

Python e Calcolo Scientifico

Un elaboratore può essere utilizzato per risolvere problemi scientifici

Tipicamente, si tratta di applicazioni caratterizzate da:

- Grandi quantità di dati
- Elaborazioni complesse ed onerose
- Composizione di diversi sottoproblemi

Del linguaggio Python abbiamo detto che:

- Permette di sviluppare molto velocemente
- ...Ma in termini di esecuzione è piuttoto lento

Rispetto al calcolo scientifico:

- La prima caratteristica rappresenta un grosso vantaggio
- ...Ma la seconda è apparentemente una barriere invalicabile

Pacchetto numpy

Il problema delle prestazioni viene risolto attraverso pacchetti esterni

Paccheti dedicati possono offrire:

- Strutture dati adatte a gestire grandi quantità di informazioni
- Algoritmi efficienti per problemi di occorrenza frequente

Entrambi possono essere implementati in linguaggi efficienti come C, C++, o Fortran

Il principale di questi pacchetti si chiama numpy ed offre:

- Una struttura dati per gestire dati in forma tensoriale
- Algoritmi per diversi problemi di calcolo numerico molto comuni

Permette così di fare in Python quello che tradizionalmnete si faceva in <u>Matlab</u>

Classe numpy.array

La struttura dati principale offerta da numpy si chiama array

Da un punto di vista matematico rappresenta un tensore

- lacktriangle Un tensore è una collezione n-dimensionale di elementi contigui
- \blacksquare Intuitivamente, è la generalizzazione di una matrice ad n dimensioni
- lacksquare 1 dimensione = vettore, 2 dimensioni = matrice, $\gt 3$ dimensioni = tensore Dal punto di vista implementativo
- I dati di un array sono memorizzati come sequenza mono-dimensionale
- L'array ha una forma che indica il numero di elementi per ogni dimensione
- La forma viene utilizzata per determinare come accedere agli elementi

Classe numpy.array

Vediamo come esempio una matrice 2x3

La matrice vera è propria è:

$$\begin{pmatrix} x_{0,0} & x_{0,1} & x_{0,2} \\ x_{1,0} & x_{1,1} & x_{1,2} \end{pmatrix}$$

...Ma viene memorizzata (e.g.) per righe, come:

$$(x_{0,0} \quad x_{0,1} \quad x_{0,2} \quad x_{1,0} \quad x_{1,1} \quad x_{1,2})$$

- La forma è in questo caso (2,3)
- L'indice bidimensionale (i, j) corrisponde all'indice lineare 3i + j

Utilizzo di numpy

numpy non fa parte dell'installazione minima di Python

- È pre-installato in alcune distribuzioni (e.g. Anaconda)
- ...E si può installare in ogni caso usando un package manager
 - E.g. conda install numpy O pip install numpy

numpy si può importare nel solito modo

...Canonicamnte lo si abbrevia come np

```
In [1]: import numpy as np
```

- La documentazione è <u>reperibile online</u>
- ...Ed accessibile con help('numpy')

Crezione di Array

Si può convertire una collezione sequenziale in un array:

```
In [2]: x = [1, 2, 3]
a = np.array(x)
print('Collezione originale:', x)
print('Array:', a)

Collezione originale: [1, 2, 3]
Array: [1 2 3]
```

■ La forma di un array è disponibile nell'attributo shape

```
In [3]: a.shape
Out[3]: (3,)
```

shape è sempre una tupla (in questo caso con un solo elemento)

Creazione di Array

Usando collezioni innestate is ottengono array multi-dimensionali

E.g. una lista di liste diventa un array bidimensionale

- In questo caso la tupla in shape ha due elementi
- I.e. numero di righe e numero di colonne

Creazione di Array

numpy fornisce funzioni per costruire particolari array

Per un array nullo si usa zeros

```
In [5]: shape = (2, 3) # numero di righe e colonne
print(np.zeros(shape))

[[0. 0. 0.]
[0. 0. 0.]]
```

Per un array unitario si usa ones

```
In [6]: print(np.ones(shape))
        [[1. 1. 1.]
        [1. 1. 1.]]
```


