

GAMES 301: 第8讲

无翻转光滑映射

陈仁杰 中国科学技术大学

三角网格-分片线性映射

分片线性映射不是光滑映射

- 基函数不光滑
- 相邻片映射导数不连续

$$f(x_i) = \sum_{i} y_j b_j(x_i) \qquad b_j(x_i) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

三角网格-分片线性映射

分片线性映射不是光滑映射

- 基函数不光滑
- 相邻片映射导数不连续

How to improve smoothness of the mapping?

$$f_t(x) = Ax + b$$

光滑映射构造

育天下英才創電 等學府

基于光滑基函数的光滑映射

- 1. RBF
- 2. 广义重心坐标
- 3. 调和映射
- 4. 样条 (B-Spline)

Radial Basis Function (RBF)

$$f(x) = \sum_{i} a_i b_i(x)$$
$$b_i(x) = g(|x - p_i|)$$

•
$$g(r) = \frac{1}{r+\epsilon}, g(r) = e^r, g(r) = \frac{1}{r^2}$$

- Pro: smooth
- Con: does not span polynomial (linear) functions

广义重心坐标

[Möbius 1827]

Point (a, b, c) with 3 coordinates w.r.t. base points A, B, C

Mathematically:

$$(a, b, c) = a \cdot A + b \cdot B + c \cdot C$$

$$A = (1,0,0)$$
where $B = (0,1,0)$ and $a + b + c = 1$
 $C = (0,0,1)$

Barycenter:

$$v = \frac{av_A + bv_B + cv_C}{a + b + c}$$
 $v = (x, y)$

重心坐标

广义重心坐标

Theorem [Möbius 1827]

The barycentric coordinates $w_1,...,w_{d+1}$ of $v \in \mathbb{R}^d$ w.r.t $v_1,...,v_{d+1}$ are unique up to a common factor.

$$v = \frac{w_1 v_1 + w_2 v_2 + w_3 v_3}{w_1 + w_2 + w_3} \implies w_i = A(v, v_{i+1}, v_{i+2})$$

- Properties
 - Partition of unity
 - Reproduction
 - Positivity

$$\sum_{i} b_{i}(v) = 1$$

 $\sum_{i} b_{i}(v) v_{i} = v$

$$b_i(v) \geq 0, \forall v \in \Delta$$

重心坐标

Ideal for interpolation

广义重心坐标 (GBC)

- For arbitrary *n*-polygon
- Barycentric coordinates $w_1(v), ..., w_n(v)$

$$v = \frac{\sum_{i=1}^{n} w_i(v) v_i}{\sum_{i=1}^{n} w_i(v)}$$

Normalized coordinates

$$b_i(v) = \frac{w_i(v)}{\sum_j w_j(v)}$$

- Properties
 - Partition of unity $\sum_i b_i(v) = 1$
 - Reproduction $\sum_{i} b_{i}(v)v_{i} = v$
 - Non-negative

$$\sum_{i} b_i(v) f(v_i) = f(v)$$
, \forall linear function f

Examples of GBC

Mean value coordinates (Floater '97)

$$w_i = \frac{\tan\frac{\alpha_{i-1}}{2} + \tan\frac{\alpha_i}{2}}{r_i}$$

• Barycenter
$$v = \frac{\sum_{i=1}^{n} w_i(v)v_i}{\sum_{i=1}^{n} w_i(v)}$$

Non-negative for star-shape polygon

$$f(v) = \frac{\oint w(x, v) f(x) dx}{\oint w(x, v) dx}$$

Examples of GBC

Mean value coordinates

$$w_i = \frac{\tan\frac{\alpha_{i-1}}{2} + \tan\frac{\alpha_i}{2}}{r_i}$$

Wachspress coordinates

$$w_i = \frac{\cot \gamma_{i-1} + \cot \beta_i}{r_i^2}$$

Discrete harmonic coordinates (cot weights)

$$w_i = \cot \beta_{i-1} + \cot \gamma_i$$

Closed-form GBC

- 1. Wachspress [Wachspress 1975]
- 2. Discrete Harmonic [Pinkall & Polthier 1993]
- 3. Mean value [Floater 2003]
- 4. Positive mean value [Lipman et al 2007]
- 5. Gordon-Wixom [Belyaev 2006]
- 6. Positive Gordon-Wixom [Manson et al. 2011]
- 7. Poisson [Li & Hu 2013]
- 8. Power [Budninsky et al 2016]
- 9. Blended [Anisimov et al 2017]

