TAKE AWAYS

- . CIRCUITS / SWITCHES
- . CODING SCHEMES
- . BINARY DIGITS
- . 2ⁿ
- . 5 generations of computers
- . Moore's Law
- . Bits
- . Bits, Bytes, KB, MB, GB, TB
- . Machine Language

Computers Run On ELECTRICITY

Electricity Has Two States: On & Off

1 Light How Many Messages can be stored / conveyed?

on	Come in
off	Go away

2 Lights How Many Messages can be stored / conveyed?

off off	Go away
off on	Come in
on off	Bring pizza
on on	Bring beer

3 Lights How Many Messages can be stored / conveyed?

off off off	Run away
off off on	Come in
off on off	Bring pizza
on off off	Bring beer
on on off	By land
on off on	By sea
off on on	Aerosmith
on on on	Jack Daniel's

off off off (0 0 0)	Run away
off off on (0 0 1)	Come in
off on off (0 1 0)	Bring pizza
on off off (1 0 0)	Bring beer
on on off (1 1 0)	By land
on off on (1 0 1)	By sea
off on on (0 1 1)	Aerosmith
on on on (1 1 1)	Jack Daniel's

0 0 0	Run away
0 0 1	Come in
0 1 0	Bring pizza
1 0 0	Bring beer
1 1 0	By land
1 0 1	By sea
0 1 1	Aerosmith
1 1 1	Jack Daniel's

0	0	0	Run away
0	0	1	Come in
0	1	0	Bring pizza
1	0	0	Bring beer
1	1	0	By land
1	0	1	By sea
0	1	1	Aerosmith
1	1	1	Jack Daniel's

0	0	0	A
0	0	1	В
0	1	0	C
1	0	0	D
1	1	0	E
1	0	1	F
0	1	1	G
1	1	1	H

0	0	0	A
0	0	1	В
0	1	0	С
1	0	0	D
1	1	0	Ε
1	0	1	F
0	1	1	G
1	1	1	

0	0	1	
0	0	0	
1	0	0	
0	1	0	
0	0	0	
0	0	1	

0	0	0	A
0	0	1	
0	1	0	C
1	0	0	D
1	1	0	Ε
1	0	1	F
0	1	1	G
1	1	1	Н

0	0	1	В
0	0	0	
1	0	0	
0	1	0	
0	0	0	
0	0	1	

0	0	0	A
0	0	1	В
0	1	0	С
1	0	0	D
1	1	0	Ε
1	0	1	
0	1	1	G
1	1	1	

0	0	1	В
0	19	0	A
1	0	0	
0	1	0	
0	0	0	
0	0	1	

0	0	0	A
0	0	1	В
0	1	0	C
1	0	0	
1	1	0	Ε
1	0	1	F
0	1	1	G
1	1	1	Н

0	0	1	В
0	0	0	A
1	9	0	D
0	1	0	
0	0	0	
0	0	1	

0	0	0	A
0	0	1	В
0	1	0	С
1	0	0	D
1	1	0	Ε
1	0	1	F
0	1	1	G
1	1	1	Η

	0		В
O_{-}	0	0	A
1	0	0	D
0	1	0	C
	1 0		C

0	0	0	A
0	0	1	B
0	1	0	C
1	0	0	D
1	1	0	Ε
1	0	1	
0	1	1	G
1	1	1	Н

0	0	1	В
0	0	0	A
1	0	0	D
0	1	0	C
0	0	0	A
0	0	1	

0	0	0	A
0	0	1	В
0	1	0	
1	0	0	D
1	1	0	E
1	0	1	F
0	1	1	G
1	1	1	Н

0	0	1	В
0	0	0	A
1	0	0	D
0	1	0	С
0	0	0	A
Ó	0	1	В

Generations of Computers

- 1. Vacuum tubes
- 2. Transistors
- 3. Integrated circuits (chips)
- 4. Microprocessors (cpu's)
- 5. AI (?)

Moore's Law: The number of transistors on microchips doubles every two years

Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Moore's Law 18 - 20 months processing power doubles

GORDON MOORE (1970)

Terminology Disambiguation - Circuits, Switches, Transistors, and Gates

circuits, switches, transistors, and even "gates" are all words used to refer to this thing within a computer that can either be ON or OFF. It's a circuit, it's a switch, it's a gate that can either be OPENED or CLOSED, it's a transistor you will learn that people use all of those words to talk about this same thing, this ability of computers to store ON / OFF states.

