GEOMETRÍA II. Examen del Tema 3

 Doble Grado en Ingeniería Informática y Matemáticas – Curso 2014/15

Nombre:

1. Probar que f(x, y, z) = (x, 3y, -2x + 3z) es autoadjunto de (\mathbb{R}^3, g) donde

$$M_{B_u}(g) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}.$$

Hallar una base ortonormal de (\mathbb{R}^3, g) donde diagonaliza f.

2. Se considera (\mathbb{R}^3, g) donde g es la métrica que tiene como base ortonormal $B = \{(1,0,1), (1,1,0), (0,0,1)\}$. Si $U = \{(x,y,z) : x+y=0\}$, hallar la expresión respecto de B_u de la proyección ortogonal sobre U y la reflexión respecto U.

3. Clasificar la siguiente isometría de (\mathbb{R}^3, g_u) y hallar los elementos geométricos que la define:

$$M(f, B_u) = \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

Importante: razonar todas las respuestas

1. La expresión matricial del endomorfismo es

$$M(f,B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 3 \end{pmatrix}.$$

El endomorfimo es autoadjunto respecto de la métrica G si $M(f,B)^t M_B(g) = M_B(g)M(f,B)$. Y tenemos que son iguales, donde

$$M(f,B)^{t}M_{B_{u}}(g) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 & -3 \\ 3 & 6 & -3 \\ -3 & -3 & 3 \end{pmatrix}.$$

Hallamos el polinomio característico de M(f, B), pero al ser triangular, los valores propios son 1 y 3, siendo éste doble. Hallamos subespacios propios.

$$V_{\lambda=1} = \{(x, y, z) : \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0\}$$
$$= \{(x, y, z) : y = 0, -x + z = 0\} = <(1, 0, 1) > 0.$$

$$V_{\lambda=3} = \{(x, y, z) : \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0\}$$
$$= \{(x, y, z) : x = 0\} = \langle (0, 1, 1), (0, 0, 1) \rangle.$$

Sólo queda hallar en cada uno de los subespacios, bases ortornomales. Pero una cuenta fácil con la matrix $M_{B_u}(g)$ nos dice que el vector que define el de V_1 tiene módulo 1 y que los dos de V_3 son ortonormales. Por tanto, una base es: $\{(1,0,1),(0,1,1),(0,0,1)\}$.

2. (Primera forma de hacer el ejercicio) Hallamos $M_{B_u}(g)$. Si $P = M(I, B_u, B)$, entonces sabemos que

$$M_{B_u}(g) = P^t M_B(g) P = P^t I_3 P = P^t P.$$

Como $P = M(I, B, B_u)^{-1}$, hallamos la inversa de dicha matriz:

$$M(I, B, B_u) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \Rightarrow M(I, B, B_u)^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}.$$

Por tanto

$$M_{B_u}(g) = P^t P = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -1 \\ -2 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

Hallamos una base de U: $B_U = \{(1, -1, 0), (0, 0, 1)\}$ y una de U^{\perp} . Si $e_1 = (1, -1, 0)$ y $e_2 = (0, 0, 1)$, entonces $v = (x, y, z) \in U^{\perp}$ sii

$$\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 2 & -2 & -1 \\ -2 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0 \Leftrightarrow 4x - 5y - 2z = 0.$$

$$\left(\begin{array}{ccc} x & y & z \end{array} \right) \left(\begin{array}{ccc} 2 & -2 & -1 \\ -2 & 3 & 1 \\ -1 & 1 & 1 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) = 0 \Leftrightarrow -x + y + z = 0.$$

Tomando z=1, tenemos 4x-5y=2 y x-y=1, luego un vector que satisface las dos ecuaciones es (3,2,1). Así $B_{U^{\perp}}=\{e_3=(3,2,1)\}$ y una base de \mathbb{R}^3 es $B_U\cup B_{U^{\perp}}=\{(1,-1,0),(0,0,1),(3,2,1)\}$. Una vez establecida la base, sólo queda expresar un vector (x,y,z) en coordenadas respecto de la base: (x,y,z)=a(1,-1,0)+b(0,0,1)+c(3,2,1), obteniendo

$$a = -\frac{1}{5}(-2x+3y), \ b = -\frac{1}{5}(x+y-5z), \ c = \frac{1}{5}(x+y).$$

Por tanto

$$\pi_U(x, y, z) = ae_1 + be_2 = \frac{1}{5}(2x - 3y, -2x + 3y, 4x - 2y + 5z).$$

$$S_U(x, y, z) = ae_1 + be_2 - ce_3 = \frac{1}{5}(-x - 6y, -4x + y, -2x - 2y + 5z).$$

