

BL0940 datasheet

BL0940 Calibration-free Metering IC Datasheet

Version update

Version	Date	Content	Author
V1.0	2018/06/07	create	LK, HCJ
V1.1	2019/12/25	modification	LK, HCJ

Catalog

ver	sion upd	ate	2
1	Product	t Description	5
	1.1	Function Introduction	5
	1.2	System Block Diagram	6
	1.3	Description of Package and Pins	7
	1.4	Register list	8
	1.5	Special Register Description	9
	1.5	5.1 User mode selection register	9
	1.5	5.2 Temperature mode control register	10
	1.6	Performance	11
	1.6	6.1 Electronic Characteristic Parameter	11
	1.6	6.2 Absolute Maximum Rations	12
2	Functio	n Description	13
	2.1	Current and voltage transient waveform measurement	13
	2.2	Active Power	14
	2.3	Active power offset correction	14
	2.4	Active power anti-creep	15
	2.5	Energy Measurement	16
	2.6	Current and Voltage RMS	17
	2.7	RMS offset calibration of current and voltage	18
	2.8	Over-current Detection	18
	2.9	Phase Angle Calculation	20

	2.10 Ze	ero Crossing Detection	21
	2.11 Te	emperature Measurement	22
3	3 Communi	ication Interface	24
	3.1 SP	ય	24
	3.1.1	Operation Mode	24
	3.1.2	Frame Structure	25
	3.1.3	Write Operation Timing	25
	3.1.4	Read Operation Timing	26
	3.1.5	Fault-tolerant mechanism of SPI interface	26
	3.2 U/	ART	27
	3.2.1	Description	27
	3.2.2	Byte Formation	27
	3.2.3	Write Timing	27
	3.2.4	Read Timing	28
	3.2.5	Packet sending mode	29
	3.2.6	Protection mechanism of UART interface	30
4	Package		30

1 Product Description

1.1 Function Introduction

BL0940 is a built-in clock and calibration-free energy metering IC, suitable for single-phase multifunctional electricity meter, smart socket, smart home appliances, electric bicycle charging pile and other applications with better cost performance.

BL0940 integrates 2 high-precision sigma-delta ADCs to measure current and voltage simultaneously. It can measure electric parameters such as current and voltage RMS, active power, active energy, fast current RMS (for over-current protection), and temperature detection, waveform output and so on. BL0940 output data through the UART or SPI interface. It is available for the smart socket, smart appliances, single-phase multi-function power meter, electric bicycle charging pile and information requirement of data acquisition in electricity applications.

BL0940 has a patented anti-creep design, which can be combined with reasonable external hardware design to ensure that the noise energy cannot be calculated in the energy pulse when there is no load

Features

- 2 high-precision sigma-delta ADCs for current and voltage measuring
- The range of current (10mA~35A) @1mohm
- The range of Active energy (1w~7700w) @1mohm@220V
- Measure RMS Voltage and Current, fast current RMS, Active Power, Active Energy
- The gain error is less than 1%, calibration-free when peripheral components meet certain conditions.
- the current channel support over-current monitoring function, the threshold and response time can be configured.
- Voltage zero-Crossing logic output
- Built-in waveform register for load type analysis
- Built-in temperature sensor
- SPI (≤900KHz) /UART (4800bps)
- On-chip power supply monitoring, IC reset when VDD is lower than 2.7V(typical).
- On-chip voltage reference of 1.218V
- On-chip 4MHz oscillator circuit
- Power supply 3.3v, low power consumption 10mW (typical)

• TSSOP14

1.2 System Block Diagram

Figure 1

1.3 Description of Package and Pins

Figure 2

Pins description (TSSOP14)

Pin	Symbol	Description
1	VDD	Power supply (+3.3V)
2	VT	External temperature sensor(NTC) signal input
3,4	IP1,IN1	Analog input of current channel, maximum differential voltage has a maximum
		input range of ±50mV(35mV RMS)
5,6	VP,VN	Analog input for voltage channel, this differential input has a maximum input range
		of ±100mV(70mV RMS)
7	GND	GND
8	ZX	Voltage channel zero-crossing output pin
9	CF	Energy pulse output, multiplex function refer to MODE register description
10	SEL	Interface select pin (0: UART 1: SPI), pull-down resistance inside, disconnect is
		low-level (UART), connected to VDD is high-level (SPI)
11	SCLK	SPI clock input. If using UART interface, this pin doesn't need be connected.
12	RX/SDI	Data input for SPI interface/Receive line for UART interface
13	TX/SDO	Data output for SPI interface/Transmit line for UART interface, this pin require
		external pull-up resistor.
14	VPP	Reserved

