

Общероссийский математический портал

С. С. Афанасьева, Символ Гильберта в многомерных локальных полях для формальной группы Любина—Тейта. 2, 3an. научн. cem. ΠOMU , 2013, том 413, 26–44

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 212.232.76.46

8 ноября 2015 г., 14:13:08

С. С. Афанасьева

СИМВОЛ ГИЛЬБЕРТА В МНОГОМЕРНЫХ ЛОКАЛЬНЫХ ПОЛЯХ ДЛЯ ФОРМАЛЬНОЙ ГРУППЫ ЛЮБИНА-ТЕЙТА. 2

§1. Введение

Данная работа является продолжением работы [1], в которой были получены явные формулы для спаривания с формальным модулем Любина-Тейта для многомерного локального поля в случае, когда предпоследнее поле вычетов имеет нулевую характеристику. В данной работе рассматривается случай, когда предпоследнее поле вычетов имеет конечную характеристику p > 2. Полученная в этом случае явная формула имеет более простой вид. Как и в работе [1], предполагается, что основное поле имеет нулевую характеристику.

§2. Обозначения

Пусть K-n-мерное локальное поле нулевой характеристики, т. е. последовательность полных дискретно нормированных полей $K = K_n$, K_{n-1}, \dots, K_0 , где каждое последующее поле является полем вычетов предыдущего, причем K_0 конечно. Мы будем рассматривать случай, когда K_1 – поле конечной характеристики p>2. Будем использовать следующие обозначения:

- $q = p^f$ порядок последнего поля вычетов K_0 , т.е. $K_0 = \mathbb{F}_q$,
- $t=t_1,t_2,\ldots,t_n$ локальные параметры поля K,• $\overline{v}_K=(v_1^K,\ldots,v_n^K):K^*\longrightarrow \mathbb{Z}^n$ n-мерное нормирование поля K, соответствующее локальным параметрам t, t_2, \ldots, t_n ,
- \mathcal{O}_K кольцо целых поля K относительно n-мерного нормирования \overline{v}_K ,
- $F \in \mathcal{O}_K[[X,Y]]$ формальная группа Любина—Тейта над кольцом \mathcal{O}_K (см. ниже), с логарифмом $\lambda(X)$,
- вместо F(x,y) будем писать $x +_F y$,

Ключевые слова: формальные группы Любина-Тейта, символ норменного вычета Гильберта, многомерные локальные поля.

Автор благодарит Санкт-Петербургский государственный университет за поддержку исследований.

- L конечное расширение поля K, содержащее группу $W_F^N:=\mathrm{Ker}[t^N]$ корней изогении $[t^N],$
- $e = (e_1, \ldots, e_n)$ индекс ветвления расширения L/K,
- $L_0 = \mathbb{F}_{q'}$ последнее поле вычетов поля L,
- $\mathcal{O} := W(K_0), \ \mathcal{O}' := W(L_0)$ кольца векторов Витта полей K_0 и L_0 соответственно,
- \mathfrak{R} система представителей Тейхмюллера поля L_0 в \mathcal{O}' ,
- $k := \operatorname{Quot} \mathcal{O}, l := \operatorname{Quot} \mathcal{O}' \operatorname{поля}$ частных \mathcal{O} и \mathcal{O}' . Будем считать, что заданы вложения $k \hookrightarrow K, l \hookrightarrow L,$
- Frob автоморфизм Фробениуса $L \cap \widetilde{K}/K$, где \widetilde{K} максимальное чисто неразветвленное расширение поля K,
- Tr оператор следа в $L \cap \widetilde{K}/K$,
- $T = T_1, \ldots, T_n$ локальные параметры поля L,
- \mathcal{O}_L кольцо целых поля L относительно n-мерного нормирования \overline{v}_L ,
- \mathfrak{M}_L максимальный идеал кольца \mathcal{O}_L , $F(\mathfrak{M}_L)$ соответствующий формальный \mathcal{O}_K -модуль,
- $\Psi_L: K_n^{\text{top}}(L) \longrightarrow \operatorname{Gal}(L^{ab}/L)$ отображение взаимности à la Паршин–Като из топологической группы Милнора поля L в группу Галуа максимального абелева расширения поля L.
- **2.1.** Модуль кривых Картье мультипликативной группы многомерного локального поля. Рассмотрим n-мерное локальное поле $M(L) = l\{\{X_1\}\}\dots\{\{X_{n-1}\}\}((X_n))$. Введем следующие обозначения:

$$W(L_0)[[X]] = \left\{ \sum_{\substack{(i_1, \dots, i_n) \in \Omega, \\ (i_1, \dots, i_n) \geqslant (0, \dots, 0)}} a_{(i_1, \dots, i_n)} X_1^{i_1} \cdots X_n^{i_n} : a_{(i_1, \dots, i_n)} \in \mathcal{O}' \right\},\,$$

где $\Omega \subset \mathbb{Z}^n$ — допустимый набор (см. ниже),

$$XW(L_0)[[X]] = \Big\{ \sum_{\substack{(i_1,\dots,i_n) \in \Omega, \\ (i_1,\dots,i_n) > (0,\dots,0)}} a_{(i_1,\dots,i_n)} X_1^{i_1} \cdots X_n^{i_n} : a_{(i_1,\dots,i_n)} \in \mathcal{O}' \Big\},$$

- $\mathcal{O}'_{(p)} = W(L_0)\{\{X_1\}\}\dots\{\{X_{n-1}\}\}((X_n)),$
- $U_m = 1 + XW(L_0)[[X]],$
- $\mathcal{H}_m = \langle X_1 \rangle \times \ldots \times \langle X_n \rangle \times \mathfrak{R}^* \times U_m \subset \mathcal{O}'^*_{(p)}$ модуль кривых Картье мультипликативной группы L,

- $\eta_m: \mathcal{O}'_{(p)} \to L$ сюръективный (неканонический) гомоморфизм, определенный следующим образом $\alpha(X) \to \alpha(T_1,\dots,T_n)$,
- ∂_i будет обозначать $\frac{\partial}{\partial X_i}$.
- §3. Вспомогательные и известные результаты.
- 3.1. Формальные группы Любина—Тейта над кольцом целых многомерного локального поля. Множество \mathbb{Z}^n предполагается лексикографически упорядоченным. Напомним, что $\Omega \subset \mathbb{Z}^n$ называется допустимым набором, если для любого $1 \leqslant l \leqslant n$ при каждом наборе целых j_{l+1},\ldots,j_n существует целое $i=i(j_{l+1},\ldots,j_n)$ такое,

$$(i_1,\ldots,i_n)\in\Omega,\,i_{l+1}=j_{l+1},\ldots,i_n=j_n\Longrightarrow i_l\geqslant i.$$

Обозначим

$$\mathfrak{M}_1 := \{ \alpha \in \mathcal{O}_K : (v_2^K(\alpha), \dots, v_n^K(\alpha)) \geqslant (1, 0 \dots, 0) \} = t_2 \mathcal{O}_K.$$

