LES POLYNÔMES DE BERNOULLI

On notera indifféremment P pour désigner un polynôme ou la fonction polynomiale associée

Partie I: Polynômes et nombres de Bernoulli

1. Soit $P \in \mathbb{R}[X]$. Montrer qu'il existe un unique polynôme $Q \in \mathbb{R}[X]$ tel que:

$$Q' = P$$
 et $\int_0^1 Q(t) dt = 0$

2. On peut donc définir une unique suite de polynômes $(B_p)_p$ déterminée par $B_0=1$ et telle que pour $p\geqslant 1$

$$B'_{p} = pB_{p-1}$$
 et $\int_{0}^{1} B_{p}(t)dt = 0$.

Les B_p s'appellent les polynômes de Bernoulli.

On pose $\beta_p = B_p(0)$. La suite de réels $(\beta_n)_{n \in \mathbb{N}}$ est appelée la suite des nombres de Bernoulli.

- (a) Calculer B_1 , B_2 et B_3 , ainsi que les nombres β_1 , β_2 et β_3 .
- (b) Soit $n \in \mathbb{N}$. Quel est le degré de B_n ?
- (c) Montrer que, pour tout $n \ge 2$, on a $B_n(0) = B_n(1)$
- (d) Montrer, par récurrence sur $n \in \mathbb{N}$, que : $B_n = \sum_{k=0}^n C_n^k \beta_{n-k} X^k$
- 3. (a) Soit $n \in \mathbb{N}$. On pose $C_n(X) = (-1)^n B_n(1-X)$. Montrer que $C_n = B_n$
 - (b) En déduire que, pour tout $n \in \mathbb{N}^*$, $\beta_{2n+1} = 0 = B_{2n+1}\left(\frac{1}{2}\right)$
- 4. (a) Montrer par récurrence sur $n \in \mathbb{N}$ que le polynôme B_{2n+1} ne s'annule pas sur $\left[0, \frac{1}{2}\right[$
 - (b) En déduire que les polynômes $B_{2n} \beta_{2n}$ sont de signes constants sur [0,1]
- 5. Soit $n \in \mathbb{N}$, tel que $n \ge 2$. Montrer que: $\beta_{2n} = \frac{-1}{(n+1)(2n+1)} \sum_{k=0}^{2n-2} C_{2n+2}^k \beta_k$
- 6. (a) Montrer que, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on a: $B_n(x) = 2^{n-1} \left[B_n\left(\frac{x}{2}\right) + B_n\left(\frac{x+1}{2}\right) \right]$
 - (b) En déduire une relation entre $B_{2n}\left(\frac{1}{2}\right)$ et β_{2n} .
 - (c) Montrer que $\max_{t \in [0,1]} |B_{2n}(t)| = |\beta_{2n}|$
- 7. Montrer, par récurrence, que $\forall n \geqslant 1$: $B_n(X+1) B_n(X) = nX^{n-1}$
- 8. Soit $n, p \in \mathbb{N}^*$. Montrer que $\sum_{k=1}^n k^p = \frac{1}{p+1} \left(B_{p+1} \left(n+1 \right) \beta_{p+1} \right)$
- 9. Soit $n \in \mathbb{N}^*$ et $p \geqslant 3$. Montrer la formule de Faulhaber

$$p\sum_{k=1}^{n} k^{p-1} = n^p + \frac{p}{2}n^{p-1} + \sum_{k=1}^{p-2} C_p^k \beta_{p-k} n^k$$

