1a)

b)

c)

$$k = \frac{1}{2}$$
 $k = \frac{1}{2}$
 $k = \frac{1}{2}$

Ein gemischtes Nash-Equilibrium ist also (s_1, s_2) mit $s_1 = (k \leftarrow \frac{1}{2}, z \leftarrow \frac{1}{2})$ und $s_2 = (k \leftarrow \frac{1}{2}, z \leftarrow \frac{1}{2})$.

$$s_{1}(l) = \rho$$

 $s_{1}(r) = 1 - \rho$
 $s_{2}(r) = 1 - q$
 $s_{2}(r) = 1 - q$
 $s_{3}(r) = 1 - q$
 $s_{4}(r) = 1 - q$
 $s_{5}(r) = 1 - q$
 $s_{7}(r) = 1 - q$

Nash-Gleichgewicht (s_1,s_2) mit $s_1=(l\leftarrow\frac{2}{2+x},r\leftarrow 1-\frac{2}{2+x})$ und $s_2=(l\leftarrow\frac{1}{2},r\leftarrow\frac{1}{2})$. für s_1 : je größer x, desto kleiner wird p. q ändert sich nie.