Introduction to POS Tagging

Pawan Goyal

CSE, IITKGP

Week 3: Lecture 4

Part-of-Speech (POS) tagging

Part-of-Speech (POS) tagging

Task

Given a text of English, identify the parts of speech of each word

Part-of-Speech (POS) tagging

Task

Given a text of English, identify the parts of speech of each word

Parts of Speech: How many?

Open class words (content words)

- nouns, verbs, adjectives, adverbs
- mostly content-bearing: they refer to objects, actions, and features in the world
- open class, since new words are added all the time

Parts of Speech: How many?

Open class words (content words)

- nouns, verbs, adjectives, adverbs
- mostly content-bearing: they refer to objects, actions, and features in the world
- open class, since new words are added all the time

Closed class words

- pronouns, determiners, prepositions, connectives, ...
- there is a limited number of these
- mostly functional: to tie the concepts of a sentence together

POS examples

■ N	noun	chair, bandwidth, pacing
V	verb	study, debate, munch
ADJ	adj	purple, tall, ridiculous
ADV	adverb	unfortunately, slowly,
■ P	preposition	of, by, to
PRO	pronoun	I, me, mine
DET	determiner	the, a, that, those

To do POS tagging, a standard set needs to be chosen

- To do POS tagging, a standard set needs to be chosen
- Could pick very coarse tagsets
 N, V, Adj, Adv

- To do POS tagging, a standard set needs to be chosen
- Could pick very coarse tagsets N, V, Adj, Adv
- More commonly used set is finer grained, "UPenn TreeBank tagset", 45 tags

- To do POS tagging, a standard set needs to be chosen
- Could pick very coarse tagsets N, V, Adj, Adv
- More commonly used set is finer grained, "UPenn TreeBank tagset", 45 tags

A Nice Tutorial on POS tags

https://sites.google.com/site/partofspeechhelp/

UPenn TreeBank POS tag set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off		-	

Using the UPenn tagset

Example Sentence

The grand jury commented on a number of other topics.

Using the UPenn tagset

Example Sentence

The grand jury commented on a number of other topics.

POS tagged sentence

The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Words often have more than one POS: back

• The back door:

Words often have more than one POS: back

• The back door: back/JJ

On my back:

Words often have more than one POS: back

• The back door: back/JJ

On my back: back/NN

Win the voters back:

Words often have more than one POS: back

• The back door: back/JJ

On my back: back/NN

Win the voters back: back/RB

Promised to back the bill:

Words often have more than one POS: back

• The back door: back/JJ

On my back: back/NN

Win the voters back: back/RB

Promised to back the bill: back/VB

Words often have more than one POS: back

• The back door: back/JJ

On my back: back/NN

Win the voters back: back/RB

Promised to back the bill: back/VB

POS tagging problem

To determine the POS tag for a particular instance of a word

Ambiguous word types in the Brown Corpus

Ambiguity in the Brown corpus

- 40% of word tokens are ambiguous
- 12% of word types are ambiguous

Ambiguous word types in the Brown Corpus

Ambiguity in the Brown corpus

- 40% of word tokens are ambiguous
- 12% of word types are ambiguous
- Breakdown of ambiguous word types:

Unambiguous (1 tag) Ambiguous (2–7 tags)	35,340 4,100	
2 tags	3,760	
3 tags	264	
4 tags	61	
5 tags	12	
6 tags	2	
7 tags	1 ("still")	

One tag is usually more likely than the others.

One tag is usually more likely than the others.
 In the Brown corpus, race is a noun 98% of the time, and a verb 2% of the time

- One tag is usually more likely than the others.
 In the Brown corpus, race is a noun 98% of the time, and a verb 2% of the time
- A tagger for English that simply chooses the most likely tag for each word can achieve good performance

- One tag is usually more likely than the others.
 In the Brown corpus, race is a noun 98% of the time, and a verb 2% of the time
- A tagger for English that simply chooses the most likely tag for each word can achieve good performance
- Any new approach should be compared against the unigram baseline (assigning each token to its most likely tag)

Deciding the correct POS

Can be difficult even for people

- Mrs./NNP Shaefer/NNP never/RB got/VBD around/_ to/TO joining/VBG.
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/_ the/DT corner/NN.
- Chateau/NNP Petrus/NNP costs/VBZ around/ 2500/CD.

Deciding the correct POS

Can be difficult even for people

- Mrs./NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG.
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN.
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 2500/CD.

