# Trygonometria

## Spis treści

| 1        | Tożs | samości Trygonometryczne 2    |
|----------|------|-------------------------------|
|          | 1.1  | Sinus sumy dwóch kątów        |
|          | 1.2  | Cosinus sumy dwóch kątów      |
|          | 1.3  | Tangens sumy dwóch kątów      |
|          | 1.4  | Cotangens sumy dwóch kątów    |
|          | 1.5  | Sinus różnicy dwóch kątów     |
|          | 1.6  | Cosinus różnicy dwóch kątów   |
|          | 1.7  | Tangens różnicy dwóch kątów   |
|          | 1.8  | Cotangens różnicy dwóch kątów |
|          | 1.9  | Sinus dwukrotności kąta       |
|          | 1.10 | Cosinus dwukrotności kąta     |
|          | 1.11 |                               |
|          | 1.12 | Cotangens dwukrotności kąta   |
|          | 1.13 | Sinus trzykrotności kąta      |
|          |      | Cosinus trzykrotności kąta    |
|          | 1.15 | Tangens trzykrotności kąta    |
|          | 1.16 | Cotangens trzykrotności kąta  |
|          |      | Sinus kąta połówkowego        |
|          | 1.18 | Cosinus kąta połówkowego      |
|          | 1.19 | Tangens kąta połówkowego      |
|          |      | Cotangens kąta połówkowego    |
| <b>2</b> | Pod  | sumowanie 9                   |

### 1 Tożsamości Trygonometryczne

#### 1.1 Sinus sumy dwóch katów

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

Dowód:



$$[ABC] = \frac{1}{2}ab\sin(\alpha + \beta)$$
$$[ADC] = \frac{1}{2}bh\sin\alpha$$
$$[DBC] = \frac{1}{2}ah\sin\beta$$

#### Z $\triangle ADC$ i $\triangle BDC$ :

$$\cos\alpha = \frac{h}{b} \text{ oraz } \cos\beta = \frac{h}{a}$$
 Stąd

$$h=b\cos\alpha$$
i  $h=a\cos\beta$ Czyli

$$[ABC] = [ADC] + [BDC]$$

$$\frac{1}{2}ab\sin(\alpha + \beta) = \frac{1}{2}bh\sin\alpha + \frac{1}{2}ah\sin\beta$$

$$\frac{1}{2}ab\sin(\alpha + \beta) = \frac{1}{2}ba\cos\beta\sin\alpha + \frac{1}{2}ab\cos\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta.$$

#### 1.2 Cosinus sumy dwóch katów

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

Dowód:

$$\cos(\alpha + \beta) = \sin(90^{\circ} - (\alpha + \beta)) =$$

$$= \sin(90^{\circ} - \alpha - \beta) =$$

$$= \sin((90^{\circ} - \alpha) + (-\beta)) =$$

$$= \sin(90^{\circ} - \alpha)\cos(-\beta) + \cos(90^{\circ} - \alpha)\sin(-\beta) =$$

$$= \cos\alpha\cos\beta - \sin\alpha\sin\beta.$$

c.n.d.

#### 1.3 Tangens sumy dwóch katów

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}$$

Dowód:

$$tg(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} =$$

$$= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} =$$

$$= \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}}{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} =$$

$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 + \frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta}} =$$

$$= \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}.$$

c.n.d.

#### 1.4 Cotangens sumy dwóch kątów

$$\operatorname{ctg}(\alpha + \beta) = \frac{\operatorname{ctg}\alpha\operatorname{ctg}\beta - 1}{\operatorname{ctg}\alpha + \operatorname{ctg}\beta}$$

Dowód:

$$\cot g(\alpha + \beta) = \frac{\cos(\alpha + \beta)}{\sin(\alpha + \beta)} =$$

$$= \frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \cos \beta + \cos \alpha \sin \beta} =$$

$$= \frac{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin \alpha \sin \beta}} =$$

$$= \frac{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \sin \beta}}{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin \alpha \sin \beta}} =$$

$$= \frac{\frac{\cos \alpha \cos \beta}{\sin \alpha \sin \beta} - 1}{\frac{\cos \beta}{\sin \beta} + \frac{\cos \alpha}{\sin \alpha}} =$$

$$= \frac{\cot g \alpha \cot g \beta - 1}{\cot g \alpha + \cot g \beta}.$$

#### 1.5 Sinus różnicy dwóch katów

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

<u>Dowód:</u>

$$\sin(\alpha - \beta) = \sin(\alpha + (-\beta)) =$$

$$= \sin \alpha \cos(-\beta) + \cos \alpha \sin(-\beta) =$$

$$= \sin \alpha \cos \beta - \cos \alpha \sin \beta.$$

c.n.d.

