Question

Question ID: 885

- 15. A sequence of positive integers t_1 , t_2 , t_3 , t_4 , ... is defined by: $t_1 = 13$; $t_{n+1} = \frac{1}{2}t_n$ if t_n is even; $t_{n+1} = 3t_n + 1$ if t_n is odd. What is the value of t_{2008} ?
 - A 1 B 2 C 4 D 8 E None of these.

0885

©UKMT

Answer

15. A The sequence proceeds as follows: 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1.... The block 4, 2, 1 repeats *ad infinitum* starting after t_7 . But 2008 - 7 = 2001 and $2001 = 3 \times 667$. Hence t_{2008} is the third term in the 667th such block and is therefore 1.