Numerical Solution of Differential Equations

Part I

Introduction

Why Differential Equations?

- Differential equations are used to simulate dynamic systems such as robots, airplanes, hurricanes, internet traffic, social networks, etc.
- Numerical solvers for differential equations form the core of all simulators
- Simulation software:
 - Matlab/Simulink/StateFlow (commercial)
 - http://www.mathworks.com/videos/hardware-in-the-loop-hil-testing-68840.html (Hardware in the Loop)
 - Scicos/Scilab (open source)
 - http://www.scicos.org/

Differential Equations

- Often we understand how pieces of a system "CHANGE" but we don't really understand how the system "works"
- If we observe the "sum" of changes over time we can see how the system "works"
- Change = derivative
- Sum = integration

Example: Predator-Prey

- The population levels of a predator-prey ecosystem (e.g., elk-wolves) can be modeled as a pair of coupled first order differential equations:
- ChangeInWolfPopulation =

 WolfDecayRate * WolfPopulation +
 WolfGrowthRate * WolfPopulation*
 ElkPopulation change

Example: Predator-Prey

• Given:

- $-N_1 = ElkPopulation$
- $-N_2 = WolfPopulation$
- $-r_1 = ElkGrowthRate$ (in absence of Wolves)
- $-r_2$ = WolfDecayRate (in absence of Elk)
- b₁ = WolfPredationRate
- $-b_2 = WolfGrowthRate$

Then

- $-dN_1/dt = r_1N_1 b_1N_1N_2$
- $-dN_2/dt = -r_2N_2 + b_2N_2N_1$

The unknowns are the functions $N_1(t)$ and $N_2(t)$

Example: Predator-Prey

• Given:

$$-r_1$$
 = ElkGrowthRate = 2
 $-r_2$ = WolfDecayRate = 1
 $-b_1$ = WolfPredationRate = 1.2
 $-b_2$ = WolfGrowthRate = 0.9

$$-dN_1/dt = r_1N_1 - b_1N_1N_2$$
 change
$$-dN_2/dt = -r_2N_2 + b_2N_2N_1$$
 change

Initial Value:

$$-N_1(0) = ElkPopulation = 1.0$$

 $-N_2(0) = WolfPopulation = 0.5$

Example: Predator-Prey matlab

pred_prey_odes.m function pred_prey_odes = pred_prey_odes(t,x) $pred_prey_odes(1) = 2*x(1) - 1.2*x(1)*x(2);$ $pred_prey_odes(2) = -1*x(2) + 0.9*x(1)*x(2);$ pred prey odes = [pred prey odes(1) pred prey odes(2)]'; PredPreyScript.m tO = 0; tf = 20: init_vals = [1; 0.5]; [t,x] = ode45('pred_prey_odes',[t0,tf],init_vals); A = x(:,1);B = x(:,2);plot(t,A,'r*-',t,B,'bo:') xlabel('Time, t') ylabel('Population Sizes') title('Our Predator Prey Example, Solutions Over Time') legend('Prey','Predator') figure plot(A,B)xlabel('Prey, A(t)') ylabel('Predators, B(t)') title('Phase Plane for Predator Prey Example')

Example: Predator-Prey Ecosystem

State Space form of Differential Equations Key Result:

Any nth order differential equation

$$y^{(n)}(t) = f(t, y, y^{(1)}, y^{(2)}, \dots, y^{(n-1)}, u(t))$$

can be written as a *system of 1st order* differential equations

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t), \dots, x_n(t), \mathbf{u}(t))$$
 $\dot{x}_2(t) = f_2(x_1(t), x_2(t), \dots, x_n(t), \mathbf{u}(t))$
 $\dot{x}_3(t) = f_3(x_1(t), x_2(t), \dots, x_n(t), \mathbf{u}(t))$
 \vdots
 $\dot{x}_n(t) = f_n(x_1(t), x_2(t), \dots, x_n(t), \mathbf{u}(t))$

Important: The algorithms presented here can only be used if the system is expressed as a systems of 1st order differential equations

State Space form: Simple Case

• To write the *nth order differential* equation

$$y^{(n)}(t) = f(t, y, y^{(1)}, y^{(2)}, \dots, y^{(n-1)}, u(t))$$
 as a *system of 1st order differential equations* we can proceed as follows:

1. Define a new set of variables $x_i(t)$ called "state variables"

$$egin{aligned} & oldsymbol{x_1(t)} = y(t) \ & oldsymbol{x_2(t)} = y^{(1)}(t) \ & dots \ & oldsymbol{x_n(t)} = y^{(n-1)}(t) \end{aligned}$$

State Space form: Simple Case

2. Rewrite the nth order differential equation as a system of 1st order equations with respect to the new (state) variables:

$$egin{aligned} \dot{x}_1(t) &= x_2(t) \ \dot{x}_2(t) &= x_3(t) \ \dot{x}_3(t) &= x_4(t) \end{aligned}$$
 \vdots
 $\dot{x}_n(t) &= f(t, x_1(t), x_2(t), \dots, x_n(t), u(t))$

Vectors and Vector Functions

- About vector notation:
 - Bold types are used for vectors in these notes

Ex: Elk-Wolf-Hunter Ecosystem

$$\dot{x}_1(t) = b_1 x_1(t) - c_1 x_2(t) x_1(t) + k_1 u_1(t)$$

 $\dot{x}_2(t) = -b_2 x_2(t) + c_2 x_1(t) x_2(t) + k_2 u_2(t)$

- x_1 : population of preys
- x_2 : population of *predators*
- b_1 : growth rate of predators
- b_2 : growth rate of preys
- c_1 : decrease in preys due to predators
- c_2 : decrease in predators due to preys
- k_1, k_2 : hunters success constant

Model Parameters:

$$b_1 = 1.0, c_1 = 0.20, k_1 = 0.5$$

 $b_2 = 0.4, c_2 = 0.01, k_2 = 0.01$

Ex: Elk-Wolf-Hunter Ecosystem

$$\dot{x}_1(t) = b_1 x_1(t) - c_1 x_2(t) x_1(t) + k_1 u_1(t)$$

$$\dot{x}_2(t) = -b_2 x_2(t) + c_2 x_1(t) x_2(t) + k_2 u_2(t)$$

In this case the relevant vectors are

$$m{x}(t) = egin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, m{u}(t) = egin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}, m{f}(\cdot) = egin{bmatrix} f_1(\cdot) \\ f_2(\cdot) \end{bmatrix}$$

where the function vector is

$$f_1(\cdot) = b_1 x_1(t) - c_1 x_2(t) x_1(t) + k_1 u_1(t)$$

$$f_2(\cdot) = -b_2 x_2(t) + c_2 x_1(t) x_2(t) + k_2 u_2(t)$$

 To evaluate each vector (in C) you need a "for loop"

Summary: State-Space form

 Any nth order differential equation can be written as a system of n 1st order differential equations in "state-space form"

• In vector notation: $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$

• Explicitly: $\dot{x}_1(t)=f_1(m{x}(t),m{u}(t),t) \ \dot{x}_2(t)=f_2(m{x}(t),m{u}(t),t) \ dots \ \dot{x}_n(t)=f_n(m{x}(t),m{u}(t),t)$

Solving Differential Equations Numerically

The original problem

Find a function x(t) that satisfies the differential equation for $t \in [t_o, t_f)$

$$\dot{x}(t) = f(t, x(t), \mathbf{u(t)}), \quad x(t_o) = x_o$$

The numerical problem

Find a function x(t) that at a **finite number of points**, satisfies $t_N = t$

$$egin{array}{lll} \dot{x}(t_i) &=& f(t_i,x(t_i),u(t_i)), & x(t_o)=x_o, \ i &=& 0,1,\ldots,N \end{array}$$

Explicit vs. Implicit Methods

We could solve the DiffEq by direct integration

$$x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, x(\tau)) d\tau$$

 Or using forward rectangular integration we obtain a simple "explicit method"

$$oxed{x(t_{k+1})}pprox x(t_k) + h_k f(t_k, x(t_k))$$
 hk = tk+1 - tk

 Or using backward rectangular integration leads to an "implicit method"

$$x(t_{k+1}) \approx x(t_k) + h_k f(t_{k+1}, x(t_{k+1}))$$

Implicit: The Right-hand side depends on what we want to find

Summary

• Differential equations are solved by "numerical integration"

$$x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, x(\tau)) d\tau$$

- The choice of numerical integration leads to different "differential equations solvers" and determines
 - If the method is *explicit or implicit*
 - The accuracy of the algorithm
- In this course we will discus the most important explicit methods

Numerical Solution of Differential Equations

Part II

One Step Methods

One Step and Multistep Methods

 We will start studying one step algorithms (methods)

