## **PCT**

# WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 409/04, A61K 31/47, C07D 401/04, 405/04, 215/20, C07F 7/18

(11) Internationale Veröffentlichungsnummer:

WO 99/14215

04, A1

(43) Internationales Veröffentlichungsdatum:

25. März 1999 (25.03.99)

(21) Internationales Aktenzeichen:

PCT/EP98/05656

(22) Internationales Anmeldedatum: 7. September 1998 (07.09.98)

(30) Prioritätsdaten:

197 41 051.0

18. September 1997 (18.09.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STOLTEFUSS, Jürgen [DE/DE]; Parkstrasse 20, D-42781 Haan (DE). LÖGERS, Michael [DE/DE]; Niederradenberg 15, D-42327 Wuppertal (DE). SCHMIDT, Gunter [DE/DE]; Pahlkestrasse 63, D-42115 Wuppertal (DE). BRANDES, Armdt [DE/DE]; Pahlkestrasse 5, D-42115 Wuppertal (DE). SCHMECK, Carsten [DE/DE]; Hosfelds Katernberg 2, D-42119 Wuppertal (DE). BREMM, Klaus-Dieter [DE/DE]; Eberhardstrasse 20, D-45661 Recklinghausen (DE). BISCHOFF, Hilmar [DE/DE]; Am Rohm 78, D-42113 Wuppertal (DE). SCHMIDT, Delf [DE/DE]; Am Eckbusch 55b, D-42113 Wuppertal (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

### Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: 4-HETEROARYL-TETRAHYDROQUINOLINES AND THEIR USE AS INHIBITORS OF THE CHOLESTERIN-ESTER TRANSFER PROTEIN
- (54) Bezeichnung: 4-HETEROARYL-TETRAHYDROCHINOLINE UND IHRE VERWENDUNG ALS INHIBITOREN DES CHOLESTERIN-ESTER-TRANSFER-PROTEINS (CTEP)

#### (57) Abstract

The invention concerns hetero-tetrahydroquinolines obtained either by corresponding condensation of heterotetrahydroquinolines aldehydes substituted, with the desired substituent, or by reduction of corresponding keto-substituted hetero-tetrahydroquinolines, then by introducing the desired substituents by the usual methods. Said hetero-tetrahydroquinolines are used as active principles, particularly in medicines for treating arterial sclerosis and dyslipemia.

#### (57) Zusammenfassung

Hetero-Tetrahydrochinoline können hergestellt werden, indem man entweder entsprechend substituierte Hetero-Tetrahydrochinolin-Aldehyde mit dem gewünschten Substituenten kondensiert oder die entsprechenden Keto-substituierten Hetero-Tetrahydrochinoline reduziert und anschließend den gewünschten Substituenten nach üblichen Methoden einführt. Die Hetero-Tetrahydrochinoline eignen sich als Wirkstoffe in Arzneimittel, insbesondere in Arzneimitteln zur Behandlung von Artheriosklerose und Dyslipidämien.

## LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL | Albanien                     | ES | Spanien                     | LS | Lesotho                     | SI | Slowenien              |
|----|------------------------------|----|-----------------------------|----|-----------------------------|----|------------------------|
| AM | Armenien                     | FI | Finnland                    | LT | Litauen                     | SK | Slowakei               |
| AT | Österreich                   | FR | Frankreich                  | LU | Luxemburg                   | SN | Senegal                |
| AU | Australien                   | GA | Gabun                       | LV | Lettland                    | SZ | Swasiland              |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich      | MC | Monaco                      | TD | Tschad                 |
| BA |                              | GE | Georgien                    | MD | Republik Moldau             | TG | Togo                   |
| -  | Bosnien-Herzegowina          | GH | Georgien                    | MG | Madagaskar                  | TJ | Tadschikistan          |
| BB | Barbados                     | -  |                             | MK | •                           | TM | Turkmenistan           |
| BE | Belgien                      | GN | Guinea                      | MK | Die ehemalige jugoslawische |    |                        |
| BF | Burkina Faso                 | GR | Griechenland                |    | Republik Mazedonien         | TR | Türkei                 |
| BG | Bulgarien                    | HU | Ungarn                      | ML | Mali                        | TT | Trinidad und Tobago    |
| BJ | Benin                        | ΙE | Irland                      | MN | Mongolei                    | UA | Ukraine                |
| BR | Brasilien                    | IL | Israel                      | MR | Mauretanien                 | UG | Uganda                 |
| BY | Belarus                      | IS | Island                      | MW | Malawi                      | US | Vereinigte Staaten von |
| CA | Kanada                       | IT | Italien                     | MX | Mexiko                      |    | Amerika                |
| CF | Zentralafrikanische Republik | JР | Japan                       | NE | Niger                       | UZ | Usbekistan             |
| CG | Kongo                        | KE | Kenia                       | NL | Niederlande                 | VN | Vietnam                |
| CH | Schweiz                      | KG | Kirgisistan                 | NO | Norwegen                    | YU | Jugoslawien            |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik | NZ | Neuseeland                  | zw | Zimbabwe               |
| CM | Kamerun                      |    | Korea                       | PL | Polen                       |    |                        |
| CN | China                        | KR | Republik Korea              | PΤ | Portugal                    |    |                        |
| Cυ | Kuba                         | KZ | Kasachstan                  | RO | Rumänien                    |    |                        |
| CZ | Tschechische Republik        | LC | St. Lucia                   | RU | Russische Föderation        |    |                        |
| DE | Deutschland                  | LI | Liechtenstein               | SD | Sudan                       |    |                        |
| DK | Dänemark                     | LK | Sri Lanka                   | SE | Schweden                    |    |                        |
| EE | Estland                      | LR | Liberia                     | SG | Singapur                    |    |                        |
|    |                              |    |                             |    |                             |    |                        |

4-HETEROARYL-TETRAHYDROCHINOLINE UND IHRE VERWENDUNG ALS INHIBITOREN DES CHOESTERIN-ESTER-TRANSFER-PROTEINS (CTEP)

Die vorliegende Erfindung betrifft Hetero-Tetrahydrochinoline, Verfahren zu ihrer Herstellung und ihre Verwendung in Arzneimitteln.

5

Aus der Publikation US-5 169 857-A2 sind 7-(polysubstituierte Pyridyl)-6-heptenoate zur Behandlung der Arteriosklerose, Lipoproteinaemia und Hyperproteinaemia bekannt. Außerdem wird die Herstellung von 7-(4-Aryl-3-pyridyl)-3,5-dihydroxy-6-heptenoate in der Publikation EP-325 130-A2 beschrieben. Ferner ist die Verbindung 5(6H)-Chinolone,3-benzyl-7,8-dihydro-2,7,7-trimethyl-4-phenyl, aus der Publikation Khim. Geterotsikl. Soedin. (1967), (6), 1118-1120 bekannt.

Die vorliegende Erfindung betrifft Hetero-Tetrahydrochinoline der allgemeinen Formel (I),

15

25

10

$$\begin{array}{c}
A \\
R^1
\end{array}$$
(I),

in welcher

20 A für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder

für einen 5- bis 7-gliedrigen, gesättigten, partiell ungesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der im Fall eines gesättigten Heterocyclus mit einer Stickstoffunktion, gegebenenfalls auch über diese gebunden ist, und wobei die oben aufgeführten Ringsysteme gegebenenfalls bis zu 5-fach gleich oder verschieden durch Halogen, Nitro, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl,

Hydroxyalkyl oder Alkoxy mit jeweils bis zu 7 Kohlenstoffatomen, oder durch eine Gruppe der Formel -NR<sup>3</sup>R<sup>4</sup> substituiert sind,

worin

5

20

25

R³ und R⁴ gleich oder verschieden sind und Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

10 oder

A für einen Rest der Formel



steht,

D für Aryl mit 6 bis 10 Kohlenstoffatomen steht, das gegebenenfalls durch Phenyl, Nitro, Halogen, Trifluormethyl oder Trifluormethoxy substituiert ist, oder

für einen Rest der Formel

$$R^5 - L - R^6$$
 oder  $R^9 - T - V - X - Steh$ 

worin

R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten, oder Trifluormethyl, Nitro,

Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten oder einen 5- bis 7gliedrigen, gegebenenfalls benzokondensierten, gesättigten oder ungesättigten, mono-, bi- oder tricyclischen Heterocyclus mit bis zu 4
Heteroatomen aus der Reihe S, N und/oder O bedeuten,

wobei die Cyclen, gegebenenfalls, im Fall der stickstoffhaltigen Ringe

auch über die N-Funktion, bis zu 5-fach gleich oder verschieden durch

Trifluormethoxy, geradkettiges oder verzweigtes Acyl, Alkyl,

Alkylthio, Alkylalkoxy, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu

6 Kohlenstoffatomen, durch Aryl oder Trifluormethyl substituiertes

Aryl mit jeweils 6 bis 10 Kohlenstoffatomen oder durch einen,

gegebenenfalls benzokondensierten, aromatischen 5- bis 7-gliedrigen

Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O

und/oder durch eine Gruppe der Formel -OR<sup>10</sup>, -SR<sup>11</sup>, -SO<sub>2</sub>R<sup>12</sup> oder

Hydroxy,

Cyano,

Carboxyl,

10

5

15<sup>-</sup>

20

-NR<sup>13</sup>R<sup>14</sup> substituiert sind,

worin

substituiert sind,

Halogen,

25

R<sup>10</sup>, R<sup>11</sup> und R<sup>12</sup> unabhängig voneinander Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, das seinerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Halogen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist,

R<sup>13</sup> und R<sup>14</sup> gleich oder verschieden sind und die oben angegebene Bedeutung von R<sup>3</sup> und R<sup>4</sup> haben,

30

oder

R<sup>5</sup> und/oder R<sup>6</sup> einen Rest der Formel

R<sup>7</sup> Wasserstoff oder Halogen bedeutet,

und

10

5

R<sup>8</sup> Wasserstoff, Halogen, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, geradkettiges oder verzweigtes Alkoxy oder Alkyl mit jeweils bis zu 6 Kohlenstoffatomen oder einen Rest der Formel -NR<sup>15</sup>R<sup>16</sup> bedeutet,

15

worin

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und die oben angegebene Bedeutung von R<sup>3</sup> und R<sup>4</sup> haben,

20

oder

R<sup>7</sup> und R<sup>8</sup> gemeinsam einen Rest der Formel =O oder =NR<sup>17</sup> bilden,

25

worin

R<sup>17</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl, Alkoxy oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,

- L eine geradkettige oder verzweigte Alkylen- oder Alkenylen-Kette mit jeweils bis zu 8 Kohlenstoffatomen bedeutet, die gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,
- T und X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 8 Kohlenstoffatomen bedeuten,

oder

- T oder X eine Bindung bedeutet,
  - V für ein Sauerstoff- oder Schwefelatom oder für eine -NR<sup>18</sup>-Gruppe steht,

worin

15

- R<sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Phenyl bedeutet,
- E für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder

20

für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Hydroxy substituiert ist, oder für Phenyl steht, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist.

25

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu 7 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder durch einen Rest der Formel

$$(CH_2)_a - CH_2$$
  $(CH_2)_b - CH_2$   $(CR^{20}R^{21})_b$ 

substituiert sein muß,

5 worin

10

15

20

a und b gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

R<sup>19</sup> Wasserstoff, Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, geradkettiges oder verzweigtes Silylalkyl mit bis zu 8 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy, geradkettiges oder verzweigtes lkoxy mit bis zu 6 Kohlenstoffatomen oder durch Phenyl substituiert ist, das seinerseits durch Halogen, Nitro, Trifluormethyl, Trifluormethoxy oder durch Phenyl oder Tetrazol substituiertes Phenyl substituiert sein kann,

und Alkyl gegebenenfalls durch eine Gruppe der Formel -OR<sup>22</sup> substituiert ist,

worin

R<sup>22</sup> geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen oder Benzyl bedeutet,

25

oder

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 20 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Halogen, Tri-fluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

5

geradkettiges oder verzweigtes Fluoracyl mit bis zu 8 Kohlenstoffatomen und 9 Fluoratomen bedeutet,

10

R<sup>20</sup> und R<sup>21</sup> gleich oder verschieden sind, Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

oder

R<sup>20</sup> und R<sup>21</sup> gemeinsam einen 3 bis 6-gliedrigen Carbocyclus bilden,

15

20

und, gegebenenfalls auch geminal, die gebildeten Carbocyclen gegebenenfalls bis zu 6-fach gleich oder verschieden durch Trifluormethyl, Hydroxy, Nitril, Halogen, Carboxyl, Nitro, Azido, Cyano, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 7 Kohlenstoffatomen, durch geradkettiges oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis zu 6 Kohlenstoffatomen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach gleich oder verschieden durch Hydroxyl, Benzyloxy, Trifluormethyl, Benzoyl, geradkettiges oder verzweigtes Alkoxy, Oxyacyl oder Carboxyl mit jeweils bis zu 4 Kohlenstoffatomen und/oder Phenyl substituiert ist, das seinerseits durch Halogen, Trifluormethyl oder Trifluormethoxy substituiert sein kann,

25

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls

30

durch Halogen, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

und/oder gegebenenfalls durch einen Rest der Formel

5

$$(CH_2)_c$$
  $-SO_2-C_6H_5$ ,  $-(CO)_d-NR^{23}R^{24}$  oder =0

substituiert sind,

10

worin

- c eine Zahl 1, 2, 3 oder 4 bedeutet,
- d eine Zahl 0 oder 1 bedeutet,

15

R<sup>23</sup> und R<sup>24</sup> gleich oder verschieden sind und Wasserstoff, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Benzyl oder Phenyl bedeuten, das gegebenenfalls bis zu 2-fach gleich oder verschieden durch Halogen, Trifluormethyl, Cyano, Phenyl oder Nitro substituiert ist,

20

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiro-verknüpften Rest der Formel

25

$$W-Y$$
 $R^{25}$ 
 $R^{26}$ 
 $(CR^{27}R^{28})_e$ 
 $(CR^{29}R^{30})_f$ 
 $R^{32}$ 
 $R^{32}$ 

substituiert sind,

worin

5

W entweder ein Sauerstoff oder ein Schwefelatom bedeutet,

Y und Y' gemeinsam eine 2- bis 6-gliedrige geradkettige oder verzweigte Alkylenkette bilden,

10

- e eine Zahl 1, 2, 3, 4, 5, 6 oder 7 bedeutet,
- f eine Zahl 1 oder 2 bedeutet,

15

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup>, R<sup>28</sup>, R<sup>29</sup>, R<sup>30</sup> und R<sup>31</sup> gleich oder verschieden sind und Wasserstoff, Trifluormethyl, Phenyl, Halogen oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

20

oder

 $R^{25}$  und  $R^{26}$  oder  $R^{27}$  und  $R^{28}$  jeweils gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen bilden,

25

oder

 $R^{25}$  und  $R^{26}$  oder  $R^{27}$  und  $R^{28}$  jeweils gemeinsam einen Rest der Formel

$$\begin{array}{ccc} W & & CH_2 \\ & & | \\ W & & (CH_2)_g & & \text{bilden,} \end{array}$$

worin

5

W die oben angegebene Bedeutung hat,

g eine Zahl 1, 2, 3, 4, 5, 6 oder 7 bedeutet,

10

R<sup>32</sup> und R<sup>33</sup> gemeinsam einen 3- bis 7-gliedrigen Heterocyclus bilden, der ein Sauerstoff- oder Schwefelatom oder eine Gruppe der Formel SO, SO<sub>2</sub> oder -NR<sup>34</sup> enthält,

worin

15

R<sup>34</sup> Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und deren Salze und N-Oxide.

20

Die erfindungsgemäßen Hetero-Tetrahydrochinoline können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.

