Міністерство освіти і науки України НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

Лабораторна робота № 4 з дисципліни "Мультипарадигмене програмування"

> Виконав: Студент групи IO-23 Швед А. Д.

Завдання

За допомогою логічного програмування реалізувати перетворення чисельного ряду до лінгвістичного ланцюжка за певним розподілом ймовірностей потрапляння значень до інтервалів.

Вхідні данні

Чисельний ряд, вид розподілу ймовірностей, потужність алфавіту.

Вихідні дані

Лінгвістичний ряд та матриця передування.

Мова програмування

SWI-Prolog.

Хід роботи

Програма реалізує перетворення числового ряду у лінгвістичний ланцюжок з наступним побудуванням матриці передування.

Правила

- Введення алфавіту користувачем
- Читання даних з файлу

Визначення діапазону значень

Правила встановлюють мінімальне та максимальне значення в числовому ряді для подальшого розбиття діапазону.

Побудова рівномірних інтервалів

Використовуючи знайдені границі та потужність алфавіту, визначаються рівномірні інтервали, кожен з яких асоціюється з символом алфавіту.

Визначення відповідності числа інтервалу

Для кожного елемента числового ряду визначається інтервал, в який він потрапляє. З цієї інформації числу надається відповідний символ алфавіту.

Побудова лінгвістичного ряду

На основі попереднього правила кожне число замінюється на відповідну літеру, утворюючи послідовність лінгвістичний ряд.

Побудова пар

Формується список усіх сусідніх пар символів у лінгвістичному ряді.

Побудова матриці передування

Кожна можлива пара символів розглядається як елемент матриці. Підраховується кількість кожної пари, що зустрічається у списку пар. Отримані частоти заносяться у таблицю – матрицю передування, яка є результатом аналізу.

Також були написані службові предикати що не мають особливого логічного сенсу але є частиною реалізації роботи.

Результати виконання

Figure 1: Перший числовий ряд B-C-D-E-F-Brent Oil Futures Historical Data (5000 значень - 5 символів)

Figure 2: Перший числовий ряд B-C-D-E-F-Brent Oil Futures Historical Data (5000 значень - 15 символів)

