

Aula de hoje

Ao final desta aula, o aluno deve ser capaz de:

 Especificar as distribuições de probabilidades adequadas para variáveis aleatórias discretas considerando modelos probabilísticos discretos já bem definidos na literatura estatística.

Modelagem probabilística de fenômenos

aleatórios que envolvem variáveis quantitativas

e que seguem padrões comuns.

Distribuição de Bernoulli

Contexto geral

Experimento que tem apenas dois resultados possíveis.

Por convenção denomina-se o resultado de interesse como *sucesso* e o outro como *fracasso*.

Alguns exemplos

O que há em comum nos seguintes eventos:

- oferecer uma apólice de seguro em um telefonema;
- observar a ocorrência de sinistro em um carro segurado por uma companhia de seguros;
- perguntar a um telespectador se ele se lembra de um anúncio comercial exibido num determinado horário;
- verificar se um ativo se valorizou num determinado dia.

Como definir uma v.a. para modelar esses fenômenos?

Ensaio de Bernoulli

Experimento que tem apenas dois resultados possíveis. Por convenção denomina-se o resultado de interesse como *sucesso* e o outro como *fracasso*.

Jacob Bernoulli - 1654-1705 - Suiça

Incher

Ensaio de Bernoulli

Espaço amostral de um ensaio de Bernouli:

$$\Omega = \{Sucesso; Fracasso\}$$

Variável aleatória de Bernoulli:

$$X = \begin{cases} 0, \text{ se fracassso} \\ 1, \text{ se sucesso} \end{cases}$$

9

Distribuição de Bernoulli

Admitindo que p é a probabilidade de sucesso, temos:

$$P(X = 1) = p e P(X = 0) = 1 - p; ou$$

p é o parâmetro da distribuição que, uma vez conhecido, pode ser calcular qualquer probabilidade.

Distribuição de Bernoulli

Admitindo que p é a probabilidade de sucesso, temos:

$$P(X = 1) = p e P(X = 0) = 1 - p; ou$$

p é o parâmetro da distribuição que, uma vez conhecido, pode ser calcular qualquer probabilidade.

Notação: $X \sim Bern(p)$

Determine E(X) e Var(X).

$$E(X) = p$$
 e $Var(X) = p(1-p)$

Distribuição de Bernoulli

Admitindo que p é a probabilidade de sucesso, temos:

$$P(X = 1) = p e P(X = 0) = 1 - p; ou$$

$$P(X = x) = p^{x} (1 - p)^{1 - x}; x = 0 \text{ ou } x = 1$$

p é o parâmetro da distribuição que, uma vez conhecido, pode ser calcular qualquer probabilidade.

Notação: $X \sim Bern(p)$

Determine E(X) e Var(X).

$$E(X) = p$$
 e $Var(X) = p(1-p)$

Distribuição Binomial

Contexto geral

Imagine, agora, que repetimos um ensaio de Bernoulli *n* vezes.

Suponha ainda que as repetições sejam independentes.

Uma amostra particular será constituída de uma sequência de sucessos e fracassos.

Intuito será contabilizar a quantidade de sucessos nessas n tentativas.

Alguns exemplos

Em muitas situações práticas, estamos interessados na probabilidade de **um evento ocorrer y vezes** em **n repetições do experimento**, por exemplo:

- a probabilidade de vender 50 seguros em 200 telefonemas;
- a probabilidade de que 15 carros de uma determinada marca sejam roubados na cidade, dentre os 40 carros desta marca segurados por uma companhia;
- a probabilidade de 100 em 300 telespectadores entrevistados lembrarem quais produtos foram anunciados em determinado programa;
- a probabilidade de uma ação subir em 10 dos 21 dias avaliados.

Experimento Binomial

- é uma sequência de *n* repetições (ou tentativas ou ensaios)
 idênticas;
- cada repetição tem apenas 2 resultados possíveis: um é denominado sucesso e o outro, fracasso;
- a probabilidade de sucesso para cada ensaio é denominada p e será constante em cada repetição. Então, a probabilidade de fracasso (1-p) também não varia de tentativa para tentativa;
- As tentativas são independentes.

Exemplo 1

100K Ω

Um resistor de 100K Ohms comprado na Santa Efigênia tem probabilidade de falha de 20%, segundo um fabricante bem ruim. Ainda, esses resistores podem falhar de forma independente uns dos outros.

Um aluno de engenharia compra um pacote com 3 desses resistores.

Responda:

- a) Encontre a distribuição de probabilidades da variável que conta número de resistores com falha nesse pacote contendo 3 resistores. Dica: Use árvore de probabilidades para essa construção.
- b) Qual a probabilidade de exatamente dois falharem?
- c) E se for um pacote com 100 resistores, qual a probabilidade de 20 falharem?

Exemplo 1

Tal experimento possui a distribuição binomial?

