MÉTODOS NÃO-LINEARES E FUSÃO DE DADOS

Me. José Vinícius Ribeiro 2FIS446

- Linearidade x Não-Linearidade
- Random Forest
- Redes Neurais
- Fusão de dados
- Prática com python no google colab

LINEARIDADE X NÃO-LINEARIDADE

A relação entre as variáveis (matriz X) e o target (vetor y) pode ser expressa como uma combinação linear de variáveis. Apenas operações lineares.

Pressuposto de que a relação entre o target e as variáveis é mais complexa. Muitas possibilidades de novas operações

PRINCIPAIS ALGORITMOS ATUALMENTE

Lineares

Não-Lineares

- Regressão Linear
- Regressão Linear Múltipla
- Regressão Logística
- Regressão Linear por Mínimos Quadrados (PLS)
- Analise discriminante por Mínimos Quadrados (PLS-DA)
- Regressão de Ridge
- Análise Discriminante Linear (LDA)
- Máquina de Vetores de Suporte
- Redes Neurais Clássicas

- Arvores de Decisão
- Floresta Aleatória
- XGBoost
- Naive Bayes
- Máquina de Vetores de Suporte
- K-ésimo Vizinho mais Próximo
- Cubist
- Redes Neurais Clássicas
- Redes Neurais Convolucionais
- Redes Neurais Recorrentes

RANDOM FOREST

O principal método baseado em ensembles

Baseado em arvores de decisão

Exemplo Titanic Skiena (2017)

Floresta Aleatória (Random Forest) - Classificação e Regressão

Portanto, existem *variaveis* que carregam mais informação (facilitam a divisão de classes) do que outras

Parâmetros de pureza para identificá-las

 Entropia, Índice de Gini, Erros Quadráticos Médios, Erros Absolutos Médios

Exemplo numérico: modelo de regressão

$$X_{ij} = (X_{11}, X_{12}, ..., X_{1n}, X_{21}, X_{22}, ..., X_{2n}, ..., X_{nm})$$
 $y_i = (y_1, y_2, y_3, ..., y_n)$
 $m = \text{variáveis}$

Suponha a configuração para o modelo: n=5 e m=1

Uma possivel *decision tree* seria X=[1, 2, 3, 4, 5] e y=[1.2, 1.9, 3.1, 4.2, 5.0]

$$X=[1, 2, 3, 4, 5]$$
 e $y=[1.2, 1.9, 3.1, 4.2, 5.0]$

Ponto de divisão X=2.5

Métrica de impureza
$$\rightarrow MSE = \sum_{i=1}^{p} \frac{(y_i - \overline{y_i})^2}{p}$$

• X < 2.5

y=[1.2, 1.9]
$$MSE = \frac{(1.2 - 1.55)^2 + (1.9 - 1.55)^2}{2}$$

$$\bar{y}_i = 1.55$$
 = 0.1225

$$X=[1, 2, 3, 4, 5]$$
 e $y=[1.2, 1.9, 3.1, 4.2, 5.0]$

•
$$X > 2.5$$

$$y=[3.1, 4.2, 5.0]$$

$$\bar{y}_i = 4.1$$

$$MSE = \frac{(3.1 - 4.1)^2 + (4.2 - 4.1)^2 + (5.0 - 4.1)^2}{3}$$

$$= 0.6067$$

$$X=[1, 2, 3, 4, 5]$$
 e $y=[1.2, 1.9, 3.1, 4.2, 5.0]$

MSE geral para a divisão em X=2.5

$$MSE_{total} = \frac{2}{5} \ 0.1225 + \frac{3}{5} \ 0.6067$$

$$= 0.41302$$

$$X=[1, 2, 3, 4, 5]$$
 e $y=[1.2, 1.9, 3.1, 4.2, 5.0]$

Novo ponto de divisão X= 3.5

$$y=[1.2, 1.9, 3.1]$$

$$\bar{y}_i = 2.067$$

$$MSE = 0.616$$

$$y = [4.2, 5.0]$$

$$\bar{y}_i = 4.6$$

$$MSE = 0.16$$

$$X=[1, 2, 3, 4, 5]$$
 e $y=[1.2, 1.9, 3.1, 4.2, 5.0]$

Novo ponto de divisão X= 3.5

$$MSE_{total} = \frac{3}{5} 0.616 + \frac{2}{5} 0.16$$

$$= 0.4336 > 0.4130$$

Qual o melhor ponto para dividir os dados? Ou em outras palavras, ser utilizado como o primeiro nó da arvore?

