

機械手臂 軌跡規劃實例 Manipulator Trajectory-Planning Example

林沛群

國立台灣大學機械工程學系

任務概說 -1

- □ Revisit物件取放任務之情境:機械手臂夾住放在桌上的杯子
 - , 移動手臂將杯子掛到牆上的杯架

任務概說 -2

□ 六軸RRRRRRF臂之DH Table

圖中顯示各軸為0°的狀態

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0°	0	0	$ heta_1$
2	-90°	$a_1 = -30$	0	θ_2
3	0°	$a_2 = 340$	0	θ_3
4	-90°	$a_3 = -40$	$d_4 = 338$	$ heta_4$
5	90°	0	0	$ heta_5$
6	-90°	0	0	θ_6

任務概說 -3

□ 在IK的課程中,練習以IK計算RRRRRF臂在任務起始點C的6個轉角(joint angles),讓手臂能順利夾住杯子

□ 任務:規劃手臂「將杯子從桌 面拿起到放上杯架」間的整段 軌跡

- □ 輔助條件:加上兩個via points
 - ◆ 垂直拿起杯子一小段距離
 - ◆ 到達杯架前,調整到適當姿態, 讓杯子能順利放上杯架

 \square 設定1:清楚定義杯子 cup 在各點(P_{0-f})的時間、座標位置

、及姿態

條件設定 -2

設定2:彙整成總表以利後續軌跡規劃

	Time	X	Y	Z	Фх	Φ_{y}	$\Phi_{\rm z}$
P_0	0	550	270	19.5	0	0	35
P_1	2	550	270	79.5	0	0	35
P_2	6	330	372	367	0	-60	0
P_f	9	330	472	367	0	-60	0

對world frame角 度,以XYZ fixed angle計算

□ 設定3:求出各點的Transformation Matrix ${}^{\circ}T$

$${}_{c}^{0}T_{1} = \begin{bmatrix} 0.8192 & -0.5736 & 0 & 550 \\ 0.5736 & 0.8192 & 0 & 270 \\ 0 & 0 & 1 & 79.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{c}^{0}T_{f} = \begin{bmatrix} 0.5 & 0 & -0.866 & 330 \\ 0 & 1 & 0 & 472 \\ 0.866 & 0 & 0.5 & 367 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

條件設定 -3

□ 設定4:求出各點的Transformation Matrix ${}_{6}^{0}T$

$${}_{6}^{0}T = {}_{C}^{0}T {}_{6}^{6}T^{-1}$$

$$= {}_{C}^{0}T \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 206 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

$${}_{6}^{0}T_{0} = \begin{bmatrix} 0 & 0.5736 & 0.8192 & 381.3 \\ 0 & -0.8192 & 0.5736 & 151.8 \\ 1 & 0 & 0 & 19.5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{6}^{0}T_{1} = \begin{bmatrix} 0 & 0.5736 & 0.8192 & 381.3 \\ 0 & -0.8192 & 0.5736 & 151.8 \\ 1 & 0 & 0 & 79.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{1} = \begin{bmatrix} 0 & 0.5736 & 0.8192 & 381.3 \\ 0 & -0.8192 & 0.5736 & 151.8 \\ 1 & 0 & 0 & 79.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{2} = \begin{bmatrix} -0.866 & 0 & 0.5 & 227 \\ 0 & -1 & 0 & 372 \\ 0.5 & 0 & 0.866 & 188.6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T_{2} = \begin{bmatrix} -0.866 & 0 & 0.5 & 227 \\ 0 & -1 & 0 & 372 \\ 0.5 & 0 & 0.866 & 188.6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}_{6}^{0}T_{f} = \begin{bmatrix} -0.866 & 0 & 0.5 & 227 \\ 0 & -1 & 0 & 472 \\ 0.5 & 0 & 0.866 & 188.6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

\Box 設定5:從 $_{6}^{0}T$ 得知 $_{6}^{0}P_{6}$ $_{ORG}$ 在各點的位置和姿態

	Time	X	Y	Z	Φ_{x}	Φ_{y}	Φ_{z}
P_0	0	381.3	151.8	19.5	-145	-90	0
P_1	2	381.3	151.8	79.5	-145	-90	0
P_2	6	227	372	188.6	0	-30	180
P_f	9	227	472	188.6	0	-30	180

