Steering Large-Language Models: Theory and Practice

Damien Garreau

Julius-Maximilians Universität Würzburg - CAIDAS

November 20, 2025

Outline

- 1. Introduction
- 2. Concept algebra
- 3. Towards monosemanticity
- 4. Back to basics

1. Introduction

Context

- ▶ foundation models trained on massive amount of data
- used downstream on any task

► Figure: from Bommasani et al., On the Opportunities and Risks of Foundation Models, Tech. Report., 2021

Motivation

- ▶ **Problem:** hard to control their behavior
- **Example:** Grok's answers after an update in July 2025

Steering

- ► **High-level idea:** from an existing model, detect and correct bad behavior (a.k.a. alignment)
- Challenges:
 - scale of the models
 - hurts the performance
 - where to begin with?
- ► This talk: steering
- Other approaches (not this talk):
 - fine-tuning¹
 - reinforcement learning from human feedback²
 - prompt engineering³

¹Wei et al., Finetuned Language Models Are Zero-Shot Learners, ICLR, 2022

²Ziegler et al., Fine-Tuning Language Models from Human Preferences, preprint, 2019

³Brown et al., Language models are few-shot learners, NeurIPS, 2020

2. Concept algebra

Activation space

Definition: we call *activation* the intermediate quantity computed at a neuron (before non-linearity). A given layer gives rise to the *activation space*.

Example (i): feed-forward multi-layer perceptron

 $h(x) \in \mathbb{R}^d$ is the latent representation (considered layer has d hidden units)

Activation space

Example (ii): GPT-like architectures

- ▶ get token representation in the first layer of the MLP
- **Beware:** we get token representations

Concept algebra

- **Key observation:** one can do vector operations on the latent representations
- **Early example:** word vectors

► **Figure:** Figure 2 in Mikolov, Yih, Zweig, *Linguistic regularities in continuous space word representations*, Proc. NACL, 2013

How to find good directions?

- **Extremely unintuitive:** why should linear modification in an inner layer have some smart effect on the output?
- Further question: how to find good directions?
- What would be nice: canonical basis in the activation space
- for non-mathematicians: hope that one neuron encodes for one high-level feature
- ▶ then it is simple: identify the neuron and modify its activation

- several ways of doing this, most intuitive:
- ▶ take some dataset, look for the images associated to max activation⁴
- ▶ At first glance: some neurons are monosemantic
- that is, neuron lights up in accordance to one type of high-level feature

Figure: Figure 3(c) in Szegedy et al., Intriguing properties of neural networks, ICLR, 2014

⁴Goodfellow et al., Measuring invariances in deep networks, NeurIPS, 2009

▶ But not all of them: many neurons are polysemantic

- ▶ Figure: Figure 3(a) in Szegedy et al., Intriguing properties of neural networks, ICLR, 2014
- ▶ Even worse: some random directions in the activation space also seem monosemantic
- maybe the granularity of the dataset prevents us from identifying what the neuron really encodes?

- Another idea: maximize the input activating the neuron by gradient descent
- starting from a random image
- can do it for early layers:

▶ Figure: maximizing the activity of unit 11 in layer mixed4a of GoogLeNet

or we can do it for a class:

► Figure: credits Chris Olah

► Conclusion: most neurons are polysemantic, no easy way

3. Towards monosemanticity

Superposition

- Why does polysemanticity happen?
- possible answer: too many concepts to pack in too few dimensions
- cannot associate each concept to an orthogonal direction
- ▶ neural nets are doing "the best they can" and finding nearly orthogonal directions
- ▶ **Toy model:**⁵ consider input data $X \in \mathbb{R}^d$
- \triangleright $x^{(i)}$ generated by first deciding if coordinate j is non-zero independently with proba π
- ▶ then sampling coordinate value $\sim \mathcal{U}([0,1])$
- ▶ this is the so-called Bernoulli-Uniform model
- consider a simple auto-encoder

$$f_{\theta}(x) = \mathtt{ReLU}(W^{\top}Wx + b) \in \mathbb{R}^d$$
,

with $W \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^d$

⁵from the transformer circuit thread

Toy models of superposition

train this model with (square) reconstruction loss:

