Assoluta stabilità e metodi multipasso

Elena Loli Piccolomini-metodi multipasso - p.1/33

Assoluta stabilità

- La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente.
- la convergenza non è tuttavia una garanzia perchè un metodo fornisca risultati numerici accettabili.
- E' necessario richiedere che la soluzione numerica abbia alcune proprietà della soluzione esatta.
- I metodi numerici a un passo costutuiscono in realtà una famiglia di metodi al variare di h (passo). Ciascuno di questi metodi deve rispettare alcune proprietà della soluzione esatta, quale, per esempio, fornire una soluzione limitata se la soluzione esatta è limitata.

- zero-stabilità di un metodo numerico: studio il comportamento della soluzione u_n in $[t_0, t_0 + T]$ per $h \to 0$.
- assoluta stabilità di un metodo numerico: studia il comportamento di u_n per $t_n \to \infty$ per h fissato. Viene anche chiamata stabilità per h fissato.

Elena Loli Piccolomini-metodi multipasso – p.3/33

Assoluta stabilità

Problema modello:

$$\begin{cases} y(t) = \lambda y(t) \\ y(t_0) = 1 \end{cases}$$

 $con Re(\lambda) < 0.$

Soluzione esatta: $y(t) = e^{\lambda t}$, $\lim_{t\to\infty} |y(t)| = 0$.

Definizione.

Un metodo numerico è assolutamente stabile se

$$|u_n| \to 0 \ per \ t_n \to \infty$$

$$\begin{cases} y(t) = -y(t) \\ y(0) = 1 \end{cases}$$

Metodo di Eulero

Elena Loli Piccolomini-metodi multipasso - p.5/33

Assoluta stabilità

Definizione.

Regione di assoluta stabilità del metodo numerico:

$$\mathcal{A} = \{ z = \lambda h \in \mathbb{C} : |u_n| \to 0 \ per \ t_n \to \infty \}$$

Definizione.

Un metodo si dice A-stabile se la sua regione di assoluta stabilità

$$\mathcal{A}\supseteq\mathbb{C}^-$$

ovvero se per $Re(\lambda) < 0$ la condizione di assoluta stabilità è verificata $\forall h$.

Metodo di Eulero applicato all'equazione campione:

$$u_{n+1} = u_n + h\lambda u_n$$

Per ricorsione su n:

$$u_n = (1 + \lambda h)^n$$

quindi deve essere $|1 + \lambda h| < 1$:

$$\lambda h \in \mathbb{C}^- \quad e \quad 0 < h < -\frac{2Re(\lambda)}{|\lambda|^2}$$

$$\mathsf{dove}\;\mathbb{C}^-=\{z\in\mathbb{C}:Re(z)<0\}$$

Elena Loli Piccolomini-metodi multipasso - p.7/33

Assoluta stabilità

Metodo di Eulero all'indietro

$$u_n = \frac{1}{(1 - \lambda h)^n} \quad n \le 0$$

$$\mathcal{A} = \mathbb{C} - \{ z \in \mathbb{C} : |z| \le 1 \}$$

Metodo dei trapezi

$$u_n = \left(\left(1 + \frac{1}{2}\lambda h\right) / \left(1 - \frac{1}{2}\lambda h\right)\right)^n, \quad n \ge 0$$

quindi è A-stabile

Elena Loli Piccolomini-metodi multipasso - p.9/33

Metodi multistep

Definizione.

Un metodo numerico si dice a q passi ($q \ge 1$) (multistep) se $\forall n \ge 1$, u_{n+1} dipende da u_{n+1-j} , $j=1,\ldots q$. Esempio.

Metodo esplicito a 2 passi.

$$u_{n+1} = u_{n-1} + 2hf(t_n, u_n)$$

(approssimazione centrale della derivata prima).

 $u_0 = y_0, u_1$ da determinare.

Metodi multistep

Esempio.

metodo a due passi implicito (Simpson):

$$u_{n+1} = u_{n-1} + \frac{h}{3}(f_{n-1} + 4f_n + f_{n+1}), \quad n \ge 1$$

 $u_0 = y_0, u_1$ da determinare.

Per innescare un metodo a q passi servono q condizioni inziali $u_0, \ldots u_{n-1}$. Possono essere calcolate con metodi a un passo espliciti (Runge-Kutta).

Elena Loli Piccolomini-metodi multipasso - p.11/33

Metodi multistep

Metodi a q+1 passi. Schema generale.

$$u_{n+1} = \sum_{j=0}^{q} a_j u_{n-j} + h \sum_{j=0}^{q} b_j f_{n-j} + h b_{-1} f_{n+1}, \quad n = q, q+1, \dots$$

I coefficienti a_j, b_j individuano il metodo, $a_q \neq 0$ oppure $b_q \neq 0$.

- $b_{-1} \neq 0$: schema implicito
- $b_{-1} = 0$ schema esplicito.

