共振回路

Resonant circuit

- ●共振
 - ■特定の周波数で、素子のインピーダンスが打ち消しあう現象
 - ◆この周波数を,共振周波数とよぶ
- ●例. LとCの直列の合成インピーダンス

$$\dot{Z} = j\omega L + \frac{1}{j\omega C} = j\left(\omega L - \frac{1}{\omega C}\right)$$

$$\bullet \omega L - \frac{1}{\omega C} = 0$$
のとき, $\dot{Z} = 0$

■ 共振周波数 $\omega_0 = \frac{1}{\sqrt{LC}}$

RLC直列回路

●RLC直列回路のインピーダンスと電流

$$\dot{Z} = R + j\omega L + \frac{1}{j\omega C} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

$$\vec{I} = \frac{\dot{E}}{\dot{Z}} = \frac{E}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$

$$\omega L - \frac{1}{\omega C} = 0$$
のとき、つまり、 $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ のとき、電流が最大値 $\frac{E}{R}$ となる

RLC直列回路

- ・共振角周波数 $\omega_0 = \frac{1}{\sqrt{LC}}$ における電流
 - $\dot{I} = \frac{E}{R}$
- ●共振角周波数における電圧
 - $\vec{V}_R = R\dot{I} = E$
 - $\dot{V}_L = j\omega L\dot{I} = j\omega L\frac{E}{R}$
 - $\dot{V}_C = \frac{1}{j\omega C}\dot{I} = -j\frac{1}{\omega C}\frac{E}{R}$
 - **■** V_Lとの一致を確認

LC並列共振回路

●電流

$$\vec{I}_L = \frac{E}{j\omega L}$$

$$\vec{I}_C = \frac{E}{\frac{1}{j\omega C}} = j\omega CE$$

$$*\omega C - \frac{1}{\omega L} = 0$$
のとき、つまり、

$$\omega = \omega_0 = \frac{1}{\sqrt{LC}}$$
のとき $\dot{I} = 0$ となる

LC並列共振回路

・共振角周波数 $\omega_0 = \frac{1}{\sqrt{LC}}$ における電流

$$\vec{I}_L = \frac{E}{j\omega_0 L} = -j\frac{\sqrt{C}}{L}E$$

$$\vec{I}_C = \frac{E}{\frac{1}{j\omega_0 C}} = j\frac{\sqrt{C}}{L}E$$

$$\vec{I} = \vec{I}_L + \vec{I}_C = 0$$

$$\dot{I} = \dot{I_L} + \dot{I_C} = 0$$

LCを含むループだけで 電流が流れる

LC並列共振回路

- 合成インピーダンスを考える

 - ■共振角周波数のとき,無限大になる
 - →共振角周波数の電流を抽出できる

電圧源毎に分けた回路

過渡現象 transient phenomenon

- ●定常状態 steady state
 - ■変化後十分に時間が経過した後の状態
- ●過渡現象 transient phenomenon
 - ■変化に対する一時的な動作

RC直列回路の過渡現象

- キャパシタの充電を考える
- ●仮定
 - 時刻*t*=0でスイッチを閉じる
 - 時刻*t*=0でキャパシタの電荷は0

$$\bullet v_c(0) = 0$$

- ●回路の動作
 - 電流がCに流れ, *v_c*が上昇
 - ■次第に電流が少なくなり、v_cの上昇も緩やかになる
 - ■完全に充電されるとv_c=Eとなり電流は0となる

RC直列回路の過渡現象

●電流

$$i(t) = \frac{dq(t)}{dt} = C \frac{dv_C(t)}{dt}$$

- ●電圧に関して成り立つ式
 - $\mathbf{v}_R(t) = Ri(t)$
- ●得られる微分方程式

- ◆1階線形: 微分の最大の回数が1で, 1次式
- ◆非斉次:*v_c*を含まない項が0以外

微分方程式の解き方

- 1. 定常解をもとめる
 - ■定常状態を考える
 - ◆一般には特解(particular solution)とよぶ
- 2. 過渡解をもとめる
 - $a \frac{dv(t)}{dt} + bv(t) = 0$ の形の微分方程式の解
 - ◆一般には余解(complementary solution)とよぶ
- 3. 一般解をもとめる
 - ■定常解+過渡解=一般解
 - ■初期条件から任意定数の値をもとめる

定常解をもとめる

- 定常解 (stationary solution)
 - ■定常状態を考える
 - $t \to \infty$ のとき v_c になるので, $\frac{dV_c}{dt} = 0$ とする
- ●得られる定常解
 - $\mathbf{v}_C = E$
 - ▶解になっていることを確認

$$v_c(t) + RC \frac{dv_C(t)}{dt} = E$$

過渡解をもとめる

- ●過渡解 (transient solution)
 - 左辺を0とした斉次微分方程式の解
 - 1階の定数係数の斉次微分方程式 $a\frac{dv}{dt} + v = 0$

の一般解は
$$v = Ae^{-\frac{1}{a}t}$$

- ◆*A*: 任意定数
- $\mathbf{v}_{c}(t) + RC \frac{dv_{C}(t)}{dt} = 0$ の解は $v_{C}(t) = Ae^{-\frac{1}{RC}t}$

一般解をもとめる

・一般解は定常解と過渡解の和 $v_C = E + Ae^{-\frac{1}{RC}t}$

- ●任意定数Aの値の決定
 - 仮定より t=0のとき, v_c=0だから
 - $v_c(0) = E + A = 0$
 - \blacksquare よって, A = -E
- ●最終的に求まる解

$$v_C = E(1 - e^{-\frac{1}{RC}t})$$

▶解になっていることを確認

$$v_c(t) + RC \frac{dv_C(t)}{dt} = E$$

放電の過渡現象

- キャパシタの放電を考える
- ●仮定
 - 時刻*t*=0でスイッチを閉じる
 - 時刻*t*=0で*v*(0) =*E*
- $\bullet i = C \frac{dv}{dt}$
- $\bullet i = -\frac{v}{R}$
- $v + RC \frac{dv}{dt} = 0$

放電の過渡現象

- ●定常解
 - $\mathbf{v} = 0$
- ●過渡解

$$v = Ae^{-\frac{1}{RC}t}$$

- ◆A: 任意定数
- ─般解

$$v = Ae^{-\frac{1}{RC}t}$$

■
$$t=0$$
のとき $v=E$ より, $A=E$
よって $v=E\mathrm{e}^{-\frac{1}{RC}t}$

$$v + RC\frac{dv}{dt} = 0$$

