Методы решений основных типов дифференциальных уравнений

Линдеманн Никита

3 июня 2019 г.

Содержание

1	Уравнения с разделяющимися переменными	3
2	Однородные уравнения 2.1 Уравнения вида $y' = f\left(\frac{y}{x}\right)$ 2.2 Уравнения вида $y' = f\left(ax + by + c\right)$ 2.3 Уравнения вида $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$	3 3 3
3	Линейные уравнения с переменными коэффицентами	4
4	Уравнение Бернулли	5
5	Уравнение Рикатти	5
6	Уравнение Эйлера	5
7	Уравнения в полных дифференциалах	5
8	Интегрирующий множитель	6
9	Уравнения, допускающие понижение порядка 9.1 Уравнения не содержащие младших производных 9.2 Уравнения не содержащие независимой переменной 9.3 Однородные уравнения 9.4 Уравнения с обобщенной однородностью	
10	Линейные однородные уравнения с постоянными коэффициентами	8
11	Линейные неоднородные уравнения с постоянными коэффициентами и квазиполиномами	8
12	Линейные неоднородные уравнения с переменными коэффициентами	9
13	Системы линейных однородных уравнений с постоянными коэффициентами	9
14	Линейные уравнения второго порядка с переменными коэффициентами	11

15	Устойчивость	11
16	Дифференциальные уравнения в частных производных первого порядка	12
17	Элементы вариационного исчисления	13
	17.1 Простейшая вариационная задача	13
	17.2 Задача со свободным концом	13
	17.3 Задача без ограничений	14
	17.4 Функционалы, зависящие от двух функций	14
	17.5 Функционалы, содержащие производные второго порядка	14
18	Изопараметрическая задача	14
19	Список литературы	16

1 Уравнения с разделяющимися переменными

Уравнения вида

$$y' = f(x)g(y) \tag{1}$$

$$A(x)B(y)dx + C(x)D(y)dy = 0$$
(2)

разрешаются путем разделения переменных и последующим интегрированием:

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

$$\int \frac{A(x)}{C(x)}dx = -\int \frac{D(y)}{B(y)}dy$$

При этом необходимо отдельно рассмотреть случаи когда B(y) = 0 и C(x) = 0. ???????????

2 Однородные уравнения

2.1 Уравнения вида $y' = f\left(\frac{y}{x}\right)$

Решение уравнения вида

$$y' = f\left(\frac{y}{x}\right) \tag{3}$$

получается заменой z=y/x:

$$y = zx \Rightarrow y' = z'x + z$$
$$f(z) = z'x + z \Rightarrow \int \frac{dz}{f(z) - z} = \int \frac{dx}{x}$$

2.2 Уравнения вида y' = f(ax + by + c)

Уравнения вида

$$y' = f(ax + by + c)$$
(4)

сводятся к уравнению с разделяющимися переменными путем замены z = ax + by + c:

$$z' = a + by' \Rightarrow y' = f(z) = \frac{z' - a}{b}$$

$$\int \frac{dz}{bf(z) + a} = \int dx$$

Здесь $b \neq 0$, так так иначе переменные разделяются и без замены переменных.

2.3 Уравнения вида $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$

Для уравнения вида

$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$
 (5)

рассматриаются 2 случая:

а. Если $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$, то уравнение (5) выделением целой части сводится к виду

$$y' = f\left(A + \frac{B}{a_2x + b_2y + c_2}\right)$$

и приводится к уравнению с разделяющимися переменными заменой $z=\frac{1}{a_2x+b_2y+c_2}$.???

б. В случае $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$ уравнение (5) сводится к (3)?????? линейной заменой:

$$\begin{cases} x = \tilde{x} + \delta_1 \\ y = \tilde{y} + \delta_2 \end{cases}$$

где δ_1 и δ_2 находятся из системы:

$$\begin{cases} a_1 \delta_1 + b_1 \delta_2 + c_1 = 0 \\ a_2 \delta_1 + b_2 \delta_2 + c_2 = 0 \end{cases}$$

3 Линейные уравнения с переменными коэффицентами

Уравнения вида

$$y' + a(x)y + b(x) = 0$$

$$(6)$$

можно решать несколькими способами.

