1 dual cell structure

我们首先将 $|\mathbb{Z}_2^n| = 2^n$ 个多面体 P^n 的 copy 在 P 的任一顶点 p_0 处粘合,得到一个大的多面体 $Q^n = P \times \mathbb{Z}_2^n / \sim$,这里 Q 也可以看作将多面体 P 沿着它的一点 p_0 附近的 facets 作反射得到,所以对于 M_P ,局部上 $(\mathbb{Z}_2^n$ 不变)都可由反射构造,染色信息实际上不决定 M_P 的局部信息.

由 Q 的构造知, Q^n 中的每一个 P 自然地拥有一个标号 $l \in \mathbb{Z}_2^n$,我们记第 l 个多面体 P 为 (P,l)或 P_l . 若 (P,l) 的 face $F_i^k \subset \partial Q$,此时 F_i^k 称为 Q 的外 face,否则称为 Q 的内 face,分别记为 $in(F_i^k)$, $out(F_i^k)$. 同上我们仍将将 Q 中 (P,l) 的第 i 个 facet F_i 记为 $F_{i,l}$. 接下来把 Q 的外 facets 按照染色信息配对粘合就可以得到商空间—small cover M_P ,记 $F_{i,l}$ 的对 facet 为 $F_{i,l(i)}$. Q^n 到 P^n 有一个自然地投射,我们记为 $\pi:Q \longrightarrow P$.

Q 的 facets F_{i,l_1} 与 F_{j,l_2} 粘,当且仅当它们对应 P 的同一个 facets, 且 $l_1^{-1}l_2=\lambda(F_i)^{-1}\lambda(F_j)$.

下面构造 M_p 的一个 duall cell constrction。我们记 M_P 的 k 维骨架为 $M_P[k]$. 首先我们取点 p_0 为 $M_P[0]$. 我们在 Q 的余 1 维面处构造横截的 1 – cells. 对 Q 的每对 facets pair $\{F_{i,l_1},F_{i,l_2}\}$ (包括所有的内 facets、外 facets),任取 F_{i,l_1} , F_{i,l_2} 内部的点 a_{i,l_1},a_{i,l_2} (不妨取为 F_{i,l_1} , F_{i,l_2} 的重心),使得 $\pi(a_{i,l_1})=\pi(a_{i,l_2})=a_i$,在 Q 的内部取连接 p_0 和 a_{i,l_1},a_{i,l_2} 的两条简单有向道路(不妨取为直线段),不妨记为 $\overrightarrow{a_{i,l_1}},\overrightarrow{a_{i,l_2}}$,则 $\overrightarrow{a_{i,l_1}}(\overrightarrow{a_{i,l_2}})^{-1}$ 为 M_P 中以 p_0 为起点的一条有向闭路,不妨记为 x_{i,l_1} ,另外记 $x_{i,l_2}=x_{i,l_1}^{-1}$,它表示 M_P 中以 p_0 为起点的有向闭路 $\overrightarrow{a_{i,l_2}}(\overrightarrow{a_{i,l_1}})^{-1}$. 不考虑 $x_{i,l_1}(orx_{i,l_2})$ 的方向,则 $x_{i,l_1}-\{p_0\}\cong x_{i,l_2}-\{p_0\}\cong e^1$,即 M_P 中的每一对 facets pair 都决定了一个 1-cell. 在上述构造中,我们总可以使所有 $\{x_{i,l_1}\}$ 仅交于 0-skelton p_0 处. 这样我们就获得 M_P 的 1-skelton $M_P[1]=\bigvee x_{i,l_1}$.

我们在余 2 维面处构造 2 - cells. 设 $f_1 = F_{i,l} \cap F_{j,l}$ 为 Q 的任意一个余 2 维面,则令 $f_2 = F_{i,l(i)} \cap F_{j,l(i)}$, $f_3 = F_{i,l(i)l(j)} \cap F_{j,l(i)l(j)}$, $f_4 = F_{i,l(j)} \cap F_{j,l(j)}$,使得 $\bar{\pi}(f_k)$,k = 1, 2, 3, 4 在 P 中的像一样,记为 f. 取 f 内部的一个点 b,对应 f_k 上的点设为 b_k . 取 V_1 为经过点 b_k , p_0 , $a_{i,l}$, $a_{j,l}$ 的二维简单区域,如取 b 为 $span\{\vec{a_i}, \vec{a_j}\} \cap f$,其中 $\vec{a_i} = \bar{\pi}(\vec{a_{i,l_1}})$, $\vec{a_j} = \bar{\pi}(\vec{a_{j,l_1}})$,则 $V_1 = span\{\vec{a_{i,l_1}}, \vec{a_{i,l_2}}\} \cap P_l \cong D_+^2$. 类似确定 V_2 , V_3 , V_4 ,则 $\{V_k\}$ 在 M_P 中实际上粘合成一个 D^2 ,记为 V_f ,且 V_f 的边界落在 1-skelton 中. 对应的二维cell $e^2 = V_f - \bar{\pi}^{-1}(a_i) \cup \bar{\pi}^{-1}(a_j)$. 这样就得到 2-skelton $M_P[2] = M_P[1] \cup V_f$.

依次进行下去,在 Q 余 k 维面处可构造 M_P 的 k-cells. 最终在 Q 的 顶点处构造 M_P 的 h_0 个 n-cells.

