Machine Learning for Healthcare 6.871Jx

Risk Stratification Part II

David Sontag

Where do the labels come from?

Typical pipeline:

- Manually label several patients' data by "chart review"
- 2. A) Come up with a simple rule to automatically derive label for all patients, **or**
 - B) Use machine learning to get the labels themselves

Step 1:

Visualization of individual patient data is an important part of chart review

https://github.com/nyuvis/patient-viz

Figure 1: Algorithm for identifying T2DM cases in the EMR.

Source: https://phekb.org/sites/phenotype/files/T2DM-algorithm.pdf

Step 2: Example of a rule-based phenotype

Outline for today's class

- 1. Risk stratification (continued)
 - Deriving labels
 - Evaluation
 - Subtleties with ML-based risk stratification

Receiver-operator characteristic curve

Obtained by varying prediction threshold

Diabetes 1-year gap

False positive rate

Receiver-operator characteristic curve

Receiver-operator characteristic curve

Calibration (note: different dataset)

Outline for today's class

- 1. Risk stratification (continued)
 - Deriving labels
 - Evaluation
 - Subtleties with ML-based risk stratification

Non-stationarity: *Diabetes Onset After 2009*

→ Automatically derived labels may change meaning

[Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012. JAMA, 2014.]

Non-stationarity: Top 100 lab measurements over time

Time (in months, from 1/2005 up to 1/2014)

→ Significance of features may change over time

[Figure credit: Narges Razavian]

Non-stationarity: *ICD-9 to ICD-10 shift*

→ Significance of features may change over time

[Figure credit: Mike Oberst]

Re-thinking evaluation in the face of non-stationarity

- How was our diabetes model evaluation flawed?
- Good practice: use test data from a future year:

- Example from today's readings:
 - Patients with pneumonia who have a history of asthma have lower risk of dying from pneumonia
 - Thus, we learn: HasAsthma(x) => LowerRisk(x)
- What's wrong with the learned model?
 - Risk stratification drives interventions
 - If low risk, might not admit to ICU. But this was precisely what prevented patients from dying!

Formally, this is what's happening:

A long survival time may be because of treatment!

- How do we address this problem?
- First and foremost, must recognize it is happening
 - interpretable models help with this

Hacks:

- Modify model, e.g. by removing the HasAsthma(x) => LowerRisk(x) rule I do not expect this to work with high-dimensional data
- 2. Re-define outcome by finding a pre-treatment surrogate (e.g., lactate levels)
- Consider treated patients as right-censored by treatment

Example:

Henry, Hager, Pronovost, Saria. A targeted real-time early warning score (TREWScore) for septic shock. *Science Translation Medicine*, 2015

 The rigorous way to address this problem is through the language of causality:

Will admission to ICU lower likelihood of death for patient?

We return to this in Lecture 14

No big wins from deep models on structured data/text

Rajkomar et al., Scalable and accurate deep learning with electronic health records. *Nature Digital Medicine*, 2018

Recurrent neural network & attention-based models trained on 200K hospitalized patients

No big wins from deep models on structured data/text

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

	Hospital A	Hospital B	
Inpatient Mortality, AUROC¹(95% CI)			
Deep learning 24 hours after admission Full feature enhanced baseline at 24 hours after admission Full feature simple baseline at 24 hours after admission Baseline (aEWS ²) at 24 hours after admission	0.95(0.94-0.96) 0.93(0.92-0.95) 0.93(0.91-0.94) 0.85(0.81-0.89)	0.93(0.92-0.94) 0.91 (0.89-0.92) 0.90 (0.88-0.92) 0.86 (0.83-0.88)	to Razavian et al. '15
30-day Readmission, AUROC (95% CI)			
Deep learning at discharge Full feature enhanced baseline at discharge Full feature simple baseline at discharge	0.77(0.75-0.78) 0.75 (0.73-0.76) 0.74 (0.73-0.76)	0.76(0.75-0.77) 0.75 (0.74-0.76) 0.73 (0.72-0.74)	
Baseline (mHOSPITAL ³) at discharge Length of Stay at least 7 days AUROC (95% CI)	0.70 (0.68-0.72)	$\frac{0.68 (0.67 \text{-} 0.69)}{}$	
Deep learning 24 hours after admission Full feature enhanced baseline at 24 hours after admission Full feature simple baseline at 24 hours after admission Baseline (mLiu ⁴) at 24 hours after admission	0.86(0.86-0.87) 0.85 (0.84-0.85) 0.83 (0.82-0.84) 0.76 (0.75-0.77)	0.85(0.85-0.86) 0.83(0.83-0.84) 0.81(0.80-0.82) 0.74(0.73-0.75)	

[Rajkomar et al. '18 electronic supplementary material:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-1/MediaObjects/41746_2 018_29_MOESM1_ESM.pdf]

No big wins from deep models on structured data/text

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

	Hospital A	Hospital B	
Inpatient Mortality, AUROC¹(95% CI)			
Deep learning 24 hours after admission Full feature enhanced baseline at 24 hours after admission	0.95 (0.94-0.96) 0.93 (0.92-0.95)	0.93 (0.92-0.94) 0.91 (0.89-0.92)	Compariso to Razavia
Baselii Keep in mind:			'15
•			
Small wins with deep model	s may disa	appear	
Full fell altogether with dataset shift	or non-st	ationarity	,
		acionaricy	
Baselii (Jung & Shah, JBI '15)			
Deep learning 24 hours after admission	0.86(0.86-0.87)	0.85 (0.85-0.86)	
Full feature enhanced baseline at 24 hours after admission	0.85 (0.84-0.85)	0.83 (0.83-0.84)	
Full feature simple baseline at 24 hours after admission	0.83 (0.82-0.84)	0.81 (0.80-0.82)	

[Rajkomar et al. '18 electronic supplementary material:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41746-018-0029-1/MediaObjects/41746_2 018 29 MOESM1 ESM.pdf]

No big wins from deep models on structured data/text – why?

- Sequential data in medicine is very different from language modeling
 - Many time scales, significant missing data, and multi-variate observations
 - Likely do exist predictive nonlinear interactions, but subtle
 - Not enough data to naively deal with the above two
- Medical community has already come up with some very good features