Computational GBC

Harmonic coordinates [Joshi et al 2007]

$$\Delta b_i = 0, \qquad s.t. \ b_i(v_j) = \delta_{ij}$$

 C^{∞} smooth & Non-negative!

Maximum entropy coordinates [Hormann & Sukumar 2008]

Moving least square coordinates [Manson & Schaefer 2010]

Local barycentric coordinates [Zhang et al 2014]

Applications of GBC

Interpolation

Mesh Animation

Shading

Image Editing

Vector Fields

GBC based Smooth Mapping

$$v = \sum_{i} b_i(v) v_i$$

$$f(v) = \sum_{i} b_i(v) \mathbf{x}_i$$

Cauchy Complex Barycentric Coordinate

$$z = \sum_{i} c_{i}(z)z_{i}$$
$$c_{i}(z) \in \mathbb{Z}$$

$$f(z) = \sum_{i} c_i(z) \mathbf{x}_i$$

$$\frac{\partial f}{\partial \bar{z}} = 0 \Rightarrow \text{Holomorphic } f$$

Harmonic Mapping

$$f(x,y) = (u(x,y), v(x,y)) \qquad f: \Omega \to \mathbb{R}^2$$

$$\Delta u = 0, \qquad \Delta v = 0 \qquad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

- 1. C^{∞} smooth
- 2. Maximum/minimum principle

Cauchy complex barycentric coordinates

Harmonic Mapping with Cauchy Coordinate

样条基 - Bézier曲线

Bézier curves for curve design:

- Rough form specified by the control polygon
- Smooth curve approximating the control points

Problems:

- I. High polynomial degree
- II. Non-local support
- III. Interpolation of points

$$B_i^n(t) = C_i^n t^i (1-t)^{n-i}$$

Properties

- Smoothness
- Pseudo-local support
- Convex hull
 - Partition of unity
 - Non-negative

The uniform B-spline basis of order k (degree k-1) is given as

$$N_i^1(t) = \begin{cases} 1, & \text{if } i \le t < i+1 \\ 0, & \text{otherwise} \end{cases}$$

$$N_{i}^{k}(t) = \frac{t-i}{(i+k-1)-i} N_{i}^{k-1}(t) + \frac{(i+k)-t}{(i+k)-(i+1)} N_{i+1}^{k-1}(t)$$

$$\frac{(i+k)}{(i+k)-(i+1)} N_{i+1}^{k-1}(t)$$

$$= \frac{t-i}{k-1} N_i^{k-1}(t) + \frac{i+k-t}{k-1} N_{i+1}^{k-1}(t)$$

$$\frac{i+k-t}{k-1}N_{i+1}^{k-1}(t)$$

B样条基 - general case

$$N_{i,1}(t) = \begin{cases} 1, & t_i \le t < t_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

B-Spline curves

Shifted basis function b(t)

B-Spline curves

Spline Surfaces

Parametric spline surfaces:

- Two parameter coordinates (u, v)
- Piecewise bivariate polynomials

- Assemble multiple pieces to form a surface with continuity
- Each piece is called spline patch

Spline Surfaces

Two different approaches

- Tensor product surfaces
 - I. Simple construction
 - II. Everything carries over from curve case
 - III. Quad patches
- Total degree surfaces
 - I. Not as straightforward
 - II. Isotropic degree
 - **III. Triangle patches**

