AURIX 2G Generic Timer Module(GTM)

Allen IFCN ATV SMD GC SAE MC 2018/5/2

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

Generic Timer Module (GTM) from Bosch Standardization

Customers

- Unload CPU from critical Tasks
- Simplify Software interface
- Faster Development
- One SW for all Controllers

AURIX/GTM and GTM Wrapper

GTM Implementation (GTM Wrapper) is Infineon Specific

Control Registers to configure Muxes

Short Name	Description	Offset			Reset	Description
		Addr.	Read	Write	1	See
ACCEN0	Access Enable Register 0	9FE44 _H	U, SV	SV, SE	Application	Page 771
OTBU0T	OCDS TBU0 Trigger Register	9FE14 _H	U, SV	SV, P	Debug	Page 973
OTBU1T	OCDS TBU1 Trigger Register	9FE18 _H	U, SV	SV, P	Debug	Page 973
OTBU2T	OCDS TBU2 Trigger Register	9FE1C _H	U, SV	SV, P	Debug	Page 974
отвизт	OCDS TBU3 Trigger Register	9FFA8 _H	U, SV	SV, P	Debug	Page 974
OTSS	OCDS Trigger Set Select Register	9FE20 _H	U, SV	SV, P	Debug	Page 969
OTSC0	OCDS Trigger Set Control 0 Register	9FE24 _H	U, SV	SV, P	Debug	Page 970
OTSC1	OCDS Trigger Set Control 1 Register	9FE28 _H	U, SV	SV, P	Debug	Page 971
ODA	OCDS Debug Access Register	9FE2C _H	U, SV	SV, P	Debug	Page 972
ocs	OCDS Control and Status Register	9FE30 _H	U, SV	SV, P	Debug	Page 770
TIM0INSEL	TIM0 Input Select Register	9FD10 _H	U, SV	U, SV, P	Application	Page 813
TIM1INSEL	TIM1 Input Select Register	9FD14 _H	U, SV	U, SV, P	Application	Page 813
TIM2INSEL	TIM2 Input Select Register	9FD18 _H	U, SV	U, SV, P	Application	Page 813
TIM3INSEL	TIM3 Input Select Register	9FD1C _H	U, SV	U, SV, P	Application	Page 813
TIM4INSEL	TIM4Input Select Register	9FD20 _H	U, SV	U, SV, P	Application	Page 813
TIM5INSEL	TIM5 Input Select Register	9FD24 _H	U, SV	U, SV, P	Application	Page 813
TIM6INSEL	TIM6 Input Select Register	9FD28 _H	U, SV	U, SV, P	Application	Page 813
TIM7INSEL	TIM7 Input Select Register	9FD2C _H	U, SV	U, SV, P	Application	Page 813
TOUTSEL0	Timer Output Select 0 Register	9FD30 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL1	Timer Output Select 1 Register	9FD34 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL2	Timer Output Select 2 Register	9FD38 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL3	Timer Output Select 3 Register	9FD3C _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL4	Timer Output Select 4 Register	9FD40 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL5	Timer Output Select 5 Register	9FD44 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL6	Timer Output Select 6 Register	9FD48 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL7	Timer Output Select 7 Register	9FD4C _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL8	Timer Output Select 8 Register	9FD50 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL9	Timer Output Select 9 Register	9FD54 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL10	Timer Output Select 10 Register	9FD58 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL11	Timer Output Select 11 Register	9FD5C _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL12	Timer Output Select 12 Register	9FD60 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL13	Timer Output Select 13 Register	9FD64 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL14	Timer Output Select 14 Register	9FD68 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL15	Timer Output Select 15 Register	9FD6C _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL16	Timer Output Select 16 Register	9FD70 _H	U, SV	U, SV, P	Application	Page 797
TOUTSEL17	Timer Output Select 17 Register	9FD74 _H	U, SV	U, SV, P	Application	Page 797

GTM (Generic Timer Module) AURIX2G - GTM V3.1.x

- GTM is logically divided in Clusters
- The first 5 clusters (0-4), can work up to 200MHz
- The DTM numbering is changed. They are grouped in CDTMx modules (Cluster Dead Time)
- New CCMx Modules (Cluster Configuration)
 - Cluster Clock Frequency
 - Module Clock Gating
 - MCS bus master observation
 - Address Range Protection
 - _

