Black Hole Perturbation Theory: An Introduction

Vitor Fernandes Guimarães, BSc.

I São Paulo School on Gravitational Physics

July 19, 2024

Overview

Previously

2 Perturbation Theory in Curved Spacetimes

3 Tensor Spherical Harmonics & The Harmonic Decomposition

In yesterday's lecture...

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\downarrow$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} \eta^{\rho\sigma} \left(\partial_{\mu} h_{\nu\sigma} + \partial_{\nu} h_{\mu\sigma} - \partial_{\sigma} h_{\mu\nu} + O(h^{2}) \right)$$

$$\downarrow$$

$$G^{lin}_{\mu\nu} = \frac{1}{2} \left(\partial_{\mu} \partial_{\rho} \overline{h}^{\rho}_{\ \nu} + \partial_{\nu} \partial_{\rho} \overline{h}^{\rho}_{\ \mu} - \Box \overline{h}_{\mu\nu} - \eta_{\mu\nu} \partial_{\sigma} \partial_{\rho} \overline{h}^{\sigma\rho} \right)$$

$$\downarrow$$

$$\Box \overline{h}_{\mu\nu} = 0$$

$$\downarrow$$

$$\left(-\partial_{t}^{2} + \overrightarrow{\nabla}^{2} \right) \overline{h}_{\mu\nu} = 0$$

General backgrounds I

 \rightarrow GWs: small perturbations of a background metric $\mathring{g}_{\mu\nu}$ generated by a source $\delta T_{\mu\nu}$.

 \rightarrow Full metric:

$$g_{\mu\nu} = \mathring{g}_{\mu\nu} + \delta g_{\mu\nu}, \quad |\delta g_{\mu\nu}| \ll \mathring{g}_{\mu\nu} \tag{2}$$

 \to Conditions mantained by the group of infinitesimal diffeomorphisms generated by a vector ξ^μ such that:

$$g_{\mu\nu} \to g'_{\mu\nu} = g_{\mu\nu} + \nabla_{(\mu}\xi_{\nu)},$$
 (3)

provided $\nabla_{(\mu}\xi_{\nu)}$ is small [2, 1].

General backgrounds II

 \rightarrow From the full metric expression we get:

$$g^{\mu\nu} = \mathring{g}^{\mu\nu} - \delta g^{\mu\nu} + \mathcal{O}(h^2)$$

$$\rightarrow$$
 s.t.:

$$\rightarrow$$
 Einstein eqs.:

$$\rightarrow$$
 where

$$\rightarrow$$
 where

$$R_{\mu\nu}$$

$$G_{\mu\nu}=87$$

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}$$

 $g^{\mu\nu}g_{\nu\sigma} = \delta^{\mu}_{\ \sigma} + \mathcal{O}(h^2)$

 $R_{\mu\nu} = \dot{R}_{\mu\nu} + \delta R_{\mu\nu}$

 $T_{\mu\nu} = \mathring{T}_{\mu\nu} + \delta T_{\mu\nu}$

 $T = \mathring{T} + \delta T$

$$G_{\mu\nu} = 8\pi T_{\mu}$$

$$\frac{1}{2\pi} R = 8\pi T_{\mu}$$

$$\frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu}$$

$$R = 8\pi T_{\mu\nu}$$

$$\delta\pi T_{\mu
u}$$

$$\kappa = \mu \nu$$

$$\kappa = \mu \nu$$

$$\mu
u$$

(4)

(5)

(6)

(7)

(8)

(9)

7/32

General backgrounds III

 \rightarrow Also remember that:

$$R_{\mu\nu} = \left(\partial_{\alpha}\Gamma^{\alpha}_{\mu\nu} - \partial_{\nu}\Gamma^{\alpha}_{\alpha\mu} + \Gamma^{\alpha}_{\alpha\lambda}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{\alpha}_{\nu\lambda}\Gamma^{\lambda}_{\alpha\mu}\right),\tag{10}$$

 \rightarrow where:

$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2}g^{\alpha\sigma}(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\mu\sigma} - \partial_{\sigma}g_{\mu\nu}) \tag{11}$$

- \rightarrow Next steps:
- (i) Find out who's $\delta\Gamma^{\alpha}_{\mu\nu}$,
- (ii) Find out who's $\delta R_{\mu\nu}$.

