© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°16

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - Centrale PSI Maths II 2003

Dans tout le problème, n est un entier naturel supérieur ou égal à 1.

On considère un espace euclidien E de dimension n. On note $\langle x, y \rangle$ le produit scalaire de deux vecteurs x et y et $x \mapsto ||x||$ la norme associée.

Pour $u \in \mathcal{L}(E)$, on note u^* son adjoint, π_u son polynôme minimal, χ_u son polynôme caractéristique et $\operatorname{Sp} u$ l'ensemble de ses valeurs propres.

L'endomorphisme u de E est dit anti-autoadjoint lorsque $u^* = -u$.

On note S(E), $\mathcal{A}(E)$ et $\mathcal{O}(E)$ les sous-ensembles de $\mathcal{L}(E)$ formés respectivement des endomorphismes auto-adjoints, des endomorphismes anti-autoadjoints et des isométries vectorielles.

Si F est un sous-espace de E stable par u, on note $u_{|F}$ l'endomorphisme de F induit par u.

On note $\mathcal{P}(E)$ l'ensemble des endomorphismes u de E tels que u^* soit un polynôme en u et $\mathcal{N}(E)$ l'ensemble des endomorphismes u de E qui commutent avec leur adjoint, donc :

$$\mathcal{P}(E) = \{ u \in \mathcal{L}(E), \ u^* \in \mathbb{R}[u] \}$$
 et $\mathcal{N}(E) = \{ u \in \mathcal{L}(E), \ u^* \circ u = u \circ u^* \}$

Le but du problème est d'étudier et comparer les deux ensembles $\mathcal{P}(E)$ *et* $\mathcal{N}(E)$.

On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées réelles de taille n et \mathcal{S}_n , \mathcal{A}_n et \mathcal{O}_n les sous-ensembles de $\mathcal{M}_n(\mathbb{R})$ formés respectivement des matrices symétriques, antisymétriques, orthogonales.

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on note χ_A son polynôme caractéristique et π_A son polynôme minimal. On note A^T la transposée de A.

Deux matrices A et B sont dites orthogonalement semblables lorsqu'il existe $P \in \mathcal{O}_n$ tel que $B = P^{-1}AP$.

On note \mathcal{P}_n l'ensemble des matrices A de $\mathcal{M}_n(\mathbb{R})$ telles que A^T peut s'exprimer comme un polynôme en A, donc :

$$\mathcal{P}_n = \{ \mathbf{A} \in \mathcal{M}_n(\mathbb{R}), \; \mathbf{A}^\top \in \mathbb{R}[\mathbf{A}] \}$$

et de manière analogue

$$\mathcal{N}_n = \{ \mathbf{A} \in \mathcal{M}_n(\mathbb{R}), \ \mathbf{A}^\mathsf{T} \mathbf{A} = \mathbf{A} \mathbf{A}^\mathsf{T} \}$$

Les parties I et II sont indépendantes.

I Généralités sur $\mathcal{P}(E)$ et \mathcal{P}_n

- 1.a Soient A et B les deux matrices d'un même endomorphisme de E rapporté à deux bases orthonormales. Montrer que A et B sont orthogonalement semblables.
 - **1.b** Soit u un endomorphisme de E et A sa matrice sur \mathcal{B} , une base orthonormale de E. Etablir un rapport entre l'appartenance de u à $\mathcal{P}(E)$ (resp. $\mathcal{N}(E)$) et l'appartenance de A à \mathcal{P}_n (resp. \mathcal{N}_n).

Dans la suite du problème, on pourra exploiter ce rapport pour répondre à certaines questions.

1.c Montrer que $\mathcal{P}(E) \subset \mathcal{N}(E)$ et que $\mathcal{P}_n \subset \mathcal{N}_n$.

- **2. 2.a** Vérifier que $S(E) \subset \mathcal{P}(E)$ et $\mathcal{A}(E) \subset \mathcal{P}(E)$.
 - **2.b** Quelles sont les matrices triangulaires supérieures qui appartiennent à \mathcal{P}_n ? En déduire que si $n \ge 2$, on a $\mathcal{P}(E) \ne \mathcal{L}(E)$.
 - **2.c** Soit $u \in \mathcal{L}(E)$ admettant, sur une certaine base \mathcal{B} de E, une matrice triangulaire supérieure. Montrer qu'il existe une base orthonormale \mathcal{B}' de E, telle que les matrices de passage de \mathcal{B} à \mathcal{B}' et de \mathcal{B}' à \mathcal{B} soient triangulaires supérieures.

Montrer que la matrice de u dans \mathcal{B}' est triangulaire supérieure.

En déduire les éléments $u \in \mathcal{P}(E)$ qui sont trigonalisables.

- **2.d** On suppose que u est un automorphisme de E; montrer que u admet un polynôme annulateur P tel que $P(0) \neq 0$. En déduire que u^{-1} peut s'écrire comme un polynôme en u. En déduire que $\mathcal{O}(E) \subset \mathcal{P}(E)$.
- **3.a** Montrer que si $A \in \mathcal{P}_n$ et $A \neq 0$, alors il existe un unique polynôme réel que l'on note P_A , tel que deg $P_A < \deg \pi_A$ et $P_A(A) = A^T$.

