

CSE408 Presorting& Balanced Search Tree

Lecture #15

Transform and Conquer

- Algorithms based on the idea of transformation
 - Transformation stage
 - Problem instance is modified to be more amenable to solution
 - Conquering stage
 - Transformed problem is solved
- Major variations are for the transform to perform:
 - Instance simplification
 - Different representation
 - Problem reduction

Presorting

- Presorting is an old idea, you sort the data and that allows you to more easily compute some answer
 - Saw this with quickhull, closest point
- Some other simple presorting examples
 - Element Uniqueness
 - Computing the mode of n numbers

Element Uniqueness

 Given a list A of n orderable elements, determine if there are any duplicates of any element

Brute Force:

for each $x \in A$ for each $y \in \{A - x\}$ if x = y return not unique return unique Presorting:

Sort A
for i ← 1 to n-1
 if A[i] = A[i+1] return not unique
return unique

Runtime?

Computing a mode

- A mode is a value that occurs most often in a list of numbers
 - e.g. the mode of [5, 1, 5, 7, 6, 5, 7] is 5
 - If several different values occur most often any of them can be considered the mode
- "Count Sort" approach: (assumes all values > 0; what if they aren't?)

```
max \leftarrow max(A)

freq[1..max] \leftarrow 0

for each x \in A

freq[x] +=1

mode \leftarrow freq[1]

for i \leftarrow 2 to max

if freq[i] > freq[mode] mode \leftarrow i

return mode
```

Runtime?

Presort Computing Mode


```
Sort A
i \leftarrow 0
modefrequency \leftarrow 0
while i \le n-1
  runlength \leftarrow 1; runvalue \leftarrow A[i]
  while i+runlength ≤ n-1 and A[i+runlength] = runvalue
     runlength += 1
  if runlength > modefrequency
     modefrequency ← runlength
     modevalue ← runvalue
  i+= runlength
return modevalue
```

AVL Animation Link

https://www.cs.usfca.edu/~galles/visualization/AVLtree .html

Binary Search Tree - Best Time

- All BST operations are O(d), where d is tree depth
- minimum d is $d = \lfloor \log_2 \mathbb{N}_{\mathbf{p}} \rfloor$ a binary tree with N nodes
 - What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is O(log N)

Binary Search Tree - Worst Time

- Worst case running time is O(N)
 - What happens when you Insert elements in ascending order?
 - Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - Problem: Lack of "balance":
 - compare depths of left and right subtree
 - Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (heightbalanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance ...

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node

Height of an AVL Tree

- N(h) = minimum number of nodes in an AVL tree of height h.
- Basis

$$-N(0) = 1, N(1) = 2$$

Induction

$$-N(h) = N(h-1) + N(h-2) + 1$$

Solution (recall Fibonacci analysis)

$$-N(h) \ge \phi^h \quad (\phi \approx 1.62)$$

h-2

h-1

Height of an AVL Tree

- $N(h) \ge \phi^h \quad (\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
 - $-n \ge N(h)$ (because N(h) was the minimum)
 - n ≥ ϕ^h hence $\log_{\phi} n \ge h$ (relatively well balanced tree!!)
 - $-h \le 1.44 \log_2 n$ (i.e., Find takes O(logn))

Node Heights

height of node = hbalance factor = h_{left} - h_{right} empty height = -1

Node Heights after Insert 7

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left} - h_{right}) is 2 or -2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α .

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

Single right rotation

Outside Case Completed

AVL property has been restored!

Double rotation: first rotation

rotation: second

Double rotation : second

rotation

right rotation complete

<u>Implementation</u>

No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation


```
RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}
```

You also need to modify the heights or balance factors of n and p

Double Rotation

Implement Double Rotation in two lines.

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left} - h_{right}) is 2 or –2, adjust tree by *rotation* around the node

Example of Insertions in an AVL Tree

Insert 5, 40

Example of Insertions in an AVL Tree

Single rotation (outside case)

Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 4. Difficult to program & debug; more space for balance factor.
- 5. Asymptotically faster but rebalancing costs time.
- 6. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 7. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Thank You!!!