()	Preliminary Specification
(V	١	Final Specification

Module	27" Color TFT-LCD
Model Name	M270HAN02.2

Customer Date	Approved by	Date
	<u>CH Lin</u>	<u>Jan 31, 2019</u>
Approved by	Prepared by	Date
	<u>Vincent Hsu</u>	<u>Jan 31, 2019</u>
Note: This Specification is subject to change without notice.	AU Optronics	s corporation

document version I.I

AU OPTRONICS CORPORATION

Contents

Power consumption is 23.4 vv	4
I Handling Precautions	6
2 General Description	
2.1 Display Characteristics	
2.2 Absolute Maximum Rating of Environment	8
2.3 Optical Characteristics	9
2.4 Mechanical Characteristics	13
3 TFT-LCD Module	14
3.1 Block Diagram	14
3.2 Interface Connection	15
3.2.1 Connector Type	15
3.2.2 Connector Pin Assignment	15
3.3 Electrical Characteristics	
3.3.1 Absolute Maximum Rating	17
3.3.2 Recommended Operating Condition (Simulation result)	17
3.4 Signal Characteristics	18
3.4.1 LCD Pixel Format	18
3.4.2 eDP Data Format	19
3.4.3 Color versus Input Data	20
3.4.4 eDP Specification	21
d. Intra-Pair skew	22
3.4.5 Input Timing Specification	23
3.4.6 3D Control	24
3.5 Power ON/OFF Sequence	
4 Backlight Unit	27
4.1 Block Diagram	27
4.2 Interface Connection	28
4.2.1 Connector Type	28
4.2.2 Connector Pin Assignment	29
4.3 Electrical Characteristics	30
4.3.1 Absolute Maximum Rating	
4.3.2 Recommended Operating Condition	
5 Reliability Test	
6 Shipping Label	33
7 Mechanical Characteristics	
8 Packing Specification	
8.1 Packing Flow	
8.2 Pallet and shipment information	

P	ro	d	u	C	t	S	p	e	C	if	į	C	a	t	i	0	ľ	1

M270HAN02.2

AU OPTRONICS CORPORATION

9 Design G	uide for System		8
y Design G	uide for System	J	

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description	New Description	Remark
0.0	2018/5/23	All		New release	
		6	Power consumption is 23.4W	Power consumption is 22.1W	
		6/ 34/ 35/ 37	Outline Dimension: 609.1(H) x 354.96(V) x 11.64(D)	Outline Dimension: 609.1(H) x 355.0(V) x 11.6(D)	
		8	-	Update color coordinates	
0.1	2018/7/25	16	Original Symbol Description Flat Syp. Her Usiz Romark	New Description Min Typ Max Unit Remark	
		22	Symbol Description Phin Typ Mox Unit Remerk	New Symbol Description Min. Typ. Max. Unit. Remark-Typ. Max. Unit. Remark-Typ. Period 1100. 1125 5005. Th. C.	
		39	-	Add design guide for system	
		9	-	Update color coordinates of RGB	
		15	Orginal mating connector of interface is I5H40-0000TA-00-R (Locked Type)	New mating connector of interface is I I 5H40-0000TA-00-R	
0.2	2018/8/22	16	Orignal diagram of interface pin map Pin 40 Pin 1	New diagram of interface pin map	

document version I.I. 4

AU OPTRONICS CORPORATION

locument version I.I

AU OPTRONICS CORPORATION

I Handling Precautions

- 1) Since polarizer is easily damaged, do not touch or press the surface of polorizer with hand.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- 14) Do not apply the same pattern for a long time, it will enhance relevant defect.
- 15) When this reverse-type model(PCBA on bottom side) is used as forward-type model(PCBA on top side), AUO can not guarantee any defects of LCM.