Metodi multistep

Riformulando:

$$\sum_{s=0}^{q+1} \alpha_s u_{n+s} = h \sum_{s=0}^{q+1} \beta_s f_{n+s}, \quad n = 0, 1, \dots N - (q+1)$$

$$\alpha_{q+1} = 1, \alpha_s = -a_{q-s}, \ s = 0, \dots q$$

$$\beta_s = b_{p-s}, \ s = 0, \dots q + 1.$$

Elena Loli Piccolomini-metodi multipasso - p.13/33

Metodi Adams

Metodi di Adams-Bashford (espliciti):

$$u_{n+1} = u_n + h \sum_{j=0}^{q} b_j f_{n-j}$$

AB3 (3 passi) $u_{n+1} = u_n + \frac{h}{12}(23f_n - 16f_{n-1} + 5f_{n-2})$

Metodi di Adams-Moulton (impliciti):

$$u_{n+1} = u_n + h \sum_{j=-1}^{q} b_j f_{n-j}$$

AM4 (4 passi)
$$u_{n+1} = u_n + \frac{h}{24}(9f_{n+1} + 219f_n - 5f_{n-1} + f_{n-2})$$

Criterio delle radici

Definiti i seguenti polinomi:

$$\rho(r) = r^{q+1} - \sum_{j=0}^{q} a_j r^{q-j}$$

$$\sigma(r) = b_{-1}r^{q+1} + \sum_{j=0}^{q} b_j r^{q-j}$$

primo e secondo polinomio caratteristico del metodo multipasso individuato dai coefficienti a_j e b_j .

Elena Loli Piccolomini-metodi multipasso - p.15/33

Criterio delle radici

Il polinomio

$$\Pi(r) = \rho(r) - h\lambda\sigma(r)$$

è il polinomio caratteristico del metodo.

Le radici $r_j(h), j = 1, \dots p$ di $\Pi(r)$ si dicono radici caratteristiche.

Criterio delle radici

Il metodo multistep soddisfa il criterio delle radici se tutte le radici r_j sono contenute nel cerchio unitario centrato nell'origine del piano complesso. Nel caso in cui una radice cada sul bordo, deve essere una radice semplice.

Consistenza metodi multistep

Errore locale troncamento metodi multipasso:

$$h\tau_{n+1} = y_{n+1} - \left(\sum_{j=0}^{q} a_j y_{n-j} + h \sum_{j=-1}^{q} b_j y'_{n-j}\right) \quad n \ge q$$

Errore troncamento globale:

$$\tau(h) = \max_{n} |\tau_n(h)|$$

. Consistenza

Il metodo multipasso è consistente se $\tau(h) \to 0$ quando $h \to 0$. Metodo di ordine p se $\tau(h) = O(h^p)$, $p \ge 1$.

Elena Loli Piccolomini-metodi multipasso - p.17/33

Consistenza metodi multistep

Condizioni equivalenti alla consistenza:

$$\sum_{j=0}^{q} a_j = 1 - \sum_{j=0}^{q} j a_j + \sum_{j=-1}^{q} b_j 1 = 1$$

• r=1 è una radice del primo polinomio caratteristico $\rho(r)$.

Zero-stabilità metodi multistep

Teorema.

Per un metodo multistep consistente, la condizione delle radici è equivalente alla zero-stabilità .

Esempio. Metodi di Adams.

 $ho(r)=r^{p+1}-r^p$. Le radici $r_0=1$ e $r_1=0$ dunque tutti i metodi di Adams sono zero-stabili.

Elena Loli Piccolomini-metodi multipasso - p.19/33

Convergenza metodi multistep

Teorema di equivalenza.

Un metodo multistep consistente è convergente se e solo se è zero -stabile e se l'errore sui dati iniziali tende a zero per h che tende a zero.

Prima barriera di Dahlquist.

Non esistono metodi multistep lineari zero-stabili a q passi con ordine di convergenza maggiore di q+1 se q è dispari, q+2 se q è pari.

Assoluta stabilità metodi multistep

Regioni di assoluta stabilità di alcuni metodi multipasso.

Figura 9.22 Intervalli di stabilità a passo fissato dei metodi di Adams espliciti e impliciti.

Elena Loli Piccolomini-metodi multipasso – p.21/33

Assoluta stabilità metodi multistep

Condizione assoluta delle radici.

Un metodo multistep soddisfa la condizione assoluta delle radici se esiste $h_0 > 0$ tale che:

$$|r_j(h\lambda)| < 1, \quad j = 1, \dots q, \ \forall h \le h_0$$

Condizione assoluta delle radici è necessaria e sufficiente affinchè il metodo sia assolutamente stabile $\forall h \leq h_0$. Seconda barriera di Dahlquist.

Un metodo multistep lineare esplicito non può essere A-stabile. Inoltre, non esistono metodi multistep lineari A-stabili di ordine superiore a due.

