A Project Report on

"Procell"

Submitted in Partial Fulfillment towards the Award of Degree Bachelor of Technology

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

Mrugesh Patel (09EC080)

Digesh Patel (09EC099)

Rahul Parikh (09EC060)

Guided by

Prof. Trushit K. Upadhyaya

V. T. Patel Department of

Electronics and Communication Engineering

Faculty of Technology & Engineering

Charotar University of Science and Technology

Changa - 388 421

GUJARAT

JUNE 2013

Certificate

This is to certify that the Project entitled "Procell" submitted by Mrugesh Patel (Roll No: 09EC080), Digesh Patel(Roll No: 09EC099) and Rahul Parikh(Roll No: 09EC060) in the 8th Semester subject "EC-408 - PROJECT", towards the partial fulfillment of the requirement for the award of the degree of BACHELOR OF TECHNOLOGY in the field of "ELECTRONICS AND COMMUNICATION ENGG" at Charotar University of Science and Technology (CHARUSAT) is a record of the bona-fide work carried out by him/her under my guidance and supervision. The work submitted, in my opinion, has reached to a level required for being accepted for the examination.

The matters embodied in this project work, to the best of my knowledge, have not been submitted to any other University or institute for the award of any degree or diploma.

Prof. Trushit Upadhyaya

V.T.Patel Dept of Electronics and Communication Engineering

Faculty of Technology & Engineering,

Charotar University of Science &

Technology, Changa

External Guide

MR.MANISH DESAI

Globaltech

Ahmedabad

Prof. Brijesh Shah

Head Of Department,

V.T.Patel Dept of Electronics and

Communication Engineering

Faculty of Technology & Engineering,

Charotar University of Science &

Technology, Changa

Dr. N. D. Shah

Principal,

Faculty of Technology & Engineering,

Charotar University of Science & Technology,

Changa

Project Approval Sheet

The Project entitled

"Procell"

Submitted By

Mrugesh Patel (Roll No: 09EC080)

Digesh Patel(Roll No: 09EC099)

Rahul Parikh(Roll No: 09EC060)

As a partial fulfillment of the requirement

for the degree of

Bachelor of Technology

Electronics and Communication Engineering

is hereby approved for the award of degree

Internal Examiner	External Examiner
-------------------	-------------------

Date:

Place:

ACKNOWLEDGEMENT

We express our cavernous sense of obligation and gratitude to our guide Trushit Upadhyaya for her genuine guidance and constant encouragement throughout this project work. We are highly obliged as our honourable guide have devoted her valuable time and shared her expertise knowledge.

We pay our profound gratefulness to Mr. Manish Shah, Proprietor, Globaltech Ltd. – Ahmedabad for giving us an opportunity to carry out the project work. We must thank him for sparing his valuable time from his busy schedule. We are also thankful to all employees of Globaltech Ltd who helped us directly or indirectly for the completion of my work.

We extend our sincere thanks to HOD, Department of Electronics and communication Engineering and Dean, Faculty of Technology & Engineering, CHARUSAT for providing us such an opportunity to do our project work.

We also wish to express our heartfelt appreciation to our friends, colleagues and many who have rendered their support for the successful completion of the project, both explicitly and implicitly.

MRUGESH PATEL

DIGESH PATEL

RAHUL PARIKH

Date:

Place:

ABSTRACT

Mobile communication is an essential part of our day to day life and in chain BTS(Base Transceiver Station) is an essential part of mobile communication. Every mobile phone operation includes the operation of BTS and hence it becomes mandatory to keep an eye on the BTS 24*7 which is very well fulfilled by the device procell.

Procell is a device installed at the BTS station whose functions are:

- 1) To mollify the heat produced due to the operation of various functional units at the BTS by defining the operating temperature range of the air conditioner remotely.
- 2) To turn on the generator when there is a power cut and the battery is also not charged fully so that the functioning at the BTS doesn't alter or even breakdown.
- 3) To keep an eye on the door whether it is open or close so that the cooling done by the AC doesn't get wasted away.
- 4) To note down each and every event by signaling the event occurance and duration at the main controlling station where a database is created.

