ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №10

Тема занятия: Симметрические группы.

Т. Пусть Ω_{k} – конечное множество из n элементов. Поскольку природа его элементов для нас несущественна, удобно считать, что Ω_{k} = $\{1,2,\ldots,n\}$. Группа $S(\Omega)$ всех взаимно однозначных отображений Ω_{k} — Ω_{k} называется симметрической группой степени n и обозначается Ω_{k} . Элементы группы Ω_{k} , обычно обозначаемые строчными буквами греческого алфавита, называются перестановками. В развернутой и наглядной форме перестановку $\pi: i \mapsto \pi(i), i=1,2,\ldots,n$, изображают двухрядным символом

 $\mathcal{T} = \begin{pmatrix} \mathbf{I} & 2 & \dots & n \\ \mathbf{I}(\mathbf{I}) & \mathbf{I}(\mathbf{I}) & \dots & \mathbf{I}(\mathbf{n}) \end{pmatrix}.$

<u>Задача 1</u>. Пусть $\mathcal{H}_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$, $\mathcal{H}_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$. Найти $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4, \mathcal{H}_2^{-1}, \mathcal{H}_4^{-1}, \mathcal{H}_2^{-1}, \mathcal{H}_2^{-2}$.

Решение. $\pi_{1}\pi_{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 1 & 4
\end{pmatrix},$ $\pi_{2}\pi_{4} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 5 & 2 & 1
\end{pmatrix},$ $\pi_{1}^{-1} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{pmatrix},$ $\pi_{1}^{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{pmatrix},$ $\pi_{2}^{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 3 & 2 & 4
\end{pmatrix},$ $\pi_{2}^{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 3 & 4 & 1
\end{pmatrix}.$

Задача 2. Определить порядок группы S_{h} .

Решение. Пусть

$$\pi = \begin{pmatrix} \mathbf{1} & 2 & \dots & n \\ \mathbf{i}_1 & \mathbf{i}_2 & \dots & \mathbf{i}_n \end{pmatrix}$$

— произвольмая перестановка из S_n . Заметим, что элемент i_1 мы можем выбрать n способами. После каждого выбора i_1 элемент i_2 мы можем выбрать n-1 способами (так как $i_2 \neq i_1$). Но тогда выбор пары элементов i_1, i_2 в перестановке π мы можем сделать n(n-1) способами. Аналогично, после каждого выбора пары элементов i_1, i_2 элемент i_3 мы можем выбрать n-2 способами (так как $i_3 \neq i_1, i_3 \neq i_2$). Но тогда выбор тройки элементов i_1, i_2, i_3 в перестановке π мы можем осуществить n(n-1)(n-2) способами и т.д. Соответственно, выбор всего набора элементов i_1, i_2, \dots, i_n в перестановке π , а следовательно, и выбор всевозможных перестановок $\pi \in S_n$ мы можем осуществить $n(n-1)\cdots 2\cdot 1 = n!$ способами.

2. Орбиты. Цичлы. Разложение перестановки в произведение независимых циклов.

При решении многих задач пользуются разложением перестановок в произведение более простых перестановок, называемых циклами.

Пример I. Рассмотрим перестановку $6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ (см. рис. 1).

Будем эту перестановку кратко записывать в виде $6 = (1\ 2\ 3\ 4)$ или, что то же самое, в виде $6 = (2\ 3\ 4\ 1) = (3\ 4\ 1\ 2) = (4\ 1\ 2\ 3)$. Эта перестановка называется циклом длины 4. Перестановку же $6 = \begin{pmatrix} 1\ 2\ 3\ 4 \end{pmatrix}$

(CM. DMC. 2)

4

PMC. 2.

будем кратуо записывать в виде $\mathbf{6} = (1\ 4)(2\ 3)$ — произведение двух независимых (непересекающихся) циклов (1 4), (2 3) длины 2.

В общем случае перестановка $6 \in \mathbb{S}_n$ такая, что,для некоторых попарно различных элементов $\mathfrak{i}_1, \ldots, \mathfrak{i}_\ell \in \Omega$ выполняется

(1) $\mathcal{E}(i_1) = i_2, \mathcal{E}(i_2) = i_3, \dots, \mathcal{E}(i_{\ell-1}) = i_\ell, \mathcal{E}(i_\ell) = i_1,$

 $\forall i \in \Omega \setminus \{i_1, i_2, ..., i_\ell\}$ G(i) = i, называется (элементарным) циклом длины ℓ , который кратко обозначается

элементарный цикл, определяемый условиями (1), то $6 = (i_1 \ 6(i_1) \ 6^2(i_1) \dots 6^{\ell-1}(i_1)) = (i_2 \ 6(i_2) \ 6^2(i_2) \dots 6^{\ell-\ell}(i_2)) = \\ = \dots = (i_\ell \ 6(i_\ell) \ 6^2(i_\ell) \dots 6^{\ell-1}(i_\ell)),$

а следовательно, $\forall i \in \Omega$ такого, что $6(i) \neq i$, выполняется

 $6 = (i \ 6(i) \ \dots 6^{\ell-1}(i)),$ причем ℓ — минимальное целое положительное число такое, что $6^{\ell}(i)=i$. Но тогда ℓ — минимальное число такое, что $6^{\ell}=e$, т.е. является порядком перестановки $6 \in S_n$.

