2	
6 6	D. L. C. D
6 1).1	Problem Set 3 When & nx -1/2 f(n) = 1/2 n4 + 5n3 + 27 n2 + 10n
	$g'(n) = 2n^3 + 15n^2 + 27n + 10$
3	g'(-6) = 2(-6)3+ 15(-6)2+ 27(-6)+10
-9	= -44
-	
102)	when 1/2 n (5 b(n)= -71/16
-8	g(0) = -71/16
-	p'(0) =0
-	
1,3	when ny 5 b(n) = n2-10n + 329/16
103	6'(n) = 2n - 10
	6'(8) = 2(8)-18 = 6
-	
104	Pacman and Paclady can employ gradient descent
	and ensure their gradient buts zero but the would
	reach the bas when their location n<-2
9	Fon n=-2 the gradient is zero and their
-	location is a local maxima.
1	for n7-2 thewill reach gradient=0 at n=-1/2
10	which is local minima.
105	The previous gradient descent algorithm would.
	take them to n=2 because gradient would become
105	zero and would terminate. Their would be
	stuck at n= -2 instead of going to n=3.

200 XI X2 contake the following 4 values X1 X2 Case 2 O man 1 has a Cas 3 1 0 201) Case 1 HI(n) = 0-((-5),0+(-1)0+0.5) = 0-(0.5) = 0.622 H2(n)= 0- ((-2) 0 + (-1) 0 + 0-5) = 0-(0.5)=0.622 y = 0- ((-1):0.622 + (-4)0.622 + 0.5) = 0-(-2.6) = 0.068 round (0-068) = 0 Case 2 000 = 12 190 12 100 (100) 100 (100) 100 = (10) 1111 HI(n) = 0-(0.(-5) + -1(1) +0-5)=0-(-0.5)=0.377 H2(n) = o-((-2)(1) + 0(-1)+0-5) = 0-(-1.5) = 0.182 4= round (-1(0.377)+ -4(0.182) +0.5)=0(-0.602)=0.35 round (0.35) = 0 Care 3 HI(n) = 0-(1x-5 + -1(0)+05) =0-(-45)= 0.01 H2(N) = 0-(-2(0) +-1(1) +0.5) =0-60.5) =0.377 4= round o (-1(0.377)+-4(0.337)+0-5) = 0.265 80wd(0.265) = 6

	Case 4
	00 H1 (n) = 0 (-5(1)+-1(1) to.5) = 0-(-5.5) = 0.004
	H2(n)= a(-2(1)+-1(1)+05)= a(-25)=0.075
	y(n)=((-1)(0.004) + -4(0.075) +0.5)=000 (0.54.
	Je 15= (-15) (0.004) + -4(0.013) 103)
	ounce (0 ST) =
	This an AND gate
0 202)	Case 1
0 202)	H1(n)= o-(o(-5)+o(-4)+o(-5)= o-(o-5)= o-622
0	H2(n) = 0 - (0(3) + 0(4) + 05) = 0(0.5) = 0.622
0	y(n)=0 (0.622x2+0.622(-1)to.5)=0-(1.122)=0.75
	Park = round(0.75) = = 0.00 (1-1) = 0.00
0	0 = 12 mg 1 ha mg
0000000	
9	(ase 2 (+1(n) = 0 - (0(-5) + 1(-4) + 0 - 5) = 0(-3.5) = 0.029
	$H_2(n) = 0 - (0(3) + 1(4) + 0.5) = 0 - (45) = 0.989$
9	$g(n) = 0 - (0.029 \times 2 + -1(0.989 + 0.5) = 0.39$
9	g(n) = 0 (0.029x2+ 10 18170 5)=
9	80 cmck (0.31) = 0
5	
-	Case 3
5	HI(n) = o-(1(-5)+0(-4)+0-5)=o-(-45)=0.010
	H2(n)=0(1(3)+0(4)+0.5)=0-(3.5)=0.0170
-	y(n)=0-(0.01x2+0.97x-1'+0-3)=0-(0.450)=0.38
2 0	round (0.38) =0
	(10 (204.53) - 10 (204.53)
-	

