Formelsammlung zur Potentialtheorie

Elementarströmun	Strom- Potentiallinie	Potentialfunktio $\Phi(x,y)$ $\Phi(r,\varphi)$	Stromfunktio $\Psi(x,y)$ $\Psi(r,\varphi)$	u(x,y) $u(r,\varphi)$	$v(x,y)$ $v(r,\varphi)$	$v_r(x,y)$ $v_r(r,\varphi)$	v(x,y) $v(r,\varphi)$
Translationsströmun	Ψ ₁ Ψ ₂ Ψ ₃ Ψ ₄ Ψ ₄ Ψ ₄ Ψ ₄ Ψ ₅ Ψ ₃ Ψ ₄ Ψ ₅ Ψ ₅ Ψ ₆ Ψ ₆ Ψ ₇ Ψ ₆ Ψ ₇ Ψ ₈	$u_1 x + v_1 y$ $u_1 r \cos \varphi + v_1 r \sin \varphi$	$-v_1x + u_1y$ $-v_1r\cos\varphi + u_1r\sin\varphi$	u_1 u_1	$ u_1 $ $ u_1$	$u_1 \frac{x}{\sqrt{x^2 + y^2}} v_1 \frac{y}{\sqrt{x^2 + y^2}}$ $u_1 \cos \varphi + v_1 \sin \varphi$	$u_1 \frac{y}{\sqrt{x^2 + y^2}} v_1 \frac{x}{\sqrt{x^2 + y^2}}$ $-u_1 \sin \varphi + v_1 \cos \varphi$
Quellen- Senkenströmun	W V ₂	$\frac{Q}{2\pi} \ln \sqrt{x^2 + y^2}$ $\frac{Q}{2\pi} \ln r$	$\frac{Q}{2\pi}\arctan\left(\frac{y}{x}\right)$ $\frac{Q}{2\pi}\varphi$	$\frac{Q}{2\pi} \frac{x}{x^2 + y^2}$ $\frac{Q}{2\pi} \frac{\cos \varphi}{r}$	$\frac{Q}{2\pi} \frac{y}{x^2 + y^2}$ $\frac{Q}{2\pi} \frac{\sin \varphi}{r}$	$\frac{Q}{2\pi} \frac{1}{\sqrt{x^2 + y^2}}$ $\frac{Q}{2\pi r}$	0
Dipolströmun (x-Achse Dipolachse	y w w	$\frac{M}{2\pi} \frac{x}{x^2 + y^2}$ $\frac{M}{2\pi} \frac{\cos \varphi}{r}$	$-\frac{M}{2\pi} \frac{y}{x^2 + y^2}$ $-\frac{M}{2\pi} \frac{\sin \varphi}{r}$	$-\frac{M}{2\pi} \frac{x^2 - y^2}{(x^2 - y^2)^2} - \frac{M}{2\pi} \frac{\cos(2\varphi)}{r^2}$	$-\frac{M}{2\pi} \frac{2xy}{\left(x^2 - y^2\right)^2}$ $-\frac{M}{2\pi} \frac{\sin(2\varphi)}{r^2}$	$-\frac{M}{2\pi} \frac{x}{\left(x^2 - y^2\right)^{1.5}}$ $-\frac{M}{2\pi} \frac{\cos \varphi}{r^2}$	$-\frac{M}{2\pi} \frac{y}{\left(x^2 - y^2\right)^{1.5}}$ $-\frac{M}{2\pi} \frac{\sin \varphi}{r^2}$
Dipolströmun (y-Achse Dipolachse	X X X X X X X X X X X X X X X X X X X	$\frac{M}{2\pi} \frac{y}{x^2 - y^2}$ $\frac{M}{2\pi} \frac{\sin \varphi}{r}$	$\frac{M}{2\pi} \frac{x}{x^2 + y^2}$ $\frac{M}{2\pi} \frac{\cos \varphi}{r}$	$-\frac{M}{2\pi} \frac{2xy}{\left(x^2 - y^2\right)^2}$ $-\frac{M}{2\pi} \frac{\sin(2\varphi)}{r^2}$	$\frac{M}{2\pi} \frac{x^2 - y^2}{\left(x^2 - y^2\right)^2}$ $\frac{M}{2\pi} \frac{\cos(2\varphi)}{r^2}$	$-\frac{M}{2\pi} \frac{y}{\left(x^2 - y^2\right)^{1.5}}$ $-\frac{M}{2\pi} \frac{\sin \varphi}{r^2}$	$\frac{M}{2\pi} \frac{x}{\left(x^2 - y^2\right)^{1.5}}$ $\frac{M}{2\pi} \frac{\cos \varphi}{r^2}$
Potentialwirbe	<i>y</i> ,	$\frac{\Gamma}{2\pi}\arctan\left(\frac{y}{x}\right)$ $\frac{\Gamma}{2\pi}\varphi$	$-\frac{\Gamma}{2\pi}\ln\sqrt{x^2+y^2}$ $-\frac{\Gamma}{2\pi}\ln r$	$-\frac{\Gamma}{2\pi} \frac{y}{x^2 + y^2}$ $-\frac{\Gamma}{2\pi} \frac{\sin \varphi}{r}$	$\frac{\Gamma}{2\pi} \frac{x}{x^2 + y^2}$ $\frac{\Gamma}{2\pi} \frac{\cos \varphi}{r}$	0	$\frac{\Gamma}{2\pi} \frac{1}{\sqrt{x^2 + y^2}}$ $\frac{\Gamma}{2\pi r}$
Staupunktströmun		$\frac{a}{2}(x^2 - y^2)$ $\frac{a}{2}r^2\cos(2\varphi)$	$\frac{a}{2}r^2\sin(2\varphi)$	ax ar cosφ	$-ay$ $-ar\sin\varphi$	$a\frac{x^2 - y^2}{\sqrt{(x^2 + y^2)}}$ $ar\cos(2\varphi)$	$-a\frac{2xy}{\sqrt{(x^2+y^2)}}$ $-ar\sin(2\varphi)$