Circuit Générateur de Tone CTCSS

Manuel d'instruction

VE2REH

Mars 2025

Table des matières

Table des matières	2
Introduction	3
Schéma logique du circuit	4
Pièces et Assemblage	5
Schéma du PCB	6
Alimentation	6
Entrées/Sorties (Bornier J1)	7
Entrée Tone Disable	8
Ajustement audio	8
Reverse Burst	8
Sélection de tone	9

Introduction

Ce circuit est utilisé pour injecter une sinusoïdale (*Continuous Tone Code Squelch System*) CTCSS dans l'audio lors d'une transmission. L'onde est générée lorsque l'entrée « Pin » (PTT Input) est active. La sortie « Pout » (PTT Out) sera activée simultanément par le circuit. L'amplitude de l'onde sinusoïdale peut être ajustée précisément avec un potentiomètre. Lorsque l'entrée « Pin » est désactivée, le contrôleur cesse de générer l'onde sinusoïdale, tout en maintenant la sortie « Pout » active momentanément. Ceci permet aux radios récepteurs de couper la transmission sans bruit.

Lorsque l'option « Reverse Burst » est activée, le contrôleur inverse la phase de la tonalité de 180°, tout en maintenant la sortie « Pout » active momentanément.

Schéma logique du circuit

Pièces et Assemblage

Le tableau suivant indique les pièces requises pour l'assemblage du circuit.

#	QTY	Part Number	Description	Value	Ref Designator
1	1	100NF	Condensateur céramique	100nF	C1
2	2	15PF	15pF Capacitor	15pF	C2,C3
3	2	0.022UF	Condensateur céramique	0.050μF	C4,C5
4	1	L7805CDT-TR (STMicro)	Surface mount 7805 DPAK		IC1
5	1	<u>VI0621550000G</u> (Amphenol)	1x6 Wire terminal (optionnel)		J1
6	1	PV36W103C01B00 (Bourns Inc.)	1k 20-turn Potentiometer	1Κ Ω	R1
7	2	RES470	Résistance 1/4Watt	1Κ Ω	R2,R5
8	2	RES10K	Résistance 1/4Watt	10K Ω	R3,R4
9	1	4609X-101-102LF (Bourns Inc.)	Résistance 8X1K SIP	1Κ Ω	RN1
10	1	PIN_HEADER1X6	1x6 PIC header (optionnel)		U1
11	1	PIC16F690-I/P	PIC16F690 (20-pin DIP socket)		U2
12	1	DS01C-254-L-08BE	2x8 DIP Switch		U3
13	1	VN2222LL-G	VN2222 MOSFET Transistor	VN2222	U4
14	1	PIN_HEADER1X4	UART 1x4 Header (Optionnel)		U5
15	1	PIN_HEADER1X4	i2c header (optionnel)		U6
16	1	PIN_HEADER1X3	1x3 Pin Header. Power input selection		U7
17	1	ATS100B-E	Crystal (10 MHz)	10MHz	Y1

Table 1 : Pièces pour assemblage

Lors de l'assemblage, un rappel au 5V doit être ajouté sur le signal TD^* (Tone Disable) afin d'éviter que le signal soit activé lorsque l'entrée n'est pas utilisée. Une résistance de $10K\Omega$ peut être ajoutée entre la broche U2.1 et le via situé à gauche de la broche U1.6, tel qu'illustré sur la Figure 1. La résistance peut être soudée au verso du PCB.

Figure 1 : Rappel de TD* au 5V – **Côté verso** du PCB

Schéma du PCB

Figure 2 : Schéma du PCB

Alimentation

L'alimentation est fournie par l'entrée « Vin » du bornier J1. Le type d'alimentation doit être configuré avec le cavalier U7, situé en bas à droite du circuit. Puisque le microcontrôleur doit être alimentée par une source régulée de 5 Volts, un régulateur 7805 est présent sur le circuit.

Si l'alimentation externe est supérieure à 5 Volts, il est important d'utiliser le régulateur embarqué afin d'éviter d'endommager le microcontrôleur. Ceci est illustrée à la Figure 3

Si une entrée régulée de 5 Volts est fournie sur l'entrée « Vin » du bornier J1, le régulateur embarqué peut être contourné, et l'alimentation externe peut être utilisée directement, tel qu'illustré dans la Figure 4

La figure suivante illustre la position de cavalier à utiliser en fonction du type d'alimentation disponible.

