Lecture #11:

Convolutional Neural Networks

Convolutional Neural Networks were inspired by real neurons

Hubel & Wiesel Cat Experiment, 1959

How images are stored

- Each image is represented by a matrix of pixels
- Each pixel is represented by 3 (or 4) channels
 - 3: Red, Green, Blue a number from 0 to 255 (00 to ff)
 - 4: alpha channel, transparency

Convolution

Input					Filter					Result					
4	9	2	5	8	3					ī		2			
5	6	2	4	0	3		1	0	-1						
2	4	5	4	5	2	*	1	0	-1		=				
5	6	5	4	7	8		1	0	-1						
5	7	7	9	2	1	<u>Parameters:</u> Size: f = 3				; 2 = 4*	? 2 = 4*1 + 9*0 + 2*(-1) +				
5	8	5	3	8	4	Stride: $s = 1$ Padding: $p = 0$			5*	5*1 + 6*0 + 2*(-1) + 2*1 + 4*0 + 5*(-1)					
$n_H x n_W = 6 x 6$															

Kernel, or convolution matrix, or mask

Operation	Kernel ω	Image result g(x,y)
Identity	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$	
	$\left[egin{array}{ccc} 1 & 0 & -1 \ 0 & 0 & 0 \ -1 & 0 & 1 \end{array} ight]$	
Edge detection	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	

Rectified Linear Unit (ReLU) (activation function; optimization of calculations)

Pooling (dimension reduction)

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Fully connected (dense) layer

Dropout (regularization prevents overfitting)

Playing with neural networks (tuning hyperparameters, etc)

http://playground.tensorflow.org

Backpropagation and learning rate

