PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES

Envoi 4 : Pot-pourri À renvoyer au plus tard le 14 mars 2019

Les consignes suivantes sont à lire attentivement :

- Le groupe junior est constitué des élèves nés en 2004 ou après. Les autres élèves sont dans le groupe senior.
- Les exercices classés 'Juniors" ne sont à chercher que par les élèves du groupe junior.
- Les exercices classés 'Communs' sont à chercher par tout le monde.
- Les exercices classés 'Seniors' ne sont à chercher que par les élèves du groupe senior.
- Les exercices doivent être cherchés de manière individuelle.
- Utiliser des feuilles différentes pour des exercices différents.
- Pour les exercices de géométrie, faire des figures sur des feuilles blanches séparées.
- Respecter la numérotation des exercices.
- Bien préciser votre nom en lettres capitales, et votre prénom en minuscules sur chaque copie.

Animath,

Préparation Olympique Française de Mathématiques, 11-13 rue Pierre et Marie Curie, 75005 Paris.

copies.ofm@gmail.com

Exercices Juniors

Exercice 1. Au début, les 9 cases d'un échiquier 3×3 contiennent chacune un 0. A chaque étape, Pedro choisit deux cases partageant un côté, et ajoute soit 1 aux deux cases, soit -1 aux deux cases. Montrer qu'il est impossible d'atteindre en un nombre fini de coups la situation où toutes les cases sont remplies par un 2.

Solution de l'exercice 1 L'idée ici est de faire apparaître un invariant I.

Colorions l'échiquier naturellement en noir et blanc de telle sorte qu'il y a 4 cases noires et 5 blanches. Soit donc I la somme des cases noires moins la somme des cases blanches. Au début, I=0, et dans une hypothétique situation où toutes les cases sont remplies par un 2, I=-2.

Or I ne varie pas; en effet, à chaque étape on choisit deux cases partageant un côté commun, donc de couleur différente, et on leur ajoute le même nombre. Il en résulte que I n'est modifié lors de l'accomplissement d'une étape, d'où le résultat.

Exercice 2. Soient m, n, k trois entiers positifs tels que $m^2 + n = k^2 + k$. Montrer que $m \le n$.

Solution de l'exercice 2 On écrit $(2k+1)^2 = 4(k^2+k) + 1 = 4(m^2+n) + 1 = (2m)^2 + 4n + 1$. Or si n < m, on peut écrire

$$(2m)^2 < (2m)^2 + 4n + 1 < 4m^2 + 4m + 1 = (2m + 1)^2$$

ce qui est impossible puisque $(2k+1)^2=(2m)^2+4n+1$ est un carré et ne peut donc pas être entre deux carrés consécutifs. D'où $n\geqslant m$.

Exercice 3. Soit ABC un triangle dont les trois angles sont aigus, avec AB > AC, et soit Ω son cercle circonscrit. On note M le milieu de [BC]. Les tangentes à Ω en B et C s'intersectent en P, et les droites (AP) et (BC) se coupent en S. On note D le pied de la hauteur issue de B dans ABP, et ω le cercle circonscrit à CSD. Enfin, on note K le second point d'intersection (après C) de ω et Ω . Montrer que $\widehat{CKM} = 90^\circ$.

Solution de l'exercice 3

L'idée est de se rendre compte que la figure contient de nombreux points cocycliques. Pour commencer, on a PB = PC donc (MP) est la médiatrice de [BC], et en particulier l'angle \widehat{BMP} est droit. Comme \widehat{BDP} l'est aussi, les points B, D, M et P sont cocycliques sur le cercle Γ de diamètre [BP]. Si on trace ce cercle sur notre figure, il semble que Γ passe aussi par K. En effet, on va vérifier par chasse aux angles que B, D, K et P sont cocycliques. D'une part, en utilisant le théorème de l'angle inscrit, on a

$$\widehat{\mathsf{KDP}} = 180^{\circ} - \widehat{\mathsf{KDS}} = \widehat{\mathsf{KCS}} = \widehat{\mathsf{KCB}}.$$

