Junkai **Zeng**

@ entangledpair@protonmail.com

Ph.D. in physics. Researcher in quantum information science with over 10 years of experience in scientific research and software development.

EXPERIENCE

February 2025

Associate Researcher, International Quantum Academy, Shenzhen, China

Present

> Title changed in Jan 2025 due to workplace restructuring with a slight promotion.

September 2021 January 2025

Research Assistant Professor, Sustech, Shenzhen, China

- > Writing grant proposals for research funding;
- > Investigate in new methods and develop software tools for quantum optimal control, provide solutions for superconducting and semiconductor qubit experimental groups;
- > Mentoring students in quantum computing research.

March 2021 October 2019

Senior Quantum Control Engineer, Q-CTRL, Los Angeles, CA, USA

- > Conduct research in new techniques in various aspects in quantum technologies, implement and demonstrate with Jupyter notebooks, and experiment with IBM quantum hardware;
- > Contribute to the product code base;
- > Develop tools for simulation, performance benchmarking, and integrating with 3rd party libraries;
- > Follow agile software development practice (Scrum).

October 2019

Research Assistant, VIRGINIA TECH, Blacksburg, VA, USA

May 2015

> Research new theoretical protocols on noise-resistant and quantum control and control optimization for quantum computing devices.

Achievement: I discovered a geometrical structure hidden within the Schrodinger equation that connects quantum mechanics and differential geometry. This structure provides the entire solution space for quantum control pulse sequences that are noise-resistant.

> Develop numerical simulation program to compute the control fidelity.

May 2018

Visiting Student, University of New South Wales, Sydney, Australia

April 2018

> Collaborate with experimentalists to integrate theoretical quantum control framework into semiconductor quantum devices;

May 2016

Teaching Assistant, VIRGINIA TECH, Blacksburg, VA, USA

August 2014

- > Lab TA: General Physics Lab, Foundations of Physics;
- > Recitation Instructor: Foundations of Physics;
- > Grader: Quantum Mechanics (graduate level).

May 2014

Undergraduate Researcher, University of Science and Technology of China, Hefei, China

February 2013

- > Modeling on material properties using MATLAB, Python, and C;
- > Run first-principle simulation on computing clusters to obtain electronic band structures;
- > Research quantum optics techniques and developed simulator in Python.

August 2013 May 2013

Research Intern, IQC, UNIVERSITY OF WATERLOO, Waterloo, ON, Canada

- > Develop, document, and maintain MATLAB programs to simulate the physical process of electron and nuclear double resonance.
- > Analyze data from nuclear magnetic resonance experiments to verify theoretical models

EDUCATION

2014 - 2019 Ph.D. in Physics, VIRGINIA TECH

THESIS: Dynamically Corrected Quantum Control: A Geometrical Framework

2010 - 2014

B.S. in Physics, University of Science and Technology of China THESIS: Rashba Spin-Orbit Coupling In Graphene System

Publications

Google Scholar page: https://scholar.google.com/citations?user=jL7pw-0AAAAJ

1. J. Zeng, L. Chen, X.-H. Deng, "Analytically Solvable Robust Single-Qubit Gates for Multi-Qubit Systems with Unwanted Couplings", arXiv:2503.12424 (2025)

- 2. Y.-J. Hai, Y. Song, J. Li, **J. Zeng**, X.-H. Deng, "Geometric correspondence of noisy quantum dynamics and universal robust quantum gates", Physical Review Applied (2025)
- 3. **J. Zeng**, Y.-J. Hai, H. Liang, X.-H. Deng, "Enhancing Quantum Circuit Noise Robustness from a Geometric Perspective", arXiv:2305.06795 (2023)
- 4. B. Cheng, X.-H. Deng, et al, "Noisy intermediate-scale quantum computers", Frontiers of Physics 18, 21308 (2023)
- 5. E. Barnes, F. Calderon-Vargas, W. Dong, B. Li, **J. Zeng**, and F. Zhuang, "Dynamically corrected gates from geometric space curves", Quantum Sci. Technol. 7 023001 (2022)
- 6. F. Zhuang, **J. Zeng**, S. E. Economou, and E. Barnes, "Noise-resistant Landau-Zener sweeps from geometrical curves", Quantum 6, 639 (2022)
- 7. B. Li, F. A. Calderon-Vargas, **J. Zeng**, and E. Barnes, "Designing arbitrary single-axis rotations robust against perpendicular time-dependent noise", New J. Phys 23, 093032 (2021)
- 8. **J. Zeng**, C.-H. Yang, A.-S. Dzurak, and E. Barnes, "Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates", Phys. Rev. A 99, 052321 (2019)
- 9. **J. Zeng**, E. Barnes, "Fastest pulses that implement dynamically corrected single-qubit phase gates", Phys. Rev. A 98, 012301 (2018)
- 10. **J. Zeng**, X.-H. Deng, A. Russo, and E. Barnes, "General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling", New J. Phys 20, 033011 (2018)

PRESENTATIONS

- 1. **J. Zeng**, L. Chen, X.-H. Deng, "Analytically Solvable Robust Single-Qubit Gates for Multi-Qubit Systems with Unwanted Couplings", 全国量子物理青年学者研讨会, Guilin, China, 2025
- 2. **J. Zeng**, L. Chen, X.-H. Deng, "Analytically Solvable Robust Single-Qubit Gates for Multi-Qubit Systems with Unwanted Couplings", 全国量子控制研讨会, Changchun, China, 2025
- 3. **J. Zeng**, L. Chen, X.-H. Deng, "Analytically Solvable Robust Single-Qubit Gates for Multi-Qubit Systems with Unwanted Couplings", APS March Meeting in Hong Kong, Hong Kong, China, 2025
- 4. **J. Zeng**, Y.-J Hai, L. Hao, X.-H. Deng, "Enhancing Quantum Circuit Noise Robustness from a Geometric Perspective", 全国量子 控制研讨会, Shenzhen, China, 2024
- 5. **J. Zeng**, Y.-J Hai, L. Hao, X.-H. Deng, "Quantum Circuit Noise Tailoring from a Geometric Perspective", DPG Spring Meeting, Berlin, Germany, 2024
- 6. **J. Zeng**, Y.-J Hai, L. Hao, X.-H. Deng, "Noise Tailoring from a Geometric Perspective" (Poster), International Conference on Emerging Quantum Technology, Hefei, China, 2023
- 7. J. Zeng, "Tutorial: Quantum Control, Summer Workshop for Quantum errors, Control & Correction, Shenzhen, China, 2023
- 8. **J. Zeng**, Y.-J Hai, L. Hao, X.-H. Deng, "Noise Tailoring from a Geometric Perspective" (Poster), International Conference on Emerging Quantum Technology, 全国量子控制研讨会, Chengdu, China, 2023
- 9. Y.-J. Hai, J. Li, **J. Zeng**, D. Yu, X.-H. Deng, "Universal Robust Quantum Gates by Geometric Correspondence", APS March Meeting, Virtual, 2023
- 10. B. Li, F. Calderon-Vargas, J. Zeng, and E. Barnes, "Geometric filter function approach to dynamically corrected gates that suppress time-dependent noise", APS March Meeting, Virtual, 2021
- 11. F. Zhuang, **J. Zeng**, E. Barnes, and S. Economou, "Noise-resistant Landau-Zener sweeps from geometrical curves", APS March Meeting, Virtual, 2021
- 12. A. Warren, J. Zeng, E. Barnes, and S. Economou, "Gate designs for spin qubits" (Poster), Quantum Computing Program Review (QCPR), Annapolis, MD, 2019
- 13. J. Zeng, "Geometrical Formalism On Quantum Control", Peng Cheng Laboratory (PCL), Shenzhen, China, 2019
- 14. **J. Zeng**, E. Barnes, "Geometric Formalism For Constructing Arbitrary Single-qubit Dynamically Corrected Gates", APS March Meeting, Boston, MA, 2019
- 15. **J. Zeng**, X.-H. Deng, A. Russo, and E. Barnes, "Fastest Pulses That Implement Dynamically Corrected Single-qubit Phase Gates" (Poster), Quantum Computing Program Review (QCPR), Denver, CO, 2018
- 16. **J. Zeng**, "Geometrical Approach to Pulse Shaping for Robust Single Qubit Control", University of New South Wales, Sydney, Australia, 2018
- 17. **J. Zeng**, and E. Barnes, "A Geometrical Approach To Robust Quantum Control That Respects Pulse Constraints And Minimizes Gate Times", APS March Meeting, Los Angeles, CA, 2018

18.	8. J. Zeng , XH. Deng, and E. Barnes, "A Geometrical Approach To Dyna ing, New Orleans, LA, 2017	mical Decoupling With Smooth Pulses", APS March Meet-