- In one step methods the computation of $x(t_{i+1})$ requires knowing $x(t_i)$, the previous value.
- Multistep methods use more neighboring values to update the solution

Recall: Explicit vs. Implicit Integration

- We could solve the differential equation
- Using forward rectangular integration we obtain a simple "explicit method"

$$oxed{x(t_{k+1})}pprox x(t_k) + h_k f(t_k, x(t_k))$$
 hk = tk+1 - tk

 Using backward rectangular integration leads to an "implicit method"

$$x(t_{k+1}) \approx x(t_k) + h_k f(t_{k+1}, x(t_{k+1}))$$

Implicit: The Right-hand side depends on what we want to find

Forward Euler Method (One Step)

- Consider a 1st order *ordinary differential*equation (ODE)

 Initial
 Conditions
 - $\dot{x}(t) = f(t, x(t)), \quad x(t_o) = x_o$
- Choose a fixed (constant) time step h, that is, set $t_k = k h$
- Suppose that we already have the solution at time t_k and want to find it a time t_{k+1} (update)
- Obtain the update equation (algorithm) by numerical integration over (t_k,t_{k+1}) using the forward rectangular rule

Euler's Method: Derivation

• By direct integration in the interval (t_k , t_{k+1})

$$x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, x(\tau)) d\tau$$

• Using forward rectangular integration and setting $h=t_{k+1}-t_k$

$$\int_{t_k}^{t_{k+1}} f(\tau, x(\tau)) d\tau \approx \frac{hf(t_k, x(t_k))}{hf(t_k, x(t_k))}$$

• The resulting (update) equation is:

$$x(t_{k+1}) \approx x(t_k) + hf(t_k, x(t_k))$$

(This is the simplest *one-step explicit* method)

Euler's Method: Update Equation

 The forward "update equation" for Euler's method can be written as:

$$x[k+1] = x[k] + h f(t[k], x[k]), k = 0, 1, ...$$

where:

$$h_k = t_{k+1} - t_k$$

$$x(t_k) = x[k] = x_k, \quad t_k = t[k] = t_k \quad (= kh)$$

So:
$$x_{k+1} = x_k + h f(t_k, x_k), k = 0, 1, \dots$$

Note:

For "good results" Euler's method requires a **very** "small" h. The "appropriate" value of h depends on the differential equation (keep in mind that if h is too small it will cause round-off problems)

Euler's Method in Pictures

• Two steps of Euler with h=0.1

- Dashed lines are "other trajectories" of the ODE passing through the approximate solutions obtained at each step.
- The broken line (blue) is the approximate solution found using Euler's method. Each (blue) segment is tangent to the trajectories at the beginning of each step

How Accurate is the Numerical Solution?

 When solving differential equations numerically there are three sources of error:

Rounding Error:

- Due to floating point representation. May be large if the steps h are too small.
- Local Error: (easy to estimate, see next)
 - Introduced by assuming that $x(t_k) = x[k]$ is the true solution (recall figure).

Global Error:

 Represents how far we have strayed from the true solution (assuming no rounding error.)

Euler's Method: Local Error Analysis

From (Taylor series expansion)

$$x(t_{k+1}) = x(t_k) + h \underbrace{f(t_k, x(t_k))}_{x^{(1)}(t_k)} + \frac{h^2}{2!} x^{(2)}(\xi)$$

the *local error* is

$$f(t_k,x(t_k)) - rac{x(t_{k+1}) - x(t_k)}{h} = -rac{h}{2}x^{(2)}(\xi)$$

Therefore the *local error* is O(h)
 We say that *Euler's methods is order 1*

Note: If the error is $O(h^q)$ the method is of order q

Euler's Method: Summary

- Euler's method belongs to the class of one-step methods (it uses only the current estimate $x(t_k)$ to compute the next estimate $x(t_{k+1})$).
- It is not practical since it requires a very small (integration) step h, (because the local error is O(h))
- Euler's method is important for its simplicity and its use in the derivation of more accurate algorithms.

Improving Accuracy

- How can we improve the accuracy of the numerical solution of differential equations?
- There are two main approaches:
 - 1. Reduce the step size, h
 - 2. Increase the order of the algorithm (e.g., using better integration algorithms, etc.)
- We will explore the algorithm order.

