

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 January 2001 (18.01.2001)

PCT

(10) International Publication Number
WO 01/04264 A2

(51) International Patent Classification⁷: **C12N** Michael, G. [CA/US]; 1050 Borregas Avenue, #80, Sunnyvale, CA 94089 (US).

(21) International Application Number: **PCT/US00/17887**

(74) Agents: MURRY, Lynn, E. et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(22) International Filing Date: 28 June 2000 (28.06.2000)

(25) Filing Language: English

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(30) Priority Data:
09/349,015 7 July 1999 (07.07.1999) US

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 09/349,015 (CIP)
Filed on 7 July 1999 (07.07.1999)

Published:

— Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (*for all designated States except US*): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): JONES, Karen, Ann [GB/GB]; Cregneish, Elmdon, Saffron Walden, Essex CB11 4LT (GB). VOLKMUTH, Wayne [US/US]; 3620 El Encanto, Calabasas, CA 91302 (US). WALKER,

WO 01/04264 A2

(54) Title: ATHEROSCLEROSIS-ASSOCIATED GENES

(57) Abstract: The invention provides novel atherosclerosis-associated polynucleotides and polypeptides encoded by those genes. The invention also provides expression vectors, host cells, and antibodies. The invention also provides methods for screening or purifying ligands and diagnosing or treating atherosclerosis.

ATHEROSCLEROSIS-ASSOCIATED GENES**TECHNICAL FIELD**

The invention relates to 34 atherosclerosis-associated polynucleotides identified by their co-expression with known atherosclerosis genes and their corresponding gene products. The invention also relates to the use of these biomolecules in diagnosis, prognosis, prevention, treatment, and evaluation of therapies for diseases associated with atherosclerosis.

BACKGROUND ART

Atherosclerosis is a disorder characterized by cellular changes in the arterial intima and the formation of arterial plaques containing intra- and extracellular deposits of lipids. The resultant thickening of artery walls and the narrowing of the arterial lumen is the underlying pathologic condition in most cases of coronary artery disease, aortic aneurysm, peripheral vascular disease, and stroke. A cascade of molecules is involved in the cellular morphogenesis, proliferation, and cellular migration which results in an atherosclerotic lesion (Libby *et al.* (1997) Int J Cardiol 62:23-29).

A healthy artery consists of three layers. The vascular intima, lined by a monolayer of endothelial cells in contact with the blood, contains smooth muscle cells in extracellular matrix. An internal elastic lamina forms the border between the intima and the tunica media. The media contains layers of smooth muscle cells surrounded by a collagen and elastin-rich extracellular matrix. An external elastic lamina forms the border between the media and the adventitia. The adventitia contains nerves and some mast cells and is the origin of the vasa vasorum which supplies blood to the outer layers of the tunica media.

Initiation of an atherosclerotic lesion often occurs following vascular endothelial cell injury as a result of hypertension, diabetes mellitus, hyperlipidemia, fluctuating shear stress, smoking, or transplant rejection. The injury results in the local release of nitric oxide and superoxide anions which react to form cytotoxic peroxynitrite radicals, causing injury to the endothelium and myocytes of the intima. This cellular injury leads to the expression of a variety of molecules that produce local and systemic effects. The initial cellular response to injury includes the release of mediators of inflammation such as cytokines, complement components, prostaglandins, and downstream transcription factors. These molecules promote monocyte infiltration of the vascular intima and lead to the upregulation of adhesion molecules which encourage attachment of the monocytes to the damaged endothelial cells. Additionally, components of the extracellular matrix including collagens, fibrinogens, and matrix Gla protein are induced and provide sites for monocyte attachment. Annexins, plasminogen activator inhibitor 1, and nitric oxide synthases are triggered to counteract these effects.

Monocytes that infiltrate the lesion accumulate modified low density lipoprotein lipid through scavenger receptors such as CD36 and macrophage scavenger receptor type I. The abundance of modified lipids is a factor in atherogenesis and is influenced by modifying enzymes such as lipoprotein

lipase, carboxyl ester lipase, serum amyloid P component, LDL-receptor related protein, microsomal triglyceride transfer protein, and serum esterases such as paraoxonase. Lipid metabolism is governed by cholesterol biosynthesis enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A synthase, and products of the apolipoprotein genes. Modified lipid stabilization and accumulation is aided by 5 perilipin and alpha-2-macroglobulin.

As monocytes accumulate in the lesion, they can rupture and release free cholesterol, cytokines, and procoagulants into the surrounding environment. This process leads to the development of a plaque which consists of a mass of lipid-engorged monocytes and a lipid-rich necrotic core covered by a fibrous cap. The gradual progression of plaque growth is punctuated by thrombus formation which 10 leads to clinical symptoms such as unstable angina, myocardial infarction, or stroke. Thrombus formation is initiated by episodic plaque rupture which exposes flowing blood to tissue factors, which induce coagulation, and collagen, which activates platelets. After initiation of the atherosclerotic lesion, enzymes that degrade extracellular matrix components such as matrix metalloproteinases and cathepsin K are up-regulated, and their inhibitors are down-regulated. This results in destabilization of 15 the atherosclerotic lesion and subsequent complications including myocardial infarction, angina, and stroke. Further arterial occlusion and infiltration increase with the expression of coagulation factors and down-regulation of their inhibitors, antithrombin III, and lipoprotein-associated coagulation inhibitor.

Smooth muscle cells build up in the arterial media and constitute one of the principal cell types 20 in atherosclerotic and restenotic lesions. They show a high degree of plasticity and are able to shift between a differentiated, contractile phenotype and a less differentiated, synthetic phenotype. This modulation occurs as a response to factors secreted from cells at the site of vascular injury and results in structural reorganization with a loss of myofilaments and the formation of an extensive endoplasmic reticulum and a large Golgi complex. Genes encoding secreted protein, acidic and rich in cysteine 25 (SPARC) and endothelin-1 contribute to these changes. At the same time, the expression of cytoskeletal proteins such as calponin, myosin, desmin, and other gene products in the cells is altered. As a result, the smooth muscle cells lose their contractility and become able to migrate from the media to the intima, to proliferate, and to secrete extracellular matrix components which contribute to arterial intimal thickening.

30 The initiation and progression of atherosclerotic lesion development requires the interplay of various molecular pathways. Many genes that participate in these processes are known, and some of them have been shown to have a direct role in atherosclerosis pathogenesis by animal model experiments, in vitro assays, and epidemiological studies (Krettek et al. (1997) Arterioscler Thromb Vasc Biol 17:2897-2903; Fisher et al. (1997) Atherosclerosis 135:145-159; Shih et al. (1998) Circulation 95:2684-2693; and Bocan et al. (1998) Atherosclerosis 139:21-30).

The present invention satisfies a need in the art by providing new compositions that are useful for diagnosis, prognosis, treatment, prevention, and evaluation of therapies for diseases associated with atherosclerosis. We have implemented a method for analyzing gene expression patterns and have identified 34 atherosclerosis-associated polynucleotides through their co-expression with 66 known 5 atherosclerosis-associated genes.

SUMMARY OF THE INVENTION

The invention provides for a substantially purified polynucleotide comprising a gene that is coexpressed with one or more known atherosclerosis-associated genes in a biological sample. Known atherosclerosis-associated genes include and encode human 22kDa smooth muscle protein, calponin, 10 desmin, smooth muscle myosin heavy chain, alpha tropomyosin, human tissue inhibitor of metalloproteinase 3, human tissue inhibitor of metalloproteinase-2, human tissue inhibitor of metalloproteinase-4, pro alpha 1(I) collagen, collagen alpha-2 type I, collagen alpha-6 type I, procollagen alpha 2(V), collagen VI alpha-2, type VI collagen alpha3, pro-alpha-1 type 3 collagen, pro-alpha-1 (V) collagen, collagenase type IV/ matrix metalloproteinase 9/gelatinase B, matrix Gla protein, 15 cathepsin K, fibrinogen beta chain gene, fibrinogen gamma chain gene, pre-pro-von Willebrand factor, coagulation factor II/ prothrombin, coagulation factor XII, coagulation factor VII, platelet endothelial cell adhesion molecule, lipoprotein-associated coagulation inhibitor, antithrombin III variant, plasminogen activator inhibitor-1, lipoprotein lipase, alpha-2-macroglobulin, apolipoprotein AI, apolipoprotein AII, apolipoprotein B-100, lipoprotein apoCII, pre-apolipoprotein CIII, apolipoprotein 20 apo C-IV, macrophage scavenger receptor type I, human antigen CD36 gene, serum amyloid P component, carboxyl ester lipase gene, paraoxonase 1, paraoxonase 2, paraoxonase 3, LDL-receptor related protein, hepatic triglyceride lipase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, very low density lipoprotein receptor, microsomal triglyceride transfer protein, perilipin, endothelin-1, endothelin receptor A, interleukin 6, interleukin 1, complement protein C8 alpha, complement component C9, 25 prostaglandin D2 synthase, annexin II/lipocortinII, annexin I/lipocortin, prostaglandin-endoperoxide synthase 2, insulin-like growth factor binding protein-1, secreted protein, acidic and rich in cysteine, human NF-kappa-B transcription factor, angiotensinogen, nitric oxide synthase 3, and nitric oxide synthase 2.

The invention also provides a substantially purified polynucleotide comprising a gene that is 30 coexpressed with one or more known atherosclerosis-associated genes in a plurality of samples. In one aspect, the polynucleotide comprises a polynucleotide sequence selected from a polynucleotide encoding a peptide selected from SEQ ID NOS:1-34; a polynucleotide sequence complementary to the polynucleotide sequence of SEQ ID NOS:1-34; and a probe comprising at least 18 sequential nucleotides of the polynucleotide sequence of SEQ ID NOS:1-34 or their complements. The invention 35 further provides a pharmaceutical composition comprising a polynucleotide and a pharmaceutical;

carrier.

The invention additionally provides methods for using a polynucleotide. One method uses the polynucleotide to screen a library of molecules or compounds to identify at least one ligand which specifically binds the polynucleotide and comprises combining the polynucleotide with a library of 5 molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand which specifically binds the polynucleotide. In this first method, the library is selected from DNA molecules, RNA molecules, PNAs, mimetics, and proteins; and the ligand identified using the method may be used to modulate the activity of the polynucleotide. A second method uses the polynucleotide to purify a ligand which specifically binds the polynucleotide and 10 comprises combining the polynucleotide with a sample under conditions to allow specific binding, detecting specific binding between the polynucleotide and a ligand, recovering the bound polynucleotide, and separating the polynucleotide from the ligand, thereby obtaining purified ligand. A third method uses the polynucleotide to diagnose a disease or condition associated with the altered expression of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a 15 plurality of biological samples and comprises hybridizing a polynucleotide to a sample under conditions to form one or more hybridization complexes, detecting the hybridization complexes, and comparing the levels of the hybridization complexes with the level of hybridization complexes in a non-diseased sample, wherein the altered level of hybridization complexes compared with the level of hybridization complexes of a non-diseased sample indicates the presence of the disease or condition.

20 A fourth method uses the polynucleotide to produce a polypeptide and comprises culturing a host cell containing an expression vector containing the polynucleotide under conditions for expression of the polypeptide and recovering the polypeptide from cell culture.

The invention provides a substantially purified polypeptide comprising the product of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a plurality of samples.

25 The invention also provides a polypeptide comprising a polypeptide sequence selected from the polypeptides encoded by SEQ ID NOs:1-34 and an oligopeptide sequence comprising at least 6 sequential amino acids of the polypeptide sequence of encoded by SEQ ID NOs:1-34. The further provides a polypeptide comprising the amino acid sequence of SEQ ID NO:35. The invention still further provides a pharmaceutical composition comprising a polypeptide and a pharmaceutical carrier.

30 The invention additionally provides methods for using a polypeptide. One method uses the polypeptide to screen a library of molecules or compounds to identify at least one ligand which specifically binds the polypeptide and comprises combining the polypeptide with the library of molecules or compounds under conditions to allow specific binding and detecting specific binding between the polypeptide and ligand, thereby identifying a ligand which specifically binds the 35 polypeptide. In this method, the library is selected from DNA molecules, RNA molecules, PNAs,

mimetics, polypeptides, agonists, antagonists, and antibodies; and the ligand identified using the method is used to modulate the activity of the polypeptide. A second method uses the polypeptide to purify a ligand from a sample and comprises combining the polypeptide with a sample under conditions to allow specific binding, detecting specific binding between the polypeptide and a ligand, recovering 5 the bound polypeptide, and separating the polypeptide from the ligand, thereby obtaining purified ligand. A third method uses the polypeptide to treat or to prevent a disease associated with the altered expression of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a subject in need and comprises administering to the subject in need the pharmaceutical composition containing the polypeptide in an amount effective for treating the disease.

10 The invention provides an antibody or Fab comprising an antigen binding site, wherein the antigen binding site specifically binds to the polypeptide. The invention also provides a method for treating a disease associated with the altered expression of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a subject in need, the method comprising the step of administering to the subject in need the antibody or the Fab in an amount effective for treating the 15 disease. The invention further provides an immunoconjugate comprising the antigen binding site of the antibody or Fab joined to a therapeutic agent. The invention additionally provides a method for treating a disease associated with the altered expression of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a subject in need, the method comprising the step of administering to the subject in need the immunoconjugate in an amount effective for treating the disease.

20 BRIEF DESCRIPTION OF THE SEQUENCE LISTING

The Sequence Listing provides exemplary atherosclerosis-associated gene sequences including polynucleotide sequences SEQ ID NOs:1-34 and the polypeptide sequence, SEQ ID NO:35. Each sequence is identified by a sequence identification number (SEQ ID NO).

DESCRIPTION OF THE INVENTION

25 It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include the plural reference unless the context clearly dictates otherwise. For example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

30 Definitions

"Atherosclerosis-associated gene" refers to a gene or polynucleotide that exhibits a statistically significant coexpression pattern with known atherosclerosis-associated genes which are useful in the diagnosis, treatment, prognosis, or prevention of atherosclerosis.

"Known atherosclerosis-associated gene" refers to a sequence which has been previously 35 identified as useful in the diagnosis, treatment, prognosis, or prevention of atherosclerosis and includes

polynucleotides encoding human 22kDa smooth muscle protein, calponin, desmin, smooth muscle myosin heavy chain, alpha tropomyosin, human tissue inhibitor of metalloproteinase 3, human tissue inhibitor of metalloproteinase-2, human tissue inhibitor of metalloproteinase-4, pro alpha 1(I) collagen, collagen alpha-2 type I, collagen alpha-6 type I, procollagen alpha 2(V), collagen VI alpha-2, type VI 5 collagen alpha3, pro-alpha-1 type 3 collagen, pro-alpha-1 (V) collagen, collagenase type IV/ matrix metalloproteinase 9/gelatinase B, matrix Gla protein, cathepsin K, fibrinogen beta chain gene, fibrinogen gamma chain gene, pre-pro-von Willebrand factor, coagulation factor II/prothrombin, coagulation factor XII, coagulation factor VII, platelet endothelial cell adhesion molecule, lipoprotein-associated coagulation inhibitor, antithrombin III variant, plasminogen activator inhibitor-1, lipoprotein 10 lipase, alpha-2-macroglobulin, apolipoprotein AI, apolipoprotein AII, apolipoprotein B-100, lipoprotein apoCII, pre-apolipoprotein CIII, apolipoprotein apo C-IV, macrophage scavenger receptor type I, human antigen CD36 gene, serum amyloid P component, carboxyl ester lipase gene, paraoxonase 1, paraoxonase 2, paraoxonase 3, LDL-receptor related protein, hepatic triglyceride lipase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, very low density lipoprotein receptor, microsomal triglyceride 15 transfer protein, perilipin, endothelin-1, endothelin receptor A, interleukin 6, interleukin 1, complement protein C8 alpha, complement component C9, prostaglandin D2 synthase, annexin II/lipocortinII, annexin I/lipocortin, prostaglandin-endoperoxide synthase 2, insulin-like growth factor binding protein-1, secreted protein, acidic and rich in cysteine, human NF-kappa-B transcription factor, angiotensinogen, nitric oxide synthase 3, and nitric oxide synthase 2. Typically, this means that the 20 known gene is expressed at higher levels (i.e., has more abundant transcripts) in atherosclerotic lesions than in normal or non-diseased arterial intima or any other tissue.

"Ligand" refers to any molecule, agent, or compound which will bind specifically to a complementary site on a polynucleotide or polypeptide. Such ligands stabilize or modulate the activity of polynucleotides or polypeptides of the invention. For example, ligands are libraries of inorganic and 25 organic molecules or compounds such as nucleic acids, proteins, peptides, carbohydrates, fats, and lipids.

"NSEQ" refers generally to a polynucleotide sequence of the present invention, including SEQ ID NO:1-34. "PSEQ" refers generally to a polypeptide sequence of the present invention, including SEQ ID NO:35.

30 A "fragment" refers to a nucleic acid sequence that is preferably at least 20 nucleotides in length, more preferably 40 nucleotides, and most preferably 60 nucleotides in length, and encompasses, for example, fragments consisting of 1-50, 51-400, 401-4000, 4001-12,000 nucleotides, and the like, of SEQ ID NO:1-34.

35 "Gene" refers to the partial or complete coding sequence of a gene including 5' or 3' untranslated regions. The gene may be in a sense or antisense (complementary) orientation.

"Polynucleotide" refers to a nucleic acid, nucleic acid sequence, oligonucleotide, nucleotide, or any fragment thereof. It may be DNA or RNA of genomic or synthetic origin, double-stranded or single-stranded, and combined with carbohydrate, lipids, protein or other materials to perform a particular activity or form a useful composition. "Oligonucleotide" is substantially equivalent to the 5 terms amplifier, primer, oligomer, element, and probe.

"Polypeptide" refers to an amino acid, amino acid sequence, oligopeptide, peptide, or protein or portions thereof whether naturally occurring or synthetic.

A "portion" refers to peptide sequence which is preferably at least 5 to about 15 amino acids in length, most preferably at least 10 amino acids long, and which retains some biological or 10 immunological activity of, for example, a portion of SEQ ID NO:35.

"Sample" is used in its broadest sense. A sample containing nucleic acids may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; a cell; a tissue; a tissue print; and the like.

"Substantially purified" refers to a nucleic acid or an amino acid sequence that is removed from 15 its natural environment and that is isolated or separated, and is at least about 60% free, preferably about 75% free, and most preferably about 90% free, from other components with which it is naturally present.

"Substrate" refers to any rigid or semi-rigid support to which polynucleotides or polypeptides are bound and includes membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic 20 beads, gels, capillaries or other tubing, plates, polymers, and microparticles with a variety of surface forms including wells, trenches, pins, channels and pores.

A "variant" refers to a polynucleotide or polypeptide whose sequence diverges from SEQ ID NO:1-35. Polynucleotide sequence divergence may result from mutational changes such as deletions, additions, and substitutions of one or more nucleotides; it may also be introduced to accommodate 25 differences in codon usage. Each of these types of changes may occur alone, or in combination, one or more times in a given sequence.

THE INVENTION

The present invention encompasses a method for identifying biomolecules that are associated with a specific disease, regulatory pathway, subcellular compartment, cell type, tissue type, or species.

30 In particular, the method identifies polynucleotides useful in diagnosis, prognosis, treatment, prevention, and evaluation of therapies for diseases associated with atherosclerosis including, but not limited to, stroke, myocardial infarction, hypertension, transient cerebral ischemia, mesenteric ischemia, coronary artery disease, angina pectoris, peripheral vascular disease, intermittent claudication, renal artery stenosis, and hypertension.

35 The method entails first identifying polynucleotides that are expressed in a plurality of cDNA

libraries. The identified polynucleotides include genes of known or unknown function which are expressed in a specific disease process, subcellular compartment, cell type, tissue type, or species. The expression patterns of the genes with known function are compared with those of genes with unknown function to determine whether a specified coexpression probability threshold is met. Through this comparison, a subset of the polynucleotides having a high coexpression probability with the known genes can be identified. The high coexpression probability correlates with a particular coexpression probability threshold which is preferably less than 0.001 and more preferably less than 0.00001.

The polynucleotides originate from cDNA libraries derived from a variety of sources including, but not limited to, eukaryotes such as human, mouse, rat, dog, monkey, plant, and yeast; prokaryotes such as bacteria; and viruses. These polynucleotides can also be selected from a variety of sequence types including, but not limited to, expressed sequence tags (ESTs), assembled polynucleotide sequences, full length gene coding regions, promoters, introns, enhancers, 5' untranslated regions, and 3' untranslated regions. To have statistically significant analytical results, the polynucleotides need to be expressed in at least three cDNA libraries.

The cDNA libraries used in the coexpression analysis of the present invention can be obtained from adrenal gland, biliary tract, bladder, blood cells, blood vessels, bone marrow, brain, bronchus, cartilage, chromaffin system, colon, connective tissue, cultured cells, embryonic stem cells, endocrine glands, epithelium, esophagus, fetus, ganglia, heart, hypothalamus, immune system, intestine, islets of Langerhans, kidney, larynx, liver, lung, lymph, muscles, neurons, ovary, pancreas, penis, peripheral nervous system, phagocytes, pituitary, placenta, pleurus, prostate, salivary glands, seminal vesicles, skeleton, spleen, stomach, testis, thymus, tongue, ureter, uterus, and the like. The number of cDNA libraries selected can range from as few as 3 to greater than 10,000. Preferably, the number of the cDNA libraries is greater than 500.

In a preferred embodiment, genes are assembled from related sequences, such as assembled sequence fragments derived from a single transcript. Assembly of the sequences can be performed using sequences of various types including, but not limited to, ESTs, extensions, or shotgun sequences. In a most preferred embodiment, the polynucleotide sequences are derived from human sequences that have been assembled using the algorithm disclosed in "Database and System for Storing, Comparing and Displaying Related Biomolecular Sequence Information", Lincoln *et al.* Serial No:60/079,469, filed March 26, 1998, incorporated herein by reference.

Experimentally, differential expression of the polynucleotides can be evaluated by methods including, but not limited to, differential display by spatial immobilization or by gel electrophoresis, genome mismatch scanning, representational difference analysis, and transcript imaging. Additionally, differential expression can be assessed by microarray technology. These methods may be used alone or in combination.

Known atherosclerosis-associated genes are selected based on the use of these genes as diagnostic or prognostic markers or as therapeutic targets.

The procedure for identifying novel genes that exhibit a statistically significant coexpression pattern with known atherosclerosis-associated genes is as follows. First, the presence or absence of a 5 gene in a cDNA library is defined: a gene is present in a cDNA library when at least one cDNA fragment corresponding to that gene is detected in a cDNA sample taken from the library, and a gene is absent from a library when no corresponding cDNA fragment is detected in the sample.

Second, the significance of gene coexpression is evaluated using a probability method to measure a due-to-chance probability of the coexpression. The probability method can be the Fisher 10 exact test, the chi-squared test, or the kappa test. These tests and examples of their applications are well known in the art and can be found in standard statistics texts (Agresti (1990) Categorical Data Analysis, John Wiley & Sons, New York NY; Rice (1988) Mathematical Statistics and Data Analysis, Duxbury Press, Pacific Grove CA). A Bonferroni correction (Rice, supra, p. 384) can also be applied in combination with one of the probability methods for correcting statistical results of one gene versus 15 multiple other genes. In a preferred embodiment, the due-to-chance probability is measured by a Fisher exact test, and the threshold of the due-to-chance probability is set preferably to less than 0.001, more preferably to less than 0.00001. To determine whether two genes, A and B, have similar coexpression patterns, occurrence data vectors can be generated as illustrated in Table 1. The presence of a gene occurring at least once in a library is indicated by a one, and its absence from the library, by a 20 zero.

Table 1. Occurrence data for genes A and B

	Library 1	Library 2	Library 3	...	Library N
gene A	1	1	0	...	0
gene B	1	0	1	...	0

25

For a given pair of genes, the occurrence data in Table 1 can be summarized in a 2 x 2 contingency table.

Table 2. Contingency table for co-occurrences of genes A and B

	Gene A present	Gene A absent	Total
Gene B present	8	2	10
Gene B absent	2	18	20
Total	10	20	30

Table 2 presents co-occurrence data for gene A and gene B in a total of 30 libraries. Both gene 35 A and gene B occur 10 times in the libraries. Table 2 summarizes and presents: 1) the number of times

gene A and B are both present in a library; 2) the number of times gene A and B are both absent in a library; 3) the number of times gene A is present, and gene B is absent; and 4) the number of times gene B is present, and gene A is absent. The upper left entry is the number of times the two genes co-occur in a library, and the middle right entry is the number of times neither gene occurs in a library.

5 The off diagonal entries are the number of times one gene occurs, and the other does not. Both A and B are present eight times and absent 18 times. Gene A is present, and gene B is absent, two times; and gene B is present, and gene A is absent, two times. The probability ("p-value") that the above association occurs due to chance as calculated using a Fisher exact test is 0.0003. Associations are generally considered significant if a p-value is less than 0.01 (Agresti, *supra*; Rice, *supra*).

