ÜBUNG: THEORETISCHE INFORMATIK 1

PUMPING LEMMA

THOMAS LIMBACHER

THOMAS.LIMBACHER@IGI.TUGRAZ.AT

23.04.2020

PUMPING LEMMA FÜR REGULÄRE SPRACHEN

Theorem

Sei L eine reguläre Sprache. Dann $\exists p \in \mathbb{N}$, mit $p \geq 1$, sodass $\forall x \in L \ mit \ |x| \geq p$, eine Zerlegung $x = uvw \ mit \ |v| \geq 1 \ und \ |uv| \leq p$ existiert, sodass $\forall i \in \mathbb{N}$, $uv^iw \in L$.

Achtung: Das Pumping Lemma (PL) ist eine notwendige aber keine hinreichende Bedingung für *L* um regulär zu sein. Das heißt, eine Sprache die das Pumping Lemma erfüllt, kann auch nicht regulär sein.

Falls wir jedoch zeigen können, dass eine Sprache *L* das Pumping Lemma nicht erfüllt, dann ist *L* garantiert nicht regulär.

Um zu zeigen, dass eine Sprache nicht regulär ist, müssen wir das Theorem auf Seite 1 negieren. Wir erhalten:

Theorem

Sei L eine Sprache. Falls $\forall p \in \mathbb{N}$, mit $p \ge 1$, $\exists x \in L$ mit $|x| \ge p$, sodass für alle Zerlegungen x = uvw mit $|v| \ge 1$ und $|uv| \le p$, $\exists i \in \mathbb{N}$ sodass $uv^iw \notin L$, dann ist L nicht regulär.

Das heißt, falls wir zeigen wollen, dass eine Sprache *L* nicht regulär ist, können wir nicht entscheiden, wie zerlegt wird.

BEISPIELE

2.1 Zeigen Sie, dass die Sprache $L=\{1^{n^2}\mid n\in\mathbb{N}\}$ über $\Sigma=\{1\}$ nicht regulär ist.

3

2.2 Sei $L = \{(10)^m 1^n \mid m, n \in \mathbb{N}, m \ge n\}$ eine Sprache über $\Sigma = \{0, 1\}$. Zeigen Sie, dass die Sprache L nicht regulär ist.

2.3 Sei $L = \{0^i 1^j \mid i, j \in \mathbb{N}, i < j\}$ eine Sprache über $\Sigma = \{0, 1\}$. Zeigen Sie, dass die Sprache L nicht regulär ist.

5

Es ist manchmal einfacher zu zeigen, dass das Komplement einer Sprache *L* nicht regulär ist.¹

2.4 Zeigen Sie, dass die Sprache $L = \{0^m 1^n \mid m, n \in \mathbb{N}, m \neq n\}$ über $\Sigma = \{0, 1\}$ nicht regulär ist.

 $^{^{1}}$ Falls das Komplement einer Sprache L nicht regulär ist, dann ist auch L nicht regulär.

2.5 Sei $L = \{w \mid \#_0(w) = \#_1(w)\}^1$ eine Sprache über $\Sigma = \{0, 1\}$. Zeigen Sie, dass die Sprache L nicht regulär ist.

 $^{^{1}}$ $\#_{x}(w)$ bedeutet, die Anzahl der Symbole x in w.

