Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Lecture 05

Segmentation - The Basics

Majid Mirmehdi majid@cs.bris.ac.uk

Examples of Image Segmentation

Image Segmentation ...

... is the process of spatial subsectioning of a (digital) image into multiple partitions of pixels (i.e. segments or regions) according to given criteria.

Example: segmentation of an image into locally coherent regions

Motivation: Why Segment Images?

Image Simplification

- an image may contain millions of pixels but only a few regions

Higher-level Object Description

- regions tend to belong to the same class of object
- regions may provide object properties (e.g. shape, colour, ...)

Input for Content Classifiers

 region descriptions can be input data for higher level classifiers, e.g. Bayesian Classifiers or Neural Networks.

Why Segment Images?

Grouping Pixels

Goals:

- Gather pixels/features that belong together
- Obtain an intermediate representation that compactly describes key image (video) parts

Top-down vs. bottom-up segmentation

- Top-down: pixels belong together because they are from the same object
- Bottom-up: pixels belong together because they look similar

Hard to measure success: what is interesting depends on the application.

Example of Over-Segmentation

Original image

Over-segmentation

Over-segmentation: pixels belonging to the same region [object] are classified as belonging to different regions [objects]

Example of Under-Segmentation

Original image

Under-segmentation

Under-segmentation: pixels belonging to different regions [objects] are classified as belonging to the same region [object]

So many segmentation methods...

Thresholding Methods

- pixels are categorized based on intensity
- only useful when sufficient contrast exists

Edge-based Methods

- region boundaries are constructed from edgemaps

Region-based Methods

- region growing from seed pixels
- region splitting and merging for efficient spatial encoding

So many segmentation methods...

Clustering and Statistical Methods

 global, often histogram based image partitioning, e.g. K-means, Gaussian Mixture Model

Topographic Methods (out of scope in this unit)

 stepwise simplifications that take spatially wider (topographical) image configurations into account e.g. watershed transform, variational based methods

...and many more...

Image Histogram

Brighter

Histogram

Darker

Histogram

Slide credit: Kristen Graumai

Image segmentation: toy example

- The intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., *segment* the image based on the intensity feature.

Simple thresholding not enough!

What if the image isn't quite so simple?

input image

Image Segmentation

Perfect segmentation is difficult to achieve:

- a pixel may straddle the "real" boundary of objects such that it partially belongs to two or more objects
- effects of noise, non-uniform illumination, occlusions etc. give rise to the problem of over-segmentation and under-segmentation

Thresholding Example

- If the image contains a dark object on a light background
 - choose a threshold value, T
 - for each pixel
 - if the brightness at that pixel is less than T, it is a pixel of interest
 - otherwise it is part of the background

- The value of the threshold is very important
 - if too high → background pixels classified as foreground
 - If too low → foreground pixels classified as background

T = 128

T = 96

T = 64

Using Histograms to Stipulate Regions

Maybe apply multiple thresholds?

The seal image shows three regions

- one below $T_1 = 80$
- one above T_2 = 142
- one between the two thresholds

Iterative Threshold Selection Algorithm

- 1. Select an initial estimate for the threshold T
- 2. Segment the image using *T.* This will produce two groups of pixels: G_i consisting of all pixels with grey levels >T and G_2 consisting of pixels with grey values $\leq T$.
- 3. Compute the average grey level values m_1 and m_2 for the pixels in regions G_1 and G_2 .
- 4. Compute a new threshold value: $T = (m_1 + m_2)/2$
- 5. Repeat steps (2.) through (4.) until convergence

Thresholding for Segmentation

Not always a good solution!

Four problematic image types: dark, light, low contrast, and high contrast.

Split & Merge Segmentation – Divide & Conquer

Homogenity function H

$$H(Region A) = 1$$
 (homogeneous)

$$H(Region B) = 0$$
 (inhomogeneous)

Segmentation Result

Split & Merge Segmentation – Divide & Conquer

- 1. Start with R_0 that represents the entire image
- 2. If $H(R_i) = 0$ (inhomogeneous) then {split area into 4 blocks (quadtree splitting) and process each area with step (2.)}
- 3. Merge all subregions that pairwise satisfy $H(R_i \cup R_j) = 1$ (homogenous)

Split & Merge – Summary

Conceptual Summary:

- Iteratively decompose an image into regions of a maximally sized selected shape (e.g. rectangle) that do not satisfy a homogeneity condition. (split step)
- Then merge regions that together satisfy a homogeneity condition. (merge step)

Some Comments:

- Using quadtrees, the results of split and merge tend to be *blocky*.
- Can have an adaptive homogeneity condition that, for instance, changes depending on the region size.