Пусть π — произвольная перестановка из S_n . Назовем две точки $i,j\in\Omega=\{1.2,\ldots,n\}$ π —эквивалентными (обозначаем $i\stackrel{\sim}{\sim} j$).если $\exists \, s\in\mathbb{Z}\, |\, j=\pi^{\,s}\, (i)=\pi(\ldots\pi(i)\ldots)$. Введенное отношение является эквивалентностью на Ω . Действительно.

- а) рефлексивность: $\forall i \in \Omega$ $i = \pi^{0}(i) = e(i) = i$, т.е. $i \stackrel{\mathcal{H}}{\sim} i$;
- б) симметричность: $i \sim j \Rightarrow \exists s \in \mathbb{Z} | j = \pi^{s}(i) \Rightarrow i = \pi^{-s}(j), -s \in \mathbb{Z} \Rightarrow j \sim i;$
- B) TPAHSMTMBHOCTE: $i \sim_{j,j} \sim_{\kappa} \Rightarrow \exists s_1, s_2 \in \mathbb{Z} | j = \pi^{s_1}(i), \kappa = \pi^{s_2}(j) \Rightarrow$ $\Rightarrow \kappa = \pi^{s_2}(\pi^{s_1}(i)) = \pi^{s_1 + s_2}(i), s_1 + s_2 \in \mathbb{Z} \Rightarrow i \sim_{\kappa}.$

Рассмотрим классы эквивалентности Ω_1 , . . , Ω_p множества Ω по эквивалентности $\overset{\sim}{\sim}$. т.е. $\{\Omega_1$, . . . , $\Omega_p\} = \Omega$ / $\overset{\sim}{\sim}$. Известно, что множество классов эквивалентности является разбиением множества Ω , т.е.

(2)
$$\Omega = \Omega_1 \cup \cdots \cup \Omega_p$$

(3)
$$\forall i,j \in \{1,2,...,p\} \quad i \neq j \Rightarrow \Omega_i \cap \Omega_j = \emptyset$$
.

Множества Ω_4 ,..., Ω_p принято называть π -орбитами. Таким образом, каждый элемент $i \in \mathcal{Q}$ принадлежит в точности одной π -орбите. Обозначим $\ell_{\mathsf{K}} = |\Omega_{\mathsf{K}}|$ - длина орбиты, $\mathsf{R} = 1, 2, \ldots, \mathsf{p}$. Пусть далее i произвольный элемент из некоторой π -орбиты $\Omega_{\mathbf{k}}$, т.е. $\Omega_{\mathbf{k}} = \{\pi^{\mathbf{s}}(i) | \mathbf{s} \in \mathbb{Z}\}$ Покажем. что тогда

(4) $\Omega_{\mathbf{k}} = \{i, \pi(i), \dots, \pi^{\ell_{\mathbf{k}}-1}(i)\}.$

Действительно, в силу $|\Omega_{\mathbf{K}}| = \ell_{\mathbf{K}}$ для доназательства (4) достаточно показать, что $i, \pi(i), \pi^2(i), \dots, \pi^{\ell_K-1}(i)$ – попарно различные элементы. Предположим, что найдутся j_1 , $j_2 \in \mathbb{Z}$ такие, что $0 \le j_1 < j_2 \le \ell_K - 1$, $\pi^{j_1}(i) = \pi^{j_2}(i)$, откупа $\pi^{j_2-j_1}(i) = i$, где $1 \le j_2-j \le l-1$, а следовательно, множество $\mathfrak{Q}_{\mathsf{K}}$ не содержит других элементов, кроме

 $i,\pi(i),\dots,\pi^{j_2-j_1-i}(i)$ (так как $\forall s\in\mathbb{Z}$ справедливо $s=\mathfrak{A}(j_2-j_1)+t^{\dagger}$, где $0 \le \ell \le j_2 - j_1 - 1$), но это противоречит тому, что $|\Omega_K| = \ell_K > \ell_K - 1 \ge \ell_K$ $\geq j_2-j_4$. Покажем теперь, что $\pi^{\ell_K}(i)=i$. Если $\pi^{\ell_K}(i) \neq i$. то в силу (4) $\exists j \in \{1, 2, ..., l_{K} - 1\} | \pi^{j}(i) = \pi^{l_{K}}(i)$. Но тогда $\pi^{l_{K} - j}(i) = \pi^{l_{K} - j}(i)$ = i , $1 \le \ell_{\mathsf{K}} - j \le \ell_{\mathsf{K}} - 1$, а это противоречит тому, что, как было показано выше, элементы $i,\pi(i),\dots,\pi^{\ell_{\mathsf{K}}-1}(i)$ попарно различны. Таким

образом, положив

(5) $\pi_{k} = (i \quad \pi(i) \dots \pi^{\ell_{k}-1}(i)),$ используя (4), получаем, что для элементарного цикла π_{K} выполня-

 $\forall i \in \Omega_K \quad \pi_K(i) = \pi(i) \in \Omega_K$

 $\forall i \in \Omega \setminus \Omega_{\kappa} \pi_{\kappa}(i) = i,$

откуда в силу (2),(3) следует, что

 $(7) \quad \pi = \pi_{\perp} \pi_{2} \cdots \pi_{p},$ причем в силу (3),(6) все циклы в правой части (7) перестановочны:

(8) $\forall i, j \in \{1, 2, \dots, p\}$ $\pi_i \pi_j = \pi_j \pi_i$,

а следовательно,

$$\pi = \pi_1 \pi_2 \dots \pi_p = \pi_{i_1} \pi_{i_2} \dots \pi_{i_p}$$
, где $\{i_1, \dots, i_p\} = \{1, 2, \dots, p\}$.