1.4 Register list

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
	,		Electrica	l param	eter register	(read only)
0x00	I_FAST_RMS	R	W	24	0x000000	Fast current RMS, unsigned
0x01	I_WAVE	R	W	24	0x000000	Current waveform register, signed
0x03	V_WAVE	R	W	24	0x000000	Voltage waveform register, signed
0x04	I_RMS	R	W	24	0x000000	Current RMS, unsigned
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned
0x08	WATT	R	W	24	0x000000	Active power register, signed
0x0A	CF_CNT	R	W	24	0x000000	Active energy pulse count, unsigned
0x0C	CORNER	R	W	16	0x0000	Current voltage waveform phase angle register
0x0E	TPS1	R	W	10	0x000	Internal temperature register, unsigned
0x0F	TPS2	R	W	10	0x000	External temperature register, unsigned
			User op	erated r	egister (read	and write)
0x10	I_FAST_RMS_ CTRL	R/W	R	16	0xFFFF	Fast current RMS control register
0x13	I_RMSOS	R/W	R	8	0x00	Current RMS offset adjust register
0x15	WATTOS	R/W	R	8	0x00	Active power offset adjust register
0x17	WA_CREEP	R/W	R	8	0x0B	Active power no-load threshold register
0x18	MODE	R/W	R	16	0x0000	User mode selection register
0x19	COET DECET	R/W	R	24	0x000000	When 0x5A5A5A is written, the user area
UX19	SOFT_RESET	K/ VV	ĸ	24	UXUUUUUU	register is reset to default
						Write protection register. After writing
0x1A	USR_WRPROT	R/W	R	8	0x00	0x55, the user operation register can be
OXIA	USK_WKFKUT	ry vv	N	0	UXUU	written. Write other values, user
						operated register area is not writable
0x1B	TPS_CTRL	R/W	R	16	0x07FF	Temperature mode control register
0x1C	TPS2_A	R/W	R	8	0x0000	External temperature sensor gain
OXIC	1F32_A	11/ VV	IX.	O	0,0000	coefficient adjust register
0x1D	TPS2_B	R/W	R	Q	0x0000	External temperature sensor offset
OVID	11 32_0	11/ VV	R	8	0,0000	coefficient adjust register

1.5 Special Register Description

1.5.1 User mode selection register

0x18	MODE	User mode selection register						
No.	Symbol	Default Description						
[7:0]	reserved	0b00000000	rese	rved				
0	DNAC LIDDATE CEL	050	DNAC was sisten undeta vota	0: 400ms				
8	RMS_UPDATE_SEL	0b0	RMS register update rate	1: 800ms				
0	AC EDEO CEL	050	A.C. francisco and and	0: 50Hz				
9	AC_FREQ_SEL	0b0	AC frequency select	1: 60Hz				
[11:10]	reserved	0b00	reserved					
				0: energy pulse, enable				
12	CE LINIADI E	0b0	CF output function	by MODE[11] configured				
12	12 CF_UNABLE	UdU	selection	1: alarm, enable by				
				TPS_CTRL[14] configured				
[15:13]	reserved	0b000	reserved					

1.5.2 Temperature mode control register

0x1B	TPS_CTRL	Temperature mode control register						
No.	Symbol	Default	Descri	ption				
			[15] Temperature switch,	0:on				
			default 0b0	1:off				
			[14] Alarm switch,	0:Temperature alarm on				
				1:Over-current and leakage				
	default 0b0,	alarm on						
				00:Automatic temperature				
				measurement				
			[13:12] Temperature	01:the same as 00				
	0x1B TPS_CTRL	0x07FF	measure	measurement selection,	10: Internal temperature			
0x1B			default 0b00	measurement				
				11: External temperature				
				measurement				
			[11,10] Tomporatura	00:50ms				
			[11:10] Temperature measurement interval	01:100ms				
			default 0b01	10:200ms				
			deladit obo1	11:400ms				
			[9:0] External temperature measurement alarm threshold setting, default 0x3FF	Alarm when TPS2 register value is greater than it.				

