Probabilistic methods for uncertainty quantification of the error in numerical solvers of differential equations

Assyr Abdulle, Giacomo Garegnani

Candidacy Exam, 20 March 2018

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric probabilistic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
- 6 Research plan

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- Geometric probabilistic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
- Research plan

Probabilistic methods – why?

Consider Lorenz equation (atmospheric convection)

$$x' = \sigma(y - x),$$
 $x(0) = -10,$
 $y' = x(\rho - z) - y,$ $y(0) = -1,$
 $z' = xy - \beta z,$ $z(0) = 40.$

For $\rho = 28$, $\sigma = 10$, $\beta = 8/3$ chaotic behaviour.

⇒ Numerical integration gives unreliable solutions.

Probabilistic methods - why?

Consider Lorenz equation (atmospheric convection)

$$x' = \sigma(y - x),$$
 $x(0) = -10,$
 $y' = x(\rho - z) - y,$ $y(0) = -1,$
 $z' = xy - \beta z,$ $z(0) = 40.$

For $\rho = 28$, $\sigma = 10$, $\beta = 8/3$ chaotic behaviour.

⇒ Numerical integration gives unreliable solutions.

Goal

Establish a probability measure over the numerical solution given by classical methods.

Probabilistic methods - why?

Time evolution of the first component of Lorenz equation **Black line** \rightarrow deterministic solution Gray lines \rightarrow probabilistic solutions.

Probabilistic methods - why?

Time evolution of the first component of Lorenz equation

Black line \rightarrow deterministic solution

Gray lines \rightarrow probabilistic solutions.

Chaotic behaviour appears frequently in nonlinear differential equations.

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric probabilistic numerical integration
- 4 Bayesian inverse problems
- 5 Numerical experiments
- 6 Research plan

Notation

Autonomous dynamical system, function $f\colon \mathbb{R}^d o \mathbb{R}^d$ and the ODE

$$y'=f(y), \quad y(0)=y_0.$$

Flow of the equation $\varphi_t \colon \mathbb{R}^d \to \mathbb{R}^d$ such that

$$y(t) = \varphi_t(y_0).$$

One-step method: numerical flow Ψ_h such that

$$y_{n+1}=\Psi_h(y_n).$$

Runge-Kutta methods: flow implicitly defined by

$$K_i = y_n + h \sum_{j=1}^s a_{ij} f(K_j),$$

$$\Psi_h(y_n) = y_n + h \sum_{i=1}^s b_i f(K_i).$$

Probabilistic methods for ODEs

Filtering methods for ODEs: fix a prior on y(t) (Gaussian process), update with evaluations of f(y) [Kersting and Hennig, 2016]

Randomised methods for ODEs: random perturbation of deterministic numerical solutions \rightarrow sampling [Conrad et al., 2016]

Probabilistic methods for ODEs

Filtering methods for ODEs: fix a prior on y(t) (Gaussian process), update with evaluations of f(y) [Kersting and Hennig, 2016]

Randomised methods for ODEs: random perturbation of deterministic numerical solutions \rightarrow sampling [Conrad et al., 2016]

Additive noise method [Conrad et al., 2016]

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d imes d}$

$$\mathbb{E} \xi_n(h) = 0, \quad \mathbb{E} \xi_n(h) \xi_n(h)^T = Qh^{2p+1}.$$

Additive noise method [Conrad et al., 2016]

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d imes d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Properties

If Ψ_h is of order q and for $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

- Strong convergence: $\mathbb{E}\|y(hn) Y_n\| \le Ch^{\min\{p,q\}}$,
- Weak convergence: $|\Phi(y(hn)) \mathbb{E} \Phi(Y_n)| \leq Ch^{\min\{2p,q\}}$,
- Good qualitative behavior in Bayesian inverse problems.

