Fonctions dérivables

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 25, 2024

Théorème de Rolle et théorème des accroissements finies

Théorème de Rolle:

$$\begin{cases} f \text{ continue sur } [a, b] \\ f \text{ dérivable sur }]a, b[\Rightarrow \exists c \in]a, b[/f'(c) = 0. \\ f(a) = f(b) \end{cases}$$

Théorème des accroissements finis:

Théorème:

$$f$$
 continue sur $[a, b]$ f dérivable sur $[a, b]$ $\Rightarrow \exists c \in [a, b] / f(b) - f(a) = (b - a) f'(c)$.

Autre formule du théorème des accroissements finis:

Si
$$c \in]a, b[\Rightarrow c = a + \theta (b - a), \text{ où } 0 < \theta < 1.$$

$$f$$
 continue sur $[a,b]$ f dérivable sur $[a,b]$ $\Rightarrow \exists \theta \in]0,1[/f(b)-f(a)]$ $f(b)-f(a)=(b-a)f'(a+\theta(b-a)).$

Si on pose b - a = h, on obtient

$$f(a+h)-f(a)=hf'(a+\theta h)$$
.

Application du théorème des accroissements finis:

1. En utilisant le théorème des accroissements finis, montrer que

$$\forall x > 0, \frac{x}{x+1} < \ln(x+1) < x.$$

On pose $f(t) = \ln(t+1)$, $t \in [a,b] = [0,x]$, appliquons le T.A.F. sur la fonction $f(t) = \ln(t+1)$ définie sur l'intervalle [0,x].

$$\begin{cases}
\ln(t+1) \text{ continue sur } [0,x] \\
\ln(t+1) \text{ dérivable sur }]0,x[
\end{cases} \Rightarrow \exists c \in]0,x[/]$$

$$f(x) - f(0) = (x-0)f'(c).$$

$$\exists c \in]0,x[/]\ln(x+1) - \ln(0+1) = (x-0)\left(\frac{1}{c+1}\right)$$

$$\exists c \in]0,x[/]\ln(x+1) = \frac{x}{c+1}.$$

Théorème des accroissements finis généralisés:

Soient f et g deux fonctions continues sur [a,b], dérivable sur [a,b[, si $g'(x) \neq 0$ alors

$$\exists c \in]a, b[/\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Règle de l'Hôpital:

On l'utilise pour enlever les formes indéterminées de la forme $\frac{0}{0}, \frac{\infty}{\infty}$. Si f et g sont deux fonctions dérivables dans un voisinage de $x_0 \in I$ et si $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ existe, alors $\frac{f(x) - f(x_0)}{g(x) - g(x_0)}$ admet la même limite en x_0 . c.à.d.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Si
$$x \to x_0 \Rightarrow c \to x_0$$
 et donc $\lim_{c \to x_0} \frac{f'(c)}{g'(c)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Remarque:

- 1. La règle de l'Hôpital reste valable pour $x_0 = \infty$.
- 2. On peut appliquer la règle de l'Hôpital plusieurs fois, il suffit que les conditions soit vérifiées.
- 3. Si $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \not\exists \Rightarrow \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \not\exists$, en effet Soient $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$ et $g(x) = \sin x$. $\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2x \sin \frac{1}{x} \cos \frac{1}{x}}{\cos x} \not\exists$, par contre $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \underbrace{\frac{x}{\sin x}}_{\text{bornée}} \underbrace{\frac{x}{\sin x}}_{\text{bornée}} = 0.$

Formule de Taylors

La formule de Taylors concerne les fonctions n fois dérivables qui peuvent être approximées dans un voisinage de x_0 par des polynômes de degré n.

Soit $f:[a,b]\to\mathbb{R}$ une fonction telle que $f\in C^n(]a,b[)$ et $f^{(n)}$ dérivable sur]a,b[et soit $x_0\in [a,b]$. Alors $\forall x\in [a,b]/x\neq x_0$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

l'erreur $R_n(x)$ est appelée reste d'ordre n.

$$R_n(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$
, où $c \in]x_0, x[\rightarrow \text{reste de Lagrange}.$
 $R_n(x) = \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(x_0 + \theta h)$, où $h = x - x_0$, $0 < \theta < 1$
 $\rightarrow \text{reste de Cauchy}.$
 $R_n(x) = o((x-x_0)^n) \rightarrow \text{reste de Young}$

Développement de Maclaurin:

Théorème: Soit $f \in C^n([0, x])$, $f^{(n+1)}$ existe sur]0, x[, alors $]\exists \theta \in]0, 1[$ tel que

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x).$$

C'est le développement de Taylors au voisinage de $x_0 = 0$ avec reste de Cauchy

Formule de Maclaurin-young:

Théorème: Soit $f:[a,b] \to \mathbb{R}, 0 \in [a,b]$. Supposons que $f^{(n)}(0)$ existe. Alors $\forall x \in [a,b]$;

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

Fonctions convexes et fonctions concaves

Définition:

Approche graphique: Soit f une fonction dérivable sur un intervalle I et G_f sa courbe représentative.

