category	decomination	called	symbol	mloim tout	natural	coherent	base	derived	0000	geometrical	I somewhat
category	description			plain text				derived	core		l remarks
	plane angle	rad is called 'radian'	rad	rad	0	0	0	_		0	
base units that are natural units		rad ² is called 'steradian'	rad ²	rad^2	0	0	_	0		0	
	logarithm of Napier's constant	'naper'	naper	naper	0	0	0				
	:	substance name	substance symbol	substance symbol						1	The SI notes "when the mole is used, the elementary entities must be specified
	reciprocal Avogadro constant (N _A ⁻¹)	(ex.Carbon dioxide)	(ex. CO ₂)	(ex. CO_2)	0	0	0	1			and may be atoms, molecules, ions, electrons, other particles, or specified
				mol n							groups of such particles."
		or 'natural mole'	mol _n	· -							
	natural unit of impedance	'natural Ohm' or 'nohm'	Ω _n , Z _{P or} nh	O_n, Z_P or nh	0	0	0				
base units that are not natural units	harmonic meter	'harmonic meter' or 'harmon'	m _h or hm	m_h or hm		0	0		0	0	If a unit is omitted after square or cube, the unit shall be deemed to as harmonic meter.(ex. 'square(sq)' expresses 'square harmonic meter', and 'cube(cb)' expresses 'cubic harmonic meter'). A square harmonic sub meter $(=(10; ^4m_b)^2)$ is symbolized as sh^2 and sub square $(=10^4m_b^2)$ is symbolized as ssq. A cubic harmonic sub meter $(=(10; ^4m_b)^3)$ is symbolized as sh^3 and sub cube $(=10; ^4m_b^3)$ is symbolized as scb.
	harmonic second	'harmonic second' or 'nic'	s _h or nc	s_h or nc		0	0		0		
	harmonic Joule	'harmonic Joule'	$\mathbf{J_h}$	J_h		0	0				The prefix 'sensible' is added when the unit is used for equivalent dose. (ex. sensible Joule/gram[J_{sen} /g, J_{sen} /g])
	harmonic Kelvin (=10;-4°S)	'harmonic Kelvin'	K _h	K_h		0	0				
	harmonic gram	'harmonic gram' or 'looloh'	g _h or ll	g_h or ll		0		0	0		
derived units of dynamical	harmonic Watt	'harmonic Watt'	W _h	W_h		0		0			The prefix 'sensible' is added when the unit is used for luminous flux. (ex. sensible Watt[Wsen, W_sen])
quantities	harmonic Newton	'harmonic Newton'	N.	N h	1	0		0	1		
7	narmonic rewton	namonic Newton	1.4h	14_11	+				-		The prefix 'sensible' is added when the unit is used for phone pressure.
	harmonic Pascal	'harmonic Pascal'	P _h	P_h		0		0			(ex. sensible Pascal[P _{sen} , P_sen])
derived units of electro-	universal Coulomb	'universal Coulomb'	C _u	C_u		0		0			The prefix 'universal' shoud be used if the universal unit is equal to the harmonic unit.
