ap3650 nyc crime data visualization

Anita

March 13, 2018

```
library(data.table)
library(vcdExtra)
library(extracat)
library(ggplot2)
library(dplyr)
library(tidyverse)
library(lubridate)
library(RColorBrewer)
#fread("NYPD_Complaint_Data_Historic.csv",na.strings="",colClasses = c(ParkName="c",HADEVELOPT="c"))->c
#crime_df <- fread("NYPD_Complaint_Data_Historic.csv",na.strings="")</pre>
\#crime\_df\_1 \leftarrow read.csv("NYPD\_Complaint\_Data\_Historic.csv", header=TRUE)
## Copied from rj2168.rmd for uniform read and variable names
var_names <- c("Id", "DateStart", "TimeStart", "DateEnd", "TimeEnd", "DateReport", "ClassCode", "Offens</pre>
               "IntClassCode", "IntOffenseDesc", "AtptCptdStatus", "Level", "Jurisdiction", "Boro", "Pc
               "PremDesc", "ParkName", "HousingDevName", "XCoord", "YCoord", "Lat", "Long", "Lat_Long")
crime_df <- fread("NYPD_Complaint_Data_Historic.csv",na.strings="", col.names = var_names, stringsAsFac</pre>
##
Read 0.0% of 5580035 rows
Read 3.6% of 5580035 rows
Read 7.0% of 5580035 rows
Read 10.6% of 5580035 rows
Read 13.8% of 5580035 rows
Read 17.0% of 5580035 rows
Read 19.9% of 5580035 rows
Read 23.3% of 5580035 rows
Read 26.9% of 5580035 rows
Read 28.7% of 5580035 rows
Read 29.9% of 5580035 rows
Read 33.7% of 5580035 rows
Read 37.5% of 5580035 rows
Read 40.5% of 5580035 rows
Read 43.0% of 5580035 rows
Read 45.9% of 5580035 rows
Read 48.9% of 5580035 rows
Read 51.8% of 5580035 rows
Read 53.9% of 5580035 rows
Read 57.3% of 5580035 rows
Read 61.3% of 5580035 rows
Read 64.7% of 5580035 rows
Read 67.4% of 5580035 rows
Read 71.1% of 5580035 rows
```

```
Read 75.3% of 5580035 rows
Read 79.4% of 5580035 rows
Read 83.7% of 5580035 rows
Read 87.1% of 5580035 rows
Read 90.3% of 5580035 rows
Read 94.1% of 5580035 rows
Read 98.2% of 5580035 rows
Read 5580035 rows and 24 (of 24) columns from 1.362 GB file in 00:00:49
```

Data Manipulations

```
#Convert dates and times to correct format

#New Variable Names
crime_df$DateStart <- as.Date(crime_df$DateStart, format='%m/%d/%Y')
crime_df$DateEnd <- as.Date(crime_df$DateEnd, format='%m/%d/%Y')
crime_df$DateReport <- as.Date(crime_df$DateReport, format='%m/%d/%Y')

crime_df$TimeStart <- as.POSIXct(crime_df$TimeStart, format='%H:%M:%S')
crime_df$TimeEnd <- as.POSIXct(crime_df$TimeEnd, format='%H:%M:%S')</pre>
```

Plots

Warm-up Plot :-) Bar Chart

```
ggplot(crime_df,aes(Level)) +
  geom_bar() +
  ggtitle("Distribution of Crime Category")
```

Distribution of Crime Category

Type of Offense

```
ggplot(crime_df,aes(PremDesc)) +
  geom_bar() +
  facet_wrap(~Level) +
  coord_flip() +
  ggtitle("Crime Category Vs Place of Crime")
```

Crime Category Vs Place of Crime

Month and Time and Type of Crime

```
#crime_df <- crime_df %>% drop_na()
  ggplot(crime_df, aes(Level)) +
  geom_bar() +
  #facet_wrap(~month(DateStart))
  #facet wrap(~hour(TimeStart))
  facet_grid(month(DateStart)~hour(TimeStart))
                                                                                  19
                                                                                      20
  15000 -
  10000 -
   5000 -
     Ο
  15000 -
  10000 -
   5000 -
     0 -
  15000 -
  10000 -
   5000 -
  15000 -
  10000 -
   5000 -
     0 -
  15000 -
  10000 -
   5000 -
     0 -
  15000 -
  10000 -_
   5000 -
15000 -
10000 -
5000
     0 -
  15000 -
  10000 -
   5000 -
     0
  15000 -
  10000 -
   5000 -
  15000 -
  10000 -
   5000 -
  15000 -
  10000 -
  15000 -
  10000 -
   5000 -
  15000 -
  10000 -
                                                                                                          Ϋ́
   5000 -
                                  Level
```

