Università degli Studi di Firenze

SCUOLA DI SCIENZE MATEMATICHE, FISICHE E NATURALI TESI DI LAUREA TRIENNALE IN INFORMATICA

Riproduzione e analisi di un modello generativo per la creazione di immagini vettoriali

Candidato Giuliano Gambacorta

Relatore Prof. Paolo Frasconi

Anno Accademico 2016/2017

Outline

Introduzione

Variational Autoencoder Gaussian Mixture Model

Sketch-RNN

Dataset

Modello

Addestramento

Esempi

Reti condizionate

Rete non condizionata

Osservazioni

Consistenza

Conclusioni

Outline

Introduzione

Variational Autoencoder

Gaussian Mixture Model

Sketch-RNN

Esempi

Osservazioni

Conclusioni

Modelli discriminativi 1

- Regressione lineare
- Support Vector Machine (SVM)
- .
- Modelli generativi 2

- Modelli discriminativi 1
 - ▶ Regressione lineare
 - Support Vector Machine (SVM)
 - ▶ ..
- Modelli generativi 2
 - Hidden Markov Model (HMM)
 - Generative Adversarial Networks
 - (GAN)
 - Variational Autoencoder (VAE)
 - Mixture Density Network (MDN)

4/21

- Modelli discriminativi 1
 - Regressione lineare
 - Support Vector Machine (SVM)
- Modelli generativi 2

- Modelli discriminativi 1
 - Regressione lineare
 - Support Vector Machine (SVM)
- Modelli generativi 2
 - Hidden Markov Model (HMM)
 - Generative Adversarial Networks (GAN)
 - Variational Autoencoder (VAE)
 - Mixture Density Network (MDN)

- Modelli discriminativi 1
 - Regressione lineare
 - Support Vector Machine (SVM)
 - ▶ ..
- Modelli generativi 2
 - Hidden Markov Model (HMM)
 - Generative Adversarial Networks (GAN)
 - Variational Autoencoder (VAE)
 - Mixture Density Network (MDN)

Formalmente:

$$f(\mathbf{x}) = \arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) \quad (1)$$

$$f(\mathbf{x}) = \arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})p(\mathbf{y})$$
(2)

- Modelli discriminativi 1
 - Regressione lineare
 - Support Vector Machine (SVM)
 - ▶ ..
- Modelli generativi 2
 - Hidden Markov Model (HMM)
 - Generative Adversarial Networks (GAN)
 - Variational Autoencoder (VAE)
 - Mixture Density Network (MDN)

Formalmente:

$$f(\mathbf{x}) = \arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) \quad (1)$$

$$f(\mathbf{x}) = \arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})p(\mathbf{y})$$
(2)

Esempio: GAN

(b)

(c)

VAE

Esempio: GAN

- Reti avversarie
- **z** arbitraria
- ► Loss:

 $E_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + E_{\mathbf{z} \sim p_{\mathbf{z}}}[\log(1 - D(G(\mathbf{z})))]$

VAE

- Encoder Decoder
- z condizionata
- **IOSS:** $-E_{z\sim q}[\log(p(x|z))] + KL(q(z|x)||p(z))$

Esempio: GAN

- Reti avversarie
- **z** arbitraria
- Loss

 $E_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + E_{\mathbf{z} \sim p_{\mathbf{z}}}[\log(1 - D(G(\mathbf{z})))]$

VAE

- Encoder Decoder
- **z** condizionata

Esempio: GAN

- Reti avversarie
- z arbitraria
- Loss:

$$E_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + E_{\mathbf{z} \sim p_{\mathbf{z}}}[\log(1 - D(G(\mathbf{z})))]$$

VAE

- Encoder Decoder
- **z** condizionata
- loss: $-E_{\mathbf{z}\sim q}[\log(p(\mathbf{x}|\mathbf{z}))] + KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$

Mixture Density Network

- Combina una rete neurale con una Mistura Gaussiana
- La rete fornisce i parametri della mistura
- ▶ Loss: $-\log(\rho(y|x)) = -\log\left(\sum_{i=1}^{m} \alpha_i(x)\phi_i(y|x)\right)$

Mixture Density Network

- Combina una rete neurale con una Mistura Gaussiana
- La rete fornisce i parametri della mistura
- ► Loss: $-\log(p(y|x)) = -\log\left(\sum_{i=1}^{m} \alpha_i(x)\phi_i(y|x)\right)$

Gaussian Mixture Model

Mixture Density Network

- Combina una rete neurale con una Mistura Gaussiana
- La rete fornisce i parametri della mistura
- ► Loss: $-\log(\rho(y|x)) = -\log\left(\sum_{i=1}^{m} \alpha_i(x)\phi_i(y|x)\right)$

Mixture Density Network

- Combina una rete neurale con una Mistura Gaussiana
- La rete fornisce i parametri della mistura
- ► Loss: $-\log(p(y|x)) = -\log\left(\sum_{i=1}^{m} \alpha_i(x)\phi_i(y|x)\right)$

Outline

Introduzione

Sketch-RNN

Dataset

Modello

Addestramento

Esemp

Osservazion

Conclusion

Quick, Draw!

