Efficient simulation of the SABR model Applied Stochastic Processes (FIN 514)

Jaehyuk CHOI¹, Lilian HU², and Yue Kuen KWOK²

 $^1{\mbox{Peking}}$ University HSBC Business School (PHBS), Shenzhen, China $^2{\mbox{Financial}}$ Technology Thrust, Hong Kong University of Science and Technology, Guangzhou, China

2023-24 Module 3 (Spring 2024)

Stochastic-alpha-beta-rho (SABR) Model

$$\begin{split} &\frac{dF_t}{F_t^\beta} = \sigma_t \, dW_t \quad \text{and} \quad \frac{d\sigma_t}{\sigma_t} = \xi \, dZ_t \; (\sigma_0 = \alpha) \quad \text{for} \quad dW_t \, dZ_t = \rho \, h \\ &\text{or} \quad \frac{dF_t}{F_t^\beta} = \sigma_t \, (\rho dZ_t + \rho_* dX_t) \quad \text{for} \quad \rho_* = \sqrt{1 - \rho^2}, \; dX_t \, dZ_t = 0 \end{split}$$

- One of the most popular stochastic volatility (SV) models used in financial engineering (Hagan et al., 2002).
- A flexible choice of *backbone* (volatility v.s. spot change): $0 \le \beta \le 1$
- Parsimonious and intuitive parameters: $\sigma_0 = \alpha$, ρ and ξ (and β)
- Asymptotic approximation (HKLW formula) for the equivalent BS volatility $(\xi\sqrt{T}\ll 1)$

The impact of parameters

Base parameters: $\sigma_0 = 0.2, \; \xi = 0.2, \; \rho = 0.1, \; \beta = 1.$

Black-Scholes (BS) Model

- Black and Scholes (1973); Merton (1973).
- Dynamics (geometric BM):

$$\frac{dF_t}{F_t} = \sigma_{\rm BS} \, dW_t$$

Distribution:

$$F_T \sim \mathsf{LN}(F_0, \sigma_{\mathrm{BS}}^2 T).$$

• Option Price (Black, 1976):

$$C_{\rm BS} = F_0 \, N(d_+) - K \, N(d_-) \quad \text{where} \quad d_\pm = \frac{\log(F_0/K)}{\sigma_{\rm BS} \sqrt{T}} \pm \frac{1}{2} \sigma_{\rm BS} \sqrt{T}$$

- Asset class: equity, FX, etc.
- As $\xi \downarrow 0$, SABR \rightarrow BS model.

Bachelier (Normal) Model

- The birth of Brownian motion (Bachelier, 1900)
- Dynamics (arithmetic BM):

$$dF_t = \sigma_{\rm N} \, dW_t$$

Distribution:

$$F_T \sim N(F_0, \sigma_N^2 T)$$
.

• Option Price:

$$C_{ ext{ iny N}} = (F_0 - K) N(d_{ ext{ iny N}}) + \sigma \sqrt{T} \, n(d_{ ext{ iny N}}) \quad ext{where} \quad d_{ ext{ iny N}} = rac{(F_0 - K)}{\sigma_{ ext{ iny N}} \sqrt{T}}$$

- Daily price changes may not be proportional to the price level. Underlying price can be negative.
- Asset class: interest rate, inflation, spread (X Y), WTI futures
- Fast implied volatility inversion (Choi et al., 2009) and review (Choi et al., 2022).
- As $\xi \downarrow 0$, SABR \rightarrow Bachelier model.

Constant-Elasticity-of-Variance (CEV) Model

Dynamics (CEV):

$$\frac{dF_t}{F_t^{\beta}} = \sigma_{\text{CEV}} \, dW_t \quad (\beta_* = 1 - \beta)$$

Distribution:

$$F_T :\sim \mathsf{CEV}(\beta, F_0, \sigma_{\scriptscriptstyle{\mathsf{CEV}}}^2 T).$$

• Option Price (Schroder, 1989):

$$\begin{split} q_t &= F_t^{\beta_*}/\beta_* \quad \text{and} \quad q_K = K^{\beta_*}/\beta_* \\ C_{\text{CEV}} &= F_0 \, \bar{F}_{\chi^2} \left(\frac{q_K^2}{\sigma_{\text{CEV}}^2 T}; \, 2 + \frac{1}{\beta_*}, \frac{q_0^2}{\sigma_{\text{CEV}}^2 T} \right) - K \underbrace{F_{\chi^2} \left(\frac{q_0^2}{\sigma_{\text{CEV}}^2 T}; \, \frac{1}{\beta_*}, \frac{q^2(K)}{\sigma_{\text{CEV}}^2 T} \right)}_{= \text{Prob}(F_T > K) = 1 - F_{\text{CEV}}(K)}, \end{split}$$

where $F_{\chi^2}(x;r,x_0)$ (\bar{F}_{χ^2}) is the CDF (1–CDF) of noncentral χ^2 with degrees of freedom r and noncentrality x_0 .

