Основы моделирования в Matab/Octave

Цель практики

Цель практики заключается в освоении базовых подходов имитационного моделирования в связной тематике, используя язык программирования Matlab.

Почему Matlab?

Вам предлагается изучить основы языка программирования Matlab, который используется в большинстве мировых R&D центрах для разработки, моделирования и прототипирования новых телекоммуникационных технологий. Мотивацией для изучения Matlab мо-

жет служить тот факт, что при собеседовании в лучшие зарубежные R&D центры часто интересуются про навык пользования этим инструментом, поэтому владение Matlab'ом повышает вероятность вашего успеха.

-		•
	,	• • • • • • • • • • • • • • • • • • • •

Процедура практики

Самостоятельное выполнение

Если у вас есть навык владения . ПО Matlab и творческий интерес, то Вам предлагается уникальная возможность реализовать модель самостоятельно, опираясь только на текстовое описание . модели и задание.

С помощью видеокурса

Можно выполнить практику с помощью предлагаемого видеокурса, в котором последовательно выполняются все блоки модели. Естественно, выполнение задания по вариантам никто не отменял.

Практика 1. Введение в Matlab/Octave

Задание

Ознакомиться с интерфейсом среды моделирования. Освоить син-
таксис языка программирования Matlab/Octave.
[]
Часть 1. Константы
1.1 Очистить рабочее пространство (функция clear all)
1.2 Введите новые переменные a и b . Запишите в них любые значения: a
– Ваш номер в списке группы; b – общее количество человек в группе.
1.3 Введите новую переменную с как функцию ${\sf c} = b - a$
1.4 Введите новую переменную с как функцию $d = c \cdot b - a$
1.5 Введите новую комплексную переменную $e = a + jb$ (запись мнимой
единицы - 1і)
1.6 Введите новую переменную $h = d \cdot 10^c$ (например, запись 1e2 соответ-
ствует 10 ²)
1.7 Введите новую переменную $g = a \cdot \pi$ (запись числа Пи - pi)
1.8 Сохранить скриншот рабочего пространства
[]
Часть 2. Векторы
2.1 Очистить рабочее пространство
2.2 Введите новые вектора f и g размерностью $1 \times N$, где $N = c + 1$ (с из
п. 1.2)
2.3 Введите новый вектор h как функцию поэлементного сложения мас-
сивов: $h = f + g$
2.4 Введите новый вектор j как функцию умножения массива h на кон-
станту d (п. 1.4): $j = d \cdot h$
2.5 Введите новый вектор v размерностью $N imes 1$
2.6 Обратиться к третьему элементу вектора \boldsymbol{v} и вывести его в командное
ОКНО

2.7 Сохранить скриншот рабочего пространства
[]
Часть 3. Матрицы
3.1 Очистить рабочее пространство
3.2 Введите новые матрицы A и B размерностью 3×3 .
3.3 Введите новую матрицу С как результат матричного умножения $\mathbf{A} \times \mathbf{B}$
3.4 Введите новую матрицу D как результат <u>поэлементного</u> умножения $\mathbf{A} \times \mathbf{B}$
3.5 Обратиться к элементу с адресом (1,1) матрицы ${\bf D}$ и вывести его в командное окно
3.6 Обратиться к второму <u>столбцу</u> матрицы ${\bf D}$ и вывести его в командное окно
3.7 Обратиться к второй <u>строке</u> матрицы D и вывести ее в командное окно
3.8 Сохранить скриншот рабочего пространства
[]
Часть 4. Операторы и циклы
Пусть параметр a — Ваш номер в списке группы.
4.1 Очистить рабочее пространство
4.2 Реализовать цикл for для расчета суммы: $c=1+2+3+\cdots+10\cdot a$
4.3 Реализовать внутри цикла for оператор if с проверкой на четность,
соответствующий следующей логике: если число четное, то не прибав-
лять его к c в предыдущем пункте. Иными словами, $c=1+3+5\ldots+10$
a-1
4.4 Реализовать цикл while для расчета суммы: $c=1+2+3+\cdots x$. Пре-
кратить расчет, когда слагаемое $x \ge a$
4.5 Сохранить скриншот рабочего пространства
[]
Часть 5. Библиотека функций

5.1 Очистить рабочее пространство

- 5.2 Сформировать вектор случайных чисел **A** размерностью 1×10 (функция randn)
- 5.3 Найти максимальный и минимальный элемент вектора **A** (функции *max* и *min*)
- 5.4 Найти номер максимального элемента вектора **A** (ознакомиться со справкой по функции max)
- 5.5 Сформировать единичный вектор размерностью 1 × 10
- 5.6 Сформировать нулевой вектор размерностью 1×10
- 5.7 Сохранить скриншот рабочего пространства

