Module 21.1 Neural Autoregressive Density Estimator (NADE)

- So far we have seen a few latent variable generation models such as RBMs and VAEs
- Latent variable models make certain independence assumptions which reduces the number of factors and in turn the number of parameters in the model
- For example, in RBMs we assumed that the visible variables were independent given the hidden variables which allowed us to do Block Gibbs Sampling
- Similarly in VAEs we assumed $P(\mathbf{x}|z) = \mathcal{N}(0, I)$ which effectively means that given the latent variables, the \mathbf{x} 's are independent of each other (Since $\Sigma = I$)

- We will now look at Autoregressive (AR) Models which do not contain any latent variables
- The aim of course is to learn a joint distribution over **x**
- As usual, for ease of illustration we will assume $\mathbf{x} \in \{0,1\}^n$
- AR models do not make any independence assumption but use the default factorization of $p(\mathbf{x})$ given by the chain rule $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{< k})$
- The above factorization contains n factors and some of these factors contain many parameters ($O(2^n)$ in total)

- Obviously, it is infeasible to learn such an exponential number of parameters
- AR models work around this by using a neural network to parameterize these factors and then learn the parameters of this neural network
- What does this mean? Let us see!

- At the output layer we want to predict n conditional probability distributions (each corresponding to one of the factors in our joint distribution)
- At the input layer we are given the n input variables
- Now the catch is that the n^{th} output should only be connected to the previous n-1 inputs
- In particular, when we are computing $p(x_3|x_2,x_1)$ the only inputs that we should consider are x_1 , x_2 because these are the only variables given to us while computing the conditional

- The Neural Autoregressive Density Estimator (NADE) proposes a simple solution for this
- First for every output unit, we compute a hidden representation using only the relevant input units
- For example, for the k^{th} output unit, the hidden representation will be computed using:

$$h_k = \sigma(W_{.,< k} \mathbf{x}_{< k} + b)$$

where $h_k \in \mathbb{R}^d$, $W \in \mathbb{R}^{d \times n}$, $W_{... < k}$ are the first k columns of W

• We now compute the output $p(x_k|\mathbf{x}_1^{k-1})$ as:

$$y_k = p(x_k|\mathbf{x}_1^{k-1}) = \sigma(V_k h_k + c_k)$$

• Let us look at the equations carefully

$$h_k = \sigma(W_{.,< k} \mathbf{x}_{< k} + b)$$
$$y_k = p(x_k | \mathbf{x}_1^{k-1}) = \sigma(V_k h_k + c_k)$$

- How many parameters does this model have?
- Note that $W \in \mathbb{R}^{d \times n}$ and $b \in \mathbb{R}^{d \times 1}$ are shared parameters and the same W, b are used for computing h_k for all the *n* factors (of course only the relevant columns of W are used for each k)
- In addition, we have $V_k \in \mathbb{R}^{d \times 1}$ and $c_k^{(d)}$ for each of the n factors resulting in a total of $n*(d+ \not l)$ parameters

- There is also an additional parameter $h_1 \in \mathbb{R}^d$ (similar to the initial state in LSTMs, RNNs)
- The total number of parameters in the model is thus (n+1)d + 2n(d) + d = (3n+2)d which is linear in n
- In other words, the model does not have an exponential number of parameters which is typically the case for the default factorization

- There is also an additional parameter $h_1 \in \mathbb{R}^d$ (similar to the initial state in LSTMs, RNNs)
- The total number of parameters in the model is thus (n+1)d + 2n(d) + d = (3n+2)d which is linear in n
- In other words, the model does not have an exponential number of parameters which is typically the case for the default factorization

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{< k})$$

- Why? Because we are sharing the parameters across the factors
- The same W, b contribute to all the factors

- How will you train such a network? backpropagation: it's a neural network after all
- What is the loss function that you will choose?
- For every output node we know the true probability distribution
- For example, for a given training instance, if $\mathbf{x}_3 = 1$ then the true probability distribution is given by $p(\mathbf{x}_3 = 1 | x_2, x_1) = 1, p(\mathbf{x}_3 = 1)$ $0|x_2,x_1)=0 \text{ or } p=[0,1]$
- If the predicted distribution is q = [0.7, 0.3]then we can just take the cross entropy between p and q as the loss function
- The total loss will be the sum of this cross entropy loss for all the n output nodes

- Now let's ask a couple of questions about the model (assume training is done)
- Can the model be used for abstraction? i.e. if we give it a test instance \mathbf{x} , can the model give us a hidden abstract representation for \mathbf{x}
- Well, you will get a sequence of hidden representations $h_1, h_2, ..., h_n$ but these are not really the kind of abstract representations that we are interested in
- For example, h_n only captures the information required to reconstruct x_n given x_1 to x_{n-1} (compare this with an autoencoder wherein the hidden representation can reconstruct all of $x_1, x_2, ..., x_n$)
- These are not latent variable models and are by design not meant for abstraction

- Can we use the model for generation? How?
- Well, we first compute $p(\mathbf{x}_1 = 1)$ as $y_1 = \sigma(V_1h_1 + c_1) = 0.4$

• We will now use the sampled value of x_1 and compute h_2 as $h_2 = \sigma(W_{.,<2}\mathbf{x}_{<2} + b)$

- We will now use the sampled value of x_1 and compute h_2 as $h_2 = \sigma(W_{..<2}\mathbf{x}_{<2} + b)$
- Using h_2 we will compute $P(\mathbf{x}_2 = 1 | \mathbf{x}_1 = x_1)$ as $y_2 = \sigma(V_2 h_2 + c_2)$
- We will then sample a value for x_2 from the distribution $Bernoulli(y_2)$
- We will then continue this process till x_n generating the value of one random variable at a time
- If x is an image then this is equivalent to generating the image one pixel at a time (very slow)

• Of course, the model requires a lot of computations because for generating each pixel we need to compute

$$h_k = \sigma(W_{.,< k} \mathbf{x}_{< k} + b)$$
$$y_k = p(x_k | \mathbf{x}_1^{k-1}) = \sigma(V_k h_k + c_k)$$

However notice that

$$W_{.,< k+1} \mathbf{x}_{< k+1} + b = W_{.,< k} \mathbf{x}_{< k} + b + W_{k+1}$$

• Thus we can reuse some of the computations done for pixel k while predicting the pixel k+1 (this can be done even at training time)

Things to remember about NADE

- Uses the explicit representation of the joint distribution $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{< k})$
- Each node in the output layer corresponds to one factor in this explicit representation
- Reduces the number of parameters by sharing weights in the neural network
- Not designed for abstraction
- Generation is slow because the model generates one pixel (or one random variable) at a time
- Possible to speed up the computation by reusing some previous computations