Statistics for Data Science-2 Week 11 Solve with us

Table of contents

Week 11 Solve with us

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

- 1. In the past the standard deviation of weights (in grams) of salt packages filled by a machine was 40. To decrease the standard deviation of weights, a new machine is introduced. A random sample of 25 packages from the new machine showed a standard deviation of 32. Based on this data, what is your conclusion, at a significance level of 0.05, on the standard deviation of weights of salt packages filled by the new machine? (Use $F_{\chi_{24}^{-1}}(0.05) = 13.85$)
 - (a) Standard deviation of weights is 40.
 - (b) Standard deviation of weights is less than 40.

As per given information, the null and alternative hypothesis are given by

$$H_0: \sigma = 40, \quad H_A: \sigma < 40$$

Define a test statistic T as $T = S^2$.

We know that
$$\frac{(n-1)S^2}{\sigma^2} = \frac{24S^2}{40^2} \sim \chi_{24}^2$$
.

Test: reject the null hypothesis if $S^2 < c^2$.

If the significance level of the test is 0.05, then

$$P(S^{2} < c^{2}) = 0.05$$

$$\Rightarrow P\left(\frac{24S^{2}}{40^{2}} < \frac{24c^{2}}{40^{2}}\right) = 0.05$$

$$\Rightarrow P\left(\chi_{24}^{2} < \frac{24c^{2}}{40^{2}}\right) = 0.05$$

$$\Rightarrow \frac{24c^{2}}{40^{2}} = 13.85$$

$$\Rightarrow c^{2} = \frac{1600 \times 13.85}{24} = 923.33$$

Since $S^2 = 32^2 = 1024 > 923.33$, we will not reject the null hypothesis.

Therefore, standard deviation of weights is 40.

- 2. A sociologist focusing on popular culture and media believes that the average number of hours per week (hrs/week) spent on social media is different for men and women. The researcher knows that the standard deviations of amount of time spent on social media are 8 hrs/week and 10 hrs/week for men and women, respectively. Examining two independent random samples of 100 individuals each, if the average number of hrs/week spent on social media for the sample of men is 3 hours greater than that for the sample of women, what conclusion can be made from a hypothesis test where, $H_0: \mu_M = \mu_W$ and $H_A: \mu_M \neq \mu_W$? Take $\alpha = 0.01$. Use $F_7^{-1}(0.005) = -2.57$
 - a) Reject H_0
 - b) Accept H_0

Let X_i and Y_i represent the average number of hrs/week spent on social media by men and women respectively.

$$X_1, X_2, \ldots, X_{100} \sim \mathsf{N}(\mu_1, 8^2) \text{ and } Y_1, Y_2, \ldots, Y_{100} \sim \mathsf{N}(\mu_2, 10^2) \ |\overline{X} - \overline{Y}| = 3$$
 Consider, $H_0: \mu_1 = \mu_2, H_A: \mu_1 \neq \mu_2$ $T = \overline{X} - \overline{Y} \sim \mathsf{N}(\mu_1 - \mu_2, \frac{64}{100} + \frac{100}{100}) \text{ i.e. } \mathsf{N}(\mu_1 - \mu_2, \frac{164}{100})$ Test: Reject H_0 if $|T| > c$.

$$\alpha = P(|T| > c \mid H_0) = P\left(\left|\frac{T}{\sqrt{164/100}}\right| > \frac{c}{\sqrt{164/100}}\right)$$
$$= P\left(|Z| > \frac{c}{\sqrt{164/100}}\right) = 2F_Z\left(\frac{-c}{\sqrt{164/100}}\right)$$

$$\Rightarrow c = -\sqrt{\frac{164}{100}}F_Z^{-1}(\alpha/2)$$

$$\Rightarrow c = -\sqrt{\frac{164}{100}}F_Z^{-1}(0.005)$$

$$\Rightarrow c = -\sqrt{\frac{164}{100}} \times (-2.57) = 3.29$$
Since, $|\overline{X} - \overline{Y}| = 3 < 3.29$
Therefore, we will accept H_0 .

- 3. The manufacturer of a new car claims that a typical car gets a mileage of 36 kilometres per litre. We think that the mileage is less. To test our suspicion, we perform the hypothesis test with $H_0: \mu = 36$ and $H_A: \mu < 36$. Suppose we take a random sample of 100 new cars and find that their average mileage is 36.4 kilometres per litre and sample standard deviation is 4, what does a t-test say about a null hypothesis with a significance level of 0.05?
 - a) Reject H_0
 - b) Accept H_0

Hint: Use
$$F_{t_{99}}^{-1}(0.05) = -1.66$$

Null hypothesis, H_0 : $\mu = 36$

Alternate hypothesis, H_A : μ < 36

Test: Reject H_0 if $\overline{X} < c$

Given, $\alpha = 0.05$ and $\overline{X} = 36.8$

In this problem, we do not know the population variance, σ^2 .

The sample variance $S^2 = 4^2$

$$\alpha = P(\overline{X} < c | \mu = 36)$$

$$\alpha = P\left(\frac{\overline{X} - 36}{\sqrt{S^2/n}} < \frac{c - 36}{\sqrt{S^2/n}}\right)$$

$$\alpha = P\left(\frac{\overline{X} - 36}{\sqrt{16/100}} < \frac{c - 36}{\sqrt{16/100}}\right)$$

$$\alpha = F_{t_{99}} \left(\frac{c - 36}{\sqrt{16/100}} \right)$$

$$0.05 = F_{t_{99}} \left(\frac{c - 36}{\sqrt{16/100}} \right)$$

$$c = 36 + \sqrt{\frac{16}{100}} F_{t_{99}}^{-1}(0.05)$$

$$c = 35.336$$

Since,
$$\overline{X} = 36.4 > c$$
, accept H_0 .

