Credit Risk Prediction

Belle Pandya . Kate Weber

Introduction

Banks determine whether to lend money to a customer based on many factors, including the customer's age, home ownership status, annual income, and credit rating. These factors are intended to be used to predict whether the customer will pay back the loan or defect, in which case, the bank would not lend money to them.

Dataset Description

Size (n)	~30,000 rows
Number of Predictors	8
Responding Variable	1, Loan_status (Binary)
Continuous Variables	5, (age, emp_length, loan_amount, int_rate,annual_income)
Categorical Variables	2, grade (A to G), home_ownership(own, mortgage, rent, others)

Categorical variables

Adding Predictors

Decomposed categorical variables into dummy variables:

Grade

- grade.A
- grade.B
- grade.C
- grade.D
- grade.E
- grade.F
- grade.G

Home Ownership

- home_ownership.RENT
- home_ownership.MORTGAGE
- home_ownership.OWN
- home_ownership.OTHER

1. Outliers

Box Plots

2. Skewness

Density plots

- Highly Skewed: 11
- Moderately Skewed : 2
- Approx Normal : 3

Skewness Summary

Variable	Skewness Coefficient	Skewed
Loan Amount	1.19104171	Highly Skewed
Interest Rate	0.20972676	Approx. Normal
Grade A	0.71501461	Moderately Skewed
Grade B	0.76839487	Moderately Skewed
Grade C	1.51895722	Highly Skewed
Grade D	2.47554614	Highly Skewed
Grade E	5.52663850	Highly Skewed
Grade F	11.61336188	Highly Skewed
Grade G	22.72550700	Highly Skewed
Empl. Length	2.10235517	Highly Skewed
Home Own. Mortgage	0.35524409	Approx. Normal
Home Own. Other	17.23050357	Highly Skewed
Home Own. Own	3.11898740	Highly Skewed
Home Own. Rent	-0.02007422	Approx. Normal
Annual Income	33.75117342	Highly Skewed
Age	2.15185778	Highly Skewed

3. Missing Values

Missing Values

Variables with missing values-

- Interest rate (int_rate)
- Employment length (emp_length)

Missing Values

1 2208 5255 8302 11628 15234 18840 22446 26052

Observation

Variable

Transformations

- Center
- Scale
- Box-Cox
- KNN Imputation

Predictors

Transformations

Spatial Sign

Predictors

Removing predictors

Near Zero Variance

We did not find any predictors that had near-zero variance, which would have been an indication that the predictor should be removed.

```
> nearZeroVar(loan.pp.ss)
integer(0)
> |
```


Principal Component Analysis

Cutoff	Value	= 90%
--------------------------	-------	-------

- Requires 12 PCs to reach threshold
- Removing 5 vars not worth complexity

PC	Cum. % Variance
1	15.27427
2	27.51806
3	36.55126
4	43.77207
5	50.77822
6	56.99055
7	62.94289
8	68.68281
9	74.39220
10	80.05765

Data Splitting and Re-sampling

Data Splitting

Re-Sampling

- Stratified Random Sampling
- Split the data into train and test set with a ratio of 80:20

K-fold cross validation, where k=10.

Summary

Acquired data from Kaggle and converted categorical variables into dummy variables

Performed center, scale,Box-cox, kNN imputation, spatial sign transformation. TBD..

Plotted box plots to identify outliers, density plots for skewness and error plot to identify variables with missing values.

Splitting data into training and test using stratified random approach. Planning to perform K fold cross validation.