# CE 300 SUMMER PRACTISE INTRODUCTION TO MATLAB

## MATLAB TOOLBOXES

Beliz Uğurhan K6-108

#### WHAT IS A MATLAB TOOLBOX?

Toolboxes are libraries of extra routines.

#### **Example Toolboxes Civil Engineers Use:**

- Aerospace Toolbox
- Curve Fitting Toolbox
- Financial Toolbox
- Image Processing Toolbox
- Mapping Toolbox
- Optimization Toolbox
- Paralle Computing Toolbox
- Signal Processing Toolbox
- Statistics Toolbox
- Symbolic Math Toolbox
- System Identification Toolbox
- Simulink

#### OUTLINE

- Symbolic Math Toolbox
- Curve Fitting Toolbox
- Statistics Toolbox

#### **OBJECTIVE:**

Introduce you 3 toolboxes of MATLAB.

Get familiar with the basics of these toolboxes.

## Symbolic Math Toolbox

- Perform symbolic computations.
- Basic tasks:
  - Differentiation
  - Integration
  - Linear algebra
  - Simplification
  - Equation solving
- You can access from Matlab Command Line or from MuPAD Notebook.

#### Symbolic Toolbox Basics

- o x=sym('x') defines x as a symbolic object
- o x=sym('w', 'x', 'y', 'z') defines w,x,y,z as symbolic objects
- o syms w x y z
- a=sym(3/5) a is defined as a symbolic object and assigned to 3/5.
- M=[w x; y z] M is a symbolic matrix since w,x,y,z are symbolic objects.
- f=5\*x^2+3\*x-2 By assigning different values to x, you can obtain the correspoding values of f by: eval(f)

OR

subs(f, 1) Substitutes 1 as x in f.

```
f=5*x^2+3*x-2:
>> eval(f)
     6
>> x=2;
>> eval(f)
    24
>> subs(f,1)
>>
```

#### SYMBOLIC EXPRESSIONS

Given a function f(x)

- simplify(f) Simplifies the symbolic expression
- expand(f) Groups similar terms, multiplies parenthesis to rewrite a polynomial in a standart form
- factor(f) Shows the polynomial roots

```
>> syms x
\Rightarrow f=(x+3)*(x^2+5*x+2)+(x^2+1)*(x+3)
>> expand(f)
ans =
2*x^3 + 11*x^2 + 18*x + 9
>> factor(f)
ans =
(2*x + 3)*(x + 3)*(x + 1)
>>
```

#### DIFFERENTIATION AND INTEGRATION

diff and int are the two functions used for differentiation and integration, respectively.

```
>> syms x
>> f=atan(x);
>> diff(f)
ans =
1/(x^2 + 1)
>> syms y
   f=\sin(x) \cdot \exp(2 \cdot y);
>> diff(f,y)
ans =
2*exp(2*y)*sin(x)
              Differentiate f
>>
               with respect to y
```

```
>> syms x
>> f=x^2+x+3;
>> y=int(f)
(x*(2*x^2 + 3*x + 18))/6
                     INTEGRAL
>> expand(y)
                     Integrate f with
                     respect to y
ans =
x^3/3 + x^2/2 + 3*x
>> syms y
 > int(f,y)
                  DEFINITE
ans =
                  INTEGRAL
x^4*y + y^4/4
                  Integrate f
                  with respect to
  int(f,y,1,1
                  y between 1
ans =
                  and 10.
9*x^4 + 9999/4
```

## EQUATION SOLVING &

### PLOTTING

solve is used to obtain the solution of system equations.

>> syms x x1 x2 x3

ans =

-1

```
ezplot is used to obtain
simple plots of equations.
```

```
>> eq='x^2-6*x-7';
>> solve(eq)
ans =
 -1
>> eq1='x1+2*x2+2*x3=0';
>> eq2='2*x1+3*x2+4*x3=1';
>> eq3='-x1+x2+x3=-6';
>> sol=solve(eq1,eq2,eq3);
>> sol.x1
ans =
>> sol.x2
ans =
-1
>> sol.x3
```

```
>> syms x
>> f='sin(x)+cos(x)';
>> ezplot(f,[-10,10]);
```



#### CURVE FITTING TOOLBOX

- Fitting methods for linear least squares, nonlinear least squares, weighted least squares, constrained least squares, and robust fitting are available
- Data and fit statistics to assist you in analyzing your models
- In the command window, type:
- > cftool to open Curve Fitting Toolbox
- sftool to open Surface Fitting Toolbox
- We will work on Curve Fitting Toolbox.



After having created the data set, press Fitting button.

Select the type of fit.





o In the curve fitting tool, you can visualize the fitted models with respect to the dataset.

 You can see the properties of the fitted plot from the command window.

#### Command Window

New to MATLAB? Watch this Video, see Demos, or read Getting Started.

```
>> fittedmodel1
  fittedmodel1 =
       General model Gauss1:
       fittedmodel1(x) = a1*exp(-((x-b1)/c1)^2)
       Coefficients (with 95% confidence bounds):
         a1 = 1.912e+032 (-2.389e+037, 2.389e+037)
         b1 = -4.296e+004 (-7.72e+007, 7.711e+007)
                     5153 (-4.617e+006, 4.627e+006)
  >> fittedmodel2
  fittedmodel2 =
       General model Exp1:
       fittedmodel2(x) = a*exp(b*x)
       Coefficients (with 95% confidence bounds):
         a = 3.701e+005 (3.481e+005, 3.921e+005)
                 0.03405 (0.03384, 0.03426)
fx >>
```