Example H

- $H(R_i)$ =1 if at least 80% of the pixels in R_i have the property $|z_j m_i| < 2\sigma_i$ where z_j is the grey level of the j^{th} pixel in R_i , m_i is the mean grey level of the region and σ_i is the standard deviation of the grey levels in R_i
- If $H(R_i)$ =1 then set all the pixels in R_i to value m_i

Split & Merge – Bristol Video Scene Segmentation

Original Video

Segmentation Result

- Images are segmented using a Split-And-Merge technique. (Note the blocky nature of the regions!)
- Regions are then labelled by a Neural Network to associate the segments with semantics (colouration).
- This project dates back to around 27 years ago!

Image segmentation: toy example

What if the image isn't quite so simple?

input image

One answer is: use **clustering**...

Clustering dilemma

If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.

If we knew the group memberships, we could get the centers by computing the mean per group.

A "chicken and egg" problem!

Image segmentation: toy example

- Goal: choose three "centres" as the representative intensities, and label every pixel according to which of these centres it is nearest to.
- Best cluster centres are those that minimize SSD between all points and their nearest cluster centre μ_i

$$\Theta(clusters, data) = \sum_{j \in clusters} \left[\sum_{i \in j^{th} cluster} \left\| \mathbf{x}_i - \boldsymbol{\mu}_j \right\|^2 \right]$$

Clustering for image segmentation

K-means clustering – theoretical view

It minimises the following objective function:

$$\Theta(clusters, data) = \sum_{j \in clusters} \left[\sum_{i \in j^{th} cluster} \left\| \mathbf{x}_i - \boldsymbol{\mu}_j \right\|^2 \right]$$

- An iterative clustering algorithm
 - Pick K random points as cluster centres (means)
 - Iterate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no point's assignment changes

Ask user how many clusters they'd like (e.g., K=5)

- Ask user how many clusters they'd like (e.g., K=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to (thus each centre "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like (e.g., *K*=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to
- 4. Each centre finds the centroid of the points it owns...
- 5. ...and jumps there

- 1. Ask user how many clusters they'd like (e.g., *K*=5)
- 2. Randomly guess K cluster centre locations ($\mu_1 \dots \mu_K$)
- 3. Each datapoint finds out which centre it's closest to
- 4. Each centre finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. Repeat from 3 until terminated!

Slide by Dan Klein

K-means gone wrong!

Reflection on the K-means Algorithm

What does it do?

- K-means attempts to find a configuration $\mu_1 \dots \mu_K$ that minimises within-cluster scatter: total squared distance between point x_i and centroid μ_i in j^{th} cluster:

$$\sum_{i} \left\| \mathbf{x}_{i} - \mathbf{\mu}_{j} \right\|^{2}$$

 This is equivalent to maximising the between-cluster scatter (total squared distance between each cluster centroid and the global centroid of all points)

Does it work?

- 1. The algorithm terminates.
- 2. It finds a local optimum from which no further improvement is possible by making local changes.
- 3. It does not necessarily find a global optimum.

K-means Pros and Cons

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues

- Setting *K*?
- Sensitive to initial centres
- Sensitive to outliers
- Detects spherical clusters

(B): Ideal clusters

Slide by Kristen Grauman

Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity** similarity

Feature space: intensity value (1D)

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on **intensity AND position** similarity

Both regions are black, but if we also include **position** (x,y), then we could group the two into distinct segments; so encode both similarity & proximity.

Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on colour similarity

R=245 G=220

Slide inspired from Kristen Graumar

R=255

Feature space: intensity values (3D)

36

K-means Colour Segmentation

Original image

$$K = 2$$

Summary: Image Segmentation

Latest Segmentation Research

Semantic Segmentation vs. Instance Segmentation vs. Panoptic Segmentation

(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

(d) Panoptic Segmentation

V7 Labs

Next two lectures

Object Detection