

Dirección de Docencia e Innovación Educativa

1. Datos generales de la asignatura

Nombre de la asignatura:	Estructura cerámica	
Clave de la asignatura:	NMF-2001	
SATCA ¹ :	3-2-5	
Carrera:	Ingeniería en Nanotecnología	

2. Presentación

Caracterización de la asignatura

Esta asignatura de especialidad pretende dotar al estudiante de conocimientos de cristalografía necesarios para entender la relación existente entre la composición química, estructura cristalina y propiedades físicas en sólidos inorgánicos.

Para poder entender esta asignatura, se requiere de los conocimientos y las competencias alcanzadas en las asignaturas de Ciencias e Ingeniería de los Materiales, Síntesis de los nanomateriales y caracterización de los nanomateriales.

Esta asignatura hará hincapié en entender y comprender las distintas estructuras-tipo, las operaciones utilizadas para comprender los grupos puntuales y espaciales de simetría y los defectos más comunes en sólidos cristalinos.

Intención didáctica

En la primera unidad se aborda lo referente a relación que presenta la estructura cristalina, composición química, propiedades y aplicaciones, así como un breve recordatorio de la clasificación de los materiales convencionales y los funcionales.

La unidad dos se enfoca en un breve recordatorio acerca de la celda unidad, sistemas cristalinos y parámetros importantes estructurales.

En la tercera unidad se presenta la clasificación de los tipos de materiales cerámicos relacionados con su respectiva estructura cristalina y número de coordinación.

En la cuarta unidad se aborda lo referente al análisis estructural de los sistemas cristalinos dando a conocer la definición de los sistemas cristalinos, notación, operaciones de simetría, direcciones en celda unidad, índices de Miller y planos cristalográficos.

La última unidad se enfoca en las imperfecciones estructurales que presentan los materiales cerámicos, así como los factores que generan estas imperfecciones.

3. Participantes en el diseño y seguimiento curricular del programa

Dirección de Docencia e Innovación Educativa

Lugar y fecha de elaboración o	Participantes	Observaciones	
revisión			
	D. en C. Saúl Gálvez Barboza		
Instituto Tecnológico Superior de Ciudad Hidalgo, 10 de Diciembre del 2019.	INAN. Juan Manuel Luque Murillo	Definición de los programas de estudio de especialidad de la Carrera de Ingeniería en	
	M. en C. Milagros Acosta Navarrete	Nanotecnología.	

4. Competencia (s) a desarrollar

Competencia (s) general de la asignatura

Conocer y comprender información cristalográfica y fenómenos que la afectan perteneciente a los materiales cerámicos.

Competencia (s) específicas

Reflexionar y comprender los distintos reordenamientos atómicos que presentan los materiales cerámicos.

Reflexionar y conocer sobre los distintos tipos de análisis y operaciones cristalográficas funcionales para los materiales cerámicos.

Conocer y comprender lo factores que generan las imperfecciones de los materiales cerámicos.

Competencia (s) genéricas

Competencias instrumentales:

- Capacidad de análisis y síntesis.
- Conocimientos básicos de la carrera.
- Conocimiento de segunda lengua.
- Comunicación oral y escrita en su propia lengua.

Competencias interpersonales:

- Capacidad crítica y auto crítica.
- Trabajo en equipo.
- Habilidades interpersonales.

Competencias sistemáticas:

- Capacidad de aplicar conocimientos en la práctica.
- Habilidad de investigación.
- Capacidad de aprender.

5. Temarios

No	Temas	Subtemas
1.		1.1. Ciencia e ingeniería de materiales 1.2. Clasificación de los materiales
		1.3. Clasificación funcional de los materiales

TECNOLÓGICO NACIONAL DE MÉXICO

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

2.	Estructura cristalina	2.1. Introducción		
	Estructura cristama	2.2. Modelo de esferas empacadas		
		2.3. Celda unitaria		
		2.4. Sistemas cristalinos		
		2.5. Relación entre radios catión/anión		
3.	Clasificación de estructuras cristalinas de	3.1. Agrupamiento iónico y las reglas de Pauli		
3.	acuerdo con el número de coordinación	, ,		
	acuerdo con el número de coordinación	3.2. Compuesto A:X 1:1 3.2.1. Estructura NaCl		
		3.2.2. Estructura NaCl 3.2.2. Estructura del CsCl		
		3.2.3. Estructura del ZnS		
		3.3. Compuesto A:X 1:2		
		3.3.1. Estructura de la CaF ₂		
		3.4. Compuestos A:X 2:3		
		3.3.2. Estructura del corindón		
		3.5. Compuestos AB_2X_4		
		3.5.1. Estructura espinela		
		3.6. Compuestos ABX ₃		
		3.7. Silicatos		
		3.8 Estructura de vidrios		
4.	Análisis estructural de los sistemas	4.1. Sistemas cristalinos de Bravais		
	cristalinos	4.1.1. Definición de un sistema cristalino		
		4.1.2. Notación de sistemas cristalinos		
		4.2. Operaciones de simetría		
		4.2.1. Reflexión		
		4.2.2. Rotación		
		4.2.3. Inversión		
		4.2.4. Rotación-Inversión		
		4.3. Direcciones en la celda unitaria		
		4.4. Índices de Miller y planos cristalográficos		
		4.5. Grupos espaciales y puntuales		
5.	Imperfecciones estructurales de los	5.1. Clasificación de los defectos		
	cerámicos	5.2. Soluciones sólidas		
		5.3. Defectos puntuales		
		5.3.1. Defectos tipo Frenkel		
		5.3.2. Defectos tipo Schottky		
		5.4. Asociación de defectos		
		5.5. Estructura electrónica		
		5.6. Sólidos no estequiométricos		
		5.7. Defectos lineales (Dislocaciones)		
L		5 2 Stockes initiates (Distocuetones)		

