

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Curso TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS

Avaliação Formativa Banco de Dados: Contexto 3

Manuela Leme Morais Almeida

Sorocaba Nov – 2024

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Manuela Leme Morais Almeida

Avaliação Formativa Banco de Dados: Contexto 3

Avaliação formativa em formato de relatório sobre situações utilizando o banco de dados Prof. – Emerson Magalhães

Sorocaba Nov – 2024

SUMÁRIO

1.	RE	LATÓRIO	O COMPA	RATIVO	
1	.1.	BANCO	DE DADO	OS RELACIONAIS	2
					S
2.	CC	NFIGUR.	ACÃO DO	AMBIENTE	5
					5
					S
3.	DL	AGRAMA	AS DE MO	DELAGEM	
					AMENTO
					1ENTO
4.	BA	NCO DE	DADOS N	NORMALIZADO	8
5.	DI	CIONÁRI	O DE DAI	OOS	
BIB	LIO	GRAFIA			

Avaliação formativa Banco de Dados: Contexto 3

1. RELATÓRIO COMPARATIVO

1.1. BANCO DE DADOS RELACIONAIS

Operam com base no modelo relacional, organizando os dados em tabelas. Utilizam SQL para manipulação dos dados. Contém como vantagem a integridade e segurança dos dados e a padronização e ampla adoção da SQL. Já as desvantagens dizem respeito a escalabilidade limitada e a rigidez de esquema.

Para a Empresa de Saúde e Bem-Estar, é indicado utilizar o Banco de Dados Relacionais, MySQL, para tratar dos dados como os pacientes, profissionais de saúde, consultas e transações financeiras. Isso, decorre ao fato de que esses tipos de dados se comportam melhor na estrutura de tabelas utilizadas pelo banco de dados Relacional, pois são quantitativos e consolidados.

1.2. BANCO DE DADOS NÃO-RELACIONAIS

Os bancos de dados NoSQL são projetados para superar as limitações dos sistemas relacionais, especialmente em termos de escalabilidade e flexibilidade de esquema. Eles se dividem em diversos modelos, cada um com características próprias, adequados para diferentes casos de uso.

Como vantagens elencamos a flexibilidade de esquema, escalabilidade horizontal e diversidade de modelos para diferentes necessidades. Já as desvantagens contêm a consistência eventual em determinados modelos e a complexidade devido à diversidade de opções.

FIGURA 1- Modelos NoSQL

Já o Banco de Dados Não-Relacional, MongoDB, é indicado para tratar dos dados da empresa como o histórico de tratamentos, feedbacks dos pacientes e interações de suporte. Pois esses tipos de dados se comportam melhor nos modelos oferecidos pelo banco de dados Não-Relacional, onde há a possibilidade de armazenar grande quantidade de dados devido a escalabilidade e flexibilidade de determinado esquema.

2. CONFIGURAÇÃO DO AMBIENTE

2.1. BANCO DE DADOS RELACIONAIS

- Determine as categorias de informações que serão necessárias para o banco de dados relacional da empresa Saúde e Bem-Estar.
- 2. Determine como as tabelas se relacionam entre si. Você pode fazer Isso escrevendo frases simples que descrevam como as categorias interagem entre si, como "clientes fazem pedidos de produtos" e "faturas registram os pedidos dos clientes".
- 3. Conecte uma tabela a outra para indicar um relacionamento entre elas. Por exemplo, os clientes podem ter faturas e as faturas podem ter produtos.
- 4. Indique o tipo de relacionamento entre as tabelas conectando-as com um símbolo representativo. Ex: Um para um, um para muitos.
- 5. Determine os campos de que cada tabela irá precisar, atribuindo os atributos e a chave primária.

- 6. Para cada tabela, decida quais campos armazenarão dados e quais campos serão usados de outras tabelas (relacionadas).
- 7. Conecte cada chave primária à sua chave externa correspondente na tabela relacionada.
- 8. Após isso, é necessário abrir o MySQL e criar um database.

```
CREATE DATABASE db_empresaSaude;
```

FIGURA 2- Criando DataBase no MySQL

9. Usar o database.

```
USE db_empresaSaude;
```

FIGURA 3- Usando DataBase no MySQL

10. Criar uma tabela.

```
CREATE TABLE Paciente (
    id_paciente INT AUTO_INCREMENT PRIMARY KEY,
    nome VARCHAR(20) NOT NULL,
    telefone VARCHAR(15)
);
```

FIGURA 4- Criando Tabela no MySQL

11. Inserir os dados na tabela.

```
INSERT INTO Paciente (nome, telefone) VALUES
('Manuela','(15) 996778367'),
('Murilo','(15) 996778000'),
('Helena','(15) 996778222');
```

