PSC 202 SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

REVIEW

THIS WILL NOT BE ON THE EXAM

- When conducting a study, collection of data is important
 - Do:
 - Population/census, random sample

Don't:

Send out questionnaires

The Literary Digest

Topics of the day

LANDON, 1,293,669; ROOSEVELT, 972,897 returned and let the people of draw their conclusions as to d

Final Returns in The Digest's Poll of Ten Million Voters

So far, we have been right in every Poll.

Will we be right in the current Poll? That, as Mrs. Roosevelt said concerning the Presi-

Well, the great battle of the ballots in the Poll of ten million voters, scattered throughout the forty-eight States of the

- Hope people fill them out and submit them, while not offering any incentive for people to actually do that
- Get low response rate and self-selected sample
- Use the results of the self-selected sample to make important decisions

AND YET...

Student Access in EvaluationKIT

For students, completing feedback forms in EvaluationKIT is easy to do. There are multiple access points:

- Access form(s) in the Course Feedback widget on the Blackboard main page
- Log in to coursefeedback.syr.edu with netID and password
- Click on the EvaluationKIT link in invitation or reminder emails to login and view available feedback forms from a phone or computer
- Click the EvaluationKIT Login button below:

EvaluationKIT Login

FEEDBACK TIME

coursefeedback.syr.edu

Response rate of 85% or more: Extra participation credit for class

TODAY

- Big Picture Review
- Review for exam, study guide

SCIENCE

- Science is not about what you study, but about how you study it
 - It's about the procedure you use to conduct testing

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

SCIENTIFIC PROCESS

- Formulate research question
- Propose explanation/theory, hypotheses
- Data collection process
- Use data to evaluate hypotheses
- Reassess explanation

TODAY

- Big Picture Review
- Review for exam, study guide

EXAM

- Monday: Exam #3
 - Can bring a calculator (no phone etc.)
 - Allowed to bring one single-page letter-size
 (8.5x11) sheet with you. Front side only. What you put on it is up to you, but it has to be your own.
- If you take exams at CDR, please sign up now!

STUDENT HOURS

- Next Monday: 11-1
- 530 Eggers or Zoom
 - Zoom info on syllabus

EXAM

- Material covered
 - Everything from Apr 5 (Hypothesis Testing with One Confounder) to today

HURDLES TO CAUSALITY

- Is there a credible causal mechanism that connects X to Y?
- Can we rule out the possibility that Y could cause X?
- Is there covariation between X and Y?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?

BIVARIATE RELATIONSHIP

Partisanship

Support for vaccine mandate

Zero-order effect: Democrats are 39
 percentage points more likely to support a
 vaccine mandate than Non-Democrats

MAYBE THIS IS GOING ON?

W more likely to be Democrats than M

Gender (Z)

W more supportive of vaccine mandate than M

Partisanship (X)

Vaccine Mandate (Y)

Partisanship by itself has no effect on vaccine mandate attitude

TERMINOLOGY

 Controlled effect: relationship between an independent variable (X) and a dependent variable (Y) within one value of another independent variable (Z)

CONTROLLED COMPARISON TABLE

Female			Male			
	Dem 36	Non- Dem	Total	Dem 31	Non- %Dem	Total
Mandate	71%	35%	61%	59%	28%	39%
No	(40) 29%	(8) 65%	(48) 39%	(10) 41%	(9) 72%	(19) 61%
Mandate	(16)	(15)	(31)	(7)	(23)	(30)
Total	100% (56)	100% (23)	100%	100%	100% (32)	100% (49)

CONTROLLED EFFECT

- Even when looking just among men, and just among women, partisanship still has an effect on support for vaccine mandate
- Effect of partisanship holds when "controlling for" gender

SPURIOUS RELATIONSHIP

- Once we control for gender, no independent effect of partisanship
- All controlled effects zero or close to zero

ADDITIVE RELATIONSHIP

- Both partisanship and gender determine Y
- Controlled effects not zero and of roughly same size

INTERACTIVE RELATIONSHIP

- Gender determines how much partisanship affects Y
- Controlled effects not zero and of different size

Partisanship (X)

MULTIPLE REGRESSION

- Another way to control for potential confounding variables: multiple regression
 - Allows us to control for many potential confounders

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	92.1	28.1	3.28
Liberal- Conservative	-0.41	0.08	-4.96
Age	-1.50	1.47	-1.02
Gender (Male)	-3.80	3.84	-0.99

R²: 0.26

EFFECT OF LIB/CONS

- Coefficient: -0.41
- Interpretation: For every one point increase on the liberal-conservative scale, the evaluation of J. Biden decreases by 0.41 points, holding all other independent variables constant

