

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Introduction to Data Mining

Lecture 7 Mining Frequent Patterns, Association and Correlations

Jun Huang

Anhui University of Technology

Spring 2018

huangjun_cs@163.com

KDD Process Data Mining-Core of Knowledge discovery process

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Knowledge

Mining Frequent Patterns, Association and Correlations

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

FP-Tree
Mining multilevel
association rules
Mining
multidimensional
association rules

Sequential Patterns Summary

- Basic Concepts
- Mining single-dimensional Boolean association rules
- Mining multilevel association rules
- Mining multidimensional association rules
- Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules FP-Tree

Mining multilevel association rules Mining multidimensional association rules

multidimensional association rules Sequential Patterns Summary

• What are patterns?

- Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
- Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules FP-Tree

Mining multilevel association rules Mining

multidimensional association rules Sequential Patterns Summary

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering

Broad applications

- Basket data analysis
- Cross-marketing
- Catalog design
- Sale campaign analysis
- Web log (click stream) analysis
- DNA sequence analysis

Market Basket Analysis

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

What Is Association Rules Mining?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules FP-Tree

Mining multilevel association rules Mining

multidimensional association rules Sequential Patterns Summary

Association rules mining

 Finding frequent patterns, associations among sets of items or objects in transaction databases, relational databases, and other information repositories

Examples

- What products were often purchased together? —Beer and diapers?
- What DNA segments often occur together in DNA sequences?

• Where does the data come from?

 Supermarket transactions, membership cards, discount coupons, customer complaint calls

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules

FP-Tree Mining multilevel

association rules Mining multidimensional association rules

Sequential Patterns Summary

Transaction-ID	Items bought
10	A,B,D
20	A,C,D
30	A,D,E
40	B,E,F
50	B,C,D,E,F

- Item collection $X = \{x_1, ..., x_m\}$, e.g., $\{A,B,...,F\}$
- **Itemset**: a set of items, k-itemset
- Transaction $T \subseteq X$, each T associates a unique Tid and items bought by a customer
- Rule form $\alpha \geq \beta, \alpha \subset X, \beta \subset X, \alpha \cap \beta = \emptyset$

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

 \bullet Support, s, probability that a transaction contains α and β

- support $(\alpha => \beta) = P(\alpha \cap \beta)$
- Frequent itemset, occurrence greater than a min_support
- \bullet Frequent itemset mining, find all the rules $\alpha \geq \beta$ satisfying min_support
- Let supmin = 50%,
- frequent Itemsets A:3, B:3, D:4, E:3, AD:3
- support (A) = 3/5 = 60%, support (AD) = 3/5 = 60%

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree Mining multilevel association rules

Mining multidimensional association rules

association rules
Sequential Patterns
Summary

• Support, s, conditional probability that a transaction having α also contains β

- Confidence $(\alpha => \beta) = P(\beta | \alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$
- Measure of rule interestingness
- Rules satisfy min_support and min_confidence are strong
- Let supmin = 50%, confmin = 50%,
- frequent itemsets A:3, B:3, D:4, E:3, AD:3
- Association rules: $\alpha \Rightarrow \beta$ (support, confidence)
 - A => D (60%, 100%)
 - D => A (60%, 75%)

There Are Too Many Frequent Patterns

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules

FP-Tree Mining multilevel

association rules
Mining
multidimensional

association rules
Sequential Patterns
Summary

```
    A long pattern contains a combinatorial number of
sub-patterns
```

 How many frequent itemsets does the following TDB1 contain?

```
• TDB1: T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}
```

- ullet Assuming (absolute) minsup =1
- Let's have a try
- 1-itemsets:

```
{a_1}: 2, {a_2}: 2, ..., {a_{50}}: 2, {a_{51}}: 1, ..., {a_{100}}: 1,
```

- 2-itemsets: $\{a_1, a_2\}$: $2, ..., \{a_1, a_{50}\}$: $2, \{a_1, a_{51}\}$: $1..., ..., \{a_{99}, a_{100}\}$: 1,
- ..., ..., ..., ...
- 99-itemsets: $\{a_1, a_2, ..., a_{99}\}: 1, ..., \{a_2, a_3, ..., a_{100}\}: 1$
- 100-itemset: $\{a_1, a_2, ..., a_{100}\}$: 1
- ullet The total number of frequent itemsets: $2^{100}-1$

Expressing Patterns in Compressed Form Closed Patterns

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree Mining multilevel

association rules
Mining
multidimensiona

multidimensional association rules Sequential Patterns Summary • How to handle such a challenge?

• Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern $Y \supset X$, with the same support as X

• Let Transaction DB TDB1:

$$T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$$

ullet Suppose minsup =1. How many closed patterns does TDB1 contain?

```
• Two: P_1: "\{a_1, ..., a_{50}\}: 2"; P_2: "\{a_1, ..., a_{100}\}: 1"
```

- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form Max Patterns

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules
FP-Tree

Mining multilevel association rules

multidimensional association rules Sequential Patterns Summary Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X

- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB1:

$$T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$$

- Suppose minsup = 1. How many max-patterns does TDB1 contain?
 - One: $P: "\{a_1, ..., a_{100}\}: 1"$
- Max-pattern is a lossy compression!
 - We only know one pattern is frequent, e.g., $\{a_1, ..., a_{40}\}$
 - But we do not know the real support of $\{a_1, ..., a_{40}\}, ...,$ any more!
- Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Association Rule Mining

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules EP-Tree

Mining multilevel association rules

multidimensional association rules Sequential Patterns Summary

- Boolean vs. quantitative associations (based on the types of valued handled)
 - Boolean association rules, only concern presence or absence of items, buys(x,"SQLServer") and buys(x,"DMBook") ⇒ buys(x,"DBMiner")[0.2%,60%]
 - Quantitative association rules, concern quantitative attributes, age(x,"30…39") and income(x,"42…48K") ⇒ buys(x,"HD TV") [1%, 75%]
- Single level vs. multiple-level analysis (based on the levels of abstraction involved)
 - $age(x,"30\cdots39") \Rightarrow buys(x,"laptop computer")$
 - $age(x,"30\cdots39") \Rightarrow buys(x,"computer")$
- Single dimension vs. multiple dimensional associations (based on dimensions involved)
 - buys(X, "milk") => buys(X, "bread")
 - age(X,"19-25") and occupation(X,"student") => buys(X, "coke")

Mining Frequent Patterns, Association and Correlations

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules

FP-Tree Mining multilevel

association rules
Mining
multidimensional
association rules
Sequential Patterns

Summary

Basic Concepts

• Mining single-dimensional Boolean association rules

Mining multilevel association rules

Mining multidimensional association rules

Summary

Handling Exponential Complexity

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns

Summary

ullet Given n transactions and m different items:

- ullet Number of possible association rules: ${\it O}(2^m)$
- Computation complexity: $O(nm2^m)$
- Apriori Principle
 - Collect single item counts, find large items
 - Find candidate pairs, count them => large pairs of items
 - Find candidate triplets, count them => large triplets of items, And so on...
 - Guiding Principle: Every subset of a frequent itemset has to be frequent
 - Used for pruning many candidates

Apriori: A Candidate Generation and Test Approach

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules Mining

Mining multidimensional association rules Sequential Patterns Summary

- Apriori uses prior knowledge of frequent itemsets
- Iterative approach, level-wise search
- The Apriori property (downward closure property, anti-monotone) of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If any itemset is infrequent, its superset should not be generated/tested
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}, every transaction having beer, diaper, nuts also contains beer, diaper
 - If {beer, diaper} is infrequent, {beer, diaper, nut} cannot be frequent at all

Apriori: A Candidate Generation and Test Approach

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining

multidimensional association rules Sequential Patterns Summary

Apriori Method:

- Initially, scan DB once to get frequent 1-itemset
- $\begin{tabular}{ll} \textbf{@} & \textbf{Generate length } (k+1) & \textbf{candidate itemsets from length } k \\ & \textbf{frequent itemsets} \\ \end{tabular}$
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concepts