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

AURIX2G CTBM

Input frequency 200MHz

Sub_inc1/2**c** (from DPLL) can be used as clock

CMU_CLK8 is new(for clusters' clock)

AURIX2G

CCM - Cluster Configuration Module

- > cluster's clock frequency
- module clock gating
- Status observation of the cluster's MCS bus master (AEM),
- address range protection (MCS)
- y global architecture configuration

AURIX2G

CCM - Cluster Configuration Module

Dynamic Power reduction

- → Cluster based clock gating
- Sub module based clock gating

Introduce new sub module: cluster configuration module CCM

- Introduce control register to disable clock for each sub module
 - Cluster0-n: 1 bit for each TIM, TOM+SPE, ATOM, MCS
 - Cluster0: 1 bit DPLL+MAP, 1 bit BRC
 - Cluster0-n: 1 bit FIFO
 - Cluster1: 1 bit for CMP+MON
- → Enabled after reset to ensure compatibility to V1 GTM_IP

.			
Cluste	r based clock gating	OFF	OFF
	8 0	200MHz	200MHz
	15 15 15 15 15 15 15 15 15 15 15 15 15 1	100MHz	100MHz
		gm_dm_, gm_dm_, stemau_	- gin_din_e - gin_din_e - gin_din_e - stempl_ou
	Cluster 0 ON ON ON ON ON ON ON ON ON O	Cluster 1 On OTM	Chuster [n] OTM
OFF 200MHz 100MHz	COAD OF THE PROPERTY OF THE PR	ARU MORI MORI MORI MORI MORI MORI MORI MORI	SCORE
	GTM v3.1 and snock in a se_cit adult.	ABbari AACH	ADMOS ADMOS AND

Register name	Description		
CCM[i]_PROT	CCMi Protection Register		
CCM[i]_CFG	CCMi Configuration Register		
CCM[i]_CMU_CLK_CFG	CCMi CMU Clock Configuration Register		
CCM[i]_CMU_FXCLK_CFG	CCMi CMU Fixed Clock Configuration Register		
CCM[i]_AEIM_STA	CCMi MCS Bus Master Status Register		
CCM[i]_ARP[z]_CTRL	CCMi Address Range Protector z Control Register		
CCM[i]_ARP[z]_PROT	CCMi Address Range Protector z Protection Register		
CCM[i]_HW_CONF	CCMi Hardware Configuration Register		
CCM[i]_TIM_AUX_IN_SRC	CCMi TIM AUX input source Register.		
CCM[i]_EXT_CAP_EN	CCMi External Capture Enable Register.		
CCM[i]_TOM_OUT	CCMi TOM Output Register.		
CCM[i]_ATOM_OUT	CCMi ATOM Output Register.		

AURIX2G TBU_CH3

New TBU3 Counter, (Modulo Counter Mode)

> TBU_CH3 (24 bit)

AURIX2G TBU_CH3 Benefits (i.e. Engine Management)

AURIX 1G

To manage Absolute Vs Relative Angle conversion, the SW (CPU or MCS) needs to store the TBU_CH1 value after every 720 degrees (Offset).

AURIX 2G

 Using the TBU_CH3, the HW stores automatically to TBU_CH1 value (offset) needed for the conversion

Abs2Rel =>

- AngRel =
 (TBU_CH3_BASE_CAPTURE+TBU_CH3_BASE)&0x00FFF
 FFF

Rel2Abs =>

- AngAbs = (AngRel-TBU_CH3_BASE_CAPTURE)%(TBU_CH3_BASE_MARK)

