Лабораторная работа №6

Дисциплина: Информационная безопасность

Дорофеева Алёна Тимофеевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Подготовительный этап	9 9 11
5	Выводы	26
Сп	Список литературы	

Список иллюстраций

4.1	Проверка политики и режима	9
4.2	Обновление	10
4.3	Загрузка Apache	10
4.4	Расположение конфигурационного файла httpd	10
4.5	Задаем ServerName	11
4.6	Задаем ServerName	11
4.7	Режим enforcing политики targeted	12
4.8	Запуск	12
4.9	Контекст безопасности	13
4.10	Переключатели SELinux для Apache	14
	Статистика по политике	15
4.12	Типы файлов	15
4.13	Типы файлов	16
4.14	Создание html файла	16
4.15	Создание html файла	17
	Обращение к файлу через веб-сервер	17
4.17	Контекст безропасности html файла	18
4.18	Смена контекста безропасности html файла	18
4.19	Попытка получения доступа к файлу через веб-сервер	18
4.20	tail /var/log/messages	19
4.21	/var/log/audit/audit.log	20
4.22	Смена прослушиваемого порта	20
	Перезапуск Apache	21
4.24	tail -nl /var/log/messages	21
4.25	/var/log/http/error_log	21
	/var/log/http/access_log	22
4.27	/var/log/audit/audit.log	22
	Список портов	22
4.29	Запуск веб-сервера	23
4.30	Возвращаем контекст безопасности	23
4.31	Получение доступа к файлу через веб-сервер	24
	Изменение прослушиваемого порта	24
4.33	Улаление файла	25

Список таблиц

1 Цель работы

Развить навыки администрирования ОС Linux. Получить первое практическое знакомство с технологией SELinux. Проверить работу SELinx на практике совместно с веб-сервером Apache.

2 Задание

• Изучить на практике работу SELinx и Apache.

3 Теоретическое введение

SELinux (SELinux) — это система принудительного контроля доступа, реализованная на уровне ядра. Впервые эта система появилась в четвертой версии CentOS, а в 5 и 6 версии реализация была существенно дополнена и улучшена. Эти улучшения позволили SELinux стать универсальной системой, способной эффективно решать массу актуальных задач. Стоит помнить, что классическая система прав Unix применяется первой, и управление перейдет к SELinux только в том случае, если эта первичная проверка будет успешно пройдена.

Для того, чтобы понять, в чем состоит практическая ценность SELinux, рассмотрим несколько примеров, когда стандартная система контроля доступа недостаточна. Если SELinux отключен, то вам доступна только классическая дискреционная система контроля доступа, которая включает в себя DAC (избирательное управление доступом) или ACL(списки контроля доступа). То есть речь идет о манипулировании правами на запись, чтение и исполнение на уровне пользователей и групп пользователей, чего в некоторых случаях может быть совершенно недостаточно. Например:

- Администратор не может в полной мере контролировать действия пользователя. Например, пользователь вполне способен дать всем остальным пользователям права на чтение собственных конфиденциальных файлов, таких как ключи SSH.
- Процессы могут изменять настройки безопасности. Например, файлы, содержащие в себе почту пользователя должны быть доступны для чтения

только одному конкретному пользователю, но почтовый клиент вполне может изменить права доступа так, что эти файлы будут доступны для чтения всем.

• Процессы наследуют права пользователя, который их запустил. Например, зараженная трояном версия браузера Firefox в состоянии читать SSH-ключи пользователя, хотя не имеет для того никаких оснований.[01?]

Apache – это свободное программное обеспечение для размещения вебсервера. Он хорошо показывает себя в работе с масштабными проектами, поэтому заслуженно считается одним из самых популярных веб-серверов. Кроме того, Apache очень гибок в плане настройки, что даёт возможность реализовать все особенности размещаемого веб-ресурса.[**02?**]

Установить веб-сервер Apache можно слеудющим образом. Откройте окно терминала и обновите списки пакетов репозитория, введя следующее: sudo yum update

Теперь вы можете установить Apache с помощью команды: sudo yum -y install httpd

httpd - это имя службы Apache в CentOS. Опция –у автоматически отвечает да на запрос подтверждения.[**03?**]