Пусть $F(X,Y)\in\mathcal{O}_K[[X,Y]]$ — формальная группа Любина—Тейта над кольцом \mathcal{O}_K и $\lambda(X)$ — ее логарифм (см. [5]). Нетрудно убедиться в том, что, как и в одномерном случае, $\operatorname{End}(F)\cong\mathcal{O}_K$. Эндоморфизм группы F, соответствующий элементу $a\in\mathcal{O}_K$, будем обозначать [a](X), как и в одномерном случае $[a](X)=\lambda^{-1}(a\lambda(X))$. В работе [5] было показано, что все формальные группы Любина—Тейта с точностью до изоморфизма определяются простым элементом $t \mod \mathfrak{M}_1$, для которого $\lambda(X)-t^{-1}\lambda(X^q)\in\mathcal{O}_K[[X]]$, причем для изогении [t] выполняются сравнения

$$[t](X) \equiv tX \mod \deg 2,$$

 $[t](X) \equiv X^q \mod t.$

В классе изоморфных групп Любина—Тейта содержится формальная группа F_a с логарифмом Артина—Хассе:

$$\lambda_a(X) = X + \frac{X^q}{t} + \frac{X^{q^2}}{t^2} + \dots$$

Лемма 1. Пусть F — формальная группа Любина—Тейта над \mathcal{O}_K с логарифмом λ . Тогда λ можно представить в виде:

$$\lambda(X) = \sum_{k=0}^{\infty} \frac{X^{q^k}}{t^k} b_k(X),$$

 $r \partial e \ b_k(X) \in \mathcal{O}_K[[X]].$

Доказательство. Поскольку группы F и F_a изоморфны над \mathcal{O}_K , существует ряд $g(X) \in X\mathcal{O}_K[[X]]$ такой, что

$$\lambda(X) = \lambda_a(g(X)) = \sum_{k=0}^{\infty} \frac{g(X)^{q^k}}{t^k} = \sum_{k=0}^{\infty} \frac{X^{q^k}}{t^k} b_k(X),$$
 где $b_k(X) = \left(\frac{g(X)}{X}\right)^{q^k}$.

3.2. Многомерный символ Гильберта. Для формальной группы F над \mathcal{O}_K символ Гильберта определяется следующим образом:

$$\begin{split} (\cdot,\cdot) &= (\cdot,\cdot)_F = (\cdot,\cdot)_{F,L}^N : K_n^{\mathrm{top}}(L) \times F(\mathfrak{M}_L) \to W_F^N, \\ (\alpha,\beta)_{F,L}^N &= \Psi_L(\alpha)(\tilde{\beta}) -_F \tilde{\beta}, \end{split}$$

где $\tilde{\beta}$ берется из пополнения алгебраического замыкания L и является корнем уравнения $[t^N]_F(\tilde{\beta})=\beta$. Нетрудно видеть, что символ Гильберта обладает следующими свойствами.

Н.1. Аддитивность по первому аргументу и \mathcal{O}_K -линейность по второму, т.е.

$$(\alpha_1 + \alpha_2, \beta) = (\alpha_1, \beta) +_F (\alpha_2, \beta),$$

$$(\alpha, [a](\beta)) = [a](\alpha, \beta),$$

$$(\alpha, \beta_1 +_F \beta_2) = (\alpha, \beta_1) +_F (\alpha, \beta_2),$$

для всех $\alpha, \alpha_1, \alpha_2 \in K_n^{\text{top}}(L), \beta, \beta_1, \beta_2 \in F(\mathfrak{M}_L)$ и $a \in \mathcal{O}_K$.

H.2.
$$(\alpha, \beta) = 0 \Leftrightarrow \alpha$$
 — норма в $K_n^{\text{top}}(L(\widetilde{\beta}))/K_n^{\text{top}}(L)$.

H.3. Если формальная группа G изоморфна F и

$$G = f(F(f^{-1}(X), f^{-1}(Y))$$

для $f \in \mathcal{O}_K[[X]]_0$, то

$$(\alpha, \beta)_G = f((\alpha, f^{-1}(\beta))_F).$$

3.3. Функции Артина–Хассе. Пусть $\mathcal{A} = \widetilde{K} \cap \mathcal{O}_L$. Рассмотрим следующий аддитивный \mathcal{O}_K -модуль:

$$\mathfrak{M}_X := \{ \alpha = \sum_{(i_1, \dots, i_n) > 0} a_{(i_1, \dots, i_n)} X_1^{i_1} \cdots X_n^{i_n} : a_{(i_1, \dots, i_n)} \in \mathcal{A} \},$$

где (i_1,\ldots,i_n) пробегают допустимый набор Ω_{α} . $F(\mathfrak{M}_X)$ — соответствующий формальный \mathcal{O}_K -модуль. Имеется (неканонический) сю-

ръективный гомоморфизм \mathcal{O}_K -модулей:

$$F(\mathfrak{M}_X) \xrightarrow{\eta_F} F(\mathfrak{M}_L),$$

$$\alpha(X_1, \dots, X_n) \mapsto \alpha(T_1, \dots, T_n).$$

На $F(\mathfrak{M}_X)$ определим оператор Δ и функции Артина–Хассе:

$$\begin{split} &\Delta(a) = \operatorname{Frob} a, \ \text{для} \ a \in \mathcal{A}, \\ &\Delta(X_i) = X_i^q, \ 1 \leqslant i \leqslant n, \\ &E_F: \mathfrak{M}_X \longrightarrow F(\mathfrak{M}_X), \\ &E_F(\varphi) = \lambda^{-1} (1 + \frac{\Delta}{t} + \frac{\Delta^2}{t^2} + \cdots)(\varphi) = \lambda^{-1} \left(\sum_{r=0}^{\infty} \frac{\varphi^{\Delta^r}}{t^r} \right), \\ &l_F: F(\mathfrak{M}_X) \longrightarrow \mathfrak{M}_X, \\ &l_F(\psi) = \left(1 - \frac{\Delta}{t} \right) \lambda(\psi). \end{split}$$

Как и в одномерном случае, легко видеть, что функции E_F и l_F корректно определены и задают взаимно обратные изоморфизмы между соответствующими модулями. Для рядов $\varphi, \psi \in \mathfrak{M}_X$ будем писать $\varphi \equiv \psi \mod \deg (i_1, \dots, i_n)$, если $\varphi - \psi \in X_1^{i_1} \cdots X_n^{i_n} \mathfrak{M}_X$. Обозначим

$$\mathcal{E}(X) = \lambda^{-1} \circ \lambda_a(X). \tag{1}$$

Легко проверить следующее утверждение.

