Automaten und Formale Sprachen Praktikum

Blatt 6

Louis Kuhnt - 263622 Matthias Ngo - 263248 AIN3 - SE

HS Furtwangen

Automaten und Formale Sprachen Prof. Dr. Bernhard Hollunder

WISE2020 - 14. Dezember 2020

Aufgabe 1

Beweisen Sie folgende Eigenschaften:

- 1. \mathbb{Z} ist abzählbar. Geben Sie eine geeignete Funktion $f: \mathbb{Z} \to \mathbb{N}$ an, die jedem $z \in \mathbb{Z}$ eineindeutig eine natürliche Zahl $n \in \mathbb{N}$ zuordnet.
- 2. $\mathbb{N} \times \mathbb{N}$ ist abzählbar. Geben Sie eine geeignete Funktion $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ an, die jedem Tupel $(m, n) \in \mathbb{N} \times \mathbb{N}$ eineindeutig eine natürliche Zahl $o \in \mathbb{N}$ zuordnet.
- 3. Sei Σ ein endliches Alphabet. Geben Sie eine Funktion $f: \Sigma^* \to \mathbb{N}$ an, die jedem $w \in \Sigma^*$ eineindeutig eine Zahl zuweist (d.h. Σ^* ist abzählbar).

Aufgabe 1.1

Ganze	 -3	-2	-1	0	1	2	3	
Zahlen (Z)								
Natürlichen	 5	3	1	0	2	4	6	
Zahlen (N)								

Gesucht: f(z) = n

Funktion mit Fallunterscheidung:

Falls z ist positiv: f(z) = z * 2

Falls z ist negativ: f(z) = z * (-2) -1

Falls z = 0: f(z) = z

Beispiele:

$$f(1) = 1 * 2 = 2;$$

$$f(2) = 2 * 2 = 4;$$

$$f(3) = 3 * 2 = 6;$$

$$f(0) = 0$$
;

$$f(-1) = -1 * (-2) -1 = 1;$$

$$f(-2) = -2 * (-2) -1 = 3;$$

$$f(-3) = -3 * (-2) -1 = 5;$$

Aufgabe 1.2

(m,n)	0	1	2	3	4	5	6	7
0	0	2	5	9	14	20		
1	1	4	8	13	19			
2	3	7	12	18				
3	6	11	17					
4	10	16						
5	15							
6								
7								

Gesucht: f(m,n) = 0;

Funktion: $f(m,n) = n + \frac{1}{2} * (m + n) * (m + n + 1)$

Beispiele:

$$\begin{split} f(0,0) &= 0 + \frac{1}{2} * (0+0) * (0+0+1) = 0 \\ f(0,1) &= 1 + \frac{1}{2} * (0+1) * (0+1+1) = 2 \\ f(1,0) &= 0 + \frac{1}{2} * (1+0) * (1+0+1) = 1 \\ f(1,1) &= 1 + \frac{1}{2} * (1+1) * (1+1+1) = 4 \\ f(0,2) &= 2 + \frac{1}{2} * (0+2) * (0+2+1) = 5 \\ f(2,0) &= 0 + \frac{1}{2} * (2+0) * (2+0+1) = 3 \\ f(m,n) &= n + \frac{1}{2} * (m+n) * (m+n+1) \end{split}$$

. . .

Aufgabe 1.3

wort	N	ab	5	cb	11
е	0	ac	6	СС	12
а	1	ba	7	aaa	13
b	2	bb	8		
С	3	bc	9		
aa	4	ca	10		

Funktion:

$$f(w) = \sum_{i=0}^{k} \underline{n}^{i} * f(\underline{u}_{i})$$

Variablen Definition:

k: ist die Länge eines Wortes

n: ist die Anzahl der Elemente in der Menge/Alphabet

f(u) ist eine Funktion, die den Index des Elements zurückgibt

Beispiel:

- Alphabet = $\{a, b, c\}$

- n = 3

- f(u): z.B. f(a) = 1, f(b) = 2, f(c) = 3

Beispielrechnung:

$$f(a) = n^0 * f(a) = 3^0 * 1 = 1$$

. . .

$$f(aa) = n^0 * f(a) + n^1 * f(a) = 3^0 * 1 + 3^1 * 1 = 4$$

$$f(ab) = n^0 * f(a) + n^1 * f(b) = 3^0 * 2 + 3^1 * 1 = 5$$

$$f(ac) = n^0 * f(a) + n^1 * f(c) = 3^0 * 3 + 3^1 * 1 = 6$$

. . .

$$f(aaa) = n^0 * f(a) + n^1 * f(a) + n^2 * f(a) = 3^0 * 1 + 3^1 * 1 + 3^2 * 1 = 13$$

Aufgabe 2

Schreiben Sie jeweils ein loop-Programm für folgende Aufgaben:

Setze den Inhalt des Registers A auf den Wert 5.

