# 习题课

求:  $Z = A(B + \overline{C}) + \overline{A}B(C + \overline{D}) + A\overline{B}C + D$ 

对偶式:  $Z_D = (A + B\overline{C})(\overline{A} + B + C\overline{D})(A + \overline{B} + C)D$ 

 $Z = A(B+\overline{C}) + \overline{A}B(C+\overline{D}) + A\overline{B}C + D$ 

 $=AB+A\overline{C}+\overline{A}BC+\overline{A}B\overline{D}+A\overline{B}C+\overline{D}$  $=AB+A\overline{C}+\overline{A}BC+\overline{A}B+A\overline{B}C+D$ 

 $=B+A\overline{C}+\overline{A}BC+A\overline{B}C+D$ 

 $=B+A(\overline{C}+\overline{B})+D$ 

 $=\mathbf{B}+\mathbf{A}\mathbf{C}+\mathbf{A}\mathbf{B}+\mathbf{D}$ 

 $=B+A+A\bar{C}+D$ 

=A+B+D

结论: 两个相等的逻辑表达式 其对偶式也是相等的。

Z先进行逻辑 化简,其对偶 式是否与原对

偶式相等?  $Z_D = (A+B\overline{C})(\overline{A}+B+C\overline{D})(A+\overline{B}+C)D$ 

讨论: 如果对

 $=(AB+AC\overline{D}+\overline{ABC}+\overline{BC})(A+\overline{B}+C)D$  $=(AB+AC\overline{D}+\overline{BC})(A+\overline{B}+C)D$ 

=ABD+ABCD+ABCD

 $=(ABD+B\overline{C}D)(A+\overline{B}+C)$ 

=ABD

两个相等的逻辑表达式其 对应的反函数也是相等的。

# **题2** 设X是一个小于4的8421BCD码的整数,而Y=2X,试列出Y的真值表(Y也用8421BCD码表示)。

解: 设X:  $X_3X_2X_1\overline{X_0}$  Y:  $Y_3Y_2Y_1Y_0$ 

| X <sub>3</sub> | $X_2$ | $X_1$ | $X_0$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
|----------------|-------|-------|-------|--------------------------------------------------------|
| 0              | 0     | 0     | 0     | 0 0 0 0                                                |
| 0              | 0     | 0     | 1     | 0 0 1 0                                                |
| 0              | 0     | 1     | 0     | 0 1 0 0                                                |
| 0              | 0     | 1     | 1     | 0 1 1 0                                                |
| 0              | 1     | 0     | 0     | 1 0 0 0                                                |
| 0              | 1     | 0     | 1     |                                                        |
| 0              | 1     | 1     | 0     |                                                        |
| 0              | 1     | 1     | 1     |                                                        |
| 1              | 0     | 0     | 0     | 9                                                      |
| 1              | 0     | 0     | 1     | •                                                      |
| 1              | 0     | 1     | 0     |                                                        |
| 1              | 0     | 1     | 1     |                                                        |
| 1              | 1     | 0     | 0     |                                                        |
| 1              | 1     | 0     | 1     |                                                        |
| 1              | 1     | 1     | 0     |                                                        |
| 1              | 1     | 1     | 1     |                                                        |

| $X_3$ | $X_2$ | $X_1$ | $X_0$ | $Y_3$ | $Y_2$ | $Y_1$ | $Y_0$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     | 0     | 0     | 1     | 0     |
| 0     | 0     | 1     | 0     | 0     | 1     | 0     | 0     |
| 0     | 0     | 1     | 1     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 0     | 1     | 0     | 0     | 0     |
| 0     | 1     | 0     | 1     | X     | X     | X     | X     |
| 0     | 1     | 1     | 0     | X     | X     | X     | X     |
| 0     | 1     | 1     | 1     | X     | X     | X     | X     |
| 1     | 0     | 0     | 0     | X     | X     | X     | X     |
| 1     | 0     | 0     | 1     | X     | X     | X     | X     |
| 1     | 0     | 1     | 0     | X     | X     | X     | X     |
| 1     | 0     | 1     | 1     | X     | X     | X     | X     |
| 1     | 1     | 0     | 0     | X     | X     | X     | X     |
| 1     | 1     | 0     | 1     | X     | X     | X     | X     |
| 1     | 1     | 1     | 0     | X     | X     | X     | X     |
| 1     | 1     | 1     | 1     | X     | X     | X     | X     |

