Appello del 7/2/2001

Nome:	COGNOME:

- 1) a) Quanti sono gli anagrammi della parola NUMERO che non finiscono per RO?
 - b) Quanti sono gli anagrammi della parola NUMERO in cui le vocali si alternano alle consonanti?
 - c) Risolvere lo stesso quesito del punto b) per la parola ALFANUMERICA.
- 2) a) Calcolare $\lim_{x\to 0+} \arctan(e^{\frac{1}{x}} tgx)$;

b) calcolare
$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{\frac{1}{x^2}}$$
.

- 3) Data la funzione $f(x) = \ln\left(\frac{\ln x}{x}\right)$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) l'insieme immagine della f(x);
 - (f) il grafico (approssimativo) della funzione.
- 4) Calcolare $\int \cos x \ln(\cos x) dx$.

Appello del 21/2/2001

Nome:	COGNOME:

- 1) Determinare i punti di massimo e minimo assoluto e relativo della funzione $h(x) = \arctan\left(\frac{e^x}{x}\right)$ sull'intervallo [1/2, 2].
- 2) a) Calcolare $\lim_{x \to +\infty} \left[x(1-\cos\frac{1}{x}) + \frac{2^x + \sin x}{3^x 2^x} \right];$
 - b) Omesso.
- 3) Data la funzione $f(x) = \frac{x}{x-2}e^{\frac{x-2}{x}}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x);
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) l'insieme immagine della f(x);
 - (f) il grafico (approssimativo) della funzione.
- 4) (a) Calcolare $\int_{0}^{e-1} \frac{\ln(x+1)}{(x+1)^2} dx;$ (b) calcolare, se esiste, $\int_{0}^{+\infty} \frac{\ln(x+1)}{(x+1)^2} dx.$

Appello del 20/6/2001

Nome:	COGNOME:

- 1) Trovare il campo di esistenza della funzione $f(x) = \sqrt{\frac{4x-1-|2-x|}{x^2+2x-3}}$.
- 2) (a) Calcolare $\lim_{x \to +\infty} \frac{4^x x^x}{(\ln x)^x + \cos x}$;
 - (b) calcolare $\lim_{x\to 0} \frac{(\sin\frac{x}{3})^2}{x^2 + 3x^3 \sqrt{x}}.$
- 3) Data la funzione $f(x) = \arctan gx + \frac{x}{x^2 1}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) Calcolare, in dipendenza dal parametro reale k, $\int \frac{kx+1}{x^2+k} dx$

Appello dell' 11/9/2001

Nome:	COGNOME:

- 1) Da un mazzo di 52 carte di 4 semi diversi (quadri, cuori, fiori, picche), con 13 carte per ciascun seme, si estraggono a caso e simultaneamente 5 carte. In quanti modi diversi accade che:
 - (a) Fra le 5 carte ci sono almeno 4 fiori?
 - (b) Fra le 5 carte sono presenti tutti i quattro semi?
- 2) (a) Calcolare $\lim_{x \to +\infty} \left[(e^{-x} + 1) \frac{x^2 + 3\ln x + \sin x}{2x^2 x\sqrt{x} + 1} \right];$
 - (b) data la funzione $h(x) = \left(\frac{1}{x}\right)^x$, determinarne gli intervalli di crescenza e decrescenza e l'equazione dell'approssimante lineare in $x_0 = 1$.
- 3) Data la funzione $f(x) = x 2 \sqrt{2x-2}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) $\lim_{x\to +\infty} f(x)$;
 - (c) l'insieme delle determinazioni di x per cui f(x) è non negativa;
 - (d) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (e) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (f) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \int \frac{x-1}{4x^3 x} dx$. Stabilire inoltre se esiste $\int_{1}^{+\infty} \frac{x-1}{4x^3 x} dx$.

Appello del 20/9/2001

Nome:	COGNOME:

- 1) Data la funzione $h(x) = \ln(\arcsin(x^2 3))$, determinarne
 - (a) il campo di esistenza;
 - (b) gli eventuali punti di massimo o minimo.

