北京航空航天大學

CISCO 网络仿真 实验报告

学号: 12061154

姓名: 冯飘飘

日期: 2015.05.25

目录

一 、	实员	俭原理	3
	1.1	Packet Tracer	3
	1.2	冗余链路	3
二,	实	脸目的	4
三、	实	脸内容	4
	3.1	实验设备	4
	3.2	实验组网图	4
	3.3	设备配置	5
		3.3.1 PC	5
		3.3.2 Router	5
		3.3.3 Switch	6
		3.3.4 路由器启用 RIP 协议	7
		3.3.5 配置静态路由	7
	3.4	各路由器上路由表	8
	3.5	实验结果1	0
	3.6	冗余链路测试1	0
四、	实	脸感悟1	1
参考	令文章	状1	1

一、实验原理

1.1 Packet Tracer

Cisco Packet Tracer 是由 Cisco 公司发布的一个辅助学习工具,为学习思科网络课程的初学者去设计、配置、排除网络故障提供了网络模拟环境。用户可以在软件的图形用户界面上直接使用拖曳方法建立网络拓扑,并可提供数据包在网络中行进的详细处理过程,观察网络实时运行情况。可以学习 IOS 的配置、锻炼故障排查能力。^山

1.2 冗余链路

为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的健壮性、稳定性,这里的备份连接也称为备份链路或者冗余链路。

在骨干网设备连接中,单一链路的连接很容易实现,但一个简单的 故障就会造成网络的中断.因此在实际网络组建的过程中,为了保持网 络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连 接,以提高网络的健壮性、稳定性。

这里的备份连接也称为备份链路或者冗余链路.备份链路之间的 交换机经常互相连接,形成一个环路,通过环路可以在一定程度上实现 冗余。[2]

二、实验目的

使用 Packet Tracer 进行模拟组网,要求至少有 5 个路由器(含)以上组成通信子网并具有冗余链路,支持 RIP 或 OSPF 动态路由协议,资源子网为两个以太网,内含若干 PC。

三、实验内容

使用 Packet Tracer 模拟组网,将两个以太网用路由器串联起来,两个以太网内都有荣誉链路,在所有路由器和交换机上启用 RIP 协议,根据需要配置相应的静态路由。

3.1 实验设备

路由器: Router-PT 5台

交换机: Switch3560-24PS 4台

PC: PC-PT 5台

3.2 实验组网图

3.3 设备配置

3.3.1 PC

PC 设备 IP 地址		子网掩码	网关
PC0	1.1.1.1	255.255.255.0	1.1.1.2
PC1	1.1.2.11	255.255.255.0	1.1.2.1
PC2	1.1.2.12	255.255.255.0	1.1.2.1
PC3	2.2.1.1	255.255.255.0	2.2.1.2
PC4	2.2.2.1	255.255.255.0	2.2.2.2

3.3.2 Router

子网掩码均为 255.255.255.0

Serial 接口时钟频率均为 64000

Router	接口	IP
	FastEthernet0/0	1.1.1.3
Douton O	FastEthernet1/0	1.1.2.3
Router 0	Serial2/0	1.1.5.1
	Serial3/0	1.1.7.1
Router 1	FastEthernet0/0	1.1.2.2
	Serial2/0	1.1.5.2

Doutes 2	Serial2/0	1.1.7.2
Router 2	Serial3/0	2.2.7.2
Router 3	Serial2/0	2.2.7.1
Router 3	Serial3/0	2.2.6.1
	FastEthernet0/0	2.2.1.3
Router 4	FastEthernet1/0	2.2.2.3
	Serial2/0	2.2.6.2

3.3.3 Switch

子网掩码均为 255.255.255.0

Switch	Vlan	IP	
Switch0	Vlan1	1.1.2.1	
Constant	Vlan1	2.2.2.2	
Switch1	Vlan2(Fa3/0)	2.2.1.4	
Switch2	Vlan1	2.2.1.2	
Switch3	Vlan1	1.1.1.2	

3.3.4 路由器启用 RIP 协议

Router0	1.0.0.0		
Router1	1.0.0.0		
Router2	1.0.0.0 2.0.0.0		
Router3	2.0.0.0		
Router4	2.0.0.0		

3.3.5 配置静态路由

Switch0	ip route 0.0.0.0 0.0.0.0 1.1.2.2
SWILCHU	ip route 0.0.0.0 0.0.0.0 1.1.2.3
Switch1	ip route 0.0.0.0 0.0.0.0 2.2.1.2
SWITCHI	ip route 0.0.0.0 0.0.0.0 2.2.2.3
Switch2	ip route 0.0.0.0 0.0.0.0 2.2.1.3
SWITCHZ	ip route 0.0.0.0 0.0.0.0 2.2.1.4
Switch3	ip route 0.0.0.0 0.0.0.0 1.1.1.3

