Tree

Tree

Нī

비선형 구조로 원소들 간에 1:N 관계를 가지는 자료구조

H3

원소들 간에 계층관계를 갖는 "계층형" 자료구조

상위 원소에서 하위원소로 내려가면서 확장되기 때문에 Tree 모양 구조라고 함.

- 한 개 이상의 노드로 이루어진 유한 집합
- ROOT NODE : 최상위 노드
- LEAF NODE: 자식 노드가 없는 최하단 노드
- 나머지 노드들을 N개의 분리집합으로 분리할 수 있는데, 이는 각각이 하나의 트리 가되며 이를 ROOT의 **Sub Tree** 라고한다. Recursive

트리의 구성요소

NODE (노드) 와 EDGE (간선)

H3

• NODE : 트리의 원소

• EDGE: 노드를 연결하는 선이며, 부모 노드와 자식 노드를 연결함

1. Root NODE : 트리의 시작 노드

- 2. Sibling NODE: 같은 부모의 자식 노드들
- 3. Ancestor NODE: 간선을 따라, 루트 노드까지 이르는 경로에 모든 노드
- 4. SubTree : 부모 노드와 연결된 간선을 끊었을 때 생기는 트리
- 5. Descendent NODE : SubTree에 있는 하위 레벨의 모든 노드
- Degree (차수): 노드에 연결된 자식의 노드 수 (자손 아님 주의!)
- 트리의 Degree : 트리의 노드의 차수 중, 가장 큰 값
- 단말 노드 (혹은 Leaf Node): 차수가 없는 노드
- 높이 : 노드의 레벨. 루트에서 노드에 이르는 간선의 수. 주로 Root 의 높이를 O으로하고 아래로 내려오면서 1씩 증가함. (문제에 따라 높이가 1부터 시작하는 경우

도 있음)

• 트리의 높이 : 트리에 노드 중 높이가 가장 깊은 값

Binary Tree

모든 노드들이 2개의 SubTree를 갖는 특별한 형태의 트리

H3

H3

노드가 자식 노드를 최대한 2개까지만 가질 수 있어 자식노드를 두개로 나눔

- Left Child Node
- Right Child Node

레벨이 i 일때 노드의 최대 개수 2^i 개 --> 즉 한 줄에 있을 수 있는 노드의 개수가 레벨 i 일 때 2^i 라는 것.

높이가 h 인 이진 트리가 가질 수 있는 노드의 최소 개수는 (h+1) 개 (1자로 내려 왔을 때), 최대 개수는 2^{h+1} - 1 개

Binary Tree 의 종류

1. Full Binary Tree (포화 이진 트리)

모든 레벨의 노드가 포화상태로 차 있는 이진 트리. 즉 최대 노드의 개수 2^{h+1} - 1 개의 모드를 갖는다.

따라서 노드 번호가 1, 2, 3, 4, ... , 2^{h+1} - 1 순서대로 갖는다.

2. Complete binary Tree (완전 이진 트리)

높이가 h고 노드가 n개 일 때

완전 이진 트리의 노드번호 1번부터 n번까지 빈자리가 없는 이진 트리를 뜻함

3. Skewed binary Tree (편향 이진 트리) 높이 h에 대해 최소 개수의 노드를 갖고, 한쪽 방향의 자식 노드만 갖는 이진 트리

Tree Traversal (트리 순회)

트리의 각 노드를 중복되지 않게 전부 방문하는 것

비선형 구조로, 선후 연결 관계를 알 수 없기 때문에 특별한 방법이 필요함

L (왼쪽 서브트리) R (오른쪽 서브트리) V(루트노드)

1. Preorder Traversal

VLR, 자손노드보다 루트노드를 먼저 방문

```
def preorder_traverse(T): # 전위 순회
if T: # T is not None
    visit(T)
    preorder_traverse(T.left)
    preorder_traverse(T.right)
```


순회 순서 : A B D E C 첫 방문 점은 루트 노드임

2. Inorder Traversal

LVR, 왼쪽자손, 루트, 오른쪽 자손 순으로 방문

```
def inorder_traverse(T):
    if T:
        inorder_traverse(T.left)
        visit(T)
        inorder_traverse(T.right)
```


순회 순서 : D B E A C

즉, 첫 방문점이 왼쪽 맨 아래 노드임.

3. Postorder Traversal

LRV, 루트노드보다 자손을 먼저 방문

```
def postorder_traversal(T):
    if T:
        postorder_traversal(T.left)
        postorder_traversal(T.right)
        visit(T)
```


순회 순서 : D E B C A

첫 방문점은 왼쪽 맨 아래 노드, 마지막 방문점이 루트 노드.