document version I.I

2 General Description

This specification applies to the 27 inch wide Color a-Si TFT-LCD Module M270HAN02.2. The display supports the Full HD - $1920(H) \times 1080(V)$ screen format and 16.7M colors (8bits RGB data input). The input interface is 4 lane eDP HBR1 and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	685.65 (27.0")
Active Area	[mm]	597.6 (H) x 336.15 (V)
Pixels H x V	-	1920(x3) x 1080
Pixel Pitch	[um]	311.25 (per one triad) ×311.25
Pixel Arrangement	-	R.G.B. Vertical Stripe, source board at bottom
Display Mode	-	AHVA, Normally Black
White Luminance (Center)	[cd/m ²]	400 (Typ.)
Contrast Ratio	-	1000 (Typ.)
Response Time	[msec]	I4ms (Typ., GTG)
Power Consumption	[Watt]	22.1 W (Typ.)
(LCD Module + Backligh unit)		LCD module : PDD (Typ.)=4.8 W@ White pattern,Fv=144Hz
		Backlight unit : P_{BLU} (Typ.) = 17.3W @ I_{RLED} = 80mA
Weight	[Grams]	3220g
Outline Dimension	[mm]	609.1(H) x 355.0(V) x 11.6(D) Typ.
Electrical Interface	-	4 Lane eDP HBR I
Support Color	-	16.7M colors (RGB 8-bits)
Surface Treatment	-	Anti-Glare 25%, 3H
Temperature Range		0 to +50
Operating	[°C]	-20 to +60
Storage (Shipping)	[°C]	-20 10 100
RoHS Compliance	-	RoHS Compliance
TCO Compliance	-	NA

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
TOP	Operating Temperature	0	+50	[°C]	Note 2-I
TGS	Glass surface temperature (operation)	0	+65	[°C]	Note 2-1 Function judged only
НОР	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- I. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. (Ta \leq 39°C)
- 3. No condensation

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

I. Equipment setup: Please refer to **Note 2-2**.

2. Panel Lighting time: 30 minutes

3. VDD=12.0V, Fv=120Hz,Is=80mA,Ta=25°C

Symbol	Description			Тур.	Max.	Unit	Remark
L _w	White Luminance (Center of screen)			400	-	[cd/m2]	Note 2-2 By SR-3
L_{uni}	Luminance Uniformity	(9 points)	75	80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Center	of screen)	600	1000	-	-	Note 2-4 By SR-3
θ_{R}	Horizontal Viewing Angle	Right	75	89	-		
θ_{L}	(CR=10)	Left	75	89	-	=	
Φ_{H}	Vertical Viewing Angle	Up	75	89	-	1	
Φ_{L}	(CR=10)	Down	75	89	-	[degree]	Note 2-5
θ_{R}	Horizontal Viewing Angle	Right	75	89	-	[468, 66]	By SR-3
Θ_{L}	(CR=5)	Left	75	89	-		
Φ_{H}	Vertical Viewing Angle	Up	75	89	-		
Φ_{L}	(CR=5)	Down	75	89	-		
T_{GTG}	Response Time	Gray To Gray	-	14	-	[msec]	Note 2-6 By TRD-100
R_{x}		Red x	0.618	0.648	0.678		
R_y		Red y	0.310	0.340	0.370		
G _x		Green x	0.275	0.305	0.335]	
G _y	Color Coordinates	Green y	0.605	0.635	0.665]	
B _x	(CIE 1931)	Blue x	0.118	0.148	0.178] -	By SR-3
B _y		Blue y	0.023	0.053	0.083		
W _×		White x	0.283	0.313	0.343		
Wy		White y	0.299	0.329	0.359		
Ru'		Red u'	-	0.448	-		
Rv'		Red v'	-	0.529	-		
Gu'	Color Coordinates	Green u'	-	0.122	-		
Gv'	(CIE 1976)	Green v'	-	0.571	-		By SR-3
Bu'		Blue u'	-	0.177	-		
Bv'		Blue v'	-	0.143	-		

Wu'		White u'	-	0.198	-		
Wv'		White v'	-	0.468	-		
sRGB coverage ratio (CIE 1931)			-	99	-	[%]	By SR-3

Note 2-2: Equipment setup :

Note 2-3: Luminance Uniformity Measurement

Definition:

Minimum Luminance of 9 Points (P1 ~ P9) Luminance Uniformit y = Maximum Luminance of 9 Points (P1 ~ P9)

a.Test pattern:White Pattern

Note 2-4: Contrast Ratio Measurement

Definition:

Luminance of White pattern Contrast Ratio = Luminance of Black pattern

a. Measured position: Center of screen (P5) & perpendicular to the screen $(\theta=\Phi=0^{\circ})$

Note 2-5: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right $(\theta_L \& \theta_R)$ Vertical view angle: Divide to up & down $(\Phi_H \& \Phi_L)$

Note 2-6: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, TF), and from "Gray level B" to "Gray level A" (rising time, TR), respectively. The response time is interval between the 10% and 90% of optical response.

