The Generalized Gibbs Ensemble in the Heisenberg spin chain: A Hilbert space Monte Carlo approach

Vincenzo Alba¹ and Maurizio Fagotti²

¹International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy, INFN, Sezione di Trieste ²Département de Physique, Ecole normale superieure, CNRS, 24 rue Lhomond, 75005 Paris, France (Dated: June 16, 2015)

]	I. IN	TRODUCTIO	Ν

FIG. 1. The Generalized Gibbs Ensenble (GGE) for the finite-size Heisenberg spin chain with L=16 sites. The GGE is constructed including the conserved charges I_2, I_3, I_4 . The corresponding Lagrange multipliers are denoted as $\lambda_2, \lambda_3, \lambda_4$. Here I_2 is the Hamiltonian and $\lambda_2 \equiv \beta$ the inverse temperature. (a) The GGE average $\langle I_2/L \rangle$ of I_2/L plotted as a function of β . The data are obtained using the Hilbert space Monte Carlo approach described in the manuscript. The different symbols correspond to GGEs with different fixed values of λ_3 and λ_4 . The circles correspond to the Gibbs ensemble. (b) The fluctuations $\sigma^2(I_2)/L \equiv \langle (I_2/L)^2 \rangle - \langle I_2/L \rangle^2$ as function of $0 \leq \beta \leq 1.5$. (c)(d) and (e)(f): Same as in (a)(b) for I_3 and I_4 , respectively. In all panels the dash-dotted lines are the analytical results obtained using the Generalized Thermodynamic Bethe Ansatz (GTBA) approach.

FIG. 2. The Generalized Gibbs Ensenble (GGE) in the Hisenberg spin chain of length L=16. The GGE is obtained including the first three non-trivial conserved quantity I_2,I_3,I_4 . Here I_2 is the Hamiltonian. The corresponding Lagrange multipliers are denoted as $\lambda_2,\lambda_3,\lambda_4$, with λ_2 being the inverse temperature $\lambda_2=\beta$. In all the panels circles, squares, and rhombi correspond to the the situations with $\lambda_3=\lambda_4=0$ (i.e., the Gibbs ensenble), $\lambda_3=1,\lambda_4=0$, and $\lambda_3=\lambda_4=1$. The GGE expectation value for the fluctuations of the total magnetization M, plotted as a function of λ_2 .

FIG. 3. The Generalized Gibbs Ensenble (GGE) in the Hisenberg spin chain of length L=16. The GGE is obtained including the first three non-trivial conserved quantity I_2,I_3,I_4 . Here I_2 is the Hamiltonian. The corresponding Lagrange multipliers are denoted as $\lambda_2,\lambda_3,\lambda_4$, with λ_2 being the inverse temperature $\lambda_2=\beta$. In all the panels circles, squares, and rhombi correspond to the the situations with $\lambda_3=\lambda_4=0$ (i.e., the Gibbs ensenble), $\lambda_3=1,\lambda_4=0$, and $\lambda_3=\lambda_4=1$. The GGE expectation value for the fluctuations of the total magnetization M, plotted as a function of λ_2 .