- F_T is not a χ^2 RV.
- Mass at zero exists:

$$\mathsf{Prob}(F_T = 0) = \bar{F}_{\chi^2} \left(\frac{q_0^2}{\sigma_{\text{CEV}}^2 T}; \, \frac{1}{\beta_*}, \! \frac{0}{0} \right) = \bar{F}_{\Gamma} \left(\frac{q_0^2}{2\sigma_{\text{CEV}}^2 T}; \, \frac{1}{2\beta_*} \right)$$

• As $\xi\downarrow 0$, SABR \to CEV (β) . (Motivation for this study and Choi and Wu (2021a))

SABR Papers

Normal SABR $(\beta = 0)$

- Closed-form Monte-Carlo simulation of the normal SABR:
 Choi, Liu and Seo (2019). Hyperbolic normal stochastic volatility model.
 Journal of Futures Markets, 39:186–204. arXiv:1809.04035
- Choi and Seo (2024). Option pricing under the normal SABR model with quadratic approximation. *Working paper*

CEV SABR ($0 < \beta < 1$)

- Choi and Wu (2021a). The equivalent CEV volatility of the SABR model.
 Journal of Economic Dynamics and Control, 128:104143. arXiv:1911.13123
- Option pricing for the uncorrelated ($\rho=0$) case: Choi and Wu (2021b) A note on the option price and 'Mass at zero in the uncorrelated SABR model and implied volatility asymptotics.' *Quantitative Finance*, 21:1083–1086. arXiv:2011.00557
- Choi, Hu, and Kwok (2024). Efficient simulation of the SABR model.
 Working paper

The equivalent CEV volatility of the SABR model

Choi, J., & Wu, L. (2021). Journal of Economic Dynamics and Control, 128:104143. arXiv:1911.13123.

Equivalent CEV volatility $(0 < \beta < 1)$

- SABR is the CEV model (backbone) with stochastic vol.
- When $\xi \downarrow 0$, SABR \rightarrow CEV (β) model with the fixed vol $\sigma_0 = \alpha$:

$$\sigma_{\rm BS} = \alpha \frac{H(0) \to 1}{K^{\beta_*/2}} \, \frac{1 + \left(\frac{\beta_*^2}{24 \, K^{\beta_*}} \alpha^2 + \frac{\rho \beta}{4 \, K^{\beta_*/2}} \alpha \cdot 0 + \frac{2 - 3 \rho^2}{24} 0^2\right) T}{1 + \frac{\beta_*^2}{24} \log^2 K + \frac{\beta_*^4}{1920} \log^4 K} \quad (F_0 = 1)$$

- The blue terms are for the approximate CEV-to-BS vol conversion, which has nothing to do with the stochastic vol (ξ) .
- Instead, derive an equivalent CEV vol; (i) the conversion error is avoided, (ii) $\sigma_{\text{CEV}} \to \alpha$ as $\xi \downarrow 0$, and (iii) expressions are simpler.

$$\sigma_{\text{CEV}} = \alpha H(z) \, \left(\, 1 + \left[\frac{\rho \beta}{4 \, K^{\beta_*/2}} \alpha \xi + \frac{2-3\rho^2}{24} \xi^2 \right] T \right) \quad \text{for} \quad z = \frac{\xi}{\alpha \beta_*} (K^{\beta_*} - 1) \, . \label{eq:sigma}$$

- The BS vol can be converted from the analytic CEV option price.
- Equivalent CEV vol allows less arbitrage in low strike.

Option pricing under the normal SABR model with quadratic approximation.

Choi & Seo (2024). Working Paper.

Normal SABR model ($\beta = 0$)

- The integral representations for option value has been investigated by many (Henry-Labordère, 2008; Korn and Tang, 2013; Antonov et al., 2015).
- Antonov et al. (2015)'s representation is the simplest: single integral with the elliptic integral of the 2nd kind:

$$C_{ ext{SABR}} = \left[F_0 - K\right]^+ + rac{\sigma_0 \sqrt{T}}{\pi} \int_{u_0}^{\infty} F(u) w(u) du,$$

where

$$\begin{split} u_0 &= \frac{1}{2\xi} \mathrm{acosh}\left(\frac{V-\rho k}{\rho_*^2}\right) \quad \text{where} \quad \xi = \frac{\xi\sqrt{T}}{2}, \ k = z_{\scriptscriptstyle \rm N} + \rho, \ V = \sqrt{k^2 + \rho_*^2}, \\ w(u) &= e^{-\frac{\xi^2}{2}} n(u) \left[R_{+\xi}(u) + R_{-\xi}(u)\right] \quad \text{with} \quad R_\Delta(u) := \frac{N(-u-\Delta)}{n(u+\Delta)} \\ F(u) &= \sqrt{\alpha_+(u)} \ \mathrm{EllipticE}\left(\frac{\alpha_+(u) - \alpha_-(u)}{\alpha_+(u)}\right) \quad (F(u_0) = 0), \\ \alpha_\pm(u) &= \rho k + \rho_*^2 \cosh(2\xi u) \pm \rho_* \sqrt{\sinh^2(2\xi u) - (k-\rho\cosh(2\xi u))^2}. \end{split}$$

Approximation for option value

Analytic integrals are available for

$$\int_{u_0}^{\infty} (u-u_0)^n \, \underline{w(u)} du \quad \text{for} \quad n=0,1, \text{ and } 2.$$

• Approximate F(u) as a quadratic function near $u = u_0$:

$$\begin{split} F(u) &\approx \frac{\pi}{2} \sqrt{V} \left[1 + A \, \xi (u - u_0) + B \, \xi^2 (u - u_0)^2 \right], \\ A &= \frac{3}{4} \left| \rho - \frac{k}{V} \right| \quad \text{and} \quad B = \frac{3}{4} \left(1 - \frac{\rho k}{V} \right) - \frac{15}{64} \left| \rho - \frac{k}{V} \right|^2 \end{split}$$

Approximate option value under the normal SABR

$$C \approx \left[F_0 - K\right]^+ + \frac{\sigma_0 \sqrt{V} \, n(u_0)}{\xi \, e^{\frac{\xi^2}{2}}} \begin{bmatrix} \left[R_{-\xi}(u_0) - R_{+\xi}(u_0)\right] \\ + A \left[R_{+\xi}(u_0) + R_{-\xi}(u_0) - 2R_0(u_0)\right] \\ + 2B \left[R_{-\xi}(u_0) - R_{+\xi}(u_0) - 2\xi(1 - u_0 R_0(u_0))\right] \end{bmatrix}$$