The gray to gray response time is defined as the following table.

The gray to gray response time is defined as the following table.

Croy Loyel to C	may Layed	Target gray level								
Gray Level to G	ray Level	L0	L63	L127	LI9I	L255				
	L0									
	L63									
Start gray level	L127									
	LI9I									
	L255									

 \blacksquare $T_{GTG typ}$ is the total average time at rising time and falling time of gray to gray.

2.4 Mechanical Characteristics

Symbol	Description	Min.	Max.	Unit	Remark
P_{bc}	Backside Compression	2.5		[Kgf]	Note 2-9

Note 2-9: Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

If the distance from the last block to each side of the End Point \geq 25mm, add other blocks to make sure that most area of Bezel Back can be measured.

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 27 inch Color TFT-LCD Module.

3.2 Interface Connection

3.2.1 Connector Type

TFT-LCD Connector	Manufacturer	STARCONN (CHIEF LAND)
TT I-LCD Connector	Part Number	115F40-R000RA-M3
Mating Connector	Manufacturer	STARCONN or Compatible
Mating Connector	Part Number	115H40-0000TA-00-R (Locked Type)

3.2.2 Connector Pin Assignment

PIN#	Symbol	Description	Remark
I	GND	Ground	
2	AUXIN	Negative AUX input(display port 1)	
3	AUXIP	Positive AUX input(display port I)	
4	GND	Ground	
5	DI_0P	Positive lane 0 input(display port 1)	
6	DI_0N	Negative lane 0 input(display port 1)	
7	GND	Ground	
8	DI_IP	Positive lane I input(display port I)	
9	DI_IN	Negative lane I input(display port I)	
10	GND	Ground	
П	DI_2P	Positive lane 2 input(display port 1)	
12	DI_2N	Negative lane 2 input(display port 1)	
13	GND	Ground	
14	DI_3P	Positive lane 3 input(display port 1)	
15	DI_3N	Negative lane 3 input(display port 1)	
16	GND	Ground	
17	N.C	No connection (for AUO test only. Do not connect)	
18	N.C	No connection (for AUO test only. Do not connect)	
19	N.C	No connection (for AUO test only. Do not connect)	
20	N.C	No connection (for AUO test only. Do not connect)	
21	GND	Ground	
22	N.C	No connection (for AUO test only. Do not connect)	
23	N.C	No connection (for AUO test only. Do not connect)	
24	N.C	No connection (for AUO test only. Do not connect)	
25	N.C	No connection (for AUO test only. Do not connect)	
26	N.C	No connection (for AUO test only. Do not connect)	
27	GND	Ground	
28	N.C	No connection (for AUO test only. Do not connect)	

29	N.C	No connection (for AUO test only. Do not connect)
30	N.C	No connection (for AUO test only. Do not connect)
31	GND	Ground
32	N.C	No connection (for AUO test only. Do not connect)
33	HPD	Hot plug detection
34	IMS_POL	Interlace Mode Selection Polarity
35	IMS	Interlace Mode Selection
36	VDD	Power +I2V
37	VDD	Power +I2V
38	VDD	Power +I2V
39	VDD	Power +I2V
40	VDD	Power +I2V

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	14.0	[Volt]	Ta=25°C

3.3.2 Recommended Operating Condition (Simulation result)

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply	10.8	12.0	13.2	[Volt]	
VDD	Input voltage	10.0	12.0	13.2	[VOIC]	
	Power supply					
IDD	Input Current	-	0.4	0.6	[A]	VDD= 12.0V, White Pattern, Fv=144Hz
	(RMS)					
DDD	VDD Power		4.0	7.2	F) A / 7	VDD 12.0V. M/1: B 5 14411
PDD	Consumption	-	4.8	7.2	[Watt]	VDD= 12.0V, White Pattern, Fv=144Hz
IDala	Innuals Comment			2	FA1	Note 2 I
IRush	Inrush Current	-	-	3	[A]	Note 3-1
VDD	Allowable VDD			\\D*E%	[ma\/]	VDD= 12.0V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VDDrp	Ripple Voltage	-	•	VDD*5%	[mV]	VDD= 12.0V, White Pattern, Fv=144Hz

Note 3-1: Inrush Current measurement:

The duration of VDD rising time: 470us.

