

Il PIL degli Stati africani

Dario Comanducci

Tesina per il Corso di Geospatial Data Analysis

Master in Data Science and Statistical Learning Università degli Studi di Firenze

31 Gennaio 2025

Geospatial
Data Analysis
D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

La tratta degli schiavi ha influito sul PIL degli Stati africani?

Solo correlazione o causalità?

ln_pcgdp: PIL procapite (log) ln_export_area: tot. schiavi deportati / superficie terrestre (log)

isocode	Paese	isocode	Paese
AGO	Angola	MDG	Madagascar
BDI	Burundi	MLI	Mali
BEN	Benin	MOZ	Mozambique
BFA	Burkina Faso	MRT	Mauritania
BWA	Botswana	MUS	Mauritius
CAF	Central Afr. Rep.	MWI	Malawi
CIV	Ivory Coast	NAM	Namibia
CMR	Cameroon	NER	Niger
COG	Congo	NGA	Nigeria
COM	Comoros	RWA	Rwanda
CPV	Cape Verde Isl.	SDN	Sudan
DJI	Djibouti	SEN	Senegal
DZA	Algeria	SLE	Sierra Leone
EGY	Egypt	SOM	Somalia
ETH	Ethiopia	STP	S. Tome & Principe
GAB	Gabon	SWZ	Swaziland
GHA	Ghana	SYC	Seychelles
GIN	Guinea	TCD	Chad
GMB	Gambia	TGO	Togo
GNB	Guinea-Bissau	TUN	Tunisia
GNQ	Eq. Guinea	TZA	Tanzania
KEN	Kenya	UGA	Uganda
LBR	Liberia	ZAF	South Africa
LBY	Libya	ZAR	Dem. Rep. Congo
LSO	Lesotho	ZMB	Zambia
MAR	Morocco	ZWE	Zimbabwe

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Il dataset

N. Nunn. "The Long-Term Effects of Africa's Slave Trades"

Va	riabili continue	Variabili binarie		
ln_pcgdp ln_export_area	GDP per capita (log) slave exports / land area (log)	region_n island_dum	North Africa indicator small island indicator	
rain_min humid_max low_temp ln_coast_area abs_latitude longitude	min monthly avg rainfall (mm) max monthly avg humidity (%) min monthly avg low temp (C) ocean proximity (log) dist. from Equator longitude	colony0 colony1 colony2 colony3 colony4 colony5	No colony GB FR PT BE ES UN IT Legal origin indicator: FR	
ln_gold_pop ln_oil_pop ln_diamonds_pop	op oil avg prod. p.c. (log)	colony6 colony7 legor_fr		
islam	percent islamic pop.	${ t legor}_{ t uk}$	Legal origin indicator: GB	
atlantic_dist_min indian_dist_min saharan_dist_min	min atlantic distance (10 ³ km) min indian distance (10 ³ km) min saharan distance (10 ³ km)			

min Red Sea distance (10³ km)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Modelli spaziali

red_sea_dist_min

Lo shapefile

Geodetic CRS: WGS 84

L'Africa nel 2025

L'Africa negli anni '90

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Modelli spaziali

ZWE Zimbabwe

ZMB Zambia

UGA Uganda

TUN Tunisia

TZA Tanzania

SWZ eSwatini

SSD S Sudan

SOM Somalia

SEN Seneral

RWA Rwanda

NGA Nigeria

NAM Namibia MOZ Mozambique

MAR Morocco

ESH W. Sahara

MRT Mauritania

MDG Madagascar

DZA Algeria

MIII Mali

MWI Malawi

LBY Libva

NER Niger

-99 Somaliland

SLF Sierra Leone

SDN Sudan ZAE South Africa

Lo shapefile

Proiezione in metri

Original Projection

EPSG:2312 Projection

Analisi dei dati

Analisi spaziale

EPSG:2312 Garoua-UTM zone 33N
https://spatialreference.org/
ref/epsg/2312/

Variabili continue

Max.

8.982

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

ln_export_area

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati Analisi

spaziale Modelli spaziali

Variabili continue

8.000

46.00

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale Modelli

spaziali

0.000

0.000

1.500

6.848

Variabili continue

6 / 14

◆□▶◆圖▶◆臺▶◆臺▶ 臺 **ჟ**९@

Geospatial Data Analysis

D. Comanducci
Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati Analisi

spaziale Modelli spaziali

Variabili continue

ln_coast_area

Max.

4.529

Geospatial Data Analysis

D. Comanducci

Introduzione
Analisi dei dati

Analisi spaziale

Variabili continue

Geospatial Data Analysis

D. Comanducci

100

80

60

40

20

Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

6 / 14

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

-9.210

6 / 14

-9.210

-6.389

-9.210

-3.464

3.236

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi dei dati

spaziale Modelli spaziali

Variabili continue

6 / 14

Max.

2.187

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati Analisi

spaziale Modelli spaziali

Variabili continue

atlantic_dist_min

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

indian_dist_min

Geospatial Data Analysis

D. Comanducci Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

saharan_dist_min

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Variabili continue

red_sea_dist_min

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Variabili discrete

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Matrice di contingenza

(V. binarie)

passato coloniale	Tot.	legor_fr	${\tt legor_uk}$	$region_n$
colony_0	2	1	1	0
colony_1 GB	17	1	16	1
colony_2 FR	18	18	0	3
$colony_3$ PT	3	3	0	0
${\tt colony_4}$ BE	3	3	0	0
$colony_5$ ES	1	1	0	0
$colony_6$ UN	1	0	1	0
$colony_7$ IT	1	1	0	1
Tot.	46	28	18	5

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati Analisi

spaziale Modelli spaziali

Indici di correlazione

(Variabili continue)

v_1	v_2	$cor(v_1, v_2)$
$abs_latitude$	low_temp	-0.77686
longitude longitude longitude	atlantic_dist_min indian_dist_min red_sea_dist_min	0.81459 -0.79186 -0.78283
islam	$saharan_dist_min$	-0.73502
atlantic_dist_min	red_sea_dist_min	-0.83068

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Matrice di prossimità

Vicini con confini comuni

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

	1	<i>p</i> -value	С	<i>p</i> -value	saharan_dist_min
saharan_dist_min	0.872	6.07e-19	0.097	1.04e-15	6
$red_sea_dist_min$	0.871	1.06e-18	0.105	2.73e-16	5
$indian_dist_min$	0.803	3.45e-16	0.205	2.38e-13	
$atlantic_dist_min$	0.726	6.49e-14	0.242	3.79e-11	3/
islam	0.705	7.97e-13	0.287	8.79e-12	
low_temp	0.570	3.87e-09	0.326	2.62e-10	
ln_oil_pop	0.467	7.96e-07	0.522	8.62e-06	
$ln_{-}pcgdp$	0.423	5.85e-06	0.563	5.55e-05	correlog, saharan_dist_min
$ln_diamonds_pop$	0.314	4.28e-04	0.674	2.75e-03	
ln_export_area	0.306	7.08e-04	0.551	1.47e-05	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
humid_max	0.274	1.46e-03	0.647	2.18e-03	
ln_coast_area	0.242	5.11e-03	0.683	1.45e-03	\$ -1 1
ln_gold_pop	0.174	2.84e-03	0.802	2.91e-04	φ -
rain_min	0.164	2.71e-02	0.799	6.87e-02	1 2 3 4 5 6 7 8 9 10 11 12
10 / 14					

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

	1	<i>p</i> -value	С	<i>p</i> -value	indian_dist_min
saharan_dist_min	0.872	6.07e-19	0.097	1.04e-15	16
red_sea_dist_min	0.871	1.06e-18	0.105	2.73e-16	14
indian_dist_min	0.803	3.45e-16	0.205	2.38e-13	12
$atlantic_dist_min$	0.726	6.49e-14	0.242	3.79e-11	10
islam	0.705	7.97e-13	0.287	8.79e-12	8
${\tt low_temp}$	0.570	3.87e-09	0.326	2.62e-10	4
ln_oil_pop	0.467	7.96e-07	0.522	8.62e-06	2
ln_pcgdp	0.423	5.85e-06	0.563	5.55e-05	correlog. indian_dist_min
$ln_diamonds_pop$	0.314	4.28e-04	0.674	2.75e-03	
ln_export_area	0.306	7.08e-04	0.551	1.47e-05	* -
$humid_max$	0.274	1.46e-03	0.647	2.18e-03	
ln_coast_area	0.242	5.11e-03	0.683	1.45e-03	
ln_gold_pop	0.174	2.84e-03	0.802	2.91e-04	9 1
rain_min	0.164	2.71e-02	0.799	6.87e-02	1 2 3 4 5 6 7 8 9 10 11 12
10 / 14					

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Modelli spaziali

4 D > 4 D > 4 E > 4 E >

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Test di Moran globale

Tutte le variabili (continue)

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Media locale

Geospatial

Introduzione

Analisi dei dati

Analisi spaziale

Media locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Media locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Media locale

Tagli ai quintili sulla media locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Moran locale

Geospatial Data Analysis D. Comanducci

Introduzione Analisi dei dati

Analisi spaziale

Moran locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi
spaziale

Moran locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale Modelli

Moran locale

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Geospatial Data Analysis

Analisi dei dati

Analisi spaziale

Stima OLS

fmla <- ln.pcgdp ~ ln.export_area + colony1 + colony2 +colony3 + colony4 + colony5 + colony6 + colony7 + rain_min +
humid_max + low_temp + ln_coast_area + islam + legor_fr + region_n + ln_gold_pop + ln_oil_pop + ln_diamonds_pop</pre>

Stima

var.	coef.	p-value
(Intercept)	6.409676	7.96e-08
In_export_area	-0.090781	0.00158
colony1	0.947924	0.04455
colony2	1.043905	0.02563
colony3	0.867653	0.06667
colony4	0.257498	0.66189
colony5	1.559744	0.03579
colony6	1.570997	0.03992
colony7	0.469763	0.47473
rain_min	0.001658	0.82096
humid_max	0.016627	0.07367
low_temp	-0.053279	0.00303
In_coast_area	0.099378	0.00901
islam	-0.002329	0.40971
legor_fr	0.010320	0.98063
region_n	-0.131477	0.73174
In_gold_pop	0.012940	0.35193
ln_oil_pop	0.077399	0.00177
In_diamonds_pop	-0.021472	0.54701

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Stima OLS

Stima

var.	coef.	p-value
(Intercept)	6.409676	7.96e-08
In_export_area	-0.090781	0.00158
colony1	0.947924	0.04455
colony2	1.043905	0.02563
colony3	0.867653	0.06667
colony4	0.257498	0.66189
colony5	1.559744	0.03579
colony6	1.570997	0.03992
colony7	0.469763	0.47473
rain_min	0.001658	0.82096
humid_max	0.016627	0.07367
low_temp	-0.053279	0.00303
In_coast_area	0.099378	0.00901
islam	-0.002329	0.40971
legor_fr	0.010320	0.98063
region_n	-0.131477	0.73174
In_gold_pop	0.012940	0.35193
In_oil_pop	0.077399	0.00177
In_diamonds_pop	-0.021472	0.54701

Moran sui residui

-0.058976

lm.morantest(modLM. slaveTrade.lw) Moran I p-value 0.2888

Geospatial Data Analysis D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Stima OLS

fmla <- ln_pcgdp ~ ln_export_area + colony1 + colony2 +colony3 + colony4 + colony5 + colony6 + colony7 + rain_min + humid.max + low_temp + ln_coast_area + islam + legor_fr + region_n + ln_gold_pop + ln_oil_pop + ln_diamonds_pop

Geospatial Data Analysis

Analisi dei dati

Analisi

Modelli

D. Comanducci

Introduzione

spaziale

spaziali

Stima

0.00177

0.54701

var.	coef.	p-value
(Intercept)	6.409676	7.96e-08
In_export_area	-0.090781	0.00158
colony1	0.947924	0.04455
colony2	1.043905	0.02563
colony3	0.867653	0.06667
colony4	0.257498	0.66189
colony5	1.559744	0.03579
colony6	1.570997	0.03992
colony7	0.469763	0.47473
rain_min	0.001658	0.82096
humid_max	0.016627	0.07367
low_temp	-0.053279	0.00303
In_coast_area	0.099378	0.00901
islam	-0.002329	0.40971
legor_fr	0.010320	0.98063
region_n	-0.131477	0.73174
In_gold_pop	0.012940	0.35193

0.077399

-0.021472

Moran sui residui

lm.morantest	(modLM,	slaveTrade.lw)
Moran I	p-value	
-0.058976	0.2888	_

Test di Rao

lm.RStests(modLM, listw=slaveTrade.lw, test='all')

	statistic	p-value
RSerr	0.3052046	0.5806
RSlag	0.0099526	0.9205
adjRSerr	0.4906222	0.4836
adjRSlag	0.1953702	0.6585
SARMA	0.5005748	0.7786

RSerr verifica l'autocorr. spaz. nel termine di errore (per SEM) RSlag verifica l'autocorr. spaz. nella variabile dipendente (per SLM) SARMA verifica la dipendenza combinata tra

lag spaziale ed errore ◆□▶ ◆周▶ ◆三▶ ◆三 ◆ ◆ ◆ ◆

In_oil_pop

In_diamonds_pop

Stima OLS

fmla <- ln.pcgdp ~ ln.export.area + colony1 + colony2 +colony3 + colony4 + colony5 + colony6 + colony7 + rain.min +
humid.max + low.temp + ln.coast.area + islam + legor.fr + region.n + ln.gold.pop + ln.oil.pop + ln.diamonds.pop</pre>

Stima

var.	coef.	p-value
(Intercept) In_export_area colony1 colony2 colony3 colony4 colony5 colony6 colony7 rain_min humid_max low_temp In_coast_area islam legor_fr	6.409676 -0.090781 0.947924 1.043905 0.867653 0.257498 1.559744 1.570997 0.469763 0.001658 0.016627 -0.053279 0.099378 -0.002329 0.010320	7.96e-08 0.00158 0.04455 0.02563 0.06667 0.66189 0.03579 0.47473 0.82096 0.07367 0.00303 0.00901 0.40971
region_n ln_gold_pop ln_oil_pop ln_diamonds_pop	-0.131477 0.012940 0.077399 -0.021472	0.73174 0.35193 0.00177 0.54701

Moran sui residui

lm.morantest	(modLM,	slaveTrade.lw)
Moran I	p-value	
0.058076	0.2888	_

Test di Rao

lm.RStests(modLM, listw=slaveTrade.lw,
test='all')

	statistic	p-value
RSerr	0.3052046	0.5806
RSlag	0.0099526	0.9205
adjRSerr	0.4906222	0.4836
adjRSlag	0.1953702	0.6585
SARMA	0.5005748	0.7786

RSerr verifica l'autocorr. spaz. nel termine di errore (per SEM) RSlag verifica l'autocorr. spaz. nella variabile dipendente (per SLM)

SARMA verifica la dipendenza combinata tra lag spaziale ed errore

Geospatial Data Analysis

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Modelli spaziali

diamonds

gold

oil

Stima OLS

fmla <- ln.pcgdp ~ ln.export.area + colony1 + colony2 +colony3 + colony4 + colony5 + colony6 + colony7 + rain.min +
humid.max + low.temp + ln.coast.area + islam + legor.fr + region.n + ln.gold.pop + ln.oil.pop + ln.diamonds.pop</pre>

Stima

var.	coef.	p-value
(Intercept) In_export_area colony1 colony2 colony3 colony4 colony5 colony6 colony7 rain_min humid_max low_temp In_coast_area	6.409676 -0.090781 0.947924 1.043905 0.867653 0.257498 1.559744 1.570997 0.469763 0.001658 0.016627 -0.053279 0.099378	7.96e-08 0.00158 0.04455 0.02563 0.06667 0.66189 0.03579 0.03992 0.47473 0.82096 0.07367 0.00303 0.00901
islam legor_fr region_n In_gold_pop In_oil_pop In_diamonds_pop	-0.002329 0.010320 -0.131477 0.012940 0.077399 -0.021472	0.40971 0.98063 0.73174 0.35193 0.00177 0.54701

Moran sui residui

		slaveTrade.lw)
Moran I	p-value	_
-0.058976	0.2888	

Test di Rao

lm.RStests(modLM, listw=slaveTrade.lw,
test='all')

	statistic	p-value
RSerr	0.3052046	0.5806
RSlag	0.0099526	0.9205
adjRSerr	0.4906222	0.4836
adjRSlag	0.1953702	0.6585
SARMA	0.5005748	0.7786

RSerr verifica l'autocorr. spaz. nel termine di errore (per SEM) RSlag verifica l'autocorr. spaz. nella variabile dipendente (per SLM)

SARMA verifica la dipendenza combinata tra lag spaziale ed errore

rain min

hum. max

low temp

D. Comanducci

Introduzione

Analisi dei dati

Analisi spaziale

Modelli a confronto

Modello lineare vs. modelli spaziali

modello	Moran(res.)	<i>p</i> -value	ρ (* λ)	$ extit{p} ext{-value}(ho)$	AIC	" α_d "
LM	-0.0590	0.2888	_	_	62.6452 5	-0.0907
SEM	-0.0502	0.6077	-0.9175*	0.1258	62.3012 8	-0.0599
SLM	-0.0545	0.6243	-0.0169	0.9152	64.6339 1	-0.0912
SDM	-0.1053	0.7927	-0.4888	0.0495	37.4690 8	-0.1522

Conclusioni

14 / 14

- ► Tutti i modelli testati riportano un indice di Moran sui residui statisticamente non diverso da 0
- ▶ Ne consegue che in tutti i casi le covariate riescono a spiegare la struttura spaziale rilevata dall'indice di Moran sulla variabile dipendente
- ▶ Il modello con AIC più basso è lo Spatial Durbin Model (SDM)

LM: Linear Model SEM: Spatial Error Model SLM: Spatial Lag Model SDM: Spatial Durbin Model

► Tuttavia, applicando il rasoio di Occam, possiamo optare per il modello più semplice di tutti: quello lineare (LM)

Geospatial Data Analysis

D. Comanducci

Analisi dei dati

Analisi spaziale

Modelli spaziali

0