

Page 1

CONVERSATIONAL UI

Dialog Management & Response Generation

Dr. Aobo Wang

Email: isswan@nus.edu.sg

Agenda

- Dialog Management
 - Interaction Strategies
 - Error Handling and Confirmation Strategies
 - Dialogue State Tracking
 - Dialogue policy
- Response Generation
- Summary

Dialog Management (DM)

Page 3

- Decide "what to say" and "what to do"
- There is no universally agreed definition
- The complexity of DM depends on the specific tasks
- Largely responsible for user satisfaction
- DM Tasks:
 - Interaction Strategies
 - Error Handling and Confirmation Strategies
 - Dialogue State Tracking
 - Dialogue policy

Dialog Management (DM)

Interaction Strategies

Who takes the initiative in the dialog

System-directed initiative

- National University of Singapore
- ZSS STITUTE OF SYSTEMS SCIENCE

- Search and Booking Service
- Asking questions to navigate the conversation
- User just answers its queries
 - Efficient dialogs
 - Lack of flexibility

User-directed initiative

- User has the initiative
- System responds to the user's queries
 - Natural and Flexible
 - Loss constrain
- Faked by user guide

Mixed-initiative strategy

• Both the user and the system can take the initiative in the dialog

System: Do you want timetables for next Friday?

User: Are there trains before 6 in the morning?

Mixed-initiative strategy

- Both the user and the system can take the initiative in the dialog
- User can take the initiative by
 - asking questions
 - introducing new topics
 - providing over-informative responses

System: Do you want timetables for next Friday?

User: Are there trains before 6 in the morning?

Maintain and monitor the dialog history and the system's agenda

Error Handling and Confirmation Strategies

Ability to understand complicated/unseen utterances
 "I've been a loyal customer for 8 years and your product won't let me upload a second W-2.
 Can someone please help me with this!?"

User: I want to know timetables from Madrid.

System: Do you want to leave from Madrid?

User: Yes.

Error Handling and Confirmation Strategies

- Intents and slots could be uncertain or ambiguous
- Errors from ASR and NLU might be propagated
- Confidence scores with a threshold
 - below a threshold indicates confirmation or even rejection needed

User: I want to know timetables from Madrid.

System: Do you want to leave from Madrid?

User: Yes.

- explicit confirmation
- dialog tends to be lengthy

Error Handling and Confirmation Strategies

over-informative responses are challenging

User: I want to know timetables from Madrid.

System: What time do you want to leave from Madrid?

User: No, I just wanted to know about times from Madrid but I might be departing from somewhere else depending on whether I have the use of the car next Friday.

- Ability to understand complicated/unseen utterances
 - "I've been a loyal customer for 8 years and your product won't let me upload a second W-2.

Can someone please help me with this!?"

- Confirmation Strategy
- Sentiment Analysis
- Switch to Human Assistance

DM Tasks:

- Interaction Strategies
- Error Handling and Confirmation Strategies
- Dialogue State Tracking
 - Handcrafted Approaches
 - Statistical approaches

Dialogue State Tracking

The system's belief of "what the user wants"

- Example of the Output of DST
 - Cross turn

User: I'm looking for a cheaper restaurant

inform(price=cheap)

System: Sure. What kind - and where?

User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food

User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Pre-defined Domain Ontology

Slots	Values	informable	Requestable
FoodType	local/Indian/Chinese	Y	N
RestName	KFC/LongBeach/SushiHouse	Υ	Y
PriceRange	Any/Cheap/Medium/Expensive	Υ	N
Area	East/West/Center/North/South	Υ	N
NumOfGuests	any integer	Υ	N
Address	address of restaurant	N	Y

Dialog State Tracking

- Layers of DST
- System's internal representation of the state of the conversation
- The system's belief of "what the user wants" at each turn

dialogue turns

(Figure from Gašić)

Dialog State Tracking

- Pre-defined Action List
 - What is the user's request?
 - Then what should the system do?

