

ACL și **NAT**

Proiectarea Rețelelor

Cuprins

Access Lists

- Ce este un ACL
- Funcționarea ACL-urilor
- Tipuri de liste de acces
- Exemple de configurare

Network Address Translation

- De ce este nevoie?
- Concepte NAT
- Configurare NAT

Tunelare

Tunelare GRE

Access Lists

Ce este un Access List?

- Un set de condiții specificate de către administrator pentru identificarea unor anumite tipuri de trafic
- Traficul identificat poate fi
 - ▶ Filtrat
 - Alterat
 - Controlat
 - Asociat cu alte acțiuni
- In funcție de acțiunea dorită, traficul trebuie identificat după anumite criterii

Utilități ale ACL-urilor

- Filtrarea și monitorizarea traficului
 - Cea mai des folosită aplicație a ACL-urilor
 - Remember iptables –t filter
 - Permiterea sau respingerea traficului
 - Inspecția mai avansată a traficului identificat

Utilități ale ACL-urilor

- Marcarea și alterarea traficului
 - Remember iptables -t mangle and -t nat
 - QoS
 - Pasul 1: traffic tagging
 - Pasul 2: Traffic policing şi traffic shaping
 - NAT
 - Criptare

Utilități ale ACL-urilor

- Asocierea cu accesul la alte servicii
 - Accesul la terminale virtuale (ssh/telnet/http)
 - Controlul actualizărilor protocoalelor de rutare
 - Policy bassed routing (vom vedea în curs 10)

Criterii de indentificare a traficului

Adresă IP

- Sursă
- Destinație

Protocol

- ▶ IPv4, IPv6, IPX, AppleTalk
- TCP, UDP
- ▶ ICMP

Port sau tip

- Port sursă sau destinație la TCP sau UDP
- ▶ Tip de mesaj ICMP

ACL-uri pentru filtrare

Dezavantaje?

- Timp de latență mai mare
- Încărcare suplimentară a echipamentului

Router dedicat

- Principala funcție: rutare
- Permite implementarea funcțiilor de filtrare
- Nu oferă implicit criptare
- Folosește protocoale de nivel 3 și 4 pentru a lua decizii.

- Principala funcție: filtrare
- Poate ruta, dar suportă mult mai putine facilități
- Oferă criptare HW la rate foarte mari

Firewall dedicat

- la decizii pe baza protocoalelor de nivel 3-7
- Server ssh integrat

VS

Dar ce este un Firewall?

Un firewall constă în una sau mai multe mașini care au ca scop prevenirea accesului neautorizat la o rețea.

- Acestea controlează accesul la servicii atât din cât și în rețeaua internă
- ACL-urile sunt folosite pentru a crea firewall-uri între rețeaua internă și cea externă
- Demilitarized Zone (DMZ) conține servicii disponibile din Internet
- Ruterele firewall trebuie plasate între rețeaua internă și lumea exterioară

Definiția unui ACL

- O listă de acces conține intrări/reguli pentru controlul accesului
- Fiecare regulă
 - identifică diferite tipuri de trafic pe baza unor criterii
 - specifică acțiunea care trebuie luată în cazul în care criteriul a fost îndeplinit (există match)
 - Permite traficul : permit
 - Oprește traficul : deny

Parcurgerea unui ACL

- Regulile sunt testate secvențial, linie cu linie, de sus în jos, până se găsește o regulă care să facă match, sau până la sfârșitul listei
 - La match, se aplică acțiunea, și restul ACL-ului nu se mai verifică
 - Dacă nu se găsește niciun match, se ajunge la finalul fiecărui ACL, unde există un implicit deny any

Aplicarea unui ACL

- ACL-urile de filtrare pot aplică
 - Pentru fiecare protocoale de layer 3 (IP, IPv6 etc.)
 - Pentru fiecare interfață
 - Pentru fiecare direcție
 - Inbound, pentru traficul ce intră
 - Outbound, pentru traficul ce iese

Exercițiu: Aplicarea unui ACL

- Un ruter cu 2 interfețe rulează dual stack (IPv4, IPv6)
- Care este nr. maxim de ACL-uri de filtare ce pot fi aplicate
 - 2 (interfețe) x 2 (protocoale rutate) x 2 (in și out)

Funcționarea ACL-urilor

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - standard
 - extinse

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - standard
 - extinse

- Identificate printr-un număr între 1 și 99, sau 1300-1999 în IOS-urile mai recente
- Acceptă sau respinge o întreagă suită de protocoale
- Verifică doar sursa pachetului
- Trebuie plasat în rețea cât mai aproape de **destinație**.