Boolean Association

Rules EP-Tree

FP-Tree

Mining multilevel association rules

Mining multidimensional

association rules Sequential Patterns

Summary

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

C_{3}	Itemset
,	{B, C, E}

Itemset	sup
{B, C, E}	2

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Patterns

Basic Concepts

Boolean Association

Rules EP-Tree

-P-Tree

Mining multilevel association rules Mining

multidimensional association rules Sequential Patterns

Sequential Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

-atterns

Basic Concepts

Boolean Association

Rules

FP-Tree

Mining multilevel

association rules

multidimensional association rules Sequential Patterns

Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Patterns

Basic Concepts

Boolean Association

Rules

FP-Tree

Mining multilevel

association rules Mining

multidimensional association rules Sequential Patterns

Sequential P Summary

Apriori Algorithm Pseudo-code

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concepts

Boolean Association Rules

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Sequential Patt Summary

- **1** C_k : Candidate itemset of size k
- ② L_k : frequent itemset of size k
- **1 Input**: Database *D*, min_support
- **Output**: frequent itemsets *L*
- $L_1 = \{ \text{frequent single items from } D \};$
- **6** for $(k=2; L_k-1!=\varnothing; k++)$ do
- $C_k = \text{candidates generated from } L_{k-1};$
- **§** for each transaction $t \in D$ do
- end
- \mathbf{U} $L_k = \text{candidates in } C_k \text{ with } \min_{\mathbf{v}} \mathbf{Support}$
- end
- \bigcirc return $L = \bigcup_k L_k$;

How to Generate Candidates?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

FP-Tree

Mining multilevel association rules Mining

Mining multidimensional association rules Sequential Patterns Summary • How to generate candidates?

• Step 1: self-joining L_k

Step 2: pruning

Example

• $L_3 = \{abc, abd, acd, ace, bcd\}$

• Self-joining: $L_3 \bowtie L_3$

ullet abc and abd
ightarrow abcd, acd and ace
ightarrow acde

• Pruning:

ullet acde is pruned because ade is not in L_3

• $C_4 = \{abcd\}$

How to Generate Candidates?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

EP-Tree

Mining multilevel association rules

multidimensional

association rules Sequential Patterns Summary

```
• Suppose the items in L_{k-1} are listed in order
```

- **2** Step 1: self-joining L_{k-1}
- **3** for each itemset $l_1 \in L_{k-1}$
- for each itemset $l_2 \in L_{k-1}$
- if $(l_1[1] = l_2[1])$ and $(l_1[2] = l_2[2])$ and \cdots and 5
- $(l_1[k-2] = l_2[k-2])$ then 6
- 7 $c = l_1$ join l_2
- 8 pruning (c)
- end
- end
- Step 2: pruning
- **@** forall (k-1)-subsets s of c do
- if (s is not in L_{k-1}) then delete c

How to Count Supports of Candidates?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

EP-Tree Mining multilevel association rules

multidimensional association rules Sequential Patterns Summary

- Why counting supports of candidates a problem?
- The total number of candidates can be very huge
- One transaction may contain many candidates
- Method:
- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table

Exercise

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Patterns
Basic Concepts

Boolean Association Rules

FP-Tree

Mining multilevel association rules

multidimensional association rules Sequential Patter

Sequential Patterns
Summary

A database has 9 transactions. Let min_sup = 20%.
 Please present all the candidates and frequent itemsets at each iteration and frequent itemsets at each iteration.

TID	List of items_IDs
T100	l1,l2,l5
T200	12,14
T300	12,13
T400	11,12,14
T500	l1,l3
T600	12,13
T700	l1,l3
T800	l1,l2,l3,l5
T900	l1,l2,l3

Challenges of Frequent Pattern Mining

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules FP-Tree

Mining multilevel association rules Mining multidimensional

multidimensional association rules Sequential Patterns Summary

- Challenges
- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori
- Reduce passes of transaction database scans
- Shrink number of candidates
- Facilitate support counting of candidates

Apriori: Improvements and Alternatives

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules

multidimensional association rules Sequential Patterns Summary Reduce passes of transaction database scans