Additive noise method [Conrad et al., 2016]

Stochastic process $\{Y_n\}_{n=1,2,...}$ with recurrence

$$Y_{n+1} = \underbrace{\Psi_h(Y_n)}_{\text{deterministic}} + \underbrace{\xi_n(h)}_{\text{random}}.$$

Main assumption: $\{\xi_n\}_{n=0,1,...}$ iid such that for p>1 and $Q\in\mathbb{R}^{d imes d}$

$$\mathbb{E}\,\xi_n(h)=0,\quad \mathbb{E}\,\xi_n(h)\xi_n(h)^T=Qh^{2p+1}.$$

Issues

- Robustness: $\Psi_h(Y_{n-1}) > 0 \implies \mathbb{P}(Y_n < 0) = 0$,
- Geometric properties are not conserved from Ψ_h . For example if $I(y) = y^T S y$ and $I(\Psi_h(y_0)) = I(y_0)$

$$I(Y_1) = I(y_0) + 2\xi_0(h)^T S \Psi_h(y_0) + \xi_0(h)^T S \xi_0(h).$$

Intrinsic noise: Random time-stepping Runge-Kutta (RTS-RK)

$$Y_{n+1} = \Psi_{H_n}(Y_n),$$

Main assumption: $\{H_n\}_{n=0,1,...}$ iid such that for h, C > 0 and p > 1

$$H_n > 0$$
 a.s., $\mathbb{E} H_n = h$, $\operatorname{Var} H_n = Ch^{2p}$.

Example: $H_n \stackrel{\text{iid}}{\sim} \mathcal{U}(h - h^p, h + h^p)$.

Theorem (Weak convergence)

There exists C>0 independent of h such that for all $\Phi\colon\mathbb{R}^d\to\mathbb{R}$ smooth

$$|\mathbb{E} \Phi(Y_k) - \Phi(y(kh))| \leq Ch^{\min\{2p-1,q\}}.$$

Theorem (Weak convergence)

There exists C > 0 independent of h such that for all $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

$$|\mathbb{E} \Phi(Y_k) - \Phi(y(kh))| \leq Ch^{\min\{2p-1,q\}}.$$

Theorem (Mean square convergence)

There exists C > 0 independent of h such that

$$(\mathbb{E}||Y_k - y(t_k)||^2)^{1/2} \le Ch^{\min\{p-1/2,q\}}.$$

Theorem (Weak convergence)

There exists C > 0 independent of h such that for all $\Phi \colon \mathbb{R}^d \to \mathbb{R}$ smooth

$$|\mathbb{E} \Phi(Y_k) - \Phi(y(kh))| \leq Ch^{\min\{2p-1,q\}}.$$

Theorem (Mean square convergence)

There exists C > 0 independent of h such that

$$(\mathbb{E}||Y_k - y(t_k)||^2)^{1/2} \leq Ch^{\min\{p-1/2,q\}}.$$

Consequences

- Reasonable choice p = q + 1/2
- $\mathbb{E}||Y_k y(t_k)|| \le Ch^{\min\{p-1/2,q\}}$ (strong order)

Theorem (Monte Carlo estimators)

For $\Phi: \mathbb{R}^d \to \mathbb{R}$ smooth, Monte Carlo estimators $\hat{Z} = M^{-1} \sum_{i=1}^M \Phi(Y_N^{(i)})$ of $Z = \Phi(Y_N)$ satisfy

$$MSE(\hat{Z}) \le C\Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M}\Big),$$

where C is a positive constant independent of h and M and

$$MSE(\hat{Z}) = \mathbb{E}(\hat{Z} - \Phi(y(t_N)))^2.$$

Theorem (Monte Carlo estimators)

For $\Phi: \mathbb{R}^d \to \mathbb{R}$ smooth, Monte Carlo estimators $\hat{Z} = M^{-1} \sum_{i=1}^M \Phi(Y_N^{(i)})$ of $Z = \Phi(Y_N)$ satisfy

$$MSE(\hat{Z}) \le C\Big(h^{2\min\{2p-1,q\}} + \frac{h^{2\min\{p-1/2,q\}}}{M}\Big),$$

where C is a positive constant independent of h and M and

$$MSE(\hat{Z}) = \mathbb{E}(\hat{Z} - \Phi(y(t_N)))^2.$$

Consequence

For reasonable choice p=q+1/2, $\mathsf{MSE}(\hat{Z})$ converges independently of M with h (quality of the estimation independent of the number of paths)

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric probabilistic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
- Research plan

Conservation of first integrals – Additive noise

Recall:
$$Y_{n+1} = \Psi_h(Y_n) + \xi_n(h)$$
, with $\mathbb{E} \xi_n(h) \xi_n(h)^\top = h^{2p+1} Q$

