A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 5EE

Bookmark

Show all steps: (

ON

Problem

Prove part:

Let p be a prime.

- (a) If, $(p-1) \mid m$, then $a^m \equiv 1 \pmod{p}$ provided that $p \neq a$.
- (b) If, (p-1)| m, then $a^{m+1} \equiv a \pmod{pq}$ for all integers a.

Step-by-step solution

Step 1 of 4

(a)

Consider any arbitrary prime number p. Suppose (p-1)|m. Then objective is to prove that $a^m \equiv 1 \pmod{p}$, where $p \nmid a$.

Since $p \nmid a$, therefore both are relatively primes, or gcd(p, a) = 1. Also (p-1)|m, for some integer x

$$m = (p-1)x$$

Comment

Step 2 of 4

By Euler's theorem,

$$a^{\phi(p)} \equiv l \pmod{p}$$
, or

$$a^{p-1} \equiv l \pmod{p}$$

 $a^m = a^{(p-1)x}$ $= (a^{p-1})^x$ $= 1^x (\text{mod } p)$ = 1 (mod p)Thus, $a^m \equiv 1 (\text{mod } p)$.

Step 3 of 4

(b) If (p-1)|m, then show that $a^{m+1}\equiv a(\bmod p)$ for all integers a. From above part, if $p\nmid a$ then $a^m\equiv 1(\bmod p)$. Then multiply by a both the side yields, $a^{m+1}\equiv a(\bmod p)$. If $p\mid a$ then $a\equiv 0(\bmod p)$. Then $a\equiv 0(\bmod p)$. Then $a^{m+1}\equiv 0$ $\equiv a(\bmod p)$.

Comment

Then

Step 4 of 4

Hence, if (p-1)|m then $a^{m+1} \equiv a \pmod{p}$ for all integers a.

Comment