Inżynieria materiałowa Korozja gazowa

Marcin Fabrykowski

30 października 2012

1 Przebieg ćwiczenia

W ćwiczeniu badaliśmy korozję gazową metali. Do badań wykorzystaliśmy trzy próbki metali, podgrzewane w piecu w temperaturach kolejno 750, 800 i 850 °C. Próbki przed badaniem zostały dokładnie oszlifowane i umyte w alkoholu oraz wysuszone.

Co pewne odstępy czasu, mierzyliśmy masę próbek. Dane pomiarowe przedstawione sa w poniższej tabeli:

T[min]	$m_1[mg]$	$m_2[mg]$	$m_3[mg]$	Δm_1	Δm_2	Δm_3	$\log \frac{\Delta m_1}{A}$	$\log \frac{\Delta m_2}{A}$	$\log \frac{\Delta m_3}{A}$	$\log T$
1	2.0	1.5	4.5							0
2	4.5	4.4	5.9	2.50	2.90	1.40	-0.55	-0.48	-0.80	0.30
3	5.0	6.1	7.8	0.50	1.70	1.90	-1.25	-0.71	-0.67	0.48
4	6.0	8.1	10.2	1.00	2.00	2.40	-0.94	-0.64	-0.56	0.60
5	6.8	10.4	11.7	0.80	2.30	1.50	-1.04	-0.58	-0.77	0.70
6	8.0	10.8	13.3	1.20	0.40	1.60	-0.87	-1.34	-0.74	0.78
7	7.8	12.5	14.7	-0.20	1.70	1.40	99.00	-0.71	-0.80	0.85
8	8.0	14.1	15.6	0.20	1.60	0.90	-1.64	-0.74	-0.99	0.90
9	10.2	14.7	17.8	2.20	0.60	2.20	-0.60	-1.17	-0.60	0.95
10	10.5	15.1	18.2	0.30	0.40	0.40	-1.47	-1.34	-1.34	1.00
11	10.7	17.7	19.6	0.20	2.60	1.40	-1.64	-0.53	-0.80	1.04
12	11.2	18.0	21.7	0.50	0.30	2.10	-1.25	-1.47	-0.62	1.08
13	11.9	18.5	22.8	0.70	0.50	1.10	-1.10	-1.25	-0.90	1.11
14	12.7	19.4	23.0	0.80	0.90	0.20	-1.04	-0.99	-1.64	1.15
15	13.2	19.8	24.2	0.50	0.40	1.20	-1.25	-1.34	-0.87	1.18
20	15.7	24.0	29.2	2.50	4.20	5.00	-0.55	-0.32	-0.25	1.30
25	18.1	25.7	0.0	2.40	1.70	-29.20	-0.56	-0.71	99.00	1.40
30	19.3	28.7	0.0	1.20	3.00	0.00	-0.87	-0.47	99.00	1.48

Wszystkie badane próbki miały takie same wymiary i wynosiły one:

• szerokość: 0.8cm

• długość: 4.8cm

• grubość: 1mm

2 Opracowanie wyników

Następnie obliczamy nachylenia prawie-prostych korzystając z równania:

$$\log(\frac{\Delta m}{A}) = \frac{1}{n}\log(t)$$

Wyniki przedstawia poniższa tabela:

wymki przedstawia pomizsza tabela.									
T	n_{750}	n_{800}	n_{850}						
2	-0.0848798461566	-0.0864510842858	-0.0792527355854						
3	-0.112382482883	-0.128464436981	-0.130157260794						
4	-0.152633448127	-0.165244356051	-0.168915303752						
5	-0.172952756336	-0.195092892566	-0.185482325935						
6	-0.20131709396	-0.179197491258	-0.208041656647						
7	blad pomiarowy	-0.227541830991	-0.222490557332						
8	-0.194486742928	-0.241444496687	-0.226324719858						
9	-0.264915773679	-0.229036630272	-0.264915773679						
10	-0.22384577977	-0.230286195864	-0.230286195864						
11	-0.224271195964	-0.295053104981	-0.274169419348						
12	-0.254193387345	-0.241570167535	-0.297930087794						
13	-0.271734285086	-0.262381351669	-0.28540037663						
14	-0.283597295528	-0.287232845378	-0.246826685988						
15	-0.277019844499	-0.270837582037	-0.304268963635						
20	-0.366844591794	-0.391730976454	-0.400870410572						
25	-0.392209189439	-0.376393997061	blad pomiarowy						
30	-0.382149046577	-0.426007293988	blad pomiarowy						

Zauważamy, że n nie jest stałe i ulega zmianie podczas prowadzenia eksperymentu.

3 Wnioski

Doświadczenie pokazało nam, że w podwyższonej temperaturze występuje przyśpieszona korozja metali.

Zauważyliśmy również, że tempo korozji jest zależne od temperatury. Jednak nie udało mi się wykazać, ażeby współczynnik potęgowy n był równy 2, co uniemożliwia założenie że korozja miała charakter paraboliczny.