Artificial Neural Networks

Artificial Neural Networks inspired by brain research

Speech Recognition

Google Images (Classification)

Go (DeepMind)

Recommendation Systems (Youtube)

Biological Neuron

Biological Neuron

Logical Computation: Artificial Neuron

Note: Neuron activated when at least two inputs are active

Note: consumer neuron C sums all the inputs

Logical Computation: Artificial Neuron

Logical Computation: Artificial Neuron

Find right values for weights that lower MSE with expectations

Used for simple linear classification (1D, 2D features)

Networks handles mini-batch at a time

Reverse Pass

How much layer 2
connections
contributed to high
cost (i.e. high error)

Cost/Error gradients
are measured
across connections
(weights)

Cost
W
some connection

Gradient Descent
performed on all
connections
(weights) using error
gradients

Note: Input batch persistence is required for reverse algorithm

Reverse Pass

How much layer 1
connections
contributed to high
cost (i.e. high error)

Cost/Error gradients
are measured
across connections
(weights)

Cost
W
some_connection

Gradient Descent
performed on all
connections
(weights) using error
gradients

Note: Input batch persistence is required for reverse algorithm

: Activation Function

Activation Function:

Linear Regression/Classifiers:

- Heaviside
- Sign Function

Nonlinear Regression/Classifiers:

- Sigmoid Function
- Hyperbolic Tangent Function
- Rectified Linear Unit Function

Non-Linear activation functions can be used on linearly models as well

Activation Function

Biological neurons have been observed to implement a roughly sigmoid activation function

Forward-Mode AutoDifferentiation

$$g(x, y) = 5 + xy$$

Forward-Mode AutoDifferentiation

$$g(x,y) = 5 + xy$$
 Partial Derivative $\frac{g(x,y)}{\partial x}$

Symbolic Differentiation (created from AutoDiff)

AutoDiff Computation Graphs

Forward-Mode Dual Number

 $3 + \epsilon$

3 + *€*

$$\frac{\partial f(3,4)}{\partial x} = ?$$

$$f(3 + \epsilon,4) = f(3,4) + f'(3,4)\epsilon$$

$$f(3 + \epsilon,4) = f(3,4) + \frac{\partial f(3,4)}{\partial x}\epsilon$$

If ϵ is a infinitesimal number with $\epsilon^2=0$, dual numbers can be used to solve forward-mode autodiff

Rule:
$$h(a + \epsilon) = h(a) + h'(a)\epsilon$$

$$\downarrow \qquad \qquad \downarrow$$
value at point derivative at point

$$f(x,y) = x^2y + y + 2$$

$$f(x,y) = 42 \text{ real component}$$

$$f'(x,y) = 24 \text{ ϵ component}$$

Run forward diff to find real and ϵ components

Partial derivative with respect to y requires the same process

Reverse-Mode AutoDifferentiation

$$\frac{f(x,y) = x^2y + y + 2}{\frac{\partial f(3,4)}{\partial x}} = ?$$

Contrived Example

$$\frac{\partial cost(y_1)}{\partial x_3} = \partial cost(y_1 + \epsilon)$$

$$\frac{\partial cost(y_1)}{\partial x_3} = \partial cost(y_1 + \epsilon) = cost(y_1) + cost'(y_1)\epsilon$$

$$\frac{\partial cost(y_1)}{\partial x_3} = \partial cost(y_1 + \epsilon) = cost(y_1) + \frac{\partial cost(y_1)}{\partial x_3}\epsilon$$

Contrived Example...

Tensorflow

Libraries containing Keras

- *Tensorflow
- Microsoft Cognitive Toolkit
- Theano
 *Keras(API)
 *PyTorch

 \star – popular

Others containing Keras

- Javascript/Typescript
- PlaidML
- Apple's Core ML
- Apache MXNet

Sequential Model: Classify Fashion MNIST

Other Losses

- categorical_crossentropy
 - Y = one hot vector of probabilities
 - Softmax activation in output layer
- binary_crossentropy
 - Y = [O]
 - Y= [1 , O]
 - Single/Multilabel binary classification
 - Sigmoid activation in output layer

Loss:

Dealing with skewed data

	Class A	Class B	Class C	Class D					
					Class weights				
		class weia	ht example:						
	Class A overrepresented in								
	dataset. Give more weight to								
	Class B,C, and D								
Instance 1									
Instance 2	cample weight								
	sample weight example:								
		ances labeled by expert							
	and crowdsourcing More weight towards the								
• •	expert instance	3 5							

Samples weights

Saving

- Functional
- Sequential

Declarative Static Graph

save clione inspect

Subclassing

Save and load model weights yourself

Saving

Tensorboard

Fine-Tuning Neural Networks

Fine-Tuning Neural Networks

Networks learns in hierarchical way

Complex problems deep networks Have higher parameter efficiency. Fewer neurons needed per layer

Shallow network can solve many problems with enough neurons

Epoch **000,101**

Learning rate
0.03
▼

Activation

Tanh

Regularization

None

Regularization rate

Classification

Problem type

Hover to see it

larger.

sin(X₁)

sin(X₂)

REGENERATE

RELU faster, notice linear boundaries

TANU takes time to converge on a solution

-6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6

Colors shows data, neuron and

weight values.

Draw an ANN using the original artificial neurons that computes $A\bigoplus B$

$$(A \bigcup \neg B) \bigcup (\neg A \bigcup B)$$

Exercise 3

Find Learning Rate

Gradually increase learning run and run short epoch training session

Region where loss decreases and immediately increases is an optimal learning rate