NASA TECHNICAL MEMORANDUM

NASA TM X-62,506

NASA TM X-62,506

SHAKE TEST OF A PROPELLER TEST RIG IN THE 40- BY 80-FOOT WIND TUNNEL

Wayne Johnson

Ames Research Center and U.S. Army Air Mobility R&D Laboratory Moffett Field, California, 94035

(NASA-TM-X-62506) SHAKE TEST OF A PROPELLER TEST FIG IN THE 40- BY 80-FOOT WIND TUNNEL (NASA) 24 p HC \$3.50 CSCL 148 N76-19162

The land to

Unclas G3/09 14155

November 1975

1. Report No.	2. Government Accession No	3. Recipient's Catalog No.
NASA TM X-62,506		
4. Title and Subtitle		5. Report Date
SHAKE TEST OF A PROPELLE	R TEST RIG IN THE	
40- BY 80-FOOT WIND TUNN		6. Performing Organization Code
40 21 00 1001 11112 10111	_	1
7 Author(s)		8. Performing Organization Report No.
Wayne Johnson		A-6368
	-	10. Work Unit No.
9. Performing Organization Name and Address		505-10-21
Amer Describ Contan and		303-10-21
Ames Research Center and		11. Contract or Grant No.
U.S. Army Air Mobility Re	▼	
Moffett Field, Calif. 940	035	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Technical Memorandum
National Aeronautics and	Space Administration	rechifear Memorandum
Washington, D.C. 20546	space Administration	14. Sponsoring Agency Code
"donington, D.C. 20346		
15 Supplementary Notes		

16. Abstract

A shake test was conducted to determine the dynamic characteristics of a Propeller Test Rig in the Ames 40- by 80-Foot Wind Tunnel. The rotor-off hub transfer function (acceleration per unit force as a function of frequency) was measured in the longitudinal, lateral, and vertical directions for shaft angles of 0 and 90° corresponding to propeller and helicopter operation, respectively. The dynamic data are summarized for the configurations tested, giving the following properties for each mode identified: the natural frequency, the hub response at resonance, the damping coefficient, the damping ratio, and the modal mass. The complete transfer functions are presented, and the detailed test results are included.

17.	Key Words (Suggested by Author(s))		18. Distribution Statemen	t	-
	Propeller test rig Shake test		Unlimited		
				STAR Categ	ory - 09
19	Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
	Unclassified	Unclassifi	.ed	22	\$3.27

SHAKE TEST OF A PROPELLER TEST RIG IN THE

40- BY 80-FOOT WIND TUNNEL

Wayne Johnson*

Ames Research Center and U.S. Army Air Mobility R&D Laboratory Moffett Field, California 94035

SUMMARY

A shake test was conducted to determine the dynamic characteristics of a Propeller Test Rig in the Ames 40- by 80-Foot Wind Tunnel. The rotor-off hub transfer function (acceleration per unit force as a function of frequency) was measured in the longitudinal, lateral, and vertical directions for shaft angles of 0 and 90° corresponding to propeller and helicopter operation, respectively. The dynamic data are summarized for the configurations tested, giving the following properties for each mode identified: the natural frequency, the hub response at resonance, the damping coefficient, the damping ratio, and the modal mass. The complete transfer functions are presented, and the detailed test results are included.

INTRODUCTION

A shake test was conducted to establish the dynamic characteristics of a Propeller Test Rig (PTR) in the Ames 40- by 80-Foot Wind Tunnel. Of interest were potential resonances at the 1/rev and N/rev frequencies of rotors likely to be tested on the PTR and potential proprotor/support instabilities.

The shake test was performed on the PTR module without a rotor, to determine the principal frequencies and damping of the structure. The rotor-off transfer function was measured in the longitudinal, lateral, and vertical directions, for shaft angles of 0 and 90°. The acceleration was measured in the direction of the applied force. The test procedures were described in detail in references 1 and 2.

SYSTEM AND TEST APPARATUS

The system tested consisted of the PTR module without a rotor, on the 15-ft struts and balance frame in the 40- by 80-ft wind tunnel. The module included a propeller nose case, and two 1500-HP electric motors installed. A hydraulic shaker was attached to the top of the module, just behind the nose case. The other end of the shaker was attached to a 5260 kg reaction

Research Scientist

mass suspended from a crane. A load cell between the shaker and the module measured the applied force. An accelerometer at the point of excitation measured the response in the direction of the applied force.

The PTR module was mounted on the two main struts only. The yaw angle ψ as used here refers to the drive shaft of the module, not the strut system. At $\psi = 0$, the rotor was in axial flight; the strut system was yawed 90° to the right, with the main struts on the west side and the hub in the southwest corner of the test section. At ψ = 90° the rotor was in edgewise flight; the strut system was at zero yaw angle, with the struts forward and the rotor in the southeast corner of the test section. The direction of shaking (lateral or longitudinal) here is defined with respect to the PTR module, not the strut system and wind tunnel.

The PTR was also tested with the balance frame hydraulic snubbers engaged, giving the cantilever strut modes. This test was conducted at ψ = 0.

Finally, the PTR was tested with a gimballed proprotor nose case. The rotor was replaced by dummy weights attached to the hub. The exciting force was applied to the shaft, just forward of the gimbal. Results were obtained for lateral and vertical modes at $\psi = 0$ only. The major difference between this and the previous configuration was in the shaft bending modes.

TEST PROCEDURE AND ANALYSIS

The shake test procedures and data reduction techniques are described in detail in references 1 and 2. The applied force and resulting acceleration data were analyzed on-line to determine the dynamic characteristics of the system, using the Dynamic Analysis System. The DAS is basically a time series analyzer and computer, utilizing Fast Fourier Transform techniques and associated software, and programs specific to this shake test.

The following configurations were tested:

- 1) PTR at $\psi = 0$; lateral and longitudinal excitation (test 469) 2) PTR at $\psi = 90^{\circ}$; lateral, longitudinal, and vertical excitation (test 469)
- 3) Cantilever modes (test 469)
- 4) PTR at $\psi = 0$ with gimballed rotor nose case; lateral and vertical excitation (test 472)

RESULTS

The results of these tests are the dynamic characteristics of the Propeller Test Rig, specifically, the frequencies and response amplitudes of the principal modes identifiable in the hub transfer functions. Figures 1 through 8 present the transfer functions for the configurations tested. The abscissas in the figures are frequency, from 0 to 10 and 50 Hz for the low and high frequency ranges, respectively. The ordinates are the magnitude of the transfer function in g/1000 N.

Tables 1 through 4 summarize the dynamic characteristics of the PTR. The tables give the following quantities for each of the modes identified in the response at the point of excitation: the resonant frequency ω (Hz); the magnitude of the response H (g/1000 N and cm/1000 N); the damping coefficient C_S (N/m/sec); the damping ratio (percent critical damping); and the modal mass M (kg). The tables of Appendix A present in detail the shake test data for the configurations investigated.

TABLE 1.- SUMMARY OF DYNAMIC CHARACTERISTICS PTR at $\psi = 0$ (test 469)

Mode	ω, Hz	H, g/1000 N	H, cm/1000 N	C _s , N/m/sec	ζ, % critical	M, kg							
	Lateral modes (EW)												
Bal. Lat. Yaw Strut Side Module Module Module	1.73 3.14 5.56 12.3 17.2 33.3	0.200 0.070 0.125 0.115 0.145 0.293	1.650 0.180 0.097 0.019 0.012 0.007	2100 13500 20000	1.1 1.2 1.3	9000 29000 30000							
Longitudinal modes (NS)													
Bal. Long. Strut Long. Module Module	1.44 3.54 16.2 28.6	0.016 0.110 0.013 0.010	0.190 0.220 0.001 0.0003	34000 20000	3.3 3.4	59000 13600							

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TABLE 2.- SUMMARY OF DYNAMIC CHARACTERISTICS PTR at $\psi = 90^{\circ}$ (test 469)