10 This method of estimating the probability for coexpression of two genes makes several assumptions. The method assumes that the libraries are independent and are identically sampled. However, in practical situations, the selected cDNA libraries are not entirely independent, because more than one library may be obtained from a single subject or tissue. Nor are they entirely identically sampled, because different numbers of cDNAs may be sequenced from each library. The number of 15 cDNAs sequenced typically ranges from 5,000 to 10,000 cDNAs per library. In addition, because a Fisher exact coexpression probability is calculated for each gene versus 45,233 other assembled genes, a Bonferroni correction for multiple statistical tests is used.

The present invention identifies 34 novel atherosclerosis-associated polynucleotides that exhibit strong association with genes known to be specific to atherosclerosis. The results presented in Table 4 20 show that the expression of the 34 novel atherosclerosis-associated polynucleotides has direct or indirect association with the expression of known atherosclerosis-associated genes. Therefore, the novel atherosclerosis-associated polynucleotides can potentially be used in diagnosis, treatment, prognosis, or prevention of diseases associated with atherosclerosis or in the evaluation of therapies for atherosclerosis. Further, the gene products of the 34 novel atherosclerosis-associated polynucleotides 25 are either potential therapeutics or targets of therapeutics against atherosclerosis.

Therefore, in one embodiment, the present invention encompasses a polynucleotide sequence comprising the sequence of SEQ ID NO:1-34. These 34 polynucleotides are shown by the method of the present invention to have strong coexpression association with known atherosclerosis-associated genes and with each other. The invention also encompasses a variant of the polynucleotide sequence, 30 its complement, or 18 consecutive nucleotides of a sequence provided in the above described sequences. Variant polynucleotide sequences typically have at least about 75%, more preferably at least about 85%, and most preferably at least about 95% polynucleotide sequence identity to NSEQ.

NSEQ or the encoded PSEQ may be used to search against the GenBank primate (pri), rodent (rod), mammalian (mam), vertebrate (vrtp), and eukaryote (eukp) databases, SwissProt, BLOCKS 35 (Bairoch *et al.* (1997) Nucleic Acids Res 25:217-221), PFAM, and other databases that contain /

previously identified and annotated motifs, sequences, and gene functions. Methods that search for primary sequence patterns with secondary structure gap penalties (Smith *et al.* (1992) *Prot Eng* 5:35-51) as well as algorithms such as Basic Local Alignment Search Tool (BLAST; Altschul (1993) *J Mol Evol* 36:290-300; Altschul *et al.* (1990) *J Mol Biol* 215:403-410), BLOCKS (Henikoff and Henikoff (1991) 5 *Nucleic Acids Res* 19:6565-6572), Hidden Markov Models (HMM; Eddy (1996) *Cur Opin Str Biol* 6:361-365; Sonnhammer *et al.* (1997) *Proteins* 28:405-420), and the like, can be used to manipulate and analyze nucleotide and amino acid sequences. These databases, algorithms and other methods are well known in the art and are described in Ausubel *et al.* (1997; *Short Protocols in Molecular Biology*, John Wiley & Sons, New York NY, unit 7.7) and in Meyers (1995; *Molecular Biology and Biotechnology*, 10 Wiley VCH, New York NY, p 856-853).

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to SEQ ID NO:1-34, and fragments thereof under stringent conditions. Stringent conditions can be defined by salt concentration, temperature, and other chemicals and conditions well known in the art. Conditions can be selected, for example, by varying the concentrations of salt in the 15 prehybridization, hybridization, and wash solutions or by varying the hybridization and wash temperatures. With some substrates, the temperature can be decreased by adding formamide to the prehybridization and hybridization solutions.

Hybridization can be performed at low stringency, with buffers such as 5xSSC with 1% sodium dodecyl sulfate (SDS) at 60°C, which permits complex formation between two nucleic acid sequences 20 that contain some mismatches. Subsequent washes are performed at higher stringency with buffers such as 0.2xSSC with 0.1% SDS at either 45 °C (medium stringency) or 68°C (high stringency), to maintain hybridization of only those complexes that contain completely complementary sequences. Background signals can be reduced by the use of detergents such as SDS, Sarcosyl, or TRITON X-100 25 (Sigma-Aldrich, St. Louis MO) , and/or a blocking agent, such as salmon sperm DNA. Hybridization methods are described in detail in Ausubel (*supra*, units 2.8-2.11, 3.18-3.19 and 4-6-4.9) and Sambrook *et al.* (1989; *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, Plainview NY)

NSEQ can be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences such as promoters and other regulatory elements. (See, e.g., Dieffenbach and Dveksler (1995) *PCR Primer, a Laboratory Manual*, Cold Spring 30 Harbor Press, Plainview NY). Additionally, one may use an XL-PCR kit (PE Biosystems, Foster City CA), nested primers, and commercially available cDNA libraries (Life Technologies, Rockville MD) or genomic libraries (Clontech, Palo Alto CA) to extend the sequence. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis 35 software (National Biosciences, Plymouth MN) or another program, to be about 18 to 30 nucleotides in length, to have a GC content of about 50%, and to form a hybridization complex at temperatures of

about 68°C to 72°C.

In another aspect of the invention, NSEQ can be cloned in recombinant DNA molecules that direct the expression of PSEQ, or structural or functional portions thereof, in host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or 5 a functionally equivalent amino acid sequence may be produced and used to express the polypeptide encoded by NSEQ. The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter the nucleotide sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.

DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic 10 oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In order to express a biologically active polypeptide, NSEQ, or derivatives thereof, may be inserted into an expression vector, i.e., a vector which contains the elements for transcriptional and 15 translational control of the inserted coding sequence in a particular host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions. Methods which are well known to those skilled in the art may be used to construct such expression vectors. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, *supra*; and Ausubel, 20 supra).

A variety of expression vector/host cell systems may be utilized to express NSEQ. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with baculovirus vectors; plant cell systems transformed with viral 25 or bacterial expression vectors; or animal cell systems. For long term production of recombinant proteins in mammalian systems, stable expression in cell lines is preferred. For example, NSEQ can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable or visible marker gene on the same or on a separate vector. The invention is not to be limited by the vector or host cell employed.

30 In general, host cells that contain NSEQ and that express PSEQ may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or amino acid sequences. Immunological methods for detecting and 35 measuring the expression of PSEQ using either specific polyclonal or monoclonal antibodies are known

in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).

Host cells transformed with NSEQ may be cultured under conditions for the expression and recovery of the polypeptide from cell culture. The polypeptide produced by a transgenic cell may be 5 secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing NSEQ may be designed to contain signal sequences which direct secretion of the polypeptide through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 10 inserted sequences or to process the expressed polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" form of the polypeptide may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational 15 activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the ATCC (Manassas VA) and may be chosen to ensure the correct modification and processing of the expressed polypeptide.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences are ligated to a heterologous sequence resulting in translation of a fusion polypeptide containing heterologous polypeptide moieties in any of the aforementioned host systems. Such 20 heterologous polypeptide moieties facilitate purification of fusion polypeptides using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase, maltose binding protein, thioredoxin, calmodulin binding peptide, 6-His, FLAG, *c-myc*, hemagglutinin, and monoclonal antibody epitopes.

In another embodiment, the nucleic acid sequences are synthesized, in whole or in part, using 25 chemical or enzymatic methods well known in the art (Caruthers *et al.* (1980) Nucleic Acids Symp Ser (7) 215-233; Ausubel, *supra*). For example, peptide synthesis can be performed using various solid-phase techniques (Roberge *et al.* (1995) Science 269:202-204), and machines such as the ABI 431A Peptide synthesizer (PE Biosystems) can be used to automate synthesis. If desired, the amino acid sequence may be altered during synthesis and/or combined with sequences from other proteins to 30 produce a variant protein.

In another embodiment, the invention entails a substantially purified polypeptide comprising the amino acid sequence of SEQ ID NO:35 and fragments thereof.

SCREENING, DIAGNOSTICS AND THERAPEUTICS

The polynucleotide sequences can be used in diagnosis, prognosis, treatment, prevention, and 35 selection and evaluation of therapies for atherosclerosis including, but not limited to, stroke, myocardial

infarction, hypertension, transient cerebral ischemia, mesenteric ischemia, coronary artery disease, angina pectoris, peripheral vascular disease, intermittent claudication, renal artery stenosis, and hypertension.

The polynucleotide sequences may be used to screen a library of molecules for specific binding affinity. The assay can be used to screen a library of DNA molecules, RNA molecules, PNAs, peptides, ribozymes, antibodies, agonists, antagonists, immunoglobulins, inhibitors, proteins including transcription factors, enhancers, repressors, and drugs and the like which regulate the activity of the polynucleotide sequence in the biological system. The assay involves providing a library of molecules, combining the polynucleotide sequence or a fragment thereof with the library of molecules under conditions suitable to allow specific binding, and detecting specific binding to identify at least one molecule which specifically binds the polynucleotide sequence.

Similarly the polypeptide or a portion thereof may be used to screen libraries of molecules in any of a variety of screening assays. The portion of the polypeptide employed in such screening may be free in solution, affixed to an abiotic or biotic substrate (e.g. borne on a cell surface), or located intracellularly. Specific binding between the polypeptide and molecule may be measured. The assay can be used to screen a library of DNA molecules, RNA molecules, PNAs, peptides, mimetics, ribozymes, antibodies, agonists, antagonists, immunoglobulins, inhibitors, peptides, polypeptides, drugs and the like, which specifically bind the polypeptide. One method for high throughput screening using very small assay volumes and very small amounts of test compound is described in Burbaum *et al.* USPN 5,876,946, incorporated herein by reference, which screens large numbers of molecules for enzyme inhibition or receptor binding.

In one preferred embodiment, the polynucleotide sequences are used for diagnostic purposes to determine the absence, presence, and excess expression of the polypeptide. The polynucleotides may be at least 18 nucleotides long and consist of complementary RNA and DNA molecules, branched nucleic acids, and/or peptide nucleic acids (PNAs). In one alternative, the polynucleotides are used to detect and quantify gene expression in samples in which expression of NSEQ is correlated with disease. In another alternative, NSEQ can be used to detect genetic polymorphisms associated with a disease. These polymorphisms may be detected in the transcript cDNA.

The specificity of the probe is determined by whether it is made from a unique region, a regulatory region, or from a conserved motif. Both probe specificity and the stringency of diagnostic hybridization or amplification (maximal, high, intermediate, or low) will determine whether the probe identifies only naturally occurring, exactly complementary sequences, allelic variants, or related sequences. Probes designed to detect related sequences should preferably have at least 75% sequence identity to any of the polynucleotides encoding PSEQ.

35 Methods for producing hybridization probes include the cloning of nucleic acid sequences into

vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by adding RNA polymerases and labeled nucleotides. Hybridization probes may incorporate nucleotides labeled by a variety of reporter groups including, but not limited to, radionuclides such as ^{32}P or ^{35}S , enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, fluorescent labels, and the like. The labeled polynucleotide sequences may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; and in microarrays utilizing samples from subjects to detect altered PSEQ expression.

NSEQ can be labeled by standard methods and added to a sample from a subject under conditions for the formation and detection of hybridization complexes. After incubation the sample is washed, and the signal associated with hybrid complex formation is quantitated and compared with a standard value. Standard values are derived from any control sample, typically one that is free of the suspect disease. If the amount of signal in the subject sample is altered in comparison to the standard value, then the presence of altered levels of expression in the sample indicates the presence of the disease. Qualitative and quantitative methods for comparing the hybridization complexes formed in subject samples with previously established standards are well known in the art.

Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual subject. Once the presence of disease is established and a treatment protocol is initiated, hybridization or amplification assays can be repeated on a regular basis to determine if the level of expression in the subject begins to approximate that which is observed in a healthy subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to many years.

The polynucleotides may be used for the diagnosis of a variety of diseases associated with atherosclerosis. These include, but are not limited to, stroke, myocardial infarction, hypertension, transient cerebral ischemia, mesenteric ischemia, coronary artery disease, angina pectoris, peripheral vascular disease, intermittent claudication, renal artery stenosis, and hypertension.

The polynucleotides may also be used as targets in a microarray. The microarray can be used to monitor the expression patterns of large numbers of genes simultaneously and to identify splice variants, mutations, and polymorphisms. Information derived from analyses of the expression patterns may be used to determine gene function, to understand the genetic basis of a disease, to diagnose a disease, and to develop and monitor the activities of therapeutic agents used to treat a disease.

Microarrays may also be used to detect genetic diversity, single nucleotide polymorphisms which may characterize a particular population, at the genome level.

35 In yet another alternative, polynucleotides may be used to generate hybridization probes useful

in mapping the naturally occurring genomic sequence. Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data as described in Heinz-Ulrich *et al.* (In: Meyers, *supra*, pp. 965-968).

In another embodiment, antibodies or Fabs comprising an antigen binding site that specifically binds PSEQ may be used for the diagnosis of diseases characterized by the over-or-under expression of PSEQ. A variety of protocols for measuring PSEQ, including ELISAs, RIAs, and FACS, are well known in the art and provide a basis for diagnosing altered or abnormal levels of expression. Standard values for PSEQ expression are established by combining samples taken from healthy subjects, preferably human, with antibody to PSEQ under conditions for complex formation. The amount of complex formation may be quantitated by various methods, preferably by photometric means.

Quantities of PSEQ expressed in disease samples are compared with standard values. Deviation between standard and subject values establishes the parameters for diagnosing or monitoring disease. Alternatively, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PSEQ specifically compete with a test compound for binding the polypeptide. Antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PSEQ. In one aspect, the anti-PSEQ antibodies of the present invention can be used for treatment or monitoring therapeutic treatment for atherosclerosis.

In another aspect, the NSEQ, or its complement, may be used therapeutically for the purpose of expressing mRNA and polypeptide, or conversely to block transcription or translation of the mRNA. Expression vectors may be constructed using elements from retroviruses, adenoviruses, herpes or vaccinia viruses, or bacterial plasmids, and the like. These vectors may be used for delivery of nucleotide sequences to a particular target organ, tissue, or cell population. Methods well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences or their complements. (See, e.g., Maulik *et al.* (1997) Molecular Biotechnology, Therapeutic Applications and Strategies, Wiley-Liss, New York NY.) Alternatively, NSEQ, or its complement, may be used for somatic cell or stem cell gene therapy. Vectors may be introduced *in vivo*, *in vitro*, and *ex vivo*. For *ex vivo* therapy, vectors are introduced into stem cells taken from the subject, and the resulting transgenic cells are clonally propagated for autologous transplant back into that same subject. Delivery of NSEQ by transfection, liposome injections, or polycationic amino polymers may be achieved using methods which are well known in the art and described in Goldman *et al.* (1997; Nature Biotechnol 15:462-466). Additionally, endogenous NSEQ expression may be inactivated using homologous recombination methods which insert an inactive gene sequence into the coding region or other targeted region of NSEQ. (See, e.g. Thomas *et al.* (1987) Cell 51:503-512.)

Vectors containing NSEQ can be transformed into a cell or tissue to express a missing polypeptide or to replace a nonfunctional polypeptide. Similarly a vector constructed to express the

complement of NSEQ can be transformed into a cell to downregulate the overexpression of PSEQ. Complementary or antisense sequences may consist of an oligonucleotide derived from the transcription initiation site; nucleotides between about positions -10 and +10 from the ATG are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful 5 because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee *et al.* In: Huber and Carr (1994) Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco NY, pp. 163-177.)

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the cleavage of mRNA 10 and decrease the levels of particular mRNAs, such as those comprising the polynucleotide sequences of the invention. (See, e.g., Rossi (1994) Current Biology 4: 469-471.) Ribozymes may cleave mRNA at specific cleavage sites. Alternatively, ribozymes may cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The construction and production of ribozymes is well known in the art and is described in Meyers (*supra*).

15 RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages within the backbone of the molecule. Alternatively, nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, 20 guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases, may be included.

Further, an antagonist, or an antibody that binds specifically to PSEQ may be administered to a subject to treat or prevent atherosclerosis. The antagonist, antibody, or fragment may be used directly to inhibit the activity of the polypeptide or indirectly to deliver a therapeutic agent to cells or tissues 25 which express the PSEQ. An immunoconjugate comprising a PSEQ binding site of the antibody or the antagonist and a therapeutic agent may be administered to a subject in need to treat or prevent disease. The therapeutic agent may be a cytotoxic agent selected from a group including, but not limited to, abrin, ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, diphtheria toxin, 30 Pseudomonas exotoxin A and 40, radioisotopes, and glucocorticoid.

Antibodies to PSEQ may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, such as those which inhibit dimer formation, are especially preferred for therapeutic use. 35 Monoclonal antibodies to PSEQ may be prepared using any technique which provides for the

production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma, the human B-cell hybridoma, and the EB V-hybridoma techniques. In addition, techniques developed for the production of chimeric antibodies can be used. (See, e.g., Pound (1998) Immunochemical Protocols, Methods Mol Biol Vol 80). Alternatively, techniques described for the 5 production of single chain antibodies may be employed. Fabs which contain specific binding sites for PSEQ may also be generated. Various immunoassays may be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.

Yet further, an agonist of PSEQ may be administered to a subject to treat or prevent a disease 10 associated with decreased expression, longevity or activity of PSEQ.

An additional aspect of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic applications discussed above. Such pharmaceutical compositions may consist of PSEQ or antibodies, mimetics, agonists, antagonists, or inhibitors of the polypeptide. The compositions may be 15 administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a subject alone or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number 20 of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain 25 pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Mäack Publishing, Easton PA).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also 30 be used to determine the concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating and 35 contrasting the ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose

lethal to 50% of the population) statistics. Any of the therapeutic compositions described above may be applied to any subject in need of such therapy, including, but not limited to, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

EXAMPLES

5 It is to be understood that this invention is not limited to the particular devices, machines, materials and methods described. Although particular embodiments are described, equivalent embodiments may be used to practice the invention. The described embodiments are provided to illustrate the invention and are not intended to limit the scope of the invention which is limited only by the appended claims.

10 I cDNA Library Construction

The cDNA library SMCCNOS01 was selected as an example to demonstrate the construction of cDNA libraries from which the polynucleotides associated with known atherosclerosis-associated genes were derived. The SMCCNOS01 subtracted coronary artery smooth muscle cell library was constructed using 7.56×10^6 clones from the SMCCNOT02 library and was subjected to two rounds of 15 subtraction hybridization for 48 hours with 6.12×10^6 clones from SMCCNOT01. The SMCCNOT02 library was constructed using RNA isolated from coronary artery smooth muscle cells removed from a 3-year-old Caucasian male. The cells were treated for 20 hours with TNF α and IL-1 β at 10ng/ml each. The SMCCNOT01 was constructed using RNA isolated from untreated coronary artery smooth muscle cells from the same donor. Subtractive hybridization conditions were based on the methodologies of 20 Swaroop *et al.* (1991; Nucleic Acids Res 19:1954) and Bonaldo *et al.* (1996; Genome Res 6:791).

For both cDNA libraries, SMCCNOT01 and SMCCNOT02, the frozen coronary artery smooth muscle cells (50-100 mg) were homogenized in GTC buffer (4.0M guanidine thiocyanate, 0.1M Tris-HCl pH 7.5, 1% 2-mercaptoethanol). Two volumes of binding buffer (0.4M LiCl, 0.1M Tris-HCl pH 7.5, 0.02M EDTA) were added, and the resulting mixture was vortexed at 13,000 rpm. The supernatant 25 was removed and combined with Oligo d(T)₂₅ bound streptavidin particles (MPG). After rotation at room temperature, the mRNA-Oligo d(T)₂₅ bound streptavidin particles were separated from the supernatant, washed twice with hybridization buffer I (0.15M NaCl, 0.01M Tris-HCl pH 8.0, 1mM EDTA, 0.1% lauryl sarcosinate) using magnetic separation at each step to remove the supernatant from the particles. Bound mRNA was eluted from the particles with release solution and heated to 65°C. 30 The supernatant containing eluted mRNA was magnetically separated from the particles and used to construct the cDNA libraries.

The RNA was used for cDNA synthesis and construction of the cDNA library according to the recommended protocols in the SUPERSCRIPT plasmid system (Life Technologies). The cDNAs were fractionated on a SEPHAROSE CL4B column (Amersham Pharmacia Biotech (APB), Piscataway NJ), 35 and those cDNAs exceeding 400 bp were ligated into pINCY plasmid (Incyte Genomics, Palo Alto

CA). Recombinant plasmids were transformed into DH5 α competent cells or ELECTROMAX cells (Life Technologies).

II Isolation and Sequencing of cDNA Clones

Plasmid DNA was released from the cells and purified using the REAL PREP 96 plasmid kit 5 (Qiagen, Valencia CA). The recommended protocol was employed except for the following changes: 1) the bacteria were cultured in 1 ml of sterile TERRIFIC BROTH media (BD Biosciences, Sparks MD) with carbenicillin at 25 mg/L and glycerol at 0.4%; 2) after inoculation, the cells were cultured for 19 hours and then lysed with 0.3 ml of lysis buffer; and 3) following isopropanol precipitation, the plasmid DNA pellet was resuspended in 0.1 ml distilled water, and samples were transferred to a . 10 96-well block for storage at 4° C.

The cDNAs were prepared using a MICROLAB 2200 System (Hamilton, Reno NV) in combination with the DNA ENGINE thermal cycler (MJ Research, Watertown MA). cDNAs were sequenced by the method of Sanger and Coulson (1975; J Mol Biol 94:441f) using ABI PRISM 377 (PE Biosystems) or MEGABACE 1000 sequencing systems (APB).

15 Most of the sequences disclosed herein were sequenced using standard ABI protocols and kits (PE Biosystems) at solution volumes of 0.25x -1.0x concentrations. In the alternative, some of the sequences disclosed herein were sequenced using solutions and dyes from APB.

III Selection, Assembly, and Characterization of Sequences

The sequences used for co-expression analysis were assembled from EST sequences, 5' and 3' 20 longread sequences, and full length coding sequences. Selected assembled sequences were expressed in at least three cDNA libraries.

The assembly process is described as follows. EST sequence chromatograms were processed and verified. Quality scores were obtained using PHRED (Ewing *et al.* (1998) Genome Res 8:175-185; Ewing and Green (1998) Genome Res 8:186-194), and edited sequences were loaded into a relational 25 database management system (RDBMS). The sequences were clustered using BLAST with a product score of 50. All clusters of two or more sequences created a bin which represents one transcribed gene.

Assembly of the component sequences within each bin was performed using a modification of Phrap, a publicly available program for assembling DNA fragments (Green, P. University of Washington, Seattle WA). Bins that showed 82% identity from a local pair-wise alignment between 30 any of the consensus sequences were merged.

Bins were annotated by screening the consensus sequence in each bin against public databases, such as GBpri and GenPept from NCBI. The annotation process involved a FASTN screen against the GBpri database in GenBank. Those hits with a percent identity of greater than or equal to 75% and an alignment length of greater than or equal to 100 base pairs were recorded as homolog hits. The residual 35 unannotated sequences were screened by FASTx against GenPept. Those hits with an E value of less

than or equal to 10^{-8} were recorded as homolog hits.

Sequences were then reclustered using BLASTn and Cross-Match, a program for rapid amino acid and nucleic acid sequence comparison and database search (Green, *supra*), sequentially. Any BLAST alignment between a sequence and a consensus sequence with a score greater than 150 was realigned using cross-match. The sequence was added to the bin whose consensus sequence gave the highest Smith-Waterman score (Smith *et al.* (1992) Incyte Genomics 5:35-51) amongst local alignments with at least 82% identity. Non-matching sequences were moved into new bins, and assembly processes were repeated.

IV Coexpression Analyses of Atherosclerosis-Associated Genes

Sixty-six known atherosclerosis-associated genes were selected to identify novel genes that are closely associated with atherosclerosis. The known atherosclerosis-associated genes which were examined in this analysis and brief descriptions of their functions are listed in Table 3.