2) Calcolare
$$\lim_{x \to 0+} \frac{(2x^{-2} + 2^{\frac{1}{x}}) \sec 2x}{x^{\frac{1}{x}}}$$
, $\lim_{x \to 0-} \frac{(2x^{-2} + 2^{\frac{1}{x}}) \sec 2x}{x^{\frac{1}{x}}}$.

- 3) Data la funzione $f(x) = \frac{1-x}{x} + \ln x$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to +\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x) e gli eventuali massimi o minimi relativi;
 - (d) gli intervalli di concavità o convessità di f(x) e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) (a) Calcolare $J = \int x^2 (\ln x)^3 dx$;
 - (b) stabilire se esiste $\int_{2}^{+\infty} \frac{dx}{x^3 \ln x + 1}.$

Appello dell' 8/1/2002

Nome:	COGNOME:

- 1) (a) Quanti sono i numeri di 7 cifre maggiori di 5.000.000 che si possono formare utilizzando le cifre 1, 2, 3, 4, 5, 6, 7 ciascuna una e una sola volta?
- (b) Quanti sono i numeri di 7 cifre che si possono formare con le sole cifre 3 o 4 (ciascuna delle quali può comparire da 0 a 7 volte)?
- (c) Quanti sono i numeri di 7 cifre che si possono formare con le cifre 3, 4, 5 e in cui il 5 compare al più 2 volte (il 5 può comparire da 0 a 2 volte, sia il 3 che il 4 da 0 a 7 volte)?
- 1) (a) Calcolare $\lim_{x\to 0} \frac{x \operatorname{sen} x}{4 \operatorname{sen}(2x^2)}$;
 - (b) calcolare $\lim_{x \to \infty} \left(\frac{x-1}{x+1} \right)^x$.
- 2) Data la funzione $f(x) = x^2 e^{\frac{x-1}{x}}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) l'insieme immagine della funzione;
 - (f) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \iint_T (x + e^{x+y}) dx dy$, essendo T il trapezio di vertici (-2,0), (2,0), (1,1), (-1,1).
- 4') [Sostituisce 4) per chi presenta il programma dell'a.a. 2000-01] Calcolare $J = \int sen \ln x dx$.

Appello del 22/1/2002

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $g(x) = \sqrt{\ln \frac{x-1}{x^2 + 2x 3}}$; determinare inoltre eventuali estremi assoluti o relativi di g(x).
- 2) (a) Calcolare $\lim_{x \to 0} \left(\frac{1+x}{x^2} \cdot \ln \frac{x^2}{1+x} \right)$;
 - (b) calcolare $\lim_{x\to 0} \frac{\ln \cos x}{1-\cos x+x^2\sqrt{x}}$.
- 3) Data la funzione $f(x) = \ln \sqrt{x-1} + \arcsin(1-x)$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) negli estremi del campo di esistenza;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \int x^2 \cos^3 x^3 dx$.

Appello dell' 8/2/2002

No	me:	COGNOME:
1) (Omesso	
	$(1,1)^{x}$	
2)	(a) Calcolare $\lim_{x \to -\infty} \left(\frac{1}{2} + \frac{1}{x} \right)^x$;	
	(b) calcolare $J = \iint_{\mathbb{R}} (y+1)dxdy$, essendo T is	l triangolo di vertici (0,0), (2,0), (1,1).
	T	

- 3) Data la funzione $f(x) = x^2 + 2 \ln|x|$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali punti di massimo o minimo, gli estremi inferiore e superiore;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \int \frac{dx}{x^2(x-2)}$.