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

	I	ane	0	1	Lane	1		Lane	2		Lane:	3																						
		1	_		2	_		3	_		4	_			_	60			961		_	962		_	963	_		961		_	***		192	
1	R	G	В	R	G	В	R	G	В	R	G	В		+	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В		***	R	G	В
											3					9			*															
					-			65			10		10			7.						7			50			55			70			
Ш								125			(5)		25			3			\mathcal{C}_{i}			*			5			*.0			53			
11																									*			+			800			
Ш					4			22			10											*						\$2						
*	_	_			_	_	_	-	_		-			4			_	_	-	_	_	_			_	_	_	_	_			_	-	-
080	R	G	В	R	l G	B	R	G	B	R	G	В	1900		R	G	В	R	G	В	R	G	В	R	G	B	R	G	B		***	R	G	E

Note 3-2: The module use 4 Lanes eDP interface.

Lane0: I+4n pixel

Lane1: 2+4n pixel Lane2: 3+4n pixel

Lane3: 4+4n pixel

n=0~479

3.4.2 eDP Data Format

Ist Lane0	Ist Lanel	Ist Lane2	Ist Lane3
R1-7:0	R2-7:0	R3-7:0	R4-7:0
G1-7:0	G2-7:0	G3-7:0	G4-7:0
B1-7:0	B2-7:0	B3-7:0	B4-7:0
R5-7:0	R6-7:0	R7-7:0	R8-7:0
G5-7:0	G6-7:0	G7-7:0	G8-7:0
B5-7:0	B6-7:0	B7-7:0	B8-7:0
R9-7:0	R10-7:0	R11-7:0	R12-7:0
G9-7:0	G10-7:0	G11-7:0	G12-7:0
B9-7:0	B10-7:0	B11-7:0	B12-7:0
•		•	•
•	•	•	•
		•	

3.4.3 Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

												Col	or Inp	out D	ata											
Color	Gray Level					data , LSE					GREEN data (MSB :G7, LSB :G0)						BLUE data (MSB :B7, LSB :B0)								Remark	
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	B1	BO	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	-	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	:		:	:	:	• • •		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

3.4.4 eDP Specification

a. DisplayPort main link signal:

DisplayPort main link										
		Min	Тур	Max	unit					
Frequency	Main link Frequency	-	2.7	-	Gbps					
UI	Unit Interval	-	370	-	ps					
VCM	RX input DC Common Mode Voltage	-	0	-	[Volt]					
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	150	-	-	[mVolt]					
Down_Spread_Freq	Link clock down spread frequency	30	-	33	KHz					
Down_Spread_Amplitude	Link clock down spread amplitude	-	-	0.5	%					

Point	Time (UI)	Voltage (V)
1	0.245	
2	0.5	75mV
3	0.755	
4	0.5	-75mV

Figure 5.55.3 Downstream Device EYE Mask at Receiver Connector for HBR

b. DisplayPort AUX_CH signal:

	DisplayPort AUX_CH													
		Min	Тур	Max	unit									
VCM	AUX DC Common Mode Voltage	0	•	2.0	[Volt]									
VDiff _{P-P}	AUX Peak-to-peak voltage at a receiving device	0.27	ı	1.36	[Volt]									

c. DisplayPort VHPD signal:

	Display Port VHPD					
		Min	Тур	Max	unit	
VHPD	HPD Voltage	2.25	1	3.6	[Volt]	

d. Intra-Pair skew

LRX-SKEW-INTRA_PAIR							
		Min	Тур	Max	unit		
LRX-SKEW-INTRA_ PAIR	Lane Intra-pair Skew Tolerance	-	-	60	[ps]		

e. Inter-Pair Skew

	LRX-SKEW-INTER_PAIR						
		Min	Тур	Max	unit		
LRX-SKEW-INTER_ PAIR	Lane-to-Lane Skew at RX package pins	-	-	5200	[ps]		

3.4.5 Input Timing Specification

The input timing are shown as the following table.

