17. Непрекъснатост на елементарните функции

Общи бележки

Всяка елементарна функция се получава от функциите:

const,
$$a^{x}$$
, $\log_{a} x$, x^{α} ,
 $\sin x$, $\cos x$, $\tan x$, $\cot x$, arctg x , arctg x (1)

посредством аритметичните действия и композиция. Последните запазват непрекъснатостта. Следователно достатъчно е да покажем, че функциите в (1) са непрекъснати.

За тази цел, ще използваме следните аргументи:

- ще покажем, че $\lim_{x \to x_0} f(x) = f(x_0) \quad \forall x_0$ от дефиниционната област, в която разглеждаме f, или
- ще използваме, че обратната функция на строго монотонна непрекъсната функция, дефинирана върху интервал, е също непрекъсната (Т-ма 5, тема 15), или
- прости връзки между функциите.

Показателната функция: a^x , $x \in \mathbb{R}$, a > 0, $a \neq 1$

Нека $x_0 \in \mathbb{R}$ е произволно фиксирано. Ще докажем, че

$$\lim_{x \to x_0} \mathbf{a}^x = \mathbf{a}^{x_0}. \tag{2}$$

Използваме, че

$$a^{x} - a^{x_0} = a^{x_0} \underbrace{(a^{x - x_0} - 1)}_{x \to x_0} \xrightarrow[x \to x_0]{} 0.$$

$$\downarrow \text{ при } x \to x_0$$

$$0, \quad \lim_{y \to 0} a^{y} = 1$$

Следователно

$$\lim_{x \to x_0} \mathbf{a}^x = \mathbf{a}^{x_0}. \tag{3}$$

Логаритмичната функция: $\log_a x$, x > 0, a > 0, $a \neq 1$

По дефиниция логаритмичната функция е обратната на показателната функция със същата основа:

$$\log_a x = c \iff a^c = x. \tag{4}$$

Показателната функция е дефинирана върху интервала $(-\infty, +\infty)$.

Тя е строго монотонна и непрекъсната върху него.

Логаритмичната функция се явява нейна обратна.

Следователно също е непрекъсната.

Степенната функция: $\mathbf{x}^{\alpha}, \ \mathbf{x} > \mathbf{0}, \ \alpha \in \mathbb{R}$

Първо да отбележим, че всяка функция, която е тъждествено константа, е непрекъсната. Това следва непосредствено от дефиницията за непрекъснатост.

Използваме представянето на степенната функция като композиция на показателна и логаритмична:

$$\mathbf{x}^{\alpha} = \mathbf{e}^{\ln \mathbf{x}^{\alpha}} = \mathbf{e}^{\alpha \ln \mathbf{x}}.\tag{5}$$

Взимаме предвид, че $\ln x$ е непрекъсната в $(0, \infty)$.

Следователно $f(x) := \alpha \ln x$ е непрекъсната в $(0, \infty)$.

Функцията $g(y) := e^y$ е непрекъсната в \mathbb{R} .

Следователно композицията $g(f(x)) = x^{\alpha}$ е непрекъсната в $(0, \infty)$, защото композиция на непрекъснати функции е непрекъсната функция.

Тригонометричните функции: sin, cos, tg, ctg

I. sin X

Ще докажем, че

$$\lim_{x \to x_0} \sin x = \sin x_0 \quad \forall x_0 \in \mathbb{R}. \tag{6}$$

За тази цел използваме тъждеството

$$\sin x - \sin x_0 = 2\sin \frac{x - x_0}{2}\cos \frac{x + x_0}{2}.$$
 (7)

Понеже $|\cos \alpha| \le 1$ $\forall \alpha \in \mathbb{R}$, то от него следва, че

$$|\sin x - \sin x_0| \le 2 \left| \sin \frac{x - x_0}{2} \right|. \tag{8}$$

Доказахме в тема 12, че

$$\lim_{y \to 0} \sin y = 0. \tag{9}$$

Следователно

$$\lim_{x \to x_0} \sin \frac{x - x_0}{2} = 0. \tag{10}$$

Така благодарение на (8) и (10) имаме

$$0 \le |\sin x - \sin x_0| \le 2 \left| \sin \frac{x - x_0}{2} \right| \xrightarrow[x \to x_0]{} 0. \tag{11}$$

Следователно (вж. (7) в тема 10)

$$\lim_{x \to x_0} (\sin x - \sin x_0) = 0 \quad \Longrightarrow \quad \lim_{x \to x_0} \sin x = \sin x_0. \tag{12}$$

II. Непрекъснатостта на **cos** следва, например, от следната връзка със **sin**:

$$\cos x = \sin\left(x + \frac{\pi}{2}\right). \tag{13}$$

Това тъждество показва, че $\cos x$ се явява композиция на непрекъснатите функции $g(y) := \sin y$ и $f(x) := x + \frac{\pi}{2}$; имаме, че $\cos x = g(f(x))$.

III. Непрекъснатостта на $\lg x$ във всеки интервал от вида $\left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right)$, където $k \in \mathbb{Z}$, следва от:

- $\operatorname{tg} X = \frac{\sin X}{\cos X}$,
- вече установената непрекъснатост на sin X и cos X и
- известния факт, че частно на непрекъснати функции (стига знаменателят да не се анулира) е непрекъсната функция.

IV. Непрекъснатостта на $\operatorname{ctg} X$ във всеки интервал от вида $(k\pi,(k+1)\pi)$, където $k\in\mathbb{Z}$, се установява аналогично на случая с tg от $\operatorname{ctg} X=\frac{\cos X}{\sin X}$.

Обратните тригонометрични функции: arcsin, arccos, arctg, arcctg

Непрекъснатостта на всяка една от тях следва от това, че се явяват обратни на строго монотонни непрекъснати функции, дефинирани в интервал.