4 Выполнение лабораторной работы

4.1 Подготовительный этап

Сперва проверим конфигурационный файл SELinux - видим, что политика targeted и режим enforcing используются в данном дистрибутиве по умолчанию, т.е. каких-то специальных настроек не требуется (рис. 4.1).

```
[aldoro@aldoro ~]$ su -
Password:
[root@aldoro ~]# cat /etc/selinux/config

# This file controls the state of SELinux on the system.
# SELINUX= can take one of these three values:
# enforcing - SELinux security policy is enforced.
# permissive - SELinux prints warnings instead of enforcing.
# disabled - No SELinux policy is loaded.
# See also:
# https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-selinux/#getting-started-with-selinux-selinux-states-and-modes
# NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
# fully disabled sELinux during boot. If you need a system with SELinux
# fully disabled instead of SELinux running with no policy loaded, you
# need to pass selinux=0 to the kernel command line. You can use grubby
# to persistently set the bootloader to boot with selinux=0:
# grubby --update-kernel ALL --args selinux=0
# grubby --update-kernel ALL --args selinux=0
# grubby --update-kernel ALL --remove-args selinux
# selinuX:enforcing
# SELINUXTYPE= can take one of these three values:
# targeted - Targeted processes are protected,
# minimum - Modification of targeted policy. Only selected processes are protected.
# minimum - Modification of targeted policy. Only selected processes are protected.

[root@aldoro ~]# |
```

Рис. 4.1: Проверка политики и режима

Дальше потребуется установить менеджер Apache, для этого предварительно обновим систему (рис. 4.2), только после этого устанавливаем Apache (httpd) (рис. 4.3).

Рис. 4.2: Обновление

Рис. 4.3: Загрузка Арасһе

Далее зададим ServerName test.ru в конфигурационной файле httpd (рис. 4.5), для этого сперва найдем, где он находится (рис. 4.4).

```
[root@aldoro ~]# ls /etc/httpd
conf conf.d conf.modules.d logs modules run state
[root@aldoro ~]# ls /etc/httpd/conf
httpd.conf magic
[root@aldoro ~]# nano /etc/httpd/conf/httpd.conf
```

Рис. 4.4: Расположение конфигурационного файла httpd

```
GNU nano 5.6.1 /etc/httpd/conf/httpd.conf

# ServerAdmin: Your address, where problems with the server should be
# e-mailed. This address appears on some server-generated pages, such
# as error documents. e.g. admin@your-domain.com
#
ServerAdmin root@localhost

# ServerName gives the name and port that the server uses to identify itself.
# This can often be determined automatically, but we recommend you specify
# it explicitly to prevent problems during startup.
# If your host doesn't have a registered DNS name, enter its IP address here.
# #ServerName www.example.com:80
ServerName test.ru

# Deny access to the entirety of your server's filesystem. You must
# explicitly permit access to web content directories in other
# <Directory> blocks below.
# CPirectory>
AllowOverride none
Require all denied
</Directory>
# Note that from this point forward you must specifically allow
```

Рис. 4.5: Задаем ServerName

Чтобы пакетный фильтр в своей рабочей конфигурации позволял подключаться к 80-у и 81-у портам протокола tcp добавим разрешающие правила (рис. 4.6):

```
[root@aldoro ~]# iptables -I INPUT -p tcp --dport 80 -j ACCEPT
[root@aldoro ~]# iptables -I INPUT -p tcp --dport 81 -j ACCEPT
[root@aldoro ~]# iptables -I OUTPUT -p tcp --sport 80 -j ACCEPT
[root@aldoro ~]# iptables -I OUTPUT -p tcp --sport 81 -j ACCEPT
[root@aldoro ~]#
```

Рис. 4.6: Задаем ServerName

4.2 Порядок выполнения работы

1. Войдите в систему с полученными учётными данными и убедитесь, что SELinux работает в режиме enforcing политики targeted с помощью команд getenforce и sestatus (рис. 4.7).

```
[aldoro@aldoro ~]$ getenforce
Enforcing
[aldoro@aldoro ~]$ sestatus
SELinux status:
                                        enabled
SELinux root directory: /etc/selinux
Loaded policy name:
                                       /sys/fs/selinux
Loaded policy name:
                                       targeted
Current mode:
                                      enforcing
Mode from config file:
Policy MLS status:
                                       enforcing
Policy MLS status:
                                        enabled
Policy MLS status.

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

33
[aldoro@aldoro ~]$
```

