Data Mining Lecture 13: Learning to Rank

Jo Houghton

ECS Southampton

May 10, 2019

1/42

Learning to Rank - Introduction

What is "Learning to Rank"?

Definitions:

- ► Any machine learning used for ranking problem broad
- ► Machine learning for ranking of *objects* given *subject* narrow

I will use the second definition

Much of this talk is based on tutorials Hang Li ACML 2009 and Tie-Yan Liu WWW 2009

2/12

Learning to Rank - Introduction

Why rank?

- ► Document Search
- ► Recommender Systems
- ► Machine Translation
- Essay Scoring

Any task where you need an ordering over items in a collection

Learning to Rank - Introduction

Rank or sort objects given a feature vector

Like classification, goal is to assign one of k labels to a new instance. However, *absolute* class is not needed

Like regression, the k labels have order, so you are assigning a value. However this value is not absolute

2/4

Learning to Rank - Introduction

In general:

Training data

Learning to Rank - Introduction

Information Retrieval: ranking documents in order of *relevance*, *importance* and *preference* given a query

Learning to Rank - Introduction

Information Retrieval

In this case, the feature vectors correspond to features of a *query-document* pair, the subject is the query and the object is the document

There are many possible features:

- Number of query terms in document Relevance
- ► PageRank Importance
- ► BM25 Relevance
- •

Features are functions of both the query and the document

Learning to Rank - Introduction

Problem Formulation

Given:

- ▶ Set of input vectors $\{x_i\}_{i=1}^n$
- ▶ Labels $\{y_i\}_{i=1}^n$ where $Y = \{1, 2, ..., N\}$ specifying an order

Find function f to give the ranking, minimising some cost C

Learning to Rank - Ranking Metrics

There are a good number of possible cost functions.

- DCG Discounted Cumulative Gain
- NDCG Normalised DCG
- ► MAP Mean Average Precision
- ► MRR Mean Reciprocal Rank
- ► WTA Winner Takes All
- ► Kendall's Tau

The cost function chosen will depend on what you are trying to rank.

9 / 42

11 / 42

Learning to Rank - Ranking Metrics

DCG - Discounted Cumulative Gain

$$DCG_i = \sum_{i=1}^m c_i y_i$$

Where c_i is a predefined sequence of non-increasing non-negative discount factors, $c=1/\log(i+1)$ when i>k and c=0 otherwise

Focusses on quality of ranking at the top of the list.

0 / 42

Learning to Rank - Ranking Metrics

NDCG - Normalised Discounted Cumulative Gain

$$NDCG = \frac{DCG}{IDCG}$$
 $DCG_j = \sum_{i=1}^{j} \frac{2^{r_i} - 1}{\log_2(i+1)}$

Where DCG_j is the discounted cumulative gain at rank j, an r_i is the relevance of the result at i, usually from 3, 2, 1 For example:

i	True Order	True r _i	DCG_j	$NDCG_i$	\bar{r}_i	DCG_i	$NDCG_i$
1	d_4	3	7.0	1	2	3.0	0.43
2	d_3	3	11.4	1	3	7.4	0.65
3	d_2	2	12.9	1	2	8.9	0.69
4	d_1	2	14.2	1	3	11.9	0.84

Learning to Rank - Ranking Metrics

MAP - Mean Average Precision. Only looks at top j results.

Precision at position j for query q:

$$P_j = \frac{\text{number relevant docs in top } j \text{ results}}{j}$$

Average precision for query q

$$AP_q = \frac{\sum_j P_j.rel(j)}{\text{number relevant docs}}$$

E.g. for a query giving the top 5 results 1, 0, 1, 0, 1

$$AP = \frac{(\frac{1}{1} + \frac{2}{3} + \frac{3}{5})}{3} \approx 0.76$$

MAP - average precision for each query averaged over all Q queries

$$MAP = \frac{\sum_{q}^{Q} AP_{q}}{Q}$$

¹ Jarvelin and Kekalainen, 2002

Learning to Rank - Ranking Metrics

MRR - Mean Reciprocal Rank Considers only rank position of first relevant document. Reciprocal rank for query q RR_a :

$$RR_q = \frac{1}{K}$$

Mean Reciprocal Rank:

$$MRR_q = rac{\sum_q^Q}{Q}$$

13 / 42

Learning to Rank - Types of Ranking

Machine learning ranking algorithms are categorised by how they are judged

- ► Pointwise treats each object in isolation Can use Regression, Classification
- ▶ Pairwise treats objects in pairs RankNet, Frank, RankBoost, Ranking SVM
- Listwise assesses the ordering of the whole list at once Tries to directly optimise the ranking metric

