ASE2910 Applied Linear Algebra / AUS2910 Fundamental Math for AI Homework #3

1) Rotation matrices. Consider a matrix A that describes a rotation by θ , that is,

$$\underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x}$$

- a) Explain why ||y|| = ||x|| for any x and θ .
- b) Show that the columns of A are orthonormal vectors.
- c) Construct a matrix that describes a rotation by $-\theta$?
- d) What is A^T ? Is it equal to what you obtained from above?
- e) Consider a vector x, and suppose that we compute y = Ax, and then subsequently compute $z = A^T y$. What is z?
- f) What is $A + A^T$? What does it do? Justify your answer by drawing a picture on a plane to illustrate x, Ax, A^Tx , and $(A + A^T)x$
- 2) Quadratic form. Suppose P is an $n \times n$ matrix. The function $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f(x) = x^T P x$ is called a quadratic form, and generalizes the idea of a quadratic function of a scalar variable, px^2 . The matrix P is called the coefficient matrix of the quadratic form.
 - a) Show that $f(x) = \sum_{i,j} P_{ij} x_i x_j$. In words: f(x) is the weighted sum of all products of two components of x, with weights given by the entries of P.
 - b) Show that for any x, we also have $f(x) = x^T P^T x$. In other words, the quadratic form associated with the transpose matrix is the same function.
 - c) Show that f can be expressed as $f(x) = x^T P^s x$, where $P^s = (1/2)(P + P^T)$ is the symmetric part of P. The matrix P^s is symmetric. So any quadratic form can be expressed as one with a coefficient matrix that is symmetric.
 - d) Express $f(x) = -2x_1^2 + 4x_1x_2 + 2x^2$ in the form $f(x) = x^T P x$ with P a symmetric 2×2 matrix.

- e) Suppose that A is an $m \times n$ matrix and b is an m-vector. Show that $||Ax b||^2 = x^T Px + q^T x + r$ for a suitable $n \times n$ symmetric matrix P, n-vector q, and constant r. (Give P, q, and r.) In words: The norm squared of an affine function of x can be expressed as the sum of a quadratic form and an affine function.
- 3) VMLS Exercises.
 - a) 7.1 Projection on a line.
 - b) **7.2** *3-D* rotation.
 - c) 7.3 Trimming a vector.
 - d) 7.4 Down-sampling and up-conversion.
 - e) **8.3** Cross product.
 - f) 8.8 Interpolation of rational functions.
 - g) 8.11 Location from range measurements.
 - h) 9.3 Equilibrium point for linear dynamical system.
 - i) **9.5** Fibonacci sequence.
 - j) 9.6 Recursive averaging.