Contents

1	Introduction	2
2	System P	2
	2.1 Definitions	2
	2.2 Provability in System P is undecidable	3

1 Introduction

 $\begin{array}{l} FV(\Gamma) = \bigcup \{FV(t) \mid (x:t) \in \Gamma\} \\ \lambda 2 \text{ deduction Rules} \end{array}$

$$\begin{array}{ll} \text{(Axiom)} & \Gamma, x: t \vdash x: t \\ \\ \text{(λ-Introduction)} & \frac{\Gamma, x: t_1 \vdash e: t_2}{\Gamma \vdash \lambda x. e: t_1 \to t_2} \\ \\ \text{(λ-Elimination)} & \frac{\Gamma \vdash e_1: t_1 \to t_2 \quad \Gamma \vdash e_2: t_1}{\Gamma \vdash e_1 e_2: t_2} \\ \\ \text{(\forall-Introduction)} & \frac{\Gamma \vdash e: t}{\Gamma \vdash \Lambda \alpha. e: \forall \alpha. t} \qquad \alpha \notin FV(\Gamma) \\ \\ \text{(\forall-Elimination)} & \frac{\Gamma \vdash e: \forall \alpha. t}{\Gamma \vdash et': t \left[\alpha:=t'\right]} \end{array}$$

2 System P

2.1 Definitions

$$FV(\Gamma) = \bigcup \{FV(A) \mid A \in \Gamma\}$$
 Deduction Rules

$$\begin{array}{ll} (\operatorname{Axiom}) & \Gamma, A \vdash A \\ \\ (\to \operatorname{-Introduction}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \\ \\ (\to \operatorname{-Elimination}) & \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \\ \\ (\forall \operatorname{-Introduction}) & \frac{\Gamma \vdash B}{\Gamma \vdash \forall \alpha B} \qquad \alpha \notin FV(\Gamma) \\ \\ (\forall \operatorname{-Elimination}) & \frac{\Gamma \vdash \forall \alpha B}{\Gamma \vdash B \ [\alpha := b]} \end{array}$$

An Interpretation I of a P formula is a tuple $I=(\Delta,\cdot^I)$ where Δ is a set (called domain), $P^I\subseteq \Delta^k$ and $\alpha^I\in \Delta...$

If we interpret *false* with the logical constant false (\bot) (denoted by \vdash_f) we can add a new deduction rule.

$$(\exists \text{-Elimination}) \quad \frac{\Gamma, A [\alpha := a] \vdash_f B}{\Gamma, \forall \alpha (A \to false) \to false \vdash_f B} \quad a \notin FV(\Gamma, A, B)$$

Proof. Let $I = (\Delta, \cdot^I)$ be a model of $\Gamma, \forall \alpha(A \to false) \to false$ with $false^I = \bot$.

$$\begin{split} I &\models \Gamma, \forall \alpha (A \to false) \to false \Rightarrow I \models \forall \alpha (A \to false) \to false \\ &\Rightarrow (\forall \alpha (A \to false))^I \to false^I \\ &\Rightarrow (\forall \alpha (A \to false))^I \to \bot \\ &\Rightarrow \neg (\forall \alpha (A \to false))^I \\ &\Rightarrow \neg (\forall a \in \Delta : (A \to false)^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to false^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to \bot) \\ &\Rightarrow \exists d \in \Delta : \neg (\neg A^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : A^{I[\alpha \mapsto d]} \end{split}$$

Together with $a \notin FV(\Gamma, A)$, it follows that $I[a \mapsto d]$ is a model of $\Gamma, A[\alpha := a]$. Which implies $I[a \mapsto d] \models B$. Since a is not free in B we conclude that I is also a model of B.

2.2 Provability in System P is undecidable

 Γ_C :

- *Q*(*a*)
- $P_1(a, a_0), P(a_{i-1}, a_i)$ for $i \in \{1, \dots, m\}$
- $P_2(a,b_0), P(b_{i-1},b_i) \text{ for } i \in \{1,\ldots,n\}$
- D(a)...

+(Q,1,Q'):

- $\forall \alpha \beta (Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta))$ change of state
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to P_1(\beta, \delta) \to P(\delta, \gamma))$ increment register 1
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to D(\gamma)$ prevent zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to P_2(\alpha, \gamma) \to P_2(\beta, \gamma))$ do not change register 2

 $-(Q, 1, Q_1, Q_2)$:

- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to E(\gamma) \to Q_2(\beta))$ jump on zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to E(\gamma) \to P_1(\beta, \gamma)$ register 1 stays zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to D(\gamma) \to Q_1(\beta))$ change state if register 1 is greater zero
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to P_1(\alpha, \gamma) \to D(\gamma) \to P(\gamma, \delta) \to P_1(\beta, \delta))$ decrement register 1
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to P_2(\alpha, \gamma) \to P_2(\beta, \gamma))$ do not change register 2

Lemma 1.

M terminates on input (0,0) iff $\Gamma_M \vdash \text{false holds in system } P$.

Claim 2. $\Gamma_C \cup \Gamma \vdash \text{false...}$

Proof. For the tableau proofs we will abbreviate *false* by *f*. Induction Base trivial . . .

Induction Step

 $C \to D$

Basic idea:

$$\frac{IH}{\frac{\Gamma_C \cup \Gamma \cup \Gamma_D \vdash f}{\Gamma_C \cup \Gamma \vdash \Gamma_D}}$$

Since $I \models false$ holds trivially if I interprets false with \top we only need to consider models (there are none if M terminates) of $\Gamma_C \cup \Gamma$ that interpret false with \bot (so we can use our new deduction rule)

We will just drop $\Gamma_C \cup \Gamma$ and only write new formulas on the left side We first introduce the new variables needed for Γ_D (let $b \in V_P \setminus FV(\Gamma_C \cup \Gamma)$):

Now we create Γ_D

$$\frac{Q'(b) \vdash f}{\vdash Q'(b) \to f} \xrightarrow{\begin{array}{c} \vdash \forall \alpha \beta (Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta)) \\ \vdash Q(a) \to S(a, b) \to Q'(b) \\ \vdash S(a, b) \to Q'(b) \\ \hline \vdash Q'(b) \\ \hline \\ \vdash_f f \end{array}} \vdash Q(a) \xrightarrow{} S(a, b) \to Q'(b)$$

Claim 3.

 $\Gamma_M \vdash \text{false holds in system } P \implies M \text{ terminates on input } (0,0)$

Proof. Assume M does not terminate then there is an infinite chain $C_0 \Rightarrow_M C_1 \Rightarrow_M C_3 \Rightarrow_M \dots$ ($C_i = \langle Q_i, m_i, n_i \rangle$) Now we construct a model of Γ_M which interprets false with \bot this contradicts $\Gamma_M \vdash false$. The idea looks like this:

Formal definition:

$$I = (\mathbb{N}, \cdot^I)$$

$$P^{I} = \{(i+1,i) \mid i \in \mathbb{N}\} \qquad P^{I}_{1} = \{(i,m_{i}) \mid i \in \mathbb{N}\} \qquad P^{I}_{2} = \{(i,n_{i}) \mid i \in \mathbb{N}\}$$

$$Q^{I}_{j} = \{i \mid Q_{j} = Q_{i}, i \in \mathbb{N}\} \qquad D^{I} = \mathbb{N} \setminus \{0\} \qquad \qquad E^{I} = \{0\}$$