Section	Threat	Best Practice	Kubernetes Specific Information	
	1 Authentication			
			In general for Kubernetes itself there are two	
			APIs which may be available without	
			authentication. The first is the insecure API	
			server, which has been disabled in recent	
			versions, the other is the read-only Kubelet	
		a. All access to orchestration tools	which defaults to disabled in recent versions	
		components and supporting services—for	but is still available. This recommendation is	
		example, monitoring–from users or other	that neither of these is used. With regards to	
	Unauthenticated access to APIs is provided by the	services should be configured to require	supporting systems it's important to ensure	
	container orchestration tool, allowing	authentication and individual	that services like Prometheus are configured to	
1.	1 unauthorized modification of workloads.	accountability.	require authentication	
		a. All user credentials used to authenticate		
		to the orchestration should be tied to		
		specific individuals. Generic credentials	The main area where generic credentials are	
		should not be used.	found in Kubernetes is the user created when a	
		When a default account is present and	cluster is first setup. This user will often have	
		cannot be deleted, changing the default	cluster-admin rights. It should not be used for	
		password to a strong unique password	day-to-day administration and should be kept	
	Generic administrator accounts are in place for	and then disabling the account will	offline in a secrets management service for	
	container orchestration tool management. The use	prevent a malicious individual from re-	break-glass scenarios. Additionally generic	
	of these accounts would prevent non-repudiation	enabling the account and gaining access	credentials should not be created during a	
1.	2 of individuals with administrator account access.	with the default password	clusters lifetime.	

on	Threat	Best Practice	Kubernetes Specific Information
			There are two forms of Kubernetes
			authentication which lack specific support for
			revocation of credentials. The first is client
			certificate authentication which is commonly
			configured. The second is the JWT tokens
			provided by the TokenRequest API. From a risk
			perspective the main problem is client
			certificates as they typically have long expiries,
	Credentials, such as client certificates, do not		however in many clusters the Token request
	provide for revocation. Lost credentials present a	a. All credentials used by the orchestration	API can also issue long lasting irrevocable
1.3	risk of unauthorized access to cluster APIs.	system should be revokable.	credentials
	Credentials used to access administrative accounts		
	for either containers or container orchestration	a. Authentication mechanisms used by the	When Kubernetes is storing credentials for
	tools are stored insecurely, leading to	orchestration system should store	"Static Token File" authentication, these are
	unauthorized access to containers or sensitive	credentials in a properly secured	stored in plain text on control plane server
1.4	data.	datastore.	disks, so this should not be used.
			With Kubernetes this relates to the default
		a. Credentials for the orchestration system	setting to mount service account tokens into all
		should only be provided to services	workloads by default. Workloads and service
		running in the cluster where explicitly	account should be configured to only mount
		required.	service account tokens where they are required
	Availability of automatic credentials for any	b. Service accounts should be configured	for the operation of the workload. The second
	workloads running in the cluster. These credentials	for least privilege. The level of rights they	requirement generally relates to avoiding
	are susceptible to abuse, particularly if given	will have is dependent on how the cluster	excessive permissions granted to service
1.5	excessive rights.	RBAC is configured.	account tokens.
			Typically to get MFA authentication with a
	Static credentials—i.e., passwords—used by		cluster, external autentication services are
	administrators or service accounts are susceptible		required, OIDC/Oauth typically would be used.
		a. Interactive users accessing container	With Cloud managed Kubernetes distributions
	local discovery, extortion, password spray, and		this can be tied to Cloud IAM services which
1.6	brute force attacks	authentication (MFA).	should be configured to require MFA

Section	Threat	Best Practice	Kubernetes Specific Information
2	Authorization		
2.1	Excessive access rights to the container orchestration API could allow users to modify workloads without authorization.	a. Access granted to orchestration systems for users or services should be on a least privilege basis. Blanket administrative access should not be used.	With kubernetes the in-built clusterroles (e.g. cluster-admin, edit, view) should not be used, instead cluster operators should create custom clusterroles which provide only the access required. Cluster-admin in particular should not be used for general administration work.
2.2	Excessive access rights to the container orchestration tools may be provided through the use of hard-coded access groups	a. All access granted to the orchestration tool should be capable of modification. b. Access groups should not be hard-coded.	For Kubernetes this relates to the group "system:masters". This group should not be used for any administrative or service account it is only required in "break glass" circumstances if the entire RBAC configuration for the cluster has been broken
2.3	Accounts may accumulate permissions without documented approvals.	a. Use manual and automated means to regularly audit implemented permissions	No specific content
	Workload Security		·
3.1	Access to shared resources on the underlying host permits container breakouts to occur, compromising the security of shared resources	a. Workloads running in the orchestration system should be configured to prevent access to the underlying cluster nodes by default. Where granted, any access to resources provided by the nodes should be provided on a least privilege basis, and the use of "privileged" mode containers should be specifically avoided.	By default, pods created in a Kuberntes cluster can easily get privileged access to the underlying host. All clusters should have either Pod Security Admission or a 3rd party admission controller running, implementing either the baseline or restricted Pod Security Standard profiles.

