Transform & Conquer

Transform-and-Conquer

1. Transformation stage: the problem's instance is modified to be more tractable to solution.

2. Conquering stage: the problem is solved.

Transformation Types

1. Instance simplification: transformation to a simpler or more convenient instance of the same problem.

2. Representation change: transformation to a different representation of the same instance.

3. Problem reduction: transformation to an instance of different problem for which an algorithm is already available.

[Computation & Complexity]

Transform-and-Conquer

Example: Checking element uniqueness in an array

Example: Checking element uniqueness in an array

- 1. Sort the array
- 2. Check only its consecutive elements

Example: Checking element uniqueness in an array

- 1. Sort the array
- 2. Check only its consecutive elements

Sorting algorithms:

- Selection/Bubble sort: $\Theta(n^2)$
- Merge sort: $\Theta(n \log n)$
- Quicksort: $\Theta(n^2)$ (worst case), $\Theta(n \log n)$ (avg case)
- Counting/Radix sort: $\Theta(n)$

 $\begin{tabular}{ll} \textbf{Algorithm} & PresortElementUniqueness}(A[0..n-1]) \\ & // Input: & A[0..n-1] \\ & // Output: return & True if A has no equal elements, \\ & & False & otherwise \\ \\ & sort & the & array & A \\ & \textbf{for} & i \leftarrow 0 & \textbf{to} & n-2 & \textbf{do} \\ \end{tabular}$

 $\mathbf{if} \, \mathbf{A}[\mathbf{i}] = \mathbf{A}[\mathbf{i} + 1]$

return False

return True

Time efficiency:

$$T(n) = T_{sort}(n) + T_{scan}(n)$$
$$= \Theta(n \log n) + \Theta(n)$$
$$= \Theta(n \log n)$$

More examples:

- 1. Computing a mode, median, ...
- 2. Searching problem

Problem: Compute the value of a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (1)

at a given point x_0 .

Horner's rule is an example of the representation-change technique:

$$p(x) = (\cdots (a_n x + a_{n-1})x + \cdots)x + a_0$$
 (2)

(2) is obtained from (1) by successfully taking x as a common factor in the remaining polynomials of diminishing degrees:

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

(2) is obtained from (1) by successfully taking x as a common factor in the remaining polynomials of diminishing degrees:

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
$$= x(2x^3 - x^2 + 3x + 1) - 5$$

(2) is obtained from (1) by successfully taking x as a common factor in the remaining polynomials of diminishing degrees:

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
$$= x(2x^3 - x^2 + 3x + 1) - 5$$
$$= x(x(2x^2 - x + 3) + 1) - 5$$

(2) is obtained from (1) by successfully taking x as a common factor in the remaining polynomials of diminishing degrees:

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

$$= x(2x^3 - x^2 + 3x + 1) - 5$$

$$= x(x(2x^2 - x + 3) + 1) - 5$$

$$= x(x(x(2x - 1) + 3) + 1) - 5$$

Example: Evaluate
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
 at $x = 3$

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

= $x(x(x(2x - 1) + 3) + 1) - 5$

Coef.	2	-1	3	1	-5
x = 3					

Example: Evaluate
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
 at $x = 3$

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

= $x(x(x(2x - 1) + 3) + 1) - 5$

Coef.	2	-1	3	1	-5
x = 3	2				

Example: Evaluate
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
 at $x = 3$

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

= $x(x(x(2x - 1) + 3) + 1) - 5$

Coef.	2	-1	3	1	-5
x = 3	2	$3 \cdot 2 + (-1) = 5$			

Example: Evaluate
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
 at $x = 3$

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

= $x(x(x(2x - 1) + 3) + 1) - 5$

Coef.	2	-1	3	1	-5
x = 3	2	$3 \cdot 2 + (-1) = 5$	$3 \cdot 5 + 3 = 18$		

Example: Evaluate $p(x) = 2x^4 - x^3 + 3x^2 + x - 5$ at x = 3

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$

= $x(x(x(2x - 1) + 3) + 1) - 5$

Coef.	2	-1	3	1	-5
x = 3	2	$3 \cdot 2 + (-1) = 5$	$3 \cdot 5 + 3 = 18$	$3 \cdot 18 + 1 = 55$	