Hence, Procell is a device which not only monitors the BTS but also saves the power consumed. If there is a power cut and the battery is fully charged then procell doesn't turn on the generator and the power is provided by the battery. If the battery bank is fully charged and AC is to be switched on then generator should be on which is taken care off by the device.

All this shows the importance of procell whose primary purpose is **ENERGY CONSERVATION**.

LIST OF FIGURES

No.	Title	Page
2.1	Basic block diagram of Procell device	3
3.1	AC Relay Circuit Diagram	5
3.2	Switch for door	6
4.1	Explorer 16 board	8
4.2	PIC32 Microcontroller	12
4.3	Keypad in Explorer 16 board	13
4.4	Block Diagram of RFM 73	15
4.5	Pin Information of RFM 73	16
4.6	LM 35	17
4.7	EEPROM pin diagram	18
4.8	Different types of raleys	20
4.9	DC relay circuit diagram	21
5.1	Procell Device Cabin side circuit diagram	23
5.2	Procell Device RCS side circuit diagram	24
6.1	Basic flow of Bootloader	27
6.2	Framework	28
6.3	SPI module block diagram	30
6.4	Typical SPI Master-to-slave Device Connection Diagram	32

6.5	Typical SPI slave-to-Master Device Connection Diagram	32
6.6	Typical SPI Master, Frame Master Connection Diagram	33
6.7	Typical SPI Slave, Frame Slave Connection Diagram	33
6.8	SPIxCON register	34
7.1	Real figure of RFM73	35
7.2	Pin description of RFM73.	36
7.3	PTX control state diagram.	37
7.4	PRX state control diagram	38
7.5	RFM BLOCK DIAGRAM	39
7.6	SPI timing diagram	43

LIST OF TABLES

No.	Title	Page
4.1	Pin function of RFM 73	16
4.2	Pin Function Table of EEPROM	19
7.1	RFM command register details	42
7.2	RFM command register details	44

INDEX

Acknowledgement	v
Abstract	vi
List of Figures	vii
List of Tables	ix
1. INTRODUCTION	1
2. FUNCTIONAL UNITS	2
2.1 Different units	3
2.2 Block diagram of Procell device	
3. FUNCTIONAL SPECIFIATIONS	4
3.1 AC Mains sensing	4
3.2 Battery bank sensing	5
3.3 Temperature sensing and AC controlling	5
3.4 Door sensing	6
3.5 Generator controlling	6
3.6 Wireless module	7
3.7 Mode selection unit	7
4. DEVICES AND PERIPHERALS SPECIFICATIONS	8
4.1 Explorer 16 development board	8
4.2 PIC 32 Microcntroller	9
4.2.1 High performance 32 bit RISC CPU	9
4.2.2 Microcontroller features	10
4.2.3 Peripheral features	10
4.2.4 Debug features	11
4.2.5 Analog features	11

4.3 2*16 Character LCD	13
4.4 keypad	13
4.5 Wireless module	14
4.6 Temperature Sensor	16
4.7 External memory	18
4.8 Relay	19
4.8.1 Types of Relay	21
5. SCHEMATICS	23
5.1 Procell Cabin Side	23
5.2 Procell Remote Control Station(RCS)	24
6. BOOTLOADER AND SPI	25
6.1 Introduction	25
6.2 Basic Flow of Bootloader	26
6.3 SPI	29
6.3.1 Introduction	29
6.3.2 Key features	29
6.3.3 SPI specifications	30
6.3.4 Some notes for SPI	31
6.3.5 Normal mode SPI operation	31
6.3.6 Framed mode SPI operation	32
6.3.7 Status and control registers	33
6.3.8 SPIxCON register	34
6.3.9 SPI clock frequency	34
7. INTRODUCTION TO WIRELESS MODULE	35
7.1 Features	35
7.2 Block Diagram	36
7.3 PTX control state diagram	37
7.4 PRX control state diagram	38
7.5 Modes for RFM 73	38

7.5.1 Power down mode	38
7.5.2 Standby I mode	39
7.5.3 Standby II mode	39
7.6 Detail Analysis	39
7.6.1 SPI commands	40
7.6.2 SPI timing diagram	43
7.7 Applications	46
REFERENCES	47