ullet The inner product can be defined on the vector space over the field either $\mathbb R$ or $\mathbb C$. We use the following notation of the filed $\mathbb K$ where $\mathbb K$ is either $\mathbb R$ or $\mathbb C$.

ullet The inner product can be defined on the vector space over the field either $\mathbb R$ or $\mathbb C$. We use the following notation of the filed $\mathbb K$ where $\mathbb K$ is either $\mathbb R$ or $\mathbb C$.

Definition: Let V be a vector space over the field K.

ullet The inner product can be defined on the vector space over the field either $\mathbb R$ or $\mathbb C$. We use the following notation of the filed $\mathbb K$ where $\mathbb K$ is either $\mathbb R$ or $\mathbb C$.

Definition: Let V be a vector space over the field K.

An inner product is a mapping $\langle .,. \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{K}$ which satisfies the following conditions.

1. $\langle x, x \rangle \geq 0$ for all $x \in \mathbb{V}$ (positivity)

1. $\langle x, x \rangle \geq 0$ for all $x \in \mathbb{V}$ (positivity)

and $\langle x, x \rangle = 0$ iff x = 0 (definiteness).

1. $\langle x, x \rangle \geq 0$ for all $x \in \mathbb{V}$ (positivity)

and $\langle x, x \rangle = 0$ iff x = 0 (definiteness).

2. $\langle x,y\rangle=\overline{\langle y,x\rangle}$ for all $x,y\in\mathbb{V}$ (conjugate symmetry).

1. $\langle x, x \rangle \ge 0$ for all $x \in \mathbb{V}$ (positivity)

and $\langle x, x \rangle = 0$ iff x = 0 (definiteness).

2. $\langle x,y\rangle=\overline{\langle y,x\rangle}$ for all $x,y\in\mathbb{V}$ (conjugate symmetry).

3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in \mathbb{V}$ and for all $\alpha \in \mathbb{K}$ (homogeneity).

1. $\langle x, x \rangle \ge 0$ for all $x \in \mathbb{V}$ (positivity)

and $\langle x, x \rangle = 0$ iff x = 0 (definiteness).

2. $\langle x,y\rangle=\overline{\langle y,x\rangle}$ for all $x,y\in\mathbb{V}$ (conjugate symmetry).

3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in \mathbb{V}$ and for all $\alpha \in \mathbb{K}$ (homogeneity).

4. $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ for all $x,y,z\in\mathbb{V}$ (additivity).

• Dot product on \mathbb{R}^n is an inner product.

ullet Dot product on \mathbb{R}^n is an inner product.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i y_i$ for all $x, y \in \mathbb{V}$.

• Dot product on \mathbb{R}^n is an inner product.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i y_i$ for all $x, y \in \mathbb{V}$.

Ans: This is not an inner product. Take x = (i, i, ..., i). Then $\langle x, x \rangle = \sum_{i=1}^{n} i \cdot i = -n$ which is negative. Therefore fails to satisfy property 1.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i \overline{y_i}$ for all $x, y \in \mathbb{V}$.

• Dot product on \mathbb{R}^n is an inner product.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i y_i$ for all $x, y \in \mathbb{V}$.

Ans: This is not an inner product. Take x = (i, i, ..., i). Then $\langle x, x \rangle = \sum_{i=1}^{n} i \cdot i = -n$ which is negative. Therefore fails to satisfy property 1.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i \overline{y_i}$ for all $x, y \in \mathbb{V}$.

Ans: This an inner product.

• $\mathbb{V} = \mathbb{M}_n(\mathbb{R})(\mathbb{R})$. Let $\langle A, B \rangle = trace(AB^t)$ for all $A, B \in \mathbb{M}_n(\mathbb{R})$.

ullet Dot product on \mathbb{R}^n is an inner product.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i y_i$ for all $x, y \in \mathbb{V}$.

Ans: This is not an inner product. Take x = (i, i, ..., i). Then $\langle x, x \rangle = \sum_{i=1}^{n} i \cdot i = -n$ which is negative. Therefore fails to satisfy property 1.

• Let $\mathbb{V} = \mathbb{C}^n(\mathbb{C})$. Let $\langle x, y \rangle = \sum_i^n x_i \overline{y_i}$ for all $x, y \in \mathbb{V}$.

Ans: This an inner product.

• $\mathbb{V} = \mathbb{M}_n(\mathbb{R})(\mathbb{R})$. Let $\langle A, B \rangle = trace(AB^t)$ for all $A, B \in \mathbb{M}_n(\mathbb{R})$.

Ans: This is an inner product.

• $\mathbb{V} = \mathbb{C}[a, b]$ over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.

• $\mathbb{V} = \mathbb{C}[a, b]$ over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.

1. Let $f \in \mathbb{C}[a,b]$. Take $\langle f,f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$.

•
$$\mathbb{V} = \mathbb{C}[a, b]$$
 over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.

1. Let $f \in \mathbb{C}[a,b]$. Take $\langle f,f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$.

$$\langle f, f \rangle = \int_{2}^{b} f(x)f(x)dx = 0 \implies f \equiv 0 \text{ (why?)}$$

• $\mathbb{V} = \mathbb{C}[a,b]$ over the field \mathbb{R} . Let $\langle f,g \rangle = \int_a^b f(x)g(x)dx$ for all $f,g \in \mathbb{C}[a,b]$.

1. Let
$$f \in \mathbb{C}[a, b]$$
. Take $\langle f, f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$. $\langle f, f \rangle = \int_a^b f(x)f(x)dx = 0 \implies f \equiv 0 \text{ (why?)}$

2. Let $f,g \in \mathbb{C}[a,b]$.

- $\mathbb{V} = \mathbb{C}[a, b]$ over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.
 - 1. Let $f \in \mathbb{C}[a, b]$. Take $\langle f, f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$. $\langle f, f \rangle = \int_a^b f(x)f(x)dx = 0 \implies f \equiv 0 \text{ (why?)}$
 - 2. Let $f, g \in \mathbb{C}[a, b]$.

Take
$$\langle f, g \rangle = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = \langle g, f \rangle$$
.

- $\mathbb{V} = \mathbb{C}[a, b]$ over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.
 - 1. Let $f \in \mathbb{C}[a, b]$. Take $\langle f, f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$. $\langle f, f \rangle = \int_a^b f(x)f(x)dx = 0 \implies f \equiv 0 \text{ (why?)}$
 - 2. Let $f,g \in \mathbb{C}[a,b]$.

Take
$$\langle f, g \rangle = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = \langle g, f \rangle$$
.

3. Let $f, g \in \mathbb{C}[a, b]$ and $\alpha \in \mathbb{R}$.

- $\mathbb{V} = \mathbb{C}[a, b]$ over the field \mathbb{R} . Let $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ for all $f, g \in \mathbb{C}[a, b]$.
 - 1. Let $f \in \mathbb{C}[a, b]$. Take $\langle f, f \rangle = \int_a^b f(x)f(x)dx = \int_a^b f^2(x)dx \ge 0$. $\langle f, f \rangle = \int_a^b f(x)f(x)dx = 0 \implies f \equiv 0 \text{ (why?)}$
 - 2. Let $f, g \in \mathbb{C}[a, b]$.

Take
$$\langle f, g \rangle = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = \langle g, f \rangle$$
.

3. Let $f, g \in \mathbb{C}[a, b]$ and $\alpha \in \mathbb{R}$.

Then
$$\langle \alpha f, g \rangle = \int_a^b (\alpha f(x)) g(x) dx = \alpha \int_a^b f(x) g(x) dx = \alpha \langle f, g \rangle$$
.

4. Let $f, g, h \in \mathbb{C}[a, b]$.

4. Let $f, g, h \in \mathbb{C}[a, b]$.

Then
$$\langle f + g, h \rangle = \int_a^b (f(x) + g(x)) h(x) dx$$

$$= \int_a^b (f(x)h(x) + g(x)h(x)) dx$$

$$= \langle f, h \rangle + \langle g, h \rangle.$$

• Let f:[a,b] be integrable and $f(x) \ge 0$. Let f is continuous at x=c and f(c) > 0 (resp. f(c) < 0). Then $\int_a^b f(x) dx > 0$ (resp. $\int_a^b f(x) dx < 0$).

Sol: Case I. Let a < c < b.

f is continuous at x=c. Take $\epsilon=\frac{f(c)}{2}$ then there exists $\delta>0$ such that

for each
$$x \in (c - \delta, c + \delta) \implies |f(x) - f(c)| < \frac{(f(c))}{2}$$
.

Then
$$-\frac{(f(c))}{2} < f(x) - f(c) < \frac{(f(c))}{2}$$
 for all $x \in (c - \delta, c + \delta)$.