Puc. 4.7: Режим enforcing политики targeted

2. Обратитесь с помощью браузера к веб-серверу, запущенному на вашем компьютере, и убедитесь, что последний работает: service httpd status. Видим, что он неактивен, поэтому запускаем его командой service httpd start, после чего снова проверяем, в этот раз серсвис активен (рис. 4.9).

```
[aldoro@aldoro ~]$ service httpd status
Redirecting to /bin/systemctl status httpd.service
o httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; preset: disabled)
Active: inactive (dead)
Docs: man:httpd.service(8)
[aldoro@aldoro ~]$ service httpd start
Redirecting to /bin/systemctl status httpd.service
[aldoro@aldoro ~]$ service httpd status
Redirecting to /bin/systemctl status httpd.service
• httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; preset: disabled)
Active: active (running) since Thu 2023-10-12 07:02:26 MSK; 16s ago
Docs: man:httpd.service(8)
Main PID: 109637 (httpd)
Status: "Total requests: 0; Idle/Busy workers 100/0;Requests/sec: 0; Bytes served/sec: 0 B/sec"
Tasks: 213 (limit: 12221)
Memory: 23.2M
CPU: 108ms
CGroup: /system.slice/httpd.service
-109642 /usr/sbin/httpd -DFOREGROUND
-109642 /usr/sbin/httpd -DFOREGROUND
-109649 /usr/sbin/httpd -DFOREGROUND
-109649 /usr/sbin/httpd -DFOREGROUND
-109649 /usr/sbin/httpd -DFOREGROUND
-109650 /usr/sbin/httpd -DFOREGROUND
-109650 /usr/sbin/httpd -DFOREGROUND
-109650 /usr/sbin/httpd -DFOREGROUND
-109640 /usr/sbin/httpd -DFOREGROUND
```

Рис. 4.8: Запуск

3. Найдите веб-сервер Apache в списке процессов, определите его контекст безопасности и занесите эту информацию в отчёт. Например, можно ис-

пользовать команду ps auxZ | grep httpd(4.9).

Рис. 4.9: Контекст безопасности

Видим, что веб-сервер имеет контекст безопасности httpd_t.

4. Посмотрите текущее состояние переключателей SELinux для Apache с помощью команды sestatus -b httpd (рис. 4.10). Многие из них находятся в положении «off».

```
[aldoro@aldoro ~]$ sestatus -b httpd
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
SELinux status:
                                   enabled
Current mode:
                                   enforcing
                            enforcing
enabled
Mode from config file:
Policy MLS status:
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33
Policy booleans:
abrt_anon_write
                                                   off
abrt_handle_event
                                                   off
abrt_upload_watch_anon_write
                                                   on
antivirus_can_scan_system
                                                   off
antivirus_use_jit
                                                   off
auditadm_exec_content
                                                   on
authlogin_nsswitch_use_ldap
                                                  off
authlogin_radius
                                                  off
authlogin_yubikey
                                                  off
awstats_purge_apache_log_files
                                                  off
boinc_execmem
                                                   on
cdrecord_read_content
                                                   off
cluster can network connect
                                                   off
cluster_manage_all_files
                                                   off
cluster_use_execmem
                                                   off
cobbler anon write
                                                   off
cobbler_can_network_connect
                                                   off
cobbler_use_cifs
                                                   off
cobbler_use_nfs
                                                   off
collectd_tcp_network_connect
                                                   off
colord_use_nfs
                                                   off
condor_tcp_network_connect
                                                   off
conman_can_network
conman_use_nfs
                                                   off
container_connect_any
                                                   off
container_manage_cgroup
                                                   off
container_use_cephfs
                                                   off
container_use_devices
                                                   off
container_use_ecryptfs
                                                   off
cron_can_relabel
                                                   off
cron system cronioh use shares
```

