Department of Mathematics

Indian Institute of Technology Bhilai

IC104: Linear Algebra-I

Hints of Tutorial Sheet 2: Vector Space

1. Let (x, y, z) be a linear combination of the vectors (1, 0, -1), (0, 1, 1) and (1, 1, 1) then there exist $a, b, c \in \mathbb{C}$ such that

$$(x, y, z) = a(1, 0, -1) + b(0, 1, 1) + c(1, 1, 1) = (a + c, b + c, -a + c).$$

Hence any vector which is a linear combination of (1,0,-1),(0,1,1) and (1,1,1) must be of the type (a+c,b+c,-a+c), where $a,b,c\in\mathbb{C}$ are arbitrary.

- 2. No, V with these operations is not a vector space because the vector addition does not satisfy the property 3c) as for any $(a,b) \in V$ and zero vector $(0,0) \in V$, $(a,b)+(0,0)=(a,0) \neq (a,b)$ and the scalar multiplication fails to satisfy 4a) as for any $(a,b) \in V$ and $1 \in \mathbb{F}$, $1.(a,b) = (1a,0) = (a,0) \neq (a,b)$.
- 3. First, we will check that whether the addition and scalar multiplication is closed i.e, if $f \in V$ and $g \in V$ then $f + g \in V$. Also, if $a \in \mathbb{R}$ and $f \in V$ then $af \in V$. This is obvious because $(f+g)(-t) = f(-t) + g(-t) = \overline{f(t)} + \overline{g(t)} = \overline{f(t)} + g(t) = \overline{(f+g)(t)}$ and $cf(-t) = c(f(-t)) = \overline{cf(t)} = \overline{cf(t)}$ if field is real. (What if we have complex field!!)
 - (i) Commutativity is obvious, since \mathbb{C} is commutative.
 - (ii) Associativity is obvious, since \mathbb{C} is associative.
 - (iii) Additive identity $g(t) = 0 \in V$, since $-0 = \overline{0}$.
 - (iv) g(t) = -f(t) is the additive inverse of f(t), since $g(-t) = -f(-t) = -\overline{f(t)} = \overline{f(t)} = \overline{f(t)}$
 - (v) Similarly, scalar multiplication properties are easy to prove.

Example: $f(t) = \cos(t) + i\sin(t)$ is not a real valued function and $f(t) \in V$.

- 4. Let $\langle S \rangle$ denotes the subspace of V which is spanned by a set S. Assume, if possible, that S' is a subspace of V which which contains S and is a proper subset of $\langle S \rangle$. Since S is contained in S' and S' is a vector space in itself, all the linear combinations of elements of S must belong to S'. It means $\langle S \rangle \subset S'$, which is a contradiction. Hence $\langle S \rangle \subseteq S'$, that is any subspace which contains S must be bigger or equal to $\langle S \rangle$.
- 5. (a) $W_1 = \{ f \in V : f(t^2) = f(t)^2 \}$. Consider f(x) = 1 and g(x) = x, for all $x \in \mathbb{R}$. It is clear that $f, g \in W_1$. But one can check that $f + g \notin W_1$. Thus W_1 is not a subspace of V.

- (b) $W_2 = \{f \in V : f(0) = f(1)\}$. It is easy to check that W_2 is non-empty as zero function is in W_2 . Consider $f, g \in W_2$ and $c \in \mathbb{R}$. Now (cf + g)(0) = (cf)(0) + g(0) = c(f(0)) + g(0) = c(f(1)) + g(1) = (cf)(1) + g(1) = (cf + g)(1). Thus W_2 is a subspace of V.
- (c) $W_3 = \{ f \in V : f(3) = 1 + f(-5) \}$. Is zero function belongs to W_3 ? No as 0(3) = 0 and 1 + 0(-5) = 1.
- (d) $W_4 = \{ f \in V : f(-1) = 0 \}$. It is non-empty. Let $f, g \in W_4$ and $\alpha \in \mathbb{R}$. Now $(\alpha f + g)(-1) = (\alpha f)(-1) + g(-1) = \alpha(f(-1)) + g(-1) = \alpha.0 + 0 = 0$. That is, $\alpha f + g \in W_4$. Hence W_4 is a subspace of V.
- 6. (a) Here $W_1 = \{(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{R}^n : \alpha_1 \geq 0\}$. Let $\alpha = \{(1, 1, \cdots, 1)\} \in \mathbb{R}^n$ and $c = -1 \in \mathbb{R}$. Now $c\alpha = \{(-1, -1, \cdots, -1)\} \notin W_1$. Therefore W_1 is not a vector subspace of \mathbb{R}^n .
 - (b) $W_2 = \{(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n : \alpha_1 + 3\alpha_2 = \alpha_3\}$. It is clear that W_2 is non-empty. Let $a = (a_1, a_2, \dots, a_n), b = (b_1, b_2, \dots, b_n) \in W_2$. Then $a_1 + 3a_2 = a_3$ and $b_1 + 3b_2 = b_3$. Now consider $c \in \mathbb{R}$. Then one can observe that $ca + b \in W_2$. Therefore W_2 is a subspace of \mathbb{R}^n .
 - (c) $W_3 = \{(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n : \alpha_1^2 = \alpha_2\}$. Consider $a = (1, 1, 0, \dots, 0) \in W_3$ and $b = (2, 4, 0, \dots, 0) \in W_3$. Now $a + b \notin W_3$. Hence W_3 is not a subspace of \mathbb{R}^3 .
 - (d) $W_4 = \{(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n : \alpha_1.\alpha_2 = 0\}$. Consider $a = (1, 0, 0, \dots, 0) \in W_4$ and $b = (0, 1, 0, \dots, 0) \in W_4$. But $a + b \notin W_4$. Therefore W_4 is not a subspace of \mathbb{R}^n .
- 7. $W = \{x = (x_1, x_2, x_3, x_4, x_5) : Ax = 0\}$, where $A = \begin{bmatrix} 2 & -1 & \frac{4}{3} & -1 & 0 \\ 1 & 0 & \frac{2}{3} & 0 & -1 \\ 9 & -3 & 6 & -3 & -3 \end{bmatrix}$. The RRE

