

Bank of Crown Data Modelling

The Bank of Crown

The Bank of crown has 3 key areas to focus on:

 Reducing Risk from Bank Loans 	Classification	SAP
 Enhancing Communications Strategy 	Clustering	Predictive Analytics
 Improving Customer Satisfaction 	Regression	Predictive Factory

The Bank of Crown

Training the model on the previous 6 months and applying it with a latency of one month to allow appropriate reaction

Data Collection

Location

HANA DataBase

Issues?

None

Acquisition

Data Manager (Predictive Analytics)

Data Description

Accounts

22,500 records 4 Fields

Clients

26,845 records 4 Fields

Disposition

26,845 records 4 Fields

Demographic

77 records 16 Fields

Order

32,355 records 6 Fields

Transactions

5,281,600 records 10 Fields

Loan

3,410 records 7 Fields

Credit Cards

4,460 records 4 Fields

Data Exploration

Interesting Findings

- 1. 83% of accounts do not have **credit card** issued
- 2. Only 16% of account are requesting loans and only 3% are Defaulters
- 3. Loan month **duration** has four unused categories
- 4. Loan **amount** ranges from 4980 to 590820
- 5. High frequency of classic **clients**
- **6.** Bank name does not have any entry

Data Exploration: Initial Model

Predict unpaid loans before approving them

Loan Status as target Field

'A' - contract finished, no problems

'C' - running contract, OK so far

'B' - contract finished, loan not paid

'D' - running contract, client in debt

Data Exploration : Initial Model

Predict unpaid loans before approving them

Predictive Power (KI): 0.8699 Prediction Confidence (KR): 0.9447

Data Exploration : Initial Model

Variable Contribution to Defaulters

Data Exploration: Initial Model

Highly Correlated Variables

Index	First Variable	Second Variable	Coefficient	
21	UNEMP_RATE_95	UNEMP_RATE_96		0.984

Data Quality: Missing Values

The variable "Bank name" does not has 100% missing value and should be discarded

Table	Variable	Missing Values%
BOC_ORDERS Permanent Orders Data	Category	20%
	MODE	17.34%
BOC_TRANSACTIONS (Transactions Data)	Туре	50.67%
	Bank	100%
	ृ Account	70%
BOC_GEODEMO	Unemp_rate_2016	6.25%
(Demographic Data)	Number_crims_2016	6.25%
	'	

Data Quality: Outliers

The variable "District Name" has 100% outliers which indicates string variables.

Table	Variable	Outliers%	
BOC_TRANSACTIONS (Transactions Data)	AMOUNT	53.53%	
BOC_GEODEMO (Demographic Data)	DISTRICT_NAME	100%	

Reducing Risk from Bank Loans

Reduce Risk from Bank Loans (Overview)

Business Goals

This project has the following objectives:

- Increase profits by identifying customers most likely to pay back loans
- Reduce risk by avoiding making loans to potential defaulters

This project will be judged a success if:

 The Bank of the crown reduces the number of bad loans from 11% to 7%

- Latency period:
 - No latency
- History period:
 - · 6 months
- Target Period:
 - · 1 month
- Population filters: only include those customers who have loans
- Target Variable: Loan Default (did this customer default yes/no)
- Create customer profile of Defaulters vs Nondefaulters
- Model will be operationalized and applied monthly using Predictive Factory

Data Science Success Criteria

- Predictive Power: > 0.5
- Prediction Confidence: > 0.95
- Variable contributions make business sense
- Model performance in evaluation period corresponds to performance in training period
- Model will be operationalized and applied monthly on the 1st day of the month, using Predictive Factory

Variables Selection

The initial number of variables used in the model are 22 but the best tradeoff is 13 variables which are:

- Loan Duration (e.g. 12 months)
- Minimum Loan Payment Amount
- Average Loan Payment Amount
- Client Type (e.g. Classic)
- Unemployment rate for 2017
- Card age (Days)
- Number of municipalities (2)

- Client age
- Number of crimes in 2017 (Client area)
- Number of inhabitants in the region (Client)
- Region name (Client)
- Account age (Days)

Ratio of Defaulters

Ratio of solvent

1.34% 98.66%

Model Performance: KI KR

Predictive Power (KI): 97%

Perfect model

100% correct prediction

Random model

Worst scenario

Validation

Our model

Prediction Confidence (KR): 99%

Model Performance: LIFT-curve

Lift curve of validation in comparison to random prediction

Model Performance: Performance Metric

etrics			
	Classification Rate	98.95%	
	Sensitivity	57.66%	
	Specificity	99.63%	
	Precision	71.91%	
	F1 Score	0.64	