Stochastic Integral

The volatility process is a geometric BM:

$$\frac{d\sigma_t}{\sigma_t} = \xi \, dZ_t, \quad \sigma_T = \sigma_0 \exp\left(\xi Z_T - \frac{\xi^2 T}{2}\right) \quad \Rightarrow \quad \int_0^T \sigma_t dZ_t = \frac{1}{\xi} (\sigma_T - \sigma_0).$$

The price process is integrated to

$$\begin{split} \int_0^T \frac{dF_t}{F_t^\beta} &= \int_0^T \sigma_t \left(\rho dZ_t + \rho_* dX_t \right) = \frac{\rho}{\xi} (\sigma_T - \sigma_0) + \rho_* \int_0^T \sigma_t dX_t \\ &\sim \underbrace{\frac{\rho}{\xi} (\sigma_T - \sigma_0)}_{\text{skew}} + \underbrace{\rho_* X_{V_{0,T}}}_{\text{smile}} \sim \underbrace{\frac{\rho}{\xi} (\sigma_T - \sigma_0)}_{\text{adjustment to } F_0} + \underbrace{\rho_* \sigma_0 \sqrt{TI_{0,T}}}_{\text{volatility}} X, \quad (X \sim N(0, 1)) \end{split}$$

where $V_{0,T}$ $\left(I_{0,T}\right)$ is the (normalized) conditional integrated variance or stochastic time clock:

$$V_{0,T}(\sigma_0,\sigma_T) = \left. \int_0^T \sigma_t^2 dt \, \right| \, \sigma_0,\sigma_T \quad \text{and} \quad I_{0,T}(\sigma_0,\sigma_T) = \frac{V_{0,T}}{\sigma_0^2 T} \, \left(\lim_{\xi \downarrow 0} I_{0,T} \to 1 \right).$$

The joint sampling of $(\sigma_T, I_{0,T})$ is critical for understanding the SABR model.

Simulation Steps

• 1. Simulate σ_{t+h} from σ_t (trivial):

$$\sigma_{t+h} = \sigma_t \exp\left(\xi \sqrt{h} Z - \frac{\xi^2 h}{2}\right), \quad Z \sim N(0, 1).$$

- 2. Simulate $I_{t,t+h}$ given σ_t and σ_{t+h} .
- 3. Simulate F_{t+h} given F_t , σ_{t+h} , and $I_{t,t+h}$.
 - A. For $0 < \beta < 1$, how to approximate F_{t+h} ? A CEV distribution?
 - B. How to sample F_{t+h} from the approximated distribution?
- We propose better methods for (2), (3A), and (3B).
- Our new methods independent.
- Applying all methods yield best results. However, they can be applied selectively to the existing methods.

(2) Simulation of $I_{t,t+h}$: existing studies

 Chen et al. (2012) used the lognormal sampling, but based on the short-time expansion:

$$\mu_1 = E(I_{t,t+h}) \approx 1 + \xi \sqrt{h} \, \mathbf{Z} + \cdots$$
 and $\mu_2 = E(I_{t,t+h}^2) \approx \mu_1^2 + \frac{\xi^2 h}{3}$,

where Z is the normal variate used in σ_{t+h} .

• Cai et al. (2017) used the Laplace transform of $1/I_{t,t+h}$ (Matsumoto and Yor, 2005):

$$E\left(e^{-s/I_{t,t+h}}\right) = \exp\left(-\frac{\phi_x^2(\xi^2 h s) - x^2}{2\xi^2 h}\right)$$
 for $x = \log(\sigma_{t+h}/\sigma_t)$ and $\phi_x(\lambda) = \operatorname{acosh}(se^{-x} + \cosh(x))$.

Then, they sample $1/I_{t,t+h}$ from the numerical inversion.

ullet Leitao et al. (2017a) use Fourier transform of $1/I_{t,t+h}$.

(2) Simulation of $I_{t,t+h}$: (shifted) lognormal approximation

Trapezoidal rule:

$$\mathsf{TZ}:I_{t,t+h}pprox rac{1}{2}\left(1+rac{\sigma_{t+h}^2}{\sigma_t^2}
ight)$$
 (deterministic)

ullet We sample $I_{t,t+h}$ from the lognormal approximation with moments μ_1 and μ_2 :

$$\mathsf{LN}: I_{t,t+h} \approx \mu_1 \exp\left(\lambda Z - \lambda^2/2\right), \quad \lambda = \sqrt{\ln\left(\mu_2/\mu_1^2\right)}, \ Z \sim N(0,1).$$

Conditional moments of $I_{t,t+h}$ are available from Kennedy et al. (2012):

$$\begin{split} \mu_1 &= E(I_{t,t+h}) = \frac{N(d_{+1}) - N(d_{-1})}{2\xi\sqrt{h} \; n(d_{+1})}, \quad \left(d_k = \frac{\ln(\sigma_{t+h}/\sigma_t)}{\xi\sqrt{h}} + k\,\xi\sqrt{h}\right) \\ \mu_2 &= E(I_{t,t+h}^2) = \frac{1}{(\xi\sqrt{h})^{1.5}} \left[\frac{N(d_{+2}) - N(d_{-2})}{4\; n(d_{+2})} - \frac{\sigma_t^2 + \sigma_{t+h}^2}{2\sigma_0^2} \frac{N(d_{+1}) - N(d_{-1})}{2\; n(d_{+1})}\right]. \end{split}$$

• We also sample from the shifted lognormal distribution matched to μ_1 , μ_2 , and μ_3 :

S-LN:
$$I_{t,t+h} \approx (1-\eta)\mu_1 + \eta\mu_1 \exp(\lambda Z - \lambda^2/2)$$
.