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

GTM Architecture Overview TIM – Timer Input Module

- TIM is intended for filtering and capturing of input signals.
- For Advanced data processing the detected input characteristics can be routed through the ARU to GTM processing units (MCS)
- Input characteristics:
 - Time stamp values of detected Edges (RE,FE...)
 - Signal Level
 - Number of Edges received since enabling
 - PWM period and duty measurements
- 7 different operative modes
 - TIM PWM Measurement Mode (TPWM)
 - TIM Pulse Integration Mode (**TPIM**)
 - TIM Input Event Mode (**TIEM**)
 - TIM Input Prescaler Mode (TIPM)
 - TIM Bit Compression Mode (TBCM)
 - TIM Gated Periodic Sampling Mode (TGPS)
 - TIM Serial Shift Mode (TSSM)

GTM (Generic Timer Module) TIM – Timer Input Module

GTM (Generic Timer Module) TIM - FLTx - Filter-Subunit

Filter mode		Meaning of FLT_RE	Meaning of FLT_FE
Immediate propagation	edge	Acceptance time for rising edge	Acceptance time for falling edge
Individual	de-glitch	De-glitch time for rising edge	De-glitch time for falling edge
time	(up/down	De gitter time for fishing edge	De gitter time for family edge
counter)	1 111		B
Individual time (hold co	_	De-glitch time for rising edge	De-glitch time for falling edge

GTM (Generic Timer Module) TIM - FLTx - Filter-Subunit

Immediate Edge Propagation Mode

Individual De-Glitch Time Mode (Hold Cnt)

RE-FE can be conf. with different modes (mixed mode)

GTM (Generic Timer Module) TIM - TIM_CHx - Timer Channel Architecture

GTM (Generic Timer Module) TIM - TDUx - Timeout Detection Unit

GTM (Generic Timer Module) TIM - TIM CHx - Channel Modes

Reset Value: 000000000

- TIM PWM Measurement Mode (TPWM)
 - PWM Measuring (Period/Duty)
- **TIM Pulse Integration Mode (TPIM)**
 - Measure a Sum of RE of FE pulses

GTM TIMI CHx CTRL (i=1-7; x=0-7) TIMi channel x control register

 $(01024_H + i*800_H + x*80_H)$

- **TIM Input Event Mode** (TIEM)
 - Edges Counting (R/F/Both)
- **TIM Input Prescaler Mode (TIPM)**
 - Wait a programmable number of edges before to raise the TIM[i] NEWVAL[x] IRQ
- **TIM Bit Compression Mode** (TBCM) *only on CHO*
 - Combines m-Filtered Input Channels....
- **TIM Gated Periodic Sampling Mode (TGPS)**
 - Periodic Sampling
- **TIM Serial Shift Mode** (TSSM)
 - Serial shifts input signal into register

GTM (Generic Timer Module) TIM – PWM Measurement Mode (TPWM)

 $TIM[x]_CH[y]$ (TPWM Mode) = TIM PWM Measurement Mode

"newVal" Interrupt generated at end of measurement

When External Capture feature is enabled, the GPRx update is done on external signal

Input signal F_OUTx	selected CMU Clock	External capture	ISL	DSL	Action description
0	1	0	-	0	CNT++
1	1	0	-	0	no
rising edge	-	0	0	0	capture CNT value in CNTS
falling edge	-	0	0	0	CNT=0
rising edge	-	0	1	0	no
falling edge	-	0	1	0	capture CNT value ir CNTS; CNT=0
1	1	0	-	1	CNT++
0	1	0	-	1	no
falling edge	-	0	0	1	capture CNT value ir CNTS
rising edge	-	0	0	1	CNT=0
falling edge	-	0	1	1	no
rising edge	-	0	1	1	capture CNT value ir CNTS; CNT=0
-	-	rising edge	-	-	do GPRx capture ; issue NEWVAL_IRQ
-	0	0	-	-	no

GTM (Generic Timer Module) TIM – Input Event Mode (TIEM)

>> "newVal" Interrupt to signal the event.

If the **External Capture** feature is enabled

Input signal F_OUTx	External capture	ISL	DSL	Action description
-	rising edge	1	-	do capture; issue NEWVAL_IRQ; CNT++
-	0	1	-	no
1	rising edge	0	1	do capture; issue NEWVAL_IRQ; CNT++
0	-	0	1	no
0	rising edge	0	0	do capture; issue NEWVAL_IRQ; CNT++
1	-	0	0	no

GTM (Generic Timer Module) TIM Bit Compression Mode (TBCM)

TIMO CHO

CH₁

TIM0 Ch2

--- Rising Edge ----CNTS[0]=1, //CH0
CNTS[1]=1, //CH1

Example:

CNTS[2]=1, //CH2

New Val generated on every new edge detected on 3 channels

CNTS[3] = 0, //CH3

....