Section	Threat	Best Practice	Kubernetes Specific Information
		a. Workload definitions/manifests should	
		target specific known versions of any	Ideally all clusters shold use image signing and
		container images. This should be done via	verification (e.g. Cosign in conjunction with
	The use of non-specific versions of container	a reliable mechanism checking the	Kyverno) to ensure that expected images are
		cryptographic signatures of images. If	deployed to the cluster. Where signing is not
	a malicious version of the image is pushed to a	signatures are not available, message-	available, specific tags (not :latest) should be
3.2	registry by an attacker.	digests should be used.	used
	· , ,		General images from Docker Hub (outwith the
	Containers retrieved from untrusted sources may	a. All container images running in the	official images) and other public registries
3.3	contain malware or exploitable vulnerabilities.	cluster should come from trusted sources.	should not be used in production clusters.
4	Network Security		
			For Kubernetes this requires implementation of
			network policy, and configuring policies which
		a. Container orchestration tool networks	apply to every workload in the cluster. This is
	Container technologies with container networks	should be configured on a default deny	typically done by defining default deny policys
	that do not support network segmentation or	basis, with access explicitly required only	for ingress and egress for each namespace,
	restriction allow unauthorized network access	for the operation of the applications being	then adding specific allow rules as required for
4.1	between containers.	allowed.	workloads to operate
			For access from inside the cluster this would be
			covered by network policy. For access from
		a. Access to orchestration system	external addresses some form of firewalling
	Access from the container or other networks to	component and other administrative APIs	should restrict access. For Cloud managed
	the orchestration component and administrative		kubernetes (e.g. AKS, EKS, GKE) private cluster
4.2	APIs could allow privilege escalation attacks.	list of IP addresses.	features would help address this issue
		a. All traffic with orchestration system	_ , ,
		components APIs should be over	For kubernetes components this is generally
	Unencrypted traffic with management APIs is	encrypted connections, ensuring	done over encrypted connections (apart from
	allowed as a default setting, allowing packet	1 '' '	the read-only kubelet port and insecure API
4.3	sniffing or spoofing attacks.	secret requirements.	port)

Section	Threat	Best Practice	Kubernetes Specific Information
		a. Where revocation of certificates is not	Its important to note that certificate revocation
		supported, certificate-based	is not supported by Kubernetes and as such
	Inability of some container orchestration tool	authentication should not be used.	client certificate authentication should not be
	products to support revocation of certificates may	b. Rotate certificates as required by PCI or	used apart from in cases of system component
	lead to misuse of a stolen or lost certificate by	customer policies or if any containers are	> system component authentication where
5.1	attackers.	compromised.	there are no available alternatives.
		a. The certificates issued by orchestration	
	PKI and Certificate Authority services integrated	tools should not be trusted outside of the	
	within container orchestration tools may not	container orchestrator environment, as	
	•	the container orchestrator's Certificate	
	•	Authority private key can have weaker	
	to exploitation of other services that attempt to	protection than other enterprise PKI trust	
	use this chain of trust.	chains.	No specific content
6	Secrets Management		·
	Inappropriately stored secrets, including		For production systems the expectation is that
	credentials, provided through the container	a. All secrets needed for the operation of	a dedicated secrets management system would
	orchestration tool, could be leaked to	applications hosted on the orchestration	be used. In particular no secret information
	unauthorized users or attackers with some level of	platform should be held in encrypted	should be stored using Kubernetes ConfigMap
6.1	access to the environment.	dedicated secrets management systems.	objects.
	Secrets stored without version control could lead	a. Apply version control for secrets, so it is	
	to an outage if a compromise occurs and there is a	easy to refresh or revoke it in case of a	
6.2	requirement to rotate them quickly.	compromise.	No specific content
7	Container Orchestration Tool Auditing		
		a. Access to the orchestration system	
	Existing inventory management and logging	API(s) should be audited and monitored	
	solutions may not suffice due to the ephemeral	for indications of unauthorized access.	For Kubernetes this means that audit loggging
	nature of containers and container orchestration	Audit logs should be securely stored on a	should be enabled, and these logs should be
7.1	tools integration.	centralized system.	stored in a centralized system
8	Container Monitoring		