D'autre part, en utilisant le cas limite du théorème de l'angle inscrit, on a

$$\widehat{KBP} = \widehat{KCB}$$
,

donc les cinq points B, D, K, M et P sont cocycliques. On peut maintenant conclure en décomposant l'angle \widehat{CKM} en D pour pouvoir utiliser un maximum de cercles :

$$\widehat{\mathsf{CKM}} = \widehat{\mathsf{CKD}} + \widehat{\mathsf{DKM}} = 180^\circ - \widehat{\mathsf{CSD}} + \widehat{\mathsf{DBM}} = \widehat{\mathsf{BSD}} + \widehat{\mathsf{DBS}} = 180^\circ - \widehat{\mathsf{BDS}} = 90^\circ.$$

Exercices Communs

Exercice 4. Soit ABC un triangle isocèle en A mais pas rectangle. Soit D le point de (BC) tel que (AD) soit perpendiculaire à (AB), et soit E le projeté orthogonal de D sur (AC). Soit enfin H le milieu de [BC].

Montrer que AHE est isocèle en H.

Solution de l'exercice 4

Commençons par remarquer que les points A, D, E et H sont cocycliques sur le cercle de diamètre [AD]. On en déduit par chasse au angles :

$$\widehat{\mathsf{HEA}} = \widehat{\mathsf{HDA}} = 90^{\circ} - \widehat{\mathsf{DBA}} = 90^{\circ} - \widehat{\mathsf{BCA}} = \widehat{\mathsf{HAE}},$$

donc le triangle AHE est isocèle en H.

Exercice 5. Soit $n \ge 2$ et soient x_1, x_2, \dots, x_n des nombres réels tels que $x_1 + x_2 + \dots + x_n = 0$ et $x_1^2 + x_2^2 + \dots + x_n^2 = 1$.

Montrer qu'il existe i tel que $x_i \geqslant \frac{1}{\sqrt{n(n-1)}}$.

<u>Solution de l'exercice 5</u> On note N^+ le nombre d'indices i tels que $x_i > 0$ et N^- le nombre d'indices i tels que $x_i \le 0$, de sorte que $N^+ + N^- = n$. On note également

$$S_1^+ = \sum_{\mbox{i tel que α_i}} x_{\mbox{i}} \quad \mbox{et} \quad \ S_1^- = \sum_{\mbox{i tel que α_i}} (-x_{\mbox{i}}),$$

ainsi que

$$S_2^+ = \sum_{\mbox{i tel que χ_i}} \chi_i^2 \quad \mbox{et} \quad S_2^- = \sum_{\mbox{i tel que χ_i}} \chi_i^2.$$

L'intérêt de ces quantités est qu'elles permettent à la fois de reformuler les hypothèses et d'utiliser des inégalités bien connues comme celle de Cauchy–Schwarz. Les hypothèses de l'énoncé se réécrivent $S_1^+ = S_1^-$ et $S_2^+ + S_2^- = 1$. Pour faire apparaître la racine dans le résultat, on va utiliser S_2^+ . Plus précisément, on va montrer que $S_2^+ \geqslant \frac{1}{n}$. Comme la somme S_2^+ contient au maximum n-1 termes (les nombres ne peuvent pas être tous > 0), un de ces termes est plus grand que $\frac{1}{n(n-1)}$, soit $x_i^2 \geqslant \frac{1}{\sqrt{n(n-1)}}$ pour un certain i avec $x_i > 0$, ce qui permet de conclure.

Pour montrer cela, on écrit :

$$1 - S_2^+ = S_2^- \leqslant (S_1^-)^2 = (S_1^+)^2 \leqslant N^+ S_2^+ \leqslant (n - 1)S_2^+.$$

La première inégalité s'obtient en développant $(S_1^-)^2$ et en ne gardant que les termes x_i^2 . La seconde est l'inégalité de Cauchy-Schwarz, et la troisième est le fait que les x_i ne sont pas tous strictement positifs. On en déduit $S_2^+ \geqslant \frac{1}{n}$, ce qui permet de conclure.

