

天立诚兴业指纹识别模组 SOC 用户手册

版本	修订日期	描述
0.0.1	01/03/2018	初稿

1. 概念解释

1)资源开销

	尺寸(字节)	描述
图像缓存	160*160	存储由指纹传感器采集的图像(ImageBuffer)
模板缓存	448 * 3	存储 3 个指纹特征模板(CharBuffer1~3)
指纹数据库	模板尺寸 x (300)	
备注	32 * 15	每条备注 32 字节。可存储 15 条所需的二进制数据。

表3

2)模组参数

项目	描述	描述				
处理器	ARM9 (footprint : QFN40)	ARM9 (footprint : QFN40)				
指纹传感器	BF5325A					
图像	160 * 160 像素,508dpi,256 加	灰度级				
有效面积	8.0mm * 8.0 mm					
图像获取时间	约 100 毫秒					
注册过程	采集指纹 2 次	采集指纹 2 次				
识别时间	< 0.55 秒 (含图像采集时间 , 比	< 0.55 秒 (含图像采集时间,比对 300 枚指纹)				
验证时间	< 0.5 秒 (含图像采集时间)	< 0.5 秒 (含图像采集时间)				
识别率指标	FAR 0.001% / FRR 1.0%	FAR 0.001% / FRR 1.0%				
启动时间	< 0.23 秒	< 0.23 秒				
模板尺寸	448 字节	448 字节				
注册指纹容量	300 枚	300 枚				
工作电压	模组	DC 3.3V				
	指纹传感器	DC 3.3V				

参数	值	属性	备注
模组状态	0	静态	
模组地址	0xFFFFFFF	静态	
指纹容量	300	静态	
安全等级	3	静态	
波特率	0	USB	
1/2/19 1	1	UART 9600 bps	
	2	UART 19200 bps	
	4	UART 38400 bps	
	6	UART 57600 bps	默认出厂设置
	12	UART 115200 bps	

表4

备注:

(1)模组不同时支持两种通讯模式,只能使用其中的某一种进行通讯,但可以在两种模式中进行切换。

当使用 PC 机测试模组,可以通过 windows 资源管理器来判断模组是否以 USB 方式进行通讯。如果没有多出一个 CD 驱动器,可以使用 UART 方式与模组通讯。

(2) 重启模组后,模组的参数才会生效。

2. 通讯协议

本协议定义模组与上位机数据交换的格式。

1)数据包格式

头部	地址	包类型	包长度	内容	校验和
2 字节	4 字节	1字节	2 字节	(N-2) 字节	2 字节

表 5-1

名称	标记	大小		描述		
头	START	2	0xEF01			
地址	ADDR	4	0xFFFFFFF, module address			
包类型	PID	1	0x01 命令包			
			0x02	数据包		
			0x07	响应包		
			0x08 最后数据包			
包长度	LENGTH	2	内容与校验和占用的空间总字节长度			
类型	PAYLOAD	-				
校验和	SUM	2	从 PID i	到内容的每个字节的累积和		

表 5-2

备注:模组使用大端的数据格式。

数据包举例(长度12字节):

START		ADDR			PID	LENGT	Н	PAYLOAD	SUM		
0xEF	0x01	0xFF	0xFF	0xFF	0xFF	0x01	0x00	0x03	0x01	0x00	0x05

表 5-3

2)命令码

序号	值	名称	描述
1	0x01	GetImg	获取图像(包含手指检测)
2	0x02	Img2Tz	特征提取
3	0x03	Match	匹配 2 个特征
4	0x04	Search	在数据库中搜索
5	0x05	RegModel	将2个特征合并成1个模板
6	0x06	StoreModel	将模板存入数据库
7	0x07	LoadChar	将数据库中的模板导入 CharBuffer(1 or 2)
8	0x08	UpChar	上传 CharBuffer(1 or 2)的数据
9	0x09	DownChar	下载数据到 CharBuffer(1 or 2)
10	0x0A	Uplmage	从 ImageBuffer 上传图像
11	0x0C	DeleteChar	从数据库中删除模板

12	0x0D	Empty	清空数据库
13	0x0E	SetSysPara	设置模组参数
14	0x0F	ReadSysPara	读取模组参数
15	0x12	SetPwd	设置模组密码
16	0x13	VfyPwd	验证模组密码
17	0x18	WriteNotePad	写入一条 32 字节备注
18	0x19	ReadNotePad	读取一条 32 字节备注
19	0x1D	TemplateNum	读取数据库中模板数量
20	0x1F	ReadConList	读取数据库中模板的可用标记
21	0x31	AutoEnroll	注册指纹
22	0x32	Autoldentify	识别指纹

