《线性代数》模拟试卷 2

(2学时)

满

	是非题(判别下列命题是否正确,正确的在括号内打 ,错误的在i 20 分):	舌号内护	J × ;	每小题 2 分,
1.	若 $n \times s$ 矩阵 A 和 $s \times n$ 矩阵 B 满足 AB=O , 则 $R(A) + R(B) \le s$ 。	()	
2.茗	告 $lpha_{_{1}},lpha_{_{2}},lpha_{_{3}}$ 是向量空间 V 的一组基,则 V 是一个三维向量空间。	()	
3.	实对称阵 A 与对角阵 Λ 相似: $p^{-1}Ap=\Lambda$,这里 P 必须是正交阵 。	()	
4.	初等矩阵都是可逆阵,并且其逆阵都是它们本身。	()	
5.	若 n 阶方阵 A 满足 $A^T = -A$,则对任意 n 维列向量 x ,均有 $x^T A x = 0$ 。	()	
6.	若矩阵 A 和 B 等价,则 A 的行向量组与 B 的行向量组等价 。	()	
7.	若向量 α_1,α_3 线性无关,向量 a_2,α_3 线性无关,则 α_1,α_2 也线性无关。	()	
8.	A,B是 3阶矩阵,且 $r(B)=2$,已知 $r(AB)=1$,则 $r(A)=0$ 。	()	
9.	非齐次线性方程组 $Ax = b$ 有唯一解,则 $x = A^{-1}b$ 。	()	
10.	正交阵的特征值一定是实数。	()	

二、
$$(10 分)$$
设 n 阶行列式: $D_n = \begin{vmatrix} 3 & -2 \\ -1 & 3 & \ddots \\ & \ddots & \ddots & \ddots \\ & & \ddots & 3 & -2 \\ & & & -1 & 3 \end{vmatrix}$, 求 D_n 。

三、(10分)设
$$P = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, ,并且 $AP = P\Lambda$,求 A^{100}

四、
$$(10 \, \mathcal{G})$$
设 $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{pmatrix}$, 求可逆矩阵 P ,使 $P^{-1}P$ 为对角矩阵 , 并计算 $\left|A - E\right|$ 。

五、(10 分)讨论线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda & \text{问} \lambda \text{ 即何值时方程组有惟一解、无解、无穷多解?并在有无穷多解时,} \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

求出通解。

六、(12分)求一个正交变换 x = py ,将二次型 $f(x_1, x_2, x_3) = 2{x_1}^2 + 3{x_2}^2 + 3{x_3}^2 + 4{x_2}x_3$ 化为标准形。

七、 $(14 \, f)$ 设 A 为三阶实对称矩阵,且满足条件 $A^2 + 2A = 0$,已知 A 的秩 r(A) = 2,

求(1) A 的全部特征值;

(2) 当 k 为何值时,矩阵 A + kE 为正定矩阵。

八、(12 分):设矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$,已知 A 有 3 个线性无关的特征向量, $\lambda = 2$ 是 A 的二重特征值,

试求可逆矩阵 P , 使得 $P^{-1}AP$ 为对角矩阵。