Table 3. Descriptions of Known Atherosclerosis-Associated Genes

	GENE	DESCRIPTION AND REFERENCES
15	Human 22kDa smooth muscle protein (SM22)	Smooth muscle cell-specific gene which is down-regulated during smooth muscle cell dedifferentiation as part of atherogenic process (Sobue <i>et al.</i> (1998) Horm Res 50:15-24; Sobue <i>et al.</i> (1999) Mol Cell Biochem 190:105-18)
	calponin (CNN1)	Calponin is smooth muscle-specific and may mediate smooth muscle contractility through its binding of the amino-terminal end of the myosin regulatory light chain. Involved in phenotypic modulation of smooth muscle cells, a feature of atherosclerosis (Szymanski <i>et al.</i> (1999) Biochemistry 38:3778-84)
20	desmin (DES)	Contractile component of myofibrils in differentiated smooth muscle cells. Regarded as a marker for smooth muscle cells (Shi <i>et al.</i> (1997) Circulation 95:2684-93)
	smooth muscle myosin heavy chain (MYH11)	Contractile component of myofibrils in differentiated smooth muscle cells. Regarded as a marker for smooth muscle cells (Sobue <i>et al.</i> (1999) Mol Cell Biochem 190:105-18)
25	alpha tropomyosin (TPM1)	Contractile component of myofibrils in differentiated smooth muscle cells (Sobue <i>et al.</i> (1999) Mol Cell Biochem 190:105-18; Kashiwada <i>et al.</i> (1997) J Biol Chem 272:15396-404)
30	Human tissue inhibitor of metalloproteinase 3 (TIMP3)	TIMPs control the activity of matrix metalloproteinases and are important in local matrix remodeling of vasculature. Atheroma extracts shown to have 5x higher TIMP3 expression levels than non-atherosclerotic tissue. Abundant TIMP1, 2, 3 expression noted in plaque macrophages and smooth muscle cells. PDGF and TGFbeta augment TIMP3 expression. TIMP3 possible important role in plaque stability (Fabunmi <i>et al.</i> (1998) Circ Res 83:270-8)

	Human tissue inhibitor of metalloproteinase-2 (TIMP-2)	TIMPs control the activity of matrix metalloproteinases and are important in local matrix remodeling of vasculature. Abundant TIMP1,2, 3 expression noted in plaque macrophages and smooth muscle cells. Expression of TIMP2 is greatly increased during neointima formation in organ cultures of human saphenous vein (Kranzhofer <i>et al.</i> (1999) Arterioscler Thromb Vasc Biol 19:255-65)
5	Human tissue inhibitor of metalloproteinase-4 (TIMP4)	TIMPs control the activity of matrix metalloproteinases and are important in local matrix remodeling of vasculature (Greene <i>et al.</i> (1996) J Biol Chem 271:30375-80)
10	pro alpha 1(I) collagen (COL1A1)	Member of family of fibrous structural proteins. Most abundant structural component of the extracellular matrix. Secreted as procollagen and converted to collagen by matrix metalloproteinases. Collagens are important in atherosclerosis for promoting platelet aggregation and for providing sites for platelet adhesion to the vessel wall (Wen <i>et al.</i> (1999) Arterioscler Thromb Vasc Biol 19:519-24)
	collagen alpha-2 type I (COL1A2)	see COL1A1 above
15	COL6A1	see COL1A1 above
	procollagen alpha 2(V) (COL5A2)	see COL1A1 above
	collagen VI alpha-2 (COL6A2)	see COL1A1 above
20	type VI collagen alpha3 (COL6A3)	see COL1A1 above
	pro-alpha-1 type 3 collagen (COL3A1)	see COL1A1 above
25	pro-alpha-1 (V) collagen (COL3A1)	see COL1A1 above
30	collagenase type IV/ matrix metalloproteinase 9/gelatinase B (MMP9)	Contributes to the degradation of vascular wall/smooth muscle cells associated with local matrix remodeling. Expression of metalloproteinases controlled by tissue inhibitors of metalloproteinases (TIMPs). Balance between MMP and TIMP expression becomes distorted during onset and progression of atherosclerosis. MMP9 localized to lesional macrophages, along with MMP-1, MMP-2, MMP-3. Rabbit aortic macrophage foam cells express immunoreactive MMP-9 (Moreau <i>et al.</i> (1999) Circulation 99:420-426; Zaltsman <i>et al.</i> (1997) Atherosclerosis 130:61-70)
	matrix Gla protein (MGP)	Role in active calcification of vascular smooth muscle cells, suggested by expression study on VSMC <i>in vitro</i> differentiation study. Calcifying phenotype associated with high MGP levels. MGP knockout mice develop to term, but die up to 2 months after birth due to extensive calcification of the arteries, causing blood vessel rupture (Luo <i>et al.</i> (1997) Nature 386:78-81; Mori <i>et al.</i> (1998) FEBS Lett 433:19-22)

	cathepsin K (CTSK)	Nonmetalloenzyme, potent elastase present in advanced atherosclerotic plaques. Contributes to the breakdown of components of vascular extracellular matrix, reducing tensile strength, increasing plaque vulnerability (Sukhova <i>et al.</i> (1998) <i>J Clin Invest</i> 102:576-83)
	fibrinogen beta chain gene (FGB)	Component of fibrin in the extracellular matrix. Fibrin deposition is an integral part of advanced atherosclerotic lesion development. Variation at the beta fibrinogen locus associated with peripheral atherosclerosis (Sueishi <i>et al.</i> (1998) <i>Semin Thromb Hemost</i> 24:255-260; Fowkes <i>et al.</i> (1992) <i>Lancet</i> 339:693-696)
5	fibrinogen beta chain gene (FGG)	Participant in adhesion and aggregation of platelets which occurs through binding of platelet receptors. FGG carries the main binding site for the platelet receptor binding. Mutations in FGG associated with clotting defects and thrombotic tendency. Fibrin deposition is an integral part of advanced atherosclerotic lesion development (Sueishi <i>et al.</i> (1998) <i>Semin Thromb Hemost</i> 24:255-60; Cote <i>et al.</i> (1998) <i>Blood</i> 92:2195-2212)
	pre-pro-von Willebrand factor (VWF)	Blood glycoprotein involved in normal hemostasis. Mediates adhesion of platelets to sites of vascular damage. Also acts as a cofactor in factor VIII activity in blood coagulation. Increased levels of VWF are found in atherosclerosis and in several of its major risk factors, including hypercholesterolemia, diabetes, obesity, hypertension. Levels serve as a predictor of adverse clinical outcome following vascular surgery, possibly as an indicator of thrombus formation (Sadler (1998) <i>Annu Rev Biochem</i> 67:395-424; Blann <i>et al.</i> (1994) <i>Eur J Vasc Surg</i> 8:10-15; Kessler <i>et al.</i> (1998) <i>Diabetes Metab</i> 24:327-36; Folsom <i>et al.</i> (1997) <i>Circulation</i> 96:1102-1108)
10	coagulation factor II/prothrombin (F2)	Central role in blood hemostasis by regulating platelet aggregation and blood coagulation. Converts fibrinogen to fibrin in the final stage of clotting cascade. Promotes cellular chemotaxis and proliferation, extracellular matrix turnover and release of inflammatory cytokines (Goldsack <i>et al.</i> (1998) <i>Int J Biochem Cell Biol</i> 30:641-646)
	coagulation factor XII (F12)	Activation of blood coagulation is an important part of post-vascular injury with initiation of atherosclerotic lesion formation and contributes to thrombosis in advanced stage atherosclerosis (Sueishi <i>et al.</i> (1998) <i>Semin Thromb Hemost</i> 24:255-260)
15	coagulation factor VII (F7)	Central role in coagulation, influences plasma triglyceride levels, a risk factor in atherosclerosis. Epidemiological studies have linked F7 with cardiovascular risk/atherothrombotic tendency (Ghaddar <i>et al.</i> (1998) <i>Circulation</i> 98:2815-2821; Koenig (1998) <i>Eur Heart J</i> 19:C39-43; Folsom <i>et al.</i> (1997) <i>Circulation</i> 96:1102-1108)
20	platelet endothelial cell adhesion molecule (PECAM-1)	Signalling molecule in the migration of cells as part of the pathophysiology of vascular occlusive diseases such as atherosclerosis. Analysis of endothelial/monocyte co-cultures indicates oxidative stress induces transendothelial migration of monocytes as a result of phosphorylation of PECAM-1 (Rattan <i>et al.</i> (1997) <i>Am J Physiol</i> 273:E453-61)

	lipoprotein-associated coagulation inhibitor (LACI)	Natural anticoagulant, inhibits factor VII/tissue factor complexes. Role in regulating coagulation in atherosclerotic plaques. Circulates in association with plasma lipoproteins VLDL, HDL and LDL. <i>In situ</i> expression studies indicate TFPI is expressed in adventitial layer of large arteries, and in atherosclerotic vessels is expressed by macrophages in focal areas throughout the plaque (Drew <i>et al.</i> (1997) <i>Lab Invest</i> 77:291-298; Sandset (1996) <i>Haemostasis</i> 26:154-165)
5	antithrombin III variant (AT3)	ATIII is the sole blood component through which heparin exerts its anti-coagulation effect. Deficiency in ATIII causes recurrent venous thrombosis and pulmonary embolism and can be inherited in autosomal dominant fashion (Hultin <i>et al.</i> (1988) <i>Thromb Haemost</i> 59:468-73; Lane <i>et al.</i> (1996) <i>Blood Rev</i> 10:59-74)
10	plasminogen activator inhibitor-1 (PAI-1)	Major physiological inhibitor of fibrinolysis. Plasma levels correlate with incidence of MI and venous thrombosis. Both adipocytes and endothelial cells produced PAI, possibly under the control of PPARG, as demonstrated using recombinant PPARG expression constructs in endothelial cell lines. Increased expression of PAI observed in coronary heart disease. 4G polymorphism in promotor causes increased PAI expression associated with MI in some studies (Eriksson <i>et al.</i> (1995) <i>Proc Natl Acad Sci</i> 92:1851-5; Marx <i>et al.</i> (1999) <i>Arterioscler Thromb Vasc Biol</i> 19:546-551)
15	lipoprotein lipase (LPL)	Hydrolises triglyceride in chylomicrons and therefore regulates metabolism of circulating lipoproteins. Appears to have an atherogenic effect on the arterial wall due to its ability to alter the properties of LDL. Increased activity of LPL is found in atherosclerotic arteries when compared to normal. Expressed by macrophages in atherosclerotic lesions. Mutations in LPL responsible for familial hypercholesterolemia and premature atherosclerosis (Fisher <i>et al.</i> (1997) <i>Atherosclerosis</i> 135:145-159; Goldberg (1996) <i>J Lipid Res</i> 37:693-707; Gerdes <i>et al.</i> (1997) <i>Circulation</i> 96:733-740)
15	alpha-2-macroglobulin (A2M)	Foam cell formation - retains LDL cholesterol in the lipid core of atherosclerotic plaque (Llorente <i>et al.</i> (1998). <i>Rev Esp Cardiol</i> 51:633-641)
	apolipoprotein AI (APOAI)	Participates in reverse cholesterol transport from tissues to the liver. Promotes cholesterol efflux from tissues and acts as a cofactor for lecithin cholesterol acyltransferase (LCAT). Mutations in ApoAI and of ApoAI/CIII/AIV gene cluster assoc with atherosclerosis. Transgenic mice expressing high plasma APOAI levels are protected from fatty streak development with a high atherogenic diet (Gordon <i>et al.</i> (1989) <i>Circulation</i> 79:8-15; Rubin <i>et al.</i> (1991) <i>Nature</i> 353:265-7; Karathanasis <i>et al.</i> (1987) <i>Proc Natl Acad Sci</i> 84:7198-7202)
	apolipoprotein AII (APOA2)	Major component of HDL. Appears to have an opposite effect to that of APOAI, though exact function unknown. APOAII may have ability to convert HDL from an anti- to a pro-inflammatory particle, with paraoxonase having a role in this transformation process. Plasma APOAII levels significantly associated with plasma free fatty acid levels. Transgenic mice expressing varying levels of APOAII show increased atherosclerotic lesions than wt when fed an atherogenic diet. Possible interaction between diet/genotype and atherogenic potential (Escola-Gil <i>et al.</i> (1998) <i>J Lipid Res</i> 39:457-462; Warden <i>et al.</i> (1993) <i>Proc Natl Acad Sci</i> 90:10886-10890)

	apolipoprotein B-100 (APOB)	Main apolipoprotein of chylomicrons and low density lipoproteins. Mutations in APOB100 underly familial defective apolipoprotein B-100 in which patients suffer from premature atherosclerosis. Mutations result in defect in binding of LDL to LDL receptor, and accumulation of plasma LDL. High-expressing APOB transgenic mice exhibit elevated VLDL-LDL cholesterol and atherogenic lesions (Callow <i>et al.</i> (1995) <i>J Clin Invest</i> 96:1639-1646; Brasaemle <i>et al.</i> (1997) <i>J Biol Chem</i> 272:9378-9387)
	lipoprotein apoCII (APOC2)	Role in lipoprotein metabolism. Cofactor in the activity of lipoprotein lipase the enzyme that hydrolyzes triglycerides in plasma and transfers the fatty acids to tissues. Mutations in APOC2 responsible for hyperlipoproteinemia 1B, similar to lipoprotein lipase deficiency (Cox <i>et al.</i> (1978) <i>N Engl J Med</i> 299:1421-1424; Arimoto <i>et al.</i> (1998) <i>J Lipid Res</i> 39:143-151)
5	pre-apolipoprotein CIII (APOC3)	Inhibits lipoprotein lipase and hepatic lipase, decreases uptake of lymph chylomicrons by hepatic cells. APOA3 possibly delays breakdown of triglyceride rich particles. SstI RFLP in apoCIII is associated with plasma triglyceride and apoCIII levels and hyperlipidemic phenotypes (Henderson <i>et al.</i> (1987) <i>Hum Genet</i> 75:62-65)
	apolipoprotein apoC-IV (APOC4)	APOC4 is a lipid-binding protein that has the potential to alter lipid metabolism. Human APOC4 transgenic mice are hypertriglyceridaemic compared to normal controls (Allan <i>et al.</i> (1996) <i>J Lipid Res</i> 37:1510-1518)
10	macrophage scavenger receptor type I (MSR1)	Mediates binding, internalisation and processing of negatively-charged macromolecules. Implicated in the pathological deposition of cholesterol in arterial walls during atherogenesis (Han <i>et al.</i> (1998) <i>Hum Mol Genet</i> 7:1039-1046)
15	Human antigen CD36 gene (CD36)	Acts as a scavenger receptor for oxidised LDL. Transient regulation under control of M-CSF during monocyte-macrophage differentiation increases foam cell accumulation. Possible role in atherogenesis: increased M-CSF levels detected in atherosclerotic lesions in rabbits and humans. (Huh <i>et al.</i> (1996) <i>Blood</i> 87:2020-2028; Aitman <i>et al.</i> (1999) <i>Nat Genet</i> 21:76-83)
	serum amyloid P component (SAP)	Plasma glycoprotein expressed in atherosclerotic lesions. Interacts with lipoproteins in specific manner (Li <i>et al.</i> (1995) <i>Arterioscler Thromb Vasc Biol</i> 15:252-257; Li <i>et al.</i> (1998) <i>Biochem Biophys Res Commun</i> 244:249-252)
	carboxyl ester lipase gene (CEL)	CEL gene expression increases in presence of oxidised and native LDL <i>in vitro</i> . It is expressed in the vessel wall and in aortic extracts - may interact with cholesterol to modulate progression of atherosclerosis (Li <i>et al.</i> (1998) <i>Biochem J</i> 329:675-679)
20	paraoxonase 1 (PON1)	Serum esterase exclusively associated with high-density lipoproteins; it might confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids in oxidized low-density lipoproteins. PON1 gln192-to-arg polymorphism associated with CAD. Association between PON1 genetic variation and plasma LDL, HDL and non-HDL and apoB levels in genetically isolated Alberta Hutterite population. When fed on a high-fat, high-cholesterol diet, PON1-null mice were more susceptible to atherosclerosis than wild-type (Serrato <i>et al.</i> (1995) <i>J Clin Invest</i> 96:3005-3008; Boright <i>et al.</i> (1998) <i>Atherosclerosis</i> 139:131-136; Shih <i>et al.</i> (1998) <i>Nature</i> 394:284-287)

	paraoxonase 2 (PON2)	Serum esterase exclusively associated with high-density lipoproteins; it might confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids in oxidized low-density lipoproteins. Common polymorphism at codon 311 (cys-ser) in PON2 associated with CHD alone and synergistically with the 192 polymorphism in PON1 in Asian Indians. Association between genetic variation in PON2 and plasma cholesterol and apolipoprotein A1 in genetically isolated Alberta Hutterite population (Sanghera <i>et al.</i> (1998) Am J Hum Genet 62:36-44; Boright <i>et al.</i> (1998) Atherosclerosis 139:131-136)
	paraoxonase 3 (PON3)	Serum esterase exclusively associated with high-density lipoproteins; it might confer protection against coronary artery disease by destroying pro-inflammatory oxidized lipids in oxidized low-density lipoproteins. Other members PON2, 3 associated with CHD and cholesterol levels (Laplaud <i>et al.</i> (1998) Clin Chem Lab Med 36:431-441)
5	LDL-receptor related protein (LRP1)	Possible important role in atherosclerotic lesion development. Abundant expression of mRNA and protein found in vascular smooth muscle cells and macrophages of early and advanced atherosclerotic lesions. Receptor for uptake of ApoE-containing lipoprotein particles (Beisiegel <i>et al.</i> (1989) Nature 341:162-164; Hiltunen <i>et al.</i> (1998) Atherosclerosis 137:S81-88)
10	hepatic triglyceride lipase (HTGL)	Hepatic lipase is involved in cholesterol efflux. Downstream of cholesterol ester transfer protein in pathway: acts on triglyceride-rich HDL to promote formation of smaller HDL particles - effectors of cellular cholesterol efflux (Fan <i>et al.</i> (1998) J Atheroscler Thromb 5:41-45; Santamarina-Fojo <i>et al.</i> (1998) Curr Opin Lipidol 9:211-219)
15	3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGCR)	Catalyses rate limiting step in cholesterol biosynthesis as well as being involved in other systems (eg. primordial germ cell migration). Expression of HMG CoA reductase is regulated by oxysterols via sterol-regulatory element in the promotor, as is found in APOE. Target for cholesterol-lowering therapies: prevastatin, "statins" (Bocan <i>et al.</i> (1998) Atherosclerosis 139:21-30; Farnier <i>et al.</i> (1998) Am J Cardiol 82:3J-10J)
	very low density lipoprotein receptor (VLDLR)	Role in triglyceride metabolism. Marked induction of VLDLR expression observed in fatty streaks and plaques in rabbit atherosclerosis models (Hiltunen <i>et al.</i> (1998) Circulation 97:1079-1086)
20	Microsomal triglyceride transfer protein (MTP)	Catalyses transport of triglyceride, cholesterol ester and phospholipid between phospholipid surfaces. Mutations cause abetalipoproteinemia. Linkage found between MTP genotype and plasma triglyceride levels in a quantitative sib-pair analysis of female dizygotic twins. Inhibitors of MTP normalise atherogenic lipoprotein profiles in an atherosclerotic rabbit model (Wetterau <i>et al.</i> (1992) Science 258:999-1001; Austin <i>et al.</i> (1998) Am J Hum Genet 62:406-419; Wetterau <i>et al.</i> (1998) Science 282:751-754)
	perilipin (PLIN)	Lipid storage droplets of steroidogenic cells are surrounded by perilipins, family of phosphorylated proteins encoded by a single gene, detected in adipocytes and steroidogenic cells. Possible role in lipid metabolism (Brasaemle <i>et al.</i> (1997) J Biol Chem 272:9378-9387)

	endothelin-1 (EDN1)	Secretion of EDN1 coincides with the location of native and oxidised low density lipoproteins and occurs in a specific fashion suggesting that EDN1 may be involved in pathophysiological processes such as atherogenesis. Quantitative and qualitative immunohistochemical analysis of anti EDN1 antibodies in the wall layers of human arteries ex vivo suggest that EDN1 is normally expressed exclusively in endothelial cells. However, in cases of coronary artery disease and atherosclerosis, EDN1 expression is enhanced and can be found in the tunica media and vascular smooth muscle cells. Analysis of recombinant EDN1 expression <i>in vitro</i> suggests it influences vascular smooth muscle cell proliferation. Potent vasoconstriction properties (Unoki <i>et al.</i> (1999) Cell Tissue Res 295:89-99; Rossi <i>et al.</i> (1999) Circulation 99:1147-1155; Yoshizumi <i>et al.</i> (1998) Br J Pharmacol 125:1019-1027; Alberts <i>et al.</i> (1994) J Biol Chem 269: 10112-10118)
5	endothelin receptor A (EDNRA)	Mediates action of endothelin1 on vascular smooth muscle migration, proliferation and monocyte/endothelial cell interaction during initiation and progression of atherosclerotic lesion development (Kohno <i>et al.</i> (1998) J Cardiovasc Pharmacol 31:S84-9; Alberts <i>et al.</i> (1994) J Biol Chem 269:10112-10118)
	interleukin 6 (IL6)	Inflammatory cytokine present in arterial atherosclerotic wall which is upregulated by platelets to stimulate smooth muscle cell growth. Increased expression of IL6 in atherosclerotic aortas of APOE knockout vs aortas from aged-matched controls. Secretion levels of IL6 is positively associated with increased lesion surface area in APOE aortic tissue samples (Sukovich <i>et al.</i> (1998) Arterioscler Thromb Vasc Biol 18:1498-1505; Loppnow <i>et al.</i> (1998) Blood 91:134-141)
	interleukin 1 (IL1)	May contribute to regulation of local pathogenesis in the vessel wall by activation of the cytokine regulatory network. IL-1 antagonist inhibits platelet-induced cytokine production of smooth muscle cells (Loppnow <i>et al.</i> (1998) Blood 91: 134-141)
10	complement protein C8 alpha (C8A)	Complement activation of C8 shown to be an initial event in atherogenesis (Torzewski <i>et al.</i> (1996) Arterioscler Thromb Vasc Biol 16:673-677)
	complement component C9 (C9)	Complement activation of C9 shown to be an initial event in atherogenesis (Torzewski <i>et al.</i> (1996) Arterioscler Thromb Vasc Biol 16:673-677)
15	Prostaglandin D2 synthase (PTGDS)	Catalyses conversion of PGH2 to PGD2, a prostaglandin important in smooth muscle contraction/relaxation and potent inhibitor of platelet aggregation. Northern analysis shows strong specific expression in heart. Immunocytochemical localisation to myocardial and atrio endocardial cells, and accumulates in end-stage atherosclerotic plaques. High plasma levels detected in severe angina patients (Eguchi <i>et al.</i> (1997) Proc Natl Acad Sci 94:14689-14694)
	Annexin II/lipocortinII (ANX2)	Inhibits phospholipase A2 activity and hence the production of arachidonic acid, the precursor of the inflammatory mediators prostaglandins and leukotrienes. ANX2 is an important anti-inflammatory molecule. Independently binds plasminogen and t-PA and therefore suspected of having a role in atherogenesis. Binding of plasminogen to ANX2 is specifically inhibited by the excess atherogenic Lp(a) (Hajjar <i>et al.</i> (1998) J Investig Med 46(8): 364-369)

	Annexin I/lipocortin (ANX1)	Inhibits phospholipase A2 activity and hence the production of arachidonic acid, the precursor of the inflammatory mediators prostaglandins and leukotrienes. ANXI is an important anti-inflammatory molecule (Wallner <i>et al.</i> (1986) Nature 320:77-81)
5	Prostaglandin- endoperoxide Synthase 2 (PTGS2)	Major mechanism for the regulation of prostaglandin synthesis. Arachidonic acid pathway. Role in inflammation and endothelial cell migration/angiogenesis. Regulated enzyme - major mediator of inflammation. Antiinflammatory glucocorticoids are potent inhibitors of this cyclooxygenase. Over expression of PTGS2 <i>in vitro</i> in rabbit epithelial cells causes increased adhesion to extracellular matrix proteins and inhibition of apoptosis, hallmarks of atherosclerotic plaque formation (Morham <i>et al.</i> (1995) Cell 83:473-482; O'Banion <i>et al.</i> (1992) Proc Natl Acad Sci 89:4888-4892; Tsujii <i>et al.</i> (1995) Cell 83:493-501)
10	insulin-like growth factor binding protein-1 (IGFBP-1)	A study of 218 individuals indicates free IGFBP1 levels are associated with high HDL cholesterol and more favourable cardiovascular outcome. The IGF1/IGFBP1 system found to be associated with cardiovascular risk and atherosclerosis (Janssen <i>et al.</i> (1998) Arterioscler Thromb Vasc Biol 18:277-282)
15	Secreted protein, acidic and rich in cysteine (SPARC)	Extracellular glycoprotein secreted by endothelial cells which has a suspected role in calcification of atherosclerotic plaques. Interacts with PDGF-B containing dimers and inhibits binding to its receptors. Expression of SPARC and PDGF is minimal in most adult tissues, but is enhanced following injury and advanced atherosclerotic lesions. Selective expression of SPARC causes rounding of adherent endothelial cells and influences extravasation of macromolecules (Raines <i>et al.</i> (1992) Proc Natl Acad Sci 89:1281-1285; Goldblum <i>et al.</i> (1994) Proc Natl Acad Sci 91:3448-3452)
20	Human NF- kappa-B transcription factor (NFkB)	Activated NF kappa B occurs in atherosclerotic lesions, and regulates the expression of gene important in recruitment of monocytes and inflammatory response. Responsible for cytokine production by smooth muscle cells during atherogenesis (Navab <i>et al.</i> (1995) Am J Cardiol 76:18C-23C; Hernandez-Presa <i>et al.</i> (1998) Am J Pathol 153:1825-1837; Thurberg <i>et al.</i> (1998) Curr Opin Lipidol 9:387-396; Brand <i>et al.</i> (1997) Arterioscler Thromb Vasc Biol 17:1901-1909)
	angiotensinogen (AGT)	Concentration of angiotensinogen influences the renin-angiotensin system(RAS). Hypertensive mice carrying renin and angiotensinogen transgenes found to have higher total cholesterol levels on an atherogenic diet than their wt counterparts, and atherosclerotic lesions were 4x larger in surface area. Suggests hypertension induced by activated RAS is important atherogenic factor (Sugiyama <i>et al.</i> (1997) Lab Invest 76:835-842)
	Nitric Oxide Synthase 3 (NOS3)	Mediates basal vasodilation. Regulates the production of nitric oxide, an important signal transduction component and scavenger of reactive oxygen species. Activity of NOS3 appears to be a factor in endothelin/endothelin receptor B mediated endothelial cell migration and angiogenesis. Polymorphism associated with smoking dependent coronary artery disease (Goligorsky <i>et al.</i> (1999) Clin Exp Pharmacol Physiol 26:269-271; Stroes <i>et al.</i> (1998) J Cardiovasc Pharmacol 32:S14-21; Sobue <i>et al.</i> (1998) Horm Res 50:15-24)

Nitric Oxide Synthase 2 (NOS2)	Mediates basal vasodilation. Regulates the production of nitric oxide, an important signal transduction component and scavenger of reactive oxygen species. NOS2, known as inducible NOS is expressed in most cells only after induction by immunologic and inflammatory stimuli, and is upregulated in pathological conditions such as atherosclerosis (Dusting <i>et al.</i> (1998) Clin Expt Pharmacol Physiol 25:S34-41)
--------------------------------	--

5 From a total of 45,233 assembled gene sequences, 34 novel genes were identified, SEQ ID NOs:1-34, that show strong association with 66 known atherosclerosis-associated genes. Initially, the degree of association was measured by probability values using a cutoff p value less than 0.00001. The sequences were further examined to ensure that the genes that passed the probability test had strong association with known atherosclerosis-associated genes. Details of the co-expression patterns for the
10 66 known and 34 novel atherosclerosis-associated polynucleotides are presented in Table 4. The entries in Table 4 are the negative log of the p-value (-log p) for the coexpression of the two genes. The novel atherosclerosis-associated polynucleotides identified are listed in the table by their SEQ ID NOs numbers, and the known genes, by their names or the abbreviations shown in Table 3.

