NAME: SYED MUZZAMIL WASEEM

SID: 11067 CID: 113083

ASSIGNMENT # 01 (MACHINE LEARNING)

1- Derive equations for Gradient Descent by using Linear Regression cost function.

2- Follow above steps and run the above code to get optimized parameters for Linear Regression by using Gradient Descent. Print the optimized parameters and visualizations and attach in your file.

LINEAR REGRESSION BY USING GRADIENT DESCENT

CODE:

1

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

data = pd.read_csv('C:/Users/muxxa/Downloads/ex1data1.txt', names=['population', 'profit'])

```
print(data.tail())
print(data.head())
X_df = pd.DataFrame(data.population)
y_df = pd.DataFrame(data.profit)
m = len(y_df)
plt.figure(figsize=(10, 8))
plt.plot(X_df.values, y_df.values, 'kx')
plt.xlabel('Population of City in 10,000s')
plt.ylabel('Profit in $10,000s')
plt.title('Profit vs. Population')
plt.show()
iterations = 1000
alpha = 0.01
X_df['intercept'] = 1
X = np.array(X_df)
y = np.array(y_df).flatten()
theta = np.array([0, 0])
def cost_function(X, y, theta):
  m = len(y)
  hypothesis = X.dot(theta)
  J = np.sum((hypothesis - y) ** 2) / 2 / m
  return J
print("Cost before Gradient Descent:", cost_function(X, y, theta))
print(X)
def gradient_descent(X, y, theta, alpha, iterations):
  cost_history = [0] * iterations
  for iteration in range(iterations):
    hypothesis = X.dot(theta)
    loss = hypothesis - y
    gradient = X.T.dot(loss) / m
```

```
theta = theta - alpha * gradient
    cost = cost_function(X, y, theta)
    cost_history[iteration] = cost
  return theta, cost_history
gd = gradient_descent(X, y, theta, alpha, iterations)
print("Optimized Parameters (theta):", gd[0])
best_fit_x = np.linspace(0, 25, 20)
best_fit_y = gd[0][1] + gd[0][0] * best_fit_x
plt.figure(figsize=(10, 6))
plt.plot(X_df['population'], y_df['profit'], 'kx')
plt.plot(best_fit_x, best_fit_y, '-')
plt.axis([0, 25, -5, 25])
plt.xlabel('Population of City in 10,000s')
plt.ylabel('Profit in $10,000s')
plt.title('Profit vs. Population with Linear Regression Line')
plt.show()
```

CODE + OUTPUTS:

3- By using the parameters obtained in above question, manually solve linear regression hypothesis equation for x=3.7 and x=7.4 by showing all necessary steps.

1A	NSWER 03:	1	12	7.5	,
Given that			JAC.	3	
2(i=3.7	b1=1.127	- 1 project - 1	1		
2=7-4	bo = 3.24				.5.
For 21=3.7		法性 生成	- 110	2)	2
Y1= b0+ b1x1			200		_
= -3.24+ (1		11 1 27	<u>. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u>		
=-3.24+4.10	69	<u> La Lina de la composicion della composicion de</u>		£ 1	-
Y1=0.929	1			ž 1.	
For 2=7.4			O GUALITY		
Y2 = b0+ b1x2		1			
=-3.24+(1.127) (7.4)			1	
=-3.24+8	3398		15° _ = 100	-	
$V_2 = 5.0998$	30 13	şî			
	,			- is	
		9 E			
		1.1	y v	1	

4- Search a dataset for Linear Regression and apply same algorithm on your dataset. Print the optimized parameters and visualizations and attach in your file. Also attach the code of this part in your file.

i- LOGISTIC REGRESSION USING DIFFERENT DATASET:

Reason for using Different dataset: The dataset provided appears to have two columns, which could be potential features, but there is no indication of a binary target variable. This dataset is downloaded from Kaggle and dataset file is attached in Zip file.