Linear first integrals: $I(y) = v^{\top}y$ such that $I(\Psi_h(Y_1)) = I(y_0)$. Then

$$I(Y_1) = v^{\top}(y_0 + \xi_0(h)) \implies \mathbb{E} I(Y_1) = I(y_0) \text{ iff } \mathbb{E} \xi_0(h) = 0.$$

Quadratic first integrals: $I(y) = y^{\top}Sy$ such that $I(\Psi_h(Y_1)) = I(y_0)$. Then

$$I(Y_1) = I(y_0) + 2\xi_0(h)^T S \Psi_h(y_0) + \xi_0(h)^T S \xi_0(h),$$

$$\implies \mathbb{E} I(Y_1) = I(y_0) + Q : Sh^{2p+1}, \text{ (with } \mathbb{E} \xi_0(h) = 0)$$

Quadratic first integrals are not conserved on average!

Conservation of first integrals – Random time steps

Theorem (Conservation of invariants)

If the Runge-Kutta scheme defined by Ψ_h conserves an invariant I(y) for an ODE, then the RTS-RK method conserves I(y) for the same ODE.

Proof

If $I(\Psi_h(y)) = I(y)$ for any h, then $I(\Psi_{H_0}(y)) = I(y)$ for any value that H_0 can assume.

Symplecticity – Random time steps

Theorem (Symplecticity of the flow map)

If the flow Ψ_h of the deterministic integrator is symplectic, then the flow of the RTS-RK method is symplectic.

Idea of the proof

Adaptive time steps ruin symplectic properties if not carefully selected. Nonetheless, if the time steps are chosen independently of the solution, the flow is symplectic.

Symplecticity - Random time steps

Theorem (Symplecticity of the flow map)

If the flow Ψ_h of the deterministic integrator is symplectic, then the flow of the RTS-RK method is symplectic.

Idea of the proof

Adaptive time steps ruin symplectic properties if not carefully selected. Nonetheless, if the time steps are chosen independently of the solution, the flow is symplectic.

Remark

The symplecticity of the flow is not enough to guarantee good approximation of the Hamiltonian for long time spans.

Symplecticity - Random time steps

Energy $Q \colon \mathbb{R}^{2d} \to \mathbb{R}$ and Hamiltonian system

$$y' = J^{-1}\nabla Q(y), \quad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Symplectic integrator Ψ_h of order q.

Theorem (Conservation of the Hamiltonian)

There exist positive constants κ , C_1 , C_2 , C_3 , independent of h such that

$$\mathbb{E}|Q(Y_n) - Q(y_0)| \le C_1 e^{-\kappa/2h} (1 + h^{2p-1}) + C_3 h^q + \frac{C_4 n^{1/2} h^{p+q}}{h^{p+q}}.$$

Symplecticity – Random time steps

Energy $Q\colon \mathbb{R}^{2d} o \mathbb{R}$ and Hamiltonian system

$$y' = J^{-1}\nabla Q(y), \quad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Symplectic integrator Ψ_h of order q.

Theorem (Conservation of the Hamiltonian)

There exist positive constants κ , C_1 , C_2 , C_3 , independent of h such that

$$\mathbb{E}|Q(Y_n)-Q(y_0)|\leq C_1e^{-\kappa/2h}(1+h^{2p-1})+C_3h^q+C_4n^{1/2}h^{p+q}.$$

Consequence

Up to times $n = \mathcal{O}(h^{-2p})$ (balance between h^q and h^{p+q} terms) same conservation as deterministic symplectic method.

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric probabilistic numerical integration
- 4 Bayesian inverse problems
- **5** Numerical experiments
- Research plan

Goal

Given $\vartheta \in \mathbb{R}^n$, $f_\vartheta \colon \mathbb{R}^d \to \mathbb{R}^d$ and the ODE

$$y' = f_{\vartheta}(y), \quad y(0) = y_{0,\vartheta} \in \mathbb{R}^d,$$

retrieve the true value ϑ^* from observations of y(t), t > 0.

Goal

Given $\vartheta \in \mathbb{R}^n$, $f_\vartheta \colon \mathbb{R}^d \to \mathbb{R}^d$ and the ODE

$$y' = f_{\vartheta}(y), \quad y(0) = y_{0,\vartheta} \in \mathbb{R}^d,$$

retrieve the true value ϑ^* from observations of y(t), t > 0.

