

Data collection and preparation

1.Data Collection

Dataset to Use:

Indian Liver Patient Dataset (ILPD)

- Source: <u>UCI ML Repository</u>
- Alternate: Search "Liver Patient Dataset" on <u>Kaggle</u> for updated versions or enhanced features.

Dataset Summary:

Feature Description

Age Age of the patient Gender Male/Female

Total_Bilirubin Liver function indicator
Direct_Bilirubin More specific liver marker
Alkaline_Phosphotase Enzyme related to bile ducts

Alamine Aminotransferase Enzyme level in liver

Aspartate_Aminotransferase Enzyme involved in metabolism

Total_Proteins Overall protein level

Albumin Protein produced by the liver

Albumin_and_Globulin_Ratio Protein ratio affected by liver health Dataset (Target) 1 = Liver patient, 2 = Not a liver patient

2. Data Preparation Steps

Step 1: Load Dataset

import pandas as pd
df = pd.read_csv('indian_liver_patient.csv')
df.head()

Step 2: Data Cleaning

a)Check for Null Values

df.isnull().sum()

 $\label{lem:cond_Globulin_Ratio'].fillna(df['Albumin_and_Globulin_Ratio'].median(), inplace=True)$

b) Fix Column Names

df.columns = df.columns.str.replace(' ', '_')

Step 3: Target Column Mapping

```
Convert Dataset values to binary (1 = Liver Disease, 0 = No Disease): df['Target'] = df['Dataset'].map({1: 1, 2: 0}) df.drop('Dataset', axis=1, inplace=True)
```

Step 4: Exploratory Data Analysis (Optional)

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x='Target', data=df)
plt.title('Class Distribution')
plt.show()
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
```

Step 5: Feature Engineering

a) Convert Categorical to Numeric

df['Gender'] = df['Gender'].map({'Male': 1, 'Female': 0})

b) Feature Scaling (optional for some models)

from sklearn.preprocessing import StandardScaler features = df.drop('Target', axis=1) target = df['Target'] scaler = StandardScaler() scaled features = scaler.fit transform(features)

Step 6: Train-Test Split

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(scaled_features, target, test_size=0.2, random_s