CODE:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

```
%matplotlib inline
def sigmoid(z):
  return 1/(1 + np.exp(-z))
def cost_function(X, y, theta):
  m = len(y)
  hypothesis = sigmoid(X.dot(theta))
  J = (-y * np.log(hypothesis + 1e-9) - (1 - y) * np.log(1 - hypothesis + 1e-9)).mean()
  return J
def gradient_descent(X, y, theta, alpha, iterations):
  m = len(y)
  cost_history = []
  for iteration in range(iterations):
    hypothesis = sigmoid(X.dot(theta))
    loss = hypothesis - y
    gradient = X.T.dot(loss) / m
    theta = theta - alpha * gradient
    cost = cost_function(X, y, theta)
    cost_history.append(cost)
  return theta, cost_history
data = pd.read_csv('C:/Users/muxxa/Downloads/Logistic_Regression_dataset.txt',
names=['population', 'profit', 'label'])
X_df = pd.DataFrame(data.population)
y_df = pd.DataFrame(data.label)
m = len(y_df)
X_df['intercept'] = 1
X = np.array(X_df)
y = np.array(y_df).flatten()
theta = np.array([0, 0])
alpha = 0.01
```

```
iterations = 1000

gd = gradient_descent(X, y, theta, alpha, iterations)

print("Optimized Parameters (theta):", gd[0])

best_fit_x = np.linspace(0, 25, 20)

best_fit_y = sigmoid(gd[0][1] + gd[0][0] * best_fit_x)

plt.figure(figsize=(10, 6))

plt.plot(X_df['population'][y == 1], y[y == 1], 'ro', label='Positive Class')

plt.plot(X_df['population'][y == 0], y[y == 0], 'bo', label='Negative Class')

plt.plot(best_fit_x, best_fit_y, '-', label='Logistic Regression Line')

plt.xlabel('Population of City in 10,000s')

plt.ylabel('Profit (1 for positive, 0 for negative)')

plt.title('Logistic Regression: Profit vs. Population')

plt.legend()

plt.show()
```

CODE + OUTPUTS:

In Above Output Regression Line isn't closest to its datapoints in this modified code, we utilize scikit-learns Logistic Regression class, which handles feature scaling. We also plot the decision boundary based on the trained logistic regression model directly, which avoids the need for custom gradient descent. This should result in a better fit of the logistic regression line to the data points.

CODE+OUTPUT:

5- Implement KNN for the given Dataset.

```
CODE:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
file_path = 'C:/Users/muxxa/Downloads/ex1data1.txt'
df = pd.read_csv(file_path, header=None, names=['X1', 'Y'])
def euclidean_distance(point1, point2):
  return np.sqrt(np.sum((point1 - point2) ** 2))
def knn_regression(X_train, y_train, X_test, k=3):
  y_pred = []
  for test_point in X_test:
    distances = [euclidean_distance(train_point, test_point) for train_point in X_train]
    k_indices = np.argsort(distances)[:k]
    k_nearest_targets = y_train[k_indices]
    y_pred.append(np.mean(k_nearest_targets))
  return np.array(y_pred)
```

```
num_samples = len(df)
train_size = int(0.8 * num_samples)
indices = np.random.permutation(num_samples)
train_indices = indices[:train_size]
test_indices = indices[train_size:]
X = df[['X1']]
y = df['Y']
X_train, X_test = X.values[train_indices], X.values[test_indices]
y_train, y_test = y.values[train_indices], y.values[test_indices]
k_value = 3
y_pred = knn_regression(X_train, y_train, X_test, k=k_value)
mse = np.mean((y_test - y_pred) ** 2)
print(f'Mean Squared Error (MSE) for k={k_value}: {mse}')
plt.figure(figsize=(8, 6))
plt.scatter(X_train, y_train, color='blue', label='Training Data')
plt.scatter(X_test, y_test, color='green', label='Testing Data')
plt.scatter(X_test, y_pred, color='red', label='Predictions')
plt.xlabel('X1')
plt.ylabel('Y')
plt.title(f'KNN Regression (k={k_value}), MSE: {mse:.2f}')
plt.legend()
plt.show()
```

CODE+OUTPUT:

