On remplace la densité π d'un vecteur de v.a.'s \mathbf{Y} par une autre densité, g, telle que $g(\mathbf{y}) > 0$ lorsque $h(\mathbf{y})\pi(\mathbf{y}) \neq 0$. On a

$$\mu = \mathbb{E}_{\pi}[h(\mathbf{Y})] = \int_{\mathbb{R}^d} h(\mathbf{y}) \pi(\mathbf{y}) d\mathbf{y}$$

On remplace la densité π d'un vecteur de v.a.'s \mathbf{Y} par une autre densité, g, telle que $g(\mathbf{y}) > 0$ lorsque $h(\mathbf{y})\pi(\mathbf{y}) \neq 0$. On a

$$\mu = \mathbb{E}_{\pi}[h(\mathbf{Y})] = \int_{\mathbb{R}^d} h(\mathbf{y})\pi(\mathbf{y})d\mathbf{y} = \int_{\mathbb{R}^d} [h(\mathbf{y})\pi(\mathbf{y})/g(\mathbf{y})]g(\mathbf{y})d\mathbf{y}$$

On remplace la densité π d'un vecteur de v.a.'s \mathbf{Y} par une autre densité, g, telle que $g(\mathbf{y}) > 0$ lorsque $h(\mathbf{y})\pi(\mathbf{y}) \neq 0$. On a

$$\mu = \mathbb{E}_{\boldsymbol{\pi}}[h(\mathbf{Y})] = \int_{\mathbb{R}^d} h(\mathbf{y}) \pi(\mathbf{y}) d\mathbf{y} = \int_{\mathbb{R}^d} [h(\mathbf{y}) \pi(\mathbf{y}) / g(\mathbf{y})] g(\mathbf{y}) d\mathbf{y}$$
$$= \mathbb{E}_{\boldsymbol{g}}[h(\mathbf{Y}) \pi(\mathbf{Y}) / g(\mathbf{Y})].$$

On remplace la densité π d'un vecteur de v.a.'s \mathbf{Y} par une autre densité, g, telle que $g(\mathbf{y}) > 0$ lorsque $h(\mathbf{y})\pi(\mathbf{y}) \neq 0$. On a

$$\mu = \mathbb{E}_{\boldsymbol{\pi}}[h(\mathbf{Y})] = \int_{\mathbb{R}^d} h(\mathbf{y}) \pi(\mathbf{y}) d\mathbf{y} = \int_{\mathbb{R}^d} [h(\mathbf{y}) \pi(\mathbf{y}) / g(\mathbf{y})] g(\mathbf{y}) d\mathbf{y}$$
$$= \mathbb{E}_{\boldsymbol{g}}[h(\mathbf{Y}) \pi(\mathbf{Y}) / g(\mathbf{Y})].$$

On génère ${\bf Y}$ selon g, et l'estimateur est ${\bf X_{is}}=h({\bf Y})\pi({\bf Y})/g({\bf Y})$.

On remplace la densité π d'un vecteur de v.a.'s \mathbf{Y} par une autre densité, g, telle que $g(\mathbf{y}) > 0$ lorsque $h(\mathbf{y})\pi(\mathbf{y}) \neq 0$. On a

$$\mu = \mathbb{E}_{\boldsymbol{\pi}}[h(\mathbf{Y})] = \int_{\mathbb{R}^d} h(\mathbf{y}) \pi(\mathbf{y}) d\mathbf{y} = \int_{\mathbb{R}^d} [h(\mathbf{y}) \pi(\mathbf{y}) / g(\mathbf{y})] g(\mathbf{y}) d\mathbf{y}$$
$$= \mathbb{E}_{\boldsymbol{g}}[h(\mathbf{Y}) \pi(\mathbf{Y}) / g(\mathbf{Y})].$$

On génère \mathbf{Y} selon g, et l'estimateur est $X_{is} = h(\mathbf{Y})\pi(\mathbf{Y})/g(\mathbf{Y})$. Classe importante d'applications: simulation d'événements rares.

Cas discret. $\mathbb{P}{Y = y_k} = p(y_k)$ pour $k = 0, 1, \ldots$

Cas discret. $\mathbb{P}{Y = y_k} = p(y_k)$ pour k = 0, 1, ...

On change les probabilités $p(y_k)$ pour des probabilités $q(y_k)$ telles que $q(y_k) > 0$ lorsque $h(y_k)p(y_k) \neq 0$. Alors

$$\mu = \mathbb{E}_p[h(Y)] = \sum_{k=0}^{\infty} h(y_k)p(y_k)$$

Cas discret. $\mathbb{P}{Y = y_k} = p(y_k)$ pour k = 0, 1, ...

On change les probabilités $p(y_k)$ pour des probabilités $q(y_k)$ telles que $q(y_k) > 0$ lorsque $h(y_k)p(y_k) \neq 0$. Alors

$$\mu = \mathbb{E}_p[h(Y)] = \sum_{k=0}^{\infty} h(y_k)p(y_k) = \sum_{k=0}^{\infty} [h(y_k)p(y_k)/q(y_k)]q(y_k)$$

Cas discret. $\mathbb{P}{Y = y_k} = p(y_k)$ pour k = 0, 1, ...

On change les probabilités $p(y_k)$ pour des probabilités $q(y_k)$ telles que $q(y_k) > 0$ lorsque $h(y_k)p(y_k) \neq 0$. Alors

$$\mu = \mathbb{E}_{p}[h(Y)] = \sum_{k=0}^{\infty} h(y_{k})p(y_{k}) = \sum_{k=0}^{\infty} [h(y_{k})p(y_{k})/q(y_{k})]q(y_{k})$$
$$= \mathbb{E}_{q}[h(Y)p(Y)/q(Y)]$$

Cas discret. $\mathbb{P}{Y = y_k} = p(y_k)$ pour $k = 0, 1, \ldots$

On change les probabilités $p(y_k)$ pour des probabilités $q(y_k)$ telles que $q(y_k) > 0$ lorsque $h(y_k)p(y_k) \neq 0$. Alors

$$\mu = \mathbb{E}_{p}[h(Y)] = \sum_{k=0}^{\infty} h(y_{k})p(y_{k}) = \sum_{k=0}^{\infty} [h(y_{k})p(y_{k})/q(y_{k})]q(y_{k})$$
$$= \mathbb{E}_{q}[h(Y)p(Y)/q(Y)]$$

Estimateur sans biais de μ : $X_{is} = h(Y)p(Y)/q(Y)$.

Supposons que l'on a $X=h(Y_1,\ldots,Y_d)$ où $\mathbf{Y}=(Y_1,\ldots,Y_d)$ sont des v.a. indépendantes de densités π_1,\ldots,π_d .

Supposons que l'on a $X = h(Y_1, \ldots, Y_d)$ où $\mathbf{Y} = (Y_1, \ldots, Y_d)$ sont des v.a. indépendantes de densités π_1, \ldots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes.

Supposons que l'on a $X = h(Y_1, \dots, Y_d)$ où $\mathbf{Y} = (Y_1, \dots, Y_d)$ sont des v.a. indépendantes de densités π_1, \dots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes. On a

$$\mu = \mathbb{E}_{\pi}[h(Y_1,\ldots,Y_d)]$$

Supposons que l'on a $X = h(Y_1, \dots, Y_d)$ où $\mathbf{Y} = (Y_1, \dots, Y_d)$ sont des v.a. indépendantes de densités π_1, \dots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes. On a

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_d)]$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} h(y_1, \dots, y_d) \pi_1(y_1) \dots \pi_d(y_d) dy_1 \dots dy_d$$

Supposons que l'on a $X = h(Y_1, \dots, Y_d)$ où $Y = (Y_1, \dots, Y_d)$ sont des v.a. indépendantes de densités π_1, \dots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes. On a

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_d)]$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} h(y_1, \dots, y_d) \pi_1(y_1) \dots \pi_d(y_d) dy_1 \dots dy_d$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left[h(y_1, \dots, y_d) \frac{\pi_1(y_1) \dots \pi_d(y_d)}{g_1(y_1) \dots g_d(y_d)} \right] g_1(y_1) \dots g_d(y_d) dy_1 \dots dy_d$$

Supposons que l'on a $X = h(Y_1, \ldots, Y_d)$ où $\mathbf{Y} = (Y_1, \ldots, Y_d)$ sont des v.a. indépendantes de densités π_1, \ldots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes. On a

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_d)]$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} h(y_1, \dots, y_d) \pi_1(y_1) \dots \pi_d(y_d) dy_1 \dots dy_d$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left[h(y_1, \dots, y_d) \frac{\pi_1(y_1) \dots \pi_d(y_d)}{g_1(y_1) \dots g_d(y_d)} \right] g_1(y_1) \dots g_d(y_d) dy_1 \dots dy_d$$

$$= \mathbb{E}_g \left[h(Y_1, \dots, Y_d) \frac{\pi_1(Y_1) \dots \pi_d(Y_d)}{g_1(Y_1) \dots g_d(Y_d)} \right],$$

en supposant que $g_1(y_1)\cdots g_d(y_d)>0$ lorsque $h(y_1,\ldots,y_d)\pi_1(y_1)\cdots \pi_d(y_d)\neq 0$.

