

Figure 1: (a) Geometry of a Tokamak. (b), (c), (d), typical profiles for the toroidal plasma current $j_{\phi}(r)$, the field line winding number, or 'safety factor', q(r) and the pressure p(r). (e) The magnetic coordinates r, θ, ϕ . (f) Geometry of the internal kink instability in a torus.

Figure 2: Typical electron temperatures $T_e(r)$, before and after the collapse phase of the Sawtooth instability. The mixing radius r_m defines the radial limit of the sudden change in $T_e(r)$, while the inversion radius r_l is defined as the point at which $\delta T = (T_{final} - T_{initial}) \simeq 0$.

Figure 3: Typical electron temperatures $T_e(r)$ before and after the collapse phase of the Sawtooth instability. The mixing radius r_m defines the radial limit of the sudden change in $T_e(r)$, while the inversion radius r_l is defined as the point at which $\delta T = T_{final} - T_{initial} \approx 0$.

Figure 4: Approximate structure of magnetic surfaces during the reconnection process, showing growth of the, crescent-shaped, magnetic island, shrinking of the hot core plasma, until the island takes its place and a new cylindrically symmetric equilibrium is established (from Reference 6).

Figure 5: Longer Sawtooth periods after auxiliary heating is switched on suggest that the kink mode is not driven unstable by plasma pressure. Also note the dramatic collapse (50%) of the central electron temperature T_e in this JET discharge with auxiliary heating (ICRH).

Figure 6: Fast Sawtooth collapse events without a precursor oscillation. The kink displacement of the plasma core is still a feature (Figure 6b), but occurs on the same 100µsec timescale as the thermal collapse. Figure 6b shows the electron temperature as a function of major radius R, and time t.

Figure 7: Magnetic surface shapes in the non-linear phase of the m = n = 1, Ideal MHD kink instability, when $q \sim 1$ in the plasma core. There is no reconnection. The hot core plasma distorts to a crescent shape and is pushed aside; a bubble of cooler plasma is drawn into the concave side of the crescent, in a 'quasi-interchange' motion.

Figure 8: Contours of constant SXR emission during a Sawtooth collapse in the JET Tokamak, displaying the 'hot-crescent, cold-bubble' or 'quasi-interchange' structure.

Figure 9: Behaviour of q(0), during a Sawtooth on TEXTOR. The axial value of q never rises above 0.8. Box-car averaging techniques were used to sum the signals from many similar Sawteeth, and enable the $\sim 5\%$ sudden changes in q_0 to be monitored.

Figure 10: Evaluation of q(0) in a JET ohmic discharge. q(0) continues to decrease after Sawtoothing commences at t=45. Averaging smoothes out the small modulations which occur at each Sawtooth event, which are consequently not visible (from Reference 28).

Figure 11: q(r) profiles just before, and just after, a Sawtooth collapse on the TFTR Tokamak, measured using the Motional Stark Effect (from Reference 32).

Figure 12: (a) q_0 measurements using MSE during Sawtoothing on the TFTR Tokamak. (b) q_0 evolution during a Sawtooth period, obtained by averaging 9 consecutive Sawtooth events (from Reference 32).

Figure 13: Stabilising effect of energetic ions demonstrated by switch-off of ICRH. This triggered a Sawtooth collapse in 60 - 80 msec, a delay comparable to the slowing down time of the trapped energetic ions generated by the ICRH.

Figure 14: Magnetic shear, $s_1 = r_1 \frac{dq}{dr}(r_1)$ at the q = 1 surface as inferred from light emitted as a pellet passes through q = 1. Note the lack of correlation between values of $q'(r_1)$ and the time elapsed Ance the last Sawtooth collapse (from Reference 51).

Figure 15: (*a,b*) Regular bursts of fishbone activity on PDX as seen on soft X-ray emission and magnetic fluctuations. (*c*) Characteristic signature of the magnetic fluctuation signal for the Fishbone instability on the PDX Tokamak (from Reference 60).