Gender Ratio Problem

Yize Wang August 5, 2024

1 Problem Statement

Theoretically, a mother gives birth to a boy or girl with the same probability. The gender ratio of boys and girls is thus expected to be 0.5 : 0.5 in a large population. What if every mother will not stop having a new child until she has a boy? Will the ratio be changed?

2 Solution

Let N denote the number of mothers and assume they have new children simultaneously. There will be N/2 boys and girls in the first birth wave. For the N/2 mothers who do not have boys will have new N/2/2 boys and girls, and so on.

The total number of girls N_G can be obtained by the geometric series sum formula:

$$N_G = \sum_i \frac{1}{2^i} N = \left(1 - \left(\frac{1}{2}\right)^i\right) N.$$

Since each mother eventually has one and only one boy, the total number of boys is the same as mothers, i.e., $N_B = N$.

The gender ratio R is thus

$$R = \frac{N_G}{N_B} = \left(1 - \left(\frac{1}{2}\right)^i\right).$$

We list the ratio values below for small N.

N	1	2	5	10	100
R	0.33:0.67	0.43:0.57	0.49:0.51	0.50:0.50	0.50:0.50

Counter-intuitively, as N grows, the ratio quickly approaches 0.5:0.5. Therefore, in a large population, the evil reproductive policy above will not change gender ratio.

However, since boys are always the last child in a family, the average age of boys will be less than that of girls, which will affect gender ratio in a long term (takes generations).