Блок 6. Графическое отображение

- 6.1 Очистить рабочее пространство
- 6.2 Сформировать вектор случайных чисел **A** размерностью 1×100
- 6.3 Создать графическое окно (функция *figure*)
- 6.4 Отобразить вектор **A** в виде гистограммы (функция bar)
- 6.5 Отобразить вектор **A** в виде столбцов (функция stem)
- 6.6 Отобразить вектор **A** в виде зависимости y(x) (функция plot)
- 6.7 Изменить цвет линии на любой другой.
- 6.8 Выставить толщину линии равную 2.
- 6.9 Обозначить оси: ось x отсчеты, ось y амплитуда. (функции xlabel, ylabel)
- 6.10 Отобразить название графика: «Случайный вектор» (функция title)
- 6.11 Подписать отображенную на графике зависимость (функция legend)
- 6.12 Обозначить диапазон по оси x: от 1 до 90 (функция xlim)
- 6.13 Обозначить диапазон по оси y: от мин. значения **A** до макс. (функция ylim)
- 6.14 Отобразить сетку (функция grid on)
- 6.15 Сохранить скриншот графика

Практика 2. Представление сигналов в модели

Задание

стоте f.

Реализовать имитационную модель фильтраці	ии синусоидального
сигнала от в условиях шума, а так же переноса сигна.	ла с/на несущую ча-
стоту.	
[]
Ход работы	
1. Обозначим шаг дискретизации пере-	
менной <i>Δt</i> . Сформировать синусоидаль-	
ный сигнал (длительностью 1 период) с	
$\Delta t = 0.1$. Отобразить на временном графике сформи	прованный синусои-
дальный сигнал.	
2. Ввести параметр частоты синусоиды f ,	
значение которой определено вариан-	
том задания. Сформировать синусои-	
дальный сигнал с тем же шагом дискретизации Δt , н	о с повышенной ча-
стотой f . Отобразить полученный сигнал на време	енном графике, при
этом должно поместиться f целых периодов.	
3. Отобразить сформированный синусоидальный си	игнал на графике в
виде отрезков (функция stem) и ступенчатом графике	е (функция stairs).
4. Получить спектр синусоиды с помо-	, , , , , ,
щью прямого преобразования Фурье	-
(функция fft), записать его в отдельную	
переменную и отобразить его на графике. В этом сл	учае по оси х будет
отложена частота. Убедиться в том, что гармоника	расположена на ча-

5. Сформировать сигнальный вектор с шумом (функция wng) мощностью N_0 и добавить его на синусоиду. Зна-

чение N_0 определено вариантом задания. Наложить шум (операция векторного сложения) на синусоидальный сигнал и построить временной график синусоиды с шумом.

6. Получить спектр зашумленной синусоиды, записать его в отдельную переменную и отобразить его на графике.

7. Отфильтровать зашумленный сигнал фильтром скользящего-среднего.

Такой фильтр является распространенным для сглаживания зашумленных сигналов. Фильтр перемещает окно длиной L вдоль сигнального

вектора, вычисляя средние значения сигнала, содержащихся в каждом окне. Для такого фильтра разностное уравнение определено по формуле:

$$y(n) = \frac{1}{L}[x(n) + x(n-1) + \dots + x(n-(L-1))]$$

Для фильтра с длиной окна L получим в модели следующие коэффициенты числителя и знаменателя: a = 1, b = 1/L * ones(1, L). Тогда, фильтрацию можно осуществить с помощью функции y = filter(b, a, x), где x - это синусоидальный сигнал с шумом на входе фильтра, а y - отфильтрованный сигнал на выходе фильтра. Длина окна L задается вариантом задания.

- 8. Получить и отобразить на графике спектр отфильтрованной синусоиды. Убедитесь, что шума стало визуально меньше.
- 9. Реализовать перенос сигнала на несущую частоту. Для этого требуется сформировать второй синусоидальный сигнал с частотой 10f, при этом

длина получившегося сигнального вектора должна быть такая же, как

длина вектора с первым синусоидальным сигналом с частотой f. Осуществить поэлементное перемножение двух синусоидальных сигналов. Отобразить на одном графике две временные зависимости: сигнал, получившийся в результате перемножения, и синусоидальный сигнал с частотой f.

10. Добавить шум на сигнал, получившийся в результате перемножения. Сигнальный вектор с шумом взять из пункта 5. Отобразить сигнал с шумом на вре-

менном графике.

11. Получить и отобразить на графике спектр сигнала, полученного в предыдущем пункте.