Relevant knowledge for POS tagging

The word itself

- Some words may only be nouns, e.g. arrow
- Some words are ambiguous, e.g. like, flies
- Probabilities may help, if one tag is more likely than another

Relevant knowledge for POS tagging

The word itself

- Some words may only be nouns, e.g. arrow
- Some words are ambiguous, e.g. like, flies
- Probabilities may help, if one tag is more likely than another

Local context

- Two determiners rarely follow each other
- Two base form verbs rarely follow each other
- Determiner is almost always followed by adjective or noun

POS tagging: Two approaches

Rule-based Approach

- Assign each word in the input a list of potential POS tags
- Then winnow down this list to a single tag using hand-written rules

POS tagging: Two approaches

Rule-based Approach

- Assign each word in the input a list of potential POS tags
- Then winnow down this list to a single tag using hand-written rules

Statistical tagging

- Get a training corpus of tagged text, learn the transformation rules from the most frequent tags (TBL tagger)
- Probabilistic: Find the most likely sequence of tags T for a sequence of words W

TBL Tagger

Label the training set with most frequent tags

The can was rusted.

TBL Tagger

Label the training set with most frequent tags

- The can was rusted.
- The/DT can/MD was/VBD rusted/VBD.

TBL Tagger

Label the training set with most frequent tags

- The can was rusted.
- The/DT can/MD was/VBD rusted/VBD.

Add transformation rules to reduce training mistakes

- MD →NN: DT_
- VBD→VBN: VBD

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Different instances of d and c

Part-of-Speech Tagging:

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Different instances of d and c

- Part-of-Speech Tagging: words are observed and tags are hidden.
- Text Classification:

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Different instances of d and c

- Part-of-Speech Tagging: words are observed and tags are hidden.
- Text Classification: sentences/documents are observed and the category is hidden.

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Different instances of d and c

- Part-of-Speech Tagging: words are observed and tags are hidden.
- Text Classification: sentences/documents are observed and the category is hidden.
 - Categories can be positive/negative for sentiments ..
 - sports/politics/business for documents ...

Problem at hand

We have some data $\{(d,c)\}$ of paired observations d and hidden classes c.

Different instances of d and c

- Part-of-Speech Tagging: words are observed and tags are hidden.
- Text Classification: sentences/documents are observed and the category is hidden.
 - Categories can be positive/negative for sentiments .. sports/politics/business for documents ...

What gives rise to the two families?

Whether they generate the observed data from hidden stuff or the hidden structure given the data?

Generative (Joint) Models

Generate the observed data from hidden stuff, i.e. put a probability over the observations given the class: P(d,c) in terms of P(d|c)

Generative (Joint) Models

Generate the observed data from hidden stuff, i.e. put a probability over the observations given the class: P(d,c) in terms of P(d|c) e.g. Naïve Bayes' classifiers, Hidden Markov Models etc.

Generative (Joint) Models

Generate the observed data from hidden stuff, i.e. put a probability over the observations given the class: P(d,c) in terms of P(d|c) e.g. Naïve Bayes' classifiers, Hidden Markov Models etc.

Discriminative (Conditional) Models

Take the data as given, and put a probability over hidden structure given the data: P(c|d)

Generative (Joint) Models

Generate the observed data from hidden stuff, i.e. put a probability over the observations given the class: P(d,c) in terms of P(d|c) e.g. Naïve Bayes' classifiers, Hidden Markov Models etc.

Discriminative (Conditional) Models

Take the data as given, and put a probability over hidden structure given the data: P(c|d)

e.g. Logistic regression, maximum entropy models, conditional random fields

Generative (Joint) Models

Generate the observed data from hidden stuff, i.e. put a probability over the observations given the class: P(d,c) in terms of P(d|c) e.g. Naïve Bayes' classifiers, Hidden Markov Models etc.

Discriminative (Conditional) Models

Take the data as given, and put a probability over hidden structure given the data: P(c|d)

e.g. Logistic regression, maximum entropy models, conditional random fields

SVMs, perceptron, etc. are discriminative classifiers but not directly probabilistic

Generative vs. Discriminative Models

Logistic Regression

Generative vs. Discriminative Models

Joint vs. conditional likelihood

- A *joint* model gives probabilities P(d,c) and tries to maximize this joint likelihood.
- A *conditional* model gives probabilities P(c|d), taking the data as given and modeling only the conditional probability of the class.