GPU Computing

Lecture 5

Young-Ho Gong

Contents

CUDA Thread and GPU

- CUDA Hardware
 - G80 Architecture
 - Pascal Architecture
- Transparent Scalability
- Thread and Warp
- CUDA Thread Scheduling
 - SM Warp Scheduling
- Overall Execution Model

Underlying CUDA Hardware

- Nvidia GeForce 8 series (shortly, G80)
 - Firstly released in 2006
 - Includes GeForce 8800, 8600, 8400 and more
 - Unified shader architecture
 - So, it supports graphics and computing simultaneously
 - Some hardware features are still based on graphics features
 - Some are new for computing devices

G80 Graphics Pipeline

■ Graphics oriented → modified to support CUDA

G80 Computing Pipeline

- Processors execute computing threads
- New operating mode/HW interface for computing

GPU Internal Architecture

- Hierarchical Approach
 - SPA: Streaming Processor Array

TPC: Texture Processor Cluster

CUDA Processor Terminology

SPA

- Streaming Processor Array
- For G80 series, it may have 1 to 8 TPCs

TPC

- Texture Processor Cluster (2 SMs + TEX)
- TEX: Texture processor, for graphics purpose

SM

- Streaming Multiprocessor (8 SPs)
- Multithreaded processor core
- Fundamental processing unit for CUDA thread block

SP (or CUDA Core)

- Streaming Processor
- Scalar ALU for a single CUDA thread

CUDA Architecture Improvements

- SFU
 - Special Functions Unit
 - For complex math functions: sin, cos, square root, ...
 - Executes one special instruction per thread, per clock
- Recent CUDA architectures show:
 - TPC may have only one SM and only one TEX
 - For more speedup
 - Up to 32 SPs in a single SM
 - But still SM is the fundamental processing unit

Nvidia Pascal SM

■ Big SM → 4 SMs in a single unit

- Each SM = 32 cores + 8 SFU + 2 TEX

Transparent Scalability

- Scalability Issue:
 - SM is the fundamental processing unit.
 - But, a CUDA device may have various number of SMs
 - A single SM for low-tier tablets / smart phones
 - Up to 256 or more SMs for high-end desktops
- CUDA solution?
 - Block as a unit for SM processing

Transparent Scalability

Scalability Issue:

GPU Computing Applications											
Libraries and Middleware											
cuDNN TensorRT		cuFFT, cuBLAS, cuRAND, cuSPARSE		CULA MAGMA			VSIPL, SVM, OpenCurrent		, OptiX, Ray	MATLAB Mathematica	
Programming Languages											
С	C++	C++		Fortran		on, s	DirectCompute		Directives (e.g., OpenACC)		
CUDA-enabled NVIDIA GPUs											
Turing Architecture (Compute capabilities 7.x)			DRIVE/JETSON AGX Xavier		GeForce 2000 Series		Quadro RTX Series		Т	Tesla T Series	
Volta Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier							Т	esla V Series	
Pascal Architecture (Compute capabilities 6.x)		Tegra X2		GeForce 1000 Series		es	Quadro P Series		Т	Tesla P Series	
Maxwell Architecture (Compute capabilities 5.x)		Tegra X1		GeForce 900 Series		es	Quadro M Series		Te	Tesla M Series	
Kepler Architecture (Compute capabilities 3.x)		Tegra K1		GeForce 700 Series GeForce 600 Series			Quadro K Series		Т	Tesla K Series	
		ΕΛ	MBEDDED	CON	NSUMER DESKTO LAPTOP	P,	PROFESS WORKST			ATA CENTER	

Transparent Scalability

- Hardware is free to assign blocks to any processor at any time
 - A kernel scales across any number of parallel processors

Thread and Warp

Thread

Streaming Multiprocessor (SM)

- Each SM = 32 cores + 8 SFU + 2 TEX
- Streaming Multiprocessor (SM)
 - 32 Streaming Processors (SP)
 - 8 Special Function Units (SFU)
- Multi-threaded instruction dispatch
 - 1 to 2048 threads active
 - Shared instruction fetch per 32 threads
 - Cover latency of texture/memory loads

CUDA Thread Block

- Programmer declares (Thread) Block:
 - Block size 1 to 1024 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- Kernel Program
 - All threads execute the same kernel program
 - Threads have thread ID numbers within Block
 - Thread program uses thread ID to select work and address shared data

Thread block: 1 to 1024 threads

Thread Scheduling/Execution

- Threads run concurrently
 - SM assigns/maintains thread ID #
 - SM manages/schedules thread execution
- Each thread block is divided in 32thread Warps
 - This is an implementation decision, not part of the CUDA programming model

1 SM = 32 cores → Parallel Execution!

Thread Scheduling/Execution

Warps are scheduling units in SM

- A scenario
 - 3 blocks to an SM
 - Each block has 256 threads
- How many warps?
 - Each block has 256 / 32 = 8 warps
 - SM has 3 * 8 = 24 warps
 - At any point in time,
 only one of the 24 warps will be selected for instruction fetch and execution

- All threads in a Warp execute the same instruction when selected
 - Only one control logic for an SM
- Memory access → latency problem → scheduling required!

