Chapitre 2 - Information chiffrée : proportions, pourcentages et évolutions

Contenus	Capacités attendues
• Proportion, pourcentage d'une sous-population dans	• Exploiter la relation entre effectifs, proportions et
une population.	pourcentages.
• Ensembles de référence inclus les uns dans les autres :	• Traiter des situations simples mettant en jeu des
pourcentage de pourcentage.	pourcentages de pourcentages.
• Évolution : variation absolue, variation relative.	• Exploiter la relation entre deux valeurs successives
	et leur taux d'évolution.
• Évolutions successives, évolution réciproque : relation	• Calculer le taux d'évolution global à partir des taux
sur les coefficients multiplicateurs (produit, inverse).	d'évolution successifs. Calculer un taux d'évolution
	réciproque.

L'information chiffrée et notamment les taux d'évolution sont des notions dominantes de la vie sociale, économique et même de la vie quotidienne : augmentation du nombre de chômeurs de 4%, taux d'emprunt, inflation annuelle de 2%, soldes, etc.

I Proportions et pourcentages

1 Proportion d'un sous-ensemble

Définition 1.

Soit E un ensemble de référence non vide (appelé **population**) et N le nombre d'éléments de E (appelé l'effectif de E).

Soit A une partie de E (appelée sous-population) et n le nombre d'éléments de A (appelé l'effectif de A). On appelle **proportion de** A **dans** E le nombre réel p défini par :

$$p = \frac{n}{N}$$

Remarque 1.

- ♦ Cette quantité p est aussi appelée la fréquence de A dans E.
- \diamond Si l'on connait deux des trois quantités parmi p, n et N, on peut facilement calculer la $3^{\grave{e}me}$ à l'aide d'un produit en croix :

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$expression \ de \ n \ en$ fonction $de \ p \ et \ de \ N$	expression de N en fonction de p et de n
$p = \frac{n}{N}$	$n = p \times N$	$N = \frac{n}{p}$

Exemple 1. \diamond Dans une classe de 32 élèves, 8 élèves jouent de la musique.

La proportion d'élèves de la classe jouant de la musique est : $\frac{8}{32} = \frac{1}{4}$.

♦ Dans un lycée, la proportion p d'externes est 0,19. On sait que cela représente 285 élèves. On cherche le nombre total d'élèves dans ce lycée.

D'après l'énoncé, p = 0, 19 et n = 285 et on cherche N. On a $N = \frac{n}{p} = \frac{285}{0.19} = 1500$

Propriété 1.

Soit E un ensemble non vide et A une partie de E. Alors la proportion p de A dans E vérifie :

$$0 \leqslant p \leqslant 1$$

Démonstration.

- \diamond On commence par démontrer que $p \geqslant 0$. Avec les notations de la définition précédente, $p = \frac{n}{N}$ avec n l'effectif de A et N l'effectif de E. Ainsi, les nombres n et N sont des entiers naturels, avec $N \neq 0$ puisque E n'est pas vide. Donc p est positif comme le quotient d'un nombre positif ou nul par un nombre strictement positif.
- ♦ Il reste à démontrer que $p \le 1$. Comme A est une partie de E, on a $n \le N$ (avec égalité si A = E). Donc, en divisant les deux membres de cette inégalité par le nombre strictement positif n_E , on obtient $\frac{n}{N} \le 1$, d'où $p \le 1$.

Remarque 2. On exprime souvent p en pourcentage pour que le résultat soit plus parlant.

Pour exprimer le nombre p en pourcentage, il suffit de le multiplier par 100. Ainsi, dans l'exemple précédent, le pourcentage d'élèves de la classe jouant de la musique est 25% puisque $p\times 100=\frac{1}{4}\times 100=0, 25\times 100=25$. Inversement, si une proportion est exprimée en pourcentage, on peut l'exprimer sous forme décimale en la divisant par 100:

- Une proportion de 65,3% correspond à p = 0,653.
- Une proportion de 20% correspond à p = 0, 2.

Attention, lorsque vous utilisez une formule utilisant une proportion p, cette proportion ne doit surtout pas être exprimée en % au moment d'appliquer la formule.

Propriété 2. (pourcentage d'une quantité)

Si une quantité q représente t% d'une quantité Q, alors $q = \frac{t}{100} \times Q$.

 $D\'{e}monstration$. Cela découle immédiatement de la définition de proportion.

La proportion
$$p$$
 de q dans Q est $p = \frac{q}{Q}$ donc $q = p \times Q$. Ici, $p = \frac{t}{100}$ donc $q = \frac{t}{100} \times Q$.

Remarque 3. Autrement dit, de manière imagée, on peut voir le symbole "%" comme un synonyme de $\times \frac{1}{100}$.

Exemple 2. « 20% de 45 » se traduit mathématiquement par « $20 \times \frac{1}{100} \times 45$ », ce qui est égal à 9.

Exercice 1. On s'intéresse à la composition d'une tablette de chocolat de 180 g.

- 1. Elle comporte 72 g de sucre. Quelle proportion cela représente-t-il? Traduire cette proportion en pourcentage.
- 2. Le cacao constitue 55% de la tablette. Quelle masse cela représente-t-il?

.....

Exercices 1, 2 p.283 - Exercice résolu 2 p.287 - Exercices 12, 13, 14, 15 p.300 - Exercices 43 p.304

2 Pourcentage de pourcentage

Propriété 3.

Soit E un ensemble non vide, A une partie de E et B une partie de A. On note p_A la proportion de A dans E et p_B la proportion de B dans A. Alors la proportion p de B dans E est égale à $p = p_B \times p_A$.

Remarque 4. Attention, les proportions ne doivent pas être exprimées en pourcentage au moment du calcul.

Exemple 3. Dans un certain lycée, on a observé ceci :

- Il y a 600 élèves;
- 15% des élèves sont gauchers;
- 60% des gauchers portent un jean;
- 80% des droitiers portent un jean.

Quel pourcentage représentent les gauchers en jean parmi les élèves du lycée? Combien d'élèves cela représente-t-il?

Exercice résolu 3 p.287 p.287 - Exercice 16, 17 p.300

II Évolution d'une quantité positive

On s'intéresse dans cette partie à une quantité positive qui varie au cours du temps. On cherche à quantifier son évolution.

1 Variation absolue, variation relative

a Variation absolue

Définition 2.

On considère une quantité qui varie au cours du temps. On note :

- $\diamond V_d$ la valeur de départ (on dit aussi valeur initiale) de la quantité;
- $\diamond V_a$ la valeur d'arrivée (on dit aussi valeur finale) de la quantité .

On appelle variation absolue de cette quantité le nombre :

$$V_a - V_d$$

Exemple	4

- ♦ le prix d'un article passe de 120 euros à 144 euros. La variation absolue est :
- ♦ le nombre d'adhérents d'un club est passé de 96 à 80. La variation absolue est

Propriété 4.

- ♦ Lorsque la variation absolue d'une quantité est positive, la quantité augmente.
- ♦ Lorsque la variation absolue d'une quantité est négative, la quantité diminue.

Remarque 5. Inconvénient de la variation absolue :

D'où la nécessité de prendre en considération la valeur initiale pour quantifier l'évolution.

Exercice ...

2 Taux d'évolution (ou variation relative)

Définition 3.

On considère une quantité qui varie au cours du temps. On note :

- \diamond V_d la valeur de départ (on dit aussi valeur initiale) de la quantité;
- $\diamond\ V_a$ la valeur d'arrivée (on dit aussi valeur finale) de la quantité .

On appelle taux d'évolution (ou encore variation relative) de cette quantité le nombre :

$$\frac{V_a - V_d}{V_d}$$

Remarque 6. La variation relative (ou taux d'évolution) n'a pas d'unité, mais on peut l'exprimer en pourcentage en multipliant sa valeur par 100.

Propriété 5.

- ♦ Lorsque le taux d'évolution d'une quantité est positif, la quantité augmente.
- ♦ Lorsque le taux d'évolution d'une quantité est négatif, la quantité diminue.

Exemple 5. L'organisation mondiale du tourisme fournit chaque année le nombre de touristes étrangers (en millions) en France :

Année	1990	2000	2010	2018
Nombre de touristes étrangers (en millions)	52, 5	77, 2	76,8	89,3

1.	Calculer le taux d'évolution (arrondi au centième) du nombre de touristes en France entre 1990 et 2000. Interpréter ce résultat.
2.	Même question entre 2000 et 2018 (on arrondira le taux d'évolution au millième).

Ø	Exercices	résolu	1, 2	2 p.289 -	\mathbf{TP}	4 p.2	98 -	Exercices	18,	19,	20,	21	p.300 -	Exercices	55	p.307	_
Exe	ercices 59 p	0.308															

3 Coefficient multiplicateur

Le coefficient multiplicateur est un outil très efficace pour la résolution de problèmes faisant étudier des évolutions. C'est lui qui permet de faire tous les calculs d'évolution.

