Exercise sheet
$$2$$

Exercise 3

$$A = \begin{pmatrix} 2 & 12 & 17 \\ 0 & 2 & 5 \\ 0 & 2 & 5 \\ 0 & 2 & 5 \\ 0 & 2 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 12 & 17 \\ 0 & 2 & 3 \\ 0 & 2 & 2 \\ 0 &$$

general solution: $\begin{pmatrix} -y_3 \\ -y_3 \end{pmatrix}$ and the solution set : $\{y_3 \begin{pmatrix} -1 \\ -1 \end{pmatrix}\}$ Let $y_3 = 1$, $V_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

So, the two eigenvectors of A one (3) and (7)

Exercise 5.

(i)
$$A (A^{T}A)^{-1}A^{T}A$$

= $(a_{ij})((a_{ji})(a_{ij}))^{-1}(a_{ji})(a_{ij})$

= $(a_{ij})(a_{jj})^{-1}(a_{ji})(a_{ij})$

= $(a_{ij})(a_{ij})^{-1}(a_{jj})$

= $(a_{ij}) = A$

(ii)
$$(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T}$$

$$= ((a_{ji})(a_{ij}))^{-1}(a_{ij})((a_{ji})(a_{ij}))^{-1}$$

$$= (a_{jj})^{-1}(a_{ji})(a_{ij})((a_{ij})(a_{ij}))^{-1}$$

$$= (a_{ji})^{-1}(a_{ji})((a_{ij})(a_{ij}))^{-1}$$

$$= ((a_{ji})((a_{ij}))^{-1} = (A^{T}A)^{-1}A^{T}$$

citi)
$$(A(A^{T}A)^{T}A^{T})^{T}$$

$$= [(A^{T}A)^{-1}A^{T}]^{T}A^{T}$$

$$= (a_{jj})^{T}(a_{ji})^{T}(a_{ji})$$

$$= a_{ij} (a_{jj})^{T}(a_{ji})$$

$$= A(A^{T}A)^{T}A^{T}$$

$$= (a_{ji})(a_{ij})(a_{ij})^{-1}$$
$$= (A^{T}A)(A^{T}A)^{-1}$$

As B is invertible \Rightarrow BB⁻¹=I

Yaking transpose of both sides $(BB^{-1})^T = \overline{I}^T$ Since $\overline{I}^T = \overline{I}$,

we get $(B^T)(B^T)^T = \overline{I}$ $(B^T)^{-1}(B^T)(B^{-1})^T = (B^T)^{-1}I$ Since B^T is invertible \Rightarrow $(B^T)^{-1}(B^T) = \overline{I}$ So $(B^T)^T = (B^T)^{-1}$