Best Available Copy Best Available Copy EXHIBIT 2

United States Patent [19]

Caput et al.

[11] Patent Number: 5,382,518

Date of Patent: [45]

Jan. 17, 1995

[54]	URATE OXIDASE ACTIVITY PROTEIN,
	RECOMBINANT GENE CODING
	THEREFOR, EXPRESSION VECTOR,
	MICRO-ORGANISMS AND TRANSFORMED
	CELLS

[75] Inventors: Daniel Caput, Toulouse; Pascual Ferrara, Villefranche de Lauragais; Jean-Claude Guillemot, Toulouse; Mourad Kaghad, Ramonville St. Agne; Richard Legoux, Caraman; Gérard Loison, Toulouse; Elisabeth Larbre, Avignon; Johannes Lupker, Castanet-Tolosan; Pascal Leplatois, Cuq Toulza; Marc Salome, Castanet-Tolosan; Patrick Laurent, Pechbusque, all of France

[73] Assignee: Sanofi, Paris, France

[21] Appl. No.:

920,519

[22] PCT Filed:

Jul. 13, 1990

[86] PCT No.:

PCT/FR90/00532

§ 371 Date:

Apr. 25, 1991

§ 102(e) Date:

Apr. 25, 1991

[87] PCT Pub. No.:

WO91/00909

PCT Pub. Date: Jan. 24, 1991

Related U.S. Application Data

[63] Continuation of Ser. No. 659,408, Apr. 25, 1991, aban-

[30]	Foreign	Application	Priority	Data
------	---------	-------------	----------	------

Dec. 29, 1989	[FR]	France	***************************************	89 17466
Feb. 6, 1990	[FR]	France	***************************************	90 01368
Jul. 13, 1990	[FR]	France	***************************************	89 09550

[51]	Int. Cl.6	***************************************	C12N	9/00;	C12P 2	21/00
1521	TIC CI			42E/1	01: 435	/60 1

Field of Search 435/69.1, 191, 10, 12

[56]

References Cited

U.S. PATENT DOCUMENTS

4,431,739 2/1984 Riggs 435/69.1

OTHER PUBLICATIONS

Reddy et al. Proc Natl. Acad. Sci USA (1988) vol. 85 pp. 9081-9085.

Nielsen et al. Proc Natl. Acad Sci USA (1983) vol. 80 pp. 5198-5202.

Mansson-Rahemtulla et al Biochemistry vol. 27 pp. 233-239 issued Jan. 12, 1988.

Nakagawa et al Biochem Biophy. Res. Comm vol. 127(1) pp. 8-14 Feb. 28, 1985.

Janson Trends in Biotechnology vol. 2(2) 31-38 1984. Berton et al Jour. Biol Chem vol. 264(10) pp. 5564-5568 issued Apr. 5, 1989.

Primary Examiner-Robert A. Wax Assistant Examiner-David Schmickel Attorney, Agent, or Firm-Foley & Lardner

ABSTRACT

The invention concerns a new urate oxidase activity protein which has the following sequence:

	Ser	Ala	Val	Lys	Ala	Ala	Arg	Tyr	Gly
Lys	Asp	Am	Val	Arg	Val	Tyr	Lys	Val	His
Lys	Asp	Glu	Lys	Thr	Gly	Val	Gin	Thr	Val.
Tyr	Glu	Met	Thr	Val	Cys	Val	Leu	Len	Glu
Gly	Gh	Πe	Glu	Thr	Ser	Tyr	Thr	Lys	Ala
Asp	Asn	· Ser	Vai	Пe	Val	Ala	Thr	Asp	Ser
Пe	Lys	Asn	Thr	. Ile	Tyr	Пe	Thr	Ala	Lys
Gla	A.sn	Pro	Val	Thr	Pro	Pro	Glu	Leu	Phe
Gly	Scr	Пe	Leu	Gly	Thr	His	Phe	Пc	Glu
Lys	Tyr	Asn	His	Пe	His	Ala	Ala	His	Val
Asn	Ile	Val	Cys	His	Arg	Trp	Thr	Arg	Met
Asp	Ile	Asp	Gly	Lys	Pro	His	Pro	His	Ser
Phe	Ile	Arg	Asp	Ser	Gh	Glu	Lys	Arg	Asn
Val	Gin	\mathbf{Val}	Asp	Val	Val	Glu	Gly	Lys	Gly
Цe	Asp	Пe	Lys	Ser	Ser	. Leu	Ser	Gly	Len
Thr	Val	Leu	Lys	Ser	Thr	Asn	Ser	Gln	Phe
Trp	Gly	Phe	Leu	Arg	Asp	Glu	Tyr	Thr	Thr
Leu	Lys	Glu	Thr	Trp	Asp	Arg	Цe	Len	Ser '
Thr	Asp	Val	Asp	Ala	Thr	Trp	Gln	Trp	Lys
Asa	Phe	Ser	Gly	Leu	Gln	Glu	Val	Arg	Ser
His	Val	Pro	Lys	Phe	Asp	Ala	Thr	Τπρ	Ala
Thr	Ala	Arg	Gh	Val	Thr	Leu	Lys	Thr	Phe
Ala	Glu	Asp	Asn	Ser	Ala	Ser	Val	Gin	Ala
Thr.	Met	Tyr	Lys	Met	Ala	Glu	Gln	Πe	Leu
Ala	Arg	Gln	Gin	Leu	Πe	Glu	Thr	Val	Glu
Tyr	Ser	Leu	Pro	Asn	Lys	His	Tyr	Phe	Glu
Пe	Asp	Leu	Ser	Trp	His	Lys	Gly	Leu	Gla
Asn	Thr	Gly	Lys	Asn	Ala	Glu	Val	Phe	Ala
	(,	Abstr		ontint	red or	n nex	t page	e.)	

Pro Gin Ser Asp Pro Am Giy Leu Ile Lys Cys Thr Val Giy Arg Ser Ser Leu Lys Ser									
Pro Cys Lvs	Gln Thr Leu	Ser Val	Asp Gly	Pro Arg	Asn Ser	Gly Ser	Leu Leu	Ile Lys	

optionally preceeded by a methionine, or in that it may

present a degree of substantial homology with this sequence.

The invention is also aimed at medicines containing this protein as well as the genetic engineering implements to obtain it.

9 Claims, 15 Drawing Sheets

FIG. 1

ELUTION PROFILE BY MEASUREMENT OF THE OPTICAL DENSITY AT 218 nm OF THE PRODUCT OF TRYPTIC DIGESTION OF URATE OXIDASE

FIG. 2

ELUTION PROFILE BY MEASUREMENT OF THE OPTICAL DENSITY AT 218 nm OF THE PRODUCT OF DIGESTION OF URATE OXIDASE WITH PROTEASE V8

AND IN TO TO TO THE OF THE ONE OF THE OF	
AAAAAAAAAA	1001 BYCCAPPCAPPCACPPCACPPCACPPCCA
GGCAAACTGTATATAGTCTGGGATAGGGTA LUBU	1021 AACATGATTCTCACGTTCCGGAGTTTCCAA
	961 CCCAACGGTCTGATCAAGTGTACCGTCGGC
AACGCCGAGGICIIICGCTCCTCAGICGGAC 700	901 TGGCACAAGGGCCTCCAAAACACCGGCAAG
しがら、しなびがいからないのでは、これのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	***************************************
AACAAGCACTATITICGAAATICGACCTGAGC 300	841 CTGATCGAGACTGTCGAGTACTCGTTGCCT
ATGGCAGAGCAAATCCTGGCGCGCCCAGCAG 840	781 AGTGCCAGCGTGCAGGCCACTATGTACAAG
	721 TTCGATGCTACCTGGGCCACTGCTCGCGAG
_	661 GCCACTTGGCAGTGGAAGAATTTCAGTGGA
	601 CGTGACGAGTACACCACAGTTAAGGAGACC
AGCACCAACTCGCAGTTCTGGGGCTTCCTG 600	FA1 TOTAL TO
GTGGTCGAGGGCAAGGGCATCGATATCAAG 540	A* A o 1 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0
AAGCCACACCCTCACTCCTTCATCCGCGAC 480	421 CACCGCTGGACCCGGATGGACATTGACGGC
	301 AIIINCAICTECACATICAGAAGTACAACCAC
ACTCCTCCCGAGCTGTTCGGCTCCATCCTG 360	
ATTGTCGCAACCGACTCCATTAAGAACACC 300	241 ACCTCTTACACCAAGGCCGACAACAGCGTC
	181 ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CGCGTCTACAAGGTTCACAAGGACGAGAAG 180	101 TACI LCICCENTCICICICACONNECTOR 101 TACING TO 101 TACIN
ATATTCCCATACTACAAGATGTCCGCAGTA 120	の正式の音を出ていていているのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ
GIGCCCCCGATCCTCAATCCAACTTGTACA 60	びびひむほびびむむなひむひむひむひではしゃつもりでしょう。

Jan. 17, 1995

NUCLEOTIDE SEQUENCE OF CLONE 9C AND OF PART OF CLONE 9A | : START OF CLONE 9A

Jan. 17, 1995

		•		•						
168 20	228 40	288 60	348 80	408 100	468 120	528 140	588 160 T31	648 180	708 200	TO FIG. 4B
AAGGACAATGTCCGCGTCTACAAGGTTCAC LysAspAsnValArgValTyrLysValHis	TACGAGATGACCGTCTGTGTGCTTCTGGAG TyrGluMetThrVAlCysValLeuLeuGlu	GACAACAGCGTCATTGTCGCAACCGACTCC ASpAsnSerValileValAlaThrAspSer	CAGAACCCCGTTACTCCTCCCGAGCTGTTC GINASnProValThrProProGluLeuPhe	AAGTACAACCACATCCATGCCGCTCACGTC LysTyrAsnHisIleHisAlaAlaHisVal	GACATTGACGGCAAGCCACACCCTCACTCC ASpileAspGlyLysProHisProHisSer	Grecagereacerecagescaage	ACCGTGCTGAAGAGCACCAACTCGCAGTTC ThrValLeuLysSerThrAsnSerGlnPhe	CTTAAGGAGACCTGGGACCGTATCCTGAGC LeulysGluThrTrpAspArgIleLeuSer	AATTTCAGTGGACTCCAGGAGGTCCGCTCG ASnPheSerGlyLeuGlnGluValArgSer	
109 ATGTCCGCAGTAAAAGCAGCCCGCTACGGC 1 MetSerAlaValLysAlaAlaArgTyrGly	169 AAGGACGAGAAGACCGGTGTCCAGACGGTG 21 LysAspGluLysThrGlyValGlnThrVal	229 GGTGAGATTGAGACCTCTTACACCAAGGCC 41 GlyGlulleGluThrSerTyrThrLysAla	289 ATTAAGAACACCATTTACATCACCGCCAAG 61 IleLysasnThrIleTyrIleThrAlaLys	349 GGCTCCATCCTGGGCACACACTTCATTGAG 81 GlySerlleLeuGlyThrHisPhelleGlu	409 AACATTGTCTGCCACCGCTGGACCCGGATG 101 ASNIleValCySHisArgTrpThrArgMet	469 TTCATCCGCGACAGCGAGGAGAGCGGAAT 121 PhelleArgAspSerGluGluLysArgAsn	529 ATCGATATCAAGTCGTCTCTGTCCGGCCTG 141 IleAspileLysSerSerLeuSerGlyLeu	589 TGGGGCTTCCTGCGTGACGAGTACACCACA 161 TrpGlyPheLeuArgAspGluTyrThrThr	649 ACCGACGTCGATGCCACTTGGCAGTGGAAG	↓ TO FIG. 4B

FROM FIG. 4A	FROM FIG. 4A
709 CACGTGCCTAAGTTCGATGCTACCTGGGCC 201 HisValProLysPheAspAlaThrTrpAla	ACTGCTCGCGAGGTCACTCTGAAGACTTTT 768 ThrAlaArgGluValThrLeuLysThrPhe 220
769 GCTGAAGATAACAGTGCCAGCGTGCAGGCC 221 AlaGluAspAsnSerAlaSerValGlnAla	ACTATGTACAAGATGGCAGAGCAAATCCTG 828 ThrMetTyrLysMetAlaGluGlnIleLeu 240
V2 829 GCGCCCAGCAGCTGATCGAGACTGTCGAG 241 AlaArgGlnGlnLeuIleGluThrValGlu	TACTCGTTGCCTAACAAGCACTATTTCGAA 888 TYrSerLeuProAsnLysHisTyrPheGlu 260
CGACCTGAC	AACACCGGCAAGAACGCCGAGGTCTTCGCT 948 AsnThrGlyLysAsnAlaGluValPheAla 280
949 CCTCAGTCGGACCCCAACGGTCTGATCAAG 281 ProGlnSerAspProAsnGlyLeuIleLys	TGTACCGTCGGCCGGTCCTCTCTGAAGTCT 1008 CysThrValGlyArgSerSerLeuLysSer 300
1009 AAATTGTAA 301 LysLeuEnd AND POLYPEPTIDE CODED FOR THE SEQUENCE OPENED BY AT	DNA SEQUENCE OPENED BY ATG IN POSITION 109 IN FIGURE 3 AND POLYPEPTIDE CODED FOR. THE SEQUENCED PEPTIDES OBTAINED BY HYDROLYSIS OF A. FLAVUS

U.S. Patent

FIG. 5

FIG. 6

FIG. 7

U.S. Patent

FIG. 8

U.S. Patent

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

Jan. 17, 1995

URATE OXIDASE ACTIVITY PROTEIN, RECOMBINANT GENE CODING THEREFOR, EXPRESSION VECTOR, MICRO-ORGANISMS AND TRANSFORMED CELLS

This application is a continuation of application Ser. No. 07/659,408, filed Apr. 25, 1991, now abandoned.

The invention relates to a novel protein possessing urate oxidase activity; the invention also concerns the 10 drugs containing this protein as well as the genetic engineering tools for producing that protein and notably the recombinant gene coding for that protein, the expression vector carrying that gene and the eukaryotic cells or the prokaryotic microorganisms transformed by 15 this expression vector.

Urate oxidase (EC 1.7.3.3.), which is also called uricase, is an enzyme of the purine degradation pathway. This enzyme does not exist in primates (such as man), birds, a few reptiles or most insects. It is also non-existent in some dogs (such as the dalmatian).

In man, the purine bases—adenine and guanine are—converted to xanthine. The xanthine is oxidized by xanthine oxidase to form uric acid according to the following reaction:

xanthine+H2O+O2-uric acid+O2-

The O₂— radical, which is the substrate for superoxide dismutase, is converted by the latter to hydrogen peroxide.

The Applicant also constructed several vectors for expression in eukaryotic cells, comprising a recombinant gene coding for urate oxidase whose sequence

Unic acid, a metabolite present in blood, is normally found essentially in the form of the soluble monosodium salt. However, in certain people, it may happen that the uric acid precipitates and forms calculi. Hyperuricemia, which is an increase in the amount of uric acid circulating in the blood, causes uric acid to deposit in the cartilaginous tissues, leading to gout. Hyperuricemia can also have consequences on the kidneys: an excess of uric acid in the urine and in the kidneys can result in uric acid nephrolithiasis, i.e. the accumulation of renal calculi, which are very painful and can damage the kidney. These calculi are composed of uric acid possibly associated with phosphate and oxalate salts. Overproduction of uric acid can have a variety of origins: congenital metabolic defects, Lesch-Nyhan syndrome, excess ingestion of purine or proteins, treatments with uricosuric drugs, treatments of the hemopathies, particularly the cancerous hemopathies by cytolytic agents (chemotherapy) or by radiotherapy. (Gutman, A. B. and YU, T. F. (1968) Am. J. Med. 45-756-779).

Urate oxidase, the enzyme which catalyzes the degradation of uric acid to allantoin (a compound which is much more soluble than uric acid and does not crystallize at the concentrations reached in biological fluids), therefore has therapeutic value. Used in injections, it has a large number of advantages in the treatment of hyperuricemia and nephrolithiasis: speed of the hypouricemic effect (reduction of hyperuricemia of the order of 50% in less than 24 h), better protection of the kidney against lithiasis compared with other drugs such as allopurinol (a xanthine oxidase inhibitor), etc. At the present time, this enzyme is mainly used as adjuvant for the cytolytic agents in chemotherapy.

The urate oxidase currently used as a drug is obtained by a method comprising the culture of a mycelium of 65 Aspergillus flavus and isolation of the urate oxidase from the culture medium by extraction, together with several steps for purifying this protein. This method, which

makes it possible to obtain urate oxidase of high purity, nevertheless has disadvantages. In fact, the physiology and especially the genetics of A. flavus are not easy to work with (WOLOSHUK et al. (1989) Applied environ microbiol., vol. 55, p. 86-90). It is therefore impossible to obtain strains which produce this enzyme in substantial amounts. Furthermore, A. flavus is liable to produce aflatoxins, which are sometimes difficult to separate off. The purified product should consequently be checked to ensure that it is free from these toxins.

There is therefore a need for a purer urate oxidase of A. flavus as well as for genetic engineering tools and techniques whereby these disadvantages can be over-

The Applicant purified the urate oxidase extracted from A. flavus, named thereafter the urate oxidase extract, up to a purity degree higher than that already known for this protein; the Applicant also determined the partial sequence of that protein and built two pools of labelled probes able to hybridize with the nucleotides coding for two portions of that protein. It then constructed an expression vector comprising this cDNA, transformed a strain of E. coli K12 with the latter, cultivated said strain and verified that the lyzate of the cells contained a recombinant protein of the expected molecular weight, which possesses urate oxidase activity (capacity to degrade uric acid allantoîne).

The Applicant also constructed several vectors for expression in eukaryotic cells, comprising a recombinant gene coding for urate oxidase whose sequence contains variations, relative to the isolated cDNA, introduced for the purpose of inserting codons which are customary in eukaryotic cells, transformed different eukaryotic cells with the aid of these vectors, cultivated said cells in a small volume as well as in a larger volume (fermenter), and found that the lyzates of the cells contained a substantial proportion of a recombinant protein of the expected molecular weight, possessing urate oxidase activity. It purified this recombinant protein and partially characterized it, comparatively towards the urate oxidase extract.

Therefore, the present invention relates to a novel protein possessing a specific urate oxidase activity of at least 16 U/mg, which has the following sequence (SE-QUENCE ID NO. 1):

Tyr Vai Ser Ala Arg Lys Lys Gin Arg His Asp Val Val Asp Ghi Thr Gly Thr Val Tyr Gla Val Thr Glu Met Thr Cys Leu Leu Gly Thr Ala qεA Ile Ser Tyr Ala Gin Glu Ser Lys Πe Val Val Ser Thr Asp Asa Lys Ile Gin Thr Tyr Asn Ser Val Thr Pro Gin Leu Gly Gin Lys Asn Ile Leu Gly Thr His Phe Πe His Cys Gly Asp Val His His Tyr Asn Val Ile His Ala Ala Met Азр Arg Ттр Thr Arg Lys Ser Val Pro Πe Pro Asp Val Arg Val Glu Gin Lys Val Glu Gly Lys Gly Πe Ser Ser Thr Ser Thr Gly Leu Phe Asp Val Πe Lys Leu Ser Lys. Len Thr Leu Phe Ser Gin Tπ Asn Arg Trp Ala Leu Tyr Ile Asp Asp Thr Glu Thr Thr Gly Glu Thr Arg Trp Leu Lys Asp Asp Gly Val Gla Тτр Am Ser Ala Phe His Val Gln Glu Lys Glu Phe Val Asp Thr Ala Leu Val Pro Thr Тър Thr Aia Ala Arg Lys Val Thr Ser Thr Ala Asp Tyr Ala Gln Gin Asa Ser Ala Giu Gin Mct Met Lys Пe Leu

-continuest													
Asp Thr	Leu Gly	Ser Lys	Trp Asn Pro	His Ala Asn	His Lys Glu Gly Ser	Val Leu	Pho Ile	Ala Lys	Pro Cys				

optionally preceded by a methionine or which present a substantial degree of homology with that sequence.

Preferably the specific urate oxidase activity of the invention protein is of about 30 U/mg.

A preferred protein of that type is the protein, which, by analysis on a bidimensional gel, presents a spot of having preferably a mass around 43 units of atomic mass, such as for example the acetyl group.

The present invention also relates to the drug which contains the invention protein in combination with a 5 pharmaceutically acceptable carrier. The invention protein may advantageously replace, in its different uses, the urate oxidase extract possessing a specific urate oxidase activity of about 8 U/mg, which is sold in the injectable form under the trade mark "Uricozyme" (Vidal 1990).

The invention also relates to a recombinant gene which comprises a DNA sequence coding for the protein having the following sequence (SEQUENCE ID NO. 2):

Met Lys Val Asm Ala Thr Val Ser Glu Lys Leu Gin Phe Giu Ile Lys Cily Lys Lys Lys Cys	Ser Val Cys Ser Lys Cys Phe Gly Ser Lys Trp Asp Leu His Lys Cys	Ala His Val Val Gln Phe His Ile Lys Thr Glu Lys Ala Asn Ala Tyr Asn Thr	Val Lys Leu Ile Asn Ile Arg Gly Asn Thr Ser Arg Phe Ala Val	Lys Asp Leu Val Pro Glu Trp Asp Ile Ser Trp Phe Trp Ala Glin Giu Giy	Ala Glu Glu Ala Val Lys Thr Ser Asp Gln Asp Ser Ala Ser Gln He Val Arg	Ala Lys Gly Thr Tyr Arg Glu Ile Phe Arg Gly Thr Vai Leu Asp Phe Ser	Arg Thr Glu Asp Pro Asn Met Glu Lys Trp Ile Leu Ala Gln Ile Leu Ala Ser	Tyr Gly Ile Ser Pro His Asp Lys Ser Gly Leu Gln Arg Alz Glu Ser Pro Leu	Gly Val Giu Ile Ile Ile Ile Arg Ser Phe Ser Gliu Thr Thr Trp Glin Lys	Lys Gin Thr Lys Leu His Asp Asn Leu Thr Val Val Met Val His Ser Ser	Asp Thr Ser Asm Pho Ala Gly Val Ser Arg Asp Arg Thr Tyr Glu Lys Asp Lys	Asm Val Tyr Gly Ala Lys Gln Giy Asp Val Lys Tyr Gly Pro Leu	Val Tyr Thr Ile Ser His Pro Val Leu Asp His Lys Met Ser Leu Asn	Arg Glu Lys Tyr Ile Val His Asp Thr Tyr Ala Val Thr Ala Leu Gin Gly	Val Met Ala Ile Leu Asn Pro Val Thr Thr Pro Phe Glu Pro Asn Leu	Tyr Thir Asp Thr Gly Ile His Val Leu Thr Trp Lys Ala Gin Asn Thr
--	---	---	---	--	--	---	---	--	---	---	--	---	--	---	--	---

molecular mass of about 33.5 kDa and an isoelectric point around 8.0, representing at least 90% of the protein mass.

Preferably the purity degree of the invention protein, determined by liquid chromatography on aC8 grafted silica column, is higher than 80%.

An interesting protein of that type is the protein hav-

Because of the degeneracy of the genetic code, there are a large number of DNA sequences coding for a protein whose sequence corresponds to the formula given above. One preferred DNA sequence, particularly appropriate for an expression in the prokaryotic microorganisms, is as follows (SEQUENCE ID NO. 3):

ing an isoelectric point of 8.0. Preferably the amino-terminal serine of that protein carries a blocking group, 60

Another preferred DNA sequence, which is particularly suitable for expression in eukaryotic cells, such as yeast, is as follows (SEQUENCE ID NO. 4):

		-conunuea		· · · · · · · · · · · · · · · · · · ·
CCCTCACTCC	TTCATCCGCG	ACAGCGAGGA	GAAGCGGAAT	GTGCAGGTGG
ACGTGGTCGA	GGGCAAGGGC	ATCGATATCA	AGTCGTCTCT	GTCCGGCCTG
ACCGTGCTGA	AGAGCACCAA	CTCGCAGTTC	TGGGGCTTCC	TGCGTGACGA
GTACACCACA	CTTAAGGAGA	CCTGGGACCG	TATCCTGAGC	ACCGACGTCG
ATGCCACTTG	GCAGTGGAAG	AATTTCAGTG	GACTCCAGGA	GGTCCGCTCG
CACGTGCCTA	AGTTCGATGC	TACCTGGGCC	ACTGCTCGCG	AGGTCACTCT
GAAGACTTTT	GCTGAAGATA	ACAGTGCCAG	CGTGCAGGCC	ACTATGTACA
AGATGGCAGA	GCAAATCCTG	GCGCGCCAGC	AGCTGATCGA	GACTGTCGAG
TACTCGTTGC	CTAACAAGCA	CTATTTCGAA	ATCGACCTGA	GCTGGCACAA
GGGCCTCCAA	AACACCGGCA	AGAACGCCGA	GGTCTTCGCT	CCTCAGTCGG
ACCCCAACGG	TCTGATCAAG	TGTACCGTCG	GCCGGTCCTC	TCTGAAGTCT
AAATTG.				

