PUBLIC TRANSPORTATION EFFICIENCY ANALYSIS

Phase3 Submission:

Introduction

This project aims to develop a data pipeline for loading and processing a public transportation dataset for efficiency analysis. The dataset will include data on ridership, schedules, vehicle performance, and traffic conditions. The data pipeline will be implemented using Python and will be able to handle large and complex datasets.

Objectives

The objectives of this project are to:

- Develop a Python-based data pipeline for loading and processing a public transportation dataset for efficiency analysis.
- Make the data pipeline scalable and efficient to handle large and complex datasets.
- Document the data pipeline and make it available to other researchers and practitioners.

Methodology

The data pipeline will be developed in the following steps:

1. Identify the data sources: The first step is to identify the data sources that will be used for the analysis. This may include data on ridership, schedules, vehicle performance, and traffic conditions.

- 2. Define the data schema: The next step is to define the data schema for the public transportation dataset. This will involve identifying the different attributes of the data and their data types.
- 3. Develop the data loading module: The data loading module will be responsible for loading the data from the various data sources into a common format. This may involve cleaning and transforming the data to ensure that it is consistent and complete.
- 4. Develop the data processing module: The data processing module will be responsible for processing the loaded data to prepare it for analysis. This may involve calculating new metrics, aggregating data, and filtering data.
- 5. Develop the data storage module: The data storage module will be responsible for storing the processed data in a database or other data storage system.
- 6. Develop the data analysis module: The data analysis module will be responsible for performing the efficiency analysis on the processed data. This may involve using various statistical and machine learning techniques.
- 7. Develop the data visualization module: The data visualization module will be responsible for visualizing the results of the efficiency analysis. This may involve creating charts, graphs, and other visualizations.

Implementation

The data pipeline will be implemented using the following Python libraries:

- Pandas: Pandas is a Python library for data analysis and manipulation. It will be used to load, clean, and process the data.
- SQLAlchemy: SQLAlchemy is a Python library for object-relational mapper (ORM). It will be used to store the processed data in a database.
- SciPy: SciPy is a Python library for scientific computing. It will be used to perform the efficiency analysis.
- Matplotlib: Matplotlib is a Python library for data visualization. It will be used to create charts and graphs.

Testing

The data pipeline will be tested using the following methods:

- Unit testing: Unit tests will be written to test each individual module of the data pipeline.
- Integration testing: Integration tests will be written to test the interaction between the different modules of the data pipeline.
- System testing: System tests will be written to test the entire data pipeline from start to finish.

Deployment

The data pipeline will be deployed on a cloud-based platform, such as Google Cloud Platform or AWS Elastic Beanstalk. This will make the data pipeline scalable and accessible to users from anywhere in the world.

Documentation

The data pipeline will be documented using Sphinx. The documentation will include information on how to install, configure, and use the data pipeline.

```
%matplotlib inline
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import datetime
import os
from math import sqrt
import warnings

## For Multiple Output in single cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
warnings.filterwarnings('ignore')

data = pd.read_csv('../input/unisys/ptsboardingsummary/20140711.CSV')
data.shape
data.head(10)
```

TripID	RouteID	StopID	StopName	WeekBeginnin g	NumberOfBoa rdings	
0	23631	100	14156	181 Cross Rd	2013-06-30 00:00:00	1
1	23631	100	14144	177 Cross Rd	2013-06-30 00:00:00	1
2	23632	100	14132	175 Cross Rd	2013-06-30 00:00:00	1
3	23633	100	12266	Zone A Arndale Interchange	2013-06-30 00:00:00	2
4	23633	100	14147	178 Cross Rd	2013-06-30 00:00:00	1
5	23634	100	13907	9A Marion Rd	2013-06-30 00:00:00	1
6	23634	100	14132	175 Cross Rd	2013-06-30 00:00:00	1
7	23634	100	13335	9A Holbrooks Rd	2013-06-30 00:00:00	1
8	23634	100	13875	9 Marion Rd	2013-06-30 00:00:00	1
9	23634	100	13045	206 Holbrooks Rd	2013-06-30 00:00:00	1

```
out_geo = pd.read_csv('../input/outgeo/output_geo.csv')
out_geo.shape
out_geo.head()
```

(4165, 10)

