Theoretische Informatik

Julian Schubert

12. Mai 2021

Inhaltsverzeichnis

1	Wichtige Vermutungen	2
2	Elementare Begriffe 2.1 Komplexitätsklassen 2.2 Funktionen 2.3 Binärdarstellung 2.4 Listencodierung .	3 3 3 4
3	While-Programme 3.1 Berechnende Funktion bestimmen	4
4	Ram-Programme	5
5	Alphabete und Wörter	5
6	Turing-Maschinen	6
7	Laufzeit von Algorithmen	7
8	Entscheidbarkeit und Aufzählbarkeit	7
9	Endliche Automaten	9

1 Wichtige Vermutungen

Definition 1: Goldbachsche Vermutung

Jede natürliche gerade Zahl größer 2 ist Summe zweier Primzahlen

Definition 2: Collaz-Problem (3n +1)-Vermutung

- Beginne mit irgendeiner natürlichen Zahl n > 0
- Ist n gerade, so nimm als nächstes n//2 (abrundende Division)
- \bullet ist n ungerade, so nimm als nächstes 3n+1
- Wiederhole das Vorgehen mit der erhaltenen Zahl

Vermutung: Jede so konstruierte Zahlenfolge mündet in den Zyklus 4, 2, 1, egal mit welcher natürlichen zahl n > 0 beginnt

Definition 3: Ackermann-Funktion

Frage: Gilt LOOP = $\{f \in WHILE \mid f \text{ ist total}\}$?

Die folgende Funktion (auch **Ackermann-Funktion** genannt) $a: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ ist total und While-berechenbar, aber nicht Loop-berechenbar:

$$a(n,m) = \begin{cases} m+1 & \text{falls } n=0\\ a(n-1,1) & \text{falls } n>0 \text{ und } m=0\\ a(n-1,a(n,m-1)) & \text{falls } n>0 \text{ und } m>0 \end{cases}$$

 \Rightarrow Die Ackermann-Funktion ist eine totale Funktion in WHILE-LOOP

Definition 4: Hauptsatz der Algorithmentheorie

RAM = WHILE = MINIWHILE = TM

Definition 5: Curch-Turing These

Auch: These von Church:

Turing-Berechenbarkeit erfasst den intitiven Begriff der Berechenbarkeit.

2 Elementare Begriffe

2.1 Komplexitätsklassen

$$ALL \subset P \subset NP$$

- ALL: Alle Probleme
- NP: Probleme, deren Lösungen schnell übrprüft weden können (effizient überprüfbare Probleme)
- P: Probleme, die isch in polynomieller Zeit lösen lassen (effizient lösbare Probleme)

2.2 Funktionen

Definition 6: Funktionen

Seien $f: A \to B$ und $g: B \to C$ Funktionen

• **Definitionsbereich** von f:

 $D_f = \{a \in A | \text{ es existiert ein } b \in B \text{ mit } f(a) = b\}$ \Rightarrow Alles was etwas im Wertebereich trifft

• Wertebereich von f:

 $D_f = \{a \in A | \text{ es existiert ein } a \in A \text{ mit } f(a) = b\}$ \Rightarrow alles was von etwas im Definitionsbereich getroffen wird

• Total: $D_f = A$

• Surjektiv: $W_f = B$

• Injektiv: aus $a_1, a_2 \in D$ und $a_1 \neq a_2$ folgt $f(a_1) \neq f(a_2)$

 \bullet **Bijektiv:** f ist total, surjektiv und injektiv

• ist f injektiv, so existiert die **Umkehrfunktion** $f^{-1}: B \to A$ mit $f^{-1}(b) =$ dasjenige $a \in A$ mit f(a) = b

2.3 Binärdarstellung

Definition 7

Jede natürliche Zahl $n \ge 1$ ist in genau einer Weise darstellbar als

$$n = \sum_{i=0}^{m} a_i \cdot 2^i$$

mit
$$m \in \mathbb{N}$$
, $a_m = 1$ und $a_0, \dots, a_{m-1} \in \{0, 1\}$.

