REPORT

Experiment 1: Common Emitter Amplifier

2 DC bias point and other parameters (Note: NO SMALL SIGNAL INPUT)

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	current gain (A/A)
1.12	4.63	0.51	0.6	4.14	1mA	0.006mA	166.67

3. Q1-in and Q1-out waveform

(Select one frequency in the middle band)

f _{out,max} (Hz) (your choice)	vin (V)	vout (V)	voltage gain (V/V)	phase difference (out->in) (degree)
10k	119.42mVpp	794.41mVpp	6.65	177.15

6 DC bias point and other parameters (Note: NO SMALL SIGNAL INPUT)

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	current gain (A/A)
1.38	3.93	0.68	0.7	3.25	6.5m	0.03m	216.67

7. Q2-in and Q2-out waveform p9

frequency = exp01-3 frequency

f (H7)	vin (V)	vout (V)	voltage	phase
fout,max (Hz)	vin (V)	vout (v)	gain	difference

			(V/V)	(out->in)
				(degree)
10k	100.22mVpp	761.45mVpp	7.60	177.06

Experiment 2: Cascade Amplifier (CE + CE)

2 frequency = exp01-3 frequency 10,12,11

- 1	a nequency export	on equency 10,12,11	<u> </u>		
	f _{out,max} (Hz)	V _{Q1-in} (V)	VQ2-out (V)	voltage gain (V/V)	phase difference (Q2-out -> Q1-in) (degree)
		108.75mVpp	4.3134Vpp	39.66	-1.369
		V _{Q1-in} (V)	V _{Q2-b} (V)	voltage gain (V/V)	phase difference (Q2-b -> Q1-in) (degree)
	10k	110.89mVpp	543.89mVpp	4.90	-176.36
		V _{Q1-c} (V)	V _{Q2-out} (V)	voltage gain (V/V)	phase difference (Q2-out -> Q1-c) (degree)
		516.78mVpp	4.3134Vpp	8.35	176.22

Q1-in and Q2-out waveform

Q1-c and Q2-out waveform

Experiment 3: Common Collector Amplifier

2 DC bias point and other parameters (Note: NO SMALL SIGNAL INPUT) 13

Vb (V)	Vc (V)	Ve (V)	Vbe (V)	Vce (V)	Ic (A)	Ib (A)	current gain (A/A)
7.1	9.74	6.51	0.59	3.23	120.1m	0.5m	240.2

3. Q3-in and Q3-out waveform

frequency = $\exp 01-3$ frequency

f _{out,max} (Hz)	vin (V)	vout (V)	voltage gain (V/V)	phase difference (out->in) (degree)
10k	955.32mVpp	948.39mVpp	0.99	28.829m

Experiment 4: Audio application(CE + CE + CC)

2 AC SWEEP waveform (node out2)

fL3dB (Hz)	fH3dB (Hz)	Bandwidth (Hz)	Vout,max (V)	fout,max (Hz)
120	290k	289.88k	1.3105Vpp	10k

3. frequency = exp01-3 frequency

fout,max (Hz)	V _{Q1-in} (V)	VQ3-out (V)	voltage gain (V/V)	phase difference (Q3-out -> Q1-in) (degree)
	128.78mVpp	974.26mVpp	7.57	1.3414
	V _{Q1-in} (V)	V _{Q3-b} (V)	voltage gain (V/V)	phase difference (Q3-b -> Q1-in) (degree)
10k	132.29mVpp	991.50mVpp	7.49	-6.1066
TUK	V _{Q2-c} (V)	VQ3-out (V)	voltage gain (V/V)	phase difference (Q3-out -> Q2-c) (degree)
	1.0335Vpp	1.0087Vpp	0.976	0.32409

Q1-in and Q3-out waveform

Q2-c and Q3-out waveform

4. Describe what you heard.

The frequency range of human voice covers a range of 100Hz to 17kHz. This is well within the bandwidth of the amplifier. Therefore, the voice coming out from the speaker was fairly clear.

This experiment explores the different configuration of transistor amplifiers.

The basic gain cell of IC amplifiers is the CE (BJT)or CS (MOSFET) amplifier. The maximum gain possible is defined as the intrinsic gain, A_0 .

MOSFET:

$$A_0 = \frac{V_A}{\frac{V_{ov}}{2}}$$

The intrinsic gain of a MOSFET is inversely proportional to $\sqrt{I_D}$ BJT:

$$A_0 = \frac{V_A}{V_T}$$

The intrinsic gain of a BJT is independent of bias current and device dimensions.

The CB (BJT) or CG (MOSFET) amplifier is used as a current buffer. It has low input impedance and high output impedance. This allows it to provide a current gain of approximately 1.

The CC (BJT) (Emitter Follower) or CD (MOSFET) (Source Follower) amplifier is used as a voltage buffer. It has high input impedance and low output impedance. This allows it to provide a voltage gain of approximately 1.

I have compiled the input resistance, output resistance, and gain of MOSFET and BJT amplifiers in the following charts:

	BJT Amplifier With r_o							
Туре	R_i	R_o	A_v					
CE	r_{π}	$r_o R_c$	$-g_m(R_c R_L r_o)$					
CE with Re	$(\boldsymbol{\beta}+1)(r_e+R_e)$	$R_e r_{\pi}+r_o+g_mr_o(R_e r_{\pi})$	$-\frac{R_c}{R_e}$					
СВ	$ r_{\pi} rac{R_L+r_o}{1+g_mr_o} $	$R_e r_{\pi}+r_o+g_mr_o(R_e r_{\pi})$	$\frac{R_c}{R_e}$					
(CC) Emitter Follower	$(oldsymbol{eta}+1)(r_e+R_e)$	$rac{1}{g_m} r_o R_e$	$\frac{(R_E r_o)}{(R_E r_o) + \frac{1}{g_m}}$					

	MOSFET Amplifier With r_o							
Туре	R_i	R_o	A_{v}					
CS	∞	$r_o R_D$	$-g_m(R_D R_L r_o)$					
CS with Rs	&	$R_s + r_o + g_m r_o R_s$	$\frac{-g_m r_o R_D}{R_D + R_s + r_o + g_m r_o R_s}$					
CG	$\frac{R_L + r_o}{1 + g_m r_o}$	$R_s + r_o + g_m r_o R_s$	$(g_m + \frac{1}{r_o})(R_D R_L r_o)$					
(CD)	∞	1	$(R_L r_o)$					
Source Follower		$g_m + \frac{1}{r_o}$	$\frac{(R_L r_o) + \frac{1}{g_m}}$					

References:

- 1. Fundamentals of Microelectronics (Behzad Razavi)
- 2. Microelectronic Circuits (Adel S. Sedra, Kenneth C. Smith)