Лемма 2. (1) Если $\theta \in \mathfrak{R}, (i_1, i_2, \dots, i_n) > (0, \dots, 0), mo$ $E_F(\theta X_1^{i_1} \dots X_n^{i_n}) = \mathcal{E}(\theta X_1^{i_1} \dots X_n^{i_n}).$

(2) Ecau $\varphi, \psi \in \mathfrak{M}_X$, mo

$$E_F(\varphi + \psi) = E_F(\varphi) +_F E_F(\psi),$$

$$l_F(\varphi +_F \psi) = l_F(\varphi) + l_F(\psi).$$

(3) Ecsu $a \in \mathcal{O}_K, \varphi \in \mathfrak{M}_X, mo$

$$E_F(a\varphi) = [a]E_F(\varphi),$$

$$l_F([a](\varphi)) = al_F(\varphi).$$

(4) $Ec_{\mathcal{A}}u \varphi \equiv aX^{i_1} \cdots X_n^{i_n} \mod \deg(i_1, i_2, \dots, i_n), mo$ $E_F(\varphi) \equiv aX_1^{i_1} \cdots X_n^{i_n} \mod \deg(i_1, i_2, \dots, i_n).$

3.4. Дополнительные обозначения. Вместо X_1 для краткости часто будем писать просто X. Пусть

$$[t](X) = \sum_{i=1}^{\infty} t a_i X^i + X^q, \ a_1 = 1, \ a_i \in \mathcal{O}_K.$$

Обозначим

$$\begin{split} R(X) := \frac{[t](X)}{X} &= t + a_2 t X + \sum_{i \geqslant 3} a_i t X^{i-1} + X^{q-1}, \\ Q(X) &= \frac{[t^N](X)}{[t^{N-1}](X)} = R([t^{N-1}](X)). \end{split}$$

Легко проверить, что

$$Q(X) \equiv X^{q^{N-1}(q-1)} \mod t,$$
 (2)

$$Q(X) \equiv t \mod \deg 1.$$

3.4.1. Ряд s. Пусть ξ — первообразный корень изогении $[t^N]$, т.е. $\xi \in W_F^N \setminus W_F^{N-1}$. Поскольку ξ является корнем ряда Эйзенштейна Q(X), нетрудно убедиться, что $\overline{v}_L(\xi) = (\frac{e_1}{q^{N-1}(q-1)},0,\ldots,0)$. Пусть

$$z(X_1,\ldots,X_n)=\theta X_1^{\frac{e_1}{q^{N-1}(q-1)}}+\ldots,\,\theta\in\mathfrak{R},$$

такой ряд из \mathfrak{M}_X , для которого $z(T_1,\ldots,T_n)=\xi$. И пусть $z_1(X_1)=z(X_1,\ldots,X_n)|_{X_n=X_{n-1}=\ldots=X_2=0}$.

Замечание 1. Ряд $z(X_1,\dots,X_n)|_{X_n=X_{n-1}=\dots=X_2=0}$ будем определять следующим образом: пусть ряд z имеет вид

$$z = \sum_{(i_1, \dots, i_n) \in \Omega} a_{(i_1, \dots, i_n)} X_1^{i_1} \cdots X_n^{i_n},$$

где Ω — допустимый набор. Так как $\xi \in \mathfrak{M}_L$, то $(i_1,\ldots,i_n)>0$ для всех $(i_1,\ldots,i_n)\in \Omega$, поэтому корректна подстановка $X_n=0$, после чего можно подставлять $X_{n-1}=0$ и т.д.

Рассмотрим ряды:

$$s_m := [t^m](z_1), \quad s := s_N.$$

Нетрудно проверить (см. [3, сравнение (20)]), что

$$s \equiv s_{N-1}^{\Delta} \mod t^N, \frac{1}{s} \equiv \frac{1}{s_{N-1}^{\Delta}} \mod t^N.$$
 (3)

3.4.2. **Ряд** u. Точно так же, как и в предложении 1.3.14 работы [8], можно проверить аналог теоремы о делении с остатком в кольце \mathcal{A} .

Предложение 1. Пусть $f = \sum d_i X^i \in \mathcal{A}[[X]]$, причем d_m обратим в \mathcal{A} , d_i – необратим в \mathcal{A} для $0 \leqslant i \leqslant m-1$. Тогда любой ряд $g \in \mathcal{A}[[X]]$ представим в виде $g = fh +_F r$, где $r = \sum_{i=0}^{m-1} r_i X^i$, $r_i \in \mathcal{A}$, $h(X) \in \mathcal{A}[[X]]$.

Рассмотрим ряд:

$$u = Eis_F(X) := \frac{s}{s_{N-1}} = \frac{[t](s_{N-1})}{s_{N-1}} = R(s_{N-1}) \in \mathcal{A}[[X]].$$

Замечание 2. Из определения видно, что ряд u имеет вид $u=t+a_2ts_{N-1}+\sum_{i\geqslant 3}a_its_{N-1}^{i-1}+s_{N-1}^{q-1}.$

Легко видеть, что ряд u удовлетворяет условиям предложения 1 для $m=e_1.$

Предложение 2. Пусть $\gamma\in\mathfrak{M}_X$, причем $\gamma(T_1,\ldots,T_n)=0$. Тогда $\gamma|_{X_n=X_{n-1}=\ldots=X_2=0}$ можно представить в виде

$$\gamma|_{X_n = X_{n-1} = \dots = X_2 = 0} = u(X) \cdot h(X) +_F r(X), \tag{4}$$

где
$$r = \sum_{i=0}^{e_1-1} r_i X^i, r_i \in t_2 A, h(X) \in A[[X]].$$

Доказательство. Представление (4) получается из предложения 1. Покажем, что коэффициенты ряда r кратны t_2 .

$$0 = \gamma(T_1, \dots, T_n)$$

$$= \gamma|_{X_n = X_{n-1} = \dots = X_2 = 0}(T_1) + (\gamma - \gamma|_{X_n = X_{n-1} = \dots X_2 = 0})(T_1, \dots, T_n) \quad (5)$$

$$= u(T_1) \cdot h(T_1) + r(T_1) + (\gamma - \gamma|_{X_n = X_{n-1} = \dots = X_2 = 0})(T_1, \dots, T_n),$$

Очевидно, что у ряда $(\gamma-\gamma|_{X_n=X_{n-1}=\dots X_2=0})$, все слагаемые имеют вид $aX_2^{i_2}\cdots X_n^{i_n}$, поэтому $(\gamma-\gamma|_{X_n=X_{n-1}=\dots X_2=0})$ (T_1,\dots,T_n) делится на T_2 . Точно так же

$$0 = Q(z)(T_1, \dots, T_n)$$

$$=Q(z)|_{X_n=X_{n-1}=...X_2=0}(T_1)+\left(Q(z)-Q(z)|_{X_n=X_{n-1}=...X_2=0}\right)(T_1,\ldots,T_n),$$

откуда $u(T_1) = Q(z)|_{X_n = X_{n-1} = \dots X_2 = 0}(T_1)$ делится на T_2 . Поэтому, из (5) следует, что $r(T_1)$ делится на T_2 , поэтому, поскольку нормирование элемента T_1 в поле L_2 нулевое и $\deg r < e_1$, все коэффициенты ряда r(X) должны делиться на t_2 .

