University of New Brunswick Faculty of Computer Science

CS4355/6355: Cryptanalysis and DB Security

Theory Homework Assignment 1, Due Time, Date 5:00 PM, October 31, 2019

Student Name:	_ Matriculation Number:
Instructor: Rongxing Lu The marking scheme is shown in the left margin a	and [100] constitutes full marks.

- [30] 1. Please answer the following questions.
- [5] (a) List and briefly define categories of passive and active security attacks.
- [5] (b) List and briefly define the basic security requirements in computer and network security.
- [5] (c) Describe the Kerckhoffs Principles.
- [5] (d) Describe the functions of confusion and diffusion in symmetric ciphers.
- [5] (e) Describe the Strict Avalanche Conditions in symmetric ciphers.
- [5] (f) Describe the key management problem in conventional cryptosystems.
- [5] 2. A fundamental cryptographic principle states that all messages must have redundancy. But we also know that redundancy helps an intruder tell if a guessed key is correct. Consider two forms of redundancy. First, the initial n bits of the plaintext contain a known pattern. Second, the final n bits of the message contain a hash over the message. From a security point of view, are these two equivalent? Discuss your answer.
- [5] 3. Suppose that a message has been encrypted using DES in ciphertext block chaining mode. One bit of ciphertext in block C_i is accidentally transformed from a 0 to a 1 during transmission. How much plaintext will be garbled as a result?
- [10] 4. The following is a ciphertext with Caesar Cipher, please analyze it, and give the corresponding plaintext and the used key.
 - DRO MSDI LBSWC GSDR CEWWOB'C NOVSQRDC, GSDR MYVYBPEV ZBYNEMO SX DRO WKBUOD CDKXNC KXN RKGKSSKX WECSM CZSVVSXQ YXDY LOKMROC.
- [6] 5. Please complete the following two tables, and describe why Z_{11} and Z_{11}^* are abelian groups.

z = x +		\boldsymbol{x}										
y mod11		0	1	2	3	4	5	6	7	8	9	10
	0											
	1											
	2											
	3											
	4											
y	5											
	6											
	7											
	8											
	9											
	10											

	x ×	x										
y mod11		1	2	3	4	5	6	7	8	9	10	
у	1											
	2											
	3											
	4											
	5											
	6											
	7											
	8											
	9											
	10											

- [**6**] 6. Prove the following:
- [3] (a) $[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$
- [3] (b) $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$
- [12] 7. Prove the following:
- [4] (a) Prove the One-time padding is provably secure.

- [4] (b) Prove the Fermat's Little Theorem $a^{p-1} \equiv 1 \mod p$, where p is prime and $\gcd(a, p) = 1$.
- [4] (c) Prove that there are infinitely many primes.
- [6] 8. Using the extended Euclidean algorithm, find the multiplicative inverse of
- [3] (a) 1234 mod 4321
- [3] (b) 550 mod 1769
- 9. Suppose Alice and Bob share the common modulus $n=p\times q=35263$, but have different public-private key pairs $(e_1=17,d_1)$ and $(e_2=23,d_2)$. If David wants to send a message M to Alice and Bob, he first computes the cipher text $C_1=M^{e_1} \mod n$ for Alice, the value of C_1 is 28657, and also computes the cipher text $C_2=M^{e_2} \mod n$ for Bob, the value of C_2 is 22520. Finally, David sends (C_1,C_2) to Alice and Bob, respectively. Now, suppose a passive adversary A eavesdrops the ciphertexts (C_1,C_2) . Can the adversary A recover message M just from (C_1,C_2) and the public keys (n,e_1,e_2) ? If the adversary A can, please show what strategy that the adversary A would apply, and give the value of message M as well.