表6

3)反馈码

编号	值	标记	描述	
1	0x00	RET_OK	成功	
2	0x01	RET_InvalidPacket	无效数据包	
3	0x02	RET_NoFinger	传感器未检测到手指	
4	0x03	RET_StoreImageFail	将图像存入 ImageBuffer 失败	
5	0x06	RET_TooLowQuality	图像质量太差而无法提取特征	
6	0x07	RET_TooFewPoint	特征点太少而无法提取特征	
7	0x08	RET_NotMatched	指纹模板匹配不一致	
8	0x09	RET_NotIdentified	没有找到匹配的指纹	
9	0x0A	RET_MergeFail	合并特征失败	
10	0x0B	RET_InvalidTempID	模板 ID 不合法	
11	0x0C	RET_ReadTempFail	从数据库中读出模板失败	
12	0x0D	RET_UpTempFail	上传模板失败	
13	0x0E	RET_ModBusyErr	此时模组不能接收数据包	
14	0x0F	RET_UpImgFail	上传图像失败	
15	0x10	RET_RemoveTempFail	从数据库中删除模板失败	
16	0x11	RET_RemoveAllFail	从数据库中删除所有模板失败	
17	0x13	RET_InvalidPwd	无效密码	

18	0x15	RET_InvalidImg	ImageBuffer 中没有有效的图像数据
19	0x20	RET_InvalidMAddr	非法的模组地址
20	0x21	RET_NeedVfyPwd	需要验证密码

表 7

3. 命令

- 1) GetImg
- 操作

采集指纹图像

当手指检测标记=1,且在重启后第一次执行"GetImg"命令,则在重启后,按如下方式运行:

- 参数:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x01	0x0005

表 8-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 8-2

请参照表7响应码。

2) Img2Tz

- 操作

从 ImageBuffer 的图像创建特征,并存储到 CharBuffer(1 or 2),其中 1 或 2 为 bufferID。

- 参数

BufferID: CharBuffer 的序号,值为1或3。

- 命令包

START	ADDR	PID	LENGTH	Command	BufferID	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x02	Χ	Sum

表 9-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 9-2

请参照表7响应码。

3) 匹配

- 操作

匹配 CharBuffer1 与 CharBuffer2。

- 参数:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x03	0x0007

表 10-1

- 响应包

START	ADDR	PID	LENGTH	Response Code	Score	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0005	Х	XX	SUM

表 10-2

请参照表7响应码。

4) 搜索

- 操作

在数据库中给予的范围内与 CharBuffer(1 or 2)匹配。

- 参数

BufferID: CharBuffer 的序号,值为1或2。

TempID: 搜索模板范围的起始编号。

TempCount: 搜索的模板数量。

- 命令包

START	ADDR	PID	LENGTH	Command	BufferID	TempID	TempCount	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0008	0x04	Х	XX	XX	Sum

表 11-1

响应包

START	ADDR	PID	LENGTH	Response	Temp ID	Score	SUM
2 字节	4 字节	1 字节	2 字节	1字节	2 字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0007	Х	XX	XX	SUM

表 11-2

请参照表7响应码。

5) RegModel

- 操作

将 CharBuffer1 和 CharBuffer2 合并成一个模板,并存储到 CharBuffer1 中。

- **参数**:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x05	0x0009

表 12-1

响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 12-2

请参照表7响应码。

6) StoreModel

- 操作

将 CharBuffer (1或2)的特征存储到数据库中。

- 参数

BufferID: CharBufferID, 值为1或2。

TempID: 存到数据库中的序号。

- 命令包

START	ADDR	PID	LENGTH	Command	BufferID	TempID	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0006	0x06	Χ	XX	Sum

表 13-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节

0xEF01 0xFFFFFFF	0x07	0x0003	Х	SUM
------------------	------	--------	---	-----

表 13-2

请参照表7的响应值。

7) LoadChar

- 操作

读取数据库的一个模板,并存入CharBuffer(1或2)。

- 参数

BufferID: CharBuffer的序号,值为1或2。

TempID: template ID 模板序号。

- 命令包

START	ADDR	PID	LENGTH	Command	BufferID	TempID	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0006	0x07	Χ	XX	Sum