1.6 Performance

1.6.1 Electronic Characteristic Parameter

(VDD =3.3V, GND=0V, on-chip voltage reference, on-chip crystals, 25℃, energy is measured by CF output)

Measuring project	Symbol	Conditions	MIN.	TYPE	MAX.	Unit
VDD	VDD		3.0		3.6	V
Power consumption	lop	VDD=3.3V		3		mA
Measuring range		4000:1 Input dynamic range				
Active energy measurement accuracy (large signal)		35A~100mA Input@ 1mohm sampling resistor		0.2		%
Active energy measurement accuracy (small signal)		100mA~50mA Input@ 1mohm sampling resistor		0.4		%
Active energy measurement accuracy (tiny signal)		50mA~10mA Input@ 1mohm sampling resistor		0.6		%
RMS measurement accuracy(large signal)		35A~100mA Input@ 1mohm sampling resistor		0.2		%
RMS measurement accuracy(small signal)		100mA~50mA Input@ 1mohm sampling resistor		2		%
RMS measurement accuracy(tiny signal)		50mA~10mA Input@ 1mohm sampling resistor		6		%
Fool BNAC construction	50Hz	Can be set to cycle/half	10		40	mS
Fast RMS response time	60Hz	cycle	8.3		33	mS
Zero-crossing signal output delay				571		uS
Measurement error caused by phase angle between channels (capacitance)	PF08err	Phase advance 37 ° (PF=0.8)			0.5	%
Measurement error caused by phase angle between channels (sensibility)	PF05err	Phase delay 60° (PF=0.5)			0.5	%
AC power suppression (output frequency amplitude variation)	ACPSRR	IP/N=100mV			0.1	%

DC power suppression (output frequency amplitude variation)	DCPSRR	VP/N=100mV			0.1	%
Analog input level (current)		Differential current input (peak)			50	mV
Analog input level (voltage)		Differential voltage input (peak)			100	mV
Analog input impedance				370		$\mathbf{k}\Omega$
SEL pull-down resistor		SEL (pull-down)		56.9		$\mathbf{k} \Omega$
Analog input bandwidth		(-3dB)		3.5		kHz
Internal voltage reference	Vref			1.218		V
Logic input high-level		VDD=3.3V±5%	2.6			V
Logic input low-level		VDD=3.3V±5%			0.8	V
Logic output high-level		VDD=3.3V±5% IOH=5mA	VDD-0.5			V
Logic output low-level		VDD=3.3V±5% IOL=5mA			0.5	V

1.6.2 Absolute Maximum Rations

 $(T = 25 \ ^{\circ}C)$

Parameter	Symbol	Value	Unit
Power Voltage	VDD	-0.3 ~ +4	V
Analog Input Voltage to GND	IP1,VP	-4 ~ +4	V
Digital Input Voltage to GND	UART_SEL,RX/SDI	-0.3 ~ VDD+0.3	V
Digital Output Voltage to GND	CF,TX/SDO	-0.3 ~ VDD+0.3	V
Operating Temperature Range	T _{opr}	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	T _{str}	-55 ~ +150	$^{\circ}\!\mathbb{C}$

2 Function Description

BL0940 is composed of analog signal processing module and digital signal processing module. The analog module includes two-channel PGA, two-channel sigma-delta ADC, internal clock, power on/reset monitor, temperature sensor and other related analog modules. The digital module is digital signal processing module (DSP).

2.1 Current and voltage transient waveform measurement

Figure 3

BL0940 has two high precision ADCs, the current signal is differential signal. Current channel is IP1/IN1, voltage channel is VP/VN.

The current and voltage waveform data are updated at a rate of 7.8k. Each sampled data is 20bit signed value, which are saved in waveform registers (I_WAVE, V_WAVE). The waveform value can be read continuously when the SPI rate is greater than 375Kbps.