 \rightarrow First we define $\Gamma_{\sigma\mu\nu}$:

$$\Gamma_{\sigma\mu\nu} \equiv g_{\sigma\rho} \Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g_{\sigma\rho} g^{\rho\beta} (\partial_{\mu} g_{\nu\beta} + \partial_{\nu} g_{\mu\beta} - \partial_{\beta} g_{\mu\nu})$$

$$= \frac{1}{2} \delta_{\sigma}{}^{\beta} (\partial_{\mu} g_{\nu\beta} + \partial_{\nu} g_{\mu\beta} - \partial_{\beta} g_{\mu\nu})$$

$$= \frac{1}{2} (\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu})$$
(12)

 \rightarrow s.t.:

$$\delta\Gamma^{\rho}_{\mu\nu} = \delta(g^{\sigma\rho}\Gamma_{\sigma\mu\nu})$$

$$= g^{\sigma\rho}\delta\Gamma_{\sigma\mu\nu} + \delta g^{\sigma\rho}\Gamma_{\sigma\mu\nu}.$$
(13)

 \rightarrow One may prove that[2]:

$$\delta g^{\sigma\gamma} = -(\delta g_{\rho\mu})g^{\sigma\rho}g^{\mu\gamma},\tag{14}$$

 \rightarrow subs. into the expression for $\delta\Gamma^{\rho}_{\mu\nu}$:

$$\delta\Gamma^{\rho}_{\mu\nu} = g^{\sigma\rho}\delta\Gamma_{\sigma\mu\nu} - (\delta g_{\gamma\alpha})g^{\alpha\rho}g^{\sigma\gamma}\Gamma_{\sigma\mu\nu}$$
$$= g^{\sigma\rho}\delta\Gamma_{\sigma\mu\nu} - (\delta g_{\gamma\alpha})g^{\alpha\rho}\Gamma^{\gamma}_{\mu\nu} \tag{15}$$

 \rightarrow changing the dummy indices $\alpha \leftrightarrow \sigma$ in the second term:

$$\delta\Gamma^{\rho}_{\mu\nu} = g^{\sigma\rho}\delta\Gamma_{\sigma\mu\nu} - (\delta g_{\gamma\sigma})g^{\sigma\rho}\Gamma^{\gamma}_{\mu\nu}$$
$$= g^{\sigma\rho}\left(\delta\Gamma_{\sigma\mu\nu} - \delta g_{\gamma\sigma}\Gamma^{\gamma}_{\mu\nu}\right) \tag{16}$$

 \rightarrow Using the definition of $\Gamma_{\sigma\mu\nu}$:

$$\delta\Gamma_{\sigma\mu\nu} = \frac{1}{2} \left[\partial_{\mu} (\delta g_{\nu\sigma}) + \partial_{\nu} (\delta g_{\mu\sigma}) - \partial_{\sigma} (\delta g_{\mu\nu}) \right]. \tag{17}$$

 \rightarrow Subs. into $\delta\Gamma^{\rho}_{\mu\nu}$:

$$\begin{split} \delta\Gamma^{\rho}_{\mu\nu} &= \frac{1}{2} g^{\sigma\rho} \left[\partial_{\mu} (\delta g_{\nu\sigma}) + \partial_{\nu} (\delta g_{\mu\sigma}) - \partial_{\sigma} (\delta g_{\mu\nu}) - 2\delta g_{\gamma\sigma} \Gamma^{\gamma}_{\mu\nu} \right] \\ &= \frac{1}{2} g^{\sigma\rho} \left\{ \left[\frac{\partial_{\mu} (\delta g_{\nu\sigma}) - \delta g_{\gamma\sigma} \Gamma^{\gamma}_{\mu\nu}}{\partial \rho} \right] + \left[\partial_{\nu} (\delta g_{\mu\sigma}) - \delta g_{\gamma\sigma} \Gamma^{\gamma}_{\nu\mu} \right] - \partial_{\sigma} (\delta g_{\mu\nu}) \right\} \end{split}$$

 \rightarrow Note that red and blue are ALMOST covariant derivates.