3.4 各路由器上路由表

		1.0.0.0/24 is subnetted, 4 subnets
	С	1.1.1.0 is directly connected, FastEthernet0/0
Rout	С	1.1.2.0 is directly connected, FastEthernet1/0
er0	С	1.1.5.0 is directly connected, Serial2/0
	С	1.1.7.0 is directly connected, Serial3/0
	R	2.0.0.0/8 [120/1] via 1.1.7.2, 00:00:18, Serial3/0
		1.0.0.0/24 is subnetted, 4 subnets
	R	1.1.1.0 [120/1] via 1.1.5.1, 00:00:19, Serial2/0
		[120/1] via 1.1.2.3, 00:00:19, FastEthernet0/0
Rout	С	1.1.2.0 is directly connected, FastEthernet0/0
	С	1.1.5.0 is directly connected, Serial2/0
er1	R	1.1.7.0 [120/1] via 1.1.5.1, 00:00:19, Serial2/0
		[120/1] via 1.1.2.3, 00:00:19, FastEthernet0/0
	R	2.0.0.0/8 [120/2] via 1.1.5.1, 00:00:19, Serial2/0
		[120/2] via 1.1.2.3, 00:00:19, FastEthernet0/0

		1.0.0.0/24 is subnetted, 4 subnets
	R	1.1.1.0 [120/1] via 1.1.7.1, 00:00:19, Serial2/0
	R	1.1.2.0 [120/1] via 1.1.7.1, 00:00:19, Serial2/0
	R	1.1.5.0 [120/1] via 1.1.7.1, 00:00:19, Serial2/0
Rout	С	1.1.7.0 is directly connected, Serial2/0
er2		2.0.0.0/24 is subnetted, 4 subnets
	R	2.2.1.0 [120/2] via 2.2.7.1, 00:00:12, Serial3/0
	R	2.2.2.0 [120/2] via 2.2.7.1, 00:00:12, Serial3/0
	R	2.2.6.0 [120/1] via 2.2.7.1, 00:00:12, Serial3/0
	С	2.2.7.0 is directly connected, Serial3/0
	R	1.0.0.0/8 [120/1] via 2.2.7.2, 00:00:14, Serial2/0
		2.0.0.0/24 is subnetted, 4 subnets
Rout	R	2.2.1.0 [120/1] via 2.2.6.2, 00:00:15, Serial3/0
er3	R	2.2.2.0 [120/1] via 2.2.6.2, 00:00:15, Serial3/0
	С	2.2.6.0 is directly connected, Serial3/0
	С	2.2.7.0 is directly connected, Serial2/0
	R	1.0.0.0/8 [120/2] via 2.2.6.1, 00:00:16, Serial2/0
		2.0.0.0/24 is subnetted, 4 subnets
Rout	С	2.2.1.0 is directly connected, FastEthernet0/0
er4	С	2.2.2.0 is directly connected, FastEthernet1/0
	С	2.2.6.0 is directly connected, Serial2/0
	R	2.2.7.0 [120/1] via 2.2.6.1, 00:00:16, Serial2/0
-		

此时已经全网互通,主机之间均可相互 ping 通

3.5 实验结果

Fire	Last Status	Source	Destination	Туре	Color	Time (sec)	Periodic
•	Successful	PC0	PC1	ICMP		0.000	N
•	Successful	PC0	PC2	ICMP		0.000	N
(Successful	PC0	PC3	ICMP		0.000	N
•	Successful	PC0	PC4	ICMP		0.000	N
•	Successful	PC1	PC2	ICMP		0.000	N
•	Successful	PC1	PC3	ICMP		0.000	N
•	Successful	PC1	PC4	ICMP		0.000	N
(Successful	PC2	PC3	ICMP		0.000	N
•	Successful	PC2	PC4	ICMP		0.000	N
•	Successful	PC3	PC4	ICMP		0.000	N

3.6 冗余链路测试

删除 Router0 和 Router1 之间的线,其余配置不变,主机之间仍可 ping 通

恢复成原图,删除 Router0 和 Switch0 之间的线,将 Switch0 的静态路由配置中下一跳为 1.1.2.3 的静态路由删除,主机之间仍可 ping 通。冗余链路保障了网络的稳定性。

Fire	Last Status	Source	Destination	Туре	Color Time (see	c) ^
•	Successful	PC1	PC4	ICMP	0.000	=
•	Successful	PC2	PC0	ICMP	0.000	
<u> </u>	Successful	PC2	PC3	ICMP	0.000	+
4		111				Þ.

右边子网是相同原理,这里就不再赘述。

四、实验感悟

通过这次模拟组网实验,让我更深入的了解了子网划分、生成树协议、路由表等相关知识,只有自己动手做过,才能真正理解其中的 道理。

做网络实验时只顾着快点做完实验,有时来不及细想实验中的原理,而这次组网模拟让我对 RIP 协议理解的更透彻了。从开始对PacketTracer 的一窍不通到现在基本能够熟练的打出相关命令,对于组网配置中出现的问题能够耐心的去寻找错误的根源,把出现的各种问题都一一解决,比如路由器和交换机的端口没有打开、交换机的vlan 没有配置 IP、没有配置完整的静态路由等等(由于与网络实验的不同,导致很多细小的地方容易被忽略),直到使所有主机全部 ping 通,最后测试冗余链路时仍可 ping 通时心中的自豪感真是难以言表。

总之,这次实验让我获益良多!

参考文献

【1】 Packet Tracer——百度百科 http://baike.baidu.com/view/6958107.htm

http://baike.baidu.com/view/1480345.htm

【2】 冗余链路——百度百科