Section	Threat	Best Practice	Kubernetes Specific Information
		a. Centralized logging of container activity	
	Local logging solutions will not allow for	should be implemented and allow for	
	appropriate correlation of security events where	correlation of events across instances of	For Kubernetes this means that container logs
8.1	containers are regularly destroyed.	the same container.	should be shipped to a centralized service
			For Kubernetes this would typically be
		a. Controls should be implemented to	implemented via agent based intrusion
	Without appropriate detection facilities, the	detect the adding and execution of new	detection systems. It's important to note that
	ephemeral nature of containers may allow	binaries and unauthorized modification of	these systems should be container aware and
8.2	attackers to execute attacks unnoticed	container files to running containers.	not just log information at a host level
9	Container Runtime Security		
	The default security posture of Linux process-	a. Where high-risk workloads are	For Kubernetes clusters this would mean using
	based containers provides a large attack surface	identified, consideration should be given	alternate container runtimes like gVisor or
		to using either container runtimes that	Firecracker. With cloud managed distributions
	may be susceptible to exploits that allow for	provide hypervisor-level isolation for the	serverless container platforms like Cloud Run,
9.1	container escape.	workload or dedicated security sandboxes	Fargate or ACI would also mitigate this risk
		a. Where Windows containers are used to	
		run application containers, Hyper-V	This presents a challenge for Kubernetes
	a security barrier (per Microsoft's guidance)	isolation should be deployed in-line with	clusters as, currently, Windows in Kubernetes
9.2	allowing for possible container break-out.	Microsoft's security guidance.	doesn't support Hyper-V based containers
10	Patching		
		a. All container orchestration tools should	
		be supported and receive regular security	
	Outdated container orchestration tool components	patches, either from the core project or	In general for Kubernetes this just requires that
	can be vulnerable to exploits that allow for the	back-ported by the orchestration system	the cluster is updated to stay within the
10.1	compromise of the installed cluster or workloads	vendor.	support lifecycle for the distribution in use.

Section	Threat	Best Practice	Kubernetes Specific Information
		a. Host operating system of all the nodes	
		that are part of a cluster controlled by a	
		container orchestration tool should be	
		patched and kept up to date. With the	It's important to ensure with Kubernetes
	Vulnerabilities present on container orchestration	ability to reschedule workloads	cluster nodes that not only are all updates
	tool hosts (commonly Linux VMs) will allow for	dynamically, each node can be patched	installed regularly but that updated kernels are
	compromise of container orchestration tools and	one at a time, without a maintenance	used (this usually requires that the node(s) are
10.2	other components.	window.	rebooted)
		a. All container images used for	
		applications running in the cluster should	
	As container orchestration tools commonly run as	be regularly scanned for vulnerabilities,	
	containers in the clusters, any container with	patches should be regularly applied, and	
	· ·	the patched images redeployed to the	
10.3	orchestration tools.	cluster.	No specific content
11	Resource Management		
		a. All workloads running via a container	
		orchestration system should have defined	
	A compromised container could disrupt the	resource limits to reduce the risk of "noisy	
	operation of applications due to excessive use of		ResourceQuotas are used on all in-scope
	shared resources	workloads in the same cluster.	namespaces
12	Container Image Building		
	Container base images downloaded from	a. Application container images should be	
	_	built from trusted, up-to-date minimal	
12.1	packages, increase the risk of supply chain attacks.	base images.	No specific content
		-	
	Base images downloaded from external container	a. A set of common base container images	
	image registries can introduce malware,	should be maintained in a container	
12.2	backdoors, and vulnerabilities	registry that is under the entity's control	No specific content