Supposons que l'on a $X = h(Y_1, \ldots, Y_d)$ où $\mathbf{Y} = (Y_1, \ldots, Y_d)$ sont des v.a. indépendantes de densités π_1, \ldots, π_d .

Une façon simple d'appliquer IS est de remplacer chaque π_j par une autre densité g_j . Les Y_j demeurent indépendantes. On a

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_d)]$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} h(y_1, \dots, y_d) \pi_1(y_1) \dots \pi_d(y_d) dy_1 \dots dy_d$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left[h(y_1, \dots, y_d) \frac{\pi_1(y_1) \dots \pi_d(y_d)}{g_1(y_1) \dots g_d(y_d)} \right] g_1(y_1) \dots g_d(y_d) dy_1 \dots dy_d$$

$$= \mathbb{E}_g \left[h(Y_1, \dots, Y_d) \frac{\pi_1(Y_1) \dots \pi_d(Y_d)}{g_1(Y_1) \dots g_d(Y_d)} \right],$$

en supposant que $g_1(y_1)\cdots g_d(y_d)>0$ lorsque $h(y_1,\ldots,y_d)\pi_1(y_1)\cdots \pi_d(y_d)\neq 0$. L'estimateur IS est $X_{is}=h(Y_1,\ldots,Y_d)L(Y_1,\ldots,Y_d)$ où

$$L(y_1,\ldots,y_d) = \frac{\pi_1(y_1)\cdots\pi_d(y_d)}{g_1(y_1)\cdots g_d(y_d)}$$

est le rapport de vraisemblance associé au changement de densité.

Si les Y_j sont dépendants?

Soit
$$\mu = \mathbb{E}[X]$$
 où $X = h(Y_1, \dots, Y_T)$, $h(Y_1, \dots, Y_T) = 0$ si $T = \infty$,

et T est un temps d'arrêt par rapport à $\{Y_j, j \geq 1\}$.

Soit $\mu = \mathbb{E}[X]$ où $X = h(Y_1, \dots, Y_T)$, $h(Y_1, \dots, Y_T) = 0$ si $T = \infty$,

et T est un temps d'arrêt par rapport à $\{Y_j, j \geq 1\}$.

Supposons que la densité de Y_1 est π_1 , et la densité Y_j conditionnelle à $(Y_1, \ldots, Y_{j-1}) = (y_1, \ldots, y_{j-1})$ est $\pi_j(\cdot \mid y_1, \ldots, y_{j-1})$.

Soit
$$\mu = \mathbb{E}[X]$$
 où $X = h(Y_1, \dots, Y_T)$, $h(Y_1, \dots, Y_T) = 0$ si $T = \infty$,

et T est un temps d'arrêt par rapport à $\{Y_j, j \geq 1\}$.

Supposons que la densité de Y_1 est π_1 , et la densité Y_j conditionnelle à $(Y_1,\ldots,Y_{j-1})=(y_1,\ldots,y_{j-1})$ est $\pi_j(\cdot\mid y_1,\ldots,y_{j-1})$.

On remplace les π_j par des densités conditionnelles g_j et on obtient:

$$X_{is} = h(Y_1, \dots, Y_T)L(Y_1, \dots, Y_T)$$

où

$$L(y_1, \dots, y_T) = \frac{\pi_1(y_1)\pi_2(y_2 \mid y_1) \cdots \pi_T(y_T \mid y_1, \dots, y_{T-1})}{g_1(y_1)g_2(y_2 \mid y_1) \cdots g_T(y_T \mid y_1, \dots, y_{T-1})}$$

lorsque $T < \infty$.

Soit
$$\mu = \mathbb{E}[X]$$
 où $X = h(Y_1, \dots, Y_T)$, $h(Y_1, \dots, Y_T) = 0$ si $T = \infty$,

et T est un temps d'arrêt par rapport à $\{Y_j, j \geq 1\}$.

Supposons que la densité de Y_1 est π_1 , et la densité Y_j conditionnelle à $(Y_1,\ldots,Y_{j-1})=(y_1,\ldots,y_{j-1})$ est $\pi_j(\cdot\mid y_1,\ldots,y_{j-1})$.

On remplace les π_j par des densités conditionnelles g_j et on obtient:

$$X_{is} = h(Y_1, \dots, Y_T)L(Y_1, \dots, Y_T)$$

où

$$L(y_1, \dots, y_T) = \frac{\pi_1(y_1)\pi_2(y_2 \mid y_1) \cdots \pi_T(y_T \mid y_1, \dots, y_{T-1})}{g_1(y_1)g_2(y_2 \mid y_1) \cdots g_T(y_T \mid y_1, \dots, y_{T-1})}$$

lorsque $T < \infty$.

lci encore, les g_j doivent être tels que L doit être fini lorsque $h(y_1, \ldots, y_T)\pi_1(y_1)\pi_2(y_2 \mid y_1)\cdots\pi_T(y_T \mid y_1, \ldots, y_{T-1}) \neq 0$.

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$= \mathbb{E}_{\pi}\left[\sum_{n=1}^{\infty} \mathbb{I}[T=n] h(Y_1, \dots, Y_n)\right]$$

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$= \mathbb{E}_{\pi} \left[\sum_{n=1}^{\infty} \mathbb{I}[T=n] h(Y_1, \dots, Y_n) \right]$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{\pi}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n)] \quad \text{(e.g., si } h \ge 0)$$

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$= \mathbb{E}_{\pi} \left[\sum_{n=1}^{\infty} \mathbb{I}[T=n] h(Y_1, \dots, Y_n) \right]$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{\pi}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n)] \quad \text{(e.g., si } h \ge 0\text{)}$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{g}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n) L(Y_1, \dots, Y_n)]$$

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$= \mathbb{E}_{\pi} \left[\sum_{n=1}^{\infty} \mathbb{I}[T=n] h(Y_1, \dots, Y_n) \right]$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{\pi}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n)] \quad \text{(e.g., si } h \ge 0)$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{g}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n) L(Y_1, \dots, Y_n)]$$

$$= \mathbb{E}_{g}[h(Y_1, \dots, Y_T) L(Y_1, \dots, Y_T)],$$

car T est un temps d'arrêt.

$$\mu = \mathbb{E}_{\pi}[h(Y_1, \dots, Y_T)]$$

$$= \mathbb{E}_{\pi} \left[\sum_{n=1}^{\infty} \mathbb{I}[T=n] h(Y_1, \dots, Y_n) \right]$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{\pi}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n)] \quad \text{(e.g., si } h \ge 0)$$

$$= \sum_{n=1}^{\infty} \mathbb{E}_{g}[\mathbb{I}[T=n] h(Y_1, \dots, Y_n) L(Y_1, \dots, Y_n)]$$

$$= \mathbb{E}_{g}[h(Y_1, \dots, Y_T) L(Y_1, \dots, Y_T)],$$

car T est un temps d'arrêt.

Idem pour le cas discret.

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Le rapport de vraisemblance est $L(P,Q,\omega)=(dP/dQ)(\omega)$ (c'est la dérivée de Radon-Nikodym de P par rapport à Q) et

$$\mu = \mathbb{E}_P[h(\omega)]$$

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Le rapport de vraisemblance est $L(P,Q,\omega)=(dP/dQ)(\omega)$ (c'est la dérivée de Radon-Nikodym de P par rapport à Q) et

$$\mu = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Le rapport de vraisemblance est $L(P,Q,\omega)=(dP/dQ)(\omega)$ (c'est la dérivée de Radon-Nikodym de P par rapport à Q) et

$$\mu = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega) = \int_{\Omega} [h(\omega)(dP/dQ)(\omega)] dQ(\omega)$$

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Le rapport de vraisemblance est $L(P,Q,\omega)=(dP/dQ)(\omega)$

(c'est la dérivée de Radon-Nikodym de P par rapport à Q) et

$$\mu = \mathbb{E}_{P}[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega) = \int_{\Omega} [h(\omega)(dP/dQ)(\omega)] dQ(\omega)$$
$$= \mathbb{E}_{Q}[h(\omega)L(P,Q,\omega)].$$

Soit

$$\mu = \mathbb{E}_P[X] = \mathbb{E}_P[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega)$$

où $P[\omega \in A] = P[A] = \int_A dP(\omega)$ pour tout ensemble mesurable $A \subseteq \Omega$.

On remplace P par une mesure Q telle que Q(A)>0 lorsque $\int_A h(\omega)dP(\omega)>0$.

Le rapport de vraisemblance est $L(P,Q,\omega)=(dP/dQ)(\omega)$

(c'est la dérivée de Radon-Nikodym de P par rapport à Q) et

$$\mu = \mathbb{E}_{P}[h(\omega)] = \int_{\Omega} h(\omega) dP(\omega) = \int_{\Omega} [h(\omega)(dP/dQ)(\omega)] dQ(\omega)$$
$$= \mathbb{E}_{Q}[h(\omega)L(P,Q,\omega)].$$

L'estimateur IS $X_{is} = h(\omega)L(P,Q,\omega)$ est sans biais pour μ .

