Quiz 1 - Linear Algebra - CSE/ECE 344/544 Solutions

Instructions:

- 1. Correct Answer + Correct Justification: 2 Points for Q1
- 2. Correct Answer: 1 Point for Q1
- 3. Incorrect Answer: -1 Point (for each incorrectly answered T/F question)
- 4. Award marks for correct logic and for False statements in Q1; any contradictory example will work (rigorous proof not needed)
- 5. I represents the identity matrix

Q1-solutions

Follow the instructions while grading Q1

a. False

If the rank is less than n (i.e. r < n), a system of n linear equations in n variables can have infinitely many solutions.

b. False

If the columns of A span \mathbb{R}^m , then Ax = b will always be consistent, however the converse is not true and the consistency of the equation does not imply any constraints on the columns of A.

c. False

A linear relation of the type v1 = v2 + v3 is still possible. Not being multiples does not imply that none of the vectors can be expressed as a linear combination of the others.

d. True

Assume A is an $n \times n$ matrix, B is an $n \times p$ matrix. A is a diagonal matrix. Let $A = \{a_{ij}\}$. Then $a_{ij} = 0$ when $i \neq j$. Let b_i denote the i^{th} column of B. Then $B = [b_1 \ b_2 \ ... \ b_p]$. Thus, $AB = [Ab_1 Ab_2 ... Ab_p]$. Due to property of A, $Ab_i = [a_{11}b_{1i} \ a_{22}b_{2i} \ ... \ a_{nn}b_{ni}]^T$. Let $AB = C = \{c_{ij}\}$. Then $c_{ij} = a_{ii}b_{ij}$. Thus, i^{th} row of C is i^{th} row of C scaled by C is i^{th} row of C row i^{th} row of C row i^{th} row of C row i^{th} row i^{th} row i^{th} row i^{th} row i^{th} ro

e. False

This is only possible if B is square and non-singular (invertible), in which case, $C=B^{-1}BD=ID=D$.

f. False

The result of the multiplication is $A^2 - AB + BA - B^2$. However, for matrix multiplication, we cannot say that AB = BA. Hence, it will not simplify to $A^2 - B^2$.

g. True

Given, AB = BA, pre and post multiplying both sides with A^{-1}

$$=> A^{-1}ABA^{-1} = A^{-1}BAA^{-1}$$

$$=> (A^{-1}A)BA^{-1}A^{-1}B(AA^{-1})$$

$$=> IBA^{-1} = A^{-1}BI$$
 [Since $XX^{-1} = I$]

$$=> BA^{-1} = A^{-1}B$$

h. True

Given, \boldsymbol{x} is orthogonal to \boldsymbol{u} and $\boldsymbol{v} => \boldsymbol{x}^T \boldsymbol{u} = 0$ and $\boldsymbol{x}^T \boldsymbol{v} = 0$

To Prove:
$$x^T(u-v)=0$$

$$oldsymbol{x}^T(oldsymbol{u}-oldsymbol{v}) = oldsymbol{x}^Toldsymbol{u}-oldsymbol{x}^Toldsymbol{v}$$

$$= 0 - 0$$

$$= 0$$

i. True

Since the columns are orthonormal, $U^{-1}U = I = U^TU$

$$=> U^T = U^{-1}$$

$$=> UU^T = UU^{-1}$$

$$=> \boldsymbol{U}\boldsymbol{U}^T = \boldsymbol{I}$$

Hence, the columns of U^T are orthonormal => U has orthonormal rows.

j. False

This is only the case when U is a square matrix and can't be generalized.

Q2-solutions

Any Correct Proof: 2 Points (Partial marking to be followed)

To Prove:
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

We know that $XX^{-1} = I$

If the hypothesis is true, then $(C^{-1}B^{-1}A^{-1})(ABC)$ must be I

Solving:
$$(C^{-1}B^{-1}A^{-1})(ABC) = C^{-1}B^{-1}IBC = C^{-1}IC = C^{-1}C = I$$

Hence, the hypothesis is true.

OR

Use the property that $(XY)^{-1} = Y^{-1}X^{-1}$

Thus,

$$(ABC)^{-1} = ((AB)C)^{-1} = C^{-1}(AB)^{-1} = C^{-1}B^{-1}A^{-1}$$

Q3-solutions

Any Correct Proof: 1 Point for each part (Partial Marking to be followed)

a. Given
$$\boldsymbol{P} = \boldsymbol{u}\boldsymbol{u}^T$$

$$=> P^2 = uu^Tuu^T = u(u^Tu)u^T$$

= uIu^T (given $u^Tu = I$)
= $uu^T = P$

Hence,
$$P^2 = P$$

b. Given
$$\boldsymbol{P} = \boldsymbol{u}\boldsymbol{u}^T$$

$$=> \boldsymbol{P}^T = (\boldsymbol{u}\boldsymbol{u}^T)^T$$

$$=((\boldsymbol{u}^T)^T)(\boldsymbol{u}^T)$$

$$= (\boldsymbol{u})(\boldsymbol{u}^T)$$

$$= \boldsymbol{u} \boldsymbol{u}^T = \boldsymbol{P}$$

Hence,
$$\mathbf{P}^T = \mathbf{P}$$

c. Given,
$$\mathbf{Q} = \mathbf{I} - 2\mathbf{P}$$

$$=> Q^2 = (I - 2P)^2$$

=
$$I - 4P + 4P^2$$
 (Using the result from part a, $P^2 = P$)

$$= \mathbf{I} - 4\mathbf{P} + 4\mathbf{P} = \mathbf{I}$$

Hence,
$$Q^2 = I$$