Probabilités

QCOP PROB.1

Soient A et B deux événements.

- Définir l'indépendance de A et B.
- $ightharpoonup \operatorname{Si} \mathbb{P}(B) > 0$, que vaut $\mathbb{P}_B(A)$?
- \nearrow On suppose A et B indépendants.
 - (a) Montrer que \overline{A} et B sont indépendants.
 - (b) Montrer que \overline{A} et \overline{B} sont indépendants.

QCOP PROB.2

- Définir l'indépendance mutuelle d'une famille d'événements.
- Montrer que l'indépendance mutuelle implique la dépendance deux à deux.
- À l'aide d'un contre exemple, vérifier que l'indépendance deux à deux n'implique pas l'indépendance mutuelle.

QCOP PROB.3

Soit $p \in \mathbb{N}^*$. Soit (A_1, \dots, A_p) un système complet d'événements, dont aucun n'est négligeable.

- Définir « $(A_1, ..., A_p)$ un système complet d'événements ».
- Soit B un événement.
 - (a) Montrer que $\mathbb{P}(B) = \mathbb{P}(B \cap A_1) + \cdots + \mathbb{P}(B \cap A_p)$.
 - (b) Comment appelle-t-on usuellement cette formule?
 - (c) Écrire $\mathbb{P}(B)$ à l'aide de $\mathbb{P}(A_1)$, ..., $\mathbb{P}(A_p)$ et de probabilités conditionnelles.
- Soit $(B_n)_n$ une suite d'événements non négligeables. Écrire, pour $n \in \mathbb{N}$, $\mathbb{P}(B_{n+1})$ en fonction de $\mathbb{P}(B_n)$ et de probabilités conditionnelles.

QCOP PROB.4

Soient A et B deux événements avec $\mathbb{P}(B) > 0$.

- \blacksquare Définir la probabilité conditionnelle $\mathbb{P}_B(A)$.
- $ule{P}$ Montrer que $\mathbb{P}_B(A) = \mathbb{P}_A(B) rac{\mathbb{P}(A)}{\mathbb{P}(B)}.$
- Soit $p \in \mathbb{N}^*$. Soit $(A_k)_{1 \leqslant k \leqslant p}$ un système complet d'événements de probabilités non nulles. Montrer que

$$orall j \in \llbracket 1,
ho
rbracket, \quad \mathbb{P}_B(A_j) = rac{\mathbb{P}(A_j)\mathbb{P}_{A_j}(B)}{\sum_{k=1}^{
ho}\mathbb{P}(A_k)\mathbb{P}_{A_k}(B)}.$$