Le Q optimal est $Q^*(d\omega) = |h(\omega)|P(d\omega)/\tilde{\mu}$, où $\tilde{\mu} = \int_{\Omega} |h(\omega)|dP(\omega)$.

Le Q optimal est $Q^*(d\omega) = |h(\omega)|P(d\omega)/\tilde{\mu}$, où $\tilde{\mu} = \int_{\Omega} |h(\omega)|dP(\omega)$.

Avec ce Q^* , on obtient $X^*_{\rm is}=\tilde{\mu}$ si $h(\omega)>0$, $X^*_{\rm is}=-\tilde{\mu}$ si $h(\omega)<0$, et $Q^*[h(\omega)=0]=0$.

Le Q optimal est $Q^*(d\omega) = |h(\omega)|P(d\omega)/\tilde{\mu}$, où $\tilde{\mu} = \int_{\Omega} |h(\omega)|dP(\omega)$.

Avec ce Q^* , on obtient $X_{\rm is}^*=\tilde{\mu}$ si $h(\omega)>0$, $X_{\rm is}^*=-\tilde{\mu}$ si $h(\omega)<0$, et $Q^*[h(\omega)=0]=0$.

Si $h(\omega)$ est toujours du même signe, Q^* réduit la variance à zéro. Mais Q^* est habituellement trop difficile à trouver et à utiliser en pratique.

Le rapport de vraisemblance n'est jamais négatif. De plus,

Proposition.

Si $(dP/dQ)(\omega)$ existe sur un ensemble mesurable B tel que $\mathbb{Q}[B]=1$, alors $\mathbb{E}_{\mathbb{Q}}[L(\mathbb{P},\mathbb{Q},\omega)]=\mathbb{P}[B]$.

Preuve:

$$\mathbb{E}_{\mathbb{Q}}[L(\mathbb{P},\mathbb{Q},\omega)] = \int_{B} [(d\mathbb{P}/d\mathbb{Q})(\omega)]d\mathbb{Q}(\omega) = \int_{B} d\mathbb{P}(\omega) = \mathbb{P}[B].$$

Proposition. Var[X] = Var[X_{is}] + $\mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))]$.

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$
$$= \int_{\Omega} h^{2}(\omega)L(P,Q,\omega)dP(\omega)$$

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$

$$= \int_{\Omega} h^{2}(\omega)L(P,Q,\omega)dP(\omega)$$

$$= \mathbb{E}_{P}[h^{2}(\omega)L(P,Q,\omega)].$$

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$

$$= \int_{\Omega} h^{2}(\omega)L(P,Q,\omega)dP(\omega)$$

$$= \mathbb{E}_{P}[h^{2}(\omega)L(P,Q,\omega)].$$

On a donc

$$Var[X] - Var[X_{is}]$$

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$

$$= \int_{\Omega} h^{2}(\omega)L(P,Q,\omega)dP(\omega)$$

$$= \mathbb{E}_{P}[h^{2}(\omega)L(P,Q,\omega)].$$

On a donc

$$Var[X] - Var[X_{is}] = \mathbb{E}_P[X^2] - \mathbb{E}_Q[X_{is}^2]$$

Proposition. $Var[X] = Var[X_{is}] + \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$ Preuve.

$$\mathbb{E}_{Q}[X_{is}^{2}] = \int_{\Omega} [h(\omega)L(P,Q,\omega)]^{2} dQ(\omega)$$

$$= \int_{\Omega} h^{2}(\omega)L(P,Q,\omega)dP(\omega)$$

$$= \mathbb{E}_{P}[h^{2}(\omega)L(P,Q,\omega)].$$

On a donc

$$\operatorname{Var}[X] - \operatorname{Var}[X_{\mathrm{is}}] = \mathbb{E}_P[X^2] - \mathbb{E}_Q[X_{\mathrm{is}}^2] = \mathbb{E}_P[h^2(\omega)(1 - L(P, Q, \omega))].$$

Corollaire. Si $L(P,Q,\omega) \leq \rho$ lorsque $h(\omega) \neq 0$, pour une constante $\rho \leq 1$, alors

$$\operatorname{Var}[X_{\mathrm{is}}] \le \rho \operatorname{Var}[X] - (1 - \rho)\mu^2$$

Corollaire. Si $L(P,Q,\omega) \leq \rho$ lorsque $h(\omega) \neq 0$, pour une constante $\rho \leq 1$, alors

$$\operatorname{Var}[X_{\mathrm{is}}] \le \rho \operatorname{Var}[X] - (1 - \rho)\mu^2 \le \rho \operatorname{Var}[X].$$

Corollaire. Si $L(P,Q,\omega) \leq \rho$ lorsque $h(\omega) \neq 0$, pour une constante $\rho \leq 1$, alors

$$\operatorname{Var}[X_{\mathrm{is}}] \le \rho \operatorname{Var}[X] - (1 - \rho)\mu^2 \le \rho \operatorname{Var}[X].$$

Preuve

$$Var[X] - Var[X_{is}] = \mathbb{E}_P[h^2(\omega)(1 - L(\omega))]$$

$$\geq (1 - \rho)\mathbb{E}_P[h^2(\omega)]$$

$$\geq (1 - \rho)(Var[X] + \mu^2)$$

Corollaire. Si $L(P,Q,\omega) \leq \rho$ lorsque $h(\omega) \neq 0$, pour une constante $\rho \leq 1$, alors

$$\operatorname{Var}[X_{\mathrm{is}}] \le \rho \operatorname{Var}[X] - (1 - \rho)\mu^2 \le \rho \operatorname{Var}[X].$$

Preuve

$$\operatorname{Var}[X] - \operatorname{Var}[X_{\mathrm{is}}] = \mathbb{E}_{P}[h^{2}(\omega)(1 - L(\omega))]$$

$$\geq (1 - \rho)\mathbb{E}_{P}[h^{2}(\omega)]$$

$$\geq (1 - \rho)(\operatorname{Var}[X] + \mu^{2})$$

Interprétation: On veut choisir Q de manière à ce que les grandes valeurs de $L(P,Q,\omega)$ surviennent lorsque $h(\omega)=0$ (ou proche). Ainsi, L sera plus petit (i.e., ω plus "probable" sous Q) lorsque $h^2(\omega)$ est grand.

Corollaire. Si $L(P,Q,\omega) \leq \rho$ lorsque $h(\omega) \neq 0$, pour une constante $\rho \leq 1$, alors

$$\operatorname{Var}[X_{\mathrm{is}}] \le \rho \operatorname{Var}[X] - (1 - \rho)\mu^2 \le \rho \operatorname{Var}[X].$$

Preuve

$$\operatorname{Var}[X] - \operatorname{Var}[X_{\mathrm{is}}] = \mathbb{E}_{P}[h^{2}(\omega)(1 - L(\omega))]$$

$$\geq (1 - \rho)\mathbb{E}_{P}[h^{2}(\omega)]$$

$$\geq (1 - \rho)(\operatorname{Var}[X] + \mu^{2})$$

Interprétation: On veut choisir Q de manière à ce que les grandes valeurs de $L(P,Q,\omega)$ surviennent lorsque $h(\omega)=0$ (ou proche). Ainsi, L sera plus petit (i.e., ω plus "probable" sous Q) lorsque $h^2(\omega)$ est grand.

Exemple. Si $h(\omega) = \mathbb{I}[\omega \in A]$ et on veut estimer $\mu = P[A] = \mathbb{E}_P[h(\omega)]$, Q^* est défini par $Q^*(B) = \mathbb{I}[A]P[B]/P[A] = P[B \mid A]$ si $B \subseteq A$. On alors $L(\omega) = (\mathrm{d}P(\omega)/\mathrm{d}Q^*(\omega)) = P[A] = \rho$ pour $\omega \in A$.

Variance zéro pour une chaîne de Markov

CMTC $\{Y_j, j \geq 0\}$ dans \mathcal{Y} , noyau de transition \mathbb{P} , fonction de coût $c: \mathcal{Y}^2 \to [0, \infty)$.

Dans l'état $Y_{j-1} = y \in \mathcal{Y}$, la loi de prob. du prochain état Y_j est $\mathbb{P}[Y_j \in \cdot \mid Y_{j-1} = y) = \mathbb{P}(\cdot \mid y)$, et on paye $c(Y_{j-1}, Y_j)$ à l'étape j.

États absorbants: $\Delta \subset \mathcal{Y}$. On a $\mathbb{P}(\{y\} \mid y) = 1$ et c(y,y) = 0 pour tout $y \in \Delta$.

Variance zéro pour une chaîne de Markov

CMTC $\{Y_j, j \geq 0\}$ dans \mathcal{Y} ,

noyau de transition \mathbb{P} , fonction de coût $c: \mathcal{Y}^2 \to [0, \infty)$.

Dans l'état $Y_{j-1} = y \in \mathcal{Y}$, la loi de prob. du prochain état Y_j est

 $\mathbb{P}[Y_j \in \cdot \mid Y_{j-1} = y) = \mathbb{P}(\cdot \mid y)$, et on paye $c(Y_{j-1}, Y_j)$ à l'étape j.