Another preferred DNA sequence, which is notably suitable for expression in animal cells, is as follows (SE- 15 vector. OUENCE ID NO. 6):

binant gene either into their genome or into a multicopy vector.

For expression in animal cells, especially in the cells

	5'-ATGTC	CGCAGTAAAA	GCAGCCCGCT	ACGGCAAGGA
CAATGTCCGC	GTCTACAAGG	TTCACAAGGA	CGAGAAGACC	GGTGTCCAGA
CGGTGTACGA	GATGACCGTC	TGTGTGCTTC	TGGAGGGTGA	GATTGAGACC
TCTTACACCA	AGGCCGACAA	CAGCGTCATT	GTCGCAACCG	ACTCCATTAA
GAACACCATT	TACATCACCG	CCAAGCAGAA	CCCCGTTACT	CCTCCCGAGC
TGTTCGGCTC	CATCCTGGGC	ACACACTICA	TTGAGAAGTA	CAACCACATC
CATGCCGCTC	ACGTCAACAT	TGTCTGCCAC	CGCTGGACCC	GGATGGACAT
TGACGGCAAG	CCACACCCTC	ACTCCTTCAT	CCGCGACAGC	GAGGAGAAGC
GGAATGTGCA	GGTGGACGTG	GTCGAGGGCA	AGGGCATCGA	TATCAAGTCG
TCTCTGTCCG	GCCTGACCGT	GCTGAAGAGC	ACCAACTCGC	AGTTCTGGGG
CTTCCTGCGT	GACGAGTACA	CCACACTTAA	GGAGACCTGG	GACCGTATCC
TGAGCACCGA	CGTCGATGCC	ACTTGGCAGT	GGAAGAATTT	CAGTGGACTC
CAGGAGGTCC	GCTCGCACGT	GCCTAAGTTC	GATGCTACCT	GGGCCACTGC
TCGCGAGGTC	ACTCTGAAGA	CTTTTGCTGA	AGATAACAGT	GCCAGCGTGC
AGGCCACTAT	GTACAAGATG	GCAGAGCAAA	TCCTGGCGCG	CCAGCAGCTG
	~	GTTGCCTAAC	AAGCACTATT	TCGAAATCGA
ATCGAGACTG	TCGAGTACTC		CGGCAAGAAC	GCCGAGGTCT
CCTGAGCTGG	CACAAGGGCC	TCCAAAACAC		CGTCGGCCGG
TCGCTCCTCA	GTCGGACCCC	AACGGTCTGA	TCAAGTGTAC	Giagaag
TCCTCTCTGA	AGTCTAAATT	G		

preceded by a non-translated 5' sequence favoring expression in animal cells. A preferred non-translated 5' sequence of this type is the one comprising the sequence (SEQUENCE ID NO. 5) AGCTTGCCGCCACT, to located immediately upstream from the sequence described above. is inserted into a plasmid (for example derived from pBR322) containing two expression units, a first unit, into which the recombinant gene is inserted, before an effective promoter (for example the SV40 early promoter). The sequence around the initiation ATG is preferably chosen as a function of the consensus sequence around the initiation at the sequence are sequence around the initiation at the sequence are sequence around the initiation at the sequence are sequence at the sequence are sequence around the initiation at the sequence are sequence at the sequence are sequence are sequence around the initiation at the sequence are sequence are sequence around the initiation at the sequence are sequence are sequence.

It will be noticed that the protein coded for by the cDNA sequences given above can undergo processing by methionyl aminopeptidase, which cleaves it from its 45 amino-terminal methionine residue.

The invention further relates to an expression vector carrying the above-defined recombinant gene with the means necessary for its expression.

For expression in prokaryotic microorganisms, in particular in Escherichia coli, the coding sequence must be inserted into an expression vector containing especially an effective promoter, followed by a ribosome binding site upstream from the gene to be expressed, and also an effective transcription stop sequence downstream from the gene to be expressed. This plasmid must also contain an origin of replication and a selection marker. All these sequences must be chosen as a function of the host cell.

3 a selection marker (for example a DNA sequence) coding for dihydrofolate reductase (an enzyme abbreviated hereafter to DHFR). The plasmid is transfected in animal cells, for example DHFR- CHO cells (incapable of expressing DHFR). A line is selected for its methotrex- attentions the gene to be expressed. This plasmid must also contain an origin of replication and a selection marker. All these sequences must be chosen as a function of the host cell.

For expression in eukaryotic cells, the expression 60 vector according to the invention carries the above-defined recombinant gene with the means necessary for its expression, for its replication in eukaryotic cells and for selection of the transformed cells. Preferably, this vector carries a selection marker, chosen for example to 65 complement a mutation of the recipient eukaryotic cells, which makes it possible to select those cells which have integrated a large number of copies of the recom-

of Chinese hamster ovaries, CHO, the coding sequence is inserted into a plasmid (for example derived from pBR322) containing two expression units, a first unit, into which the recombinant gene is inserted, before an moter). The sequence around the initiation ATG is preferably chosen as a function of the consensus sequence described by KOZAK (M. KOZAK (1978) Cell, 15, 1109-1123). An intron sequence, for example the intron of mouse a-globin, can be inserted upstream from the recombinant gene, and a sequence containing a polyadenylation site, for example an SV40 polyadenylation sequence, can be inserted downstream from the recombinant gene. The second expression unit contains a selection marker (for example a DNA sequence) coding for dihydrofolate reductase (an enzyme abbreviated hereafter to DHFR). The plasmid is transfected in animai cells, for example DHFR- CHO cells (incapable of expressing DHFR). A line is selected for its methotrexof the recombinant into its genome and expresses said recombinant gene at a sufficient level.

For expression in eukaryotic cells such as yeast, for example Saccharomyces cerevisiae, the coding sequence should be inserted between, on the one hand, sequences recognized as an effective promoter and, on the other hand, a transcription terminator. The array promoter/coding sequence/terminator, which is called an expression cassette, is either cloned in a plasmid vector (single-copy or multicopy) for the yeast, or integrated as a multicopy into the genome of the yeast.

The invention further relates to the eukaryotic cells transformed by the above expression vector. Of value

among these eukaryotic cells are strains of the species Saccharomyces cerevisiae, in particular those which contain a mutation on one of the genes responsible for the synthesis of leucine or uracil, for example the LEU2 gene or the URA3 gene.

The invention further relates to the animal cells containing this recombinant gene with the means necessary for its expression. Said recombinant gene may, for example, have been introduced into the cells by transfection by the above expression vector, by infection with a virus or a retrovirus carrying said expression vector, or by microinjection.

The invention further relates to the process for producing a recombinant urate oxidase which comprises the steps of:

cultivating transformed cells as hereinabove defined:

2) producing the lysis of that cells;

 isolating and purifying the urate oxidase contained in the obtained lysate.

The invention will be understood more clearly with the aid of the Examples below.

Many of the following techniques, which are well known to those skilled in the art, are described in detail in the work by Maniatis et al.: "Molecular cloning: a laboratory manual" published in 1984 by Cold Spring Harbor Press in New York.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an elution profile by measurement of the optical density at 218 nm of the product of tryptic digestion of urate oxidase.

FIG. 2 shows an elution profile by measurement of the optical density at 218 nm of the product of digestion 35 of urate oxidase with protease V8.

FIG. 3 shows a nucleotide sequence of clone 9C and of part of clone 9A.

FIG. 4 shows a DNA sequence opened by ATG in position 109 in FIG. 3 and polypeptide coded for. The sequenced peptides obtained by lysis of A. Flavus urate oxidase with trypsin (=>) and protease V8 (---) are shown by arrows opposite the polypeptide-coded for.

FIG. 5 shows plasmid p163,1.

FIG. 6 shows plasmid p160.

FIG. 7 shows plasmid p373,2.

FIG. 8 shows plasmid p462.

FIG. 9 shows plasmid p466.

FIG. 10 shows plasmid pEMR414.

FIG. 11 shows plasmid pEMR469.

FIG. 12 shows plasmid pEMR473.

FIG. 13 shows plasmid PSE₁.

FIG. 14 shows plasmid pSV860.

EXAMPLE 1: Isolation of the messenger RNA's from ₅₅ Aspergillus flavus

The strain of A. flavus which produces urate oxidase was cultivated under conditions appropriate for the production of urate oxidase, i.e. in a medium containing uric acid and having the following composition: glucose 60 15 g/l, MgSO₄.7H₂O 1 g/l, KH₂PO₄ 0.75 g/l, CaCO₃ 1.2 g/l, uric acid 1.2 g/l, KOH 0.5 g/l, soy bean oil 0.66 ml/l, FeSO₄.7H₂O 10 mg/l, CuSO₄.5H₂O 1 mg/l, ZnSO₄.7H₂O 3 mg/l, MnSO₄.H₂O 1 mg/l. The medium is adjusted to pH 7 with H₂SO₄ 1M and sterilized at 120° 65 C. for 80 min.

In a 51 Erlenmeyer flask, 1.51 of medium are inoculated with about 1 to 3.107 spores.

The culture is incubated for about 40 h at 30° C., with agitation (120 rpm). The mycelium is recovered by filtration on gauze, washed with water and frozen in liquid nitrogen.

15 g of mycelium (wet weight) are thawed, resuspended in 45 ml of lysis buffer and then taken up in the same volume of beads (0.45 μ m in diameter). The lysis buffer consists of guanidine thiocyanate 4M, Tris-HCl 10 mM pH 7.6, EDTA 10 mM, β -mercaptoethanol 50 ml/l. The mycelian suspension is ground in a Zell-mühler mill (vibrogenie) for 5 min.

The ground material is recovered and the beads are decanted. The supernatant is removed (about 45 ml), brought back to a final concentration of 3M in respect of lithium chloride and stored at 0° C.

After two days, it is centrifuged for 60 min at 10,000 rpm. The supernatant is discarded and the residue is taken up in 40 ml of LiCl 3M and centrifuged again at 10,000 rpm for 1 h 30 min.

The following are added: proteinase K (SIGMA) 40 µg/ml, SDS (0.1% w/v) and EDTA 20 mM. The mixture is incubated at 37° C. for 3 h. Precipitation with 2 volumes of ethanol is followed by washing with 70% ethanol. The residue is taken up in 0.5 ml of TE buffer (Tris-HCl 10 mM, EDTA 1 mM pH 7.5), the mixture is extracted twice with chloroform and precipitation is carried out with ethanol. The RNA's are stored at -80° C. in alcohol.

EXAMPLE 2: Purification of the poly A+ fraction of the RNA's

About 1 mg of RNA is precipitated for 20 min at 4° C. (15,000 rpm) and then washed with 70% ethanol and dried. The residue is taken up in 1 ml of TE buffer and resuspended by agitation in a Vortex. Oligo dT-cellulose type 3 (marketed by Collaborative Research Inc., Biomedicals Product Division) is prepared according to the manufacturer's recommendations. The RNA is deposited on the oligo dT, agitated gently to resuspend the beads and then heated for 1 min at 65° C.

The suspension is adjusted to 0.5M NaCl and then agitated gently for 10 min. It is then centrifuged for 1 min at 1000 rpm, the supernatant is removed and the residue is washed twice with 1 ml of TE buffer containing 0.5M NaCl. The supernatants are removed. The polyadenylated fraction of the RNA's (consisting of the messenger RNA's) is eluted by suspending the beads in 1 ml of TE buffer, then heating this suspension at 60° C. for 1 min and subsequently agitating it for 10 min on a tilting plate. It is then centrifuged for 1 min at 1000 rpm, which makes it possible to recover on the one hand the supernatant containing free mRNA's in solution, and on the other hand the residue of cellulose beads. The above series of operations (starting from elution) is repeated. The supernatants obtained in this way are pooled, the excess beads are removed by centrifugation and the supernatant is precipitated with ethanol containing NaCl in accordance with the usual techniques (Maniatis: op. cit.).

EXAMPLE 3: Building of the cDNA library

The messenger RNA's isolated as described in the previous Example were used to build a cDNA library in vector pTZ19R (marketed by PHARMACIA). This vector is a plasmid comprising a polylinker containing unique restriction sites.

The cloning technique used is the one described by Caput et al. (primer-adapter technique: Caput et al., Proc. Natl. Acad. Sci. (U.S.A.) (1986) 83, 1670-1674).

It consists firstly in digesting the vector with Pst1, adding a polydC tail to the protuberant 3' end and then 5 digesting the resulting plasmids with BamHI. The fragment corresponding to the vector is purified on a column of Sepharose CL4B (Pharmacia). It therefore comprises a polydC tail at one end, the other end being a sticky end of the BamHI type. Secondly, the messenger 10 Step 2: Concentration of the urate oxidase pool by ultra-RNA's are subjected to reverse transcription starting from a primer having the sequence (SEQUENCE ID NO. 7) 5' <GATCCGGGCCCT(12) < 3. Thus the cDNA's have at their 5' end the sequence GATCC complementary to the BamHI sticky end. The RNA- 15 DNA hybrids obtained by the action of reverse transcriptase are subjected to alkaline hydrolysis, enabling the RNA to be removed. The single-stranded cDNA's are then purified by 2 cycles on a column of Sepharose CL4B and subjected to a treatment with terminal trans- 20 ferase so as to add polydG's at the 3' end. The cDNA's are inserted in single-stranded form into the vector prepared as described above. A second oligonucleotide, the adapter, complementary to the primer, is necessary in order to generate an "open" BamHI site at the 5' end 25 of the cDNA's. After hybridization of the vector, the cDNA and the adapter, the recombinant molecules are circularized by the action of the ligase of phage T4. The single-stranded regions are then repaired by means of the DNA polymerase of phage T4. The plasmid pool 30 obtained in this way is used to transform the MC1061 strain for ampicillin resistance (Casabadan, Chou and Cohen, J. Bact. (1980) 143, pages 971-980.

EXAMPLE 4: Purification of urate oxidase extracted 35 from A. flavus and characterization thereof

1) Purification of urate oxidase extracted from A. flavus

A preparation of urate oxidase extracted from A. flavus (Uricozyme-Laboratoires Clin Midy), having a 40 specific urate oxidase activity of 8 U/ml (the specific urate oxidase activity is the ratio of the urate oxidase activity measured by the test described in Example 9 to the weight of total proteins measured by the Bradford method: Anal. Biochem., 72, 248-254), was repurified 45 by chromatography on a column of Red-agarose 120 grafted agarose (SIGMA), concentration by ultrafiltration and filtration on Ultrogel Aca 44 (IBF), a polyacrylamideagarose gel, according to the following protocol:

Step 1: Affinity chromatography on grafted agarose Temperature: 4° C

Column: PHARMACIA K50/30

diameter = 50 mm

length=33 cm

Resin: Red 120 Agarose (3.000 CL/R-0503 SIGMA)

(volume of gel=410 ml

height of gel=20 cm)

Equilibration buffer: glycine/NaOH 20 mM pH 8.3 Elution buffer: glycine/NaOH 20 mM, NaCl 2M pH 8.3 60 Conditioning flow rate: 250 ml.h-1

Operating flow rate: 160 ml.h-1

Elution flow rate: 60 ml.h-1

- 1) Deposit the solution of Uricozyme on the top of the column with the aid of a constant-flow pump.
- 2) After adsorption, wash the column with twice its volume of equilibration buffer.
- 3) Elute with an ionic strength gradient having the following composition:

glycine, NaOH, 20 mM pH 8.3/glycine, NaOH, 20 mM+NaCl 2M pH8.3

The total volume of the gradient is equal to 10 times the volume of the column, divided up equally between the two constituents.

Chromatographic recording is carried out at \u03b4=280 nm; the urate oxidase pool is collected after combination of the fractions which have a specific urate oxidase activity greater than or equal to 16 U/mg.

filtration with the aid of a Biopass system comprising a 10 kDa ultrafiltration membrane

Step 3:

Temperature: 4° C.

Column: PHARMACIA K 50/100

diameter=50 mm

length=100 cm

Resin: polyacrylamide-agarose with amine and hydroxyl groups: Ultrogel ACA 44 (IBF)

volume of gel=1.61

height of gel=80 cm

Equilibration buffer: glycine/NaOH 20 mM pH 8.3 Conditioning flow rate: 40 ml.h-1

Operating flow rate: 24 ml.h31 l

1) Deposit the concentrated urate oxidase pool on the top of the column with the aid of a constant-flow pump.

2) After the sample has been deposited, continue to supply the column with the buffer glycine/NaOH 20 mM pH 8.3

3) After chromatography, wash with NaCl 2M until the UV absorbance value (λ =280 nm)<0.05.

Store under NaCl 2M at 4° C.

Chromatographic recording is carried out at $\lambda=280$ nm; the urate oxidase pool is collected after combination of the fractions which cojointly have:

a specific urate oxidase activity greater than or

equal to 20 U/mg; and

only 2 bands in electrophoresis under denaturing conditions (presence of SDS) and with silver nitrate developing (Biorad staining kit), namely: a major band of 33-34 kDa

a minor band of 70-71 kDa.

2) Characterization of purified urate oxidase extracted from A. flavus

a) Partial sequencing

Direct amino-terminal sequencing of the protein was attempted in order to obtain information on the amino acid sequence of the purified urate oxidase extract, making it possible to synthesize the probes necessary for cloning the cDNA. This sequencing was not successful because of amino-terminal blocking of the protein (cf. f) below).

The following strategy was therefore developed to

obtain the partial sequence of urate oxidase: cleavage of the protein with proteolytic enzymes (using the enzymes trypsin and protease V8 of Staphylococcus aureus

separation of the resulting polypeptides by reversed phase HPLC

sequencing of the purified peptides.

a) Hydrolysis of the urate oxidase with trypsin, purifi-

cation and sequencing of the peptides

The urate oxidase, at a concentration of 9 mg/ml in an ammonium carbonate buffer 100 mM pH 8.9, was digested with trypsin (Worthington, TPCK), in a ratio urate oxidase/trypsin of 30/1 by weight, at 30° C. for 24 h. After tryptic hydrolysis, 60 µg of digested urate oxidase were directly injected on to a reversed phase HPLC column of Brownlee G18 grafted silica (column: 10×0.2 cm) equilibrated with acetonitrile 1% (v/v) and trifluoroacetic acid 0.1% (v/v) in water. The peptides were then eluted by a linear gradient of acetonitrile in a 5 solution of trifluoroacetic acid (0.1% v/v) in water, varying from 1% to 60% of acetonitrile in 60 min, at a rate of 150 µl/min. The peptides leaving the column were detected by measurement of the optical density at 218 nm.

The elution profile is shown in FIG. 1, in which the

The elution profile is shown in FIG. 2, in which the numbers following the letter V (protease V8) correspond to the peaks identified.

Each peak was collected and stored at -20° C. until analyzed on the protein sequencer already mentioned.

Table I below shows the peptide sequences of the 5 peaks identified which have been assigned SE-QUENCE ID NOs. as follows: V 1-SEQUENCE ID NO. 17; V 2-SEQUENCE ID NO. 18; V 3-10 SEQUENCE ID NO. 19; V 5-SEQUENCE ID NO. 20; and V 6-SEQUENCE ID NO. 21.

TABLE I

		18222
		Sequencing of the products obtained by hydrolysis
With the aid	T 17	Asn - Val - Gln - Val - Asp - Val - Val - Glu - Gly - Lys
of trypsin	T 20	Asn - Phe - Ser - Gly - Leu - Gln - Glu - Val
· · · · · · · · · · · · · · · · · · ·	T 23	Phe - Asp - Ala - Thr - Trp - Ala
	T 27	His - Tyr - Phe - Glu - Ile - Asp - Leu - Ser
	T 28	lle - Leu - Ser - Thr - Asp - Val - Asp - Ala - Thr - Trp - Gin - Trp - Lys
	T 20	His . Tyr . Phe - Glu - Ile - Asp - Leu - Ser - Trp - His - Lys
	T 31	Ser - Thr - Asn - Ser - Gin - Phe - Trp - Gly - Phe - Leu - Arg
	T 32	Gln - Asn - Pro - Val - Thr - Pro - Pro - Gln - Leu - Phe - Gly - Ser - Ile -
		Leu - Gly - Thr
	T 33	Gin - Asn - Pro - Val - Thr - Pro - Pro - Giu - Leu - Phe - Gly - Ser - Ile -
		Leu - Gly - Thr
With the aid	V I	Tyr - Ser - Leu - Pro - Asn - Lys - His - Tyr - Phe - Glu - He - Asp - Leu -
of protease	·	Ser - Trp - His - Lys
V8	V 2	
		Val - Gin - Ala
	V 3	Thr - Ser - Tyr - Thr - Lys - Ala - Asp - Asn - Ser - Val - Ile - Val - Asp -
		Thr - Asp - Ser - Ile - Lys - Asn - Thr - Ile - Tyr - Ile - Thr
	V 5	Gly - Lys - Gly - Ile - Asp - Ile - Lys - Ser - Ser - Leu - Ser - Gly - Leu -
		Thr - Val - Leu - Lys - Ser - Thr - Asn - Ser - Gin - Phe - Trp - Giy - Phe -
		Leu - Arg
	V 6	
		Thr - Val - Leu - Lys

numbers following the letter T (trypsin) correspond to the peaks identified.

Each peak was collected and stored at -20° C. until analyzed on a protein sequencer (model 470 A from Applied Biosystems) equipped with a chromatograph 40 (model 430 A from Applied Biosystems), which continuously analyzes the phenylthiohydantoic derivatives formed, after each degradation cycle. Table I below shows the peptide sequences of the 9 peaks identified which have been assigned SEQUENCE ID NOs. as 45 follows: T 17-SEQUENCE ID NO. 8; T 20-SEQUENCE ID NO. 9; T 23-SEQUENCE ID NO. 10; T 27-SEQUENCE ID NO. 11; T 28-SEQUENCE ID NO. 12; T 29-SEQUENCE ID NO. 13; T 31-SEQUENCE ID NO. 14; T 32-SEQUENCE ID NO. 50 gel plates from Pharmacia with pH ranges of (3.5-9.5) 15; T 33-SEQUENCE ID NO. 16.

β) Hydrolysis of the urate oxidase with protease V8, purification and sequencing of the peptides

The urate oxidase, at a concentration of 2 mg/ml in an ammonium acetate buffer 100 mM pH 6.8, was di- 55 gested with the protease V8 of Staphylococcus aureus (Boehringer-Mannheim), in a ratio urate oxidase/protease V8 of 60/1, at 30° C. for 72 h. 160 µg of digested urate oxidase were then injected on to a reversed phase HPLC column of Brownlee G18 grafted silica 60 ethanol and 8% of acetic acid (to eliminate the back-(column: 10×0.2 cm; particles: 7×0.03 μm), equilibrated with acetonitrile 1% and trifluoroacetic acid 0.1% (v/v) in water. The peptides were then eluted by a linear gradient of acetonitrile in a solution of trifluoroacetic acid in water (0.1% (v/v)), varying from 1% to 65 60% of acetonitrile in 60 min, at a rate of 150 μl/min. The peptides leaving the column were detected by measurement of the optical density at 218 nm.

b) Specific activity

The purified urate oxidase extract has a specific activity of about 30 U/mg.

c) Electrophoresis under denaturing conditions

Electrophoresis of the purified urate oxidase extract on polyacrylamide gel in the presence of SDS (sodium dodecylsulfate), followed by silver developing, reveals a high intensity band of about 33-34 kDa and a very low intensity band of about 70-71 kDa.

d) Determination of the isoelectric point

Procedure

Use of ready-to-use gels, namely LKB Ampholines and (5-8).

Deposition of 10 µl of LKB standard proteins (range of isoelectric points of the standard proteins: 3.5-9.5) and 4 µg and 8 µg of purified urate oxidase (on two different lanes).

Run 1 h 30 min, 12 V, 6° C.