FIGURA 5- Inserindo dados na Tabela

12. E por fim, utilizar o comando SELECT, para selecionar e visualizar a tabela

SELECT * FROM Paciente;

FIGURA 6 - Selecionando Tabela

2.2. BANCO DE DADOS NÃO RELACIONAIS

- 1. Observar e estudar as necessidades específicas do projeto proposto pela empresa Saúde e Bem-Estar, volume de dados e requisitos de escalabilidade.
- 2. Defina qual o tipo de banco de dados Não-Relacional que será utilizado. Ex: Documentos, Chave-Valor, Família de Colunas ou dados de Grafos.
 - 3. Organize os dados que serão utilizados e armazenados.
- 4. Defina qual plataforma será uma melhor opção para a necessidade da empresa. Ex: MongoDB, Cassandra, Redis, Amazon DynamoDB, Neo4j, entre outros.
- 5. Após isso, basta implementar os dados selecionados nestes aplicativos.

3. DIAGRAMAS DE MODELAGEM

3.1. MODELAGEM ENTIDADE-RELACIONAMENTO

FIGURA 7- Modelagem Entidade-Relacionamento

3.2. DIAGRAMA ENTIDADE-RELACIONAMENTO

FIGURA 8- Diagrama Entidade-Relacionamento Lógico

4. BANCO DE DADOS NORMALIZADO

```
CREATE DATABASE db_empresaSaude;
```

```
USE db_empresaSaude;
CREATE TABLE Paciente (
  id_paciente INT AUTO_INCREMENT PRIMARY KEY,
  nome VARCHAR(20) NOT NULL,
  telefone VARCHAR(15)
);
INSERT INTO Paciente (nome, telefone) VALUES
('Manuela','(15) 996778367'),
('Murilo','(15) 996778000'),
('Helena','(15) 996778222');
SELECT * FROM Paciente;
CREATE TABLE Profissional (
  id_profissional INT AUTO_INCREMENT PRIMARY KEY,
  nome VARCHAR(20) NOT NULL,
  crm VARCHAR(15)
);
```

INSERT INTO Profissional (nome, crm) VALUES

```
('Fernanda','289460'),
('Marco','229944'),
('João','997501');

SELECT * FROM Profissional;

CREATE TABLE Consulta (
   id_consulta INT AUTO_INCREMENT PRIMARY KEY,
   horario VARCHAR(10) NOT NULL,
   data VARCHAR(10)
);

INSERT INTO Consulta (horario, data) VALUES
('12h','11/12/2024'),
('15h','05/01/2025'),
('19h','23/11/2024');
```

SELECT * FROM Consulta;

5. DICIONÁRIO DE DADOS

Paciente							
Atributo	Tipo de Dados	Tamanho	Restrições	Descrição Atributo			
Id_Paciente	Numérico	15 bytes	PK	Cod. De Identificação do Paciente			
Nome	Texto	20 bytes		Nome do Paciente			
Telefone	Texto	15 bytes		Telefone do Paciente			
Profissional							
Atributo	Tipo de Dados	Tamanho	Restrições	Descrição Atributo			
ld_Profission	Numérico	15 bytes	PK	Cod. De Identificação do Profissional			
Nome	Texto	20 bytes		Nome do Profissional			
CRM	Texto	15 bytes		Número de Registro Profissional			
Consulta							
Atributo	Tipo de Dados	Tamanho	Restrições	Descrição Atributo			
ld_Consulta	Numérico	15 bytes	PK	Cod. De Identificação da Consulta			
Horario	Texto	10 bytes		Horário da Consulta			
Data	Texto	10 bytes		Data da Consulta			

FIGURA 9- Dicionário de Dados

BIBLIOGRAFIA

BANCO DE DADOS RELACIONAL VC NÃO RELACIONAL. In: Blog Rocketseat. Disponível em:https://blog.rocketseat.com.br/banco-de-dados-relacional-nosql/>. Acesso em: 11 nov. 2024.

PLANEJAMENTO DE UM BANCO DE DADOS RELACIONAL. In: File Maker

Pro. Disponível em:<
https://help.claris.com/archive/help/16/fmp/pt/index.html#page/FMP_Help/planni
ng-databases.html> Acesso em: 11 nov. 2024.

BANCO DE DADOS NÃO RELACIONAIS. In: Dio Me. Disponível em:< https://www.dio.me/articles/banco-de-dados-nosql-um-guia-para-iniciantes-em-banco-de-dados-nao-relacional>. Acesso em: 11 nov. 2024.