6. Recommender systems

Task

- Use the existing MovieLens dataset [https://grouplens.org/datasets/movielens/]
 - use the dataset version [http://files.grouplens.org/datasets/movielens/ml-latest-small.zip] recommended for education and development
 - Focus on the ratings.csv and movies.csv dataset partitions
- Implement content-based recommender system
 - Represent each movie (item) as a set of genres
 - use movies.csv
 - Toy Story (1995), genres: Adventure, Animation, Children, Comedy, Fantasy
 - represent this info as vector

Movie	Action	Adventure	Animation	Children	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Mystery	Romance	Sci- Fi	Thriller	War	Western
Toy Story (1995)	0	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0

- Build user profiles consisting of genres instead of movies, example:
 - use ratings.csv and movies.csv
 - user-id: Action, Adventure, Animation, Comedy, Fantasy, Film-Noir, Horror

Userl	Action	Adventure	Animation	Children	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Mystery	Romance	Sci- Fi	Thriller	War	Western
123	1	2	3	0	2	0	0	0	2	3	1	0	0	0	0	0	0	0

- 0 if rating is <2.5, 1 if rating is >=2.5
- for users which rated movies with same genre, add +1 to the genre field (if rating >= 2.5)
- Compute similarity between the user profile vector and each item vector
- Recommend top-N most similar items
 - previously not rated by the user
- Implement hybrid recommender system
 - combine the results from the CF implementation from the tutorial and the content based recsys from this task
 - normalize the results from the CF and content based so that they are in the interval [0, 1]
 - aggregate the results using weighting scheme
 - e.g. 0.3 for the content based, 0.7 for the collaborative filtering

Weighting example (with 3 items) for a user with 0.3 for content based and 0.7 for collaborative filtering:

- results from content based
 - item-1: 0.8 (rank 1)
 - item-2: 0.7 (rank 2)
 - item-3: 0.5 (rank 3)
- results from collaborative filtering
 - item-1: 0.4 (rank 3)
 - item-2: 0.5 (rank 2)
 - item-3: 0.7 (rank 1)
- results from hybrid
 - item-1: $0.8 \times 0.3 + 0.4 \times 0.7 = 0.52$ (rank 3)
 - item-2: 0.7 x 0.3 + 0.5 x 0.7 = 0.56 (rank 2)
 - item-3: $0.5 \times 0.3 + 0.7 \times 0.7 = 0.64$ (rank 1)
- Evaluate your system
 - split your dataset in two parts
 - awk 'NR % 2 != 0' ratings.csv > new-ratings.csv
 - != for training part, == for testing part
 - training: one part to compute similarities and generate recommendations
 - testing: other part to evaluate the recommendations
 - Evaluation metrics
 - compute Precision, Recall, F-measure
 - you can re-use code from homework 2
 - Evaluate the:
 - content based implementation
 - collaborative filtering implementation (from the tutorial)
 - hybrid approach

- try out at least three different weghting scheme
- e.g. 0.3+0.7, 0.5+0.5, 0.7+0.3

Instructions for submitting

In your private namespace on EDUX provide the following information:

- Provide the link to your implementation
 - content-based, collaborative filtering and hybrid implementation
 - You can use: https://gitlab.fit.cvut.cz [https://gitlab.fit.cvut.cz] or https://github.com/ [https://github.com/] or https://bitbucket.org [https://bitbucket.org]
- Document and describe each implemented recsys approach
 - for the content based, collaborative and hybrid
- Summarize the results from the evaluation
 - which approach provides best results?
 - provide link to the complete results
- Comment on
 - issues during the design/implementation
 - ideas for extensions/improvements/future work

/mnt/www/courses/MI-DDW.16/data/pages/hw/06/start.txt \cdot Poslední úprava: 2017/05/09 09:48 autor: kuchajar