Junhao Wen

@ junhao.wen89@gmail.com

Personal page:junhaowen.com

 \square Google Scholar:https://scholar.google.com/citations?user=4Wq $_FukAAAJhl=en$

☑ GitHub:https://github.com/anbai106

My overarching research interests include methodology development and application of machine learning, neuroimaging, and genetics in brain aging and disorders. My grand vision of AI in medicine is that AI sees what we cannot see as human beings. With rigorous and reproducible evaluation, AI has great potential in clinical translation. Throughout my career, I have been a practitioner of open neuroscience and AI.

EDUCATION

2015-2019 PhD in Computer Science Sorbonne University, Paris, France

2012-2015 Master in Electronic Engineering Beihang University, Beijing, China

2008-2012 Bachelor in Electronic Engineering Beihang University, Beijing, China

RESEARCH SKILLS

Programming languages Python, R, Bash, Matlab

Software and frameworks Machine learning (Scikit-learn, TensorFlow, Pytorch), Neuroimaging (Nipype, FreeSurfer, FSL,

ANTs, SPM), **Genomics** (Plink, PRSice, GCTA, LDSC)

Scientific writing Microsoft Word, ET_FX, Overleaf, Inkscape

Development tools PyCharm, RStudio, GitHub

Others HTML, CSS

RESEARCH EXPERIENCE

August 2019 August 2021

Postdoctoral fellow

CBICA lab, University of Pennsylvania, USA

- > Postdoctoral research working with Christos Davatzikos
- > Focus on dissecting heterogeneity of brain diseases and data-driven dimensionality reduction techniques

Neuroimaging | Machine learning

October 2015

| PhD

June 2019

ARAMIS lab, Sorbonne University, INRIA, CNRS, INSERM, Paris, France

- > Four-year PhD training under the supervision of Olivier Colliot and Anne Bertrand
- > Software developer for Clinica
- > PhD dissertation: Structural and microstructural neuroimaging for diagnosis and tracking of neurodegenerative diseases

Neurodegenerative disease Neuroimaging Machine learning

July 2017 October 2017

Visiting scholar

CMIC lab, University College London (UCL), London, UK

- > Collaboration with Daniel Alexander and Hui Zhang
- > Collaboration on a NODDI paper: Neurite density is reduced in the presymptomatic phase of C9orf72 disease