| $X_3$ | $X_2$ | $X_1$ | $X_0$ | $Y_3$ | $Y_2$ | $Y_1$ | $Y_0$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     | 0     | 0     | 1     | 0     |
| 0     | 0     | 1     | 0     | 0     | 1     | 0     | 0     |
| 0     | 0     | 1     | 1     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 0     | 1     | 0     | 0     | 0     |
|       | 其     | 它     |       | X     | X     | X     | X     |

## 题3

试分析图示电路的逻辑功能

$$\Sigma = \overline{ABCI + XCI + BX + AX}$$

- = ABCI + X(A + B + CI)
- $= ABCI \cdot X(A + B + CI)$
- $=(\overline{A}+\overline{B}+\overline{CI})(\overline{X}+\overline{A}\overline{B}\overline{CI})$
- $=(\overline{A} + \overline{B} + \overline{CI})(\overline{AB} + \overline{BCI} + \overline{ACI} + \overline{A}\overline{B}\overline{CI})$
- $= \overline{ABCI} + A\overline{BCI} + \overline{ABCI} + AB\overline{CI}$
- $= \overline{A}(BCI + \overline{B}\overline{CI}) + A(\overline{B}CI + B\overline{CI})$
- $= \overline{A} \cdot B \oplus CI + A \cdot B \oplus CI$
- $= A \oplus B \oplus CI$



$$\overline{CO} = X = \overline{AB + ACI + BCI}$$

功能: 全加器,

输出低电平有效

#### 题4

试用布尔代数公式化简下列各式为最简的与或式。

$$F = ABC + \overline{A} + B + \overline{C}$$

解法一: 
$$F=ABC+A+B+C=(A+ABC)+B+C$$

$$= \overline{A}+(\overline{B}C+B)+\overline{C}=\overline{A}+C+B+\overline{C}$$

$$= 1$$

解法二: 
$$F=ABC+A+B+C=ABC+\overline{ABC}=1$$

#### 题5

# 试用卡诺图化简下列各函数为最简的与或表达式。 F(A,B,C)=AB+C+ABC









#### (2) $F(A,B,C,D) = \Sigma m(0,2,4,5,8,9,10,11,13,15)$









# **题6** 试用卡诺图化简下列各函数为最简的与或表达式和或与表达式:

(1)  $F(A,B,C,D)=\Sigma m(0,2,9,11,13)+\Sigma d(4,8,10,15)$ 

# 解:





与或

或与

#### (2) $F(A,B,C,D)=\Pi M(0,4,5,14,15) \cdot \Pi D(6,9,10,12,13)$





#### 题7 化简函数F为最简的与或表达式。

 $F(A,B,C,D)=\Sigma m(1,2,3,8,11,15)$  ABC+ACD+ABCD=0

解: 
$$AB\overline{C} + A\overline{C}D + A\overline{B}C\overline{D} = 0$$

或  $\Sigma d(9,10,12,13)=0$ 



$$\overline{\mathbb{B}} \mathbf{S} \quad \mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} + \mathbf{A} \mathbf{B} \mathbf{C} + \overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}} \quad \mathbf{B} \quad \mathbf{A} \oplus \mathbf{B} = \mathbf{0}$$

解法一: 
$$A\overline{B}+\overline{A}B=0 \Rightarrow A\overline{B}C+A\overline{B}C+\overline{A}BC+\overline{A}BC=0$$

$$\Rightarrow$$
 ABCD+ABCD+ABCD+ABCD

$$\Rightarrow \Sigma d(2,3,4,5,8,9,10,11)=0$$

| CI              | )  |    |    |     |
|-----------------|----|----|----|-----|
| AB              | 00 | 01 | 11 | 10  |
| 00              | 1  | 1) | 0  | 11  |
| 01              | X  | X  | X  | X   |
| 11              | 0  | 0  | _1 | 1   |
| 1.0             | X  | X  | X  | \X) |
| 10 <sup>1</sup> |    | I. | 1  |     |

$$F(A, B, C, D) = \overline{A}\overline{C} + BC + C\overline{D}$$

## 

解法二: 
$$A \oplus B = 0 \Rightarrow A = B$$
  
  $F(A,B,C,D) = \overline{A}\overline{C} + BC + \overline{A}C\overline{D}$ 

 $=\overline{A}(\overline{C}+C\overline{D})+BC=\overline{A}\overline{C}+BC+\overline{A}\overline{D}$ 