- 1. Метод вариации постоянной:
 - (a) Ищется решение \widetilde{y} однородного уравнения:

$$\widetilde{y'} + a(x)\widetilde{y} = 0$$

$$\widetilde{y} = C \exp\left(-\int a(x)dx\right)$$

(b) Общее решение ищется методом вариации постоянной, то есть в виде:

$$y = C(x) \exp\left(-\int a(x)dx\right)$$

Подставляя отсюда y в (6) и упрощая, получим решение:

$$y = \left[\int b(x) \exp\left(-\int a(x)dx\right) dx + C_1 \right] \exp\left(-\int a(x)dx\right)$$

- 2. Метод Бернулли:
 - (a) Представляем искомую функцию в виде произведения двух новых: y = uv

$$u'v + uv' + a(x)uv = -b(x),$$

$$u'v + u(v' + a(x)v) = -b(x).$$

(b) Составляем систему, приравнивая выражение в скобках к нулю:

$$\begin{cases} v' + a(x)v = 0, \\ u'v = -b(x). \end{cases}$$

4 Уравнение Бернулли

Уравнения вида

$$y' + a(x)y = b(x)y^m \quad (m \neq 0, m \neq 1)$$
 (7)

где $m \neq 0$ и $m \neq 1$ называется уравнением Бернулли. Стоит заметить, что функция y = 0 является решением и должна входть в ответ.

Уравнение Бернулли сводится к линейному урававнению с переменными коэффициентами заменой $y=z^{\frac{1}{1-m}}$:

$$y' = \frac{1}{1 - m} z^{\frac{1}{1 - m} - 1} z'$$

Подставляя y' в (7) и упрощая, получим линейное уравнение:

$$\frac{1}{1-m}z' + a(x)z = b(x)$$

5 Уравнение Рикатти

Уравненеие вида

$$y' + a(x)y + b(x)y^{2} + c(x) = 0$$
(8)

называется уравнение Рикатти и решается по следующему алгоритму:

- а. Ищется частное решение y_0 : $y_0' + a(x)y_0 + b(x)y_0^2 + c(x) = 0$
- б. Общее решение ищется в виде $y = y_0 + \tilde{y}$:

$$(y_0 + \tilde{y})' + a(x)(y_0 + \tilde{y}) + b(x)(y + \tilde{y})^2 + c(x) = 0$$

Раскрывая скобки и учитывая, что y_0 – частное решение, получаем уравнение Бернулли с m=2:

$$\tilde{y}' + a(x)\tilde{y} + 2b(x)\tilde{y}y_0 + b(x)\tilde{y}^2 = 0$$

6 Уравнение Эйлера

Уравнение вида

$$p_0 x^n y^{(n)} + p_1 x^{n-1} y^{(n-1)} + \ldots + p_n y = 0$$
(9)

называется уравнением Эйлера.

Решается оно заменой:

$$\begin{cases} x = e^t, \\ \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \dot{y}e^{-t}, \\ \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (\dot{y}e^{-t}) = \frac{d}{dt} (\dot{y}e^{-t}) \frac{dt}{dx} = e^{-2t} (\ddot{y} - \dot{y}). \end{cases}$$

7 Уравнения в полных дифференциалах

Уравнение вида

$$M(x,y)dx + N(x,y)dy = 0$$
(10)

называется уравнением в полных дифференциалах, если существует функция P(x,y) такая, что dP(x,y) = M(x,y)dx + N(x,y)dy. Если такая P(x,y) существует, то

$$\frac{\partial P}{\partial x} = M, \ \frac{\partial P}{\partial x} = N.$$

Если же функция P(x,y) еще и дважды дифференцируема, то

$$M_y' = \frac{\partial^2 P}{\partial x \partial y} = \frac{\partial^2 P}{\partial y \partial x} = N_x',$$

то есть

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}.$$

Последнее утверждение может служить критерием уравнения в полных дифференциалах. Решение уравнения (9) имеет вид P(x,y) = const, то есть сводится к отысканию функции P(x,y), которая находится из системы:

$$\begin{cases} \frac{\partial P}{\partial x} = M(x, y) \\ \frac{\partial P}{\partial y} = N(x, y) \end{cases}$$