Random Forest – Regressão

Qual o melhor ponto para dividir os dados? Ou em outras palavras, ser utilizado como o primeiro nó da arvore?

Random Forest - Classificação

Random Forest - Bagging

Dados de treinamento

Cada arvore terá n amostras com m variáveis

Cada árvore é treinada com uma parcela aleatória dos dados

Amostragem aleatória

Média das árvores da regressão ou moda na classificação

Random Forest

Vantagens

- Alta capacidade preditiva
- Poucos hiperparâmetros
- Realiza feature importance
- Lida bem com datasets grandes
- Gera métricas internas de erro
- Aleatoriedade combate o overfitting

Desvantagens

- Complexidade computacional
- Dependência dos hiperparametros
- Aleatoriedade
- Não lida bem imagem/som/texto

REDES NEURAIS CLÁSSICAS

Em seguida, aplica uma função

REDE NEURAL – inspiração no cérebro

Unidade básica de comunicação do sistema nervoso dos seres humanos

Quando o neurônio acumula sinais suficientes dos receptores do seu dendrito ele dispara, *i.e.*, uma corrente elétrica se propaga pelo axônio até chegar aos terminais, conectando-o com outros neurônios

Recebem os sinais, podendo se conectar com milhares de outros neurônios. São a área de contato disponível para receber informações

Propaga o sinal processado

Conecta os sinais químicos do neurônio com os outros (podendo gerar mais que conexões que as próprias captadas pelo dendrito)

Neuron Input Inputs Function Activation Output Function Neurônio Artificial X_2W_{2i} (Modelo *Perceptron*) **Connection to** j-th Artificial the next layer Neuron of neurons *i*-th Weight of i-th Variable the j-th Neuron **Cell Body** (Neuron Input Function) **Nucleus** (Activation Function) Neurônio Biológico Synapses **Dendrites** Axon (Inputs) **Axon Terminals** (Connection) (Output)

Funções de ativação
$$f(\sum X_i W_{ij})$$

$$f(\sum_{i=1}^{n} X_i W_{ij})$$

Principais objetivos

- Inserir não-linearidade na relação entre as variáveis e o target
- Facilitar a convergência (objetivo secundário)

Principais tipos: sigmóide, tanh, ReLU, Softmáx

Funções de ativação: Sigmóide

Funções de ativação: Tanh
$$f(z) = \frac{e^Z - e^{-Z}}{e^Z + e^{-Z}} \quad \epsilon[-1,1]$$

Funções de ativação: ReLU

Z se Z > 0

Foward Propagation

Backward Propagation

O objetivo da rede é gerar uma função com dependências em diversos parâmetros que, dado uma matriz X de variáveis de entrada, produz um vetor y com valores de saída

FASE FOWARD

A função é então aproximada (através da otimização dos hiperparâmetros) até que atinja um nível de precisão desejado. Após esse processo ela deve apresentar capacidade de generalização

FASE BACKWARD

FASE FOWARD

$$\hat{y} = \sum_{k=1}^{3} w_k^{[3]} f_k^{[3]}$$

5x5 + 3x5 + 3 = 43

$$z_{1}^{[1]} = w_{11}^{[1]} x_{1} + w_{12}^{[1]} x_{2} + w_{13}^{[1]} x_{3} + w_{14}^{[1]} x_{4} + w_{15}^{[1]} x_{5}$$

$$f_{j}^{[1]} = f(\sum_{i,i}^{5} w_{ji}^{[1]} x_{i})$$

$$z_{1}^{[2]} = w_{11}^{[2]} f_{1}^{[1]} + w_{12}^{[2]} f_{2}^{[1]} + w_{13}^{[2]} f_{3}^{[1]} + w_{14}^{[2]} f_{4}^{[1]} + w_{15}^{[2]} f_{5}^{[1]}$$

$$f_k^{[2]} = f(\sum_{k,j}^{3,5} w_{kj}^{[2]} f_j^{[1]})$$

REDE NEURAL – FASE BACKWARD

$$Loss = y - \hat{y} = L(\theta)$$
 Queremos o conjunto de parâmetros θ^* que minimiza $L(\theta)$

