MATH182 FINAL DUE July 31, 2020

Question 1. (5pts) Write an algorithm which implements depth-first search without recursion. You might find a stack data structure to be useful. Your algorithm should take as input a graph G = (V, E) and upon termination should successfully assign the predecessor, discovery time, and finishing time attributes to all vertices. You can also use the color attribute.

Question 2. (5pts) Give the optimal parenthesization for a matrix chain product $\langle A_1, A_2, A_3, A_4, A_5, A_6 \rangle$, where

- A_1 has size 5×10
- A_2 has size 10×3
- A_3 has size 3×12
- A_4 has size 12×5
- A_5 has size 5×50
- A_6 has size 50×6

Question 3. (5pts) Suppose G = (V, E) is a connected, undirected graph. Show that if an edge (u, v) is contained in some minimum spanning tree of G, then it is a light edge crossing some cut of the graph.

Question 4. (5pts) Describe an efficient algorithm that, given a set $\{x_1, x_2, ..., x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

Question 5. (True/False) For each of the following statements indicate whether they are **true** or **false**. Each question is worth 2pts, a blank answer will receive 1pt. Recall that "true" means "always true" and "false" means "there exists a counterexample".

- (1) Since MAX-HEAPIFY runs in $O(\lg n)$ time, the process BUILD-MAX-HEAP runs in $\Theta(n \lg n)$ time.
- (2) In the rod-cutting problem, the naive recursive solution Cut-Rod runs in polynomial time.
- (3) If a problem has a greedy algorithm solution, then it necessarily does not have a dynamic programming solution; and vice versa.
- (4) The algorithm BFS visits every vertex of the graph.
- (5) During DFS, if a vertex v has its color changed from white to gray while u is gray, then u.f < v.f.