Graded Generalized Algebraic Data Types

Harley Eades

October 12, 2022

Abstract

Write abstract

1 Introduction

Write the intro.

2 The Fundamental Theory

Suppose C is a category and $(\mathcal{E}, \otimes, I)$ is a strict monoidal category.

Definition 2.1 (Graded F-Algebra). For a functor $F : \mathcal{E} \times \mathcal{C} \longrightarrow \mathcal{C}$, a graded F-algebra is a pair (A,h) that consists of a functor $A : \mathcal{E} \longrightarrow \mathcal{C}$ and a family h of morphisms:

$$h_{m,n}: \mathsf{F}(m,\mathsf{A}(n)) {\longrightarrow} \mathsf{A}(m*n)$$

A **homomorphism** between two graded F-algebras (A,h) and (B,h') consists of a morphism

$$\alpha:(A,h)\longrightarrow(B,h')$$

is defined as a natural transformation $\alpha: A_1 \longrightarrow A_2$ such that:

$$\mathsf{F}(\mathsf{m},\alpha_\mathsf{n});h'_{m,n}=h_{m,n};\alpha_{m\otimes n}$$

Definition 2.2. If the category of graded F-algebras has an initial object, then we call this a **graded initial** F-algebra denoted by $(\mu F, in)$. That is, for any other F-algebra (A, h) there must be a unique morphism $\alpha : (\mu F, in) \longrightarrow (A, h)$, but this implies that for any object n, $\alpha_n : \mu F(n) \longrightarrow A(n)$ is unique and $\mu F(n)$ is an initial object in C.

Lambek's Lemma guarantees that $in_{m,n} : F(m, \mu F(n)) \longrightarrow \mu F(m * n)$ is an isomorphism.

References