Therefore
$$f(x) > \frac{(f(c))}{2} > 0$$
 for all $x \in (c - \delta, c + \delta)$.

$$\int_{a}^{b} f^{2}(x)dx = \int_{a}^{c-\delta} f(x)dx + \int_{c-\delta}^{c+\delta} f(x)dx + \int_{c+\delta}^{b} f(x)dx > 0$$
as
$$\int_{c-\delta}^{c+\delta} f^{2}(x)dx > 0.$$

Case II. c = a

When c = a, we have a neighborhood $(a, a + \delta)$ where f is positive.

$$\int_a^b f^2(x)dx = \int_a^{a+\delta} f(x)dx + \int_b^{a+\delta} f(x)dx > 0$$

Case-III. c = b. Same as Case II.

To show
$$\langle f, f \rangle = \int_a^b f(x) f(x) dx = 0 \implies f \equiv 0.$$

Here f^2 is nonnegative function and continuous. If f is not identically zero, then there exists $c \in [a,b]$ such that $f(c) \neq 0$. Therefore $f^2(c) > 0$. Using above result we have $\int_a^b f(x)f(x)dx > 0$, a contradiction. Hence $f \equiv 0$.

Ans: This is not an inner product space.

Ans: This is not an inner product space.

Take $f \in \mathbb{C}(\mathbb{R})$, defined by

Ans: This is not an inner product space.

Take $f \in \mathbb{C}(\mathbb{R})$, defined by

$$f(x) = \begin{cases} a - x & \text{if } x \le a \\ 0 & \text{if } x \in [a, b] \\ x - b & \text{if } x \ge b \end{cases}$$

Ans: This is not an inner product space.

Take $f \in \mathbb{C}(\mathbb{R})$, defined by

$$f(x) = \begin{cases} a - x & \text{if } x \le a \\ 0 & \text{if } x \in [a, b] \\ x - b & \text{if } x \ge b \end{cases}$$

f is continuous on \mathbb{R} .

Ans: This is not an inner product space.

Take $f \in \mathbb{C}(\mathbb{R})$, defined by

$$f(x) = \begin{cases} a - x & \text{if } x \le a \\ 0 & \text{if } x \in [a, b] \\ x - b & \text{if } x \ge b \end{cases}$$

f is continuous on \mathbb{R} .

$$\langle f, f \rangle = \int_a^b f^2(x) dx = 0$$
 but $f \not\equiv 0$.

Ans: This is not an inner product space.

Take $f \in \mathbb{C}(\mathbb{R})$, defined by

$$f(x) = \begin{cases} a - x & \text{if } x \le a \\ 0 & \text{if } x \in [a, b] \\ x - b & \text{if } x > b \end{cases}$$

f is continuous on \mathbb{R} .

$$\langle f, f \rangle = \int_a^b f^2(x) dx = 0$$
 but $f \not\equiv 0$.

Hence $\langle f, g \rangle = \int_a^b f(x)g(x)dx$ is not an inner product on $C(\mathbb{R})$.

Proof: Let \mathbb{V} be a vector space over \mathbb{K} .

Proof: Let \mathbb{V} be a vector space over \mathbb{K} .

There are two cases.

Proof: Let \mathbb{V} be a vector space over \mathbb{K} .

There are two cases.

Case I. \mathbb{V} is finite dimensional. Let $B = \{u_1, \dots, k\}$ be a basis of \mathbb{V} .

Theorem: There exists an inner product on every non-trivial vector space over \mathbb{K} .

Proof: Let $\mathbb V$ be a vector space over $\mathbb K.$

There are two cases.

Case I. \mathbb{V} is finite dimensional. Let $B = \{u_1, \dots, k\}$ be a basis of \mathbb{V} .

Let $x, y \in \mathbb{V}$. Then $x = \sum_{i=1}^k a_i u_i$ and $y = \sum_{i=1}^k b_i u_i$ for some $a_i, b_i \in \mathbb{K}$ for i = 1, ..., k.

Theorem: There exists an inner product on every non-trivial vector space over \mathbb{K} .

Proof: Let $\mathbb V$ be a vector space over $\mathbb K.$

There are two cases.

Case I. \mathbb{V} is finite dimensional. Let $B = \{u_1, \dots, k\}$ be a basis of \mathbb{V} .

Let
$$x, y \in \mathbb{V}$$
. Then $x = \sum_{i=1}^k a_i u_i$ and $y = \sum_{i=1}^k b_i u_i$ for some $a_i, b_i \in \mathbb{K}$ for $i = 1, ..., k$.

Define

$$\langle x,y\rangle = \sum_{i=1}^k a_i \bar{b}_i$$
.

Theorem: There exists an inner product on every non-trivial vector space over \mathbb{K} .

Proof: Let $\mathbb V$ be a vector space over $\mathbb K.$

There are two cases.

Case I. \mathbb{V} is finite dimensional. Let $B = \{u_1, \dots, k\}$ be a basis of \mathbb{V} .

Let
$$x, y \in \mathbb{V}$$
. Then $x = \sum_{i=1}^k a_i u_i$ and $y = \sum_{i=1}^k b_i u_i$ for some $a_i, b_i \in \mathbb{K}$ for $i = 1, ..., k$.

Define

$$\langle x,y\rangle = \sum_{i=1}^k a_i \bar{b}_i$$
.

We now show that \langle , \rangle is an IP on \mathbb{V} .

1. Let $x \in \mathbb{V}$. The $x = \sum_{i=1}^k a_i u_i$ for some $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

1. Let $x \in \mathbb{V}$. The $x = \sum_{i=1}^{\infty} a_i u_i$ for some $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$\langle x, x \rangle = \sum_{i=1}^k a_i \bar{a}_i = \sum_{i=1}^k |a_i|^2 \ge 0.$$

1. Let $x \in \mathbb{V}$. The $x = \sum_{i=1}^n a_i u_i$ for some $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$\langle x, x \rangle = \sum_{i=1}^k a_i \bar{a}_i = \sum_{i=1}^k |a_i|^2 \geq 0.$$

if $\langle x, x \rangle = 0$, then $\sum_{i=1}^{k} |a_i|^2 = 0 \implies a_i = 0$ for $i = 1, \dots, k$.

if
$$\langle x,x\rangle=0$$
, then $\sum |a_i|^2=0 \implies a_i=0$ for $i=1,\ldots,$

1. Let $x \in \mathbb{V}$. The $x = \sum_{i=1}^{n} a_i u_i$ for some $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$\langle x, x \rangle = \sum_{i=1}^k a_i \bar{a}_i = \sum_{i=1}^k |a_i|^2 \ge 0.$$

if
$$\langle x, x \rangle = 0$$
, then $\sum_{i=1}^{k} |a_i|^2 = 0 \implies a_i = 0$ for $i = 1, \dots, k$.

Therefore
$$x = \sum_{i=1}^{k} a_i u_i = 0$$
.

2. Let $x, y \in \mathbb{V}$.

2. Let $x, y \in \mathbb{V}$.

Then
$$x = \sum_{i=1}^k a_i u_i$$
 and $y = \sum_{i=1}^k b_i u_i$, $a_i, b_i \in \mathbb{K}$ for $i = 1, \dots, k$.

2. Let $x, y \in \mathbb{V}$.

Then $x = \sum_{i=1}^k a_i u_i$ and $y = \sum_{i=1}^k b_i u_i$, $a_i, b_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$\langle x, y \rangle = \sum_{i=1}^{k} a_i \overline{b_i} = \sum_{i=1}^{k} \overline{a_i} b_i = \overline{\langle y, x \rangle}.$$

3. This part is same as part 2.

3. This part is same as part 2.

4. Let $x, y, z \in \mathbb{V}$. Then $x = \sum_{i=1}^k a_i u_i$, $y = \sum_{i=1}^k b_i u_i$ and $z = \sum_{i=1}^k c_i u_i$ where $a_i, b_i, c_i \in \mathbb{K}$ for $i = 1, \ldots, k$.

3. This part is same as part 2.

4. Let
$$x, y, z \in \mathbb{V}$$
. Then $x = \sum_{i=1}^k a_i u_i$, $y = \sum_{i=1}^k b_i u_i$ and $z = \sum_{i=1}^k c_i u_i$ where $a_i, b_i, c_i \in \mathbb{K}$ for $i = 1, \ldots, k$.

Then $x + y = \sum_{i=1}^{k} (a_i + b_i)u_i$. Therefore,

$$\langle x + y, z \rangle = \sum_{i=1}^{k} (a_i + b_i) \overline{c_i}$$

$$= \sum_{i=1}^{k} (a_i \overline{c_i} + b_i \overline{c_i})$$

$$= \langle x, z \rangle + \langle y, z \rangle.$$

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

$$f(u_{\alpha}, u_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Case II. \mathbb{V} is infinite dimensional.