25

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure,

WO 99/14215 PCT/EP98/05656

Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

- Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein, welche eine freie Carboxylgruppe besitzen. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen, wie beispielsweise Ethylamin, Di-bzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin, Ethylendiamin oder 2-Phenylethylamin.
  - Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren sowie deren jeweiligen Mischungen. Diese Mischungen der Enantiomeren und Diastereomeren lassen sich in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

15

- 20 Ein 3- bis 8-gliedriger gesättigter carbocyclischer Ring steht im Rahmen der Erfindung für einen Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cyclohexyl-, Cyclohexyl- oder Cyclooctylring. Bevorzugt sind ein Cyclopropyl-, Cyclobutyl-, Cyclopentyl- oder Cyclohexylring. Besonders bevorzugt sind Cyclobutyl, Cyclopentyl oder Cyclohexyl.
- Heterocyclus steht im Rahmen der Erfindung im allgemeinen für einen gesättigten, partiell ungesättigten oder ungesättigten, gegebenenfalls benzokondensierten 5- bis 7-gliedrigen, vorzugsweise 5- bis 6-gliedrigen Heterocyclus, der bis zu 3 Heteroatome aus der Reihe S, N und/oder O enthalten kann. Beispielsweise seien genannt:. Indolyl, Isochinolyl, Chinolyl, Benzo[b]thiophen, Benzo[b]furanyl, Pyridyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Morpholinyl oder Piperidyl. Bevorzugt sind Chinolyl, Furyl, Pyridyl und Thienyl.

Bevorzugt sind die erfindungsgemäßen Verbindungen der allgemeinen Formel (I),

in welcher

5

A für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cycloheptyl, Cyclooctyl oder Cyclohexyl steht, oder

für Thienyl, Imidazolyl, Pyrrol, Furryl, Pyridyl, Morpholin, Pyrimidyl oder
Pyridazinyl steht, , die gegebenenfalls bis zu 2-fach gleich oder verschieden
durch Fluor, Chlor, Brom, Amino, Hydroxy, Trifluormethyl, Trifluormethoxy
oder durch geradkettiges oder verzweigtes Alkyl, oder Alkoxy mit jeweils bis
zu 6 Kohlenstoffatomen substituiert sind,

## 15 oder

A für einen Rest der Formel



steht,

20

D für Phenyl steht, das gegebenenfalls durch Nitro, Fluor, Chlor, Brom, Phenyl,
Trifluormethyl oder Trifluormethoxy substituiert ist, oder

für einen Rest der Formel

$$R^7$$
 $R^8$ 
oder
 $R^9-T-V-X-$ 
steht,

worin

5 R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder

Phenyl, Naphthyl, Pyridyl, Tetrazolyl, Pyrimidyl, Pyrazinyl, Pyrrolidinyl, Indolyl, Morpholinyl, Imidazolyl, Benzothiazolyl, Phenoxathiin-2-yl, Benzoxazolyl, Furyl, Chinolyl oder Purin-8-yl bedeuten,

wobei die Cyclen, gegebenenfalls bis zu 3-fach im Fall der stickstoffhaltigen Ringe auch über die N-Funktion, gleich oder verschieden durch
Fluor, Chlor, Brom, Trifluormethyl, Hydroxy, Cyano, Carboxyl,
Trifluormethoxy, geradkettiges oder verzweigtes Acyl, Alkyl,
Alkylthio, Alkylalkoxy, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu
4 Kohlenstoffatomen, Triazolyl, Tetrazolyl, Benzoxathiazolyl, oder
Trifluormethyl substituiertes Phenyl oder Phenyl substituiert sind,

20 oder

R<sup>7</sup> Wasserstoff, Fluor, Chlor oder Brom bedeutet,

und

25

10

15

R<sup>8</sup> Wasserstoff, Fluor, Chlor, Brom, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, geradkettiges oder verzweigtes Alkoxy oder Alkyl mit bis zu jeweils 5 Kohlenstoffatomen oder einen Rest der Formel - NR<sup>15</sup>R<sup>16</sup> bedeutet,

worin

5

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

10

R<sup>7</sup> und R<sup>8</sup> gemeinsam einen Rest der Formel = O oder = NR<sup>17</sup> bilden,

worin

15

R<sup>17</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl, Alkoxy oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,

L eine geradkettige oder verzweigte Alkylen- oder Alkenylen-Kette mit jeweils bis zu 6 Kohlenstoffatomen bedeutet, die gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,

20

T und X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 6 Kohlenstoffatomen bedeuten,

oder

25

T oder X eine Bindung bedeutet,

V

für ein Sauerstoff- oder Schwefelatom oder für eine Gruppe der Formel -NR<sup>18</sup>- steht,

30

worin

R<sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl bedeutet,

5 E für Cyclopropyl, -butyl, -pentyl, -hexyl oder -heptyl steht, oder

für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen steht, das gegebenenfalls durch Cyclopropyl, -butyl, -hexyl, -pentyl, -heptyl oder durch Hydroxy substituiert ist, oder für Phenyl steht, das gegebenenfalls durch Fluor, Chlor oder Trifluormethyl substituiert ist,

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu 6 Kohlenstoffatomen bilden, die durch eine Carboxylgruppe und/oder durch einen Rest der Formel

15

10

substituiert sein muß,

20 worin

a und b gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

25

R<sup>19</sup> Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl, geradkettiges oder verzweigtes Silylalkyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen oder durch Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Nitro, Trifluormethyl,

Trifluormethoxy oder durch Phenyl oder Tetrazol substituiertes Phenyl substituiert sein kann,

substituiert ist

und Alkyl gegebenenfalls durch eine Gruppe der Formel -OR<sup>22</sup> substituiert ist,

worin

R<sup>22</sup> geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen oder Benzyl bedeutet,

oder

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 18 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

geradkettiges oder verzweigtes Fluoracyl mit bis zu 6 Kohlenstoffatomen bedeutet.

R<sup>20</sup> und R<sup>21</sup> gleich oder verschieden sind, Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

R<sup>20</sup> und R<sup>21</sup> gemeinsam einen Cyclpropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl- oder Cycloheptylring bilden,

und die gebildeten Carbocyclen gegebenenfalls bis zu 5-fach gleich oder verschieden, gegebenenfalls auch geminal, durch Trifluormethyl, Hydroxy, Carboxyl, Azido, Fluor, Chlor, Brom, Nitro, Cyano,

15

5

10

20

25

30

5

10

15

Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropyloxy, Cyclopentyloxy, Cyclohexyloxy, durch geradkettiges oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis ca. 5 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach gleich oder verschieden durch Hydroxyl, Benzyloxy, Benzoyl, geradkettiges oder verzweigtes Alkoxy oder Oxyacyl mit jeweils bis zu 3 Kohlenstoffatomen, Trifluormethyl und/oder Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Trifluormethyl oder Trifluormethoxy substituiert sein kann,

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 4-fach gleich oder verschieden durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

und/oder gegebenenfalls durch einen Rest der Formel

1,2 
$$(CH_2)_c$$
 -SO<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>, -(CO)<sub>d</sub>-NR<sup>23</sup>R<sup>24</sup> oder =O

substituiert sind,

worin

25

20

- c eine Zahl 1, 2, 3 oder 4 bedeutet,
- d eine Zahl 0 oder 1 bedeutet,

R<sup>23</sup> und R<sup>24</sup> gleich oder verschieden sind und Wasserstoff, Cyclopropyl,
Cyclobutyl, Cyclopentyl, Cyclohexyl, geradkettiges oder
verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen, Benzyl oder
Phenyl bedeuten, das gegebenenfalls durch Fluor, Chlor, Brom,
Phenyl oder Trifluormethyl substituiert ist,

5

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiroverknüpften Rest der Formel

$$W-Y$$
 $R^{25}$ 
 $R^{26}$ 
 $(CR^{27}R^{28})_e$  oder  $R^{32}$ 

substituiert sind,

worin

15

W entweder ein Sauerstoff oder ein Schwefelatom bedeutet,

Y und Y' gemeinsam eine 2- bis 5-gliedrige geradkettige oder verzweigte Alkylkette bilden,

20

- e eine Zahl 1, 2, 3, 4, 5 oder 6 bedeutet,
- f eine Zahl 1 oder 2 bedeutet,

25

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup> und R<sup>28</sup> gleich oder verschieden sind und Wasserstoff,
Trifluormethyl, Phenyl, Fluor, Chlor, Brom oder geradkettiges
oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5
Kohlenstoffatomen bedeuten,

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> jeweils gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 5 Kohlenstoffatomen bilden oder

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> jeweils gemeinsam einen Rest der Formel

10

5

$$W \longrightarrow CH_2$$
 $V \longrightarrow (CH_2)_g$  bilden,

worin

15

W die oben angegebene Bedeutung hat,

g eine Zahl 1, 2, 3, 4, 5 oder 6 bedeutet,

und deren Salze und N-Oxide.

20

Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

in welcher

25

A für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht, oder

für Thienyl oder Pyridyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Hydroxy, Trifluormethyl,

Trifluormethoxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

oder

5

A für einen Rest der Formel



steht,

10 D für Phenyl steht, das gegebenenfalls durch Nitro, Trifluormethyl, Phenyl, Fluor, Chlor oder Brom substituiert ist, oder

für einen Rest der Formel

worin

20 R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder

Phenyl, Naphthyl oder Pyridyl bedeuten,

wobei die Cyclen, gegebenenfalls bis zu 2-fach, gleich oder verschieden durch Fluor, Chlor, Trifluormethyl, Hydroxy, Cyano, Carboxyl, Trifluormethoxy, geradkettiges oder verzweigtes Alkyl, Alkylthio, Alkylalkoxy, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen,

5

oder

R<sup>7</sup>

Wasserstoff oder Fluor bedeutet,

10

und

R<sup>8</sup> Wasserstoff, Fluor, Chlor, Brom, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, oder geradkettiges oder verzweigtes Alkoxy oder Alkyl mit jeweils bis zu 4 Kohlenstoffatomen oder einen Rest der Formel -NR<sup>15</sup>R<sup>16</sup> bedeutet,

worin

20

15

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten.

oder

25

30

R<sup>7</sup> und R<sup>8</sup> gemeinsam für einen Rest der Formel =O stehen,

L eine geradkettige oder verzweigte Alkylen- oder Alkenylen-Kette mit jeweils bis zu 5 Kohlenstoffatomen bedeutet, die gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,

T und X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 3 Kohlenstoffatomen bedeuten.

oder

5

T oder X eine Bindung bedeutet,

V für ein Sauerstoff- oder Schwefelatom oder für eine Gruppe der Formel
-NR<sup>18</sup> steht,

10

worin

R<sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

15

- E für Cyclopropyl, Cyclopentyl oder Cyclohexyl oder Phenyl steht, das gegebenenfalls durch Fluor oder Trifluormethyl substituiert ist, oder
- für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht, 20 das gegebenenfalls durch Hydroxy substituiert ist,
  - R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu 5 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder einen Rest der Formel -OR<sup>19</sup> substituiert sein muß.

25

worin

- R<sup>19</sup> Wasserstoff, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet,
- 30

oder

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 15 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

einen Rest der Formel -Si(CH<sub>3</sub>)<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub> bedeutet,

und die gebildeten Carbocyclen gegebenenfalls bis zu 4-fach gleich oder verschieden, gegebenenfalls auch geminal, durch Fluor, Hydroxyl, Trifluormethyl, Carboxyl, Azido, Chlor, Brom, Nitro, Cyano, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopentyl-Cyclohexyloxy, durch geradkettiges oxy, oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis zu 4 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach gleich oder verschieden durch Hydroxyl, Benzyloxy, Trifluormethyl, Benzoyl, Methoxy, Oxyacetyl und/oder Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Trifluormethyl Trifluormethoxy substituiert sein kann,

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 4-fach gleich oder verschieden, durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls durch Fluor, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

und/oder gegebenenfalls durch einen Rest der Formel

1,2 
$$(CH_2)_c$$
 oder =0

substituiert sind,

10

5

15

20

25

30

worin

c eine Zahl 1, 2, 3 oder 4 bedeutet,

5

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiroverknüpften Rest der Formel

10

worin

e eine Zahl 1, 2, 3, 4 oder 5 bedeutet,

15

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup> und R<sup>28</sup> gleich oder verschieden sind und Wasserstoff,
Trifluormethyl, Phenyl, Fluor, Chlor, Brom oder geradkettiges
oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4
Kohlenstoffatomen bedeuten,

20

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 4 Kohlenstoffatomen bilden,

25 und deren Salze und N-Oxide.

Ganz besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

in welcher

A für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht, oder

5 für Thienyl oder Pyridyl steht, oder A für einen Rest der Formel



steht,

D für Phenyl steht, das gegebenenfalls durch Trifluormethyl, Fluor, substituiert ist, oder

für einen Rest der Formel

15 steht,

worin

Phenyl bedeutet, das gegebenenfalls durch Fluor, Chlor, Trifluormethyl,
Trifluormethoxy, geradkettiges oder verzweigtes Alkyl mit jeweils bis
zu 4 Kohlenstoffatomen substituiert ist,

oder

25 R<sup>7</sup> Wasserstoff oder Fluor bedeutet,

und

R<sup>8</sup> Wasserstoff, Fluor, Chlor, Hydroxy, Methoxy oder

5

R<sup>7</sup> und R<sup>8</sup> gemeinsam für einen Rest der Formel =O stehen,

E für Cyclopropyl, Cyclopentyl oder Cyclohexyl

10 für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu 5 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder einen Rest der Formel -OR<sup>19</sup> substituiert sein muß,

15

worin

R<sup>19</sup> Wasserstoff bedeutet,

20

25

oder einen Rest der Formel -Si(CH<sub>3</sub>)<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub> bedeutet,

und deren Salze und N-Oxide.

Außerdem wurden Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man

[A] im Fall D \neq Aryl, Verbindungen der allgemeinen Formel (II)

OHC 
$$R^1$$
 (II),

in welcher

5 A, E, R<sup>1</sup> und R<sup>2</sup> die oben angegebene Bedeutung haben,

mit metallorganischen Reagenzien im Sinne einer Grignard-, Wittig- oder Lithiumorganischen-Reaktion den Substituenten D in inerten Lösemitteln synthetisiert,

- oder im Fall, daß D für den Rest der Formel R9-T-V-X steht, in welcher V ein Sauerstoffatom bedeutet,
  - [B] entweder Verbindungen der allgemeinen Formel (III)

HO 
$$X$$
 $R^1$ 
(III),

15

in welcher

A, E, X, R<sup>1</sup> und R<sup>2</sup> die oben angegebene Bedeutung haben,

20

mit Verbindungen der allgemeinen Formel (IV)

$$R^9$$
-T-Z (IV),

25 in welcher

R9 und T die oben angegebene Bedeutung haben

und

5

Z für Halogen, vorzugsweise Chlor oder Brom, steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base und/oder Hilfsstoffs umsetzt,

10

oder

[C] Verbindungen der allgemeinen Formel (III) zunächst durch Umsetzung mit Verbindungen der allgemeinen Formel (V)

15

$$R^{35} - S - CI$$
 (V),

in welcher

20 R<sup>35</sup> für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

in die Verbindungen der allgemeinen Formel (VI)

$$R^{35}$$
  $O_2$   $SO^{-X}$   $R^1$  (VI),

in welcher

A, E, X, R<sup>1</sup>, R<sup>2</sup> und R<sup>35</sup> die oben angegebene Bedeutung haben,

5 überführt und anschließend mit Verbindungen der allgemeinen Formel (VII)

R°-T-V-H

(VII),

in welcher

10

R9, T und V die oben angegebene Bedeutung haben,

umsetzt und gegebenenfalls Schutzgruppen abspaltet,

15 oder

[D] im Fall der Verbindungen der allgemeinen Formel (Ia)

$$R^6$$
 $R^{36}$ 
 $R^{37}$ 
 $R^{36}$ 
(Ia)

20

in welcher

A und R<sup>6</sup> die oben angegebene Bedeutung haben,

25 R<sup>36</sup> und R<sup>37</sup> gleich oder verschieden sind und

für Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 7 Kohlenstoffatomen stehen, oder

für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen stehen, oder

für Phenyl stehen, das seinerseits gegebenenfalls durch Halogen, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind, oder

10 R<sup>36</sup> und R<sup>37</sup> für einen der oben aufgeführten spiro-verknüpften Reste der Formel

worin

15

5

W, Y, Y', R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup>, R<sup>28</sup>, e, R<sup>29</sup>, R<sup>30</sup>, R<sup>31</sup>, R<sup>32</sup> und R<sup>33</sup> die oben angegebene Bedeutung haben,