Пусть
$$\mathcal{B} = \left\{ \alpha \in \mathfrak{M}_X : \alpha \big|_{X_n = \dots = X_2 = 0} = 0 \right\}$$
. Обозначим
$$U_F := \{ u(X) \cdot h(X) +_F t_2 \cdot r(X) +_F B : r(X), h(X) \in \mathcal{A}[[X]], B \in \mathcal{B} \}.$$

3.4.3. Технические леммы. Для дальнейших рассуждений понадобится еще несколько простых результатов.

Лемма 3. Пусть $\varphi \in l\{\{t_1\}\}\dots\{\{t_n\}\}, \alpha \in \mathcal{H}_m, 1 \leqslant k \leqslant n, morda$

$$\partial_k(\alpha^{\Delta^i}) = q^i X_k^{-1} \Delta^i(X_k \partial_k \alpha), \tag{6}$$

$$\operatorname{res}(\partial_k \varphi) \frac{1}{s} \equiv 0 \mod t^N. \tag{7}$$

Доказательство. Равенство (6) очевидно. Докажем сравнение (7). Поскольку любая степень t делит q, из (6) получаем

$$\operatorname{res}(\partial_k \varphi) \frac{1}{s} \equiv \operatorname{res}(\partial_k \varphi) \frac{1}{s_{N-1}^{\Delta}} = -\operatorname{res} \varphi \partial_k \left(\frac{1}{s_{N-1}^{\Delta}} \right)$$
$$= -q \operatorname{res} \varphi X_k^{-1} (X_k \partial_k \frac{1}{s_{N-1}})^{\Delta} \equiv 0 \mod t^N.$$

Из равенства (6) следует, что для всех $\alpha \in \mathcal{H}_m$ выполнено $q|\partial_k(\alpha^{\Delta})$. В работе [6] былда доказана следующая лемма.

Лемма 4. Пусть $f_{k,l}(X_1,\ldots,X_n), 1\leqslant k,l\leqslant n$ — ряды из M(L), для которых выполняются соотношения

$$\partial_m f_{k,l} = \partial_l f_{k,m}$$
.

Пусть \triangle_i , $1 \leqslant i \leqslant n$, — определитель матрицы, полученной из матрицы $(f_{k,l})$ вычеркиванием i-го столбца и первой строки. Тогда для любого $\varphi \in M(L)$ выполнено:

$$\sum_{i=1}^{n} (-1)^{i+1} \triangle_i \partial_i \varphi = \sum_{i=1}^{n} (-1)^{i+1} \partial_i (\varphi \triangle_i).$$

§4. Арифметика формального модуля. Базис Шафаревича

В этом параграфе будет построен базис Шафаревича формального модуля $F(\mathfrak{M}_L)$. Легко видеть, что

$$\mathfrak{M}_L = T_1 \mathfrak{R}[[T_1]] +_F \mathfrak{M}_1^L,$$

где $\mathfrak{M}_1^L = \{ \alpha \in \mathfrak{M}_L : (v_2^L(\alpha), \dots, v_n^L(\alpha)) \geqslant (1, 0, \dots, 0) \}$. Точно так же, как и в [1], можно доказать следующую лемму.

Лемма 5. В формальном модуле $F(\mathfrak{M}_L)$ и деал \mathfrak{M}_1^L является [t]-делимым, т.е. для всякого α из идеала \mathfrak{M}_1^L найдется $\beta \in \mathfrak{M}_1^L$ такой, что $[t](\beta) = \alpha$.

Следствие 1. Для любых $\alpha \in K_n^{\text{top}}(L)$ и $\beta \in \mathfrak{M}_1^L$ имеет место:

$$(\alpha, \beta) = 0.$$

Доказательство. По лемме 5 найдется такой элемент $\gamma \in \mathfrak{M}_1^L$, что $[t^N](\gamma) = \beta$, поэтому

$$(\alpha, \beta) = (\alpha, [t^N](\gamma)) = [t^N](\alpha, \gamma) = 0.$$

Пусть $I=\{i:1\leqslant i<\frac{qe_1}{q-1},\, q\nmid i\}.$ Так же, как и в лемме 9 работы [3], можно проверить аналог теоремы Хензеля:

Лемма 6. Пусть для каждого $i \in I \cup \{\frac{qe_1}{q-1}\}$ и для каждого $\theta \in \mathfrak{R}$ выбран элемент $\varepsilon_i(\theta) \in F(\mathfrak{M}_L)$, удовлетворяющий условию: $\varepsilon_i(\theta) \equiv \theta T^i \mod T^i\mathfrak{M}_L$. Тогда любой элемент $\beta \in F(\mathfrak{M}_L)$ можно представить в виде

$$\beta = \sum_{F} [t^r](\varepsilon_i(\theta_{i,r})) +_F [t^N](\gamma).$$

4.1. Примарные элементы. Напомним, что элемент ω из группы $F(\mathfrak{M}_L)$ называется t^N -примарным, если расширение поля L, полученное делением точки ω на изогению $[t^N]$, неразветвлено (чисто неразветвлено). Пусть \mathcal{O}'^{nr} — кольцо целых пополнения максимального неразветвленного расширения поля l. Поскольку для любого элемента $a \in \mathcal{O}'$ существует элемент $A \in \mathcal{O}'^{nr}$, для которого $A^\Delta - A = a$ (см. [3]), то аналогичное утверждение справедливо и для элементов кольца $\mathcal{O}'[[t]]$. Так же, как и в работе [3], можно показать, что элемент

 $\omega_1(a)=E_F(as)|_{X_1=T_1,...,X_n=T_n},$ где $a\in\mathcal{O}'[[t]]$ является t^N -примарным. Очевидно, что элемент

$$\omega(a) = E_F(as)|_{X_1 = T, X_2 = 0, \dots, X_n = 0}$$

отличается от элемента $\omega_1(a)$ на элемент, делящийся в группе $F(\mathfrak{M}_L)$ на изогению $[t^N]$, поэтому $\omega(a)$ тоже является t^N -примарным.

4.2. Базис Шафаревича. Пусть G_{ρ} , $0\leqslant\rho\leqslant f-1$ — формальные группы Любина—Тейта, построенные по изогениям $[t]_{0}=tX+X^{q}$, $[t]_{\rho}=tX+tX^{p^{\rho}}+X^{q}$, $\rho\geqslant 1$, соответственно. Пусть \mathcal{E}_{ρ} , $0\leqslant\rho\leqslant f-1$, — степенные ряды, задающие изоморфизмы групп G_{ρ} в группу F, соответственно (т.е. $\mathcal{E}_{\rho}=\lambda^{-1}\circ\lambda_{\rho}$, где λ_{ρ} — логарифм формальной группы G_{ρ}).

