5. Implementacija logičkih sklopova

- > interpretacija logičkih vrijednosti
- > elektronički elementi kao sklopke
- > izvedbe osnovnih logičkih sklopova
- > izvedbe univerzalnih sklopova
- > izvedbe u tehnologiji CMOS
- integrirani logički sklopovi
- > električka i dinamička svojstva integriranih izvedbi
- > skupine integriranih logičkih sklopova

- prikaz logičkih vrijednosti naponskim razinama:
 - pozitivna logika:
 - viši napon ~ 1
 - niži napon ~ 0
 - negativna logika:
 - viši napon ~ 0
 - niži napon ~ 1
 - uz liniju signala oznaka 🗀

 interpretacija tablice kombinacija funkcije I naponskih razina

A	В	f
N	Z	N
Ν	V	Ν
V	Ν	Ν
V	V	V

Α	В	f
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	f
1	1	1
1	0	1
0	1	1
0	0	0

pozitivna logika

negativna logika

 interpretacija tablice kombinacija funkcije ILI naponskih razina

Α	В	f
N	Ν	N
Ν	V	V
V	Ν	V
V	V	V

A	В	f
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	f
1	1	1
1	0	0
0	1	0
0	0	0

pozitivna logika

negativna logika

- dualnost pozitivne i negativne logike:
 - funkcija I u pozitivnoj logici
 - → funkcija ILI u negativnoj logici
 - funkcija ILI u pozitivnoj logici
 - → funkcija I u negativnoj logici
 - negativna logika
 - ~ *dual* logičke funkcije!

- mješovita logika:
 - primijenjene obje konvencije
 - prisustvo/odsustvo "trokutića"
 - ~ oznaka *aktivne* razine (logičke 1)
 - primjena kod upravljačkih ulaza u logički sklop

$$f_1 = k \cdot (AB)$$

$$\uparrow$$

$$k = 1 \rightarrow f_1 = AB$$

$$\mathbf{B}$$
 \mathbf{k}

$$f_2 = k + (A + B)$$

$$\uparrow$$

$$k = 0 \rightarrow f_2 = A + B$$

$$\overline{k} = 1$$

- strujna i naponska logika:
 - naponska logika
 nositelj "informacije" (0 ili 1) naponska razina
 - strujna logika
 nositelj "informacije" (0 ili 1) struja:
 - ima je/nema je, smjer
 - loša svojstva prilikom grananja
 raspodjela na ulaze
 narednog stupnja

- logički sklopovi
 - ~ *elektroničke* izvedbe logičkih funkcija: elektronički elementi *u režimu sklopke*
 - dioda
 - (NPN) bipolarni tranzistor
 - n-kanalni MOSFET
 - p-kanalni MOSFET

- dioda kao sklopka:
 - idealna dioda, U_D ≈ 0 V
 ~ upravljani mehanički kontakt
 - napon na elektrodama
 upravljanje = logička varijabla A
 - dioda *nepropusno* (reverzno) polarizirana
 struja *ne* teče
 - dioda *propusno* polarizirana

~ struje teče

- bipolarni tranzistor
 (engl. Bipolar Junction Transistor, BJT) kao sklopka:
 - NPN tranzistor "u spoju zajedničkog emitera"
 ~ emiter na masi
 - strujom upravljani element ~ strujna logika!
 - → pretvoriti u *naponsko* upravljanje
 - U_u ~ upravljanje = logička varijabla A
 - U_{CE} ~ NE(A) : BJT je invertor!

- bipolarni tranzistor NPN kao sklopka:
 - NPN tranzistor "u spoju zajedničkog emitera"
 vrlo pogodno rješenje:
 - zapiranje: U_{II} = 0 V ~ N
 - zasićenje: $U_u = U_{CC} (U_{BE} > U_{\gamma}) \sim V$
 - $A = 0 \sim U_u = N$ $A = 1 \sim U_u = V$

- MOSFET (engl. Metal Oxide Semiconductor Field-Effect Transistor) kao sklopka:
 - naponom upravljani element:
 - upravljačka elektroda G (engl. gate) izolirana od poluvodiča
 - uvod S (engl. source), odvod D (engl. drain) utvrđeni *funkcijski*~ S = niža naponska razina
 - puno manja površina na čipu (u odnosu na BJT ≈ 15%)
 - kanal ispod G:
 - n-tip: n-kanalni MOSFET, NMOS
 - p-tip: p-kanalni MOSFET, PMOS
 ~ sporiji, pa se koristi jedino u sklopu CMOS!

