which proves that $\delta(X_n) \leq 1/n$. Now if we consider the sequence of closed sets $(\overline{X_n})$, we still have $\overline{X_{n+1}} \subseteq \overline{X_n}$, and by Proposition 48.4, $\delta(\overline{X_n}) = \delta(X_n) \leq 1/n$, which means that $\lim_{n\to\infty} \delta(\overline{X_n}) = 0$, and by Proposition 48.4, $\bigcap_{n=1}^{\infty} \overline{X_n}$ consists of a single element u. We claim that u is the sum of the family $(u_k)_{k\in K}$.

For every $\epsilon > 0$, there is some $n \ge 1$ such that $n > 2/\epsilon$, and since $u \in \overline{X_m}$ for all $m \ge 1$, there is some finite subset J_0 of K such that $I_n \subseteq J_0$ and

$$||u - u_{J_0}|| < \epsilon/2,$$

where I_n is the finite subset of K involved in the definition of X_n . However, since $\delta(X_n) \leq 1/n$, for every finite subset J of K such that $I_n \subseteq J$, we have

$$||u_J - u_{J_0}|| \le 1/n < \epsilon/2,$$

and since

$$||u - u_J|| \le ||u - u_{J_0}|| + ||u_{J_0} - u_J||,$$

we get

$$||u - u_J|| < \epsilon$$

for every finite subset J of K with $I_n \subseteq J$, which proves that u is the sum of the family $(u_k)_{k \in K}$.

(2) Since every finite sum $\sum_{i \in I} r_i$ is bounded by the uniform bound B, the set of these finite sums has a least upper bound $r \leq B$. For every $\epsilon > 0$, since r is the least upper bound of the finite sums $\sum_{i \in I} r_i$ (where I finite, $I \subseteq K$), there is some finite $I \subseteq K$ such that

$$\left| r - \sum_{i \in I} r_i \right| < \epsilon,$$

and since $r_k \geq 0$ for all $k \in K$, we have

$$\sum_{i \in I} r_i \le \sum_{j \in J} r_j$$

whenever $I \subseteq J$, which shows that

$$\left| r - \sum_{i \in J} r_j \right| \le \left| r - \sum_{i \in I} r_i \right| < \epsilon$$

for every finite subset J such that $I \subseteq J \subseteq K$, proving that $(r_k)_{k \in K}$ is summable with sum $\sum_{k \in K} r_k = r$.