Verbindungen der allgemeinen Formel (VIII)

20

$$R^{6} \xrightarrow{\text{I}} R^{36}$$
 (VIII)

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

zunächst zu den Verbindungen der allgemeinen Formel (IX)

$$R^{6} \xrightarrow{A} O \qquad (IX)$$

5

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

10

oxidiert,

diese in einem nächsten Schritt durch eine asymmetrische Reduktion zu den Verbindungen der allgemeinen Formel (X)

15

$$R^{6} \xrightarrow{\text{OH}} R^{36}$$
 (X)

in welcher

20 R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

umsetzt,

diese dann durch die Einführung einer Hydroxyschutzgruppe in die Verbindungen der allgemeinen Formel (XI)

$$R^{6} \xrightarrow[R]{A} OR^{38}$$

$$R^{36}$$

$$R^{36}$$

$$R^{36}$$

$$R^{36}$$

5

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben

10 und

R<sup>38</sup> für eine Hydroxyschutzgruppe, vorzugsweise für einen Rest der Formel -SiR<sup>39</sup>R<sup>40</sup>R<sup>41</sup> steht,

15 worin

 $R^{39}$ ,  $R^{40}$  und  $R^{41}$  gleich oder verschieden sind und  $C_1$ - $C_4$ -Alkyl bedeuten,

überführt,

20

aus diesem in einem Folgeschritt durch diastereoselektive Reduktion die Verbindungen der allgemeinen Formel (XII)

$$R^{6} \xrightarrow{\text{OH A OR}^{38}} R^{36}$$
 (XII)

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, R<sup>38</sup>, A und E die oben angegebene Bedeutung haben,

5

herstellt,

und anschließend durch Einführung des Fluorsubstituenten mit Fluorierungsreagentien, wie z.B. DAST und SF<sub>4</sub>-Derivaten die Verbindungen der allgemeinen Formel (XIII)

10

$$R^{6} \xrightarrow{F} A OR^{38} OR^{38}$$

$$E N R^{36}$$

$$R^{36}$$

$$R^{36}$$

$$R^{36}$$

in welcher

15 R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, R<sup>38</sup>, A und E die oben angegebene Bedeutung haben,

herstellt,

und anschließend die Hydroxyschutzgruppe nach üblichen Methoden abspaltet,

20

25

und gegebenenfalls die unter D, E und/oder R<sup>1</sup> und R<sup>2</sup> aufgeführten Substituenten nach üblichen Methoden variiert oder einführt.

Die erfindungsgemäßen Verfahren können durch folgende Formelschemata beispielhaft erläutert werden:

[A]

[C]

Ms = Mesylat

[D]

$$CF_{3} + CF_{3} + C$$

Als Lösemittel für alle Verfahren eignen sich Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cylcohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Essigester, oder Triethylamin, Pyridin, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton oder Nitromethan. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Bevorzugt ist Dichlormethan.

10

15

20

25

30

5

Als Basen kommen für die einzelnen Schritte die üblichen stark basischen Verbindungen in Frage. Hierzu gehören bevorzugt lithiumorganische Verbindungen wie beispielsweise N-Butyllithium, sec.-Butyllithium, tert.Butyllithium oder Phenyllithium, oder Amide wie beispielsweise Lithiumdiisopropylamid, Natriumamid oder Kaliumamid, oder Lithiumhexamethylsilylamid, oder Alkalihydride wie Natriumhydrid oder Kaliumhydrid. Besonders bevorzugt wird N-Butyllithium, Natriumhydrid oder Lithiumdiisopropylamid eingesetzt.

Für die Verfahren [B] und [C] eignen sich außerdem die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkalihydroxide oder Erdalkalihydroxide wie beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natriumhydrogencarbonat. Besonders bevorzugt wird Natriumhydrid oder Kaliumhydroxid eingesetzt.

Als metallorganische Reagenzien eignen sich beispielsweise Systeme wie Mg/Brombenzotrifluorid und p-Trifluormethylphenyllithium.

Die Reduktionen werden im allgemeinen mit Reduktionsmitteln, bevorzugt mit solchen, die für die Reduktion von Ketonen zu Hydroxyverbindungen geeignet sind, durchgeführt werden. Besonders geeignet ist hierbei die Reduktion mit Metallhydriden oder komplexen Metallhydriden in inerten Lösemitteln, gegebenenfalls in Anwesenheit

eines Trialkylborans. Bevorzugt wird die Reduktion mit komplexen Metallhydriden wie beispielsweise Lithiumboranat, Natriumboranat, Kaliumboranat, Zinkboranat, Lithium-trialkylhydrido-boranat, Diisobutylaluminiumhydrid oder Lithiumaluminiumhydrid durchgeführt. Ganz besonders bevorzugt wird die Reduktion mit Diisobutylaluminiumhydrid und Natriumborhydrid durchgeführt.

Das Reduktionsmittel wird im allgemeinen in einer Menge von 1 mol bis 6 mol, bevorzugt von 1 mol bis 4 mol bezogen auf 1 mol der zu reduzierenden Verbindungen, eingesetzt.

10

5

Die Reduktion verläuft im allgemeinen in einem Temperaturbereich von -78°C bis +50°C, bevorzugt von -78°C bis 0°C im Falle des DIBAH, 0°C bis Raumtemperatur im Falle des NaBH<sub>4</sub>, besonders bevorzugt bei -78°C, jeweils in Abhängigkeit von der Wahl des Reduktionsmittels sowie Lösemittel.

15

Die Reduktion verläuft im allgemeinen bei Normaldruck, es ist aber auch möglich bei erhöhtem oder erniedrigtem Druck zu arbeiten.

20

Bevorzugt wird das Verfahren im Fall [A] zunächst mit Verbindungen der allgemeinen Formel (II), in welcher der Carbocyclus R<sup>1</sup>/R<sup>2</sup> zunächst nur durch eine Gruppe - OSiR<sup>1</sup>R<sup>III</sup>R<sup>III</sup> substituiert ist, worin R<sup>1</sup>, R<sup>II</sup> und R<sup>III</sup> gleich oder verschieden sind und Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, durchgeführt und nach Abspaltung der Schutzgruppe der oben unter R<sup>19</sup>/R<sup>20</sup> angegebene Substituent nach üblichen Methoden einführt.

25

30

Die Abspaltung der Schutzgruppe erfolgt im allgemeinen in einem der oben aufgeführten Alkohole und THF, vorzugsweise Methanol / THF in Anwesenheit von Salzsäure in einem Temperaturbereich von 0°C bis 50°C, vorzugsweise bei Raumtemperatur, und Normaldruck. In besonderen Fällen wird die Abspaltung der Schutzgruppe mit Tetrabutylammoniumfluorid (TBAF) in THF bevorzugt.

Hydroxyschutzgruppe im Rahmen der oben angegebenen Definition steht im allgemeinen für eine Schutzgruppe aus der Reihe: Trimethylsilyl, Triisopropylsilyl, tert.-Butyl-dimethylsilyl, Benzyl, Benzyloxycarbonyl, 2-Nitrobenzyl, 4-Nitrobenzyl, tert.-Butyloxycarbonyl, Allyloxycarbonyl, 4-Methoxybenzyl, 4-Methoxybenzyloxycarbonyl, Tetrahydropyranyl, Formyl, Acetyl, Trichloracetyl, 2,2,2-Trichlorethoxycarbonyl, Methoxyethoxymethyl, [2-(Trimethylsilyl)ethoxy]methyl, Benzoyl, 4-Methylbenzoyl, 4-Nitrobenzoyl, 4-Fluorbenzoyl, 4-Chlorbenzoyl oder 4-Methoxybenzoyl. Bevorzugt sind Tetrahydropyranyl, tert.Butyldimethylsilyl und Triisopropylsilyl. Besonders bevorzugt ist tert.Butyldimethylsilyl.

10

15

20

25

5

Als Lösemittel für die einzelnen Schritte eignen sich Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, Diisopropylether oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.

Als Oxidationsmittel zur Herstellung der Verbindungen der allgemeinen Formel (IX) eignen sich beispielsweise Salpetersäure, Cer(IV)-ammoniumnitrat, 2,3-Dichlor-5,6-dicyan-benzochinon, Pyridiniumchlorochromat (PCC), Pyridiniumchlorochromat auf basischem Aluminiumoxid, Osmiumtetroxid und Mangandioxid. Bevorzugt sind Mangandioxid und Salpetersäure.

Die Oxidation erfolgt in einem der oben aufgeführten chlorierten Kohlenwasserstoffe und Wasser. Bevorzugt sind Dichlormethan und Wasser.

Das Oxidationsmittel wird in einer Menge von 1 mol bis 10 mol, bevorzugt von 2 mol bis 5 mol, bezogen auf 1 mol der Verbindungen der allgemeinen Formel (VIII), eingesetzt.

Die Oxidation verläuft im allgemeinen bei einer Temperatur von -50°C bis +100°C, bevorzugt von 0°C bis Raumtemperatur.

Die Oxidation verläuft im allgemeinen bei Normaldruck. Es ist aber auch möglich, die Oxidation bei erhöhtem oder erniedrigtem Druck durchzuführen.

Die asymmetrische Reduktion zu den Verbindungen der allgemeinen Formel (X) erfolgt im allgemeinen in einem der oben aufgeführten Ether oder Toluol, vorzugsweise Tetrahydrofuran und Toluol.

10

20

5

Die Reduktion erfolgt im allgemeinen mit enantiomerenreinen 1R,2S-Aminoindanol und Borankomplexen wie BH<sub>3</sub> x THF, BH<sub>3</sub> x DMS und BH<sub>3</sub> x (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>5</sub>. Bevorzugt ist das System Borandiethylanilin / 1R,2S-Aminoindanol.

Das Reduktionsmittel wird im allgemeinen in einer Menge von 1 mol bis 6 mol, bevorzugt von 1 mol bis 4 mol bezogen auf 1 mol der zu reduzierenden Verbindungen, eingesetzt.

Die Reduktion verläuft im allgemeinen bei einer Temperatur von -78°C bis +50°C, bevorzugt von 0°C bis 30°C.

Die Reduktion verläuft im allgemeinen bei Normaldruck, es ist aber auch möglich bei erhöhtem oder erniedrigtem Druck zu arbeiten.

Die Einführung der Hydroxyschutzgruppe erfolgt in einem der oben aufgeführten Kohlenwasserstoffe, Dimethylformamid oder THF, vorzugsweise in Toluol in Anwesenheit von Lutidin in einem Temperaturbereich von -20°C bis +50°C, vorzugsweise von -5°C bis Raumtemperatur und Normaldruck.

Reagenzien zur Einführung der Silylschutzgruppe sind im allgemeinen tert.-Butyldimethylsilylchlorid oder tert.-Butyldimethylsilyltrifluormethansulfonat. Bevorzugt ist tert.-Butyldimethylsilyltrifluormethansulfonat.

Die Reduktion zu den Verbindungen der allgemeinen Formel (XII) verläuft in einem der oben aufgeführten Kohlenwasserstoffe, vorzugsweise Toluol.

10

15

25

Die Reduktion zur Herstellung der Verbindungen der allgemeinen Formel (XII) wird im allgemeinen mit üblichen Reduktionsmitteln, bevorzugt mit solchen, die für die Reduktion von Ketonen zu Hydroxyverbindungen geeignet sind, durchgeführt werden. Besonders geeignet ist hierbei die Reduktion mit Metallhydriden oder komplexen Metallhydriden in den oben aufgeführten inerten Lösemitteln, wie z.B. Toluol, gegebenenfalls in Anwesenheit eines Trialkylborans. Bevorzugt wird die Reduktion mit komplexen Metallhydriden wie beispielsweise Lithiumboranat, Natriumboranat, Kaliumboranat, Zinkboranat, Lithium-trialkylhydrido-boranat, Diisobutylaluminiumhydrid, Natrium-bis-(2-methoxyethoxy)-dihydroaluminat oder Lithiumaluminiumhydrid durchgeführt. Ganz besonders bevorzugt wird die Reduktion mit Natrium-bis-(2-methoxyethoxy)-dihydroaluminat durchgeführt.

Das Reduktionsmittel wird im allgemeinen in einer Menge von 1 mol bis 6 mol, bevorzugt von 1 mol bis 3 mol bezogen auf 1 mol der zu reduzierenden Verbindungen, eingesetzt.

Die Reduktion verläuft im allgemeinen bei einer Temperatur von -20°C bis +110°C, bevorzugt von 0°C bis Raumtemperatur.

Die Reduktion verläuft im allgemeinen bei Normaldruck, es ist aber auch möglich bei erhöhtem oder erniedrigtem Druck zu arbeiten.

Bei der Reduktion zu den Verbindungen der allgemeinen Formel (XII) bleiben in der Mutterlauge geringe Reste des falschen Diastereomeren. Diese Reste können mit

15

20

25

gängigen Oxidationsmitteln wie z.B. Pyridiniumchlorochromat (PCC) oder aktiviertem Braunstein, insbesondere mit aktiviertem Braunstein zu geschütztem (XI) reoxidiert werden und somit dem Synthesezyklus ohne Ausbeuteverlust zugeführt werden.

Die Einführung des Fluorsubstituenten erfolgt im allgemeinen in einem der oben aufgeführten Kohlenwasserstoffe oder Methylenchlorid, vorzugsweise in Toluol und unter Schutzgasatmosphäre.

Unter SF<sub>4</sub>-Derivaten werden im allgemeinen Diethylaminoschwefeltrifluorid oder 2,2'10 Bisfluorsubstituierte Amine wie beispielsweise Diethyl-1,2,3,3,3-hexafluorpropylamin hergestellt.

Die Reaktion verläuft im allgemeinen bei einer Temperatur von -78°C bis 100°C, bevorzugt im Falle des Dimethylaminoschwefeltrifluorid bei -78°C bis RT und im Falle des Diethyl-1,1,2,3,3,3-hexafluorpropylamins bei Raumtemperatur bis 80°C.

Die Abspaltung der Schutzgruppe erfolgt im allgemeinen in einem der oben aufgeführten Alkohole und THF, vorzugsweise Methanol / THF in Anwesenheit von Salzsäure in einem Temperaturbereich von 0°C bis 50°C, vorzugsweise bei Raumtemperatur, und Normaldruck. In besonderen Fällen wird die Abspaltung der Schutzgruppe mit Tetrabutylammoniumfluorid (TBAF) in THF bei Raumtemperatur bevorzugt.

Als Derivatisierungen seien beispielhaft folgende Reaktionstypen genannt:

Oxidationen, Reduktionen, Hydrierungen, Halogenierung, Wittig/Grignard-Reaktionen und Amidierungen/Sulfoamidierungen.

Als Basen kommen für die einzelnen Schritte die üblichen stark basischen Verbindungen in Frage. Hierzu gehören bevorzugt lithiumorganische Verbindungen wie
beispielsweise n-Butyllithium, sec.-Butyllithium, tert.Butyllithium oder Phenyllithium,

WO 99/14215 PCT/EP98/05656 - 43 -

oder Amide wie beispielsweise Lithiumdiisopropylamid, Natriumamid oder Kaliumamid, oder Lithiumhexamethylsilylamid, oder Alkalihydride wie Natriumhydrid oder Kaliumhydrid. Besonders bevorzugt wird N-Butyllithium, Natriumhydrid oder Lithiumdiisopropylamid eingesetzt.

5

Als Basen eignen sich außerdem die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkalihydroxide oder Erdalkalihydroxide wie beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natriumhydrogencarbonat. Besonders bevorzugt wird Natriumhydroxid oder Kaliumhydroxid eingesetzt.

10

Als Lösemittel eignen sich für die einzelnen Reaktionsschritte auch Alkohole wie Methanol, Ethanol, Propanol, Butanol oder tert.Butanol. Bevorzugt ist tert.Butanol.

15

Gegebenenfalls ist es nötig, einige Reaktionsschritte unter Schutzgasatmosphäre durchzuführen.

Die Halogenierungen erfolgen im allgemeinen in einem der oben aufgeführten chlorierten Kohlenwasserstoffen, wobei Methylenchlorid bevorzugt ist.