Циклы π_{k} из полученного нами разложения (7) называются <u>независи</u>мыми в том смысле, что множества, на которых действуют эти циклы, попарно не пересекаются.

Замечание 2. Если цикл $\pi_{\mathsf{K}} = (\mathfrak{i})$ имеет длину 1, то он действует чак единичная перестановка; естественно такие циклы в произведении (7) опускать. Но тогда можно считать, что циклы в произведении (7) имеют длину > 2.

Пример 2. Пусть

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 1 & 5 & 6 & 8 & 7 & 4 & 10 & 9 \end{pmatrix} \in S_{40}.$$

Разложим 7 в произведение независимых циклов. Имеем:

I)
$$1 \mapsto 3 \mapsto 1$$
 , $\pi_1 = (1 \ 3)$; $\Omega_1 = \{1 \ , 3\}$;

2)
$$2 \mapsto 2$$
, $\pi_2 = (2)$, $\Omega_2 = \{2\}$;

3)
$$4 \mapsto 5 \mapsto 6 \mapsto 8 \mapsto 4$$
, $\pi_3 = (4.5.6.8)$;
4) $9 \mapsto 10 \mapsto 9$, $\pi_4 = (9.10)$, $\Omega_4 = \{9.7.10\}$;

4) 9
$$\rightarrow$$
 10 \rightarrow 9 \rightarrow 7, $\pi_{H} = (9 10)$, $\Omega_{H} = \{9, 10\}$

Очевидно, что

 $\Omega = \{1, ..., 10\} = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4$, $\Omega_1 \cap \Omega_2 = \emptyset$ при $i \neq j$, т.е. получили разбиение множества Ω на π - остально,

$$\pi = \pi_1 \pi_2 \pi_3 \pi_4 = (1 \ 3)(2)(4 \ 5 \ 6 \ 8)(9 \ 10) = (1 \ 3)(4 \ 5 \ 6 \ 8)(9 \ 10)$$

Задача З. Показать, что представление произвольной перестановки $\pi \epsilon \, \mathbb{S}_{\mathbf{n}}$, где $\pi \neq \, \mathbf{e}$, в виде произведения независимых циклов длины $\geqslant 2$ единственно.

Решение. Предположим, что наряду с разложением (7) имеется еще одно разложение

(8)
$$\pi = \tau_1 \cdots \tau_4$$

перестановки 7 в произведение независимых циклов длины ≥2.Пусть $\pi_{\mathbf{k}}$ - произвольный цикл длины $\ell_{\mathbf{k}} \geqslant 2$ из разложения (7). Покажем, что $\pi_{\mathbf{k}}$ входит в разложение (8). В силу $\ell_{\mathbf{k}} > 2$ найдется $\mathfrak{i} \in \{1,2,...,n\}$: $\mathfrak{i} \neq \pi_{\mathbf{k}}(\mathfrak{i})$ (т.е. i входит в множество, на котором действует цикл χ_{κ}), откуда, используя независимость диклов в разложении (7), имеем $\pi_{\mathbf{K}}(\mathfrak{i}) = \pi(\mathfrak{i})$.

 \mathfrak{t} входит в множество, на котором действует цикл \mathfrak{t}_j). Используя независимость циклов в разложении (8), имеем

$$\tau_j(i) = \pi(i) = \pi_k(i)$$
,

а следовательно,

 $\forall s \in \mathbb{Z} \quad \tau_j^s(i) = \pi^s(i) = \pi_K^s(i)$

откуда в силу замечания 1 имеем $\tau_j = \pi_k$. Совершенно аналогично почазывается, что любой цикл из разложения (7) входит в разложение (6).

Задача 4. Локазать, что порядок перестановки $\pi \in \mathbb{S}_n$ равен наименьшему общему кратному длин независимых циклов, входящих в разложение π .

