Deep Learning Book

Chapter 7 Regularization for Deep Learning

Botian Shi botianshi@bit.edu.cn March 7, 2017 You can download the MEX source code of this file from Here.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- · These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- There are many regularization strategies.
 - Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model.

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model.

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model.

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\widetilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- · Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- Different Ω has different result.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector \mathbf{w} to indicate all of the weights that should be affected by a norm penalty, while the vector $\mathbf{\theta}$ denotes all of the parameters, including both \mathbf{w} and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector \mathbf{w} to indicate all of the weights that should be affected by a norm penalty, while the vector $\boldsymbol{\theta}$ denotes all of the parameters, including both \mathbf{w} and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector \mathbf{w} to indicate all of the weights that should be affected by a norm penalty, while the vector $\mathbf{\theta}$ denotes all of the parameters, including both \mathbf{w} and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{\mathsf{T}} w + J(w; X, y)$$
$$\nabla_w \tilde{J}(w; X, y) = \alpha w + \nabla_w J(w; X, y)$$

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• First, let $\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$

References I

References