Exercice 6. Trouver tous les triplets (a, b, c) d'entiers strictement positifs tels que

$$3^a - 5^b = c^2$$
.

<u>Solution de l'exercice 6</u> Comme 3^a et 5^b sont tous deux impairs, on a c pair donc $c^2 \equiv 0[4]$. Comme $5^b \equiv 1[4]$, on doit avoir $3^a \equiv 1[4]$, donc a est pair. On écrit a = 2a', et l'équation devient

$$5^{b} = 3^{2a'} - c^{2} = (3^{a'} - c)(3^{a'} + c).$$

Notons que la somme des deux facteurs vaut $2 \times 3^{\alpha'}$, donc elle n'est pas divisible par 5, donc un des deux facteurs n'est pas divisible par 5 et ne peut valoir que 1. C'est nécessairement le plus petit, donc on a

$$3^{a'} - c = 1$$
 et $3^{a'} + c = 5^b$,

ou encore (en sommant les deux dernières égalités) $2 \times 3^{a'} = 5^b + 1$.

On peut maintenant remarquer que $\alpha'=1$ est solution, mais qu'il ne semble plus y en avoir ensuite. Une manière naturelle de séparer le cas $\alpha'=1$ du reste est de regarder modulo 9. En effet, dans ce cas, dès que $\alpha'\geqslant 2$, les deux membres doivent être divisibles par 9, i.e. $5^b\equiv -1[9]$. Ceci implique que b doit être divisible par 3. De plus, en regardant modulo 3, on obtient que b doit être impair. L'équation se réécrit donc

$$2 \times 3^{a'} = 5^{3b'} + 1 = 125^{b'} + 1$$

avec b' impair. Mais alors, le membre de droite se factorise par $125+1=126=2\times7\times9$. En particulier, il est divisible par 7, ce qui n'est pas le cas du membre de gauche. Il est donc impossible d'avoir $\alpha' \geqslant 2$. On doit donc avoir $\alpha' = 1$, ce qui conduit à la solution (a, b, c) = (2, 1, 2) dans l'équation de départ.

Exercices Seniors

Exercice 7. Soit $(a_n)_{n\geqslant 0}$ une suite de réels. On suppose que $a_n=|a_{n+1}-a_{n+2}|$ pour tout entier naturel n. De plus, a_0 et a_1 sont strictement positifs et distincts. Montrer que la suite $(a_n)_{n\geqslant 0}$ n'est pas bornée.

Solution de l'exercice 7 Il est clair que la suite (a_n) est à termes positifs.

Soit i tel que $a_i < a_j$ pour j < i. Supposons par l'absurde que $i \geqslant 4$. Alors $a_{i-2} = |a_i - a_{i-1}| = a_{i-1} - a_i < a_{i-1}$ donc $a_{i-3} = |a_{i-2} - a_{i-1}| = a_{i-1} - a_{i-2} = a_i$, ce qui contredit l'hypothèse sur i. Ainsi, si $m = \min\{a_1, a_2, a_3\}$, alors pour tout i, $a_i \geqslant m$. En effet, s'il existe i avec $a_i < m$, choisissons i minimal, alors a_i est plus petit que tous les termes précédents, donc $i \leqslant 3$ ce qui contredit la définition de m.

De plus, m > 0 car $a_3 \geqslant 0$ et $a_3 = 0 \rightarrow a_1 = a_2$.

Dès lors, on écrit $a_i = |a_{i+1} - a_{i+2}|$ pour tout i, donc

- Si $\mathfrak{a}_{\mathfrak{i}+1}>\mathfrak{a}_{\mathfrak{i}+2},$ d'où $\mathfrak{a}_{\mathfrak{i}+1}=\mathfrak{a}_{\mathfrak{i}}+\mathfrak{a}_{\mathfrak{i}+2}\geqslant \mathfrak{a}_{\mathfrak{i}}+\mathfrak{m}$
- Sinon, $a_{i+2} = a_{i+1} + a_i \geqslant a_i + m$

Dans tous les cas, il existe un terme de la suite $\geqslant a_i + m$. On peut donc prouver par une très simple récurrence sur k l'existence de i tel que $a_i \geqslant mk$, donc la suite (a_i) n'est pas bornée.

