HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG KHOA CO BẢN 1 **BÔ MÔN TOÁN**

ĐỂ MINH HOA THI HẾT HỌC PHẨN Môn: Đại số

Số lượng câu hỏi: 40 câu Thời gian làm bài: 80 phút

Ho và tên sinh viên:....

..... Số báo danh:

Mã đề thi 101

Lưu ý: Sinh viên không được sử dụng tài liệu

Câu 1. Cho dang song tuyến tính $\eta: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ xác định bởi

$$\eta(u,v) = x_1y_1 - 3x_1y_2 + x_2y_1 + 4x_2y_2,$$

trong đó $u=(x_1,x_2),v=(y_1,y_2)\in\mathbb{R}^2$. Khẳng định nào **tướ** đây **đúng**?

 \mathbf{A} . η đối xứng nhưng không xác định dương.

 \mathbf{R} η xác định dương nhưn \mathbf{k} khôn \mathbf{k} đối xứng

 $\dot{\mathbf{D}}$, η đối xứng và xác định dương. \mathbf{C} . η không đối xứng cũng không xác định dương.

Câu 2. Cho tích vô hướng trên không gian véc tơ \mathbb{R}^2 xác định bởi

$$\eta(u,v) = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 5x_2y_2$$

trong đó $u=(x_1,x_2),v=(y_1,y_2)\in\mathbb{R}^2$. Xét véc tơ v=(1,2) Khẳng định nào dưới đây **đúng?** $\mathbf{A}. \|v\|=1$. $\|v\|=\sqrt{13}$. $\|v\|=\sqrt{5}$. $\mathbf{D}. \|v\|=1$

$$\mathbf{A}. \|v\| = 1.$$

B.
$$|v| = \sqrt{13}$$
.

$$||y|| = \sqrt{5}$$
 Nang dinn nao duoi day

D.
$$||v|| = 13$$

Câu 3. Cho dạng toàn phương $Q: \mathbb{R}^3 \to \mathbb{R}$ xác định bởi

$$Q(x, y, z) = x^2 + 2y^2 - z^2 + 2xy + 2yz.$$

Ký hiệu (p,q) là cặp chỉ số quán tính dương và âm của Q. Khẳng định nào dưới đây **đúng?**

A.
$$p = 1, q = 2.$$

B.
$$p = 1, q = 1.$$

C.
$$p = 0, q = 3.$$

$$p = 2, q = 1$$

Câu 4. Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}; \ B = \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Phan tử ở vị trí hàng 1, cột 2 của ma trận AB - BA là

C. 1.

D. 4.

Câu 5. Cho ma trận trực giao A. Khẳng định nào dưới đây **đúng**?

- $\mathbf{A} \cdot \det A = -1.$
- $C \longrightarrow khå nghịch và <math>A^{-1} = A^t$.

- ${\bf B}$. Các véc tơ hàng của A tạo thành hệ trực giao.
- **D.** det A = 1.

Câu 6. Ánh xạ nào dưới đây là toàn ánh? 🥇

- $\mathbf{A.} : \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 5.$
- C. $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{1}{x}$.

- **B.** $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x$.
- **D.** $f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$.

Câu 7. Cho hệ phương trình

$$\begin{cases} x + y - z = 1 \\ 2x + 3y + mz = 3 \\ x + my + 3z = 2 \end{cases}.$$

Khẳng định nào dưới đây **đúng**?

- **A.** Nếu m=3 thì hệ phương trình đã cho có vô số nghiệm.
- **B.** Nếu $m \neq 2$ và $m \neq -3$ thì hệ phương trình đã cho có ngiệm duy nhất.
- C. Nếu m=2 thì hệ phương trình đã cho vô nghiệm.
- **D.** Nếu $m \neq 2$ và $m \neq 3$ thì hệ phương trình đã cho có ngiệm duy nhất.

Câu 8. Đối ngẫu của công thức Boole $(x' \lor 0) \land (y' \land z)$

- **A.** $(x' \lor 1) \land (y' \land z)$. **B.** $(x \land 1) \lor (y \lor z')$. **C.** $(x' \land 1) \lor (y' \lor z)$. **D.** $(x' \land 0) \lor (y' \lor z)$.

