Compito di Algoritmi e Strutture Dati

Corso di Laurea in Informatica

Appello Giugno 2005

Domanda 1 – (5 punti)

Si definisca il criterio di costo logaritmico per il Modello di Calcolo RAM e si valuti il costo dell'istruzione $LOAD \ * < address >$.

Domanda 2 – (15 punti)

Si descriva l'algoritmo di Union e Find che utilizza strutture dati ad Albero e lo si analizzi. La complessita' di tempo di Union deve essere O(1) e quella di Find $O(\log n)$, dove n e' il numero massimo di elementi dell' Universo.

Domanda 3 – (15 punti)

Si definisca un albero di ricerca ottimo e si dia un algoritmo che lo costruisce in tempo $O(n^3)$.

Domanda 4 – (15 punti)

Si definiscano le classi \mathcal{P} ed \mathcal{P} -Space. Si mostri che la prima e' contenuta nella seconda.

Domanda 5 – (10 punti)

Sia dato un vettore di interi positivi $\mathbf{V} = \{v_1, \cdots, v_n\}$. Si dia un algoritmo che, per individuare la differenza massima tra due elementi di \mathbf{V} , abbia complessita' di tempo O(n) e faccia al piu' $\frac{3}{2}n-2$ confronti.

Domanda 6 – (20 punti)

Trovare una soluzione ottimale (versione greedy) del problema di uno zaino di capacita' M=80, dati 8 oggeti di valore $\mathbf{P}=\{18,5,6,2,9,14,36,24\}$ e dimensione $\mathbf{W}=\{9,15,12,18,36,14,4,8\}$. Motivare la risposta.

Domanda 7 – (20 punti)

Risolvere la seguente formula ricorsiva esattamente. Ovvero, identificare la funzione T(n) che la soddisfa. Mostrare il procedimento. Qual'e' l'ordine di crescita asintotica di T(n)?.

$$\left\{ \begin{array}{ll} T(n) = T(\frac{n}{2}) + \frac{n}{3} & n > 1 \\ T(1) = 1 \end{array} \right.$$