Exercice 8. Soit ABCD un trapèze avec (AB) parallèle à (CD). On suppose qu'il y a deux cercles ω_1 et ω_2 à l'intérieur du trapèze tels que ω_1 est tangent aux côtés [DA], [AB] et [BC] et ω_2 est tangent aux côtés [BC], [CD] et [DA]. Soit (d₁) la seconde tangente (après (AD)) à ω_2 passant par A, et soit (d₂) la seconde tangente (après (BC)) à ω_1 passant par C.

Montrer que (d_1) et (d_2) sont parallèles.

Solution de l'exercice 8

On note X le point d'intersection de (AD) et (BC). On note respectivement E et F les centres de ω_1 et ω_2 . Notons que ω_1 est le cercle inscrit à XAB et que ω_2 est le cercle X-exinscrit à XCD. Enfin, on note G le centre du cercle X-exinscrit à XAB.

On vérifie que les triangles XAG et XEB sont semblables. En effet, on a $\widehat{AXG} = \widehat{EXB} = \frac{1}{2}\widehat{AXB}$. De plus, on a $\widehat{GAX} = 90^\circ + \frac{1}{2}\widehat{BAX}$ et $\widehat{BEX} = 180^\circ - \frac{1}{2}\widehat{AXB} - \widehat{ABX} = 90^\circ + \frac{1}{2}\widehat{BAX}$, donc XAG et XEB sont bien semblables. Soit s la similitude (directe) qui envoie X sur X, A sur E et G sur B. D'après l'homothétie décrite précédemment, on a $\frac{XC}{XB} = \frac{XF}{XG}$, donc s(F) = C.

Par similitude, on en déduit $\widehat{XAF} = \widehat{XEC}$. La fin de l'exercice est maintenant une simple chasse aux angles, qui peut être menée de nombreuses manières différentes. Notons par exemple Y l'intersection de (d_2) avec (AD). Montrer que (d_1) et (d_2) sont parallèles revient à montrer $\widehat{XYC} = \widehat{XAd_1}$. Or, on a

$$\widehat{\mathsf{XYC}} = 180^{\circ} - \widehat{\mathsf{AXB}} - \widehat{\mathsf{XCY}} = \widehat{\mathsf{BCY}} - \widehat{\mathsf{AXB}} = 2\widehat{\mathsf{BCE}} - \widehat{\mathsf{AXB}}.$$

De plus, on peut écrire

$$\widehat{\mathsf{BCE}} = 180^{\circ} - \widehat{\mathsf{XCE}} = \frac{1}{2}\widehat{\mathsf{AXB}} + \widehat{\mathsf{XEC}} = \frac{1}{2}\widehat{\mathsf{AXB}} + \widehat{\mathsf{XAF}},$$

ce qui donne $\widehat{XYC} = 2\widehat{XAF} = \widehat{XAd_1}$, d'où finalement le résultat.

Exercice 9. Soit $S = \{1, ..., n\}$, avec $n \ge 3$ un entier, et soit k un entier strictement positif. On note S^k l'ensemble des k-uplets d'éléments de S. Soit $f: S^k \to S$ telle que, si $x = (x_1, ..., x_k) \in S^k$ et $y = (y_1, ..., y_k) \in S^k$ avec $x_i \ne y_i$ pour tout $1 \le i \le k$, alors $f(x) \ne f(y)$.

Montrer qu'il existe ℓ avec $1 \leqslant \ell \leqslant k$ et une fonction $g: S \to S$ vérifiant, pour tous $x_1, \ldots, x_k \in S$, $f(x_1, \ldots, x_k) = g(x_\ell)$.

<u>Solution de l'exercice 9</u> Nous montrerons le résultat par récurrence sur k. Le cas k = 1 est trivial, supposons donc le résultat vrai pour $k - 1 \ge 1$ et montrons le pour k.

