11. CW 複体のホモロジー

特異ホモロジーによる CW 複体のホモロジー の記述

X を CW 複体 , X^n をその n-skeleton とする .

命題 1. 1. $H_q(X^n, X^{n-1}) = 0$, $q \neq n$

2. X の各n セル e_{λ} に対して、 $\varphi_{\lambda*}:D^n \to \overline{e}_{\lambda}$ をとり、 $\varphi_{\lambda*}:H_n(D^n,S^{n-1}) \to H_n(X^n,X^{n-1})$ を考えると、 $H_n(X^n,X^{n-1})$ は $H_n(D^n,S^{n-1})$ の生成元の $\varphi_{\lambda*}$ による像によって生成される自由加群である.

 ${
m CW}$ 複体 X について $C_n(X)=H_n(X^n,X^{n-1})$ とおく.また境界作用素 $\partial:C_n(X)\to C_{n-1}(X)$ を (X^n,X^{n-1},X^{n-2}) のホモロジー完全列の準同型 写像 $\partial_*:H_n(X^n,X^{n-1})\to H_{n-1}(X^{n-1},X^{n-2})$ として定める.このとき,次の定理が成り立つ.

定理 1. CW複体 X について,上のように定まるチェイン複体 $C_n(X)$ の ホモロジー群は,X の特異ホモロジー群 $H_*(X)$ と同型である.

 CW 複体 X について $C_n(X)$ は n 次元セル $\{e_{\lambda}\}$ で生成される自由加群と同型である.境界作用素 $\partial:C_n(X)\to C_{n-1}(X)$ は e_{λ} に対応する基底を $[e_{\lambda}]$ で表すと

$$\partial[e_{\lambda}] = \sum_{\mu} \varepsilon(e_{\lambda}, e_{\mu})[e_{\mu}], \quad \varepsilon(e_{\lambda}, e_{\mu}) \in \mathbf{Z}$$

という形に表される . 整数 $\varepsilon(e_\lambda,e_\mu)$ を結合係数 (incidence number) とよぶ . さらに , これを用いると次の定理を証明することができる .

定理 2. 単体的複体 K のホモロジー群は,多面体 |K| の特異ホモロジー群 $H_*(|K|)$ と同型である.

この結果と,特異ホモロジー群のホモトピー不変性をあわせると,単体的複体 K のホモロジー群のホモトピー不変性が得られる.とくに,多面体のホモロジー群は単体分割によらないことがわかる.

2 射影空間のホモロジー群

 $X=\mathbf{R}P^n$ として,標準的なセル分割を考える. $X^k\cong\mathbf{R}P^k, 0\leq k\leq n$ となっている.このとき, $C_k(X)=H_k(X^k,X^{k-1})\cong\mathbf{Z}$ である.境界作用素 $\partial_k:C_k(X)\to C_{k-1}(X), 1\leq k\leq n$ は,k が奇数のとき零写像,k が偶数のとき 2 倍写像となる.このことから次の結果が得られる.

$$H_0(\mathbf{R}P^n) \cong \mathbf{Z},$$

 $H_{2i+1}(\mathbf{R}P^n) \cong \mathbf{Z}_2, \quad (0 < 2i + 1 < n)$
 $H_{2i}(\mathbf{R}P^n) \cong 0, \quad (0 < 2i \le n)$

n次のホモロジー群については,

$$H_n(\mathbf{R}P^n) = \begin{cases} \mathbf{Z} & n : odd \\ 0 & n : even \end{cases}$$

となる.また,複素射影空間 ${\bf C}P^n$ については,

$$H_{2i}(\mathbb{C}P^n) \cong \mathbb{Z}, \quad (0 \le 2i \le 2n)$$

 $H_{2i+1}(\mathbb{C}P^n) \cong 0, \quad (0 < 2i + 1 < 2n)$

となる.