Appello del 19/4/2002

Nome:	COGNOME:

- 1) Il codice di una carta di credito telefonica è formato da una sequenza di 8 caselle, ciascuna delle quali può essere riempita con una delle cifre 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Calcolare quanti sono i possibili codici diversi:
 - (a) sapendo che nel codice la cifra 4 compare esattamente 2 volte, in caselle non consecutive, e che le altre caselle sono riempite da cifre dispari;
 - (b) sapendo, oltre a quanto descritto in (a), che fra le cifre dispari il 9 compare in 3 o 4 caselle.
- 2) (a) *Omesso*;
 - (b) calcolare $\lim_{x\to 0} \frac{x+\ln(1-x)}{x\ln(1-x)}$.
- 3) Data la funzione $f(x) = \frac{x^3}{x+3}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) (a) Calcolare $J = \int \frac{dx}{x^3(1+x)}$;
 - (b) stabilire se esistono $\int_{0}^{1/2} \frac{dx}{x^{3}(1+x)}, \int_{-1}^{-1/2} \frac{dx}{x^{3}(1+x)}$.

Appello del 6/6/2002

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $g(x) = \sqrt{\frac{\ln(x+1)}{(x+3)(x^2-4x+3)}}$.
- 2) (a) Calcolare $\lim_{x \to +\infty} \frac{-x^2 e^{-x}}{(1+e^{-x})(\sin x 3)}$;
 - (b) Determinare l'area della regione $S = \{(x,y): 0 \le x \le 1, e^{-x} \le y \le e^{2x}\}.$
- 3) Data la funzione $f(x) = \frac{2x}{6-x^2}$, determinare:
 - a) il campo di esistenza di f(x);
 - b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to\infty} f(x)$, $\lim_{x\to\infty} f(x)$;
 - c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi, sup f, inf f;
 - d) gli intervalli di convessità e concavità e gli eventuali punti di flesso di f(x);
 - e) il grafico approssimativo di f(x).
- 4) Calcolare $J = \int \frac{dx}{x(1-(\ln x)^3)}$.

Appello del 21/6/2002

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $g(x) = \ln \frac{2x \sqrt{x} 1}{(x 2)\ln(x + 3)}$.
- 2) (a) Calcolare $\lim_{x \to 1} x^{\frac{1}{1-x}}$;
 - (b) calcolare $\lim_{x\to 0} \frac{\ln(1+x^2+x^4)}{x(e^x-1)}$.
- 3) Data la funzione $f(x) = \frac{3}{x} \frac{1}{1 3^x}$, determinare:
 - a) il campo di esistenza di f(x);
 - b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$;
 - c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi, sup f, inf f;
 - d) calcolare $I = \int_{1}^{2} f(x)dx$.
- 4) Data la funzione $h(x,y) = \begin{cases} x & se \quad (x,y) \in T_1 \\ \frac{1}{1+y^2} & se \quad (x,y) \in T_2 \end{cases}$

essendo T_1 il triangolo di vertici (-1,0), (0,0), (0,1), T_2 il trapezio di vertici (0,0), (2,0), (1,1), (0,1), posto $D = T_1 \cup T_2$, calcolare $J = \iint\limits_D h(x,y) dx dy$

Appello del 9/7/2002

Nome:	COGNOME:

- 1) Omesso.
- 2) (a) Calcolare $\lim_{x \to +\infty} \frac{x^3 x \ln x + \sec x \cos x}{2x^3 e^{-x} + x\sqrt{x} + x^3 \ln x};$
 - (b) calcolare $\lim_{x\to 0} \frac{(1-e^x)(tgx+2)}{\operatorname{sen} x}$.
- 3) Data la funzione $f(x) = \ln \frac{e^{2x} 1}{2e^x} 2x$, determinare:
 - a) il campo di esistenza di f(x);
 - b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to a} f(x)$;
 - c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi, sup f, inf f;
 - d) gli intervalli di convessità e concavità e gli eventuali punti di flesso di f(x);
 - e) il grafico approssimativo di f(x).
- 4) (a) Calcolare $J = \int \frac{x^4 + x^2 + 1}{x^2 1} dx$;
 - (b) stabilire se esistono $\int_{0}^{1} \frac{x^4 + x^2 + 1}{x^2 1} dx$, $\int_{1}^{+\infty} \frac{x^4 + x^2 + 1}{x^2 1} dx$.

