PCT

世界知的所有権機関

国際事務局

特許協力条約に基づいて公開された国際出願

特許協力	リ条約に盛っ		W095/26047
(51) 国際特許分類6	A1	(11) 国際公開番号	
H01L 23/12	A	(43) 国際公開日	1995年9月28日(28.09.95)
	PCT/TP95/0049	92 山崎聡夫(YAMAZAKI	, Toshio)[JP/JP]

	1
21) 国際出願番号 22) 国際出願日	PCT/JP95/00492 1995年3月17日(17.03.95)
(30) 優先権データ 特願平6/48760 特願平6/273469 特願平7/7683 特願平7/56202	1994年3月18日(18.03.94) IP 1994年11月8日(08.11.94) IP 1995年1月20日(20.01.95) IP 1995年3月15日(15.03.95) IP
日立化成工業株式会 (HITACHI CHEMIC 〒160 東京都新宿区 (72) 発明者;およ (75) 発明者/出原 福富直樹(FUKUTO 〒307 茨城県結城市 版於良明(TSUBOM	AL COMPANY, LID (JEPT) 西新宿二丁目1番1号 Tokyo, (JP) じび 負人 (米国についてのみ)

〒300 茨城県土浦市右籾24-2 Ibaraki, (JP)

井上文男(INOUE, Fumio)[JP/JP] 〒305 茨城県つくば市花畑1-15-18

日立化成紫峰寮A403号 Ibaraki, (JP)

〒305 茨城県つくば市松代3-4-3 日立松代ハウス203号 Ibaraki, (JP) 大畑洋人(OHHATA, Hirohito)[JP/JP] 〒305 茨城県つくば市花畑1-15-18 日立化成紫峰寮B204号 Ibaraki, (JP) 萩原伸介(HAGIWARA, Shinsuke)[JP/JP] 〒308 茨城県下館市玉戸1278-302 Ibaraki, (JP) 田口矩之(TAGUCHI, Noriyuki)[JP/JP] 〒305 茨城県つくば市花畑1-15-18 日立化成紫峰寮A504号 Ibaraki, (JP) 野村 宏(NOMURA, Hiroshi)[JP/JP] 〒329-02 栃木県小山市網戸227 Tochigi, (JP) (74) 代理人 弁理士 富田和子, 外(TOMITA, Kazuko et al.) 〒220 神奈川県横浜市西区北幸2丁目9-10 横浜HSビル7階 Kanagawa, (JP)

CN, IP, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, (81) 指定国 GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調查報告書

(54) Title: SEMICONDUCTOR PACKAGE MANUFACTURING METHOD AND SEMICONDUCTOR PACKAGE

(54) 発明の名称 半導体パッケージの製造法及び半導体パッケージ

comprises a base including conductors made of nickel-coated electrolytic coppe, fail, and to assist can be conducted to the coated electrolytic coppe. the copper foil, connected to the conductors at its terminal and sealed with epoxy resin. In the process of producing the package base, the copper foil alone is removed with an alkali etchant, and the exposed nickel layer is removed as package base, the copper ion alone is removed with an arkan element, and the exposed micker layer is removed with a liquid that can hardly dissolve copper whereby interconnections are exposed. A pattern is formed so as to expose a structural terminals by applying a solder room and solder halfs placed on the exposed terminals are fused to expose a structural terminals by applying a solder room and solder halfs placed on the exposed terminals are fused to conductors of an external writing beard.

(57) 要約

半導体の高集積度化に対応できる半導体パッケージ基板を 提供する。電解銅箔にニッケル層をめっきし配線を形成ワイ 銅箔上にLSIチップを搭載し、LSI端子部と配線を サボンドにより接続し、半導体封止用エポキシ樹脂を用して 対止する。銅箔のみをアルカリ番を解性の少なと ニッケルを露出させ、ニッケル層を銅の姿ないが ニッケルを露出させる。ソルダレンを ケル剥離液にて配線部を露出させる。ソルダ形成 トを塗布し接続用端子部を露出するようにパターンを形成が この配線露出部にはんだボールを配置し溶融させ、 ロルを介して外部の配線板と接続する。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AM アルメニア AT オーストリア EE エストニア ES スペイン

LK スリランカ LR リベリア LT リトアニア RU ロシア連邦 SD スーダン SE スウェーデン

ML マンゴル MN モンゴル MR モーリタニア MW マラウィ MX メキショ NE ニジェール TG トーゴ TJ タジキスタン TTM トルクメニスタン TTT トリニティ トウクライナ

PT STATE

-1-

明細書

半導体パッケージの製造法及び半導体パッケージ

技術分野

本発明は、半導体パッケージの製造法及び半導体パッケージに関する。

背景技術

半導体の集積度が向上するに従い、入出力端子数が増加している。従って、多くの入出力端子数を有する半導体パッケージが必要になった。一般に、入出力端子はパッケージの周辺に一列配置するタイプと、周辺だけでなく内部まで多列に配置するタイプがある。前者は、QFP(Quad Flat Package)が代表的である。これを多端子化する場合は、端子ピッチを縮小することが必要であるが、0.5mmピッチ以下の領域では、配線板との接続に高度な技術が必要になる。後者のアレイタイプは比較的大きなピッチで端子配列が可能なため、多ピン化に適している。

従来、アレイタイプは接続ピンを有するPGA (Pin Grid Array)が一般的であるが、配線板との接続は挿入型となり、表面実装には適していない。このため、表面実装可能なBGA (Ball Grid Array)と称するパッケージが開発されている。BGAの分類としては、(1)セラミックタイプ、(2)プリント配線板タイプ及び(3)TAB (tape automated bonding) を使ったテープタイプなどがある。このうち、セラミックタイプについて

差に起因するハッケーンはりかば気な画型にある。よれ、 リント配線板タイプについても、基板の反り、耐湿性、信頼 を適用したテープBGAが提案されている。

パッケージサイズの更なる小型化に対応するものとして、 半導体チップとほぼ同等サイズの、いわゆるチップサイズパッケージ (CSP; Chip Size Package) が提案されている。これは、半導体チップの周辺部でなく、実装領域内に外部配線 基板との接続部を有するパッケージである。

具体例としては、バンプ付きポリイミドフィルムを半導体チップの表面に接着し、チップと金リード線により電気的接続を図った後、エポキシ樹脂などをポッティングして封止したもの (NIKKEI MATERIALS & TECHNOLOGY 94. 4, No.140, p 18-19) や、仮基板上に半導体チップ及び外部配線基板との接続部に相当する位置に金属バンプを形成し、半導体チップをフェースダウンボンディング後、仮基板上でトランスファーモールドしたもの (Smallest Flip-Chip-Like Package CS P; The Second VLSI Packaging Workshop of Japan, p46-50, 1994) などである。

好ましい。反面、2層フレキ基材をリードフレーム状に加工 ・ート、ドロンガする場合、ベースフィルム厚さが薄いとハ

ンドリング性やフレームとしての剛直性に欠けるなどの問題 がある。

以上のように小型化高集積度化に対応できる半導体パッケージとして、種々の提案がされているが、性能、特性、生産 性等全てにわたって満足するよう一層の改善が望まれている。

本発明は、小型化、高集積度化に対応できる半導体パッケージを、生産性良くかつ安定的に製造するを可能とする半導体パッケージの製造法及び半導体パッケージを提供するものである。

発明の開示

本願の第一の発明は、

- 1 A. 導電性仮支持体の片面に配線を形成する工程、
- 1 B. 配線が形成された導電性仮支持体に半導体素子を搭載.
- し、半導体素子端子と配線を導通する工程、
- 1 C. 半導体素子を樹脂封止する工程、
- 1 D. 導電性仮支持体を除去し配線を露出する工程、
- 1 E. 露出された配線の外部接続端子が形成される箇所以外に絶縁層を形成する工程、
- 1 F. 配線の絶縁層が形成されていない箇所に外部接続端子を形成する工程
- を含むことを特徴とする半導体パッケージの製造法である。 本願の第二の発明は、
- 2 A. 導電性仮支持体の片面に配線を形成する工程、
- 2 B. 配線が形成された導電性仮支持体の配線が形成された 面に絶縁性支持体を形成する工程、

- 2 E. 配線が転写された絶縁性支持体に半導体素子を搭載し、 半導体素子端子と配線を導通する工程、
- 2 G. 半導体素子を樹脂封止する工程、
- 2 H. 外部接続端子用透孔に配線と導通する外部接続端子を 形成する工程

を含むことを特徴とする半導体パッケージの製造法である。 第二の発明に於いて、2A~2Hの順に進めるのが好まし いが、2Dの工程を2Bの前に行うようにしても良い。例え ば2Bの工程を外部接続端子用透孔を予め設けた絶縁フィル ム絶縁性支持体を配線が形成された導電性仮支持体の配線が 形成された面に貼り合わすことにより行っても良い。

