## Best Choice Edge Grafting For Efficient Learning of Markov Random Fields

Walid Chaabene, Bert Huang

Virginia Tech walidch, bhuang @vt.edu

December 11, 2018



### Overview

Introduction

Classical Structure Learning Methods

Best Choice Edge Grafting

Results

Conclusion

### Outline

### Introduction

Introduction

Classical Structure Learning Methods

Best Choice Edge Grafting

Results

Conclusion

(1)

### Introduction

#### Pairwise Markov Random Fields

A graphical model that represents joint probability distributions.

$$G(V, E)$$
:   
  $\begin{cases} V : \text{set of } n \text{ nodes (variables)}; \\ E : \text{set of edges (parametric interactions)}. \end{cases}$ 

$$p_{\mathbf{w}}(X) = \frac{1}{Z(\mathbf{w})} \prod_{i \in V} \phi_i(x; \mathbf{w}) \prod_{(i,j) \in E} \phi_{ij}(x; \mathbf{w}),$$

where:

$$\phi_c(x; \mathbf{w}) = \exp\left(\sum_{k \in c} w_k f_k(x)\right) = \exp\left(\mathbf{w}^\top f(x)\right).$$
 (2)

 $f_k$ : state indicator functions (assigned one parameter each). For example:

$$f_{k_{\{x_1=1\}}} = \begin{cases} 1 & \text{if } x_1=1 \\ 0 & \text{otherwise.} \end{cases} \qquad f_{k_{\{x_1=0,x_2=1\}}} = \begin{cases} 1 & \text{if } x_1=0 \text{ and } x_2=1 \\ 0 & \text{otherwise.} \end{cases}$$

### Introduction

### Structure learning problem:

Given N observations of n variables (V), find all relevant edges (E) and estimate their corresponding parameters.

### Challenges

Introduction

- *n* variables  $\Rightarrow$  O(n<sup>2</sup>) possible edges.
- Learning requires large datasets.

#### This work

- Investigate major computational bottlenecks of  $\ell_1$ -based learning techniques of Markov Random Fields.
- Propose scalable structure learning approach with controllable trade-off between learning speed and quality.

### Outline

Classical Structure Learning Methods  $\ell_1$ -Based Learning Feature Grafting



## $\ell_1$ -Based Learning

#### Minimizing $\ell_1$ -Regularized Negative Log-Likelihood

$$L(\mathbf{w}) = -\frac{1}{N} \sum_{m=1}^{N} \log p_{\mathbf{w}}(x^{(m)}) = -\frac{1}{N} \sum_{m=1}^{N} (\mathbf{w}^{\top} f(x^{(m)})) + \log Z(\mathbf{w})$$
(3)

$$\mathbb{L}(\mathbf{w}) = L(\mathbf{w}) + \lambda ||\mathbf{w}||_1 \tag{4}$$

$$\min_{\mathbf{w}} \mathbb{L}(\mathbf{w}) \tag{5}$$

$$\delta_{k}L = -\frac{1}{N} \sum_{m=1}^{N} f_{k}(x^{(m)}) + E_{\mathbf{w}}[f_{k}(x)] = E_{\mathbf{w}}[f_{k}(x)] - E_{D}[f_{k}(x)]$$

$$(6)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(9)$$

$$(8)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

#### Limitation:

- E<sub>w</sub>[f<sub>k</sub>(x)]: performs inference at each gradient step (Message passing methods are expensive on fully graphs).
- E<sub>D</sub>[f<sub>k</sub>(x)]: requires pre-computing data expectations of each possible state (sufficient statistics).

•00

## Feature Grafting<sup>1</sup>

#### Idea

Assume that all variables are independent and iteratively activate parameters (introduce dependency).

### Approach

Active-set method: a working set S and a search set F.

- $S = \{\text{unary parameters}\}; F = \{\text{pairwise parameters}\}.$
- Alternate between two steps until convergence:
  - Step 1: Optimizing over the active set S using a sub-gradient method.
  - Step 2: Select top violating parameter from F and add to S.
- Feature Activation Condition:

KKT optimality condition: 
$$\begin{cases} \delta_k L = 0 \text{ if } w_k \neq 0 \\ |\delta_k L| \leq \lambda \text{ if } w_k = 0 \end{cases}$$
 (7)

$$\Rightarrow C_1: j = \underset{k}{\operatorname{arg max}} |\delta_k L| \ s.t. \ |\delta_k L| > \lambda$$
 (8)

