Problema 20

Elías López Rivera 1

¹ Universidad Nacional Autónoma de México Facultad de ciencias

26 de enero de 2025

1. Enunciado

Demuestre que la sucesión $(a_n)_{n\in\mathbb{N}}$, donde:

$$a_n = \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n}}}}$$

 $\forall n \in \mathbb{N}$. es convergente.

2. Solución

Primero demostremos que $(a_n)_{n\in\mathbb{N}}$ es monótona creciente, es claro que sea $n\in\mathbb{N}$:

$$n+1>n.$$

$$\sqrt{n+1}>\sqrt{n}.$$

$$n+\sqrt{n+1}>n+\sqrt{n}>n-1+\sqrt{n}.$$

$$n+\sqrt{n+1}>n-1+\sqrt{n}$$

$$\sqrt{n+\sqrt{n+1}}>\sqrt{n-1+\sqrt{n}}$$

Problema 20 2 SOLUCIÓN

Si repetimos estre proceso n veces obtendremos:

$$a_{n+1} = \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n+1}}}} > \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n}}}} = a_n$$

Concluimos que $(a_n)_{n\in\mathbb{N}}$, es una sucesión monótona creciente. Ahora si tomamos un $n\in\mathbb{N}$, tal que $n\geq 4$ es claro que :

$$4n \le n^2$$
.
 $4n \le n^2 < n^2 + 1$.
 $2n < n^2 - 2n + 1$.
 $2n < (n-1)^2$.
 $\sqrt{2n} < n - 1$

Concluimos que $\sqrt{2n} < n-1 \ \forall n \ge 4$. Usando lo anterior:

$$a_{n} = \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 1 + \sqrt{n}}}} < \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 1 + \sqrt{2n}}}} < \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 1 + \sqrt{2n}}}} < \sqrt{1 + \sqrt{2 + \dots + \sqrt{2(n - 2)}}} < \sqrt{1 + \sqrt{2 + \dots + \sqrt{2(n - 2)}}} < \cdots < \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{2(5)}}}} < \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{2(4)}}}}$$

Por tanto $(a_n)_{n\in\mathbb{N}}$, es acotada y monótona:

 $(a_n)_{n\in\mathbb{N}}$, es convergente.