

Bottom-Up Parsing

Lecture 6

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up is the preferred method

An Introductory Example

- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

Consider the string: int * int + int

The Idea

Bottom-up parsing reduces a string to the start symbol by inverting productions:

$$\begin{array}{lll} & \text{int} * & \text{int} + & \text{int} \\ & \text{int} * & T + & \text{int} \\ & T + & \text{int} \\ & T + & \text{int} \\ & T + & T \\ & T + & E \\ & F \end{array}$$

Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost derivation in reverse

A Bottom-up Parse

A Bottom-up Parse in Detail (1)

$$E \rightarrow T + E$$

$$int * int + int$$

$$E \rightarrow T$$

$$T \rightarrow int * T$$

$$T \rightarrow int$$

$$T \rightarrow (E)$$

A Bottom-up Parse in Detail (2)

$$\begin{array}{c} E \rightarrow T + E \\ \text{int * int + int} \\ \text{int * T + int} \\ \end{array}$$

$$\begin{array}{c} E \rightarrow T + E \\ E \rightarrow T \\ \hline T \rightarrow \text{int * T} \\ \hline T \rightarrow \text{int} \\ \hline T \rightarrow (E) \\ \end{array}$$

A Bottom-up Parse in Detail (3)

A Bottom-up Parse in Detail (4)

A Bottom-up Parse in Detail (5)

A Bottom-up Parse in Detail (6)

Where Do Reductions Happen?

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then ω is a string of terminals

Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a right-most derivation

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a |
 - The | is not part of the string
- Initially, all input is unexamined $|x_1x_2...x_n|$

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

- Shift: Move | one place to the right
 - Shifts a terminal to the left string

$$ABC|xyz \Rightarrow ABCx|yz$$

Reduce

- Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

$$Cbxy|ijk \Rightarrow CbA|ijk$$

The Example with Reductions Only

int * int | + int reduce
$$T \rightarrow int$$

int * T | + int reduce $T \rightarrow int$ * T

$$T + int \mid$$
 reduce $T \rightarrow int$
 $T + T \mid$ reduce $E \rightarrow T$
 $T + E \mid$ reduce $E \rightarrow T + E$
 $E \mid$

The Example with Shift-Reduce Parsing

```
|int * int + int
                           shift
int | * int + int
                           shift
int * | int + int
                           shift
int * int | + int
                           reduce T \rightarrow int
int * T | + int
                           reduce T \rightarrow int * T
T \mid + int
                           shift
T + | int
                           shift
T + int
                           reduce T \rightarrow int
T + T
                           reduce E \rightarrow T
T+E|
                           reduce E \rightarrow T + E
ΕI
                       Prof. Aiken
```

20

A Shift-Reduce Parse in Detail (1)

int * int + int
$$E \rightarrow T + E$$

$$E \rightarrow T$$

$$T \rightarrow int * T$$

$$T \rightarrow int$$

$$T \rightarrow (E)$$

A Shift-Reduce Parse in Detail (2)

|int * int + int |
$$E \rightarrow T + E$$
 | $E \rightarrow T$ | $E \rightarrow T$ | $E \rightarrow T$ | $T \rightarrow int * T$ | $T \rightarrow int$ | $T \rightarrow (E)$

A Shift-Reduce Parse in Detail (3)

| int * int + int |
$$E \rightarrow T + E$$
 | int | * int + int | $E \rightarrow T$ | $T \rightarrow int *T$ | $T \rightarrow int$ | $T \rightarrow (E)$

A Shift-Reduce Parse in Detail (4)

| int * int + int |
$$E \rightarrow T + E$$
 | int | * int + int | $E \rightarrow T$ | $E \rightarrow T$ | int * | int + int | $T \rightarrow int * T$ | int * int | + int | $T \rightarrow int$ | $T \rightarrow (E)$

A Shift-Reduce Parse in Detail (5)

```
| int * int + int | E\rightarrow T + E | int | * int + int | E\rightarrow T | int * | int + int | T\rightarrow int * T | int * T | T\rightarrow int | T
```


A Shift-Reduce Parse in Detail (6)

A Shift-Reduce Parse in Detail (7)

A Shift-Reduce Parse in Detail (8)

```
int * int + int
                          E \rightarrow T + E
int | * int + int
                          E \rightarrow T
int * | int + int
                          T \rightarrow int * T
int * int | + int | T \rightarrow int
                     T \rightarrow (E)
int * T | + int
T \mid + int
T + | int
T + int
                                                       int
                                     int
                                                                            int
```

