

pyADCG

A preliminary implementation of a new parallel solver for nonconvex MINLPs in Pyomo/Python

Ivo Nowak and Norman Breitfeld ICMS 2016, Berlin

Table of contents

- 1. Introduction
- 2. The **A**lternating **D**irection **C**olumn **G**eneration Method (Global optimization without branching)
- 3. Preliminary results with pyADCG

Introduction

Branch & Cut, Column Generation and ADCG

Branch & Cut:

- standard global solution approach for MIPs and MINLPs
- However: many branching steps necessary for large MINLPs (Benchmark Vigerske 2015, most problems have < 1000 variables)

Branch & Cut, Column Generation and ADCG

Branch & Cut:

- standard global solution approach for MIPs and MINLPs
- However: many branching steps necessary for large MINLPs (Benchmark Vigerske 2015, most problems have < 1000 variables)

Column Generation based perturbation heuristics (rapid branching):

- can solve crew scheduling problems with 100.000.000 variables
- However: duality gap should be small

Branch & Cut, Column Generation and ADCG

Branch & Cut:

- standard global solution approach for MIPs and MINLPs
- However: many branching steps necessary for large MINLPs (Benchmark Vigerske 2015, most problems have < 1000 variables)

Column Generation based perturbation heuristics (rapid branching):

- can solve crew scheduling problems with 100.000.000 variables
- However: duality gap should be small

ADCG (Alternating Direction Column Generation Method):

- exact parallel MINLP decomposition method
- combines AD and CG without using branching

ADCG solves modular optimization problems

ADCG is a meta-solver, which uses sub-solvers for solving sub-problems.

ADCG solves modular optimization problems

ADCG is a meta-solver, which uses sub-solvers for solving sub-problems.

Planning (energy systems)

sub-problems: MINLPs

ADCG solves modular optimization problems

ADCG is a meta-solver, which uses sub-solvers for solving sub-problems.

Planning (energy systems)

sub-problems: MINLPs

Transport optimization (crew scheduling)

The quasi-separable MINLP

Nonconvex quasi-separable MINLP:

$$\min\{c^T x : x \in P \cap G\}$$
 with $G := \underset{k \in K}{\times} G_k$

The quasi-separable MINLP

Nonconvex quasi-separable MINLP:

$$\min\{c^T x : x \in P \cap G\}$$
 with $G := \underset{k \in K}{\bigvee} G_k$

where G_k defines the feasible set of a (MINLP) sub-problem:

$$G_k := \{ y \in [\underline{x}_{I_k}, \overline{x}_{I_k}] : y_i \in \{0, 1\}, i \in I_k^{\text{int}}, g_j(y) \leq 0, j \in J_k \}$$

and $P := \{x \in [\underline{x}, \overline{x}] : Ax \leq b\}$ defines the coupling constraints

4

The quasi-separable MINLP

Nonconvex quasi-separable MINLP:

$$\min\{c^T x : x \in P \cap G\}$$
 with $G := \underset{k \in K}{\times} G_k$

where G_k defines the feasible set of a (MINLP) sub-problem:

$$G_k := \{ y \in [\underline{x}_{I_k}, \overline{x}_{I_k}] : y_i \in \{0, 1\}, i \in I_k^{\text{int}}, g_j(y) \leq 0, j \in J_k \}$$

and $P := \{x \in [\underline{x}, \overline{x}] : Ax \leq b\}$ defines the coupling constraints

(MINLPs can be transformed into quasi-separable MINLPs by adding new variables and constraints)

Assumption: MINLP sub-problems can be solved quickly

The Alternating Direction Method

Basic steps of an ADM for solving $\min\{c^Tx : x \in P \cap X_{k \in K} G_k\}$:

- 1. $y^{i+1} \leftarrow G$ -project $x^i \in P$ regarding $c + A^T \lambda^i$
- 2. $x^{i+1} \leftarrow \text{P-project } y^{i+1} \in G$ regarding $c A^T \lambda^i$
- 3. $\lambda^{i+1} \leftarrow \text{update } \lambda^i$