14 / 42

Learning to Rank - Pointwise

Task: Learn a ranking function to give an absolute score

	Regression	Classification	Ordinal Regression
Input	x	x	x
Model	f(x)	f(x)	f(x)
Output	Real Number	Category	Ordered Category
Output	y = f(x)	$y = sign(f(\mathbf{x}))$	$y = thresh(f(\mathbf{x}))$

Learning to Rank - Pointwise

A simple example in 1D, minimising error. Cossock and Zhang, COLT 2006: use least squares difference between relevance degree and estimated relevance degree to learn ranking function

Learning to Rank - Pointwise

Also:

- ► McRank, Li *et al* NIPS2007 Multi class classification to learn ranking, combine outputs of classifiers
- Pranking, Krammer and Singer, NIPS 2002 Perceptron ranking, ordinal regression
- Ranking with Large Margin Principles Shashua and Levin NIPS 2002, SVM

17 / 42

19 / 42

Learning to Rank - Pointwise Movie showing mechanics of perceptron algorithm

Learning to Rank - Pointwise

Perceptron Ranking

Algorithm 1: Perceptron Algorithm

```
Data: X, y, runs, \eta, N

w = rand vector dependent of X feature vector length;

i = 0;

for i = 1 to runs do

\begin{vmatrix} \hat{y} = X.w; \\ err = count(\hat{y}.y > 0); \\ if \ err = 0 \ then \\ | \ return \ w; \\ end \\ r_{idx} = randint(0, N); \\ if \ \hat{y}[r_{idx}] \times y[r_{idx}] < 0 \ then \\ | \ w = w + \eta.y[r_{idx}].X[r_{idx}]; \\ end \\ end

Failed to converge;
```

10 / 40

Learning to Rank - Pointwise

The Model:

- ▶ Input: Feature vectors \boldsymbol{X} , ranks \boldsymbol{y} where $\boldsymbol{y} \in \{1, 2, ..., k\}$
- ▶ Output: $f(X) = f(w.X, b) \sim N \in \{1, 2, ..., k\}$ Where:
 - ▶ w is a weights vector
 - **b** is ranking thresholds, $b_1 \le b_2 \le ... \le b_k = \infty$
 - f(w.X, b) takes the form $\min_{r \in \{1, 2, ..., k\}} \{r : w.X b_r < 0\}$
- ► Loss: $\sum_{t=1}^{T} |\hat{\mathbf{y}}^t \mathbf{y}|$ for run t of T runs

Learning to Rank - Pointwise

Update Rule:

- ▶ Given X_i and y_i input, $f(\mathbf{w}.X_i, \mathbf{b}) = y_i$ if:
 - $\forall r \in \{1, ..., y_i 1\}, \mathbf{w}. X_i > b_r$
 - $\forall r \in \{y_i, ..., k-1\}, \mathbf{w}. X_i < b_r$
- ► So *True* ranking vector is +1 if $r < y_i$ otherwise -1, i.e. $\{y_1, ..., y_i, y_{i+1}, ..., y_k\}$ gives $\{+1, ..., +1, -1, ..., -1\}$
- ▶ If $\exists r : y_r.(\mathbf{w}X_i b_r) \leq 0$ then move values of $\mathbf{w}X_i$ and b_r towards each other:
 - \blacktriangleright $b_r = b_r y_r$
 - $\mathbf{w} = \mathbf{w} + \left(\sum_{r: y_r, \hat{y}_r \leq 0} y_r\right) X_i$, i.e. only sum over the ranks where there was an error

21 / 42

Learning to Rank - Pointwise

Perceptron Ranking

Algorithm 2: Perceptron Ranking Algorithm

Data: X, **y**, **T**, **N**, **k**

 $\mathbf{w} = rand$ vector dependent of \mathbf{X} feature vector length;

$$b_1, ..., b_{k-1} = 0, b_k = \infty;$$

for t = 1 to T do

i = randint(0, N);

 $\hat{y}_i = \min_{r \in \{1,2,\dots,k\}} \{r : \mathbf{w}.X_i - b_r < 0\};$

if $\hat{y}_i \neq y_i$ then

for r = 1 to k - 1 do if $y_i \le r$ then $trv_r = -1$;

else $trv_r = +1$;

for r = 1 to k do if $(\mathbf{w}.X_i - b_r)trv_r \leq 0$ then

 $\tau_r = trv_r$ else $\tau_r = 0$;