Figure 3 : Alimentation externe +12Volts

Figure 4 : Alimentation externe +5Volts régulée

Entrées/Sorties (Bornier J1)

Signal	Direction	Description
Vin	Entrée	Entrée alimentation (5V/12V)
Gnd	Entrée	Ground
Pin	Entrée	PTT provenant du radio
Pout	Sortie	Sortie PTT du contrôleur
TD*	Entrée	« Tone Disable » (active bas).

Table 2 : Entrées et sorties du circuit

Optionnelle avec rappel à VDD.

Entrée Tone Disable

Cette entrée sert à désactiver la génération du tone. Lorsqu'un signal logique bas est détecté (0V), le contrôleur cesse de générer le tone. Toutefois, la broche « Pout » continue de suivre l'état de la broche « Pin ».

Cette entrée est optionnelle. Lorsqu'elle n'est pas utilisée, un rappel au 5V est appliqué, et désactive cette fonction.

Ajustement audio

L'amplitude de la tonalité peut être ajustée avec le potentiomètre R1, situé en haut à droite du circuit.

Reverse Burst

La fonction « reverse burst » peut être activé en positionnant l'interrupteur « RB » à la position « ON ».

Sélection de fréquence de tone

La sélection de fréquence se fait en utilisant la DIP switch situé à droite du circuit, identifié par U3. Le tableau suivant indique les interrupteurs à activer pour sélectionner une fréquence.

Fréquence	SW5	SW4	SW3	SW2	SW1	SW0
67						
69.3						ON
71.9					ON	
74.4					ON	ON
77				ON		
79.7				ON		ON
82.5				ON	ON	
85.4				ON	ON	ON
88.5			ON			
91.5			ON			ON
94.8			ON		ON	
97.4			ON		ON	ON
100			ON	ON		
103.5			ON	ON		ON
107.2			ON	ON	ON	
110.9			ON	ON	ON	ON
114.8		ON				
118.8		ON				ON
123		ON			ON	
127.3		ON			ON	ON
131.8		ON		ON		
136.5		ON		ON		ON
141.3		ON		ON	ON	
146.2		ON		ON	ON	ON
151.4		ON	ON			
156.7		ON	ON			ON
162.2		ON	ON		ON	
167.9		ON	ON		ON	ON
173.8		ON	ON	ON		
179.9		ON	ON	ON		ON
186.2		ON	ON	ON	ON	
192.8		ON	ON	ON	ON	ON
203.5	ON					
206.5	ON					ON
210.7	ON				ON	
218.1	ON				ON	ON
225.7	ON			ON		
229.1	ON			ON		ON
233.6	ON			ON	ON	
241.8	ON			ON	ON	ON
250.3	ON		ON			
254.1	ON		ON			ON

Table 3 : Sélection de tone

Toute autre configuration n'apparaissant pas dans le Table 3 fera en sorte que la fréquence de 100Hz sera choisie.

DIP Switch

Le tableau ci-dessous décrit les fonctions attribuées à chaque DIP switch.

DIP Switch	Fonction	On	Off		
1-6	CTCSS Tone Select	Sélect	Sélection de tone. Voir Table 3.		
7	Reverse Burst Mode	Activé	Désactivé		
8	Master Enable	Activé	Désactivé		

Lorsque le mode *Reverse Burst* est activé, la phase to tone CTCSS est renversée de 180° lorsque le *PTT_IN* est désactivé. Le *PTT_OUT* demeure actif pendant 150ms de même que le signal CTCSS. Après ce délai, le *PTT_OUT* ainsi que le tone sont désactivés.

Lorsque le *Master Enable* est activé, le circuit génère des tone CTCSS normalement. Lorsque le mode est désactivé, le circuit fait simplement passer le *PTT_IN* au *PTT_OUT* de façon transparente sans générer de tone. Dans ce cas, aucun délai n'est appliqué entre le *PTT_IN* et le *PTT_OUT*.