Smoothing Methods

Smoothing is "data driven"

- Regression methods assume underlying unchanging structure (linear, exponential, polynomial)
- Smoothing derives forecasts based directly on the data alone (e.g. averaging), with no mathematical structural assumptions
- Suitable where the components (trend, seasonality) change over time

Simple moving average (MA)

Set window width "w" - take average of the w values.

For centered moving average, window is centered around forecast point

For w=5, the forecast for t_3 averages the values $t_1 \dots t_5$ Not useful for future forecasts

For future forecasts, use "trailing average" = the value being forecast is at the end of the window

Choosing window width

Goal is to suppress seasonality and noise

Typically choose window width = season length

In Excel:

Add Trendline > Moving Average

Moving Average Functions

```
library(zoo)

# centered moving average with window order = 12

ma.centered <- ma(ridership.ts, order = 12)

# trailing moving average with window k = 12
# in rollmean(), use argument align = right to calculate a # trailing moving average.

ma.trailing <- rollmean(ridership.ts, k = 12, align = "right")</pre>
```

Amtrak Ridership: Moving Average Smoothing Window W = 12

Plotting Code

MA forecast, and checking it in the validation period:

```
# partition the data
nValid < -36
nTrain <- length(ridership.ts) - nValid
train.ts <- window(ridership.ts, start = c(1991, 1), end =
     c(1991, nTrain))
valid.ts <- window(ridership.ts, start = c(1991, nTrain + 1),</pre>
     end = c(1991, nTrain + nValid))
# moving average on training
ma.trailing <- rollmean(train.ts, k = 12, align = "right")
# obtain the last moving average in the training period
last.ma <- tail(ma.trailing, 1)</pre>
# create forecast based on last MA
ma.trailing.pred <- ts(rep(last.ma, nValid), start = c(1991,
     nTrain + 1), end = c(1991, nTrain + nValid), freq = 12)
```

Validation forecast is the last moving average from training period

Moving Average for Forecasting

Shortcomings

Suppresses seasonality, but does not forecast seasonal component

Lags behind trends

Thus, simple Moving Average useful only for series that lack trend and seasonality

Coping with these shortcomings

- Use regression model to de-trend and deseasonalize
- Use Moving Average to forecast the de-trended and de-seasonalized series
- Add trend and seasonality back to the forecast

Simple exponential smoothing

Like MA, except use weighted average of all past values, instead of simple average in a window

Forecast at time t+1:

$$F_{t+1} = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \dots$$

Equivalent to

$$F_{t+1} = F_{t+1} \alpha E_t$$

E is forecast error at time t

Smoothing parameter α

Simple exponential smoother corrects based on error

- If last period forecast was too high, next period is adjusted down
- If last period forecast was too low, next period is adjusted up

Amount of correction depends on value of α

 Value close to 1 > fast learning, close to 0 > low learning

Output for simple exponential smoothing applied to residuals from regression model:

```
# get residuals
residuals.ts <- train.lm.trend.season$residuals

# run simple exponential smoothing
# use ets() with model = "ANN" (additive error (A),
# no trend (N), no seasonality (N))
# and alpha = 0.2 to fit simple exponential smoothing.

ses <- ets(residuals.ts, model = "ANN", alpha = 0.2)
ses.pred <- forecast(ses, h = nValid, level = 0)</pre>
```


Moving average and simple exponential smoothing can be used only when there is no trend or seasonality. When those features are present:

- One solution is to remove those components via regression
- Another is to use advanced exponential smoothing, which can capture trend and seasonality
- Double-exponential smoothing used for series with a trend

Double exponential smoothing

Incorporates trend

K-step ahead forecast is derived from the level (L) and trend (T) estimates at time t

$$F_{t+k} = L_t + kT_t$$

where

$$L_{t} = \alpha Y_{t} + (1-\alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1-\beta)T_{t-1}$$

Holt Winters exponential smoothing

- Extension of double exponential smoothing
- Incorporate both trend and seasonality

Holt Winters forecast for time t+k

Adds seasonality to double exponential

For M seasons (e.g. M=7 for weekly), forecast is

$$F_{t+k} = (L_t + kT_t)S_{t+k-M}$$

Where L = level, T = trend, S = season

Updating L, T and S

Like eq. for double exponential, except for seasonal adjustment term

$$L_{t} = \underbrace{\frac{\alpha Y_{t}}{S_{t-M}}} + (1 - \alpha)(L_{t-1} + T_{t-1}),$$

Like double exponential equation

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1},$$

Equation to update seasonal index

$$S_t = \frac{\gamma Y_t}{L_t} + (1 - \gamma) S_{t-M}$$

Holt Winters predictions:

```
# run Holt-Winters exponential smoothing
# use ets() with option model = "MAA" to fit Holt-
# Winter's exponential smoothing
# with multiplicative error, additive trend, and
# additive seasonality.

hwin <- ets(train.ts, model = "MAA")

# create predictions

hwin.pred <- forecast(hwin, h = nValid, level = 0)</pre>
```

Holt-Winters Predictions

Summary

- Smoothing methods rely on local data, not mathematical structure
- Simple smoothing does not account for trend and seasonality, but can be combined with model-based forecasts to improve the forecast
- Holt-Winters smoothing incorporates seasonality and trend