

Disciplina: Estatística Aplicada a Engenharia de Software

Prof. Me. Max Gabriel Steiner



## Introdução – Distribuição de Frequência

- ➤ Nesta etapa da disciplina vamos basicamente transformar uma variável numérica em variável categórica.
- Vamos trabalhar com a construção dos gráficos de histograma.
- Em seguida, vamos trabalhar com o estudo de caso voltado para a área de ciência de dados e machine learning que é a geração de regras de associação, onde vamos aprender o básico sobre o algoritmo Apriori, que é o principal algoritmo nesse cenário de regras de associação.
- A ideia é que vocês possam aprender como é feita essa integração entre a distribuição de frequência e das regras de associação, visando compreender algumas das aplicações utilizadas no cenário de aprendizagem de máquina.



- Vamos supor que vamos fazer uma determinada pesquisa, que exista uma população e que desta população vamos retirar uma amostra.
- ➤ Vamos supor que queremos medir a altura das pessoas, sendo que existe uma população de 100 pessoas e precisamos extrair uma amostra de 40 pessoas.
- > Neste caso podemos também utilizar as técnicas que vimos no módulo de amostragem.



#### Tabela primitiva

| 160 | 165 | 167 | 164 | 160 | 166 | 160 | 161 | 150 | 152 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 173 | 160 | 155 | 164 | 168 | 162 | 161 | 168 | 163 | 156 |
| 155 | 169 | 151 | 170 | 164 | 155 | 152 | 163 | 160 | 155 |
| 157 | 156 | 158 | 158 | 161 | 154 | 161 | 156 | 172 | 153 |

- ➤ A tabela primitiva é composta pelas alturas das pessoas em centímetros. Nós temos 40 números e cada um desses números representa a altura de determinada pessoa.
- A tabela é chamada de primitiva pelo fato de que nós não fizemos nenhum processamento nessa tabela ainda. Por exemplo, podemos perceber que nem ordenada em crescente ou decrescente ela foi.

- Quando vamos trabalhar com distribuição de frequência, o primeiro passo a se fazer é o de ordenar a tabela.
- ➤ Neste caso teremos a tabela ordenada (também conhecida por rol). Tabela ordenada (rol)

| 150 | 151 | 152 | 152 | 153 | 154 | 155 | 155 | 155 | 155 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 156 | 156 | 156 | 157 | 158 | 158 | 160 | 160 | 160 | 160 |
| 160 | 161 | 161 | 161 | 161 | 162 | 163 | 163 | 164 | 164 |
| 164 | 165 | 166 | 167 | 168 | 168 | 169 | 170 | 172 | 173 |

➤ Note que agora fica mais fácil observar os extremos dos dados (maior e menor pessoa).



- ➤ O objetivo agora é nós definirmos faixas de valores sempre que trabalhamos com distribuição de frequência. Nós vamos transformar essas alturas em uma faixa, por exemplo, entre 150 até 155, 155 até 160 e assim por diante.
- > Tendo a tabela ordenada fica fácil saber os valores máximos e mínimos que vamos chamar de Xmin e Xmax.

#### Tabela ordenada (rol)

| 150 | 151 | 152 | 152 | 153 | 154 | 155 | 155 | 155 | 155 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 156 | 156 | 156 | 157 | 158 | 158 | 160 | 160 | 160 | 160 |
| 160 | 161 | 161 | 161 | 161 | 162 | 163 | 163 | 164 | 164 |
| 164 | 165 | 166 | 167 | 168 | 168 | 169 | 170 | 172 | 173 |

X<sub>min</sub>: 150

X<sub>max</sub>: 173



- Vamos agora aproveitar da tabela ordenada para fazer a distribuição de frequência.
- Notem que na primeira coluna vamos ter a estatura em cm.
- ➤ E a frequência que indica quantas vezes que essa altura se repete na base de dados.
- ➤ Por exemplo, 150 cm, temos somente 1 pessoa. 151 cm também somente uma pessoa. 152 cm temos 2 pessoas.
- Podemos perceber que essa tabela já nos fornece a distribuição das frequências dos valores, porém, esse formato de tabela acaba sendo muito grande, conforme pessoas com estaturas diferentes vão sendo acrescentadas.