- Experimento consiste de 3 sorteios idênticos → n = 3.
- Dois resultados possíveis em cada tentativa: falha (sucesso) ou não (fracasso).
- A probabilidade de falha é a mesma em cada tentativa → p = 0,2
- As tentativas (resistores) são independentes.

Probabilidade para sequências com 2 sucessos

p = 0.20 probabilidade de um resistor falhar

Resultado	Probabilidade	
$S_1S_2F_3$	pp(1-p)	p ² (1-p)
$S_1F_2S_3$	p(1-p)p	p ² (1-p)
$F_1S_2S_3$	(1-p)pp	p ² (1-p)

$$P(Y = 2) = 3 \cdot p^2 (1-p)$$

Probabilidade para sequências com 1 sucesso

p = 0.20 probabilidade de um resistor falhar

Resultado	Probabilidade	
$S_1F_2F_3$	p(1-p)(1-p)	p(1-p) ²
$F_1S_2S_3$	(1-p)p(1-p)	p(1-p) ²
$F_1F_2S_3$	(1-p) (1-p)p	p(1-p) ²

$$P(Y = 1) = 3 \cdot p (1-p)^2$$

Probabilidades para sequências com 0 e 3 sucessos

p = 0.20 probabilidade de um resistor falhar

Resultado	Probabilidade	
$F_1F_2F_3$	(1-p)(1-p)(1-p)	$p^0(1-p)^3$

$$P(Y = 0) = 1 \cdot (1-p)^3$$

Resultado	Probabilidade	
$S_1S_2S_3$	ppp	$p^3(1-p)^0$

$$P(Y=3)=1\cdot p^3$$

Distribuição de probabilidades

Y: número de sucessos, com p = 0,20

Resultado	У	P(Y=y)
$S_1S_2S_3$	3	0,008
$S_1S_2F_3$	2	0,032
$S_1F_2S_3$	2	0,032
$F_1S_2S_3$	2	0,032
$S_1F_2F_3$	1	0,128
$F_1S_2F_3$	1	0,128
$F_1F_2S_3$	1	0,128
F ₁ F ₂ F ₃	0	0,512
	soma	1,000

Distribuição de probabilidades de Y

у	p(Y=y)
0	0,512
1	0,384
2	0,096
3	0,008
soma	1,000

Distribuição Binomial

Modela experimentos binomiais.

Y: número de sucessos em um experimento binomial com n tentativas

$$Y \sim Bin(n;p)$$

Para y = 0,1,..., n, temos:

$$P(Y = y) = (n)^{n-y}$$
Em n repetições, em quantas combinações aparecem y sucessos?

Probabilidade de fracasso ocorrendo (n-y) vezes

Probabilidade de sucesso ocorrendo y vezes

Forma geral

$$P(Y = y) = \binom{n}{y} p^{y} (1-p)^{n-y}$$

- P(Y=y): probabilidade de y sucessos em n tentativas
- n: número de tentativas
- p: probabilidade de sucesso em cada tentativa

Esperança e Variância da Binomial

Quando Y~Bin(n;p), então

$$\mu = E(Y) = np$$

$$\sigma^2 = Var(Y) = np(1-p)$$

Exemplo 1 – item (c)

100K Ω

Um resistor de 100K Ohms comprado na Santa Efigênia tem probabilidade de falha de 20%, segundo um fabricante bem ruim.

Um aluno de engenharia compra um pacote com 3 desses resistores.

Responda:

c) E se for um pacote com 100 resistores, qual a probabilidade de 20 falharem?

Vamos calcular no Jupyter

A probabilidade de um determinado resistor falhar é sempre de 0,20.

Suponha que os resistores se comportem de maneira independente.

- a) Se um pacote tem 100 resistores, qual a probabilidade de 20 falharem?
- b) Se um pacote tem 100 resistores, qual a probabilidade de no máximo 20 falharem?
- c) Se um pacote tem 100 resistores, qual a probabilidade de pelo menos 20 falharem?

Distribuição de Binomial

Como calcular no Python: Y \sim Binomial(n, p)

In []: from scipy import stats

$$P(Y = y) \Rightarrow stats.binom.pmf(y, n, p)$$

$$P(Y \le y) \Rightarrow \text{stats.binom.cdf}(y, n, p)$$

$$E(Y) \Rightarrow stats.binom.mean(n, p)$$

$$Var(Y) \Rightarrow stats. binom. var(n, p)$$

$$DP(Y) \Rightarrow stats.binom.std(n, p)$$

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html

Exemplo

- Download do notebook pelo Github
- Fazer individual e discutir em grupo
- Usar arquivo:

```
Aula11_Exemplo_...ipynb
```

Atividade

- Download do notebook pelo Github
- Fazer individual e discutir em grupo
- Usar arquivo:

Aula11_Atividade_...ipynb

Exercício

- Download do notebook pelo Github
- Fazer individual e discutir em grupo
- Usar arquivo:

Atenção: Tem APS6 para esse exercício.