本願の第三の発明は、

- 3 A. 導電性仮支持体の片面に配線を形成する工程、
- 3 B. 配線が形成された導電性仮支持体に半導体素子を搭載 し、半導体素子端子と配線を導通する工程、
- 3 C. 半導体素子を樹脂封止する工程、
- 3 D. 配線の外部接続端子が形成される箇所以外の導電性仮 支持体を除去し導電性仮支持体よりなる外部接続端子を形成 する工程、
- 3 E. 外部接続端子の箇所以外に絶縁層を形成する工程、を 含むことを特徴とする半導体パッケージの製造法である。 本願の第四の発明は、
- 4 A. 導電性仮支持体の片面に配線を形成する工程、
- 4 B. 配線が形成された導電性仮支持体に半導体素子を搭載 し、半導体素子端子と配線を導通する工程、
- 4 C. 半導体素子を樹脂封止する工程、

※ 4 ナマ # 披布レ反対側の配線の

件が異なる金属パターンを形成する。位、

4 日、金属パターンが形成された箇所以外の導電性仮支持体

を含むことを特徴とする半導体パッケージの製造法である。 金属パターンとしてははんだが好ましく、又ニッケル続い て金の層を積ねたものでも良い。

本願の第五の発明は、

- 5 A. 絶縁性支持体の片面に複数組の配線を形成する工程、
- 5 B. 配線の外部接続端子となる箇所の絶縁性支持体を除去
- し外部接続端子用透孔を設ける工程
- 5 C. 複数組の配線が形成された絶縁性支持体に半導体素子 を搭載し、半導体素子端子と配線を導通する工程、
- 5 D. 半導体素子を樹脂封止する工程、
- 5 E. 外部接続端子用透孔に配線と導通する外部接続端子を 形成する工程、
- 5 F. 個々の半導体パッケージに分離する工程
- を含むことを特徴とする半導体パッケージの製造法である。 第五の発明に於いて、製造工程は、5A~5Fの順に進め るのが好ましいが、5A、5Bを逆にしても良い。すなわち 外部接続端子用透孔を設けた絶縁性支持体に、複数組の配線 を形成するようにしても良い。

本願の第六の発明は、

- 6 A. 導電性仮支持体の片面に複数組の配線を形成する工程、
- 6 B. 導電性仮支持体に形成された複数組の配線を所定の単位個数になるように導電性仮支持体を切断分離し、配線が形成された分離導電性仮支持体をフレームに固着する工程、
- 6 C. 配線が形成された導電性仮支持体に半導体素子を搭載し、半導体素子端子と配線を導通する工程、
- し: . 露出された配線する部級用点 10 mm で 10 mm に 20 mm に 20 mm に 20 mm に 絶縁 層を 形成する工程、
 - 医统计论环转列的人 医大大性 化二氯甲烷 机物铁铁铁环

を形成する工程

6 H. 個々の半導体パッケージに分離する工程

を含むことを特徴とする半導体パッケージの製造法である。

6 Bの所定の単位個数は 1 個が好ましいが、生産性を上げるため複数個であっても良い。

本願の第七の発明は、

7 A. 絶縁性支持体の片面に複数組の配線を形成する工程、

7 B. 配線の外部接続端子となる箇所の絶縁性支持体を除去 し外部接続端子用透孔を設ける工程

7 C. 絶縁性支持体に形成された複数組の配線を所定の単位個数になるように絶縁性支持体を切断分離し、配線が形成された分離絶縁性支持体をフレームに固着する工程、

7 D. 配線が形成された絶縁性支持体に半導体素子を搭載し、 半導体素子端子と配線を導通する工程、

7 E. 半導体素子を樹脂封止する工程、

7 F. 外部接続端子用透孔に配線と導通する外部接続端子を 形成する工程、

7 G. 個々の半導体パッケージに分離する工程

を含むことを特徴とする半導体パッケージの製造法である。

製造工程は、7A~7Gの順に進めるのが好ましいが、第 五の発明と同様7A、7Bを逆にしても良い。

本願の第八の発明は、1層の配線においてその配線の片面が半導体素子と接続する第1の接続機能を持ち、その配線の反対側が外部の配線と接続する第2の接続機能をもつように構成された配線を備えた半導体パッケージの製造法であって、下記8A、8B、8C、8Dの工程を含むことを特徴とする半導体パッケージの製造法。

⁸ B. 後工程で第 2 の接続機能部となる位置に、絶縁基材のから配線パターンに達する凹部を設ける工程。

- 8 C. 配線パターン面及び配線パターンと隣接する絶縁基材面上の所望する位置に、所定の部分を開孔させたフレーム基材を貼り合わせる工程。
- 8 D. 半導体素子を搭載し半導体素子端子と配線を導通し半導体素子を樹脂封止する工程。

第八の発明に於いて、工程は8A~8Dの順に進めるのが 好ましいが、8Aと8Bを逆にしても良い。すなわち、絶縁 基板に金属箔に達する凹を設けた後金属箔を配線パターンに 加工するようにしても良い。

本願の第九の発明は、1層の配線においてその配線の片面が半導体素子と接続する第1の接続機能を持ち、その配線の反対側が外部の配線と接続する第2の接続機能をもつように構成された配線を備えた半導体パッケージの製造法であって、下記9A、9B、9C、9Dの工程を含むことを特徴とする半導体パッケージの製造法。

- 9 A. 耐熱性を有する金属箔付き絶縁基材の金属箔を複数組の配線パターンに加工する工程。
- 9 B. 後工程で第 2 の接続機能部となる位置に、絶縁基材側から配線パターンに達する凹部を設ける工程。
- 9 C. 配線パターン面及び配線パターンと隣接する絶縁基材面上の所望する位置に、所定の部分を開孔させた第 2 絶縁基材を貼り合わせ絶縁支持体を構成する工程。
- 9 D. 絶縁支持体に形成された複数組の配線を所定の単位個数になるように絶縁支持体を切断分離し、配線が形成された分離絶縁支持体をフレームに固着する工程。
- 9 E. 半導体素子を搭載し半導体素子端子と配線を導通し半

好ましいが、第八の発明と同様でユビッシュとといった。 本願の第十の発明は、

1 0 B. 配線が形成された支持体に複数個の半導体素子を搭載し、半導体素子端子と配線とを導通させる工程、

10C. 導通された複数組の半導体素子と配線とを一括して 樹脂封止する工程、10D. 支持体の所望する部分を除去し て配線の所定部分を露出させ、露出した配線と電気的に接続 した外部接続端子を形成する工程、

10 E. 個々の半導体パッケージに分離する工程

を含むことを特徴とする半導体パッケージの製造法である。

支持体として金属箔を使用し樹脂封止後に支持体を除去することにより配線パターンを露出させるようにしても良い。

又、支持体が絶縁基材で、樹脂封止後に絶縁基材の所定部分を除去して配線パターンに達する非貫通凹部を形成するようにすることもできる。

本願の第十一の発明は、複数個の半導体素子実装基板部を備え、複数個の半導体素子実装基板部を連結するための連結部を備え、位置合わせマーク部を備えている半導体素子実装用フレームの製造法であって、

- (a) 導電性仮基板上に半導体素子実装部の配線を作製する工程、
 - (b) 樹脂基材上に配線を転写する工程、
- (c) 導電性仮基板をエッチング除去する工程、 を含み、(c) の導電性仮基板の除去に際して、導電性仮基 板に一部を残し連結部の一部を構成するようにすることを特 徴とする半導体素子実装用フレームの製造法である。

本発明では、半導体素子はLSIチップ、ICチップ等通常の素子が使用できる。

半導体素子端子と配線とを同通する方法には、ワイヤボン

本発明においては、半導体素子を樹脂封止した後、野上樹脂硬化物を加熱処理することにより、そり、変形のない半導

体パッケージを製造することができる。

加熱処理は、封止樹脂硬化物のガラス転移温度±20℃の 温度が好ましい。この理由は、ガラス転移温度±20℃の範囲で樹脂硬化物は最も塑性的な性質が強く、残留歪みを解消し易いためである。加熱処理の温度が、ガラス転移温度−20℃未満では樹脂硬化物はガラス状態の弾性体となり緩和の効果が少なくなる傾向があり、ガラス転移温度+20℃を超えれば樹脂硬化物はゴム弾性体となり同様に歪みを解消する効果がすきなくなる傾向にある。

封止樹脂硬化物のガラス転移温度±20℃の温度で加熱処理をした後、5℃/分以下の降温速度で室温まで冷却することにより、半導体パッケージのそり、変形をより確実に防止することができる。

加熱処理及び/又は冷却の工程は、封止樹脂硬化物の上下面を剛性平板で、封止樹脂硬化物のそり、変形を押さえる力で押圧した状態で行うのが好ましい。

本発明の半導体パッケージにおいては、配線は1層の配線においてその配線の片面が半導体チップと接続する第1の接続機能を持ち、その配線の反対面が外部の配線と接続する第2の接続機能をもつように構成されている。

外部の配線と接続する外部接続端子は、例えばはんだバン プ、金バンプ等が好的に使用できる。

外部接続端子は、半導体素子端子が配線とワイヤボンディング等で導通される位置より内側に設けるようにするのが高密度化の上で好ましい(ファンインタイプ)。このように外部接続端子の位置は、半導体素子が搭載された下面に格子状

る断面図である。

図2は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図3は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図4は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図 5 は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図 6 は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図7は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図8は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図9は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図10は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図11は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図12は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図13は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

