Stochastic Computation Graphs, and Pathwise Derivative Policy Gradient Methods

John Schulman

OpenAl

August 27, 2017

Stochastic Computation Graphs

Motivation

- Gradient estimation is at the core of much of modern machine learning
- Backprop is mechanical: this us more freedom to tinker with architectures and loss functions
- RL (and certain probabilistic models) involve components you can't backpropagate through—need REINFORCE-style estimators logprob * advantage
- ► Often we need a combination of backprop-style and REINFORCE-style gradient estimation
 - ▶ RNN policies $\pi(a_t \mid h_t)$, where $h_t = f(h_{t-1}, a_{t-1}, o_t)$
 - ▶ Instead of reward, we have a known differentiable function, e.g. classifier with hard attention. Objective = logprob of correct label.
- ► Each paper to propose such a model provides a new convoluted derivation

Gradients of Expectations

Want to compute $\nabla_{\theta}\mathbb{E}[F]$. Where's θ ?

- "Inside" distribution, e.g., $\mathbb{E}_{x \sim p(\cdot \mid \theta)}[F(x)]$

 - Score function (SF) estimator
 - ► Example: REINFORCE policy gradients, where *x* is the trajectory
- ▶ Inside expectation: $\mathbb{E}_{z \sim \mathcal{N}(0,1)}[F(\theta,z)]$

$$\nabla_{\theta} \mathbb{E}_{z} \left[f(x(z,\theta)) \right] = \mathbb{E}_{z} \left[\nabla_{\theta} f(x(z,\theta)) \right].$$

- ▶ Pathwise derivative (PD) estimator
- Example: neural net with dropout
- ▶ Often, we can reparametrize, to change from one form to another
 - ► Not a property of problem: equivalent ways of writing down the same stochastic process
- \blacktriangleright What if F depends on θ in complicated way, affecting distribution and F?

Stochastic Computation Graphs

- Stochastic computation graph is a DAG, each node corresponds to a deterministic or stochastic operation
- ► Can automatically derive unbiased gradient estimators, with variance reduction

Example: Hard Attention

- ▶ Look at image (o₁)
- ► Determine crop window (a)
- ► Get cropped image (o₂)
- Version 1
 - Output label (y)
 - ▶ Get reward of 1 for correct label
- ▶ Version 2
 - ightharpoonup Output parameter specifying distribution over label (κ)
 - Reward = prob or logprob of correct label (log p)

Abstract Example

- ▶ L = c + e. Want to compute $\frac{d}{d\theta}\mathbb{E}[L]$ and $\frac{d}{d\phi}\mathbb{E}[L]$.
- ► Treat stochastic node b) as constants, and introduce losses logprob * (futurecost — optionalbaseline) at each stochastic node
- Obtain unbiased gradient estimate by differentiating surrogate:

Surrogate
$$(\theta, \psi) = \underbrace{c + e}_{(1)} + \underbrace{\log p(\hat{b} \mid a, d)\hat{c}}_{(2)}$$

- (1): how parameters influence cost through deterministic dependencies
- (2): how parameters affect distribution over random variables.

Results

- General method for calculating gradient estimator
 - Surrogate loss version: each stochastic node gives a loss expression logprob(node value) * (sum of "downstream" costs treated as constants).
 Add these to the sum of costs treated as variables.
 - Alternative generalized backprop: as usual, do reverse topological sort.
 Instead of backpropagating using Jacobian, backpropagate gradlogprob * futurecosts.
- Generalized version of baselines for variance reduction (without bias): logp(node) * (sum of downstream costs treated as constants minus baseline(nondescendents of node))

Pathwise Derivative Policy Gradient Methods

Deriving the Policy Gradient, Reparameterized

► Episodic MDP:

Want to compute $\nabla_{\theta} \mathbb{E}[R_T]$. We'll use $\nabla_{\theta} \log \pi(a_t \mid s_t; \theta)$

Deriving the Policy Gradient, Reparameterized

► Episodic MDP:

Want to compute $\nabla_{\theta} \mathbb{E}[R_T]$. We'll use $\nabla_{\theta} \log \pi(a_t \mid s_t; \theta)$

▶ Reparameterize: $a_t = \pi(s_t, z_t; \theta)$. z_t is noise from fixed distribution.

Deriving the Policy Gradient, Reparameterized

► Episodic MDP:

Want to compute $\nabla_{\theta} \mathbb{E}[R_T]$. We'll use $\nabla_{\theta} \log \pi(a_t \mid s_t; \theta)$

▶ Reparameterize: $a_t = \pi(s_t, z_t; \theta)$. z_t is noise from fixed distribution.

▶ Only works if $P(s_2 | s_1, a_1)$ is known $\ddot{-}$

Using a Q-function

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}\left[R_{T}\right] = \mathbb{E}\left[\sum_{t=1}^{T} \frac{\mathrm{d}R_{T}}{\mathrm{d}a_{t}} \frac{\mathrm{d}a_{t}}{\mathrm{d}\theta}\right] = \mathbb{E}\left[\sum_{t=1}^{T} \frac{\mathrm{d}}{\mathrm{d}a_{t}} \mathbb{E}\left[R_{T} \mid a_{t}\right] \frac{\mathrm{d}a_{t}}{\mathrm{d}\theta}\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^{T} \frac{\mathrm{d}Q(s_{t}, a_{t})}{\mathrm{d}a_{t}} \frac{\mathrm{d}a_{t}}{\mathrm{d}\theta}\right] = \mathbb{E}\left[\sum_{t=1}^{T} \frac{\mathrm{d}}{\mathrm{d}\theta}Q(s_{t}, \pi(s_{t}, z_{t}; \theta))\right]$$

SVG(0) Algorithm

• Learn Q_{ϕ} to approximate $Q^{\pi,\gamma}$, and use it to compute gradient estimates.

SVG(0) Algorithm

- Learn Q_{ϕ} to approximate $Q^{\pi,\gamma}$, and use it to compute gradient estimates.
- Pseudocode:

```
for iteration=1,2,... do 
 Execute policy \pi_{\theta} to collect T timesteps of data 
 Update \pi_{\theta} using g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta)) 
 Update Q_{\phi} using g \propto \nabla_{\phi} \sum_{t=1}^{T} (Q_{\phi}(s_t, a_t) - \hat{Q}_t)^2, e.g. with \text{TD}(\lambda) end for
```

SVG(1) Algorithm

- ightharpoonup Instead of learning Q, we learn
 - State-value function $V \approx V^{\pi,\gamma}$
 - ▶ Dynamics model f, approximating $s_{t+1} = f(s_t, a_t) + \zeta_t$
- ▶ Given transition (s_t, a_t, s_{t+1}) , infer $\zeta_t = s_{t+1} f(s_t, a_t)$

$SVG(\infty)$ Algorithm

- ▶ Just learn dynamics model *f*
- Given whole trajectory, infer all noise variables
- ► Freeze all policy and dynamics noise, differentiate through entire deterministic computation graph

SVG Results

► Applied to 2D robotics tasks

▶ Overall: different gradient estimators behave similarly

Deterministic Policy Gradient

- ► For Gaussian actions, variance of score function policy gradient estimator goes to infinity as variance goes to zero
- ▶ But SVG(0) gradient is fine when $\sigma \rightarrow 0$

$$\nabla_{\theta} \sum_{t} Q(s_{t}, \pi(s_{t}, \theta, \zeta_{t}))$$

- Problem: there's no exploration.
- ► Solution: add noise to the policy, but estimate *Q* with TD(0), so it's valid off-policy
- Policy gradient is a little biased (even with $Q=Q^{\pi}$), but only because state distribution is off—it gets the right gradient at every state

Deep Deterministic Policy Gradient

► Incorporate replay buffer and target network ideas from DQN for increased stability

Deep Deterministic Policy Gradient

- Incorporate replay buffer and target network ideas from DQN for increased stability
- Use lagged (Polyak-averaging) version of Q_{ϕ} and π_{θ} for fitting Q_{ϕ} (towards $Q^{\pi,\gamma}$) with TD(0)

$$\hat{Q}_t = r_t + \gamma Q_{\phi'}(s_{t+1}, \pi(s_{t+1}; \theta'))$$

Deep Deterministic Policy Gradient

- Incorporate replay buffer and target network ideas from DQN for increased stability
- ▶ Use lagged (Polyak-averaging) version of Q_{ϕ} and π_{θ} for fitting Q_{ϕ} (towards $Q^{\pi,\gamma}$) with TD(0)

$$\hat{Q}_t = r_t + \gamma Q_{\phi'}(s_{t+1}, \pi(s_{t+1}; \theta'))$$

Pseudocode:

```
for iteration=1,2,... do 
Act for several timesteps, add data to replay buffer 
Sample minibatch 
Update \pi_{\theta} using g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta)) 
Update Q_{\phi} using g \propto \nabla_{\phi} \sum_{t=1}^{T} (Q_{\phi}(s_t, a_t) - \hat{Q}_t)^2, end for
```

DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

Policy Gradient Methods: Comparison

Task	Random	REINFORCE	TNPG	RWR	REPS	TRPO	CEM	CMA-ES	DDPG
Cart-Pole Balancing	77.1 ± 0.0	4693.7 ± 14.0	3986.4 ± 748.9	4861.5 ± 12.3	565.6 ± 137.6	4869.8 ± 37.6	4815.4± 4.8	2440.4 ± 568.3	4634.4 ± 87.8
Inverted Pendulum*	-153.4 ± 0.2	13.4 ± 18.0	209.7 ± 55.5	84.7 ± 13.8	-113.3 ± 4.6	247.2 ± 76.1	38.2 ± 25.7	-40.1 ± 5.7	40.0 ± 244.6
Mountain Car	-415.4 ± 0.0	-67.1 ± 1.0	-66.5 ± 4.5	-79.4 ± 1.1	-275.6 ± 166.3	-61.7 ± 0.9	-66.0 ± 2.4	-85.0 ± 7.7	-288.4 ± 170.3
Acrobot	-1904.5 ± 1.0	-508.1 ± 91.0	-395.8 ± 121.2	-352.7 ± 35.9	-1001.5 ± 10.8	-326.0 ± 24.4	-436.8 ± 14.7	-785.6 ± 13.1	-223.6 ± 5.8
Double Inverted Pendulum*	149.7 ± 0.1	$4116.5 \pm \ 65.2$	4455.4 ± 37.6	3614.8 ± 368.1	446.7 ± 114.8	4412.4 ± 50.4	2566.2 ± 178.9	1576.1 ± 51.3	2863.4 ± 154.0
Swimmer*	-1.7 ± 0.1	92.3± 0.1	96.0 ± 0.2	60.7 ± 5.5	3.8 ± 3.3	96.0 ± 0.2	68.8± 2.4	64.9 ± 1.4	85.8 ± 1.8
Hopper	8.4 ± 0.0	714.0 ± 29.3	1155.1 ± 57.9	553.2 ± 71.0	86.7 ± 17.6	1183.3 ± 150.0	63.1 ± 7.8	20.3 ± 14.3	267.1 ± 43.5
2D Walker	-1.7 ± 0.0	506.5 ± 78.8	1382.6 ± 108.2	136.0 ± 15.9	-37.0 ± 38.1	1353.8 ± 85.0	84.5 ± 19.2	77.1 ± 24.3	318.4 ± 181.6
Half-Cheetah	-90.8 ± 0.3	1183.1 ± 69.2	1729.5 ± 184.6	376.1 ± 28.2	34.5 ± 38.0	1914.0 ± 120.1	330.4 ± 274.8	441.3 ± 107.6	2148.6 ± 702.7
Ant*	13.4 ± 0.7	548.3 ± 55.5	706.0 ± 127.7	37.6 ± 3.1	39.0 ± 9.8	730.2 ± 61.3	49.2 ± 5.9	17.8 ± 15.5	326.2 ± 20.8
Simple Humanoid	41.5 ± 0.2	128.1 ± 34.0	255.0 ± 24.5	93.3 ± 17.4	28.3 ± 4.7	269.7 ± 40.3	60.6 ± 12.9	28.7 ± 3.9	99.4 ± 28.1
Full Humanoid	13.2 ± 0.1	262.2 ± 10.5	288.4 ± 25.2	46.7 ± 5.6	41.7 ± 6.1	287.0 ± 23.4	36.9 ± 2.9	N/A ± N/A	119.0 ± 31.2
Cart-Pole Balancing (LS)*	77.1 ± 0.0	420.9 ± 265.5	945.1 ± 27.8	68.9 ± 1.5	898.1 ± 22.1	960.2 ± 46.0	227.0 ± 223.0	68.0 ± 1.6	
Inverted Pendulum (LS)	-122.1 ± 0.1	-13.4 ± 3.2	0.7 ± 6.1	-107.4 ± 0.2	-87.2± 8.0	4.5 ± 4.1	-81.2 ± 33.2	-62.4 ± 3.4	
Mountain Car (LS)	-83.0 ± 0.0	-81.2 ± 0.6	-65.7 ± 9.0	-81.7 ± 0.1	-82.6± 0.4	-64.2 ± 9.5	-68.9 ± 1.3	-73.2 ± 0.6	
Acrobot (LS)*	-393.2 ± 0.0	-128.9 ± 11.6	-84.6 ± 2.9	-235.9 ± 5.3	-379.5 ± 1.4	-83.3 ± 9.9	-149.5 ± 15.3	-159.9 ± 7.5	
Cart-Pole Balancing (NO)*	101.4 ± 0.1	616.0 ± 210.8	916.3 + 23.0	93.8 ± 1.2	99.6± 7.2	606.2 ± 122.2	181.4± 32.1	104.4 + 16.0	
Inverted Pendulum (NO)	-122.2 ± 0.1	6.5 ± 1.1	11.5 ± 0.5	-110.0 ± 1.4	-119.3 ± 4.2	10.4 ± 2.2	-55.6 ± 16.7	-80.3 ± 2.8	
Mountain Car (NO)	-83.0 ± 0.0	-74.7 ± 7.8	-64.5 ± 8.6	-81.7 ± 0.1	-82.9 ± 0.1	-60.2 ± 2.0	-67.4 ± 1.4	-73.5 ± 0.5	
Acrobot (NO)*	-393.5 ± 0.0	-186.7 ± 31.3	-164.5 ± 13.4	-233.1 ± 0.4	-258.5 ± 14.0	-149.6 ± 8.6	-213.4 ± 6.3	-236.6 ± 6.2	
Cart-Pole Balancing (SI)*	76.3 ± 0.1	431.7 ± 274.1	980.5 ± 7.3	69.0 ± 2.8	702.4 ± 196.4	980,3 ± 5,1	746.6 ± 93.2	71.6± 2.9	
Inverted Pendulum (SI)	-121.8 ± 0.2	-5.3 ± 5.6	14.8 ± 1.7	-108.7 ± 4.7	-92.8 ± 23.9	14.1 ± 0.9	-51.8 ± 10.6	-63.1 ± 4.8	
Mountain Car (SI)	-82.7 ± 0.0	-63.9 ± 0.2	-61.8 ± 0.4	-81.4 ± 0.1	-80.7 ± 2.3	-61.6 ± 0.4	-63.9 ± 1.0	-66.9 ± 0.6	
Acrobot (SI)*	-387.8 ± 1.0	-169.1 ± 32.3	-156.6 ± 38.9	-233.2 ± 2.6	-216.1 ± 7.7	-170.9 ± 40.3	-250.2 ± 13.7	-245.0 ± 5.5	
Swimmer + Gathering	0.0±0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Ant + Gathering	-5.8 ± 5.0	-0.1 ± 0.1	-0.4 ± 0.1	-5.5 ± 0.5	-6.7 ± 0.7	-0.4 ± 0.0	-4.7 ± 0.7	N/A ± N/A	-0.3 ± 0.3
Swimmer + Maze	-0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Ant + Maze	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	N/A ± N/A	0.0 ± 0.0