In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Normally the first step in debugging is to attempt to reproduce the problem. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Scripting and breakpointing is also part of this process. Techniques like Code refactoring can enhance readability. Ideally, the programming language best suited for the task at hand will be selected. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Ideally, the programming language best suited for the task at hand will be selected. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Normally the first step in debugging is to attempt to reproduce the problem. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Following a consistent programming style often helps readability.