# André Vitor Santana Souza Matrícula: 2312694

# MeteoViz: Sistema de visualização de dados metereológicos

Rio de Janeiro - RJ

Junho - 2024

# Sumário

| 1     | INTRODUÇÃO                             | 2   |
|-------|----------------------------------------|-----|
| 1.1   | Motivação                              | 3   |
| 1.2   | Objetivo                               | 3   |
| 1.3   | Organização do Documento               | 3   |
| 2     | FUNDAMENTAÇÃO TEÓRICA                  | 4   |
| 2.1   | Dados metereológia                     | 4   |
| 2.2   | Arquivo CSV                            | 4   |
| 2.3   | Plotly e Dash                          | 4   |
| 3     | REQUISITOS E ESPECIFICAÇÕES            | 6   |
| 3.1   | Requisitos funcionais e Não funcionais | 6   |
| 3.1.1 | Requisitos funcionais                  | 6   |
| 3.1.2 | Requisitos não funcionais              | 8   |
| 3.2   | Casos de Uso                           | Ĝ   |
| 4     | DESENVOLVIMENTO 1                      | . 2 |
| 4.1   | Plataformas e tecnologias              | . 2 |
| 4.2   | Diagrama de Clases                     | .2  |
| 5     | TESTES 1                               | 3   |
| 5.1   | Testes dos requisitos                  | 3   |
| 6     | MANUAL DO USUÁRIO                      | Ę   |
| 6.1   | Requisitos mínimos                     | 5   |
| 6.2   | Principais funções do programa         | 5   |
|       | REFERÊNCIAS                            | 3.  |

# 1 Introdução

A meteorologia é a ciência que estuda os fenômenos atmosféricos e suas interações com a superfície da Terra. Esta ciência é fundamental para a previsão do tempo, a compreensão das mudanças climáticas e o desenvolvimento de estratégias de mitigação e adaptação a eventos climáticos extremos. A análise de dados meteorológicos desempenha um papel crucial na identificação de padrões climáticos, na modelagem de sistemas atmosféricos e na tomada de decisões informadas em diversos setores, incluindo agricultura, transporte e gestão de recursos naturais.(JONKER, 2024)

Nos últimos anos, a visualização de dados tornou-se uma ferramenta essencial para cientistas e pesquisadores em diversas áreas. Ferramentas de visualização de dados permitem a interpretação rápida e eficaz de grandes volumes de dados, possibilitando identificar padrões, tendências e anomalias que seriam difíceis de detectar de outra forma (COURSERA, 2023).

O *Plotly* é uma das diversas ferramentas que podem axuliar na criação de visualizações, ela é uma biblioteca de gráficos interativa que suporta diversos tipos de gráficos, incluindo gráficos de linhas, barras, dispersão, mapas, entre outros. Já o *Dash*, criado pela Plotly, simplifica a criação de interfaces de usuário ricas e é um excelente complemento para utilizar a biblioteca em aplicações web. O uso combinado de *Dash* e *Plotly* permite a criação de aplicações web que não apenas exibem dados, mas também permitem a interação do usuário com esses dados. Isso é particularmente útil em meteorologia, onde os dados são frequentemente complexos e multifacetados.

Este trabalho apresenta uma aplicação web que permite aos usuários visualizar, extrair informações descritivas e gerar uma matriz de correlação. Para realizar esse processo, será utilizada a biblioteca *Dash* em conjunto com a *Plotly*, conforme exemplificado acima.

#### 1.1 Motivação

Apesar da importância crítica dos dados meteorológicos, a análise desses dados pode ser desafiadora devido ao seu volume e complexidade(REIS et al., 2022). Com essa premissa foram criadas ótimas ferramentas para esse tipo de dado, mas por serem pagas, muitos estudantes e pesquisadores não conseguem acesso a elas, que os tornam carentes de ferramentas acessíveis e intuitivas para visualizar e interpretar dados metereológicos.

O MeteoViz foi desenvolvido para atender essa necessidade, proporcionando uma plataforma fácil de usar para explorar e analisar dados meteorológicos, facilitando o acesso a ferramentas avançadas de análise sem a necessidade de conhecimentos profundos em programação.

#### 1.2 Objetivo

O objetivo do MeteoViz é fornecer uma ferramenta interativa que facilite a exploração e análise de variáveis meteorológicas.

#### 1.3 Organização do Documento

A organização do trabalho é realizada da seguinte forma: No Capítulo 2 temos a Fundamentação teórica onde, contém conceitos fundamentais para o contexto e entendimento do trabalho. O Capítulo 3 apresenta os Requisitos e Especificações, mostra-se os Requisitos Funcionais e Não Funcionais coletados do sistema e o diagrama de Casos de Uso contendo a descrição e pré-condições de cada caso.

No Capítulo 4, mostra o Desenvolvimento, apresenta-se as plataformas e tecnologias utilizadas para desenvolver o sistema, bem como seu diagrama de Classes para melhor entendimento de funcionalidades. O Capítulo 5, mostra casos de testes que foram realizados no sistema. No último Capítulo o 6, temos o Manual do Usuário, contendo explicações de como usar o programa corretamente.

# 2 Fundamentação teórica

Neste capítulo são discutidos os principais fundamentos dos dados metereológicos e técnicas computacionais aplicados no trabalho.

#### 2.1 Dados metereológia

Os dados meteorológicos podem ser classificados em várias categorias, cada uma com suas especificidades. Dados de observação são coletados em tempo real por estações meteorológicas, radares e satélites. Dados históricos são registros passados de condições meteorológicas usados para análise de tendências e estudos climáticos. Dados de previsão são gerados por modelos numéricos de previsão do tempo, que utilizam equações matemáticas para simular a atmosfera. Já dados climáticos representam médias e variações de longo prazo de parâmetros meteorológicos, essenciais para o estudo de mudanças climáticas(EPA,).

## 2.2 Arquivo CSV

Os arquivos CSV (Comma-Separated Values, ou Valores Separados por Vírgula) são um formato amplamente utilizado para armazenamento e intercâmbio de dados tabulares. Esses arquivos são simples de criar e ler, pois utilizam uma estrutura de texto plano onde cada linha representa um registro de dados e cada campo dentro desse registro é separado por uma vírgula (ou outro delimitador, como ponto e vírgula ou tabulação). Algumas características dos arquivos CSV incluem sua simplicidade, compatibilidade e tamanho reduzido. (FISHER, 2023)

## 2.3 Plotly e Dash

Plotly é uma biblioteca de gráficos interativa que suporta diversos tipos de gráficos. É conhecida pela sua capacidade de criar visualizações interativas e de alta qualidade, sendo amplamente utilizada em ciência de dados, finanças e outras áreas que requerem visualização avançada de dados. Ele também permite personalização extensiva, posibilitando ajustes finos na aparência dos gráficos. O Dash é um framework em Python que permite a construção de aplicações web interativas de forma fácil e eficiente. Ele combina a simplicidade do Flask com a interatividade do Plotly.js e a capacidade de interface do React.js. Desenvolvedores podem criar dashboards analíticos complexos sem a necessidade de escrever JavaScript, apenas utilizando Python. Sendo possivel a integração com biblio-

tecas python como Pandas e Numpy, e a criação de callbacks para atualização reativa dos componentes da interface com base na interação com a aplicação.(PLOTLY, 2024)

# 3 Requisitos e Especificações

Nesta seção são apresentados os principais requisitos e especificações para a criação do sistema de visualização de dados meteorológicos.

#### 3.1 Requisitos funcionais e Não funcionais

Os requisitos serão classificados em relação a prioridade, que pode ser avaliado como: essencial, importante ou desejável e em relação ao esforço que pode ser baixo, médio ou alto. Essa classificação é importante para estimar o tempo de modelagem e desenvolvimento.

#### 3.1.1 Requisitos funcionais

O sistema é constituído dos seguintes requisitos funcionais descritos abaixo:

#### 1. Upload de arquivos CSV.

| Descrição  | O usuário poderá abrir um arquivo CSV selecionando e carregando para |  |
|------------|----------------------------------------------------------------------|--|
|            | o programa                                                           |  |
| Prioridade | Essencial                                                            |  |
| Esforço    | Baixo                                                                |  |

#### 2. Criação de gráficos interativos.

| Descrição  | O sistema permitirá a criação de gráficos de séries temporais, mapas |  |  |
|------------|----------------------------------------------------------------------|--|--|
|            | espaciais, gráficos de dispersão e histogramas.                      |  |  |
| Prioridade | Essencial                                                            |  |  |
| Esforço    | Alto                                                                 |  |  |

#### 3. Ferramentas de análise estatística

| Descrição  | O usuário poderá calcular estatísticas descritivas e correlações. |
|------------|-------------------------------------------------------------------|
| Prioridade | Essencial                                                         |
| Esforço    | Alto                                                              |

# 4. Exportação de gráficos e resultados estatísticos

| Descrição  | O usuário poderá exportar gráficos e resultados estatísticos em formatos |  |
|------------|--------------------------------------------------------------------------|--|
|            | comuns como PNG e CSV                                                    |  |
| Prioridade | Desejável                                                                |  |
| Esforço    | Médio                                                                    |  |

#### 5. Criar e Renomear Abas

| Descrição  | O usuário poderá criar e renomear abas |  |
|------------|----------------------------------------|--|
| Prioridade | Desejável                              |  |
| Esforço    | Médio                                  |  |

#### 3.1.2 Requisitos não funcionais

O sistema é constituído dos seguintes requisitos não funcionais descritos abaixo:

#### 1. Portabilidade

| Descrição  | O sistema poderá ser executado em diferentes sistemas operacionais, |  |
|------------|---------------------------------------------------------------------|--|
|            | tais como Linux e Windows, necessitando somente de um browser.      |  |
| Prioridade | Essencial                                                           |  |
| Esforço    | Médio                                                               |  |

#### 2. Interface amigável e responsiva

| Descrição  | O sistema deve ser intuitivo e de fácil manuseio, com uma interface que |  |
|------------|-------------------------------------------------------------------------|--|
|            | se adapte a diferentes dispositivos.                                    |  |
| Prioridade | Essencial                                                               |  |
| Esforço    | Alto                                                                    |  |

#### 3. Suporte para grandes volumes de dados

| Descrição  | O sistema deve ser capaz de processar e visualizar grandes volumes de |  |
|------------|-----------------------------------------------------------------------|--|
|            | dados meteorológicos sem perda de desempenho.                         |  |
| Prioridade | Importante                                                            |  |
| Esforço    | Alto                                                                  |  |

#### 4. Desempenho eficiente nas operações de análise

| Descrição  | As operações de análise e visualização de dados devem ser realizadas de |  |
|------------|-------------------------------------------------------------------------|--|
|            | forma eficiente, com tempos de resposta rápidos.                        |  |
| Prioridade | Importante                                                              |  |
| Esforço    | Médio                                                                   |  |

## 3.2 Casos de Uso

Nessa seção é apresentado o diagrama de casos de uso criado para o sistema. A Figura 1 mostra a criação dele com base nos requisitos do sistema, assim como a especificação de cada um.



Figura 1 – Diagrama de casos de uso.

#### 1. Upload de Arquivos.

| Descrição            |                                                                     |  |
|----------------------|---------------------------------------------------------------------|--|
| Ator:                | O usuário.                                                          |  |
| Descrição sucinta:   | Upload de Arquivos.                                                 |  |
| Pré-condições:       | Estar com o sistema aberto                                          |  |
| Pós-condições:       | Exibir tela de escolha de gráficos.                                 |  |
|                      | 1. O usuário acessa a página da aplicação;                          |  |
| Cenário principal:   | 2. O usuário escolhe a opção carregar arquivo;                      |  |
|                      | 3. O sistema atualiza a tela para a criação de gráficos e análises; |  |
| Cenário alternativo: | Será demonstrada mensagem de erro ou não será possivél              |  |
|                      | escolher as colunas de x e y.                                       |  |

#### 2. Criação de Gráficos.

| Descrição            |                                                               |
|----------------------|---------------------------------------------------------------|
| Ator:                | O usuário.                                                    |
| Descrição sucinta:   | Criar gráficos de dispersão, séries temporais, etc.           |
| Pré-condições:       | Estar com o sistema aberto e ter inserido o arquivo           |
| Pós-condições:       | Mostrar o gráfico com os eixos escolhidos.                    |
|                      | 1. O usuário acessa a página da aplicação;                    |
| Cenário principal:   | 2. O usuário escolhe a opção carregar arquivo;                |
| Cenario principai.   | 3. O sistema permite a criação de gráficos;                   |
|                      | 4. O usuário escolhe os eixos e o tipo de gráfico.            |
| Cenário alternativo: | Caso o arquivo esteja mal formatado, o usuário não conseguirá |
|                      | escolher opções de eixo.                                      |

#### 3. Criar Análise Estatística.

| Descrição            |                                                                  |  |
|----------------------|------------------------------------------------------------------|--|
| Ator:                | O usuário.                                                       |  |
| Descrição sucinta:   | Depois que o usuário realizar o upload do arquivo pode solicitar |  |
|                      | as análises estatísticas.                                        |  |
| Pré-condições:       | Estar com o sistema aberto e ter realizado o upload de arquivo.  |  |
| Pós-condições:       | Ter a análise estatística solicitada apresentada na aplicação.   |  |
| Cenário principal:   | 1. O usuário acessa a página da aplicação;                       |  |
|                      | 2. O usuário escolhe a opção carregar arquivo;                   |  |
|                      | 3. O sistema permite a criação de análises;                      |  |
|                      | 4. O usuário acessa a análise através de um botão;               |  |
| Cenário alternativo: | O arquivo enviado não possui dados que possam ser realizadas     |  |
|                      | a análise (somente dados descritivos).                           |  |