#### 1.6 Cosinus różnicy dwóch kątów

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

Dowód:

$$\cos(\alpha - \beta) = \cos(\alpha + (-\beta)) =$$

$$= \cos \alpha \cos(-\beta) - \sin \alpha \sin(-\beta) =$$

$$= \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

c.n.d.

#### 1.7 Tangens różnicy dwóch kątów

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}$$

Dowód:

$$tg(\alpha - \beta) = tg(\alpha + (-\beta)) =$$

$$= \frac{tg \alpha + tg(-\beta)}{1 - tg \alpha tg(-\beta)} =$$

$$= \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}.$$

c.n.d.

#### 1.8 Cotangens różnicy dwóch kątów

$$\operatorname{ctg}(\alpha - \beta) = \frac{\operatorname{ctg} \alpha \operatorname{ctg} \beta + 1}{-\operatorname{ctg} \alpha + \operatorname{ctg} \beta}$$

Dowód:

$$\operatorname{ctg}(\alpha - \beta) = \operatorname{ctg}(\alpha + (-\beta)) =$$

$$= \frac{\operatorname{ctg} \alpha \operatorname{ctg}(-\beta) - 1}{\operatorname{ctg} \alpha + \operatorname{ctg}(-\beta)} =$$

$$= \frac{-\operatorname{ctg} \alpha \operatorname{ctg} \beta - 1}{\operatorname{ctg} \alpha - \operatorname{ctg} \beta} =$$

$$= \frac{\operatorname{ctg} \alpha \operatorname{ctg} \beta + 1}{-\operatorname{ctg} \alpha + \operatorname{ctg} \beta}.$$

#### 1.9 Sinus dwukrotności kąta

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

Dowód:

$$\sin 2\alpha = \sin(\alpha + \alpha) =$$

$$= \sin \alpha \cos \alpha + \cos \alpha \sin \alpha =$$

$$= 2 \sin \alpha \cos \alpha.$$

c.n.d.

#### 1.10 Cosinus dwukrotności kąta

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

<u>Dowód:</u>

$$\cos 2\alpha = \cos(\alpha + \alpha) =$$

$$= \cos \alpha \cos \alpha - \sin \alpha \sin \alpha =$$

$$= \cos^2 \alpha - \sin^2 \alpha.$$

c.n.d.

#### 1.11 Tangens dwukrotności kata

$$tg\,2\alpha = \frac{2\,tg\,\alpha}{1-tg^2\,\alpha}$$

<u>Dowód:</u>

$$tg 2\alpha = tg(\alpha + \alpha) =$$

$$= \frac{tg \alpha + tg \alpha}{1 - tg \alpha tg \alpha} =$$

$$= \frac{2 tg \alpha}{1 - tg^2 \alpha}.$$

c.n.d.

#### 1.12 Cotangens dwukrotności kąta

$$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$$

Dowód:

$$\cot 2\alpha = \cot(\alpha + \alpha) = 
= \frac{\cot \alpha \cot \alpha - 1}{\cot \alpha + \cot \alpha} = 
= \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

#### 1.13 Sinus trzykrotności kąta

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

Dowód:

$$\sin 3\alpha = \sin(2\alpha + \alpha) =$$

$$= \sin 2\alpha \cos \alpha + \cos 2\alpha \sin \alpha =$$

$$= (2\sin \alpha \cos \alpha) \cos \alpha + (\cos^2 \alpha - \sin^2 \alpha) \sin \alpha =$$

$$= 2\sin \alpha \cos^2 \alpha + \cos^2 \alpha \sin \alpha - \sin^3 \alpha =$$

$$= \cos^2 \alpha (3\sin \alpha) - \sin^3 \alpha =$$

$$= (1 - \sin^2 \alpha)(3\sin \alpha) - \sin^3 \alpha =$$

$$= 3\sin \alpha - 4\sin^3 \alpha.$$

c.n.d.

#### 1.14 Cosinus trzykrotności kąta

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

<u>Dowód:</u>

$$\cos 3\alpha = \cos(2\alpha + \alpha) =$$

$$= \cos 2\alpha \cos \alpha - \sin 2\alpha \sin \alpha =$$

$$= (2\cos^2 \alpha - 1)\cos \alpha - (2\sin \alpha \cos \alpha)\sin \alpha =$$

$$= (2\cos^2 \alpha - 1)\cos \alpha - 2\sin^2 \alpha \cos \alpha =$$

$$= (2\cos^2 \alpha - 1)\cos \alpha - 2(1-\cos^2 \alpha)\cos \alpha =$$

$$= 2\cos^3 \alpha - \cos \alpha - 2\cos \alpha + 2\cos^3 \alpha =$$

$$= 4\cos^3 \alpha - 3\cos \alpha.$$

c.n.d.

