Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 11

Hausaufgaben (Abgabe bis 28.06.2022, 1000 Uhr)

Hausaufgabe 11.1: Eine Basis für kubische Splines

Für a < b und $n \in \mathbb{N}^*$ sei $h := \frac{b-a}{n}$. Für $k \in \mathbb{Z}$ sei $t_k := a + kh$. Wir betrachten im folgenden das Gitter $\underline{t} := (t_0, ..., t_n)$, also $t_0 = a$, $t_n = b$. Für alle $j \in \mathbb{Z}$ sei $g_j : \mathbb{R} \to \mathbb{R}$ gegeben durch

$$g_{j}(t) := \frac{1}{6h^{3}} \begin{cases} 0, & t < t_{j} \\ (t - t_{j})^{3}, & t_{j} \leq t < t_{j+1} \\ h^{3} + 3h^{2}(t - t_{j+1}) + 3h(t - t_{j+1})^{2} - 3(t - t_{j+1})^{3}, & t_{j+1} \leq t < t_{j+2} \\ h^{3} + 3h^{2}(t_{j+3} - t) + 3h(t_{j+3} - t)^{2} - 3(t_{j+3} - t)^{3}, & t_{j+2} \leq t < t_{j+3} \\ (t_{j+4} - t)^{3}, & t_{j+3} \leq t < t_{j+4} \\ 0, & t \geq t_{j+4} \end{cases}$$

und es sei $b_j := g_j \Big|_{[a,b]}$.

- a) (3 P.) Zeigen Sie $\forall j \in \mathbb{Z} \colon b_j \in S_t^3$.
- b) (3 P.) Sei $f: [a,b] \to \mathbb{R}$. Stellen Sie ein lineares Gleichungssystem für $\alpha_{-3},...,\alpha_{n-1} \in \mathbb{R}$ auf, das genau dann erfüllt ist, wenn $s:=\sum\limits_{k=-3}^{n-1}\alpha_kb_k$ der natürliche interpolierende kubische Spline für f auf \underline{t} ist.

Hausaufgabe 11.2: Randbedingungen

- a) (2 P.) Zeigen Sie: Ist $A \in M_n(\mathbb{R})$ strikt diagonaldominant, dann ist $A \in GL_n(\mathbb{R})$. Anmerkung: Insbesondere folgt, dass das lineare Gleichungssystem aus Korollar 5.16 eine eindeutige Lösung hat.
- b) (2 P.) Beweis von Korollar 5.17: Zeigen Sie, wie man den vollständigen interpolierenden kubischen Splines berechnen kann.
- c) (2 P.) Sei $\underline{t} = (t_0, ..., t_n)$ ein Gitter und $f : [t_0, t_n] \to \mathbb{R}$. Zeigen Sie, wie man ein $s \in S^3_{\underline{t}}$ berechnen kann, das f auf \underline{t} interpoliert und die **periodische** Randbedingung $s'(t_0) \stackrel{!}{=} s'(t_n)$ und $s''(t_0) \stackrel{!}{=} s''(t_n)$ erfüllt.

Hinweis zu b),c): Modifizieren Sie die Gleichungen aus der Lösung von Problem 5.15 für die Momente des Splines.

Bitte wenden

Programmieraufgabe 11.3: Natürlicher interpolierender kubischer Spline (4 P.) Schreiben Sie ein Programm, das zu einem gegebenem Gitter $\underline{t} = (t_0, ..., t_n)$ und einer gegebenen Funktion $f \colon [t_0, t_n] \to \mathbb{R}$ den natürlichen interpolierenden kubischen Spline für f auf \underline{t} berechnet. Nutzen Sie Ihr Programm für folgendes Beispiel: Es sei n = 16, für alle $i \in \{0, ..., 16\}$ sei $t_i := i - 8$, und es soll ein natürlicher kubischer Spline $s \in S^3_{\underline{t}}$ so berechnet werden, dass $s(t_i) \stackrel{!}{=} \begin{cases} 1 & \text{falls } t_i = 0 \\ 0 & \text{falls } t_i \neq 0 \end{cases}$ Stellen Sie s graphisch dar.

Erreichbare Punktzahl: 16