EVOLVING WISDOM

Searching for a Personal Sage through NLP

FSDL 2021 Online, Final Project https://github.com/wtcooper/fsdl_pplm

CAN I EVOLVE TEXT GENERATION TOWARDS BETTER CONTENT?

Vision: a user is journaling about a traumatic event, and the journaling app, *knowing the user's penchant for Eastern philosophy*, recommends a helpful and relevant snippet to aid in their internal processing

Approach Overview:

- Utilize GPT-2 with a spectrum of ancient wisdom texts as auxiliary input to conditionally influence text generation(Utilize GPT-2 with a spectrum of ancient wisdom texts as auxiliary input to conditionally influence text generation(Utilize GPT-2 with a spectrum of ancient wisdom texts as auxiliary
- World Scripture: A Comparative Anthology of Sacred Texts
- Test the ability to both generate new text and recommend existing text given a users preferred style and content
- Deploy a simple web app to provide user interaction

METHODS - DETAILS

- https://github.com/wtcooper/fsdl_pplm
 - Readme
 - Appendix of this presentation on Github

RESULTS

Input:

What do you want hear more about?

In the beginning, the universe

Generate new text

Recommend similar passages

Output:

['In the beginning, the universe \xa0was not created. $\xa0$ There was nothing to create. $\xa0$ Nothing to form into a world of existence. ']

31/1000

```
Keywords (first 10): ['burning', 'suchness', 'law', 'conquer', 'fool', 'suffering', 'sees
In the beginning, the universe
In the beginning the Universe
In the Universe Universe
In the beginning the Universe
In the beginning the Universe
In the Beginning the Universe
In the Universe Universe
In the Univer
```

NEXT STEPS

- 1. Fine-tune the base language model on a large corpus of sacred texts
- 2. Explore alternative approaches to PPLM

APPENDIX

METHODS - OVERVIEW

- 1. Extract data from a collection of world sacred texts

 Buddhism, Hinduism, Christianity, Judaism, Confucianism, Sikhism, Taoism,
 Jainism, African Traditional Religions
- 2. For each major tradition, extract top 100 keywords
- 3. Develop a classification model to predict the text topic
- 4. **Text Generation:** Using the keywords (style) and classification model (content), apply Uber's PPLM to generate text in a given style and content
- 5. **Text Recommendation**: Find relevant passages based on user content in their preferred tradition

METHODS - DATA EXTRACTION

Data Source:

- World Scripture: A Comparative Anthology of Sacred Texts
- http://www.tparents.org/Library/Unification/Books/World-S/0-Toc.htm

Regex on html tags

METHODS - KEYWORD EXTRACTION

Apply TF-IDF to gather top 100 Keywords per Tradition

based on: https://github.com/kavgan/nlp-in-practice/tree/master/tf-idf

```
tradition: Hinduism
keywords: [('undivided', 0.95), ('single', 0.859), ('surrender', 0.826), ('phenomenal', 0.801), ('faith', 0.507), ('enticement', 0.772), ('lo
tradition: Jainism
keywords: [('deeds', 0.764), ('right', 0.762), ('knows', 0.72), ('without', 0.698), ('greatness', 0.684), ('neither', 0.674), ('capital', 0.684), ('neither', 0.884), ('neither'
tradition: Taoism
keywords: [('faith', 0.76), ('greater', 0.727), ('looks', 0.705), ('everlasting', 0.669), ('wins', 0.659), ('injury', 0.642), ('kill', 0.378)
tradition: Confucianism
keywords: [('seeks', 0.416), ('perseverance', 0.737), ('attack', 0.728), ('sacrifice', 0.693), ('humane', 0.681), ('destiny', 0.67), ('discov
tradition: Buddhism
keywords: [('burning', 0.898), ('suchness', 0.66), ('law', 0.87), ('conquer', 0.659), ('fool', 0.79), ('suffering', 0.857), ('sees', 0.851),
______
```

METHODS - DISCRIMINATOR MODEL

- 1. Use Chapter headings as Topics (20 classes)
- 2. Train as classification head on GPT-2
- 3. 90% train / 10% test
- 4. 50 epochs, LR=0.001

Some tuning but low accuracy

Test performance per epoch		
epoch	loss acc	
1	2.8660716777894555	0.13719512195121952
2	2.6257752965136274	0.2225609756097561
3	2.519620360397711	0.25914634146341464
4	2.4150783783052026	0.3170731707317073
5	2.327070058845892	0.31402439024390244
6	2.2657220014711705	0.35365853658536583
7	2.2868954611987604	0.3323170731707317
8	2.2773656350810354	0.32926829268292684
9	2.3066995841700857	0.31402439024390244
10	2.20122276282892	0.3353658536585366
11	2.239207543977877	0.3353658536585366
12	2.1665232268775383	0.3719512195121951
13	2.1994120900223897	0.3475609756097561
14	2.229640483856201	0.35060975609756095
15	2.1632561247523237	0.36890243902439024
16	2.147991468266743	0.36890243902439024
17	2.1333967883412432	0.3628048780487805
18	2.116928574515552	0.38109756097560976
19	2.1396755009162716	0.36890243902439024
20	2.1407014829356497	0.36585365853658536
21	2.119234611348408	0.3597560975609756
22	2.1410574709496846	0.35365853658536583
23	2.144318598072703	0.36890243902439024
24	2.1245930689137156	0.3719512195121951
25	2.104356405211658	0.36890243902439024
26	2.1190659389263247	0.3719512195121951
27	2.1277136017636553	0.36585365853658536
28	2.11862483547955	0.3597560975609756
29	2.113829444094402	0.36585365853658536
30	2.119030280811031	0.3780487804878049
31	2.121875315177731	0.3902439024390244
32	2.1285853182397236	0.38109756097560976
33	2.086743628106466	0.3871951219512195
34	2.123986322705339	0.3597560975609756
35	2.102312431102846	0.36585365853658536

METHODS - TEXT RECOMMENDER

- 1. Find relevant passages using semantic similarity
- Uses sentence-transformers

```
https://github.com/UKPLab/sentence-transformers
stsb-roberta-large
```

3. Steps:

- a. User inputs text
- b. Tool predicts the Content topic of the text using the attribute model
- c. Search raw data for the most similar text passage based on semantic similarity that is of the same Style (Keyword list) and Content (uses the top n predicted class labels)

METHODS - INFRASTRUCTURE

- 1. Run python scripts on Colab Pro
- 2. Colab Drive integration to save weights
- 3. Streamlit app deployment

local only for now

RESULTS

This project brought me laughter, so I consider that a success.

The religion of Star Wars:

<|endoftext|>In the beginning, the Universe didn't exist. But that all changed in the early universe. It's all about the beginning. In a galaxy far, far...

The wisdom of The Beatles:

ABOUT ME

Background:

- degrees in biology/ecology (stats + simulation modeling)
- researcher turned applied data scientist

Current Role:

 data scientist @ PwC - lead a dev team for ML-enabled products (not a focus on NLP so fun growth edge!)