Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

5

Listing of Claims:

1	Claim 1 (currently amended). A method for designing at least one				
2	mask for manufacturing an integrated circuit comprising:				
3	generating a schematic for the integrated circuit, the integrated				
4	circuit comprising a set of transistors;				
5	entering data representing each transistor of the set into a				
6	computer-aided design system;				
7	identifying a first subset of the set of transistors implementing an				
8	analog circuit comprising a cascode wherein the transistors of the first				
9	subset are expected to be subject to voltage levels beyond the bounds of				
10	a power rail and a ground rail of the integrated circuit during normal				
11	operation;				
12	designating, in the computer-aided design system, robust				
13	geometries for the transistors of the first subset;				
14	and				
15	operating the computer-aided design system to generate the at				
16	least one mask.				
1	Claim 2 (original). The method of claim 1 further comprising:				
2	identifying a second subset of the set of transistors, wherein the				
3	transistors of the second subset are input-output transistors				
	G * LN . 10/004 0/				

	M-12366 US
4	and
5	designating, in the computer aided design system, robust
6	geometries for the transistors of the second subset.
1	Claim 3 (currently amended). An integrated circuit comprising:
2	a semiconductor die formed using at least one mask designed by
3	the acts of:
4	generating a schematic for the integrated circuit, the integrated
5	circuit comprising a set of transistors;
6	entering data representing each transistor of the set into a
7	computer-aided design system;
8	identifying a first subset of the set of transistors implementing an
9	analog circuit comprising a cascode wherein the transistors of the first
10	subset are expected to be subject to voltage levels beyond the bounds of
11	a power rail and a ground rail of the integrated circuit during normal
12	operation;
13	designating, in the computer-aided design system, robust

designating, in the computer-aided design system, robust geometries for the transistors of the first subset, such that the set of data may be used to generate a plurality of masks for lithography of features having mutually different minimum line widths.

Claim 4 (currently amended). The integrated circuit of claim 3 wherein:
the at least one mask is designed by acts further comprising:
identifying a second subset of the set of transistors, wherein the
transistors of the second subset are input-output transistors
and

	M-12366 US				
6	designating, in the computer aided design system, robust				
7	geometries for the transistors of the second subset.				
1	Claim 5 (currently amended). The integrated circuit of claim 3 wherein:				
2	the integrated circuit implements a radio frequency circuit.				
1	Claim 6 (currently amended). The integrated circuit of claim 4 3				
2	wherein:				
3	the integrated circuit implements a hybrid circuit.				
1	Claim 7 (currently amended). The integrated circuit of claim 3 wherein:				
2	the semiconductor die comprises metal-oxide transistors is formed				
3	using lithography.				
1	Claim 8 (currently amended). A method for designing a plurality of				
2	masks for manufacturing an integrated circuit migrated across a plurality of				
3	feature size technologies, each mask associated with a respective feature size				
4	technology, the method comprising:				
5	generating a schematic for the integrated circuit, the integrated				
6	circuit comprising a set of transistors;				
7	entering data representing each transistor of the set into a				

Serial No. 10/004,976

analog circuit comprising a cascode wherein the transistors of the first

subset are expected to be subject to voltage levels beyond the bounds of

identifying a first subset of the set of $\underline{\text{transistors implementing an}}$

computer-aided design system;

8

9

10

11

3.4	1	22	66	1	IC

12	a power rail and a ground rail of the integrated circuit during normal
13	operation;
14	designating, in the computer-aided design system _ robust
15	geometries for the transistors of the first subset;
16	and
17	operating the computer aided design system to generate a first
18	mask associated with a first feature size technology and a second mask
19	associated with a second feature size technology, wherein a respective
20	geometry of each transistor of the first subset is the same for both the first
21	mask and the second mask.