Introducing LATEX

- document preparation system based on TeX (Donald Knuth 1978; Leslie Lamport 1984)
- standard for publishing in math and physical sciences
- good for equations, tables, figures, references
- ASCII text with good portability and flexibility
- Windows, Linux, OS X: http://www.latex-project.org
- example:

LaTeX demo

- easy interface: TeXShop (OS X), proTeXt (Windows),
 Kile (Linux), online: http://sharelatex.com,
 http://overleaf.com
- LyX: Word/LaTeX hybrid: good for notetaking
- see latex_demo.tex
- see further resources on Canvas
- Beamer: create powerpoint-like presentations

LaTeX equations and code listing

- equations:
 - inline with text: Newton's law is F = ma.
 - separate, numbered line:

```
\begin{equation}
F=ma
```

\end{equation}

- include Python code with tabs, etc.:
 - at top: \usepackage{listings}
 \begin{lstlisting}
 Put your code here
 \end{lstlisting}

Formal structure of scientific reports

- **Abstract:** paragraph synopsis for short attention spans
- Introduction (tell a story...):
 - general background on topic, for non-specialists
 - what has been done before
 - open questions ("why?")
 - what this paper will do ("how?" incl. why this method for this problem)

Methods:

- explain theoretical motivation / derivation for methods
- include tests that the methods work (calibrations)
- Results and Discussion: "what" you found, "what" it means
- Conclusions: write as a continuation of intro for someone who skipped to the end (summarize what was learned)
- References, Figures, Tables
- See Example Report on Canvas

Project presentations

- **structure** similar to report :
 - tell a story (why? how? what?)
 - background, methods, results, conclusions

• format:

- Powerpoint, Google Slides, Prezi, Keynote, Beamer, etc.
- original presentation or PDF export

• style:

- one idea and one image per slide
- de-clutter and use large fonts
- see <u>example</u> on Canvas
- rehearse in front of someone else! (~10 min.)

Accessing physics & astronomy literature

- arXiv: free preprint/reprint server (since 1991)
 http://arxiv.org votes on http://voxcharta.org
- INSPIRE (not just high-energy physics):
 http://inspirehep.net
- Web of Knowledge: http://www.webofknowledge.com
- Google scholar: http://scholar.google.com
- SJSU library physics & astronomy research portal: http://libguides.sjsu.edu/physics astronomy
- Astrophysics Data System (ADS):

```
http://adsabs.harvard.edu/abstract service.html
```

• students' digests of physics & astro research results: http://astrobites.org