Introduction:

For this project Tejasvi and me collaborated to work on hand gestures recognition data taken from kaggle. I worked on pytorch to create a model to train, validate and test on hand gestures dataset.

Description of the individual work:

We developed a basic Neural Network architecture which worked on the given dataset but accuracy was not that good. Then I started working on improving the model by developing a script, which used multiple permutation of optimizers, batch sizes, epochs, learning rate. This script helped me determine the best combination of parameters. But I thought the model was overfitted as shown by this graph..

Description of portion of work in detail:

This graph showed me that the model was overfit. Then we used validation dataset, to do early stopping on our data. This prevented overfitting. Also, to choose best parameters I used following 54 different models to choose most optimum parameters.

batch_size	learning_rate	optimizer_method	num_epochs	time	accuracy
128	0.1	Adam	5	6.93	92.4
128	0.1	Adam	10	6.96	97.8
128	0.1	Adam	2	6.93	94.73
128	0.1	Adadelta	2	7.06	98.53
128	0.1	Adadelta	5	7.05	99.8
128	0.1	Adadelta	10	7.06	99.87
128	0.01	Adam	10	7.01	99.93
128	0.01	Adam	2	7.02	78.2
128	0.01	Adam	5	7	99.8
128	0.01	Adadelta	2	7.06	62.67
128	0.01	Adadelta	5	7.1	89.8
128	0.01	Adadelta	10	7.07	98.73
128	0.001	Adam	2	7.01	99.83
128	0.001	Adam	5	7.02	99.93
128	0.001	Adam	10	7.05	99.93
128	0.001	Adadelta	2	7.09	13.17
128	0.001	Adadelta	10	7.1	51.43
128	0.001	Adadelta	5	7.07	32.4
64	0.1	Adam	10	7.44	98.47
64	0.1	Adam	2	7.4	96.23

64	0.1	Adam	5	7.4	85.37
64	0.1	Adadelta	10	7.61	99.93
64	0.1	Adadelta	5	7.63	99.87
64	0.1	Adadelta	2	7.54	99.43
64	0.01	Adam	2	7.55	99.1
64	0.01	Adam	5	7.53	99.93
64	0.01	Adam	10	7.68	99.93
64	0.01	Adadelta	2	7.6	70.2
64	0.01	Adadelta	5	7.63	95.13
64	0.01	Adadelta	10	7.68	99.47
64	0.001	Adam	2	7.57	99.93
64	0.001	Adam	5	7.65	99.93
64	0.001	Adam	10	7.69	99.9
64	0.001	Adadelta	10	7.67	57.9
64	0.001	Adadelta	2	7.68	14.53
64	0.001	Adadelta	5	7.71	36.47
32	0.1	Adam	5	8.65	75.57
32	0.1	Adam	10	8.81	75.67
32	0.1	Adam	2	8.89	87.6
32	0.1	Adadelta	5	9.05	99.9
32	0.1	Adadelta	10	9.12	99.9
32	0.1	Adadelta	2	9.11	99.53
32	0.01	Adam	2	8.93	98.5
32	0.01	Adam	10	8.93	99.9
32	0.01	Adam	5	8.86	91.63

32	0.01	Adadelta	5	9.12	97.97
32	0.01	Adadelta	2	9.18	74.23
32	0.01	Adadelta	10	9.15	99.7
32	0.001	Adam	2	9.1	99.8
32	0.001	Adam	5	9.06	99.97
32	0.001	Adam	10	8.89	99.97
32	0.001	Adadelta	5	9.24	47.23
32	0.001	Adadelta	10	9.33	75.23
32	0.001	Adadelta	2	9.38	19.97

Next task was to create a docker image to upload to ECR. Tejasvi created the predict file, which takes a single image and classifies it. Creating docker images was difficult, as this was my first time working with docker image. Docker was exhausting, as I was getting error for dependencies, which took most of my time. After docker images was created, I uploaded it to ECR, from where tejasvi used that to create containers.

Results, summary and conclusions:

For our data set we have found best accuracy/ f-score for below parameters:

batch size	Learning rate	optimizer method	num epochs	time((s ec)	accuracy
64	0.001	Adam	2	7.26	99.47

