MCSD 6215 MASTER PROJECT 1 PRESENTATION

TEMPORAL ANALYSIS OF CLIMATIC-FOREST FIRE CORRELATION IN PENINSULAR MALAYSIA USING ARIMA AND MACHINE LEARNING

CANDIDATE : GRACE LING KIAN HWAI (MCS231026)

SUPERVISOR: DR. CHAN WENG HOWE

EXAMINERS: ASSOC. PROF. DR. SITI ZAITON BINTI HASHIM

ASSOC. PROF. DR. SHAHIZAN BIN OTHMAN

VENUE: DISCUSSION ROOM 2, LEVEL 4, N28A

DATE : 13 JANUARY 2025

FACULTY OF COMPUTING,
UNIVERSITI TEKNOLOGI MALAYSIA
WWW.utm.my
innovative • entrepreneurial • global

PRESENTATION CONTENTS

TEMPORAL ANALYSIS OF CLIMATIC-FOREST FIRE CORRELATION IN PENINSULAR MALAYSIA USING ARIMA AND MACHINE LEARNING

2 LITERATURE REVIEW

3 RESEARCH METHODOLOGY

INITIAL FINDINGS

www.utm.my
innovative • entrepreneurial • global

INTRODUCTION

PROBLEM BACKGROUND AND STATEMENT

Sabah fire cases spike in extreme hot weather

Published on: Sat. Feb 24. 2024

By Ben Tan Tuesday, 17 Oct 2023 10:36 PM MYT **KUANTAN:** A forest fire at three locations in Pahang since the end of March is finally easing after about two weeks of firefighting, with the Pahang fire and rescue department's operations now focused on Rompin.

JOHOR BARU, Oct 17 — The Johor Fire and Rescue Department has successfully extinguished a fire

Friday, 23 Feb 2024 10:08 PM MYT

KOTA KINABALU, Feb 23 — Extreme hot weather and drought, and deliberate burn open up new areas are among the main causes of the increase in forest, plantation,

Cases of bushfires in Sabah increased by over 600% from January to February 2024

By STEPHANIE LEE

SABAH & SARAWAK
Saturday, 02 Mar 2024
4:23 PM MYT

in

F X S o in

Reports of forest fires up

Published on: Monday, March 04, 2024 By: Sohan Das

Thursday, 04 Apr 2024 8:22 PM MYT

961 forest and bush fires in Sabah

By Olivia Miwil - March 13, 2024 @ 11:44pm

KOTA BARU, April 4 — The Kelantan Fire and Rescue Department recorded 577 fire cases in the first three months of this year, compared to 257 cases during the same period last year.

INTRODUCTION

INTRODUCTION

RESEARCH MAPPING

	Research Gap	Problem Statements	Research Questions	Research Objectives
1	Regional Context Specificity: Most studies focus on global or broader Southeast Asian contexts, with limited attention given to forest fire dynamics specific to Peninsular Malaysia.	Lack of localized research hinder the understanding of recent trends in forest fire incidences causing ineffective forest fire management strategies. (Chew et al., 2022a)	What are the patterns of forest fire incidences in Peninsular Malaysia over the past five years?	To study forest fire patterns and climatic features in existing studies.
2	Temporal Analysis Limitations: Absence of long-term datasets and comprehensive temporal analyses restricts understanding of interannual variability, decadal trends, and seasonal fire dynamics in Peninsular Malaysia.	Local research mostly determine the factors and effects of the forest fire, but limited research on analyzing the temporal patterns of forest fire occurrences which involve historical and future trends, making it difficult to allocate resources and implement preventive measures effectively. (Tang, 2019)	Which months or seasons do forest fires most frequently occur in Peninsular Malaysia, and what are the relationships between these occurrences and the associated climatic factors?	To analyze the temporal characteristics of forest fire occurrences and their relationship with climatic variables.
3	Predictive Modelling Gaps: Few studies integrate advanced statistical and machine learning techniques with climatic variables to develop predictive models tailored to Peninsular Malaysia's unique climatic and geographical conditions.	Rare local research on how climatic factors interact to influence forest fire occurrences, obstruct the development of targeted mitigation strategies. (Chew et al., 2023, 2024)	How can climatic variables be used to predict the likelihood of forest fire occurrences in Peninsular Malaysia?	To develop a model that predicts the forest fires occurrence based on climate factors using machine learning methods.

INTRODUCTION

RESEARCH SCOPE

THEORETICAL FRAMEWORK

Theoretical Framework

Climate Change Theory

Explores the relationship between climate change and its effects on environmental processes, such as in this study, the forest fire patterns.

Examines how climatic variables such as temperature, precipitation, and droughts exacerbate forest fire risks in Peninsular Malaysia.

Fire Ecology

Studies the interactions between fire, ecosystems, and the environment, emphasizing how fire shapes ecological dynamics.

Highlights the interplay between climatic factors and fire behavior, supporting the development of mitigation strategies.

