

# Derived RV probability models

Given X and  $f_X(x)$ , find the PDF of Y = g(X)

1. Find CDF of Y;  $P[Y \le y]$  by plugging Y = g(x)

2. Obtain PDF of Y as  $f_Y(y) = \frac{dF_Y(y)}{dy}$ 

 $F_Y(y) = F_X(y-b)$  and  $f_Y(y) = f_X(y-b)$ 

Constant multiplication transformation: If Y = aX, we have

For 
$$a > 0$$
:  $F_Y(y) = F_X\left(\frac{y}{a}\right)$ ,  $f_Y(y) = \frac{1}{a}f_X\left(\frac{y}{a}\right)$   
For  $a < 0$ :  $F_Y(y) = 1 - F_X\left(\frac{y}{a}\right)$ ,  $f_Y(y) = -\frac{1}{a}f_X\left(\frac{y}{a}\right)$ 

General linear transformation: If Y = aX + b, we have

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Quadratic transformation: If  $Y = aX^2 + b$ , where a > 0,

$$f_Y(y) = f_X\left(\sqrt{\frac{y-b}{a}}\right) \times \frac{1}{2a\sqrt{\frac{y-b}{a}}} + f_X\left(-\sqrt{\frac{y-b}{a}}\right) \times \frac{1}{2a\sqrt{\frac{y-b}{a}}}$$

How to generate RV Y of desired distribution  $F_Y(y)$ :

- 1. Generate a RV  $X \sim \text{Uniform}(0, 1)$
- Generate Y by plugging X into  $Y = F_v^{-1}(X)$ .  $X \sim U(0,1) \rightarrow F_Y^{-1}(\cdot) \rightarrow Y$  with CDF  $F_Y(y)$

## Pairs of Random Variables

Bivariate RV:  $S_{X,Y} = \{(x,y) | \zeta \in S, X(\zeta) = x \text{ and } Y(\zeta) = y\}$ 

Joint CDF:  $F_{X,Y}(x,y) = P[X \le x, Y \le y]$ 

Properties of joint CDF:

- $a) \quad 0 \le F_{X,Y}(x,y) \le 1$
- b)  $F_X(x) = F_{X,Y}(x, \infty)$
- c)  $F_Y(y) = F_{X,Y}(\infty, y)$
- d)  $F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$
- e)  $F_{X,Y}(\infty,\infty) = P[X \le \infty, Y \le \infty] = 1$

f) If  $x_1 \le x_2$  and  $y_1 \le y_2$ , then  $F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2)$ Means that  $F_{X,Y}(x,y)$  is non-decreasing in the "northeast" direction

Joint PMF for discrete RVs X and Y:  $p_{X,Y}(x,y) = P[X = x, Y = y]$ Properties of joint PMF:

- a)  $0 \le p_{X,Y}(x,y) \le 1$  for all  $(x,y) \in S_{X,Y}$
- b)  $\sum \sum_{(x,y)\in S_{X,Y}} p_{X,Y}(x,y) = 1$
- c) When  $(X,Y) \in B$ , we say event B occurs and

$$P[B] = P[(X,Y) \in B] = \sum_{(x,y) \in B} p_{X,Y}(x,y)$$

# Marginal PMF:

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y), \qquad p_Y(y) = \sum_{x \in S_X} p_{(X,Y)}(x,y)$$
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Joint PDF:  $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv$ ,  $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$ 

Some properties of joint PDF:

- a)  $P[x_1 < X \le x_2, y_1 < Y \le y_2] = F_{X,Y}(x_2, y_2) F_{X,Y}(x_2, y_1) F_{X,Y}(x_2, y_2)$  $F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)$
- b)  $f_{X,Y}(x,y) \ge 0$  for all (x,y)
- c)  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
- d)  $P[B] = \iint_{(x,y)\in B} f_{X,Y}(x,y) dxdy$

Function of two RVs, when W = g(X,Y);

PMF:  $p_W(w) = \sum \sum_{\{(x,y)|g(x,y)=w\}} p_{X,Y}(x,y)$ 

CDF: 
$$F_W(w) = \int \int_{(x,y) \in \{g(x,y) \le w\}} f_{X,Y}(x,y) dx dy$$
,  $f_W(w) = \frac{dF_W(w)}{dw}$ 

CDF of W = max(X,Y):  $F_W(w) = \int_{-\infty}^w \int_{-\infty}^w f_{X,Y}(x,y) dx dy$ 

Expected value (discrete):  $E[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x,y) p_{X,Y}(x,y)$ Expected value (continuous):  $E[W] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$ 

Another theorem:

 $E[g_1(X,Y) + \dots + g_n(X,Y)] = E[g_1(X,Y)] + \dots + E[g_n(X,Y)]$ 

#### Covariance of two RVs

Covariance:  $Cov[X,Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$ 

Variance rule thing: Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

Correlation coefficient:  $\rho_{X,Y} = \frac{Cov[X,Y]}{\sigma_X\sigma_Y}$ , it is always  $-1 \le \rho_{X,Y} \le 1$ 

Constant addition transformation: If Y = X + b, we have  $\rho_{X,Y} = +1$  is strong positive relationship, -1 is strong negative, 0 is uncorrelated

