Lesson 6

Implementing Public Key Infrastructure

Topic 6A

Implement Certificates and Certificate Authorities

Syllabus Objectives Covered

3.9 Given a scenario, implement public key infrastructure

Public and Private Key Usage

- Public key cryptography
 - When you want others to send you confidential messages, you give them your public key to use to encrypt the message
 - When you want to authenticate yourself to others, you create a signature and sign it by encrypting the signature with your private key
- But how does someone trust the public key?
- Public key infrastructure (PKI) validates the identity of the owner of a public key
- Public key is wrapped in a digital certificate signed by a certificate authority (CA)
- Sender and recipient must both trust the CA

Certificate Authorities

Screenshot used with permission from Microsoft.

- Private CAs versus third-party CAs
- Define services offered
- Ensure validity of certificates and users
- Establish trustworthy working procedures
- Manage servers and keys

PKI Trust Models and Certificate Chaining

- Single CA
- Hierarchical/chain of trust
 - Root CA
 - Intermediate CAs
 - Leaf certificates
- Online versus offline

Registration and CSRs

- Registration identification and authentication procedures
 - Private versus third-party CAs
- Certificate Signing Request (CSR)
 - Client generates key pair and sends public key to CA with CSR
 - CA performs subject identity checks
 - CA signs and issues certificate
- Registration authority (RA)

Digital Certificates

Screenshot used with permission from Microsoft.

- Contains subject's public key
- Information identifying the subject plus usage and validity
- Digital certificate standards
 - X.509 Public Key Infrastructure (PKIX)
 - PKCS (Public Key Cryptography Standards)

Certificate Attributes

Field	Usage
Serial Number	A number uniquely identifying the certificate within the domain of its CA.
Signature Algorithm	The algorithm used by the CA to sign the certificate.
Issuer	The name of the CA.
Valid From/To	Date and time during which the certificate is valid.
Subject	The name of the certificate holder, expressed as a distinguished name (DN). Within this, the Common Name (CN) part should usually match either the fully qualified domain name (FQDN) of the server or a user email address.
Public Key	Public key and algorithm used by the certificate holder.
Extensions	V3 certificates can be defined with extended attributes, such as friendly subject or issuer names, contact email addresses, and intended key usage.
Subject Alternative Name (SAN)	This extension field is the preferred mechanism to identify the DNS name or names by which a host is identified.

Subject Name Attributes

- Common Name (CN)
 - Legacy method of recording FQDN
 - Deprecated by standards
 - BUT still used in many implementations
- Subject Alternative Name (SAN)
 - Structured identifiers
 - List multiple host/subdomains
 - Use wildcard subdomain


```
DNS Name=*.comptia.org
DNS Name=comptia.org
```

Types of Certificate

- Certificate policies and templates
- Key usage
- Extended Key
 Usage/Enhanced Key
 Usage
- Critical or non-critical

Web Server Certificate Types

- Domain Validation (DV)
 - More rigorous identity checks
- Extended Validation (EV)
 - Even more rigorous identity checks

Other Certificate Types

- Machine/computer
 - Servers and network appliances
 - Identify by FQDN
- Email/user certificate
 - Can be various types (email, encryption, smart card logon, and so on)
 - Identify by email address
- Code signing
 - Validate publisher name
- Root certificate
 - Self-signed certificate for the CA
- Self-signed certificate
 - Must be manually trusted

Topic 6B

Implement PKI Management

Syllabus Objectives Covered

- 3.9 Given a scenario, implement public key infrastructure
- 4.1 Given a scenario, use the appropriate tool to assess organizational security (OpenSSL only)

Certificate and Key Management

- Key life cycle
 - Key generation
 - Certificate generation
 - Storage
 - Revocation
 - Expiration and renewal
- Vulnerabilities from improper management

Key Recovery and Escrow

- M-of-N control for critical keys (root servers)
- Keys can be backed up to protect against data loss
 - Anyone with access to backup keys could impersonate the true key holder
 - Key recovery processes can be protected by M of N control
- Escrow backup
 - Placing archived keys with a trusted third party

Certificate Expiration

- Certificate duration
- Certificate renewal
 - Use existing key pair
 - Re-key with newly generated key pair
- Expiration
 - Public key will no longer be accepted
 - Archiving versus destroying key material
 - Secure erasing methods

Certificate Revocation Lists

- Revocation versus suspension
- Reason codes
- Certificate Revocation List (CRL)
 - List of revoked and suspended certificates
 - Browser CRL checking

Online Certificate Status Protocol Responders

- Online Certificate Status Protocol (OCSP)
 - OCSP responder
 - Provide real-time status information (though some rely on CRLs)
 - Client queries single certificate per transaction
- OCSP stapling
 - Clients might need to make lots of certificate queries for a chain of trust
 - Queries can be used to track clients
 - Stapling proxies the OCSP response

Certificate Pinning

- Defend against MitM attacks on chain of trust
- Web server references authorized public key(s) in HTTP header
 - HTTP Public Key Pinning (HPKP)
 - Certificate Transparency framework

Certificate Formats

- Distinguished Encoding Rules (DER)
 - Binary format
- Privacy-enhanced Electronic Mail (PEM)
 - Represent binary as ASCII using Base64 encoding
- .CER and .CRT file formats may be either binary or ASCII
- Personal information exchange
 - Export a private key (binary and passwordprotected)
 - .PFX or .P12 (PKCS #12)
- Export a certificate chain
 - .P7B (PKCS #7)

OpenSSL

- Windows Certificate Services and certutil /PowerShell
- OpenSSL
 - Key pair generation and CA root certificate
 - Certificate requests
 - Viewing and verifying certificates
 - Converting certificate formats

Certificate Issues

- Troubleshoot rejection of certificates by servers and clients
 - Existing certificate—check expiry and status
 - New certificate
 - Check key usage settings and requirements
 - Check subject name
 - Check chain of trust/root certificates
 - Verify time and date settings
- Audit certificate and PKI infrastructure

Lesson 6

Summary

