The Modular Group

Modular Forms

Ajay Prajapati

Indian Institute of Technology, Kanpur

January 31, 2024

Overview

Motivation

The Modular Group

Modular Functions

1 Motivation

2 The Modular Group

3 Modular Functions

Overview

Motivation

The Modular

Modular

1 Motivation

2 The Modular Group

3 Modular Functions

The Modular Group They are a rich classes of holomorphic functions on upper half plane with deep and rich symmetries.

The Modular Group They are a rich classes of holomorphic functions on upper half plane with deep and rich symmetries.

They were first explored in relation to elliptic integrals in early 19^{th} century. (Abel, Jacobi)

The Modulai Group

Group Modular Functions They are a rich classes of holomorphic functions on upper half plane with deep and rich symmetries.

- They were first explored in relation to elliptic integrals in early 19^{th} century. (Abel, Jacobi)
- Z Klein, Dedekind and others studied it at end of 19^{th} century. Dedekind defined his η -fuction

$$\eta(\tau) := q^{\frac{1}{24}} \prod_{n>1} (1 - q^n)$$

The Modular Group

They are a rich classes of holomorphic functions on upper half plane with deep and rich symmetries.

- They were first explored in relation to elliptic integrals in early 19^{th} century. (Abel, Jacobi)
- Z Klein, Dedekind and others studied it at end of 19^{th} century. Dedekind defined his η -fuction

$$\eta(\tau) := q^{\frac{1}{24}} \prod_{n \ge 1} (1 - q^n)$$

3 Ramanujan defined his τ function:

$$\Delta(\tau) := q \prod_{n>1} (1 - q^n)^{24}$$

and conjectured three results.

The Modular Group

They are a rich classes of holomorphic functions on upper half plane with deep and rich symmetries.

- They were first explored in relation to elliptic integrals in early 19^{th} century. (Abel, Jacobi)
- Z Klein, Dedekind and others studied it at end of 19^{th} century. Dedekind defined his η -fuction

$$\eta(\tau) := q^{\frac{1}{24}} \prod_{n \ge 1} (1 - q^n)$$

3 Ramanujan defined his τ function:

$$\Delta(\tau) := q \prod_{n>1} (1 - q^n)^{24}$$

- and conjectured three results. Hecke, Atkin and Lehner developed this theory further.
- Elliptic curves enter into the picture in 1960's. (Taniyama-Shimura-Weil conjecture)

Uses of Modular forms

Motivation

The Modular Group

Modular Functions

1 In solving congruent number problem

Uses of Modular forms

Motivation

The Modular

Modular Functions

- 1 In solving congruent number problem
- In solving sphere packing problem in dimension 8 and 24. (Maryna Viazovska)

Uses of Modular forms

Motivation

The Modular

Modular

- In solving congruent number problem
- In solving sphere packing problem in dimension 8 and 24. (Maryna Viazovska)
- 3 In solving the Fermat's Last theorem

Overview

Mativation

The Modular Group

Modular Functions

1 Motivation

2 The Modular Group

3 Modular Functions

KALLEY CO.

The Modular Group

Modular Functions The group $\mathrm{SL}_2(\mathbb{R})$ acts on Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ as:

$$M \cdot \tau = \frac{a\tau + b}{c\tau + d} \text{ for } \tau \in \hat{\mathbb{C}}$$

The Modular

Group Modular Functions The group $\mathrm{SL}_2(\mathbb{R})$ acts on Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ as:

$$M \cdot \tau = \frac{a \tau + b}{c \tau + d}$$
 for $\tau \in \hat{\mathbb{C}}$

The Poincare upper half plane

$$\mathcal{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}$$

is stable under the above action and thus gives an action of \mathcal{H} .

The Modular

Modular Function The group $\mathrm{SL}_2(\mathbb{R})$ acts on Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ as:

$$M \cdot \tau = \frac{a\tau + b}{c\tau + d} \text{ for } \tau \in \hat{\mathbb{C}}$$

The Poincare upper half plane

$$\mathcal{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}$$

is stable under the above action and thus gives an action of \mathcal{H} .

The element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ acts trivially on \mathcal{H} . Hence we can consider the group $\mathrm{PSL}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})/\{\pm I\}$.

Definition

The group $G := \mathrm{PSL}_2(\mathbb{Z}) = \mathrm{SL}_2(\mathbb{Z})/\{\pm I\}$ is called the modular group.

The Modular Group

The group $\mathrm{SL}_2(\mathbb{R})$ acts on Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ as:

$$M \cdot \tau = \frac{a\tau + b}{c\tau + d} \text{ for } \tau \in \hat{\mathbb{C}}$$

The Poincare upper half plane

$$\mathcal{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}$$

is stable under the above action and thus gives an action of \mathcal{H} .

The element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ acts trivially on $\mathcal H$. Hence we can consider the group $\mathrm{PSL}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})/\{\pm I\}.$

Definition

The group $G := \mathrm{PSL}_2(\mathbb{Z}) = \mathrm{SL}_2(\mathbb{Z})/\{\pm I\}$ is called the modular group.

Notation: The image of an element $g \in \mathrm{SL}_2(\mathbb{Z})$ in $\mathrm{PSL}_2(\mathbb{Z})$ will be denoted by the same symbol g. Let

$$T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Fundamental Domain of the Modular Group

Mativation

The Modular Group

Modular Function Let us define the set

$$\mathcal{D}=\{\tau\in\mathcal{H}:|Re(\tau)|\leq 1/2,|\tau|\geq 1\}$$
 and also define $Y(1)=\mathrm{SL}_2(\mathbb{Z})\backslash\mathcal{H}.$

Fundamental Domain of the Modular Group

Motivation

The Modular Group

Modulai Functio Let us define the set

$$\mathcal{D}=\{\tau\in\mathcal{H}:|Re(\tau)|\leq 1/2,|\tau|\geq 1\}$$
 and also define $Y(1)=\mathrm{SL}_2(\mathbb{Z})\backslash\mathcal{H}.$

Figure: Fundamental domain of $SL_2(\mathbb{Z})$

The Modular Group

Modular Functions

Theorem

1 For every $\tau \in \mathcal{H}$, there exists $g \in G$ such that $g\tau \in \mathcal{D}$.

Theorem

- **1** For every $\tau \in \mathcal{H}$, there exists $g \in G$ such that $g\tau \in \mathcal{D}$.
- 2 Suppose τ_1 and τ_2 are distinct points in $\mathcal D$ and that $\tau_2=\gamma\tau_1$ for some $\gamma\in \mathrm{SL}_2(\mathbb Z)$. Then either
 - **1** $Re(\tau_1) = \pm 1/2$ and $\tau_2 = \tau_1 \mp 1$, or
 - $|\tau_1|$ and $\tau_2 = -1/\tau_1$.