Assoluta stabilità metodi multistep

Calcolo del bordo ∂A della regione di assoluta stabiltà di un metodo a q passi.

$$h\lambda = \left(r_{q+1} - \sum_{j=0}^{q} a_j r_{q-j}\right) / \left(\sum_{j=0}^{q} b_j r_{q-j}\right)$$

Elena Loli Piccolomini-metodi multipasso - p.23/33

Metodi BDF

Metodi alle differenze all'indietro (BDF). Famiglia di metodi multistep che si ottiene approssimando $y'(t_{n+1})$ con un rapporto incrementale all'indietro di ordine elevato. Sono metodi impliciti:

$$u_{n+1} = \sum_{j=0}^{p} a_j u_{n-j} + h b_{-1} f_{n+1}, \quad b_{-1} \neq 0$$

Esempio (2 ordine implicito):

$$u_{n+1} = \frac{4}{3}u_n - \frac{1}{3}u_{n-1} + \frac{2}{3}hf_{n+1}$$

I sistemi di ODE

Nel caso di sistemi di equazioni differenziali:

I metodi numerici si applicano ad ogni equazione del sistema.

Esempio. Metodi a un passo:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + h\mathbf{\Phi}(t_n, \mathbf{u}_n)$$

• Nell'analisi di stabilità il ruolo del parametro λ è dato da: $\lambda = -max_t \rho(A(t)) \text{ dove } \rho(A(t)) \text{ è il raggio spettrale di } A(t)$ nel caso in cui le parti reali degli autovalori λ_k della matrice Jacobiana $A(t) = (\frac{\partial \Phi}{\partial \mathbf{v}})(t,y)$ siano tutte < 0

Elena Loli Piccolomini-metodi multipasso - p.25/33

Problemi stiff

- Il passo di integrazione è stabilito sulla base di due criteri: accuratezza e stabilità.
- Di solito è determinato dall'accuratezza, ma nei problemi stiff
 è determinato dalla stabilità .

Problemi stiff

$$\begin{cases} y_1'(t) = -2y_1(t) + y_2(t) + 2\sin(t) \\ y_2'(t) = y_1(t) - 2y_2(t) + 2(\cos(t) - \sin(t)) \\ y_1(0) = 2 \\ y_2(0) = 3 \end{cases}$$

$$\begin{cases} y_1'(t) = -2y_1(t) + y_2(t) + 2\sin(t) \\ y_2'(t) = 998y_1(t) - 999y_2(t) + 999(\cos(t) - \sin(t)) \\ y_1(0) = 2 \\ y_2(0) = 3 \end{cases}$$

Stessa soluzione:

$$y_1(t)=2e^{-t}+sin(t), \quad y_2(t)=2e^{-t}+{\it Eleph SoliPitch}$$
 (Pitch) lomini-metodi multipasso – p.27/33

Problemi stiff

Problemi stiff

Problema 1.

- Metodo di Runge-Kutta esplicito IV ordine: 25 passi, 169 valutazioni funzione
- Metodo implicito: 41 passi, 90 valutazioni funzione

Problema 2.

- Metodo di Runge-Kutta esplicito IV ordine: 3015 passi, 18679 valutazioni funzione
- Metodo implicito: 48 passi, 112 valutazioni funzione

Elena Loli Piccolomini-metodi multipasso - p.29/33

Problemi stiff

$$y'(t) = \lambda(y(t) - \sin(t)) + \cos(t), y(0) = 1$$

soluzione esatta: $y(t) = e^{\lambda t} + cos(t)$.

Figura 9.18 (1) soluzione $y = \exp(-10t) + \sin t$ del problema a valori iniziali $y' = -10(y - \sin t) + \cos t$ y(0) = 1; (2) $\sin t$; (3) componente transiente $\exp(-10t)$.

Problemi stiff

- La stiffness dipende dal'equazione differenziale, dalle condizioni iniziali e dal metodo numerico.
- Non si può dare una definzione. Non è una proprietà ma un comportamento che si evidenzia quando il sistema è risolto numericamente (sono sistemi comunque stabili).
- terminologia utilizzata per un sistema con costanti di decadimento nel tempo diverse fra loro.
- in un sistema lineare y' = Ay, le costanti di decadimento sono date da $\frac{1}{\lambda_i}$ dove λ_i sono gli autovalori della matrice A.

Elena Loli Piccolomini-metodi multipasso – p.31/33

Problemi stiff

Rapporto di stiffness:

$$R = \frac{|Re(\lambda_{min})|}{|Re(\lambda_{max})|}$$

R >> 1 indica probabile stiffness.

- Se un metodo numerico con regione finita di assoluta stabilità applicato ad un problema è forzato ad usare in qualche intervallo un passo di integrazione eccessivamente piccolo in relazione alla regolarità della soluzione, allora il problema è detto stiff in quell'intervallo.
- I metodi numerici adatti per risolvere problemi stiff sono
 metodi con una regione di assoluta stabilità grande,
 tipicamente metodi impliciti.

Funzioni Matlab

Funzioni Matlab adatte a risolvere problemi stiff:

- ode15s
- ode23s
- ode23t
- ode23tb

Elena Loli Piccolomini-metodi multipasso – p.33/33