Creazione di Array

numpy fornisce funzioni per costruire particolari array

Per un array riempito con un valore a scelta si usa full

- Nan sta per Not a Number
- È l'equivalente di un valore mancate in calcolo numerico

Per la matrice di identità si usa eye:

```
In [8]: n = 3
print(np.eye(n))
```


Tipo di un Array

Tutte gli elementi di un array devono essere dello stesso tipo

■ Il tipo degli elementi è accessibile attraverso l'attribyto dtype

```
In [13]: x = np.zeros(3)
x.dtype
Out[13]: dtype('float64')
```

- Se si converte in array una lista con elementi eterogenei
- ...numpy cerca di tradurre gli elementi in un unico dipo

```
In [16]: x = np.array([1, 2.3, True])
print(x, x.dtype)

[1. 2.3 1.] float64
```


Operazioni su Array

Gli operatori di Python sono ridefiniti per gli array

In particolare, funzionano elemento per elemento

Qualche esempio con gli operatori aritmetici

```
In [17]: x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print('x + y:', x + y)
print('x * y:', x * y)
print('x - y:', x - y)
print('x / y:', x / y)
print('y % 2:', y % 2)
x + y: [5 7 9]
x * y: [4 10 18]
x - y: [-3 -3 -3]
x / y: [0.25 0.4 0.5]
y % 2: [0 1 0]
```


Operazioni su Array

Gli operatori di Python sono ridefiniti per gli array

In particolare, funzionano elemento per elemento

Qualche esempio con gli operatori di confronto

```
In [18]: x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
print('x <= y:', x <= y)
print('x == y:', x == y)

x <= y: [True True False]
x == y: [False True False]</pre>
```

■ Il risultato sono degli array di valori logici

Operazioni su Array

Gli operatori di Python sono ridefiniti per gli array

In particolare, funzionano elemento per elemento

- Gli operatori &, | e ~ non lavorano bit per bit
- ...Ma elemento per elemento

- Occorre fare un po' di attenzione alle priorità
- E.g. & e | hanno una priorità più alta degli operatori di confronto
- Soluzione: usare le parentesi

Per accedere ad un array si usa l'operatore di indicizzazione, i.e. []

Per accedere ad un singolo elemento si usa una tupla come indice

```
In [20]: x = np.array([[1, 2, 3], [4, 5, 6]])
print(x[0, 2]) # riga 0, colonna 2
```

È anche possibile l'accesso mediante slice (come con le liste)

```
In [21]: print(x[0, :]) # l'intera riga 0
    print(x[:, 1]) # l'intera colonna 1
    print(x[:2, :2]) # prime due righe e due colonne

[1 2 3]
    [2 5]
    [[1 2]
      [4 5]]
```


Si può usare uno slice per ciascuna dimensione

Si può accedere con una collezione di indici

Si utilizza di solito nel caso di array mono-dimensionali

```
In [22]: x = np.array([2, 4, 6, 8, 10, 12])
    idx = [0, 2, 4]
    print(x[idx]) # accesso agli indici 0, 2 e 4
[ 2 6 10]
```

- Prima si ottiene una collezione con gli indici desiderati
- ...Quindi la si passa come argomento all'operatore di indicizzazione
- I.e. tra le parentesi quadre []

Il risultato è un array con gli elementi agli indici specificati

Si può accedere utilizzando una "maschera" logica

- La maschera è un secondo array, con la stessa dimensione
- ...E contenente valori logici

```
In [23]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    mask = np.array([[True, True, False], [False, False, True]])
    print(mask)

[[1 2 3]
    [4 5 6]]
    [[ True True False]
    [False False True]]
```

- Usando la maschera come indice si ottiene un array monodimensionale
- ...Con gli elementi agli indici aventi True nella maschera

```
In [24]: print(x[mask])
```

Si può accedere utilizzando una "maschera" logica

Si usa di solito per recuperare gli elementi che soddisfano una data condizione

```
In [25]: x = np.array([[1, 2, 3], [4, 5, 6]])
x[x % 2 == 0]
Out[25]: array([2, 4, 6])
```

