- **13.6.3** Let G be a finite group with subgroups H and K. Recall that $HK := \{hk \mid h \in H, k \in K\}$. Show that $|HK| = |H||K|/|H \cap K|$.
- **Solution** Notice that if hk = h'k' for $h, h' \in H$ and $k, k' \in K$, we get

$$h^{-1}h' = k(k')^{-1} \in H \cap K.$$

This means that every element in HK gets counted $|H \cap K|$ times.

Every product between elements of H and K is given by |H||K|, counting duplicates. Thus, if we remove duplicates, we see that

$$|HK| = |H||K|/|H \cap K|,$$

as desired.

- **13.6.4** Let N and H be two normal subgroups of G such that G = HN. Show that there is an isomorphism $G/(H \cap N) \simeq G/H \times G/N$.
- **Solution** Define $\varphi \colon G \to G/H \times G/N$ as follows: if $h \in H$ and $n \in N$,

$$\varphi(hn) = (hnH, hnN) = (nH, hN),$$

by normality.

This is clearly surjective, and we also have that

$$\varphi(g) = (eH, eN) \iff gH = eH \text{ and } gN = eN \iff g \in H \text{ and } g \in N \iff g \in H \cap N.$$

Thus, $\ker \varphi = H \cap N$, so by the first isomorphism theorem,

$$G/(H \cap N) \stackrel{\varphi}{\simeq} G/H \times G/N.$$

- 13.6.5** Let G be a finite group with normal subgroups H and K of relatively prime order. Show that the group HK is cyclic if H and K are cyclic and abelian if H and K are abelian.
- Solution Notice that $H \cap K = \{e\}$. Indeed, $H \cap K$ is a subgroup of H and K, so its order must divide both |H| and |K| by Lagrange, which are relatively prime. We'll show that if $h \in H$ and $k \in K$, that hk = kh.

Consider $h^{-1}k^{-1}hk$. Since K is normal, there exists $k' \in K$ such that

$$h^{-1}k^{-1}hk = h^{-1}k^{-1}k'h \in K$$
.

by normality of K.

Similarly, there exists $h' \in H$ such that

$$h^{-1}k^{-1}hk = k^{-1}h'hk \in H.$$

Thus, $h^{-1}k^{-1}hk \in H \cap K \implies h^{-1}k^{-1}hk = e \implies hk = kh$, as desired.

Let H and K both be abelian. Then for $h, h' \in H$ and $k, k' \in K$

$$(hk)(h'k') = hkk'h' = hk'kh' = k'hkh' = k'hh'k = (h'k')(hk),$$

by repeatedly applying the lemma we proved using the fact that H and K are abelian, so HK is abelian. Let H and K be cyclic, and thus abelian, and let their generators be h and k, respectively, with order m and n, respectively.

Notice that for $h \in H$ and $k \in K$, we have $h^a k^b = k^b h^a$, by the lemma. Thus, let $h^a k^b, h^c k^d \in HK$. Then

$$(h^a k^b)(h^c k^d) = h^{a+c} k^{b+d}.$$

Thus, $HK \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. By the Chinese remainder theorem, $HK \simeq \mathbb{Z}/mn\mathbb{Z}$, which is cyclic.

- **13.6.6** Let G be a group with subgroups H and N. We say that G is the (internal) semidirect product of H and N, denoted by $N \rtimes H$ if
 - (i) $N \triangleright G$
 - (ii) G = NH
 - (iii) $N \cap H = \{1\}.$

Let $G = N \rtimes H$. Define $\varphi \colon H \to \operatorname{Aut}(N)$ by $\varphi_x(n) = xnx^{-1}$. Show φ is a group homomorphism and $\psi \colon N \rtimes H \to N \rtimes_{\varphi} H$ induced by $h \mapsto (e_N, h)$ and $n \mapsto (n, e_H)$ is a group isomorphism, where $N \rtimes_{\varphi} H$ is the (external) semidirect product of Exercise 11.9(14).

Solution Let $h_1, h_2 \in H$. Then

$$\varphi(h_1h_2)(n) = h_1h_2n(h_1h_2)^{-1} = h_1(h_2nh_2^{-1})h_1^{-1} = \varphi(h_1)\circ\varphi(h_2),$$

so φ is a group homomorphism.