Heun's Method

 A 2nd order algorithm called Heun's method can be obtained using trapezoidal integration

• Then it is converted to an explicit method by estimating $x(t_{k+1})$ using Euler's algorithm

$$x(t_{k+1}) \approx x(t_k) + h f(t_k, x(t_k))$$

Heun's Method

The result is

$$x(t_{k+1}) = x(t_k) + rac{h}{2} \{f(t_k, x(t_k)) + f(t_{k+1}, x(t_k) + hf(t_k, x(t_k)))\}$$

- Note that the correction (2nd term) is the average between
 - -The prediction based on the slope at t_k $hf(t_k, x(t_k))$
 - -The $m{prediction}$ based on the $m{slope}$ $m{at}$ $m{t_{k+1}}$ $m{hf}(t_{k+1}, x(t_k) + m{hf}(t_k, x(t_k)))\}$

(see next slide for an illustration)

Heun's Method in Pictures

Heun's Method

$$x(t_{k+1}) = x(t_k) + \frac{h}{2} \{ f(t_k, x(t_k)) + f(t_{k+1}, x(t_k) + h f(t_k, x(t_k))) \}$$

• A alternative way to organize this algorithm is in $\underline{two\ stages}$, k_1 and k_2

$$egin{align} m{k_1} &= f(t_k, x(t_k)), \ m{k_2} &= f(t_k + h, x(t_k) + h m{k_1}), \ x(t_{k+1}) &= x(t_k) + h \left(rac{1}{2} m{k_1} + rac{1}{2} m{k_2}
ight) \end{aligned}$$

The values k_1 and k_2 are the slopes of the solution at times t_k and t_{k+1} respectively

Summary: One Step Methods

- The simplest explicit "one step" methods are:
- Euler's method (local error $\mathcal{O}(h)$) First order

$$x(t_{k+1}) = x(t_k) + h f(t_k, x(t_k))$$

• Heun's method (local error $\mathcal{O}(h^2)$) Second order

$$egin{align} m{k_1} &= f(t_k, x(t_k)), \ m{k_2} &= f(t_k + h, x(t_k) + h m{k_1}), \ x(t_{k+1}) &= x(t_k) + h \left(rac{1}{2} m{k_1} + rac{1}{2} m{k_2}
ight) \end{aligned}$$

Reference: One Step Methods

The general form of a "one step" algorithm is

$$\frac{1}{h_i}(x(t_{i+1}) - x(t_i)) = \phi(f, t_i, x(t_i), x(t_{i+1}), h_i)$$

- In one step methods the computation of $x(t_{i+1})$ requires knowing $x(t_i)$, the previous value.
 - If it depends on more past values the method is called multistep.

Notes:

- If ϕ depends on $x(t_{i+1})$ then the method is *implicit*, otherwise it is *explicit*
- Implicit methods are computationally more expensive and harder to implement

Numerical Solution of Differential Equations

Part III

Runge-Kutta Methods

Runge-Kutta Methods

- There are two main approaches to improve the accuracy differential equations solvers
 - 1. Reduce the step size, h
 - 2. Increase the order of the algorithm (e.g., using better integration algorithms, etc.)
- Here we will explore a family of higher order algorithms known collectively as Runge-Kutta (RK)

Explicit Runge-Kutta Methods

- Runge-Kutta (RK) methods use combinations of "Euler-like" stages to reduce the local error without using higher order derivatives.
- The general form of explicit RK algorithms is:

$$x_{k+1} = x_k + h \varphi(t_k, x_k, h)$$

where $\varphi(\cdot)$ is called the *increment function*

 The increment function for an s-stage RK method is of the form

$$\varphi(\cdot) = b_1 k_1(\cdot) + b_2 k_2(\cdot) + \dots + b_s k_s(\cdot)$$

Note that $\varphi(\cdot)$ is just a weighted sum of the stage values

Euler's Method is RK1

 Euler's method can be considered a onestage RK method. It can be written as

$$\begin{aligned} \mathbf{k_1} &= f(t_k, x_k), \\ x_{k+1} &= x_k + h_{k_1} \end{aligned}$$

- Euler's method coincides with the Runge-Kutta 1 algorithm (there is only one RK1)
- Its *local error* is $\mathcal{O}(h)$

Heun's Method is an RK2

• Heun's method can be regarded as a *two-stage RK* method (k_1 and k_2 are the stages)

$$egin{aligned} m{k_1} &= f(t_k, x_k), \ m{k_2} &= f(t_k + h, x_k + h m{k_1}), \ x_{k+1} &= x_k + h \left(rac{1}{2} m{k_1} + rac{1}{2} m{k_2}
ight) \end{aligned}$$