(3AB) Conditional Simulation for $\beta = 0$ or 1

• SABR ($\beta = 0$) is simulated with conditional normal distribution:

$$F_T = F_0 + \frac{\rho}{\xi} (\sigma_T - \sigma_0) + \rho_* \sigma_0 \sqrt{T I_{0,T}} X.$$

Conditional on σ_T and $I_{0,T}$,

$$F_T \sim N(\bar{F}_T, \rho_*^2 \sigma_0^2 T I_{0,T}) \quad \text{where} \quad \bar{F}_T = F_0 + \frac{\rho}{\xi} \big(\sigma_T - \sigma_0\big).$$

But, closed-form simulation method is available in Choi et al. (2019).

• SABR ($\beta = 1$) is simulated with conditional BS distribution:

$$\log\left(\frac{F_T}{F_0}\right) \sim \frac{\rho}{\xi} \left(\sigma_T - \sigma_0\right) - \frac{\sigma_0^2 T I_{0,T}}{2} + \rho_* \sigma_0 \sqrt{T I_{0,T}} X.$$

Conditional on σ_T and $I_{0,T}$,

$$F_T \sim \mathsf{LN}(\bar{F}_T, \rho_*^2 \sigma_0^2 T I_{0,T}) \text{ where } \boxed{\bar{F}_T = F_0 \exp\left(\frac{\rho}{\xi}(\sigma_T - \sigma_0) - \frac{\rho^2 \sigma_0^2 T I_{0,T}}{2}\right)}$$

• Note $F_0 = E(\bar{F}_T)$ for any initial $\sigma_0 > 0$.

Closed-form Simulation for $\beta = 0$

Choi, Liu and Seo (2019). Hyperbolic normal stochastic volatility model. *Journal of Futures Markets*, 39:186–204. arXiv:1809.04035

$$\sigma_T = \sigma_0 \exp(\xi Z_T'), \quad Z_T' = Z_T + \mu T$$

$$F_T \sim F_0 + \frac{\sigma_0 \rho}{\xi} \left(e^{\xi Z_T'} - e^{\lambda \xi^2 T/2} \right) + \frac{\sigma_0 \rho_*}{\xi} \cos \theta \, \phi \bigg(\xi Z_T', \xi \sqrt{R_T^2 + (Z_T')^2} \bigg),$$

- $\phi(Z, D) = e^{Z/2} \sqrt{2 \cosh D 2 \cosh Z}$ $(Z \le D)$
- R_T is the 2-d squared Bessel process (i.e., $R_T = X_T^2 + Y_T^2$ for two independent BMs, X_T and Y_T)
- $\theta \in [0, \pi]$ is a uniformly distributed random angle.
- 1.5 normal variates for sampling one pair of σ_T and F_T .

(3AB) Conditional Simulation for $\rho = 0$ and $0 < \beta < 1$

 \bullet F_t follows the CEV process with stochastic time:

$$\frac{dF_{\tau}}{F_{\tau}^{\beta}} = dW_{\tau} \quad \text{where} \quad \tau = \int_{0}^{t} \sigma_{s}^{2} ds = V_{0,t}.$$

Conditional on σ_T and $I_{0,T}$,

$$F_T \sim \text{CEV}(\beta, F_0, \rho_*^2 \sigma_0^2 T I_{0,T}). \quad (\rho_* = 1)$$

- Approximate option price is available in Choi and Wu (2021b).
- ullet How to sample F_T from the CEV distribution?
- However, no exact distribution for F_T if $\rho \neq 0$.

Euler/Milstein scheme

$$F_{t+h} \approx F_t + \sigma_t F_T^{\beta} \sqrt{h} W + \frac{\beta \sigma_t^2 F_t^{2\beta - 1}}{2} h(W^2 - 1),$$

where W is normal variate with $E(WZ) = \rho$.

Option pricing for the uncorrelated $(\rho = 0)$ case

Choi and Wu (2021b) A note on the option price and 'Mass at zero in the uncorrelated SABR model and implied volatility asymptotics.' *Quantitative Finance*, 21:1083–1086. arXiv:2011.00557

$$\begin{split} C_{\text{SABR}}(K) &= E\left(C_{\text{CEV}}(K,\beta,F_0,\sigma_0^2TI_{0,T})\right) = \int_0^\infty C_{\text{CEV}}(K,\beta,F_0,\sigma_0^2Ty)f(y)dy \\ &= \sum_{k=1}^N C_{\text{CEV}}(K,\beta,F_0,\sigma_0^2Ty_k)w_k \end{split}$$

ullet Approximate $I_{0,T}$ with moment-matched $(\mu_1$ and $\mu_2)$ lognormal distribution.

$$y_k = \mu_1 \exp(\lambda z_k - \lambda^2/2), \quad \lambda = \sqrt{\ln(\mu_2/\mu_1^2)},$$

ullet (z_k,w_k) is the point and weights of the Gauss-Hermite quadrature.

Figure: The Black-Scholes volatility smile as a function of log strike price for two parameter sets: $(x_0,y_0,\xi,\beta,T)=(0.5,0.5,0.4,0.5,2)$ (left) and $(x_0,y_0,\xi,\beta,T)=(0.05,0.4,0.6,0.3,1)$ (right). The mass at zero, estimated by the method of this study, are $m_{\scriptscriptstyle \rm SABR}=0.1657$ and 0.7624, respectively.