Предложение 3. Набор элементов

$$\{\mathcal{E}_{\rho}(\theta T^{i}), \omega(a)\},$$

$$\theta \in \mathfrak{R}, \ 0 \leqslant \rho \leqslant f - 1, \ 1 \leqslant i < \frac{qe_{1}}{q - 1}, \ (i, p) = 1, \ a \in \mathcal{O}'[[t]]$$

$$(8)$$

составляет систему образующих \mathcal{O}_K -модуля $F(\mathfrak{M}_L)/[t^N](F(\mathfrak{M}_L));$ при этом

$$((T_1, \dots, T_n), \mathcal{E}_{\rho}(\theta T^i))_F = 0, ((T_1, \dots, T_n), \omega(a))_F = [\operatorname{Tr} a]_F(\xi).$$
 (9)

Доказательство. Первое утверждение следует из леммы 6. Поскольку значение отображения взаимности $\Psi_L(T_1,\ldots,T_n)$ на неразветвленном расширении совпадает с автоморфизмом Фробениуса, то второе равенство в (9) можно показать точно так же, как в предложении 2.1 работы [9]. Остальные равенства из (9) достаточно показать для группы G_0 , т.к. она изоморфна группе F. Изогения $[t^N]_{G_\rho}$ — унитарный многочлен степени q^N , поэтому символ $(\alpha,\ldots) \in K_n^{\text{top}}L$ является нормой от $(\widetilde{\alpha},\ldots) \in K_n^{\text{top}}L(\widetilde{\alpha})$, где $[t^N]_{\rho}(\widetilde{\alpha}) = \alpha$. Отсюда с учетом свойства Н.2 $\{(\alpha,\ldots),\alpha\}_{G_\rho} = 0$ для любого $\alpha \in F(\mathfrak{M})$, а тогда $\{(\alpha,\ldots),\mathcal{E}_{\rho}(\alpha)\}_{G_0} = 0$, и мы получили оставшиеся равенства из (9). \square

§5. Спаривание на рядах

5.1. Спаривание [·,·]. Определим спаривание

$$[\cdot,\cdot]:\mathcal{H}_m^n\times F(\mathfrak{M}_X)\longrightarrow \mathcal{A}$$

следующим ообразом: для $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathcal{H}_m\times\ldots\times\mathcal{H}_m$ и $\beta\in F(\mathfrak{M}_X)$ положим

$$[\alpha, \beta] = \operatorname{res} \Phi_{(\alpha, \beta)} \cdot V,$$

где

$$V = \frac{1}{s} + \frac{a_2}{t-1},$$

$$\Phi = l_F(\beta_1)D,$$

$$\beta_1 = \beta|_{X_n = X_{n-1} = \dots = X_2 = 0},$$

$$D = \det(\alpha_i^{-1}\partial_j\alpha_i)_{1 \leqslant i,j \leqslant n},$$

$$\operatorname{res} = \operatorname{res}_{X_1 \dots X_n}.$$

Замечание 3. Очевидно, что коэффициенты ряда Φ лежат в \mathcal{A} .

Пусть $\alpha, \alpha_i, \alpha_i' \in \mathcal{H}_m, \beta, \beta' \in F(\mathfrak{M}_X)$. Для $\alpha \in \mathcal{H}_m$ обозначим $l_m(\alpha) = \frac{1}{q} \log \frac{\alpha^q}{\alpha^\Delta}$.

Предложение 4. Спаривание $[\cdot,\cdot]$ обладает следующими свойства-

1) $A \partial \partial umu$ вность

$$[(\alpha_1, \dots, \alpha_i \alpha_i', \dots, \alpha_n), \beta]$$

$$= [(\alpha_1, \dots, \alpha_i, \dots, \alpha_n), \beta] + [(\alpha_1, \dots, \alpha_i', \dots, \alpha_n), \beta],$$

$$[\alpha, \beta +_F \beta'] = [\alpha, \beta] + [\alpha, \beta'],$$

$$[\alpha, [a](\beta)] = a[\alpha, \beta], a \in \mathcal{O}_K.$$

2) Гиперболичность

$$[(\ldots, \alpha, \ldots, -\alpha, \ldots), \beta] = 0.$$

3) Соотношение Стейнберга

$$[(\ldots, \alpha, \ldots, 1 - \alpha, \ldots), \beta] = 0,$$

ecли $1-\alpha \in \mathcal{H}_m$.

4) Кососимметричность

$$[(\ldots,\alpha_i,\ldots,\alpha_k,\ldots),\beta] = -[(\ldots,\alpha_k,\ldots,\alpha_i,\ldots),\beta]$$

5) Символьное свойство. Пусть $\mathcal{E}(X)=\lambda^{-1}\circ\lambda_a(X), \mathcal{E}_\rho=\lambda^{-1}\circ\lambda_\rho,\,0\leqslant\rho\leqslant f-1$ (см. (1)), тог да

$$[(\ldots, \alpha_{i-1}, \alpha, \alpha_{i+1}, \ldots, \alpha_n), \mathcal{E}(\alpha)] = 0,$$

$$[(\ldots, \alpha_{i-1}, \alpha, \alpha_{i+1}, \ldots, \alpha_n), \mathcal{E}_{\rho}(\alpha)] = 0.$$

Доказательство. Пункты 1, 2, 3 и 4 следуют непосредственно из определения. Докажем символьное свойство. Проверим только первое сравнение, второе проверяется точно так же. Легко видеть, что

$$l_F(\mathcal{E}(\alpha)) = \left(1 - \frac{\Delta}{t}\right) \lambda_a(\alpha) = \lambda_a(\alpha) - \frac{\lambda_a(\alpha^{\Delta})}{t}$$
$$= \sum_{i=0}^{\infty} \frac{\alpha^{q^i}}{t^i} - \sum_{i=0}^{\infty} \frac{\alpha^{q^i \Delta}}{t^{i+1}} = \alpha + \sum_{i=0}^{\infty} \frac{1}{t^{i+1}} (\alpha^{q^{i+1}} - \alpha^{q^i \Delta}).$$

Поэтому для $1 \leqslant k \leqslant n$:

$$l_F(\mathcal{E}(\alpha))\alpha^{-1}\partial_k\alpha = \partial_k\alpha + \partial_k\sum_{i=0}^{\infty} \frac{1}{t^{i+1}}g_i,$$
(10)

где $g_i=rac{lpha^{q^{i+1}}-lpha^{q^i\Delta}}{q^{i+1}}-l_m(lpha)lpha^{q^i\Delta}.$ Далее,

$$\Phi = l_F(\mathcal{E}(\alpha)) \cdot D = \begin{vmatrix} \varphi_1 & \cdots & \varphi_n \\ \alpha_2^{-1} \partial_1 \alpha_2 & \cdots & \alpha_2^{-1} \partial_n \alpha_2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n^{-1} \partial_1 \alpha_n & \cdots & \alpha_n^{-1} \partial_n \alpha_n \end{vmatrix} = \sum_{k=1}^n (-1)^{k+1} \varphi_k \triangle_k, \quad (11)$$

