Last but not least...

Matching Earliest-Deadline-First performance through deadline-oblivious policies

Andres Ferragut

Universidad ORT Uruguay

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

A bit of history...

- Several queueing systems have service and timing requirements.
- Examples:
 - Computing tasks with real-time constraints.
 - Item delivery problems in logistics.
 - Emergency response.
 - etc. etc. etc.
- This has led to a long and rich history of research about queues with abandonments [Barrer, 1957; Stanford, 1979; Baccelli et al., 1984].

Recent developments...

One of the most used policies is Earliest-Deadline-First (EDF)

■ Give priority to tasks with more urgent deadlines.

Recent developments...

One of the most used policies is Earliest-Deadline-First (EDF)

• Give priority to tasks with more urgent deadlines.

Through fluid limits and diffusion approximations, establish performance:

- [Decreusefond and Moyal, 2008] establish EDF fluid limits in the single server case.
- [Kruk et al., 2011] provides diffusion approximations.
- [Moyal, 2013] establish some optimality properties of EDF.
- [Kang and Ramanan, 2010, 2012] analyze the many-server case.
- [Atar et al., 2018, 2023] establish asymptotic performance.

and many others...

Common assumption

Customers renege *only* in the queue, and not during service.

Common assumption

Customers renege *only* in the queue, and not during service.

We call this the call-center scenario:

- Akin to waiting for the customer-help line to pick your call while you listen to annoying music.
- The underlying idea is that when a task reaches service, it will stay until completion.

Key performance metric: number of satisfied tasks (or reneging probability).

Partial service queues

In several queueing systems:

- Tasks may abandon during service.
- More importantly, all service provided may be useful.

We call this setting queues with partial service.

Partial service queues

In several queueing systems:

- Tasks may abandon during service.
- More importantly, all service provided may be useful.

We call this setting queues with partial service.

Some examples:

- Electrical vehicle charging: customers leave the system with a partial charge.
- LLM inference: longer computation times lead to better answers, but these may be interrupted to deliver a quick response.
- File transfers over the Internet, that can be resumed later.

Key points of this talk

- Provide some suitable representation of the state space and dynamics of these partial service queues.
- Analyze several interesting policies under a suitable fluid model.
- Compute the main performance metric here: attained work.
- Last but not least: show that the simple LCFS policy exhibits the same performance than EDF in this setting, without using deadline information.

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

Consider the simple $M/G/\infty$ queue:

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

Steady-state

Consider the simple $M/G/\infty$ queue:

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

State-descriptor:

$$\Phi_t = \sum_i \delta_{\sigma_i(t)}$$

a Point-process on the positive half-line.

$M/G/\infty$, steady state

- lacktriangledown Φ_t is a measure-valued Markov process.
- Its dynamics can be characterized through its generator.
- In steady state:

 $\Phi \sim$ Poisson Process with mean measure $\mu(d\sigma) = \lambda \bar{G}(\sigma) d\sigma$

where \bar{G} is the CCDF of S.

$M/G/\infty$, steady state

- lacktriangle Φ_t is a measure-valued Markov process.
- Its dynamics can be characterized through its generator.
- In steady state:

 $\Phi \sim$ Poisson Process with mean measure $\mu(d\sigma) = \lambda \bar{G}(\sigma) d\sigma$

where \bar{G} is the CCDF of S.

Interpretation:

- Write $\mu(d\sigma) = \rho\left[\frac{1}{E[S]}(1-G(\sigma))\right]d\sigma$, with $\rho = \lambda E[S]$.
- Then $\left[\frac{1}{E[S]}(1-G(\sigma))\right]d\sigma$ is the *residual service time distribution* associated to G.
- In steady-state, the total number of customers $\sim \text{Poisson}(\rho)$ and distributed in σ as the residual lifetime distribution.

$M/G/\infty$, fluid approximation.

Suppose that we can replace Φ_t by a general measure μ_t with density $f(\sigma;t)$.

- Mass is transported to the left at rate 1.
- New mass arrives at σ with intensity $\lambda g(\sigma) d\sigma dt$.

We can combine this in the following transport equation:

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial \sigma} + \lambda g(\sigma).$$

$M/G/\infty$, fluid approximation.

Imposing equilibrium and the boundary condition $f(\sigma) \to 0$ as $\sigma \to \infty$ we get:

$$\frac{\partial f}{\partial \sigma} + \lambda g(\sigma) = 0 \Longrightarrow f(\sigma) = \lambda \int_{\sigma}^{\infty} g(u) du = \lambda \bar{G}(\sigma),$$

so the fluid approximation recovers the mean measure of Φ .

$M/G/\infty$, fluid approximation.

Imposing equilibrium and the boundary condition $f(\sigma) \to 0$ as $\sigma \to \infty$ we get:

$$\frac{\partial f}{\partial \sigma} + \lambda g(\sigma) = 0 \Longrightarrow f(\sigma) = \lambda \int_{\sigma}^{\infty} g(u) du = \lambda \bar{G}(\sigma),$$

so the fluid approximation recovers the mean measure of Φ .

- This is a deterministic measure, with total mass ρ ...
- ...distributed in the real line as the residual service distribution.
- Serves as an approximation of Φ in a large scale system $(\lambda \to \infty)$.

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Drifts to the right ar rate 1

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

State-descriptor:

$$\tilde{\Phi}_t = \sum_i \delta_{x_i(t)}$$

a Point-process on the positive half-line, where $x_i(t)$ is the elapsed time in the system

Steady-state

 $ilde{\Phi}_t$ is a measure-valued Markov process.

