

IECA

Embedded Computer Architecture

Lesson 19: A/D Converting

Version: 16-11-2015, Henning Hargaard

Why ADC?

Figure 13-1. Microcontroller Connection to Sensor via ADC

ADC in general

Test ("socrative.com": Room = MSYS)

An A/D converter reference voltage is 5 volts, and the result is represented by 12 bits.

What's the resolution for the A/D converter?

- A: 1,22 mV
- B: 12 mV
- C: 4,88 mV
- D: 5,12 mV

Offset error

Gain error

Integral non-linearity

Mega32 ADC : Features

- 10-bit Resolution
- 0.5 LSB Integral Non-linearity
- ±2 LSB Absolute Accuracy
- 65 260 µs Conversion Time
- Up to 15 kSPS at Maximum Resolution
- 8 Multiplexed Single Ended Input Channels
- 7 Differential Input Channels
- 2 Differential Input Channels with Optional Gain of 10x and 200x⁽¹⁾
- Optional Left adjustment for ADC Result Readout
- 0 V_{CC} ADC Input Voltage Range
- Selectable 2.56V ADC Reference Voltage
- Free Running or Single Conversion Mode
- ADC Start Conversion by Auto Triggering on Interrupt Sources
- Interrupt on ADC Conversion Complete

Mega32 ADC

Mega32 ADC = "Successiv Approximation ADC"

Successive approximation ADC

Block diagram, Mega32 ADC

ADC prescaler / clock

ADC start ("trigger")

ADC timing

Test ("socrative.com": Room = MSYS)

CPU clock frequency = 3,6864 MHz
 ADC prescaler = 64
 Assume 13 ADC clock periods per conversion.

What is the time for one ADC konversion?

A:

3,5 mikrosekunder

B:

226 mikrosekunder

C:

17,4 mikrosekunder

Converting times

	Condition	Sample & Hold (Cycles from Start of Conversion)	Conversion Time (Cycles)
	First conversion	14.5	25
	Normal conversions, single ended	1.5	13
	Auto Triggered conversions	2	13.5
	Normal conversions, differential	1.5/2.5	13/14

Example:

f_{ADC} = 200 kHz => 13 cycles = 65 uS =>

15380 conversions / second

ADC pins

```
(XCK/T0) PB0 ☐
                                 PA0 (ADC0)
                           40
      (T1) PB1 ☐
                           39
                                 PA1 (ADC1)
(INT2/AIN0) PB2
                           38
                                 PA2 (ADC2)
(OC0/AIN1) PB3 🗖
                           37
                                 PA3 (ADC3)
     (SS) PB4 ☐ 5
                           36
                                 PA4 (ADC4)
   (MOSI) PB5 ☐ 6
                           35
                                 PA5 (ADC5)
   (MISO) PB6 2 7
                           34
                                 PA6 (ADC6)
                           33
    (SCK) PB7 □
                                PAZ (ADC7)
                                AREF
       RESET 🗆
                           32
                 9
         VCC □
                           31
                                 GND
                 10
         GND □
                                 AVCC
                 11
                           30
        XTAL2
                           29
                                 PC7 (TOSC2)
                12
        XTAL1 |
                                PC6 (TOSC1)
                 13
                           28
    (RXD) PD0 🗖
                                PC5 (TDI)
                14
                           27
    (TXD) PD1 🗖
                15
                          26
                                PC4 (TDO)
    (INTO) PD2 🗖
                                 PC3 (TMS)
                           25
                 16
    (INT1) PD3 🗖
                 17
                          24
                                 PC2 (TCK)
   (OC1B) PD4 ☐
                          23
                                 PC1 (SDA)
                18
   (OC1A) PD5 4 19
                                 PC0 (SCL)
                          22
    (ICP1) PD6 🗖
                                PD7 (OC2)
                 20
                           21
```

Selecting reference

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

REFS1	REFS0	Voltage Reference Selection	
0	0	AREF, Internal Vref turned off	AREF = External pin
0	1	AVCC with external capacitor at AREF	AVCC = 5 volt internal
1	0	Reserved	
1	1	Internal 2.56V Voltage Reference with	Internal 2.56 volt

Test ("socrative.com": Room = MSYS)

 We are using the ADC for measuring a constant DC voltage.

The ADC output is 400, when the voltage is 2 volt. What will be the ADC output, if the voltage is changed to 1 volt?

A: 800

B: 400

C: 200

• D:

Test ("socrative.com": Room = MSYS)

 We are using the ADC for measuring a constant DC voltage.

The ADC output is 400, when the reference voltage is 4 volt.