États absorbants: $\Delta \subset \mathcal{Y}$. On a $\mathbb{P}(\{y\} \mid y) = 1$ et c(y,y) = 0 pour tout $y \in \Delta$.

Soit $\tau = \inf\{j : Y_j \in \Delta\}$,

$$X = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j)$$
 et $\mu(y) = \mathbb{E}[X \mid Y_0 = y],$

le coût total espéré en partant de y.

On suppose que $\mathbb{E}[\tau \mid Y_0 = y] < \infty$ et $\mu(y) < \infty$ pour tout $y \in \mathcal{Y}$.

Variance zéro pour une chaîne de Markov

CMTC $\{Y_j, j \geq 0\}$ dans \mathcal{Y} ,

noyau de transition \mathbb{P} , fonction de coût $c: \mathcal{Y}^2 \to [0, \infty)$.

Dans l'état $Y_{j-1}=y\in\mathcal{Y}$, la loi de prob. du prochain état Y_j est

 $\mathbb{P}[Y_j \in \cdot \mid Y_{j-1} = y) = \mathbb{P}(\cdot \mid y)$, et on paye $c(Y_{j-1}, Y_j)$ à l'étape j.

États absorbants: $\Delta \subset \mathcal{Y}$. On a $\mathbb{P}(\{y\} \mid y) = 1$ et c(y,y) = 0 pour tout $y \in \Delta$.

Soit $\tau = \inf\{j : Y_j \in \Delta\}$,

$$X = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j)$$
 et $\mu(y) = \mathbb{E}[X \mid Y_0 = y],$

le coût total espéré en partant de y.

On suppose que $\mathbb{E}[\tau \mid Y_0 = y] < \infty$ et $\mu(y) < \infty$ pour tout $y \in \mathcal{Y}$.

La fonction $\mu: \mathcal{Y} \to [0, \infty)$ satisfait la récurrence

$$\mu(y) = \mathbb{E}[c(y, Y_1) + \mu(Y_1) \mid Y_0 = y]$$

$$= \int_{\mathcal{Y}} [c(y, y_1) + \mu(y_1)] d\mathbb{P}(y_1 \mid y).$$

On change \mathbb{P} pour \mathbb{Q} tel que $\mathbb{Q}(B \mid y) > 0$ pour tout B tel que $\int_{B} [c(y, y_1) + \mu(y_1)] d\mathbb{P}(y_1 \mid y) > 0$. L'estimateur devient:

$$X_{is} = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j) \prod_{i=1}^{j} L(Y_{i-1}, Y_i),$$

où $L(Y_{i-1}, Y_i) = (d\mathbb{P}/d\mathbb{Q})(Y_i \mid Y_{i-1})$. On a $\mathbb{E}_{\mathbb{Q},y}[X_{is}] = \mu(y)$.

On change \mathbb{P} pour \mathbb{Q} tel que $\mathbb{Q}(B \mid y) > 0$ pour tout B tel que $\int_{B} [c(y, y_1) + \mu(y_1)] d\mathbb{P}(y_1 \mid y) > 0$. L'estimateur devient:

$$X_{is} = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j) \prod_{i=1}^{j} L(Y_{i-1}, Y_i),$$

où
$$L(Y_{i-1}, Y_i) = (d\mathbb{P}/d\mathbb{Q})(Y_i \mid Y_{i-1})$$
. On a $\mathbb{E}_{\mathbb{Q},y}[X_{is}] = \mu(y)$.

On définit

$$\mathbb{Q}^*(dy_1 \mid y) = \mathbb{P}(dy_1 \mid y) \frac{c(y, y_1) + \mu(y_1)}{\mu(y)} \quad \text{si } \mu(y) > 0$$

et
$$\mathbb{Q}^*(\cdot \mid y) = \mathbb{P}(\cdot \mid y)$$
 si $\mu(y) = 0$.

On change \mathbb{P} pour \mathbb{Q} tel que $\mathbb{Q}(B \mid y) > 0$ pour tout B tel que $\int_{B} [c(y, y_1) + \mu(y_1)] d\mathbb{P}(y_1 \mid y) > 0$. L'estimateur devient:

$$X_{is} = \sum_{j=1}^{\tau} c(Y_{j-1}, Y_j) \prod_{i=1}^{j} L(Y_{i-1}, Y_i),$$

où
$$L(Y_{i-1}, Y_i) = (d\mathbb{P}/d\mathbb{Q})(Y_i \mid Y_{i-1})$$
. On a $\mathbb{E}_{\mathbb{Q},y}[X_{is}] = \mu(y)$.

On définit

$$\mathbb{Q}^*(dy_1 \mid y) = \mathbb{P}(dy_1 \mid y) \frac{c(y, y_1) + \mu(y_1)}{\mu(y)} \quad \text{si } \mu(y) > 0$$

et $\mathbb{Q}^*(\cdot \mid y) = \mathbb{P}(\cdot \mid y)$ si $\mu(y) = 0$.

Proposition. $\mathbb{Q} = \mathbb{Q}^*$ donne une variance de zéro: $\operatorname{Var}_{\mathbb{Q}^*,y}[X_{\mathrm{is}}] = 0$.

Habituellement pas implantable directement, mais peut donner une idée de quoi faire si on dispose d'une approximation de μ .

Exemple: option asiatique sous MBG

On veut estimer $v(s_0,T) = \mathbb{E}[Y(s_0)]$, où

$$Y(s_0) = e^{-rT} \max(0, s_0 W - K),$$

$$W = \frac{1}{d} \sum_{i=1}^{d} \exp\left[(r - \sigma^2/2)t_i + \sigma \sum_{j=1}^{i} \sqrt{t_j - t_{j-1}} Z_j \right]$$

et Z_1, \ldots, Z_d sont i.i.d. N(0, 1).

Exemple: option asiatique sous MBG

On veut estimer $v(s_0,T) = \mathbb{E}[Y(s_0)]$, où

$$Y(s_0) = e^{-rT} \max(0, s_0 W - K),$$

$$W = \frac{1}{d} \sum_{i=1}^{d} \exp\left[(r - \sigma^2/2)t_i + \sigma \sum_{j=1}^{i} \sqrt{t_j - t_{j-1}} Z_j \right]$$

et Z_1, \ldots, Z_d sont i.i.d. N(0, 1).

Si $K\gg s_0\exp[r-\sigma^2/2]$, on veut augmenter le "drift". Idée: augmenter la moyenne de Z_j de 0 à ν_j . Ceci ajoute $\delta_i=\sigma\sum_{j=1}^i\nu_j\sqrt{t_j-t_{j-1}}$ à l'exposant de l'exponentielle. On a

$$L(\omega) = \prod_{j=1}^{d} \frac{\exp(-Z_j^2/2)}{\exp(-(Z_j - \nu_j)^2/2)} = \exp\left(\sum_{j=1}^{d} (\nu_j^2/2 - \nu_j Z_j)\right).$$

Implantation: générer les $Z_j \sim \mathrm{Normale}(0,1)$, ajouter δ_i à l'exposant pour chaque i, puis multiplier $Y(s_0)$ par $L(\omega)$. Habituellement, on prend les ν_j égaux. Mais comment choisir ces ν_i ?

Une chaine de Markov $\{X_n, n \ge 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$.

Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu=\mu(x_0)$ d'atteindre K avant de revenir à 0.

Une chaine de Markov $\{X_n, n \ge 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$.

Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu = \mu(x_0)$ d'atteindre K avant de revenir à 0.

Estimateur naif: $\mathbb{I}[X_T = K]$ où $T = \inf\{n \geq 1 : X_n \in \{0, K\}\}.$

Une chaine de Markov $\{X_n, n \ge 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$.

Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu = \mu(x_0)$ d'atteindre K avant de revenir à 0.

Estimateur naif: $\mathbb{I}[X_T = K]$ où $T = \inf\{n \ge 1 : X_n \in \{0, K\}\}.$

IS: changer les $p_{i,j}$ pour des $q_{i,j}$ pour augmenter les chances d'aller à K.

Une chaine de Markov $\{X_n, n \geq 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$. Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu = \mu(x_0)$ d'atteindre K avant de revenir à 0.

Estimateur naif: $\mathbb{I}[X_T = K]$ où $T = \inf\{n \ge 1 : X_n \in \{0, K\}\}.$

IS: changer les $p_{i,j}$ pour des $q_{i,j}$ pour augmenter les chances d'aller à K.

Idée simpliste: bloquer les retours à 0 en posant $q_{i,0}=0$ pour tout i>0, et renormaliser les autres probabilités: $q_{i,j}=p_{i,j}/(1-p_{i,0})$ pour i,j>0, et $q_{0,j}=p_{0,j}$ pour tout j.

Une chaine de Markov $\{X_n, n \geq 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$.

Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu = \mu(x_0)$ d'atteindre K avant de revenir à 0.

Estimateur naif: $\mathbb{I}[X_T = K]$ où $T = \inf\{n \geq 1 : X_n \in \{0, K\}\}.$

IS: changer les $p_{i,j}$ pour des $q_{i,j}$ pour augmenter les chances d'aller à K.