Appello del 18/9/2002

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $g(x) = \arcsin[\ln \frac{x-2}{e+2ex}]$.
- 2) (a) Da un'urna contenente 8 palline rosse e 12 palline blu si estraggono simultaneamente 9 palline. In quanti modi diversi è possibile ottenere un'estrazione in cui esattamente 6 palline sono rosse?

(b) Calcolare
$$\lim_{x \to 0+} \left(\frac{\ln(1+x)^{1+x}}{x^2} - \frac{1}{x} \right)$$
.

- 3) Data la funzione $f(x) = \frac{e^x}{x^2 8}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi, sup f, inf f;
 - (d) il grafico approssimativo di f(x).
- 4) Dato $D = \{(x,y): 0 \le y \le \sqrt{x}, y \ge 2x 1\},\$
 - (a) calcolare l'area di D;
 - (b) calcolare $J = \iint_D y dx dy$.

Appello del 14/1/2004

No	me: COGNOME:
===	
1)	(a) <i>Omesso</i> (b) Calcolare $\lim_{x\to 0} (\sec x + \cos x)^{\frac{1}{x}}$.
2)	(a) Risolvere la disequazione $\frac{1}{2x} + 2x-1 < 2$;
	(b) Calcolare $\lim_{x\to 0} \frac{1-\cos 2x}{\sin^2 3x}$.
3)	 Data la funzione f(x) = (x - 1) · e x/(x-1), determinare: a) il campo di esistenza di f(x); b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque lim f(x), lim f(x); c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi o assoluti; d) gli intervalli di convessità e concavità e gli eventuali punti di flesso di f(x); e) il grafico approssimativo di f(x).
4)	Calcolare $J = \int e^x \cdot \arctan(e^x + 1) dx$.

Appello del 2/2/2004

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $h(x) = \sqrt{\ln(x \sqrt{x+1})} + \sqrt{e^x e^{\frac{3}{x+1}}}$.
- 2) (a) Calcolare $\lim_{n \to +\infty} \frac{(n+1)^6 (n-1)^6}{(n+1)^5 + (n-1)^5}$;
 - (b) calcolare $\lim_{x\to 0} \frac{(1-\cos(x+\sin x))\ln(x+2)}{(x+\sin x)^2\cos x} .$
- 3) Data la funzione $f(x) = \arctan \frac{x}{x+1} x$, determinare:
 - a) il campo di esistenza di f(x);
 - b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi o assoluti;
 - d) gli intervalli di convessità e concavità e gli eventuali punti di flesso di f(x);
 - e) il grafico approssimativo di f(x).
- 4) Calcolare $J = \iint_D (xy^2 + x^2y + 6) dxdy$, essendo D il quadrato di vertici (0,0), (1,1), (0,2), (-1,1).

Appello del 16/2/2004

Nome:	COGNOME:

1) Omesso

2) (a) Calcolare
$$\lim_{x \to +\infty} \left[\frac{\ln(x^2 + 1)}{\ln(x^2 - 1)} + \frac{-2^x + 3^x + 1}{-2^{-x} + 3^x - x} \right];$$

(b) calcolare
$$\lim_{x\to 0+} \frac{x^{\text{sen}x}-1}{x}$$
.

- 3) Data la funzione $f(x) = \ln \frac{1-x}{2+x}$, determinare:
 - a) il campo di esistenza di f(x);
 - b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso;
 - c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi o assoluti;
 - d) gli intervalli di convessità e concavità e gli eventuali punti di flesso di f(x);
 - e) i punti di annullamento di f(x);
 - f) il grafico approssimativo di f(x).
- 4) Calcolare $J = \int \frac{dx}{x^2(2+x)^2}$, e stabilire se esiste $\int_1^{+\infty} \frac{dx}{x^2(2+x)^2}$.