Из первого уравнения:

$$P(x,y) = \int M(x,y)dx + C(y).$$

Подставляя результат во второе уравнение, находим константу интегрирования, зависящую от y:

$$\frac{\partial}{\partial y} \left(\int M(x, y) dx \right) + C'_y = N(x, y)$$

Окончательный ответ:

$$\int M(x,y)dx + N(x,y) - \frac{\partial}{\partial y} \left(\int M(x,y)dx \right) = const$$

8 Интегрирующий множитель

Если уравнение (9) не является уравнением в полных дифференциалах, но существует такая функция $\mu(x,y)$, что уравнение

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$
(11)

является уравнением в полных дифференциалах, то такая функция $\mu(x,y)$ называется интегрирующим множителем.

Если нам удастся найти интегрирующий множитель, то мы сможем найти частное решение уравнения (9). Интегрирующий множитель ищется обычно в виде $\mu(x)$ или $\mu(y)$. Подставляя μ в

$$\frac{\partial(\mu M)}{\partial u} = \frac{\partial(\mu N)}{\partial x},$$

находим интегрирующий множитель и решаем уравнение (10) как уравние в полных дифференциалах.

9 Уравнения, допускающие понижение порядка

9.1 Уравнения не содержащие младших производных

Уравнениия, не содержащие первых k-1 производных

$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$$
(12)

решаются путем понежения порядка с помощью замены: $y^{(k)}=z, y^{(k+1)}=z', \dots, y^{(n)}=z^{(n-k)}$.

9.2 Уравнения не содержащие независимой переменной

Уравнениия, не содержащие независимой переменной

$$F(y, y', \dots, y^{(n)}) = 0$$
 (13)

решаются путем введения новой функции y'=p(y), относительно которой будет решаться уравнение, при этом $y''=\frac{dp}{dx}=p'y'$. Так же надо помнить о существовании тривиальных решений вида y(x)=const.

9.3 Однородные уравнения

Уравнениие называется однородным, если для любого натурального k выполнено:

$$F(x, ky, ky', \dots, ky^{(n)}) = F(x, y, y', \dots, y^{(n)})$$
(14)

Для решения таких уравнений делается следующая замена:

$$y_x' = yz(x),$$

$$y'' = y'z(x) + yz'(x) = y(z^{2}(x) + z'(x)).$$

После замены и сокращения на функцию y(x) получится уравнение, связывающее функцию z(x) и неразисимую переменную x.

9.4 Уравнения с обобщенной однородностью

Говорят, что уравнение обладает свойством обобщенной однородности, если для любого натурального k существует такое m, что:

$$F(ky, k^m y', k^{m-1} y', \dots, k^{m-n} y^{(n)}) = F(x, y, y', \dots, y^{(n)})$$
(15)

Решаются такие уравнения заменой:

$$\begin{cases} x = e^t, \\ y = e^{mt}z(t). \end{cases}$$

10 Линейные однородные уравнения с постоянными коэффициентами

Для решения линейного однородного уравнения с постоянными коэффициентами

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0$$
(16)

находятся корни его характерестического уравнения

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 = 0.$$

Общее решение уравнения (16) есть сумма, состоящая из слагаемых вида

$$C_i e^{\lambda_i x}$$

для каждого простого корня λ_i и слагаемых вида

$$(C_{m+1} + C_{m+2}x + C_{m+3}x^2 + \ldots + C_{m+k}x^{k-1})e^{\lambda x}$$

для каждого корня характерестического уравнения λ , имеющего кратность k.