- NMOS kao sklopka
 - ~ vrlo pogodno rješenje:
 - zapiranje: $U_{GS} = 0 V (< U_T) \sim N$
 - zasićenje: U_{GS} = U_{DD} ~ V
 - $A = 0 \sim U_{GS} = N$ $A = 1 \sim U_{GS} = V$

- PMOS kao sklopka
 - ~ komplementarna pobuda:
 - zapiranje: $U_{SG} = 0 \text{ V} \rightarrow U_{GD} = U_{DD} \sim \text{V}$
 - zasićenje: $U_{SG} = U_{DD} (< U_T) \rightarrow U_{GD} = 0 \ V \sim N$
 - $A = 1 \sim U_{SG} = N$ $A = 0 \sim U_{SG} = V$

Izvedbe logičkih sklopova I i ILI

- izvedba sklopa I (pozitivna logika)
 - ~ diodna mreža:

$$V \sim +U$$

 $N \sim 0 V$

Α	В	f
N	Ν	N
Ν	V	Ν
V	Ν	Ν
V	V	V

Α	В	f
0	0	0
0	1	0
1	0	0
1	1	1

Izvedbe logičkih sklopova I i ILI

izvedba sklopa ILI (pozitivna logika)

~ (također) *diodna* mreža:

$$V \sim +U$$

 $N \sim 0 V$

A	В	f
N	Ζ	N
Ν	V	V
V	Ν	V
V	V	V

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	1

Izvedba invertora

- izvedba invertora s bipolarnim tranzistorom:
 - pojačanje signala
 pobuda većeg broja ulaza narednog stupnja
 - strujna pobuda
 ~ R_B >> da pobuda (A) bude naponska!
 - pritezanje izlaza na napon napajanja (engl. Pull-Up, PU)
 ~ "pasivno" opterećenje R_C ≈ kΩ

 $N \sim U_{CS} \approx 0 V$

Izvedba invertora

- izvedba invertora s MOSFET
 ~ tipično n-kanalni MOSFET (NMOS):
 - naponska pobudatroši manje snage ©
 - pritezanje izlaza na napon napajanja
 - \sim T₂ spojen kao dioda: "pasivno" opterećenje R_{ekv} = R_D \approx 100 kΩ
 - spori odziv N → V (na izlazu)
 - $t_r >> t_f$
 - izolirana upravljačka elektroda
 ~ statički elektricitet
 - ~ staticki elektricitet može probiti izolaciju! 🙁

Izvedba invertora

- izvedba invertora s CMOS
 (engl. Complementary MOS)
 ~ model sklopke "u protuspoju":
 - naponska pobuda
 - statički elektricitet !!! 🙁
 - T₁ i T₂ električki simetrični
 ~ komplementarni
 - T₁ je NMOS
 - T₂ je PMOS
 - $t_r \approx t_f$ ~ brže od NMOS! $\odot \odot \odot$
 - troši *najmanje* snage! 😊 😊

Direktno povezivanje izlaza: spojeni I

- spojeni I (engl. wired AND)
 - ~ kombiniranje logičkih sklopova *fizičkim* povezivanjem izlaza
 - "ušteda" logičkih sklopova

- električke mogućnosti izlaznog stupnja:
 - moguće ako $R_{PU} >>$, npr. $R_C > \sim k\Omega$
 - inače zabranjeno, npr. $R_{\rm C} < \sim 100~\Omega$

- izvedba univerzalnog sklopa kompozicijom funkcija (kaskadiranjem sklopova):
 - karakteristično za bipolarnu tehnologiju (BJT)
 - tipično NI = NE°I~ NI(A, B) = NE(I(A, B))
 - diodni sklop I
 - invertor s BJT
 - koncept za čitav niz (bipolarnih) skupina integriranih logičkih sklopova

- izvedba univerzalnog sklopa direktnim povezivanjem tranzistora:
 - bipolarna i MOSFET tehnologija
 - kombiniranje tranzistora:
 - serijski: sklop NI
 - paralelno: sklop NILI

- izvedba sklopa NI (pozitivna logika)
 ~ serijski spoj tranzistora (kaskoda)
 - $U_{izIN} = \Sigma U_S$ tranzistora > 0 V ~ uglavnom se izbjegava
 - praktične izvedbe jedino u NMOS

