Chad McKell updated: 9/20

ABOUT

Address $9500~\mathrm{Gilman~Dr~MC}$ 0099

La Jolla, CA 92093-0099

Phone +1 661 289 4215Email cmckell@ucsd.edu Website chadmckell.com

Research I develop computational techniques for simulating physical phenomena such as

sound, light, fluid motion, and solid motion. For my Ph.D., I study physics-based audiovisual fluid simulation. My research has applications in computer music, computer

graphics, mechanical engineering, and other fields.

EDUCATION

9/19-University of California San Diego, Ph.D. in Computer Music

GPA: 4.0. Coursework: acoustics, computer graphics, DSP, machine learning.

Dissertation topic: physics-based audiovisual fluid simulation. Mentors: Tamara Smyth, Shlomo Dubnov, Miller Puckette.

9/16-10/17University of Edinburgh, M.S. in Acoustics and Music Technology

8/09-12/15 Wake Forest University, M.S. in Physics 6/02 - 8/09Brigham Young University, B.S. in Biophysics

ACADEMIC APPOINTMENTS

University of California San Diego, Teaching Assistant/Researcher (Music)
University of North Carolina School of the Arts, Adjunct Instructor (Physics)
Wake Forest University, Teaching Assistant (Physics)
Brigham Young University, Tutorial Lab Assistant (Physics)
Brigham Young University, Research Assistant (Philosophy)

PROFESSIONAL EMPLOYMENT

7/18-7/19Applied Research in Acoustics, R&D Scientist

> Culpeper, Virginia. Developed physics-based signal processing algorithms for naval sonar systems. Processed acoustic signals using methods such as matched filtering, sparse estimation, and beamforming. Researched sound propagation and reverberation.

10/14-8/16 J.P. Morgan/Neovest, Software Development Engineer in Test

> Orem, Utah. Developed Java-based automation software for J.P. Morgan's investment trading platform, Neovest. Created object-oriented unit tests to validate new features

and locate software bugs.

CONSULTING

5/18-5/18**Moog Music**: Audio effects development in C++ for digital sound synthesizers.

4/17-9/17Lofelt: Audio algorithm development and mathematical modeling for audio-haptic

devices, including the Razer Nari Ultimate headsets.

ACADEMIC RESEARCH ACTIVITIES

1/20-University of California San Diego, Ph.D. Student

> La Jolla, California. Research areas: acoustics, computer graphics, fluid dynamics. Develop physics-based audiovisual fluid simulations. Simulation methods of interest

include SPH and FDTD schemes.

1/17 - 8/17University of Edinburgh, Master's Student

> Edinburgh, Scotland. Research area: acoustics. Developed physics-based numerical simulations of speech and elastic solid vibrations with Stefan Bilbao. Simulation methods

included modal synthesis and FDTD schemes.

1/10-9/13Wake Forest University, Master's Student

> Winston-Salem, North Carolina. Research areas: optics, fluid dynamics. Achieved the first known realization of transverse particle tracking in surface-isolated laser traps. Study topics included laser beam characterization, fluid diffusion, fluorescence microscopy, and

particle tracking.

8/07-8/09 Brigham Young University, Undergraduate Student

Provo, Utah. Research areas: biophysics, condensed matter physics. Studied structural

properties of biological membranes using atomic force microscopy.

TEACHING EXPERIENCE

UCSD MUS 5 MUS 15	Sound in Time—TA. Spring 2020 (1 term). Student approval: 100%. Music for Video Games—TA. Winter 2020 (1 term). Student approval: 100%.
UNCSA SCI 1100	General Physics—Instructor. Fall 2012 (1 term).
<u>WFU</u> PHY 113 PHY 114	General Physics I (Mechanics)—TA. 2009–2011 (4 terms). General Physics II (E&M)—Tutor. Fall 2010 (1 term).
BYU PHSCS 105 PHSCS 106 PHSCS 121 PHSCS 123	General Physics 1 (Mechanics)— <i>Tutor</i> . 2008–2009 (2 terms). General Physics 2 (E&M)— <i>Tutor</i> . Winter 2009 (1 term). Principles of Physics 1 (Mechanics)— <i>Tutor</i> . 2008–2009 (2 terms). Principles of Physics 2 (Waves/Thermo)— <i>Tutor</i> . W/Sp 2009 (2 terms).

Principles of Physics 3 (E&M)—Tutor. W/Sp 2009 (2 terms)

PH.D. COURSEWORK

PHSCS 220

CSE 167	Computer Graphics I (Jürgen Schulze)
CSE 169	Computer Animation—audit (Steve Rotenberg)
CSE 291	Physical Simulation—audit (Steve Rotenberg)
MUS 270A	Digital Audio Processing (Tamara Smyth)
MUS 270B	Analysis of Musical Sound (Miller Puckette)
MUS 270D	Advanced Projects in Computer Music (Miller Puckette)
MUS 206	Deep Learning for Music Generation (Shlomo Dubnov)
MUS 206	Computational Acoustic Modeling (Tamara Smyth)
MUS 206	Pure Data Seminar (Miller Puckette)
MUS 298	Directed Research (Shlomo Dubnov)

PUBLICATIONS

Journal Articles

(1) C. McKell and K. Bonin, "Optical corral using a standing-wave Bessel beam," *Journal of the Optical Society of America B*, Vol. 35, No. 8, 1910–1920, 2018.

Conference Proceedings

(2) C. McKell, "Sonification of Optically-Ordered Brownian Motion," In Proceedings of the International Computer Music Conference (ICMC), Utrecht, Netherlands, September 2016.

Master's Theses

- (3) C. McKell, Real-Time Physical Modeling for Haptic Feedback Rendering, Final Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (4) C. McKell, Finite-Difference Simulations of Speech with Wall Vibration Losses, Special Project Dissertation, University of Edinburgh, Acoustics and Audio Group, 2017. (Advisor: Stefan Bilbao).
- (5) C. McKell, Confinement and Tracking of Brownian Particles in a Bessel Beam Standing Wave, Master's Thesis, Wake Forest University, Department of Physics, 2015. (Advisor: Keith Bonin).

Technical Reports

(6) C. McKell, H. Conley, and D. Busath, "AFM Study of Structural Changes in Supported Planar DPPC Bilayers Containing General Anesthetic Isoflurane," Brigham Young University, Paper 827, 2010.

Conference Abstracts

(7) K. Bonin and C. McKell, "Tracking Brownian Particles in a Standing-Wave Bessel Beam 2D Optical Trap," SPIE: Optical Trapping and Optical Micromanipulation, XIV Meeting, 2017.