図14は、本発明の半導体パッケージの製造法の一例を説明
オス平面図である。

図16は、本発明の半導体パッケージの製造法の一例を説明 オスキャでである the state of the state of

- 図17は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図18は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図19は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図20は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図21は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図22は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図23は、本発明の半導体パッケージの製造法の一例を説明する平面図である。
- 図24は、本発明の半導体パッケージの製造法の一例を説明する断面図である。
- 図25は、本発明の半導体パッケージの製造法の一例を説明する断面図である。

発明を実施するための最良の形態

図1により、本発明の第一の実施例について説明する。

- 、半導体封止用エポキシ樹脂(日立化成工業(株)製、商品名: C L 7 7 0 0
-)を用いて封止 5 した(図 1 d)。その後、銅箔 1 のみをアルカリエッチャントで溶解除去し、ニッケルを露出させた。ニッケル層を銅の溶解性の少ないニッケル剥離液にて除まして、配線部を露出させた(図 1 e)。続いて、ソルダレジスト6を塗布し、接続用端子部を露出するようにパターンを形成した。この配線露出部に、はんだボール7を配置し溶融させた(図 1 f)。このはんだボール7を介して外部の配線と接続する。

した(ほじゅん。しし、イントレビ番転チロントーには、端子部に金バンプ8を形成し、この金バンプ8と配線

図3により、本発明の第三の実施例について説明する。

配線を形成した銅箔1にLSIチップを搭載する。 USIチップを搭載する。 図 O O を を H いた E I が

図4により、本発明の第四の実施例について説明する。

除去し、配線部を露出させた(図4e)。続いてソルダレシットのおき布し、接続用舞子部を露出するようにパターンを

形成した。この配線露出部にはんだボール7を配置し溶融させた(図4f)。このはんだボール7を介して外部の配線と接続する。

図5により、本発明の第五の実施例について説明する。

厚さ0.035mmの電解銅箔1に、感光性ドライフィル ムレジスト(日立化成工業(株)製、商品名:フォテックH N340)をラミネートし、配線パターンを露光、現像し、 めっきレジストを形成する。続いてニッケルのパターンめっ き15を行った後、硫酸銅浴にて電解銅めっきを行う。さら に、ニッケルめっきを 0. 003 mm、純度 99. 9%以上 の金めっきを 0. 0003mm以上の厚さでめっきする。次 に、めっきレジストを剥離し、配線2を形成する(図5a)。 このようにして配線2を形成した銅箔1に半導体チップ10 3 を搭載する(図 5 b)。半導体チップの接着には、半導体 用銀ベースト4を用いた。次に半導体端子部と配線2とをワ イヤボンド100により接続する(図5c)。このようにし て形成したものをトランスファモールド金型に装填し、半導 体封止用エポキシ樹脂(日立化成工業(株)製、商品名:C L-7700)を用いて封止5した(図5d)。その後、銅 箔1をアルカリエッチャンで溶解除去し、ニッケルの配線部 を露出させた(図 5 e)。続いてソルダレジスト 6 を塗布し、 接続用端子部を露出するようにパターンを形成した。この配 線露出部にはんだボール7を配置し溶融させた(図5f)。 このはんだボール7を介して外部の配線と接続する。

図6により、本発明の第六の実施例について説明する。厚さ0.035mmの電解銅箔1に、感光性ドライフィル

めっきレジストを形成する。続いて能度して、マーベートがめっきを0.0003mm、ニッケルめっきを0.003mm

っきを行い、めっきレジストを剥離し、配線2を形成する (図 6 a)。このようにして配線2を形成した銅箔1の配線 面にポリイミドフィルム16を接着し、レーザを用いて配線 2の接続用端子部を露出させ(図6b)、銅箔1をエッチン グで除去する(図6c)。また、ポリイミドの代わりに、感 光性フィルムを用いることで、レーザを使用しないで接続用 端子部を露出させることができる。続いて、ポリイミドフィ ルム16の配線パターン面にLSIチップ3を搭載する。L SIチップの接着には半導体用銀ペースト4を用いた。次に 半導体端子部と配線2とをワイヤボンド100により接続す る(図6d)。このようにして形成したものをトランスファ モールド金型に装填し、半導体封止用エポキシ樹脂(日立化 成工業 (株) 製、商品名: C L - 7 7 0 0) を用いて封止 5 する (図 6 e)。その後、接続用端子部にはんだボール7を 配置し溶融させる(図 6 f)。このはんだボール7を介して 外部の配線と接続する。

図7により、本発明の第七の実施例について説明する。

厚さ 0 . 0 3 5 m m の電解銅箔 1 の片面に厚さ 0 . 0 0 1 m m のニッケル層(図 7 では省略)をめっきする。次に、商光性ドライフィルムレジスト(日立化成工業(株)製 タ の 3 工 で は 3 4 0)をラミネートし、配線パターを野光、現像 りつ 3 を形成する。続いて 6 0 0 3 m m 、 純度 9 9 . 9 %以上の金めっきを 0 . 0 0 3 m m 以上の厚さでめっきする。次にめっきレジストを剥離し、配線 2 を形成する(図 7 a)。このようにして配線 2 を形成した 6 1 5 1 5 ップの接

このようにして形成したものをトランスファモールト金型に 特博1 半導体封止用エポキシ樹脂(日立化成工業(株)製、

商品名:CL-7700)を用いて封止5する(図7c)。その後、銅箔1のみをアルカリエッチャントで溶解除去し、ニッケルを露出させる。ニッケル層を銅の溶解性の少ないニッケル剥離液にて除去して配線部を露出させる(図7d)。続いて、接続用端子部を開口させたポリイミドフィルム16を接着し(図7e)、この配線露出部にはんだボール7を配置し溶融させる(図7f)。このはんだボール7を介して外部の配線と接続する。

図8により、本発明の第八の実施例について説明する。

厚さ0.035mmの電解銅箔1に、感光性ドライフィル ムレジスト(日立化成工業(株)製、商品名:フォテックH N340)をラミネートし、配線パターンを露光、現像し、 めっきレジストを形成する。続いて純度99.9%以上の金 めっきを 0. 0 0 0 3 m m、ニッケルめっきを 0. 0 0 3 m m以上の厚さでめっきする。さらに、硫酸銅浴にて電解銅め っきを行い、めっきレジストを剥離し配線2を形成する(図 8 a)。このようにして配線2を形成した銅箔1の配線面に 液状封止樹脂17をスクリーン印刷により塗布し、配線2の 接続用端子部を露出させるようにして絶縁層を形成する(図 8 b)。液状封止樹脂を硬化させた後、銅箔1をエッチング で除去する (図8 c)。続いて、硬化させた液状封止樹脂3 の配線パターン面にLSIチップ3を搭載する。LSIチッ プの接着には半導体用銀ペースト4を用いた。次に半導体端 子部と配線2とをワイヤボンド100により接続する(図8 d)。このようにして形成したものをトランスファモールド 金型に装填し、半導体封止用エポキシ樹脂(日立化成工業

ing the terr が つ・ クロコロンカ田の大野ルロオス

[、]を配置し存配させる(図でルットー・400mm トール) して外部の配線と接続する。 フェー・カットを対象として発力として参加され

厚さ0.035mmの電解銅箔1の片面に厚さ0.001 mmのニッケル層(図9では省略)をめっきする。次に、感 光性ドライフィルムレジスト(日立化成工業(株)製、商品 名:フォテックHN340)をラミネートし、配線パターン を露光、現像し、めっきレジストを形成する。続いて硫酸銅 浴にて電解銅めっきを行う。さらに、ニッケルめっきを 0. 003 m m、純度99.9%以上の金めっきを0.0003 mm以上の厚さでめっきする。次にめっきレジストを剥離し、 配線2を形成する(図9a)。このようにして配線2を形成 した銅箔1にLSIチップ3を搭載する。LSIチップ3の 接着には半導体用銀ペースト4を用いた。次に、半導体端子 部と配線2とをワイヤボンド100により接続する(図9b) 。このようにして形成したものをトランスファモールド金型 に装填し半導体封止用エポキシ樹脂(日立化成工業(株)製、 商品名: C L - 7 7 0 0) を用いて封止5 する (図9 c)。 その後、銅箔1のみをアルカリエッチャントで溶解除去し、 ニッケルを露出させる。ニッケル層を銅の溶解性の少ないニ ッケル剥離液にて除去して配線部を露出させる(図9d)。 続いて、液状封止樹脂17をスクリーン印刷により塗布し、 配線2の接続用端子部を露出させるようにして、液状封止樹 脂17の絶縁層を形成する(図9e)。この配線2の接続用 端子部にはんだボール 7 を配置し溶融させる(図 9 f)。こ のはんだボール7を介して外部の配線と接続する。

図10により、本発明の第十の実施例について説明する。 厚さ0.035mmの電解銅箔1の片面に厚さ0.001mmのニッケル層(図10では省略)をめっきする。次に、 感光性ドライフィルムレジスト(日立化成工業(株)製、商