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

$$f(u_{\alpha}, u_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Let $x, y \in \mathbb{V}$. Then there exist two finite subsets $\{u_{\alpha_1}, \dots, u_{\alpha_k}\}$ and $\{u_{\beta_1}, \dots, u_{\beta_m}\}$ of B such that

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

$$f(u_{\alpha}, u_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Let $x,y\in\mathbb{V}$. Then there exist two finite subsets $\{u_{\alpha_1},\dots,u_{\alpha_k}\}$ and $\{u_{\beta_1},\dots,u_{\beta_m}\}$ of B such that

$$x = a_1 u_{\alpha_1} + \cdots + a_k u_{\alpha_k}$$
 where $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

$$f(u_{\alpha}, u_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Let $x,y\in\mathbb{V}$. Then there exist two finite subsets $\{u_{\alpha_1},\ldots,u_{\alpha_k}\}$ and $\{u_{\beta_1},\ldots,u_{\beta_m}\}$ of B such that

$$x = a_1 u_{\alpha_1} + \cdots + a_k u_{\alpha_k}$$
 where $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

 $y = b_1 u_{\beta_1} + \cdots + b_k u_{\beta_m}$ where $b_j \in \mathbb{K}$ for $j = 1, \ldots, m$.

Case II. \mathbb{V} is infinite dimensional.

Let $B = \{u_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $f: B \times B \to \mathbb{K}$ define by

$$f(u_{\alpha}, u_{\beta}) = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Let $x,y\in \mathbb{V}$. Then there exist two finite subsets $\{u_{\alpha_1},\ldots,u_{\alpha_k}\}$ and $\{u_{\beta_1},\ldots,u_{\beta_m}\}$ of B such that

$$x = a_1 u_{\alpha_1} + \cdots + a_k u_{\alpha_k}$$
 where $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$y = b_1 u_{\beta_1} + \cdots + b_k u_{\beta_m}$$
 where $b_j \in \mathbb{K}$ for $j = 1, \dots, m$.

Define
$$\langle x, y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{k} a_i \overline{b_j} f(u_{\alpha_i}, u_{\beta_j}).$$

Check $\langle x,y \rangle = \sum\limits_{j=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},u_{\beta_j})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

Check $\langle x,y \rangle = \sum\limits_{i=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},\overline{u_{\beta_j}})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2$$
 (using the definition of f)

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

Check $\langle x,y \rangle = \sum\limits_{i=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},u_{\beta_j})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_i} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2$$
 (using the definition of f)

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

2. It is easy.

Check $\langle x,y \rangle = \sum\limits_{j=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},u_{\beta_j})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is easy.
- 3. It is easy

Check $\langle x,y \rangle = \sum\limits_{i=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},\overline{u_{\beta_j}})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is easy.
- 3. It is easy

4. Let
$$x, y, z \in \mathbb{V}$$
. Then there exits two finite subsets $\{u_{\alpha_1}, \dots, u_{\alpha_k}\}$ $\{u_{\beta_1}, \dots, u_{\beta_k}\}$ and $\{u_{\alpha_1}, \dots, u_{\alpha_k}\}$ of B such that

 $\{u_{\beta_1},\ldots,u_{\beta_m}\}$ and $\{u_{\gamma_1},\ldots,u_{\gamma_n}\}$ of B such that

Check $\langle x,y \rangle = \sum\limits_{i=1}^m \sum\limits_{i=1}^k a_i \overline{b_j} f(u_{\alpha_i},u_{\beta_j})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is easy.
- 3. It is easy
- 4. Let $x, y, z \in \mathbb{V}$. Then there exits two finite subsets $\{u_{\alpha_1}, \ldots, u_{\alpha_k}\}$ $\{u_{\beta_1}, \ldots, u_{\beta_m}\}$ and $\{u_{\gamma_1}, \ldots, u_{\gamma_n}\}$ of B such that

$$x = a_1 u_{\alpha_1} + \cdots + a_k u_{\alpha_k}$$
 where $a_i \in \mathbb{K}$ for $i = 1, \ldots, k$.

Check $\langle x,y\rangle=\sum\limits_{j=1}^{m}\sum\limits_{i=1}^{k}a_{i}\overline{b_{j}}f(u_{\alpha_{i}},\overline{u_{\beta_{j}}})$ is an inner product on $\mathbb{V}.$

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is easy.
- 3. It is easy
- 4. Let $x, y, z \in \mathbb{V}$. Then there exits two finite subsets $\{u_{\alpha_1}, \ldots, u_{\alpha_k}\}$ $\{u_{\beta_1}, \ldots, u_{\beta_m}\}$ and $\{u_{\gamma_1}, \ldots, u_{\gamma_n}\}$ of B such that

$$x = a_1 u_{\alpha_1} + \cdots + a_k u_{\alpha_k}$$
 where $a_i \in \mathbb{K}$ for $i = 1, \dots, k$.

$$y = b_1 u_{\beta_1} + \cdots + b_m u_{\beta_m}$$
 where $b_j \in \mathbb{K}$ for $j = 1, \dots, m$.

Check $\langle x,y\rangle=\sum\limits_{j=1}^{m}\sum\limits_{i=1}^{k}a_{i}\overline{b_{j}}f(u_{\alpha_{i}},u_{\beta_{j}})$ is an inner product on \mathbb{V} .

1.
$$\langle x, x \rangle = \sum_{i=1}^{k} \sum_{i=1}^{k} a_i \overline{a_j} f(u_{\alpha_i}, u_{\alpha_j}).$$

$$= \sum_{i=1}^{k} |a_i|^2 \text{ (using the definition of } f\text{)}$$

It is easy to show that $\langle x, x \rangle = 0$ if and only if x = 0.

- 2. It is easy.
- . . .
- 3. It is easy

 $x=a_1u_{\alpha_1}+\cdots+a_ku_{\alpha_k}$ where $a_i\in\mathbb{K}$ for $i=1,\ldots,k$.

 $\{u_{\beta_1},\ldots,u_{\beta_m}\}$ and $\{u_{\gamma_1},\ldots,u_{\gamma_n}\}$ of B such that

4. Let $x, y, z \in \mathbb{V}$. Then there exits two finite subsets $\{u_{\alpha_1}, \dots, u_{\alpha_k}\}$

 $y = b_1 u_{\beta_1} + \dots + b_m u_{\beta_m}$ where $b_j \in \mathbb{K}$ for $j = 1, \dots, m$. $z = c_1 u_{\gamma_1} + \dots + c_n u_{\gamma_n}$ where $c_l \in \mathbb{K}$ for $l = 1, \dots, n$.

$$x + y = \sum_{i=1}^{k} a_i u_{\alpha_i} + \sum_{j=1}^{m} b_j u_{\beta_j}$$

$$x+y=\sum_{i=1}^k a_i u_{\alpha_i}+\sum_{j=1}^m b_j u_{\beta_j}$$

$$\langle x+y,z\rangle=\sum_{i=1}^k\sum_{l=1}^na_i\overline{c_l}f(u_{\alpha_i},u_{\gamma_l})+\sum_{j=1}^m\sum_{l=1}^nb_i\overline{c_l}f(u_{\beta_i},u_{\gamma_l}).$$

$$x + y = \sum_{i=1}^{\kappa} a_i u_{\alpha_i} + \sum_{j=1}^{m} b_j u_{\beta_j}$$

$$\langle x+y,z\rangle=\sum_{i=1}^k\sum_{l=1}^na_i\overline{c_l}f(u_{\alpha_i},u_{\gamma_l})+\sum_{j=1}^m\sum_{l=1}^nb_i\overline{c_l}f(u_{\beta_i},u_{\gamma_l}).$$

$$\langle x + y, z \rangle = \langle y, z \rangle + \langle y, z \rangle.$$

$$x+y=\sum_{i=1}^{n}a_{i}u_{\alpha_{i}}+\sum_{j=1}^{m}b_{j}u_{\beta_{j}}$$

 $\langle x+y,z\rangle=\sum_{i=1}^k\sum_{l=1}^na_i\overline{c_l}f(u_{\alpha_i},u_{\gamma_l})+\sum_{j=1}^m\sum_{l=1}^nb_i\overline{c_l}f(u_{\beta_i},u_{\gamma_l}).$

A vectors space together with an inner product is called an inner product space.

1. $\langle 0, u \rangle = 0$ for every $u \in \mathbb{V}$.

- 1. $\langle 0, u \rangle = 0$ for every $u \in \mathbb{V}$.
 - $2. \ \langle u, 0 \rangle = 0 \ \text{for every} \ u \in \mathbb{V}.$

- 1. $\langle 0, u \rangle = 0$ for every $u \in \mathbb{V}$.
- 2. $\langle u, 0 \rangle = 0$ for every $u \in \mathbb{V}$.
- 3. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for every $u, v, w \in \mathbb{V}$.

- 1. $\langle 0, u \rangle = 0$ for every $u \in \mathbb{V}$.
- 2. $\langle u, 0 \rangle = 0$ for every $u \in \mathbb{V}$.
- 3. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for every $u, v, w \in \mathbb{V}$.
- 4. $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$ for all $u, v \in \mathbb{V}$ and $\lambda \in \mathbb{K}$.

- 1. $\langle 0, u \rangle = 0$ for every $u \in \mathbb{V}$.
- 2. $\langle u, 0 \rangle = 0$ for every $u \in \mathbb{V}$.
- 3. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for every $u, v, w \in \mathbb{V}$.
- 4. $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$ for all $u, v \in \mathbb{V}$ and $\lambda \in \mathbb{K}$.

Proof: 1.
$$\langle 0, u \rangle = \langle u - u, u \rangle$$

$$= \langle u, u \rangle + \langle -u, u \rangle$$

$$= \langle u, u \rangle - \langle u, u \rangle$$

$$2. \langle 0, u \rangle = \overline{\langle 0, u \rangle}$$

$$= \overline{\langle u - u, u \rangle}$$

$$= \overline{\langle u, u \rangle + \langle -u, u \rangle}$$

$$= \overline{\langle u, u \rangle - \langle u, u \rangle}$$

$$= \overline{0}$$

3. Suppose $u, v, w \in \mathbb{V}$. Then

$$\langle u, v + w \rangle = \overline{\langle v + w, u \rangle}$$

$$= \overline{\langle v, u \rangle + \langle w, u \rangle}$$
$$= \overline{\langle v, u \rangle + \overline{\langle w, u \rangle}}$$
$$= \langle u, v \rangle + \langle u, w \rangle$$

$$= \langle u, v \rangle + \langle u, w \rangle.$$

4. Suppose $\lambda \in \mathbb{K}$ and $u, v \in \mathbb{V}$. Then $\langle u, \lambda v \rangle$

$$\langle u, \lambda v \rangle = \overline{\langle \lambda v, u \rangle}$$

$$= \overline{\lambda \langle \lambda v, u \rangle}$$

$$= \overline{\lambda \langle v, u \rangle}$$

$$= \overline{\lambda \langle u, v \rangle}.$$

Note: Orthogonality of two vectors depends on the inner product.

Note: Orthogonality of two vectors depends on the inner product.

Consider $\mathbb{V}=\mathbb{R}^2$. Take $\langle x,y\rangle=x_1y_1+x_2y_2$ where $x=(x_1,x_2),\ y=(y_1,y_2).$ This an inner product on \mathbb{R}^2 .

Note: Orthogonality of two vectors depends on the inner product.

Consider $\mathbb{V}=\mathbb{R}^2$. Take $\langle x,y\rangle=x_1y_1+x_2y_2$ where $x=(x_1,x_2),\ y=(y_1,y_2).$ This an inner product on \mathbb{R}^2 .

 $e_1=(1,0)$ and $e_2=(0,1)$ are orthogonal with respect to the above inner product.

Note: Orthogonality of two vectors depends on the inner product.

Consider $\mathbb{V}=\mathbb{R}^2$. Take $\langle x,y\rangle=x_1y_1+x_2y_2$ where $x=(x_1,x_2),\ y=(y_1,y_2).$ This an inner product on $\mathbb{R}^2.$

 $e_1=(1,0)$ and $e_2=(0,1)$ are orthogonal with respect to the above inner product.

Consider $\langle x,y\rangle_1=x_1y_1-x_2y_1-x_1y_2+4x_2y_2$. This is an inner product on \mathbb{R}^2 (check!).

Note: Orthogonality of two vectors depends on the inner product.

Consider $\mathbb{V}=\mathbb{R}^2$. Take $\langle x,y\rangle=x_1y_1+x_2y_2$ where $x=(x_1,x_2),\ y=(y_1,y_2).$ This an inner product on \mathbb{R}^2 .

 $e_1=(1,0)$ and $e_2=(0,1)$ are orthogonal with respect to the above inner product.

Consider $\langle x, y \rangle_1 = x_1y_1 - x_2y_1 - x_1y_2 + 4x_2y_2$. This is an inner product on \mathbb{R}^2 (check!).

 $\langle e_1,e_2
angle_1=-1.$ These two vectors are not orthogonal with respect to $\langle .,.
angle_1$

Note: Orthogonality of two vectors depends on the inner product.

Consider $\mathbb{V}=\mathbb{R}^2$. Take $\langle x,y\rangle=x_1y_1+x_2y_2$ where $x=(x_1,x_2),\ y=(y_1,y_2)$. This an inner product on \mathbb{R}^2 .

 $e_1=(1,0)$ and $e_2=(0,1)$ are orthogonal with respect to the above inner product.

Consider $\langle x, y \rangle_1 = x_1y_1 - x_2y_1 - x_1y_2 + 4x_2y_2$. This is an inner product on \mathbb{R}^2 (check!).

 $\langle e_1,e_2
angle_1=-1.$ These two vectors are not orthogonal with respect to $\langle.,.
angle_1$

• [Definition]Let $(\mathbb{V}, \langle ., . \rangle)$ be an inner product space. A subset S of \mathbb{V} is said to be **orthogonal** if $\langle u, v \rangle = 0$ for all $u, v \in S$ and $u \neq v$.

Proof: To show $S = \{\alpha_1, \dots, \alpha_k\}$ is LI.

Proof: To show $S = \{\alpha_1, \dots, \alpha_k\}$ is LI.

Take $c_1\alpha_1 + c_2\alpha_2 + \cdots + c_k\alpha_k = 0$.

Proof: To show $S = \{\alpha_1, \dots, \alpha_k\}$ is LI.

Take $c_1\alpha_1 + c_2\alpha_2 + \cdots + c_k\alpha_k = 0$. Take inner product with α_i both side.

Proof: To show $S = \{\alpha_1, \dots, \alpha_k\}$ is LI.

Take $c_1\alpha_1 + c_2\alpha_2 + \cdots + c_k\alpha_k = 0$. Take inner product with α_i both side.

$$\langle c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_k \alpha_k, \alpha_i \rangle = \langle 0, \alpha_i \rangle$$

$$\sum_{j=1}^k c_i \langle \alpha_j, \alpha_i \rangle = 0.$$

$$c_i\langle\alpha_i,\alpha_i\rangle=0$$

$$c_i = 0$$
. This is true for $i = 1, \ldots, k$.

Hence $S = \{\alpha_1, \ldots, \alpha_k\}$ is LI.

• The converse of the above theorem is not true. The following is an example.

 \bullet The converse of the above theorem is not true. The following is an example.

Example: Let
$$(\mathbb{R}^2, \langle ., . \rangle)$$
 be an inner product space where $\langle x, y \rangle = \sum_{i=1}^2 x_i y_i$.

 \bullet The converse of the above theorem is not true. The following is an example.

Example: Let
$$(\mathbb{R}^2, \langle ., . \rangle)$$
 be an inner product space where $\langle x, y \rangle = \sum_{i=1}^2 x_i y_i$.

Take u=(1,0) and v=(1,1). These two vectors are linearly independent but not orthogonal.

• [Definition:]Let $(\mathbb{V},\langle.,.\rangle)$ be an inner product space.

• [Definition:]Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, ..., \alpha_n\} \subseteq \mathbb{V}$.

• [Definition:]Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, ..., \alpha_n\} \subseteq \mathbb{V}$. Then $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is called **orthonormal** if $\langle \alpha_i, \alpha_i \rangle = 0$ for $i \neq j$ and $\langle \alpha_i, \alpha_i \rangle = 1$.

• [Definition:]Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subseteq \mathbb{V}$. Then $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is called **orthonormal** if $\langle \alpha_i, \alpha_j \rangle = 0$ for $i \neq j$ and $\langle \alpha_i, \alpha_i \rangle = 1$.

The next immediate question is that can we construct an orthogonal set from a finite linearly independent set?

• [Definition:]Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subseteq \mathbb{V}$. Then $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is called **orthonormal** if $\langle \alpha_i, \alpha_j \rangle = 0$ for $i \neq j$ and $\langle \alpha_i, \alpha_i \rangle = 1$.

The next immediate question is that can we construct an orthogonal set from a finite linearly independent set?

The answer is yes. Gram Schimdt supplied a process to construct an orthogonal set from a linearly independent finite set.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $u_1, u_2, \ldots, u_k \in \mathbb{V}$ be LI.

How to construct orthogonal vectors v_1, \ldots, v_k using u_1, u_2, \ldots, u_k ?

Step 1. Take $v_1 = u_1$.

Step 2. We now construct v_2 using v_1 and u_2 . Take $v_2 = u_2 + cv_1$ where $c \in \mathbb{K}$. We have to calculate the value of c such that v_2 is orthogonal to v_1 . That means

$$\langle v_2, v_1 \rangle = \langle u_2, v_1 \rangle + c \langle v_1, v_1 \rangle$$

 $0 = \langle u_2, v_1 \rangle + c \langle v_1, v_1 \rangle.$

 $c = -\frac{\langle u_2, v_1 \rangle}{\langle v_1, v_1 \rangle}$.

Therefore $v_2=u_2-\frac{\langle u_2,v_1\rangle}{\langle v_1,v_1\rangle}v_1$ is a vector which is perpendicular to v_1 . You can easily check that $v_2\neq 0$, otherwise u_2 is scalar multiple of u_1 which is not possible.

