Chapitre 4

Diagonalisation & trigonalisation

Première partie

Cours

1 (Ne pas) être diagonalisable

Définition 1:

Soit une matrice carrée A. On dit que A est diagonalisable s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que $P^{-1} \cdot A \cdot P$ est diagonale.

Exercice 2: 1. Montrons que la matrice $B=\begin{pmatrix}7&1\\0&7\end{pmatrix}$ n'est pas diagonalisable. Par l'absurde : on suppose qu'il existe $P\in \mathrm{GL}_2(\mathbb{R})$ et $(\lambda_1,\lambda_2)\in \mathbb{R}^2$ tels que

$$P^{-1} \cdot B \cdot P = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

On applique la trace tr et le déterminant det :

$$\operatorname{tr}(B) = \operatorname{tr} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \text{d'où} \quad \lambda_1 + \lambda_2 = 7 + 7 = 14 = s$$
$$\det(B) = \det \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \text{d'où} \quad \lambda_1 \times \lambda_2 = 7 \times 7 = 49 = p$$

D'où λ_1 et λ_2 sont des solutions de l'équation $X^2 - \mathfrak{L}X + p = 0$. Or

$$X^{2} - \lambda X + p = 0 \iff X^{2} - 14X + 49 = 0$$
$$\iff (X - 7)^{2} = 0$$
$$\iff X - 7$$

D'où

$$B = PP^{-1}BPP^{-1} = P\begin{pmatrix} 7 & 0\\ 0 & 7 \end{pmatrix}P^{-1} = P \cdot 7I_2 \cdot P^{-1} = 7I_2.$$

La matrice B n'est donc pas diagonalisable.

De même, montrons que la matrice A n'est pas diagonalisable. On remarque que

$$A \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Ainsi,

$$P^{-1} \cdot A \cdot P = \begin{pmatrix} 3 & 0 & 0 \\ 0 & ? & 0 \\ 0 & 0 & ? \end{pmatrix} \quad \text{où} \quad P = \begin{pmatrix} 1 & ? & ? \\ 1 & ? & ? \\ 1 & ? & ? \end{pmatrix}.$$

De même, $A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. D'où

$$P^{-1} \cdot A \cdot P = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & ? \end{pmatrix} \qquad \text{où} \qquad P = \begin{pmatrix} 1 & 1 & ? \\ 1 & 1 & ? \\ 1 & 0 & ? \end{pmatrix}.$$

Finalement, on en conclut que

$$P = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{et} \quad P^{-1} \cdot A \cdot P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} = D.$$

De plus, la matrice P est inversible car $\det P \neq 0$.

2. Pour calculer A^n , on pourrait chercher un polynôme annulateur Q de A, et on exprime $X^n = Q \times T_n + R_n$, et donc $A^n = R_n(A)$. Mais, on peut également diagonaliser A (si elle est diagonalisable). Ainsi,

$$D^{n} = (P^{-1} \cdot A \cdot P)^{n} = P^{-1} \cdot A \cdot P \cdot P \cdot A \cdot P = P^{-1} \cdot A^{n} \cdot P.$$

D'où $A^n = P \cdot D^n \cdot P^{-1}$. Or,

$$D^n = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^n = \begin{pmatrix} 3^n & 0 & 0 \\ 0 & 1^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}.$$

On calcule donc A^n en calculant l'inverse de P

$$A^{n} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 & 0 \\ 0 & 1^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} \cdot P^{-1}.$$

3.

$$\begin{aligned} u_{n+1} &= v_n + 2w_n \\ v_{n+1} &= u_n + 2w_n \\ w_{n+1} &= 3w_n \end{aligned} \iff \begin{pmatrix} u_{n+1} \\ v_{n+1} \\ w_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

$$\iff U_{n+1} &= A \cdot U_n$$

$$\iff U'_{n+1} &= D \cdot U'_n$$

où $D=P^{-1}\cdot A\cdot P,$ $U'_{n+1}=P\cdot U_{n+1}$ et $U'_n=P\cdot U_n.$

$$\iff \begin{pmatrix} u'_{n+1} \\ v'_{n+1} \\ w'_{n+1} \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} u'_n \\ v'_n \\ w'_n \end{pmatrix}$$

$$\iff \begin{cases} u'_{n+1} = 3u'_n \\ v'_{n+1} = v'_n \\ w'_{n+1} = -w'_n \end{cases}$$

$$\iff \begin{cases} u'_n = K \times 3^n \\ v'_n = L \\ w'_n = M \times (-1)^n \end{cases}$$

Ainsi,

$$\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}}_{P} \cdot \begin{pmatrix} K \times 3^n \\ L \\ M \times (-1)^n \end{pmatrix}.$$

D'où $u_n = K \cdot 3^n + L + M \cdot (-1)^n$, $v_n = K \times 3^n + L - M \cdot (-1)^n$ et $w_n = K \cdot 3^n$, où les constantes K, L et M sont des constantes fixées par les conditions initiales.

4.

$$\begin{aligned} x'(t) &= y(t) + 2z(t) \\ y'(t) &= x(t) + 2z(t) \\ z'(t) &= 3z(t) \end{aligned} \iff \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} x(t) \\ y(t) \\ y(t) \\ z(t) \end{pmatrix}$$

$$\iff X'(t) = A \cdot X(t)$$

$$\iff U'(t) = D \cdot U(t) \text{ avec } D = P^{-1} \cdot A \cdot P \text{ et } X(t) = P \cdot U(t)$$

$$\iff \begin{pmatrix} u'(t) \\ v'(t) \\ w'(t) \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix}$$

$$\iff \begin{cases} u'(t) = 3u(t) \\ v'(t) = v(t) \\ w'(t) = -w(t) \end{cases}$$

$$\iff \begin{cases} u(t) = K \cdot e^{3t} \\ v(t) = L \cdot e^t \\ w(t) = M \cdot e^{-t} \end{aligned}$$

Ainsi

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}}_{\mathcal{P}} \cdot \begin{pmatrix} K \times \mathrm{e}^{3t} \\ L \cdot \mathrm{e}^t \\ M \cdot \mathrm{e}^{-t} \end{pmatrix}.$$

D'où $x(t) = K \cdot e^{3t} + L \cdot e^t + M \cdot e^{-t}$, $y(t) = K \cdot e^{3t} + L \cdot e^t - M \cdot e^{-t}$ et $z(t) = K \cdot e^{3t}$. Les constantes K, L et M peuvent être déterminées à partir des conditions initiales.

Remarque (équations différentielles):

On considère l'équation différentielle (*): $x'(t) = \lambda \cdot x(t)$. Les fonctions $x: t \mapsto K \cdot e^{\lambda t}$ sont des solutions de cette équation. On peut utiliser la méthode de Lagrange : la méthode de la « variation de la constante. » On cherche des solutions sous la forme $x(t) = k(t) \cdot e^{\lambda t}$ (vision du physicien). D'où $k(t) = x(t)/e^{\lambda t}$ (vision du mathématicien). De plus, $x'(t) = k'(t)e^{\lambda t} + k(t)\lambda e^{\lambda t}$. Ainsi, on injecte ce k(t) dans l'équation différentielle :

$$(*) \iff k'(t)e^{\lambda t} + k(t)\lambda e^{\lambda t} = \lambda k(t)e^{\lambda t}$$
$$\iff k'(t)e^{\lambda t} = 0$$
$$\iff \exists K \in \mathbb{R} \ k(t) = K.$$

Les solutions trouvées dans l'exercice précédent sont donc les uniques solutions du système d'équations différentielles.

De même, pour résoudre une équation différentielle avec $2^{\underline{n}\underline{d}}$ membre de la forme

$$(**): x'(t) - \lambda \cdot x(t) = b(t).$$

La fonction $t \mapsto x(t)$ est une solution de l'équation sans $2^{\underline{n}\underline{d}}$ membre si et seulement si

$$\exists K \in \mathbb{R}, \ \forall t \in \mathbb{R}, \quad x(t) = K \cdot e^{\lambda t}.$$

Comment résoudre l'équation différentielle avec $2^{\underline{nd}}$ membre si on connaît la solution générale de l'équation sans $2^{\underline{nd}}$ membre ?

On utilise la méthode le la variation de la constante. Soit $x(t) = k(t) \cdot e^{\lambda t}$. Ainsi, en injectant cette expression de x dans l'équation (**), on trouve

$$(**) \iff k'(t)e^{\lambda t} + k(t) \cdot \lambda e^{\lambda t} = \lambda k(t)e^{\lambda t} + b(t)$$

$$\iff k'(t)e^{\lambda t} = b(t)$$

$$\iff k'(t) = b(t) \cdot e^{-\lambda t}$$

$$\iff k(t) = \int_0^t b(u) \cdot e^{-\lambda u} du + K$$

$$\iff x(t) = \left(\int_0^t b(u) \cdot e^{-\lambda u} du + K\right)e^{\lambda t}$$

$$\iff x(t) = \underbrace{\int_0^t b(u) \cdot e^{\lambda(t-u)} du}_{\text{solution particulière}} + \underbrace{K \cdot e^{\lambda t}}_{\text{solution générale de }}.$$

2 Valeurs & vecteurs propres

Définition 3:

Soit E un \mathbb{K} -espace vectoriel et $u:E\to E$ un endomorphisme.

- 1. On dit qu'un vecteur $\vec{x} \in E$ est un vecteur propre de u si \vec{x} n'est pas nul et $u(\vec{x})$ est colinéaire à $\vec{x} : \vec{x} \neq \vec{0}$ et $\exists \lambda \in \mathbb{K}, \ u(\vec{x}) = \lambda \vec{x}$.
- 2. On dit qu'un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe un vecteur non nul $\vec{x} \in E$ tel que $u(\vec{x}) = \lambda \vec{x}$.
- 3. L'ensemble des valeurs propres de u est appelé le spectre de u et est noté $\mathrm{Sp}(u).$

Définition 4:

Soit $n \in \mathbb{N}^*$ et A une matrice $n \times n$ à coefficients dans \mathbb{K} .

- 1. On dit qu'un vecteur colonne X est un vecteur propre de A si X n'est pas nul et $A \cdot X$ est colinéaire à $X: X \neq 0$ et $\exists \lambda \in \mathbb{K}, \ A \cdot X = \lambda X$.
- 2. On dit qu'un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de A s'il existe un vecteur colonne non nul X tel que $A \cdot X = \lambda X$.
- 3. L'ensemble des valeurs propres de A est appelé le spectre de A et est noté $\mathrm{Sp}(A)$.

