

Classificação de Sistemas

Apontamentos sobre os sistemas impossíveis, possível indeterminado e possível determinado Page

 A classificação dos sistemas quanto à hipótese da sua resolução pode ser feita após condensação vertical da matriz completa (ampliada).

Sistema Possível Determinado

Quando todos os elementos da diagonal principal são diferentes de zero

Ou seja, se e só se carA = car[A|B] e carA = n

Sistema Impossível

 Quando pelo menos uma linha da matriz dos coeficientes é nula, mas o termo independente correspondente é diferente de zero

Ou seja, se e só se $\operatorname{car} A \neq \operatorname{car} \left[A | B \right]$

Sistema Possível Indeterminado

• Quando uma linha inteira da matriz completa é nula, desde que nenhuma das outras linhas torne o sistema impossível

Ou seja, se e só se $\ \ carA = car\left[A|B
ight]$ e $\ carA < n$

Variáveis básicas e não básicas (livres) e pivots

Pivot

Primeiro elemento n\u00e3o nulo de cada linha de uma matriz em escada de linhas

Variáveis básicas

As variáveis básicas são correspondestes às colunas que têm pivot na matriz em escada de linhas

Variáveis não básicas (livres)

- As variáveis não básicas (livres) são correspondestes às colunas que não têm pivot na matriz em escada de linhas
- Se houver incógnitas livres, o sistema de equações lineares é sempre possível porque pode ter uma infinidade de soluções

Se só houver incógnitas básicas, o sistema é possível determinado

```
Exemplo I:  \begin{cases} 2x_1 + 3x_2 + x_3 = 2 \\ -x_1 + 2x_2 - 3x_3 = 0 \\ x_1 + 4x_2 - 2x_3 = 2 \end{cases} \Leftrightarrow \begin{bmatrix} 2 & 3 & 1 & 2 \\ -1 & 1 & -3 & 0 \\ 1 & 4 & -2 & 2 \end{bmatrix} \Leftrightarrow \dots \Leftrightarrow \begin{bmatrix} 1 & 0 & 2 & \frac{2}{3} \\ 0 & 1 & -1 & \frac{2}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{cases} x_1 = \frac{2}{3} - 2x_1 \\ x_2 = \frac{2}{3} + x_2 \\ 0 = 0 \end{cases}  Os pivots são \mathbf{a}_{11} el e \mathbf{a}_{22} =1, 1^3 e 2^3 columas As variáveis básicas são \mathbf{x}_1 e \mathbf{x}_2.
```

Assim, o sistema é possível indeterminado (S.P.I)

```
Exemplo 2: \begin{cases} 2x_1 + 3x_2 + x_3 = 2 \\ -x_1 + x_2 - 3x_3 = 0 \end{cases} \Leftrightarrow \begin{bmatrix} 2 & 3 & 1 & 2 \\ -1 & 1 & -3 & 0 \\ 1 & 4 & 2 & 2 \end{bmatrix} \Leftrightarrow \dots \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{2}{5} \\ 0 & 1 & 0 & 0 & \frac{2}{5} \\ 0 & 0 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{cases} x_1 = \frac{2}{5} \\ x_2 = \frac{2}{5} \\ x_3 = 0 \end{cases} Os pivots são a_1 = 1, a_{22} = 1 e a_{33}, 1^p, 2^p e 3^p columas As variáveis básicas são, assim, x_1, x_2 e x_3.
```

Assim, o sistema é possível determinado (S.P.D)

Resolução usando a matriz inversa

- É possível resolver sistemas de equações utilizando a matriz inversa:
 - Se AX = B:
 - Multiplicando ambos os lados pela inversa de A vem:

 $A^{-1}AX = A^{-1}B$

Como a matriz inversa de A multiplicada por A = matriz identidade então:

 $X = A^{-1}B$

 Deste modo a solução do sistema pode ser obtida multiplicando a matriz inversa de A pela matriz dos termos independentes

Exemplo:

Uma indústria produz peças do tipo A, B e C dispondo de 3 máquinas para o efeito.

Para produzir cada tipo de peça são necessários os seguintes tempos em cada máquina:

Máquina I - 2 minutos

Tipo A: Máquina II - 1 minuto

Máquina III - 1 minuto

Máquina I - 1 minuto

Tipo B: Máquina II - 3 minutos

Máquina III - 1 minuto

Máquina I - 1 minuto

Tipo C: Máquina II - 2 minutos

Máquina III - 2 minutos

Os tempos disponíveis de trabalho em cada máquina são: Máquina I - 3 horas ; Máquina II - 5 horas ; Máquina III - 4 horas

Quantas peças de cada tipo devem ser produzidas de modo a otimizar os tempos utilizados por máquina?

- Utilize a condensação de Gauss
- Utilize a matriz inversa

Resolução:

Condensação de Gauss

[2	2 1	1	:	180]	[1	3	2	:	300	Tipo A = 36
1	3	2		180 300 240	 0	-5	-3	÷	-420	\longrightarrow Tipo B = 48
L2	2 1	2		240	Lo	0	1		60	Tipo C = 60

Matriz inversa

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 2 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \\ -1 & 0 & 1 \end{bmatrix} \longrightarrow A^{-1} \times B = X = \begin{bmatrix} 36 \\ 48 \\ 60 \end{bmatrix}$$

Determinantes