- SM hardware implements zero-overhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy

- New Architecture:
- An SM = 32 SPs
 - They assign 1 threads per SP
- 1 clock cycle needed to dispatch the same instruction for all threads in a Warp in G80
 - If one global memory access is needed for every 4 instructions
 - A minimal of 25 Warps are needed to fully tolerate 100cycle memory latency

- Old Architecture:
- An SM = 8 SPs
 - They assign 4 threads per SP
- 4 clock cycle needed to dispatch the same instruction for all threads in a Warp in G80
 - If one global memory access is needed for every 4 instructions
 - A minimal of 13 Warps are needed to fully tolerate 200cycle memory latency

Scoreboarding

- All register operands of all instructions in the Instruction Buffer are scoreboarded
 - Status becomes ready after the needed values are deposited
 - Prevents hazards

Single-Program Multiple-Data (SPMD)

- CUDA integrated CPU + GPU application C Program
 - Serial C code executes on CPU
 - Parallel Kernel C code executes on GPU thread blocks

Thread Life Cycle in HW

- Grid is launched on the SPA
- Thread Blocks are serially distributed to all the SM's
 - Potentially >1 Thread Block per SM
- Each SM launches Warps of Threads
 - 2 levels of parallelism
- SM schedules and executes Warps that are ready to run
- As Warps and Thread Blocks complete, resources are freed
 - SPA can distribute more Thread Blocks

Thread Life Cycle in HW

- Threads are assigned to SMs in Block granularity
 - Up to 32 blocks to each SM as resource allows
 - SM in 1070 can take up to 2048 threads
 - Could be 256 (threads/block) * 8 blocks,
 or 512 (threads/block) * 4 blocks,
 or 1024 (threads/block) * 2 blocks, etc.

Intermediate Summary

- CUDA Thread and GPU
- CUDA Hardware
 - G80 architecture
 - Pascal architecture
- Transparent Scalability
- Thread and Warp
- CUDA thread scheduling
 - SM warp scheduling
- Overall execution model
- Next step?
 - Real example → matrix multiplication

Contents

Tiled Matrix Multiplication

- Review for the problem
- Thread Layout single block
- Thread Layout multiple blocks
- Index Values local and global
- Kernel Function

Example: Matrix Multiplication

- We want to multiply matrix A and matrix B
 - For simplicity, we assume square matrices

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} A_{00} & A_{01} & A_{02} & A_{03} & A_{04} \\ A_{10} & A_{11} & A_{12} & A_{13} & A_{14} \\ A_{20} & A_{21} & A_{22} & A_{23} & A_{24} \\ A_{30} & A_{31} & A_{32} & A_{33} & A_{34} \\ A_{40} & A_{41} & A_{42} & A_{43} & A_{44} \end{pmatrix} \cdot \begin{pmatrix} B_{00} & B_{01} & B_{02} & B_{03} & B_{04} \\ B_{10} & B_{11} & B_{12} & B_{13} & B_{14} \\ B_{20} & B_{21} & B_{22} & B_{23} & B_{24} \\ B_{30} & B_{31} & B_{32} & B_{33} & B_{34} \\ B_{40} & B_{41} & B_{42} & B_{43} & B_{44} \end{pmatrix}$$

Example: Matrix Multiplication

- C = A*B of size WIDTH x WIDTH
- Memory usage view:
 - Read from A and B
 - To calculate $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$
- Using:
 - -A[i*WIDTH + k]
 - -B[k*WIDTH + j]

Row-major Matrix Layout in C/C++

Logical layout:

Physical layout: 1D array M = &(M[0][0])

M[y][x]

Re-interpret

M = cudaMalloc (...)

