Chapter 2

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

Nodes

- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1

Circuit elements

- E1, E2, E3
- Each a circuit

Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$\begin{array}{c}
A \\
B \\
C_{\text{in}}
\end{array}$$
 $\begin{array}{c}
C \\
C_{\text{out}}
\end{array}$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement $A, \overline{A}, B, \overline{B}, C, \overline{C}$
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

ABC, ABC, ABC

Maxterm: sum that includes all input variables

$$(A+B+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+B+C)$

- All Boolean equations can be written in SOP form
- Each row has a minterm

				minterm
_ A	В	Y	minterm	name
0	0		$\overline{A} \ \overline{B}$	m_0
0	1		$\overline{A} \; B$	m_1
1	0		\overline{A}	m_2
1	1		АВ	m_3

- All Boolean equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

			minterm
В	Y	minterm	name
0		$\overline{A} \ \overline{B}$	m_0
1		$\overline{A} \; B$	m_1
0		\overline{A}	m_2
1		АВ	m_3
	0 1 0 1	B Y 0 1 0 1 1	0 <u>A</u> B 1 AB

- All Boolean equations can be written in SOP form
- Each row has a minterm
- A minterm is a **product** (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{AB} + AB$$

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a **product** (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{AB} + AB = \Sigma(1, 3)$$

- All Boolean equations can be written in POS form
- Each row has a maxterm

				maxterm
Α	В	Y	maxterm	name
0	0		A + B	M_0
0	1		$A + \overline{B}$	$oldsymbol{M}_0 \ oldsymbol{M}_1$
1	0		$\overline{A} + B$	M_2
1	1		$\overline{A} + \overline{B}$	M_3^-

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)

				maxterm
A	В	Y	maxterm	name
0	0		A + B	M_0
0	1		$A + \overline{B}$	$oldsymbol{M_0}{M_1}$
1	0		<u>A</u> + B	M_2
1	1		$\overline{A} + \overline{B}$	M_3

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a **sum** (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing maxterms where output is 0
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
1	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = \mathbf{F}(A, B) = (A + B) \cdot (A + \overline{B})$$

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a **sum** (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing maxterms where output is 0
- Thus, a **product** (AND) of **sums** (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
(1)	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

 $Y = F(A, B) = (A + B)(A + \overline{B}) = \Pi(0, 2)$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E = 0)
 - If it's not open (O = 0) or
 - If they only serve corndogs (C = 1)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E = 0)
 - If it's not open (O = 0) or
 - If they only serve corndogs (C = 1)

Write a truth table for determining if you will eat lunch (E).

0	С	Ε
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• **SOP** – sum-of-products

0	С	E	minterm
0	0		O C
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		O C

POS – product-of-sums

0	С	E	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

SOP & POS Form

• **SOP** – sum-of-products

0	С	E	minterm
0	0	0	<u> </u>
0	1	0	O C
1	0	1	O C
1	1	0	O C

$$E = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
(1	1	0	$\overline{O} + \overline{C}$

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - -ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

Number	Axiom	Name
A1	B = 0 if B ≠ 1	Binary Field
A2	$0=\overline{1}$	NOT
A3	0 • 0 = 0	AND/OR
A4	1 • 1 = 1	AND/OR
A5	0 • 1 = 1 • 0 = 0	AND/OR

Boolean Axioms

Number	Axiom	Name
A1	B = 0 if B ≠ 1	Binary Field
A2	$0=\overline{1}$	NOT
A3	0 • 0 = 0	AND/OR
A4	1 • 1 = 1	AND/OR
A5	0 • 1 = 1 • 0 = 0	AND/OR

Dual: Replace: • with +

0 with 1

Boolean Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	$0 = \overline{1}$	$1 = \overline{0}$	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Dual: Replace: • with +

0 with 1

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
T3	$B \bullet B = B$	Idempotency
T4	$\overline{\overline{B}} = B$	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
T3	$B \bullet B = B$	Idempotency
T4	$\overline{\overline{B}} = B$	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Dual: Replace: • with +

0 with 1

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4			Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with +

