Name:	Chenzheng	Su	ID: 20643469	
Sectio	n: 1 8:30pm)	2 (11:30pm)	3 (1:30)	
1. (a) 1	Fourier	(5)		
(b)	Inverse Fourier	(5)		
				/10
2. (a)	F_k	(7)		
(b)	F_{2k}	(8)		
				/15
3. (a)	g, h	(5)		
	G, H	(5)		
(c)	F	(5)		
(d)	F (butterfly)	(5)		
				/20
4. Edge	Sharpening			
				/15
5 trai	n / bird			
J. Clai	ii , biid			
				/20
6. Imag	e compression			
				/20
Total:	(100)			

CS 370 A3 1a DFOT of f=(1,2,3,2) F[0] = 4 5/n (W-on = 4.(1+2+7+2) = 2 $[FU] = 4 \frac{2}{5} t_n W^{-n} = 4 \frac{1}{5} t_n e^{-\frac{i 2\pi}{4} n} = 4 \frac{3}{5} t_n [-i)^n = 4 (|\Phi|^2)^{\frac{3}{5}} + 2i) = -\frac{1}{2}$ $F(2) = \frac{1}{4} \sum_{n=1}^{2} f_n(-i)^{2n} = \frac{1}{4}(1-2+3-2) = 0$ $F(3) = \frac{1}{4} \sum_{n=1}^{2} f_n(-i)^{2n} = \frac{1}{4}(1+2i-3-2i) = -\frac{1}{2}$ 16. Invare DFT of F= (4, 1, 0, -1) f[0] = \frac{2}{5} F_k W^{nk} = \frac{2}{5} F_k e^{2\text{Tink}} = \frac{2}{5} F_k(i)^{nk} = 4 - |+0 - |= 2 fu] = 3 fb(i) = 4-i-0+i=4 (C)= = 1/2/2/2/2 4+1+0+1=6 +[3] = = Fr(i)3h = 4+11-0-1=4 30, Fr = / N (-1) " = Tink -= / N - N = 0 . e = Tilank - 1 (2n+1)k $F_{k} = \frac{1}{N} \frac{(N-2)/2}{n-2} e^{\frac{4\pi i \pi i n k}{N}} \cdot (1 - e^{\frac{2\pi i k i n}{N}}) \text{ if } N \text{ is even}$ $= \frac{1}{N} (1 - e^{\frac{2\pi i k}{N}}) \frac{e^{2\pi i n k} - 1}{e^{\frac{2\pi i n k}{N}} - 1} = 0$ $F_{k} = \frac{1}{N} \frac{(N-3)/2}{(N-3)/2} \left(e^{\frac{2\pi i n k}{N}} - e^{\frac{2\pi i n k}{N}} - e^{\frac{2\pi i n k}{N}} \right) + \frac{1}{N} e^{\frac{2\pi i n k}{N}} \text{ if } N \text{ is odd}$ Similar to whole, = $0 + \sqrt{\frac{N}{N}} = \frac{1}{N}$ Hence, $F_{k} = \frac{1}{N}$, if N is odd

2.(b) $F_{2k} = \frac{1}{N} \sum_{n=0}^{k-1} f_n W^{-2nk} = \frac{1}{N} \sum_{n=0}^{k-1} (-1) e^{\frac{2\cdot 27i\cdot (-2nk)}{N}} + (1) e^{\frac{27i\cdot (-2n+1)\cdot (2k)}{N}}$ = N = (-1) · e -8 Tink + e -8 Tink + 2 Tizk = 1 = e = 8 Tink . (e 24 Tik - 1) · stink - for every n. : e 4 Tile = 1 for every integer N : Fix = 0 become if 1-1=0. 3. (a) g = (0,0,0,0) h = (1,0,0,0)(b) Go= 4 \$\int_{n=0}^{2} g_0 W^{2n6} = 0, G_1 = 0, G_2 = 0, G_3 = 0 =) G= (0,0,0,0) Ho = 4 = how = 4 = 4 hos ho(i) = 4 (1-2i) = 014-5i $H_{2} = \frac{1}{4} \frac{1}{n_{2}} \frac{1}{n_{2}}$ H=4 = hn W== 4 (121) $\frac{(-) = (0,1,0,0,0,1,0,0)}{(d)(1 0 20 -1 0 -2 0)} = \frac{(1-2i)^{-4} + \frac{1}{4} + \frac{1}{4$ (c) F= (0, 4-2, 0, 4+2, 0,4-2,0,4+2) (0) (0) (0) (0) (4-2) (4-2) (4+2) F=@1(0, 4-=, 0, 4+=, 0, 4-=, 0, 4+=)

4. $t_{x} = \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} F_{k} (\cos(\frac{2\pi l y}{N}) \cdot (-\sin(\frac{2\pi l x}{N})) \cdot \frac{2\pi k}{N}$ $f_{xx} = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F_{k}, l \cos(\frac{2\pi l y}{N}) \cdot (-\cos(\frac{2\pi l x}{N})) \cdot (\frac{2\pi l k}{N})^{2}$ $f_{y} = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F_{k}, y \cos(\frac{2\pi l x}{N}) \cdot (-\sin(\frac{2\pi l y}{N})) \cdot (\frac{2\pi l}{N})$ $f_{yy} = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F_{k}, l \cos(\frac{2\pi l x}{N}) \cdot (-\cos(\frac{2\pi l y}{N})) \cdot (\frac{2\pi l}{N})^{2}$ $f_{xy} = f_{xy} \sum_{l=0}^{N-1} F_{k}, l \cos(\frac{2\pi l x}{N}) \cos(\frac{2\pi l x}{N}) \cdot (1 + a(\frac{2\pi l}{N})^{2} + a(\frac{2\pi l}{N})^{2})$ $f_{xy} = f_{xy} \sum_{l=0}^{N-1} F_{k}, l \cos(\frac{2\pi l x}{N}) \cos(\frac{2\pi l x}{N}) \cdot (1 + a(\frac{2\pi l}{N})^{2} + a(\frac{2\pi l k}{N})^{2})$

The filter enhances the grid with higher Fk, l value It tends to shapen edges because edges one usually have larger Fk, l, k and l value.