FOREST FIRE PATTERNS IN PENINSULAR MALAYSIA (OBJ 1)

CLIMATIC FEATURES IN PENINSULAR MALAYSIA (OBJ 1)

Previous studies on factors of forest fire in Peninsular Malaysia

Year of Publication	Research Locations	Year of Studies	Forest Fire Factors	Burnt areas (ha) / hotspots	References
			Human Factors (Open Burning, Cigarette, Campers and Hunters, Agriculture), Natural Phenomena (Lightning in Dry Seasons,	Terengganu (1790 ha)	
			Friction from Branches, Heat From Stones, Methane Gas from Anaerobic Process)	Pahang (629 ha)	
2002	Peninsular Malaysia	1991-2001		Kelantan (573 ha)	(Abdullah, Ibrahim, &
2002	T CHILITANIA IVALITY SIA	1991 2001		Selangor (528 ha)	Abdul Rahim, 2002)
				Perak (479 ha)	
				Johor (59 ha) Kedah (42 ha)	
				Negeri Sembilan (33 ha)	
				Perlis (10 ha)	
2004	Pahang	1997	Human Activities, Topographic (Slope, Aspect, Elevation)	1600 ha peat swamp forest in 1997	(Setiawan et al., 2004
2005	Peninsular Malaysia	2002	Dry Conditions During February and March,	Selangor (543 ha)	(M. Mahmud, 2005)
			Human Activities	-	
			Topographic (Slope, Aspect, Elevation),		
2006	Selangor	Jun-99	Climatic Factors (Temperature, Humidity), Fuel.	-	(Patah et al., n.d.)
			Human Activities		
2006	Peninsular Malaysia	2000-2003	Climatic Factors (Low Humidity)	-	(Peng et al., 2006)
2007	Pahang	1998	Human Activities,		(Razali, 2010)
2007	1 anang	1998	Topographic (Elevation, Slope, Aspect)		(Kazan, 2010)
			Fuel,		
2007	Selangor	2000-2005	Topographic (Slope, Aspect),	_	(Pradhan et al., 2007)
			Soil,		
			Human Activities		(Ainuddin & Ampun,
2008	Kelantan & Selangor	1990-1995	Soil Moisture By KDBI	=	(Ainuddin & Ampun, 2008)
2009	Pahang	1995-1999	Climatic Factors (Dry Seasons), Human Activities	-	(A. Mahmud et al., 200
			Climatic Factors (Prolonged Spell Without Rain,		
2009	Peninsular Malaysia	1992-2009	Low Humidity),	> 256600 ha	(Pradhan, 2009)
	·		Human Activities		
			Human Activities, Fuel, Topography,		
2010	Pahang	1998-1999	Climatic Factors (Seasonal Changes, Dry Period	2480.95 ha	(Razali, 2010)
			By El Niño – Lower Water Table)		
2010	Selangor	2001-2002	Climatic Factors (Long Drought caused by El Niño)	-	(Ainuddin & Goh, 2010
2010	Selangor	2000-2004	Human Activities, Climatic Factors (Dry Spells JAN-MAR & JUN-	4143 ha in 1991-2002	(Bin Suliman et al., 201
			AUG)		
			Human Activities,		
2011	Peninsular Malaysia	Malaysia -	Snapped Electric Cables,	_	(Ismail, P. et al., 2011
			Natural Phenomena (Lightning, Spontaneous		(,
			Combustion)		
2014	Selangor		Human Activities, Climatic Factors (Dry Weather caused by	3283 ha potential	(Suliman et al., 2014)
2014	Sciangoi	-	Southwest Monsoon (MAY - SEP) and Wind)	3283 na potentiai	(Summan et al., 2014)
2014	Klang	2000-2007	Climatic Factors (Seasonal, Weather, Southwest	-	(Sahani et al., 2014)
2014	- Tenning	2000 2007	Monsoon JUN-SEP)		(54141111 Ct 111., 2014)
****		****	Climatic Factors (Land Surface Temperature,		
2016	Pahang	2014	Brightness Temperature),	-	(Jamaruppin et al., 201
			Human Activities Climatic Factors (El Niño Conditions, Mean		
2018	Pahang & Selangor	2015 & 2016	Annual Rainfall, Mean Maximum Temperature) Human Activities	-	(Smith et al., 2018)
			Climatic Factors (Prolonged Dry and Hot	Peninsular Malaysia (5347.19 ha) in	
2020	Selangor	2010-2016	Period),	2010-2016,	(Musri et al., 2020)
			Human Activities	Selangor (1000ha)	
			Prolonged Dry Seasons,		
2021	Selangor	JAN-MAR 2020	Agriculture,	-	(Sali et al., 2021)
			Human Activities		
2022	Pahang	2001-2021	Climatic Factors (Hot and Dry Seasons FEB- APR)	2005 (7,564 hotspots), 2014 (9,327 hotspots), 2019 (7,278 hotspots).	(Chew et al., 2022b)
			Climatic Factors (Temperature, Humidity, Wind, Rainfall),	• •	
		JAN – MAR	Soil (Groundwater Level, Soil Temperature, Soil		l
2023	Selangor	2020	Humidity),	307 ha	(Li et al., 2023)
			Others (Atmospheric Pressure, Solar Radiation)		
2023	Pahang	Mar-21	Climatic Factors (High Temperature, Low	307 ha	(Chew et al., 2023)
			Precipitation, Wind)	3U / na	(Cnew et al., 2023)

DATA AND METHODS COMPARISON

Data Sources	Climatic Factors	Temporal Analysis Techniques	Prediction Techniques	Evaluation Method	References
Remote Sensing (ATSR		Techniques FAL Empirical Model			
Algorithm 1:, MODIS - MOD14CHM); NCEP; CFSv2	ENSO, SSTs	Clusters, Getis-Ord Gi Statistic	Empirical Models, Optimal Lead Time	R ² , AIC, RSS, δ, r;	(Shen et al., 2019)
Remote Sensing (MODIS - MCD64A1, MOD11A1; LANDSAT); Climatic	Precipitation, SR, Temperature, RH	Hotspot Analysis Tool, Getis- Ord Gi Statistic, IDW	Geospatial Techniques, Correlation Analysis	Accuracy Assessment, Statistical Analysis	(Kumari & Pandey, 2020)
Remote Sensing (GFED4s, HadISST); ERA-Interim Reanalysis; GPCP	El Niño, Anthropogenic, Precipitation	PEA, AGCM, Empirical Functions	Large Ensemble Simulations (by MIROC5 AGCM), Empirical Relationships	Cumulative Probability Functions, Resampling Techniques, Comparison with Observations	(Shiogama et al., 2020)
Remote Sensing (GFED); ERA-Interim Reanalysis	Precipitation, Windspeed, Temperature, RH	K-Means & FCM Clustering,	Clustering Methods, Correlation Analysis	Silhouette Index	(Hidayati et al., 2020)
Remote Sensing (MODIS - MCD14DL, MCD64A1; VIIRS - VNP14IMGTDL)	Temperature, Rainfall, Drought	ARIMA Model; SARIMA Model	SARIMA Model, Box-Jenkins Methodology	Ljung-Box Test, Residual Analysis, Cross-Validation, Forecast Errors (RMSE, MAE, MASE)	(Kouassi et al., 2020)
Remote Sensing (MODES - MCD14ML; VIIRS - VNP14_IMG; CHIRPS); Peatland Hydrological Unit Map; GPC	Precipitation, El Niño, Drought	Exploratory Method, Statistical Method, Log-Level Regression Models, Ordinary Linear Regression Models	Log-Level Regression Models, Prioritization Exercise	Validation Against Rain Gauge Observations, Comparison with TMPA Data, Cross-Validation, Fire Radiative Power (FRP)	(Santika et al., 2020)
Remote Sensing (Landsat 7 Images); Topographic Background; Forest Cover; Meteorological	Temperature, RH, Wind Speed and Direction; Precipitation	MCA, AHP, GIS Technology	Forest Fire Risk Map, Early Warning System		(Van Hoang et al., 2020)
emote Sensing (OTD/LIS); NASA GISS; HadISST; CMWF ERA5 Reanalysis; MFRR A-2	LHF, SST, CAPE, Wind Shear, SAT, AOD, SHF, SH	MLR, Forward Stepwise Selection, VIF	MLR Model, Quantitative Estimation	Correlation, Trend, Explained Variance, Statistical Significance	(Qie et al., 2021)
Remote Sensing (MODES - MCD64A1; Landsat 7; Sentinel 2); TerraClimate; NASA SRTM Digital Elevation	Precipitation, Temperature, Rainfall Sensonality	NBR, Fourier Filtering, Linear Interpolation and Smoothing, Savitzky-Golay Filter	MLR, Random Forest Models	Kruskal-Wallis Test, Dunn Test with Bonferroni Correction, Spearman Correlation Test, R ² , Permutation Importance	(Hartung et al., 2021)
Remote Sensing (MODES - MCD64A1; FIRMS); IBGE; Imphiomus; USGS; INMET	Evapotranspiration, Rainfall, Temperature, RH, Wind Speed	FR, ROC, AUC	FSI, P-R	ROC, AUC, Correlation Analysis	(De Santana et al., 2021)
Remote Sensing (MODIS - IFA, MCD12Q1 Collection 5.1); TerraClimate; GHM; Forest Structure	Precipitation, Temperature, Soil Moisture, Drought	Linear Mixed-Effect Models, MARS	MARS Model, PDPs	Post-Hoc Analysis, RSS, ROC Curve and AUC	(Singh & Zhu, 2021)
Remote Sensing (FRAP); Climate Teleconnections, SPEI, SAW	ENSO, AMO, PDO, Drought, SAWs	RDA, SEA, Multigroup Comparison Tests, Wavelet Coherence Analysis	RDA, SEA, Multigroup Comparison Tests, and Wavelet Coherence Analysis	ANOVA Permutation Test, Bootstrapped Confidence Intervals, Kruskall-Wallis Test and Dumis Test with Bonferroni Correction, Wavelet Coherence Analysis	(Cardil et al., 2021)
Remote Sensing (MODIS; ERAS); GFED4	TP, PA, DS, ETO, DR	EOF based on SVD, Maximal Correlation based on ACE, Pearson, Spearman, and Chatterjee's Xi Correlations	EOF Based on SVD, ACE Algorithm, Pearson, Spearman, and Chatterjee's Xi Correlations	SCF Value, Average Error Value, Dependency and Correlation Analysis	(Nurdiati, Sopuheluwakan Septiawan, et al., 2022)
Remote Sensing (MODIS; ERA5); GFED;	ENSO, IOD, Precipitation	SVD, EOF, HCM	SVD and EOF, HCM, DTW and Euclidean Distance PRM, Local Likelihood	Variance Explained by SVD, Pearson Correlation, DTW and Euclidean Distance	(Nurdiati, Bukhari, et al., 2022)
Remote Sensing (MODIS - MCD64A1: ERA5)	VPD, TMMX, PET, CWD, TWS	PRM, Local Likelihood Fitting, AIC, R ² , Bivariate	Fitting, CMIP6 Simulations,	AIC, R ² , Empirical Estimates of Fire Risk, Confidence	(Ribeiro et al., 2022)
temote Sensing (CMORPH ;	Dry Spells, Precipitation, ENSO, IOD, MIO	Distributions Copula-Based Joint Distribution, Quadrant Analysis, SVD	Bias-Correction Methods Copula-Based Models, Conditional Survival Probability, Tail Distribution Analysis	AIC, Spearman's Rho, Conditional Survival Distribution	(Nurdiati, Sopaheluwakan, a Septiawan, 2022)
Remote Sensing (MODIS;	Hot, Dry Seasons	GEE, GEE Code Editor	Spatial Analysis, GEE	Comparison with Historical	(Chew et al., 2022b)
FIRMS) Remote Sensing (MODIS)	Temperature, RH, Wind Speed, Precipitation, MNI	(JavaScript) Descriptive Statistics, Logistic Regression, Chi- Squared Analysis, Power Law Distribution	Platform MAXENT Models, Permutation Importance	Data, Interactive Charts AUC, Marginal Response Curves, Jackknife Measures of Variable Importance	(Trang et al., 2022)
Remote Sensing (MODIS); IMD; SRTM	Temperature, Dry Days	ARIMA, ACF, PACF, Cumulative Periodogram, Portmanteau (L-Jung Box) Test	ARIMA Models, Frequency Ratio Method	Model Validation: observing the significance level of residuals, Comparison with Test Data, R ²	(Kale et al., 2022)
Remote Sensing (MODIS; CHIRPS); SRTM	Precipitation, SPI, KBDI	ML Algorithms (RF, SVM, MAXENT, BRT), Ensemble Model, Statistical Downscaling	MLMs (RF, SVM, MAXENT, BRT), PCA	AUC, TSS, Sørensen similarity indices	(Prasetyo et al., 2022)
Remote Sensing (LAPAN; MODIS; ERA5)	Precipitation, Dry Spells, ENSO, IOD	PMA, Bayesian Linear Regression, Cross Validation	PMA, BLM	Cross Validation, R2, RMSE	(Ardiyani et al., 2023)
Remote Sensing (MODIS; Sentinel-2 MSI; FIRMS; SRTM; WorldClim 2.1; Copernicus Climate Change Service; Open Street Map; SEDAC)	Temperature, Precipitation, Wind Speed, Soil Moissure	Emerging Hot Spot, Space Time Cube, NetCDF	MCDM, Weighted Overlay Analysis	Validation with Ground Data, Comparison with Actual Fire Occurrences	(Dhar et al., 2023)
Remote Sensing (VIIRS; SNPP; Sentinel-2 level 1C; RTM; DEM; CHELSA V2.1 ; Sentinel-2; Landsat 8)	Temperature, Precipitation, Wind Speed, VPD, RH	Multi-collinearity Analysis, Cross-Validation, BlockCV Package	MLMs (ANN, RF, GLM, MAXENT, MARS, GBM), Ensemble Model	AUC, ROC, TSS, CBI, Accuracy	(Babu et al., 2023)
Remote Sensing (TerraClimate; MODIS - MCD64A1)	Temperature, Precipitation, Wind Speed	GEE, TerraClimate, Graphical Analysis	MLMs, GEE	Comparison with Historical Data, Graphical Analysis	(Chew et al., 2023)
Remote Sensing (MODES - MOD44B, MCD14DL); WorldClim2	MAP, SI	GAMs, Binomial GAMs, Quasipoisson GAMs, AIC- Based Model Selection	GAMs, GLMs, Marginal Effect Plots	Model Fit Diagnostics, AIC, Comparison with MODIS Data, Choropleth Maps	(Williamson et al., 2024)
Remote Sensing (MODIS - MCD14DL); WorldClim	Temperature, Precipitation	BNB, NB, Simulation Studies, RMSE, MASE, Bias	BNB, NB, MCMC Sampling Algorithm	RMSE, MASE, bias, Prediction Intervals, Comparison with Actual Data	(Orero et al., 2024)
Remote Sensing (MODIS; CHIRPS; SRTM); FIRECCS1; SoilGrids	MAP, Dry Season Precipitation Metrics, MCWD	GLMs, Stratified Random Sampling, Pseudo-R ²	GLMs, Standardization of Predictor Variables, Bilinear Interpolation	Model Fit Diagnostics: Pseudo-R ² , Confidence Intervals, Comparison with Other Regions	(Valencia et al., 2024)
	KBDI, Soil Moisture,			Other Regions	

SWE, VAP, VPD			
	2 major types of forest fire occurrence prediction: SARIMA, MLMs (most). The accuracy: Ensemble MLMs (0.89) when with 2021) MLMs > BNB > BLM. MXD & GLM perform better among others	Use ARIMA (Goussil et al., 2006) and Ensemble MLMs (labutetal., 2020) related evaluation methods.	

Aspect	Most Relevant Previous Studies	Current Research	Research Gap
Data	Use part of climatic data (yearly) obtained from Remote Sensing dataset from Google Earth Engine (GEE) (Chew et al., 2024)	Use full dataset (daily) from previous study (Chew et al., 2024)	Not fully utilised the available dataset.
Time Series Analysis Techniques	ARIMA (Kouassi et al., 2020) without involve climatic features *use open-source software R	ARIMA (Kouassi et al., 2020) Involving climatic features * use Python	Application of climatic features for improved time series analysis accuracy.
Prediction Techniques	MLMs (ANN, GBM, GLM, MARs, MXD, RF), Ensemble MLMs (Babu et al., 2023) * use open-source software R	Ensemble MLMs (MXD & GLM) from best MLM performance from (Babu et al., 2023) * use Python	Application of best MLMs in ensemble MLMs for improved prediction accuracy.
Evaluation Methods	ARIMA (Kouassi et al., 2020): Ljung—Box test, residual analysis, and cross-validation (RMSE, MAE, MASE) * use open-source software R MLMs (Babu et al., 2023): ROC- AUC, TSS, CBI, Accuracy * use open-source software R	ARIMA (Kouassi et al., 2020): residual analysis, and cross- validation (RMSE, MAE,	-

STUDY AREA COMPARISON

Forest Fire Hotspot Regions in Peninsular Malaysia (Chew et al., 2024)

Previous Studies		Current Research	Research Gap
Chew et al., 2024	Kedah, Pahang, Selangor, Perak, Johor, Terengganu, Kelantan, Negeri Sembilan, Perlis, Pulau Pinang and Melaka.	Kedah, Pahang, Selangor, Perak,	Prioritise study area with highest frequency based on hotspot
Other Researchers	Selangor, Pahang, Kelantan, Terengganu, Perak, Johor, Kedah, Negeri Sembilan, Perlis and Klang.		region to ensure a robust analysis of fire patterns and drivers.

RESEARCH FRAMEWORK (MP1 - PHASE 1, 2, 3)

PHASE 2: DATASET & STUDY AREA

Example of Key Features Information (Chew et al., 2024)

Feature Name	Description	Feature Name	Description
system:index	System-generated from MCD64A1	current_aet_annual	Actual Evapotranspiration
longitude	Longitude Coordinate of Fire Points	current_def_annual	Climate Water Deficit
latitude	Latitude Coordinate of Fire Points	current_pdsi_annual	Palmer Drought Severity Index
fire	Fire Occurrence (binary class)	current_pet_annual	Reference Evapotranspiration
date	Date from Administrative Boundaries refer to the Shape	current_pr_annual	Precipitation Accumulation
ADM1_PCODE	Administrative level 1 code	current_ro_annual	Runoff
ADM2_PCODE	Administrative level 2 code	current_soil_annual	Soil Moisture
Shape_Leng	Shape Length (from MCD64A1)	current_srad_annual	Downward Surface Shortwave Radiation
ADM0_EN	Country Name	current_swe_annual	Snow Water Equivalent
ADM1_EN	Administrative level 1 name	current_tmnn_annual	Minimum Temperature
ADM2_EN	Administrative level 2 name	current_tmnx_annual	Maximum Temperature
validOn	Validation Date from Administrative Boundaries refer to the Shape	current_vap_annual	Vapor Pressure
Shape_Area	Shape Area (from MCD64A1)	current_vpd_annual	Vapor Pressure Deficit
ADM0_PCODE	Country code	current_vs_annual	Wind Speed at 10 m
BurnDate	Date in 0-365 (from MCD64A1)	current_EVI_annual	Enhanced Vegetation Index
year	Year of Fire Observation	current_NDVI_annual	Normalized Difference Vegetation Index
month	Month of Fire Observation	current_LST_annual	Land Surface Temperature
day	Day of Fire Observation	current_KBDI_annual	Keetch-Byram Drought Index
current0101_hii_an nual	Human Impact Index	current0101_LC_Type2_a nnual	Land Cover Classification of UMD (Numeric)
current0101_averag e_annual_nighttime	Nighttime Brightness	current0101_LC_Type2_a nnual_classname	Land Cover Classification of UMD (Class Name)

Data Info	Description				
<u>Data</u> <u>Sources</u>	· ·	Forest Fire Inventory datasets generated from the Framework created by Chew et al. (2024), from Google Earth Engine (GEE) leverage multi-source remote sensing.			
Size	82.89 million	11279 rows : forest fire occurrence (daily)			
Size	(2001 to 2023)	7294 columns : climate variables (monthly, annual and seasonal)			
		climate variables (18)			
	Total : 26	land cover variables (2)			
	10tal . 20	topography variables (3)			
Fire		social economic/anthropogenic factors (3)			
Factors (Features)		climate variables (18)			
(i catales)	Utilize : 21	land cover variables (1)			
	Otilize . 21	topography variables (0)			
		social economic/anthropogenic factors (2)			

	State (Licence Plate Prefix)
Study Area Info	Kedah (K), Pahang (C), Selangor (B), Perak (A), Johor (J), Terengganu (T) and Kelantan (D).

PHASE 2 : ANALYSIS TECHNIQUES AND TOOLS : DATA PREPROCESSING FOR EDA

Start Temporal Climatic Feature-Based Analysis for Ensemble ML Models Analysis (ARIMA) (GLM, Maxent) Preprocess Data Preprocess Data Data Preparation Data Preparation Handle missing values Remove multicollinearity Check stationarity Normalize features Ensure stationarity Address imbalanced datasets Modelling ML Models Configure ARIMA model GLM (Generalized Linear Model) Validation Maxent (Maximum Entropy) Ensemble Modeling Forecasting Combine outputs from GLM and Integration of ARIMA and Ensemble Models Temporal-Climatic Integration Visualization No Validation and Performance Assessment Model Evaluation ARIMA Ensemble Models Cross-Validation ARIMA Climatic ML Models Visualization

END

RESEARCH METHODOLOGY

PHASE 2: ANALYSIS TECHNIQUES AND TOOLS: MODELLING WORKFLOW

Aspect	Time Seri	es Analysis	Prediction	
Model Overview	ARIMA combines Autoregressive (AR), Moving Average (MA), and Integration (I) terms for stationarity. - Autoregressive (AR): Captures dependency on past values. - Moving Average (MA): Models dependency on past errors. - Integration (I): Ensures stationarity by differencing. Seasonal ARIMA (SARIMA) incorporates seasonality with additional seasonal AR and MA terms.		Predicts forest fire occurrence probability using MLTs and ensemble ML: - Generalized Linear Model (GLM), - Maximum Entropy (MAXENT) - Ensemble ML (GLM, MAXENT)	
	ARIMA (p, d, q) SARIMA (p, d, q) (P, D, Q)s		GLM	MAXENT
Equation	Y d = α + β1Yι-1 + β2Yι-2 + βpYι-p + θ1 + Φ1θι-1 + Φ2θι-2 + Φqθι-q Predicted Yι= Intercept (I) + Lagged Values (AR : p) + Lagged Errors (MA : q) where: Y1 : Value of the time series at time t β : Coefficients of the AR terms Φ : Coefficients of the MA terms Θt : Error term (white noise) d : Order of differencing applied to Y1 to make the series stationary	$\phi(B)\Phi_p(B^*)(1-B)^d(1-B^*)^Dy_i=\delta+\theta(B)\Theta_Q(B^*)\varepsilon_i$ where: $\phi(B) \text{ and } \theta(B) \text{ : Ordinary autoregressive }$ and moving average component $\Theta_Q(B^*) \text{ and } \Phi_p(B^*) \text{ : Seasonal autoregressive }$ and moving average component $(1-B)^d(1-B^*)^D \text{ : Ordinary and Seasonal }$ difference component of order d and D. $\mathcal{E}_t \text{ : Gaussian white noise}$	$P = \frac{\exp(\sum \alpha Y)}{1 + \exp(\sum \alpha Y)}$ where: $P : \text{Possibility of fire occurrence as 1}$ and non-occurrence as 0 $Y : \text{Effective factors}$ $\alpha : \text{Fractional regression constant}$ - Uses multiple regression models to establish connections between effective and conditional factors of fire occurrence Sensitive to variable significance and uses specific distributions for dependent covariates. (e.g., fire occurrence as binary: 1 for occurrence, 0 for non-occurrence).	$H(\hat{\pi}) = -\sum_{x \in X} \hat{\pi}(x) \ln \hat{\pi}(x)$ where: $\hat{\pi} : \text{The probability distribution}$ $\underline{\ln} : \text{Natural logarithm}$ - Higher entropy indicates less constrained choices Employs L1-regularization (lasso) to simplify models and prevent overfitting.
Testing	Stationarity Test: Tested using Augmente transformations (e.g., Box-Cox) applied to		Multi-Collinearity Analysis: Variables with VIF > 10, TOL < 0.1, or correlation coefficient > 0.7 were excluded.	
Framework	Stage 1: Identification: - Use ACF and PACF plots to determine AR, MA, and differencing orders. Stage 2: Estimation: - Estimate parameters using maximum likelihood and select models using Akaike Information Criterion (AIC). Stage 3: Diagnostic Checking: - Analyze residuals for randomness and evaluate model accuracy. - Used metrics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). - Cross-validation was performed to ensure robustness.		Combine GLM and MAXEN ensemble technique. Response curves generated models.	•
Evaluation			- Cross-Validation: 10-fold CV v 30% for validation. - Metrics: AUC, TSS, CBI, and a	
Data Transformation	- Logarithmic transformation $Y = log(X+1)$ w	as applied to normalize values.		
Tools	Python		nnovative • entrepr	eneurial ● global

RESEARCH FRAMEWORK (MP1 - PHASE 1, 2, 3)

EXPLORATORY DATA ANALYSIS (EDA) python

Preliminary Analysis Finding	Preprocessing Taken	Exploratory Data Analysis
ADM2_REF ADM2ALT2EN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN Missing Value / Null Values	# Condition: if the difference between mean and median >= 1 if abs(mean - median) >= 1:	Missing Values Percentage (%) 200101_aet 0 0.0 200101_def 0 0.0 200101_pdsi 0 0.0 200101_pet 0 0.0 200101_pr 0 0.0
Shape_Leng Shape_Area 11279.000000 2.511669 0.224141 1.159037 0.183749 0.268241 0.095021	# column to remove (but keep ADMI_EN, year, month, day, fire) #useless_cols = ['current0101_LC_Type2_annual_classname', 'ADM2_REF', 'ADM2ALTIEN', 'ADM2ALTIEN'] useless_cols = ['system:index', 'esa_class_values', 'esa_class_name', 'elevation', 'slope', 'aspect', 'hillshade',	[11279 rows x 7303 columns]
200101_set	# need to avoid normalize fire, year, month data # apply Min-Max normalization on used_price (numerical) to scale it between 0 and 1. from sklearn.preprocessing import MinMaxScaler # columns to exclude from normalization exclude_columns = ('fire', 'year', 'nonth', 'day') # Identify numerical columns to normalize, excluding specified columns normalize_columns = (col for col in ff_6f.select_dtypes(include=('float64', 'int64')).columns if col not in exclude_columns) # Min-Max Normalization scaler = MinMaxColumns = scaler.fit_transform(ff_df[normalized_columns]) Min-Max Normalization (scale to [0,1])	200101_est 200101_def 200101_pdsi 200101_pet 200101_pr 0.493994
year month day 11279.0000000 11279.000000 11279.0000000 2016.432485 7.862665 22.580814 7.633719 4.509456 10.453132 2001.000000 1.000000 1.000000 Year, Month, Day Column	# Ensure 'year', 'month', and 'day' cotumns are numeric ff_df['year'] = pd.to_numeric(ff_df['year'], errorss'coerce') ff_df['ionth'] = pd.to_numeric(ff_df['ionth'], errorss'coerce') ff_df['day'] = pd.to_numeric(ff_df['ionth'], errorss'coerce') # Create a 'date' column by concatenating year, month, and day ff_df['date'] = pd.to_datetime(ff_df['year', 'nonth', 'day']), errorss'coerce') Feature Creation by concatenating into a new column: 'date'	year month day date 2001 9 27 2001- 09-27 2001 9 13 2001- 09-13

VISUALIZATIONS: DESCRIPTIVE AND DIAGNOSTIC ANALYSES

Box Plots: Illustrating the distribution and range of climatic variables during fire and non-fire periods.

- min temperature and max temperature show higher median values during fire occurrences: elevated temperatures contribute to fire.
- precipitation exhibits lower median values for fire occurrences : reduced precipitation contribute to fires.
- **soil moisture** and **PDSI** show **wider interquartile ranges** during fire events, indicating more variability which reflect the influence of extreme dryness or water deficit during fire-prone periods.
- **NDVI** have **lower medians** during fire occurrences, possibly signaling reduced vegetation health or cover in fire-prone regions.

VISUALIZATIONS: DESCRIPTIVE AND DIAGNOSTIC ANALYSES

Heatmaps: Showing the correlation between different climatic variables and fire incidents.

- LST (0.79), KBDI (0.63), Wind Speed at 10 m (0.63), Reference Evapotranspiration (0.55), Climate Water Deficit (0.53), show strong correlation, suitable consider as temperature-related predictor.
- **Precipitation Accumulation** (-0.67), prove reduce precipitation increase fire risk.
- Max Temperature (0.49), Vapor Pressure
 Deficit (0.42) show moderate correlation and
 Actual Evapotranspiration (0.39) show weak
 correlation.