| Estatura (cm) | Frequência |
|---------------|------------|
| 150           | 1          |
| 151           | 1          |
| 152           | 2          |
| 153           | 1          |
| 154           | 1          |
| 155           | 4          |
| 156           | 3          |
| 157           | 1          |
| 158           | 2          |
| 160           | 5          |
| 161           | 4          |
| 162           | 1          |
| 163           | 2          |
| 164           | 3          |
| 165           | 1          |
| 166           | 1          |
| 167           | 1          |
| 168           | 2          |
| 169           | 1          |
| 170           | 1          |
| 172           | 1          |
| 173           | 1          |
| Total         | 40         |

- ➤ Portanto, o ideal é que façamos a definição de faixas de valores para que a análise fique mais fácil.
- ➤ Podemos então transformar a tabela anterior nesta tabela de distribuição de frequências definindo intervalos:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |



- ➤ Para a construção da tabela basta realizar a soma/contagem das frequências contidas em cada intervalo.
- ➤ Note que temos uma barrinha que separa a classe dos valores mínimos e máximo de cada intervalo.
- ➤ O valor que está do lado da barrinha entra na contagem e o que está do lado que não há a barrinha não está contido na contagem das frequências.
- > Perceba então que o valor final da classe não entra na contagem atual, apenas na próxima.
- ➤ Por exemplo, o número de frequências do valor 154 está na segunda linha e não na primeira.

| Estatura (cm)           | Frequência |
|-------------------------|------------|
| 150   1 <mark>54</mark> | 5          |
| 154   1 <mark>58</mark> | 9          |
| 158   1 <mark>62</mark> | 11         |
| 162   1 <mark>66</mark> | 7          |
| 166   1 <mark>70</mark> | 5          |
| 170    173              | 3          |
| Total                   | 40         |
|                         |            |



- ➤ Vamos aplicar agora os cálculos passo a passo de como você deve definir os intervalos, sabemos que existem várias técnicas estatísticas para isto, mas vamos trabalhar com a técnica mais utilizada que é a aplicação da chamada Fórmula de Sturges que veremos na sequência.
- > Antes disso é importante relembrar os conceitos de terminologia da distribuição de frequência.

> Portanto os conceitos da terminologia da distribuição de frequência:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

**Classe:** intervalos de variação da variável representados simbolicamente por i

#### Limite de classe

Exemplo: 11 = 150 e L2 = 158

- ➤ No limite da classe no caso do exemplo l1, o nº 1 indica de que classe estamos falando e o l por ser minúsculo indica que estamos falando do limite inferior.
- No caso do exemplo L2, o nº 2 indica que se trata da classe 2, porém, como o L é maiúsculo trata-se do limite superior.

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

Classe: intervalos de variação da variável representados simbolicamente por i

#### Limite de classe

Exemplo: 11 = 150 e L2 = 158

Amplitude de um intervalo de classe (hi)

$$hi = Li - Ii (154 - 150 = 4)$$

Amplitude total da distribuição (AT)

$$AT = L_{(max)} - L_{(min)} = 173 - 150 = 23$$

➤ O valor da amplitude total da distribuição (AT), indica que podemos ter um total de 23 alturas diferentes dentro dessa distribuição.

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

Amplitude amostral (AA)

X<sub>min</sub>: 150

 $AA = X_{(max)} - X_{(min)} = 173 - 150 = 23 X_{max}$ : 173

Ponto médio de uma classe (x<sub>i</sub>)

$$Xi = (Li + Ii) / 2 = (158 + 154) / 2 = 156 cm$$

#### Frequência

 $f_2 = 9$  (número de elementos na classe 2)

Atenção aqui, pois neste caso este cálculo será igual ao anterior, porém aqui estamos utilizando os valores de Xmin e Xmax, aqui na amplitude amostral (AA) vamos trabalhar com os valores da amostra (da tabela amostral) e não com os valores máximo e mínimo da classe da distribuição de frequência, uma vez que por exemplo, o nosso valor de altura máximo poderia ser 172, ou seja, Xmax seria 152, conquanto que o Lmax continuaria sendo 173, por conta dos intervalos das classes.