Рис. 4.10: Переключатели SELinux для Apache

5. Посмотрите статистику по политике с помощью команды seinfo, также определите множество пользователей, ролей, типов (рис. 4.11).

```
Statistics for policy file: /sys/fs/selinux/policy
Policy Version:
                         33 (MLS enabled)
                         selinux
Target Policy:
Handle unknown classes: allow
              135
  Classes:
                          Permissions:
                                              457
 Classes:
Sensitivities: 1 Categoris
5100 Attributes:
                                             1024
                                              258
                  353
                                               14
 Booleans:
                           Cond. Expr.:
                                              384
                 65008
170
  Allow:
                           Neverallow:
                                               0
  Auditallow:
                           Dontaudit:
                                             8572
  Type_trans:
                 265344
                           Type_change:
                                              87
                 35
                           Range_trans:
                                             6164
  Type_member:
 Constraints:
  Role allow:
                                              420
                    38
                           Role_trans:
                    70
                                               0
                           Validatetrans:
  MLS Constrain:
                    72
                           MLS Val. Tran:
                                               0
  Permissives:
                           Polcap:
                                               6
  Defaults:
                           Typebounds:
                                               0
 Allowxperm:
 Allowxperm:
Auditallowxperm:
Ibendportcon:
                           Neverallowxperm:
                           Dontauditxperm:
                                               0
                     0 Ibpkeycon:
                                               0
  Initial SIDs:
                           Fs_use:
                                               35
  Genfscon:
                     109
                           Portcon:
                                               660
  Netifcon:
                     Θ
                           Nodecon:
                                                0
[aldoro@aldoro ~]$
```

Рис. 4.11: Статистика по политике

Число пользователей = 8, ролей = 14, типов = 5100.

6. Определите тип файлов и поддиректорий, находящихся в директории /var/www, с помощью команды ls -lZ /var/www (рис. 4.12).

```
[aldoro@aldoro ~]$ ls -lZ /var/www
total 0
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_script_exec_t:s0 6 May 16 23:21 cgi-bin
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 May 16 23:21 html
[aldoro@aldoro ~]$
```

Рис. 4.12: Типы файлов

В каталоге находятся только директории.

7. Определите тип файлов, находящихся в директории /var/www/html: ls -lZ /var/www/html (рис. 4.13).

```
[aldoro@aldoro ~]$ ls -lZ /var/www/html
total 0
[aldoro@aldoro ~]$
```

Рис. 4.13: Типы файлов

Директория пуста.

- 8. Определите круг пользователей, которым разрешено создание файлов в директории /var/www/html это только пользователь root.
- 9. Создайте от имени суперпользователя (так как в дистрибутиве после установки только ему разрешена запись в директорию) html-файл /var/www/html/test.html следующего содержания (рис. 4.14):

```
<html>
<body>test</body>
</html>
```

```
[aldoro@aldoro ~]$ su -
Password:
[root@aldoro ~]# nano /var/www/html/test.html
[root@aldoro ~]# cat /var/www/html/test.html
<html>
<body>test</body>
</html>
[root@aldoro ~]#
```

Рис. 4.14: Создание html файла

10. Проверьте контекст созданного вами файла. Занесите в отчёт контекст, присваиваемый по умолчанию вновь созданным файлам в директории /var/www/html (рис. 4.15).

```
[aldoro@aldoro ~]$ ls -lZ /var/www/html
total 4
-rw-r--r-. 1 root root unconfined_u:object_r:httpd_sys_content_t:s0 33 Oct 12 07:14 test.html
[aldoro@aldoro ~]$ |
```

Рис. 4.15: Создание html файла

Контекст безопасности - httpd_sys_content_t.

11. Обратитесь к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html (рис. 4.16). Файл был успешно отображён.

Рис. 4.16: Обращение к файлу через веб-сервер

12. Изучите справку man httpd_selinux и выясните, какие контексты файлов определены для httpd.

Сопоставьте их с типом файла test.html. Проверить контекст файла можно командой ls -Z /var/www/html/test.html (рис. 4.17). Контекст безопасности файла - httpd_sys_content_t. Данный контекст входит в перечень контекстов безопасности httpd.

Роль **object_r** используется по умолчанию для файлов на «постоянных» носителях и на сетевых файловых системах. Тип **httpd_sys_content_t** позволяет процессу httpd получить доступ к файлу. Благодаря наличию последнего типа мы получили доступ к файлу при обращении к нему через браузер.

```
[root@aldoro ~]# chcon -t httpd_sys_content_t /var/www/html/test.html
[root@aldoro ~]# ls -Z /var/www/html/test.html
unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/test.html
[root@aldoro ~]#
```

Рис. 4.17: Контекст безропасности html файла

13. Измените контекст файла /var/www/html/test.html c httpd_sys_content_t на любой другой, к которому процесс httpd не должен иметь доступа, например, на samba_share_t (рис. 4.18):

```
chcon -t samba_share_t /var/www/html/test.html
ls -Z /var/www/html/test.html
```

```
[root@aldoro ~]# chcon -t samba_share_t /var/www/html/test.html
[root@aldoro ~]# ls -Z /var/www/html/test.html
unconfined_u:object_r:samba_share_t:s0 /var/www/html/test.html
[root@aldoro ~]#
```

Рис. 4.18: Смена контекста безропасности html файла

Видим, что контекст безопасности действительно изменился.

