H. Sugiyama, et al. U.S.S.N. 09/889,379 Page -2-

(IV):

Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

1. (Currently Amended) A method for detecting or identifying an action of a chemical species to a substance containing DNA or RNA comprising the steps of:

applying the chemical species, which can bind to a base sequence of DNA, to a substance containing DNA or RNA, wherein the chemical species is represented by the general formula

wherein m is 2 to 30, and X_1 to X_m are, each occurrence of X is independently selected from , -CH= or -N=; and measuring the effect to the substance.

H. Sugiyama, et al. U.S.S.N. 09/889,379 Page -3-

- 2. (Previously Presented) The method according to claim 1, for detecting or identifying an action of a chemical species to a substance containing DNA or RNA comprising the steps of:

 providing at least one compound represented by the general formula (IV), which can bind to a base sequence of DNA or RNA in each well of a multi-well plate, introducing the substance containing DNA or RNA into each well of said plate, reacting completely the compound represented by the general formula (I) (IV), with the substance containing DNA or RNA, and measuring a change in the substance containing DNA or RNA.
- 3. (Previously Presented) The method according to claim 2, wherein each compound represented by the general formula (IV) is provided in each wells of the multi-well plate, and same substance containing DNA or RNA is introduced into each well of the plate.
- 4. (Previously Presented) The method according to claim 2, wherein the compound represented by the general formula (IV) present in each well is the compound which can bind to specific one type of base sequence of DNA or RNA of the substance containing DNA or RNA, and the substance containing DNA or RNA which is introduced into each well is the different substance.
- 5. (Previously Presented) The method according to claim 2, wherein the compound represented by the general formula (IV) is immobilized in the well.
- 6-17. (Canceled).
- 18. (Cancelled) A kit for detecting or identifying an action of a chemical species to a substance containing DNA or RNA to perform the method according to claim 1.

II. Sugiyama, et al.U.S.S.N. 09/889,379Page -4-

19. (Currently Amended) A kit suitable for use in the method of detecting or identifying an action of a chemical species to a substance containing DNA or RNA, wherein the kit comprising the chemical species represented by the general formula(IV):

wherein m is 2 to 30, and each occurrence of X_{m} -X is independently selected from -CH= or -N=; and

equipment or reagents for measuring a change in the substance containing DNA or RNA after treatment.

20-21. (Cancelled).

22. (Previously Presented) A method according to Claim 1, wherein the method for detecting or identifying an action of a chemical species A to a substance containing DNA or RNA is a method for screening antitumor agents to tumor cells of an individual patient.

H. Sugiyama, ct al. U.S.S.N. 09/889,379 Page -5-

- 23. (Original) The method according to claim 1, wherein the substance containing DNA or RNA is a cell.
- 24. (Original) The method according to claim 23, wherein the cell is a tumor cell.
- 25. (Previously Presented) The method according to claim 23, wherein the step of measuring the effect comprises detecting survival or death of the cell.
- 26. (Original) The method according to claim 25, wherein the step of detecting cell survival or death comprises coloring of the cell.
- 27. (Cancelled).
- 28. (Previously Presented) The method according to claim 1, wherein the chemical species represented by the general formula (IV) is the compound represented by the formula

wherein X and Y are, each independently, -CII= or -N=, or

H. Sugiyama, ct al. U.S.S.N. 09/889,379 Page -6-

$$\begin{array}{c} H \\ O \\ V \\ CH_3 \end{array} \begin{array}{c} H \\ O \\ V \\ CH_3 \end{array} \begin{array}{c} H \\ O \\ V \\ CH_3 \end{array} \begin{array}{c} H \\ V \\ CH_3 \end{array} \begin{array}{c} H \\ V \\ CH_3 \end{array} \begin{array}{c} (III) \\ CO_2CH_3 \\ CH_3 \end{array}$$

wherein X,Y and Z are, each independently, -CH= or -N=.

29. (Previously Presented) The method according to claim 1, wherein the chemical species represented by the general formula (IV) is the compound represented by the formula:

$$H_3C$$
 H_3
 CH_3
 CH_3