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

#### Amplitude amostral (AA) X<sub>min</sub>: 150

$$AA = X_{(max)} - X_{(min)} = 173 - 150 = 23 X_{max}$$
: 173

#### Ponto médio de uma classe (x<sub>i</sub>)

$$Xi = (Li + Ii) / 2 = (158 + 154) / 2 = 156 cm$$

#### Frequência

 $f_2 = 9$  (número de elementos na classe 2)

- > O ponto médio de uma classe apontado por Xi apresenta realmente o ponto médio da classe analisada.
- Por fim, a frequência é denotada por f minúsculo. O f4 por exemplo indica o número da frequência da classe 4.

- ➤ Agora que já compreendemos os conceitos da terminologia da distribuição de frequência, podemos então verificar como que serão definidos os intervalos de classe.
- ➤ Vamos utilizar então a Fórmula de Sturges para determinar o **número de classes** representado pela letra i. "n" é a quantidade total de elementos n=40.

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

Determinar o número de classes Fórmula de Sturges ( $i = 1 + 3.3 \log n$ )

$$1 + 3.3 * log(40)$$

- ➤ Tendo o número de classes agora precisamos fazer o cálculo da amplitude, de quanto em quanto que vamos contar os valores, por exemplo 150 até 154, 154 até 158 e assim por diante.
- ➤ Vamos determinar a amplitude através da fórmula abaixo onde temos "h" como amplitude, temos AA que representa a amplitude amostral. Portanto:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

Determinar a amplitude do intervalo de classe

h = AA / i (sempre arredondar para cima)

$$23 / 6 = 3,83$$
 (arredondado = 4)

#### Amplitude amostral (AA)

$$AA = X_{(max)} - X_{(min)} = 173 - 150 = 23$$



> Por fim, precisamos fazer a contagem da frequência para cada dasse.

- ➤ Chegou a hora de fazermos a implementação passo a passo da distribuição de frequência manual, aplicando o passo a passo que vimos anteriormente, para então em seguida, utilizarmos as bibliotecas python.
- ➤ No google colab:

import numpy as np #para fazermos a manipulação de vetores e op matemática import matplotlib.pyplot as plt #para gerarmos gráficos no pyhton import pandas as pd #para carregarmos uma base de dados e dataframes import seaborn as sns #biblioteca gráfica

> Precisamos criar o nosso dataset primitivo com os dados da tabela do slide:

#### Tabela primitiva

| 160 | 165 | 167 | 164 | 160 | 166 | 160 | 161 | 150 | 152 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 173 | 160 | 155 | 164 | 168 | 162 | 161 | 168 | 163 | 156 |
| 155 | 169 | 151 | 170 | 164 | 155 | 152 | 163 | 160 | 155 |
| 157 | 156 | 158 | 158 | 161 | 154 | 161 | 156 | 172 | 153 |

dados=np.array([160, 165, 167, 164, 160, 166, 160, 161, 150, 152, 173, 160, 155, 164, 168, 162, 161, 168, 163, 156, 155, 169, 151, 170, 164, 155, 152, 163, 160, 155, 157, 156, 158, 158, 161, 154, 161, 156, 172, 153])

➤ Precisamos agora definirmos o nosso rol, ou seja, os dados ordenados, precisamos ordenar em ordem os dados, portanto:

```
dados=np.sort(dados)
```

Note que se solicitarmos a impressão da variável dados, eles já estão

ordenados:

print(dados)

> Podemos agora buscar os valores mínimos e máximos, para isso:

```
minimo=dados.min()
print(minimo)
maximo=dados.max()
print(maximo)
```



➤ Vamos agora visualizar a quantidade única de pessoas que temos em cada uma dessas alturas:

np.unique(dados, return\_counts=True)