V Novel Genes Associated with Atherosclerosis

15 Using the co-expression analysis method, 34 novel atherosclerosis-associated polynucleotides were identified, SEQ ID NOs:1-34, that exhibit strong association, or co-expression, with 66 known atherosclerosis-associated genes.

20 Polynucleotides comprising the consensus sequences of SEQ ID NO:1-34 of the present invention were first identified from Incyte bins and assembled as described in Example III. BLAST and other motif searches were performed for SEQ ID NOs:1-34 according to Example VI. The full length and 5'-complete sequences were translated and sequence identity was sought with known sequences.

SEQ ID NO:35 of the present invention was encoded by the nucleic acids of SEQ ID NO:11. SEQ ID NO:35 has 366 amino acids which are encoded by SEQ ID NO:11. Motif analyses of SEQ ID NO:35 shows one potential cAMP- and cGMP-dependent protein kinase phosphorylation sites at residue S343, two potential casein kinase II phosphorylation sites at residues S179 and T351, and four potential protein kinase C phosphorylation sites at residues T29, S85, T269, and T324. Additionally, SEQ ID NO:35 contains a potential sugar transport protein signature sequence from residues L201 to S217.

30 VI Homology Searching for Atherosclerosis-Associated Polynucleotides and Polypeptides

The polynucleotide sequences, SEQ ID NO:1-34, and polypeptide sequence, SEQ ID NO:35, were queried against databases derived from sources such as GenBank and SwissProt. These databases, which contain previously identified and annotated sequences, were searched for regions of similarity using BLAST (Altschul, *supra*). BLAST searched for matches and reported only those that satisfied the

probability thresholds of 10^{-25} or less for nucleotide sequences and 10^{-8} or less for polypeptide sequences.

The polypeptide sequence was also analyzed for known motif patterns using MOTIFS, SPSCAN, BLIMPS, and HMM-based protocols. MOTIFS (Genetics Computer Group, Madison WI) searches polypeptide sequences for patterns that match those defined in the Prosite Dictionary of Protein Sites and Patterns (Bairoch, *supra*) and displays the patterns found and their corresponding literature abstracts. SPSCAN (Genetics Computer Group) searches for potential signal peptide sequences using a weighted matrix method (Nielsen *et al.* (1997) *Prot Eng* 10:1-6). Hits with a score of 5 or greater were considered. BLIMPS uses a weighted matrix analysis algorithm to search for sequence similarity between the polypeptide sequences and those contained in BLOCKS, a database consisting of short amino acid segments, or blocks of 3-60 amino acids in length, compiled from the PROSITE database (Henikoff; *supra*; Bairoch, *supra*), and those in PRINTS, a protein fingerprint database based on non-redundant sequences obtained from sources such as SwissProt, GenBank, PIR, and NRL-3D (Attwood *et al.* (1997) *J Chem Inf Comput Sci* 37:417-424). For the purposes of the present invention, the BLIMPS searches reported matches with a cutoff score of 1000 or greater and a cutoff probability value of 1.0×10^{-3} . HMM-based protocols were based on a probabilistic approach and searched for consensus primary structures of gene families in the protein sequences (Eddy, *supra*; Sonnhammer, *supra*). More than 500 known protein families with cutoff scores ranging from 10 to 50 bits were selected for use in this invention.

20 VII Labeling of Probes and Hybridization Analyses

Substrate Preparation

Nucleic acids are isolated from a biological source and applied to a substrate for standard hybridization protocols by one of the following methods. A mixture of target nucleic acids, a restriction digest of genomic DNA, is fractionated by electrophoresis through an 0.7% agarose gel in 25 1xTAE [Tris-acetate-ethylenediamine tetraacetic acid (EDTA)] running buffer and transferred to a nylon membrane by capillary transfer using 20x saline sodium citrate (SSC). Alternatively, the target nucleic acids are individually ligated to a vector and inserted into bacterial host cells to form a library. Target nucleic acids are arranged on a substrate by one of the following methods. In the first method, bacterial cells containing individual clones are robotically picked and arranged on a nylon membrane. 30 The membrane is placed on bacterial growth medium, LB agar containing carbenicillin, and incubated at 37°C for 16 hours. Bacterial colonies are denatured, neutralized, and digested with proteinase K. Nylon membranes are exposed to UV irradiation in a STRATALINKER UV-crosslinker (Stratagene) to cross-link DNA to the membrane.

In the second method, target nucleic acids are amplified from bacterial vectors by thirty cycles 35 of PCR using primers complementary to vector sequences flanking the insert. Amplified target nucleic

acids are purified using SEPHACRYL-400 beads (APB). Purified target nucleic acids are robotically arrayed onto a glass microscope slide (Corning Science Products, Corning NY). The slide is previously coated with 0.05% aminopropyl silane (Sigma-Aldrich) and cured at 110°C. The arrayed glass slide (microarray) is exposed to UV irradiation in a STRATALINKER UV-crosslinker (Stratagene).

5 Probe Preparation

cDNA probes are made from mRNA templates. Five micrograms of mRNA is mixed with 1 µg random primer (Life Technologies), incubated at 70°C for 10 minutes, and lyophilized. The lyophilized sample is resuspended in 50 µl of 1x first strand buffer (cDNA Synthesis systems; Life Technologies) containing a dNTP mix, [α -³²P]dCTP, dithiothreitol, and MMLV reverse transcriptase (Stratagene), and incubated at 42°C for 1-2 hours. After incubation, the probe is diluted with 42 µl dH₂O, heated to 95°C for 3 minutes, and cooled on ice. mRNA in the probe is removed by alkaline degradation. The probe is neutralized, and degraded mRNA and unincorporated nucleotides are removed using a PROBEQUANT G-50 microcolumn (APB). Probes can be labeled with fluorescent markers, Cy3-dCTP or Cy5-dCTP (APB), in place of the radionucleotide, [³²P]dCTP.

15 Hybridization

Hybridization is carried out at 65°C in a hybridization buffer containing 0.5 M sodium phosphate (pH 7.2), 7% SDS, and 1 mM EDTA. After the substrate is incubated in hybridization buffer at 65°C for at least 2 hours, the buffer is replaced with 10 ml of fresh buffer containing the probes. After incubation at 65°C for 18 hours, the hybridization buffer is removed, and the substrate is washed sequentially under increasingly stringent conditions, up to 40 mM sodium phosphate, 1% SDS, 1 mM EDTA at 65°C. To detect signal produced by a radiolabeled probe hybridized on a membrane, the substrate is exposed to a PHOSPHORIMAGER cassette (APB), and the image is analyzed using IMAGEQUANT data analysis software (APB). To detect signals produced by a fluorescent probe hybridized on a microarray, the substrate is examined by confocal laser microscopy, and images are collected and analyzed using GEMTOOLS gene expression analysis software (Incyte Genomics).

VIII Complementary Polynucleotides

Molecules complementary to the polynucleotide, or a fragment thereof, are used to detect, decrease, or inhibit gene expression. Although use of oligonucleotides comprising from about 18 to about 60 base pairs is described, the same procedure is used with larger or smaller fragments or their derivatives (PNAs). Oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and SEQ ID NO:1-34 or fragments thereof. To inhibit transcription by preventing promoter binding, a complementary oligonucleotide is designed to bind to the most unique 5' sequence, most preferably about 10 nucleotides before the initiation codon of the open reading frame. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the mRNA encoding the polypeptide.

IX Production of Specific Antibodies

The polypeptides encoded by SEQ ID NO:1-34, or portions thereof, substantially purified using polyacrylamide gel electrophoresis or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols as described in Pound (*supra*).

5 Alternatively, the amino acid sequence is analyzed using LASERGENE software (DNASTAR, Madison WI) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide 10 synthesizer (PE Biosystems) using fmoc-chemistry and coupled to keyhole limpet hemocyanin (KLH, Sigma-Aldrich) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (Ausubel, *supra*) to increase immunogenicity. Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with 15 radio-iodinated goat anti-rabbit IgG.

X Screening Molecules for Specific Binding with the Polynucleotide or Polypeptide

The polynucleotide, or fragments thereof, or the polypeptide, or portions thereof, are labeled with ³²P-dCTP, Cy3-dCTP, or Cy5-dCTP (APB), or with BIODIPY or FITC (Molecular Probes, Eugene OR), respectively. Libraries of candidate molecules previously arranged on a substrate are 20 incubated in the presence of labeled polynucleotide or polypeptide. After incubation under conditions for either a nucleic acid or amino acid sequence, the substrate is washed, and any position on the substrate retaining label, which indicates specific binding or complex formation, is assayed, and the binding molecule is identified. Data obtained using different concentrations of the polynucleotide or polypeptide are used to calculate affinity between the labeled nucleic acid or protein and the bound 25 molecule.

What is claimed is:

1. A composition comprising an isolated polynucleotide that is coexpressed with one or more known atherosclerosis-associated genes in a plurality of samples and that is selected from the group consisting of:

- 5 (a) a nucleic acid sequence selected from SEQ ID NOs:1-34;
 (b) a nucleic acid sequence encoding SEQ ID NO:35;
 (c) a nucleic acid sequence which is the complement of (a) or (b).

2. A polynucleotide comprising the nucleic acid sequence of SEQ ID NO:8 or the complement thereof.

10 3. A composition comprising the polynucleotide of claim 1.

4. A method of using a polynucleotide to screen a library of molecules or compounds to identify at least one ligand which specifically binds the polynucleotide, the method comprising:

 (a) combining the polynucleotide of claim 1 with a library of molecules or compounds under conditions to allow specific binding, and

15 (b) detecting specific binding, thereby identifying a ligand which specifically binds the polynucleotide.

5. The method of claim 4 wherein the library is selected from DNA molecules, RNA molecules, PNAs, mimetics, and proteins.

6. A ligand identified by the method of claim 4 which modulates the activity of the 20 polynucleotide.

7. A method of using a polynucleotide to purify a ligand which specifically binds the polynucleotide, the method comprising:

 (a) combining the polynucleotide of claim 1 with a sample under conditions to allow specific binding,

25 (b) detecting specific binding between the polynucleotide and a ligand,

 (c) recovering the bound polynucleotide, and

 (d) separating the polynucleotide from the ligand, thereby obtaining purified ligand.

8. A method for diagnosing a disease or condition associated with the altered expression of a polynucleotide that is coexpressed with one or more known atherosclerosis-associated genes in a 30 sample, the method comprising the steps of:

 (a) hybridizing the composition of claim 1 to a sample under conditions to form one or more hybridization complexes;

 (b) detecting the hybridization complexes; and

 (c) comparing the levels of the hybridization complexes with the level of hybridization

35 complexes in a non-diseased sample, wherein the altered level of hybridization complexes compared

with the level of hybridization complexes of a non-diseased sample indicates the presence of the disease or condition.

9. An expression vector comprising the polynucleotide of claim 2.
10. A host cell comprising the expression vector of claim 9.
- 5 11. A method for producing the polypeptide, the method comprising:
 - (a) culturing the host cell of claim 10 under conditions for expression of the polypeptide,
 - (b) recovering the polypeptide from cell culture.
12. A substantially purified polypeptide comprising the product of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a plurality of samples.
- 10 13. The polypeptide of claim 12, comprising a polypeptide sequence selected from
 - (a) the polypeptides encoded by SEQ ID NOs:1-34; and
 - (b) an oligopeptide sequence comprising at least 6 sequential amino acids of the polypeptide sequence of a).
14. The polypeptide comprising the amino acid sequence of SEQ ID NO:35.
- 15 15. A pharmaceutical composition comprising a polypeptide of claim 12 and a pharmaceutical carrier.
16. A method for using a polypeptide to screen a library of molecules or compounds to identify at least one ligand which specifically binds the polypeptide, the method comprising:
 - (a) combining the polypeptide of claim 12 with the library of molecules or compounds under conditions to allow specific binding, and
 - (b) detecting specific binding between the polypeptide and ligand, thereby identifying a ligand which specifically binds the polypeptide.
- 20 17. The method of claim 16 wherein the library is selected from DNA molecules, RNA molecules, PNAs, mimetics, proteins, agonists, antagonists, and antibodies.
- 25 18. A ligand identified by the method of claim 16 which modulates the activity of the polypeptide.
19. A method of using the polypeptide to purify a ligand from a sample, the method comprising:
 - (a) combining the polypeptide of claim 12 with a sample under conditions to allow specific binding,
 - (b) detecting specific binding between the polypeptide and a ligand,
 - (c) recovering the bound polypeptide, and
 - (d) separating the polypeptide from the ligand, thereby obtaining purified ligand.
- 30 20. A method for treating a disease associated with the altered expression of a gene that is coexpressed with one or more known atherosclerosis-associated genes in a subject in need, the method

comprising the step of administering to the subject in need the pharmaceutical composition of claim 15 in an amount effective for treating the disease.

SEQUENCE LISTING

<110> INCYTE GENOMICS, INC.
 JONES, Karen Anne
 VOLKMUTH, Wayne
 WALKER, Michael

<120> ATHEROSCLEROSIS-ASSOCIATED GENES

<130> PB-0013 PCT

<140> To Be Assigned
 <141> Herewith

<150> 09/349,015
 <151> 1999-07-07

<160> 35

<170> FastSEQ for Windows Version 3.0

<210> 1
 <211> 1334
 <212> DNA
 <213> HOMO SAPIENS
 <222> 674, 735, 788

<400> 1			
aggccctccct ccacctgtct	tctcagagca gataatggca	agcatggctg ccgtgctcac	60
ctgggcctcg gettttctt	cagcgtttcc gcccacccag	gcacggaaag gttctggga	120
ctacttcagc cagaccagcg	gggacaaaagg cagggtggag	cagatccatc agcagaagat	180
ggctcgcgag cccgcgaccc	tggaaagacag ctttgagcaa	gacctaaca atatgaacaa	240
gttcttggaa aagctgaggc	ctctgagtgg gagcgaggct	cctcgctcc cacaggaccc	300
gttgggcattt cgccggcagc	tgcaggagga gttggaggag	gtgaaggctc gcctccagcc	360
ctacatggca gaggcgacg	agctgggtgg ctggaatttg	gagggcttgc ggcagcaact	420
gaagccctac acgatggatc	tgtatggagca ggtggccctg	cgcgtgcagg agctgcagga	480
gcagttgcgc gtggtgggg	aagacaccaa ggcccagttt	ctggggggcg tggacgagc	540
ttgggccttg ctgcaggggac	tgcagagccg cgtggtgac	cacaccggcc gttcaaaga	600
gtcttccac ccatacgccg	agagccttgtt gagcggcatc	gggcgccacg tgcaggagct	660
gcaccgcagt gtgnccgca	cgcggccccc agccccggc	gcctcagtcg ctgcgtgcag	720
gtgctctccc ggaantcagc	ctcaaggcca aggcctgca	cgcacgcattc cagcagaacc	780
tggaccantg cgcaagagc	tcagcagacg ctttcggagc	actgggactg aggaaggggc	840
cggccggac ccccgatgc	tctccggagga ggtgcggccag	cgacttcagg cttccgcac	900
ggacacccat ctgcagatag	ctgccttcac tgcgccttc	gaccaggaga ctgaggaggt	960
ccagcggcag ctggcgccac	ctccaccagg ccacagtgcc	ttcgcccccag agttcaaca	1020
aacagacagt ggcaaggttc	tgagcaagct gcaggccgt	ctggatgacc tggggaaaga	1080
catcaactac agccctcatg	accaggccca cagccgtctg	ggggacccct gaggatctac	1140
ctgcccaggc ccattccccag	cttcttgct ggggagccct	ggctctgagc ctctagcatg	1200
gttcagtct taaaagtggc	ctgttgggtg gagggtgaaa	gttctgtgc aggacaggga	1260
ggccaccaaa gggctgtcg	tctcctgcatt atccagccctc	ctgcgactcc ccaatgcagg	1320
atgcattcat tcac			1334

<210> 2
 <211> 1702
 <212> DNA
 <213> HOMO SAPIENS

<400> 2			
cgttccact gcaccctgga	gaacgaggct ttgcgggtt	tctcctggct gtccctccgac	60
ccggccggtc tcgaaagcga	cacgctgcag tgggtggagg	agccccaaacg ctcctgcacc	120

gcgcggagat	gcccggtaact	ccaggccacc	ggtgggggtcg	agcccccagg	ctggaaaggag	180
atgcgatgcc	acctgcgcgc	caacggctac	ctgtgcaagt	accagttga	ggtcttgtgt	240
cctgcggcgc	gccccggggc	cgccctctaac	tttagctatc	gcgcggccctt	ccagctgcac	300
agcggcgc	tggacttcag	tccacctggg	accgaggtga	gtgcgtctg	ccggggacag	360
ctcccgatct	cagttacttg	catcgccgac	gaaatcggcg	ctcgctggga	caaactctcg	420
ggcgatgtgt	tgtgtccctg	ccccgggagg	tacctccgtg	ctggcaaata	cgccagagctc	480
cctaactgcc	tagacgactt	gggaggctt	gcctgcaat	gtgctacggg	cttcgagctg	540
gggaaggacg	gccgctttg	tgtgaccagt	gggaaaggac	agccgaccct	tggggggacc	600
gggggtgccc	ccaggcgccc	gcccggcact	gcaaccagcc	ccgtggcga	gagaacatgg	660
ccaatcaggg	tcgacgagaa	gtgggagag	acaccacttg	tccctgaaca	agacaattca	720
gtaacatcta	ttccctgagat	tcctcgatgg	ggatcacaga	gcacgatgtc	tacccttcaa	780
atgtcccttc	aaggcgagtc	aaaggccact	atcacccat	cagggagcgt	gatttccaag	840
ttaattcta	cgacttcctc	tgccactcct	caggcttgc	actcctcctc	tgccgtggc	900
ttcatatttg	tgagcacagc	agtagtagtg	tttgtgatct	tgaccatgac	agtactgggg	960
cttgtcaagg	tctgctttca	cgaaaagcccc	tcttcccagc	caaggaagga	gtctatgggc	1020
ccgcccggcc	tggagagtga	tcctgagccc	gctgctttgg	gctccagttc	tgcacattgc	1080
acaaaacaatg	gggtgaaagt	cggggactgt	gatctgcggg	acagagcaga	gggtgccttg	1140
ctggcggagt	ccccctttgg	ctcttagtgc	gcatagggaa	acaggggaca	tgggactcc	1200
tgtgaacagt	ttttcactt	tgatgaaacg	gggaaccaag	aggaacttac	tttgttaact	1260
gacaattct	gcagaaatcc	cccttcctc	aaattccctt	tactccactg	aggagctaaa	1320
tcagaactgc	acactcctc	cctgatgata	gaggaagtgg	aatgcctt	aggatggtga	1380
tactggggga	ccgggttagtg	ctggggagag	atatttctt	atgtttattc	ggagaatttg	1440
gagaagtgt	tgaactttt	aagacatgg	aaacaaatag	aacacaatat	aatttacatt	1500
aaaaaaataat	ttcttacaaa	atggaaagga	aatgttctat	gttgttcagg	ctaggagtt	1560
attggttcga	aatcccaggg	aaaaaaaaaa	aaataaaaaaa	ttaaggatt	gttgataaaaa	1620
aaaaaaaaaa	aaaaagatct	ttaattaagc	ggcccaagct	tattccctt	agtgaggggt	1680
aattttagct	tgcactggcc	ac				1702

<210> 3
<211> 586
<212> DNA
<213> HOMO SAPIENS
<222> 48, 66, 560, 577, 580

<400> 3
tcgaggactc cgccaaactac agctgcgtct acgtggacct gaagccgnct ttggggggct
acgcgnccag cgagcgctt gagctgcacg tggacggacc ccctccagg cctcagctcc 60
ggcgacgtg gagttggggcg gtcctggcg gcccagatgc cgtcctgcgc tgcgagggac 120
ccatccccga cgtcacctc gagctgcgtc gcggaggcga gacgaaggcc gtgaagacgg 180
tccgcacccc cggggccgcg gcgAACCTG agctgatctt cgtggggccc cagcacgcgg 240
gcaactacag gtgcgcgtac cgctcctgg tgccccacac ctgcatactcg gagctcagcg 300
accctgtgga gctctgtgt gcagaaagct gatgcagccg cggggccagg gtgctgttg 360
tgtcctcaga agtggccggg attctggact ggctccctc cctcctgttg cagcacaagg 420
ccgggggtctc tggggggctg gagaaggcctc cctcattctt cccaggaatt aataaatgtg 480
aagagagctc tggtaaaaan aaaaaaaaaaag aaanaanaan aaccaa 540
586

<210> 4
<211> 433
<212> DNA
<213> HOMO SAPIENS

<400> 4
ctcaagaccc agcagtggga cagccagaca gacggcacga tggcactgag ctcccagatc 60
tggggccgtt gcttcctgtc ctccttcctc ctcgcgcagg tgaccagtgg ctctgtttc 120
ccacaacaga cgggacaact tgcagagctg caacccagg acagagctgg agccaggccc 180
agctggatgc ccatgttcca gaggcgaagg aggcagaca cccacttccc catctgcatt 240
ttctgctgcg gctgctgtca tcgatcaaag tgtggatgt gctgcaagac gtatagaccta 300
cctgcccctgc cccctgtccc tcccttcctt atttattcct gctgccccag aacataggtc 360
ttggaaataaa atggctgtttt cttttgtttt caaaaaaaaa aaaaaaaaaa aaaaaaaaaaa 420
aaaaaaaaaa aaa 433

<210> 5
<211> 752

<212> DNA
 <213> HOMO SAPIENS

<400> 5

attgtacact taaaataat ggaattttac agtaagtcaa gtatgtatcg atgaagctat	60
taaaacatct atttattac tcaaatttct acaggtcaga attctggcat ggagtggctg	120
cattcttgt ttaagctgaa atcaagggtg tgttggccg tggttcacc tgaagctcag	180
agttcaacctt caagctcatt ttgtcctta gcagaattga gtgtcttgc attgtagaac	240
tgaggtctt gctgtgtc tgtcagcagg ggactgctcc ctgcttctag aggccaccgg	300
tttccctcg ttagtggccc cttccattt caggccagca ataatgtgtt gaataacttcc	360
tatgcttcaa atctctggct tctgtacca gctggagaaa aaactctctg cttgttagagg	420
gctcatgtga ttactttagt ctttgcctt aggtcaattt atttggtaact tgggatttt	480
attgtatctg tatgtttcca tcaaggcaat aactgttata gtgttgaat aaataaccag	540
gtaatctggt aatttaccat actggtaatc tgacagggag atgggaattc atcttataaa	600
ttctgtctac cacaaccat gtctgtgtt attttctttt gggaaagagtt gtctgtgact	660
gtcacttagt ttgaggttcc atgttgcgtt gattctgtcc agtatttga cctcttcccc	720
aatctggtc ttcaaaaaacca tcttttagga gc	752

