Week 10

Continuous Markov processes

28 Definition and basic properties

Example 10.1. A gas station has a single pump and no space for vehicles to wait (if a vehicle arrives and the pump is not available, it leaves). Vehicles arrive to the gas station following a Poisson process with a rate of $\lambda = 3/20$ vehicles per minute. The refuelling time can be modelled with an exponential random variable with mean 8 minutes for each vehicle, that is, the services rate is $\mu = 1/8$ per minute.

Let $X_t, t \geq 0$, represents the state of the gas station at the time t. X_t is a continuous-time random process with discrete state space S = 1 and 2, where 1 = "station occupied" and 2 = "empty".

Note that X_t is not a discrete MC, but it satisfied the Markov property: the behavior of the future of the process only depends upon the current state and not any of the rest of the past.

Continuous-time Markov chain

Let $\{X_t, t \geq 0\}$ be a continuous-time random process with discrete state space S. $\{X_t, t \geq 0\}$ is said to be a continuous-time Markov chain if for any $0 \leq s_1 < s_2 < ... < s_n < s < t$ and $i_1, i_2, ..., i_n, i, j \in S$,

$$P(X_t = j \mid X_{s_1} = i_1, ..., X_{s_n} = i_n, X_s = i) = P(X_t = j \mid X_s = i),$$

whenever these conditional probabilities are well defined.

If $P(X_{t+s} = j \mid X_s = i)$ only depends on t for all $s, t \geq 0$, the process is said to be a **time-homogeneous MC** (or to have stationary transition probabilities). In this case, we set

$$p_{ij}(t) = P(X_{t+s} = j \mid X_s = i) = P(X_t = j \mid X_0 = i), \quad t \ge 0.$$

As in the discrete MC case, we have

- $p_{ij}(t) \geq 0$ and $\sum_{j \in S} p_{ij}(t) = 1$, for all $t \geq 0, i, j \in S$;
- $p_{ij}(s+t) = \sum_{k \in S} p_{ik}(s) p_{kj}(t)$, for all $s, t \ge 0, i, j \in S$;
- $P_j(s+t) = \sum_{k \in S} P_k(s) p_{kj}(t)$, for all $s, t \geq 0, j \in S$, where $P_j(s) = P(X_s = j)$.

Example 10.1 (continuous). The state transition diagram at time t:

$$\underbrace{\begin{array}{c} p_{11}(t) \\ occupied \\ p_{21}(t) \end{array}}_{p_{12}(t)}\underbrace{\begin{array}{c} p_{22}(t) \\ empty \end{array}}$$

Let Y denote the time of a vehicle refuelling the gas. Let Z(t) denote the numbers of vehicles by time t. We have

$$Y \sim Exp(1/8), \qquad Z(t) \sim Poisson(\lambda t), \quad \lambda = 3/20.$$

For small h > 0, we have

$$p_{11}(h) = P(X_{h+s} = 1 \mid X_s = 1)$$

= $P(\text{station is occupied during } (s, s + h])$
= $P(Y > h + s \mid Y > s) = P(Y > h) = e^{-h/8}$

$$p_{12}(h) = P(X_{h+s} = 2 \mid X_s = 1)$$

= $P(\text{station is occupied at time } s$, but empty at time $s + t$)
= $P(Y \le h + s \mid Y > s) = 1 - P(Y > h) = 1 - e^{-h/8}$

$$p_{21}(h) = P(X_{h+s} = 1 \mid X_s = 2)$$

= $P(\text{at least one vehicle has arrived during } (s, s+h])$
= $1 - e^{-\lambda h}$

$$p_{22}(h) = P(\text{no vehicle arrives during } (s, s + h])$$

= $e^{-\lambda h}$.