DÉFINITION 5:

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u: E \to E$ un endomorphisme. On dit que u est diagonalisable s'il existe une base $(\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n)$ de E donc chaque vecteur est un vecteur propre de u:

$$\forall i \in [1, n], \qquad u(\vec{\varepsilon_i}) = \lambda_i \vec{\varepsilon_i}.$$

3 Le polynôme caractéristique

Proposition – Définition 6:

Soit $A \in \mathcal{M}_{n,n}(\mathbb{K})$ une matrice carrée. La fonction

$$\chi_A : \mathbb{K} \longrightarrow \mathbb{K}$$

$$x \longmapsto \det(xI_n - A)$$

est appelé le polynôme caractéristique de A. On a

$$\forall x \in \mathbb{K}, \quad \chi_A(x) = \det(xI_n - A) = x^n - (\operatorname{tr} A)x^{n-1} + \dots + (-1)^n \det A.$$

PREUVE:

On a

Proposition:

Si E est un \mathbb{K} -espace vectoriel de dimension finie, alors on peut définir le polynôme caractéristique d'un endomorphisme par

$$\chi_u(x) = \det(x \operatorname{id}_E - u).$$

Si
$$A = [u]_{\mathscr{B}}$$
, alors $xI_n - A = [x \operatorname{id}_E - u]_{\mathscr{B}}$ et donc $\chi_u = \chi_A$.

Preuve:

On pose A une matrice $n \times n$ et A' une matrice semblable à A. On pose $A' = P^{-1} \cdot A \cdot P$. On calcule $\det(xI_n - A')$:

$$\chi_{A'}(x) = \det(xI_n - A') = \det(xI_n - P^{-1} \cdot A \cdot P) = \det(P^{-1}(xI_n - A)P) = \det(xI_n - A) = \chi_A(x).$$

par télescopage.

Théorème 7:

Le polynôme caractéristique détecte les valeurs propres.

Soit A une matrice carrée de taille $n \times n$. Un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de A si et seulement si λ est une racine du polynôme caractéristique $\chi_A \in \mathbb{K}[X]$. Autrement dit,

$$\lambda \in \operatorname{Sp}(A) \iff \det(\lambda I_n - A) = 0.$$

Preuve:

Soit $\lambda \in \mathbb{K}$.

$$\lambda \in \operatorname{Sp}(A) \iff \exists X \neq 0, \quad A \cdot X = \lambda X$$

$$\iff \exists X \neq 0, \quad (A - \lambda I_n) \cdot X = 0$$

$$\iff \exists X \neq 0, \quad -(A - \lambda I_n) \cdot X = 0$$

$$\iff \operatorname{Ker}(\lambda I_n - A) \neq \{0_n\}$$

$$\iff \lambda I_n - A \text{ n'est pas inversible}$$

$$\iff \det(\lambda I_n - A) = 0$$

$$\iff \chi_A(\lambda) = 0.$$

Remarque (Attention):

Parfois, les racines d'un polynôme caractéristique peuvent être complexes et non réelles. Dans ce cas, afin d'éviter toute ambigüité, on écrit $\operatorname{Sp}_{\mathbb{R}}(A)$ pour les racines réelles et $\operatorname{Sp}_{\mathbb{C}}(A)$ pour les racines complexes.

Exercice 8: 1. On considère la matrice

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ f(\vec{\imath}) & f(\vec{\jmath}) & f(\vec{k}) \end{pmatrix} \vec{\vec{k}}.$$

On remarque que $f(\vec{\imath}) = \vec{\imath}$ donc $\vec{\imath}$ est un vecteur propre et 1 est une valeur propre. Soit $\lambda \in \mathbb{R}$.

$$\lambda \in \operatorname{Sp}(C) \iff \det(\lambda I_3 - C) = 0.$$

On calcule $\det(\lambda I_3 - C)$:

$$\det(\lambda I_3 - C) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}$$
$$= (\lambda - 1) \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix}$$
$$= (\lambda - 1)(\lambda^2 + 1)$$

Et donc

$$\lambda \in \mathrm{Sp}_{\mathbb{R}}(C) \iff \lambda = 1.$$

Attention : on ne peut pas en conclure que la matrice C n'est pas diagonalisable (il y a peut-être la même valeur propre 3 fois). On montre que la matrice C n'est pas diagonalisable dans $\mathbb R$ par l'absurde : si

$$P^{-1} \cdot C \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

alors, $C = P \cdot I_3 \cdot P^{-1} = I_3$, ce qui est absurde.

On cherche les valeurs propres dans $\mathbb C.$ Soit $\lambda \in \mathbb C.$

$$\lambda \in \operatorname{Sp}_{\mathbb{C}}(C) \iff (\lambda - 1)(\lambda - i)(\lambda + i) = 0$$

et donc

$$\lambda \in \operatorname{Sp}_{\mathbb{C}}(C) \iff \lambda \in \{1, i, -i\}$$
 i.e. $\operatorname{Sp}_{\mathbb{C}}(C) = \{1, i, -i\}.$

On peut utiliser la PROPOSITION 18 (mais on la verra plus tard...). On utilise une autre méthode (que l'on doit utiliser à chaque fois que l'on doit diagonaliser une matrice).

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{C}).$$

$$CX = iX \iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = i \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} x = ix \\ -z = iy \\ y = iz \end{cases}$$

$$\iff \begin{cases} x = 0 \\ z = -iy \\ y = iz \end{cases}$$

$$\iff \begin{cases} x = 0 \\ y = iz \end{cases} \quad \text{car } L_2 = -iL_3$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ iz \\ z \end{pmatrix} = z \cdot \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$$

$$\iff X \in \text{Vect} \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$$

De même, avec -i, on a

$$CX = -iX \iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -i \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} x = -ix \\ -z = -iy \\ y = iz \end{cases}$$

$$\iff \begin{cases} x = 0 \\ z = iy \\ y = -iz \end{cases}$$

$$\iff \begin{cases} x = 0 \\ y = -iz \end{cases}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -iz \\ z \end{pmatrix} = z \cdot \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$$

$$\iff X \in \text{Vect} \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$$

On pose $\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\varepsilon_2 = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$ et $\varepsilon_3 = \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$. De plus, $\det(\varepsilon_1, \varepsilon_2, \varepsilon_3) \neq 0$. D'où la matrice C est diagonalisable dans $\mathbb C$.

2. On considère la matrice

$$M = \begin{pmatrix} 7 & & & \sqrt{2} \\ & 7 & & \\ & & \ddots & \\ & & & 7 \end{pmatrix}.$$

La matrice M a pour polynôme caractéristique $\chi_M(x)$:

$$\chi_M(x) = \begin{vmatrix} x - 7 & & & -\sqrt{2} \\ & x - 7 & & \\ & & \ddots & \\ & & x - 7 & \end{vmatrix} = (x - 7) \cdot (x - 7) \cdots (x - 7) = (x - 7)^n.$$

Ι Cours

> Or, $\lambda \in \operatorname{Sp}(M)$ si et seulement si $\chi_M(\lambda) = 0$ et donc si et seulement si $\lambda = 7$. D'où $\operatorname{Sp}(M)=\{7\}$. On procède par l'absurde : si M est diagonalisable, il existe $P\in\operatorname{GL}_n(\mathbb{K})$, telle que $M=P^{-1}\cdot 7I_n\cdot P=P^{-1}\cdot P\cdot 7I_n=7I_n$, ce qui est absurde.

Remarque 9:

Si $A \in \mathcal{M}_{n,n}(\mathbb{R})$ (par exemple $A = \binom{0}{1} \binom{-1}{0}$), alors $\chi_A(X) \in \mathbb{R}_n[X]$ ($\chi_A(X) = X^2 + 1$, et donc $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$, mais $\operatorname{Sp}_{\mathbb{C}}(A) = \{-i,i\}$). Ainsi,

$$A \in \mathcal{M}_{n,n}(\mathbb{R}) \implies \forall \lambda \in \operatorname{Sp}_{\mathbb{C}}(A), \ \bar{\lambda} \in \operatorname{Sp}_{\mathbb{C}}(A).$$

Autrement dit, le spectre complexe d'une matrice réelle est stable par conjugaison. En effet, si $\lambda \in \mathrm{Sp}_{\mathbb{C}}(A)$, alors il existe $0 \neq X \in \mathcal{M}_{n,1}(\mathbb{C})$, tel $A \cdot X = \lambda X$. D'où

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \quad \text{et donc} \quad \begin{pmatrix} \bar{a}_{1,1} & \dots & \bar{a}_{1,n} \\ \vdots & \ddots & \vdots \\ \bar{a}_{n,1} & \dots & \bar{a}_{n,n} \end{pmatrix} \begin{pmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{pmatrix} = \bar{\lambda} \begin{pmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{pmatrix}.$$

Autrement dit, $A \cdot \bar{X} = \bar{\lambda} \bar{X}$ où $\bar{X} = \begin{pmatrix} z_1 \\ \vdots \\ \vdots \end{pmatrix}$. Or, $\bar{X} \neq 0$, et $A \cdot \bar{X} = \bar{\lambda} \bar{X}$. D'où \bar{X} est un

vecteur propre, et il est associé à $\bar{\lambda}$ qui est donc une valeur propre. Et même, dim SEP (λ) = $\dim \operatorname{SEP}(\bar{\lambda}).$

Proposition 10:

Soit $A \in \mathcal{M}_{n,n}(\mathbb{K})$ une matrice carrée.

- 1. Le spectre de A continent au plus n valeurs propres distinctes deux à deux.
- 2. Pour chaque valeur propre $\lambda \in \operatorname{Sp}(A)$, on note m_{λ} la multiplicité de la racine λ dans le polynôme χ_A . Si le polynôme caractéristique est scindé alors

$$\operatorname{tr} A = \sum_{\lambda \in \operatorname{Sp}(A)} m_{\lambda} \cdot \lambda \qquad \text{et} \qquad \det A = \prod_{\lambda \in \operatorname{Sp}(A)} \lambda^{m_{\lambda}}.$$

3. La matrice A et sa transposée ont le même polynôme caractéristique : $\chi_{A^{\top}}=\chi_{A},$ et donc le même spectre $Sp(A) = Sp(A^{\top})$.