Câu 9. Cho ma trận $A=\begin{bmatrix}8&-2&2\\-2&5&4\\2&4&5\end{bmatrix}$. Biết $\lambda=9$ là một giá trị riêng của A. Khẳng định nào dưới đây

không đúng?

(-1,0) là một véc tơ riêng ứng với giá trị riêng $\lambda=9$ $\mathbf{B}(3,2,3)$ là một véc tơ riêng ứng với giá trị riêng $\lambda=9$.

(2,1,2) là một véc tơ riêng ứng với giá trị riêng $\lambda=9$.

$$\begin{cases} x + y - z + t = 1 \\ 2x + y + 2z - 3t = -1 \\ z + 3t = 2 \end{cases}$$

Khẳng định nào dưới đây **đúng**?

- A. Hệ phương trình đã cho vô nghiệm.
- **B.** Hệ phương trình đã cho có nghiệm duy nhất.
- C. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 2 tham số.
- D. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 1 tham số.

Câu 11. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ có ma trận chính tắc $\begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix}$. Véc tơ nào dưới đây thuộc $\operatorname{Im} f$?

- **A.** (6, -3).
- **B.** (4, -2).
- \mathbf{C} . (3, -6).
- **D.** (3, 6).

Câu 12. Trong \mathbb{R}^3 , xét cơ sở trực giao

$$B = \{u_1 = (1, 1, 1), u_2 = (1, -1, 0), u_3 = (1, 1, -2)\}.$$

Giả sử tọa độ của véc tơ u=(a,b,c) trong cơ sở B là (x,y,z). Khẳng định nào dưới đây **đủng**?

A.
$$x = a$$
.

B.
$$x = \frac{a+b+c}{3}$$
. **C.** $x = \frac{a+b+c}{\sqrt{3}}$.

C.
$$x = \frac{a+b+c}{\sqrt{3}}$$

D.
$$x = a + b + c$$
.

Câu 13 Cho W_1, W_2 là các không gian véc tơ con của \mathbb{R}^3 . Khẳng định nào dưới đây **không đúng**?

- A. Nếu $W_1 = \{(x, y, 0) | x, y \in \mathbb{R}\}; W_2 = \{(x, y, z) | x y + 2z = 0\}$ thì $\mathbb{R}^3 = W_1 \oplus W_2$. B. $W_1 + W_2$ là tổng trực tiếp khi và chỉ khi $\dim(W_1 \cap W_2) = 0$.
- C. Nếu $\mathbb{R}^3 = W_1 \oplus W_2$ thì dim $W_1 + \dim W_2 = 3$.

Câu 14. Cho A là ma trận vuông cấp 3. Khẳng định nào dưới đây không đúng?

- (A) $\det(3A) = 3 \det A$.
- **B.** $\det(A^t A) = \det(A^2)$.
- C. det(-A) = det A.
- **D.** Nếu A là ma trận tam giác và có một phần tử trên đường chéo chính bằng 0 thì det A=0.

Câu 15. Khẳng định nào dưới đây không đúng?

- **A.** $\{x\} \in \{\{x\}\}.$
- **B.** $\emptyset \in \{\emptyset, \{\emptyset\}\}.$
- **D.** $x \in \{x\}.$

Câu 16. Cho hệ phương trình

$$\begin{cases} x + y - 5z = a \\ -2x + 2y + 2z = b \\ -x + 3y - 3z = c \end{cases}.$$

Điều kiện cần và đủ để hệ phương trình đã cho có nghiệm là

- **A.** a + b c = 0.
- **B.** 3a b + c = 0.
- **D.** $3a b + c \neq 0$.

Câu 17. Cho dạng toàn phương $Q: \mathbb{R}^3 \to \mathbb{R}$ xác định bởi

$$Q(x, y, z) = x^{2} + 2y^{2} - z^{2} + 2xy + 2yz.$$

Ma trận của Q trong cơ sở chính tắc của \mathbb{R}^3 là

$$\mathbf{B.} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\mathbf{D.} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}.$$

Câu 18. Cho không gian véc tơ con của \mathbb{R}^4 :

$$U = \{(x, y, z, t) | x + 2y + z - 3w = 0\}.$$

Khẳng định nào dưới đây **đúng**?

