Solution: Micro interrogation

Goual H.

Exercice I __

1. Notons \bar{x} et s respectivement la moyenne et l'écart-type de l'échantillon. Un calcul à la machine donne :

$$\bar{x} = 1625.47 \text{ mg et } s = 4.66$$

2. On sait que l'estimation ponctuelle $\hat{\mu}$ de la moyenne μ de la quantité de bicarbonate de sodium dans la population des comprimés est donnée par la moyenne de l'échantillon. Donc :

$$\hat{\mu} = \bar{x} = 1625.47 \text{ mg}$$

On sait aussi qu'une estimation ponctuelle $\hat{\sigma}$ de l'écart-type de la quantité de bicarbonate de sodium dans la population des comprimés est donnée à partir de l'écart-type de l'échantillon à l'aide de la formule $\hat{\sigma} = s_c = \sqrt{\frac{n}{n-1}}s = \sqrt{\frac{150}{150-1}}4.66 = 4.67$ mg.

- 3. (a) D'après le théorème de la limite centrée, on sait que la loi de \bar{x} peut être approchée par une loi normale de moyenne $\hat{\mu} = \bar{x} = 1625.47$ mg et d'écart-type $\frac{\hat{\sigma}}{\sqrt{n}}$.
 - (b) On sait alors qu'un intervalle de confiance au seuil de 5% de la moyenne μ est :

$$\left[\bar{x} - 1.96 \frac{\hat{\sigma}}{\sqrt{n}}; \bar{x} + 1.96 \frac{\hat{\sigma}}{\sqrt{n}}\right]$$

Numériquement : $\mu \in \left[1625.47 - 1.96\frac{4.67}{\sqrt{150}}; 1625.47 + 1.96\frac{4.67}{\sqrt{150}}\right]$, soit $\mu \in \left[1624.72; 1625.22\right]$. L'amplitude de cet intervalle est 1626, 22 - 1624, 72 = 1, 5 mg.

Exercice II

Age	21	22	23	24	25	26	27	28	29
Nombre	5	5	4	3	3	5	1	4	3

- 1. Compte tenu de la précision des données, plusieurs individus ont la même modalité (sont considérés comme ayant le même âge). Il s'agit donc d'une variable discrète.
- 2. Représentation cette série statistique graphiquement par un diagramme en bâtons ou une courbe des effectifs.
- 3. Les fréquences $f_i = \frac{n_i}{n}$ et les fréquences cumulées.

Fréquences	0.1515	0.1515	0.1212	0.0909	0.0909	0.1515	0.0303	0.1212	0.0909
Fréquences cumulées	0.1515	0.3030	0.4242	0.5151	0.6061	0.7576	0.7879	0.9091	1

- 4. Trouvez la moyenne empirique $\bar{x} = 24.54545$, la variance $S_c^2 = 7.193182$ et l'écart-type $S_c = 2.682011$ de l'échantillon. Interpréter.
- 5. Trouvez la valeur de la médiane empiriquement Med = 24 et graphiquement (c'est bien l'intersection entre les courbes des effectifs cumulées croissants et $d\tilde{A}(\tilde{c})$ croissants).
- 6. Que dites vous sur l'aplatissement de la courbe de distribution $\gamma_2 = -1.340973$ type 1=-1.235664, type 2=-1.239142. Comme le coefficient d'aplatissement est < 3, la distribution est dite $\tilde{A}(\hat{c})$ cras $\tilde{A}(\hat{c})$ et donc aplatie.
- 7. Peut-on dire que cette série statistique est homogène : CV = 0.1092671; Pour une variation de 10% on peut dire que la série statistique n'estpas homogène.

Fin du solution.

Pour réussir, votre désir de réussite doit être plus grand que votre peur de l'échec. Bill Cosby