Idée simpliste: bloquer les retours à 0 en posant $q_{i,0}=0$ pour tout i>0, et renormaliser les autres probabilités: $q_{i,j}=p_{i,j}/(1-p_{i,0})$ pour i,j>0, et $q_{0,j}=p_{0,j}$ pour tout j. On a alors $P[X_T=K]=1$ et

$$L(\omega) = L(X_1, \dots, X_T) = \prod_{n=1}^{T} \frac{p_{X_{n-1}, X_n}}{q_{X_{n-1}, X_n}} = \prod_{n=2}^{T} (1 - p_{X_{n-1}, 0}) \le 1.$$

Donc la variance est réduite.

Mais: chaque simulation risque d'être très longue (on peut de se promener autour de l'état 0 très longtemps). L'efficacité n'est pas nécessairement améliorée.

Une chaine de Markov $\{X_n, n \geq 0\}$ sur les états $\{0, 1, \dots, K\}$, avec $X_0 = 0$.

Probabilités de transition $p_{i,j} = P[X_n = j \mid X_{n-1} = i]$.

On veut estimer la probabilité $\mu = \mu(x_0)$ d'atteindre K avant de revenir à 0.

Estimateur naif: $\mathbb{I}[X_T = K]$ où $T = \inf\{n \geq 1 : X_n \in \{0, K\}\}.$

IS: changer les $p_{i,j}$ pour des $q_{i,j}$ pour augmenter les chances d'aller à K.

Idée simpliste: bloquer les retours à 0 en posant $q_{i,0}=0$ pour tout i>0, et renormaliser les autres probabilités: $q_{i,j}=p_{i,j}/(1-p_{i,0})$ pour i,j>0, et $q_{0,j}=p_{0,j}$ pour tout j. On a alors $P[X_T=K]=1$ et

$$L(\omega) = L(X_1, \dots, X_T) = \prod_{n=1}^{T} \frac{p_{X_{n-1}, X_n}}{q_{X_{n-1}, X_n}} = \prod_{n=2}^{T} (1 - p_{X_{n-1}, 0}) \le 1.$$

Donc la variance est réduite.

Mais: chaque simulation risque d'être très longue (on peut de se promener autour de l'état 0 très longtemps). L'efficacité n'est pas nécessairement améliorée. Variance zéro pour cet exemple?

Soient $p_{i,i+1} = p$ et $p_{i,i-1} = 1 - p$ pour $1 \le i \le K - 1$, et $p_{0,1} = p_{K,K-1} = 1$.

Soient $p_{i,i+1} = p$ et $p_{i,i-1} = 1 - p$ pour $1 \le i \le K - 1$, et $p_{0,1} = p_{K,K-1} = 1$.

Si p < 1/2 et K est grand, la chaine est attirée vers 0.

Couper l'accès à 0 ne suffit pas, il faut augmenter l'attirance vers K.

Soient $p_{i,i+1} = p$ et $p_{i,i-1} = 1 - p$ pour $1 \le i \le K - 1$, et $p_{0,1} = p_{K,K-1} = 1$.

Si p < 1/2 et K est grand, la chaine est attirée vers 0.

Couper l'accès à 0 ne suffit pas, il faut augmenter l'attirance vers K.

On va modifier les probabilités pour $q_{i,i+1} = q$ et $q_{i,i-1} = 1 - q$, pour q > p.

Soient $p_{i,i+1} = p$ et $p_{i,i-1} = 1 - p$ pour $1 \le i \le K - 1$, et $p_{0,1} = p_{K,K-1} = 1$.

Si p < 1/2 et K est grand, la chaine est attirée vers 0.

Couper l'accès à 0 ne suffit pas, il faut augmenter l'attirance vers K.

On va modifier les probabilités pour $q_{i,i+1} = q$ et $q_{i,i-1} = 1 - q$, pour q > p.

Examinons le rapport de vraisemblance lorsque $X_T = K$.

Pour chaque paire d'états (i,i+1) on va de i à i+1 une fois de plus que de i+1 à i. On a alors

$$L(\omega) = \prod_{n=1}^{T} \frac{p_{X_{n-1}, X_n}}{q_{X_{n-1}, X_n}} = \left(\frac{p}{q}\right)^{K-1} \left(\frac{p(1-p)}{q(1-q)}\right)^{(T-K)/2}.$$

$$L(\omega) = \left(\frac{p}{q}\right)^{K-1} \left(\frac{p(1-p)}{q(1-q)}\right)^{(T-K)/2}.$$

Pour s'assurer que $L(\omega) < 1$, prenons q > p et $q(1-q) \ge p(1-p)$, i.e., $p < q \le 1-p$.

$$L(\omega) = \left(\frac{p}{q}\right)^{K-1} \left(\frac{p(1-p)}{q(1-q)}\right)^{(T-K)/2}.$$

Pour s'assurer que $L(\omega) < 1$, prenons q > p et $q(1-q) \ge p(1-p)$, i.e., $p < q \le 1-p$.

En maximisant q sous cette contrainte (pour aller à K le plus vite et le plus souvent possible), on obtient q = 1 - p.

Le RV se simplifie alors et devient une constante:

$$L(\omega) = \left(\frac{p}{q}\right)^{K-1} = \left(\frac{p}{1-p}\right)^{K-1}.$$

Avec IS, la variance de l'estimateur est multipliée par $L(\omega)$.

$$L(\omega) = \left(\frac{p}{q}\right)^{K-1} \left(\frac{p(1-p)}{q(1-q)}\right)^{(T-K)/2}.$$

Pour s'assurer que $L(\omega) < 1$, prenons q > p et $q(1-q) \ge p(1-p)$, i.e., $p < q \le 1-p$.

En maximisant q sous cette contrainte (pour aller à K le plus vite et le plus souvent possible), on obtient q = 1 - p.

Le RV se simplifie alors et devient une constante:

$$L(\omega) = \left(\frac{p}{q}\right)^{K-1} = \left(\frac{p}{1-p}\right)^{K-1}.$$

Avec IS, la variance de l'estimateur est multipliée par $L(\omega)$.

Example: si p=1/3 et K=101, la variance est divisée par $2^{100}\approx 1.2\times 10^{30}$.

Marche aléatoire sur $\mathbb R$

On passe d'une marche sur $\{0,\ldots,K\}$ à une marche sur $\mathbb{R}.$ Ce modèle a de nombreuses applications.

Marche aléatoire sur \mathbb{R}

On passe d'une marche sur $\{0,\ldots,K\}$ à une marche sur $\mathbb{R}.$ Ce modèle a de nombreuses applications.

L'état à l'étape n est

$$D_n = \sum_{j=1}^n Y_j, \qquad n \ge 0,$$

où les Y_j sont i.i.d. de densité π , avec $\mathbb{E}[Y_j] < 0$.

Marche aléatoire sur \mathbb{R}

On passe d'une marche sur $\{0, \ldots, K\}$ à une marche sur \mathbb{R} . Ce modèle a de nombreuses applications.

L'état à l'étape n est

$$D_n = \sum_{j=1}^n Y_j, \qquad n \ge 0,$$

où les Y_j sont i.i.d. de densité π , avec $\mathbb{E}[Y_j] < 0$.

Bien sûr, $P[\lim_{n\to\infty} D_n = -\infty] = 1$.

Marche aléatoire sur $\mathbb R$

On passe d'une marche sur $\{0,\ldots,K\}$ à une marche sur \mathbb{R} . Ce modèle a de nombreuses applications.

L'état à l'étape n est

$$D_n = \sum_{j=1}^n Y_j, \qquad n \ge 0,$$

où les Y_i sont i.i.d. de densité π , avec $\mathbb{E}[Y_i] < 0$.

Bien sûr, $P[\lim_{n\to\infty} D_n = -\infty] = 1$.

 D_n part de 0, se promène autour un moment, et s'en va éventuellement vers $-\infty$.

Marche aléatoire sur $\mathbb R$

On passe d'une marche sur $\{0, \ldots, K\}$ à une marche sur \mathbb{R} . Ce modèle a de nombreuses applications.

L'état à l'étape n est

$$D_n = \sum_{j=1}^n Y_j, \qquad n \ge 0,$$

où les Y_i sont i.i.d. de densité π , avec $\mathbb{E}[Y_i] < 0$.

Bien sûr, $P[\lim_{n\to\infty} D_n = -\infty] = 1$.

 D_n part de 0, se promène autour un moment, et s'en va éventuellement vers $-\infty$.

Pour une constante $\ell > 0$, soit

$$T_{\ell} = \inf\{n \ge 0 : D_n \ge \ell\}.$$

On veut estimer

$$\mu_{\ell} = P[T_{\ell} < \infty] = P[\max\{D_n, n > 0\} \ge \ell].$$

L'estimateur naif $\mathbb{I}[T_\ell < \infty]$ est peu pratique: si $T_\ell = \infty$, il faut simuler indéfiniment pour en être certain.

Et si ℓ est grand, $\{T_{\ell} < \infty\}$ est un événement rare.