- It is an RK2 method (there are other possible RK2 methods,... more later)
- The *local error* is $\mathcal{O}(h^2)$

RK – General form

$$egin{aligned} m{k_1} &= f(t_k, x_k), \ m{k_1} &= f(t_k, x_k), \ m{k_2} &= f(t_k + h, x_k + h m{k_1}), \ x_{k+1} &= x_k + h m{k_1} \ m{K1} \end{aligned}$$
 RK1

$$x_{k+1} = x_k + h \sum_{i=1}^s b_i k_i$$

RK-s

Where: **b**_i & **c**_s

- some weighting factor

$$x_{k+1} = x_k + h \sum_{i=1}^s m{b_i} \, m{k_i}$$
 $m{k_1} = f(t_k, x_k)$ $m{k_2} = f(t_k + m{c_2}h, x_k + h \, m{a_{21}} m{k_1})$ \vdots \vdots Where: $m{b_i} \ \& \ m{c_s}$ - some weighting factor $m{k_s} = f(t_k + m{c_3}h, x_k + h \, \sum_{i=1}^{s-1} m{a_{s,j}} m{k_j})$

General Explicit RK algorithms

- It is possible to construct RK algorithms of any desired order
- For orders greater than one the construction is *non-unique* so there are many possible RK2 ($\mathcal{O}(h^2)$), RK3 ($\mathcal{O}(h^3)$), RK4 ($\mathcal{O}(h^4)$), etc.
- An RKn method requires n-stages
- The efficiency of RK algorithms depends on the number of functional evaluations required at each step.

Explicit s-stage RK algorithms

$$x_{k+1} = x_k + h \sum_{i=1}^s \frac{b_i}{k_i}$$

$$k_1 = f(t_k, x_k)$$
 $k_2 = f(t_k + c_2 h, x_k + h a_{21} k_1)$
 \vdots

$$egin{aligned} oldsymbol{k_s} &= f(t_k + oldsymbol{c_3}h, x_k + h\sum_{j=1}^{s-1} oldsymbol{a_{s,j}k_j}) \end{aligned}$$

$$c_i = \sum_{j=1}^s a_{i,j}, \ i = 1, \dots, s$$

The values of *c* are determined by the rows of *A*

Explicit s-stage RK Algorithms

 All RK algorithms can be represented in a "tableau" (i.e., a table)

 $egin{array}{c|c} oldsymbol{c} & A & \\ oldsymbol{b}^T & oldsymbol{b}^T & \end{array}$

For explicit RK methods A is strictly lower triangular

Note: Origin 1

Common RK2 Algorithms

• The tables below show several explicit 2^{nd} order RK methods (note that $c_1=0$)

0		
$\frac{1}{2}$	$\frac{1}{2}$	
	0	1

0		
1	1	
	$\frac{1}{2}$	$\frac{1}{2}$

0		
$\frac{2}{3}$	$\frac{2}{3}$	
	$\frac{1}{4}$	$\frac{3}{4}$

Note: "c" is the sum of the rows of "A", "b" has to sum to 1 Tables are **origin 1** not 0. The Index of the "A" matrix starts at the value shown, not in the blank space.

2-stage RK - Heun's algorithm

$$s = 2$$

Given:
$$\frac{c}{b^T} = \frac{0}{1}$$

$$k_1 = f(t_k, x_k)$$

$$egin{aligned} oldsymbol{k_s} &= f(t_k + oldsymbol{c_s}h, x_k + h\sum_{j=1}^{s-1} oldsymbol{a_{s,j}k_j}) \end{aligned}$$

$$a_{1,1} = 1$$
, $c_2 = 1$
 $b_1 = \frac{1}{2}$; $b_2 = \frac{1}{2}$

$$k_2 = f(t_k + c_2 h, x_k + h(a_{1,1}k_1))$$

 $k_2 = f(t_k + 1h, x_k + h(1*k_1))$
 $k_2 = f(t_k + h, x_k + hk_1)$

$$x_{k+1} = x_k + h \sum_{i=1}^s \frac{b_i}{k_i}$$

$$X_{k+1} = X_k + h(\frac{1}{2}k_1 + \frac{1}{2}k_2)$$

Other 2-stage RK algorithms

$$s = 2$$

Given:
$$\frac{c}{b^T} = \begin{bmatrix} 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$k_1 = f(t_k, x_k)$$