り形成する。続いて、硫酸銅浴にて電解銅めっきを行う。さらに、ニッケルめっきを0.003mm、純度99.9%以

上の金めっきを0.0003mm以上の厚さでめっきする。 次に、めっきレジストを剥離し、配線2及び位置合わせマー ク18を形成した後(図10a)、位置合わせマーク18の 部分だけをSUS板で挟みプレスすることで銅箔1の裏面に 位置合わせマークを浮かび上がらせる(図10b)。このよ うにして配線2及び位置合わせマーク18を形成した銅箔1 にLSIチップ3を搭載する(図10c)。LSIチップ3 の接着には半導体用銀ペースト4を用いた。次に、半導体端 子部と配線2とをワイヤボンド100により接続する(図1 0 d)。このようにして形成したものをトランスファモール ド金型に装填し、半導体封止用エポキシ樹脂(日立化成工業 (株) 製、商品名:СL-7700) を用いて封止5した (図10e)。銅箔裏側に再び感光性ドライフィルムをラミ ネートし、位置合わせマーク18を利用してエッチングパタ ーン形成する。その後、銅箔1及びニッケル層をエッチング して、銅箔1によるバンプ7の形成及び配線部の露出を行う (図10f)。続いて、ソルダレジスト8を塗布し、バンプ 7が露出するように絶縁層を形成した(図10g)。このバ ンプフを介して外部の配線と接続する。

図11により、本発明の第十一の実施例について説明する。厚さ0.035mmの電解銅箔1に、感光性ドライフィルムレジスト(日立化成工業(株)製、商品名:フォテックHN340)をラミネートし、複数組の配線パターンを露光、現像し、めっきレジストを形成する。続いて、純度99.9%以上の金めっきを0.003mm、ニッケルめっきを0.003mm、ニッケルめっきを0.003mm以上の厚さでめっきする。さらに、硫酸銅浴にて

形成した銅箔1の配線面にボシュミエジェルー・マエ接質ニーレーザを用いて配線2の接続端子部を露出させ(図11b)、

1 枚のポリイミドフィルム上に複数組の配線 2 を形成した後、 LSIチップ3を搭載する。LSIチップの接着には海 体用ダイボンディングテープ4'を用いた。次に半導子 部と記線 2 とをワイヤボンド100を規入ファイール は、半導子 で連結されたパッケージを、金型で打ち抜く(図11g)。 で連結されたパッケージを、金型で打ち抜く(図11g)。

図12により、本発明の第十二の実施例について説明する。 厚さ0.07mmの接着剤付きポリイミドフィルム20を、 金型で打ち抜き接続端子部となる部分を開口させる(図12 a)。次に、厚さ0.035mmの銅箔21を接着後(図1 2 b)、感光性ドライフィルムレジスト (日立化成工業 (株) 製、商品名:フォテックHN340)をラミネートし、複数 組の配線パターンを露光、現像し、エッチングレジストを形 成する。続いて銅箔をエッチングし、レジストを剥離し、複 数組の配線2を形成する(図12c)。以上のように、1枚 のポリイミドフィルム上に複数組の配線パターンを形成した 後、LSIチップ3を搭載する。LSIチップ3の接着には、 半導体用ダイボンディングテープ4'を用いた。次に半導体 端子部と配線2とをワイヤボンド100により接続する(図 12d)。このようにして形成したものをトランスファモー ルド金型に装填し、半導体封止用エポキシ樹脂(日立化成工 業 (株) 製、商品名: CL-7700) を用いて各々封止5

を介して外部の配線と接続する。最後にポリイミドフィルム で連续されたパッケージを、金型で打ち抜く (図12g)。

図13~15により、本発明の第十三の実施例について説明する。

厚さ0.035mmの電解銅箔1の片面に厚さ0.001 mmのニッケル層(図13では省略)をめっきする。感光性 ドライフィルムレジスト (日立化成工業 (株)製、商品名: フォテックHN340)をラミネートし、複数組の配線パタ ーンのめっきレジストを露光、現像により形成する。続いて、 硫酸銅浴にて電解銅めっきを行う。さらに、ニッケルめっき を O . O O 3 m m 、純度 9 9 . 9 %以上の金めっきを O . O 003mm以上の厚さでめっきし、めっきレジストを剥離し、 配線2を形成した(図13a)。次に、配線2を形成した銅 箱 1 を単位個数に分けた後、ポリイミド接着フィルムを介し て別に用意したステンレス製フレーム22(厚さ;0.13 5 m m) にはりつけた (図 1 3 b)。フレームとしては、り ん青銅等の銅合金、銅箔、ニッケル箔、ニッケル合金箔等が 使用できる。接着の方法としては他に金属間の共晶を利用し た接合、超音波を利用した接合等を用いることも可能である。 また、図14に示したように銅箔1上の配線をあらかじめ検 査し、配線良品23だけを撰択し、フレーム22にはりつけ ると良い。図14において、1は電解銅箔、22はフレーム、 24は配線不良品、25は位置合わせ用穴である。また、こ の実施例では、切り分けた銅箔上には配線1個となるように したが、切り分けた銅箔上に複数組の配線があるようにして も良い。フレーム22と配線付き銅箔との張り合わせの位置 関係として、例えば図15(a)、(b)に示したものなど 種々可能である。図15はフレーム22の平面図であり、2

半導体端子部と配線ととをフィヤボシャ・シーにより接続でる(図13c)。LSIチップの搭載には半導体用ダイボン

The second of th

4′の代わりにダイボンド用銀ペースト等を用いてもよい。 また、半導体チップの実装には、通常のワイヤーボンディン グ接続を用いたが、フィリップチップ等、他の方法を用いて もよい。このようにして形成したものをトランスファモール ド金型に装填し、半導体封止用エポキシ樹脂(日立化成工業 (株) 製、商品名:СL-7700) を用いて封止5した (図13d)。その後、銅箔1のみをアルカリエッチャント で溶解除去し、ニッケルを露出させた。ニッケル層を銅の溶 解性の少ないニッケル剥離液にて除去して、配線部を露出さ せた。続いて、ソルダレジスト6を塗布し、接続用端子部を 露出するようにパターンを形成した。この配線露出部に、は んだボール7を配置し溶融させた(図13e)。この後で、 切断機を用いて切断し、フレーム22の不要な切片101を 除いて、個々の半導体パッケージに分割した(図13f)。 このはんだボール7を介して外部の配線と接続する。この例 では、板取りを上げて効率よく半導体パッケージを製造する ことができる。

図16により、本発明の第十四の実施例について説明する。厚さ0.07mmの接着剤付きポリイミドフィルム29を、金型で打ち抜き接続端子部となる部分を開口させる。次にルターンの銀箔を接着後、感光性ドライフィルトリジスト(日立化成工業(株)製、商品名:フォテックトリンストを影組の配線パターンを露光、現のし、エッチングレジストを形成た。続いて銅箔をエッグし、レジストを剥離し、複数組の配線2を形成する(図16a)。ここで、銅箔上にポリイミドを直接コーティングした材料(例えば、日立化成工業(株)製、商品名50001)

ザ加工、印刷等の方法を用いたり、ポリイミドに感光性を行 たせた材料を使用し、露光・現像により形成しても良い。ポ

リイミドの代わりに封止樹脂等他の材料を使用しても良い。

: C L - 7 7 0 0) を用いて封止5 した(図1 6 d)。続いて最初に設けた接続端子部となるべき開口部にはんだボール7を配置し溶融させる(図1 6 e)。このはんだボール7を介して外部の配線と接続する。最後にフレームで連結されたパッケージを金型で打ち抜き、個々のパッケージに分割した(図1 6 f)。

図17により本発明の第十五の実施例について説明する。金属箔31上に絶縁基材32を直接形成した2層フレキシブル基材(図17a)の金属箔上に所定のレジスト像を形成し、公知のエッチング法により所望する複数組の配線パターン33を形成し、レジスト像を剥離する(図17b)。金属箔としては、電解銅箔や圧延銅箔あるいは銅合金箔なども適用可能である。具体的には、厚さ18μmの電解銅箔の片面に厚さ0.2μm程度のニッケルーリンめって変を開始の

を形成した後、銀箔及びニックニー ショミニー (1921) することにより、銅薄層が露出する。すなわち、本願の発明 1921年11月11日 - 1921年11日 - 192

も良いし、キャリヤ箔(銅箔/ニッケル薄層)をリードフレ ーム構造体の一部として利用しても良い。

一方、絶縁基材としては、プロセス耐熱性などの観点からポリイミド材が一般的である。この場合、ポリイミドと銅箔の熱膨張係数が異なるとはんだリフロー工程において基材の反りが顕著になるため、ポリイミドとしては【化1】の繰り返し単位を有するポリイミドを70モル%以上含んだポリイミドを適用することが好ましい。

[化1]

次に、後工程で外部基板との接続部となる位置に銅箔に達する凹部34を設ける(図17c)。凹部の加工方法は特に限定するものではなく、エキシマレーザや炭酸ガスレーザ及びYAGレーザなどレーザ加工の他、ウエットエッチング法などが適用可能である。

次に、所定の部分(開孔部35)をパンチング加工等で打ち抜いた接着材36付きフレーム基材37を配線パターン面に接着させる(図17d)。この場合、フレーム基材は特に限定するものではなく、ポリイミドフィルムや銅箔などの金属箔の適用が可能である。ここで、仮に2層フレキシブル基材のポリイミド層厚さが25μmで、かつ、接着するフレーム基材がポリイミドフィルムの場合、フレーム全体としての剛