где $\varphi_k = l_F(\mathcal{E}(\alpha))\alpha^{-1}\partial_k\alpha = \partial_k\alpha + \partial_k\sum_{i=0}^{\infty}\frac{1}{t^{i+1}}g_i = \partial_k\left(\alpha + \sum_{i=0}^{\infty}\frac{1}{t^{i+1}}g_i\right)$ (см. (10)), а \triangle_k – соответствующие миноры. Тогда из леммы 4 следует, что

$$\Phi = \sum_{k=1}^{n} (-1)^k + 1\partial_k ((\alpha + \sum_{i=1}^{n} \frac{g_i}{t^{i+1}}) \triangle_k),$$

откуда, учитывая сравнение 7, получаем:

$$\operatorname{res} \Phi \cdot \frac{1}{s} \equiv 0 \mod t^N.$$

Для \mathcal{H}_m обычным путем (с помощью образующих и соотношений) определим K-группу Милнора $K_n(\mathcal{H}_m)$. Свойства 1) и 3) предложения 4 означают, что спаривание $[\cdot,\cdot]$ индуцирует спаривание

$$[\cdot,\cdot]:K_n(\mathcal{H}_m)\times F(\mathfrak{M}_X)\longrightarrow \mathcal{A}.$$

5.2. Спаривание $\langle \cdot, \cdot \rangle$. С помощью спаривания $[\cdot, \cdot]$, построенного в п. 5.1, определим спаривание

$$\langle \cdot, \cdot \rangle : \mathcal{H}_m^n \times F(\mathfrak{M}_X) \longrightarrow W_F^N$$

по формуле

$$\langle \alpha, \beta \rangle = [\text{Tr}[\alpha, \beta]](\xi).$$
 (12)

5.2.1. Независимость спаривания $\langle \cdot, \cdot \rangle$ по второму аргументу.

Предложение 5. $\Pi ycmb \ \beta|_{X_n=...=X_2=0} \in U_F$. $Tor \partial a$ $\langle \alpha, \beta \rangle = 0$,

для всех $\alpha \in K_n(\mathcal{H}_m)$.

По определению U_F ряд $\beta_1(X)=\beta|_{X_n=...=X_2=0}$ можно представить в виде $\beta_1=u(X)h(X)+_Ft_2r(X)$, где $r(X),h(X)\in\mathcal{A}[[X]]$. Тогда

$$[\alpha, \beta] = [\alpha, u(X) \cdot h(X) +_F t_2 \cdot r(X)] = [\alpha, u(X) \cdot h(X)] + [\alpha, t_2 \cdot r(X)].$$

Так же, как и в доказательстве леммы 5, можно убедиться, что для ряда $t_2r(X)$ существует ряд $f(X)\in\mathcal{A}[[X]]$ такой, что $[t^N](f)=t_2r$. Поэтому $[\alpha,t_2r]=[\alpha,[t^N](f)]=t^N[\alpha,f]\equiv 0 \mod t^N$. Далее будем считать $\beta_1=u(X)\cdot h(X)$. Заметим сперва, что поскольку $V\equiv \frac{1}{s_{N-1}^2}+\frac{2a_2}{t-1}\mod t^N$ и $\partial_i\frac{1}{s_{N-1}^2}\equiv 0\mod t^N$ (см (6)), то для любых рядов $a,b\in\mathcal{O}_K((X))$ выполнено сравнение

$$\operatorname{res} a \cdot (\partial_i b) \cdot V \equiv -\operatorname{res}(\partial_i a) \cdot b \cdot V \mod t^N. \tag{13}$$

Обозначим (для $1 \leqslant i \leqslant n$)

$$D_i' = \begin{vmatrix} \alpha_1^{-1} \partial_1 \alpha_1 & \cdots & \alpha_1^{-1} \partial_n \alpha_1 \\ \vdots & \ddots & \vdots \\ \alpha_{i-1}^{-1} \partial_1 \alpha_{i-1} & \cdots & \alpha_{i-1}^{-1} \partial_n \alpha_{i-1} \\ \partial_1 (l_m(\alpha_i)) & \cdots & \partial_n (l_m(\alpha_i)) \\ X_1^{q-1} (\alpha_{i+1}^{-1} \partial_1 \alpha_{i+1})^{\Delta} & \cdots & X_n^{q-1} (\alpha_{i+1}^{-1} \partial_n \alpha_{i+1})^{\Delta} \\ \vdots & \vdots & \ddots & \vdots \\ X_1^{q-1} (\alpha_n^{-1} \partial_1 \alpha_n)^{\Delta} & \cdots & X_n^{q-1} (\alpha_n^{-1} \partial_n \alpha_n)^{\Delta} \end{vmatrix}$$

$$\tilde{D} := \det(X_i \alpha_i^{-1} \partial_i \alpha_i)_{1 \le i, j \le n}$$

Лемма 7. Для $\beta \in F(\mathfrak{M}_X)$, $1 \leqslant i \leqslant n$ имеет место:

$$\operatorname{res}\left(\frac{\Delta}{t}\lambda(\beta)\right)\cdot D_i'\cdot V\equiv 0 \mod t^N.$$

Доказательство. Пусть \triangle_k — определитель матрицы, полученной из D_i' вычеркиванием i-й строки и k-го столбца. Применяя лемму 4 для

$$f_{k,l} = \begin{cases} \alpha_k^{-1} \partial_l \alpha_k, & k < i \\ X_l^{q-1} (\alpha_k^{-1} \partial_l \alpha_k)^{\Delta}, & k > i \end{cases}$$

и $\varphi = 1$, получаем

$$0 = \sum_{k=1}^{n} (-1)^{k+1} \triangle_k \partial_k 1 = \sum_{k=1}^{n} (-1)^{k+1} \partial_k \triangle_k.$$

Тогда, с учетом (13),

$$\operatorname{res}\left(\frac{\Delta}{t}\lambda(\beta_1)\right) \cdot D_i' \cdot V = \operatorname{res}\left(\frac{\Delta}{t}\lambda(\beta_1)\right) V \sum_{k=1}^n (-1)^{k+j} \partial_k (l_m(\alpha_i)) \triangle_k$$
$$= \operatorname{res}\left(\frac{\Delta}{t}\lambda(\beta_1)\right) V l_m(\alpha_i) \sum_{k=1}^n (-1)^{k+j} \partial_k \triangle_k = 0. \square$$

Лемма 8. Имеет место сравнение

$$(\lambda(\beta)V)^{\Delta} \equiv \left(\frac{\Delta}{t}\lambda(\beta)\right) \cdot V \mod(t^N, \deg 1).$$

Доказательство. В силу замечания 2 легко видеть, что

$$\frac{u^{q^k-1}}{t^ks_{N-1}} \equiv \frac{t^{q^k-k-1}}{s_{N-1}} + (q^k-1)t^{q^k-k-1}a_2 \mod \deg 1.$$