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - standard
 - extinse

- Identificate printr-un număr între 100 și 199, sau 2000-2699 pentru IOS-urile recente
- Pot accepta sau respinge un protocol specific
- Verifică sursa pachetului, destinaţia, protocolul sau chiar portul
- Trebuie plasat în rețea cât mai aproape de **sursă**.

- Liste de acces standard
- Liste de acces extinse
- Liste de acces cu nume
 - standard
 - extinse

- Identificate printr-un nume configurat de administrator
- Pot fi fie standard, fie extinse
- Oferă flexibilitate mai mare decât listele standard sau extinse
- Recomandate să fie folosite față de cele cu număr

Wildcard mask

- O mască ce se suprapune peste o adresă IP
- Identifică partea comună a unor adrese IP
- Reprezintă un şir de 32 de biţi de 1 şi 0
 - Bitul 0 face match
 - Bitul 1 ignoră valoarea bitului din IP
- ▶ Poate fi privită ca și inversul măștii de rețea, însă poate fi folosită și pentru a identifica altfel

Wildcard mask

- Se pot folosi 2 cuvinte cheie în ACL-uri:
 - any înseamnă adresa IP 0.0.0.0 și WM 255.255.255.255, toate IP-urile vor face match
 - host testează egalitatea cu o adresă de host, echivalent cu WM 0.0.0.0

Wildcard mask - exemplu

Router (config) #access-list 10 permit 172.16.0.0 0.0.255.255

- ▶ În acest exemplu, ruterul va verifica doar primii 16 biți din adresele IP și îi va compara cu cei din adresa IP. Această declarație va permite traficul având ca sursă 172.16.*.*
 - ▶ Biţii de 0 fac match
 - Biţii de 1 sunt ignoraţi

ACL-uri clasice

- Standarde sau Extinse
 - ► Tipul este dat de numărul (ID-ul) listei
- Grupate în funcție de numărul (ID) comun
- Adăugate linie cu linie dar întotdeauna la sfârșit
- Nu se poate șterge o singură linie din ACL

ACL-uri clasice standard

- Filtrează pachetele doar în funcție de sursă
- Numărul asociat unui astfel de ACL trebuie să fie între 1 și 99, sau, în versiunile mai recente de IOS, între 1300 și 1999

ACL-uri clasice extinse

- Filtrează pachetele în funcție și de **sursă** și de **destinație**. De asemenea, pot filtra pachete și în funcție de **protocol** și de **port**
- Numărul asociat unui astfel de ACL trebuie să fie între 100 și 199; în versiunile mai recente de IOS se pot folosi și numere între 2000 și 2699

Permite Telnet-ul de la toate host-urile din rețeaua 172.16.6.0/24

Aplicarea unui ACL

- Crearea listelor de acces este doar jumătate din muncă
- Cealaltă jumătate constă în aplicarea ACL-urilor pe interfețe (pentru filtrare)

Editarea unui ACL clasic

- Pentru a edita un ACL clasic standard sau extended:
 - Copiați ACL-ul într-un fișier text
 - Stergeți ACL-ul din fișierul de configurare al ruter-ului folosind 'no' și declarația ACL-ului
 - Faceți modificările necesare în fișierul text
 - Copiați pe ruter ACL-ul modificat, în global configuration mode

sau...

Named ACLs

- Nu mai sunt folosite numere pentru a diferenția ACL-uri, ci nume
 - Numele sunt mai intuitive decât numerele
 - 254 vs "DMZ_IN_FILTER"
- Este posibilă numerotarea regulilor ce sunt adăugate, pentru ca apoi să se poată face modificări fără a șterge complet lista

Named ACLs - Exemplu


```
R(config) #ip access-list extended FILTER_LAN_IN R(config-ext-nacl) #20 permit ip any any
```

Dacă am uitat 2 reguli ce trebuiau definite înainte..

```
R(config-ext-nacl) #5 permit icmp host 10.0.0.0 any
R(config-ext-nacl) #10 deny icmp any any
```

Dacă am greșit regula de pe linia 5...

```
R config-ext-nacl) #no 5
R config-ext-nacl) #5 permit icmp host 10.0.0.1 any
```

După definire, pot aplica ACL-ul pe interfață

```
R(config) #interface fastEthernet 0/1
R(config-if) #ip access-group FILTER LAN IN in
```

Un caz special

- ACL-urile standard pot fi și ele folosite pentru a gestiona traficul pentru conexiunile la distanță
- Soluţia:

```
R(config) #line vty 0 4
R(config-line) #access-class access-list-number {in | out}
```