0 with 1

T1: Identity Theorem

•
$$B + 0 = B$$

T1: Identity Theorem

- B 1 = B
- B + 0 = B

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Idempotency Theorem

- B B = B
- B + B = B

T3: Idempotency Theorem

•
$$B + B = B$$

$$B = B$$

$$B \rightarrow B \rightarrow B$$

T4: Identity Theorem

T4: Identity Theorem

$$B \longrightarrow B$$

T5: Complement Theorem

•
$$B + \overline{B} = 1$$

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 $=$ 0

$$\frac{B}{B} \longrightarrow = 1$$

Recap: Basic Boolean Theorems

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4			Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with +

0 with 1

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
T9	B• (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Dual: Replace: • with +

0 with 1

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (●)

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

How do we prove these are true?

How to Prove

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
 - Make one side of the equation look like the other

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If the two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity

В	C	ВС	СВ	
0	0			
0	1			
1	0			
1	1			

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity

В	C	BC	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C)= B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) = (B+C) \bullet (\overline{B}+D)$	Consensus

How do we prove these are true?

T7: Associativity

Number	Theorem	Name
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity

T8: Distributivity

Number	Theorem	Name
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity

Number	Theorem	Name
Т9	B• (B+C) = B	Covering

Number	Theorem	Name
T9	$B \bullet (B+C) = B$	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0		
0	1		
1	0		
1	1		

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
Т9	B• (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

Number	Theorem	Name
T9	$B \bullet (B+C) = B$	Covering

Method 2: Prove true using other axioms and theorems.

$$B \bullet (B+C)$$
 = $B \bullet B + B \bullet C$ T3: Distributivity
= $B + B \bullet C$ T3: Idempotency
= $B \bullet (1 + C)$ T8: Distributivity
= $B \bullet (1)$ T2: Null element
= $B \bullet (1)$ T1: Identity

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet C) = B$	Combining

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet C) = B$	Combining

Prove true using other axioms and theorems:

$$B \bullet C + B \bullet \overline{C}$$

$$= B \bullet (C+C)$$

T8: Distributivity

$$= B \bullet (\mathbf{1})$$

T5': Complements

$$= B$$

T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Axioms and theorems are useful for *simplifying* equations.

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals

Literal: variable or its complement
 A, A, B, B, C, C

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

– Implicant: product of literals

Literal: variable or its complement
 A, A, B, B, C, C

Simplifying the equation is also called **minimizing** the equation

Distributivity (T8, T8')

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

Covering (T9')

$$A + AP = A$$

Combining (T10)

$$\overline{PA} + PA = P$$

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 1:
$$PA + \overline{A} = PA + (\overline{A} + \overline{A}P)$$

$$= PA + P\overline{A} + \overline{A}$$

$$= P(A + \overline{A}) + \overline{A}$$

$$= P(1) + \overline{A}$$

$$= P + \overline{A}$$

T9' Covering
T6 Commutativity
T8 Distributivity
T5' Complements
T1 Identity

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 2:
$$PA + \overline{A} = (\overline{A} + A)(\overline{A} + P)$$
 T
$$= 1(\overline{A} + P)$$
 T
$$= \overline{A} + P$$
 T

T8' Distributivity
T5' Complements
T1 Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

$$B \cdot C + B \cdot D + C \cdot D$$

$$= BC + \overline{B}D + (CDB + CD\overline{B})$$

$$= BC + \overline{B}D + \overline{B}CD + BCD$$

$$= BC + BCD + \overline{B}D + \overline{B}CD$$

$$= (BC + BCD) + (\overline{B}D + \overline{B}CD)$$

$$= BC + \overline{B}D$$

T10: Combining

T6: Commutativity

T6: Commutativity

T7: Associativity

T9': Covering

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 1:

$$Y = A\overline{B} + AB$$

Example 1:

$$Y = A\overline{B} + AB$$

$$Y = A$$

T10: Combining

or

$$=A(\overline{B}+B)$$

T8: Distributivity

$$=A(1)$$

T5': Complements

$$= A$$

T1: Identity

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 2:

$$Y = A(AB + ABC)$$

Example 2:

$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$=AB$$

T8: Distributivity

T2': Null Element

T1: Identity

T7: Associativity

T3: Idempotency

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 3:

$$Y = A'BC + A'$$

Recall: A' = A

Example 3:

$$Y = A'BC + A'$$

Recall: $A' = \overline{A}$

Note:

- A' is shorthand for A.
- But use the tick symbol (') only when typing.
- It's easy to lose ticks (') when writing by hand!
- It is strongly recommended that you simplify equations by writing by hand.