 \rightarrow S.t.:

$$\begin{split} \delta\Gamma^{\rho}_{\mu\nu} &= \frac{1}{2} g^{\sigma\rho} \{ \left[\nabla_{\mu} (\delta g_{\nu\sigma}) + \delta g_{\nu\gamma} \Gamma^{\gamma}_{\mu\sigma} \right] + \left[\nabla_{\nu} (\delta g_{\mu\sigma}) + \delta g_{\mu\gamma} \Gamma^{\gamma}_{\nu\sigma} \right] - \partial_{\sigma} (\delta g_{\mu\nu}) \} \\ &= \frac{1}{2} g^{\sigma\rho} \{ \nabla_{\mu} (\delta g_{\nu\sigma}) + \nabla_{\nu} (\delta g_{\mu\sigma}) - \left[\partial_{\sigma} (\delta g_{\mu\nu}) - \delta g_{\nu\gamma} \Gamma^{\gamma}_{\mu\sigma} - \delta g_{\mu\gamma} \Gamma^{\gamma}_{\nu\sigma} \right] \} \\ &= \frac{1}{2} g^{\sigma\rho} \{ \nabla_{\mu} (\delta g_{\nu\sigma}) + \nabla_{\nu} (\delta g_{\mu\sigma}) - \nabla_{\sigma} (\delta g_{\mu\nu}) \} \end{split}$$

 \rightarrow Finally:

$$\delta\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\sigma\rho} \{ \nabla_{\mu}(\delta g_{\nu\sigma}) + \nabla_{\nu}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\nu}) \}$$

$$= \frac{1}{2}\mathring{g}^{\sigma\rho} \{ \nabla_{\mu}(\delta g_{\nu\sigma}) + \nabla_{\nu}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\nu}) \} + \mathcal{O}(h^{2})$$
(18)

 $\rightarrow \delta \Gamma^{\rho}_{\mu\nu}$ is a tensor!!!

Who's $\delta R_{\mu\nu}$?

 \rightarrow applying the same resoning:

$$\delta R_{\mu\nu} = \partial_{\alpha} (\delta \Gamma^{\alpha}_{\mu\nu}) - \partial_{\nu} (\delta \Gamma^{\alpha}_{\alpha\mu}) + \delta (\Gamma^{\alpha}_{\alpha\lambda} \Gamma^{\lambda}_{\nu\mu}) - \delta (\Gamma^{\alpha}_{\nu\lambda} \Gamma^{\lambda}_{\alpha\mu})
= \partial_{\alpha} (\delta \Gamma^{\alpha}_{\mu\nu}) - \partial_{\nu} (\delta \Gamma^{\alpha}_{\alpha\mu}) + (\delta \Gamma^{\alpha}_{\alpha\lambda}) (\Gamma^{\lambda}_{\nu\mu}) - (\delta \Gamma^{\alpha}_{\nu\lambda}) (\Gamma^{\lambda}_{\alpha\mu})
+ (\Gamma^{\alpha}_{\alpha\lambda}) (\delta \Gamma^{\lambda}_{\nu\mu}) - (\Gamma^{\alpha}_{\nu\lambda}) (\delta \Gamma^{\lambda}_{\alpha\mu})$$
(19)

 \rightarrow rearranging and identifying terms:

$$\delta R_{\mu\nu} = \left[\nabla_{\alpha} (\delta \Gamma^{\alpha}_{\mu\nu}) + \Gamma^{\lambda}_{\nu\alpha} (\delta \Gamma^{\alpha}_{\mu\lambda}) \right] - \left[\nabla_{\nu} (\delta \Gamma^{\alpha}_{\mu\alpha}) + \Gamma^{\lambda}_{\nu\alpha} (\delta \Gamma^{\alpha}_{\mu\lambda}) \right]$$
 (20)

 \rightarrow The 2nd and 4th terms cancel, and we get:

$$\delta R_{\mu\nu} = \nabla_{\alpha} (\delta \Gamma^{\alpha}_{\mu\nu}) - \nabla_{\nu} (\delta \Gamma^{\alpha}_{\mu\alpha}) \tag{21}$$

 \rightarrow This is known as the Palatini identity.

Who's $\delta R_{\mu\nu}$?

