STAT 134: Section 7

Adam Lucas

September 30, 2020

Conceptual Review

Please discuss how the following topics are related to one another, in the context of a random variable *X*.

- Tail probabilities (i.e., probabilities of the form $\mathbb{P}(X \ge x)$)
- Expectation $\mathbb{E}(X)$ and, more generally, moments of a distribution (i.e., expectations of the form $\mathbb{E}(X^k)$)
- Bounds on tail probabilities, like the inequalities of Markov and Chebyshev
- Indicator random variables

Problem 1

Suppose $X = \sum_{i=1}^{n} \mathbf{1}_{i}$, where $\mathbf{1}_{i}$ indicates an event A_{i} . Write $\mathbb{E}(X^{2})$ using terms of the form $\mathbb{P}(A_{i})$ and $\mathbb{P}(A_{i}A_{j})$.

Problem 2

Recall the problem from Section 6 which entails selecting a pool of 2k chopsticks uniformly-at-random from a collection of 2n chopsticks consisting of *n* unique pairs of chopsticks. We are interested in *X*, the number of matched pairs of chopsticks in the 2k drawn chopsticks. Use your answer to Problem 1 to calculate $\mathbb{E}(X^2)$.

Quiz Review: Quiz 2 Problem 3

Sankar and Fitch are playing a game. First, Sankar picks a parameter λ , and then he draws a random number N which has a Poisson(λ) distribution. After that, Fitch flips a fair coin *N* times independently. If none of the coin flips are tails, Fitch wins, else Sankar wins.

- a. If N = 3, what is the probability that Fitch wins?
- b. What is the probability that Fitch wins? You should simplify your answer as much as possible in this question. (*The final answer may involve λ .*)