<sup>&</sup>lt;sup>1</sup>Lee et al. 2007

## Feature Grafting



 $t_0: S = \emptyset$ 

 $t_1: S = \{w_{x_1=0,x_4=1}\}$ 

 $t_2: S = \{w_{x_1=0,x_4=1}, w_{x_1=1,x_4=1}\}$ 

000

 $t_3: S = \{w_{x_1=0,x_4=1}, w_{x_1=1,x_4=1}, w_{x_1=1,x_4=0}\}$ 

 $t_4: S = \{w_{x_1=0,x_4=1}, w_{x_1=1,x_4=1}, w_{x_1=1,x_4=0}, w_{x_1=0,x_4=0}\}$ 

 $t_5: S = \{w_{x_1=0,x_4=1}, w_{x_1=1,x_4=1}, w_{x_1=1,x_4=0}, w_{x_1=0,x_4=0}, w_{x_2=1,x_5=0}\}$ 

 $t_{40}: S = S^*$ 

## Feature Grafting

### Algorithm 1 Grafting

1: Initialize  $\mathcal{F} = \{\text{set of all pairwise parameters}\}$ 

2: Compute sufficient statistics of  $f \ \forall f \in \mathcal{F}$  # cost:  $O(n^2 Ns_{\text{max}}^2)$ 

3: repeat

4: Select the top violating feature  $f^*$  # cost:  $O(n^2 s_{max}^2)$ 

5: Activate f\*

6: Optimize the  $\ell_1$ -regularized L over the active set

7: until convergence

### Limitations:

- Parameters are treated as one homogeneous group. No structure information is used.
- Requires computing  $O(n^2Ns_{\text{max}}^2)$  sufficient statistics and performing  $O(n^2s_{\text{max}}^2)$  parameter activation tests.

## Outline

Introduction

Classical Structure Learning Methods

Best Choice Edge Grafting
Edge Grafting
Best Choice Edge Grafting
Complexity analysis

Results

Conclusion

## **Edge Grafting**

### **Problem reformulation: Grafting Edges**

- Redefine the search space:  $F = \{ Edge\text{-wise parameter groups} \}$
- Introduce groups sparsity regularization in the loss function.

$$\mathbb{L}(\mathbf{w}) = L(\mathbf{w}) + \sum_{g \in G} \lambda d_g ||\mathbf{w}_{\mathbf{g}}||_2 + \lambda_2 ||\mathbf{w}||_2^2, \tag{9}$$

where g refers to either a node or an edge and  $d_g$  compensates for different groups' cardinalities.

$$\min_{\mathbf{w}} \mathbb{L}(\mathbf{w}) \tag{10}$$

KKT optimality condition: 
$$\begin{cases} \frac{||\delta_g L||_2}{d_g} + \lambda_2 ||\mathbf{w_g}||_2^2 = 0 \text{ if } ||\mathbf{w_g}||_2 \neq 0\\ \frac{||\delta_g L||_2}{d_g} \leq \lambda \text{ if } ||\mathbf{w_g}||_2 = 0 \end{cases}$$
 (11)

## **Edge Grafting**

### **Grafting Edges**

Edge score:

$$s_e = \frac{||\delta_e L||_2}{d_e} \tag{12}$$

 Group-wise gradient (pairwise probability error between model and data observations):

$$\delta_e L = \hat{p}_{\mathbf{w}}(e) - p_D(e) \tag{13}$$

Necessary edge activation condition:

$$C_2$$
:  $arg \max_e |s_e| \ s.t. \ s_e > \lambda$  (14)

**Limitations:** Requires computing  $O(n^2Ns_{max}^2)$  sufficient statistics and performing  $O(n^2)$  edge activation tests.

## Edge Grafting



 $t_0: S = \emptyset$ 

 $t_1: S = \{w_{x_1=0, x_4=1}, w_{x_1=1, x_4=1}, w_{x_1=1, x_4=0}, w_{x_1=0, x_4=0}\}$ 

 $t_2: S = \{\underline{w}_{x_1=0,x_4=1}, w_{x_1=1,x_4=1}, w_{x_1=1,x_4=0}, w_{x_1=0,x_4=0}, w_{x_2=0,x_5=1}, w_{x_2=1,x_5=1}, w_{x_2=1,x_5=0}, w_{x_2=0,x_5=0}\}$ 

 $t_{10}: S = S^*$ 

## Best Choice Edge Grafting

### **Best Choice Problem**

Given a set of streaming candidates, make a decision without testing all possible ones. Similar to a hiring process.

### Best Choice Edge Grafting Mechanism

- On-demand edge sufficient statistics computation.
- Reduced number of activation tests

Figure: High-level operational scheme of the edge activation mechanism.



## Reservoir Sampling

**Benefits of reservoir sampling** We simulate the behavior in finite settings, sampling |R| ranks from the list of all possible numbers from 1 to  $\binom{n}{2}$  and taking the minimum.

Figure: Simulated edge ranks using the reservoir. (50 nodes).



