MATH 45000 - Final Exam

December 11, 2024

Instructor: Linquan Ma

NAME:	Solution
PUID:	

- (1) No textbook or notes.
- (2) No calculators or portable electronic devices.
- (3) Show your work to all problems except Question 1.
- (4) There are eleven questions.
- (5) The total score of this exam is 120.

(a) The group U(200) has order 80.

True)

False

(b) The subgroup $G = \langle (123)(456), (78) \rangle \leq S_8$ is isomorphic to \mathbb{Z}_6 .

True

False

(c) A group of order 99 must be abelian.

True

False

(d) The set $\{0, 3, 6, 9, 12\}$ under addition and multiplication modulo 15 is a commutative ring with a multiplicative identity.

True

False

(e) The ring $\mathbb{Z} \oplus \mathbb{Z}_2$ is an integral domain.

True

False

(f) The principal ideal $\langle 1+i \rangle$ is a maximal ideal in the ring $\mathbb{Z}[i]$.

True

False

2. (10 points) Find a subgroup of order 6 in \mathbb{Z}_{24} , and list all its generators.

3. (10 points) Consider the element

$$\alpha = (24)(12345) \in S_5.$$

- (a) Write α as a product of disjoint cycles.
- (b) Write α^{100} as a product of 2-cycles (use least number of 2-cycles in your expression).

(a)
$$\alpha = (145)(23)$$

(b)
$$\propto^{100} = (145)^{150} \cdot (23)^{160}$$

(145) has order 3. $(145)^{160} = (145)$
(23) has order 2. $(23)^{100} = \text{Ed}$.

$$\Rightarrow \alpha^{100} = (145) = (15)(14)$$

4. (10 points) Suppose N is a normal subgroup of G and |G:N|=n. Prove that $g^n\in N$ for all $g\in G$.

Consider the factor group G/N

[G/N] = [G:N] = n

By Lagrange, IgNI divides n.

 \Rightarrow gN = N in G/N

=) g" EN.

5. (10 points) How many Sylow 2-subgroups of D_6 are there? Prove your result.

$$|D_6| = 12 = 2^3 \times 3$$

$$=)$$
 $n_2 = 1$ or $n_2 = 3$

if
$$n_z=1$$
 then at most 3 order 2 elements while D_6 has more than 3 elements of order 2

6. (10 points) Classify all abelian groups of order 75. How many subgroups of order 15 does each of them have? Prove your result.

$$75 = 3 \times 5^{2}$$

$$\mathbb{Z}_{25} \oplus \mathbb{Z}_{3} \quad \text{or} \quad \mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3}.$$

- · Z25 @ Z3 = Z75 Cycliz = unique order 15 subgp.
- · 75 + 75 + 23. Count order 15 elements

$$(a, b, c)$$
: $|a|=5$ $|b|=1$ $|c|=3$ 8
 $|a|=1$ $|b|=5$ $|c|=3$ 8
 $|a|=5$ $|b|=5$ $|c|=3$ 32.

there are totally 32+8+8=48 elements of order 15, since any subsp of order 15 is cycli2. It gives \$\phi(15)=8 elements of order 15 (and none of them are equal).

=) there are $\frac{48}{8} = 6$ Suhgps of order 15.

- 7. (10 points)
 - (a) Find all group isomorphisms from \mathbb{Z}_{10} to \mathbb{Z}_{10} .
 - (b) Find all ring homomorphisms from \mathbb{Z}_{10} to \mathbb{Z}_{10} .

(a)
$$\chi \rightarrow a\chi \mod 0$$
 isomplism
where $a \in \{0, 1, \dots, 9\}$ (=) $a = 1, 3, 7, 9$
these are generating of Z_{10}

(b)
$$\chi \longrightarrow b \times mod (0)$$

so that $b^2 = b \mod (0 \ b \in \{0.1, --9\}$
now $0^2 = 0 \ l^2 = 1 \ 5^2 = 5 \ 6^2 = 6$

are the solutions

so four my homomorphisms

$$\chi \to 0$$
 $\chi \to \chi$
 $\chi \to 5\chi$
 $\chi \to 6\chi$

8. (5 points) Let R be a commutative ring with a multiplicative identity. Suppose $a \in R$ is a unit and $b \in R$ satisfies $b^3 = 0$. Prove that a - b is a unit of R.

$$(a-b)(a^2+ab+b^2)=a^3-b^3=a^3$$

=>
$$(a-b)$$
. $[a^{-3}(a^2+ab+b^2)] = 1$

9. (10 points) Prove that $\mathbb{Z}_5[x]/\langle x^3+2x+1\rangle$ is a field with 125 elements.

enough to show \$\alpha^3 + 2x+1 is irreducible over \$Z_{\alpha}\$

enough to show x3+2x+1 has no zero in Zs

case-by-case: 03+2.0+1=1

$$0^{3}+2.0+1=1$$

$$1^3 + 2 \cdot 1 + 1 = 4$$

$$2^3 + 2 \cdot 2 + 1 = 3$$

$$3^3 + 2 \cdot 3 + 1 = 4$$

in Lo

$$4^3 + 2 \cdot 4 + 1 = 3$$

- 10. (10 points) Determine whether the following polynomials are irreducible over \mathbb{Q} . Prove your claim.
 - (a) $x^4 + 5x + 3$.
 - (b) $\frac{5}{6}x^5 + 3x^4 + 10x^3 + \frac{5}{2}$.
- (a) mod 2 test.

enough to show $\chi^4 + \chi + 1$ is irreducible over \mathbb{Z}_2 . It has no Zero> $(0^2 + 0 + 1 = 1^2 + 1 + 1 = 1 \text{ in } \mathbb{Z}_2)$. The only irreducible polynomial of degree 2 is

 $x^2 + x + 1$: check $(x^2 + x + 1) + x^4 + x + 1$

 $(x^4 + x + 1) = (x^2 + x + 1)(x^2 + x) + 1$

= x4+x+1 is meducible over Z2

(b) enough to show $5x^5 + 18x^4 + 60x^3 + 15 \text{ is imeducible overly}$ $5x^5 + 18x^4 + 60x^3 + 15 \text{ is imeducible overly}$ Eigenstein test with P=3 $P \neq 5 \quad P \mid 18 \quad P \mid 60 \quad P \mid 15 \quad P \neq 15.$

11. (5 points) Prove that there is no integral domain with exactly 6 elements.

Suppose there is such an integral donain, as abelian gps it is = $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ (by furdamental thm).

now the element (1,1) has order 6 it follows that characteristiz is 6.

but for an integral domain, the characteristic 3 either O or a prime contradiction