magnetic quantities	harmonic Ampere	'harmonic Ampere'	A_h	A_h		0		0			
magnetic quantities	harmonic Ørsted	'harmonic Ørsted'	O_h	O_h		0		0			
	harmonic Gauß	'harmonic Gauß' or 'harmonic Gauss'	G_h	G_h		0		0			
	the Rydberg constant	'Rydberg'	R ∞	R_infinity	0						
defining constants	the speed of light in vacuum	'light'	c 0	c_0	0						
defining constants	the quantum of action	'quantum'	ħ	h bar	0						
	the quantum of action	quantum	,,	ii_bai							
	the Boltzmann constant	'Boltzmann'	k _B	k_B	0						
	the Boltzmann constant		k _B Ω ₁							0	
	•	'Boltzmann'	k_B Ω_1 Ω_2	k_B	0					0	
	the Boltzmann constant	Boltzmann' Ω_1 is called 'circle' or 'cycle'		k_B O_1	0						
	the Boltzmann constant total solid angle of a hypersphere	Boltzmann' Ω_1 is called 'circle' or 'cycle' Ω_2 is called 'sphere' or 'turn'	Ω_2	k_B O_1	0						
non-coherent supplementary	the Boltzmann constant	Boltzmann' $ \begin{aligned} &\Omega_1 \text{ is called 'circle' or 'cycle'} \\ &\Omega_2 \text{ is called 'sphere' or 'turn'} \\ &f_1 \text{ is called 'bit'} \end{aligned} $		k_B O_1 O_2 f_1	0 0 0						
non-coherent supplementary constants	the Boltzmann constant total solid angle of a hypersphere	Boltzmann' Ω_1 is called 'circle' or 'cycle' Ω_2 is called 'sphere' or 'turn' f_i is called 'bit' f_d is called 'figure' $(d = \log 12 / \log 2)$	Ω_2	k_B O_1 O_2 f_1 f_d	0 0 0						
	the Boltzmann constant total solid angle of a hypersphere	Boltzmann' Ω _i is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' 1̄ ₁ is called 'bit' 1̄ _d is called 'figure' (d = log12./log2) 1̄ _k is called 'inguble' 1̄ _k is called 'byte' universal mole' with substance name	Ω_2 $\mathbf{f}_k \ (k=1,\mathbf{d},4,8,)$ $\mathbf{mol}_u \ substance \ symbol$	k B O_1 O_2 f_1 f_d f_8 mol_u substance symbol	0 0 0						
	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol	Boltzmann' $\Omega_1 \text{ is called 'circle' or 'cycle'}$ $\Omega_2 \text{ is called 'shere' or 'turn'}$ $f_1 \text{ is called 'bit'}$ $f_d \text{ is called 'figure' } (d = \log 12 \text{/log2})$ $f_a \text{ is called 'nibble'}$ $f_g \text{ is called 'hyte'}$ universal mole' with substance name (ex. universal mole Carbon dioxide)	Ω_2 $\mathbf{f}_k \ (k=1,\mathbf{d},4,8,)$	k_B O_1 O_2 f_1 f_d f_4 f_8	0 0 0 0 0						
	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₈ is called 'ligure' (d = log 12./log2) f ₈ is called 'nibble' f ₈ is called 'byte' 'universal mole' with substance name (ex. universal mole Carbon dioxide) electron'	Ω_2 $\mathbf{f}_k \ (k=1,\mathbf{d},4,8,)$ $\mathbf{mol}_u \ substance \ symbol$	k B O_1 O_2 f_1 f_d f_8 mol_u substance symbol	0 0 0						
	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; ²¹	Boltzmann' Ω _i is called 'circle' or 'cycle' Ω _i is called 'sphere' or 'turn' f _i is called 'bit' f _i is called 'figure' (d = log12/log2) f _i is called 'figure' (d = log12/log2) f _i is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour'	Ω_2 $\mathbf{f}_k \ (k=1,\mathbf{d},4,8,)$ $\mathbf{mol}_u \ substance \ symbol$	k B O_1 O_2 f_1 f_d f_8 mol_u substance symbol	0 0 0 0 0						If a prefix appears without any unit alone, the omitted unit shall be deemed to
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; 2 10; 2	Boltzmann' Ω_1 is called 'circle' or 'cycle' Ω_2 is called 'sphere' or 'turn' f_1 is called 'bit' f_d is called 'figure' ($d = \log 12./\log 2$) f_d is called 'nibble' ' f_d is called 'nibble' 'universal mole' with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy'	$\begin{aligned} &\Omega_2 \\ &-\mathbf{f}_k \; (k=1,d,4,8,) \\ &-\mathbf{mol}_u \; substance \; symbol \\ &(\mathrm{ex.} \; \; \mathrm{mol}_u \mathrm{CO}_2) \\ &-\mathbf{e} \\ &-\mathbf{d} \\ &-\mathbf{c} \end{aligned}$	k B O_1 O_2 f_1 f_d f_8 mol_u substance symbol	0 0 0 0 0						as Ω_1 except 'sep'.
