Introduction to Data Engineering and Spark Architecture

Agenda

- Peek into Data Engineering & Big Data
 - Data Engineering
 - Big Data Frameworks
- Introduction to Spark
 - Spark vs. Hadoop
 - Spark Architecture
- Setting up a Spark Cluster

Peek into Data Engineering & Big Data

Data Engineering

- Data Engineers support Data Scientists.
 - In charge of designing, creating, deploying, and supporting data pipelines.
 - Depending of the side of the company, the Data Scientist can be a "Full Stack"
 Data Scientist": in charge of its own Data Engineering.
- Skills needed
 - Computer Science
 - Business knowledge
 - Database Expertise (SQL and NoSQL)
 - Big Data Architectures
- Why Become a Data Engineer?
 - Explosion on roles over the last 5 years.
 - Unlike Data Scientist, there is no clear path.

- Big Data
 - When is considered big? Loosely defined.
 - Depends on both external and internal factors.
 - Rule of Thumb: "Too Big to fit in a Pandas Dataframe".
- Parallel computation
 - Divide and conquer Map Reduce!
 - Map phase Activities that can be done independently.
 - Reduce phase Aggregation done at the end.
 - Data structure: Key-Value pairs

MapReduce example

- Distributed computing
 - Instead of a big powerful machine Several simpler ones
 - Code lives in Master Work is done in Workers.

Hadoop

- Distributed File System (HDFS)
- Manages both work distribution and fault tolerance.

Introduction to Spark

Spark vs. Hadoop

- MapReduce has been the major framework for distributed computing
 - Hadoop's limitations include programmability and performance.
 - Computational frameworks are becoming specialized.
- Spark: 100x faster than Hadoop
 - Spark is the Compute Engine Hadoop still provides the environment.
- Specialized libraries for machine learning, graph processing, and database management.
- APIs include:
 - Java
 - Scala
 - Python
 - \circ R

Spark Architecture (I)

Driver and Executors

Spark Architecture (II)

SparkContext and Lazy Evaluation

Happy Learning!