Case 4 HI(n) =0(1(-5)+1(-4)+0.5)=0(-8.5)=0.0002 (+2(n) =0 (1(3)+1(4)+0.5)= 0 (7.5)=0.99 y(n)=0(2(0.0002)+-1(0.99).jo.s)=0(-0.48)=0,38 round (0.38) = 0 This is a NOR gate. 2.3) Case-1 HI(n) = (0(3)+0(-3)+0.5) = 0-(0.5) = 0.622 H2(n) = o(0.(1) + 0(-4) + 0.3) = o(0.3) = 0.622 9(n)=0 (-3(0.622)+5(0.622)+0.5)=00 = 0.85, round (0.85) = Case 2 HI(N) =0 (0(3) +1(-3) +0.5)=0-(-2.5) = 0.075 H2(n)=0(0(1)+(-4)+0.85)=0(-3.5)=0.029 7(n) = 0 (-3(0075)+5(0.029)+0.5)=0-(0.42)=0-603 round (0.603) =1 Case-3 HI(N) = 0 (3+0-5) = 0 (3.5) = 097 H2(N)= 0 (1+05) =0 (1.5) =0.8/ g(n)=((0.97)-3+5(0.81)+0.5)=0(1.67)=0.84 round (0.84) = /

Case 4 41(n) = a(3-3+0.5) = o(0.5) = 0.622H2(n) = 0-(1-4+05) = 0-(-25) = 0.075 y(n)=0(-3x0.622+ 5x0.075+0.5) = 0(-0.98) = 0.27 sound (0.27)=0 This is NAND gate. 02.4 Case H(n) = o(0(2) + o(-3) + o(5) = o(0.5) = 0.62242(n) = 0 (0(3) + 0 (-3) + 0-5) = 0 - (0-5) = 0-622. P 4(n)= 0 (0(4)+10(-4)(0-622)+0-5)=0(0-5)=0.622 1 round (0.622) = 1 7 Case 2 $|H(n)| = \sigma(o(2) + 1(-3) + o(5)) = \sigma(-2.5) = 0.075$ H2(N) = 0-(013) + (3) 1+0.5) = 0-(-2.5) = 0.075) y(n)=0-(4x0.075-4x0.075 to-5)=0-605)=0-622. roud (0.622) = 1. Cas 3. 41(n) = 0-(2+0-5) = 0-(2-5) = 0.92 H2(n)= 0 (3+0-5) = 0 (3.5) = 0.97 y(n) = 0 (4 (0.92)+ -4 (0.97) +0.5) = 0 (0.297)=0.57 round (0.57)=

|H(n)| = o(2+-3+0.5) = o(-0.5) = 0.377. $H_2(n) = O(0.5) = 0.622$ y(n) = of 4 (0.37 7) + -4(0.622) +0.5] = o-(-0.47) = 0.38 Con rond (0.38) = 0 6 This is also a NAND gate. 600 18-1- (Surexalla) 4(28-10-x -1, 6) = 11/4 ACT 1+5 50 6 WA b(n) = (-1.06x-0.82)+(-0.02 x0.95) = 0.8502 WB 6(n) = (-1.06 x -1.63)+ (-0.88 x 095)= 0.8918 WC b(n) = (-1.06 x 039)+ (0.65 x 0.95) = 0.2041 new WA, = WAI -00000 = -0.82 to = 824 -0.82 3.2) NEW WAZZ WAZZ State = -0.02 # ZOGG = 7000 -0.02 new WB1 = WB1-BIN) = -1.63+1.06= -0.57 new WB2 = WB2 - Bln) = -0.88 - 0.95 = -1-83 new wes = west + B(n) = 0.34 -1.06 = -0.67 New war = war + b(n) = 0.65 + 0.95 = 106 The Part of the Pa WA BA) = (0.84 x0.09)+(40.05x1.48) = 755444 0.00042 3.3) WB BB = (-0.57x0.09) + (-0:83x1.48) = -2.7597 we be = (-0.67 x0.09) + (1.6 × 1.48) = 2-3 077 The prediction is C' but the label goven is A.