表 14-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 14-2

请参照表 7 响应码。

8) UpChar

- 操作

上传 CharBuffer (1或2)的模板。

- 参数

BufferID: CharBuffer的序号,值为1或2。

命令包

START	ADDR	PID	LENGTH	Command	BufferID	SUM
2 字节	4 字节	1 字节	2 字节	1字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0004	0x08	Х	Sum

表 15-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 15-2

请参照表7响应码。

9) DownChar

- 操作

把模板下载到 CharBuffer(1 或 2)。

- 参数

BufferID: CharBuffer的序号,值为1或2。

- 命令包

START	ADDR	PID	LENGTH	Command	BufferID	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0004	0x09	Χ	Sum

表 16-1

- 响应包

START ADDR	PID	LENGTH	Response	SUM
------------	-----	--------	----------	-----

2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Χ	SUM

表 16-2

请参照表7响应码。

数据包

A. 常规

START	ADDR	PID	LENGTH	Template 字节	SUM
2 字节	4 字节	1字节	2 字节	N 字节	2 字节
0xEF01	0xFFFFFFF	0x02	N+2	-	Sum

表 16-3

B. 最后数据包

START	ADDR	PID	LENGTH	Template 字节	SUM
2 字节	4 字节	1字节	2 字节	N 字节	2 字节
0xEF01	0xFFFFFFF	0x08	N+2	-	Sum

表 16-4

备注: UART: N = 128, USB: N = 448

10) Uplmage

- 操作

上传 ImageBuffer 的图像。

- 参数:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x0A	0x0E

表 17-1

响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 17-2

请参照表7响应码。

数据包与表 16-3,16-4 相同。

备注: 数据包中 UART: N = 128, USB: N = 160*160。

- 图片数据格式

UART: 上传数据图像 宽 256 像素, 高 288 像素。

每个像素占用4比特。

因此, 图像字节数=256*288/2=36864 字节, 该字节数是 128 的整数倍。

传感器的图像位于图像中心。

USB:上传的图像宽 160 像素,高 160 像素,每个像素占用 8 比特。

上传数据为 160*160=25600 字节。

11) DeleteChar

- 操作

删除序号为 TempID 到(TempID+TempCount-1)之间的模板。

- 参数

TempID:要删除的模板的起始序号。

TempCount: 要删除的模板数量。

(如果给出的序号对应的模板是空的,则继续下一个序号的操作。)

命令包

START	ADDR	PID	LENGTH	Command	TempID	TempCount	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0007	0x0c	XX	XX	Sum

表 18-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 18-2

请参照表7响应码。

12) Empty

- 操作

从数据库中删除所有模板。

- **参数**:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x0D	0x10

表 19-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 19-2

请参照表7响应码。

13) SetSysPara

- 操作

设置模组参数。

- 参数

ParaID:模组参数的序号。

value:要设置的数值。

名称	ParalD	Value
BaudRate	4	0 ~12

表 20-1

- 命令包

START	ADDR	PID	LENGTH	Command	ParaID	Value	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0005	0x0E	4 or 6	Х	Sum

表 20-2

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 20-3

请参照表7响应码。

14) ReadSysPara

- 操作

读取模组参数。

- 参数:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x0F	0x0012

表 21-1

- 响应包

START	ADDR	PID	LENGTH	Response	Mod. Para	SUM
2 字节	4 字节	1字节	2 字节	1字节	16 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0013	Х	-	SUM

表 21-2

请参照表7响应码。

模组 16 字节的参数如下:

(请参照模组参数表)

名称	字节数	值
Module Status	2	0x0000
Module Number	2	0x0000
Fingerprint Capacity	2	0x012C
Security Level	2	0x0003
Module Address	4	0xFFFFFFF
BaudRate	2	XX

表 21-3

15) SetPwd

- 操作

设置 4 字节的模组密码。

- 参数

Pwd:新密码(4字节)

- 命令包

START ADI	DR PID	LENGTH	Command	Pwd	SUM
-----------	--------	--------	---------	-----	-----

2 字节	4 字节	1字节	2 字节	1字节	4字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0007	0x12	XXXX	Sum

表 22-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 22-2

请参照表7响应码。

16) VfyPwd

- 操作

验证模组密码。

- 参数

Pwd:密码(默认:0x00000000)

