

Average circuit eigenvalue sampling on NISQ devices

Emilio Peláez (presenting), Victory Omole, Pranav Gokhale, Rich Rines, Kaitlin N. Smith, Michael A. Perlin, Akel Hashim

Average circuit eigenvalue sampling

Introduced by Steven T. Flammia in arXiv:2108.05803. Allows us to estimate the Pauli error channels of the individual gates on a quantum computer.

We present the following:

- A step-by-step implementation for NISQ devices.
- Simulation and real-hardware results.

Averaged circuits

A Clifford gate can be twirled to **isolate the Pauli noise** around it. The *g***-twisted twirl** of a noisy gate *g* is defined as:

$$\tilde{\mathcal{G}}^{P}(\rho) = \frac{1}{4^{n}} \sum_{a} P_{a'}^{\dagger} \tilde{\mathcal{G}}(P_{a} \rho P_{a}^{\dagger}) P_{a'} = \mathcal{G}(\mathcal{E}^{P}(\rho))$$

In a circuit, this looks like the following:

$$-----\tilde{\mathcal{G}} ----- \rightarrow ----- P_a -----\tilde{\mathcal{G}} ----- P_{a'} -----$$

Where $P_{a'} = \mathcal{G}(P_a) = \mathcal{G}P_a\mathcal{G}^{\dagger}$ and P_a is chosen at random.

Original $\tilde{\mathcal{C}}$

arxiv:2010.00215

Ensemble of circuits \tilde{C}^P

Eigenvalue sampling

Given a noisy averaged implementation $\tilde{\mathcal{C}}^P$ of a circuit \mathcal{C} , we define the **circuit eigenvalue** of this circuit with respect to some Pauli P_a as

$$\tilde{\mathcal{C}}^{P}(P_{a}) = \Lambda_{c,a} \mathcal{C}^{P}(P_{a}) = \Lambda_{c,a} P_{a'}$$

$$\Lambda_{c,a} = \frac{1}{2^{n}} \operatorname{Tr}(P_{a'} \tilde{\mathcal{C}}^{P}(P_{a}))$$

However, we can't send a Pauli directly through a circuit, but we can send its eigenvectors.

$$\Lambda_{c,a} = \frac{1}{2^n} \left[\text{Tr} \left(P_{a'} \tilde{\mathcal{C}}^P(\rho_+) \right) - \text{Tr} \left(P_{a'} \tilde{\mathcal{C}}^P(\rho_-) \right) \right]$$

Circuit and gate eigenvalues

We can characterize the individual **gate eigenvalues** from the circuit eigenvalues as:

$$\tilde{\mathcal{C}}^{P}(P_{a}) = \prod_{k=1}^{M} \lambda_{k,a_{k}} \mathcal{C}(P_{a})$$

Where the circuits have *M* gates and each gate eigenvalue is:

$$\tilde{\mathcal{G}}_{i}^{P}(P_{a_{i}}) = \lambda_{i,a_{i}}\mathcal{G}(P_{a_{i}}) = \lambda_{i,a_{i}}P_{a_{i}}$$

Then, the circuit and gate eigenvalues are related by:

$$\Lambda_{\mathcal{C},a_1} = \prod_{k=1}^{M} \lambda_{k,a_k}$$

Solving the model

- For every circuit and input Pauli, we define an index $\mu = (C_k, a_{k_i})$. We do the same for gates, defining an index $\nu = (G_k, a_{k_i})$.
- We then define $\Lambda_{\mu}=e^{-b_{\mu}}$ and $\lambda_{\nu}=e^{-x_{\nu}}$.
- To get the gate eigenvalues, we solve $A\vec{x} = \vec{b}$.

$$\Lambda_{\mathcal{C},a_1} = \lambda_{1,a_1} \cdot \dots \cdot \lambda_{T,a_T}$$

$$\ln \Lambda_{\mathcal{C},a_1} = \ln \lambda_{1,a_1} \cdot \dots \cdot \lambda_{T,a_T}$$

$$\ln \Lambda_{\mathcal{C},a_1} = \ln \lambda_{1,a_1} + \dots + \ln \lambda_{T,a_T}$$

$$b_{\mu} = x_{v_1} + \dots + x_T$$

Protocol

- Define the **gateset** we want to characterize.
- Get a collection of random circuits built from gates in the set.

- For each circuit, we get a set of good Pauli operators we can send through.
- Construct a design matrix from the set of circuits and corresponding Pauli operators.
- Use the difference trick to get the circuit eigenvalues.
- Solve the model!

2-qubit simulation

4 mirror + 6 random, 5 circuits, 10 twirls

2-qubit IBM Algiers

4 mirror + 6 random, 5 circuits, no twirls

5-qubit IBM Osaka

4 mirror + 6 random, 5 circuits, no twirls

Results

Calibration data indicated a 6.2· 10⁻³ **CNOT error** between qubits 0 and 1 (Algiers). Reconstructing the estimated noise channels, we get an infidelity of 7.6 · 10⁻³ for the **CZ gate** between the same qubits.

Looking at the CZ gate between qubits 0 and 1 (Osaka), we estimate an infidelity of $3.6 \cdot 10^{-2}$, while the reported single-qubit ECR error for qubit 2 is $3.8 \cdot 10^{-3}$.

References

- [1] S. T. Flammia, Averaged circuit eigenvalue sampling, in Theory of Quantum Computation, Communication, and Cryptography (2021).
- [2] N. Cao, J. Lin, D. Kribs, Y.-T. Poon, B. Zeng, and R. Laflamme, Nisq: Error correction, mitigation, and noise simulation (2022), arXiv:2111.02345 [quant-ph].
- [3] J. Emerson, R. Alicki, and K. Zyczkowski, Scalable noise estimation with random unitary operators, Journal of Optics B: Quantum and Semiclassical Optics 7, S347 (2005).
- [4] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum gates, Physical Review A 77, 10.1103/physreva.77.012307 (2008).
- [5] M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249–252 (2002).
- [6] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Physical Review A 94, 10.1103/physreva.94.052325 (2016).
- [7] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell, J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu, K. P. O'Brien, I. Hincks, J. J. Wallman, J. Emerson, and I. Siddiqi, Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor, Phys. Rev. X 11, 041039 (2021).
- [8] C. Campbell, F. T. Chong, D. Dahl, P. Frederick, P. Goiporia, P. Gokhale, B. Hall, S. Issa, E. Jones, S. Lee, A. Litteken, V. Omole, D. Owusu-Antwi, M. A. Perlin, R. Rines, K. N. Smith, N. Goss, A. Hashim, R. Naik, E. Younis, D. Lobser, C. G. Yale, B. Huang, and J. Liu, Superstaq: Deep Optimization of Quantum Programs, in 2023 International Conference on Quantum Computing and Engineering (2023) arXiv:2309.05157 [quant-ph].
- [9] J. Helsen, X. Xue, L. M. K. Vandersypen, and S. Wehner, A new class of efficient randomized benchmarking protocols (2019), arXiv:1806.02048 [quant-ph].
- [10] K. N. Smith, M. A. Perlin, P. Gokhale, P. Frederick, D. Owusu-Antwi, R. Rines, V. Omole, and F. T. Chong, Clifford-based circuit cutting for quantum simulation (2023), arXiv:2303.10788 [quant-ph].