1 light	2^1	Represent 2 things
2 light	2^2	Represent 4 things
3 light	2^3	Represent 8 things
4 light	2^4	Represent 16 things
5 light	2^5	Represent 32 things
6 light	2^6	Represent 64 things
7 light	2^7	Represent 128 things
8 light	2^8	Represent 256 things

1 light	2^1	Represent 2 things
2 light	2^2	Represent 4 things
3 light	2^3	Represent 8 things
4 light	2 ⁴	Represent 16 things
5 light	2^5	Represent 32 things
6 light	2^6	Represent 64 things
7 light	2^7	Represent 128 things
8 light	2^8	Represent 256 things

16 Lights How Many Messages can be stored / conveyed?

 $2^{16} = 65,536$

32 Lights How Many Messages can be stored / conveyed?

$$2^{32} = 4,294,967,296$$

Bits = Binary Digits

Bits = **B**inary Digits

Measuring Bits

1 bit	
8 bits	1 byte
1024 bytes	1 KiloByte
1024 KiloBytes	1 MegaByte
1024 MegaBytes	1 GigaByte
1024 GigaBytes	1 TeraByte

1 bit	
8 bits	1 byte
1000 bytes	1 KiloByte
1000 KiloBytes	1 MegaByte
1000 MegaBytes	1 GigaByte
1000 GigaBytes	1 TeraByte

1 bit
8 bits
8,000 bits
8,000,000 bits
8,000,000,000 bits
8,000,000,000,000 bits

How many bits are in 2 bytes?

1 bit	
8 bits	1 byte
1000 bytes	1 KiloByte
1000 KiloBytes	1 MegaByte
1000 MegaBytes	1 GigaByte
1000 GigaBytes	1 TeraByte

1 bit
8 bits
8,000 bits
8,000,000 bits
8,000,000,000 bits
8,000,000,000,000 bits

How many bits are in 2 kilobytes?

1 bit	
8 bits	1 byte
1000 bytes	1 KiloByte
1000 KiloBytes	1 MegaByte
1000 MegaBytes	1 GigaByte
1000 GigaBytes	1 TeraByte

1 bit
8 bits
8,000 bits
8,000,000 bits
8,000,000,000 bits
8,000,000,000,000 bits

How many bits are in 2 TB?

Terminology Disambiguation

ON & OFF, 1 & 0, Binary Digits, Bits, Machine Language

ON & OFF, 1 & 0, Binary Digits, Bits, and Machine Language are all words used to refer to this idea that, within a computer, it's all nothing but a bunch of ZERO's and ONE's, or switches that are ON or OFF, it's all just a bunch of Binary Digits, or Bits, that's the language which computers speak, it's machine language.

The POWER SYMBOL on many devices is a combination of ZERO and ONE, where ONE means ON, and ZERO means OFF.

Machine Language

All programs are written in a programming language and then translated to machine language.

Input Process Output Storage

IPOS

IPOS (processing & memory)

2 +

2 + 3

2 + 3 =

Registers

Cache

RAM (memory)

ROM

Startup Memory (BIOS)

Phoenix - AwardBIOS CMOS Setup Utility

- Standard CMOS Features
- ▶ Advanced BIOS Features
- ▶ Advanced Chipset Features
- ▶ Integrated Peripherals
- ▶ Power Management Setup
- ▶ PnP/PCI Configurations
- PC Health Status

Frequency/Voltage Control

Load Fail-Safe Defaults

Load Optimized Defaults

Set Supervisor Password

Set User Password

Save & Exit Setup

Exit Without Saving

Esc : Quit

F10 : Save & Exit Setup

1 1 + + : Select Item

Time, Date, Hard Disk Type...

Motherboard

Bus

AGP / USB / Thunderbolt

BusWidth + Speed = Bandwidth (throughput)

Expansion slots & cards

Ports & Connectors

MOUSE PORT POWER CONNECTOR Used to connect Connects PC to a a mouse. power outlet. KEYBOARD PORT **SERIAL PORT** Used to connect a Usually used for a keyboard. scanner or mouse. USB PORTS -Used to connect PARALLEL PORT a keyboard, mouse, Usually used for scanner, flash memory drive, or other USB devices. a printer. MONITOR PORT Used to connect NETWORK PORT a monitor. Used to connect the PC to a network. SOUND PORTS Used to connect speakers, headphones, and a microphone. PHONE PORT MODEM PORT ::::: Used to connect a telephone so Used to connect you don't lose the use of your the PC to a phone jack. phone jack.

CONNECTORS

Power plug

USB plug

FireWire plug

PS/2 plug for mouse or keyboard

Serial plug

Monitor plug

Parallel plug

Telephone plug for modem and telephone

Network (RJ-45) plug

Network (Fiber-optic) plug