- Partitioning (e.g., Savasere, et al., 1995)
- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)
 - Pruning by support lower bounding (e.g., Bayardo 1998)
 - Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - Tree projection (Agarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Patition: Scan Database Only Twice

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules EP-Tree

Mining multilevel association rules Mining multidimensional

Mining multidimensional association rules Sequential Patterns Summary

- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases.
 In VLDB' 95.
- Partitioning technique
 - Partition the data into N small partitions
 - Phase 1: find local frequent itemsets on each data partition. Record all local frequent itemsets.
 - Phase 2: Integrate all local frequent itemsets, scan database, find global frequent itemsets.
- Correctness: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions

Patition: Scan Database Only Twice

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns

Summary

• Each partition can be fit into memory

- Scan database only **twice**! Reduce I/O cost!
- Execution time scales linearly
- Good for very large-scale database
- Applicable to parallel/distributed computing systems
 - Each processor performs FIM on its local data
 - Central server aggregates local frequent itemsets, broadcast potential global itemsets
 - Each processor scans local data to count the frequency
 - Central server aggregates the counts, find the global itemsets

Reduce the Number of Candidates DHP:Direct Hashing and Pruning

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules EP-Tree

FP-Tree
Mining multilevel
association rules
Mining
multidimensional
association rules
Sequential Patterns

Summary

- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD' 95
- Hash-based technique
 - When scanning transactions to generate frequent kitemsets, L_k , generate all (k+1)-itemsets for each
 transaction
 - ullet Hash all (k+1)-itemsets into buckets, increase bucket count
 - If a (k+1)-itemset bucket count is below min_sup, it must be removed from (k+1) candidate itemsets, C_{k+1}
- Correctness: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent

Reduce the Number of Candidates DHP:Direct Hashing and Pruning

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining multidimensional association rules

association rules Sequential Patterns Summary • Example: At the 1st scan of TDB, count 1-itemset, and Hash 2-itemsets in the transaction to its bucket

- $\{ab, ad, ce\}$
- {bd, be, de}
- ...
- At the end of the first scan,
- if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Itemsets	Count
{ab, ad, ce}	35
{bd, be, de}	298
{vz. as. wt}	58

Hash Table

Bottleneck of Frequent-pattern Mining

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules EP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns Summary Multiple database scans are costly

- Mining long patterns needs many passes of scanning and generates lots of candidates
- ullet To find frequent itemset $i_1,i_2,...,i_{100}$
 - # of scans: 100
 - # of Candidates:

$$(100^1) + (100^2) + \dots + (100^{100}) = 2^{100} - 1 \approx 1.27 * 10^{30}$$

- Bottleneck: candidate generation and test
- Can we avoid candidate generation?

Construct FP-Tree from a Transaction Database

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree Mining multilevel

association rules
Mining
multidimensional
association rules
Sequential Patterns
Summary

- Scan DB once, find frequent 1-itemset (single item pattern)
- f 2 Sort frequent items in frequency descending order L
- Oreate the root of the tree, labeled with "null"
- Scan DB again, sort each transaction in L order, a branch is created for each transaction
 - \bullet Increment the count of each node along a common prefix by 1
 - Create nodes for the items following the prefix
- Suild a header table, connect each item point in the tree

Construct FP-Tree from a Transaction Database

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

FP-Tree

FP-Tree

Mining multilevel association rules Mining multidimensional association rules

Sequential Patterns Summary

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

- Let min_support = 3
- 1-itemset: f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
- $L = f \rightarrow c \rightarrow a \rightarrow b \rightarrow m \rightarrow p$

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

FP-Tree

Mining multilevel

Mining multidimensional association rules

association rules Sequential Patterns Summary After inserting the 1st frequent Itemlist: "f, c, a, m, p"

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concepts Boolean Association

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

After inserting the 2nd frequent itemlist "f, c, a, b, m"