Définition 4 coefficient multiplicateur de l'évolution de V_d à V_a le nombre positif :

$$C = \frac{V_a}{V_d}$$

Remarque 7. Le coefficient multiplicateur n'a pas d'unité.

Propriété 6.

- ♦ Lorsque le coefficient multiplicateur d'une évolution est supérieur à 1, cela traduit une augmentation;
- ♦ Lorsque le coefficient multiplicateur d'une évolution est inférieur à 1, cela traduit une diminution.

Propriété 7.	(lien entre	taux d	l'évolution	et c	coefficient	multiplicateur) :

On considère une évolution de taux d'évolution t. Alors :

$$C = 1 + t$$

Quelques réflexes à avoir :

- \diamond faire subir à une grandeur une augmentation de k% revient à la multiplier par $\left(1 + \frac{k}{100}\right)$;
- \diamond faire subir à une grandeur une augmentation de k% revient à la multiplier par $\left(1 + \frac{k}{100}\right)$.

une augmentation de 20% correspond à un taux d'accroissement de \dots et à un coefficient multiplicateur de

- \diamond une diminution de 30% correspond à un taux d'accroissement de et à un coefficient multiplicateur de
- \diamond une augmentation de 3% correspond à un taux d'accroissement de \ldots et à un coefficient multiplicateur de

Exercice 2. Les questions de cet exercice sont indépendantes.

1. Un objet vaut 12€. Son prix augmente de 4%. Quel est son prix final?

.....

2. La population d'une ville est de 52 000 habitants. Elle diminue de 3% en un an. Quelle est la population finale?

.....

3. La population d'un pays a été multipliée par 1,012 en un an. Quel est le taux d'évolution de la population?

4. Lors d'une crise économique, un pays subit beaucoup d'inflation et les prix sont multipliés par 3 en un an. Quel est, en %, le taux d'évolution des prix ?

.....

5. Après une baisse de 20%, un objet coûte 75€. Quel était son prix initial?

.....

Exercices résolu 3 p.289 -

III Et dans le cas de plusieurs évolutions?

1 Évolutions successives

On s'intéresse dans cette partie au cas de deux évolutions successives d'une quantité. On note :

- V_0 la valeur initiale (avant la première évolution);
- V_1 la valeur après la première évolution de coefficient multiplicateur C_1 ;
- $\bullet~V_2$ la valeur finale (après la deuxième évolution de coefficient multiplicateur C_2).

On a donc le schéma suivant :

Propriété 8. Lorsqu'on effectue deux évolutions successives de coefficients multiplicateurs respectifs C_1 et C_2 , obtient une évolution globale dont le coefficient multiplicateur vaut :
Remarque 8. Important! Pour calculer un taux d'évolution global, il faut donc dans un premier temps calculer le coefficient multiplicateur global avec la formule ci-dessus, puis en déduire le taux d'évolution global.
Exemple 6. Un prix a subi une augmentation de 60% puis une augmentation de 20%. Quel est le taux d'augmentation global?
Exemple 7. Un prix a subi une augmentation de 40% puis une baisse de 40%. Quel est le taux d'évolution global?
Remarque 9. La méthode de calcul du coefficient multplicateur global se généralise pour un nombre quelconque d'évolutions successives.
Exemple 8. La population d'une ville diminue de 17%, puis augmente de 15% puis augmente de 10% et enfin diminu de 30%. Quel est le taux d'évolution global de la population à la fin de ces quatre évolutions successives?

des coefficients multiplicateurs des différentes évolutions.
Exercices résolus 1, 2 p.291 - TP2 p.296
2 Evolutions réciproques
Définition 5. Soient deux quantités V_1 et V_2 . On dit que deux évolutions sont réciproques si l'une d'entre elles perme de passer de V_1 à V_2 et que l'autre permet de passer de V_2 à V_1 .
Propriété 10. On considère une évolution de coefficient multiplicateur C. Alors le coefficient multiplicateur d'évolution réciproque est :
Remarque 10. Autrement dit, les coefficients multiplicateurs de deux évolutions réciproques sont inverses l'un de l'autre.
Exemple 9. Calculer le taux d'évolution réciproque d'une baisse de 20%.
Exercice résolu 3 p.291

Propriété 9. Dans le cas de plusieurs évolutions successives, le coefficient multiplicateur global est égal au produit