Out[3]:

	accurac y	formatt ed_add ress	google_ place_i d	input_st ring	latitude	longitud e	number _of_res ults	postcod e	status	type
0	ROOFT OP	181 Cross Rd, Westbo urne Park SA 5041,	ChIJKT7 I9rbPsG oRVHM Hkly- Oyk	181 Cross Rd	- 34.9666 56	138.592 148	1	5041	ОК	street_a ddress

		Australi a								
1	ROOFT OP	177 Cross Rd, Westbo urne Park SA 5041, Australi a	ChIJ- VFZ87b PsGoRyf VgC5qb PpE	177 Cross Rd	- 34.9666 07	138.592 301	1	5041	ОК	street_a ddress
2	ROOFT OP	175 Cross Rd, Westbo urne Park SA 5041, Australi a	ChIJIztli rbPsGo R38KRk 76kPFI	175 Cross Rd	- 34.9667 58	138.592 715	1	5041	ОК	street_a ddress
3	GEOME TRIC_CE NTER	Zone A Arndale Intercha nge - South side, Kilke	ChIJn0C 1hCPGs GoRIWV CdhF1RI g	Zone A Arndale Intercha nge	- 34.8751 60	138.551 628	1	5009	ОК	bus_sta tion,est ablishm ent,poi nt_of_i nterest, tr
4	ROOFT OP	178 Cross Rd, Malvern SA 5061, Australi a	ChlJycNi ylvOsGo Rdhfq9 GKnpq0	178 Cross Rd	- 34.9649 60	138.611 477	1	5061	ОК	street_a ddress

External Features

In [4]:

#DistanceFromCentre: Distance measure from the city centre
#For Calculating Distance between centre with other bus stops by using
Longitude and Latitude
#we have used the Haversine formula

from math import sin, cos, sqrt, atan2, radians
def calc_dist(lat1,lon1):
 ## approximate radius of earth in km

accura cy	format ted_ad dress	google _place _id	input_ string	latitud e	longitu de	numbe r_of_r esults	postco de	status	type	dist_fr om_ce ntre	
0	ROOFT OP	181 Cross Rd, Westb ourne Park SA 5041, Austral ia	ChIJKT 719rbP sGoRV HMHkI y-Oyk	181 Cross Rd	- 34.966 656	138.59 2148	1	5041	ОК	street_ addres s	5.1809 61
1	ROOFT OP	177 Cross Rd, Westb ourne Park SA 5041, Austral	Chij- VFZ87 bPsGo RyfVgC 5qbPp E	177 Cross Rd	- 34.966 607	138.59 2301	1	5041	ОК	street_ addres s	5.1725 25

2	ROOFT OP	175 Cross Rd, Westb ourne Park SA 5041, Austral ia	ChiJizti irbPsG oR38K Rk76kP FI	175 Cross Rd	- 34.966 758	138.59 2715	1	5041	OK	street_ addres s	5.1807 09
3	GEOM ETRIC_ CENTE R	Zone A Arndal e Interch ange - South side, Kilke	ChiJn0 C1hCP GsGoRi WvCdh F1Rig	Zone A Arndal e Interch ange	- 34.875 160	138.55 1628	1	5009	OK	bus_st ation,e stablis hment, point_ of_inte rest,tr.	7.0575 49
4	ROOFT OP	178 Cross Rd, Malver n SA 5061, Austral ia	ChIJyc NiylvO sGoRd hfq9G Knpq0	178 Cross Rd	- 34.964 960	138.61 1477	1	5061	ОК	street_ addres s	4.9000 99

Out[9]:

Data Aggregation

In [10]:

```
#Combine the Geolocation and main input file to get final Output File.
data= pd.merge(data,out_geo,how='left',left_on = 'StopName',right_on =
'input_string')
data.head(5)
data.shape
```

Tri pID	Ro ut el D	Stop ID	Sto pN am e	We ekB egi nni ng	Nu mb erO fBo ard ing s	acc ura cy	for ma tte d_a ddr ess	goo gle _pl ace _id	inp ut_ stri ng	lati tud e	lon git ude	nu mb er_ of_ res ults	pos tco de	stat us	typ e	dist _fr om _ce ntr e	
0	23 63 1	100	141 56	181 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	181 Cro ss Rd, We stb our ne Par k SA 504 1, Aus tral	ChI JKT 719 rbP sGo RV HM HkI y- Oy k	181 Cro ss Rd	- 34. 966 656	138 .59 214 8	1	504	ОК	str eet _ad dre ss	5.1 809 61