Expression Tree

List 혹은 Linked List 사용하여 표현함

H3 리스트를 이용한 이진 트리 표현

- 1. 이진 트리에 각 노드 번호를 부여
- 2. 루트 번호는 1
- 3. 레벨 n에 있는 노드에 대하여 왼쪽부터 오른쪽으로 2n부터 2^{n+1} -1 까지 차례대로 번호 부여
 - 노드 번호가 i 인 노드의 부모 노드의 번호는 i//2
 - 노드 번호가 i 인 노드의 왼쪽 자식 노드 번호는 2*i, 오른쪽은 2*i + 1
- 노드 번호를 인덱스로 표현
- 높이가 h인 이진 트리의 리스트의 크기? : 2^{h+1} 만큼 할당 시, index 1부터 사용가능 레벨 i의 노드 최대 수 : 2ⁱ
 모든 레벨의 노드 수 합 : 2^{h+1} -1

단점

편향 이진 트리와 같은 경우, <mark>사용하지 않는 리스트 원소에 대한 메모리 공간 낭비</mark>가 발생함. 이를 보완하기 위해 <mark>연결 리스트</mark> 를 사용하여 트리를 표현하기도 함. 특히 이진 트리의 모든 노드는 최대 2개의 자식 노드를 가지므로, 단순 연결 List 노드를 사용하여 구현함.

Binary Search Tree

- 탐색 작업을 효율적으로 하기 위한 자료구조
- 모든 원소는 서로 다른 유일한 키 값을 가짐

H3

- key(left) < key(root) < key(right)</p>
- 따라서 중위 순회 시 오름차순으로 정렬된 값을 얻을 수 있음.

키 값 찾는 방법

• 찾으려는 키 값이 x 라고 할 때

- 1. x == 루트 노드 값 ?? --> 맞으면 탐색 성공!
- 2. 만약 아니라면?
 - a. x < 루트 노드 (x가 루트 노드보다 작다면) 왼쪽 서브 트리 탐색
 - b. x > 루트 노드 (x가 루트 노드보다 크다면) 오른쪽 서브 트리 탐색
- **3**. 1 번 다시 실행

삽입 연산

- 1. 키 값을 서칭하여 트리에 있는지 확인
- 2. 탐색 실패 시 결정되는 위치 == 삽입 위치

성능

- 탐색, 삽입, 삭제 시간 : 트리의 높이 h에 대해 O(h)
- 이진 트리가 균형적인 경우 : O(log n)
- 최악의 경우 : 한쪽으로 치우친 경사 이진 트리 O(n) 최악의 경우, 순차 탐색과 시간 복잡도가 같다.

검색 알고리즘 시간 비교

- 1. 리스트에서 순차 검색 : O(N)
- 2. 정렬된 리스트에서 순차 검색 : O(N)
- H3 3. 정렬된 리스트에서 이진 검색 : O(logN)
 - 4. 이진 탐색 트리에서 평균 : O(logN)

최악의 경우 : O(N)

최악의 경우는 아래 사진과 같은데, 트리의 높이 값이 n과 가까워 지기 때문에 O(N)의 시간을 갖게 됨.

완전 이진 트리, 균형 트리로 바꿀 수 있다면 최악 면할 수 있음

- 새로운 원소 삽입할 때 삽입 시간 감소
- 평균과 최악의 시간 모두 O(logN)
- 5. 해쉬 검색 : O(1)
 - but 해쉬를 저장할 메모리 필요

Heap

완전 이진 트리의 응용.

완전 이진 트리에 있는 노드 중에서 키 값이 가장 큰 노드나, 키 값이 가장 작은 노드를 H3 찾기 위해서 만든 자료구조

Max Heap

키 값이 가장 큰 노드를 찾기 위한 완전 이진 트리

- 부모 노드의 키값 > 자식 노드의 키값
- 루트 노드: 키 값이 가장 큰 노드

Min Heap

키 값이 가장 작은 노드를 찾기 위한 완전 이진 트리

- 부모 노드의 키 값 < 자식 노드의 키값
- 루트 노드 : 키 값이 가장 작은 노드

- 1. 비어 있는 곳에 임시로 삽입
- 2. 부모 노드와 비교하며 위치 바꾸기를 반복

삭제 연산

- 1. 루트 노드의 원소만을 삭제 가능
- 2. 따라서 루트 노드 원소 삭제
- 3. 마지막 노드를 루트 노드 위치로 이동
- 4. 삽입된 노드와 자식노드 비교하면서 자리바꾸기
- 힙의 종류에 따라 최대값 혹은 최소값 구하기 가능
- heap에서의 삭제는 루트 노트를 삭제하는 것이므로, 우선 순위가 높은 것을 삭제 한다는 것을 생각하면 heap을 통해 priority queue 구현 가능
- heap으로 priority queue를 구현하는 이유
 - 1. 리스트 삭제 시간 O(1) / 삽입 시간 O(N)
 - 연결 리스트
 삭제 시간 O(1) / 삽입 시간 O(N)
 - 회
 삭제 시간 O(logN) / 삽입 시간 O(logN)

트리의 저장 방법

부모 노드를 인덱스로 자식 번호를 저장

H3

부모 - 자식 쌍을 input 으로 줄 때,

부모노드를 index 로하는 자식배열 두 개를 만들어 자식들을 저장한다.

예를 들어 부모 노드 3에 자식노드 2 면 --> arr[3] = 2 이다.