				,
ETH	ZU	ır	ICI	h

Physikalisches Praktikum der ETH Zürich

Name 1 _____ Datum:

Name 2 Platz-Nr:

09 - absolute Zero

Calibration of the pressure sensor

Calibration point at ambient pressure

(uncorrected baron	meter reading)	(temperature at barometer)		(corrected barometer reading)	
$\mathbf{p}_L =$	mm Hg (t_L)	$\text{air temp t}_L =$	$^{\circ}\mathrm{C}$	$\mathrm{p}_L =$	Torr
$\mathrm{p}_L =$	Pa	$\mathrm{U}_L{=}$	mV		

Calibration point at low pressure

$oxed{p_t}= egin{array}{ c c c c c c c c c c c c c c c c c c c$	$+$ $p_{4} \equiv$ mbar	P_{a}	$U_t = mV$
---	-------------------------	---------	------------

Sensor characteristics: $p = p_0 + CU$:

Determination of the absolute zero

At the temperature of boiling water

$t_{K} =$	$^{\circ}\mathrm{C}$	$\mathrm{U}_{K} = \mathrm{mV}$	$\mathrm{p}_{K}=$ mbar	

At the temperature of ice water

$oxed{t_E}=$	С	$\mathrm{U}_E{=}$	mV	$\mathrm{p}_E =$	mbar	
L CE	0	\circ_E	111 1	PE	mour	

Approximation for the temperature of the absolute zero:

a=	b=	c=

Absolute zero of temperature:

Determination of the temperature of liquid nitrogen

$ m U_{LN2} =$	mV	$p_{\mathrm{LN2}} =$	Pa	$t'_{\rm LN2} =$ °C	
corr. coeff A=		$t_{ m LN2} =$	$^{\circ}\mathrm{C}$		