Bayesian setting: fix prior $\pi_{\text{prior}}(\vartheta)$, consider $\mathcal{G}: \mathbb{R}^n \to \mathbb{R}^m$ and the observation model

$$\mathcal{Y} = \underbrace{\mathcal{G}(\vartheta^*)}_{\text{forward}} + \underbrace{\eta}_{\text{noise}}, \quad \varepsilon \sim \pi_{\text{noise}},$$

then the posterior distribution (density) is

$$\pi(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}(\vartheta)).$$

```
Obtaining a sample \{\vartheta^{(i)}\}_{i=0}^N from \pi(\vartheta \mid \mathcal{Y}).
Algorithm: Metropolis-Hastings.
Given \vartheta^{(0)} \in \mathbb{R}^n, proposal g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, N \in \mathbb{N};
Compute \pi(\vartheta^{(0)} \mid \mathcal{Y}):
for i = 0, \dots, N do
        Draw \bar{\vartheta} from q(\vartheta^{(i)}, \cdot):
       Set \vartheta^{(i+1)} = \bar{\vartheta} with probability
                                    \alpha(\vartheta^{(i)}, \bar{\vartheta}) = \min \left\{ 1, \frac{\pi(\vartheta \mid \mathcal{Y})q(\vartheta^{(i)}, \vartheta)}{\pi(\vartheta^{(i)} \mid \mathcal{Y})q(\bar{\vartheta}^{(i)}, \vartheta)} \right\}
          otherwise set \vartheta^{(i+1)} = \vartheta^{(i)}:
end
```

```
Obtaining a sample \{\vartheta^{(i)}\}_{i=0}^N from \pi(\vartheta \mid \mathcal{Y}).
Algorithm: Metropolis-Hastings.
Given \vartheta^{(0)} \in \mathbb{R}^n, proposal g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, N \in \mathbb{N};
Compute \pi(\vartheta^{(0)} \mid \mathcal{Y}):
for i = 0, \ldots, N do
        Draw \bar{\vartheta} from q(\vartheta^{(i)}, \cdot):
       Set \vartheta^{(i+1)} = \bar{\vartheta} with probability
                                    \alpha(\vartheta^{(i)}, \bar{\vartheta}) = \min \left\{ 1, \frac{\pi(\vartheta \mid \mathcal{Y})q(\vartheta^{(i)}, \vartheta)}{\pi(\vartheta^{(i)} \mid \mathcal{Y})q(\bar{\vartheta}^{(i)}, \vartheta)} \right\}
          otherwise set \vartheta^{(i+1)} = \vartheta^{(i)}:
end
```

The posterior $\pi(\vartheta\mid\mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\mathrm{prior}}(\vartheta) \pi_{\mathrm{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

Properties

If Ψ_h is of order q

- $d_{\mathrm{Hell}}(\pi^h,\pi) \to 0$ for $h \to 0$ with rate q
- fast MH iterations for explicit Ψ_h (and h coarse)
- explores complex posterior distributions

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^h(\vartheta \mid \mathcal{Y}) \propto \pi_{\text{prior}}(\vartheta) \pi_{\text{noise}}(\mathcal{Y} - \mathcal{G}^h(\vartheta)).$$

Issue

- π^h concentrated around values "far" from $\vartheta^* o$ non-predictive posterior

The posterior $\pi(\vartheta\mid\mathcal{Y})$ is not computable, approximate with $\pi^{h,\mathrm{RTS}}(\vartheta\mid\mathcal{Y})\propto\pi_{\mathrm{prior}}(\vartheta)\mathbb{E}^{\mathbf{H}}\pi_{\mathrm{noise}}(\mathcal{Y}-\mathcal{G}^{\mathbf{H}}(\vartheta)),$ where $\mathbf{H}=(H_0,H_1,\ldots)$.

Bayesian inverse problems

The posterior $\pi(\vartheta \mid \mathcal{Y})$ is not computable, approximate with

$$\pi^{h, ext{RTS}}(\vartheta \mid \mathcal{Y}) \propto \pi_{ ext{prior}}(\vartheta) \mathbb{E}^{\mathsf{H}} \pi_{ ext{noise}}(\mathcal{Y} - \mathcal{G}^{\mathsf{H}}(\vartheta)),$$

where $\mathbf{H} = (H_0, H_1, ...)$.

