ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán UD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017

Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1004

Khai triển Maclaurint hàm $f(x) = \frac{\cos(2x)}{x+2}$ đến bậc 2 là:

$$\bigcirc$$
 2 - y - 4x² + y² + R₂

Câu 2. Cho $f(x,y,z)=x^3-3x^2+3y^2+yz-2$. Tìm tất cả các điểm M(x,y,z) sao cho $\nabla f(M)=(0,3,1)$

$$(A)$$
 $M(0,-1,-3), M(2,-1,3).$

(B)
$$M(0,-1,-3), M(2,1,3).$$

C Các câu khác sai
$$M(0,1,-3), M(2,1,-3)$$
.

Câu 3. Cho D là miền giới hạn bởi $y \ge x^2, y - x \ge 2, y \le 2 - x$ và f(x,y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I = \iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y$?

(A)
$$I = \int_0^1 dx \int_{x^2}^{2-x} f(x, y) dy + \int_1^2 dx \int_{x^2}^{2+x} f(x, y) dy$$
.

B
$$I = \int_{-2}^{-1} dx \int_{x^2}^{2-x} f(x,y) dy + \int_{-1}^{0} dx \int_{2+x}^{2-x} f(x,y) dy.$$

D Các câu khác sai.

Câu 4. Tìm m để điểm $M\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm dừng của hàm $f(x,y)=xy^2(1-mx-y)$.

(B)
$$m = \frac{1}{2}$$
.

$$m = -\frac{1}{2}$$
.

(D) m = -1.

Câu 5. Tìm cực trị của hàm f(x,y)=x+2y-2 với điều kiện $x^2+\frac{y^2}{4}=17.$

(A)
$$f_{cd} = f(-1, -8)$$
. (B) $f_{ct} = f(1, -8)$. (C) $f_{cd} = f(1, -8)$.

B
$$f_{ct} = f(1, -8)$$

$$f_{cd} = f(1, -8)$$

 \bigcirc $f_{ct} = f(-1, -8)$.

Câu 6. Công thức nào đưới đây là đúng khi đổi biến $x = r \cos \varphi, y = r \sin \varphi$ cho tích phân $I = \iint \sqrt{x^2 + y^2} dx dy$, với D là miền giới hạn bởi $x^2 + y^2 \le 1, x \le 0, y \le x$.

Câu 7. Cho hàm số $z=f\left(u,v\right)$, với $u=e^{x+2y},v=\frac{x}{y}$. Tính z_y'

(A)
$$z'_y = 2e^{x+2y}f'_u + \frac{xf'_v}{y^2}$$

(B)
$$z_y' = 2e^{x+2y}f_u' - \frac{xf_v'}{y^2}$$

$$\bigcirc$$
 $z'_y = e^{x+2y} f'_u - \frac{x f'_v}{y^2}$ \bigcirc Các câu khác sai

Câu 8. Công thức nào sau đây là đúng khi tính $I = \iint\limits_{\Omega} y \mathrm{d}x \mathrm{d}y$, trong đó D là nửa bên phải miền $x^2 + y^2 - 2x + 4y < 4$.

$$(A) I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + r \sin \varphi) r dr.$$

$$(B) I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + r \sin \varphi) r dr.$$

$$C I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} r^{2} \sin \varphi dr.$$