 	_											
	ω,	Н,	Н,	c _s ,	ζ,	M,						
Mode	Hz	g/1000 N	cm/1000 N	N/m/sec	% critical	kg						
		Latera	l modes (EW	')								
Bal. Long.	1.29	0.045	0.640	6000	0.7	53300						
Yaw	2.41	0.094	0.405	9000	1.9	15000						
Strut Side	5.55	0.131	0.107	13000	0.5	36000						
Module	11.7	0.083	0.015									
Module	15.9	0.160	0.015									
Module	33.1	0.290	0.007									
Longitudinal modes (EW)												
Bal. Lat. 2.30 0.059 0.272 20000 2.8 21200												
Strut Long.	3.90	0.096	0.155	20000	2.1	19900						
Module	16.8	0.009	0.001									
Module	28.8	0.009	0.0003									
		Vert	ical Modes									
Balance	1.56	0.006	0.063	161000	4.4	187000						
Balance	2.31	0.007	0.033	148000	1.6	313000						
Balance	5.54	0.015	0.012	200000	1.0	278000						
Balance	7.64	0.003	0.001									
Module	13.5	0.112	0.015			l						
Module	16.4	0.070	0.007		ļ							

TABLE 3.- SUMMARY OF DYNAMIC CHARACTERISTICS PTR Cantilever Modes (test 469)

Mode	ω, Hz	Н, g/1000 N	H, cm/1000 N	C _s , N/m/sec	ζ, % critical	M, kg						
. Lateral modes												
Strut Yaw Strut Side	1.86 5.16	0.270 0.071	1.980 0.067	1160 28000	0.4 1.8	15300 24200						
		Longit	udinal mod	es	-							
Strut. Long.	Strut. Long. 2.81 0.137 0.434 12000 3.2 10400											

TABLE 4.- SUMMARY OF DYNAMIC CHARACTERISTICS PTR with Gimballed Rotor Nose Case, $\psi \approx 0$ (test 472)

Mode	ω, Hz	H, g/1000 N	H, cm/1000 N	C _s , N/m/sec	ζ, % critical	M, kg							
	Lateral modes (EW)												
Bal. Lat. Yaw	1.65 3.26	0.290 0.049	2.550 0.114	1300	0.9	8000							
Strut Side 4.90 0.880 Mast 20.4 5.82		0.918 0.340	3600 2250	2.7 3.3	2200 280								
Vertical modes													
Balance Module Module Mast	7.34 11.0 14.7 24.0	0.541 1.210 0.410 3.98	0.248 0.258 0.047 0.170	3800	4.3	300							

REPRODUCIBILITY OF THE CRIGHTAL CLOSE IS POOR

APPENDIX A

Propeller Test Rig Shake Test Data

The tables of this appendix present the data for the resonant frequencies of the PTR transfer functions. The following configurations were tested:

```
Table A1: PTR at \psi = 0 (test 469)
Table A2: PTR at \psi = 90^{\circ} (test 469)
Table A3: Cantilever modes of PTR (test 469)
Table A4: PTR with gimballed rotor nose case, \psi = 0 (test 472)
```

The following quantities are given in the tables: the resonant frequency ω (Hz); the amplitude of the response H (g/1000 N and cm/1000 N); the phase of the response <H (deg); the damping coefficient $C_{\rm S}$ (N/m/sec); the damping ratio ζ (percent critical damping); the modal mass M (kg); and the amplitude of the exciting force F at that frequency (n, with "D" indicating discrete frequency excitation).

N D=discrete 42 36 D 706 D 1300 D 1540 6.7 9.7 D 174 D 568 8400 10500 27800 23000 ž kg critical TABLE A1.- PROPELLER TEST RIG AT ψ = 0 (test 469) 1.2 0.9 1.2 1.5 N/m/sec 14500 24000 18300 16200 17500 2200 2050 1250 1500 13300 Lateral modes (EW) deg , ₩> 96--33 -21 -29 -30 -23 -71 -30 -19 -20 Z cm/1000 1.725 1.510 4.110 2.28 0.093 0.106 0.074 057 058 0.187 g/1000 N 0.215 0.188 0.466 0.259 0.073 0.118 0.130 0.091 070 069 1.73 1.74 1.68 1.68 5.56 5.55 5.52 5.52 5.44 3.14 β. HZ