 \rightarrow Using the expressions for $\delta\Gamma^{\rho}_{\mu\nu}$:

$$\nabla_{\alpha}(\delta\Gamma^{\alpha}_{\mu\nu}) = \frac{1}{2}\nabla_{\alpha}\{\mathring{g}^{\sigma\alpha}\left[\nabla_{\mu}(\delta g_{\nu\sigma}) + \nabla_{\nu}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\nu})\right]\}$$

$$= \frac{1}{2}\mathring{g}^{\sigma\alpha}\nabla_{\alpha}\left[\nabla_{\mu}(\delta g_{\nu\sigma}) + \nabla_{\nu}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\nu})\right]$$

$$= \frac{1}{2}\nabla^{\sigma}\left[\nabla_{\mu}(\delta g_{\nu\sigma}) + \nabla_{\nu}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\nu})\right]$$

$$\nabla_{\nu}(\delta\Gamma^{\alpha}_{\mu\alpha}) = \frac{1}{2}\nabla_{\nu}\{\mathring{g}^{\sigma\alpha}\left[\nabla_{\mu}(\delta g_{\alpha\sigma}) + \nabla_{\alpha}(\delta g_{\mu\sigma}) - \nabla_{\sigma}(\delta g_{\mu\alpha})\right]\}$$
$$= \frac{1}{2}\nabla_{\nu}\left[\nabla_{\mu}(\delta g^{\sigma}_{\sigma}) + \nabla^{\sigma}(\delta g_{\mu\sigma}) - \nabla^{\sigma}(\delta g_{\mu\sigma})\right]$$
$$= \frac{1}{2}\nabla_{\nu}\nabla_{\mu}(\delta g^{\sigma}_{\sigma})$$

Who's $\delta R_{\mu\nu}$?

 \rightarrow Hence:

$$\delta R_{\mu\nu} = \frac{1}{2} \left[\nabla^{\sigma} \nabla_{\mu} (\delta g_{\nu\sigma}) + \nabla^{\sigma} \nabla_{\nu} (\delta g_{\mu\sigma}) - \nabla^{\sigma} \nabla_{\sigma} (\delta g_{\mu\nu}) - \nabla_{\nu} \nabla_{\mu} (\delta g^{\sigma}_{\sigma}) \right]$$

 \rightarrow We may identify $\delta g_{\mu\nu} = h_{\mu\nu}$ so it becomes more friendly:

$$\delta R_{\mu\nu} = \frac{1}{2} \left(\nabla_{\sigma} \nabla_{\mu} h_{\nu}^{\ \sigma} + \nabla_{\sigma} \nabla_{\nu} h_{\mu}^{\ \sigma} - \nabla^{\sigma} \nabla_{\sigma} h_{\mu\nu} - \nabla_{\nu} \nabla_{\mu} h \right)$$

 \rightarrow Taking the trace:

$$\delta R^{\mu}_{\ \mu} = \frac{1}{2} \left(\nabla^{\sigma} \nabla^{\mu} h_{\mu\sigma} + \nabla^{\sigma} \nabla^{\mu} h_{\mu\sigma} - \nabla^{\sigma} \nabla_{\sigma} h^{\mu}_{\ \mu} - \nabla^{\mu} \nabla_{\mu} h \right)$$
$$= \nabla^{\alpha} \nabla^{\sigma} h_{\alpha\sigma} - \nabla^{\alpha} \nabla_{\alpha} h \tag{22}$$

Who's $\delta G_{\mu\nu}$

 \rightarrow Using the Einstein tensor definition (to $\mathcal{O}(h)$):

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$

$$= \mathring{R}_{\mu\nu} + \delta R_{\mu\nu} - \frac{1}{2}\left(\mathring{g}_{\mu\nu} + h_{\mu\nu}\right) \left[\left(\mathring{g}^{\alpha\beta} - h^{\alpha\beta}\right)\left(\mathring{R}_{\alpha\beta} + \delta R_{\alpha\beta}\right)\right]$$

$$= \mathring{R}_{\mu\nu} + \delta R_{\mu\nu} - \frac{1}{2}\left(\mathring{g}_{\mu\nu} + h_{\mu\nu}\right)\left(\mathring{R} + \mathring{g}^{\alpha\beta}\delta R_{\alpha\beta} - h^{\alpha\beta}\mathring{R}_{\alpha\beta}\right)$$