1	23 63 1	100	141 44	177 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	177 Cro ss Rd, We stb our ne Par k SA 504 1, Aus tral ia	ChI J- VFZ 87b PsG oRy fVg C5 qb PpE	177 Cro ss Rd	- 34. 966 607	138 .59 230 1	1	504	ОК	str eet _ad dre ss	5.1 725 25
2	23 63 2	100	141 32	175 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	175 Cro ss Rd, We stb our ne Par k SA 504 1, Aus tral	ChI Jiztl irb PsG oR 38K Rk7 6kP FI	175 Cro ss Rd	- 34. 966 758	138 .59 271 5	1	504 1	ОК	str eet _ad dre ss	5.1 807 09
3	23 63 3	100	122 66	Zon e A Arn dal e Int erc han ge	201 3- 06- 30	2	GE OM ETR IC_ CE NT ER	Zon e A Arn dal e Int erc han ge - Sou th sid e, Kilk e	ChI Jn0 C1 hC PGs Go RI WV Cd hF1 RIg	Zon e A Arn dal e Int erc han ge	- 34. 875 160	138 .55 162 8	1	500 9	ОК	tra nsit _st ati on	7.0 575 49
4	23 63 3	100	141 47	178 Cro ss Rd	201 3- 06- 30	1	RO OF TO P	178 Cro ss Rd, Ma Iver n SA 506	Chl Jyc Niy IvO sGo Rd hfq 9G Kn	178 Cro ss Rd	- 34. 964 960	138 .61 147 7	1	506 1	ОК	str eet _ad dre ss	4.9 000 99

	1, pq Aus 0 tral		
--	------------------------	--	--

Out[10]:

(10857234, 17)

```
In [11]:
```

In [12]:

Out[15]:

```
##saving the final dataset
#data.to_csv('Weekly_Boarding.csv',index=False)
```

Aggregate the Data According to Weeks and Stop names

- NumberOfBoardings_sum Number of Boardings within particular week for each Bus stop
- NumberOfBoardings_count Number of times data is recorded within week
- NumberOfBoardings_max Maximum number of boarding done at single time within week

```
grouped = data.groupby(['StopName', 'WeekBeginning', 'type'])
#grouped.head()

In [14]:
# st_week_grp1 =
pd.DataFrame(data.groupby(['StopName', 'WeekBeginning', 'type']).agg({'Number OfBoardings': ['sum', 'count']})).reset_index()
grouped =
data.groupby(['StopName', 'WeekBeginning', 'type']).agg({'NumberOfBoardings' : ['sum', 'count', 'max']})
grouped.columns = ["_".join(x) for x in grouped.columns.ravel()]

In [15]:
grouped.head(10)
grouped.columns
```

			NumberOfBoardi ngs_sum	NumberOfBoardi ngs_count	NumberOfBoardi ngs_max
StopName	WeekBeginning	type			
1 Anzac Hwy	2013-06-30	street_address	1003	378	51
	2013-07-07	street_address	783	360	28
	2013-07-14	street_address	843	343	45
	2013-07-21	street_address	710	356	28
	2013-07-28	street_address	898	379	41
	2013-08-04	street_address	799	378	40
	2013-08-11	street_address	1012	358	71
	2013-08-18	street_address	793	333	41
	2013-08-25	street_address	897	354	45
	2013-09-01	street_address	1368	431	59

Out[15]:

In [16]:

```
st_week_grp = pd.<u>DataFrame(grouped).reset_index()</u>
st_week_grp.<u>shape</u>
st_week_grp.head()
```

Out[16]:

(207864, 6)

Out[16]:

	StopName	WeekBeginnin g	type	NumberOfBoa rdings_sum	NumberOfBoa rdings_count	NumberOfBoa rdings_max
0	1 Anzac Hwy	2013-06-30	street_address	1003	378	51
1	1 Anzac Hwy	2013-07-07	street_address	783	360	28
2	1 Anzac Hwy	2013-07-14	street_address	843	343	45
3	1 Anzac Hwy	2013-07-21	street_address	710	356	28
4	1 Anzac Hwy	2013-07-28	street_address	898	379	41