Introduction to Data Mining

Jun Huang

Mining

Frequent **Patterns**

Basic Concepts Boolean Association

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining

multidimensional association rules Sequential Patterns Summary

Conditional database of each pattern

Conditional database

Itam

ILCIII	<u>Conditional autubuse</u>	
с	f:3	
а	fc:3	
b	fca:1, f:1, c:1	
m	fca:2, fcab:1	
D	fcam:2. cb:1	

Benefits of the FP-tree Structure

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns Summary

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database

Mining Frequent Patterns With FP-trees

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining multidimensional

multidimensional association rules Sequential Patterns Summary

- **1** procedure **FP_growth**(Tree, α)
- $oldsymbol{2}$ if Tree contains a single path P then
- **of or each** combination (denoted as β) of the nodes in the path P
- generate pattern $\beta \cup \alpha$ with support_count = minimum support count of nodes in β
- else
- **for each** α_i in the header of Tree {
- onstruct β 's conditional pattern base and then β 's conditional FP_tree Tree $_{\beta}$
- \bullet if Tree_{β} then
- ocall **FP_growth**(Tree $_{\beta}$, β)

Exercise

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association

Rules FP-Tree

Mining multilevel

association rules

multidimensional association rules Sequential Patterns Summary A database has 9 transactions. Let min_sup = 20%.
 Please present all the candidates and frequent itemsets at each iteration and frequent itemsets at each iteration.

TID	List of items_IDs
T100	l1,l2,l5
T200	12,14
T300	12,13
T400	11,12,14
T500	l1,l3
T600	12,13
T700	l1,l3
T800	11,12,13,15
T900	l1,l2,l3

Solution

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns
Basic Concept

Basic Concepts

Boolean Association

Rules

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns
Summary

TID List of items_IDs T100 11,12,15 T200 12,14 T300 | 12,13 11,12,14 T400 T500 11,13 T600 | 12,13 T700 11,13 11,12,13,15 T800 T900 | I1,I2,I3

Solution

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association Rules

FP-Tree

FF- Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

item	conditional pattern base	conditional FP-tree	frequent patterns generated
I5	{{I2,I1: 1}, {I2,I1,I3: 1}}	⟨I2: 2, I1: 2⟩	{12,15: 2}, {11,15: 2}, {12,11,15: 2}
I4	{{I2,I1: 1}, {I2: 1}}	⟨I2: 2⟩	{I2,I4: 2}
13	{{I2,I1: 2}, {I2: 2}, {I1: 2}}	$\langle I2: 4, I1: 2 \rangle, \langle I1: 2 \rangle$	{12,13: 4}, {11,13: 4}, {12,11,13: 2}
I1	{{I2: 4}}	〈I2: 4〉	{I2,I1: 4}

FP Tree vs. Apriori: Scalability With the Support Threshold

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns
Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns Summary

Why Is FP-Growth the Winner?

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns

Summary

Divide-and-conquer:

- Decompose both the mining task and DB according to the frequent patterns obtained so far
- Focus searching on smaller databases

Other factors

- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- Two scans of entire database
- Basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Scaling FP-growth by Item-Based Data Projection

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree

Mining multilevel association rules Mining multidimensional

Mining multidimensional association rules Sequential Patterns Summary

- What if FP-tree cannot fit in memory? —Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

Scaling FP-growth by Item-Based Data Projection

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Boolean Association

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

- Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel

Scaling FP-growth by Item-Based Data Projection

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association

Rules

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns
Summary

• Partition projection: Partition the DB in order

Passing the unprocessed parts to subsequent partitions

Exploring Vertical Data Format: ECLAT

Introduction to Data Mining

Jun Huang

Mining Frequent

Frequent Patterns Basic Concepts

Boolean Association

FP-Tree

FP-Tree Mining multilevel

association rules

multidimensional association rules Sequential Patterns Summary A transaction DB in Horizontal
Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical
Data Format

Item	TidList			
а	10, 20			
b	20, 30			
С	10, 30			
d	10			
е	10, 20, 30			

Exploring Vertical Data Format: ECLAT (Equivalence Class Transformation)

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns Summary

- ECLAT: A depth-first search algorithm using set intersection [Zaki et al. KDD' 97]
- Tid-List: List of transaction-ids containing an itemset
- Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\};$ $t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
 - t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d)
 - $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset(ce, e) = \{T_{20}\}$