$$= \left(\mathring{R}_{\mu\nu} - \frac{1}{2}\mathring{g}_{\mu\nu}\mathring{R}\right) + \delta R_{\mu\nu} - \frac{1}{2}\mathring{g}_{\mu\nu}\left(\mathring{g}^{\alpha\beta}\delta R_{\alpha\beta} - h^{\alpha\beta}\mathring{R}_{\alpha\beta}\right) - \frac{1}{2}h_{\mu\nu}\mathring{R}$$

$$= \mathring{G}_{\mu\nu} + \delta G_{\mu\nu}, \tag{23}$$

 \rightarrow where:

$$\delta G_{\mu\nu} \equiv \delta R_{\mu\nu} - \frac{1}{2} \mathring{g}_{\mu\nu} \left(\mathring{g}^{\alpha\beta} \delta R_{\alpha\beta} - h^{\alpha\beta} \mathring{R}_{\alpha\beta} \right) - \frac{1}{2} h_{\mu\nu} \mathring{R}$$
 (24)

Perturbed Einstein Equations I

 \rightarrow For vacuum solutions as background metric:

$$\mathring{T}_{\mu\nu} = \mathring{T} = 0 \Rightarrow \mathring{R}_{\mu\nu} = \mathring{R} = 0,$$
 (25)

 \rightarrow Hence the Einstein equations become:

$$\delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu}$$

$$\delta R_{\mu\nu} - \frac{1}{2} \mathring{g}_{\mu\nu} \left(\mathring{g}^{\alpha\beta} \delta R_{\alpha\beta} \right) = 8\pi \delta T_{\mu\nu}, \tag{26}$$

- → which are (finally) the perturbed Einstein equations!!
- \rightarrow Ex.: Schwarzschild spacetime, where $\mathring{R}_{\mu\nu}=R_{\mu\nu}^{Sch}=0$

Tensor Spherical Harmonics & The Harmonic Decomposition

The Harmonic Decomposition I

 \rightarrow To fully take advantage of the problem's spherical symmetry, we'll introduce scalar, vector and tensor spherical harmonics to separate radial and angular dependencies.

 \rightarrow First we must decompose our spacetime manifold:

$$\mathcal{M} = \mathcal{M}_2 \times \mathbb{S}^2 \tag{27}$$
$$(t, r) \ (\theta, \phi)$$

 \rightarrow s.t.:

$$x^{\mu} = (z^A, y^a), \quad z^A = (t, r), \ y^a = (\theta, \phi),$$
 (28)

 \rightarrow which means:

$$T_p \mathcal{M} = T_p \mathcal{M}_2 \otimes T_p \mathbb{S}^2, \quad \forall p \in \mathcal{M}$$
 (29)

The Harmonic Decomposition II

 \rightarrow Vectors:

$$t^{\mu} = (t^A, t^a) \tag{30}$$

 \rightarrow (0,2)-tensors:

$$t_{\mu\nu} = \begin{pmatrix} t_{AB} & t_{Aa} \\ t_{aA} & t_{ab} \end{pmatrix}_{\mu\nu} \tag{31}$$

- \rightarrow So on, and so forth...
- \rightarrow Demands:
 - Scalar (spin-0) perturbations $\Rightarrow Y^{lm}$
 - • Tensor (spin-2) perturbations \Rightarrow $\left(Y^{lm},Y^{lm}_a,S^{lm}_a,Z^{lm}_{ab},S^{lm}_{ab}\right)$
- \rightarrow Let's enter \mathbb{S}^2 , i.e., the realm of the tensor spherical harmonics...

Scalar Spherical Harmonics

 \rightarrow Given γ_{ab} the metric on the 2-sphere \mathbb{S}^2 :

$$\gamma_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}_{ab} \tag{32}$$

 $\rightarrow \exists$ a covariant derivative $\tilde{\nabla}$ s.t.:

$$\tilde{\nabla}_a \gamma_{bc} = 0 \tag{33}$$

 $\rightarrow Y^{lm}$ = eigenvectors of the Laplacian op.:

$$\mathbb{L}Y^{lm} = \gamma^{ab}\tilde{\nabla}_a\tilde{\nabla}_bY^{lm}$$

= $-l(l+1)Y^{lm}$ (34)