20

Als Halogenierungsmittel eignen sich beispielsweise Diethylamino-Schwefeltrifluorid (DAST), Morpholino-Schwefeltrifluorid oder SOCl<sub>2</sub>.

25

Die Halogenierung verläuft im allgemeinen in einem Temperaturbereich von -78°C bis +50°C, bevorzugt von -78°C bis 0°C, jeweils in Abhängigkeit von der Wahl des Halogenierungsmittels sowie Lösemittel.

Die Halogenierung verläuft im allgemeinen bei Normaldurck, es ist aber auch möglich, bei erhöhtem oder erniedrigtem Druck zu arbeiten.

Die Verbindungen der allgemeinen Formeln (II) und (III) sind neu und können hergestellt werden, indem man

durch Umsetzung der Verbindungen der allgemeinen Formel (XIV)

5

in welcher

10 E die oben angegebene Bedeutung hat

und

 $R^{42}$  für  $C_1$ - $C_4$ -Alkoxycarbonyl oder Aryl (D = Aryl) steht,

15

25

mit Aldehyden der allgemeinen Formel (XV)

in welcher

A die oben angegebene Bedeutung hat,

und Verbindungen der allgemeinen Formel (XVI)

$$\begin{array}{c}
O \\
R^{43} \\
R^{44}
\end{array}$$
(XVI),

in welcher

R<sup>43</sup> und R<sup>44</sup> unter Einbezug einer Carbonylgruppe den oben angegebenen Bedeutungsumfang von R<sup>1</sup> und R<sup>2</sup> umfassen,

die Verbindungen der allgemeinen Formel (XVII)

$$R^{42}$$

$$R^{43}$$

$$R^{44}$$
(XVII),

10

in welcher

A, E, R<sup>42</sup>, R<sup>43</sup> und R<sup>44</sup> die oben angegebene Bedeutung haben,

15

herstellt,

und im Fall der Verbindungen der allgemeinen Formel (III) eine Reduktion, wie oben beschrieben, zur Hydroxymethylfunktion anschließt,

20

und in einem letzten Schritt die Alkoxycarbonylgruppe (R<sup>42</sup>) durch eine Reduktions-Oxidations-Sequenz in eine Aldehydgruppe überführt.

Als Lösemittel eignen sich für die Oxidation Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, 5

10

Xylol, Hexan, Cyclohexan oder Erdölfraktionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol, oder Essigester, oder Triethylamin, Pyridin, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton oder Nitromethan. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Bevorzugt ist Methylenchlorid.

Als Oxidationsmittel eignen sich beispielsweise Cer(IV)-ammoniumnitrat, 2,3-Dichlor-5,6-dicyan-benzochinon, Pyridiniumchlorochromat (PCC), Pyridiniumchlorochromat auf basischem Aluminiumoxid, Osmiumtetroxid und Mangandioxid. Bevorzugt sind Schwefeltrioxid-Pyridinkomplex in DMSO/Methylenchlorid und Pyridiniumchlorochromat auf basischem Aluminiumoxid.

Das Oxidationsmittel wird in einer Menge von 1 mol bis 10 mol, bevorzugt von 2 mol bis 5 mol, bezogen auf 1 mol der Verbindungen der allgemeinen Formel (XVII), eingesetzt.

Die Oxidation verläuft im allgemeinen in einem Temperaturbereich von -50°C bis +100°C, bevorzugt von 0°C bis Raumtemperatur.

20

25

Die Oxidation verläuft im allgemeinen bei Normaldruck. Es ist aber auch möglich, die Oxidation bei erhöhtem oder erniedrigtem Druck durchzuführen.

Die Verbindungen der allgemeinen Formeln (IV), (V), (VII), (XIV), (XV) und (XVI) sind an sich bekannt oder nach üblichen Methoden herstellbar.

Die Verbindungen der allgemeinen Formeln (VI) und (XV) sind teilweise bekannt oder neu und können dann wie oben beschrieben hergestellt werden.

Die Verbindungen der allgemeinen Formeln (IX) und (X) sind als Species neu und können wie oben beschrieben hergestellt werden.

Die Verbindungen der allgemeinen Formel (VIII) sind neu und können hergestellt werden, indem man

5 Verbindungen der allgemeinen Formeln (XVa), (XVIII) und (XIX)

A-CHO (XVa), 
$$R^{6} \longrightarrow R^{36} \qquad (XVIII)$$
 und 
$$R^{36} \longrightarrow R^{36} \qquad (XIX)$$

in welcher

10

20

A, E, R<sup>6</sup>, R<sup>36</sup> und R<sup>37</sup> die oben angegebene Bedeutung haben,

in Gegenwart einer Säure umsetzt.

Als Lösemittel zur Herstellung der Verbindungen der allgemeinen Formel (VIII) eignen sich die oben aufgeführten Ether oder Alkohole. Bevorzugt ist Diisopropylether.

Als Säuren für die Herstellung der Verbindungen der allgemeinen Formel (VIII) eignen sich im allgemeinen organische Carbonsäuren und anorganische Säuren, wie beispielsweise Oxalsäure, Maleinsäure, Phosphorsäure, Fumarsäure und Trifluoressigsäure. Bevorzugt ist Trifluoressigsäure.

5

Die Säure wird im allgemeinen in einer Menge von 0,1 mol bis 5 mol, bevorzugt 1 mol, bezogen auf 1 mol der Verbindungen der allgemeinen Formel (XIX) eingesetzt.

Die Reaktion wird im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich die Reaktion bei erhöhtem oder erniedrigtem Druck durchzuführen.

Die Reaktion erfolgt im allgemeinen bei der Rückflußtemperatur des jeweiligen Lösemittels.

Die Verbindungen der allgemeinen Formeln (XV) und (XIX) sind an sich bekannt oder nach üblichen Methoden herstellbar.

Die Verbindungen der allgemeinen Formel (XVIII) sind neu und können hergestellt werden, indem man zunächst durch Umsetzung der Verbindungen der allgemeinen Formel (XX)

$$E-CO_2-R^{45} (XX)$$

in welcher

20

15

E die oben angegebene Bedeutung hat

und

25  $R^{45}$  für  $C_1$ - $C_4$ -Alkyl steht,

mit Verbindungen der allgemeinen Formel (XXI)

$$R^{6}$$
 CH<sub>3</sub> (XXI)

in welcher

R<sup>6</sup> die oben angegebene Bedeutung hat,

5

in einem Lösemittel in Anwesenheit von 18-Krone-6-ether die Verbindungen der allgemeinen Formel (XXII)

$$R^6 \xrightarrow{\bigcup} CH_2 \xrightarrow{\bigcup} E$$
 (XXII)

10

in welcher

R<sup>6</sup> und E die oben angegebene Bedeutung haben,

15 herstellt

und anschließend mit Ammoniumacetat in inerten Lösemitteln umsetzt.

Als Lösemittel für den ersten Schritt des Verfahrens eignen sich die oben aufgeführten Ether und Kohlenwasserstoffe, wobei Tetrahydrofuran bevorzugt ist.

Als Lösemittel für die Umsetzung mit den Verbindungen der allgemeinen Formel (XXII) eignen sich Alkohole, wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol. Bevorzugt ist Ethanol.

25

20

Alle Schritte des Verfahrens erfolgen bei der jeweiligen Rückflußtemperatur des entsprechenden Lösemittels und bei Normaldruck. 5

Die Verbindungen der allgemeinen Formeln (XX) und (XXI) sind teilweise bekannt oder können nach bekannten Methoden hergestellt werden.

Die Verbindungen der allgemeinen Formel (XXII) sind als Species partiell neu und können wie oben beschrieben hergestellt werden.

Die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I) und (Ia) haben ein nicht vorhersehbares pharmakologisches Wirkspektrum.

Die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I) und (Ia) besitzen wertvolle, im Vergleich zum Stand der Technik überlegene, pharmakologische Eigenschaften, insbesondere sind sie hochwirksame Inhibitoren des Cholesterin-Ester-Transfer-Proteins (CETP) und stimulieren den Reversen Cholesterintransport. Die erfindungsgemäßen Wirkstoffe bewirken eine Senkung des LDL-Cholesterinspiegels im Blut bei gleichzeitiger Erhöhung des HDL-Cholesterinspiegels. Sie können deshalb zur Behandlung und Prävention von Hypolipoproteinämie, Dyslipidämien, Hypertriglyceridämien, Hyperlipidämien oder Arteriosklerose eingesetzt werden.

Die pharmakologische Wirkung der erfindungsgemäßen Stoffe wurde in folgendem Test bestimmt:

#### **CETP-Inhibitions-Testung**

#### Gewinnung von CETP

25

30

20

CETP wird aus humanem Plasma durch Differential-Zentrifugation und Säulenchromatographie in partiell gereinigter Form gewonnen und zum Test verwendet. Dazu wird humanes Plasma mit NaBr auf eine Dichte von 1,21 g pro ml eingestellt und 18 h bei 50.000 Upm bei 4°C zentrifugiert. Die Bodenfraktion (d>1,21 g/ml) wird auf eine Sephadex®Phenyl-Sepharose 4B (Fa. Pharmacia) Säule aufgetragen, mit 0,15 m NaCl/0,001 m TrisHCl pH 7,4 gewaschen und anschließend

mit dest. Wasser eluiert. Die CETP-aktiven Fraktionen werden gepoolt, gegen 50mM NaAcetat pH 4,5 dialysiert und auf eine CM-Sepharose® (Fa. Pharmacia)-Säule aufgetragen. Mit einem linearen Gradienten (0-1 M NaCl) wird anschließend eluiert. Die gepoolten CETP-Fraktionen werden gegen 10 mM TrisHCl pH 7,4 dialysiert und anschließend durch Chromatographie über eine Mono Q®-Säule (Fa. Pharmacia) weiter gereinigt.

## Gewinnung von radioaktiv markiertem HDL

5

20

25

30

50 ml frisches humanes EDTA-Plasma wird mit NaBr auf eine Dichte von 1,12 eingestellt und bei 4°C im Ty 65-Rotor 18 h bei 50.000 Upm zentrifugiert. Die Oberphase wird zur Gewinnung von kaltem LDL verwendet. Die Unterphase wird gegen 3\*4 l PDB-Puffer (10 mM Tris/HCl pH 7,4, 0,15 mM NaCl, 1 mM EDTA, 0,02% NaN<sub>3</sub>) dialysiert. Pro 10 ml Retentatvolumen wird anschließend 20 μl 3H-Cholesterin (Dupont NET-725; 1 -μC/μl gelöst in Ethanol!) hinzugesetzt und 72 h bei 37°C unter N<sub>2</sub> inkubiert.

Der Ansatz wird dann mit NaBr auf die Dichte 1,21 eingestellt und im Ty 65-Rotor 18 h bei 50.000 Upm bei 20°C zentrifugiert. Man gewinnt die Oberphase und reinigt die Lipoproteinfraktionen durch Gradientenzentrifugation. Dazu wird die isolierte, markierte Lipoproteinfraktion mit NaBr auf eine Dichte von 1,26 eingestellt. Je 4 ml dieser Lösung werden in Zentrifugenröhrchen (SW 40-Rotor) mit 4 ml einer Lösung der Dichte 1,21 sowie 4,5 ml einer Lösung von 1,063 überschichtet (Dichtelösungen aus PDB-Puffer und NaBr) und anschließend 24 h bei 38.000 Upm und 20°C im SW 40-Rotor zentrifugiert. Die zwischen der Dichte 1,063 und 1,21 liegende, das markierte HDL enthaltende Zwischenschicht wird gegen 3\*100 Volumen PDB-Puffer bei 4°C dialysiert.

Das Retentat enthält radioaktiv markiertes <sup>3</sup>H-CE-HDL, das auf ca. 5x10<sup>6</sup> cmp pro ml eingestellt zum Test verwendet wird.

#### **CETP-Test**

Zur Testung der CETP-Aktivität wird die Übertragung von <sup>3</sup>H-Cholesterolester von humanen HD-Lipoproteinen auf biotinylierte LD-Lipoproteine gemessen.

5

Die Reaktion wird durch Zugabe von Streptavidin-SPA®beads (Fa. Amersham) beendet und die übertragene Radioaktivität direkt im Liquid Scintillation Counter bestimmt.

Im Testansatz werden 10 μl HDL-³H-Cholesterolester (~ 50.000 cpm) mit 10 μl Biotin-LDL (Fa. Amersham) in 50 mM Hepes / 0,15 m NaCl / 0,1% Rinderserumalbumin / 0,05% NaN₃ pH 7,4 mit 10 μl CETP (1 mg/ml) und 3 μl Lösung der zu prüfenden Substanz (in 10% DMSO / 1% RSA gelöst), für 18 h bei 37°C inkubiert. Anschließend werden 200 μl der SPA-Streptavidin-Bead-Lösung (TRKQ 7005) zugesetzt, 1 h unter
 Schütteln weiter inkubiert und anschließend im Scintillationszähler gemessen. Als Kontrollen dienen entsprechende Inkubationen mit 10 μl Puffer, 10 μl CETP bei 4°C sowie 10 μl CETP bei 37°C.

Die in den Kontrollansätzen mit CETP bei 37°C übertragene Aktivität wird als 100% Übertragung gewertet. Die Substanzkonzentration, bei der diese Übertragung auf die Hälfte reduziert ist, wird als IC<sub>50</sub>-Wert angegeben.

In der folgenden Tabelle A sind die IC<sub>50</sub>-Werte (mol/l) für CETP-Inhibitoren angegeben:

25

#### Tabelle A:

| Beispiel-Nr. | IC <sub>50</sub> -Wert (mol/l) |
|--------------|--------------------------------|
| 1            | 1x 10 <sup>-8</sup>            |

#### Ex vivo Aktivität der erfindungsgemäßen Verbindungen

5

10

15

20

30

Syrische Goldhamster aus werkseigener Zucht werden nach 24-stündigem Fasten narkotisiert (0,8 mg/kg Atropin, 0,8 mg/kg Ketavet® s.c., 30' später 50 mg/kg Nembutal i.p.). Anschließend wird die V.jugularis freipräpariert und kanüliert. Die Testsubstanz wird in einem geeigneten Lösemittel (in der Regel Adalat-Placebolösung: 60 g Glycerin, 100 ml H<sub>2</sub>O, ad 1000 ml PEG-400) gelöst und den Tieren über einen in die V.jugularis eingeführten PE-Katheter verabreicht. Die Kontrolltiere erhalten das gleiche Volumen Lösungsmittel ohne Testsubstanz. Anschließend wird die Vene abgebunden und die Wunde verschlossen.

Die Verabreichung der Testsubstanzen kann auch p.o. erfolgen, indem die Substanzen in DMSO gelöst und 0,5% Tylose suspendiert mittels Schlundsonde peroral verabreicht werden. Die Kontrolltiere erhalten identische Volumen Lösemittel ohne Testsubstanz.

Nach verschiedenen Zeitpunkten - bis zu 24 Stunden nach Applikation - wird den Tieren durch Punktion des retro-orbitalen Venenplexus Blut entnommen (ca. 250 µl). Durch Inkubation bei 4°C über Nacht wird die Gerinnung abgeschlossen, anschließend wird 10 Minuten bei 6000 x g zentrifugiert. Im so erhaltenen Serum wird die CETP-Aktivität durch den modifizierten CETP-Test bestimmt. Es wird wie für den CETP-Test oben beschrieben die Übertragung von ³H-Cholesterolester von HD-Lipoproteinen auf biotinylierte LD-Lipoproteine gemessen.

Die Reaktion wird durch Zugabe von Streptavidin-SPA<sup>R</sup>beads (Fa. Amersham) beendet und die übertragene Radioaktivität direkt im Liquid Scintlation Counter bestimmt.

Der Testansatz wird wie unter "CETP-Test" beschrieben durchgeführt. Lediglich  $10~\mu l$  CETP werden für die Testung der Serum durch  $10~\mu l$  der entsprechenden Serumproben ersetzt. Als Kontrollen dienen entsprechende Inkubationen mit Seren von unbehandelten Tieren.

