矩阵指数函数与矩阵三角函数

(1)
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$$

(2)
$$\sin At = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} A^{2k+1} t^{2k+1}$$

(3)
$$\cos At = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} A^{2k} t^{2k}$$

定理: (1)
$$e^{iA} = \cos A + i \sin A$$
, $i^2 = -1$

$$(2) \quad e^{-iA} = \cos A - i \sin A.$$

证:

$$e^{iA} = \sum_{k=0}^{\infty} \frac{1}{k!} (iA)^k = I + iA - \frac{1}{2!} A^2 - \frac{1}{3!} iA^3 + \frac{1}{4!} A^4 + \frac{1}{5!} iA^5 - \cdots$$
$$= \left(I - \frac{1}{2!} A^2 + \frac{1}{4!} A^4 - \cdots \right) + i \left(A - \frac{1}{3!} A^3 + \frac{1}{5!} A^5 - \cdots \right)$$

$$=\cos A + i\sin A$$
. 类似可证明(2)

推论:

(1)
$$\cos A = \frac{1}{2}(e^{iA} + e^{-iA}),$$
 (2) $\sin A = \frac{1}{2i}(e^{iA} - e^{-iA})$

(3)
$$\sin(-A) = -\sin A$$
, (4) $\cos(-A) = \cos A$

定理: 设 $A,B \in C^{n \times n}$, 那么当 AB = BA 时, 有

(1)
$$e^{A+B} = e^A e^B = e^B e^A$$

- (2) $\sin(A+B) = \sin A \cos B + \cos A \sin B$
- $(3) \quad \sin 2A = 2\sin A \cos A$
- (4) $\cos(A+B) = \cos A \cos B \sin A \sin B$
- $(5) \quad \cos 2A = \cos^2 A \sin^2 A$
- $(6) \quad \sin^2 A + \cos^2 A = I$

注1: 如果矩阵 A 与 B 不能交换, 比如取幂等矩阵

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

则 e^{A+B} , $e^A e^B$, $e^B e^A$ 互不相等.

注2: 如果矩阵 A 与 B 不能交换,则 $e^{A+B} = e^A e^B = e^B e^A$

也可能成立,比如取
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 2\pi i \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 0 & 2\pi i \end{bmatrix}$.

推论:

$$(1) \quad e^{\lambda A}e^{\mu A}=e^{(\lambda+\mu)A}$$

$$(2) \quad e^{O_{n\times n}} = I_{n\times n}$$

(3)
$$e^A e^{-A} = e^{-A} e^A = I$$

$$\rightarrow e^A$$
 可逆,且 $\left(e^A\right)^{-1}=e^{-A}$.

几个特殊性质

$$(1) \quad \frac{d}{dt}(e^{At}) = Ae^{At} = e^{At}A$$

(2)
$$\frac{d}{dt}(\sin At) = A(\cos At) = (\cos At)A$$

(3)
$$\frac{d}{dt}(\cos At) = -A(\sin At) = -(\sin At)A$$

$$(4) \quad \left| e^A \right| = e^{Tr(A)}$$

其中
$$e^A = Pe^J P^{-1} = P \operatorname{diag}(e^{J_1}, e^{J_2} \cdots e^{J_r}) P^{-1}$$

$$\begin{aligned} \left| e^{A} \right| &= \prod_{i=1}^{r} \left| e^{J_{i}} \right| \\ &= \prod_{i=1}^{r} e^{d_{i} \lambda_{i}} \\ &= e^{Tr(A)} \end{aligned}$$

例:设A是一个Hermite矩阵,那么 e^{iA} 是一个酉矩阵.

证明: 由 $e^{iA} = \cos A + i \sin A$ 可得

$$e^{iA}(e^{iA})^{H} = (\cos A + i\sin A)[(\cos A)^{H} - i(\sin A)^{H}]$$
$$= (\cos A + i\sin A)(\cos A - i\sin A) = I$$

这表明 e^{iA} 为一个酉矩阵.

例:设A是一个实的反对称矩阵(或反-H阵),那么 e^A 是一个正交矩阵(或酉矩阵).