The Alternating Direction Method

Basic steps of an ADM for solving min $\{c^Tx : x \in P \cap X_{k \in K} G_k\}$:

- 1. $y^{i+1} \leftarrow G$ -project $x^i \in P$ regarding $c + A^T \lambda^i$
- 2. $x^{i+1} \leftarrow \text{P-project } y^{i+1} \in G$ regarding $c A^T \lambda^i$
- 3. $\lambda^{i+1} \leftarrow \text{update } \lambda^i$

where

- G-project by (parallel) solving MINLP sub-problems
- P-project by solving a (large) QP master-problem
- the starting point $x^0 \in P$ is the solution of a convex relaxation

Traditional ADMs do not converge always towards the solution point x^* .

The Alternating Direction Column Generation Method

Column Generation Method

(Global optimization without branching)

Penalty function, full-projection problem, global convergence

Motivation: Houska, Frasch and Diehl, *An Augmented Lagrangian based Algorithm for Distributed Non-Convex Optimization* (2014), **ALADIN**:

Check quality of xⁱ using the penalty function
 PenF(xⁱ) := c^Txⁱ + γ · Viol(xⁱ, P ∩ G)
 (→ min PenF(x) ⇔ MINLP)

Penalty function, full-projection problem, global convergence

Motivation: Houska, Frasch and Diehl, An Augmented Lagrangian based Algorithm for Distributed Non-Convex Optimization (2014), **ALADIN**:

- Check quality of xⁱ using the penalty function
 PenF(xⁱ) := c^Txⁱ + γ · Viol(xⁱ, P ∩ G)
 (→ min PenF(x) ⇔ MINLP)
- If $PenF(x^i) PenF(x^{i+1})$ is not large enough: solve approximately (via a dual line search) a full-projection problem $(x^i \in P \to P \cap G)$ $x^{i+1} = \text{approx argmin} \qquad c^T x + \rho \sum_{k \in K} \|x_{I_k} x_{I_k}^i\|^2$ $s.t. \qquad x \in G \cap P$

Penalty function, full-projection problem, global convergence

Motivation: Houska, Frasch and Diehl, *An Augmented Lagrangian based Algorithm for Distributed Non-Convex Optimization* (2014), **ALADIN**:

- Check quality of xⁱ using the penalty function
 PenF(xⁱ) := c^Txⁱ + γ · Viol(xⁱ, P ∩ G)
 (→ min PenF(x) ⇔ MINLP)
- If $PenF(x^i) PenF(x^{i+1})$ is not large enough: solve approximately (via a dual line search) a full-projection problem $(x^i \in P \to P \cap G)$ $x^{i+1} = \text{approx argmin} \qquad c^T x + \rho \sum_{k \in K} \|x_{l_k} x_{l_k}^i\|^2$ s.t. $x \in G \cap P$

Theorem: If ρ is large, then the full-projection problem has a zero duality gap \rightarrow global convergence of ALADIN

ADCG: target constraint and CG-based full-projection

• Use a target constraint: $P' = \{x \in P : c^T x \le tarVal\}$ for escaping from a non-global minimizer

ADCG: target constraint and CG-based full-projection

- Use a target constraint: $P' = \{x \in P : c^T x \le tarVal\}$ for escaping from a non-global minimizer
- Solve the full-projection problem with slacks (approximately) by CG $(x^i \in P' \to P' \cap G)$:

$$\begin{aligned} & \min & & c^T x + \rho \sum_{k \in K} \|x_{I_k} - x_{I_k}^i\|^2 + \gamma \cdot s \\ & s.t. & & x \in G \cap P \quad c^T x \le tarVal + s, \quad s \ge 0 \end{aligned}$$