Откуда, поскольку $t^N \mid q$:

$$\frac{u^{q^k-1}}{t^k s_{N-1}} \equiv \frac{t^{q^k-k-1}}{s_{N-1}} - t^{q^k-k-1} a_2 \mod(\deg 1, t^N).$$

Поэтому по лемме 1, учитывая, что $u/s=1/s_{N-1}$ и $u\equiv t\mod \deg 1$, получаем:

$$(\lambda(\beta)V)^{\Delta} = \left(\sum_{k=0}^{\infty} h^{q^{k}} \frac{u^{q^{k}-1}}{t^{k}s_{N-1}} b_{k}(\beta) + \frac{a_{2}}{t-1} \sum_{k=0}^{\infty} t^{q^{k}-k} h^{q^{k}} b_{k}(\beta)\right)^{\Delta}$$

$$\equiv \left(\sum_{k=0}^{\infty} h^{q^{k}} \left(\frac{t^{q^{k}-k-1}}{s_{N-1}} - t^{q^{k}-k-1} a_{2}\right) b_{k}(\beta) + \frac{a_{2}}{t-1} \sum_{k=0}^{\infty} t^{q^{k}-k} h^{q^{k}} b_{k}(\beta)\right)^{\Delta}$$

$$\equiv \sum_{k=0}^{\infty} h^{\Delta q^{k}} \left(\frac{t^{q^{k}-k-1}}{s_{N-1}^{\Delta}} - t^{q^{k}-k-1} a_{2}\right) b_{k}(\beta^{\Delta}) + \frac{a_{2}}{t-1} \sum_{k=0}^{\infty} t^{q^{k}-k} h^{\Delta q^{k}} b_{k}(\beta^{\Delta})$$

$$= \sum_{k=0}^{\infty} h^{\Delta q^{k}} t^{q^{k}-k-1} \left(\frac{1}{s_{N-1}^{\Delta}} + \frac{a_{2}}{t-1}\right) b_{k}(\beta^{\Delta}) \mod (t^{N}, \deg 1). \tag{14}$$

Далее, т.к. t в любой степени делит p и $N(q-1)q^k-k-1>N$, то, используя сравнение (3), легко получить, что:

$$\frac{s_{N-1}^{\Delta q^k(q-1)}}{t^{k+1}s} = \frac{(t^N A + s)^{\Delta q^k(q-1)}}{t^{k+1}s} \equiv \frac{t^{Nq^k(q-1)} A^{q^k(q-1)}}{t^{k+1}s} \equiv 0 \mod(t^N, \deg 1),$$

из чего следует

$$\frac{u^{\Delta q^k}}{t^{k+1}s} \equiv \frac{\sum_{i=1}^{\infty} (a_i t s_{N-1}^{\Delta(i-1)})^{q^k} + s_{N-1}^{\Delta(q-1)q^k}}{t^{k+1}s}$$

$$\equiv \frac{t^{q^k-k-1}}{s_{N-1}^{\Delta}} + \frac{s_{N-1}^{\Delta q^k(q-1)}}{t^{k+1}s}$$

$$\equiv \frac{t^{q^k-k-1}}{s_{N-1}^{\Delta}} \mod (\deg 1, t^N).$$

Таким образом,

$$\left(\frac{\Delta}{t}\lambda(\beta)\right) \cdot V = \sum_{k=0}^{\infty} h^{\Delta q^k} \frac{u^{\Delta q^k}}{t^{k+1}s} b_k(\beta^{\Delta}) + \frac{a_2}{t-1} \frac{\Delta}{t} \lambda(\beta)$$

$$\equiv \sum_{k=0}^{\infty} h^{\Delta q^k} \left(\frac{t^{q^k-k-1}}{s_{N-1}^{\Delta}}\right) b_k(\beta^{\Delta}) + \frac{a_2}{t-1} \sum_{k=0}^{\infty} t^{q^k-k-1} h^{\Delta q^k} b_k(\beta^{\Delta})$$

$$= \sum_{k=0}^{\infty} h^{\Delta q^k} t^{q^k-k-1} \left(\frac{1}{s_{N-1}^{\Delta}} + \frac{a_2}{t-1}\right) b_k(\beta^{\Delta}) \mod(t^N, \deg 1). \tag{15}$$

Сравнивая (14) и (15), получаем требуемое сравнение.

Доказательство предложения 5. Применяя легко проверяемое равенство $\partial_k l_m \alpha = \alpha^{-1} \partial_k \alpha - X_k^{q-1} (\alpha^{-1} \partial_k \alpha)^{\Delta}$ для $\alpha \in \mathcal{H}_m$, нетрудно вывести следующее:

$$D - \sum_{i=1}^{n} D_i' = \frac{1}{X_1 \cdots X_n} \widetilde{D}^{\Delta}.$$

В силу леммы 8 получаем

$$\operatorname{res} \Phi \cdot V = \operatorname{res}(l_F(\beta) \cdot D \cdot V) = \operatorname{res} \left(\frac{1}{X_1 \cdots X_n} \widetilde{D} \lambda(\beta) V - (\frac{\Delta}{t} \lambda(\beta)) \cdot D \cdot V \right)$$

$$= \operatorname{res} \left(\frac{1}{X_1 \cdots X_n} \widetilde{D} \lambda(\beta) V - (\frac{\Delta}{t} \lambda(\beta)) DV + (\frac{\Delta}{t} \lambda(\beta)) D_1' V + (\frac{\Delta}{t} \lambda(\beta)) D_2' V \right)$$

$$= \operatorname{res} \left(\frac{1}{X_1 \cdots X_n} \widetilde{D} \lambda(\beta) V - \frac{1}{X_1 \cdots X_n} (\frac{\Delta}{t} \lambda(\beta)) \widetilde{D}^{\Delta} \cdot V \right)$$

$$\equiv \operatorname{res} \frac{1}{X_1 \cdots X_n} \left(\widetilde{D} \lambda(\beta) V - (\widetilde{D} \lambda(\beta) V)^{\Delta} \right) \quad \operatorname{mod} \ t^N.$$

Т.к. для любого $a\in \mathcal{O}'[[t]]$ имеем ${\rm Tr}\, a={\rm Tr}\, a^\Delta,$ то ${\rm res}\, \Phi\cdot V\equiv 0\mod t^N,$ что завершает доказательство.