Theorem

- **1** For every $\tau \in \mathcal{H}$, there exists $g \in G$ such that $g\tau \in \mathcal{D}$.
- 2 Suppose τ_1 and τ_2 are distinct points in $\mathcal D$ and that $\tau_2 = \gamma \tau_1$ for some $\gamma \in \mathrm{SL}_2(\mathbb Z)$. Then either

 - $|\tau_1|$ and $\tau_2 = -1/\tau_1$.
- \blacksquare Let $\tau \in \mathcal{D}$ and let

$$I(\tau) := \{ g \mid g \in G, g\tau = \tau \}$$

be the stabilizer of τ in G.

Theorem

- **1** For every $\tau \in \mathcal{H}$, there exists $g \in G$ such that $g\tau \in \mathcal{D}$.
- 2 Suppose τ_1 and τ_2 are distinct points in \mathcal{D} and that $\tau_2 = \gamma \tau_1$ for some $\gamma \in \mathrm{SL}_2(\mathbb{Z})$. Then either
 - **1** $Re(\tau_1) = \pm 1/2$ and $\tau_2 = \tau_1 \mp 1$, or
 - $|\tau_1|$ and $\tau_2 = -1/\tau_1$.
- **I** Let $\tau \in \mathcal{D}$ and let

$$I(\tau) := \{ g \mid g \in G, g\tau = \tau \}$$

be the stabilizer of τ in G. One has $I(\tau) = \{1\}$ except in the following three cases:

- I $\tau = i$, in which case $I(\tau)$ is the group of order 2 generated by S;
- 2 $au=
 ho=e^{2\pi i/3}$, in which case I(au) is the group of order 3 generated by ST
- 3 $\tau = -\bar{\rho} = e^{\pi i/3}$, in which case $I(\tau)$ is the group of order 3 generated by TS.

The Modular Group

Modular Functions

Corollary

The natural projection map $\pi:\mathcal{D}\to Y(1)$ is surjective.

The Modular Group

Modular Function

Corollary

The natural projection map $\pi:\mathcal{D}\to Y(1)$ is surjective.

Proof(1)

Let $G' = \langle S, T \rangle$. Given any $\tau \in \mathcal{H}$, we show that there exists $g' \in G'$ such that $g'\tau \in \mathcal{D}$.

The Modular

Modular Functions

Corollary

The natural projection map $\pi: \mathcal{D} \to Y(1)$ is surjective.

- Let $G' = \langle S, T \rangle$. Given any $\tau \in \mathcal{H}$, we show that there exists $g' \in G'$ such that $g'\tau \in \mathcal{D}$.
- $\textbf{2} \ \text{If} \ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G' \text{, then } \mathrm{Im}(gz) = \frac{\mathrm{Im}(z)}{|cz+d|^2}.$

NA - Att - Att - A

The Modular

Modular Function Corollary

The natural projection map $\pi: \mathcal{D} \to Y(1)$ is surjective.

- Let $G' = \langle S, T \rangle$. Given any $\tau \in \mathcal{H}$, we show that there exists $g' \in G'$ such that $g'\tau \in \mathcal{D}$.
- If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G'$, then $\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$.
- Since $c, d \in \mathbb{Z}$, the numbers of pairs (c, d) such that |cz + d| is less than a given number is finite. This shows that there exists $g \in G'$ such that $\operatorname{Im}(gz)$ is maximum.

NA - Att - Att - A

The Modular

Modular Function

Corollary

The natural projection map $\pi: \mathcal{D} \to Y(1)$ is surjective.

- Let $G' = \langle S, T \rangle$. Given any $\tau \in \mathcal{H}$, we show that there exists $g' \in G'$ such that $g'\tau \in \mathcal{D}$.
- 2 If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G'$, then $\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$.
- Since $c, d \in \mathbb{Z}$, the numbers of pairs (c, d) such that |cz + d| is less than a given number is finite. This shows that there exists $g \in G'$ such that $\mathrm{Im}(gz)$ is maximum.
- 4 Choose now an integer n such that T^ngz has real part between $-\frac{1}{2}$ and $+\frac{1}{2}$. The element $z'=T^ngz\in\mathcal{D}$:

The Modular

Modulai Function

Corollary

The natural projection map $\pi: \mathcal{D} \to Y(1)$ is surjective.

- Let $G' = \langle S, T \rangle$. Given any $\tau \in \mathcal{H}$, we show that there exists $g' \in G'$ such that $g'\tau \in \mathcal{D}$.
- 2 If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G'$, then $\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$.
- Since $c, d \in \mathbb{Z}$, the numbers of pairs (c, d) such that |cz + d| is less than a given number is finite. This shows that there exists $g \in G'$ such that $\mathrm{Im}(gz)$ is maximum.
- 4 Choose now an integer n such that T^ngz has real part between $-\frac{1}{2}$ and $+\frac{1}{2}$. The element $z'=T^ngz\in\mathcal{D}$:
- Otherwise |z'| < 1, the element -1/z' would have an imaginary part strictly larger than $\operatorname{Im}(z')$,

The Modular Group

Modular Functions

Proof (2)

 $\textbf{1} \ \, \mathsf{Let} \,\, z \in \mathcal{D} \,\, \mathsf{and} \,\, \mathsf{let} \,\, g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \,\, \mathsf{such that} \,\, gz \in \mathcal{D}.$

The Modular Group

Modular Functions

- $\textbf{1} \ \, \mathsf{Let} \,\, z \in \mathcal{D} \,\, \mathsf{and} \,\, \mathsf{let} \,\, g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \,\, \mathsf{such that} \,\, gz \in \mathcal{D}.$
- 2 We may suppose that $\operatorname{Im}(gz) \geq \operatorname{Im}(z)$, i.e. that $|cz+d| \leq 1$.

The Modular Group

Modular Functions

- 2 We may suppose that $\mathrm{Im}(gz) \geq \mathrm{Im}(z)$, i.e. that $|cz+d| \leq 1$.
- \blacksquare This is impossible if $|c| \geq 2$, leaving then the cases c = 0, 1, -1.

The Modular

Modular Function

- Let $z \in \mathcal{D}$ and let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $gz \in \mathcal{D}$.
- 2 We may suppose that $\operatorname{Im}(gz) \geq \operatorname{Im}(z)$, i.e. that $|cz+d| \leq 1$.
- \blacksquare This is impossible if $|c| \geq 2$, leaving then the cases c = 0, 1, -1.
- If c=0, we have $d=\pm 1$ and g is the translation by $\pm b$. Since R(z) and R(gz) are both between $-\frac{1}{2}$ and $\frac{1}{2}$, this implies either b=0 and g=1 or $b=\pm 1$ in which case one of the numbers R(z) and R(gz) is $\frac{1}{2}$ and the other is $-\frac{1}{2}$.

The Modular

Modular Function

- Let $z \in \mathcal{D}$ and let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $gz \in \mathcal{D}$.
- 2 We may suppose that $\mathrm{Im}(gz) \geq \mathrm{Im}(z)$, i.e. that $|cz+d| \leq 1$.
- This is impossible if $|c| \geq 2$, leaving then the cases c = 0, 1, -1.
- 4 If c=0, we have $d=\pm 1$ and g is the translation by $\pm b$. Since R(z) and R(gz) are both between $-\frac{1}{2}$ and $\frac{1}{2}$, this implies either b=0 and g=1 or $b=\pm 1$ in which case one of the numbers R(z) and R(gz) is $\frac{1}{2}$ and the other is $-\frac{1}{2}$.
- If c=1 then d=0 except if $z=\rho$ (resp. $-\bar{\rho}$) in which case we can have d=0,1 (resp. d=0,-1).

