea eroarea măsurărilor se consider egală cu eroarea aparatului de măsură respectiv.

nr.	h2-h1	V	t	η	Δη	λ	Δλ	εη	ελ
exp.	10-3 m	10-6 m3	S	10-5	10-5	10-8m	10-8m	%	%
				kg/ms	kg/ms				
1	38	300	137	1.59	0.076	8.75	0.503	4.77	5.74
2	33	300	149	1.50	0.071	8.26	0.471	4.73	5.7
3	27	300	200	1.65	0.079	9.08	0.523	4.78	5.75

D = 1,02 mm	$\Delta D = 0.01$
1 = 283 mm	$\Delta l = 0.5$
T = 294,15 K	$\Delta T = 0.005$
$g = 9,80665 \text{m/s}^2$	$\Delta g = 0,000005$
$\rho = 998,02 \text{ kg/m}^3$	$\Delta \rho = 0.005$
R = 8.31 J/kg*mol	$\Delta R = 0,005$
$\mu = 29 * 10^{-3} \text{ kg*mol}$	$\Delta \mu = 0.0005$
$\pi = 3,14$	$\Delta \pi = 0.005$
P = 99058,5 Pa	$\Delta P = 133,3$
	$\Delta V = 0.5*10^{-6}$
	$\Delta(h1 - h2) = 0.0005$

6. Exemplul de calcul:

$$\eta = \frac{998,02 * 9,80665 * 38 * 10^{-3} * 3,14 * (0,51 * 10^{-3})^4 * 137}{8 * 300 * 10^{-6} * 283 * 10^{-3}} = 1,59 * 10^{-5}$$

$$\lambda = \frac{3 * 1,59 * 10^{-5}}{99058,5} * \sqrt{\frac{3,14 * 8,31 * 294,15}{8 * 29 * 10^{-3}}} = 8,75 \times 10^{-8}$$

7. Calculul erorilor:

Eroarea absolută și relativă a mărimilor η și λ se calculează numai pentru un caz din cele trei, indicat de profesor.

$$\eta = \frac{\rho g(h_2 - h_1)\pi R_0^4 t}{8Vl}, \qquad <\lambda > = \frac{3\eta}{P} \cdot \sqrt{\frac{\pi RT}{8\mu}},$$

$$\Delta \eta = \left(\frac{d\rho}{\rho} + \frac{dg}{g} + \frac{d(h_1 - h_2)}{h_1 - h_2} + \frac{d\pi}{\pi} + 4\frac{dR_0}{R} + \frac{dt}{t} + \frac{dV}{V} + \frac{dl}{l}\right) \cdot \eta$$

$$\Delta \lambda = \left(\frac{\Delta \eta}{\eta} + \frac{\Delta P}{P} + \frac{1}{2}\frac{\Delta \pi}{\pi} + \frac{1}{2}\frac{\Delta R}{R} + \frac{1}{2}\frac{\Delta T}{T} + \frac{1}{2}\frac{\Delta M}{M}\right) \cdot \lambda$$

$$\Delta \eta = \left(\frac{0,005}{998,02} + \frac{0,000005}{9,80665} + \frac{0,0005}{38*10^{-3}} + \frac{0,005}{3,14} + 4* \frac{0,005*10^{-3}}{0,51*10^{-3}} + \frac{0,5}{137} \right. \\ \left. + \frac{0,5*10^{-6}}{300*10^{-6}} + \frac{0,5*10^{-3}}{283*10^{-5}} \right) * 1,59*10^{-5} = 0,076*10^{-5}$$

$$\Delta \lambda = \left(\frac{0,005*10^{-5}}{1,59*10^{-5}} + \frac{133,3}{99058,5} + \frac{1}{2}* \frac{0,005}{3,14} + \frac{1}{2}* \frac{0,005}{8,31} + \frac{1}{2}* \frac{0,005}{294,15} + \frac{1}{2} \right. \\ \left. * \frac{0,0005}{29*10^{-3}} \right) * 8,75 \times 10^{-8} = 0,503*10^{-8}$$

8. Rezultatul final

$$\eta = 1.58*10^{-5} \qquad \qquad \epsilon = 4.76\% \\ \lambda = 8.69*10^{-8} \qquad \qquad \epsilon = 5.73\%$$

9. Concluzii:

Realizând această lucrare de laborator am determinat coeficientul de frecare interioare a aerului și a parcursului mediu al moleculelor (η și λ) în conditiile din laborator. Am învățat cum se prelucrează datele experimentale. În urma caculării erorii putem concluziona că măsurările au fost facute destul de atent.