Assignment Math45-Homework-WEEK-04 due 09/26/2020 at 11:59pm PDT

Consider the function $f(x,y) = \frac{y^4}{x}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

• A.
$$\frac{\partial f}{\partial x} = \frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{y^4}{x}$

• B.
$$\frac{\partial f}{\partial x} = -\frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{y^3}{x}$

• C.
$$\frac{\partial f}{\partial x} = -\frac{4y^3}{x}$$
; $\frac{\partial f}{\partial y} = -\frac{4y^3}{x^x}$

• D.
$$\frac{\partial f}{\partial x} = -\frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{4y^3}{x}$

Consider the first-order differential equation $y' = \frac{y^7}{x}$. Which of the following best describes the regions in the *xy*-plane for which the differential equation would have a unique solution which passes through a point in the region?

- A. half-plane defined by either y < 0 or y > 0
- B. the quadrant with y < 0 and x > 0
- C. half-plane defined by either x < 0 or x > 0
- D. the quadrant with x < 0 and y > 0

Consider the first-order differential equation $y' = y^{\frac{2}{7}}$. Which of the following best describes the regions in the *xy*-plane for which the differential equation would have a unique solution which passes through a point in the region?

• A. half-plane defined by either x < 0 or x > 0

- B. half-plane defined by either y < 0 or y > 0
- C. the quadrant with y < 0 and x > 0
- D. the quadrant with x < 0 and y > 0

Consider the first-order differential equation $(x + y)y' = y^3$. Which of the following best describes the regions in the *xy*-plane for which the differential equation would have a unique solution which passes through a point in the region?

- A. the quadrant with y < 0 and x > 0
- B. half-plane defined by either y < -x or y > -x
- C. half-plane defined by either y < x or y > x
- D. the quadrant with x < 0 and y > 0

Consider the first-order differential equation $y' = \ln(y^2 - 4)$. For which point (x_0, y_0) below is it guaranteed that this differential equation has a unique solution at the point (x_0, y_0) ?

- A. $(x_0, y_0) = (1, 1)$
- B. $(x_0, y_0) = (1,3)$
- C. $(x_0, y_0) = (1, 2)$
- D. $(x_0, y_0) = (2, -2)$

1

Consider the first-order differential equation $y' = \ln(y^2 - 4)$. For which point (x_0, y_0) below is it guaranteed that this differential equation has a unique solution at the point (x_0, y_0) ?

- A. $(x_0, y_0) = (-2, -5)$
- B. $(x_0, y_0) = (5, 1)$
- C. $(x_0, y_0) = (0, 1)$
- D. $(x_0, y_0) = (1, -2)$

You should verify that $y = \frac{1}{x^2 + c}$ is a one-parameter family of solutions for the first-order differential equation $y' = -2xy^2$. Setting $f(x,y) = -2xy^2$ note also that f(x,y) and $\frac{\partial f}{\partial y} = -4xy$ are continous thoughout the entire xy-plane. Thus, for any point (x_0, y_0) in the xy-plane there exists an interval I such that there exists a unique solution which passes through (x_0, y_0) .

Find a solution from the family $y = \frac{1}{x^2 + c}$ and determine the largest interval I of definition for the solution of for the initial value condition $y(0) = -\frac{1}{9}$.

- A. $y = \frac{1}{x^2 + \frac{1}{0}}$; $(-\infty, \infty)$
- B. $y = \frac{1}{r^2 9}$; $(-\infty, -3)$ or $(3, \infty)$
- C. $y = \frac{1}{r^2 9}$; (-3,3)
- D. $y = \frac{1}{x^2 3}$; $(-\infty, -3)$ or $(3, \infty)$

8. (1 point)

You should verify that $y=\frac{1}{x^2+c}$ is a one-parameter family of solutions for the first-order differential equation $y'=-2xy^2$. Setting $f(x,y)=-2xy^2$ note also that f(x,y) and $\frac{\partial f}{\partial y}=-4xy$ are continous thoughout the entire xy-plane. Thus, for any point (x_0,y_0) in the xy-plane there exists an interval I such that there

exists a unique solution which passes through (x_0, y_0) .

Note, however, that there is no solution from the family $y = \frac{1}{x^2 + c}$ which satisfies y(0) = 0.

- (a) A solution for $y' = -2xy^2$ such that y(0) = 0 is $y = \underline{\hspace{1cm}}$
- (b) The largest interval of definition for y in part (a) is
 - Choose
 - All real numbers
 - All positive real numbers
 - All nonnegative real numbers

9. (1 point)

Solve the differential equation $\frac{dy}{dx} = \cos(5x)$ using separation of variables.

$$y =$$
______+ C

[NOTE: Remember to enter all necessary *, (, and) see help (syntax) for more information.]

10. (1 point)

Solve the differential equation $e^{9x} dy + dx = 0$ using separation of variables.

$$y = \underline{\hspace{1cm}} + C$$

[NOTE: Remember to enter all necessary *, (, and) see help (syntax) for more information.]

11. (1 point) Find the general solution of the differential equation $y' = e^{4x} - 9x$.

(Use C to denote the arbitrary constant.)

y = help (formulas)

12. (1 point) Find the general solution of the differential equation $x \frac{dy}{dx} = 5y$.

(Use *C* to denote the arbitrary constant.)

y = _____ help (formulas)

13. (1 point) Find the equation of the solution to $\frac{dy}{dx} = x^5y$ through the point (x,y) = (1,4).

(Don't forget to add 'y =' to your equation!)

__ help (equations)

14. (1 point) Find the general solution of the differential equation $\frac{dy}{dx} = e^{2x-9y}$.

(Use C to denote the arbitrary constant.)

y = _____ help (formulas)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America