The Modular Group

Modular Function

- Let $z \in \mathcal{D}$ and let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $gz \in \mathcal{D}$.
- 2 We may suppose that $\mathrm{Im}(gz) \geq \mathrm{Im}(z)$, i.e. that $|cz+d| \leq 1$.
- **3** This is impossible if $|c| \geq 2$, leaving then the cases c = 0, 1, -1.
- 4 If c=0, we have $d=\pm 1$ and g is the translation by $\pm b$. Since R(z) and R(gz) are both between $-\frac{1}{2}$ and $\frac{1}{2}$, this implies either b=0 and g=1 or $b=\pm 1$ in which case one of the numbers R(z) and R(gz) is $\frac{1}{2}$ and the other is $-\frac{1}{2}$.
- If c=1 then d=0 except if $z=\rho$ (resp. $-\bar{\rho}$) in which case we can have d=0,1 (resp. d=0,-1).
- The case d=0 gives $|z|\leq 1$ hence |z|=1; on the other hand, ad-bc=1 implies b=-1, hence $gz=a-1/z\implies a=0$ except if $R(z)=\pm \frac{1}{2}$, i.e. if $z=\rho$ or $-\tilde{\rho}$ in which case we have a=0,-1 or a=0,1.

Martine Atam

The Modular Group

Modular Function

- 2 We may suppose that $\mathrm{Im}(gz) \geq \mathrm{Im}(z)$, i.e. that $|cz+d| \leq 1$.
- **3** This is impossible if $|c| \geq 2$, leaving then the cases c = 0, 1, -1.
- 4 If c=0, we have $d=\pm 1$ and g is the translation by $\pm b$. Since R(z) and R(gz) are both between $-\frac{1}{2}$ and $\frac{1}{2}$, this implies either b=0 and g=1 or $b=\pm 1$ in which case one of the numbers R(z) and R(gz) is $\frac{1}{2}$ and the other is $-\frac{1}{2}$.
- If c=1 then d=0 except if $z=\rho$ (resp. $-\bar{\rho}$) in which case we can have d=0,1 (resp. d=0,-1).
- **1** The case d=0 gives $|z|\leq 1$ hence |z|=1; on the other hand, ad-bc=1 implies b=-1, hence $gz=a-1/z\implies a=0$ except if $R(z)=\pm \frac{1}{2}$, i.e. if $z=\rho$ or $-\tilde{\rho}$ in which case we have a=0,-1 or a=0,1.
- When $z = \rho$: d = 1 gives a b = 1 and $q\rho = a 1/(1 + \rho) = a + \rho$, hence a = 0, 1;

Martination

The Modular Group

Modular Function Similarly when $z = -\bar{\rho}, d = -1$.

Finally the case c=-1 leads to the case c=1 by changing the signs of a,b,c,d (which does not change g, viewed as an element of G).

The Modular Group

Modular Functions Similarly when $z = -\bar{\rho}, d = -1$.

Finally the case c=-1 leads to the case c=1 by changing the signs of a,b,c,d (which does not change g, viewed as an element of G).

Theorem

The modular group is generated by S and T. i.e., $G = \langle S, T \rangle$

The Modular Group

Modular Function Similarly when $z = -\bar{\rho}, d = -1$.

Finally the case c=-1 leads to the case c=1 by changing the signs of a,b,c,d (which does not change g, viewed as an element of G).

Theorem

The modular group is generated by S and T. i.e., $G = \langle S, T \rangle$

Proof

1 Let $g \in G$. Choose a point z_0 interior to \mathcal{D} , and let $z = gz_0$.

The Modular Group

Modular Function Similarly when $z = -\bar{\rho}, d = -1$.

Finally the case c=-1 leads to the case c=1 by changing the signs of a,b,c,d (which does not change g, viewed as an element of G).

Theorem

The modular group is generated by S and T. i.e., $G = \langle S, T \rangle$

Proof

- **1** Let $g \in G$. Choose a point z_0 interior to \mathcal{D} , and let $z = gz_0$.
- **2** There exists $g' \in G'$ such that $g'z \in \mathcal{D}$. The points z_0 and $g'z = g'gz_0$ of \mathcal{D} are congruent modulo G, and one of them is interior to \mathcal{D} .

Martine Atam

The Modular Group

Modular Function Similarly when $z = -\bar{\rho}, d = -1$.

Finally the case c=-1 leads to the case c=1 by changing the signs of a,b,c,d (which does not change g, viewed as an element of G).

Theorem

The modular group is generated by S and T. i.e., $G = \langle S, T \rangle$

Proof

- **1** Let $g \in G$. Choose a point z_0 interior to \mathcal{D} , and let $z = gz_0$.
- There exists $g' \in G'$ such that $g'z \in \mathcal{D}$. The points z_0 and $g'z = g'gz_0$ of \mathcal{D} are congruent modulo G, and one of them is interior to \mathcal{D} .
- By (2) and (3), it follows that these points coincide and that q'q=1. Hence we have $q\in G'$.

Overview

Motivation

The Modular

Modular Functions

1 Motivation

2 The Modular Group

3 Modular Functions

The Modular

Modular Functions

Definition

Let k be an integer. We say a function $f:\mathcal{H}\longrightarrow \widehat{\mathbb{C}}$ is weakly modular of weight 2k if f is meromorphic on the half plane \mathcal{H} and verifies the relation

$$f(\tau) = (c\tau + d)^{-2k} f\left(\frac{a\tau + b}{c\tau + d}\right) \quad \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

The Modular Group

Modular Functions

Definition

Let k be an integer. We say a function $f:\mathcal{H}\longrightarrow\widehat{\mathbb{C}}$ is weakly modular of weight 2k if f is meromorphic on the half plane \mathcal{H} and verifies the relation

$$f(\tau) = (c\tau + d)^{-2k} f\left(\frac{a\tau + b}{c\tau + d}\right) \quad \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Proposition

Let f be meromorphic on \mathcal{H} . The function f is a weakly modular function of weight $2k \iff$ it satisfies the two relations:

$$f(\tau+1) = f(\tau)$$

$$f(-1/\tau) = \tau^{2k} f(\tau)$$
(1)

Proof

Let
$$g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$$
 We have
$$\frac{d(gz)}{dz}=\frac{1}{(cz+d)^2}$$

$$\frac{d(gz)}{dz} = \frac{1}{(cz+d)^2}$$

Proof

Let
$$g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$$
 We have
$$\frac{d(gz)}{dz}=\frac{1}{(cz+d)^2}$$

$$\frac{d(gz)}{dz} = \frac{1}{(cz+d)^2}$$

The above relation can then be written:

$$\frac{f(gz)}{f(z)} = \left(\frac{d(gz)}{dz}\right)^{-k}$$

Proof

Let
$$g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$$
 We have
$$\frac{d(gz)}{dz}=\frac{1}{(cz+d)^2}$$

$$\frac{d(gz)}{dz} = \frac{1}{(cz+d)^2}$$

2 The above relation can then be written:

$$\frac{f(gz)}{f(z)} = \left(\frac{d(gz)}{dz}\right)^{-k}$$

or

$$f(gz)d(gz)^k = f(z)dz^k$$

The Modu Group

Modular Functions

Proof

Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$
. We have

$$\frac{d(gz)}{dz} = \frac{1}{(cz+d)^2}$$

2 The above relation can then be written:

$$\frac{f(gz)}{f(z)} = \left(\frac{d(gz)}{dz}\right)^{-k}$$

or

$$f(gz)d(gz)^k = f(z)dz^k$$

It means that the "differential form of weight k", $f(z)dz^k$ is invariant under G.