<210> 6
 <211> 944
 <212> DNA
 <213> HOMO SAPIENS

<400> 6

tcttggccg agaatttttt tttttttttt tttgcttgggt cgggttaattt tcattccaaa	60
taaacttac acaaaaaaac tcagctccccc aaggtcattt ccccgctgcc agatacatac	120
ttatctctga aagagtttgg aagatggacc ttcaatttcc tctacaattt gtagctgagt	180
tacagagtaa cctgccagca atcctatcag cattcatcag actattttaa tagagcaaag	240
tccacaaaaaa gttccactga gacatgtga gcaaaggccg gagccccaga agaaaacaag	300
tacagactca gaggaaagct gccctggtcc tgagtgtgac tcccatggtc cccgtgggt	360
ctgtgtgtt ggcaatgagc tctgtgtgt cagctttcat gaggagatc cctggctgt	420
tcctgtttt tgggtcttc cttccatgtc cttgtgtgt gctccctctc atcgccctact	480
tcaggatcaa actgatttagt gttaatgttca aactgttccca gaactgtgat cgccaacata	540
atcccaaggaa tggcttcttc ctgttccca gaatgaaatg gacgtgaagt tggtgacttt	600
ccaataacta aaggcacaatg agtttctact ggtcagcaag caatggccaa cagttcagct	660
aataaaatgtt gttgataaac tagaaccata gcaaaatata gaaataacta agataactat	720
tctgaaccat actgaaaatg ggcagctatt atctaagggg acttctcaga gactcagtt	780
aacagcagct ttgaaaatg accaagaatg gatttctgg gtatatacac tggacacatt	840
gtaaactttt aacttttatt gtgactgtgt ctgtctaaa cggcatattt aaaaaataaaa	900
attctgcagc atcttactac ataaaaaaaaaaaaaaa aaaaaaaa	944

<210> 7
 <211> 868
 <212> DNA
 <213> HOMO SAPIENS

<400> 7

cctccctccg cgagctggac gtcggcagc ccggccgcca gccggccgc cggccgcgc	60
aggaatccct ggataaaagac cagctcaacc atcgtgtgaga aaacagacat aggcttccca	120
gggcggtaa cccggccgc tctggccaga gactaaaaga caaaacaaaa taaaacaaca	180
acaaaaaaact cccagtgtgt ttcttactct tcttgcctt ggaggaaagc aaagggagag	240
aaatggactt caccgtgtt ctgttgcctt atcaatttac agggaaatggc atcaagatgg	300
ttcaactaag acatgtatcac taaaacatt ataataatac ttttttgtttt aactcagttt	360
ctccgttta ctaaatattt atttcatcaa catggctgc ttccactgt gtcaggattc	420
tgcatgtggg tggagcactg ttccagcctg agaagatgtt tctgaggcca cttagcaaga	480
cattttccag catgagcagg ttctctgtg gaaatagtga cacctgttct ggtgtttgt	540
ctttccctcag ggaacttaag gggtaaaaaa ctctgtttt gtttctttat gctgggttggaa	600
gctcttatgt cgctgtactg attccctactg atcagatgtt gaatcacaga gtaattttttt	660
tatggatcaa ataaggctgg ggctcacca ggctgaaagc tttttttttt tttttttttt	720
tttctgtcat gaaaatata gaccccttca aaacatgcct tttttttttt tttttttttt	780
caaacaaaaag tctaatgtt gataactt tttttttttt tttttttttt tttttttttt	840
ttgcttattt acagctactg gaacaaaaaa	868

<210> 8
<211> 3111
<212> DNA
<213> HOMO SAPIENS
<222> 44

<400> 8

cgagggcgga	cgcaaagaac	gcggaggacc	tctgggtgcc	tgcngggag	ctgctccagc	60
cgggcccgg	ggagcgtgg	ggagagcata	gcmcagccgc	ccctccacgc	gcccgcgg	120
ccgcgttcgc	ccactgggct	ctccccgtg	cagtgcagg	gcgcaggacg	cggccgatct	180
cccgctccg	ccacctccgc	caccatgtg	ctcccccage	tctgtggct	gccgctgctc	240
gctgggctgc	tcccgccgg	gcccgtcag	aagttctcg	cgctcacgtt	tttgagatg	300
gatcaagata	aagacaaggaa	ttgtagctt	gactgtgcgg	tttcggccaa	gaaacctctc	360
tgcgcatactg	acgaaaggac	tttccttcc	cgttgtgaat	ttcaacgtgc	caagtgc	420
gatccccagc	tagagattgc	atatcgagga	aactgcaaag	acgtgtccag	gtgtgtggcc	480
gaaaggaagt	atacccagga	gcaagccgg	aaggagttt	agcaagtgtt	cattcctgag	540
tgcaatgacg	acggcaccta	cagtcaatgc	cagtgtcaca	gctacacggg	atactgctgg	600
tgcgtcacgc	ccaacgggag	gcccattcagc	ggcaactgcgg	ttggccacaa	gacgccccgg	660
tgcccggggtt	ccgtaaatga	aaagttaccc	caacgcgaag	gcacaggaaa	aacagatgt	720
gccgcagctc	cagcgttgg	gactcagctt	caaggagatg	aagaagatat	tgcatacgt	780
taccctaccc	tttggactga	acaggtaaa	agtccggaga	acaaaaccaa	taagaattca	840
gtgtcatctt	gtgaccaaga	gcaccagtct	gcctggagg	aagccaagca	gcccaagaac	900
gacaatgtgg	tgatccctga	gtgtgcac	ggcgccctct	acaaggccagt	gcagtgcac	960
ccctccacgg	ggtaactgctg	gtgcgtcctg	gtggacacgg	ggcgccccat	tccggcaca	1020
tccacaaggt	acgagcagcc	gaaatgtgac	aacacgggccc	agggccacc	cagccaaagc	1080
ccgggacctg	tacaaggggcc	gccagctaca	agttgtccg	gtgcacaaaa	agcatgagtt	1140
tctgaccagc	gttctggacg	cgctgtccac	ggacatggtc	cacgcgcct	ccgacccctc	1200
cteetcgtca	ggcaggctct	cagaacccga	ccccagccat	accctagagg	agcgggttgt	1260
gcactggta	ttcaaactac	tggataaaaa	ctccagtgg	gacatggca	aaaaggaaat	1320
caaacccttc	aagaggttcc	ttcgcaaaaa	atcaaagccc	aaaaaatgt	tgaagaagtt	1380
tgttgaatac	tgtacgtga	ataatgacaa	atccatctcc	gtacaagaac	tgatgggtctg	1440
cctggcggtg	gcaaaaaaggg	acggcaaaagc	ggacaccaag	aaacggcaca	ccccagagg	1500
tcatgctgaa	agtacgtcta	atagacagcc	aaggaaacaa	ggataaatgg	ctcataccccc	1560
gaaggcagg	cctagacaca	tggaaattt	ccctccacaa	agagcaatta	agaaaacaaa	1620
aacagaaaca	catatgtttt	gcactttgt	ctttaaatgt	aaatttactt	tgttagaaatg	1680
agctattnaa	acagactgtt	ttaatctgt	aaaatggaga	gctggcttca	gaaaattaaat	1740
cacataccaa	tgtatgtgc	ctctttgtac	cttggaaatc	tgtatgttgt	ggagaagtat	1800
ttgaatgcat	ttaggcttaa	tttcttcg	ttccacatgt	taacagtaga	gctctatgca	1860
ctccggctgc	aatctatgg	cttctctaa	ccctgcagt	cacttccaga	tgctgtgt	1920
tacagcattt	tggaatcatg	ttggaaagctc	cacatgtcca	tggaagttt	tgatgtacgg	1980
ccgaccctac	aggcagttaa	catgcattgg	ctggttgtt	tcttgggatt	ttctgttagt	2040
ttgtcttgg	ttgcttcca	gagatcttgc	tcatacaatg	aatcacgca	ccactaaagc	2100
tatccagtt	agtgcaggt	gttcccttgg	aggaataat	atttcaaac	tgtcggttgt	2160
gtgatacttt	ggctcaaagg	atctttgtt	ttccatttta	agcttctgtt	tttgagttttt	2220
ccctggggct	tgaatgatgc	ccagagatc	gttggatgg	tggaggcgtt	cctaggaggc	2280
agtaaatcca	gttacacgtg	cttgggggg	gcccattctt	ccaaaatgt	aatccagttc	2340
gcgggtgtac	cgagctggc	taacaggctt	gtctgcctgg	ttttccattac	tacacgtgga	2400
cattatttc	ctgatccctc	tacctgggtt	caccccagg	ctaccggaag	gtaaaatctt	2460
cacctgaacc	aattatgacg	agtctccctt	ctgaaaggatc	agccgatata	gtgggtcccc	2520
cggggcttgt	gttggcagcc	ggggggaggt	gcctgagggt	ccccacggtt	cctttctgtct	2580
tttctgaatg	catcaagggt	acgagaacat	gccaatggaa	aattcatccg	agttggactg	2640
gcagagaagg	ataggagttgg	aatgcccaca	cagtgaccaa	cagaactgtt	ctgcgtgc	2700
aaccagctgc	caccctcagg	cctggggccc	agagctcagg	gcacccagg	tcttaaggaa	2760
ccatttggag	gacagtctga	gagcaggaac	ttcaagctgt	gattctatct	cggtctcagac	2820
ttttgggtgg	aaaaagatct	tcatggcccc	aaatccccctg	agacatgcct	tgttagaaatg	2880
ttttgtatgt	ttgtatgtct	tgtggagcat	cgcttaaggc	ttcttgc	tttaaactgt	2940
gcaaggtaaa	aatcaagcc	ttggagccac	agaaccagat	caagtacatg	ccaatgttgt	3000
ttaagaaaca	gttatgatcc	taaactttt	ggataatctt	ttatatttct	gaccctttgaa	3060
ttaatcatt	gttcttagat	taaaataaaa	tatgcttattt	aaactaaaaa	a	3111

<210> 9
<211> 2311
<212> DNA

WO 01/04264

<213> HOMO SAPIENS

<222> 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487,
 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502,
 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517,
 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,
 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 2288, 2295,
 2296, 2297, 2298, 2299

<400> 9

gccgctcgcc	cacggactcc	gacgtgtccc	tgcactccga	ggactccggg	gctaagtctc	60
caggcatctt	gggctacaat	atctgtcccc	gcgggtggaa	tggcagccct	cggtcaagc	120
gtggcagct	ccccggcgag	gcctctgca	ccacctagag	ccccaccccc	gaccggcaccc	180
cgggaggggca	gagccagaag	aaggctatt	agacctgggg	gaccggaaagg	gtctggcctc	240
tttggggcagc	cccagagatc	aggggtcagc	agaggagagc	tctggggttt	gggatgggtt	300
agggacgcaa	gcttgagttc	tagcccttgc	tctcatttag	ctgttgtgt	accctggta	360
agacccttc	tttttgacc	ctcagcttc	ccatctgtt	aatggtggt	ttggccaagg	420
caatccacaa	acgtcaaaaat	tcccctccc	atcagtacac	acaccgatgc	acannnnnnn	480
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	540
nnnnntagtt	gtgccttgg	tgaggcgggg	cagtgtgtat	atggaccct	ggacttgcta	600
ccttcagggt	tccataactcg	tccctccct	cctggctctg	ctgtctggag	tctggcaagc	660
ggggtgtgtt	cagaagggtcc	taggcctgt	tgcatgtcc	aggcactggc	ctgaccatcc	720
ggctccctgg	gcaccaagtc	ccagggcagg	agcagctgtt	ttccatccct	tcccagacaa	780
gctctattt	tatcacaatg	accttttagag	aggtctccc	ggccagctca	aggtgtccca	840
ctatccctc	tggagggaaag	aggcaggaaa	attctccccc	ggtccctgtc	atgtacttt	900
ctccatccca	gttcagactg	tccaggacat	tttatctgca	gccataagag	aattataagg	960
cagtgattc	ccttagggccc	aggacttggg	cctccagctc	atctgttcc	tctggccca	1020
ttcatgggca	ggtctgggc	tcaaagctga	actggggaga	gaagagatac	agagatcca	1080
tgtacttta	cctgattggc	ctcagttgg	gggtgcttat	tggggaaagag	agagacaaag	1140
agtacttgt	tacgggaaat	atgaaaagca	tggccaggat	gcatagagga	gattctagca	1200
ggggacagga	ttgctcaga	tgaccctga	gggcttcc	agtcttgaaa	tgcattccat	1260
gatatttagg	agtcgggggt	gggtgggtt	gggtggctag	ttgggcttga	atttagggc	1320
cgatgagtt	gggtacgtga	gcaggggtt	aagttagggt	ctgcctgtat	ttctggtccc	1380
cttgggaat	gtcccccttc	tcagtgctag	acctcagtc	cagtgtccat	atcggtccca	1440
gaaaagtaga	cattatccctg	ccccatccct	tccccagtgc	actctgacct	agctagtgcc	1500
tggtccccag	tgacctgggg	gagcctggct	gcaggccctc	actggttccc	taaaccttgg	1560
tggctgtat	tcaggtcccc	agggggact	cagggaggaa	tatggctgag	ttctgttagtt	1620
tccagagtt	ggctggtaga	gttttctaga	ggttcagaat	attagttca	ggatcagctg	1680
ggggtatgga	attggcttag	gatcaaactg	atgttaggt	aaggatcca	ggatgttgct	1740
aaaggtgagg	gacagtttg	gttgggact	tacgggggt	atgttagatc	tggaaacccc	1800
aagtggagct	ggagggagtt	aaggctagta	tgaagatag	gttgggaca	gggtgcttg	1860
gaatgaaaga	gtgaccttag	agggctctt	gggcctcagg	aatgccttg	ctgctgtgaa	1920
gatgagaagg	tgccttact	cagttatga	tgagtacta	tatttacca	agccccctacc	1980
tgctgtggg	tccctttag	cacaggagac	tggggctaag	ggccctccc	agggaaaggga	2040
caccatcagg	cctctggctg	aggcagtagc	atagaggatc	catttctacc	tgcatttccc	2100
agaggactag	caggaggcag	cttgagaaaa	ccggcagttc	ccaaggccagc	gcctggctgt	2160
tctctcattt	tcactgcct	ctccccaaacc	tccctctaa	cccactagag	attgcctgt	2220
tcctgcctct	tgcctttgt	agaatgcagc	tctggccctc	aataaatgt	tcctgcattc	2280
aaaaaaaaaa	aaaannnnna	aaaaaaaaaaag	g			2311

<210> 10

<211> 1866

<212> DNA

<213> HOMO SAPIENS

<400> 10

agctttgtt	cacacttaa	atagcagtcc	cagaatgatt	tcactacaga	ctctctggaa	60
agcctgggg	ctgaattccg	gaagatcccc	acatcgatga	aagcaaagcg	aagccaccaa	120
gccatcatca	tgtccacgtc	gctacgagtc	agcccatcca	tccatggcta	ccacttcgac	180
acagcctctc	gtaagaaagc	cgtggcaac	atcttggaaa	acacagacca	agaatcaacta	240
gaaaggctct	tcagaaactc	tggagacaag	aaagcagagg	agagagccaa	gatcattttt	300
gccatagatc	aagatgtgga	ggagaaaaacg	cgtggccctga	tggccttcaa	gaagaggaca	360
aaagacaagg	ttttccagtt	tctgaaactg	cgaaaatatt	ccatcaaagt	tcactgaaga	420
gaagaggatg	gataaggacg	ttatccaaga	atggacattc	aaagaccaag	tgagtttg	480

agattctaac agatgcagca ttttgctgct accttacaag cttctttct gtcaggactc	540
cagaggctgg aaagggaccg ggactggaaa gggaccagga ctgaacagac tggttacaaa	600
gactccaaac aatttcatgc cctgtgctgt tacagaggag aacaaaatgc tttcagcaag	660
gatttggaaa ctcttccgtc cctgcaggaa aggattgatg ctgatagaag agcctggaca	720
gatgtaatga gaactaaaga aaacagatgg ctggagatga cattatcca gggtcactt	780
gtcaggccct aggacttaaa tcgaagttga acttttttt ttttttaacc aaatagatag	840
gggaaggggag gagggagagg gaggacaggg agagaaaata ccatgcataa attgtttact	900
gaatttttat atctgagtgt tcaaaatatt tccaagcctg agtattgtct attggtagat	960
attttttagaa atcaataatt gattatttat ttgcacttata caaatgcct gaaaaagtgc	1020
accacatgg atgtaagtag aaattcaaga aagtaagatg tcttcagcaa ctcagtaaaa	1080
ccttacgcca cctttgggt tgtaaaagggt ttttataca tttcaaacag gttgcacaaa	1140
agttaaaata atggggctt ttataaatcc aaagtaactgt gaaaacattt tacatattt	1200
ttaaatcttc tgactaatgc taaaacgtaa tctaattaaa ttcatacag ttactgcagt	1260
aagcattagg aagtgaatat gatataaaa atagttata aagactctat agttctata	1320
atttattttt ctggcaaaatg tcatgcaca ataataaatt attgttaact ttgtggctt	1380
tggctgtga tgcttggctt caaaggaaaa aataagatgg taaatgtga tatttacaaa	1440
crtttctaaa gatgtgtctc taacaataaa agttaatttt agagtagttt tatattaatt	1500
accaaactt ttcaaaacaa attcttacgt caaatatctg ggaagttct ctgtcccaat	1560
cttaaaatataaataataga tatagaagtt catagattga ctccctggca tttctattta	1620
tgtatccatt aagatgagt tttaaaaggc ttctcttca tactttgaa aaatttcttc	1680
tatgattaca gtagctatgt acatgtgtac atctatttt cccaaagcaat atgttttggg	1740
tttagagttct gaggatgac caagattctg tgggttacta ctgtttgtt aataggaaca	1800
aatatagaaa taatatttac tctttgctta ttcccgtta aaactataat aaaatgttca	1860
taggaa	1866

<210> 11

<211> 1929

<212> DNA

<213> HOMO SAPIENS

<400> 11	
gtcgctgcc ggtgctcttc gtggctctgg gcatggccctc ggaccacatc ttcacgctgg	60
cgcccccgct gcattgcccac tacggggcct tccccctaa tgcctctggc tgggagcagc	120
ctcccaatgc cagccggcgtc agcgctgcca ggcgtgcctt acgagccage gccgcccagcc	180
gtgtcgccac cagtaccgac ccctcggtca ggggttcgc cccgcggac ttcacaccatt	240
gcccctcaagg attgggacta taatggcctt cctgtgtca ccaccaacgc catcgccag	300
tgggatctgg tggatgaccc gggctggcag gtgatctgg agcagatctt cttcatctt	360
ggctttgcct ccggcttaccc ttccctgggt taccggcag acagatttgg ccgtcgccgg	420
attgtgctgc tgaccttggg gctgggtggc ccctgtggag taggaggggc tgctgcaggc	480
tcctccacag gcgcatggc cctccgattt ctcttgggtt ttctgttgc cgggttttgc	540
ctgggtgtct acctgatgc cttggagctg tgcgacccaa cccagaggct tcgggtggcc	600
ctggcagggg agttggggg ggtgggaggg cacttctgt tcctggcctt ggcccttgc	660
tctaaggatt ggcatttctt acagcgaatg atcaccgctc cctgcatttctt ttccctgtt	720
tatggctggc ctggttttttt cttggagttcc gcaagggtggc tgatagtgaa gcccagatt	780
gaggaggctc agtctgtct gaggatctg gctgagcgaa accggcccca tggcagatg	840
ctggggggagg agggccagga ggcctgcag gacctggaga atacctgccc ttccctgc	900
acatccctctt ttcccttgc ttccctcttca aactaccgca acatctggaa aaatctgtt	960
atcctgggtt tcaccaactt cattggccat gcatggccctc actgttacca gctgtggga	1020
ggaggaggga gccccatcgga ctggcctgtg tcttctctg tggccacggg caccgcagcc	1080
ctggcctgtg tcttcttggg ggtcacccgtg gaccgattt ggcggggggg catcttctt	1140
cttcctccatga cccttaccgg cattgcatttcc ctggcttgc tggccctgtg ggattatctg	1200
aacgaggctc ccacaccac tttctctgtc ctggggctct ttccttccca agctggccgc	1260
atcctcagca cccttcttgc tgctgagttt atccccacca ctgtccgggg cctgtggctt	1320
ggccctgatca tggctctagg ggcgttggg gggactgagcg gcccggccca ggcctccac	1380
atggggccatg gagcttctt gcaagcacgtg gtgttggcgg cctgcgcctt cctctgtt	1440
ctcagcatca tgctgtgtcc ggagaccaag cgcaagctcc tgcccgaggt gctccgggac	1500
ggggagctgt gtcggccggcc ttccctgtc cggcagccac ccccttaccgg ctgtgaccac	1560
gtccccgtgc ttggccacccc caaccctgcc ctctgagcgg cctctgttca ccctggcggg	1620
aggctggccc acacagaaag gtggcaagaa gatcgaaaag actgagtagg gaaggcaggg	1680
ctgcccagaa gtctcagagg cacctcacgc cagccatcgc ggagagctca gaggccgtc	1740
cccaccctgc ctcccttgc tgccttgc ttcacttctt tggccaggt caggggacag	1800
ggagagagct ccacactgtt accactgggt ctgggttcca tcctgcgc tcaaaagacat ttgaaataaa	1860
acccagaccc tatttttct tgccttatca ttctgtttca ataaagacat ttgaaataaa	1920

aaaaaaaaaaa

1929

<210> 12
 <211> 1831
 <212> DNA
 <213> HOMO SAPIENS

<400> 12

ctggagccgc	cctgggtgtc	agcggtcg	ctccccgc	cgctccggcc	gtcgcgcc	60
tcgggcacct	gcagggtccgt	ggcgccccgc	ggctggccgc	ccctgactcc	gtccccggca	120
gggaggggca	tgattttccct	ccccggggcc	ctggtgacca	acttgcgtcg	gtttttgttc	180
ctggggctga	gtgccttcgc	gccccctcg	cgggcccagc	tgcactgc	cttgcggcc	240
aaccgggtgc	aggcggtgga	gggaggggaa	gtgggtcttc	cagcgtggta	caccttgac	300
ggggagggtg	tttcatccca	gcccattggag	gtgccccttg	tgatgtgggt	tttcaaacag	360
aaagaaaaagg	aggatcagg	gttgtctac	atcaatgggg	tccacaacaag	caaacctgga	420
gtatccttgg	tctactccat	gccctcccg	aacctgtccc	tgcggctgga	gggtctccag	480
gagaaaagact	ctggcccccta	cagctgtcc	gtgaatgtgc	aagacaaaaca	aggcaaatct	540
agggggccaca	gcatcaaaac	cttagaactc	aatgtactgg	ttcctccagc	tcctccatcc	600
tgccgtctcc	agggtgtgccc	ccatgtgggg	gcaaacgtga	ccctgagctg	ccagtctcca	660
aggagtaagc	ccgctgtcca	ataccagtgg	gatcgccagc	ttccatcctt	ccagacttcc	720
tttgcaccag	cattagatgt	catccgtggg	tcttaagcc	tcaccaacct	ttcgtcttcc	780
atggctggag	tctatgtctg	caaggcccac	aatgaggtgg	gcactgccc	atgtaatgtg	840
acgctggaag	tgagcacagg	tcagtgaggg	ggcctggagc	tgcaagtgg	gctggagctg	900
tttgtgggtac	cctgggttgg	ctgggggtgc	tggctgggt	gttcccttgg	taccaccggc	960
ggggcaaggc	cctggaggag	ccagccaatg	atataaagg	ggatggccatt	gtccccgg	1020
ccctggccctg	gccccaaagac	tcagacacaa	tctccaaagaa	tgggaccctt	tcctctgtca	1080
cctccgcacg	agccccctccgg	ccaccccatg	gcccctccag	gcctgggtca	ttgacccca	1140
cgtttttttttt	ctccagccag	gccccccctt	caccaagact	gcccacgaca	gatggggccc	1200
accctcaacc	aatatcccc	atccctgggt	gggttttttc	ctctggcttgc	agccgcattgg	1260
gtgtctgtcc	tgtgtgttgc	cctggccaga	gtcaagctgg	ctctctggta	tgatgacccc	1320
accactcatt	ggctaaagg	tttgggtct	ctccttcctt	taagggtcac	ctctagcaca	1380
gaggccttag	tcatggaaa	gagtacact	cctgaccctt	agtactctgc	ccccacccct	1440
ctttactgtg	ggaaaaccat	ctcagtaaga	ccttaagtgtc	caggagacag	aaggagaaga	1500
ggaagtggat	ctggaaattgg	gaggagcc	cacccacccc	tgactctcc	ttatgaagcc	1560
agctgtgaa	attagctact	caccaagagt	gagggggcaga	gacttccagt	cactgagtct	1620
cccaggcccc	cttgatctgt	acccacccc	tatctaacac	caccccttggc	tcccactcca	1680
gctccctgta	ttgatataac	ctgtcaggct	ggcttggta	ggttttactg	ggcagagagga	1740
taggaaatct	tttattaaaa	ctaacatgaa	atatgttttgc	ttttcattttg	caaattttaaa	1800
taaagataca	taatgttttgc	atgagataag	a			1831

