

Information Security

Information security within an organization have undergone two major changes in last decades.

Computer Security:

The generic name for the collection of tools designed to protect data and to thwart hackers is computer security.

Network Security:

Measures that are needed to protect data during transmission.

The OSI Security Architecture

The OSI (Open Systems Interconnection) security architecture provides a systematic framework for defining security attacks, mechanisms and services.

Mainly 3 aspects for Information Security:

- ✓ Security Attack
- ✓ Security Mechanisms
- ✓ Security Services

Security Attack: Any action that compromises the security of information owned by an organization.

Security Mechanisms: A process that is designed to detect, prevent, or recover from security attack.

Security Services: A communication service that enhances the security of the data processing systems and the information transfers of an organization.

Attack:

Any action that compromises the security of information owned by an organization.

Threat:

Threat is a possible danger that might exploit a valuerability.

Security Attacks

3% Grystal Graphics

Security Attacks

message

Passive Attacks

Passive attacks do not involve any modification to the contents of an original message.

- ✓ Release of contents
- ✓ Traffic analysis

Active Attacks

In Active attacks, the contents of the original message are modified in some way.

- ✓ Masquerade
- ✓ Replay
- ✓ Modification of messages
- ✓ Denial Of Service (DOS)

Passive Attacks

Release of message contents

St. Crystal Graphics

Passive Attacks

Traffic analysis

3% Grystal Graphics

Masquerade

% Crystal Graphics

Replay

3% Crystal Graphics

3% Crystal Graphics

Crystal Graphics

Modification of messages

Denial Of Service

% Crystal Graphics

- ✓ Confidentiality
- ✓ Authentication
- ✓ Integrity
- ✓ Non-Repudiation
- ✓ Access Control
- ✓ Availability

Confidentiality:

3. Grystal Graphics

Protection of the data from unauthorized disclosure.

Loss of Confidentiality

Authentication:

3. Grystal Graphics

The assurance that the communicating entity is the one that

it claims to be.

System A

Absence of Authentication

Integrity:

% Crystal Graphics

The assurance that data received are exactly as sent by an authorized entity.

Non-Repudiation:

Provision whereby the sender of a message cannot refuse having sent it and receiver of a message cannot refuse having received it.

System A

I never sent that message, which you claim to have received

System B

Establishing non-repudiation

Access Control:

Crystal Graphics

The prevention of unauthorized use of a resource.

Availability:

3. Grystal Graphics

The principle of availability states that resources should be available to authorized parties at all times.

Attack on Availability

% Crystal Graphics

A model for network security

CLASSICAL ENCRYPTION TECHNIQUES

Many schemes used for encryption constitute the area of study known as **cryptography**.

Such a scheme is known as cryptographic system.

Techniques used for deciphering a message without any knowledge of the enciphering details fall into the area of **cryptanalysis**.

The areas of cryptography and cryptanalysis together are called **cryptology**.

% Crystal Graphics

Symmetric cipher model

Simplified model of conventional encryption

Symmetric cipher model

A symmetric encryption scheme has 5 ingredients:

Plain text: Original intelligible message or data.

Encryption algorithm: The encryption algorithm performs various substitution & transformations on the plaintext.

Secret key: The algorithm will produce a different output depending on the specific key being used at the time.

Cipher text: Coded message produced as output.

Decryption algorithm: Essentially the encryption algorithm run in reverse.

Symmetric cipher model

2 requirements for secure use of conventional encryption:

- Strong encryption algorithm(Opponent should not find the key)
- 2) Sender and receiver must have obtained copies of the secret key in a secure fashion.

Encryption: Y = E(K, X)

Decryption: X = D(K, Y)

Cryptographic systems categorized in 3 dimensions:

Substitution: Each element mapped into another

Transposition: Elements are rearranged

Symmetric: If both sender & receiver use the same key, system referred to as symmetric.

Asymmetric: If both sender & receiver use the different key, system referred to as asymmetric.

Block cipher: Producing an output block for each input block.

Stream cipher: Processes the input elements continuously producing output 1 element at a time.

Cryptanalysis:

Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of general characters of the plaintext.

Brute Force Attack:

Attacker tries every possible key on a piece of cipher text until plaintext is obtained.

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/μs		Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{years}$	$5.4 \times 10^{18} \mathrm{years}$
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{years}$	$5.9 \times 10^{30} \mathrm{years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{years}$	$6.4 \times 10^6 \text{ years}$

Unconditionally Secure: If cipher text generated by the scheme does not contain enough information to determine uniquely the corresponding plaintext, no matter how much cipher text is available.

Computationally Secure: If either of these two criteria are met.

- 1) The cost of breaking the cipher exceeds the value of the encrypted information.
- 2) The time required to break the cipher exceeds the useful lifetime of the information.

M. Crystal Graphics

Classical encryption techniques

Substitution Technique:

In which the letters of In which the letters of plaintext are replaced by plaintext other letters.

- ✓ Caesar cipher
- ✓ Monoalphabetic cipher
- ✓ Playfair cipher
- ✓ Hill cipher
- ✓ Polyalphabetic cipher

Transposition Technique:

are rearranged.

- ✓ Rail Fence
- **✓** Columnar

Steganography

- An alternative to encryption
- Hides existence of message

Various techniques:

- 1) Character marking: Letters overwritten in pencil Letters are visible unless the paper is held at an angle to bright light.
- 2) Invisible ink: No of substances can be used for writing but leave no visible trace until heat or some chemical is applied to the paper.

Steganography

- 3) Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the paper is held up in front of a light.
- **4) Typewriter correction ribbon:** Used between lines typed with a black ribbon, the result of tying with the correction type are visible only under a strong light.

Drawback: Lot of overhead to hide few bit information