2111111111111111111111111 as imagine we can find A "k", that can make k.n' > \frac{n(n-1)}{2} work for an n >m. And it it establishes, the algorithm is Ocn') eg: k=4 2n>n for al n>0M = 0(b) (00<n<10, n³ < 10 n² but we can find A = K', the make the inequality $K \cdot n^3 > 10 \, n^2$ for encomple: k=11 11:n3>10/12 O n > 10 $n^3 > 10$ n^2 So obviously $11 \cdot n^3 > 10 \cdot n^2$ Above all for all n, n > 0 $11 \cdot n^3 > 10 \cdot n^2$ And we can say the algorithm is Och3) (C) $n^{k+1} = n^k + n^k + \dots + n^k$ $(n \cdot n^k)$ $\sum_{k=1}^{n} 3^k = 1^k + 2^k + \dots + n^k$ $\lim_{n\to\infty} \frac{|k+2k+-+n^k|}{n^k+n^k+-+n^k} \leq \frac{n\cdot n^k}{n\cdot n^k} = 1$

So Z je is O(k n+1) for integer &

7	7	1	1	1	10	1	1	1	1	1	1	1	1	1	1	1	1	19		1	No	19	1	A	A	A	6
---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	----	--	---	----	----	---	---	---	---	---

Date

No.

Date

(b) Wyh = K lugn.

let use x replace the ligh.

> x when can compare kx with x k.

kx < x k (k>0, x>0)

x grow faster

Thus (logn) k grow faster

(c) I know the function: Go (n!) = n log n So wife we can compare the Lyn hologyn with Ly 'lyn's Log n b b b m = Ly Ly Lug n. Log n. Log - (Log n)! = Log n Cog log n
So with we can compare the hen hough with by ben)!
Cop n & by by by no bogn.
Log- (logn)! = Logn Log Logn
J 0 0 0
when $n \rightarrow \infty$
Cog log log n = 0
Cogn. Gglogn
Thus, (Logh)! grow faster.
(d) when $n \rightarrow \infty$
$\frac{n!}{n^n} = \frac{n(n-1)\cdots - 1}{n \cdot n \cdot \cdots \cdot n} = 0$
=> Thuy, no is faster.

3. for
$$f_1(n) = O(g_1(n))$$
, there exists c_1 such that $f_1(n) \le c_1g_1(n)$, when $n \ge n_0$, for $f_2(n) = O(g_2(n))$, there exists c_2 such that $f_2(n) \le c_2g_2(n)$, when $n \ge n_2$.

50 when $n \ge n_2$ is $n \ge n_2$ max (n_1, n_2) , and f_1 , f_2 one positive functions of n .

$$f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n) \le c_1g_2(n) + c_2g_2(n) \le (c_1 + c_2)g_2(n)$$

where $g_2(n) = max(g_1(n), g_2(n))$, $k = \{1, 2\}$

make $c = c_1 + c_2$,

$$f_1(n) + f_2(n) \le c_2g_2(n)$$

according to the definition of $c_1(n)$ $c_2(n)$.

4. Phue or dispuse: Am positive n is
$$O(\frac{n}{2})$$

Usermy $f(n) = n = O(\frac{n}{2})$

Choose $k = 1$

Assump $n > 1$
 $f(n) = \frac{G(n)}{g(n)} = \frac{n}{2} = 2$

This shows that $n > 1$ implies $f(n) = Cg(n)$,

So any positive $n \neq 0$ $O(\frac{n}{2})$

5. Pure or dispuse:
$$3^n$$
 is $O(2^n)$

$$3^n > C > 2^n$$

$$(\frac{3}{2})^n > C$$

$$8 n > \log \frac{3}{3}$$

$$\text{for eveny } n > \log \frac{3}{3}, 3^n > 2^n$$

$$\text{Therefore, } 3^n \text{ is not } O(2^n)$$