<210> 13
 <211> 909
 <212> DNA
 <213> HOMO SAPIENS

<400> 13

gaggaggtgg	gcgcacacag	acaggcgatt	aatgcggctc	ttacccagge	aaccaggact	60
acagtataca	ttgtggacat	tcaggacata	gattctgcag	ctcgccccc	acctcaactcc	120
tacctcgatg	cctactttgt	cttccccat	gggtcagccc	tgacccttga	tgagctgagt	180
gtgatgatcc	ggaatgatca	ggactcgctg	acgcagctgc	tgcagctggg	gtcggtgggt	240
ctgggctccc	aggagagcca	ggagtcagac	ctgtcgaaac	agctcatcag	tgtcatcata	300
ggattgggag	tggctttgt	gctggccctt	gtgatcatga	ccatggcc	cgtgtgtgt	360
cggaaagagct	acaacccggaa	gcttcaagct	atgaaggctg	ccaaaggaggc	caggaagaca	420
gcagcagggg	tgtatggcc	agccccctgc	atccccaggg	ctaatatgt	caacacttg	480
cgagccaaacc	ccatgtgtgaa	cctcccccaac	aaagacctgg	gcttggagta	cctctctccc	540
tccaaatgacc	tggactctgt	cagcgtcaac	tccctggac	acaactctgt	ggatgtggac	600
aagaacacgtc	agggaaatcaa	ggagcacagg	ccaccacaca	caccaccaga	gccagatcca	660
gagccccctga	gctgtggctt	gtttaggacgg	caggcaggcg	caagtggaca	gctggaggggg	720
ccatccataca	ccaaacgtgg	cctggacacc	acggacccgt	gacaggggccc	cccacttcc	780
tggaccctt	gaagaggccc	taccacaccc	taactgcacc	tgtctccctg	gagatgaaaa	840
tatatgacgc	tgccctgcct	cctgttttgc	gccaatcag	gcagacaggg	gttggggaaa	900
tattttatt						909

<210> 14
 <211> 1453
 <212> DNA
 <213> HOMO SAPIENS
 <222> 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916,
 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931,
 932, 933, 934, 935

<400> 14
 ggagccaagt gggccctcg gcctcttcct tcgttccagg cccatgattt tccctacact 60
 tctccctggc ccaggctcca gccacaggca cctctctgc ccccgccccac cctcctgacc 120
 gcagctccca ggcctggag acctccaggc ttctctgcc tggcagcccc cacctcacag 180
 ccagagtcaa tgccctcatg ggaagggctc ccagccacac ccagagtggc ccaaagctgt 240
 tgaagtcaagc atctttgtc ccatcaggac cctcttcgcct cctctccagg cccttgtcg 300
 cctcccccacc ctccctcagag gcccgggaa gggaaagagca ggtcagtgaca gaggttctgt 360
 ctacaggtag gggccctggg tctatgcaca gctggagctc tgagcttcc acagcccggt 420
 tgactgctag agggcagggg tgcagggctc agggggccg ggctggctt ttggggctgg 480
 tttctctacg tcagtcctca cctgggaat aaactccage ctctcctgct catacagaag 540
 gaactggttg ggtttcttt atgggatctt tgagaccaaa acagatgctc ctgtttctgt 600
 ggggaggggtg tgagcacgga gtatttctgt ccctcgtgaa gtcacgtcac acaggggaga 660
 ggcgaggctg atggacttgg ccacgcacag gctctggctc tggaaaggagg gatgatgagt 720
 gggcgtttc ccggcaggcc cccgggtcc tcagcctca gcaaccaggag agaggacaga 780
 aatgaaccca tgggtgaggg attgtcacgg gaggaacatg acaccgaag ggactctagg 840
 tgcctctggg gtgcacacca tgcccagacc ttctcacacc cacacaatg ggctctgcgg 900
 tgnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnttgcataactcaga acccaggaca 960
 gccacagcca ccgccttaggg gaagccactg cagatcccc tggaaatggc acagcacagc 1020
 cagggcgctc ttccctaggcag gcgaggataa cttgagagtt tccttagggca ccaggagac 1080
 agctcagagg ccccccgggt gtgtgttagga ggcggaggcc cgccagacac agagcaggag 1140
 aagggttgg gcccggagg agaaaggccat tctggacacc aggggacctg gacggaggt 1200
 ccccacagcc cgtgccccac gccccttgg gcccagagggt gtcagtgcc ctgctgtccc 1260
 ggctccatct tggctctagc cgccacccctgt atgaacacag tggcccgct taacgcacta 1320
 accccagcc tcctctgtc ccacaggagg tagcaagagcc caccacac tgccttcacc 1380
 atctacacca gtgacgcccgc tggctgtctt agcatggaaa taaataaacc tgaatgcaaa 1440
 aaaaaaaaaa agg 1453

<210> 15
 <211> 443
 <212> DNA
 <213> HOMO SAPIENS

<400> 15
 gatatacaca acttccagag tcaccagtgt gcaaattggag ccacctgcat tagtcataact 60
 aatggctatt ctgcctctg ttttggaaat tttacaggaa aattttgcag acagagcaga 120
 ttaccctcaa cagtctgtgg gaatgagaag acaaattctca cttgctacaa tggaggcaac 180
 tgcacagagt tccagactga attaaaaatgt atgtgccggc caggtttac tgagaatgg 240
 tgtggaaagg acattgtga gtgtccctct gatccgtgtg tcaatggagg tctgtgcca 300
 gacttactca acaaattcca gtgcctctgt gatgttgcct ttgctggca gcgctgca 360
 gtggacttgg cagatgactt gatctccgac atttcacca ctattgctc agtgactgtc 420
 gccttgcctac tgatccctt gct 443

<210> 16
 <211> 1537
 <212> DNA
 <213> HOMO SAPIENS
 <222> 284, 285, 287

<400> 16
 aaaaaaaaaaca acccggttagc attgtccctt ccccaactgac aaacttatca aatccagaag 60
 ctttagagtt tcgtctctaa ttattttctt cctgaacaaa attacccaag tcaaaacaaa 120
 atgtatttt agaattacgg cagcatacga cctgaatttt gtgagttcg tggctttatc 180
 ttaaatcacc atttcctaa aaacggtttc ttctcctta gaaatgctgg tggcaacttg 240
 atgaaacagc caaatgcacc agggcaggctc actttcccaa aaannanaag aaaaaaaaaact 300
 cattgagata gctacagttc tataggttaa tttaaagcct ctttttcta ctcatttttg 360

aaagcaaaaat	tacattttac	tattttacat	aaccagtgaa	aagacgttga	aaggccatcag	420
ctcactgttt	ttgggtgcct	ggaaaatgttg	agggtgggtt	tttaaccagt	gatttttaac	480
gtgcagtgaa	tttgttagac	ttttaaacac	cagctaaggt	agtcaaactt	gatccccatt	540
aaaaaatcaag	gaatttagggg	tcgggggagg	gtttaggagt	gatccagaat	gacccccagg	600
aattactgtg	cgtacaacct	tattttcag	agttttcatt	ggaatggtaa	gagttttatg	660
aaagacagtt	ttaaaaactta	ttctgagtt	aatattaata	ctttaaaaaaa	ttattgtact	720
agacttattg	cagccctttt	aaagtagcag	agtttcatca	taccacatat	ataaacagagc	780
ataaaatttc	tataatcagg	caccccccgc	tgcttttgag	taagactgtt	ttcctgttta	840
ggtgttaagc	atcgccagac	ataaaaatct	attctctct	ctcgattgt	gcatagcctg	900
acagctctag	atacagcatt	tctatgtat	aaaatgagta	tccatcagga	aatctagaag	960
actagccgtg	ttttctcaga	ctccacccctt	gtttgcactc	tgttgcctgt	gaggagctt	1020
ctggcatgtg	attattttact	tcaaaaactag	agtttccaagc	acccatcattt	attattttat	1080
attgtgtgc	aatatgtata	tcttttaatg	tcagatatga	tacactgcac	atattgttt	1140
tgcacttta	aaatttttgt	actaaaataat	agaaaatatt	tatattctt	gagtgtgagc	1200
tttgaataga	tgcattatc	actttattgt	tttttaaca	aaaactttt	ctcaattatt	1260
ctatttgcatt	gttattctga	gcaagtccta	tgccaaatat	cttgtataat	gtttgtatgg	1320
aagattttaaat	tttactcttg	tgtggtaaga	ctatccagt	tactgatttt	atagttggaa	1380
tttgcattttc	cagcacaaaa	tccacagtgt	attcagaaat	ccaaagtgggt	gtcatacatt	1440
tcattttgtat	gtgaactttt	ctttgccttc	ctttgttcta	agactccatt	ttgcaataaa	1500
cgttttgcata	gtaaaaaaaaa	taaaaaagga	aaaaaaaaa			1537

<210> 17
<211> 972
<212> DNA
<213> HOMO SAPIENS

```

<400> 17
acgcaaattc ggcacgaggg ttctaaaacc cagtttggtt tacgttgtct ttcacagtag 60
tatatttagc tcttctctgg aaagtgtgg gttaatataa ttcttaaaca tgaaaatgt 120
attnaacaca ccacgagaga acaatattcc aggagactta atagtgatta ctttcttcaa 180
tcaggaaatc gtttcagtgc ctccccgtt ggaatgtttt gtttgtgtat gggttttctt 240
aaagaagagc acaccccgat ccaatctccct gagacagcca cgtctcccgat gacatcccac 300
tgtgatgctt tcagatagtc agtgaatgtt tctgataacc ttcatccagt atctgaaaca 360
caatgtgaga gattatattt ttttagataa taacatccca tttagttgac taaaatctt 420
caaactctga aagtcgcaca ctgtacttcc agagagtca ggttttagctt cttctccctt 480
ctgacttcaa gatgaatctt tgggacgatg tttctgggtc ttgggtccaca gtgattcact 540
tttgaaggag aggccacatg acatgaactg cctgggttta caaccttagct aacatattt 600
atgtctactcc ttgtgtctgt actgettatt caagtagtat tctaagttat gttactaaaa 660
aacatgggtgg gtaaaggcaca atccatccca tcattgtccct cccaaaataat tttatgacat 720
acacggccca gcccattgcc ctccccgtat ctctgtgtcg ctttgcatt tcccccttcta 780
cccaggctcc tcaaggggtt ctttgggttga tatttcagta cttaaaacca gactgtatc 840
ataacctccc tctgtgtggc atcaataaaat agccaaactc aaaaaaaaaaaa aaaaaaaaaaa 900
aaaaaaaaaaa aaaaaatatac ggtcgcaagc ttattccctt tagtgagggt taatttttagc 960
ttgcactgcc ta 972

```

<210> 18
<211> 1544
<212> DNA
<213> HOMO SAPIENS

<400> 18	tactttgact ttggatcatt tccctgactg ggctaatgtg acacatattg agacttagga	60
agagccacaa gaccacacac acagccctta ccctccttag gactaccgaa ccttctggca	120	
caccttgtac agagttttgg ggttcacacc cccaaaatgac ccaacgatgt ccacacacca	180	
ccaaaaccca gccaatgggc cacctttcc tccaagccca gatgcagaga tggacatggg	240	
cagctggagg gtaggctcag aaatgaaggg aacccttcag tggctgtcg gaccatctt	300	
tcccaagcct tgccattatac tctgtgaggg aggccaggtt gccgaggat caggatgcag	360	
gctgctgtac cgcgtctgcc tcaagcatcc cccacacagg gctctggtt tcactcgctt	420	
cgtcttagat agtttaaatg ggaatcatag cccctgggtt agagctaaga caaccaccta	480	
ccagtgcaca tgcctttcc agtcacattt gaggcactc agatcatctc tgcactctg	540	
gaaggggacac cccagccagg gacgaaatgc ctggcttga gcaacctccc actgctggag	600	
tgcgagtggg aatcagagcc tcctgaagcc tctggaaact cctctgtgg ccaccaccaa	660	
aggatgagga atctgagttt ccaacttcag gacgacaccc ggcttgccac ccacagtgca	720	

ccacaggcca	acctacgccc	ttcatcaatt	gttctgttt	taatcgactg	gccccctgtc	780
ccaccttc	agtggagcctc	cttcaactcc	ttggtccccct	gttgctggg	tcaacatgg	840
ccgagacgc	ttggctggca	ccctctgggg	tccccctttt	ctcccaggca	ggtcatctt	900
tctggggat	gttccccctg	ccatccccaa	atagcttagga	tcacactcca	agtatgggca	960
gtgatgggc	tctggggggc	acagtgggt	atcttaggtcc	tccctcacct	gaggcccaga	1020
gtggacacag	ctgttaattt	ccactggcta	tgccacttca	gagtcttca	tgccagcggt	1080
tgagctc	tggtaaaaat	cttcccttg	ttgactggcc	ttcacagcca	tggctgggtga	1140
caacagagga	tcgtttagat	tgagcagcgc	ttggtgatct	ctcagcaaacc	aaccctgtcc	1200
cgtggccaa	tctacttga	gttactcgg	caaagacccc	aaagtggggc	aacaactcca	1260
gagaggctgt	ggaaatctc	agaagcccc	ctgttaagaga	cagacatgag	agacaagcat	1320
cttcttccc	ccgcaagtcc	atttatttc	cttcttgc	tgctctggaa	gagaggcagt	1380
agcaaagaga	tgagctc	gatggcattt	tccaggcag	gagaaagtat	gagagcctca	1440
ggaaacccca	tcaaggaccg	agtatgtgc	tggttcctt	ggtggacga	ttcctgacca	1500
cactgtccag	ctcttgc	cattaaatgc	tctgtctccc	gcgg		1544

<210> 19

<211> 1109

<212> DNA

<213> HOMO SAPIENS

<222> 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 884, 885

<400> 19

cgga	cgctg	ggggccagcc	tggaggccca	gacgtggcgc	agcgactcgg	aggttcgct	60
ccag	cttgc	catcatctgc	ggccgggtcc	cgatgagcct	cctgtgcct	ccgctggcgc	120
tgct	ctgtc	tctcgccgc	cttggccc	cagccacagc	cgccactgcc	taccggccgg	180
actgg	aaacc	tctgagcgc	ctaaccgcg	cccgggtaga	gacctgcggg	ggatgacagc	240
tgaacc	gcct	aaaggagggt	aaggcttgc	tcacgcagga	cattccatc	tatcacaacc	300
tgg	gtatg	aaacccct	ggggccgacc	ctgagctcg	gctgtggc	cgccgctacg	360
agga	actaga	gcccatacc	ctcagtggaa	tgaccggcga	agagataat	gcgcgtatgc	420
aggag	ctcg	cttctacc	aaggccgc	ccgacgcgc	gtgc	ggatcgtgt	480
gggc	ccccc	gaagcccca	gaggaaactt	cgaccacgc	tgaccttgc	gtccggggc	540
gcgg	cggag	tggacctac	ctgcctgagt	cctggagaca	aatgaagcg	ctcagcatcc	600
cgg	aaata	tctttgc	agagccgat	cccgtcccc	ggccagcagg	gatgggttg	660
ggg	aggtt	cccaacccca	cttcttct	tcccaagctc	cactaaattc	cctctgcct	720
aaaaaa	aaac	aaacaaacaa	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	780
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnttt	ctatgtgc	acctaaattc	aattcactgg		840
ccgt	tcgtt	acaacgtc	gactggcgc	ggacaaaagt	atcnnttta	tcgccttgc	900
gcac	atacc	cttggccag	ctgggtaat	aggggaagcg	ggccggaccc	gatcgccct	960
cccaa	acagt	tgggaagct	tgaatgcgc	gacattggc	cgacggcctt	ctatacggga	1020
gat	ctctaa	acgcggccgg	gtgttgc	gggttaaggc	ggagtgtgac	cccgcataat	1080
aact	tttgc	cagggccct	atagggc				1109

<210> 20

<211> 1740

<212> DNA

<213> HOMO SAPIENS

<400> 20

aagaga	agg	accccgatga	cttggtttgg	aagggtttaa	ggcaccagg	tgatcctttc	60
taa	agt	tgatgat	tgtggagttt	aaaaacttta	ccccacccca	aagaacagcc	120
ct	ctc	actgagtc	cactctgaac	gtgtttttt	gggaaggagg	cggtgtttt	180
ctg	atct	aaattctt	tgaagt	tttccca	gtggctgt	tttgttgc	240
ttg	ttt	gcaaaactga	ggttag	cctta	acttgc	aggcaagaga	300
aag	aaaa	agaagaagaa	aaagaggagg	aaaaaggtag	ggagaaataa	agggaggaga	360
gaag	acagt	gaaagaaaa	aaaagtccct	tttgc	gacat	ttttccct	420
cag	cctgg	aacatattaa	tcccagtgc	tttac	ggcc	gaaacaaga	480
gact	atgggg	gaaaggaga	taagaaggat	cctggaaactt	taa	agaggaga	540
ttc	agaaatc	gccaggactg	gactttaagg	gac	tcgt	ggacttggca	600
cac	acagaca	cacgagaccg	aggagaaact	gca	gac	ggagatacaa	660
ggac	agctcc	tttac	ccctacttgc	ccaga	aggta	aaagacaca	720

aaaggcatcg	gctcagctct	cagatcagga	caggctgtgg	atctgtggcg	gtactctgaa	780
agctggagct	gcagcacacc	cctttgtat	tgctcacccct	cggtaaagag	agagagggct	840
gggaggaaaa	gtagttcatc	tagaaaactg	tcctggAAC	caaacttctg	atttctttg	900
caaccctctg	cattccatct	ctatgagcca	ccattggatt	acacaatgac	atggagaatg	960
ggaccccgtt	tcaactatgt	gttggccatg	tggctagtgt	gtggatcaga	accccacccc	1020
catgccacta	ttagaggcag	ccacggagga	cgaaaaagtgc	cttgggttc	tccggacagc	1080
agttaggcag	ctcggtttct	gaggcacact	gggaggtctc	gcggattga	gagatccact	1140
ctggaggaac	caaaccctca	gcctctccag	agaaggagga	gtgtccccgt	gttgagacta	1200
gctgccccaa	cagagccgcc	agcccgtcg	gacatcaatg	gggcccgt	gagacctgag	1260
caaagaccag	cagccagggg	ctetcgcgt	gagatgatca	gagatgaggg	gtcctcagct	1320
cggtaagaa	tgttgcgtt	cccttacggg	gtccagctct	cccaacatcc	ttgccagctt	1380
tgcagggaaag	aacagagtat	gggtcatctc	agcccctcat	gcctcggaaag	gtctactaccg	1440
cctcatgatg	agcctgctga	aggacatgt	gtactgtgag	ctggcggaga	ggcacatcca	1500
acagattgtg	ctcttccacc	aggcaggtga	ggaaggagggc	aaggtagaa	ggatcacccag	1560
cgagggccag	atccctggagc	agccctctgg	accctagct	catccctaag	ctgatgagct	1620
tcctgaagct	ggagaaggc	aagtttggca	ttgtgctgt	gaagaagacg	ctgcagggtgg	1680
aggagcgcta	tccatatccc	gttaggctgg	aagccatgt	cgaggtcatc	gaccaaggcc	1740

<210> 21
<211> 4467
<212> DNA
<213> HOMO SAPIENS
<222> 971, 978, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304,
1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316,
1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328,
1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340,
1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352,
1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364,
1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376,
1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388,
1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400,
1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412,
1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424,
1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436,
1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448,
1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460,
1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472,
1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484,
1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496,
1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508,
1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519, 1520,
1521, 1522

<400> 21
gcgtcgcgct caccctcgcc gtgccccccgc ggccgcctggg cgtcttcctg gactacgagg 60
ccggagagct gtccttccttc aacgtgtccg acggctccca catcttcacc ttccacgaca 120
ccttctcggt cgcgctctgt gcgtacttca gccccagggc ccacgacggc ggcgaacatc 180
cgatccccct gaccatctgc ccgctgccgg ttagagggac gcgcgtcccc gaagagaacg 240
acagtacac ctggctacag ccctatgagc cgcggatcc cgccctggac ttgtgggtgag 300
gcgcctcggt ggcgcgggaa ctggccccgg gggggcccccc tggatcccg gccagcgcctt 360
tgctctcctg ctccgtctga agggagcagg tgccaccagcc aaaatgtcag cgagggggac 420
aaagagaggg acctttgcct acgtatgt gtatgtgt tagctctaa aaggtcgaga tgcaataaca cttcgtaagc 480
ggagacaagt ccaaagctcg ttgtggatt ttgtggactga gcaaaggagt acaaataata 540
ccacgtcgct cagagctggg gtgctcacgg tgggtgggtgg gaaagaagcc agcatggaa 600
aaagaagggaa gaaaactttt gtagactgcct tagagggatc agttaatttg tatagttta 660
tattttttgt atatgtttgc tagctctaa aaggtcgaga tgcaataaca cttcgtaagc 720
aacgagtca cctaaatgtaa gctcagatcc tagttttaaa aaccatttcc cattaaaatg 780
aagtggagg aacagctgtct tctggagccg gggcaaaaaaa ttcaagggtg agcctggagc 840
attgtgtgt gtgaagtaaa ataaaggtct aaaacgtgac ggcaacccgg caaaagggtt 900
gggagccagg ccgaaggccc tcactgacca attgtgggac aatttgaaca tcaggatgaa 960
taatgacagg ngaggtnta acacactaa taaaacata atccatgagt tcatgctgt 1020
actcaaattt ctttttaaaa aggagaaaca ggaagggttc ttttgaggt gaaatcta 1080
tattggtag agtcttggag aacaggctgt ttccagtc aaagcagtaa cttatacac 1140

tacttataag tttgaaaagg gaaaggatcac ttatcaatgc gagacatcta ccagatgcac	1200
ccaagtgtt aaatttaaca tcataatgc tggttgcac gacattatc gtttgacaa	1260
tggggaaaga agtgttcttc accccctacc cccannnnnnn nnnnnnnnnnnn nnnnnnnnnnnn	1320
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn	1380
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn	1440
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn	1500
nnnnnnnnnnn nnnnnnnnnn nnttcattt cagagtggaa cattttgtact gtggctatgt	1560
aggagaacat tcttgttctt agcaaacata ctgaatgttt tagatattaa ttaccacagt	1620
gtctgcacat gaatttccag tgactaagt gaaaaatata aaacatatgc atataaagaa	1680
agaaagagac aagtcaaatg tagtaaatg acaacacttg gtgactctg gtgactggc	1740
gacagatgtt cattgtacta tcaatgtggc tttgtgtgg gtttggaaatt ttgcaaaacta	1800
agagttgggt ggccgggaga aggatacacc aaaaaactaa gtgattatct ttggatgggaa	1860
aaatgttgg taattgcatt cttaaatgt ctctttgtt tttttatgt ttcaataatg	1920
tatatgtatc agttctgttaa taaagggaa aacactttt taaataactc ataaaaaacc	1980
atccgttagga tcgagaagat caggcagaag ggctttgtcc agaaatgtaa ggcctctgg	2040
gtagaggggcc aggtgggtgc ggagggaaat gacgggtggag ggggagcagg aaggccaagc	2100
ctggcgacgc agaagaagaa agaggacca aggagagcac aagtcccacc aaccagagag	2160
agtcgggtga aggtccttag aaaaactggcc gccactgcac cagcttgcc ccaacctccc	2220
tcaaccccca gagccaccac ctttccttcctt gccccaggcc acaacagtga ctgcgtccac	2280
gtccccggcg gtaacagttt ctgcaagacc tatgaccacc actgccttc ccaccacggc	2340
agaggccctg gacccctca ccctccacca gccccctac aaccactgag gtgatcactg	2400
ccaggagacc ctcagttca gagaatttt accctccatc cgggaaggat cagcacaggg	2460
agagggccaca gacaaccagg cccctccac caccatctca gaaccccgca caaggctgc tgcccaggc cttttccgg	2520
acaaccgcac ggacaggcgcc ccaagccacg aaaggagaaa cctccaaaaa agaaggccca ggacaaaatt cttagtaatg	2580
agtatgagga gaagtatgac ctcagccgc ctactgcctc tcagctggag gacgagctgc	2640
aggtggggaa tgttccctt aaaaagcaa aggagtctaa aaagcatgaa aagttgaga	2700
aaccagagaa ggagaagaaa aaaaagatga agaatgagaa cgccagacaag ttacttaaga	2760
gtgaaaagca aatgaagaag tctgagaaaa agagcaagca agagaaagag aagagcaaga	2820
agaaaaaagg agttaaaaaca gaacaggatg gctatcagaa acccacaac aaacacttca	2880
cgcagagttc caagaagtca gtggccgacc tgctgggtc ctgttgaaggc aaacgaagac	2940
tccttctgtat cactgtccc aaggctgaga acaatatgtt tgcacaa cgtgtatgaa	3000
atctggaaag ttctgtcaag atggcttca gaaaaatctc tgcacatcc atcttcggcc	3060
ctgtcaacaa cagcaccatg aaaatcgacc actttcagct agataatgag aagccatgc	3120
gagtgggtga tgatgaaagat tggtagacc aagctgtca tcagcgact gggaaaagag	3180
tacggaatgtt cttttttttt gtgttgcattt gtgttgcattt atctgtatcga tactttccat	3240
caataactatg aggttaccaat aacaatgaaat tctgtgtttt atctgtatcga tactttccat	3300
tcccgaaatca aagatatgaa gaagcagaag aaggaggcgtt tggttgcattt agaggacaaa	3360
aagcagtccc tggagaactt cttttttttt tttttttttt ttccgggtt ggggggggtt gctgggtatc	3420
tctgtccca acgtgttca ctggccctt tcacagcagg tctctccct cagtggtcag	3480
gcgtgtcaatt ttgggtctcgcc ccacataacc attctgttca tttttttttt tggagggaa	3540
gttgggggag tgtagaaactt gttttttttt aatggggatct tttttttttt tggagggaa	3600
gttgggggag tgtagaaactt gttttttttt aatggggatct tttttttttt tggagggaa	3660
gttgggggag tgtagaaactt gttttttttt aatggggatct tttttttttt tggagggaa	3720
gttgggggag tgtagaaactt gttttttttt aatggggatct tttttttttt tggagggaa	3780
tccatgttca tagtggaaa agacggaaat gtccaaatctt ggtatcttc cccaaatgtgg	3840
tccatgttca tagtggaaa agacggaaat gtccaaatctt ggtatcttc cccaaatgtgg	3900
attcagcgtt cactggggat ggcgttccca gaagatgtt atgcggatca tggttaccat	3960
atttaccacc aaggatatacc ggtatggttac caggatgtt acctgttccca tgaggttat	4020
caccatggat acccttactg agcggaaata tttttttttt tttttttttt tttttttttt tttttttttt	4080
cagctgttca aacttacatgt ggccaggcttcc acccttccatc actgcgtact acattttctt	4140
cctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4200
gttattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4260
aaacctcaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4320
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4380
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4440
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	4467