为什么与解法-结果不一样?

| CD |     |    |    |    |
|----|-----|----|----|----|
| AB | 00  | 01 | 11 | 10 |
| 00 | (1) | 1  | 0  | 1  |
| 01 | X   | X  | X  | X  |
| 11 | 0   | 0  | 1  | 1  |
| 10 | X   | X  | X  | X  |
| 10 |     |    |    |    |

$$F(A, B, C, D) = \overline{A}\overline{C} + BC + \overline{A}\overline{D}$$

#### 题9 设计1位减法器

## 解:

设: X<sub>i</sub>、Y<sub>i</sub>为本位的被减数和减数, Bi为由低位来的借位; D<sub>i</sub>, B<sub>i+1</sub>为本 位之差和向高位的借位。

#### 逻辑表达式



| $\mathbf{B}_{i+1} = \overline{\mathbf{X}}_{i} \mathbf{Y}_{i} + \overline{\mathbf{X}}_{i} \mathbf{B}_{i} + \mathbf{Y}_{i} \mathbf{B}_{i}$                                                                                                                                                                 | 1                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                          |                               |  |  |  |  |
| $= \overline{\overline{\overline{X}_i Y_i} \cdot \overline{\overline{X}_i B_i} \cdot \overline{Y_i B_i}}$                                                                                                                                                                                                |                               |  |  |  |  |
| $D_{i} = \overline{X}_{i} \overline{Y}_{i} B_{i} + \overline{X}_{i} Y_{i} \overline{B}_{i} + X_{i} \overline{Y}_{i} \overline{B}_{i} + X_{i}$                                                                                                                                                            | $Y_iB_i$                      |  |  |  |  |
| $= \overline{\overline{\overline{X}_i} \overline{\overline{Y}_i} B_i} \cdot \overline{\overline{\overline{X}_i} \overline{Y}_i \overline{\overline{B}_i}} \cdot \overline{\overline{X}_i} \overline{\overline{Y}_i} \overline{\overline{B}_i} \cdot \overline{\overline{X}_i} \overline{\overline{Y}_i}$ | $\overline{\overline{B}}_{i}$ |  |  |  |  |

#### 1位全减器真值表

| Xi | Yi | $\mathbf{B}_{\mathbf{i}}$ | B <sub>i+1</sub> | $D_i$ |
|----|----|---------------------------|------------------|-------|
| 0  | 0  | 0                         | 0                | 0     |
| 0  | 0  | 1                         | 1                | 1     |
| 0  | 1  | 0                         | 1                | 1     |
| 0  | 1  | 1                         | 1                | 0     |
| 1  | 0  | 0                         | 0                | 1     |
| 1  | 0  | 1                         | 0                | 0     |
| 1  | 1  | 0                         | 0                | 0     |
| 1  | 1  | 1                         | 1                | 1     |

#### 逻辑图



$$\begin{split} B_{i+1} &= \overline{X}_i Y_i + \overline{X}_i B_i + Y_i B_i \\ &= \overline{\overline{\overline{X}_i} Y_i} \cdot \overline{\overline{\overline{X}_i} B_i} \cdot \overline{\overline{Y_i} B_i} \\ D_i &= \overline{X}_i \overline{Y}_i B_i + \overline{X}_i Y_i \overline{B}_i + X_i \overline{Y}_i \overline{B}_i + X_i Y_i B_i \\ &= \overline{\overline{\overline{X}_i} \overline{Y}_i B_i} \cdot \overline{\overline{\overline{X}_i} Y_i \overline{B}_i} \cdot \overline{\overline{X}_i \overline{Y}_i \overline{B}_i} \cdot \overline{\overline{X}_i \overline{Y}_i \overline{B}_i} \end{split}$$