Symbol	Desc	ription	Min.	Тур.	Max.	Unit	Remark
Tv		Period	1100	1125	5608	Th	
Tdisp (v)	Vertical	Active	1080	1080	1080	Th	
Tblk (v)	Section	Blanking	20	45	4528	Th	
Fv		Frequency	30	120	144	Hz	Note 3-3
Th		Period	2080	2200	2320	Tclk	
Tdisp (h)	Horizontal	Active	1920	1920	1920	Tclk	
Tblk (h)	Section	Blanking	160	280	400	Tclk	
Fh		Frequency	65.4	135.0	166.6	KHz	Note 3-4
Tclk	Pixel	Period	2.9	3.4	7.4	ns	I/Fclk
Fclk	Clock	Frequency	136.0	297.0	350.0	MHz	Note 3-5
	Link Rate per lane			2.7		Gbps	

Note 3-3: The optimal Vertical Frequency is 119~144 Hz for best picture quality

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

$$Fh (Typ.) = Fclk (Typ.) / Th (Typ.)$$

Fh (Min.)
$$\leq$$
 Fclk / Th \leq Fh (Max.)

Note 3-5: The equation is listed as following. Please don't exceed the above recommended value.

Fclk (Typ.) = Fv (Typ.)
$$\times$$
 Th (Typ.) \times Tv (Typ.);

Fclk (Min.)
$$\leq$$
 Fv x Th x Tv \leq Fclk (Max.)

3.4.6 3D Control

3.4.6.1. 3D control I/O Characteristics

Pin #	Symbol	I/O	Buffer	Description	Remark
pin 34	IMS_POL	0	4mA	Frame Inversion polarity Index IMS=L:I-frame inversion IMS=H:2-frame inversion	Note 3-7
pin 35	IMS	I	IPL*	3D enable control signal	

^{*} IPL: internal pull low

Note 3-7

3.5 Power ON/OFF Sequence

VDD power,eDP signal and backlight on/off sequence are as following. eDP signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value			Remark
	Min.	Тур.	Max.	Unit	
TI	0.5	-	10	[ms]	
T2	0	-	200	[ms]	
Т3	0	-	-	[ms]	Note 3-8
T4	500	-	-	[ms]	
T5	100	-	-	[ms]	
T6	0		50	[ms]	Note 3-9 Note 3-10
Т7	0	-	200	[ms]	Note 3-10 Note 3-11
Т8	1000	-	-	[ms]	

Note 3-8: During T3 period, eDP link training time by customer's system.

M270HAN02.2

Note 3-9: Recommend setting T6 = 0ms to avoid electronic noise when VDD is off.

Note 3-10: During T6 and T7 period, please keep the level of input eDP signals with Hi-Z state.

Note 3-11: Voltage of VDD must decay smoothly after power-off.(customer system decide this value)

4 Backlight Unit

4.1 Block Diagram

The following shows the block diagram of the 27 inch Backlight Unit. And it includes 72 pcs LED in the LED light bar. (4 strings and 18 pcs LED of one string).

4.2 Interface Connection

4.2.1 Connector Type

Backlight Connector	Manufacturer	CviLux
Backing it Connector	Part Number	CII406MIVLD-NH
M	Manufacturer	CviLux
Mating Connector	Part Number	CI1406SL000-NH(Lock)

Backlight Connector dimension:

 $H \times V \times D = 13.9 \times 3.00 \times 4.25$, Pitch = 1.0(unit = mm)

Mating Connector dimension:

4.2.2 Connector Pin Assignment

Pin#	Symbol	Description	Remark
ı	Chl	LED Current Feedback Terminal (Channel I)	
2	Ch2	LED Current Feedback Terminal (Channel 2)	
3	$V_{\scriptscriptstyle{SLED}}$	LED Power Supply Voltage Input Terminal	
4	$V_{ extsf{SLED}}$	LED Power Supply Voltage Input Terminal	
5	Ch3	LED Current Feedback Terminal (Channel 3)	
6	Ch4	LED Current Feedback Terminal (Channel 4)	

4.3 Electrical Characteristics

4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

 $(Ta=25^{\circ}C)$

Symbol	Description	Min	Max	Unit	Remark
			150	[mA]	100% duty ratio
ls	LED String Current	0	300	[mA]	Duty ratio≦ 10% Pulse time=10 ms

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

4.3.2 Recommended Operating Condition

(Ta=25°℃)