<u>Решение</u>. Обозначим через $q_{\mathfrak{p}}$ порядок перестановки $\mathfrak{R} \in \mathbb{S}_n$. Тог-

да (по определению) 9- наименьшее целое положительное число такое, что $\pi^{\Phi} = \mathbf{e}$. Как уже отмечалось, циклы в разложении π - $\pi_{\mu\nu}$ $\pi_{\mu\nu}$ перестановки / в произведение независимых циклов перестановочны, а $(9) \ \forall s \in \mathbb{Z} \quad \pi^s = \pi_t^s \cdots \pi_p^s.$ Так как циклы $\pi_{\pm}\dots,\pi_{p}$ независимы (действуют на разных множествах), то, если для некоторого $\mathbf{s} \in \mathbb{Z}$ выполняется $\pi^{\mathbf{s}} = \mathbf{e}$, то $\pi_{_{\!4}}{}^{\rm S}=\ldots=\pi_{_{\rm P}}{}^{\rm S}$ = е.(Действительно, если предположить, что, например, $\pi_i^s \neq e$. то найдется номер $i \in \{1,2,\ldots,n\}$ такой, что $\pi_i^s(i) \neq i$, а следовательно, $\pi_{i}(i) \neq i$. Но тогда i входит в множество, на котором действует перестановка \mathcal{H}_4 , и в силу независимости циклов π_i ,..., π_ρ выполняется $\pi_\ell(i) = \ldots = \pi_\rho(i) = i$, а следовательно, $\pi_2^{\ \ \ \ \ \ }$ (і)=...= $\pi_p^{\ \ \ \ \ \ \ }$ (і) = і , откуда, используя (9), имеем $\pi^{\ \ \ \ \ \ \ \ \ }$ $=\pi_1^{\varsigma}(\pi_2^{\varsigma}(\dots,\pi_p^{\varsigma}(i)\dots))=\pi_1^{\varsigma}(i)\neq i$. что противоречит условию $\pi\stackrel{\varsigma}{=}e$ Но тогда в силу π^{g} = е получаем, что π_{t}^{g} = ... = π_{p}^{g} = е, а следовательно, $q_{\mathbf{k}}$ делится на порядки элементарных циклов $\mathfrak{N}_{\mathbf{K}}$, которые совпадают с их длинами ℓ_{κ} (см. замечание I). Таким образом, q_{ϵ} является общим кратным чисел ℓ_1,\ldots,ℓ_p . т.е. $q\geqslant \ell= \text{HOK}(\ell_1,\ldots,\ell_p)$. С другой стороны, в силу (9) имеем $\pi^{\ell} = \pi_{\ell}^{\ell} \dots \pi_{p}^{\ell} = e$, а следовательно, ℓ делится на q , т.е. $q \leqslant \ell$. Таким образом, $g_{\ell} = \ell$.

Задача 6. Представить следующие перестановки в виде произведений независимых циклов: $(3 \ 1 \ 8)^{-1}$, $(5 \ 6 \ 1)^2$, $(1 \ 3 \ 5 \ 2)^3$, $(1 \ 3 \ 5 \ 2)^2$, $(2 \ 3 \ 6 \ 4)^{-2}$, $(2 \ 4 \ 1 \ 3)^{-242}$, $(2 \ 1 \ 5 \ 7 \ 4)^{-72}$, $(3 \ 1 \ 7 \ 6 \ 4 \ 5)^{-21}$

Решение. $(3 18)^{-1} = (8 1 3),$ $(5 6 1)^2 = (5 6 1)^{3-1} = (5 6 3)^3 (5 6 1)^{-1} = (5 6 1)^{-1} = (1 6 5),$ $(1 3 5 2)^3 = (1 3 5 2)^{4-1} = (1 3 5 2)^{-1} = (2 5 3 1).$ $(1 3 5 2)^2 = (1 5)(2 3),$ $(2 3 6 4)^{-2} = (2 6)(3 4),$ $(2 4 1 3)^{-242} = (2 4 1 3)^{-244+2} = (2 4 1 3)^{-244}(2 4 1 3)^2 =$ $= (2 4 1 3)^2 = (2 1)(4 3)$ $(2 1 5 7 4)^{-72} = (2 1 5 7 4)^{-70-2} = (2 1 5 7 4)^{-2} = (4 5 2 7 1),$ $(3 1 7 6 4 5)^{394} = (3 1 7 6 4 5)^{396-2} = (3 1 7 6 4 5)^{-24+3} = (3 1 7 6 4 5)^{-2} =$ = (3 6)(1 4)(7 5).

Задача 7. Представить следующие перестановки в виде произведений независимых циглов: (1 3 5 2 4)(2 8 6 3 1), (3 2 5 1 4 6)(1 6 2)(5 4)(7 2 1 3 6 4).

Решение. Обозначим $6 = (1\ 3\ 5\ 2\ 4)$, $\mathcal{T} = (2\ 8\ 6\ 3\ 1)$, $\mathcal{T} = 6\mathcal{T}$. Имеем $1\ \mathcal{T} + 2\ \mathcal{S} + 4$, $4\ \mathcal{T} + 4\ \mathcal{S} + 1$, а следовательно, $1\ \mathcal{T} + 4\ \mathcal{T} + 1$, $1\ \mathcal{T} + 1$, входящий в разложение $1\ \mathcal{T} + 1$ в произведение независимых циклов. Совершенно аналогично находим другие циклы $\mathcal{T} + 1$ в $1\ \mathcal{T} +$

 $\pi_3 = (5 \ 2 \ 8 \ 6) \ (\text{TAK RAK 5} \xrightarrow{\pi} 2 \xrightarrow{\pi} 8 \xrightarrow{\pi} 6 \xrightarrow{\pi} 5).$

Поскольку в выделенные циклы вошли все элементы, встречающиеся в 6 , 7 , то

 $\pi = \pi_4 \pi_2 \pi_3 = (14)(3)(5286) = (14)(5286).$

Пля второй перестановки из задачи $\frac{2}{3}$ имеем (3 2 5 I 4 6)(I 6 2)(5 4)(7 2 I 3 6 4) = (I 2 3 5 6)(4 7).