Eigenschaft 1: Binärdarstellung

$$bin(2n+a) = bin(n)a$$
 für $n \ge 1$ und $a \in \{0,1\}$

2.4 Listencodierung

Liste von Binärzahlen: $\langle x_1, \ldots, x_n \rangle$

Anwendung: Bits verdoppeln, 10 alss Anfangs-, Trenn- und Enmarkierung **Beispiele:**

$$\langle \rangle = bin^{-1}(10) = 2$$

 $\langle 2 \rangle = bin^{-1}(10110010) = 178$
 $\langle 5, 3, 2 \rangle = bin^{-1}(10110011101111110110010) = 2944946$

3 While-Programme

Definition 8: While-Berechenbarkeit

Eine Funktion ist dann **While-Berechenbar**, falls es ein While-Programm gibt, sodass der Definitionsbereich von beiden identisch ist und der Wert für alle Eingaben übereinstimmt.

Definition 9: Loop-Programm

ein ${\bf Loop\text{-}Programm}$ ist ein While-Programm mit folgenden Eigenschaften:

- Das Programm enthält keine While-Schleifen
- Aus einer Funktion können nur weiter oben deklarierte Funktionen aufgerufen werden. Insbesondere sind keine Selbstaufrufe erlaubt
- Das Programm enhält nur Funktionsdeklarationen mit Initialiserung
- Das Programm ist für alle Eingaben definiert
- \Rightarrow Alle Loop-berechenbaren Funktionen sind total.

3.1 Berechnende Funktion bestimmen

- 1. Schauen für welche Eingabe(n) die Schleife(n) wie oft ausgeführt werden
- 2. Schauen was sich mit jedem Schleifendurchlauf verändert

4 Ram-Programme

Definition 10: modifizierte Differenz

$$x - y = md(x, y)$$

$$\begin{cases} x - y & \text{falls } x > y \\ 0 & \text{sonst} \end{cases}$$

5 Alphabete und Wörter

Definition 11: Alphabete und Wörter

- Ein Alphabet ist eine endliche, nichtleere Menge
- Die Elemente eines Alphabets werden **Buchstaben** oder **Symbole** genannt
- Ein Wort über einem Alphabet Σ ist eine endliche Folge von 0 oder mehr Elementen aus Σ
- das leere Wort (d.h. das Wort, das aus 0 Buchstaben) besteht bezeichnen wir mit ε

Definition 12: Mengen von Wörtern

Sei Σ ein Alphabet, $n \ge 0$ und $a_1, a_2, \dots a_n \in \Sigma$

- Die Länge eines Wortes w $a_1 a_2 \dots a_n$ ist |w| = n
- Menge aller Wörter mit Länge n: $\Sigma^n = \{w|w \text{ ist ein Wort "über } \Sigma \text{ mit } |w| = n\}$ Es gilt $\Sigma^0 = \{\varepsilon\}$
- Menge aller Wörter: $\Sigma^* = \{w|w \text{ ist ein Wort "über } \Sigma\} = \bigcup_{u\geqslant 0} \Sigma^n \text{ und } \Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$
- eine formale Sprache über Σ ist eine Teilmenge von Σ^*
- Das Entscheidungsproblem einer formalen Sprache $L \subseteq \Sigma^*$ ist folgende Aufagbe:

Eingabe: $w \in \Sigma^*$

Ausgabe:

1, falls $w \in L$

0, falls $w \notin L$

Definition 13: Dyadische dartstellung

dya: $\mathbb{N} \to \{1, 2\}^*$ ist definiert durch

- $dya(0) = \varepsilon$
- day(n) = $a_m \dots a_0$ falls $n \ge 1, n = \sum_{i=0}^m a_i \cdot 2^i$ und $a_0, \dots, a_m \in \{1, 2\}$