Die in den Kontrollansätzen mit Kontrollseren übertragene Aktivität wird als 100% Übertragung gewertet. Die Substanzkonzentration, bei der diese Übertragung auf die Hälfte reduziert ist wird als ED<sub>50</sub>-Wert angegeben.

5

10

15

# In vivo Aktivität der erfindungsgemäßen Verbindungen

Bei Versuchen zur Bestimmung der oralen Wirkung auf Lipoproteine und Triglyceride wird syrischen Goldhamstern aus werkseigener Zucht Testsubstanz in DMSO gelöst und 0,5% Tylose suspendiert mittels Schlundsonde peroral verabreicht. Zur Bestimmung der CETP-Aktivität wird vor Versuchsbeginn durch retro-orbitale Punktion Blut entnommen (ca. 250 µl). Anschließend werden die Testsubstanzen peroral mittels einer Schlundsonde verabreicht. Die Kontrolltiere erhalten identische Volumen Lösemittel ohne Testsubstanz. Anschließend wird den Tieren das Futter entzogen und zu verschiedenen Zeitpunkten - bis zu 24 Stunden nach Substanzapplikation - durch Punktion des retroorbitalen Venenplexus Blut entnommen.

20

Durch Inkubation von 4°C über Nacht wird die Gerinnung abgeschlossen, anschließend wird 10 Minunten bei 6000 x g zentrifugiert. Im so erhaltenen Serum wird der Gehalt an Cholesterin und Triglyceriden mit Hilfe modifizierter kommerziell erhältlicher Enzymtests bestimmt (Cholesterin enzymatisch 14366 Merck, Triglyceride 14364 Merck). Serum wird in geeigneter Weise mit physiologischer Kochsalzlösung verdünnt.

25

30

100 µl Serum-Verdünnung werden mit 100 µl Testsubstanz in 96-Lochplatten versetzt und 10 Minuten bei Raumtemperatur inkubiert. Anschließend wird die optische Dichte bei einer Wellenlänge von 492 nm mit einem automatischen Platten-Lesegerät bestimmt. Die in den Proben enthaltene Triglycerid- bzw. Cholesterinkonzentration wird mit Hilfe einer parallel gemessenen Standardkurve bestimmt.

WO 99/14215 PCT/EP98/05656 - 55 -

Die Bestimmung des Gehaltes von HDL-Cholesterin wird nach Präzipitation der ApoB-haltigen Lipoproteine mittels eines Reagenziengemisch (Sigma 352-4 HDL Cholesterol Reagenz) nach Herstellerangaben durchgeführt.

5

10

15

20

#### In vivo Wirksamkeit an transgenen hCETP-Mäusen

Transgenen Mäusen aus eigener Zucht (Dinchuck, Hart, Gonzalez, Karmann, Schmidt, Wirak; BBA (1995), 1295, 301) wurden die zu prüfenden Substanzen im Futter verabreicht. Vor Versuchsbeginn wurde den Mäusen retroorbital Blut entnommen, um Cholesterin und Triglyceride im Serum zu bestimmen. Das Serum wurde wie oben für Hamster beschrieben durch Inkubation bei 4°C über Nacht und anschließender Zentrifugation bei 6000 x g gewonnen. Nach einer Woche wurde den Mäusen wieder Blut entnommen, um Lipoproteine und Triglyceride zu bestimmen. Die Veränderung der gemessenen Parameter werden als prozentuale Veränderung gegenüber dem Ausgangswert ausgedrückt.

Die Erfindung betrifft außerdem die Kombination von Hetero-Tetrahydrochinolinen der allgemeinen Formel (I) mit einem Glucosidase- und/oder Amylasehemmer zur Behandlung von familiärer Hyperlipidaemien, der Fettsucht (Adipositas) und des Diabetes mellitus. Glucosidase- und/oder Amylasehemmer im Rahmen der Erfindung sind beispielsweise Acarbose, Adiposine, Voglibose, Miglitol, Emiglitate, MDL-25637, Camiglibose (MDL-73945), Tendamistate, AI-3688, Trestatin, Pradimicin-Q und Salbostatin.

25

Bevorzugt ist die Kombination von Acarbose, Miglitol, Emiglitate oder Voglibose mit einer der oben aufgeführten erfindungsgemäßen Verbindungen der allgemeinen Formel (I).

Weiterhin können die erfindungsgemäßen Verbindungen in Kombination mit Cholesterin senkenden Vastatinen oder ApoB-senkenden Prinzipien kombiniert

werden, um Dyslipidemien, kombinierte Hyperlipidemien, Hypercholesterolemien oder Hypertriglyceridemien zu behandeln.

Die genannten Kombinationen sind auch zur primären oder sekundären Prävention koronarer Herzerkrankungen (z.B. Myokardinfarkt) einsetzbar.

Vastatine im Rahmen der Erfindung sind beispielsweise Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin und Cerivastatin. ApoB senkende Mittel sind zum Beispiel MTP-Inhibitoren.

10

15

20

25

5

Bevorzugt ist die Kombination von Cerivastatin oder ApoB-Inhibitoren mit einer der oben aufgeführten erfindungsgemäßen Verbindungen der allgemeinen Formel (I).

Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht-toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösemittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der Gesamtmischung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösemitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösemittel als Hilfslösemittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise intravenös, oral, parenteral oder perlingual, insbesondere oral.

Für den Fall der parenteralen Anwendung können Lösungen des Wirkstoffs unter Verwendung geeigneter flüssiger Trägermaterialien eingesetzt werden.

Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,001 bis 1 mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

5

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

# Verwendete Abkürzungen:

Cy = Cyclohexan

EE = Essigester

5 PE = Petrolether

THF = Tetrahydrofuran

DAST = Dimethylaminoschwefeltrifluorid

PTS = para-Toluolsulfonsäure

PDC = Pyridiniumdichromat

10 PE/EE = Petrolether / Essigsäureethylester

Tol = Toluol

#### Ausgangsverbindungen

#### Beispiel I

5 2-Cyclopentyl-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluormethylbenzoyl)-1,4,5,6,7,8-hexahydro-chinolin-5-on

$$\mathsf{F_3C} \longrightarrow \bigvee_{\mathsf{H}}^{\mathsf{S}} \bigcap_{\mathsf{CH_3}}^{\mathsf{CH_3}}$$

10 1,425 g (5,03 mol) 3-Amino-3-cyclopentyl-1-(4-trifluormethylphenyl)-propenon werden in 25 ml Diisopropylether suspendiert. Es werden 740 mg (5,28 mol) Dimedon, 0,39 ml (5,03 mol) Trifluoressigsäure und anschließend 592 mg (5,28 mol) Thiophen-3-aldehyd zugegeben. Es wird 2 Stunden zum Rückfluß erhitzt, wobei sofort eine gelbe Lösung entsteht, aus der nach 30 Minuten Produkt ausfällt. Es wird abgekühlt, abgesaugt und mit Diisopropylether gewaschen. Es wird aus Acetonitril umkristallisiert.

Ausbeute: 741 mg, Schmp. 228 – 229°C

Aus der Mutterlauge werden noch 230 mg reines Produkt erhalten.

In Analogie zur Vorschrift des Beispiels I werden die in der Tabelle I aufgeführten Verbindungen hergestellt:

# Tabelle I

| BspNr. | Struktur                         | Schmp.: (°C) |
|--------|----------------------------------|--------------|
| II     | F <sub>3</sub> C CH <sub>3</sub> | 144-47       |
| III    | F <sub>3</sub> C CH              | 200-206      |

# 5 <u>Herstellungsbeispiele</u>

# Beispiel 1

10

2-Cyclopentyl-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluormethylbenzoyl)-5,6,7,8-tetrahydro-chinolin-5-on

1,21 g (2,42 mmol) der Verbindung aus Beispiel I werden in 35 ml Dichlormethan gelöst und nach Zugabe von 6,8 g Mangandioxid 2 Stunden gerührt. Es wird über Celite als Filtrierhilfsmittel abgesaugt und eingeengt. Der Eindampfrückstand wird mit Acetonitril verrührt, abgesaugt und mit Acetonitril gewaschen. Man erhält 1,045 g Kristalle vom Schmp.: 236-238°C

Analog der Vorschrift des Beispiels 1 werden die in der Tabelle 1 aufgeführten Verbindungen hergestellt:

Tabelle 1:

| BspNr. | Struktur                                              | Schmp. (°C) |
|--------|-------------------------------------------------------|-------------|
| 2      | F <sub>3</sub> C                                      | 221-224     |
| 3      | F <sub>5</sub> C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 185-186     |

15

5

10

#### **Beispiel 4**

2-Cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluormethylbenzoyl)-5,6,7,8-tetrahydrochinolin

5

10

20

25

(1R,2S)-Aminoindan-2-ol werden in 0,4 ml THF suspendiert. Bei RT werden N,N-Borandiethylanilincomplex (Aldrich) zugetropft. Es wird alles gelöst und 1 Stunde bei RT gerührt. Dann wird 15 Minuten bei 0°C gerührt. Die Verbindung aus Beispiel 1 wird in 16 ml THF gelöst und wird innerhalb von 10 Minuten bei 0 bis 5°C zugetropft. Dann wird 30 min bei 0°C und 4 Stunden bei RT gerührt. Bei -10°C bis 0°C werden 35 ml 1,2 Ethandiol vorsichtig zugetropft, 30 Minuten nachgerührt, eingeengt, in Essigester gelöst, mit 1 N HCl, dann mit ges. Natriumhydrogencarbonatlösung, dann mit ges. Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Man erhält 1,17 g kristalline Verbindung. Es wird heiß in Cyclohexan gelöst, abfiltriert. Beim Abkühlen kristallisiert die Verbindung aus. Es wird abgesaugt, gewaschen und bei 70°C i.V. getrocknet.

15 Ausbeute: 0,7 g

Nach Einengen der Mutterlauge (Säule: Toluol:Essigester 20.1) und Lösen in Methylenchlorid und erneutem Einengen werden weitere 0,27 g Kristalle erhalten.

Gesamtausbeute: 970 mg (87,3%) vom Schmp.: 179-182°C

Beispiel 5

5-tert.Butyldimethylsilyloxy-2-cyclopentyl-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluor-methylbenzoyl)-5,6,7,8-tetrahydrochinolin

0,8 g (1,6 mmol) der Verbindung aus Beispiel 4 werden in 6,4 ml Toluol unter Argon gelöst und bei -5° bis -10°C tropfenweise mit 0,69 g (6,4 mmol) 2,6-Lutidin versetzt. Es wird 15 Minunten nachgerührt. Bei gleicher Temperatur werden nun 0,86 g (3,2 mmol) Trifluormethansulfonsäure-(tert.butyl-dimethylsilylester) in 1,2 ml Toluol zugetropft. Es wird 15 Minuten bei -5°C bis -10°C, dann 2 Stunden bei Raumtemperatur gerührt.

10

5

Es wrid mit Toluol verdünnt, nacheinander mit 2,6 ml 10% Ammoniumchloridlösung, 7 mal mit je 3,5 ml 0,1 N HCl, je einmal mit 1,5 ml ges. Natriumhydrogencarbonatlösung und mit 3,5 ml ges. Natriumchloridlösung gewaschen. Anschließend wird getrocknet, eingeengt und einmal mit Ethanol eingeengt.

15

Man erhält 1,0 g Es wird aus wenig Ethanol umkristallisiert, abgesaugt, gewaschen und bei 60°C i.V. getrocknet.

Ausbeute: 716 mg, Schmp. 147 – 148°C

20

Die Mutterlauge wird eingeengt und mit Ethanol abgesaugt. Man erhält nochmals 60 mg.

## Beispiel 6

5-(S)-tert.Butyldimethylsilyloxy-2-cyclopentyl-7,7-dimethyl-4-(3-thienyl)-3-[(R)-hydroxy-(4-trifluormethylphenyl)]methyl-5,6,7,8-tetrahydrochinolin

5

10

15

20

0,69 g (1,124 mmol) der Verbindung aus Beispiel 5 werden in 5 ml Toluol gelöst; bei 0°C werden 1,40 g (4,496 mmol) RED-Al zugetropft und 30 Minuten bei 0°C und 1 Stunde bei RT gerührt. Bei 0°C werden langsam 0,85 ml Methanol zugetropft und die gelbe Lösung 30 Minuten bei 0°C gerührt. Anschließend werden 0,73 ml einer 20%igen Kalium-Natrium-Tartrat-Lösung zugetropft, abgesaugt, mit Toluol und etws 20%iger Kalium-Natrium-Tartrat-Lösung gewaschen, abgetrennt, einmal mit ges. Natriumhydrogencarbonatlösung und zweimal mit ges. Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Man erhält 850 mg Öl, bestehend aus den beiden möglichen Diastereomeren, die über eine 400 ml Kieselgelsäule getrennt werden. Es wird mit Petrolether, Petrolether/Essigester 20:1, 10:1 eluiert.

Man erhält 86,2 mg des falschen Diastereomeren und 356,2 mg des richtigen Diastereomeren.

# Beispiel 7

5-(S)-tert.Butyldimethylsilyloxy-2-cyclopentyl-7,7-dimethyl-3-[5-fluor-(4-trifluor-methylphenyl)-methyl]-4-(3-thienyl)-5,6,7,8-tetrahydrochinolin

5

10

320 mg (0,52 mmol) der Verbindung aus Beispiel 6 werden in 7 ml Dichlormethan gelöst und bei -15°C mit 140 mg (0,86 mmol) DAST versetzt. Nach 30 Minuten wird bei -15°C bis -10°C umgesetzt, mit Methylenchlorid und Wasser versetzt, abgetrennt, einmal mit Methylenchlorid extrahiert, die organischen Phasen einmal mit ges. Kochsalzlösung und mit etwas ges. Natriumhydrogencarbonatlösung gewaschen, getrocknet und eingeengt.

Die Kristallisation erfolgt aus Methanol aus. Es wird abgesaugt und gewaschen.

Ausbeute: 57,8 mg vom Schmp.: 171-172°C

## 20 Beispiel 8

2-Cyclopentyl-3-[fluor-(4-trifluormethylphenyl)methyl]-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-5,6,7,8-tetrahydrochinolin

5

111 mg (0,18 mmol) der Verbindung aus Beispiel 7 werden in 1,4 ml Methanol gelöst und mit 0,9 ml THF und 0,98 ml 5 N Salzsäure versetzt. Es wird 4 Stunden bei 40°C gerührt. Es wird eingeengt, mit Wasser, Ammoniaklösung und Essigester versetzt, abgetrennt und einmal mit Essigester extrahiert. Die organischen Phasen werden einmal mit Kochsalzlösung gewaschen, getrocknet und eingeengt. man erhält 82 mg als Öl.

Es wird in Petrolether und wenig Methylenchlorid gelöst und auf eine Säule gegeben, mit Petrolether: Essigester 30.1, 20.1, 10.1 eluiert und 2 Fraktionen eingeengt.

Der kristalline Feststoff wird mit wenig n-Heptan abgesaugt und i.V. getrocknet.

15 Man erhält 37,1 mg (41% d.Th.) einer farblosen Substanz vom Schmp.: 157-159°C

### Beispiel 9

2-Cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(trifluormethylbenzyl)-5,6,7,8-tetrahydrochinolin

5

20 mg (0,04 mmol) der Verbindung aus Beispiel 8 werden in 3 ml Toluol gelöst und bei -20°C mit 0,27 ml Dibal-H in Tolol versetzt. Es wird 2 Stunden bei -20°C gerührt. Es wird mit 10 ml 20% Kaliumnatriumtartratlösung und Essigester versetzt, etwas gerührt, abgetrennt, 2 x mit Essigester extrahiert, die organischen Phasen getrocknet und eingeengt.

17 mg der Titelverbindung werden in Methylenchlorid gelöst, über eine Säule gegeben und mit Toluol eluiert.