$$oldsymbol{k_s} = f(t_k + oldsymbol{c_s}h, x_k + h\sum_{j=1}^{s-1} oldsymbol{a_{s,j}k_j})$$

$$a_{1,1} = 1/2, c_2 = \frac{1}{2}$$

 $b_1 = 0; b_2 = 1$

$$k_2 = f(t_k + c_2 h, x_k + h(a_{1,1}k_1))$$

 $k_2 = f(t_k + \frac{1}{2}h, x_k + h(\frac{1}{2}*k_1))$
 $k_2 = f(t_k + \frac{1}{2}h, x_k + h\frac{1}{2}k_1)$

$$x_{k+1} = x_k + h \sum_{i=1}^s \frac{b_i}{k_i}$$

$$x_{k+1} = x_k + h(0k_1 + 1k_2) = x_k + hk_2$$

Common RK3 Algorithms

• The tableaux for some explicit 3^{rd} order RK methods are (note that $c_1 = 0$)

0			
$\frac{2}{3}$	$\frac{2}{3}$		
2 3 2 3	0	$\frac{2}{3}$	
	$\frac{1}{4}$	$\frac{\frac{2}{3}}{\frac{3}{8}}$	3 8

0			
$\frac{1}{2}$	$rac{1}{2}$		
1	-1	2	
	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

0			
$\frac{1}{3}$	$\frac{1}{3}$		
1	-1	2	
	0	$\frac{3}{4}$	$\frac{1}{4}$

0			
1	1		
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

0			
$\frac{2}{3}$	$\frac{2}{3}$		
2 3 2 3	$\begin{array}{c} \frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{4} \end{array}$	$\frac{1}{3}$	
	$\frac{1}{4}$	0	$\frac{3}{4}$

0			
$\frac{2}{3}$	$\frac{2}{3}$		
0	-1	1	
	0	$\frac{3}{4}$	$\frac{1}{4}$

Classic RK3

$$s = 3$$

Given:
$$\frac{c}{b^T} = \begin{bmatrix} 0 \\ \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & 0 & \frac{2}{3} \\ \frac{1}{4} & \frac{3}{9} & \frac{3}{9} \end{bmatrix}$$

$$k_1 = f(t_k, x_k)$$

$$k_s = f(t_k + c_s h, x_k + h \sum_{j=1}^{s-1} a_{s,j} k_j)$$
 From table:
 $a_{1,1} = 2/3, a_{2,2} = 2/3 c_2 = c_3 = 2/3$

$$a_{1,1}=2/3$$
, $a_{2,2}=2/3$ $c_2=c_3=2/3$
 $b_1= \frac{1}{4}$; $b_2=b_3=3/8$;

$$k_2 = f(t_k + c_2 h, x_k + h(a_{1,1}k_1)) = f(t_k + 2/3h, x_k + h(2/3*k_1))$$

$$k_3 = f(t_k + c_3 h, x_k + h(a_{2,2}k_2)) = f(t_k + 2/3h, x_k + h(2/3*k_2))$$

$$x_{k+1} = x_k + h \sum_{i=1}^s b_i k_i$$

$$x_{k+1} = x_k + h(1/4k_1 + 3/8k_2 + 3/8k_3)$$

Classical RK Algorithms

 The most common "Classical RK algorithms" of order 2, 3 and 4.

Note: The *tableaux* of these algorithms all have *diagonal A*. This can be exploited for an *efficient implementation*

Classic RK4

$$s = 4$$

c RK4

$$\frac{1}{2}$$
 $\frac{1}{2}$
 $\frac{1}{2}$

 Given:
 c
 A
 b^T
 $\frac{1}{2}$
 0
 $\frac{1}{2}$
 1
 0
 0
 1
 $\frac{1}{6}$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{6}$

$$k_1 = f(t_k, x_k)$$

$$k_s = f(t_k + c_5 h, x_k + h \sum_{j=1}^{s-1} a_{s,j} k_j)$$
 $a_{1,1} = a_{2,2} = 1/2, a_{3,3} = 1,$ $b_1 = b_4 = 1/6; b_2 = b_3 = 1/3$

