Recall:

If $A = [v_1 \ldots v_n]$ is an $m \times n$ matrix then:

1)
$$Col(A) = Span(v_1, \ldots, v_n)$$

2)
$$Nul(A) = \{ v \in \mathbb{R}^n \mid Av = 0 \}$$

$$Q, Q, A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$Col(A) = Span \left(\begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \end{bmatrix} \right) \subseteq \mathbb{R}^{2}$$

$$Nul(A) = \left\{ \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} \mid \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \subseteq \mathbb{R}^{3}$$

Construction of a basis of Col(A)

Example

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 8 \end{bmatrix}$$

$$Cd(A) = Span(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 8 \end{bmatrix}) = Span(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix})$$

$$V_1 \quad V_2 \quad V_3 \quad V_3 = V_1 + 2V_2$$

Lemma

Let V be a vector space, and let $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. If a vector \mathbf{v}_i is a linear combination of the other vectors then

$$Span(\mathbf{v}_1,\ldots,\mathbf{v}_p) = Span(\mathbf{v}_1,\ldots,\mathbf{v}_{i-1},\mathbf{v}_{i+1},\ldots,\mathbf{v}_p)$$

Upshot. One can construct a basis of a vector space V as follows:

- Start with a set of vectors $\{v_1, \ldots, v_p\}$ such that $Span(v_1, \ldots, v_p) = V$.
- Keep removing vectors without changing the span, until you get a linearly independent set.

Example. Find a basis of Col(A) where A is the following matrix:

$$A = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} & \mathbf{v_4} & \mathbf{v_5} & \mathbf{v_6} \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

matrix in the reduced row echolon form

Solution:

Col(A) = Span
$$(v_1, v_2, v_3, v_4, v_5, v_6) \in \mathbb{R}^5$$

Note: $v_3 = 2v_1 + 3v_2$
 $v_5 = 1 \cdot v_1 + (-1)v_2 + 3v_4$

This gives: $Cd(A) = Span(v_1, v_2, v_4, v_6)$ The set $\{v_1, v_2, v_4, v_6\}$ is linearly independent, so it is a basis of Cd(A).

In general: If A is a matrix in the reduced row echelon form, then the set of all columns of A that contain leading ones is a basis of Cd(A).

Example. Find a basis of Col(A) where A is the following matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solution: Cd (A) = Span (V, V2, V3, V4, V5)

$$\begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 0 & -2 & 0 & -1 & 3 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} V_2 = -2V_1 \\ V_4 = (-1)V_1 + 2V_3 \\ V_5 = 3V_1 - 2V_3 \end{bmatrix} \leftarrow \begin{bmatrix} W_2 = -2W_1 \\ W_4 = (-1)W_1 + 2W_3 \\ W_5 = 3W_1 - 2W_3 \end{bmatrix}$$

This gives: Cd(A) = Span(v, v)

Check: the set $\{v_1, v_3\}$ is linearly independent, so it is a basis of GI(A).

In general: If A is a matrix then the set of pivot columns of A is a basis of Col(A).

Construction of a basis of Nul(A)

Example. Find a basis of Nul(A) where A is the following matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solution:

Recall: We know how to find a spanning set of Nul (A):

We get: ve Nul (A) if

$$V = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$W_1 \qquad W_2 \qquad W_3$$

This gives: Nul (A) = Span (W1, M2, W3).

Note: The set obtained in this way is always linearly independent, so it is a basis of Null (A).

Upshot. If *A* is matrix then:

 $\dim \operatorname{Col}(A) = \operatorname{the\ number\ of\ pivot\ columns\ of\ } A$ $\dim \operatorname{Nul}(A) = \operatorname{the\ number\ of\ non-pivot\ columns\ of\ } A$

Definition

If A is a matrix then:

- the dimension of Col(A) is called the rank of A and it is denoted rank(A)
- the dimension of Nul(A) is called the *nullity* of A.

Eq. 2f A is the matrix from the last example then:

$$\dim Col(A) = 2$$
, so: rank A = 2
 $\dim Nul(A) = 3$, so: nullity of A = 3

The Rank Theorem

If A is an $m \times n$ matrix then

$$rank(A) + \dim Nul(A) = n$$

Example. Let A be a 100×101 matrix such that $\dim \text{Nul}(A) = 1$. Show that the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^{100}$.

Solution:

Recall:
$$A \times = b$$
 has a solution if $b \in Col(A)$
So: $A \times = b$ has a solution for every $b \in \mathbb{R}^{100}$ if $Cd(A) = \mathbb{R}^{100}$

Thus we need to show: Col(A) = TR100

We have:

dim Col(A) = rank A =
$$101 - 1 = 100$$

number of dim Nul(A)

columns of A

This gives:

- i) Col(A) is a subspace of R100
- 2) dim G1(A) = 100 = dim 12100

Example. Let A be a 5×9 . Can the null space of A have dimension 3?

Solution:

```
We have: dim Nul (A) = 9- dim Gl (A)

The number of columns of A
```

Col (A) is a subspace of \mathbb{R}^5 , so dim Col (A) \leq dim $\mathbb{R}^5 = 5$ We obtain: dim Nul (A) \geq 4 In particular there is no 5×9 matrix A with Nul (A) = 3.