A. dim
$$U = 4$$
.

$$\mathbf{B} \cdot \dim U = 1.$$

C. dim
$$U = 2$$
.

$$\mathbf{D.} \dim U = 3.$$

Câu 19. Tìm ma trận X thỏa mãn $X \begin{bmatrix} -2 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$.

$$\mathbf{A.}\ X = \begin{bmatrix} 2 & 2 \\ -4 & 0 \end{bmatrix}$$

A.
$$X = \begin{bmatrix} 2 & 2 \\ -4 & 0 \end{bmatrix}$$
. **B.** $X = \begin{bmatrix} 1/2 & 1/2 \\ -2 & -1 \end{bmatrix}$. **C.** $X = \begin{bmatrix} -1/2 & -1/2 \\ 1 & 0 \end{bmatrix}$. **D.** $X = \begin{bmatrix} -2 & -2 \\ 8 & 4 \end{bmatrix}$.

C.
$$X = \begin{bmatrix} -1/2 & -1/2 \\ 1 & 0 \end{bmatrix}$$

D.
$$X = \begin{bmatrix} -2 & -2 \\ 8 & 4 \end{bmatrix}$$

Câu 20. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x,y,z) = (x-y-z,x+y-z).$$

Ma trận của f trong các cơ sở $B_1 = \{(0,1,1); (1,1,1); (1,1,0)\}$ của \mathbb{R}^3 và $B_2 = \{(1,1); (1,2)\}$ của \mathbb{R}^2 là A. $\begin{bmatrix} -4 & 2 \\ 2 & 2 \end{bmatrix}$. B. $\begin{bmatrix} -4 & 2 \\ -3 & 2 \\ -2 & 2 \end{bmatrix}$. C. $\begin{bmatrix} -4 & 2 & -2 \\ 2 & -3 & 2 \end{bmatrix}$. D. $\begin{bmatrix} -4 & 2 \\ 2 & -3 \\ -2 & 2 \end{bmatrix}$.

$$\begin{bmatrix} -3 & -2 \\ 2 & 2 \end{bmatrix}.$$

B.
$$\begin{bmatrix} -4 & 2 \\ -3 & 2 \\ -2 & 2 \end{bmatrix}.$$

$$\mathbf{C.} \begin{bmatrix} -4 & 2 & -2 \\ 2 & -3 & 2 \end{bmatrix}.$$

$$\mathbf{D.} \begin{bmatrix} -4 & 2 \\ 2 & -3 \\ -2 & 2 \end{bmatrix}.$$

Câu 21. Cho ánh xạ tuyến tính $f: \mathbf{P}_2 \to \mathbf{P}_2$ xác định bởi

B.
$$m = 1 \text{ hoăc } m = -2.$$

C.
$$m = 1$$
.

 $f(a_0 + a_1x + a_2x^2) = (a_0 + a_1 + ma_2) + (a_0 + ma_1 + a_2)x + (ma_0 + a_1 + a_2)x^2.$ Từm m để dim $(\operatorname{Im} f) = 2$.

B. m = 1 hoặc m = -2. C. m = 1.

Câu 22 Cho $B = \{(1, -3); (-2, 4)\}$ là một cơ sở của không gian véc tơ \mathbb{R}^2 . Mà trận chuyển từ cơ sở B sang cơ sở chính tắc của \mathbb{R}^2 là

$$\mathbf{A.} \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}.$$

$$\mathbf{B.} \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}.$$

B.
$$\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$$
. **C.** $\begin{bmatrix} -2 & -1 \\ -3/2 & -1/2 \end{bmatrix}$. **D.** $\begin{bmatrix} -2 & -3/2 \\ -1 & -1/2 \end{bmatrix}$.

D.
$$\begin{bmatrix} -2 & -3/2 \\ -1 & -1/2 \end{bmatrix}$$

 $oxed{\mathbf{Câu}}$ **23.**) Với giá trị nào của a thì x=(1,2,a) thuộc vào không gian con sinh bởi các véc tơ (3,1,2),(-1,1,-2),(2,-1,3)

$$(A)a = -1.$$

B.
$$a \neq -1$$
.

C.
$$a \neq 1$$
.

D.
$$a = 1$$
.

 $(\widehat{\mathbf{Cau}} \ \mathbf{24})$ Cho A là một ma trận vuông cấp 3. Khẳng định nào dưới đây **đúng**?

