COMPARISON OF THE SINGLE LEG SQUAT AND SOFTBALL PITCH KINEMATICS

Kenzie B. Friesen¹, Regan L. Shaw², Abby R. Brittain², Gretchen D. Oliver²

¹University of Saskatchewan, SK, Canada

²Auburn University, AL, USA

Contact: ⊠ kenzie.friesen@usask.ca; ¥ @kfreeze17

Purpose: To compare knee valgus during the SLS and trunk kinematics during the softball pitch.

Why the Single Leg Squat?

- The single leg squat (SLS) can identify lumbopelvic hip complex (LPHC) instability [1]
- LPHC instability has been identified as a possible risk factor for throwing athlete pain and injury [2]
- Trunk pathomechanics are related to upper extremity injury in softball players [3,4]
- If instability during the SLS is related to trunk pathomechanics during the pitch, the SLS can be used as an assessment tool for pitchers.

Methods

Electromagnetic tracking system synced with motion analysis software

42 pitchers completed bilateral SLSs and threw 3 fastballs

> 2 Separate Regression

Independent

Trunk flexion, trunk lateral

flexion, and trunk rotation -

@ 2 different time points

#1: Max stride knee valous during SLS

Dependent

Variables

#2: Max push knee valgus during SLS ascent

> #1: Stride foot contact (FC) (Fig B1)

#2: Peak propulsive

(Fig A1)

Push Leg Results

- F(3.41) = 3.141, p = .036
- Explained ~13.5% of max push knee valgus during SLS ascent
- Trunk rotation (t = 2.973, p = .005) at peak GRF was a significant predictor (see Fig. A2)

A1) Max Push Knee Valgus during SLS Ascent (°)

Increased push knee valgus during SLS ascent = Increased trunk rotation towards the pitching arm during the push of the pitch

Stride Leg Results

- F(3,41) = 3.232, p = .033
- Explained ~14.0% of max stride knee valgus during SLS descent
- Trunk lateral flexion (t = 2.791, p = .008) at FC was a significant predictor (see Fig. 2B)

B2) Max Stride Knee Valgus during SLS Descent (°)

Increased stride knee valgus during SLS descent = Increased trunk lateral flexion towards the pitching arm at FC of the pitch

SLS knee valgus is associated with pitch trunk instability

Significance

Increased SLS knee valgus was associated with increased trunk motion during the pitch

Increased trunk motion during the pitch is related with upper extremity pain in pitchers [3,4]

- The SLS may be used to identify pitchers at risk of trunk instability and potentially an increased risk of upper extremity injury.
- The SLS is an easy to implement assessment tool for coaches to identify athlete trunk instability that may also limit pitching capability.