ても特に限定するものではなく、半導体チップを搭載する部 4にフレーム基材屑を設けることも可能である。具体的には、

チップ実装がワイヤボンディング方式の場合には、最小限ワ イヤボンド用端子部38が露出していれば他の領域全てにフ レーム基材層を設けても良い。次に、半導体チップ39を搭 載し、金ワイヤ40で半導体チップと配線パターン間を電気 的に接続させる(図17e)。一方、半導体チップ実装方式 としてフェースダウン方式を採用する場合には、配線パター ンの所定位置(半導体チップの外部接続用電極位置に対応) に金属パンプ等を設け、金属バンプを介して半導体チップと 波線パターンとを電気的に接続させても良い。次に、トラン スファーモールド用の金型にセットし、樹脂封止材41で封 止する(図17f)。この場合、樹脂封止材は特に限定する ものではなく、例えば、直径10~20μm程度のシリカを5~8 Owt%の範囲で含有したエポキシ系樹脂などが適用できる。次 に、外部基板との接続部42を形成する。接続部42の形成 方法としては、図17cの工程後にあらかじめ電解めっき法 によりポリイミドフィルム厚さ以上のバンプを形成しておく 方法や樹脂封止後にはんだ印刷法によりはんだバンプを形成 する方法などが適用可能である。最後に、フレームからパッ ケージ部を切断して所望するパッケージが得られる (図17 g) 。

図17の第十五の実施例を更に具体的に説明する。

具体例 1

厚さ12μmの電解銅箔を片面に有する2層フレキシブル基 材 (日立化成工業 (株) 製、商品名:MCF 5000I) の銅箔面 上にドライフィルムレジスト(日立化成工業(株)製、商品 名:フォテックHK815) をラミネートし、露光、現像により 所望するレジストパターンを得た。次に、塩化第二鉄溶液で 銅箔をエッチング加工後、レジストパターンを水酸化カリウ ム溶液で剥離することにより所定の配線パターンを得た。次 に、エキシマレーザ加工機(住友重機械工業(株)製、装置 名: INDEX200) を用いて絶縁基材側から配線パターン裏面に 達する凹部(直径300 µm)を所定の位置に所定の数だけ形 成した。エキシマレーザ加工条件は、エネルギー密度250mJ/ cm²、縮小率3.0、発振周波数200Hz、照射パルス数300パルス である。次に50μm厚さのポリイミドフィルム(宇部興産製、 商品名:UPILEX S)の片面に厚さ10μmのポリイミド系接着 材 (日立化成工業 (株) 製、商品名:AS 2250) を有する接 着シートを作製し、後工程でのワイヤボンド端子部に相当す る領域を含む所定領域をパンチ加工により除去し、接着材を 介してポリイミドフィルムと配線パターン付き2層フレキ基 材とを加熱圧着させた。圧着条件は、圧力20kgf/cm2、温度1 80℃、加熱加圧時間60分である。次に、無電解ニッケル、金 めっき法によりワイヤボンド用端子部にニッケル/金めっき を施した。めっき厚さは、それぞれ、 $3\,\mu$ m、 $0.3\,\mu$ m である。 次に、半導体チップ搭載用ダイボンド材(日立化成工業(株) 製、商品名:HM-1)を用いて半導体チップを搭載した。 搭載 条件は、プレス圧力5kgf/cm²、接着温度380℃及び圧着時間5 秒である。次に、ワイヤボンディングにより半導体チップの

型にセットし、半導体封止用エポキシ樹脂(日立に成工業) (株)製、CL-7700)を用いて185℃、90秒で封止した。 続い て、前述の凹部に所定量のはんだを印刷塗布し、赤外線リフロー炉によりはんだを溶融させて外部接続用バンプを形成した。最後に、パッケージ部を金型で打ち抜き、所望するパッケージを得た。

図18により本発明の第十六の実施例について説明する。 金属箔31上に絶縁基材32を直接形成した2層フレキシ ブル基材(図18a)の金属箔上に所定のレジスト像を形成 し、公知のエッチング法により所望する複数組の配線パター ン3を形成し、レジスト像を剥離する(図18b)。金属箔 としては、電解銅箔や圧延銅箔あるいは銅合金箔などの単一 箔の他、後工程で除去可能なキャリヤ箔上に銅薄層を有する 複合金属箔なども適用可能である。具体的には、厚さ18 µ m の電解銅箔の片面に厚さ0.2μm程度のニッケル-リンめっき 層を形成後、続けて厚さ5μm程度の銅薄層をめっきしたも のなどが適用できる。この場合、銅薄層上にポリイミド層を 形成した後、銅箔及びニッケル-リン層をエッチング除去す ることにより、銅薄層が露出する。すなわち、本願の発明に おいては銅薄層全てを露出させた後銅薄層を配線加工しても 良いし、キャリヤ箔(銅箔/ニッケル薄層)をリードフレー ム構造体の一部として利用しても良い。一方、絶縁基材とし ては、プロセス耐熱性などの観点からポリイミド材が一般的 である。この場合、ポリイミドと銅箔の熱膨張係数が異なる とはんだリフロー工程において基材の反りが顕著になるため、 ポリイミドとしては【化1】の繰り返し単位を有するポリイ ミドを70モル%以上含んだポリイミドを適用することが好ま しい。

ファール - 担一と如其特しの接続部とかる位置に銅箔に達

設定するものにはより、一つの「TONESTANDESTA

次に、第2絶縁基体として所定の部分(開孔部5)をパン チング加工等で打ち抜いた接着材36付きフレーム基材37 を配線パターン面に接着させる(図18d)。ここで、仮に 2 層フレキシブル基材のポリイミド層厚さが25 μ m であれば、 後工程でフレームに固着することを考慮すれば接着するポリ イミドフィルムの厚さとして50~70μm程度が必要になる。 なお、ポリイミドを接着する領域についても特に限定するも のではなく、半導体チップを搭載する部分に設けることによ り、CSPのように半導体チップ下部に外部接続端子を形成 することも可能である。具体的には、チップ実装がワイヤボ ンディング方式の場合には、最小限ワイヤボンド用端子部3 8が露出していれば他の領域全てにポリイミドフィルムを接 着しても良い。このようにして得られた絶縁基板を、個々の 配線パターンに分離し(図18e)別に用意した例えばSU Sなどのフレーム43に固着する(図18f)。次に、半導 体チップ39を搭載し、金ワイヤ40で半導体チップと配線 パターン間を電気的に接続させる(図18g)。一方、半導 体チップ実装方式としてフェースダウン方式を採用する場合 には、配線パターンの所定位置(半導体チップの外部接続用 電極位置に対応)に金属パンプ等を設け、金属バンプを介し て半導体チップと波線パターンとを電気的に接続させても良 い。次に、トランスファーモールド用の金型にセットし、樹 脂封止材41で封止する(図18h)。この場合、樹脂封止 材は特に限定するものではなく、例えば、直径10~20μm程 度のシリカを5~80wt%の範囲で含有したエポキシ系樹脂など が適用できる。次に、外部基板との接続部12を形成する。 接続部12の形成方法としては、図18cの工程後にあらか

えたパンプを形成する方法などが適用可能である。 収録 r 、 フレームからパッケージ部を切断して所望するパッケージが 得られる(図18i)。

図18の第十六の実施例を更に具体的に説明する。

具体例 2

厚さ12μmの電解銅箔を片面に有する2層フレキシブル基 材 (日立化成工業 (株) 製、商品名:MCF 5000I) の銅箔面 上にドライフィルムレジスト(日立化成工業(株)製、商品 名:フォテックHK815)をラミネートし、露光、現像により 所望するレジストパターンを得た。次に、塩化第二鉄溶液で 銅箔をエッチング加工後、レジストパターンを水酸化カリウ ム溶液で剥離することにより所定の配線パターンを得た。次 に、エキシマレーザ加工機(住友重機械工業(株)製、装置 名: INDEX 200) を用いて絶縁基材側から配線パターン裏面に 達する凹部 (直径300 μm) を所定の位置に所定の数だけ形 成した。エキシマレーザ加工条件は、エネルギー密度250mJ/ cm²、縮小率3.0、発振周波数200Hz、照射パルス数300パルス である。次に50μm厚さのポリイミドフィルム(宇部興産製、 商品名:UPILEX S)の片面に厚さ10μmのポリイミド系接着 材 (日立化成工業 (株) 製、商品名:AS 2250) を有する接 着シートを作製し、後工程でのワイヤボンド端子部に相当す る領域を含む所定領域をパンチ加工により除去し、接着材を 介してポリイミドフィルムと配線パターン付き2層フレキ基 材とを加熱圧着させた。圧着条件は、圧力20kgf/cm2、温度1 80℃、加熱加圧時間60分である。次に、無電解ニッケル、金 めっき法によりワイヤボンド用端子部にニッケル/金めっき を施した。めっき厚さは、それぞれ、 $3\,\mu$ m、 $0.3\,\mu$ m である。 このようにして得られた基板を、個々の配線パターンに分離 - m ne m ボーンでからコレーナに回答した。近に一光道体

