# NLP with Classification and Vector Spaces

Week 4.

Machine Translation and Document Search



Overview of Translation



Transforming Vectors



#### Align Word Vectors

- $*XR \approx Y$ 
  - OX, Y
    - Subsets of the full vocabulary

- $\circ$  R
  - Transformation matrix
  - To get R
    - →Optimize the distance between XR and Y by minimizing the frobenius norm



□Solving for R

initialize R

in a loop:

$$Loss = \parallel \mathbf{XR} - \mathbf{Y} \parallel_F$$
  $g = \frac{d}{dR} Loss$  gradient  $R = R - \alpha q$  update

#### Frobenius Norm

\*Frobenius norm

\*Frobenius norm squared

$$A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

$$||A||_F^2 = (\sqrt{2^2 + 2^2 + 2^2 + 2^2})^2 = 16$$



#### 02 K-Nearest Neighbors

Finding the Translation





## 02 K-Nearest Neighbors

Nearest Neighbors





| Friend | Location    | Nearest |
|--------|-------------|---------|
|        | Shanghai    | 2       |
|        | Bangalore   | 3       |
|        | Los Angeles | 1       |



# 02 K-Nearest Neighbors

Nearest Neighbors





Hash Tables









Hash Tables









Hash Function



Hash value = vector % number of buckets



Hash Function





- Hash Function by Location
  - Locality sensitive hashing
    - Hashing method that cares very deeply about assigning items based on where they're located in vector space





Locality Sensitive Hashing





Planes





#### Planes





Dop Product





#### Dop Product

\*Sign indicates direction





## 05 Multiple Planes

#### Multiple Planes

\*Single hash value

$$\begin{array}{l}
\circ hash = \sum_{i}^{H} 2^{i} \times h_{i} \\
- sign_{i} \geq 0 \rightarrow h_{i} = 1 \\
- sign_{i} < 1 \rightarrow h_{i} = 0
\end{array}$$



$$\mathbf{P}_1 \mathbf{v}^T = 3, sign_1 = +1, h_1 = 1$$

$$\mathbf{P}_2 \mathbf{v}^T = 5, sign_2 = +1, h_2 = 1$$

$$\mathbf{P}_3 \mathbf{v}^T = -2, sign_3 = -1, h_3 = 0$$

$$hash = 2^{0} \times h_{1} + 2^{1} \times h_{2} + 2^{2} \times h_{3}$$
$$= 1 \times 1 + 2 \times 1 + 4 \times 0$$



# **06** Approximated Nearest Neighbors

- Multiple Sets of Random Planes
  - \*Approximate nearest (friendly) neighbors





#### **07** Searching Documents

Document Representation

I love learning! [?, ?, ?] [1, 0, 1]love [-1, 0, 1]learning [1, 0, 1]I love learning! [1, 0, 3]