A Shift-Reduce Parse in Detail (9)

```
int * int + int
                         E \rightarrow T + E
int | * int + int
                         E \rightarrow T
int * | int + int
                         T \rightarrow int * T
int * int | + int T \rightarrow int
                      T \rightarrow (E)
int * T | + int
T \mid + int
T + | int
T + int
T + T
                                                      int
                                     int
                                                                           int
```

A Shift-Reduce Parse in Detail (10)

```
int * int + int
                         E \rightarrow T + E
int | * int + int
                         E \rightarrow T
int * | int + int
                         T \rightarrow int * T
int * int | + int | T \rightarrow int
                       T \rightarrow (E)
int * T | + int
T \mid + int
T + | int
T + int
T + T
                                                      int
                                    int
                                                                           int
T + E |
```

A Shift-Reduce Parse in Detail (11)

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the
- · Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a nonterminal on the stack (production lhs)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a shiftreduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

- Consider step int | * int + int
 - We could reduce by $T \rightarrow int giving T \mid * int + int$
 - A fatal mistake!
 - No way to reduce to the start symbol E
 - No production starts with T*

Handles

 Intuition: Want to reduce only if the result can still be reduced to the start symbol

Assume a rightmost derivation

. Then $X\to\beta$ in the position after α is a handle of $\alpha\beta\omega$

Handles (Cont.)

- Formally:
- A phrase is a substring of a sentential form derived from exactly one non-terminal

- A simple phrase is a phrase created in one step
- A handle is a simple phrase of a right sentential form
 - i.e., $X \to \beta$ is a handle of $\alpha\beta\omega$, where ω is a string of terminals, if:

$$S \to \alpha X \omega \to \alpha \beta \omega$$

Handles (Cont.)

- Handles formalize the intuition
 - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles

Grammars

Grammars

Bottom-Up Parsing

LR(k) parsing. left to right right-most k lookahead derivation (k is omitted → it is 1)

- LR parsing is the most general predictive parsing, yet it is still very efficient.
- The class of LR grammars is a proper superset of LL(1) grammars.

LL(1)-Grammars
$$\subset$$
 LR(1)-Grammars

 An LR-parser can detect a syntactic error as soon as it is possible.

LR (k) parsing.

- SLR Simple LR parser
- LR most general LR parser
- LALR intermediate LR parser (Look-Ahead LR)
- SLR, LR, and LALR work exactly the same;
 only their parse tables are different.

LR Parsing Algorithm

Configuration of LR Parsing

A configuration in LR parsing is:

- S_m and a_i decides the parser action by consulting the parsing (action) table.
- Initial Stack contains just S_o
- A configuration of a LR parsing represents the right sentential form:

$$X_1 ... X_m a_i a_{i+1} ... a_n$$
\$

Actions of A LR-Parser

1. shift s -- shifts the next token and the state s onto the stack

- 2. reduce $A \rightarrow \beta$ (or reduce n, where n is a production number)
 - pop $2*|\beta|$ (=r) items from the stack,
 - then push A and s, where $s = goto[s_{m-r}, A]$

$$S_0 X_1 S_1 ... X_m S_m \mid a_i a_{i+1} ... a_n \$ \Rightarrow S_0 X_1 S_1 ... X_{m-r} S_{m-r} A s \mid a_i ... a_n \$$$

- Parser output is the reducing production: $A \rightarrow \beta$
- 3. Accept Parsing successfully completed
- Error -- Parser detected an error (an empty entry in the action table)

SLR(1) Parsing Table Example

$$1 E \rightarrow T$$

$$2E \rightarrow T + E$$

$$3 T \rightarrow (E)$$

$$4 T \rightarrow int * T$$

$$5 \text{ T} \rightarrow \text{int}$$

Follow (E) =
$$\{\$, \}$$

Follow
$$(T) = \{\$, \}, +\}$$

Action

Goto

state	int	+	*	()	\$	E	T
0	S4			S 3			1	2
1						acc		
2		S 5			R1	R1		
3	S4			S 3			7	2
4		R5	S 6		R5	R5		
5	S4			S 3			8	2
6	S4			S 3				9
7					S10			
8					R2	R2		
9		R4			R4	R4		
10		R3			R3	R3		