Vector Spherical Harmonics

- \rightarrow Vectors:
 - Polar/Even:

$$Y_a^{lm} \equiv (\tilde{\nabla}_{\theta} Y^{lm}, \tilde{\nabla}_{\phi} Y^{lm}) = (\partial_{\theta} Y^{lm}, \partial_{\phi} Y^{lm})$$
 (35)

• Axial/Odd

$$S_a^{lm} \equiv -\varepsilon_a{}^b \tilde{\nabla}_b Y^{lm} = \left(-\frac{1}{\sin\theta} \partial_\phi Y^{lm}, \sin\theta \partial_\theta Y^{lm} \right)$$
 (36)

 \rightarrow where

$$\varepsilon_{ab} = \sqrt{\gamma} \epsilon_{ab}$$

$$= \sin \theta \epsilon_{ab}$$
(37)

Tensor Spherical Harmonics

- \rightarrow (0, 2)-Tensors:
 - Polar/Even:

$$Z_{ab}^{lm} \equiv \tilde{\nabla}_a \tilde{\nabla}_b Y^{lm} + \frac{l(l+1)}{2} \gamma_{ab} Y^{lm} = \frac{1}{2} \begin{pmatrix} W^{lm} & X^{lm} \\ X^{lm} & -sin^2 \theta W^{lm} \end{pmatrix}$$
(38)

• Axial/Odd

$$S_{ab}^{lm} \equiv \tilde{\nabla}_{(a} S_{b)}^{lm} = \frac{1}{2} \begin{pmatrix} -\frac{1}{\sin\theta} X^{lm} & \sin\theta W^{lm} \\ \sin\theta W^{lm} & \sin\theta W^{lm} \end{pmatrix}$$
(39)

 \rightarrow where

$$X^{lm} \equiv 2\left(\partial_{\theta}\partial_{\phi}Y^{lm} - \cot\theta\partial_{\phi}Y^{lm}\right) \tag{40}$$

$$W^{lm} \equiv \partial_{\theta}^{2} Y^{lm} - \cot\theta \partial_{\theta} Y^{lm} - \frac{1}{\sin\theta} \partial_{\phi}^{2} Y^{lm}$$

(41)

Properties

 \rightarrow Symmetric:

$$Z_{ab}^{lm} = Z_{(ab)}^{lm} \tag{42}$$

$$S_{ab}^{lm} = S_{(ab)}^{lm} \tag{43}$$

 \rightarrow Traceless:

$$\gamma^{ab} Z_{ab}^{lm} = \gamma^{ab} S_{ab}^{lm} = 0 \tag{44}$$

 \rightarrow The following properties will be the most handy:

Orthogonality Properties

 \rightarrow Scalar product on \mathbb{S}^2 :

 \rightarrow Scalar:

 \rightarrow Tensor:

$$\langle f, g \rangle = \int (f^*g) d\Omega$$

 $\langle Y^{lm}, Y^{l'm'} \rangle = \int (Y^{l'm'})^* (Y^{lm}) d\Omega = \delta^{ll'} \delta^{mm'}$

$$\rightarrow$$
 Vector:

$$\gamma^{ab}\langle Y_a^{lm}, Y_b^{l'm'}\rangle = \gamma^{ab}\langle S_a^{lm}, S_b^{l'm'}\rangle = \int \gamma^{ab}(\partial_a Y^{lm})^* \partial_b Y^{lm} d\Omega$$

$$\langle a, b \rangle = \langle a, b \rangle$$

$$\beta_a, \beta_b = \int \gamma \quad (\theta_a I)$$
$$= l(l+1)\delta^{ll'}\delta^{mm'}$$

 $\gamma^{ab}\langle Z_{ab}^{lm},Z_{ab}^{l'm'}\rangle = \gamma^{ab}\langle S_{ab}^{lm},S_{ab}^{l'm'}\rangle = l(l+1)(l+2)\delta^{ll'}\delta^{mm'}$

$$\langle a \rangle = \int$$

$$\rangle = \int$$

$$=\int \gamma$$

(45)

(46)

(47)

(48)

(49)