In [17]:

```
st_week_grp1 =
pd.DataFrame(st_week_grp.groupby('StopName')["WeekBeginning"].count()).res
et_index()
st_week_grp1.head()
```

Out[17]:

	StopName	WeekBeginning
0	1 Anzac Hwy	54
1	1 Bartels Rd	54
2	1 Botanic Rd	54
3	1 Frome Rd	54
4	1 Fullarton Rd	54

In [18]:

#Gathering only the Stop Name which having all 54 weeks of Dat
aa = list(st_week_grp1[st_week_grp1['WeekBeginning'] == 54]['StopName'])
aa[1:10]

Out[18]:

```
['1 Bartels Rd',
  '1 Botanic Rd',
  '1 Frome Rd',
  '1 Fullarton Rd',
  '1 George St',
  '1 Glen Osmond Rd',
  '1 Goodwood Rd',
  '1 Henley Beach Rd',
  '1 Kensington Rd']
```

In [19]:

```
bb = st_week_grp[st_week_grp['StopName'].isin(aa)]
bb.head()
bb.shape
```

type(bb)

Out[19]:

	StopName	WeekBeginnin g	type	NumberOfBoa rdings_sum	NumberOfBoa rdings_count	NumberOfBoa rdings_max
0	1 Anzac Hwy	2013-06-30	street_address	1003	378	51

1	1 Anzac Hwy	2013-07-07	street_address	783	360	28
2	1 Anzac Hwy	2013-07-14	street_address	843	343	45
3	1 Anzac Hwy	2013-07-21	street_address	710	356	28
4	1 Anzac Hwy	2013-07-28	street_address	898	379	41

Out[19]:

(175446, 6)

Out[19]:

pandas.core.frame.DataFrame

In [20]:

#removing the stoppage which are not having the data of whole 54 weeks $new_data = data[data['StopName'].\underline{isin}(aa)]$

new_data.<u>shape</u>

print("data without stopage removing: ", data.shape)
print("data, after removing stoppage not having the data of whole 54
weeks: ", new_data.shape)

Out[20]:

(10567931, 11)

data without stopage removing: (10857234, 11) data, after removing stoppage not having the data of whole 54 weeks: (10567931, 11)

In [21]:

 $new_data.\underline{head}(2)$

filtered_data = new_data[new_data['dist_from_centre'] <= 100]
filtered_data.shape</pre>

Out[21]:

	TripID	Routel D	StopID	StopNa me	WeekB eginni ng	Numbe rOfBoa rdings	latitud e	longitu de	postco de	type	dist_fr om_ce ntre
0	23631	100	14156	181 Cross Rd	2013- 06-30	1	- 34.966 656	138.59 2148	5041	street_ addres s	5.1809 61
1	23631	100	14144	177 Cross Rd	2013- 06-30	1	- 34.966 607	138.59 2301	5041	street_ addres s	5.1725 25

Out[21]:

(10341468, 11)

```
In [22]:
data = filtered_data.copy()
data.shape
                                                                      Out[22]:
(10341468, 11)
                                                                      In [23]:
#No of boarding for each stopage in all weeks
#bb["StopName"].groupby(NumberOfBoardings_sum)
stopageName_with_boarding =
bb.groupby(['StopName']).agg({'NumberOfBoardings_sum': ['sum']})
\#stopageName_with_boarding.columns = ["_".join(x)] for x in
stopageName_with_boarding.columns.ravel()]
#stopageName_with_boarding.head()
stopageName_with_boarding =
pd.<u>DataFrame(stopageName_with_boarding.reset_index())</u>
                                                                      In [24]:
#type(stopageName_with_boarding)
stopageName_with_boarding.columns = ["StopName",
"Total_boarding_on_the_stopage"]
#stopageName_with_boarding.shape
stopageName_with_boarding.head()
```

Out[24]:

	StopName	Total_boarding_on_the_stopage
0	1 Anzac Hwy	39429
1	1 Bartels Rd	8412
2	1 Botanic Rd	14868
3	1 Frome Rd	67458
4	1 Fullarton Rd	585

