NIK 400 Tentamen

Theme 1: Industrial IoT and Network Communications

- Industry 4.0
 - a. What is the difference between Internet of Things and Industrial Internet of Things?
 - The Internet of Things (IoT) refers to the network of everyday objects, like smart home devices, that connect to the internet to send and receive data.
 - The Industrial Internet of Things (IIoT) is a specialized version of IoT used in industries like manufacturing, energy, or transportation. It connects machines, sensors, and equipment to improve processes, increase efficiency.
 - In short, IoT is for general consumer devices, while IIoT focuses on industrial applications.
 - b. Write down the difference between Industry 3.0 and Industry 4.0?
 - Industry 3.0 focused on automation using computers and robots to improve production, making things faster and more efficient.
 - Industry 4.0 takes it further by connecting machines, sensors, and systems using the Internet and smart technologies like AI and IoT. This allows real-time decisions, smarter factories, and more flexible production.
 - In short, Industry 3.0 is about automating tasks, while Industry 4.0 is about using connected technologies to make factories smarter.
 - c. Write down two Industry 4.0 related technologies and explain their main role in Industry 4.0?
 - Internet of Things (IoT): IoT connects machines, devices, and sensors to the internet, allowing them to share data in real-time.
 - Artificial Intelligence (AI): AI uses data to make decisions, predict problems, and optimize processes. In Industry 4.0, AI helps improve automation, increase productivity, and create smarter, self-managing systems.
- a. Industrial Internet of Things is defined as follows. (choose one)
 - When IoT is deployed in an industry we call it industrial Internet of Things.
 - Industrial Internet of Things is a subfield of IoT, where Things belong to an industrial environment.
 - Industrial Internet of Things is defined same as IoT, where Things are connected to an Industrial Internet.
 - Industrial Internet of Things is a subfield of Industry 4.0.

- b. What is the difference between Industry 3.0 and Industry 4.0? (choose one)
 - INDUSTRY 3.0: Mechanization, waterpower and steam power, INDUSTRY 4.0: Computer Automation.
 - INDUSTRY 3.0: Computer Automation, INDUSTRY 4.0: Cyber Physical systems.
 - INDUSTRY 3.0: Cyber Physical systems, INDUSTRY 4.0: Computer Automation.
 - INDUSTRY 3.0: Computer Automation and Cyber Physical systems, INDUSTRY 4.0: Artificial Intelligence and Virtual reality.
- c. Following are two technologies related to Industry 4.0. (choose one)
 - Artificial Intelligence and Internet of Things
 - Augmented/Virtual Reality and Computer Computation
 - Artificial Intelligence and Augmented/Virtual Reality
 - Augmented/Virtual Reality and Smart Factories

Theme 1: Industrial IoT and Network Communications

- IoT and Network Communications
- a. Is chair a Thing? Write down at least two applications of a Smart Chair?
 - Yes, a chair can be considered a Thing in the context of the Internet of Things (IoT) when it is connected to the internet or smart technology.
 - Two applications of a Smart Chair are: Posture Monitoring and Adjustable Settings
- b. Write down the names of two of the most widespread and commonly used IoT application protocols?
 - MQTT (Message Queuing Telemetry Transport): A lightweight protocol used for sending data between devices in real-time.
 - CoAP (Constrained Application Protocol): A protocol designed for simple devices with limited resources, often used in low-power and low-bandwidth environments.
- c. Draw four layers of IoT and write the names of each layer?
 - Perception Layer
 - Network Layer
 - Edge Layer
 - Application Layer
- a. A Thing is a physical or logical object that comes with the following key function. (Choose one)
 - It is a Chair connected to internet.
 - It has an embedded system which makes it intelligent.
 - It can be uniquely identified within a network.
 - Anything which can be printed is known as a Thing in IoT.

- b. Following technology is used for tampering and protection of a Thing. (choose one)
 - Tampering and Protection Module (TPM)
 - Trusted and Protected Module (TPM)
 - Things Protection Module (TPM)
 - Trusted Platform Module (TPM)
- c. Choose the correct names of the four layers of IoT according to the boxes in the figure. (choose one)
 - (1) Things, (2) Network, (3) IoT Platform, (4) Effect
 - (1) Things, (2) Internet, (3) Cloud Servers, (4) Application
 - (1) Sensors, (2) Internet, (3) IoT Platform, (4) Application
 - (1) Sensors, (2) Network, (3) Cloud Servers, (4) Effect