Si la matrice A est diagonalisable, alors il existe un matrice inversible P telle que

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} = P^{-1} \cdot A \cdot P$$

et donc $\operatorname{tr} A = \operatorname{tr} D = \sum_{i=1}^n \lambda_i$ et $\det A = \det D = \prod_{i=1}^n \lambda_i$. Mais, dans la proposition précédente, on n'a pas l'hypothèse que la matrice est diagonalisable. Ce raisonnement est un cas particulier de la proposition précédente. En effet, si A est diagonalisable alors $\chi_A=\chi_D$:

$$\chi_A(X) = \chi_D(X)$$

$$\det(XI_n - A) = \det(XI_n - D)$$

$$= \det(XI_n - P^{-1}AP)$$

$$= \det\left(P^{-1} \cdot (XI_n - A) \cdot P\right)$$

$$= (X - \lambda_1) \cdots (X - \lambda_n)$$

Preuve: 3. On calcule

$$\chi_{A^{\top}}(x) = \det(xI_n - A^{\top})$$

$$= \det\left((xI_n - A)^{\top}\right)$$

$$= \det(xI_n - A)$$

car le déterminant est invariant par passage à la transposée. Or, comme $\chi_{A^\top}=\chi_A$, alors $\mathrm{Sp}(A)=\mathrm{Sp}(A^\top)$.

2. On sait d'après la proposition 6,

$$\chi_A(x) = x^n - \operatorname{tr}(A) x^{n-1} + \dots + (-1)^n \det(A).$$

Or, par hypothèse, χ_A est scindé d'où

$$\chi_A(x) = (x - \lambda_1)(x - \lambda_n) \cdots (x - \lambda_n).$$

Les scalaires $\lambda_1, \ldots, \lambda_n$ sont donc les valeurs propres de A. Ainsi, le coefficient devant le x^{n-1} est donc $-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$ et, le coefficient devant le x^0 est donc $(-\lambda_1)(-\lambda_2)\cdots(-\lambda_n)$. D'où, par identification

$$det(A) = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$$
 et $tr(A) = \lambda_1 + \cdots + \lambda_n$.

4 Les sous-espaces propres

Définition 11:

Soient E un sous-espace vectoriel et $u: E \to E$ un endomorphisme et λ une valeur propre de u. Le sous-espace vectoriel $\operatorname{Ker}(\lambda \operatorname{id}_E - u) = \operatorname{Ker}(u - \lambda \operatorname{id}_E)$ est appelé le sous-espace propre de u associé à la valeur propre λ . Il est parfois noté E_{λ} , ou $\operatorname{SEP}(\lambda)$.

Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$.

$$AX = \lambda X \iff AX - \lambda X = 0$$
$$\iff (A - \lambda I_n)X = 0$$
$$\iff X \in \operatorname{Ker}(A - \lambda I_n)$$

Attention, on ne dit pas que $SEP(\lambda)$ est l'ensemble des vecteurs propres associés à la valeur propre λ . En effet, $0 \in SEP(\lambda)$ mais 0 n'est pas un vecteur propre (par définition).

REMARQUE:

 $\operatorname{SEP}(\lambda)$ est un sous-espace vectoriel de E. En effet, c'est un noyau. Autre méthode : $0 \in \operatorname{SEP}(\lambda)$ car $A \cdot 0 = \lambda 0$ et $\operatorname{SEP}(\lambda)$ est stable par combinaisons linéaires (superposition), car si X_1 et X_2 sont deux éléments de $\operatorname{SEP}(\lambda)$, alors

$$A(\alpha X_1 + \beta X_2) = \alpha A X_1 + \beta A X_2 = \alpha \lambda X_1 + \beta \lambda X_2 = \lambda(\alpha X_1 + \beta X_2).$$

Exercice 12:

On considère la matrice

$$B = \begin{pmatrix} 7 & 1 \\ 0 & 7 \end{pmatrix}.$$

Cherchons les valeurs propres de ${\cal B}$:

$$\lambda \in \operatorname{Sp}(B) \iff \det(\lambda I_2 - B) = 0$$

$$\iff \begin{vmatrix} \lambda - 7 & -1 \\ 0 & \lambda - 7 \end{vmatrix} = 0$$

$$\iff (\lambda - 7)^2 = 0.$$

On en déduit que $Sp(B) = \{7\}$. Soit $X = \binom{x}{y} \in \mathcal{M}_{2,1}(\mathbb{K})$.

$$X \in \text{SEP}(7) \iff B \cdot X = 7X$$

$$\iff \begin{pmatrix} 7 & 1 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\iff \begin{cases} 7x + y = 7x \\ 7y = 7y \end{cases}$$

$$\iff y = 0$$

$$\iff X = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

On en déduit que SEP(7) = Vect $\binom{1}{0}$.

On considère à présent la matrice D :

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ f(\vec{\imath}) & f(\vec{\jmath}) & f(\vec{k}) \end{pmatrix} \vec{i}$$

Soit $\lambda \in \mathbb{K}$.

$$\lambda \in \operatorname{Sp}(D) \iff \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda & -1 \\ 0 & -1 & \lambda \end{vmatrix} = 0$$
$$(\lambda - 1)(\lambda^2 - 1) =$$
$$(\lambda - 1)(\lambda - 1)(\lambda + 1) =$$
$$(\lambda - 1)^2(\lambda + 1) =$$

D'où $\operatorname{Sp}(D) = \{1, -1\}$. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K})$.

$$X \in \text{SEP}(1) \iff D \cdot X = 1X$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} x = x \\ z = y \\ y = z \end{cases}$$

$$\iff y = z$$

$$\iff X = \begin{pmatrix} x \\ y \\ y \end{pmatrix}$$

$$\iff X = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Donc SEP(1) = Vect($\varepsilon_1, \varepsilon_2$). C'est un plan car ($\varepsilon_1, \varepsilon_2$) est une famille libre. De même pour SEP(-1).

Remarque 13:

Soit $u: E \to E$ un endomorphisme d'un espace vectoriel E.

- 1. Si $0 \in \text{Sp}(u)$, alors il existe un vecteur \vec{x} non nul tel que $\vec{x} \in \text{Ker}(u)$ et donc l'endomorphisme u n'est pas injectif.
- 2. Si $0 \notin \text{Sp}(u)$, alors $\text{Ker}(u) = \text{SEP}(0) = \{0\}$ (car $\text{SEP}(0) = \text{Ker}(0 \text{ id}_E u) = \text{Ker}(u)$ et donc l'endomorphisme u est injectif.

On en conclut que

$$u$$
 injectif $\iff 0 \not\in \operatorname{Sp}(u)$.

En particulier, en dimension finie, une matrice A est inversible si et seulement si $0 \not\in \operatorname{Sp}(A)$.

Exercice 14:

Dans cet exercice, E n'est pas forcément de dimension finie; on ne passe donc pas par des matrices

Remarque: l'application u est un automorphisme.

On compare les spectre de u et de u^{-1} . Soit $\lambda \in \mathbb{K}$.

$$\begin{split} \lambda \in \mathrm{Sp}(u) &\iff \exists \vec{x} \in E, \ \vec{x} \neq \vec{0} \text{ et } u(\vec{x}) = \lambda \vec{x} \\ &\iff \exists \vec{x} \neq \vec{0}, \ u^{-1}(u(\vec{x})) = \vec{x} = \lambda u^{-1}(\vec{x}) \text{ en appliquant } u^{-1} \\ &\iff \exists \vec{x} \neq \vec{0}, \ \frac{1}{\lambda} \vec{x} = u^{-1}(\vec{x}) \\ &\iff \frac{1}{\lambda} \in \mathrm{Sp}(u^{-1}) \end{split}$$

On peut diviser car $\lambda \neq 0$ car $0 \notin \operatorname{Sp}(u)$ car u est injectif.

De plus,

$$\operatorname{Ker}(\lambda \operatorname{id} - u) = \operatorname{Ker}\left(\frac{1}{\lambda} \operatorname{id} - u^{-1}\right)$$

car le vecteur \vec{x} ne change pas dans les équivalents précédents.

Proposition 15:

Soit $u: E \to E$ un endomorphisme d'un espace vectoriel E. On a

$$\forall \lambda \in \mathrm{Sp}(u), \qquad 1 \leqslant \dim \, \mathrm{SEP}(\lambda) \leqslant m_{\lambda}$$

où m_{λ} est la multiplicité de la racine λ dans le polynôme caractéristique.

PREUVE:

Tout d'abord, on sait que $\dim(\operatorname{SEP}(\lambda)) \geqslant 1$ car il existe un vecteur propre, donc un vecteur non nul dans $\operatorname{SEP}(\lambda)$.

De plus, si dim(SEP(λ)) = d, alors il existe ($\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_d$) soit une base de SEP(λ). On peut compléter cette base de SEP(λ) en une base de $E: (\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_d, \vec{\epsilon}_{d+1}, \dots, \vec{\epsilon}_n)$. Ainsi,

$$A \rightsquigarrow A' = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda \end{pmatrix} \begin{pmatrix} \vec{\varepsilon}_1 \\ \vec{\varepsilon}_2 \\ \vdots \\ \vec{\varepsilon}_d \\ \vec{e}_{d+1} \\ \vec{e}_{d+2} \\ \vdots \\ \vec{e}_n \end{pmatrix}$$

et donc

$$\begin{split} \chi_{A'}(x) &= \chi_A(x) \\ &= (x-\lambda)^d \times P(x) \\ &= (x-\lambda)^{m_\lambda} \times R(x) \text{ où } R(x) \text{ n'a pas de facteurs en } (x-\lambda) \end{split}$$

Proposition 16

Soit $u:E\to E$ un endomorphisme d'un espace vectoriel E. Si des valeurs propres sont distinctes deux à deux, alors les vecteurs propres associés sont libres. Autrement dit, les sous-espaces propres sont en somme directe.

Attention: les sous-espaces propres ne sont pas supplémentaires.