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left\| x^{(i)} - f_{\theta}(x^{(i)}) \right\|^{2}$$

ightharpoonup optimizer = AdamW⁶

- **Figure:** d = 5, m = 2, visualizing columns of W after training for varying levels of sparsity
- ▶ this small model learns how to pack many features in 2D

⁶Loshchilov, Hutter, Decoupled Weight Decay Regularization, ICLR, 2019

Sparse coding

- ▶ **Hypothesis:** *superposition* (too many concepts to encode for too few neurons)
- well, let us disentangle, and find a basis such that each latent is written with as few non-zero coefficients as possible
- ▶ Intuition: ideally,

$$x_i \approx 0.3 v_{\text{white}} + 0.5 v_{\text{flower}}$$
.

- ▶ **Sparse coding:** assume training data $x_1, ..., x_n \in \mathbb{R}^D$
- we are looking for a dictionary $D \in \mathbb{R}^{d \times m}$

$$\frac{1}{n} \sum_{i=1}^{n} \min_{\alpha \in \mathbb{R}^{m}} \left[\frac{1}{2} \left\| h_{i} - D\alpha_{i} \right\|^{2} + \lambda \left\| \alpha_{i} \right\|_{1} \right]$$

is as small as possible

- ▶ here, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}^m$ are coefficients
- \blacktriangleright ℓ_1 norm promotes sparsity ($\lambda > 0$ is a regularization parameter)

Atoms of discourse

Example: can do this for word vectors⁷

Atom 1978	825	231	616	1638	149	330
drowning	instagram	stakes	membrane	slapping	orchestra	conferences
suicides	twitter	thoroughbred	mitochondria	pulling	philharmonic	meetings
overdose	facebook	guineas	cytosol	plucking	philharmonia	seminars
murder	tumblr	preakness	cytoplasm	squeezing	conductor	workshops
poisoning	vimeo	filly	membranes	twisting	symphony	exhibitions
commits	linkedin	fillies	organelles	bowing	orchestras	organizes
stabbing	reddit	epsom	endoplasmic	slamming	toscanini	concerts
strangulation	myspace	racecourse	proteins	tossing	concertgebouw	lectures
gunshot	tweets	sired	vesicles	grabbing	solti	presentations

▶ **Figure:** from Arora et al., *Linear Algebraic Structure of Word Senses, with Applications to Polysemy*, Trans. ACL, 2018. Atoms = columns of *D*.

⁷Faruqui et al., Sparse Overcomplete Word Vector Representations, Proc. ACL, 2015

Sparse autoencoders

- lacktriangle elements of dictionary still belong to \mathbb{R}^d thus we are limited by the number of vectors we can pack
- ▶ Idea: extend the space
- ightharpoonup set $\overline{h}_i := h_i b_d \in \mathbb{R}^d$ the normalized latent representations
- lacktriangle parameterize the coefficients by $lpha_i = \mathrm{ReLU}(W_e \overline{h}_i + b_e) \in \mathbb{R}^m$
- ► take

$$\frac{1}{n} \sum_{i=1}^{n} \left[\|x_i - W_d \alpha_i - b_d\|^2 + \lambda \|\alpha_i\|_1 \right]$$

as objective function

originally proposer by Subramanian, Suresh, Peters, Extracting Latent Steering Vectors from Pretrained Language Models, Findings of the ACL, 2022

Sparse autoencoders

- ▶ adapted to LLMs by Huben et al., ⁸, ICLR, 2024
- ▶ also a lot of material in Anthropic blog posts (the circuits thread)

 $^{^8\}mathrm{Sparse}$ Autoencoders Find Highly Interpretable Features in Language Models

Steering using sparse autoencoders

- one can clamp the activations values to steer the model
- **Example:**

4. Back to basics

Early example

Early example: image generation

▶ **Figure:** Figure 7 from Radford, Metz, Chintala, *Unsupervised representation learning with deep convolutional generative adversarial networks*, preprint, 2015

Thank you for your attention!