6. Actividades de aprendizaje de los temas

1. Introducción			
Competencias	Actividades de aprendizaje		

TECNOLÓGICO NACIONAL DE MÉXICO

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

Específica (s)

 Comprende las diferencias entre los materiales y reflexiona sobre sus propiedades en función al ordenamiento y naturaleza atómica de su estructura.

Genéricas

- Aplicar sus conocimientos de química general, química orgánica, física, ciencia e ingeniería de los materiales, síntesis y caracterización de materiales y Síntesis de nanomateriales.
- Demostrar capacidad de análisis y síntesis.
- Investigar usando información proveniente de fuentes diversas.
- Capacidad de resolver problemas.
- Asumir una capacidad crítica y autocrítica.
- Participar en trabajos por equipo.
- Interesarse en la búsqueda de alternativas de solución.
- Desarrollar un compromiso ético.
- Mostrar habilidad para trabajar en forma autónoma.
- Asumir una actitud creativa.

- Investigar y discutir los conceptos relacionados a la ciencia e ingeniería de los materiales.
- Realizar cuadros sinópticos y comparativos sobre los distintos tipos de materiales.
- Realizar una investigación en fuentes confiables sobre la funcionalidad de los materiales y su clasificación para exponerlo en equipo.
- Discutir las distintas propiedades de los materiales en base su estructura.

2. Estructura cristalina

Competencias

Especifica (s)

- Comprende las diferencias entre un material amorfo y un cristalino, y reflexiona sobre el acomodo espacial de los átomos.
- Determina las propiedades de los materiales cristalinos con base en su estructura de cristal.

Genérica (s)

- Capacidad de análisis y síntesis.
- Indagación científica.
- Demostrar capacidad de análisis y síntesis.
- Investigar usando información proveniente de fuentes diversas.
- Capacidad de resolver problemas.
- Asumir una capacidad crítica y autocrítica.
- Participar en trabajos por equipo.
- Interesarse en la búsqueda de alternativas de solución.

Actividades de aprendizaje

- Investigar los diferentes arreglos o distribuciones atómicos o iónicos de la materia.
- Exponer en equipos los conceptos de Red, base, celdas unitarias y estructuras cristalinas.
- Resolver problemas de estructura cristalina.
- Buscar en internet y/o realizar en software proyecciones de redes cristalinas.
- Investigar y discutir cuales son los parámetros de red y ángulos interaxiales.
- Realizar una lista de materiales alotrópicos y polimórficos y sus diferentes formas cristalinas.

Dirección de Docencia e Innovación Educativa

•	Desarro.	llar un	compror	niso	ético.
---	----------	---------	---------	------	--------

- Mostrar habilidad para trabajar en forma autónoma.
- Asumir una actitud creativa.

- Realizar un mapa conceptual sobre el número de coordinación y el factor de empaquetamiento.
- Generar un mapa mental sobre las estructuras cristalinas de los materiales iónicos.

3. Clasificación de estructuras cristalinas de acuerdo con el número de coordinación Actividades de Aprendizaje **Competencias** Especifica (s) Identifica y comprende las diferentes Investigar las formas en que se agrupan formas en que los sólidos iónicos se los sólidos cristalinos iónicos. agrupan y reflexiona sobre las diferentes estructuras cristalinas de compuestos que siguen las reglas de Pauli. iónicos. Genérica (s) • Generar ejercicios sobre las distintas • Capacidad de análisis y síntesis.

- Indagación científica. • Demostrar capacidad de análisis y síntesis.
- Investigar usando información proveniente de fuentes diversas.
- Capacidad de resolver problemas.
- Asumir una capacidad crítica y autocrítica.
- Participar en trabajos por equipo.
- Interesarse en la búsqueda de alternativas de solución.
- Desarrollar un compromiso ético.
- Mostrar habilidad para trabajar en forma autónoma.
- Asumir una actitud creativa.