Dado um conjunto de valores θ^t (dado pelas condições inicias), a uma nova configuração (θ^t) na qual $L(\theta)$ mais irá crescer é dada pelo gradiente aplicado no ponto, *i.e.*, $\nabla L(\theta^t)$

Logo, em uma <u>época</u> futura (t+1): $\theta^{t+1} = \theta^t - \nabla L(\theta^t)$ nos fornecerá uma nova configuração de parâmetros (*i.e.*, novo ponto) que minimizará L

REDE NEURAL - GRADIENTE DESCENDENTE

$$\theta^{t+1} = \theta^t - \eta_t \nabla L(\theta^t)$$

 η_t : taxa de aprendizagem

Na prática o calculo e feito Descent - 1950)
computacionalmente, por meio de de algoritmos Broyden-Fletcher otimizados para o cálculo des derivadas

ADAM (Adaptative Moment Estimation - 2014)

32

REDE NEURAL - BACKPROPAGATION

Foward Propagation

Backward Propagation

Vantagens

- Capacidade de modelar relações complexas
- Alta capacidade preditiva
- Lida bem com datasets grandes
- Adaptabilidade/flexibilidade para os mais diversos problemas

Desvantagens

- Complexidade computacional
- Necessidade de muitos dados
- Propensão a overfitting
- Dificuldade de interpretar
- Complexidade no ajuste dos hiperparametros

FUSÃO DE DADOS

FUSÃO DE DADOS

Conceito: combinar dados ou modelos com diferentes características afim de explorar sua <u>sinergia</u> e obter inferências mais precisas

NÍVEIS POSSÍVEIS

LOW-LEVEL FUSION

$$CONCAT[\begin{pmatrix} X_{11}^{[1]} & \cdots & X_{1j}^{[1]} \\ \vdots & \ddots & \vdots \\ X_{i1}^{[1]} & \cdots & X_{ij}^{[1]} \end{pmatrix}, \dots, \begin{pmatrix} X_{11}^{[N]} & \cdots & X_{1j}^{[N]} \\ \vdots & \ddots & \vdots \\ X_{i1}^{[N]} & \cdots & X_{ij}^{[N]} \end{pmatrix}]$$

$$= \begin{pmatrix} X_{11}^{[1]} & \cdots & X_{1j}^{[1]} & \cdots & X_{1j}^{[N]} & \cdots & X_{1j}^{[N]} \\ \vdots & & \vdots & & \vdots \\ X_{i1}^{[1]} & \cdots & X_{ij}^{[1]} & \cdots & X_{i1}^{[N]} & \cdots & X_{ij}^{[N]} \end{pmatrix}$$

- Os dados precisam ser pré-processados de maneira adequada*
- Normalizações são recomendadas

- Métodos para extração de features complexas são utilizados.
 Conhecido como Features-level
- Redução de dimensionalidade
- Seleção de variáveis

Exemplo: PCA

Exemplo: Análise de dimensões comuns (ComDim)

$$R_i = X_i X_i^t y y^t$$

 $i = 1, 2, ... n^o de blocos$

$$Y = bT^{(DC)}$$

$$b = (T^t T)^{-1} X^t Y$$

Ex: Seleção de variáveis

HIGH-LEVEL FUSION

Pré-processamentos continuam sendo importantes!

FUSÃO DE DADOS

Vantagens

- Predição utilizando características complementares
- Alta capacidade preditiva
- Detecção aprimorada de padrões complexos:
- Redução de incertezas
- Pode ser melhor do que modelos individuais

Desvantagens

- Complexidade computacional aumentada
- Problemas de qualidade e compatibilidade de dados (outliers)
- Necessário dados de mais de uma técnica
- Sincronização e alinhamento de dados
- Muitas variáveis (overfitting)

PRÁTICA – GOOGLE COLAB