Then staining with Coomassie blue (0.1%) in (25% ethanol, 8% acetic acid) to stain the proteins, followed by decolorization with a solution containing 25% of ground).

Results: Observation of two close bands (doublet), of isoelectric points 8.1 and 7.9, on each of the two lanes.

e) Two-dimensional gel analysis

Two-dimensional gel analysis makes it possible to separate the proteins in a first stage according to their isoelectric points and in a second stage according to their molecular weights.

Protocol

Sample: solution of purified urate oxidase extract in a glycine buffer 20 mM pH 8.3

Preparation of the sample

Two samples of 5 μ g and 10 μ g of urate oxidase. Drying by vacuum centrifugation and taking-up in 5 μ l of a lysis buffer having the following composition: urea 2.5M, 3-(3-cholamidopropyl)dimethylammonio- 10 propane-1-sulfonate, CHAPS (Sigma), 2% (v/v), Ampholines amphoterics (LKB) of pH ranges 5-8 and 3.5-9.5, 0.4%, and β -mercaptoethanol 5%.

Isoelectrofocusing gel

Preparation of a solution containing urea 9.5M, CHAPS 5%, LKB Ampholines (pH (3.5-9.5) 1%; pH (5-8) 1%), acrylamide/bisacrylamide (28.4%/1.7%) 3.5% final concentration, H₂O.

Filtration and degassing of the solution, followed by 20 addition of 0.075% of tetramethylethylenediamine, Temed (Pharmacia), and 0.015% of ammonium persulfate.

Introduction of the solution into tubes (16×0.12 cm)-polymerization overnight at 20° C.

Cathodic solution: NaOH 0.1M, degassed.

Anodic solution: H₃PO₄ 25 mM.

Prerun 45 min at 4 mA (voltage 300 V→1000 V).

Deposition of the samples at the cathode.

Run 19 h at 1000 V and at 20° C.

Demolding of the gels and equilibration for 10 min at 20° C. in a buffer (Tris 0.375M pH 8.8; SDS 3%; dithiothreitol, DTT, 50 mM).

PAGE/SDS denaturing gel

Preparation of a solution containing acrylamide/bisacrylamide (30%/0.8%) 15% final concentration, Tris-HCl (pH 8.8) 0.375M, H₂O.

Filtration and degassing of the solution, followed by addition of SDS (0.1%), ammonium persulfate 0.05% 40 and Temed 0.05%.

Polymerization overnight at 4° C. (gel 16×20×0.15 cm).

After equilibration, deposition of the isoelectrofocusing gel on the surface of the PAGE/SDS gel, 45 followed by sealing with agarose.

Electrophoresis buffer: (Tris-HCl 25 mM pH 8.3, glycine 0.192M, SDS 0.1%).

Run 100 mA-6 h at 6° C.

Fixing of the gel in 50% methanol, 10% acetic acid, 50 followed by silver nitrate staining (method of Blum, H., Electrophoresis 1987, 8, p. 93-99).

Scanning of the gel on a Visage 2000 image analyzer from Kodak for determination of the optical density and surface area of each spot and hence for calculation of 55 the quantitative ratio between the spots.

Determination of the molecular weight of the protein by preparation of a two-dimensional gel in the presence of Amersham standard proteins.

Result

Two spots with a molecular weight of the order of 33.5 kDa are observed, one being the majority spot with an isoelectric point of the order of 8.0, intensity 5.2 (representing about 93% of the weight of proteins), and 65 the other being the minority spot with an isoelectric point of the order of 7.4, intensity 0.41 (representing about 7% of the weight of proteins).

- f) Determination of the amino-terminal sequence and the mass of the blocking amino-terminal group
 - a) Demonstration of the blocked character of the amino-terminal sequence

The amino-terminal sequence was analyzed with the aid of an Applied Biosystem model 470A sequencer coupled with an Applied Biosystem model 120A analyzer of phenylthiohydantoic derivatives. The purified urate oxidase (200 pmol, checked by amino acid analysis) was deposited on the sequencer in the presence of 20 pmol of β -lactoglobulin, a standard protein.

No amino-terminal sequence corresponding to a urate oxidase sequence was detected (by contrast, the amino-terminal sequence of the standard protein was detected, showing that the sequencer was working).

A. flarus urate oxidase therefore has the amino-terminal end blocked.

β) Determination of the sequence of an amino-terminal peptide of 32 amino acids and the mass of the blocking amino-terminal group

Method: Digestion with cyanogen bromide

The purified urate oxidase extract is subjected to gel filtration on Sephadex G25 (PD10-Pharmacia), a gel obtained by crosslinking dextran with epichlorohydrin, equilibrated with a solution containing 7% of formic acid, making it possible to remove the salts and change the buffer. The formic acid concentration is increased to 70% by vacuum centrifugation. Cyanogen bromide is then added to a final concentration of 0.2M and the reaction is allowed to proceed for 20 h under argon, in the absence of light and at room temperature.

Separation by ion exchange chromatography of the peptides derived from digestion of the protein with cyanogen bromide

The peptides were separated on an ion exchange column based on mono S hydrophilic resin (Pharmacia). Buffer A: ammonium acetate 10 mM pH 6.2 Buffer B: ammonium acetate 1M pH 6.2

Flow rate: 0.6 ml/min, peak detection by measurement of the optical density at 278 nm

Gradient: from 0% of B to 100% of B in 30 min-collection of 1 ml fractions

The fractions derived from the ion exchange step were analyzed by PAGE/SDS gel according to the method described by Schagger and Von Jagow (1987) Anal. Biochem. 166-p. 368-379.

Purification of the amino-terminal peptide by reversed phase HPLC and analysis thereof by mass spectrometry.

The peptide derived from the ion exchange step, having a molecular weight of about 4000 Da (on PAGE/SDS gel), was purified on a Beckman Altex C18 column (250×2.1 mm), which is a reversed phase HPLC column based on C18 grafted silica.

60 Flow rate: 0.3 ml/min, peak detection by measurement of the optical density at 218 nm

Buffer A: H₂O/0.1% TFA (trifluoroacetic acid) Buffer B: acetonitrile/0.1% TFA

Gradient: from 1 to 50% of B in 60 min.

The peptide collected after a first reversed phase HPLC step was repurified on the same reversed phase HPLC column, but with a different gradient.

Gradient: from 1 to 50% of B in 10 min.

The peak collected was subjected to analysis by fast atom bombardment mass spectrometry (FAB/MS) with a glycerol+thioglycerol matrix.

Digestion of the amino-terminal peptide with chymotrypsin and amino acid analysis of the chymotryptic peptides separated by reversed phase HPLC

To establish the sequence of the peptide purified by reversed phase HPLC, said peptide was digested with 10 chymotrypsin. The chymotryptic peptides were separated by reversed phase HPLC on a Beckman Altex C18 column (250 \times 2.1 mm).

Flow rate: 0.3 ml/min, peak detection by measurement

of the optical density at 218 nm

Buffer A: H₂O/0.11% TFA

Buffer B: acetonitrile/0.08% TFA

Gradient: from 1% of B to 50% of B in 60 min-collection of the peeks.

The chymotryptic peptides were identified by amino 2 acid analysis on an Applied Biosystem analyzer (model 420-130A).

Results

The results presented below, which were established 25 after determination of the sequence of the cDNA of A. flavus urate oxidase and the deduced amino acid sequence (cf. Example 6), can only be understood in the light of the following:

Analysis of the amino-terminal peptide by mass spec- 30 trometry

A difference of about 42 atomic mass units is observed between the two molecular weights determined by mass spectrometry, 3684 and 3666, and the theoretical molecular weights determined from the following 35 sequence (amino acid sequence deduced from the cDNA of A. flavus urate oxidase with cleavage of the amino-terminal methionine group and peptide cleavage with cyanogen bromide after the first methionine residue) which corresponds to amino acids 1-31 of SE- 40 QUENCE ID NO. 1:

SerAlaValLysAlaAlaArgTyrGly LysAspAsnValArgValTyrLysValHis LynAspGluLysThrGlyValGlnThrVal TyrGlu

with a carboxy-terminal methionine residue modified by reaction with cyanogen bromide to give either homoserine, 3642, or homoserine lactone, 3624.

There is therefore a blocking group on the amino-ter- 50 (part of the sequence of V 5), i.e. from 5' to 3': minal serine which accounts for an additional mass of about 42 atomic mass units, probably corresponding to acetylation of said amino-terminal serine (mass of CH₃CO-mass of H=42 atomic mass units).

Amino acid analysis of the chymotryptic peptides This analysis made it possible to show unambiguously that the sequence of the amino-terminal peptide obtained by digestion with cyanogen bromide comprises the sequence (1) described above.

The complete amino acid sequence of urate oxidase is 60 ferase (TdT) (marketed by IBI Inc.). shown hereinafter (SEQUENCE ID NO. 1).

										_
Ser	Ala	Val	Lys	Ala	Ala	Arg	Tyr	Gly	Lys	
Asp	Asn	Val	Arg	Val	Tyr	Lys	Val	His	Lys	
Asp	Glu	Lys	Thr	Gly	Val	Gin	The	Val	Tyr	
	Met	Thr	Val	Cys	Val	Leu	Leu	Glu	Gly	
	Пe	Glu	Thr	Ser			Lys		Asp	
Asn	Ser	Val		Val	Aľa	Thr	Asp	Ser	Πe	
Lys	Asa	Thr	Πe	Tyr	Ile		Ala	Lys	Gln	

-continued

	Asn	Pro	Val	Thr	Pro	Pro	Gh	Leu	Phe	Gly	
	Ser	Пe	Leu	Gly	Thr	His	Pho	Пe	Glu	Lys	
	Tyr	Asn	His	Пe	His	Ala	Ala	His	$\mathbf{v}_{\mathbf{a}}$	Asn	
5	Ile	Val	Cys	His	Arg	Trp	Thr	Arg	Met	Asp	
	Пe	Asp	Gly	Lys	Pro	His	Pro	His	Ser	Phe .	
	Пe	Arg	Asp	Ser	Glu	Gh	Lys	Arg	Asn	Val	
	Gin	Val	Asp	Val	Val	Ghı	Gly	Lys	Gly	Пe	
	Asp	lle	Lys	Ser	Ser	Leu	Ser	Gly	Leu	Thr	
	Val	Leu	Lys	Ser	Thr	Am	Ser	Gla	Phe	Trp	
0	Gly	Phe	Leu	Arg	Asp	Glu	Тут	Thr	Thr	Leu	
	Lys	Ghi	Thr	Trp	Asp	Arg	Ιie	Leu	Ser	Thr	
	Asp	Val	Asp	Ala	Thr	Trp	Gin	Trp	Lys	Asn	
	Phe	Ser	Gly	Leu	Gin	Glu	Val	Arg	Ser	His	
	Val	Pro ·	Lys	Phe	Asp	Ala	Thr	Trp	Ala	Thr	
	Ala	Arg	Glu	Val	Thr	Leu	Lyı	Thr	Phe	Ala.	
15	Giu	Asp	Asn	Ser :	Ala	Ser	Val	Gla	AJa	Thr	
IJ	Met	Tyr	Lys	Met	Ala	Glu	Gìn	lle	Leu	Ala	
	Arg	Gla	Gla	Leu	Пe	Glu	Thr	Val	Glu	Tyr	
	Ser	Leu	Pro	Asn	Lys	. His	Tyr	Phe	Glu	Пe	
	Asp	Leu	Ser	Trp	His	Lys	Gly	Leu	Gln	Asn	
	Thr	Gly	Lys	Asn	Ala	Glu	Val	Phe	Ala	Pro	
	Gla	Ser	Asp	Pro	Asn	Gly	Leu	Пe	Lys	Cys	
20	Thr	Val	Gly	Arg	Ser	Ser	Leu	Lys	Ser	Ľуз	
	Leu										

EXAMPLE 5: Screening of the bacteria

1) Preparation of the labeled probes

Two pools of probes deduced from amino acid sequences of the protein were synthesized with the aid of a Biosearch 4600 DNA synthesizer. The first pool corresponds to the sequence of residues which correspond to amino acids 1-6 of SEQUENCE ID NO. 11 His-Tyr-Phe-Glu-Ile-Asp (part of the sequence of T 27), i.e. from 5' to 3':

This pool in fact consists of $2^4 \times 3 = 48$ different oligonucleotides, representing all the possible combinations.

The second pool corresponds to the sequence of amino acid residues which correspond to amino acids 22-27 of SEQUENCE ID NO. 20 Gln-Phe-Trp-Gly-Phe-Leu

This pool consists of $2^4 \times 4 = 64$ combinations. The probes are labeled with terminal deoxynucleotide trans-

The reaction is carried out on 100 ng of a mixture of oligonucleotides in solution (100 mg/ml) in "Cobalt" reaction buffer (supplied as a 10-fold concentrate by IBI Inc.): 1.4M potassium cacodylate-pH 7.2, 300 mM dithi-65 othreitol, 1 µl of the enzyme terminal deoxymucleotide transferase (IBI Inc.) and 50 µCi of deoxycytidyl triphosphate, dCTP, labeled with P32. The reaction is carried out at 37° C. for 10 min and is then stopped by

the addition of 1 µl of EDTA 0.5M. A phenol extraction is carried out and the extract is dialyzed on a column of Biogel P1O polyacrylamide (Biorad: 150-1050).

2) Hybridization and detection of the colonies containing urate oxidase cDNA

About 40,000 colonies are screened by the in situ hybridization technique developed by Grunstein and Hogness (1975, Proc. Natl. Acad. Sci. (U.S.A.), 72, 3961). About 6000 bacteria are plated out in Petri dishes 10 to give isolated colonies. After incubation for 24 h at 37° C, each dish is replicated on 2 filters, each filter being intended to be treated with one of the 2 pools of probes, so that all the colonies obtained are tested with the 2 pools of probes in parallel.

The filters are hybridized with one of the 2 pools of probes in a buffer containing 6×SSC, 10×Denhardt's solution and 100 µg/ml of sonicated and denatured salmon sperm DNA (SIGMA). The hybridization is carried out at a temperature of 42° C. for 16 h. The 20 6×SSC solution is obtained by diluting a 20×SSC solution. The preparation of the 20×SSC buffer is described by Maniatis, Fritsch and Sambrook (op. cit.). In summary, this buffer contains 175.3 g/l of NaCl and 88.2 g/l of sodium citrate and is adjusted to pH 7 with 25 a few drops of NaOH 10N. The 10×Denhardt's solution contains 1 g of Ficoll, 1 g of polyvinylpyrrolidone and 1 g of human serum albumin per 500 ml of final volume.

After washing in the 6×SSC solution at 42° C. (3 h 30 with 5 changes of bath), the filters are wiped with Joseph paper and subjected to autoradiography. The filters are developed after 16 h. A fraction of about 0.5% of the colonies was found to have hybridized with the 2 pools of probes.

5 colonies from this fraction were taken up and purified. The plasmid DNA was prepared from each of these colonies and this DNA was analyzed by digestion with either BamHI, or HindIII, or both BamHI and HindIII.

After analysis on agarose gel, the 5 plasmids obtained were found to have been linearized by BamHI and by HindIII. The double digestions make it possible to release a fragment corresponding to the whole of the cloned cDNA. The size of this fragment is about 1.2 kb 45 in 3 cases and about 0.9 kb in the other 2 cases. For the following determination, one of the 0.9 kb fragments and one of the 1.2 kb fragments were selected and recloned (see Example 6 below).

EXAMPLE 6: Determination of the sequence of urate oxidase cDNA

On the one hand one of the 0.9 kb fragments (clone 9A) and on the other hand one of the 1.2 kb fragments (clone 9C) were recloned in the DNA of the replicative 55 The different restriction segments are labeled arbitrarily form of single-stranded phage M13. The DNA of the M13 clones, containing the 0.9 kb fragment on the one hand and the 1.2 kb fragment on the other, was digested with exonuclease so as to generate a series of overlapping M13 clones (procedure: "Cyclone I Biosystem" of 60 IBI). Said clones were sequenced by the dideoxyribonucleotide method (Sanger et al., PNAS-U.S.A.-1977, 14, 5463-5467).

The nucleotide sequence of clone 9C is shown in FIG. 3, which also indicates, with an arrow, the start of 65 clone 9A and, with a nucleotide symbol followed by an asterisk *, the sequenced nucleotides of clone 9A which are not identical to those of clone 9C (when matching

the two sequences and the AccI and BamHI restriction sites used in the subsequent constructions (cf. Example 10)).

It is found that

the nucleotide sequence of the longer fragment (clone 9C) overlaps that of the shorter fragment (clone 9A) but for two differences (see FIG. 3). One of the differences is quiescent and the other corresponds to a change from a tryptophan residue to a glycine residue. These differences may be due either to differences in the messenger RNA's isolated (cf. Example 2 above) or to errors in the reverse transcriptase used when building the cDNA library (cf. Example 3 above). The sequencing of the genomic DNA of A. flavus urate oxidase has made it possible to overcome this ambiguity: it is a tryptophan residue (hence probably an error of the reverse transcriptase.

In the case of the longer fragment, an ATG codon (in position 109 in FIG. 3) opens an open reading frame corresponding to a polypeptide of 302 amino acids, with a molecular weight of about 34,240 Da, whose sequence corresponds to the partial sequence of purified A. flavus urate oxidase (cf. Example 4).

FIG. 4 shows the DNA sequence opened by the ATG codon and the polypeptide coded for, and, with arrows opposite the polypeptide coded for, the sequenced peptides (cf. Example 4) obtained by hydrolysis of A. flavus urate oxidase with trypsin and protease

It is found that the sequence of the polypeptide terminates in the triplet Ser-Lys-Leu, which is typical of peroxisomal location enzymes (Gould S. J. et al., J. Cell 35 Biology 108 (1989) 1657-1664).

EXAMPLE 7: Construction of an expression vector for urate oxidase cDNA

Plasmid p466, a vector for expression in E. coli, was 40 prepared. It comprises a fragment of pBR327 including the origin of replication and the ampicillin resistance gene; it also comprises a synthetic promoter of E. coli (R. RODRIGUEZ and M. CHAMBERLIN, "Promoters-Structure and function (1982), Preager), a Shine-Dalgarno sequence followed by a polylinker containing the unique Ndel and KpnI sites, a transcription terminator (derived from phage fd) and the lac i gene.

This plasmid was constructed from an expression plasmid for hGH in E. coli (p462) by replacing a frag-50 ment carrying the hGH gene with urate oxidase cDNA.

The construction of plasmid p466 will now be described in greater detail in the following account, which will refer to FIGS. 5, 6, 7, 8 and 9.

FIG. 5 shows a restriction map of plasmid p163,1. according to the following legend:

=DNA segment derived from plasmid pBR322

Location of the origin of replication

=DNA segment containing the sequence coding for a natural precursor of hGH

www.=DNA segment of phage fd containing a transcription terminator

ME DNA segment containing a tryptophanlactose UV5 hybrid promoter-operator

■=DNA segment coding for β-lactamase (ApR: ampicillin resistance)

FIG. 6 shows the restriction map of plasmid p160, whose PvuI-XhoI-BamHI(1) and PvuI-ORI-BamHI(2) fragments originate respectively from plasmids p163,1 and pBR327 and whose small BamHI(2)-BamHI(1) fragment is fragment 3 described below.

FIG. 7 shows the restriction map of plasmid p373,2. The different restriction segments are labeled arbitrarily according to the following legend:

---- = Pvul-BamHI sequence derived from plasmid pBR327

==PvuI-XhoI sequence derived from plasmid p163,1

Zimmum = XhoI-HincII sequence derived from plasmid p163,1

(HincII) ClaI NdeI PstI

Fragment 4 described below

FIG. 8 shows a restriction map of plasmid p462, the

and J. SAMBROOK, Cold Spring Harbor Laboratory (1982). The oligonucleotides are synthesized with the aid of a Biosearch 4600 DNA synthesizer.

Plasmid p163,1 (FIG. 5), described in European pa-5 tent application A-0245138 and deposited in the CNCM under the reference I-530 on Feb. 17, 1986, was digested with the enzymes Pvul and BamHI. This plasmid contains the gene coding for hGH. The Pvul-BamHI fragment-hereafter called fragment 1-containing the site of 10 action of the restriction enzyme XhoI, shown in FIG. 5, was purified.

Likewise, plasmid pBR327, which is well known to those skilled in the art (q.v. SOBERON, X. et al., Gene, 9 (1980) 287-305), was digested with the enzymes PvuI and BamHI. The PvuI-BamHI fragment—hereafter called fragment 2—containing the origin of replication, was purified.

Fragment 3 was then prepared; this is a synthetic BamHI(1)-BamHI(2) fragment containing the lac i gene 20 and its promoter and it has the following sequence (SE-QUENCE ID NO. 22), in which the two ends of the strand are identified by the numbers 1 and 2 in order to specify the orientation of the fragment in the plasmids described in FIGS. 6 and 7:

		FRAGMENT 3		•	
BamHI(1)					
5' GATCC	GCGGAAGCAT	AAAGTGTAAA	GCCTGGGGTG	CCTAATGAGT	
GAGCTAACTT	ACATTAATTG	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	
GAAACCTGTC	GTGCCAGCTG	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	
GGCGGTTTGC	GTATTGGGCG	CCAGGGTGGT	TTTTCTTTTC	ACCAGTGAGA	
CGGGCAACAG	CTGATTGCCC	TTCACCGCCT :	GGCCCTGAGA	GAGTTGCAGC	
AAGCGGTCCA	CGCTGGTTTG	CCCCACCACC	CGAAAATCCT	GTTTGATGGT	
GGTTAACGGC	GGGATATAAC	ATGAGCTGTC	TTCGGTATCG	TCGTATCCCA	
CTACCGAGAT	ATCCGCACCA	ACGCGCAGCC	CGGACTCGGT	AATGGCGCGC	
ATTGCGCCCA	GCGCCATCTG	ATCGTTGGCA.	ACCAGCATCG	CAGTGGGAAC	
GATGCCCTCA	TTCAGCATTT	GCATGGTTTG	TTGAAAACCG	GACATGGCAC	
TCCAGTCGCC	TTCCCGTTCC	GCTATCGGCT	GAATTTGATT	GCGAGTGAGA	
TATTTATGCC	AGCCAGCCAG	ACGCAGACGC	GCCGAGACAG	AACTTAATGG	
GCCCGCTAAC	AGCGCGATTT	GCTGGTGACC	CAATGCGACC	AGATGCTCCA	
CGCCCAGTCG	CGTACCGTCT	TCATGGGAGA	AAATAATACT	GTTGATGGGT	
GTCTGGTCAG	AGACATCAAG	AAATAACGCC	GGAACATTAG	TGCAGGCAGC	
TTCCACAGCA	ATGGCATCCT	GGTCATCCAG	CGGATAGTTA	ATGATCAGCC	
CACTGACGCG	TTGCGCGAGA	AGATTGTGCA	CCGCCGCTTT	ACAGGCTTCG	
ACGCCGCTTC	GTTCTACCAT	CGACACCACC	ACGCTGGCAC	CCAGTTGATC	
GGCGCGAGAT	TTAATCGCCG	CGACAATTTG	CGACGGCGCG	TGCAGGGCCA	
GACTGGAGGT	GGCAACGCCA	ATCAGCAACG	ACTGTTTGCC	CGCCAGTTGT	•
TGTGCCACGC	GGTTGGGAAT	GTAATTCAGC	TCCGCCATCG	CCGCTTCCAC	
TTTTTCCCGC	GTTTTCGCAG	AAACGTGGCT	GGCCTGGTTC	ACCACGCGGG	
AAACGGTCTG	ATAAEAGACA	CCGGCATACT	CTGCGACATC	GTATAACGTT	
ACTGGTTTCA	CATTCACCAC	CCTGAATTGA	CTCTCTTCCG	GGCGCTATCA	
TGCCATACCG	CGAAAGGTTT	TGCGCCATTC	GATGGTGTCC	G	3′
•				BamHI(2)	

synthetic BglII-HindIII fragment defined below being represented by:

FIG. 9 shows a restriction map of plasmid p466, the NdeI-KpuI fragment, comprising the gene coding for urate oxidase, being represented by:

1) Construction of plasmid p373,2

The strategy employed uses fragments obtained from pre-existing plasmids available to the public, and fragments prepared synthetically by the techniques now in 60 common use. The cloning techniques employed are those described by T. MANIATIS, E. F. FRITSCH

Fragments 1, 2 and 3 were then ligated to give plasmid p160, shown in FIG. 6.