Example: Evaluate
$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
 at $x = 3$

$$p(x) = 2x^4 - x^3 + 3x^2 + x - 5$$
$$= x(x(x(2x - 1) + 3) + 1) - 5$$
$$= 160$$

Coef.	2	-1	3	1	-5
x = 3	2	$3 \cdot 2 + (-1) = 5$	$3 \cdot 5 + 3 = 18$	$3 \cdot 18 + 1 = 55$	$3 \cdot 55 + (-5) = 160$

```
Algorithm Horner(P[0..n], x)
   // Input: An array P[0..n] of coefficients of a
              polynomial of degree n and a number x
   //Output: The value of the polynomial at x
   p \leftarrow P[n]
   for i \leftarrow n-1 downto 0 do
      p \leftarrow x * p + P[i]
   return p
```

■ The number of multiplications and the number of additions:

$$M(n) = A(n) = \sum_{i=0}^{n-1} 1 = n \in \Theta(n)$$

Brute Force Polynomial Evaluation

Algorithm BruteForcePolynomial(P[0..n], x) // Input, Output: same as Horner's rule's $p \leftarrow 0.0$ for $i \leftarrow n$ downto 0 do power $\leftarrow 1$ for $j \leftarrow 0$ to i do $power \leftarrow power * x$ $p \leftarrow p + P[i] * power$ return p

Exercise

1) Evaluate:

•
$$p(x) = 3x^4 - x^3 + 2x + 5$$
 at $x = -2$

2) Find the total number of multiplication & addition:

```
Algorithm BruteForcePolynomial(P[0..n], x)
```

```
// Input, Output: same as Horner's rule's p \leftarrow 0.0
```

for $i \leftarrow n$ downto 0 do

power $\leftarrow 1$

for $j \leftarrow 0$ to i do

 $power \leftarrow power * x$

$$p \leftarrow p + P[i] * power$$

return p

Balanced Search Trees

Binary Search Tree (BST) is one of the principal data structures for implementing dictionaries (sets or multisets with operations searching, addition and deletion).

- Binary tree?
- Binary search tree?
- Time efficiency for searching, deletion and insertion?

Balanced Search Trees

Binary Search Tree (BST) is one of the principal data structures for implementing dictionaries (sets or multisets with operations searching, addition and deletion).

- Binary tree?
- Binary search tree?
- Time efficiency for searching, deletion and insertion?
 - $\Theta(\log n)$ in best/average case, $\Theta(n)$ in worse case

Balanced Search Trees

Problem:

Find a structure that preserves the **good properties** of the **binary search tree** – the **logarithmic efficiency** of dictionary operations – and having the set elements **sorted** but avoids its worst-case degeneracy.

Approaches:

- Instance simplification: an unbalanced BST is transformed into a balanced one (self-balancing): AVL trees, red-black trees
- Representation change: allow more than one element in a node of BST: 2-3 trees, 2-3-4 trees, B-trees

- Adelson-Velsky, Landis, 1962
- The balance factor of a node in a BST is the difference of the heights of its left and right subtrees.
- An AVL tree is a BST in which the balance factor of every node is either 0 or +1 or -1.

■ The height of the empty tree is -1.

Example:

Example:

- If an insertion of a new node or an deletion of a node makes an AVL tree unbalanced, we transform the tree by a rotation.
- A rotation in an AVL tree is a local transformation of its subtree rooted at a node whose balance factor became either +2 or -2.
- If there are several such nodes, we rotate the subtree rooted at the unbalanced node that is the closest to the newly inserted leaf.

Single right rotation (R-rotation)

Single left rotation (L-rotation)

Double left-right rotation (LR-rotation)

Double right-left rotation (RL-rotation)

© S. Turaev CSC 3102 DSA II

35

Single right rotation (R-rotation)

Types of Rotations

Single left rotation (L-rotation)

Types of Rotations

Double left-right rotation (LR-rotation)

Types of Rotations

Double left-right rotation (LR-rotation)

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

5

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

45

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

Example: Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

The efficiency of AVL trees:

- The critical characteristic is the height of the tree
- $\lfloor \log_2 n \rfloor \le h \le 1.4405 \log_2(n+2) 1.3277$
 - searching: $\Theta(\log n)$
 - insertion: $\Theta(\log n)$
 - deletion: $\Theta(\log n)$

http://interactivepython.org/runestone /static/pythonds/Trees/ AVLTreePerformance.html

Drawbacks: frequent rotations and the need to maintain balances for its nodes

AVL Trees – Exercises

Which of the following binary trees are AVL trees?

AVL Trees – Exercises

• For each of the following lists, construct an AVL tree by inserting their elements successively, starting with the empty tree.

```
a) 1, 2, 3, 4, 5, 6
```

- b) 6, 5, 4, 3, 2, 1
- c) 3, 6, 5, 1, 2, 4

© S. Turaev CSC 3102 DSA II

53