Basic Assumption

Many important processes are continuous homogeneous MC satisfying the following assumption:

$$p_{ii}(h) = P(X_h = i \mid X_0 = i) = 1 - \lambda_i h + o(h),$$
 (1)

$$p_{ij}(h) = P(X_h = j \mid X_0 = i) = q_{ij}h + o(h), \text{ for } i \neq j.$$
 (2)

In this situation, for each $i \in S$, we must have

$$\lambda_i = \sum_{j \in S, j \neq i} q_{ij}, \quad q_{ij} \ge 0, \quad \lambda_i \ge 0.$$

Note: λ_i is often called the transition rate out of state i, i.e., the rate at which the chain leaves state i. As a consequence, $1/\lambda_i$ is the mean holding time for the chain being in state i.

Pure birth Process

Let $\{X_t, t \geq 0\}$ be a random process with state space $S = \{0, 1, 2, ...\}$. $\{X_t, t \geq 0\}$ is said a (pure) **birth process** if $\{X_t, t \geq 0\}$ is a time-homogeneous MC satisfying

(i).
$$P(X_{t+h} = i \mid X_t = i) = 1 - \lambda_i h + o(h)$$
, as $h \to 0$;

(ii).
$$P(X_{t+h} = i + 1 \mid X_t = i) = \lambda_i h + o(h)$$
, as $h \to 0$;

(iii).
$$P(X_{t+h} \ge i + 2 \mid X_t = i) = o(h)$$
, as $h \to 0$,

where $\lambda_i > 0, i \in S$, are called the **birth rate** of the process.

A **Poisson process** with rate $\lambda > 0$ is a birth process with $\lambda = \lambda_i$ for all $i \in S$.

Note: Birth (Poisson) processes arise in situations where one is interested in the number of "customers" which arrive up to time $t \geq 0$. Note that

$$P(X_{t+h} = i + 1 \mid X_t = i) = P(X_{t+h} - X_t = 1 \mid X_t = i).$$

The general birth processes allow the chance of an event occurring at a given instant of time to depend upon the number of events which have already occurred. An example of this phenomenon is the reproduction of living organisms such as a growth of a colony bacteria and the spread of epidemics.

Birth and Death Process

Let $\{X_t, t \geq 0\}$ be a time-homogeneous MC with state space $S = \{0, 1, 2, ...\}$. $\{X_t, t \geq 0\}$ is said to be a **Birth and Death process** if, as $h \to 0$,

$$P(X_{t+h} = k \mid X_t = i) = \begin{cases} 1 - \lambda_i h + o(h) & \text{for } k = i, \\ b_i h + o(h) & \text{for } k = i + 1, \\ \mu_i h + o(h) & \text{for } k = i - 1, \\ o(h) & \text{for } |k - i| \ge 2, \end{cases}$$

where $\lambda_i = b_i + \mu_i$ and positive b_i 's and μ_i 's ($\mu_0 = 0$) are called the **birth** rates and death rates, respectively.

Note: Birth and death processes play a key role in queueing theory. Queues or Queueing Systems arise in the situations where "customers" arrive to seek some kind of services, such as customers queueing up before the *m*-cashiers in a supermarket, telephone callers waiting for one of the lines of an exchange to become available, and so on.

The **holding time** of a continuous MC

When the process enters state i, the time it spends there before it leaves state i is called the **holding time** in state i. Let T_i denote the holding time in state i.

Th10.1 T_i is exponential distributed. In particular, if the transition probability $p_{ij}(t)$ satisfy (1) and (2), i.e.,

$$p_{ii}(h) = P(X_h = i \mid X_0 = i) = 1 - \lambda_i h + o(h),$$

 $p_{ij}(h) = P(X_h = j \mid X_0 = i) = q_{ij}h + o(h), \text{ for } i \neq j.$

then $T_i \sim Exp(\lambda_i), \quad i \in S$.

Proof.

$$P(T_i > s + t \mid T_i > s) = P(X_{s+t} = i \mid X_s = i)$$

= $P(X_t = i \mid X_0 = i) = P(T_i > t).$ (3)

Therefore, the distribution of T_i has the memoryless property, which implies that it is exponential.