14. Попробуйте ещё раз получить доступ к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html (рис. 4.19).

Мы получили сообщение об ошибке: Forbidden You don't have permission to access /test.html on this server.

Рис. 4.19: Попытка получения доступа к файлу через веб-сервер

15. Проанализируйте ситуацию. Почему файл не был отображён, если права доступа позволяют читать этот файл любому пользователю? ls -l /var/www/html/test.html (рис. ??) - нет доступа к файлу из-за недопустимого контекста безопасности для httpd.

Просмотрите log-файлы веб-сервера Apache. Также просмотрите системный лог-файл: tail /var/log/messages (рис. ??).

Если в системе окажутся запущенными процессы setroubleshootd и audtd (рис. ??), то вы также сможете увидеть ошибки, аналогичные указанным выше, в файле /var/log/audit/audit.log (рис. ??).

Рис. 4.20: tail /var/log/messages

```
[root@aldoro ~]# cat /var/log/audit/audit.log
type=DAEMON.START msg=audit(1697071700.305:9594): op=start ver=3.0.7 format=enriched kernel=5.14.0-284.11.1.elg_2.x86_64
auid=20967295 pid=12 uid=0 sex=209867295 subj=system_u:system_r:auditd_t::0 res=successAUID="more" type=SERVICE_START msg=audit(1697071700.311:5): pid=1 uid=0 auid=4294967295 ses=4294967295 subj=system_u:system_r:init_t
::0 msg='unit=vsystemd-journal-catalog=update comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=?
res=success'sUID="root" AUID="unset"
type=CONFIG_CHANGE msg=audit(1697071700.355:6): op=set audit_backlog_limit=8192 old=64 auid=4294967295 ses=4294967295 subj=system_u:system_r:unconfined_service_t:s0 res=1AUID="unset"
type=SYSCALL msg=audit(1607071700.355:6): arch=c000003e syscall=44 success=yes exit=60 a0=3 al=7ffc04ff7720 a2=3c a3=0 i
tems=0 pid=717 pid=727 auid=4294067295 uid=0 gid=0 exid=0 suid=0 sqid=0 sqid=
```

Рис. 4.21: /var/log/audit/audit.log

16. Попробуйте запустить веб-сервер Apache на прослушивание TCP-порта 81 (а не 80, как рекомендует IANA и прописано в /etc/services). Для этого в файле /etc/httpd/httpd.conf найдите строчку Listen 80 и замените её на Listen 81 (рис. 4.22).

```
# Change this to Listen on a specific IP address, but note that if
# httpd.service is enabled to run at boot time, the address may not be
# available when the service starts. See the httpd.service(8) man
# page for more information.
#
#Listen 12.34.56.78:80
#Listen 80
Listen 81
#
# Dynamic Shared Object (DSO) Support
#
# To be able to use the functionality of a module which was built as a DSO yo
# have to place corresponding `LoadModule' lines at this location so the
# directives contained in it are actually available _before_ they are used.
# Statically compiled modules (those listed by `httpd -l') do not need
# to be loaded here.
```

Рис. 4.22: Смена прослушиваемого порта

17. Выполните перезапуск веб-сервера Apache (рис. 4.23). Произошёл сбой? Поясните почему?

```
[root@aldoro ~]# service httpd restart
Redirecting to /bin/systemctl restart httpd.service
[root@aldoro ~]#
```

Рис. 4.23: Перезапуск Арасһе

Ошибки не возникает, поскольку в изначальных настройках системы порт 81 уже был прописан в рекомендациях системы.