 $\mathbf{w} = \mathbf{w} + (\sum_r \tau_r) X_i$;

for r = 1 *to* k - 1 **do** $b_r = b_r - \tau_r$:

end

end

— 22 / 42

Learning to Rank - Pointwise

To update \boldsymbol{w} : shift towards actual rank

$$\mathbf{w} = \mathbf{w} + (\sum_{r} \tau_{r}) X_{i}$$

calc. rank updated

To update **b**: move those intervals to make the actual rank closer

 $b_r = b_r - trv_r$ where rank is incorrect

Learning to Rank - Pointwise

Example Perceptron Ranking:

Sample data:

Rank	x_1	x_2
2	0.4	0.9
2	0.3	0.8
3	0.2	0.7
3	0.3	0.6
1	Λ.Ε	1 0

1 0.5 1.0 2 0.3 0.9 1 0.6 1.0 4 0.1 0.5

4 0.0 0.6 1 0.5 0.9

24 / 42

Learning to Rank - Pointwise

Movie showing mechanics of pranking algorithm

Learning to Rank - Pointwise

Advantages:

- ► Simple to implement
- ► Low complexity

Disadvantages:

- ► Error from all the actual ranks is minimised
 This is not necessary, we only need relative order
- ► In IR, some queries have more matches than those with less This means the loss function can be dominated by queries with many matches
- ► Position of document in list is not visible to loss functions here There may be too much emphasis on irrelevant documents

26 / 42

Learning to Rank - Pairwise

	Learning	Ranking
Input	vector pair $\{\pmb{x_i}, \pmb{x_j}\}$	vector x_k
Model	f(x)	f(x)
Output	$y_{ij} = sign(f(\mathbf{x}_i, \mathbf{x}_j))$	$\mathbf{y} = sort(\{f(\mathbf{x}_k)\}_{i=1}^n)$

Minimises misranking of pairs of feature vectors.

The model learns to rank pairs of vectors, any binary classifier can be used

Learning to Rank - Pairwise

Transforming data in to vector pairs

Sample data:

25 / 42

27 / 42

#	Rank	<i>x</i> ₁	<i>x</i> ₂
а	2	0.41	0.92
b	2	0.28	0.83
С	3	0.25	0.73
d	3	0.31	0.62
е	1	0.57	0.96
f	2	0.29	0.91
g	1	0.59	0.97
h	4	0.15	0.53
i	4	0.03	0.58
j	1	0.56	0.84

26 / 42

Learning to Rank - Pairwise

Transforming data in to vector pairs

Sample data:

Pair	Comp. Rank	<i>x</i> ₁	<i>x</i> ₂
a - b	0	0.13	0.09
a - c	1	0.16	0.19
a - d	1	0.10	0.30
a - e	-1	-0.16	-0.04
a - f	0	0.12	0.01
a - g	-1	-0.18	-0.05
a - h	1	0.26	0.39
a - i	1	0.38	0.34
a - j	-1	-0.15	80.0
b - a	0	-0.13	-0.09
:	:	:	:

29 / 42

Learning to Rank - Pairwise

Half the comparisons are redundant, as they are the opposite of the other.

We can just take cases where the comparative rank is 1 as half of the pair comparisons are duplicates of the other half.

The aim to to combine a set of ranking features such that the comparison $f(x_i) > f(x_j)$ means x_i is higher rank than x_j .

The function f() is a linear function w.X

30 / 42

Learning to Rank - Pairwise

Bradley-Terry-Luce model

Assumes that there is an underlying parameter p_i that determines the ranking for item x_i

$$P(\mathbf{x_i} > \mathbf{x_j}) = \frac{p_i}{p_i + p_j}$$

 p_i could be skill for game rankings, relevance for information retrieval e.t.c.

Thurstone (1929) stated that comparisons are made by drawing a variable with the intrinsic value as the mean and a normal distribution

Learning to Rank - Pairwise

Bradley-Terry-Luce model

Iterative rank aggregation algorithm: finds underlying scores from pairwise comparisons

n items of interest, represented as $[n] = \{1, 2, ..., n\}$ Assume for each item $i \in [n]$ there is an associated score $w_i \in \mathbb{R}_+$. Vector $w \in \mathbb{R}_+$ is associated weight vector of all items.