Proof

Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$
. We have

$$\frac{d(gz)}{dz} = \frac{1}{(cz+d)^2}$$

The above relation can then be written:

$$\frac{f(gz)}{f(z)} = \left(\frac{d(gz)}{dz}\right)^{-k}$$

or

$$f(gz)d(gz)^k = f(z)dz^k$$

- It means that the "differential form of weight k", $f(z)dz^k$ is invariant under G.
- 4 Since G is generated by the elements S and T, it suffices to check the invariance by S and by T.

The Modular Group

Modular Functions Suppose that $f(\tau+1)=f(\tau)$. Let D be the open unit disk in $\mathbb C$ and let $D'=D-\{0\}$. The function $\tau\mapsto e^{2\pi i \tau}$ takes $\mathcal H$ to D' and is also periodic. Thus corresponding to f, the function $g:D'\to\mathbb C$ where

$$g(q) = f\left(\frac{\log(q)}{2\pi i}\right) \tag{2}$$

is well defined and $f(\tau) = g(e^{2\pi i \tau}).$

The Modular Group

Modular Functions Suppose that $f(\tau+1)=f(\tau)$. Let D be the open unit disk in $\mathbb C$ and let $D'=D-\{0\}$. The function $\tau\mapsto e^{2\pi i \tau}$ takes $\mathcal H$ to D' and is also periodic. Thus corresponding to f, the function $g:D'\to\mathbb C$ where

$$g(q) = f\left(\frac{\log(q)}{2\pi i}\right) \tag{2}$$

is well defined and $f(\tau) = g(e^{2\pi i \tau})$.

Also g is meromorphic on D'. Hence g has a Laurent series expansion

$$f(q) = \sum_{-\infty}^{+\infty} a_n q^n, \quad q \in D'.$$
 (3)

The Modular Group

Modular Functions Suppose that $f(\tau+1)=f(\tau)$. Let D be the open unit disk in $\mathbb C$ and let $D'=D-\{0\}$. The function $\tau\mapsto e^{2\pi i \tau}$ takes $\mathcal H$ to D' and is also periodic. Thus corresponding to f, the function $g:D'\to\mathbb C$ where

$$g(q) = f\left(\frac{\log(q)}{2\pi i}\right) \tag{2}$$

is well defined and $f(\tau) = g(e^{2\pi i \tau})$.

Also g is meromorphic on D'. Hence g has a Laurent series expansion

$$f(q) = \sum_{-\infty}^{+\infty} a_n q^n, \quad q \in D'.$$
 (3)

The relation $|q|=e^{2\pi\operatorname{Im}(\tau)}$ shows that $q\to 0$ as $Im(\tau)\to \infty$. So we say f meromorphic at infinity if g extends meromorphically to the puncture point, q=0.

Definition

A weakly modular function is called modular if it is meromorphic at infinity.

The Modula Group

Modular Functions Suppose that $f(\tau+1)=f(\tau)$. Let D be the open unit disk in $\mathbb C$ and let $D'=D-\{0\}$. The function $\tau\mapsto e^{2\pi i \tau}$ takes $\mathcal H$ to D' and is also periodic. Thus corresponding to f, the function $g:D'\to\mathbb C$ where

$$g(q) = f\left(\frac{\log(q)}{2\pi i}\right) \tag{2}$$

is well defined and $f(\tau) = g(e^{2\pi i \tau})$.

Also g is meromorphic on D'. Hence g has a Laurent series expansion

$$f(q) = \sum_{-\infty}^{+\infty} a_n q^n, \quad q \in D'.$$
 (3)

The relation $|q|=e^{2\pi\operatorname{Im}(\tau)}$ shows that $q\to 0$ as $Im(\tau)\to \infty$. So we say f meromorphic at infinity if g extends meromorphically to the puncture point, q=0.

Definition

A weakly modular function is called modular if it is meromorphic at infinity.

When f is holomorphic at infinity, we set $f(\infty) := \tilde{f}(0)$.

The Modular Group Modular

Functions

Definition

A modular function which is holomorphic everywhere (including infinity) is called a modular form; if such a function is zero at infinity, it is called a cusp form.

Motivation

The Modular

Modular Functions

Definition

A lattice in a finite dimensional $\mathbb R$ vector space V is a subgroup Γ of V verifying one of the following equivalent conditions:

- **1** Γ is discrete and V/Γ is compact;
- Γ is discrete and generates the \mathbb{R} -vector space V;
- There exists an \mathbb{R} -basis (e_1,\ldots,e_n) of V which is a \mathbb{Z} -basis of Γ (i.e. $\Gamma=\mathbb{Z}e_1\oplus\ldots\oplus\mathbb{Z}e_n$)

Motivation

The Modular

Modular Functions

Definition

A lattice in a finite dimensional $\mathbb R$ vector space V is a subgroup Γ of V verifying one of the following equivalent conditions:

- **1** Γ is discrete and V/Γ is compact;
- Γ is discrete and generates the \mathbb{R} -vector space V;
- There exists an \mathbb{R} -basis (e_1,\ldots,e_n) of V which is a \mathbb{Z} -basis of Γ (i.e. $\Gamma=\mathbb{Z}e_1\oplus\ldots\oplus\mathbb{Z}e_n$)

We define

 $\mathcal{R} := \{\Lambda : \Lambda \text{ is a lattice of } \mathbb{C} \text{ considered as an } \mathbb{R} - \text{vector space}\}$

$$\mathcal{M} := \{(\omega_1, \omega_2) : \omega_1, \omega_2 \in \mathbb{C}^{\times}, \quad \operatorname{Im}(\omega_1/\omega_2) > 0\}$$

Motivation

The Modular

Modular Functions

Definition

A lattice in a finite dimensional $\mathbb R$ vector space V is a subgroup Γ of V verifying one of the following equivalent conditions:

- **1** Γ is discrete and V/Γ is compact;
- Γ is discrete and generates the \mathbb{R} -vector space V;
- There exists an \mathbb{R} -basis (e_1,\ldots,e_n) of V which is a \mathbb{Z} -basis of Γ (i.e. $\Gamma=\mathbb{Z}e_1\oplus\ldots\oplus\mathbb{Z}e_n$)

We define

$$\mathcal{R} := \{\Lambda : \Lambda \text{ is a lattice of } \mathbb{C} \text{ considered as an } \mathbb{R} - \text{vector space}\}$$

$$\mathcal{M} := \{(\omega_1, \omega_2) : \omega_1, \omega_2 \in \mathbb{C}^{\times}, \quad \operatorname{Im}(\omega_1/\omega_2) > 0\}$$

We have a map

$$\mathcal{M} \to \mathcal{R}, \quad (\omega_1, \omega_2) \longmapsto \Gamma(\omega_1, \omega_2) := \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$$

which is clearly surjective.