This plasmid was partially digested with the restriction enzymes HincII and PstI. The large HincII-PstI fragment, containing the origin of replication and shown in FIG. 6, was then ligated with fragment 4 (SEQUENCE ID NO. 23), shown below, which is a synthetic DNA fragment carrying a sequence coding for the first 44 amino acids of a natural precursor of hGH and, upstream from this sequence, regulatory signals.

										•						
	AD:	GCT A Ndel	- 1	<u> </u>	CTO	GAC	H		TTT	VVV	L ,	TAC	ATC Y	CA		
Cal	CATO	GTAG	ATAC.	CTATATGTA	TGC	ACG	o .		CTT	GAA	J			CTG	0	
	ATTA	TAAT	GAT/	CTAT		GAC	ı		AGA	TCT	e		CTG	TTC	AAG PAG	
	TTAT	AATA	4 <u>A G G 7</u>	rrcci		GAC	7	Xbal		AGA	S	TTT	AAA		AGT	
	TIGG	AACC	TAAG,	ATTC			o		TTA	AAT	٠ ا	gcc	CGG		ATA	
	TCGAGCTGACTGACCTG <u>TTGCTT</u> ATATACAT [†] GA	AGCTCGACTGACTGGACAACGAATATAATGTAGCT	ACTT	rgaa.	TIT GGC	-	EL,			000	e.		GAC	AAG	TTC	
	ACTG/	GACT	TTTA	AAAT			∢	•	ATT	TAA	-	CAG	OTC Q		010 0010	
	oct G	CGAC	ACAG	TOTC	crc cro ocr	GAC		,	ACC	T G G	۲	CAC	GTG		CTT	
	TCGA	AGCT	TCAC	AGTG	crc	OAG	H		CCA	GGT	<u>-</u>	сто	GAC		TTC	
	•		AATT	TTAA		OAC	ı			AAG	<u>r</u>	CGT	GCA		100 F 4	
İ	'n		TAAC	ATTG			တ		gcc	000	4 ï	CAT	GTA H		TAG	
			GCGA	GCCT		GCC TGA TCA	←		AGT	TCA	ဗ	CCC	C00		ATA	
			GTGA	ACTO	000	900	æ		GGC AGT	CCG	Ō	CGC	GCG		CGG	
			JAAT	TAAC	тсс	AGG	so.	•	GAG	CTC	凹	crc	GAG	GAA	CTT	
			roroc	SACCI	GGA TCC	ccr AGG	ъ.		CAA	GTT	0	ATG	TAC	GAA	CTT	
			AATO	TACA	ACC	100	۴		CTT	GAA	L)	GCT	CGA	TTT	AAA	
	٠		▼ TAGCG <u>TATAAT</u> GTGTGGAATTGTGAGGATAACAATTTCACACAGTTTAAACTTTAAGA <u>AGGA</u> GATATACAT	AT COATATTACACACCTTAACACTCGCCTATTGTTAAAGTGTCAAATTGAAATTCTTCCTCTATATGTA		CGA	∢		TOG	ACC	≱	AAC	TTG		CTC	
			TAGC	ATCO	ATG	TAC	¥-7		ccc	000	A	GAC	CTG	CAG	GTC	

23

In this fragment, the amino acids are designated by letters according to the following code:

A=Alamine M=Methionine C=Cysteine N=Asparagine D=Aspartic acid P=Proline ment derived from this digestion was purified and ligated with a synthetic DNA fragment whose sequence, given below (SEQUENCE ID NO. 25), is intended to reconstitute the end of the hGH gene, followed at the 3' end by the KpnI and SnaBI cloning sites.

B S I I

GATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACACAACGAT
AAGTTCGTCTGGATGTCGTTCAAGCTGTGTTTGAGTGTGTTGCTA

GAGACATTCCTGCGCATCGTGCAGTGCCGCTCTGTGGAGGGCAGCTGTGGCTTCTAGTAA

E=Glutamic acid Q=Glutamine

F=Phenylalanine R=Arginine

G=Glycine S=Serine

H=Histidine T=Threonine

I=Isoleucine V=Valine

K=Lysine W=Tryptophan

L=Leucine Y=Tyrosine

The sequences -35 (TTGCTT) and -10 (TA-40 TAAT) of the promoter sequence, and the Shine-Dalgarno sequence well known to those skilled in the art, are successively underlined in this fragment.

Plasmid p380,1 was obtained in this way.

Plasmid p380,1 was then digested with the restriction 45 enzymes Clal and NdeI so as to remove therefrom the small Clal-NdeI fragment of fragment 4 above and to replace it with the Clal-NdeI fragment below (SE-

This fragment comprises the BgIII and HindIII sticky ends. The novel plasmid formed in this way, p462 (cf. 35 FIG. 8), thus comprises a KpnI site and an NdeI site, which will be used for cloning the fragment containing urate oxidase cDNA in the expression vector.

The hybrid plasmid derived from pTZ19R, carrying urate oxidase cDNA of about 1.2 kb (clone 9C) (see Example 3), comprises a unique KpnI site. This site is located a few base pairs downstream from the cDNA cloning site. Furthermore, urate oxidase cDNA contains an AccI site situated near the 5' end.

The AccI-KpnI fragment, comprising the greater part of this cDNA, was therefore isolated and purified. Two complementary oligonucleotides were also synthesized, whose sequence, given below (SEQUENCE ID NO. 26):

5'-TATGTCTGCGGTAAAAGCAGCGCGCTACGGCAAGGACAATGTTCGCGT ACAGACGCCATTTTCGTCGCGCGATGCCGTTCCTGTTACAAGCGCAGA-5'

OUENCE ID NO. 24):

is intended to reconstitute the 5' end of the cDNA. This

ClaI

5' CGATAGCGTATAATGTGTGGAATTGTGAGCGGATAACA TATCGCATATTACACACCTTAACACTCGCCTATTGT

NdeI

ATTTCACACAG<u>TTTTTCGCG</u>AAGAAGGAGATATACA TAAAGTGTGTC<u>AAAAAGCGC</u>TTCTTCCTCTATATGTAT 5'

The resulting plasmid is plasmid p373,2 (FIG. 7).

2) Construction of plasmid p466

Plasmid p373,2 was subjected to a double digestion with the enzymes BgIII and HindIII. The large frag-

65 synthetic fragment obtained in this way has an NdeI end and another AccII end. The fragment and the synthetic sequence were ligated with the expression vector cut by KpnI and by NdeI. This three-fragment ligation makes it possible to obtain the expression vector, called p466, for E. coli urate oxidase (cf. FIG. 9). This plasmid was subjected to a series of enzymatic hydrolyses with restriction enzymes, which made it possible to verify the presence of the expected restriction sites, in particular 5 those carried by the gene coding for urate oxidase.

Plasmid p466 therefore contains, by construction, a gene coding for urate oxidase, having the following sequence (SEQUENCE ID NO. 3):

ATGTCTGCGG CAAGGTTCAC GCGCTACGGC AGACCGGTGT TAAAAGCAGC AAGGACGAGA GCTTCTGGAG CCGTCTGTGT GGTGAGATTG GACAACAGCG TCATTGTCGC AACCGACTCC CACCGCCAAG CAGAACCCCG TTACTCCTCC AAGTACAACC GACCCGGATG TGGGCACACA CTTCATTGAG AACATTGTCT GCCACCGCTG CCCTCACTCC TTCATCCGCG ACAGCGAGGA ACGTGGTCGA **GGGCAAGGGC** ATCGATATCA ACCGTGCTGA GTACACCACA **AGAGCACCAA** CTCGCAGTTC CTTAAGGAGA CCTGGGACCG ATGCCACTTG **AATTTCAGTG**

GCAGTGGAAG CACGTGCCTA AGTTCGATGC TACCTGGGCC GAAGACTTTT GCTGAAGATA ACAGTGCCAG **AGATGGCAGA** GCAAATCCTG GCGCGCCAGC TACTCGTTGC CTAACAAGCA CTATTTCGAA GGGCCTCCAA **AACACCGGCA** AGAACGCCGA ACCCCAACGG TCTGATCAAG TGTACCGTCG AAATTG.

(The nucleotides which are different from the nucleotides of the cDNA isolated from A. flavus are underlined in the above sequence. These differences were intro- 30 duced into the synthetic AccI-KpnI fragment so as to have, downstream from the ATG, a nucleotide se-

quence corresponding more closely to those normally encountered in a prokaryotic gene.)

EXAMPLE 8: Expression of urate oxidase cDNA

The E. coli K12 RR1 strain (Bethesda Research Lab. Inc.) was transformed for ampicillin resistance with plasmid p466 and with a negative control plasmid, pBR322. Ampicillin-resistant colonies were obtained in 40 both cases. I colony of each type was cultured in a medium (LB+ampicillin 100 µg/ml). After one night at 37° C., with agitation, the two cultures were diluted 100-fold in the medium (LB+ampicillin 100 µg/ml). After culture for 1 h, IPTG (isopropyl-β-D-thiogalac- 45 toside) 1 mM is added for 3 h.

Immunodetection of the urate oxidase by Western blot

1) Procedure

An aliquot corresponding to 0.2 ml at OD=1 is taken 50 from the culture medium obtained after induction with IPTG for 3 h. This aliquot is centrifuged and the supernatant is removed. The residue is then subjected to a Western blot—a technique well known to those skilled in the art—which comprises the following steps:

solubilization of the residue by boiling for 10 min in a buffer, called a loading buffer, consisting of Tris-HCl 0.125M pH 6.8, SDS 4%, bromophenol blue 0.002%, glycerol 20%, β-mercaptoethanol 10% (according to the protocol described by LA- 60 EMMLI (U. K. LAEMMLI, Nature, 227 (1970)

electrophoretic separation of the different proteins contained in the solubilizate, according to the protocol described by LAEMMLI (U. K. LA-65 EMMLI, Nature, 227 (1970) 680-685); and

transfer of said proteins contained in the gel on to a nitrocellulose filter (according to the technique of H. TOWBIN et al., Proc. Natl. Acad. Sci. USA 76 (1979) 4350-4354).

Immunodetection, performed according to the technique of BURNETTE (W. W. BURNETTE, Ans. Biochem. 112 (1981) 195-203), involves the following successive operations:

rinsing the nitrocellulose filter for 10 min with a buffer A (Tris-HCl 10 mM, NaCl 170 mM, KCl 1

AAGGACAATG CCAGACGGTG AGACCTCTTA ATTAAGAACA TTCGCGTCTA TACGAGATGA CACCAAGGCC CCATTTACAT CGAGCTGTTC ACATCCATGC CGCTCACGTC GACATTGACG **GCAAGCCACA** GAAGCGGAAT GTGCAGGTGG AGTCGTCTCT **GTCCGGCCTG** TGGGGCTTCC TGCGTGACGA TATCCTGAGC GACTCCAGGA ACCGACGTCG GGTCCGCTCG ACTGCTCGCG AGGT CACT CT ACTAT GT ACA CGTGCAGGCC AGCTGATCGA GACTGTCGAG ATCGACCTGA GCTGGCACAA GGTCTTCGCT CCTCAGTCGG GCCGGTCCTC TCTGAAGTCT

bringing the nitrocellulose filter into contact with a buffer B (buffer A with bovine serum albumin added at a rate of 3 g per 100 ml) for 30 min at 37°

bringing the nitrocellulose filter into contact with an immune serum (polyclonal antibodies recognizing A. flavus urate oxidase) for 1 h at 37° C.;

rinsing the nitrocellulose filter with buffer B;

bringing the nitrocellulose filter into contact with a solution of protein G, labeled with iodine 125 at a rate of 0.1 microcurie/ml, for 1 h at 37° C.;

rinsing the filter with buffer A;

drying the filter between two absorbent sheets; bringing the filter into contact with an X-ray film; and

developing the film.

2) Results

It is found that the strain transformed by plasmid p466 overproduces a protein with an apparent molecular weight of about 33 kDa, which is recognized by antibodies directed against A. flavus urate oxidase and which is absent from the control strain.

EXAMPLE 9: Assay of the urate oxidase activity

An aliquot corresponding to the equivalent of 0.5 ml 55 at OD=1 is taken from the culture medium obtained after induction with IPTG for 3 h under the culture conditions described in the previous Example. This aliquot is centrifuged and the supernatant is removed. The residues are taken up in 1 ml of TEA (triethanolamine) buffer 0.05M pH 8.9. The cell suspension is sonicated twice for 30 s in ice with a W10 ultrasonic sonicator (set to strength 8 and intensity 4). The extracts are centrifuged at 10,000 g for 10 min and the supernatants are used for the assay.

The above operations are carried out for four colonies taken at random from E. coli K12 transformed by plasmid p466 (colonies A1, B1, C1 and D1) and one colony transformed by plasmid pBR322...

10

15

1) Principle

The conversion of uric acid to allantoin is followed by the decrease in absorbance at 292 nm. The reaction is as follows:

Uric acid (absorbs at 292 nm)

2) Reagents

a) TEA 0.05M pH 8.9/EDTA buffer

7.5 g of TEA (reagent for analysis-Prolabo ref. 287.46.266) are dissolved in 400 ml of distilled water:

0.372 g of Complexon III (Merck-ref. 8418) is dissolved in 50 ml of distilled water;

the two solutions are combined and made up to 500 ml (solution 1);

the pH of this solution is adjusted to 8.9 with HCl 0.2N; and

the volume is made up to 1000 ml with distilled water (solution 2).

b) Uric acid stock solution

100 mg of uric acid (Carbiochem-ref. 6671) are dissolved in 50 ml of solution 1;

the pH is adjusted to 8.9 with HCl 0.2N; and the volume is made up to 100 ml with distilled water. The solution obtained can be stored for one week at 4° C.

c) Uric acid substrate solution

1.5 ml of uric acid stock solution (Carbiochem-ref. 6671) are taken and diluted to 100 ml with TEA buffer (reagent for analysis-Prolabo ref. 287.46.266).

This solution must be used the same day.

3) Procedure

The following volumes are introduced into the quartz cell of a spectrophotometer set to 292 nm and thermostated at 30° C.:

600 µl of uric acid substrate solution (preheated to 30° C.) and

100 μ l of the above supernatants to which 200 μ l of TEA pH 8.9 have been added (preheated to 30°

After mixing, the change in optical density is read off every 30 s for 5 min. ΔE , the variation in optical density per minute, is deduced from these readings.

4) Results

The urate oxidase enzymatic activity A, expressed in $U/ml\ OD\ l$, is calculated from the ΔE measurement with the aid of the formula

$$A = \frac{\Delta E \times V_r \times d}{\epsilon I \times V_{PE}}$$

5 in which the symbols Vr, d, eI and V_{PE} respectively represent the reaction volume (0.9 ml), the dilution factor (2), the extinction coefficient of uric acid at 292 nm (12.5) and the volume of the test sample (0.1 ml).

The results obtained are collated in Table II below:

TA	${f B}{f I}$	Æ	п

	K12 strain formed by	Urate oxidase activity (U/ml OD 1)
pBR322		<0.001
	colony A ₁	0.086
	colony B ₁	. 0.119
p466	• •	
	colony C ₁	0.135
	colony D ₁	0.118

The above Table clearly shows that the *E. coli* cells transformed by plasmid p466 are capable of producing urate oxidase activity in the presence of IPTG.

EXAMPLE 10: Construction of three expression vectors for urate oxidase cDNA in yeast: plasmids pEMR469, pEMR473 and pEMR515

The strategy employed uses fragments obtained from pre-existing plasmids available to the public, and fragments prepared synthetically by the techniques now in common use. The cloning techniques employed are those described by T. MANIATIS, E. F. FRITSCH and J. SAMBROOK in "Molecular Cloning, a laboratory manual" (Cold Spring Harbor Laboratory, 1984). The oligonucleotides are synthesized with the aid of a Biosearch 4600 DNA synthesizer.

The following description will be understood more clearly with reference to FIGS. 10, 11 and 12, which respectively show restriction maps of plasmids 40 pEMR414, pEMR469 and pEMR473. The symbols used in these Figures will be specified in the description below. In the case where a site has been blunted by Klenow polymerase, it carries the index ""; where the sites have been eliminated by ligation, they are indicated 45 in brackets.

1) Construction of plasmid pEMR469

This plasmid was constructed from the shuttle vector E. coli-yeast pEMR414, constructed by successive ligations of the following components:

the PstI-HindIII fragment—symbolized by + + + in FIG. 10—of plasmid pJDB207 (BEGGS, 1978: Gene cloning in yeast-p. 175-203 in: Genetic Engineering, vol. 2-WILLIAMSON-Academic Press-London UK) comprising the upstream part of the ampicillin resistance gene AmpR of pBR322 (Sutcliffe, 1979, Cold Spring Symp. Quart. Biol. 43, 779) and an endogenous 2µ fragment, B form, carrying the LEU2 gene of S. cerevisiae partially modified by the deletion of its promoter (called LEU2d), the locus STB (REP3) and the origin of replication of the 2μ fragment (HARTLEY and DONELSON, 1980, Nature, 286, 860-865). The HindIII end of this fragment has been blunted by the action of Klenow polymerase. It is denoted by HindIII in FIG. 10.

the HindIII-Smal fragment—represented by IIIIIIIIII in FIG. 10—of chromosome V of yeast containing

the URA3 gene with its promoter (ROSE et al., 1984, Gene, 29, p. 113-124). This HindIII-SmaI fragment originates from plasmid pFL1 (CHE-VALLIER et al., 1980, Gene 11, 11-19). The HindIII end of this plasmid has been blunted by the 5 action of Klenow polymerase.

an SamI-BamHI fragment—symbolized by _____ in FIG. 10—containing a synthetic version of the promoter of the ADH2 gene which differs from the natural version described by RUSSEL and 10 SMITH (RUSSEL et al. (1983) J. Biol. Chem. 258, 2674—2682) only by a few base pairs intended for introducing restriction sites. (The natural sequence could be used with only slightly different results.) The sequence of this fragment is given below (SE- 15 QUENCE ID NO. 28):

et al. (op. cit.). The BgIII site is cloned in the BamHI site of the previous fragment (the BamHI and BgIII sites therefore disappearing), and the HindIII site, blunted by the action of Klenow polymerase, is cloned in the PvuII site of the PvuII-PstI fragment of pBR322, described below.

the PvuII-PstI fragment—symbolized by XXX in FIG. 10—of pBR322, containing the origin of replication and the downstream part of the ampicillin resistance gene Amp^R.

Plasmid pEMR414 formed in this way therefore con-

tains the following components:

an origin of replication and an ampicillin resistance gene Amp^R permitting the replication and selection of the plasmid in *E. coli* cells. These components permit transformation in *E. coli* cells.

S M m l a u I I

GGGACGCGTCTCCTCTGCCGGAACACCGGGCATCTCCAACTTATAAGTTGGAG
CCCTGCGCAGAGGAGACGCCTTGTGGCCCGTAGAGGTTGAATATTCARCCTC

> p h

GCATAGAAATGGGGTTCACTTTTTGGTAAAGCTATAGCATGCCTATCACATATAAATAGA
CGTATCTTTACCCCAAGTGAAAAACCATTTCGATATCGTACGGATAGTGTATATTTATCT
GTGCCAGTAGCGACTTTTTTCACACTCGAGATACTCTTACTACTGCTCTCTTGTTGTTTT
CACGGTCATCGCTGAAAAAAGTGTGAGCTCTATGAGAATGATGACGAGAGAACAACAAA
TATCACTTCTTGTTTCTTCTTGGTAAATAGAATATCAAGCTACAAAAAGCATACAATCAA
ATAGTGAAGAACAAAGAAGAAGAACCATTTATCTTATAGTTCGATGTTTTTCGTATGTTAGTT

.

CTATCAACTATTAACTATATCGATACCATATGGATCCGTCGACTCTAGAGGATCGTC

GATAGTTGATAATTGATATAGCTATGGTATACCTAGGCAGCTGAGATCTCCTAGCAG

GACTCTAGAG

GACTCTAGAG

CTGAGATCTCCTAG

the BgIII-HindIII fragment—symbolized by in FIG. 10—carrying the 3' end of the yeast PGK gene. This fragment originates from complete digestion with BgIII of the HindIII fragment of the 60 yeast chromosomal DNA, carrying the PGK gene described by HITZEMAN et al. (1982, Nucleic Acids Res., 10, 7791-7808), which has only one BgIII site. This digestion makes it possible to obtain two HindIII-BgIII fragments of which the 65 smaller, of about 0.4 kb, which carries the 3' end of the yeast PGK gene, is retained. The sequence of the latter fragment is described by HITZEMANN

an origin of replication for the yeast (ARS), the locus STB and the LEU2 gene of S. cerevisiae without promoter and the URA3 gene of S. cerevisiae with its promoter. These components permit the replication and selection of the plasmid in S. cerevisiae cells and a sufficient partition efficacy in cells containing the endogenous 2µ plasmid.

Plasmid pEMR414 was completely digested with the restriction enzymes NheI and ClaI. The small NheI-ClaI fragment containing the URA3 gene, hereafter called fragment A, was purified.

Plasmid pEMR414 was completely digested with the enzymes NheI and BamHI. The large NheI-BamHI fragment containing especially the LEU2d gene and the origin of replication of plasmid pBR322, hereafter called fragment B, was purified.

al., 1986, Nucl. Ac. Res., vol. 14, 13, pp. 5125-5143) without changing the amino acids coded for. The sequence of this fragment, hereafter called fragment C, is as follows (SEQUENCE ID NO. 29)(the underlined nucleotides are those modified relative to clone 9C):

The synthetic ClaI-AccI fragment, containing the start of a gene coding for the protein deduced from the urate oxidase cDNA sequence (clone 9C), was also prepared. This fragment contains modifications, relative to clone 9C, introduced for the purpose of inserting codons which are customary in yeast (q.v. SHARP et

The plasmid of clone 9C. (cf. FIG. 3) was digested with the enzymes AccI and BamHI. The AccI-BamHI fragment, which contains the end of urate oxidase cDNA, hereafter called fragment D, was purified. This fragment has the following sequence (SEQUENCE ID NO. 30):

CTACAAGGTTCACAAGGACGAGAAG

ACCGGTGTCCAGACGGTGTACGAGATGACC TGGCCACAGGTCTGCCACATGCTCTACTGG ACCTCTTACACCAAGGCCGACAACAGCGTC TGGAGAATGTGGTTCCGGCTGTTGTCGCAG ATTTACATCACCGCCAAGCAGAACCCCGTT TAAATGTAGTGGCGGTTCGTCTTGGGGCAA GGCACACACTTCATTGAGAAGTACAACCAC CCGTGTGTGAAGTAACTCTTCATGTTGGTG CACCGCTGGACCCGGATGGACATTGACGGC GTGGCGACCTGGGCCTACCTGTAACTGCCG AGCGAGGAGAAGCGGAATGTGCAGGTGGAC TCGCTCCTCTCGCCTTACACGTCCACCTG TCGTCTCTGTCCGGCCTGACCGTGCTGAAG AGCAGAGACAGGCCGGACTGGCACGACTTC CGTGACGAGTACACCACACTTAAGGAGACC GCACTGCTCATGTGGTGTGAATTCCTCTGG GCCACTTGGCAGTGGAAGAATTTCAGTGCA CGGTGAACCGTCACCTTCTTAAAGTCACCT TTCGATGCTACCTGGGCCACTGCTCGCGAG AAGCTACGATGGACCCGGTGACGAGCGCTC AGTGCCAGCGTGCAGGCCACTATGTACAAG TCACCGTCGCACGTCCGGTCATACATGTTC CTGATCCAGACTGTCGAGTACTCCTTGCCT GACTAGCTCTGACAGCTCATCAGCAACCGA TGGCACAAGGGCCTCCAAAACACCCGCAAC ACCGTGTTCCCGGAGGTTTTGTGCCCGTTC

TGTTCCAAGTGTTCCTGCTCTTC GTCTGTGTGCTTCTGGAGGGTGAGATTGAG CAGACACACGAAGACCTCCCACTCTAACTC ATTGTCGCAACCGACTCCATTAAGAACACC TAACAGCGTTGGCTGAGGTAATTCTTGTGG ACTCCTCCCGAGCTGTTCGGCTCCATCCTG TGAGGAGGCTCGACAAGCCGAGGTAGGAC ATCCATGCCGCTCACGTCAACATTGTCTGC TAGGTACGGCGAGTGCAGTTGTAACAGACG AAGCCACACCCTCACTCCTTCATCCGCGAC TTCGGTGTGGGAGTGAGGAAGTAGGCGCTG GTGGTCGAGGGCAAGGGCATCGATATCAAG CACCAGCTCCCGTTCCCGTAGCTATAGTTC AGCACCAACTCGCAGTTCTGGGGCTTCCTG TCGTGGTTGAGCGTCAAGACCCCGAAGGAC TGGGACCGTATCCTGAGCACCGACGTCGAT ACCCTGGCATAGGACTCGTGGCTGCAGCTA CTCCAGGAGGTCCGCTCGCACGTGCCTAAG GAGGTCCTCCAGGCGAGCGTGCACCCATTC GTCACTCTCAAGACTTTTGCTGAAGATAAC CAGTGAGACTTCTGAAAACGACTTCTATTC ATCCCAGAGCAAATCCTGGCGCGCCAGCAG TACCGTCTCGTTTAGGACCGCGCGGTCGTC AACAACCACTATTTCGAAATCGACCTCAGC TTGTTCGTGATAAAGCTTTAGCTGGACTCG AACGCCGACGTCTTCGCTCCTCAGTCGGAC TTGCGGCTCCAGAAGCGACGGATCAGCCTG

CCCAACGGTCTCATCAAGTGTACCGTCGGC GGGTTGCCAGACTAGTTCACATGGCAGCCG AACATGATTCTCACGTTCCCGAGTTTCCAA TTGTACTAAGAGTGCAAGGCCTCAAAGGTT TAGCATTCACTTGTTTTTTACTTCCA ATCGTAAGTAAGTGAACAAAAAATGAAGGT Fragments A, B, C and D were ligated to give plasmid pEMR469 shown in FIG. 11, in which the symbols have the same meanings as in FIG. 10, the novel ClaI-AccI and AccI-BamHI fragments being symbolized by

2) Construction of plasmid pEMR473

Plasmid pEMR469 was completely digested with the enzymes MluI and SphI. The large MluI-SphI fragment, containing the urate oxidase gene, was then ligated with the synthetic fragment, whose sequence is given below, corresponding to a part (200 bp) of the sequence upstream from the TATA component of promoter GAL7 of S. cerevisiae, said part comprising the upstream activation sequences (UAS).

of replication and the locus STB of the 2μ fragment, the LEU2d gene, the ampicillin resistance gene Amp^R, the origin of replication of pBR322 and the expression cassette for urate oxidase. On the other hand, it contains neither the URA3 gene nor that part of the 2μ fragment which is between the XbaI and NheI sites.