Лістинг коду

```
% Read a string list from terminal
    read_atom_list(List) :-
        read_line_to_string(user_input, Line),
        split_string(Line, " ", "", StringList),
maplist(atom_string, List, StringList).
5
7
    % Read a list of floats from a file
8
    read_floats_from_file(FilePath, Floats) :-
        open(FilePath, read, Stream),
10
        read_lines(Stream, Lines),
11
        close(Stream),
        maplist(atom_number, Lines, Floats).
13
14
    % Read lines from file and return them as atom string list
15
    read_lines(Stream, []) :-
16
        at_end_of_stream(Stream), !.
    read_lines(Stream, [LineAtom|Rest]) :-
        read line to string(Stream, Line),
        atom_string(LineAtom, Line),
20
        read_lines(Stream, Rest).
21
    \% Find min element in a list
    min([H|T], Min) :- foldl(min, T, H, Min).
    min(A, B, Min) :- Min is min(A, B).
24
25
   % Find max element in a list
    \max([H|T], Max) :- foldl(max, T, H, Max).
27
    max(A, B, Max) :- Max is <math>max(A, B).
30
    % Building [A, B) intervals
31
    build_intervals(Min, Max, N, Intervals) :-
        Step is (Max - Min) / N,
        build_intervals_helper(Min, Step, N, Intervals).
34
35
    build_intervals_helper(_, _, 0, []) :- !.
36
    build_intervals_helper(Min, Step, N, [[Min, Max1]|Rest]) :-
        Max1 is Min + Step,
37
        N1 is N - 1,
39
        build_intervals_helper(Max1, Step, N1, Rest).
40
41
    % Finding the interval to which a value belongs
    value_interval(Value, [[A,B]|_], 0) :-
42
43
        Value >= A, Value < B, !.
    value_interval(Value, [_|T], Index) :-
44
45
        value_interval(Value, T, Temp),
46
        Index is Temp + 1.
47
    value_interval(_, [], 0) :- !. % right limit fallback
48
    % Converting a value to an alphabet symbol
49
50
    value to symbol(Value, Intervals, Alphabet, Symbol) :-
51
        value_interval(Value, Intervals, Index),
        length(Alphabet, L),
52
53
        (Index >= L -> LastIndex is L - 1; LastIndex is Index),
54
        nth0(LastIndex, Alphabet, Symbol).
55
56
    % Converting a number series to a linguistic series
    build_linguistic_sequence([], _, _, []).
build_linguistic_sequence([H|T], Intervals, Alphabet, [S|Rest]) :-
57
58
        value_to_symbol(H, Intervals, Alphabet, S),
59
60
        build_linguistic_sequence(T, Intervals, Alphabet, Rest).
61
63
   % === Building a precedence matrix ===
64 % Builds a list of pairs (a->b, b->c, ...)
    pairs([], []).
    pairs([_], []).
    pairs([A,B|T], [(A,B)|Rest]) :-
```

```
pairs([B|T], Rest).
69
 70
     % Count the occurrences of each pair
71
     count_pairs([], _, 0).
     count_{pairs}([(A,B)|T], (A,B), N) :-
 72
         count pairs(T, (A,B), N1),
 74
         N is N1 + 1.
 75
     count_pairs([(X,Y)|T], (A,B), N) :-
76
         (X \setminus = A ; Y \setminus = B),
         count_pairs(T, (A,B), N).
 77
 78
79
     % Building a matrix row
     build_matrix_row(_, [],
                               , []).
     build_matrix_row(From, [To|T], Transitions, [Count|Rest]) :-
81
82
         count_pairs(Transitions, (From, To), Count),
83
         build_matrix_row(From, T, Transitions, Rest).
84
85
     % Building a full precedence matrix
86
     build_precedence_matrix(_, [], _, []).
     build_precedence_matrix(Alphabet, [From|RestFrom], Transitions, [Row|MatrixRest]) :-
87
         build_matrix_row(From, Alphabet, Transitions, Row),
88
89
         build_precedence_matrix(Alphabet, RestFrom, Transitions, MatrixRest).
90
91
92
    % === Formatted matrix printing ===
93
     % Pretty print the matrix
94
     print_matrix(Matrix, Labels) :-
95
         print header(Labels),
96
         print_rows(Matrix, Labels).
97
98
    % Print aligned matrix header
99
     print header(Labels) :-
100
         tab(2), % Top-left corner space
         forall(member(Label, Labels),
102
                format('~|~t~w~5+', [Label])),
103
         nl.
104
105 % Print aligned matrix rows
106
     print_rows([], []).
     print_rows([Row|RestMatrix], [Label|RestLabels]) :-
         format('~w ', [Label]),
109
         forall(member(Cell, Row),
110
                format('~|~t~d~5+', [Cell])),
111
         nl.
112
         print rows(RestMatrix, RestLabels).
113
114
115 % Main function
116
     main :-
117
         write("Input space-separated alphabet: "),
         read_atom_list(Alphabet),
118
119
         read_floats_from_file("data.txt", Series),
         min(Series, Min),
         max(Series, Max),
121
         length(Alphabet, N),
123
         build_intervals(Min, Max, N, Intervals),
         build_linguistic_sequence(Series, Intervals, Alphabet, Linguistic),
124
125
         write('Linguistic sequence: '), writeln(Linguistic),
126
         pairs(Linguistic, Transitions),
127
128
         build_precedence_matrix(Alphabet, Alphabet, Transitions, Matrix),
129
         nl, writeln('Precedence matrix:'),
130
         print_matrix(Matrix, Alphabet),
131
         halt.
```