Modeling in R to safeguard U.S. agricultural and natural resources from invasive pests

Brittany Barker | CascadiaR 2019 Integrated Plant Protection Center, OSU

The "DDRP" model for biosecurity

- Goal: provide USDA with products to help detect and monitor US agricultural and natural resources against harmful pests
- Why? US crop and forest production losses from invasive insects >\$40 *billion* per year
- How? Use data on insect life cycle and climate to model their distribution and activities
- Written entirely in R

Input data

(1) Species of interest

- Temp requirements
- Duration of life stages
- Lethal temps

The model simulates development through stages to predict timing of pest activities (emergence, egg hatch, etc.)

Input data

Pest activities (emergence, egg hatch, etc.) are predicted at each grid (raster) pixel

Computational overload

Run time: 1 hour (per species)

1 hour x 7 = 7 hours

Parallel processing in R

- 1) foreach package
 - doParallel "parallel backend"
 - executes foreach loops in parallel
- 2) parallel package
 - mclapply and mcmapply functions

Running the model

Data Processing

- Combine (7) results
- Analysis
- Save rasters
- Plot maps

For each tile:

- Est. dates of development for stages
- Est. dates of activities (e.g. egg hatch)
- Est. chill and heat stress

Example product (made in ggplot)

Threat to:

- Cotton
- Grains
- Soybeans
- Peppers
- Tomatoes

Can be used to plan:

- Monitoring activities
- Chemical treatments

Thanks!

Brittany Barker

- E-mail: brittany.barker@oregonstate.edu
- Website: brittanysbarker.org
- ResearchGate: researchgate.net/profile/Brittany_Barker
- LinkedIn: linkedin.com/in/brittany-barker-60b74822/

Co-authors: Len Coop, Tyson Wepprich, Dan Upper, Gerricke Cook

Thanks and appreciation go to funding agencies USDA NIFA CPPM ARDP (Applied Research and Development Program), W. IPM Center, APHIS PPQ CPHST & CAPS, DoD SERDP, NOAA NWS, MESOWEST UTAH, and the OSU PRISM Group