M[y*WIDTH + x]

CPU version: triple for-loop

```
Calculation code:
 for (int y = 0; y < WIDTH; y++){
   for (int x = 0; x < WIDTH; x++){
       int sum=0;
                                                    В
       for (int k=0;k<WIDTH;k++){
           sum += a[y][k] * b[k][x];
        c[y][x] = sum;
```

CUDA version: kernel function

Kernel code global_void mulKernel(...){ $C_{ii} = \sum_{k=1}^{n} A_{ik} B_{ki}$ for (int k=0;k<WIDTH;k++){ Each thread sum += a[y*WIDTH+k] * b[k*WIDTH+x];c[i] = sum; **Thread** Thread **Thread** Thread Thread (0,0)(0,1)(0,2)(0,3)(0,4)Thread **Thread Thread Thread** Thread (1,0)(,1)(1,2)(1,3)(1,4) $\left(\begin{array}{cccccccc} C_{00} & C_{01} & C_{02} & C_{03} & C_{04} \\ C_{10} & C_{11} & C_{12} & C_{13} & C_{14} \\ C_{20} & C_{21} & C_{22} & C_{23} & C_{24} \\ C_{30} & C_{31} & C_{32} & C_{33} & C_{34} \\ C_{40} & C_{41} & C_{42} & C_{43} & C_{44} \end{array} \right)$ Thread **Thread Thread** Thread **Thread** (2,0)(2,1)(2,2)(2,3)(2,4)Thread **Thread Thread** Thread **Thread** (3,0)(3,2)(3,3)(3,4)(3,1)**Thread Thread** Thread Thread Thread (4,3)(4,0)(4,1)(4,2)(4,4)

Thread Layout

- Matrix → 2D Layout
- Small size matrix → a single block!

blockDim.x = WIDTH = 5

A_{00}	A ₀₁	A ₀₂	A ₀₃	A_{04}
A ₁₀		A ₁₂		
A ₂₀	A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₀	A ₃₁	A ₃₂	A ₃₃	A ₃₄
A_{40}	A ₄₁	A ₄₂	A ₄₃	A_{44}

blockDim.y = WIDTH = 5

Any Problem?

- We used only one thread block..
- Each thread block can execute at most 1024 threads
 - Some old architecture can execute only 256 or 512 threads
 - In the future, it can be enlarged to 4096 and more?
- So maximum matrix size is ...
 - $-32 \times 32 = 1024$
 - With a single thread block

- Solution?
 - Use multiple thread blocks!

Thread Layout

- Matrix → 2D Layout
- Tiled approach: use multiple blocks

Simplified Thread Layout

Assumption: Square matrices

Global size: WIDTH x WIDTH

■ Tile → a block: TILE_WIDTH x TILE_WIDTH

Grid: (WIDTH / TILE_WIDTH) x (WIDTH / TILE_WIDTH)

Another Example

- WIDTH = 8
- TILE_WIDTH = 2
- Block dimension = 4 x 4

Kernel Launch

```
const int WIDTH = 8;
const int TILE_WIDTH = 2;

// Setup the execution configuration
dim3 dimGrid (WIDTH/TILE_WIDTH, WIDTH/TILE_WIDTH, 1);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

// Launch the device computation threads
MatrixMulKernel <<<dimGrid, dimBlock>>> (dev_c, dev_a, dev_b, WIDTH);
```

- How to get the index values?
 - Threadidx
 - Blockidx

Simplified Thread Layout Again

Assumption: Square matrices

Global size: WIDTH x WIDTH

■ Tile → a block: TILE_WIDTH x TILE_WIDTH

Grid: (WIDTH / TILE_WIDTH) x (WIDTH / TILE_WIDTH)

Local Index

- For block (0,1)
 - blockIdx.y = 0
 - blockIdx.x = 1
- Local index
 - threadIdx.y = 1
 - threadIdx.x = 0

Global index

y = blockIdx.y * blockDim.y + threadIdx.y
0 * 2 + 1
$$\rightarrow$$
 1
x = blockIdx.x * blockDim.x + threadIdx.x
1 * 2 + 0 \rightarrow 2

Indices for Block 0,0

Global index
y = blockIdx.y * blockDim.y + threadIdx.y
0 * 2 + 1 → 1
x = blockIdx.x * blockDim.x + threadIdx.x
0 * 2 + 0 → 2

- In the block 0,0
 - -y=0*2 = threadIdx.y
 - -x = 0 * 2 + threadIdx.x

Assignment

- Tile approach-based Matrix multiplication
 - 16x16 Matrix multiplication
 - Use TILE_WIDTH (but, 1<TILE_WIDTH<16).
 - For simplicity, it would be better to select TILE_WIDTH among 2,4, and 8.
 - 1) Draw the structure of grid/block/thread reflecting TILE_WIDTH
 - 2) Write your CUDA code using WIDTH and TILE_WIDTH
 - 3) Print the results

Thank you

Any questions?

E-mail: yhgong@kw.ac.kr

Lab: https://sites.google.com/view/yhgong/