What will be the ADC output, if the reference voltage is changed to 2 volt?

```
A:
200
B:
```

300

C: 400

• D: 800

Selecting ADC input (1)

MUX40	Single Ended Input	Positive Differential Input		Negative Differential Input	Gain		
00000	ADC0						
00001	ADC1						
00010	ADC2						
00011	ADC3	N/A	_	ended" = <u>One</u>			
00100	ADC4			referenced to			
00101	ADC5		ground.				
00110	ADC6						
00111	ADC7						

Selecting ADC input (2)

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
01000		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010 ⁽¹⁾		ADC0	ADC0	200x
01011 ⁽¹⁾		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101		ADC3	ADC2	10x
01110 ⁽¹⁾		ADC2	ADC2	200x
01111 ⁽¹⁾		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x
10010	N/A	ADC2	ADC1	1x
10011		ADC3	ADC1	1x
10100		ADC4	ADC1	1x
10101		ADC5	ADC1	1x
10110		ADC6	ADC1	1x
10111		ADC7	ADC1	1x

Selecting ADC input (3)

	MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
	11000		ADC0	ADC2	1x
	11001		ADC1	ADC2	1x
	11010		ADC2	ADC2	1x
	11011		ADC3	ADC2	1x
	11100		ADC4	ADC2	1x
	11101		ADC5	ADC2	1x
▶	11110	1.22 V (V _{BG})	N/A		
•	11111	0 V (GND)			

Selecting the ADC in Table 13-6: Single Ended Channels

		MUX4 0	Single Er	ded Input
MUX40	+ Differentinal Input	- Differentinal Input	Gain	DC0
01000	ADC0	ADC0	10x	
01001	ADC1	ADC0	10x	DC1
01010	ADC0	ADC0	200x	DC2
01011	ADC1	ADC0	200x	DC3
01100	ADC2	ADC2	10x	DC4
01101	ADC3	ADC2	10x	DC5
01110	ADC2	ADC2	200x	
01111	ADC3	ADC2	200x	DC6
10000	ADC0	ADC1	1x	PC7
10001	ADC1	ADC1	1x	
10010	ADC2	ADC1	1x	
10011	ADC3	ADC1	1x	
10100	ADC4	ADC1	1x	
10101	ADC5	ADC1	1x	
10110	ADC6	ADC1	1x	
10111	ADC7	ADC1	1x	
11000	ADC0	ADC2	1x	
11001	ADC1	ADC2	1x	
11010	ADC2	ADC2	1x	
11011	ADC3	ADC2	1x	
11100	ADC4	ADC2	1x	
11101	ADC5	ADC2	1x	

ADC enable

Before we can use the ADC, it has to be enabled (write 1 to ADCSRA bit 7).

This "turns on" the ADC hardware.

ADC prescaler

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ADP\$2	ADPS1	ADP\$0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

NOTICE: The ADC clock must be between 50 kHz and 200 kHz!

(To obtain 10 bits of accuracy).

Test ("socrative.com": Room = MSYS)

 The CPU clock frequency is 12 MHz.
 We want the ADC clock frequency to be between 50 kHz and 200 kHz (for best performance).

What ADCSRA value is WRONG?

```
A:
    ADCSRA = 0b10000111;
B:
    ADCSRA = 0b10000110;
C:
    ADCSRA = 0b10000101;
```


Normal / "Left Adjust Result"

ADCL MUST be read FIRST. The ADCH MUST be read.

15	14	13	12	11	10	9	8
-	-	-	-	-	-	ADC9	ADC8
ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R
0	0	0	0	0	0	0	0
0	0	0	0	0	0	n	n

Bit

Read/Write

Initial Value

Normally only ADCH is read.

Bit	15	14	13	12	11	10	9	8
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2
	ADC1	ADC0	-	-	-	-	-	-
'	7	6	5	4	3	2	1	0
Read/Write	R	R	R	R	R	R	R	R
	R	R	R	R	R	R	R	R
Initial Value	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

ADCH

ADCL

ADCH ADCL

ADCH and ADCL Data registers

- ADCH:ADCL store the results of conversion.
- The 10 bit result can be right or left justified:

ADCH

Our compiler: ADCW is ADCH—ADCL: x = ADCW;

ADCL

ADLAR = 0

 ADCH
 ADCL

 ADC9
 ADC8
 ADC7
 ADC6
 ADC5
 ADC4
 ADC3
 ADC2
 ADC1
 ADC0

ADLAR = 1

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 - - - - - -

Manual START

- Bit ADSC = 1 : Conversion starts
 ADCSRA |= 0b01000000;
- Bit ADSC == 0 : Conversion ended while (ADCSRA & 0b01000000)
 {}
 // Now ADC can be read x = ADCW;

Automatic START ("trigger")

Bit	7	6	-5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADP\$2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	ı
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	0	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial ∀alue	0	0	0	0	0	0	0	0	

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

ADC interrupt

- ADIE: "ADC interrupt enable".
 1 => The ADC interrupt is generated if the global interrupt enable flag is also set.
- (ADIF: "ADC interrupt flag")
 Is set high following each conversion.
 - * Cleared automatically in the interrupt routine OR
 - * by writing a 1 to bit ADIF.

Example 1: Level tester

End of lesson 19