4. The average life expectancy of a particular breed of animal is expected to be 5 years. The life length (in years) of a random sample of 8 animals of that breed are

5.6, 4.8, 4.4, 5.2, 4.2, 5.8, 4, 5.

Use a 0.05 level of significance to check the hypothesis that $\mu=5$ years against the alternative that $\mu\neq 5$ years. Assume the life expectancy to be normal.

- a) Reject H_0
- b) Accept H₀

Use
$$s = 0.442, F_{t_7}^{-1}(0.025) = -2.36$$

The null and alternative hypothesis are defined by

$$H_0: \mu = 5, \quad H_A: \mu \neq 5$$

Define a test statistic T as $T = \overline{X} - 5$.

Test: reject H_0 if $|\overline{X} - 5| > c$

Notice that when
$$H_0$$
 is true, $\dfrac{\overline{X}-5}{\frac{0.442}{\sqrt{8}}}\sim t_7$

Given that $\alpha = 0.05$, therefore,

$$\alpha = P(|\overline{X} - \mu| > c|\mu = 5)$$

$$\implies 0.05 = P\left(|\frac{\overline{X} - 5}{\frac{0.442}{\sqrt{8}}}| > \frac{c}{\frac{0.442}{\sqrt{8}}}\right)$$

$$\implies 0.05 = 2P(t_7 < \frac{-c}{\frac{0.442}{\sqrt{8}}})$$

$$\implies 0.025 = F_{t_7}(\frac{-c}{\frac{0.442}{\sqrt{8}}})$$

$$\implies -2.36 = \frac{-c}{\frac{0.442}{\sqrt{8}}}$$

$$\implies c = 0.368$$

Now, $|\overline{X} - 10| = |4.875 - 5| = 0.125 < 0.368$.

Therefore, accept the null hypothesis.

- 5. An IITM instructor conducts two live sessions for two different classes, call it A and B, in Statistics. Session A had 25 students attending while session B had 50 students. The instructor conducted a test for the two sessions. Although there was no significant difference in mean grades, session A had a standard deviation of 12 while session B had a standard deviation of 15. Can we conclude at the 0.05 level of significance that the variability in marks of class B is greater than that of A?
 - a) Yes
 - b) No

Hint: Use
$$F_{F_{(49,24)}}^{-1}(0.95) = 1.86$$

$$H_0: \sigma_1 = \sigma_2, H_A: \sigma_1 < \sigma_2$$
Test: Reject H_0 if $\frac{S_B^2}{S_A^2} > 1 + c_R$
We know that, $\frac{S_B^2}{S_A^2} \sim F(n_2 - 1, n_1 - 1)$
 $n_1 = 25, n_2 = 50$
 $\Rightarrow \frac{S_B^2}{S_A^2} \sim F(49, 24)$
Therefore,

$$\alpha = 1 - F_{F(49,24)}(1 + c_R)$$

$$\Rightarrow 1 + c_R = F_{F(49,24)}^{-1}(1 - \alpha) = F_{F(49,24)}^{-1}(0.95)$$

$$\Rightarrow 1 + c_R = 1.86$$

Since,
$$\frac{S_B^2}{S_A^2} = \frac{15^2}{12^2} = 1.5625 < 1.86$$

Therefore, we will accept H_0 .

This implies that at the 0.05 level of significance the variability in marks of class B is not greater than that of A.

6. A die is tossed 150 times with the following results:

X	1	2	3	4	5	6
Observed count	30	22	20	32	23	23

Can we conclude that the die is fair at a significance level of 0.05? (use $F_{\chi_5^2}^{-1}(0.95)=11.07$)

- (a) Yes
- (b) No

If die is fair, then each outcome is equally likely to occur. That is expected counts for each outcome will be $\frac{1}{6} \times 150 = 25$. Therefore

•						
X	1	2	3	4	5	6
Observed count	30	22	20	32	23	23
Expected count	25	25	25	25	25	25

Define the null and alternative hypothesis as

 H_0 : Samples are i.i.d. Uniform $\{1,2,3,4,5,6\}$,

 H_A : Samples are not i.i.d. Uniform $\{1, 2, 3, 4, 5, 6\}$

Value of the test statistic T is given by

$$T = \frac{(30 - 25)^2}{25} + \frac{(22 - 25)^2}{25} + \frac{(20 - 25)^2}{25} + \frac{(32 - 25)^2}{25} + \frac{(23 - 25)^2}{25} + \frac{(23 - 25)^2}{25}$$

= 4.64

We will reject the null hypothesis if T > c.

At a significance level of 0.05, we have

$$0.05 = P(T > c)$$

$$\Rightarrow 0.05 = 1 - P(T \le c)$$

$$\Rightarrow P(T \le c) = 0.95$$

$$\Rightarrow F_{\chi_5^2}(c) = 0.95$$

$$\Rightarrow c = 11.07$$

Since T=4.64<11.07, we will accept the null hypothesis. It implies that die is fair.