A ddross	Cumbal	External	Internal	Dita Dafault		Description	
Address	Symbol	R/W	R/W	Bits	Default	Description	
0x01	I_WAVE	R	W	24	0x000000	Current waveform register	
0x03	V_WAVE	R	W	24	0x000000	Voltage waveform register	

Bit[19:0] are valid, Bit[19] is the sign bit. Bit[19]=0 means the waveform data is positive and Bit[19]=1 means the waveform data is negative, in complement form. Bit[23:20] are filled with 0.

2.2 Active Power

Figure 4

Address	Symbol	External	Internal	Bits	Default	Description	
Address	Зуппон	R/W		DILS	Delault	Description	
0x08	WATT	R	W	24	0x000000	Active power register	

Formula for calculating active power:

WATT =
$$\frac{4046*I(A)*V(V)*Cos(\phi)}{Vref^2}$$

I(A) and V(V) are the voltage RMS of analog input PIN(IP&IN, VP&GND), ϕ is the phase angle between I(A) and V(V) (AC signal), Vref is the on-chip reference voltage, the typical value is 1.218v.

This register indicates whether the active power is positive or negative. Bit[23] is the symbol Bit. Bit[23]=0 means the current power is positive and Bit[23]=1 means the current power is negative, in complement form.

2.3 Active power offset correction

BL0940 has one 8-bit active power offset adjust register (WATTOS), default value is 00H. It eliminate the offset of active power in the measurement of electric energy with the data in the form of complement of 2. Bit[7] is the symbol Bit. The offset may come from board level noise or crosstalk. Offset adjustment can make the values in the active power register close to 0 with no load.

Address	Symbol	External	Internal	Bits	Default	Description
Address	Зуппоот	R/W	R/W	DILS		
0x15	WATTOS	R/W	R	8	0x00	Active power offset adjust register

$$WATTOS = \frac{WATT - WATTO}{8 \times 3.05172}$$

WATT is the active power after adjustment, and WATT0 is the active power before adjustment.

2.4 Active power anti-creep

BL0940 has the patented power anti-creep function, which ensures that the power of board level noise will not accumulate when there is no load.

This register is 8bit unsigned data, default value is 0BH. The corresponding relationship between this value and the active power register value is shown in the following formula. When the absolute value of the input active power signal is less than this value, the output active power is set to 0. This can make the value of the active power register is 0 and the energy does not accumulate in the case of no load, even if there is a tiny noise signal.

Addross	Cumbal	External	Internal	Dito	Default	Description
Address	Symbol	R/W	R/W	Bits	Default	
0x17	WA_CREEP	R/W	R	8	0x0B	Active power no-load threshold register

Set WA_CREEP based on the value of the power register WATT, their corresponding relationship as below:

WA_CREEP =
$$\frac{WATT}{3.0517578125*8}$$

Note: when the channel is in the anti-creep state, the RMS current register of this channel is also set to 0.

2.5 Energy Measurement

BL0940 provides energy pulse measurement. The active instantaneous power is integrated by time to get active energy and output calibration pulse in proportion. CF_CNT register saves the count of output energy pulse.

Figure 5

	A ddrocc	Cymphal	External	Internal	Dito	Dofault	Description
	Address	Symbol	R/W	R/W	Bits	Default	
Ī	0x0A	CF_CNT	R	W	24	0x000000	Active energy pulse count

The count of active energy pulses corresponds to the consumption of electricity. The result is saved in CF_CNT register. The count of pulses can be counted directly from the CF pin through I/O interruption. When the period of CF is less than 180ms, the pulse is 50% duty cycle. When it is greater than or equal to 180ms, the fixed pulse width of high-level is 90ms.

Note: CF_CNT is pulse algebraic sum accumulation. It means that pulse plus at positive energy and minus at negative energy.

The cumulative time of each CF pulse:

$$t_{CF} = \frac{1638.4 * 256}{WATT}$$

WATT is the corresponding active power register value (WATT).

2.6 Current and Voltage RMS

The RMS of these channels is shown in the figure below. After the square circuit (X²), the low-pass filter (LPF_RMS) and the ROOT circuit (ROOT), the instantaneous value RMS_t of RMS is calculated, and then the average value of the two channels (I_RMS, V_RMS) is calculated.

