Class 09 Candy Mini Project BIMM 143

Scott MacLeod

Class 09 Mini Project - CANDY

First, we are going to need to download the data by using some commands!

```
candy_file <- "candy-data.txt"
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarp	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

We are going to answer questions along the way!

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 different candies in the data set.

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

There are 38 candies that are fruity.

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
#Win percent for Twix
candy["Twix",]$winpercent
```

[1] 81.64291

For my favorite candy, I like Sour Patch Kids.

```
candy["Sour Patch Kids",]$winpercent
```

[1] 59.864

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

Bonus Question For fun let's find the lowest ranked candy!

inds <- order(candy\$winpercent) head(candy[inds,])</pre>

	chocolate	fruitu	caran	nol 1	000011+1101	onda	nougat	
	_	Truity	carai	mer l	peanucyain	londy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	ewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	;						
Nik L Nip	22.44534	Į.						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	5						
Jawbusters	28.12744	<u> </u>						
Root Beer Barrels	29.70369)						

Looks like something called Nik L Nip is the least favorite candy in the datas et! There is a useful function called skim() in order to get an overview of your data.

```
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The WinPercent has a different scale. Most are 0 to 1, but WinPercent has a different range.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

The 0 represents that there is no chocolate in that certain candy, the 1 represents that there is chocolate present in that candy.

Q8. Plot a histogram of winpercent values

We are going to use two different ways to make the histogram!

hist(candy\$winpercent, breaks=7)
library(ggplot2)

Histogram of candy\$winpercent


```
ggplot(candy) +
  aes(winpercent) +
  geom_histogram(binwidth = 5)
```


Q9. Is the distribution of win percent values symmetrical?

The distribution is unimodal with the center being around 45%.

Q10. Is the center of the distribution above or below 50%? Below.

Q11. On average is chocolate candy higher or lower ranked than fruit candy? Here is the mean for chocolate. Next for fruity.

```
chocolate.win <- candy$winpercent[as.logical(candy$chocolate)]
chocolate_mean <- mean(candy$winpercent[as.logical(candy$chocolate)])
chocolate_mean</pre>
```

[1] 60.92153

```
fruity.win <- candy$winpercent[as.logical(candy$fruity)]
fruity_mean <- mean(candy$winpercent[as.logical(candy$fruity)])
fruity_mean</pre>
```

[1] 44.11974

On average, chocolate is higher ranked.

Q12. Is this difference statistically significant?

```
x <- c(chocolate.win, fruity.win)
t.test(x)

One Sample t-test

data: x
t = 31.775, df = 74, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
49.12217 55.69508
sample estimates:
mean of x
52.40862</pre>
```

Since the P-value of 2.2e-16 is less than 0.05, then we can say they are statistically significant! People like chocolate more than fruity candy!

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

These are the bottom 6 candies! We used the head() function!

```
inds <- order(candy$winpercent)
head(candy[inds, ])</pre>
```

	chocolate	fruity	caram	nel	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	hard	bar	pluribus	sugar	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511

Chiclets	0	0	0	1	0.046	0.325
Super Bubble	0	0	0	0	0.162	0.116
Jawbusters	0	1	0	1	0.093	0.511
Root Beer Barrels	0	1	0	1	0.732	0.069

winpercent
Nik L Nip 22.44534
Boston Baked Beans 23.41782
Chiclets 24.52499
Super Bubble 27.30386
Jawbusters 28.12744
Root Beer Barrels 29.70369

Q14. What are the top 5 all time favorite candy types out of this set?

These are the top 6 favorite candies! We used the tail() function!

inds <- order(candy\$winpercent)
tail(candy[inds,])</pre>

	chocolate	fruity	caram	nel j	peanutyalr	nondy	nougat
Reese's pieces	1	0		0		1	0
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
_	crispedrio	cewafer	hard	bar	pluribus	sugai	percent
Reese's pieces		0	0	0	1		0.406
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent win	percen	ıt			
Reese's pieces	0.6	551 73	3.4349	9			
Snickers	0.6	351 76	6.6737	' 8			
Kit Kat	0.5	511 76	3.7686	60			
Twix	0.9	906 8:	1.6429	91			
Reese's Miniatures	0.2	279 8:	1.8662	26			
Reese's Peanut Butter cup	0.6	551 84	1.1802	29			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent? We are going to reorder the Y axis using the reorder() function.

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent), breaks=20) +
  geom_col() +
  labs(x="Win Percent", y="Candy Type")
```


ggsave('barplot1.png', width=7, height=10)