act field	slots field	Description
ack	empty list	An acknowledgement e.g. "okay"
affirm	empty list	An affirmation e.g. "yes"
bye	empty list	Trying to end the dialog e.g. "good-bye"
hello	empty list	Greeting the system e.g. "hi"
help	empty list	Trying to solicit general help from the system e.g. "what can I say?"
negate	empty list	A negation e.g. "no"
null	empty list	Something not understandable to the system; outside its do- main e.g. "pineapple"
repeat	empty list	A request for the system to repeat what it just said e.g. "please repeat that"
reqalts	empty list	Requesting for alternative suggestions e.g. "are there any others"
reqmore	empty list	Asking for more information in general e.g. "tell me more"
restart	empty list	Asking the system to start' from the beginning e.g. "let's start again"
silence	empty list	User actually said nothing
thankyou	empty list	User thanking the system e.g. "thanks"

		s must be an informable slot
confirm		and v a possible value for s as
		_
	one slot, value pair- (s, v)	specified in the ontology. This
		corresponds to the user con-
		firming that the constraint $s = $
		v has been understood. E.g.
		"Is it in the west?" is a case
		with $(s, v) = (\text{``area''}, \text{``west''}).$

deny	one slot, value pair- (s, v)	s must be an informable slot and v a possible value for s as specified in the ontology. This is the user saying their goal for s is not v . E.g. "I don't want something in the west"
inform	one slot, value pair- (s, v)	Again s must be an informable slot and v a possible value for s as specified in th ontology. This is the user specifying their goal for s as v . E.g. "It must be in the west"
request	one pair: ("slot", s)	s must be requestable according to the ontology. This is the user asking for the value of s from the system E.g. "what part of town is it?"

Dialog Status Tracking

Handcrafted Approaches

- Define s_i based on domain knowledge
- Determine s_i based on NLU
- Define actions a_i attached to the States s_i

dialogue turns

(Figure from Gašić)

Page 25

Handcrafted Approaches

• Task-oriented Scenario

Handcrafted States Diagram

Actions

Intelligent Agent

AskNext

Search

National University of Singapore

https://sites.google.com/view/deepdial/

Restaurant searching scenario

Handcrafted Approaches

Action Types

- Task-independent behaviours
 - error correction and confirmation
- Task-specific behaviours
 - logic associated actions e.g., search, book, send
- Task interface behaviours
 - e.g., prompt selection

Handcrafted Approaches

- Efficient and Accurate
- Suitable for narrow domain problem
- Avoid pretending to be smart
- Challenging to anticipate every possible flows
- Effort to literately refine and tune the dialog strategies
- Non-transferable to new domain

Research Topic

- Data driven
- Better scalability
- Probability distribution

https://sites.google.com/view/deepdial/

• Example-based approaches-- Chatterbot

```
from chatterbot.trainers import ListTrainer
conversation = [
    "Hello",
    "Hi there!",
    "How are you doing?",
    "I'm doing great.",
    "That is good to hear",
    "Thank you.",
    "You're welcome."
trainer = ListTrainer(chatbot)
trainer.train(conversation)
```


- Example-based approaches -- Chatterbot
 - Finite State Machines

• Recent Research Topic

- Data driven
- Adaptation to deal with new domains (if data available in new domains)
- Better scalability (if more data available)
- Improved probability distribution
- Joint NLU with DST
- Heavily depending on the quality and coverage of labeled data
- Time consuming to collect corpus and annotations

NN for DST

multi-turn conversation

Slot Name	Slot Value	Prob.
food	Thai	0.95
food	Chinese	0.01
area	center	0.99

https://sites.google.com/view/deepdial/

Joint NLU with DST

FoodType	Local
FoodType	Indian
FoodType	Chinese
FoodType	ITALIAN
PriceRange	Cheap

The action types, slots and values are predefined

Word-based RNN

Figure 2: The joint label predictions using RNN from last hidden state h_T . The h_T represents the whole dialog history of T words. The RNN takes as input for each word i an embedding and binary features concatenated to vector X_i .