- Exponer las distintas reglas de Pauli para el agrupamiento de los compuestos
- estructuras de compuestos iónicos.
- Utilizando un software diseñar visualizar las diferentes estructuras de compuestos iónicos cristalinos.
- Realizar un mapa conceptual sobre la energía reticular y los radios iónicos.

4. Análisis estructural de los sistemas cristalinos

Competencias Actividades de Aprendizaje

Especifica (s)

- Identifica los planos y direcciones compactos de las estructuras de cristal.
- Identifica y utiliza el índice de Miller de las direcciones y planos en un sistema coordinado de cristal.

Genérica (s)

- Capacidad de análisis y síntesis.
- Indagación científica.
- Demostrar capacidad de análisis y síntesis.
- Investigar usando información proveniente de fuentes diversas.

- Investigar las redes de Bravais y la celda unitaria.
- Exponer en equipo los sistemas cristalinos.
- Elaborar maquetas sobre los sistemas cristalinos.
- Resolver problemas sobre los puntos de red v los números de iones en las distintas estructuras.
- Investigar y generar una discusión sobre los puntos, direcciones y planos de la celda unitaria.

Dirección de Docencia e Innovación Educativa

- Capacidad de resolver problemas.
- Asumir una capacidad crítica y autocrítica.
- Participar en trabajos por equipo.
- Interesarse en la búsqueda de alternativas de solución.
- Desarrollar un compromiso ético.
- Mostrar habilidad para trabajar en forma autónoma.
- Asumir una actitud creativa.

- Discutir los conceptos de distancia repetitiva, densidad lineal y fracción de empaquetamiento.
- Realizar ejercicios sobre la construcción de direcciones y planos en la celda unitaria.
- Investigar sobre las técnicas de análisis de estructuras cristalinas.

5. Imperfecciones estructurales de los cerámicos

Competencias Actividades de Aprendizaje

Especifica (s)

- Identifica, comprende y analiza las distintas imperfecciones o defectos que se presentan en los materiales cerámicos clasificándolo cada defecto para describir la influencia de estas alteraciones estructurales en sus propiedades.
- Identifica el sistema de deslizamiento probable de una estructura cristalina determinada.

Genérica (s)

- Capacidad de análisis y síntesis.
- Indagación científica.
- Demostrar capacidad de análisis y síntesis.
- Investigar usando información proveniente de fuentes diversas.
- Capacidad de resolver problemas.
- Asumir una capacidad crítica y autocrítica.
- Participar en trabajos por equipo.
- Interesarse en la búsqueda de alternativas de solución.
- Desarrollar un compromiso ético.
- Mostrar habilidad para trabajar en forma autónoma.
- Asumir una actitud creativa.

- Investigar en diferentes fuentes confiables los defectos que se presentan en las estructuras cerámicas.
- Exponer los defectos puntuales que pueden contener un material cristalino cerámico.
- Desarrollar un esquema que explique la forma en que los limites de grano otorgan mayor resistencia a los materiales policristalinos.
- Elaborar un mapa mental sobre las soluciones sólidas.
- Elaborar maquetas que representen los distintos tipos de defectos puntuales y dislocaciones.
- Investigar la importancia de las imperfecciones en los cerámicos y su influencia en la estructura electrónica.

7. Prácticas

Realizar la Síntesis de diferentes compuestos cerámicos evaluando su estructura cristalina y sus fases utilizando Difracción de Rayos X, además de calcular los parámetros de red y el tamaño de cristalita con el refinamiento.

Dirección de Docencia e Innovación Educativa

8. Proyecto de asignatura

Al finalizar el semestre el alumno deberá de entregar un proyecto en el que se desarrolle un producto innovador aplicando las propiedades de los materiales cerámicos.

9. Evaluación por competencias

- Exámenes escritos
- Tareas
- Reporte de prácticas
- Viaje de práctica
- Participación en clase
- Exposición en clase
- Resultados de investigación

10. Fuentes de información

- 1. ELEMENTS OF X-RAY DIFFRACTION, B. D. CULLITY, Addison-Wesley
- 2. INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY, 5TH EDITION, Th. Hahn (Editor), Kluwer Academic Publishers, 2002.
- 3. CRYSTALLOGRAPHY AND CRYSTAL DEFECTS, A. Kelly and G. W. Groves, Longman Group Ltd., 1970.
- 4. AN INTRODUCTION TO CRYSTAL CHEMISTRY, R. C. Evans, Cambridge University Press, 1964.
- 5. STRUCTURAL INORGANIC CHEMISTRY, A. F. Wells, Oxford University Press, 1962.
- 6. BASIC CRYSTALLOGRAPHY, J. J. Rousseau, John Wiley and Sons, 1998.
- 7. STRUCTURE AND BONDING IN CRYSTALLINE MATERIALS, G. S. Rohrer, Cambridge University Press, 2001.