VISUALIZATIONS: DESCRIPTIVE AND DIAGNOSTIC ANALYSES

Time Series Plots: Displaying the temporal patterns of forest fire occurrences and climatic variables.

Seasonal aggregation result :
 Fire increased during spring
 (MAM) and summer (JJA)

Monthly and Yearly
 aggregate result :
 Fire incident spike in
 2005 & 2014 with
 elevated LST, KBDI, VPD
 & low precipitation.

INITIAL FINDINGS, EXPECTED OUTCOMES, FUTURE WORK

Aspect	Initial Findings	Expected Outcomes	Future Work
Dataset Overview	Dataset contains 11,279 rows and 7,349 columns with time-series data from 2001 to 2023.	Identification of relevant variables and improved dataset quality through preprocessing.	Optimize dataset structure for efficient analysis during model development.
Climatic Variable Patterns	Higher temperatures, wind speed and reduced precipitation during fire events.	Better understanding of how climatic variability influences fire risk.	Perform deeper analysis using ML (GLM & MAXENT) on the role of climatic variables in predicting fire occurrences.
Data Normalization	Key variables (e.g., precipitation, temperature) exhibit wide ranges, requiring normalization.	Scaled and normalized dataset for consistent and accurate analysis.	Explore advanced scaling methods (Min Max Scaler or Standard Scaler) to improve the effectiveness of MLMs.
Correlations Identified	Strong positive correlation between LST, KBDI, and fire incidents; negative correlation with precipitation (PR).	Quantified relationships between climatic variables and fire occurrences.	Develop correlation-based predictive features (Multi-Collinearity Analysis) to enhance model accuracy.
Seasonal Patterns	Increased fire activity in spring and summer, particularly in years with extreme drought conditions (e.g., 2005, 2014).	Clear identification of seasonal trends and high-risk periods for fire incidents.	Perform seasonal decomposition and anomaly detection through ARIMA to better capture extreme events and seasonal variations.
Visualization Insights	Boxplots and time-series plots highlight correlations and spikes in fire incidents during extreme drought years.	Comprehensive visual representation of patterns and trends in the dataset.	Incorporate interactive visualizations to enhance interpretability.
Predictive Modelling Potential	Strong associations between key climatic variables and fire occurrences suggest feasibility of accurate predictions.	Development of robust predictive models for fire occurrence.	Implement ML models (GLM & MAXENT) to predict fire incidents based on climatic variables.

Thank You

www.utm.my

innovative • entrepreneurial • global

APPENDIX

MP1 GANTT CHART

MP1 GANTT CHART

							20	24/202	25										
Task	Description	B-W1 19/09 - 05/10	W1 06/10 - 12/10	W2 13/10 - 19/10	W3 20/10 - 26/10	W4 27/10 - 02/11	W5 03/11 - 09/11	W6 10/11 - 16/11	W7 17/11 - 23/11	W8 24/11- 30/11	W9 01/12 - 07/12	W10 08/12 - 14/12	W11 15/12 - 21/12	W12 22/12 - 28/12	W13 29/12 - 04/01	W14 05/01- 11/01	W15 12/01- 18/01	W16 19/01- 25/01	W17 26/01- 01/02
1	Project Kick Start																		
1.1	Proposal Preparation																		
1.2	Proposal Submission																		
2	Literature Review & Problem	Formu	lation						•				•		•				
	Review Existing Literature on Forest Fire Patterns and Climatic Influences. Identify research gaps specific to Peninsular Malaysia.																		
	Formulate Research Questions and Objectives.																		
2.5	Develop A Theoretical Framework Guided by Climate Change Theory and Fire Ecology. Methodology																		
	Data Carrage and Data	Ι	Π	Ι	Ι	Π	Ι	Ι	Τ	Ι			Ι	Ι	Γ	Τ		Ι	
3.1	Collection																		
3.2	Specify Study Area and Analysis Technique																		
4	Exploratory Data analysis (El	DA) / In	itial Re	sults															
4.1	Preliminary Data Analysis																		
4.2	Data Preprocessing Descriptive and Diagnostic Analysis																		
5	Documentation and Submis	sion											<u> </u>						
	Report Preparation															Π			
	Turnitin and Turnitin Form																		
5.3	Evaluation Form																		
	Submission																		
5.5	Presentation Slides Preparation																		
	Presentation																		
5.7	Report Admendment																		

APPENDIX

MP2 GANTT CHART PLANNING

MP2
GANTT
CHART
PLANNING

2024/2025																		
Task	Description	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17
6	Model Development and V	alidatio	on															
6.1	Model Development - Time Series Analysis (ARIMA)																	
6.2	Model Development - Forest Fire Occurrence Prediction (Enhance ML - GLM & MAXENT)																	
6.3	Model Validation																	
7	Results Interpretation and R	ecomr	menda	tions														
	Dashboard Development																	
7.2	Policy and Management Recommendations																	
8 Documentation and Submission																		
8.1	Report Preparation																	
	Turnitin																	
	Submission																	
	Presentation Slides Preparation																	<u> </u>
8.5	Presentation																	