Запача 8. Пусть

$$\pi = \begin{pmatrix} \text{I} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text{IO} & \text{II} \\ 4 & 6 & \text{IO} & \text{I} & \text{II} & 8 & 7 & 2 & 3 & 5 & 9 \end{pmatrix} \in \mathbb{S}_{11} .$$

Определить порядок κ . Найти κ^{218} , κ^{-17} (представить эти перестановки в виде произведений независимых циклов и в виде двурядных символов).

Решение. Представим $\mathcal T$ в виде произведения независимых циклов $\pi = (14)(268)(3105H9).$

Используя задачу 4, определяем порядок ϕ перестановки $\pi \in \mathbb{S}_{4}$ $q_0 = HOK(2,3,5) = 30.$

Используя перестановочность независимых циклов, имеем

$$\pi^{218} = (1.4)^{218}(2.6.8)^{218}(3.10.5 \pm 9.)^{218}$$

откуда в силу $(14)^2 = e$, $(268)^3 = e$, $(3105119)^5 = e$, получаем

$$\pi^{218} = (14)^{2 \cdot 109} (268)^{3 \cdot 72 \cdot 1} (3105119)^{5 \cdot 44 \cdot 2} =$$

$$= e(268)^{-1} (3105119)^{-2} =$$

$$= (862)(9531110).$$

Представим
$$\pi^{218}$$
 в виде двухрядного символа $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 8 & 11 & 4 & 3 & 2 & 7 & 6 & 5 & 9 & 10 \end{pmatrix}$

Лалее, аналогично предыдущему получаем

$$\pi^{-17} = (1 \ 4)^{-17}(2 \ 6 \ 8)^{-17}(5 \ 11 \ 9 \ 3 \ 10)^{-17} =$$

$$= (1 \ 4)^{2 \cdot (-9) + 1}(2 \ 6 \ 8)^{3 \cdot (-6) + 1}(5 \ 11 \ 9 \ 3 \ 10)^{5 \cdot (-3) - 2} =$$

$$= (1 \ 4)(2 \ 6 \ 8)(3 \ 10 \ 5 \ 11 \ 9)^{-2} = (1 \ 4)(2 \ 6 \ 8)(9 \ 5 \ 3 \ 11 \ 10).$$

$$\pi^{-17} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 6 & 11 & 1 & 3 & 8 & 7 & 6 & 5 & 9 & 10 \end{pmatrix}.$$

Задача 9. Представить перестановки в виде произведений независимых циклов:

- a) $[(15243)(275)(718)(635)]^{-322}$.
- d) [(2 I 4 5 8)(3 6 7)(8 4 5 I 6)(3 4)] ²⁰⁴
- B) [(3 2 5 6 4)(7 8 I 3 5)(4 8)(6 2 I 7 3)] -62
- r) [(4 I 2 5 8)(I 3 2 6)(5 4 I 8)(6 2 7 4)] 273

Решение. а) Обозначим

x = (15243)(275)(718)(635).

Представим π в виде произведения независимых циклов $\pi = (1 \ 8 \ 2 \ 7 \ 5 \ 6)(3 \ 4).$

Далее, имеем

$$\Re (-322) = (182756) - 322(27) - 322(34) - 322 =$$

$$= (18256) - 324 + 2 = (182756)^2 = (125)(876).$$

миченторо (р

 $\pi = (2 \ 1 \ 4 \ 5 \ 8)(3 \ 6 \ 7)(8 \ 4 \ 5 \ 1 \ 6)(3 \ 4).$

Представим π в виде произведения независимых циклов $\pi = (1\ 7\ 3\ 8\ 5\ 4\ 6\ 2).$

Палее, имеем

$$\pi^{204} = (1.7385462)^{204} = (1.7385462)^{200+4} =$$

$$= (1.7385462)^{4} = (1.5)(7.4)(3.6)(8.2).$$

в) Обозначим

 $\pi = (3 \ 2 \ 5 \ 6 \ 4)(7 \ 8 \ 1 \ 3 \ 5)(4 \ 8)(6 \ 2 \ 1 \ 7 \ 3).$

Представим π в виде произведения независимых циклов $\pi = (1 \ 8 \ 3 \ 4)(2)(5 \ 7 \ 6) = (1 \ 8 \ 3 \ 4)(5 \ 7 \ 6).$

Лалее, имеем

$$\pi^{-62} = (1834)^{-62}(576)^{-62} = (1834)^{-64+2}(576)^{-63+1} =$$

=(1834)²(576) = (13)(84)(576).