A. Nếu $A \neq 0$ thì $A^2 \neq 0$.

B. Nếu A có tổng các phần tử ở mỗi hàng đều bằng 0 thì A khả nghịch.

C. Nếu $A^2 = A$ và $A \neq 0$ thì A = I.

 \bigcap . Nếu A^2 khả nghịch thì A khả nghịch.

 Câu 25. Cho ma trận $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 3 \\ 4 & 2 & 0 \end{bmatrix}$. Phần tử ở vị trí hàng 2, cột 1 của ma trận A^{-1} là

 A. $\frac{1}{2}$.
 B. $-\frac{1}{0}$.

 D. $\frac{2}{3}$.

A.
$$\frac{1}{9}$$

B.
$$-\frac{1}{9}$$
.

$$\frac{1}{6}$$
. $-\frac{2}{3}$.

D.
$$\frac{2}{3}$$
.

 $\begin{array}{l} \textbf{Câu 26.} \text{ K\'{y}} \text{ hiệu } r(A) \text{ là hạng của ma trận } A = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 3 & 4 & -1 & 2 \\ 1 & -1 & 0 & 0 \\ 1 & m & m^2 & m^3 \\ \end{bmatrix}. \text{ Khẳng định nào dưới đây$ **đúng?** $} \\ \textbf{A. } r(A) = \left\{ \begin{array}{ll} 2 & \text{nếu } m = 0 \text{ hoặc } m = -2 \\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq -2 \\ 4 & \text{nếu } m = 0 \\ 4 & \text{nếu } m \neq 0 \end{array} \right. \\ \textbf{C. } r(A) = \left\{ \begin{array}{ll} 3 & \text{nếu } m = 0 \text{ hoặc } m = 2 \\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq 2 \\ 4 & \text{nếu } m \neq 0 \text{ hoặc } m = -2 \\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq -2 \\ \end{array} \right.$

A.
$$r(A) = \begin{cases} 2 & \text{n\'eu } m = 0 \text{ hoặc } m = -2 \\ 4 & \text{n\'eu } m \neq 0 \text{ và } m \neq -2 \end{cases}$$

$$\mathbf{B.} \ r(A) = \begin{cases} 3 & \text{nêu } m = 0 \text{ hoặc } m = 2\\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq 2 \end{cases}$$

$$\mathbf{C.} \ r(A) = \left\{ \begin{array}{ll} 3 & \text{n\'eu} \ m = 0 \\ 4 & \text{n\'eu} \ m \neq 0 \end{array} \right.$$

$$r(A) = \begin{cases} 3 & \text{n\'eu } m = 0 \text{ hoặc } m = -2 \\ 4 & \text{n\'eu } m \neq 0 \text{ và } m \neq -2 \end{cases}$$

Câu 27. Ánh xa nào dưới đây là ánh xa tuyến tính?

A. $f: \mathbf{P}_2 \to \mathbf{P}_2, f(a_0 + a_1x + a_2x^2) = a_1 - 2a_0x + (a_1 + a_2)x^2.$ **B.** $f: \mathbf{P}_2 \to \mathbf{P}_2, f(a_0 + a_1x + a_2x^2) = a_0 + a_1 - (a_1 + a_2)x^2.$

C. $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = 2x + 3y - 2$ D. $f: \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (xy, 2y - z, x + y - 3z)$.

Câu 28. Cho các tập con của không gian véc tơ \mathbb{R}^3 :

$$A = \{(x, y, z) | xz \ge 0\}; B = \{(x, y, z) | x = 2z\}.$$

Khẳng định nào dưới đây **đúng**?

- **A.** A và B là các không gian véc tơ con của \mathbb{R}^3 .
- **B.** Chỉ có A là không gian véc tơ con của \mathbb{R}^3 .
- **C.** A và B không là các không gian véc tơ con của \mathbb{R}^3 .
- $(\mathbf{D}.)$ Chỉ có B là không gian véc tơ con của \mathbb{R}^3 .