Preuve (méthode 1):

Soit $\vec{x}_1 \in \text{SEP}(\lambda_1)$, $\vec{x}_2 \in \text{SEP}(\lambda_2)$,..., $\vec{x}_r \in \text{SEP}(\lambda_r)$ tels que $\vec{x}_1 \neq \vec{0}$, $\vec{x}_2 \neq \vec{0}$,..., $\vec{x}_r \neq \vec{0}$. Ainsi $u(\vec{x}_1) = \lambda_1 \vec{x}_1$, $u(\vec{x}_2) = \lambda_2 \vec{x}_2$,..., et $u(\vec{x}_r) = \lambda_r \vec{x}_r$. Soient $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$. On suppose $\alpha_1 \vec{x}_1 + \cdots + \alpha_r \vec{x}_r = \vec{0}$ (L_1). Alors,

$$u(\alpha_1 \vec{x}_1 + \dots + \alpha_r \vec{x}_r = \vec{0}) = u(\vec{0}) = \vec{0}$$

d'où $\alpha \lambda_1 \vec{x}_1 + \alpha_2 \lambda_2 \vec{x}_2 + \dots + \alpha_r \lambda_r \vec{x}_r = \vec{0}$ (L₂). D'où, en calculant $L_2 - \lambda_r L_1$, on a

$$\alpha_1(\lambda_1 - \lambda_r)\vec{x}_1 + \alpha_2(\lambda_2 - \lambda_r)\vec{x}_2 + \dots + \alpha_{r-1}(\lambda_{r-1} - \lambda_r)\vec{x}_{r-1} = \vec{0}.$$

Par récurrence, pour r=1, c'est vrai : la famille (\vec{x}_1) est libre. On suppose la propriété vraie pour r-1 vecteurs. On veut le prouver pour r vecteurs. En utilisant le calcul ci-dessus, comme les valeurs propres sont distinctes deux à deux, on en déduit que $\alpha_1=\alpha_2=\cdots=\alpha_{r-1}=0$. Or, d'après L_1 , $\alpha_r=0$.

Preuve (méthode 2):

On sait que $SEP(\lambda_1) = Ker(\lambda_1 \operatorname{id} - u)$, $SEP(\lambda_2) = Ker(\lambda_2 \operatorname{id} - u)$,... Or, $\lambda_2 \operatorname{id} - u$ est un polynôme $P_1(u)$, et de même pour $P_2(u)$, $P_3(u)$,... Les r polynômes sont premiers entre-eux car $\lambda_1, \lambda_2, \ldots, \lambda_r$ sont distinct deux à deux. D'où, d'après le lemme des noyaux,

$$\operatorname{Ker}\left(P(u)\right) = \bigoplus_{k=1}^{n} \operatorname{Ker}\left(P_k(u)\right)$$

où $P=P_1\times P_2\times \cdots \times P_r$. La somme des sous-espaces propres est donc directe.

Exercice 17:

Soient $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ distincts deux à deux. Montrons que, si $\forall x \in \mathbb{R}$, $\alpha_1 e^{\lambda_1 x} + \cdots + \alpha_r e^{\lambda_r x} = 0$, alors $\alpha_1 = \cdots = \alpha_r$. On peut procéder de différentes manières : le déterminant de Vandermonde, par analyse-sythèse, ou, en utilisant

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\lambda_k x}\right) = \lambda_k \mathrm{e}^{\lambda_k x}, \quad \mathrm{d'où} \quad \varphi(f_k) = \lambda_k f_k, \text{ avec } f_k : x \mapsto \mathrm{e}^{\lambda_k x} \quad \text{et} \quad \varphi : f \mapsto f'.$$

On doit vérifier que les f_k sont des vecteurs et l'application φ soit un endomorphisme. On se place donc dans l'espace vectoriel \mathscr{C}^{∞} . (On ne peut pas se placer dans l'espace \mathscr{C}^k , car sinon l'application φ est de l'espace \mathscr{C}^k à \mathscr{C}^{k-1} , ce n'est donc pas un endomorphisme ; ce n'est pas le cas pour l'espace \mathscr{C}^{∞} .) Or, les λ_k sont distincts deux à deux d'où les vecteurs propres f_k sont linéairement indépendants. Et donc si $\alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_r f_r = 0$ alors $\alpha_1 = \cdots = \alpha_r = 0$. Mais, comme $\forall x \in \mathbb{R}$, $\alpha_1 f_1(x) + \alpha_2 f_2(x) + \cdots + \alpha_r f_r(x) = 0$, on en déduit que

$$\alpha_1 = \dots = \alpha_r = 0.$$

5 Critères de diagonalisabilité

Proposition 18 (une condition <u>suffisante</u> pour qu'une matrice soit diagonalisable): Soit A une matrice carrée de taille $n \ge 2$. Si A possède n valeurs propres distinctes deux à deux, <u>alors</u> A est diagonalisable.

Remarque:

La réciproque est fausse : par exemple, pour n > 1, $7I_n$ est diagonalisable car elle est diagonale. Mais, elle ne possède pas n valeurs propres distinctes deux à deux.

Preuve:

On suppose que la matrice $A \in \mathcal{M}_{n,n}(\mathbb{K})$ possède n valeurs propres distinctes deux à deux (i.e. Card $\operatorname{Sp}(A) = n$). D'où, d'après la proposition 16, les n vecteurs propres associés $\varepsilon_1, \ldots, \varepsilon_n$ sont libres. D'où $(\varepsilon_1, \ldots, \varepsilon_n)$ est une base formée de vecteurs propres. Donc, d'après la définition 5, la matrice A est diagonalisable.

Théorème 19 (conditions <u>nécessaires et suffisantes</u> pour qu'une matrice soit diagonalisable): Soient E un espace vectoriel de dimension finie et $u: E \to E$ un endomorphisme. Alors,

(1)
$$u$$
 diagonalisable $\iff E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{Ker}(\lambda \operatorname{id}_E - u)$ (2) $\iff \dim E = \sum_{\lambda \in \operatorname{Sp}(u)} \dim(\operatorname{SEP}(\lambda))$ (3) $\iff \chi_u \text{ scind\'e et } \forall \lambda \in \operatorname{Sp}(u), \dim(\operatorname{SEP}(\lambda)) = m_\lambda$ (4)

où m_λ est la multiplicité de la racine λ du polynôme $\chi_u.$

PREUVE: "(1) \Longrightarrow (2)" On suppose u diagonalisable. Il existe donc une base $(\varepsilon_1, \ldots, \varepsilon_n)$ de E formée de vecteurs propres de u. On les regroupes par leurs valeurs propres : $(\varepsilon_i, \ldots, \varepsilon_{i+j})$ forme une base de $\text{SEP}(\lambda_k)$. D'où la base $(\varepsilon_1, \ldots, \varepsilon_n)$ de l'espace vectoriel E est une concaténation des bases des sous-espaces propres de u. D'où

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} \mathrm{SEP}(\lambda).$$

- "(2) \Longrightarrow (1)" On suppose que $E = \text{SEP}(\lambda_1) \oplus \text{SEP}(\lambda_2) \oplus \cdots \oplus \text{SEP}(\lambda_r)$. Soient $(\varepsilon_1, \ldots, \varepsilon_{d_1})$ une base de $\text{SEP}(\lambda_1)$, $(\varepsilon_{d_1+1}, \ldots, \varepsilon_{d_1+d_2})$ une base de $\text{SEP}(\lambda_2)$, ..., $(\varepsilon_{d_1+\cdots+d_{r-1}+1}, \ldots, \varepsilon_{d_1+\cdots+d_r})$ une base de $\text{SEP}(\lambda_r)$. En concaténant ces base, on obtient une base de E, d'après l'hypothèse. Dans cette base, tous les vecteurs sont propres donc u est diagonalisable.
- "(2) \Longrightarrow (3)" On suppose $E = \text{SEP}(\lambda_1) \oplus \text{SEP}(\lambda_2) \oplus \cdots \oplus \text{SEP}(\lambda_r)$. D'où

$$\dim E = \dim(\operatorname{SEP}(\lambda_1)) + \dim(\operatorname{SEP}(\lambda_2)) + \dots + \dim(\operatorname{SEP}(\lambda_r))$$

car la dimension d'une somme directe est égale à la somme des dimensions.

"(3) \Longrightarrow (1)" On suppose $\dim E = \dim(\operatorname{SEP}(\lambda_1)) + \dim(\operatorname{SEP}(\lambda_2)) + \cdots + \dim(\operatorname{SEP}(\lambda_r))$. Or, les sous-espaces propres sont en somme directe, d'après la proposition 16. D'où $\dim\left(\sum_{\lambda\in\operatorname{Sp}(u)}\operatorname{SEP}(\lambda)\right) = \sum_{\lambda\in\operatorname{Sp}(u)}\dim(\operatorname{SEP}(\lambda))$. Donc $\sum_{\lambda\in\operatorname{Sp}(u)}\operatorname{SEP}(\lambda) = E$.

"(4) \Longrightarrow (3)" On suppose (a) χ_u scindé et (b) dim(SEP(λ)) = m_{λ} . D'où, d'après (a) :

$$\chi_u(x) = (x - \lambda_1)^{m_{\lambda_1}} (x - \lambda_2)^{m_{\lambda_2}} \cdots (x - \lambda_r)^{m_{\lambda_r}} = x^n + \cdots$$

d'où $m_{\lambda_1} + m_{\lambda_2} + \cdots + m_{\lambda_r} = n$, et d'où

$$\dim(\operatorname{SEP}(\lambda_1)) + \dim(\operatorname{SEP}(\lambda_2)) + \dots + \dim(\operatorname{SEP}(\lambda_r)) = n$$

d'après l'hypothèse (b).

"(1) \Longrightarrow (4)" On suppose u diagonalisable. D'où, dans une certaine base \mathscr{B} , la matrice $\llbracket u \rrbracket_{\mathscr{B}}$ est diagonale. Quitte à changer l'ordre des éléments de $\mathscr{B} = (\varepsilon_1, \dots, \varepsilon_r)$, on peut supposer que $\llbracket u \rrbracket_{\mathscr{B}}$ est de la forme

D'où $\forall k \in \llbracket 1, r \rrbracket, \ d_k = \dim(\operatorname{SEP}(\lambda_k))$. En outre, $\chi_u(x) = \det(x \operatorname{id} - u) = (x - \lambda_1)^{d_1} \cdot (x - \lambda_2)^{d_2} \cdot \cdot \cdot (r - \lambda_r)^{d_r}$. D'où $\forall k \in \llbracket 1, r \rrbracket, \ d_k = m_{\lambda_k} \text{ et } \chi_u \text{ est scindé.}$

Exercice 20:

On considère la matrice E ci-dessous

$$E = \begin{pmatrix} 7 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$$

La matrice E ci-dessous est-elle diagonalisable?