Eigenschaft 2: k-adische Darstellung

Sei $k \ge 2$

- 1. $\operatorname{ad}_k(\operatorname{kn} + \operatorname{a}) = \operatorname{ad}_k(\operatorname{n})\operatorname{a} \text{ für } n \geq 0 \text{ und } a \in \{1, \dots k\}$
- 2. $\operatorname{ad}_k^{-1}(\operatorname{xa}) = \operatorname{k} \cdot \operatorname{ad}_k^{-1}(\operatorname{x}) + \operatorname{a} \operatorname{für} x \in \{1, \dots, k\}^*, a \in \{1, \dots, k\}$

6 Turing-Maschinen

Definition 14: Turing Maschiene

Sei $k \geqslant 1$. Eine **k-Band-Turing-Maschine** ist ein Quintupel (Σ, Z, f, z_0, z_1) mit

- Σ ist eine endliche Menge (Alphabet)
- Z ist eine endliche Menge (Zustandsmenge)
- $f(Z\setminus\{z_1\}) \times \Sigma^k \to Z \times \Sigma^k \times \{L, O, R\}^k$ ist eine totale Funktion (Überführungsfunktion)
- $z_0 \in Z$ (Startzustand)
- $z_1 \in Z$ (Stoppzustand)

 $M(z, a_1 \dots a_m)$: Wort das auf Band 1 steht, alle anderen Bänder leer, und $a \in \Sigma \setminus \{\text{Leersymbol}\}$

Definition 15: Palindrom

Ein wort $a_1 \dots a_n$ heißt symmetrisch oder auch **Palindrom**, falls $a_1 \dots a_n = a_n \dots a_1$

7 Laufzeit von Algorithmen

Definition 16: Länge einer Zahl

$$|x| = |dya(abs(x))|$$

8 Entscheidbarkeit und Aufzählbarkeit

Definition 17: Entscheidungsalgorithmus

Entscheidungsalgorithmus für eine Menge A:

Eingabe
$$x \Rightarrow Ausgabe \begin{cases} 1 \text{ (ja)}, & \text{falls } x \in A \\ 0 \text{ (nein)}, & \text{falls } x \notin A \end{cases}$$

Dies ist die berechnung der charakteristischen Funktion von A $(c_A(x))$.

Semicharakteristische Funktion:

Wie characteristische Funktion, nur n.d. falls $x \notin A$ $(\chi_A(x))$

Definition 18: Entscheidbarkeit

Seien $n \ge 0$ und $t : \mathbb{N} \to \mathbb{N}$ eine totale Funktion:

- $A \subseteq \mathbb{N}^n$ heißt **entscheidbar** $\Leftrightarrow c_A$ ist berechenbar
- $A \subseteq \mathbb{N}^n$ heißt semientscheidbar $\Leftrightarrow \chi_A(x)$ ist berechenbar
- REC = $\{A | \exists n \ge 0 \text{ mit } A \subseteq \mathbb{N}^n \text{ und A ist entscheidbar} \}$ (recursive languages), also alle berechenbaren Mengen
- Ein Algorithmus M entscheidet $A \subseteq \mathbb{N}^n$ in der Zeit t (bzw. O(t)) \Leftrightarrow M berechnet c_A in der Zeit t (bzw. O(t))

Eigenschaft 3

Fär $A \subseteq \mathbb{N}^n$ gilt:

A entscheidbar
$$\Leftrightarrow$$
 A und \bar{A} semientscheidbar A entscheidbar \Leftrightarrow A und \bar{A} aufzählbar A aufzählbar \Leftrightarrow $B \subseteq \mathbb{N}^n \times \mathbb{N}$ mit $A = Pr(B)$

Definition 19: Aufzählbarkeit

 $A\subseteq\mathbb{N}^n$ mit $n\geqslant 0$ heißt **rekursiv aufzählbar** (kurz: aufzählbar) $\Leftrightarrow A=\varnothing$ oder es gibt ein berechenbares, totales $f:\mathbb{N}\to\mathbb{N}^n$ mit $W_f=A$ **RE** Alle Mengen die Aufzählbar sind