The large XbaI-MluI fragment was recircularized via the following sequence adapter (SEQUENCE ID NO. 32) containing MluI and modified XbaI sticky ends:

modified Xbal
CTAGGCTAGCGGGCCCGCATGCA
CGATCGCCCGGGCGTACGTGCGC

M
1
1
1
1
1
1
CGCGTCTATACTTCGGAGCACTGTTGAGCGAAGGCTCATTAGATATATTTTCTGTCAT
AGATATGAAGCCTCGTGACAACTCGCTTCCGAGTAATCTATATAAAAGACAGTA

TTTCCTTAACCCAAAAATAAGGGAGAGGGTCCAAAAAAGCGCTCGGACAACTGTTGACCGT
AAAGGAATTGGGTTTTATTCCCTCTCCCAGGTTTTTCGCGAGCCTGTTGACAACTGGCA
GATCCGAAGGACTGGCTATACAGTGTTCACAAAAATAGCCAAGCTGAAAATAATGTGTAGC
CTAGGCTTCCTGACCGATATGTCACAAAGTGTTTATCGGTTCGACTTTTATTACACATCG

CTTTAGCTATGTTCAGTTAGTTTGGCATG

GAAATCGATACAAGTCAATCAAACC

Plasmid pEMR473 obtained in this way is shown in FIG. 12, in which the symbols have the same meanings as in FIG. 11, the novel MiuI-SphI fragment introduced 55 being symbolized by .

3) Construction of plasmid pEMR515

Plasmid pEMR473 was partially digested with the enzyme XbaI and totally digested with the enzyme 60 MluI. The large XbaI-MluI fragment was purified. This fragment contains especially the sequences of the origin

Plasmid pEMR515 obtained in this way has only one of the three components of the target FRT site of the recombinase coded for by the FLP gene of the 2μ fragment

Plasmids pEMR469, pEMR473 and pEMR515 possess the gene coding for urate oxidase, which has the following sequence (SEQUENCE ID NO. 4):

ATGTCTGCTG TTAAGGCTGC TAGATACGGT AAGGACAACG TTAGAGTCTA CAAGGTTCAC AAGGACGAGA AGACCGGTGT CCAGACGGTG TACGAGATGA GCTTCTGGAG GGTGAGATTG CCGTCTGTGT AGACCTCTTA CACCAAGGCC GACAACAGCG TCATTGTCGC AACCGACTCC CCATTTACAT CACCGCCAAG CAGAACCCCG TTACTCCTCC

GGTCTTCGCT

GCCGGTCCTC

CCTCAGTCGG

TCTGAAGTCT

TGGGCACACA	CTTCATTGAG	AAGTACAACC	ACATCCATGC	CGCTCACGTC
AACATTGTCT	GCCACCGCTG	GACCCGGATG	GACATTGACG	GCAAGCCACA
CCCTCACTCC	TTCATCCGCG	ACAGCGAGGA	GAAGCGGAAT	GTGCAGGTGG
ACGTGGTCGA	GGGCAAGGGC	ATCGATATCA	AGTCGTCTCT	GTCCGGCCTG
ACCGTGCTGA	AGAGCACCAA	CTCGCAGTTC	TGGGGCTTCC	TGCGTGACGA
GTACACCACA	CTTAAGGAGA	CCTGGGACCG	TATCCTGAGC	ACCGACGTCG
ATGCCACTTG	GCAGTGGAAG	AATTTCAGTG	GACTCCAGGA	GGTCCGCTCG
CACGTGCCTA	AGTTCGATGC	TACCTGGGCC	ACTGCTCGCG	AGGTCACTCT
GAAGACTTTT	GCTGAAGATA	ACAGTGCCAG	CGTGCAGGCC	ACTATGTACA
AGATGGCAGA	GCAAATCCTG	GCGCGCCAGC	AGCTGATCGA	GACTGTCGAG
TACTICATION	CTA A CA A CCA	CTATTTCCAA	ATOGACOTGA	GCTGGCACAA

AGAACGCCGA

TGTACCGTCG

-continued

EXAMPLE 11: Transformation of the EMY761 yeast strain by plasmids pEMR469, pEMR473 and pEMR515-Transformation of the EMY500 and GRF18 yeast strains by plasmid pEMR515-Transformation with selection either for the prototrophy of uracil or for the prototrophy of leucine 25

AACACCGGCA

TCTGATCAAG

GGGCCTCCAA

ACCCCAACGG

AAATTG.

Three non-isogenic strains of Saccharomyces cerevisiae were used as recipient strains:

the EMY761 strain (Mata, leu2, ura3, his3, gal) the EMY500 strain (Mata, leu2, ura3, pep4) the GRF18 strain (Mata, leu2, his3)

The GRF18 strain is well known to those skilled in the art (Gerry FINK, MIT, U.S.A.). The EMY761 and EMY500 strains are related to the GRF18 strain. They were obtained by successively crossing the GRF18 strain with a ura3 strain derived from the FL100 strain 35 (deposited in the ATCC under n° 28 383) and with the 20B12 strain (Mata, tsp1, pep4) described by E. W. JONES (E. W. JONES et al. (1977) Genetics, 85, 23).

The GRF18 strain can be obtained by curing plasmid pEMR515 of the GRF18 pEMR515 (leu+) strain deposited in the CNCM under reference n° I-920 on Dec. 28, 1989, and the EMY500 strain can be obtained by curing plasmid pEMR515 of the EMY500 pEMR515 (leu+) strain deposited in the CNCM under reference n° I-919 on Dec. 28, 1989.

These strains contain mutations (leu2 and ura3 capable of being complemented by the LEU2d defective selection marker and the URA3 selection marker, which are present in each of plasmids pEMR469 and pEMR473.

Transformation with selection for the prototrophy of uracil

A colony of the EMY761 strain was used to inoculate 100 ml of a medium called liquid YPG medium (cf. 55 Table III below). When the cell density had reached 107 cells per ml, the cells were treated with lithium acetate 0.2M for transformation by a technique well known to those skilled in the art and described by ITO et al. (ITO et al., 1983, J. Bacteriology 153, 163-168). 60

The EMY761 cells were transformed in parallel with about 1 μ g of each of plasmids pEMR469 and pEMR473. The transformed cells are selected for the auxotrophic character of uracil (ura+) on a medium called uracil-free solid medium (cf. Table III below). 65 An EMY761 pEMR469 (ura+) transformed strain and an EMY761 pEMR473 (ura+) transformed strain were thus retained.

Transformation with selection for the prototrophy of leucine

The transformation technique used is a variant of that described by Beggs et al. (Beggs et al. (1978) Nature 275, 104–109). It consists in subjecting yeasts to a protoplastization treatment in the presence of an osmotic stabilizer, namely sorbitol at a concentration of 1M.

The precise transformation protocol is specified be-

a) 200 ml of liquid YPG medium (cf. Table III) are inoculated with about 5×10⁶ cells of a culture in the stationary phase, and the culture inoculated in this way is agitated overnight at 30° C.

b) When the density of the culture reaches about 10⁷ cells per ml, the cells are centrifuged at 4000 rpm for 5 min and the residue is washed with sorbitol
 1M

c) The cells are suspended in 5 ml of sorbitol solution 1M containing 25 mM EDTA and 50 mM dithiothreitol, and are incubated for 10 min at 30° C.

- d) The cells are washed once with 10 ml of sorbitol 1M and suspended in 20 ml of sorbitol. Zymolase-100T (a preparation obtained by partial purification of Arthobacter luteus culture supernatant on an affinity column and containing β -1,3-glucan laminaripentahydrolase, marketed by SEYKAGAKU KOGYO Co. Ltd.) is added up to a final concentration of 20 μ g/ml and the suspension is incubated at room temperature for about 15 min.
- e) The cells are resuspended in 20 ml of a medium containing sorbitol, called sorbitol YPG medium (cf. Table III below) and incubated for 20 min at 30° C., with gentle agitation.
- f) The cells are centrifuged for 3 min at 2500 rpm.
- g) The cells are resuspended in 9 ml of transformation formation buffer (sorbitol 1M, Tris-HCl 10 mM pH 7.5 and CaCl₂ 10 mM).
- h) 0.1 ml of cells and 5 μl of DNA solution (about 5 μg) are added and the suspension obtained is left for 10 to 15 min at room temperature.
- i) 1 ml of the following solution is added: polyethylene glycol PEG 4000 20%, Tris-HCl 10 mM pH 7.5 and CaCl₂ 10 mM.
- j) 0.1 ml of the suspension obtained in i) is poured into a tube containing leucine-free solid regeneration medium (cf. Table III below) which has been melted beforehand and kept liquid at about 45° C. The suspension is poured into a Petri dish containing a solidified layer of 15 ml of leucine-free solid regeneration medium.

 k) Step j) is repeated with the remainder of the cell suspension obtained in i).

The transformed strains start to appear after three days.

The EMY761 pEMR469 (leu+), EMY761 pEMR473 ⁵ (leu+), EMY761 pEMR515 (leu+), GRF18 pEMR515 (leu+) and EMY500 pEMR515 (leu+) transformed strains were thus retained.

Principal media used in Examples 11, 12, 13 and 14

uracil-free solid medium

6.7 g of Yeast nitrogen base without Amino Acids (from DIFCO)

5.0 g of casein hydrolyzate (Casamino acids from DIFCO)

10 g of glucose

20 g of agar Mix all the ingredients in distilled water and make up the final volume to 11 with distilled water. Auto-

clave for 15 min at 120° C.

uracil-free liquid medium

Use the formulation of the uracil-free solid medium without the agar. Autoclave for 15 min at 120° C.

lencine-free solid medium

6.7 g of Yeast nitrogen base without Amino Acids (from DIFCO)

20 mg of adenine

20 mg of uracil

20 mg of l-tryptophan

20 mg of I-histidine

20 mg of l-arginine

20 mg of l-methionin

30 mg of 1-tyrosine

30 mg of l-isoleucine 30 mg of l-lysine

50 mg of l-phenylalanine

100 mg of l-glutamic acid 150 mg of l-valine

400 mg of 1-leucine

20 g of glucose

20 g of agar

Mix all the ingredients in distilled water. Make up the final volume to 1 1 with distilled water. Autoclave for 15 min at 120° C. After autoclaving, add 200 mg of 1-threonine and 100 mg of 1-aspartic acidleucine-free solid regeneration medium

Use the formulation of the leucine-free solid medium, mixing in 30 g of agar instead of 20 g and adding 182 g of sorbitol to the mixture.

leucine-free liquid medium

Use the formulation of the leucine-free solid medium without the agar. Autoclave for 15 min at 120° C. After autoclaving, add 200 mg of 1-threonine and 100 mg of 1-aspartic acid.

liquid YP medium

10 g of yeast extract (Bacto-yeast extract from DIFCO)

20 g of peptone (Bacto-peptone from DIFCO)

Mix the ingredients in distilled water. Make up the final volume to 11 with distilled water. Autoclave for 15 min at 120° C.

liquid YPG medium

Use the formulation of the liquid YP medium, adding, after autoclaving, glucose at a concentration of 20

sorbitol YPG medium

Use the formulation of the liquid YPG medium, adding, after autoclaving, sorbitol at a concentration of 1 M. ethanol-glycerol YP medium

Use the formulation of the liquid YP medium. After autoclaving, add 10 ml of ethanol 100% (1% final concentration) and 30 g of glycerol.

ethanol-glycerol-galactose YP medium

Use the formulation of the liquid YP medium

Use the formulation of the liquid YP medium. After autoclaving, add 10 mi of ethanol 100%, 30 g of glycerol and 30 g of galactose.

EXAMPLE 12: Expression, in an Erlenmeyer flask, of urate oxidase cDNA by the EMY761 pEMR469 (ura+), EMY761 pEMR473 (ura+), EMY761 pEMR469 (leu+) and EMY761 pEMR473 (leu+)

strains-Immunodetection by Western blot-Assay of the urate oxidase activity and the soluble proteins

1) Expression of urate oxidase cDNA

a) Strains selected on uracil-free medium

A colony of each of the EMY761 pEMR469 (ura+) and EMY761 pEMR473 (ura+) strains was cultured in 20 ml of uracil-free liquid medium (cf. Table III, Example 11). After one night at 30° C., with agitation, the two cultures were centrifuged for 10 min at 7000 rpm. The residues were taken up in 10 ml of sterile distilled water and centrifuged again for 10 min at 7000 rpm. Expression of the urate oxidase was induced by taking up the cells in 20 ml of ethanol-glycerol YP medium (cf. Table III, Example 11) for the EMY761 pEMR469 (ura+) strain and in 20 ml of ethanol-glycerol-galactose YP medium (cf. Table III, Example 11) for the EMY761 pEMR473 (ura+) strain. The cultures were incubated again at 30° C. for 22 h, with agitation.

b) Strains selected on leucine-free medium

In a first stage, a colony of each of the EMY761 pEMR469 (leu+) and EMY761 pEMR473 (leu+) strains was cultured in 20 ml of leucine-free liquid medium (cf. Table III, Example 11). This made it possible to obtain and maintain a large number of copies of plasmids by carrying out the selection for complementation of the leu2mutation by the LEU2d gene carried by plasmids pEMR469 and pEMR473.

After one night at 30° C., with agitation, the two cultures were centrifuged for 10 min at 7000 rpm. The residues were taken up in 10 ml of sterile distilled water and centrifuged again for 10 min at 7000 rpm. Expression of the urate oxidase was induced by taking up the cells in 20 ml of ethanol-glycerol YP medium for the EMY761 pEMR469 (leu+) strain and in 20 ml of ethanol-glycerol-galactose YP medium (cf. Table III, Example 11) for the EMY761 pEMR473 (leu+) strain. The cultures were incubated again at 30° C. for 22 h, with agitation.

c) Control strain

The non-transformed EMY761 strain, i.e. the EMY761 strain without plasmid, was cultivated as above. It was subjected on the one hand to induction in 10 ml of ethanol-glycerol liquid YP medium and on the 50 other hand to induction in 10 ml of ethanol-glycerol-galactose YP medium.

2) Preparation of the samples

a) The cells cultivated in 1a), 1b) and 1c) were centrifuged and the supernatant was removed. The residues were taken up in 10 ml of distilled water and centrifuged for 10 min at 7000 rpm. The residues washed in this way were taken up in about 1 ml of triethyleneamine buffer, TEA, of pH 8.9. About 300 μl of cells taken up in said buffer were lyzed in the presence of glass beads (from 400 to 500 μm in diameter), representing about half the final volume. This mixture was agitated vigorously in a Vortex 4 times for 1 min, the samples being placed in ice for 30 s between grinding operations. The liquid was withdrawn from the tubes with a Pasteur pipette and transferred to a microtube. The glass beads were washed once with about 200 μl of TEA buffer of pH 8.9. The beads were agitated in a

20

Vortex once for 1 min and the liquid was withdrawn with a Pasteur pipette and added to the above lyzate. The lyzate was then centrifuged in a microtube for 5 min at 7000 rpm. The supernatant was cautiously withdrawn and stored at -20° C. for Western blot, assay of 5 the urate oxidase activity and assay of the proteins. The residue of the lyzed cells was stored separately at -20° C. for Western blot (cf. 3) below).

Furthermore, samples of the cultures prepared in 1a) and 1b) were taken in the following manner before 10 induction: 2 ml of culture were centrifuged for 10 min at 7000 rpm. The residues were taken up in 500 µl of distilled water and centrifuged again for 5 min at 7000 rpm. The residues were taken up in about 200 µl of TEA buffer of pH 8.9 and lyzed as above in the presence of 15 glass beads. The supernatants and the residues of the lyzed cells were stored separately at -20° C.

3) Immunodetection of the urate oxidase by Western blot

a) Procedure

The residues and the supernatants of the different samples were subjected to a Western blot—a technique well known to those skilled in the art—which comprises the following steps:

solubilization of the residue by boiling for 10 min in a buffer, called a loading buffer, consisting of Tris-HCl 0.125M pH 6.8, SDS 4%, bromophenol blue 0.002%, glycerol 20%, β-mercaptoethanol 10% (according to the protocol described by LA-3EMMLI (U. K. LAEMMLI, Nature, 227 (1970) 680-685));

electrophoretic separation of the different proteins contained in the solubilizate, according to the protocol described by LAEMMLI (U. K. LA- 35 EMMLI, Nature, 227 (1970) 680-685); and

transfer of said proteins contained in the gel on to a nitrocellulose filter (according to the technique of H. TOWBIN et al., Proc. Natl. Acad. Sci. USA 76 (1979) 4350-4354).

Immunodetection, performed according to the technique of BURNETTE (W. W. BURNETTE, Ana. Biochem. 112 (1981) 195-203), involves the following successive operations:

rinsing the nitrocellulose filter for 10 min with a 45 buffer A (Tris-HCl 10 mM, NaCl 170 mM, KCl 1 mM):

bringing the nitrocellulose filter into contact with a buffer B (buffer A with bovine serum albumin added at a rate of 3 g per 100 ml) for 30 min at 37° 50 C.

bringing the nitrocellulose filter into contact with an immune serum (polyclonal antibodies recognizing A. flavus urate oxidase) for 1 h at 37° C.;

rinsing the nitrocellulose filter with buffer B;

bringing the nitrocellulose filter into contact with a solution of protein G, labeled with iodine 125 at a rate of 0.1 microcurie/ml, for 1 h at 37° C.;

rinsing the filter with buffer A; drying the filter between two absorbent sheets; bringing the filter into contact with an X-ray film; and

developing the film.

b) Results

It is found that the EMY761 pEMR469 (ura+), 65 EMY761 pEMR473 (ura+), EMY761 pEMR469 (leu+) and EMY761 pEMR473 (leu+) strains produce a protein with an apparent molecular weight of about 33

kDa, which is recognized by antibodies directed against A. flavus urate oxidase and which is absent from the control strain.

It is also found that the non-induced strains produce none or very little of the protein described above.

Comparison between the amounts of this protein for the residues and the supernatants makes it possible to deduce that about 80% of said protein is in soluble form in the lyzate.

4) Assay of the urate oxidase activity

The urate oxidase activity was measured on the supernatants of the lyzed cells according to the procedure described in Example 9 above.

The results obtained are collated in Table IV below, which specifies the urate oxidase activity in U/ml for each strain induced by glycerol-ethanol, each strain induced by glycerol-ethanol-galactose and each non-induced strain.

TABLE IV

Strain/Inducer	Urate oxidase activity (U/ml)
EMY761/YP ethanol-glycerol-galactose	<0.1
EMY761/YP ethanol-glycerol	<0.1
EMY761 pEMR469 (ura+)/(non-induced)	0.4
EMY761 pEMR469 (ura+)/YP ethanol-glycerol	12
EMY761 pEMR469 (leu+)/(non-induced)	0.17
EMY761 pEMR469 (leu+)/YP ethanol-glycerol	36
EMY761 pEMR473 (ura+)/(non-induced)	< 0.1
EMY761 pEMR473 (ura+)/YP ethanol-giycerol- galactose	12.5
EMY761 pEMR473 (leu+)/(non-induced)	<0.1
EMY761 pEM473 (leu+)/YP ethanol-glycerol- galactose	15.3

The above Table clearly shows that the yeast cells transformed by these plasmids pEMR469 and pEMR473 are capable of producing urate oxidase activity after induction.

5) Assay of the total soluble proteins in the lyzates

The protein assay kit from BIORAD was used for assaying the total proteins present in the supernatant of the lyzed cells. It is based on the observation that the maximum absorbance of an acid solution of Coomassie brilliant blue g-250 changes from 465 nm to 595 nm when proteins become attached thereto (q.v. Reisner et al., Anal. Biochem., 64, 509 (1975)).

a) Procedure

The following volumes are introduced into the cell of a spectrophotometer set to 595 nm:

10 µl of sample to which 790 µl of distilled water have been added

200 μl of concentrated Dye reagent (Biorad).

The ingredients are mixed and the optical density is read off at 595 nm. A calibration range with increasing concentrations of BSA (bovine serum albumin) was prepared in this way. The unknown concentration of the total proteins in the lyzates is read off on the calibration curve obtained.

b) Results

The main results obtained are collated in Table V below, which specifies the mount (in mg/ml) of total soluble proteins and the percentage of urate oxidase in the total soluble proteins for each strain induced by glycerol-ethanol, each strain induced by glycerol-ethanol-galactose and each non-induced strain (it is assumed here that the specific activity of the recombi-

nant protein is identical to that of the urate oxidase obtained from A. flavus: 30 U/mg).

TABLE V

Strain/Inducer	Total soluble proteins mg/ml	% of urate oxidase in the total soluble proteins
EMY761/glycerol-ethanol	5,3	< 0.05
EMY761/glycerol-ethanol-galactose	5.8	< 0.05
EMY761 pEMR469 (ura+)/non-induced	8.5	0.25
EMY761 pEMR469 (ura+)/glycerol- ethanol	5.3	4.7
EMY761 pEMR469 (leu+)/non-induced	1.7	0.3
EMY761 pEMR469 (len+)/glycerol- ethanol	5.9	20
EMY761 pEMR473 (ura+)/non-induced	10.3	< 0.05
EMY761 pEMR473 (ura+)/glycerol- ethanol galactose	د 6	6.4
EMY761 pEMR473 (leu+)/non-induced	0.5	< 0.05
EMY761 pEMR473 (len+)/glycerol- ethanol-galactose	3.9	13

It is found that the production rate of urate oxidase varies from 5 to 20% according to the transformants and the mode of selection of the transformed strains (leu+).

EXAMPLE 13: Expression, in a 2.5 1 fermenter, of urate oxidase cDNA by the EMY761 pEMR473 (ura+) strain

1) Fermentation protocol

a) Media

Inoculum medium

A colony of the EMY761 pEMR473 (ura+) strain was cultured in 200 ml of uracil-free liquid medium (cf. Table III, Example 11). Culture is continued overnight, 35 with agitation, until the OD is about 3.

