شرایط تعادل در صفحه

وقتی برایند کلیه نیروها و گشتاورهای عمل کننده روی یک جسم صفر باشد جسم درحال تعادل است.

شرط لازم و کافی برای تعادل یک سیستم این است که مجموع نیروها و گشتاورهای وارده برابر صفر باشد. بنابراین برای تعادل در فضای دو بعدی داریم:

$$\sum Fx = 0$$
 $\sum Fy = 0$ $\sum Mz = 0$

این معادلات فوق ، برای بدست آوردن نیروهای معمول و عکس العملهای در تکیه گاهها می باشد.

همچنین معادلات فوق نشان دهنده این است که هیچگونه انتقال و چرخشی در سیستم در نظر گرفته نشده و در حال تعادل استاتیکی می باشد.

مثال ١:

نیروهای T و C را به گونه ای بیابید که اتصال روبرو در تعادل باشد.

$$[\Sigma F_x = 0] \qquad \qquad 8 + T\cos 40^\circ + C\sin 20^\circ - 16 = 0$$

$$0.766T + 0.342C = 8$$

$$[\Sigma F_y = 0] \qquad \qquad T\sin 40^\circ - C\cos 20^\circ - 3 = 0$$

$$0.643T - 0.940C = 3$$

ادامه حل مثال ۱:

$$0.766 T + 0.342 C = 8$$

$$0.643 T - 0.94 C = 3$$

$$0.342 * (0.643 T - 0.94 C = 3)$$

$$0.72 T + 0.32 C = 7.5$$

$$0.22 T - 0.32 C = 1$$

$$0.94 T = 8.5$$

تمرین ۱:

در مثال ۱ بجای محورهای اصلی، 'X', y' را به عنوان محور مختصاتی در نظر گرفته و مسیله را حل کنید.

مثال ۲: نیروهای موجود در سیستم قرقره

کشش کابل T را طوری محاسبه کنید که سیستم قرقره ای نمایش داده شده در تعادل باشد.

همچنین نیروهای وارد بر بلبرینگ قرقره C را محاسبه کنید.

وزن تمامی اجزا در مقایسه با وزنه موجود در سیستم قابل صرفنظر می باشد.

مثال ۲: حل مسئله با ترسیم دیاگرام آزاد سیستم قرقره ای

حل را از قرقره A شروع می کنیم:

$$T_1r - T_2r = 0 \qquad T_1 = T_2$$

$$T_1 + T_2 - 1000 = 0$$
 $2T_1 = 1000$

$$T_1 = T_2 = 500 \text{ lb}$$

و سيس قرقره B ،

$$T_3 = T_4 = T_2/2 = 250 \text{ lb}$$

و سرانجام با تعادل گشتاوردر قرقره C داریم: (بازوی گشتاور هر دو نیروی زیر برابر r است.)

$$T.r - T3.r = 0$$

$$T = T_3$$
 or $T = 250 \text{ lb}$

مثال ۲: ادامه حل مسئله - نیروهای وارد بر بلبرینگ C

و سرانجام با تعادل نیرو در قرقره C داریم:

$$\begin{split} [\Sigma F_x = 0] & 250\cos 30^\circ - F_x = 0 & F_x = 217 \text{ lb} \\ [\Sigma F_y = 0] & F_y + 250\sin 30^\circ - 250 = 0 & F_y = 125 \text{ lb} \\ [F = \sqrt{F_x{}^2 + F_y{}^2}] & F = \sqrt{(217)^2 + (125)^2} = 250 \text{ lb} \end{split}$$

تمرین۲:

کشش کابل T در طناب و نیروی وارد بر پین A را محاسبه نمایید. جرم تیر معادل ۹۵ کیلوگرم به ازای هر متر طول آن می باشد. (نیروی وزن کل تیر را در وسط آن اعمال نمایید.)

طبقه بندی تعادل در دو بعد		
سيستم نيرويي	دیاگرام آزاد	معادلات تعادل
۱.نیروهای هم راستا	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 $ x$	$\Sigma F_x = 0$
۲. نیروهای متقاطع	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_2 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$

در حالت ۲: وقتی امتداد چند نیرو از یک نقطه می گذرد، نیروها حول آن نقطه گشتاور ندارند.

عضو دونیرویی و سه نیرویی

در عضو دو نیرویی فقط نیروها در یک راستا و به دو سر عضو وارد می شود (بیشتر در اعضای خرپا بکار می رود.) که یا تمایل به کشش جسم دارد و یا تمایل به فشار برجسم.

عضو سه نیرویی و تعادل نیرویی در آن

نکته: بصورت پیش فرض در حل مسایل، وزن تیرها باید لحاظ شود ولی وزن اعضای دیگر مانند قاب و عضو دو نیرویی(در خرپا و...) و کابل و طناب قابل صرفنظر می باشد.

موارد بالا صادق مي باشد، مگر اينكه در صورت مسايل خلاف اين توضيحات ذكر گردد.