The School of Mathematics

Incremental Learning of Recommender Systems

by

Rodrigo LARA MOLINA

Dissertation Presented for the Degree of MSc in Statitics with Data Science)

August 2019

Supervisors: Sean MURPHY, Timos KORRES Second Supervisors: Iain MURRAY, Victor ELVIRA

Abstract

Here comes your abstract \dots

Acknowledgments

Here come your acknowledgments \dots

Own Work Declaration

Here comes your own work declaration

Contents

1	Introduction	1
2	Background 2.1 Models	2 3 4
3	Technical Stuff 3.1 Formulae	6
4	Conclusions	9
Aı	ppendices	10
\mathbf{A}	An Appendix	10
\mathbf{B}	Another Appendix	11

List	of Tables	
1	Something that doesn't make sense.	6
List	of Figures	
1	Look at this scenario tree with funny times t_1 and scenarios s_1 etc	6

1 Introduction

Here I will write a very good, precise and brief introduction. Particularly Section 2 is good!

2 Background

But I can also end a line with a double backslash.

2.1 Models

Models are very helpful because.

- They're good.
- They're helpful.

2.2 Techniques

Techniques even better because.

- 1. They're magnificent.
- 2. If they work.

3 Technical Stuff

Now it's getting very technical ... I will cite [?, ?]. I will also show my incredible α , β and γ mathematics and do some other fancy stuff.

3.1 Formulae

For example look at this

$$\min \sum_{s \in \mathcal{S}} Pr_s \left[\sum_{t=1}^{T} \left(\sum_{g \in \mathcal{G}} \left(\alpha_{gts} C_g^0 + p_{gts} C_g^1 + (p_{gts})^2 C_g^2 \right) + \sum_{g \in \mathcal{C}} \gamma_{gts} C_g^s \right) \right], \tag{3.1}$$

and you will see that it has a little number on the side so that I can refer to it as equation (3.1). Now if I do this

$$\sum_{i=1}^{n} k_i = 20$$

$$\sum_{j=20}^{m} \delta_i \ge \eta$$
(3.2)

I can align two formulae and control which one has a number on the side. It is (3.2). I can also do something like this

$$Y_l = \begin{bmatrix} (y_s + i\frac{b_c}{2}) \frac{1}{\tau^2} & -y_s \frac{1}{\tau e^{-i\theta^s}} \\ -y_s \frac{1}{\tau e^{i\theta^s}} & y_s + i\frac{b_c}{2} \end{bmatrix},$$

and it won't have a number on the side. Now if I have to do some huge mathematics I'd better structure it a little and include linebreaks etc. so that it fits on one page.

$$p_{l}^{f} = G_{l11} \left(2v_{F(l)} \bar{v}_{F(l)} - \bar{v}_{F(l)}^{2} \right)$$

$$+ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right]$$

$$+ \begin{bmatrix} \bar{v}_{T(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[B_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) - G_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[-B_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \right],$$

$$(3.3)$$

This is a lot of fun!

3.2 Important Things

Finally we should have a nice picture like this one. However, I won't forget that figures and table are environments which float around in my document. So LaTeX will place them wherever it thinks they fit well with the surrounding text. I can try to change that with a float specifier, e.g. [!ht]. Now I

Figure 1: Look at this scenario tree with funny times t_1 and scenarios s_1 etc.

want to use one of my own environments. I want to define something.

Definition 3.1 *I define*

$$\Gamma_{\eta} := \sum_{i=1}^{n} \sum_{j=i}^{n} \xi(i,j)$$

I definitely need some good tables, so I do this. I should really refer to Table 1.

Case	Generators	Therm. Units	Lines	Peak load: [MW]	[MVar]
6 bus	3 at 3 buses	2	11	210	210
9 bus	3 at 3 buses	3	9	315	115
24 bus	33 at 11 buses	26	38	2850	580
30 bus	6 at 6 buses	5	41	189.2	107.2
39 bus	10 at 10 buses	7	46	6254.2	1387.1
57 bus	7 at 7 buses	7	80	1250.8	336.4

Table 1: Something that doesn't make sense.

3.3 And now something else

Let:

$$\begin{array}{lcl} \Omega_0 & = & \{(x,y,z,f): \text{ satisfying } (9)-(19)\}, \\ \Omega_1 & = & \{(x,y,z,f): \text{ satisfying } (9), (11)-(20)\}, \\ \overline{\Omega}_0 & = & \{\mathbf{0} \leq (x,y,z,f) \leq \mathbf{1}: \text{ satisfying } (9)-(18)\}, \\ \overline{\Omega}_1 & = & \{\mathbf{0} \leq (x,y,z,f) \leq \mathbf{1}: \text{ satisfying } (9), (11)-(18), (20)\} \,. \end{array}$$

where $\mathbf{0}$ and $\mathbf{1}$ are vectors of appropriate dimensions with 0's and 1's, respectively. Next we see that both Ω_0 and Ω_1 give equivalent formulations for the A-MSSP. In particular, the following statements hold:

Proposition 1 $\Omega_0 \subseteq \Omega_1$.

Proof. Let us suppose there exists $(x, y, z, f) \in \Omega_1$ such that $(x, y, z, f) \notin \Omega_0$. Then, there exist indices $i \in I$ and $t \in \{0, \dots, |T| - s_i\}$ with $x_i^t > 0.5 \left(\sum_{h=1}^{s_i} x_i^{t+h} + 1\right)$. By definition, $x_i^t = 1$ and $x_i^{t+h} = 0$ for all $h \in \{1, \dots, s_i\}$. By (11) and (12), $\sum_{h=1}^{s_i} f_i^{th} = 1$, so $f_i^{th'} = 1$ for some $h' \in \{1, \dots, s_i\}$. But then,

$$0 \, = \, x_i^{t+h'} \, = \, \sum_{h=\max\{1,t+h'-(|T|-s_i)\}}^{\min\{s_i,t+h'\}} f_i^{t+h'-h,h} \, \geq \, f_i^{th'} \, = \, 1 \, ,$$

as
$$h' \in [\max\{1, t + h' - (|T| - s_i)\}, \min\{s_i, t + h'\}].$$

This immediately gives us

Corollary 1 AS is a valid formulation for the A-MSSP.

Next we compare the Linear Programming (LP) relaxations of the two formulations.

Proposition 2 $\overline{\Omega}_1 \subseteq \overline{\Omega}_0$.

Proof. Homework

4 Conclusions

I have no idea how to conclude, so I don't write much. But the stuff that follows is important.

Appendices

A An Appendix

Some stuff.

B Another Appendix

Some other stuff.