Culture mediu	m A	-
	for 1 i of purified water on an apparatus of the Milli-Q type	40
glucose	30 g	_
glycerol	30 g	
casein hydrolyzate (Casamino acids from DIFCO)	30 g	
Yeast Nitrogen Base (from DIFCO)	15 g	45
Yeast extract (from DIFCO)	2.5 g	
K2HPO4	3 g	
MgSO4.7H ₂ O	0.5 g	

Additional	medium B	
	for 100 ml of purified water on an apparatus of the Milli-Q type	. 55
glycerol peptone hydrolyzate	30 g 30 g	-
(Primatone from G. Sheffield)	30 g	
Yeast Nitrogen Base (from DIFCO)	15 g	
Yeast extract (from DIFCO)	· 5 g	60
K ₂ HPO ₄	3 g	
MgSO47H2O	0.5 g	

b) Fermentation parameters

Bioreactor of total volume 2.5 1, equipped with two 65 turbines

Temperature=30° C. pH=5

Oxygen partial pressure = 30 mm Hg Air flow rate = 11/min

The bioreactor is filled with 1.5 l of medium A and inoculated with 150 ml of the inoculum.

Once the glucose has been exhausted at OD 2.5 to about OD 17, induction is effected by the addition of a volume of 150 ml of galactose at 20% weight/volume. Growth is continued and additional medium B is then added at about OD 30.

Growth continues for about another fifteen hours and the product was harvested at OD 104.

2) Preparation and analysis of the samples

The samples were prepared as described in Example 15 9 2) a) from the culture in the fermenter. Two samples were taken: the first after 7 h of induction and the second after 22 h of induction.

The following tests, described in Example 9, were performed on these two lyzates obtained after lysis of the cells:

immunodetection by Western blot assay of the biological activity assay of the total proteins

The following results were obtained:

a) Immunodetection by Western blot

It is found that the EMY761 pEMR473 (ura+) strain, cultivated in a 2 l fermenter, produces a protein with an apparent molecular weight of 33 kDa, which is recognized by antibodies directed against A. flavus urate oxidase (said antibodies being prepared in rabbits by techniques well known to those skilled in the art: q.v. VAITUKAITIS et al. (1981) "Methods in Enzymology", Academic Press, New York, vol. 73, p. 46) and which is absent from the control strain.

b) Assay of the biological activity

The results obtained are collated in Table VI below:

TABLE VI

Strain/Induction time	U/ml
EMY761 pEMR473 (ura+)/7 h	9
EMY761 pEMR473 (ura+)/22 h	12.5

It is found that the EMY761 pEMR473 (ura+) strain, cultivated in a fermenter, is capable of producing urate oxidase activity after induction.

c) Assay of the total soluble proteins
 The results are collated in Table VII below:

50

TABLE VII

Strain/Induction time	Total soluble proteins mg/ml	% of urate oxidase in the total soluble proteins		
EMY761 pEMR473 (ura+)/7 h	5.2	5.7		
EMY761 pEMR473 (ura+)/21 h	6.2	6.6		

These results indicate that the rate of synthesis of urate oxidase by the EMY761 pEMR473 (ura+) strain, cultivated in a fermenter, is about 5% of the total proteins of the cell after 7 h and 21 h of induction.

EXAMPLE 14: Expression, in an Erlenmeyer flask, of urate oxidase cDNA by the EMY761 pEMR515 (leu+), EMY500 pEMR515 (leu+) and GRF18 pEMR515 (leu+) strains

A colony of each of the above three strains was cultured in 20 ml of leucine-free liquid medium.

After one night at 30° C. with agitation the three cultures were centrifuged for 10 min at 7000 rpm. The cell residues were taken up in 10 ml of sterile distilled water and centrifuged again for 10 min. Expression of the urate oxidase was induced by taking up the cells in 5 20 ml of ethanol-glycerol-galactose YP medium (cf. Table I, Example 8). The cultures were incubated again at 30° C. for about 20 h, with agitation. The non-transformed host strains were each cultured as controls.

The cells of each of the six cultures are separated out 10 again by centrifugation and the supernatant is removed. The residues were taken up in 10 ml of distilled water and centrifuged for 10 min at 7000 rpm. The residues washed in this way were taken up in about 1 ml of TEA buffer of pH 8.9 and the grinding and removal of the 15 particles by centrifugation were carried out as described in Example 9, 2). The supernatant of each culture is used, as previously, for assaying the urate oxidase and the total proteins. The main results obtained are collated in Table VIII below:

TARLE VIII

TABLE VIII				_
Strain/Culture conditions	Urate oxidase activity (U/ml)	Total soluble proteins (mg/ml)	% of urate oxidase in the soluble proteins	
GRF18 pEMR15	<0.1	2.2	<0.05	
(leu+)/a) EMY500 pEMR15	<0.1	0.9	<0.05	
(leu ⁺)/a) EMY761 pEMR515	<0.1	1.8	<0.05	30
(leu+)/a) GRF18 pEMR515	38	5.4	23)د
(leu+)/b) EMY500 pEMR515	20	2.5	26	
(leu+)/b).			26	
EMY761 pEMR515 (leu+)/b)	33	4.2	40	3

 a): the strains are cultivated in the presence of glucose (non-induction conditions) b); the strains are cultivated in the absence of glucose and in the presence of galace (induction)

These results show that a high level of expression of 40 urate oxidase can be obtained with three nonisogenic recipient strains transformed by the expression vector according to the invention.

EXAMPLE 15: Expression in a 2.51 fermenter of the cDNA of urate oxidase for the EMY500 pEMR515 strain. Purification and partial characterization of the recombinant urate oxidase:

1) Culture in a 2.5 l fermenter of the EMY500 pEMR515 strain:

The culture of the EMY500 pEMR515 strain is carried out in the following manner:

a) Preculture stage in erlenmeyer

A 500 ml erlenmeyer containing 90 ml of a growth medium MCPA, (sterilizable by autoclave) comple- 55 mented with 1.28 g of MES (2-/N-morpholino/-ethanesulfonic acid: Sigma n° M8250) and 10 ml of a growth medium MCPF (sterilized by ultra filtration) is seeded with 1 ml of a solution of the EMY500 pEMR515 strain in a medium containing 20% glycerol with a number of 60 cells corresponding to an Optical Density of 2.35. The compositions of the media MCPA and MCPF are given hereinafter. After 24 hours of incubation, under stirring at 30° C., the Optical Density of the culture is about 7.

b) Culture phase in fermenter

The above culture is used for seeding a 2.5 l fermenter containing the culture medium having the following composition:

900 ml of MCPA+200 ml of MCPF

The pH of the culture is regulated by the fermenter to the given value of 5,5. After 6-7 hours of culture at 30° C., 72 ml of a 500 g/l glucose solution is linearly added over a period of 9 hours (namely a total of 36 g of glucose).

c) Expression stage

To the previously described mixture, 100 ml of the expression medium MEPA (sterilizable by autoclave) and 150 ml of the expression medium MEPF (sterilized by ultra filtration) having the following compositions, are added. The culture is then continued for 5 hours. Then 150 ml of a solution containing 30 g of galactose, 15 g of glycerol and 36 g of ethanol are linearly added for 20 hours. An optical density of about 160 is then

CHEMICAL COMPOSITION OF THE GROWTH AND

	For total	900 m
NTA (nitrilotriacetic acid)	1.2	g
Yeast extract (DIFCO)	6	g
K2SO4	1.2	g
NaCl	0.6	g
MgSO ₄ , 7H ₂ O	1.2	g
CaCl ₂ 2H ₂ O	840	mg
FeCl ₃	108	mg
glutamic acid	4.44	g
HYCASE SF (Sheffield Products)	. 30	g
leucine	2.16	g
histidine	600	mg
methionine	1.2	g
oligoelements I (see hereinafter)		ml
uracil	1.2	g

List of o	ligoelements I
	for 1 1 of ultra purified water
CuSO ₄ , 5H ₂ O	780 mg
H ₃ BO ₃	5 g "
ZnSO4, 7H2O	3 g
KI	1 g
MnSO ₄ , 2H ₂ O	3.5 g
Na ₂ MO ₄ . 2H ₂ O	2 g
FeCls. 6m2O	4.8 g

Add 100 ml of concentrated hydrochloric said to the solution and adjust to 1,000 ml.

Growth medium MCPF (steriliz	ed by ultra filteration)	
	for total 200 ml of ultra purified water	٠
 KH ₂ PO ₄	· 4.8 g	
Tryptophane	420 mg	
Vitamin I (see hereinafter)	5 ml	
glucose	36 g	

Heat to dissolve, return to ambient temperature, add the vitamins I and filter through 0.2 µm filter.

	List of v	itamins I	_
•		for total 100 ml of ultra purified water	
<u> </u>	biotine	1.2 mg	
	folic acid niacine	1 mg 144 mg	
	(nicotinic acid) pyridoxine.HCl	60 mg	

-con	****	-

List of vita	mins I
	for total 100 ml of ultra purified water
thiamine HCI	240 mg
calcium pantothenate	1.2 g
mesoinositol 2.4 g	

Fill to 100 ml after dissolving Sterile filter, cold, at 0.2 um

Expression medium MEPA (steriliza	for total 100 ml of ultra purified water
NTA	1.2 g
K2 so4	2.08 g
glutamic acid	6 g
HYCASE SF (Sheffield Products)	24 g
leucine	2.16 g
histidine	600 mg
methionine	1.2 g
MgSO ₄ , 7H ₂ O	720 mg
CaCl ₂ , 2H ₂ O	840 mg
FeCl ₃ , 6H ₂ O	108 mg
oligoelements I	5 ml
uracil	1.2 g

Adjust the pH to 5.5 with concentrated H_2SO_4 or concentrated KOH Autoclave for 20 mins at 120° C.

Expression medium	MEPF (sterilized by ultra filtration)
	for total 150 ml of ultra purified water
KH ₂ PO ₄	2.4 g
tryptophane	420 mg
vitamins I	5 ml
glycerol	. 36 д
galactose	45 g

Heat to dissolve, return to ambient temperature, add the vitamins and filter.

2) Grinding of the cells

After 20 hours of induction, the OD of the culture, measured at 600 nm, is 98. 800 g of the fermentation wort are centrifugated for 5 minutes at 10,000 g and the cell cake is taken up in 80 ml of a lysis buffer (glycine 20 mM pH 8.5). The cells are then ground twice at 4° C., 45 for 2.5 minutes in a grinding device (Vibrogenic Zellmü hle mill V14) in the presence of a volume of beads (0.50 mm in diameter) equal to that of the solution of cells to be lysed. After grinding, the supernatant is taken up and the beads are washed twice with 80 ml of a lysis buffer. 50 210 ml of a lysate are recovered; said lysate has a total protein content of about 3 mg/ml and a urate oxydase activity of about 7.7 U/ml (namely a urate oxidase percentage towards the total protein of about 8.5%, considering a specific activity of that protein of 30 U/mg).

- 3) Purification of the recombinant urate oxidase
- a) Purification protocol

The above lysate is submitted to the two-step purification protocol disclosed hereinafter.

Step 1: Anionic chromatography

Support

DEAE (diethylaminosulphate) sepharose fast flow (Pharmacia ref. 17.07.09.91)

The compressed gel occupies a volume of 70 ml.

The separation is carried out at ambient temperature, the recovered fractions being preserved at 0° C.

Separation conditions

A gradient of a chloride ionic force between buffer 1 (sodium borate 10 mM, pH 9.2) and buffer 2 (sodium borate 10 mM, sodium chloride 1M) is used. The buffers are previously degased and preserved at O° C. during the clution. In each buffer 0.02% of azide are added.

The raw extract is deposited (10 ml) and eluted with buffer 1 up to the complete recovery of the urate oxidase (by fractions of 10 ml) which is not retained on the column.

The pigments and the contaminating proteins are thereafter removed by an elution with buffer 2.

The purification is followed by measuring of the OD of the cluate at 214 nm.

Step 2: High pressure and inverse phase liquid chromatography

Support.

Grafted C8 silica column, Aquapore OD-300 (100×2.1 mm) (Brownlee-Applied Biosystems)

Operating conditions

Eluent 1: ultrapurified water (filtered through a Millipore system) containing 0.1% of trifluoroacetic acid.

Eluent 2: Acetonitrile (of spectrophotometric quality or similar) containing 0.08% of trifluoroacetic acid. Flow rate: 0.3 ml/min.

The gradient is of 35% of acetonitrile/TFA to 70% of acetonitrile/TFA for 20 minutes and is maintained at 70% for 5 minutes. The injected quantity is of 1 ml per run.

Recovery of the fractions

The separation is followed by measurement of the optical density at 218 nm. The acetonitrile is evaporated during the centrifugation under vacuum.

b) Results

The sample before and after the first step of purification was analysed by liquid chromatography on a grafted C8 silica column, the Aquapore OD-300 previously disclosed with the same gradient, with an injected quantity of 50 μ l. Purified trate oxidase from A flavus is used as an external control.

In the starting lysate, the urate oxidase represents 63% of the total proteins. After the first step of purification, the urate oxidase represents 84% of the total proteins.

The whole sample obtained after step 2 was used for the following partial characterization. Said sample certainly contains more than 84% of urate oxidase.

4) Partial characterization of the recombinant urate oxidese

a) Analysis of the amino acids

The analysis of the amino acids of the acid hydrolysate of the purified recombinant urate oxidase was carfried out in an analyser from Applied Biosystems model 420-130A. The distribution of the quantified amino acids is compatible (there exists no significant difference) with the supposed sequence. The same result was observed for the purified urate oxidase extracted from 60 A. flavus (obtained in example 4)

b) Tryptic peptidic map

A tryptic peptidic map was established for the purified recombinant trate oxidase and for the purified trate oxidase extract obtained in example 4) under the 65 following conditions:

A urate oxidase solution having a concentration of 1 mg/ml is prepared. Extemporaneously a trypsin solution having a concentration of 1 mg/ml is prepared.

The two solutions are mixed together in a proportion of 1/30 enzyme/substrate for 8 hours at ambient temperature. The tryptic hydrolysate is then chromatographied (liquid phase chromatography) on a C18 grafted silica column (5 µm; lichrosorb 250×4.6 mm Hichromref. RP 18-5-250A) provided with a UV detector coupled with a recorder. The gradient applied is of 1% acetonitrile/TFA to 60% acetonitrile/TFA for 120 minutes and then the gradient is maintained at 60% for 5 minutes.

The peptidic maps obtained have a very narrow profile.

5) Determination of the blocked character of the amino-terminal sequence

The amino-terminal sequence was analysed by means of the sequencer, Applied Biosystem model 470A, coupled with an analyser of phenylthiohydantoic derivatives, Applied Biosystems model 120A. The purified recombinant urate oxidase (200 pmoles detected by analysis of the amino acids) was put on the sequencer in the presence of 20 pmoles of β -lactoglobuline (control protein).

No amino-terminal sequence corresponding to the sequence of the urate oxidase was detected, whereas the amino-terminal sequence of the control protein was detected.

Therefore, the recombinant urate oxidase of the invention, as well as the urate oxidase extract, has a blocked amino-terminal end.

EXAMPLE 16: Construction of an expression vector for urate oxidase cDNA in animal cells: plasmid pSV860

This vector was obtained by

ligation of the small AccI-SnaBI fragment containing a sequence coding for urate oxidase with the exception of the first 16 amino acids, said fragment being derived from plasmid p466 (an expression vector for A. flavus urate oxidase in E. coli, available in the laboratory and described below), with a synthetic HindIII-AccI fragment, which made it possible to obtain a HindIII-SnaBI fragment containing a complete sequence coding for A. flavus urate oxidase and a non-translated 5' sequence favoring expression in animal cells; and

insertion of the HindIII-SnaBI fragment between the HindIII and SnaBI sites of the multiple cloning site (also called polylinker) of the expression vector for animal cells, namely plasmid pSE₁.

The following account will successively describe the 55 construction of plasmid p466, plasmid pSE₁ and plasmid pSV860.

1) Construction of plasmid p466

Plasmid p466, an expression vector for urate oxidase cDNA in *E. coli*, was prepared. It comprises a fragment of pBR327 including the origin of replication and the ampicillin resistance gene; it also comprises a synthetic promoter of *E. coli* (R. RODRIGUEZ and M. CHAMBERLIN, "Promoters-Structure and function (1982), Preager), a Shine-Dalgarno sequence followed by a polylinker containing the unique NdeI and KpnI sites, a

transcription terminator (derived from phage fd) and the lac i gene.

This plasmid was constructed from an expression plasmid for hGH in E. coli (p462) by replacing a fragment carrying the hGH gene with urate oxidase cDNA.

The construction of plasmid p466 was described in detail in Example 7 above.

Construction of an expression vector for animal cells: plasmid pSE₁

The strategy employed uses fragments obtained from pre-existing plasmids available to the public, and fragments prepared synthetically by the techniques now in common use. The cloning techniques employed are those described by T. MANIATIS, E. F. FRITSCH and J. SAMBROOK in "Molecular Cloning, a laboratory manual" (Cold Spring Harbor Laboratory, 1984). The oligonucleotides are synthesized with the aid of a Biosearch 4600 DNA synthesizer.

The following description will be understood more clearly with reference to FIG. 13, which shows a restriction map of plasmid pSE₁, the sites which have disappeared due to ligation being indicated in brackets.

25 The symbols used in this Figure will be specified in the description below.

This plasmid was constructed by successive ligations of the following components:

- a PvuII-PvuII fragment—symbolized by + + + in FIG. 13—of 2525 bp, obtained by complete digestion of plasmid pTZ18R (Pharmacia) with the restriction enzyme PvuII. This fragment contains the origin of replication of phage F1 (denoted by ORI F1 in FIG. 13), a gene (denoted by Amp^R in FIG. 13) carrying ampicillin resistance, and the origin of replication (denoted by ORI pBR322 in FIG. 13) permitting the replication of this plasmid in E. coli. The first PvuII blunt site disappears on ligation with the EcoRV blunt site (which also disappears) of the fragment described in 7).
- 2)—a PvuII-HpaI fragment—symbolized by in FIG. 13—of 1060 bp, of type 5 adenovirus DNA between position 11299 (PvuII restriction site) and position 10239 (HpaI restriction site) (DEKKER & VAN ORMONDT, Gene 27, 1984, 115–120), containing the information for VA-I and VA-II RNA's. The HpaI blunt site disappears on ligation with the PvuII blunt site (which also disappears) of the fragment described in 3).
- 3)—a PvuII-HindIII fragment—symbolized by zzzzzin FIG. 13—of 344 bp, derived from SV40 virus DNA and obtained by complete digestion with the restriction enzymes PvuII and HindIII. This fragment contains the origin of replication and the early promoter of SV40 virus DNA (ref. B. J. BYRNE et al., PNAS-USA (1983) 80, 721-725).

The HindIII site disappears on ligation with the site binding to HindIII of the fragment described in 4).

4)—a synthetic "site binding to HindIII"-HindIII fragment—symbolized by ______ in FIG. 13—of 419 bp, whose sequence, given below (SE-QUENCE ID. NO. 33), is similar to the nontranslated 5' sequence of the HTLV1 virus (ref. WEISS et al., "Molecular Biology of Tumor Viruses"-part 2-2nd edition-1985-Cold Spring Harbor Laboratory-p. 1057).

CGAGCGT AGAGAGGAAGT GCGCG	GGCGGCGGGAT GGACT CCGGCGGT AGGT GCGG
FTGAGTCGCGTTCTGCCGCCTCC	CGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTA
•	GCGGACACCACGGAGGACTT GACGCAGGCGGCAGAT
TAGGCT CCAAGGGAGCCGGACA	AAGGCCCGGTCTCGACCTGAGCTCTAAACTTACCTA
CAT CCGAGGTT CCCT CGGCCT GT	TTCC,GGCCAGAGCTGGACTCGAGATTTGAATGGAT
ACT CAGCCGGCT CT CCACGCT TT	GCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTT
FGAGT CGGCCGAGAGGT GCGAAA	CGGACTGGGACGAACGAGTTGAGATGCAGAAACAAA
	AACTT CAAGGTAT GCGCT GGGACCT GGCAGGCGGCAT
	TGAAGTTCCATACGCGACCCTGGACCGTCCGCCGTA
GGGACCCCTAGGAAGGGCTTGG	GGGTCCTCGTGCCCAAGGCAGGGAACATAGTGGTCC
· · · · · · · · · · · · · · · · · · ·	CCCAGGAGCACGGGTTCCGTCCCTTGTATCACCAGG
AGGAAGGGAGCAGAGGCATCAG	GGTGTCCACTTTGTCTCCGCAGCTCCTGAGCCTGCA
CCTTCCCCTCGTCTCCGTAGTC	CCACAGGTGAAACAGAGGCGTCGAGGACTCGGACGT
L	

5)-a synthetic HindIII-"site binding to BamHI" fragment—symbolized by XXXX in FIG. 13—containing the promoter of the RNA polymerase of 35 phage T7 and also a polylinker containing the SmaI cloning site and having the sequence below (SE-QUENCE ID NO. 34).

fragment derived from plasmid pBR322 after complete digestion with the enzymes EcoRV and BamHI.

3) Construction of plasmid pSV860

Plasmid p466 (cf. FIG. 9) was completely digested with the enzymes AccI and SnaBI. The small AccI-

AGCTTGTCGACTAATACGACTCACTATAGGGCGGCCGCGGGCCCCTGCAGGAATTC

ACAGCTGATTATGCTGAGTGATATCCCGCCGGCGCCCCGGGGACGTCCTTAAG HindIII

site binding to BamHI

GGATCCCCCGGGTGACTGACT

CCTAGGGGGCCCACTGACTAG

6)—a BamHI-BcII fragment of 240 bp—represented by ▼▼▼ in FIG. 13—which is a small fragment obtained by complete digestion of the SV40 virus with the enzymes BcII and BamHI and containing the late polyadenylation site of said virus (M.

SnaBI fragment, which contains a DNA sequence coding for urate oxidase with the exception of the first 16 amino-terminal acids, was purified and ligated with the synthetic HindIII-AccI fragment having the following sequence (SEQUENCE ID NO. 35):

HindIII Acci AGCTTGCCGCCACTATGTCCGCAGTAAAAGCAGCCCGCTACGGCAAGGACAATGTCCGCGT

FITZGERALD et al., Cell, 24, 1981, 251-260). The BamHI and BcII sites disappear on ligation respectively with the site binding to BamHI of the fragment described in 5) and the BamHI site

7)-a BamHI-EcoRV fragment-symbolized by OCCO in FIG. 13—of 190 bp, which is a small

ACGGCGGT GAT ACAGGCGT CATTTT CGT CGGGCGATGCCGTT CCTGTT ACAGGCGCAGA This ligation makes it possible to obtain the HindIII-SnaBI fragment containing a sequence, coding for urate oxidase, which is identical to that of clone 9C and a non-translated 5' sequence favoring expression in ani-(which also disappears) of the fragment described 65 mal cells (KOZAK, M., Nucl. Acids Res., 12, 2, 1984, 857-872).