### Conditioning and Independent RVs

Conditional joint PMF: 
$$p_{X,Y|B}(x,y) = \begin{cases} \frac{p_{X,Y}(x,y)}{P[B]}, & (x,y) \in B \\ 0, & otherwise \end{cases}, \sum \sum_{(x,y) \in B} p_{X,Y|B}(x,y) = 1$$

Marginal PMFs: 
$$p_{X|B}(x) = \sum_{y \in S_y} p_{X,Y|B}(x,y)$$
,  $p_{Y|B}(y) = \sum_{x \in S_X} p_{X,Y|B}(x,y)$ 

Conditional joint PDF: 
$$f_{X,Y|B}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[B]}, (x,y) \in B \\ 0, & otherwise \end{cases}$$
,  $\int_{(x,y)\in B} f_{X,Y|B}(x,y) dx dy = 1$ 

Marginal PDFs: 
$$f_{X|B}(x) = \int_{-\infty}^{\infty} f_{X,Y|B}(x,y) dy$$
,  $f_{Y|B}(y) = \int_{-\infty}^{\infty} f_{X,Y|B}(x,y) dx$   
Conditional exp. val. discrete:  $E[W|B] = \mu_{W|B} = \sum \sum_{(x,y) \in B} g(x,y) p_{X,Y|B}(x,y)$ 

Conditional exp. val. continuous: 
$$E[W|B] = \mu_{W|B} = \int \int_{(x,y)\in B} g(x,y) f_{X,Y|B}(x,y) dxdy$$

Variance conditional: 
$$Var[W|B] = \sigma_{W|B}^2 = E[W^2|B] - (E[W|B])^2$$

Another conditional PMF:  $p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y) = p_{Y|X}(y|x)p_X(x)$ 

Another conditional PDF:  $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$ 

Another expected value discrete:  $E[g(X,Y)|Y=y] = \sum_{x \in S_X} g(x,y) p_{X|Y}(x|y)$ 

Another expected value continuous:  $E[g(X,Y)|Y=y] = \int_{-\infty}^{\infty} g(x,y) f_{X|Y}(x|y) dx$ Independence, iff:  $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ ,  $f_{X,Y}(x,y) = f_X(x)f_Y(y) = F_X(x)F_Y(y)$ 

Note: iff = if and only if

Bivariate Gaussian RVs

are uncorrelated iff X

and Y are independent

Important stuff to remember about independence:

- a) E[g(X)h(Y)] = E[g(X)]E[h(Y)]
- E[XY] = E[X]E[Y]
- c) Cov[X,Y]=0
- Var[X + Y] = Var[X] + Var[Y]
- E[X|Y = y] = E[X], E[Y|X = x] = E[Y]

#### Bivariate Gaussian

Bivariate standard Gaussian:  $f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-(x^2-2\rho xy+y^2)/[2(1-\rho^2)]}$ 

Marginal PDFs:  $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$ 

General bivariate gaussian RV

$$f_{X,Y}(x,y) = \frac{exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}}{2(1-\rho^2)\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}}$$

Conditional (You can switch around X and Y, same thing):



Consequently, given X=x, the conditional expected value and variance  $VAR[Y|X=x] = \tilde{\sigma}_2^2$  $\mathsf{E}[Y|X=x] = \tilde{\mu}_2(x)$ 

# Miscellaneous miscellanea

PDF of 
$$W = X + Y$$
:  $f_W(w) = \int_{-\infty}^{\infty} f_{X,Y}(x, w - x) dx = \int_{-\infty}^{\infty} f_{X,Y}(w - y, y) dy$ 

When independent (same for y):  $\int_{-\infty}^{\infty} f_{X,Y}(x, w - x) dx = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$ Characteristic function (CHF):  $\Phi_X(\omega) = E[e^{j\omega x}] = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) dx$ 

Inverse Fourier transform:  $f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(\omega) e^{-j\omega x} d\omega$ 

Moment theorem:  $\frac{1}{i^n} \frac{d^n}{d\omega^n} \Phi_X(\omega)|_{\omega=0}$ 

When Z = X + Y:  $\Phi_Z(\omega) = \Phi_X(\omega)\Phi_Y(\omega)$ 

Central Limit Theorem, where  $Z_n=\frac{S_n-n\mu}{\sigma\sqrt{n}}$ , also  $E[Z_n]=0$ ,  $Var[Z_n]=1$ :

$$\lim_{n \to \infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx$$

### Parameter estimation

Bias:  $B = E[\hat{\theta}] - \theta$ , unbiased if B = 0

Consistency:  $\lim_{n\to\infty} P[|\hat{\theta}_n - \theta| > \epsilon] = 0$  for  $\epsilon > 0$ 

Variance:  $\sigma_{\hat{\theta}}^2 = E\left[\left(\hat{\theta} - E\left[\hat{\theta}\right]\right)^2\right]$ 

Mean squared error:  $MSE(\hat{\theta}) = E |(\hat{\theta} - \theta)^2|$ 

Efficiency rule: better if var is lower. Minimum var is MVUE Minimum mean squared error:  $MSE(\hat{\theta}_{MMSE}) \leq MSE(\hat{\theta}_{0})$ 

Maximum likelihood estimation:  $\hat{\theta}_{ML} = \max L(\theta)$  or  $\max \ln L(\theta)$