$$a_{1,1}= a_{2,2}=1/2, a_{3,3}=1,$$

 $b_1 = b_4 = 1/6; b_2 = b_3 = 1/3$
 $c_2 = c_3 = 1/2, c_4 = 1,$

$$k_2 = f(t_k + c_2h, x_k + h(a_{1,1}k_1)) = f(t_k + 1/2h, x_k + h(1/2*k_1))$$

 $k_3 = f(t_k + c_3h, x_k + h(a_{2,2}k_2)) = f(t_k + 1/2h, x_k + h(1/2*k_2))$
 $k_4 = f(t_k + c_4h, x_k + h(a_{3,3}k_3)) = f(t_k + 1h, x_k + h(1*k_3))$

$$x_{k+1} = x_k + h \sum_{i=1}^s b_i k_i$$

$$x_{k+1} = x_k + h(1/6k_1 + 1/3k_2 + 1/3k_3 + 1/6k_4)$$

A Fourth Order RK4 Algorithm

• The Classical 4^{th} order RK method (RK4) with local error $O(h^4)$ is

$$k_1 = f(t_k, x_k),$$
 $k_2 = f(t_k + \frac{1}{2}h, x_k + \frac{1}{2}h k_1),$
 $k_3 = f(t_k + \frac{1}{2}h, x_k + \frac{1}{2}h k_2),$
 $k_4 = f(t_k + h, x_k + h k_3),$
 $x_{k+1} = x_k + h \left(\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4\right)$

This method is one of the most widely used ODE solvers!

Runge-Kutta (RK) Algorithms

Advantages

- Simplicity in concept and implementation
- Flexibility in changing the step size
- Flexibility in handling discontinuities (e.g. simulation of collisions, etc.)

Disadvantages

 Number of function evaluations for high order methods is high compared to multistep methods of the same order

max. order achievable		3	4	5	6	7
func. evals per time step	2	3	4	6	7	9

Summary: Runge-Kutta Algorithms

- The classical RK4 algorithm is the most widely used one-step method for solving ODEs numerically.
- For general use RK methods are a very good choice

Warning!

Convergence of these algorithms **depends on the differential equations** being solved, not just on the size of the increment *h*

ODEs with "Inputs"

All the algorithms presented can be used without modification with nth order differential equations in state-variable form with state vector x(t) and input vector u(t)

Example: Heun's method (RK2)

$$egin{align} oldsymbol{k}_1 &= oldsymbol{f}(oldsymbol{t_k}, oldsymbol{x}_k, oldsymbol{u}(oldsymbol{t_k}), \ oldsymbol{k}_2 &= oldsymbol{f}(oldsymbol{t_k} + oldsymbol{h}, oldsymbol{x}_k + holdsymbol{k}_1, oldsymbol{u}(oldsymbol{t_k} + oldsymbol{h})), \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + hrac{1}{2}\left(oldsymbol{k}_1 + oldsymbol{k}_2
ight) \end{aligned}$$

Note that f and u are evaluated at the same time instant

 $\boldsymbol{k_1}, \boldsymbol{k_2}, \boldsymbol{x}$ and \boldsymbol{u} are vectors; $\boldsymbol{f}(\cdot)$ is a vector valued function

Practical C Implementations

 Simulation is defined using vector notation.

$$\dot{m{x}}(t) = m{f}(m{x}(t), m{u}(t), t)$$

- C does not natively support vectors BUT does support arrays.
 - Implement the vector operation as a "for" loop across the array elements.

Simulator Design

- Simulators require functions (differential equations) to simulate
 - Want a general purpose implementation
- Use function pointers
 - Handy way to change evaluation functions in a general way.

Reminder - Function Pointers

 Functions are just addresses in memory and can also be accessed via pointers.

Notice you can pass values and return values

Homework Function Pointers

- Create a new datatype "*funArgs" that is of type function pointer
 - It will take the 5 parameters (as shown)
 - It will return NOTHING
 - Type void

Using Function Pointers

```
void eu(simParm *sim, double t0,
  double *x0, double *u, funArgs f);
```

- Use the Euler simulator with the differential equation identified by function pointer £
 - Type "funArgs" has been previously defined to take 5 arguments and returns nothing

Function pointer Example

- eu(sim, 0, x0, u, InvPend);
 - InvPend is the name of a 5 variable differential function.
- eu(sim, 0, x0, u, OtherProb);
 - OtherProb is the name of some OTHER 5 variable differential.

