統計學習與資料探勘 期末報告

順序:15

組員:黃偉柏 温宏岳

題目: Taiwan's Air Quality Data by Hours

(台灣各小時空氣指數狀態資料分析--分類分群)

參考資料: https://www.kaggle.com/datasets/yenruchen/taiwans-air-quality-data-by-hours (https://www.kaggle.com/datasets/yenruchen/taiwans-air-quality-data-by-hours)

Data Pre-Processing

In [1]:

```
import pandas as pd
 import numpy as np
 import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
 import sklearn
import graphviz
 from sklearn import datasets, cluster, datasets, metrics, tree, neighbors
 from \ sklearn. model\_selection \ import \ train\_test\_split, \ learning\_curve, \ cross\_val\_score, \ GridSearchCV, \ Stratified KFold \ for the sklearn. The sklear \ for the s
from sklearn.preprocessing import LabelEncoder, StandardScaler, scale
from imblearn.over_sampling import SMOTE
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, plot_tree, export_graphviz
 from xgboost import XGBClassifier
 from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
 from tabulate import tabulate
 from mlxtend.plotting import plot_decision_regions
 from sklearn.metrics import mean_squared_error, accuracy_score, confusion_matrix, ConfusionMatrixDisplay,\
 classification_report,roc_curve, auc, RocCurveDisplay, precision_score, recall_score, f1_score
 %matplotlib inline
 import statsmodels.api as sm
 import statsmodels.formula.api as smf
 import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
df = pd.read_csv("file.csv")
df2 = df.drop(columns=["Pollutant","Unit","Longitude","Latitude","SiteId"])
df3=df2.dropna()
df4=df3[df3['County']=='高雄市']
df5=df4[(df4['DataCreationDate']=='2021-12-26 23:00')|(df4['DataCreationDate']=='2021-12-26 21:00')|
(df4['DataCreationDate']=='2021-12-26 19:00')|(df4['DataCreationDate']=='2021-12-26 17:00')|
(df4['DataCreationDate']=='2021-12-26 15:00') | (df4['DataCreationDate']=='2021-12-26 13:00')
(df4['DataCreationDate']=='2021-12-26 11:00')|(df4['DataCreationDate']=='2021-12-26 09:00')|
(df4['DataCreationDate']=='2021-12-26 07:00')|(df4['DataCreationDate']=='2021-12-26 05:00')|
(df4['DataCreationDate'] == '2021-12-26 03:00') | (df4['DataCreationDate'] == '2021-12-26 01:00')]
df5 = df5.drop(columns=["County"])
labelencoder = LabelEncoder()
df_le = pd.DataFrame(df5)
df_le['SiteName'] = labelencoder.fit_transform(df5['SiteName'])
df_le['Status'] = labelencoder.fit_transform(df5['Status'])
df_le['DataCreationDate'] = labelencoder.fit_transform(df5['DataCreationDate'])
df_le.rename(columns={'03_8hr': '038hr'}, inplace=True)
df_le.rename(columns={'PM2.5': 'PM25'}, inplace=True)
df_le.rename(columns={'PM2.5_AVG': 'PM25AVG'}, inplace=True)
df_le.rename(columns={'S02_AVG': 'S02AVG'}, inplace=True)
df_le = pd.DataFrame(df_le,dtype=np.float)
```

In [3]:

```
df_le['SiteName'] = df_le['SiteName'].astype(int)
df_le['Status'] = df_le['Status'].astype(int)
df_le['DataCreationDate'] = df_le['DataCreationDate'].astype(int)
df_le
```

Out[3]:

	SiteName	AQI	Status	SO2	со	О3	O38hr	PM10	PM25	NO2	NOx	NO	WindSpeed	WindDirec	DataCreationDate	CO_8hr	PM25AVG	PN
3506558	11	48.0	2	1.4	0.36	22.0	20.0	18.0	10.0	13.9	14.3	0.4	1.2	311.0	0	0.3	15.0	_
3506602	10	61.0	1	1.9	0.33	13.6	19.0	19.0	10.0	7.0	8.2	1.2	1.4	260.0	0	0.3	20.0	
3506603	9	67.0	1	1.2	0.37	18.3	18.0	29.0	16.0	13.9	14.3	0.4	2.8	7.0	0	0.4	22.0	
3506604	0	75.0	1	0.1	0.36	18.4	18.0	16.0	18.0	12.6	14.3	1.6	3.4	345.0	0	0.4	25.0	
3506605	12	87.0	1	2.0	0.46	10.4	11.0	32.0	25.0	18.4	20.9	2.4	0.9	264.0	0	0.6	30.0	
																	•••	
3508449	1	61.0	1	2.3	0.40	10.0	20.0	33.0	16.0	21.1	22.3	1.1	2.3	9.0	11	0.4	20.0	
3508450	2	61.0	1	2.3	0.51	10.3	18.0	39.0	19.0	20.2	23.0	2.8	2.1	9.0	11	0.5	19.0	
3508451	4	63.0	1	1.1	0.50	8.6	17.0	32.0	17.0	23.4	24.2	0.7	0.9	27.0	11	0.5	20.0	
3508464	6	63.0	1	1.5	0.55	9.0	17.0	33.0	20.0	21.5	24.8	3.3	1.5	107.0	11	0.5	20.0	
3508473	11	41.0	2	1.0	0.34	15.4	20.0	18.0	10.0	14.6	15.8	1.2	0.9	100.0	11	0.3	13.0	
155 rows	× 19 colur	nns																>

EDA

Correspondence of Label

Site Name

In [4]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'SiteName',data = df5,order = df5['SiteName'].value_counts().index)
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
plt.rcParams['axes.unicode_minus'] = False
```


In [5]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'SiteName',data = df_le,order = df_le['SiteName'].value_counts().index);
```


Status

In [6]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'Status',data = df5,order = df5['Status'].value_counts().index)
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
plt.rcParams['axes.unicode_minus'] = False
```


In [7]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'Status',data = df_le,order = df_le['Status'].value_counts().index);
```


Data Creation Date

In [8]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'DataCreationDate',data = df5,order = df5['DataCreationDate'].value_counts().index)
plt.xticks(rotation=45)
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
plt.rcParams['axes.unicode_minus'] = False
```


In [9]:

```
plt.figure(figsize = (8,6))
sns.countplot(x = 'DataCreationDate',data = df_le,order = df_le['DataCreationDate'].value_counts().index);
```


In [10]:

```
df_le.dtypes
Out[10]:
SiteName
                      int32
                    float64
AQI
                    int32
float64
Status
S02
CO
                    float64
03
                    float64
038hr
                    float64
PM10
                    float64
PM25
                    float64
NO2
                    float64
NOx
                    float64
NO
                    float64
WindSpeed
                    float64
WindDirec
                    float64
DataCreationDate
                      int32
CO_8hr
                    float64
PM25AVG
                    float64
PM10_AVG
                    float64
S02AVG
                    float64
dtype: object
In [11]:
 df_le.describe()
Out[11]:
```

	SiteName	AQI	Status	SO2	co	О3	O38hr	PM10	PM25	NO2	NOx	NO
count	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000	155.000000
mean	6.006452	58.264516	1.290323	1.826452	0.416387	18.198710	17.703226	28.851613	17.496774	15.769032	17.943226	2.135484
std	3.765008	14.529896	0.483060	1.160501	0.113085	5.548909	4.268845	12.041483	5.372337	5.137418	6.389714	2.206270
min	0.000000	31.000000	0.000000	0.100000	0.270000	6.600000	8.000000	10.000000	7.000000	5.400000	5.800000	0.000000
25%	3.000000	47.500000	1.000000	1.100000	0.335000	13.850000	14.500000	20.000000	13.000000	12.300000	14.100000	0.500000
50%	6.000000	58.000000	1.000000	1.500000	0.380000	18.300000	18.000000	26.000000	18.000000	14.600000	16.800000	1.300000
75%	9.000000	66.000000	2.000000	2.250000	0.465000	21.500000	21.000000	35.000000	21.000000	19.250000	21.900000	3.050000
max	12.000000	111.000000	2.000000	7.800000	0.790000	34.800000	26.000000	70.000000	32.000000	30.100000	40.100000	12.400000
4												•

Pairplot

In [12]:

Heatmap

判斷相關係數

In [13]:

```
plt.figure(figsize = (12,12))
corr = df_le.corr()
sns.heatmap(corr,square = True, annot = True)
```

Out[13]:

<AxesSubplot:>

|相關係數| ≥ 0.5 X = AQI PM25 CO_8hr PM25AVG PM10_AVG SO2AVG y = Status

Boxplot

判斷outliers

In [14]:

```
In [15]:
```

Out[15]:

((124, 18), (124,))

In [16]:

```
X_test_drop.shape, y_test_drop.shape
```

Out[16]:

((31, 18), (31,))

Observation information

Model

機器學習可以分成「監督」與「非監督」式學習・兩者的差異在於所收集到的資料是否有被標籤(Labeled)。換言之·資料是否有被定義。

Supervised learning

Linear Classification

LDA

使用區分 AQI, PM25, CO_8hr, PM25AVG, PM10_AVG, SO2AVG 的資料

=> LDA希望投影後的資料·組內分散量(within-class scatter)越小越好·組間分散量(between-class scatter)越大越好。

In [21]:

```
LDA_model = LDA()
numerical_features = ["AQI", "PM25", "CO_8hr", "PM25AVG", "PM10_AVG", "S02AVG"]

LDA_model.fit(X_train_drop[numerical_features],y_train_drop)
```

Out[21]:

LinearDiscriminantAnalysis()

In [22]:

```
predicted = LDA_model.predict(X_train_drop[numerical_features])
TA_LDA = LDA_model.score(X_train_drop[numerical_features],y_train_drop)
print('Train Accuracy of LDA: ', TA_LDA)
print('Train Error of LDA: ', 1 - TA_LDA)
```

Train Accuracy of LDA: 0.967741935483871
Train Error of LDA: 0.032258064516129004

In [23]:

```
y_pred = LDA_model.predict(X_test_drop[numerical_features])
clf_LDA = accuracy_score(y_test_drop, y_pred)

print("Test Accuracy of LDA: ",clf_LDA)
print("Test Error of LDA: ", 1 - clf_LDA)
```

Test Accuracy of LDA: 0.9032258064516129 Test Error of LDA: 0.09677419354838712

In [24]:

```
mat_LDA = confusion_matrix(y_test_drop, y_pred)
sns.set(font_scale = 1.5)
sns.heatmap(mat_LDA.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
plt.ylabel('true label')
plt.xlabel('predicted label')
target_names = ['0','1','2']
print(classification_report(y_test_drop, y_pred, target_names = target_names))
```

	precision	recall	f1-score	support
0	0.00	0.00	0.00	2
1	0.88	1.00	0.94	22
2	1.00	0.86	0.92	7
accuracy			0.90	31
macro avg	0.63	0.62	0.62	31
weighted avg	0.85	0.90	0.87	31

Nonlinear Classification

DecisionTree

使用區分 AQI, PM25, CO_8hr, PM25AVG, PM10_AVG, SO2AVG 的資料

=>可以同時處理連續型與類別型變數.不需要進行太多的資料預處理(Preprocessing)。

In [25]:

```
depth_list = list(range(2,7))
depth_tuning = np.zeros((len(depth_list), 2))
depth_tuning[:,0] = depth_list
y_eff = []
col_names = ['Max_Depth','Accuracy']
for i in range(6): # 測試的條件數
    tree_clf = tree.DecisionTreeClassifier(criterion="entropy")
                                               , random\_state = 4
                                               ,splitter = "random"
                                                                   #測試條件
                                               ,max\_depth = i+1
    tree_clf = tree_clf.fit(X_train_drop[numerical_features], y_train_drop)
    score = tree_clf.score(X_test_drop[numerical_features], y_test_drop)
    y_eff.append(score)
     depth_tuning[i-1,1] = score
print(pd.DataFrame(depth_tuning, columns=col_names))
plt.plot(range(1,7),y_eff,color="red",label="max_depth")
plt.legend()
plt.show()
```

```
Max_Depth Accuracy
0 2.0 0.870968
1 3.0 0.903226
2 4.0 0.935484
3 5.0 0.935484
4 6.0 0.935484
```


In [26]:

```
numerical_features = ["AQI", "PM25", "CO_8hr", "PM25AVG", "PM10_AVG", "S02AVG"]

decisionTreeModel = DecisionTreeClassifier(criterion="entropy", max_depth=4, random_state=4)
decisionTreeModel.fit(X_train_drop[numerical_features], y_train_drop.values.astype(int))
```

Out[26]:

DecisionTreeClassifier(criterion='entropy', max_depth=4, random_state=4)

In [27]:

```
predicted = decisionTreeModel.predict(X_train_drop[numerical_features])
TA_DT = decisionTreeModel.score(X_train_drop[numerical_features],y_train_drop)
print('Train Accuracy of LDA: ', TA_DT)
print('Train Error of LDA: ', 1 - TA_DT)
```

Train Accuracy of LDA: 1.0
Train Error of LDA: 0.0

In [28]:

```
y_pred = decisionTreeModel.predict(X_test_drop[numerical_features])
clf_DT = accuracy_score(y_test_drop, y_pred)
print("Test Accuracy of LDA: ",clf_DT)
print("Test Error of LDA: ", 1 - clf_DT)
```

Test Accuracy of LDA: 0.9354838709677419
Test Error of LDA: 0.06451612903225812

In [29]:

```
mat_LDA = confusion_matrix(y_test_drop, y_pred)
sns.set(font_scale = 1.5)
sns.heatmap(mat_LDA.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
plt.ylabel('true label')
plt.xlabel('true label')
plt.xlabel('predicted label')
target_names = ['0','1','2']
print(classification_report(y_test_drop, y_pred, target_names = target_names))
```

	precision	recall	f1-score	support
0	0.00	0.00	0.00	2
1	0.92	1.00	0.96	22
2	1.00	1.00	1.00	7
accuracy			0.94	31
macro avg	0.64	0.67	0.65	31
weighted avg	0.88	0.94	0.90	31

Xgboost

使用區分 AQI, PM25, CO_8hr, PM25AVG, PM10_AVG, SO2AVG 的資料

=> XGBoost 除了可以做分類也能進行迴歸連續性數值的預測,而且效果通常都不差。並透過 Boosting 技巧將許多弱決策樹集成在一起形成一個強的預測模型。

利用了二階梯度來對節點進行劃分 利用局部近似算法對分裂節點進行優化 在損失函數中加入了 L1/L2 項·控制模型的複雜度 提供 GPU 平行化運算

In [30]:

```
# # df_test=pd.DataFrame(X_test_drop[numerical_features])
# df_test['Status'] = y_test_drop
# pred = xgboostModel.predict(X_test_drop[numerical_features])
# df_test['Predict'] = pred
```

In [31]:

```
# sns.lmplot("AQI", "PM25", hue='Status', data = df_test, fit_reg=False, legend=False)
# plt.legend(title='target', loc='upper left', labels=['0', '1', '2'])
# plt.show()
```

In [32]:

```
# sns.lmplot("AQI", "PM25", hue="Predict", data = df_test, fit_reg=False, legend=False)
# plt.legend(title='target', loc='upper left', labels=['0', '1', '2'])
# plt.show()
```

In [33]:

Fitting 5 folds for each of 54 candidates, totalling 270 fits
Best parameters: {'colsample_bytree': 0.3, 'learning_rate': 0.01, 'max_depth': 3, 'n_estimators': 100}

In [34]:

```
xgboostModel = XGBClassifier(criterion="entropy", colsample_bytree=0.3, learning_rate=0.01, max_depth=3, n_estimators=100)
numerical_features = ["AQI", "PM25", "CO_8hr", "PM25AVG", "PM10_AVG", "S02AVG"]

xgboostModel.fit(X_train_drop[numerical_features], y_train_drop)
```

Out[34]:

XGBClassifier(colsample_bytree=0.3, criterion='entropy', learning_rate=0.01)

In [35]:

```
predicted = xgboostModel.predict(X_train_drop[numerical_features])
TA_XGB = xgboostModel.score(X_train_drop[numerical_features],y_train_drop)
print('Train Accuracy of xgboost: ', TA_XGB)
print('Train Error of xgboost:: ', 1 - TA_XGB)
```

Train Accuracy of xgboost: 1.0
Train Error of xgboost:: 0.0

In [36]:

```
clf_XGB = xgboostModel.score(X_test_drop[numerical_features],y_test_drop)
print("Test Accuracy of xgboost: ",clf_XGB)
print("Test Error of xgboost: ", 1 - clf_XGB)
```

Test Accuracy of xgboost: 0.9032258064516129
Test Error of xgboost: 0.09677419354838712

In [37]:

```
y_pred = xgboostModel.predict(X_test_drop[numerical_features])
mat_LDA = confusion_matrix(y_test_drop.values, y_pred)

sns.set(font_scale = 1.5)
sns.heatmap(mat_LDA.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
plt.ylabel('true label')
plt.xlabel('true label')
target_names = ['0','1','2']
print(classification_report(y_test_drop.values, y_pred, target_names = target_names))
```

support	f1-score	recall	precision	
2	0.00	0.00	0.00	0
22	0.94	1.00	0.88	1
7	0.92	0.86	1.00	2
31	0.90			accuracy
31	0.62	0.62	0.63	macro avg
31	0.87	0.90	0.85	weighted avg

Comparison

In [38]:

	Model Training	Accuracy	Error
0	LDA	0.967741935483871	0.032258064516129004
1	DecisionTree	1.0	0.0
2	Xgboost	1.0	0.0

In [39]:

	Model Testing	Accuracy	Error
0 1 2		0.9032258064516129 0.9354838709677419	0.09677419354838712 0.06451612903225812 0.09677419354838712

Type *Markdown* and LaTeX: α^2

Unsupervised learning

Clustering

KMeans 演算法

使用區分 AQI, PM25, CO_8hr, PM25AVG, PM10_AVG, SO2AVG 的資料

=> K-Means 演算法可以非常快速地完成分群任務·但是如果觀測值具有雜訊 (Noise)或者極端值·其分群結果容易被這些雜訊與極端值影響·適合處理分布集中的大型 樣本資料。

In [40]:

```
numerical_features = ["AQI", "PM25", "CO_8hr", "PM25AVG", "PM10_AVG", "SO2AVG"]

df_le_X = df_le.drop("Status",axis= 1)[numerical_features].values

# KMeans 演算法
kmeans_fit = cluster.KMeans(n_clusters = 3, random_state = 4).fit(df_le_X)

# 印出分群結果
cluster_labels = kmeans_fit.labels_
print("分群結果:")
print(cluster_labels)
print("---")
```

```
分群結果:
```

In [41]:

```
col_y = ['Status']
df_le_y = df_le[col_y]
print("真實狀態:")
print(df_le_y)
```

[155 rows x 1 columns]

In [42]:

```
v # 印出績效・我們使用 sklearn.metrics 的 silhouette_score() 方法・這個數值愈接近1 表示績效愈好・反之愈接近-1 表示績效愈差 silhouette_avg = metrics.silhouette_score(df_le_X, cluster_labels) print('silhouette_avg: ',silhouette_avg)
```

silhouette_avg: 0.46526360052382965

In [43]:

```
silhouette_avgs = []
ks = range(2, 11)
for k in ks:
    kmeans_fit = cluster.KMeans(n_clusters = k).fit(df_le_X)
    cluster_labels = kmeans_fit.labels_
    silhouette_avg = metrics.silhouette_score(df_le_X, cluster_labels)
    silhouette_avgs.append(silhouette_avg)

# 作圖並印出 k = 2 到 10
plt.bar(ks, silhouette_avgs)
plt.show()
print(silhouette_avgs)
```


[0.4475491003555782, 0.46526360052382965, 0.3711313328717566, 0.3802094019099495, 0.34489873677707583, 0.32731707562400353, 0.3211367137632005, 0.3153241197902054, 0.3044961759236349]

In [44]:

In [45]:

```
X_train_drop.shape, y_train_drop.shape
```

Out[45]:

```
((124, 6), (124,))
```

In [46]:

```
df_le2 = pd.DataFrame(X_train_drop)
df_le3 = df_le2.assign(Status=y_train_drop)
df_le3
```

Out[46]:

	AQI	PM25	CO_8hr	PM25AVG	PM10_AVG	SO2AVG	Status
3507302	31.0	12.0	0.3	10.0	15.0	1.0	2
3507780	41.0	15.0	0.3	13.0	22.0	1.0	2
3508282	70.0	21.0	0.4	23.0	42.0	2.0	1
3506783	81.0	20.0	0.5	28.0	37.0	3.0	1
3506787	65.0	13.0	0.4	21.0	34.0	2.0	1
3507126	60.0	19.0	0.4	19.0	26.0	1.0	1
3507632	53.0	19.0	0.4	16.0	25.0	1.0	1
3507944	43.0	16.0	0.3	13.0	21.0	1.0	2
3508278	45.0	16.0	0.3	14.0	26.0	1.0	2
3508117	84.0	29.0	0.5	29.0	47.0	3.0	1

124 rows × 7 columns

In [47]:

```
df_le4 = pd.DataFrame(X_test_drop)
df_le5 = df_le4.assign(Status=y_test_drop)
df_le5
```

Out[47]:

	AQI	PM25	CO_8hr	PM25AVG	PM10_AVG	SO2AVG	Status
3508120	60.0	21.0	0.4	19.0	29.0	1.0	1
3507786	56.0	20.0	0.3	18.0	24.0	2.0	1
3506954	65.0	22.0	0.4	21.0	32.0	2.0	1
3506811	42.0	11.0	0.3	13.0	24.0	1.0	2
3506786	55.0	11.0	0.3	17.0	25.0	1.0	1
3507454	80.0	24.0	0.3	27.0	37.0	3.0	1
3507945	46.0	15.0	0.3	14.0	25.0	1.0	2
3506625	76.0	21.0	0.6	26.0	42.0	1.0	1
3507109	40.0	10.0	0.3	12.0	19.0	1.0	2
3507781	50.0	18.0	0.3	15.0	18.0	1.0	2
3506802	67.0	17.0	0.5	22.0	35.0	1.0	1
3508115	65.0	27.0	0.6	21.0	35.0	2.0	1
3506781	60.0	11.0	0.3	19.0	33.0	1.0	1
3508284	46.0	13.0	0.3	14.0	36.0	1.0	2
3507279	55.0	10.0	0.4	17.0	25.0	2.0	1
3507105	58.0	12.0	0.3	18.0	21.0	1.0	1
3506785	102.0	30.0	0.5	36.0	58.0	3.0	0
3506606	82.0	21.0	0.4	28.0	50.0	3.0	1
3507110	61.0	17.0	0.3	19.0	25.0	2.0	1
3506612	84.0	22.0	0.5	29.0	47.0	2.0	1
3506945	44.0	9.0	0.3	14.0	23.0	1.0	2
3508113	55.0	21.0	0.3	17.0	33.0	1.0	1
3506607	111.0	31.0	0.5	40.0	70.0	4.0	0
3506603	67.0	16.0	0.4	22.0	40.0	1.0	1
3508135	56.0	17.0	0.6	18.0	33.0	1.0	1
3508448	62.0	16.0	0.4	20.0	39.0	2.0	1
3507111	62.0	20.0	0.3	20.0	23.0	1.0	1
3507950	36.0	18.0	0.3	11.0	20.0	1.0	2
3506948	72.0	19.0	0.4	24.0	32.0	3.0	1
3508464	63.0	20.0	0.5	20.0	41.0	1.0	1
3507625	57.0	14.0	0.5	18.0	27.0	2.0	1

```
In [48]:
```

```
kmeansModel.labels_
```

Out[48]:

```
array([0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 2, 2, 0])
```

In [49]:

```
kmeansModel.inertia_
```

Out[49]:

3283.0484343434346

In [50]:

```
kmeansModel.cluster_centers_
```

Out[50]:

```
array([[ 52.16666667, 14.88888889, 0.33888889, 16.27777778, 25.7222222, 1.2222222], [106.5, 30.5, 0.5, 38., 64., 3.5], [71.18181818, 20.45454545, 0.45454545, 23.63636364, 39.09090909, 1.90909091]])
```

In [51]:

```
sns.lmplot("AQI", "PM25", hue='Status', data=df_le5, fit_reg=False, legend=False)
plt.show()
```


In [52]:

```
df_le5['Predict']=y_pred
sns.lmplot("AQI", "PM25", hue="Predict", data=df_le5 , fit_reg=False, legend=False)
plt.scatter(kmeansModel.cluster_centers_[:, 0], kmeansModel.cluster_centers_[:, 1], s=200,c="r",marker='*')
plt.show()
```


Dimension Reduction

PCA vs LDA

使用區分 AQI, PM25, CO_8hr, PM25AVG, PM10_AVG, SO2AVG 的資料

=> PCA:

為一種統計分析、簡化數據集的方法,利用正交變換來對一系列可能相關的變數的觀測值進行線性變換,從而投影為一系列線性不相關變數的值,這些不相關變數稱為主成分(Principal Components)。

將座標軸中心移至數據集的中心·利用旋轉座標軸·使數據在C1軸的變異數最大·以保留更多信息·C1即為第一主成分。 找一個與C1主成分的共變異數為0的C2主成分·以避免信息重疊。

主成分分析經常用於減少數據集的維數,同時保留數據集當中對變異數貢獻最大的特徵。

傷點

以變異數為衡量信息量的指標‧不受數據集以外的因素影響。 用正交轉換方式‧可消除數據成分間相互影響的因素。

缺點

主成分間的特徵維度較難解釋。容易捨棄一些也帶有信息量的特徵、分析結果可能會受影響。

In [53]:

```
col_X = ['AQI', 'PM25', 'CO_8hr', 'PM25AVG', 'PM10_AVG', 'S02AVG']
df_le_X = df_le[col_X].astype(float)
df_le_X = df_le_X.values

col_y = ['Status']
df_le_y = df_le[col_y].astype(float)
df_le_y = df_le_y.values

X_scale = StandardScaler().fit_transform(df_le_X)
```

In [54]:

```
pca = PCA(n_components=2)
lda = LDA(n_components=2)

plt.figure(figsize=(16,8))

plt.subplot(1, 3, 1, aspect=1)
pca.fit(X_scale, df_le_y)
X_embedded = pca.transform(X_scale)
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=df_le_y, cmap='Set1')
plt.title(f'PCA')

plt.subplot(1, 3, 2, aspect=1)
lda.fit(X_scale, df_le_y)
X_embedded = lda.transform(X_scale)
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=df_le_y, cmap='Set1')
plt.title(f'LDA')
plt.show()
```


PCA後對LDA、Decision Tree、Xgboost做分類並畫 decision regions

In [55]:

```
# Initializing Classifiers

clf1 = LDA()

clf2 = DecisionTreeClassifier(max_depth=4, random_state=4)

clf3 = XGBClassifier(colsample_bytree=0.3, learning_rate=0.01, max_depth=3, n_estimators=100)
```

In [56]:

X_train_drop[numerical_features]

Out[56]:

	AQI	PM25	CO_8hr	PM25AVG	PM10_AVG	SO2AVG
3507302	31.0	12.0	0.3	10.0	15.0	1.0
3507780	41.0	15.0	0.3	13.0	22.0	1.0
3508282	70.0	21.0	0.4	23.0	42.0	2.0
3506783	81.0	20.0	0.5	28.0	37.0	3.0
3506787	65.0	13.0	0.4	21.0	34.0	2.0
3507126	60.0	19.0	0.4	19.0	26.0	1.0
3507632	53.0	19.0	0.4	16.0	25.0	1.0
3507944	43.0	16.0	0.3	13.0	21.0	1.0
3508278	45.0	16.0	0.3	14.0	26.0	1.0
3508117	84.0	29.0	0.5	29.0	47.0	3.0

124 rows × 6 columns

In [57]:

```
import matplotlib.pyplot as plt
from mlxtend.plotting import plot_decision_regions
\dot{\text{import}}\ \text{matplotlib.gr\"{id}spec}\ \textbf{as}\ \text{gr\"{id}spec}
import itertools
pca = PCA(n_components=2, iterated_power=1)
train_reduced = pca.fit_transform(X_train_drop[numerical_features])
test_reduced = pca.transform(X_test_drop[numerical_features])
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10,10))
labels = ['LDA', 'Decision Tree', 'Xgboost']
for clf, lab, grd in zip([clf1, clf2, clf3],
                          labels,
                          itertools.product([0, 1], repeat=2)):
    clf.fit(train_reduced, y_train_drop)
    predicted = clf.predict(train_reduced)
    TA_clf = clf.score(train_reduced,y_train_drop)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=train_reduced, y=y_train_drop.values, clf=clf, legend=2)
    plt.title(lab)
    print(clf,'Train Accuracy:', TA_clf)
plt.show()
```

LinearDiscriminantAnalysis() Train Accuracy: 0.9758064516129032

DecisionTreeClassifier(max_depth=4, random_state=4) Train Accuracy: 1.0

XGBClassifier(colsample_bytree=0.3, learning_rate=0.01) Train Accuracy: 0.9838709677419355

In [58]:

