1 Topology

1.0.1 Countability in Metric Spaces

Proposition 1. Let X be a metric Space. Then X is first countable

Proof. Pick $x \in X$ then the set $B_x = \{B(x; \frac{1}{n}) : n \in \mathbb{N}\}$ is a nbh base for τ in X

Theorem 1. Let X be a metric space. Then the following are equivalent.

- 1.) X is separable.
- 2.) There exists a countable collection \mathcal{K}_o of open subsets of X such that each open set

$$G = \bigcup_{i} \{ A_{n_i} : A_{n_i} \in \mathscr{K}_0 \}.$$

3.) Every open covering of X contains a countable subcovering of X.

Proof. $(1 \implies 2)$ Let $D = \{x_i : i \in \mathbb{N}\}$ be a countable dense set. Then

$$\mathcal{K} = \{B(x_i; r) : r \in \mathbb{Q} \land i \in \mathbb{N}\}$$
 is countable.

Let G be open and let $x \in G$. Then

$$(\exists r \in \mathbb{Q}, r > 0) \pitchfork B(x; r) \subset G.$$

Since D is dense, there exists $x_j \in D \cap B(x; \frac{r}{3})$ such that

$$x \in B(x_j; \frac{2r}{3}) \subset B(x,r) \subset G.$$

Consequently $G = \bigcup_j \{B(x_j; r) : r \in \mathbb{Q}\}$. Since G was arbitrary, \mathscr{K} is a countable basis.

Proof. $(2 \implies 3)$ Let $\mathscr{K} = \{U_{\alpha} : U_{\alpha} \text{ is open}, \alpha \in \mathscr{A}\}$, but each U_{α} is a union of elements of \mathscr{K}_{o} . Then $\{A_{n_{i}} : j \in \mathbb{N}\}$ is an open covering. By choosing $U_{\alpha_{j}} \supset A_{n_{j}}$ for each $j \in \mathbb{N}$

$$S = \{U_{\alpha_j} : j \in \mathbb{N}\}$$
 is a subcovering of \mathscr{K} for X .

Proof. (3 \Longrightarrow 1). We say that a set A is ϵ -dense if for each $x \in X$, $d(x, A) < \epsilon$. For each $\epsilon > 0$ there exists a countable ϵ -dense set denoted by $A(\epsilon)$. For the open covering $\{B(x; \epsilon) : x \in X\}$, we may extract a countable subcovering $\{B(x_i; \epsilon) : i \in \mathbb{N}\}$ and let $A(\epsilon) = \{x_i : i \in \mathbb{N}\}$. Define

$$D = \bigcup_{n=1}^{\infty} A(\frac{1}{n}).$$

1.1 Compactness in Metric Spaces

Let us begin with some facts on finite dimensional spaces.

Theorem 2. (Heine-Berel Theorem) A closed and bounded subset of \mathbb{R}^n is compact.

Corollary 1. (Bolzano-Weierstrass) Theorem) Let $A \subset \mathbb{R}^n$ be bounded and infinite. Then $A' \neq \phi$.

Proof. Suppose $A' = \phi$. Then A is closed and bounded. Hence, by the Heine-Borel Theorem, A is compact. For every $x \in A$, there exists a nbh U(x) such that

$$U(x) \cap (A \setminus \{x\}) = \phi.$$

Then $\mathcal{K} = \{U(x) : x \in A\}$ is an open covering of A, we may extract a finite subcovering, say, $\mathcal{K}_0 = \{U(x_i) : i = 1, ..., n\}$. Since each $U(x_i)$ contains only the point x_i of A, it follows that A is finite, which is a contradiction!

1.1.1 Total Boundedness

Definition 1.1. (Totally Bounded Metric Space)

A metric space (X,d) is said to be totally bounded if $(\forall \epsilon > 0)$, the open covering

$$\{B(x;\epsilon):x\in X\}$$

has a finite subcovering

$$X = \bigcup_{i=1}^{n} B(x_i; \epsilon)$$

We call the set $\{x_i\}_{i=1}^n$ an $\epsilon - net$.

Theorem 3. If (X, d) is totally bounded, then X is separable.

Proof. For each $n \in \mathbb{N}$, let D_n be a $\frac{1}{n}$ net. Then $J = \bigcup_{n \in \mathbb{N}} D_n$ is countable.

Complete the proof...

Theorem 4. Let (X,d) be a metric space. Let $A \subset X$. If A is totally bounded then \overline{A} is totally bounded.

Proof. Let $\epsilon > 0$. Then A has an $\frac{\epsilon}{2}$ -net E.

Let
$$x \in \overline{A}$$
.

$$\implies (\exists y \in A) \pitchfork (d(x,y) < \frac{\epsilon}{4})$$

$$\implies (\exists x_i \in E) \pitchfork (d(x, x_i) \le d(x, y) + d(y, x_i) \le \frac{\epsilon}{4} + \frac{\epsilon}{2} < \epsilon)$$

Hence E is an ϵ -net for \overline{A} .

Definition 1.2. Diameter of a set.

Let (X, d) be a metric space. We define the following

- 1. $diam(\phi) = 0$.
- 2. $diam(A) = sup\{d(x, y) : x, y \in A\}$ if A is bounded.
- 3. $diam(A) = \infty$ if A is unbounded

Theorem 5. Let (X,d) be a metric space and let $A \subset X$. Then the following hold

- 1. If A is Totally bounded, then A is bounded
- 2. If $X = \mathbb{R}^m$, then A bounded implies A totally bounded

Proof. (1)

Let $D_1 = \{x_i\}_{i=1}^n$ be a 1-net of A. Define

$$\eta = \sup_{(i,j)\in N_n\times N_n} \{d(x_i, x_j)\}.$$

Let $x, y \in A$. Then $(\exists i, j \in N_n)$ such that $d(x, x_i) < 1$ and $d(y, x_j) < 1$. Hence

$$d(x,y) \le d(x,x_i) + d(x_i,x_j) + d(x_j,y) \le 2 + \eta$$

Proof. (2) exercise