В случае вещественных коэффициентов уравнения (16) решение можно записать в вещественной форме даже в случае комплексных корней. Для каждой пары комплексных сопряженных корней $\lambda = \alpha \pm \beta i$ в формулу общего решения включаются слагаемые

$$C_{m+1}e^{\alpha x}\cos(\beta x) + C_{m+2}e^{\alpha x}\sin(\beta x),$$

если корни простые, и слагаемые

$$P_{k-1}e^{\alpha x}\cos(\beta x) + Q_{k-1}e^{\alpha x}\sin(\beta x),$$

если каждый из корней $\alpha + \beta i$ и $\alpha - \beta i$ имеет кратность k. Здесь P_{k-1} и Q_{k-1} – многочлены степени k-1 вида

11 Линейные неоднородные уравнения с постоянными коэффициентами и квазиполиномами

Для уравнения вида

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_n y = P_m(x) e^{\alpha x}$$
(17)

выделяют два принципиально разных случая:

1. α – корень характерестического многочлена $F(\lambda) = \lambda^n + p_1 \lambda^{n-1} + \ldots + p_n$ кратности $k \colon F(\alpha) = F'(\alpha) = \ldots = F^{(k-1)}(\alpha) = 0, \ F^k(\alpha) \neq 0$ (случай резонанса). В таком случае общее решение ищется в виде

$$y(x) = x^k R_m(x) e^{\alpha x},$$

где $R_m(x)$ – многочлен такой же степени m, как и $P_m(x)$.

2. α — не является корнем характерестического многочлена: $F(\alpha) \neq 0$. Тогда общее решение имеет вид

$$y(x) = R_m(x)e^{\alpha x}$$
.

Для уравнения вида

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_n y = e^{\alpha x} (P_m(x) \cos(\beta x) + Q_m(x) \sin(\beta x))$$
(18)

так же рассматривают два случая:

1. $\alpha+\beta i$ – корень характерестического многочлена $F(\lambda)=\lambda^n+p_1\lambda^{n-1}+\ldots+p_n$ кратности $k\colon F(\alpha+\beta i)=F'(\alpha+\beta i)=\ldots=F^{(k-1)}(\alpha+\beta i)=0,$ $F^k(\alpha+\beta i)\neq 0$ (случай резонанса). В таком случае общее решение ищется в виде

$$y(x) = x^k e^{\alpha x} (R_m(x)\cos(\beta x) + S_m(x)\sin(\beta x)),$$

где $R_m(x)$ и $S_m(x)$ – многочлены такой же степени m, как и $P_m(x)$ и $Q_m(x)$.

Если в уравнении многочлены разной степени, то полагают $m = \max\{\deg P(x), \deg Q(x)\}.$

2. $\alpha + \beta i$ – не является корнем характерестического многочлена: $F(\alpha + \beta i) \neq 0$. Тогда общее решение имеет вид

$$y(x) = e^{\alpha x} (R_m(x)\cos(\beta x) + S_m(x)\sin(\beta x)).$$

12 Линейные неоднородные уравнения с переменными коэффициентами

Решение уравнения

$$y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = f(x)$$
(19)

имеет вид

$$y(x) = y_0(x) + Y(x),$$

где $y_0(x) = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x)$ – общее решение соответсвуещего исходному однородного уравнения, а Y(x) – частное решение исходного уравнения.

Частное решение $Y(x) = C_1(x)y_1(x) + \ldots + C_ny_n(x)$ ищется методом вариации постоянных, то есть функции $C_i(x)$ находятся из алгебраической системы:

$$\begin{cases}
C'_1(x)y_1(x) + \ldots + C'_n(x)y_n(x) = 0, \\
\ldots \\
C'_1(x)y_1^{(n-2)}(x) + \ldots + C'_n(x)y_n^{(n-2)}(x) = 0, \\
C'_1(x)y_1^{(n-1)}(x) + \ldots + C'_n(x)y_n^{(n-1)}(x) = f(x).
\end{cases}$$

13 Системы линейных однородных уравнений с постоянными коэффициентами

Систему уравнений

$$\begin{cases} \dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ \dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots \\ \dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(20)

обычно представляют в виде

$$\dot{X} = AX$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Для решения таких систем сперва находят собственные значения матрицы A, решая характерестическое уравнение

$$|A - \lambda E| = 0.$$

Каждому простому корню λ_i соответствует решение

$$C_i \vec{v}_i e^{\lambda_i t}$$
,

где \vec{v}_i – собственный вектор матрицы A, соответствующий собственному значению λ_i .