#### 1.15 Tangens trzykrotności kąta

$$tg \, 3\alpha = \frac{3 tg \, \alpha - tg^3 \, \alpha}{1 - 3 tg^2 \, \alpha}$$

Dowód:

$$\begin{split} \operatorname{tg} 3\alpha &= \operatorname{tg}(2\alpha + \alpha) = \\ &= \frac{\operatorname{tg} 2\alpha + \operatorname{tg} \alpha}{1 - \operatorname{tg} 2\alpha \operatorname{tg} \alpha} = \\ &= \frac{\frac{2\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha} + \operatorname{tg} \alpha}{1 - \frac{2\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha} \operatorname{tg} \alpha} = \\ &= \frac{\frac{2\operatorname{tg} \alpha + \operatorname{tg} \alpha - \operatorname{tg}^3 \alpha}{1 - \operatorname{tg}^2 \alpha}}{\frac{1 - \operatorname{tg}^2 \alpha - 2\operatorname{tg} \alpha \operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}} = \\ &= \frac{3\operatorname{tg} \alpha - \operatorname{tg}^3 \alpha}{1 - 3\operatorname{tg}^2 \alpha}. \end{split}$$

#### 1.16 Cotangens trzykrotności kata

$$\operatorname{ctg} 3\alpha = \frac{\operatorname{ctg}^3 \alpha - 3\operatorname{ctg} \alpha}{3\operatorname{ctg}^2 \alpha - 1}$$

<u>Dowód:</u>

$$\cot 3\alpha = \cot (2\alpha + \alpha) =$$

$$= \frac{\cot 2\alpha \cot \alpha - 1}{\cot 2\alpha + \cot 2\alpha} =$$

$$= \frac{\frac{\cot^2 \alpha - 1}{2\cot \alpha} \cot \alpha - 1}{\frac{\cot^2 \alpha - 1}{2\cot \alpha} + \cot \alpha} =$$

$$= \frac{\frac{(\cot^2 \alpha - 1)\cot \alpha - 2\cot \alpha}{2\cot \alpha}}{\frac{2\cot \alpha}{2\cot \alpha}} =$$

$$= \frac{\frac{(\cot^2 \alpha - 1)\cot \alpha - 2\cot \alpha}{2\cot \alpha}}{\frac{2\cot \alpha}{2\cot \alpha}} =$$

$$= \frac{(\cot^2 \alpha - 1)\cot \alpha - 2\cot \alpha}{\cot^2 \alpha - 1 + 2\cot^2 \alpha} =$$

$$= \frac{\cot^3 \alpha - \cot \alpha - 2\cot \alpha}{3\cot^2 \alpha - 1} =$$

$$= \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}.$$

c.n.d.

#### 1.17 Sinus kata połówkowego

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

Dowód:

$$\cos 2\alpha = 1 - 2\sin^2 \alpha$$
$$\sin \alpha = \pm \sqrt{\frac{1 - \cos 2\alpha}{2}}$$

Zatem

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}.$$

c.n.d.

#### 1.18 Cosinus kąta połówkowego

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

<u>Dowód:</u>

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$
$$\cos \alpha = \pm \sqrt{\frac{1 + \cos 2\alpha}{2}}$$

Zatem

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

c.n.d.

#### 1.19 Tangens kata połówkowego

$$tg\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

Dowód:

$$\operatorname{tg}\frac{\alpha}{2} = \frac{\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} = \frac{\pm\sqrt{\frac{1-\cos\alpha}{2}}}{\pm\sqrt{\frac{1+\cos\alpha}{2}}} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}.$$

c.n.d.

#### 1.20 Cotangens kąta połówkowego

$$\operatorname{ctg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}$$

<u>Dowód:</u>

$$\operatorname{ctg} \frac{\alpha}{2} = \frac{\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} = \frac{\pm \sqrt{\frac{1 + \cos \alpha}{2}}}{\pm \sqrt{\frac{1 - \cos \alpha}{2}}} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}.$$

#### 2 Podsumowanie

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha + \tan \beta}$$
$$\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta}{\cot \alpha + \cot \beta}$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
$$\cot(\alpha - \beta) = \frac{\cot \alpha \cot \beta}{-\cot \alpha + \cot \beta}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\operatorname{tg} 2\alpha = \frac{2\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}$$

$$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$$

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

$$\cot 3\alpha = \frac{\cot^3 \alpha - 3\cot \alpha}{3\cot^2 \alpha - 1}$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\operatorname{tg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

$$\operatorname{ctg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}$$