Α	В	f
N	Z	V
Ν	V	V
V	Ν	V
V	V	N

A	В	f
0	0	1
0	1	1
1	0	1
1	1	0

- izvedba sklopa NILI (pozitivna logika)
 - ~ paralelni spoj tranzistora:
 - bolja električka svojstva
 ~ izvedba izbora

Α	В	f
N	Z	V
Ν	V	Ν
V	Ν	N
V	V	N

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	0

- univerzalni CMOS sklopovi
 - ~ izvođenje iz NMOS sklopova:
 - mreža za pritezanje na masu
 [Pull-Down Network, PDN]
 ~ ostvarivanje logičke funkcije
 - mreža za pritezanje na napajanje
 [Pull-Up Network, PUN]
 - ~ "otpornik" ostvaren posebnim NMOS

- univerzalni CMOS sklopovi
 - ~ izvođenje iz NMOS sklopova:
 - zamijeniti NMOS za pritezanje na napajanje mrežom sastavljenom od PMOS
 - PMOS (pritezanje na napajanje) i
 NMOS (pritezanje na masu) električki komplementarni

- univerzalni sklopovi NILI i NI (pozitivna logika)
 - $\sim T_{izlazni} = NMOS; T_{opterećenje} = PMOS$
 - sklop NILI:

PDN = paralelno spojeni NMOS

PUN = serijski spojeni PMOS

sklop NI:

PDN = serijski spojeni NMOS

PUN = paralelno spojeni PMOS

- izvođenje CMOS sklopa NI (pozitivna logika):
 - PUN: $f = \overline{A \cdot B} = \overline{A} + \overline{B}$ $f = 1 \Leftrightarrow (A = 0) + (B = 0)$ $\rightarrow paralela \text{ PMOS } !$
 - PDN: $\overline{f} = A \cdot B$ $\overline{f} = 1 \Leftrightarrow (A = 1) \cdot (B = 1)$ \rightarrow serija NMOS!

	Α	В	T ₁	T ₂	T_3	T ₄	f
_	N	Ν	NE	NE	DA	DA	V
	N	V	NE	DA	DA	NE	V
	V	Ν	DA	NE	NE	DA	V
	V	V	DA	DA	NE	DA NE DA NE	N

izvođenje CMOS sklopa NILI:

• PUN:
$$f = \overline{A + B} = \overline{A \cdot B}$$

 $f = 1 \Leftrightarrow (A = 0) \cdot (B = 0)$
 $\rightarrow serija \text{ PMOS !}$

• PDN:
$$\overline{f} = A + B$$

 $\overline{f} = 1 \Leftrightarrow (A = 1) + (B = 1)$
 $\rightarrow paralela \text{ NMOS } !$

Α	В	T ₁	T ₂	T ₃	T ₄	f
N	Ζ	NE	NE DA NE DA	DA	DA	V
Ν	V	NE	DA	NE	DA	N
V	Ν	DA	NE	DA	NE	N
V	V	DA	DA	NE	NE	N

izvedba CMOS sklopa I
 kompozicija NE i NI: I(A, B) = (NE°NI)(A, B)
 NE(NI(A, B))

- izvedba CMOS sklopa ILI
 - ~ kompozicija NE i NILI: ILI(A, B) = (NE°NILI)(A, B) = NE(NILI(A, B))

Implementacija funkcija u CMOSu

- poopćenje PDN i PUN
 - ~ izvođenje *proizvoljnog* CMOS sklopa:
 - sve varijable komplementirane
 vrlo jednostavno rješenje
 - neke varijable nisu komplementirane
 - ~ prethodno ih komplementirati

Implementacija funkcija u CMOSu

Primjer:
$$f = \overline{A} + \overline{B} \cdot \overline{C}$$

- sve su varijable komplementirane
 ~ direktno izvođenje PUN
- PUN:
 - serija PMOS za B i C
 - paralela PMOS za A i φ(B, C)

• PDN:
$$\overline{f} = \overline{\overline{A} + \overline{B} \cdot \overline{C}}$$

= $A \cdot (B + C)$

- paralela NMOS za B i C
- serija NMOS za A i φ(B, C)

Implementacija funkcija u CMOSu

Primjer:
$$f = A + \overline{B} \cdot \overline{C} = \overline{A} + \overline{B} \cdot \overline{C}$$