方法一 -1

□ 方法一:以linear function with parabolic blends在Cartesian-space下規劃軌跡

□ 步驟1: 求出 ${}^{0}P_{6\,ORG}$ 在各DOF (X, Y, Z, Φ_{x} , Φ_{y} , Φ_{z}) 每段的速度

及加速度

deg/s	X	Y	Z	Φ_{x}	Φ_{y}	Φ_{z}
V_0	0	0	0	0	0	0
V_1	0	0	34.29	0	0	0
V_2	-38.56	55.04	27.27	36.25	15	45
V_3	0	36.36	0	0	0	0
V_f	0	0	0	0	0	0

deg/s ²	X	Y	Z	Фх	Φ_{y}	$\Phi_{\rm z}$
a_0	0	0	68.57	0	0	0
a_1	-77.13	110.08	-14.02	72.5	30	90
a_2	77.13	-37.35	-54.55	-72.5	-30	-90
a_f	0	-72.73	0	0	0	0

□ 步驟2:建立並繪出各DOF 在每個時間區段軌跡,

Linear/Parabolic共7段 (每段parabolic curve時間設定為0.5秒)

□ 步驟3:以IK解出軌跡上所有設定點&軌跡內插點的6軸轉角 ⁰P_{6 ORG}在各設定點的位置和姿態

	Time	X	Y	Z	Фх	Φ_{y}	$\Phi_{\rm z}$
P_0	0	381.3	151.8	19.5	-145	-90	0
P_1	2	381.3	151.8	79.5	-145	-90	0
P_2	6	227	372	188.6	0	-30	180
P_f	9	227	472	188.6	0	-30	180

以第二個via point P_2 為例, 進行細部計算 說明

詳細方程式推導參見逆向運動學課程內容

$$\begin{bmatrix} g_{1}(\theta_{2},\theta_{3}) \\ g_{2}(\theta_{2},\theta_{3}) \\ g_{3}(\theta_{2},\theta_{3}) \\ 1 \end{bmatrix} = \frac{1}{2}T \begin{bmatrix} f_{1}(\theta_{3}) \\ f_{2}(\theta_{3}) \\ f_{3}(\theta_{3}) \\ 1 \end{bmatrix} = \frac{1}{2}T_{3}^{2}T^{3}P_{4 ORG}$$

$$= \begin{bmatrix} c_{2} - s_{2} & 0 & -30 \\ 0 & 0 & 1 & 0 \\ -s_{2} - c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{3} - s_{3} & 0 & 340 \\ s_{3} c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -40 \\ 338 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 340c_{2} - 40c_{23} - 338s_{23} - 30 \\ 0 \\ 40s_{23} - 338c_{23} - 340s_{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 435.79 \\ 0 \\ 188.6 \\ 1 \end{bmatrix}$$

$$z = 188.6 \begin{bmatrix} 0 \\ 1 \\ 340 \end{bmatrix}$$

$$z = 188.6 \begin{bmatrix} 0 \\ 1 \\ 340 \end{bmatrix}$$

$$g_1(\theta_2, \theta_3) = 340c_2 - 40c_{23} - 338s_{23} - 30 = 435.79$$

 $g_1(\theta_2, \theta_3) = -40c_{23} - 338s_{23} + 340c_2 = 465.79$ - Eq1
 $g_3(\theta_2, \theta_3) = +40s_{23} - 338c_{23} - 340s_2 = 188.6$ - Eq2

□ Eq1² + Eq2² → Eq3

$$40^2 + 338^2 + 340^2 + 2(40)(340)(-c_3) + 2(338)(340)(-s_3) = 252530$$

口 從Eq3解出第二/三軸轉角
$$\theta_3 = -11.98^\circ$$
 or 178.48°

$$\theta_2 = -64.46^{\circ} \text{ or } 20.37^{\circ}$$

□ 第一軸轉角:

$$\theta_1 = atan2(y, x) = 58.61^\circ$$

方法一 -6

- $extbf{ iny Euler Angles ZYZ}$ 求出 $heta_4 heta_5 heta_6$
- □ 先求出⁰₃R:

$${}_{3}^{0}R = X(\alpha_{0})Z(\theta_{1})X(\alpha_{1})Z(\theta_{2})X(\alpha_{2})Z(\theta_{3})$$

$${}_{3}^{0}R = X(0^{\circ})Z(58.61^{\circ})X(-90^{\circ})Z(-64.46^{\circ})X(0^{\circ})Z(-11.98^{\circ})$$

$${}_{3}^{0}R = \begin{bmatrix} 0.1222 & 0.5064 & -0.8536 \\ 0.2003 & 0.8298 & 0.5209 \\ 0.9721 & -0.2346 & 0 \end{bmatrix}$$

