Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science Department of Mechanical Engineering

6.050 J/2.110 J

Information and Entropy

Spring 2003

Problem Set 9 Solutions

Solution to Problem 1: Well, Well, Well

Solution to Problem 1, part a.

Inside the well V(x) = 0 and therefore

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2}$$
 (9-6)

Solution to Problem 1, part b.

If E has a nonzero imaginary part E_{imag} , then the magnitude of f(t) is a function of time, in particular

$$\mid f(t) \mid = exp(E_{imag}t/\hbar) \tag{9-7}$$

If $E_{imag} > 0$ then | f(t) | gets large for large values of t (i.e., it blows up at infinity). If $E_{imag} < 0$ then |f(t)| gets large for large values of -t (i.e., it blows up at negative infinity). In either case it is impossible to normalize $\psi(x)$.

Solution to Problem 1, part c.

$$E\phi(x) = -\frac{\hbar^2}{2m} \frac{\partial^2 \phi(x,t)}{\partial x^2} \tag{9-8}$$

Solution to Problem 1, part d.

Since

$$\phi(x) = a\sin(kx) + b\cos(kx) \tag{9-9}$$

$$\frac{d\phi(x)}{dx} = ak\cos(kx) - bk\sin(kx) \tag{9-10}$$

$$\phi(x) = a\sin(kx) + b\cos(kx)$$

$$\frac{d\phi(x)}{dx} = ak\cos(kx) - bk\sin(kx)$$

$$\frac{d^2\phi(x)}{dx^2} = -ak^2\sin(kx) - bk^2\cos(kx)$$

$$= -k^2\phi(x)$$

$$(9-9)$$

$$(9-10)$$

Therefore

$$E\phi(x) = \left(\frac{\hbar^2 k^2}{2m}\right)\phi(x) \tag{9-12}$$

so

$$E = \frac{\hbar^2 k^2}{2m} \tag{9-13}$$

Problem Set 9 Solutions 2

Solution to Problem 1, part e.

One of the boundary conditions is $\phi(0) = 0$, so

$$0 = \phi(0) = asin(0) + bcos(0) = b$$
 (9-14)

Since we know the wavefunction is nonzero, a must be nonzero as well.

Solution to Problem 1, part f.

 $\phi(x)$ must be zero at the boundaries, which implies

$$\frac{k = j\pi}{L} \tag{9-15}$$

so that $\sin(-kL) = 0$.

Solution to Problem 1, part g.

$$e_j = \frac{\hbar^2 \pi^2 j^2}{2mL^2} \tag{9-16}$$

Solution to Problem 1, part h.

$$\phi_j(x) = a \sin\left(\frac{j\pi x}{L}\right) \tag{9-17}$$

Solution to Problem 1, part i.

$$e_1 = \frac{\hbar^2 \pi^2}{2mL^2} \tag{9-18}$$

Solution to Problem 1, part j.

$$e_2 = \frac{2\hbar^2 \pi^2}{mL^2} \tag{9-19}$$

Solution to Problem 1, part k.

$$e_1 = \frac{\hbar^2 \pi^2}{2mL^2} \tag{9-20}$$

$$= \frac{(1.054 \times 10^{-34} \text{Joule-seconds})^2 \times (3.1416)^2}{2 \times (9.109 \times 10^{-31} \text{kilograms}) \times (2 \times 10^{-8} \text{meters})^2}$$
(9-21)

$$= 1.506 \times 10^{-22}$$
 Joules (9–22)

(9-23)

Solution to Problem 1, part l.

Express this ground-state energy in electron-volts (1 eV= 1.602×10^{-19} Joules).

$$e_1 = 1.506 \times 10^{-22} \text{ Joules}$$

= $9.391 \times 10^{-4} \text{ eV}$ (9-24)

MIT OpenCourseWare http://ocw.mit.edu

6.050J / 2.110J Information and Entropy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.