Câu 9. Tìm cực trị của hàm	$f(x,y) = 2x^3 - xy^2 + 5x^2$	$+y^2, x \neq 1$.	
(A) $f_{ct} = f(0,0)$.	$ B f_{cd} = f(0,0), f_{ct} = f $	$\left(-\frac{5}{3},0\right)$.	$f_{cd} = f(0,0).$
	$f(x,y) = 2x^3 - xy^2 + 5x^2$ $(B) f_{cd} = f(0,0), f_{ct} = f(0,0)$	()	
C <mark>âu 10.</mark> Miền xác định của h	nàm số $f(x,y) = \sqrt{\frac{6-3x^2}{x^2+x^2}}$	$\frac{-2y^2}{y^2}$ là:	
A Phần mặt phẳng nằm	từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở và	ào trong, bỏ gốc tọa độ	
B Phần mặt phẳng nằm	từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở và	ào trong.	
C Phần mặt phẳng nằm	phía ngoài ellipse $\frac{x^2}{2} + \frac{y^2}{3} =$ phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} =$	= 1	
D Phần mặt phẳng nằm	phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} =$	= 1 bỏ đi hai trục tọa độ.	
	có phương trình như sau: x^2		0
A Paraboloid hyperbolic D Paraboloid elliptic.		B Elippsoid.	C Nón.
	của hàm $f(x,y) = x - 2y$ tro	ong miền D giới han bởi x^2 +	$-u^2 < 5, x > 0.$
	5.	(B) $f_{min} = -2\sqrt{5}, f_{max} = -2\sqrt{5}$	$=2\sqrt{5}.$
	=5.	$\begin{array}{c} \text{B} f_{min} = -2\sqrt{5}, f_{max} = \\ \text{D} f_{min} = 2\sqrt{5}, f_{max} = \end{array}$	5.
C <mark>âu 13.</mark> Hệ số góc tiếp tuyến là	của giao tuyến giữa mặt phẳn	g $y = -3$ và mặt cong $z = x^2$	$x^2 + y^2 x$ tại điểm $P(1, -3, 10)$
	\bigcirc $k = 11$	\bigcirc $k=5$	\bigcirc $k=2$
Câu 14. Cho hàm $z = z(x, y)$	y) xác định từ phương trình : l	$n\frac{x+y}{x} + xyz = 0. \text{ Biết } z(0)$	$z_x'(0,1)=1$, tính $z_x'(0,1)$
(A) $z_x'(0,1) = -2$	$ B z_x'(0,1) = -1 $	$\sum_{x=0}^{\infty} z_x'(0,1) = 1$	
	$\iint\limits_{D}e^{rac{x}{y}}\mathrm{d}x\mathrm{d}y$ với D giới hạn bở		
	B $I = e - \frac{1}{2}$.	$\Gamma = \frac{e}{2} - 1.$	
C <mark>âu 16.</mark> Hàm số nào dưới đâ	y có vi phân là $\mathrm{d}f(x,y)=(3$	$x^2y + y^2\sin x)\mathrm{d}x + (x^3 - 2$	$y\cos x)\mathrm{d}y?$
A $f(x,y) = x^3y + y^2$ C $f(x,y) = x^3y - y^2$ C	$\cos x$.	B $f(x,y) = 3x^2y + y^2$ C D $f(x,y) = 3x^2y - y^2$ S	$\cos x$. $\sin x$
	xác định từ phương trình x –	O * () *)	
	$\mathbf{B} \ \mathbf{d}y = \frac{2+y}{y^2} \mathbf{d}x$		
(9 /	$f\left(x^2-y^2 ight)$. Tính $y.z_x'+x.z_y'$	Э	g
	B 0		\bigcirc $\frac{x}{y}$
Câu 19. Cho $f(x,y) = \cos (x^2 + y^2)$	$\left(x^2-y^2 ight)$, giá trị của $f_{xy}''(\sqrt{\pi})$	$(,-\sqrt{\pi})$ là:	
		\bigcirc $-4\sqrt{\pi}$	\bigcirc $2\sqrt{\pi}$
Câu 20. Cho hàm $z = z(x, y)$	f(x) xác định từ phương trình $f(x)$	(5x - 3z, 5y - 4z) = 0. Tính	$3z_x' + 4z_y'$
\bigcirc 3	$\bigcirc B = 5$	\bigcirc 5	\bigcirc -3

CHỦ NHIỆM BỘ MÔN

PGS. TS. Nguyễn Đình Huy

 $\boxed{\hat{\mathbf{D}}\hat{\mathbf{e}} \ 1004}$ $\boxed{\hat{\mathbf{D}}\hat{\mathbf{A}}\mathbf{P} \ \hat{\mathbf{A}}\mathbf{N}}$