(3A) Approximation for CEV SABR: Islah (2009)

- All SABR MC literature (Chen et al., 2012; Leitao et al., 2017a,b; Cai et al., 2017) use Islah (2009)'s approximation.
- For $q_t = F_t^{\beta_*}/\beta_*$,

$$\begin{split} q_{t+h} &= q_t + \frac{\rho}{\xi} \Big(\sigma_{t+h} - \sigma_t \Big) + \int_t^{t+h} \rho_* \sigma_s \, dq_s - \frac{\beta}{2\rho_*^2 \beta_*} \int_t^{t+h} \frac{(\rho_* \sigma_s)^2}{q_s} dt \\ & \frac{\beta'}{\beta_*'} = \frac{\beta}{\rho_*^2 \beta_*} \quad \Rightarrow \quad \beta' = \frac{\beta}{\beta + \beta_* \rho_*^2} \\ & \text{Prob}(F_T \leq K) \approx \bar{F}_{\chi^2} \left(\frac{\left| q_0 + \frac{\rho}{\xi} (\sigma_T - \sigma_0) \right|^2}{\sigma_0^2 T I_{0,T}}; \, 1 + \frac{\beta}{\beta_* \rho_*^2}, \frac{q_K^2}{\sigma_0^2 T I_{0,T}} \right). \end{split}$$

- As $\xi \downarrow 0$, distribution does not converge to CEV (β). $\beta' \neq \beta$.
- Only exact when $\rho = 0$.

• -

$$\bar{F}_T = \left(\beta'_* \left| q_0 + \frac{\rho}{\xi} (\sigma_T - \sigma_0) \right| \right)^{1/\beta'_*}. \quad E(\bar{F}_T) \neq F_0$$

(3B) Simulation of χ^2 RV: Existing studies

It is not simple to sample F_T from Islah (2009)'s noncentral χ^2 approximation.

• Cai et al. (2017): For a uniform U, solve x with numerical root-finding:

$$\mathsf{Prob}(F_T \leq x) = U.$$

• Chen et al. (2012); Leitao et al. (2017a,b): moment-matched quadratic Gaussian Andersen (2008):

$$q_T^2 \sim d(e+Z)^2$$
 for $Z \sim N(0,1)$.

 Grzelak et al. (2019) used stochastic collocation: efficient interpolation using orthogonal polynomial.

(3A) Approximation for CEV SABR: New method

• Conditional on F_t , σ_t , and $I_{t,t+h}$, assume F_{t+h} follows a CEV distribution with β :

$$F_{t+h} \sim \text{CEV}(\beta, \quad \underbrace{\bar{F}_{t+h}}_{???} \quad , \quad \underbrace{\rho_*^2 \sigma_t^2 h I_{t,t+h}}_{\text{Same as other cases}}).$$

• Approximate dynamics with GBM with $\sigma_t := \sigma_t/F_0^{\beta_*}$:

$$\frac{dF_t}{F_t} = \frac{\sigma_t}{F_t^{\beta_*}} dW_t \approx \frac{\sigma_t}{F_0^{\beta_*}} dW_t.$$

• Borrow \bar{F}_T from the $\beta=1$ case:

$$\bar{F}_{t+h} \approx F_t \exp\left(\frac{\rho}{\xi} \frac{(\sigma_{t+h} - \sigma_t)}{F_t^{\beta_*}} - \frac{\rho^2 \sigma_t^2 h \, I_{t,t+h}}{2 \, F_t^{2\beta_*}}\right)$$

- Exact when $\rho=0$: $\bar{F}_T=F_t$.
- Preserves martingale: $E(F_T) = E(\bar{F}_T) = F_0$.

(3B) Simulation of the CEV process: Kang (2014)

- Kang (2014). Simulation of the shifted Poisson distribution with an application to the CEV model. Management Science and Financial Engineering 20:27–32. 10.7737/MSFE.2014.20.1.027
- Poisson variate, $N \sim \mathsf{Pois}(\lambda)$:

$$1 = e^{\lambda} e^{-\lambda} = \sum_{k=0}^{\infty} \boxed{P_k := \frac{\lambda^k}{k!} e^{-\lambda}}.$$

• Let $F_{\Gamma}(x;\nu)$ be the CDF of standard gamma distribution (lower incomplete gamma fn):

$$F_{\Gamma}(x;\nu) = \frac{1}{\Gamma(\nu)} \int_0^x t^{\nu-1} e^{-t} dt = \sum_{k=0}^\infty \frac{x^{k+\nu} e^{-x}}{\Gamma(k+\nu+1)}$$

• Shifted Poisson variate, $N \sim \mathsf{dPois}(\lambda, \nu)$:

$$1 = \frac{F_{\Gamma}(\lambda; \nu)}{F_{\Gamma}(\lambda; \nu)} = \frac{1}{\Gamma(\nu)} \int_0^x t^{\nu - 1} e^{-t} dt = \sum_{k = 0}^{\infty} \left[P_k^{\nu} := \frac{1}{F_{\Gamma}(\lambda; \nu)} \frac{\lambda^{k + \nu} e^{-\lambda}}{\Gamma(k + \nu + 1)} \right],$$

- $dPois(\lambda, \nu = 0) = Pois(\lambda)$.
- Kang (2014) samples as Gamma-mixed Poisson variate:

$$\mathsf{dPois}(\lambda,\nu) \sim \mathsf{Pois}\left(\lambda - X\right) \quad \mathsf{conditional on} \quad X \sim \Gamma(\nu) \geq \lambda.$$

Let

$$z_t = \frac{q_t^2}{\sigma_{\text{CEV}}^2 T} = \frac{F_t^{2\beta_*}}{\beta_*^2 \sigma_{\text{CEV}}^2 T} \quad \text{and} \quad \nu = \frac{1}{2\beta_*}$$

• Kang (2014) also shows the transition probability from z_0 to z_T follows the shifted-Poisson-mixed Gamma distribution.