<210> 22

<211> 2965

<212> DNA

<213> HOMO SAPIENS

<222> 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483,
1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495,

1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507,
 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519,
 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527, 1528, 1529, 1530, 1531,
 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1540, 1541, 1542, 1543,
 1544, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1554, 1555,
 1556, 1557, 1558, 1559, 1560, 1561, 1562, 1563, 1564, 1565, 1566, 1567,
 1568, 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1578, 1579,
 1580, 1581, 1582, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591,
 1592, 1593, 1594, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603,
 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1615,
 1616, 1617, 1618, 1619, 1620, 1621, 1622, 1623, 1624, 1625, 1626, 1627,
 1628, 1629, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639,
 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1651,
 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659, 1660, 1661, 1662, 1663,
 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1671, 1672, 1673, 1674, 1675,
 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1685, 1686, 1687,
 1688, 1689, 1690, 1691, 1692, 1693, 1694, 1695, 1696, 1697, 1698, 1699,
 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711,
 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723,
 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735,
 1736, 1737, 1738, 1739, 1740, 1741, 1742, 1743, 1744, 1745, 1746, 1747,
 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759,
 1760, 1761, 1762, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1771,
 1772, 1773, 1774, 1775, 1776, 1777, 2948, 2951, 2961

<400> 22

aaacaaaagtt	caatttagct	ggatttctga	actatggttt	tgaatgtta	aagaagaatg	60
atgggtacag	ttaggaaagt	ttttttctta	caccgtgac	ttgagggaaa	cattgccttg	120
ctttgagaaa	ttgactgaca	tactggaaaga	gaacaccatt	ttatctcagg	ttagtgaaga	180
atcagtgcag	gtccctgact	cttatttcc	cagaggccat	ggagctgaga	ttgagactag	240
ccttgtggg	ttcacactaa	agagttctt	tgttatgggc	aacatgcatg	acctaattgtc	300
ttgcaaaatc	caatagaagt	attgcagtt	ccttctctgg	ctcaagggtt	gatgttaagt	360
aaaggaaaaaa	cagcacatgt	gtgaccactg	ataaaaggctt	tatttagtatt	atctgaggaa	420
gtgggtcaca	tgaaatgtaa	aaaggaaatg	agttttttgt	tgttttttgg	aagtaaaggc	480
aaacataaat	attaccatga	tgaattcttag	tgaaatgacc	ccttgcattt	gtttttctta	540
atacagatat	ttactgagag	gaactatttt	tataacacaa	aaaaaattta	caattgatta	600
aaagtatcca	tgtcttggat	acatacgat	ctatacgat	ggcatgtaat	tcttcctctta	660
taaagaatag	gtataggaaa	gactgaataa	aaatggaggg	atatcccctt	ggatttcaact	720
tgcattgtgc	aataagcaaa	gaagggttga	taaaagttct	tgtcaaaaaa	gttcaaagaa	780
accagaattt	tagacagcaa	gctaaataaa	tattgtaaaa	ttgcaactata	ttaggttaag	840
tattatTTAG	gtattataat	atgcttgtt	aattttatatt	tccaaatatt	gtctcaatatt	900
tttcatctat	taaattaatt	tctagtataa	ataagtagct	tctatatactg	tcttagtcta	960
ttataattgt	aaggagttaaa	attaaatggaa	tagtctgcag	gtataaattt	gaacaatgca	1020
tagatgatcg	aaaattacgg	aaaatcatag	ggcagagagg	tgtgaaggatt	catcattatg	1080
tgaattttgg	atctttctca	aatccttgct	gaaattttagg	atggttctca	ctgtttttct	1140
gtgctgatag	taccctttcc	aagggtacct	tcagggggat	taacccttct	agctcaagca	1200
aggagctaa	aggagcctta	tgcgtatct	tcccacatal	caaataact	aaaaggcact	1260
gagtttggca	tttttctgcc	tgctctgcta	agacctttt	ttttttttac	tttcattata	1320
acatattata	catgacatta	tacaaaaatg	ataaaaatat	ataaaaacaa	catcaacaat	1380
ccaggatatt	tttctataaa	actttttaaa	aataattgtt	tctatataatt	caattttaca	1440
tcctttttca	aaggctttgt	ttttctaaag	gcnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	1500
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	1560
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	1620
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	1680
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	1740
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	1800
ttcttaatgg	ctgcataata	tcacatcaaa	taggcatttt	tcaaacctct	ttcatttatta	1860
aacatgtaga	ctatatccat	tttttactaa	aataaataac	atttcgatata	atatcttgc	1920
actgataatg	ttgccaagcc	atttctaaag	tgacccattt	aatttattttt	ccattggat	1980
agggtgttgc	tttcatcgca	ccattgtaga	ttgtcttttt	tatttcaatt	tgctgttttt	2040
tataactgtt	tgcaaggtt	cacagaacac	acgtccctt	aacttatctt	tgataaaaccc	2100
aagcaaggat	acaaaaagtt	ggacgacatt	gagtagagtc	atggtatacg	gtgctgaccc	2160
tacagtatca	gtggaaaaga	taaggaaaat	gtcactactc	acctatgtta	tgcaaaaacag	2220

ttaggtgtgc	tggggctgga	tactgctctt	ttacttgagc	attgggttat	taaagttag	2280
gtaccatcca	gggctggtct	agagaagtct	ttggagttaa	ccatgcttt	tttgtttaaag	2340
aagagagtaa	tgtgtttatac	ctggctcata	gtccgtcacc	aaaaatagaa	aatgcccatt	2400
ataggtaaaa	tgctgaccta	tagaaaaaaa	tgaactctac	ttttatagcc	tagaaaaat	2460
gctctacctg	agttagttaa	agcaattcat	gaaggctgaa	gctaaagagc	actctgtatgg	2520
tttggcata	atacgcat	ttccagacct	gaccttggc	ccccaccaca	atgtgtccaa	2580
gccccaccag	ctgaccaaag	aaagcccaag	ttctccttct	gtccttccca	caacccct	2640
gctcccaaaa	ctatgaaatt	aatttgacca	tattaacaca	gctgactct	ccagtttact	2700
taaggttagaa	agaatgagtt	tacaacagat	aaaaataagt	gcttggcg	aactgtattc	2760
cttttaacag	atccaaacta	tttacattt	aaaaaaaaag	ttaaactaaa	cttctttact	2820
gctgatatgt	ttctgtatt	ctagaaaaat	ttttacactt	tcacattatt	tttgatact	2880
ttccccatgt	taagggatga	tggctttat	aaatgtgtat	tcattaaatg	ttactttaaa	2940
aataaaanaa	naaaaaaaaaa	naaaa				2965

<210> 23

<211> 1734

<212> DNA

<213> HOMO SAPIENS

<222> 571,	572,	573,	574,	575,	576,	577,	578,	579,	580,	581,	582,	583,	584,	
585,	586,	587,	588,	589,	590,	591,	592,	593,	594,	595,	596,	597,	598,	599,
600,	601,	602,	603,	604,	605,	606,	607,	608,	609,	610,	611,	612,	613,	614,
615,	616,	617,	618,	619,	620,	621,	622,	623,	624,	625,	626,	627,	628,	629,
630,	631,	632,	633,	634,	635,	636,	637,	638,	639,	640,	641,	642,	643,	644,
645,	646,	647,	648,	649,	650,	651,	652,	653,	654,	655,	656,	657,	658,	659,
660,	661,	662,	663,	664,	665,	666,	667,	668,	669,	670,	671,	672,	673,	674,
675,	676,	677,	678,	679,	680,	681,	682,	683,	684,	685,	686,	687,	688,	689,
690,	691,	692,	693,	694,	695,	696,	697,	698,	699,	700,	701,	702,	703,	704,
705,	706,	707,	708,	709,	710,	711,	712,	713,	714,	715,	716,	717,	718,	719,
720,	721,	722,	723,	724,	725,	726,	727,	728,	729,	730,	731,	732,	733,	734,
735,	736,	737,	738,	739,	740,	741,	742,	743,	744,	745,	746,	747,	748,	749,
750,	751,	752,	753,	754,	755,	756,	757,	758,	759,	760,	761,	762,	763,	764,
765,	766,	767,	768,	769,	770,	771,	772,	773,	774,	775,	776,	777,	778,	779,
780,	781,	782,	783,	784,	785,	786,	787,	788,	789,	790,	791,	792,	793,	794,
795,	796,	797,	798,	799,	800,	801,	802,	803,	804,	805,	806,	807,	808,	809,
810,	811,	812,	813,	814,	815,	816,	817,	818,	819,	820,	821,	822,	823,	824,
825,	826,	827,	828,	829,	830,	831,	832,	833,	834,	835,	836,	837,	838,	839,
840,	841,	842,	843,	844,	845,	846,	847,	848,	849,	850,	851,	852,	853,	854,
855,	856,	857,	858,	859,	860,	861,	862,	863,	864,	865,	866,	867,	868,	869,
870,	871,	872,	873,	874,	875,	876,	877,	878,	879,	880,	881,	882,	883,	884,
885,	886,	887,	888,	889,	890,	891,	892,	893,	894,	895,	896,	897,	898,	899

<400> 23

cgcctccgga	aactgcccc	cgggctgctg	gccaaacttca	ccctcctgct	cacccttgac	60
cttggggaga	accagttga	gaccttgc	cctgacctt	tgagggtct	gtgtcaattt	120
gaacggctac	atctagaagg	caacaaattt	caagtactgg	aaaaagatct	cctcttgc	180
cagccggacc	tgcgttacat	tttccttgc	ggcaacaagg	tggccagggt	ggcagccggt	240
gccttccagg	gcctgcggca	gctggacat	ctggacatct	ccaataactc	actggccagc	300
gtgcccggagg	ggctctgggc	atcccttaggg	caggccaaact	gggacatgcg	ggatggctt	360
gacatctccg	gcaacccctg	gatctgttgc	cagaacacctg	gcgaccttta	tcgttggctt	420
caggcccaaa	aagacaagat	ttttcccttgc	aatgacacacgc	gctgtgttgc	gcctgttgc	480
gtgaaggccc	agacgcttct	gggcagtggc	caagtcccttgc	ttagaccagg	ggcttgggtt	540
gagggtgggg	gttctggtag	aacactgca	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	600
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	660
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	720
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	780
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	840
nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	nnnnnnnnnnnn	900
taatcctgt	tttacaggtt	aaactcgccc	ctgtccatag	cggctggac	cccgcttcat	960
ccatccatgc	ttccttgcac	acacgttggc	ctttccttgc	ccatgccc	gggtgttgc	1020
ccgtctggaa	tgccgttccc	tgtttcccttgc	atcttgc	ctctgggtt	tcccagccccc	1080
ttgtcttccc	ttccagcttgc	gccctggcca	cactggggct	gcctttcttct	gactctgttct	1140
cccccaagtc	agggggcttct	ctgagtgca	ggtctgtatgc	tgagtcccac	tttagcttggg	1200

gtcagaacca	aggggtttaa	taaataaacc	ttgaaaactg	gatcgatga	attggcttc	1260
attgtgtcc	tagcatctc	tcaaataaac	ttcccaggac	tccagggta	aggagaaaa	1320
gaggcatgc	ccaggccctg	gggtgtggg	tatggcttc	ctagggatg	acagttggg	1380
tcaatggct	gtacttctc	ctctccctc	ccccatctg	ggacctaact	ggaaataaaa	1440
ccttgactg	tgcgggggt	tcattttacc	agtggattc	tgccagggt	tgtgtccat	1500
gagaaggtt	aagttaaacc	agattcccc	ggtctccaa	cgatttgtca	tgctgacctg	1560
agatcatcg	agggggcacc	tgccccccgg	caaggttgc	ggggcaggat	ggggctgaag	1620
ggatgagcag	gttccggggc	ccacctgct	atacagcatt	ggccatgtgg	gggctgcaat	1680
cggatttga	agaccctggg	gcttggggc	atgtccattt	tcccaagtccc	taaa	1734

<210> 24

<211> 4005

<212> DNA

<213> HOMO SAPIENS

<400> 24

ggacaccgtc	tgcagtggag	tcactgggtc	cgtaaatgt	gccaaagggg	ccgtccagac	60
gggctgtaga	cacggccaag	accgtgtga	ccggcaccaa	ggacacagtc	actactgggc	120
tcatggggc	agtaatgtc	gccaaaggga	ccgtccagac	cagtgtggac	accaccaaga	180
ctgtcttaac	tggtaccaag	gacaccgtc	gcagtgggg	gaccgggt	gcgaatgtgg	240
ccaagggggc	cgtccagggg	ggcctggaca	ctacaaagtc	tgtctgtact	ggcactaaag	300
acacgttac	cactgggtc	acaggggtc	tgaacttggc	caaaggact	gtccagaccc	360
gcgtggacac	cagaagact	gtcctgacc	gttaccaagg	caccgtctgc	agtggagtca	420
ctggtgccgt	aatgtggcc	aaaggcacc	tccagacagg	tgtggacaca	gccaaagacgg	480
tgctgagtgg	cgctaaggat	gcagtacta	ctggagtcac	ggggcagtg	aatgtggcca	540
aaggaaccgt	gcagaccggc	gtggacgcct	ccaaaggctgt	gtttatgggt	accaaggaca	600
ctgtcttcag	tgggttacc	ggtgcctatg	gcatggccaa	agggggcgtc	cagggggggcc	660
tggacaccac	caagacagt	ctgacccgaa	ccaaagacgc	agtgtccgt	gggctcatgg	720
ggtcaggggaa	cgtggcgaca	ggggccaccc	acactggcct	cagcaccttc	cagaactgg	780
taccttagtac	cccccccaacc	tcctgggtg	gactcaccag	ttccaggacc	acagacaatg	840
gtggggagca	gactgcccctg	agcccccaag	aggccccgtt	ctctgcatac	tccacgcccc	900
cggtatgtgt	cagtgttaggc	ccggaggcct	cctgggaagc	cgcagccact	accaaggggcc	960
ttggactgt	cgtggcgacg	ttcacccaag	ggggcccccc	aggcaggag	gacacggggc	1020
ttttggccac	cacacacggc	cccgaaagag	ccccacgctt	ggcaatgtcg	cagaatgtg	1080
tggaggggt	gggggacatc	ttccaccca	tgaatggga	ggagaacgt	cagctggctg	1140
cctcccagcc	cgggccaaag	gtgctgtcgg	cgaacagg	gagctactc	gttcgtttag	1200
gtgacctggg	tcccagcttc	cgccagcggg	catttgaaca	cgcggtgagc	cacctgcagc	1260
acggccagg	ccaaagccagg	gacactctgg	cccagctcca	ggactgcttc	aggctgatgg	1320
aaaaggccca	gcaggetcca	gaagggcagc	cacgtctgga	ccaggctca	gtgcccagtg	1380
cgaggagcgc	tgctgtccag	gaggagcggg	atgccccgg	tctgtccagg	gtctgcggcc	1440
ttctccggca	gctgcacacg	gcctacagt	gcctgttctc	cagccctccag	ggcctgccc	1500
ccgagctcca	gcagccagtg	gggcggggcgc	ggcacagcct	ctgtgagctc	tatggcatcg	1560
tggcctcagc	tggctctgt	gaggagctgc	ccgcagagcg	gctggtgag	agccgcgagg	1620
gtgtgcacca	ggcttggcag	gggttagagc	agctgttgc	gggcttacag	cacaatcccc	1680
cgctcagctg	gctgttaggg	cccttcgcct	tgcccgtgg	cgggcagtag	ctgttaggagc	1740
ctgcaggccc	ggccgggggt	cgcctgtctc	tgtccaggga	ggagctgcct	cagaactttc	1800
tccccccccc	caaaccttgg	tcggttccct	aaagccctag	acctttgggg	ctgcagctgg	1860
ctgagcgcgc	aggggctgc	gaggcagtga	ccttcttaac	tgagccaccc	cacgcccgtc	1920
tccgggcctg	cctgcatctc	ccaccttc	cccagcgtc	cctgccttc	tcggagcctg	1980
gggtcactca	gaccaccagc	caagagcctt	cccttgaagt	ccccaaagca	gcactgtcaat	2040
tagaaaagag	aaaaagcagc	gtgcccagcc	tggaaggga	tctgttgc	ccgctagcaa	2100
ccctttata	tctagcaggg	ctttccatgt	cctgcagcac	ggggccccag	ctatcagcgg	2160
tgcaggcagt	gctgtggcat	cccaggctcc	gggcagctcc	gttctcatgc	tgaaagtggg	2220
tctccggcct	tagcacacac	accttggaggg	tcttaagaac	cacattccct	catagtagaa	2280
agtactagaa	aaagcgacac	tgcacatc	atcccaaggc	aggctgtac	tgcctttgt	2340
gaccccccggg	gtggcctcac	gttggggaca	aagctgccag	gagccacagc	agccacagct	2400
ggggctttgc	accagcctgg	cttgagact	agcagtttgc	aggggggtgg	gggtgcaaaa	2460
aacaagcaaa	caggtgtcg	ctgcctccag	ctgcccacca	caggcctgcc	ccaggcacct	2520
ggggctctga	ggcccccggg	gaggctggc	ccagcagctg	cccctggaga	acacagacaa	2580
aggacttccc	cgcagggaac	tgtgcctat	ggagggatca	gacagggtcg	ggAACAGCCA	2640
cagaggctgc	gtgcctatgg	cacggccctt	cctccggccgc	acactcccc	tgggtcttca	2700
ggcccaccca	agcccccgggc	tgcagaggaa	gccccggctgg	ggaggctgca	ggcatcagag	2760
acactggtgg	tggcgaccc	ggccggccgg	ccccgtgtc	tcaggcttagc	ccaggtcg	2820

gaggcctggca	ggctcagggtc	gggtgtgaga	cgtgccgtgg	ctgcgcttag	tccagccccgg	2880
aggagccgtt	cagccccggcc	tccccaggaa	gccatatccc	cactcacccg	gtaagagaac	2940
cttgtcgcc	ccttcatcg	ctctcttagg	acacgagccc	aggaacccca	gaccaggggg	3000
gaggaagggt	ggaggggccc	caggggtcac	catgtgcacc	aggggcccgt	aggggcccgg	3060
gcattcaagct	cagctctgaa	ccgggaaagc	tggcacggca	aggactgcct	caggtgacgg	3120
gccgtgagag	gggacgggtc	aggagcccttc	ccaagccttc	tcctcagccc	gacacccatg	3180
gccatcgag	gctaggatgc	cagacacagc	catttgcaga	aatcaggcac	agtgactgca	3240
gctcacgtcc	agccaaaccaa	gcatggggcc	gcagctcagg	aagtcccttc	ccgcccacacc	3300
acagccta	tcttactggg	acggaggcaa	ctcggtctacg	ctggcagga	cgacaaaacac	3360
gagacgcccac	tgtggaatga	gcaacttcgg	agcacggggt	gacttgctt	ggaccgtgcc	3420
cacgtgacag	cccccttatgc	agaggaggaa	agagaagccc	cgagtggag	ggaaacctgt	3480
ccaaaggatcac	acggtgtgt	ggtgacacag	ctgggggtgag	tcgaggctgg	ccccctgaggc	3540
ccatgtcccc	tgaacgtgg	agaccactgt	cggttagcag	cggctctcag	ggaaggctg	3600
gtctccaccc	tcccagccata	gcctcgcgga	ccctcgtct	ccccacatcg	gacctgtctca	3660
cctgcctgga	ccctgggctg	ccagatgcag	gaagcatcaa	acccccacgc	ctcgtgggtg	3720
cggggcaggg	cgcaggcagc	acagcttaga	tgccctgggt	tgtcccttct	gtctcctggg	3780
aagagcttgc	tcccggccag	ctctctgtcc	actggcctt	cagggttggg	ctggggcccag	3840
agtgcctttt	agtgccttct	cacgggtggcc	tgatggctca	accacgtcccc	aaacggggcc	3900
agtgacactg	ccgactgcac	cccagctcag	gccccccactg	caccagcaat	gctagaaaaac	3960
caagccaata	aaagtgattt	ctttttcat	aaaaaaaaaa	aaaaaa		4005

<210> 25
<211> 846
<212> DNA
<213> HOMO SAPIENS

```

<400> 25
caaaaatgag cggggtgtgg tggcccatgc ctgttagtccc agctgctcg 60
ctcttgagcc tgggaagcag aggttgcagt gaactgagat cgcgtca 120
tggtgacaga gcgagattcc atctaaaaaa aaaaaaacag tatcac 180
aacctgttat caatgtctga gctacataat tatctttcta gttggagtt 240
tgtaccaact gacatttcag ttttctgtt tgaagtccaa tgtattagtg 300
tgctcttcc acctgcccct tggccctgt ctacaattct aaatggattt 360
gtcgtcgctt ctggtttccct gcataatacca atagcattac ctatgacttt 420
agcttatttc actgagactga gctaataaac taaaactgag ttatgttttaa 480
aaatacataa aaggaaatact gcttttccct ttgtggctc aaaggttagct 540
atatttgtga aaataaaaaac ttgtttttaa agaaaaaaaaa aaaaaaaaaa 600
aaaaaaaaaaa agaaagacca aaaaggaaga gaaggaaaaa agaagaagag 660
acaacgggaa acacagagag cgagccgtg acgaaaagcg ggaaggccaa 720
gaaagagagg ggggcggcgt cgctcattgt gggagtgccc tcagat 780
gatgatggc aggagtgcta tgcccccattt tttatgaggg ggtgcctcaa ttgttgc 840
gccqqq

```

<210> 26
<211> 599
<212> DNA
<213> HOMO SAPIENS
<222> 103

<400> 26	cgacgggtgg	cgccgacgcgt	gggcggacgc	gtggggggtc	ttgttatgtt	taacaaccca	60
	ggctgatctc	aaactcctgg	gctcaaata	tcctccac	tgncccctca	aagtgtatggg	120
	attataggca	ttagccactg	gctggcatca	ggtgccaaga	tttctgtact	gcctctaatt	180
	tctgtatcca	cttaaactca	ggcaggtgga	gcctacacac	tgtatattcc	tttgtggatat	240
	cacacttcag	aacgtgtccg	ctagataaaag	ctctcaaaact	taccaaggaa	agtgtatgaca	300
	gcttgactcg	gccttacaca	gaaccctatg	taggtctcac	acaatagaac	aatgtacaaa	360
	taagcatttt	tcttcccaa	agaagcatgt	aaagattcc	cattcctgcc	actcaacttc	420
	tctttgttgt	gacagggtgg	aagaattact	gtatata	aagatgtccg	cagcgttcag	480
	taaacacaga	cactaatgag	actcagaggc	tcatctgtgg	tcaggtatta	taacagctta	540
	aaactaaaaaa	aaaaaaaaaa	aaaagggcgg	tccaagctta	ttccctttag	tgaggtaa	599

<210> 27
<211> 603
<212> DNA
<213> HOMO SAPIENS

<400> 27
gttccacgtt gcttggaaatt gaaaatcaag ataaaaatgt tcacaattaa gtccttctt 60
tttattgttc ctctagttat ttccctccaga attgatcaag acaattcatc atttgatct 120
ctatctccag agccaaaatc aagatttgct atgttagacg atgtaaaaat tttagccat 180
ggcctccctc agtggggaca tggtcttaaa gactttgtcc ataagacgaa gggccaaatt 240
aatgacatat ttcaaaaact caacatattt gatcagtctt tttatgatct atcgctcaa 300
accagtggaaa tcaaaagaaga agaaaaggaa ctgagaagaa ctacatataa actacaagtc 360
aaaaatgaag aggtaaagaa tatgtcactt gaactcaact caaaacttga aagcctccta 420
gaagaaaaaaaa ttctacttca acaaaaatgt aaatatttag aagagcaact aactaactta 480
attcaaaatc aacctgaaac tccagaacac ccagaagtaa cttcacttaa agtaagttaga 540
aaataaagag gttcatgtt tatgtttca atgtggatct tttaaaaaaaa atatttctaa 600
ggc 603