We'll first show that ψ is a homomorphism. Let $n_1, n_2 \in N$ and $h_1, h_2 \in H$. By normality of N, there exists $n'_2 \in N$ such that $h_1 n_2 = n'_2 h_1 \iff n'_2 = h_1 n_2 h_1^{-1}$. Then

$$\psi(n_1h_1n_2h_2) = (n_1n_2', h_1h_2) = (n_1(h_1n_2h_1^{-1}), h_1h_2) = (n_1\varphi_{(h_1)}(n_2), h_1h_2) = (n_1, n_2)\cdot(h_1, h_2) = \psi(n_1h_1)\cdot\psi(n_2h_2),$$

so ψ is a homomorphism.

The inverse of ψ is

$$\psi^{-1}(n,h) = nh,$$

so ψ is an isomorphism.

- **13.6.8**** Let G be a group. Recall the *commutator* G' of G is the subgroup generated by the *commutators* of elements of G, i.e., elements of the form $[x, y] := xyx^{-1}y^{-1}$. Show
 - a. G/G' is abelian. G/G' is called the *abelianization* of G and denoted by G^{ab} .
 - b. If $N \triangleright G$ and G/N is abelian then $G' \subseteq N$. In particular, the abelianization $G^{ab} = G/G'$ of G is the maximal abelian quotient of G.
 - c. If $G' \subseteq H \subseteq G$ then $H \triangleright G$.

Solution a. We first check that G' is normal. Let $g \in G$ and $g' \in G'$. Then

$$gg'g^{-1} = g'(g')^{-1}gg'g^{-1} = g'[(g')^{-1}, g] \in G'.$$

So G' is normal, which means that G/G' is a group.

Let $g_1G', g_2G' \in G/G'$. Since $g_2^{-1}g_1^{-1}g_2g_1 \in G'$,

$$g_1G'g_2G' = g_1g_2G' = g_1g_2(g_2^{-1}g_1^{-1}g_2g_1)G' = g_2g_1G' = g_2G'g_1G',$$

so G' is abelian.

b. Since G/N is abelian, for $xyx^{-1}y^{-1} \in G'$,

$$xyx^{-1}y^{-1}N = xNyNx^{-1}Ny^{-1}N = N,$$

so $xyx^{-1}y^{-1} \in N$. Thus, $G' \subseteq N$.

c. Let $g \in G$ and $h \in H$, so

$$ghg^{-1} = ghg^{-1}h^{-1}h = [g, h]h \in H.$$

Thus, $qHq^{-1} \subseteq H$. Similarly,

$$h = g(g^{-1}hgh^{-1}h)g^{-1} = g[g^{-1}, h]g^{-1} \in gHg^{-1},$$

so $H \triangleleft G$.

14.12.2 Let G be an abelian group. Show that $G(p) := \{x \in G \mid x^{p^r} = e \text{ for some } r\}$ is a subgroup of G.

Solution $e \in G(p)$, so unity holds.

For $x \in G(p)$, x^{p^r-1} is its inverse. It's clear that their product is e, so we just need to show that it's in G(p):

$$(x^{p^r-1})^{p^r} = x^{p^r p^r - p^r} = (x^{p^r})^{p^r} = e.$$

If $x, y \in G(p)$, we have $x^{p^r} = y^{p^s} = e$, which means that

$$(xy)^{p^{r+s}} = (x^{p^r})^{p^s} (y^{p^s})^{p^r} = e,$$

so $xy \in G(p)$.

Thus G(p) is a subgroup of G.

14.12.3 Show that $p(\mathbb{Z}/p^k\mathbb{Z}) \simeq \mathbb{Z}/p^{k-1}\mathbb{Z}$ for all primes p and positive integers k.

Solution Consider $\varphi \colon \mathbb{Z} \to p(\mathbb{Z}/p\mathbb{Z}), \ \varphi(n) = [pn]_p$. Then $\varphi(n) = e \iff pn = mp^{k-1}$ for some $m \in \mathbb{Z}$, so $\ker \varphi = p^{k-1}\mathbb{Z}$. Thus, by the first isomorphism theorem,

$$\mathbb{Z}/p^{k-1}\mathbb{Z} \simeq p(\mathbb{Z}/p^k\mathbb{Z}).$$

1 Let $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Label (0,0) as 1, (1,0) as 2, (0,1) as 3, (1,1) as 4.

Define the action

$$T_g(g') = g + g'.$$

Using the labels, you can get 4 permutations of $\{1, 2, 3, 4\}$. What are the permutations?

Solution By inspection,

$$T'_{(0,0)} \sim id$$

$$T'_{(1,0)} \sim \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$$

$$T'_{(0,1)} \sim \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$$

$$T'_{(1,1)} \sim \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$$
.