of
$$A = \begin{bmatrix} 1 & 0 & \frac{2}{3} & 0 & -1 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Therefore $Ax = 0$ can be written as

$$\begin{bmatrix} 1 & 0 & \frac{2}{3} & 0 & -1 \\ 0 & 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Therefore

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$

$$x_2 + x_4 - 2x_5 = 0$$

That is,

$$(x_1, x_2, x_3, x_4, x_5) = (-\frac{2}{3}x_3 + x_5, -x_4 + 2x_5, x_3, x_4, x_5)$$
$$= x_3(-\frac{2}{3}, 0, 1, 0, 0) + x_4(0, -1, 0, 1, 0) + x_5(1, 2, 0, 0, 1).$$

Therefore the set $S = \{(-\frac{2}{3}, 0, 1, 0, 0), (0, -1, 0, 1, 0), (1, 2, 0, 0, 1)\}$ spans W.

8. (a) In this problem, $V_e = \{f \in V : f(-x) = f(x)\}$ and $V_o = \{f \in V : f(-x) = -f(x)\}$. It is easy to check that V_e is non-empty. Now consider $f, g \in V_e$ and $c \in \mathbb{R}$. Then we have f(-x) = f(x) as well as g(-x) = g(x) and

$$\left(cf+g\right)\left(-x\right)=\left(cf\right)\left(-x\right)+g\left(-x\right)=c\left(f\left(-x\right)\right)+g\left(-x\right)=c\left(f\left(x\right)\right)+g\left(x\right)=\left(cf+g\right)\left(x\right),\quad\forall x\in\mathbb{R}.$$

Therefore, $cf + g \in V_e$. Thus V_e is a subspace of V. On the other hand, by the same process one can easily prove that V_o is also a subspace of V.

(b) Again $V_o, V_e \in V$, then $V_e + V_o \subseteq V$. On the other hand, we have to show that $V \subseteq V_e + V_o$. Let $g \in V$, then

$$g(x) = \frac{1}{2} \underbrace{\{g(x) + g(-x)\}}_{\text{even function}} + \frac{1}{2} \underbrace{\{g(x) - g(-x)\}}_{\text{odd function}}.$$

 $\therefore g \in V_e + V_o$. Hence $V \subseteq V_e + V_o$. Thus $V = V_e + V_o$.

(c) On the contrary, $g \in V_e \cap V_o$, where $g \neq 0$ (zero map). Then $g \in V_e$ as well as $g \in V_o$. Therefore

$$g(x) = g(-x) \quad [\because g \in V_e]$$

= $-g(x) \quad [\because g \in V_0].$

Therefore 2g(x) = 0, which implies g(x) = 0 for all $x \in \mathbb{R}$.

9. Consider the relation

$$c_{1}(1,0,-1) + c_{2}(1,2,1) + c_{3}(0,-3,2) = (0,0,0)$$
or, $(c_{1} + c_{2}, 2c_{2} - 3c_{3}, -c_{1} + c_{2} + 2c_{3}) = (0,0,0)$
This is equivalent to,
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -3 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

As, det $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -3 \\ -1 & 1 & 2 \end{bmatrix} \neq 0$. Then the system has unique solution and the solution is $c_1 = c_2 = c_3 = 0$. Therefore the set of vectors $\{(1,0,-1),(1,2,1),(0,-3,2)\}$ are

linearly independent in \mathbb{R}^3 . As 3 vectors are linearly independent in \mathbb{R}^3 (dim $\mathbb{R}^3 = 3$), they form a basis in \mathbb{R}^3 .

