

오픈소스SW기초 6분반

분산 투자 전략 지원, SABU

#주식 #분산 투자

사고8조

정보통계학과 32200472 김동혁 컴퓨터공학과 32211228 김태형 소프트웨어학과 32232597 엄세훈

목차

0 역할

1 문서화

2 클러스터링

3 백테스팅

4 Testing

5 추가 기능 및 시연

0. 역할

역할 분담

1. 문서화

소제목

- 발표에서 필수적인 것만 소개
- 옆에 코멘트로 깃허브에 다 올려놨고 어디에 뭐가 있다 설명 달기

문서 템플릿

문서 템플릿

문서 템플릿

2. 클러스터링

초기 논의사항

- 기업분석은 정형화 하기 어려움 → 차트분석으로 진행
- ✓ 다양한 클러스터링 알고리즘을 이용하여 성능이 좋은 클러스터링 모델 이용 (K-Means, 계층형 클러스터링, DBSCAN)
- 또는 3가지를 모두 구현하여 사용자가 목적에 맞는 클러스터링을 이용할 수 있도록 생각

DBSCAN, 계층형 클러스터링 한계

- 코사인 유사도 행렬이 필요 (코사인 유사도: feature 벡터 간의 방향 유사성)
- ☑ DBSCAN의 경우 파라미터(이웃 반경 ε, 최소 이웃 수 MinPts)에 따라 결과가 크게 변할 수 있음 / 또한 직접 클러스터 개수를 설정할 수 없어 시각화에 어려움이 생길 수 있음 → 제외
- 계층형 클러스터링의 경우 대용량 데이터나 고차원 데이터에는 비효율적 → 제외

계층형 클러스터링

K-Means 클러스터링

- 대중적인 클러스터링 알고리즘
- ✔ K-Means 클러스터링은 각 주식 종목의 feature 벡터 간의 유클리드 거리로 군집을 형성
- feature를 표준화 한 뒤 이 벡터 자체를 K-Means에 입력하면 됨
- ✓ 시각화 했을 때 비교적 쉽게 사용자가 직관적으로 이해할 수있음

→ 따라서 K-Means 클러스터링을 우선으로 구현하기로 결정

초기 클러스터링 계획

- 차트 분석에 활용하는 주식 데이터 수집
- 처음에 주식 종목만을 가지고 진행하려 계획, But 요즘 같은 변동성이 큰 시기에 안전 자산(ex. 금)을 많이 찾게 되는데, 주식이 이 모든 것을 반영하기 어렵다는 피드백 → 따라서 ETF 데이터도 함께 수집
- 📿 이동평균선, 수익률, 변동성, RSI(상대 강도 지수), MDD(최대 손실률, 최대 낙폭), 거래량 등
 - → 시계열 데이터로만 하다 보니 상장 기간의 차이로 인해 가격 지표를 이용한 클러스터링이 적합하지 않을 수 있음
 - → 동등하게 지표를 가진 재무제표 같은 지표를 이용하는 것도 검토해보았지만, 추가로 또 다른 데이터를 수집해야 하므로 후순위로 두었음

초기 클러스터링 계획

- ✓ 데이터 전처리 (결측값·이상치 처리, feature 표준화)
- K-Means 클러스터링 수행
- ✔ PCA 차원 축소를 이용한 2차원 좌표 시각화
- ☑단 클러스터링 할 수 있게 아무거나 상관없이 하나 기준으로 만들기
 - → 그 후 모델 최적화
- 초기 수집된 소수의 데이터로 진행한 클러스터- 종가, 거래량, 현금배당, 주식분할 조정계수

- 클러스터링 평가 지표를 활용하여 모델 성능 측정
- 실루엣 계수: 응집도 + 분리도 종합
- 데이비스-볼딘 지수: 분산 / 거리 비율
- 칼린스키-하라바츠 지수: 분리도 대비 응집도 비율
- * 응집도: 클러스터 내 분산
- * 분리도: 클러스터 간 분산

클러스터링이 결국 비지도 학습이기 때문에 3가지 평가 지표를 종합하여 성능을 높이는 방향으로 개선

데이터 전처리

- 10,210개의 데이터를 가지고 시작
- 데이터가 없는 종목 삭제
- ◇ 상장 폐지되어 최신 정보가 없는 데이터 삭제

초기 구현 클러스터링 모델에 약 10,000개의 데이터를 넣었을 때 결과

데이터 전처리 (기간 필터링)

- ▼ 종목별로 상장일자가 달라 feature 계산이 어려운 상황
- 기간을 동일하게 맞춰서 구성해야 클러스터링 성능이 높아질 것으로 예상→ 데이터 수집 개수가 최소 1년 이상은 되어야 할 것으로 판단
- 고 중에서 데이터 보유 기간이 가장 짧은(start date가 제일 최근인 것) 기간 기준으로 모두 기간을 동일하게 처리

print(start_date)
print(end_date)

2024-05-08 00:00:00 2025-05-09 00:00:00

Feature 생성 및 성능 비교

- 좋가와 거래량 지표를 가지고 이동평균, 수익률, 변동성, RSI, MDD, 평균 거래량 계산
- 주식은 최신 정보의 영향을 많이 받기 때문에 최신 정보를 반영할 수 있는 추가 지표가 필요하다고 판단→ 6개월 이동평균, 6개월 수익률, 6개월 변동성 지표 추가 계산
- 총 9개의 feature 생성
- ☑ 1년치 이상 데이터 보유, 6개월 계산 지표 / 3년치 이상, 6개월 계산 지표 / 3년치 이상, 1년 계산 지표 모두 활용해 보았지만 1년치 이상 데이터 보유, 6개월 계산 지표가 클러스터링 평가 지표가 가장 높았음
- ✓ StandardScaler를 이용해 스케일링 (평균 0, 분산 1)
- 고델 성능을 높이기 위해 PCA로 주성분만 남겨놓은 후 클러스터링을 진행하는 방안도 고민 → 주성분 분석을 해서 feature를 줄이면 결국 모든 feature 정보를 담지는 못하는 것이므로 기각