#### 4. Exportar Gráficos e Análises.

| Descrição            |                                                                  |  |
|----------------------|------------------------------------------------------------------|--|
| Ator:                | O usuário.                                                       |  |
| Descrição sucinta:   | Depois que o usuário criar um gráfico ou análise ele escolhe     |  |
|                      | esta opção para exporta-lá em seu computador.                    |  |
| Pré-condições:       | Estar com o sistema aberto e com o gráfico ou análise realizada. |  |
| Pós-condições:       | Ter realizado o download na máquina do usuário.                  |  |
| Cenário principal:   | 1. O usuário acessa a página da aplicação;                       |  |
|                      | 2. O usuário escolhe a opção carregar arquivo;                   |  |
|                      | 3. O usuário cria um gráfico ou análise;                         |  |
|                      | 4. O usuário exporta o gráfico através de um uma opção do        |  |
|                      | plotly e um botão para as análises;                              |  |
| Cenário alternativo: | Não ter nada a ser salvo.                                        |  |

#### 5. Criar e Renomear Abas.

| Descrição            |                                                             |  |
|----------------------|-------------------------------------------------------------|--|
| Ator:                | O usuário.                                                  |  |
| Descrição sucinta:   | Opção para o usuário criar novas abas ou renomear antigas.  |  |
| Pré-condições:       | Estar com o sistema aberto.                                 |  |
| Pós-condições:       | Criar uma nova aba ou renomear a escolhida.                 |  |
| Cenário principal:   | 1. O usuário acessa a página da aplicação;                  |  |
|                      | 2. O usuário escreve o nome da aba em sua respectiva caixa; |  |
|                      | 3. O usuário aciona o botão desejado(renomear ou criar);    |  |
|                      | 4. O sistema cria uma nova aba com novo nome ou renomea;    |  |
| Cenário alternativo: | O sistema informa o erro ocorrido.                          |  |

# 4 Desenvolvimento

Esta seção apresenta informações sobre a fase de desenvolvimento da aplicação, como a biblioteca, ferramentas utilizadas.

#### 4.1 Plataformas e tecnologias

O programa foi desenvolvido utilizando a linguagem python, com as biblioteca dash plotly e pandas, foi utilizada a IDE Visual Studio Code para dar suporte ao desenvolvimento. A tabela 1 resume as plataformas e tecnologias utilizadas no desenvolvimento do programa.

| Linguagem de programação: | Python               |
|---------------------------|----------------------|
| IDE:                      | Visual Studio Code   |
| Bibliotecas:              | Dash, Plotly, Pandas |
| Plataformas:              | Windows, Linux, Mac  |

Tabela 1 – Plataformas e tecnologias utilizadas.

# 4.2 Diagrama de Clases

A Figura 2 apresenta o diagrama de classes desenvolvido para o sistema.



Figura 2 – Diagrama de classes do sistema.

A classe *callbacks* contém quase todos os métodos que são necessários para o funcionamento do sistema. Mas o ponto de partida do sistema é o *app* que cria a aplicação e une os *callbacks* e o *layout* do sistema, após a inicialização do sistema que a classe principal se torna responsável pelas interações do usuário com o sistema.

# 5 Testes

Este capítulo apresenta os testes realizados para garantir a funcionalidade do sistema.

## 5.1 Testes dos requisitos

Foram realizados testes manuais para verificar o comportamento do sistema. Foi feito um roteiro para cada um dos requisitos funcionais mencionados na seção 3.1.

1. Upload de um arquivo csv, permite o usuário carregar um arquivo tabular. A Figura 3 mostra o resultado obtido.



Figura 3 – Resultado do primeiro caso de teste, upload de um CSV.

2. Criação de gráficos interativos, permite o usuário construir um gráfico após upload do arquivo. A Figura 4 mostra o resultado obtido.



Figura 4 – Resultado do segundo caso de teste, criação de gráficos interativos.

Capítulo 5. Testes 14

3. Criar análise estatística, o usuário pode optar por realizar análise estatísticas sobre os dados enviados. A Figura 5 mostra o resultado obtido do teste.



Figura 5 – Resultado do terceiro caso de teste, criar análise estatística.