□ 為讓手臂姿態和ZYZ重合,需先做 3R 之中對X軸之旋轉: ${}^0_{3"}R = {}^0_{3}R X(\alpha_3)$

$${}_{3"}^{0}R = {}_{3}^{0}R X(-90^{\circ}) = \begin{bmatrix} 0.1222 & 0.8536 & 0.5064 \\ 0.2003 & -0.5209 & 0.8298 \\ 0.9721 & 0 & -0.2346 \end{bmatrix}$$

$${}_{6}^{3"}R = {}_{3"}^{0}R^{-1}{}_{6}^{0}R = \begin{bmatrix} 0.3802 & -0.2003 & 0.9030 \\ -0.7393 & 0.5209 & 0.4268 \\ -0.5558 & -0.8298 & 0.05 \end{bmatrix}$$

以³₆R求出當中的Euler ZYZ Angles (α,β,γ)

$${}^{3"}_{6}R = {}^{3"}_{4}R_{Z'Y'Z'}(\alpha, \beta, \gamma) = \begin{bmatrix} 0.3802 & -0.2003 & 0.9030 \\ -0.7393 & 0.5209 & 0.4268 \\ -0.5558 & -0.8298 & 0.05 \end{bmatrix}$$

□ 由 3"R 推算 ZYZ Euler Angles

詳細方程式推導參見逆向運動學課程內容

$$\beta = Atan2\left(\sqrt{r_{31}^2 + r_{32}^2}, r_{33}\right) = 87.13^{\circ} \text{ or } -87.13^{\circ}$$

$$\alpha = Atan2\left(\frac{r_{23}}{s\beta}, \frac{r_{13}}{s\beta}\right) = -154.70^{\circ} \text{ or } 25.30^{\circ}$$

$$\gamma = Atan2\left(\frac{r_{32}}{s\beta}, \frac{-r_{31}}{s\beta}\right) = 123.81^{\circ} \text{ or } -56.19^{\circ}$$

方法一 -8

 \Box ZYZ的 (α, β, γ) 和DH的 $(\theta_4, \theta_5, \theta_6)$,在 (θ_4, θ_6) 有+180°的差異,需補回來

$$\theta_4 = \alpha + 180^{\circ} = 25.30^{\circ} \text{ or } -154.70^{\circ}$$

 $\theta_5 = \beta = -87.13^{\circ} \text{ or } 87.13^{\circ}$
 $\theta_6 = \gamma + 180^{\circ} = -56.19^{\circ} \text{ or } 123.81^{\circ}$

 $extbf{ o}$ Euler Angles ZYZ 求出 $heta_4 heta_5 heta_6$

 \square 舉例說明:ZYZ的 $(lpha,eta,\gamma)$ 和DH的 $(heta_4, heta_5, heta_6)$,在 $(heta_4, heta_6)$ 有 $+180^\circ$ 的差異

圖示: X(Euler軸)/X₄(DH定義軸)

- 1. Euler(Z) / Z4轉 θ_4
- 2. 需要對Z多轉180度, Euler XYZ軸才吻合當初定義手臂 frame{5}之方向
- 3. Euler(Y) / Z5轉 θ_5
- 4. 需要對Z多轉180度, Euler XYZ軸才吻合當初定義手臂 frame{6}之方向
- 5. Euler(Z) / Z6轉 θ_6

□ 步驟4:將解出設定點&軌跡內插點的6軸轉角各自對時間畫

成軌跡圖 (附註:在joint space下的軌跡不再是直線,但依然smooth)

 \Box 步驟5:將轉角帶入FK,繪出杯子 ${}^0P_{CORG}$ 的座標及姿態,以

確認軌跡規劃正確性

同樣以第二個via point P_2 為例,進行細部計算說明

$$\theta_1 = 58.61^{\circ} \, \theta_2 = -64.46^{\circ} \, \theta_3 = -11.98^{\circ}$$

$$\theta_4 = 25.30^{\circ} \, \theta_5 = -87.13^{\circ} \, \theta_6 = -56.19^{\circ}$$