事实上,对于一般具有 facets pair 结构的拓扑流形都可类似构造其胞腔结构. 如我们考虑

在这种胞腔结构下,可以得到 $\pi_1(M_P)$ 的一个漂亮的表达形式. 下面我们分析 M_P 的基本群. 基本群 $\pi_1(M_P)$ 的生成元可取为 facets 对应的有向闭路 $\{x_{i,l}\}$. $\pi_1(M_P)$ 的关系由二维胞腔及配对关系决定. 对任意 facet F_{i,l_1} 对应的生成元 x_{i,l_1} 与它的对 facet F_{i,l_2} 对应的生成元 x_{i,l_2} 互为逆,即 $x_{i,l_1}x_{i,l_2}=1$. 若我们设 $l(i)=l\lambda(F_i)$,则 $x_{i,l_1}x_{i,l_2}=1$ 当且仅当 if $l(i)=l_1l_2$. 对于任意余二维面 $f=F_{i,l}\cap F_{j,l}(\neq\varnothing)\subset Q$,由 f 确定的二维胞腔 V_f 决定一个关系 $r_f=\partial V_f=x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}=1$. 从而我们得到 $\pi_1(M_P)$ 的一个群表示.

$$\pi_1(M_P) = \langle x_{i,l}, i = 1, 2, \cdots, m, l \in \mathbb{Z}_2^n : x_{i,l_1} x_{i,l_2} = 1, if \ l(i) = l_1 l_2$$
$$x_{i,l} x_{j,l(i)} x_{i,l(i)l(j)} x_{j,l(j)} = 1, \forall f = F_{i,l} \cap F_{j,l} \neq \emptyset \rangle \quad (1)$$

其中 $l(i) = l\lambda(F_i)$

事实上,若 $F_{i,l}$ 为内 facets,则 $\overrightarrow{x_{i,l}}$ 包含在 Q 的内部,可缩为点道路,故 $x_{i,l}=1$. 同理对于内余 2 维 face $f=F_{i,l}\cap F_{j,l}$ 确定的关系,为内生成元的组合,故也是平凡的. 若 $F_{i,l}$, $F_{j,l}$ 分别为内面和外面,不妨设 $F_{i,l}$ 为外面, $F_{j,l}$ 为内面,则 f 对应的关系为 $x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}=x_{i,l}x_{i,l(i)l(j)}=x_{i,l}x_{i,l(i)l(j)}=1$. 即内面附近的且相交为余二维面 f 的 facets 对应的生成元是彼此相关的. 在下面例子中,我们不作额外说明的进行这样操作.

2 例子

P 为五边形时,Q 可视为 12 边形,对应 6 对 facets,4 组余二维面。

求 M_P 的基本群。给所有道路一个指向 P_0 的方向,不妨设 p_0 为基本群基点,取生成元为

$$x_1 \longleftrightarrow (x_1^*)^{-1} x_1$$

$$x_2 \longleftrightarrow (x_2^*)^{-1} x_2$$

$$y_1 \longleftrightarrow (y_1^*)^{-1} y_1$$

$$y_2 \longleftrightarrow (y_2^*)^{-1} y_2$$

$$z \longleftrightarrow (z^*)^{-1}z$$

$$a \longleftrightarrow (a^*)^{-1}a$$

 P, P_1, P_2, P_3 处确定四组二维 cells, 以 P_1, P_2 处为例:

 P_2 处胞腔的边界对应 $x_1(x_2)^{-1}x_2^*(x_1^*)^{-1}$, 即 $x_1(x_2)^{-1}$

 P_1 处胞腔的边界对应 $x_2z^{-1}z^*(x_1^*)^{-1}x_1a^{-1}a^*(x_2^*)^{-1}$, 即 $z^{-1}x_1a^{-1}x_2$

$$\pi_1 = \langle x, y, z, a | z^{-1} x a^{-1} x = y(a)^{-1} y z = 1 \rangle$$

另外取额外生成元为

$$x_1^* = (x_1)^{-1}$$

$$x_2^* = (x_2)^{-1}$$

$$y_1^* = (y_1)^{-1}$$

$$y_2^* = (y_2)^{-1}$$

则
$$\pi_1 = \langle x_1, x_2, y_1, y_2, z, a, x_1^*, x_2^*, y_1^*, y_2^*, z^*, a^* | x_1 x_2^* = y_1 y_2^* = z^* x_1 a^* x_2 = y_1 a^* y_2 z = 1 = x_1^* x_1 = x_2^* x_2 = y_1^* y_1 = y_2^* y_2 = z^* z = a^* a >$$

Q 的每一个 facets 都对应一个生成元,这直接对应与 M_P 相关的覆叠变换群。

进一步,添加 Q 的内部 facets 为生成元,则

$$\pi_1 = \langle x_1, x_2, y_1, y_2, z, a, x_1^*, x_2^*, y_1^*, y_2^*, z^*, a^*, b_1, b_2, b_3, b_4 | x_1b_1x_2^*b_3 = y_1b_2y_2^*b_4 = z^*x_1a^*x_2 = y_1a^*y_2z = 1 = x_1^*x_1 = x_2^*x_2 = y_1^*y_1 = y_2^*y_2 = z^*z = a^*a = b_1 = b_2 = b_3 = b_4 > 则对应 Q 的所有 facets.$$

3 else