稠密性相关问题 by_ MuKe

稠密性相关

Def 1 设 A 与 B 都是数集,如果对于任意 $a \in A$ 和任意 $\varepsilon > 0$,都存在 $b \in B$,使得 $|a - b| < \varepsilon$,则称 B 是稠密于 A 的.

注意,这里并不要求 B 是 A 的子集.当 B 是 A 的子集且 B 稠密于 A 的时候,称 B 是 A 的稠密子集,或者说 B 在 A 中稠密.

我们可以得到下面的定理:

Thm 1 有理数集 \mathbb{Q} 和无理数集 $\mathbb{R}\setminus\mathbb{Q}$ 都是实数集 \mathbb{R} 的稠密子集.

Thm 2(Dirichlet逼近定理) 对任意给定的实数 x 和正整数 N>1,都存在整数 p,q,满足 $0< q \leq N$ 且 $|qx-p|<\frac{1}{N}$.

Pf(sketch): 考虑 $\{0x\}, \{1x\}, \{2x\}, \cdots, \{Nx\}$ 这 N+1 个数,与 $[0, \frac{1}{N}), [\frac{1}{N}, \frac{2}{N}), \cdots, [\frac{N-1}{N}, 1)$ 这 N 个区间,由抽屉原理可以知道必定存在两个数 i < j 在同一个区间之内使得 $|\{ix\} - \{jx\}| < \frac{1}{N}$. 注意到:

$${jx} - {ix} = (jx - [jx]) - (ix - [ix]),$$

从而取 q = j - i, p = [jx] - [ix] 即得证.

Corollary 1 对任意无理数 x,存在无穷多个有理数 $\frac{p}{q}(p$ 是整数,q 是正整数)使得 $\left|x-\frac{p}{q}\right|<\frac{1}{q^2}$. Pf(sketch):设只存在有限个有理数满足条件,取这些有理数到x最小距离,利用上面的定理导出矛盾即可.

在给出定理3之前,我们先给出在某一段区间中稠密的等价定义.

Def 2 对于集合 A 和区间 (m,n),对任意的 $m \le a < b \le n$,都存在 $x \in A$,使得 $x \in (a,b)$,则称集合 A 在区间 (m,n) 上稠密.

Thm 3(Kronecker定理) 设 α 是一个无理数,则集合 $\{\{n\alpha\}|n\in\mathbb{N}^*\}$ 在 (0,1) 中稠密.

Pf:根据 Dirichlet 定理的证明可知,对于任意的 $\varepsilon > 0$,存在互异正整数 n_1, n_2 使得 $|\{n_1x\} - \{n_2x\}| < \varepsilon$. 不妨设 $\{n_1x\} > \{n_2x\}$,注意到

$$(n_1 - n_2)x = n_1x - n_2x = ([n_1x] - [n_2x]) + (\{n_1x\} - \{n_2x\}),$$

对两边取小数部分可以得到 $\{(n_1-n_2)x\}=\{n_1x\}-\{n_2x\}$, 设 $n_1-n_2=\theta$.

对于任意 (0,1) 的子区间 (a,b),取 $\varepsilon < b-a$,则知道必定存在一个最小的正整数 n_0 使得 $n_0\{\theta x\} \in (a,b)$,由 n_0 的最小性我们不难得到 $n_0\{\theta x\} = \{n_0\theta x\}$.

若 $\theta = n_1 - n_2 > 0$, 则由 Def 2 可知结论成立;

若 $\theta = n_1 - n_2 < 0$,对任意 $\varepsilon > 0, 1 - a \in (0,1)$,容易知道存在 n_0 使得 $|n_0\{\theta x\} - (1-a)| < \varepsilon$ (即 $n_0\{\theta x\} \in (a-\varepsilon,a+\varepsilon)$),注意到 $\{-x\} = 1-\{x\}$,有

$$|\{-n_0\theta x\} - a| = |(1 - n_0\{\theta x\}) - a| < \varepsilon,$$

因为 $-n_0\theta x \in \mathbb{N}^*$, 从而由 Def 1 知道结论成立.

综上知结论成立.

2023年9月24日 1 南开大学

稠密性相关问题 ${
m by_-\,MuKe}$

几个相关问题:

问题 1 设 α 是一个无理数,则集合 $A = \{n + m\alpha | m, n \in \mathbb{Z}\}$ 在 \mathbb{R} 中稠密.

问题 2 集合 $\{\frac{m}{2^n}|m\in\mathbb{Z},n\in\mathbb{N}\}$ 在 \mathbb{R} 中稠密.

问题 3 集合 $\{\sqrt[n]{m}|m,n\in\mathbb{N}^*\}$ 在 $[1,+\infty)$ 中稠密.

问题 4 在单位圆周上,任取一点为起始点,取所有正整数弧度构成的点的集合是稠密于该圆周的.

问题 5 集合 $\{\cos n|n\in\mathbb{N}^*\}$ 在 [-1,1] 中稠密.

问题 6 集合 $\{\sin n | n \in \mathbb{Z}\}$ 在 [-1,1] 中稠密.

问题 7 集合 $\{\sin n | n \in \mathbb{N}^* \}$ 在 [-1,1] 中稠密.

问题 8 设数列 $\{x_n\}$ 满足以下两个条件:

 $(1) \lim_{n \to \infty} (x_{n+1} - x_n) = 0;$

(2)对任意 $\varepsilon \in (0,1)$ 和任意正整数 N,存在 m > N 和 n > N,使得 $|x_m - x_n| > 1 - \varepsilon$,则集合 $\{\{x_n\} | n \in \mathbb{N}^*\}$ 在 [0,1) 中稠密.