LR(1) Parsing Example

<u>stack</u>	<u>input</u>	<u>action</u>
0	int*int\$	Shift 4
0 int 4	*int\$	Shift 6
0 int 4 * 6	int\$	Shift 4
0 int 4 * 6 int 4 Handle	\$	Reduce 5
0 int 4 * 6 T 9	\$	Reduce 4
0 T 2	\$	Reduce 1
0 E 1	\$	Accept

$1 E \rightarrow T$
$2 E \rightarrow T + E$
$3 T \rightarrow (E)$
4 T \rightarrow int * T
$5 \text{ T} \rightarrow \text{int}$

state	int	+	*	()	\$	E	T
0	S 4			S 3			1	2
1						acc		
2		S 6			R1	R1		
4		R5	S 6		R5	R5		
6	S 4			S 3				9
9		R4			R4	R4		

Some of the rows!

46

Constructing SLR(1) Parsing Table

LR(0) items

- Augmented Grammar
- Closure operation
- GOTO function

SLR(1) Transition Diagram

Items

 An item is a production with a "•" somewhere on the rhs

• The items for $T \rightarrow (E)$ are

```
T \rightarrow \bullet (E)

T \rightarrow (E \bullet)

T \rightarrow (E \bullet)
```

Items (Cont.)

• The only item for $X \to \varepsilon$ is $X \to \bullet$

Items are often called "LR(0) items"

Augmented Grammar

• To construct the SLR(1) Parsing Table, we start by adding a new rule $S' \rightarrow S$ to the grammar, where S' is a new non-terminal and S' is the start symbol

 The new grammar is called an "Augmented Grammar"

The Closure Operation

- If I is a set of LR(0) items for a grammar G, then closure(I) is the set of LR(0) items constructed from I by the two rules:
 - 1. Initially, every LR(0) item in I is added to closure(I).
 - 2. If $A \to \alpha$ B β is in closure(I) and $B \to \gamma$ is a production rule of G; then $B \to \bullet \gamma$ will be in closure(I). We will apply this rule until no more new LR(0) items can be added to closure(I).

The Closure Operation - Example

Grammar:

$$S' o E$$
 $E o T$
 $E o T + E$
 $T o (E)$
 $T o int * T$
 $T o int$
 $S' o E$
 $E o T$
 $E o T + E$
 $T o int * T$
 $T o int$

GOTO function

- Goto(I, X) = closure of the set of all items $A \rightarrow \alpha X \bullet \beta$ where $A \rightarrow \alpha \bullet X \beta$ belongs to I
- Intuitively: Goto(I, X) set of all items that are "reachable" from the items of I once X has been "seen."
- E.g., consider $I = \{E \rightarrow T \bullet + E\}$ and compute Goto(I, +)

Goto(I, +) = {E
$$\rightarrow$$
 T + • E, E \rightarrow • T, E \rightarrow •T + E,
T \rightarrow • (E), T \rightarrow • int * T, T \rightarrow • int}

Construction of SLR(1) Transition Diagram

```
Start with the production S' \rightarrow \bullet S
Create the initial state to be closure(\{5' \rightarrow \bullet 5\})
Pick a state I
   for each A \rightarrow \alpha \bullet X \beta in I, find goto(I, X)
       if qoto(I, X) is a new state, add it to the
       diagram
       Also, add an edge for X from state I to state
```

Repeat until no more additions is possible

goto(I, X)

Construction of SLR(1) T.D. - Example

$$S' \rightarrow . E$$

 $E \rightarrow . T$ 0
 $E \rightarrow .T + E$
 $T \rightarrow .(E)$
 $T \rightarrow .int * T$
 $T \rightarrow .int$

Construction of SLR(1) T.D.

Construction of SLR(1) T

57

Construction of SLR(1) T

Construction of SLR(1) T

 $E \rightarrow T$.

 $E \rightarrow T. + E$

 $E \rightarrow .T$

 $\mathsf{E} \to .\mathsf{T} + \mathsf{E}$

 $E \rightarrow T + . E$

T → .(E)

 $T \rightarrow .int * T$

 $T \rightarrow (E.)$

 $T \rightarrow .int$

· .1 - .

int $T \rightarrow int$.

 $T \rightarrow int. * T$

$E \rightarrow .T + E$

 $S' \to E$.