➢ Podemos perceber que ele vai retornar as frequências, e esse array de dados vale como aquela primeira tabela de distribuição de frequências que vimos anteriormente: ———

| Estatura (cm) | Frequência |
|---------------|------------|
| 150           | 1          |
| 151           | 1          |
| 152           | 2          |
| 153           | 1          |
| 154           | 1          |
| 155           | 4          |
| 156           | 3          |
| 157           | 1          |
| 158           | 2          |
| 160           | 5          |
| 161           | 4          |
| 162           | 1          |
| 163           | 2          |
| 164           | 3          |
| 165           | 1          |
| 166           | 1          |
| 167           | 1          |
| 168           | 2          |
| 169           | 1          |
| 170           | 1          |
| 172           | 1          |
| 173           | 1          |
| Total         | 40         |

> Apenas lembrando que nosso objetivo é gerar essa tabela com as faixas:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

Podemos agora gerar um gráfico com os dados: plt.bar(dados, dados)



Percebemos que esse gráfico não mostra ainda uma visão dara distribuição dos valores.



Após a obtenção do rol precisamos agora definir o número de classes, para isso precisamos utilizar a Fórmula de Sturges Determinar o número de classes

Fórmula de Sturges ( $i = 1 + 3.3 \log n$ )

1 + 3.3 \* log(40) 1 + 3.3 \* 1.6 = 6.28

n= len(dados)

print(n) #irá retornar n=40, que é a quantidade de pessoas que temos na base de dados.

> Podemos agora aplicar a fórmula de Sturges de fato:

i = 1 + 3.3\*np.log10(n)

print(i) #i irá retornar exatamente o valor esperado de 6,28



#### > Precisamos agora arredondar o valor de i

i=round(i)

Print(i) #i irá retornar o valor arredondado de 6 que indica exatamente o número de classes que queremos na nossa distribuição.

#### > Precisamos agora calcular a amplitude do intervalo, através da fórmula:

Determinar a amplitude do intervalo de classe

h = AA / i (sempre arredondar para cima)

23 / 6 = 3,83 (arredondado = 4)

Amplitude amostral (AA)

 $AA = X_{(max)} - X_{(min)} = 173 - 150 = 23$ 

#### **➤** No Python:

AA=maximo – minimo

print(AA) #irá retornar o valor de 23, amplitude do intervalo

h=AA/i

print(h) #irá retornar o valor de 3,8333



> Precisamos agora arredondar o valor de h

import math

h=math.ceil(h) #função utilizada para arredondar o número sempre para cima.

print(h) #percebemos que agora temos o valor de h sendo igual a 4 que indica a amplitude do nosso intervalo de classe.

- > Agora podemos efetivamente construir a distribuição de frequência!
- > É necessário definirmos os intervalos:

intervalos=np.arange(minimo, maximo, step=h) <u>#importante perceber que a partição</u> step vai indicar o tamanho do passo que será dado em cada intervalo, vamos utilizar o valor de h que se refere a nossa amplitude.

print(intervalos)

```
intervalos = np.arange(minimo, maximo, step = h)
intervalos
array([150, 154, 158, 162, 166, 170])
```



> Observando a saída "intervalos": intervalos

intervalos = np.arange(minimo, maximo, step = h)
intervalos

array([150, 154, 158, 162, 166, 170])

> Podemos perceber que ele finalizou em 170, porém precisamos que o nosso

intervalo vá até 173:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166 - 170     | 5          |
| 170    173    | 3          |
| Total         | 40         |

> Para isso:

intervalos=np.arange(minimo, máximo + 2, step=h) #impprint(intervalos)

```
intervalos = np.arange(minimo, maximo + 2, step = h)
intervalos
```

array([150, 154, 158, 162, 166, 170, 174])



> Notemos que o valor final terá que ser 174, diferente do esperado 173:

```
intervalos = np.arange(minimo, maximo + 2, step = h)
intervalos
array([150, 154, 158, 162, 166, 170, 174])
```

Contudo isso não é um problema, pois basta considerar que não teremos a barrinha na última classe, igual nas classes anteriores:

| Estatura (cm) | Frequência |
|---------------|------------|
| 150   154     | 5          |
| 154   158     | 9          |
| 158   162     | 11         |
| 162   166     | 7          |
| 166   170     | 5          |
| 170    173    | 3          |
| Total         | 40         |