Soit $\lambda \in \mathbb{R}$. On sait que $\lambda \in \operatorname{Sp}(E)$ si et seulement si $\det(\lambda I_3 - E) = 0$. Or

$$\det(\lambda I_3 - E) = \begin{vmatrix} \lambda - 7 & 0 & -1 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 7 \end{vmatrix} = (\lambda - 7)^2 \cdot (\lambda - 3)^1.$$

Donc $\operatorname{Sp}(E) = \{3,7\}, 1 \leq \dim\left(\operatorname{SEP}(3)\right) \leq 1$, et $1 \leq \dim\left(\operatorname{SEP}(7)\right) \leq 2$. La matrice E est diagonalisable si et seulement si $\dim(\operatorname{SEP}(3)) + \dim(\operatorname{SEP}(7)) = 3$, donc si et seulement si

 $\dim(\text{SEP}(7)) = 2$. On cherche donc la dimension de ce sous-espace propre : soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On sait que

$$X \in \text{SEP}(7) \iff E \cdot X = 7X$$

$$\iff \begin{pmatrix} 7 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} 7x + 0y + 1z = 7x \\ 3y = 7y \\ 7z = 7z \end{cases}$$

$$\iff \begin{cases} z = 0 \\ y = 0 \end{cases}$$

$$\iff X = \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} = x \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{\varepsilon_1}$$

Donc $SEP(7) = Vect(\varepsilon_1)$, d'où dim(SEP(7)) = 1. Donc la matrice E n'est pas diagonalisable.

6 Trigonalisation

Trigonaliser une matrice ne sert que si la matrice n'est pas diagonalisable.

Définition 21:

On dit d'une matrice carrée $A \in \mathcal{M}_{n,n}(\mathbb{K})$ qu'elle est trigonalisable s'il existe une matrice inversible P telle que $P^{-1} \cdot A \cdot P$ est triangulaire :

$$P^{-1} \cdot A \cdot P = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & 0 & \ddots & \\ & & & \lambda_r \end{pmatrix}.$$

Remarque 22:

Ø

Тне́опѐме 23:

Une matrice carrée $A\in\mathcal{M}_{n,n}(\mathbb{K})$ est trigonalisable si et seulement si son polynôme caractéristique $\chi_A\in\mathbb{K}[X]$ est scindé.

Preuve (par récurrence sur n, la largeur de la matrice): — Si n=1, alors la matrice $A=(a_{11})$ est déjà triangulaire.

— On suppose le polynôme caractéristique χ_A de la matrice scindé dans $\mathbb{K}[X]$, d'où il a au moins une racine dans \mathbb{K} . D'où, la matrice A a au moins une valeur propre $\lambda_1 \in \mathbb{K}$. Il existe donc un vecteur non nul $\vec{\varepsilon}_1$ tel que $A \cdot \vec{\varepsilon}_1 = \lambda_1 \vec{\varepsilon}_1$. On complète $(\vec{\varepsilon}_1)$ en une base de $\mathbb{K}^n : (\vec{\varepsilon}_1, \vec{e}_2, \dots, \vec{e}_n)$. En changent de base, il existe une matrice inversible P telle que

$$A' = P^{-1} \cdot A \cdot P = \begin{pmatrix} \lambda_1 & * \dots & * \\ \hline 0 & & & \\ \vdots & & B & \\ 0 & & & & \vdots \\ 0 & & & f(\vec{e}_1) & f(\vec{e}_1) & \dots & f(\vec{e}_n) \end{pmatrix} \underbrace{e_1}_{e_1} \underbrace{e_1}_{\vdots} \underbrace{\vdots}_{e_n}$$

Comme le polynôme caractéristique est invariant par changement de base, on en déduit que

$$\chi_A(x) = \chi_{A'}(x) = \begin{vmatrix} x - \lambda_1 & * \\ 0 & xI_{n-1} - B \end{vmatrix} = (x - \lambda_1) \cdot \Pi(x).$$

Or, comme χ_A est scindé, $\Pi(x)$ est aussi scindé. Or, $\Pi(x)=\det(xI_{n-1}-B)$ d'où B est trigonalisable.

Corollaire 24:

Toute matrice de $\mathcal{M}_{n,n}(\mathbb{C})$ est trigonalisable.

Exercice 25:

Soit une matrice carrée $A \in \mathcal{M}_{n,n}(\mathbb{K})$ (où \mathbb{K} est \mathbb{R} ou \mathbb{C}). Montrer que

(1) la matrice A est nilpotente \iff le polynôme caractéristique de A est $\chi_A(X) = X^n$ (2) \iff la matrice A est trigonalisable avec des zéros sur sa diagonale (3)

On montre "(1) \implies (2)," "(2) \implies (3)" puis "(3) \implies (1)."

- "(3) \Longrightarrow (1)" Il existe donc une matrice inversible P telle que $T=P^{-1}\cdot A\cdot P$ et T est une matrice trigonalisable. Or, à chaque produit $A^n\cdot A$, une « sur-diagonalse » de zéros supplémentaires. D'où, à partir d'un certain rang p, on a $A^p=0$. La matrice A est donc nilpotente.
- "(2) \Longrightarrow (3)" On sait que $\chi_A = X^n = (X 0)^n$ est scindé, d'où A est trigonalisable. Il existe donc une matrice inversible P telle que

$$P^{-1} \cdot A \cdot P = A' = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}.$$

Et donc $\chi_{A'}(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$. Or, le polynôme caractéristique est invariant par changement de base, d'où $\lambda_1 = \lambda_2 = \cdots = \lambda_n$.

"(1) \Longrightarrow (2)" On passe dans $\mathbb C$ alors χ_A est scindé dans $\mathbb C$. D'où, il existe $(\lambda_1,\lambda_2,\dots,\lambda_n)\in\mathbb C^n$ tels que

$$\chi_A(X) = (X - \lambda_1)(X - \lambda_2) \cdots (X - \lambda_n).$$

D'où, chaque λ_i est une valeur propre <u>complexe</u> de la matrice A. Or A est nilpotente, d'où, par définition, il existe $p \in \mathbb{N}$ tel que $A^p = 0$. Les scalaires λ_i sont dans le spectre de A: en effet, il existe un vecteur colonne X non nul tel que $A \cdot X = \lambda_i X$, d'où $A^2 \cdot X = A \cdot AX = A \cdot \lambda_i X = \lambda_i^2 X$. De même, $A^3 \cdot X = A \cdot A^2 \cdot X = A \cdot \lambda_i^2 X = \lambda_i^2 (A \cdot X) = \lambda_i^3 X$. Et, de « proche en proche », on a donc

$$\forall k \in \mathbb{N}, \ A^k \cdot X = \lambda_i^k X.$$

En particulier, si k=p, on a $0=0\cdot X=A^p\cdot X=\lambda_i^p X$. D'où $\lambda_i^p X=0$. Or, $X\neq 0$, d'où $\lambda_i^p=0$ et donc $\lambda_i=0$. Finalement, $\chi_A(X)=(X-\lambda_1)\cdots(X-\lambda_n)=(X-0)\cdots(X-0)=X^n\in\mathbb{C}[X]$. On a donc $\chi_A(X)\in\mathbb{R}[X]$.

7 Le théorème de CAYLEY & HAMILTON et les sous-espaces caractéristiques

Théorème 26 (de Cayley & Hamilton):

Le polynôme caractéristique d'une matrice $A\in \mathcal{M}_{n,n}(\mathbb{K})$ est un polynôme annulateur de cette matrice :

$$\chi_A(A) = 0.$$

Rappel:

Un polynôme P est annulateur de la matrice A si et seulement si P divise μ_A .

Corollaire 27:

Le polynôme minimal divise le polynôme caractéristique.

Exercice 28:

Déterminer le polynôme minimal de la matrice E de l'exercice 20:

$$E = \begin{pmatrix} 7 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$$

Ι Cours

On doit donc déterminer le polynôme unitaire de degré minimal annulateur de E. D'après le théorème de Cayley & Hamilton, χ_E est un polynôme annulateur. Or, $\chi_E(X)=(X-7)^2\,(X-3)$ car c'est un déterminant triangulaire. D'où $\mu_E(X)$ est égal à $(X-7)^2\,(X-3)$ ou (X-7)(X-3) ou $(X-7)^2$ ou (X-7) ou (X-3). Or,

$$(E - 7I_3) \cdot (E - 3I_3) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} * & * & 4 \\ * & * & * \\ * & * & * \end{pmatrix} \neq 0_{\mathcal{M}_{3,3}(\mathbb{K})}$$

Ainsi, $\mu_A(X) \neq (X - 7)(X - 3)$ et $\mu_A(X) \neq (X - 7)$. Et,

$$(E - 3I_3)^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} * & * & * \\ * & 16 & * \\ * & * & * \end{pmatrix} \neq 0_{\mathcal{M}_{3,3}(\mathbb{K})}.$$

Ainsi, $\mu_A(X) \neq (X-3)^2$ et aussi $\mu_A(X) \neq (X-3)$. On en déduit que $\mu_A = \chi_E$.

Définition 29:

Si le polynôme caractéristique d'une matrice $A \in \mathcal{M}_{n,n}(\mathbb{K})$ est scindé, alors le sous-espace caractéristique de A associé à chaque valeur propre λ est

$$C_{\lambda} = \operatorname{Ker}(\lambda I_n - A)^{m_{\lambda}},$$

où m_{λ} est la multiplicité de la racine λ dans le polynôme caractéristique.

Proposition 30:

Les sous-espaces caractéristiques sont supplémentaires :

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(A)} C_{\lambda}$$

et de dimensions dim $C_{\lambda} = m_{\lambda}$.