System: What part of town do you have in mind?

User: West part of town.

System: What kind of food would you like?

User: Indian

$$X_1 = f(What)$$

$$X_2 = f(part)$$

...

$$X_T = \mathbf{f}(Indian)$$

wordvec for word	U	S	IsF	IsR	IsL	IsP
1.2,2.4,5.9,0.1,9.1	1	0	1	1	0	0

$$X_T = \mathbf{f}(Indian)$$

Delexicalisation

construct semantic dictionaries

FOOD=CHEAP: [affordable, budget, low-cost, low-priced, inexpensive, cheaper, economic, ...]

RATING=HIGH: [best, high-rated, highly rated, top-rated, cool, chic, popular, trendy, ...]

AREA=CENTRE: [center, downtown, central, city centre, midtown, town centre, ...]

- Delexicalisation whereby slots and values mentioned are replaced with generic labels
 - [want tagged-value food].

- Word-Based RNN with **Delexicalisation**
 - **n-grams** from utterances
 - n-grams from dialog acts
 - acttype(slot=value)

- Word-Based RNN with **Delexicalisation**
 - One such RNN is used per slot
 - Slot = Food
 - the most recent user input
 - the most recent machine dialog act
 - Predict the likelihood for all pairs of (value, slot)

Dialog Turn	\mathbf{y}^{init}	Notes
System: What type of food would you like? User: Chinese food.	Chinese	Here an initial model is likely to output a confident low entropy distribution correctly identifying the food goal as 'Chinese'.
System: There are no matching Chinese restaurants. User: Any serving pizza?	:	The system has requested the food slot, and the user's response included the term 'serving'. This gives evidence that the user has informed the food slot, but the system cannot recognise which food type is correct. Therefore it is likely that an initial model would output a high entropy distribution for the food slot.
System: Sorry, what type of food would you like? User: Um,	Italian	If the user explicitly says 'Italian', which the system is able to match in its ontology, then an initial model can predict with high confidence the correct value is food.

Italian food.

- Neural Belief Tracker: Data-Driven
 - No more feature engineering or Delexicalisation with lexicon resources
 - Couple SLU/NLU with DST
 - Fully based on Pre-trained wordvectors
 - Match the performance of delexicalisation-based models
 - better-suited to **scaling** where the creation of such domain-specific lexicons would be infeasible

wordvec for word	U	S	IsF	IsR	IsL	IsP
1.2,2.4,5.9,0.1,9.1	1	0	1	1	0	0

wordvec for context 3.2 4.2 9.6 9.1 6.2 8.4 0.9 0.3 7.1

Neural Belief Tracker: Data-Driven

Neural Belief Tracker: Utterance representation

Neural Belief Tracker: Semantic Decoding

Neural Belief Tracker: Context modelling

- System Acts
 - System Requests: "what price range would you prefer?" $\rightarrow t_q$
 - System Confirmation: "how about that food?" \rightarrow (t_s , t_v)

$$\mathbf{m_r} = (\mathbf{c_s} \cdot \mathbf{t_q})\mathbf{r}$$

 $\mathbf{m_c} = (\mathbf{c_s} \cdot \mathbf{t_s})(\mathbf{c_v} \cdot \mathbf{t_v})\mathbf{r}$

Neural Belief Tracker: Binary Decision Making

More about DST

Dialogue Acts

Hello, how may I help you?

greeting ()

I'm looking for a Thai restaurant.

inform(type=restaurant, food=Thai)

What part of town do you have in mind?

request (area)

Something in the centre.

inform(area=centre)

Bangkok city is a nice place, it is in the centre of town and it serves Thai food.

inform (restaurant=Bangkok city, area=centre of town, foodtype=Thai)

What's the address?

request(address)

Bangkok city is a nice place, their address is 24 Green street.

inform (address=24 Green street)

Thank you, bye.

bye()