Tensor Product Surfaces

Tensor product basis

	$b_1(u)$	$b_2(u)$	$b_3(u)$	<i>b</i> ₄ (<i>u</i>)
$b_1(v)$	$b_{1}(v)b_{1}(u)$	$b_1(v)b_2(u)$	$b_1(v)b_3(u)$	$b_{1}(v)b_{4}(u)$
$b_2(v)$	$b_{2}(v)b_{1}(u)$	$b_2(v)b_2(u)$	$b_2(v)b_3(u)$	$b_2(v)b_4(u)$
$b_3(v)$	$b_{3}(v)b_{1}(u)$	$b_3(v)b_2(u)$	$b_3(v)b_3(u)$	$b_3(v)b_4(u)$
$b_4(v)$	$b_{4}(v)b_{1}(u)$	$b_{4}(v)b_{2}(u)$	$b_{4}(v)b_{3}(u)$	$b_{4}(v)b_{4}(u)$

Tensor Product Surfaces

Tensor Product Surfaces

Tensor Product Surfaces

$$f(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u)b_j(v)\boldsymbol{p}_{i,j}$$

$$= \sum_{i=1}^{n} b_i(u) \sum_{j=1}^{n} b_j(v)\boldsymbol{p}_{i,j}$$

$$= \sum_{j=1}^{n} b_j(v) \sum_{i=1}^{n} b_i(u)\boldsymbol{p}_{i,j}$$

"Curves of Curves"

Tensor Product Surfaces C¹ Continuity

Bézier Triangles

Derived using a triangular de Casteljau algorithm

- Blossoming formalism for defining Bézier Triangles
- Barycentric interpolation of blossom values

$$x = \alpha a + \beta b + \gamma c,$$

$$\alpha + \beta + \gamma = 1$$

无翻转光滑映射

育天下英才創裏字學府

无翻转映射优化

e.g. $D(p) = |J(p)|_F^2 + |J(p)|_F^{-2}$

分片线性映射

Minimize
$$E = \int_{\Omega} D(s) ds = \sum_{t \in T} A_t D(J_t)$$

 $s.t. |J_t| > 0, \forall t \in T$

光滑映射

Minimize
$$E = \int_{\Omega} D(s) ds \approx \sum_{p \in P} D(p)$$

 $s.t. |J(s)| > O, \forall s \in P$

Infeasible!

无翻转映射优化

e.g. $D(p) = |J(p)|_F^2 + |J(p)|_F^{-2}$

分片线性映射

Minimize $\sum_{t \in T} A_t D(J_t)$

 $s.t. |J_t| > 0, \forall t \in T$

光滑映射

Minimize $\sum_{p \in P} D(p)$

$$s.t. |J(s)| > 0, \forall s \in P$$

无翻转光滑映射

基于Lipschitz连续性的无翻转光滑映射

$$J(p) > Lr$$
 Lipschitz连续 $J(q) \ge J(p) - Lr > 0, \forall q \in B$

$$L = \sup_{q \in B} (|\nabla J(q)|_F)$$

全局无翻转条件: $J(p) > Lr, \forall p$

无翻转光滑映射

基于样条基的凸包性质的无翻转映射

$$f(u,v) = (f^1(u,v), f^2(u,v)) = \sum_i B_i(u,v) P_i$$

$$J = \begin{pmatrix} f_x^1 & f_x^2 \\ f_y^1 & f_y^2 \end{pmatrix}$$

$$|J(u,v)| = f_x^1 f_y^2 - f_x^2 f_y^1 = \dots = \sum_i |J_i| B_i(u',v')$$

$$\forall i, |J_i| \ge 0 \Rightarrow |J(u,v)| \ge 0, \forall u,v \in [0,1]$$

$$f(t) = \sum_{i} B_i(t) P_i$$

$$B_i^n(t) = C_i^n t^i (1-t)^{n-i}$$

Convex hull Property

- Partition of unity
 - Non-negative

谢谢!