In [25]:

```
## save the aggregate data
#bb.to_csv('st_week_grp.csv', index=False)
```

Data Exploration

In [26]:

```
data.nunique()
#data.isnull().sum()
#data['WeekBeginning'].unique()
                                                                     Out[26]:
TripID
                     39211
RouteID
                       616
StopID
                      5838
StopName
                      3127
WeekBeginning
                        54
NumberOfBoardings
                       359
latitude
                      2393
longitude
                      2379
postcode
                       138
type
                         8
dist_from_centre
                      2397
dtype: int64
Data Visualization
                                                                     In [27]:
##can assign the each chart to one axes at a time
fig,axrr=plt.subplots(2,2,figsize=(15,15))
ax=axrr[0][0]
ax.<u>set_title("No of Boardings")</u>
data['NumberOfBoardings'].value_counts().sort_index().head(20).plot.bar(ax
=axrr[0][0])
ax=axrr[0][1]
ax.set_title("WeekBeginning")
data['WeekBeginning'].value_counts().plot.area(ax=axrr[0][1])
ax=axrr[1][0]
ax.<u>set_title("most Busiest Route")</u>
data['RouteID'].value_counts().head(10).plot.bar(ax=axrr[1][0])
ax=axrr[1][1]
ax.set_title("least Busiest Route")
data['RouteID'].value_counts().tail(10).plot.bar(ax=axrr[1][1])
                                                                     Out[27]:
Text(0.5,1,'No of Boardings')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff880af0940>

Out[27]:

Out[27]:

Text(0.5,1,'WeekBeginning')

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff709a6bb38>

Out[27]:

Text(0.5,1,'most Busiest Route')

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff709a48e10>

Out[27]:

Text(0.5,1,'least Busiest Route')

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff736bbafd0>


```
In [28]:
stopageName_with_boarding =
stopageName_with_boarding.sort_values('Total_boarding_on_the_stopage',
ascending = False)
#stopage with most no of boarding
stopageName_with_boarding.head(10)
```

Out[28]:

	StopName	Total_boarding_on_the_stopage
3054	I2 North Tce	628859
3125	X1 King William St	622099
3032	F2 Grenfell St	604149
3130	X2 King William St	583227
3021	E1 Currie St	550396
3207	Zone C Paradise Interchange	547709
3015	D1 King William St	541046
3211	Zone C Tea Tree Plaza Intercha	451960
3025	E3 Currie St	399351
3039	G3 Grenfell St	356518

In [29]:

#stopage with least no of boarding
stopageName_with_boarding.tail(10)

Out[29]:

	StopName	Total_boarding_on_the_stopage
1845	45 Mcintyre Rd	292
2318	57 Philip Hwy	281
2732	75B Frick St	275
58	109 Regency Rd	274
1633	39D Glenloth Dr	266
170	127 Lyndoch Rd	264
3086	Strathalbyn South Tce	227
1231	31 Glenroy St	221

558	19 Gilles Rd	215
294	145 The Esplanade	175

In [30]:

```
ax = stopageName_with_boarding.head(10).plot.bar(x='StopName',
y='Total_boarding_on_the_stopage', rot=90)
ax.set_title("most busiest stopage")
```

Out[30]:

Text(0.5,1,'most busiest stopage')


```
In [31]:
```

```
ax = stopageName_with_boarding.tail(10).plot.bar(x='StopName',
y='Total_boarding_on_the_stopage', rot=90)
ax.set_title("least busiest stopage")
```

Out[31]:

Text(0.5,1,'least busiest stopage')

Out[33]:

	dist_from_centre	NumberOfBoardings	
0	0.000018	1892435	
1	0.131368	167535	
2	0.309089	356518	
3	0.314937	1484824	

