基于数据驱动方法的动力电池健康状态估计和 剩余寿命预测方法研究

Research on Data-Driven Approaches for Estimating Health Status and Predicting Remaining Useful Life of Lithium-Ion Batteries in Flectric Vehicles

答辩人: 林新辉

导师: 李沂洹 讲师

寸/1· 控制与计算机工程学院,华北电力大学 CTR

2023 年 6 月 13 日

1958

目录

- 1 研究背景和研究对象
- 2 建模和实验
- 3 总结与展望
- 4 写在最后

研究背景和研究对象

图 1: 电池 SOH、RUL 和 SOC 示意图

- SOH 电池健康状态,使用电池放电容量表征,描述电池性能退化状态, $SOH = \frac{Q_{max}}{Q_{nominal}}$ 1958
 - RUL 电池剩余寿命, 描述电池从当前循环到寿命终止循 环的过程
- SOC 电池荷电状态,和 SOH 有相同的形式,描述电池电荷量, $SOC = \frac{Q_{remain}}{Q_{max}}$

基于电池容量历史退化数据的 SOH 估计

林新辉

•	指标	CALCE 数据集					NASA PCoE 数据集				
		AR	SVR	MLP	LSTM	CNN	AR	SVR	MLP	LSTM	CNN
	平均 MaxE	0.116	0.141	0.147	0.152	0.142	0.054	0.097	0.111	0.158	0.113
	平均 MAE	0.010	0.023	0.009	0.028	0.008	0.008	0.033	0.019	0.041	0.020
	平均 RMSE	0.016	0.028	0.014	0.035	0.013	0.013	0.037	0.026	0.057	0.027

表 1: 五种模型预测性能评估结果

- 五个模型均取得较高预测精度,使用数据驱动方法实现锂离子电池 SOH 估计具有可行性
- 对于短时预测问题,非隐状态模型的预测精度高于隐状态模型型CIRIC

林新辉

基于电池充放电直接测量量的 SOH 估计

林新辉

评价指标	第一组实验	第二组实验	第三组实验	第四组实验
平均 MaxE	0.110514	0.131351	0.08509	0.068284
平均 MAE	0.011018	0.015671	0.006605	0.006807
平均 RMSE	0.016167	0.021842	0.010835	0.009845
模型参数量	60421	12693	60421	12693
八工,从王	00121	12033	00 121	12033

表 2: 四组实验 CNN 模型预测性能评估结果

- 对比使用 V、I、T 为输入的情形,使用 V、I、SOC 为输入时模型预测结果有很大提升
- 使用时间序列-图像变换能在保持预测精度的前提下显著降低模型参数量

林新辉

电池 RUL 预测

林新辉

电池 RUL 预测

写在最后	

指标	电池 003	电池 011	电池 013	电池 006	电池 044	电池 039	电池 041	均值
RMSE	3.855191	3.102227	10.77393	10.12258	13.87137	8.883196	4.498271	7.872395
NRMSE	0.035861	0.02924	0.181346	0.028673	0.047128	0.019219	0.051681	0.056164

表 3: DeepLSTM 模型电池 Ah-RUL 预测性能

• 实验结果表明使用数据驱动方法实现锂离子电池 RUL 预测 具有可行性

1958

总结

- 基于电池容量历史退化数据实现 SOH 估计, 比较五种模型 的预测性能
- 基于电池充放电直接测量量实现 SOH 估计, 使用 SOC 取代 电池表明温度作为模型输入提高预测性能,使用时间序列-图 像变换减少模型参数量
- 基于电池充放电直接测量量实现 RUL 预测,提出依据容量 定义的 Ah-RUL 取代依据循环圈数定义的 cycle-RUL
- 展望
 - 估计/预测模型改进
 - 融合机理模型和数据驱动模型, 提高模型性能
 - 引入贝叶斯模型,实现对预测结果的不确定性度量以更好支 持工业决策
 - 引入迁移学习,提高模型泛化能力
 - 模型在嵌入式平台的部署:模型量化和模型转换

本课题相关代码已在 github 上开源, 请见: https://github.com/hilinxinhui/battery_phm.git

林新辉

汇报完毕,请各位老师批评指正!

A FLECTRIC'S