Theme 1: Industrial IoT and Network Communications

- Positioning
 - a. Name the four terminologies used in tracking and wayfinding?
 - Positioning
 - Wayfinding
 - Tracking
 - proximity
 - b. RSSI-based positioning is often unreliable due to the drops of the signal level by at least 75% if we double the distance between the object and the network node. Give at least one solution to enhance the accuracy in an RSSI-based positioning system?
 - One solution to enhance accuracy in an RSSI-based positioning system is to use multiple anchor nodes.
 - c. Write down at least four tracking technologies for indoor use cases?
 - Ultra-Wideband radio tracking
 - Wi-Fi
 - Bluetooth Low Energy (BLE)
 - Infrared (IR)
- a. In which tracking method does a device send out a data packet that the network uses when triangulating the position of the device? (choose one)
 - Network-centric tracking method.
 - Network-device tracking method.
 - Device-centric tracking method.
 - Device-network tracking method.
- b. The following is one of the tracking technologies in indoor use cases. (choose one)
 - Radio Network Tracking.
 - Proprietary RF tracking.
 - Ultra-Wideband radio tracking.
 - Dual-radio tracking.

- c. Following are the four terminologies used in tracking and wayfinding. (choose one)
 - Tracking, wayfinding, RSSI, and fingerprinting.
 - Positioning, fingerprinting, tracking, and wayfinding
 - Positioning, wayfinding, tracking, and proximity
 - Fingerprinting, proximity, tracking, and wayfinding

Theme 2: Robotics

a. What is an industrial robot and what are its advantages?

- An industrial robot is a machine used in factories or warehouses to automate tasks like painting or moving materials.
- Advantages include: Increased efficiency, High precision and Safety

b. What is an industrial robot cell? And what is an industrial robot line?

- An industrial robot cell is a small, enclosed area where a single robot or a few robots perform specific tasks, such as welding or assembly.
- An industrial robot line is a larger setup where multiple robot cells are connected together in a sequence to perform different tasks in a production process, like assembling parts or packaging products.

c. Give an example of an industrial robot cell and an industrial robot line?

- Industrial Robot Cell Example: A welding robot cell where a robot automatically welds parts together in a small, enclosed area.
- Industrial Robot Line Example: An assembly line in a car factory, where multiple robot cells work together to assemble different parts of a car.

a. Why do we use robots in industries? (choose one)

- It increases productivity, safety, efficiency, and quality.
- Robots are very intelligent and perform all the tasks accurately.
- It saves human effort and power.
- It increases production process, security, efficiency, and quality.

b. An industrial robot includes the following. (choose one)

- The robot arm, including actuators; the central unit, including teach pendant and any communication interface with hardware and software.
- The manipulator, including actuators; the controller, including teach pendant and any communication interface.
- The actuator, including manipulator; the pendant, including controller and any communication interface.
- The robot arm, including sensors; the controller, including actuators and any communication interface.

c. An industrial robot cell is defined as follows. (choose one)

- A cell of robots including associated sensors and actuators and the associated safeguarded space and protective measures.
- A cell of one or more robot systems including associated sensors and actuators and the associated safeguarded space and protective measures.

- A cell of one or more robot systems including associated machinery and equipment and the associated operators with a protective measure.
- A cell of one or more robot systems including associated machinery and equipment and the associated safeguarded space and protective measures.

Theme 2: CAN Bus

- a. What is the largest size of a CAN packet and what is bit-stuffing?
 - The largest size of a CAN packet is 8 bytes (or 64 bits).
 - Bit-stuffing is a technique used in CAN to ensure the data frame is properly organized.
- b. Twisted pair wires are often used for CAN networking. Describe which layers CAN standards work in an OSI network model?
 - Physical Layer is responsible for actual transmission of bits.
 - Link Layer handles the packaging data into frames.
- c. What is CAN and which industries use CAN?
 - CAN (Controller Area Network) is a communication system that allows devices to talk to each other in a network, mainly used in cars and machinery.
 - Industries that uses CAN: Industrial Automation, Medical Devices and Automotive
- a. Which layers in the OSI model are relevant for the CAN standards? (choose one)
 - Networking layer and Communication Layer
 - Application Layer and Session layer
 - Data Link layer and Physical layer
 - Networking layer and Physical layer
- b. Why are twisted pair wires often used for communication? (choose one)
 - To control bus area network communication.
 - To enable a controller area network (CAN) bus communication.
 - To achieve lower latency and higher fault tolerance in communication.
 - To achieve higher data rate speed and fault tolerance in communication.
- c. For CAN, what speeds can we accomplish? (Choose one)
 - Lowest speed < 125kbit, Highest speed = 125-1000kbit, and CAN-FD: 5Mbit
 - Lowest speed = 125kbit, Highest speed > 125-1000kbit, and CAN-FD: 15Mbit
 - Lowest speed = 125kbit, Highest speed = 125-1000kbit, and CAN-FD: 50Mbit
 - Lowest speed > 125kbit, Highest speed > 125-1000kbit, and CAN-FD: 500Mbit