Comme le polynôme χ_A est scindé, alors

$$\chi_A(X) = (X - \lambda_1)^{m_{\lambda_1}} \times \dots \times (X - \lambda_r)^{m_{\lambda_r}}$$

et donc, d'après le théorème des noyaux,

$$\operatorname{Ker}\left(\chi_A(M)\right) = \bigoplus_{\lambda \in \operatorname{Sp}(A)} \operatorname{Ker}\left(M - \lambda I_n\right)^{m_{\lambda}}$$

car les polynômes $(X - \lambda_i)$ sont premiers deux à deux. En particulier, si M = A, alors

sous-espace caractéristique de
$$A$$
 associé à $\lambda:C_\lambda$
$$E=\bigoplus_{\lambda\in\operatorname{Sp}(A)} \widecheck{\operatorname{Ker}\left((\lambda I_n-A)^{m_\lambda}\right)}.$$

Polynômes annulateurs

Si $\vec{x} \in E$ est un vecteur propre de $u \in \mathcal{L}(E)$, associé à la valeur propre $\lambda \in \mathbb{K}$, alors

$$u^{2}(\vec{x}) = u(u(\vec{x})) = u(\lambda \vec{x}) = \lambda u(\vec{x}) = \lambda^{2} \vec{x}.$$

Ainsi, par récurrence,

$$\forall k \in \mathbb{N}^*, \quad u^k(\vec{x}) = \lambda^k \, \vec{x}.$$

Mais, comme $u^0=\mathrm{id}_E$, on a donc $u^0(\vec{x})=\mathrm{id}_E(\vec{x})=\vec{x}=\lambda^0\vec{x}$, et le résultat précédent est également vrai pour k=0. Par linéarité, si $P(X)=a_0+a_1X+\cdots+a_dX^d$, alors $P(u) = a_0 \operatorname{id}_E + a_1 u + \dots + a_d u^d, \text{ et donc } P(u)(\vec{x}) = a_0 \vec{x} + a_1 \lambda \vec{x} + \dots + a_d \lambda^d \vec{x} = P(\lambda) \vec{x}.$

Proposition 31 (très souvent utile):

Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de $u \in \mathcal{L}(E)$. Si λ est une valeur propre de u (i.e. P(u) = 0), alors λ est racine de P:

$$\forall \lambda \in \mathbb{K}, \qquad \lambda \in \operatorname{Sp}(u) \quad \Longrightarrow \quad P(\lambda) = 0.$$

Autrement dit, le spectre de u est inclus dans l'ensemble des racines d'un polynôme annulateur de u. Mais, en général, il n'y a pas égalité.

Remarque:

La réciproque de la proposition est fausse. Par exemple, (X-1)(X-7) est annulateur de I_n , mais $Sp(I_n) = \{1\} \subseteq \{1,7\}$, qui est l'ensemble des racines de (X-1)(X-7).

PREUVE:

Si \vec{x} est un vecteur propre de u associé à la valeur propre λ (i.e. $\vec{x} \neq \vec{0}$ et $u(\vec{x}) = \lambda \vec{x}$), alors $P(\lambda) = 0$ car $\vec{x} \neq \vec{0}$.

Néanmoins, il y a égalité pour certains polynômes : le polynôme caractéristique (d'après le théorème 7), et le polynôme minimal (dans la proposition 32, suivante).

Proposition 32.

Le spectre de u est égal à l'ensemble des racines du polynôme minimal (qui a donc les même racines que le polynôme caractéristique).

Preuve: Méthode 1 (à l'aide du théorème de Cayley et Hamilton) On veut montrer que le polynôme caractéristique et le polynôme minimal ont les même racines.

- Tout d'abord, On sait que le polynôme minimal divise le polynôme caractéristique. Ainsi, il existe un polynôme Q, tel que $\chi_A(X) = \mu_A(X) \times Q(X)$. Ainsi, toute racine du polynôme minimal μ_A est aussi racine du polynôme caractéristique χ_A .
- Puis, soit λ une racine de χ_A . D'où λ est une valeur propre de A. D'où $\lambda \in \operatorname{Sp}(A)$. Or, le spectre de A est inclus dans l'ensemble des racines de μ_A car μ_A est polynôme annulateur (d'après la proposition 31). D'où λ est racine de μ_A .

MÉTHODE 2 (sans le théorème de CAYLEY et HAMILTON)

- La démonstration précédente n'utilisant pas, dans ce sens là, le théorème de Cay-LEY et Hamilton. On sait donc que l'ensemble des racines de χ_A est inclus dans l'ensemble des racines de μ_A .

Тне́опѐме 33:

Une matrice A est

- 1. trigonalisable <u>si et seulement</u> si elle possède un polynôme annulateur scindé;
- 2. diagonalisable $\underline{\rm si}$ et seulement $\underline{\rm si}$ elle possède un polynôme annulateur scindé à racines simples.

Rappel:

Une matrice A est trigonalisable si et seulement si

- χ_A scindé (théorème 3);
- elle possède un polynôme annulateur scindé (théorème 33).

Une matrice ${\cal A}$ est diagonalisable si et seulement si

- $\sum_{\lambda \in \operatorname{Sp}(A)} \operatorname{dim}(\operatorname{SEP}(\lambda))$ est la taille de la matrice A (théorème 19);
- les sous-espaces propres sont supplémentaires;
- χ_A est scindé et $\forall \lambda \in \operatorname{Sp}(A)$, $\dim(\operatorname{SEP}(\lambda)) = m_{\lambda}$;
- elle possède un polynôme annulateur scindé à racines simples (théorème 33).

Une matrice A est diagonalisable si Card(Sp(A)) est la taille de la matrice A.

Exercice 34:

Soit $n \ge 2$. Montrer que la matrice

$$J = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n,n}(\mathbb{K})$$

est diagonalisable, déterminer son spectre et ses sous-espaces propres.

Secret (pour plus tard) la matrice J est symétrique, donc diagonalisable.

On remarque que
$$J \begin{pmatrix} 1 \\ \vdots \\ i \end{pmatrix} = (n-1) \begin{pmatrix} 1 \\ \vdots \\ i \end{pmatrix}$$
, et $J + I_n = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ i & \dots & 1 \end{pmatrix}$, d'où $\operatorname{rg}(J + I_n) = 1$, et

donc d'après le théorème du rang, dim $\operatorname{Ker}(J+I_n)=n-1=\dim \operatorname{Ker}(J-\lambda I_n)$, avec $\lambda=-1$. D'où dim $\operatorname{SEP}_J(-1)+\dim \operatorname{SEP}_j(n-1)=n$ qui est la taille de J donc J est diagonalisable.

Autre méthode : on a déjà fait ça au chapitre II. :

$$(J+I_n)^2 = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}^2 = \begin{pmatrix} n & \dots & n \\ \vdots & \ddots & \vdots \\ n & \dots & n \end{pmatrix} = n(I_n+J).$$

D'où $I_n+2J+J^2=nI_n+nJ$. D'où $J^2-(n-2)J-(n-1)I_n=0$. Ainsi le polynôme $P(X)=X^2-(n-2)X-(n-1)$ est annulateur de la matrice J. Or, $P(X)=(X+1)\left(X-(n-1)\right)$ est scindé à racines simples. D'où la matrice J est diagonalisable.

D'où $Sp(J) \subset \{-1, n-1\}.$

. . .

9 Stabilité

Rappel:

Un sous-espace vectoriel F de E est stable par un endomorphisme $u:E\to E$ si et seulement si

$$\forall \vec{x} \in E, \ \vec{x} \in F \implies u(\vec{x}) \in F \quad \text{i.e.} \quad u(F) \subset F.$$

Alors, $u\big|_F$ est l'endomorphisme induit par u sur F, ceci est parfois noté $u\big|_F^F:F\to F$.

Proposition 35:

Soit E un \mathbb{K} -espace vectoriel. Soit $\vec{a} \in E$ non nul, et $u: E \to E$ un endomorphisme.

Si la droite $\text{Vect}(\vec{a})$ est stable par l'endomorphisme u alors il existe $\lambda \in \mathbb{K}$ tel que $u(\vec{a}) = \lambda \vec{a}$, et donc \vec{a} est un vecteur propre de u.

Réciproquement, si \vec{a} est un vecteur propre de u, alors il existe $\lambda \in \mathbb{K}$ tel que $u(\vec{a}) = \lambda \vec{a}$.

Soit $\vec{x} \in \text{Vect}(\vec{a})$. Ainsi, il existe $\alpha \in \mathbb{K}$ tel que $\vec{x} = \alpha \vec{a}$. D'où $u(\vec{x}) = u(\alpha \vec{a}) = \alpha u(\vec{a}) = \alpha \lambda \vec{a}$ par hypothèse. D'où $u(\vec{x}) \in \text{Vect}(\vec{a})$ et donc $\text{Vect}(\vec{a})$ est stable par u.

Exercice 36 (Tarte à la crème):

Soit E un \mathbb{R} -espace vectoriel de dimension finie, et $u:E\to E$ un endomorphisme. Montrons qu'il existe une droite ou un plan stable par u.

On utilise le théorème de Cayley et Hamilton (valable en dimension finie). Soit $A=\begin{bmatrix}u\end{bmatrix}_{\mathscr{B}}$, où \mathscr{B} est une base de l'espace vectoriel. Alors, $\chi_A(A)=0$. On le « casse en petits bouts » :

$$\chi_A(X) = (X - \lambda_1)^{m_1} \cdots (X - \lambda_r)^{m_r} (X^2 + b_1 X + c_1)^{n_1} \cdots (X^2 + b_{\delta} X + c_{\delta})^{n_{\delta}}.$$

Le produit $\chi_A(A)$ est un produit de matrices, ce produit est la matrice nulle, d'où ce produit n'est pas inversible, d'où l'un des facteurs n'est pas inversible.

— Ou bien, ce facteur est la forme $(A - \lambda_i I_n)$, et donc il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $(A - \lambda_i I_n) \cdot X = 0$. Alors $A \cdot X = \lambda_i X$ et $X \neq 0$. D'où la droite dirigée par ce vecteur Vect(X) est stable.

— Ou bien, ce facteur est la forme $(A^2 + b_i A + c_i I_n)$, et donc il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $A^2 \cdot X + b_i A \cdot X + c_i X = 0$. Autrement dit, il existe un vecteur $\vec{x} \in E$ non nul, tel que $u^2(\vec{x}) + b_i u(\vec{x}) + c_i \vec{x} = \vec{0}$. D'où les vecteurs \vec{x} et $u(\vec{x})$ sont libres, et le plan $\operatorname{Vect}(\vec{x}, u(\vec{x}))$ est stable par u. En effet, $u(\vec{x}) \in \operatorname{Vect}(\vec{x}, u(\vec{x}))$, et $u(u(\vec{x})) = -b_i u(\vec{x}) - c_i \vec{x} \in \operatorname{Vect}(\vec{x}, u(\vec{x}))$.

Rappel:

Au chapitre II. on a montré que, si deux endomorphismes u et v commutent, alors $\operatorname{Ker} u$ et $\operatorname{Im} u$ sont stables par v.

