Day 2 - 1/19/2024

Review

Formal Languages

A formal language is a set of strings. An alphabet is the set of characters that may appear in the strings.

A language over $\{0, 1\}$:

$$\{\varepsilon, 01, 0101, 010101, \ldots\}$$

Describing

Two ways to describe a language:

- 1. Generator: Can produce all strings in a language
- 2. Recognizer: Can recognize all strings in a language

Grammars

A grammar is a list of one or more productions (a string substitution rule).

Example:

1.
$$S \rightarrow xSy$$

$$2. \quad S \to a$$

3.
$$S \to \varepsilon$$

Usage

- 1. Start with start symbol (S)
- 2. Apply production (\rightarrow)
- 3. Go until no more *nonterminals* (uppercase letters)

Example: derive xxxyyy

$$S \to \overbrace{xSy}^1 \to \overbrace{xxSyy}^1 \to \overbrace{xxxSyyy}^1 \to \overbrace{xxxyyy}^3$$

Example: What language does this generate?

$$\{\varepsilon, a, xy, xxyy, ..., xay, xxayy, ...\}$$

Example: Based on Grammar D, write a derivation for xy.

Grammar D

- 1. $S \rightarrow AB$
- $2. \quad A \to x$
- 3. $B \rightarrow y$

$$S \to \overbrace{AB}^1 \to \overbrace{xB}^2 \to \overbrace{xy}^3$$

Exercises

- 7. Write the grammar that generates the language: $\{ab, abb, abbb, ...\}$
 - 1. $S \rightarrow abX$
 - 2. $X \to Xb$
 - 3. $X \to \varepsilon$
- 8. How can you rewrite the grammar from 7. to also generate the string "a"?

Remove the b from the first production.

The Chomsky Hierarchy

Includes 4 nested categories of languages, types 3, 2, 1, and 0.

Regular Language

A regular language is one that can generated with a grammar that has one of:

- 1. $A \to \varepsilon$
- $2. \quad A \rightarrow b$
- 3. $A \rightarrow bC$

Context-Free Language

A context-free language is one that can be generated from a grammar where each left-hand production consists of a single nonterminal.

$$n. \quad A \to [\text{anything}]$$

Context-Sensitive Language

We don't care about context-sensitive languages.

Computably Enumerable Language

A computably enumerable language is one that can be described by a grammar.

The recognizer is a **Turing machine**.

Regular Languages

Regular languages have two important applications:

- 1. In most PLs, the set of all lexems of a particular kind forms a regular language.
- 2. He skipped the rest of the slide.

Grammar

As stated above:

1.
$$A \to \varepsilon$$

$$2. \quad A \to b$$

3.
$$A \rightarrow bC$$

Here's an example:

1.
$$S \to \varepsilon$$

$$2. \quad S \to t$$

$$3. \quad SxB$$

4.
$$ByS$$

What language does this grammar generate?

$$\{\varepsilon, t, xyt, \ldots\}$$

More examples occurred.

Finite Automata

A deterministic finite automata (DFA) is a kind of recognizer for regular languages.

A DFA consists of a bunch of states and a translation between those states.

Incredible, I know.

Languages that are recognized by DFAs are regular languages.

Exercise: I won't draw the diagram but what language is recognized by it?

0 is an even number