Figure 6

Addross	Cumbal	External	Internal	Dito	Default	Description	
Address	Symbol	R/W	R/W	Bits	Default	Description	
0x04	I_RMS	R	W	24	0x000000	Current RMS register, unsigned	
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned	

0x18	MODE	User mode selection register					
No.	Symbol	Default Description					
0	DNAC LIDDATE CEL	OhO	DNAS register undete rete	0: 400ms			
•	RMS_UPDATE_SEL	0b0	RMS register update rate	1: 800ms			

Set MODE[8].RMS_UPDAT_SEL, the average refresh time of RMS can be selected as 400ms or 800ms, and the default value is 400ms. When a current channel is in anti-creep state, the RMS of the current channel is 0.

The current RMS conversion formula: $I_RMS = \frac{324004*I(A)}{Vref}$

The voltage RMS conversion formula: $V_RMS = \frac{79931*V(V)}{Vref}$

Vref is the reference voltage, the typical value is 1.218V.

Note: I(A) is the input signal between IP1 and IN1 pins (mV), and V(V) is the input signal of VP pins (mV).

2.7 RMS offset calibration of current and voltage

BL0940 has one 8-bit RMS offset register (I_RMSOS), whose default value is 00H. It is used to calibrate the deviation in RMS with the complement form of 2. This deviation may come from the input noise. The deviation calibration can make the value in the RMS register close to 0 without load.

Addross	Cumbal	External	Internal	Dito	Default	Description
Address	Symbol	R/W	R/W	Bits		
0x13	I_RMSOS	R/W	R	8	0x00	Current RMS offset adjust register

Calibration formula: RMSOS =
$$\frac{RMS^2 - RMS0^2}{9.3132 \times 2^{15}}$$

RMS0 is the RMS current value before correcting and RMS is the RMS current value after correcting.

2.8 Over-current Detection

BL0940 has a fast RMS register, which can detect half cycle or cycle RMS. This function can be used for over-current detection. The source of waveform L_WAVE is shown below. The absolute value of I_WAVE_F accumulate by half-cycle or one cycle time, which is selected by FAST_RMS_CTRL[15]. The maximum response time is 40ms (50Hz) or 33mS (60Hz) by setting AC_FREQ_SEL.

Figure 7

Address	Cumbal	External	Internal	Bits	Default	Description
Address	Symbol	R/W	R/W	DILS	Delault	Description

0x10	I_FAST_RMS_CTRL	R/W	R	16	0xFFFF	Fast current RMS control register
------	-----------------	-----	---	----	--------	-----------------------------------

Set the refresh time to half-cycle or cycle by IFAST_RMS_CTRL, and set the fast RMS threshold (over-current threshold).

No.	Symbol	Default	Description	
			[15] Fact BMS refresh time	0: half-cycle
0x10	0x10 I_FAST_RMS_CTRL	0xFFFF	[15] Fast RMS refresh time	1: cycle
			[14:0] Fast RMS threshold	

0x18	MODE	User mode selection register					
No.	Symbol	Default Description					
q	AC	OhO	AC fraguency colortion	0:50Hz			
9	AC_FREQ_SEL	0b0	AC frequency selection	1:60Hz			

Set AC frequency by MODE[9].

A ddross	Cumbal	External	Internal	Dito	Default	Description
Address	Symbol	R/W	R/W	Bits		
0x00	I_FAST_RMS	R	W	24	0x000000	Fast current RMS

This register is updated according to one cycle or half-cycle. Bit[23:9] compare with the over-current threshold FAST_RMS_CTRL [14:0]. If the value is greater than or equal to the threshold, CF pin outputs high-level.

over-current alarm output indicator pin is CF, set MODE[12]=1 and TPS_CTRL[14]=1 before use it.

0x18	MODE	User mode selection register				
No.	Symbol	Default	Description			
12	CE LINIADIE	Obo	CF output function selection		0: energy pulse, enable by MODE[11] configured	
12	12 CF_UNABLE 0b0	Odo			1: alarm, enable by TPS_CTRL[14] configured	
0x1B	TPS_CTRL		Tempera	ture mod	le control register	
No.	Symbol	Default			Description	
			Alarm	0: Tem	perature alarm on	
14	ALERT_CTRL	0b0	selection	1: over-	-current alarm on	

The response time of over-current is up to 2 cycles or 2 half-cycles because the fast RMS values are updated by cycle or half-cycle.