ACL remarks

Permit trafic către reţeaua A şi opresc trafic către host B

```
R(config)# access-list 50 remark permit traficul spre A
R(config)# access-list 50 permit 172.16.0.0 0.0.255.255
R(config)# access-list 50 remark opresc traficul spre B
R(config)# access-list 50 deny 192.168.10.15
```

Un comentariu este limitat la 100 de caractere

Log-uri

- Generează un mesaj ce cuprinde
 - nr. listei
 - dacă a fost acceptat/respins pachetul
 - sursa
 - nr. de pachete
- Mesajul este generat pentru primul pachet care corespunde unei reguli, iar apoi la intervale de 5 minute

R(config)# access-list 50 permit 172.16.0.0 0.0.255.255 log

Verificarea ACL-urilor

Comenzi de show pentru verificarea conţinutului şi pentru poziţionarea ACL-urilor:

Comanda	Descriere
show ip interface	Informații privind numărul de ACL-uri de intrare și ieșire
show access-list	Afișează conținutul ACL-urilor configurate pe router
show running-config	Afișează, printre altele, poziționarea și conținutul ACL-urilor configurate

Exemple de ACL-uri

 O listă de acces care să permită doar traficul de la stația 193.230.2.1

```
R(config)# access-list 1 permit host 193.230.2.1

Sau

R(config)# access-list 2 permit 193.230.2.1 0.0.0.0

Sau

R(config)# access-list 3 permit 193.230.2.1
```

Soluție folosind ACL extins

```
R(config)# access-list 101 permit ip host 193.230.2.1 any
```

Exemple de ACL-uri

Construiți și aplicați pe interfața ethernet 1 o listă de acces ce va permite doar traficul inițiat de la adresele 11.2.2.90 și 11.2.2.91.

Exemple de ACL-uri

Care este efectul următoarelor linii?

```
R(config)# interface ethernet 4
R(config-if)# ip access-group 199 out

R(config)# access-list 199 permit ip any any
R(config)# access-list 199 deny ip 106.45.0.0 0.0.255.255 any
R(config)# access-list 199 deny tcp any 44.7.12.224 0.0.0.15 eq
ftp
R(config)# access-list 199 deny udp 23.145.64.0 0.0.0.255 host
1.2.3.4 eq rip
```


Network Address Translation

Problemă

Creștere rapidă a Internetului

Deficit de adrese IP disponibile

- Soluţia:
 - Adrese private +
 - Network Address Translation

NAT

- ▶ Un standard Internet care permite unui LAN să folosească un set de adrese IP pentru traficul intern, și un set diferit de adrese pentru traficul extern.
- Adresa IP privată a sursei unui pachet este translatată într-o adresă publică (rutabilă) de către gateway

Adrese IP private

Clasa	Intervalul de adrese	Prefix CIDR
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

- aka RFC1918
- Pot fi folosite de oricine, fără restricții
- De ce nu sunt rutabile în Internet?

Terminologia NAT

NAT

Statică

- mapare constantă 1 la 1
- utilă pentru servere web ce au nevoie de o adresă accesibilă oricând

Dinamică

- oferă adresele dinamic, pe baza unui pool de adrese
- regula: primul venit, primul servit

PAT

- Port Address Translation
 - a.k.a. NAT overloading, NAPT, masquerading
- ▶ Permite asocierea unei adrese IP publice cu un grup de adrese private
- Se bazează pe schimbarea portului sursă
 - Modificări si la nivelul 3 și la nivelul 4

Tipuri de translatare

NAT

- Network Address Translation
- gateway-ul are definită o listă de adrese IP publice
- mapează <u>o adresă privată pe</u>
 <u>o adresă publică</u>
- numărul de stații din rețeaua privată ce pot accesa Internetul limitat de dimensiunea listei de adrese publice

PAT

- Port Address Translation
- gateway-ul va înlocui toate adresele private cu adresa sa publică
- mai multe adrese private pe o singură adresă publică
- folosește translatarea la nivel de port pentru a diferenția între diferitele translații
- Nu este făcut de toate ruterele în hardware

Funcționare PAT

lp src	Ip dst	Port sr	Port dst		lp src	Ip dst	Port sr	Port dst
192.168.1.1	200.1.1.121	2323	80		200.2.2.1	200.1.1.121	4375	80
Inside Local LAN cu adre		á				ide Global ea publică		>
192.168.1.254 200.2.2.1								
lp src	lp dst	Port sr	Port dst		lp src	lp dst	Port sr	Port dst
200.1.1.121	192.168.1.1	80	2323		200.1.1.121	200.2.2.1	80	4375
Outside Local					Outside Global			