LES POLYNÔMES DE BERNOULLI

Partie II: Fonction Zéta de Riemann et nombres de Bernoulli

- 10. Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $t \in]0,1[:1+2\sum_{k=1}^n \cos{(2k\pi t)} = \frac{\sin{((2n+1)\pi t)}}{\sin{(\pi t)}}$
- 11. Soit $n \in \mathbb{N}^*$. On définit $\varphi_n : t \longmapsto \frac{B_n(t) \beta_n}{\sin(\pi t)}$ sur]0, 1[. Montrer que φ_n est prolongeable en une fonction de classe \mathcal{C}^1 sur [0, 1]
- 12. Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Montrer que $\int_0^1 f(t)\sin(xt) dt \xrightarrow[x \to +\infty]{} 0$
- 13. Pour $k, n \in \mathbb{N}^*$, on définit $I_{n,k} = \int_0^1 B_n(t) \cos(2k\pi t) dt$
 - (a) Trouver une relation entre $I_{n+2,k}$ et $I_{n,k}$
 - (b) En déduire, selon la parité de n, l'expression de $I_{n,k}$ en fonction de n et de k
- 14. Soit $n, N \in \mathbb{N}^*$. On pose $J_{n,N} = \int_0^1 \varphi_{2n}(t) \sin((2N+1)\pi t) dt$
 - (a) En utilisant la question 10, trouver une expression de $J_{n,N}$ en fonction de n, N et β_{2n}
 - (b) En déduire la valeur de $\zeta(2n) = \sum_{k=1}^{+\infty} \frac{1}{k^{2n}}$ en fonction de n et β_{2n}
 - (c) En dénduire les valeurs de $\zeta(2)$ et de $\zeta(4)$
- 15. Montrer que $\zeta(2n) \xrightarrow[n \to +\infty]{} 1$ et en déduire $\beta_{2n} \sim 2(-1)^{n+1} \frac{(2n)!}{(2\pi)^{2n}}$

Partie III: Formule d'Euler-MacLaurin

16. Soit $n \in \mathbb{Z}$ et f une fonction de classe C^p sur $[n, n+1], p \in \mathbb{N}, p \geqslant 2$. Pour $k \in [0, p]$, on pose

$$T_k = \frac{(-1)^{k+1}}{k!} \int_n^{n+1} f^{(k)}(t) B_k(t-n) \, \mathrm{d}t \text{ où } f^{(k)} \text{ désigne la dérivée } k\text{-ième de }f$$

- (a) Exprimer T_0 en fonction de T_1 , puis, pour tout entier $k \ge 1$, T_k en fonction T_{k+1}
- (b) En déduire que: $\int_{n}^{n+1} f(t) dt = \frac{f(n+1) + f(n)}{2} + \sum_{k=2}^{p} \frac{(-1)^{k-1} \beta_{k}}{k!} \left(f^{(k-1)}(n+1) f^{(k-1)}(n) \right) T_{p}$
- 17. Soit $a, b \in \mathbb{Z}$, a < b, et $f \in \mathcal{C}^{2p}([a, b], \mathbb{C})$, $p \in \mathbb{N}^*$. Montrer la formule d'Euler-Maclaurin:

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(t) dt + \frac{f(a) + f(b)}{2} + \sum_{k=1}^{p} \frac{\beta_{2k}}{(2k)!} \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right) - R_{p}$$

avec $R_p = \frac{1}{(2p)!} \int_a^b f^{(2p)}(t) B_{2p}(t - \mathbf{E}(t)) dt$ où $\mathbf{E}(x)$ désigne la partie entière de x

Partie IV: Application

- 18. Soit $z \in \mathbb{C}$ tel que $e^z \neq 1$. Montrer, pour tout $n \in \mathbb{N}^*$, l'égalité: $\frac{z}{2} \cdot \frac{e^z + 1}{e^z 1} = 1 + \sum_{k=1}^n \frac{\beta_{2k}}{(2k)!} z^{2k} \frac{z^{2n+1}}{e^z 1} \int_0^1 \frac{B_{2n}(t)}{(2n)!} e^{tz} dt$
- 19. Soit $z \in \mathbb{C}^*$ tel que $|z| < 2\pi$. Montrer $\sum_{k=1}^{+\infty} \frac{\beta_{2k}}{(2k)!} z^{2k} = \frac{z}{2} \cdot \frac{e^z + 1}{e^z 1} 1$