Math. – ES 2 - S2 – Géométrie

mardi 23 mai 2017 - Durée 3 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Partie I: Deux surfaces

Dans l'espace euclidien \mathbb{R}^3 rapporté au repère orthonormé direct $\left(O\,;\,\overrightarrow{i}\,,\,\overrightarrow{j}\,,\,\overrightarrow{k}\right)$, on considère la surface S d'équation cartésienne

$$z = \left(y - 2\sqrt{2}x\right)y$$

ainsi que la surface Σ de représentation paramétrique

$$\begin{cases} x = \sqrt{2}uv \\ y = (u+v)^2 \\ z = (u^2 - v^2)^2 \end{cases}, (u,v) \in \mathbb{R}^2.$$

On note M(u, v) le point de Σ de paramètres u et v.

- 1. À propos de S.
 - **a.** Quelle est la nature de l'intersection de S avec un plan d'équation $y = \alpha$, où $\alpha \in \mathbb{R}$? Qu'en déduit-on pour S?
 - **b.** Quelle est la nature de l'intersection de S avec un plan d'équation $x = \beta$, où $\beta \in \mathbb{R}$?
 - c. i. Quelle est la nature de l'intersection Λ_{γ} de S avec un plan d'équation $z = \gamma$, où $\gamma \in \mathbb{R}$? Distinguer différents cas suivant les valeurs de γ .
 - ii. On note O_{γ} le point de coordonnées $(0,0,\gamma)$. Tracer les courbes Λ_{γ} dans le repère $\left(O_{\gamma};\overrightarrow{i},\overrightarrow{j}\right)$ pour $\gamma \in \{-2,0,1\}$.
 - On pourra confondre les points O_{γ} et tracer les 3 courbes dans le même repère.
 - **d.** Déterminer une équation cartésienne du plan tangent à S en un point M_0 de S de coordonnées (x_0, y_0, z_0) . Cette équation ne devra pas dépendre de z_0 .
- **2.** À propos de Σ .
 - **a.** Vérifier que $\Sigma \subset S$.
 - b. Déterminer la nature géométrique de l'ensemble des points non réguliers de Σ .
 - c. Soit M(u, v) un point régulier de Σ . Déterminer, en fonction des paramètres u et v, une équation cartésienne du plan tangent à Σ au point M(u, v).

Partie II: Etude d'une courbe

On note A(u) le point M(u, -2u) de Σ et Γ l'ensemble des points A(u) lorsque u parcourt \mathbb{R}_{+}^{*} .

1. Donner une représentation paramétrique de Γ .

T.S.V.P.

- **2.** On considère les vecteurs $\overrightarrow{w} = \frac{1}{3}\overrightarrow{i} + \frac{2}{3}\sqrt{2}\overrightarrow{j}$ et $\overrightarrow{u} = \overrightarrow{k}$.
 - **a.** Déterminer un vecteur \overrightarrow{v} tel que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ forme une base orthonormée directe de \mathbb{R}^3 .
 - **b.** Écrire la matrice de passage Q_1 de la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ à la base $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ et la matrice de passage Q_2 de la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ à la base $(\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u})$.
 - c. Déterminer la nature et les éléments caractéristiques de l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice Q_2 .
 - d. Déterminer la nature et les éléments caractérisitiques de l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice Q_1 .
- **3.** Les coordonnées d'un point M dans le repère $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ sont (x, y, z) et ses coordonnées dans $(O; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ sont (x', y', z'). Quelle relation existe-t-il entre $Q_1, \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$?
- **4.** En déduire une représentation paramétrique de Γ dans le repère $(O; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$. Quelle est la nature de Γ ?

On se place à nouveau dans le repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, et on considère le système différentiel

$$\Upsilon: X' = BX \text{ où } B \text{ est la matrice } \left(\begin{array}{ccc} \frac{4}{5} & -\frac{2\sqrt{2}}{5} & 0 \\ -\frac{\sqrt{2}}{5} & \frac{1}{5} & 0 \\ -\frac{2}{5} & -\frac{4\sqrt{2}}{5} & 2 \end{array} \right)$$

On appelle courbe intégrale du système différentiel Υ toute courbe dont une représentation paramétrique est $t \in \mathbb{R} \mapsto X(t)$, où X est une solution de Υ .

- **5.** Soit x_0 , y_0 et z_0 trois réels donnés. Que peut-on dire du nombre de solutions de Υ vérifiant $x(0) = x_0$, $y(0) = y_0$, $z(0) = z_0$?
- **6. a.** Justifier que B est diagonalisable et la diagonaliser. On donnera une matrice diagonale D semblable à B, la matrice de passage P retenue, ainsi que la relation liant B, P et D (le calcul de P^{-1} n'est pas demandé).
 - **b.** En déduire les solutions de Υ .
 - c. Démontrer que toutes les courbes intégrales de Υ sont planes.
 - **d.** La courbe Γ est-elle une courbe intégrale de Υ ?

Fin de l'énoncé de géométrie