(Segundo forma de hacer el ejercicio) Hacemos el trabajo respecto de la base ortonormal que nos dan $B = \{e_1, e_2, e_3\}$. Sea $(x, y, z)_B$ en coordenadas respecto de B. Entonces $U = \langle (1, -1, 0), (0, 0, 1) \rangle = \langle (2, -1, -2)_B, (0, 0, 1)_B \rangle$. El subespacio ortogonal son los vectores $(x, y, z)_B$ tales que 2x - y - 2z = 0, z = 0, cuya base es $\{(1, 2, 0)\}$. Escribimos (x, y, z) = a(2, -1, -2) + b(0, 0, 1) + c(1, 2, 0), obteniendo

$$(a,b,c) = \frac{1}{5}(2x - y, 4x - 2y + 5z, x + 2y).$$

Entonces

$$\pi_U(x, y, z)_B = \frac{1}{5}(2x - y)(2, -1, -2)_B + \frac{1}{5}(4x - 2y + 5z)(0, 0, 1)_B$$

$$= \frac{1}{5}(4x - 2y, -2x + y, 5z)_B = \frac{1}{5}((4x - 2y)e_1 + (-2x + y)e_2 + 5ze_3)$$

$$= \frac{1}{5}(2x - 3y, -2x + 3y, -x - y + 5z).$$

$$S_{U}(x,y,z)_{B} = \frac{1}{5}(2x-y)(2,-1,-2)_{B} + \frac{1}{5}(4x+2y+5z)(0,0,1)_{B} - \frac{1}{5}(x+2y)_{B}$$

$$= \frac{1}{5}(2x-y)e_{1} + \frac{1}{5}(4x+2y+5z)e_{2} - \frac{1}{5}(x+2y)e_{3}$$

$$= \frac{1}{5}(-x-6y,-4x+y,-2x-2y+5z).$$

El último vector ya está escrito respecto de B_u . Finalmente, queda por hacer otro cambio de coordenadas, pues X = (x, y, z) del principio es en verdad, $X = (x, y, z)_B$. Sea $(x, y, z)_B = X' = (x', y', z')_{B_u}$. La relación entre ambas coordenadas es X = PX'. Por tanto, si (x', y', z'), entonces PX' = (x' - y', y', -x' + y'z'), y ahora hacemos introducimos este vector en las dos expresiones anteriores de π_U y S_U , obteniendo las mismas que ya se obtuvieron por el primer método.

3. Para hallar los valores propios de $M(f, B_u)$, escribimos esta matriz A como A = C/2, donde

$$C = \left(\begin{array}{ccc} 0 & -\sqrt{2} & \sqrt{2} \\ \sqrt{2} & 1 & 1 \\ -\sqrt{2} & 1 & 1 \end{array} \right).$$

El determinante de C es 8, luego el de A es 1. Por tanto, la isometría es un giro respecto de la recta. Luego el valor propio es el 1, con la posibilidad de que también lo sea el -1, en caso de un giro de 180 grados, lo que daría una simetría axial. Como (A-I)X=0 es lo mismo que (C-2I)X=0, tenemos

$$V_1 = \{(x, y, z) : \begin{pmatrix} -2 & -\sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1 & 1 \\ -\sqrt{2} & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= \{(x, y, z) : -2x - \sqrt{2}y + \sqrt{2}z = 0, \sqrt{2}x - y + z = 0\} = <(0, 1, 1) >$$

Hallamos el subespacio V_1^\perp , el cual es $\{(x,y,z):y+z=0\}=<(1,0,0),(0,1,-1)>$. La imagen de (1,0,0) respecto de la isometría no es $-1\cdot(1,0,0)$, luego no es una simetría axial. Para hallar el ángulo de giro, calculamos una base ortornomal de V_1^\perp . Como los vectores $\{(1,0,0),(0,1,-1) \text{ son perpendiculares, la base es } \{e_2=(1,0,0),e_3=(0,1,-1)/\sqrt{2}\}.$

La imagen de (1,0,0) mediante la isometría es de la forma, $f(e_2) = \cos \theta e_2 + \sin \theta e_3$. Por tanto,

$$\cos \theta = g(f(e_2), e_2), \sin \theta = g(f(e_2), e_3).$$

Como $f(e_2) = (0, 1, -1)/\sqrt{2}$, entonces

$$\cos \theta = 0$$
, $\sin \theta = 1$,

es decir, $\theta = \pi/2$