BROUILLON - COURBES POLYNOMIALES SIMILAIRES MANQUE DES DESSINS!

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Où allons-nous?	2
2.	Cas des polynômes de degré 3	4
3.	AFFAIRE À SUIVRE	•

Date: 2 Octobre 2020 – 4 Novembre 2020.

1. Où allons-nous?

Il est connu ques les courbes des fonctions affines sont toutes des droites, et celles représentant des trinômes du 2^e degré sont toutes des paraboles. Quand on présente ce résultat au lycée, on n'a pas défini exactement ce qu'est une parabole 1 . On explique que l'on peut passer de la représentation de la fonction carrée $f: x \mapsto x^2$ à celle du trinôme $g: x \mapsto a x^2 + b x + c$ via une translation, une dilatation verticales et/ou une dilatation horizontale. Ceci nous amènes aux deux questions suivantes.

- (1) Peut-on passer de la courbe de $f: x \mapsto x^3$ à celle du polynôme $g: x \mapsto a x^3 + b x^2 + c x + d$ où $a \neq 0$ via une translation, une dilation verticales et/ou une dilatation horizontale.
- (2) Que se passe-t-il plus généralement pour les courbes des fonctions $f: x \mapsto x^k$ lorsque $k \ge 4$?

2. Cas des polynômes de degré 3

Soit \mathscr{C}_g la courbe de la fonction $g: x \mapsto a x^3 + b x^2 + c x + d$ où $a \neq 0$. Nous allons démontrer que \mathscr{C}_g s'obtient à partir de l'une des courbes suivantes en utilisant une translation horizontale, une translation verticale, une dilatation verticale et/ou une dilatation horizontale.

- (1) Γ_1 représente $f_1: x \mapsto x^3$.
- (2) Γ_2 représente $f_2: x \mapsto x^3 x$ de sorte que $f_2(x) = x(x-1)(x+1)$.
- (3) Γ_3 représente $f_3: x \mapsto x^3 + x$ de sorte que $f_3(x) = x(x \mathbf{i})(x + \mathbf{i})$ où $\mathbf{i} \in \mathbb{C}$.

Démonstration.

- (1) On peut supposer que (a; b; d) = (1; 0; 0).
 - (a) Il est immédiat que l'on peut supposer que a=1. Dans la suite, on supposera donc $g(x)=x^3+b\,x^2+c\,x+d$.
 - (b) En considérant \mathscr{C}_g , on observe un centre de symétrie qui a pour abscisse m celle de l'unique point d'inflexion de \mathscr{C}_g .

$$g''(x) = 0 \iff 6x + 2b = 0$$
$$\iff x = -\frac{b}{3}$$

Il devient naturel de poser x = m + t avec $m = -\frac{b}{3}$.

$$\begin{split} g(x) &= g(m+t) \\ &= (m+t)^3 + b\,(m+t)^2 + c\,(m+t) + d \\ &= m^3 + 3m^2\,t + 3m\,t^2 + t^3 + b\,m^2 + 2b\,m\,t + b\,t^2 + c\,m + c\,t + d \end{split}$$

Le coefficient de t^3 reste égal à 1 et celui de t^2 est 3m+b=0. Ceci montre que l'on peut supposer (a;b)=(1;0). Dans la suite, on supposera donc $g(x)=x^3+c\,x+d$.

- (c) Il est immédiat que l'on peut supposer dans la suite que $g(x) = x^3 + cx$.
- (2) Cas 1: c = 0

Nous n'avons rien à faire de plus car ici $\mathscr{C}_g = \Gamma_1$.

^{1.} La définition géométrique des grecques anciens restent la meilleure.

(3) Cas 2: $c = -k^2$ avec k > 0

Ici
$$g(x) = x^3 - k^2 x$$
 soit $g(x) = x(x - k)(x + k)$.

Nous avons donc
$$g(k x) = k^3 x(x - 1)(x + 1) = k^3 f_2(x)$$
 puis $f_2(x) = \frac{1}{k^3} g(k x)$.

On peut ainsi passer de \mathscr{C}_g à Γ_2 , et donc aussi de Γ_2 à \mathscr{C}_g , à l'aide des transformations autorisées.

(4) Cas 3: $c = k^2$ avec k > 0

Ici
$$g(x) = x^3 - (k \mathbf{i})^2 x$$
 soit $g(x) = x(x - k \mathbf{i})(x + k \mathbf{i})$.

Nous avons donc $g(k\,x)=k^3\,x(x-\mathbf{i})(x+\mathbf{i})=k^3\,f_3(x)$ puis comme dans le cas précédent on peut passer de Γ_3 à \mathscr{C}_q à l'aide des transformations autorisées.

On notera que la preuve précédente est constructive, autrement dit on peut donner les applications à appliquer en fonction des coefficients a, b, c, et d de $g(x) = a x^3 + b x^2 + c x + d$.

Il est évident qu'il n'est pas possible de passer de Γ_i à Γ_j à l'aide des transformations autorisées (penser à la conservation géométrique des tangentes horizontales). On peut donc parler de trois types de courbe pour les polynômes de degré 3 contre un seul pour les fonctions affines et un seul pour les trinômes du 2^e degré. Alors a-t-on quatre types de courbe pour les polynômes de degré 4? Plus généralement a-t-on n types de courbe pour les polynômes de degré n?

3. AFFAIRE À SUIVRE...