Example 3:

$$Y = A'BC + A'$$

$$= A'$$

or

$$= A'(BC + 1)$$

$$= A'(1)$$

$$= A'$$

Recall: $A' = \overline{A}$

T9' Covering: X + XY = X

T8: Distributivity

T2': Null Element

T1: Identity

Example 4:

$$Y = AB'C + ABC + A'BC$$

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 4:

$$Y = AB'C + ABC + A'BC$$

= AB'C + ABC + ABC + A'BC T3': Idempotency

= (AB'C+ABC) + (ABC+A'BC) T7': Associativity

= AC + BC T10: Combining

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 5:

$$Y = AB + BC + B'D' + AC'D'$$

Method 1:

$$Y = AB + BC + B'D' + (ABC'D' + AB'C'D')$$

$$= (AB + ABC'D') + BC + (B'D' + AB'C'D')$$

$$= AB + BC + B'D'$$

Method 2:

$$Y = AB + BC + B'D' + AC'D' + AD'$$

$$= AB + BC + B'D' + AD'$$

$$= AB + BC + B'D'$$

T10: Combining

T6: Commutativity

T7: Associativity

T9: Covering

T11: Consensus

T9: Covering

T11: Consensus

implification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = \overline{PA} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y = (A+X)(A+Z)

substitution (X=BC, Z=DE)

= A + XZ

T8': Distributivity

= A + BCDE

substitution

or

Y = AA + ADE + ABC + BCDE T8: Distributivity

= A + ADE + ABC + BCDE T3: Idempotency

= A + ADE + ABC + BCDE

= **A** + ABC + BCDE T9': Covering

= A + BCDE T9': Covering

Example 6:

$$Y = (A + BC)(A + DE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = BC, Z = DE and rewrite equation

Y = (A+X)(A+Z)

substitution (X=BC, Z=DE)

= A + XZ

T8': Distributivity

= A + BCDE

substitution

or

Y = AA + ADE + ABC + BCDE T8: Distributivity

= A + ADE + ABC + BCDE T3: Idempotency

= A + ADE + ABC + BCDE

= A + ABC + BCDE T9': Covering

= A + BCDE T9': Covering

This is called multiplying out an expression to get sum-of-products

(SOP) form.

Review: Canonical SOP & POS Forms

SOP – sum-of-products

0	С	Ε	minterm	
0	0	0	O C	
0	1	0	O C	
1	0	1	O C	
1	1	0	O C	

$$E = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm	
0	0	0	O + C	
0	1	0	$O + \overline{C}$	
1	0	1	O + C	
1	1	0	$\overline{O} + \overline{C}$	

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Multiplying Out: SOP Form

An expression is in **sum-of-products (SOP)** form when all products contain literals only.

- SOP form: Y = AB + BC' + DE
- NOT SOP form: Y = DF + E(A'+B)
- SOP form: Z = A + BC + DE'F

Multiplying Out: SOP Form

Example:

$$Y = (A + C + D + E)(A + B)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = (C+D+E), Z = B and rewrite equation

Y = (A+X)(A+Z)

= A + XZ

= A + (C+D+E)B

= A + BC + BD + BE

substitution (X=(C+D+E), Z=B)

T8': Distributivity

substitution

T8: Distributivity

or

Y = AA + AB + AC + BC + AD + BD + AE + BE

= **A**+AB+AC+AD+AE+BC+BD+BE

= A + BC + BD + BE

T8: Distributivity

T3: Idempotency

T9': Covering

Factoring: POS Form

An expression is in **product-of-sums (POS)** form when all sums contain literals only.

