Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I Turmas A e B

Aula 15 - Gerenciamento de Memória

Profa. Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Gerenciamento de Memória Troca de Páginas

Gerenciamento de Memória

□ Política de alocação local (número fixo de páginas/processo) permite somente

política de substituição local de páginas

variável de páginas/processo) permite

□ Política de alocaçãdo global (número

- □ Política de Substituição Local: páginas dos próprios processos são utilizadas na troca;
 - Dificuldade: definir quantas páginas cada processo pode utilizar
- Política de Substituição Global: páginas de todos os processos são utilizadas na troca;
 - Problema: processos com menor prioridade podem ter um número muito reduzido de páginas, e com isso, acontecem muitas faltas de páginas;

Gerenciamento de Memória Troca de Páginas

c) Alocação global;

tanto a política de substituição de páginas local quanto global

Troca de Páginas

Gerenciamento de Memória Troca de Páginas - Paginação

- Algoritmos de substituição local:
 - Working Set;
 - WSClock
- □ Algoritmos de substituição local/global:
 - Ótimo;
 - NRU;
 - FIFO:
 - Segunda Chance;
 - LRU:
 - Relógio;

Gerenciamento de Memória Implementação da Paginação

- □ Até agora, vimos somente como uma página é selecionada para remoção. Mas onde a página descartada da memória é colocada?
- □ Memória Secundária Disco
 - A área de troca (swap area) é gerenciada como uma lista de espaços disponíveis;
 - O endereco da área de troca de cada processo é mantido na tabela de processos;
 - Cálculo do endereço: MMU;

Gerenciamento de Memória Implementação da Paginação

- Memória Secundária Disco
 - Possibilidade A Assim que o processo é criado, ele é copiado todo para sua área de troca no disco, sendo carregado para memória quando necessário:
 - Area de troca diferente para dados, pilha e programa, pois área de dados pode crescer e a área de pilha crescerá certamente;

Gerenciamento de Memória Implementação da Paginação

- Memória Secundária Disco (cont.)
 - Possibilidade B Nada é alocado antecipadamente, espaço é alocado em disco quando a página for enviada para lá. Assim, processo na memória RAM não fica "amarrado" a uma área específica;

8

Gerenciamento de Memória Tabela de Páginas Invertida

- □ Geralmente, cada processo tem uma tabela de páginas associada a ele → classificação feita pelo endereço virtual;
 - Pode consumir grande quantidade de memória;
- □ Alternativa: tabela de páginas invertida;
 - SO mantém uma única tabela para as molduras de páginas da memória;
 - Cada entrada consiste no endereço virtual da página armazenada naquela página real, com informações sobre o processo dono da página virtual;
 - Exemplos de sistemas: IBM System/38, IBM RISC System 6000, IBM RT e estações HP Spectrum;

10

Gerenciamento de Memória Tabela de Páginas Invertida

- Quando uma referência de memória é realizada (página virtual), a tabela de páginas invertida é pesquisada para encontrar a moldura de página correspondente;
 - Se encontra, o endereço físico é gerado →
 i, deslocamento>;

Gerenciamento de Memória
Tabela de Páginas Invertida

CPU Endereço lógico

CPU Endereço lógico

Fisico

Memória

Pesquisa pid p

Tabela de páginas invertida

Endereço lógico: <id processo (pid), número página (p), deslocamento (td)>

Gerenciamento de Memória Tabela de Páginas Invertida

- Vantagens:
 - Ocupa menos espaço;
 - É mais fácil de gerenciar apenas uma tabela;
- Desvantagens:
 - Aumenta tempo de pesquisa na tabela, pois, apesar de ser classificada por endereços físicos, é pesquisada por endereços lógicos;
 - Aliviar o problema: tabela hashing;
 - Uso da TLB (memória associativa) para manter entradas recentemente utilizadas;

13

Gerenciamento de Memória Memória Virtual - Segmentação

- □ Segmentação: Visão do programador/compilador
 - Tabelas de segmentos com n linhas, cada qual apontando para um segmento de memória;
 - Vários espaços de endereçamento;
 - Endereço real → base + deslocamento;
 - Alocação de segmentos segue os algoritmos já estudados:
 - □ FIRST-FIT;
 - □ BEST-FIT;
 - NEXT-FIT;
 - WORST-FIT:
 - QUICK- FIT;

14

Gerenciamento de Memória Memória Virtual - Segmentação

- Segmentação:
 - Facilita proteção dos dados;
 - Facilita compartilhamento de procedimentos e dados entre processos;
 - MMU também é utilizada para mapeamento entre os endereços lógicos e físicos;
 - Tabela de segmentos informa qual o endereço da memória física do segmento e seu tamanho;

15

Gerenciamento de Memória Memória Virtual - Segmentação

■ Segmentação:

- Problemas encontrados → embora haja espaço na memória, não há espaço contínuo:
 - Política de relocação: um ou mais segmentos são relocados para abrir espaço contínuo;
 - Política de compactação: todos os espaços são compactados;
 - □ Política de bloqueio: fila de espera;
 - Política de troca: substituição de segmentos;
- Sem fragmentação interna, com fragmentação externa:

16

Gerenciamento de Memória Memória Virtual - Segmentação Tarefa: Compilação Livre 20k Pilha de Parse 12k 12k Tabela Árvore Símbolos Fonte Parser Pilha Fonte de Símbolos Constantes 0k Espaço de Segmentos (0-4) Endereçamento Virtual

Gerenciamento de Memória Segmentação-Paginada

- Espaço lógico é formado por segmentos
 - Cada segmento é dividido em páginas lógicas;
 - Cada segmento possui uma tabela de páginas

 mapear o endereço de página lógica do segmento em endereço de página física;
 - No endereçamento, a tabela de segmentos indica, para cada segmento, onde sua respectiva tabela de páginas está;

19

Gerenciamento de Memória Thrashing

- □ *Thrashing* (paginação excessiva)
 - Associado com o problema de definição do número de páginas/segmentos -> troca de páginas/segmentos é uma tarefa cara e lenta;
 - Se o processo tiver um número de páginas muito reduzido, ele pode ficar muito tempo esperando pelo atendimento de uma falta de página → muitos processos bloqueados;

21

Gerenciamento de Memória Thrashing

- Evitar o problema (paginação):
 - Taxa máxima aceitável de troca de páginas;
 - Suspender alguns processos, liberando páginas físicas (swapping);
 - □ Risco de aumentar o tempo de resposta dos processos;
 - Determinar periodicamente o número de processos em execução e alocar para cada processo, um mesmo número de páginas;
 - <u>Problema</u>: processos grandes teriam o mesmo número de páginas de processos pequenos, causando paginação excessiva;

22

Gerenciamento de Memória Thrashing

- Possível solução: Número de páginas proporcional ao tamanho do processo → alocação dinâmica durante a execução dos processos;
 - PFF (Page Fault Frequency): algoritmo informa quando aumentar ou diminuir a alocação de páginas de um processo, controlando o tamanho do conjunto de alocação;

23