$$f(z_T \mid z_0) = \frac{1}{2} \left(\frac{\sqrt{z_0}}{\sqrt{z_T}} \right)^{\nu} I_{\nu}(\sqrt{z_0} z) e^{-\frac{z+z_0}{2}} = \frac{z_0^{\nu}}{2^{\nu}} \sum_{k=0}^{\infty} \frac{(z_0/2)^k e^{-\frac{z_0}{2}}}{\Gamma(k+\nu+1)} \frac{(z_T/2)^k}{2 k!} e^{-\frac{z_T}{2}}$$
$$= \sum_{k=0}^{\infty} \frac{(z_0/2)^{k+\nu} e^{-\frac{z_0}{2}}}{\Gamma(k+\nu+1)} f_{\Gamma}(z_T; k+1, 1/2) = \sum_{k=0}^{\infty} P_k^{\nu} f_{\Gamma}(z_T; k+1, 1/2).$$

Simulation algorithm for $F_T \sim \text{CEV}(\beta, F_0, \sigma_{\text{CEV}}^2 T)$ from Kang (2014):

- **1** Sample $X \sim 2\Gamma\left(\frac{1}{2\beta_*}\right)$.
- ② If $X \ge z_0 = \frac{F_0^{2\beta_*}}{\beta_*^2 \sigma_{\text{CEV}}^2 T}$, $F_T = 0$ and terminate.
- **3** Else, sample $z_T \sim 2\Gamma\left(\operatorname{Pois}\left(\frac{z_0 X}{2}\right) + 1\right)$.
- Obtain F_T from $z_T = \frac{F_T^{2\beta*}}{\beta_*^2 \sigma_{\text{CEV}}^2 T}$.

Let

$$z_t = \frac{q_t^2}{\sigma_{\text{CEV}}^2 T} = \frac{F_t^{2\beta_*}}{\beta_*^2 \sigma_{\text{CEV}}^2 T} \quad \text{and} \quad \nu = \frac{1}{2\beta_*}$$

• Kang (2014) also shows the transition probability from z_0 to z_T follows the shifted-Poisson-mixed Gamma distribution.

$$f(z_T \mid z_0) = \frac{1}{2} \left(\frac{\sqrt{z_0}}{\sqrt{z_T}} \right)^{\nu} I_{\nu}(\sqrt{z_0 z}) e^{-\frac{z+z_0}{2}} = \frac{z_0^{\nu}}{2^{\nu}} \sum_{k=0}^{\infty} \frac{(z_0/2)^k e^{-\frac{z_0}{2}}}{\Gamma(k+\nu+1)} \frac{(z_T/2)^k}{2 k!} e^{-\frac{z_T}{2}}$$
$$= \sum_{k=0}^{\infty} \frac{(z_0/2)^{k+\nu} e^{-\frac{z_0}{2}}}{\Gamma(k+\nu+1)} f_{\Gamma}(z_T; k+1, 1/2) = \sum_{k=0}^{\infty} P_k^{\nu} f_{\Gamma}(z_T; k+1, 1/2).$$

Simulation algorithm for $F_{t+h} \sim \text{CEV}(\beta, F_t, \rho_*^2 \sigma_t^2 h I_{t,t+h})$ from Kang (2014):

- **1** Sample $X \sim 2\Gamma\left(\frac{1}{2\beta_*}\right)$.
- ② If $X \ge z_t = \frac{F_t^{2\beta_*}}{\rho_*^2 \sigma_*^2 h I_{t,t+h}}$, $F_{t+dt} = 0$ and terminate.
- **3** Else, sample $z_{t+dt} \sim 2\Gamma\left(\operatorname{Pois}\left(\frac{z_t X}{2}\right) + 1\right)$.

Three simulation step

• Simulate σ_{t+h} from σ_t (trivial):

$$\sigma_{t+h} = \sigma_t \exp\left(\xi \sqrt{h} Z - \xi^2 h/2\right), \quad Z \sim N(0, 1).$$

- (1) Simulate $I_{t,t+h}$ given σ_t and σ_{t+h} .
 - Trapezoidal:
 - Lognormal:
 - Shifted lognormal:
- Simulate F_{t+h} given F_t , σ_{t+h} , and $I_{0,T}$.
 - For $0 < \beta < 1$, approximate F_{t+h} with a martingale-preserving CEV distribution.
 - Sample F_{t+h} based on Kang (2014)'s algorithm.

Numerical Results: Case 4. Accuracy of $I_{t,t+h}$

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case IV	0.05	0.4	0.6	0	0.3	1	[0.02,0.1]

- With $\rho = 0$, CEV approximation is accurate.
- ullet This case validates our LN approximation of $I_{t,t+h}$.
- ullet With one jump (h=1), our method is more accurate than existing methods.

K/F_0	h	40%	80%	100%	120%	160%	200%			
	•		Exact I	Price						
FDM		0.0456	0.0414	0.0394	0.0375	0.0339	0.0306			
Price Error ($\times 10^{-3}$)										
	1/400	1.60	1.50	1.50	1.40	1.30	1.20	49.40		
Euler	1/800	0.70	0.60	0.50	0.50	0.40	0.30	99.10		
	1/1600	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	194.00		
Low-bias	1/4	0.50	0.50	0.50	0.40	0.40	0.40	78.40		
(Chen et al., 2012)	1/8	0.40	0.40	0.40	0.30	0.30	0.20	176.00		
Exact	1	0.10	0.20	0.20	0.20	0.20	0.20	98.30		
(Cai et al., 2017)										
LN	1	-0.01	-0.01	0.00	-0.02	-0.03	-0.04	0.03		

Note: "Euler", "Low-bias", and "Exact" results are from other papers.