框图

# 题10 试设计一个1位全加/全减器电路。当M=0时,该电路为全加器; M=1时该电路为全减器。

## 解:

分析: 设M加/减控制端 (M=0, mk; M=1减k),  $A_i$ 被加/减数, $B_i$ 加/减数, $C_i$ 低位来的进/借位, $F_i$ 本位之和/差, $C_{i+1}$ 向高位的进/借位。

#### 真值表

| $M_{i}$ | $\mathbb{A}_{\mathbf{i}}$ | Bi | $C_{\mathbf{i}}$ | $F_i$ | $C_{i+1}$ |
|---------|---------------------------|----|------------------|-------|-----------|
| 0       | 0                         | 0  | 0                | 0     | 0         |
| 0       | 0                         | 0  | 1                | 1     | 0         |
| 0       | 0                         | 1  | 0                | 1     | 0         |
| 0       | 0                         | 1  | 1                | 0     | 1         |
| 0       | 1                         | 0  | 0                | 1     | 0         |
| 0       | 1                         | 0  | 1                | 0     | 1         |
| 0       | 1                         | 1  | 0                | 0     | 1         |
| 0       | 1                         | 1  | 1                | 1     | 1         |
| 1       | 0                         | 0  | 0                | 0     | 0         |
| 1       | 0                         | 0  | 1                | 1     | 1         |
| 1       | 0                         | 1  | 0                | 1     | 1         |
| 1       | 0                         | 1  | 1                | 0     | 1         |
| 1       | 1                         | 0  | 0                | 1     | 0         |
| 1       | 1                         | 0  | 1                | 0     | 0         |
| 1       | 1                         | 1  | 0                | 0     | 0         |
| 1       | 1                         | 1  | 1                | 1     | 1         |

#### 用卡诺图求逻辑表达式:





$$\begin{aligned} \mathbf{C}_{i+1} &= \overline{\mathbf{M}} \mathbf{A}_i \mathbf{C}_i + \overline{\mathbf{M}} \mathbf{A}_i \mathbf{B}_i + \mathbf{M} \overline{\mathbf{A}}_i \mathbf{C}_i + \mathbf{M} \overline{\mathbf{A}}_i \mathbf{B}_i + \mathbf{B}_i \mathbf{C}_i \\ &= (\overline{\mathbf{M}} \mathbf{A}_i + \mathbf{M} \overline{\mathbf{A}}_i) \mathbf{C}_i + (\overline{\mathbf{M}} \mathbf{A}_i + \mathbf{M} \overline{\mathbf{A}}_i) \mathbf{B}_i + \mathbf{B}_i \mathbf{C}_i \\ &= (\mathbf{M} \oplus \mathbf{A}_i) (\mathbf{C}_i + \mathbf{B}_i) + \mathbf{B}_i \mathbf{C}_i \end{aligned}$$

$$F_{i} = A_{i}\overline{B}_{i}\overline{C}_{i} + \overline{A}_{i}\overline{B}_{i}C_{i} + \overline{A}_{i}B_{i}\overline{C}_{i} + A_{i}B_{i}C_{i}$$
$$= A_{i} \oplus B_{i} \oplus C_{i}$$

#### 画出逻辑图:



# 题11 分析如右图所 M<sub>1</sub> M<sub>0</sub>A<sub>3</sub> 示的逻辑电路

## 解:

分析:输入有6个逻辑变量,其中 $A_3A_2A_1A_0$ 是数据输入端, $M_1M_0$ 功能控制端;输出逻辑变量是 $F_3F_2F_1F_0$ 。

(当电路的输入变量较 多时,对于电路的分析通 常要围绕控制变量进行。)



#### 功能表

| $M_1$ | $M_0$ | F <sub>3</sub>   | F <sub>2</sub>   | F <sub>1</sub>   | F <sub>0</sub>   |
|-------|-------|------------------|------------------|------------------|------------------|
| 0     | 0     | $\overline{A}_3$ | $\overline{A}_2$ | $\overline{A}_1$ | $\overline{A}_0$ |
| 0     | 1     | 1                | 1                | 1                | 1                |
| 1     | 0     | $A_3$            | $A_2$            | $A_1$            | $A_0$            |
| 1     | 1     | 0                | 0                | 0                | 0                |