	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10:-3	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₃ is called 'ligure' (d = log 12./log2) f ₄ is called 'ligure' (d = log 12./log2) f ₅ is called 'hyte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly'	Ω_2 $\mathbf{f}_k \ (k=1,\mathbf{d},4,8,)$ $\mathbf{mol}_u \ substance \ symbol$	k B O_1 O_2	0 0 0 0 0						
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; 2 10; 2	Boltzmann' Ω_1 is called 'circle' or 'cycle' Ω_2 is called 'sphere' or 'turn' f_1 is called 'bit' f_d is called 'figure' ($d = \log 12./\log 2$) f_d is called 'nibble' ' f_d is called 'nibble' 'universal mole' with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy'	$\begin{aligned} &\Omega_2 \\ &-\mathbf{f}_k \; (k=1,d,4,8,) \\ &-\mathbf{mol}_u \; substance \; symbol \\ &(\mathrm{ex.} \; \; \mathrm{mol}_u \mathrm{CO}_2) \\ &-\mathbf{e} \\ &-\mathbf{d} \\ &-\mathbf{c} \end{aligned}$	k B O_1 O_2	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly' expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₃ is called 'ligure' (d = log 12./log2) f ₄ is called 'ligure' (d = log 12./log2) f ₅ is called 'hyte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter)	Ω ₂ f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s	k_B O_1 O_2 f_1 f_d f_4 f_8 mol_u substance symbol (ex. mol_u CO_2) e d c m	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly' expresses 'milly day', 'sep expresses 'septi milly day')
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; 2 10; 2 10; 3 10; 4 10; 8 10; 10; 8	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₄ is called 'ligure' (d = log12./log2) f ₄ is called 'ligure' (d = log12./log2) f ₄ is called 'byte' 'universal mole' with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly 'sub' 'atomic' (ex. atomic dour meter) 'dirac'	Ω ₂ f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm. _h)	k_B O_1 O_2 f_1 f_d f_4 f_8 mol_u substance symbol (ex. mol_u CO_2) e d c m	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly' expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-8 10;-1 10;-1 10;-2	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₃ is called 'bit' f ₄ is called 'ligure' (d = log12/log2) f ₄ is called 'ligure' (d = log12/log2) f ₄ is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty'	Ω ₂ f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s	k_B O_1 O_2 f_1 f_d f_4 f_8 mol_u substance symbol (ex. mol_u CO_2) e d c m	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly' expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix
constants	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₂ is called 'ligure' (d = log 12./log2) f ₃ is called 'ligure' (d = log 12./log2) f ₄ is called 'hyte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' kily'	Ω ₂ f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm. _h)	k_B O_1 O_2 f_1 f_d f_4 f_8 mol_u substance symbol (ex. mol_u CO_2) e d c m	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly' expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix
constants minor prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-8 10;-1 10;-1 10;-2	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₃ is called 'bit' f ₄ is called 'ligure' (d = log12/log2) f ₄ is called 'ligure' (d = log12/log2) f ₄ is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty'	Ω ₂ f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm. _h)	k_B O_1 O_2 f_1 f_d f_4 f_8 mol_u substance symbol (ex. mol_u CO_2) e d c m	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
constants minor prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-1 10;-2 10;-3 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1 10;-1	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₂ is called 'ligure' (d = log12./log2) f ₃ is called 'nible' f ₃ is called 'hyte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' 'kily' 'super' 'cosmic' (ex. 6;by-cosmic second)	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix atomic'.
constants minor prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;1 10;2 10;1 10;3 10;4 10;1 10;3 10;4 10;8 2nd power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₂ is called 'ligure' (d = log12./log2) f ₃ is called 'nibble' f ₃ is called 'hyte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' 'kily' 'super' 'cosmic' (ex. 6;by-cosmic second) 'by-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
