# Teoria Języków Formalnych

1. Języki regularne. Automaty skończone (deterministyczne i niedeterministyczne) i wyrażenia regularne oraz ich zastosowania

**Języki regularny** – język, dla którego istnieje deterministyczny automat rozstrzygający, czy dane słowo należy do tego języka.

Równoważnie: język, dla którego istnieje gramatyka regularna.

Przykłady języków regularnych nad alfabetem {a, b}:

- zbiór wszystkich słów alfabetu
- zbiór wszystkich słów alfabetu długości n
- zbiór wszystkich słów zaczynających się na aaabbb i kończących się na ababab

### Automaty skończone

Automat to abstrakcyjna maszyna, która czyta słowo wejściowe i zmienia swój stan. Są dwa stany specjalne: początkowy (może być tylko 1) i akceptujący (może być wiele takich stanów). Przed przeczytaniem pierwszej litery słowa wejściowego, automat znajduje się w stanie początkowym. Następnie automat czyta pierwszą literę i zmienia swój stan zgodnie z funkcją przejścia. Jeżeli po przeczytaniu całego słowa automat znajduje się w stanie

- akceptującym słowo zostało zaakceptowane
- innym niż akceptujący słowo nie zostało zaakceptowane

Automat rozpoznaje język L, jeżeli akceptuje każde słowo z tego języka. Język L jest rozpoznawalny, jeżeli istnieje skończony automat, który go rozpoznaje.

Automat jest zupełny, jeżeli funkcja przejścia jest określona dla każdego stanu i litery. Automat, który nie jest zupełny można zamienić na równoważny zupełny przez dodanie nieakceptującego stanu (pułapki) i dodanie wszystkich brakujących przejść tak, aby prowadziły do pułapki.

#### Automaty skończone deterministyczne i niedeterministyczne

W automacie deterministycznym dla dowolnego stanu i dowolnej litery istnieje co najwyżej jedna możliwość przejścia do innego stanu.

W automacie niedeterministycznym po przeczytaniu litery w jakimś stanie istnieje wiele możliwości zmiany stanu.

Każdemu niedeterministycznemu automatowi skończonemu odpowiada równoważny mu deterministyczny automat skończony.

Maszyna Turinga jest generalizacją automatu skończonego operującego na nieskończonej pamięci.

#### Wyrażenia regularne

Wyrażenie regularne to wzorzec, który opisuje jakiś język regularny. Dla każdego wyrażenia regularnego istnieje równoważny mu skończony automat deterministyczny.

### Przykłady:

- [0-9]{2}-[0-9]{3} kod pocztowy
- a..z czteroznakowe słowo zaczynające się na a i kończące na z
- (ala|ma|kota) dopasowanie jednego z trzech słów
- [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12} prawidłowy UUID
- .\*(?:.\*=.\*))) regex, który zabił Cloudflare

https://sekurak.pl/atak-dos-na-aplikacje-przez-wyrazenia-regularne/

## Przykłady automatów (nad alfabetem {a, b})

## Przykład 1



Automat jest niedeterministyczny, ponieważ:

- w stanie q0 po przeczytaniu a można przejść do q1 lub q2
- w stanie q1 po przeczytaniu a można przejść do q2 lub q3
- w stanie q3 po przeczytaniu b można przejść do q5 lub q4

Automat nie jest zupełny, ponieważ funkcja przejścia nie jest określona dla

- stanu q2 i litery a
- stanu q4 i litery b

## Przykład 2



### Automat jest

- deterministyczny nie ma stanu, z którego wychodziłaby więcej niż jedna strzałka z tą samą literą
- zupełny, bo dla każdego stanu i litery określona jest funkcja przejścia (strzałka)

https://pl.wikipedia.org/wiki/Automat\_sko%C5%84czony