

Theoretische Informatik

Logik

Boolesche Algebra

Logik

Boolesche Algebra

Definition (Boolesche Algebra)

- » In der Mathematik ist eine boolesche Algebra (oder ein boolescher Verband) eine spezielle algebraische Struktur, die die Eigenschaften der logischen Operatoren UND, ODER, NICHT sowie die Eigenschaften der mengentheoretischen Verknüpfungen Durchschnitt, Vereinigung, Komplement verallgemeinert.
- » Gleichwertig zu booleschen Algebren sind boolesche Ringe, die von UND und ENTWEDER-ODER beziehungsweise Durchschnitt und symmetrischer Differenz ausgehen.

Bemerkung

» Die boolesche Algebra ist die Grundlage bei der Entwicklung von digitaler Elektronik und wird in allen modernen Programmiersprachen zur Verfügung gestellt.

Logik

Boolesche Algebra – Aussagenlogische Gesetze (1 von 2)

1	a∧a	\Leftrightarrow	а	Idempotenz
2	a∨ a	\Leftrightarrow	а	
3	$\neg \neg a$	\Leftrightarrow	а	
4	a∧b	\Leftrightarrow	b∧a	Kommutativität
5	$a \lor b$	\Leftrightarrow	b∨a	
6	$a \wedge (b \wedge c)$	\Leftrightarrow	(<i>a</i> ∧ <i>b</i>)∧ <i>c</i>	$\Leftrightarrow a \wedge b \wedge c$
				Assoziativität
7	$a \lor (b \lor c)$	\Leftrightarrow	$(a \lor b) \lor c$	$\Leftrightarrow a \lor b \lor c$
8	$a \lor (b \land c)$	\Leftrightarrow	$(a \lor b) \land (a \lor c)$	Distributivität
9	$a \wedge (b \vee c)$	\Leftrightarrow	$(a \wedge b) \vee (a \wedge c)$	
10	$\neg(a \land b)$	\Leftrightarrow	$\neg a \lor \neg b$	DeMorgan-Regel
11	$\neg (a \lor b)$	\Leftrightarrow	$\neg a \land \neg b$	
12	$((a \Rightarrow b) \land (b \Rightarrow c))$	\Rightarrow	$(a \Rightarrow c)$	Transitivität
13	a∨¬a	\Leftrightarrow	1	Ausgeschlossener Dritter
14	$a \wedge \neg a$	\Leftrightarrow	0	(tertium non datur)

Logik

Boolesche Algebra – Aussagenlogische Gesetze (2 von 2)

15	a⇔b	\Leftrightarrow	$(a \Rightarrow b) \land (b \Rightarrow a)$	
16	$a \Rightarrow b$	\Leftrightarrow	$\neg a \lor b$	Zusammenhang ⇒ und
				∨ sowie ¬
17	a∧1	\Leftrightarrow	а	neutrales Element
18	a∨0	\Leftrightarrow	а	
19	<i>a</i> ∧0	\Leftrightarrow	0	
20	a∨1	\Leftrightarrow	1	
21	a∧(a∨b)	\Leftrightarrow	а	<i>b</i> ist überflüssige Aussage
22	a∨(a∧b)	\Leftrightarrow	а	