Numerical Results: Case 6. Martingale preservation

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case VI	1.1	0.3	0.5	-0.8	0.4	[1,10]	1.1

- We measure $E(F_T)$ and $E((F_T K)^+)$ as functions of T.
- Our CEV approximation for F_{t+h} preserves martingale $(E(F_T) = F_0)$.
- Naturally, option price is more accurate.

Numerical Results: Case 5. RMS v.s. CPU time

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case V	1.1	0.4	0.8	-0.3	0.3	4	1.1

- We plot RMSE vs CPU time.
- For the same level of error, our new method is at least 100 times faster than existing methods.

Numerical Results: Case 1

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case I	1	0.25	0.3	-0.8	0.3	10	[0.2,2]

 Our methods (LN, S-LN, TZ) accurately price challenging cases ($\xi=0.3$ and T=10.)

K	0.20	0.40	0.80	1.00	1.20	1.60	2.00				
FDM	0.843	0.689	0.406	0.285	0.183	0.053	0.011				
Error ($\times 10^{-3}$) for $h = 1$											
LN	-1.17	-1.45	-0.35	0.49	1.23	1.60	1.22				
S-LN	-1.22	-1.49	-0.37	0.49	1.28	1.72	1.32				
TZ	-3.13	-3.41	-2.15	-1.11	-0.12	0.79	0.65				
Stdev	1.91	1.73	1.33	1.13	0.94	0.52	0.28				
	Error (×10 ⁻³) for $h = 1/2$										
LN	-0.17	-0.09	0.55	0.91	1.22	1.15	0.80				
S-LN	-0.01	0.10	0.78	1.16	1.43	1.36	0.98				
TZ	-1.26	-1.10	-0.25	0.26	0.66	0.75	0.54				
Stdev	1.83	1.65	1.26	1.06	0.85	0.50	0.27				
		Error	$(\times 10^{-3})$) for $h =$	1/4						
LN	-0.35	-0.15	0.32	0.53	0.66	0.59	0.51				
S-LN	-0.46	-0.24	0.22	0.42	0.56	0.56	0.48				
TZ	-0.60	-0.36	0.12	0.31	0.41	0.41	0.33				
Stdev	2.34	2.12	1.63	1.36	1.10	0.61	0.31				

Numerical Results: Case 2

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case II	1	0.25	0.3	-0.5	0.6	10	[0.2,2]

 Our methods (LN, S-LN, TZ) accurately price challenging cases ($\xi=0.3$ and T=10.)

K	0.20	0.40	0.80	1.00	1.20	1.60	2.00				
FDM	0.829	0.670	0.398	0.291	0.207	0.100	0.050				
Error ($\times 10^{-3}$) for $h = 1$											
LN	-0.04	-0.22	-0.30	-0.29	-0.30	-0.33	-0.25				
S-LN	-0.14	-0.30	-0.42	-0.43	-0.43	-0.40	-0.30				
TZ	-0.24	-0.38	-0.43	-0.37	-0.32	-0.30	-0.27				
Stdev	2.11	1.98	1.73	1.61	1.44	1.11	0.91				
	Error ($\times 10^{-3}$) for $h = 1/2$										
LN	-0.34	-0.43	-0.45	-0.43	-0.39	-0.31	-0.21				
S-LN	0.04	-0.05	-0.09	-0.09	-0.10	-0.11	-0.04				
TZ	-0.57	-0.64	-0.59	-0.53	-0.48	-0.40	-0.27				
Stdev	2.36	2.21	1.83	1.62	1.42	1.06	0.82				
		Error	$(\times 10^{-3})$) for $h =$	1/4						
LN	0.37	0.27	0.15	0.12	0.07	-0.02	-0.02				
S-LN	0.45	0.37	0.27	0.20	0.10	-0.02	0.00				
TZ	0.08	-0.01	-0.05	-0.04	-0.05	-0.12	-0.11				
Stdev	2.44	2.31	1.98	1.76	1.53	1.12	0.86				

Numerical Results: Case 3

Cases	F_0	σ_0	ξ	ρ	β	T	K
Case III	1	0.25	0.3	-0.2	0.9	10	[0.2,2]

 Our methods (LN, S-LN, TZ) accurately price challenging cases ($\xi=0.3$ and T=10.)

K	0.20	0.40	0.80	1.00	1.20	1.60	2.00			
FDM	0.816	0.652	0.393	0.303	0.236	0.151	0.105			
Error $(\times 10^{-3})$ for $h=1$										
LN	-0.83	-0.85	-0.79	-0.77	-0.75	-0.68	-0.65			
S-LN	0.78	0.79	0.79	0.81	0.82	0.85	0.91			
TZ	-0.63	-0.68	-0.63	-0.54	-0.50	-0.45	-0.45			
Stdev	3.80	3.78	3.66	3.57	3.47	3.25	3.07			
		Error	$(\times 10^{-3})$) for $h =$	1/2					
LN	-0.73	-0.77	-0.90	-0.89	-0.88	-0.83	-0.81			
S-LN	0.50	0.48	0.42	0.39	0.38	0.44	0.47			
TZ	-0.66	-0.66	-0.66	-0.62	-0.65	-0.70	-0.67			
Stdev	4.94	4.89	4.72	4.61	4.50	4.30	4.17			
		Error	$(\times 10^{-3})$) for $h =$	1/4					
LN	0.19	0.16	0.06	0.06	0.10	0.14	0.14			
S-LN	-0.82	-0.85	-0.90	-0.92	-0.94	-0.99	-1.00			
TZ	5.74	5.72	5.74	5.81	5.91	5.97	6.01			
Stdev	4.31	4.24	4.04	3.96	3.88	3.75	3.63			

Summary and Conclusion

- The SABR model is an SV model widely used in industry and academia.
- We propose an efficient simulation scheme for the SABR model.
 - Use the moment-matched lognormal sampling for the integrated variance $(I_{t,t+h})$.
 - Adopt Kang (2014)'s CEV simulation algorithm in the context of the SABR model.
- Our new algorithm outperforms the existing algorithm in terms of error-vs-speed tradeoff.