The HindIII-SnaBI fragment contains the following sequence (SEQUENCE ID NO. 36):

	<u> </u>			
5' -AGCTTGCCG	CCACTATGTC	CGCAGTAAAA	GCAGCCCGCT	ACGGCAAGGA
CAATGTCCGC	GTCTACAAGG	TTCACAAGGA	CGAGAAGACC	GGTGTCCAGA
CGGTGTACGA	GATGACCGTC	TGTGTGCTTC	TGGAGGGTGA	GATTGAGACC
TCTTACACCA	AGGCCGACAA	CAGCGTCATT	GTCGCAACCG	ACTCCATTAA
GAACACCATT	TACATCACCG	CCAAGCAGAA	COCCGTTACT	CCTCCCGAGC
TGTTCGGCTC	CATCCTGGGC	ACACACTTCA	TTGAGAAGTA	CAACCACATC
CATGCCGCTC	ACGTCAACAT	TGTCTGCCAC	CGCTGGACCC	GGATGGACAT
TGACGGCAAG	CCACACCCTC	ACTCCTTCAT	CCGCGACAGC	GAGGAGAAGC
GGAATGTGCA	GGTGGACGTG	GTCGAGGGCA	AGGGCATCGA '	TATCAAGTCG
TCTCTGTCCG	GCCTGACCGT	GCTGAAGAGC	ACCAACTCGC	AGTTCTGGGG
CTTCCTGCGT	GACGAGTACA	CCACACTTAA	GGAGACCTGG	GACCGTATCC
TGAGCACCGA	CGTCGATGCC	ACTTGGCAGT	GGAAGAATTT	CAGTGGACTC
CAGGAGGTCC	GCTCGCACGT	GCCTAAGTTC	GATGCTACCT	GGGCCACTGC
TCGCGAGGTC	ACTCTGAAGA	CTTTTGCTGA	AGATAACAGT	GCCAGCGTGC
AGGCCACTAT	GTACAAGATG	GCAGAGCAAA	TCCTGGCGCG	CCAGCAGCTG
ATCGAGACTG	TCGAGTACTC	GTTGCCTAAC	AAGCACTATT	TCGAAATCGA
CCTGAGCTGG	CACAAGGGCC	TCCAAAACAC	CGGCAAGAAC	GCCGAGGTCT
TCGCTCCTCA	GTCGGACCCC	AACGGTCTGA	TCAAGTGTAC	CGTCGGCCGG
TCCTCTCTGA	AGTCTAAATT	G		

The HindIII-SnaBI fragment was then inserted into vector pSE₁, which had first been incubated with the ²⁰ enzymes HindIII and Smal. This gave plasmid pSV860 shown in FIG. 14, in which the symbols have the same meanings as in FIG. 13, the novel HindIII-SnaBI fragment being symbolized by www. (The SnaBI and SmaI sites disappeared on ligation.)

EXAMPLE 17: Transient expression of urate oxidase cDNA in COS cells-Assay of the urate oxidase activity in the cell lyzate

COS cells are monkey kidney cells expressing the 30 T-antigen of the SV40 virus (Gluzman, Y., Cell 23, 1981, 175-182). These cells, which permit the replication of vectors containing the origin of replication of SV40 virus DNA, are preferred hosts for studying the expression of genes in animal cells.

1) Transfection of COS cells and transient expression of urate oxidase cDNA

4.105 COS cells are plated out in a Petri dish of diameter 6 cm (Corning) in 5 ml of Dulbecco's modified Ea- 40 gle's medium (from Gibco), hereafter called DMEM, which contains 0.6 g/l of glutamine and 3.7 g/l of NaH-CO₃ and is complemented with fetal calf serum (GIBCO) at a rate of 5%. After about 16 h of culture at 37° C. in an atmosphere containing 5% of carbon diox- 45 ide, the culture medium is sucked off and the cells are washed with 3 ml of PBS (phosphate buffered saline from GIBCO). The following mixture is then added: 1000 μl of (DMEM+10% of fetal calf serum (GIBCO)), 110 µl of diethylaminoethyldextran of average molecular weight 500,000 at a concentration of 2 mg/ml (Pharmacia), 1.1 µl of chloroquine 100 mM (Sigma) and 3 µg of DNA of either plasmid pSV860 or plasmid pSE₁ (for the control). After incubation for 5 h at 37° C. in an atmosphere containing 5% of carbon 55 dioxide, the mixture is withdrawn from the cells. 2 ml of PBS containing 10% of dimethyl sulfoxide (spectroscopic grade, Merck) are then added. After incubation

for 1 min at room temperature, the mixture is withdrawn and the cells are washed twice with PBS. 5 ml of DMEM complemented with fetal calf serum at a rate of 2% are added. Incubation is continued for 4 days at 37° C. under an atmosphere containing 5% of carbon dioxide.

52

2) Preparation of the samples

The culture medium is sucked off and the COS cells are rinsed twice with 3 ml of PBS. The cells are then collected by scratching with a rubber spatula (policeman) in 1 ml of PBS. After scratching, the dish is rinsed with 1 ml of PBS. The two cell suspensions are combined and centrifuged for 10 min at 1000 rpm. The supernatant is removed and the cell residue is resuspended in 1 ml of triethylammonium (TEA) 0.05M of 35 pH 8.9/EDTA buffer.

The cells are lyzed by sonication (on ice) by means of 10 s pulses with a sonicator (Vibra Cell from Sonics and Materials Inc. USA) set to a power of 12 W. The cell lyzate is centrifuged for 10 min at 10,000 rpm and the supernatant is recovered for assay of the urate oxidase.

3) Assay of the urate oxidase activity

The urate oxidase activity was assayed as described in Example 9.

The results are collated in the Table below:

_	COS cells transfected by	Urate oxidase activity U/ml
0	. pSVS60 pSE1	0.105 <0.01

It is found that the COS cells transfected by plasmid pSV860 carrying urate oxidase cDNA express an appreciable level of urate oxidase activity, whereas no urate oxidase activity is detectable in the control. There is therefore expression of urate oxidase cDNA.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(| | | |) NUMBER OF SEQUENCES: 36

(2) INFORMATION FOR SEQ ID NO:1:

-continued

```
( 1 ) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 301 amino acida (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: protein
- (i i i) HYPOTHETICAL: NO
- (v !) ORIGINAL SOURCE:
 - (A) ORGANISM: Aspergillus flavus
- (v i i) IMMEDIATE SOURCE:
 - (B) CLONE: Unate exidese
- (* i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

```
Ser Ala Val Lys Ala Ala Arg Tyr Giy Lys Asp Asn Val Arg Val Tyr 1 5 10
             Lys Asp Glu Lys Thr Gly Val Gln Thr Val Tyr Glu Met 20 25
Thr Val Cys Val Leu Leu Glu Gly Glu Ile Glu Thr Ser Tyr Thr Lys 35 45
    Asp Asn Scr Val Ile Val Als Thr Asp Scr Ilc Lys Asn Thr Ile 50 55 60
Tyr Ile Thr Ala Lys Glu Asn Pro Val Thr Pro Pro Glu Lou Phe Gly 65 70 75
Ser Ile Leu Gly Thr His Phe Ile Glu Lys Tyr Asn His Ile His Ala
85 90
Ala His Val Asn Ile Val Cys His Arg Trp Thr Arg Met Asp Ile Asp 100 105
Gly Lys Pro His Pro His Ser Phe Ile Arg Asp Ser Glu Glu Lys Arg
ils 123
Asn Val Gin Val Asp Val Val Giu Giy Lys Giy Ile Asp Ile Lys Ser
130 140
        Ser Gly Leu Thr Vai Leu Lys Ser Thr Asn Ser Gln Phe Trp
150 155
        Leu Arg Asp Glu Tyr Thr Thr Leu Lys Glu Thr Trp Asp Arg
165
   Leu Ser Thr Asp Val Asp Ala Thr Trp Gln Trp Lys Asn Phe Ser
180
Gly Leu Glu Vai Arg Ser His Val Pro Lys Phe Asp Alz Thr Trp
195 200 205
        Als Arg Glu Vai Thr Leu Lys Thr Phe Ala Glu Asp Asn Ser 215
        Val Gln Ala Thr Met Tyr Lys Met Ala Glu Gln Ile Leu Ala
230 235
Arg Gin Gin Leu Ile Giu Thr Val Giu Tyr Ser Leu Pro Asn Lys His
245 250
Tyr Phe Glu Ile Asp Leu Ser Trp His Lys Gly Leu Gln Asn Thr Gly 260 270
    Asa Ala Glu Val Phe Ala Pro Gin Ser Asp Pro Asa Gly Leu Ile
275 280
Lys Cys Thr Vai Gly Arg Ser Ser Leu Lys Ser Lys
290 295
```

(2) INFORMATION FOR SEQ ID NO.2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 302 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

```
( i i ) MOLECULE TYPE: protein
```

(i i i) HYPOTHETICAL: NO

(v i) ORIGINAL SOURCE:

(A) ORGANISM: Aspergillus flavus

(vii) IMMEDIATE SOURCE:

(B) CLONE: Met-Urate oxidase

(* i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Ala Val Lys Ala Ala Arg Tyr Gly Lys Asp Asa Val Arg Val I 15 Tyr Lys Val His Lys Asp Glu Lys Thr Gly Val Gln Thr Val Tyr Glu 20 25 30 Mer Thr Val Cys Val Leu Leu Glu Gly Glu Ile Glu Thr Ser Tyr Thr 35 40 Lys Ala Asp Asn Ser Val lie Val Ala Thr Asp Ser. Ile Lys Asn Thr
50
60 lle Tyr Ilc Thr Ala Lys Glu Asn Pro Val Thr Pro Pro Glu Leu Phe 65 70 75 80 Gly Ser Ile Leu Glý Thr His Pho Ile Glu Lys Tyr Asn His Ile His 85 90 95 Ala Ala His Val Asn Ile Val Cys His Arg Trp Thr Arg Mct Asp Ile 100 105 Asp Gly Lys Pro His Pro His Ser Phe Ile Arg Asp Ser Glu Glu Lys 115 120 Arg Asn Val Gln Val Asp Val Val Glu Gly Lys Gly Ile Asp lie Lys 130 140 Ser Ser Leu Ser Gly Leu Thr Val Leu Lys Ser Thr Asn Ser Gin Phe 145 150 160 Trp Gly Phe Leu Arg Asp Glu Tyr Thr Thr Leu Lys Glu Thr Trp Asp 165 170 175 Arg Ile Leu Ser Thr Asp Val Asp Ala Thr Trp Gin Trp Lys Asn Phe 180 185 Ser Gly Leu Gln Giu Vai Arg Ser His Val Pro Lys Phe Asp Ala Thr 195 200 205 Trp Ala Thr Ala Arg Glu Val Thr Leu Lys Thr Phe Ala Glu Asp Asn 210 215 220 Ser Ala Ser Val Gln Ala Thr Met Tyr Lys Met Ala Glu Gln 11e Leu 225 230 240 Arg Gln Gln Leu Iie Glu Thr Val Glu Tyr Ser Leu Pro Asn Lys
245
255 Tyr Phe Giu Ile Asp Lau Ser Trp His Lys Gly Leu Gin Asn Thr . 260 270 Gly Lys Asn Ala Glu Val Phe Ala Pro Gln Ser Asp Pro Asn Gly Leu 275 280 285 lle Lys Cys Thr Val Gly Arg Ser Ser Leu Lys Ser Lys Leu 290 300

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 906 base pairs
 - (B) TYPE: sucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE

-continued

(B) CLONE: Preferred sequence for expression in

(\mathbf{x} i) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGTCTGCGG	TAAAAGCAGC	GCGCTACGGC	AAGGACAATG	TTCGCGTCTA	CAAGGTTCAC	6 0
AAGGACGAGA	AGACCGGTGT	CCAGACGGTG	TACGAGATGA	CCGTCTGTGT	GCTTCTGGAG	120
GGTGAGATTG	AGACCTCTTA	CACCAAGGCC	GACAACAGCG	TCATTGTCGC	AACCGACTCC	180
ATTAAGAACA	CCATTTACAT	CACCGCCAAG	CAGAACCCCG	TTACTCCTCC	CGAGCTGTTC	2 4 0
BGCTCCATCC	TGGGCACACA	CTTCATTGAG	AAGTACAACC	ACATCCATGC	COCTCACGTC	3 0 0
AACATTGTCT	GCCACCGCTG	GACCCGGATG	GACATTGACG	GCAAGCCACA	CCCTCACTCC	3 6 0
TTCATCCGCG	ACAGCGAGGA	GAAGCGGAAT	GTGCAGGTGG	ACGTGGTCGA	GGGCAAGGGC	4 2 0
ATCGATATCA	AGTCGTCTCT	втссвесств	ACCGTGCTGA	AGAGCACCAA	CTCGCAGTTC	480
recescrice	TGCGTGACGA	GTACACCACA	CTTAAGGAGA	CCTGGGACCG	TATCCTGAGC	5 4 0
ACCGACGTCG	ATGCCACTTG	GCAGTGGAAG	AATTTCAGTG	GACTCCAGGA	GGTCCGCTCG"	600
CACGTGCCTA	AGTTCGATGC	TACCTGGGCC	ACTGCTCGCG	AGGTCACTCT	GAAGACTTTT	6 6 0
SCTGAAGATA	ACAGTGCCAG	CGTGCAGGCC	ACTATGTACA	AGATGGCAGA	GCAAATCCTG	720
GCGCGCCAGC	AGCTGATCGA	GACTGTCGAG	TACTCOTTOC	CTAACAAGCA	CTATTTCGAA	780
ATCGACCTGA	GÉTGGCACAA	GGGCCTCCAA	AACACCGGCA	AGAACGCCGA	GGTCTTCGCT	8 4 0
CCTCAGTCGG	ACCCCAACGG	TCTGATCAAG	TGTACCGTCG	GCCGGTCCTC	TCTGAAGTCT	900
AAATTG						004

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 906 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(v i i) IMMEDIATE SOURCE: $(\ B\)\ CLONE:\ Preferred\ sequence\ for\ expression\ in$ eukaryotes

(x i) SEQUENCE DESCRIPTION: SEQ ID NOA:

ATGTCTGCTG	TTAAGGCTGC	TAGATACOGT	AAGGACAACG	TTAGAGTCTA	CAAGGTTCAC	6 0
AAGGACGAGA	AGACCGGTGT	CCAGACGGTG	TACGAGAŢGA	CCGTCTGTGT	GCTTCTGGAG	1 2 0
GGTGAGATTG	AGACCTCTTA	CACCAAGGCC	GACAACAGCG	TCATTGTCGC	AACCGACTCC	180
ATTAAGAACA	CCATTTACAT	CACCGCCAAG	CAGAACCCCG	TTACTCCTCC	CGAGCTGTTC	2 4 0
GGCTCCATCC	TGGGCACACA	CTTCATTGAG	AAGTACAACC	ACATCCATGC	CGCTCACGTC	300
AACATTGTCT	GCCACCOCTG	GACCCGGATG	GACATTGACG	GCAAGCCACA	CCCTCACTCC	3 6 0
TTCATCCGCG	ACAGCGAGGA	GAAGCGGAAT	GTGCAGGTGG	ACGTGGTCGA	GGGCAAGGGC	4 2 0
ATCGATATCA	AGTCGTCTCT	GTCCGGCCTG	ACCGTGCTGA	AGAGCACCAA	CTCGCAGTTC	480
TGGGGCTTCC	TGCGTGACGA	GTACACCACA	CTTAAGGAGA	CCTGGGACCG	TATCCTGAGC	5 4 0
ACCGACGTCG	ATGCCACTTG	GCAGTGGAAĢ	AATTTCAGTG	GACTCCAGGA	GGTCCGCTCG	600
CACGTGCCTA	AGTTCGATGC	TACCTGGGCC	ACTGCTCGCG	AGGTCACTCT	GAAGACTTTT	660
GCTGAAGATA	ACAGTGCCAG	CGTGCAGGCC	ACTATGTAÇA	AGATGGCAGA	GCAAATCCTG	720
GCGCGCCAGC	AGCTGATCGA	GACTGTCGAG	TACTCGTTGC	CTAACAAGCA	CTATTTCGAA	780
ATCGACCTGA	GCTGGCACAA	GGGCCTCCAA	AACACCGGCA	AGAACGCCGA	GGTCTTCGCT	840

840

900

-continued CCTCAGTCGG ACCCCAACGG TCTGATCAAG TGTACCGTCG GCCGGTCCTC TCTGAAGTCT 900 906 AAATTG (2) INFORMATION FOR SEO ID NO.5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic soid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) , (iii) HYPOTHETICAL: NO (vii) IMMEDIATE SOURCE: (B) CLONE: Preferred non-translated 5'sequence for animal cells (x i) SEQUENCE DESCRIPTION: SEQ ID NO:5: AGCTTGCCGC CACT 1 4 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 906 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (i i i) HYPOTHETICAL: NO (vii) IMMEDIATE SOURCE: (B) CLONEs Preferred sequence for expression in animal cells (x i) SEQUENCE DESCRIPTION: SEQ ID NO:6: ATGTCCGCAG TAAAAGCAGC CCGCTACGGC AAGGACAATG TCCGCGTCTA CAAGGTTCAC 60 AAGGACGAGA AGACCGGTGT CCAGACGGTG TACGAGATGA CCGTCTGTGT GCTTCTGGAG 120 GOTGAGATTG AGACCTCTTA CACCAAGGCC GACAACAGCG TCATTGTCGC AACCGACTCC 180 ATTAGGACA CCATTTACAT CACCGCCAAG CAGAACCCCG TTACTCCTCC CGAGCTGTTC 240 GGCTCCATCC TGGGCACACA CTTCATTGAG AAGTACAACC ACATCCATGC CGCTCACGTC 300 AACATTGTCT GCCACCGCTG GACCCGGATG GACATTGACG GCAAGCCACA CCCTCACTCC 360 TTCATCCGCG ACAGCGAGGA GAAGCGGAAT GTGCAGGTGG ACGTGGTCGA GGGCAAGGGC 420 ATCGATATCA AGTCGTCTCT GTCCGGCCTG ACCGTGCTGA AGAGCACCAA CTCGCAGTTC 480 TGGGGCTTCC TGCGTGACGA GTACACCACA CTTAAGGAGA CCTGGGACCG TATCCTGAGC 540 ACCGACGTCG ATGCCACTTG GCAGTGGAAG AATTTCAGTG GACTCCAGGA GGTCCGCTCG 600 CACOTGCCTA AGTTCGATGC TACCTGGGCC ACTGCTCGCG AGGTCACTCT GAAGACTTTT 660 GCTGAAGATA ACAGTGCCAG CGTGCAGGCC ACTATGTACA AGATGGCAGA GCAAATCCTG 720 GCGCGCCAGC AGCTGATCGA GACTGTCGAG TACTCGTTGC CTAACAAGCA CTATTTCGAA 780

ATCGACCTGA GCTGGCACAA GGGCCTCCAA AACACCGGCA AGAACGCCGA GGTCTTCGCT

CCTCAGTEGG ACCCCAACGG TCTGATCAAG TGTACCGTCG GCCGGTCCTC TCTGAAGTCT

(2) INFORMATION FOR SEQ ID NO:7:

AAATTG

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 base pairs

(B) TYPE: nucleic acid

23

```
-continued
```

```
( C ) STRANDEDNESS: single
                ( D ) TOPOLOGY: linear
      ( | | ) MOLECULE TYPE: DNA (genomic)
     ( i i i ) HYPOTHETICAL: NO
     (vii) IMMEDIATE SOURCE:
                ( B ) CLONE: reverse transcription primer
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:7:
GATCCGGGCC CTTTTTTTT TTT
( 2 ) INFORMATION FOR SEQ ID NO:8:
        ( 1 ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 10 amino acids
                ( B ) TYPE: amino acid
                (C) STRANDEDNESS: single
                ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
     (iii) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 17
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:8:
                                 Asp Val Val Glu Gly
(2) INFORMATION FOR SEQ ID NO:9:
        ( I ) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 8 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
     ( i i i ) HYPOTHETICAL: NO
     (vii) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 20
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO.5:
        Asn Phe Ser Gly Len Gln Glu Val
(2) INFORMATION FOR SEQ ID NO:10:
        ( i ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 6 amino soids
                 (B) TYPE: amino sold
                 (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
     ( | | | ) HYPOTHETICAL: NO
     (v | | ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 23
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:10:
                                 Trp Als
 ( 2 ) INFORMATION FOR SEQ ID NO:11:
```

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids

```
( B ) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
     ( | i | ) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 27
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:11:
       His Tyr Phe Glu Ile Asp Leu Ser
(2) INFORMATION FOR SEQ ID NO:12:
        ( I ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 13 amino acids
                ( B ) TYPE: smino scid
                 ( C ) STRANDEDNESS: single
                ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
     ( i i i ) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 28
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:12:
        lle Leu Ser Thr Asp Val Asp Ala Thr Trp Gln Trp Lys
( 2 ) INFORMATION FOR SEQ ID NO:13:
        ( i ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 11 amino acids
                ( B ) TYPE: amino sold
                (C) STRANDEDNESS: single
                ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
     ( i i i ) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 29
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:13:
        His Tyr Phe Glu Ile Asp Lea Scr Trp His Lys
(2) INFORMATION FOR SEQ ID NO:14:
        ( i ) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
                 ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
     ( i i i ).HYPOTHETICAL: NO
     ( v i i ) DMMEDIATE SOURCE:
                 ( B ) CLONE: Hydrolysis product T 31
       ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:14:
        Ser Thr Asn Ser Gln Phe Trp Gly Phe Leu Arg
                                                                    10
( 2 ) INFORMATION FOR SEQ ID NO:15:
```

```
-continued
```

```
( 1 ) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 16 amino acids
                 ( B ) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: Encar
       ( i i ) MOLECULE TYPE: peptide
     ( i i i ) HYPOTHETICAL: NO
     (vii) IMMEDIATE SOURCE:
                (B) CLONE: Hydrolysis product T 32
       ( \mathbf{z} i ) SEQUENCE DESCRIPTION: SEQ ID NO:15:
        Gin Asn Pro Val Thr Pro Pro Giu Leu Phe Gly Ser lie Leu Gly Thr
                                                                  10
( 2 ) INFORMATION FOR SEQ ID NO:16:
        ( i ) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 16 amino acids
                (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                ( D ) TOPOLOGY: linear
       ( i i ) MOLECULE TYPE: peptide
     ( i i i ) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
                ( B ) CLONE: Hydrolysis product T 33
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:16:
        Gin Asn Pro Val The Pro Pro Gin Lon Phe Gly Ser lie Len Gly The
( 2 ) INFORMATION FOR SEQ ID NO:17:
        ( I ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 17 amino soids
                ( B ) TYPE: amino acid
                (C) STRANDEDNESS: single
                ( D ) TOPOLOGY: Hinear
      ( i i ) MOLECULE TYPE: peptide
    ( i i i ) HYPOTHETICAL: NO
    ( v i i ) IMMEDIATE SOURCE:
               (B) CLONE: Hydrolysis product V 1
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:17:
                                       Lys His Tyr Phe Glu Ile
       Lys
(2) INFORMATION FOR SEQ ID NO:18:
        ( i ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 16 amino scids
                ( B ) TYPE: amino acid
                (C) STRANDEDNESS: single
                ( D ) TOPOLOGY: Hnear
      ( i i ) MOLECULE TYPE: peptide
    ( i i i ) HYPOTHETICAL: NO
    ( v i i ) IMMEDIATE SOURCE:
               ( B ) CLONE: Hydrolysis product V 2
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:18:
                                                                                           Val Gla Ala
```

```
( 2 ) INFORMATION FOR SEQ ID NO:19:
       ( I ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 24 amino acids
                (B) TYPE: amino scid
                (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: peptide
    (iii) HYPOTHETICAL: NO
    (vii) IMMEDIATE SOURCE:
               ( B ) CLONE: Hydrolysis product V 3
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:19:
       Thr Ser Tyr Thr Lys Ala Asp Asa Ser Val Ile Val Asp Thr Asp Ser
       Ile Lys Asn Thr Ile Tyr Ile Thr
( 2 ) INFORMATION FOR SEQ ID NO:20:
       ( i ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 28 amino soids
               ( B ) TYPE: amino acid-
                (C) STRANDEDNESS: single
               ( D ) TOPOLOGY: Enear
      ( i i ) MOLECULE TYPE: peptide
    ( i i i ) HYPOTHETICAL: NO
    ( v i i ) IMMEDIATE SOURCE:
               ( B ) CLONE: Hydrolysis product V 5
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:20:
       Gly Lys Gly Ile Asp Ile Lys Ser Ser Leu Ser Gly Leu Thr Val Leu
1 10 15
       Lys Ser Thr Asn Ser Gin Phe Trp Gly Phe Leu Arg 20 ^{\circ}
( 2 ) INFORMATION FOR SEQ ID NO:21:
       ( 1 ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 17 amino acids
               (B) TYPE: amino soid
(C) STRANDEDNESS: single
               ( D ) TOPOLOGY: linear
      ( | i ) MOLECULE TYPE: peptide
    (iii) HYPOTHETICAL: NO
    (vii) IMMEDIATE SOURCE:
               (B) CLONE: Hydolysis product V 6
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO.21:
       Gly Lys Gly Ile Asp Ile Lys Ser Ser Leu Ser Gly Leu Thr Val Leu 1 10 15
                                                                10
( 2 ) INFORMATION FOR SEQ ID NO:22:
        ( i ) SEQUENCE CHARACTERISTICS:
                ( A ) LENGTH: 1236 base pairs
                ( B ) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: DNA (genomic)
```

-continued

