CHAPITRE VII - 2^{ème} PARTIE : CINÉTIQUE DES PARTICULES 2^{ÈME} LOI DE NEWTON AVEC FROTTEMENT RÉSOLUTION DES PROBLÈMES SUGGÉRÉS

Problème №	7.12
Une rondelle	pesant 1,1 N glisse sur une distance de 15 mètres avant de s'arrêter.
	positive 1,1 14 grisso sur une distance de 18 metres d'une de 5 différen.
	ritesse initiale de la rondelle est de 6,1 m/s, calculez la force de frottement entre la
	le et la glace ;
b) Que v	aut le coefficient de frottement cinétique ?
<u>Problème N⁰</u>	7.13
À l'aide d'un	e corde faisant un angle de 15° au-dessus de l'horizontale, un homme tire une caisse
de 68 kg sur ı	ın plancher.
2) Si la (coefficient de frottement statique est de 0,5, calculez la tension requise pour mettre
· ·	se en mouvement ;
	= 0,35 et que la tension est 350 N, quelle est l'accélération ?
Duahlàna N ⁰	7.14
<u>Problème N⁰</u>	/.14
Une force hor	rizontale P de 50 N presse un bloc de 20 N contre un mur comme illustré à la figure
	ient de frottement statique entre le mur et le bloc vaut 0,6 et le coefficient de
frottement cir	étique est de 0,4. On suppose que la vitesse initiale est nulle.
	$P \longrightarrow$
	Figure 7
a) Le blo	c bougera-t-il ?
b) Quelle	force le mur exerce-t-il sur le bloc ?

5- auto reletiza 5-2-lei nen -Pott = maa (+ = TB = + My 1/4 + WO = (Wa + Wa) C WB+13= NB 40 Mh. N+7 = macy 2 8/ = M/N Wag + tag - No any Maring tup (a = a = 9 ma = ug S-4 Lque alge lv1+ aug -us ++ = + (-as) 8-1 Systeme Block a = - ly wr + ws & D 6- Peso syst b (*,ā²) -FA ++ = maa. DCL $m_{\mu} = \frac{v_{+}}{g}$ = L = Lo his Top Bupp nin a = -0,2.84+33 74 ú4 = 90 a= 1,961 n/62 = en -Whet- - he ag =a([[] .

Problème N^o 7.15

À la figure 8, le bloc B pèse 710 N. Le coefficient de frottement statique entre le bloc et la table est de 0,25. Quel doit être le poids maximum du bloc A pour que le système reste en équilibre ?

Figure 8

Problème Nº 7.16

La figure 9 représente des blocs A et B de 44 N et de 22 N respectivement.

- a. Quel doit être le poids minimum de C pour que l'équilibre du système soit conservé avec $\mu_s = 0,2$?
- b. On enlève subitement le bloc C. Quelle est l'accélération du bloc A si μ_k = 0,2 entre A et la table ?

Figure 9

Problème N^o 7.17

Une masse est soutenue par un câble (angle θ = 40°) de 2 m et une corde horizontale tel qu'illustré à la figure 10. On coupe la corde. Déterminez :

Figure 10

- a) la tension dans le câble avant qu'on coupe la corde;
- b) la tension dans le câble tout juste après la coupe;

Problème Nº 7.18

Une masse suspendue à un câble tourne à vitesse constante au bout d'un poteau comme indiqué à la figure 11. Si θ = 40°,

- a) Calculez la tension dans le câble;
- b) Calculez la vitesse de la masse.

Figure 11

Problème N^o 7.19

Un avion effectue un cercle à une vitesse constante de 180 m/s tel qu'illustré à la figure 12. Quelle est la force exercée par le siège sur le pilote (m = 85 kg) en A et B?

Note : cette force est appelée le poids apparent du pilote.

Figure 12

Problème Nº 7.20

Une voiture (m = 2000 kg) met brusquement les freins (les roues bloquent) au fond d'une courbe de rayon 150 m, tel qu'illustré à la figure 13. Le coefficient de frottement entre les pneus et le sol est $\mu_k = 0.7$. Sa vitesse est de 100 km/h à ce moment.

Quelle est l'accélération tangentielle de la voiture à ce moment?

Figure 13

CHAPITRE VII - 2^{ème} PARTIE : CINÉTIQUE DES PARTICULES 2^{ÈME} LOI DE NEWTON AVEC FROTTEMENT RÉPONSES DES PROBLÈMES SUGGÉRÉS

	REFUNSES DES FRUDLEMES SUGGERES
Problème Nº 7.12 :	Rép. :
Tropicine iv 7.12.	ιτιρ. ·
	a) F = 0.14 N et b) $\mu_k = 0.13$
	· ·
Problème Nº 7.13 :	Rép. :
	NT 204 5 N
	a) $T = 304,5 \text{ N}$ et b) $a = 2,00 \text{ m/s}^2$
Problème N° 7.14 :	Rép.:
110bleme 1 7.14.	Acp
	$F = 20 \text{ N} < F_{\text{max}} \implies \text{Le bloc est dans un état statique}$
	$R_{\text{mur/bloc}} = \sqrt{20^2 + 50^2} = 53,85 \implies R_{\text{mur/bloc}} = 53,85 \text{ N}$
	$R_{\text{mur/bloc}} = \sqrt{20 + 30} = 33,03 \Rightarrow R_{\text{mur/bloc}} = 33,03 \text{ N}$
Problème Nº 7.15:	Rép. :
	$T = 177.5 \text{ N} \implies W_A = 177.5 \text{ N}$
<u>Problème Nº 7.16 :</u>	Rép. :
	a) $W_C = 66 \text{ N}$ et b) $a = 1.96 \text{ m/s}^2$
<u>Problème Nº 7.17 :</u>	Rép.:
Trobleme N 7.17.	жер
	a) $T = 12.81 \text{ N}$
	b) T = 7,5 N
<u>Problème Nº 7.18 :</u>	Rép. :
	a) $T = 12.81 \text{ N}$
	b) $v = 3.55 \text{ m/s}$
Problème Nº 7.19 :	Dán •
1 1 UDICHIC N 1.19 ;	Rép.:
	a) $F_{S/A} = 4276 \text{ N}$
	b) $F_{S/B} = 2609 \text{ N}$
	, and
<u>Problème Nº 7.20 :</u>	Rép.:

$a_t = 10,468 \text{ m/s}^2$	(\leftarrow))
•	` ′	

$a_t = 10,468 \text{ m/s}^2 \left(\leftarrow \right)$