- Mass always arrive at 0 with rate λdt .
- Transports to the right at rate 1.
- Leaves the system at rate h(x), the hazard rate function:

$$h(x) = \lim_{dt \to 0} P(S \in [x, x + dt] \mid S > x) = \frac{g(x)}{\overline{G}(x)} = -\frac{\partial}{\partial x} \log \overline{G}(x).$$

Steady-state

 $ilde{\Phi}_t$ is a measure-valued Markov process.

- Mass always arrive at 0 with rate λdt .
- Transports to the right at rate 1.
- Leaves the system at rate h(x), the hazard rate function:

$$h(x) = \lim_{dt \to 0} P(S \in [x, x + dt] \mid S > x) = \frac{g(x)}{\overline{G}(x)} = -\frac{\partial}{\partial x} \log \overline{G}(x).$$

Steady-state:

$$ilde{\Phi}\sim$$
 Poisson Process with mean measure $u(dx)=\lambda ar{G}(x)dx$

So the reversed representation has the same distribution, because in a random point in time the elapsed service and the remaining service have the same distribution.

Fluid approximation.

Suppose that we can replace $\tilde{\Phi}_t$ by a general measure ν_t with density $\tilde{f}(x;t)$.

Fluid approximation.

Suppose that we can replace $\tilde{\Phi}_t$ by a general measure ν_t with density $\tilde{f}(x;t)$.

The corresponding transport equation is (informally):

$$\frac{\partial \tilde{f}}{\partial t} = -\frac{\partial \tilde{f}}{\partial x} - h(x)\tilde{f} + \lambda \delta_0.$$

Imposing equilibrium we get:

$$\frac{\partial \tilde{f}}{\partial x} = -h(x)\tilde{f} + \lambda \delta_0.$$

Solving (in a distribution sense) with the boundary condition $\tilde{f}(\infty)=0$ we get:

$$\tilde{f}(x) = \lambda e^{-\int_0^x h(u)du}.$$

But by definition $\int_0^x h(u)du = -\log \bar{G}(x)$, and thus:

$$\tilde{f}(x) = \lambda \bar{G}(x)$$

So the transport fluid equation recovers again the mean measure of the steady-state.

Lessons learned

- We can model M/G systems by using two state descriptors:
 - The remaining service Φ .
 - The attained service $\tilde{\Phi}$.
- Both admit reasonable fluid approximations, which correspond to transport equations.
- In fact this has been used in the literature to model abandonments (since they operate as $M/G/\infty$ systems in some sense).

Lessons learned

- We can model M/G systems by using two state descriptors:
 - The remaining service Φ .
 - The attained service $\tilde{\Phi}$.
- Both admit reasonable fluid approximations, which correspond to transport equations.
- In fact this has been used in the literature to model abandonments (since they operate as $M/G/\infty$ systems in some sense).

Question: can we do more using this machinery of measure-valued processes?

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

Example

Earliest-deadline-first

Attained service state descriptor

Attained service state descriptor

Attained service state descriptor

Example

Least-Attained-Service policy

Example

Last-Come-First-Served policy

The hazard rate field

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

Remaining service case

Attained service case

Attained service case

Attained service case

Perceived performance in EDF

Perceived performance in EDF

Perceived performance in LAS and LCFS

Perceived performance in LAS and LCFS

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

Outline

Introduction

A crash course on measure valued processes

Partial service queues

Performance analysis

Simulations

Future work

Final remarks

Merci beaucoup!

Andres Ferragut ferragut@ort.edu.uy https://aferragu.github.io

References I

- R. Atar, A. Biswas, and H. Kaspi. Law of large numbers for the many-server earliest-deadline-first queue. *Stochastic Processes and their Applications*, 128(7):2270–2296, 2018.
- R. Atar, W. Kang, H. Kaspi, and K. Ramanan. Long-time limit of nonlinearly coupled measure-valued equations that model many-server queues with reneging. *SIAM Journal on Mathematical Analysis*, 55(6):7189–7239, 2023.
- F. Baccelli, P. Boyer, and G. Hebuterne. Single-server queues with impatient customers. *Advances in Applied Probability*, 16(4):887–905, 1984.
- D. Barrer. Queuing with impatient customers and ordered service. *Operations Research*, 5(5): 650-656, 1957.
- L. Decreusefond and P. Moyal. Fluid limit of a heavily loaded EDF queue with impatient customers. *Markov Processes and Related Fields*, 14(1):131–158, 2008.
- W. Kang and K. Ramanan. Fluid limits of many-server queues with reneging. *Annals of Applied Probabability*, 20(6):2204–2260, Dec. 2010.

References II

- W. Kang and K. Ramanan. Asymptotic approximations for stationary distributions of many-server queues with abandonment. *Annals of Applied Probabability*, 22(2):477–521, Apr. 2012.
- Ł. Kruk, J. Lehoczky, K. Ramanan, and S. Shreve. Heavy traffic analysis for EDF queues with reneging. *Annals of Applied Probability*, 21(2):484–545, 2011.
- P. Moyal. On queues with impatience: stability, and the optimality of earliest deadline first. *Queueing Systems*, 75:211–242, 2013.
- R. E. Stanford. Reneging phenomena in single channel queues. *Mathematics of Operations Research*, 4(2):162–178, 1979.