FR 1-1: 5,5 mg NMR

 $R_{f}$ Wert: DC-Alurollle Kieselgel 60  $F_{254}$ , Schichtdicke 0,2 mm = 0,40 (Fließmittel: Petrolether/Essigester 10:1)

R<sub>f</sub>= 0,45; Fließmittel Toluol / Essigester 10:1

In Analogie zu den oben aufgeführten Vorschriften werden die in der Tabelle 1 aufgeführten Verbindungen hergestellt:

| BspNr. | Struktur                                          | Isomer   | R <sub>f</sub> |
|--------|---------------------------------------------------|----------|----------------|
| 10     | F <sub>3</sub> C H <sub>3</sub> C CH <sub>3</sub> | Isomer 1 | 0,67 a)        |
| 11     | F <sub>3</sub> C H <sub>3</sub> C CH <sub>3</sub> | Isomer 2 | 0,52 ª)        |

a) EtOAc / Petrolether 1:1

#### Patentansprüche

1. Hetero-Tetrahydrochinoline der allgemeinen Formel (I),

$$\begin{array}{c|c}
A & R^1 \\
\hline
R^2 & R^2
\end{array}$$

5

in welcher

10

A für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder

für einen 5- bis 7-gliedrigen, gesättigten, partiell ungesättigten oder ungesättigten, gegebenenfalls benzokondensierten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der im Fall eines gesättigten Heterocyclus mit einer Stickstoffunktion, gegebenenfalls auch über diese gebunden ist, und wobei die oben aufgeführten Ringsysteme gegebenenfalls bis zu 5-fach gleich oder verschieden durch Halogen, Nitro, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch geradkettiges oder verzweigtes Alkyl, Acyl, Hydroxyalkyl oder Alkoxy mit jeweils bis zu 7 Kohlenstoffatomen,

oder durch eine Gruppe der Formel -NR<sup>3</sup>R<sup>4</sup> substituiert sind,

20

15

worin

25

R<sup>3</sup> und R<sup>4</sup> gleich oder verschieden sind und Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

oder

A für einen Rest der Formel



steht,

D für Aryl mit 6 bis 10 Kohlenstoffatomen steht, das gegebenenfalls durch
Phenyl, Nitro, Halogen, Trifluormethyl oder Trifluormethoxy
substituiert ist, oder

für einen Rest der Formel

$$R^7$$
 $R^8$ 
oder
 $R^9-T-V-X-$ 
steht

worin

R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten, oder

Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten oder einen 5- bis 7-gliedrigen, gegebenenfalls benzokondensierten, gesättigten oder ungesättigten, mono-, bi- oder tricyclischen Heterocyclus mit bis zu 4 Heteroatomen aus der Reihe S, N und/oder O bedeuten,

wobei die Cyclen, gegebenenfalls, im Fall der stickstoffhaltigen Ringe auch über die N-Funktion, bis zu 5-fach gleich oder verschieden durch Halogen, Trifluormethyl, Nitro, Hydroxy,

20

25

10

15

Cyano, Carboxyl, Trifluormethoxy, geradkettiges oder verzweigtes Acyl, Alkyl, Alkylthio, Alkylalkoxy, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen, durch Aryl oder Trifluormethyl substituiertes Aryl mit jeweils 6 bis 10 Kohlenstoffatomen oder durch einen, gegebenenfalls benzokondensierten. aromatischen 5bis 7-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O substituiert sind,

10

5

und/oder durch eine Gruppe der Formel - $OR^{10}$ , - $SR^{11}$ , - $SO_2R^{12}$  oder - $NR^{13}R^{14}$  substituiert sind,

worin

15

R<sup>10</sup>, R<sup>11</sup> und R<sup>12</sup> unabhängig voneinander Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, das seinerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Halogen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert ist,

20

 $R^{13}$  und  $R^{14}$  gleich oder verschieden sind und die oben angegebene Bedeutung von  $R^3$  und  $R^4$  haben,

oder

25

R<sup>5</sup> und/oder R<sup>6</sup> einen Rest der Formel

R<sup>7</sup> Wasserstoff oder Halogen bedeutet,

und

5

R<sup>8</sup> Wasserstoff, Halogen, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, geradkettiges oder verzweigtes Alkoxy oder Alkyl mit jeweils bis zu 6 Kohlenstoffatomen oder einen Rest der Formel -NR<sup>15</sup>R<sup>16</sup> bedeutet,

10

worin

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und die oben angegebene Bedeutung von R<sup>3</sup> und R<sup>4</sup> haben,

15

oder

R<sup>7</sup> und R<sup>8</sup> gemeinsam einen Rest der Formel =O oder =NR<sup>17</sup> bilden,

worin

20

R<sup>17</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl,
Alkoxy oder Acyl mit jeweils bis zu 6
Kohlenstoffatomen bedeutet,

25

L eine geradkettige oder verzweigte Alkylen- oder Alkenylen-Kette mit jeweils bis zu 8 Kohlenstoffatomen bedeutet, die gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,

30

T und X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 8 Kohlenstoffatomen bedeuten,

oder

T oder X eine Bindung bedeutet,

5

V für ein Sauerstoff- oder Schwefelatom oder für eine -NR<sup>18</sup>Gruppe steht,

worin

10

- R<sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Phenyl bedeutet,
- E für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder

15

für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht, das gegebenenfalls durch Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder Hydroxy substituiert ist, oder für Phenyl steht, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

20

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu
7 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder
durch einen Rest der Formel

$$(CH_2)_a - CH_2$$
  $CH_2$   $CH_$ 

25

substituiert sein muß,

worin

a und b gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

R19 Wasserstoff, Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, geradkettiges verzweigtes Silylalkyl mit bis oder Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen oder durch Phenyl substituiert ist, das seinerseits durch Halogen, Nitro. Trifluormethyl, Trifluormethoxy oder durch Phenyl oder Tetrazol substituiertes Phenyl substituiert sein kann,

und Alkyl gegebenenfalls durch eine Gruppe der Formel -OR<sup>22</sup> substituiert ist,

worin

R<sup>22</sup> geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen oder Benzyl bedeutet,

oder

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 20 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Halogen, Trifluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

> geradkettiges oder verzweigtes Fluoracyl mit bis zu 8 Kohlenstoffatomen und 9 Fluoratomen bedeutet,

5

10

15

20

R<sup>20</sup> und R<sup>21</sup> gleich oder verschieden sind, Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

5

oder

R<sup>20</sup> und R<sup>21</sup> gemeinsam einen 3 bis 6-gliedrigen Carbocyclus bilden,

10

15

20

25

und, gegebenenfalls auch geminal, die gebildeten Carbocyclen gegebenenfalls bis zu 6-fach gleich oder verschieden durch Trifluormethyl, Hydroxy, Nitril, Halogen, Carboxyl, Nitro, Azido, Cyano, Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 7 Kohlenstoffatomen, durch geradkettiges oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis zu 6 Kohlenstoffatomen oder durch geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach gleich oder verschieden durch Hydroxyl, Benzyloxy, Trifluormethyl, Benzoyl, geradkettiges oder verzweigtes Alkoxy, Oxyacyl oder Carboxyl mit jeweils bis zu 4 Kohlenstoffatomen und/oder Phenyl substituiert ist, das seinerseits durch Halogen, Trifluormethyl oder Trifluormethoxy substituiert sein kann,

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls durch Halogen, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

5

10

15

20

$$(CH_2)_c$$
,  $-SO_2-C_6H_5$ ,  $-(CO)_d-NR^{23}R^{24}$  oder =0

substituiert sind,

worin

- c eine Zahl 1, 2, 3 oder 4 bedeutet,
- d eine Zahl 0 oder 1 bedeutet,

R<sup>23</sup> und R<sup>24</sup> gleich oder verschieden sind und Wasserstoff,
 Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen,
 Benzyl oder Phenyl bedeuten, das gegebenenfalls bis zu
 2-fach gleich oder verschieden durch Halogen, Tri-

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiro-verknüpften Rest der Formel

fluormethyl, Cyano, Phenyl oder Nitro substituiert ist,

$$W-Y$$
 $R^{25}$ 
 $R^{26}$ 
 $(CR^{27}R^{28})_e$ 
 $(CR^{29}R^{30})_f$ 
 $R^{31}$ 
 $R^{32}$ 
 $R^{32}$ 

substituiert sind,

25

worin

W entweder ein Sauerstoff oder ein Schwefelatom bedeutet,

Y und Y' gemeinsam eine 2- bis 6-gliedrige geradkettige oder verzweigte Alkylenkette bilden,

e eine Zahl 1, 2, 3, 4, 5, 6 oder 7 bedeutet,

f eine Zahl 1 oder 2 bedeutet,

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup>, R<sup>28</sup>, R<sup>29</sup>, R<sup>30</sup> und R<sup>31</sup> gleich oder verschieden sind und Wasserstoff, Trifluormethyl, Phenyl, Halogen oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> jeweils gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 6 Kohlenstoffatomen bilden,

oder

 $R^{25}$  und  $R^{26}$  oder  $R^{27}$  und  $R^{28}$  jeweils gemeinsam einen Rest der Formel

$$\begin{array}{ccc} W & & & CH_2 \\ \downarrow & & \downarrow \\ W & & & (CH_2)_g & & \text{bilden,} \end{array}$$

5

10

15

20

5

10

15

25

30

worin

W die oben angegebene Bedeutung hat,

g eine Zahl 1, 2, 3, 4, 5, 6 oder 7 bedeutet,

R<sup>32</sup> und R<sup>33</sup> gemeinsam einen 3- bis 7-gliedrigen Heterocyclus bilden, der ein Sauerstoff- oder Schwefelatom oder eine Gruppe der Formel SO, SO<sub>2</sub> oder -NR<sup>34</sup> enthält,

worin

R<sup>34</sup> Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

und deren Salze und N-Oxide.

20 2. Hetero-Tetrahydrochinoline der Formel (I) nach Anspruch 1,

in welcher

A für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cycloheptyl, Cyclobetyl oder Cyclohexyl steht, oder

für Thienyl, Imidazolyl, Pyrrol, Furryl, Pyridyl, Morpholin, Pyrimidyl oder Pyridazinyl steht, , die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Amino, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch geradkettiges oder verzweigtes

Alkyl, oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen substituiert sind,

oder

5

für einen Rest der Formel Α



steht,

10

D für Phenyl steht, das gegebenenfalls durch Nitro, Fluor, Chlor, Brom, Phenyl, Trifluormethyl oder Trifluormethoxy substituiert ist, oder

für einen Rest der Formel

oder

 $R^9-T-V-X-$  steht,

worin

20

R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder

Phenyl, Naphthyl, Pyridyl, Tetrazolyl, Pyrimidyl, Pyrazinyl,

Pyrrolidinyl, Indolyl, Morpholinyl, Imidazolyl, Benzothiazolyl, Phenoxathiin-2-yl, Benzoxazolyl, Furyl, Chinolyl oder Purin-8yl bedeuten,

wobei die Cyclen, gegebenenfalls bis zu 3-fach im Fall der stickstoffhaltigen Ringe auch über die N-Funktion, gleich oder verschieden durch Fluor, Chlor, Brom, Trifluormethyl, Hydroxy,
Cyano, Carboxyl, Trifluormethoxy, geradkettiges oder
verzweigtes Acyl, Alkyl, Alkylthio, Alkylalkoxy, Alkoxy oder
Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen,
Triazolyl, Tetrazolyl, Benzoxathiazolyl, oder Trifluormethyl
substituiertes Phenyl oder Phenyl substituiert sind,

10

5

oder

R<sup>7</sup> Wasserstoff, Fluor, Chlor oder Brom bedeutet,

15

und

R<sup>8</sup> Wasserstoff, Fluor, Chlor, Brom, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, geradkettiges oder verzweigtes Alkoxy oder Alkyl mit bis zu jeweils 5 Kohlenstoffatomen oder einen Rest der Formel -NR<sup>15</sup>R<sup>16</sup> bedeutet,

20

worin

25

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und Wasserstoff,
Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis
zu 4 Kohlenstoffatomen bedeuten,

oder

30

R<sup>7</sup> und R<sup>8</sup> gemeinsam einen Rest der Formel =O oder =NR<sup>17</sup> bilden,

worin

| 5  |   | R <sup>17</sup> | Wasserstoff oder geradkettiges oder verzweigtes Alkyl, Alkoxy oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,                                                                            |
|----|---|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |   | L               | eine geradkettige oder verzweigte Alkylen- oder Alkenylen-<br>Kette mit jeweils bis zu 6 Kohlenstoffatomen bedeutet, die<br>gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,           |
| 10 |   | T und           | X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 6 Kohlenstoffatomen bedeuten,                                                                          |
|    |   | oder            |                                                                                                                                                                                                     |
| 15 |   | T oder          | X eine Bindung bedeutet,                                                                                                                                                                            |
|    |   | v               | für ein Sauerstoff- oder Schwefelatom oder für eine Gruppe der Formel -NR <sup>18</sup> - steht,                                                                                                    |
| 20 |   |                 | worin                                                                                                                                                                                               |
|    |   |                 | R <sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl bedeutet,                                                                          |
| 25 | E | für Cy          | clopropyl, -butyl, -pentyl, -hexyl oder -heptyl steht, oder                                                                                                                                         |
|    |   | men             | radkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffato-<br>steht, das gegebenenfalls durch Cyclopropyl, -butyl, -hexyl,<br>rl, -heptyl oder durch Hydroxy substituiert ist, oder für Phenyl |
| 30 | ٠ | steht,          | das gegebenenfalls durch Fluor, Chlor oder Trifluormethyl                                                                                                                                           |

substituiert ist,

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu
6 Kohlenstoffatomen bilden, die durch eine Carboxylgruppe und/oder
durch einen Rest der Formel

5

$$(CH_2)_a - CH_2$$
 $O - C^2$ 
 $O - CR^{19}$ 
 $O - CR^{20}R^{21})_b$ 

substituiert sein muß,

10

worin

R<sup>19</sup>

a und b gleich oder verschieden sind und eine Zahl 1, 2 oder 3 bedeuten,

15

Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl, geradkettiges oder verzweigtes Silylalkyl mit bis zu 7 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen oder durch Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Nitro, Trifluormethyl, Trifluormethoxy oder durch Phenyl oder Tetrazol substituiertes Phenyl substituiert sein kann,

20

und Alkyl gegebenenfalls durch eine Gruppe der Formel -OR<sup>22</sup> substituiert ist.

