BASES NUMÉRICAS — BINÁRIO

TeSP de Aplicações Móveis André Martins Pereira

REPRESENTAÇÃO EM BINÁRIO

- Problemas com a representação binária apresentada
 - o Como representar números negativos?
 - o Como representar números muito grandes?
 - o Como representar números muito próximos de 0?
- Utiliza-se representações específicas
 - o Sinal e Amplitude
 - Complemento para 1 (C/1)
 - o Complemento para 2 (C/2)
 - o Excesso

SINAL E AMPLITUDE

- Um dígito para o sinal e os restantes para o valor
- Para n bits o intervalo de valores representados é [-2ⁿ⁻¹+1, 2ⁿ⁻¹-1]
- Existe a representação de +0 e -0...
- Gama de valores não é contínua

Bits	Binário	S+A
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-0
101	5	-1
110	6	-2
111	7	-3

COMPLEMENTO PARA 1

- Os números positivos são representados do mesmo modo
- É representada a amplitude de um número negativo em binário e os seus bits são invertidos
- Para n bits o intervalo de valores representados é [-2ⁿ⁻¹+1, 2ⁿ⁻¹-1]
- Existe a representação de +0 e -0...
- Gama de valores não é contínua

Bits	Binário	S+A	C/1
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	4	-0	-3
101	5	-1	-2
110	6	-2	-1
111	7	-3	-0

COMPLEMENTO PARA 2

- Os números positivos são representados do mesmo modo
- É representada a amplitude de um número negativo em binário e os seus bits são invertidos e adiciona-se $\mathbf{1}_2$
- Para n bits o intervalo de valores representados é [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
- · Gama de valores não é contínua

Bits	Binário	S+A	C/1	C/2
000	0	0	0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1

EXCESSO

- Os números são representados em excesso de 2ⁿ⁻¹-1 ou 2ⁿ⁻¹
- Adiciona-se o excesso ao número e depois é convertido para binário (base 10 -> 2)
- Converte-se para base 10 e depois subtrai-se o excesso (base 2 -> 10)
- Para n bits o intervalo de valores representados é [-2ⁿ⁻¹-1, 2ⁿ⁻¹-1]

Bits	Binário	S+A	C/1	C/2	2 ⁿ⁻¹
000	0	0	0	0	-4
001	1	1	1	1	-3
010	2	2	2	2	-2
011	3	3	3	3	-1
100	4	-0	-3	-4	0
101	5	-1	-2	-3	1
110	6	-2	-1	-2	2
111	7	-3	-0	-1	3

PORQUÊ C/2

- Desenvolver hardware para soma em S+A é complexo
- C/1 tem duas representações de 0
- Desenvolver hardware para soma em C/1 é complexo
- Hardware para C/2 é o mesmo para binário sem representação

SOMA E SUBTRAÇÃO EM C/2

- · Soma e subtração de números é idêntica aos valores sem sinal
- A soma de 2 valores de sinais opostos com n bits pode dar um resultado com n+1 bits
 - o É cortado o bit mais à esquerda APENAS neste caso

SOMA E SUBTRACÇÃO EM C/2

- Overflow ocorre quando a magnitude de um valor está fora do intervalo
- Adição de dois valores com sinal oposto nunca dá overflow

