Elektrotehničk	ri fakultet u Beogradu							
	Programski prevodioci 1 dr Dragan Bojić, vanr. prof. mast.inž. Maja Vukasović mast.inž. Kristijan Žiža							
Ispitni rok: Datum:	Kolokvijum, 2019. 22.11.2019.							
Kandidat:		Broj Indeksa:						
Kolokvijum traje 90 minuta. Nije dozvoljeno korišćenje literature. Prvih sat vremena nije dozvoljeno napuštati kolokvijum.								
	Zadatak 1	/10						
	Zadatak 2	/10						
	Zadatak 3	/10						
	Ukupno:	/30						

Napomena: Ukoliko u zadatku nešto nije dovoljno precizno definisano, student treba da uvede razumnu pretpostavku, da je uokviri (da bi se lakše prepoznala prilikom ocenjivanja) i da nastavi da izgrađuje preostali deo svog odgovora na temeljima uvedene pretpostavke. Na pitanja odgovarati **čitko i precizno**. Srećno!

1) **(10 poena)**

Na narednoj slici, prikazane su potisna i kontrolna tabela jednog LR(0) parsera.

- a) Na osnovu datih podataka potrebno je rekonstruisati karakteristični LR(0) automat (sa konfiguracijama u stanjima).
- b) Kako izgleda gramatika na osnovu koje je napravljen dati parser?
- c) Odrediti FOLLOW skupove za gramatiku pod b) i kontrolnu tabelu SLR(1) parsera.

	<e></e>	id	(+)	-	
∇	<e>_{x1}</e>	id _x					SHIFT
<e>_{x1}</e>				+3		- 0	SHIFT
- 0							ACCEPT
id _x			(2				SHIFT/REDUCE(1)
+3		id ₃					SHIFT
id_3							REDUCE(3)
(2	<e>_{x2}</e>	id _x					SHIFT
<e>x2</e>				+3)2		SHIFT
)2							REDUCE(2)

Rešenje:

2) **(10 poena)**

Dat je sledeći regularni izraz:

$$(a|b|\epsilon)^*d(c^*d)^+$$

- a) Tompsonovim algoritmom odrediti <u>minimalni deterministički</u> automat koji odgovara datom regularnom izrazu.
- b) Napisati gramatiku koja opisuje sve i samo one sekvence koje opisuje i dati regularni izraz.

Rešenje:

3) (10 poena)

Data je sledeća gramatika:

$$\langle S \rangle \rightarrow \langle S \rangle c \langle A \rangle$$

$$\langle S \rangle \rightarrow b$$

$$<$$
A $> \rightarrow <$ A $>$ a

$$<$$
A $> \rightarrow <$ A $> d <$ A $>$

$$\rightarrow E$$

- a) Odrediti FIRST I FOLLOW skupove za neterminale <A> i <S>
- b) Proveriti da li je moguće transformisati datu gramatiku u LL(1), i, ukoliko je moguće, sprovesti datu transformaciju.
- c) Nad transformisanom gramatikom dobijenom pod b) realizovati parser po principu rekurzivnog spusta za onaj deo gramatike koji opisuje smene koje se u originalnoj gramatici odnose na neterminal <A>.

Rešenje: