<u>Ada-NETS: Face Clustering via Adaptive Neighbour</u> <u>Discovery in the Structure Space</u>

概述

这篇论文提出了一种名为Ada-NETS的算法,用于解决基于图卷积网络(GCN)进行人脸聚类时噪声边的问题。论文的主要贡献如下:

- 1. **背景和问题**: 当前的GCN方法通常根据特征空间中的k近邻关系构建人脸图,容易引入大量噪声边,这些噪声边会连接不同类别的人脸,影响GCN的性能。
- 2. **结构空间转换**: Ada-NETS首先将每张人脸图像转换到一个新的结构空间中,在考虑邻居图像的特征后获得鲁棒的特征。这种转换使得相似性度量更准确,减少噪声边的引入。
- 3. **自适应邻居发现**:提出了一种自适应邻居发现策略,确定每张人脸图像应连接的适当边数,显著减少噪声边,同时保持有用的边,从而构建一个干净且丰富的图用于GCN聚类。
- 4. **实验结果**:在多个公共聚类数据集上的实验表明,Ada-NETS显著优于当前的最先进方法,证明了 其优越性和泛化能力。

5. 技术细节:

- o **结构空间**:通过考虑数据分布和纹理信息,将特征转换到结构空间,使用近邻关系增强特征。
- **自适应滤波器**:通过学习特征模式,自适应地发现每个顶点的邻居,构建一个干净且丰富的图。
- 。 GCN聚类: 利用构建的图进行GCN训练和聚类, 通过边分类和特征聚合提高聚类性能。
- 6. **性能评价**: 论文使用MS-Celeb-1M、DeepFashion和MSMT17三个数据集进行测试,结果表明 Ada-NETS在各种聚类任务中均表现出色,尤其在消除噪声边和提高聚类准确性方面效果显著。

论文详细描述了其方法的理论基础、技术实现以及实验结果,证明了Ada-NETS在大规模人脸聚类任务中的有效性。

自适应邻居发现策略

论文中的自适应邻居发现策略(Adaptive Neighbour Discovery)是Ada-NETS算法的关键部分,旨在解决传统k近邻方法中因连接数量固定而导致的噪声边问题。以下是详细解释:

自适应邻居发现的动机

在传统的k近邻方法中,每个节点的邻居数量是固定的,这会引入很多噪声边。这些噪声边是指连接不同类别的节点,会导致信息传递过程中引入错误信息,降低图卷积网络(GCN)的聚类性能。

自适应邻居发现的步骤

1. 结构空间:

- 首先,将特征转换到一个新的结构空间。在这个空间中,通过编码更多的纹理信息,使得特征更加鲁棒。
- \circ 使用变换函数 ϕ 将特征 v_i 转换到结构空间,得到 v_i^s :

$$v_i^s = \phi(v_i \mid V)$$

。 结构空间中的相似度度量通过结合余弦相似度和Jaccard相似度来计算:

$$\kappa(v_i,v_j) = (1-\eta) s_{ ext{Jac}}(v_i,v_j) + \eta s_{ ext{cos}}(v_i,v_j)$$

其中, η 是权重, Jac和 s_{cos} 分别是Jaccard相似度和余弦相似度。

2. 候选邻居质量准则:

。 为了评估候选邻居的质量,定义了一个启发式准则Q(j),基于 F_{β} 分数:

$$Q(j) = F_j^{eta} = rac{(1+eta^2) \mathrm{Pr}_j \mathrm{Rc}_j}{eta^2 \mathrm{Pr}_j + \mathrm{Rc}_j}$$

其中, \Pr_i 和 \Pr_i 分别是前 j 个候选邻居的精度和召回率, β 是权衡精度和召回率的权重。

3. 自适应滤波器:

。 使用自适应滤波器来估计每个节点的最佳邻居数量 $k_{\rm off}$ 。 自适应滤波器通过寻找 Q(j) 曲线的最大值位置来确定最佳邻居数量:

$$k_{ ext{off}} = rg\max_{j \in \{1,2,\ldots,k\}} Q(j)$$

o 自适应滤波器的输入是特征向量 $[v_i,v_{i1},v_{i2},\ldots,v_{ik}]^T\in\mathbb{R}^{(k+1)\times D}$ 。训练过程中,使用Huber损失进行训练,模型为Bi-LSTM:

$$L_{
m Huber} = rac{1}{B} \sum_{b=1}^b L_{bHuber}^b$$

其中, $L_{
m Huber}^b$ 是第b个批次的Huber损失, $\xi=rac{|k_{
m off}^b-\hat{k}_{
m off}^b|}{k_{
m off}^b}$ 。

4. 构建最终的图结构:

• 根据自适应滤波器的输出,构建最终的图结构:

$$N^s(v_i,k) = \{v_{ij} \mid v_{ij} \in N(v_i,k), \operatorname{Ind}_j \leq \hat{k}_{ ext{off}}\}$$

其中, Ind_{i} 是 v_{ij} 在结构空间中按相似度排序后的索引。

自适应邻居发现的主要贡献

1. 解决噪声边问题:

。 通过自适应地确定每个节点的邻居数量,显著减少噪声边,提高图结构的质量。

2. 增强特征表示:

o 在结构空间中,特征表示更加鲁棒,使得GCN在进行特征聚合时能够得到更好的特征。

3. 提升聚类性能:

自适应邻居发现策略显著提升了GCN的聚类性能,使得Ada-NETS在多个公共数据集上都达到 了最先进的性能。

GCN模型训练

输入图结构和特征:将构建的图结构 (邻接矩阵 A) 和节点特征矩阵 F 输入到GCN中。

GCN层操作:通过GCN层的操作,逐层更新节点特征:

$$F^{l+1} = \sigma(D^{-rac{1}{2}}AD^{-rac{1}{2}}F^lW^l)$$

其中,A 是邻接矩阵,D 是度矩阵, F^l 是第 l 层的输入特征矩阵, W^l 是权重矩阵, $\sigma(\cdot)$ 是激活函数。

损失函数:

• 正样本损失

$$L_{ ext{pos}} = rac{1}{\|l_i = l_j\|} \sum_{l_i = l_i} [eta_1 - y_{v_i, v_j}]_+$$

• 负样本损失:

$$L_{ ext{neg}} = \max_{l_i
eq l_j} [eta_2 + y_{v_i,v_j}]_+$$

• 整体损失:

$$L_{\mathrm{Hinge}} = L_{\mathrm{neg}} + \lambda L_{\mathrm{pos}}$$

聚类结果提取

• **推理阶段**:将整个测试数据集输入GCN,得到增强的节点特征矩阵 F'。根据特征相似度阈值 θ ,判断节点对之间是否存在连接,动态更新图结构。

• **并查集** (Union-Find): 使用并查集算法对连接的节点进行合并,形成最终的聚类结果。

实验和结果

• 数据集:在多个公共数据集上进行测试,如MS-Celeb-1M、DeepFashion和MSMT17。

• **性能评估**:通过BCubed F-score和Pairwise F-score评估聚类性能。实验结果表明,Ada-NETS在所有测试中均达到最先进性能,显著提升了聚类精度。

Table 1: Face clustering performance with different numbers of unlabeled images on MS-Celeb-1M.

#unlabeled	584K		1.74M		2.89M		4.05M		5.21M	
Method	$\overline{F_P}$	F_B	$\overline{F_P}$	$\overline{F_B}$	$\overline{F_P}$	$\overline{F_B}$	$\overline{F_P}$	F_B	$\overline{F_P}$	F_B
K-Means	79.21	81.23	73.04	75.20	69.83	72.34	67.90	70.57	66.47	69.42
HAC	70.63	70.46	54.40	69.53	11.08	68.62	1.40	67.69	0.37	66.96
DBSCAN	67.93	67.17	63.41	66.53	52.50	66.26	45.24	44.87	44.94	44.74
L-GCN	78.68	84.37	75.83	81.61	74.29	80.11	73.70	79.33	72.99	78.60
DS-GCN	85.66	85.82	82.41	83.01	80.32	81.10	78.98	79.84	77.87	78.86
VE-GCN	87.93	86.09	84.04	82.84	82.10	81.24	80.45	80.09	79.30	79.25
Clusformer	88.20	87.17	84.60	84.05	82.79	82.30	81.03	80.51	79.91	79.95
DA-Net	90.60	_	-	-	_	-	_	-	-	_
STAR-FC	91.97	90.21	88.28	86.26	86.17	84.13	84.70	82.63	83.46	81.47
Ada-NETS	92.79	91.40	89.33	87.98	87.50	86.03	85.40	84.48	83.99	83.28