

Tidal Evaluation of the Alaska Coastal Circulation Models Developed for the Next Generation Water Resources Modeling Framework (NextGen)

SESSION NUMBER - H31W

H. Mashriqui¹, H. Kefelegn^{2,3}, J. Zyserman^{2,3}, C. George^{2,4}, D. Sang^{2,4}, R. Gibbs^{2,4}, J. Ducker^{2,3}, Q. Shi^{2,3}, J. Allen^{2,3}, R. Grout^{2,3}, T. Flowers², E.P. Clark²

¹NOAA Office of Water Prediction, Silver Spring, MD, United States, ²NOAA Office of Water Prediction, National Water Center, Tuscaloosa, AL, United States ³Lynker Technologies, Boulder, CO, United States, ⁴University of Alabama, Tuscaloosa, AL, United States

Alaska NextGen Coastal Models

- The Office of Water Prediction's (OWP) coastal team has developed a coupled modeling system (using SCHISM and D-Flow FM) to simulate tide and total water levels in the coastal regions of Alaska.
- That model domain includes Cook Inlet, Prince William Sound, the Copper River estuary, Icy Bay and nearshore portions of the Gulf of Alaska.
- This work is supplement to the other works shown by Kefelegn et. al. and Ducker et. al. AGU 2023.

Alaska model domain and tide evaluation stations

Model Development

D-Flow FM and SCHISM computational mesh were developed based on:

- Density function methods were performed using ArcGIS, SMS and Delft software.
- Topographic and bathymetric information was obtained from NOAA, USGS and other local data sources.
- Bottom roughness values were obtained from available land cover and land use data.
- Tidal boundary was obtained from a global tide model.

Model skills along Cook Inlet

Stations along Cook Inlet

	Predicted	Predicted	SCHISM	SCHISM	D-Flow FM	D-Flow FM
	M2	M2	M2		M2	M2
	Amplitude	Phase	Amplitude	M2 Phase	Amplitude	Phase
SHAW_ISLAND_COOK_IHO	1.65	326	1.60	326	1.81	327
SELDOVIA_9455500	2.21	324	2.26	22	2.37	323
HOMER_IHO	2.29	327	2.30	322	2.45	324
CHINULA_POINT_IHO	2.51	20	2.34	14	2.50	25
NIKISKI_9455760	2.38	31	2.21	320	2.45	37
ANCHORAGE_9455920	3.58	106	1.74	116	2.15	126

D-Flow FM and SCHISM skills along Cook Inlet

Conclusions and future work

- 1) For most of the stations, both the SCHISM and the D-Flow FM models perform above 95% skill level.
- 2) As tide propagates inland, amplitude increases along the Cook Inlet. The model captures this phenomenon accurately. However, model skill deteriorates close to inland stations due to lack of accurate bathymetric information.
- 3) Channel alignments and topo-bathy data are lacking in the Alaska model domain, and additional data are required to improve model skills.
- 4) High resolution mesh along the inland rivers and accurate topo-bathy will be included in future work.

ACKNOWLEDGEMENTS:

View my poster and other AGU materials