CG generates sample points $S_k \subseteq G_k$ (inner approximation) \rightarrow efficient warm-start possible

ADCG: target constraint and CG-based full-projection

- Use a target constraint: $P' = \{x \in P : c^T x \le tarVal\}$ for escaping from a non-global minimizer
- Solve the full-projection problem with slacks (approximately) by CG $(x^i \in P' \to P' \cap G)$:

$$\begin{aligned} & \min & & c^T x + \rho \sum_{k \in \mathcal{K}} \|x_{l_k} - x_{l_k}^i\|^2 + \gamma \cdot \mathbf{s} \\ & s.t. & & x \in \mathbf{G} \cap \mathbf{P} \quad c^T x \leq tarVal + \mathbf{s}, \quad \mathbf{s} \geq 0 \end{aligned}$$

CG generates sample points $S_k \subseteq G_k$ (inner approximation) \rightarrow efficient warm-start possible

- ADCG performs CG-steps, until
 - (i) PenF is reduced sufficiently or

$$\text{(ii) } s + \textit{redCost}(\lambda) > 0 \qquad \Rightarrow P' \cap G = \emptyset \Leftrightarrow \textit{tarVal} < \textit{v}^*$$

ADCG (simplified):

1. compute $x^0 \in P$ using a start heuristic, $tarVal \leftarrow \infty$

ADCG (simplified):

- 1. compute $x^0 \in P$ using a start heuristic, $tarVal \leftarrow \infty$
- 2. **for** i = 0, 1, ...
 - 2.1 $y^{i+1} \leftarrow \text{project } x^i \text{ onto } G \text{ by solving sub-problems (in parallel)}$
 - 2.2 $x^{i+1} \leftarrow \text{project } y^{i+1} \text{ onto } P' \text{ by solving a QP master-problem}$
 - 2.3 **if** $PenF(x^i) PenF(x^{i+1})$ is not large enough: $(x^{i+1}, y^{i+1}) \leftarrow$ one CG-step (approx. full-project)

ADCG (simplified):

- 1. compute $x^0 \in P$ using a start heuristic, $tarVal \leftarrow \infty$
- 2. **for** i = 0, 1, ...
 - 2.1 $y^{i+1} \leftarrow \text{project } x^i \text{ onto } G \text{ by solving sub-problems (in parallel)}$
 - 2.2 $x^{i+1} \leftarrow \text{project } y^{i+1} \text{ onto } P' \text{ by solving a QP master-problem}$
 - 2.3 **if** $PenF(x^i) PenF(x^{i+1})$ is not large enough:

```
(x^{i+1}, y^{i+1}) \leftarrow \text{one CG-step} (approx. full-project)

if s + redCost(\lambda) > 0: (\rightarrow tarVal = \text{lower bound})

increase tarVal
```

ADCG (simplified):

- 1. compute $x^0 \in P$ using a start heuristic, $tarVal \leftarrow \infty$
- 2. **for** i = 0, 1, ...
 - 2.1 $y^{i+1} \leftarrow \text{project } x^i \text{ onto } G \text{ by solving sub-problems (in parallel)}$
 - 2.2 $x^{i+1} \leftarrow \text{project } y^{i+1} \text{ onto } P' \text{ by solving a QP master-problem}$
 - 2.3 **if** $PenF(x^i) PenF(x^{i+1})$ is not large enough:

$$(x^{i+1}, y^{i+1}) \leftarrow \text{one CG-step}$$
 (approx. full-project)
if $s + redCost(\lambda) > 0$: $(\rightarrow tarVal = \text{lower bound})$

increase tarVal

2.4 **if** $\|x^{i+1} - y^{i+1}\| < \epsilon$: (\rightarrow found local solution) decrease tarVal

ADCG (simplified):

