עבודת בית 1

יהי . $\mathbb{R}^5 = \left\{ \left(x_1, x_2, x_3, x_4, x_5 \right) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}, x_4 \in \mathbb{R}, x_5 \in \mathbb{R} \right\}$. $\mathbb{R}^5 - \mathcal{B} = \left(\left(1, 1, 1, 0, -1 \right), \left(1, 1, 0, -1, 1 \right), \left(1, 0, -1, 1, 1, 1 \right), \left(0, -1, 1, 1, 1 \right), \left(-1, 0, 1, 0, -1 \right) \right)$

.
$$C$$
 כיס ל- \mathbb{R}^5 כך ש- \mathbb{R}^5 בסיס ל- \mathbb{R}^5

- יהי ע מרחב וקטורי. הוכיחו או הפריכו: אם $S,T:V \to V$ העתקות לינאריות כך **.2** $.T=S \quad \text{אז} \quad , \operatorname{Im}(T)=\operatorname{Im}(S) \quad \text{i.i.} \quad \ker(T)=\ker(S)-\mathbb{W}$
- Uיהי יהי ע מרחב לינארית. יהי $T:V \to V$ תהי השדה F תהי מעל השדה לינארית. יהי יהי מרחב ע יהי מרחב ב- ע כך ש $(\vec{v}_1,\vec{v}_2,...,\vec{v}_n \in U)$ הוכיחו שאם $U \cap \ker(T) = \{\vec{0}\}$ בלתי תלוים לינארית. אזי גם $(\vec{v}_1,T(\vec{v}_2),...,T(\vec{v}_n))$ בלתי תלוים לינארית.
 - . $T^2=T$ -ש כך לינארית העתקה לינארית תהי $T:V\to V$ תהי וקטורי. ע יהי יהי א גערית הוכיחו: $V=\ker(T)\oplus\operatorname{Im}(T)$

ערים ש- v הוא סכום ישר עומרים v, אומרים ש- v הוא סכום ישר עוכורת. אם v, אומרים ש- v הם תת-מרחבים של $\vec{u}\in U, \vec{w}\in W$ קיימים $\vec{v}\in V$ כאשר עבור כל $\vec{v}\in V$ קיימים $\vec{v}\in U$ כך ש- $\vec{v}=\vec{u}+\vec{w}$.

5. יהי V מרחב וקטורי. תהיינה $T,S:V\to V$ העתקות לינאריות המקיימות T אוריי. $T\circ T=T$ (ג) $T\circ S=0$ (ב) $T+S=I_V$ (א) הוכיחו על סמך נתונים אלו $T\circ S=0$ (ב) $T+S=I_V$

 $\vec{w} \in V$ עבור כל $I_v(\vec{w}) = \vec{w}$ בזהות: היא העתקת הזהות: I_v