Python implementation: PyFENG

PyFENG (Python Financial ENGineering)

- Implements standard quant finance methods: Black–Scholes, Bachelier (normal), CEV, SABR, Heston models and etc.
- PyPI package: pip install pyfeng
- Source: https://github.com/PyFE/PyFENG/
- Implemented in pure Python (no C/C++ extensions).

PyFengForPapers

- Inspired by PapersWithCode project.
- https://github.com/PyFE/PyfengForPapers/
- A collection of Jupyter Notebooks reproducing quant finance papers (mostly in derivative pricing and stochastic volatility) using the methods implemented in PyFENG.
- The code for this talk is also available in PyFengForPapers.

References I

- Andersen, L., 2008. Simple and efficient simulation of the Heston stochastic volatility model. Journal of Computational Finance 11, 1–42. doi:10.21314/JCF.2008.189.
- Antonov, A., Konikov, M., Spector, M., 2015. Mixing SABR models for negative rates. SSRN Electronic Journal URL: https://ssrn.com/abstract=2653682.
- Bachelier, L., 1900. Théorie de la Spéculation. Annales Scientifiques de l'École Normale Supérieure 17, 21–88.
- Black, F., 1976. The pricing of commodity contracts. Journal of Financial Economics 3, 167–179. doi:10.1016/0304-405X(76)90024-6.
- Black, F., Scholes, M., 1973. The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81, 637–654. doi:10.1086/260062.
- Cai, N., Song, Y., Chen, N., 2017. Exact simulation of the SABR model. Operations Research 65, 931–951. doi:10.1287/opre.2017.1617.
- Chen, B., Oosterlee, C.W., Van Der Weide, H., 2012. A low-bias simulation scheme for the SABR stochastic volatility model. International Journal of Theoretical and Applied Finance 15, 1250016. doi:10.1142/S0219024912500161.
- Choi, J., Kim, K., Kwak, M., 2009. Numerical Approximation of the Implied Volatility Under Arithmetic Brownian Motion. Applied Mathematical Finance 16, 261–268. doi:10.1080/13504860802583436.
- Choi, J., Kwak, M., Tee, C.W., Wang, Y., 2022. A Black–Scholes user's guide to the Bachelier model. Journal of Futures Markets 42, 959–980. doi:10.1002/fut.22315.

4 中 x 4 图 x 4 图 x 4 图 x

References II

- Choi, J., Liu, C., Seo, B.K., 2019. Hyperbolic normal stochastic volatility model. Journal of Futures Markets 39, 186–204. doi:10.1002/fut.21967.
- Choi, J., Wu, L., 2021a. The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model. Journal of Economic Dynamics and Control 128, 104143. doi:10.1016/j.jedc.2021.104143.
- Choi, J., Wu, L., 2021b. A note on the option price and 'Mass at zero in the uncorrelated SABR model and implied volatility asymptotics'. Quantitative Finance 21, 1083–1086. doi:10.1080/14697688.2021.1876908.
- Grzelak, L.A., Witteveen, J.A.S., Suárez-Taboada, M., Oosterlee, C.W., 2019. The stochastic collocation Monte Carlo sampler: Highly efficient sampling from 'expensive' distributions. Quantitative Finance 19, 339–356. doi:10.1080/14697688.2018.1459807.
- Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E., 2002. Managing smile risk. Wilmott September. 84–108.
- Henry-Labordère, P., 2008. Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing. Boca Raton, FL.
- Islah, O., 2009. Solving SABR in Exact Form and Unifying it with LIBOR Market Model. SSRN Electronic Journal doj:10.2139/ssrn.1489428.
- Kang, C., 2014. Simulation of the shifted Poisson distribution with an application to the CEV model. Management Science and Financial Engineering 20, 27–32. doi:10.7737/MSFE.2014.20.1.027.

2023-24 M3

References III

- Kennedy, J.E., Mitra, S., Pham, D., 2012. On the Approximation of the SABR Model: A Probabilistic Approach. Applied Mathematical Finance 19, 553–586. doi:10.1080/1350486X.2011.646523.
- Korn, R., Tang, S., 2013. Exact analytical solution for the normal SABR model. Wilmott 2013, 64–69. doi:10.1002/wilm.10235.
- Leitao, Á., Grzelak, L.A., Oosterlee, C.W., 2017a. On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options. Applied Mathematics and Computation 293, 461–479. doi:10.1016/j.amc.2016.08.030.
- Leitao, Á., Grzelak, L.A., Oosterlee, C.W., 2017b. On an efficient multiple time step Monte Carlo simulation of the SABR model. Quantitative Finance 17, 1549–1565. doi:10.1080/14697688.2017.1301676.
- Matsumoto, H., Yor, M., 2005. Exponential functionals of Brownian motion, I: Probability laws at fixed time. Probability Surveys 2, 312–347. doi:10.1214/154957805100000159.
- Merton, R., 1973. The theory of rational option pricing. Bell Journal of Economics and Management Science 4, 141-183. URL: https://econpapers.repec.org/article/rjebellje/v_3a4_3ay_3a1973_3ai_3aspring_3ap_3a141-183.htm.
- Schroder, M., 1989. Computing the constant elasticity of variance option pricing formula. Journal of Finance 44, 211–219. doi:10.1111/j.1540-6261.1989.tb02414.x.