FTLD Clinical study Neuroimaging

A Papers in Peer reviewed Journals

- > Wen, J., Cynthia HY Fu, Duygu Tosun, Yogasudha Veturi, Zhijian Yang, Ahmed Abdulkadir, Elizabeth Mamourian et al., Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptomatology, and Genetics Among Patients With Late-Life Depression. 2022, JAMA Psychiatry, doi:10.1001/jamapsychiatry.2022.0020 Ink
- > Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., Dormont, D., Durrleman, S., Burgos, N., Colliot, O. and Alzheimer's Disease Neuroimaging Initiative, 2020. Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation. Medical image analysis, 63, p.101694. Ink
- > Bertrand, A., Wen, J. (Co-first author), Rinaldi, D., Houot, M., Sayah, S., Camuzat, A., Fournier, C., Fontanella, S., Routier, A., Couratier, P. and Pasquier, F., Habert, M., Hannequin, D., Martinaud, O., Caroppo, P., Levy, R., Dubois, B., Brice, A., Durrleman, S. and Colliot, O., Le Ber., I. 2018. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA Neurology, 75(2), pp.236-245. [link
- > Hwang, G., Wen, J. (Co-first author), et al., Three Neuroanatomical Endophenotypes of Autism Spectrum Disorder and Their Partially Overlapping Characteristics with Schizophrenia. In press 2 preprint
- > Wen, J., Zhang, H., Alexander, D.C., Durrleman, S., Routier, A., Rinaldi, D., Houot, M., Couratier, P., Hannequin, D., Pasquier, F. and Zhang, J., Colliot, O., Le Ber., I. and Bertrand, A. 2018. Neurite Density is Reduced in the Presymptomatic Phase of C9orf72 Disease. J Neurol Neurosurg Psychiatry, pp.jnnp-2018. Iink
- > Wen, J., Varol, E., Sotiras, A., Yang, Z., Chand, G.B., Erus, G., Shou, H., Hwang, G. and Davatzikos, C., 2021. Multi-scale semisupervised clustering of brain images: deriving disease subtypes. Medical image analysis, 63, p.101694. 🗹 link
- > Wen, J., Samper-González, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2021. Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer's disease. Neuroinformatics, 19(1), pp.57-78. Ink
- > Yang, Z., Nasrallah, I.M., Shou, H., Wen, J. et al., A deep learning framework identifies dimensional representations of Alzheimer's Disease from brain structure. Nature Communication 12, 7065 (2021). https://doi.org/10.1038/s41467-021-26703-z 🖸 link
- > Chand, G. B., Singhal, P., Dwyer, D. B., Wen, J. et al., 2022. Two schizophrenia imaging signatures and their associations with cognition, psychopathology, and genetics in the general population. American Journal of Psychiatry, 2022 link
- > Lalousis, P., Schmaal, L., Wood, S., Reniers, R., Barnes, N., Chisholm, K., Griffiths, S., Stainton, A., Wen, J., Hwang, G., Davatzikos, C., Bertolino, A., Borgwardt, S., Brambilla, P., Kambeitz, J., Lencer, R., Pantelis, C., Ruhrmann, S., Salokangas, R., Schultze-Lutter, F., Schmidt, A., Meisenzahl, E., Koutsouleris, N., Dwyer, D., Upthegrov, R., Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes. Biological Psychiatry, 2022 link
- > Ansart, M., Epelbaum, S., Bassignana, G., Bône, A., Bottani, S., Cattai, T., Couronne, R., Faouzi, J., Koval, I., Louis, M. and Thibeau-Sutre, E., Wen, J., 2020. Predicting the progression of mild cognitive impairment using machine learning: a systematic, quantitative and critical review. Medical image analysis, p.101848.
- > Samper-González, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux, A., Routier, A., Guillon, J., Bacci, M., Wen, J. and Bertrand, A., Bertin, H., Habert, M., Durrleman, S., Evgeniou, T. and Colliot., O. 2018. Reproducible evaluation of classification methods in Alzheimer's disease: framework and application to MRI and PET data. Neuroimage, 2018.
- > Yue, L., Hu, D., Zhang, H., Wen, J., Wu, Y., Li, W., Sun, L., Li, X., Wang, J., Li, G. and Wang, T., 2021. Prediction of 7-year's conversion from subjective cognitive decline to mild cognitive impairment. Human brain mapping, 42(1), pp.192-203.
- > Marcoux, A., Burgos., Bertrand., Teichmann., Routier A., Wen J., Samper-Gonzalez J., Bottani, S., Durrleman, S., Habert, M. and Colliot, O. 2018. An Automated Pipeline for the Analysis of PET Data on the Cortical Surface. Frontiers in Neuroinformatics, 2018.
- > Routier A, Burgos N, Díaz M, Bacci M, Bottani S, El-Rifai O, Fontanella S, Gori P, Guillon J, Guyot A, Hassanaly R, Jacquemont T, Lu P, Marcoux A, Moreau T, Samper-González J, Teichmann M, Thibeau-Sutre E, Vaillant G, Wen, J., Wild A, Habert M-O, Durrleman S and Colliot O (2021) Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies. Front. Neuroinform. 15:689675. doi: 10.3389/fninf.2021.689675

✓ Papers in conference proceedings

- > Wen, J., Varol, E., Chand, G., Sotiras, A. and Davatzikos, C., 2020, October. MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 678-687). Springer, Cham.
- > Yang, Z., Wen, J., and Davatzikos, C., 2021. Surreal-GAN: Semi-Supervised Representation Learning via GAN for uncovering heterogeneous disease-related imaging patterns. International Conference on Learning Representations

> Wen, J., Varol, E., Yang, Z., Hwang, G., Dwyer, D., Kazerooni, A., Lalousis, P., and Davatzikos, C., 2022, January. Subtyping brain diseases from imaging data. Machine Learning for Brain Disorders Springer. In press

- > Wen, J. et al., Genetic, clinical underpinnings of preclinical brain change along Alzheimer's dimensions. Submitted to Nature preprint
- > Wen, J. et al., Novel genomic loci and pathways influence patterns of structural covariance in the human brain. In review in Science Advances preprint

OTHER ACTIVITIES

TEACHING ASSISTANT Advanced Methods and Health Applications in Machine Learning, UPenn, USA, 🗹 link

COMMUNITY SERVICE Hybridization chair of OHBM Open Science SIG (2023-2025)

MENTORSHIP Marilena de Pian, Master student, National Technical University of Athens, Greece

MENTORSHIP Jiong Chen, Master student, UPenn, USA

LANGUAGES

Chinese	••••
French	
English	
Spanish	

♥ INTERESTS

- > Music
- > Extreme sports
- > Travel

66 REFERENCES

Christos Davatzikos

Postdoc Supervisor, University of Pennsylvania

@ christos.davatzikos@pennmedicine.upenn.edu

+1 215-746-4067

Olivier Colliot

Ph.D. Supervisor, Sorbonne Université

O olivier.colliot@sorbonne-universite.fr

+33 157274365

Li Shen

Collaborator, University of Pennsylvania

@ li.shen@pennmedicine.upenn.edu

+1 215-573-2956