

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

ÁLGEBRA	1120	1	8
Asignatura	Clave	Semestre	Créditos
CIENCIAS BÁSICAS	COORDINACIÓN DE MATEMÁTICAS	KPI GPKGI	T~C'CIVIL
División	Departamento	Licenci	atura
Asignatura: Obligatoria X	Horas/semana: Teóricas 4.0	Horas/seme Teóricas	estre: 64.0
Optativa	Prácticas 0.0	Prácticas	0.0
	Total 4.0	Total	64.0
Modalidad: Curso teórico			

Objetivo(s) del curso:

Seriación obligatoria antecedente: Ninguna

Seriación obligatoria consecuente: Álgebra Lineal

El alumno analizará las propiedades de los sistemas numéricos y las utilizará en la resolución de problemas de polinomios, sistemas de ecuaciones lineales y matrices y determinantes, para que de manera conjunta estos conceptos le permitan iniciar el estudio de la física y la matemática aplicada.

Temario

NÚM.	NOMBRE	HORAS
1.	Trigonometría	8.0
2.	Números reales	10.0
3.	Números complejos	12.0
4.	Polinomios	10.0
5.	Sistemas de ecuaciones	8.0
6.	Matrices y determinantes	16.0
		64.0
	Actividades prácticas	0.0
	Total	64.0

1 Trigonometría

Objetivo: El alumno reforzará los conceptos de trigonometría para lograr una mejor comprensión del álgebra.

Contenido:

- 1.1 Definición de las funciones trigonométricas para un ángulo cualquiera.
- 1.2 Definición de las funciones trigonométricas para un ángulo agudo en un triángulo rectángulo.
- 1.3 Signo de las funciones trigonométricas en los cuatro cuadrantes.
- 1.4 Valores de las funciones trigonométricas para ángulos de 30, 45 y 60 grados y sus múltiplos.
- 1.5 Identidades trigonométricas.
- 1.6 Teorema de Pitágoras.
- **1.7** Ley de senos y ley de cosenos.
- 1.8 Ecuaciones trigonométricas de primer y segundo grado con una incógnita.

2 Números reales

Objetivo: El alumno aplicará las propiedades de los números reales y sus subconjuntos para demostrar algunas proposiciones por medio del método de inducción matemática y para resolver desigualdades.

Contenido:

- 2.1 El conjunto de los números naturales: definición del conjunto de los números naturales mediante los Postulados de Peano. Definición y propiedades: adición, multiplicación y orden en los números naturales. Demostración por inducción matemática.
- **2.2** El conjunto de los números enteros. Definición y propiedades: igualdad, adición, multiplicación y orden en los enteros. Representación de los números enteros en la recta numérica.
- 2.3 El conjunto de los números racionales: definición a partir de los números enteros. Definición y propiedades: igualdad, adición, multiplicación y orden en los racionales. Expresión decimal de un número racional. Algoritmo de la división en los enteros. Densidad de los números racionales y representación de éstos en la recta numérica.
- 2.4 El conjunto de los números reales: existencia de números irracionales (algebraicos y trascendentes).
 Definición del conjunto de los números reales; representación de los números reales en la recta numérica.
 Propiedades: adición, multiplicación y orden en los reales. Completitud de los reales. Definición y propiedades del valor absoluto. Resolución de desigualdades e inecuaciones.

3 Números complejos

Objetivo: El alumno usará los números complejos en sus diferentes representaciones y sus propiedades para resolver ecuaciones con una incógnita que los contengan.

Contenido:

- **3.1** Forma binómica: definición de número complejo, de igualdad y de conjugado. Representación gráfica. Operaciones y sus propiedades: adición, sustracción, multiplicación y división. Propiedades del conjugado.
- **3.2** Forma polar o trigonométrica: definición de módulo, de argumento y de igualdad de números complejos en forma polar. Operaciones en forma polar: multiplicación, división, potenciación y radicación.
- **3.3** Forma exponencial o de Euler. Operaciones en forma exponencial: multiplicación, división, potenciación y radicación.
- 3.4 Resolución de ecuaciones con una incógnita que involucren números complejos.

4 Polinomios

Objetivo: El alumno aplicará los conceptos del álgebra de polinomios y sus propiedades para obtener sus raíces.

Contenido:

4.1 Definición de polinomio. Definición y propiedades: adición, multiplicación de polinomios y multiplicación de un polinomio por un escalar.