```
( i i i ) HYPOTHETICAL: NO
```

(v i i) IMMEDIATE SOURCE: (B) CLONE: Pragment 3

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GATCCGCGGA AGCATAAAGT GTAAAGCCTG GGGTGCCTAA TGAGTGAGCT AACTTACATT 60 AATTGCGTTG CGCTCACTGC CCGCTTTCCA GTCGGGAAAC CTGTCGTGCC AGCTGCATTA 120 ATGAATCGGC CAACGCGCGG GGAGAGGCGG TTTGCGTATT GGGCGCCAGG GTGGTTTTTC 180 TITTCACCAG TGAGACGGGC AACAGCTGAT TGCCCTTCAC CGCCTGGCCC TGAGAGAGTT GCAGCAAGCG GTCCACGCTG GTTTGCCCCA CCACCCGAAA ATCCTGTTTG ATGGTGGTTA 300 ACGGCGGGAT ATAACATGAG CTGTCTTCGG TATCGTCGTA TCCCACTACC GAGATATCCG 3 6 0 CACCAACGCG CAGCCCGGAC TCGGTAATGG CGCGCATTGC GCCCAGCGCC ATCTGATCGT 4 2 0 TGGCAACCAG CATCGCAGTG GGAACGATGC CCTCATTCAG CATTTGCATG GTTTGTTGAA 480 AACCGGACAT GGCACTCCAG TCGCCTTCCC GTTCCGCTAT CGGCTGAATT TGATTGCGAG 5 4 0 TGAGATATTT ATGCCAGCCA GCCAGACGCA GACGCCCGA GACAGAACTT AATGGCCCG 600 CTAACAGCGC GATTTGCTGG TGACCCAATG CGACCAGATG CTCCACGCCC AGTCGCGTAC 660 CGTCTTCATG GGAGAAAATA ATACTGTTGA TGGGTGTCTG GTCAGAGACA TCAAGAAATA 720 ACGCCGGAAC ATTACTGCAG GCAGCTTCCA CAGCAATGGC ATCCTGGTCA TCCAGCGGAT 780 AGTTAATGAT CAGCCCACTG ACGCGTTGCG CGAGAAGATT GTGCACCGCC GCTTTACAGG 840 CTTCGACGCC GCTTCGTTCT ACCATCGACA CCACCACGCT GGCACCCAGT TGATCGGCGC 900 GAGATTTAAT CGCCGCGACA ATTTGCGACG GCGCGTGCAG GGCCAGACTG GAGGTGGCAA 960 CGCCAATCAG CAACGACTGT TTGCCCGCCA GTTGTTGTGC CACGCGGTTG GGAATGTAAT 1020 TCAGCTCCGC CATCGCCGCT TCCACTTTTT CCCGCGTTTT CGCAGAAACG TGGCTGGCCT 1080 GGTTCACCAC GCGGGAAACG GTCTGATAAC AGACACCGGC ATACTCTGCG ACATCGTATA 1140 ACGITACIGG TITCACATIC ACCACCCIGA ATTGACTOIC TICCGGGCGC TATCATGCCA 1200 TACCGCGAAA GGTTTTGCGC CATTCGATGG TGTCCG 1236

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (i i) MOLECULE TYPE: DNA (genomic)
- (i i i) HYPOTHETICAL: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Fragment 4
- (ix) FEATURE
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 107.316
 - (D) OTHER INFORMATION: /product = "regulatory signal as 1-44 human growth hormone precursor"
- (x i) SEQUENCE DESCRIPTION: SEQ ID NO:23:
- TCGAGCTGAC TGACCTGTTG CTTATATTAC ATCGATAGCG TATAATGTGT GGAATTGTGA 60
 GCGATAACAA TTTCACACAG TTTAACTTTA AGAAGGAGAT ATACAT ATG GCT ACC 113

Met Ala Thr

163

GGA TCC CGG ACT AGT CTG CTC CTG GCT TTT GGC CTG CTC TGC CTG CCC

(v i i) IMMEDIATE SOURCE:

```
-continued
     Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro
TGG CTT CAA GAG GGC AGT GCC TTC CCA ACC ATT CCC TTA TCT AGA CTT Trp Leu Glu Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Leu 20
                                                                                                          2 1 1
TTT GAC AAC GCT ATG CTC CGC GCC CAT CGT CTG CAC CAG CTG GCC TTT Phc Asp Asa Ala Met Leu Arg Ala His Arg Leu His Gin Leu Ala Pho 40
                                                                                                          259
GAC ACC TAC CAG GAG TTT GAA GAA GCC TAT ATC CCA AAG GAA CAG AAG Asp Thr Tyr Glo Glo Phe Glo Glo Als Tyr Ile Pro Lys Glo Glo Lys
                                                                                                          3 0 7
TAT TCA TTC CTGCA
                                                                                                         3 2 1
Tyr Ser Phe
(2) INFORMATION FOR SEQ ID NO:24:
        ( i ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 70 amino acids
                ( B ) TYPE: amino acid
               ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: protein
     . ( z i ) SEQUENCE DESCRIPTION: SEQ ID NO:24:
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu 1 5 15
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
20 25
Ser Arg Leu Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35
Leu Als Phe Asp Thr Tyr Gin Gin Phe Gin Gin Ala Tyr Ile Pro Lys
Glu Gin Lys Tyr Ser Phe
( 2 ) INFORMATION FOR SEQ ID NO:25:
       ( i ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 74 base pairs
               ( B ) TYPE: nucleic acid
               (C) STRANDEDNESS: double
               ( D ) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: DNA (genomic)
    ( i i i ) HYPOTHETICAL: NO
    ( v i i ) IMMEDIATE SOURCE:
               ( B ) CLONE: Clal-NdeI fragment
      ( x ! ) SEQUENCE DESCRIPTION: SEQ ID NO.25:
CGATAGCGTA TAATGTGTGG AATTGTGAGC GGATAACAAT TTCACACAGT TTTTCGCGAA
                                                                                                           60
GAAGGAGATA TACA
                                                                                                          7 4
(2) INFORMATION FOR SEQ ID NO:26:
       ( i ) SEQUENCE CHARACTERISTICS:
               ( A ) LENGTH: 190 base pairs
               ( B ) TYPE: nucleic said
               ( C ) STRANDEDNESS: double
               (D) TOPOLOGY: linear
      ( i i ) MOLECULE TYPE: DNA (genomic)
    ( i i i ) HYPOTHETICAL: NO
```

·		·	-continued			
	(B) CLONE: Plasmic	p373,2 fragment				
(xi)SE	QUENCE DESCRIPTION	Ni SEQ ID NO:26:				
					ACGCACTACT	6 (
CAAGAACTA	C GGGCTGCTCT	ACTECTTOA	GAAGGACAT	G GACAAGGTC	G AGACATICCT	120
GCGCATCGT	G CAGTGCCGCT	CTGTGGAGG	G CAGCTGTGG	C TTCTAGTAA	GTACCCTGCC	180
CTACGTACC	A.	•				190
(2) INFORMATI	ON FOR SEQ ID NO:27	ī				
(i)SE	QUENCE CHARACTES (A) LENGTH: 43 bas (B) TYPE: mucleic ac (C) STRANDEDNES (D) TOPOLOGY: lini	e pairs id SS: single				
(11)MO	LECULE TYPE: DNA	(genomie)		•		
(iii)HY	POTHETICAL: NO					
(vii)IMI	MEDIATE SOURCE: (B) CLONE: Acci-No	iel synthetic fragment				
(xi)SEC	QUENCE DESCRIPTION	N: SEQ ID NO:27:				
TATGTCTGCG	GTAAAAGCAG	CGCGCTACGG	CAAGGACAAT	GTTCGCGT		4 8
(2) INFORMATIO	ON FOR SEQ ID NO28:					
(i)SEC	QUENCE CHARACTER (A) LENGTH: 360 bar (B) TYPE: nucleic acid (C) STRANDEDNES (D) TOPOLOGY: line	se pairs 1 S: single	·	·		
(ii) MOI	LECULE TYPE: DNA (genomic)				
(iii)HYF	OTHETICAL: NO					
(vil)IMDM	EDIATE SOURCE: (B) CLONE: Plasmid p	EMR469 fragment				
(xl)SEQ	UENCE DESCRIPTION	: SEQ ID NO:28:				
GGGACGCGTC	TCCTCTCCCG	GAACACCGGG	CATCTCCAAC	TTATAAGTTG	GAGAAATAAG	6 0
	ATTGAGAGAA					120
AATGGGGTTC	ACTTTTTGGT	AAAGCTATAG	CATGCCTATC	ACATATAAAT	AGAGTGCCAG	180
TAGCGACȚTT	TTTCACACTC	GAGATACTCT	TACTACTGCT	CTCTTGTTGT	TTTTATCACT	240
TCTTGTTTCT	TCTTGGTAAA	TAGAATATCA	AGCTACAAAA	AGCATACAAT	CAACTATCAA	300
CTATTAACTA	TATCGATACC	ATATGGATCC	GTCGACTCTA	GAGGATCGTC	GACTCTAGAG	360
(2) INFORMATION	N FOR SEQ ID NO:29:			•	•	
	UENCE CHARACTER!! (A) LENGTH: 58 base (B) TYPE: nucleic acid (C) STRANDEDNESS (D) TOPOLOGY: linear	pairs : double				
(ii) MOL	ecule type: DNA (p	momic)				
(iii) HYP	OTHETICAL: NO	•				
	EDIATE SOURCE: (B) CLONE: Fragment	c			·	
(xi)SEQL	JENCE DESCRIPTION:	SEQ ID NO.29:	•			
CGATATACAC	AATGTCTGCT	GTTAAGGCTG	CTAGATACGG	TAAGGACAAC	GTTAGAGT	5 8

($\,$ i $\,$) sequence characteristics:

-continued

(2) INFORMATIO	N FOR SEQ ID NO:30:					
	UENCE CHARACTERI (A) LENGTH: 1013 b (B) TYPE: nucleic sci (C) STRANDEDNES (D) TOPOLOGY: line	ase pairs 1 S: double			• .	
(ii) MOI	ECULE TYPE: DNA (genomic)			•	
(III)HYP	OTHETICAL: NO					
	EDIATE SOURCE: (B) CLONE: Fragmen	t D				
(xi)SEQ	UENCE DESCRIPTION	N: SEQ ID NO:30:		•		
CTACAAGGTT	CACAAGGACG	AGAAGACCGG	TGTCCAGACG	GTGTACGAGA	TGACCGTCTG	. 6
тотосттсто	GAGGGTGAGA	TTGAGACCTC	TTACACCAAG	GCCGACAACA	GCGTCATTGT	1 2
CGCAACCGAC	TCCATTAAGA	ACACCATTTA	CATCACCGCC	AAGCAGAACC	CCGTTACTCC	1 8
TCCCGAGCTG	TTCGGCTCCA	TCCTGGGCAC	ACACTTCATT	GAGAAGTACA	ACCACATCCA	2 4
TGCCGCTCAC	GTCAACATTG	TCTGCCACCG	CTGGACCCGG	ATGGACATTG	ACGGCAAGCC	3 0
ACACCCTCAC	TCCTTCATCC	GCGACAGCGA	GGAGAAGCGG	AATGTGCAGG	TGGACGTGGT	3 6
CGAGGGCAAG	GGCATCGATA	TCAAGTCGTC	тстотссоес	CTGACCGTGC	TGAAGAGCAC	4 2
CAACTCGCAG	TTCTGGGGCT	TCCTGCGTGA	CGAGTACACC	ACACTTAAGG	AGACCTGGGA	4 8
CCGTATCCTG	AGCACCGACG	TCGATGCCAC	TTGGCAGTGG	AAGAATTTCA	GTGGACTCCA	5 4
GGAGGTCCGC	TCGCACGTGC	CTAAGTTCGA	TGCTACCTGG	GCCACTGCTC	GCGAGGTCAC	6 0
TCTGAAGACT	TTTGCTGAAG	ATAACAGTGC	CAGCGTGCAG	GCCACTATGT	ACAAGATGGC	6 6
AGAGCAAATC	стеесесс	AGCAGCTGAT	CGAGACTGTC	GAGTACTCGT	TGCCTAACAA	7 2
GCACTATTTC	GAAATCGACC	TGAGCTGGCA	CAAGGGCCTC	CAAAACACCG	GCAAGAACGC	7 8
CGAGGTCTTC	GCTCCTCAGT	CGGACCCCAA	CGGTCTGATC	AAGTGTACCG	TCGGCCGGTC	8 4
CTCTCTGAAG	TCTAAATTGT	AAACCAACAT	GATTCTCACG	TTCCGGAGTT	TCCAAGGCAA	9 0
ACTGTATATA	GTCTGGGATA	GGGTATAGCA	TTCATTCACT	TGTTTTTTAC	TTCCAAAAA	9 6
AAAAAA AA	****	AAAAAAA	***	AAAAAGGGC	CCG	101
(2) INFORMATION	N FOR SEQ ID NO:31:					
	JENCE CHARACTERI (A) LENGTH: 207 bas (B) TYPE: nucleic acid (C) STRANDEDNESS (D) TOPOLOGY: lines	e pairs l S: double			•	
(ii) MOL	ecule type: DNA (@	genomic)				
(iii)HYP	OTHETICAL: NO					
	EDIATE SOURCE: (B) CLONE: Synthetic	GAL7 (ragment		,		
(xi)SEQU	JENCE DESCRIPTION	e seq id no-11:	•			
CGCGTCTATA	CTTCGGAGCA	CTGTTGAGCG	AAGGCTCATT	AGATATATTT	TCTGTCATTT	6
TCCTTAACCC	AAAAATAAGG	GAGAGGGTCC	AAAAGCGCT	CGGACAACTG	TTGACCGTGA	1 2
TCCGAAGGAC	TGGCTATACA	GTGTTCACAA	AATAGCCAAG	CTGAAAATAA	TGTGTAGCCT	1 8
TTAGCTATGT	TCAGTTAGTT	TGGCATO				2 0
(2) INFORMATION	V FOR SEO ID NO.12.					

77 78 -continued (A) LENGTH: 23 base pairs (B) TYPE: nucleic scid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (! ! i) HYPOTHETICAL: NO (v i i) IMMEDIATE SOURCE: (B) CLONE: Modified Xhal-Mini adapter (x i) SEQUENCE DESCRIPTION: SEQ ID NO:32: CTAGGCTAGC GGGCCCGCAT GCA 2 3 (2) INFORMATION FOR SEQ ID NO:33: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 422 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i i) MOLECULE TYPE: DNA (genomic) (i i i) HYPOTHETICAL: NO (v i i) IMMEDIATE SOURCE: (B) CLONE: Flamid pSE1 "site binding to HindIII" fragment (x i) SEQUENCE DESCRIPTION: SEQ ID NO:33: AGCTGGCTCG CATCTCTCT TCACGCGCCC GCCGCCCTAC CTGAGGCCGC CATCCACGCC 60 GGTGAGTCGC GTTCTGCCGC CTCCCGCCTG TGGTGCCTCC TGAACTGCGT CCGCCGTCTA 120 GGTAGGCTCC AAGGGAGCCG GACAAAGGCC CGGTCTCGAC CTGAGCTCTA AACTTACCTA GACTCAGCCG GCTCTCCACO CTTTGCCTGA CCCTGCTTGC TCAACTCTAC GTCTTTGTTT 240 CGTTTTCTGT TCTGCGCCGT TACAACTTCA AGGTATGCGC TGGGACCTGG CAGGCGGCAT 300 CTGGGACCCC TAGGAAGGGC TTGGGGGTCC TCGTGCCCAA GGCAGGGAAC ATAGTGGTCC CAGGAAGGG AGCAGAGGCA TCAGGGTGTC CACTITGTCT CCGCAGCTCC TGAGCCTGCA 420 GA 4 2 2 (2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 base pairs (B) TYPE: mucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (I I) MOLECULE TYPE: DNA (genomic) (i i i) HYPOTHETICAL: NO (vii) IMMEDIATE SOURCE: (B) CLONE: Synthetic HindIII-"site binding to BamHI" (x i) SEQUENCE DESCRIPTION: SEQ ID NO:34: AGCTTGTCGA CTAATACGAC TCACTATAGG GCGGCCGCGG GCCCCTGCAG GAATTCGGAT CCCCCGGGTG ACTGACT 77

(2) INFORMATION FOR SEQ ID NO:35:

Fully Sun

(I) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 61 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: Hnear

Asn Pro Val Thr

Ser Пe

Тут Asn His Ile

Leu Gly Thr His Phe Πe

Pro Glu Leu

His Ala Ala His Gly

Lys

Glu

Val

Glu Asp Asn

```
-continued
      ( i i ) MOLECULE TYPE: DNA (genomic)
     ( i i i ) HYPOTHETICAL: NO
     ( v i i ) IMMEDIATE SOURCE:
              ( B ) CLONE: Synthetic HindIII-AccI fragment
      ( x i ) SEQUENCE DESCRIPTION: SEQ ID NO:35:
AGCTTGCCGC CACTATGTCC GCAGTAAAAG CAGCCCGCTA CGGCAAGGAC AATGTCCGCG
                                                                                                  6 0
τ
                                                                                                  6 1
(2) INFORMATION FOR SEQ ID NO:36:
       ( 1 ) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 920 base pairs
              ( B ) TYPE: nucleic acid
               ( C ) STRANDEDNESS: single
              (D) TOPOLOGY: finear
      ( i i ) MOLECULE TYPE: DNA (genomic)
    ( i i i ) HYPOTHETICAL: NO
    ( v i i ) IMMEDIATE SOURCE:
              ( B ) CLONE: HindIII-SnaBl fragment
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
AGCTTGCCGC CACTATGTCC GCAGTAAAAG CAGCCCGCTA CGGCAAGGAC AATGTCCGCG
                                                                                                 60
TCTACAAGGT TCACAAGGAC GAGAAGACCG GTGTCCAGAC GGTGTACGAG ATGACCGTCT
                                                                                                120
GTGTGCTTCT GGAGGGTGAG ATTGAGACCT CTTACACCAA GGCCGACAAC AGCGTCATTG
TCGCAACCGA CTCCATTAAG AACACCATTT ACATCACCGC CAAGCAGAAC CCCGTTACTC
                                                                                                240
CTCCCGAGCT GTTCGGCTCC ATCCTGGGCA CACACTTCAT TGAGAAGTAC AACCACATCC
                                                                                                300
ATGCCGCTCA CGTCAACATT GTCTGCCACC GCTGGACCCG GATGGACATT GACGGCAAGC
                                                                                                3 6 0
CACACCCTCA CTCCTTCATC CGCGACAGCG AGGAGAAGCG GAATGTGCAG GTGGACGTGG
                                                                                                420
TCGAGGGCAA GGGCATCGAT ATCAAGTCGT CTCTGTCCGG CCTGACCGTG CTGAAGAGCA
                                                                                                480
CCAACTCGCA GTTCTGGGGC TTCCTGCGTG ACGAGTACAC CACACTTAAG GAGACCTGGG
                                                                                                5 4 0
ACCGTATECT GAGCACCGAC GTCGATGCCA CTTGGCAGTG GAAGAATTTC AGTGGACTCC
                                                                                                600
AGGAGGTCCG CTCGCACGTG CCTAAGTTCG ATGCTACCTG GGCCACTGCT CGCGAGGTCA
                                                                                                660
CTCTGAAGAC TTTTGCTGAA GATAACAGTG CCAGCGTGCA GGCCACTATG TACAAGATGG
                                                                                                720
CAGAGCAAAT CCTGGCGCCC CAGCAGCTGA TCGAGACTGT CGAGTACTCG TTGCCTAACA
                                                                                                780
AGCACTATTT CGAAATCGAC CTGAGCTGGC ACAAGGGCCT CCAAAACACC GGCAAGAACG
                                                                                                840
CCGAGGTCTT COCTCCTCAG TCGGACCCCA ACGGTCTGAT CAAGTGTACC GTCGGCCGGT
                                                                                                900
CCTCTCTGAA GTCTAAATTG
                                                                                                920
  What is claimed is:
                                                                          -continued
  1. A protein possessing a specific urate oxidase activ-
ity of at least 16 U/mg and having the following se-
                                                      Пe
                                                           Val
                                                               Cys
Gly
                                                                    His
Lys
                                                                         Arg
Pro
                                                                              Trp
His
                                                                                   Thr
                                                                                        Arg
His
                                                                                             Met
                                                      Пe
                                                           Asp
                                                                                   Pro
                                                                                                  Phe
quence (SEQ ID NO:1):
                                                          Arg
Vai
Ile
Leu
                                                                    Ser
Val
                                                      Цe
                                                                Asp
                                                                              Glu
                                                                                                  Val
                                                                                   Lys
                                                                                        Arg
                                                                                        Lys
Gly
                                                      Gh
                                                                Asp
                                                                         Val
                                                                              Gh
                                                                                   Gly
                                                                                             Gly
                                                   60
                                                               Lys
Lys
Leu
Thr
                                                     Asp
Val
                                                                    Ser
Ser
                                                                         Ser
Thr
                                                                              Leu
                                                                                   Ser
                                                                                             Leu
Phe
                                                                                                  Thr
                   Ala
Val
                            Arg
Lys
Gla
              Lys
                                       Gly
                                            Lys
                        Ala
                                  Tyr
Val
                                                                              Asa
Glu
                                                                                        Gin
Thr
                                                                                   Ser
                        Tyr
Val
Val
Asp
     Asn
         Val
              Arg
                                       His
                                            Lys
                                                      Gly
                                                           Phe
                                                                         Asp
                                                                                   Tyr
                                                                                             Thr
                                                                    Arg
                                                           Glu
Vai
                                                                    Trp
Ala
Leu
                                                                              Arg
Trp
Glu
Ala
Leu
Asp
Glu
    Olu
              Thr
Vai
         Lys
                   Gly
                                  Thr
                                       Val
                                            Tyr
                                                      Lys
                                                                                             Ser
                                                                         Αsp
                                                                                                  Thr
    Met
         Thr
                                  Leu
Lys
                                            Gly
                                                      Asp
Phe
Val
                   Cys
Ser
                                                                Asp
Gly
                             Leu
                                       Glu
                                                                         Thr
                                                                                   GЪ
                                                                                        Trp
                        Tyr
Ala
         Glu
Glu
    lle
              Thr
                                                                                        Arg
Trp
Thr
                             Thr
                                       Ala
Ser
                                            Asp
Be
                                                           Ser
Pro
                                                                                             Ser
Ala
                                                                         Gla
                                                                                   Vai
                                                                                                 His
                   Val
Asn
    Ser
          Val
              De
                             Thr
                                  Asp
Ala
                                                   65
                                                               Lys
Glu
                                                                    Phe
                                                                         Asp
Thr
                                                                                   Thr
                                                                                                  Thr
Lys
                   Tyr
                        Πc
                                            Gln
                                                      Ala
                                                           Arg
                                                                     Val
                                                                                             Phe
         Thr
                             Thr
                                       Lys
                                                                                   Lys
Val
                                                                                                  Ala
```

Ser

Met Ala Glu

Gln

Ala Ser Gin Ala Thr

Leu Ala

Tyr

Gla

Glu

Ser	Leu	Pro	Am	Lys	His	Tyr	Phe	Gin	Πe
Asp	Leu	Ser	Trp	His	Lvs	Glv	Len	Gh	A e
Thr	Gly	Lys	Asn	Ala	Gln	Val	Pha	Ala	Day
Gln	Ser	Asp	Pro	Ann	Gly	1	D.	7	FIO
Thr	Vai	Glv	Aro	See	C.,	Z au	116	Lys	Cys
Leu		,	5	ou	Ser	Let	Lys	Ser	Lys

preceded, if appropriate, by a methionine.

- 2. A protein according to claim 1, wherein said protein is produced by recombinant methods.
- 3. A protein according to claim 1, which represents, 15 cific urate oxidase activity of about 30 U/mg. by analysis on a bidimensional Laemmli/SDS-Agarose

gel, a spot of molecular mass of about 33.5 kDa, representing at least 90% of the protein mass.

4. A protein according to claim 1, having a purity degree, determined by liquid chromatography on a C8 5 grafted silica column, higher than 80%.

5. A protein according to claim 1, having an isoelectric point around 8.0.

6. A protein according to claim 1, which carries a blocking group on the amino-terminal serine.

7. A pharmaceutical composition comprising a protein according to claim 1.

8. A protein according to claim 6, wherein said blocking group is an acetyl group.

9. A protein according to claim 2, possessing a spe-

20

25 .

30

35

40

45

50

55

60

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.