Si A est la matrice nulle, on convient que P_A est le polynôme nul.

Enoncer le résultat correspondant pour $u \in \mathcal{P}(E)$.

- **3.b** Déterminer les matrices A de \mathcal{P}_n pour lesquelles P_A est un polynôme constant.
- **3.c** Déterminer les matrices A de \mathcal{P}_n pour lesquelles P_A est du premier degré. On rappelle que toute matrice carrée s'écrit comme somme d'une matrice symétrique et d'une matrice antisymétrique.
- **3.d** Soient A et B deux matrices orthogonalement semblables. Montrer que si $A \in \mathcal{P}_n$ alors $B \in \mathcal{P}_n$ et $P_A = P_B$.
- $\boxed{\mathbf{4}}$ Décrire les éléments A de \mathcal{P}_2 et calculer les P_A correspondants.

$$\boxed{\mathbf{5}} \text{ Soit } \mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{pmatrix} \text{ avec } \mathbf{A}_1 \in \mathcal{P}_{n_1}, \, \mathbf{A}_2 \in \mathcal{P}_{n_2}.$$

5.a On suppose que π_{A_1} et π_{A_2} sont premiers entre eux. Montrer l'existence de deux polynômes U et V tels que :

$$P_{A_1} - \left(P_{A_1} - P_{A_2}\right)U\pi_{A_1} = P_{A_2} + \left(P_{A_1} - P_{A_2}\right)V\pi_{A_2}$$

Calculer A^m pour m entier positif quelconque, puis P(A) pour $P = P_{A_1} - (P_{A_1} - P_{A_2}) U \pi_{A_1}$. En déduire que $A \in \mathcal{P}_{n_1+n_2}$.

5.b Expliciter π_A en fonction de π_{A_1} et π_{A_2} .

Comment trouver P_A connaissant π_{A_1} , π_{A_2} et le polynôme P défini par $P = P_{A_1} - (P_{A_1} - P_{A_2}) U \pi_{A_1}$?

$$\boxed{\mathbf{6}} \text{ Soit A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Vérifier que $A \in \mathcal{P}_4$ et calculer P_A avec la méthode précédente.

II Etude de $\mathcal{N}(E)$ et \mathcal{N}_n

- 7 Montrer que si $u \in \mathcal{N}(E)$ et $P \in \mathbb{R}[X]$, alors $P(u) \in \mathcal{N}(E)$.
- Soient $u \in \mathcal{N}(E)$ et $x \in E$. Montrer que $||u(x)||^2 = ||u^*(x)||^2$. En déduire que u et u^* ont le même noyau.
- Soit m un entier, m > 0. On suppose donné un endomorphisme f anti-autoadjoint inversible de l'espace \mathbb{R}^m muni de son produit scalaire canonique.

- **9.a** Comparer les déterminants de f et f^* . En déduire que m est pair.
- 9.b Justifier que f^2 est auto-adjoint puis que f^2 possède un vecteur propre unitaire x_0 . En déduire que $\Pi = \text{vect}(x_0, f(x_0))$ est un plan stable par f. Donner la forme de la matrice de $f_{|\Pi}$ dans une base orthonormale de Π .
- **9.c** Montrer qu'il existe une base orthonormale \mathcal{B} de \mathbb{R}^m telle que :

$$mat_{\mathcal{B}}(f) = \begin{pmatrix} \tau_1 & 0 & \dots & 0 \\ 0 & \tau_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \tau_{m/2} \end{pmatrix}$$

avec
$$\tau_i = \begin{pmatrix} 0 & -b_i \\ b_i & 0 \end{pmatrix}$$
 et $b_i \neq 0$ pour $i \in [[1, m/2]]$.

- Soit $u \in \mathcal{L}(E)$ et $E_1 \subset E$ un sous-espace stable par u et u^* . On note E_2 l'orthogonal de E_1 .
 - **10.a** Montrer que E_2 est stable par u et u^* .
 - **10.b** Montrer que $(u_{|E_1})^* = (u^*)_{|E_1}$.
 - **10.c** Montrer que si, en outre, $u \in \mathcal{N}(E)$, alors $u_{|E_1} \in \mathcal{N}(E_1)$ et $u_{|E_2} \in \mathcal{N}(E_2)$.

Jusqu'à la fin de la partie II, u désigne un élément de $\mathcal{N}(E)$.

- Soient $\lambda \in \mathbb{R}$ et $x \in E$; montrer que $||u(x) \lambda x||^2 = ||u^*(x) \lambda x||^2$. En déduire que u et u^* ont les mêmes sous-espaces propres et que ceux-ci sont en somme directe orthogonale.
 - Si λ est une valeur propre de u, on note $E_{\lambda}(u)$ le sous-espace propre associé. Soit F le supplémentaire orthogonal du sous-espace $\bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$.

Montrer que F est stable par u et u^* . En considérant la restriction de u à F, montrer que la dimension de F est paire. On notera dim F = 2p.