Если корень λ имеет алгебраическую кратность k, и существует k линейно независимых собственных вкторов $\vec{v}_1, \ldots, \vec{v}_k$, соответствующих собстенному зачению λ , то этому корню соответсвует решение

$$(C_1\vec{v}_1 + \ldots + C_k\vec{v}_k)e^{\lambda k}.$$

Если для корня λ кратности k существует только m < k линейно независимых собственных вкторов $\vec{v}_1, \ldots, \vec{v}_m$, то для кажого собственного вектора \vec{v} ищутся присоединенные векторы $\vec{h}_1, \ldots, \vec{h}_p$:

Каждой серии \vec{v} , \vec{h}_1 , \vec{h}_2 , ..., \vec{h}_p соответствует p+1 линейно независимое решение \vec{x}_1 , ..., \vec{x}_p , \vec{x}_{p+1} системы (20):

$$\vec{x}_1 = e^{\lambda t} \vec{v},$$

$$\vec{x}_2 = e^{\lambda t} \left(\frac{t}{1!} \vec{v} + \vec{h}_1 \right),$$

$$\vec{x}_3 = e^{\lambda t} \left(\frac{t^2}{2!} \vec{v} + \frac{t}{1!} \vec{h}_1 + \vec{h}_2 \right),$$

$$\dots$$

$$\vec{x}_{p+1} = e^{\lambda t} \left(\frac{t^p}{p!} \vec{v} + \frac{t^{p-1}}{(p-1)!} \vec{h}_1 + \dots + \frac{t}{1!} \vec{h}_{p-1} + \vec{h}_p \right).$$

Найдя для каждого λ решения и сложив их, получим общее решение системы (20).

14 Линейные уравнения второго порядка с переменными коэффициентами

Уравнение

$$a(x)y'' + b(x)y' + c(x)y = f(x)$$
(21)

имеет решение вида

$$y = C_1(x)y_1 + C_2(x)y_2 + C_1y_1 + C_2y_2,$$

где y_1 и y_2 – линейно независимые частные решения однородного уравнения, а функции $C_1(x)$ и $C_2(x)$ находятся методом вариации постоянных из системы:

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 = 0, \\ C_1'(x)y_1' + C_2'(x)y_2' = \frac{f(x)}{a(x)}. \end{cases}$$

Если удается угадать одно частное решение y_1 , то для отыскания функции y_2 обычно пользуются формулой Лиувилля-Остроградского:

$$W_{y_1,y_2} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = C \cdot \exp\left(-\int \frac{b(x)}{a(x)} dx\right).$$

Упрощая вронскиан, получим конечную формулу:

$$\left(\frac{y_2}{y_1}\right)' = \frac{C}{y_1^2} \cdot \exp\left(-\int \frac{b(x)}{a(x)} dx\right).$$

15 Устойчивость

Определение 15.1. Решение $x = \varphi(t)$ системы дифференциальных уравнений

$$\frac{dx_i}{dt} = f_i(t, x_1, \dots, x_n), \ i = \overline{1, n}$$

называется устойчивым по Ляпунову, если $\forall \varepsilon > 0 \; \exists \, \delta > 0 : \forall$ решения x(t) той же системы, начальное значение которого удовлетворяет неравенству

$$|x(t_0) - \varphi(t_0)| < \delta,$$

при всех $t \ge t_0$ выполняется неравенство

$$|x(t) - \varphi(t)| < \varepsilon.$$

Определение 15.2. Решение $\varphi(t)$ называется асимптотически устойчивым, если оно устойчиво по Ляпунову и, кроме того, все решения с достаточно близкими начальными условиями неограниченно приближается к $\varphi(t)$ при $t \to \infty$, то есть если из неравенства предыдущего определения

$$|x(t_0) - \varphi(t_0)| < \delta$$

следует, что

$$\lim_{t \to \infty} x(t) - \varphi(t) = 0.$$

Для исследования системы автономных линейных дифференциальных уравнений

$$\begin{cases} \dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ \dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots \\ \dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(22)

сначала ищут положения равновесия, приравнивая все производные в левой части к нулю:

$$\dot{x}_i = 0$$
,

затем ищут собственные числа системы, и, исходя из их значений, делают вывод о характере положения равновесия (см. классификатор).