By targeting 1% of the clients we detected 58% the entire population of interest, or 17% times better than without a predictive model

Possible Improvement: synthesizing more data

Deviation Analysis

Model performance
Predictive Power (KI): 97%

Time sensitive variables:

Account age (Days)

probability of deviation: 98%

Card Age (Days)

probability of deviation: 74%

Prediction Confidence (KR): 99%

Deviation Analysis

Possible categorization technique:

- Senior
- Mid
- Young

Predictive factory - Deploy (With improvements)

- Reference date 1 / Feb / 2017
- SAP Tool Predictive Factory

Succeeded 12/15/20 8:05 78.86% 97.97%

Model Performance: Variable Contribution

Top variable contribution to predicting the defaulters:

Loans Duration has the highest contribution to defaulters

1. Second Scenario

Enhancing Communications Strategy

Enhancing Communications Strategy - Overview

Business Goals

The project has the following objectives:

- The profiles of customers in each group will be analyzed by marketers to develop personalized product and communication strategies for each group.
- To establish better customer relationship management strategies.
- Improve existing services and increase customer satisfaction and loyalty.

Business Success Criteria

This project will be judged a success if:

- Cross-sales increase by 5%
- Customer click-through rate on promotional offers increases from 5% to 7%

Data Science Goals

This project has the following data science goals:

- Create a supervised clustering model that strategically segments the customer base. The clusters will be developed based on customer data, demographic variables, geographic locations, transactional and product history.
- The target is estimated earnings per customer.

Data Science Success Criteria

- Clustering results must have business sense. This is verified by analyzing the profiles for each of the clusters.
- Check if cluster sizes are relatively balanced. If there are clusters with high frequency, then this might indicate there are not enough clusters. If there are clusters with very low frequency, then this might indicate there are too many clusters.
- In this scenario, the number of segments should be greater than 3, but less than 8 (3<k<8).
- Check Predictive Power (KI) and Prediction
 Confidence (KR): KI should be high (>0.6) and KR
 should be greater than 0.95, especially if you want
 to use the model to make predictions (i.e. assign
 new customer to groups).
- Evaluate if there are inconsistencies in the categorical variables in each cluster by checking that the category profile has business sense.

- Check the profile of continuous variables. They should have business sense and in most cases be continuous within a cluster. For example, age should be a range and not a mix of ranges and distinct values
- The model will be operationalized and applied monthly on the 1st day of the month, using Predictive Factory.

Model Performance: KI & KR

TARGET	
Initial Number of Clust	ers 6
Final Number of Clust	ers 6
Over	ap 27.21% ← 3
Percentage of Unassigned Reco	rds 1.58% ← /

The winner model

	Model	Winner	KI	KR	Initial Number of Clusters	Final Number of Clusters	Overlap	Percentage of Unassigned Records
	Engine0	false	0.5725	0.9866	4	4	12.36%	7.12%
1	Engine1	false	0.6147	0.9906	5	5	24.55%	5.16%
<u> </u>	Engine2	true	0.6570	0.9766	6	6	27.21%	1.58%
	Engine3	false	0.6197	0.9911	7	7	26.36%	3.35%

- We Used 4 to 7 Cluster
- The model with 6 clusters was choosing as Winner.
- The Winner model

The less percentage of unassigned Records.

Have 27.21% percentage overlap Records.

KI & KR for Each Variables:

Bubble Chart for the clusters

Cluster 3 (light green) is the largest number of assigned records

Relative Target Means:

Clusters contribution to the target:

Target Mean & Standard Deviation of clusters

As we can see here the most interesting cluster is **cluster 1** with highest target mean and the highest standard deviation which means that cluster 1 had the highest average of income.

Cluster	Frequency	Target Mean	Target Standard Deviation
1	9.63%	800,200	460,793
2	12.84%	588,222	338,210
3	34.02%	374,270	236,251
4	19.77%	148,301	138,148
5	10.91%	55,367.8	61,802.5
6	11.25%	394,215	379,135

Checking For Missing Values in Target

Here we're see that your target variable didn't include any missing values.

Cluster Profiles:

The variabel that have the highest influence on the cluster was the ratio of mode which means that when you targeting to communicate with your customers you should targeting them based on the mode of the transactions.