- 1. compute $x^0 \in P$ using a start heuristic, $tarVal \leftarrow \infty$
- 2. **for** $i=0,1,\ldots$ 2.1 $y^{i+1} \leftarrow \operatorname{project} x^i$ onto G by solving sub-problems (in parallel) 2.2 $x^{i+1} \leftarrow \operatorname{project} y^{i+1}$ onto P' by solving a QP master-problem 2.3 **if** $\operatorname{PenF}(x^i) \operatorname{PenF}(x^{i+1})$ is not large enough: $(x^{i+1},y^{i+1}) \leftarrow \operatorname{one} \operatorname{CG-step} \quad (\operatorname{approx. full-project})$ **if** $s + \operatorname{redCost}(\lambda) > 0$: $(\to \operatorname{tarVal} = \operatorname{lower} \operatorname{bound})$ increase tarVal 2.4 **if** $\|x^{i+1} y^{i+1}\| < \epsilon$: $(\to \operatorname{found} \operatorname{local} \operatorname{solution})$ decrease tarVal

Theorem: x^i converges towards a global solution of the MINLP (without branching)

- ADCG is a proximal point method
 - \rightarrow trial-points in the neighborhood of the starting point

- ADCG is a proximal point method
 → trial-points in the neighborhood of the starting point
- Based on point-based inner-approximations S_k ⊆ G_k
 → possible to use inexact sub-problem solutions, e.g. feasible points (of black-box models)

- ADCG is a proximal point method
 → trial-points in the neighborhood of the starting point
- Based on point-based inner-approximations S_k ⊆ G_k
 → possible to use inexact sub-problem solutions, e.g. feasible points (of black-box models)
- CG-based start heuristic for starting point x^0 and local cuts

- ADCG is a proximal point method
 → trial-points in the neighborhood of the starting point
- Based on point-based inner-approximations S_k ⊆ G_k
 → possible to use inexact sub-problem solutions, e.g. feasible points (of black-box models)
- CG-based start heuristic for starting point x^0 and local cuts

- ADCG is a proximal point method
 - \rightarrow trial-points in the neighborhood of the starting point
- Based on point-based inner-approximations S_k ⊆ G_k
 → possible to use inexact sub-problem solutions, e.g. feasible points (of black-box models)
- CG-based start heuristic for starting point x^0 and local cuts

For details of ADCG see:

- 1. Nowak. Column Generation based Alternating Direction Methods for solving MINLPs. 2015 (Optimization Online)
- 2. Nowak, Breitfeld, The Alternating Direction Column Generation Method (Global Optimization without Branching) (in preparation)

Preliminary results with pyADCG

pyADCG

Implementation:

- object-oriented implementation in Python/Pyomo
- development started in beginning of 2016
- not finished, currently only for nonconvex QQPs

pyADCG

Implementation:

- object-oriented implementation in Python/Pyomo
- development started in beginning of 2016
- not finished, currently only for nonconvex QQPs

pyADCG is a meta-solver consisting of the sub-solvers:

- IpOpt for master-problems and local optimization
- SCIP for MINLP sub-problems

What is Pyomo?

Pyomo provides a modeling language and supports the development of meta-solvers based on sub-solvers via Python (\rightarrow fast development)

Current status

Preliminary numerical results with random QQPs (without parallelization):

- very few ADCG iterations (maybe because duality gap is small)
- time for solving master-problems 1%
- time for solving sub-problems 94%
- \Rightarrow significant potential for parallel solving the sub problems
 - time for Python/Pyomo operations 5%
- ⇒ little influence of the implementation language

Current status

Preliminary numerical results with random QQPs (without parallelization):

- very few ADCG iterations (maybe because duality gap is small)
- time for solving master-problems 1%
- time for solving sub-problems 94%
- \Rightarrow significant potential for parallel solving the sub problems
 - time for Python/Pyomo operations 5%
- ⇒ little influence of the implementation language

Planned:

- solving MINLPlib2 models (translated to Pyomo) in development
- automatic decomposition and other enhancements
- application to energy conversion systems