25

worin

R<sup>22</sup> geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen oder Benzyl bedeutet,

oder

5

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 18 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

10

geradkettiges oder verzweigtes Fluoracyl mit bis zu 6 Kohlenstoffatomen bedeutet,

15

 $R^{20}$  und  $R^{21}$  gleich oder verschieden sind, Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

oder

20

R<sup>20</sup> und R<sup>21</sup> gemeinsam einen Cyclpropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl- oder Cycloheptylring bilden,

25

und die gebildeten Carbocyclen gegebenenfalls bis zu 5-fach gleich oder verschieden, gegebenenfalls auch geminal, durch Trifluormethyl, Hydroxy, Carboxyl, Azido, Fluor, Chlor, Brom, Nitro, Cyano, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopentyloxy, Cyclopentyloxy, Cyclopentyloxy, Cyclopentyloxy, durch geradkettiges oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis ca. 5 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach

gleich oder verschieden durch Hydroxyl, Benzyloxy, Benzoyl, geradkettiges oder verzweigtes Alkoxy oder Oxyacyl mit jeweils bis zu 3 Kohlenstoffatomen, Trifluormethyl und/oder Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Trifluormethyl oder Trifluormethoxy substituiert sein kann,

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 4-fach gleich oder verschieden durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

und/oder gegebenenfalls durch einen Rest der Formel

$$(CH_2)_c$$
 -SO<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>, -(CO)<sub>d</sub>-NR<sup>23</sup>R<sup>24</sup> oder =O

substituiert sind,

worin

c eine Zahl 1, 2, 3 oder 4 bedeutet,

d eine Zahl 0 oder 1 bedeutet,

R<sup>23</sup> und R<sup>24</sup> gleich oder verschieden sind und Wasserstoff,
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl,
geradkettiges oder verzweigtes Alkyl mit bis zu 5
Kohlenstoffatomen, Benzyl oder Phenyl bedeuten, das
gegebenenfalls durch Fluor, Chlor, Brom, Phenyl oder
Trifluormethyl substituiert ist,

5

10

15

20

25

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiro-verknüpften Rest der Formel

$$W-Y$$
 $R^{25}$ 
 $R^{26}$ 
 $(CR^{27}R^{28})_a$  oder  $R^{32}$ 

substituiert sind,

worin

W entweder ein Sauerstoff oder ein Schwefelatom bedeutet,

Y und Y' gemeinsam eine 2- bis 5-gliedrige geradkettige oder verzweigte Alkylkette bilden,

15

10

5

- e eine Zahl 1, 2, 3, 4, 5 oder 6 bedeutet,
- f eine Zahl 1 oder 2 bedeutet,

20

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup> und R<sup>28</sup> gleich oder verschieden sind und Wasserstoff, Trifluormethyl, Phenyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen bedeuten,

25

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> jeweils gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 5
Kohlenstoffatomen bilden oder

oder

R<sup>25</sup> und R<sup>26</sup> oder R<sup>27</sup> und R<sup>28</sup> jeweils gemeinsam einen Rest der Formel

 $\begin{array}{ccc} W & & CH_2 \\ \downarrow & & \downarrow \\ W & & (CH_2)_g & & \text{bilden,} \end{array}$ 

worin

10

5

W die oben angegebene Bedeutung hat,

g eine Zahl 1, 2, 3, 4, 5 oder 6 bedeutet,

- und deren Salze und N-Oxide.
  - 3. Hetero-Tetrahydrochinoline der Formel (I) nach Anspruch 1,

in welcher

20

25

A für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht, oder

für Thienyl oder Pyridyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Hydroxy, Trifluormethyl, Trifluormethoxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen substituiert sind,

oder

### A für einen Rest der Formel



steht,

D für Phenyl steht, das gegebenenfalls durch Nitro, Trifluormethyl, Phenyl, Fluor, Chlor oder Brom substituiert ist, oder

für einen Rest der Formel

$$R^5-L-$$
 .  $R^6$ 

oder

steht,

worin

15

10

R<sup>5</sup>, R<sup>6</sup> und R<sup>9</sup> unabhängig voneinander Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder

Phenyl, Naphthyl oder Pyridyl bedeuten,

20

25

wobei die Cyclen, gegebenenfalls bis zu 2-fach, gleich oder verschieden durch Fluor, Chlor, Trifluormethyl, Hydroxy, Cyano, Carboxyl, Trifluormethoxy, geradkettiges oder verzweigtes Alkyl, Alkylthio, Alkylalkoxy, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 4 Kohlenstoffatomen,

oder

R<sup>7</sup> Wasserstoff oder Fluor bedeutet,

5

und

10

R<sup>8</sup> Wasserstoff, Fluor, Chlor, Brom, Azido, Trifluormethyl, Hydroxy, Trifluormethoxy, oder geradkettiges oder verzweigtes Alkoxy oder Alkyl mit jeweils bis zu 4 Kohlenstoffatomen oder einen Rest der Formel -NR<sup>15</sup>R<sup>16</sup> bedeutet,

worin

15

R<sup>15</sup> und R<sup>16</sup> gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

oder

20

R<sup>7</sup> und R<sup>8</sup> gemeinsam für einen Rest der Formel =O stehen,

25

L eine geradkettige oder verzweigte Alkylen- oder Alkenylen-Kette mit jeweils bis zu 5 Kohlenstoffatomen bedeutet, die gegebenenfalls bis zu 2-fach durch Hydroxy substituiert sind,

T und X gleich oder verschieden sind und eine geradkettige oder verzweigte Alkylenkette mit bis zu 3 Kohlenstoffatomen bedeuten,

30

oder

T oder X eine Bindung bedeutet,

| V | für ein Sauerstoff- oder        | Schwefelatom | oder f | ür eine | Gruppe of | der |
|---|---------------------------------|--------------|--------|---------|-----------|-----|
|   | Formel -NR <sup>18</sup> steht. |              |        |         |           |     |

5

worin

R<sup>18</sup> Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

10

E für Cyclopropyl, Cyclopentyl oder Cyclohexyl oder Phenyl steht, das gegebenenfalls durch Fluor oder Trifluormethyl substituiert ist, oder

für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht, das gegebenenfalls durch Hydroxy substituiert ist,

15

R<sup>1</sup> und R<sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu

5 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder
einen Rest der Formel -OR<sup>19</sup> substituiert sein muß,

20

worin

R<sup>19</sup> Wasserstoff, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeutet,

25

oder

R<sup>19</sup> geradkettiges oder verzweigtes Acyl mit bis zu 15 Kohlenstoffatomen oder Benzoyl bedeutet, das gegebenenfalls durch Fluor, Chlor, Brom, Trifluormethyl, Nitro oder Trifluormethoxy substituiert ist, oder

einen Rest der Formel -Si(CH<sub>3</sub>)<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub> bedeutet,

5

10

15

20

25

und die gebildeten Carbocyclen gegebenenfalls bis zu 4-fach gleich oder verschieden, gegebenenfalls auch geminal, durch Fluor, Hydroxyl, Trifluormethyl, Carboxyl, Azido, Chlor, Brom, Nitro, Cyano, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropyloxy, Cyclopentyloxy, Cyclohexyloxy, durch geradkettiges oder verzweigtes Alkoxycarbonyl, Alkoxy oder Alkylthio mit jeweils bis zu 4 Kohlenstoffatomen oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert sind, das seinerseits bis zu 2-fach gleich oder verschieden durch Hydroxyl, Benzyloxy, Trifluormethyl, Benzoyl, Methoxy, Oxyacetyl und/oder Phenyl substituiert ist, das seinerseits durch Fluor, Chlor, Brom, Trifluormethyl oder Trifluormethoxy substituiert sein kann,

und/oder die gebildeten Carbocyclen, auch geminal, gegebenenfalls bis zu 4-fach gleich oder verschieden, durch Phenyl, Benzoyl, Thiophenyl oder Sulfonylbenzyl substituiert sind, die ihrerseits gegebenenfalls durch Fluor, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind,

und/oder gegebenenfalls durch einen Rest der Formel

1,2 
$$(CH_2)_c$$
 oder =0

substituiert sind,

30

worin

c eine Zahl 1, 2, 3 oder 4 bedeutet,

und/oder die gebildeten Carbocyclen gegebenenfalls durch einen spiro-verknüpften Rest der Formel

worin

10

5

e eine Zahl 1, 2, 3, 4 oder 5 bedeutet,

15

R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup> und R<sup>28</sup> gleich oder verschieden sind und Wasserstoff, Trifluormethyl, Phenyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

oder

20

 $R^{25}$  und  $R^{26}$  oder  $R^{27}$  und  $R^{28}$  gemeinsam eine geradkettige oder verzweigte Alkylkette mit bis zu 4 Kohlenstoffatomen bilden,

und deren Salze und N-Oxide.

25

4. Hetero-Tetrahydrochinoline der Formel (I) nach Anspruch 1,

in welcher

A für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht, oder

für Thienyl oder Pyridyl steht, oder A für einen Rest der Formel



steht,

5

D für Phenyl steht, das gegebenenfalls durch Trifluormethyl, Fluor, substituiert ist, oder

10

für einen Rest der Formel

steht,

15

worin

R<sup>6</sup> Phenyl bedeutet, das gegebenenfalls durch Fluor, Chlor,
 Trifluormethyl, Trifluormethoxy, geradkettiges oder verzweigtes
 Alkyl mit jeweils bis zu 4 Kohlenstoffatomen substituiert ist,

20

oder

R<sup>7</sup> Wasserstoff oder Fluor bedeutet,

25

und

|    |    | R <sup>8</sup> Wasserstoff, Fluor, Chlor, Hydroxy, Methoxy oder                                                                                                                                                                         |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |    | R <sup>7</sup> und R <sup>8</sup> gemeinsam für einen Rest der Formel =O stehen,                                                                                                                                                        |
|    |    | E für Cyclopropyl, Cyclopentyl oder Cyclohexyl                                                                                                                                                                                          |
| 10 |    | für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlen-<br>stoffatomen steht,                                                                                                                                                     |
|    |    | R <sup>1</sup> und R <sup>2</sup> gemeinsam eine geradkettige oder verzweigte Alkylenkette mit bis zu 5 Kohlenstoffatomen bilden, die durch eine Carbonylgruppe und/oder einen Rest der Formel -OR <sup>19</sup> substituiert sein muß, |
| 15 |    | worin                                                                                                                                                                                                                                   |
|    |    | R <sup>19</sup> Wasserstoff bedeutet,                                                                                                                                                                                                   |
| 20 |    | oder einen Rest der Formel -Si(CH <sub>3</sub> ) <sub>2</sub> C(CH <sub>3</sub> ) <sub>3</sub> bedeutet,                                                                                                                                |
|    |    | und deren Salze und N-Oxide.                                                                                                                                                                                                            |
|    | 5. | Hetero-Tetrahydrochinoline nach Anspruch 1 bis 4 als Arzneimittel.                                                                                                                                                                      |
| 25 | 6. | Verfahren zur Herstellung von Hetero-Tetrahydrochinolinen nach Anspruch 1, dadurch gekennzeichnet, daß man                                                                                                                              |
|    |    | [A] im Fall D ≠ Aryl, Verbindungen der allgemeinen Formel (II)                                                                                                                                                                          |

OHC 
$$R^1$$
 (II),

5 A, E, R<sup>1</sup> und R<sup>2</sup> die oben angegebene Bedeutung haben,

mit metallorganischen Reagenzien im Sinne einer Grignard-, Wittig- oder Lithium-organischen-Reaktion den Substituenten D in inerten Lösemitteln synthetisiert,

oder im Fall, daß D für den Rest der Formel R<sup>9</sup>-T-V-X steht, in welcher V ein Sauerstoffatom bedeutet,

[B] entweder Verbindungen der allgemeinen Formel (III)

HO 
$$X$$
 $R^1$ 
(III),

in welcher

A, E, X, R<sup>1</sup> und R<sup>2</sup> die oben angegebene Bedeutung haben,

mit Verbindungen der allgemeinen Formel (IV)

$$R^9$$
-T-Z (IV),

10

R9 und T die oben angegebene Bedeutung haben

5 und

Z für Halogen, vorzugsweise Chlor oder Brom, steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base und/oder 10 Hilfsstoffs umsetzt,

oder

[C] Verbindungen der allgemeinen Formel (III) zunächst durch Umsetzung mit Verbindungen der allgemeinen Formel (V)

$$\begin{array}{c}
O \\
\parallel \\
S - CI \\
\parallel \\
O
\end{array}$$
(V),

in welcher

20

15

R<sup>35</sup> für geradkettiges Alkyl mit bis zu 4 Kohlenstoffatomen steht,

in die Verbindungen der allgemeinen Formel (VI)

$$R^{35}$$
  $O_2$   $O_2$   $O_2$   $O_3$   $O_4$   $O_4$   $O_5$   $O$ 

A, E, X, R<sup>1</sup>, R<sup>2</sup> und R<sup>35</sup> die oben angegebene Bedeutung haben,

5

überführt und anschließend mit Verbindungen der allgemeinen Formel (VII)

$$R^9$$
-T-V-H (VII),

in welcher

R<sup>9</sup>, T und V die oben angegebene Bedeutung haben,

umsetzt und gegebenenfalls Schutzgruppen abspaltet,

15

oder

[D] im Fall der Verbindungen der allgemeinen Formel (Ia)

$$\begin{array}{c|c}
F & A & OH \\
\hline
R^{6} & & R^{36}
\end{array} \qquad (Ia)$$

20

in welcher

A und R<sup>6</sup> die oben angegebene Bedeutung haben,

25

R<sup>36</sup> und R<sup>37</sup> gleich oder verschieden sind und

für Cycloalkyl oder Cycloalkyloxy mit jeweils 3 bis 7 Kohlenstoffatomen stehen, oder

für geradkettiges verzweigtes Alkyl mit bis oder Kohlenstoffatomen stehen, oder

für Phenyl stehen, das seinerseits gegebenenfalls durch Halogen, Trifluormethyl, Trifluormethoxy oder Nitro substituiert sind, oder

R<sup>36</sup> und R<sup>37</sup> für einen der oben aufgeführten spiro-verknüpften Reste der Formel 10

$$W-Y$$
 $R^{25}$ 
 $R^{26}$ 
 $(CR^{27}R^{28})_e$ 
 $(CR^{29}R^{30})_t$ 
 $R^{31}$ 
 $R^{32}$ 
 $R^{32}$ 
 $R^{33}$  stehen,

worin

15

5

W, Y, Y',  $R^{25}$ ,  $R^{26}$ ,  $R^{27}$ ,  $R^{28}$ , e,  $R^{29}$ ,  $R^{30}$ ,  $R^{31}$ ,  $R^{32}$  und  $R^{33}$  die oben angegebene Bedeutung haben,

Verbindungen der allgemeinen Formel (VIII)

20

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

zunächst zu den Verbindungen der allgemeinen Formel (IX)

$$R^{6} \xrightarrow{\text{N}} R^{36}$$
 (IX)

5

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

10

oxidiert,

diese in einem nächsten Schritt durch eine asymmetrische Reduktion zu den Verbindungen der allgemeinen Formel (X)

15

$$R^{6} \xrightarrow{\mathsf{N}} R^{36}$$
 (X)

in welcher

20

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben,

umsetzt,

diese dann durch die Einführung einer Hydroxyschutzgruppe in die Verbindungen der allgemeinen Formel (XI)

$$R^{6}$$
 $R^{6}$ 
 $R^{36}$ 
 $R^{36}$ 
 $R^{36}$ 
 $R^{36}$ 

5

in welcher

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, A und E die oben angegebene Bedeutung haben

10 und

 $R^{38}$  für eine Hydroxyschutzgruppe, vorzugsweise für einen Rest der Formel  $-SiR^{39}R^{40}R^{41}$  steht,

15 worin

 $R^{39}$ ,  $R^{40}$  und  $R^{41}$  gleich oder verschieden sind und  $C_1\text{-}C_4\text{-}Alkyl$  bedeuten, überführt,

20

aus diesem in einem Folgeschritt durch diastereoselektive Reduktion die Verbindungen der allgemeinen Formel (XII)

$$R^{6} \xrightarrow{\mathsf{N}} R^{36}$$
 (XII)

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, R<sup>38</sup>, A und E die oben angegebene Bedeutung haben,

5

10

herstellt,

und anschließend durch Einführung des Fluorsubstituenten mit Fluorierungsreagentien, wie z.B. DAST und SF<sub>4</sub>-Derivaten die Verbindungen der allgemeinen Formel (XIII)

$$R^{6} \xrightarrow{F} A OR^{38}$$

$$R^{36} \qquad (XIII)$$

in welcher

15

R<sup>6</sup>, R<sup>36</sup>, R<sup>37</sup>, R<sup>38</sup>, A und E die oben angegebene Bedeutung haben,

herstellt,

20

und anschließend die Hydroxyschutzgruppe nach üblichen Methoden abspaltet,

und gegebenenfalls die unter D, E und/oder R<sup>1</sup> und R<sup>2</sup> aufgeführten Substituenten nach üblichen Methoden variiert oder einführt.

7. Arzneimittel enthaltend mindestens ein Hetero-Tetrahydrochinolin nach Anspruch 1 sowie pharmakologisch verträgliche Formulierungshilfsmittel.

- 8. Arzneimittel nach Anspruch 7 zur Behandlung von Hyperlipoproteinämie.
- 9. Arzneimittel nach Anspruch 7 zur Behandlung von Arteriosklerose.
- 5 10. Verwendung von Hetero-Tetrahydrochinolinen nach Anspruch 1 zur Herstellung von Arzneimitteln.
  - 11. Verwendung nach Anspruch 10 zur Herstellung von Arzneimitteln zur Behandlung von Arteriosklerose, insbesondere Dyslipidämien.