Eigenschaft 4

Für $m, n \ge 0$ gilt:

 $f:\mathbb{N}^m\to\mathbb{N}^n$ berechenbar, total $\Rightarrow W_F$ ist aufzählbar

Eigenschaft 5

Für $A \subseteq \mathbb{N}^n$ sind folgende Aussagen äquivalent

- 1. A ist aufzählbar
- 2. A ist semientscheidbar
- 3. A ist Definitionsbereich einer berechenbaren Funktion $f:\mathbb{N}^n\to\mathbb{N}^m$ mit $m\geqslant 0$
- 4. A ist Wertebereich einer berechenbaren Funktion $g:\mathbb{N}^m \to \mathbb{N}^n$ mit m>0

Definition 20: Projektion

Die **Projektion** einer Menge

 $B \subseteq \mathbb{N}^n \times \mathbb{N}$ ist definiert als $Pr(B) = \{x \in \mathbb{N}^n | \exists y \in \mathbb{N}[(x, y) \in B]\}$

Definition 21: Reduzierbarkeit

Seien $A \subseteq \mathbb{N}^n$ und $B \subseteq \mathbb{N}^n$.

A ist reduzierbar auf B \Leftrightarrow es gibt ein totales, berechenbares $f: \mathbb{N}^m \to \mathbb{N}^n$ sodass für alle $x \in \mathbb{N}^m$ gilt:

$$x \in A \Leftrightarrow f(x) \in B$$

Die Äquivalenz ist gleichbedeutend mit den Aussagen $c_A=c_b\circ f$ und $\chi_A=\chi_B\circ f$

Eigenschaft 6

Seien $A \subseteq \mathbb{N}^m$ und $B \subseteq \mathbb{N}^n$. Falls A reduzierbar auf B ist, so gelten folgende Implikationen:

 $B \in REC \Rightarrow B \in REC$

 $B \in RE \Rightarrow A \in RE$

Definition 22: Gödelisierung

Skritp ab Seite 172, Rams werden als Liste codiert.

Definition 23: Halteproblem

 $K_0 = \{x|M_x \text{ hält bei Eingabe x}\}$ spezielles Halteproblem $K = \{(x,y)|M_x \text{ hält bei Eingabe y}\}$ allgemeines Halteproblem \Rightarrow wir geben der Maschiene ihren eigenen Quellcode als Eingabe K_0 ist aufzählbar, aber nicht entscheidbar

Definition 24: Satz von Rice

Die Frage, ob die von einem gegebenen Quelltext berechnete Funktion eine Eigenschaft S hat, lässt sich nicht Algorithmisch lösen

Definition 25

Seien \mathbb{G} eine Grundmenge, $A \subseteq \mathbb{G}$ und $t : \mathbb{N} \to \mathbb{N}$ eine totale Funktion

- A heißt entscheidbar $\Leftrightarrow c_A : \mathbb{G} \to \{0,1\}$ ist berechenbar
- A heißt semientscheidbar $\Leftrightarrow \chi_A : \mathbb{G} \to \{0,1\}$ ist berechenbar
- A heißt rekursiv aufzählbar (kurz: aufzählbar) $\Leftrightarrow A = \emptyset$ oder es gibt ein berechenbares, totales $f : \mathbb{N} \to \mathbb{G}$ mit $W_f = A$

9 Endliche Automaten

Definition 26: Deterministischer endlicher Automat

Ein deterministischer endlicher Automat (DEA) ist ein Quintupel

 $(\varSigma,Z,\delta,z_0,F)$ mit folgenden Eigenschaften:

- Σ ist eine endliche, nichtleere Menge (Eingabealphabet)
- \bullet Z ist eine endliche Menge (Zustandsmenge)
- δ ist eine totale Funktion $Z\times \varSigma \to Z$ (Überführungsfunktion)
- $z_0 \in Z$ (Startzustand)
- $F \subseteq Z$ (Menge der akzeptierenden Zustände)