Appello del 3/6/2004

Nome:	COGNOME:
	

- 1) Determinare il campo di esistenza della funzione $h(x) = \sqrt{\frac{(e^{3x} e^{x^2 + 2})(x \sqrt{2})}{(e e^{\frac{1}{x}})(\pi/4 x)}}$.
- 2) Un codice è formato da 5 caselle, ciascuna delle quali può essere riempita con una cifra da 0 a 9.
 - (a) Quanti sono i codici in cui compaiono sia la cifra '8' che la cifra '2', e nessun'altra cifra (come, ad esempio, 82882, 22282, ecc.)?
 - (b) Quanti sono i codici formati da esattamente due cifre diverse?
 - (c) Volendo utilizzare solo codici in cui compaiono almeno 3 cifre diverse, quanti sono i possibili codici?
- 3) Data la funzione $f(x) = \ln(\ln \frac{x^2 + 1}{x})$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli zeri di f(x) e il suo insieme immagine;
 - (e) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \iint_D ye^x dxdy$, essendo D il trapezio di vertici (0,0), (1,1), (-2,1), (-1,0).

Appello del 21/6/2004

Nome:	COGNOME:

- 1) Determinare il campo di esistenza della funzione $h(x) = \frac{x \frac{1}{2}}{\ln(1 3\ln x)}$.
- 2) (a) Calcolare $\lim_{x \to +\infty} \left[\frac{\ln(3 + senx)}{x} + \frac{x \sqrt{x}}{3^x} \right];$ (b) calcolare $\lim_{x \to \frac{\pi}{2}} \left[tgx(e^{\cos x} 1) \right].$
- 3) Data la funzione $f(x) = \frac{x}{x-1}e^{-x}$ determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to 0} f(x)$, $\lim_{x\to 0} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \iint_D \cos(x + y) dxdy$, essendo D il quadrilatero di vertici (-1,0), (1,0), (1,1), (0,2).

Appello del 12/7/2004

No	ome: COGNOME:
1)	Omesso
2)	(a) Data la funzione $g(x) = \frac{\sqrt{x + \sqrt{x}}}{x^2 + 1}$, calcolarne la derivata prima nel punto $x_0 = 1$;
	(b) calcolare $\lim_{x \to 0} \frac{e^{senx} - e^{x^2}}{x^2 \cos x}$.
3)	Data la funzione $f(x) = \frac{2x}{6-x^2}$, determinare:

- (a) il campo di esistenza di f(x);
- (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
- (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
- (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
- (e) il grafico (approssimativo) della funzione.
- 4) Calcolare $J = \int x arctg \frac{x}{x+1} dx$.

Appello del 14/2/2006

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di h(x) = $\sqrt{\frac{x^2 + 1 |x + 2|}{x 1 \sqrt{x^2 1}}}$
- 2) (a) Omesso

(b) Calcolare
$$\lim_{x\to 0+} \frac{x\sqrt{x}arctg\frac{1}{x}}{(x+\sqrt{x})\ln(x+1)}$$
.

- 3) Data la funzione $f(x) = \frac{1 + e^{-x^2}}{x^3}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), e gli eventuali punti di massimo o minimo;
 - (d) gli intervalli di concavità o convessità e gli eventuali punti di flesso;
 - (e) il grafico (approssimativo) della funzione.

4) Calcolare
$$J = \int \frac{\sqrt{2x+1}}{4x+6-2\sqrt{2x+1}} dx.$$

Appello del 29/1/2008

Nome:	COGNOME:

- 1) Determinare il campo di esistenza di $g(x) = \sqrt{\frac{(2x)^x 1}{(1 x)(3 2x \sqrt{x})}}$.
- 2) (a) Calcolare $\lim_{x\to 2^-} \frac{\arccos(x-1)}{\sqrt{16-x^4}}$.
 - (b) Omesso.
- 3) Data la funzione $f(x) = \ln \frac{x}{x+1} \frac{x-1}{x^2}$, determinare:
 - (a) il campo di esistenza di f(x);
 - (b) i limiti di f(x) nei punti di accumulazione del campo di esistenza non appartenenti ad esso, e comunque $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$;
 - (c) gli intervalli di crescenza o decrescenza di f(x), gli eventuali massimi o minimi relativi, sup f, inf f;
 - (d) il grafico (approssimativo) della funzione.
- 4) Omesso.