Features Description

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per 10,000

PTRATIO - pupil-teacher ratio by town

B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

LSTAT - % lower status of the population

MEDV - Median value of owner-occupied homes in 1000's

Import Libraries

Load Dataset

Out[2]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

Check Missing values

```
In [3]: 1 sns.heatmap(data.isnull(),yticklabels=False)
2 plt.show()
```


• No missing value present

Check important features

 As LSTAT, PTRATIO & RM are highly correlated with MEDV therefore select these 3 feature for model

```
In [5]: 1 data = data[['LSTAT','PTRATIO','RM','MEDV']]
```

Check presence of outliers using boxplot

• In MEDV value 50 repeating 16 times, this is outlier therefore removed

```
Out[7]: 5.0
          5.6
                    1
                    1
          6.3
          7.0
                    2
          7.2
                    3
          46.7
                    1
          48.3
                    1
          48.5
                    1
          48.8
                    1
          50.0
                   16
          Name: MEDV, Length: 229, dtype: int64
 In [8]:
              data = data[data['MEDV']!=50]

    In LSTAT last 2 values are outliers therefore removed

 In [9]:
              data['LSTAT'].value_counts().sort_index()
 Out[9]: 1.98
                    1
          2.47
                    1
          2.87
                    1
          2.94
                    1
          2.98
                    1
          34.37
                    1
          34.41
                    1
          34.77
                    1
          36.98
                    1
          37.97
          Name: LSTAT, Length: 442, dtype: int64
In [10]:
            1 data = data[data['LSTAT']<=36]</pre>
            · In RM last value is outlier therefore removed
In [11]:
               data['RM'].value_counts().sort_index()
Out[11]:
          3.561
                    1
          3.863
                    1
          4.138
                    1
          4.368
                    1
          4.628
                    1
          8.259
                    1
          8.266
                    1
          8.337
                    1
          8.398
                    1
          8.780
          Name: RM, Length: 430, dtype: int64
In [12]:
               data = data[data['RM']<=8.5]</pre>
In [13]:
              data.shape
Out[13]: (487, 4)
```

data['MEDV'].value_counts().sort_index()

In [7]:

• Total 19 data points are removed due to outliers

Now check whether features are uniformly distributed or not using histogram


```
In [15]: 1 data.skew()
Out[15]: LSTAT 0.834479
```

PTRATIO -0.814366 RM 0.165935 MEDV 0.781963 dtype: float64

- · From graph and above values, it is concluded that
- LSTAT and MEDV is right skewed
- · PTRAIO is left skewed
- RM is normally distributed

Use yeojohnson power tranformer to normalize data

Check normalize data using QQ Plot

· Data is normally distributed

Seperate and splitting features and label

```
In [19]: 1 X =data[['RM','PTRATIO','LSTAT']]
2 y=data['MEDV']

In [20]: 1 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=
```

Use standardization technique to scale features before applying linear regression

```
In [21]:
             X_train_stand = X_train.copy()
             X_test_stand = X_test.copy()
           3
           4
             # numerical features
           5
              num_cols = ['RM','PTRATIO','LSTAT']
           7
              # apply standardization on numerical features
           8
              for i in num_cols:
           9
          10
                  # fit on training data column
                  scale = StandardScaler().fit(X_train_stand[[i]])
          11
          12
          13
                  # transform the training data column
                  X_train_stand[i] = scale.transform(X_train_stand[[i]])
          14
          15
          16
                  # transform the testing data column
          17
                  X_test_stand[i] = scale.transform(X_test_stand[[i]])
```

Apply linear regression model

```
In [22]:
           1 | lr_model = LinearRegression()
           2 lr_model.fit(X_train_stand,y_train)
           3 y train pred = lr model.predict(X train stand)
           4 y_test_pred = lr model.predict(X test_stand)
           5 s1 = mean squared error(y train,y train pred)
           6 print("Mean Squared error of training set :%2f"%s1)
           7 | s2 = mean_squared_error(y_test,y_test_pred)
           8 print("Mean squared error of testing set: %.2f"%s2)
           9
         Mean Squared error of training set :0.304072
         Mean squared error of testing set: 0.40
In [23]:
           1 | s = r2_score(y_train, y_train_pred)
           2 print('R2 variance score of training set: %.2f' %s )
           3 | s = r2_score(y_test,y_test_pred)
           4 print("R2 variance score of testing set: %.2f" %s)
           5 N = y_test.size
           6 p = X train stand.shape[1]
           7 | adjr2score = 1 - ((1-r2\_score(y\_test, y\_test\_pred))*(N - 1))/(N - p - 1)
           8 print("Adjusted R^2 Score %.2f" % adjr2score)
         R2 variance score of training set: 0.75
         R2 variance score of testing set: 0.74
         Adjusted R^2 Score 0.73
         To impove r2 score ,Polynomial regression is applied
In [24]:
           1 poly reg = PolynomialFeatures(degree = 2)
           2 | X_train_poly = poly_reg.fit_transform(X_train_stand)
           3 X_test_poly = poly_reg.fit_transform(X_test_stand)
           4 lin reg 2 = LinearRegression()
           5 lin reg 2.fit(X train poly,y train)
Out[24]: LinearRegression()
In [25]:
           1 #predicting on training data set
           2 y_train_predict = lin_reg_2.predict(X_train_poly)
           3 #predicting on testing data set
           4 y_test_predict = lin_reg_2.predict(X_test_poly)
           5 | mse_train = mean_squared_error(y_train,y_train_predict)
           6 r2_train = r2_score(y_train,y_train_predict)
           7 print("The model performance of training set")
           8 | print("----")
           9 print("MSE of training set is {}".format(round(mse_train,2)))
          10 | print("R2 score of training set is {}".format(round(r2_train,2)))
         The model performance of training set
```

MSE of training set is 0.24 R2 score of training set is 0.8

R2 score of testing set is 0.81

Plot of actual values vs predicted

Difference of actual values and predicted is less

```
In [28]: 1 sns.kdeplot(y_test- y_test_predict)
Out[28]: <AxesSubplot:xlabel='MEDV', ylabel='Density'>
```


Accuracy of model is 81% & Mean square error =0.29

Create pickle file

```
In [42]: 1 import pickle
2 file = open('model.pkl','wb')
3 pickle.dump(lr_model,file)
In []: 1
```