<210> 28
<211> 879
<212> DNA
<213> HOMO SAPIENS

<400> 28
gccacgcgtc cgcaaacaca aaaagaaaaac aaacaaacaa aaaaacaaaa agactggctg 60
gccccggggg tgactcgggc ctttgcctcc gagccagac ccccaaccct gacctgatcc 120
ccctctctgc gcagggtggag ttctacttcc ttcccagta cgtgtcgcca gcccactccc 180
cggtccgcac catcttcatg ggccgtggag accacacgct gggcccccctg ctggaccacc 240
tgcggctgtct ggcgtccaaac agctccggga ccccccgggc cacctctcc actggcttcc 300
aggagagccg tttccggcgt cagctagccc tgctcacctg gacgctgcaa ggggcagcca 360
atgcgtttag cggggatgtc tggAACATTG ataacaactt ctgaggccct ggggatcctc 420
acatccccgt ccccccgtca agagctcctc tgctcctcgc ttgaatgatt cagggtcagg 480
gagggtggctc agagtccacc tctcatgtct gatcaatttc tcattacccc tacacatctc 540
tccacggagc ccagacccca gcacagatcc ccacacaccc cagccctgca gtgttagctga 600
ccctaatgt acggtcatac tgctgggtaa tcagagatg gcatcccttc aatcacagcc 660
ccttccccc tctgggggtcc tccataccta gagaccacte tgggagggtt gctaggccct 720
gggacctggc cagctctgtt agtggggagat atgcgtggca ccatagccct atggccaaaca 780
gttggtctgt ggtgaaaggg gcgtggagtt tcaatatcaa taaaccacct gatataaata 840
aaaaaaaaaaa aaaaaaaattc tggcgcaag aaatcgctg 879

<210> 29
<211> 397
<212> DNA
<213> HOMO SAPIENS
<222> 319, 331

<400> 29
cctactcaac agggggtccc aaatgcccac tgcaacttagg tacaggggtct gtgtgtgggt 60
gtggaggagg ggcattggga gacatgggag gcaaagagct gggcctggcc aggccaggcc 120
tctggcttcc aagaactctt agttccaggg gacacccagt gggggaaatg ctggctgt 180
ggaggcccac agecttagggc tggtcggcca aacagccacg tctggcttcc gtcacaaatg 240
gccctatggc ttctaatgca ttctcttcttcc tccctcccttgc ctgcacccgtc agatgcagaa 300
ggcaggccct ccccaagcanc ctactggctg nccacttca tttggactgg cacattggac 360
tggggcatca cattccctca gaacagccctg ataaatg 397

<210> 30
<211> 1740
<212> DNA
<213> HOMO SAPIENS
<222> 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,

275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289,
 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304,
 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334,
 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349,
 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,
 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 846, 847, 848, 849,
 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864,
 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879,
 880, 881, 882, 883, 884, 885, 886, 887, 888, 889

<400> 30

tacaaaggtaa	taagaaagcc	agcatctcg	aaaggcctt	caaacaagga	cacttaatta	60
gccccatcttat	gtataagaaa	agaaatataa	agaacatgaa	aattaaaaaa	cagattggc	120
agttttataaa	cagtcttaga	ggtgtgtta	tttttccta	ttaagaatta	gagggcaggt	180
taggaataaaa	taaaatacag	tttggaaaata	atgagnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	240
nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	300
nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	360
nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	420
gtggctacaa	gggacccaca	gaattacagg	gaagttacag	ggaaggcagg	ttcatctcaa	480
tattgggaga	gattcaaac	aatcacac	gcctgagaag	gagtggctg	tcacttagaa	540
tttttattcc	cagtcgtca	ggaattttgt	agaagggctt	catgtgctgg	taccaatagg	600
acaggaagat	tttaatcagc	tttactatct	atgtttttt	atggaaactg	tgtgtatgt	660
tacatacatt	ttccaaaaaaag	aaaataaaa	tgattataga	gattatgtt	ttcagactac	720
tcacgtatct	gtctttctta	ctccccac	ctgctgataa	ttccttagt	tttgcatttt	780
ccccccacact	ggaattac	ggggagctt	aaaaaccctg	atgcctgggt	cccaccctca	840
gagatnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnt	gatatgaatg	900
cagcctggc	actggaaat	ttaaaaactc	cccagataat	tacttgaca	gccaagggtt	960
agacccctta	gtcttagagct	ttgctataca	cagggtggtc	cacaagccag	gagcatcagc	1020
atcacttggc	agcgcttaga	gattcagacc	ccagacccac	tgaatctgac	cctgcatttt	1080
cactagaccc	caggtgatca	gctgactag	actcaac	taaacc	aaaga	1140
tcacagtcta	tgatccttta	gtgaccctca	gctgactt	gtgctgaact	gtgtttgtc	1200
tccttgagca	catgcccgt	gaccaggac	agactggatg	agcaagcaac	ctgctggcta	1260
tggagaagag	ccaggctggg	taaatgtt	ctgtactaa	gccaggatca	aagaactg	1320
tgttgcgtgc	actggctggc	actgagctt	ccactctgt	aactgtgett	ccttccccctg	1380
catggacctg	tgcctcagtc	acttattatcc	gcaggcctt	tccaagg	gcccctctt	1440
tgtttatccc	tcttaagct	gcgtgcagga	aggcacatta	accctgtggc	cccctgcagg	1500
caggagggtg	ttgggtgccc	ttacctac	tgcctttt	cttgtaccgt	aggctgtgcc	1560
gtttatgagt	aagtgtatgt	tgtctgtgt	tgtgtctaga	agtgtgcac	tcaccttgt	1620
ttattggagg	tttgttaacc	ccctagctt	gagcctggc	tcagatgtt	ctttcccg	1680
tctctgtcca	gccgttaacg	cccccagtct	gtaataaaag	cctatcagcc	gtgcacttta	1740

<210> 31

<211> 2394

<212> DNA

<213> HOMO SAPIENS

<400> 31

aatgttagaa	gggaaagtcc	ttcctggtag	taatggaaaa	ccgaatggac	agagaattat	60
caatggccct	caagaacaa	agtgggtgt	ggaccttgat	cgtgggttag	tattgaatgc	120
agaaggaagg	tacccaag	attcacatgg	aaatcccttt	cggattaaac	taggaggaga	180
tggtcgaacc	attgttagatc	ttgaaggac	ccccgtgg	agtcctgacg	gcctccca	240
ctttgggcag	gggcgacat	gcacac	ggccaatg	caggataa	caatttt	300
tcttggagga	aagccgtgg	ttggcttga	ggtcatcaaa	aaaacc	cccccttac	360
cactaccat	cagccacca	ctactac	gcccctgc	accactaca	ccccgagg	420
caccactgcc	accacccg	gcacgacc	caggcgt	acaacc	tccgaacc	480
tacgcggaca	accacccaca	ccaccc	accac	ccatccc	cctgtcccc	540
tgggacctt	gaacggc	acgat	caac	atgac	atggat	600
agagtgtac	gctgaagaag	atgat	agg	ttgg	actgac	660
ggaagaggcc	tacgttat	atgat	gag	gtca	ggccacca	720
caccactgag	ccttcgacca	ctgta	acc	gagg	aaggcgccat	780
cagttcc	cctgaagaag	aattt	gat	ggctt	aaacgat	840

cgtgacgtac ctaaataaaag acccatcagc cccgtgctct ctgactgatg cactggatca	900
cttccaagtg gacagcctcg atgaatcat ccccaatgac ctgaagaaga gtgatctgcc	960
tccccagcat gctccccgca acatcacgt ggtggccgtg gaagggttgc actcattgt	1020
cattgtggac tgggacaaaag ccaccagg agatgtggc acaggttact tggttacag	1080
tgcatcctat gaagacttca tcaggaacaa gtggtccact caagttcat cagtaactca	1140
cttgcattt gagaaccaa agccaaacac gaggtattat tttaaagtgc aagcacaaaa	1200
tcctcatggc tacggaccta tcagcccttc ggtctcattt gtcaccgaat cagataatcc	1260
tctgtttgtt gtgaggcccc caggggtga gcctatctgg atccattcg cttcaaaaca	1320
tgatcccagc tacacggact gccatggacg gcaatatgtg aagcgcacgt ggtatcgaaa	1380
gttcgtgggaa gtttgttctt gtaattact gaggtataaa atctacatca gtgacaacct	1440
gaaagataca ttctacagca ttggagacag ctggggaaaga ggtgaagacc attgccaatt	1500
tgtggatca caccttgcgtg gaagaacagg gcctcagtcc tattagaaag ccctccctac	1560
tattcaaggc tactatgcgc agtacgtca ggacgcgtc aggttggga acatcggtt	1620
cggaaccccc tactactatg tgggctggta cgagtgtgg gtctccatcc ctggaaagtg	1680
gtaatcacag gaccgtcatg ctgcaagctt gcccgtccca gcccacccaa ctaagtgcac	1740
ctaggggctg tgagcaaaaga cagccagcat gctcagcccc gctccctag gtgccagaa	1800
ggtcacagat ggacactggc cattctggc atctcagttt ggaactcagt cccacttctt	1860
ggcctggaca atgaacaccca ttcatgttgc atctcagttt tgcttctcta ctttttttg	1920
tttgtttgtt atagcacatc ccagagacat cagaacccag caactgattt agtgtgattt	1980
ccagacttt tagcatgaa attcggacac ttcatgttgc atctcagttt ccaggaatag catatgcacg	2040
ctgttcttc ttcatggaaat gctacatgtt ttctgtttt ctcattttgg atttctccaa	2100
aactaactga atttaagctt caggtccctt tttatgtcagt agaaaggaat tattaaaaac	2160
accacaaaaaa aaaataaaata tattttactt gaaattttact ctatggactt acccactgct	2220
agaataaaatg tattttttttt tattttttttt ttctcaattt tgatatatat atgtatatat	2280
gcataatcat atccacactt gtctgcaaga atatttgat aaatttgctaa attttgtactt	2340
gttcaccaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aagg	2394

<210> 32

<211> 499

<212> DNA

<213> HOMO SAPIENS

<400> 32

ctgggatagc aataacctgt gaaaatgctc ccccggtctaa tttgttatcaa tgattatgaa	60
caacatgcta aatcagtact tccaaagtct aaatatgact attacaggc tggggcaaat	120
gatgaagaaaa ctttggctga taatattgca gcattttcca gatggaaatgt gtatccaagg	180
atgctccgga atgttgcgtg aacagatctg tcgacttctg ttttaggaca gagggtcagc	240
atgccaatat gtgtgggggc tacggccatg cagggcatgg ctcatgtgg cggcggagctt	300
gccactgtga gaggctgtca gtcctggaa acgggcatga tttgagttc ctggggccacc	360
tcctcaattt aagaagtggc ggaagctggt cctgaggcac ttctgtggct gctactgtat	420
atctacaagg accgagaatg caccacaaatg ctatgtgcggc aggacagagaa gatggctac	480
aaggccatattt ttgtgacag	499

<210> 33

<211> 1774

<212> DNA

<213> HOMO SAPIENS

<222> 1679, 1681, 1684, 1685, 1686, 1691, 1692, 1693, 1705, 1706, 1707,
1708, 1710, 1714, 1716, 1731, 1740, 1744

<400> 33

ctttcctaga caaggctgaa aggggccaac attatttctg aagacttcat tatttggaaatt	60
ctatgggagt gatctcactg agtattttt gaatagaaat gtggctagtt gcctgaccc	120
cctcaatgtt ttcatgttgc ttccaaagg aaggaaggc agtgcgtact tttggtaaaa	180
tggggcggaaag ggtccatggc agcaacacaa tcaatcaatg tccatgttgc ggatcgtt	240
atacaacgtt cctgaaatgtt ggcctttagt caccatctc cggtagacat taacttata	300
aatttggatctt gatttacaaat ataaaacttgc ccccatctc acccagtaac aatgtcaagag	360
ttgatgttgc tttataaaatg gaagtagggaa ctgtccctgg ctttcaggctt ccaacatct	420
ccccctgtca agatgtggca cctcaatgtt tttatgttgc tttatgttgc ctttggctt	480
ttggggccagg taaggaggaa aggataactt tttatgttgc tttatgttgc agatgtatgt	540
ggtgggtggaa cttgaaatgtt agatttgcgtc ctgtggatgtt gtttcttgc tttatgttgc	600
cacatctgc ggaatggaaat gatcttgcgtc ccaagggtgtt cagcagggtgt tttatgttgc	660
cataatcttgc gtttgcgttgc ctttgcgttgc tttatgttgc tttatgttgc agtggatgttgc	720

gcaaagagaa	ggccacggag	aatgacccca	ttttggagag	gggtttccct	caggcctatt	780
ggagccct	gcgggatga	ttctgagtgt	atcacaaggc	tatgcagaaa	aagacgctgt	840
tccttaagt	tggcccagga	atgatgtaca	taccaggaa	agaaaggaca	gcagtcacct	900
ccgacaatgc	tccgttctat	ggaatattga	ttaactgcat	tttggctgga	gacacccaag	960
tgaagcaatc	ttgtatTTT	aatattaaa	ggcagatgta	cgctttaat	tggctccat	1020
ttcttcTT	tagtggata	tatggataag	cataactaaa	cttgtcaatt	taggtttat	1080
ttttctatgg	atactattaa	atgtctaaa	ttgaaattt	agcagtctgg	aattcaagct	1140
tttgaggaa	agaaggattc	actttgtata	ctaaagaaaa	aaacagcatt	gcccataat	1200
gtgttaactt	ctcaatctgg	aaagtgttagt	gagagctaca	taatcaatag	ctacgtaatc	1260
aacttcagca	agttcctaag	ctgtggccct	gatccccctc	actccatact	cttcaggggag	1320
gtgtcaaaagg	tggcaagct	tgggaggctg	aggcaggaga	atggcgtgaa	ccgggagacg	1380
gacttgcagt	gagccgagat	ccgccactga	ctccagecctg	ggaaagagc	gagactccgt	1440
tcacaaaaaa	aaagaatcaa	aaaaaaaaag	gggagcccc	ccttggatc	ggaagaccca	1500
gtcctgtat	tcaacacagg	ttagtcaag	gcattaaGCC	ctgtaaGGC	cacttcggcc	1560
cctcagagtt	gtgttctga	tccaaCGGAA	gcccgttaca	aattccctt	cggaatttgc	1620
ctccggcatt	ccctaggggc	ggtatttgg	agcaaagttc	tttaaacagc	cagtgtatnc	1680
naannncggg	nngccctt	cggnnnnnn	ccananattg	ctcccttctc	ncctttctn	1740
tttntcccc	cccggtcga	cagggggtgt	ggtc			1774

<210> 34
<211> 4158
<212> DNA
<213> HOMO SAPIENS
<222> 3667, 3668, 3669, 3670, 3671, 3672, 3673, 3674, 3675, 3676, 3677,
3678, 3679, 3680, 3681, 3682, 3683, 3684, 3685, 3686, 3687, 3688, 3689,
3690, 3691, 3692, 3693, 3694, 3695, 3696, 3697, 3698, 3699, 3700, 3701,
3702, 3703, 3704, 3705, 3706, 3707, 3708, 3709, 3710, 3711, 3712, 3713,
3714, 3715, 3716, 3717, 3718, 3719, 3720, 3721, 3722

<400> 34

ctcccacaac	aatttcattg	ttgttagcat	atctatttct	ccatacattg	taaaactgta	60
atccttagt	atttctaaa	cataaagagg	agaattaagt	cagctgcaga	acaatgggc	120
tgattcttct	gcttttctc	tggaaaatct	ttcattgctt	ttggggaaa	tttacctaga	180
ggttacaacc	acaggatgta	gcttggctc	ttatttgcct	ttttggaaa	ccaattaaga	240
ttaatacagg	ataaaggaaa	aaagcaatct	attcattata	taacacagtt	gtttgtatta	300
cttggccct	gcaaaggaaa	tctgttaat	gcttcattt	tgaattctt	ttaatagaa	360
caaccaaaaa	aggcttctta	tggtgcagca	ggaaaaaaaaga	tcatttttat	agctttgcatt	420
tcttaacata	gcattttaag	agcggcatga	attagaggaa	agacatggaa	cacacaggta	480
gtcggttga	gatcatcgcc	ttaaaatgt	ccttagatgg	taatgaccca	gaagtattc	540
cagttgtta	gtgggtgtt	atgcagaaat	gagaagttgtt	ttcttccat	ttctgttgg	600
acaggtggca	atcttagcag	agccactatt	tggagttgtat	aactaaagat	gcaaataacg	660
tgactatgcc	ttctggatcat	cctacgacta	tttggagttc	tccaaacact	tgtaagaggc	720
atgtcagcga	tgcagtaaaa	gcatctacaa	cttcagctgg	gcactggcag	cataggtctc	780
atcttggacc	atacagtccc	actttataga	agagagttgg	agttctccaa	aacaatattcc	840
acaacaaagt	ctgacctcac	tctgaggggag	atgggaagtgt	ggaggaagaa	ggactaacca	900
gctccctgga	gtaagaggaa	tttgcttcc	ctgtctgccc	accagggct	atatgtgcca	960
cctttcaggt	tggggccaag	gaagtgtatgt	cagtgtgaca	gaagggagag	ttagacctcc	1020
agacgtcagc	ctccctccca	tgggtacat	tttcaatctg	agtgtgttg	ccttagctgt	1080
gttggattta	gcttgattgg	ttggccgct	ggttatgagg	tgttagggagg	cagttttgt	1140
ttagtttta	ggactttgccc	tcttcTTT	tctttagcat	aatttctagg	cagagcatcc	1200
acgaagtccg	ttttcattgc	cagtcaga	gcgacaatca	tttacgagtt	cctatgttat	1260
gttaggtgcc	ttatgtatat	tatccaaat	ccactgcatt	ttttaataac	aggcactgga	1320
atataatgt	aaaaggtcat	tacagtact	gactttctgc	aggaccttaa	acatttctt	1380
ttccacaagt	ttcccTTTaa	tcatgttca	aaccttctt	cctgacggga	atgtgtgt	1440
ataatgaatc	tgcataaacgc	ttgggatttct	aggaggaagg	aagggttcat	ggacatgtaa	1500
gtacagcata	ttcccTTT	tcttcttagga	gggcagagtg	aatcccagaa	ctggtaagat	1560
tgggaatctg	agcattgc	ctttaatctt	agaatattta	tcattttgac	acatcctgtt	1620
tttttagagag	gaaaacaaac	acagtttctg	cattggtagt	gtaaagcata	ccttggtagg	1680
aacgtgttt	gtaagacaca	tttgggtt	cattcttagag	catgtcaa	tttgcatttc	1740
aaaatataatt	tagatgatt	gttagtgta	acatataatca	aggcttggaa	ttaactgttt	1800
tatTTTattt	tcacaagaag	cacttatttt	agccatagga	aaaccaatct	gagctacaaa	1860
tagttctta	aaataagccc	aggttattta	gctattctag	aaagtggcga	cttcttcaa	1920
gaaggcaggca	ttgttaggaca	gctgagaatt	atcacatagc	ctaaattcta	gcctggcagc	1980

aagagtaca	tctgagatgt	ccaaaaaaaaaa	aaaaaaaaaa	cacctgatct	acattgaaag	2040
ggggtagact	aacgtatgt	agaccatttt	cctatttgc	gttacaagg	taaagaactt	2100
tgaaggc	tcggctg	cta	agaggcatgt	cgaacactct	gtgtggctct	2160
accctcctaa	gagcagaaga	cacatggct	ttagtgtct	cgtttagatt	taatttctca	2220
aataaaggcc	cttggctg	cg	tatcatttca	tccagttata	aactagg	2280
cccccatct	aagggt	aat	tattgaaatc	agttgtctt	tgatgagtca	2340
agcaggcagg	gcattt	gaag	tcatgg	tc	caactggccc	2400
aatatgtctaa	aatgt	cttca	gagggaa	gtgggg	ctgtcattt	2460
agggtt	ttt	ttt	taaacat	ttaa	tgagaaaaaa	2520
ctaagaacca	aca	gtt	tttt	tttt	tataaaatt	2580
atggactt	gggg	gggacaca	aagatgc	tgacactt	gtgtg	2640
aattatttctg	ggaaa	agca	ttt	ttt	tttt	2700
agggccacaa	agcagg	ctaa	caggat	ccag	acaccagg	2760
aagaagccag	ttact	gtt	cccttat	ttt	tttt	2820
tcatcctatg	tcat	tcat	tttt	ttt	tttt	2880
ttatctttt	tctt	gtat	gtt	gtt	gtt	2940
tgttctgt	gtat	gtat	ttt	ttt	ttt	3000
actcagaggc	aatt	gaataa	agagaa	attt	tttt	3060
tctcaaactt	ctgat	ttt	caaagg	ttt	tttt	3120
ggggagaaag	ctagact	cct	acagg	ttt	tttt	3180
taggtataa	tttt	cttaat	tttt	tttt	tttt	3240
cctctgtt	tgt	cattt	tttt	tttt	tttt	3300
aatgtaaatc	tggat	ccat	tttt	tttt	tttt	3360
cttcctctac	ctgata	at	taat	actt	tttt	3420
atcctgtt	cacat	ctt	actt	tttt	tttt	3480
gaaaaaaaaat	ttt	taat	aaagat	ttt	tttt	3540
tcaaaagttt	gtact	ttt	tttt	tttt	tttt	3600
aaaaatgttc	ttctt	gg	ctgag	ttt	tttt	3660
aaaaaannnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	3720
nnntcttctat	agt	gtcac	ctt	actt	tttt	3780
ggggaaaaccc	tgg	gtt	acc	ttt	tttt	3840
ggcgt	taata	cac	ttt	tttt	tttt	3900
ggcgt	ataac	ccg	ttt	tttt	tttt	3960
ggcgt	atgg	ttt	ttt	tttt	tttt	4020
ggt	ttt	ttt	ttt	tttt	tttt	4080
gattacgggg	agg	aaa	aa	ttt	tttt	4140
aggaggctg	gagg	aaa	ttt	tttt	tttt	4158
agagagggt	taa	ttt	tttt	tttt	tttt	
agacataa						

<210> 35

<211> 366

<212> PRT

<213> HOMO SAPIENS

<400> 35

Met	Ala	Leu	Arg	Phe	Leu	Leu	Gly	Phe	Leu	Leu	Ala	Gly	Val	Asp	Leu
1				5				10					15		
Gly	Val	Tyr	Leu	Met	Arg	Leu	Glu	Leu	Cys	Asp	Pro	Thr	Gln	Arg	Leu
								20				25		30	
Arg	Val	Ala	Leu	Ala	Gly	Glu	Leu	Val	Gly	Val	Gly	Gly	His	Phe	Leu
								35				40		45	
Phe	Leu	Gly	Leu	Ala	Leu	Val	Ser	Lys	Asp	Trp	Arg	Phe	Leu	Gln	Arg
								50				55		60	
Met	Ile	Thr	Ala	Pro	Cys	Ile	Leu	Phe	Leu	Phe	Tyr	Gly	Trp	Pro	Gly
65								70			75			80	
Leu	Phe	Leu	Glu	Ser	Ala	Arg	Trp	Leu	Ile	Val	Lys	Arg	Gln	Ile	Glu
								85			90			95	
Glu	Ala	Gln	Ser	Val	Leu	Arg	Ile	Leu	Ala	Glu	Arg	Asn	Arg	Pro	His
								100			105			110	
Gly	Gln	Met	Leu	Gly	Glu	Glu	Ala	Gln	Glu	Ala	Leu	Gln	Asp	Leu	Glu
								115			120			125	
Asn	Thr	Cys	Pro	Leu	Pro	Ala	Thr	Ser	Ser	Phe	Ser	Phe	Ala	Ser	Leu
								130			135			140	

Leu Asn Tyr Arg Asn Ile Trp Lys Asn Leu Leu Ile Leu Gly Phe Thr
145 150 155 160
Asn Phe Ile Ala His Ala Ile Arg His Cys Tyr Gln Pro Val Gly Gly
165 170 175
Gly Gly Ser Pro Ser Asp Phe Tyr Leu Cys Ser Leu Leu Ala Ser Gly
180 185 190
Thr Ala Ala Leu Ala Cys Val Phe Leu Gly Val Thr Val Asp Arg Phe
195 200 205
Gly Arg Arg Gly Ile Leu Leu Ser Met Thr Leu Thr Gly Ile Ala
210 215 220
Ser Leu Val Leu Leu Gly Leu Trp Asp Tyr Leu Asn Glu Ala Ala Ile
225 230 235 240
Thr Thr Phe Ser Val Leu Gly Leu Phe Ser Ser Gln Ala Ala Ala Ile
245 250 255
Leu Ser Thr Leu Leu Ala Ala Glu Val Ile Pro Thr Thr Val Arg Gly
260 265 270
Arg Gly Leu Gly Leu Ile Met Ala Leu Gly Ala Leu Gly Leu Ser
275 280 285
Gly Pro Ala Gln Arg Leu His Met Gly His Gly Ala Phe Leu Gln His
290 295 300
Val Val Leu Ala Ala Cys Ala Leu Leu Cys Ile Leu Ser Ile Met Leu
305 310 315 320
Leu Pro Glu Thr Lys Arg Lys Leu Leu Pro Glu Val Leu Arg Asp Gly
325 330 335
Glu Leu Cys Arg Arg Pro Ser Leu Leu Arg Gln Pro Pro Pro Thr Arg
340 345 350
Cys Asp His Val Pro Leu Leu Ala Thr Pro Asn Pro Ala Leu
355 360 365