Take $v_3=u_3+c_1v_2+c_2v_1$ is an element in $\mathbb V$ where $c_1,c_2\in\mathbb K$. We have to calculate the values of c_1,c_2 such that v_3 is orthogonal to v_1 and v_2 . That means

$$\langle v_3, v_1 \rangle = \langle u_3, v_1 \rangle + c_1 \langle v_2, v_1 \rangle + c_2 \langle v_1, v_1 \rangle$$

Take $v_3 = u_3 + c_1v_2 + c_2v_1$ is an element in \mathbb{V} where $c_1, c_2 \in \mathbb{K}$. We have to calculate the values of c_1, c_2 such that v_3 is orthogonal to v_1 and v_2 . That means

$$\langle v_3, v_1 \rangle = \langle u_3, v_1 \rangle + c_1 \langle v_2, v_1 \rangle + c_2 \langle v_1, v_1 \rangle$$

$$0 = \langle u_3, v_1 \rangle + c_1 \times 0 + c_2 \langle v_1, v_1 \rangle.$$

Take $v_3 = u_3 + c_1v_2 + c_2v_1$ is an element in \mathbb{V} where $c_1, c_2 \in \mathbb{K}$. We have to calculate the values of c_1, c_2 such that v_3 is orthogonal to v_1 and v_2 . That means

$$\langle v_3, v_1 \rangle = \langle u_3, v_1 \rangle + c_1 \langle v_2, v_1 \rangle + c_2 \langle v_1, v_1 \rangle$$

$$0 = \langle u_3, v_1 \rangle + c_1 \times 0 + c_2 \langle v_1, v_1 \rangle.$$

$$c_2 = -\frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle}.$$

 $\langle v_3, v_1 \rangle = \langle u_3, v_1 \rangle + c_1 \langle v_2, v_1 \rangle + c_2 \langle v_1, v_1 \rangle$

Take $v_3=u_3+c_1v_2+c_2v_1$ is an element in $\mathbb V$ where $c_1,c_2\in\mathbb K$. We have to calculate the values of c_1,c_2 such that v_3 is orthogonal to v_1 and v_2 . That means

$$0 = \langle u_3, v_1 \rangle + c_1 \times 0 + c_2 \langle v_1, v_1 \rangle.$$

$$0 = \langle u_3, v_1 \rangle + c_1 \times 0 + c_2 \langle v_1, v_1 \rangle$$

$$c_2 = -\frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle}.$$

Similarly, we have $c_1 = -\frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle}$.

Take $v_3 = u_3 + c_1v_2 + c_2v_1$ is an element in \mathbb{V} where $c_1, c_2 \in \mathbb{K}$. We have to calculate the values of c_1, c_2 such that v_3 is orthogonal to v_1 and v_2 . That means

$$\langle v_3, v_1 \rangle = \langle u_3, v_1 \rangle + c_1 \langle v_2, v_1 \rangle + c_2 \langle v_1, v_1 \rangle$$

$$0 = \langle u_3, v_1 \rangle + c_1 \times 0 + c_2 \langle v_1, v_1 \rangle.$$

 $c_2 = -\frac{\langle u_3, v_1 \rangle}{\langle v_3, v_4 \rangle}$.

Similarly, we have $c_1 = -\frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle}$.

Therefore $v_3=u_3-\frac{\langle u_3,v_2\rangle}{\langle v_2,v_2\rangle}v_2-\frac{\langle u_3,v_1\rangle}{\langle v_1,v_1\rangle}v_1$ is a vector which is perpendicular to v_1 and v_2 . You can easily check that $v_3\neq 0$, otherwise u_3 is a linear combination of u_1 and u_2 .

Step k. $v_k = u_k - \frac{\langle u_k, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle u_k, v_{k-1} \rangle}{\langle v_{k-1}, v_{k-1} \rangle} v_{k-1}$. You can easily check that $v_k \neq 0$.

It is very easy to check that v_1, \ldots, v_k are orthogonal.

Step k.
$$v_k = u_k - \frac{\langle u_k, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle u_k, v_{k-1} \rangle}{\langle v_{k-1}, v_{k-1} \rangle} v_{k-1}$$
. You can easily check that $v_k \neq 0$. It is very easy to check that v_1, \dots, v_k are orthogonal.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space.

Step k.
$$v_k = u_k - \frac{\langle u_k, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle u_k, v_{k-1} \rangle}{\langle v_{k-1}, v_{k-1} \rangle} v_{k-1}$$
. You can easily check that $v_k \neq 0$.

It is very easy to check that v_1, \ldots, v_k are orthogonal.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{u_1, u_2, \ldots, u_n\}$ be a linearly independent set. Assume that the set $\{u_1, \ldots, u_k\}$ is orthogonal. Then

$$v_1 = u_1, v_2 = u_2, \dots, v_k = u_k$$
. To calculate v_{k+1} apply above technique on v_1, \dots, v_k and u_{k+1} .

• Theorem:[Gram Schmidt Orthogonalization] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space.

Step k.
$$v_k=u_k-\frac{\langle u_k,v_1\rangle}{\langle v_1,v_1\rangle}v_1-\cdots-\frac{\langle u_k,v_{k-1}\rangle}{\langle v_{k-1},v_{k-1}\rangle}v_{k-1}$$
. You can easily check that $v_k\neq 0$.

It is very easy to check that v_1, \ldots, v_k are orthogonal.

early independent set. Assume that the set $\{u_1,\ldots,u_k\}$ is orthogonal. Then

• Let $(\mathbb{V}, \langle ., . \rangle)$ be an inner product space. Let $\{u_1, u_2, \ldots, u_n\}$ be a lin-

$$v_1 = u_1, v_2 = u_2, \dots, v_k = u_k$$
. To calculate v_{k+1} apply above technique on v_1, \dots, v_k and u_{k+1} .

• Theorem: [Gram Schmidt Orthogonalization] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be a linearly independent set.

Step 4. Similar way you can calculate v_4 using u_4, v_1, v_2 and v_3 .

Step k. $v_k = u_k - \frac{\langle u_k, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle u_k, v_{k-1} \rangle}{\langle v_{k-1}, v_{k-1} \rangle} v_{k-1}$. You can easily check that $v_k \neq 0$. It is very easy to check that v_1, \dots, v_k are orthogonal.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{u_1, u_2, \ldots, u_n\}$ be a linearly independent set. Assume that the set $\{u_1, \ldots, u_k\}$ is orthogonal. Then $v_1 = u_1, v_2 = u_2, \ldots, v_k = u_k$. To calculate v_{k+1} apply above technique on

 v_1, \ldots, v_k and u_{k+1} .

 $\mathsf{ls}(\{\beta_1,\beta_2,\ldots,\beta_n\}) = \mathsf{ls}(\{\alpha_1,\alpha_2,\ldots,\alpha_n\}).$

• Theorem:[Gram Schmidt Orthogonalization] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be a linearly independent set. Then there exists an orthogonal set $\{\beta_1, \beta_2, \ldots, \beta_n\}$ such that

Proof: Since $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a linearly independent set, $\alpha_i \neq 0$ for $i = 1, \dots, n$.

Consider.

$$\beta_1 = \alpha_1$$
.

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

:

$$\beta_n = \alpha_n - \frac{\langle \alpha_n, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 - \dots - \frac{\langle \alpha_n, \beta_{n-1} \rangle}{\langle \beta_n, \beta_{n-1} \rangle} \beta_{n-1}.$$

It is clear from the above discussion that $\beta_1, \beta_2, \dots, \beta_n$ are orthogonal.

$$\beta_1 = \alpha_1$$
.

$$\beta_1 = \alpha_1$$
.

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_1 = \alpha_1$$
.

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_2 = \alpha_2 + a_1 \alpha_1$$
 where $a_1 = -\frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$. Therefore β_2 is a linear combination of α_1 and α_2 .

$$\beta_1 = \alpha_1$$
.

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_2 = \alpha_2 + a_1 \alpha_1$$
 where $a_1 = -\frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$. Therefore β_2 is a linear combination of α_1 and α_2 .

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1.$$

$$\beta_1 = \alpha_1$$
.

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_2 = \alpha_2 + a_1 \alpha_1$$
 where $a_1 = -\frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$. Therefore β_2 is a linear combination of α_1 and α_2 .

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1.$$

$$eta_3 = lpha_3 + b_1 eta_2 + b_2 eta_1$$
 where $b_2 = -rac{\langle lpha_3, eta_2
angle}{\langle eta_2, eta_2
angle}$ and $b_1 = rac{\langle lpha_3, eta_1
angle}{\langle eta_1, eta_1
angle}$.

We know that:

$$\beta_1 = \alpha_1.$$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_2 = \alpha_2 + a_1 \alpha_1$$
 where $a_1 = -\frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$. Therefore β_2 is a linear combination of α_1 and α_2 .

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1.$$

$$\beta_3 = \alpha_3 + b_1 \beta_2 + b_2 \beta_1$$
 where $b_2 = -\frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle}$ and $b_1 = \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$.

$$\beta_3 = \alpha_3 + b_1(\alpha_2 + a_1\alpha_1) + b_2\alpha_1$$

We know that:

$$\beta_1 = \alpha_1.$$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

$$\beta_2 = \alpha_2 + a_1 \alpha_1$$
 where $a_1 = -\frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$. Therefore β_2 is a linear combination of α_1 and α_2 .