```
0.326005
                                                       120061
                                                                          Out[33]:
Index(['dist_from_centre', 'NumberOfBoardings'], dtype='object')
                                                                          Out[33]:
                            dist_from_centre
                                                       NumberOfBoardings
 2392
                            86.471064
                                                       18905
 2393
                            94.826409
                                                       321
 2394
                            99.625655
                                                       1101
 2395
                            99.665190
                                                       4373
 2396
                            99.748995
                                                       21216
                                                                          In [34]:
import plotly.graph_objs as go
from plotly.offline import iplot
trace0 = go.Scatter(
    x = bb_grp['dist_from_centre'],
    y = bb_grp['NumberOfBoardings'], mode = 'lines+markers', name = 'X2 King
William St')
data1 = [trace0]
layout = <u>dict</u>(title = 'Distance Vs Number of boarding',
               xaxis = dict(title = 'Distance from centre'),
               yaxis = dict(title = 'Number of Boardings'))
fig = dict(data=data1, layout=layout)
iplot(fig)
                                                                          In [35]:
#clustering Technique// based on the distance from city centre
x = data["dist_from_centre"]
distance_10 = []
distance_10_50 = []
distance_50_100 = []
#distance_100_ = []
distance_100_more = []
total = 0
outlier = []
```

outlier_ = 0
for i in x:

```
if(i<=10):
        distance_10.append(i)
        total += 1
    elif(i<=50):
        distance_10_50.append(i)
        total += 1
    elif(i<=100):
        distance_50_100.append(i)
        total += 1
    #elif(i>100 and i< 2000):
        #distance_100_more.append(i)
        #total += 1
    #elif(i>2000):
        #outlier.append(i)
        #outlier_ += 1
                                                                       In [36]:
print(outlier_)
0
                                                                       In [37]:
y = \underline{len}(distance_10) + \underline{len}(distance_10_50) + \underline{len}(distance_50_100)
#+len(distance_100_more)
#print(y)
#print(total)
                                                                       In [38]:
print(total)
print("passangers, boarding the buses in the radious of 10Km from the city
center = ", (len(distance_10)/total)*100)
print("passanger, boarding the buses from the distance of 10Km to 50Km
from the city center = ", (len(distance_10_50)/total)*100)
print("passanger, boarding the buses from the distance of 50Km to 100 from
the city center = ", (len(distance_50_100)/total)*100)
#print("passanger, boarding the buses from the distance of 100Km and more
from the city center = ", (len(distance_100_more)/total)*100)
10341468
passangers, boarding the buses in the radious of 10Km from the city center
= 64.31275521038212
passanger, boarding the buses from the distance of 10Km to 50Km from the
```

```
city center = 33.16731241638035
passanger, boarding the buses from the distance of 50Km to 100 from the
city center = 2.5199323732375327
                                                                     In [39]:
#busiest route on weekly basis
#data.head(10)
# st_week_grp1 =
pd.DataFrame(data.groupby(['StopName','WeekBeginning','type']).agg({'Number
OfBoardings': ['sum', 'count']})).reset_index()
grouped_route = data.groupby(['RouteID']).agg({'NumberOfBoardings':
['sum', 'max']})
grouped_route.columns = ["_".join(x) for x in
grouped_route.columns.ravel()]
                                                                     In [40]:
"""grouped_route = grouped_route.head().reset_index()
type(grouped_route)
grouped_route = grouped_route.sort_values("NumberOfBoardings_sum",
ascending = True)
#stopageName_with_boarding =
stopageName_with_boarding.sort_values('Total_boarding_on_the_stopage',
ascending = False)
#stopage with most no of boarding
#stopageName_with_boarding.head(10)
#grouped_route["NumberOfBoardings_sum"] =
grouped_route["NumberOfBoardings_sum"] / 365
grouped_route.head(10)
grouped_route.shape"""
                                                                     Out[40]:
'grouped_route =
grouped_route.head().reset_index()\ntype(grouped_route)\ngrouped_route =
grouped_route.sort_values("NumberOfBoardings_sum", ascending =
True)\n#stopageName_with_boarding =
stopageName_with_boarding.sort_values(\'Total_boarding_on_the_stopage\',
ascending = False)\n#stopage with most no of
boarding\n#stopageName_with_boarding.head(10)\n#grouped_route["NumberOfBoa
rdings_sum"] = grouped_route["NumberOfBoardings_sum"] /
365\ngrouped_route.head(10)\ngrouped_route.shape'
```

. . . .

```
In [41]:
"""route_data = grouped_route[grouped_route['RouteID'] == "G10"]
route_data.head()"""

Out[41]:
'route_data = grouped_route[grouped_route[\'RouteID\'] ==
"G10"]\nroute_data.head()'
```