Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 1 Settembre 2021

Per la prova in itinere (2 ore) svolgere i problemi: 2, 3, 4 Per la prova completa (2 ore) svolgere i problemi: 1, 2, 3

Problema n.1

Consideriamo una barra rigida pesante, di lunghezza l e massa m=1.3 kg, a contatto con le pareti di una cavità di angolo d'apertura $\alpha=\pi/3$, come in figura. Se supponiamo il contatto nei punti A e B privo di attrito:

- a) per quale valore dell'angolo ϕ che la sbarra forma con la direzione orizzontale è possibile l'equilibrio?
- b) determinare le reazioni vincolari in A e B.

Problema n.2

Una vasca cilindrica piena d'acqua, con la superficie superiore aperta all'aria, di altezza h=1 m e sezione S_0 =10 m², ha una botola sul fondo, per consentirne lo svuotamento. Quando la botola viene aperta, il livello della superficie dell'acqua scende a una velocità costante di 5 cm/s. Determinare, senza supporre trascurabile la velocità di discesa del livello della superficie:

- a) la sezione della botola;
- b) la velocità di uscita dell'acqua dalla botola.

[considerare l'acqua come un fluido ideale in moto stazionario]

Problema n.3

Una mole di gas ideale monoatomico descrive il ciclo reversibile formato da: AB espansione isobara, BC espansione adiabatica, CD isocora, DA compressione adiabatica. Si sa che: V_A =0.010 m^3 , V_B =(3/2) V_A , V_C =2 V_A , T_A =300 K.

- a) Rappresentare il ciclo in un piano di Clapeyron.
- b) Calcolare il lavoro fatto dal gas in un ciclo.
- c) Calcolare il rendimento del ciclo e paragonarlo al rendimento di una macchina che opera secondo un ciclo di Carnot fra due sorgenti aventi temperatura uguale a T_B e T_D.
- d) Calcolare la variazione di entropia corrispondente a ciascuna trasformazione.

Problema n.4

Un cubetto di rame (densità ρ_r =8.92 g/cm³, calore specifico c_r =0.385 J/gK) a temperatura T viene posto su un blocco di ghiaccio (densità ρ_g =0.917 g/cm³, calore latente di fusione L_f =333.5 J/g), come in figura (a). Esso si raffredda sino alla temperatura T_0 =0 °C fondendo del ghiaccio e

affondandovi completamente, come in figura (b). Supponendo di poter trascurare gli scambi di calore con l'ambiente, si calcoli la temperatura T iniziale del cubetto di rame.