Using a Function Pointer

void eu(simParm *sim, double t0,
double *x0, double *u, funArgs f)

- The Euler simulation program that is called with a pointer to the differential equation "f" to simulate.

```
f(sim, t0, x0, u, xp);
```

- Call SOME function pointed to by "f".
- It could be InvPend OR OtherProb
 - Or any other 5 parameter function

Summary: Solution of ODEs

- To solve (simulate) high order ODEs it is necessary to first write the equations in state-space form (system of 1st order ODEs)
- The most common explicit one-step methods used for simulation (solving ODEs) are:
 - 1) (Forward) *Euler*, *O*(*h*),
 - 2) Heun's (RK2), $O(h^2)$
 - 3) Classical RK4, $O(h^4)$
- These methods may occasionally fail even when the step size is small (this may occur when the ODE is stiff)

Summary: Solution of ODEs

1) Forward *Euler*

$$k_1 = f(t_k, x_k)$$
$$x_{k+1} = x_k + hk_1$$

2) *Heun's* (*RK*2)

$$k_1 = f(t_k, x_k)$$
 $k_2 = f(t_k + h, x_k + hk_1)$
 $x_{k+1} = x_k + h(\frac{1}{2}k_1 + \frac{1}{2}k_2)$

Summary: Solution of ODEs

3) Classical RK3

$$k_1 = f(t_k, x_k)$$

$$k_2 = f(t_k + \frac{2}{3}h, x_k + \frac{2}{3}hk_1)$$

$$k_3 = f(t_k + \frac{2}{3}h, x_k + \frac{2}{3}hk_2)$$

$$x_{k+1} = x_k + h(\frac{1}{4}k_1 + \frac{3}{8}k_2 + \frac{3}{8}k_3)$$

4) Classical RK4

$$k_{1} = f(t_{k}, x_{k})$$

$$k_{2} = f(t_{k} + \frac{1}{2}h, x_{k} + \frac{1}{2}hk_{1})$$

$$k_{3} = f(t_{k} + \frac{1}{2}h, x_{k} + \frac{1}{2}hk_{2})$$

$$k_{4} = f(t_{k} + h, x_{k} + hk_{3})$$

$$x_{k+1} = x_{k} + h(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4})$$

Simulate: van der Pol Oscillator

 A oscillator with nonlinear damping governed by the second-order differential equation:

$$y''(t) + \epsilon(y^{2}(t) - 1)y'(t) + y(t) = 0$$

 ε = strength of the damping

Work: Van der Pol Oscillator

Given:

$$y''(t) + \varepsilon(y(t)^2 - 1)y'(t) + y(t) = 0$$
 Rewrite – solving for y''

$$y''(t) = \varepsilon(1 - y(t)^2)y'(t) - y(t)$$

Define state variables:

$$x_1(t) = y(t)$$

$$x_2(t) = y'(t)$$

Work: Van der Pol Oscillator

$$y''(t) = \varepsilon(1 - y(t)^2)y'(t) - y(t)$$

given: $x_1(t) = y(t) & x_2(t) = y'(t)$

Rewrite using state variables:

$$y''(t) = \varepsilon(1 - x_1(t)^2)x_2(t) - x_1(t)$$

State space form:

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = \epsilon (1 - x_1(t)^2) x_2(t) - x_1(t)$$

van der Pol Oscillator matlab

- vanderpol.m
 - function dydt = vanderpol(t,y,Mu)
 - % Copyright 1984-2014 The MathWorks, Inc.
 - % the update equation VECTOR

- dydt =
$$[y(2); Ep*(1-y(1)^2)*y(2)-y(1)];$$

Note: Matlab DOES vectors so dydt has two parts

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = \epsilon(1 - x_1(t)^2)x_2(t) - x_1(t)$$

van der Pol Oscillator matlab

Simulation using the built in ODE45 solver

demo1.m

Result: van der Pol Oscillator

• Demo 1 Ep=1

van der Pol Oscillator matlab

Simulation using the built in ODE15 solver

```
demo2.m
   - tspan = [0, 3000];
   -y0 = [2; 0];
   - Ep = 1000;
   - ode = @(t,y) vanderpol(t,y,Ep);
   - [t,y] = ode15s(ode, tspan, y0);
   - plot(t,y(:,1))
   - title('van der Pol Equation, \Ep = 1000')
   - axis([0 3000 -3 3])
   xlabel('t')
   - ylabel('solution y')
```

Result: van der Pol Oscillator

Demo 2 Ep=1000