Given a pair of items i and j $Y_i^l j = 1$ if i is preferred over j, and 0 otherwise during the l^{th} comparison for $1 \le l \le k$ where k is the total number of comparisons

$$P(Y_{ij}^l=1)=\frac{w_i}{w_i+w_j}$$

i is compared to *j* with probability $\frac{d}{d}$

Learning to Rank - Pairwise

Random Walk approach a_{ij} is fraction of times i preferred to j

$$a_{ij} = \frac{1}{k} \sum_{l=1}^{k} Y_{ij}^{l}$$

A random walk on a directed graph G = ([n], E, A) where a pair i, j have an edge if they have been compared. Edge weights A are given by $A_{ij} = \frac{a_{ij}}{a_{ii} + a_{ii}}$

The random walk is represented by the transition matrix P where $P_{ij} = P(X_{t+1} = j | X_t = i)$

33 / 42

Learning to Rank - Pairwise

Advantages:

- ▶ Better performance than pointwise
- ► Gives relative rank

Disadvantages:

- ▶ Does not optimise cost function normally used
- Ranking items at the top often more important than lower down

Learning to Rank - Pairwise

Rows and columns are normalised, so edge weights are scaled by $1/d_{max}$ where d_{max} is the maximum out-degree of a node.

$$P_{ij} = egin{cases} rac{1}{d_{max}} A_{ij} & ext{if } i
eq j \ 1 - rac{1}{d_{max}} \sum_{k
eq i} & ext{if } i = j \end{cases}$$

From an arbitrary starting distribution p_o (where $(p_o(i)) \in \mathbb{R}^n_+$) over [n] the transition matrix is repeatedly applied

$$p_{t+1}^T = p_t^T P$$

The rank is then calculated by finding the stationary distribution $\pi = \lim_{t \to \infty} p_t$, which will converge to the top left eigenvector of P. The stationary distribution of the random walk is a fixed point of:

$$\pi(i) = \sum_{j} \pi(j) \frac{A_{ji}}{\sum_{l} A_{il}}$$

Item is high rank if preferred to many items, or other high rank items

34 / 42

Learning to Rank - Pairwise

Other pairwise approaches:

- ► RankBoost (Freund et al JMLR 2003)
- ► RankingSVM (Herbrich *et al* 2000)
- FRank (Tsai et al SIGIR 2007)
- ► RankNet (Burges et al ICML 2005)
- Learning to Order (Cohen et al NIPS 1998)

Learning to Rank - Listwise

Two approaches:

- Directly optimise the metric used
- ► Minimise loss for the permutation of the list

37 / 42

Learning to Rank - Listwise

 $\begin{array}{ccc} & \text{Minimise Loss} \\ \text{Input} & \text{Docs Set } X = \{x_j\}_{j=1}^m \\ \text{Model} & \text{sort } f(\boldsymbol{X}) \\ \text{Output} & \text{Permutation } \pi_v \end{array}$

Direct Optimisation

Docs Set $X = \{x_j\}_{j=1}^m$ $f(\boldsymbol{X})$ Ordered categories $\boldsymbol{y} = \{y_j\}_{j=1}^m$

38 / 42

Learning to Rank - Listwise

Direct optimisation:

e.g. for information retrieval could be NDCG, or MAP Unfortunately these measures are non-continuous, so not differentiable, so no gradient descent.

Approaches used so far:

- ► make cost function smooth SoftRank
- optimise only smooth upper bound of metric SVM-MAP
- use an algorithm that can deal with discontinuous metrics -AdaRank, RankGP

Learning to Rank - Listwise

Listwise loss minimisation:

Non-Trivial!

e.g.

- ► ListNet (Cao *et al* ICML 2007) Minimises KL divergence between permutation probability distributions, using a NN model and gradient descent
- ► ListMLE (Xia et al ICML 2008) uses MLE algorithm with NN model and SGD to maximise likelihood of permutation

40 / 42

Learning to Rank - Listwise

Advantages:

- rank position is visible to loss function
- uses all documents

Disadvantages:

- very high complexity, not practical
- position information is sometimes insufficient

41 / 42

Learning to Rank - Summary

Pointwise:

- ► Relatively simple
- ► Can give good results for easier problems
- But:
- ► Does more than necessary
- ► Gives absolute score when we only need a rank

Pairwise:

- ► Good Performance
- ► Solves the right problem
- ► But..
- ► Can be high complexity
- ► Sometimes need more than just rank

Listwise:

- ▶ Better performance
- ► But..
- Very high complexity