Câu 29. Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z, t) = (x - 2y - z - t, y + 2z + 3t, x - y + 3z).$$

Số chiều của Ker f là

D. 2.

Câu 30. Cho ma trận $A = \begin{bmatrix} m-1 & 3 & -3 \\ -3 & m+5 & -3 \\ 5 & -5 & m-2 \end{bmatrix}$. Điều kiện cần và đủ để A có ma trận nghịch đảo là

A. m = -2 hoặc m = 1. **B.** m = 2 hoặc m = -2. **D.** $m \neq 2$ và $m \neq -2$. **D.** $m \neq -2$ và $m \neq 1$. **Câu 31.** Ánh xạ $f : \mathbb{R}^2 \to \mathbb{R}^2$ nào dưới đây không là một đẳng cấu? **D.** $m \neq -2$ và $m \neq 1$. **C.** f(x,y) = (x-2y,-2x+4y). **B.** f(x,y) = (2x+y,-3x+2y). **D.** f(x,y) = (x+4y,-x+2y).

Câu 32. Cho các mệnh đề p,q,r. Mệnh đề nào dưới đây **không đúng**?

B. $\overline{p \Rightarrow q} \equiv (p \wedge \overline{q}).$

D. $(p \lor q) \equiv (\overline{p} \Rightarrow q)$.

 $f{Cau}$ 33) Hệ véc tơ nào dưới đây sinh ra không gian véc tơ $f{P}_2$ (không gian véc tơ các đa thức có bậc không vượt quá 2)?

A. $\{3 + t + 2t^2, -1 + t - 2t^2, -1 + 5t + 3t^2\}$. **C.** $\{1 - 3t + 5t^2, -3 + 8t - 2t^2\}$.

B. $\{2-t+3t^2, 4-2t+6t^2, 1-3t+5t^2\}$. **D.** $\{1+t^2, 2-t+t^2, 4-3t+t^2\}$.

Câu 34. Cho ánh xạ $f: \mathbb{N} \to \mathbb{N}, f(n) = n^2 + n$. Khẳng định nào dưới đây **đúng**? A. f không là đơn ánh cũng không là toàn ánh.

B. f là toàn ánh nhưng không là đơn ánh.

(C.) f là đơn ánh nhưng không là toàn ánh.

D. f là song ánh.

Câu 35. Cho $D = \begin{vmatrix} 1 & -2 & 0 & 0 \\ 3 & 4 & -1 & 2 \\ a & b & 0 & 0 \\ 1 & 2 & 3 & 4 \end{vmatrix}$. Khẳng định nào dưới đây **đúng**?

A. D = 10(b - 2a).

B. D = 10(2a - b).

C. D = -10(2a + b).

D. D = 10(2a + b).

 \mathbf{Cau} 36. Với giá trị nào của a thì hệ phương trình dưới đây có nghiệm không tầm thường?

$$\begin{cases} x + y - z = 0 \\ 2x + 4y + az = 0 \\ 3x + 11y + z = 0 \end{cases}$$

A. $a \neq -1$.

B. a = 1.

Câu 37. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (3x+2y,4x+y). Một cơ sở gồm các véc tơ riêng của

A. $\{v_1 = (1, -2); v_2 = (1, -1)\}.$ **C.** $\{v_1 = (-2, 1); v_2 = (1, 1)\}.$

 $oxed{Câu 38}$ Cho A,B,C là các tập con của tập hợp E. Khẳng định nào dưới đây **không đúng**?

$$\mathbf{A.} \ (A \setminus C) \cap (C \setminus B) = \emptyset.$$

B Nếu
$$A \cup C = B \cup C$$
 thì $A = B$.

$$\mathbf{C}$$
. $(A \cap B \cap C) \subset (B \cap C)$.

D.
$$A \cap (B \setminus A) = \emptyset$$
.

Câu 39. Cho một hệ phương trình tuyến tính thuần nhất gồm 3 phương trình, 6 ẩn. Khẳng định nào dưới đây đúng?

A) Hệ phương trình đã cho có vô số nghiệm.

- B. Hệ phương trình đã cho có nghiệm duy nhất.
- C. Hệ phương trình đã cho vô nghiệm.
- **D.** Không có đủ thông tin để kết luận về số nghiệm của hệ phương trình đã cho.

Câu 40. Cho một hệ phương trình tuyến tính có ma trận hệ số và ma trận bổ sung lần lượt là A, \tilde{A} . Giả sử A là ma trận cỡ 5×7 và $r(A) = r(\tilde{A}) = 4$. Khẳng định nào dưới đây **đúng**?

- A. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 3 tham số.
- B. Hệ phương trình đã cho có nghiệm duy nhất.
- C. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 1 tham số.
- **D.** Hệ phương trình đã cho có vô số nghiệm phụ thuộc 4 tham số.