#### Two extremes

- First Hit  $(|R| = 1) \rightarrow \mathsf{Bad}$  quality edges.
- Edge Grafting (using an unlimited reservoir) → Negligible gains over a small reservoir.

### Reservoir management

- Before  $t_{\text{max}}$  is reached:
  - If reservoir full: replace minimum scoring edge  $R_{\min}$  with incoming edge e if  $s_{R_{\min} < s_e}$ .
- When  $t_{max}$  is reached:
  - Compute mean reservoir scores:

$$\mu = \frac{1}{|R|} \sum_{e \in R} s_e \tag{15}$$

Activation threshold as:

$$\tau_{\alpha} = (1 - \alpha)\mu + \alpha \max_{e \in R} s_e, \tag{16}$$

where  $\alpha \in [0,1]$  controls a trade-off between quality of added edges and speed of edge activation.

## Search Space Reorganization

### Reorganizing search space

- Search History:
  - Edge violation offset v<sub>e</sub>:

$$v_e = 1 - \frac{s_e}{\lambda} \ . \tag{17}$$

Store failing edges in L and refill pq when it is empty:

$$pq[e] = v_e \tag{18}$$

- Partial structure information:
  - · Idea: Promote a scale-free structure.
  - · Detect hubs using degree centrality:

$$c_i = \frac{|\mathcal{N}_i|}{|V| - 1} \tag{19}$$

Construct Hub set:

$$H = \{i \in V \text{ such that } c_i > \hat{c}\}$$
 (20)

• Prioritizing edges incident to hubs such that  $\forall h \in H$  and  $\forall n \in V$ :

$$pq[(h, n)] = pq[(h, n)] - 1$$
(21)

# Summary of Complexities

| Algorithm                 | Suff. stats. at $j^{th}$ edge             | Activation step        |
|---------------------------|-------------------------------------------|------------------------|
| Feature grafting          | $O(n^2 N s_{max}^2)$                      | $O(n^2 s_{max}^2)$     |
| Edge grafting             | $O(n^2 N s_{max}^2)$                      | $O(n^2 s_{max}^2)$     |
| Best choice edge grafting | $Oig((n+jt_{max}) \mathit{Ns}^2_{max}ig)$ | $O(t_{max} s_{max}^2)$ |

### Outline

### Results

Synthetic Experiments Real Data Experiments

### Synthetic Data

| Number of nodes               | 200     |   | 400       | 600       |
|-------------------------------|---------|---|-----------|-----------|
| Number of states per variable | 5       |   | 5         | 5         |
| Number of parameters          | 498,500 | - | 1,997,000 | 4,495,500 |

- Scale-free-structures: Few dominant hubs.
- Data generated using Gibbs sampler: 20,000 data points from each network, randomly split into train and held-out testing sets.

### Synthetic results

Figure: Full convergence of different methods (200 nodes).



$$\tau_{\alpha} = (1 - \alpha)\mu + \alpha \max_{e \in R} s_e$$

### Synthetic results

Figure: Learning objectives vs time for varying MRFs sizes.



### Synthetic results

Figure: Negative Log Pseudo-Likelihood vs time for varying MRFs sizes.





Results 0000

## Synthetic Experiments

### Synthetic results

Figure: Role of structure heuristics in improving the quality of the learned MRF.(200 nodes)



## Real Data Experiments

### Real data

| Dataset                       | Jester   |   | Yummly recipes |
|-------------------------------|----------|---|----------------|
| Number of variables           | 100      |   | 153            |
| Number of States per variable | 5        |   | 2              |
| Number of parameters          | 124, 250 | Ī | 36, 450        |
| Dataset size                  | 73,421   |   | 10,000         |

- Jester<sup>2</sup>: user ratings of jokes.
- Yummly recipes<sup>3</sup>: recipes with different ingredients.

<sup>&</sup>lt;sup>2</sup>http://goldberg.berkeley.edu/jester-data/

<sup>&</sup>lt;sup>3</sup>https://www.kaggle.com/c/whats-cooking

## Real Data Experiments

### Real data results

Figure: Negative Log Pseudo-Likelihood vs time for varying MRFs sizes.



Outline

Conclusion

Conclusion

### Conclusion

#### Proposed work

- Reformulate learning problem by introducing structure information.
- Avoid costly batch  $\ell_1$ -learning on the entire problem space. Informed edge search through reservoir sampling and search space reorganization.

#### Result

- Faster edge activation and convergence.
- · Controllable trade-off between learning speed and quality.
- Achieved better scalability.

#### Limitations and future work

- Assumption of scale free structure: Investigate better structure heuristics for a more
  efficient search space reorganization.
- Applied on pairwise MRFs: Generalize approach for higher order MRFs.