Symmetry Adapted Approach towards Efficient Trotter Decomposition

Bo Yang, Naoki Negishi

The latest version of the slides: https://docs.google.com/presentation/d/1aMk9SCzIXwKfbbBZ6ho_1levsaFfuWQ5FDAKZfLde0Y/edit?usp=sharing Source Code (=submitted files) on GitHub: https://github.com/BOBO1997/osp_solutions

The effective Hamiltonian

$$H_{\text{eff}} = \underline{\sigma_x^2 + \sigma_z^3} + \underline{\sigma_z^2 + \sigma_x^3} - (\underline{\sigma_z^2 \sigma_x^3 + \sigma_x^2 \sigma_z^3})$$

$$(=A) \qquad (=B) \qquad (=C)$$

Trotter decomposition

$$e^{-iH_{\text{eff}}t} \sim (e^{-iAt/n}e^{-iBt/n}e^{iCt/n})^n$$

The Trotter Block

After optimization, the depth is independent of the Trotter steps!!!

Remark

- qiskit.compiler.transpile provides a strong evidence of this depth reducibility
- Rigorous theoretical proof → Future work

Workflow for each Pauli measurement in tomography circuits

Numerical Simulations

Noise-free simulation of the proposed method

The proposed method computes the time evolution correctly

Noisy simulation of the proposed method

- Even general encoding achieves fidelity > 0.8
- Error mitigation is effective → fidelity > 0.99
- 30 Trotter steps are enough (fidelity converges)

Results

Fidelity

Settings	fake_jakarta	ibmq_jakarta
General encoding and general decoding		
without any QEM	0.7856 ± 0.0015	0.8039 ± 0.0048
with QREM	0.8448 ± 0.0015	0.9032 ± 0.0054
with QREM and ZNE	0.9393 ± 0.0053	0.9866 ± 0.0017
with QREM, ZNE and Pauli Twirling	0.9801 ± 0.0031	
Shallow encoding and specific decoding		
without any QEM	0.8631 ± 0.0017	0.8637 ± 0.0041
with QREM	0.9234 ± 0.0016	0.9728 ± 0.0040
with QREM and ZNE	0.9840 ± 0.0024	0.9857 ± 0.0043
with QREM, ZNE and Pauli Twirling	0.9714 ± 0.0048	0.9624 ± 0.0167
Shallow encoding and shallow decoding		
without any QEM	0.8863 ± 0.0012	0.8803 ± 0.0044
with QREM	0.9533 ± 0.0017	0.9852 ± 0.0061
with QREM and ZNE	0.9855 ± 0.0036	0.9929 ± 0.0015
with QREM, ZNE and Pauli Twirling	0.9801 ± 0.0031	0.9768 ± 0.0034