Quick, Draw!

```
44,
                                              6,
                                                                                       36.
                                     [ 41,
                                                                              F 6.
                                               -48.
         6,
                                                                              F 14.
                                                                              [4,
                                     [4,
                                                                              Г4.
         -14.
                                     F 14.
                                               9,
[-49,
                                               6,
                                                                                       -14,
         -4.
                                               -41.
                                                                                       -44.
[ 45,
                                               4,
                                                                              [ 14,
                                                                                       -6,
                                               6,
         42,
                                                                              [-45.
```

Giuliano Gambacorta

Quick, Draw!

Struttura

Struttura

Encoder

- Bidirectional LSTM
- Rete densamente connessa:

μ

► Rete densamente connessa:

 $\log \sigma$

Struttura

Encoder

- Bidirectional LSTM
- Rete densamente connessa: μ
- Rete densamente connessa: log σ

Decoder (MDN)

- tanh inizializza gli stati della LSTM
- LSTM (autoregressiva)
- Gaussian Mixture Model

VAE:

$$L = -E_{\boldsymbol{z} \sim Q}[\log(P(\boldsymbol{x}|\boldsymbol{z}))] + KL(Q(\boldsymbol{z}|\boldsymbol{x})||P(\boldsymbol{z}))$$
 (3)

VAE:

$$L = -E_{\mathbf{z} \sim Q}[\log(P(\mathbf{x}|\mathbf{z}))] + KL(Q(\mathbf{z}|\mathbf{x})||P(\mathbf{z}))$$
(3)

MDN:

$$L = -\log\left(\sum_{i=1}^{m} \alpha_i(\mathbf{x})\phi_i(\mathbf{y}|\mathbf{x})\right)$$
(4)

VAE:

$$L = -E_{\boldsymbol{z} \sim Q}[\log(P(\boldsymbol{x}|\boldsymbol{z}))] + KL(Q(\boldsymbol{z}|\boldsymbol{x})||P(\boldsymbol{z}))$$
(3)

MDN:

$$L = -\log\left(\sum_{i=1}^{m} \alpha_i(\mathbf{x})\phi_i(\mathbf{y}|\mathbf{x})\right) \tag{4}$$

Combinando:

Ricostruzione (MDN + softmax): $L_R = L_s + L_p$

$$L_{s} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{s}} \log(\sum_{j=1}^{M} \Pi_{j,i} \mathcal{N}(\Delta x_{i}, \Delta y_{i} | \mu_{x,j,i}, \mu_{y,j,i}, \sigma_{x,j,i}, \sigma_{y,j,i}, \rho_{xy,j,i}))$$
 (5)

$$L_{\rho} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{max}} \sum_{k=1}^{3} p_{k,i} \log(q_{k,i})$$
 (6)

Divergenza Kullback-Leibler

$$L_{KL} = -\frac{1}{2N_z} (1 + \hat{\sigma} - \mu^2 - \exp(\hat{\sigma}))$$
 (7)

▶ Loss: $L_R + w_{KL}L_{KL}$

Addestramento

Loss

VAE:

$$L = -E_{\mathbf{z} \sim Q}[\log(P(\mathbf{x}|\mathbf{z}))] + KL(Q(\mathbf{z}|\mathbf{x})||P(\mathbf{z}))$$
 (3)

MDN:

$$L = -\log\left(\sum_{i=1}^{m} \alpha_i(\mathbf{x})\phi_i(\mathbf{y}|\mathbf{x})\right) \tag{4}$$

Combinando:

Ricostruzione (MDN + softmax): $L_R = L_s + L_p$

$$L_{s} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{s}} \log(\sum_{j=1}^{M} \Pi_{j,i} \mathcal{N}(\Delta x_{i}, \Delta y_{i} | \mu_{x,j,i}, \mu_{y,j,i}, \sigma_{x,j,i}, \sigma_{y,j,i}, \rho_{xy,j,i}))$$
 (5)

$$L_{\rho} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{max}} \sum_{k=1}^{3} p_{k,i} \log(q_{k,i})$$
 (6)

Divergenza Kullback-Leibler

$$L_{KL} = -\frac{1}{2N_z} (1 + \hat{\sigma} - \mu^2 - \exp(\hat{\sigma}))$$
 (7)

► Loss: $L_R + w_{KL}L_{KL}$

VAE:

$$L = -E_{\boldsymbol{z} \sim Q}[\log(P(\boldsymbol{x}|\boldsymbol{z}))] + KL(Q(\boldsymbol{z}|\boldsymbol{x})||P(\boldsymbol{z}))$$
(3)

MDN:

$$L = -\log\left(\sum_{i=1}^{m} \alpha_i(\mathbf{x})\phi_i(\mathbf{y}|\mathbf{x})\right)$$
(4)

Combinando:

Ricostruzione (MDN + softmax): $L_R = L_s + L_p$

$$L_{s} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{s}} \log(\sum_{j=1}^{M} \Pi_{j,i} \mathcal{N}(\Delta x_{i}, \Delta y_{i} | \mu_{x,j,i}, \mu_{y,j,i}, \sigma_{x,j,i}, \sigma_{y,j,i}, \rho_{xy,j,i}))$$
(5)

$$L_{p} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{max}} \sum_{k=1}^{3} p_{k,i} \log(q_{k,i})$$
 (6)

Divergenza Kullback-Leibler

$$L_{KL} = -\frac{1}{2N_z} (1 + \hat{\sigma} - \mu^2 - \exp(\hat{\sigma}))$$
 (7)

► Loss: $L_R + w_{KI} L_{KI}$

Addestramento

Loss

VAE:

$$L = -E_{\mathbf{z} \sim Q}[\log(P(\mathbf{x}|\mathbf{z}))] + KL(Q(\mathbf{z}|\mathbf{x})||P(\mathbf{z}))$$
(3)

MDN:

$$L = -\log\left(\sum_{i=1}^{m} \alpha_i(\mathbf{x})\phi_i(\mathbf{y}|\mathbf{x})\right)$$
(4)

Combinando:

Ricostruzione (MDN + softmax): $L_R = L_s + L_p$

$$L_{s} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{s}} \log(\sum_{j=1}^{M} \Pi_{j,i} \mathcal{N}(\Delta x_{i}, \Delta y_{i} | \mu_{x,j,i}, \mu_{y,j,i}, \sigma_{x,j,i}, \sigma_{y,j,i}, \rho_{xy,j,i}))$$
(5)

$$L_{p} = -\frac{1}{N_{max}} \sum_{i=1}^{N_{max}} \sum_{k=1}^{3} p_{k,i} \log(q_{k,i})$$
 (6)

Divergenza Kullback-Leibler

$$L_{KL} = -\frac{1}{2N_z} \left(1 + \hat{\sigma} - \mu^2 - \exp(\hat{\sigma}) \right) \tag{7}$$

► Loss: $L_R + w_{KL}L_{KL}$

Outline

Introduzione

Sketch-RNN

Esempi

Reti condizionate

Rete non condizionata

Osservazioni

Conclusion

LA RETE PRODUCE IMMAGINI UNICHE E ORIGINALI

Si noti la figura umana in basso a destra ed i tentativi di ricostruirla

INTERPRETA SECONDO I SUOI CANONI FIGURE SCONOSCIUTE

Temperature

阵 萨 萨 齊 齊 齊 菏 齊

Interpolazioni

Interpolazioni

$$\tau = 0.2$$

$$\tau = 0.4$$

$$\tau = 0.6$$

$$\tau = 0.8$$

$$au = 1$$

Outline

Introduzione

Sketch-RNN

Esempi

Osservazioni Consistenza

Conclusioni

Perché valorizzare la divergenza KL?

Dataset	$w_{KL} = 1$		$w_{KL} = 0.5$		$w_{KL} = 0.25$		Decoder only
	L _R	L_KL	L _R	L_KL	L _R	L_KL	L _R
cat	-0.98	0.29	-1.33	0.70	-1.46	1.01	-0.57
pig	-1.14	0.22	-1.37	0.49	-1.52	0.80	-0.82
cat, pig	-1.02	0.22	-1.24	0.49	-1.50	0.98	-0.75
crab, face, pig, rabbit	-0.91	0.22	-1.04	0.40	-1.47	1.17	-0.67
face	-1.13	0.27	-1.55	0.71	-1.90	1.44	-0.73
firetruck	-1.24	0.22	-1.26	0.24	-1.78	1.10	-0.90
garden	-0.79	0.20	-0.81	0.25	-0.99	0.54	-0.62
owl	-0.93	0.20	-1.03	0.34	-1.29	0.77	-0.66
mosquito	-0.67	0.30	-1.02	0.66	-1.41	1.54	-0.34
yoga	-0.80	0.24	-1.07	0.55	-1.51	1.33	-0.48

Sketch-RNN

Perché valorizzare la divergenza KL?

Outline

Introduzione

Sketch-RNN

Esempi

Osservazion

Conclusioni

Progetti correlati

Figura: Paul the Robot

Progetti correlati

Sviluppi futuri

- Didattica
 - Disegno
 - Disturbi dell'apprendimento
- Arte
 - Assistenza del processo creativo
- ▶ Tecnica
 - Assistenza alla progettazione
- Scienza
 - Rappresentare il mondo reale

Sketch-RNN

Giuliano Gambacorta