Eletricidade e Circuitos para Computação

1^a. Lista de Exercícios

Lei de Ohm, Associação de Resistores, Divisor de Tensão

- Determine as correntes i_g e i_a no circuito da Fig. P2.11.
- \bar{z} Determine a tensão v_g .
- Verifique que a potência fornecida pela fonte é igual à potência dissipada nos resistores.

Fig. P2.11

A corrente i_a no circuito da Fig. P2.12 é 20 A. Determine (a) i_o ; (b) i_g ; (c) a potência fornecida pela fonte de corrente.

Fig. P2.12

3.3

Determine a potência dissipada no resistor de 5 Ω do circuito da Fig. P3.3.

Fig. P3.3

3.4

Para o circuito da Fig. P3.4, calcule

- a) $v_0 e i_0$
- b) a potência dissipada no resistor de 15 Ω .
- c) a potência fornecida pela fonte de tensão.

Fig. P3.4

Description a resistência equivalente R_{ab} para os dois circuitos da Fig. P3.6.

- Determine a resistência equivalente R_{ab} para os três
- circuitos da Fig. P3.7.

 Determine a potência fornecida pela fonte para os três circuitos da Fig. P3.7.

P3.7

Determine (a) i_2 , (b) i_1 e (c) i_o no circuito da Fig. P2.26.

Fig. P2.26

311

- a) Determine a tensão v_s no circuito da Fig. P3.11.
- b) Substitua a fonte de 30 V por uma fonte de tensão genérica de valor V_s . Suponha que V_s é positiva no terminal superior. Determine v_s em função de V_s .

Fig. P3.11

Determine v_o e v_g no circuito da Fig. P3.12.

Fig. P3.12

Determine i_o e i_g no circuito da Fig. P3.13.

Fig. P3.13

Para o circuito da Fig. 3.14, calcule (a) i_0 e (b) a potência dissipada no resistor de 10Ω .

Fig. P3.14

- A corrente no resistor de 9 Ω do circuito da Fig. P3.15 é
- 1 A, como mostra a figura.
- a) Calcule v_g .
- b) Calcule a potência dissipada no resistor de 20 Ω .

Fig. P3.15

3.16

No circuito divisor de tensão da Fig. P3.16, o valor de v_o sem carga é 6 V. Quando a resistência de carga R_L é ligada aos terminais a e b, v_o cai para 4 V. Determine R_L .

Fig. P3.16

3.17

- a) O divisor de tensão da Fig. P3.17(a) é carregado com o divisor de tensão da Fig. P3.17(b); em outras palavras, a é ligado a a' e b é ligado a b'. Determine o valor de v_o.
- b) Suponha agora que o divisor de tensão da Fig. P3.17(b) seja ligado ao divisor de tensão da Fig. P3.17(a) através de uma fonte de tensão controlada por corrente, como na Fig. P3.17(c). Determine o valor de v_o.
- c) Qual o efeito da fonte de tensão controlada por corrente sobre o divisor de tensão ligado à fonte de 240
 V?

Fig. P3.17

- 3.18 No circuito divisor de tensão da Fig. P3.18, a tensão sem carga é 150 V. O menor resistor de carga que se pretende ligar ao divisor tem uma resistência de $60~\mathrm{k}\Omega$. Quando o divisor está carregado, $v_{\rm o}$ não deve ser menor que $100~\mathrm{V}$.
 - a) Determine os valores de R_1 e R_2 para que o circuito divisor de tensão atenda às especificações acima.
 - b) Suponha que os resistores disponíveis sejam de 1/16, 1/8, 1/4, 1 e 2 W. Qual desses tipos você escolheria?

Fig. P3.18

- 3.19 Suponha que o divisor de tensão da Fig. P3.18 tenha sido montado com resistores de 1 W. Qual o menor valor de R_L que pode ser usado sem que o limite de dissipação de um dos resistores do divisor seja excedido?
- 3.20 a) Calcule a tensão sem carga v_o para o circuito divisor de tensão da Fig. P3.20.
 - b) Calcule as potências dissipadas em R_1 e R_2 .
 - c) Suponha que os resistores disponíveis sejam todos de 0,5 W. A tensão sem carga deve ser a mesma do item (a). Especifique os valores de R₁ e R₂.

Fig. P3.20