2. Addiere den Inhalt von Register B auf den Inhalt von Register A.

```
Register B = 3; Register A = 2;

loop B do A := succ(A) od; //Mithilfe von Loop wird Inhalt addiert

Ergebnis: Register A = 5;
```

 Kopiere den Inhalt von Register A nach B. Beachten Sie, dass der Wert im Register A erhalten bleiben soll.

Ergebnis: Register B = 5; Register A = 5;

4. Signum-(Vorzeichen-)Test:

$$B := \operatorname{sgn}(A) := \begin{cases} 1 & \text{falls } A > 0 \\ 0 & \text{sonst} \end{cases}$$

```
Beispiel(1): A = 10, B = 1
loop A do A := pred(A) od;  // Dann ist A = 0 durch 10 Iterationen
loop A do B := 0 od;  // Da A = 0 ist wird die Schleife übersprungen
// Register B liefert somit 1 bei A>0

Ergebnis: Register B = 1;

Bespiel(2): A = -10, B = 1
loop A do A := pred(A) od;  // Dann ist A = -20 durch 10 Iterationen
loop A do B := 0 od;  // Register B wird durch 20 Iterationen auf 0
gesetzt
// Register B liefert somit 0 bei A<0

Ergbenis: Register B = 0;
```

5. Vergleichstest:

$$C := A > B := \begin{cases} 1 & \text{falls } A > B \\ 0 & \text{sonst} \end{cases}$$

Register A = 10; Register B = 5; Register C = 1;

```
loop B do A := pred(A) od; // A = 10 - 5 = 5
loop A do A := pred(A) od; // A = 5 - 5 = 0
loop A do C := 0 od; // schleife wird übersprungen da A = 0
Ergebnis: Register C = 1; // Register C bleibt 1;
```

Register A = 5; Register B = 10; Register C = 1;

```
loop B do A := pred(A) od; // A = 5 - 10 = -5
loop A do A := pred(A) od; // A = -5 - 5 = -10
loop A do C := 0 od; // C = 0 gesetzt
Ergebnis: Register C = 0;
```

Aufgabe 3

Schreiben Sie jeweils ein while-Programm für folgende Aufgaben:

1. Subtrahiere den Inhalt von Register B vom Inhalt von Register A: A := A - B. Ist $B \ge A$, soll das Ergebnis 0 sein.

2. Multipliziere den Inhalt von Register B mit dem Inhalt von Register A: A := A * B.

3. Test auf Gleichheit:

$$C := A = B := \left\{ \begin{array}{cc} 1 & \text{falls } A = B \\ 0 & \text{sonst} \end{array} \right.$$

```
Bsp: Register A = 5; Register B = 5; Register C = 0;
```

Ergebnis: Register C = 1;

Bsp: Register A = 4; Register B = 5; Register C = 0;

Ergebnis: Register C = 0;

4. Abstand:

$$C := |A - B| := \left\{ \begin{array}{cc} A - B & \text{falls } A \geq B \\ B - A & \text{falls } A < B \end{array} \right.$$

```
Register A = 10; Register B = 5;
Register C := A; Register D := B;
whilenot iszero(B) do
       A := pred(A);
                                           // A = 5
                                           // B = 0
       B := pred(B);
od;
if iszero(A) then
                                           // Prüfen ob A = B wenn A = 0
       loop D do C := pred(C);
else
      loop A do A := pred(A) od;
                                           // A = 5-5
      if iszero(A) then
                                           // Prüfen ob A > 0 oder A < 0;
              loop D do C := pred(C);
       else
              loop C do D := pred(D);
              C := D;
       fi;
```

Ergebnis: Register C = 5;

fi;