Zestaw3 odpowiedzi (macierze, wyznaczniki, układy równań)

Wyznacznik macierzy o wymiarze 2x2 co zapisujemy $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ jest określony jako $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$

Wyznacznik macierzy o wymiarze 3x3

Dla macierzy 3 × 3 używamy tzw. metody Sarrusa: dopisujemy do macierzy z prawej strony dwie pierwsze kolumny (lub z dołu dwa pierwsze wiersze) i następnie iloczyny wzdłuż trzech przekątnych dodajemy, a wzdłuż trzech odejmujemy:

Rozwinięcia Laplace'a wyznacznika

Niech $A = [a_{ij}]$ będzie macierzą stopnia n, gdzie $n \ge 2$.

Dla dowolnej, ustalonej liczby i, gdzie $1 \le i \le n$, wyznacznik macierzy A jest równy

$$det A = \sum_{k=1}^{n} a_{ik} D_{ik}.$$

Powyższą równość nazywamy **rozwinięciem Laplace'a względem** *i*

i -tego wiersza.

Dla dowolnej, ustalonej liczby j, gdzie $1 \le j \le n$, wyznacznik macierzy A jest równy

$$det A = \sum_{k=1}^{n} a_{kj} D_{kj}.$$

Powyższą równość nazywamy <u>rozwinięciem Laplace'a względem j-tej</u> kolumny.

Dopełnienie algebraiczne

$$D_{ij} = (-1)^{i+j} M_{ij}$$

 M_{ij} - Minor wyznacznik powstały ze skreślenia wiersza o numerze i oraz kolumny o numerze j.

Iloczyn wektorów \vec{a} i \vec{b} możemy określić w kartezjańskim układzie współrzędnych jako wyznacznik

$$\vec{a}x\vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \vec{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \vec{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} =$$

$$= \vec{i} (a_y b_z - a_z b_y) - \vec{j} (a_x b_z - a_z b_x) + \vec{k} (a_x b_y - a_y b_x)$$

Hipmaczniki a) przestowienie duód niersy (kolumni) w macieny wpracznika jest nowwardine januorenin mpuacruika puer -1. b) wymacrail o dwoch jednakowych viewszach (kolumach) jest sówujo e) wpwereruk o 2 proporejouorligel wersach jot wway o et jereli w myzwoczniku jeden z mersny (lub jedna z kolumu) jest Kombinary liniona powstatych mensy (lub kolumn) to apar out just nowly o e agricarie nie muleu jereli do lego weuny flut kolung Lodowy koulonage unoud ponostolyde meury fuit kolung C) thereat webs in macrifica (following) pries liebe, managing pries of mymachilk live runnery newtoser, jereli do jego weisry (tub kolumny) olodan Roundinage hinous postostatych AX = Butial Clamera ma detracture policieronigracus dans willoune Wrong up another theorem wy marrietow - w ten sposob caperingthousing Rize deur maciary o miniare mixim maripianny ticity winner majoristent to stopue jej winjels od sera o - gdy mader getono.

Macierz określająca <u>macierz odwrotną</u> do nieosobliwej macierzy A stopnia n ma postać:

$$A^{-1} = \frac{1}{DetA} \begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1n} \\ D_{21} & D_{22} & \cdots & D_{2n} \\ D_{n1} & D_{n2} & \cdots & D_{nn} \end{bmatrix}^{T}$$

Zd1.

a)
$$\begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} = 1 * 3 - 2 * 4 = -5$$

b)
$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 1 \cdot (-1) \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + 0 \cdot (-1) \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} + 1 + 1 \cdot (-1) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = -1 + 0 + (-1) = -2$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -1 + 0 + (-1) = -2$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -1 + 0 + (-1) = -2$$

c)
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ 4 & 5 & 1 \end{vmatrix} = 1 \cdot (-1)^{1+2} \begin{vmatrix} 31 \\ 51 \end{vmatrix} + (-1) \cdot (-1)^{1+2} \begin{vmatrix} 21 \\ 41 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 23 \\ 45 \end{vmatrix} = (3-5) + (2-4) + (10-12) - 1 \cdot (-1)^{1+2} = (3-5) + (2-4) + (10-12) - 1 \cdot (-1)^{1+2} = (3-5) + (2-4) + (10-12) - 1 \cdot (-1)^{1+2} = (3-5) + (2-4) + (3-5)$$