г) Обозначим

$$\mathfrak{R} = (4 \ 1 \ 2 \ 5 \ 8)(1 \ 3 \ 2 \ 6)(5 \ 4 \ 1 \ 8)(6 \ 2 \ 7 \ 4).$$

Представим π в виде произведения независимых циклов

$$\pi = (1 \ 4 \ 2 \ 7 \ 3 \ 5)(6)(8) = (1 \ 4 \ 2 \ 7 \ 3 \ 5).$$

Лалее. имеем

$$\pi^{273} = (142735)^{270+3} = (142735)^3 = (17)(43)(25).$$

3. Транспозиции. Разложение перестановки в произведение транспозиций. Знакопеременная группа.

Перестановка из \mathbb{S}_n , являющаяся циклом длины 2, называется транспозицией. Любая транспозиция имеет вид (\mathfrak{i} \mathfrak{j}), где $\mathfrak{i}\neq\mathfrak{j}$.

Она оставляет на месте все символы, отличные от \mathfrak{i} , \mathfrak{j} .

Для любого цикла (i_1 i_2 ... i_ℓ), очевидно, имеем

 $(i_1\ i_2\ ...\ i_\ell)=(i_1\ i_\ell)(i_1\ i_{\ell-1})...(i_1\ i_2),$ откуда, используя то, что любую перестановку $\pi\in S_n$, $\pi\neq e$, можно разложить в произведение независимых циклов, следует, что π можно представить в виде произведения транспозиций (очевидно, что $e=(I\ 2)(I\ 2)$, т.е. ограничение $\pi\neq e$ не является существенным).

Пример 3. Представим следующие перестановки в виде произведения независимых циклов Гонсимущий.

- a) (2 3 4) = (2 4)(2 3);
- $\texttt{6)} \ (3\ 2\ 4\ 1\ 5\ 6\ 8\ 7) = (3\ 7)(3\ 8)(3\ 6)(3\ 5)(3\ 1)(3\ 4)(3\ 2) \ ;$

B)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 4 & 6 & 5 & 7 & 8 & 2 & 9 & 1 & 11 & 12 & 10 \end{pmatrix} =$$

- = (13689)(2457)(101112) =
- = (19)(18)(16)(13)(27)(25)(24)(1012)(1011).

Пусть $\pi \in S_n$ и $f(x_1, \dots, x_n)$ - функция от n аргументов. Положим $\pi \circ f(x_1, \dots, x_n) = f(x_{\pi(1)}, \dots, x_{\pi(n)})$, т.е. ввели новую функцию $g = \pi \circ f$. При этом говорят, что функция g получается действием π на f.

Пример 4. Пусть $\mathcal{R}=(1\ 2\ 3\ 4),\ f(x_1,x_2,x_3,x_4)=x_1+2x_2-3x_3+5x_4$. Тогла $\mathcal{R}\circ f(x_1,x_2,x_3,x_4)=x_2+2x_3-3x_4+5x_1$.

Функция $f(x_1,...,x_n)$, где $n \ge 2$, называется кососимметрической, если для любой транспозиции $\tau = (ij) \in S_n$ выполняется $\tau \circ f = -f$, т.е. $f(...,x_1,...,x_1,...) = -f(...,x_1,...,x_j,...)$.

Те.
$$\{(...,x_1,...,x_1,...) = -\frac{1}{2}(...,x_1,...)$$

Пример 4. Пусть

 $A_n(x_1,...,x_n) = \det \begin{pmatrix} 1 & 1 & ... & 1 \\ x_1 & x_2 & ... & x_n \\ x_1^{n-1} & x_2^{n-1} & ... & x_n^{n-1} \end{pmatrix}$

Очевидно, что Δ_{N} - кососимметрическая функция (так как при перестановке столбцов в матрице определитель этой матрицы меняет знак

на противоположный). Нетрудно показать, что $\Delta_n(x_1,...,x_n) \neq 0$ тогда и только тогда, когда $x_i \neq x_j$ при всех $i \neq j$, а следовательно, $\Delta_n \neq 0$.

Заметим, что для любой фунуции $\{(x_1, ..., x_n)$ выполняется

(10) $\forall \alpha, \beta \in S_n \quad (\alpha, \beta) \circ f = \alpha \circ (\beta \circ f).$

Лействительно,

$$\begin{aligned} & (\alpha\beta) \circ \mathfrak{f}(\mathbf{x}_{\underline{1}}, \dots, \mathbf{x}_{n}) = \mathfrak{f}(\mathbf{x}_{(\alpha\beta)(\underline{1})}, \dots, \mathbf{x}_{(\alpha\beta)(n)}) = \mathfrak{f}(\mathbf{x}_{\alpha(\beta(\underline{1}))}, \dots, \mathbf{x}_{\alpha(\beta(n))}) \\ & \mathbf{x}_{\alpha(\beta(n))} = \alpha \circ \mathfrak{f}(\mathbf{x}_{\beta(\underline{1})}, \dots, \mathbf{x}_{\beta(n)}) = \alpha \circ (\beta \circ \mathfrak{f}(\mathbf{x}_{\underline{1}}, \dots, \mathbf{x}_{n})). \end{aligned}$$

Пусть $\pi \in S_N$ и $\pi = \tau_1 \dots \tau_K$ — какое-нибудь разложение перестановки Я в произведение транспозиций. В силу (40) для любой функции $f(x_1,\ldots,x_n)$ имеем

$$\pi \circ f = (\tau_1 \dots \tau_K) \circ f = \tau_1 \circ (\tau_2 \circ \dots (\tau_K \circ f) \dots).$$