In particular, if (1) and (2) are satisfied, we have $T_i \sim Exp(\lambda_i)$, $i \in S$. Indeed, by letting $g(t) = P(T_i > t) = P(X_t = i \mid X_0 = i)$, it follows from (3) that

$$g(s+t) = g(s)g(t), \quad s, t \ge 0,$$

indicating

$$g(t) = g(t/n + ... + t/n) = g^{n}(t/n)$$

= $[1 - \lambda_{i}t/n + o(t/n)]^{n} \sim e^{-\lambda_{i}t}$,

i.e., $T_i \sim Exp(\lambda_i)$.

29 The Embedded Markov Chain and the generator matrix

For a continuous MC satisfying (1) and (2), i.e.,

$$p_{ii}(h) = P(X_h = i \mid X_0 = i) = 1 - \lambda_i h + o(h),$$

 $p_{ij}(h) = P(X_h = j \mid X_0 = i) = q_{ij}h + o(h), \text{ for } i \neq j,$

the chain will jump to the next state at time T_i , where $T_i \sim Exp(\lambda_i)$.

Where does it jump to? The probability jump from state i to $j \neq i$ is

$$p_{ij} = \lim_{h \to 0} P(X_{t+h} = j \mid X_t = i, X_{t+h} \neq i)$$

$$= \lim_{h \to 0} \frac{P(X_{t+h} = j \mid X_t = i)}{P(X_{t+h} \neq i \mid X_t = i)}$$

$$= \lim_{h \to 0} \frac{p_{ij}(h)}{1 - p_{ii}(h)} = q_{ij}/\lambda_i.$$
(4)

Therefore, the process acts like:

It remains in state i for a period with mean $1/\lambda_i$ $(T_i \sim Exp(\lambda_i))$, and then jump from state i to $j \neq i$ with probability $p_{ij} = q_{ij}/\lambda_i$; and so on.

The embedded Markov chain or jump chain

For the jump probability p_{ij} , if $\lambda_i \neq 0$, we have

$$p_{ii} = 0, \quad \sum_{j \in S, j \neq i} p_{ij} = \lambda_i^{-1} \sum_{j \in S, j \neq i} q_{ij} = 1;$$

if $\lambda_i = 0$, then $p_{ii} = 1$ and $p_{ij} = 0$ when $i \neq j$.

The matrix P whose (i, j)th entry is p_{ij} is the one-step transition probability matrix of a (discrete-time) Markov chain. We call this discrete-time chain **jump chain** or **the embedded Markov chain**.

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1r} & \dots \\ p_{21} & p_{22} & \dots & p_{2r} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{r1} & p_{r2} & \dots & p_{rr} & \dots \end{bmatrix}$$

Every continuous-time Markov chain has an associated embedded discretetime Markov chain.

Note: If $\lambda_i = 0$, *i* is an absorbing state.

Example 10.1 (continuous). The embedded Markov chain is

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Recall that

$$p_{11}(h) = e^{-h/8}, \quad p_{22}(h) = e^{-\lambda h}.$$

Example 10.2. Consider a Poisson process N_t with rate $\lambda > 0$. We have

$$p_{ii}(h) = 1 - \lambda h + o(h)$$

$$p_{i,i+1}(h) = \lambda h + o(h)$$

$$p_{i,i+j}(h) = o(h), \quad j \ge 2 \text{ or } j < 0$$

which yields that $\lambda_i = \lambda$, $q_{i,i+1} = \lambda$ and $q_{i,i+j} = 0, j \geq 2$ or j < 0. Hence

$$p_{ii} = 0$$
, $p_{i,i+1} = 1$, $i = 0, 1, 2, ...$

i.e.,

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ & \cdot & \cdot & \cdot & & \end{pmatrix}.$$

Remark

A continuous Markov chain can be understood to have two components. First, it has a discrete-time jump Markov chain that gives the transition probabilities p_{ij} from state i to j. Second, we have a holding time parameter λ_i that controls the amount of time spent in state i.