PRO & CONTRA

- Conservarea adreselor IP disponibile
- Elimină necesitatea de schimbare a adreselor IP la schimbarea ISP-ului
- Oferă securitate, prin ascunderea adreselor IP interne

- Latență mărită
- Pierdere de funcționalitate
- Loss of end to end traceability
- Tipuri de trafic nesuportate: SNMP, update-uri de rutare

Pași configurare NAT

- Ce translatez?
 - stabilire ce IP-uri private sunt translatate printr-un ACL

- În ce translatez?
 - pool de adrese (NAT)
 - ▶ IP intrerfață (PAT)
- În ce sens translatez?
 - Stabilire cine este inside şi cine outside

Configurare NAT

Translatare statică

```
R(config) # ip nat inside source static <localIP> <globalIP>
```

Translatare dinamică

```
R(config) # access-list 1 permit 10.0.0.0 0.255.255.255
R(config) # ip nat pool <name> <start-ip> <end-ip>
            {netmask <netmask> | prefix-length <prefix>}
R(config) # ip nat inside source list 1 pool name
```

PAT

R(config) # ip nat inside source list 1 interface intf overload

Configurare NAT

- La nivel de interfață
 - pe interfaţa către reţeaua privată

```
R(config-if) # ip nat inside
```

pe interfața către Internet

R(config-if) # ip nat outside

Verificarea NAT

Comenzi de show pentru verificarea conţinutului şi pentru poziţionarea ACL-urilor:

Comanda	Descriere			
show ip translations	Afișează tabela cu translațiile NAT			
show ip nat statistics	Afișează informații statistice legate de translațiile NAT			
clear ip nat translations *	Șterge tabela de translații dinamice			
debug ip nat	Afișează informații pentru fiecare pachet translatat de ruter			

Tunelare

Tunelare

- Ce este un tunel?
 - O legătură virtuală peste o rețea fizică
 - Încapsularea unui protocol în alt protocol
 - Ascunderea unei infrastucuri de rețea în spatele unei singure conexiuni

Tipuri de tunele

HTTP Application SSL VPN Transport IPIP, 6to4, SIT, Network IPSec, GRE PPPoE, Q-in-Q Data link

Tunelare GRE

- Generic Routing Encapsulation
- protocol de tunelare dezvoltat de Cisco
- Poate încapsula o varietate de protocoale de rețea
- Stateless nu sunt menţinute informaţii despre starea tunelului
- Un tunel GRE se ridică imediat după configurarea corectă a ambelor capete și rămâne ridicat tot timpul

Componentele unui tunel GRE

Creerea interfeței tunel

- ▶ Tip tunel (GRE)
- Capăt sursă
 - Interfață sau IP local
- Capăt destinație
 - IP la distanță

Configurarea interfeței tunel

- Interfața nou creată se tratează ca o legătură normală (punct la punct)
- Adresare IP
 - Spațiu de adresă pentru domeniul tunelului

Configurare GRE


```
R2(config) # ip route 11.0.0.0 255.255.255.0 Fa0/0
                   R2 (config) #interface Tunnel0
                   R2(config-if)# ip address 2.0.0.2 255.255.255.0
                   R1(config-if)# tunnel source FastEthernet0/0
                   R1(config-if)# tunnel destination 11.0.0.1
              11.0.0.1
                          Internet
              Fa0/0
R1(config)# ip route 22.0.0.0 255.255.255.0 Fa0/0
R1(config)#interface Tunnel0
R1(config-if)# ip address 12.0.0.1 255.255.255.0
R1(config-if)# tunnel source FastEthernet0/0
R1(config-if)# tunnel destination 22.0.0.2
```

Sumar

Access Lists

- Ce este un ACL
- Funcționarea ACL-urilor
- Tipuri de liste de acces
- Exemple de configurare

Network Address Translation

- De ce este nevoie?
- Concepte NAT
- Configurare NAT

Tunelare

Tunelare GRE

POC: ACL, NAT, GRE

POC

- Configurați astfel încât R4 să nu accepte pachete de la R1
- Configurați pe R3 astfel încât R2 să nu poată accesa serviciul HTTP de pe R4
- Configurați astfel încât doar R2 să se poată autentifica pe terminalul virtual al lui R4
- Reparați conectivitatea de la R2 spre serviciul HTTP de pe R4 fără a șterge ACL-ul de pe R3. Hint: Tunnel
- ▶ Configurați ca R1 să se poată autentifica pe terminalul virtual al lui R4, fără a șterge/modifica ACL-ul. Hint: NAT