§ 3.3 可测函数与连续函数的关系

R"上的可测函数与我们熟悉的连续函数有密切的联系.一方面,可测集上的连续函数是可测的.另一方面,本节将证明的 Lusin 定理表明,可测函数可以用连续函数在某种意义下逼近.由于连续函数具有较好的性质,比较容易处理,因此这个结果在有些情况下是很有用的.

例 1 设D(x)是区间[0,1]上的 Dirichlet 函数:

$$D(x) = \begin{cases} 1, & \text{若}x 是有理数, \\ 0, & \text{若}x 是无理数. \end{cases}$$

D(x)在[0,1]上是可测的,但D(x)在[0,1]上处处不连续.

设[0,1]中的有理数的全体为 $\{r_1,r_2,\cdots\}$. 对任意 $\delta>0$, 令

$$F_{\delta} = [0,1] - \bigcup_{i=1}^{\infty} (r_i - \frac{\delta}{2^{i+1}}, r_i + \frac{\delta}{2^{i+1}}).$$

则 F_{δ} 是[0,1]的闭集,并且

$$\begin{split} m([0,1]-F_{\delta}) &\leq m \bigg(\bigcup_{i=1}^{\infty} \Big(r_i - \frac{\delta}{2^{i+1}}, \ r_i + \frac{\delta}{2^{i+1}} \Big) \Big) \\ &\leq \sum_{i=1}^{\infty} m \Big(r_i - \frac{\delta}{2^{i+1}}, \ r_i + \frac{\delta}{2^{i+1}} \Big) \\ &= \sum_{i=1}^{\infty} \frac{\delta}{2^i} = \delta. \end{split}$$

由于 F_{δ} 中不含有理数,因此D(x)在 F_{δ} 恒为零.所以D(x)在 F_{δ} 上的限制所得到的函数 $D|_{F_{\delta}}$ 在 F_{δ} 上连续.下面将要证明的Lusin 定理表明,例 2 中出现的情况不是偶然的. 先证明一个引理.

引理 3.2 设 F_1, F_2, \dots, F_k 是 \mathbb{R}^n 中的k个互不相交的闭集, $F = \bigcup_{i=1}^k F_i$. 则简单函数 $f(x) = \sum_{i=1}^k a_i \chi_{F_i}(x)$ 是F上的连续函数.

证 设 $x_0 \in F$, 则存在 i_0 使得 $x_0 \in F_{i_0}$. 由于 F_1, F_2, \dots, F_k 互 不相交, 故 $x_0 \notin \bigcup_{i \neq i_0} F_i$. 由于 $\bigcup_{i \neq i_0} F_i$ 是闭集, 令 $\delta = d\left(x_0, \bigcup_{i \neq i_0} F_i\right)$, 则 $\delta > 0$. 对任意 $\varepsilon > 0$, 当 $d(x, x_0) < \delta$ 并且 $x \in F$ 时, 必有 $x \in F_{i_0}$. 于是 $|f(x) - f(x_0)| = |a_{i_0} - a_{i_0}| = 0 < \varepsilon.$

故f(x)在 x_0 处连续.这就证明了f(x)在F上连续.■

定理 3.13 (Lusin 鲁津)设E是 R^n 中的可测集, f是 E上 a.e.有限的可测函数.则对任意 $\delta>0$, 存在E的闭子集 F_δ , 使得 $m(E-F_\delta)<\delta$, 并且f是 F_δ 上的连续函数 (即 $f|_{F_\delta}$ 在 F_δ 上连续).

证 分两步证明. (1).先设 ƒ 是简单函数,即

$$f(x) = \sum_{i=1}^k a_i \chi_{E_i}(x),$$

其中 E_1, E_2, \dots, E_k 是E的一个可测分割.

根据定理 2.6, 对任意给定的 $\delta > 0$, 对每个 $i = 1, \dots, k$, 存在 E_i 的闭子集 F_i 使得

$$m(E_i - F_i) < \frac{\delta}{k} \quad (i = 1, \dots, k).$$

令 $F_{\delta} = \bigcup_{i=1}^{k} F_{i}$,则 F_{δ} 是E的闭子集,并且

$$m(E-F_{\delta}) = m \left(\bigcup_{i=1}^{k} (E_i - F_i) \right) = \sum_{i=1}^{k} m(E_i - F_i) < \delta.$$

由于将f限制在 F_{δ} 上时, $f(x) = \sum_{i=1}^{k} a_i \chi_{F_i}(x)$, 根据引理

3.2, $f \in F_{\delta}$ 上的连续函数.

(2). 一般情形. 设f是E上的a.e.有限的可测函数. 显然我们可以设f是处处有限的. 令

$$g(x) = \frac{f(x)}{1+|f(x)|}$$
 (逆变换为 $f(x) = \frac{g(x)}{1-|g(x)|}$),

则g是有界可测函数,并且若g在某个闭集 F_{δ} 上连续,则f也在 F_{δ} 上连续.故不妨设f有界.

由推论 3.1, 存在简单函数列 $\{f_k\}$ 在 E 上一致收敛于 f. 对任给的 $\delta > 0$,由情形(1)的结论, 对每个 f_k 存在 E 的闭子集 F_k ,使得 f_k 在 F_k 上连续, 并且 $m(E - F_k) < \frac{\delta}{2^k}$.

$$m(E-F_k)<\frac{\delta}{2^k}.$$

令 $F_{\delta} = \bigcap_{k=1}^{\infty} F_k$,则 F_{δ} 是E的闭子集,并且

$$m(E-F_{\delta}) = m\left(\bigcup_{k=1}^{\infty} (E-F_k)\right) \leq \sum_{k=1}^{\infty} m(E-F_k) < \delta.$$

由于每个 f_k 都在 F_{δ} 上连续,并且 $\{f_k\}$ 在 F_{δ} 上一致收敛于f,因此f在 F_{δ} 上连续.

下面将给出鲁津定理的另一种形式.为此,需要一个引理.

定理 3.14 (Tietze 扩张定理)设F是 \mathbf{R}^n 中的闭集, f是定义在F上的连续函数.则存在 \mathbf{R}^n 上的连续函数g,使得当 $x \in F$ 时g(x) = f(x),并且

$$\sup_{x \in \mathbf{R}^n} |g(x)| = \sup_{x \in F} |f(x)|. \tag{3.5}$$

证明 略(不作要求).■

定理 3. 15 (Lusin 鲁津)设E是 R^n 上的可测集, f是 E上 a.e. 有限的可测函数. 则对任意 S > 0, 存在 R^n 上的连续函数 g, 使得

$$m\{x \in E : f(x) \neq g(x)\} < \delta. \tag{3.8}$$

并且

$$\sup_{x \in \mathbf{R}^n} |g(x)| \le \sup_{x \in E} |f(x)|. \tag{3.9}$$

证 由定理 3.13,对任意 $\delta > 0$,存在 E 的闭子集 F,使得 f 在 F 上连续并且 $m(E-F)<\delta$.

由 Tietze 扩张定理,存在 \mathbb{R}^n 上的连续函数g,使得当 $x \in F$ 时 g(x) = f(x),并且

$$\sup_{x\in\mathbf{R}^n} |g(x)| = \sup_{x\in F} |f(x)| \le \sup_{x\in E} |f(x)|.$$

由于
$$\{x \in E : f(x) \neq g(x)\}\subset E-F$$
. 因此

$$m\{x \in E : f(x) \neq g(x)\} \leq m(E - F) < \delta.$$

定理证毕.■

习 题 24, 25, 27, B 类, 1, 5.