2.9 Phase Angle Calculation

BL0940 has phase angle measurement function. The reactive quadrant can be indicated by the angle of current and voltage respectively by calculating the positive zero-crossing time difference between current and voltage. It is updated to the register CORNER when the current is positive zero crossing.

Figure 8

Address	Symbol	External	Internal	Bits Default		Description
Address	Syllibol	R/W	R/W			Description
0x0C	CORNER	R	W	16	0x0000	Current voltage waveform phase angle register

Figure 9

Phase Angle conversion formula: $2*pi*CORNER*\frac{f_c}{f_0}$

The unit is radian.

 f_c is the frequency of the AC signal source, the default value is 50Hz. f_0 is the sampling frequency, the typical value is 1MHz.

2.10 Zero Crossing Detection

BL0940 has the voltage zero-crossing detection function, and the zero-crossing signal is directly output by pin ZX. When ZX=0, it indicates the positive half cycle of the waveform, and when ZX=1, it indicates the negative half cycle of the waveform. The delay between the zero-crossing signal and the actual input signal is about 570us.

Figure 10

2.11 Temperature Measurement

BL0940 supports internal temperature measurement and external temperature measurement.

Turn on the alarm function, the CF pin will output high-level if the TPS2 is greater than or equal to the alarm threshold, when the temperature value is lower than the alarm value or the alarm function is turned off, the CF pin output low-level.

0x1B	TPS_CTRL		Temperature	e mode control register		
No.	Symbol	Default	Description			
			[15]Temperature	0: on		
			measurement switch	1: off		
			[14] Alarm selection	0: Temperature alarm on		
			[14] Alaim Selection	1: Leakage/over-current alarm on		
			00: Automatic temperature measurement			
		[13:12] Temperature	01: the same as 00			
			measurement selection	10: internal temperature measurement		
0x1B	TPS_CTRL	0x07FF		11: external temperature measurement		
			[11.10] Town and true	00:50ms		
			[11:10] Temperature	01:100ms		
			measurement interval selection	10:200ms		
			Selection	11:400ms		
		[9:0] External				
			temperature alarm			
			threshold			

First set MODE[12]=1, and then set TPS_CTRL[14]=0, then CF pin is turned on to output external temperature alarm indicator.

0x18	MODE	User mode selection register				
No.	Symbol	Default Description				
12 CF_UNABLE	OhO	CF output function	0: energy pulse, enable by MODE[11] configured			
	0b0	selection	1: alarm, enable by TPS_CTRL[14] configured			

The external and internal temperature values are saved in the TPS2 and TPS1 registers respectively.

Address	Symbol	External	Internal	Bits Default		Description
Address	Symbol	R/W	R/W	DILS	Derauit	Description
0x0E	TPS1	R	W	10 0x0000 Internal temperature regist		Internal temperature register, unsigned
0x0F	TPS2	R	W	10 0x0000 External temperature		External temperature register, unsigned

Internal temperature measurement formula:

Tx=(170/448)(TB/2-32)-45

TB is the value in TPS1.

The external temperature is measured by SAR ADC. The maximum input signal of the VT pin is VDD/2 (V), full scale is 1024.

Addross	Cymphol	External	Internal	Dito	Dofault	Description
Address	Symbol	R/W	R/W	Bits Default		Description
0x1C	TDC2 A	D /\\/	D	R 8		External temperature sensor gain
OXIC	LC TPS2_A R/W R		0	8 0x00	coefficient correction register	
0v1D	TDC2 D	R/W	R	0	0,,00	External temperature sensor offset
0x1D 1	TPS2_B	r/W	ĸ	8	0x00	coefficient correction register

3 3 Communication Interface

Register data are sent as 3 bytes (24bit). The data is fixed 3 bytes, if valid data bytes are less than 3 bytes, invalid bits are filled with 0.