- 命令包

START	ADDR	PID	LENGTH	Command	Pwd	SUM
2 字节	4 字节	1字节	2 字节	1字节	4 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0007	0x13	XXXX	Sum

表 23-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 23-2

请参照表7响应码。

17) WriteNotePad

- 操作

将一条备注写入指定的记录中。

- 参数

NoteID: 要写入的备注序号(0x0~0x0E)。

Data1: 要写入的数据(32 字节)。

命令包

START	ADDR	PID	LENGTH	Command	NoteID	Data1	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	32 字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0024	0x18	Х	-	Sum

表 24-1

- 响应包

START	ADDR	PID	LENGTH	Response	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0003	Х	SUM

表 24-2

请参照表7响应码。

18) ReadNotePad

- 操作

读出一条备注。

- 参数

NoteID:要读出的备注序号(0x0~0xE)。

- 命令包

START	ADDR	PID	LENGTH	Command	NoteID	SUM
2 字节	4 字节	1字节	2 字节	1 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0004	0x19	Х	Sum

- 响应包

START	ADDR	PID	LENGTH	Response	Data1	SUM
2 字节	4 字节	1字节	2 字节	1字节	32 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0023	Х	-	SUM

表 25-2

Data1 为备注数据。

请参照表7响应码。

19) TemplateNum

- 操作

读取模板号。

- 参数:无

- 命令包

START	ADDR	PID	LENGTH	Command	SUM
2 字节	4 字节	1字节	2 字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0003	0x1D	0x0011

表 26-1

- 响应包

START	ADDR	PID	LENGTH	Response	Template Number	SUM
2 字节	4 字节	1 字节	2 字节	1字节	2 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0005	Х	XX	SUM

表 26-2

请参照表 7 响应码。

20) ReadConList

- 操作

从数据库中读取有效的模板标记数组。

每执行一次本命令,将得到32字节的标记数组。该数组表示256个模板有效信息。

- 参数

Para1: 0:序号为0~255的模板。

1: 序号为 256 ~ 511 (序号 300-511 的模板不存在, 因此这些比特位均

为 0。)

命令包

START	ADDR	PID	LENGTH	Command	Para1	SUM
2 字节	4 字节	1字节	2 字节	1字节	1字节	2 字节
0xEF01	0xFFFFFFF	0x01	0x0004	0x1F	0 or 1	Sum

表 27-1

- 响应包

START	ADDR	PID	LENGTH	Response	Bit Array	SUM
2 字节	4 字节	1字节	2 字节	1字节	32 字节	2 字节
0xEF01	0xFFFFFFF	0x07	0x0023	Х	-	SUM

表 27-2

请参照表7响应码。

模板的有效标记数组如下:

对于1个字节:

位置	7	6	5	4	3	2	1	0
	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
ID	N+7	N+6	N+5	N+4	N+3	N+2	N+1	N

表 27-3

模板序号按照地址位置从小到大排列。

21) AutoEnroll(0x31)

- 操作

注册指纹。

本命令依次执行以下操作:图像获取、特征提取、合并特征、保持模板。

- 参数

Template ID, feature number of merging into template, control parameter.

- Command Packet

START	ADDR	PID	LENGTH	Comman	ID	Feature	Control	SUM
				d		number	Para	
2 字节	4字节	1字节	2 字节	1字节	_	1字节	2 字节	2 字节
					节			
0xEF01	XXXX	0x01	0x0008	0x31	XX	n	XX	Sum

Control Para:

Bit0: 采集图像时, LED 的状态

0:常亮

1: 采集后关闭

Bit1: 0:不进行预处理

1:进行预处理

Bit2: 0:返回所有步骤的响应包

1: 只需要最终步骤的响应包

Bit3: 0: 不允许 template ID 重复

1: 允许 template ID 重复

Bit4: 0:允许指纹重复

1: 不允许指纹重复

Bit5: 0: 在不同的指纹采集过程间,需要移开手指。

1: 在不同的指纹采集过程间,不需要移开手指。

Bit6~Bit15:保留位

- 响应包

HEAD ADDR PID LENGTH Response	Param	SUM	comment
-------------------------------	-------	-----	---------

