1) Проранжируем статистические данные, т.е. расположим значения случайой величины по неубыванию $x^{(1)} <= x^{(2)} <= ... <= x^{(n)}$ Получим вариационный ряд:

12; 12; 12; 12; 12,1; 12,1; 12,2; 12,2; 12,2; 12,2; 12,2; 12,2; 12,2; 12,3; 12,3; 12,3; 12,3; 12,3; 12,3; 12,3; 12,3; 12,3; 12,3; 12,4; 12,4; 12,5; 12,5; 12,5; 12,5; 12,6; 12,6; 12,6; 12,6; 12,6; 12,7; 12,7; 12,8; 12,8; 12,8; 12,8; 12,8; 12,9; 12,9; 12,9; 12,9; 12,9; 12,9; 13; 13,1; 13,1; 13,1; 13,2; 13,2; 13,3; 13,3; 13,3; 13,4; 13,5; 13,5; 13,6; 13,6; 13,7; 13,7; 13,8; 13,8; 13,9; 14; 14,1; 14,1; 14,2; 14,2; 14,2; 14,3; 14,4; 14,4; 14,5; 14,7; 14,8; 14,8; 14,8; 15; 15,1; 15,1; 15,2; 15,3; 15,7; 15,8; 15,9; 16,2; 16,2; 16,4; 17; 17; 17,5; 18,7; 18,8; 19; 19,1; 19,9; 20; 21,8; Найдем размах выборки $R = x_{max} - x_{min}$. Имеем R = 21.8 - 12 = 9.8.

Определим длину частичного интервала Δ — шаг разбиения по формуле Стерджеса: $\Delta \approx \frac{R}{1+3,322 \lg n} = \frac{R}{m}$ где n — объем выборки, m — число ча-

стичных интервалов Т.К. n=100 то m=8 (по правилам округления), тогда Δ = 9.8/8 = 2.225

Найдем: n_i — частоту попаданий значений X в i-й разряд, ω_i — относительную частоту (частость) попадания значений величины X в i-й разряд, \tilde{X}_i — середину интервала $[x_i; x_{i+1})$ и построим интервальный статистический ряд.

Построим гистограмму частостей — ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной Δ , а высоты равны отношению $h_i^* = \frac{\omega_i}{\Delta}$. Полученные

значения высот внесем в таблицу.

-									
1	[Xi;Xi+1)	[12;13,225)	[13,225;14,45)	[14,45;15,675)	[15,675;16,9)	[16,9;18,125)	[18,125;19,35)	[19,35;20,575)	[20,575;21,8)
ı	срзнач(Хі)	12,6125	13,8375	15,0625	16,2875	17,5125	18,7375	19,9625	21,1875
1	ni	50	23	10	7	3	4	2	1
	Wi	0,5	0,23	0,1	0,07	0,03	0,04	0,02	0,01
	hi	0,408	0,188	0,082	0,057	0,024	0,033	0,016	0,008

$$\overline{X}_B = \frac{1}{n} \sum_{i=1}^k n_i \tilde{X}_i = \frac{1}{1/100} *$$

(50*12.6125+23*13.8375+10*15.0625+7*16.2875+3*17.5125+3*18.7375+2*19.9625+1*21.1875) = 14.02125 (округлим до 14)

Смещенная и состоятельная оценка дисперсии – статистическая дисперсия

$$D_{\rm s} = \frac{1}{n} \sum_{i=1}^{k} (\tilde{x}_i - \overline{x_B})^2 n_i$$

=1/100*(50(12,6125-14)^2+23(13,8375-14)^2+10(15,0625-14)^2+7(16,2875-14)^2+3(17,5125-14)^2+4(18,7375-14)^2+2(19,9625-14)^2+1(21,1875-14)^2) = 3.94

Несмещенная и состоятельная оценка дисперсии – исправленная выборочная дисперсия

$$S^{2} = \frac{n}{n-1}D_{B}:$$
= 100/99 * 3.94 = 4

Смещенная и состоятельная оценка среднего квадратического отклонения — выборочное среднее квадратическое отклонение $\sigma_B = \sqrt{D_{\rm B}} = 1.99$

Несмещенная и состоятельная оценка среднего квадратического отклонения — исправленное и среднее квадратическое отклонение (стадарт): $S = \sqrt{S^2} = 2$

Интервалы все для 95%

Доверительный интервал среднего

=СТЬЮДЕНТ.ОБР.2X(100%-95%;100-1) = 1.98

Левый = 14 - 1.98*2/корень(100) = 13.63

Правый = 14 + 1.98*2/корень(100) = 14.42

(13.53; 14.42)

Доверительный интервал для исправленной дисперсии

Левый XИ = =XИ2.ОБР((100%+95%)/2;100-1) = 128.42

Правый XИ = XИ2.ОБР((100%-95%)/2;100-1) =73.36

Левая граница = (100-1)* 4/ 128.42 = 3.07

Правая граница = (100-1)*4 / 73.36 = 5.37

(3.07; 5.37)

Для среднеквадратичного отклонения доверительный интервал

Корень (интервал дисперсии)

(1.75; 2.32)

3) Проведем выравнивание статистического ряда по нормальному закону распределения,

 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}}$. Оценим по выборке параметры нормального закона распределения $\alpha = 14$, $\sigma = 2$

В эксель = HOPM. PACП($X;\alpha;\sigma;0$)

Получаем данные по плотности

	-,	-,	-,	-,	-,	-,	-,	-,	
плотность	0,155818	0,199058	0,174464	0,104906	0,043277	0,012248	0,002378	0,000317	

Накладываем на график, получаем:

4) Найти моду интервального ряда

$$M_0 = x_k + \frac{n_k - n_{k-1}}{2n_k - (n_{k-1} - n_{k+1})}h.$$

Модальный интервал – первый, его частота 50.

 $n_k = 50$

 $n_{k-1} = 0$ (т.к. нет предыдущего)

 $n_{k+1} = 23$

 $x_k = 12$

h=0.408

 $M_0=12 + (50-0)/(2*50-0+23)*0.408 = 12.17$

5) Найти медиану

$$M_e = x_k + \frac{0.5n - n_{k-1}}{|n_{M_e}|} h_{M_e} \,.$$

Медианный интервал, в котором накопленная частота превысит (n/2=50) это второй, потому что в первом интервале частота равна 50.

 $X_k = 13.225$

0,5n=50

 $N_{k-1} = 50$

50-50=0, поэтому Частота медианного интервала и его ширина нам не важны, в таком случае медиана равна нижней границе

То есть

 $M_e\text{=}13.225$