第五节 LSTM (长短期记忆网络)及ELMO模型 (双向LSTM)

RNN的问题

假如让RNN来做这个任务,它会把所有的空格前面的信息都考虑进去,但是前面的那些内容对这个填空其实没有作用,甚至会导致误判。而且这还是比较短的句子,一旦达到几百几千个字,把所有的信息都同时融入到最终的输出结果里面显然是不合理的,所以RNN模型就存在着这么一个缺陷。

LSTM

针对上面所说的RNN的问题,就有人提出了LSTM。

之前我们说RNN的问题在于它记录了太多的信息,这些信息对我们当下要执行的任务不一定是有用的,所以LSTM的目的就是让RNN忘掉一部分冗余的信息,从而提升RNN的实际效果。

C: 控制参数

决定什么样的信息会被保留什么 样的会被遗忘

LSTM里面有一个重要的控制参数C,这个参数的作用就是决定什么样的信息会被保留,什么样的信息会被遗忘,这个参数不是一成不变的,而是随着神经网络的学习不断更新的。

LSTM实际上就是通过各种门去决定信息的去留

遗忘门

Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有 多少量可以通过。0 代表"不许任何量通过", 1 就指"允许任意量通过"!

首先第一种门就是遗忘门,遗忘门是通过一个激活函数(一般是sigmoid)和一个乘法去实现的。当一个输入值经过sigmoid 函数后,会得到0到1之间的一个概率值,假如这个值接近1,那么它的信息就保留得越多(按比例保留),假如越接近0,那么它的信息被遗忘得就越多。所以通过遗忘门,我们可以做到对信息的一个筛选。保留有用的信息,去除冗余的信息。这里的乘法就是ft和c{t-1}做一个乘法,来更新C参数。

输入门

前面遗忘门决定了信息的保留程度,但是新的输入信息也要能够保留下来,所以这里其实起到的作用就是保留新的输入信息。 一部分用sigmoid函数决定哪些特征要更新,另一部分使用tanh函数生成一个新的候选值向量,这个向量就是输入的信息,两个参数相乘就能得到保留了有用特征的输入信息。

输出门

最终我们讲之前得到的两个参数相加,就能得到更新后的C_t。

通过上面所说的那些门,我们可以有效地剔除冗余信息,保留有效信息,LSTM相比RNN是一次很大的改进。

LSTM的缺点

LSTM只是缓解了梯度弥散或者梯度爆炸的问题(或者说长期依赖问题),但是在网络层数比较深的时候,这样的问题依然存在,没有得到根本缓解

而且LSTM仍然保留了RNN的老毛病,就是无法并行

后面的attention会比较好地解决掉梯度弥散或者梯度爆炸问题

ELMO (双向LSTM)

前面讲到的词向量模型无法表达多义词的情况,ELMO提供了有效解决这个问题的思路。

有什么问题值得改进?

…very useful to protect banks or slopes from being washed away by river or rain…

...the location because it was high, about 100 feet above the bank of river...

 \cdots The bank has plan to branch throughout the country \cdots

...They throttled the watchman and robbed the bank...

ELMO解决多义词问题

从WE到ELMO: 基于上下文的Embedding

NAACL 2018 最佳论文: Deep contextualized word representations

ELMO这个模型是专门做更好的词向量(融入了上下文信息的词向量)的,也就是一个预训练词向量模型

ELMO不只是训练一个参数矩阵Q, 我还可以把这个次的上下文信息融入到这个 Q 矩阵中

比如E2, 左边的 LSTM 获取 E2 的上文信息, 右边获取下文信息

 $x_1, x_2, , x_4, x_5 --> Word 2 Vec x_1 + x_2 + x_4 + x_5 --->$ 预测那一个词 x_3 获取上下文信息后,把三层的信息进行一个叠加

E1+E2+E3=K1一个新的词向量 pprox E1,但是同时包含了 E_2 本身和它的上下文信息 E1,E3相当于两个上下文信息

*K*1包含了第一个词的词向量,还包含单词特征、句法特征、语义特征 怎么用?

E2, E3不同, E1 + E2 + E3不同

apple — —》 我吃了一个苹果 — —》 [1,20,10]

apple - - 》我在用苹果手机 - - » [1, 10, 20]

下面的词向量比上面的词向量更客观地描述了苹果这个词,包含了更多的含义,也可以理解为更好地描述了苹果这个词在高维空间的分布

ELMO: 训练好之后如何使用?

得到更好的词向量后可以完成我们之前所说的那些下游任务,而且实际表现会比之前的word2vec更好

ELMO的缺陷

因为仍然使用了LSTM,而LSTM 无法并行,还有长期依赖的问题

Attention以及衍生的transformer仍然很好地解决了这个问题