Câu 1. (A)	Câu 5. D	Câu 9. (A)	Câu 12. (C)	Câu 15. A	Câu 18. (A)
Câu 2. D Câu 3. B	Câu 6. (B) Câu 7. (B)	Câu 10. (A)	Câu 13. B	Câu 16. C	Câu 19. A
Câu 4. (B)	_	Câu 11. D	Câu 14. (D)	Câu 17. (C)	Câu 20. (C)

ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán ƯD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017 Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1005

Câu 1. Tìm m để điểm $M\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm dừng của hàm $f(x,y)=xy^2(1-mx-y)$. \bigcirc B m=1. (C) $m = \frac{1}{2}$. $\bigcirc m = -\frac{1}{2}.$ (A) m = -1. **Câu 2.** Tìm cực trị của hàm f(x,y)=x+2y-2 với điều kiện $x^2+\frac{y^2}{4}=17$. (A) $f_{ct} = f(-1, -8)$. (B) $f_{cd} = f(-1, -8)$. (C) $f_{ct} = f(1, -8)$. Câu 3. Miền xác định của hàm số $f(x,y)=\sqrt{\frac{6-3x^2-2y^2}{x^2+u^2}}$ là: A Phần mặt phẳng nằm phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ bỏ đi hai trục tọa độ. B Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong, bỏ gốc tọa độ Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong. D Phần mặt phẳng nằm phía ngoài ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ **Câu 4.** Cho $f(x,y)=\cos\left(x^2-y^2\right)$, giá trị của $f_{xy}''(\sqrt{\pi},-\sqrt{\pi})$ là: $(A) 2\sqrt{\pi}$ **Câu 5.** Hàm số nào dưới đây có vi phân là $\mathrm{d}f(x,y)=(3x^2y+y^2\sin x)\mathrm{d}x+(x^3-2y\cos x)\mathrm{d}y?$ (A) $f(x,y) = 3x^2y - y^2 \sin x$ (C) $f(x,y) = 3x^2y + y^2 \cos x$. (B) $f(x,y) = x^3y + y^2 \cos x$. (D) $f(x,y) = x^3y - y^2 \cos x$.

Câu 6. Cho $f(x,y,z)=x^3-3x^2+3y^2+yz-2$. Tìm tất cả các điểm M(x,y,z) sao cho $\nabla f(M)=(0,3,1)$

(B) M(0,-1,-3), M(2,-1,3).

(D) Các câu khác sai

Câu 7. Hệ số góc tiếp tuyến của giao tuyến giữa mặt phẳng y=-3 và mặt cong $z=x^2+y^2x$ tại điểm P(1,-3,10)là

(A) k=2

(C) k = 11

Câu 8. Cho hàm z=z(x,y) xác định từ phương trình : $\ln\frac{x+y}{z}+xyz=0$. Biết z(0,1)=1, tính $z_x'(0,1)=1$ B $z'_x(0,1) = -2$ C $z'_x(0,1) = -1$ D $z'_x(0,1) = 1$

Câu 9. Tính tích phân $I=\iint\limits_{D}e^{\frac{x}{y}}\mathrm{d}x\mathrm{d}y$ với D giới hạn bởi y=x,y=1,x=0.

(A) $I = \frac{1}{2} + e$. (B) $I = \frac{e}{2} - \frac{1}{2}$. (C) $I = e - \frac{1}{2}$.

Câu 10. Cho hàm số $z=y.f\left(x^2-y^2\right)$. Tính $y.z_x'+x.z_y'$

 $\frac{\mathbf{B}}{\mathbf{y}} \frac{x}{z}$

Câu 11. Công thức nào đưới đây là đúng khi đổi biến $x=r\cos\varphi,y=r\sin\varphi$ cho tích phân $I=\iint\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y,$ với D là miền giới hạn bởi $x^2 + y^2 \le 1, x \le 0, y \le x$.