出口、と用いて主導体の「E目載し」「EI戦争中に ス圧力5kgf/cm2、接着温度380℃及び圧着時間5秒である。次 ロー・エー・マー・コロッカス・ゴロサケの地でも

配線パターンを電気的に接続した。その後、リードフレーム 状に金型加工し、トランスファーモールド用金型にセットし、 半導体封止用エポキシ樹脂(日立化成工業(株)製、CL-770 0)を用いて185℃、90秒で封止した。続いて、前述の凹部に 所定量のはんだを印刷塗布し、赤外線リフロー炉によりはん だを溶融させて外部接続用バンプを形成した。最後に、パッ ケージ部を金型で打ち抜き、所望するパッケージを得た。

図19、20、21により本発明の第十七の実施例について説明する。

支持体 5 1 上に複数組の所定の配線パターン 5 2 を形成する (図19 a)。支持体としては、電解銅箔の金属箔の他にポリイミドフィルムなどの絶縁基材を適用できる。絶法な適用する場合には 2 通りの方法がある。第 1 のの新法がある。 第 1 のの新法がある。 第 1 のの新法がある。 第 2 ののお法に達端子を形成するを形成して記録が、 である。 非貫通凹部はエキシマレーザや炭酸が大力をである。 非貫通凹部はエキシマレーザや炭酸が大力をである。 第 2 の方法は、接着材付き絶縁をで適用して形成できる。 第 2 の方法は、接着材付きをがしておき、 電解銅箔などに 積層させた後、銅箔をエッチング加工する方法である。

一方、金属箔を適用する場合には、まずフォトレジストなどによりレジストパターンを形成後、金属箔をカソードとして電気めっき法で配線パターンを形成する。この場合、通常の電解銅箔や電解銅箔と化学エッチング条件の異なる金属自体を配線パターンとして適用する場合には、銅箔とエッチング条件の異なる金属自体を配線パターンとして

ある。

次に、ダイボンド材53で半導体素子54を搭載後、半導

体素子端子と配線パターンとを電気的に接続し(図19b)、 トランスファーモールド法により複数組の半導体素子と配線 パターンとを一括して樹脂封止材56で封止する(図19c) 。樹脂封止材は特に限定するものではなく、例えば、直径10 ~20 µ m程度のシリカを5~80wt%の範囲で含有したエポキシ 樹脂のが適用できる。なお、本発明は半導体素子の実装方式 がフェースアップ方式の場合に限定されるものではなく、例 えば、フェースダウン方式の場合にも適用可能である。具体 的には、配線パターン52上の所定位置にフェースダウンボ ンド用のバンプをめっき法などにより形成した後、半導体素 子の外部接続部とバンプとを電気的に接続させれば良い。 更に、図20や図21に示したように後工程でパッケージを 分割しやすいようにしておくことは有効である。このうち、 図20は複数個ある各パッケージ部分の境界部分に溝59を 形成するものである。溝の幅や深さ等は、トランスファーモ ールド用金型の加工寸法により制御可能である。また、図 2 1は、あらかじめ各パッケージ部に対応した部分をくり抜い た格子状中間板60を使用してトランスファーモールドを行 なうものである。次に、支持体が金属箔の場合、化学エッチ ング法などにより支持体を除去し、所定の位置に外部接続用 端子57を形成する(図19d)。支持体として絶縁基材を 適用する場合には、前述したようにレーザ等により所定部分 の絶縁基材のみを選択的に除去すれば良い。最後に、一括封 止した基板を単位部分58に切断分離する。なお、配線パタ ーン露出面に配線パターンを保護する目的でソルダーレジス ト層を形成しても良い。

The second of the second of the second

り所望するレジストパターン (最少ライン/スペース=50μm /50 μm)を形成した。次に、電気めっき法により、厚さ0.2 μ mのニッケル、30 μ mの銅、5 μ mのニッケル及び1 μ mの ソフト金で構成される同一の配線パターンを300個(4ブロッ ク/250mm角、75個/ブロック)形成した。次に、液温35℃、 濃度3wt%の水酸化カリウム溶液を用いてレジストパターンを 剥離し、85℃で15分間乾燥後、各ブロックに切断後、半導体 素子実装用ダイボンド材(日立化成工業(株)製、商品名: HM-1) を用いて半導体素子を接着した。接着条件は、プレス 圧力5kg/cm²、温度380℃及び圧着時間5秒である。次に、半 導体素子の外部端子と金めっき端子部(第2の接続部)をワ イヤボンドにより電気的に接続した後、トランスファーモー ルド金型にセットし、半導体封止用エポキシ樹脂(日立化成 工業 (株) 製、商品名:CL-7700) を用いて185℃、90秒で75 個 (1 ブロックに相当) の配線パターンを一括封止すること により、各配線パターンを封止材中に転写した。次に、アル カリエッチャント (メルテックス (株) 製、商品名: A プ ロセス)を用いて電解銅箔の所望する部分をエッチング除去 した。エッチング液の温度は40℃、スプレー圧力は1.2kgf/ cm²である。次に、印刷法により外部接続端子部にはんだパ ターンを形成し、赤外線リフロー炉によりはんだを溶融させ て外部接続用バンプを形成した。最後に、ダイヤモンドカッ ターにより、各パッケージ部に分離して所望するパッケージ を得た。

具体例 4

厚さ35μm、外形250mm角の電解銅箔のシャイニー面に、 感光性ドライフィルムレジスト(日立化成工業(株)製、商

 $^{/50\,\}mu$ m)を形成した。次に、電気めっき法により、厚さ0.2 $_{2.9}$ $_{2.9}$ $_{2.9}$ $_{3.9}$ $_{4.9}$ の 1.9 1.

ソフト金で構成される同一の配線パターンを300個(4ブロッ ク/250mm角、75個/ブロック) 形成した。次に、液温35℃、 濃度3wt%の水酸化カリウム溶液を用いてレジストパターンを 剥離し、85℃で15分間乾燥後、各ブロックに切断後、半導体 素子実装用ダイボンド材(日立化成工業(株)製、商品名: HM-1) を用いて半導体素子を接着した。接着条件は、プレス 圧力5kg/cm²、温度380℃及び圧着時間5秒である。次に、半 導体素子の外部端子と金めっき端子部(第2の接続部)をワ イヤボンドにより電気的に接続した。次に、パッケージ領域 に相当する部分(15mm角)をくり抜いた格子状ステンレス板 を中間板としてトランスファーモールド金型にセットし、半 導体封止用エポキシ樹脂 (日立化成工業 (株) 製、商品名: CL-7700)を用いて185℃、90秒で75個(1ブロックに相当) の配線パターンを一括封止することにより、各配線パターン を封止材中に転写した。中間板の格子部分は、各パッケージ が中間板から分離しやすいように12°のテーパがついている。 次に、アルカリエッチャント(メルテックス(株)製、商品 名: A プロセス)を用いて電解銅箔の所望する部分をエッ チング除去した。各パッケージ部は、格子状中間板で保持さ れている。エッチング液の温度は40℃、スプレー圧力は1.2k gf/cm²である。最後に、印刷法により外部接続端子部には んだパターンを形成し、赤外線リフロー炉によりはんだを溶 融させて外部接続用バンプを形成し、中間板から各パッケー ジ部に分離して所望するパッケージを得た。

図22により本発明の第十八の実施例について説明する。 導電性の仮支持体61(図22a)上に複数組の所定のレ

る。この場合、伝文特色は社にはたらももっしてはなった。 えば、通常の電解銅箔や電解銅箔上に銅箔と化学エッチング エファインスト

たものなどが適用できる。また、配線パターンとしては銅が 好ましいが、前述のように電解銅箔を仮支持体として適用す る場合には、銅箔とエッチング条件の異なる金属自体を配線 パターンとして適用したり、あるいは、銅箔エッチング時の バリヤ層となるパターン薄層をパターン銅めっき前に形成し たりする必要がある。仮支持体の厚さは、後工程でのハンド リング性や半導体素子実装時の寸法安定性などの点で支障が なければ特に限定されることはない。次に、仮支持体をカソ ードとして金ワイヤボンド用のめっき (通常は、ニッケル/ 金)64を施した後、レジストパターンを除去する(図22 c)。なお、本発明は半導体素子の実装方式がフェースアッ プ方式の場合に限定されるものではなく、例えば、フェース ダウン方式の場合にも適用可能である。具体的には、配線パ ターン 6 3 上の所定位置にフェースダウンボンド用のバンプ をめっき法などにより形成した後、半導体素子の外部接続部 とバンプとを電気的に接続させれば良い。

次に、半導体素子65をダイボンド材66などで接着し、半導体素子の外部接続端子と配線パターンとを電気的に接続する(図22d)。次に、トランスファーモールド用金型にセットし、樹脂封止材68で封止する(図22e)。この場合、樹脂封止材は特に限定するものではなく、例えば、直径10~20μm程度のシリカを5~80wt%の範囲で含有したエポキシ樹脂が適用できる。

次に、外部接続端子に相当する箇所に所定の金属パターン69を形成する(図22f)。この場合、適用する金属としては、導電性仮支持体をエッチング除去する条件下でエッチングされないものであれば良く、例えば、はんだ、金、ニッ