4

d)
$$\begin{vmatrix} a & 0 & 0 \\ x & b & 0 \\ y & z & c \end{vmatrix} = \bigcirc , \bigcirc , \bigcirc$$

e)
$$\begin{vmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{vmatrix} = 2 \cdot (-1)^{4+1} \begin{vmatrix} 3 & 4 \\ -2 - 3 \end{vmatrix} + 5(-1)^{4+2} \begin{vmatrix} 6 & 4 \\ 5 - 3 \end{vmatrix} + 4 \cdot (-1)^{4+3} \begin{vmatrix} 6 & 3 \\ 5 - 2 \end{vmatrix} = 2 \cdot (-9 + 8) - 5(-18 - 20) + 4 \cdot (-24) = -2 + 180 - 188$$

$$= -2 + 180 - 189 = -1$$

f)
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{k_3 + k_1 - 2k_2} \begin{vmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & 9 \end{vmatrix} = 0$$

$$a)A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{k_2 - k_4} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1$$

$$rz[A]=rz\begin{bmatrix}0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1\end{bmatrix} = \longrightarrow mL A = 1$$

$$b)B = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$Rz[B]=rz\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \longrightarrow nz \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = nz \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$c)C = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$Rz[c] = rz \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 24 - 2 & 100 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0$$

Zd3. Znajdź macierz odwrotną i sprawdź otrzymany wynik

a)
$$A = \begin{bmatrix} 3 & -5 \\ 6 & 2 \end{bmatrix}$$
 | $A = \begin{bmatrix} 3 & -5 \\ 6 & 2 \end{bmatrix}$ | $A = \begin{bmatrix} 3 & -5 \\ 6 & 2 \end{bmatrix} = 3 \cdot 2 - (-5) \cdot 6 = 36$

$$A = 1 = 1 \text{ AT Day Dist} = 1 \text{ ACC Dist} = 1 \text{ A$$

b)
$$B = \begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix}$$
 $Det B = |B| = -1$
 $D_{11} = (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ -2 & -3 \end{vmatrix} = -1$; $D_{12} = (-1)^{1+2} \begin{vmatrix} 6 & 4 \\ 5 & -3 \end{vmatrix} = 38$
 $D_{13} = (-1)^{1+3} \begin{vmatrix} 6 & 3 \\ 5 & -2 \end{vmatrix} = -12 - 15 = -24$ $D_{23} = -15 = 1$
 $D_{22} = \begin{vmatrix} 2 & 4 \\ 5 & -3 \end{vmatrix} = -14$ $D_{23} = -\begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = 29$ $D_{31} = \begin{vmatrix} 5 & 4 \\ 3 & 4 \end{vmatrix} = -1$
 $D_{32} = -\begin{vmatrix} 2 & 4 \\ 6 & 4 \end{vmatrix} = 34$ $D_{33} = \begin{vmatrix} 2 & 5 \\ 6 & 3 \end{vmatrix} = -24$

$$B^{-1} = \frac{1}{-1} \begin{bmatrix} -1 & 38 & -24 \\ 1 & -41 & 29 \\ -1 & 34 & -24 \end{bmatrix} = \begin{bmatrix} 1 & -38 & 24 \\ -1 & 41 & -29 \\ 1 & -34 & 24 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 24 & -29 & 24 \end{bmatrix}$$

2d4. Rozwiązac układy rownan metodą Cramera:

a)
$$\begin{cases} 2x - 3y = 12 \\ 3x + 4y = 7 \end{cases}$$

$$\begin{cases} 2 - 3 \\ 3 + 4 \end{cases}$$

$$\begin{vmatrix} 2 - 3 \\ 3 + 4 \end{vmatrix} = \begin{cases} 4 \\ 4 \end{vmatrix} = \begin{cases} 4 \\ 4 \end{vmatrix}$$

$$\begin{vmatrix} 2 - 3 \\ 4 \end{vmatrix} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \end{cases} = \begin{cases} 4 \\ 4 \end{cases} = \begin{cases} 4 \end{cases}$$

b)
$$\begin{cases} 3x + 4y + 5z = 5 \\ x + 2y + 4z = 0 \\ 2x - y + 3z = -6 \end{cases}$$
 $\begin{cases} 3 + 4 & 5 \\ 1 & 2 & 4 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 4 & 5 \\ 1 & 2 & 4 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 5 & 4 & 5 \\ 2 & 4 & -1 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 5 & 4 & 5 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 5 & 4 & 5 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$ $\begin{cases} 7 & 2 & 4 \\ 2 & 3 & -1 \\ 3 & -1 & 3 \end{cases}$

$$d) \begin{cases} 3x + y - z = 2 \\ 2x - y + 3z = 9 \\ x + 2y + z = 8 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \\ 1 - 2 - 1 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 2 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\ 3 - 1 - 3 \end{cases} = \begin{cases} 3 - 1 - 1 \\$$

Praca domowa

Rozwiązać równanie
$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = 0$$

Wyznaczyć wyznacznik macierzy
$$A = \begin{bmatrix} 2 & -3 & 5 & 3 \\ -2 & 4 & 2 & 5 \\ 3 & -1 & 3 & 2 \\ 1 & 2 & -3 & 2 \end{bmatrix}$$