SVD & ASVD for Transformer Models Compression

Arsenii Rybakov Daniil Maslov Ruben Safaryan

Motivation

- Lightning LLM development
- Huge size of Transformers
- Sustainability/Economic

Brief Introduction into the SVD

Explored setups

- Google/ViT-Base-16-224 + Attention Layers SVD/ASVD compression
- 2 Google/ViT-Base-16-224 + All Linear Layers SVD compression + FT
- 3 Google/bert-large-uncased + Attention Layers SVD/ASVD compression
- 4 Google/bert-large-uncased + All Linear Layers SVD compression + FT
- * 1, 3 zero-learning setups

Google/ViT-B-16-224

- 1 Family of Visual Transformers Introduced in 2021 by Dosovitskiy et al.
- 2 SOTA—level result for the ImageNet-1K image classification

Visual Transformers: *ASVD explained variance*

— layers 1 - 4

— layers 5 - 8

700

layers 9 - 12

800

0.2

0.0 -

100

200

300

400

500

600

Values

Basic SVD Compression for ViT-B-16-224 perf.

Accuracy score on ILSVRC/imagenet-1k Validation Set(50K images)

SVD/AVSD Compression for ViT-B-16-224 perf.

Accuracy score on ILSVRC/imagenet-1k Validation Set(50K images)

Unfortunately, ASVD doesn't work well

Possible reasons for inferior ASVD performance

• Small model that fully utilises its parameters potential

LayerNorm included in
Transformers in architecture

Proofs for the LayerNorm hypothesis

Google/ViT-B-16 -- KDE of |pre - activation| of Attention Inputs(across 768 hiddens)

Google/ViT-B-16 -- KDE of Standart Deviations of Attention Inputs(across 768 hiddens)

Google/ViT-B-16-224 — All Linear Layers SVD + FT

Model Type	Max rank	Share of params.	Acc. (no FT)	Acc(FT)
Original	768	100 %	0.86	
Compressed—1	244	48 %	0.376	0.79
Compressed—2	192	33 %	0.14	0.79
Compressed—3	96	19 %	0.01	0.65

Google/Bert-large-uncased-whole-word-masking

- 1 Family of NLP models introduced by Google in 2018
- 2 SOTA level on variety of NLP tasks

3 Evaluated on mask-filling task on the «nyu-mll/multi_nli» dataset

bert-large compression perf.

Accuracy score on top-5 masked filling(nyu-mli/multi_nli)

bert-large compression perf.

Accuracy score on top-5 masked filling(nyu-mli/multi_nli)

Thank you for your Attention!

It's all we need!