L'estimateur naif $\mathbb{I}[T_{\ell} < \infty]$ est peu pratique: si $T_{\ell} = \infty$, il faut simuler indéfiniment pour en être certain.

Et si ℓ est grand, $\{T_{\ell} < \infty\}$ est un événement rare.

Le changement de mesure optimal serait la loi conditionnelle à $\{T_{\ell} < \infty\}$. Trop compliqué. Mais on va tenter de l'approximer grossièrement.

L'estimateur naif $\mathbb{I}[T_{\ell} < \infty]$ est peu pratique: si $T_{\ell} = \infty$, il faut simuler indéfiniment pour en être certain.

Et si ℓ est grand, $\{T_{\ell} < \infty\}$ est un événement rare.

Le changement de mesure optimal serait la loi conditionnelle à $\{T_{\ell} < \infty\}$. Trop compliqué. Mais on va tenter de l'approximer grossièrement.

On va simplement changer la densité π des Y_j par

$$\pi_{\theta}(y) = \pi(y) \frac{e^{\theta y}}{M(\theta)} = e^{\theta y - \Psi(\theta)} \pi(y), \qquad y \in \mathbb{R},$$

où le paramètre $\theta > 0$ reste à déterminer,

$$M(\theta) = \int_0^\infty e^{\theta y} \pi(y) dy = \mathbb{E}\left[e^{\theta Y_j}\right] > 1$$

est une constante de normalisation et $\Psi(\theta) = \ln M(\theta)$.

M et Ψ sont la fonction génératrice des moments et la fonction gérératrice des cumulants de Y_j . Attention: n'existe pas toujours (e.g., Pareto, lognormale, etc.). On a

$$\mathbb{E}_{\theta}[Y_j] = \Psi'(\theta) = M'(\theta)/M(\theta),$$

$$\operatorname{Var}_{\theta}[Y_j] = \Psi''(\theta), \quad etc.$$

Supposons que $M(\theta)<\infty$ dans un voisinage de $\theta=0$, i.e., tous les moments de Y_j sont finis.

M et Ψ sont la fonction génératrice des moments et la fonction gérératrice des cumulants de Y_j . Attention: n'existe pas toujours (e.g., Pareto, lognormale, etc.). On a

$$\mathbb{E}_{\theta}[Y_j] = \Psi'(\theta) = M'(\theta)/M(\theta),$$

$$\operatorname{Var}_{\theta}[Y_j] = \Psi''(\theta), \quad etc.$$

Supposons que $M(\theta) < \infty$ dans un voisinage de $\theta = 0$, i.e., tous les moments de Y_j sont finis.

Lorsque $\{T_{\ell} < \infty\}$, le rapport de vraisemblance devient

$$L(\omega) = \prod_{j=1}^{T_{\ell}} \frac{\pi(Y_j)}{\pi_{\theta}(Y_j)}$$

M et Ψ sont la fonction génératrice des moments et la fonction gérératrice des cumulants de Y_j . Attention: n'existe pas toujours (e.g., Pareto, lognormale, etc.). On a

$$\mathbb{E}_{\theta}[Y_j] = \Psi'(\theta) = M'(\theta)/M(\theta),$$

$$\operatorname{Var}_{\theta}[Y_j] = \Psi''(\theta), \quad etc.$$

Supposons que $M(\theta)<\infty$ dans un voisinage de $\theta=0$, i.e., tous les moments de Y_j sont finis.

Lorsque $\{T_{\ell} < \infty\}$, le rapport de vraisemblance devient

$$L(\omega) = \prod_{j=1}^{T_{\ell}} \frac{\pi(Y_j)}{\pi_{\theta}(Y_j)} = [M(\theta)]^{T_{\ell}} \exp\left(-\theta \sum_{j=1}^{T_{\ell}} Y_j\right)$$

M et Ψ sont la fonction génératrice des moments et la fonction gérératrice des cumulants de Y_j . Attention: n'existe pas toujours (e.g., Pareto, lognormale, etc.). On a

$$\mathbb{E}_{\theta}[Y_j] = \Psi'(\theta) = M'(\theta)/M(\theta),$$

$$\operatorname{Var}_{\theta}[Y_j] = \Psi''(\theta), \quad etc.$$

Supposons que $M(\theta)<\infty$ dans un voisinage de $\theta=0$, i.e., tous les moments de Y_j sont finis.

Lorsque $\{T_{\ell} < \infty\}$, le rapport de vraisemblance devient

$$L(\omega) = \prod_{j=1}^{T_{\ell}} \frac{\pi(Y_j)}{\pi_{\theta}(Y_j)} = [M(\theta)]^{T_{\ell}} \exp\left(-\theta \sum_{j=1}^{T_{\ell}} Y_j\right) = [M(\theta)]^{T_{\ell}} \exp\left(-\theta D_{T_{\ell}}\right).$$

On sait que $M(\theta)$ est convexe, M(0) = 1 et $M'(0) = \mathbb{E}[Y_j] < 0$.

On suppose que $\theta^* \stackrel{\mathrm{def}}{=} \sup\{\theta > 0 : M(\theta) \leq 1\} < \infty$.

Pour IS, on va prendre $\theta = \theta^*$.

On aura alors $\mathbb{E}_{\theta^*}[Y_j] = M'(\theta^*) > 0$, de sorte que $P\{T_\ell < \infty\} = 1$ sous IS.

On sait que $M(\theta)$ est convexe, M(0) = 1 et $M'(0) = \mathbb{E}[Y_j] < 0$.

On suppose que $\theta^* \stackrel{\text{def}}{=} \sup\{\theta > 0 : M(\theta) \leq 1\} < \infty$.

Pour IS, on va prendre $\theta = \theta^*$.

On aura alors $\mathbb{E}_{\theta^*}[Y_j] = M'(\theta^*) > 0$, de sorte que $P\{T_\ell < \infty\} = 1$ sous IS. De plus,

$$L(\omega) = e^{-\theta^* \ell} e^{-\theta^* (D_{T_\ell} - \ell)} \le e^{-\theta^* \ell},$$

donc la variance est réduite au moins par le facteur $e^{-\theta^*\ell}$.

La probabilité à estimer s'écrit

$$\mu_{\ell} = e^{-\theta^* \ell} \mathbb{E}_{\theta^*} [\exp(-\theta^* (D_{T_{\ell}} - \ell))]$$

et l'estimateur IS estime cette dernière espérance.

La probabilité à estimer s'écrit

$$\mu_{\ell} = e^{-\theta^* \ell} \mathbb{E}_{\theta^*} [\exp(-\theta^* (D_{T_{\ell}} - \ell))]$$

et l'estimateur IS estime cette dernière espérance.

Cet exemple se généralise au cas où les lois des Y_j peuvent être différentes et pas toutes continues.

La probabilité à estimer s'écrit

$$\mu_{\ell} = e^{-\theta^* \ell} \mathbb{E}_{\theta^*} [\exp(-\theta^* (D_{T_{\ell}} - \ell))]$$

et l'estimateur IS estime cette dernière espérance.

Cet exemple se généralise au cas où les lois des Y_j peuvent être différentes et pas toutes continues.

En théorie du risque, $M(\theta)=1$ s'appelle l'équation de Lundberg et θ^* est le paramètre de Lundberg.

Si ℓ est grand, on peut approximer μ_{ℓ} par $e^{-\theta^*\ell}$; c'est l'approximation de Lundberg. Ce que l'on vient de faire est exactement équivalent à utiliser cette approximation dans le schéma à variance zéro pour la chaîne de Markov.

Probabilité d'un très grand temps d'attente dans une file GI/GI/1.

 A_j = temps entre les arrivées des clients j et j + 1; S_j = durée de service du client j;

 $\vec{W}_j = \text{dur\'ee d'attente du client } \vec{j};$

On suppose que A_j et S_j ont des densités h et g, $\mathbb{E}[S_j] < \mathbb{E}[A_j]$, et $W_1 = 0$.

On veut estimer

$$\mu_{\ell} = P[W > \ell].$$

Probabilité d'un très grand temps d'attente dans une file GI/GI/1.

 $A_j =$ temps entre les arrivées des clients j et j + 1;

 $S_i = \text{dur\'ee de service du client } j;$

 $W_j = \text{dur\'ee d'attente du client } j;$

On suppose que A_j et S_j ont des densités h et g, $\mathbb{E}[S_j] < \mathbb{E}[A_j]$, et $W_1 = 0$.

On veut estimer

$$\mu_{\ell} = P[W > \ell].$$

Un théorème le la théorie des marches aléatoires nous dit que W (un temps d'attente à l'état stationnaire) suit la même loi que $\sup\{D_n, n \geq 0\}$ où $D_n = \sum_{j=1}^n (S_j - A_j)$. On a $\mu_\ell = \mathbb{P}[\sup\{D_n, n \geq 0\} > \ell]$.

Se ramène à l'exemple précédent en posant $Y_j = S_j - A_j$.

Probabilité d'un très grand temps d'attente dans une file GI/GI/1.