CNTS[7]=0, //CH7

---- Falling Edges ---CNTS[8]=1, //CH0

CNTS[9]=1, //CH1

CNTS[10]=1,//CH2

CNTS[11]=0,

.....

CNTS[14] = 0, // CH7

The register **CNTS** of TIM channel 0 is used to configure the event that releases the NEWVAL_IRQ and samples the input signals F_IN(0) to F_IN(m-1) in ascending order as a parallel data word in **GPR1**.

The bits 0 to *m-1* of the **CNTS** register are used to select the *REDGE_DET* signals of the TIM filters 0 to *m-1* as a sampling event, and the bits 8 to (7+*m*) are used to select the *FEDGE_DET* signals of the TIM filters 0 to *m-1*, respectively. If multiple events are selected, the events are OR-combined (see also Figure 10.4.2.5.1).

EGPR0_SEL, **GPR0_SEL** selects the timestamp value, which is routed through the ARU. **GPR1 SEL** is not applicable in TBCM mode.

GTM (Generic Timer Module) TIM Gated Periodic Sampling Mode (TGPS)

- To program Periodic Sampling
- The number of CMU clock cycles which should elapse before capturing and raising TIM[i]_NEWVAL[x]_IRQ is programmable.
- > CNTS <= how many CMU clock cycles
- TIM[i]_CH[x]_GPR1 operates as a shadow register for TIM[i]_CH[x]_CNTS

AURIX2G

TIM Improvements /TSSM (Serial Shift Mode)

In the TIM Serial Shift Mode on each shift clock event the actual value of the input signal TSSM_INx will be registered in dependence of DSL n the register TIM[i]_CH[x]_CNT.

General Use Cases Signals Measuring and Filtering (Connections)

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

GTM Architecture Overview ARU – Advanced Routing Unit

Basic concept

- No need of an internal Interrupt mechanism.
- Data routing between source and destination sub modules.
- Deterministic round-robin scheduling
- Worst Case Round Trip Time
 - **113*SYS_CLK** (IP_104)
- The Routed data word size is 53 bits

GTM (Generic Timer Module) ARU – Advanced Routing Unit

infineon

- The ARU + Broadcast unit (BRC) and the Parameter Storage Module (PSM) forms the infrastructural part of the GTM
 - ARU write channels are named data sources
 - Each data source has its fixed and unique source address
 - ARU read channels are named data destinations
 - Destination channels have configurable read addresses to select a source sub-module channel
 - connection between a data source and a data destination is called data stream
 - ARU serves the connected destination submodule channels in a round-robin scheduling scheme
 - Every destination sub-module channel is served regularly in a fixed time scheme
 - Round-Trip time is determined by number of destination sub-module channels connected to ARU

Submodule	Number of data sources	Number of destinations	
ARU	1	0	
DPLL	24	24	
TIM 0-3	32	0	
MCS 0-3	96	32	
BRC	22	12	
TOM	0	0	
ATOM 0-4	40	40	
PSM 0	8	8	
CMP	0	0	
MON	0	0	
Total	223	116	

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

GTM Architecture Overview TOM – Timer Output Module

16 independent channels (TOM_CH0...15) for simple PWM generation

A 16-bit Counter (CN0) for each CHs

- 5 dedicated clocks
 - FX_CLK (1:1, 1:16, 1:256..)