0.41

mean:

0.628408

Clusters Frequency:

The amount of frequency of records in each cluster:

Contribution:

The variable ratio of mode have positive contribution on target variable from 63% - 71% And from 62% and less it have negative contribution on the target.

Predictive factory - Deploy

Deploying the Cluster model in predictive factory

Predictive factory - model information

Improving Customer Satisfaction - Overview

Business Goals

This project has the following objectives:

 Improve customer loyalty and satisfaction

Business Success Criteria

This project will be judged a success if:

- Customer attrition rate decreases from 17% to 10%
- Customer satisfaction increases from 75% to 85%

Data Science Goals

- Create a regression model that estimates the deposit sum for the next three months following a latency period.
- Latency period:
- 1 month
- History period:
- 6 months
- Target Period:
 - · 3 months
- Population filters: exclude new customers who joined the Bank less than six months ago
- Create a customer profile of high value customers
- Model will be operationalized and applied monthly using Predictive Factory

Data Science Success Criteria

- Predictive Power: > 0.7
- Prediction Confidence: > 0.95
- Model performance in evaluation period corresponds to performance in training period
- Model will be operationalized and applied monthly on the 1st day of the month, using Predictive Factory

Model Overview

Distribution of dataset for regression

Data Set	Number of Records
Estimation	18,255
Validation	6,236

Continuous Targets (Number)

TARGET_DEPOSIT_NEXT_3_MONTHS2	
Min	0
Max	399,186
Mean	51,234.1
Standard Deviation	48,947.9

Selection Process Selected Iteration

2	
Predictive Power (KI)	0.8145
Prediction Confidence (KR)	0.9938
Nb. Variables Kept	8

Model performance - Regression Model

Variables Contribution

Created accounts in Years - influance

Type of Clients

Performance of KI & KR

KI & KR for each selected variable

Data Set: Estimation, Target: TARGET_DEPOSIT_NEXT_3_MONTHS2

Performance Indicators

 R-Squared has a low value due to unexplainable error after net value of 120K

Indicator		Estimation	Validation
L1	(Manhattan)	18,237.2	18,982.8
L2	(Euclidian)	34,123.3	35,120.1
Linf	(L norm (infinity))	309,194	308,681
ErrorMean	(Mean of error)	259.741	159.887
ErrorStdDev	(Error Standard deviation)	34,122.3	35,119.8
R2	(R Squared)	0.514	0.506

Predictive factory - Deploy

Performance Indicators - Predictive factory

Thanks!

You can find us at:

in <u>Noura Alharbi</u>

in Saad Alraozuq

Rahaf Alawwad

Extra (Technical)

Task Application Attempts: 1

Target Statistics: 1

Missing Value substitution (attempt): 1

```
when ((("KXTempT1"."LOAN_STATUS" = N'B')
 or ("KXTempT1"."LOAN_STATUS" = N'D'))) then 1
 else 0
end as "target",
case
 when ((("KXTempT1"."LOAN_DURATION" IS NULL)
 and ("KXTempT1"."LOAN_AMOUNT" <= 119000))) then 12
 when ((("KXTempT1"."LOAN DURATION" IS NULL)
 and ("KXTempT1"."LOAN_AMOUNT" <= 236328))) then 24
 when ((("KXTempT1"."LOAN DURATION" = cast(NULL as integer))
 and ("KXTempT1"."LOAN_AMOUNT" <= 355328))) then 36
 when ((("KXTempT1"."LOAN_DURATION" IS NULL)
 and ("KXTempT1"."LOAN_AMOUNT" <= 474328))) then 48
 when ((("KXTempT1"."LOAN_DURATION" IS NULL)
 and ("KXTempT1"."LOAN_AMOUNT" >= 590820))) then 60
 else "KXTempT1"."LOAN_DURATION"
end as "loan_duration_modiefied"
from
 "STUDENT04"."KX _16079350211704268TemporaryStoreForUI" "KXTempT1"
```


Model Performance: Performance Metrics: 2

Sum of Squares.

Frequency.

Within Cluster Variance.

Target Mean.

Target Standard Deviation.

Clusters Estimation: 2

Cluster Validation: 2

Task Application:3

Cluster Profiles: 2

The End

You can find us at:

in <u>Maisoun Alshahrani</u>

in <u>Turki Alsulaimani</u>

in <u>Noura Alharbi</u>

in Saad Alraozuq

Rahaf Alawwad