PRACOVNÝ LIST PROGRAMOVANIE – ANIMÁCIE

ÚLOHA 1

a)	Otvorte súbor pohyb1.py a spustite ho. Následne nájdite v programe metódu after() a zmeňte jej
	parameter na 500. Ako sa táto zmena prejaví na pohybe loptičky?
h١	Donlěte prod undate plátna inštrukciu print/platna coorde/lanticka)) a spustite program. Na če slúži

b) Doplňte pred update plátna inštrukciu print(platno.coords(lopticka)) a spustite program. Na čo slúži metóda coords()? _______ Zapíšte jej prvý výstup (výpis v prvom riadku): ______ Aký dátový typ ste dostali?

c) Pozmeňte program tak, aby loptička padala rýchlo nadol (k zemi) a potom sa odrazila pomaly smerom nahor až do pôvodnej pozície, odkiaľ bola vypustená.

ÚLOHA 2

a) Otvorte súbor pohyb2.py a spustite ho. Potom preskúmajte jeho kód a zistite, v ktorých riadkoch sa líši pohyb od pohybu v predošlej úlohe. Vypíšte si zmenené riadky:

b) Doplňte, čo asi znamenajú jednotlivé parametre metódy **coords()** v tomto prípade (TIP: spomeňte si, ako sa kreslí loptička):

platno.coords(lopticka,x,y,x+velkost,y+velkost)

c) Zmeňte program tak, aby loptička plynule až do opačného dolného rohu a tam zastala.

ÚLOHA 3

a) Otvorte súbor pohyb3.py, spustite ho a doplňte v ňom, aby loptička zanechávala pri pohybe za sebou stopu (pečiatku). Potom experimentujte s riadkom y=100/x a vyskúšajte rôzne matematické funkcie z tabuľky (pri niektorých budete potrebovať importovať knižnicu math). Načrtnite výsledné priebehy, ktoré vznikli pri pohybe loptičky:

Matematický zápis	$y = \frac{x^2}{100}$	$y = 10.\sqrt{2}$
Zápis v jazyku Python	y=(x**2)/100	y=10*math.sqrt(x)
Priebeh pohybu loptičky		

b) Zmeňte cyklus na 360 opakovaní, vyskúšajte nasledovné matematické funkcie a načrtnite ich priebehy:

Matematický zápis	$y = 100 + 100.\sin x$	$x = 100 + 90.\cos i$	
		$y = 100 + 90.\sin i$	
Zápis v jazyku Python	y=100+100*math.sin(math.radians(x))	x=100+90*math.cos(math.radians(i))	
		y=100+90*math.sin(math.radians(i))	
Priebeh pohybu loptičky			

c) Experimentujte s hodnotami 100 a 90 z posledného matematického modelu – ako ovplyvnia výsledný priebeh?

ÚLOHA 4

Otvorte súbor **semafor.py** a doplňte v ňom program tak, aby fungoval ako semafor a postupne sa rozsvecovali (a zhasínali) jeho svetlá:

ÚLOHA 5

Otvorte program **svetla.py**, ktorý predstavuje 5 vedľa seba umiestnených programovateľných LED žiaroviek. Doplňte ho tak, aby žiarovky v náhodných intervaloch v náhodnom poradí náhodne menili svoje farby (využite miešanie farieb pomocou RGB reťazca).

ÚLOHA 6 (POVINNÁ)

Nájdite v programe raketa.py riadky, ktoré zabezpečia vytvorenie obrázku rakety a vypíšte ich:

Aký formát grafického súboru je použitý? ______

Doplňte v programe potrebné inštrukcie a vytvorte funkciu **prelet()** tak, aby po stlačení medzerníka vyštartovala raketa zľava doprava a po preletení celej obrazovky (plátna) sa vypísal v strede plátna nápis **KONIEC** a raketa sa stratila.

POZNÁMKA: Pri riešení úloh s externými obrázkami zabezpečte, aby grafické súbory boli v tom istom priečinku, kde je .py súbor, inak bude potrebné uvádzať nielen názov súboru, ale aj cestu k nemu!

ÚLOHA 7 (DOBROVOĽNÁ)

Vytvorte program **casomiera.py** ktorý načíta potrebný čas a po stlačení tlačidla **ŠTART** spustí odpočítavanie. Výpis čísiel urobte zelenou farbou, nulu (koniec časomiery) vypíšte červenou farbou. Ošetrite aj prípad nezadania času pre odpočítavanie.

ÚLOHA 8 (DOBROVOĽNÁ)

Doplňte program **panak.py** na animáciu pohybov rúk panáka tak, aby po kliknutí myšou v pravej polovici plátna panák <u>postupne</u> upažil a spustil nadol pravú ruku a po kliknutí v ľavej časti plátna upažil a spustil nadol ľavú ruku.

POZNÁMKA: Program môžete vylepšiť aj tak, že budete pracovať s jednotlivými kvadrantmi plátna a podľa nich ovládať aj ruky, aj nohy panáka.

ÚLOHA 9 (SEBAHODNOTIACA RUBRIKA)

?	Neviem	S pomocou viem	Viem
zmeniť farbu výplne nakresleného objektu na plátne	1	360	1
posunúť nakreslený objekt na plátne vľavo/vpravo/hore/dole	1	3/10	
umiestňovať nakreslený objekt na náhodné miesta na plátne	1		
Vytvoriť časové oneskorenie pri vytváraní animácií a úprave	1	3/6	