GTM (Generic Timer Module) TOM – Timer Output Module - Overview

2 groups of 8 channel

- Global channel control
- > **Driver the** channels **synchronously**.
 - Channels enabling/disabling
 - Output Enable/Disable
 - Force update

GTM (Generic Timer Module) TOM – TGCx - Global Channel Control

 3 trigger sources to control the update and enabling of the Channels

- T1: SW (via SFR HOST_TRG)
- T2: TBU time stamp based on selected TBU_TSx time base
 - TBU time stamp can be defined by SFR ACT_TB
- T3: Internal trigger signal TRIG_x
 - signal TRIG_x coming from channel x within a TOM module can be masked by SFR INT_TRIG

GTM (Generic Timer Module) TOM – TM_CHx – Overview (1)

- Each TOM channel comprises
 - Counter Compare Unit 0 (CCU0)
 - Counter Compare Unit 1 (CCU1)
 - Signal Output generation Unit (SOU)

CCU0

- 16 bit counter CNO can be reset
 - when counter value is equal to 16 bit compare value CMO (Period)
 - when signaled by the Trigger signal TRIG_x-1 (settings RST_CCU0)
- when CN0 is greater or equal than CM0, then CCU0 unit triggers SOU subunit and the next TOM channel (signal TRIG_CCU0)

CCU1

- 16 bit greater equal comparison in-between CN0 and CM1 (Duty Cycle)
- when CN0 is greater or equal than CM1, then CCU1 unit triggers SOU subunit (signal TRIG_CCU1)

■ SOU

 responsible for PWM output generation on trigger signals TRIG_CCU0 or TRIG_CCU1 a

GTM (Generic Timer Module) TOM – PWM Generation (1)

TOM and ATOM have similar configuration

GTM (Generic Timer Module) TOM – PWM Generation (2)

Synchronous Update

- the desired new value can be written directly to register SR1 (shadow reg.)
- The new duty cycle is then applied in the period following the period where the update of register SR1 was done

Asynchronous Update

- the desired new value can be written directly to register CM1
- Depending on the point of time of the update of CM1 in relation to the actual value of CN0 and CM1, the new duty cycle is applied in the current period or the following period

GTM Architecture Overview CN0 Reset by the Previous Channel

- The Counter CN0 can be reset:
 - On CM0 match (period)
 - From the previous channel

 A Trigger can be propagated through all the Channels

AURIX2G Improvements (A)TOM

(A)TOM improvements overview

- → (A)TOM trigger pulse generation SR0_TRIG
- → (A)TOM up-down counter mode UD MODE
- → (A)TOM extended clock source ECLK_SRC for CN0: TRIG_[x-1] and TIM_EXT_CAPTURE(x) as clock sign:
- → (A)TOM freeze mode FREEZE: no change of output (A)TOM CH(x) OUT if channel is
- → ATOM SOMC/SOMB extended update mode EUPD below)

AURIX2G Improvements Up-Down counter mode

In case of Trigger coming from another channel (RST_CC0=1)

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

GTM (Generic Timer Module) ATOM – Channel Architecture

- The most of the concepts are similar to the TOM module
- The main differences are:
 - ATOM uses a different clocks (CMU_CLK 0...7)
 - ATOM is connected to other modules with the ARU
 - Compare strategy not only "less and equal" but also "greater and equal"
 - Each ATOM sub-module contains 8 channels (not 16)
 - ATOMs can generate complex PWM signals.

GTM (Generic Timer Module) ATOM – Channel Architecture

infineon

- ATOM supports 4 operative modes
 - Signal Output Mode Compare (SOMC)
 - Complex Pulses (Injection/Ignition)
 - Signal Output Mode PWM (SOMP)
 - PWM Generation
 - Signal Output Mode Serial (SOMS)
 - Serial Shifter (Left/Right)
 - Signal Output Mode Immediate (SOMI)

* CCU: Counter Compare Unit

Controlled by the ARU Control Bits:

ACB[4:0]=>(5 bits) controls the compare mechanism inside of the CCU0/1.

ACB[1:0]=>(2 bits) to define the **output action**: no action, set to '1', set to '0' and toggle.

