Отчет по лабораторной работе №8

Астафьева Анна Андреевна НПИбд-01-18¹ Информационная Безопасность-2021, 18 декабря, 2021, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы —

Цель лабораторной работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Задание к лабораторной работе

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста.

Исходные данные.

Две телеграммы Центра:

 P_1 = НаВашисходящийот1204

 P_2 = ВСеверныйфилиал $\mathrm{Б}$ анка

Процесс выполнения лабораторной работы

1. Необходимо разработать приложение и определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе (рис. 1):

```
In [6]: P1='НаВашисходящийот1204'
        Р2= 'ВСеверныйфилиалБанка'
        K='05 0c 17 7f 0e 4e 37 d2 94 10 09 2e 22 57 ff c8 0b b2 70 54'
        print('Исходные сообщения:')
        print('Pl:\nuecrw:', '.join(to.hex(Pl)),'\ncwms:', '.join([i for i in Pl]))
print('Pl:\nuecrw:', '.join(to.hex(Pl)),'\ncwms:', '.join([i for i in Pl]))
print('\nkmes:\nuecrw:', '.join(to_text(K)))
        cypher hex1, cypher1 = encryption(to hex(P1), K,split())
        cypher hex2, cypher2 = encryption(to hex(P2), K.split())
        print('\nЗашифрованные сообщения:')
        print('P1:\nwecTM.: ', '.join(cypher_hex1), \ncumms.: ', '.join(cypher1))
print('P2:\nwecTM.: ', '.join(cypher hex2), \ncumms.: ', '.join(cypher2))
        Исхолные сообщения:
        шесты · 6d 80 62 80 98 88 91 95 8e 84 9f 99 88 89 8e 92 11 12 10 14
        симв.: НаВашисходяшийот 1204
        шестн.: 62 71 85 82 85 90 8d 9b 89 94 88 8b 88 80 8b 61 80 8d 8a 80
        симв.: В Северный филиал Банка
        Kninu:
        шестн.: 05 0c 17 7f 0e 4e 37 d2 94 10 09 2e 22 57 ff c8 0b b2 70 54
        cump.: % , 7 A , n W R o 0 ) N B w H + 2 P t
        Зашифрованные сообщения:
        шестн.: 68 8c 75 ff 96 c6 a6 47 la 94 96 b7 aa de 71 5a la a0 60 40
        симв.: И м X ц F & g : ф ц 7 * ^ C z : A `
        шестн.: 67 7d 92 fd 8b de ba 49 1d 84 81 a5 aa d7 74 a9 8b 3f fa d4
        симв.: 3 Э т \ л ^ : i = д 6 % * W Ф \ л z Т
```

Figure 1: Получение шифротекста сообщений

2. Далее преположим ситуацию, что злоумышленнику каким-то образом удалось заполучить оба сообщения в зашифрованном виде (рис. 2):

```
In [7]: print('Замифрованные сообщения у элоунациенника:') print('РЕ\'мысет.:', ''.jain(сурне_nex1)) print('РЕ\'мысет.:', ''.jain(сурне_nex2))

Замифрованные сообщения у элоунациенника:
Р1: шестн.: 68 8c 75 ff 96 c6 a6 47 la 94 96 b7 aa de 71 5a la a0 60 40 РЕ: шестн.: 67 7d 92 fd 8b de ba 49 ld 84 81 a5 aa d7 74 a9 8b 3f fa d4
```

Figure 2: Злоумышленник получил шифротексты

3. Складывая по модулю шифротексты можно получить гамму (рис. 3):

$$C_1 \oplus C_2 = P_1 \oplus K \oplus P_2 \oplus K = P_1 \oplus P_2$$

Figure 3: Получение гаммы

4. Предположим, что одна из телеграмм является шаблоном — т.е. имеет текст фиксированный формат, в который вписываются значения полей. Допустим, что злоумышленнику этот формат известен. Таким образом, злоумышленник получает возможность определить те символы сообщения P_2 , которые находятся на позициях известного шаблона сообщения P_1 .

$$C_1 \oplus C_2 \oplus P_1 = P_1 \oplus P_2 \oplus P_1 = P_2$$

В соответствии с логикой сообщения P_2 , злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения P_2 . Затем используется подстановка вместо P_1 полученных на предыдущем шаге новых символов сообщения P_2 . И так далее.

7/11

```
Расшифровка...
Введите известную часть сообщения, заменяя неизвестные символы вопросительным знаком (размер сообщения - 20):
НаВаш????????от????
Номер сообщения (1 или 2):
Известная часть сообщения Р1:
шестн.: 6d 80 62 80 98 1f 1f 1f 1f 1f 1f 1f 1f 1f 8e 92 1f 1f 1f 1f
симв.: Наваш ? ? ? ? ? ? ? от ? ? ? ?
Расшифровываем сообщение Р2:
шестн.: 62 71 85 82 85 07 03 11 18 0f 08 0d 1f 16 8b 61 8e 80 85 8b
симр.: В Сере'#18/(-?6лБовел
Продолжить? (0 - нет, 1 - да)
Введите известную часть сообщения, заменяя неизвестные символы вопросительным знаком (размер сообщения - 20):
ВСеверный?????лБ????
Номер сообщения (1 или 2):
Известная часть сообщения Р2:
шестн.: 62 71 85 82 85 90 8d 9b 89 1f 1f 1f 1f 1f 8b 61 1f 1f 1f 1f
симв.: В Северный?????лв????
Расцифровываем сообщение Р1:
шестн.: 6d 80 62 80 98 88 91 95 8e 0f 08 0d 1f 16 8e 92 8e 80 85 8b
симв.: НаВашисхо/(-?ботовел
Продолжить? (0 - нет, 1 - да)
```

Figure 4: Взлом сообщений

```
Введите известную часть сообщения, заменяя неизвестные символы вопросительным знаком (размер сообщения - 20):
НаВашисходящийот????
Номер сообщения (1 или 2):
Известная часть сообщения Р1:
шестн.: 6d 80 62 80 98 88 91 95 8e 84 9f 99 88 89 8e 92 1f 1f 1f 1f
симв.: НаВашисходящийот?????
Расцифровываем сообщение Р2:
шестн.: 62 71 85 82 85 90 8d 9b 89 94 88 8b 88 80 8b 61 8e 80 85 8b
симв.: В Северный филиал Боаел
Продолжить? (0 - нет, 1 - да)
Введите известную часть сообщения, заменяя неизвестные символы вопросительным знаком (размер сообщения - 20):
ВСеверныйфилиалБанка
Номер сообщения (1 или 2):
Известная часть сообщения Р2:
шестн.: 62 71 85 82 85 90 8d 9b 89 94 88 8b 88 80 8b 61 80 8d 8a 80
симв.: В Северный филиал Банка
Расшифровываем сообшение Р1:
шестн.: 6d 80 62 80 98 88 91 95 8e 84 9f 99 88 89 8e 92 11 12 10 14
симв.: НаВашисходящийот 1204
Продолжить? (0 - нет. 1 - да)
```

Figure 5: Взлом сообщений

Контрольные вопросы

Контрольные вопросы

- 1. Как, зная один из текстов (P_1 или P_2), определить другой, не зная при этом ключа?
- 2. Что будет при повторном использовании ключа при шифровании текста?
- 3. Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов?
- 4. Перечислите недостатки шифрования одним ключом двух открытых текстов.
- 5. Перечислите преимущества шифрования одним ключом двух открытых текстов.

Выводы по проделанной работе

Вывод

На основе проделанной работы освоила на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.