Mining Frequent Patterns, Association and Correlations

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

Rules
FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

- Basic Concepts
- Mining single-dimensional Boolean association rules
- Mining multilevel association rules
- Mining multidimensional association rules
- Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns Summary

- Association rules at high concept levels may represent common sense knowledge
- Hard to find association rules at low concept level
- Items at the lower level usually have lower support, less than min_support threshold
- Mining association rules at multiple levels of abstraction
- Example: sales in AllElectronics store computer sector

Example

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns
Basic Concepts

Boolean Association Rules FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

> Basic Concents Boolean Association EP-Tree

Mining multilevel association rules

multidimensional association rules

Sequential Patterns

Summary

Uniform support

- Top-down, level-wise
- Use uniform minimum support for each level
- Perform Apriori at each level
- Optimization: if an ancestor is infrequent, the search on the descendants can be avoided

uniform support

Level 2 $\min \sup = 5\%$

2% Milk [support = 6%]

Skim Milk [support = 4%]

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

> Basic Concents Boolean Association FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

uniform support

Drawbacks

- Miss interesting associations with too high threshold
- Generate too many uninteresting rules with too low threshold

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

Reduced support

- Top-down, level-wise
- Each concept level has its own minimum support threshold
- The lower level, the smaller threshold
- Perform Apriori at each level

reduced support

Milk [support = 10%]

Level 1 min_sup = 5%

2% Milk

[support = 6%]

Skim Milk
[support = 4%]

Level 2 min_sup = 3%

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns Summary

Reduced support

- Optimization level-cross filtering by single item
- ullet An item at the ith concept level is examined iff its parent concept at the (i-1)th level is frequent
- If a concept is infrequent, its descendents are pruned from the database
- Drawbacks
 - Miss associations at low level items which are frequent based on a reduced min_support, but whose ancestors do not satisfy min_support

reduced support

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

Summary

Reduced support

- Optimization level-cross filtering by k-itemset
 - Only the children of frequent k-itemsets are examined
 - Drawback: many valuable patterns may be filtered out

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules
FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

association rules Sequential Patterns

Summary

Reduced support

- Optimization Controled level-cross filtering by single item
 - ullet next level min sup < level passage threshold < min sup
 - Allow the children of items that do not satisfy the min_sup to be examined if they satisfy the level passage threshold

```
Level 1
min_sup = 12%
Level_passage_sup = 8%
```

Skim Milk [support = 4%]

Multi-level Association: Redundancy Filtering

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

FP-Tree

Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns Summary Some rules may be redundant due to "ancestor" relationships between items

- Example
 - buys(X,"Laptop computer")=> buys(X,"HP printer")
 [support = 8%, confidence = 70%]
 - buys(X,"IBM laptop computer")=> buys(X,"HP printer")
 [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor

Mining Frequent Patterns, Association and Correlations

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

EP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

- Basic Concepts
- Mining single-dimensional Boolean association rules
- Mining multilevel association rules
- Mining multidimensional association rules
- Summary

Mining multidimensional association rules

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association EP-Tree

Mining multilevel association rules Mining

multidimensional association rules

Sequential Patterns Summary

```
Single-dimensional rules:
     buys(X, "milk") => buys(X, "bread")
```

- Multi-dimensional rules: ≥2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates) age(X,"19-25") and occupation(X,"student") => buys(X, "coke")
 - hybrid-dimension assoc. rules (repeated predicates) age(X,"19-25") and buys(X,"popcorn") => buys(X,"popcorn")"coke")
- Categorical Attributes: finite number of possible values, no ordering among values
- Quantitative Attributes: numeric, implicit ordering among values —discretization, clustering approaches

Mining Quantitative Associations

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules
FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary Techniques can be used to categorize numerical attributes

- Static discretization based on predefined concept hierarchies
- Dynamic discretization based on data distribution
- Clustering: Distance-based association
 - one dimensional clustering then association

