

Datasets

SORUCE: https://covid19.mhlw.go.jp/en/

dataset1 (for lockdown):

period: 2020-02-06 - 2020-05-08

columns: new cases, discharged, fetal, hospital

dataset2 (for vaccine):

period: 2021-04-12 - 2021-07-29

columns : total dose , first dose , second dose

seirq (lockdown) model

seirq model:

s:susceptible

e:exposed

i:infected

r:recovered

q:lockdown, quarantined

ds = s - e - i - q

de = e - i - r

di = i - r

dr = i * recoverRate

dq = lockdownRate * s

sir model && seir(q) model

datasets period: 2020/02/01 - 2020/06/30 (when first peak)

purpose: to check if city lock down works

sir : R2 = 0.865

$$seir: R2 = 0.888$$

seirq model

original lockdown rate: 1.46377811

method: to reduce by 0.2 each time

conclusion:

by reducing rate, the peak could be higher and cause worse situation, which we can say lockdown is one successful temporary solution

hypothesis

If measurement could be taken earlier

here is possible result in fig 1 to possibly lead to minimum fatal: rate of susceptible to exposed & rate of susceptible to infected from original data are used to assume how pandemics can change if lockdown was conducted **5,8,11** days earlier. From graph, it shows possible alleviation of pandemic

otherwise in fig 2 shows how pandemics could be **out of control** if lockdown was not conducted

reproduction rate (Rt)

Bettencourt & Ribeiro's Approach:

- Gaussian noise to estimate a time-varying
- 2. Based on **Bayes'rule** to update Rt on how many new cases were reported each day
- 3. based on this notebook https://github.com/k-sys/covid-19/blob/master/Realtime%20R0.ipynb

reproduction rate (Rt) analysis

when Rt is above 1, we consider this virus could have severe spread we can see the time of rise and drop can match

vaccination (2021-4-21 - 2021-06-01) **İTMO**

here is graph to show people with vaccination with at least one vaccination by real data based on https://covid19.mhlw.go.jp/en/

seirv (vaccine) modet

e:exposed

i:infected

r:recovered

v : vaccine (at least one)

ds = s - e - i - v

de = e - i - r

di = i - r

dr = i * recoverRate

dv = vaccineRate* s

Calibration (2021-4-21 - 2021-06-01) **İTMO**

seirv model (hypothesis)

iTMO

original lockdown rate : 0.001314

method: to reduce by 0.0002 each time

conclusion:

by reducing rate, the new cases could become higher, which we can say vaccine is one factor to restrain the pandemic

reproduction rate (Rt) analysis

when Rt is above 1, we consider this virus could have severe spread