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1.$$

$$\beta_3 = \alpha_3 + b_1 \beta_2 + b_2 \beta_1$$
 where $b_2 = -\frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle}$ and $b_1 = \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle}$.

$$\beta_3 = \alpha_3 + b_1(\alpha_2 + a_1\alpha_1) + b_2\alpha_1$$

Therefore β_k is a linear combination of $\alpha_1, \ldots, \alpha_{k-1}$ a contradiction. Hence $\beta_i \neq 0$ for $i = 1, \ldots, n$.

To show $ls(\{\beta_1, \beta_2, \dots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\}).$

Therefore β_k is a linear combination of $\alpha_1, \ldots, \alpha_{k-1}$ a contradiction. Hence $\beta_i \neq 0$ for $i = 1, \ldots, n$.

To show $ls(\{\beta_1, \beta_2, \dots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\}).$

We have already seen that each β_i as a linear combination of $\alpha_1, \ldots, \alpha_i$ for $i = 1, \ldots, n$. Using construction of β_i it is clear that each α_i is a linear combination β_1, \ldots, β_i for $i = 1, \ldots, n$. Therefore $ls(\{\beta_1, \beta_2, \ldots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \ldots, \alpha_n\})$.

Therefore β_k is a linear combination of $\alpha_1, \ldots, \alpha_{k-1}$ a contradiction. Hence $\beta_i \neq 0$ for $i = 1, \ldots, n$.

To show $ls(\{\beta_1, \beta_2, \dots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\}).$

We have already seen that each β_i as a linear combination of $\alpha_1, \ldots, \alpha_i$ for $i = 1, \ldots, n$. Using construction of β_i it is clear that each α_i is a linear combination β_1, \ldots, β_i for $i = 1, \ldots, n$. Therefore $ls(\{\beta_1, \beta_2, \ldots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \ldots, \alpha_n\})$.

This follows that $ls(\{\beta_1, \beta_2, \dots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\}).$

• [Example:] Let $(\mathbb{R}^3, \langle .,. \rangle)$ be an inner product space and let $\langle x,y \rangle = \sum_{i=1}^3 x_i y_i$. Let $u_1 = (0,1,2)$, $u_2 = (1,1,2)$ and $u_3 = (1,0,1)$. Then find orthogonal vectors v_1, v_2, v_3 using u_1, u_2, u_3 .

• [Example:] Let $(\mathbb{R}^3, \langle ., . \rangle)$ be an inner product space and let $\langle x, y \rangle =$ $\sum_{i=1}^{n} x_i y_i$. Let $u_1 = (0,1,2)$, $u_2 = (1,1,2)$ and $u_3 = (1,0,1)$. Then find orthogonal vectors v_1, v_2, v_3 using u_1, u_2, u_3 .

Sol: $v_1 = u_1 = (0, 1, 2)$.

 $v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\langle v_1, v_2 \rangle} v_1$.

$$v_2 = (1, 1, 2) - \frac{\langle (1, 1, 2), (0, 1, 2) \rangle}{\langle (0, 1, 1), (0, 1, 2) \rangle} (0, 1, 2)$$

 $v_2 = (1,1,2) - \frac{5}{5}(0,1,2) = (1,0,0).$

$$v_3 = u_3 - \frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1.$$

 $v_3 = (1,0,1) - (1,0,0) - \frac{2}{5}(0,1,2) = (0,-\frac{2}{5},\frac{1}{5}).$

 $v_3 = (1,0,1) - \frac{\langle (1,0,1),(1,0,0) \rangle}{\langle (1,0,0),(1,0,0) \rangle} (1,0,0) \frac{\langle (1,0,1),(0,1,2) \rangle}{\langle (0,1,2),(0,1,2) \rangle} (0,1,2).$

$$(0,-\frac{2}{5},\frac{1}{5}).$$

• Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a linearly independent set.

• Let $\{\alpha_1,\alpha_2,\ldots,\alpha_n\}$ be a linearly independent set. Then there exists an **orthonormal** set $\{\gamma_1,\gamma_2,\ldots,\gamma_n\}$ such that

Proof: Using Gram Schimdt process we have an orthogonal set $\{\beta_1, \beta_2, \dots, \beta_n\}$ such that $\mathsf{ls}(\{\beta_1, \beta_2, \dots, \beta_n\}) = \mathsf{ls}(\{\alpha_1, \alpha_2, \dots, \alpha_n\}).$

Proof: Using Gram Schimdt process we have an orthogonal set $\{\beta_1, \beta_2, \dots, \beta_n\}$ such that $ls(\{\beta_1, \beta_2, \dots, \beta_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\})$.

Then put $\alpha_i = \frac{1}{n} \beta_i$ for i = 1

Then put $\gamma_i = \frac{1}{\sqrt{\langle \beta_i, \beta_i \rangle}} \beta_i$ for $i = 1, \dots, n$.

Proof: Using Gram Schimdt process we have an orthogonal set $\{\beta_1, \beta_2, \dots, \beta_n\}$ such that $\mathsf{ls}(\{\beta_1, \beta_2, \dots, \beta_n\}) = \mathsf{ls}(\{\alpha_1, \alpha_2, \dots, \alpha_n\})$.

Then put $\gamma_i = \frac{1}{\sqrt{\langle \beta_i, \beta_i \rangle}} \beta_i$ for $i = 1, \dots, n$.

Then $\{\gamma_1, \gamma_2, \dots, \gamma_n\}$ is an orthonormal set. You can easily check that $ls(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\})$.

Proof: Using Gram Schimdt process we have an orthogonal set $\{\beta_1, \beta_2, \dots, \beta_n\}$ such that $\mathsf{ls}(\{\beta_1, \beta_2, \dots, \beta_n\}) = \mathsf{ls}(\{\alpha_1, \alpha_2, \dots, \alpha_n\})$.

Then put $\gamma_i = \frac{1}{\sqrt{\langle \beta_i, \beta_i \rangle}} \beta_i$ for $i = 1, \dots, n$.

Then $\{\gamma_1, \gamma_2, \dots, \gamma_n\}$ is an orthonormal set. You can easily check that $ls(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = ls(\{\alpha_1, \alpha_2, \dots, \alpha_n\})$.

• [Theorem:] Every non-trivial finite dimensional inner product space has an orthonormal basis.

$$x = \sum_{i=1}^{n} \langle x, \alpha_i \rangle \alpha_i$$

•

$$x = \sum_{i=1}^{n} \langle x, \alpha_i \rangle \alpha_i$$

•

$$x = \sum_{i=1}^{n} \langle x, \alpha_i \rangle \alpha_i$$

•

Take
$$\langle x, \alpha_i \rangle = \langle c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_n \alpha_n, \alpha_i \rangle$$

$$x = \sum_{i=1}^{n} \langle x, \alpha_i \rangle \alpha_i$$

•

Take
$$\langle x, \alpha_i \rangle = \langle c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n, \alpha_i \rangle$$

= $c_1 \langle \alpha_1, \alpha_i \rangle + \dots + c_i \langle \alpha_i, \alpha_i \rangle + \dots + c_n \langle \alpha_n, \alpha_i \rangle$

$$x = \sum_{i=1}^{n} \langle x, \alpha_i \rangle \alpha_i$$

•

Take
$$\langle x, \alpha_i \rangle = \langle c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n, \alpha_i \rangle$$

$$= c_1 \langle \alpha_1, \alpha_i \rangle + \dots + c_i \langle \alpha_i, \alpha_i \rangle + \dots + c_n \langle \alpha_n, \alpha_i \rangle$$

$$= c_i \text{ for } i = 1, \dots, n.$$

• [Definition] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space.

• [**Definition**] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$.

• [**Definition**] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .

- [Definition] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .
- ullet S^{\perp} is a subspace of $\mathbb V$ for any $S\subseteq \mathbb V$.

- [**Definition**] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .
- S^{\perp} is a subspace of $\mathbb V$ for any $S\subseteq \mathbb V$.

- [Definition] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .
- S^{\perp} is a subspace of $\mathbb V$ for any $S\subseteq \mathbb V$.

$$\langle \alpha x + \beta y, v \rangle = \langle \alpha x, v \rangle + \langle \beta y, v \rangle$$

- [Definition] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .
- ullet S^{\perp} is a subspace of $\mathbb V$ for any $S\subseteq \mathbb V$.

$$\langle \alpha x + \beta y, v \rangle = \langle \alpha x, v \rangle + \langle \beta y, v \rangle$$

= $\alpha \langle x, v \rangle + \beta \langle y, v \rangle$

- [Definition] Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $S \subseteq \mathbb{V}$. Then the set $\{u \in \mathbb{V} \mid \langle u, v \rangle = 0 \text{ for all } v \in S\}$ is called **S perpendicular** of S and it is denoted by S^{\perp} .
- S^{\perp} is a subspace of $\mathbb V$ for any $S\subseteq \mathbb V$.

$$\langle \alpha x + \beta y, v \rangle = \langle \alpha x, v \rangle + \langle \beta y, v \rangle$$
$$= \alpha \langle x, v \rangle + \beta \langle y, v \rangle$$
$$= 0 + 0 = 0 \text{ for all } v \in S.$$

Hence S^{\perp} is a subspace of \mathbb{V} .