In questo esempio:

- L'espressione x % 2 == 0 restituisce una maschera logica
- ...Che viene usata per accedere all'array

Il risultato sono gli elementi con valore pari

Assegnamento con Array

Si possono assegnare elementi individuali in un array

...Esattamente come per le liste:

```
In [27]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[1, 1] = -1
    print(x)

[[1 2 3]
      [4 5 6]]
    [[ 1 2 3]
      [4 -1 6]]
```


Assegnamento con Array

Si possono assegnare intere sottoparti di un array

E.g. si può assegnare una colonna:

```
In [28]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[:, 1] = [-1, -1]
    print(x)

    [[1 2 3]
      [4 5 6]]
    [[ 1 -1  3]
      [ 4 -1  6]]
```

...O una riga:

```
In [29]: x[0, :] = [-1, -1, -1]
print(x)

[[-1 -1 -1]
[ 4 -1 6]]
```


Assegnamento con Array

Si possono assegnare intere sottoparti di un array

- Se le dimensioni della porzione di array selezionata
- ...Sono diverse dalle dimensioni dell'oggetto assegnato
- numpy tenta di adattare il secondo al primo

Il caso più tipico è l'assegnamento di uno scalare:

```
In [33]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[:2, :2] = -1
    print(x)

[[1 2 3]
      [4 5 6]]
      [-1 -1 3]
      [-1 -1 6]]
```

- In questo caso tutti gli elementi selezionati
- . Dengono sostituiti con lo scalare

Funzioni e Metodi in numpy

numpy fornisce diverse funzioni per lavorare con array

Vediamo un po' di funzioni aritmetiche:

Funzioni e Metodi in numpy

numpy fornisce diverse funzioni per lavorare con array

Vediamo qualche di funzioni di aggregazione:

```
In [59]: x = np.array([1, 2, 3, 4])
    print(np.prod(x)) # prodotto degli elementi
    print(np.sum(x)) # somma degli elementi
    print(np.mean(x)) # media
    print(np.std(x)) # deviazione standard
24
10
2.5
1.118033988749895
```


Funzioni e Metodi in numpy

numpy fornisce diverse funzioni per lavorare con array

Vediamo qualche di funzioni per lavorare con numeri pseudo casuali:

```
In [72]: np.random.seed(42) # scelta del "seed"
    shape = (4,)
    print(np.random.random(shape)) # generazione di numeri casuali in [0,1)
    print(np.random.randint(low=0, high=4, size=shape)) # generazione di numeri casuali interi
    vals = [2, 4, 6, 8]
    print(np.random.choice(vals, size=shape)) # elementi casuali da una co

[0.37454012 0.95071431 0.73199394 0.59865848]
    [2 1 2 2]
    [6 6 8 2]
```

- Le funzioni in questa categoria sono nel modulo np.random
- Vi sono altri moduli utili (al solito: vedere la documentazione!)

Funzioni e Metodi in numpy

Vantaggi di numpy

numpy ci permette di ottenere codice più leggibile ed efficiente

E.g. supponiamo di dover sommare due sequenze di numeri casuali

Prima risolviamo il problema usando Python "nativo"

```
In [78]: import random
In [82]: %%time
n = 20000000
a = [random.random() for i in range(n)]
b = [random.random() for i in range(n)]
c = [v1 + v2 for v1, v2 in zip(a, b)]

CPU times: user 5.34 s, sys: 770 ms, total: 6.11 s
Wall time: 6.11 s
```

■ Il comando %%time stampa il tempo impiegato ad eseguire la cella

Vantaggi di numpy

numpy ci permette di ottenere codice più leggibile ed efficiente

E.g. supponiamo di dover sommare due sequenze di numeri casuali

Ora risolviamo il problema con numpy

```
In [83]: %%time
    n = 20000000
    a = np.random.random(n)
    b = np.random.random(n)
    c = a + b

CPU times: user 863 ms, sys: 220 ms, total: 1.08 s
Wall time: 1.08 s
```

- La versione fatta con numpy è più leggibile
- ...E circa 5 volte più veloce!

