Title

Text

David Bachmann | 2/26/19 | 1

Exercise 1: Setup & Linear Least Squares

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises
- 5. Setup instructions
- 6. git workflow example

Information

General

- Lecture material & problem sets available <u>here</u>
- Tutorial material available here

Goals

Goals of Today

- Understand principle of linear least squares
- Derive closed-form solution for linear least squares
- Know different cases of data dimensionality & number of data points
- Be able to set up git and python properly
- Roughly understand the git workflow

Theory / Recap

Linear Least Squares

- $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ where $x_i \in \mathbb{R}^d$
- Introduce $\overline{X} \in \mathbb{R}^{n \times d}$ where x_i are rows
- Introduce $\bar{y} \in \mathbb{R}^n$ where y_i are the scalar entries
- We want \overline{X} w $\approx \overline{y}$ how?
- Minimize the square error $\|\overline{X}w \overline{y}\|_2^2$ how?

Example 1: Derive closed-form solution of LSQ

- Find an optimal w^* which minimizes $\|\overline{X}w \overline{y}\|_2^2$
- Tipps:

•
$$||a||_2^2 = a^T a$$

$$(A + B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$

Example 2: Write down the matrices

- $D = \{([x_{11}, x_{12}], y_1), ([x_{21}, x_{22}], y_2), ([x_{31}, x_{32}], y_3)\}$
- Proposed function design: $w_0 + w_1x_1 + w_2x_2 = y$
- Write down \overline{X} , \overline{y} and w (don't compute anything!)

Example 3: Compute an example with LSQ

•
$$D = \{([1,1], 1), ([1,2], 3), ([2,4], 5)\}$$

- Compute w*
- Predict y for x = [5, 10]
- Tipps:

• If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

2 cases for LSQ

- d > n: Too many unknown parameters to fit
- $d \le n$: If X^TX is invertible the closed form solution exist
- Alternatives exist which always yield a closed form solution ("Ridge Regression")

Exercises

Q1

Practical example of using LSQ on 2D data

Q2

Use LSQ on 3D data

Q3

Advanced question – not mandatory: Give it a try anyways!

Setup instructions

Setup python

- Download and install python distribution from <u>here</u>
- Download and install an editor such as Pycharm from <u>here</u>

Setup git

Download and install git from <u>here</u>

git workflow

Example 4: Setting up git project

- 1. Configure your git
 - git config --global user.name "bacdavid"
 - git config --global user.email bacdavid@student.ethz.ch
- 2. Create a project on gitlab.ethz.ch and locally (with Pycharm for instance) with a file hello.py
- 3. Navigate to your local project folder (use cd and 1s)
 - cd bacdavid/PycharmProjects/hallo_world
- 4. Initialize git and push
 - git init
 - git remote add origin https://gitlab.ethz.ch/bacdavid/hello_world.git
 - git add .
 - git commit -m "Initial commit"
 - git push -u origin master

Example 5: Using git workflow

- 1. Create a new branch and switch to it
 - git branch "goodbye"
 - git checkout goodbye
 - git branch # shows the branch
- 2. Create a file goodbye.py next to hello.py
- 3. Commit and push
 - > git add .
 - git commit -m "added goodbye file"
 - git push origin goodbye # on gitlab you should have two branches now
- 4. Switch to master branch and merge
 - git checkout master
 - git merge goodbye
 - git push origin master

Questions?

David Bachmann | 2/26/19