- invertor za dobivanje A
- PUN:
 - serija PMOS za B i C
 - paralela PMOS za \overline{A} i $\varphi(B, C)$

• PDN:
$$\overline{f} = A + \overline{B} \cdot \overline{C}$$

= $\overline{A} \cdot (B + C)$

- paralela NMOS za B i C
- serija NMOS za \overline{A} i $\varphi(B, C)$

Integrirani logički sklopovi

- integrirani logički sklop
 - ~ inkapsulacija složenije funkcijske cjeline u *modul*
 - minijaturizacija i integriranje složenije cjeline
 - ~ crna kutija s određenim funkcijskim svojstvima, uz zadovoljene uvjete:
 - primjerena pobuda (područja za 0 i 1, granice smetnji)
 - odgovarajući režim rada (napon napajanja, temperatura okoline, opterećenje izlaza)
 - apstrakcija funkcija (funkcijska apstrakcija)
 ne zagleda se u unutrašnjost crne kutije

Integrirani logički sklopovi

- klasifikacija integriranih logičkih sklopova
 - ~ prema *stupnju integracije*
 - = u odnosu na složenost sklopova na čipu:
 - funkcijska
 - ~ broj "osnovnih funkcija"(→ osnovnih logičkih sklopova) na čipu
 - tehnološka
 - broj "komponenata" (*naprava*, engl. devices)
 ostvarenih na čipu;

naprave: Tr, D, R, C (sve preko Tr!)

Integrirani logički sklopovi

 klasifikacija integriranih logičkih sklopova prema stupnju integracije

		tehnološka	funkcijska
niski stupanj integracije	SSI	< 100	< 10
srednji stupanj integracije	MSI	100-1.000	10-100
visoki stupanj integracije	LSI	1.000-10.000	100-1.000
vrlo visoki stupanj integracije	VLSI	> 10.000	> 1.000
sustav na waferu	WSI		

Električka svojstva integriranih izvedbi

- prijenosna karakteristika
- granica smetnji
- faktor grananja
- disipacija snage

Prijenosna karakteristika

- naponska područja na ulazu i izlazu logičkog sklopa:
 - naponska područja:
 - varijacije parametara
 - utjecaj opterećenja
 - zabranjeno područje
 - ~ "diskriminacija" naponskih razina V i N
 - uže tolerancije na izlazu logičkih sklopova
 - ~ moguće djelovanje (superponiranih) smetnji na ulazu

Prijenosna karakteristika

naponska područja na ulazu i izlazu logičkog sklopa

Prijenosna karakteristika

- prijenosna karakteristika (engl. transfer characteristic): u_i = f(u_u)
 - temeljni sklopovi pojedinih skupina logičkih sklopova
 - ~ univerzalne funkcije (NI, NILI)
 - ⇒ invertorska karakteristika
 - idealna karakteristika: oštri prijelaz
 ~ nema zabranjenog područja!

- smetnje (engl. noise)
 - superponirani napon na ulazu logičkog sklopa koji *može* dovesti do neželjene promjene stanja na mjegovu izlazu
- definira se posebno za V, a posebno za N
- vrste smetnji:
 - vanjske: indukcija (iskrenja, munje?)
 - unutarnje:
 preslušavanje, refleksije,
 parazitni induktivitet strujnih krugova signala,
 strujni šiljci prebacivanja stanja izlaznog stupnja

- granica istosmjerne smetnje (engl. DC noise margin)
 iznos smetnji koji dovodi logički sklop
 na rub zabranjenog područja
- djeluje duže od t_d ~ "isto toliko dugo kao i signal"

Primjer:

$$U_{OLmax} = 1 V; U_{OHmin} = 4 V$$

$$U_{ILmax} = 2,3 \text{ V}; \quad U_{IHmin} = 2,7 \text{ V}$$

$$\Delta''1'' \equiv U_{GSV} = U_{OH \min} - U_{IH \min}$$

$$\Delta"0" \equiv U_{\mathit{GSN}} = U_{\mathit{IL}\max} - U_{\mathit{OL}\max}$$

$$U_{GSV} = 1.3 V$$

$$U_{GSV} = 1.3 \text{ V}$$

 $U_{GSN} = 1.3 \text{ V}$

- granica izmjenične smetnje (engl. AC noise margin):
 - impuls smetnje kraći od tp
 - mehanizam nabijanja/izbijanja C_T
 - vrlo kratke smetnje ne utječu!

