1. Find the derivative of the following functions:

(a)
$$x^4 + 3x^3 + 3x + 1$$

(g)
$$(2x^2 + 3x + 1)^6$$

(b)
$$(x+1)^4$$

(h)
$$x^2 e^{2x}$$

(c)
$$3e^x - \frac{2}{x} + \frac{3}{x^2}$$

(i)
$$3^x$$

(d)
$$\sin x e^x$$

(j)
$$e^{\cos x} + \cos(e^x)$$

(e)
$$\frac{e^x}{x^3}$$

(k)
$$\sec(1+x^2)$$

(f)
$$\frac{\sin x e^x}{x^3}$$

(1)
$$(x^2+1)^{\sin x}$$

2. Find the equations of the tangent lines through the given points:

(a)
$$x^2 + 4xy + y^2 = 13$$
, $(2,1)$

(b)
$$y = (2+x)e^{-x}$$
, $(0,2)$

3. For which non-zero point P on the curve given by

$$C: y = (x+1)^3 - 1$$

does the tangent line to C at P go through the origin?

4. Consider the curve given by

$$\mathcal{C}: y^2 = x^3 + 17.$$

The point P = (-2, 3) is on this curve, and the tangent line going through P intersects the curve C at another point. Find the coordinates of this second point of intersection.

- 5. Find the points on the ellipse $x^2 + 2y^2 = 1$ such that the tangent line has slope 1.
- 6. The volume of a cube is increasing at a rate of $10\text{cm}^3/\text{min}$. How fast is the surface area increasing when the length of an edge is 30 cm?
- 7. Recall that the temperature of an object changes at a rate proportional to the temperature difference of the object and its surrounding. A cup of hot chocolate has temperature 80°C in a room kept at 20°C. After half an hour the hot chocolate cools to 60°C.
 - (a) What is the temperature of the chocolate after another half hour?
 - (b) When will the chocolate have cooled to 40°C?