

Over- and under-sampling methods

Oversampling

Random selection

Random generation

Generate observations harder to classify

Undersampling

Random selection

Remove noisy observations

Remove easy to classify observations

Over- and under-sampling: pros & cons

Oversampling

Random selection

Random generation

Generate observations harder to classify

Undersampling

Random selection

Remove noisy observations

Remove easy to classify observations

Over-sampling

- More observations from minority class.
- Can amplify noise

Under-sampling

- Lose important information (from majority class)
- Remove noisy observations

Over- and under-sampling: pros & cons

Oversampling

Random selection

Random generation

Generate observations harder to classify

Undersampling

Random selection

Remove noisy observations

Remove easy to classify observations

Over-sampling

- More observations from minority class.
- Can amplify noise

Under-sampling

- Lose important information (from majority class)
- Remove noisy observations

Over- and under-sampling

- Retain all observations from the majority
- Increase the number of examples from te minority
- Limit (remove) the impact of noise

Over- and under-sampling: which to combine?

Over- and under-sampling: which to combine?

Over- and under-sampling: which to combine?

SMOTE

- Generates observations from all examples, noisy and not
- Could amplify noise

ENN, Tomek Links

 Remove observations harder to classify → remove noise

THANK YOU

www.trainindata.com