#### CURVE FITTING FROM THE COMMAND LINE

o options = fitoptions('Method',method)

| Method | The fitting method. A complete list of supported fitting methods is given below. The default is 'None'. |                                                     |  |
|--------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
|        | 'NearestInterpolant'                                                                                    | Nearest neighbor interpolation                      |  |
|        | 'LinearInterpolant'                                                                                     | Linear interpolation                                |  |
|        | 'PchipInterpolant'                                                                                      | Piecewise cubic Hermite interpolation (curves only) |  |
|        | 'CubicSplineInterpolant'                                                                                | Cubic spline interpolation                          |  |
|        | 'BiharmonicInterpolant'                                                                                 | Biharmonic surface interpolation                    |  |
|        | 'SmoothingSpline'                                                                                       | Smoothing spline                                    |  |
|        | 'LowessFit'                                                                                             | Lowess smoothing (surfaces only)                    |  |
|        | 'LinearLeastSquares'                                                                                    | Linear least squares                                |  |
|        | 'NonlinearLeastSquares'                                                                                 | Nonlinear least squares                             |  |

o ffun = fittype(libname) \_\_\_\_



o ffun = fittype(expr)



```
>> g = fittype('a*x^2+b*x+c','coeff',{'a','b','c'})
g =
    General model:
    g(a,b,c,x) = a*x^2+b*x+c
```

| libname           | Description                       |
|-------------------|-----------------------------------|
| 'poly1'           | Linear polynomial curve           |
| 'poly11'          | Linear polynomial surface         |
| 'poly2'           | Quadratic polynomial curve        |
| 'linearinterp'    | Piecewise linear interpolation    |
| 'cubicinterp'     | Piecewise cubic interpolation     |
| 'smoothingspline' | Smoothing spline (curve)          |
| 'lowess'          | Local linear regression (surface) |

#### CURVE FITTING FROM THE COMMAND LINE

- [fitobject, gof] = fit(x,y,fitType) fits the data in x and y with the library model, anonymous function or fittype object specified by fitType.
- It returns the goodness-of-fit statistics to the structure gof which are summarized in the below table.

| Field      | Value                                                   |
|------------|---------------------------------------------------------|
| sse        | Sum of squares due to error                             |
| R2         | Coefficient of determination                            |
| adjustedR2 | Degree-of-freedom adjusted coefficient of determination |
| stdError   | Root mean squared error (standard error)                |

#### STATISTICS TOOLBOX

- Aim is to assess and understand data
- Functions for modeling data, analyzing historical trends, simulating systems, developing statistical algorithms.

#### **Key Features**

- Data organization and management
- Descriptive statistics
- Statistical plotting and data visualization
- Probability distributions
- Analysis of variance (ANOVA)
- Linear and nonlinear modeling
- Multivariate statistics
- Design of Experiments (DOE)
- Hypothesis testing
- Statistical Process Control (SPC)

#### MEASURE OF CENTRAL TENDENCY

| Function<br>Name | Description         |
|------------------|---------------------|
| geomean          | Geometric mean      |
| harmmean         | Harmonic mean       |
| mean             | Arithmetic average  |
| median           | 50th percentile     |
| mode             | Most frequent value |
| trimmean         | Trimmed mean        |

#### Note that:

mean(x) is the average of the data x
median(x) is the middle value of the data x sorted
by value

mode (x) is the most common value in the dataset

#### STATISTICAL ANALYSIS

```
>> a=[1 2 3;1 3 4;2 2 5]
a =
                                      >> mean(a)
    1
    1 3
                                      ans =
                                          1.3333 2.3333
                                                            4.0000
                                      >> median(a)
                                      ans =
                                             2 4
                                           1
                                      >> mode(a)
                                      ans =
```

3

1

#### MEASURES OF SCALE (MAXIMUM AND MINIMUM)

max(x): find the largest value in x [y,k]=max(x): find y and k that are the maximum value of x, indices of first maximum.

 $\max(x,y)$ : compares x and y and report the minimum

min(x): find the smallest value in x

[y,k]=min(x): find y and k that are the minimum value of x, indices of first minimum.

min(x,y): compares x and y and report the minimum

#### STATISTICAL ANALYSIS

```
>> a=[1 2 3;4 5 6;7 8 9];
b=[7 8 9;1 2 3;4 5 6];
       >> max(a)
     >> [y,k]=max(a)
     >> min(a,b)
      \gg max(1,5)
```

## MEASURES OF SCALE (SUM AND PRODUCT)

sum (x): sum of elements
prod (x): product of elements
cumsum (x): cumulative sum of elements
cumprod (x): cumulative product of the
elements

### STATISTICAL ANALYSIS

```
>> sum(A)

ans =

ans =

1 2 3

5 7 9

12 15 18

>> cumsum(A)

ans =

1 12 3

5 7 9

12 15 18
```

#### MEASURE OF DISPERSION

| Function<br>Name | Description                  |
|------------------|------------------------------|
| iqr              | Interquartile range          |
| mad              | Mean absolute deviation      |
| moment           | Central moment of all orders |
| range            | Range                        |
| std              | Standard deviation           |
| <u>var</u>       | Variance                     |

#### Note that;

standard deviation shows how much variation there is from the data average

variance shows how far a set of numbers are spread out from each other.

#### RANDOM NUMBER GENERATION

- o randn([m n]) returns an mxn matrix containing numbers that obey standart normal distribution
- o lognrnd (mu,sigma,m,n) returns an mxn matrix containing numbers that obey lognormal distribution that have mu and sigma as the mean and stdev of the corresponding normal dist.

#### PROBABILITY DISTRIBUTION

• Type **disttool** to the command window



## QUESTIONS??

