# Spodbujevano učenje pri igranju namiznih iger

(angl. Reinforcement learning in board games)

#### Tim Kalan

Mentor: izr. prof. dr. Marjetka Knez

Fakulteta za matematiko in fiziko

30. marec 2021

#### Okvir



## Primer 1 - Robot se uči hoje

- Situacija/Stanje: položaj v sobi in stanje nog,
- ▶ **Nagrada**: 1 za doseg vrat, 2 za ključ, −0.5 za časovni korak,
- Okolje: soba in senzorji, ki govorijo o položaju,
- ► **Akcija**: Premik noge.

#### Primer 2 - Križci in krožci

- Situacija/Stanje: stanje na plošči,
- Nagrada: 1 za zmago, −1 za poraz, x za izenačenje/korak,
- Okolje: nasprotnik, plošča, sodnik, nagrajevalec,
- Akcija: postavitev X oz. O na ploščo.



#### Definicija 1 (Markovska veriga).

Slučajni proces  $(S_t)_{t=0}^T$  na končnem verjetnostnem prostoru  $(\Omega, \mathcal{F}, P)$  je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

#### Definicija 1 (Markovska veriga).

Slučajni proces  $(S_t)_{t=0}^T$  na končnem verjetnostnem prostoru  $(\Omega, \mathcal{F}, P)$  je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

 Prihodnost je neodvisna od preteklosti, če poznamo sedanjost

#### Definicija 1 (Markovska veriga).

Slučajni proces  $(S_t)_{t=0}^T$  na končnem verjetnostnem prostoru  $(\Omega, \mathcal{F}, P)$  je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

- Prihodnost je neodvisna od preteklosti, če poznamo sedanjost
- ▶  $p_{ss'} := P(S_{t+1} = s' \mid S_t = s) \rightarrow \mathcal{P} := [p_{ss'}]_{s,s' \in \mathcal{S}}$ ,  $\mathcal{S}$  je množica stanj
- ightharpoonup Markovska veriga je torej dvojica (S, P)

### Definicija 2 (Markovski proces nagrajevanja).

**Markovski proces odločanja** je nabor  $(S, P, R, \gamma)$ , kjer je

- ► S je (končna) množica stanj
- $\triangleright$   $\mathcal{P}$  je prehodna matrika, kjer  $p_{ss'} = P(S_{t+1} = s' \mid S_t = s)$
- $ightharpoonup \mathcal{R}$  je nagradna funkcija  $\mathcal{R}_s = E[R_{t+1} \mid S_t = s]$
- $ightharpoonup \gamma \in [0,1]$  je diskontni faktor

#### Definicija 3 (Markovski proces odločanja).

*Markovski proces odločanja je nabor*  $(S, A, P, R, \gamma)$ , kjer je

- ► S je (končna) množica stanj
- ► A je (končna) množica akcij oz. dejanj
- $\triangleright$  P je prehodna matrika, kjer  $p_{ss'}^a = P(S_{t+1} = s' \mid S_t = s, \mathbf{A_t} = \mathbf{a})$
- $ightharpoonup \mathcal{R}$  je nagradna funkcija  $\mathcal{R}_s^a = E[R_{t+1} \mid S_t = s, \mathbf{A_t} = \mathbf{a}]$
- $ightharpoonup \gamma \in [0,1]$  je diskontni faktor

## Agent

- ► Strategija (angl. *Policy*)
- Vrednostna funkcija (angl. Value function)
- ► (Model)

## Strategija

Agentova **strategija** je takšna preslikava  $\pi:S\to A$  da velja:

$$a = \pi(s)$$
 oz.  
 $\pi(a|s) = P(A_t = a \mid S_t = s).$ 

Pri čemer prva formula definira deterministično strategijo, druga pa stohastično. a in s sta realizaciji akcije in stanja v času t.

## Vrednostna funkcija

#### Literatura

- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An introduction*. The MIT Press, 2015.
- Imran Ghory. Reinforcement learning in board games. 2004.