Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Применение алгоритмов машинного обучения для обнаружения и классификации дефектных зон на видеоизображениях внутренней поверхности графитовых блоков РБМК

Выполнил: Кортев Юрий Вячеславович, гр. 7381

Руководитель: Лис Анна Александровна, доцент каф. МО ЭВМ, к.т.н.

Консультант: Сунгуров Р.В., инженер-программист 1 категории, Диаконт

Цели и задачи

Актуальность: ручная разметка

- занимает много времени
- высокая вероятность пропустить малозаметные дефекты

Цель работы: автоматизация детекции и классификации дефектов на изображениях

Задачи:

- Разметка кадров для обучения
- Обучение модели семантической сегментации
- Разработка модуля на С++ для нахождения искомых характеристик дефектов, использующего обученную модель
- Тестирование результатов

Разметка кадров для обучения

Семантическая сегментация

Объем обучающей выборки - 443, объем тестирующей выборки - 111

Обучение модели семантической сегментации

Архитектуры нейронных

сетей:

Функция потерь:

Алгортим

оптимизации:

Unet ResNet18

- Unet ResNet34
- DeepLab Xception
- DeepLab MobileNetV2

Focal Tversky Loss

Adam

Обучение модели семантической сегментации

	Unet ResNet18	Unet ResNet34	DeepLab Xception	DeepLab MobileNetV2
mloU	0.5489	0.5493	0.555	0.3275
Количество параметров	14.324.660	24.450.166	41.253.011	2.141.443

Обучение модели семантической сегментации

Разработка модуля на C++ для нахождения искомых характеристик дефектов, использующего обученную модель

Характеристики дефектов, имеющие практическую значимость:

- Ширина дефекта
- Координаты верхней точки дефекта
- Координаты нижней точки дефекта

Извлечение искомых характеристик из выхода модели

Разработка модуля на C++ для нахождения искомых характеристик дефектов, использующего обученную модель

Разработка модуля на C++ для нахождения искомых характеристик дефектов, использующего обученную модель

	Время на обработку одного кадра, мс	Скорость обработки , к/с	Время полного прогона, с
CPU	5579,27	0,179	273,4
GPU	326,12	3,06	18,2

GPU:NVIDIA GeForce GTX 1060 3GB, CPU: Intel Core i5 – 7400, RAM: 8GB

Качество работы программы

Заключение

- Размечены кадры для обучения модели семантической сегментации
- Обучены модели семантической сегментации и выбрана самая эффективная архитектура, применительно к данной проблеме
- Создан программный модуль, извлекающий из изображений искомые характеристики дефектов
- Исследование характеристик написанного модуля показало, что они удовлетворяют поставленным требованиям
- Дальнейшие направления исследований включают в себя модификацию процесса обучения, с целью увеличения точности детекции

Апробация решения

- Репозиторий проекта https://github.com/YuriyKortev/FQW
- Внедрение проекта на производство в АО Диаконт

Утверждаю

Руководитель дивизиона РТВиДО АО «Диаконт»

Акт

о внедрении результатов дипломной работы на тему ПРИМЕНЕНИЕ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ОБНАРУЖЕНИЯ И КЛАССИФИКАЦИИ ДЕФЕКТНЫХ ЗОН НА ВИДЕОИЗОБРАЖЕНИЯХ ВНУТ-РЕННЕЙ ПОВЕРХНОСТИ ГРАФИТОВЫХ БЛОКОВ РБМК

Автор: Кортев Юрий Вячеславович, студент 4-го курса СПбГЭТУ «ЛЭТИ» Руководитель дипломной работы Лисс Анна Александровна, доцент, к.т.н.

Наименование организации: АО «Диаконт»

Сущность внедряемой разработки: Разработан алгоритм детекции дефектов на панорамных изображениях внутренней поверхности графитовых блоков.

Форма внедрения: Разработанный на языке С++ программный модуль, составляющий список найденных дефектов и их характеристик.

Эффективность внедрения: Эффективность измерялась с помощью метрики f1 score. Значение метрики на тестовой выборке: 0.594.

Дата внедрения: 29.05.2021

Предложения, замечания организации, осуществляющей внедрение:

ФИО руководителя структурного подразделения организации, ответственного за внедрение) (ФИО автора)