Proposition 37:

Soient u et v deux endomorphisme d'un K-espace vectoriel E. Si u et v commutent ($u \circ v = v \circ u$), alors les sous-espaces propres de u sont stables par v.

PREUVE

Or, $\operatorname{SEP}_u(\lambda) = \operatorname{Ker}(\lambda\operatorname{id} - u)$, et, si $u \circ v = v \circ u$, alors $(\lambda\operatorname{id} - u) \circ v = v \circ (\lambda\operatorname{id} - u)$. D'où $\operatorname{Ker}(\lambda\operatorname{id} - u)$ est stable par v. Donc, si deux endomorphismes u et v commutent, alors les SEP de l'un sont stables par l'autre.

Rappel (proposition 30):

Si χ_A est scindé, alors $E = \bigoplus_{\lambda \in \operatorname{Sp}(A)} C_{\lambda}$ où $C_{\lambda} = \operatorname{Ker}(\lambda I_n - A)^{m_{\lambda}}$ et $\forall \lambda \in \operatorname{Sp}(A)$, $\dim C_{\lambda} = m_{\lambda}$.

EXERCICE 38 (re-démonstation de la partie jaune (démonstration fausse dans le poly)): On choisit une base de $E: \mathscr{B}(\vec{\varepsilon}_1^1,\dots,\vec{\varepsilon}_{d_1}^1,\vec{\varepsilon}_1^2,\dots,\vec{\varepsilon}_{d_2}^2,\dots,\vec{\varepsilon}_{d_r}^r,\dots,\vec{\varepsilon}_{d_r}^r)$, telle que $\mathscr{B}_i=(\vec{\varepsilon}_1^i,\dots,\vec{\varepsilon}_{d_i}^i)$ soit une base de C_{λ_i} , où $d_i=\dim C_{\lambda_i}$. Soit u l'endomorphisme représenté par la matrice A dans la base \mathscr{B} . Ainsi,

$$[u]_{\mathscr{B}} = \begin{pmatrix} B_1 & & & & \\ & B_2 & & & \\ & & \ddots & & \\ & & & B_r \end{pmatrix}$$

car chaque sous-espace caractéristique C_{λ_i} est stable par u. Or, A commute avec $(\lambda_i I_n - A)^{m_{\lambda_i}}$. D'où $\operatorname{Ker}(\lambda_i I_n - A)^{m_{\lambda_i}} = C_{\lambda_i}$ est stable par A. De plus, la taille du bloc B_i est égal à la $d_i = \dim C_{\lambda_i}$. On veut montrer que, pour tout i, $d_i = m_{\lambda_i}$. On sait que $B_i = \left[u|_{C_{\lambda_i}}\right]_{\mathscr{B}}$. Or, $C_{\lambda_i} = \operatorname{Ker}\left((\lambda_i\operatorname{id}-u)^{m_{\lambda_i}}\right)$, d'où $\forall \vec{x} \in C_{\lambda_i}$, $(\lambda_i\operatorname{id}-u|_{C_{\lambda_i}})^{m_{\lambda_i}}(\vec{x}) = \vec{0}$. D'où $\lambda_i\operatorname{id}-u|_{C_{\lambda_i}}$ est nilpotent. D'où, le polynôme caractéristique $\chi_{\lambda_i-\operatorname{id}-u|_{C_{\lambda_i}}} = X^{d_i}$. Or, le polynôme caractéristique d'une restriction d'un endomorphisme divise le polynôme caractéristique de cet endomorphisme. D'où $\forall i,\ d_i \leqslant m_{\lambda_i}$. Or, $\sum_{i=1}^r d_i = n$, où $n = \dim E$, et $\sum_{i=1}^r m_{\lambda_i} = n$. D'où, $\forall i,\ d_i = m_{\lambda_i}$. Enfin, $B_i = [u|_{C_{\lambda_i}}]_{\mathscr{B}_i}$. Or, $(u|_{C_{\lambda_i}} - \lambda_i\operatorname{id})^{m_{\lambda_i}} = 0$. D'où $u|_{C_{\lambda_i}} = \lambda_i\operatorname{id} + (u|_{C_{\lambda_i}} - \lambda_i\operatorname{id})$, et donc $B_i = \lambda_i I_{d_i} + N_i$ où N_i est une matrice nilpotente.

Proposition 39:

Soient E un \mathbb{K} -espace vectoriel de dimension finie, et $u:E\to E$ un endomorphisme de E. Soit F un sous-espace vectoriel de E stable par u. On définit

$$\begin{aligned} v &= u\big|_F : F \longrightarrow F \\ \vec{x} &\longmapsto u(\vec{x} \end{aligned}$$

Alors $\chi_v \mid \chi_u$ (i.e. χ_u est un multiple de χ_v).

Preuve:

Soit $A = [u]_{\mathscr{B}}$ où \mathscr{B} est une base de E. Soient F et G deux supplémentaires de E. Soit $(\vec{\varepsilon}_1,\ldots,\vec{\varepsilon}_d)$ une base de F. En complétant cette base de F en une base $(\vec{\varepsilon}_1,\ldots,\vec{\varepsilon}_d,\vec{\varepsilon}_{d+1},\ldots,\vec{\varepsilon}_n)$ de E. Il existe une matrice inversible P telle que

$$P^{-1} \cdot A \cdot P = \left(\begin{array}{c|c} C & * \\ \hline 0 & D \end{array} \right).$$

Le bloc C est la matrice de v dans la base $(\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_d)$. Or,

$$\chi_A(x) = \det(xI_n - A) = \det\left(\frac{xI - C - *}{0 xI - D}\right) = \underbrace{\det(xI - C)}_{\chi_C} \times \underbrace{\det(xI - D)}_{\chi_D}$$

^{1.} En effet, si $u(\vec{x})$ et \vec{x} sont liés, alors il existe $k \in \mathbb{R}$ tel que $u(\vec{x}) = k\vec{x}$, et donc le facteur dans l'expression de $\chi_A(X)$ est donc (X - k).

Ι Cours

car ce déterminant est triangulaire par blocs. D'où $\chi_A = \chi_C \times \chi_D$, et donc $\chi_C \mid \chi_A$ i.e. $\chi_v = \chi_u$.

Proposition 40:

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $u:E\to E$ un endomorphisme. Si u est diagonalisable, et F est un sous-espace vectoriel stable par u, alors $u|_{F}$ est aussi diagonalisable.

Preuve:

On suppose u diagonalisable. D'où u possède un polynôme annulateur P scindé à racine simple. Alors $P(u) = 0_{\mathscr{L}(E)}$, d'où $\forall \vec{x} \in E, \ P(u)(\vec{x}) = \vec{0}_E$, et donc $\forall \vec{x} \in F, \ P(u|_F)(\vec{x}) = \vec{0}_E = \vec{0}_F$. Et donc, le polynôme P est annulateur de $u|_F$ et il est scindé à racines simples. D'où $u|_F$ est diagonalisable.

Exercice 41:

Soit A une matrice diagonale par blocs. Montrer que A est diagonalisable si et seulement si chaque bloc est diagonalisable.

$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
$ B_1 0 0 0 $:	
.	
ε_{d_1}	
ε_{d_1+1}	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\varepsilon_{d_1+d_2}$	
0 0 :	
$\varepsilon_{d_1+\cdots+d}$	$r_{r-1}+1$
$\begin{vmatrix} 0 & 0 & 0 & B_r \end{vmatrix}$:	
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	r.

" \Leftarrow " Soit u l'endomorphisme tel que $\begin{bmatrix} u \end{bmatrix}_{\mathscr{B}} = A$, où $\mathscr{B} = (\varepsilon_1, \dots, \varepsilon_d, \dots, \varepsilon_{d_1 + \dots + d_{r-1} + 1}, \dots, \varepsilon_{d_1 + \dots + d_r})$. Chaque sous-espace vectoriel F_i est stable par u car la matrice est diagonale par blocs. Or, chaque bloc est diagonalisable, d'où chaque $u|_{F_i}$ est diagonalisable. Il existe donc une base de F_i formée de vecteurs propres de u. En concaténant ces bases, on obtient une base de F formée de vecteurs propres de u.

Autre méthode : Chaque bloc B_i est diagonalisable, d'où $\forall i, \exists P_i \in \mathrm{GL}_{d_i}(\mathbb{K}), P_i^{-1} \cdot B_i$ $P_i = D_i$ diagonale. On pose

$$P = \begin{pmatrix} \begin{array}{c|cccc} P_1 & 0 & \dots & 0 \\ \hline 0 & P_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \dots & 0 & P_r \\ \end{array} \end{pmatrix}.$$

Et donc

$$P^{-1} \cdot A \cdot P = \begin{pmatrix} D_1 & 0 & \dots & 0 \\ \hline 0 & D_2 & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \dots & 0 & D_r \end{pmatrix}.$$

" \Longrightarrow " Réciproquement, pour tout i, on a $B_i = \left[u\big|_{F_i}\right]_{(\varepsilon_{d_1+\dots+d_{i-1}+1},\dots,\varepsilon_{d_1+\dots+d_i})}$. Or u est diagonalisable, donc tout endomorphisme induit par u sur un sous-espace

vectoriel stable est diagonalisable. Et donc, chaque bloc est diagonalisable.

Deuxième partie

T.D.

Exercice?: Matrice compagnon

On considère la matrice

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ \vdots & \vdots & \vdots & -a_1 \\ 0 & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & -a_{p-1} \\ 0 & \cdots & 0 & 0 & 1 & -a_p \end{pmatrix}$$

Ainsi, dans un système d'équation différentielles, on a

$$\begin{pmatrix} x'_0(t) \\ x'_1(t) \\ \vdots \\ x'_p(t) \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & -a_0 \\ \vdots & \ddots & \vdots & -a_1 \\ 0 & \cdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & -a_{p-1} \\ 0 & \cdots & 0 & 0 & 1 & -a_p \end{pmatrix}^{\top} \begin{pmatrix} x_0(t) \\ x_1(t) \\ \vdots \\ x_p(t) \end{pmatrix}$$

$$\iff \begin{pmatrix} x'_0(t) \\ \vdots \\ x'_p(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ x'_p(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ x'_{p-1}(t) = x_p \\ x'_p(t) = -a_0x_0(t) - a_1x_1(t) - \cdots - a_px_p(t) \end{pmatrix} \begin{pmatrix} x_0(t) \\ x_1(t) \\ \vdots \\ x'_{p-1}(t) = x_p \\ x'_p(t) = -a_0x_0(t) - a_1x_1(t) - \cdots - a_px_p(t) \end{pmatrix}$$

$$\iff \begin{cases} x_0(t) + a_1x_1(t) - \cdots - a_px_p(t) \\ \vdots \\ x'_{p-1}(t) = x_p \\ x'_p(t) = -a_0x_0(t) - a_1x_1(t) - \cdots - a_px_p(t) \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_0(t) + a_1x_1(t) - \cdots - a_px_p(t) \\ \vdots \\ x'_{p-1}(t) + a_0x_1(t) - a_1x_1(t) - \cdots - a_px_p(t) \end{pmatrix}$$

La dernière ligne du système est un équation différentielle d'ordre p+1.

