An infinitely long wire with linear charge density $-\lambda$ lies along the z-axis. An insulating cylindrical shell of radius a and moment of inertia I per unit length is concentric with the wire and can rotate freely about the z-axis. The areal charge density on the cylinder is $\sigma = \lambda/2\pi a$ and is uniformly distributed. The cylinder is immersed in an external magnetic field $B_{ex}{}_{z}$, and is initially at rest. Starting at t=0 the external magnetic field is slowly reduced to zero over a time T>>a/c, where c is the speed of light. What is the final angular velocity ω of the cylinder?

σ= / ladius = a; lugtro quinfinete

That;
$$\nabla \times E = -\frac{dB}{dt}$$
; Falodays law. Bind 27

 $\int E \cdot dA = -\frac{d\Phi}{dt}$; $\Phi = \int B \cdot dA$; lenz law.

$$E_{N} = -\frac{dB}{dt} \cdot \frac{a}{2} \qquad \dots \cdot (\frac{a}{2})$$

we know;

Force per unit length = charge per unit x Equ

$$\frac{1}{dt} = -2\pi\alpha^2 \left(-\frac{dB}{dt}\right) \frac{\alpha}{2},$$

given
$$=\frac{\lambda}{2\pi a}$$

$$\therefore \pm \frac{d\omega}{dt} = \frac{\lambda}{2\pi \alpha} \frac{a^{\frac{3}{2}} \times 2\pi t}{2} \left(-\frac{dB}{dt} \right)$$

entegration on both side

$$JI \cdot dw = -\frac{1}{2} \int dB$$

$$I \cdot \int dw = -\frac{1}{2} \int dB$$

$$J \cdot dw = -\frac{1}{2} \int dB$$

$$J \cdot dw = -\frac{1}{2} \int dB$$

$$J \cdot dw = -\frac{1}{2} \int dB$$

$$Ustind - wynt) = \frac{1}{2} \int dB$$

$$(wstind) - wynt) = \frac{1}{2} \int dB$$

$$wstind = \frac{1}{2} \int dB$$

$$Ustind - Wynt = \frac{1}{2} \int dB$$

in general people assume Bfinal shall be 2006 bot not; because, at the time Benduced becomes zero but the cylinder rotates with an angular verolity we; can cause an magnetic feeld:

Induced current I; per out lingth It &

went
$$I_{L} = \frac{\text{charge per onst larger}}{\text{time period}}$$

went $I_{L} = \frac{2 \text{tr} \alpha}{2 \text{tr} \alpha} \cdot \omega$; $T = \frac{2 \text{Tr}}{2 \text{Tr}}$

went $I_{L} = -\alpha \omega$; $\sigma = \frac{\lambda}{2 \text{tr} \alpha}$

went $I_{L} = -\frac{\lambda}{2 \text{tr} \alpha}$

: magnetic ferle due to upinde Bfinal.

$$wf = \frac{\lambda a^2}{2I} \left(Bent - \frac{\lambda wfinal}{2II} \right)$$

 $wf = \frac{\lambda a^2 (Bint)}{2F}$ $1 + \frac{\lambda a^2 (Bint)}{\mu \sigma \lambda^2 a^2}$