Motivation

The Modular

Modular Functions

Definition

A lattice in a finite dimensional $\mathbb R$ vector space V is a subgroup Γ of V verifying one of the following equivalent conditions:

- **1** Γ is discrete and V/Γ is compact;
- Γ is discrete and generates the \mathbb{R} -vector space V;
- There exists an \mathbb{R} -basis (e_1,\ldots,e_n) of V which is a \mathbb{Z} -basis of Γ (i.e. $\Gamma=\mathbb{Z}e_1\oplus\ldots\oplus\mathbb{Z}e_n$)

We define

$$\mathcal{R} := \{ \Lambda : \Lambda \text{ is a lattice of } \mathbb{C} \text{ considered as an } \mathbb{R} - \text{vector space} \}$$

$$\mathcal{M} := \{(\omega_1, \omega_2) : \omega_1, \omega_2 \in \mathbb{C}^{\times}, \operatorname{Im}(\omega_1/\omega_2) > 0\}$$

We have a map

$$\mathcal{M} \to \mathcal{R}, \quad (\omega_1, \omega_2) \longmapsto \Gamma(\omega_1, \omega_2) := \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$$

which is clearly surjective.

Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
 and let $(\omega_1, \omega_2) \in \mathcal{M}$. We put

$$\omega_1' = a\omega_1 + b\omega_2$$
 and $\omega_2' = c\omega_1 + d\omega_2$

18 / 28

The Modular

Modular Functions Moreover, if we set $\tau = \omega_1/\omega_2$ and $\tau' = \omega_1'/\omega_2'$, we have

$$\tau' = \frac{a\tau + b}{c\tau + d} = g\tau$$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω'_1, ω'_2) belongs to \mathcal{M} .

The Modular Group

Modular Functions Moreover, if we set $\tau = \omega_1/\omega_2$ and $\tau' = \omega_1'/\omega_2'$, we have

$$\tau' = \frac{a\tau + b}{c\tau + d} = g\tau$$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω'_1, ω'_2) belongs to \mathcal{M} .

Proposition

For two elements of \mathcal{M} to define the same lattice it is necessary and sufficient that they are congruent modulo $\mathrm{SL}_2(\mathbb{Z})$.

The Modular Group

Modular Functions Moreover, if we set $\tau = \omega_1/\omega_2$ and $\tau' = \omega_1'/\omega_2'$, we have

$$\tau' = \frac{a\tau + b}{c\tau + d} = g\tau$$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω'_1, ω'_2) belongs to \mathcal{M} .

Proposition

For two elements of \mathcal{M} to define the same lattice it is necessary and sufficient that they are congruent modulo $\mathrm{SL}_2(\mathbb{Z})$.

Proof

1 (←) Done.

The Modular Group

Modular Functions Moreover, if we set $\tau = \omega_1/\omega_2$ and $\tau' = \omega_1'/\omega_2'$, we have

$$\tau' = \frac{a\tau + b}{c\tau + d} = g\tau$$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω_1', ω_2') belongs to \mathcal{M} .

Proposition

For two elements of \mathcal{M} to define the same lattice it is necessary and sufficient that they are congruent modulo $\mathrm{SL}_2(\mathbb{Z})$.

Proof

- **1** (←) Done.
- $2 \iff)$

The Modular Group

Modular Functions Moreover, if we set $\tau=\omega_1/\omega_2$ and $\tau'=\omega_1'/\omega_2'$, we have $\tau'=\frac{a\tau+b}{c\tau+d}=g\tau$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω_1', ω_2') belongs to \mathcal{M} .

Proposition

For two elements of \mathcal{M} to define the same lattice it is necessary and sufficient that they are congruent modulo $\mathrm{SL}_2(\mathbb{Z})$.

Proof

- **1** (←) Done.
- (\Longrightarrow)

Hence $\mathcal{R} \cong \mathcal{M}/\operatorname{SL}_2(\mathbb{Z})$. Make now \mathbb{C}^* act on \mathcal{R} (resp. on \mathcal{M}) by: $\Gamma \longmapsto \lambda \Gamma$ (resp. $(\omega_1, \omega_2) \mapsto (\lambda \omega_1, \lambda \omega_2)$), $\lambda \in \mathbb{C}^*$

Functions

Modular

Moreover, if we set $\tau = \omega_1/\omega_2$ and $\tau' = \omega_1'/\omega_2'$, we have

$$\tau' = \frac{a\tau + b}{c\tau + d} = g\tau$$

This shows that $\operatorname{Im}(\tau') > 0$, hence that (ω'_1, ω'_2) belongs to \mathcal{M} .

Proposition

For two elements of \mathcal{M} to define the same lattice it is necessary and sufficient that they are congruent modulo $SL_2(\mathbb{Z})$.

Proof

- $1 (\Leftarrow) Done.$
- $2 \iff)$

Hence $\mathcal{R} \cong \mathcal{M}/\operatorname{SL}_2(\mathbb{Z})$. Make now \mathbb{C}^* act on \mathcal{R} (resp. on \mathcal{M}) by: $\Gamma \longmapsto \lambda \Gamma$ (resp. $(\omega_1, \omega_2) \mapsto (\lambda \omega_1, \lambda \omega_2)$), $\lambda \in \mathbb{C}^*$

The quotient \mathcal{M}/\mathbb{C}^* is identified with \mathcal{H} by $(\omega_1, \omega_2) \mapsto z = \omega_1/\omega_2$, and this identification transforms the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathcal{M} into that of $G = \mathrm{SL}_2(\mathbb{Z})/\{\pm 1\}$ on \mathcal{H} . 4 - 1 - 4 - 1 - 4 - 5 - 4 - 5 - 5

Martinetta

The Modular Group

Modular Functions

Proposition

The map $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ gives by passing to the quotient, a bijection of \mathcal{R}/\mathbb{C}^* onto \mathcal{H}/G . (Thus, an element of \mathcal{H}/G can be identified with a lattice of \mathbb{C} defined up to a homothety.)

Martinetta

The Modular Group

Modular Functions

Proposition

The map $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ gives by passing to the quotient, a bijection of \mathcal{R}/\mathbb{C}^* onto \mathcal{H}/G . (Thus, an element of \mathcal{H}/G can be identified with a lattice of $\mathbb C$ defined up to a homothety.)

Remark- Associate to a lattice Λ of \mathbb{C} the elliptic curve $E_{\Gamma} = \mathbb{C}/\Gamma$.

Mativation

The Modulai Group

Modular Functions

Proposition

The map $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ gives by passing to the quotient, a bijection of \mathcal{R}/\mathbb{C}^* onto \mathcal{H}/G . (Thus, an element of \mathcal{H}/G can be identified with a lattice of \mathbb{C} defined up to a homothety.)