Calculons $\det(xI_{p+1}-A)$. On note

$$D_{i} = \begin{vmatrix} x & 0 & \dots & a_{i} \\ -1 & \ddots & \ddots & & a_{i+1} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -1 & x + a_{p} \end{vmatrix}.$$

D'où
$$D_0 = xD_1 + a_0$$
, $D_1 = xD_2 + a_1$, et donc
$$D_0 = x(xD_2 + a_1) + a_0$$

$$= xD_2 + xa_1 + a_0$$

$$= \cdots$$

$$= x^{p-1}D_{p-1} + \sum_{k=0}^{p-2} x^k a_k$$

$$= x^{p-1}(x(x+a_p) + a_{p-1}) + \sum_{k=0}^{p-2} x^k a_k$$

$$= \sum_{k=0}^p x^k a_k + x^{p+1}$$

Autre méthode :

$$\det(xI_{p+1} - A) = \begin{vmatrix} x & 0 & \dots & 0 & a_i \\ -1 & \ddots & \ddots & \vdots & a_0 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & x & a_{p-1} \\ 0 & \dots & 0 & -1 & x + a_p \end{vmatrix} \leftarrow L_0 + xL_1 + \dots + x^pL_p$$

Exercice 9

On considère la matrice

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{pmatrix}.$$

Soit $\lambda \in \mathbb{R}.$ On sait que

$$\lambda \in \operatorname{Sp}(A) \iff \det(\lambda I_3 - A) = 0.$$

On calcule $\det(\lambda I_3 - A)$:

$$\det(\lambda I_3 - A) = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ -2 & \lambda - 3 & 4 \\ -4 & -1 & \lambda + 4 \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 1 & -1 & 1 \\ \lambda - 1 & \lambda - 3 & 4 \\ \lambda - 1 & -1 & \lambda + 4 \end{vmatrix} \text{ avec le changement } C_1 \leftarrow C_1 + C_2 + C_3$$

$$= (\lambda - 1) \begin{vmatrix} 1 & -1 & 1 \\ 1 & \lambda - 3 & 4 \\ 1 & -1 & \lambda + 4 \end{vmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} 1 & -1 & 1 \\ 0 & \lambda - 2 & 3 \\ 0 & 0 & \lambda - 3 \end{vmatrix} \text{ avec les changements } \begin{cases} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{cases}$$

$$= (\lambda - 1)(\lambda - 2)(\lambda + 3)$$

D'où $Sp(A) = \{1, 2, -3\}$, et

$$1\leqslant \dim(\operatorname{SEP}(1))\leqslant 1 \qquad 1\leqslant \dim(\operatorname{SEP}(2))\leqslant 1 \quad \text{et} \quad 1\leqslant \dim(\operatorname{SEP}(-3))\leqslant 1.$$

^{2.} inutile dans ce cas

La matrice A est de taille 3 et elle possède 3 valeurs propres distinctes deux à deux. D'où, d'après la proposition 18, on sait donc que A est diagonalisable. Diagonalisons-la.

Exercice 8

- 1. Soit un vecteur non nul $\vec{x} \in \operatorname{Ker}(\lambda \operatorname{id} u \circ v)$. Ainsi, $u(v(\vec{x})) = \lambda \vec{x}$. Et, donc $v(u(v(\vec{x}))) = \lambda v(\vec{x})$. On a donc $v(\vec{x}) \in \operatorname{Ker}(\lambda \operatorname{id} v \circ u)$. Or, si $\lambda \neq 0$, on a $v(\vec{x}) \neq \vec{0}$; en effet, si $v(\vec{x}) = \vec{0}$, alors $u \circ v(\vec{x}) = \vec{0} = \lambda \vec{x}$ et donc $\vec{x} = \vec{0}$, ce ne serait donc pas un vecteur propre de $u \circ v$: une contradiction. On en déduit que $v(\vec{x})$ est un vecteur propre de $u \circ v$ associé à la valeur propre λ .
- 2. On pose donc $\lambda=0$, une valeur propre de $u\circ v$. L'endomorphisme $u\circ v$ n'est donc pas injectif, donc bijectif. On sait donc, comme E est de dimension finie, que $\det(u\circ v)=0$. Or $\det(u\circ v)=\det u\times \det v=\det(v\circ u)$. Et donc $\det(v\circ u)=0$, $v\circ u$ n'est donc pas bijectif, donc injectif. Et donc, on a $0\in \operatorname{Sp}(v\circ u)$.
- 3. Soit $P \in \mathbb{R}[X]$, et soit Q une primitive de P.

$$P \in \operatorname{Ker}(u \circ v) \iff \left(\int_0^X P(t) \, dt\right)' = 0$$

$$\iff \left(Q(X) - Q(0)\right)' = 0$$

$$\iff Q'(X) = 0$$

$$\iff P(X) = 0$$

On en déduit que $Ker(u \circ v) = \{0\}$. Également,

$$P \in \operatorname{Ker}(v \circ u) \iff \int_0^X P'(t) \, dt = 0$$

$$\iff P(X) - P(0) = 0$$

$$\iff P(X) = P(0)$$

$$\iff \deg P \leqslant 0$$

$$\iff P \in \mathbb{R}_0[X]$$

On en déduit que $Ker(v \circ u) = \mathbb{R}_0[X]$.

Exercice 6

Soient a, b et c trois réels. Soient A et B deux matrices 3×3 , définies par

$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix} \qquad et \qquad \begin{pmatrix} 2 & b & 0 \\ 0 & c & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Pour quelles valeurs des réels a,b et c les matrices A et B sont-elles diagonalisables?

Soit $\lambda \in \mathbb{R}$. D'où

$$\lambda \in \operatorname{Sp}(A) \iff \det(\lambda I_3 - A) = 0$$

Or,

$$\det(\lambda I_3 - A) = \begin{pmatrix} \lambda - 1 & -a & -1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - a \end{pmatrix} = (\lambda - 1)^2 \cdot (\lambda - a)$$

 1^{ER} CAS a=1: on a donc $\operatorname{Sp}(A)=\{1\}$. Par l'absurde, si A est diagonalisable, alors $A\sim I_3$, d'où $A=I_3$, ce qui est absurde. Et donc A n'est pas diagonalisable.

 $\begin{array}{ll} 2^{\text{ND}} \text{ CAS } a \neq 1 : \text{on a donc } \operatorname{Sp}(A) = \{1,a\}. \text{ D'où } 1 \leqslant \dim(\operatorname{SEP}(a)) \leqslant 1, \text{ et } 1 \leqslant \dim(\operatorname{SEP}(1)) \leqslant 2. \\ \text{Or, la matrice } A \text{ est diagonalisable si et seulement si } \dim(\operatorname{SEP}(a)) + \dim(\operatorname{SEP}(1)) = 3, \\ \text{donc si et seulement si } \dim(\operatorname{SEP}(1)) = 2. \text{ Soit donc } X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}). \end{array}$

$$X \in \text{SEP}(1) \iff AX = X$$

$$\iff \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\iff \begin{cases} ay + z = 0 \\ az = z \end{cases}$$

$$\iff \begin{cases} ay = 0 \\ z = 0 \end{cases} \quad \text{car } a \neq 1$$

 $1^{\underline{er}}$ sous-cas a = 0:

$$X \in \text{SEP}(1) \iff z = 0 \iff X = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

D'où $\dim(SEP(1)) = 2$.

 $2^{\underline{nd}}$ sous-cas $a \neq 0$:

$$X \in \text{SEP}(1) \iff \begin{cases} y = 0 \\ z = 0 \end{cases} \iff X = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

D'où $\dim(SEP(1)) = 1$.

Ainsi, A est diagonalisable si et seulement si a = 0.

Exercice 15

" \Longrightarrow " On suppose A et B diagonalisables. On suppose aussi AB=BA. Ainsi, il existe une matrice inversible $P\in \mathrm{GL}_n(\mathbb{K})$ telle que $P^{-1}\cdot A\cdot P=A'$ diagonale. Soit $B'=P^{-1}\cdot P\cdot P$. Également, on sait que les sous-espaces propres de A sont stables par B. Ainsi,

B' est diagonalisable car B est diagonalisable. Mieux : chaque bloc de B' est diagonalisable d'après le théorème 40. On diagonalise le bloc B_1 en B_1'' en passant dans une nouvelle base $(\vec{\varepsilon}_1{}',\ldots,\vec{\varepsilon}_{d_1}{}')$ de $\operatorname{SEP}_A(\lambda_1)$. Alors B_1'' est diagonal. De même, B_2'',\ldots,B_r'' sont des blocs diagonaux. Or, la matrice A' est restée diagonale car les vecteurs $(\vec{\varepsilon}_1{}',\ldots,\vec{\varepsilon}_{d_1}{}')$ sont dans $\operatorname{SEP}_A(\lambda_1)$. Et, de même pour les autres blocs.

Exercice 10

1.

2. Analyse On suppose qu'il existe P une matrice inversible telle que $P^{-1}\cdot A\cdot P=\binom{a\ 1}{0\ b}=T.$

1ère méthode On a tr $A=2=a+b={\rm tr}\, T,$ et det $A=1=a\times b={\rm det}\, T.$ D'où a et b sont solutions de l'équation $X^2-2X-1=0,$ i.e. $(X-1)^2=0.$ D'où a=b=1.

2nde méthode On a $\chi_A(X) = \begin{vmatrix} X & -1 \\ 1 & X-2 \end{vmatrix} = (X-1)^2 = (X-a)(X-b) = \chi_T(X).$ D'où a=b=1.