Dicionário de Dados e Funções do Projeto Radar BEST+

Visão Geral

Este documento detalha os principais componentes do script radar_best.ipynb. O objetivo do script é analisar o mercado de ações brasileiro para identificar empresas que se alinham à filosofia de investimento "BEST" de Luiz Barsi, enriquecida com o cálculo do Preço-Teto.

I. Parâmetros Globais

Estes são os valores de configuração definidos no início do script. Eles controlam o comportamento da análise e podem ser ajustados pelo usuário.

Parâmetro	Tipo	Descrição	Exemplo de Valor
SETORES_BARSI	Lista de Strings	Define os setores de atuação que serão considerados na análise, de acordo com a estratégia BEST. Os nomes devem ser exatamente como os retornados pela API do yfinance.	['Financial Services', 'Utilities',]
SCORE_MINIMO_PARA_ EXIBIR	Inteiro	Filtro de resultado. Apenas as empresas que atingirem uma pontuação igual ou maior que este valor serão exibidas no ranking final.	3
PAUSA_ENTRE_REQUIS ICOES	Float (decimal)	O tempo em segundos que o script espera entre a análise de um ticker e outro. Essencial para evitar bloqueios por excesso de requisições às APIs.	0.5

II. Funções Principais

Estas são as três funções que formam o coração do nosso sistema de análise.

1. obter_todos_tickers_da_b3()

- **Descrição:** Responsável pela **descoberta de ativos**. Esta função busca uma lista completa e atualizada de todos os códigos (tickers) de ações negociadas na B3.
- Parâmetros (Entrada): Nenhum.
- Retorno (Saída): Uma lista de strings, onde cada string é um ticker formatado para a biblioteca yfinance (ex: ['PETR4.SA', 'VALE3.SA', ...]).
- Fonte de Dados: Bravo API (brapi.dev).

2. calcular_best_score(info_dict)

- **Descrição:** Calcula a pontuação base (de 0 a 4) de uma empresa. Esta função aplica 4 filtros quantitativos baseados em dados fundamentalistas atuais.
- Parâmetros (Entrada): info_dict (um dicionário com os dados da empresa, obtido da função .info do yfinance).
- Retorno (Saída): Um inteiro representando o score da empresa (de 0 a 4).
- Fonte de Dados: Yahoo Finanças (via yfinance).

3. calcular_preco_teto(ticker_obj)

- **Descrição:** Calcula o **Preço-Teto** de uma ação, a principal métrica de Barsi para definir o valor máximo de compra.
- Parâmetros (Entrada): ticker_obj (o objeto Ticker criado pela biblioteca yfinance, que permite acesso a dados históricos).
- **Retorno (Saída):** Um float (decimal) representando o Preço-Teto calculado. Retorna 0.0 se não houver um histórico de dividendos confiável (mínimo de 3 anos de pagamentos nos últimos 5 anos).
- Fonte de Dados: Yahoo Finanças (via yfinance, função .dividends).

III. Estrutura de Dados Final (DataFrame do Ranking)

Este dicionário descreve cada coluna do arquivo CSV e da tabela final que o projeto gera.

Coluna	Tipo de Dado	Descrição	Exemplo
Ticker	String	O código de negociação da ação na B3.	TAEE11.S
Empresa	String	O nome resumido da empresa.	TAESA UNT N2
Setor	String	O setor de atuação da empresa.	Utilitie s
BEST+ Score	String	A pontuação final (de 0 a 5), somando o score base e o ponto do Preço-Teto.	5/5
Preço Atual	Float	A cotação da ação no momento da análise.	35.80
Preço-Teto	Float	O preço máximo de compra calculado pela média de 5 anos de dividendos.	38.50
Abaixo do Teto?	String	Informa se o Preço Atual é menor que o Preço-Teto.	Sim
DY (%)	Float	O Dividend Yield dos últimos 12 meses.	10.50
P/L	Float	O índice Preço/Lucro da empresa.	8.20
Dívida/PL	Float	A relação entre a Dívida e o Patrimônio Líquido da empresa.	1.37

IV. Fluxo de Execução

O script principal orquestra as funções na seguinte ordem:

- 1. Iniciação: Define os parâmetros globais.
- 2. **Descoberta:** Chama obter_todos_tickers_da_b3() para obter a lista de todos os ativos.
- 3. Iteração e Análise: Inicia um loop por cada ticker da lista.
- 4. **Filtragem:** Dentro do loop, a primeira ação é verificar se o setor do ticker está na lista SETORES_BARSI. Se não estiver, o ativo é descartado.

- 5. **Pontuação:** Se o setor for válido, o script chama calcular_best_score() e calcular_preco_teto() para obter todos os dados e calcular o score final de 5 pontos.
- 6. **Armazenamento:** Se o score final for igual ou maior que o SCORE_MINIMO_PARA_EXIBIR, os dados completos da empresa são adicionados a uma lista de resultados.
- 7. **Finalização:** Após o loop, a lista de resultados é convertida em um DataFrame do Pandas, formatada e exibida na tela, além de ser salva em um arquivo CSV.