### INTERNATIONAL SEARCH REPORT

int. .ational Application No PCT/EP 98/05656

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PCI/EP 98                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0/ 00000                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. CLASSII<br>IPC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FICATION OF SUBJECT MATTER C07D409/04 A61K31/47 C07D401/ C07F7/18                                                                                                                                                                                                                                                                                                                                                                                            | /04 C07D405/04 C07I                                                                                                                                                                                                                                                                                                                                                                                                                               | 0215/20                                                                                                                                                                                                 |
| According to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | International Patent Classification (IPC) or to both national classific                                                                                                                                                                                                                                                                                                                                                                                      | ation and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                       |
| B. FIELDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Minimum do<br>IPC 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cumentation searched (classification system followed by classificati<br>CO7D A61K CO7F                                                                                                                                                                                                                                                                                                                                                                       | on symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |
| Documentat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion searched other than minimum documentation to the extent that s                                                                                                                                                                                                                                                                                                                                                                                           | such documents are included in the fields                                                                                                                                                                                                                                                                                                                                                                                                         | searched                                                                                                                                                                                                |
| Electronic d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ata base consulted during the international search (name of data ba                                                                                                                                                                                                                                                                                                                                                                                          | ise and, where practical, search terms use                                                                                                                                                                                                                                                                                                                                                                                                        | ed)                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| C. DOCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Category °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Citation of document, with indication, where appropriate, of the re                                                                                                                                                                                                                                                                                                                                                                                          | levant passages                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relevant to claim No.                                                                                                                                                                                   |
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP 0 325 130 A (BAYER AG) 26 July cited in the application see page 110; claim 1                                                                                                                                                                                                                                                                                                                                                                             | y 1989                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-11                                                                                                                                                                                                    |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP 0 304 063 A (NISSAN CHEMICAL<br>22 February 1989<br>see page 3                                                                                                                                                                                                                                                                                                                                                                                            | IND LTD)                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-11                                                                                                                                                                                                    |
| P,A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EP 0 818 197 A (BAYER AG) 14 Jan<br>see the whole document                                                                                                                                                                                                                                                                                                                                                                                                   | uary 1998                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-11                                                                                                                                                                                                    |
| Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WO 98 39299 A (MUELLER GLIEMANN ;BRANDES ARNDT (DE); ANGERBAUER 11 September 1998 see the whole document                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-11                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Furt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | her documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                       | Patent family members are list                                                                                                                                                                                                                                                                                                                                                                                                                    | ed in annex.                                                                                                                                                                                            |
| "A" docume consider filing of the country of the co | ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but han the priority date claimed | "T" later document published after the i or priority date and not in conflict we cited to understand the principle or invention  "X" document of particular relevance; the cannot be considered novel or can involve an inventive step when the "Y" document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being ob in the art.  "&" document member of the same pate. | ith the application but theory underlying the eclaimed invention not be considered to document is taken alone e claimed invention inventive step when the more other such docuvious to a person skilled |
| Date of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                | Date of mailing of the international                                                                                                                                                                                                                                                                                                                                                                                                              | search report                                                                                                                                                                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 January 1999                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19/01/1999                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         |
| Name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                         | Authorized officer  Lauro, P                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |

## INTERNATIONAL SEARCH REPORT

Information on patent family members

In. ational Application No
PCT/EP 98/05656

|    | tent document    |   | Publication date |    | atent family | Publication |
|----|------------------|---|------------------|----|--------------|-------------|
|    | in search report |   |                  | ·  | member(s)    | date        |
| EP | 0325130          | Α | 26-07-1989       | DE | 3801406 A    | 27-07-1989  |
|    |                  |   |                  | AU | 642127 B     | 14-10-1993  |
|    |                  |   |                  | AU | 2861789 A    | 20-07-1989  |
|    |                  |   |                  | CN | 1034364 A    | 02-08-1989  |
|    |                  |   |                  | DD | 283400 A     | 10-10-1990  |
|    |                  |   |                  | DK | 23389 A      | 21-07-1989  |
|    |                  |   |                  | FI | 93007 C      | 10-02-1995  |
|    |                  |   |                  | FI | 890258 A,B   | 21-07-1989  |
|    |                  |   |                  | HU | 210727 B     | 28-07-1995  |
|    |                  |   |                  | HU | 208958 B     | 28-02-1994  |
|    |                  |   |                  | JP | 1216974 A    | 30-08-1989  |
|    |                  |   |                  | JP | 2558344 B    | 27-11-1996  |
|    |                  |   |                  | NO | 177005 B     | 27-03-1995  |
|    |                  |   |                  | PΤ | 89477 A,B    | 08-02-1990  |
|    |                  |   |                  | US | 5006530 A    | 09-04-1991  |
|    |                  |   |                  | US | 5169857 A    | 08-12-1992  |
|    |                  |   |                  | US | 5401746 A    | 28-03-1995  |
| EP | 0304063          | Α | 22-02-1989       | AT | 114645 T     | 15-12-1994  |
|    |                  |   |                  | CA | 1336714 A    | 15-08-1995  |
|    |                  |   |                  | DE | 3852243 D    | 12-01-1995  |
|    |                  |   |                  | DE | 3852243 T    | 14-06-1995  |
|    |                  |   |                  | ES | 2067460 T    | 01-04-1995  |
|    |                  |   |                  | GR | 3015186 T    | 31-05-1995  |
|    |                  |   |                  | HU | 9500280 A    | 28-09-1995  |
|    |                  |   |                  | JP | 1279866 A    | 10-11-1989  |
|    |                  |   |                  | JP | 2569746 B    | 08-01-1997  |
|    |                  |   |                  | KR | 9600852 B    | 13-01-1996  |
|    |                  |   |                  | ÜS | 5011930 A    | 30-04-1991  |
|    |                  |   | •                | US | 5102888 A    | 07-04-1992  |
|    |                  |   |                  | US | 5185328 A    | 09-02-1993  |
|    |                  |   |                  |    | 3103320 A    | 09-02-1993  |
| ΕP | 0818197          | Α | 14-01-1998       | DE | 19627431 A   | 15-01-1998  |
|    |                  |   |                  | BG | 101748 A     | 30-04-1998  |
|    |                  |   | •                | CA | 2209825 A    | 08-01-1998  |
|    |                  |   |                  | CN | 1174196 A    | 25-02-1998  |
|    |                  |   |                  | CZ | 9702144 A    | 14-01-1998  |
|    |                  |   | •                | HR | 970333 A     | 30-04-1998  |
|    |                  |   |                  | HU | 9701157 A    | 30-03-1998  |
|    |                  |   |                  | JP | 10167967 A   | 23-06-1998  |
|    |                  |   |                  | NO | 973143 A     | 09-01-1998  |
|    |                  |   |                  | PL | 320953 A     | 19-01-1998  |
|    |                  |   |                  | SG | 46781 A      | 20-02-1998  |
|    |                  |   |                  | SK | 92597 A      | 06-05-1998  |
| WO | 9839299          | Α | 11-09-1998       | DE | 19709125 A   | 10-09-1998  |
|    |                  |   | == <del></del>   | AU | 6724598 A    | 22-09-1998  |
|    |                  |   |                  |    |              |             |

### INTERNATIONALER RECHERCHENBERICHT

Int. atlonales Aktenzeichen PCT/EP 98/05656

|                       |                                                                                                                                    | <del></del>                                                                                                                         |                                                         |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| A. KLASSI<br>IPK 6    | FIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>C07D409/04 A61K31/47 C07D401/<br>C07F7/18                                                  | 04 C07D405/04 C07D2                                                                                                                 | 215/20                                                  |
| Nach der In           | ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas                                                             | sifikation und der IPK                                                                                                              |                                                         |
| B. RECHE              | RCHIERTE GEBIETE                                                                                                                   |                                                                                                                                     |                                                         |
| Recherchies<br>IPK 6  | rter Mindestprüfstoff (Klassiflikationssystem und Klassifikationssymbol<br>CO7D A61K CO7F                                          | le )                                                                                                                                |                                                         |
| Recherchie            | rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so                                                               | weit diese unter die recherchierten Gebiete                                                                                         | fallen                                                  |
| Während de            | er internationalen Recherche konsultierte elektronische Datenbank (N                                                               | ame der Datenbank und evtl. verwendete :                                                                                            | Suchbegriffe)                                           |
|                       |                                                                                                                                    |                                                                                                                                     |                                                         |
|                       |                                                                                                                                    |                                                                                                                                     | •                                                       |
|                       | •                                                                                                                                  |                                                                                                                                     |                                                         |
| C. ALS WE             | ESENTLICH ANGESEHENE UNTERLAGEN                                                                                                    |                                                                                                                                     |                                                         |
| Kategorie             | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe                                                                 | der in Betracht kommenden Teile                                                                                                     | Betr. Anspruch Nr.                                      |
| <del></del>           |                                                                                                                                    |                                                                                                                                     |                                                         |
| A                     | EP 0 325 130 A (BAYER AG) 26. Jul<br>in der Anmeldung erwähnt<br>siehe Seite 110; Anspruch 1                                       | i 1989                                                                                                                              | 1-11                                                    |
| A                     | EP 0 304 063 A (NISSAN CHEMICAL I<br>22. Februar 1989<br>siehe Seite 3                                                             | ND LTD)                                                                                                                             | 1-11                                                    |
| P,A                   | EP 0 818 197 A (BAYER AG) 14. Jan<br>siehe das ganze Dokument                                                                      | uar 1998                                                                                                                            | 1-11                                                    |
| Ε                     | WO 98 39299 A (MUELLER GLIEMANN M<br>;BRANDES ARNDT (DE); ANGERBAUER R<br>11. September 1998<br>siehe das ganze Dokument           |                                                                                                                                     | 1-11                                                    |
|                       |                                                                                                                                    |                                                                                                                                     |                                                         |
|                       |                                                                                                                                    |                                                                                                                                     |                                                         |
|                       |                                                                                                                                    |                                                                                                                                     |                                                         |
|                       | tere Veröffentlichungen sind der Fortsetzung von Feld C zu<br>nehmen                                                               | X Siehe Anhang Patentfamilie                                                                                                        |                                                         |
| *Besonder             |                                                                                                                                    | "T" Spätere Veröffentlichung, die nach den<br>oder dem Prioritätsdatum veröffentlich<br>Anmeldung nicht kollidiert, sondern nu      | it worden ist und mit der<br>ir zum Verständnis des der |
|                       | Dokument, das jedoch erst am oder nach dem internationalen<br>Idedatum veröffentlicht worden ist                                   | Erfindung zugrundeliegenden Prinzips<br>Theorie angegeben ist                                                                       | · -                                                     |
| "L" Veröffe           | entlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-                                                             | "X" Veröffentlichung von besonderer Bede<br>kann allein aufgrund dieser Veröffentli<br>erfinderischer T\u00e4tigkeit beruhend betr- | chung nicht als neu oder auf                            |
| ander                 | ien im Rechercherbericht genannten Veröffentlichung belegt werden<br>der die aus einem anderen besonderen Grund angegeben ist (wie | "Y" Veröffentlichung von besonderer Bede                                                                                            | utung: die beanspruchte Erfindung                       |
| ausge                 | oführt)<br>entlichung, die sich auf eine mündliche Offenbarung,                                                                    | kann nicht als auf erfinderischer Tätig<br>werden, wenn die Veröffentlichung mi<br>Veröffentlichungen dieser Kategorie in           | t einer oder mehreren anderen                           |
| eine E<br>"P" Veröffe | Benutzung, eine Ausstellung oder andere Maßnahmen bezieht<br>entlichung, die vor dem internationalen. Anmeldedatum, aber nach      | diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derselbe                                                     | naheliegend ist                                         |
|                       | peanspruchten Prioritätsdatum veröffentlicht worden ist Abschlusses der internationalen Recherche                                  | Absendedatum des internationalen Re                                                                                                 | ·                                                       |
|                       | 1. Januar 1999                                                                                                                     | 19/01/1999                                                                                                                          |                                                         |
| Name und              | Postanschrift der Internationalen Recherchenbehörde                                                                                | Bevollmächtigter Bediensteter                                                                                                       |                                                         |
|                       | Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk                                                            |                                                                                                                                     |                                                         |
|                       | Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,<br>Fax: (+31-70) 340-3016                                                               | Lauro, P                                                                                                                            |                                                         |

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int. ationales Aktenzeichen
PCT/EP 98/05656

|    | lecherchenberich<br>rtes Patentdoku |   | Datum der<br>Veröffentlichung |        | tglied(er) der<br>atentfamilie | Datum der<br>Veröffentlichung |
|----|-------------------------------------|---|-------------------------------|--------|--------------------------------|-------------------------------|
| EP | 0325130                             | A | 26-07-1989                    | DE     | 3801406 A                      | 27-07-1989                    |
|    |                                     |   |                               | AU     | 642127 B                       | 14-10-1993                    |
|    |                                     |   |                               | AU     | 2861789 A                      | 20-07-1989                    |
|    |                                     |   |                               | CN     | 1034364 A                      | 02-08-1989                    |
|    |                                     |   |                               | DD     | 283400 A                       | 10-10-1990                    |
|    |                                     |   |                               | DK     | 23389 A                        | 21-07-1989                    |
|    |                                     |   |                               | FI     | 93007°C                        | 10-02-1995                    |
|    |                                     | • |                               | FI     | 890258 A,B                     | 21-07-1989                    |
|    |                                     |   |                               | HU     | 210727 B                       | 28-07-1995                    |
|    |                                     |   |                               | HU .   | 208958 B                       | 28-02-1994                    |
| •• |                                     |   |                               | JP     | 1216974 A                      | 30-08-1989                    |
|    |                                     |   |                               | JP     | 2558344 B                      | 27-11-1996                    |
|    |                                     |   |                               | NO     | 177005 B                       | 27-03-1995                    |
|    |                                     |   |                               | PT     | 89477 A,B                      | 08-02-1990                    |
|    |                                     |   |                               | US     | 5006530 A                      | 09-04-1991                    |
|    |                                     |   |                               | US     | 5169857 A                      | 08-12-1992                    |
|    |                                     |   |                               | US     | 5401746 A                      | 28-03-1995                    |
| EP | 0304063                             | Α | 22-02-1989                    | AT     | 114645 T                       | 15-12-1994                    |
|    |                                     |   |                               | CA     | 1336714 A                      | 15-08-1995                    |
|    |                                     |   |                               | DE     | 3852243 D                      | 12-01-1995                    |
|    |                                     |   |                               | DE     | 38 <b>52243</b> T              | 14-06-1995                    |
|    |                                     |   |                               | ES     | 2067460 T                      | 01-04-1995                    |
|    |                                     |   |                               | GR     | 3015186 T                      | 31-05-1995                    |
|    |                                     |   |                               | HU     | 9500280 A                      | 28-09-1995                    |
|    |                                     |   |                               | JP     | 12 <b>79</b> 866 A             | 10-11-1989                    |
|    |                                     |   |                               | JP     | 2569746 B                      | 08-01-1997                    |
|    |                                     |   |                               | KR     | 9600852 B                      | 13-01-1996                    |
|    |                                     |   |                               | US     | 5011930 A                      | 30-04-1991                    |
|    |                                     |   |                               | US     | 5102888 A                      | 07-04-1992                    |
|    |                                     |   |                               | US<br> | 5185328 A                      | 09-02-1993                    |
| EP | 0818197                             | Α | 14-01-1998                    | DE     | 19627431 A                     | 15-01-1998                    |
|    |                                     |   |                               | BG     | 101748 A                       | 30-04-1998                    |
|    |                                     |   |                               | C A    | 22 <b>09</b> 825 A             | 08-01-1998                    |
|    |                                     |   |                               | CN     | 1174196 A                      | 25-02-1998                    |
|    |                                     |   |                               | CZ     | 9702144 A                      | 14-01-1998                    |
|    |                                     |   |                               | HR     | 970333 A                       | 30-04-1998                    |
|    |                                     |   |                               | HU     | 9701157 A                      | 30-03-1998                    |
|    |                                     |   |                               | JP     | 10167967 A                     | 23-06-1998                    |
|    |                                     |   |                               | NO     | 973143 A                       | 09-01-1998                    |
|    |                                     |   |                               | PL     | 320953 A                       | 19-01-1998                    |
|    |                                     |   |                               | SG     | 46781 A                        | 20-02-1998                    |
|    |                                     |   |                               | SK     | 92597 A                        | 06-05-1998                    |
| WO | 9839299                             | Α | 11-09-1998                    | DE     | 19709125 A                     | 10-09-1998                    |
|    |                                     |   |                               | AU     | 6724598 A                      | 22-09-1998                    |

THIS PACE OF THE P