できる。更に、金属パターン69をはんだパターンを印刷法でお考する場合、リフローすることによりハンダバンプ70

を形成することができる。この場合、パターン69の厚さを調節することにより、リフロー後のはんだバンプ70の高さを制御することができる。次に、金属パターンをエッチングレジストとして仮支持体の所定部分を除去し、配線パターンを露出させる。

最後に、金型加工、あるいは、ダイシング加工など適用して各パッケージ71を分割する(図22g)。なお、露出した配線パターンがニッケルなどの耐腐食性金属で保護されていない場合には、外部接続端子部以外の領域を公知のリントなどで被覆しても良い。また、はんだを金属パッケージを関しても良いのあるいは、外部配線基板上に各パッケージを実装する際に行なっても良い。

第十八の実施例を具体的に説明する。

具体例5

厚さ70μmの電解銅箔のシャイニー面に、感光性ドライフィルムレジスト(日立化成工業(株)製、商品名:フォテックHN640)をラミネートし、露光、現像により所望するレジストパターン(最少ライン/スペース=50μm/50μm)を形成した。次に、電気めっき法により、厚さ0.2μmのニッケル、30μmの銅、5μmのニッケル及び1μmのソフト金で構成される配線パターンを形成した。次に、液温35℃、濃度3℃、次の水酸化カリウム溶液を用いてレジストパターンを剥離し、85℃で15分間乾燥後、半導体素子実装用ダイボンド材(日立化成工業(株)製、商品名:HM-1)を用いて半導体素子を接

0)を用いて185℃、90秒で封止することにより、配線パターンを封止材中に転写した。次に、電解銅箔上に感光性ドライフィルムレジスト(日立化成工業(株)製、商品名:フォテックHN340)をラミネートし、露光、現像により所望するレジストパターンを形成後、電気めっき法により厚さ40μのはんだパッド(直径0.3mmφ、配置ピッチ1.0mm)を形成した。次に、ドライフィルムレジストを剥離した後、アルカリエッチャント(メルテックス(株)製、商品名: A プロセス)を用いて電解銅箔の所望する部分をエッチング除力はス)を用いて電解銅箔の所望するアングをエッチング液の温度は40℃、スプレー圧力は1.2kgf/cm²である。最後に、赤外線リフロー炉によりはんだを溶融させて外部接続用バンプを形成した。

図23、24、25により本発明の第十九の実施例を説明する。

一半導体実装用フレームの構成について図23を用いて説明する。89は半導体実装用基板であり絶縁基材と配線によって構成される。基板部と連結部90を介して、複数個連結れている。連結部90には、基準位置用ピン穴91が形成マルる。ピン穴91の代わりに画像認識で用いられる認識マーク等でも構わない。後工程では、これらの基準位置をもとに位置が決められる。特に半導体を樹脂でモールドする際はキャビティ内のピンをピン穴91にさして位置合わせを行うことなどが行われる。

更に図24及び25を用いて説明する。導電性仮基板である厚さ約0.070mmの電解銅箔81の片面に厚さ0.001mmのニッケル層(図24、25では省略)を電解めっきで形成した。次に感光性ドライフィルムレジスト(日立化

ジストを形成する。この時の露光量は70m3/cm*である。さらに、公知の硫酸銅浴にて電解銅めっきを行い、レジストを剥

* .

離し、複数組の配線82を形成する(図24a、図25a)。 ここで、図25aに示したように連結部もにめっき銅82' を形成することも考えられ、これにより出来上がりのフレー ムの剛性をさらに高めることも可能である。図24a、図2 5 a に示した構成は、銅/ニッケル薄層/銅の3層からなる 基材をあらかじめ用意し、片方の銅箔を通常のエッチングエ 程で配線形成しても得られる。また、ここで得られた銅箔8 1/ニッケル薄層(図示せず)/銅配線82(及び82)) の構成を銅箔/ニッケル配線、ニッケル箔/銅配線等、ニッ ケル薄層のない2層構造にしてもよい。すなわち、金属種の 撰択は本実施例の種類に限られることはないが、後の工程で 仮基板の一部をエッチング除去(図24c、図25c)した ときに、配線が撰択的に残るようにできることが好適な撰択 基準となる。また、導電性仮基板はフレームの連結部の構成 材となるため厚いほうが好ましいが、後でその一部をエッチ ング除去する工程があるため、適当な厚さを撰択する必要が ある。導電性仮基板の厚みとしては、材質にもよるが、例え ば銅箔を用いる場合、約0.03~0.3mm程度が好まし い。次に、複数組の配線82を形成した銅箔81の配線面に ポリイミド接着剤83を接着した。ここで、ポリイミド接着 剤83は、この材料に限られることなく、例えば、エポキシ 系接着フィルム、ポリイミドフィルムに接着剤を塗布したフ ィルム等も利用可能である。次に、エキシマレーザを用いて 外部接続端子用穴84を形成した(図24b、図25b)。 後工程における工程簡略化のためには半導体を実装する前に 接続端子を設けておくことが好適である。また、この穴84 ・マタル・トードトーナインドトレリススペンゴヤアガフノ

後の半導体実装工程、樹脂封止工程では、金属突起が障害となることもあり、後の工程で形成する方が好ましい。半導体素子実装基板部の外部接続端子用穴(または端子)は半導体素子搭載反対面にアレイ状に配置されるようにしるのが好ましい。

次に、配線パターンが形成されている部分の仮基板である 電解銅箔の一部をエッチング除去した。このエッチング液と して、この実施例の構成の場合、ニッケルに比べて銅の溶解 速度が著しく高いエッチング液、エッチング条件を撰択する のがよい。この実施例では、エッチング液としてアルカリエ ッチャント (メルテックス (株) 製、商品名: A プロセス) が、エッチング条件としては例えば液温度を40℃、スプレー 圧力を1.2kgf/cm²とした。ここで示した液の種類、条件は一 例にすぎない。この工程によって基板部分のニッケル薄層が 露出される。このニッケル薄層だけをエッチングする際には、 銅よりニッケルの溶解速度が著しく高いエッチング液、エッ チング条件を撰択するのがよい。この実施例では、ニッケル エッチャント(メルテックス(株)製、商品名:メルストリ ップ N950) で選択的にエッチング除去した。エッチング液 の温度を40℃、スプレー圧力を1.2kgf/cm²とした。ここで示 した液の種類、条件も一例にすぎない。このような工程を経 て、連結部の仮基板が残され、剛性のある半導体実装用フレ - ムが得れれる(図24c、図25c)。この実施例ではこ のフレームの銅配線端子部分には無電解ニッケルー金めっき が施される(図では省略)。これは、後工程でチップをワイ ヤーボンディングするために必要であり、このような表面処 理は必要に応じて施せばよい。

 $= \frac{1}{\sqrt{1+\alpha}} \left(\frac{1}{\sqrt{1+\alpha}} + \frac{1}{\sqrt{1+\alpha}} + \frac{1}{\sqrt{1+\alpha}} \right) = 0$

化成工業 (株) 製、商品名:HM-1)を用いた。ここで、チップの下に記線がない場合には、ダイボンド用銀ペーストを用

いて接着してもよい。次に半導体端子部と配線とをワイヤ溥体ンド100により接続する(図24d、図25d)。半導る場子との接続は、他の方法、例えば、フェイスダウン着でしてが、のようにして形成したものをトランス日立化成工工業のでは、半導体封止用エポキシ樹脂(図24e、図25e)。その後、配線82の接続用穴にはんだボール88を配置でボール88を配置が得られる(図24g、図25g)。

この実施例では、半導体実装用フレーム及び半導体装置製造法により、ポリイミドテープ等フィルム基板を用いたBGA、CSP等の半導体装置製造において、十分な剛性を備えたフレームを得ることができ、これを利用することによって半導体装置を精度良く効率良く作製可能になる。

本発明により、半導体チップの高集積度化に対応することができる半導体パッケージを生産性良く、かつ安定的に製造することができる。

-40-

請求の範囲

1.

- 1 A) 導電性仮支持体の片面に配線を形成する工程、
- 1 B) 配線が形成された導電性仮支持体に半導体素子を搭載し、半導体素子端子と配線を導通する工程、
- 1 C) 半導体素子を樹脂封止する工程、
- 1 D) 導電性仮支持体を除去し配線を露出する工程、
- 1 E) 露出された配線の外部接続端子が形成される箇所以外 に絶縁層を形成する工程。
- 1F) 配線の絶縁層が形成されていない箇所に外部接続端子を形成する工程

を含むことを特徴とする半導体パッケージの製造法。

2.