There is no way to make the letters less scrunched up on the window for the Quarto Document. However, you can save it into a different file and change the height and width to see better! Then you can type in order to view your externally saved file! You can actually insert any image with this syntax. As long as it is a "png, gif, or jpeg"

We are going to add some color to our gg plot. We need to make a custom color vector. Q17. What is the worst ranked chocolate candy? Sixlets

```
my_cols <- rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
#Start with all black vectors
library(ggplot2)
ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill = my_cols) +
   labs(x="Win Percent", y="Candy Type")</pre>
```


Q18. What is the best ranked fruity candy? Starburst

Taking a look at pricepercent

[85] 0.848

```
[1] 0.860 0.511 0.116 0.511 0.511 0.767 0.767 0.511 0.325 0.325 0.511 0.511 [13] 0.325 0.511 0.034 0.034 0.325 0.453 0.465 0.465 0.465 0.465 0.093 0.918 [25] 0.918 0.918 0.511 0.511 0.511 0.116 0.104 0.279 0.651 0.651 0.325 0.511 [37] 0.651 0.441 0.860 0.860 0.918 0.325 0.767 0.767 0.976 0.325 0.767 0.651 [49] 0.023 0.837 0.116 0.279 0.651 0.651 0.651 0.965 0.860 0.069 0.279 0.081
```

[61] 0.220 0.220 0.976 0.116 0.651 0.651 0.116 0.116 0.220 0.058 0.767 0.325 [73] 0.116 0.755 0.325 0.511 0.011 0.325 0.255 0.906 0.116 0.116 0.313 0.267

If we want to see what is a good candy to buy in terms of winpercent and pricepercent we can

plot these two variables and then see the best cnay for the least amount of money.

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text()
```


To avoid the overplotting of all of these labels, we can use an add on package called "ggrepel" Play with the max.overlaps parameter to geom_text_repel()

```
library(ggrepel)
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=2, max.overlaps = 5)
```

Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures - gives the most bang for your buck

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip, Ring Pop, Nestle Smarties, Pop Rocks, Mounds (some answers very depending on your definition of least popular/most expensive)

5 Exploring the correlation structure

```
library(corrplot)
```

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity candies are anti-correlated, meaning they are usualy not mixed into the same type of candy. Pluribus and bar are anti-correlated, meaning if the candy is in bar form, it's usually only one! (only exception I can think of is Kit Kats)

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar are positively correlated (lots of chocolate candy bars exist!). Chocolate and winpercent are positively correlated, meaning lots of people like chocolate!

On to PCA

The main function for this is called prcom() and here we know we need to scale our data with the scale=TRUE argument.

Below gives us the figures for the normal PCA that we are used to!

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC3
                                                PC4
                                                        PC5
                                                                PC6
                                                                        PC7
                          PC1
                                 PC2
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Next, let's make a basic plot with some colors

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


Next we are going to make a new data frame. Then add some aesthetics to the graph.

Finally we are going to add some labels and do our best to make sure that they don't overlap.

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

par(mar=c(8,4,2,2))
barplot(pca\$rotation[,1], las=2, ylab="PC1 Contribution")

We can re order this graph a little bit using ggplot() to make it easier to read!

```
loading <- as.data.frame(pca$rotation)
library(ggplot2)
ggplot(loading) +
   aes(PC1, reorder(rownames(loading), PC1)) +
   geom_col()</pre>
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

These variables would be fruity, hard, and pluribus. This does make sense to me.