 $E \rightarrow .1 + E$

 $T \rightarrow .(E)$

 $S' \rightarrow . E$

 $E \rightarrow . T$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

 $T \rightarrow int * .T$

 $T \rightarrow .(E)$ 6

 $T \rightarrow .int * T$

 $T \rightarrow .int$

 $T \rightarrow (. E)$

 $\mathsf{E} \to \mathsf{.T}$

 $E \rightarrow .T + E$

 $T \rightarrow .(E)$

 $T \rightarrow .int * T$

 $T \rightarrow .int$

Action Table

For each state s; and terminal a

- If s_i has item $X \to \alpha \bullet \alpha \beta$ and goto[i,a] = j then action[i,a] = shift j
- If s_i has item $X \to \alpha \bullet$ and $a \in Follow(X)$ and $X \neq S'$ then action[i,a] = reduce $X \to \alpha$
- If s_i has item $S' \rightarrow S \bullet$ then action[i,\$] = accept
- Otherwise, action[i,a] = error

Goto Table

For each state s; and non-terminal A

- If s_i has item $X \to \alpha \bullet A \beta$ and goto[i,A] = j then action[i,A] = j

- Empty cells in Goto Table do not represent an error situation (they are never accessed!)

SLR(1) Parsing Table Example (Revisited)

$$1 E \rightarrow T$$

$$2E \rightarrow T + E$$

$$3 T \rightarrow (E)$$

$$4 T \rightarrow int * T$$

$$5 \text{ T} \rightarrow \text{int}$$

Follow (E) =
$$\{\$, \}$$

Follow
$$(T) = \{\$, \}, +\}$$

Action

Goto

state	int	+	*	()	\$	E	T
0	S4			S 3			1	2
1						acc		
2		S 5			R1	R1		
3	S4			S 3			7	2
4		R5	S 6		R5	R5		
5	S4			S 3			8	2
6	S4			S 3				9
7					S10			
8					R2	R2		
9		R4			R4	R4		
10		R3			R3	R3		

LL(1) Versus LR(1) Grammars

• The class of LR grammars is a proper superset of LL(1) grammars.

For the given grammar, what is the correct series of reductions for the string: -(id + id) + id

Prof. Aiken 67

 $E \rightarrow E' \mid E' + E$

For the given grammar, what is the correctshift-

reduce parse for the string: id + -id

Given the grammar at right, identify the handle for the following shift-reduce parse state: E' + -id|+ -(id + id)

$$E \rightarrow E' \mid E' + E$$

 $E' \rightarrow -E' \mid id \mid (E)$

- E' + -id
- \circ id
- O -id
- E' + -E'

Using the DFA on slide 61, choose the next action for the given parse state

Configuration	DFA Current State				
int * int + int \$	4				

- shift
- \bigcirc red. T \rightarrow int
- \bigcirc red. T \rightarrow int * T
- accept

What are the items in the initial state of the SLR(1) parsing automaton of the following grammar? Do not add extra symbol to the grammar. [Choose all that apply]

$$\bigcirc A \rightarrow \bullet X$$

$$\bigcirc S \rightarrow \bullet A(S)B$$

$$\bigcup A \rightarrow \bullet X$$

$$O B \rightarrow \bullet y$$

$$\bigcirc B \rightarrow \bullet$$

 $\bigcirc A \rightarrow \bullet$

$$\bigcirc A \rightarrow \bullet S$$

$$\bigcirc A \rightarrow \bullet SBX$$

$$05\rightarrow \bullet$$

$$OB \rightarrow \bullet SB$$

$$\bigcirc A \rightarrow S \bullet Bx$$

$$S \rightarrow A (S)B \mid \varepsilon$$

 $A \rightarrow S \mid SBx \mid \varepsilon$
 $B \rightarrow SB \mid y$

Which of the followings are true for the initial state of the SLR(1) parsing automaton from the last question? [Choose all that apply]

```
S 
ightarrow A (S)B | \epsilon

A 
ightarrow S | SBx | \epsilon

) The state has a reduce-reduce conflict on input x. B 
ightarrow SB | y
```

- The state has shift-reduce conflict on transition S.
- The state has a reduce-reduce conflict on transition S.
- The state has a shift-reduce conflict on input x.
- The state has a reduce-reduce conflict on input (.

Consider the following grammar:

This grammar is:

- LL(1) but not SLR(1)
- SLR(1) but not LL(1)
- Not SLR(1) or LL(1)
- Both LL(1) and SLR(1)

 $S \rightarrow Ab \mid Bc$

 $A \rightarrow a B \mid \epsilon$

 $B \rightarrow bA \mid \varepsilon$