Intro

Update: 2019. 07

Content

- 키워드
- 머신러닝(Merchine Learning)
- 머신러닝 처리 과정
- 머신러닝 종류

데이터 처리

Big Data

Data Engineering 데이터 분석

Machine Learning

Data Analysis

Big Data

활용

Data Mining

분산처리 데이터베이스

기술개념

Machine Learning

Hadoop NoSQL Spark BigTable

알고리즘 구현체 Navie Bayes
SVM Logistics
Regression

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

머신 러닝

■ 머신러닝이란?

머신러닝은 한 마디로 "데이터를 이용해서 명시적으로 정의되지 않은 패턴을 컴퓨터로 학습하여 결과를 만들어 내는 학문분야

- 머신러닝의 분류
 - ✓ 지도학습(supervised learning), 지도러닝, 교사 학습 지도학습은 주어진 데이터와 레이블(정답)을 이용해서 미지의 상태나 값을 예측하는 학습 방법이다. 대부분의 머신러닝은 지도학습에 해당함.
 - ✓ 비지도 학습(unsupervised learning), 자율러닝, 비교사 학습 비지도학습은 데이터와 주어진 레이블 간의 관계를 구하는 것이 아니라 데이터 자체에서 유용한 패턴을 찾아내는 학습방법이다.

머신 러닝

■ 머신 러닝 프로세스

머신 러닝 처리 과정

머신러닝 종류와 알고리즘

- · No labels
- · No feedback
- · "Find hidden structure"

- · Decision process
- · Reward system
- · Learn series of actions

지도학습(supervised)	비지도학습(unsupervised)
회귀(Regression) - Linear regression - Decision Tree - Random Forests - Neural Networks(딥러닝)	 Clustering K means PCA(Principal component analysis) Density estimation Expection maximization Pazen window DBSCAN
분류(classification) - Naïve-Bayes - <mark>K-NearestNeighbors(KNN)</mark> - Support Vector Machine(SVM)	

교육과정 소개

l 본 과정은 파이썬을 기반으로 빅데이터 분석 및 시각화를 통해 웹 서비스를 개발하는 과정입니다.

01 학습 목표

- 프로그래밍 언어의 기초 문법을 적용 하 고 언어의 특징과 라이브러리를 활용 하 여 기본 응용소프트웨어를 구현할 수 있 다.
- 다양한 예제를 통해 Python 프로그램을 할 수 있다.
- My-SQL 데이터베이스를 활용하여 데이 터 베이스 설계 및 오브젝트를 생성할 수 있다.
- 파이썬 기반 웹 베이스인 Flask기반 웹 프로그래밍을 할 수 있다.
- 데이터 분석 및 시각화를 통해 파이썬

02 강점

- 프로그래밍 개발 분야에 관련 지식이 없 거나, 경험이 없더라도 쉽게 배울 수 있는 교육 구성.
- 실무에서 바로 사용 및 활용할 수 있는 개발 기법 학습
- 다양한 형태의 데이터를 살펴보고 이를 분석하여 활용할 수 있는 기법을 학습
- 개발 및 강의 경력 15년 차 이상의 전문 강사진의 강의 진행

기반 웹 프로젝트를 수행 할 수 있다.