ACB[4:2]=>(3 bits) to define a **compare strategy**: CCU0 only, CCU1 only, compare in both at the same time (serve first/last)

ACB A	ACB (ARU Control Bit) Description 🖂							
Search	:						С	
HEX	ACB[4]	ACB[3]	ACB[2]	ACB[1] (OUT)	ACB[Ø] (OUT)	CCU0/1 Comparison Mode	ATOM Output on Match	
00x6	0	0	0	0	0	Serve First	OUT=No signal Change	
0x01	0	0	0	0	1	Serve First	OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
0x02	0	0	0	1	0	Serve First	OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
x03	0	0	0	1	1	Serve First	OUT=Toggle	
x08	0	1	0	0	0	Compare CCU0 only	OUT=No signal Change	
0x09	0	1	0	0	1	Compare CCU0 only	OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
XØA	0	1	0	1	0	Compare CCU0 only	OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
0x0B	0	1	0	1	1	Compare CCU0 only	OUT=Toggle	
)x0C	0	1	1	0	0	Compare CCU1 only	OUT=No signal Change	
x0D	0	1	1	0	1	Compare CCU1 only	OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
x0E	0	1	1	1	0	Compare CCU1 only	OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
x0F	0	1	1	1	1	Compare CCU1 only	OUT=Toggle	
x10	1	0	0	0	0	Serve Last	[on CCU0 Match] OUT=No signal Change	
x11	1	0	0	0	1	Serve Last	[on CCU0 Match] OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
x12	1	0	0	1	0	Serve Last	[on CCU0 Match] OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
x13	1	0	0	1	1	Serve Last	[on CCU0 Match] OUT=Toggle	
x14	1	0	1	0	0	Serve Last	[on CCU0 Match]=>OUT No Change	
x15	1	0	1	0	1	Serve Last	[on CCU0 Match] OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
x16	1	0	1	1	0	Serve Last	[on CCU0 Match] OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
x17	1	0	1	1	1	Serve Last	[on CCU0 Match] OUT=Toggle	
x18	1	1	0	0	0	Serve Last	[on CCU1 Match] OUT=No signal Change	
x19	1	1	0	0	1	Serve Last	[on CCU1 Match] OUT=1 (if SL=0)/ OUT= 0 if (SL=1)	
x1A	1	1	0	1	0	Serve Last	[on CCU1 Match] OUT=0 (if SL=0)/ OUT= 1 if (SL=1)	
x1B	1	1	0	1	1	Serve Last	[on CCU1 Match] OUT=Toggle	
x1C	1	1	1	0	0	Special	Stop ongoing Comparisons	

- TBU_CH => [0, 0x00FFFFFF]
 - Time counter (CH0)
 - Angular counter (CH1/2)

If the comparison is >= (GE) and the

<CM_value> in [TBU_CH_curr, (TBU_CH_curr+0x007FFFFF)%(0x00FFFFFF)]

- The event is considered in the "Future"
- Otherwise it is consider to be in the past.

For instance:

- TBU_CH_curr=0x007F00FF,CM_value = 0x00800020
- $\Delta = (0x00800020 0x007F00FF) = 0xFF21<0x007FFFFF$
 - The 0x00800020 is in the "future"
- TBU_CH_curr = 0x007F00FF, CM_value= 0x000000AA
- $\Delta = (0x1000000 0x007F00FF) + 0x0000000AA =>$
 - D = 0x0080FFAB > 0x007FFFFF
 - The 0x000000AA value is consider a "past" event
- TBU_CH_curr = 0x00FFAAFF, CM_value = 0x000000AA
- $\Delta = (0x1000000 0x00FFAAFF) + 0x0000000AA = >$
 - D = 0x000055AA < 0x007FFFFF => "future Event"

GTM (Generic Timer Module) ATOM – ARU Communication Interface (ACI)

responsible for data exchange from/to ARU

- communication is achieved with following SFRs
 - SR0 & SR1 (24-bit)
 - ACBI & ACBO (5-bit)
- The meaning of the ARU parameters depends on the ATOM operative mode.
 - In SOMP mode ARU_CHx_IN contains duty cycle an period.
 - In SOMC mode the ARU_CH_IN contains values to be compared using the control strategy (CCUO/CCU1) specified by the CTRL_BITS
 - Also the output behavior can be controlled with the CTRL_BITS (SOU).