Time Series - Trend of Crime Rate

Trend/Rate of Crimes in Each Category Across year

Trend/Rate of Crimes in Each Category Across year - sampled month-w

Crime Trend over Years comparing Boroughs

 $^{^*}$ Shows monthly pattern similar to Jingbo's * Year pattern fluctuates * Some NM_BORO are empty * Gaps between bororughs reduces towards later years

length of Crime Vs Type of Crime

- 1. There are some cases where there might be typo on "To Date" especially year might be typo
- 2. Observed larceny (grand and petite have lot of cases)

3. There are blank OFfense category

Atempted Crime vs Type of Crime

Attempted Crime Status for Different Types of crime

Attempted Crime Trend

To find Top 10 Crime Categories, mosaic plots building blocks

Boro, Juris, Crime Categories


```
#doubledecker(TOP_OFFENSE~Boro, data=crime_sort)
ggplot(crime_sort, aes(TOP_OFFENSE,Freq, fill=Boro)) +
  geom_col() +
  facet_grid(Level~ Boro) +
  coord_flip()
```


Time Trend of Top OFFENSE Category

Trend/Rate of Crimes in Each Offense Catgory VS year

Trend/Rate of Crimes in Each Offense Catgory - Common Starting Point V


```
\#\# Crime PD top
    crime_pd_top_all_boro <- crime_df %>%
                      filter(!is.na(Boro)) %>%
                      filter(IntOffenseDesc != "" && !is.na(IntOffenseDesc) && OffenseDesc != "" && Bor
                      group_by(Boro,IntOffenseDesc) %>%
                      summarize(count = n()) %>%
                      top_n(n=6, wt=count) %>%
                      arrange(Boro, desc(count))
   crime_pd_top <- crime_df %>%
                      filter(IntOffenseDesc != "" && !is.na(IntOffenseDesc) && (Boro != "")) %>%
                      group_by(IntOffenseDesc) %>%
                      summarize(count = n()) %>%
                      top_n(n=20, wt=count)
  ggplot(crime_pd_top, aes(reorder(IntOffenseDesc,count), count)) +
   geom_col() +
    coord_flip()
```



```
ggplot(crime_pd_top_all_boro, aes(reorder(IntOffenseDesc,count),count, fill=Boro)) +
  geom_col() +
  coord_flip() +
  facet_wrap(~Boro, scales="free")
```


total classification of overall crimes (pd_desc) -> 409

** The above plot shows something surprising, the categories are not standard, need to research more. For example, dangerous drugs is under Felony as well as Misdemeanor!! **

• I tired indivial Crime Types, the colors were too confusing as lot of categories

```
crime_parks <- crime_df %>%
                 filter(Boro!="",ParkName!="",Level!="") %>%
                 group_by(Boro,ParkName,Level) %>%
                 summarize(count=n())
 #crime_parks <- crime_parks %>%
                  arrange(desc(count))
crime_pk <- crime_parks %>%
                group_by(Boro) %>%
                top_n(n=10, wt=count)
 crime_parks_1 <- crime_df %>%
                 filter(Boro!="",ParkName!="",OffenseDesc!="") %>%
                 group_by(Boro,ParkName,OffenseDesc) %>%
                 summarize(count=n())
crime_pk_1 <- crime_parks_1 %>%
                group_by(Boro) %>%
                top_n(n=10, wt=count)
 getPalette = colorRampPalette(brewer.pal(18, "Set1"))
 ggplot(crime_pk_1 ,aes(ParkName, count, fill=OffenseDesc)) +
  geom_col() +
```

```
facet_wrap(~Boro, ncol=1, scales="free_y") +
scale_fill_manual(values = getPalette(18)) +
# scale_fill_brewer(palette="Set3") +
coord_flip()
```



```
ggplot(crime_pk_1 ,aes(ParkName, count, fill=OffenseDesc)) +
  geom_col() +
  facet_wrap(~Boro, ncol=1, scales="free") +
  scale_fill_manual(values = getPalette(18)) +
  coord_flip()
```


trial on ggmap

```
library(ggmap)

#NYC <- get_map(location = "new york city", color = "bw", zoom = 15, source = "google")

#ggmap(NYC)

#

#ggplot()+geom_point(data = crime_df, aes(x = Longitude, y = Latitude, colour = factor(Level)))</pre>
```

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.