Remark- Associate to a lattice Λ of $\mathbb C$ the elliptic curve $E_{\Gamma} = \mathbb C/\Gamma$. **Claim:** Two lattices Λ and Λ' define isomorphic elliptic curves \iff they are homothetic.

Motivation

The Modula Group

Modular Functions

Proposition

The map $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ gives by passing to the quotient, a bijection of \mathcal{R}/\mathbb{C}^* onto \mathcal{H}/G . (Thus, an element of \mathcal{H}/G can be identified with a lattice of $\mathbb C$ defined up to a homothety.)

Remark- Associate to a lattice Λ of $\mathbb C$ the elliptic curve $E_{\Gamma} = \mathbb C/\Gamma$. **Claim:** Two lattices Λ and Λ' define isomorphic elliptic curves \iff they are homothetic.

Theorem [Diamond and Shurman 1.3.2]

Suppose $\varphi: \mathbb{C}/\Lambda \longrightarrow \mathbb{C}/\Lambda'$ is a holomorphic map between complex tori. Then there exist complex numbers m,b with $m\Lambda \subset \Lambda'$ such that $\varphi(z+\Lambda)=mz+b+\Lambda'$.

Mativation

The Modula Group Modular

Functions

Proposition

The map $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ gives by passing to the quotient, a bijection of \mathcal{R}/\mathbb{C}^* onto \mathcal{H}/G . (Thus, an element of \mathcal{H}/G can be identified with a lattice of $\mathbb C$ defined up to a homothety.)

Remark- Associate to a lattice Λ of $\mathbb C$ the elliptic curve $E_{\Gamma} = \mathbb C/\Gamma$. **Claim:** Two lattices Λ and Λ' define isomorphic elliptic curves \iff they are homothetic.

Theorem [Diamond and Shurman 1.3.2]

Suppose $\varphi: \mathbb{C}/\Lambda \longrightarrow \mathbb{C}/\Lambda'$ is a holomorphic map between complex tori. Then there exist complex numbers m,b with $m\Lambda \subset \Lambda'$ such that $\varphi(z+\Lambda)=mz+b+\Lambda'$.

This gives a third description of $\mathcal{H}/G = \mathcal{R}/\mathbb{C}^*$: it is the set of isomorphism classes of elliptic curves.

20 / 28

The Modular

Modular Functions

Proof

lacktriangledown We can lift arphi to a holomorphic map $ilde{arphi}:\mathbb{C}\longrightarrow\mathbb{C}$ such that

commutes.

Martina

The Modular

Modular Functions

Proof

lacksquare We can lift φ to a holomorphic map $\tilde{\varphi}:\mathbb{C}\longrightarrow\mathbb{C}$ such that

$$\begin{array}{ccc}
\mathbb{C} & \stackrel{\tilde{\varphi}}{\longrightarrow} \mathbb{C} \\
\downarrow & & \downarrow \\
\frac{\mathbb{C}}{\Lambda} & \stackrel{\varphi}{\longrightarrow} & \frac{\mathbb{C}}{\Lambda'}
\end{array}$$

commutes.

2 Consider for any $\lambda \in \Lambda$ the function

$$f_{\lambda}(z) = \tilde{\varphi}(z + \lambda) - \tilde{\varphi}(z).$$

Since $\tilde{\varphi}$ lifts a map between the quotients, the continuous function f_{λ} maps to the discrete set Λ' and is therefore constant.

Proof

lacksquare We can lift φ to a holomorphic map $\tilde{\varphi}:\mathbb{C}\longrightarrow\mathbb{C}$ such that

$$\begin{array}{ccc}
\mathbb{C} & \stackrel{\tilde{\varphi}}{\longrightarrow} \mathbb{C} \\
\downarrow & & \downarrow \\
\frac{\mathbb{C}}{\Lambda} & \stackrel{\varphi}{\longrightarrow} \frac{\mathbb{C}}{\Lambda'}
\end{array}$$

commutes.

2 Consider for any $\lambda \in \Lambda$ the function

$$f_{\lambda}(z) = \tilde{\varphi}(z + \lambda) - \tilde{\varphi}(z).$$

Since $\tilde{\varphi}$ lifts a map between the quotients, the continuous function f_{λ} maps to the discrete set Λ' and is therefore constant.

3 Differentiating gives $\tilde{\varphi}'(z+\lambda) = \tilde{\varphi}'(z)$.

Motivotion

The Modular

Modular Functions

Proof

1 We can lift φ to a holomorphic map $\tilde{\varphi}:\mathbb{C}\longrightarrow\mathbb{C}$ such that

$$\begin{array}{ccc}
\mathbb{C} & \stackrel{\tilde{\varphi}}{\longrightarrow} \mathbb{C} \\
\downarrow & & \downarrow \\
\frac{\mathbb{C}}{\Lambda} & \stackrel{\varphi}{\longrightarrow} & \frac{\mathbb{C}}{\Lambda'}
\end{array}$$

commutes.

2 Consider for any $\lambda \in \Lambda$ the function

$$f_{\lambda}(z) = \tilde{\varphi}(z + \lambda) - \tilde{\varphi}(z).$$

Since $\tilde{\varphi}$ lifts a map between the quotients, the continuous function f_{λ} maps to the discrete set Λ' and is therefore constant.

- 3 Differentiating gives $\tilde{\varphi}'(z+\lambda) = \tilde{\varphi}'(z)$.
- **1** Thus $\tilde{\varphi}'$ is holomorphic and Λ -periodic, making it bounded and therefore constant by Liouville's Theorem.

Proof

1 We can lift φ to a holomorphic map $\tilde{\varphi}: \mathbb{C} \longrightarrow \mathbb{C}$ such that

$$\begin{array}{ccc}
\mathbb{C} & \stackrel{\tilde{\varphi}}{\longrightarrow} \mathbb{C} \\
\downarrow & & \downarrow \\
\mathbb{C} & \stackrel{\varphi}{\longrightarrow} \frac{\mathbb{C}}{\Lambda'}
\end{array}$$

commutes.

2 Consider for any $\lambda \in \Lambda$ the function

$$f_{\lambda}(z) = \tilde{\varphi}(z+\lambda) - \tilde{\varphi}(z).$$

Since $\tilde{\varphi}$ lifts a map between the quotients, the continuous function f_{λ} maps to the discrete set Λ' and is therefore constant.

- **1** Thus $\tilde{\varphi}'$ is holomorphic and Λ -periodic, making it bounded and therefore constant by Liouville's Theorem.
- Now $\tilde{\varphi}$ is a first degree polynomial $\tilde{\varphi}(z) = mz + b$, and again since this lifts a map between quotients, necessarily $m\Lambda \subset \Lambda'$.

Modular Functions

Definition

Let $F: \mathbb{R} \longrightarrow \mathbb{C}$ be a function, and let $k \in \mathbb{Z}$. We say that F is of weight 2k if

$$F(\lambda\Gamma) = \lambda^{-2k}F(\Gamma)$$
 for all lattices Γ and all $\lambda \in \mathbb{C}^*$. (4)

Group

Modular

Functions

Definition

Let $F: \mathcal{R} \longrightarrow \mathbb{C}$ be a function, and let $k \in \mathbb{Z}$. We say that F is of weight 2k if

$$F(\lambda\Gamma) = \lambda^{-2k} F(\Gamma)$$
 for all lattices Γ and all $\lambda \in \mathbb{C}^*$. (4)

Let F be such a function. If $(\omega_1, \omega_2) \in \mathcal{M}$, we denote by $F(\omega_1, \omega_2)$ the value of F on the lattice $\Gamma(\omega_1, \omega_2)$. The formula translates to:

$$F(\lambda\omega_1, \lambda\omega_2) = \lambda^{-2k} F(\omega_1, \omega_2)$$

Group

Modular

Functions

Definition

Let $F: \mathcal{R} \longrightarrow \mathbb{C}$ be a function, and let $k \in \mathbb{Z}$. We say that F is of weight 2k if

$$F(\lambda\Gamma) = \lambda^{-2k}F(\Gamma)$$
 for all lattices Γ and all $\lambda \in \mathbb{C}^*$. (4)

Let F be such a function. If $(\omega_1, \omega_2) \in \mathcal{M}$, we denote by $F(\omega_1, \omega_2)$ the value of F on the lattice $\Gamma(\omega_1, \omega_2)$. The formula translates to:

$$F(\lambda\omega_1, \lambda\omega_2) = \lambda^{-2k} F(\omega_1, \omega_2)$$

 \mathbb{Z} $F(\omega_1, \omega_2)$ is invariant by the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathcal{M} .

The Modula Group

Modular Functions

Definition

Let $F: \mathcal{R} \longrightarrow \mathbb{C}$ be a function, and let $k \in \mathbb{Z}$. We say that F is of weight 2k if

$$F(\lambda\Gamma) = \lambda^{-2k}F(\Gamma)$$
 for all lattices Γ and all $\lambda \in \mathbb{C}^*$. (4)

Let F be such a function. If $(\omega_1, \omega_2) \in \mathcal{M}$, we denote by $F(\omega_1, \omega_2)$ the value of F on the lattice $\Gamma(\omega_1, \omega_2)$. The formula translates to:

$$F(\lambda\omega_1, \lambda\omega_2) = \lambda^{-2k} F(\omega_1, \omega_2)$$

- \mathbb{Z} $F(\omega_1, \omega_2)$ is invariant by the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathcal{M} .
- Above formula shows that the product $\omega_2^{2k} F(\omega_1, \omega_2)$ depends only on $\tau = \omega_1/\omega_2$. There exists then a function f on \mathcal{H} s.t. $F(\omega_1, \omega_2) = \omega_2^{-2k} f(\omega_1/\omega_2)$

22 / 28

The Modular

Modular Functions

1 Since F is invariant by $\mathrm{SL}_2(\mathbb{Z})$, f satisfies the identity:

$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right) \quad \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$$

1 Since F is invariant by $SL_2(\mathbb{Z})$, f satisfies the identity:

$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right) \quad \text{ for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$$

- **2** Conversely, if f satisfies above formula, formula (9) associates to it a function F on \mathcal{R} which is of weight 2k.
- We can thus identify modular functions of weight 2k with some lattice functions of weight 2k.

Examples of modular functions- Eisenstein series

Motivation

Group

Modular Functions

Lemma

Let Γ be a lattice in $\mathbb C$. The series $\sum_{\gamma\in\Gamma}' 1/|\gamma|^{\sigma}$ is convergent for $\sigma>2$.

NA

The Modul Group

Modular Functions

Lemma

Let Γ be a lattice in $\mathbb C$. The series $\sum_{\gamma\in\Gamma}' 1/|\gamma|^{\sigma}$ is convergent for $\sigma>2$.

Proof

- We can proceed as with the series $\Sigma 1/n^{\alpha}$, i.e. majorize the series under consideration by a multiple of the double integral $\iint \frac{dxdy}{(x^2+y^2)^{\sigma/2}}$ extended
- 2

Definition

Let k be an integer > 1. If Γ is a lattice of \mathbb{C} , put

$$G_k(\Gamma) = \sum_{\gamma \in \Gamma}' \frac{1}{\gamma^{2k}}$$

It is called the Eisenstein series of index k.

The Modular

Modular Functions Hence we can view G_k as a function on \mathcal{M} , given by:

$$G_k(\omega_1, \omega_2) = \sum_{m,n}' \frac{1}{(m\omega_1 + n\omega_2)^{2k}}$$

The Modular

Modular Functions Hence we can view G_k as a function on \mathcal{M} , given by:

$$G_k(\omega_1, \omega_2) = \sum_{m,n}' \frac{1}{(m\omega_1 + n\omega_2)^{2k}}$$

The function on \mathcal{H} corresponding to G_k is again denoted by G_k .

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^{2k}}$$

The Modular Group

Modular Functions Hence we can view G_k as a function on \mathcal{M} , given by:

$$G_k(\omega_1, \omega_2) = \sum_{m,n}' \frac{1}{(m\omega_1 + n\omega_2)^{2k}}$$

The function on \mathcal{H} corresponding to G_k is again denoted by G_k .

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^{2k}}$$

Proposition

Let k be an integer >1. The Eisenstein series $G_k(z)$ is a modular form of weight 2k. We have $G_k(\infty)=2\zeta(2k)$ where ζ denotes the Riemann zeta function.

The Modular Group Modular

Functions

Hence we can view G_k as a function on \mathcal{M} , given by:

$$G_k(\omega_1, \omega_2) = \sum_{m,n}' \frac{1}{(m\omega_1 + n\omega_2)^{2k}}$$

The function on \mathcal{H} corresponding to G_k is again denoted by G_k .

$$G_k(z) = \sum_{m,n}^{\prime} \frac{1}{(mz+n)^{2k}}$$

Proposition

Let k be an integer > 1. The Eisenstein series $G_k(z)$ is a modular form of weight 2k. We have $G_k(\infty) = 2\zeta(2k)$ where ζ denotes the Riemann zeta function.

Proof

- **1** We have shown that $G_k(z)$ is weakly modular of weight 2k.
- 2 We have to show that G_k is everywhere holomorphic (including infinity).

The Modular

Modular Functions **1** First suppose that $z \in \mathcal{D}$. Then

$$|mz + n|^2 = m^2 z \bar{z} + 2mnR(z) + n^2$$

 $\geq m^2 - mn + n^2 = |m\rho - n|^2$

The series $\Sigma' 1/|m\rho - n|^{2k}$ is convergent.

Motivotion

The Modula Group

Modular Functions **1** First suppose that $z \in \mathcal{D}$. Then

$$|mz + n|^2 = m^2 z \bar{z} + 2mnR(z) + n^2$$

 $\geq m^2 - mn + n^2 = |m\rho - n|^2$

The series $\Sigma' 1/|m\rho - n|^{2k}$ is convergent.