4. Exportação de gráficos e resultados estatísticos, permite o usuário instalar em seu computador os gráficos construidos. A Figura 6 mostra o resultado do teste obtido.



Figura 6 – Resultado do quarto caso de teste, Exportação de gráficos e resultados estatísticos. A esquerda exportando um gráfico, a direita uma análise estatística.

5. Criar e Renomear Abas, permite o usuário criar novas abas e renomear antigas. A Figura 7 mostra o resultado do teste obtido.



Figura 7 – Resultado do quinto caso de teste, criar e renomear abas. A esquerda preenchendo as caixas de texto, a direita realizando as operações.

# 6 Manual do Usuário

Esta seção apresenta o manual do usuário. Nela, é demonstrado como utilizar o sistema de visualização de dados metereológicos.

#### 6.1 Requisitos mínimos

O sistema a princípio está funcionando localmente, basta o usuário possuir o sistema em seu computador e ter um navegador para testá-lo.

## 6.2 Principais funções do programa

Para o usuário abrir um arquivo, primeiramente ele deve clicar na area indicada 'Drag and Drop or Select a CSV or Excel File' ou arrastar o arquivo até ela. Após clicar, a janela de seleção de arquivo será exibida, caso contrario o arquivo será carregado automaticamente, tal como na Figura 8.



Figura 8 – Janela de seleção de arquivo.

Após a escolha do arquivo, a tela será atualizada e o mesmo poderá começar a realizar a criação de gráficos ou de análise estatística, basta ele selecionar a opção que desejar. A Figura 9 exibe essas opções mencionadas.



Figura 9 – Opções de escolha de ação.

O sistema já inicia na opção de gráfico onde o usuário a esquerda escolhe o tipo de gráfico e ao clicar no 'Toggle Axis Selection' ele pode escolher quais variáveis ele quer visualizar, sendo uma para o eixo X e uma ou mais para o Y, o usuário pode exportar o gráfico ao clicar na camera no canto superior direito do gráfico. A Figura 10 apresenta um exemplo de *Scatter Plot*.



Figura 10 – Exemplo de Scatter Plot.

Já no 'Summary Statistics' e 'Correlation Matrix', o usuário deve somente escolher a opção e será calculada automaticamente. Após a apresentação do resultado o usuário pode exportar ao clicar no botão de exportar abaixo da análise. A Figura 11 apresenta um exemplo de 'Correlation Matrix'.



Figura 11 – Exemplo de análise.

Para criar ou renomear uma aba, o usuário deve escrever o nome da nova aba na caixa de texto apertar o botão,  $Add\ Tab$  para criar uma nova aba e  $Rename\ Tab$  para a renomear a aba selecionada conforme a Figura 7

# Referências

COURSERA. Data Visualization: Definition, Benefits, and Examples. 2023. Accessed: 25-06-2024. Disponível em: <a href="https://www.coursera.org/articles/data-visualization">https://www.coursera.org/articles/data-visualization</a>. Citado na página 2.

EPA, E. P. A. *Meteorological Data and Processors*. Accessed: 25-06-2024. Disponível em: <a href="https://www.epa.gov/scram/meteorological-data-and-processors#:~:text="observational%20Meteorological%20Data%20%2D%20Data%20consisting,current%20weather%2C%20and%20precipitation%20amount.">https://www.epa.gov/scram/meteorological-data-and-processors#:~:text=observational%20Meteorological%20Data%20%2D%20Data%20consisting,current%20weather%2C%20and%20precipitation%20amount.</a> Citado na página 4.

FISHER, T. What Is a CSV File? 2023. Accessed: 26-06-2024. Disponível em: <a href="https://www.lifewire.com/csv-file-2622708">https://www.lifewire.com/csv-file-2622708</a>. Citado na página 4.

JONKER, T. K. A. What is meteorology? 2024. Accessed: 25-06-2024. Disponível em: <a href="https://www.ibm.com/think/topics/meteorology">https://www.ibm.com/think/topics/meteorology</a>. Citado na página 2.

PLOTLY. Getting Started with Plotly in Python. 2024. Accessed: 25-06-2024. Disponível em: <a href="https://plotly.com/python/getting-started/">https://plotly.com/python/getting-started/</a>. Citado na página 5.

REIS, T. et al. Supporting meteorologists in data analysis through knowledge-based recommendations. *Big Data and Cognitive Computing*, v. 6, n. 4, 2022. ISSN 2504-2289. Disponível em: <a href="https://www.mdpi.com/2504-2289/6/4/103">https://www.mdpi.com/2504-2289/6/4/103</a>. Citado na página 3.