Ejercicio 1

Sea γ una formula proposicional del lenguaje $\{\neg, \rightarrow\}$ tal que ninguna de sus variables proposicionales aparece mas de una vez. Demostrar que γ es una contingencia.

Decimos que una fórmula φ es una contingencia cuando existen v, v' tal que:

$$v \models \varphi \ y \ v' \not\models \varphi$$

Veamos por inducción estructural:

CASO BASE ($\varphi = p$ es un símbolo proposicional): Es una contingencia, simplemente tomamos una valuación $v_1(p) = 1$ y luego tomamos otra $v_2(p) = 0$. Entonces $v_1 \models \varphi$ y $v_2 \not\models \varphi$.

PASO INDUCTIVO:

• Forma $\neg \varphi$ (por HI φ es una contingencia): Como φ es una contingencia entonces existen v y v' tal que

$$v \models \varphi \ y \ v' \not\models \varphi$$

Entonces:

$$v \not\models \neg \varphi \ y \ v' \models \neg \varphi$$

Entonces $\neg \varphi$ es una contingencia.

• Forma $\varphi \to \psi$ (por HI φ y ψ son contingencias): Como ambas son contingencias, entonces existen v_1, v_1', v_2, v_2' tal que:

$$v_1 \models \varphi \ y \ v_1' \not\models \varphi$$

$$v_2 \models \psi \ y \ v_2' \not\models \psi$$

Luego:

$$v_2 \models \psi \underset{\text{por def}}{\Rightarrow} v_2 \models (\varphi \rightarrow \psi)$$

Definimos:

$$v_s(p) = \begin{cases} v_1(p) & si \ p \in VAR(\varphi) \\ v_2'(p) & cc \end{cases}$$

Esto lo podemos hacer porque $VAR(\varphi) \cap VAR(\psi) =$ (porque ninguna de sus variables proposicionales aparece más de una vez). Como:

$$v_s \models \varphi \ y \ v_s \not\models \psi$$

$$\underset{\text{por def}}{\Rightarrow} v_s \not\models (\varphi \to \psi)$$

Entonces $(\varphi \to \psi)$ es una contingencia.

Entonces γ es una contingencia.