12. Реализовать перенос сигнала с несущей частоты. Для этого требуется сигнал с шумом (из пункта 10) повторно умножить на сигнал несущей частоты (сину-

соидальный сигнал с частотой 10f. Отобразить получившийся сигнал на временном графике.

13. Отфильтровать сигнал, получившийся в предыдущем пункте. Для этого используем фильтр Баттерворта. Рассчитаем коэффициенты числителя и

знаменателя фильтра с помощью встроенной в библиотеку функции $\lceil b,a \rceil = butter(4,0.04, 'low').$

Далее, применим эти коэффициенты для фильтрации с помощью функции filter точно так же, как в пункте 7. Отобразить получившийся сигнал на временном графике.

Практика 3. Модель расчета пропускной способности канала точка-точка по Шеннону

Задание

Реализовать модель расчета пропускной способности канала связи точка-точка в условиях аддитивного белого гауссова шума, используя теорему Шеннона.

Модель канала точка-точка по Шеннону

Согласно теореме Шеннона, пропускная способность канала точкаточка, измеряемая в бит/с, в условиях аддитивного белого гауссова шума (АБГШ) может быть рассчитана по формуле

$$C = B \log_2 \left(1 + \frac{|\alpha^2|P}{BN_0} \right),$$

где P — мощность сигнала на выходе передатчика; B — ширина полосы сигнала; N_0 — спектральная мощность плотности АБГШ; α — канальных коэффициент, показывающий ослабление сигнала в среде. В свою очередь, коэффициент α в модели свободного распространения определяется с помощью формулы

$$\alpha = \frac{4\pi df}{c}$$

где d — расстояние между передатчиком и приемником; f — несущая частота сигнала; c — скорость света. Конкретные значения величин P, B, N_0, d, f определены вариантом Вашего задания.

Ход работы

1. Рассчитать зависимость пропускной способности (\mathcal{C}) от расстояния между передатчиком и приемником (\mathcal{d}) в диапазоне изменения расстояния от

1d до 50d с шагом d. Отобразить полученную зависимость $\mathcal{C}(d)$ на графике.

- 2. Рассчитать зависимость пропускной способности (\mathcal{C}) от несущей частоты (f) в диапазоне изменения частоты от 0.1f до 2f с шагом 0.1f. Отобразить полученную зависимость $\mathcal{C}(f)$ на графике.
- 3. Рассчитать зависимость пропускной способности (\mathcal{C}) от ширины полосы пропускания (\mathcal{B}) в диапазоне изменения частоты от $0.01\mathcal{B}$ до $10\mathcal{B}$ с шагом $0.01\mathcal{B}$. Отобразить полученную зависимость $\mathcal{C}(\mathcal{B})$ на графике.

Таблица с вариантами и комбинациями

N – номер вашего ФИО в списке группы. Зная N, нужно выбрать комбинацию заданий из таблицы с комбинациями. Далее, выбрать параметры модели из таблицы с вариантами в соответствии со своей комбинацией.

Например, Ваша комбинация 1,2,3,4,5,6. Тогда, ваш вариант задания будет следующий:

длина сообщения = 35 символов, $N_B=7,\,T_{CP}=1/16,\,\Delta RS=6\,$ В = 13 МГц, $f_0=1,9$ ГГц.

N	1	2	3	4	5	6	7	8	9
Комб.	1,2,3,	2,4,6,	6,2,3,	7,7,2	5,3,6	2,2,1,	5,2,4	3,3,3	1,1,1
	4,5,6	1,7,2	2,2,2	1,2,3	1,3,4	1,3,3	1,5,3	2,2,2	1,1,1
N	10	11	12	13	14	15	16	17	18
Комб.	6,5,4,	7,4,2,	7,7,7	4,3,4,	7,6,2,	2,5,1	2,3,1	3,2,2	5,4,1
	2,1,3	1,2,3	1,2,3	1,2,4	5,5,5	5,5,5	6,7,7	2,2,1	2,2,2

Таблица с комбинациями

Таблица с вариантами

N	1	2	3	4	5	6
	Длина сооб-	Кол-во лучей	Длина пре-	Шаг опор-	Полоса,	Hecy-
	щения, симв	N_B	фикса, T_{CP}	ных под-	В, МГц	щая, f_0
				нсущих,		ГГц
				ΔRS		
1	35	5	1/2	3	10	2
2	40	7	1/4	4	11	2.1
3	45	6	1/16	5	8	1.7
4	50	9	1/8	6	9	2.4
5	55	10	1/4	7	13	2.2
6	60	4	1/2	8	12	1.9
7	65	8	1/8	9	7	1.8