constants minor prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; 1 10; 2 10; 3 10; 4 10; 8 10; 1 10; 1 10; 2 10; 1 10; 2 10; 1 10; 3 10; 4 10; 4 10; 4 10; 5 10; 7 10; 8 2nd power 3rd power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₃ is called 'sphere' or 'turn' f ₄ is called 'hit' f ₄ is called 'ligure' (d = log12./log2) f ₄ is called 'nibble' f ₅ is called 'byte' 'universal mole' with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' 'kily' 'super' 'cosmic' (ex. 6:by-cosmic second) 'by-' 'try-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
minor prefixes major prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-2 10;-3 10;-4 10;-8 20;-9 10;-1 10;-1 10;-2 10;-3 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 10;-1 10;-8 2nd power 3rd power 4th power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₂ is called 'ligure' (d = log12./log2) f ₃ is called 'nible' f ₃ is called 'ribus' f ₄ is called 'ribus' f ₅ is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' 'kily' 'super' 'cosmic' (ex. 6;by-cosmic second) 'by-' 'try-' 'quadry-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
constants minor prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-3 10;-1 10;-1 10;-2 10;-1 10;-2 10;-3 10;-4 10;-8 2nd power 3rd power 4th power 5th power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₃ is called 'ligure' (d = log 12./log2) f ₄ is called 'ligure' (d = log 12./log2) f ₅ is called 'ligure' (d = log 12./log2) f ₆ is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' hecty' kily' 'super' 'cosmic' (ex. 6;by-cosmic second) by-' 'try-' 'quadry-' penty-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
minor prefixes major prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10; 10; 10; 3 10; 4 10; 8 10; 10; 10; 3 10; 2 10; 3 10; 4 10; 8 10; 10; 3 10; 4 10; 8 2nd power 3rd power 3rd power 4th power 5th power 6th power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₃ is called 'ligure' (d = log12./log2) f ₄ is called 'ligure' (d = log12./log2) f ₄ is called 'mibble' f ₅ is called byte' 'universal mole' with substance name (ex. universal mole Carbon dioxide) 'electron' 'dour' centy' 'milly 'sub' 'atomic' (ex. atomic dour meter) 'dirac' 'hecty' 'kily' 'super' 'cosmic' (ex. 6;by-cosmic second) 'by-' 'try-' 'quadry-' 'penty-' 'hexy-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix
minor prefixes major prefixes	the Boltzmann constant total solid angle of a hypersphere logarithm of an integer universal mol elementary electric charge 10;-1 10;-2 10;-3 10;-4 10;-8 10;-1 10;-3 10;-1 10;-1 10;-2 10;-1 10;-2 10;-3 10;-4 10;-8 2nd power 3rd power 4th power 5th power	Boltzmann' Ω ₁ is called 'circle' or 'cycle' Ω ₂ is called 'sphere' or 'turn' f ₁ is called 'bit' f ₃ is called 'ligure' (d = log 12./log2) f ₄ is called 'ligure' (d = log 12./log2) f ₅ is called 'ligure' (d = log 12./log2) f ₆ is called 'byte' 'universal mole with substance name (ex. universal mole Carbon dioxide) electron' 'dour' 'centy' 'milly' 'sub' 'atomic' (ex. atomic dour meter) 'dirac' hecty' kily' 'super' 'cosmic' (ex. 6;by-cosmic second) by-' 'try-' 'quadry-' penty-'	Ω ₂ = f _k (k=1,d,4,8,) mol _u substance symbol (ex. mol _u CO ₂) e d c m s . (ex. dm _{.h}) D H K S	k_B	0 0 0 0 0						as Ω_1 except 'sep'. (ex. 'milly 'expresses 'milly day', 'sep expresses 'septi milly day') The prefix 'harmonic' can be omitted if the expression includes the prefix 'atomic'. The prefix 'harmonic' can be omitted if the expression includes the prefix

cate	gory	description	called	symbol	plain text	natural	coherent	base	derived	core	geometrical	remarks
non-coherent Earth local unit and supplementary constants		the meridian length of the Earth	'Earth meridian'	m _E	m_E or meridian						0	
		the rotation period of the Earth (at the beginning of year 1900.)	'Earth solar'	s _E	s_E or solar							the Earth local extension
		the gravitational acceleration of the Earth	'gee of Earth'	<i>g</i> _E	g_E or gee							
units		difference of thermodynamic temperature and the base point $(0; ^\circ S \text{ is correspondent to } 118,2354; K_h)$	'degree S'	°S	deg S					0		(not part of the Universal Unit System)
	2 ⁶ years	'span' or 'octal century'	span or "\"	span or ""						0	(not part of the Oniversal Onit Bystein)	
Earth local		365. 31./128. days	'year'	y or a	y or a						0	
calendar time		$1 \Omega_1$	'day'	day	day	0					0	
prefix	prefix	2 ⁻⁷ (1/128.) 7th power of two inversed	'septi'	sep or ","	sep or ","							
out of the Universal Unit System		100; times least valued currency unit	'mon' with country name	mon country name	mon_country name							100; times least valued currency unit for each country(or economic group) Its value is distinguished by attaching the name of country after 'mon'.
		10;4 harmon	'league'	lg	lg						0	
		10;-1 harmon	'uncia'	un	un						0	10; 2 harmon may be bicia, 10; 3 harmon may be tricia,
		10; ⁻⁸ light	'atol'	al	al		0		0		0	2.51 km/h