-0.82 0.00 hew WAI = WAI + 6(m) = MAH + - 125) = 0.73 new WAZ = WAZ + b(n) = -0:02 + 0.48 = 084 -1.50 new WB1 = WB1- B(n) = -0.57 # 189780 = 20560 -0.57 new WB2 = WB2 - 6/n)= -1-83 mm = 300 -1.83 New wei = wei - 6/11/= -0.67 -0.09= -0.76 new wcz = wcz - b(n)= 106 -1.48 = 0.12 10 WA 6(n) = (3.12 x-1.35)+ (0.96x0.42) = -3.8088 WB 6(n) = (3.11 x -1.35)+(-0.97x0.42)=-4.6059 we b(n) = (-0.29x-1.35) + (0-24x042) = 11.0907 THE ACTION ATOMED WELL AND THE COLD WAS OF COLORS OF STATE OF (35) Predicted label is C" ALL - STATE LE O - "STATE OF STATE SON SELECTION CAN 4) of This may or may not increase the performance . The perceptron is guaranteed reach zero error provided a is small enough. (a-learning rate). If learning rate is large, training the weights for 10 a longer time will keep the algorithm from converging and will keep bounding around. (0 81, x000/+ (4000x 148) = x600 42) By adding higher order features such as pairwise products, increases the dimentionality which increases the chance of findinga hyperplane that can seperate the data points. This can be useful if original flatures parted to converge

	permy 2-0 x sere-g"-/ (a Francish - de se profession de - 6)
4.3)	If some features were irrelavant or noisy
	then the braining data might not reduct.
LACTURE X	So removing features was definition in you
	Improve on training errors some fines note
-	beature can get noise and inconsistance
	data too wo - hard
	[60-0-3x.0] + (45.00 1))
4.4)	Collecting larger data set is likely to improve
	pleformand. A larger data will must
	peraptron fit better of over the distributed data
	5.3) Trul 5.4) Tru
5-1)	Faise 5.2) 18th.
5.5)	False
5.9)	TILL THE
513)	Taise Strip
5.17)	
- 1	(2.0 x (200 (200 (200 (200 (200 (200 (200 (
	N= (P1 W1 +12 W2 + b1) = [0.05 x0.15] 0.1 x0.3 + 0.35)
601)	= 0 - (0.3875) = 0.5956
- And Company	
	hz=of 9, w3+ 12 w4 +b1) = o (0.05x 0.12+ 0.1x0.28+0.35)
	=0(0.384) = 0.5948

0	01= o(h1 ws + n2 w6+62)= (0.5956x 0.5+0.5948×0.55+0.6
	B = 0 (10224) = 0077
	What I can I have been about the sale of t
	02=0-(h1w7+h2w8+b2)=(0.5956x0.45+0.5948x0.4+0.6
11.00	= o-(1.105) = 0.75
20	Paragraphic of his service the many world
6.2)	Error = \(\Sigma\) \(\lambda\) \(\text{target} - Output \)^2
	$= \frac{1}{2} \left[(0.1 - 0.77)^2 + (0.75 - 0.99)^2 \right]$
Que n	1 00.25320 day 1200 1/10/10/10/10/10/10/10/10/10/10/10/10/10
	SHE THE WAS A STATE OF THE STAT
6.3)	dE = dE x down and
	on our fru
	= - (target-outs) & (net x 1- met) x h

	dE = - (0.1 -0.77) x0.77 (1-0.77) x0.5956 = 0.0706
	dus 20 12 11 11 12 11 1 20 10 2 1 20 10 - 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10
	We applate = 0.5 - 0.5 (0.0706) = 0.4647
	0.0704
	JE = -(0.1-0.77 × 0.77 (1-0.77) × 0,5948 = -28-2020
0	9MP
	W6 = 0.55 - (0.5 x 0.0704) = 05147
1	W6
	dE = -(0.99-0.75) x 0.75 (1-0.75) x 0.5956= -0.0268
	de = - (044-0.75) x 0.75(100)
	$\omega_{\pm}^{\text{upfatt}} = 0.45 - 0.5(-0.0268) = 0.4634$
	W7 = 0.45 - 0.5[0.200] - 0.4634
	1
	dE = -(0.99-0.75) x 0.75(1-0.75) x 0.59 48 =-0.0267
	d108
	$\omega_8^{\text{updut}} = 0.4 - 0.5(-0.0967) = 0.4135$
	. Hence, W5= 0.4647
1/2	$W_{6} = 0.0706$
16	w7 = 0,4634
	wg= 0.4135