Задание 1 по курсу "Методы прикладной математики в естествознании и медицине"

Отчет выполнила Мельникова А.А., 601.

Вариант 7

Модель имеет вид:

$$\frac{dx}{dt} = k_1 z - k_{-1} x - k_3 \phi(x, y) xy$$

$$\frac{dy}{dt} = k_2 z^2 - k_{-2} y^2 - k_3 \phi(x, y) xy$$

$$z = 1 - x - y$$

$$\phi(x, y) = (1 - y)^{\alpha}$$

Базовый набор параметров: $\alpha=16, k_1=0.01, k_{-2}=0.01, k_3=10, k_2=0.05$

Однопараметрический и двухпараметрический анализ

Ниже представлена зависимость стационарных решений x,y от параметра k_2 для следующих значений параметров $\alpha=10.0,15.0,18.0,20.0,25.0,k_3=1.0,5.0,10.0,50.0,100.0$.

Рис. 1: На (a),(b) представлены зависимости для $\alpha=10, k_3=1$ и $\alpha=15, k_3=5$

Рис. 2: На (а),(b) представлены зависимости для $\alpha=18, k_3=10$ и $\alpha=20, k_3=50$

Рис. 3: На (a),(b) представлены зависимости для $\alpha=25, k_3=100$ и $\alpha=18, k_3=50.$

Рис. 4: На (а),(b) представлены зависимости для $\alpha=10, k_3=5$ и $\alpha=10, k_3=100.$

Рис. 5: На (a),(b) представлены зависимости для $\alpha=18, k_3=100$ и $\alpha=10, k_3=100$.

Рис. 6: На (а) - линии кратности и линии нейтральности. (b) - фазовый портрет для параметров $k_1=0.03, k_2=0.05,$ (c)- стационарное решение, (d) - колебательный процесс.