$$U_{GS|AC} > U_{GS|DC}$$

- opterećenje izlaza ulazima narednog stupnja
 promjena električkih/dinamičkih osobina signala
 - bipolarni sklopovi
 ~ promjena naponske razine zbog pada napona na R_i
 - MOSFET/CMOS sklopovi
 romjena dinamičkih svojstava zbog većeg C_T
- mjera opterećenja
 - ~ faktor grananja
 - na izlazu (engl. fan-out)
 - na ulazu (engl. fan-in)

- faktor grananja na izlazu bipolarnog sklopa, N_R:
 broj ulaza istovrsnih sklopova koje je moguće spojiti na izlaz logičkog sklopa, a da sklopovi sigurno rade u predviđenom režimu
 - osigurano da u_i padne u odgovarajuća područja za V i N

Primjer:

	I _{OL} [mA]	I _{IL} [μA]	I _{OH} [μΑ]	I _{IH} [μA]
74N	16	1600	400	40
74LS	8	400	400	20

74N pobuđuje 74N: $N_R = 10$

74LS pobuđuje 74LS: $N_R = 20$

74N pobuđuje 74LS: $N_R = ?$

74LS pobuđuje 74N: $N_R = ?$

$$I_{OH} = \sum I_{IH}$$

 faktor grananja na izlazu MOSFET/CMOS sklopa, N_R: broj ulaza istovrsnih sklopova koje je moguće spojiti na izlaz logičkog sklopa, a da se previše ne pokvare dinamička svojstva:

$$C_T = N_R \cdot C_{ul} \rightarrow t_r, t_f$$

kompenzacija djelovanja C_T
 ~ snažniji MOSFET
 (širi i kraći kanal)

- faktor grananja na ulazu bipolarnog sklopa, N: koliko je puta veće opterećenje ulazom sklopa od jediničnog, za temeljni sklop skupine
- "jedinična ulazna struja":
 za temeljni sklop skupine,
 u odnosu na koju se računa faktor grananja

- faktor grananja na ulazu MOSFET/CMOS sklopa, N:
 - broj ulaza nekog logičkog sklopa
- serija tranzistora (npr. NI):
 - serija MOSFET
 - ~ jedan MOSFET s dužim kanalom:

$$t'_p \approx N \cdot t_p$$
,

- $U_{OL} = \sum U_{OLi}$
- CMOS: uvijek serija NMOS ili PMOS
 zadržati N >

- faktor grananja na ulazu MOSFET/CMOS sklopa, N: broj ulaza nekog logičkog sklopa
- paralela tranzistora (npr. NILI):
 - paralela MOSFET
 jedan MOSFET sa *širim kanalom*:

$$t'_p \approx t_p/N$$
,
 $C'_{Pul} = N \cdot C_{Pul}$

N ne utječe na t_p
 ~ radije NILI

- statička disipacija snage:
 - pretpostavka: sklop je u svakom od stanja 50% vremena

$$P_{st} = U_{napajanja} \cdot \frac{I_{napajanja}^{V} + I_{napajanja}^{N}}{2}$$

- ograničenje temperature T u logičkom sklopu
 ograničena mogućnost odvođenja topline
- ograničenje P_{st}:
 - ograničenje stupnja integracije
 - ograničenje N_R
 - ograničenje smanjivanja t_d
 (postoji C_T, a I_i je ograničena!)

- ~ pri prebacivanju stanja!
 - model: nabijanje/izbijanje C_T
 - nabijanje C_T ~ i_{C1}:

$$dW = i_{C_1} \cdot U \cdot dt; W = \int dW = U \cdot Q = C_T \cdot U^2$$

$$W_{C_T} = \frac{C_T \cdot U^2}{2}$$
 energija u C_T

$$W_{R_1} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$
 disipirana energija

$$W_{R_2} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$

• *ukupna* disipirana snaga: f uklj./isklj. [sec-1]

$$W_{disipirano} = W_{C_T} + W_{R_2} = C \cdot U^2; P_d = f \cdot C \cdot U^2$$

Primjer:

$$U_{\text{nap1}} = 5 \text{ V}; \quad f_1 = 100 \text{ MHz}$$
 $U_{\text{nap2}} = 3,3 \text{ V}; \quad f_2 = ? \text{ uz } P_{\text{d}} = \text{const.}$
 $P_d = f \cdot C \cdot U^2$
 $f_1 \cdot C \cdot U_1^2 = f_2 \cdot C \cdot U_2^2$
 $f_2 = f_1 \cdot \frac{U_1^2}{U_2^2}$
 $f_2 = 230 \text{ MHz}$
 $f_3 = ? \text{ uz } P_{\text{d}} = \text{const.}$

