Calcolo Numerico TEST del 11 SETTEMBRE 2017

Cognome e nome	Matricola
Informatica	
Postazione	
FIRMA PER CONSEGNARE	
FIRMA PER RITIRARSI	

SI RACCOMANDA AGLI STUDENTI DI commentare adeguatamente SCRIPT E FUNCTION MATLAB.

• Creare una function di nome trapezi_composta.m che implementi l'algoritmo relativo alla formula composta dei trapezi. La function deve avere come parametri in ingresso la funzione integranda f, gli estremi dell'intervallo di integrazione [a, b] ed il numero m di suddivisioni dell'intervallo di integrazione. I parametri in uscita devono essere l'approssimazione dell'integrale ottenuta con il metodo ed il passo h di integrazione. La function avrà quindi la seguente intestazione:

```
function [int,h] = trapezi_composta (f,a,b,m);
%TRAPEZI Formula dei trapezi composta
%
% [int,h] = trapezi_composta (f,a,b,m);
%
% Dati di ingresso:
% f: funzione integranda
% a: estremo sinistro dell'intervallo di integrazione
% b: estremo destro dell'intervallo di integrazione
% m: numero di sottointervalli
% Dati di uscita:
% int: approssimazione dell'integrale definito
% h: passo di integrazione
```

- Si implementi uno script trapezi_adattativa in cui si assegnino come input
 - una funzione f.
 - gli estremi dell'intervallo di integrazione a, b,
 - la tolleranza toll,

e come output

- il vettore I composto da approssimazioni successive dell'integrale richiesto,
- valore di riferimento Q della soluzione esatta tramite la funzione Matlab quad1, con una tolleranza TOL= $10^{(-15)}$.
- il valore binario flag.

Le approssimazioni successive I(n) dell'integrale $\int_a^b f(x)dx$ per n=1,2,..., saranno ottenute utilizzando trapezi_composta, raddoppiando il numero di sottointervalli precedente. Piu' precisamente, I(1) sará ottenuto per m=1, I(2) per m=2 e in generale I(n) per $m=2^{n-1}$.

Si imponga nmax=100 come massimo valore accettabile di n, ovvero l'ultimo valore che il codice puó eventualmente calcolare é I(nmax). Le iterazioni dovranno essere arrestate quando per $n=n^*$ la quantitá $E_n=|I_{n+1}-I_n|<$ toll.

Si ponga flag=1 se il codice ha calcolato l'integrale richiesto con $E_n < toll$ in al più nmax iterazioni, flag=0 altrimenti.

- Si implementi uno script esempio in cui si utilizzi trapezi_adattativa assegnando come input
 - la funzione $f(x) = x^{11/2}$,
 - gli estremi dell'intervallo di integrazione a = 0, b = 1,
 - toll= 10^{-8} quale tolleranza.

e come output

- il vettore I composto da approssimazioni successive dell'integrale richiesto,
- il valore di riferimento Q della soluzione esatta tramite la funzione Matlab quad1, con una tolleranza TOL= $10^{(-15)}$.

Quando i risultati ottenuti sono ritenuti corretti, esempio produca una figura che contenga in scala semi-logaritmica le coppie (n, E_n^*) per $n=1,\ldots,n^*$, essendo $E_n^*=|I_n-Q|/|Q|,\ n=1,\ldots,n^*$ la successione degli <u>errori relativi</u> ottenuta considerando le approssimazioni successive I_n ed il valore di riferimento Q calcolato tramite trapezi_adattativa.

Si salvi la figura ottenuta in myplot.jpg.

Infine, lo script esempio scriva in una tabella tabella.txt le coppie (n, I(n)) per $n = 1, ..., n^*$. I valori di I(n) siano descritti in notazione esponenziale, con 1 cifra prima della virgola e 15 dopo la virgola.