根據DH table:

$${}_{6}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T_{5}^{4}T_{6}^{5}T$$

$$=\begin{bmatrix}\cos\theta_1 & -\sin\theta_1 & 0 & 0\\ \sin\theta_1 & \cos\theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}\cos\theta_2 & -\sin\theta_2 & 0 & -30\\ 0 & 0 & 1 & 0\\ -\sin\theta_2 & -\cos\theta_2 & 0 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}\cos\theta_3 & -\sin\theta_3 & 0 & 340\\ \sin\theta_3 & \cos\theta_3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}$$

$$\begin{bmatrix} \cos\theta_4 & -\sin\theta_4 & 0 & -40 \\ 0 & 0 & 1 & 338 \\ -\sin\theta_4 & -\cos\theta_4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_5 & -\sin\theta_5 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \sin\theta_5 & \cos\theta_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_6 & -\sin\theta_6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\sin\theta_6 & -\cos\theta_6 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $= {}_{6}^{0}T_{2}$ (得出與設定4相同的transformation matrix)

方法一 -13

□ 步驟6:軌跡模擬

Z

方法二 -1

□ 方法二:以linear function with parabolic blends在joint-space下 規劃軌跡

□ 步驟1:以IK先計算出各點的6軸轉角

	X	Y	Z	Фх	Φ_{y}	$\Phi_{\rm z}$
P_0	381.3	151.8	19.5	-145	-90	0
P_1	381.3	151.8	79.5	-145	-90	0
P_2	227	372	188.6	0	-30	180
P_f	227	472	188.6	0	-30	180

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
$\boldsymbol{P_0}$	22	-52	2.5	-20	-42	15
$\boldsymbol{P_1}$	22	-59	1	-24	-34	20
P_2	59	-64	-12	25	-87	-56
P_f	64	-49	-35	27	-82	-65

\Box 步驟2:求出各軸(θ_1 - θ_6) 在每個時段的速度及加速度

deg/s	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
V_0	0	0	0	0	0	0
V_1	0	-3.98	-0.85	-2.30	4.48	2.92
V_2	9.22	-1.32	-3.26	12.32	-13.23	-19.11
V_3	2.07	5.43	-8.50	0.64	1.85	-3.21
V_f	0	0	0	0	0	0

deg/s ²	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
a_0	0	-7.95	-1.70	-4.61	8.96	5.84
a_1	18.44	5.32	-4.81	29.25	-35.42	-44.06
a_2	-14.30	13.49	-10.49	-23.37	30.17	31.80
a_f	-4.14	-10.86	17.00	-1.28	-3.71	6.41

□ 步驟3:建立各軸在每個時段的equation (Linear/Parabolic 共7段), 繪出平滑的軌跡 (每段parabolic curve時間為0.5秒)

1

□ 步驟4:以FK繪出 $^{0}P_{CORG}$ 對時間軌跡,確認軌跡有通過設定點

方法二 -5

 $lacksymbol{\square}$ 步驟5:繪出杯子的運動軌跡(${}^0P_{CORG}$ 及旋轉姿態),以驗證答案

在Cartesian-space下和在joint-space下軌跡比較

Cartesian-space

註解 -1

- □ 本例題實為本課程的總整例題(Capstone example),在解題過程中運用了本課程所講授的每個主題,和其內含的多個知識點
 - ◆ 剛體運動狀態的描述
 - ◆ 順向運動學
 - ◆ 逆向運動學
 - ◆ 軌跡規劃

註解 -2

- 軌跡規劃一般為任務導向,設定手臂末端點和物件(工件)之間的關係,獨立於手臂的類型(或自由度配置)
 - Cubic polynomials
 - Linear function with parabolic blends

□ 本課程所講授兩種軌跡規劃方式為基礎方法,可使用。若實際應用時仍不滿足所需,可以照課程講授法則適度延伸(如規劃位置速度和加速度都連續的軌跡等)

- □ 順向運動學和逆向運動學則和手臂的自由度配置相關,不同的配置方式,有不同的計算方式,尤以逆向運動學影響甚大,本課程主要是講授開鏈(open-chain)手臂的IK,移動方面
 - ◆ 平面RRR自由度手臂的IK
 - 。SCARA和晶圓機器人可視為此類型的延伸
 - ◆ 空間RRRRRR自由度手臂的IK
 - 。 多關節機器人(articulated manipulator)

3D IK

2D IK

◆ 「座標型」機器人則不需要FK和IK

轉動方面可以Euler Angles方式求解

- □ 閉鏈(closed-chain)手臂的FK和IK有不同的計算方式
 - ◆ DELTA機器人、Stewart platform等

□ 若手臂具有冗自由度(redundant DOF),軌跡規劃和IK一般具有無限多解,需導入最佳化方法(可避障、時間最快、最省能等)