5.2.2. Значения спаривания $\langle \cdot, \cdot \rangle$ на базисе Шафаревича. Для $\alpha_i = \theta_i X_1^{a_{i1}} \cdots X_n^{a_{in}} (1 + \alpha_i') \in \mathcal{H}_m$ (здесь $\alpha_i' \in X(W)(L_0)[[X]], \theta_i \in \mathfrak{R}^*$), положим

$$\delta(\alpha_1,\ldots,\alpha_n) = \det(a_{ij})_{1 \leqslant i,j \leqslant n}.$$

Пусть $\underline{\omega}(a) = E_F(as), \ a \in \mathcal{O}'[[t]]$

Лемма 9. Для любых $\alpha_1,\ldots,\alpha_n\in\mathcal{H}_m$ имеет место равенство

$$\langle (\alpha_1, \dots, \alpha_n), \underline{\omega}(a) \rangle = [\delta(\alpha_1, \dots, \alpha_n) \cdot \operatorname{Tr} a](\xi).$$

Доказательство. Требуемое равенство легко проверить для

$$(\alpha_1,\ldots,\alpha_n)=(X_1,\ldots,X_n),$$

а также при $\alpha_1 \in 1 + XW(L_0)[[X]].$

Утверждение леммы следует из свойств спаривания $\langle \cdot, \cdot \rangle$. \square

Лемма 10. Для $\theta\in\Re,\ 0\leqslant\rho\leqslant f-1,\ 1\leqslant i<\frac{qe_1}{q-1},\ (i,p)=1$ имеет место равенство

$$\langle (X_1, \dots, X_n), \mathcal{E}_{\rho}(\theta X^i) \rangle = 0.$$

Доказательство. Из символьного свойства следует, что

$$\langle (\theta X^i, X_2, \dots, X_n), \mathcal{E}_{\rho}(\theta X^i) \rangle = 0,$$

откуда, т.к. $p \nmid i$, следует требуемое равенство.

5.2.3. Инвариантность спаривания $\langle \cdot, \cdot \rangle$ и его независимость по первому аргументу. Инвариантность спаривания $\langle \cdot, \cdot \rangle$ означает независимость его значения от выбора локальных параметров. Иными словами

Предложение 6. Пусть U_1, \ldots, U_n – некоторые переменные, причем $X_i = g_i(U_1, \ldots, U_n) = \theta_i U_i + \ldots, \ 1 \leqslant i \leqslant n, \ r \ de \ \theta_i \in \mathcal{R}^*.$ Тогда

$$\langle \cdot, \cdot \rangle_{X_1, \dots, X_n} = \langle \cdot, \cdot \rangle_{U_1, \dots, U_n}$$

Доказательство. Точно такое же, как доказательство инвариантности в [7]. \Box

Далее так же, как и в [7], из независимости по второму аргументу и инвариантности можно получить независимость спаривания $\langle \cdot, \cdot \rangle$ по первому аргументу.

§6. Основной результат

6.1. Спаривание на формальном модуле $F(\mathfrak{M}_L)$. Определим спаривание:

$$\langle \cdot, \cdot \rangle : K_n^{\text{top}}(L) \times F(\mathfrak{M}_L) \to W_F^N,$$

следующим образом: пусть $\alpha \in K_n^{\text{top}}(L), \beta \in F(\mathfrak{M}_L)$, и пусть $\underline{\alpha} \in K_n(\mathcal{H}_m), \beta \in F(\mathfrak{M}_X)$ – их прообразы. Положим

$$\langle \alpha, \beta \rangle := \langle \underline{\alpha}, \beta \rangle.$$

Из независимости и инвариантности спаривания $\langle \cdot, \cdot \rangle$ следует, что спаривание $\langle \cdot, \cdot \rangle : K_n^{\mathrm{top}}(L) \times F(\mathfrak{M}_L) \to W_F^N$ определено корректно, инвариантно относительно выбора системы локальных параметров и не зависит от разложения элементов в ряды по локальным параметрам.

6.2. Явная формула для спаривания Гильберта (\cdot, \cdot) .

Теорема 1. Символ Гильберта

$$(\cdot,\cdot):K_n^{\mathrm{top}}(L)\times F(\mathfrak{M}_L)\to W_F^N$$

совпадает со спариванием $\langle \cdot, \cdot \rangle$ и тем самым выражется в явном виде с помощью формулы (12).

Доказательство. В 5.2.2 было показано, что для $\alpha = (T_1, T_2, \ldots, T_n)$ символ Гильберта (α, β) совпадает со спариванием $\langle \alpha, \beta \rangle$ на элементах базиса Шафаревича. Откуда, в силу независимости от разложения по второму аргументу и линейности обоих спариваний, следует, что $(\alpha, \beta) = \langle \alpha, \beta \rangle$ для всех $\beta \in F(\mathfrak{M}_L)$. Далее любой элемент α из K_nL можно представить в виде суммы символов, состоящих из некоторых локальных параметров, т.е.

$$(\alpha_1,\ldots,\alpha_n)=\sum_{\overline{T'}}(T'_1,T'_2,\ldots,T'_n).$$

В силу инвариантности спаривания $\langle \cdot, \cdot \rangle$ утверждение теоремы уже доказано для каждого слогаемого суммы. Для произвольных $\alpha \in K_n^{\mathrm{top}}(L)$ и $\beta \in F(\mathfrak{M}_L)$ утверждение теоремы следует из аддитивности обоих спариваний по первому аргументу.

Литература

- 1. С. С. Афанасьева, Б. М. Беккер, С. В. Востоков, Символ Гильберта в многомерных локальных полях для формальной группы Любина-Тейта. Зап. научн. сем. ПОМИ **400** (2012), 20-49.
- 2. С. В. Востоков, Явная форма закона взаимности. Изв. АН СССР. Сер. матем. **42**, No. 6 (1978), 1288–1321.
- 3. С. В. Востоков, *Норменное спаривание в формальных модулях.* Изв. АН СССР. Сер. матем. **43**, No. 4 (1979), 765–794.
- 4. С. В. Востоков, О. В. Демченко, Явная формула спаривания Гильберта для формальных групп Хонды. Зап. научн. сем. ПОМИ **272** (2000), 86-128.
- А. И. Мадунц, Формальные группы Любина-Тейта над кольцом целых многомерного локального поля. — Зап. научн. сем. ПОМИ 281 (2001), 221-226.
- F. Lorenz, S. Vostokov, Honda Groups and Explicit Pairings on the Modules of Cartier Curves. — Contemporary Mathematics 300 (2002), 143-170.

- 7. С. В. Востоков, Ф. Лоренц, Явная формула символа Гильберта для групп Хонды в многомерном локальном поле. Матем. сб. **194**, No. 2 (2003), 3-36.
- 8. М. В. Бондарко, С. В. Востоков, Ф. Лоренц, Спаривание Гильберта для формальных групп над σ-кольцами. Зап. научн. сем. ПОМИ **319** (2004), 5-58.
- 9. Д. Г. Бенуа, С. В. Востоков, Арифметика группы точек формальной группы. Зап. научн. сем. ЛОМИ **191** (1991), 9-23.

Afanas'eva S. S. The Hilbert symbol in multidimensional local fields for Lubin–Tate formal groups. 2.

In this paper an explicit formula for the Hilbert pairing between the Milnor K-group of multidimensional local field and the multidimensional Lubin–Tate formal module is derived. This formula is a generalization of such formula in one-dimensional case. Here we consider the case of characteristic p>0 of penultimate residue field.

С.-Петербургский государственный университет Университетский пр. 28, Петродворец, 198504 Санкт-Петербург, Россия E-mail: cheery_sonya@mail.ru

Поступило 28 ноября 2011 г.