More about DST

Action List

act field	slots field	Description
ack	empty list	An acknowledgement e.g. "okay"
affirm	empty list	An affirmation e.g. "yes"
bye	empty list	Trying to end the dialog e.g. "good-bye"
hello	empty list	Greeting the system e.g. "hi"
help	empty list	Trying to solicit general help from the system e.g. "what can I say?"
negate	empty list	A negation e.g. "no"
null	empty list	Something not understandable to the system; outside its domain e.g. "pineapple"
repeat	empty list	A request for the system to repeat what it just said e.g. "please repeat that"
reqalts	empty list	Requesting for alternative suggestions e.g. "are there any others"
reqmore	empty list	Asking for more information in general e.g. "tell me more"
restart	empty list	Asking the system to start' from the beginning e.g. "let's start again"
silence	empty list	User actually said nothing
thankyou	empty list	User thanking the system e.g. "thanks"

"Is it in the west?" is a case with $(s, v) = (\text{``area''}, \text{``west''})$.

deny	one slot, value pair- (s, v)	s must be an informable slot and v a possible value for s as specified in the ontology. This is the user saying their goal for s is not v . E.g. "I don't want something in the west"		
inform	one slot, value pair- (s, v)	Again s must be an informable slot and v a possible value for s as specified in th ontology. This is the user specifying their goal for s as v . E.g. "It must be in the west"		
request	one pair: ("slot", s)	s must be requestable according to the ontology. This is the user asking for the value of s from the system E.g. "what part of town is it?"		

Dialog State Tracking Challenge (DSTC)

(Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016)

2

Challenge	Туре	Domain	Data Provider	Main Theme
DSTC1	Human- Machine	Bus Route	CMU	Evaluation Metrics
DSTC2	Human- Machine	Restaurant	U. Cambridge	User Goal Changes
DSTC3	Human- Machine	Tourist Information	U. Cambridge	Domain Adaptation
DSTC4	Human- Human	Tourist Information	I2R	Human Conversation
DSTC5	Human- Human	Tourist Information	I2R	Language Adaptation

Dialog Policy

What the system should do next

Dialogue Policy

Research Topic

- Rule based or Frame-based
- Statistical Approaches
- Reinforcement learning

$$\hat{A}_i = \operatorname*{argmax}_{A_i \in A} P(A_i | (A_1, U_1, ..., A_{i-1}, U_{i-1})$$

https://sites.google.com/view/deepdial/

Restaurant searching scenario

- Learn to predict next **State/Action**
 - Data driven
 - Encode the State/Action with numbers

List of Actions

AskType

AskLoc

AskRating

Search

Statistical Approaches

• Classification based on Encoding

"Welcome, ready to order?"

Observations (After NLU)

"I want two Chicken Pizza"

•	Type of order (delivery or pick up),	0]	0	unknown
	Number of pizzas,	0	-	1	
	•		 		Above threshold
	Types of pizzas,	0		2	below threshold
•	Sizes of pizzas,	0		0	
•	Types of pizza dough, and	0		0	
•	Drinks (optional field).	0	1	0	
•	Acceptance,	0		0	
•	Rejection, and	0		0	
•	Not-understood.	0		0	
			_l	\Box	

Statistical Approaches

Classification based on Encoding

- predict the next system response after each user turn.

S₁ U₁ "Welcome..." "I want two Chicken Pizza"

Action = 1

Predict the next System action

S_2 What is the Action for S_2 ?

- 1. Welcome (*Opening*).
- 2. Ask the type of order (*Ask_Type_Order*).
- 3. Ask the number of pizzas (Ask_Number_Pizzas).
- 4. Ask the types of pizzas (*Ask_Types_Pizzas*).
- 5. Ask the sizes of pizzas (*Ask_Sizes_Pizzas*).
- 6. Ask the types of dough (*Ask_Types_Doughs*).
- 7. Ask the drinks (*Ask_Drinks*).
- 8. Confirm the type of order (*Confirm_Type_Order*).
- 9. Confirm the number of pizzas (*Confirm _Number_Pizzas*).
- 10. Confirm the types of pizza (*Confirm _Types_Pizzas*).
- 11. Confirm the sizes of pizzas (*Confirm _Sizes_Pizzas*).
- 12. Confirm the types of dough (*Confirm _Types_Doughs*).
- 13. Confirm the drinks (*Confirm _Drinks*).
- 14. Closing (*Closing*).