 Câu 12. Cho hàm z=z(x,y) xác định từ phương trình f(5x-3z,5y-4z)=0. Tính $3z_x'+4z_y'$ **Câu 13.** Công thức nào sau đây là đúng khi tính $I=\iint y \mathrm{d}x\mathrm{d}y$, trong đó D là nửa bên phải miền $x^2 + y^2 - 2x + 4y < 4.$

 $A I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{1}^{3} r^{2} \sin \varphi dr$

 $\mathbf{B} I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + r \sin \varphi) r dr.$

 $C I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + r \sin \varphi) r dr.$

Câu 14. Cho hàm y = y(x) xác định từ phương trình $x - y + \arctan y = 0$. Tính dy theo dx

(A) $dy = -\frac{1+y^2}{y^2}dx$ (B) $dy = \left(1 + \frac{1}{y^2}\right)dx$ (C) $dy = \frac{2+y}{y^2}dx$ (D) $dy = -\frac{1}{y^2}dx$

Câu 15. Khai triển Maclaurint hàm $f(x) = \frac{\cos(2x)}{x+2}$ đến bậc 2 là:

(A) $1 - \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2$

(B) $\frac{1}{2} \left(1 - \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2 \right)$

 $\frac{1}{2}\left(1+\frac{y}{2}-2x^2+\frac{y^2}{4}+R_2\right)$

Câu 16. Tìm cực trị của hàm $f(x,y)=2x^3-xy^2+5x^2+y^2, x\neq 1$.

(A) $f_{ct} = f\left(-\frac{5}{3}, 0\right)$. (B) $f_{ct} = f(0, 0)$. (C) $f_{cd} = f(0, 0), f_{ct} = f\left(-\frac{5}{3}, 0\right)$.

 $f_{cd} = f(0,0).$

Câu 17. Gọi tên mặt bậc hai có phương trình như sau: $x^2 + 2y^2 - 2x + 4y + z + 1 = 0$

(A) Paraboloid elliptic.

(B) Paraboloid hyperbolic.

Elippsoid.

(D) Nón.

Câu 18. Tìm GTLN, GTNN của hàm f(x,y)=x-2y trong miền D giới hạn bởi $x^2+y^2\leq 5, x\geq 0$.

(A) $f_{min} = 2\sqrt{5}, f_{max} = 5.$

B $f_{min} = -5, f_{max} = 5.$

(c) $f_{min} = -2\sqrt{5}, f_{max} = 2\sqrt{5}$.

 $f_{min} = -2\sqrt{5}, f_{max} = 5.$

Câu 19. Cho D là miền giới hạn bởi $y \ge x^2, y - x \ge 2, y \le 2 - x$ và f(x,y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I=\iint\limits_{\Omega}f(x,y)\mathrm{d}x\mathrm{d}y$?

Câu 20. Cho hàm số z = f(u, v), với $u = e^{x+2y}$, $v = \frac{x}{u}$. Tính z'_y

(A) Các câu khác sai

(B) $z'_y = 2e^{x+2y}f'_u + \frac{xf'_v}{u^2}$

c $z'_y = 2e^{x+2y}f'_u - \frac{xf'_v}{u^2}$

 $\sum_{y} z'_{y} = e^{x+2y} f'_{u} - \frac{x f'_{v}}{x^{2}}$

CHỦ NHIÊM BÔ MÔN

PGS. TS. Nguyễn Đình Huy

Đề 1005 ĐÁP ÁN

Câu 1. C	Câu 5. D	Câu 8. (A)	Câu 12. ①	Câu 16. B	Câu 20. (C)
Câu 2. A	Câu 6. (A)	Câu 9. B	Câu 13. B	Câu 17. (A)	
Câu 3. B	Cau o. (A)	Câu 10. B	Câu 14. ①	Câu 18. D	
Câu 4. B	Câu 7. C	Câu 11. (C)	Câu 15. B	Câu 19. (C)	

ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán UD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017

Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1006

Câu 1.	Tìm cực trị của hàm $f(x,y)=x+2y-2$ với điều kiện x^2	$+\frac{y^2}{4} = 17.$
--------	---	------------------------

(A)
$$f_{cd} = f(-1, -8)$$
.

B
$$f_{ct} = f(-1, -8)$$
.