18. Проанализируйте лог-файлы: tail -nl /var/log/messages - нет никаких ошибок (рис. 4.24). Просмотрите файлы /var/log/http/error_log (рис. 4.25), /var/log/http/access_log (рис. 4.26) и /var/log/audit/audit.log (рис. 4.27) и выясните, в каких файлах появились записи - нет записей об ошибках, т.к. нет ошибок.

```
[root@aldoro ~]# tail /var/log/messages

Oct 12 07:26:59 aldoro firefox.desktop[110770]: [ERROR viaduct::backend::ffi] Missing HTTP status

Oct 12 07:26:59 aldoro firefox.desktop[110770]: [ERROR viaduct::backend::ffi] Missing HTTP status

Oct 12 07:26:50 aldoro systemd[1574]: app-gnome-firefox-110770.scope: Consumed 22.636s CPU time.

Oct 12 07:40:10 aldoro systemd[1]: Stopping The Apache HTTP Server...

Oct 12 07:40:12 aldoro systemd[1]: httpd.service: Deactivated successfully.

Oct 12 07:40:12 aldoro systemd[1]: Stopped The Apache HTTP Server.

Oct 12 07:40:12 aldoro systemd[1]: Starting The Apache HTTP Server...

Oct 12 07:40:12 aldoro systemd[1]: Starting The Apache HTTP Server...

Oct 12 07:40:12 aldoro systemd[1]: Started The Apache HTTP Server.

Oct 12 07:40:12 aldoro httpd[111134]: Server configured, listening on: port 81

[root@aldoro ~]#
```

Рис. 4.24: tail -nl /var/log/messages

```
[root@aldoro ~]s cat /var/log/httpd/error_log
[Thu Oct 12 07:02:26.171936 2023] [core:notice] [pid 109637:tid 109637] SELinux policy enabled; httpd running as context system_urisystem_r:httpd_t:s0
[Thu Oct 12 07:02:26.181066 2023] [suexec:notice] [pid 109637:tid 109637] AH01232: suEXEC mechanism enabled (wrapper: /u sr/sbin/suexec)
[Thu Oct 12 07:02:26.2803377 2023] [bmethod_heartbeat:notice] [pid 109637:tid 109637] AH02282: No slotmem from mod_heart monitor
[Thu Oct 12 07:02:26.290683 2023] [mpm_event:notice] [pid 109637:tid 109637] AH00489: Apache/2.4.53 (Rocky Linux) config ured -- resuming normal operations
[Thu Oct 12 07:02:26.220724 2023] [core:notice] [pid 109637:tid 109637] AH00049: Command line: '/usr/sbin/httpd -D FOREG ROUND'
[Thu Oct 12 07:02:26.220724 2023] [core:ror] [pid 109637:tid 109623] [d)Permission denied: [client 127.0.0.1:47686] A H00035: access to /test.html denied (filesystem path '/var/www/html/test.html') because search permissions are missing o n a component of the path
[Thu Oct 12 07:40:10.965630 2023] [mpm_event:notice] [pid 109637:tid 109637] AH00492: caught SIGWINCH, shutting down gracefully
[Thu Oct 12 07:40:12.124939 2023] [core:notice] [pid 111134:tid 111134] SELinux policy enabled; httpd running as context system_usystem_rittpd_t:s0
[Thu Oct 12 07:40:12.124939 2023] [suexec:notice] [pid 111134:tid 111134] AH01232: suEXEC mechanism enabled (wrapper: /u sr/sbin/suexec)
[Thu Oct 12 07:40:12.156790 2023] [mpm_event:notice] [pid 111134:tid 111134] AH02482: No slotmem from mod_heart monitor
[Thu Oct 12 07:40:12.155790 2023] [mpm_event:notice] [pid 111134:tid 111134] AH00499: Apache/2.4.53 (Rocky Linux) config ured -- resuming normal operations
[Thu Oct 12 07:40:12.155889 2023] [core:notice] [pid 111134:tid 111134] AH00094: Command line: '/usr/sbin/httpd -D FOREG (root@aldoro ~]#
```