					Param1	Param2		
2 字节	4 字节	1 字节	2 字节	1字节	1字节	1字节	2 字节	
0xEF01	xxxx	0x07	5	х	0	0	sum	命令有效
0xEF01	xxxx	0x07	5	х	1	1	sum	采集图 像
0xEF01	xxxx	0x07	5	х	2	1	sum	特征提 取
0xEF01	xxxx	0x07	5	х	3	1	sum	移开手 指
0xEF01	xxxx	0x07	5	X	1	n	sum	采集图 像
0xEF01	xxxx	0x07	5	х	2	n	sum	特征提 取
0xEF01	xxxx	0x07	5	х	4	0xF0	Sum	合并特 征
0xEF01	xxxx	0x07	5	х	5	0xF1	Sum	检查 ID、指 纹是否 重复
0xEF01	xxxx	0x07	5	х	6	0xF2	sum	存储

Response	comment	Param1	comment	Param2	Comment
00H	成功	0	命令有效	00H	命令有效
01H	失败	1	采集图像	F0H	合并特征
07H	特征提取失	2	特征提取	F1H	
	败				
0aH	特征合并失	3	手指移开	F2H	
	败				
0bH	无效的模板	4	特征合并	n	输入数
	ID				
1fH	指纹数据库	5	检查 ID、		

	满		指纹	
22H	存在重复	6	存储	
	ID			
25H	无效的特征			
	号			
26H	超时			
27H	指纹重复			

备注: 当响应为 27H(指纹重复), 响应包的 param1, param2 标识重复的 ID 编号,而不再具有上表中的含义。

22) AutoIdentify(0x32)

- 操作

指纹识别。

本操作包含图像采集,特征提取,指纹识别操作。

- 参数

Security level, template ID.

- Command Packet

START	ADDR	PID	LENGTH	Comman	Secu	ID	Control	SUM
				d	rity		Para	
					Level			
2 字节	4 字节	1字	2 字节	1字节	1字	2 字节	2 字节	2 字节
		节			节			
0xEF01	xxxx	0x01	0x0008	0x32	xx	XX	XX	Sum

Control Para:

Bit0: 采集图像时,LED 的状态

0:常亮

1: 采集后关闭

Bit1: 0:不进行预处理

1:进行预处理

Bit2: 0:返回所有步骤的响应包

1:只需要最终步骤的响应包

Bit3~Bit15:保留位

响应包

HEAD	AD	PID	LENGT	Respons	Para	ID	Scor	SUM	comment
	DR		Н	е	m		е		
2 字节	4	1	2 字节	1字节	1字	2	2	2	
	字	字节			节	字节	字节	字节	
	节				·				
0xEF01	xxxx	0x07	8	х	00H	xx	XX	sum	命令有效
0xEF01	xxxx	0x07	8	х	01H	xx	XX	sum	图像采集
0xEF01	xxxx	0x07	8	х	05H	xx	xx	sum	指纹识别

response	comment	param	Comment
00H	成功	00H	命令有效
01H	失败	01H	图像采集
07H	特征提取失败。	05H	指纹识别
09H	没有匹配上指纹。		
0bH	无效的模板 ID		
17H	痕迹指纹		
23H	模板为空		
24H	数据库位空。		
26H	超时		
27H	ID 已经存在		

4. 合并

指纹注册和识别过程可按照以下过程实现:

1)注册(需要采集指纹2次或3次)

如果在重启后执行过"VfyPwd"命令,将不必执行下图中的"VfyPwd"过程。

2)识别

5. 测试环境

如图,将测试模组连接到PC。

请注意按照以下操作执行

- (1) 将转接板的 USB 接口接入 PC 机。
- (2) 将 RS232-USB 转接线接入 PC 机。

图中,红框中的转接板已连接到 PC 机,并已可用。蓝色的连接线是 RS232-USB 转接线。在接入 PC 前,需要先安装驱动程序。连接后,通过设备管理器查看新增的 COM 口号。本文以 COM3 为例说明。

至此,已做好测试的准备。

如前文所述,若在 windows 资源管理器中没有出现新增的 CD 驱动器,需用 UART 通讯。

依次点击选择按钮 1-5,设置 COM 口。

如果你需要变换为 USB 通讯,请依次点击 6,6A,6B,6C。

如果见到提示消息"SetSysPara OK!",则 USB 通讯配置成功。 点击 7,你可以获取模组参数。

变更为 USB 通讯后,请重启模组。

请记得把 2 个和 PC 相连的 USB 连线断开后再重新连接。

- (1) 将转接板的 USB 接口接入 PC 机。
- (2)将 RS232-USB 转接线接入 PC 机。

此时,你可在 windows 浏览器中看到 CD 驱动。

点击1和2处,打开USB。