Section	Threat	Best Practice	Kubernetes Specific Information
	The default position of Linux containers, which is		In addition to this being specified in images, it
	to run as root, could increase the risk of a	a. Container images should be built to run	should be enforced using Admission controllers
12.3	container breakout	as a standard (non-root) user.	in the Kubernetes cluster
		a. Secrets should never be included in	
		application images. Where secrets are	
		required during the building of an image	
		(for example to provide credentials for	
		accessing source code-this process should	
	Application secrets—i.e., cloud API	leverage container builder techniques to	
	credentials—embedded in container images can	ensure that the secret will not be present	
12.4	facilitate unauthorized access.	in the final image.	No specific content
13	3 Registry		
		a. Access to container registries managed	
	Unauthorized modification of an organization's	by the organization should be controlled.	
		b. Rights to modify or replace images	
	malicious software into the production container	should be limited to authorized	
13.1	environment.	individuals.	No specific content
		a. Consider using two registries, one for	
		production or business-critical workloads	
		and one for development/test purposes,	
	A lack of segregation between production and non-		
	production container registries may result in	the opportunity for an unmaintained or	
1 42.2	insecure images deployed to the production	vulnerable image being accidentally pulled	No. 10 of Control of Control
13.2	environment	into a production cluster	No specific content
	Wallandelliking and be approved to be a trans-	a. If available, registries should regularly	
	Vulnerabilities can be present in base images,	scan images and prevent vulnerable	
422	regardless of the source of the images, via	images from being deployed to container	N
13.3	misconfiguration and other methods.	runtime environments.	No specific content

Section	Threat	Best Practice	Kubernetes Specific Information
		a. Registries should be configured to	
		integrate with the image build processes	
		such that only signed images from	
	Known good images can be maliciously or	authorized build pipelines are available for	
	inadvertently substituted or modified and	deployment to container runtime	
13.4	deployed to container runtime environments.	environments.	No specific content
14	Version Management		
		a. Version control should be used to	
		manage all non-secret configuration files.	
	Without proper control and versioning of container		
	orchestration configuration files, it may be possible	_	
		c. Labels should be used to semantically	No anasifia contant
	modification to an environment's setup	identify objects.	No specific content
15	Configuration Management	a All configurations and contains a income	
		a. All configurations and container images	
		should be tested in a production-like	
		environment prior to deployment.	
		b. Configuration standards that address all	
		known security vulnerabilities and are	
		consistent with industry-accepted	
		hardening standards and vendor security	
		guidance should be developed for all	
		system components, including container	
		orchestration tools.	
		i. Address all known security	
		vulnerabilities.	
		ii. Be consistent with industry-accepted	
		system hardening standards or vendor	
	•	hardening recommendations.	
		iii. Be updated as new vulnerability issues	
15.1	vulnerabilities.	are identified.	No specific content

Section	Threat	Best Practice	Kubernetes Specific Information		
16	16 Segmentation				
			Running PCI In-scope and out-of-scope		
			workloads on the same Kubernetes cluster		
		a. Where practical, higher security	presents considerable difficulties of isolation as		
	Unless an orchestration system is specifically	components should be placed on	there are a number of cluster level resources		
	designed for secure multi-tenancy, a shared mixed-	dedicated clusters. Where this is not	and services which cannot be easily		
	security environment may allow attackers to move	possible, care should be taken to ensure	namespaced. For example		
	from a low-security to a high-security	complete segregation between workloads	customresourcedefiition and cluster DNS		
16.1	environment.	of different security levels.	services		
	Placing critical systems on the same nodes as				
	general application containers may allow attackers		This can be done in Kubernetes usng node		
	to disrupt the security of the cluster through the	a. Critical systems should run on dedicated	pools and admission control to ensure that		
	use of shared resources on the container cluster	nodes in any container orchestration	workloads are only scheduled on appropriate		
16.2	node	cluster.	nodes		
	Placing workloads with different security				
	requirements on the same cluster nodes may allow	a. Split cluster node pools should be	This can be done in Kubernetes usng node		
	attackers to gain unauthorized access to high	enforced such that a cluster user of the	pools and admission control to ensure that		
	security environments via breakout to the	low-security applications cannot schedule	workloads are only scheduled on appropriate		
16.3	underlying node.	workloads to the high-security nodes.	nodes		
		a. Workloads and users who manage			
		individual applications running under the	In Kubernetes this means that rights must be		
	Modification of shared cluster resources by users	orchestration system should not have the	restricted to all non-namespaced objects,		
	with access to individual applications could result	rights to modify shared cluster resources,	additional shared services such as Cluster DNS		
	in unauthorized access to sensitive shared	or any resources used by another	must be protected from compromise of a single		
16.4	resources.	application.	workload or node		