Properties

If $\Psi_h \to \varphi_h$ for $h \to 0$

- $d_{
 m Hell}(\pi^{h,
 m RTS},\pi)
 ightarrow 0$ for h
 ightarrow 0 [Lie et al., 2017]
- "correct" the non-predictive behaviour of deterministic approximations
- explores complex posterior distributions

Bayesian inverse problems

The posterior $\pi(\vartheta\mid \mathcal{Y})$ is not computable, approximate with

$$\pi^{h, \mathrm{RTS}}(\vartheta \mid \mathcal{Y}) \propto \pi_{\mathrm{prior}}(\vartheta) \mathbb{E}^{\mathsf{H}} \pi_{\mathrm{noise}}(\mathcal{Y} - \mathcal{G}^{\mathsf{H}}(\vartheta)),$$

where $\mathbf{H} = (H_0, H_1, ...)$.

Issues

- Approximation of $\mathbb{E}^{H} \pi_{\text{noise}}(\mathcal{Y} \mathcal{G}^{H}(\vartheta))$ is required
- Employ pseudo-marginal MH ightarrow slow mixing for small noise
- Employ noisy pseudo-marginal MH ightarrow inexact posterior distributions

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- Geometric probabilistic numerical integration
- Bayesian inverse problems
- Mumerical experiments
- 6 Research plan

Consider the perturbed Kepler equation (model for two-body problem)

$$q'_1 = p_1, \quad p'_1 = -\frac{q_1}{\|q\|^3} - \frac{\delta q_1}{\|q\|^5},$$

 $q'_2 = p_2, \quad p'_2 = -\frac{q_2}{\|q\|^3} - \frac{\delta q_2}{\|q\|^5}.$

The angular momentum is conserved (quadratic first integral)

$$I(p,q)=q_1p_2-q_2p_1$$

 \rightarrow employ a Gauss method (implicit midpoint rule).

RTS-RK (first row), Additive noise (second row). Time $0 \le t \le 200$ and $200 \le t \le 400$ (left and right)

Conservation of the angular momentum (quadratic first integral)

Consider the pendulum system, Hamiltonian with energy

$$Q(p,q) = \frac{1}{2}p^2 - \cos(q).$$

Energy is separable \rightarrow employ Störmer-Verlet (or symplectic Euler).

Mean error on the Hamiltonian for different values of the time step h.

Consider the Hénon-Heiles system (motion of a star around a galactic center), Hamiltonian with energy

$$E(p,q) = \frac{1}{2} \|p\|^2 + \frac{1}{2} \|q\|^2 + q_1^2 q_2 - \frac{1}{3} q_2^3.$$

Chaotic problem for certain levels of energy.

Goal

Find posterior $\pi((p_0, q_0) \mid \mathcal{Y})$ over the initial condition from a single observation of (p(10), q(10))

Posterior distributions given by deterministic Heun method.

Posterior distributions given by deterministic Störmer-Verlet method.

Posterior distributions given by RTS-RK Störmer-Verlet method.

Outline

- Motivation
- Probabilistic methods for ODEs
 - Additive noise method
 - Random time steps
- 3 Geometric probabilistic numerical integration
- Bayesian inverse problems
- 5 Numerical experiments
- 6 Research plan

Research plan

Future research will cover the following topics

- Analysis of modelling errors in Bayesian inverse problems
- Probabilistic methods for PDEs, extension of the RTS-RK method?
- Adaptive time stepping probabilistic algorithms for ODEs
- Particle filter approach to sampling methods a bridge between sampling and filtering probabilistic methods

Research plan – preliminary results

Probabilistic solutions of $-\Delta u = \sin(2\pi x)$ with random meshes.

References I

- [Conrad et al., 2016] Conrad, P. R., Girolami, M., Särkkä, S., Stuart, A., and Zygalakis, K. (2016).
 - Statistical analysis of differential equations: introducing probability measures on numerical solutions.

Stat. Comput.

- [Kersting and Hennig, 2016] Kersting, H. and Hennig, P. (2016).
 Active uncertainty calibration in Bayesian ODE solvers.
 In Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages 309–318. AUAI Press.
- [Lie et al., 2017] Lie, H. C., Sullivan, T. J., and Teckentrup, A. L. (2017). Random forward models and log-likelihoods in bayesian inverse problems.