Again,

$$(1,0,0) = \frac{7}{10}(1,0,-1) + \frac{3}{10}(1,2,1) + \frac{1}{5}(0,-3,2)$$

$$(0,1,0) = \frac{-1}{5}(1,0,-1) + \frac{1}{5}(1,2,1) + \frac{-1}{5}(0,-3,2)$$

$$(0,0,1) = \frac{-3}{10}(1,0,-1) + \frac{3}{10}(1,2,1) + \frac{1}{5}(0,-3,2)$$

- 10. Consider three vectors $\{(1,0,1),(0,1,0),(1,1,1)\}$. Here any two vectors are linearly independent but these three vectors are linearly dependent.
- 11. Let $A, B \in W_1$, then $A = \begin{bmatrix} x_1 & -x_1 \\ y_1 & z_1 \end{bmatrix}$ and $B = \begin{bmatrix} x_2 & -x_2 \\ y_2 & z_2 \end{bmatrix}$, where $x_1, y_1, z_1, x_2, y_2, z_2 \in \mathbb{R}$. Suppose $\alpha \in \mathbb{R}$. Then $\alpha A + B = \begin{bmatrix} \alpha x_1 + x_2 & -(\alpha x_1 + x_2) \\ \alpha y_1 + y_2 & \alpha z_1 + z_2 \end{bmatrix}$. Therefore $\alpha A + B \in W_1$.

Now

$$\begin{bmatrix} x & -x \\ y & z \end{bmatrix} = x \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

It is easy to see that $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is linearly independent and spans the space W_1 . Thus it form a basis for W_1 . Hence dim $W_1 = 3$.

By similar process $\left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for W_2 . Hence dim $W_2 = 3$.

Now,
$$W_1 \cap W_2 = \left\{ A \in V : A = \begin{bmatrix} x & -x \\ -x & y \end{bmatrix} \right\}$$
 and $\left\{ \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for $W_1 \cap W_2$. Hence $\dim (W_1 \cap W_2) = 2$.

As we know that $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$. Therefore $\dim (W_1 + W_2) = 3 + 3 - 2 = 4$

12. Let the set $S = \{a_1, a_2, \dots, a_n\}$ spans V. Now if this set S is linearly independent, then it forms a basis for V. Therefore V is finite dimensional.

On the other hand, if S is linearly dependent, then there is $a_i \in S$ such that

$$a_i = c_1 a_1 + c_2 a_2 + \dots + c_{i-1} a_{i-1} + c_{i+1} a_{i+1} + \dots + c_n a_n.$$

From here one can observe that the set $W_1 = \{a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n\}$ also spans the set V. If this set is linearly independent then this forms a basis for V. Thus V is finite dimensional. If W_1 is linearly dependent, then proceed the same technique.

Hence moving inductively we get some $B \subseteq S$ such that, elements of B are linearly independent and spans V. Also no of elements in B is less than no of elements of S, which is n. Thus V is finite dimensional.

13. Let $(x, y, z)^T$ be the co-ordinate matrix of (1, 0, 1) corresponding to the ordered basis $\{(2i, 1, 0), (2, -1, 1), (0, 1+i, 1-i)\}$. Then we have,

$$x(2i, 1, 0) + y(2, -1, 1) + z(0, 1 + i, 1 - i) = (1, 0, 1)$$

or, $(2ix + 2y, x - y + (1 + i)z, y + (1 - i)z) = (1, 0, 1)$.

Then solving we have $x = \frac{1-i}{2i}$; $y = \frac{i}{2}$; $z = \frac{3+i}{4}$. Therefore $(\frac{1-i}{2i}, \frac{i}{2}, \frac{3+i}{4})^T$ is the coordinate matrix.

14. Let x, y, z are the co-ordinates of the vector (a, b, c) corresponding to the ordered basis $\{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$. Then we have,

$$x(1,0,-1) + y(1,1,1) + z(1,0,0) = (a,b,c)$$

or, $(x+y+z,y,-x) = (a,b,c)$.

Therefore x = -c; y = b; z = a - b + c.

15. The RRE of A is $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$. Again the RRE of B is $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$. Hence the row spaces

of A and B is spanned by $\{(1,0,2),(0,1,5)\}$. Since both A and B span a same two dimensional subspaces of \mathbb{R}^3 , hence both are row equivalent.