- produkt vremena kašnjenja i disipirane snage
 - ~ mjera dobrote integriranog sklopa
 - usporedba skupina integriranih logičkih sklopova
 - dimenzija [ns] \times [mW] = [pJ]
 - manji produkt ~ kvalitetniji integrirani sklopovi

- kašnjenje (odziva) logičkog sklopa
 - ~ promjena (naponske razine) signala na izlazu u odnosu na promjenu (naponske razine) signala na ulazu:
 - vrijeme kašnjenja logičkog sklopa, t_d
 izvedeni parametar,
 iz vremene rasprostiranja
 - vrijeme rasprostiranja signala, t_p
 za pojedine prijelaze
 - mjeri se za 0,5⋅U, odnosno U_T

vrijeme rasprostiranja (proleta, propagacije), t_p (engl. propagation time)
 ~ različito za prijelaz V → N, odnosno N → V

$$t_{PHL}(t_{DVN}) \neq t_{PLH}(t_{DNV})$$

vrijeme kašnjenja, t_d:

$$t_d = \frac{t_{PHL} + t_{PLH}}{2}$$

- vremenski hazard kao posljedica konstrukcije sklopa
 ~ funkcijski hazard:
 - električki i dinamički parametri sklopa
 kašnjenja stvarnih sklopova
 - konkretni dizajn složenijeg sklopa
 struktura sklopa izražena
 kombinacijom jednostavnijih sklopova
 - sinkronizam ulaza (signala)

- vrijeme porasta i vrijeme pada signala na izlazu logičkog sklopa
 - ~ utjecaj *izvedbe* izlaznog stupnja:
 - "pasivno" opterećenje: $R_1 >> R_2 \rightarrow t_f >> t_r$

"aktivno" opterećenje:
 R₁' ~ R₂ → t_f ~ t_r
 ~ brža izvedba!

• izvedba izlaznog stupnja "pasivnim" opterećenjem:

$$R_1 >> R_2 = R_{Tzasi\acute{c}enje} \rightarrow t_f >> t_r$$

- pritezanje izlaza ka masi
- ~ "izlazni" tranzistor
- pritezanje izlaza ka napajanju
 - ~ (pasivni) otpornik

izvedba izlaznog stupnja "aktivnim" opterećenjem:

$$R_1' \sim R_2 = R_{Tzasi\acute{c}enje} \rightarrow t_f \sim t_r$$

- pritezanje izlaza ka masi
 - ~ "izlazni" tranzistor
- pritezanje izlaza ka napajanju
 - ~ također tranzistor (R za ograničavanje I_{AC})

FER-Zagreb, Digitalna logika 2007/08

Skupine integriranih logičkih sklopova

- pregled skupina integriranih logičkih sklopova:
 - danas u primjeni:
 - CMOS, već 1960tih
 - TTL, 1962
 - ECL, 1963
 - povijesno zanimljive:
 - RTL, 1961~ prva skupina!
 - DTL/HTL, 1962
 - NMOS/PMOS, 1970te
 - I²L, 1972

Skupine integriranih logičkih sklopova

 usporedba osnovnih parametara poznatih skupina integriranih logičkih sklopova:

			P [mW]				
skupina	serija	t _d [ns]	statička	dinamička (100 kHz)	t _d ·P [pJ]	N _R	U _{GSmin} [V]
RTL		30	10		300	5	0,3
DTL		25	15		375	8	0,9
HTL		100	50		5000	10	7
TTL	74	9	10		90	8	0,4
	74S	3	20		60	10	0,3
	74LS	9,5	2		19	100	0,3
	74AS	1,7	8		13,6	10	0,3
	74ALS	4	1,2		4,8	100	0,4
ECL	10k	3	25		75	10	0,25
	100k	0,75	40		30	10	0,25
l ² L		40	1		40	8	
NMOS		50	0,1		5	50	
CMOS	4000	50	0,001	0,1	5	> 100	1,5
	74C	30	<0,001			> 100	0,6
	74HC	8	0,02	0,17	1,4	> 100	0,9