Symbol	Description	Min.	Тур.	Max.	Unit	Remark
ls	LED String Current	-	80	88	[mA]	100% duty ratio of LED chip, Note 4-6
Vs	LED String Voltage	50.4	54	57.6	[Volt]	Is=80mA @ 100% duty ratio; Note 4-1, Note 4-5, Note 4-7
ΔVs	Maximum Vs Voltage Deviation of light bar	-	-	3.6	[Volt]	Is=80mA @ 100% duty ratio; Note 4-2
P _{BLU}	LED Light Bar Power Consumption	-	17.3	18.4	[Watt]	Note 4-3
LT _{LED}	LED Life Time	30,000	-	-	[Hour]	Note 4-4
OVP	Over Voltage Protection in system board	110% Vsmax	-	-	[Volt]	Note 4-5

- **Note 4-1:** Vs (Typ.) = V_F (Typ.) X LED No. (one string);
 - a. V_F : LED chip forward voltage, V_F (Min.)=2.8V, V_F (Typ.)=3.0V, V_F (Max.)=3.2V
 - b. The same euqation to calculate $V_s(Min.)$ & $V_s(Max.)$ for respective $V_s(Min.)$ & $V_s(Max.)$;

- **Note 4-2:** ΔVs (Max.) = $\Delta V_F X$ LED No. (one string);
 - a. ΔV_{E} LED chip forward voltage deviation; (0.2 V, each Bin of LED V_{E})
- Note 4-3: P_{BLU} (Typ.) = Vs (Typ.) X Is (Typ.) X 4; (4 is total String No. of LED Light bar) P_{BLU} (Max.) = Vs (Max.) X Is (Typ.) X 4;
- **Note 4-4:** Definition of life time:
 - a. Brightness of LED becomes to 50% of its original value
 - b. Test condition: Is = 80mA and 25°C (Room Temperature)
- **Note 4-5:** Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltage protection) should be 10% higher than max. value of LED string voltage (Vs) at least.

- Note 4-6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.
- **Note 4-7:** Ensure that the LED light bar is not subjected either forward or reverse voltage while monitor set is on standby mode or not in use.

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	Note 5-1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Elective Static Dischause)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 5-2
ESD (Electro Static Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	Note 3-2
Altitude Test	Operation:18,000 ft Non-Operation:40,000 ft	

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.
- Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

ESD discharged points should avoid display area and periphery front bezel of display area.

Suggest points were 4 side parallel edge of display area surface.

Metal front bezel must cover half area of BM (black matrix) and metal front bezel must connect with metal back bezel to protect source IC of panel by ESD damaged.

Note5-3: Result Evaluation Criteria:

TFT-LCD panels test should take place after gradually cooling enough at room temperature In the normal application, there should be no particular problems that may affect the display function.

6 Shipping Label

The label is on the panel as shown below:

- **Note 6-1:** For Pb Free products, AUO will add for identification.
- Note 6-2: For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add 6 for identification.
- **Note 6-4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

7 Mechanical Characteristics

- (I) Avoid touching COF position when doing mechanical design
- (2) The user hole depth of the light bar side is different from the other side

8 Packing Specification

8.1 Packing Flow

8.2 Pallet and shipment information

Itama		Remark		
Item	Q'ty	Dimension	Weight(kg)	
Panel	1	609.1(H) x 355.0(V) x 11.6(D)	3.22	
Cushion	1	-	0.9	
Вох	Ι	702(L)mm x 264(W)mm x 456(H)mm	1.2	without Panel & cushion
Packing Box	8 pcs/Box	702(L)mm x 264(W)mm x 456(H)mm	27.86	with panel & cushion & Box
Pallet	1	1070(L)mm x 740(W)mm x 132(H)mm	14.8	
Pallet after Packing	8 boxes/pallet	1070(L)mm x 740(W)mm x 1086(H)mm	237.68	

- 9 Design Guide for System
- 9.1 The gap between LCM and system rear bracket should be bigger than 0.5mm.
- 9.2 The system bracket should be fixed on back cover firmly.

9.3 The EMI gasket should be uniform and not push panel strongly.

9.4 For stable assembly, the system bracket should use 4 screws to fix system and panel by dual sides.

9.5 The system bracket and panel should be in parallel with having no gap after inserting screws.

Proper and Parallel gap

0 gap and no mechanical damage

9.6 Avoid scratching LCM, the rib on system front-cover should not exceed the bottom edge of LCM's front-bezel.