3.1 **SPI**

- Select by pin SEL, multiplex with UART
- Slave mode
- Half-duplex communication, the communication rate can be configured, the maximum communication rate is 900khz
- 8-bit data transmission, MSB first, LSB last
- Clock polarity / phase (CPOL = 0, CPHA = 1)

3.1.1 Operation Mode

The master device works in mode1: CPOL = 0, CPHA = 1. In idle state, SCLK is at low-level. Data is received on the falling edge and data is sent on the rising edge.

Figure 11

3.1.2 Frame Structure

In SPI communication mode, MCU send 8-bit identification byte (0x58) or (0xA8). (0x58) is the read operation identification byte and (0xA8) is the write operation identification byte. Then send the address byte of the register will be accessed (refer to BL0940 register list). The below figure shows the data transfer sequence for read and write operations respectively. After one frame of data is transmitted, BL0940 re-enters the communication mode. The number of SCLK pulses required for each reading and writing operation is 48 bits.

There are two types of frame structures, which are explained as follows:

1) Write operation frame

Write operation frame	0xA8	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]	
-----------------------	------	-----------	-------------	-------------	-------------	---------------	--

The checksum byte is ((0xA8 + ADDR + DATA_H + DATA_M + DATA_L) & 0xFF) and then bitwise inverted.

2) Read operation frame

MCU send read command frame	0x58	ADDR[7:0]				
BL0940 return			DATA H[7:0]	DATA M[7:0]	DATA 1 [7·0]	CHECKSUM[7:0]
data frame			DATA_H[1.0]	DATA_M[1.0]	DATA_L[1.0]	CHECKSUM[1.0]

The checksum byte is ((0x58 + ADDR + DATA_H + DATA_M+ DATA_L) & 0xFF) and then bitwise inverted.

Note: The data is fixed 3 bytes, high byte first, low byte last, if valid data bytes are less than 3 bytes, invalid bits are filled with 0.

3.1.3 Write Operation Timing

The serial write timing is performed as follows. The frame identification byte {0xA8} indicates that the data communication operation is data writing, and ADDR is the address of the target register. The MCU need make the data ready before the lower edge of SCLK, and shift the data at the lower edge of this clock. All remaining bits of the data are also shifted left on the lower edge of this SCLK (Figure 12).

Figure 12

3.1.4 Read Operation Timing

During the data read operation, BL0940 shifts the corresponding data to the SDO pin on the rising edge of SCLK. SDO keeps unchanged during SCLK =1. MCU can sample SDO value before the next falling edge. MCU must send a read command frame first before read operation.

Figure 13

When BL0940 is in communication mode, the frame identification byte {0x58} indicates that the data communication operation is data reading. The next byte ADDR is the address of the target register. After receiving the register address, BL0940 starts to shift out the data in the register on the rising edge of SCLK (Figure 13). All remaining bits of the register data are shifted out on subsequent rising SCLK edges.

On the falling edge of SCLK, an external device can sample the output data of the SPI. Once the read operation is completed, SPI re-enters the communication mode. SDO enters a high-impedance state on the falling edge of the last SCLK signal.

3.1.5 Fault-tolerant mechanism of SPI interface

SPI supports soft reset function, reset SPI interface individually by sending 6bytes of 0xFF.

3.2 UART

3.2.1 Description

BL0940 supports UART communication. The UART interface only requires two low speed optocouplers to achieve isolated communication.

Baud rate: 4800bps Check bits: None Data bits: 8 Stop bits: 1.5

Slave mode, half-duplex communication

3.2.2 Byte Formation

Start bit low duration: t1=208us

Valid data bit duration: t2=208*8=1664us

Stop bit high duration: t3=208us+104us

3.2.3 Write Timing

The timing of writing data is shown below. MCU first sends the command byte (0xA8) and the address of the target register (ADDR), and then sends data bytes in sequence. Low byte is first and high byte is next, if the valid data byte is less than 3 bytes, the invalid bits shall be filled with 0. Finally sends the checksum byte.

(0xA8) is the frame identification byte for the write operation. ADDR is the internal target register in BL0940 corresponding to the write operation.

The checksum byte is (((0xA8)+ADDR+Data_L+Data_M+Data_H)& 0xFF) and then bitwise inverted.

3.2.4 Read Timing

The timing of reading data is shown below. MCU first sends the command byte (0x58) and the address of the target register (ADDR), and then BL0940 sends data bytes in sequence. Low byte is first and high byte is next, if the valid data byte is less than 3 bytes, the invalid bits shall be filled with 0. Finally sends the checksum byte.