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

• [Theorem:] Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

• [Theorem:] Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Let we be a subspace of v. Then v = vv ⊕ vv

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space.

Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

Using extension theorem and Gram Schmidt process we extend B to an othonormal basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$. It is clear that $u_{k+1},\ldots,u_n\in\mathbb W^\perp$.

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space.

Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

Using extension theorem and Gram Schmidt process we extend B to an othonormal basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$. It is clear that $u_{k+1},\ldots,u_n\in\mathbb W^\perp$.

We now show that $\mathbb{W}^{\perp} = \operatorname{ls}\{u_{k+1}, \dots, u_n\}$.

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

Using extension theorem and Gram Schmidt process we extend B to an othonormal basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$. It is clear that $u_{k+1},\ldots,u_n\in\mathbb W^\perp$.

We now show that $\mathbb{W}^{\perp} = \operatorname{ls}\{u_{k+1}, \dots, u_n\}.$

It is clear that $\mathsf{ls}\{u_{k+1},\ldots,u_n\}\subseteq \mathbb{W}^\perp$ as $u_{k+1},\ldots,u_n\in \mathbb{W}^\perp$ and \mathbb{W}^\perp is a subspace.

Let $x \in \mathbb{W}^{\perp}$.

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

Using extension theorem and Gram Schmidt process we extend B to an othonormal basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$. It is clear that $u_{k+1},\ldots,u_n\in\mathbb W^\perp$.

We now show that $\mathbb{W}^{\perp} = ls\{u_{k+1}, \dots, u_n\}.$

It is clear that $\mathsf{ls}\{u_{k+1},\ldots,u_n\}\subseteq \mathbb{W}^\perp$ as $u_{k+1},\ldots,u_n\in \mathbb{W}^\perp$ and \mathbb{W}^\perp is a subspace.

Let $x \in \mathbb{W}^{\perp}$.

Then
$$x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$$

• [Theorem:] Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space.

Let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof: Let $\dim(\mathbb{V}) = n$ and let $\dim(\mathbb{W}) = k$.

Let $B = \{u_1, \dots, u_k\}$ be an orthonormal basis of \mathbb{W} .

Using extension theorem and Gram Schmidt process we extend B to an othonormal basis of \mathbb{V} which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$. It is clear that $u_{k+1},\ldots,u_n\in\mathbb{W}^\perp$.

We now show that $\mathbb{W}^{\perp} = \operatorname{ls}\{u_{k+1}, \dots, u_n\}$.

It is clear that $ls\{u_{k+1},\ldots,u_n\}\subseteq \mathbb{W}^{\perp}$ as $u_{k+1},\ldots,u_n\in \mathbb{W}^{\perp}$ and \mathbb{W}^{\perp} is a subspace.

Let $x \in \mathbb{W}^{\perp}$.

Then $x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$

$$=\sum_{i=1}^n\langle x,u_i
angle u_i;$$
 as $u_1,\ldots,u_k\in\mathbb{W}$ and $u_{k+1},\ldots,u_n\in\mathbb{W}^\perp.$

Hence $x \in ls\{u_{k+1}, \dots, u_n\}$. Therefore $\mathbb{W}^{\perp} = ls\{u_{k+1}, \dots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Hence $x \in Is\{u_{k+1}, \dots, u_n\}$. Therefore $\mathbb{W}^{\perp} = Is\{u_{k+1}, \dots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

- Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space. Let S is sub-
- space of \mathbb{V} . Then $(S^{\perp})^{\perp} = S$.

Hence $x \in ls\{u_{k+1}, \dots, u_n\}$. Therefore $\mathbb{W}^{\perp} = ls\{u_{k+1}, \dots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

• Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space. Let S is subspace of \mathbb{V} . Then $(S^{\perp})^{\perp} = S$.

Proof: This can be proved using above theorem.

Hence $x \in ls\{u_{k+1}, \ldots, u_n\}$. Therefore $\mathbb{W}^{\perp} = ls\{u_{k+1}, \ldots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

• Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space. Let S is subspace of \mathbb{V} . Then $(S^{\perp})^{\perp} = S$.

Proof: This can be proved using above theorem.

• Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space. Let S and T be two subspaces of \mathbb{V} . Then the following are true.

Hence $x \in ls\{u_{k+1}, \ldots, u_n\}$. Therefore $\mathbb{W}^{\perp} = ls\{u_{k+1}, \ldots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

- Let $(\mathbb{V}, \langle .,. \rangle)$ be a **finite dimensional** inner product space. Let S is subspace of \mathbb{V} . Then $(S^{\perp})^{\perp} = S$.
- **Proof:** This can be proved using above theorem.
- Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional inner product space. Let S and T be two subspaces of \mathbb{V} . Then the following are true.
- 1. If $S \subseteq T \implies T^{\perp} \subseteq S^{\perp}$.

Hence $x \in ls\{u_{k+1}, \dots, u_n\}$. Therefore $\mathbb{W}^{\perp} = ls\{u_{k+1}, \dots, u_n\}$. It is clear that $\mathbb{W} \cap \mathbb{W}^{\perp} = \{0\}$. Hence $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

• Let $(\mathbb{V}, \langle ., . \rangle)$ be a **finite dimensional** inner product space. Let S is subspace of \mathbb{V} . Then $(S^{\perp})^{\perp} = S$.

Proof: This can be proved using above theorem.

- Let $(\mathbb{V}, \langle ., . \rangle)$ be a finite dimensional inner product space. Let S and T be two subspaces of \mathbb{V} . Then the following are true.
 - 1. If $S \subseteq T \implies T^{\perp} \subseteq S^{\perp}$.
 - 2. $(S+T)^{\perp}=S^{\perp}\cap T^{\perp}$ and $(S\cap T)^{\perp}=S^{\perp}+T^{\perp}$

• Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional IPS. Let $\mathbb{W} \subseteq \mathbb{V}$ be a subspace. For each $x \in \mathbb{V}$ there exists unique $x_1 \in \mathbb{W}$ and $x_2 \in \mathbb{W}^{\perp}$ such that $x = x_1 + x_2$. The vector x_1 is called the **orthogonal projection** of x into W.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional IPS. Let $\mathbb{W} \subseteq \mathbb{V}$ be a subspace. For each $x \in \mathbb{V}$ there exists unique $x_1 \in \mathbb{W}$ and $x_2 \in \mathbb{W}^{\perp}$ such that $x = x_1 + x_2$. The vector x_1 is called the **orthogonal projection** of x into W.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be a finite dimensional inner product space. Let \mathbb{W} be a subspace of \mathbb{V} . Let $\{\alpha_1, \ldots, \alpha_k\}$ be an <u>orthogonal basis</u> of \mathbb{W} . Then the orthogonal projection of any vector $x \in \mathbb{V}$ into \mathbb{W} is $\sum_{i=1}^k \frac{\langle x, \alpha_i \rangle}{\langle \alpha_i, \alpha_i \rangle} \alpha_i$.

A map $||,||:\mathbb{V}\to\mathbb{R}$ is said to be a norm on \mathbb{V} if it satisfies the following condition.

A map $||,||:\mathbb{V}\to\mathbb{R}$ is said to be a norm on \mathbb{V} if it satisfies the following condition.

1. $||x|| \ge 0$ for all $x \in \mathbb{V}$ and ||x|| = 0 if and only if x = 0.

A map $||,||:\mathbb{V}\to\mathbb{R}$ is said to be a norm on \mathbb{V} if it satisfies the following condition.

- 1. $||x|| \ge 0$ for all $x \in \mathbb{V}$ and ||x|| = 0 if and only if x = 0.
- 2. $||\alpha x|| = |\alpha|||x||$ for all $\alpha \in \mathbb{K}$ and for all $x \in \mathbb{V}$.

Let \mathbb{V} be a vector space over the field \mathbb{K} .

A map $||,||:\mathbb{V}\to\mathbb{R}$ is said to be a norm on \mathbb{V} if it satisfies the following condition.

- 1. $||x|| \ge 0$ for all $x \in \mathbb{V}$ and ||x|| = 0 if and only if x = 0.
- 2. $||\alpha x|| = |\alpha|||x||$ for all $\alpha \in \mathbb{K}$ and for all $x \in \mathbb{V}$.
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{V}$.

Let \mathbb{V} be a vector space over the field \mathbb{K} .

A map $||,||: \mathbb{V} \to \mathbb{R}$ is said to be a norm on \mathbb{V} if it satisfies the following condition.

- 1. $||x|| \ge 0$ for all $x \in \mathbb{V}$ and ||x|| = 0 if and only if x = 0.
- 2. $||\alpha x|| = |\alpha|||x||$ for all $\alpha \in \mathbb{K}$ and for all $x \in \mathbb{V}$.
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{V}$.

