

Standardized Test Prep

Answer the following items on a separate piece of paper.

MULTIPLE CHOICE

- **1.** In stoichiometry, chemists are mainly concerned
 - **A.** the types of bonds found in compounds.
 - **B.** mass relationships in chemical reactions.
 - **C.** energy changes occurring in chemical reactions.
 - **D.** the speed with which chemical reactions
- **2.** Assume ideal stoichiometry in the reaction $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$. If you know the mass of CH₄, you can calculate
 - **A.** only the mass of CO_2 produced.
 - **B.** only the mass of O_2 reacting.
 - **C.** only the mass of $CO_2 + H_2O$ produced.
 - **D.** the mass of O_2 reacting and $CO_2 + H_2O$ produced.
- **3.** Which mole ratio for the equation $6Li + N_2 \longrightarrow 2Li_3N$ is incorrect?
 - $\mathbf{A.} \frac{6 \text{ mol Li}}{2 \text{ mol N}_2}$
- $\mathbf{C.} \frac{2 \text{ mol Li}_3 N}{1 \text{ mol N}_2}$
- **B.** $\frac{1 \text{ mol } N_2}{6 \text{ mol Li}}$ **D.** $\frac{2 \text{ mol Li}_3 N}{6 \text{ mol Li}}$
- **4.** For the reaction below, how many moles of N_2 are required to produce 18 mol NH₃?

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

A. 4.5

B. 9.0

- **D.** 36
- **5.** What mass of NaCl can be produced by the reaction of 0.75 mol Cl₂?

$$2Na + Cl_2 \longrightarrow 2NaCl$$

- **A.** 0.75 g
- **C.** 44 g
- **B.** 1.5 g
- **D.** 88 g
- **6.** What mass of CO_2 can be produced from 25.0 g CaCO₃ given the decomposition reaction

$$CaCO_3 \longrightarrow CaO + CO_2$$

- **A.** 11.0 g
- **C.** 25.0 g
- **B.** 22.0 g
- **D.** 56.0 g

- **7.** If a chemical reaction involving substances A and B stops when B is completely used up, then B is referred to as the
 - **A.** excess reactant.
- **C.** limiting reactant.
- **B.** primary reactant.
- **D.** primary product.
- **8.** If a chemist calculates the maximum amount of product that could be obtained in a chemical reaction, he or she is calculating the
 - **A.** percentage yield.
 - **B.** mole ratio.
 - **C.** theoretical yield.
 - **D.** actual yield.
- **9.** What is the maximum number of moles of AlCl₃ that can be produced from 5.0 mol Al and 6.0 mol Cl_2 ?

$$2Al + 3Cl_2 \longrightarrow 2AlCl_3$$

- **A.** 2.0 mol AlCl₃
- C. 5.0 mol AlCl₃
- **B.** 4.0 mol AlCl₃
- **D.** 6.0 mol AlCl₃

SHORT ANSWER

- **10.** Why is a balanced equation necessary to solve a mass-mass stoichiometry problem?
- **11.** What data are necessary to calculate the percentage yield of a reaction?

EXTENDED RESPONSE

- **12.** A student makes a compound in the laboratory and reports an actual yield of 120%. Is this result possible? Assuming that all masses were measured correctly, give an explanation.
- **13.** Benzene, C_6H_6 , is reacted with bromine, Br_2 , to produce bromobenzene, C₆H₅Br, and hydrogen bromide, HBr, as shown below. When 40.0 g of benzene are reacted with 95.0 g of bromine, 65.0 g of bromobenzene is produced.

$$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$$

- a. Which compound is the limiting reactant?
- b. What is the theoretical yield of bromobenzene?
- c. What is the reactant in excess, and how much remains after the reaction is completed?
- d. What is the percentage yield?

and information that is presented in the question.

Test TIP Choose an answer to a question based on both information that you already know