1/1 2 6 6 7

1/1

43

62 62

12000

3.4

00009

-58 -59

0.018

0.114

12.3 12.3

63 62

10600

2.4

54500 54700

-43 -43

0.012

0.145

17.2 17.3

1/4

29

7630 7700

2.0

63000

-59 -60

007

0.296

33.3

1/4

E,

Run/

Pt

-7-

TABLE A1.- (CONCLUDED)

_						_	_				_	_	_	
E4	N D=discrete		77	107	29	99	D 542	117	88	D 596	D 1340	D 480	D 552	D 542
M,	kg		59300	58300	13300	13800		223000	79140					
* 2	% critical		3.6	3.0	3,3	3.6		0.5	7.9					
ູ່ ບຶ	N/m/sec	odes (NS)	37400	32500	19400	21800	17340	216000	2250000	14700	18800	17340	20700	26050
₹	deg	Longitudinal modes (NS)	66-	-154	-108	-70	-56	-32	-106	-35	-34	-56	-79	-106
н,	cm/1000 N	Longi	0.175	0.203	0.240	0.205	0.221	0.001	0.0003	0.176	0.136	0.221	0.222	0.175
ж,	g/1000 N		0.015	0.017	0.120	0.102	0.105	0.013	0.010	0.088	0.068	0.105	0.103	0.079
a a	HZ		1.41	1.48	3.55	3.54	3.44	16.2	28.6	3.52	3.52	3.44	3.40	3.36
Run/	1		2/1	7	2/1	7	^	2/3	2/3	2/5	9	^	δ	80

REPRODUCIUM TO THE

TABLE A2.- PROPELLER TEST RIG AT ψ = 90° (test 469)

Run/ Pt	ω, Hz	H, 8/1000 N	H, cm/1000 N	<h,< th=""><th>Cs, N/m/sec</th><th>5, % critical</th><th>ж ж,</th><th>F, N D=discrete</th></h,<>	Cs, N/m/sec	5, % critical	ж ж,	F, N D=discrete
			Lat	Lateral modes (NS)	(NS)			
4/2	1.32	0.047	0.630	163	0203	,	00763	6 6
7/7	7.50	5 6	6.0.4	KOT-	0/00	•	33400	02)
4/1	2.41	0.094	0.405	-26	9060	0.1	15200	93
5/1	2.38	0.093	0.402	-14	0006	2.5	12000	34
4/1	5.54	0.123	0.099	-18	12000	0.4	39000	51
2	5.56	0.132	0.108	-67	13000	0.5	36200	27
5/1	5.55	0.131	0.107	89-	14500	9.0	34100	39
4/3	11.7	0.086	0.016	79-	94800	3.3	19500	23
5/2	11.6	0.081	0.015	-48	94200	3.3	19500	53
4/3	16.1	0.146	0.014	-63	53000	2.7	9700	16
5/2	15.8	0.172	0.017	-45	48000	2.7	9200	41
4/3	33.2	0.290	9000	-63	74000	2.3	7700	6
5/2	33.1	0.291	0065	-51	70000	2.2	0092	20

TABLE A2.- (CONCLUDED)

F, N D=discrete		98	97	66	28		911	117	08	20	135	136
M, kg		21000	20000				187000	313000	278000			
5, % (ritical		2.8	2.1				7.4	1.6	1.0			
Cs, N/m/sec	odes (EW)	17000	20000		· · · · · · · · · · · · · · · · · · ·	modes	161000	148000	200000			
<h,< td=""><td>Longitudinal modes (EW)</td><td>£9-</td><td>-51</td><td>-17</td><td>-83</td><td>Vertical modes</td><td>57</td><td>157</td><td>98</td><td>141</td><td>-32</td><td>71</td></h,<>	Longitudinal modes (EW)	£9-	-51	-17	-83	Vertical modes	57	157	98	141	-32	71
H, cm/1000 N	Lon	0.272	0.155	0.001	0.0003		0.063	0.033	0.012	0.0014	0.015	0.0065
H, g/1000 N		0.059	960.0	0.009	0.009		0.006	0.007	0.015	0.0033	0.112	0.070
m, Hz		2.30	3.90	16.8	28.8		1.56	2.31	5.54	7.64	13.5	16.4
Run/ Pt		3/1	3/1	3/2	3/2		6/1	6/1	1/9	6/1	6/1	6/1