Рис. 4.25: /var/log/http/error log

Рис. 4.26: /var/log/http/access log

```
[root@aldoro ~]# cat /var/log/audit/audit.log
type=DAEMON_START msg=audit(1697071700.305:9504); op=start ver=3.0.7 format=enriched kernel=5.14.0-284.11.1.elg_2.x86_64
auid=2294067295 pid=712 uid=0 ses=2494067295 subj=system_u:system_r:auditd_t:s0 res=successAUD="unset" UID="root"
type=SERVICE_START msg=audit(1697071700.311:5); pid=1 uid=0 auid=4294967295 ses=4294967295 subj=system_u:system_r:init_t
ss0 msg='unit=system_ojurnal-catalog-update comm="systemd" exe="/usr/lib/systemd/systemd/systemd" hostname=7 addr=? terminal=?
res=success'UID="root" AUID="unset"
type=CNDIG_CHANGE msg=audit(1697071700.355:6): op=set audit_backlog_limit=8192 old=64 auid=4294967295 ses=4294967295 bj=system_u:system_r:unconfined_service_t:s0 res=1AUID="unset"
type=SYSCALL msg=audit(1697071700.355:6): op=set audit_backlog_limit=8192 old=64 auid=4294967295 ses=4294967295 subj=system_u:system_r:unconfined_service_t:s0 res=1AUID="unset"
type=SYSCALL msg=audit(1697071700.355:6): arch=c000030 system_u:system_r:unconfined_service_t:s0 res=1AUID="unset"
type=SYSCALL msg=audit(1697071700.355:6): proctitle=2F7362696E2F617564697463746C002D52002F6574632F61756469742F61756469
742F72756C6573
type=CONFIG_CHANGE msg=audit(1697071700.355:7): op=set audit_failure=1 old=1 auid=4294967295 ses=4294967295 subj=system_u:system_r:unconfined_service_t:s0 res=1AUID="unset"
type=SYSCALL msg=audit(1697071700.355:7): arch=c000003e syscall=44 success=yes_exit=60 a0=3 al=7ff:04ff7720 a2=3c_a3=0 i
type=CONFIG_CHANGE msg=audit(1697071700.355:7): proctitle=2F7362696E2F617564697463746C002D52002F6574632F61756469744576054974576097457609745760974576097457609745760974576097457609745760974576097457600976795 yid=0 euid=0 suid=0 suid=0 sysd=0 sysd=
```

Рис. 4.27: /var/log/audit/audit.log

19. Выполните команду semanage port -a -t http_port_t -p tcp 81 После этого проверьте список портов командой semanage port -l | grep http_port_t (рис. 4.28). Добавление порта не производим, т.к. нам известно, что он и так уже добвлен - сразу смотрим список.

Порт 81 есть в списке.

```
[root@aldoro ~]# semanage port -a -t http_port_t -p tcp 81
ValueError: Port tcp/81 already defined
[root@aldoro ~]# swmanage port -l |grep http_port_t
bash: swmanage: command not found...
[root@aldoro ~]# semanage port -l |grep http_port_t
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port t tcp 5988
[root@aldoro ~]#
```

Рис. 4.28: Список портов

20. Попробуйте запустить веб-сервер Apache ещё раз. Поняли ли вы, почему он сейчас запустился, а в предыдущем случае не смог?

Рис. 4.29: Запуск веб-сервера

Сервер перезапустился также успешно, как и в тот раз, посколько оба раза порт 81 был в списке портов.

21. Верните контекст httpd_sys_content_t к файлу /var/www/html/ test.html: chcon -t httpd_sys_content_t /var/www/html/test.html (рис. 4.30).

После этого попробуйте получить доступ к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1:81/test.html (рис. 4.31).

Видим содержимое файла — слово «test».

```
[root@aldoro ~]# chcon -t httpd_sys_content_t /var/www/html/test.html
[root@aldoro ~]# ls -Z /var/www/html/test.html
unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/test.html
[root@aldoro ~]#
```

Рис. 4.30: Возвращаем контекст безопасности

Рис. 4.31: Получение доступа к файлу через веб-сервер

22. Исправьте обратно конфигурационный файл apache, вернув Listen 80 (рис. 4.32).

Рис. 4.32: Изменение прослушиваемого порта

23. Удалите привязку http_port_t к 81 порту: semanage port -d -t http_port_t -p tcp 81 и проверьте, что порт 81 удалён.

Мы не можем этого сделать, поскольку это была изначальная настройка системы. (рис. 4.33).

24. Удалите файл/var/www/html/test.html (рис.4.33):rm /var/www/html/test.html

```
[root@aldoro ~]# semanage port -d -t http_port_t -p tcp 81
ValueError: Port tcp/81 is defined in policy, cannot be deleted
[root@aldoro ~]# rm /var/www/html/test.html
rm: remove regular file '/var/www/html/test.html'? y
[root@aldoro ~]# ls /var/www/html
[root@aldoro ~]#
```

Рис. 4.33: Удаление файла

5 Выводы

Развила навыки администрирования ОС Linux. Получила первое практическое знакомство с технологией SELinux1. Проверила работу SELinx на практике совместно с веб-сервером Арасhe.

Список литературы