0

0

0

0

Classification based on Encoding

System1: Welcome to the Pizzeria. How can I help you?

Al: (Opening) DR0: 000000-000

U1: I want two Sicilian pizzas

Statistical Approaches

Classification based on Encoding

Previous Action item

```
#Dialog001
1,1,1,0,0,0,0,0,0,0,0,4
4,1,1,1,0,0,0,0,0,0,5
5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 6
6, 1, 1, 1, 1, 1, 0, 0, 0, 0, 7
7,1,1,1,1,1,0,0,0,14
#Dialog002
1,2,1,0,0,0,0,0,0,0,8
8,1,1,0,0,0,0,0,0,0,4
4,1,1,1,0,0,0,0,0,0,5
5,1,1,1,1,0,0,0,0,0,6
6,1,1,1,1,1,0,0,0,0,7
7,1,1,1,1,1,1,0,0,0,14
```

Current States

Current Action item

- 1. Welcome (*Opening*).
- 2. Ask the type of order (*Ask_Type_Order*).
- 3. Ask the number of pizzas (*Ask_Number_Pizzas*).
- 4. Ask the types of pizzas (*Ask_Types_Pizzas*).
- 5. Ask the sizes of pizzas (*Ask_Sizes_Pizzas*).
- 6. Ask the types of dough (*Ask_Types_Doughs*).
- 7. Ask the drinks (*Ask_Drinks*).
- 8. Confirm the type of order (*Confirm_Type_Order*).
- 9. Confirm the number of pizzas (*Confirm _Number_Pizzas*).
- 10. Confirm the types of pizza (*Confirm _Types_Pizzas*).
- 11. Confirm the sizes of pizzas (*Confirm _Sizes_Pizzas*).
- 12. Confirm the types of dough (*Confirm _Types_Doughs*).
- 13. Confirm the drinks (*Confirm _Drinks*).
- 14. Closing (*Closing*).

Reinforcement learning

Page 57

Dialogue management in a RL framework

The optimized dialogue policy selects the best action that **maximizes the future reward**

Reinforcement learning

Page 58

- Typical reward function
 - -1 for per turn penalty
 - Large reward at completion if successful
- Typically requires domain knowledge
 - ✓ Simulated user
 - ✔ Paid users (Amazon Mechanical Turk)
 - X Real users

The user simulator is usually required system training before deployment

Response Generation

What to say to users

Response Generation

Natural Language Generation (NLG)

Mapping dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant

Template-Based NLG

Define <u>a set of rules</u> to map frames to natural language

Semantic Frame	Natural Language		
confirm()	"Please tell me more about the product your are looking for."		
confirm(area=\$V)	"Do you want somewhere in the \$V?"		
confirm(food=\$V)	"Do you want a \$V restaurant?"		
confirm(food=\$V,area=\$W)	"Do you want a \$V restaurant in the \$W."		

Pros: simple, error-free, easy to control **Cons:** time-consuming, rigid, poorscalability

Response Generation

RNN-Based LM NLG [wen+15]

References

- Multi-domain neural network language generation for spoken dialogue systems. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
- Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP),
- A network-based end-to-end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics
- Multi-domain dialog state tracking using recurrent neural networks. In Proceedings of the 53rd
 Annual Meeting of the Association for Computational Linguistics
- Neural belief tracker: Data-driven dialogue state tracking. In Proceedings of the 55th Annual Meeting
 of the Association for Computational Linguistics (ACL),
- http://deeppavlov.ai/
- https://sites.google.com/view/deepdial/

Acknowledgement: Some of the slides are adapted from the dialogue tutorial given by Jianfeng Gao and Vivian Chen.

