Part 1: I used same method I utilized in theory question 3. Made matrix A exactly same as Q3, and used svd to obtain last column of V corresponding to smallest singular value of A. And then return that value whose size is 1 as 3*3 matrix.

In compute_h_norm, I normalized coordinates by dividing each of them with 1600 or 1200(x&y coordinate's maximum value). In case of x coordinates, divided with 1600. In case of y coordinates, divided with 1200. And obtained matrix H using the result. After that, I had to perform some multiplication like below to use matrix H in de-normalized scale coordinates. I multiplied 1600/1200 to h_01, 1600 to h_02, and did similar things to h_10 and h_12 & h_20 and h_21.

(PNx9)	n i
T 1600 hos has hos 1 1600	
9: - hio hii hiz	P_in
1200 \ \[\begin{array}{c c c c c c c c c c c c c c c c c c c	1
	- 11
Zi hoo x 1600 + hou x 1200 + hoz	+ (Xa)
1600 h20x 75' + h21x 92' + h22	
(12,112)	- FM
2' = 1600 hol x y = 1600 hoz	
1/100 h20x72it - 1/200 h2x y2it h22 x y2it h22	
1600 1200 12	

Part 2 : set_cor_mosaic() – I used corners of pillar, chair, sign, and other structures to make p_in and p_ref.

warp_image(igs_in, igs_ref, H) – I used two kinds of matrixes here. Ip and wp. Each column of them has x coordinate value in first row, y coordinate value in second row, and 1 in third row(homogeneous coordinates). wp is a matrix of homogeneous coordinates in viewpoint of igs_ref. Columns of wp have values of 0 0 1 / 1 0 1 / ... / 1599 0 1 / 0 1 1 / ..., which are every possible (x,y) combination in 1600*1200 size image. Ip is a matrix of homogeneous coordinates in viewpoint of igs_in. I obtained each ip columns corresponding to each wp columns by matrix multiplying inverse of H to each wp columns, and used that corresponding ip column as a source of pixel extraction. By applying binary interpolation method, I found appropriate pixel value for each igs_ref viewpoint. For igs_warp, I only obtained part of igs_in that can be seen in viewpoint of porto2(i.e. x value 0~1600, y value 0~1200 in viewpoint of igs_ref). For igs_merge, I obtained entire igs_in by introducing negative coordinate values in viewpoint of igs_ref(see x-1600 & y-500 in line 88 & 89).

Part 3 : set_cor_rec() – designated four vertices of iphone and set them in c_ref. And, made c_in by imagining appropriate rectangular that can be seen when I see iphone at the front.

Rectify(igs, p1, p2): obtained matrix H to transform $p2(c_ref)$ -corresponding coordinate system into $p1(c_in)$ -corresponding coordinate system. And performed same operations I used in part 2 to obtain igs_warp.