Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Subspaces
- 2. Convex optimization

 About 1/3 of the lectures
- 3. Overview of the lectures
 A quick look at the menu

Questions?

Questions?

Questions?

Questions?

Questions? 3/14

Subspaces

Subspaces 4/14

What are the subspaces of \mathbb{R}^2 ?

Subspaces 5/14

The span is always a subspace

Proposition

Let $x_1, \ldots, x_k \in V$. Then, $\operatorname{Span}(x_1, \ldots, x_k)$ is a subspace of V.

Subspaces 6/14

Linear dependency

Linear dependency 7/14

A useful lemma

Lemma

```
Let v_1, \ldots, v_n \in V and let x_1, \ldots, x_k \in \operatorname{Span}(v_1, \ldots, v_n).
Then, if k > n, x_1, \ldots, x_k are linearly dependent.
```

Abuse of language: Instead of saying (x_1,\ldots,x_k) are linearly dependent, we should have said (the family (x_1,\ldots,x_k)) is linearly dependent.

Linear dependency 8/14

Basis, dimension

Basis, dimension 9/14

Proving the theorem

Theorem

If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.

Proof.

Basis, dimension 10/14

A bit of vocabulary

Definition

Let S be a subspace of \mathbb{R}^n .

- We call S a line if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

Basis, dimension 11/14

Overview of the lectures

Overview of the lectures 12/14

Outline

- Vectors and vector spaces
- 2. Linear transformations and matrices
- 3. The rank
- 4. Norm and inner product
- 5. Eigenvalues, eigenvectors and Markov chains
- 6. The spectral theorem and PCA
- 7. Graphs and Linear Algebra
- 8. Convex functions
- 9. Linear regression
- 10. Optimality conditions
- Gradient descent

Overview of the lectures 13/14

Further informations

Course's webpage:

leomiolane.github.io/linalg-for-ds.html

Overview of the lectures 14/14