- POS form: Y = (A+B)(C+D)(E'+F)
- NOT POS form: Y = (D+E)(F'+GH)
- POS form: Z = A(B+C)(D+E')

Canonical POS form: each product contains 1 of each literal.

Factoring: POS Form

Example 1:

$$Y = (A + B'CDE)$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: X = B'C, Z = DE and rewrite equation

Y = (A+XZ)

= (A+B'C)(A+DE)

= (A+B')(A+C)(A+D)(A+E)

substitution (X=B'C, Z=DE)

T8': Distributivity

T8': Distributivity

Factoring: POS Form

Example 2:

$$Y = AB + C'DE + F$$

Apply T8' first when possible: W+XZ = (W+X)(W+Z)

Make: W = AB, X = C', Z = DE and rewrite equation

Y = (W+XZ) + F

substitution W = AB, X = C', Z = DE

= (W+X)(W+Z) + F

T8': Distributivity

= (AB+C')(AB+DE)+F

substitution

= (A+C')(B+C')(AB+D)(AB+E)+F T8': Distributivity

= (A+C')(B+C')(A+D)(B+D)(A+E)(B+E)+F

T8': Distributivity

= (A+C'+F)(B+C'+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F) T8': Distributivity

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$	DeMorgan's Theorem

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$	DeMorgan's Theorem

The complement of the product is the sum of the complements

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	B ₀ +B ₁ +B ₂ =	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements.

Dual: The complement of the sum is the product of the complements.

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$Y = (A + \overline{BD})\overline{C}$$

$$Y = (\overline{A} + \overline{B}\overline{D})\overline{C}$$

$$= (\overline{A} + \overline{B}\overline{D}) + \overline{C}$$

$$= (\overline{A} \bullet (\overline{B}\overline{D})) + C$$

$$= (\overline{A} \bullet (BD)) + C$$

$$= \overline{A}BD + C$$

$$Y = (\overline{ACE} + \overline{D}) + B$$

$$Y = (\overline{ACE} + \overline{D}) + B$$

$$= (\overline{ACE} + \overline{D}) \cdot \overline{B}$$

$$= (\overline{ACE} \cdot \overline{D}) \cdot \overline{B}$$

$$= ((\overline{AC} + \overline{E}) \cdot D) \cdot \overline{B}$$

$$= ((AC + \overline{E}) \cdot D) \cdot \overline{B}$$

$$= (ACD + D\overline{E}) \cdot \overline{B}$$

$$= A\overline{B}CD + \overline{B}D\overline{E}$$

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

• Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

What is the Boolean expression for this circuit?

Bubble Pushing

What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect wires connect without a dot do not connect

at a T junction at a dot not connect

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_{o}	Y ₃	Y_2	Y_{1}	Y_{o}
0	0	0	0			•	
0 0 0 0	0	0	0101010101010				
0	0	1 1	0				
0	0		1				
0	1	0	0				
0 0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
0 1 1 1 1 1 1	1	1	0				
1	1	1	1				

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	$A_{\mathcal{O}}$	Y_3	Y_2	Y_{1}	Y_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	A_1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1	A_0 0 1 0 1 0 1 0 1 0 1 0 1	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	
1	1	1	1	1	0	0	0

Priority Circuit Hardware

_					1.7	1.7	14
A_3	A_2	A_{1}	A_{o}	Y_3	Y ₂	Y_{1}	Y_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	0 0 1 1 0 0 1 1 0 0 1 1	01010101010101	1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0 0	0	0
A_3 0 0 0 0 0 1 1 1 1	A_2 0 0 0 1 1 1 0 0 1 1 1 1	1	1	00000011111111	0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0

Don't Cares

1	4	4	1	V	V	V	V
A_3	A_2	A_1	A_0	7 3	<u>'2</u>	1	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	A_{2} 0 0 0 1 1 0 0 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1	01010101010101	1	0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0 0	0	0 1 0 0 0 0 0 0 0 0 0

A_3	A_2	$A_{\scriptscriptstyle 1}$	A_o	Y ₃ 0 0 0 0 1	Y_2	<i>Y</i> ₁	Y_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	X	1	0	0	0

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a bug.
 - X is used for "don't care" and contention look at the context to tell them apart

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Buffer

E	A	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

•
$$PA + P\overline{A} = P$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB						
c	00	01	11	10		
0	1	0	0	0		
1	1	0	0	0		

Y C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	ABC
1	ĀĒC	ĀBC	ABC	AĒC

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are not in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

Y C	B 00	01	11	10
0	ABC	ĀBĒ	ABՇ	ABC
1	ĀĒC	ĀBC	ABC	ABC

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

Truth Table

_ A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{AB} + BC$$

K-Map Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2,
 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- Circle a "don't care" (X) only if it helps minimize the equation

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	1	0

Α	В	С	D	Y
	0		0	1
0	0	0 0	0 1 0	0
0	0		0	1
0		1		1
0	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1	0 1 1 1 0 0 0 0	1 0 0 1 1 0	1 0 1 0 1 0 1 0 1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1 1 0 0	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1 0 1 0 1 1 1 1 0 0 0 0 0
1	1	1	1	0

Υ				
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Α	В	С	D	Y
0	0	0		1
0	0	0	1	0
0	0 0 0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	1 1 1 0 0 0 0 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 1 0 0 0 0
1	1	1	1	0

Υ	_			
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Maps with Don't Cares

Α	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0 0 0		0	1
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0 0 0 1 1	1 0 0 1 1	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	0 1 1 0	1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 X 1 1 1 X X X X
1	1	1	1	X

K-Maps with Don't Cares

Α	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0 0 0		0	1
0	0	1	1	1
0	1 1	0	0	0
0	1	1 0 0 1 1	1	X
0	1	1	0	1
0	1 0 0 0 0 1 1	1	1	1
1	0	0	0	1
1	0		1	1
1	0	1	0	X
1	0	0 1 1 0	1	X
1	1	0	0	X
1	1	0	1	Х
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 X 1 1 1 X X X X X X X
1	1	1	1	X

Υ				
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	Х

K-Maps with Don't Cares

Α	В	С	D	Y
	0	0	0	1
0	0	0	1	0
0 0 0 0 0 0 0 1 1	0	1	1 0	1
0	0	1	1 0	1
0	1	0	0	0
0	1 1 1 0	0	1 0 1 0	Х
0	1	1	0	1
0	1	1 1 0	1	1
1	0	0	0	1
1	0	0		1
1	0 0	1	0	X
1	0	0 1 1	1	X
1	1 1	0	0	X
1	1	0	1	X
1 1 1	1	1	1 0 1 0 1	1 0 1 0 X 1 1 1 X X X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

S	D_1	D_0	Y	S	Y
0	0	0	0	0	D_0
0	0	1	1	1	D_1
0	1	0	0	•	
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

Multiplexer Implementations

Logic gates

Sum-of-products form

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Logic using Multiplexers

Using the mux as a lookup table

$$Y = AB$$

Logic using Multiplexers

Reducing the size of the mux

Decoders

- *N* inputs, 2^{*N*} outputs
- One-hot outputs: only one output HIGH at once

A ₁	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0 0 0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

Logic Using Decoders

OR the minterms

Timing

- Delay between input change and output changing
- How to build fast circuits?

Propagation & Contamination Delay

- Propagation delay: t_{pd} = max delay from input to output
- Contamination delay: t_{cd} = min delay from input to output

Propagation & Contamination Delay

Delay is caused by

- Capacitance and resistance in a circuit
- Speed of light limitation

• Reasons why t_{pd} and t_{cd} may be different:

- Different rising and falling delays
- Multiple inputs and outputs, some of which are faster than others
- Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

Glitches

 When a single input change causes an output to change multiple times

Glitch Example

What happens when A = 0, C = 1, B falls?

Glitch Example (cont.)

Fixing the Glitch

Why Understand Glitches?

- Because of synchronous design conventions (see Chapter 3), glitches don't cause problems.
- It's important to recognize a glitch: in simulations or on oscilloscope.
- We can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches.

