WHY ENCRYPTION?

Objectives of cryptography:

There are four main objectives of cryptography:-

- a). Confidentiality: It guarantees that the sensitive information can only be accessed by those users/entities authorized to unveil it.
- b). Data integrity: It is a service which addresses the unauthorized alteration of data. This property refers to data that has not been changed, destroyed, or lost in a malicious or accidental manner.
- c). Authentication: It is a service related to identification.
- This function applies to both entities and information itself.
- Two parties entering into a communication should identify each other.
- d). Non-repudiation: It is a service which prevents an entity from denying previous commitments or actions.

TYPES

- Cryptography involves two main approaches:
- Symmetric-key cryptography.
- Asymmetric-key cryptography.
- Symmetric-key cryptography: Same secret key is used for
- both encryption and decryption.
- Asymmetric-key cryptography: Two different keys are used
- i.e. one for encryption and other for decryption.

SIMPLIFIED MODEL OF SYMMETRIC CRYPTO SYSTEM

SIMPLIFIED MODEL OF ASYMMETRIC CRYPTO SYSTEM

COMPARISON OF SECRET KEY

AND PHRIIC KEY

	Secret Key (Symmetric)	Public Key (Asymmetric)	
Number of Key	1	2	
Protection of Key	Must be kept secret	One key must be kept secret & other can be freely exposed	
Best Uses	secrecy and integrity of data	Key exchange, authentication	
Key Distribution	Problematic	Safer	
Speed	Fast	Slow; typically, 10,000 times slower than secret key	

RSA

Key Generation by Alice

Select p, q

p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calcuate $\phi(n) = (p-1)(q-1)$

Select integer e

 $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate d

 $d \equiv e^{-1} \pmod{\phi(n)}$

Public key

 $PU = \{e, n\}$

Private key

 $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext:

M < n

Ciphertext:

 $C = M^e \mod n$

Decryption by Alice with Alice's Public Key

Ciphertext:

C

Plaintext:

 $M = C^d \mod n$

The main interest of the elliptic curve cryptosystems is to decrease the required key-size to achieve appropriate security. Thus, we have an equivalent security level among RSA algorithm using 1024-bit key and an elliptic curve cryptosystem using more or less a 160-bit key. The following comparison table given by NIST in [SP800-57] perfectly illustrates the key size benefits of using elliptic curves based cryptography:

Symmetric Key Algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of n in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160–223
112	L = 2048 N = 224	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

Note: L = size of public key. N = size of private key

ECC

RS A

ECC-WHAT IS IT?

- Elliptic curves are not ellipses. Elliptic curves are described by cubic equations similar to those used for calculating the circumference of an ellipse
- Elliptic curve cryptography makes use of elliptic curves, in which the variables and coefficients are all restricted to elements of a finite field
- An elliptic curve is defined by an equation in two variables with coefficients.

HOW IT RUNS?

 y^2 mod p = (x^3 + ax + b) mod p Lists of points (other than O) that are part of E_{23} (1, 1). plots the points of E_{23} (1, 1); note that the points, with one exception, are symmetric about y = 11.5.

(0, 1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1, 7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9, 7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

Koblitz's Method for Encoding Plaintext

- **Step1:** Pick an elliptic curve $\overline{Ep(a,b)}$.
- **Step 2:** Let us say that E has N points on it.
- **Step 3:** Let us say that our alphabet consists of the digits 0,1,2,3,4,5,6,7,8,9 and the letters A,B,C,..., X,Y,Z coded as 10,11,...,35.
- **Step 4:** This converts our message into a series of numbers between 0 & 35.
- **Step 5:** Now choose an auxiliary base parameter, for example k = 20. (both parties should agree upon this)
- **Step 6:** For each number mk (say), take x=mk + 1 and try to solve for y.
- **Step 7:** If you can't do it, then try x = mk + 2 and then x = mk + 3 until you can solve for y.
- **Step 8:** In practice, you will find such a 'y' before you hit x = mk + k 1. Then take the point (x,y). This now converts the number m into a point on the elliptic curve. In this way, the entire message becomes a sequence of points.

HOW IS KEY GENERATED?

- ❖ Both the entities in the cryptosystem agree upon a,b,p,G,n which are called ②Domain Parameters②of G is called generator point and n is the order of G.
- Now A generates a random number nA< n as his private Key and calculates his public key</p>
- Set P_A = G+G+G \squarenA times.
- ❖B generates a random number nB< n as his private Key and calculates his public key.
- ❖ set P_B = G+G+G⅓....nB times.

EYEXCHAN

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private $\ker X_A$ such that $X_A < q$

Alice calculates a public $kev Y_A = \alpha^{X_A} \bmod q$

Alice receives Bob's public key Y_B in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_R such that $X_R < q$

Bob calculates a public $\ker Y_B = \alpha^{X_B} \bmod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

ENCRYPTJON

A sends C = 2 ciphertext points those are { kG, $P_m + kP_b$) }.

Where G - generator Point P_m - plaintext point on the curve k - a random number chosen by A P_b - public key of B

DECRYPTION

$$P_m + kP_B - n_B(kG) = P_m + k(n_B)G - n_B(kG) = P_m$$

Where G - generator Point P_m - plaintext point on the curve k - a random number chosen by A P_B - public key of B

AN EXAMPLE

Example: Say the parameters of curve are: p(751), a(-1), b(188), n(727).