The generator matrix or Q-matrix

For a continuous MC X_t , $t \ge 0$, satisfying (1) and (2), i.e.,

$$p_{ii}(h) = P(X_h = i \mid X_0 = i) = 1 - \lambda_i h + o(h),$$

 $p_{ij}(h) = P(X_h = j \mid X_0 = i) = q_{ij}h + o(h), \text{ for } i \neq j,$

define a matrix $Q = (q_{ij})_{i,j \in S}$, where $q_{ii} = -\lambda_i$, i.e.,

$$Q = \begin{bmatrix} -\lambda_1 & q_{12} & \dots & q_{1r} & \dots \\ q_{21} & -\lambda_2 & \dots & q_{2r} & \dots \\ \vdots & \vdots & \vdots & \vdots \\ q_{r1} & q_{r2} & \dots & -\lambda_r & \dots \end{bmatrix}$$

Q is called **the generator matrix** or Q-matrix of $X_t, t \geq 0$, which is a fundamental quantity associated with the $X_t, t \geq 0$ containing all the information about the transition of the chain.

Recall it follows from (4) that

$$q_{ij} = \lambda_i \, p_{ij},$$

where p_{ij} is the transition probability from state i to j.

We say that q_{ij} is **the rate of going from state** i **to state** j. The rates q_{ij} taken all together contain more information about the process than the probabilities p_{ij} taken all together. This is because if we know all the q_{ij} we can calculate all the λ_i and then all the p_{ij} . But if we know all the p_{ij} we can not recover the q_{ij} . In many ways the q_{ij} are to continuous-time Markov chains what the p_{ij} are to discrete-time Markov chains.

There is an important difference between the q_{ij} in a continuoustime Markov chain and the p_{ij} in a discrete-time Markov chain. Namely, the q_{ij} are rates, not probabilities and, as such, while they must be nonnegative, they are not bounded by 1.

Note: if $\lambda_i = \lambda$, i = 0, 1, 2, ..., then $Q = \lambda (P - I)$, where

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & 1 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & \dots \end{bmatrix}$$

Example 10.1 (continuous). The Q-matrix is

$$Q = \begin{pmatrix} -1/8 & 1/8 \\ \lambda & -\lambda \end{pmatrix}.$$

Example 10.2. Consider a Poisson process N_t with rate $\lambda > 0$. We have

$$p_{ii}(h) = 1 - \lambda h + o(h)$$

$$p_{i,i+1}(h) = \lambda h + o(h)$$

$$p_{i,i+j}(h) = o(h), \quad j \ge 2 \text{ or } j < 0$$

which yields that $q_{ii} = -\lambda$, $q_{i,i+1} = \lambda$ and $q_{i,i+j} = 0, j \ge 2$ or j < 0. Hence

$$Q = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \dots \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}.$$

30 Forward and Backward Equations

For a continuous MC $X_t, t \geq 0$,

$$p_{ii}(h) = P(X_h = i \mid X_0 = i) = 1 - \lambda_i h + o(h),$$

 $p_{ij}(h) = P(X_h = j \mid X_0 = i) = q_{ij}h + o(h), \text{ for } i \neq j,$

Q-matrix is defined by $Q = (q_{ij})_{i,j \in S}$, where $q_{ii} = -\lambda_i$.

Using the Q-matrix, we may calculate the transition probability $p_{ij}(t)$ by the following: write

$$P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \dots & p_{1r}(t) & \dots \\ p_{21}(t) & p_{22}(t) & \dots & p_{2r}(t) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{r1}(t) & p_{r2}(t) & \dots & p_{rr}(t) & \dots \end{bmatrix}$$