(A)
$$f_{cd} = f(-1, -8)$$
. (B) $f_{ct} = f(-1, -8)$. (C) $f_{ct} = f(1, -8)$. (D) $f_{cd} = f(1, -8)$.

$$f_{cd} = f(1, -8).$$

Câu 2. Gọi tên mặt bậc hai có phương trình như sau:
$$x^2 + 2y^2 - 2x + 4y + z + 1 = 0$$

(A) Paraboloid hyperbolic.

Câu 3. Cho hàm y = y(x) xác định từ phương trình $x - y + \arctan y = 0$. Tính dy theo dx

(A)
$$dy = \left(1 + \frac{1}{y^2}\right) dx$$
 (B) $dy = -\frac{1 + y^2}{y^2} dx$ (C) $dy = \frac{2 + y}{y^2} dx$

$$B dy = -\frac{1+y^2}{y^2} dx$$

$$\bigcirc dy = \frac{2+y}{y^2} dx$$

Câu 4. Miền xác định của hàm số
$$f(x,y)=\sqrt{\frac{6-3x^2-2y^2}{x^2+y^2}}$$
 là:

A Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong, bỏ gốc tọa độ

B Phần mặt phẳng nằm phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ bỏ đi hai trục tọa độ.
C Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong.

D Phần mặt phẳng nằm phía ngoài ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$

Câu 5. Hệ số góc tiếp tuyến của giao tuyến giữa mặt phẳng y=-3 và mặt cong $z=x^2+y^2x$ tại điểm P(1,-3,10)

$$(A)$$
 $k=-6$

$$(B)$$
 $k=2$

$$(C)$$
 $k = 11$

Câu 6. Tìm GTLN, GTNN của hàm f(x,y) = x - 2y trong miền D giới hạn bởi $x^2 + y^2 \le 5, x \ge 0$.

(A) $f_{min} = -5, f_{max} = 5.$

B
$$f_{min} = 2\sqrt{5}, f_{max} = 5.$$

$$f_{min} = -2\sqrt{5}, f_{max} = 2\sqrt{5}.$$

$$\oint f_{min} = -2\sqrt{5}, f_{max} = 5.$$

Câu 7. Cho D là miền giới hạn bởi $y \ge x^2, y - x \ge 2, y \le 2 - x$ và f(x, y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I=\iint f(x,y)\mathrm{d}x\mathrm{d}y$?

(B) Các câu khác sai.

Câu 8. Cho hàm z=z(x,y) xác định từ phương trình : $\ln\frac{x+y}{z}+xyz=0$. Biết z(0,1)=1, tính $z'_x(0,1)$ (A) $z'_x(0,1)=-2$ (B) $z'_x(0,1)=2$ (C) $z'_x(0,1)=-1$ (D) $z'_x(0,1)=1$ (Câu 9. Tìm cực trị của hàm $f(x,y)=2x^3-xy^2+5x^2+y^2, x\neq 1$.

(A)
$$f_{ct} = f(0,0)$$
. (B) $f_{ct} = f\left(-\frac{5}{3},0\right)$. (C) $f_{cd} = f(0,0), f_{ct} = f\left(-\frac{5}{3},0\right)$.

 $f_{cd} = f(0,0).$

Câu 10. Công thức nào đưới đây là đúng khi đổi biến $x = r\cos\varphi, y = r\sin\varphi$ cho tích phân $I = \iint\limits_{\mathcal{D}} \sqrt{x^2 + y^2} \mathrm{d}x\mathrm{d}y,$ với D là miền giới hạn bởi $x^2 + y^2 \le 1, x \le 0, y \le x$.

$$\bigcirc \int_{\frac{5\pi}{4}}^{\frac{3\pi}{2}} \mathrm{d}\varphi \int_{0}^{1} r^{2} \mathrm{d}r$$