EFFECT OF LIB/CONS

$$t = \frac{H_A - H_0}{\text{Standard Error}}$$

$$t = \frac{-0.41 - 0.00}{0.08} = -5.13$$

• We reject H_0 , so effect of liberal-conservative on evaluation is significant at the 5% level

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	92.1	28.1	3.28
Liberal- Conservative	-0.41	0.08	-4.96
Age	-1.50	1.47	-1.02
Gender (Male)	-3.80	3.84	-0.99

R²: 0.26

EFFECT OF GENDER

- Coefficient: -3.8
- Interpretation: If someone is male, their evaluation of J. Biden is expected to be 3.8 points lower than if someone is female, holding all other independent variables constant

EFFECT OF GENDER

- t-value: -0.99
- We do not reject H_0 , so effect of gender on evaluation is not significant at the 5% level

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	92.1	28.1	3.28
Liberal- Conservative	-0.41	0.08	-4.96
Age	-1.50	1.47	-1.02
Gender (Male)	-3.80	3.84	-0.99

R²: 0.26

PREDICTED VALUE

- Evaluation = 92.1 0.41*Lib/Cons 1.50*Age 3.8*Gender (Male)
- Expected approval for someone who is:
 - 50 on Lib/Cons scale
 - 22 years old
 - Male

PREDICTED VALUE

- Evaluation = 92.1 0.41*Lib/Cons 1.50*Age 3.8*Gender (Male)
- Expected approval for someone who is:
 - 50 on Lib/Cons scale
 - 22 years old
 - Male
- Evaluation = 92.1 0.41*50 1.50*22 3.8*1= 34.8

DV: APPROVAL OF J. BIDEN

	Coefficient	Standard Error	T-Value
Intercept	92.1	28.1	3.28
Liberal- Conservative	-0.41	0.08	-4.96
Age	-1.50	1.47	-1.02
Gender (Male)	-3.80	3.84	-0.99

R²: 0.26

OBSERVATIONAL RESEARCH DESIGN

- Linear regression is (usually) used in observational research design
 - Takes data as we find it in the world
 - Regression isolates the independent effect of X on Y, controlling for other variables (=potential alternative explanations)

OBSERVATIONAL RESEARCH DESIGN

- Can never be sure we controlled for all potential alternative explanations
 - Potentially low internal validity

- Researchers actively decide assignment of the independent variable
- Treatment and control groups
 - Subjects randomly allocated

- On average, treatment and control group are the same on every variable we can think of
 - Except on the independent variable of interest, where researcher assigns treatment and control
 - Unlikely that differences in Y between treatment and control groups caused by other variables
 - High internal validity

- Different types of experiments
 - Field experiment
 - Lab experiment
 - Survey experiment
 - Natural experiment

- Different types of experiments
 - Field experiment
 - Lab experiment
 - Survey experiment
 - Natural experiment

SCHOOL CHOICE

Attending state flagship university

Later Earnings

 What is effect of attending state flagship university vs. other public university?

- Flagship universities are more selective
- Students who attend flagships are different from students who don't in many ways
 - Ability, work ethic, family background, etc.
- So, again, difficult to establish causal effect of attending flagships

- Hoekstra (2009) analyzes admissions data from the University of Florida
 - School places a lot of emphasis on SAT score
 - Has an admissions cutoff: if student is above it they are admitted, if students are below it they are (mostly) not admitted

- Students 300 points above cutoff are very different from students 300 points below cutoff
 - e.g. "smarter", work harder, etc.

- Students 2 or 3 points above cutoff are not very different from students 2 or 3 points below cutoff
 - On average, about equally smart, work equally hard etc.

 If students got SAT score just above or just below admissions cutoff is pretty much random

 So near the cutoff, admission to flagship university is (as good as) random

REGRESSION DISCONTINUITY

- We can compare later earnings between students whose SAT scores were just above the admissions cutoff and those whose scores were just below it
 - On average, students just above and just below cutoff are similar on all characteristics
 - Except some went to the flagship university, others did not

 Students who (essentially by luck) got into flagship earn about 10% more than students who (essentially through bad luck) did not get in

 This earnings difference at the cutoff cannot be explained by differences in characteristics between students

SUMMARY

Experiments

- No need to control for all possible confounders
- Great if you can do them
- But: Concerns about external validity, ethics, cannot be done everywhere
- Natural experiments
 - Situations where the real world produces something that is quasi-random
 - Useful when experiments are not possible
 - But: quasi-randomness in real world is rare