

GATK Best Practices for Variant Discovery

Introduction to High-Throughput Sequence Data

How it is generated and how we process it

Part 1

DATA GENERATION

Different types of experimental design

Library preparation

Sequence the library

Raw sequence: typically in FASTQ format

- Sequence Name (read name, group, etc.)
- Sequence
- + (optional: Sequence name again)
- Associated quality score

Example record

- @EAS54 6 R1 2 1 413 324
- CCCTTCTTGTCTTCAGCGTTTCTCC
- +
- · ;;3;;;;;;;;;;7;;;;88

-> ASCII code translates to Phred-scale Q scores

Phred value = $-10 * log_{10}(\epsilon)$

90% confidence (10% error rate) = Q10 99% confidence (1% error rate) = Q20 99.9% confidence (0.1% error rate) = Q30

Part 2

DATA PRE-PROCESSING

What is data pre-processing?

Data produced by the sequencers:

- A huge pile of paired reads without mapping information
- Afflicted by various technical biases and artifacts
- May include artificial duplicates reads from the same original molecule
- Need to map, sort and clean up

Step 1: Map the reads produced by the sequencer to the reference

Output format: Sequence/Binary Alignment Map (SAM/BAM)

HEADER containing metadata (sequence dictionary, read group definitions, etc.) **RECORDS** containing structured read information (1 line per read record)

- Added mapping info summarizes position, quality, and structure for each read
- Mate information points to the read from the other end of the molecule

CIGAR summarizes alignment structure

CIGAR = Concise Idiosyncratic Gapped Alignment Report

At Broad: Unmapped BAM instead of FASTQ

Special workflow using Picard tools for improved data management

Step 2: Mark duplicates to mitigate duplication artifacts

Duplicates = **non-independent measurements**of a sequence fragment

-> Must be removed to assess support for alleles correctly

x = sequencing error propagated in duplicates

Step 3: DEPRECATED: Local realignment around indels

^{*} For implications, see https://gatkforums.broadinstitute.org/gatk/discussion/7847/changing-workflows-around-calling-snps-and-indels

Step 4: Base Recalibration (BQSR) corrects for machine errors

- Sequencers make systematic errors in base quality scores
- Sequencer quality cannot include PCR-based errors
- BQSR corrects the quality scores (not the bases)

Example of bias: qualities reported depending on nucleotide context

Special handling for RNAseq splice junctions

Next step:

VARIANT DISCOVERY