Если же автономная система не является линенейной

$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2, \dots x_n), \\ \dot{x}_2 = f_2(x_1, x_2, \dots x_n), \\ \dots \\ \dot{x}_n = f_n(x_1, x_2, \dots x_n). \end{cases}$$
(23)

тогда ее лианеризуют, используя разложения по формуле Тейлора до членов первого порядка. Далее опять ищутся собственные значения, и, если все они отличны от нуля, то характер положения равновесия в некоторой окресности этой точки у лианеризованной системы будет такой же, как и у исходной системы.

16 Дифференциальные уравнения в частных производных первого порядка

Для решения уравнений вида

$$a_1(x,y,z)\frac{\partial u}{\partial x} + a_2(x,y,z)\frac{\partial u}{\partial y} + a_3(x,y,z)\frac{\partial u}{\partial z} = 0$$
(24)

составляется характерестическая система

$$\frac{dx}{a_1(x, y, z)} = \frac{dy}{a_2(x, y, z)} = \frac{dz}{a_3(x, y, z)}.$$

Далее ищутся два независимых первых интеграла характеристической системы $u_1(x,y,z)$ и $u_2(x,y,z)$. Общее решение уравнения (24) запишется в виде

$$u(x, y, z) = F[u_1(x, y, z), u_2(x, y, z)],$$

где $F[u_1,u_2]$ – произвольная непрерыавно дифференцируемая функция своих аргументов. Если задана гладкая повехность S в виде уравнения g(x,y,z)=0, то задача нахождения решения уравнения (24), удовлетворяющего начальному условию

$$u|_S = \varphi(x, y, z),$$

называется задачей Коши.

Для ее решения составляется система

$$\begin{cases} g(x, y, z) = 0, \\ u_1(x, y, z) = C_1, \\ u_1(x, y, z) = C_2. \end{cases}$$

из которой выражаются x,y,z как функции от u_1,u_2 , и подставляются найденные выражения для x,y,z в заданную функцию $\varphi(x,y,z)$. В найденное таким образом выражение вида $\Phi(u_1,u_2)$ подставлются $u_1(x,y,z)$ и $u_2(x,y,z)$. Тогда функция

$$u = \Phi(u_1(x, y, z), u_2(x, y, z))$$

и будет искомым решением задачи Коши.

17 Элементы вариационного исчисления

17.1 Простейшая вариационная задача

Для заданного функционала

$$J(y) = \int_{a}^{b} F[x, y(x), y'(x)] dx$$
(25)

простейшая вариационная задача сводится к нахождению слабого экстремума J(y) в классе функций с фиксированными концами на отрезке интегрирования:

$$y(a) = A, \ y(b) = B.$$

Если функция y(x) является решением простейшей вариационной задачи, то она необходимо удовлетворяет уравнению Эйлера-Лагранжа:

$$\frac{\partial F}{\partial u} - \frac{d}{dx} \frac{\partial F}{\partial u'} = 0.$$

Проверка на экстремальность производится непосредственно вычислением вариации функционала на найденной допустимой экстремали, а именно вычисляется знак вариации:

$$\Delta J(\hat{y}) = J(\hat{y} + \eta) - J(\hat{y}).$$

Здесь $\eta(x) \in \overset{\circ}{C}[a,b]$, то есть функция $\eta(x)$ непрерывно дифференцируема на отрезке интегрирования и $\eta(a) = \eta(b) = 0$.

При этом первым шагом интегрируют по частям слагаемые, содержащие η' , затем упрощают подстановкой в выражение \hat{y} , либо используя тот факт, что \hat{y} удовлетворяет уравнению Эйлера-Лагранжа. Таким образом добиваются, чтобы вариация $\Delta J(\hat{y})$ стала знакоопределенной, тогда, если $\Delta J(\hat{y}) \geq 0$, то допустимая вариация дает на функционале абсолютный минимум, иначе – максимум.

