Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Neitzel, Penn-Karras, Stephan

SS 11 09.04.2011

Juli – Klausur Analysis II für Ingenieure Musterlösung

Rechenteil

1. Aufgabe 10 Punkte

a) Der Schnittpunkt im 1. Quadranten der beiden Kurven $y=x^2$ und $y=2-x^2$ ist (1,1). Somit gilt:

$$\iint_{B} xy dx dy = \int_{0}^{1} \int_{x^{2}}^{2-x^{2}} xy dy dx$$

$$= \frac{1}{2} \int_{0}^{1} x((2-x^{2})^{2} - x^{4}) dx$$

$$= \frac{1}{2} \int_{0}^{1} x(4+x^{4} - 4x^{2} - x^{4}) dx$$

$$= 2 \int_{0}^{1} (x-x^{3}) dx$$

$$= 2(\frac{1}{2} - \frac{1}{4}) = \frac{1}{2}.$$

(Skizze 2 Punkte; Rechnung 3 Punkte)

b)

$$\begin{split} \iint_{F} \vec{v} \cdot d\vec{O} &= \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \vec{v}(\vec{x}(u,\varphi)) \cdot (\vec{x}_{u} \times \vec{x}_{\varphi}) \, d\varphi du \\ &= \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \begin{pmatrix} u \sin \varphi \\ -u \cos \varphi \\ u^{4} \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 3u^{2} \end{pmatrix} \times \begin{pmatrix} -u \sin \varphi \\ u \cos \varphi \\ 0 \end{pmatrix} \end{pmatrix} \, d\varphi du \\ &= \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \begin{pmatrix} u \sin \varphi \\ -u \cos \varphi \\ u^{4} \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} -3u^{3} \cos \varphi \\ -3u^{3} \sin \varphi \\ u \end{pmatrix} \, d\varphi du \\ &= \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} u^{5} \cos \varphi \, d\varphi du \\ &= \frac{1}{6}. \end{split}$$

(5 Punkte)

2. Aufgabe 10 Punkte

a)
$$\Phi(x, y, z) = -x^2 + xy\cos z - yz + c.$$
 (4P.)

b)
$$\operatorname{grad}\operatorname{div}\vec{v}(x,y,z) = \operatorname{grad}(2+xy\cos z) = \begin{pmatrix} y\cos z \\ x\cos z \\ -xy\sin z \end{pmatrix}$$
. \vec{v} besitzt ein Potential. Also ist $\operatorname{rot}\vec{v}=\vec{0}$ uns somit $\operatorname{rot}\operatorname{rot}\vec{v}=\vec{0}$. (6P.)

3. Aufgabe 10 Punkte

Da $f(x,y) \geq 0$ für alle $(x,y) \in \mathbb{R}^2$ und = 0 genau dann, wenn x = 0, wird das globale Minimum in unendlich vielen Punkten angenommen.

Kritische Punkte:

$$grad f = 0$$

$$\Leftrightarrow \begin{pmatrix} 2e^{-(x^2+y^2)}(x-x^3) \\ -2x^2ye^{-(x^2+y^2)} \end{pmatrix} = \vec{0}$$

$$\Leftrightarrow x = 0 \text{ oder } (x,y) = (1,0) \text{ oder } (x,y) = (-1,0).$$

Den Fall x = 0 haben wir bereits behandelt.

$$Hess_{(x,y)}f = \begin{pmatrix} -4xe^{-(x^2+y^2)}(x-x^3) + 2e^{-(x^2+y^2)}(1-3x^2) & -4ye^{-(x^2+y^2)}(x-x^3) \\ -4ye^{-(x^2+y^2)}(x-x^3) & -2x^2e^{-(x^2+y^2)} + 4x^2y^2e^{-(x^2+y^2)} \end{pmatrix}.$$

Daraus folgt

$$Hess_{(1,0)}f = \begin{pmatrix} -4e^{-1} & 0 \\ 0 & -2e^{-1} \end{pmatrix} = Hess_{(-1,0)}f$$

Die Determinante ist > 0; der erste Eintrag ist negativ. Also ist die Hessematrix an den beiden Stellen negativ definit. Also liegt an beiden Stellen ein lokales Maximum vor.

Verständnisteil

4. Aufgabe 12 Punkte

a) Die Tangentialebene von f im Punkt $(1,1,\frac{5}{4})$ ist parallel zur Ebene z=x+2y=:g(x,y), wenn die Gradienten von f und g an der Stelle (1,1) gleich sind. Dies ist aber der Fall, da $grad_{(1,1)}g=(1,2)^T$ und $grad_{(x,y)}f=(x^3,2y)^T$, also $grad_{(1,1)}f=(1,2)^T$.

b)

$$\begin{split} K &= \left\{ (\rho,\phi,z) \in [0,\infty[\times[0,2\pi] \times \mathbb{R}, | \, 0 \leq z \leq \sqrt{4-\rho^2} \right\} \\ \iiint_K z dx dy dz &= \int_0^2 \int_0^{2\pi} \int_0^{\sqrt{4-\rho^2}} z \rho \, dz d\phi d\rho \\ &= \pi \int_0^2 \rho (4-\rho^2) \, d\rho \\ &= \pi \int_0^2 (4\rho - \rho^3) \, d\rho \\ &= \pi (2 \cdot (4-0) - \frac{1}{4} (16-0)) = 4\pi. \end{split}$$

c) Alle partiellen Ableitungen existieren und sind stetig. Nach Satz 38 des Skriptes ist \vec{f} demnach differenzierbar.

$$ec{f'}(x,y) = \left(egin{array}{ccc} y & x \ y^2 \cos x & 2y \sin x \ 0 & 1 \end{array}
ight)$$

Punkteverteilung: je 4 Punkte.

5. Aufgabe 10 Punkte

a) i)
$$A := \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$$
 (1P)

ii)
$$B := \mathbb{R}^2$$
 (1P)

iii)
$$C := \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\} \cup \{(x, y) \in \mathbb{R}^2 | (x - 4)^2 + y^2 < 1\}$$
 (1P)

b) \vec{x}_k ist divergent, da die Komponentenfolge $((-1)^k)_{k\in\mathbb{N}}$ divergiert. \vec{y}_k ist konvergent mit Grenzwert (0,1). (3P)

6. Aufgabe 8 Punkte

$$\iint_{\partial Q} \vec{v} \cdot d\vec{O} = \iiint_{Q} \operatorname{div} \vec{v} \, dV$$
$$= 6 \iiint_{Q} 1 \, dV$$
$$= 6 \cdot 2^{3} = 48.$$