Multidimensional Association Rules and Static Discretization of Quantitative Attributes

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concents Boolean Association EP-Tree

association rules

association rules

Summary

Mining multilevel

Mining multidimensional Sequential Patterns

- Discretized prior to mining using concept hierarchy
- Numeric values are replaced by ranges
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans
- Data cube is well suited for mining
 - ullet The cells of a n-dimensional: cuboid correspond to the dimensions
 - Mining from data cubes can be much faster

Multidimensional Association Rules and Static Discretization of Quantitative Attributes

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concents Boolean Association EP-Tree

Mining multilevel association rules

Mining multidimensional

association rules Sequential Patterns Summary

buys) (age) (income) (age, buys) (income, buys) (age, income) (age,income,buys)

Quantitative Association Rules

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concents Boolean Association EP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Summary

Sequential Patterns

- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized
- 2-D quantitative association rules:

 A_{quan1} and $A_{quan2} => A_{cat}$

- Association rule clustering system (ARCS)
 - Binning: 2-D grid, manageable size
 - Finding frequent predicate sets: scan the database, count the support for each grid cell
 - Clustering the rules: cluster adjacent cells to form a rule

Quantitative Association Rules

Example: age and income => buy HD TV

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns
Basic Concepts

Boolean Association Rules EP-Tree

Mining multilevel association rules

Mining

multidimensional association rules

Sequential Patterns Summary

Quantitative Association Rules

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association
Rules
FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

Example:

- age(X,"34") and income(X,"31-40K") => buys(X,"HD TV")
- age(X,"35") and income(X,"31-40K") => buys(X,"HD TV")
- age(X,"34") and income(X,"41-50K") => buys(X,"HD TV")
- age(X,"35") and income(X,"41-50K") => buys(X,"HD TV")
- => age(X,"34-35") and income(X,"31-50K") => buys(X,"HD TV")

Interestingness Measure: Correlations (Lift)

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association
Rules
FP-Tree

Mining multilevel association rules

Mining multidimensional association rules

Sequential Patterns Summary

- play basketball => eat cereal [40%, 66.7%] is misleading
- \bullet The overall percentage of students eating cereal is 75% > 66.7%.
- Measure of dependent/correlated events:

$$lift(A, B) = \frac{P(A \cap B)}{P(A)P(B)}$$

- lift(A, B) = 1: A and B are independent
- lift(A, B) > 1: A and B are positive correlated
- lift(A, B) < 1: A and B are negative correlated

Interestingness Measure: Correlations (Lift)

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association
Rules

FP-Tree Mining multilevel

association rules Mining

multidimensional association rules

Sequential Patterns Summary

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not Cereal	1000	250	1250
Sum (col.)	3000	2000	5000

•
$$lift(A, B) = \frac{2000/5000}{(3000/5000)*(3750/5000)} = 0.89$$

•
$$lift(A, \bar{B}) = \frac{1000/5000}{(3000/5000)*(1250/5000)} = 1.33$$

• $A \Rightarrow B$ [support, confidence, correlation]

Sequence Databases & Sequential Patterns

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

EP-Tree

Mining multilevel association rules Mining multidimensional

association rules Sequential Patterns Summary Sequential pattern mining has broad applications

- Customer shopping sequences
- Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
- Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
- Weblog click streams, calling patterns, ...
- Software engineering: Program execution sequences, ...
- Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequential Pattern and Sequential Pattern Mining

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree Mining multilevel association rules

association rules Mining multidimensional association rules

Sequential Patterns

Summary

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

- A sequence: $\langle (ef)(ab)(df)cb \rangle$
- An element may contain a set of items (also called events)
- Items within an element are unordered and we list them alphabetically
- ullet < a(bc)dc > is a subsequence of < a(abc)(ac)d(cf) >
- Given support threshold min_sup = 2, <(ab)c> is a sequential pattern