 $A_j =$ temps entre les arrivées des clients j et j + 1;

 $S_i = \text{dur\'ee} \text{ de service du client } j;$

 $W_j = \text{dur\'ee d'attente du client } j;$

On suppose que A_j et S_j ont des densités h et g, $\mathbb{E}[S_j] < \mathbb{E}[A_j]$, et $W_1 = 0$.

On veut estimer

$$\mu_{\ell} = P[W > \ell].$$

Un théorème le la théorie des marches aléatoires nous dit que W (un temps d'attente à l'état stationnaire) suit la même loi que $\sup\{D_n, n \geq 0\}$ où $D_n = \sum_{j=1}^n (S_j - A_j)$. On a $\mu_\ell = \mathbb{P}[\sup\{D_n, n \geq 0\} > \ell]$.

Se ramène à l'exemple précédent en posant $Y_j = S_j - A_j$.

La densité de Y_i est

$$\pi(y) = \int_0^\infty g(x)h(x-y)dx, \qquad y \in \mathbb{R},$$

et la densité

$$e^{\theta y}\pi(y) = \int_0^\infty e^{\theta x} g(x) e^{-\theta(x-y)} h(x-y) dx, \qquad y \in \mathbb{R}$$

s'obtient en appliquant la torsion exponentielle à h et g:

$$h_{\theta}(x) = e^{-\theta x} h(x) / M_h(-\theta)$$

et

$$g_{\theta}(x) = e^{\theta x} g(x) / M_g(\theta)$$

οù

$$M_h(-\theta) = \int_0^\infty e^{-\theta x} h(x) dx = \mathbb{E}\left[e^{-\theta A_j}\right] < 1$$

et

$$M_g(\theta) = \int_0^\infty e^{\theta x} g(x) dx = \mathbb{E}\left[e^{\theta S_j}\right] > 1.$$

et la densité

$$e^{\theta y}\pi(y) = \int_0^\infty e^{\theta x} g(x) e^{-\theta(x-y)} h(x-y) dx, \qquad y \in \mathbb{R}$$

s'obtient en appliquant la torsion exponentielle à h et g:

$$h_{\theta}(x) = e^{-\theta x} h(x) / M_h(-\theta)$$

et

$$g_{\theta}(x) = e^{\theta x} g(x) / M_g(\theta)$$

οù

$$M_h(-\theta) = \int_0^\infty e^{-\theta x} h(x) dx = \mathbb{E}\left[e^{-\theta A_j}\right] < 1$$

et

$$M_g(\theta) = \int_0^\infty e^{\theta x} g(x) dx = \mathbb{E}\left[e^{\theta S_j}\right] > 1.$$

Ici, M_h et M_g sont les fonction génératrices des moments de A_j et S_j , et $M(\theta) = M_g(\theta)M_h(-\theta)$ celle de Y_j .

On gonfle les durées de service et dégonfle les inter-arrivées.

On peut montrer que $\theta^* < \infty$ si $P[S_j > A_j] > 0$.

On gonfle les durées de service et dégonfle les inter-arrivées.

On peut montrer que $\theta^* < \infty$ si $P[S_j > A_j] > 0$.

En prenant $\theta = \theta^*$, on obtient

$$\mathbb{E}_{\theta^*}[S_j - A_j] = M'(\theta^*) > 0,$$

$$P[T_{\ell} < \infty] = 1$$
 et

$$L(\omega) = e^{-\theta^* \ell} e^{-\theta^* (D_{T_\ell} - \ell)} \le e^{-\theta^* \ell}$$

lorsque $T_{\ell} < \infty$.

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

Ce système possède un point de regénération au temps T_0 où un premier client arrive après que le système se soit vidé.

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

Ce système possède un point de regénération au temps T_0 où un premier client arrive après que le système se soit vidé.

Soit
$$T = \min(T_0, T_K)$$
.

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

Ce système possède un point de regénération au temps T_0 où un premier client arrive après que le système se soit vidé.

Soit
$$T = \min(T_0, T_K)$$
.

On a
$$T_K = T + (T_K - T)\mathbb{I}[T = T_0]$$
 et

$$\mathbb{E}[T_K] = \mathbb{E}[T] + \mathbb{E}[T_K - T \mid T = T_0] \cdot \mathbb{P}[T = T_0]$$
$$= \mathbb{E}[T] + \mathbb{E}[T_K]P[T = T_0],$$

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

Ce système possède un point de regénération au temps T_0 où un premier client arrive après que le système se soit vidé.

Soit
$$T = \min(T_0, T_K)$$
.

On a
$$T_K = T + (T_K - T)\mathbb{I}[T = T_0]$$
 et

$$\mathbb{E}[T_K] = \mathbb{E}[T] + \mathbb{E}[T_K - T \mid T = T_0] \cdot \mathbb{P}[T = T_0]$$
$$= \mathbb{E}[T] + \mathbb{E}[T_K]P[T = T_0],$$

qui se réécrit

$$\mathbb{E}[T_K] = \frac{\mathbb{E}[T]}{(1 - \mathbb{P}[T = T_0])} = \frac{\mathbb{E}[T]}{\mathbb{P}[T = T_K]}.$$

 T_K = premier instant où il y a K clients dans le système. $\mu = \mathbb{E}[T_k]$.

E.g.: débordement d'un tampon dans un commutateur.

Ce système possède un point de regénération au temps T_0 où un premier client arrive après que le système se soit vidé.

Soit
$$T = \min(T_0, T_K)$$
.

On a
$$T_K = T + (T_K - T)\mathbb{I}[T = T_0]$$
 et

$$\mathbb{E}[T_K] = \mathbb{E}[T] + \mathbb{E}[T_K - T \mid T = T_0] \cdot \mathbb{P}[T = T_0]$$
$$= \mathbb{E}[T] + \mathbb{E}[T_K]P[T = T_0],$$

qui se réécrit

$$\mathbb{E}[T_K] = \frac{\mathbb{E}[T]}{(1 - \mathbb{P}[T = T_0])} = \frac{\mathbb{E}[T]}{\mathbb{P}[T = T_K]}.$$

Si le débordement est rare, $p_K = \mathbb{P}[T = T_K]$ est difficile à estimer, mais $\mathbb{E}[T]$ est habituellement facile à estimer.

On estimera alors $\mathbb{E}[T]$ par MC ordinaire et p_K par IS, avec la même torsion exponentielle que dans l'exemple précédent.

L'estimateur IS de p_K est $X_{is} = \mathbb{I}[T = T_K]L(\omega)$.

L'estimateur IS de p_K est $X_{is} = \mathbb{I}[T = T_K]L(\omega)$.

Si $T = T_K$, soient N_A et N_S les nombres de A_j et S_j générés durant [0, T).

Au temps T_K , il y a K clients dans le système, le client (N_A+1) arrive, et N_S-1 clients ont quitté.

L'estimateur IS de p_K est $X_{is} = \mathbb{I}[T = T_K]L(\omega)$.

Si $T = T_K$, soient N_A et N_S les nombres de A_j et S_j générés durant [0, T).

Au temps T_K , il y a K clients dans le système, le client (N_A+1) arrive, et N_S-1 clients ont quitté. On a donc

$$N_A = N_S + K - 2,$$

L'estimateur IS de p_K est $X_{is} = \mathbb{I}[T = T_K]L(\omega)$.

Si $T = T_K$, soient N_A et N_S les nombres de A_j et S_j générés durant [0, T).

Au temps T_K , il y a K clients dans le système, le client (N_A+1) arrive, et N_S-1 clients ont quitté. On a donc

$$N_A = N_S + K - 2,$$

$$T_K = \sum_{j=1}^{N_A} A_j \le \sum_{j=1}^{N_S} S_j,$$

L'estimateur IS de p_K est $X_{is} = \mathbb{I}[T = T_K]L(\omega)$.

Si $T = T_K$, soient N_A et N_S les nombres de A_j et S_j générés durant [0, T).

Au temps T_K , il y a K clients dans le système, le client (N_A+1) arrive, et N_S-1 clients ont quitté. On a donc

$$N_{A} = N_{S} + K - 2,$$

$$T_{K} = \sum_{j=1}^{N_{A}} A_{j} \leq \sum_{j=1}^{N_{S}} S_{j},$$

$$L(\omega) = \prod_{j=1}^{N_{A}} \frac{h(A_{j})}{h_{\theta}(A_{j})} \prod_{j=1}^{N_{S}} \frac{g(S_{j})}{g_{\theta}(S_{j})}$$

$$= [M_{h}(-\theta)]^{K-2} [M_{h}(-\theta)M_{g}(\theta)]^{N_{S}} \exp\left(\theta \sum_{j=1}^{N_{A}} A_{j} - \theta \sum_{j=1}^{N_{S}} S_{j}\right)$$

$$\leq [M_h(-\theta)]^{K-2}[M(\theta)]^{N_S}.$$

Avec $\theta = \theta^*$, on obtient

$$L(\omega) = M_h(-\theta^*)^{K-2} \exp\left(\theta \sum_{j=1}^{N_A} A_j - \theta \sum_{j=1}^{N_S} S_j\right) \le M_h(-\theta^*)^{K-2} < 1.$$

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$.

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$. De même, pour les durées de service,

$$M_g(\theta) = \frac{\mu}{(\mu - \theta)}$$
 pour $\theta < \mu$.