TABLE A3.- PROPELLER TEST RIG CANTILEVER MODES (TEST 469)

F, N D=discrete		7	64		35
M, kg		15300	24000		10400
5, % critical		0.4	1.8		3.2
Cs, N/m/sec	nodes	1160	28000	modes	11500
<h, deg</h, 	Lateral modes	9-	-50	Longitudinal modes	-65
H, cm/1000 N		1.98	0.067	Гол	0.434
H, g/1000 N		0.270	0.071		0.137
e P		1.86	5.16		2.81
Run/ Pt		1/12	1/12		2/4

TABLE A4.- PROPELLER TEST RIG WITH GIMBALLED PROPROTOR NOSE CASE = 0 (TEST 472)

ſ			<u> </u>				Г				
	F, N Dediscrete		96	87	15	r 4		21	15	20	8 2
	K X		12000 7300	19300	2200	288 268		8720	1875		300
	<pre>% critical</pre>		0.5 0.9	4.7	2.7	2.7		5.0	1.1		4.5
	Cs, N/m/sec	18 (EW)	970 1300	37000	3600	2000	odes (NS)	3800	2800		4100
	<h, deg</h, 	Lateral modes	-172 -18	-50	-109	-56 -96	Longitudinal modes	-109	-164 178	-134	-99 -115
	H, cm/1000 N	Le	3.20 2.55	0.114	0.918	0.338 0.348	Long	0.248	0.302	0.051	0.161 0.182
	H, g/1000 N		0.298	0.049	0.880	5.664		0.541 0.54	1.419	0.452	3.722 4.232
	ω, Hz		1.52	3.26	4.90	20.7		7.34	11.0	14.7	24.1 24.0
	Run/ Pt		1/1	1/2	1/2	1/4		2/2 1	2/3	2/3	2/3

REFERENCES

- 1. Johnson, Wayne; and Biggers, James C.: Shake Test of Rotor Test Apparatus with Balance Dampers in the 40- by 80-Foot Wind Tunnel. NASA TM X-62,470, 1975.
- 2. Johnson, Wayne; and Biggers, James C.: Shake Test of Rotor Test Apparatus in the 40- by 80-Foot Wind Tunnel. NASA TM X-62,418, 1975.

.5-9 Hz broadband excitation (test 469, run 1, point 1)

.5-40 Hz broadband excitation (test 469, run 1, point 4)

Figure 1. Propeller Test Rig at Ψ = 0, lateral modes (EW)

.5-9 Hz broadband excitation (test 469, run 2, point 2)

.5-40 Hz broadband excitation (test 469, run 2, point 3)

Figure 2. Propeller Test Rig at *P = 0, longitudinal modes (NS)

.5-9 Hz broadband excitation (test 469, run 5, point 1)

.5-40 Hz broadband excitation (test 469, run 5, point 2)

Figure 3. Propelier Test Rig at Ψ = 90°, lateral modes (NS)

.5-9 Hz broadband excitation (test 469, run 3, point 1)

.5-40 Hz broadband excitation (test 469, run 3, point 2)

Figure 4. Propeller Test Rig at $\Psi = 90^{\circ}$, longitudinal modes (EW)

.5-9 Hz broadband excitation (test 469, run 6, point 1)

.5-40 Hz broadband excitation (test 469, run 6, point 2)

Figure 5. Propeller Test Rig at Ψ = 90°, vertical modes

lateral modes
.5-9 Hz broadband
excitation
(test 469, run 1, point 12)

longitudinal modes .5-9 Hz broadband excitation (test 469, run 2, point 4)

Figure 6. Propeller Test Rig cantilever modes

.5-9 Hz broadband excitation (test 472, run 1, point 2)

.5-40 Hz broadband excitation (test 472, run 1, point 4)

Figure 7. Propeller Test Rig with gimballed proprotor nose case, ψ = 0, lateral nodes (EW)

.5-9 Hz broadband excitation (test 472, run 2, point 1)

.5-40 Hz broadband excitation (test 472, run 2, point 4)

Figure 8. Propeller Tent Rig with gimballed proprotor mose case, $\boldsymbol{\Psi}=0,$ vertical modes