- **4.2** División de polinomios: divisibilidad y algoritmo de la división. Teorema del residuo y del factor. División sintética.
- **4.3** Raíces de un polinomio: definición de raíz, teorema fundamental del álgebra y número de raíces de un polinomio.
- **4.4** Técnicas elementales para buscar raíces: posibles raíces racionales y regla de los signos de Descartes.

5 Sistemas de ecuaciones

Objetivo: El alumno formulará, como modelo matemático de problemas, sistemas de ecuaciones lineales y los resolverá usando el método de Gauss.

Contenido:

- **5.1** Definición de ecuación lineal y de su solución. Definición de sistema de ecuaciones lineales y de su solución. Clasificación de los sistemas de ecuaciones lineales en cuanto a la existencia y al número de soluciones. Sistemas homogéneos, soluciones triviales y varias soluciones.
- **5.2** Sistemas equivalentes y transformaciones elementales. Resolución de sistemas de ecuaciones lineales por el método de Gauss.
- **5.3** Aplicación de las ecuaciones lineales para la solución de problemas de modelos físicos y matemáticos.

6 Matrices y determinantes

Objetivo: El alumno aplicará los conceptos fundamentales de las matrices, los determinantes y sus propiedades a problemas que requieran de éstos para su solución.

Contenido:

- **6.1** Definición de matriz y de igualdad de matrices. Operaciones con matrices y sus propiedades: adición, sustracción, multiplicación por un escalar y multiplicación. Matriz identidad.
- **6.2** Definición y propiedades de la inversa de una matriz. Cálculo de la inversa por transformaciones elementales.
- **6.3** Ecuaciones matriciales y su resolución. Representación y resolución matricial de los sistemas de ecuaciones lineales.
- **6.4** Matrices triangulares, diagonales y sus propiedades. Definición de traza de una matriz y sus propiedades.
- **6.5** Transposición de una matriz y sus propiedades. Matrices simétricas, antisimétricas y ortogonales. Conjugación de una matriz y sus propiedades. Matrices hermitianas, antihermitianas y unitarias. Potencia de una matriz y sus propiedades.
- **6.6** Definición de determinante de una matriz y sus propiedades. Cálculo de determinantes: regla de Sarrus, desarrollo por cofactores y método de condensación.
- **6.7** Cálculo de la inversa por medio de la adjunta. Regla de Cramer para la resolución de sistemas de ecuaciones lineales de orden superior a tres.

Bibliografía básica

Temas para los que se recomienda:

1

ANDRADE, Arnulfo, CASTAÑEDA, Érik Antecedentes de geometría y trigonometría México Trillas-UNAM, Facultad de Ingeniería, 2010

LEÓN CÁRDENAS, Javier	2,3,4,5 y 6
Álgebra	
México	
Grupo Editorial Patria, 2011	
	2 2 4 2 6
REES, Paul, K., Sparks, FRED, W	2, 3, 4 y 6
Álgebra	
México	
Reverté, 2012	
SOLAR G., Eduardo, SPEZIALE DE G., Leda	2, 3, 4 y 6
Álgebra I	
3a. edición	
México	
Limusa - UNAM, Facultad de Ingeniería, 2004	
CWOKOWSKI E I W	2 2 4
SWOKOWSKI, Earl, W.,	2, 3 y 4
Álgebra y trigonometría con geometría analítica	
México	
Thomson, 2007	

Bibliografía complementaria

Temas para los que se recomienda:

2, 3, 4, 5 y 6
2, 4, 5 y 6

(5/6)

LEHMANN, Charles, H.,	2, 3 y 6
Álgebra	
México	
Limusa Noriega Editores, 2011	
STEWART, James. Et Al.	1, 2, 4 y 5
Precálculo. Matemáticas para el cálculo 5a.	
edición	
México	
Thomson Cengage Learning, 2007	
VELÁZQUEZ T., Juan	2
Fascículo de inducción matemática	
México	
UNAM, Facultad de Ingeniería, 2008	
WILLIAMS, Gareth	5
Linear algebra with applications 8th.	
edition	
Burlington, MA	
Jones and Bartlett Publishers, 2014	

1	-	1	1
"	n/	'n))

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	X
Uso de software especializado	X	Uso de redes sociales con fines académicos	X
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

Licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo contenido en el área de matemáticas sea similar. Deseable haber realizado estudios de posgrado, contar con experiencia docente o haber participado en cursos o seminarios de iniciación en la práctica docente.