ECE 447 Fall 2025

Lesson 28
Digital Carrier
Modulation and
Demodulation
(Bandpass Signals)

SCHEDULE AND ADMIN

- Schedule.
- Admin
 - HW4. Graded. Submit any regrade requests via Gradescope.
 - Lab 4. Graded. Submit any regrade requests via Gradescope.
 - HW5. Grading...
 - Lab 5. PDF due 6 Nov to Gradescope.

REVIEW

• The baseband polar signaling BW in this figure is for RZ. If changed to NRZ (full-width pulse), the bandwidth reduces to R_h . (Important for HW 6 6.8-1)

BINARY CARRIER MODULATIONS

- ASK self-explanatory
- Angle modulations: PSK and FSK
- PSK
 - If m(t) uses polar signaling $\{\pm 1\}$, phase shifts for BPSK signal, $\varphi_{PSK}(t)$, is π radians apart
 - $\varphi_{PSK}(t) = m(t)\cos(\omega_c t)$
 - Constellation plot?
- FSK:
 - Sum of two alternating ASK signals with different carrier frequencies, ω_{c0} and ω_{c1}
 - $a_k = \{0, 1\}$
 - $\varphi_{FSK}(t) = \sum a_k p(t kT_b)\cos(\omega_{c1}t) + \sum (1 a_k)p(t kT_b)\cos(\omega_{c0}t)$
- FT modulation property derives PSDs of digital bandpass signals:

$$S_{\varphi}(f) = \frac{1}{4}S_M(f+f_c) + \frac{1}{4}S_M(f-f_c)$$

ECE 447(Fall 2025)

BINARY CARRIER MODULATIONS

M-ARY CARRIER MODULATIONS

Review

• Focus on QAM - most widely used in modern systems