Sequential Pattern and Sequential Pattern Mining

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association
Rules
EP-Tree

Mining multilevel association rules Mining multidimensional

association rules
Sequential Patterns

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints
- The Apriori property still holds: If a subsequence s1 is infrequent, none of s1's super-sequences can be frequent
- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal
 © EDBT' 96)
 - Vertical format-based mining: SPADE (Zaki@Machine Leanining' 00)
 - Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE' 04)
- Mining closed sequential patterns: CloSpan (Yan, et al. @SDM' 03)
- Constraint-based sequential pattern mining (to be covered in the constraint mining section)

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts
Boolean Association

Boolean Associat Rules FP-Tree Mining multilevel

association rules
Mining
multidimensional
association rules

Sequential Patterns

- Initial candidates: All 8-singleton sequences
- \bullet < a >, < b >, < c >, < d >, < e >, < f >, < g >, < h >
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences
- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-*k* frequent sequences
 - \bullet Generate length- (k+1) candidate sequences from length- k frequent sequences using Apriori
 - set k = k + 1
- Until no frequent sequence or no candidate can be found

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concepts Boolean Association

EP-Tree

Mining multilevel association rules

multidimensional association rules

Sequential Patterns

Summary

Algorithm GSP(S)

- \bigcirc $C_1 \leftarrow \text{init-pass}(S)$
- 2 $F_1 \leftarrow \{ \{f\} > | f \in C_1, f.count/n \ge min_sup \}$
- **1** for $(k = 2; F_{k-1} \neq \emptyset; k++)$ do
- $C_k \leftarrow \mathsf{candidate}\mathsf{-gen}\mathsf{-SPM}(F_{k-1})$
- for each data sequence $s \in \mathcal{S}$ do 6
- 6 for each candidate $c \in C_k$ do
- 7 if c is contained in s then
- 8 c.count + +:
- 9 end
- 10 end
- $F_k \leftarrow \{c \in C_k | c.count/n > min \ sup\}$
 - 12 end
 - return $F \leftarrow \cup_k F_k$
 - end

GSP: Apriori-Based Sequential Pattern Mining Function candidate-gen-SPM(F_{k-1})

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

EP-Tree

Mining multilevel association rules Mining multidimensional

association rules
Sequential Patterns

Summary

- **1 Joint step.** Candidate sequences are generated by joining F_{k-1} with F_{k-1} . A sequence s_1 joins with s_2 if the subsequence obtained by dropping the first item of s_1 is the same as the subsequence obtained by dropping the last item of s_2 . The candidate sequenc generated by joining s_1 with s_2 is the sequence s_1 extended with the last item in s_2 . There are two cases:
 - the added item forms a separate element if it was a separate element in s_2 , and is appended at the end of s_1 in the merged sequence
 - the added item is part of the last element of s_1 in the merged sequence

When joining F_1 with F_1 , we need to add the item in s_2 both as part of an itemset and as a separate element. That is, joining $<\{x\}>$ with $<\{y\}>$ gives us both $<\{x,y\}>$ and $<\{x\},\{y\}>$. Note that x and y in $\{x,y\}$ are ordered.

Prune step. A candidate sequence is pruend if any one of its (k-1)-subsequences is infrequent (without minimum support)

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

Rules FP-Tree

Mining multilevel association rules Mining multidimensional association rules

Sequential Patterns

Summary

$min_sup = 2$

Cand.	sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Introduction to Data Mining

Jun Huang

Mining Frequent

Patterns

Basic Concepts

Boolean Association

Rules FP-Tree

Mining multilevel association rules

multidimensional association rules Sequential Patterns

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Summary

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules

FP-Tree Mining multilevel association rules

Mining multidimensional association rules Sequential Patterns

- Frequent pattern mining —an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Partition, DIC, DHP, etc.
 - Projection-based (FP-growth)
- Mining a variety of rules and interesting pattern

Readings

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts Boolean Association Rules FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95

Readings

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concepts

Boolean Association
Rules

FP-Tree

Mining multilevel association rules Mining multidimensional association rules Sequential Patterns

- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD' 00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Readings

Introduction to Data Mining

Jun Huang

Mining Frequent Patterns

Basic Concents Boolean Association FP-Tree

Mining multilevel association rules multidimensional association rules Sequential Patterns

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation PODS' 98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE' 03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010