Joe Crandall's Grade A ModernPhysics constants Sheet, covers special relativity and basic quantum mechanics

Quantum Theory of Light

 e_{total} = is the power per unit area per unit frequency emitted by the black body

a = black body coefficient between 0 and 1, 1 is ideal

Bragg equation

n = the order of the intensity maximum

 $\lambda = \text{the x-ray wavelength}$

 θ = angle of intensity maximum measured form plane A

d = the spacing between planes

X-ray photon emission

V = x-ray tube voltage

e = elementary charge

Particle Nature of Matter

Rydberg Constant $R_{\infty} = \frac{m_e e^4}{8\epsilon_0^2 h^3 c} = 1.097 x 10^7 m^{-1}$

n = positive integer values

 λ = wavelength of the emitted or absorbed light

coulomb constant $k_e = \frac{1}{4\pi\epsilon_0} = 8.987x10^9 Nm^2 C^{-2}$

The Particle Nature of Matter $R = 1.0973732x10^7 m^{-1}$ Rydberg constant $K_B = 1.38064852x10^{-23} m^2 Kgs^- 2K^- 1$ Boltzman Constant $h = 6.626x10^{-34}Js$ Plank Constant $c = 2.998x10^8ms^{-2}$ Speed of light

The Wave Nature of Matter $m_e=9.10938356x10^{-31}Kg$ Mass of an Electron $\hbar=\frac{h}{2\pi}=1.054571x10^{-34}Js$ Reduced Plank constant, also called Dirac Constant $m_e=9.1x10^{-31}Kg$ Mass of an Electron $h=6.62x10^{-34}Js$ $m_p=1.6726219x10^{-27}Kg$ mass of a proton $m_n = 1.674927x10^{-27} Kg$ mass of a neutron

Quantum Mech in 1D $\langle x \rangle$ = Average position of a particle $\langle p \rangle$ = Average momentum of a particle $\langle Q \rangle$ =Operators in quantum mechanics $\langle U \rangle$ = Average potential energy $\langle K \rangle$ = Average kinetic energy $\langle E \rangle = \langle K \rangle + \langle U \rangle$ total energy for a particle

If a measurement of position is made with precision Δx and a simultaneous measurement of momentum in the x direction is made with precision Δp_x , then the product of the two uncertainties can never be smaller than $\frac{\hbar}{2}$

Quantum Mech in 1D

Tunneling

Quantum Mech in 3D

Rydberg Energy = $\frac{Ke^2}{2a_0}$ = 13.6 eV

The Bohr radius = $a_0 = \frac{\hbar}{m_e K e^2}$ Bohr magneton = $\mu_B = \frac{e\hbar}{2m} = 9.274x10^{-24} J/T$

Atomic Structure

Modern Physics Constants

Weins Displacement = $\lambda_{max}T = 2.898x10^{-3}mK$

Stefans-Boltzmann constant= $\sigma = 5.67x10^{-8}Wm - 2K^{-4}$

Gravitational Constant = $G = 6.674x10^{-34}m^2Kgs^{-1}$

Planks Constant $h = 6.626x10^{-34}m^2kqs^{-1}$

Mass of Electron $m_e = 9.109x10^{-31}kg$

Charge of Electron $q_e = -1.602x10^{-19}C$

Charge of Proton $q_p = 1.602x10^{-19}C$

Elementary charge $e = 1.602x10^{-19}C$

mass of proton $m_p = 1.6727x10^{-27}kg$

mass of neutron $m_n = 1.6727x10^{-27}kg$

mass of electron $m_e = 9.109x10^{-31}kg$

Rydberg Constant $R_{\infty} = \frac{m_e e^4}{8\epsilon_0^2 h^3 c} = 1.097 x 10^7 m^{-1}$

Bohr radius $a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = 5.292x10^{-11}m$

permittivity of free space $\epsilon_0 = 8.854x10^{-12}s^4A^2m^{-3}kg^{-1}$

reduced plank constant $\hbar=1.054x10^{-34}Js$ coulomb constant $k_e=\frac{1}{4\pi\epsilon_0}=8.987x10^9Nm^2C^{-2}$

electron orbital filling levels

$$1s_2^2 2s_4^2 2p_{10}^6 3s_{12}^2 3p_{18}^6 4s_{20}^2 3d_{30}^{10} 4p_{36}^6 5s_{38}^2 \\ 4d_{48}^{10} 5p_{54}^6 6s_{56}^5 4f_{74}^{10} 5d_{80}^6 6p_{86}^6 7s_{88}^2 5f_{10}^{14} 6d_{112}^{10} 7p_{118}^6$$