This shows that the series $G_k(z)$ converges normally in \mathcal{D} , thus also in each of the transforms $g\mathcal{D}$ of \mathcal{D} by G. Since these cover \mathcal{H} , we see that G_k is holomorphic in \mathcal{H} . (compact normal convergence)

1 First suppose that $z \in \mathcal{D}$. Then

$$|mz + n|^2 = m^2 z \bar{z} + 2mnR(z) + n^2$$

 $\geq m^2 - mn + n^2 = |m\rho - n|^2$

The series $\Sigma' 1/|m\rho - n|^{2k}$ is convergent.

- **2** This shows that the series $G_k(z)$ converges normally in \mathcal{D} , thus also in each of the transforms $g\mathcal{D}$ of \mathcal{D} by G. Since these cover \mathcal{H} , we see that G_k is holomorphic in \mathcal{H} . (compact normal convergence)
- It remains to see that G_k is holomorphic at infinity (and to find the value at this point). This amounts to proving that G_k has a limit for $\operatorname{Im}(z) \to \infty$. But one may suppose that z remains in \mathcal{D} .

The Modula Group

Modular Functions **1** First suppose that $z \in \mathcal{D}$. Then

$$|mz + n|^2 = m^2 z \bar{z} + 2mnR(z) + n^2$$

 $\geq m^2 - mn + n^2 = |m\rho - n|^2$

The series $\Sigma' 1/|m\rho - n|^{2k}$ is convergent.

- **2** This shows that the series $G_k(z)$ converges normally in \mathcal{D} , thus also in each of the transforms $g\mathcal{D}$ of \mathcal{D} by G. Since these cover \mathcal{H} , we see that G_k is holomorphic in \mathcal{H} . (compact normal convergence)
- It remains to see that G_k is holomorphic at infinity (and to find the value at this point). This amounts to proving that G_k has a limit for $\mathrm{Im}(z) \to \infty$. But one may suppose that z remains in \mathcal{D} .
- In view of the uniform convergence in \mathcal{D} , we can make the passage to the limit term by term. The terms $1/(mz+n)^{2k}$ relative to $m \neq 0$ give 0; the others give $1/n^{2k}$. Thus

$$\lim G_k(z) = \sum' \frac{1}{n^{2k}} = 2\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = 2\zeta(2k)$$

Ramanujan Δ function

Martinette

The Modular

Modular Functions

The Eisenstein series of lowest weights are G_2 and G_3 , which are of weight 4 and 6. It is convenient to replace these by multiples:

$$g_2 = 60G_2, \quad g_3 = 140G_3$$

Ramanujan Δ function

Martinetta

The Modula

Modular Functions

The Eisenstein series of lowest weights are G_2 and G_3 , which are of weight 4 and 6. It is convenient to replace these by multiples:

$$g_2 = 60G_2, \quad g_3 = 140G_3$$

We have $g_2(\infty)=120\zeta(4)$ and $g_3(\infty)=280\zeta(6)$. Using the known values of $\zeta(4)$ and $\zeta(6)$, one finds:

$$g_2(\infty) = \frac{4}{3}\pi^4, \quad g_3(\infty) = \frac{8}{27}\pi^6$$

Ramanujan Δ function

Mastrial

The Modula

Modular Functions

The Eisenstein series of lowest weights are G_2 and G_3 , which are of weight 4 and 6. It is convenient to replace these by multiples:

$$g_2 = 60G_2, \quad g_3 = 140G_3$$

We have $g_2(\infty)=120\zeta(4)$ and $g_3(\infty)=280\zeta(6)$. Using the known values of $\zeta(4)$ and $\zeta(6)$, one finds:

$$g_2(\infty) = \frac{4}{3}\pi^4, \quad g_3(\infty) = \frac{8}{27}\pi^6$$

If we put

$$\Delta=g_2^3-27g_3^2$$

we have $\Delta(\infty) = 0$; that is to say, Δ is a cusp form of weight 12.

Motivation

The Modular Group

Modular Functions Let Γ be a lattice of $\mathbb C$ and let

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma}' \left(\frac{1}{(u - \gamma)^2} - \frac{1}{\gamma^2} \right)$$

be the corresponding Weierstrass function.

Mativation

The Modular Group

Modular Functions Let Γ be a lattice of \mathbb{C} and let

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma}' \left(\frac{1}{(u-\gamma)^2} - \frac{1}{\gamma^2} \right)$$

be the corresponding Weierstrass function. The $G_k(\Gamma)$ occur into the Laurent expansion of \wp_Γ :

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1)G_k(\Gamma)u^{2k-2}$$

Mativation

The Modular Group

Modular Functions Let Γ be a lattice of \mathbb{C} and let

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma}' \left(\frac{1}{(u-\gamma)^2} - \frac{1}{\gamma^2} \right)$$

be the corresponding Weierstrass function. The $G_k(\Gamma)$ occur into the Laurent expansion of \wp_Γ :

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1)G_k(\Gamma)u^{2k-2}$$

If we put $x = \wp_{\Gamma}(u), y = \wp'_{\Gamma}(u)$, we have

$$y^2 = 4x^3 - g_2x - g_3$$

with $g_2 = 60G_2(\Gamma), g_3 = 140G_3(\Gamma)$ as above.

Motivation

The Modular Group

Modular Functions Let Γ be a lattice of \mathbb{C} and let

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma}' \left(\frac{1}{(u-\gamma)^2} - \frac{1}{\gamma^2} \right)$$

be the corresponding Weierstrass function. The $G_k(\Gamma)$ occur into the Laurent expansion of \wp_Γ :

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1)G_k(\Gamma)u^{2k-2}$$

If we put $x=\wp_{\Gamma}(u), y=\wp_{\Gamma}'(u)$, we have

$$y^2 = 4x^3 - g_2x - g_3$$

with $g_2 = 60G_2(\Gamma), g_3 = 140G_3(\Gamma)$ as above.

Up to a numerical factor, $\Delta=g_2^3-27g_3^2$ is equal to the discriminant of the polynomial $4x^3-g_2x-g_3$.

Motivation

The Modular Group

Modular Functions Let Γ be a lattice of \mathbb{C} and let

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{\gamma \in \Gamma}' \left(\frac{1}{(u - \gamma)^2} - \frac{1}{\gamma^2} \right)$$

be the corresponding Weierstrass function. The $G_k(\Gamma)$ occur into the Laurent expansion of \wp_Γ :

$$\wp_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1)G_k(\Gamma)u^{2k-2}$$

If we put $x = \wp_{\Gamma}(u), y = \wp'_{\Gamma}(u)$, we have

$$y^2 = 4x^3 - g_2x - g_3$$

with $g_2 = 60G_2(\Gamma), g_3 = 140G_3(\Gamma)$ as above.

Up to a numerical factor, $\Delta = g_2^3 - 27g_3^2$ is equal to the discriminant of the polynomial $4x^3 - g_2x - g_3$.

We can prove that the cubic in the projective plane is isomorphic to the elliptic curve \mathbb{C}/Γ . In particular, it is a nonsingular curve, and this shows that Δ is $\neq 0$.