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$. De même, pour les durées de service,

$$M_g(\theta) = \frac{\mu}{(\mu - \theta)}$$
 pour $\theta < \mu$.

L'équation $M(\theta)=M_h(-\theta)M_g(\theta)=1$ devient $\lambda\mu=(\lambda+\theta)(\mu-\theta)$ et la solution est $\theta^*=\mu-\lambda$.

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$. De même, pour les durées de service,

$$M_g(\theta) = \frac{\mu}{(\mu - \theta)}$$
 pour $\theta < \mu$.

L'équation $M(\theta)=M_h(-\theta)M_g(\theta)=1$ devient $\lambda\mu=(\lambda+\theta)(\mu-\theta)$ et la solution est $\theta^*=\mu-\lambda$.

Les nouvelles densités avec $\theta = \theta^*$ sont

$$h_{\theta}(x) = \frac{e^{-\theta^* x} h(x)}{M_h(-\theta^*)}$$

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$. De même, pour les durées de service,

$$M_g(\theta) = \frac{\mu}{(\mu - \theta)}$$
 pour $\theta < \mu$.

L'équation $M(\theta) = M_h(-\theta)M_g(\theta) = 1$ devient $\lambda \mu = (\lambda + \theta)(\mu - \theta)$ et la solution est $\theta^* = \mu - \lambda$.

Les nouvelles densités avec $\theta = \theta^*$ sont

$$h_{\theta}(x) = \frac{e^{-\theta^* x} h(x)}{M_h(-\theta^*)} = \frac{e^{-(\mu - \lambda)x} \lambda e^{-\lambda x}}{M_h(-\theta^*)}$$

Taux d'arrivée λ , taux de service μ , $\lambda < \mu$.

La densité de A_j est $h(y) = \lambda \exp(-\lambda y)$ pour y > 0 et on a

$$M_h(-\theta) = \int_0^\infty e^{-\theta y} \lambda e^{-\lambda y} dy = \frac{\lambda}{\lambda + \theta}$$

pour $\theta > -\lambda$. De même, pour les durées de service,

$$M_g(\theta) = \frac{\mu}{(\mu - \theta)}$$
 pour $\theta < \mu$.

L'équation $M(\theta)=M_h(-\theta)M_g(\theta)=1$ devient $\lambda\mu=(\lambda+\theta)(\mu-\theta)$ et la solution est $\theta^*=\mu-\lambda$.

Les nouvelles densités avec $\theta = \theta^*$ sont

$$h_{\theta}(x) = \frac{e^{-\theta^* x} h(x)}{M_h(-\theta^*)} = \frac{e^{-(\mu - \lambda)x} \lambda e^{-\lambda x}}{M_h(-\theta^*)} = \mu e^{-\mu x}$$

$$g_{\theta}(x) = \frac{e^{\theta x} g(x)}{M_g(\theta^*)}$$

$$g_{\theta}(x) = \frac{e^{\theta x} g(x)}{M_g(\theta^*)} = \frac{e^{(\mu - \lambda)x} \lambda e^{-\mu x}}{M_g(\theta^*)} = \lambda e^{-\lambda x}.$$

$$g_{\theta}(x) = \frac{e^{\theta x} g(x)}{M_g(\theta^*)} = \frac{e^{(\mu - \lambda)x} \lambda e^{-\mu x}}{M_g(\theta^*)} = \lambda e^{-\lambda x}.$$

IS permute simplement μ et λ .

$$g_{\theta}(x) = \frac{e^{\theta x} g(x)}{M_g(\theta^*)} = \frac{e^{(\mu - \lambda)x} \lambda e^{-\mu x}}{M_g(\theta^*)} = \lambda e^{-\lambda x}.$$

IS permute simplement μ et λ .

Puisque $M_h(-\theta^*) = \lambda/\mu$,

la variance est divisée par au moins $e^{(\mu-\lambda)\ell}$ lorsqu'on estime $\mu_\ell=P[W>\ell]$

$$g_{\theta}(x) = \frac{e^{\theta x} g(x)}{M_g(\theta^*)} = \frac{e^{(\mu - \lambda)x} \lambda e^{-\mu x}}{M_g(\theta^*)} = \lambda e^{-\lambda x}.$$

IS permute simplement μ et λ .

Puisque $M_h(-\theta^*) = \lambda/\mu$,

la variance est divisée par au moins $e^{(\mu-\lambda)\ell}$ lorsqu'on estime $\mu_\ell=P[W>\ell]$ et par $(\mu/\lambda)^{K-2}$ lorsqu'on estime $p_K=P[T=T_K]$.

Probabilité de ruine d'une compagnie d'assurance.

La compagnie encaisse des primes au taux c > 0.

Les réclamations arrivent selon un processus de Poisson $\{N(t), t \geq 0\}$ de taux λ et leurs tailles sont des v.a. i.i.d. C_1, C_2, \ldots de densité h telle que $M_h(\theta) < \infty$ autour de 0.

Probabilité de ruine d'une compagnie d'assurance.

La compagnie encaisse des primes au taux c > 0.

Les réclamations arrivent selon un processus de Poisson $\{N(t),\,t\geq 0\}$ de taux λ et leurs tailles sont des v.a. i.i.d. C_1,C_2,\ldots de densité h telle que $M_h(\theta)<\infty$ autour de 0. La réserve au temps t est

$$R(t) = R(0) + ct - \sum_{j=1}^{N(t)} C_j.$$

On veut estimer $\mu = \mathbb{P}[\inf_{t>0} R(t) < 0]$, la probabilité de ruine.

Probabilité de ruine d'une compagnie d'assurance.

La compagnie encaisse des primes au taux c > 0.

Les réclamations arrivent selon un processus de Poisson $\{N(t), t \geq 0\}$ de taux λ et leurs tailles sont des v.a. i.i.d. C_1, C_2, \ldots de densité h telle que $M_h(\theta) < \infty$ autour de 0. La réserve au temps t est

$$R(t) = R(0) + ct - \sum_{j=1}^{N(t)} C_j.$$

On veut estimer $\mu = \mathbb{P}[\inf_{t>0} R(t) < 0]$, la probabilité de ruine.

En écrivant

$$R(0) - R(t) = \sum_{j=1}^{N(t)} (C_j - A_j c) = \sum_{j=1}^{N(t)} Y_j = D_{N(t)}$$

où $Y_j = C_j - A_j c$ et A_j la durée entre les réclamations j-1 et j, on se ramène à

$$\mu = \mu_{\ell} = \mathbb{P}\left[\sup_{t \ge 0} D_{N(t)} > \ell \stackrel{\text{def}}{=} R(0)\right] = \mathbb{P}[T_{\ell} < \infty].$$

La fonction génératrice des A_j est

$$M_a(\theta) = \int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - \theta},$$

et celle des Y_j est donc

$$M(\theta) = \mathbb{E}\left[e^{\theta(C_j - cA_j)}\right] = M_h(\theta)M_a(-\theta c) = M_h(\theta)\frac{\lambda}{\lambda + \theta c}.$$

La fonction génératrice des A_j est

$$M_a(\theta) = \int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - \theta},$$

et celle des Y_i est donc

$$M(\theta) = \mathbb{E}\left[e^{\theta(C_j - cA_j)}\right] = M_h(\theta)M_a(-\theta c) = M_h(\theta)\frac{\lambda}{\lambda + \theta c}.$$

IS remplace h(x) par $h_{\theta}(x) = h(x)e^{\theta x}/M_h(\theta)$ et la densité exponentielle des A_j par $(\lambda + \theta c)e^{-(\lambda + \theta c)x}$ (i.e., augmente λ à $\lambda_{\theta} = \lambda + \theta c$).

L'équation de Lundberg, $M(\theta) = 1$, s'écrit $M_h(\theta) = (\lambda + \theta c)/\lambda$, et $\theta^* > 0$ est la plus grande solution de cette équation.

Avec $\theta = \theta^*$, on obtient

$$\lambda_{\theta^*} = \lambda M_h(\theta^*),$$

$$\mathbb{E}_{\theta^*}[C_j] = M'_h(\theta^*) = c/\lambda,$$

de sorte que

$$\mathbb{E}_{\theta^*}[R(0) - R(t)] = \lambda t \, \mathbb{E}_{\theta^*}[C_j] - ct = 0$$

et la ruine survient avec probabilité 1.

Avec $\theta = \theta^*$, on obtient

$$\lambda_{\theta^*} = \lambda M_h(\theta^*),$$

$$\mathbb{E}_{\theta^*}[C_j] = M'_h(\theta^*) = c/\lambda,$$

de sorte que

$$\mathbb{E}_{\theta^*}[R(0) - R(t)] = \lambda t \, \mathbb{E}_{\theta^*}[C_i] - ct = 0$$

et la ruine survient avec probabilité 1.

Le rapport de vraisemblance à l'instant de ruine T_{ℓ} est

$$L(\omega) = e^{\theta^*(R(T_\ell) - R(0))} \le e^{-\theta^*R(0)}.$$

Voir chap. 1 pour un exemple numérique.