(0x58) is the frame identification byte for the read operation. ADDR is the internal target register in BL0940 corresponding to the read operation.

The checksum byte is (((0x58)+ADDR+Data_L+Data_M+Data_H)& 0xFF) and then bitwise inverted.

Timing Description

	Description	Min	Type	Max	Unit
t1	Interval between MCU sending bytes	0		20	mS
t2	Interval between the end of MCU sending register address and BL0940 sending byte during read operation		72		uS
t3	Frame interval	0.5			uS
t4	Interval between BL0940 sending bytes		116		uS

3.2.5 Packet sending mode

After received the command "(0x58) + 0xAA", BL0940 will return a full electrical parameter data packet. The returned data packet has a total of 35 bytes, and takes 77ms.

The detailed format is: Frame head(1byte)-> I_FAST_RMS(3byte)-> I_RMS(3byte)-> reserved(3byte)-> V_RMS(3byte)-> reserved (3byte)-> WATT(3byte)-> reserved (3byte)-> CF_CNT(3byte)-> reserved (3byte)-> TPS1(2byte TPS1 + 1byte 0)-> TPS2(2byte TPS2 + 1byte 0)-> CHECKSUM(1byte)

Full electrical parameter data packet format:

Name	No.	Value	Name	No.	Value
Frame head	0	Head (0x58)		19	reserved
	1	I_FAST_RMS_I	reserved	20	reserved
I_FAST_RMS	2	I_FAST_RMS_m		21	reserved
	3	I_FAST_RMS_h		22	CF_CNT_I
	4	I_RMS_I	CF_CNT	23	CF_CNT_m
I_RMS	5	I_RMS_m		24	CF_CNT_h
	6	I_RMS_h		25	reserved
	7	reserved	reserved	26	reserved
reserved	8	reserved		27	reserved
	9	reserved		28	TPS1_I
	10	V_RMS_I	TPS1	29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_I
	13	reserved	TPS2	32	TPS2_m
reserved	14	reserved		33	0x00
	15	reserved	Checksum	34	checksum
	16	WATT_I			
WATT	17	WATT_m			
	18	WATT h]		

 $checksum = (((0x58) + 0x55 + data1_I + data1_m + data1_h +) & 0xff)$ and then bitwise inverted.

3.2.6 Protection mechanism of UART interface

UART communication has a timeout protection mechanism. If the interval between bytes exceeds 18.5ms, the UART interface will automatically reset.

If the frame identification byte is incorrect or the checksum byte is incorrect, the frame data will be discarded.

UART module reset: The RX pin is pulled high after the low-level exceeds 6.65mS, and the UART module will be reset.

4 Package

Moisture sensitivity level: MSL 3

Quality guarantee period: 2 years

Package: Taping

Smallest packaging: 3000

SYMBOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
A	_	_	1.20			
A1	0.05	_	0.15			
A2	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20		0.28			
b1	0.19	0.22	0.25			
c	0.13	_	0.17			
c1	0.12	0.13	0.14			
D	4.90	5.00	5.10			
El	4.30	4.40	4.50			
E	6.20	6.40	6.60			
e		0.65BSC	1			
L	0.45	0.60	0.75			
L1		1.00BSC				
θ	0	_	8°			

Shanghai Belling Corp., Ltd. 810, Yishan Road, Shanghai, China, 200233 Tel: +86-21-24261000 www.belling.com.cn

共同尺寸

外观	尺寸(mm)
Е	1.75 ± 0.1
F	5.5 \pm 0.1
P2	2.0 ± 0.05
D	$1.5^{+0.1}_{0}$
D1	$1.5^{+0.1}_{0}$
P0	4.0 ± 0.1
R	0.5TYP
10P0	40.0 ± 0.20

口袋尺寸

W	12.0 ± 0.1
Р	8.0 ± 0.1
A0	6.8 ± 0.1
В0	5.4 ± 0.1
KO	1.3 ± 0.1
t	0.3 ± 0.05
K1	1.7 ± 0.1
A1	3.8 ± 0.2
A2	4.4 ± 0.2
θ	3° TYP