- 1. Say we have to send character 'b'.
- 2. 'B' is first encoded as number 11.
- 3. x=mk+1 i.e, 11*20+1=221cannot solve it for a y such that $y^2 = x^3 + ax + b$ mod p
- 4. So go for x=mk+2, x=222, no y exists. x=mk+3, x=223, no y exists.
- 5. x=mk+4 so x=224 can solve it for y and y=248.
- 6. Now the point (224,248) is point is encrypted and decrypted as a message.
- 7. To decode just compute (x-1)/k i.e, (224-1)/20=223/20 i.e, 11.15.
- 8. Return 11 as original plaintext(greatest integer less than (x-1)/k, that is 11.
- 9. The number 11 is now decoded to character 'B'.
- 10. The probability that we fail to find a square (and hence fail to associate m to a point) is about $(\frac{1}{2})^k$.

OUR PROGRESS

- function [X,Y,n] = PC(A,B,p)This function m-file finds and plots all the points that lie in $E_p(A,B)$ These points are on the curve $y^2 = x^3 + AX + B \pmod{p}$
- function $[x_3,y_3,m] = ECADP(x_1,y_1,x_2,y_2,A,p)$ This function m-file performs Elliptic Curve addition over prime curves. Suppose we are working on the elliptic curve $y^2 = x^3 + Ax + B$ Define $P_1 = (x_1,y_1)$ $P_2 = (x_2,y_2)$ Then $P_1 + P_2 = P_3 = (x_3,y_3)$ is defined by as below If one if the variables in infinity then we define $P_1 + P_2 = P_3 = P_3 = P_3$ and the user should type in 'infinity' for both the x and y values.
- function $[X_2,Y_2] = SUCDOB(X_1,Y_1,k,A,p)$ This is a function m-file to perform the successive doubling algorithm on prime curves. If $P = (X_1,Y_1)$ and k is an integer, then this algorithm will find $kP = (X_2,Y_2)$ where we are operating over the elliptic curve $y^2 = x^3 + Ax + B \pmod{p}$, p prime

OUR PROGRESS

- function [flag] = $\mathbf{check}(x,y,A,B,p)$ An m-file to check if the point (x,y) lies on the prime curve $y^2 = x^3 + Ax + B \pmod{p}$
- function [I] = inve(N,p)
 This m-file finds the inverse of an element, N, in the group Z_p for use with prime curves.
- function $[x_{10},y,c] = ECC(x,y,a,b,M,x_9,n)$
- function [c1,c2,X6,Y6]=encrypt(X2,Y2,X,Y,a,p,n)
- function [X14,Y14,c,str_back_to_char]=**decrypt**(x1,y1,X,Y,n,a,b,p,z,c)
- Main function
- M = input('\nEnter the message: ','s'); % ASCII TO MESSAGE CONVERSION

Let us look more closely

Output of PC.m

The set of points for a=b=1 and p=23

Command Window

New to MATLAB? Wz

>> PC(1,1,23)

ans =

Output of PC.m

Output of ECADP.m

Command Window

New to MATLAB? Watch this Video, se

```
>> ECADP(1,1,2,3,1,23)

ans =

1

fx =>>
```

Output of SUCDOB.m

Command Window

New to MATLAB? Watch this Vide

```
>> SUCDOB(1,1,1,1,23)

ans =
```

Output of check.m

Command Window

New to MATLAB? Watch this Video, see Demos, or read Ge

```
>> check(1,1,1,1,23)
This point does not lie on the curve

ans =
'NO

*
>> |
```

Output of inve.m

Command Window

New to MATLAB? Watch this Video, see

```
>> inve(23,23)

ans =

Empty matrix: 0-by-1
```

Output of encrypt.m

Command Window

New to MATLAB? Watch this Video, see De

```
>> encrypt(1,1,1,1,1,23,23)
ciper text 1
P3 is infinity
ciper text 2
     1
ans
```

Output of decrypt.m

Command Window

New to MATLAB? Watch this Video, see Demos, or

```
>> decrypt(1,1,1,1,23,1,1,23,2,3)
decrypted
     1
     1
str back to char =
ans =
     1
```

ASCII to Message

Command Window

New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Ge</u>

```
Enter the message: soham
str ascii =
 115 111 104 97 109
str back to char =
soham
str 16bit =
   115 111 104 97 109
str back to char =
soham
```

ECC implementation in Matlab

```
p=23;
 a=1:b=1:
[x,y,n] = PC(1,1,p);
x1=x(7);
\nabla 1 = \nabla (7);
 z=randi([1,n-1]);
[X2,Y2] = SUCDOB(x1,y1,z,1,p);
 M = input('\nEnter the message: ','s');
 x9=length(M);
 [X, Y, c] = ECC(x1, y1, a, b, M, x9, n);
 na=randi([1,n-1]);
 [c1, c2, X6, Y6] = encrypt(x1, y1, X, Y, a, p, n);
 [X14,Y14,c5,str back to char]=decrypt(x1,y1,X,Y,n,a,b,p,z,c);
```

Final Output

str back to char =

SOHAM CHAYAN BISHWADIP

```
Command Window
New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.
  Enter the message: SOHAM CHAYAN BISHWADIP
   point does not lie on curve
   ASCII Code of the entered Message:
                             65
   encrypted message:
      602
       16
   ciper text 1
       18
       20
  ciper text 2
        1
        3
  decrypted
      602
       16
```

Presented By- BISHWADIP PAUL CHAYAN DUTTA

Dept of ETCE(UG-III)

THANK YOU