CS2700 Homework 2

Phillip Janowski (pajmc2@mail.umsl.edu)

October 7, 2018

Question 1.

11.1

(a)
$$ABC + \overline{A} * \overline{B} * \overline{C}$$

ABC	$\overline{A} * \overline{B} * \overline{C}$	ABC	$\overline{A} * \overline{B} * \overline{C}$	$ABC + \overline{A} * \overline{B} * \overline{C}$
000	111	0	1	1
001	110	0	0	0
010	101	0	0	0
011	100	0	0	0
100	011	0	0	0
101	010	0	0	0
110	001	0	0	0
111	000	0	0	1

(b)
$$ABC + A\overline{B} * \overline{C} + \overline{A} * \overline{B} * \overline{C}$$

ABC	$\overline{A} * \overline{B} * \overline{C}$	ABC	$A\overline{B}*\overline{C}$	$A*\overline{B}*\overline{C}$	$ABC + A\overline{B} * \overline{C} + \overline{A} * \overline{B} * \overline{C}$
000	111	0	1	0	1
001	110	0	0	0	0
010	101	0	0	0	0
011	100	0	0	0	0
100	011	0	0	1	1
101	010	0	0	0	0
110	001	0	0	0	0
111	000	1	0	0	1

(c) $A(B\overline{C} + \overline{B}C)$

ABC	$\overline{A} * \overline{B} * \overline{C}$	$B\overline{C}$	$\overline{B}C$	$A(B\overline{C} + \overline{B}C)$
000	111	0	0	0
001	110	0	1	0
010	101	1	0	0
011	100	0	0	0
100	011	0	0	0
101	010	0	1	1
110	001	1	0	1
111	000	0	0	0

(d) $(A+B)(A+C)(\overline{A}+\overline{B})$

ABC	$\overline{A} * \overline{B} * \overline{C}$	A + B	A+C	$\overline{A} + \overline{B}$	$(A+B)(A+C)(\overline{A}+\overline{B})$
000	111	0	0	1	0
001	110	0	1	1	0
010	101	1	0	1	0
011	100	1	1	1	1
100	011	1	1	1	1
101	010	1	1	1	1
110	001	1	1	0	0
111	000	1	1	0	0

Question 2.

11.3

(a)	$F = \overline{V}$	$\overline{+A+L} = \overline{1}$	7 * Z	$\overline{4} * \overline{L}$
	VAL	$\overline{V} * \overline{A} * \overline{L}$	F	
	000	111	1	
	001	110	0	
	010	101	0	
	011	100	0	
	100	011	0	
	101	010	0	
	110	001	0	
	111	000	0	

(L)		<u></u>	$\perp \overline{D}$	1 0	1 <u>D</u>	1	\overline{DCD}
(D)) <i>F</i>	= A	+B	+ C	+ D	= A	\overline{BCD}

ABCD	$\overline{A} * \overline{B} * \overline{C} * \overline{D}$	F
0000	1111	1
0001	1110	0
0010	1101	0
0011	1100	0
0100	1011	0
0101	1010	0
0110	1001	0
0111	1000	0
1000	0111	0
1001	0110	0
1010	0101	0
1011	0100	0
1100	0011	0
1101	0010	0
1110	0001	0
1111	0000	0

Question 3.

3.3 32 bit instruction, 8bit opcode, 24bit address

- (a) $2^24 = 2^20*2^4 = 1$ megabyte *16 = 16 megabytes of addressable memory
- (b) 1. 32bit address on a 16bit bus will take 3 cycles, 1 for the address and two for the data
 - 2. 16 bit address on 16 bit bus will take 4 cycles, 2 for the address and two for data
- (c) 24bits for the program counter and 32 bits for the instruction register

Question 4.

3.7

- (a) A factor of 2
- (b) 50 transfers, 25 of one byte, 25 of two bytes 75 transfers, 25 + 25 * 2 A difference factor of 1.5

Question 5.

4.2

(a) 8bit tag, 14bit set, 2bit word

 $0 \times 11111111 \rightarrow 000100010001000100010001$

Tag	Set	Word
00010001	00010001000100	01
11	444	1

 $0x666666 \rightarrow 011001100110011001100110$

Tag	Set	Word
01100110	01100110011001	10
66	1999	2

 $0xBBBBBB \rightarrow 10111011101110111011101$

Tag	Set	Word
10111011	1011101110111	01
BB	2EEE	3

(b) 22bit Tag 2bit Word

 $\underline{0x11111111} \to \underline{0001000100010001000}10001$

Tag	Word
0001000100010001000100	01
44444	1

 $0x666666 \rightarrow 01100110011001100110$

Tag	Word
0110011001100110011001	10
19999	2

Tag	Word
101110111011101110111	01
2EEEE	3

(c) 9 bit Tag 13 bit Set 2 bit Word

 $0x11111111 \rightarrow 000100010001000100010001$

	1 000100010001000100010					
Tag	Set	Word				
000100010	0010001000100	01				
22	444	1	7			
$0x666666 \rightarrow 011001100110011001100110$						
Tag	Set	Word				
011001100	1100110011001	10				
CC	1999	2				
$0xBBBBBB \rightarrow 1011101110111011101$						
Tag	Set	Word				
101110111	011101110111	01				
17	EEE	EE 3				

Question 6.

4.4

(a) 8 bit Tag 14 bit Line 2 bit Word

Address length = 24 bits

Number of addressable units = $2^24 = 16MB$

Block Size $2^2 = 4$

Blocks in Memory = $2^24 * 2^{-2} = 2^22$

Lines in Cache = $2^{1}4$

Tag Size = 8 bits

(b) 22 bit Tag 2 bit Word

Address length = 24 bits

Number of addressable units = $2^24 = 16 \text{ MB}$

Block size $= 2^2 = 4$

Blocks in Memory = $2^24 * 2^{-2} = 2^22$

Number of lines is undetermined because it is an associative cache

Tag Size = 22 bits

(c) 9 bit Tag, 14 it Cache Line, 2 bit Word Offset

Address length = 24 bits

Number of addressable units = $2^24 = 16 \text{ MB}$

Block size $= 2^2 = 4$

Blocks in Memory = $2^24 * 2^{-2} = 2^22$

Number of lines in a set = 2 because 2 way set associative

Number of sets = $2^{1}3$

Number of lines in a cache = Number of sets * Number of ways set

associative = $2^14 * 2 = 2^14$

Tag Size = 9 bits

Question 7.

4.8

2¹6 bytes 8 byte block size 32 Lines

(a) $\log_2 8 \to 3$ bit offset

 $\log_2 32 \to 5$ bit line

16 - 5 - 3 = 8 bit tag

	Tag	Line	Offset	Line Number
	00010001	00011	011	Line 3
(b)	11000011	00110	100	Line 6
	11010000	00011	101	Line 3
	10101010	10101	010	Line 21

(c) 00011010|00011|010

will remain until address = 00011010|00011|111

(d) 8 byte address $2^8 = 256$ bytes

item Tags are used to identify items that can have the same place in the cache with two different addresses in memory