Forward Equations:

$$P'(t) = P(t) Q,$$

which is equivalent to

$$p'_{ij}(t) = \sum_{k \in S} p_{ik}(t)q_{kj}, \text{ for all } i, j \in S.$$

$$(5)$$

Backward Equations:

$$P'(t) = Q P(t),$$

which is equivalent to

$$p'_{ij}(t) = \sum_{k \in S} q_{ik} \, p_{kj}(t), \text{ for all } i, j \in S.$$

$$\tag{6}$$

Proof. Using the Chapman-Kolmogorov equation, we can write

$$p_{ij}(t+\delta) = \sum_{k \in S} p_{ik}(t) p_{kj}(\delta)$$

$$= p_{ij}(t) p_{jj}(\delta) + \sum_{k \neq j} p_{ik}(t) p_{kj}(\delta)$$

$$\approx p_{ij}(t) (1 + q_{jj}\delta) + \sum_{k \neq j} p_{ik}(t) \delta q_{kj}$$

$$= p_{ij}(t) + \delta p_{ij}(t) q_{jj} + \delta \sum_{k \neq j} p_{ik}(t) q_{kj}$$

$$= p_{ij}(t) + \delta \sum_{k \in S} p_{ik}(t) q_{kj}.$$

Thus,

$$\frac{p_{ij}(t+\delta) - p_{ij}(t)}{\delta} \approx \sum_{k \in S} p_{ik}(t) q_{kj},$$

which is the (i, j)th element of P(t) Q. The above argument can be made rigorous.

Let
$$P_j(t) = P(X_t = j), j \in S$$
, and $\widetilde{P}(t) = (P_1(t), P_2(t), ...)$.

The following **Forward Equations** for unconditional probability $P_j(t)$ are also true:

$$\widetilde{P}'(t) = \widetilde{P}(t) Q,$$

which is equivalent to

$$P'_{j}(t) = \sum_{k \in S} P_{k}(t)q_{kj}, \text{ for all } j \in S.$$
(7)

Example 10.3 Consider a continuous Markov chain with two states $S = \{0, 1\}$ and the transition matrix for any $t \ge 0$ is given by

$$P(t) = \begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} \end{bmatrix}.$$

- ullet Find the generator matrix Q and the transition matrix P for the corresponding jump chain.
- Show that for any $t \geq 0$, we have

$$P'(t) = P(t)Q = QP(t),$$

where P'(t) is the derivative of P(t).

Solution. We have

$$p_{00}(h) = \frac{1}{2} + \frac{1}{2}(1 - 2\lambda h) + o(h) = 1 - \lambda h + o(h),$$

$$p_{01}(h) = \frac{1}{2} - \frac{1}{2}(1 - 2\lambda h) + o(h) = \lambda h + o(h),$$

$$p_{10}(h) = \frac{1}{2} - \frac{1}{2}(1 - 2\lambda h) + o(h) = \lambda h + o(h),$$

$$p_{11}(h) = \frac{1}{2} + \frac{1}{2}(1 - 2\lambda h) + o(h) = 1 - \lambda h + o(h).$$

Hence

$$Q = \begin{bmatrix} -\lambda & \lambda \\ \lambda & -\lambda \end{bmatrix}.$$

The transition matrix for the corresponding jump chain P is given by

$$P = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{if } \lambda > 0.$$

We have

$$P'(t) = \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\ \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \end{bmatrix},$$

where P'(t) is the derivative of P(t). We also have

$$P(t)Q = \begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} \end{bmatrix} \begin{bmatrix} -\lambda & \lambda \\ \lambda & -\lambda \end{bmatrix} = \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\ \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \end{bmatrix},$$

$$QP(t) = \begin{bmatrix} -\lambda & \lambda \\ \lambda & -\lambda \end{bmatrix} \begin{bmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} \\ \frac{1}{2} - \frac{1}{2}e^{-2\lambda t} & \frac{1}{2} + \frac{1}{2}e^{-2\lambda t} \end{bmatrix} = \begin{bmatrix} -\lambda e^{-2\lambda t} & \lambda e^{-2\lambda t} \\ \lambda e^{-2\lambda t} & -\lambda e^{-2\lambda t} \end{bmatrix}.$$

We conclude

$$P'(t) = P(t)Q = QP(t).$$