$f C\hat{a}u$ 11. Tìm m để điểm M ($\left(rac{1}{2},rac{1}{2} ight)$ là điểm dừng của hàn	$\inf f(x,y) = xy^2(1 - mx - y)$).	
Câu 12. Công thức nào sau đ	đây là đúng khi tính $I=\iint y$ ơ	$\mathrm{d}x\mathrm{d}y$, trong đó D là nửa bên	phải miền	
$x^2 + y^2 - 2x + 4y$	$\leq 4.$			
$ (A) I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + \varepsilon)^{-\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + \varepsilon)^{-\frac{\pi}{2}}$		$\mathbf{B} I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{d}\varphi \int_{1}^{3} r^{2} \sin\varphi dx$	$\mathrm{d}r$	
$ C I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + \varepsilon)^{2} d\varphi $	$r\sin\varphi$) $r\mathrm{d}r$.	$ D I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} r^{2} \sin \varphi dx $	$\mathrm{d}r.$	
Câu 13. Cho $f(x, y, z) = x^3$	$3 - 3x^2 + 3y^2 + yz - 2$. Tim	tất cả các điểm $M(x,y,z)$ sa	no cho $\nabla f(M) = (0,3,1)$	
M(0,-1,-3), M(2, 0) $M(0,-1,-3), M(2, 0)$		(B) $M(0,1,-3), M(2,1,$ (D) Các câu khác sai	-3).	
Câu 14. Khai triển Maclauri	nt hàm $f(x) = \frac{\cos(2x)}{y+2}$ đến l	_		
(A) $\frac{1}{2}\left(1-\frac{y}{2}-2x^2+\frac{y}{2}\right)$	$\left(\frac{y^2}{4} + R_2\right)$		R_2	
$\frac{1}{2}\left(1+\frac{y}{2}-2x^2+\frac{y}{2}\right)$	$\left(\frac{y^2}{4} + R_2\right)$		R_2	
Câu 15. Tính tích phân $I =$	$\iint\limits_{D}e^{rac{x}{y}}\mathrm{d}x\mathrm{d}y$ với D giới hạn bở	i y = x, y = 1, x = 0.		
$\mathcal{L} = \mathcal{L}$	$\boxed{\mathbf{B}} \ I = \frac{1}{2} + e.$	\mathcal{L}		
Câu 16. Cho $f(x,y) = \cos (x^2 + y^2)$	(x^2-y^2) , giá trị của $f''_{xy}(\sqrt{\pi})$	$(1,-\sqrt{\pi})$ là:		
\bigcirc -4π	$\bigcirc B$ $2\sqrt{\pi}$	\bigcirc -2π	\bigcirc $-4\sqrt{\pi}$	
	f(y) xác định từ phương trình $f(y)$			
(A) 3.	(B) −3	(C) -5 .	(D) 5.	
	dy có vi phân là $\operatorname{d}f(x,y)=(3)$			
(A) $f(x,y) = x^3y + y^2 \cos x$. (C) $f(x,y) = 3x^2y + y^2 \cos x$.		B $f(x,y) = 3x^2y - y^2 \sin x$ D $f(x,y) = x^3y - y^2 \cos x$.		
_			os x .	
Cau 13. Cho ham so $z = f$ ((u,v) , với $u=e^{x+2y}, v=rac{x}{y}$. Tinh z_y^\prime		
(A) $z_y' = 2e^{x+2y}f_u' + \frac{xf}{y^2}$	r/ v 2	B Các câu khác sai		
Câu 20. Cho hàm số $z = y.j$	$f\left(x^2-y^2\right)$. Tính $y.z_x'+x.z_y'$,		
\bigcirc $\frac{x}{y}z$	$\bigcirc B \frac{x}{y}$	© 0	\bigcirc z	

CHỦ NHIỆM BỘ MÔN

PGS. TS. Nguyễn Đình Huy

Đề 1006 ĐÁP ÁN

Câu 1. B	Câu 5. C	Câu 9. (A)	Câu 12. (A)	Câu 15. (A)	Câu 19. (C)
Câu 2. B	Câu 6. D	Câu 10. C	Câ 12 (D)	Câu 16. (A)	Câu 20. (A)
Câu 3. D	Câu 7. C	Cau 10. C	Cau 13. (B)	Câu 17. ①	
Câu 4. A	Câu 8. B	Câu 11. (C)	Câu 14. (A)	Câu 18. D	