17.2 Задача со свободным концом

Если задан функционал (25), но искомая функция должна удовлетворять только одному граничному условию y(a) = A, то для нахождения допустимой экстремали, используется еще одно необходимое условие:

$$\left. \frac{\partial F[x, y(x), y'(x)]}{\partial y'} \right|_{x=b} = 0.$$

Далее задача решается аналогично простейшей вариационной задаче.

17.3 Задача без ограничений

Если при заданном функционале (25) на искомую функцию y(x) не наложено никаких ограничений, то она необходимо должна удовлетворять кроме уравнения Эйлера-Лагранжа граничным условиям вида:

$$\left. \frac{\partial F[x, y(x), y'(x)]}{\partial y'} \right|_{x=a} = \left. \frac{\partial F[x, y(x), y'(x)]}{\partial y'} \right|_{x=b} = 0.$$

17.4 Функционалы, зависящие от двух функций

Для нахождения слабого экстремума функционала

$$J(y_1, y_2) = \int_a^b F[x, y_1(x), y_2(x), y_1'(x), y_2'(x)] dx$$
(26)

с граничными условиями на функции: $y_1(a) = A_1, y_2(a) = A_2$ и $y_1(b) = B_1, y_2(b) = B_2$ составляется система уравнений Эйлера-Лагранжа:

$$\begin{cases} \frac{\partial F}{\partial y_1} - \frac{d}{dx} \frac{\partial F}{\partial y_1'} = 0, \\ \frac{\partial F}{\partial y_2} - \frac{d}{dx} \frac{\partial F}{\partial y_2'} = 0. \end{cases}$$

Далее находятся допустимые экстремали, и исследуется на знакоопределнность вариация функционала на найденных экстремалях.

17.5 Функционалы, содержащие производные второго порядка

Для нахождения слабого экстремума функционала

$$J(y) = \int_{a}^{b} F[x, y(x), y'(x), y''(x)] dx$$
 (27)

с граничными условиями

$$y(a) = A_1, \ y'(a) = A_2, \ y(b) = B_1, \ y'(b) = B_2$$

сотавляют уравнение Эйлера-Пуассона

$$\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial F}{\partial y''} = 0.$$

Далее, как обычно, ищется допустимая экстремаль, и исследуется на знакоопределнность вариация функционала на найденной допустимой экстремале.

18 Изопараметрическая задача

Изопараметрической задачей назавается задача исследования слабого экстремума функционала

$$J(y) = \int_{a}^{b} F[x, y(x), y'(x)] dx$$
 (28)

с граничными условиями $y(a) = A, \ y(b) = B$ и условиями связи вида

$$l_i = \int_a^b G_i[x, y(x), y'(x)] dx,$$

где A, B, l_i – заданные числа, а F, G_i – заданные дважды непрерывно дифференцируемые функции, $i = \overline{1, n}$,

На практике чаще всего задано одно условие связи:

$$l = \int_{a}^{b} G[x, y(x), y'(x)] dx.$$

Тогда рассматривают лагранжиан

$$L(x, y(x), y'(x), \lambda) = F[x, y(x), y'(x)] - \lambda G[x, y(x), y'(x)].$$

Далее решают уравнение Эйлера-Лагранжа относительно функции $L(x, y(x), y'(x), \lambda)$:

$$\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0.$$

Решая, находят допустимые экстремали, и исследуют на знакоопределнность вариацию функционала на найденной допустимой экстремале.

19 Список литературы

- 1. А. Ф. Филиппов Сборник задач по дифференциальным уравнениям
- 2. В. К. Романко Сборник задач по дифференциальным уравнениям и вариационному исчислению
- 3. Д. В. Беклемишев Курс аналитической геометрии и линейной алгебры
- 4. Д. В. Беклемишев Дополнительные главы линейной алгебры
- 5. С. М. Никольский Курс математического анализа

КЛАССИФИКАЦИЯ ПОЛОЖЕНИЙ РАВНОВЕСИЯ ЛИНЕЙНЫХ АВТОНОМНЫХ СИСТЕМ ВТОРОГО ПОРЯДКА

РЕШИТЬ ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ $det(A-\lambda E)=0$

Рис. 1: Классификатор