TOPOLOGÍA I

13 de febrero de 2013

1. En $\mathbb R$ se define la siguiente familia de subconjuntos:

$$\mathcal{T} = \{ O \subseteq \mathbb{R} \; / \; \mathbb{R} - O \; \text{es compacto en } (\mathbb{R}, \mathcal{T}_u) \} \cup \{ \phi \}$$

- (a) Demostrar que \mathcal{T} es una topología sobre \mathbb{R} .
- (b) Comparar T con la topología usual T_u.
- (c) Calcular interior, adherencia y frontera de $A=[0,1]\cup[2,3]$ y $B=]0,\infty[$ en $(\mathbb{R},\mathcal{T}).$
- 2. Sea $f:(X,T)\longrightarrow (Y,T')$ una aplicación biyectiva. Probar que son equivalentes:
 - (a) f es continua y abierta-
 - (b) $f(\overline{A}) = \overline{f(A)}, \ \forall A \subset X.$
- 3. (a) Razonar si puede existir una biyección abierta del plano $(\mathbb{R}^2, \mathcal{T}_u)$ en la esfera $(\mathbb{S}^2, (\mathcal{T}_u)_{\mathbb{S}^2})$.

- (b) Probar que si B es una base de (R², Tu), entonces las componentes conexas de los elementos de B forman otra base de (R², Tu).
- Razonar si los siguientes subespacios de (R³, Tu) son homeomorfos:
 - (a) $(\mathbb{S}^1 \times \{0\}) \bigcup (\{0\} \times \mathbb{S}^1)$,
 - (b) S²,

 - (d) $\mathbb{S}^1 \times \mathbb{R}$,
 - (e) (ℝ × {(0,0)}) ∪S².

Puntuación: todos igual. Tiempo: 3 horas.