- 2 A) 導電性仮支持体の片面に配線を形成する工程、
- 2 B) 配線が形成された導電性仮支持体の配線が形成された面に絶縁性支持体を形成する工程、
- 2 C) 導電性仮支持体を除去し配線を絶縁性支持体に転写する工程、
- 2 D) 配線の外部接続端子が形成される箇所の絶縁性支持体を除去し外部接続端子用透孔を設ける工程、
- 2 E) 配線が転写された絶縁性支持体に半導体素子を搭載し、 半導体素子端子と配線を導通する工程、
- 2 F) 半導体素子を樹脂封止する工程、
- 2 G) 外部接続端子用透孔に配線と導通する外部接続端子を 形成する工程

を含むことを特徴とする半導体パッケージの製造法。

1. 多電性機能性性 1995年代期

3 B) 配線が形成された導電性仮支持体に半導体素子を搭載 ・ 実際状態で概念と記憶を導通する工程、

- 3 C) 半導体素子を樹脂封止する工程、
- 3 D) 配線の外部接続端子が形成される箇所以外の導電性仮支持体を除去し導電性仮支持体よりなる外部接続端子を形成する工程、
- 3 E) 外部接続端子の箇所以外に絶縁層を形成する工程、 を含むことを特徴とする半導体パッケージの製造法。

4.

- 4 A) 導電性仮支持体の片面に配線を形成する工程、
- 4 B) 配線が形成された導電性仮支持体に半導体素子を搭載し、半導体素子端子と配線を導通する工程、
- 4 C) 半導体素子を樹脂封止する工程、
- 4 D) 導電性仮支持体の半導体素子搭載面と反対側の配線の外部接続端子が形成される箇所に、導電性仮支持体と除去条件が異なる金属パターンを形成する工程、
- 4 E) 金属パターンが形成された箇所以外の導電性仮支持体を除去する工程

を含むことを特徴とする半導体パッケージの製造法。

5.

- 5 A) 絶縁性支持体の片面に複数組の配線を形成する工程、
- 5 B) 配線の外部接続端子となる箇所の絶縁性支持体を除去 し外部接続端子用透孔を設ける工程 ---
- 5 C) 複数組の配線が形成された絶縁性支持体に半導体素子を搭載し、半導体素子端子と配線を導通する工程、
- 5 D) 半導体素子を樹脂封止する工程、
- 5 日)外部接続端子用透孔に配線と導通する外部接続端子を

and the second and the

- 6 A) 導電性仮支持体の片面に複数組の配線を形成する工程、
- 6 B) 導電性仮支持体に形成された複数組の配線を所定の単位個数になるように導電性仮支持体を切断分離し、配線が形成された分離導電性仮支持体をフレームに固着する工程、
- 6 C) 配線が形成された導電性仮支持体に半導体素子を搭載し、半導体素子端子と配線を導通する工程、
- 6 D) 半導体素子を樹脂封止する工程、
- 6 E) 導電性仮支持体を除去し配線を露出する工程、
- 6 F) 露出された配線の外部接続端子が形成される箇所以外 に絶縁層を形成する工程、
- 6 G) 配線の絶縁層が形成されていない箇所に外部接続端子 を形成する工程
- 6 H) 個々の半導体パッケージに分離する工程 を含むことを特徴とする半導体パッケージの製造法。

7.

- 7 A) 絶縁性支持体の片面に複数組の配線を形成する工程、
- 7 B) 配線の外部接続端子となる箇所の絶縁性支持体を除去 し外部接続端子用透孔を設ける工程
- 7 C) 絶縁性支持体に形成された複数組の配線を所定の単位個数になるように絶縁性支持体を切断分離し、配線が形成された分離絶縁性支持体をフレームに固着する工程、
- 7 D) 配線が形成された絶縁性支持体に半導体素子を搭載し、 半導体素子端子と配線を導通する工程、
- 7 E) 半導体素子を樹脂封止する工程、
- 7 F) 外部接続端子用透孔に配線と導通する外部接続端子を 形成する工程、

8.

1層の配線においてその配線の片面が半導体素子と接続す

る第1の接続機能を持ち、その配線の反対側が外部の配線と接続する第2の接続機能をもつように構成された配線を備えた半導体パッケージの製造法であって、下記8A、8B、8C、8Dの工程を含むことを特徴とする半導体パッケージの製造法。

- 8 A) 耐熱性を有する金属箔付き絶縁基材の金属箔を複数組の配線パターンに加工する工程。
- 8 B) 後工程で第 2 の接続機能部となる位置に、絶縁基材側から配線パターンに達する凹部を設ける工程。
- 8 C) 配線パターン面及び配線パターンと隣接する絶縁基材面上の所望する位置に、所定の部分を開孔させたフレーム基材を貼り合わせる工程。
- 8 D) 半導体素子を搭載し半導体素子端子と配線を導通し半導体素子を樹脂封止する工程。

9.

- 1層の配線においてその配線の片面が半導体素子と接続する第1の接続機能を持ち、その配線の反対側が外部の配線と接続する第2の接続機能をもつように構成された配線を備えた半導体パッケージの製造法であって、下記9A、9B、9C、9Dの工程を含むことを特徴とする半導体パッケージの製造法。
- 9 A) 耐熱性を有する金属箔付き絶縁基材の金属箔を複数組の配線パターンに加工する工程。
- 9 B) 後工程で第2の接続機能部となる位置に、絶縁基材側から配線パターンに達する凹部を設ける工程。
- 9 C) 配線パターン面及び配線パターンと隣接する絶縁基材
- 9 D) 絶縁支持体に形成された複数組の配線を歴足の単位値数になるように絶縁支持体を切断分離し、配線が形成された

分離絶縁支持体をフレームに固着する工程。

9 E) 半導体素子を搭載し半導体素子端子と配線を導通し半 導体素子樹脂封止する工程。

10.

- 1 O A) 支持体の片面に複数組の配線を形成する工程、
- 1 0 B) 配線が形成された支持体に複数個の半導体素子を搭載し、半導体素子端子と配線とを導通させる工程、
- 10C) 導通された複数組の半導体素子と配線とを一括して 樹脂封止する工程、
- 10D) 支持体の所望する部分を除去して配線の所定部分を 露出させ、露出した配線と電気的に接続した外部接続端子を 形成する工程、
- 10E)個々の半導体パッケージに分離する工程 を含むことを特徴とする半導体パッケージの製造法。

11.

半導体素子を樹脂封止した後、封止樹脂硬化物を加熱処理する請求項1~10各項記載の半導体パッケージの製造法。

1 2.

請求項1~11各項記載の方法で製造された半導体パッケージ。

1 3.

複数個の半導体素子実装基板部を備え、複数個の半導体素子実装基板部を連結するための連結部を備え、位置合わせマーク部を備えている半導体素子実装用フレームの製造法であって、

- (5) 樹脂基材上に配線を転写する工程、
- (。) 導電性仮基板をエッチング除去する工程、

を含み、(c)の導電性仮基板の除去に際して、導電性仮基板に一部を残し連結部の一部を構成するようにすることを特徴とする半導体素子実装用フレームの製造法。

PCT/JP95/00492

PCT/JP95/00492

WO 95/26047

図12

14/24

図14

15/24

図16

図17

WO 95/26047

20/24

図20

図21

21/24 図22

WO 95/26047

図24

図25

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/00492

A.	CLASSIFICATION OF SUBJECT MATTE	R
----	---------------------------------	---

Int. Cl⁶ H01L23/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 H01L23/12, H01L23/14, H01L23/50, H01L23/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho

1926 - 1995

Kokai Jitsuyo Shinan Koho

1971 - 1995

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 59-208756, A (Sony Corp.), November 27, 1984 (27. 11. 84), Claim, Figs 2A to 2D (Family: none)	1-5, 10, 11, 12
Y	JP, 3-94459, A (Shinko Denki Kogyo K.K.), April 19, 1991 (19. 04. 91), Claim, Fig. 1 (Family: none)	1-5, 10, 11, 12
Y	JP, 5-129473, A (Sony Corp.), May 25, 1993 (25. 05. 93), Claim, Fig. 5 (Family: none)	1-5, 10, 11, 12

Further documents are listed in the continuation of Box C.		See patent family annex.
--	--	--------------------------

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than
- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A semant mambar of the come rutent from?

The second of the first of the second of	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Name	and	mailing	address	of the	ISA

and the same of th

Japanese Patent Office

Authorized officer

1000

Form FCIFISACLY second sheets (July 1992)

国際出願番号 PCT/JP

95/00492

A. 発明の属する分野の分類(国際特許分類(IPC))

Int CL6 H01L23/12

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. CL⁶ H01L23/12, H01L23/14, H01L23/50, H01L23/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1995年

日本国公開実用新案公報

1971-1995年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP、59-208756、A(ソニー株式会社)、 27、11月、1984(27、11、84)、 特許請求の範囲第2A-2D図(ファミリーなし)	1-5,10, 11,12
Y	JP、3-94459、A(新光電気工業株式会社)、 19、4月、1991(19、04、91)、 特許請求の範囲第1図(ファミリーなし)	1-5,10, 11,12
Y	JP,5-129473,A(ソニー株式会社),	1-5,10,

✓ C側の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公妻されたもの
- 「L: 優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T」国際出願日又は優先日後に公妻された文献であって出願と 矛盾するものてはなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の | 以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

13, 06, 95

国際調査報告の発送日

27.06.95

が 書番 5

基金配子代出述複金屬 1100 日子前200

... :電話番号 93-358(-1101 内線

3 **4 6 3**

C (装き).	(続き). 関連すると認められる文献			
引用文 獻 の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
	25.5月.1993(25.05.93), 特許請求の範囲第5図(ファミリーなし)	11,12		
		·		
	•			
	·			