➤ Nosso objetivo agora é de contar quantos elementos existem em cada intervalo de classe, portanto, vamos percorrer nossa base de dados inteira e vamos fazer um if, se o valor estiver entre 150 e 153, nós vamos fazer a contagem de cada uma das frequências.

intervalo1, intervalo2, intervalo3, intervalo4, intervalo5, intervalo6 = 0, 0, 0, 0, 0 #codificação utilizada para que cada uma dessas variáveis inicialize no valor de zero.

for i in range(n):

if dados[i] >= intervalos[0] and dados[i] < intervalos[1]:

intervalo1 +=1

#o código utilizado vai por tanto analisar os valores de 150 até 153

```
intervalos = np.arange(minimo, maximo, step = h)
intervalos

[ array([150, 154, 158, 162, 166, 170])
```



#### Continuando...

intervalo1, intervalo2, intervalo3, intervalo4, intervalo5, intervalo6 = 0, 0, 0, 0, 0 #codificação utilizada para que cada uma dessas variáveis inicialize no valor de zero.

```
for i in range(n):
```

```
if dados[i] >= intervalos[0] and dados[i] < intervalos[1]:
 intervalo1 += 1
elif dados[i] >= intervalos[1] and dados[i] < intervalos[2]:
 intervalo2 +=1
                             intervalos = np.arange(minimo, maximo, step = h)
                             intervalos
                            array([150, 154, 158, 162, 166, 170])
```



#### > Continuando...

intervalo1, intervalo2, intervalo3, intervalo4, intervalo5, intervalo6 = 0, 0, 0, 0, 0, 0 #codificação utilizada para que cada uma dessas variáveis inicialize no valor de zero.

```
for i in range(n):
 if dados[i] >= intervalos[0] and dados[i] < intervalos[1]:
   intervalo1 +=1
 elif dados[i] >= intervalos[1] and dados[i] < intervalos[2]:
   intervalo2 +=1
 elif dados[i] >= intervalos[2] and dados[i] < intervalos[3]:
   intervalo3 +=1
 elif dados[i] >= intervalos[3] and dados[i] < intervalos[4]:
   intervalo4 += 1
 elif dados[i] >= intervalos[4] and dados[i] < intervalos[5]:
   intervalo5 +=1
 elif dados[i] >= intervalos[5] and dados[i] < intervalos[6]:
   intervalo6 += 1
```



> Agora vamos adicionar em uma lista cada um dos valores dos intervalos:

```
lista intervalos=[]
lista_intervalos.append(intervalo1)
lista_intervalos.append(intervalo2)
lista_intervalos.append(intervalo3)
lista intervalos.append(intervalo4)
lista intervalos.append(intervalo5)
lista intervalos.append(intervalo6)
print(lista intervalos)
```

Podemos verificar que a saída da impressão nos fornece os mesmos valores de frequência da tabela:

[5, 9, 11, 7, 5, 3]

➤ Vamos agora criar uma outra variável chamada de lista\_classes para definirmos um string que fique mais fácil para identificar os valores das classes, exemplo de 150 até 154, 154 até 158, etc:

lista\_classes=[] #representa a variável vazia.

for i in range(len(lista\_intervalos)): #assim vamos percorrer cada um dos intervalos que criamos no slide anterior.

```
lista_classes.append(str(intervalos[i]) + '-' + str(intervalos[i+1]))
print(lista_classes)
```

```
lista_classes
['150-154', '154-158', '158-162', '162-166', '166-170', '170-174']
```

Podemos perceber que agora na variável lista\_classes nós temos as classes e ina gariável lista\_intervalos nós temos as quantidades/frequências.

➤ Por fim, agora sim podemos gerar um gráfico de barras, diferente do anteriormente gerado, agora sim teremos um gráfico que irá mostrar as frequências:

plt.bar(lista\_classes, lista\_intervalos) #sendo lista\_classes eixo x do gráfico e lista\_intervalos eixo y.

plt.title('Distribuição de frequência – histograma') #colocar um título no gráfico plt.xlabel('intervalos') #representa o rótulo do eixo x

plt.ylabel('valores'); #representa o rótulo do eixo y, o ; do final é para ele não mostrar

as mensagens do matplotlib



