# BB 101: MODULE II PHYSICAL BIOLOGY

# Most of the content of module II that we would discuss can be found in these books







- 1. Physical Biology of the cell, R. Phillips, J. Kondev, J. Theriot, H. Garcia (Publisher: Garland Science)
- 2. Biological Physics, Philip Nelson (Publisher: W. H. Freeman)
- 3. Mechanics of Motor Proteins and the Cytoskeleton, Jonathan Howard (Publisher: Sinauer Associates Inc.)

#### **TEACHING ASSISTANTS**

| No | Roll No.  | Name                 |
|----|-----------|----------------------|
| 1  | 134300005 | Nandinee Giri        |
| 2  | 134303003 | Anjali Anil          |
| 3  | 134303008 | Apporava V           |
| 4  | 134300010 | Anjneya Takshak      |
| 5  | 144300009 | Uma Maheswari R      |
| 6  | 144303007 | GUHAN.K.A            |
| 7  | 144309001 | Sushant Kumar        |
| 8  | 144303010 | Deborshi Chakraborty |
| 9  | 134360004 | Tanushree Roy        |

# You learned many interesting biological phenomena in module I

# What you are going to learn ...

Physical Biology or Biophysics

# A bridge between Biology and Physics

# **Biology**

Biology studies life in its variety and complexity

 It describes how organisms go about getting food, sensing the environment, communicating, and reproducing

## **Physics**

On the other hand, physics looks for mathematical laws of nature and makes detailed predictions about phenomenon that drive the systems

# Physical Biology or Biophysics

Look at the patterns in life and analyze them with math and physics to gain important insights



The natural symmetries of viral shell molecules contribute to their strength and flexibility. Properties are vital to their life cycles, also provide principles for devising strong, flexible materials Electrocardiogram



The patterns and quantities in an electrocardiogram describe the functioning of the human heart.

 Biophysics studies life at every level

 from atoms and molecules to cells, organisms, and environments

# How do protein machines work?

Millions of times smaller than everyday machines, molecular machines work on the same principles. They use energy to do work.



Insights gained may help you to design artificial nanomachines

10

### How do proteins pack DNA into viruses?





Insights gained may help you to design new therapeutic approaches to stop/treat viral infections

### What are technological applications?



© medmovie.

implantable cardiac defibrillator



**MRI** 

Biophysics provides insight and technologies based on the principles of physics and the mechanisms of biology

# In this part of the course...

- We'll attempt to provide a quantitative description of a few biological phenomena
- Why biological problems are among the most exciting physics problems
- Why biological problems are among the most challenging engineering problems

# Let's start with proteins!!!

#### Physical Properties of a globular protein

| Property                           | Value                             |  |
|------------------------------------|-----------------------------------|--|
| Mass                               | $166 \times 10^{-24} \text{ kg}$  |  |
| Density                            | $1.38 \times 10^3 \text{ kg/m}^3$ |  |
| Volume                             | $120  \text{nm}^3$                |  |
| Radius                             | 3 nm                              |  |
| Drag coefficient <sup>a</sup>      | 60 pN·s/m                         |  |
| Diffusion coefficient <sup>a</sup> | $67 \mu\text{m}^2/\text{s}$       |  |
| Average speed $^b$                 | $8.6 \mathrm{m/s}$                |  |

#### Magnitude of different forces acting on a proteins

Source: Mechanics of Motor Proteins and the Cytoskeleton, Jonathan Howard

#### What is force?

- Force is a push or pull
- Effect on free object (accelerate) and Effect on constrained object (deform)
- Net force is sum of all forces irrespective of their origin
- SI Unit of Force Newton
- What is 1N (weight of ? gram object)
- Forces at single molecule level are measured in pN (How small is 1 pN?)

# Forces acting on a protein molecule

| Type of force | Diagram                                                   | Approximate<br>magnitude                     |
|---------------|-----------------------------------------------------------|----------------------------------------------|
| Elastic       | 0_000                                                     | 1–100 pN                                     |
|               |                                                           | 10,000 pN                                    |
| Viscous       | $\equiv$                                                  | 1–1000 pN                                    |
| Collisional   | $\bigcirc \longrightarrow$                                | $10^{-12}$ to $10^{-9}$ pN for 1 collision/s |
| Thermal       |                                                           | 100–1000 pN                                  |
| Gravity       | $\bigcirc \xrightarrow{\cdot}$                            | $10^{-9} \mathrm{pN}$                        |
| Centrifugal   | <ul><li>○ · · · · · · · · · · · · · · · · · · ·</li></ul> | $< 10^{-3} \mathrm{pN}$                      |

#### Protein and other biomolecules

- Protein and other biomolecules are so tiny that inertial forces are very small in comparison to viscous forces due to surrounding medium
- Most of the mechanics discussed in standard school Physics text books is irrelevant at molecular and cellular levels as inertial forces are small

- Since effect of gravity can be ignored
- Oscillatory motions such as of pendulum and planets which occupy so much of mechanics textbooks, simply do not occur at level of single molecule

- However, we can still use mechanics to understand biological systems
- Some biological systems can be modelled as combinations of three fundamental mechanical elements mass, springs and dashpots
- Let's review their properties

#### **Motion of Mechanical element: Mass**



#### Motion of Mechanical element: Dashpot

 Responds to force by elongating at constant velocity



 No net force, external force is balanced by drag force





 Model to describe how object move in fluid (submerged object connected to dashpot)

#### **Motion of Mechanical element: Spring**



#### Motion of combination of mechanical elements





Object damped by viscous fluid





Low mass object deformed in viscous fluid

(C)



Undamped objects

#### Motion of combination of mechanical elements

#### (A) Mass & Dashpot

$$m\frac{dv}{dt} + \gamma v = F$$

$$v(t) = \frac{F}{\gamma}[1 - exp(-\frac{t}{\tau})]$$

#### (B) Spring & Dashpot

$$\gamma \frac{dx}{dt} + \kappa x = F$$
$$x(t) = \frac{F}{\kappa} [1 - exp(-\frac{t}{\tau})]$$

#### (c) Mass & Spring

$$m\frac{d^2x}{dt^2} + \kappa x = F$$

$$x(t) = \frac{F}{\kappa} [1 - \cos(\omega t)]$$

# Summary

- Physical Biology/Biophysics
- Why it is important
- Proteins molecules
- Inertial forces are negligible and effect of gravity can be ignored
- Many biological systems can be modeled as combination of three fundamental mechanical elements-mass, spring and dashpot