엘보우 기법

- ☑ 엘보우 기법 이용하여 최적의 클러스터 수(K) 탐색(SSE)
- 주식은 투자 가격이 있다 보니 K가 너무 커지면 기초 자산의 크기가 너무 커지는 것이 문제
 → 따라서 범위를 지정해놓고 엘보우 기법 적용 (최대한 4~5의 값이 나올 수 있도록)

→ K=4로 지정

Issue

- ●정 클러스터에 데이터가 쏠리고,1~2개의 데이터만 포함되어 있는 클러스터 발생
- ✔ 해결을 위해 Isolation Forest 사용 (다변량 이상치 처리 기법)
- 각 데이터 포인트가 여러 개의 랜덤 결정 트리에서 고립(isolated)되는 데 필요한 경로 길이(depth)를 기반으로 전체의 5% 처리

Issue

- 이상치 데이터를 완전히 배제하고 진행하면 안 된다는 판단
- 이상치 데이터를 제외시키기보다 이상치 데이터만의 클러스터를 따로 분류 시켜 시각화 할 필요성 제기

이상치 데이터 회색으로 표시

2.클러스터링

성능 향상 고민

Issue

- But, 이상치 데이터의 PCA 2차원 축소 값이 정상치 데이터와 차이가 너무 커서 클러스터링 시각화가 잘 되지 않는 문제 발생
- 처음 해결 방안으로 시각화 축에서 많이 벗어나는 데이터를 제거하는 것으로 결정→ 개인적인 주관이 들어가 데이터를 제거하면 논리적으로 옳지 않다는 판단

```
np.min(X_pca), np.max(X_pca)

v 0.0s

(-6.15544036102779, 12.29131458522084)

np.min(outlier_pca), np.max(outlier_pca)

v 0.0s

(-125.78068040888974, 1267.0278680298686)
```


Solution

다른 방안 - 정상치 데이터로 학습된 클러스터링 모델에 이상치 데이터를 넣어 각각의 이상치 데이터를 클러스터에 분류

2.클러스터링

성능 향상 고민

Solution

- 고 후 정상치의 각 클러스터에서 PC1, PC2 평균을 구해 클러스터에 맞춰 이상치 데이터의 PC1, PC2 값을 대체
- ✔ 이상치 데이터 보존, 만족스러운 시각화 결과 도출

소제목

- bt는 살짝 설명
- 어떻게 돌아가는지랑 전략에 대해 알려줘야 할 듯
 - RSI + monthly / RSI + quarterly / RSI + none
 - buy & hold + monthly / buy & hold + quarterly / buy & hold + none
 - sma cross + monthly / sma cross + quarterly / sma cross + none
- 구현 내용은 최대한 줄이고
- 코드 설명할거면 다이어그램으로
- 에러를 적을거면 (이 기능이 필요한데 오픈소스에 이 기능이 없어서 만들어서 이걸 해결하고 등)

Open Source - bt

작동 플로우

백테스팅 전략 소개

- RSI + monthly / RSI + quarterly / RSI + none
- buy & hold + monthly / buy & hold + quarterly / buy & hold + none
- sma cross + monthly / sma cross + quarterly / sma cross + none

백테스팅 전략 소개

RSI 전략

- ✔ RSI(상대강도지수): 일정 기간 동안의 상승 변화량과 하락 변화량의 비율
- ✔ 과매수 또는 과매도 상태를 파악하고 매매 시점을 결정

Buy and hold 전략

- **buy and hold**(매수 및 보유): 주식을 매수한 후 장기 보유하는 전략
- ✓ 주가는 장기적으로 볼 때 지속적으로 상승하는 경향이 있으므로 장기투자 시 투자 성공 확률이 높다는 것을 이용하는 전략

SMA 전략

- SMA(단순이동평균): 특정 기간 동안 주식의 평균 종가
- 주가의 추세 변화를 예측하고 수익을 얻기 위해 활용

4. Testing

소제목

- gunicorn (서버) k6.js (테스팅)

분산 투자 전략 지원, SABU **gunicorn**

분산투자 전략 지원, SABU **k6.js**

소제목

#63 백테스팅 및 API 성능 향상 내용 작성

5. 추가 기능 및 시연

소제목

- 리더보드
- 감정분석

종목 추천, 섹터 집단 시각화, 분산투자 점수화 등을 여기에 넣을지, 클러스터링에 넣을지

6.추가기능및시연

SABU 종목 추천

사용자가 선택한 종목들을 기준으로 분산 투자에 도움이 되는 종목

5가지 추천

SABU 종목 추천

Ø

사용자가 선택한 종목들을 기준으로 분산 투자에 도움이 되는 종목 5가지 추천


```
추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']
추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']

추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']

추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']

추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']

추천 종목: ['TSLA', 'AAPL', 'ZWS', 'YANG', 'XXII']
```


주가 그래프 및 뉴스 정보 제공

뉴스 감정 분석

Now or Wait? (final	ance.yanoo.com)	
◎ 중립적인 의견이에요	2.	
South32 gains fu (australianmining.	nding for Worsley Alumina	

분산 투자 점수

섹터별 거리 시각화

6.추가기능및시연

- Nasdaq에서 수집된, 섹터 정보가 있는 주식만 가지고 진행
- ✓ 섹터별로 IQR을 이용하여 이상치 처리
- ✓ 섹터를 그룹화 하여 평균 지점의 위치를 2차원으로 시각화

백테스팅 실시간 리더보드

Q&A