В частности, при $4 = \Delta_n$ имеем

$$\pi \circ \Delta_n = (-1)^K \Delta_n$$
,

откуда следует, что четность целого числа к , выражающего количество транспозиций в разложении перестановки π в произведениe транспозиций всегда одна и та же для данной перестановки σ и не зависит от способа разложения. Но тогда и величина \mathcal{E}_{π} = $(-1)^{\kappa}$, называемая четностью π (иначе: сигнатурой или знаком π) полностью определяется перестановгой ${\mathcal R}$ и не зависит от способа разложения Я в произведение транспозиций. Таким образом

 $\forall \pi \in S_n \quad \pi \circ \Delta_n = \mathcal{E}_{\pi} \Delta_n,$

откуда, используя (10), имеем

уда, используя (10), имеем
$$\forall \varkappa, \beta \in S_n \quad \varepsilon_{\varkappa\beta} \, \Delta_n = (\varkappa\beta) \circ \Delta_n = \varkappa \circ (\beta \circ \Delta_n) = \varkappa \circ (\varepsilon_{\beta} \, \Delta_n) = \\
= \varepsilon_{\beta}(\varkappa \circ \Delta_n) = \varepsilon_{\beta}(\varepsilon_{\varkappa} \, \Delta_n) = (\varepsilon_{\varkappa} \varepsilon_{\beta}) \Delta_n,$$

а слеповательно.

(II)
$$\forall \lambda, \beta \in S_n \quad \xi_{\lambda\beta} = \xi_{\lambda} \xi_{\beta}$$
.

Пусть $\pi \in S_n$. Если $\mathcal{E}_\pi = \mathbb{I}$, то перестановка π называется четной, а в случае $\xi_{\pi} = -1$ она называется нечетной.

Покажем, что все четные перестановки из S_n образуют подгруппу $A_n \subset S_n$ (она называется знакопеременной группой степени n)

Действительно, в силу (11), если \varkappa , $\beta \in A_n$, то $\varkappa \beta \in A_n$.Далее, в силу e=(1,2)(1,2) имеем $\xi_e=1$, $e \in A_n$. Но тогда, используя (11), получаем $\forall \varkappa \in S_n$ $\xi_{\varkappa} \xi_{\varkappa^{-1}}=\xi_{\varkappa \varkappa^{-1}}=\xi_e=1$, откуда следует, что, если $\varkappa \in A_n$, то $\varkappa^{-1} \in A_n$. Таким образом, выполнены все аксиомы группы.

Обозначим через \overline{A}_n множество всех нечетных перестановок. Тогда $S_n=A_n\cup\overline{A}_n$, $A_n\cap\overline{A}_n=\emptyset$, т.е. $\left\{A_n\ ,\ \overline{A}_n\right\}$ — разбиение группы S_n .

Задача 10. Показать, что

(12) $A_n = (\overline{1} \ 2)\overline{A}_n$, $\overline{A}_n = (\overline{1} \ 2)A_n$.

Решение. Очевидно, что $\forall \measuredangle \in \overline{\mathbb{A}}_n$ (I 2) $\measuredangle \in \mathbb{A}_n$, а следовательно,

(13) $(12)\overline{A}_n \subset A_n$,

откуда, умножая обе части на (12), получаем

(14) $A_n \subset (12)A_n$.

С другой стороны, $\forall \, \measuredangle \in A_n$ (12) $\measuredangle \in \overline{A}_n$, а следовательно,

(I5) $(I2)A_n \subset \overline{A}_n$, откуда

(16) $A_n \subset (12)\overline{A}_n.$

Из (13)-(16) и следует справедливость (12).

Задача 11. Показать, что $|A_h| = |\overline{A}_h| = n!/2$.

Решение. Из (\overline{A} 2) следует, что $|A_n| = |\overline{A}_n|$. Но тогда $|S_n| = |A_n| + |\overline{A}_n| = 2 |A_n|$, а следовательно, $|A_n| = |\overline{A}_n| = |S_n|/2 = n!/2$.

Пусть $\mathfrak{S}=(\mathfrak{i}_1\ \mathfrak{i}_2\ \ldots\ \mathfrak{i}_\ell)$ — цикл длины ℓ , где $\ell\geqslant 2$. Тогда в силу $\mathfrak{S}=(\mathfrak{i}_1\ \mathfrak{i}_\ell)(\mathfrak{i}_1\ \mathfrak{i}_{\ell-1})\ldots(\mathfrak{i}_1\ \mathfrak{i}_2)$ получаем, что $\mathfrak{E}_{\mathfrak{S}}=(-1)^{\ell-1}$. Пусть теперь $\mathfrak{T}=\mathfrak{T}_1\ldots\mathfrak{T}_K$, где $\forall \mathfrak{i}\in \{1,\ldots,\kappa\}$ \mathfrak{T}_i — цикл длины ℓ_i . Тогда, используя формулу (11), получаем

Тогда, используя формулу (11), получаем $\mathcal{E}_{\pi} = \mathcal{E}_{\pi_{i}} \cdots \mathcal{E}_{\pi_{k}} = (-1)$

Задача 12. Определить четность перестановок: \mathcal{H}_{1} = (3 2 4 6), \mathcal{H}_{2} = (1 5 2 6 8)(3 4 2 1 7 9)(5 3 6 2), \mathcal{H}_{3} = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 6 & 10 & 5 & 1 & 8 & 3 & 9 & 6 & 7 \end{pmatrix}$.