A vector space to gather with a norm ||,|| is called a **normed linear space**.

1. Let $x \in \mathbb{R}^n$. Then $||x|| = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .

- 1. Let $x \in \mathbb{R}^n$. Then $||x|| = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .
 - 1. Each $|x_i| \ge 0$ for i = 1, ..., n, then $\sum_{i=1}^n |x_i| \ge 0$. Hence $||x|| \ge 0$ for all $x \in \mathbb{R}^n$.

- 1. Let $x \in \mathbb{R}^n$. Then $||x|| = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .
 - 1. Each $|x_i| \ge 0$ for i = 1, ..., n, then $\sum_{i=1}^n |x_i| \ge 0$. Hence $||x|| \ge 0$ for all $x \in \mathbb{R}^n$.

If
$$||X|| = 0 \implies \sum_{i=1}^{n} |x_i| = 0 \implies |x_i| = 0$$
 for $i = 1, \dots, n$

 $x_i = 0$ for i = 1, ..., n. Then x = 0. If x = 0, then $||x|| = \sum_{i=1}^{n} 0 = 0$.

- 1. Let $x \in \mathbb{R}^n$. Then $||x|| = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .
 - 1. Each $|x_i| \ge 0$ for i = 1, ..., n, then $\sum_{i=1}^n |x_i| \ge 0$. Hence $||x|| \ge 0$ for all $x \in \mathbb{R}^n$.

If
$$||X|| = 0 \implies \sum_{i=1}^{n} |x_i| = 0 \implies |x_i| = 0$$
 for $i = 1, ..., n$

$$x_i = 0$$
 for $i = 1, ..., n$. Then $x = 0$. If $x = 0$, then $||x|| = \sum_{i=1}^{n} 0 = 0$.

2.
$$||\alpha x|| = \sum_{i=1}^{n} |\alpha x_i| = \sum_{i=1}^{n} |\alpha||x_i| = |\alpha| \sum_{i=1}^{n} |x_i| = |\alpha|||x||$$
 for all $x \in \mathbb{R}^n$ and for $\alpha \in \mathbb{K}$.

1. Let
$$x \in \mathbb{R}^n$$
. Then $||x|| = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n .

1. Each
$$|x_i| \ge 0$$
 for $i = 1, \ldots, n$, then $\sum_{i=1}^n |x_i| \ge 0$. Hence $||x|| \ge 0$ for all $x \in \mathbb{R}^n$.

If
$$||X|| = 0 \implies \sum_{i=1}^{n} |x_i| = 0 \implies |x_i| = 0$$
 for $i = 1, \dots, n$

$$x_i = 0$$
 for $i = 1, ..., n$. Then $x = 0$. If $x = 0$, then $||x|| = \sum_{i=1}^{n} 0 = 0$.
2. $||\alpha x|| = \sum_{i=1}^{n} |\alpha x_i| = \sum_{i=1}^{n} |\alpha_i||x_i| = |\alpha_i||x_i| = |\alpha_i||x_i|$ for all $x \in \mathbb{R}$.

2.
$$||\alpha x|| = \sum_{i=1}^{n} |\alpha x_i| = \sum_{i=1}^{n} |\alpha||x_i| = |\alpha| \sum_{i=1}^{n} |x_i| = |\alpha|||x||$$
 for all $x \in \mathbb{R}^n$ and for $\alpha \in \mathbb{K}$

and for
$$\alpha \in \mathbb{K}$$
.

3.
$$||x+y|| = \sum_{i=1}^{n} |x_i + y_i| \le \sum_{i=1}^{n} (|x_i| + |y_i|) = \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i| = ||x|| + ||y||$$
 for all $x, y \in \mathbb{R}^n$.

• [Cauchy Schwarz Inequality] Let $(\mathbb{V}, \langle ., . \rangle)$ be an IPS. Let $x, y \in \mathcal{V}$. Then $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$.

Equality holds if and only if x and y are linearly dependent.

• [Cauchy Schwarz Inequality] Let $(\mathbb{V}, \langle ., . \rangle)$ be an IPS. Let $x, y \in \mathcal{V}$. Then $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$.

Equality holds if and only if x and y are linearly dependent.

Proof: If y = 0, then it is trivial.

• [Cauchy Schwarz Inequality] Let $(\mathbb{V}, \langle ., . \rangle)$ be an IPS. Let $x, y \in \mathcal{V}$. Then $|\langle x, y \rangle|^2 < \langle x, x \rangle \langle y, y \rangle$.

Equality holds if and only if x and y are linearly dependent.

Proof: If y = 0, then it is trivial.

If $y \neq 0$, take x - ty where $t \in \mathbb{C}$. Then

• [Cauchy Schwarz Inequality] Let $(\mathbb{V}, \langle .,. \rangle)$ be an IPS. Let $x, y \in \mathcal{V}$. Then $|\langle x, y \rangle|^2 < \langle x, x \rangle \langle y, y \rangle$.

Equality holds if and only if x and y are linearly dependent.

Proof: If y = 0, then it is trivial.

If $y \neq 0$, take x - ty where $t \in \mathbb{C}$. Then

$$0 \le \langle x - ty, x - ty \rangle$$

$$= \langle x, x \rangle + \langle x, -ty \rangle + \langle -ty, x \rangle + \langle -ty, -ty \rangle$$

$$= \langle x, x \rangle - \bar{t} \langle x, y \rangle - t \langle y, x \rangle + |t|^2 \langle y, y \rangle$$

Put
$$t = \frac{\langle x, y \rangle}{\langle y, y \rangle}$$
.

$$\frac{}{\langle x,x\rangle - \frac{\overline{\langle x,y\rangle}}{\langle y,y\rangle} \langle x,y\rangle - \frac{\langle x,y\rangle}{\langle y,y\rangle} \langle y,x\rangle + |t|^2 \langle y,y\rangle}$$

$$\langle x, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle + |t|^2 \langle y, y \rangle$$
$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{(\langle y, y \rangle)^2} \langle y, y \rangle$$

$$\langle x, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle + |t|^2 \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{(\langle y, y \rangle)^2} \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|x - y|^2}{\langle y, y \rangle} - \frac{|x - y|^2}{\langle y, y \rangle} + \frac{|x - y|^2}{\langle (y, y) \rangle^2} \langle y, y \rangle$$

$$\langle x, x \rangle \qquad \langle y, y \rangle \qquad \langle y, y \rangle \qquad (\langle y, y \rangle)^2 \ \langle y, y \rangle \qquad \langle y,$$

$$\langle x, x \rangle \qquad \langle y, y \rangle \qquad \langle y, y \rangle \qquad (\langle y, y \rangle)^2 \setminus y^2,$$

$$= \langle x, y \rangle \qquad |\langle x, y \rangle|^2$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

$$\langle x, x \rangle \qquad \langle y, y \rangle \qquad \langle y, y \rangle \qquad (\langle y, y \rangle)^2 \ \langle y, y \rangle$$

$$-\langle x, y \rangle = \frac{|\langle x, y \rangle|^2}{2}$$

$$\langle x, x \rangle - \frac{\langle x, y \rangle_{\perp}}{\langle y, y \rangle} - \frac{\langle x, y \rangle_{\perp}}{\langle y, y \rangle} + \frac{\langle x, y \rangle_{\perp}}{\langle \langle y, y \rangle)^2} \langle y, y \rangle$$

Inner Product Space

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{(\langle y, y \rangle)^2} \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

$$\langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \ge 0$$

$$\langle x, x \rangle - \frac{|\langle x, y \rangle|}{\langle y, y \rangle} \ge 0$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{(\langle y, y \rangle)^2} \langle y, y \rangle$$
$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

 $\langle x, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle v, v \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle v, v \rangle} \langle y, x \rangle + |t|^2 \langle y, y \rangle$

Inner Product Space

Then
$$|\langle x, y \rangle| < (\langle x, x \rangle)^{1/2} (\langle y, y \rangle)^{1/2}$$
.

 $\langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \ge 0$

$$\langle x, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle y, y \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, x \rangle + |t|^{2} \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^{2}}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^{2}}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^{2}}{(\langle y, y \rangle)^{2}} \langle y, y \rangle$$

$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^{2}}{\langle y, y \rangle}$$

$$\langle x, x \rangle - \frac{|\langle x, y \rangle|^{2}}{\langle y, y \rangle} \ge 0$$

Then $|\langle x, y \rangle| \leq (\langle x, x \rangle)^{1/2} (\langle y, y \rangle)^{1/2}$.

The first inequality which we have used in this proof is $0 \ge \langle x - ty, x - ty \rangle$. If $|\langle x, y \rangle|^2 = \langle x, x \rangle \langle y, y \rangle$ hold, then $\langle x - ty, x - ty \rangle = 0$. This says that x = ty. Then x and y are linearly dependent.

• Let $(\mathbb{V}, \langle .,. \rangle)$ be an inner product space. Let $x \in \mathbb{V}$. Then we can easily check that $||x|| = (\langle x,x \rangle)^{1/2}$ is a norm on \mathbb{V}