Supposons l'existence de k-1 éléments a_2,\ldots,a_k de S tels que la fonction $\varphi:\alpha\in S\mapsto f(\alpha,\alpha_2,\ldots,\alpha_k)\in S$ est injective. Par égalité de cardinal, elle est aussi bijective.

Dès lors, si b_2, \ldots, b_k sont des éléments de S avec $b_i \neq a_i$ pour tout $i \in \{2, \ldots, k\}$, et $b \in S$, alors $\varphi(a) \neq f(b, b_2, \ldots, b_k)$ pour $S \ni a \neq b$. Par surjectivité de $\varphi, \varphi(b) = f(b, b_2, \ldots, b_k)$.

Soient c_2, \ldots, c_k des éléments de S; puisque $n \geqslant 3$, il existe b_2, \ldots, b_k tels que $a_i \neq b_i \neq c_i$ pour tout $i \in \{2, \ldots, k\}$. Dès lors le raisonnement précédent montre que, si $b \in S$, $\varphi(b) = f(b, b_2, \ldots, b_k) = f(b, c_2, \ldots, c_k)$, et ainsi $\ell = 1$, et $g = \varphi$ conviennent.

Nous supposons donc qu'il existe deux fonctions $\alpha, \beta: S^{k-1} \to S$ avec, pour tous a_2, \ldots, a_k dans $S, \alpha = \alpha(a_2, \ldots, a_k) \neq \beta(a_2, \ldots, a_n) = \beta$, et $f(\alpha, a_2, \ldots, a_k) = f(\beta, a_2, \ldots, a_k)$.

Montrons que $f':(a_2,\ldots,a_k)\in S^{k-1}\mapsto f(\alpha,a_2,\ldots,a_k)=f(\beta,a_2,\ldots,a_k)$ satisfait les conditions du problème. En effet, si (a_2,\ldots,a_k) et (b_2,\ldots,b_k) sont deux (k-1)-uplets dont les coordonnées sont toutes différentes, alors soit $\alpha=\alpha(a_2,\ldots,a_k)\neq\alpha(b_2,\ldots,b_k)=\alpha'$, auquel cas $g(a_2,\ldots,a_k)=f(\alpha,a_2,\ldots,a_k)\neq f(\alpha',b_2,\ldots,b_k)g(b_2,\ldots,b_k)$ par hypothèse, soit $\alpha\neq\beta(b_2,\ldots,b_k)$ auquel cas on a de même $g(a_2,\ldots,a_k)\neq g(b_2,\ldots,b_k)$.

Dès lors par hypothèse de récurrence, et sans perte de généralité, on peut supposer l'existence de $h: S \to S$ telle que $g(\alpha_2,\ldots,\alpha_k)=h(\alpha_2)$ pour α_2,\ldots,α_k dans S. h doit être injective car $h(\alpha)=g(\alpha,\alpha,\ldots,\alpha)\neq g(b,\ldots,b)=h(b)$ si $\alpha\neq b$ sont des éléments de S. Par égalité de cardinal, h est surjective.

Montrons que $f(\alpha_1,\ldots,\alpha_k)=h(\alpha_2)$ pour tous $\alpha_1,\ldots,\alpha_k\in S$, ce qui conclura. Supposons par l'absurde l'existence d'un k-uplet $\alpha=(\alpha_1,\ldots,\alpha_k)\in S^k$ tel que $f(\alpha)\neq h(\alpha_2)$. Par surjectivité, il existe $b_2\in S$ avec $h(b_2)=f(\alpha)$ avec $b_2\neq \alpha_2$ donc. Soient $b_i\neq \alpha_i$ des éléments de S, pour $3\leqslant i\leqslant k$. On a $\alpha=\alpha(b_2,\ldots,b_k)$ et $\beta=\beta(b_2,\ldots,b_k)$ deux éléments de S tels que $f(\alpha,b_2,\ldots,b_k)=f(\beta,b_2,\ldots,b_k)=h(b_2)=f(\alpha)$. L'hypothèse faite sur f assure donc $\alpha=\alpha_1=\beta$, ce qui est une contradiction d'après la définition de α et β .