<u>Решение</u>. $\xi_{\pi_4} = (-1)^{4-1} = (-1)^3 = -1$; $\xi_{\pi_2} = (-1)^{4+5+3} = (-1)^{12} = 1$; $\pi_3 = (1 \ 4 \ 5)(2 \ 6 \ 8 \ 9)(3 \ 10 \ 7), \xi_{\pi_3} = (-1)^{2+3+2} = -1$.

Задача 13. Локазать, что

$$S_n = \langle (12), (13), \dots, (1n) \rangle$$
.

<u>Решение</u>. В силу того, что любую перестановку из $S_{\mathbf{h}}$ можно представить в виде произведения транспозиций, имеем

$$S_n = \langle (1 \ 2), (1 \ 3), (2 \ 3), \dots, (n-1 \ n) \rangle$$

а следовательно, для решения задачи достаточно показать, что (17) (ij) $\in \langle (12), (13), \dots, (1n) \rangle$,

гле $i, j \in \{1, 2, ..., n\}$, $i \neq j$. Для доказательства (17) достаточно заметить, что (i, j) = (1, i)(1, j)(1, i).

Задача 14. Локазать, что

(18)
$$A_n = \langle (123), (124), \dots, (12n) \rangle,$$

Решение. Поскольку любую перестановку $\mathcal{N} \in A_{n}$ можно представить в виде произведения лишь четного числа транспозиций, то, используя предыдущую задачу, получаем, что \mathcal{N} можно представить в виде произведения перестановок вида

$$S = (1 \ i)(1 \ j), \text{ rme } i \neq 1, j \neq 1.$$

Покажем, что $6 \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n\) \rangle$, откуда и будет следовать справедливость (18). Возможны случаи: а) i = 2, j = 2; б) $i = 2, j \neq 2$; в) $i \neq 2, j = 2$; г) $i \neq 2, j \neq 2$. В случае а) $6 = (1\ 2)(1\ 2) = e \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle$. В случае б) $6 = (1\ 2)(1\ j) = (1\ 2\ j)(1\ 2\ j) \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle$. В случае в) $6 = (1\ i)(1\ 2) = (1\ 2\ i) \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle$. В случае г) $6 = (1\ i)(1\ j) = (1\ i)(1\ 2)(1\ 2)(1\ j) = 6_16_2$, где $6_1 = (1\ i)(1\ 2) \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle$, $6_2 = (1\ 2)(1\ j) \in \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle$.

Задача 15. Догазать, что $S_n = \langle (1\ 2), (1\ 2\ ...\ n\) \rangle$ Решение. Обозначим $H = \langle (1\ 2), (1\ 2\ ...\ n\) \rangle$. Заметим, что

```
(12...n)(12)(n n-1...21) = (23),
```

(12...n)(23)(n n-1...21) = (34),

...........

(I 2 ... n)(n-2 n-I)(n n-I ... 2 I) = (n-I n),

гле (n n-I ... 2 1) = (1 2 ... h) $^{-1}$ \in H, т.е. имеем

(19) $(12),(23),...,(n-1 n) \in H$.

Заметим, далее, что для любого цикла $\mathfrak{S} = (\mathfrak{i}_1 \quad \mathfrak{i}_2 \dots \, \mathfrak{i}_\ell)$ выполняется

 $\mathfrak{S}=(\mathfrak{i}_1 \quad \mathfrak{i}_2)(\mathfrak{i}_2 \quad \mathfrak{i}_3)...(\mathfrak{i}_{\ell-1} \quad \mathfrak{i}_\ell),$ а следовательно, $\forall \, \mathfrak{i} \in \{1,2,\ldots,n-1\}$, используя (19), получаем (n n-1 ... \mathfrak{i}) = (n h-1)(n-1 n-2)...(\mathfrak{i} +I \mathfrak{i}) = = (n-I n)(n-2 n-1)...(\mathfrak{i} \mathfrak{i} +I) \in H. Заметим, кроме того, что

 $(12...n)(12) = (134...n) \in H,$

 $(134...n)(n n-1...43) = (13) \in H,$

 $(1 \ 3 \ 4 \ \dots \ n)(1 \ 3) = (1 \ 4 \ 5 \ \dots \ n) \in H,$

 $(1 \ 4 \ 5 \dots n)(n \ n-1 \dots 5 \ 4) = (1 \ 4) \in H,$

 $(I n-2 n-1 n)(I n-2) = (I n-1 n) \in H,$

 $(I \quad n-I \quad n)(n \quad n-I) = (I \quad n-I) \in H,$

 $(1 n-1 n)(1 n-1) = (1 n) \in H.$

Таким образом, (I 2),(I 3),...,(I n) \in H, а следовательно, используя задачу I3, получаем $H = S_n$.