On dit que f est convexe sur I si sa courbe représentative G_f est au dessus de toutes ses tangente sur I.

ou bien si G_f est au dessous de toutes ses cordes (sécantes) sur I. On dit que f est concave sur I si si sa courbe représentative G_f est au dessous de toutes ses tangente sur I.

ou bien si G_f est au dessus de toutes ses cordes (sécantes) sur I.

Approche analytique: Soit *f* une fonction définie sur un intervalle *l*

On dit que f est convexe sur I, si $\lambda \in [0, 1], x, y \in I$, on a

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$$
.

Lorsqu'on a l'inégalité dans l'autre sens, on dit que f est concave.

Remarque: f est concave si -f est convexe.

Proposition:

Si *f* est une fonction dérivable sur *l* alors on a l'équivalence des assertions suivantes:

- 1. *f* est convexe sur *l*.
- 2. f' est croissante sur I.
- 3. f" est positive sur I.
- 4. *G_f* est au dessus de toutes ses tangentes sur *I*.
- 5. G_f est au dessous de toutes ses cordes (sécantes) sur I.

Exemple:

- 1. $f(x) = e^x$ est convexe sur \mathbb{R} car $f''(x) = e^x > 0, \forall x \in \mathbb{R}$.
- 2. $f(x) = \ln x$ est concave sur \mathbb{R}_+^* car $f''(x) = \frac{-1}{x^2} < 0, \forall x \in \mathbb{R}_+^*$.

Point d'inflexion:

Soient f une fonction dérivable sur I, G_f sa courbe représentative et $A(a, f(a)) \in G_f$.

On dit que A est un point d'inflexion de G_f si et seulement si la courbe G_f traverse sa tangente en ce point A.

Si *A* est un point d'inflexion d'abscisse *a*, *f* passe de concave à convexe ou de convexe à concave en *a*.

Théorème:

Soit f une fonction deux fois dérivable sur I, de courbe représentative G_f . le point A d'abscisse a est un point d'inflexion de G_f si et seulement si f'' s'annule et change de signe en a.

Les asymptotes d'une coube

Définition: Une droite asymptote à une courbe est une droite telle que lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.

Nous étudions 3 cas en particulier.

Asymptote verticale, asymptote horizontale, asymptote oblique.

Définition1. Soit f une fonction définie sur I sauf en a. La droite x = a est une asymptote verticale de la coube y = f(x) si $\lim f(x) = \infty$ ou $\lim f(x) = \infty$.

 $x \rightarrow a$ $x \rightarrow a$ $x \rightarrow a$

Méthode pour déterminer les asymptotes verticales:

Les asymptotes verticales sont à chercher parmi les valeurs interdites. On calculera donc la $\lim_{x\to a} f(x)$ pour tout $a \notin D_f$.

Si cette limite vaut ∞ alors la droite x = a est une asymptote verticale de la courbe y = f(x).

Asymptote horozontale

Définition2. Soit *f* une fonction définie sur *l*.

La droite $y = b_1$ est une asymptote horozontale à droite de la courbe y = f(x) si $\lim_{x \to +\infty} f(x) = b_1$.

La droite $y = b_2$ est une asymptote horozontale à gauche de la courbe y = f(x) si $\lim_{x \to -\infty} f(x) = b_2$.

Si $b_1 = b_2$, alors on dira simplement que cette droite est l'asymptote horizontale à la courbe y = f(x).

Méthode pour déterminer les asymptotes horizontales

La courbe de la forme $y = f(x) = \frac{P(x)}{Q(x)}$ admet une asymptote horizontale si et seulement si le degré de $P(x) \le degré de Q(x)$.

Asymptote oblique

Définition3. La droite y = ax + b est une asymptote oblique de la courbe y = f(x) si

$$\lim_{x\to+\infty}f(x)-(ax+b)=0 \text{ ou } \lim_{x\to-\infty}f(x)-(ax+b)=0.$$

Méthode pour déterminer les asymptotes obliques

y = ax + b.

a est donné par la formule $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ et *b* est donné par la formule $\lim_{x \to +\infty} f(x) = ax - b$

formule
$$\lim_{x\to +\infty} f(x) - ax = b$$
.

Position de la courbe par rapport à son asymptote oblique ou horizontale:

Soit M = (x, f(x)) un point du graphe de $f(\Delta) : y = ax + b$ son asymptote au voisinage de ∞ .

M est au dessus de l'asymptote oblique si f(x) > ax + b.

M est au dessous de l'asymptote oblique si f(x) < ax + b.

M est un point de l'asymptote oblique si f(x) = ax + b.

M est au dessus de l'asymptote horizontale y = b si f(x) > b.

M est au dessous de l'asymptote horizontale y = b si f(x) < b.

M est un point de l'asymptote horizontale y = b si f(x) = b.