

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\begin{split} V &= \frac{9}{2}b^9 \int_0^{\frac{1}{4}\pi} \tan^5\theta (1 - \tan^2\theta) \cdot \sec^8\theta \, d \, \theta + \frac{9}{2}b^9 \int_0^{\frac{1}{4}\pi} \sin^1\theta \cos^4\theta \log \frac{1 + \cos\theta}{\sin\theta} d \, \theta \\ &+ \frac{9}{2}b^9 \int_0^{\frac{1}{4}\pi} \sin^6\theta \cos^5\theta (\cos^2\theta \sin^2\theta - 1) \, d \, \theta \\ &= \frac{2}{3^5\pi} \, a^3 - \frac{63074663899a^3}{390329139200} + \frac{1287a^3}{131072} \int_0^{\frac{1}{4}\pi} \log \, \cot \frac{1}{2}\theta \, d \, \theta \\ &= \frac{2}{3^5\pi} \, a^3 - \frac{63074663899a^3}{390329139200} + \frac{2389 \, \pi^2 \, a^3}{1310720} \, \text{nearly.} \end{split}$$

MECHANICS.

203. Proposed by J. EDWARD SANDERS, Reinersville, Ohio.

A train weighing T(=80) tons runs first eastward and then westward in latitude $\lambda(=40^{\circ})$ at a velocity v(=45) miles an hour. Find the difference between the pressures on the ground in the two cases.

Solution by G. B. M. ZERR, A. M., Ph. D., 4243 Girard Avenue, Philadelphia, Pa.

In the figure, let P be the point of the train on the λ th (=40th) par-

allel, O the center of the earth, PB the normal at P, $\angle POA = \theta$, $\angle PBA = \lambda$, OA = a = 20923536 feet, OP = r, $CP = 2\rho$, e = the earth's ellipticity, $e^2 = .006920928$, F = centrifugal force in direction OP, and f = centrifugal force in direction CP. Then $\rho = r \cos \theta = a \cos \lambda / \sqrt{1 - e^2 \sin^2 \lambda} = 16051229$ feet.

$$V_P = \frac{2 \pi \rho}{t}$$
, where $t = 1$ day, $= \frac{2 \pi \rho'}{86400} =$

1167.28 feet per second, the velocity of *P* due to the earth's rotation.

 $V_P - V_R$, where $V_R = \text{train's velocity in feet per second}$, =1167.28 feet-66 feet=1101.28 feet, train's velocity in space going west.

 $V_P + V_R = 1167.28$ feet+66 feet=1233.28 feet, train's velocity in space going east.

 $f=TV_1^2/g\rho=TV_1^2/(gr\cos\theta)$, $F=f\cos\lambda=TV_1^2\sqrt{(1-e^2\sin^2\lambda)/ag}$, and $g=G(1+\frac{1}{4}e^2\sin^2\lambda)$, where G=32.2015235, gravity at the equator.

 $\therefore g=32.2245411 \text{ feet per second}; : F=0.000000119 V_1^2 \text{ tons.}$

 F_W =0.1443253 tons, going west; F_E =0.15209796 tons, going east.

Difference=0.00777266 tons=15.545 pounds. (See Vol. VI, No. 11, page 282, and Vol. IX, No. 2, page 32.)

Also solved by G. W. Greenwood and J. Scheffer. These gentlemen omitted the earth's ellipticity in their solutions and consequently their result differs from that of Dr. Zerr.