25 / 32

Tensor Spherical Harmonics as Basis

- \rightarrow Note that wrt the metric γ_{ab} :
 - $t_{AB} = \text{scalar}$
 - $t_{aA} = \text{vector}$
 - $t_{ab} = (0, 2)$ -tensor
- \rightarrow Hence, we may construct a basis with the tensor spherical harmonics:
 - $\{Y^{lm}\}$ = complete basis for scalar in \mathbb{S}^2
 - $\{Y_a^{lm}, S_a^{lm}\}$ = complete basis for vectors in \mathbb{S}^2
 - $\{Z_{ab}^{lm}, S_{ab}^{lm}\}$ = complete basis for 2-tensors in \mathbb{S}^2 (symmetric and traceless)
- \rightarrow However

$$T_{ab} = T_{ab}^{traceless} + \frac{1}{4} \gamma_{ab} \left(\gamma^{cd} T_{cd} \right) \tag{50}$$

Tensor Spherical Harmonics as Basis

- $\rightarrow \{Z_{ab}^{lm}, S_{ab}^{lm}\}$ take care of $T_{ab}^{traceless}.$
- $\rightarrow \{Y^{lm}\}$ take care of $\gamma^{cd}T_{cd}.$
- \rightarrow Hence we have a complete basis for all scalars, vectors and symmetric 2-tensors in $\mathbb{S}^2!!$
- \rightarrow The set $\{Y^{lm},Y^{lm}_a,S^{lm}_a,Z^{lm}_{ab},S^{lm}_{ab}\}$ can be subdivided as seen previously:
 - Even = $\{Y^{lm}, Y_a^{lm}, Z_a^{lm}\}$
 - $\bullet \text{ Odd} = \{S_a^{lm}, S_{ab}^{lm}\}$

Tensor Spherical Harmonics as basis

 \rightarrow Subdivision based on how they transform under parity:

$$\theta \to \theta - \pi$$
$$\phi \to \phi + \pi$$

• Even:

$$Y^{lm}(\theta', \phi') = (-1)^l Y^{lm}(\theta, \phi) \tag{51}$$

• Odd:

$$S^{lm}(\theta', \phi') = (-1)^{l+1} S^{lm}(\theta, \phi)$$
 (52)

The Harmonic Decomposition III

$$\rightarrow \mathcal{M} = \mathcal{M}_2 \times \mathbb{S}^2$$
, st.:

$$h_{\mu\nu} = \begin{pmatrix} h_{AB} & h_{Aa} \\ h_{aA} & h_{ab} \end{pmatrix}_{\mu\nu} \tag{53}$$

- \rightarrow Remember that wrt the metric γ_{ab} :
 - $h_{AB} = \text{scalar}$
 - $h_{aA} = \text{vector}$
 - $h_{ab} = (0, 2)$ -tensor
- \rightarrow wrt to (t,r):
 - $h_{AB} = (0, 2)$ -tensor
 - $h_{aA} = \text{vector}$
 - $h_{ab} = \text{scalar}$

The Harmonic Decomposition IV

 \rightarrow Where:

$$h_{AB} = \sum_{l,m} h_{AB}^{lm} Y^{lm} \tag{54}$$

$$h_{Aa} = \sum_{l,m} \left(h_A^{e,lm} Y_a^{lm} + h_A^{o,lm} S_a^{lm} \right)$$
 (55)

$$h_{ab} = \sum_{l,m} \left[r^2 \left(K^{lm} \gamma_{ab} Y^{lm} + G^{lm} Z^{lm}_{ab} + 2h^{lm} S^{lm}_{ab} \right) \right]$$
 (56)

 $\rightarrow \{h_{AB}^{lm}, h_A^{e,lm}, h_A^{o,lm}, K^{lm}, G^{lm}, h^{lm}\}$ are all functions of (t,r) to be determined by the perturbed Einstein equations.

- \rightarrow The subdivision:
 - Odd: $\{h_A^{o,lm}, h^{lm}\}$
 - Even: $\{h_A^{e,lm}, h_{AB}^{lm}, K^{lm}, G^{lm}\}$

Next Time...

Tomorrow: The Regge-Wheeler Equation!!!

Thank you!

References I

- [1] Emanuele Berti. "Black Hole Perturbation Theory". In: Summer School on Gravitational-Wave Astronomy, International Center for Theoretical Sciences, Bangalore (2016). URL: https://www.icts.res.in/event/page/3071.
- [2] Valeria Ferrari, Leonardo Gualtieri, and Paolo Pani. General relativity and its applications: black holes, compact stars and gravitational waves. CRC press, 2020.