GTM (Generic Timer Module) ATOM – examples

3 Ignition/Injection pulses (MCS+DPLL+ATOM)

AURIX2G ATOM Improvements

- → (A)TOM trigger pulse generation SR0_TRIG
- → (A)TOM up-down counter mode UD_MODE
- → (A)TOM extended clock source ECLK_SRC for CN0: TRIG_[x-1] and TIM_EXT_CAPTURE(x) as clock signal for CN0
- → (A)TOM freeze mode FREEZE: no change of output (A)TOM_CH(x)_OUT if channel is enabled/disabled
- → ATOM SOMC/SOMB extended update mode EUPD

AURIX2G Improvements (SOMB)

- ATOM Signal Output Mode Buffered Compare
 - Similar to SOMC

In ATOM Signal Output Buffered Compare (**SOMB**), the ATOM channel generates an output signal on behalf of time stamps that located in the ATOM operation registers. These time stamps are compared with the time stamps, the TBU generates. The ATOM is able to receive new compare values either by CPU or via the ARU. The new compare values received via ARU are stored first in the shadow register and only if previous compare match is occurred, the operation register are updated with the content of the shadow register.

AURIX2G

infineon

ATOM Improvements (SOMC - Serve Last)

ATOM SOMC/SOMB extended update mode

- → ATOM SOMC mode:
 - update of CM1 after CCU0 compare match
 - ARU read request is continued

Agenda

- 1 GTM Overview
- 2 CTBM-Clock & Time Base Management
- 3 TIM-Timer Input Module
- 4 ARU-Advanced Routing Unit
- 5 TOM-Timer Output Module
- 6 ATOM-ARU connected Timer Output Module
- 7 DTM-Dead Time Module

GTM (Generic Timer Module) DTM (Dead Time Module)

1. Dead-Time Generation

Generate the inverted signals with programmable dead-time.

- > TOM/ATOM → DTM_INO → DTM_OUTO_N
- > TOM/ATOM → DTM_IN1 → DTM_OUT1_N
- > TOM/ATOM → DTM_IN2 → DTM_OUT2_N
- > TOM/ATOM → DTM_IN3 → DTM_OUT3_N

2. Phase-shift.

Set the output of one channel to the value of the preceding channel (TIM_CH_IN Trigger or DTM_AUX_IN)

3. (N)AND/(N)OR/X(N)OR combine the DTM_IN[x] inputs with TIM_CH_IN or DTM_AUX_IN

4. Pulse Generation On Edge

DTM (Dead Time Module) – TC22x/23x and

AURIX2G (3)

DTM (Dead Time Module)

DTM (Dead Time Module) Phase Shifting

- If No Trigger applied ('0'):
 - input signal DTM_IN0 is forwarded to output DTM_OUT0
 - input signal DTM_IN1 is forwarded to output DTM_OUT1
- If phase shift trigger is active (='1'),
 - the input signal DTM_IN0 is continued to be forwarded to output DTM_OUT0
 - the input signal DTM_IN0 is now also forwarded to output DTM_OUT1.

(The outputs DTM_OUTx_N have no special meaning in this application context)

DTM (Dead Time Module) How DTM Phase Shifting works 2/2

- In case of No triggers, the outputs are generated as expected
- DTM_IN0 => DTM_OUT0/0_N
- DTM_IN1 => DTM0_OUT1/1_N

In case of trigger, the outputs of DTM_OUT1 will take the DTM_OUT0 value, until the next DTM_IN0 edge

Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter – Control Signals

AURIX2G DTM Improvements (Phase Shift Ctrl Unit)

AURIX1G

AURIX2G DTM Improvements (Output Shut Off)

1.14.6 DTM output shut off

A fast shut off for the eight outputs of DTM instance i can be triggered by one of the two assigned inputs TIM[n]_CH_IN or DTM[i]_AUX_IN or the two inputs TIM[m]_CH_IN or DTM[i-1]_AUX_IN of the previous DTM instance i-1. The selection of the trigger signal source is done by the bits **PSU_IN_SEL** and **DTM_SEL(1)** (see **Figure 1-95**). The selected trigger signal is named *SHUT_OFF*.

AURIX2G (A)TOM without DTMs

700 800

Part of your life. Part of tomorrow.

