Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Condensation of esters with aldehydes

Substrates:

- $1. \ \ Benzaldehyde \ \ \ \ \textit{available at Sigma-Aldrich}$
- 2. 4-ethenyloxolan-2-one available at Sigma-Aldrich

Products:

1. C=CC1COC(=O)/C1=C/c1cccc1

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.1.2 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. 3-brom-but-1-en
- 2. C=CC1COC(=O)/C1=C/c1cccc1
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

1. C=CC(C)C(c1ccccc1)C1(C(C)=O)C(=O)OCC1C=C

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.1.3 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC(C)C(c1ccccc1)C1(C(C){=}O)C({=}O)OCC1C{=}C$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccccc1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

 $10.1021/jo0264729 \ \ {\rm and} \quad 10.1021/ja072334v \ \ {\rm and} \quad 10.1002/ejoc.201001102$

Retrosynthesis ID: 31014187

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Knoevenagel Condensation

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

2. Lithium acetoacetate - available at Sigma-Aldrich

Products:

1. CC(=O)C(=Cc1cccc1)C(=O)O

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.2.2 Steglich Esterification

Substrates:

1. CC(=O)C(=Cc1cccc1)C(=O)O

2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)C(=Cc1ccccc1)C(C)=O

Typical conditions: alcohol.DCC.DMAP.DCM or thiol.DCC.DMAP.DCM

Protections: none

Reference: 10.1002/anie.197805221

Retrosynthesis ID: 10171

2.2.3 Diels-Alder

Substrates:

1. CC=CC=CCOC(=O)C(=Cc1ccccc1)C(C)=O

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1C} = \mathrm{CC}(\mathrm{C})\mathrm{C2c1ccccc1}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

Retrosynthesis ID: 18116

2.3 Path 3

Score: 76.25

Figure 3: Outline of path 3

2.3.1 Reaction of alcohols with diketene

Substrates:

1. diketene - available at Sigma-Aldrich

2. sorbic alcohol

Products:

 $1. \ CC = CC = CCOC(=O)CC(C) = O$

 ${\bf Typical\ conditions:\ DCM.heat}$

Protections: none

Reference: WO2012/31028 A2 (p.39) AND 10.1021/ol051945u AND

10.1021/ol0069756 AND 10.1002/adsc.200800532

Retrosynthesis ID: 14881

2.3.2 Knoevenagel Condensation

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

2. CC = CC = CCOC(=O)CC(C) = O

Products:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccccc1)C(C) = O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.3.3 Diels-Alder

Substrates:

 $1. \ CC{=}CC{=}CCOC({=}O)C({=}Cc1cccc1)C(C){=}O$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1C} = \mathrm{CC}(\mathrm{C})\mathrm{C2c1ccccc1}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.4 Path 4

Score: 84.06

Figure 4: Outline of path 4

2.4.1 Condensation of esters with aldehydes/ketones

Substrates:

1. Benzaldehyde - available at Sigma-Aldrich

2. Methyl butyrate - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CCC}(=\mathrm{Cc1cccc1})\mathrm{C}(=\mathrm{O})\mathrm{OC}$

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

2.4.2 Allylic Oxidation of Alkenes

Substrates:

 $1. \ \mathrm{CCC}(=\mathrm{Cc1cccc1})\mathrm{C}(=\mathrm{O})\mathrm{OC}$

Products:

1. 2-acetyl-3-phenyl-acrylic acid methyl ester

Typical conditions: ${\rm tBuOOH.Pd}({\rm OH})2/{\rm C}$ or ${\rm PhI}({\rm OAc})2$ or ${\rm SeO}2$

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and

10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.4.3 Acid catalyzed transesterification

Substrates:

1. sorbic alcohol

2. 2-acetyl-3-phenyl-acrylic acid methyl ester

Products:

1. CC=CC=CCOC(=O)C(=Cc1ccccc1)C(C)=O

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.4.4 Diels-Alder

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccccc1)C(C) = O$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccccc1

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.5 Path 5

Score: 84.06

Figure 5: Outline of path 5

2.5.1 Steglich Esterification

Substrates:

1. sorbic alcohol

2. Phenylpyruvic acid - available at Sigma-Aldrich

Products:

1. CC=CC=CCOC(=O)C(=O)Cc1ccccc1

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

2.5.2 Corey-Seebach

Substrates:

 $1. \ \, \hbox{$2$-Methyl-1,3-dithiane -} \quad \ \, \hbox{$available at Sigma-Aldrich}$

 $2. \ \mathrm{CC}{=}\mathrm{CC}{=}\mathrm{CCOC}(=\mathrm{O})\mathrm{C}(=\mathrm{O})\mathrm{Cc1}\mathrm{cccc1}$

Products:

 $1. \ CC{=}CC{=}CCOC({=}O)C(O)(Cc1ccccc1)C(C){=}O$

 $\textbf{Typical conditions:} \ \, \text{BuLi.THF.-30C.HgO.H2O.THF}$

Protections: none

Reference: 10.1055/s-1977-24412

2.5.3 Elimination of tertiary alcohols

Substrates:

1. CC=CC=CCOC(=O)C(O)(Cc1ccccc1)C(C)=O

Products:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccccc1)C(C) = O$

 $\textbf{Typical conditions:} \ \, \textbf{TsOH.toluene.reflux}$

Protections: none

Reference: 10.1016/j.bmc.2008.07.050 and 10.1155/2010/604549 and

10.1016/j.steroids.2004.11.008

2.5.4 Diels-Alder

Substrates:

 $1. \ CC = CC = CCOC(=O)C(=Cc1ccccc1)C(C) = O$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}\mathrm{C}1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2\mathrm{c}1\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

 $ANIE1668{>}3.0.CO; 2\text{-}Z\ AND 10.1021/ja062508t$