12 On suppose que p est non nul. Soit $v \in \mathcal{N}(F)$. On pose

$$s = \frac{v + v^*}{2} \qquad \text{et} \qquad a = \frac{v - v^*}{2}$$

12.a Justifier que le polynôme caractéristique de s est scindé. On le note :

$$\chi_{s}(X) = \prod_{i=1}^{k} (X - \lambda_{i})^{n_{i}}$$

12.b Montrer que $s \circ a = a \circ s$ et $s \circ v = v \circ s$.

Montrer qu'il existe une base orthonormale \mathcal{B}' de F telle que la matrice de v dans \mathcal{B}' soit diagonale par blocs :

$$\operatorname{mat}_{\mathcal{B}'}(v) = \begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{pmatrix}$$

avec, pour $i \in [[1, k]]$, M_i de la forme $\lambda_i I_{n_i} + A_i$ où A_i est antisymétrique.

12.c On suppose en outre que v n'admet aucune valeur propre réelle. Montrer que les A_i sont inversibles.

13 Montrer qu'il existe une base orthonormale $\mathcal B$ de E telle que :

$$\operatorname{mat}_{\mathcal{B}}(u) = \begin{pmatrix} D & 0 & \dots & 0 \\ 0 & \tau_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \tau_p \end{pmatrix}$$

avec D matrice diagonale, $\tau_i = \begin{pmatrix} a_i & -b_i \\ b_i & a_i \end{pmatrix}$ et $b_i \neq 0$ pour $i \in [\![1,p]\!]$.

- 14 Donner une caractérisation des matrices $A \in \mathcal{N}_n$.
- 15 Préciser la matrice obtenue dans 13 quand $u \in \mathcal{O}(E)$.

III Relation entre \mathcal{P}_n et \mathcal{N}_n

16 Soit $P \in \mathbb{R}[X]$.

16.a Soit

$$\Delta = \begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_k \end{pmatrix}$$

une matrice réelle diagonale par blocs.

Montrer que $P(\Delta) = \Delta^T$ si et seulement si $P(M_i) = M_i^T$, pour $i \in [1, k]$.

16.b Donner les expressions de P_A , χ_A et π_A pour une matrice

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ où } b \neq 0$$

Montrer que $P(A) = A^{T}$ si et seulement si P(a + ib) = a - ib et P(a - ib) = a + ib.

Dans les questions qui suivent, on fixe $A \in \mathcal{N}_n$. D'après 14, A est orthogonalement semblable à une matrice B telle que celle représentée dans 13.

16.c Montrer que $P(A) = A^{T}$ si et seulement si :

- $P(\lambda) = \lambda$ pour toute valeur propre réelle λ de A;
- $P(z) = \overline{z}$ pour toute racine complexe non réelle z de χ_A .
- **16.d** Montrer qu'il existe $P \in \mathbb{C}[X]$, de degré minimal, vérifiant les conditions ci-dessus (sur $P(\lambda)$ et P(z)) et que ce polynôme est, en fait, à coefficients réels.

En déduire que $\mathcal{N}_n = \mathcal{P}_n$.

Montrer que le polynôme P trouvé dans la question 16.d est, en fait, P_A .

Retrouver, avec la méthode précédente, le polynôme P_A de la question 6.

18 Dans cette question, on suppose $n \ge 3$ et on note $C(\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \mathcal{M}_n(\mathbb{R})$ la matrice circulante

$$\mathbf{C}(\alpha_0,\alpha_1,\dots,\alpha_{n-1}) = \left(\begin{array}{ccccc} \alpha_0 & \alpha_1 & \alpha_2 & \dots & \alpha_{n-1} \\ \alpha_{n-1} & \alpha_0 & \alpha_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \alpha_2 \\ \alpha_2 & \ddots & \ddots & \alpha_0 & \alpha_1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_{n-1} & \alpha_0 \end{array} \right)$$

© Laurent Garcin MP Dumont d'Urville

et
$$J = C(0, 1, 0, ..., 0)$$
.

18.a Montrer que $J \in \mathcal{P}_n$.

En déduire que toute matrice circulante appartient à \mathcal{P}_n .

18.b A toute matrice circulante non nulle $A = C(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, on associe les polynômes

$$P(X) = \sum_{i=0}^{n-1} \alpha_i X^i$$
 et $Q(X) = \alpha_0 + \sum_{i=1}^{n-1} \alpha_i X^{n-i}$

Donner l'expression de π_J . Comparer Q et le reste de la division euclidienne de $P_A \circ P$ par π_J . En déduire les étapes d'une méthode de calcul de P_A . Détailler le calcul pour A = C(1,1,0).

19 Soit
$$P(X) = a_0 + a_1X + a_2X^2$$
 avec $a_2 \neq 0$.

Montrer qu'il existe un entier $n \ge 3$ et une matrice $A \in \mathcal{P}_n$ telle que $P = P_A$ si et seulement si $(a_1 - 1)^2 - 4a_0a_2 \in [0, 4[$.

Indication: montrer que, si n et A existent, χ_A admet au moins une racine réelle et exactement deux racines complexes, conjuguées l'une de l'autre.